Impact of site of occlusion in proximal splenic artery embolisation for blunt splenic trauma

A. Boscà-Ramon*, L. Ratnam, T. Cavenagh, J-Y Chun, R. Morgan, M. Gonsalves, R. Das, S. Ameli-Renani, V. Pavlidis, B. Hawthorn, N. Ntagiantas and L. Mailli

Abstract

Background: Proximal splenic artery embolisation (PSAE) can be performed in stable patients with Association for the Surgery of Trauma (AAST) grade III-V splenic injury. PSAE reduces splenic perfusion but maintains viability of the spleen and pancreas via the collateral circulation. The hypothesized ideal location is between the dorsal pancreatic artery (DPA) and great pancreatic artery (GPA). This study compares the outcomes resulting from PSAE embolisation in different locations along the splenic artery.

Materials and methods: Retrospective review was performed of PSAE for blunt splenic trauma (2015–2020). Embolisation locations were divided into: Type I, proximal to DPA; Type II, DPA-GPA; Type III, distal to GPA. Fifty-eight patients underwent 59 PSAE: Type I (7); Type II (27); Type III (25). Data was collected on technical and clinical success, post-embolisation pancreatitis and splenic perfusion. Statistical significance was assessed using a chi-squared test.

Results: Technical success was achieved in 100% of cases. Clinical success was 100% for Type I/II embolisation and 88% for Type III: one patient underwent reintervention and two had splenectomies for ongoing instability. Clinical success was significantly higher in Type II embolisation compared to Type III ($p=0.02$). No episodes of pancreatitis occurred post-embolisation. Where post-procedural imaging was obtained, splenic perfusion remained 100% in Type I and II embolisation and 94% in Type III. Splenic perfusion was significantly higher in the theorized ideal Type II group compared to Type I and III combined ($p=0.01$).

Conclusion: The results support the proposed optimal embolisation location as being between the DPA and GPA.

Background

In the setting of blunt splenic trauma, haemodynamically unstable patients are often managed surgically. Haemodynamically stable patients however undergo non-operative management (NOM) to preserve the spleen, its immune function and prevent overwhelming post-splenectomy infection (Ahuja et al. 2015; Harbrecht 2005; Peitzman et al. 2000). In these patients computed tomography (CT) is routinely performed, and injury severity is assessed by the American Association for the Surgery of Trauma (AAST) scale. Patients showing high AAST grade III-V splenic injury (Kozar et al. 2018), are frequently managed with adjunct splenic artery embolisation (SAE), which is associated with higher spleen salvage and lower NOM failure rates, especially in those with AAST grade IV-V splenic injuries (Quencer and Smith 2019; Banerjee et al. 2013; Crichton et al. 2017; Cinquantini et al. 2018; Bhullar et al. 2012).

SAE can be performed distally or proximally. Distal splenic artery embolisation (DSEA), consists of selective embolisation of branches distal to the hilum, and is usually carried out in patients with focal vascular injuries and...
has the additional benefit of preserving access for repeat intervention should this be required. However, DSAE is more technically challenging, takes longer and is associated with increased radiation dose and a higher rate of developing small splenic infarctions and life-threatening complications, such as rebleeding, abscess formation, and contrast-induced renal insufficiency (Patil et al. 2020; Clements et al. 2020; Imbrogno and Ray Jr 2012; Killeen et al. 2001; Schnüriger et al. 2011; Rong et al. 2017).

Proximal Splenic Embolisation (PSEA), involves embolisation of the main splenic artery (SPLA) and mimics surgical ligation. The premise is to reduce splenic perfusion pressure, while maintaining parenchyma viability via the development of collateral circulation, preserving spleen immune function, and preventing infarction or abscess formation (Bessoud et al. 2007; Anderson et al. 1977; Dc 1979; Zmora et al. 2009; Bessoud and Denys 2004). Over time, PSEA has become the preferred approach (Clements et al. 2020; Rong et al. 2017), especially in cases of multifocal injury or when no active bleeding is seen on angiography in splenic trauma.

Splenic artery branches supplying the pancreas from proximal to distal are the dorsal pancreatic artery (DPA), the short pancreatic arteries (SPAs), great pancreatic artery (GPA), and arteries of the tail of the pancreas (AsTP). Branches from the DPA, SPAs, and GPA anastomose to the transverse pancreatic artery (TPA) by forming three to four quadrangular arterial arcades. The AsTP however, anastomoses to the GPA via the caudal pancreatic artery (CPA). SPLA branches supplying the fundus and posterior regions of the stomach include the posterior gastric artery (PGA) and the short gastric arteries (SGAs), which establish anastomoses with branches of the left gastric artery (LGA), left gastro-omental artery (LGOA), and AsTP. The superior polar branch artery (SPB) usually originates from the distal SPLA and supplies the upper pole of the spleen. The SPLA at the splenic hilum then divides into the upper lobar (ULA) and lower lobar (LLA) arteries. Each lobar branch further divides into two to four lobular branches that enter the hilum of the spleen, which anastomose with one another (Daisy Sahni et al. 2003). A detailed outline of the arterial anatomy and supply is provided in Fig. 1.

The hypothesized ideal location for PSEA is between the DPA and GPA, in order to avoid devascularization of the pancreas and ischemic pancreatitis; as well as to preserve blood supply to the spleen (Ahuja et al. 2015; Quencer and Smith 2019; Patil et al. 2020; Imbrogno and Ray Jr 2012; Sclafani et al. 1991; Widlus et al. 2008; Ng et al. 2012). Although the use of PSEA instead of DSAE is now common practice, there is no evidence for the optimal embolisation location or outcomes from embolic material deployment along the different splenic artery segments. This study retrospectively evaluates a 5-year experience in PSEA following blunt splenic trauma in a major trauma centre. The aim of this paper is to evaluate
the impact of site of occlusion in PSAE on technical and clinical outcomes, as well as on residual splenic perfusion and complication rates.

Materials and methods

Patient selection

The study period was over 5-years from 1st January 2015 to 1st January 2021. All patients above the age of 16 undergoing SAE for blunt splenic trauma were identified through the radiology information system (RIS) and included into the study. Patients presenting with penetrating splenic injuries, undergoing isolated diagnostic splenic angiograms, or isolated DSAE, or PSAE for other reasons than blunt splenic trauma, were excluded. All patients included in the study underwent an initial pre-procedural contrast enhanced CT.

Data collection and definitions

Data was collected from RIS, picture archiving and communication system (PACS), and the electronic medical records (EMR). Information included demographics (age, gender), reported method of injury, initial CT information (date, time, findings, AAST splenic injury grade, solitary/multiple abdominal injuries), procedure information (date, time, type of embolic material utilized and location, complications, technical success), post-procedure progress (clinical success), complications (date, details), follow-up imaging (study type, date, findings, splenic perfusion).

Technical success was defined as significant blood flow reduction within the splenic artery at completion of the PSAE procedure. The demonstration of complete cessation of blood flow was not required. The development of collateral circulation was also utilised as a marker of significant blood flow reduction. Clinical success was defined as cessation of bleeding and spleen salvage after PSAE. This was deemed to be the case if the patient did not require reintervention and left the hospital with their spleen in situ or died from unrelated causes.

Definitions of splenic artery anatomy and embolisation types

We designed a classification system where the main splenic artery was divided into three segments based on the DPA and GPA origins. After review of images on PACS, patients were assigned to one of the three categories based on the location of their embolisation:

- **Type I**: when performed proximally to DPA or covering its origin.
- **Type II**: when performed between DPA and GPA, not covering their origins.
- **Type III**: when performed distally to GPA or covering its origin.

In this classification, Type II represents the ideal theorized location for embolisation, while Types I and III were the theorized locations to avoid (Fig. 2). When an anatomical variant was present, the same rules were applied. For example, if the DPA arose from the superior mesenteric artery, a Type I embolisation would not be possible as there would be no Type I location within the main splenic artery (Fig. 3).

PSAE procedural technique

All procedures were performed by one of eight consultant interventional radiologists along with one of five interventional radiology fellows. The access was from the femoral artery, using either a 6-Fr 11 cm Radifocus™ introducer sheath (Terumo, Tokyo, Japan) or 6-Fr 35 cm Pinnacle® destination sheath (Terumo, Tokyo, Japan), a guiding 4-Fr or 5-Fr catheter (Cook Medical, Bloomington, USA) to selectively catheterize the celiac trunk and/or splenic artery, and when needed 2-Fr, 2.4-Fr, 2.7-Fr Progreat® microcatheters (Terumo, Tokyo, Japan). Embolic materials according to operator preference included 5-10 mm Amplatzer vascular plugs 4 (AVP 4) (St Jude Medical, Plymouth, USA), 5-14 mm pushable coils and detachable microcoils Concerto Helix (0.018″ Medtronic, Minnesota, USA), Ruby (0.018″ Penumbra, California, USA), POD (0.025″ Penumbra, California, USA), VortX (0.018″ or 0.035″ Boston scientific, Massachusetts, USA), and Gelfoam (Pfizer, Michigan, USA).

Review of outcomes

All procedural angiograms were retrospectively reviewed and assessed for arterial anatomy and location of embolic agents. Both pre and post embolisation angiograms were reviewed. Patients who were imaged post embolisation had these assessed for evidence of pancreatitis and splenic perfusion. Post procedural blood parameters and clinical notes were reviewed for evidence of pancreatitis. Splenic perfusion was defined as the presence of contrast enhancement of the spleen on CT angiogram or the presence of a measurable Doppler signal on ultrasound, identified in >50% of the splenic parenchyma.

Statistical analysis

Statistical analysis was conducted using the Stata16 program. Two-sided p-value <0.05 was chosen to indicate statistical significance, which was ascertained between groups using a chi-squared test.
Fig. 2 Types of PSAE. a Type I, AVP (white star) was deployed proximally to the DPA, note perfusion of the spleen via prominent LGA collateral circulation. b Type II, AVP (white star) inserted between DPA and GPA origin, spleen perfusion via collateral pancreatic circulation. c Type III, coiling (white star) distal to GPA, minimal splenic perfusion via AsTP.
Results

A summary of patient and treatment demographics are shown in Table 1. Fifty-eight patients in total (43 males and 15 females; 18–95 years old, mean 51 years), underwent 59 PSAE. The number of patients assigned to each Type subgroup is as follows: 7 to Type I, 27 to Type II, and 25 to Type III. The median AAST splenic injury grade of all patients undergoing PSAE was IV. No patients with AAST grade I or II injuries underwent PSAE. The median time to embolisation was 0 days.

The most common cause of injury was road traffic accidents in 26 (45%), trauma secondary to a fall in 20 (34%), and workplace trauma in 5 (9%) patients. There were two post-surgical cases, one following a colonoscopy and the other post nephrectomy. Another patient presented with a bleed following cardiopulmonary resuscitation for an out of hospital cardiac arrest.

Table 1 Population and treatment demographics

Number of Patients	58
Number of embolisations	59
Age (mean, SD)	51 (21.76)
Gender (M:F, male percentage)	43:15 (76%)
AAST (median, range)	IV (III-V)
Time in days to embolisation (median, range)	0 (0–5)
Time in days to splenectomy after trauma (median, range)	7.5 (5–10)
Follow-up imaging (CT, US)	28:6
Time in days to follow-up imaging (median, range)	3.5 (0–204)
Post embolisation preserved splenic perfusion (number, percentage)	33 (97%)

Fig. 3 PSAE in patient presenting with blunt splenic trauma and variant splenic anatomy. a Pre-embolisation diagnostic angiogram revealed the DPA arising directly from the coeliac trunk along with the left hepatic artery (LHA). CT angiography showed the right hepatic artery origin from the superior mesenteric artery, and the left gastric artery arising from the coeliac trunk, not shown here. b Post-embolisation angiogram shows an AVF plug (white star) inserted distal to the GPA origin and splenic perfusion maintained via the AsTP collateral circulation. This case was thus considered a Type III embolisation.
Table 2 Comparison of embolisation subgroups

	Number of patients	Number of embolisations	Age (mean, SD)	Gender (M:F, percentage)	AAST Grade	Time to embolisation (median, range)	Complications (number, percentage)	Splenectomy (number, percentage)	Follow-up imaging	Splenic perfusion (number, percentage)
Type I	≤ DPA	7	7	47 (22.4)	6.1 (66%)	4 II 2 III 1 IV 0 (0–1)	0 (0%)	0 (0%)	5	5 (100%)
Type II	DPA–GPA	27	27	51 (22.9)	21.6 (78%)	8 II 12 III 7 IV 0 (0–2)	0 (0%)	0 (0%)	7	11 (100%)
Type III	≥ GPA	24	25	53 (20.9)	17.7 (71%)	4 II 8 III 13 IV 0 (0–5)	3 (12.5%)	2 (8%)	16	17 (94%)
following Type II embolisation was significantly higher compared to Types I and III combined \((p = 0.01) \). Needs to be noted, that the patient with a non-perfused spleen corresponded to a patient presenting with a shattered spleen (AAST grade V).

A total of 3 (5.1%) complications occurred, which consisted of two splenectomies and one reintervention for ongoing instability, all in the Type III embolisation subgroup. One of the patients initially underwent NOM, was discharged and readmitted 4 days after the initial trauma, presenting with increasing abdominal pain and ongoing instability. Repeat CT scan showed a large volume of haemoperitoneum and increased perisplenic haematoma. A decision was made to perform PSAE, however, the patient subsequently had a drop in his haemoglobin and required a splenectomy the following day. The other patient underwent PSAE on the same day of the trauma event but became unstable at day 8. Follow-up CT scan showed interval increase of perisplenic haematoma and a splenectomy was performed at day 10. The third patient presented with a re-bleed 5 days after Type III embolisation and underwent repeated more proximal Type III embolisation which was successful. The median time to splenectomy was 5 days.

Discussion

Our series show an overall high technical (100%) and clinical (94.5%) success, as well as a low overall complications rate of 5.1%. Only 3.4% of patients requiring splenectomy. Clinical success was significantly higher for Type II embolisation compared to Type III. Splenic perfusion was significantly higher after Type II embolisation compared to Types I and III. Both splenectomy cases were in the Type III subgroup.

Our overall results are in line with previous studies of PSAE outcomes. A meta-analysis by Schnüriger et al. 2011 showed an overall rebleeding rate of 4.7–9% and splenectomy rate of 10.2%. The same study compared major complication rates between proximal and distal embolisations. Although there was a general tendency for higher complication rates with regards to re-bleeding, major infarction and infections following distal embolisation, the figures did not reach statistical significance. A more recent systematic review by Rong et al. 2017 reported a similar overall success rate of 90% and a major complication rate of 6.4%. The success rate was similar following proximal versus distal embolisation, however the incidence of major complications requiring surgical intervention was significantly higher following distal embolisation. Our results support this general consensus that proximal embolisation is more effective and safer than distal embolisation. There were no episodes of post-embolisation pancreatitis in our series, including patients in Type I embolisation. If the splenic artery is embolised proximal to the main pancreatic supply, usually the DPA, pancreatic ischemia may occur. It remains an unusual complication given the rich network of peri-pancreatic collaterals but a case report of severe acute necrotizing pancreatitis caused by inadvertent proximal embolisation reminds us to err on the side of caution (Hamers et al. 2009).

The demographics in our cohort of patients with a predominance of males (76%) and mean age of 51 years, are comparable to previous studies and correspond with road traffic accidents being the most common cause for these injuries (Waseem and Bjerke 2021; Pande et al. 2017). A case of active splenic bleeding after colonoscopy and one of splenic haematoma without parenchymal laceration after nephrectomy were also included in our study, as they were secondary to blunt injury mechanisms. Both are under recognized iatrogenic causes and mostly occur because of direct trauma, mobilisation, or traction of the spleen (Tan et al. 2011; Feola et al. 2016; Ullah et al. 2020; Skipworth et al. 2009).

In 2020 the number of PSAE decreased to 7 from a mean of 10 per year in previous years, moreover, none of them were related to road traffic accidents. This coincides with the start of the COVID-19 pandemic, when the first COVID-19 case in the UK was diagnosed on 31st January 2020 (Coronavirus: two cases confirmed in UK 2020), and lockdown restrictions were enforced from 26th March (Participation E 2021). During the COVID-19 pandemic, Kamine et al. 2020 reported a 57.4% decrease in overall trauma admissions and an 80.5% decrease in motor vehicle collisions, a trend also observed by Sutherland et al. 2020. We are uncertain if this had an impact on the outcome of embolisation as the mechanism of action for the splenic trauma differed from that most commonly seen.

Standard of practice at our centre as in many others, heavily favours PSAE over DSAE, mainly because PSAE is faster and less technically challenging (Imbrogno and Ray Jr 2012; Rong et al. 2017). This is particularly

Table 3 Embolic agent utilised per subgroup

	Coils + Vascular Plug	Coils + Vascular Plug	Coils + Gelatin Sponge	
Type I ≤DPA	3	4	0	
Type II DPA-GPA	7	19	1	
Type III ≥GPA	19	2	3	
Total	29	25	4	1

- Type I ≤DPA
- Type II DPA-GPA
- Type III ≥GPA

Standard of practice at our centre as in many others, heavily favours PSAE over DSAE, mainly because PSAE is faster and less technically challenging (Imbrogno and Ray Jr 2012; Rong et al. 2017). This is particularly
important in patients with unfavourable anatomy (difficult access, anatomical variation, and significant tortuosity), vasospasm, vascular disease, and the non-cooperative patient.

Vascular plugs were only used in 20% of Type III embolisations, compared to 57% in Type I and 70% in Type II. This is due to difficulties in deploying vascular plugs in the distal segment of the splenic artery due to the need to advance sheaths or larger catheters further into the arteries to enable their deployment. All other differences in embolic material reflect operator preference. The use of vascular plugs when compared to pushable coils, has shown similar high technical success and low complication rates. Previous studies prove that AVP 4 are suitable for achieving occlusion of the splenic artery, including redeployment as an advantage (Ng et al. 2012). Hypothetical complications such as delayed migration or partial recanalization (Pech et al. 2011; Zhu et al. 2011), did not occur in our cohort. Indeed, all three patients with complications in our series were embolised using coils alone. However, the choice of embolic agent was not felt to be the cause for the poor outcome in these cases. Rong et al. 2017, showed that the use of Gelfoam is associated with higher rates of severe complications and further surgical management compared to coils. Gelfoam use has also been associated with subsequent findings of intraparenchymal air on CT angiography (Ekeh et al. 2005; Haan et al. 2003).

In the 16 patients in which PSAE for AAST grade III splenic injuries was performed, no complications occurred, and none underwent splenectomy. Furthermore, 8 of these patients had follow-up imaging and in all of them splenic perfusion was preserved. This indicates that endovascular treatment of AAST grade III splenic injuries is safe with a low complication rate and adds evidence to the increasing trend to consider adjunct SAE to NOM in these patients.

As limitations, this is a retrospective study which inherently runs the risk of introducing bias. In some cases, the embolisation location was difficult to determine retrospectively on angiographic appearances. We acknowledge that tortuosity and variant anatomy is frequent within the splenic arterial territory which will influence choice and location of embolic material. Additionally, we note that the identification of the three splenic segments we propose in this paper is sometimes facilitated after embolic deployment and development of collateral circulation. Thus, identifying the ideal location may not be possible prior to embolisation. The assessment of splenic perfusion in this study was not uniform as routine post embolisation cross sectional imaging of the spleen with contrast was not carried out on all patients. We note that AAST grade distribution was different between groups, observing a higher median AAST grade of V in the type III embolisation group, which could have influenced the lower clinical success and perfusion rates. Preservation of immune function was also not assessed. The practices described in our paper are the reflection and preferences of a single major trauma centre. Despite the limitations of the study, these data represent real world outcomes confirming the safety of PSAE and further establishing its place in the NOM of splenic trauma. Errors of identification of the location of placement of embolic materials arising from the described limitations do not affect the overall clinical and technical success rates, however the outcome of this study has been to increase the awareness of the optimal location for placement of embolic materials and attempts to achieve this where feasible.

Conclusion

The data presented supports the safety and efficacy of proximal splenic artery embolisation for blunt splenic trauma. The hypothesized ideal location for embolisation as between the DPA and GPA is shown to provide good clinical and technical success with significantly improved splenic perfusion compared to the other two locations before the DPA and after the GPA. PSAE for AAST III-IV grades after blunt splenic trauma is a safe adjunct option to NOM, in order to increase spleen salvage rates while preserving spleen viability. A good working knowledge of splenic arterial supply as illustrated in this paper will enable the interventional radiologist to place their embolic material where desired if technically feasible.

Abbreviations

AAST: American Association for the Surgery of Trauma; AsTP: Arteries of the Tail of the Pancreas; CHA: Common Hepatic Artery; CPA: Caudal Pancreatic Artery; CT: Computed Tomography; DPA: Dorsal Pancreatic Artery; DSAS: Distal Splenic Artery Embolisation; GPA: Great Pancreatic Artery; IPB: Inferior Polar Branch; LGA: Left Gastric Artery; LGOA: Left Gastro-Omental Artery; LHA: Left Hepatic Artery; LLASA: Left Lower Lobar Artery; NOM: Non-Operative Management; PGA: Posterior Gastric Artery; PSAE: Proximal Splenic Artery Embolisation; RGOA: Right Gastro-Omental Artery; RIS: Radiology Information System; SAE: Splenic Artery Embolisation; SGAs: Short Gastric Arteries; SPAs: Short Pancreatic Arteries; SFB: Superior Branch; SFLA: Splenic Artery; TPA: Transverse Pancreatic Artery; ULA: Upper Lobar Branch; US: Ultrasound.

Acknowledgements

We thank all the hardworking healthcare staff at St. George’s NHS Trust Interventional Radiology Department and praise their efforts during this 5-year period which include a pandemic.

Conflict of interest

The authors have no conflicts of interest to declare.

Informed consent

Informed consent was obtained from all individual participants included in the study.
Authors’ contributions
ABR wrote the manuscript with help from TC, LR, JYC, and LM. LM was a major contributor in mentoring the creation of this manuscript. Statistical analysis was mainly performed by TC and ABR. LR, JYC, RM, MG, RD, SR, VP, BH and NN performed the procedures and contributed to the creation of the manuscript. LR, ABR, JYC, RM and LM were major contributors to revision of the manuscript. The author(s) read and approved the final manuscript.

Funding
This study was not funded.

Availability of data and materials
The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Declarations

Ethics approval and consent to participate
All procedures performed in the study involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Consent for publication
Consent for publication was obtained from all authors.

Competing interests
The authors declare that they have no competing interests.

Received: 5 April 2022 Accepted: 29 July 2022
Published online: 20 August 2022

References

Ahuja C, Farsad K, Chadha M (2015) An overview of splenic embolization. AJR Am J Roentgenol 205(4):720–725. https://doi.org/10.2214/AJR.15.14637
Anderson JH, VuBan A, Wallace S, Hester JP, Burke JS (1977) Transcatheter splenic arterial occlusion: an experimental study in dogs. Radiology 125(1):95–102. https://doi.org/10.1148/125.1.95
Banerjee A, Duane TM, Wilcon SP et al (2013) Trauma center variation in splenic artery embolization and spleen salvage: a multicenter analysis. J Trauma Acute Care Surg 75(1):69–74; discussion 74–75. https://doi.org/10.1097/TA.0b013e318288bb3b
Bessoud B, Denys A (2004) Main splenic artery embolization using coils in patients with splenic arterial occlusion: an experimental study in dogs. Radiology 232(1):195–199. https://doi.org/10.1148/radiol.2321021952
Bessoud B, Duchosal MA, Siegrist C-A et al (2007) Proximal splenic artery embolization using coils in patients with splenic arterial occlusion: an experimental study in dogs. Radiology 243(1):195–199. https://doi.org/10.1148/radiol.2431051369
Bhullar IS, Frykberg ER, Siragusa D et al (2012) Selective angiographic embolization as an adjunct to nonoperative management of blunt splenic injuries: a systematic review and meta-analysis. J Trauma Acute Care Surg 83(5):934–943. https://doi.org/10.1097/TA.0000000000001649
Daisy Sahini A, Indar Jit B, Gupta CNM, Gupta DM, Harjeet E (2003) Branches of the splenic artery and splenic arterial segments. Clin Anat N Y N 16(5):371–377. https://doi.org/10.1002/ca.10172
Dc K (1979) The ligation of the splenic artery in the treatment of traumatic rupture of the spleen. Surgery 85(5):530–533
Ekeh AP, McCarthy MC, Woods RJ, Haley E (2005) Complications arising from splenic embolization after blunt splenic trauma. Am J Surg 189(3):335–339. https://doi.org/10.1016/j.amjsurg.2004.11.033
Feola A, Nida M, Conti A et al (2016) Iatrogenic splenic injury: review of the literature and medicolegal issues. Open Med 11(1):307–315. https://doi.org/10.1515/med-2016-0059
Haan J, Bochicchio G, Kramer M et al (2003) Air following splenic embolization: infection or incidental finding? Am Surg 69:1036–1039
Hamers RL, Van Den Berg FG, Groenewald AB (2009) Acute necrotizing pancreatitis following inadvertent extensive splenic artery embolisation for trauma. Br J Radiol 82:e11–e14
Harbrecht BG (2005) Is anything new in adult blunt spleen trauma? Am J Surg 190(2):273–278. https://doi.org/10.1016/j.amjsurg.2005.05.026
Imbrogno BF, Ray CE Jr (2012) Splenic artery embolization in blunt trauma. Semin Interiv Radiol 29(2):147–149. https://doi.org/10.1055/s-0032-1312577
Kamine TH, Rembisz A, Barron RJ, Baldwin C, Kroener M (2020) Decrease in trauma admissions with COVID-19 pandemic. West J Emerg Med 21(4):819–822. https://doi.org/10.5811/westjem.2020.5.47780
Killeen KL, Shanmuganathan K, Boyd-Kranis R, Scalea TM, Mirvis SE (2001) CT findings after embolization for blunt splenic trauma. J Vasc Interv Radiol 12(2):209–214. https://doi.org/10.1016/S1051-0443(01)00182-7
Kozar RA, Crandall M, Shanmuganathan K et al (2018) Organ injury scaling 2018 update: spleen, liver, and kidney. J Trauma Acute Care Surg 85(6):1119–1122. https://doi.org/10.1097/TA.0000000000002058
Ng EH, Comin J, David E, Pugash R, Annamalai G (2012) AMPLATZER Vascular Plug 4 for proximal splenic artery embolization in blunt trauma. J Vasc Interv Radiol 23(7):976–979. https://doi.org/10.1016/j.jvir.2012.04.009
Pande R, Sarataza A, Winter Beatty J, Doran C, Kirby R, Hamston C (2017) Contemporary characteristics of blunt abdominal trauma in a regional series from the UK. Ann R Coll Surg Engl 99(1):182–87. https://doi.org/10.1308/rcsann.2016.0223
Participation E (2017) The Health Protection (Coronavirus, Restrictions) (England) Regulations 2020. https://www.legislation.gov.uk/uksi/2020/350/regulation/6/2020-03-26. Accessed 5 June 2021
Patil MS, Goodin SZ, Findess LK (2020) Update: splenic artery embolization in blunt abdominal trauma. Semin Interiv Radiol 27(7):976–979. https://doi.org/10.1016/j.sir.2012.04.009
Peitzman AB, Heil B, Rivera L et al (2000) Blunt splenic injury in adults decreases failure rate of nonoperative management. J Trauma Acute Care Surg 50(5):1161–1166. https://doi.org/10.1053/jtra.2000.6514
Peritzman AB, Heil B, Rivera L et al (2000) Blunt splenic injury in adults: multi-institutional study of the Eastern Association for the Surgery of Trauma. J Trauma 49(2):177–187; discussion 187–189. https://doi.org/10.1097/00000537-200008000-00002
Quencer KB, Smith TH (2019) Review of proximal splenic artery embolization in blunt abdominal trauma. CVIR Endovasc 12(2):209–214. https://doi.org/10.1016/j.cvir.2019.03.005
Rong J-L, Liu D, Liang M et al (2017) The impacts of different embolization techniques on splenic artery embolization for blunt splenic injury: a systematic review and meta-analysis. Mil Med Res 4. https://doi.org/10.1186/s40479-017-0125-6
Schnüriker B, Inaba K, Konstantinidis A, Lustenberger T, Chan LS, Demetriades DC K (1979) The ligation of the splenic artery in the treatment of traumatic rupture of the spleen. Surgery 85(5):530–533
Skoumas J, Raptis D, Rawal J et al (2009) Spheonic injury following colonoscopy – an underdiagnosed, but soon to increase, phenomenon? Ann R Coll Surg Engl 91(4):W6–W11. https://doi.org/10.1308/147870809X400994
Sutherland M, McKenney M, Elkbuli A (2020) Vehicle related injury patterns during the COVID-19 pandemic: what has changed? Am J Emerg Med 38(9):1710–1714. https://doi.org/10.1016/j.ajem.2020.06.006

Tan K, Lewis GR, Chahal R et al (2011) Iatrogenic splenectomy during left nephrectomy: a single-institution experience of eight years. Urol Int 87(1):59–63. https://doi.org/10.1159/000326761

Ullah W, Rashid MU, Mehmood A et al (2020) Splenic injuries secondary to colonoscopy: rare but serious complication. World J Gastrointest Surg 12(2):55–67. https://doi.org/10.4240/wjgs.v12i2.55

Waseem M, Bjerke S (2021) Splenic injury. In: StatPearls. StatPearls Publishing http://www.ncbi.nlm.nih.gov/books/NBK441993/. Accessed 5 June 2021

Widlus DM, Moeslein FM, Richard HM 3rd (2008) Evaluation of the Amplatzer vascular plug for proximal splenic artery embolization. J Vasc Interv Radiol 19(5):652–6. https://doi.org/10.1016/j.jvir.2007.11.025 Epub 2008 Mar 17.

Zhu X, Tam MD, Pierce G et al (2011) Utility of the Amplatzer vascular plug in splenic artery embolization: a comparison study with conventional coil technique. Cardiovasc Intervent Radiol 34:522–531

Zmora O, Kori Y, Samuels D et al (2009) Proximal splenic artery embolization in blunt splenic trauma. Eur J Trauma Emerg Surg Off Publ Eur Trauma Soc 35(2):108. https://doi.org/10.1007/s00068-008-8030-z

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.