Prevalence of low back pain and associated factors among farmers during the rice transplanting process

PETCHARAT KEAWDUANDEE1, 2, RUNGTHIP PUNTUMETAKUL2, 3*, MANIDA SWANGNETR2, 4, WONGSA LAOHAISIRIWONG5, DARIWAN SETTHEETHAM6, JUNICHIRO YAMAUCHI7, 8, ROSE BOUCAUT9

1) Faculty of Public Health, Khon Kaen University, Thailand
2) Research Center in Back, Neck, Other Joint Pain and Human Performance (BNOJPH), Khon Kaen University: 123 Moo 16 Mitraphap street, Muang District, Khon Kaen 40002, Thailand
3) School of Physical Therapy, Faculty of Associated Medical Sciences, Khon Kaen University, Thailand
4) Program of Production Technology, Faculty of Technology, Khon Kaen University, Thailand
5) Department of Public Health Administration, Faculty of Public Health, Board Committee of Research and Training Centre for Enhancing Quality of Life of Working Age People (REQW), Khon Kaen University, Thailand
6) Department of Environmental Health Science, Faculty of Public Health, Khon Kaen University, Thailand
7) Graduate School of Human Health Science, Tokyo Metropolitan University, Japan
8) Future Institute for Sport Science, Japan
9) School of Health Science (Physiotherapy), University of South Australia, Australia

Abstract. [Purpose] The aim of this study was to investigate the prevalence of low back pain and associated factors in Thai rice farmers during the rice transplanting process. [Subjects and Methods] Three hundred and forty-four farmers, aged 20–59 years old, were asked to answer a questionnaire modified from the Standard Nordic Questionnaire (Thai version). The questionnaire sought demographic, back-related, and psychosocial data. [Results] The results showed that the prevalence of low back pain was 83.1%. Farmers younger than 45 years old who worked in the field fewer than six days were more likely to experience low back pain than those who worked for at least six days. Farmers with high stress levels were more likely to have low back pain. [Conclusion] In the rice transplanting process, the low back pain experienced by the farmers was associated with the weekly work duration and stress. Key words: Low back pain, Rice farmers, Rice transplanting process

INTRODUCTION

Farming, particularly rice farming, is an important occupation in Thailand. Rice is the most important product for consumption and export. Nowadays, agricultural production of rice is easier in developed countries than in the past due to technological progress. However, in developing countries, use of agricultural technology is limited. For this reason, farmers in developing countries, such as in some areas of India, Myanmar, Laos, and Thailand, use traditional methods involving manual work. Rice farming consists of many manually performed tasks including transplanting and sowing. Consequently, it is not surprising that there is a high prevalence of work-related musculoskeletal disease among rice farmers1–2)

Low back pain (LBP) is a common health problem arising from work with manual handling3–9), especially in farmers4, 5). The literature confirms that the prevalence of LBP among farmers is high, particularly in developing countries1–2). A number of studies have reported LBP to be highly prevalent in rice farmers. For example, in Thailand, there are reports indicating that the prevalence of LBP in rice farmers is between 56% and 73.1%1–3). Furthermore, one of these studies indicated that the highest prevalence of LBP arises during the transplanting process1), which is a most tedious job.

LBP can arise due to many factors, which can be divided into three main categories. The first category is personal factors including age, body mass index (BMI), exercise, alcohol consumption, and smoking6–7). The second category is psychosocial factors including anxiety, depression, somatization of symptoms, stress, job dissatisfaction, negative body image, and poor self-esteem8–10). The third category is physical occupational factors including repetitive motion, heavy lifting, non-neutral postures, and vibration11, 12). Contemporary literature has simply suggested that occupational
Factors, especially working postures, are the main causes of LBP. Consequently, LBP prevalence has been found highest in the transplanting process of rice farming because manual transplanting is a labor-consuming and tiresome job.

In Thailand, the transplanting process is a complex activity. Chronologically, it is closely associated with harrowing, plowing, and the gathering of saplings in the main field. In Thailand, the transplanting process involves standing in a waterlogged field and bending to put seedlings into the soil by hand, frequently and over a long time period. Therefore, the transplanting process involves harmful postures consisting of prolonged stooping and repetitive twisting. Accordingly, it typically impacts the low back region, resulting in pain. It is well known that working postures during transplanting are related to LBP; however, every farmer has their own individual demands, which can be defined as external load factors. These factors may include prior work experience, hours of work, work intensity, and stress, which are also related to LBP.

Episodes of LBP are typically brief, and so many farmers may not seek medical care. It has been noted that LBP is usually resolved within one month. Nevertheless, recent studies indicated that LBP can persist for 6 months and commonly recurs within one year. There are few studies about the external load factors associated with LBP. Therefore, the current study aimed to investigate the point prevalence of LBP and associated external load factors among Thai rice farmers during the transplanting process.

SUBJECTS AND METHODS

A cross-sectional study was conducted during the rice transplanting process in the period from July to August 2013. The farmers, aged between 20 and 59 years, were randomly invited to participate in the study by face-to-face communication. Subjects with underlying diseases such as systematic inflammation, a severe nerve injury, a past medical examination of health behaviors showed that 18.60% were normal weight (BMI 18.5–22.9) and 23.41% were underweight (BMI <18.5), whereas about 13.37% of all participants were normal weight (BMI ≥25; 27.62%), overweight (BMI 23–24.9; 21.22%), and underweight (BMI <18.5; 7.76%), respectively. An examination of health behaviors showed that 18.60% were current smokers, whereas about 13.37% of all participants were former smokers. About half of the participants reported they never exercised (50.87%). Most of the participants (86.92%) derived additional income from activities other than rice farming.

Most subjects in the study were female (56.10%). The mean age of all subjects was 44.40 ± 9.42 years. The age ranges were divided into 2 groups for the multiple logistic regression model based on functional alteration for LBP of participants that were ≤45 years old and >45 years old. The mean BMI was 23.25 ± 3.48. BMI was divided into 4 groups based on the cutoff points for BMI in the Asian population as categorized by the WHO. More than half of all participants had an abnormal BMI, including obesity (BMI ≥25; 27.62%), overweight (BMI 23–24.9; 21.22%), and underweight (BMI <18.5; 7.76%), respectively. An examination of health behaviors showed that 18.60% were current smokers, whereas about 13.37% of all participants were former smokers. About half of the participants reported they never exercised (50.87%). Most of the participants (86.92%) derived additional income from activities other than rice farming.
For the farming characteristics, farming experience ranged from 1 to 49 years, with the average being 24.54 years (SD = 12.07). The duration that farmers worked in the field undertaking the rice transplanting process ranged from 1 to 30 days; the mean duration was 7.24 days (SD = 5.66). More than half the farmers (51.45%) worked in the field 7 hours or more per day. The number of bundles of seedlings (immature rice plants) used in the process ranged from 6 to 150 bundles, and the mean was 44.31 bundles (SD = 19.06). Most of the farmers used bundles weighing two or less kilograms, with the lightest reported bundle weight being 0.5 kilograms and the heaviest being four kilograms.

The psychosocial factors were measured using the Suan Prung stress test to score stress levels. Most of the farmers in the study had moderate (48.26%) and high levels of stress (39.83%). Some farmers had severe stress (4.6%). The demographic data, farming characteristics, and psychosocial factors of the participants are reported in Table 1.

Two hundred and eighty-six participants (83.14%; 95% CI 79.16–87.11) experienced LBP during the rice transplanting process. The prevalences of LBP and 95% CIs in farmers during the rice transplanting process as stratified by age, gender, farming characteristics, and stress level are shown in Table 2. The results revealed that the prevalence of LBP in farmers was only significantly higher according to the level of stress. The prevalence of LBP in farmers with high or severe stress was distinctly higher than in farmers with mild or moderate stress (88.89 vs. 78.53%; p value = 0.027). However, farming experience and duration of working in the field slightly trended towards significance (86.75 vs. 80.31%, p value = 0.069; 86.52 vs. 79.52, p value = 0.057, respectively).

Table 1. Demographic information of rice farmers (n = 344)

| Demographic characteristic | Number | Percent | Mean | SD |
|----------------------------|--------|---------|------|----|
| Gender                     |        |         |      |    |
| Male                       | 151    | 43.9    |      |    |
| Female                     | 193    | 56.1    |      |    |
| Age                        | 44.4   | 9.4     |      |    |
| BMI                        | 23.2   | 3.5     |      |    |
| Smoking status             |        |         |      |    |
| Yes                        | 64     | 18.6    |      |    |
| Former                     | 46     | 13.4    |      |    |
| No                         | 234    | 68.0    |      |    |
| Additional income          |        |         |      |    |
| Yes                        | 299    | 86.9    |      |    |
| No                         | 45     | 13.1    |      |    |
| Exercise                   |        |         |      |    |
| Never                      | 175    | 50.9    |      |    |
| Once a week                | 73     | 21.2    |      |    |
| 2–3 times/week             | 69     | 20.1    |      |    |
| > 3 times/week             | 27     | 7.8     |      |    |
| Farming experience         | 24.5   | 12.1    |      |    |
| Number of working days     | 7.2    | 5.7     |      |    |
| Number of bundles          | 44.3   | 19.1    |      |    |
| Weight of a bundle         | 1.9    | 0.5     |      |    |
| Hours transplanting per day|        |         |      |    |
| < 7 hr/day                 | 167    | 48.5    |      |    |
| ≥ 7 hr/day                 | 177    | 51.4    |      |    |
| Level of stress            |        |         |      |    |
| Mild                       | 25     | 7.3     |      |    |
| Moderate                   | 166    | 48.3    |      |    |
| High                       | 137    | 39.8    |      |    |
| Extremely high             | 16     | 4.6     |      |    |

Table 2. Point prevalence of LBP as stratified by personal factors, farming characteristics, and stress level (n = 344)

| Demographic characteristic | Total | Prevalence (%) of LBP | 95% CI |
|-----------------------------|-------|-----------------------|-------|
| Demographic characteristic  |       |                       |       |
| Gender                      |       |                       |       |
| Male                        | 151   | 80.8                  | 70.4–84.9 |
| Female                      | 193   | 85.0                  | 79.1–89.7 |
| Age                         |       |                       |       |
| ≤ 45 years old              | 173   | 86.1                  | 80.1–90.9 |
| > 45 years old              | 171   | 80.1                  | 73.3–85.8 |
| Farming experience          |       |                       |       |
| < 25 years                  | 151   | 86.7                  | 80.3–91.7 |
| ≥ 25 years                  | 193   | 80.3                  | 74.0–85.7 |
| Number of working days      |       |                       |       |
| ≤ 5 days                    | 178   | 86.5                  | 80.6–91.2 |
| > 5 days                    | 166   | 79.5                  | 72.5–85.4 |
| Number of bundles           |       |                       |       |
| < 45 bundles                | 197   | 83.8                  | 77.9–88.6 |
| ≥ 45 bundles                | 147   | 82.3                  | 75.2–88.1 |
| Weight of a bundle          |       |                       |       |
| < 2 kg                      | 308   | 82.1                  | 77.4–86.2 |
| ≥ 2 kg                      | 36    | 91.7                  | 77.5–98.2 |
| Hours transplanting per day |       |                       |       |
| < 7 hr/day                  | 167   | 85.0                  | 78.7–90.1 |
| ≥ 7 hr/day                  | 177   | 81.4                  | 74.8–86.8 |
| Level of stress*            |       |                       |       |
| Mild or moderate            | 191   | 78.5                  | 72.0–84.1 |
| High or severe              | 153   | 88.9                  | 82.8–93.4 |

* Statistically significant (p-value <0.05)
This study demonstrated the point prevalence of LBP among Thai farmers during the rice transplanting process. The results of the current study showed a very high prevalence (83.14%) of LBP in all farmers. In previous studies, a higher prevalence of LBP was found in occupations with high excessive loads or poor working postures, such as those experienced by industrial workers, vehicle drivers, and farmers, than in other manual workers because of job intensity and poor working postures. Other studies have shown a high prevalence of LBP among Thai rice farmers, with the prevalence ranging from 50–76%. The results of the current study confirm results from previous studies and indicate that LBP is a common and concerning health problem for Thai rice farmers. Our study indicated that the prevalence of LBP was slightly higher than those in the two previous studies. The higher prevalence in the current study may be because the data gathering in the current study was undertaken during the rice transplanting period, whereas in the two previous studies, data were collected out of season. However, the prevalence of LBP among rice farmers in India was slightly higher than in the current study (the prevalence of LBP there was reported to be 99%).

The high prevalence of LBP among farmers is most likely the result of injury to the spinal structures, which may arise from working postures and movements of the lower back during the work process. The study from India analyzed farming postures and showed that the farmers were working with forward lumbar bending and twisting and were carrying weights of 10 kg or less and that these postures seemed to generate their LBP. A number of other authors have reported that these working postures are associated with LBP. The postures in the rice transplanting process are awkward, constrained, asymmetric, repeated, and prolonged. These postures can generate load on the lumbar region, which can overload tissues and exceed their thresholds of tolerable stress, causing injury due to overexertion or imbalance. For example, the maintenance of static postures for prolonged periods of time compresses the veins and capillaries inside the muscles, causing micro lesions due to the absence of tissue oxygenation and nutrition. Some rice farming tasks cannot be easily separated from the transplanting process. Farmers perform other tasks concurrently in the paddy field.

### Table 3: OR$_{crude}$ with 95% confidence intervals (95% CIs) of LBP based on simple logistic regression (n = 344)

| Demographic characteristic | Total | Prevalence (%) of LBP | OR$_{crude}$ | 95% CI |
|----------------------------|-------|-----------------------|--------------|-------|
| Age                        |       |                       |              |       |
| ≤ 45 years old            | 173   | 86.1                  | 1            |       |
| > 45 years old            | 171   | 80.1                  | 0.6          | 0.4–1.1 |
| Experience                |       |                       |              |       |
| < 25 years                | 151   | 86.7                  | 1            |       |
| ≥ 25 years                | 193   | 80.3                  | 1.6          | 0.9–2.9 |
| Number of days            |       |                       |              |       |
| ≤ 5 days                  | 178   | 86.5                  | 1            |       |
| > 5 days                  | 166   | 79.5                  | 0.6          | 0.3–1.1 |
| Weight of a bundle        |       |                       |              |       |
| < 2 kg                    | 308   | 82.1                  | 1            |       |
| ≥ 2 kg                    | 36    | 91.7                  | 2.4          | 0.7–8.1 |
| Level of stress*          |       |                       |              |       |
| Mild or moderate          | 191   | 78.5                  | 1            |       |
| High or severe            | 153   | 88.9                  | 2.2          | 1.2–4.0 |

*Statistically significant (p-value <0.05)

### Table 4: OR$_{adjusted}$ with 95% confidence intervals (95% CIs) of LBP symptoms based on multiple logistic regression (n = 344)

| Demographic characteristic | Total | Prevalence (%) of LBP | OR$_{adj}$ | 95% CI |
|----------------------------|-------|-----------------------|------------|-------|
| The number of working days in a field for each group of age* |       |                       |            |       |
| ≤ 45 years old            |       |                       |            |       |
| ≤ 5 days                  | 93    | 93.5                  | 1          |       |
| > 5 days                  | 80    | 77.5                  | 0.2        | 0.1–0.6 |
| > 45 years old            |       |                       |            |       |
| ≤ 5 days                  | 85    | 78.8                  | 1          |       |
| > 5 days                  | 86    | 81.4                  | 1.2        | 0.6–2.6 |
| Level of stress*          |       |                       |            |       |
| Mild or moderate          | 191   | 78.5                  | 1          |       |
| High or severe            | 153   | 88.9                  | 2.2        | 1.2–4.1 |

*Statistically significant (p-value <0.05)

DISCUSSION

Two factors, namely the duration of working in the field and level of stress, were associated with LBP as shown by the adjusted OR and 95% CI with p < 0.05 when controlling the covariate. The magnitude of association with LBP of factors included in the final model is shown by the adjusted OR (OR$_{adj}$), as reported in Table 4. The duration of working in the rice field was significantly associated with LBP in each age group (p = 0.008). The age range significantly influenced the association between the number of days in the field and LBP. The farmers younger than 46 years old who worked in the field > 5 days were 0.02 times less likely to experience LBP compared with those who worked in the field for ≤ 5 days (95% CI: 0.08–0.61). For younger farmers, working in the field > 5 days was a protective factor for LBP, and the farmers who were ≤ 45 years old and worked in the field ≤ 5 days were 0.02 times less likely to experience LBP compared with those who worked in the field for ≤ 5 days (95% CI: 0.08–0.61). For younger farmers, working in the field > 5 days was a protective factor for LBP, and the farmers who were ≤ 45 years old and worked in the field ≤ 5 days were 0.02 times less likely to experience LBP than those who worked in the field > 5 days (OR$_{adj}$ 5; 95% CI: 1.6–11.12). In contrast, among those > 45 years old, the corresponding OR$_{adj}$ was only 1.2 (95% CI: 0.57–2.60). Another factor that was strongly associated with LBP was a high or extremely high level of stress as measured by the Suan Prung stress test (OR$_{adj}$ 2.2; 95% CI 1.17–4.10; p = 0.01).
such as uprooting and carrying bundles of saplings. Farmers work in squat postures and reach with their arms to pull and uproot saplings, an activity that increases the load on their lumbar region. All of these factors can contribute to imbalance, fatigue, discomfort, and pain due to disruption of tissues.

Regarding the aspects of prevalence stratified by personal characteristics, farming characteristics, and stress levels, the results of the current study showed that the prevalence of LBP was significantly higher in the farmers with high or severe stress levels. This result confirms that farmers with high stress were more likely to have LBP. In the current study, the prevalence of stress among females was slightly higher than in males, but this was not significant. This result is consistent with a previous study that reported that the prevalence of LBP was not differentiated by gender.

Other variables including work experience and hours worked per day also showed no statistically significant association with LBP in the current study, although previous studies have reported differences.

LBP disorders may occur due to many factors. Previous studies have reported that the personal characteristics associated with LBP were age, BMI, exercise, alcohol consumption, and smoking. In the present study, only age was related to LBP, which confirms results from some previous studies. The present study found that the number of days in the field and signs and symptoms of stress were related to LBP (OR = 5.9, 95% CI 1.6–11.1, p = 0.008; OR = 2.2, 95% CI 1.21–4.00, p = 0.01, respectively) but that the odds ratio was dependent on the age of each group. In this study, the interaction between the number of days in the field and LBP was significant in different age groups. The farmers who were 45 years of age or younger and worked in the field five days or less were 5 times more likely to experience LBP than those who worked in the field more than five days. This finding in the current study, that is, that number of working days in the field is associated with LBP, has not been reported in previous studies. This finding may be due to the process of delayed onset muscle soreness (DOMS) and adaptation. As already mentioned, working in the rice transplanting process involves work postures and activities of repetitive stooping and twisting that activate the back muscles to act in an eccentric contraction (lengthening under load). The literature reviewed supports the concept that when muscles act in repeated eccentric contraction, damage can occur. DOMS begins within 12 hours after unaccustomed activity, persists for 2–5 days, and then decreases due to adaptation.

Hodge stated that pain or injury can be decreased by redistribution of activity between muscles. This may be the reason for our finding that the prevalence of LBP was higher in the farmers who worked for 5 days or less compared with the farmers who worked more than 5 days.

Additionally, this finding suggests that age modified the association of number of days working in a field with LBP. The results demonstrated that the adjusted OR value for farmers in the group aged 45 years or less was 0.2, indicating that age is a protective factor. Our results show that the farmers aged 45 year or less were 5 times more likely to experience LBP than those who worked in the field more than five days per week. The younger age group may have additional job requirements such as uprooting, plowing, or harrowing the field before transplanting and carrying saplings. Furthermore, the age range of the younger group was wider than the older group, which could include more farmers with LBP than the other group. Nevertheless, this finding seems to contrast with a previous study reporting that LBP increased with increasing age, which was attributed to degenerative effects.

For farming characteristics, analysis of the crude ORs indicated no significant association between LBP and years of farming experience, hours of working per day, or weight of bundles. Workers who worked for a few years had a greater incidence for LBP. Our results showed a trend towards significance of work experience that aligns with the existing literature, which shows that the farmers with less than a year of experience in farming tend to experience LBP. A possible reason for this is that more experienced workers adapt their manner of work to appropriately perform their jobs and develop motor control to reduce spinal loading during task performance. However, this should be investigated further because recent studies have reported that years of farming experience (at least 30 years farming experience) was associated with a high risk of clinical lumbar instability.

For other farming characteristics, there are research findings from other studies concerning hours of work per day and work while carrying a load, which were not significant in the current study. In previous studies, investigators also reported that LBP was related to long working hours and working while carrying a load.

The Suan Prung stress test was used to evaluate psychosocial factors in the current study. The results showed that the farmers with high or extremely high stress levels were twice as likely to experience LBP than the group with mild or moderate stress levels. This finding confirms results from previous studies indicating that stress is related to LBP. The findings from previous studies reveal that the psychosocial factors related to LBP are anxiety, depression, somatization of symptoms, stress, job dissatisfaction, negative body image, and low self-efficacy. Psychosocial factors were associated with LBP through a mechanism that generated trunk muscle co-activation and influenced spinal loading.

The results demonstrated that almost all Thai farmers who participated in the current study experienced LBP. Moreover, the number of working days in the field in the younger age group and stress levels were associated with LBP during rice transplanting. LBP is a serious occupational issue for Thai rice farmers. The point time prevalence in this study indicated that symptoms may reflect acute LBP experienced by farmers during the rice transplanting process from which they can recover rapidly. Furthermore, after the transplanting process, the work the farmer will undertake is “lighter” than in the transplanting process. Thus, LBP could be reduced with good pain management. The large sample size in this study was sufficient to find a high prevalence of LBP during the rice transplanting process. Further, the high prevalence found in the transplanting process in the current study could be due to pain continuing from farming processes immediately prior to rice transplanting. In the current study the authors did not investigate working postures because most farmers work in similar postures during the
transplanting process. Thus, the current study emphasizes farmer characteristics that comprise external load factors. In this study, the investigators did not differentiate current symptoms during the transplanting process from symptoms arising from work before the transplanting process, meaning that existing symptoms from the previous process may not have abated by the time the farmers started on the rice transplanting process. The study was conducted in only one province, which limits generalizations associated with the findings. The larger sample size in this study was sufficient to find a high prevalence of LBP during the rice transplanting process. Further study should be conducted to try to determine the time at which pain originated and to investigate a larger geographical area to determine if the problems found in this study might apply to farmers throughout the country.

The findings of the current study suggest that LBP is a serious problem for rice farmers during the rice transplanting process. Farmers are required to work in postures with high risk factors for LBP, causing soft tissue injuries around their spinal structures. The tissues most particularly linked to LBP in this study arose from muscles and joints. LBP was associated not only with working postures but also with age, number of days in the field, and stress. LBP was mostly reported by younger farmers with less experience of working in the field. These results indicate the need to help prevent and manage LBP experienced by rice farmers during the rice transplanting process. As practical suggestions, exercise, massage therapy, and lumbar supports are effective treatments and tools to release muscle stiffness, decrease pain, and improve physical functions. These combinations of physical therapy can provide beneficial effects on muscle relaxation and spinal alignment for LBP in rice farmers.

ACKNOWLEDGEMENT

This study was supported by grants from the Research Center in Back, Neck, Other Joint Pain and Human Performance (BNOJPH) and Khon Kaen University. In addition, this study was primarily supported by grants from the Coordinating Center for Thai Government Science and Technology Scholarship Students (CSTS) and National Science and Technology Development Agency (NSTDA) (No. SCH-NR2012–124). The opinions expressed in this paper are those of the authors and do not necessarily reflect the views of the CSTS or NSTDA.

REFERENCES

1) Puntumetakul R, Siritaratwai W, Boonprakob Y, et al.: Prevalence of musculoskeletal disorders in farmers: case study in Sila, Muang Khon Kaen, Khon Kaen province. J Med Technol Phys Ther, 2011, 23: 297–303.
2) Taechasabamon P, Nopkesorn T, Pannarunothai S: Prevalence of low back pain among rice farmers in a rural community in Thailand. J Med Assoc Thai, 2011, 94: 616–621. [Medline]
3) Chung SH, Her JG, Ko T, et al.: Work-related musculoskeletal disorders among Korean physical therapists. J Phys Ther Sci, 2013, 25: 55–59. [CrossRef]
4) Rosencrance J, Rodgers G, Merlino L: Low back pain and musculoskeletal symptoms among Kansas farmers. Am J Ind Med, 2006, 49: 547–556. [Medline] [CrossRef]
5) Walker-Bone K, Palmer KT: Musculoskeletal disorders in farmers and farm workers. Occup Med (Lond), 2002, 52: 441–450. [Medline] [CrossRef]
6) Taspinar F, Taspinar B, Cavlak U, et al.: Determining the pain-affecting factors of university students with nonspecific low back pain. J Phys Ther Sci, 2013, 25: 1561–1564. [Medline] [CrossRef]
7) Govindu NK, Babski-Reeves K: Effects of personal, psychosocial and occupational factors on low back pain severity in workers. Int J Ind Ergon, 2014, 44: 335–341. [CrossRef]
8) Pincus T, Barton AK, Vogel S, et al.: A systematic review of psychological factors as predictors of chronicity/disability in prospective cohorts of low back pain. Spine, 2002, 27: E109–E120. [Medline] [CrossRef]
9) Henewer H, Staes F, Aufdekmamke G, et al.: Physical activity and low back pain: a systematic review of recent literature. Eur Spine J, 2011, 20: 826–845. [Medline] [CrossRef]
10) Kai S: Consideration of low back pain in health and welfare workers. J Phys Ther Sci, 2001, 13: 149–152. [CrossRef]
11) Frysinger JW, Pope MH, Costanza MC, et al.: Epidemiologic studies of low-back pain. Spine, 1980, 5: 419–423. [Medline] [CrossRef]
12) Kewaduangdee P, Puntumetakul R, Chatchawat U, et al.: Prevalence and associated risk factors of low-back pain in textile fishing net manufacturing. Hum Factors Ergon Manuf Serv Ind, 2012, 22: 562–570. [CrossRef]
13) Murtezani A, Hundozi H, Orovcanec N, et al.: Low back pain predict sickness absence among power plant workers. Indian J Occup Environ Med, 2010, 14: 49–53. [Medline] [CrossRef]
14) Radwin RG, Marras WS, Lavender SA: Biomechanical aspects of work-related musculoskeletal disorders. Theor Issues Ergon Sci, 2001, 2: 153–217. [CrossRef]
15) Marras WS: Occupational low back disorder causation and control. Ergonomics, 2000, 43: 880–902. [Medline] [CrossRef]
16) Hsieh FY, Bloch DA, Larsen MD: A simple method of sample size calculation for linear and logistic regression. Stat Med, 1998, 17: 1623–1634. [Medline] [CrossRef]
17) Kuorinka I, Jonsson B, Kilbom A, et al.: Standardised Nordic questionnaires for the analysis of musculoskeletal symptoms. Appl Ergon, 1987, 18: 233–237. [Medline] [CrossRef]
18) Chumthi LO: Effect of foot reflexology on stress reduction among adolescent R Thai Aifr Med Gaz, 2012, 57: 24–35.
19) Tanwantaanakul P, Penrei P, Moolkay P, et al.: Development of a risk score for low back pain in office workers—a cross-sectional study. BMC Musculoskelet Disord, 2011, 12: 23. [Medline] [CrossRef]
20) Mahatnirunkul S, Poompaisarnchai W, Tanpaya P. The construction of Suan Prung Stress Test for Thai population. Bull Suan Prung, 1997, 13: 1–20.
21) Manchikanti L, Singh V, Datta S, et al. American Society of Interventional Pain Physicians: Comprehensive review of epidemiology, scope, and impact of spinal pain. Pain Physician, 2009, 12: E35–E70. [Medline]
22) Kantachuvessiri A: Obesity in Thailand. J Med Assoc Thai, 2005, 88: 554–562. [Medline]
23) Yildirim Y, Gunay S, Karabidik D: Identifying factors associated with low back pain among employees working at a package producing industry. J Back Musculoskeletal Rehabil, 2014, 27: 25–32. [Medline]
24) Bozenki M, Rui F, Negro C, et al.: An epidemiological study of low back pain in professional drivers. J Sound Vibrat, 2006, 298: 514–539. [CrossRef]
25) Khan AA, Uddin MM, Chowdhury AH, et al.: Association of low back pain with common risk factors: a community based study. Indian J Med Res, 2014, 25: 50–55.
26) Das B, Gangopadhyay S: An ergonomics evaluation of posture related discomfort and occupational health problems among rice farmers. Occup Ergon, 2011, 10: 25–38.
27) Kumar S: Theories of musculoskeletal injury causation. Ergonomics, 2001, 44: 17–47. [Medline] [CrossRef]
28) Kumar S: A conceptual model of overexertion [correction of overexertion], safety, and risk of injury in occupational settings. Hum Factors, 1994, 36: 197–209. [Medline]
29) Osborne A, Finnegan G, Blake C, et al.: An evaluation of low back pain among farmers in Ireland. Occup Med (Lond), 2013, 63: 53–59. [Medline] [CrossRef]
30) Ferguson SA, Marras WS: A literature review of low back disorder surveillance measures and risk factors. Clin Biomech (Bristol, Avon), 1997, 12: 211–226. [Medline] [CrossRef]
31) Campo MA, Weiser S, Koening KL: Job strain in physical therapists. Phys Ther, 2009, 89: 946–956. [Medline] [CrossRef]
32) Nelson N: Delayed onset muscle soreness: is massage effective? J Bodyw Mov Ther, 2013, 17: 475–482. [Medline] [CrossRef]
33) Hodges PW: Pain and motor control: from the laboratory to rehabilitation. J Electromyogr Kinesiol, 2011, 21: 229–228. [Medline] [CrossRef]
34) Driscoll T, Jacklyn G, Orchard J, et al.: The global burden of occupationally related low back pain: estimates from the Global Burden of Disease 2010 study. Ann Rheum Dis, 2014, 73: 975–981. [Medline] [CrossRef]
35) Sprince N, Park H, Zwerling C, et al.: Risk factors for low back injury among farmers in Iowa: a case-control study nested in the agricultural health study. J Occup Environ Hyg, 2007, 4: 10–16. [Medline] [CrossRef]
36) Bigos SJ, Spengler DM, Martin NA, et al.: Back injuries in industry: a retrospective study. III. Employee-related factors. Spine, 1986, 11: 252–256. [Medline] [CrossRef]
37) Puntumetakul R, Yodchaisarn W, Emasithi A, et al.: Prevalence and individual risk factors associated with clinical lumbar instability in rice farmers with low back pain. Patient Prefer Adherence, 2015, 9: 1–7. [Medline] [CrossRef]
38) Osborne A, Blake C, McNamara J, et al.: Musculoskeletal disorders among Irish farmers. Occup Med (Lond), 2010, 60: 598–603. [Medline] [CrossRef]
39) Fethke NB, Merlino LA, Gerr F, et al.: Musculoskeletal pain among midwest farmers and associations with agricultural activities. Am J Ind Med, 2015, 58: 319–330. [Medline] [CrossRef]
40) Naidoo S, Kromhout H, London L, et al.: Musculoskeletal pain in women working in small-scale agriculture in South Africa. Am J Ind Med, 2009, 52: 202–209. [Medline] [CrossRef]
41) Areeudomwong P, Puntumetakul R, Jirarattanaphochai K, et al.: Core stabilization exercise improves pain intensity, functional disability and trunk muscle activity of patients with clinical lumbar instability: a pilot randomized controlled study. J Phys Ther Sci, 2012, 24: 1007–1012. [CrossRef]
42) Hongsuwan C, Eungpinichpong W, Chatchawan U, et al.: Effects of Thai massage on physical fitness in soccer players. J Phys Ther Sci, 2015, 27: 505–508. [Medline] [CrossRef]
43) Peungsuwan P, Sermcheep W, Harnmontree P, et al.: The effectiveness of Thai exercise with traditional massage on the pain, walking ability and QOL of older people with knee osteoarthritis: a randomized controlled trial in the community. J Phys Ther Sci, 2014, 26: 139–144. [Medline] [CrossRef]
44) Prommanon B, Puntumetakul R, Peungsuwan P, et al.: Effectiveness of back care pillow as an adjuvant physical therapy in chronic non-specific low back pain treatment: a randomized controlled trial. J Phys Ther Sci, (In press).