Uncovering the geographical and host impacts on the classification of Vibrio vulnificus

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation	Yu, Shoukai. 2018. “Uncovering the Geographical and Host Impacts on the Classification of Vibrio Vulnificus.” Evolutionary Applications [January 31]. doi:10.1111/eva.12602.
Published Version	10.1111/eva.12602
Citable link	http://nrs.harvard.edu/urn-3:HUL.InstRepos:34785367
Terms of Use	This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Uncovering the geographical and host impacts on the classification of *Vibrio vulnificus*

Shoukai Yu

Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA

Conflict of interest: the author declares no conflict of interest.

Address for correspondence:
Shoukai Yu

Program in Molecular and Integrative Physiological Sciences & Department of Environmental Health

665 Huntington Avenue, Bldg 2, Rm 217
Harvard T. H. Chan School of Public Health

Boston, MA, 02115

Email: shoukaiyu@hsph.harvard.edu

Phone: 857-3170801

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/eva.12602

This article is protected by copyright. All rights reserved.
Abstract

Vibrio vulnificus causes human sickness throughout the world via the consumption of undercooked seafood or exposure to contaminated water. Previous attempts at phylogenetic analyses of *V. vulnificus* have proven unsuccessful, mainly due to the poorly understood impact of factors on its divergence. In this study, we used advanced statistical and phylogenetic methods to strengthen the classification of *V. vulnificus*. This updated classification included the impact of geographical and host factors. The results demonstrate the existence of hierarchies and multidimensional effects in the classification of *V. vulnificus*, from the molecular level using biotypes, to the distributional level using geographical location, to the adaptational level through host immune response. These findings have implications for the classification of bacteria, bacterial evolution, and public health.

Keywords: Bioinfomatics/Phyloinfomatics, Molecular Evolution, Phylogeography, Virulence

Introduction

The pathogenic bacterium *Vibrio vulnificus* is gram-negative, curved, and motile. There are three main disease syndromes caused by this bacterium: invasive septicemia, acute gastroenteritis, and necrotizing wound infections. *V. vulnificus* naturally exists in coastal regions globally, and can cause seafood-borne disease and wound infections in humans and a range of fish diseases. Although *V. vulnificus* can cause severe and even rare fatal infections in infected individuals, the impact of climate change and geographical distribution on the ecology of *V. vulnificus* is little known. A series of environmental parameters contribute to the virulence and abundance of *V. vulnificus*, which includes ocean temperature, turbidity, conductivity, sea level height, sea ice, winds, salinity, and wave length and velocity of propagation. The ecology of *V. vulnificus* is also related to dissolved organic carbon and chlorophyll (1-3). Both climate factors and host sources can affect the ecology and evolution of *V. vulnificus*. For example, a growing body of recent publications have reported correlations between climate change and the infection rate of *V. vulnificus* (3-8), which could be directly linked to geographical factors. The global distribution of liver diseases could also be potentially linked to infections of *V. vulnificus* (9, 10). Overall, geographical variation can represent many factors, such as climate and the distribution of host immune system responses. A great amount of effort has been put into
trying to distinguish \textit{V. vulnificus} strains by virulence or avirulence and to classify them by environmental and clinical strains (11-19). However, these efforts have largely proven unsuccessful (20). Moreover, none of these attempts have tried to incorporate geographical factors from currently available global databases into the analyses.

Although genomic and geographical data for \textit{V. vulnificus} are publicly available and include isolates worldwide, studies on the effects of geographical isolation are still difficult to perform due to limitations of methodology and the multidisciplinary nature of the issue. In the current study, we integrated geographical factors and host attribution into an evolutionary analysis of \textit{V. vulnificus}. Specifically, we used geographical locations and attributed sources of \textit{V. vulnificus} (infected human samples, aquatic animal samples, and samples from the environment) to provide a better understanding of how to classify \textit{V. vulnificus}. We estimated the divergence times of some specific strains of \textit{V. vulnificus} and constructed a phylogeny. We also evaluated the distribution of genetic variation within and among defined groups and pairwise fixation indices (FST) were estimated. For each defined group (by geographical location or host source), the presence of population clusters was inferred by Bayesian analysis. The ultimate goal is to understand the interaction between the ecology of bacteria and their global distribution.

Methods

Data sources

Four hundred fifty-two isolates of \textit{V. vulnificus} were utilized in this analysis. The isolate data contains information on country, host, sampling year, sequence type (ST), and ten housekeeping genes via multilocus sequence typing (MLST) (PubMLST: http://pubmlst.org/). Neighbor-joining trees were produced on all the isolates using MEGA 7 (21). The distance matrix of the mean number of pairwise differences was produced through Arlequin 3.5 (22). Neighbor-Net based on pairwise differences was constructed using the software SplitTree (23, 24). In a consensus tree, the agreed upon (compatible) part of a set of phylogenetic trees can be displayed as a splits-graph (25). The incompatible parts can be represented by split networks of group trees.
Maximum likelihood (ML) is a general statistical method for identifying the topology that explains the evolution of observing the data (e.g., a set of aligned nucleotide sequences) under a given substitution model of evolution with the greatest likelihood (26). In bioinformatics, neighbor joining (27) is a bottom-up clustering method that greedily optimizes the so-called “balanced minimum evolution” criterion (28), and this algorithm requires knowledge of the distance between each pair of sequences to construct the phylogenetic trees, based on the given sequence data. Due to the efficiency for the analysis of large data sets, neighbor joining methods are wildly used for constructing phylogenetic trees from distance data (28).

Analysis of molecular variance

Analysis of molecular variance (AMOVA) was conducted to attribute the total variance into geographically-related genetic structures or host-associated genetic structures using Arlequin software (22). As a hierarchical analysis of variance, AMOVA was performed in two ways in this study. For the first AMOVA analysis, isolates from different geographical locations were separated into three groups: Asia, Europe, and USA, and then within each group, the isolates were divided by different host sources: human, aquatic animals, and the environment. For the second AMOVA analysis, isolates from different host sources were separated into three groups: human, aquatic animals, and the environment; then within each group, the isolates were divided by three geographical locations: Asia, Europe, and USA.

Analysis of population structure

STRUCTURE is a software package to use multi-locus genotype data to investigate population structure. We used STRUCTURE to infer the presence of distinct populations that could be assigned to isolates (29, 30). There were nine sets (three sources multiplied by three locations) of data for 452 V. vulnificus isolates. A no-admixture model with selected options of USEPOPINFO, PopFlag, and PopData were applied in STRUCTURE (31, 32). The no-admixture model was employed with a burn-in of 10,000 iterations. Convergence was assured by a comparison of multiple independent chains.

This article is protected by copyright. All rights reserved.
In order to eliminate the effects of different biotypes, 100 isolates were selected randomly from the original datasets of biotype 1 (294 isolates) and used as a training set. Host sources and geographical locations were pre-specified for these 100 isolates in STRUCTURE. Probabilistic assignment of alleles to different sources and different geographical locations were performed separately. These assignments were based on allele designations with 10,000 burn-in iterations and with a subsequent 10,000 iterations. The assignment of 194 isolates was performed based on the training set of 100 separate isolates.

Bayesian phylogenetic analysis

The choice of isolates for Bayesian evolutionary analysis by sampling trees (BEAST) analysis was based on both geographical locations and host sources (Table 1), which meant nine possible combinations. Because the European isolates contained biotype 3 from Israel, and there is more ST variation from European countries, one additional isolate from Europe was also added in the analysis.

The program BEAST (33, 34) was used to estimate the divergence time for different STs of *V. vulnificus*, and further to construct phylogenies of specific strains that represent different sources and geographical locations. The selected sequence types (STs) used are listed in Table 1. These STs were based on the ten loci characterized by MLST. The HKY substitution model was then applied in BEAST (33-35). The iterations for Markov Chain Monte Carlo (MCMC) were 100,000,000, and two MCMC chains were compared to check the convergence. The posterior distribution had a large effective sample size (ESS) of 71973; tree edge lengths were scaled.

Results

Neighbor joining tree

The mostly likely evolutionary tree of given taxon can be represented by a consensus tree. The consensus tree in Figure 1 shows the evolutionary history and phylogenetic relationships among isolates from three different geographic sampling locations and three host sources. The tree also demonstrates that the clusters of the three geographical locations transcend the host impacts.

This article is protected by copyright. All rights reserved.
Analysis of molecular variance

The amount of population genetic structure was evaluated by partitioning into total phenotypic variance within populations and among populations using the software Arlequin (v. 3.5) (22). Pairwise FST indexes were calculated using genetic distances between populations. By definition, F statistics range from 0 to 1 (36). The value 0 for FST indicates no differentiation, while a value of 1 indicates complete differentiation.

For the AMOVA analyses, isolates from three geographical regions were separated into three groups and, within each group, the isolates were divided by different host sources: human, aquatic animals, and environment. Table 2 shows the results of AMOVA analyses when the geographical region grouping was set at a higher level. There is 21.2% variance assigned among geographical regions, only 18.2% variance assigned among hosts within each region, and the majority variance was assigned within each host for a fixed region. When AMOVA analyses were performed with the host sources set at a higher level and the geographical regions set at a lower level, there was no variance assigned among host sources. In summary, the effect of geographical regions was greater than the effect of host sources on the genetic variance of \(V.\ vulnificus \). Furthermore, the majority of variance (about 60%) was assigned to within each geographical region and within each host source.

The phylogeny

From the BEAST analysis (Table 3 and Figure 2), the estimated divergence time of ST-3 and ST-5 is about 132 years ago (95% HPD: 111.6, 153.5). The highest posterior density (HPD) represents the smallest credible interval in the BEAST analyses that contains 95% of the posterior probability. In the topology (Figure 2), ST-5 and ST-158, ST-30 and ST-8, ST-3 and ST-218, ST-77 and ST-73 are grouped together respectively. The estimated divergence time of ST-5 and ST-158 is about 50 years ago (95% HPD: 32.6 to 66.7, in Figure 2). The estimated divergence time of ST-8 and ST-30 is about 68 years ago (95% HPD: 54.9 to 81.3, in Figure 2). The estimated divergence time of ST-3 and ST-218 is about 60 years ago (95% HPD: 46.1 to 71.7, in Figure 2). The estimated divergence time of ST-77 and ST-73 is about 90 years ago (95% HPD: 70.6 to 110.2, in Figure 2).

This article is protected by copyright. All rights reserved.
Structure

For the source assignment (Table 4), the three host sources were predefined for 100 isolates, and then the 194 isolates were assigned to each of the host sources using a no-admixture model. Finally, the assignment results were compared to the true reported host sources to evaluate the robustness of each host source. For the geographical location assignment (Table 5), the three geographical locations were predefined for 100 isolates, and then the 194 isolates were assigned to each. Finally, the assignment results were compared to the true reported geographical locations to evaluate the robustness of each host source. For both tables, on the diagonal from the upper left to lower right, the number represents isolates assigned to their own groups; the off-diagonal numbers represent isolates assigned to other groups. Because there are more isolates assigned to their own group rather than the other two groups for geographical effects compared to host effects, the two above results show that the divergence effect created from geographical locations transcends the effect created by host association.

There are 294 isolates analyzed in STRUCTURE. Among them, 100 isolates were used as training datasets. One hundred ninety-four isolates were assigned into pre-defined clusters. The number of predefined clusters ranged from 3 to 9 (Figure 3). The sample sizes for each of the nine categories are listed in Table 6. In Figure 3, each colored vertical line represents an isolate. Isolates were assigned into potential attributed clusters, and different clusters are shown by different colors. For the hybrid vertical line (isolates), the estimated probability of the origin is shown by different colors. No matter how many clusters are specified, the biotype 3 isolates are always grouped together and distinguished from the other groups. This observation indicates that the most important feature of the *V. vulnificus* phylogeny is the molecular divergence of biotype 3 isolates.

Discussion

Utilizing phylogenetic tools, we adduced four findings in this study. First, a significant geographic variance of *V. vulnificus* was identified for the first time. Second, this geographic variance is more phylogenetically important than the host associations of *V. vulnificus*. Third, the classification of *V. vulnificus* is hierarchical. Biotype 3 has the most divergence from the other biotypes, which is then followed by the geographical region, then the host association. This article is protected by copyright. All rights reserved.
Fourth, this study developed an analytical strategy to identify the geographical effects of genotypic variance, and this strategy can be widely applied to other bacteria.

Geographical locations and different host sources can create genotype diversity. In the current analyses, host attribution was the least useful feature for the classification of *V. vulnificus*. The separation of biotypes 1 and 2 also provided little information as to how to classify it. These findings can partially explain the unsuccessful attempts at classifying *V. vulnificus* according to host (human vs. environment). One possible reason why most previous attempts focused solely on host attributions, which have proven non-definitive, is technical sampling limitations (10, 37).

All of the *V. vulnificus* biotype 3 isolates were sampled from Israel, and they were the cause of multiple outbreaks in Israel (38, 39). Biotype 3 may be the recombination product of biotypes 1 and 2 (40). The BEAST analyses and STRUCTURE analyses demonstrated that biotype 3 has emerged recently. In general, the classification of *V. vulnificus* only based on the isolates biotype 1 and biotype 2 is indistinguishable. However, biotype 3 isolates are significantly distinguishable from other isolates.

Previous classifications based solely on environmental and clinical sources have proven unsuccessful for distinguishing avirulent and virulent strains. The reasons for this unsuccessful classification are largely due to two factors. The first is sampling bias. In the current MLST database (as of Jan 1, 2017) of *V. vulnificus*, there are 452 isolates in total, and among them 105 isolates are from the environment and 170 from clinics. For unique STs, there are 319 unique STs in the current MLST database. Among them, there are 100 STs from the environment and 83 isolates from humans. This could be a reflection of the diversity of sequence types in their ecology. The second factor is the unequal uptake rate of *V. vulnificus* into the human food chain between environmental and clinical strains. The human sources of *V. vulnificus* are mainly specific seafood, such as oysters or eels. Previous studies have shown that the survival rate of environmental strains is lower than clinical strains in the bodies of oysters (41, 42). Therefore, the chances of clinical strains entering the human food chain are much higher than those of the environmental strains. Despite the existence of sampling bias and an unequal uptake rate, neither of these factors means that environmental strains are not virulent. The potential sampling bias is also consistent with the proven potential virulence of

This article is protected by copyright. All rights reserved.
environmental strains (11, 43). Furthermore, this classification does not reflect climate effects. Climate factors in
different geographical locations can be treated as snapshots of the time at which climate changes took place. Many
advanced computational and statistical models will be necessary to apply climate factors to evolutionary and
ecological analyses of bacteria in future work.

For Neighbor-Joining analyses (Figure 1A), there are Europe clusters and Asia cluster of analyzed isolates. Within the
main cluster of Europe isolates, there are in total of 15 isolates from Asia, and 34 isolates from USA. Within the Asia
cluster, there are 12 isolates from Europe, and 12 isolates from USA. These results are approximately consistent with
the assignment from STRUCTURE analyses (Table 5). For USA isolates, there is no apparent USA cluster. The
potential reasons could be due to the effect of human activity, such as travel, trade, pollution concentration, or ocean
fishing.

Both the STRUCTURE and NJ tree results (Figures 1 and 3) demonstrate that biotype 3 has the most apparent
separation between *V. vulnificus* types, regardless of the sampling source. Although it has only been reported in Israel
so far, this sequence type caused two severe outbreaks within a 10-year span (38, 39), and thus it represents a recently
evolved and highly virulent group. The clear separation of biotypes indicated that they were more important than
either geographical sampling location or the host source, though STRUCTURE analysis also revealed that the latter
two both play a role in the evolution and genotype diversity of *V. vulnificus*. The geographic variation of *V. vulnificus*
genotypes exceeds the host association, a finding that is also supported by the AMOVA results.

In summary, biotype 3 defines the first divergence level, which is more important than geographical location, and the
effect of geographical location exceeds that of the source attribution. In other words, the classification of *V. vulnificus*
should be considered as hierarchical rather than one-dimensional. This is one of the first studies to successfully detect
geographical effects on the ecology and evolution of *V. vulnificus*. The findings presented here provide strong
evidence that the evolution of bacteria is affected by their micro- and macro-ecology.

This article is protected by copyright. All rights reserved.
Further efforts should be made to collect genomic data from *V. vulnificus* and related global climate data. Even with the currently limited number of isolates, we can still detect significant effects; more data would allow for more precise analyses. Future research should focus on integrating advanced tools from interdisciplinary fields, including statistics, phylogenetics, computer science, and microbiology. Though it is just a starting point, we have demonstrated the importance of integrating geographical factors into the evolutionary analysis of bacteria.

Acknowledgements

I thank members of the Department of Environmental Health and the Department of Biostatistics at Harvard University for discussions and insightful comments during the development of this work. I am also grateful for the continued support from the staff members of Harvard catalyst programs.

Data Archiving Statement

The datasets generated during the current study have been deposited in the public available repository, https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/FFKIMS

Reference

1. Johnson CN, Bowers JC, Griffitt KJ, Molina V, Clostio RW, Pei S, et al. Ecology of Vibrio parahaemolyticus and Vibrio vulnificus in the coastal and estuarine waters of Louisiana, Maryland, Mississippi, and Washington (United States). Applied and environmental microbiology. 2012;78(20):7249-57.
2. Shaw KS, Jacobs JM, Crump BC. Impact of Hurricane Irene on Vibrio vulnificus and Vibrio parahaemolyticus concentrations in surface water, sediment, and cultured oysters in the Chesapeake Bay, MD, USA. Vibrio ecology, pathogenesis and evolution. 2014:180.
3. Sterk A, Schets FM, Husman R, Maria A, Nijs T, Schijven JF. Effect of Climate Change on the Concentration and Associated Risks of Vibrio Spp. in Dutch Recreational Waters. Risk Analysis. 2015;35(9):1717-29.
4. Abraham J, Baringer M, Bindoff N, Boyer T, Cheng L, Church J, et al. A review of global ocean temperature observations: Implications for ocean heat content estimates and climate change. Reviews of Geophysics. 2013;51(3):450-83.
5. Baker-Austin C, Trinanes JA, Taylor NG, Hartnell R, Siitonen A, Martinez-Urtaza J. Emerging Vibrio risk at high latitudes in response to ocean warming. Nature Climate Change. 2013;3(1):73-7.
6. Greer A, Ng V, Fisman D. Climate change and infectious diseases in North America: the road ahead. Canadian Medical Association Journal. 2008;178(6):715-22.

This article is protected by copyright. All rights reserved.
7. Harvell C, Kim K, Burkholder J, Colwell R, Epstein PR, Grimes D, et al. Emerging marine diseases--climate links and anthropogenic factors. Science. 1999;285(5433):1505-10.
8. Hayes ML, Bonaventura J, Mitchell TP, Prospero JM, Shinn EA, Van Dolah F, et al. How are climate and marine biological outbreaks functionally linked? The Ecology and Etiology of Newly Emerging Marine Diseases: Springer; 2001. p. 213-20.
9. Chuang Y-C, Yuan C-Y, Liu C-Y, Lan C-K, Huang AH-M. Vibrio vulnificus infection in Taiwan: report of 28 cases and review of clinical manifestations and treatment. Clinical Infectious Diseases. 1992;15(2):271-6.
10. Wong H-C, Liu S-H, Chen M-Y. Virulence and stress susceptibility of clinical and environmental strains of Vibrio vulnificus isolated from samples from Taiwan and the United States. Journal of food protection. 2005;68(12):2533-40.
11. Amaro C, Biosca EG, Fouz B, Toranzo AE, Garay E. Role of iron, capsule, and toxins in the pathogenicity of Vibrio vulnificus biotype 2 for mice. Infection and immunity. 1994;62(2):759-63.
12. Krovacek K, Baloda SB, Dumontet S, Månsson I. Detection of potential virulence markers of Vibrio vulnificus strains isolated from fish in Sweden. Comparative immunology, microbiology and infectious diseases. 1994;17(1):63-70.
13. Moreno M. Virulence factors and pathogenicity of Vibrio vulnificus strains isolated from seafood. Journal of applied microbiology. 1998;84(5):747-51.
14. Morris JG, Wright AC, Simpson LM, Wood PK, Johnson DE, Oliver JD. Virulence of Vibrio vulnificus: association with utilization of transferrin-bound iron, and lack of correlation with levels of cytotoxin or protease production. FEMS microbiology letters. 1987;40(1):55-9.
15. Rodrigues D, Ribeiro R, Hofer E. Analysis of some virulence factors of Vibrio vulnificus isolated from Rio de Janeiro, Brazil. Epidemiology and infection. 1992;108(03):463-7.
16. Stelma G, Reyes A, Peeler J, Johnson C, Spaulding P. Virulence characteristics of clinical and environmental isolates of Vibrio vulnificus. Applied and environmental microbiology. 1992;58(9):2776-82.
17. Strom MS, Paranjpye RN. Epidemiology and pathogenesis of Vibrio vulnificus. Microbes and infection. 2000;2(2):177-88.
18. Tison DL, Kelly MT. Virulence of Vibrio vulnificus strains from marine environments. Applied and environmental microbiology. 1986;51(5):1004-6.
19. Warner JM, Oliver JD. Randomly amplified polymorphic DNA analysis of clinical and environmental isolates of Vibrio vulnificus and other Vibrio species. Applied and environmental microbiology. 1999;65(3):1141-4.
20. Phillips KE, Satchell KJ. Vibrio vulnificus: From Oyster Colonist to Human Pathogen. PLoS pathogens. 2017;13(1):e1006053.
21. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular biology and evolution. 2016:msw054.
22. Excoffier L, Lischer HE. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular ecology resources. 2010;10(3):564-7.
23. Huson DH, Bryant D. Estimating phylogenetic trees and networks using SplitsTree 4. Manuscript in preparation, software available from www.splitstree.org. 2005.
24. Huson DH. SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics. 1998;14(1):68-73.
25. Holland BR, Delsuc F, Moulton V, Baker A. Visualizing conflicting evolutionary hypotheses in large collections of trees: using consensus networks to study the origins of placental and hexapods. Systematic Biology. 2005;54(1):66-76.
26. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of molecular evolution. 1981;17(6):368-76.
27. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular biology and evolution. 1987;4(4):406-25.
28. Gascuel O, Steel M. Neighbor-joining revealed. Molecular biology and evolution. 2006;23(11):1997-2000.

This article is protected by copyright. All rights reserved.
29. Pritchard J, Wen X, Falush D. Documentation for structure software: Version 2.3. University of Chicago, Chicago, IL. 2010.
30. Falush D, Stephens M, Pritchard JK. Inference of population structure using multilocus genotype data: dominant markers and null alleles. Molecular ecology notes. 2007;7(4):574-8.
31. Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155(2):945-59.
32. Hubisz MJ, Falush D, Stephens M, Pritchard JK. Inferring weak population structure with the assistance of sample group information. Molecular ecology resources. 2009;9(5):1322-32.
33. Drummond AJ, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC evolutionary biology. 2007;7(1):214.
34. Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular biology and evolution. 2012;29(8):1969-73.
35. Hasegawa M, Kishino H, Yano T-a. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of molecular evolution. 1985;22(2):160-74.
36. Holsinger KE, Weir BS. Genetics in geographically structured populations: defining, estimating and interpreting FST. Nature Reviews Genetics. 2009;10(9):639-50.
37. Levin RE. Vibrio vulnificus, a notably lethal human pathogen derived from seafood: A review of its pathogenicity, subspecies characterization, and molecular methods of detection. Food Biotechnology. 2005;19(1):69-94.
38. Paz S, Bisharat N, Paz E, Kidar O, Cohen D. Climate change and the emergence of Vibrio vulnificus disease in Israel. Environmental Research. 2007;103(3):390-6.
39. Bisharat N, Agmon V, Finkelstein R, Raz R, Ben-Dror G, Lerner L, et al. Clinical, epidemiological, and microbiological features of Vibrio vulnificus biogroup 3 causing outbreaks of wound infection and bacteraemia in Israel. The Lancet. 1999;354(9188):1421-4.
40. Bisharat N, Cohen DI, Harding RM, Falush D, Crook DW, Peto T, et al. Hybrid Vibrio vulnificus. Emerging infectious diseases. 2005;11(1):30.
41. Froelich B, Ringwood A, Sokolova I, Oliver J. Uptake and depuration of the C - and E - genotypes of Vibrio vulnificus by the Eastern Oyster (Crassostrea virginica). Environmental microbiology reports. 2010;2(1):112-5.
42. Froelich BA, Noble RT. Factors affecting the uptake and retention of Vibrio vulnificus in oysters. Applied and environmental microbiology. 2014;80(24):7454-9.
43. Starks AM, Schoeb TR, Tamplin ML, Parveen S, Doyle TJ, Bomeisl PE, et al. Pathogenesis of infection by clinical and environmental strains of Vibrio vulnificus in iron-dextran-treated mice. Infection and immunity. 2000;68(10):5785-93.
44. Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences of the United States of America. 2004;101(30):11030-5.
Legends

Figure 1. (A) Evolutionary history was inferred using the Neighbor-Joining method (27). The evolutionary distances were computed using the Maximum Composite Likelihood method (44) and are in units of the number of base substitutions per site. The analysis involved 452 nucleotide sequences. All positions containing gaps and missing data were eliminated. There were a total of 4326 positions in the final dataset. Evolutionary analyses were conducted in MEGA7 (21). Biotype 3 isolates are represented by red dots. Light grey dots represent isolates that are from Asian environmental sources. Black dots represent isolates that are from Asian human sources. Dark gray dots represent isolates that are from Asian aquatic animal sources. Yellow, pink, and orange represent isolates from European environment, human, and aquatic animal sources, respectively. Light blue, dark blue, and green represent isolates from USA environment, human, and aquatic animal sources, respectively. (B) Neighbor-net reconstruction of relationships among isolates from different geographic sampling locations and host sources using the software SplitTree.

Figure 2. The phylogeny of ten selected isolates generated from Bayesian Evolutionary Analysis by Sampling Trees (BEAST) software. Mean divergence estimates are indicated at corresponding nodes in units of years before present. The 95% highest posterior density intervals for each node are given in brackets.

Figure 3. Inference of genetic clusters for 194 Biotype 1 isolates. This assignment was implemented using STRUCTURE and based on 100 predefined isolates. K represents the number of given clusters. Each vertical bar represents an isolate, and the different colors represent the inferred clusters by the assignment analysis using STRUCTURE software. The mixture coloration of each bar indicates the probability with which an isolate can be assigned to a particular cluster.

Table 1. The combination of selected sequence types for BEAST analysis.

Table 2. AMOVA results with geographical regions defined as a higher grouping level, and then the host sources defined as a lower level.

This article is protected by copyright. All rights reserved.
Table 3. BEAST results of the mean split time. HPD: highest posterior density.

Table 4. The predicted host source of 294 Biotype 1 isolates assigned to one out of three host sources. Assignment of isolates to host sources was on the basis of STRUCTURE analysis, and the three host sources were defined using 100 isolates with predefined host sources.

Table 5. The predicted geographical locations of 294 Biotype 1 isolates assigned to one out of three sampling locations. Assignment of isolates to geographical locations was based on STRUCTURE analysis, and the three geographical locations were defined using 100 isolates with predefined true geographic locations of sampling sites.

Table 6. Number of isolates included from each super-region for each of three sources.

Supplementary table 1. Number of assigned isolates included from each super-region for each of three sources.

Supplementary table 2. Number of predefined isolates included from each super-region for each of three sources.

Table 1. The combination of selected sequence types for BEAST analysis.

Source	Asian	European*	USA
Environment	ST-73	ST-5	ST-4
Human	ST-77	ST-8	ST-3
Aquatic animals	ST-158	ST-138	ST-30

Due to the higher diversity from European countries, one additional isolate (ST-218, short for sequence type 218) was also added in the analysis.
Table 2. AMOVA results with geographical regions defined as a higher grouping level, and then the host sources defined as a lower level.

Source of variation	Degrees of freedom	Sum of squares	Variance components
Among regions	2	4541.3	11.9
Among hosts within regions	6	2792	10.3
Within hosts	443	15093.5	34.1

Table 3. BEAST results of the mean split time. HPD: highest posterior density.

Splits Name	Time (unit year)	95% HPD lower, upper range
ST-3_ST-5	132.28	[111.57, 153.49]
ST-3_ST-73	121.99	[103.48, 141.28]
ST-3_ST-138	99.55	[83.52, 116.53]
ST-3_ST-4	84.38	[70.98, 98.79]
ST-3_ST-30	74.15	[61.37, 86.85]
ST-73_ST-77	90.35	[70.63, 110.23]
ST-30_ST-8	67.80	[54.92, 81.29]
ST-3_ST-218	58.78	[46.10, 71.67]
ST-5_ST-158	49.56	[32.61, 66.69]

ST represents sequence type.

This article is protected by copyright. All rights reserved.
Table 4. The predicted host source of 294 Biotype 1 isolates assigned to one out of three host sources. Assignment of isolates to host sources was on the basis of STRUCTURE analysis, and the three host sources were defined using 100 isolates with predefined host sources.

True sources	Cluster 1	Cluster 2	Cluster 3	Number of isolates
Environment	0.773	0.114	0.114	102
Human	0.076	0.739	0.186	76
Aquatic animals	0.172	0.191	0.637	116

Table 5. The predicted geographical locations of 294 Biotype 1 isolates assigned to one out of three sampling locations. Assignment of isolates to geographical locations was based on STRUCTURE analysis, and the three geographical locations were defined using 100 isolates with predefined true geographic locations of sampling sites.

True locations	Cluster 1	Cluster 2	Cluster 3	Number of isolates
Asia	**0.873**	0.066	0.061	106
Europe	0.059	**0.844**	0.097	131
USA	0.169	0.138	**0.693**	57
Table 6. Number of isolates included from each super-region for each of three sources.

Region and source	Isolate number
Asia, Environment	4
Asia, Human	33
Asia, Aquatic sources	69
Europe, Environment	95
Europe, Human	14
Europe, Aquatic animals	22
USA, Environment	3
USA, Human	29
USA, Aquatic animals	25
Total	**294**
