Hadronic physics at KLOE

Roberto Versaci on behalf of the KLOE collaboration

Dipartimento di Energetica dell’Università “Sapienza”, Roma, Italy
Laboratori Nazionali di Frascati dell’INFN, Frascati, Italy

Abstract. New KLOE results on scalar mesons, $\gamma\gamma$ physics and η physics are presented.

Keywords: Scalar mesons, $\gamma\gamma$ physics, η meson.

PACS: 13.25.Es, 13.25.Jx, 13.66.Bc, 14.40.Aq, 14.40.Cs

1. SCALAR PHYSICS

The structure of the scalars below 1 GeV needs to be further clarified. Several models have been proposed to describe them (e.g. $q\bar{q}$, four quarks, $K\bar{K}$ molecules, etc.). The decay of the scalars into two pseudoscalars ($S \rightarrow PP'$) can be used to investigate their nature because the branching ratios and the invariant mass of the two pseudoscalars are sensitive to the scalar structure.

$f \rightarrow a_0(980) \gamma \rightarrow \eta \pi^0 \gamma$ decay [1]. For this measurement about 400 pb$^{-1}$ of KLOE collected data have been used. The analysis has been performed for two different h final states, i.e. $h \rightarrow gg$ and $h \rightarrow p^+ p^- p^0$. A kinematic fit has been performed imposing the four momentum conservation, the photon velocity and the invariant masses of both h and p^0. The $\eta \pi^0$ invariant mass distribution has been fitted with the “no-structure”[2] and the “kaon loop”[3] models after background subtraction. The results of the fit are shown in table 1. It is interesting to note that both models give a large coupling of the $a_0(980)$ with the f meson, indicating a sizable strange quark content in the $a_0(980)$.

The branching ratio obtained for the two different decay chains are in agreement: $BR(f \rightarrow hp^0 g) = (7.01 \pm 0.10_{\text{stat}} \pm 0.20_{\text{syst}}) \times 10^{-5}$ for the $\eta \rightarrow \gamma \gamma$ final state and $BR(f \rightarrow hp^0 g) = (7.12 \pm 0.13_{\text{stat}} \pm 0.22_{\text{syst}}) \times 10^{-5}$ for the $\eta \rightarrow \pi^+ \pi^- \pi^0$ final state.

$f \rightarrow K^0 \bar{K}^0 \gamma$ decay [4]. This decay allegedly proceeds through the intermediate $f_0(980)$ (I=0) and $a_0(980)$ (I=1) scalar mesons: $f \rightarrow (f_0 + a_0) \gamma \rightarrow K^0 \bar{K}^0 \gamma$. The kaon pair is produced in a $J^{PC} = 0^{++}$ state, so the two kaons are both K_S or K_L. We have searched for a final state with a $K_S K_S$, with both K_S^* decaying to $\pi^+ \pi^-$. This request

1 F. Ambrosino, A. Antonelli, M. Antonelli, F. Archilli, P. Beltrame, G. Bencivenni, S. Bertolucci, C. Bini, C. Bloise, S. Bocchetta, F. Bossi, P. Branchini, G. Capon, T. Capussela, F. Ceradini, P. Ciambrone, E. De Lucia, A. De Santis, P. De Simone, G. De Zorzi, A. Denig, A. Di Domenico, C. Di Donato, B. Di Micco, M. Dreucci, G. Felici, S. Fiore, P. Franzini, C. Gatti, P. Gauzzi, S. Giovannella, E. Graziani, G. Lanfranchi, J. Lee-Franzini, M. Martini, P. Massarotti, S. Meola, S. Miscetti, M. Moulson, S. Müller, F. Murtas, M. Napolitano, F. Nguyen, M. Palutan, E. Pasqualucci, A. Passeri, V. Patera, P. Santangelo, B. Sciascia, T. Spadaro, M. Testa, L. Tortora, P. Valente, G. Venanzoni, R. Versaci, G. Xu
TABLE 1. Output of the fit to the $\eta\pi^0$ invariant mass with two different models: kaon loop and no structure.

	Kaon loop	No structure
$M_{\eta\pi^0}$ [MeV]	982.5 ± 1.6 ± 1.1	982.5 (Fixed)
$g_{0K^+K^-}$ [GeV]	2.15 ± 0.06 ± 0.06	2.01 ± 0.07 ± 0.28
$g_{0\pi^0\pi^0}$ [GeV]	2.82 ± 0.03 ± 0.04	2.46 ± 0.08 ± 0.11
$g_{\phi\eta\pi}$ [GeV$^{-1}$]	1.58 ± 0.10 ± 0.16*	1.83 ± 0.03 ± 0.08
BR($\phi \to \rho\pi \to \eta\pi\pi\gamma$)	(0.92 ± 0.40 ± 0.15) \cdot 10^{-6}	(0.05 ± 4 ± 0.07) \cdot 10^{-6}
BR($\eta \to \gamma\gamma$)/BR($\eta \to \pi^+\pi^-\pi^0$)	1.70 ± 0.04 ± 0.03	1.70 ± 0.03 ± 0.01
χ^2 probability	0.104	0.309

* Not a free parameter of the fit in this model. Calculated from other fit outputs.

reduces the probability of observation to $\sim 22\%$, but selects a class of event with a clear signature: four tracks and a low energy photon coming from the interaction point. In this analysis the whole KLOE dataset, ~ 2.2 fb$^{-1}$, has been used. At the end of which we have observed 5 events in the data, while we were expecting 3.2 ± 0.7 background events from MC. A Cousin-Feldman approach has been used [5] and a 90% confidence level upper limit on the branching ratio has been obtained: $BR(\phi \to K^0\bar{K}^0\gamma) < 1.9 \times 10^{-8}$. This measurement excludes some of the theoretical predictions and is in agreement with expectations from other KLOE measurements (see figure 1 left, reference [4] and references therein).

2. $\gamma\gamma$ PHYSICS

KLOE has been making a pilot study for the search $\gamma\gamma \rightarrow \sigma(600) \rightarrow \pi^0\pi^0$ using 11 pb$^{-1}$ from the 240 pb$^{-1}$ taken at $\sqrt{s} = 1000$ MeV [6]. At this energy the background

![Figure 1](https://example.com/figure1.png)

FIGURE 1. Left: comparison between theoretical predictions for the $\phi \to K^0\bar{K}^0\gamma$ branching ratio and KLOE upper limit. The grey area represents the expected range for the branching ratio using other KLOE results on scalar mesons. Right: search for $\gamma\gamma \rightarrow \sigma(600) \rightarrow \pi^0\pi^0$; fit to the invariant mass of the four photons, $M_{\gamma\gamma}$, with MC shapes of expected source of background. Dots: data; atched yellow: total background; red: $\phi \to \eta\gamma \rightarrow \pi^0\pi^0\pi^0\gamma$; blue: $e^+e^- \rightarrow \omega\pi^0 \rightarrow \pi^0\pi^0\pi^0\gamma$; green: $\phi \rightarrow K_\delta K_L$; cyan: $\phi \rightarrow f_0\gamma$; magenta: $e^+e^- \rightarrow \gamma\gamma$.

TABLE 2. Output of the fit imposing or not the gluonium content to be zero.

Gluonium content forced to be zero	Gluonium content free
Z_G^2	fixed 0
ϕ	$(41.4 \pm 0.5)^\circ$
Z_q	0.93 ± 0.02
Z_s	0.82 ± 0.05
ϕ_q	$(3.34 \pm 0.09)^\circ$
m_s/\bar{m}	1.24 ± 0.07
χ^2 / dof	$14.7/4$
$P(\chi^2)$	0.005

from ϕ decays is very small. We have performed a fit to the four photons invariant mass ($M_{4\gamma}$), using the shapes of the known sources, see figure [1], right. The result of the fit is very poor χ^2/dof $= 441/94$, showing an excess of events in the expected $\sigma(600)$ region, compared to what expected from MC, therefore pointing towards a search for the signal in the 240 pb^{-1}.

3. PSEUDOSCALAR PHYSICS

The ϕ meson decays about 1.3% of times into $\eta \gamma$, this implies DAΦNE is an η-factory. KLOE has collected one of the largest sample of η mesons in the world, about 10^{8}.

$\eta - \eta'$ mixing and η' gluonium content [7]. The KLOE paper on $\eta - \eta'$ mixing [7], suggesting for a 3σ evidence of gluonium content in the η' meson, has triggered a large amount of discussion among theoreticians. Therefore we have decided to perform a new and more detailed study of this topic. We have considered η and η' in the quark mixing base as described in [8] ($|\eta' > = X_{\eta'}|q\bar{q} > + Y_{\eta'}|s\bar{s} > + Z_G|G >$). The new fit we have performed has more constraints thus allowing an independent determination of more free parameters. We use the BR values from PDG 2008 [9] and the new KLOE results on the ω meson [10]. The fit has been performed both imposing the gluonium content to be zero or allowing it free. The results are shown in table 2: gluonium content of the η' is confirmed at 3σ level.

η decays into four charged particles [11]. KLOE has started to study the decays of the η into four charged particles, using 1.7 fb^{-1} of data. This decay is interesting because it allows us to probe the η internal structure exploiting the conversion of the virtual photon into a lepton pair [12]. It is also interesting because a non-CKM CP violating mechanism has been suggest to be present in this decay [13], and should manifest as an angular asymmetry A_ϕ, between the pion and the electron decay planes in the η rest frame. After background rejection a fit of the sidebands of the four tracks invariant distribution has been performed to obtain the background scale factors. Most of the background is due to ϕ decays, but there is still a non-negligible contribution from continuum events. Signal events have been counted in the η mass region, giving $BR(\eta \rightarrow$
FIGURE 2. Left and center: $\eta \rightarrow \pi^+\pi^-e^+e^-$ analysis; $\pi^+\pi^-e^+e^-$ invariant mass and angular asymmetry distributions. Dots: data. The black histogram is the expected distribution, i.e. signal MC (dark grey), ϕ background (light grey) and continuum background (white). Right: $\eta \rightarrow e^+e^-e^+e^-$ analysis; fit of the four electron invariant mass, M_{eeee}.

$\pi_{eeee} = (26.8 \pm 0.9_{\text{Stat.}} \pm 0.7_{\text{Syst.}}) \times 10^{-5}$ and $A_{\phi} = (-0.6 \pm 2.5_{\text{Stat.}} \pm 1.8_{\text{Syst.}}) \times 10^{-2}$ [11], see figure 2 left and center.

More recently KLOE has started studying the $\eta \rightarrow e^+e^-e^+e^-$ decay. This decay, together with the $\eta \rightarrow \mu^+\mu^-e^+e^-$, is interesting for the η meson form factor because there are only leptons in the final state. The analysis strategy is similar to the π_{eeee} one. Most of the background comes from continuum events and a small contribution is due to ϕ decays. The latter is subtracted from data using the MC shape. The number of events is obtained fitting the data distribution of the 4 electron invariant mass, M_{eeee}, with signal and background shapes (figure 2 right). From the fit we obtain 413 events. This constitutes the first observation of this decay.

REFERENCES

1. F. Ambrosino, et al. (2009), [0904.2539].
2. G. Isidori, L. Maiani, M. Nicolaci, and S. Pacetti, JHEP 05, 049 (2006), [hep-ph/0603241].
3. N. N. Achasov, and A. V. Kiselev, Phys. Rev. D68, 014006 (2003), [hep-ph/0212153].
4. F. Ambrosino, et al. (2009), [0903.4115].
5. G. J. Feldman, and R. D. Cousins, Phys. Rev. D57, 3873–3889 (1998), [physics/9711021].
6. F. Ambrosino, et al., Nuovo Cim. 31C, 415 (2008).
7. F. Ambrosino, et al., Phys. Lett. B648, 267–273 (2007), [hep-ex/0612029].
8. J. L. Rosner, Phys. Rev. D27, 1101 (1983).
9. C. Amsler, et al., Phys. Lett. B667, 1 (2008).
10. F. Ambrosino, et al., Phys. Lett. B669, 223–228 (2008), [0807.4909].
11. F. Ambrosino, et al., Phys. Lett. B675, 283–288 (2009), [0812.4830].
12. L. G. Landsberg, Phys. Rept. 128, 301–376 (1985).
13. D.-N. Gao, Mod. Phys. Lett. A17, 1583–1588 (2002), [hep-ph/0202002].