Leishmania major survival in selective Phlebotomus papatasi sand fly vector requires a specific SCG-encoded lipophosphoglycan galactosylation pattern

Deborah E. Dobson
Washington University School of Medicine in St. Louis

Shaden Kamhawi
National Institutes of Health, Bethesda, Maryland

Phillip Lawyer
National Institutes of Health, Bethesda, Maryland

Salvatore J. Turco
University of Kentucky

Stephen M. Beverley
Washington University School of Medicine in St. Louis

See next page for additional authors

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Part of the [Medicine and Health Sciences Commons](https://digitalcommons.wustl.edu/open_access_pubs)

Recommended Citation

Dobson, Deborah E.; Kamhawi, Shaden; Lawyer, Phillip; Turco, Salvatore J.; Beverley, Stephen M.; and Sacks, David L., "Leishmania major survival in selective Phlebotomus papatasi sand fly vector requires a specific SCG-encoded lipophosphoglycan galactosylation pattern." *PLoS Pathogens.* 6,11. e1001185. (2010).
https://digitalcommons.wustl.edu/open_access_pubs/704

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu.
Leishmania major Survival in Selective Phlebotomus papatasi Sand Fly Vector Requires a Specific SCG-Encoded Lipophosphoglycan Galactosylation Pattern

Deborah E. Dobson¹, Shaden Kamhawi², Phillip Lawyer², Salvatore J. Turco³, Stephen M. Beverley¹, David L. Sacks²

¹ Department of Molecular Microbiology, Washington University Medical School, St. Louis, Missouri, United States of America, ² Laboratory of Parasitic Diseases, Intracellular Parasite Biology Section, National Institutes of Health, Bethesda, Maryland, United States of America, ³ Department of Molecular and Cellular Biochemistry, University of Kentucky Medical Center, Lexington, Kentucky, United States of America

Abstract

Phlebotomine sand flies that transmit the protozoan parasite Leishmania differ greatly in their ability to support different parasite species or strains in the laboratory: while some show considerable selectivity, others are more permissive. In “selective” sand flies, Leishmania binding and survival in the fly midgut typically depends upon the abundant promastigote surface adhesin lipophosphoglycan (LPG), which exhibits species- and strain-specific modifications of the dominant phosphoglycan (PG) repeat units. For the “selective” fly Phlebotomus papatasi Ppap, side chain galactosyl-modifications (scGal) of PG repeats play key roles in parasite binding. We probed the specificity and properties of this scGal-LPG PAMP (Pathogen Associated Molecular Pattern) through studies of natural isolates exhibiting a wide range of galactosylation patterns, and of a panel of isogenic L. major engineered to express similar scGal-LPG diversity by transfection of SCG-encoded β1,3-galactosyltransferases with different activities. Surprisingly, both ‘poly-scGal’ and ‘null-scGal’ lines survived poorly relative to PpapJ-sympatric L. major FV1 and other ‘mono-scGal’ lines. However, survival of all lines was equivalent in P. duboscqi, which naturally transmit L. major strains bearing ‘null-scGal’-LPG PAMPs. We then asked whether scGal-LPG-mediated interactions were sufficient for PpapJ midgut survival by engineering Leishmania donovani, which normally express unsubstituted LPG, to express a ‘PpapJ-optimal’ scGal-LPG PAMP. Unexpectedly, these “L. major FV1-cloaked” L. donovani-SCG lines remained unable to survive within PpapJ flies. These studies establish that midgut survival of L. major in PpapJ flies is exquisitely sensitive to the scGal-LPG PAMP, requiring a specific ‘mono-scGal’ pattern. However, failure of ‘mono-scGal’ L. donovani-SCG lines to survive in selective PpapJ flies suggests a requirement for an additional, as yet unidentified L. major-specific parasite factor(s). The interplay of the LPG PAMP and additional factor(s) with sand fly midgut receptors may determine whether a given sand fly host is “selective” or “permissive”, with important consequences to both disease transmission and the natural co-evolution of sand flies and Leishmania.

Introduction

Leishmania are protozoan parasites that cause a spectrum of human diseases that range from self-healing cutaneous lesions to potentially fatal visceral forms. Leishmaniasis is re-emerging as a significant world health problem, with approximately 12 million people presently infected and 2 million new cases diagnosed each year (www.who.int/leishmaniasis/burden).

The world-wide distribution of different Leishmania is determined by the availability of transmission-competent sand fly vectors. When a sand fly bites an infected vertebrate host, Leishmania amastigotes residing within macrophages and other cell types are taken up in the blood meal which is surrounded by a midgut peritrophic matrix that lasts for several days. During this time amastigotes differentiate into motile, replicating promastigote forms which reside in the extracellular lumen of the sand fly alimentary tract (rev. in [1,2,3]). Barriers to Leishmania development in this compartment include the chitin-containing peritrophic matrix which completely encases the blood meal, and the many hydrolytic enzymes and anti-microbial molecules secreted into the gut lumen (rev. in [2,3,4,5]). Eventually the remnants of the digested blood meal are excreted by the sand fly, and this is a crucial juncture for Leishmania promastigotes. In transmission-competent sand flies, parasites attach to the midgut epithelium and go on to establish a stable infection; in a transmission-refractory vector, unattached parasites are expelled when the sand fly defecates (rev. in [2,3,4]). As the sand fly prepares to feed again, promastigotes transition through several forms that culminate in infectious metacyclic parasites which express a modified surface that cannot bind to the midgut epithelium (rev. in [1,3,4,6]). Thus, a key step in Leishmania transmission is stage-specific midgut attachment which allows Leishmania development to proceed.
Author Summary

Phlebotomine sand flies are tiny blood-feeding insects that transmit Leishmania protozoan parasites, which causes diseases afflicting millions of people. The world-wide distribution of Leishmania is determined by the availability of transmission-competent vectors. In the laboratory, some vectors support many different Leishmania, while others are highly restricted. This is best exemplified by P. papatasi, which transmit only L. major despite a wide distribution in regions endemic for many Leishmania species. P. papatasi “selectivity” can be reproduced experimentally, and has been attributed to β1,3-linked galactose side chains decorating the abundant L. major surface lipophosphoglycan (LPG) adhesin, which mediate parasite attachment to the P. papatasi midgut to prevent elimination when the digested blood meal is excreted. As geographically diverse L. major display very different LPG galactosylation patterns (n = 0 - 8 βGal/side chain), we explored the consequences of this pattern diversity to survival in P. papatasi. Using natural isolates and L. major lines engineered to express a wide range of LPG galactosylation patterns, we showed L. major survival in P. papatasi PpapJ flies was optimized by expression of highly modified ‘mono-galactosylated’ LPG and extremely sensitive to LPG side chain length. Surprisingly, L. donovani lines engineered to express a “PpapJ-optimal” LPG mono-galactosylation pattern did not survive in PpapJ flies, suggesting that additional interactions are required. These studies reveal the fine specificity of Leishmania - sand fly interactions, and the nature of species- and strain-specific parasite molecules that have co-evolved to take advantage of midgut receptors specific to available sand fly vectors.

Two distinct mechanisms for regulating Leishmania attachment to sand fly midgut epithelium have been identified to date (rev. in [1,6,7,8]). One mechanism, utilized in “selective” Phlebotomus papatasi sand flies that support the complete development of only a single Leishmania species, involves a sand fly midgut epithelium receptor that binds the parasite lipophosphoglycan (LPG) adhesin. LPG is an abundant glycolipid that covers the entire surface, including the flagellum, of all Leishmania promastigote stages [9]. The basic LPG structure is highly conserved in all Leishmania species, consisting of a glycosyl-phosphatidylinositol (GPI) anchor to which is attached a long polymer of 10–30 phosphoglycan (PG) repeating units (6Galβ1,4-Manβ1-PO4), and terminated by a small neutral oligosaccharide cap (rev. in [10,11]). The PG repeating units are often modified by strains-, species-, and developmental stage-specific modifications that have been implicated in the midgut attachment and release of several Leishmania species in their respective natural vectors [12,13,14,15]. A second, LPG-independent sand fly midgut binding mechanism was recently identified using LPG-deficient Leishmania and several “permissive” sand flies that support the development of a broad range of Leishmania species in the laboratory [2,7,8,16]. While the precise binding modality is uncertain, the involvement of vector glycans has been suggested [8,16]. Leishmania phosphoglycans and/or other LPG2-dependent molecule(s) are also required for parasite survival in “permissive” sand flies [8,17]. Thus sugars, in the form of surface glycoconjugates, are key players in the productive interactions between Leishmania and sand flies that are necessary for disease transmission. This is in agreement with the general principle that important surface interactions between many microbes and their hosts involve complex glycoconjugates binding to receptors (rev. in [18]).

In this study we focused on the interactions between Leishmania major promastigotes and Phlebotomus papatasi sand flies. Phlebotomus papatasi is a “selective” vector which, despite its wide distribution in regions endemic for transmission of several Leishmania species, transmits only Leishmania major in nature and in the laboratory (rev. in [1,2,3,4,6]). In this vector, specificity is controlled by a stage-specific modification in the LPG adhesin [6,12]. Midgut attachment is mediated by modified PG repeats bearing side chain β1,3 galactosyl residues (scGal), which form the ligand recognized by the midgut LPG receptor PpGalec identified in Jordan Valley strain P. papatasi [PpapJ] sand flies [19]. As L. major procyclic develops into infectious metacyclic forms, proyclic form LPG is shed and replaced by metacyclic form LPG, which has increased numbers of PG repeats and scGal residues masked by the addition of terminal arabinose “caps”; these modifications block binding to PpGalec receptors [19] and facilitate detachment from the midgut [19,20]. Laboratory infections established the requirement for scGal-LPG in PpapJ midgut survival: L. major mutants or Leishmania species expressing scGal-deficient LPG, or lacking LPG entirely, could not establish stable PpapJ infections [12,16,21,22,23,24] and bound poorly to isolated PpapJ midguts and recombinant PpGalec receptors in vitro [19].

Notably, geographically diverse L. major strains express very different LPG side chain galactosylation patterns [which we refer to hereafter as scGal-LPG PAMPs (Pathogen Associated Molecular Patterns), showing a Southwest-to-Northeast cline across its range from ‘null-scGal’ to ‘poly-scGal’ LPG PAMPs [23,25,26,27]; Cardoso et al., in preparation]. For example, Senegalese strain SD proyclic LPG has such low levels of single βGal modifications that it is effectively unmodified ‘null-scGal’ LPG PAMP [23] and this report. In contrast, Israeli strain FV1 proyclic LPG is highly modified with primarily single βGal residues (‘mono-scGal’ LPG PAMP; [27]), and Central Asian strain LV39 clone 5 (LV39c5) proyclic LPG is highly modified by long polymers of up to 8 βGal residues (‘poly-scGal’ LPG PAMP; [28,29]). Amongst these natural L. major strains, FV1 is sympatric with the “selective” P. papatasi PpapJ sand fly, while SD parasites are sympatric with P. duboisi, a closely related sibling species of P. papatasi (rev. in [3]).

Previously, we hypothesized that different scGal-LPG PAMPs resulted from the combined activity of the seven telomeric SCG (Side Chain Galactose) gene family members, which encode PG-side chain-β1,3-galactosyltransferases. SCGs exhibit different activities, combining to varying extents ‘initiating’ activities able to attach the first βGal residue to the basic PG repeat, and ‘elongating’ activities able to add additional βGal residues to the initiated βGal side chain ([30,31]; Dobson et al., in preparation). In this work, we made use of this suite of diverse SCG activities to engineer isogenic parasites bearing defined scGal-LPG PAMPs. Using both naturally-occurring L. major strains and SD-SCG transfected lines, we show that a specific scGal-LPG PAMP is optimal for long-term parasite survival in selective PpapJ sand flies, which preferred highly substituted scGal-LPG PAMPs bearing mono-galactosyl chains, neither “too short” nor “too long”. The “PpapJ-optimal” scGal-LPG PAMP was not sufficient, however, to enhance survival of L. donovani-SCG transfecteds in PpapJ sand flies. These findings lead us to propose a two-component model for long-term Leishmania survival in “selective” PpapJ sand flies: 1) a specific scGal-LPG PAMP recognized by PpGalec midgut receptors and 2) an as yet unidentified L. major species-specific factor(s).

Methods

Leishmania strains and transfactions

Leishmania major strain Friedlin V1 (FV1) is a clonal derivative of the Friedlin line (MHOM/IL/80/Friedlin), L. major strain LV39...
clone 5 (LV39c5) is a clonal derivative of the LV39 line (RHO/ SU/59/P). L. major strain SD 75.1 (SD) is a clonal derivative of the NIH/SD line (MHOM/SN/74/SD). L. donovani Sudanese strain 18-2D clone LaH (LaH) is a clonal derivative (MHOM/SD/80/18-2D), and L. mexicana strain M379 is a clonal derivative (MHOM/BZ/62/M379). All wild type (WT) lines showed good infectivity in animal models and in their natural sand fly vectors [24,32,33,34]. Cells were grown in complete M199 medium containing 10% heat-inactivated fetal bovine serum, penicillin (50 units/ml), streptomycin (50 μg/ml), HEPES pH 7.4 (40.5 mM), adenine (0.1 mM), biotin (0.001%), biotinper (2 μg/ml), and hemin (0.0005%), at 25°C as described [35]. Proacytic promastigotes were harvested from logarithmically growing cultures.

Promastigotes were transfected by electroporation, using a low voltage [35] or high voltage [36] protocol. Clonal lines were obtained by plating on semisolid M199 media containing the appropriate selective drug concentration: 50 μg/ml hygromycin B (HYG), 20 μg/ml pheolcyclin (PHLEO), 15 μg/ml G418 (NEO), or 100 μg/ml norsolethricin (SAT).

Molecular constructs and transfectants

L. major strain FV1 was the source of all SCG genes used in this study. Episomal expression constructs used here include the cosmid vector cLHYG (strain B900; [37]), pXK/NEO-SCG2 (B3900; [30]), SCG3 cosm1 B3979 [30], and pXG/NEO-LSAP1 (B3092; [34]). The integrating SCG open reading frame (ORF) constructs pIR1SAT-SCG1 (B5097), pIR1SAT-SCG3 (B5101), pIR1SAT-SCG4 (B5103), and pIR1SAT-SCG5 (B5170) were created as follows: SCG ORFs liberated by BamHI digestion of appropriate pXG/PHLEO-SCG ORF constructs [Dobson et al., in preparation] were ligated into the BglII restriction site of pIR1SAT (B3541; [36]). Each pIR1SAT-SCG construct was digested with SwaI restriction enzyme, dephosphorylated with calf alkaline phosphatase, and gel-purified to yield linear SSU::IR1SAT-SCG ORF targeting fragments for integration into the ribosomal RNA small subunit (SSU) locus by homologous recombination during transfection [36]. Integrated SCG transfectants are referred to by the gene name and location, i.e. SD-SSU/SCG3 has the FV1 strain SCG3 ORF (SSU::IR1satSCG3) integrated into the SD ribosomal SSU locus.

We used three Ld-transfectant lines developed previously [30]: a ‘null-scGal’ LPG PAMP line devoid of any LPG side chain modification, transfected with the episomal cosmid vector cLHYG (Ld-vecor); and two different lines exhibiting ‘mono-scGal’ LPG PAMPs, one transfected with SCG3 cosm1 B3979 (Ld-cSCG3), and a second transfected with the SCG2 ORF expression construct pXK-SCG2 (Ld-pSCG2).

Purification and analysis of LPG

LPG was prepared from exponentially-growing promastigotes as described [38]. To assess side chain modifications, phosphoglycan repeats were depolymerized using mild acid hydrolysis, dephosphorylated using E. coli alkaline phosphatase, covalently labeled with 1-aminopyrene-3,6,8-trisulfonate, and analyzed by Dionex HPLC chromatography [14] or capillary electrophoresis [39], comparing migration distances with oligomeric glucose standards.

Analysis of secreted acid phosphatase (SAP) levels

Proacytic promastigotes (5 × 10⁷/ml) were grown in complete M199 medium to a final density of 1 × 10⁷/ml. Culture supernatants were collected and centrifuged for 10 min at 2500 rpm in a Sorvall RT7000 centrifuge to remove cells and debris. 10 microliter samples of clarified culture supernatant were electrophoresed on a non-denaturing polyacrylamide gel and the gel then stained for SAP enzyme activity using α-naphthyl acid phosphate plus Fast Garnet GBC as described [40,41]. SAP was quantitated using the AlphaImager version 5.0 gel documentation system spot densitometry program (Alpha Innotech, San Leandro, CA).

Sand fly infection and dissection

Sand fly colonies were reared at the Division of Entomology, Walter Reed Army Institute of Medical Research and at the Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH. The following species were used in this study: Phlebotomus papatasi from colonies originating from the Jordan Valley (Ppap), Phlebotomus duboscqi from colonies originating from Mali (Pdub), and Phlebotomus argentipes from colonies originating from India (PargN).

Female 3- to 5-day-old sand flies were fed through a chck skin membrane using a feeding device containing a mixture of hepamin-treated mouse blood and logarithmic phase promastigotes, as described [24]. The concentration of promastigotes used varied depending on the experiment, from 1 × 10⁷ to 20 × 10⁷ parasites/ml. Blood-engorged sand flies were separated and maintained at 28°C with 30% sucrose (v/v). At various times after feeding, flies were anesthetized, their midguts dissected and homogenized, and the number of released midgut promastigotes counted using a hemocytometer as described [24].

Statistical analyses

Parasite numbers in the midguts of infected flies after blood meal excretion do not follow a Gaussian distribution. This is likely the result of flies within groups having either completely lost their infections or retained parasites that grow exponentially prior to the time of dissection. Therefore, data sets were compared using a nonparametric Mann Whitney test. Mann Whitney calculations were done using Prism 4 (Graphpad Software, Inc. San Diego, CA).

Results

Three natural L. major strains show varying patterns of LPG side chain galactosylation

LPGs from three geographically distinct L. major strain proacytic promastigotes were purified, subjected to mild acid hydrolysis and dephosphorylation, and isolated PG repeat structures assessed by capillary electrophoresis [Methods, Table S1]. Side-chain galactosylation can be characterized by two parameters: the fraction of PG repeats that were modified, and the number of βGal residues attached. In these studies we found two general patterns of LPG side chain galactosylation: one in which little or no βGal was added; and a second in which 50–90% of the PG repeats were modified, with varying numbers of βGal residues added. From these data we found it useful to calculate a single parameter for comparisons amongst lines, the “average scGal chain length”, obtained by multiplying the fraction of modified PG repeats times the average number of βGal residues added per modified repeat (Tables 1, S1).

Senegalese strain SD LPG was mostly unmodified (0.02 avg. scGal chain length), consistent with prior studies using specific antisera and lectins suggesting that SD LPG was largely unmodified [23]. In contrast, Israeli strain FV1 LPG was extensively modified with predominantly single βGal residues (0.8 avg. scGal chain length). Central Asian strain LV39c5 LPG was also highly modified, but with longer polymers of up to 8 βGal residues (3.1 avg. scGal chain length). We refer to these three prototypic LPG galactosylation patterns as ‘null-scGal’, ‘mono-
Table 1. Effect of LPG galactosylation pattern on *Leishmania* survival in "selective" *Phlebotomus papatasi* *Ppap* sand flies.

Leishmania line*	LPG-scGal modification frequency*	avg. scGal chain length*	scGal-LPG PAMP*	Ppap* survival post-blood meal expulsion		
				% infected flies*	relative parasites/midgut	average relative survival
WT FV1	71%	0.8	mono	96 ± 5	100	96 ± 5
WT LV39c5	93%	3.1	poly	61 ± 8	32 ± 8	20 ± 7
WT SD	2%	0.02	null	38 ± 4	41 ± 4	16 ± 1
SD-SSU:SCG3	2%	0.02	null	61 ± 1	14 ± 5	8 ± 3
SD:SCG3	68%	0.9	mono	90 ± 4	100 ± 37	89 ± 30
SD-SSU:SCG3	86%	1.3	mono	88 ± 12	91 ± 48	75 ± 31
SD-SSU:SCG1	56%	1.9	oligo	46 ± 9	36 ± 6	16 ± 1
SD-SSU:SCG4	54%	3.1	poly	49 ± 7	6 ± 1	3 ± 1
Ld-vector	0%	0	null	19 ± 19	4 ± 4	1 ± 1
Ld-cSCG3	65%	0.7	mono	8 ± 1	1 ± 1	0.2 ± 1
Ld-pSCG3	62%	1.1	mono	26 ± 26	4 ± 4	2 ± 2

*The *L. major* (FV1, LV39c5, SD) and *L. donovani* (Ld) wild-type ("WT") and transfectant lines used in experimental *Ppap* laboratory infections are described in the text, with supporting data in Tables S1 to S3 and Methods.

LPG-scGal modification frequency) is the percentage of modified PG repeats bearing terminal JGal side chains present in purified procyclic promastigote LPG samples.

The average length of JGal side chains in purified procyclic promastigote LPG, or "avg. scGal chain length", was calculated by multiplying “LPG-scGal modification frequency” × “mean scGal chain length”, using data in Table S1.

LPG galactosylation patterns, or ‘scGal-LPG PAMPs’, were classified by the average length of LPG JGal side chains (column 3): ‘null’, <0.1 JGal; ‘mono’, 0.7–1.3 JGals; ‘oligo’, 1.9 JGals; ‘poly’, ≥3 JGals.

% infected flies) is the average percentage (± SEM) of *Leishmania*-infected *Ppap* flies post-blood meal expulsion, calculated from data in Figs. 1A, 2, and Table S2, S3. Most lines were examined in two independent infections, except for WT FV1 (6 infections), and WT SD and Ld-cSCG3 (1 experiment each, "**").

Relative parasites/midgut) is the average number (± SEM) of parasites per midgut post-blood meal expulsion calculated relative to WT FV1 = 100, using data in Figs. 1, 2, 4, and Tables S2, S3. The average of two or more independent experiments is shown, except for WT SD and Ld-cSCG3 (1 experiment each, **"). Since WT FV1 was not included in this experiment, and *P. argentipes* *Parg* is the natural vector for Ld parasites, the number of Ld-cSCG3 promastigotes was calculated relative to Ld-vector-infected *Parg* flies.

The average relative survival) of parasites post blood-meal expulsion was calculated by multiplying “% infected flies” × “relative parasites/midgut” (column 7 × column 8). The average (± SEM) of two independent experiments is shown, except for WT FV1 (6 experiments) and WT SD and Ld-cSCG3 (1 experiment each, **"). Since WT FV1 was not included in this experiment, and *Parg* is the natural vector for Ld parasites, survival is relative to control Ld-vector-infected *Parg* flies.

doi:10.1371/journal.ppat.1001185.001

scGal’, and ‘poly-scGal’ LPG PAMPs (Pathogen-Associated Molecular Patterns), respectively. The results with *FV1* and LV39c5 confirmed and extended previous studies [27,28,29], and were undertaken to guard against changes in LPG side chain composition occurring during laboratory propagation, as described previously [25,42].

L. major survival in selective *Phlebotomus papatasi* *Ppap* sand flies requires a specific scGal-LPG PAMP

Ppap sand flies were fed on the indicated *L. major*-infec tive mouse blood and midgut infections were assessed 48 hr later, a time when parasites remain within the blood meal encased by the peritrophic membrane (Fig. 1A, “+ blood, d2”). At this time all three *L. major* strains showed high parasite numbers in most flies examined (≥33,000 parasites/midgut), with the highest numbers observed in flies infected with the SD strain, likely reflecting the faster generation time of this strain. Thus differences in the scGal-LPG PAMPs did not affect the early survival and growth of *L. major* promastigotes, as expected since even LPG-deficient parasites survive normally in sand flies during this interval [16,22,24].

By day 5 post-feeding, the sand fly peritrophic matrix disintegrates and the remains of the digested blood meal are expelled. At this time there were clear differences amongst the *L. major* strains in their ability to survive (Fig. 1A, “no blood, d5”). In agreement with previous studies [22,24], ‘mono-scGal’ FV1 persisted in most *Ppap* flies at high levels (82% flies infected, 16200±16600 parasites/midgut). In contrast, ‘poly-scGal’ LV39c5 survived poorly (33% flies infected, 3860±4840 parasites/midgut; p<0.013), as did ‘null-scGal’ SD, with the exception of two strongly-infected outliers (38% flies infected, 6660±18600 parasites/midgut; p<0.005). The poor survival of ‘null-scGal’ SD was expected, as un-galactosylated LPG cannot bind to midgut PpGalec receptors [19], resulting in unattached parasites being excrated with the digested blood meal remnants [21,24]. However, the poor *Ppap* survival of ‘poly-scGal’ LV39c5 (Fig. 1A,B; [24]) suggested that a specific scGal-LPG PAMP, rather than simply the presence of galactosylated LPG, controls *L. major* promastigote survival in *Ppap* midguts following blood meal expulsion.

Generation of isogenic *L. major* parasites bearing a range of scGal-LPG PAMPs

Since the three *L. major* strains studied here show an average nucleotide sequence divergence of 0.15% [43], comparable to that amongst many *L. major* strains, molecular differences other than scGal-LPG PAMPs were potentially responsible for the survival differences we observed in selective *Ppap* sand fly infections. To generate different scGal-LPG PAMPs in an isogenic scGal-deficient LPG background, we introduced into the SD line a series of constructs expressing members of the previously characterized SCG family of telomeric phosphoglycan-side chain-[B1,3]galactosyltransferases (PG-scGalT) [30,31] Critical to these studies is the fact that SCG-encoded PG-scGalT have different enzymatic properties mediating the addition of different
numbers of scGal residues, ranging from 0 to 12 ([30,31]; Dobson et al., in preparation). Thus, SD promastigotes were transfected with different SCG constructs, using either the episomal pXG-type vector which expresses passenger ORFs at moderate levels [37], episomal cosmids identified previously bearing SCG genes [30], or the integrating plIR1SAT vector which expresses passenger ORFs at high levels following integration into the ribosomal RNA small subunit (SSU) locus [36]. LPGs were purified from SD transfectants and LPG galactosylation patterns determined as described above (Methods); from these studies we chose a key set of SD-SCG lines exhibiting a range of scGal-LPG PAMPs (Tables 1, S1) briefly summarized here.

SD transfectants bearing an integrated catalytically inactive SCG3 ORF (SSU::IR1SAT-SCG3) synthesized scGal-deficient LPG indistinguishable from the parental WT SD line (‘null-scGal’ LPG PAMP; 0.02 avg. scGal chain length). Two SD transfectants expressed ‘mono-scGal’ LPG PAMPs; SD-cSCG3 (0.9 avg. scGal chain length), containing the episomal SCG3 cosmid B3979; and SD-SSU:SCG3 (1.3 avg. scGal chain length), containing an integrated SCG3 ORF (SSU::IR1SAT-SCG3). SD-SSU:SCG4 transfectants bearing an integrated SCG4 ORF (SSU::IR1SAT-SCG4) synthesized a ‘poly-scGal’ LPG PAMP (3.1 avg. scGal chain length). A novel ‘oligo-scGal’ LPG PAMP (1.9 avg. scGal chain length) was synthesized by SD-SSU:SCG1, which bears an integrated SCG1 ORF (SSU::IR1SAT-SCG1). Together these SD-transfectant scGal-LPG PAMPs spanned the natural range of L. major LPG side chain variation as well as providing new LPG galactosylation patterns for study.

To confirm that SD transfectants had not experienced a general non-specific loss of “sand fly virulence” during their generation and propagation in the laboratory, we examined their survival in two independent infections involving Phlebotomus duboscqi Pdub sand flies originating from Mali (Fig. S1 A,B). P. duboscqi is a sibling species of P. papatasi, and PdubM flies are able to support the full development of WT SD in the laboratory [23]. Although L. major survival in P. duboscqi is LPG-dependent, it is not strongly affected by scGal-LPG PAMPs since various ‘null-scGal’, ‘mono-scGal’, or ‘poly-scGal’ L. major strains have been shown to survive expulsion of the digested blood meal [8,17,22,44]. Female PdubM sand flies were allowed to feed on the indicated L. major-infected mouse blood containing ‘null-scGal’ (WT SD, SD-SSU:SCG5), ‘mono-scGal’ (WT FV1, SD-SSU:SCG3), ‘oligo-scGal’ (SD-SSU:SCG1), or ‘poly-scGal’ (SD-SSU:SCG4) promastigotes. As expected, all PdubM flies were successfully infected with high numbers of parasites at early time points (Fig. S1, “+ blood” panels). Following expulsion of the digested blood meal, PdubM flies infected with all L. major lines retained high numbers of midgut parasites (Fig. S1 “no blood” panels) and each line went on to establish fully mature infections in the PdubM anterior midgut by day 12 post-feeding (data not shown). These data argue against a general non-specific loss in the ability of SD-SCG transfectants to survive in the phlebotomine sand fly midgut environment.

Effect of scGal-LPG PAMPs on SD transfectant survival in “selective” Ppap sand flies

PpapJ flies were allowed to feed on the indicated L. major-infected mouse blood containing different scGal-LPG PAMPs. The results from two independent experiments are shown (Fig. 2A,B). At early times post-infection when the midgut blood meal was retained, all SD transfectants behaved similarly: 100% of PpapJ flies were infected with high numbers of promastigotes, similar to control ‘mono-scGal’ WT promastigotes. As expected, all PpapM flies survived well post-blood meal expulsion (Fig. 2A,B, “+ blood, d2”). However, we observed clear differences in PpapJ survival amongst SD lines expressing different scGal-LPG PAMPs after the digested blood meal had passed out of the midgut (Fig. 2A,B, “no blood, d5”; Tables 1, S2).

First, and as expected, SD-SSU:SCG5 transgenic parasites expressing a ‘null-scGal’ LPG PAMP survived poorly following blood meal excretion, with a 81–92% decrease in mean parasite numbers relative to control FV1-infected flies (p<0.0005), and 38–40% of PpapJ flies having lost their infections (Fig. 2A, “no blood, d5”).

Second, SD transfectants expressing ‘mono-scGal’ LPG PAMPs (SD-cSCG3, SD-SSU:SCG3) generally survived well post-blood meal expulsion (Fig. 2A,B, “no blood, d5”). Most flies remained infected, and mean SD-cSCG3 and SD-SSU:SCG3 parasite numbers (18600±4732, 18900±4900 and 18800±5100, 13200±4800 parasites/midgut, respectively) were not significantly different from control WT FV1 infections (13500±3500, 33000±4400 parasites/midgut). By contrast, ‘mono-scGal’ SD-cSCG3 survival was significantly enhanced relative to ‘null-scGal’...
SD-SSU:SCG5 (2560 ± 61720, p < 0.0004 and 2420 ± 600 parasites/midgut, p < 0.003; Fig. 2A,B). Although ‘mono-scGal’ SD-SSU:SCG3 survival was also enhanced relative to ‘null-scGal’ SD-SSU:SCG5, this difference reached significance in only one experiment (p < 0.0002 and p < 0.264; Fig. 2A,B).

Third, SD-SSU:SCG1 transfectants expressing a novel ‘oligo-scGal’ LPG PAMP survived poorly. Only 37–55% of SD-SSU:SCG1 flies remained infected post-blood meal expulsion and parasite levels (4120 ± 1940, 12500 ± 6300 parasites/midgut) were significantly reduced relative to control WT FV1-infected flies (p < 0.018 and p < 0.06; Fig. 2A,B). In fact, ‘oligo-scGal’ SD-SSU:SCG1 survival was not significantly better than observed for ‘null-scGal’ SD-SSU:SCG5 (p < 0.968 and p < 0.954; Fig. 2A,B).

Lastly, and consistent with the results from natural isolates, SD-SSU:SCG4 transfectants expressing a ‘poly-scGal’ LPG PAMP survived poorly. Only 42–56% of SD-SSU:SCG4 flies remained infected and parasite levels (683 ± 215, 2267 ± 831 parasites/midgut) were significantly decreased, 92–95% relative to control WT FV1 infections (p < 0.0007 and p < 0.0001, Fig. 2A,B). Thus ‘poly-scGal’ SD-SSU:SCG4 PpapJ survival was not significantly better than ‘null-scGal’ SD-SSU:SCG5 parasites.

These findings are summarized in Fig. 3, showing the relationship between relative PpapJ survival post-blood meal expulsion and the average scGal chain length in purified procyclic promastigote LPG. Isogenic SD-SSG transfectants whose LPG closely approximates the ‘mono-scGal’ LPG PAMP of the WT FV1 line (i.e. SD-cSSG3, SD-SSU:SCG3) clearly survived well in PpapJ sand flies. In contrast, isogenic SD transfectants expressing either scGal-deficient LPG (‘null-scGal’ SD-SSU:SCG5) or LPG with longer side chain polymers (‘oligo-scGal’ SD-SSU:SCG1, ‘poly-scGal’ SD-SSU:SCG4) survived poorly in PpapJ flies, mirroring infection outcomes with naturally-occurring L. major strains SD or LV39c5 (‘null-scGal’ or ‘poly-scGal’ LPG PAMPS, respectively). Together, these data firmly implicate the scGal-LPG PAMP causally in controlling the ability of PpapJ flies to support L. major midgut survival post-blood meal expulsion.

Are “PpapJ-optimal” scGal-LPG PAMPS sufficient to enhance PpapJ survival of a different Leishmania species?

The studies above established that a ‘mono-scGal’ LPG PAMP was necessary for L. major survival in selective PpapJ sand flies,
following blood meal expulsion. We next asked whether this scGal-LPG PAMP would be sufficient, by examining its effect on the \textit{Ppap}\textsubscript{J} survival of a different \textit{Leishmania} species. We chose \textit{L. donovani} Sudanese strain 1S-2D (\textit{Ld}) since these parasites possess unmodified LPG (‘null-scGal’ LPG PAMP; [11,45]) and have been shown to survive poorly in \textit{Ppap}\textsubscript{J} sand flies [12,24]. We used three \textit{Ld}-transfectant lines developed previously [30]: a ‘null-scGal’ line devoid of any side chain sugars (\textit{Ld-vector}, 0 avg. scGal length) and two different lines exhibiting ‘mono-scGal’ LPG PAMPs, \textit{Ld-c}SCG3 and \textit{Ld-p}SCG2 (0.7 and 1.1 avg. scGal chain length, respectively; Tables 1, S1).

When \textit{Ppap}\textsubscript{J} sand flies were fed on \textit{L. donovani}-infective mouse blood containing ‘null-scGal’ \textit{Ld-vector} or ‘mono-scGal’ \textit{Ld-c}SCG3 promastigotes, all flies were successfully infected with comparably high numbers of parasites when examined at a time when the midgut blood meal was present (Fig. 4A, \textit{Ppap}\textsubscript{J} ‘+ blood, d3’ panel). Thus, these parasites were able to survive well in the initial steps of sand fly infection. However, following expulsion of the blood meal at day 5 post-feeding, parasites from both of these lines were completely lost in 90% of \textit{Ppap}\textsubscript{J} flies, and those flies retaining infections had very low levels of parasites (180 and 125 parasites/midgut respectively; Fig. 4A, \textit{Ppap}\textsubscript{J} ‘no blood, d5’; Table S3). Thus, despite generation of the optimal highly substituted ‘mono-scGal’ LPG PAMPs, \textit{Ld-c}SCG3 and \textit{Ld-p}SCG2 (0.7 and 1.1 avg. scGal chain length, respectively; Tables 1, S1).

When \textit{Ppap}\textsubscript{J} sand flies were fed on \textit{L. donovani}-infective mouse blood containing ‘null-scGal’ \textit{Ld-vector} or ‘mono-scGal’ \textit{Ld-c}SCG3 promastigotes, all flies were successfully infected with comparably high numbers of parasites when examined at a time when the midgut blood meal was present (Fig. 4A, \textit{Ppap}\textsubscript{J} ‘+ blood, d3’ panel). Thus, these parasites were able to survive well in the initial steps of sand fly infection. However, following expulsion of the blood meal at day 5 post-feeding, parasites from both of these lines were completely lost in 90% of \textit{Ppap}\textsubscript{J} flies, and those flies retaining infections had very low levels of parasites (180 and 125 parasites/midgut respectively; Table S3). Thus, despite generation of the optimal highly substituted ‘mono-scGal’ LPG PAMP in the \textit{Ld-c}SCG3 line, survival in \textit{Ppap}\textsubscript{J} was not enhanced (Table 1). As a control, these \textit{Ld} transfectants were fed to \textit{P. argentipes} \textit{Parg}\textsubscript{IN}, a natural vector of \textit{Ld} transmission originating from India [12,24]. Previous studies have shown that midgut survival of both \textit{L. donovani} and \textit{L. major} in this “permissive” sand fly species is not strongly affected by LPG galactosylation patterns [8,12,24]. Due to the limited number of \textit{Parg}\textsubscript{IN} flies available for analysis, a single infection time point was analyzed comparing flies without blood meal remnants in the midgut on day 5 post-feeding. In contrast to the loss of midgut infections in \textit{Ppap}\textsubscript{J} flies, both \textit{Ld-vector} and \textit{Ld-c}SCG3 promastigotes persisted and were maintained a moderate infection intensity in most \textit{Parg}\textsubscript{IN} flies after the digested blood meal was expelled (88% or 78% infected flies; 11263 or 6822 parasites/midgut; Fig. 4A, \textit{Parg}\textsubscript{IN} ‘no blood, d5’, Table S3). These data argue against a

Figure 3. Relationship between \textit{L. major} scGal-LPG PAMPs and \textit{Ppap}\textsubscript{J} midgut survival post-blood meal expulsion. Relative survival of \textit{L. major} promastigotes in infected \textit{Ppap}\textsubscript{J} sand flies which have expelled their digested blood meal is plotted as a function of the average LPG scGal length, using data in Table 1. The average (±SEM) of two or more independent experiments is shown for \textit{FV1} (■), \textit{LV39c5} (▲), \textit{SD-SSU:SCG5} (open pentagon), \textit{SD-c}SCG3 (○), \textit{SD-SSU:SCG3} (□), \textit{SD-SSU:SCG1} (△), and \textit{SD-SSU:SCG4} (□). We include data here for \textit{SD} (●) from a single experiment, which is consistent with previous studies [21,23]. doi:10.1371/journal.ppat.1001185.g003

Figure 4. Expression of “\textit{Ppap}\textsubscript{J}-optimal” scGal-LPG PAMPs in \textit{L. donovani}-SCG transfectants does not improve survival in \textit{Ppap}\textsubscript{J} sand flies. Female sand flies were membrane fed on the indicated \textit{Leishmania}-infective mouse blood and the number of viable parasites per midgut determined on the indicated day post-feeding as described in Fig. 1. \textit{Ld} transfectant lines are described in the text, with additional data in Table S1. In panel A, \textit{P. papatasi} \textit{Ppap}\textsubscript{J} (“\textit{Ppap}\textsubscript{J}”) and \textit{P. argentipes} \textit{Parg}\textsubscript{IN} (“\textit{Parg}\textsubscript{IN}”) flies fed on infective blood containing \(10^6\) parasites per ml. In separate experiments, \textit{P. papatasi} \textit{Ppap}\textsubscript{J} flies fed on infective blood containing \(5 \times 10^6\) (panel B) or \(20 \times 10^6\) (panel C) parasites per ml. doi:10.1371/journal.ppat.1001185.g004
general non-specific loss in the ability of these Ld transfectants to survive in the phlebotomine sand fly midgut environment.

In separate experiments PpqJ flies were fed on Leishmania-infected mouse blood containing ‘null-scGal’ Ld-vector, ‘mono-scGal’ Ld-pSCG2, or control ‘mono-scGal’ WT L. major FV1 promastigotes (Fig. 4B,C). As expected, most PpqJ flies were infected with high numbers of parasites prior to expulsion of the blood meal, although the numbers of Ld-vector and Ld-pSCG2 were significantly less than control WT L. major FV1 (Fig. 4B ‘+ blood, d3’ panel). However, in PpqJ flies that had expelled their blood meal, neither Ld-vector nor Ld-pSCG2 survived (0% infected flies), whereas good survival was seen with the WT FV1 control (100% infected, 13200 parasites/midgut; Fig. 4B “no blood, d4” panel; Table S2). When PpqJ sand flies were infected with a 4-fold higher concentration of parasites to compensate for the diminished early growth of Ld transfectants compared to WT FV1, we again observed poor survival of both ‘mono-scGal’ Ld-pSCG2 and ‘null-scGal’ Ld-vector parasites after the midgut blood meal had been expelled (Fig. 4C ‘no blood, d5’ panel), despite massive parasite loads in midguts that retained their blood meals at day 3 post-feeding (Fig. 4C ‘+ blood, d3’ panel). Ld-vector and Ld-pSCG2 numbers were each significantly decreased relative to control WT FV1 (≥90%, p<0.001), although a higher percentage of PpqJ flies remained infected (38% of Ld-vector, 52% of Ld-pSCG2, 100% of WT FV1; Fig. 4C “no blood, d5” panel). These results are consistent with early observations regarding the ability of high concentration of promastigotes in the artificial blood meal to overcome the natural resistance of P. papatasi to infection with L. donovani [12,24,46]. Together, these data suggest that while necessary for survival and transmission of L. major in “selective” PpqJ sand flies, the ‘mono-scGal’ LPG PAMP alone is not sufficient to rescue L. donovani-SCG promastigotes in PpqJ sand flies during the critical time of blood meal expulsion.

Competition with high levels of scGal-modified secreted acid phosphatase (SAP) is unlikely to account for poor PpqJ survival of ‘mono-scGal’ Ld-SCG promastigotes

Unlike L. major, L. donovani and most other Leishmania species secrete high levels of acid phosphatases (SAPs) covalently modified by PG repeats [47,48,49]. Since PG repeats attached to SAP bear the same covalent side modifications as LPG PG repeats [29,41,50], ‘mono-scGal’ SAP could potentially compete for Ld-cSCG3 and Ld-pSCG2 promastigote binding to PpqJ midgut PpGalec receptors, thereby accounting for their failure to survive expulsion of the digested blood meal. To test this hypothesis, we engineered L. major FV1 to express high levels of SAP (Methods). High levels of active SAP were detected in the culture medium of all FV1-SCG transfectant lines, more than 1100 times higher than SAP levels in WT FV1 or control FV1-vector transfectant culture media and thus comparable to SAP levels secreted by L. donovani and other Leishmania species promastigotes (Table S4). However, in two independent experiments involving infections of PpqJ flies with L. major-infective mouse blood, FV1-SCG1 over-expressors survived as well as control FV1-vector promastigotes, both prior to and after expulsion of the digested blood meal (Fig. 5A,B ‘+ blood, d3’ and ‘no blood, d4’ panels, respectively). These data argue that competition with ‘mono-scGal’ SAP is unlikely to account for the poor PpqJ survival of Ld-SCG transfectants expressing the ‘mono-scGal’ LPG PAMP preferred by this sand fly.

Discussion

In this report we have studied the ability of parasites bearing different LPG side chain galactosylation PAMPs to interact with a

Figure 5. L. major FV1 promastigote survival in PpqJ infections is unaffected by over-expression of secreted acid phosphatase (SAP). Female PpqJ flies were membrane fed on the indicated L. major-infective mouse blood (4×10^6 parasites per ml) and the number of viable parasites per midgut determined on the indicated day post-feeding as described in Fig. 1. FV1-transfectant lines are described in the text, with additional data in Table S4. High levels of active SAP were detected in the culture medium of all FV1-SCG transfectants, but not in WT FV1 or FV1-vector lines (Table S4). Results from two independent experiments (panels A,B) are shown.

doi:10.1371/journal.ppat.1001185.g005

“selective” sand fly Leishmania host, Phlebotomus papatasi PpqJ originating from the Jordan Valley. Previous data have shown that galactosylated LPG plays a key role in mediating L. major midgut survival and binding in this sand fly species, and that binding was mediated by the PpqJ midgut LPG receptor PpGalec [12,19,21,24]. We show here first that this scGal-LPG PAMP is more complex than originally proposed, as only parasites bearing short ‘mono-scGal’ LPG PAMPs survived expulsion of the digested blood meal in infected PpqJ sand flies. This was shown using both natural L. major isolates exhibiting a wide range of scGal-LPG PAMPs (Fig. 1) and isogenic derivatives of the normally scGal-deficient L. major strain SD engineered to express different scGal-LPG PAMPs via transfection of different scG-encoded PG side-chain-[β1,3]galactosyltransferases (Fig. 2). Thus, like the fairy-tale character Goldilocks, PpqJ sand flies show an exquisite specificity for the “just right” ‘mono-scGal’ LPG PAMP, rejecting those scGal-LPG PAMPs that are either too “short” (‘null scGal’, <0.02 avg. scGal chain length) or too long” (‘oligo-scGal’ and ‘poly-scGal’; ≥1.9 avg. scGal chain length).

Several molecular scenarios may account for the inability of L. major promastigotes expressing ‘oligo-scGal’ or ‘poly-scGal’ LPG to survive expulsion of the blood meal in PpqJ flies. Since all PpqJ-
competent lines expressed LPG containing a high percentage of PG repeats bearing a single βGal residue (50–59%, Table S1), it seems likely that the low level of mono-galactosylated PG repeats in ‘oligo-scGal’ and ‘poly-scGal’ L. major lines (6–9%, Table S1) is not sufficient to mediate binding to PpGalec midgut receptors. An alternative, non-exclusive model considers interference by modified PG repeats decorated with long chains of poly-scGal residues, which could sterically interfere with the productive binding of the mono-galactosylated PG repeats. This latter model could be probed by testing parasites bearing LPG substitutions clustered differentially along the “backbone” of polymeric PG repeats; however, methods for engineering such parasites are not yet available.

Do scGal-LPG modifications control L. major “selectivity” in all Phlebotomus papatasi?

As noted earlier, many workers have grouped sand fly species according to their ability to support in experimental infections the survival (and, in some cases, experimental transmission) of a wide versus limited range of Leishmania species [7,8,12,16], with the former group termed “permissive” sand flies and the latter termed “selective” or “restricted”. The availability of Leishmania mutants specifically defective in LPG (through the deletion of the gene encoding the LPG-specific galactofuranosyltransferase LPG1) has shown that in general, “selective” sand fly species show a strong role for LPG in midgut survival and binding, while the “permissive” sand fly species show little LPG dependency [7,8,12,16,17,24]. Our panel of engineered and natural L. major, varying greatly in scGal-LPG modification, allowed us to compare the effects seen in a “selective” sand fly, P. papatasi PppJ, from the Jordan Valley, which showed a strong preference for ‘mono-scGal’ LPG PAMPs (Figs. 1–3).

Recently, we have completed studies of more than 15 L. major isolates that reveal a range in the extent of procyctic promastigote scGal-LPG modification, with a general clade proceeding from scGal-deficient ‘null-scGal’ LPG modification in West Africa to short chain ‘mono-scGal’ modification in the Middle East to long chain ‘poly-scGal’ modification in Central Asia (Cardoso et al., in preparation). Together with the findings presented here, the stage is now set for further explorations of the role of scGal-LPG PAMPs in L. major transmission in other natural settings. Since one natural P. papatasi sand fly vector in this geographic range showed differing abilities to support Leishmania growth which were dependent on scGal-LPG PAMPs (Figs. 1–3), it seems likely these may play an important role and perhaps even a driving force in the evolution of parasite/vector selectivity. For example, all Israeli L. major lines whose LPG has been characterized show ‘mono-scGal’ LPG PAMPs [V121 strain, avg. 1.1 scGal length; L380 strain, avg. 0.7 scGal length; calculated from data in [25,27]) and correspondingly, the ability of a P. papatasi PppJ colony established from wild caught flies from the Jordan Valley to support L. major midgut survival is strongly dependent on this scGal-LPG PAMP. In this respect it will be interesting to examine the properties of P. papatasi sand flies from Central Asia, including potential structural diversity in their PpGalec midgut LPG receptor, as L. major from this region typically elaborate a ‘poly-scGal’ LPG PAMP similar to that of LV39sc5 (Cardoso et al., in preparation). Our work demonstrating a geographical origin-based specificity between PppJ sand fly vector and L. major strains also complements the work of Elfari et al. [51] who demonstrated evidence for genetic and biological diversity in L. major strains that correlated with geographical origin and their ability to infect only sympatric animal reservoir hosts.

“PppJ-optimal” scGal-LPG modifications are not sufficient to confer PppJ midgut survival to L. donovani

While expression of appropriate scGal-LPG PAMPs is necessary for the survival of L. major in the PppJ sand fly midgut, is it sufficient? We tested this by engineering the ‘mono-scGal’ LPG PAMP into a Sudanese strain of L. donovani which normally expresses a completely unmodified LPG coat [43]. We showed by biochemical analyses and agglutination tests (Table S1, [30,31]) that the engineered scGal-LPG PAMPs in L. donovani-SCG transfectants were faithful replicas of L. major ‘mono-scGal’ LPG PAMPs synthesized by natural WT L. major FV1 and engineered SD-SCG3 transfectants, all of which exhibited robust long-term survival in PppJ laboratory infections (Tables 1, S2). However, L. donovani-SCG lines bearing a ‘mono-scGal’ LPG surface coat remained unable to survive following expulsion of the blood meal in infected PppJ flies (Fig. 4; Tables 1, S2, S3).

We then explored several possible mechanisms that could account for the failure of L. donovani bearing a L. major FV1 LPG “surface” to survive. First was the possibility that secretion of scGal-modified acid phosphatases (SAPs, [47,48,30]) competed for LPG-dependent midgut binding and parasitie survival. While SAP-deficient L. donovani are not available, reconstruction experiments in L. major FV1 promastigotes expressing high levels of PG-modified SAPs (Fig. 5, Table S4) failed to reveal any alterations in PppJ survival. Thus, competition by L. donovani scGal-SAP is unlikely to account for the failure of Lg-SCG promastigotes to survive in PppJ midguts. A second reason was that the engineered ‘mono-scGal’ L. donovani were unable to withstand PppJ midgut conditions, since early killing of L. donovani promastigotes in the P. papatasi midgut has been reported [52]. In fact, in comparison to the sympatric L. major FV1 strain, the L. donovani lines showed reduced growth in the early blood fed midgut (Fig. 4B), due either to their slower generation times, and/or their greater sensitivity to midgut digestive enzymes. Nevertheless, when the differences in the concentration of parasites present prior to blood meal eXcretion were overcome by initiating infection with a high dose inoculum, the L. donovani lines were still largely absent in flies that had passed their blood meals (Fig. 4C). Furthermore, L. donovani transfectants were able to survive within the midgut of P. argentipes PppJN sand flies (Fig. 4A). Importantly, survival in this sand fly species cannot be attributed simply to a more permissive midgut environment, as P. argentipes restricts survival of L. donovani-SCG lines which lack LPG and other PGs, evidence of a strongly hydrolytic midgut environment [8,24]. These data argue that the inability of WT or engineered L. donovani lines to survive in PppJ sand flies is not due to an inability to withstand the midgut environment, and the timing of the loss of infection is consistent with their failure to attach to the midgut.

Additional factors may be required to mediate Leishmania - sand fly midgut interactions

Thus, while specific scGal-LPG PAMPs are necessary for L. major persistence and midgut binding during expulsion of the blood meal in PppJ flies, the inability of L. donovani expressing the appropriate L. major scGal-LPG PAMP to survive in the same fly strain suggests most simply that this interaction, while necessary, is not sufficient for midgut attachment. This in turn would argue that an additional parasite ligand(s) must be required, one shared in the closely related L. major strains but lacking in L. donovani, which diverged from L. major >80 million years ago [53]. In this model, generation of proper scGal-LPG PAMPs in L. major SD would be sufficient to promote survival, since L. major strains would retain this second L. major-specific interaction; but insufficient in L. donovani, where the second interaction was absent due to
evolutionary divergence or loss. In contrast to *Ld-SCG* transfectants, which “inherited by transfection” only the *scGal*-dependent ligand, the enhanced *P. papatasi* survival of *L. major* - *L. major* hybrids observed by Volf *et al.* (relative to *L. infantum*; [54]) is thus predicted to result from the inheritance of both *L. major*-specific *scGal*-dependent and -independent ligands.

Whether this postulated second interaction is mediated through a second species-specific receptor for LPG, or an LPG-independent ligand such as the one proposed by Myskova *et al.* to control midgut binding of certain *Leishmania* species in “permissive” sand fly vectors ([8], [16]), is unknown. Perhaps the *PpgN* ‘mono-scGal’ LPG midgut receptor PpGalec collaborates with a co-receptor, similar to the interactions of certain other pattern recognition receptors such as Toll-like receptors (TLR1/2/6) with each other or with other receptors (Dectin-1, CD14, TLR4; reviewed in [55,56]).

This putative species-specific co-receptor may be especially relevant to the interaction of *L. major* strains with *P. duboisi* sand flies. This vector, while unable to support the survival of *L. major* lines completely deficient in LPG biosynthesis ([8,22,44]), is not sensitive to differences in *L. major* LPG galactosylation patterns (Fig. S1) and naturally transmits *L. major* strains in West Africa bearing effectively ‘null-scGal’ LPG. Nonetheless, *P. duboisi* is a “selective” vector, permitting only the development of *L. major* in experimental infections ([8], Sacks *et al.*, unpublished). These data suggest that the few interactions between predicted *P. duboisi* PpGalec midgut LPG receptors [19] and the low number of mono-galactosylated PG repeats in WT SD LPG (2%, Table S1) is sufficient to mediate parasite attachment to the *PthuM* midgut epithelium, in concert with a second *L. major*-specific midgut binding interaction that is especially strong in this particular sand fly species. It is also possible that a *scGal*-independent ligand present on *L. major* LPG binds to the alternative receptor and is a sufficient interaction to maintain infection in the *PthuM* vector. When the factor(s) controlling parasite LPG-independent binding and survival of *Leishmania* in “selective” and “permissive” sand fly species becomes known, it should be possible to test these hypotheses.

Supporting Information

Figure S1 Survival of natural and isogenic lines of *L. major* in *P. duboisi*, the natural vector of *L. major* in West Africa, is independent of *scGal*-LPG PAMPs. Female *P. duboisi* sand flies originating from Mali (*PthuM*) were fed on the indicated *L. major*-infective mouse blood and the number of viable parasites per midgut determined on the indicated day post-feeding, as described in Fig. 1. SD-transfectant lines are described in the text, with additional data in Fig. 2 and Table S1. Infective mouse blood contained 5x 10⁶ (panel A) or 4 x 10⁵ (panel B) parasites per ml. Results from two independent experiments are shown.

Found at: doi:10.1371/journal.ppat.1001155.s001 (0.32 MB TIF)

Table S1 *scGal*-LPG profiles of *Leishmania* lines used in this study.

Found at: doi:10.1371/journal.ppat.1001185.s002 (0.33 MB DOC)

Table S2 *P. papatasi* *PpgN* sand fly infection outcomes after expulsion of the digested blood meal.

Found at: doi:10.1371/journal.ppat.1001185.s003 (0.06 MB DOC)

Table S3 Comparative outcomes in *P. papatasi* *PpgN* and *P. argentipes* *PargN* infections after expulsion of the digested blood meal.

Found at: doi:10.1371/journal.ppat.1001185.s004 (0.03 MB DOC)

Table S4 Secreted acid phosphatase (SAP) levels in *Leishmania* procyclic promastigote culture medium.

Found at: doi:10.1371/journal.ppat.1001185.s005 (0.03 MB DOC)

Acknowledgments

We thank Kelli Valdez, Elena Bukanova, Lon-Fye Lye, and John Stansbury for technical assistance, and past and present members of the Beverley and Sacks laboratories for helpful discussions.

Author Contributions

Conceived and designed the experiments: DED SMB DLS. Performed the experiments: DED SK PL SJT DLS. Analyzed the data: DED SJT SMB DLS. Wrote the paper: DED SMB DLS.

References

1. Bates PA (2008) *Leishmania* sand fly interaction: progress and challenges. Curr Opin Microbiol 11: 349–344.
2. Volf P, Hrstomská J, Rohousova I (2008) Molecular Crosstalks in *Leishmania*-Sandfly-Host Relationships. Parasite 15: 237–243.
3. Sacks DL, Lawyer P, Kamhawi S (2008) The biology of *Leishmania* – sand fly interactions. In: Myler PJ, Fasel N, eds. *Leishmania*. Norwich, UK: Caister Academic Press. pp 205–238.
4. Kamhawi S (2006) Phlebotomine sand flies and *Leishmania* parasites: friends or foes? Trends Parasitol 22: 439–445.
5. Oliveira F, Jochim RC, Valenzuela JG, Kamhawi S (2009) Sand flies, *Leishmania*, and transcriptome-borne solutions. Parasitol Int 58: 1–5.
6. Sacks DL (2001) *Leishmania*-sand fly interactions controlling species-specific vector competence. Cell Microbiol 3: 189–196.
7. Volf P, Mykola J (2007) Sand flies and *Leishmania*: specific versus permissive vectors. Trends Parasitol 23: 91–92.
8. Svarova F, Ant TH, Selbova V, Jecná L, Beverley SM, et al. (2010) *Leishmania major* glycosylation mutants require phosphoglycan (Ipg-2) but not lipophosphoglycan (Ipg-1) for survival in permissive sand fly vectors. PLoS Negl Trop Dis 4: e580.
9. Pimenta PF, Saraiva EM, Rowton E, Modi GB, Garraway LA, et al. (1994) Evidence that the vectorial competence of phlebotomine sand flies for different species of *Leishmania* is controlled by structural polymorphisms in the surface lipophosphoglycan. Proc Natl Acad Sci U S A 91: 9155–9156.
10. Kamhawi S, Modi GB, Pimenta PF, Rowton E, Sacks DL (2000) The vectorial competence of *Phlebotomus argentipes* is specific for *Leishmania tropica* and is controlled by species-specific, lipophosphoglycan-mediated midgut attachment. Parasitol- ogy 121(Pt 1): 25–33.
11. Mahoney AB, Sacks DL, Saraiva E, Modi G, Turco SJ (1999) Intraspecies and stage-specific polymorphisms in lipophosphoglycan structure control *Leishmania donovani*-sand fly interactions. Biochemistry 38: 5013–5023.
12. Soares RP, Barron T, McCoy-Simandle K, Svobodova K, Swobodova M, Warburg A, et al. (2004) *Leishmania tropica*: intraspecific polymorphisms in lipophosphoglycan correlate with transmission by different *Phlebotomus* species. Exp Parasitol 107: 105–114.
13. Myskova J, Svobodova M, Beverley SM, Volf P (2007) A lipophosphoglycan-independent development of *Leishmania* in permissive sand flies. Microbes Infect 9: 317–324.
14. Secundino N, Kimblin N, Peters NC, Lawyer P, Capul AA, et al. (2010) Protophosphoglycan confers resistance of *Leishmania major* to midgut digestive enzymes induced by blood feeding in vector sand flies. Cell Microbiol 12: 906–918.
15. Lloyd DH, Viae J, Werling D, Remé CA, Gatto H (2007) Role of sugars in surface micro-host interactions and immune reaction modulation. Vet Dermatol 18: 197–204.
16. Kamhawi S, Ramalho-Ortigao M, Pham VM, Kumar S, Lawyer PG, et al. (2004) A role for insect galectins in parasite survival. Cell 119: 329–341.
20. Pimenta PF, Turco SJ, McConville MJ, Lawyer PG, Perkins PV, et al. (1992) Stage-specific adhesion of Leishmania promastigotes to the sandfly midgut. Science 256: 1812–1815.

21. Butcher BA, Turco SJ, Hilty BA, Pimenta PF, Pananzio M, et al. (1996) Deficiency in β-3-galactosyltransferase of a Leishmania major lipophosphoglycan mutant adversely influences the Leishmania-sand fly interaction. J Biol Chem 271: 20573–20579.

22. Cihakova J, Volf P (1997) Development of different Leishmania major strains in the vector sandflies Phlebotomus papatasi and P. duboscqi. Ann Trop Med Parasitol 91: 267–279.

23. Joshi PB, Sacks DL, Modi G, McMaster WR (1998) Targeted gene deletion of Leishmania major genes encoding developmental stage-specific leishmanialins (GLP). Mol Microbiol 27: 519–530.

24. Sacks DL, Modi G, Rowton E, Spath G, Epstein L, et al. (2000) The role of phosphoglycans in Leishmania-sand fly interactions. Proc Natl Acad Sci U S A 97: 406–411.

25. McConville MJ, Schlun LF, Jaffe C, Schneider P (1995) Structure of Leishmania lipophosphoglycan: inter- and intra-specific polymorphism in Old World species. Biochem J 310: 807–818.

26. McConville MJ, Thomas-Oates JE, Ferguson MA, Homans SW (1990) Structure of the lipophosphoglycan from Leishmania. J Biol Chem 265: 19611–19623.

27. McConville MJ, Turco SJ, Ferguson MA, Sacks DL (1992) Developmental modification of lipophosphoglycan during the differentiation of Leishmania major promastigotes to an infectious stage. Embo J 11: 3593–3600.

28. Dobson DE, Mengeling BJ, Càmi S, Hickerson S, Turco SJ, et al. (2003) Identification of genes encoding arabinosyltransferases (SCG) mediating developmental modifications of lipophosphoglycan (LPG) required for sand fly transmission of Leishmania major. J Biol Chem 278: 20840–20848.

29. Capul AA, Barron T, Dobson DE, Turco SJ, Beverley SM (2007) Two functionally divergent UDP-Gal nucleotide sugar transporters participate in phosphoglycan synthesis in Leishmania major. J Biol Chem 282: 14006–14017.

30. Dobson DE, Scholtes LD, Valdez KE, Sullivan DR, Mengeling BJ, et al. (2003) Functional identification of galactosyltransferases (SGs) required for species-specific modifications of the lipophosphoglycan adhesin controlling Leishmania major-sand fly interactions. J Biol Chem 278: 15523–15531.

31. Dobson DE, Scholtes LD, Myler PJ, Turco SJ, Beverley SM (2006) Genomic organization and expression of the expanded SG/L/LR gene family of Leishmania major: internal clusters and telomeric localization of SGs mediating species-specific LPG modifications. Mol Biochem Parasitol 146: 231–241.

32. Anderson CF, Mendez S, Acklin S, Hickerson S, Turco SJ, et al. (2005) Nonfulminating infection despite Th1 polarization produced by a strain of Leishmania major in C57BL/6 mice. J Immunol 174: 2934–1941.

33. Kimblin N, Peters N, Debrabant A, Secundino N, Egen J, et al. (2008) Quantiﬁcation of the infectious dose of Leishmania major transmitted to the skin by single sand flies. Proc Natl Acad Sci U S A 105: 10125–10130.

34. Spath GF, Epstein L, Leader B, Singer SM, Avila HA, et al. (2000) Lipophosphoglycan is a virulence factor distinct from related glycoconjugates in the protozoan parasite Leishmania major. Proc Natl Acad Sci U S A 97: 9256–9263.

35. Kapler GM, Coburn CM, Beverley SM (1990) Stable transfection of the human parasite Leishmania delineates a 30 kb region sufficient for extra-chromosomal replication and expression. Mol Cell Biol 10: 1084–1094.

36. Robinson KA, Beverley SM (2003) Improvements in transfection efficiency and tests of RNA interference (RNAi) approaches in the protozoan parasite Leishmania. Mol Biochem Parasitol 129: 217–228.

37. Ha DS, Schwarz JK, Turco SJ, Beverley SM (1996) Use of the Green Fluorescent Protein as a marker in transfected Leishmania. Molec Biochem Parasitol 77: 57–64.

38. Orlanski PA, Jr, Turco SJ (1987) Structure of the lipid moiety of the Leishmania donovani lipophosphoglycan. J Biol Chem 262: 10394–10391.

39. Barron TL, Turco SJ (2006) Quantitation of Leishmania lipophosphoglycan repeat units by capillary electrophoresis. Biochem Biophys Acta 1760: 710–714.

40. Kataoka K, Kobayashi A (1998) Acid phosphatase activity of virulent and avirulent clones of Leishmania donovani promastigotes. Infect Immun 66: 2856–2860.

41. Zufferey R, Allen S, Barron T, Sullivan DR, Dewey PW, et al. (2003) Either phospholipids and glycosylphosphatidylcholines are not required for amastigote virulence or for inhibition of macrophage activation by Leishmania major. J Biol Chem 278: 44708–44718.

42. da Silva R, Sacks DL (1987) Metacyclogenesis is a major determinant of Leishmania promastigote virulence and attenuation. Infect Immun 55: 2092–2096.

43. Akopyants NS, Kimblin N, Secundino N, Patrick R, Peters N, et al. (2009) Demonstration of genetic exchange during cyclical development of Leishmania in the sand fly vector. Science 324: 265–268.

44. Boulanger N, Lovenbergher C, Volf P, Urlic J, Sigutova L, et al. (2004) Characterization of a defense from the sand fly Phlebotomus duboscqi induced by challenge with bacteria or the protozoan parasite Leishmania major. Infect Immun 72: 7140–7146.

45. Sacks DL, Pimenta PF, McConville MJ, Schneider P, Turco SJ (1995) Stage-specific binding of Leishmania donovani to the sand fly vector midgut is regulated by conformational changes in the abundant surface lipophosphoglycan. J Exp Med 181: 655–657.

46. Adler SJ O (1927) The behaviour of cultures of Leishmania sp. in Phlebotomus papatasi. Annals of Tropical Medicine and Parasitology 21: 111–134.

47. Lippert DN, Dwyer DW, Li P, Olafsen RW (1999) Phosphorysyglycosylation of a secreted acid phosphatase from Leishmania donovani. Glycobiology 9: 627–636.

48. Shokrani AM, Dwyer DM (2000) Structurally conserved soluble acid phosphatases are synthesized and released by Leishmania major promastigotes. Exp Parasitol 95: 79–84.

49. Shakarian AM, Joshi MR, Yamage M, Ellis SL, Debrabant A, et al. (2003) Members of a unique histidine acid phosphatase family are conserved amongst a group of primitive eukaryotic human pathogens. Mol Cell Biochem 245: 31–41.

50. Wiese M, Iig T, Lottesfield F, Overath P (1995) Ser/Thr-rich repetitive motifs as targets for phosphoglycan modifications in Leishmania mexicana secreted acid phosphatase. Embo J 14: 1067–1074.

51. Eltari M, Schlun LF, Streilkova MV, Eisenberger CL, Jacobsen RL, et al. (2005) Genetic and biological diversity among populations of Leishmania major from Central Asia, the Middle East and Africa. Microbes Infect 7: 93–103.

52. Schleyn Y, Jacobsen RL (1998) Resistance of Phlebotomus papatasi to infection with Leishmania donovani is modulated by components of the infective bloodmeal. Parasitology 117: 467–473.

53. Tuon FF, Neto VA, Amato VS (2008) Leishmania: origin, evolution and future since the Precambrian. FEMS Immunol Med Microbiol 54: 158–166.

54. Volf P, Benkova I, Myskova J, Sadlova J, Campino L, et al. (2007) Increased transmission potential of Leishmania major/Leishmania infantum hybrids. Int J Parasitol 37: 598–593.

55. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11: 373–384.

56. Lee MS, Kim YJ (2007) Signaling pathways downstream of pattern-recognition receptors and their cross talk. Annu Rev Biochem 76: 447–480.