On the First $\text{aff}(1)$-Relative Cohomology of the Lie Algebra of Vector Fields and Differential Operators

Meher A*

Département de Mathématiques, Faculté des Sciences de Sfax, BP 802, 3038 Sfax, Tunisie

Abstract

Let $\text{Vect}(\mathbb{R}^1)$ be the Lie algebra of smooth vector fields on \mathbb{R}^1. In this paper, we classify $\text{aff}(1)$-invariant linear differential operators from $\text{Vect}(\mathbb{R}^1)$ to $\mathcal{D}_{\text{aff}}(\mathbb{R}^1)$ vanishing on $\text{aff}(1)$, where $\mathcal{D}_{\text{aff}} := \text{Hom}(\text{aff}(1), \text{Vect}(\mathbb{R}^1))$ is the space of bilinear differential operators acting on weighted densities. This result allows us to compute the first differential $\text{aff}(1)$-relative cohomology of $\text{Vect}(\mathbb{R}^1)$ with coefficients in \mathcal{D}_{aff}.

Keywords: Differential operators; Transvectants; Lie algebra; Cohomology

Introduction

Let g be a Lie algebra and let \mathcal{M} and \mathcal{N} be two g-modules. It is well-known that nontrivial extensions of g-modules:

$$0 \to \mathcal{M} \to \mathcal{N} \to 0$$

are classified by the first cohomology group $H^1(g; \text{Hom}(\mathcal{M}, \mathcal{N}))$ [1]. Any 1-cocycle c generates a new action on \mathcal{M} as follows: for all $m \in \mathcal{M}$,

$$c \cdot m = [c, m] = [\text{ad}_c(m), m],$$

where $\text{ad}_c(m)$ is the Lie algebra of smooth vector fields on \mathbb{R}^1 endowed with the defined $\text{aff}(1)$-module structure.

The space of bilinear differential operators as a $\text{Vect}(\mathbb{R}^1)$-module

Consider bilinear differential operators that act on tensor densities:

$$(\varphi \otimes \psi)(f) = \varphi(f) \cdot \psi(f),$$

for all $f \in \mathbb{R}^1$. We denote $D_{\text{aff}}^{\text{aff}}$ the space of bilinear differential operators (2) endowed with the defined $\text{Vect}(\mathbb{R}^1)$-module structure (3).

Relative Cohomology

Let us first recall some fundamental concepts from cohomology theory [1]. Let g be a Lie algebra acting on a vector space V and let h be a sub-algebra of g. (If h is omitted it assumed to be $[0]$.) The space of h-relative n-cochains of g with values in V is the g-module $C^n(h; V) = \text{Hom}_h(A^n(g; h); V)$.

The coboundary operator $\delta: C^n(h; V) \to C^{n+1}(h; V)$ is a g-map satisfying $\delta \delta = 0$. The kernel of δ_{n-1}, denoted $Z^n(h; V)$, is the space of h-relative n-cocycles, among them, the elements in the range of δ_{n-1} are called h-relative n-coboundaries. We denote $B^n(h; V)$ the space of n-coboundaries.

*Corresponding author: Meher A, Département de Mathématiques, Faculté des Sciences de Sfax, BP 802, 3038 Sfax, Tunisie, Tel: 71 872 600; Fax: 71 871 666; E-mail: abdaoui.meher@gmail.com

Received April 08, 2017; Accepted June 21, 2017; Published June 27, 2017

Copyright: © 2017 Meher A. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
By definition, the nth h-relative cohomology space is the quotient space
\[
H^n(g,h;\mathcal{V}) = \mathcal{Z}^n(g,h;\mathcal{V})/\mathcal{B}^n(g,h;\mathcal{V}).
\]
We will only need the formula of δ_i (which will be simply denoted δ) in degrees 0 and 1: for $v \in \mathcal{C}(g,h;\mathcal{V}) = \mathcal{V}^n$, $\delta(v) = (-1)^{i+j}gv$, where $v^n = \{v \in \mathcal{V} | h.v = 0 \}$ for all $h \in h$,

and for $Y \in \mathcal{C}(g,h;\mathcal{V})$,

\[
\delta(Y) = Y - Y(Y(X)-Y([x,y])) \quad \text{for any } x,y \in g.
\]

$\mathfrak{aff}(1)$-Invariant Differential Operators

The following steps to compute the relative cohomology has intensively been used in refs. [3,5-8]. First, we classify $\mathfrak{aff}(1)$-invariant differential operators, then we isolate among them those that are 1-cocycles. To do that, we need the following Lemma.

Lemma 4.1

Any 1-cocycle vanishing on the subalgebra $\mathfrak{aff}(1)$ of $\text{Vect}(\mathbb{R}^1)$ is $\mathfrak{aff}(1)$-invariant.

The 1-cocycle condition of Y reads:

\[
X(Y(Y(X))-Y(Y([X,Y]))) = 0,
\]

where $X,Y \in \text{Vect}(\mathbb{R}^1)$. Thus, if $Y(X)=0$ for all $X \in \mathfrak{aff}(1)$, eqn. (4) becomes

\[
Y([X,Y]) = X(Y(Y(X))-Y(Y([X,Y])) = 0,
\]

expressing the $\mathfrak{aff}(1)$-invariance property of Y.

As our 1-cocycles vanish on $\mathfrak{aff}(1)$, we will investigate $\mathfrak{aff}(1)$-invariant linear differential operators that vanish on $\mathfrak{aff}(1)$.

Proposition 4.2: There exist $\mathfrak{aff}(1)$-invariant bilinear differential operators $J^{i\times} : \mathcal{F}_1 \otimes \mathcal{F}_\mu \to \mathcal{F}_{i+j+k}$ given by:

\[
J^{i\times}(gdx^i, \phi dx^\mu) = \sum_{(i+j+k)} \gamma_{ij} \phi \psi dx^{i+j+k},
\]

where $k \in \mathbb{N}$ and the coefficients γ_{ij} are constants.

Proof. Any differential operator $J^{i\times} : \mathcal{F}_1 \otimes \mathcal{F}_\mu \to \mathcal{F}_{i+j+k}$ is of the form

\[
J^{i\times}(gdx^i, \phi dx^\mu) = \sum_{(i+j+k)} \gamma_{ij} \phi \psi dx^{i+j+k},
\]

where γ_{ij} are constants. The $\mathfrak{aff}(1)$-invariant property of the operators $J^{i\times}$ with respect to the vector field $X = \frac{d}{dx}$ implies that $\gamma_{ij} = 0$. On the other hand, the invariant property with respect to the vector fields $X = \frac{d}{dx}$ implies that $\gamma_{ij} = 0$. Therefore, the space of solutions is $\frac{1}{2}(k-1)$-dimensional, spanned by

\[
Y_{0,0,0}, Y_{1,0,0}, Y_{2,1,0}, Y_{3,2,0}, Y_{4,3,0}, Y_{5,4,0}, \ldots
\]

where $Y_{r,\lambda,\mu}$ are functions. The $\mathfrak{aff}(1)$-invariant property of the operators $J^{i\times}$ reads as follows.

Proposition 4.3: There exist $\mathfrak{aff}(1)$-invariant differential operators $K^{i\times \phi} : \mathcal{F}_1 \otimes \mathcal{F}_\mu \to \mathcal{F}_{i+j+k}$ that vanish on $\mathfrak{aff}(1)$ given by:

\[
K^{i\times \phi}(X, \phi, \psi) = \sum_{(i+j+k)} \gamma_{ij} \phi \psi dx^{i+j+k},
\]

where $i+j+k=0$ and the coefficients γ_{ij} are constants. Moreover, the space of solutions is $\frac{1}{2}(k-1)$-dimensional, for all λ and μ.

Proof of Proposition 4.3 and 4.4: We are going to prove Proposition 4.3 and 4.4 simultaneously. Any differential operator $K^{i\times \phi} : \mathcal{F}_1 \otimes \mathcal{F}_\mu \to \mathcal{F}_{i+j+k}$ is of the form

\[
K^{i\times \phi}(X, \phi, \psi) = \sum_{(i+j+k)} \gamma_{ij} \phi \psi dx^{i+j+k},
\]

where γ_{ij} are functions. The $\mathfrak{aff}(1)$-invariant property of the operators $K^{i\times \phi}$ reads as follows.

\[
L^\gamma K^{i\times \phi} - K^{i\times \phi} L^\gamma \psi = K^{i\times \phi} L^\gamma \psi.
\]

The invariant property with respect to the vector field $X = \frac{d}{dx}$ implies that $\gamma_{ij} = 0$. On the other hand, the invariant property with respect to the vector fields $X = \frac{d}{dx}$ implies that $\gamma_{ij} = 0$. Therefore, the space of solutions is $\frac{1}{2}(k-1)$-dimensional, spanned by

\[
Y_{0,0,0}, Y_{1,0,0}, Y_{2,1,0}, Y_{3,2,0}, Y_{4,3,0}, Y_{5,4,0}, \ldots
\]

Now, the proof of Proposition 4.4 follows as above by putting $r=1$.

In this case, the space of solutions is $\frac{1}{2}(k-1)$-dimensional, spanned by

\[
Y_{2,0,0}, Y_{3,0,0}, Y_{4,0,0}, \ldots
\]

Therefore, the corresponding operator can be expressed as (5).

Proposition 4.3: There exist $\mathfrak{aff}(1)$-invariant differential operators $K^{i\times \phi} : \mathcal{F}_1 \otimes \mathcal{F}_\mu \to \mathcal{F}_{i+j+k}$ given by:

\[
K^{i\times \phi}(X, \phi, \psi) = \sum_{(i+j+k)} \gamma_{ij} \phi \psi dx^{i+j+k},
\]

where $i+j+k=0$ and the coefficients γ_{ij} are constants.

If r, λ, μ are generic, then the space of solutions is $\frac{1}{2}(k-1)(k+2)$-dimensional.

Proposition 4.4: There exist $\mathfrak{aff}(1)$-invariant differential operators $K^{i\times \phi} : \mathcal{F}_1 \otimes \mathcal{F}_\mu \to \mathcal{F}_{i+j+k}$ that vanish on $\mathfrak{aff}(1)$ given by:

\[
K^{i\times \phi}(X, \phi, \psi) = \sum_{(i+j+k)} \gamma_{ij} \phi \psi dx^{i+j+k},
\]

where $i+j+k=0$ and the coefficients γ_{ij} are constants.

If r, λ, μ are generic, then the space of solutions is $\frac{1}{2}(k-1)(k+2)$-dimensional.
The proof of Theorem 5.1 follows three steps:

1. Constructing a 1-cocycle on $Vect(\mathbb{R}^p)$.

2. Investigating the dimension of the space of operators that satisfy the cocycle condition.

3. Studying the triviality of the constructed 1-cocycle.

Proof of Theorem 5.1:

To construct a 1-cocycle on $Vect(\mathbb{R}^p)$, we define the following operators L_{XB} for $X, Y \in Vect(\mathbb{R}^p)$:

$$L_{XB}(X, Y) = [X, Y] + \lambda(X, Y) + \mu(X, Y)$$

where λ and μ are generic operators.

Now, we investigate the dimension of the space of operators that satisfy the 1-cocycle condition.

Proof of Lemma 5.2:

For $\lambda, \mu \in \mathbb{R}$, we define the following operators L_{XB} for $X, Y \in Vect(\mathbb{R}^p)$:

$$L_{XB}(X, Y) = [X, Y] + \lambda(X, Y) + \mu(X, Y)$$

where $\lambda, \mu \geq 0$.

We also need the following Lemma.

Lemma 5.3:

Every 1-cocycle on $Vect(\mathbb{R}^p)$ with values in $D_{\lambda, \mu}$ is differentiable.

Proof [7]:

Now we are in position to prove Theorem 5.1. By Lemma 5.3, any 1-cocycle on $Vect(\mathbb{R}^p)$ should retain the following general form:

$$C(X, \phi, \psi) = \sum_{i, j, k} c_{ij, k} X^{(i)} \phi^{(j)} \psi^{(k)}$$

where $c_{ij, k}$ are constants.

The 1-cocycle condition reads as follows: for all $\phi \in \mathcal{F}_\lambda$ and all $\psi \in \mathcal{F}_\mu$ and for all $X \in Vect(\mathbb{R}^p)$, one has

$$c(\mathcal{X}, Y, \phi, \psi) - L_{XB}(Y, \phi, \psi) - L_{XB}^\mu(B(X, \phi, \psi)) = 0$$

The 1-cocycle condition can also be expressed as follows:

$$Y(X, \phi, \psi) = c_{\lambda, 0, 0} X^0 \phi \psi$$

By a direct computation, we can see that the 1-cocycle condition is always satisfied. Let us study the triviality of this 1-cocycle. A direct computation proves that

$$H_{\lambda, \mu} = 0$$
\[L_x J^{+\pm} = \beta_{x;3,0} X^\nu \phi^\nu = - (\lambda \gamma_{1,0} + \mu \gamma_{0,1}) X^\nu \phi^\nu. \]

So, for \((\lambda, \mu) = (0,0)\), the coefficient \(c_{2;3,0}\) cannot be eliminated by adding a coboundary. Hence, the cohomology space is one-dimensional. While for \((\lambda, \mu) = (0,0)\), we can see that the coefficient \(c_{2,0} \) can be eliminated because \(\beta_{2,0} = 0\). Hence, the cohomology space is zero-dimensional.

The case where \(v - \mu = -2\): In this case, according to Proposition 4.4, the 1-cocycle (24) can be expressed as follows:

\[Y(x, \phi^\nu) = c_{1,0} X^\nu \phi^\nu + c_{2,0} X^\nu \phi^\nu + c_{3,0} X^\nu \phi^\nu. \]

By a direct computation, we can see that the cohomology space is always satisfied. Let us study the triviality of this 1-cocycle. A direct computation proves that

\[L_x J^{+\pm} = \beta_{x;3,0} X^\nu \phi^\nu + \beta_{y,3,0} X^\nu \phi^\nu + \beta_{z,3,0} \phi^\nu. \]

where

\[\beta_{3,0} = - \lambda \gamma_{1,0} - \mu \gamma_{0,1} ; \beta_{y,3,0} = - (\lambda + 1) \gamma_{1,0} - \mu \gamma_{0,1} ; \beta_{z,3,0} = - \lambda \gamma_{0,1} - (\mu + 1) \gamma_{0,1}. \]

So, for \((\lambda, \mu) = (0,0)\), the cohomology space is one-dimensional, since only one of the coefficients \(c_{3,0} \) or \(c_{2,0} \) cannot be eliminated by adding a coboundary. While for \((\lambda, \mu) = (0,0)\), the coefficient \(c_{2,0} \) and \(c_{3,0} \) can be eliminated because \(\beta_{2,0} = 0\) and \(\beta_{3,0} \) are nonzero. Hence, the cohomology space is zero-dimensional.

The case where \(v - \mu = 3\): In this case, according to Proposition 4.4, the space of solutions is spanned by:

\[c_{3,0} \phi^\nu \text{ or } c_{2,0} \phi^\nu. \]

Moreover, by formula (25), we readily obtain:

\[-2c_{2,0}, (3 \lambda + 1) c_{2,0} - 2(\lambda + 1) c_{2,0} + \mu c_{2,0} - \mu c_{1,0} = 0, \]

\[-2c_{2,0}, \lambda c_{2,0}, - c_{1,0}, c_{1,0} + (3 \mu + 1) c_{1,0} - (3 \mu + 1) c_{1,0} = 0, \]

\[-c_{2,0}, c_{2,0} - 2c_{3,0}, c_{3,0} - \mu c_{1,0} - \mu c_{2,0} = 0. \]

Thus, we have just proved that the coefficients of every 1-cocycle is expressed in terms of \(c_{2,0} \text{ or } c_{3,0}\).

A direct computation confirms that, the coefficients of \(L_x J^{+\pm} \) are expressed in terms of:

\[c_{2,0} = - (3 \lambda + 1) c_{2,0} - \mu c_{2,0} , \]

\[\beta_{3,0} = - (3 \lambda + 1) c_{3,0} - \mu c_{3,0} , \]

\[\beta_{2,0} = - (3 \lambda + 1) c_{2,0} - \mu c_{2,0}. \]

So, for \((\lambda, \mu) = (0,0)\), the cohomology space is one-dimensional, since only one of the coefficients \(c_{2,0} \) or \(c_{3,0} \) cannot be eliminated by adding a coboundary.

While for \((\lambda, \mu) = (0,0)\), the coefficient \(c_{2,0} \) and \(c_{3,0} \) can be eliminated because \(\beta_{2,0} = 0\) and \(\beta_{3,0} \) are nonzero. Hence, the cohomology space is zero-dimensional.

The case where \(v - \mu = 4\): In this case, according to Proposition 4.4, the space of solutions is spanned by:

\[c_{2,0} \phi^\nu \text{ or } c_{3,0} \phi^\nu. \]

Moreover, by formula (25), we readily obtain:

\[-2c_{2,0}, (3 \lambda + 2) c_{2,0} - 2(\lambda + 1) c_{2,0} + 2 \mu c_{2,0} - \mu c_{1,0} = 0, \]

\[-2c_{2,0}, \lambda c_{2,0}, - c_{1,0}, c_{1,0} + (3 \mu + 1) c_{1,0} - (3 \mu + 1) c_{1,0} = 0, \]

\[- c_{2,0}, c_{2,0} - 2c_{3,0}, c_{3,0} - \mu c_{1,0} - \mu c_{2,0} = 0. \]

Thus, we have just proved that the coefficients of every 1-cocycle is expressed in terms of \(c_{2,0} \text{ or } c_{3,0}\).

A direct computation confirms that, the coefficients of \(L_x J^{+\pm} \) are expressed in terms of:

\[c_{2,0} = - (3 \lambda + 1) c_{2,0} - \mu c_{2,0} , \]

\[\beta_{3,0} = - (3 \lambda + 1) c_{3,0} - \mu c_{3,0} , \]

\[\beta_{2,0} = - (3 \lambda + 1) c_{2,0} - \mu c_{2,0}. \]

So, for \((\lambda, \mu) = (0,0)\), the cohomology space is one-dimensional, since only one of the coefficients \(c_{2,0} \) or \(c_{3,0} \) cannot be eliminated by adding a coboundary.
Thus, we have just proved that the coefficients of every 1-cocycle is expressed in terms of:

\[c_{2,4,0}, c_{2,0,4}, c_{3,3,0}, c_{3,0,3}, c_{3,2,1}, c_{2,3,1}, c_{3,2,2}, c_{2,2,2}. \]

A direct computation confirms that, the coefficients of \(L_a J_1^{a\mu} \) are expressed in terms of:

\[\beta_{1,1,1} = -(3\lambda + 2\mu)\gamma_{1,1,1}, \quad \beta_{1,2,1} = -(3\lambda + 1)\gamma_{1,2,1}, \quad \beta_{1,3,1} = -(3\lambda + 0)\gamma_{1,3,1}, \quad \beta_{1,4,1} = -(3\lambda - 2)\gamma_{1,4,1}. \]

In this case, according to Proposition 4.4 together with formulas (25), we check that the coefficients of every 1-cocycle are expressed in terms of:

\[c_{1,0,0,0}, c_{1,0,1}, c_{2,0,2}, c_{2,0,4}, c_{2,0,6}, c_{3,0,3}, c_{3,0,5}, c_{3,0,7}, c_{2,0,8}. \]

A direct computation confirms that, the coefficients of \(L_a J_0^{a\mu} \) expressed in terms of:

\[\beta_{1,0,0}, \beta_{1,0,1}, \beta_{1,0,2}, \beta_{1,0,3}, \beta_{1,0,4}, \beta_{1,0,5}, \beta_{1,0,6}, \beta_{1,0,7}, \beta_{1,0,8}. \]

So, in the same way as before, by Lemma 5.2, we can see, with the help of the maple, that the cohomology space is given as in (20).

The case where \(v - \mu = 6 \): In this case, according to Proposition 4.4 together with formulas (25), we check that the coefficients of every 1-cocycle are expressed in terms of:

\[c_{1,1,0,1}, c_{1,2,0,1}, c_{1,3,1,1}, c_{2,0,2,0}, c_{2,0,3,0}, c_{3,0,3,0}, c_{3,0,4,0}, c_{3,0,5,0}, c_{2,0,6,0}. \]

A direct computation confirms that, the coefficients of \(L_a J_0^{a\mu} \) expressed in terms of:

\[\beta_{1,1,0,1}, \beta_{1,2,0,1}, \beta_{1,3,1,1}, \beta_{1,4,2,1}, \beta_{1,5,3,1}, \beta_{1,6,4,1}, \beta_{1,7,5,1}, \beta_{1,8,6,1} \]

So, in the same way as before, by Lemma 5.2, we can see, with the help of the maple, that the cohomology space is given as in (21).

The case where \(v - \mu = 8 \): In this case, according to Proposition 4.4 together with formulas (25), we check that the coefficients of every 1-cocycle are expressed in terms of:

\[c_{1,0,0,0}, c_{1,0,1}, c_{2,0,2}, c_{2,0,4}, c_{2,0,6}, c_{3,0,3}, c_{3,0,5}, c_{3,0,7}, c_{2,0,8}. \]

A direct computation confirms that, the coefficients of \(L_a J_0^{a\mu} \) expressed in terms of:

\[\beta_{1,0,0}, \beta_{1,0,1}, \beta_{1,0,2}, \beta_{1,0,3}, \beta_{1,0,4}, \beta_{1,0,5}, \beta_{1,0,6}, \beta_{1,0,7}, \beta_{1,0,8}. \]

So, in the same way as before, by Lemma 5.2, we can see, with the help of the maple, that the cohomology space is given as in (22). This completes the proof.

Conjecture 5.1

For \(v - \mu \in \mathbb{N} + 12, \) \(\mu \) and \(\lambda \) are generic, one has

\[H_{\text{aff}}^1(\text{Vect}(\mathbb{R}^p), \mathfrak{a}(1); D_{\lambda,\mu}) = 0. \]

Conclusion

In this paper, we classify \(\mathfrak{a}(1) \) -invariant linear differential operators from \(\text{Vect}(\mathbb{R}^p) \) to \(D_{\lambda,\mu} \) vanishing on \(\mathfrak{a}(1) \), where \(D_{\lambda,\mu} := \text{Homdiff}(\mathcal{F}_1, \mathcal{F}_2) \) is the space of bilinear differential operators acting on weighted densities. This result allows us to compute the first differential \(\mathfrak{a}(1) \)-relative cohomology of \(\text{Vect}(\mathbb{R}^p) \) with coefficients in \(D_{\lambda,\mu} \).

References

1. Fuchs DB (1986) Cohomology of infinite-dimensional Lie algebras. Contemp Soviet Math, Consultants Bureau, New-York.
2. Feigin BL, Fuchs DB (1982) Homology of Lie algebras on vector fields on the line. Funkts Anal Prilozhen 16: 47-63.
3. Bouarroudj S, Ovsienko V (1998) Three cocycle on Diff(S') generalizing the Schwarzian derivative. Int Math Res Notices 25-39.
4. Wilczynski EJ (1906) Projective differential geometry of curves and ruled surfaces, Leipzig-Teubner.
5. Bouarroudj S (2007) On sl(2)-relative Cohomology of the Lie algebra of vector fields and differential operators. J Nonlinear Math Phys 14: 1-29.
6. Bouarroudj S (2006) Projective and conformal Schwarzian derivatives and cohomology of Lie algebras vector fields related to differential operators. Int Jour Geom Methods Mod Phys 3: 667-696.
7. Lecomte PBA, Ovsienko V (2000) Cohomology of the vector fields Lie algebra and modules of differential operators on a smooth manifold. Compositio Mathematica 124: 95-110.

8. Omri S (2016) On aff(1)-relative cohomology of the Lie algebra of vector fields on weighted densities on \mathbb{R}^n. Math. Reports 18: 509-514.