Annotation of primate miRNAs by high throughput sequencing of small RNA libraries

Michael Dannemann1*, Birgit Nickel1, Esther Lizano1,2, Hernán A Burbano1,3† and Janet Kelso1*†

Abstract

Background: In addition to genome sequencing, accurate functional annotation of genomes is required in order to carry out comparative and evolutionary analyses between species. Among primates, the human genome is the most extensively annotated. Human miRNA gene annotation is based on multiple lines of evidence including evidence for expression as well as prediction of the characteristic hairpin structure. In contrast, most miRNA genes in non-human primates are annotated based on homology without any expression evidence. We have sequenced small-RNA libraries from chimpanzee, gorilla, orangutan and rhesus macaque from multiple individuals and tissues. Using patterns of miRNA expression in conjunction with a model of miRNA biogenesis we used these high-throughput sequencing data to identify novel miRNAs in non-human primates.

Results: We predicted 47 new miRNAs in chimpanzee, 240 in gorilla, 55 in orangutan and 47 in rhesus macaque. The algorithm we used was able to predict 64% of the previously known miRNAs in chimpanzee, 94% in gorilla, 61% in orangutan and 71% in rhesus macaque. We therefore added evidence for expression in between one and five tissues to miRNAs that were previously annotated based only on homology to human miRNAs. We increased from 60 to 175 the number miRNAs that are located in orthologous regions in humans and the four non-human primate species studied here.

Conclusions: In this study we provide expression evidence for homology-based annotated miRNAs and predict de novo miRNAs in four non-human primate species. We increased the number of annotated miRNA genes and provided evidence for their expression in four non-human primates. Similar approaches using different individuals and tissues would improve annotation in non-human primates and allow for further comparative studies in the future.

Background

From a comparative genomics standpoint the great apes are among the most studied groups of organisms [1]. Since the completion of human genome sequencing in 2001 [2,3] the genomes of all species belonging to this family have been or are being sequenced [4,5]. Although only the human reference genome is considered of finished quality [2,3], it is possible to compare and also use these genomes sequences as references for the alignment of reads generated in sequencing and gene expression studies. In addition to determine the DNA sequence of a genome, it is of particular importance to attach biological information to it e.g. determine the location and structure of protein-coding genes. Gene annotation is carried out both computationally and experimentally by sequencing cDNA e.g. traditionally using expressed sequence tags (ESTs) [6,7] and more recently RNA-seq [8]. Human EST resources are also more abundant than their non-human counterparts and therefore human gene annotation is also the most accurate among great apes [9]. While the majority of efforts have focused on the annotation of protein-coding genes, the discovery of large-scale transcription outside of protein-coding genes [10,11] has led to the identification of a great diversity of non-protein-coding RNA genes [12]. Among these are the microRNAs (miRNAs) which are short (~22 bp) RNA molecules [13] that post-transcriptionally down-regulate protein-coding gene expression [14,15]. The official repository of miRNAs miRBase.
miRDeep2 calculates false-positive rates by running the score the more reliable the prediction. Additionally, with miRNA cleavage [26]. The more positive the and the compatibility of the observed read distribution account the energetic stability of the putative hairpin [26]. These score reproduce by miRDeep2 take into account the energetic stability of the putative hairpin and the compatibility of the observed read distribution with miRNA cleavage [26]. The more positive the score the more reliable the prediction. Additionally, miRDeep2 calculates false-positive rates by running the algorithm on a set of “signatures” and secondary structures that are paired by random permutation. Using predictions with a positive score and a significant folding p-value we identified from our sequences 47 (22 with expression evidence for star sequence) new miRNAs in chimpanzee, 240 (166 with expression evidence for star sequence) in gorilla, 55 (13 with expression evidence for star sequence) in orangutan and 47 (24 with expression evidence for star sequence) in rhesus macaque. miRDeep2 was able to predict 338 (64% of all annotated) known miRNAs (312 with a positive score) in chimpanzee, 75 (94% of all annotated, 73 with a positive score) in gorilla, 364 (61% of all annotated, 325 with a positive score) in orangutan and 348 (71% of all annotated, 312 with a positive score) in rhesus macaque (Figure 1). miRDeep2 performance statistics were similar to the ones reported in other species [27] (Figure 1).

MiRNAs show high expression conservation between species, and tissue-specific expression patterns [28,29]. In testis we found a lower fraction of the total reads align to miRNAs (Table 1) as a result of the expression of an additional class of small-RNAs in this tissue - piRNAs [29]. We were able to identify 11 tissue-specific miRNAs in chimpanzee (7 in brain, 1 in heart, 2 in kidney, 1 in testis), 110 in gorilla (100 in brain, 10 in liver), 28 in orangutan (25 in brain, 3 in liver) and 21 in rhesus macaque (11 in brain, 10 in testis).

To identify miRNAs which are shared between all the primates studied here we examined miRNAs that are encoded in orthologous locations in all four primate species and in human. For the miRNAs present in miRBase (v.17) we found 60 miRNAs that are located in orthologous regions in human and the four non-human primate species. When we included the set of miRNAs predicted in this study we increased this number to 175 miRNAs. This set of miRNAs can be considered prediction of high confidence since they were known in human and either known or predicted by us in all other four primate species.

Results
MiRNA prediction
We used the program miRDeep2 [27] to predict miRNAs from sequenced small RNAs. miRDeep2 takes as input the position and frequency of reads aligned to the genome (“signature”) with respect to a putative RNA hairpin and scores the miRNA candidate employing a probabilistic model based on miRNA biogenesis [26]. The score produced by miRDeep2 takes into account the energetic stability of the putative hairpin and the compatibility of the observed read distribution with miRNA cleavage [26]. The more positive the score the more reliable the prediction. Additionally, miRDeep2 calculates false-positive rates by running the algorithm on a set of “signatures” and secondary structures that are paired by random permutation. Using predictions with a positive score and a significant folding p-value we identified from our sequences 47 (22 with expression evidence for star sequence) new miRNAs in chimpanzee, 240 (166 with expression evidence for star sequence) in gorilla, 55 (13 with expression evidence for star sequence) in orangutan and 47 (24 with expression evidence for star sequence) in rhesus macaque. miRDeep2 was able to predict 338 (64% of all annotated) known miRNAs (312 with a positive score) in chimpanzee, 75 (94% of all annotated, 73

Sequence identity
All 60 of the known miRNAs present in all four species and human showed a high sequence identity i.e. the sequence is completely identical between the mature sequences for all of them. Using the set of 175 miRNAs we were able to reconstruct the expected phylogenetic relationships between the species studied for both the hairpin and the mature sequence. A principle component analysis on the sequence identity between hairpin sequences (Figure 2) shows a close relationship between chimpanzee and gorilla while both species are distant from orangutan and even more afar to rhesus macaque.

Secondary structure
For some stages during their biogenesis miRNAs form a secondary structure that resembles a hairpin [30]. Since the endonuclease that processes miRNAs recognizes them based on their three-dimensional structure [30], the stability of the secondary structure can be considered a proxy for miRNA functionality and therefore for the reliability of miRNAs predictions. We used the minimum free energy (MFE) as a measure of structure stability. We found that the hairpins of predicted miRNAs are as stable as hairpins from known miRNAs, which is not unexpected given that the score calculated by
miRDeep2 takes into account the stability of the miRNA hairpin secondary structure.

Discussion

Although the genomes of multiple non-human primates have been sequenced, the functional annotation of the human genome remains the most complete among primates. This is the case for miRNAs annotated in miRBase, where the number of human miRNAs is double than miRNAs annotated in chimpanzee (the second-best annotated genome) [16,17]. In the present study we sequenced small RNA libraries from multiple individuals and tissues in four non-human primates in order to identify from expression data new miRNA genes. We identified these new miRNAs using miRDeep2 [27], which uses a model for miRNA precursor processing by Dicer to score miRNA predictions. Using this approach we predicted 47 new miRNAs in chimpanzee, 240 in gorilla, 55 in orangutan and 47 in rhesus macaque (Figure 1). We found that the secondary structures from our new miRNAs were as stable as miRNAs previously described in miRBase.

A similar number of new miRNAs were identified in chimpanzee, orangutan and rhesus macaque, whereas the number of new miRNA predictions in gorilla was much higher. While the genomes of the chimpanzee, orangutan and rhesus have been available for some time, and a number of miRNA studies in these species published, the gorilla genome has not yet been published and fully annotated [4,5,31], and no published description of miRNAs in gorilla - a requirement for inclusion of new miRNAs in miRBase - exists. The majority of annotated miRNAs in the non-human primates are based on homology with human miRNAs [20-22]. However, the presence of a given locus in a genome is not a guarantee of its expression. We have, in this study, provided evidence of expression for 51% of the homology-based annotated miRNAs in gorilla, 49% in chimpanzee and 60% in rhesus macaque. We increased from 60 to 175 the number of miRNAs, which are located in orthologous regions in the four non-human primate genomes studied here and in human. This is a set of high confidence miRNAs based on homology, expression and miRNA biogenesis signatures.

In addition to the analysis of expression and folding, miRDeep incorporates a model of miRNA biogenesis, which makes its predictions more accurate than other software [27]. While the sequencing of small RNA libraries is now technically feasible, the accurate identification of novel miRNAs remains challenging. A pioneer study in primates sequenced small RNAs libraries from human and chimpanzee brains [24]. They predicted a large number (268 in human and 257 in chimpanzee) of new miRNAs in both species based on small RNA
Table 1: Samples' read alignment information.

Individual	Tissue	Genome	miRBase miRNAs	Predictions	Unknown	Total reads
Chimp 1	Brain	42.3	78.8	2.9	18.3	12211879
Chimp 2	Brain	54.3	90	2.2	7.7	11658357
Chimp 3	Brain	54.8	73.5	2.4	24.2	8627942
Chimp 4	Brain	52.5	88.1	2.3	9.6	10381037
Chimp 5	Brain	18.7	79.4	2.2	18.4	13977547
Chimp 1	Liver	57.4	92.3	1.1	6.6	8262666
Chimp 2	Liver	63.9	89.3	0.9	9.8	8088806
Chimp 3	Liver	51.7	88.1	0.9	11	11017642
Chimp 4	Liver	52.3	93.8	1.1	5.1	10449677
Chimp 5	Liver	29.9	57.5	0.5	41.9	16283995
Chimp 2	Testis	49.1	4.2	1.6	94.2	11361816
Chimp 3	Testis	63	5.8	2.1	92	8899032
Chimp 4	Testis	40.7	8.6	3.4	88	11965804
Chimp 5	Testis	43.2	5.8	2.1	92.1	11875495
Chimp 6	Testis	51.3	6.8	4	89.2	11166737
Chimp 1	Kidney	60.3	91	2.8	6.2	9702033
Chimp 2	Kidney	44.5	83.3	2.8	13.9	7774225
Chimp 3	Kidney	61.6	86.4	3.4	10.2	10250184
Chimp 5	Kidney	57.9	83.4	3.6	12.9	10264521
Chimp 1	Heart	63.2	94.7	2.2	3.1	7818504
Chimp 2	Heart	63.6	96.4	1.5	2	8644295
Chimp 3	Heart	65.4	95.3	1.1	3.6	9426585
Chimp 4	Heart	61.3	88	1.6	10.5	9449302
Chimp 5	Heart	60.8	88	1.3	10.7	9124991
Rhesus 1	Brain	36.1	72.3	4.8	23	12946219
Rhesus 2	Brain	38	81.8	4.5	13.7	12258382
Rhesus 3	Brain	47.5	82.3	5.6	12.1	11623674
Rhesus 4	Brain	44.9	90.6	3.6	5.8	11490940
Rhesus 5	Brain	48.9	88.4	3.8	7.8	10898842
Rhesus 1	Liver	51.4	93.4	1.3	5.4	8615049
Rhesus 2	Liver	58.2	95.1	1.1	3.8	8617533
Rhesus 3	Liver	54.7	95	2	3	9668109
Rhesus 4	Liver	45.6	94.6	1.8	3.7	10620490
Rhesus 5	Liver	34.5	90.6	1.9	7.5	10750399
Rhesus 1	Testis	44.4	36.3	1.1	62.5	12068068
Rhesus 2	Testis	25.7	40.2	2.7	57	14533174
Rhesus 3	Testis	47	29.9	1.1	69.1	11467601
Rhesus 4	Testis	50.5	15.2	0.4	84.3	10760301
Rhesus 1	Kidney	39.5	59.4	1.3	39.2	10730625
Rhesus 2	Kidney	52.4	87.9	2.4	9.6	12158274
Rhesus 3	Kidney	58.5	86.5	2.8	10.7	10683932
Rhesus 4	Kidney	55.8	81.5	2.3	16.2	10704780
Rhesus 6	Kidney	57.8	86.3	2.4	11.3	10530708
Rhesus 1	Heart	57.8	92.9	1.1	5.9	9116454
Rhesus 2	Heart	24.8	52.9	0.6	46.5	19394080
Rhesus 3	Heart	61.9	96.7	0.8	2.5	9094941
Rhesus 4	Heart	57.8	90.8	1.2	8	9824696
Rhesus 5	Heart	66.8	95	1.1	3.9	9018713
Orang 1	Brain	42.5	78.6	0.6	20.8	11307562
Orang 2	Brain	40.7	64.7	0.2	35	11449064
Orang 3	Liver	53.4	91.7	0.2	8.1	7111233
Table 1 Samples’ read alignment information. (Continued)

	Tissue	Fraction of reads that could be mapped perfectly to species corresponding genome	How many of the reads that could be mapped to the corresponding species genome could be aligned to known miRNAs	How many of the reads that could be mapped to the corresponding species genome could be aligned to newly predicted miRNAs	How many of the reads that could be mapped to the corresponding species genome could be aligned to neither of these 2 categories	Total number of sequenced reads
Orang 4	Liver	38.8	91.3	0.1	8.5	10302589
Gorilla 1	Brain	41.5	6.7	56.4	37	11931502
Gorilla 2	Brain	37.6	3.2	32.6	64.3	9534826
Gorilla 3	Liver	35	1.8	72.8	25.4	12400172
Gorilla 4	Liver	38.8	2.4	61.2	36.4	12018826

Column 1: individual information; column 2: tissue; column 3: fraction of reads that could be mapped perfectly to species corresponding genome; columns 4-6 are based on the reads that could be mapped to the corresponding species genome and contain how many of these reads could be aligned to known miRNAs (column 4), newly predicted miRNAs (column 5) and to neither of these 2 categories (column 6); column 7: total number of sequenced reads.

Figure 2 Principle Component Analysis (PCA) using sequence similarity between mature (above) and hairpin (below) sequences. The plots show the first two components of the corresponding PCAs and the amount of variance explained by each component.
sequencing. Only few of these miRNAs have been included in miRBase, the public, curated repository for miRNAs (49 in human and 19 in chimpanzee). It is important to identify novel miRNAs accurately, and therefore particularly important to take into account the effect of genome quality and completeness on the ability to determine whether particular miRNAs are species-specific. In primate comparisons the higher quality and completeness of the human genome means that miRNAs are frequently described as human-specific when in fact they are simply missed in related primate genomes due to sequence quality issues.

We sought to identify miRNAs that are expressed in tissue-specific manner. For species where we had samples from five tissues (chimpanzee and rhesus) we could say with more confidence that a given miRNA is tissue-specific than for the species where we had only two tissues (orangutan and gorilla). Brain was the tissue with both more miRNAs in total, and more tissue-specific miRNAs both in chimpanzee and marginally in rhesus. In orangutan and gorilla we could only identify miRNAs that are expressed mutually exclusively in either liver or brain. We found more miRNAs expressed exclusively in brain than in liver. This is in agreement with the fact that the miRNA repertoire in humans, chimpanzees and rhesus macaques is more diverse in brain compared to other tissues [29].

Conclusion

We have sequenced small RNA libraries from multiple individuals and tissues from chimpanzee, gorilla, orangutan and rhesus macaque. We identified known miRNAs and used miRDeep2 to predict de novo microRNAs in these four primate species. Our new expression-based predictions increased the number of known miRNAs in all four species. In addition, we showed the first expression evidence for miRNAs that were previously only annotated by sequence homology with humans. Accurate annotation of miRNAs in multiple primate species provides a fundamental to carry out evolutionary, comparative and functional studies of miRNAs.

Methods

miRNA samples

We sequenced 56 small RNA libraries (24 from chimpanzees, 24 from rhesus macaques, four from orangutan and four from gorilla). The chimpanzee and rhesus macaque samples have been published [29]. We added to this set eight samples from orangutan and gorilla (four liver and four brain samples from each species). All the individuals used in this study were adults and suffered sudden death that did not involve the tissues sampled. A description of the samples is available in Table 1.

Library preparation and sequencing

We used the individuals presented in [29] including 24 chimpanzee and rhesus macaque samples. Additionally, we sequenced four gorilla and four orangutan samples from brain and liver (two from each species and tissue). Total RNA was prepared as described in the Illumina Inc. manual “Small RNA Sample Preparation Guide” (Part # 1004239 Rev. A Illumina Inc. San Diego). Illumina Genome Analyzer I and II sequencing runs were analyzed starting from raw intensities. A detailed summary about the platform each sample was sequenced on, how many cycles and which chemistry was used can be found in Table 2. Base calling and quality score calculation was performed for all runs using the IBIS base caller [32].

Sample composition and read annotation

Read alignments were performed using PatMaN [33] allowing no mismatches. We mapped reads against miRBase [16,17] version 17 and the corresponding species genomes - chimpanzee (panTro3), rhesus macaque (rheMac2), orangutan (ponAbe2) and the draft genome of gorilla (gorGor3).

Sequence data

MiRNA data was uploaded to the European Nucleotide Archive hosted by the European Bioinformatics Institute with the study accession number ERP000973 and ArrayExpress with accession number E-MTAB-828.

MiRNAs prediction

We used miRDeep2 prediction algorithm [27]. All reads from each species were used for the corresponding predictions. We excluded redundant predictions for the same genomic location and only kept the prediction with the highest score. We used the mapper module (mapper.pl) provided by miRDeep2 with the following parameters: -n -d -c -i -j -l 18 -m -k TCGTATGCGGTCTTCTGCTTG. We ran miRDeep2 with default parameters. Newly predicted miRNAs that were found in orthologous genomic regions in all four species.
species	miRBase id	mature sequence	chromosome	miRDeep2 score
chimpanzee	ptr-mir-4423	AUAGGGCAAAAAAGCAACA	1	24.7
chimpanzee	ptr-mir-3121	UAAUUAGAAGAAAGGAAACA	1	25919
chimpanzee	ptr-mir-3117	AUAGGGCAAAAAAGCAACA	1	4.2
chimpanzee	ptr-mir-4742	UCAGGCAAAAAAGGAAUUUACAGA	1	4.7
chimpanzee	ptr-mir-4428	CAAGGGCAAAAAAGGAAUUUACACG	1	5.2
chimpanzee	ptr-mir-4654	UUGGGCAAAAAAGGAAUUUACACG	1	5.7
chimpanzee	ptr-mir-92b	UAUGGGCAAAAAAGGAAUUUACAGA	1	9795.4
chimpanzee	ptr-mir-3127	AUACAGGGCAAAAAAGGAAUUUACAGA	2A	103.7
chimpanzee	ptr-mir-3132	UUGGGCAAAAAAGGAAUUUACACG	2B	5.5
chimpanzee	ptr-mir-3139	UUGGGCAAAAAAGGAAUUUACACG	2B	92.4
chimpanzee	ptr-mir-3146	CAAGGGCAAAAAAGGAAUUUACACG	3	5.3
chimpanzee	ptr-mir-3151	CAAGGGCAAAAAAGGAAUUUACACG	3	5.3
chimpanzee	ptr-mir-3156	CAAGGGCAAAAAAGGAAUUUACACG	3	5.5
chimpanzee	ptr-mir-3161	CAAGGGCAAAAAAGGAAUUUACACG	3	4.7
chimpanzee	ptr-mir-3166	CAAGGGCAAAAAAGGAAUUUACACG	3	5.3
chimpanzee	ptr-mir-3171	CAAGGGCAAAAAAGGAAUUUACACG	3	5.3
chimpanzee	ptr-mir-3186	CAAGGGCAAAAAAGGAAUUUACACG	4	148.4
chimpanzee	ptr-mir-3660	CAAGGGCAAAAAAGGAAUUUACACG	5	120.4
chimpanzee	ptr-mir-378e	CAAGGGCAAAAAAGGAAUUUACACG	5	5
chimpanzee	ptr-mir-449c	CAAGGGCAAAAAAGGAAUUUACACG	5	5.4
chimpanzee	ptr-mir-3943	CAAGGGCAAAAAAGGAAUUUACACG	7	47.7
chimpanzee	ptr-mir-4660	CAAGGGCAAAAAAGGAAUUUACACG	8	45124
chimpanzee	ptr-mir-3151	CAAGGGCAAAAAAGGAAUUUACACG	8	500.7
chimpanzee	ptr-mir-3149	CAAGGGCAAAAAAGGAAUUUACACG	8	8.3
chimpanzee	ptr-mir-4667	CAAGGGCAAAAAAGGAAUUUACACG	9	5.5
chimpanzee	ptr-mir-548e	CAAGGGCAAAAAAGGAAUUUACACG	10	5.4
chimpanzee	ptr-mir-3664	CAAGGGCAAAAAAGGAAUUUACACG	11	5.6
chimpanzee	ptr-mir-1260b	CAAGGGCAAAAAAGGAAUUUACACG	11	5.8
chimpanzee	ptr-mir-3165	CAAGGGCAAAAAAGGAAUUUACACG	11	5.9
chimpanzee	ptr-mir-1252	CAAGGGCAAAAAAGGAAUUUACACG	12	4.6
chimpanzee	ptr-mir-200c	CAAGGGCAAAAAAGGAAUUUACACG	12	5.8
chimpanzee	ptr-mir-655	CAAGGGCAAAAAAGGAAUUUACACG	12	45124
chimpanzee	ptr-mir-3173	CAAGGGCAAAAAAGGAAUUUACACG	14	246.1
chimpanzee	ptr-mir-2392	CAAGGGCAAAAAAGGAAUUUACACG	14	344.5
chimpanzee	ptr-mir-4504	CAAGGGCAAAAAAGGAAUUUACACG	14	148.4
chimpanzee	ptr-mir-4510	CAAGGGCAAAAAAGGAAUUUACACG	15	4.2
chimpanzee	ptr-mir-4524a	CAAGGGCAAAAAAGGAAUUUACACG	17	195.8
chimpanzee	ptr-mir-4743	CAAGGGCAAAAAAGGAAUUUACACG	18	5.4
chimpanzee	ptr-mir-4820	CAAGGGCAAAAAAGGAAUUUACACG	19	4.5
chimpanzee	ptr-mir-4825	CAAGGGCAAAAAAGGAAUUUACACG	20	105.8
chimpanzee	ptr-mir-3193	CAAGGGCAAAAAAGGAAUUUACACG	20	4.7
chimpanzee	ptr-mir-3192	CAAGGGCAAAAAAGGAAUUUACACG	20	5
chimpanzee	ptr-mir-3200	CAAGGGCAAAAAAGGAAUUUACACG	22	270.9
chimpanzee	ptr-mir-23c	CAAGGGCAAAAAAGGAAUUUACACG	X	4.4
chimpanzee	ptr-mir-2114	CAAGGGCAAAAAAGGAAUUUACACG	X	50.6
chimpanzee	ptr-mir-767	CAAGGGCAAAAAAGGAAUUUACACG	X	5.3
chimpanzee	ptr-mir-4536	CAAGGGCAAAAAAGGAAUUUACACG	X	5.3
chimpanzee	ptr-mir-222	CAAGGGCAAAAAAGGAAUUUACACG	X	5.6
chimpanzee	ptr-mir-3937	CAAGGGCAAAAAAGGAAUUUACACG	X	6.1
chimpanzee	ptr-mir-676	CAAGGGCAAAAAAGGAAUUUACACG	X	7.95

gorilla	ggo-mir-135b	UAGGGCAAAAAAGGAAUUUACACG	1	10.3
gorilla	ggo-mir-3605	UAGGGCAAAAAAGGAAUUUACACG	1	1.1
gorilla	ggo-mir-29c	UAGGGCAAAAAAGGAAUUUACACG	1	11813.8
gorilla	ggo-mir-197	UAGGGCAAAAAAGGAAUUUACACG	1	1199.9

Dannemann et al. BMC Genomics 2012, 13:116
http://www.biomedcentral.com/1471-2164/13/116
Organism	miRNA	Sequence	Fold
Gorilla	ggo-mir-92b	UAUUACACUCUGCCCGCCCUC	1589.6
Gorilla	ggo-mir-30e	UGUAACAAUCCUUGACUGAGA	3114.3
Gorilla	ggo-mir-556	AUUUCAACUAGCUCUCAUCU	368.3
Gorilla	ggo-mir-488	CCCAGUAAUGCCACUCUAA	4.7
Gorilla	ggo-mir-320b	AGAACUGGUGUUGAGAGG	5
Gorilla	ggo-mir-100b	UGAUAAGUUGUGUGUGGUGUGU	5.1
Gorilla	ggo-mir-429	UAUUACUGCUGGUAACCC	5.3
Gorilla	ggo-mir-760	CCGCUUGGUCUGGUGGAG	5.4
Gorilla	ggo-mir-1278	UAGAACUGUGCAUAUGAUCUA	5.6
Gorilla	ggo-mir-551a	CGACACCACUCUUUGGUUCCA	83
Gorilla	ggo-mir-200b	UAUUACUGGCUUGUAUUGAGC	86.9
Gorilla	ggo-mir-200a	UAAACUGUUCUGUAGAAUGU	99.7
Gorilla	ggo-mir-4429	AAAAGUCUGGGCUGAGG	2A 1
Gorilla	ggo-mir-3126	UCAAGGGACAGAUGCCAGAAGCA	2A 5.3
Gorilla	ggo-mir-1301	UUGACGUGCGUGGAGUGACU	2A 5.5
Gorilla	ggo-mir-3127	UACAGGGUGUUGGAAUGGGA	2A 5.6
Gorilla	ggo-mir-26b	UUCAGAUAUACAGAUAGU	2B 15749.2
Gorilla	ggo-mir-375	UUUGUUCAGUCUGGUGGUGUU	2B 1.7
Gorilla	ggo-mir-128	UCAUGAGAUGCGUGUCUCUU	2B 22571.1
Gorilla	ggo-mir-149	UCUGGUGCUUGCUUCUACUCC	2B 357.8
Gorilla	ggo-mir-3129	GCAUGAGUUGUAGAAUGG	2B 4
Gorilla	ggo-mir-191	CACCAAGUACUGGUGAGA	3 13047.6
Gorilla	ggo-lent-7g	UCAAGGUGUUGAGUGGAUGG	3 134084.7
Gorilla	ggo-mir-3923	AACAGUAAUUGUGUGAUGG	3 1.5
Gorilla	ggo-mir-28	CACUGUAGUUGAGGAGG	3 -4.8
Gorilla	ggo-mir-4446	CAGGGCCUGCCAGUGAUGGCC	3 5.2
Gorilla	ggo-mir-378b	ACUGUGGUGAGGAGGAGGAAG	3 5.2
Gorilla	ggo-mir-885	AGCCACGGGGUGUGAGUGGA	3 5.7
Gorilla	ggo-mir-551b	GCGACCAAUGCUUUGGUCAG	3 74.8
Gorilla	ggo-mir-1255a	AGGAUAGCAGAAAGAUGAAGG	4 122.2
Gorilla	ggo-mir-548d	CAAAACUGCAGUACUUGUUG	4 178.3
Gorilla	ggo-mir-577	AUAGAUAUAAUUGUGUACCUG	4 1.8
Gorilla	ggo-mir-3138	ACAGUUGGUGAAGAGG	4 2.3
Gorilla	ggo-mir-574	CAGCGCUAUCACACACCCACA	4 510.5
Gorilla	ggo-mir-378e	ACUGUAGCUGUGAUGG	5 0.5
Gorilla	ggo-mir-3615	UCUCUCGGCCUGCGGUGGUGC	5 11.9
Gorilla	ggo-mir-423	UGAGGGGUGAGGAGGAGGAGC	5 12767.2
Gorilla	ggo-mir-4524a	UGAGACAGCGCUUUGUGCUGUA	5 150
Gorilla	ggo-mir-338	UCCAGCAUGUUGUUGUGUGUAG	5 1509.7
Gorilla	ggo-mir-193a	AACUGCCUAACAGUGGUGUGUAG	5 17408.5
Gorilla	ggo-mir-1180	UUUUCGGCUGCCUGGGUGGUGU	5 1.9
Gorilla	ggo-mir-144	GGAGAUAUCACAUACAGUAGU	5 245.3
Gorilla	ggo-mir-454	UAGUGAUAUUGCUUUGUGUGG	5 4.9
Gorilla	ggo-mir-152	UCAUGUGAUGAGGAGAUCUG	5 5070.4
Gorilla	ggo-mir-146a	UGAAACUGUUGAUCAGUGAAG	5 5.2
Gorilla	ggo-mir-874	CUUGCUGCCGGCGAGGACCAG	5 526.7
Gorilla	ggo-mir-142	CCAAAUUGAGAAGAAGCAGA	5 5.3
Gorilla	ggo-mir-1250	AGGGUCUGGAGUUGGCGCUU	5 5.4
Gorilla	ggo-mir-4738	UGAAACUGGAGCGCUGGUG	5 5.5
Gorilla	ggo-mir-584	UUAGUGGUGUUGGUGGUGGAGCUA	5 5.8
Gorilla	ggo-mir-1271	CGUGGACACUUGGCAGAAGG	5 58.5
Gorilla	ggo-mir-378	ACUGGACUUGGAGUGAAGG	5 75923.0
Table 3 Novel miRNAs (Continued)

Species	miRNA	Sequence	Score
gorilla	ggo-mir-340	UUAUAAAGCAUUGACUGAU	5
gorilla	ggo-mir-877	GUAGAGGAGAUUGCCGAGGGGACA	6
gorilla	ggo-mir-30c	UGUAAACAUCCUCAUCUCAC	6
gorilla	ggo-mir-548b	CAAAACUCAUGUUUGCUUUG	6
gorilla	ggo-mir-548a	AAAAGUAAUUGUGUUGUUGUC	6
gorilla	ggo-mir-133b	UUUGGUUCCUCUCACCCACAG	6
gorilla	ggo-mir-206	UGCAAUUGAUAGGAUGUGUUGG	6
gorilla	ggo-mir-1273c	GCGACAAAACGAGACCCUG	6
gorilla	ggo-mir-671	UCCGGUUCUGAGGCUCCAC	7
gorilla	ggo-mir-3943	UAGCCCAAGGCUACUCUGGC	7
gorilla	ggo-mir-148a	UCAUCAUCUCAACAGAAGCUUG	7
gorilla	ggo-mir-339	UGAGGCCCUCUGAGACAGAGCG	7
gorilla	ggo-mir-592	UUGUGUCAUAUGCGAUGAUG	7
gorilla	ggo-mir-548f	CAAAAGUGAUCGUGUUGUUG	7
gorilla	ggo-mir-589	UGAAACACUCGUCUCUCUAG	7
gorilla	ggo-mir-182	UUUGGGCAUUGGUAAGCUCACA	7
gorilla	ggo-mir-590	GAGCUCUUAUCUAAAGUGCAG	7
gorilla	ggo-mir-490	CAACUCGGAGACUCUCAUCUGC	7
gorilla	ggo-mir-335	UCAAGAGCAGAUACAGAAAAUG	7
gorilla	ggo-mir-486	UCCUGUACUACUGCUCCCGAG	8
gorilla	ggo-mir-383	AGAUCAGAGAGUGAUGUGGCC	8
gorilla	ggo-mir-3151	GGUGGCGCAUUGGCAUCAGUG	8
gorilla	ggo-mir-598	UACGUCUACUGUUCUCUCUAGCA	8
gorilla	ggo-mir-4660	UGCAUCUCUCGUGGAAUUGGA	8
gorilla	ggo-mir-320a	AAAACGUGGUGUGAGAGGGCA	8
gorilla	ggo-mir-151a	UCGAGGAGCUCACAGUCUAG	8
gorilla	ggo-mir-455	GCAUGUCUUGGCUAUCUACAC	9
gorilla	ggo-let-7f	UGAGGAGUAGAUUGAUUGAUUG	9
gorilla	ggo-mir-873	CGAGACAUUGUGAGCUCCUC	9
gorilla	ggo-mir-27b	UUCACGUGCUAGUUCUCUCC	9
gorilla	ggo-mir-23b	AUCACAUUCGCGAGGAUAACCA	9
gorilla	ggo-mir-3927	CAGUAGUAUAUUGUAAGGCGCA	9
gorilla	ggo-mir-491	AGUGGGGAAACCCUUCACUGAGGA	9
gorilla	ggo-mir-1287	UGCUAGUAUCAGUGGCUUGAG	10
gorilla	ggo-mir-146b	UGAGAACUCGUAUUCUAGGCUAGU	10
gorilla	ggo-mir-2110	UUGGGGAACGCGCUGAGUGAGA	10
gorilla	ggo-mir-346	UGUCUGGCGCGGCUACGCUUGC	10
gorilla	ggo-mir-4484	GAAAAAGGCGGGGAAGGGCCCA	10
gorilla	ggo-mir-202	AAGAGGAUAGGCGAUGGAAA	10
gorilla	ggo-mir-609	AGGGUUUUCUCUCAUCUUGG	10
gorilla	ggo-mir-548e	AAAAACUGCGACUACUULUG	10
gorilla	ggo-mir-1296	UUAGGCCCUCUGCGCUACUCC	10
gorilla	ggo-mir-548c	AAAAUGACUUCGCGAUAUUG	10
gorilla	ggo-mir-34c	AGGCAGUUGAUGUAGCGAUGUUG	11
gorilla	ggo-mir-483	AAGACGGGAAAGAAGGGGAG	11
gorilla	ggo-mir-4488	UAGGCGGGGGCGCCUCGGCG	11
gorilla	ggo-mir-192	CUGACCUUAGAUUGACAGCC	11
gorilla	ggo-mir-34b	AGCCAGUUGAUAGUGAUGUG	11
gorilla	ggo-mir-210	CUGUUGCGUGUGACAGGCGGUA	11
gorilla	ggo-mir-675b	UGGUGGCGGAGGGCCCAACAGUG	11
gorilla	ggo-mir-139	UCUCAGUUGCUACGUCUCUCAG	11
gorilla	ggo-mir-1260b	AUCCCAACACUUCGUCCACCA	11

Dannemann et al. BMC Genomics 2012, 13:116
http://www.biomedcentral.com/1471-2164/13/116
Gorilla	ggo-mir-326	CCUCUGGCGCCUCUCCUCAG	11	5.7
Gorilla	ggo-mir-129	AAGCCCCUACCACAAAAAGCA	11	7084.6
Gorilla	ggo-mir-331	GCCCCUGGGGCUAUCUAGAAC	12	1050.8
Gorilla	ggo-mir-3612	AGAGGGCAUCUGAAGAAUGG	12	125
Gorilla	ggo-mir-1252	AGAAGGAAGUUAUACAUU	12	16
Gorilla	ggo-mir-148b	UCUAGUCAUUCACAGGACUUUG	12	2086.5
Gorilla	ggo-let-7i	UGAGGGUAUAGUUCUUGCUGCU	12	25708.1
Gorilla	ggo-mir-1228	GUUGGGGCGGGGCGAGUGUGUGG	12	30.4
Gorilla	ggo-mir-1291	GLUGGCCUGCACUGAAGACAGCA	12	5.3
Gorilla	ggo-mir-1197	UAGAAGCAUGUCUUCUUCU	14	-0.3
Gorilla	ggo-mir-370	GCCUUUGCGGGUGGAAACCGGUC	14	0.6
Gorilla	ggo-mir-431	UCGAGGGUCUUCUGAGGCU	14	1
Gorilla	ggo-mir-380	UAAUGUAUUAGUGUCCACAU	14	106
Gorilla	ggo-mir-3545	UUGGAACUGUUAAGAACCACUG	14	126
Gorilla	ggo-mir-433	AUCAUAGUGGCUCUCUGGUG	14	1331
Gorilla	ggo-mir-376a	AUCAUUGAGGAAUACUGAC	14	1563
Gorilla	ggo-mir-655	AUAAUAACUGUUAACUUCU	14	1588
Gorilla	ggo-mir-379	UGGUAACAUUGGAAUGUGGG	14	1946
Gorilla	ggo-mir-624	UAGUACAGCAUCCUUUGUUC	14	2
Gorilla	ggo-mir-409	AGGUUCGCCGAACUUCUGCA	14	233
Gorilla	ggo-mir-487a	AAUCUAACAGGGAUCACG	14	245.1
Gorilla	ggo-mir-495	AAACAAACAGUGUGCAUCU	14	2528.9
Gorilla	ggo-mir-543	AAACAUUCCGGUAGCAUCUCU	14	260.4
Gorilla	ggo-mir-432	UCUUUGAAGUACUGUUAUGGUG	14	2631.8
Gorilla	no id*1	AGGGGAAAAGUUCUAUAG	14	3.4
Gorilla	ggo-mir-493	UUGUAACUGUUAACCUUACAU	14	38.4
Gorilla	ggo-mir-889	UAAUAACUGGCAACAUUG	14	3.9
Gorilla	ggo-mir-485	AGAGGGUUGGCGCGUGAUAU	14	3983.2
Gorilla	ggo-mir-299	UGGUUUACCGUCCCAACACUA	14	4463
Gorilla	ggo-mir-494	UGAAACUAACAGGGAAACU	14	4.7
Gorilla	ggo-mir-329b	AAACACCCUUGUUAACCU	14	4.7
Gorilla	ggo-mir-1185	AGAGGAUAACCUUUGUAUGU	14	5
Gorilla	ggo-mir-496	UGAAGUUAACUGGCAACAU	14	5
Gorilla	ggo-mir-487b	AAUCGUAACUGGCUCAACAU	14	5.1
Gorilla	ggo-mir-127	UGGAAUUCCGUCUGACUUGGC	14	5.2
Gorilla	ggo-mir-323b	CCAUUAACGCGUACCCUC	14	5.3
Gorilla	ggo-mir-337	GAAGCCGCUACUAAGGAG	14	5.3
Gorilla	ggo-mir-668	AUGCUACUCUGCGCCGCCCAC	14	5.3
Gorilla	ggo-mir-342	UCUCACACAGAAUUGCCACCG	14	5.4
Gorilla	ggo-mir-1193	GGGAGUGGUGUAGCGGCGUACG	14	5.4
Gorilla	ggo-mir-376c	AACAUAGAGAAUACUCCACG	14	5.58
Gorilla	ggo-mir-3173	AAAGGGAGGALLAAGGCGAAGGGCAG	14	5.7
Gorilla	ggo-mir-654	UGGUGGGCUGCAGAACAGUUGGC	14	58.5
Gorilla	ggo-mir-411	AAUAGUAGACGCUAUCUGCGAC	14	587.6
Gorilla	ggo-mir-656	AAUAAUAACGACAGACACCUC	14	59.4
Gorilla	ggo-mir-410	AAUAAUAACAGAGGGCGGCG	14	64.2
Gorilla	ggo-mir-376b	AAUCAUCAGGAAAAACUCAULG	14	71.1
Gorilla	ggo-mir-377	AUCAACAAAGGGGCAUCUUUG	14	83.6
Gorilla	ggo-mir-381	UAAUACAGGGCCAGACCUUCUG	14	86.1
Gorilla	ggo-mir-345	GCUGACUCUUAAGCAGGCGCUG	14	88.9
Gorilla	ggo-mir-323a	CACAUACAGCGGUCGACCUC	14	894
Gorilla	ggo-mir-628	AUGCUGCAUAUUAUACUAGAGG	15	141.7
Species	Name	Sequence	Length	Fold Change
----------	--------------	-----------------------------------	--------	-------------
gorilla	ggo-mir-1179	AAGCAUUCCUUCCAUUUGGGUUGG	15	27.1
gorilla	ggo-mir-4510	UGAGGGAGUAGGAUGAUGAUGGU	15	4.7
gorilla	ggo-mir-1266	CCUCAGGGCGUAGAACACGGCGU	15	5.9
gorilla	ggo-mir-629	UGGGUUAAAGUUGGGAGAACACU	15	78.2
gorilla	ggo-mir-1343	CUCUUGGGCAGCGCACUC	16	1.1
gorilla	ggo-mir-484	UCAAGGUCAGUCCUCUUCCUGGA	16	1.1
gorilla	ggo-mir-328	UUGGCCCUCUGCGCCUCUCC	16	116.1
gorilla	ggo-mir-193b	CCUGGUUUUGAGGGCGAGAGAUGA	16	1197.1
gorilla	ggo-mir-940	AAGGCAAGGGCCAGGGCCUC	16	1.9
gorilla	ggo-mir-138	AGCUUGUGUUGUGAUCAGGCG	16	3411
gorilla	ggo-mir-365a	UAAAGGCCCUCUAAAACUCUUA	16	698
gorilla	ggo-mir-140	ACCACAGGUAAGACGGGCA	16	97632.3
gorilla	ggo-mir-324	CGCAUCCCCAGAGCGCAUGGUG	17	550.3
gorilla	ggo-mir-497	CAGCAUGAUCAGGCUGUGUUGU	17	5.6
gorilla	ggo-mir-4520b	UUUGGCCAGAAACAGCAGG	17	5.6
gorilla	ggo-mir-887	GUGAAGGGCGGCCCCUCCCCAGGCU	17	81.3
gorilla	ggo-mir-22	AAGCUGCAUGUUGAAAGACUG	17	8262.6
gorilla	ggo-mir-582	UUAUCUUGUGUCUCAACGAGUUC	17	86.1
gorilla	ggo-mir-4529	UCAUUGGACUCUGCUAGGGCGU	18	18.0
gorilla	ggo-mir-122	UUGGAGUGUUGAAUUGUGUCUUGUGU	18	2545110.2
gorilla	ggo-mir-4743	UGCCGAGUGCCAGGGACAGGCA	18	5.4
gorilla	ggo-mir-1	UUGGAAUGUUAAGAGAUGU	18	54001.2
gorilla	ggo-mir-151	ACUGGUGAUCUGUUGUUGUGU	18	3
gorilla	ggo-mir-517c	ACUGGUGAUCUGUUGUUGUGU	18	3
gorilla	ggo-mir-516b	ACUGGUGAUCUGUUGUUGUGU	18	3
gorilla	ggo-mir-371b	ACUACAAAGUGGGCAGACLU	19	5.3
gorilla	ggo-mir-330	GCAAACAGCACGCACCCUGCAAGA	19	5.4
gorilla	ggo-mir-769	UGGAGAGCCUCUGUUGGUCG	19	545.2
gorilla	ggo-mir-125a	UCCCCUGAGACCCUUAACCUUG	19	5.5
gorilla	ggo-mir-641	AAAGCAUAAGAUAGAGUCACC	19	6
gorilla	ggo-mir-181d	AACAUUCAUGUUGUGUGUGGUGUGGUG	19	6323.7
gorilla	ggo-mir-150	UCUCACACUCCCCUUGUACAGUG	19	64.7
gorilla	ggo-let-7e	UCGAGGUGAGGUGGUGUUGUU	19	86198.3
gorilla	ggo-mir-1289	UGCAAUUCAGGAACUUGCUU	20	5.2
gorilla	ggo-mir-499a	UUAAGAGCUUGUCCAGUGAUGU	20	5.5
gorilla	ggo-mir-296	AGGGUUUGGGGGUGAGGCGUC	20	62
gorilla	ggo-let-7c	UAGGUGUAGUUGUUGUGUUUGU	21	270515.7
gorilla	ggo-mir-155	UUAAUUGCUAAUCUGUAGGGG	21	5.3
gorilla	ggo-mir-1306	ACUGUUGGCUCUGUGUGUGUGA	22	1.1
gorilla	ggo-mir-1286	UCGAGAAGACAUAGAGGUCC	22	1.3
gorilla	ggo-let-7b	UAGGAGUAGUUGUUGUGUGGU	22	224101.1
gorilla	ggo-mir-1249	AGCCCUUCCUCCCCUUCUUCA	22	293
gorilla	ggo-let-7a	UAGGAGUAGUUGUUGUGUAGU	22	5236944.2
gorilla	ggo-mir-130b	CAGUGCAUUGAAGAAGGGCA	22	5483
gorilla	ggo-mir-185	UUGAGAGAAAGAGCAGUUCUGA	22	91374.4
gorilla	ggo-mir-188	UAAAGGUGAGCAUAGUGCA	22	-0.1
gorilla	ggo-mir-4536	UACUGUUGAUAUCACUGGCA	22	0.4
gorilla	ggo-mir-508	ACUGUUGCCUCUUCUGUAGA	22	0.7
gorilla	ggo-mir-374b	AUAUUAUAAACUGCGUAGUG	22	1006.8
gorilla	ggo-mir-532	CAUGCCUUGAGUAGGACCC	22	1105.2
gorilla	ggo-mir-542	UGUGAGAAGUUAACUGAAA	22	121
gorilla	ggo-mir-450b	UUUGUGAUAUCUGUUGCACUA	22	16
gorilla	ggo-mir-502a	AAGCACCUGGGCAAGGACUA	22	164

Dannemann et al. BMC Genomics 2012, 13:116
http://www.biomedcentral.com/1471-2164/13/116

Page 11 of 16
Table 3 Novel miRNAs (Continued)

Species	Accession	Sequence	Fold Change	
gorilla	ggo-mir-503	UAGCAGGGGAACAGGUUCUGCAG	X 180.3	
gorilla	ggo-mir-504	GACCCUGGUCUCGCACUCUA	X 2	
gorilla	ggo-mir-188	CAUCCCCUGGAGGUGGGAGGUG	X 20.1	
gorilla	ggo-mir-424	CAGCCAGAUUCAGUUUGGUA	X 2017.9	
gorilla	ggo-mir-509	UACUGCAGCGGCGCAGUAAUG	X 20.9	
gorilla	ggo-mir-660	UACCGAUGCAUCUGCAUUG	X 247.5	
gorilla	ggo-mir-652	AAUGGCCGCAUAGGGUGUC	X 291.5	
gorilla	ggo-mir-363	AAUUGCAGGGU UAACUGCAUG	X 362.8	
gorilla	ggo-mir-676	CUGUCAUAGUUCUGGCAUGU	X 4	
gorilla	ggo-mir-374a	CUUACUGAUGUAUGUAGUCUU	X 414.8	
gorilla	ggo-mir-105	CCACGGAUGUUGAGUCAGUU	X -4.4	
gorilla	ggo-mir-23c	AUCAACAGCAUUAUUGGCUAC	X 4.4	
gorilla	ggo-mir-421	AUCAACAGCAUUAUUGGCUAC	X 5	
gorilla	ggo-mir-20b	CAAAGUGCUCAUGGGCGAG	X 5	
gorilla	ggo-mir-651	UUUAAGUAGCAGCUGAUUG	X 5	
gorilla	ggo-mir-452	AACUGUUGUUCAGGAGAAG	X 5.2	
gorilla	ggo-mir-767	UGCAUGGCUUGUGUCAGCA	X 5.3	
gorilla	ggo-mir-502b	UAGCCAGGGGAACAGGUUCUGCAG	X 5.3	
gorilla	ggo-mir-505	GUCAACACUUUGCGGCUUC	X 5.4	
gorilla	ggo-mir-1298	UCAUUGGCUUGCAUGGAUGG	X 5.4	
gorilla	ggo-mir-222	AGCUAACAGGCAUUGGCUAC	X 5.6	
gorilla	ggo-mir-361	UUACUGAUGCAUGGGCGAG	X 615.7	
gorilla	ggo-mir-450a	UUUGUGGUGAUGCGCAUA	X 69.1	
gorilla	ggo-mir-448	UUGCAUGAUGUUGAGUACCA	X 70	
gorilla	ggo-mir-362	AACGACCCGGAUCCAGAAUA	X 70.8	
gorilla	ggo-mir-766	ACUCAGGGCCACAGCUGACG	X 72.8	
gorilla	ggo-mir-1264	ACAAGUCAUUAUGUUGACAG	X 7.8	
gorilla	ggo-mir-1277	UACGCAAGAUUAGUAAU	X 93.5	
orangutan	ppy-mir-4427	UCUCCGCGAGUGGGGGA	1 0.2	
orangutan	ppy-mir-3121	UAAUGCUUGGCAUGGACA	1 1.2	
orangutan	ppy-mir-1976	CUCUGUGCUUGCUUGCUAA	1 1.3	
orangutan	ppy-mir-4774	UCUUGGGCAUGUUGGCAUA	2B 2.1	
orangutan	ppy-mir-4782	UUCUGGGAUGUGGCAUA	2B 3.2	
orangutan	ppy-mir-4791	UGGAGAUUGACAGAAA	3 0.8	
orangutan	ppy-mir-4446	CAGGGCGCGCACAGGAGG	3 2829	
orangutan	ppy-mir-4796	UAAUGGGAGAUGGCAUAGAGCA	3 3.3	
orangutan	ppy-mir-378b	ACUGGACGGAUUGGCGGAA	3 5.3	
orangutan	ppy-mir-4788	ACUGGACGGAUUGGCGGAA	3 5.9	
orangutan	ppy-mir-3938	AAUUGCAUGUUGGCAUGG	3 8.5	
orangutan	ppy-mir-4798	UUGGGAGAUUGGCAUA	4 11.1	
orangutan	ppy-mir-4451	UGUUGUGGCAUGGACAG	4 4.6	
orangutan	ppy-mir-3661	UGAGGCGUGGUAGGCAUGUC	5 1.5	
orangutan	ppy-mir-548h	AAAAGUAAUUGCGGGUU	5 23.7	
orangutan	ppy-mir-4637	UACUACUGGCAUAGGCAUGA	5 3	
orangutan	ppy-mir-378e	ACUGGACUGGCGGAA	5 4.1	
orangutan	ppy-mir-3912	UACCGCAUAUUGGCAUGA	5 4.5	
orangutan	ppy-mir-548f	CAAAAGUGUAUUAUUGGCU	5 5.1	
orangutan	ppy-mir-3660	CACUGGAGGAGGAGCAG	5 5.3	
orangutan	ppy-mir-548a	AAAAGUAAUUGGCAUUA	6 4.9	
orangutan	ppy-mir-1273e	GAGGCAGGAGAUAUGGCU	6 5	
orangutan	ppy-mir-3934	UCAGGUGUGGAUUGGCGA	6 5.3	
orangutan	ppy-mir-3145	AACUCAGGAUUCAACAG	6 5.4	
Species	miRNA Description	Sequence	Length	Score
------------------	-------------------------	---------------------	--------	-------
orangutan	ppy-mir-3943	UAGCCCCCAGGCUUCACUUGGCG	7	22.2
orangutan	ppy-mir-4667	UGACUGGGGAGCAGAAGGAGA	9	1.6
orangutan	ppy-mir-3154	CAGAAGGGGAGUUGGAGCAG	9	1.9
orangutan	ppy-mir-4672	ACACACUGGACAGAAGGAGCA	9	4.8
orangutan	ppy-mir-2861	GCCGCCGGCGCGUGGCGCG	9	6
orangutan	ppy-mir-2278	GAGGGGAGUUGGUGGUGG	9	8.8
orangutan	ppy-mir-4484	AAAAGGCGGGAGAAGGCGCG	10	3.9
orangutan	ppy-mir-548e	AAAACGGUGACUACUUGGCA	10	4.8
orangutan	ppy-mir-1260b	AUCCCAACACUGGAGGAGC	11	5.5
orangutan	ppy-mir-3170	CUGGGGGUCUGAGACAGACAG	13	2.4
orangutan	ppy-mir-151b	UCCAGGAGACAGACAGUGUG	14	2.6
orangutan	ppy-mir-1193	GGGAGUUGUGACGUGACGUG	14	5
orangutan	ppy-mir-3173	AAGGAGGGAUAGGCGAGCGG	14	5.8
orangutan	ppy-mir-3174	UAGLUGAGUUGAGAUGAGC	15	1.7
orangutan	ppy-mir-4515	AGGACUGGACUCCGCGCGGC	15	2.9
orangutan	ppy-mir-10a	UACCCGUAGAUCGGAUUGG	17	4.3
orangutan	ppy-mir-454	UAGLUGCAUGAUCGUAGG	17	5
orangutan	ppy-mir-4520a	UGGACAGAAAAACACCGGAGA	17	5.2
orangutan	ppy-mir-152	UCAUGUACGUAACAGCUGUG	17	8232.8
orangutan	ppy-mir-4526	GCUGAGCAGAGGCGCGGCAC	18	2.8
orangutan	ppy-mir-4529	UUGGCAUCUGGCUGAGG	18	3.6
orangutan	ppy-mir-4743	UGCCGGGAGUAGGGAAGCG	18	5.4
orangutan	ppy-mir-3188	AGAGCUUUGUGGACUCCG	19	1.1
orangutan	ppy-mir-3940	CAGCGCCACUGGACCCACUCA	19	1.5
orangutan	ppy-mir-320e	AAAAGGCGGGUUGAAGAGG	19	4.6
orangutan	ppy-mir-3617	AAAGCAUAGUUGGAGAUGG	20	1.6
orangutan	ppy-mir-378d	ACUGAGCAUUGGAGAUGA	X	4.3
orangutan	ppy-mir-676	CCGUCCUACAGGUGUGUG	X	5.1
rhesus macaque	mml-mir-1255b	UACGGAUAAGCAAAGAAGAUGG	1	2.1
rhesus macaque	mml-mir-320b	AAAAGGCGGGUUGAAGGCGCA	1	5.1
rhesus macaque	mml-mir-3122	GUUGGGAGAAGAAGGCUUAGG	1	3.5
rhesus macaque	mml-mir-1262	UGAAUUGGGAUUGUGAAGAAGG	1	647.1
rhesus macaque	mml-mir-4446	CAGGGCUGACUGGAGAUGG	2	26007.7
rhesus macaque	mml-mir-1284	UCUGUAGAGGCCUUGGC	2	4.5
rhesus macaque	mml-mir-4796	AAAUGCCAGAGUGAAGAGC	2	5.9
rhesus macaque	mml-mir-3146	CAUGUUAGAAAGAAGAAGAUGG	3	5
rhesus macaque	mml-mir-4650	UCGAAGGAAUGAAGGCGCG	3	5.8
rhesus macaque	mml-mir-3145	UAAUUGACAGACAGAGG	4	4.8
rhesus macaque	mml-mir-1243	AACAUGAGAAUAGAAGGAG	5	17.7
rhesus macaque	mml-mir-378d	ACUGAAGCUGGAGAAGAAC	5	4.8
rhesus macaque	mml-mir-3140	AAGACGUUUGGGAUUAUGG	5	5.3
rhesus macaque	mml-mir-1255a	AGGAUGAGAAAGGAGGAUAGU	5	5.7
rhesus macaque	mml-mir-4803	UAAACAUAGUGUGGACUGA	6	5.6
rhesus macaque	mml-mir-1271	CUUGGACCAAGAAGCAUCAG	6	9803.0
rhesus macaque	mml-mir-1179	AAGCAUCUUUCUAAGUGUUG	7	16.9
rhesus macaque	mml-mir-1185	AGAAGGUAACCUCUUGUAGU	7	5.2
rhesus macaque	mml-mir-3173	GAAGGAGAGAACACCCGAGAC	7	5.8
rhesus macaque	mml-mir-4716	AAGGCAAGAGCAGAAGGAGA	7	6.1
rhesus macaque	mml-mir-3151	ACGGGGGAAGGAGACAGAUGGAGA	8	223.8
species were submitted to miRBase. Names were assigned by miRBase and are available in Table 3.

Orthology of miRNAs

We identified orthologous regions starting from human hg19-based miRBase (version 17) hairpin locations [16,17]. The genome coordinates were transferred to hg18 coordinates using liftOver [34] with the 95% identity cutoff. Human mature sequences from miRBase were aligned to the human genome (hg18) and their corresponding hairpin sequences were assigned by overlapping genome coordinates using intersectBed from Bedtools [35]. All other primate miRNA mature sequences (known and predicted) were aligned against the corresponding genome and their genome locations were transferred to hg18 coordinates. The mature miRNA sequences found in the other primates that overlapped with human coordinates were defined as orthologous. The corresponding primate hairpin sequence was obtained by transferring the human genome hairpin coordinates to the corresponding primate genome. We excluded regions where liftOver was unable to identify an orthologous region.

Tissue specificity

MiRNAs were defined to be tissue specific when less than 5% of reads map to other tissues. This means that at least 80% of the perfectly aligned reads in chimpanzee and rhesus macaque (where we have reads from 4 tissues), and 95% of the perfectly aligned reads in gorilla and orangutan (where we have reads from 2 tissues) that were used for the prediction of the miRNA came from one tissue.

Sequence comparison

Sequence identity of miRNAs (mature/hairpin) in orthologous regions was computed using the multiple sequence alignment tool MUSCLE [36] and the identity function of the R package bio3d [37].

Secondary structure analysis

We calculated the minimum free energy (MFE) of known and predicted hairpin sequences by using RNAfold algorithm with default parameters [38]. The MFE for each group of annotated/predicted miRNAs was computed by averaging the MFEs.
Acknowledgements

We would like to thank Thomas Giger for the dissection of the frozen tissues, Ines Drinnenberg, Matthias Meyer and the Sequencing Group of the MPI-EVA for coordinating sequencing runs; Martin Kircher for technical assistance with sequencing runs processing, Maritke Schreiber for assistance with the figure preparation. The project was founded by a grant of the Max Planck Society.

Author details
1Max Planck Institute for Evolutionary Anthropology, Department of Evolutionary Genetics, Deutscher Platz 6, Leipzig 04103, Germany. 2Center for Genomic Regulation, Department of Genetic Causes of Disease, C/DX, Aigudar 88, 08003 Barcelona, Spain. 3Current address: Max Planck Institute for Developmental Biology, Department of Molecular Biology, Spermanstrasse 37-39, Tübingen 72076, Germany.

Authors’ contributions
MC conceived and designed the experiments, acquired the data, contributed reagents/materials/analysis tools, wrote the paper. EL performed the experiments. PL conceived and designed the experiments, performed the experiments, acquired the data, contributed reagents/materials/analysis tools, wrote the paper. JK conceived and designed the experiments, contributed reagents/materials/analysis tools, wrote the paper. All authors read and approved the final manuscript.

Received: 9 November 2011 Accepted: 27 March 2012

Published: 27 March 2012

References
1. Marques-Bonet T, Ryder OA, Echler EE: Sequencing primate genomes: what have we learned? Annu Rev Genomics Hum Genet 2009, 10:355-386.
2. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, et al: Initial sequencing and analysis of the human genome. Nature 2001, 409(6822):860-921.
3. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, et al: The sequence of the human genome. Science 2001, 291(5507):1304-1351.
4. Mikkelsen TS,iller LW, Echler EE, Zody MC, Jaffe DB, Yang SP, Enard W, Hellmann I, Lindblad-Toh K, Arlindo TK, et al: Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 2005, 437(7055):89-87.
5. Locke DP,iller LW, Warren WC, Worley KC, Nazareth LV, Muzny DM, Yang SP, Wang Z, Chinwalla AT, Minx P, et al: Comparative and demographic analysis of orangutan genomes. Nature 2011, 469(7331):529-533.
6. Adams MD, Kelley JM, Goayane JD, Dubnick M, Polymeropolous MH, Xiao H, Merrill CR, Wu A, Olde B, Moreno RF, et al: Initial assessment of the chimpanzee genome and comparison with the human genome. Nature 2005, 437(7055):89-87.
7. Garber M, Grabherr MG, Guttman M, Trapnell C: Computational methods for transcriptome annotation and quantification using RNA-seq. Nat Methods 2011, 8(8):460-477.
8. Sayers EW, Barrett T, Benson DA, Mungall CJ, Mineur P, et al: Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 2011, 39 Database: D38-51.
9. Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, Margulies EH, Wend Z, Snyder M, Dermitzakis ET, Thurman RE, et al: Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 2007, 447(7146):799-816.
10. Clark MB, Amaral PP, Schlesinger FJ, Dinger ME, Taft RJ, Rinn JL, Ponting CP, Stadler PF, Morris KV, Morillon A, et al: The reality of pervasive transcription. PLoS Biol 2011, 9(7):e1000625, discussion e100102.
11. Ghildiyal M, Zamoie PD: Silent secondary RNAs: an expanding universe. Nat Rev Genet 2009, 10(2):94-108.
12. Lee RC, Fanbaum RL, Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993, 7(5):845-854.
13. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM: Microarray analysis shows that small RNAs downregulate large numbers of target mRNAs. Nature 2005, 433(7027):769-773.
14. Wightman B, Ha I, Ruvkun G: Posttranscriptional regulation of the heterochronic gene lin-4 by lin-14 mediates temporal pattern formation in C. elegans. Cell 1993, 71(5):655-662.
15. Griffiths-Jones S, Saini HK, van Dongen S, Enright AI: miRBase: tools for microRNA genomics. Nucleic Acids Res 2008, 36 Database: D154-158.
16. Kozomara A, Griffiths-Jones S: miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 2011, 39 Database: D152-157.
17. Berezovsk L, Cuppen E, Plasterk RH: Approaches to microRNA discovery. Nat Genet 2006, 38(Suppl):52-7.
18. Berezovsk L, Guryev V, van de Belt J, Wienholds E, Plasterk RH, Cuppen E: Phylogenetic shadowing and computational identification of human microRNA genes. Cell 2005, 120(1):21-24.
19. Yue J, Sheng Y, Orwig KE: Identification of novel homologous microRNA genes in the rhesus macaque genome. BMC Genomics 2008, 9:50.
20. Baey V, Daskalova E, Minkov I: Computational identification of novel microRNA homologs in the chimpanzee genome. Comput Biol Chem 2009, 33(1):62-70.
21. Brameier M: Genome-wide comparative analysis of microRNAs in three non-primate humans. BMC Res Notes 2011, 364.
22. Washietl S: Sequence and structure analysis of noncoding RNAs. Methods Mol Biol 2010, 609(10):285-306.
23. Berezovsk L, Thummler F, Van Laake LW, Kondova I, Bontrop R, Cuppen E, Plasterk RH: Diversity of microRNAs in human and chimpanzee brain. Nat Genet 2006, 38(12):1375-1377.
24. Somel M, Guo S, Fu N, Yuan Z, Hu HY, Xu Y, Yuan Y, Ning Z, Hu Y, Menzel C, et al: MicroRNA miRNA, and protein expression link development and aging in human and macaque brain. Genome Res 2010, 20(9):1207-1218.
25. Friedlander MJ, Chen W, Adami S, Maasokla J, Einspanier R, Kresa P, Rajewsky N: Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol 2008, 26(4):407-415.
26. Friedlander MJ, Mackowiak SO, Li N, Chen W, Rajewsky N: miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res 2011.
27. Landgraf P, Rusu M, Sheridan R, Sewer A, ioino V, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M, et al: A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 2007, 129(7):1401-1414.
28. Dannemann M, Prufer K, Lazo E, Nickel B, Burbano HA, Kelso J: Transcription factors are targeted by differentially expressed miRNAs in chimpanzees.
29. Winter J, Jung S, Keller S, Gregory R, Diederichs S: Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 2009, 11(3):228-234.
30. Gibbs RA, Rogers J, Katze MG, Bumgarner R, Weinstock GM, Mardis ER, Remington KA, Strausburg RL, Venter JC, Wilson RK, et al: Evolutionary and biomedical insights from the rhesus macaque genome. Science 2007, 316(5822):222-234.
31. Kircher M, Stenzel U, Kelso J: Improved base calling for the illumina Genome Analyzer using machine learning strategies. Genome Biol 2009, 10(8):R83.
32. Prufer K, Stenzel U, Dannemann M, Green RE, Lachmann M, Kelso J: Pattna: rapid alignment of short sequences to large databases. Bioinformatics 2008, 24(13):1530-1531.
33. Hinrichs AS, Karolchik D, Baertsch R, Barber GP, Bejerano G, Clawson H, Diekhans M, Furey TS, Harte RA, et al: Genome browser 2007 update. Genome Res 2007, 17(11A):1223-1241.
34. Grant BJ, Rodriguez AP, ElSawy KM, McCammon JA, Caves LS: Bio3d: an R package for the comparative analysis of protein structures. Bioinformatics 2008, 24(21):2695-2696.
38. Hofacker IL. Vienna RNA secondary structure server. Nucleic Acids Res 2003, 31(13):3429-3431.

doi:10.1186/1471-2164-13-116

Cite this article as: Dannemann et al: Annotation of primate miRNAs by high throughput sequencing of small RNA libraries. BMC Genomics 2012 13:116.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit