When people are asked to participate in a randomized controlled trial (RCT), it is natural for them to ask several questions in return. How safe are these treatments? How many extra visits and tests must I undergo? Will the researchers keep my family doctor informed about what’s going on? What outcomes are to be measured, and do they include ones that are of interest to me as a patient?

These multiple questions can be summarized as follows: Would I fare better being treated within the trial (as an “insider”) or outside it (as an “outsider”)? Patients may ask this question in 1 of 2 ways. The first is highly specific: “Am I better off receiving this specific treatment as an insider or as an outsider?” Alternatively, they might ask a more general question: “Am I better off having my illness managed, regardless of the specific treatment I would receive, as an insider or as an outsider?” These questions are highly appropriate, and both deserve to be asked and answered.1,2 especially given that nonsystematic reviews have suggested a possible “inclusion benefit” from participating in trials.3

These 2 specific patient questions are analogous to those posed by researchers asking whether treatments do more good than harm when applied under “ideal” circumstances (in explanatory trials) or in the “real world” of routine health care (in pragmatic trials). Vist and colleagues answered the explanatory question when their earlier review4 found no advantage or disadvantage from receiving the same treatment inside or outside an RCT. Left unanswered, however, was the broader, more pragmatic question. In our experience, trial participants are often offered new, as-yet-untested treatments that would not be available to them outside the trial. This review looks at the dilemma faced by these patients, which needs to be addressed before general conclusions can be drawn about trial safety.
Methods

Data sources and searches
We searched the following databases: MEDLINE (1966 to November 2010), Embase (1980 to November 2010), Cochrane Central Register of Controlled Trials (CENTRAL; 1960 to last quarter of 2010) and PsycINFO (1880 to November 2010). The search strategy for each database is available upon request to the corresponding author. Studies were eligible for inclusion if they reported the same set of outcomes for “insiders” and “outsiders,” either simultaneously or within 2 months, where “insiders” were patients with a particular diagnosis who entered an RCT (whether treated with the intervention or a comparator) and “outsiders” were patients with the same diagnosis who did not enter the RCT. To validate our search, we compared our yield with the list of articles reviewed by Vist and colleagues.¹

Study selection
Working in pairs, we reviewed the resulting titles and abstracts to screen for eligibility. Two reviewers independently screened the full text of eligible articles, with an independent third adjudicator resolving disagreements. Agreement was summarized with a weighted kappa coefficient.

Data extraction
Our primary outcome was mortality, and secondary outcomes included patient-reported or other clinically important outcomes. We calculated the relative risk (RR), unless count data were not reported, in which case we extracted the authors’ RR. We used adjusted RRs whenever they were reported.² When RRs could not be calculated, we assumed that the reported odds ratios (ORs) approximated the RR for low event-rate outcomes.

For continuous outcomes, we extracted mean between-group differences and their standard deviations. We created rules for calculating missing outcomes using various statistical measures that were reported (Table 1).

Pre-specified causes of heterogeneity
We used the I² statistic to measure the extent of heterogeneity between studies, where I² values of 25%, 50% and 75% indicated low, medium and high heterogeneity, respectively.³ In addition, we constructed a priori hypotheses to potentially explain between-study heterogeneity, based on differences in types of outcomes, methodologic quality, types of care provided, potential for detection bias (due to differential follow-up or use of better diagnostic tools), potential for exclusion bias (if patients were excluded after enrolment because of characteristics related to outcome), potential for selection bias (due to imbalance of baseline characteristics), medical specialty and treatments provided.

In particular, we proposed 6 subgroups to explain observed heterogeneity due to treatment effect:

1. when the randomized experimental intervention given to “insiders” was effective (i.e., the outcome was statistically significantly superior to the comparator), and “outsiders” received that same intervention or comparator
2. when the randomized experimental intervention was effective, and “outsiders” received that same effective intervention only (without the comparator that was provided within the RCT)
3. when the randomized experimental intervention was effective, and “outsiders” received the less effective comparator intervention only (without the experimental intervention provided within the RCT)
4. when the randomized experimental interven-

Table 1: Assumptions and imputations used to calculate data if missing from published report
Data needed

SD of the difference
Confidence interval around the difference
SE of the difference
Final score
SD of final scores
SD

Note: SD = standard deviation, SE = standard error.
tion was effective, and “outsiders” received a different intervention (this subgroup acted as a positive control for the current analysis, since we anticipated better outcomes in the RCT group)

5. when the randomized experimental and comparator interventions generated equivalent outcomes, with no further subdivision of this group (because any differences in outcomes between those treated inside and outside the RCT could be attributed to a trial effect)

6. when insufficient information was provided about the effectiveness of the treatment in the trial and/or insufficient details were provided about the interventions received by “outsiders”

Data synthesis and analysis
Statistical calculations were performed with SPSS (version 20). Forest plots and funnel plots were created using Review Manager (version 5.1). When event counts were available, we used the Mantel–Haenszel method to estimate overall RR. If a study had a zero event rate in one group, we added a 0.5 correction to all cells. If only estimates of effect size and standard errors were provided, we used the generic inverse-variance meta-analysis function of Review Manager 5.1. We used the random-effects model to summarize outcomes.

We first separated the studies into 2 groups according to whether randomization was applied in determining whether potential participants would be “insiders” or “outsiders.” Next, we separated studies by type of outcome: continuous or dichotomous, with the latter being further subdivided as nonmortality or mortality.

We created a funnel plot and conducted a sensitivity analysis to determine the stability of our conclusions.

Results

Summary of evidence
Following elimination of duplicate records and exclusions on the basis of initial screening and full-text review, 147 articles met our eligibility criteria and provided sufficient information to be included in our analysis (Figure 1). Details for the 576 articles excluded after full-text review, including reasons for exclusion, are available upon request. The eligibility of the remaining 74 articles was uncertain, and they were not included in the analysis.

For full-text screening, the calculated average of the weighted kappa for eligibility was 0.68. There was 83% raw agreement between reviewers in the data-extraction phase for outcomes.

In 5 of the 147 eligible studies, patients were randomly assigned to become “insiders” and “outsiders.” In the remaining 142 studies, patients became part of the “outsiders” group for a variety of reasons. Table 2 presents the details about each included study.

Table 2 presents the details about each included study.

We analyzed a total of 48 continuous outcomes and 99 dichotomous outcomes; of the dichotomous outcomes, 74 were nonmortality outcomes, 4 were recurring outcomes (such as relapse rates), and 21 were mortality outcomes.

Risk of bias
Sources of risk of bias are detailed by individual study in Appendix 1 (available at www.cmaj.ca/lookup/suppl/doi:10.1503/cmaj.131693/-/DC1). In terms of detection bias, about two-thirds of the studies (n = 100) employed identical follow-up strategies for “insiders” and “outsiders.” In terms of exclusion bias affecting “insiders,” 67 studies had no exclusions, 1 study employed a deliberate but appropriate exclusion, and 74 studies inappropriately excluded “insiders” unequally between treatment groups; for the remaining 5 studies, the details were unclear. Forest plots based on subgroups created for each of these sources of bias did not change the results described below.

Figure 1: PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow chart of studies identified and included in the analysis. The reasons for exclusions at screening and full-text review are available upon request to the corresponding author.

Study	No. of “insiders”	No. of “outsiders”	Specialty	Intervention	Care setting
Akaza et al. 1995	107	13	Oncology	Vaccination	Hospital
Amar et al. 1997	70	40	Surgery	Anti-arrhythmic drugs	Hospital
Andersson et al. 2003	24	8	Family	Counselling	Home
Antman et al. 1985	42	42	Oncology	Chemotherapy	Cancer centre
Ashok et al. 2002	229	45	Ob/gyn	Abortion	Hospital
Bain et al. 2001	36	62	Anesthesia	Sedatives	Operating room
Bakker et al. 2000	113	24	Psychiatry	Counselling	Outpatient clinic
Balmukhanov et al. 1989	108	287	Oncology	Radiation	Hospital
Bannister et al. 2001	202	38	Anesthesia	Analgesics	Operation room
Bedi et al. 2000	85	164	Family	Counselling	Family clinic
Bell and Palma 2000	59	56	Ob/gyn	Exercise program	Unclear
Bhattacharya et al. 1998	92	68	Ob/gyn	Longer hospital stay	Hospital
Biasoli et al. 2008	52	41	Oncology	Chemotherapy	Hospital
Biederman et al. 1985	24	18	Psychiatry	Drugs	Inpatient
Bijker et al. 2002	268	155	Oncology	Excision	Unclear
Blichert-Toft et al. 1988	619	136	Oncology	Mastectomy	Surgical departments
Blumenthal et al. 1997	66	38	Cardiology	Exercise	Hospital
Boesen et al. 2007	258	137	Oncology	Psychoeducation	Outpatient clinic
Boezaart et al. 1998	240	136	Anesthesia	Drugs	Private hospital
Brinkhaus et al. 2008	902	3888	Allergy	Acupuncture	Unclear
Caplan and Buchanan 1984	29	46	ID	Drugs	Hospital
CASS 1984	779	1309	Cardiology	Surgery	Unclear
Chauhan et al. 1992	38	15	Ob/gyn	Amnio-infusion	Labour unit
Chesebro et al. 1983	351	183	Internal	Anticoagulant	Unclear
Chilvers et al. 2001	98	207	Family	Counselling v. drugs	Outpatient
Clagett et al. 1984	29	28	Surgery	Surgery	Unclear
Clapp et al. 1989	115	85	ID	Drugs	Pediatric hospital
Clemens et al. 1992	20 744	21 943	ID	Vaccine	Research centre
Cooper et al. 1997	–	–	Ob/gyn	Surgery	Hospital
Cowchock et al. 1992	20	13	Ob/gyn	Drugs	Unclear
Creutzig et al. 1993	31	25	Oncology	Radiation	Unclear
Dahan et al. 1986	–	–	Research design	Informed consent	Unclear
Dalal et al. 2007	100	84	Cardiology	Rehabilitation	Hospital, home
Decensi et al. 2003	116	29	Oncology	Drugs	Hospital
Detre et al. 1999	343	299	Cardiology	Surgery	Hospital
Eberhardt et al. 1996	43	37	Rheumatology	Drugs	Hospital
Edsmyr et al. 1978	18	9	Urology	Drugs	Unclear
Ekstein et al. 2002	91	1 202	Cardiology	Surgery	Hospital
Emery et al. 2003	168	49	Ob/gyn	Counselling	Hospital
Euler et al. 2005	58	14	Pediatrics	Diet	Unclear
Feit et al. 2000	1 169	1 336	Cardiology	Surgery	Hospital
Forbes and Collins 2000	102	88	Gastrointestinal	Drugs	Hospital
Franz et al. 1995	179	62	Nutrition	Diet	Unclear
Table 2 (part 2 of 4): Characteristics of included studies

Study	No. of “insiders”	No. of “outsiders”	Specialty	Intervention	Care setting
Gall et al. 2007	54	46	Gastrointestinal	Follow-up	Hospital
Girón et al. 2010	24	45	Psychiatry	Family intervention	Mental health centre
Goodkin et al. 1987	27	24	Neurology	Drugs	Unclear
Gossop et al. 1986	20	40	Addiction	Inpatient treatment	Unclear
Grant et al. 2008	299	375	Gastrointestinal	Surgery	Hospital
Gunn et al. 2000	122	308	Pediatrics	Home support	Hospital
Helsing et al. 1998	47	97	Oncology	Supportive care	Unclear
Henriksson and Edhaq 1986	91	9	Urology	Surgery	Unclear
Heuss et al. 2004	74	40	Gastrointestinal	Sedation	Hospital
Hoh et al. 1998	13	39	Nutrition	Diet	Hospital
Howard et al. 2009	44	28	Psychiatry	Crisis houses	Hospital
Howie et al. 1997	77	63	Ob/gyn	Abortion	Hospital
Jena et al. 2008	2,792	10,410	Alternative	Acupuncture	Unclear
Jensen et al. 2003	897	294	Geriatrics	Hormones	Hospital
Kane 1988	59	116	Orthopedics	Bone growth stimulator	Unclear
Karande et al. 1999	63	57	Ob/gyn	IVF	Infertility clinic
Kayser et al. 2008	31	44	Travel	Drugs	Unclear
Kendrick et al. 2001	394	50	Technology	Radiography	General practice or hospital
Kieler et al. 1998	526	4,801	Ob/gyn	Ultrasonography	Antenatal care clinic
King et al. 2000	165	106	Psychiatry	Counselling	Unclear
Kirke et al. 1992	351	106	Ob/gyn	Folic acid	Unclear
Koch-Henriksen et al. 2006	224	74	Neurology	Drugs	Unclear
Lansky and Vance 1983	55	59	Psychology	Diet and exercise	Unclear
Lichtenberg et al. 2008	217	153	Psychiatry	Case management	Unclear
Lidbrink et al. 1995	20,000	7,785	Oncology	Mammography	Unclear
Link et al. 1991	36	77	Oncology	Drugs	Unclear
Liu et al. 2009	169	163	Alternative	Salvia	Delivery room
Lock et al. 2010	40	303	Surgery	Tonsillectomy	ENT department
Löffler et al. 1997	100	21	Oncology	Radiotherapy	Hospital
Luby et al. 2002	162	79	ID	Antibacterial soap	Home
Macdonald et al. 2007	5	48	Nephrology	Drugs	Unclear
MacLennan et al. 1985	96	73	Ob/gyn	Relaxin	IVF clinic
MacMillan et al. 1986	107	49	Psychiatry	Drugs	Unclear
Mahon et al. 1996	–	–	Respirology	Drugs	Hospital
Mahon et al. 1999	–	–	Respirology	Drugs	Primary care
Marcinczyk et al. 1997	54	29	Vascular surgery	Endarterectomy	Hospital
Martin 1994	46	54	Gastrointestinal	Antacid	Hospital
Martinez-Amenos et al. 1990	589	133	Family	Education	Primary care
Masood et al. 2002	96	14	Urology	Nitrous oxide –	Urology department
Matilla et al. 2003	137	166	ENT	Surgery	Study clinic
Table 2 (part 3 of 4): Characteristics of included studies

Study	No. of “insiders”	No. of “outsiders”	Specialty	Intervention	Care setting
Mayo Group 1992	93	71	Vascular surgery	Endarterectomy	Unclear
McCaughey et al. 1998	19	13	Pediatrics	Hormone	Hospital
McKay et al. 1998	101	51	Psychology	Day hospital	Hospital
McKay et al. 1995	40	80	Psychology	Day hospital	Addiction recovery unit
Melchart et al. 2002	26	80	Alternative	Acupuncture	Hospital
Moertel et al. 1984	62	10	Oncology	Chemo + radiation	Hospital
Mori et al. 2006	712	158	Gastrointestinal	Endoscopy	Hospital
Morrison et al. 2002	454	302	Cardiology	Surgery	Hospital
Nagel et al. 1998	115	95	Ob/gyn	Amniocentesis	Hospital
Neldam et al. 1986	978	349	Ob/gyn	Fetal heart monitor	Hospital
Nicolaides et al. 1994	488	812	Ob/gyn	Chorionic villus	Research centre
Ogden et al. 2004	285	47	Orthopedics	Shock wave treatment	Unclear
Palmon et al. 1996	50	10	Critical care	Carbon dioxide	Neuroradiology
Panagopoulou et al. 2009	148	66	Psychology	Diary writing	Clinic
Paradise et al. 1984	42	28	Surgery	Tonsillectomy	Hospital
Petersen et al. 2007	79	33	Orthopedics	Hip replacement	Hospital
Raistrick et al. 2005	174	225	Addiction	Drugs	Addiction recovery unit
Reddihough et al. 1998	19	22	Physiotherapy	Education	Unclear
Riggs et al. 2000	455	237	Anesthesia	Analgesia	Hospital
Rorbye et al. 2005	105	727	Ob/gyn	Abortion	Hospital
Rosen et al. 1987	98	44	Anesthesia	Nitrous oxide	Hospital
Salisbury et al. 2002	253	129	Family	School-based clinics	Unclear
Sesso et al. 2002	22 071	11 152	Cardiology	ASA	Unclear
Shain et al. 1989	155	98	Ob/gyn	Contraception	Unclear
Smith and Arnesen 1990	1 214	270	Internal	Warfarin	Cardiology centre
Smuts et al. 2003	16	37	Pediatrics	Diet	Unclear
Stecksen-Blicks et al.	115	64	Dentistry	Lozenges	Clinic
Stern et al. 2003	555	1 788	Ob/gyn	Anticoagulants	Hospital
Stith et al. 2004	19	4	Psychology	Couple therapy	Unclear
Stockton and Mengersen	57	21	Rehab	Physiotherapy	Hospital
Strandberg et al. 1995	910	489	Cardiology	Health checks	Hospital
Suherman et al. 1999	83	29	Ob/gyn	Contraception	Unclear
Sullivan et al. 1982	144	25	Oncology	Radiotherapy	Unclear
Sundar et al. 2008	136	45	ID	Drugs	Inpatient unit
Taddio et al. 2006	98	20	Pediatrics	Analgesics	Hospital
Tanai et al. 2009	100	19	Oncology	Drugs	Hospital
Tanaka et al. 1994	30	10	Anesthesia	Drugs	Unclear
Taplin et al. 1986	63	30	Dermatology	Permethrin cream	Unclear
Tenenbaum et al. 2002	3 122	380	Cardiology	Drugs	Hospital
Toprak et al. 2005	30	15	Ob/gyn	Hormone replacement	Clinic
Research

Replication of earlier studies
As a method of calibrating our search strategies and statistical methods, we carried out analyses of our dataset that were restricted to “insiders” and “outsiders” receiving identical treatments. These restricted analyses replicated the results of previous studies by Vist and colleagues and Gross and associates.

Outcomes for studies with participants not randomized as “insiders” or “outsiders”
Our initial pooled analyses revealed a high degree of between-study heterogeneity ($p < 0.001, I^2 = 84\%$ for studies with dichotomous mortality outcomes; $p < 0.001, F = 70\%$ for studies with dichotomous nonmortality outcomes; $p < 0.001, I^2 = 88\%$ for studies with continuous outcomes). In total, mortality was determined for 53,714 “insiders” and 25,817 “outsiders” (see Table 3 and Appendix 2, available at www.cmaj.ca/lookup/suppl doi:10.1503/cmaj.131693/-/DC1). Dichotomous nonmortality outcomes were reported for 30,253 “insiders” and 30,000 “outsiders” (see Table 4 and Appendix 3, available at www.cmaj.ca/lookup/suppl doi:10.1503/cmaj.131693/-/DC1). We present the results of our nonrandomized continuous outcomes and randomized comparisons according to treatment effects, by presenting the subgrouping that left the least amount of remaining heterogeneity. All other forest plots are available upon request.

Results for clinically relevant subgroups
The results for continuous outcomes are summarized by subgroup in Table 5 (see also Appendix 4, available at www.cmaj.ca/lookup/suppl doi:10.1503/cmaj.131693/-/DC1). There were 7 studies in which the randomized experimental intervention given to “insiders”
(n = 6626) was effective, and “outsiders” (n = 2293) received that same intervention or the comparator. The heterogeneity was low to moderate (p = 0.2, I² = 37%), and the pooled result indicated neither significant harm nor significant benefit attributable to being an “insider” or an “outsider” (standardized mean difference 0.04, 95% confidence interval [CI] −0.04 to 0.13).

There were 3 studies in which the randomized experimental intervention (given to 1391 “insiders”) was effective, and the 5072 “outsiders” received only that same effective intervention. In this subgroup, there was a high degree of heterogeneity (p < 0.001, I² = 95%). There were 4 studies in which the randomized experimental intervention was effective, and

Table 3: Summary of meta-analyses for studies with mortality as an outcome, without randomization of potential participants as “insiders” v. “outsiders” (subgroups based on effectiveness of trial treatment)
Subgroup

Trial treatment effective, same treatment and comparator given to “outsiders”
Trial treatment effective, treatment only given to “outsiders”
Trial treatment effective, comparator only given to “outsiders”
Trial treatment effective, neither treatment nor comparator given to “outsiders”
Trial treatment ineffective
Trial effect or treatment given unknown
Overall

Note: CI = confidence interval, NA = not applicable, RCT = randomized controlled trial, RR = relative risk.

Table 4: Summary of meta-analyses for studies with dichotomous nonmortality outcomes, without randomization of potential participants as “insiders” v. “outsiders” (subgroups based on effectiveness of trial treatment)
Subgroup

Trial treatment effective, same treatment and comparator given to “outsiders”
Trial treatment effective, treatment only given to “outsiders”
Trial treatment effective, comparator only given to “outsiders”
Trial treatment effective, neither treatment nor comparator given to “outsiders”
Trial treatment ineffective
Trial effect or treatment given unknown
Overall

Note: CI = confidence interval, NA = not applicable, RCT = randomized controlled trial, RR = relative risk.
“outsiders” received only the less effective comparator. In these studies, the 5794 “insiders” (those assigned to receive the active intervention or comparator) experienced a positive effect of the intervention, but the 9035 “outsiders” were offered only the ineffective comparator. In this subgroup, there was also a high degree of heterogeneity ($p = 0.01$, $I^2 = 74\%$).

There were 9 studies in which the randomized experimental intervention had a positive effect inside the RCT, but “outsiders” received a completely different intervention or comparator. For these studies, results could be pooled for the 649 “insiders” and 188 “outsiders” (standardized mean difference -0.36, 95% CI -0.61 to -0.12, $p = 0.08$, $I^2 = 43\%$). In this subgroup, “insiders” fared statistically significantly better than “outsiders.”

The largest subgroup consisted of 23 studies in which the randomized experimental and comparator interventions generated equivalent outcomes. In this subgroup, the 5 940 “insiders” and 11 927 “outsiders” were given both treatments, only the control or only the experimental treatment, or completely different interventions. Heterogeneity among these studies was low to moderate ($p = 0.10$, $I^2 = 29\%$). The pooled result revealed neither net harm nor net benefit for “insiders” compared with “outsiders” (standardized mean difference -0.03, 95% CI -0.1 to 0.04).

For the final subgroup of 2 studies, it was unclear whether there was a treatment effect or which interventions the “outsiders” received. We requested additional information from the study authors, but as of the date of publication, were still awaiting this clarification.

Outcomes for studies with participants randomized as “insiders” or “outsiders”

In 5 studies, potential participants were randomly assigned to become “insiders” or “outsiders.” One of these studies used a continuous outcome, with no reported difference between the 180 “insiders” and 97 “outsiders” (95% CI -0.22 to 0.27). The remaining 4 studies reported dichotomous nonmortality outcomes, with a moderate degree of heterogeneity ($p = 0.06$, $I^2 = 60\%$). Their overall pooled effect indicated neither harm nor benefit when patients were treated inside or outside a trial (RR 0.94, 95% CI 0.56 to 1.57).

Additional analyses

Our investigation into publication bias showed a lack of smaller studies (both positive and negative) in our study. Because the included studies were symmetric around the pooled estimate, we are confident that our estimates are valid.

Our sensitivity analysis confirmed the robust nature of our imputations. Removing the studies with imputed outcomes had no significant effect on our results. Similarly, the results were not affected by clinical specialty.

Interpretation

Our study has confirmed the earlier findings of Vist and colleagues and Gross and associates, who reported that when trial participants (“insid-
“insiders”) and nonparticipants (“outsiders”) receive the same treatments, they experience similar outcomes. As such, there is neither a “trial advantage” nor a “guinea pig disadvantage” of participating in an RCT. Furthermore, we have shown that even when “insiders” and “outsiders” are offered different interventions, there is no disadvantage to trial participation.

Our findings do not support the theory of “inclusion benefits,” “protocol effects” or “care effects” proposed by other authors. We found no differences in outcomes that could be attributed to health care workers providing additional care to “insiders,” the setting in which “insiders” were treated or the closer follow-up and attention that “insiders” receive. Had there been better care because physicians were following strict study protocol, a difference would have been detected between the groups for whom treatments were identical and would have been amplified within the subgroup of studies in which detection bias and expertise bias were most probable.

As expected, our subanalysis of “insiders” and “outsiders” who received the same treatments confirmed the results of the Vist and Gross reviews. However, we suggest that their insistence on identical interventions for patients inside and outside of an RCT answered only a narrow, explanatory question. For our review, we posed a more pragmatic question: Will patients fare better being treated within a trial (“insiders”) or in routine clinical care outside it (“outsiders”), regardless of the treatment received? In other words, will they be “sacrificial guinea pigs,” or, conversely, will they enjoy an “inclusion benefit”? Or will they fare the same inside the RCT or outside it? Our pragmatic study supports the last of these options, that patients will, in general, fare just as well regardless of whether they are “insiders” or “outsiders.”

Stiller reported a beneficial effect on mortality for “insiders.” However, that conclusion was based simply on counting the number of studies in which “insiders” had lower mortality than “outsiders,” ignoring the size of each study. As such, smaller studies (which are more prone to type II error) were weighted the same as much larger studies. Our random-effects meta-analysis took into account the size and weight of each study, and we found no such benefit from trial participation.

Limitations

Although 68% of the studies included here employed identical follow-up protocols for both “insiders” and “outsiders,” some studies did not explicitly state whether “outsiders” included all eligible patients or only those for whom data could be obtained. If “outsiders” are more likely to become lost to follow-up, in part because they have died or suffered other adverse events, true trial advantages might be missed.

Conclusion

We found no evidence to support either clinically important harm or clinically important benefit when patients’ illnesses were managed inside or outside an RCT. These results can inform discussions between clinicians and the patients to whom they are offering entry into peer-reviewed, ethically conducted RCTs. These results are also relevant to the policies, procedures and actions of institutions, ethics committees and granting agencies that permit and support the execution of RCTs.

Our findings and conclusions are only as good as the publication base of relevant RCTs, and we look forward to the day when the proposals of Vickers and Altman are fully realized, with all trials registered and reported with raw trial data made readily available. When that day arrives, our study should be repeated to determine the validity of the conclusions reached here.

References

1. Schwartz D, Lellouch J. Explanatory and pragmatic attitudes in therapeutic trials. J Chronic Dis 1967;20:337–48.
2. Sackett DL, Gent M. Controversy in counting and attributing events in clinical trials. N Engl J Med 1979;301:1410–2.
3. Lantos JD. The “inclusion benefit” in clinical trials. J Pediatr 1999;134:130–1.
4. Vist GE, Bryant D, Somerville L, et al. Outcomes of patients who participate in randomized controlled trials compared to similar patients receiving similar interventions who do not participate. Cochrane Database Syst Rev 2008;3:MR000099.
5. DiCenso A. Systematic overviews of the prevention and predictors of adolescent pregnancy [dissertation]. Waterloo (ON): University of Waterloo; 1995.
6. Higgins JPT, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ 2003;327:557–60.
7. SPSS base 10.0 for Windows user’s guide. Chicago: SPSS Inc.; 1999.
8. Review Manager for Microsoft Word. Version 5.2. Copenhagen: Cochrane Collaboration, Nordic Cochrane Centre; 2012.
9. Higgins JPT, Green S, editors. Cochrane handbook for systematic reviews of interventions. Version 5.1.0. Oxford (UK): The Cochrane Collaboration; 2011 [updated March 2011]. Available: www.cochrane-handbook.org (accessed 2012 Aug 21).
10. Akaza H, Hinotsu S, Aso Y, et al. Bacillus Calmette–Guerin treatment of existing papillary bladder cancer and carcinoma in situ of the bladder. Four-year results. The Bladder Cancer BCG Study Group. Cancer 1995;75:552–9.
11. Amar D, Roistacher N, Burt ME, et al. Effects of diiltiazem versus digoxin on dysrhythmias and cardiac function after pneumonectomy. Ann Thorac Surg 1997;63:1374–81.
12. Anderson G, Lundström P, Strom L. Internet-based treatment of headache: Does telephone contact add anything? Headache 2003;43:353–61.
13. Antman K, Amato D, Wood W, et al. Selection bias in clinical trials. J Clin Oncol 1985;3:1142–7.
14. Ashok PW, Kidd A, Flett GM, et al. A randomised comparison of medical abortion and surgical vacuum aspiration at 10–13 weeks gestation. Hum Reprod 2002;17:92–8.
15. Bain C, Cooper KG, Parkein DE. A partially randomised patient preference trial of microwave endometrial ablation using local anaesthesia and intravenous sedation or general anaesthesia: a pilot study. Gynaecol Endosc 2001;10:223–8.
16. Bakker A, Spinholven P, van Balkom AJ, et al. Cognitive therapy by allocation versus cognitive therapy by preference in the treatment of panic disorder. Psychother Psychosom 2000;69:240–3.
38. Cooper KG, Grant AM, Garratt AM. The impact of using a par
36. Clapp DW, Kliegman RM, Baley JE, et al. Use of intravenously
35. Clagett GP, Youkey JR, Brigham RA, et al. Asymptomatic cer
29. Brinkhaus B, Witt CM, Jena S, et al. Acupuncture in patients
28. Boezaart AP, Berry RA, Laubscher JJ, et al. Evaluation of anxiol
27. Boesen EH, Boesen SH, Frederiksen K, et al. Survival after a
26. Blumenthal JA, Jiang W, Babyak MA, et al. Stress manage
25. Blichert-Toft M, Brincker H, Andersen JA, et al. A Danish ran
24. Bijker N, Peterse JL, Fentiman IS, et al. Effects of patient
23. Biederman J, Herzog DB, Rivinus TM, et al. Amitriptyline in
19. Björkqvist E, Kärkkäinen A, Bäckman L, et al. The Ef
18. Betteridge DJ, Manasek P, O’Donnell MA, et al. Prospective．
17. Balakrishnan SB, Beisebevac AA, Aitkoolova ZI, et al. Intra-
16. Bannister CF, Brosius KK, Sigl JC, et al. The effect of bisspec-
15. Banerjee D, Nayar S, Bandyopadhyay S, et al. Effect of sug-
14. Banerjee BS, Amin S, Chakrabarti S, et al. A randomized con-
13. Barzilai N, Hershberger RE, Bhatia S, et al. A randomized
12. Barker JH, Reith LL, Dwyer T, et al. Nutritional intervention
11. Barlow DH, Whiting S, Kwan SY, et al. The impact of prospec-
10. Bartlett ST, Meier B, Poon LC, et al. Randomized controlled TRI
9. Baumann B, Pabinger I, Hütter R, et al. Hydroxyethyl starch
8. Babey SJ, Greenfield S, Cullen T, et al. The role of advanced
7. Babu KB, Dong H, Dobbs SB, et al. Medical nutrition therapy
6. Babich JW, O’Connor MT, Willard MD, et al. A randomized con-
5. Babcock K, Garg RK, El-Serag HB, et al. Prevalence and prog-
4. Babu LA, Ramakrishnan S, Venkatesh R, et al. A randomised
3. Babu LA, Anandan R, Siva R, et al. The impact of a self-help
2. Babu LA, Sridharan S, Jayaseelan R, et al. Randomized con-
1. Babu LA, Sridharan S, Venkatraman R, et al. A randomised

References

CMAJ, November 4, 2014, 186(16)
Affiliations: Faculty of Medicine (Natasha Fernandes, Mathur), University of Ottawa, Ottawa, Ont.; Faculty of Health Sciences (Bryant, Marsh, Moyer) and Schulich School of Medicine and Dentistry (Bryant), The University of Western Ontario, London, Ont.; Department of Clinical Epidemiology and Biostatistics (Bryant, Griffith), Department of Medicine (Nisha Fernandes), Health Sciences Library (Bhatnagar), Department of Family Medicine (Riva) and Division of Gynecologic Oncology (Reade), McMaster University, Hamilton, Ont.; Faculty of Dentistry (El-Rabbany), University of Toronto, Toronto, Ont.; School of Medical and Applied Sciences (Kean), Central Queensland University, Rockhampton, Australia; Department of Orthopaedic Surgery (Somerville), London Health Sciences Centre, London, Ont.

Contributors: Neera Bhatnagar designed and carried out the search. Natasha Fernandes, Dianne Bryant, Mohamed El-Rabbany, Nisha Fernandes, Crystal Keen, Jacquelyn Marsh, Siddhi Mathur, Rebecca Moyer, Clare Reade, John Riva and Lyndsay Somerville chose the included studies and extracted data. Natasha Fernandes analyzed the data with supervision from Lauren Griffith. Natasha Fernandes wrote the primary draft of the protocol and manuscript, and all other authors edited and further developed these components. All authors approved the final version. Dianne Bryant supervised this project. All authors agree to act as guarantors of this paper.

Funding: This study was supported by an internal grant from the University of Western Ontario to Dianne Bryant; no external funding was received. Natasha Fernandes was supported by McMaster University, the Canadian Institutes of Health Research Frederick Banting and Charles Best Canadian Graduate Scholarship and an Ontario Graduate Scholarship.

Data sharing: The dataset is available from the corresponding author.

Acknowledgments: The authors would like to thank Dr. David Sackett for initiating this project. His insight and guidance throughout development of the manuscript were invaluable resources.