BROWN MEASURE OF THE SUM OF AN ELLIPTIC OPERATOR AND A FREE RANDOM VARIABLE IN A FINITE VON NEUMANN ALGEBRA

PING ZHONG

ABSTRACT. Given a $n \times n$ random matrix X_n with i.i.d. entries of unit variance, the circular law says that the empirical spectral distribution (ESD) of X_n/\sqrt{n} converges to the uniform measure on the unit disk. Let M_n be a deterministic matrix that converges in $*$-moments to an operator x_0. It is known from the work by Śniady and Tao–Vu that the ESD of $X_n/\sqrt{n} + M_n$ converges to the Brown measure of $x_0 + c$, where c is Voiculescu’s circular operator. We obtain a formula for the Brown measure of $x_0 + c$ which provides a description of the limit distribution. This answers a question of Biane–Lehner for arbitrary operator x_0.

Generalizing the case of circular and semi-circular operators, we also consider a family of twisted elliptic operators that are $*$-free from x_0. For an arbitrary twisted elliptic operator g, possible degeneracy then prevents a direct calculation of the Brown measure of $x_0 + g$. We instead show that the whole family of Brown measures are the push-forward measures of the Brown measure of $x_0 + c$ under a family of self-maps of the plane, which could possibly be singular. We calculate explicit formula for the case x_0 is selfadjoint. In addition, we prove that the Brown measure of the sum of an t-diagonal operator and a twisted elliptic element is supported in a deformed ring where the inner boundary is a circle and the outer boundary is an ellipse.

These results generalize some known results about free additive Brownian motions where the free random variable x_0 is assumed to be selfadjoint. The approach is based on a Hermitian reduction and subordination functions.

CONTENTS

1. Introduction 2
 1.1. Brown measure of free random variables and random matrices 3
 1.2. Statements of the results 4
 1.3. Discussions on methodologies 6
2. Preliminaries 8
 2.1. Free probability and subordination functions 8
 2.2. The Brown Measure 9
 2.3. Hermitian reduction method for the sum of two free random variables 10
2.4. The elliptic operator and the operator-valued semicircular element 12
3. The Fuglede–Kadison determinant and subordination functions 13
 3.1. Subordination functions in free convolution with a semicircular distribution 13
 3.2. Convergence of subordination functions 15
 3.3. The operator-valued subordination functions 17
 3.4. The coupling Fuglede–Kadison determinants 20
4. Brown measure of addition with a circular operator 24
 4.1. The density formula in the domain Ξ_t 24
 4.2. The support of the Brown measure of $x_0 + c_t$ 27

Supported in part by Collaboration Grants for Mathematicians from Simons Foundation.
1. INTRODUCTION

1.1. Brown measure of free random variables and random matrices. Let M be a von Neumann algebra with a faithful, normal, tracial state ϕ. The Fuglede-Kadison determinant of $x \in M$ is defined by

$$\Delta(x) = \exp \left(\int_0^\infty \log t d\mu_{|x|}(t) \right),$$

where $\mu_{|x|}$ is the spectral measure of $|x|$ with respect to ϕ. Brown [16] proved that the function $L_x(\lambda) = \log \Delta(x - \lambda 1)$ is a subharmonic function whose Riesz measure is the unique, compactly supported probability measure μ_x on \mathbb{C} with the property that

$$\log \Delta(x - \lambda 1) = \int_{\mathbb{C}} \log |z - \lambda| d\mu_x(z), \quad \lambda \in \mathbb{C}.$$

The measure μ_x is called the Brown measure of x. In other words, μ_x is the distributional Laplacian of the function $L_x(\lambda)$.

Voiculescu’s free probability theory is a suitable framework to describe the limits of the joint distribution of a family of random matrix models [47]. The convergence of $*$-mixed moments of suitable random matrix models have been studied well. The $*$-mixed moments of free random variables can be described using either analytic or combinatorial tools. For non-normal random matrix models, very little is known about the limit of the empirical spectral distribution (ESD) of a polynomial of independent random matrices, even for the sum or product of two random matrices. The Brown measure of an operator in M is an analogue of eigenvalue distribution of a finite dimensional matrix. The Brown measures of the sum or product or a polynomial of free random variables are natural candidates for the limits of the ESD of the sum or product or a polynomial of suitable random matrix models as the size of the matrices tends to infinity.

Let X_n be an $n \times n$ random matrix whose entries are independent identically distributed copies of a complex random variable with zero mean and unit variance. The circular law says that the ESD of X_n / \sqrt{n} converges weakly to the uniform measure on the unit disc which is also the Brown measure of Voiculescu’s circular operator, denoted by c. The circular law was established in the 1960s by Ginibre [23] for Gaussian distributed entries.
and was proved by Tao and Vu \cite{46} under the minimal assumptions after a long list of partial progresses (see \cite{15} and references therein). In fact, Tao and Vu proved results stronger than circular law. In particular, they showed the existence of the limit of the summation $X_n/\sqrt{n} + M_n$ where M_n is a deterministic $n \times n$ matrix satisfying some technical conditions. In \cite{44}, Śniady showed that the ESD of $X_n/\sqrt{n} + M_n$ converges to the Brown measure of $x_0 + c$ provided that X_n is a Ginibre ensemble and M_n converges in $*$-moments to x_0. Hence, by combining Tao–Vu’s replacement principle \cite{46} Section 2, we conclude that the ESD of $X_n/\sqrt{n} + M_n$ converges to the Brown measure of $x_0 + c$ under the minimal requirements on X_n when M_n converges in $*$-moments to x_0.

In the above-cited paper, Tao and Vu did not pursue what the limit actually is (see \cite{46} Theorem 1.17) and they mentioned that the limit distribution ESD of $X_n/\sqrt{n} + M_n$ was established in a work of Krishnapur–Vu for the case where M_n is a diagonal matrix (equivalently, x_0 is a normal operator as the limit) and X_n is a Ginibre ensemble. But that work has not appeared even as a preprint (communicated with Krishnapur). The case when x_0 is selfadjoint was known in the author’s joint work with Ho \cite{30} using PDE methods. The density formula when x_0 is a Gaussian distributed normal operator was established in a work of Bordenave-Caputo-Chafaï \cite{14} Theorem 1.4 using random matrix techniques. Their method can be extended to all normal operators \cite{13}. Here we study the Brown measure of the sum of free circular operator and a $*$-free random variable x_0 with an arbitrary distribution, not necessarily normal, which finishes the description of the limit ESD of $X_n/\sqrt{n} + M_n$. The present work answers an earlier question of Biane–Lehner \cite{12} Section 5 in general case.

The twisted elliptic operators generalize circular operator, semi-circular operator and elliptic operator. Let c_t be a circular operator with variance t, and let $g_{t,\gamma}$ be a twisted elliptic operator, and let x_0 be an operator $*$-free from $\{c_t, g_{t,\gamma}\}$. The calculation of the Brown measure of $x_0 + g_{t,\gamma}$ is more involved than $x_0 + c_t$ because there is possibly degeneracy. We show that there is a fundamental connection between the Brown measure of the addition of a free circular operator with a free random variable and the Brown measure of the sum of an elliptic operator with the same free random variable, in the following sense: the Brown measure of $x_0 + g_{t,\gamma}$ is the push-forward measure of the Brown measures of $x_0 + c_t$ under a natural self-map of the complex plane, which can be constructed explicitly. We calculate explicit density Brown measure formulas for the case where x_0 is selfadjoint. In addition, we describe the Brown measure of the sum of an R-diagonal operator and a twisted elliptic element. In this case, the Brown measure is supported in a deformed ring where the inner boundary is a circle and the outer boundary is an ellipse. This can be viewed as a deformation of the limit distribution in the single ring theorem \cite{24} in random matrix theory.

The present work extends previous results \cite{12,30,34,35} for the sum of a selfadjoint operator with a circular operator or a (non-twisted) elliptic operator. All these work rely on some PDE methods and did not explain why subordination functions appeared in the Brown measure formulas. We use a completely different approach based on Hermitian reduction and subordination functions. The new method provides a conceptual explanation how subordination functions play a key role. The method and subordination results developed in this paper are likely to be useful in the study of non-normal random matrices, in particular for various deformed random matrix models. For instance, the main results obtained in our work were used in a recent preprint of Hall-Ho \cite{32} Section 2.2], where they proposed conjectures relating empirical eigenvalue distributions of deformed i.i.d. random matrix model with elliptic random matrix model.
1.2. Statements of the results. Let \(g_t, \gamma \) be a twisted elliptic operator with parameters \(t > 0 \) and \(\gamma \in \mathbb{C} \) such that \(|\gamma| \leq t \) (see Section 2.4 for the definition). Such operator has the same distribution as an operator of the form \(e^{i\theta}(s_1 + is_2) \) where \(\theta \in [0, 2\pi] \), and \(s_1, s_2 \) are semicircular operators that are freely independent in the sense of Voiculescu. The case when \(\gamma = t \), the operator \(g_t, \gamma \) is the semicircular operator \(g_t \) with mean zero and variance \(t \), and the case when \(\gamma \in \mathbb{R} \) the operator \(g_t, \gamma \) is an elliptic operator.

Let \(x_0 \in \mathcal{M} \) be a random variable that is free from \(\{c_t, g_t, \gamma\} \). We show that the Brown measure of \(x_0 + c_t \) can be calculated directly using subordination functions in free probability. The Brown measure of \(x_0 + g_t, \gamma \) is not calculated directly. Instead, we show that there is a natural push forward map between the Brown measure of \(x_0 + c_t \) and the Brown measure of \(x_0 + g_t, \gamma \). Our main results extends previous work \([30, 34, 35]\) and are also applicable to non-selfadjoint operators.

To describe our main results, we need some terminology. Fix \(t > 0 \) and \(x_0 \in \mathcal{M} \). Consider the open set (see Proposition 3.1)

\[
\Xi_t = \left\{ \lambda \in \mathbb{C} : \phi \left[\left((x_0 - \lambda \mathbf{1})^*(x_0 - \lambda \mathbf{1}) \right)^{-1} \right] > \frac{1}{t} \right\}.
\]

Fix \(\lambda \in \Xi_t \) and let \(w = w(0; \lambda, t) \) be a function of \(\lambda \) taking positive values such that

\[
\phi((x_0 - \lambda \mathbf{1})^*(x_0 - \lambda \mathbf{1}) + w^2 \mathbf{1})^{-1} = \frac{1}{t},
\]

and let \(w(0; \lambda, t) = 0 \) for \(\lambda \in \mathbb{C} \setminus \Xi_t \). We denote

\[
\Phi_{t, \gamma}(\lambda) = \lambda + \gamma \cdot p^{(0)}_{\lambda}(w),
\]

where

\[
p^{(0)}_{\lambda}(w) = -\phi \left[\frac{1}{(x_0 - \lambda \mathbf{1})^* (x_0 - \lambda \mathbf{1}) + w^2 \mathbf{1}} \right].
\]

We show that the function \(w \) of \(\lambda \) is the imaginary part of the subordination function that appears in free additive convolution of two probability measures on \(\mathbb{R} \) (see Proposition 3.5 for precise statement) and this function is a real analytic function of \(\lambda \in \Xi_t \). The function \(\Phi_{t, \gamma} \) is a real analytic function of \(\lambda \) in the set \(\Xi_t \).

Theorem A (See Theorem 3.12 and Theorem 3.14). For every \(\lambda \in \Xi_t \), we have

\[
\Delta((x_0 + c_t - \lambda)^2) = \Delta((x_0 - \lambda \mathbf{1})^*(x_0 - \lambda \mathbf{1}) + w^2 \mathbf{1}) \left[\exp(-w^2/t) \right],
\]

and, if the map \(\lambda \mapsto \Phi_{t, \gamma}(\lambda) \) is non-singular at \(\lambda \in \Xi_t \), then

\[
\Delta((x_0 + g_t, \gamma - \lambda)^2) = \Delta((x_0 + c_t - \lambda \mathbf{1})^2 \exp(H(\lambda))),
\]

where \(z = \Phi_{t, \gamma}(\lambda) \) and \(H(\lambda) = \Re \left(\gamma (p^{(0)}_{\lambda}(w))^2 \right) \).

We point out that we also have \(\Delta((x_0 + c_t - \lambda \mathbf{1}) = \Delta((x_0 - \lambda \mathbf{1}) \) for any \(\lambda \in \mathbb{C} \setminus \Xi_t \) (see Theorem 3.12) which implies that \(\mu_{x_0 + c_t} \) and \(\mu_{x_0} \) coincide in the interior of \(\mathbb{C} \setminus \Xi_t \). Moreover, we obtain a general result on the support of the Brown measure (see Theorem 4.5) which allows us to deduce that the interior of \(\mathbb{C} \setminus \Xi_t \) is not in the support of \(\mu_{x_0} \). Hence, our focus is the Brown measure of \(\mu_{x_0 + c_t} \) within the set \(\Xi_t \). The above Fuglede-Kadison formulas are fundamental in our study which allows us to calculate the Brown measure formulas. The Brown measure of \(x_0 + c_t \) can be described as follows.
Theorem B (See Theorem[12] and Theorem[4,6]. The Brown measure of $x_0 + c_t$ has no atom and is supported in Ξ_t. It is absolutely continuous with respect to Lebesgue measure in the open set Ξ_t, and the density of the Brown measure at any $\lambda \in \Xi_t$ is strictly positive which can be expressed as

$$\frac{1}{\pi} \left(\frac{1}{t} - \frac{\partial}{\partial \lambda} \left(\phi \left(x_0^* \left((x_0 - \lambda 1)^* (x_0 - \lambda 1) + w^2 1 \right)^{-1} \right) \right) \right).$$

We can also rewrite the above density formula in some form without involving derivative by implicit differentiation (see (4.2)). At a first glance, the implicit density formula (1.2) is not good enough for applications. It turns out that the subordination function $w(0; \lambda, t)$ can be calculated explicitly for a large family of operators that include all selfadjoint operators and many non-selfadjoint operators. This generalizes a result in our earlier work with Ho [35] in which x_0 is selfadjoint. Unlike [35] and its generalizations for semicircular operators and elliptic operators [30, 34], we do not use PDE methods.

Theorem C (See Theorem[5,4]. The Brown measure of $x_0 + g_{t,\gamma}$ is the push-forward measure of the Brown measure of $x_0 + c_t$ by the map $\lambda \mapsto \Phi_{t,\gamma}(\lambda)$. Let E be an arbitrary Borel measurable set in \mathbb{C}, then

$$\mu_{x_0 + g_{t,\gamma}}(E) = \mu_{x_0 + c_t} \left(\Phi_{t,\gamma}^{-1}(E) \right).$$

TheoremC generalizes results from [30, 34, 35] in two directions. TheoremC is applicable for operators x_0 not necessarily selfadjoint. In addition, the twisted elliptic operator include semicircular operators and elliptic operators as special cases. What is more, the proof of TheoremC provides a conceptual explanation about why such push-forward map exists. The map $\Phi_{t,\gamma}$ could be singular in general (see Example6.15). However, we verify that for a large family of operators x_0, the map $\Phi_{t,\gamma}$ is non-singular in Ξ_t.

Let us outline the strategy for the proof of TheoremC. The possible degeneracy prevents a direct calculation of the Brown measure of $x_0 + g_{t,\gamma}$. We show that the regularized Brown measure $\mu_{x_0 + g_{t,\gamma}, \epsilon}$ is the pushforward measure of $\mu_{x_0 + c_t, \epsilon}$ under the regularized pushforward map $\Phi_{t,\gamma}^{(\epsilon)}$, which is a self-homeomorphism of \mathbb{C}. We then show that $\Phi_{t,\gamma}^{(\epsilon)}$ converges uniformly to $\Phi_{t,\gamma}$ as ϵ tends to zero. Then TheoremC follows by pushforward connection between regularized Brown measures and the fact that regularized Brown measures converge to Brown measure weakly. We hence have the following commutative diagram.

$$\begin{array}{ccc}
\mu_{x_0 + c_t, \epsilon} & \xrightarrow{\Phi_{t,\gamma}^{(\epsilon)}} & \mu_{x_0 + g_{t,\gamma}, \epsilon} \\
\varepsilon \rightarrow 0 & & \varepsilon \rightarrow 0 \\
\mu_{x_0 + c_t} & \xrightarrow{\Phi_{t,\gamma}} & \mu_{x_0 + g_{t,\gamma}}
\end{array}$$

Theorem D (See Theorem[6,13] and Example6,17). Let x_0 be a selfadjoint operator that is $*\text{-free from } g_{t,\gamma}$. For any $|\gamma| \leq t$ with $\gamma \neq t$, the map $\Phi_{t,\gamma}$ is one-to-one and non-singular in Ξ_t. The Brown measure of $x_0 + g_{t,\gamma}$ is the push-forward measure of the Brown measure of $x_0 + c_t$ under the map $\Phi_{t,\gamma}$.

Moreover, the Brown measure $\mu_{x_0 + g_{t,\gamma}}$ is concentrated on $\Phi_{t,\gamma}(\Xi_t)$ and the density is given by

$$d\mu_{x_0 + g_{t,\gamma}}(z) = \frac{1}{2\pi t_1} \frac{d\psi_t(a)}{d\delta(a)} dz_1 dz_2, \quad z \in \Phi_{t,\gamma}(\Xi_t)$$
where \(z = z_1 + iz_2 = \Phi_{t,\gamma}(a + ib), \gamma_1 = t - \Re(\gamma), \) and \(\psi_t, \delta \) are two increasing homeomorphisms of \(\mathbb{R} \) onto \(\mathbb{R} \). In particular, if \(\gamma \in \mathbb{R} \) (equivalently, \(g_{t,\gamma} \) is an elliptic operator), then \(z_1 = \delta(a) \) depending only on \(a \), in which case the Brown measure is constant along vertical lines.

The density formula could be understood as follows. For any selfadjoint operator \(x_0 \), it is known \([10]\) that there is a continuous function \(v_t \) such that
\[
\Xi_t = \{a + ib \in \mathbb{C} : |b| < v_t(a)\}.
\]
See Section 6.1 for a review. It is shown \([35]\) that the density of \(x_0 + c_t \) is constant along vertical segments in \(\Xi_t \). In this case, for any fixed \(a \in \mathbb{R} \) such that the vertical line through \(a \) intersects the set \(\Xi_t \), the map \(b \mapsto \Phi_{t,\gamma}(a + ib) \) is an affine transformation of \(b \). Hence, the Brown measure of \(x_0 + g_{t,\gamma} \) is expected to be constant along the trajectory of \(\Phi_{t,\gamma}(a + ib) \) as \(b \) varies in \((-v_t(a), v_t(a))\) such that \(a + ib \) changes within \(\Xi_t \). The formula (1.3) describe precisely this observation. Indeed, as \(\Phi_{t,\gamma} \) is one-to-one under the assumption of Theorem 3 the set \(\Phi_{t,\gamma}(\Xi_t) \) can be parametrized by \(a + ib \in \Xi_t \) under the push-forward map \(\Phi_{t,\gamma} \). Hence, we can say that the density formula (1.3) depends on only one parameter and is constant in one direction. Theorem D can be viewed as an analogue result for the free additive convolution in a recent work of Hall–Ho \([31]\) concerning free one parameter and is constant in one direction. Theorem D can be viewed as an analogue for the free additive convolution in a recent work of Hall–Ho \([31]\) concerning free multiplicative Brownian motions. See Remark 6.18 for details.

We demonstrate the application of Theorem D to R-diagonal operators. Let \(T \) be an R-diagonal that is \(*\)-free from \(\{c_t, g_{t,\gamma}\} \). It is known that the sum of two freely independent R-diagonal operators is again an R-diagonal operator \([42]\). The Brown measure of any R-diagonal operator is supported in a single ring \([26]\). Let \(\lambda_1, \lambda_2 \) be inner and outer radii of the support of the Brown measure of \(T + c_t \).

Theorem E (See Theorem 7.8). The support of the Brown measure of \(T + g_{t,\gamma} \) is the deformed single ring where the inner boundary is the circle centered at the origin with radius \(\lambda_1 \), and the outer boundary is an ellipse by some angle \(\alpha \) determined by \(\gamma \), centered at the origin, with semi-axes \(\lambda_2 - \frac{|\gamma|}{2} \) and \(\lambda_2 + \frac{|\gamma|}{2} \). The Brown measure is absolutely continuous and its density is strictly positive in the support.

The Brown measure of \(T + g_{t,\gamma} \) is the push-forward measure of the Brown measure \(T + c_t \) by the map \(\Phi_{t,\gamma} \). The map sends the circle centered at the origin with radius \(r \) to the ellipse whose semi-axes are given by
\[
a(r) = r - |\gamma|g(r)/r, \quad b(r) = r + |\gamma|g(r)/r,
\]
where
\[
g(r) = \mu_{T+c_t}(\{z \in \mathbb{C} : |z| \leq r\}).
\]

Finally, we calculate explicit formulas for the quasi-nilpotent DT operator (introduced by Dykema and Haagerup \([17]\)) and Haar unitary operator in the end.

1.3. Discussions on methodologies. Our approach is based on a Hermitian reduction method and subordination functions. The Hermitian reduction method was already used for the calculation of Brown measure of quasi-nilpotent DT operators in Aagaard–Haagerup’s work \([11]\). In physics literature, to our knowledge, the method was first used in two independent works \([21]\) and \([36]\). In the work by Jarosz and Nowak \([37, 38]\), the authors used Hermitian reduction approach to study the support of the Brown measure of \(x_0 + ig \) for selfadjoint \(x_0 \), where the method is not mathematically rigorous as written. The Hermitian reduction also appeared in Voiculescu’s earlier work \([48]\) which serves a motivation.
to introduce free probability theory with amalgamation. The idea is to study the Brown measure of a non-normal free random variable x by considering the Hermitian matrix

$$X = \begin{bmatrix} 0 & x \\ x^* & 0 \end{bmatrix}$$

and the 2×2 matrix-valued Cauchy transform

$$G_X \left(\begin{bmatrix} i\varepsilon & \lambda \\ \lambda & i\varepsilon \end{bmatrix} \right) = E \left(\begin{bmatrix} i\varepsilon & \lambda - x \\ (\lambda - x)^* & i\varepsilon \end{bmatrix}^{-1} \right)$$

where E is the entry-wise conditional expectation $E : M_2(M) \to M_2(\mathbb{C})$. The entries of the matrix-valued Cauchy transform G_X carry important information for the calculation of the Brown measure.

The Hermitian reduction method becomes more powerful by combining with subordination functions and this approach was outlined in Belinschi–Śniady–Speicher’s work [5]. In particular, it is showed [5] that one can iterate certain fixed point equation for subordination functions to approximate boundary values of subordination functions, and then get approximation of Brown measure of an arbitrary polynomial of free random variables by some numerical schemes. For the sums $x_0 + c_t$ or $x_0 + g_{t,\gamma}$, we consider their Hermitian reductions and treat them as the summation of selfadjoint free random variables in the framework of operator-valued free probability. We then use the subordination functions in operator-valued free probability theory to study the Brown measure of $x_0 + c_t$ or $x_0 + g_{t,\gamma}$.

It turns out there are nice formulas for subordination functions and this allows us to obtain explicit Brown measure formulas using subordination functions.

Our approach extends techniques from Aagaard–Hagerup [1], and Haagerup–Schultz [27], and Belinschi–Śniady–Speicher [5]. We can view the method in Section 3.3 as an operator-valued version of Biane’s method used in [10]. To our best knowledge, the Hermitian reduction methods have not been used broadly enough to calculate the explicit Brown measure formula, and existing results mainly focus on a single operator [1, 5, 27]. The main technical issues when applying this approach are explicit formulas for subordination functions and analyticity of subordination functions and Cauchy transforms on their domains. The present work overcomes these issues and demonstrates that they are also applicable to study the explicit formula of the Brown measure of the sum of two free random variables $x_0 + g_{t,\gamma}$. We expect that more applications of these methods are possible.

After we posted the present paper to arXiv, we learned that the density formula of $x_0 + c_t$ for a (unbounded) Gaussian distributed normal operator x_0 was established by Bordenave-Caputo-Chafaï [14, Theorem 1.4], where they used Hermitian reduction method and some non-trivial random matrix results. Their techniques can be extended for an arbitrary normal operator. In particular, Proposition 4.3 in [14] is a version of our subordination result in Theorem 3.8 for such operators. Some further properties of the Brown measure formula of $x_0 + c_t$ was studied in [13, Section 2]. Our proof is different from the method used in [14] and this allows us to work on non-normal operators. We emphasize that we are interested in the push-forward property between circular case and elliptic case for an arbitrary operator x_0. The main results in the present work can be extended to unbounded operators and we postpone such extension to a forthcoming project.

The paper has eight sections. After the Introduction and Preliminaries, in Section 3 we study the sum of a circular operator and a free random variable. We obtain a formula for the Fuglede-Kadison determinant $\Delta(x_0 + g_{t,\gamma} - z1)$ and $\Delta(x_0 + c_t - \lambda1)$ using subordination functions. In Section 4, we study the Brown measures of $x_0 + c_t$. In Section 5, we show that the Brown measure $\mu_{x_0+g_{t,\gamma}}$ is the pushforward measure of $\mu_{x_0+c_t}$ under
the map $\Phi_{t,\gamma}$. In Section 6, we calculate the Brown measure of the sum of a twisted elliptic operator and a selfadjoint operator. In Section 7, we calculate the pushforward map and the Brown measure for the case that x_0 is an R-diagonal operator. Finally, we calculate explicit formulas for some non-selfadjoint examples in Section 8.

2. Preliminaries

2.1. Free probability and subordination functions. We recall the definition of freeness with amalgamation over a subalgebra [45,48]. An operator-valued W^*-probability space $(A, \mathbb{E}, \mathcal{B})$ consists of a von Neumann algebra A, a unital \ast-subalgebra $\mathcal{B} \subset A$, and a conditional expectation $\mathbb{E} : A \to \mathcal{B}$. Thus, \mathbb{E} is a linear, unital linear positive map satisfying:

1. $\mathbb{E}(b) = b$ for all $b \in \mathcal{B}$, and
2. $\mathbb{E}(b_1 b_2) = b_1 \mathbb{E}(x)b_2$ for all $x \in A$, $b_1, b_2 \in \mathcal{B}$. Let $(A_i)_{i \in I}$ be a family of subalgebras $\mathcal{B} \subset A_i \subset A$. We say that $(A_i)_{i \in I}$ are free with amalgamation over \mathcal{B} with respect to the conditional expectation \mathbb{E} (or free with amalgamation in $(A, \mathbb{E}, \mathcal{B})$) if

$$\mathbb{E}(x_1 x_2 \cdots x_n) = 0$$

for every $n \geq 1$, there are indices $i_1, i_2, \cdots, i_n \in I$ such that $i_1 \neq i_2, i_2 \neq i_3, \cdots, i_{n-1} \neq i_n$, and for $j = 1, 2, \cdots, n$, we have $x_j \in A_{i_j}$, such that $\mathbb{E}(x_1) = \mathbb{E}(x_2) = \cdots = \mathbb{E}(x_n) = 0$.

Let $(A, \mathbb{E}, \mathcal{B})$ be an operator-valued W^*-probability space. The elements in A are called (noncommutative) random variables. We call

$$\mathbb{H}^+(\mathcal{B}) = \{b \in \mathcal{B} : \exists \varepsilon > 0, \Im(b) \geq \varepsilon 1\}$$

the Siegel upper half-plane of \mathcal{B}, where we use the notation $\Im(b) = \frac{1}{2b}(b - b^*)$. We set $\mathbb{H}^-(\mathcal{B}) = \{-b : b \in \mathbb{H}^+(\mathcal{B})\}$. The B-valued Cauchy transform G_X of any selfadjoint operator $X \in A$ is defined by

$$G_X(b) = \mathbb{E}[(b - X)^{-1}], \quad b \in \mathbb{H}^+(\mathcal{B}).$$

The B-valued Cauchy transform is a map from $\mathbb{H}^+(\mathcal{B})$ to $\mathbb{H}^-(\mathcal{B})$. The Cauchy transform is one-to-one in $\{b \in \mathbb{H}^+(\mathcal{B}) : ||b^{-1}|| < \varepsilon\}$ for ε sufficiently small, and Voiculescu’s amalgamated R-transform is now defined for $X \in A$ by

$$R_X(b) = G_X^{-1}(b) - b^{-1}$$

for b being invertible element of \mathcal{B} suitably close to zero.

Let X, Y be two selfadjoint operators that are free with amalgamation in $(A, \mathbb{E}, \mathcal{B})$. The R-transform linearizes the free convolution in the sense that if X, Y are free with amalgamation in $(A, \mathbb{E}, \mathcal{B})$, then

$$R_{X+Y}(b) = R_X(b) + R_Y(b)$$

for b in some suitable domain. There exist two analytic self-maps Ω_1, Ω_2 of the upper half-plane $\mathbb{H}^+(\mathcal{B})$ so that

$$(\Omega_1(b) + \Omega_2(b) - b)^{-1} = G_X(\Omega_1(b)) = G_Y(\Omega_2(b)) = G_{X+Y}(b),$$

for all $b \in \mathbb{H}^+(\mathcal{B})$. We refer the reader to [41,11,49] for details.

When \mathcal{M} is a von Neumann algebra, $\mathcal{B} = \mathbb{C}1$ consists of scalar multiples of identity, and ϕ is a normal, faithful tracial state on \mathcal{M}. Then the pair (\mathcal{M}, ϕ) replaces the triple $(\mathcal{M}, \mathbb{C}1, \phi)$. We say (\mathcal{M}, ϕ) is a tracial W^*-probability space. For any selfadjoint element $x \in \mathcal{M}$, let $\mu = \mu_x$ be its spectral measure in (\mathcal{M}, ϕ) determined by

$$\phi(f(x)) = \int_{\mathbb{R}} f(u)d\mu_x(u)$$
for all \(f \in C(\sigma(x)) \). The Cauchy transform of \(\mu \) (or the Cauchy transform of \(x \)) can be written as

\[
G_\mu(z) = G_x(z) = \phi((z - x)^{-1}) = \int_{\mathbb{R}} \frac{1}{z - u} \, d\mu(u), \quad z \in \mathbb{C}^+.
\]

We also set \(F_\mu(z) = F_x(z) = 1/G_\mu(z) \). The reciprocal Cauchy transform \(F_\mu \) maps the upper half plane \(\mathbb{C}^+ \) into itself. The \(R \)-transform of \(\mu \) is now an analytic function

\[
R_\mu(z) = G_\mu^{(-1)}(z) - \frac{1}{z}
\]

where \(G_\mu^{(-1)} \) denotes the inverse function to \(G_\mu \), that is defined in a truncated Stolz angle \(\{ z \in \mathbb{C} : \Im z > \beta, |\Re z| < \alpha(\Im z) \} \) for some \(\alpha, \beta > 0 \).

Suppose that the selfadjoint random variables \(x, y \in \mathfrak{M} \) are freely independent. Denote by \(\mu_1 \) the spectral measure of \(x \), and \(\mu_2 \) the spectral measure of \(y \), and \(\mu_1 \boxplus \mu_2 \) the free additive convolution of \(\mu_1 \) and \(\mu_2 \) in the sense that \(\mu_1 \boxplus \mu_2 := \mu_{x+y} \). The \(R \)-transform \((2.2) \) also linearizes the free additive convolution \([7] \) such that \(R_{\mu_1 \boxplus \mu_2}(z) = R_{\mu_1}(z) + R_{\mu_2}(z) \) in the domain where all the three \(R \)-transforms are defined. In this scalar case, there exists a unique pair of analytic maps \(\omega_1, \omega_2 : \mathbb{C}^+ \to \mathbb{C}^+ \) such that

\[
F_{\mu_1 \boxplus \mu_2}(z) = F_{\mu_1}(\omega_1(z)) = F_{\mu_2}(\omega_2(z)) = \omega_1(z) + \omega_2(z) - z
\]

for all \(z \in \mathbb{C}^+ \). The above subordination relations can also be written in terms of Cauchy transform. That is, \(G_{\mu_1 \boxplus \mu_2}(z) = G_{\mu_1}(\omega_1(z)) = G_{\mu_2}(\omega_2(z)) \). The existence of subordination functions leads to many regularity results (see \([2, 8]\) and the survey paper \([6, \text{Chapter 6}]\)). The regularity of subordination functions is important in our approach. See Lemma \(3.6\) for example. For a probability measure \(\mu \) on \(\mathbb{R} \), denote \(H_\mu(z) = F_\mu(z) - z \). In \([3]\), Belinschi–Bercovici showed that \(\omega_1, \omega_2 \) can be obtained from the following fixed point equations

\[
\omega_1(z) = z + H_{\mu_2}(z + H_{\mu_1}(\omega_1(z))), \quad \omega_1(z) = z + H_{\mu_1}(z + H_{\mu_2}(\omega_1(z))).
\]

Although the subordination functions, in general, cannot be computed explicitly, they play a key role in our study by adopting this fixed point approach. See Subsection \(3.1\) for details.

2.2. The Brown Measure. The spectral theorem does not apply to non-normal operators. The Brown measure of an operator in \(\mathfrak{M} \) was introduced by Brown \([16]\) and is a natural replacement of the spectral distribution of a non-normal operator. Given \(x \in \mathfrak{M} \), the \textit{Fuglede–Kadison determinant} \(\Delta(x) \) \([22]\) of \(x \) is defined as

\[
\Delta(x) = \exp(\phi(\log(|x|))) \in [0, \infty).
\]

Define a function \(L_x \) on \(\mathbb{C} \) by

\[
L_x(\lambda) = \log \Delta(x - \lambda 1) = \phi(\log(|a - \lambda|)) \in (-\infty, \infty), \quad \lambda \in \mathbb{C}.
\]

This function is subharmonic. The \textit{Brown measure} \([16]\) of \(x \) is then defined to be the distributional Laplacian of the subharmonic function \(L_x(\lambda) \). That is,

\[
\mu_x = \frac{1}{2\pi} \nabla^2 L_x(\lambda) = \frac{2}{\pi} \frac{\partial}{\partial \lambda} \frac{\partial}{\partial \lambda} \log \Delta(x - \lambda 1).
\]

In fact, \(\mu_x \) is a probability measure supported on a subset of the spectrum of \(x \). When \(\mathfrak{M} = M_n(\mathbb{C}) \) and \(\phi \) is the normalized trace on \(M_n(\mathbb{C}) \), for \(x \in M_n(\mathbb{C}) \), we have

\[
L_x(\lambda) = \log |\det(x - \lambda I)|^{1/n} = \frac{1}{n} \sum_{i=1}^n \log |\lambda - \lambda_i|,
\]

where \(\lambda_i \) are the eigenvalues of \(x \) on \(\mathbb{C}^+ \) (or the Cauchy transform of \(x \) on \(\mathbb{C}^+ \)).
where \(\lambda_1, \cdots, \lambda_n \) are the eigenvalues of \(x \). Hence the eigenvalue distribution of \(x \) can be recovered by taking the distributional Lapalacian
\[
\frac{1}{n} (\delta_{\lambda_1} + \cdots + \delta_{\lambda_n}) = \frac{1}{2\pi} \nabla^2 L_x(\lambda).
\]

It is useful to consider the regularized function
\[
L_{x,\varepsilon}(\lambda) = \frac{1}{2} \phi(\log((x - \lambda \mathbf{1})^*(x - \lambda \mathbf{1}) + \varepsilon^2 \mathbf{1})), \quad \varepsilon > 0.
\]

Then, by the tracial property of \(\phi \), we have \(L_x(\lambda) = \lim_{\varepsilon \to 0} L_{x,\varepsilon}(\lambda) \), and the Brown measure is calculated as
\[
\mu_x = \frac{1}{4\pi} \nabla^2 \left(\lim_{\varepsilon \to 0} \phi(\log((x - \lambda \mathbf{1})^*(x - \lambda \mathbf{1}) + \varepsilon^2 \mathbf{1})) \right).
\]

It is known \([27, 59] \) that, for any \(\varepsilon > 0 \), the function \(L_{x,\varepsilon} \) is subharmonic and its Riesz measure is a probability measure, defined by
\[
\mu_{x,\varepsilon} = \frac{1}{2\pi} \nabla^2 L_{x,\varepsilon}(\lambda).
\]

Moreover, \(\mu_{x,\varepsilon} \) converges to \(\mu_x \) weakly as \(\varepsilon \) tends to zero. This regularization process makes the calculation of general operator in \(M \) more tractable. For the summation \(x_0 + c_1 \) and \(x_0 + g_{t,\gamma} \), we are able to identify the domain \(\Xi_t \), so that \(L_{x_0+c_1}(\lambda) \) is real analytic for any \(\lambda \in \Xi_t \), and \(L_{x_0+g_{t,\gamma}}(z) \) is real analytic for any \(z \in \Phi_{t,\gamma}(\Xi_t) \) if \(\Phi_{t,\gamma} \) is non-singular. Hence, the Brown measures in this paper can be calculated in classic sense. See Theorem 3.12 for details.

2.3. Hermitian reduction method for the sum of two free random variables. Let \((M, \phi)\) be a tracial \(W^*\)-probability space. We equip the algebra \(M_2(M) \), the \(2 \times 2 \) matrices with entries from \(M \), with the conditional expectation \(\mathbb{E} : M_2(M) \to M_2(\mathbb{C}) \) given by
\[
\mathbb{E} \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} \phi(a_{11}) & \phi(a_{12}) \\ \phi(a_{21}) & \phi(a_{22}) \end{bmatrix}.
\]

Then the triple \((M_2(M), \mathbb{E}, M_2(\mathbb{C}))\) is a operator-valued \(W^*\)-probability space. Given \(x \in M \), let
\[
X = \begin{bmatrix} 0 & x \\ x^* & 0 \end{bmatrix} \in M_2(M),
\]

which a selfadjoint element in \(M_2(M) \). For \(\varepsilon > 0 \) the element
\[
\Theta(\lambda, \varepsilon) = \begin{bmatrix} i\varepsilon & \lambda \\ \lambda & i\varepsilon \end{bmatrix} \in M_2(\mathbb{C})
\]

belongs to the domain of the \(M_2(\mathbb{C}) \)-valued Cauchy \(G_X \). We now record that
\[
\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \begin{bmatrix} d(ad - bc)^{-1} & -b(ad - cb)^{-1} \\ -c(ad - bc)^{-1} & a(ad - cb)^{-1} \end{bmatrix}
\]

where \(a, d \in \mathbb{C} \) and \(b, c \in M \) such that \(ad - bc \) is invertible (which is equivalent to \(ad - cb \) is invertible). We then have
\[
(\Theta(\lambda, \varepsilon) - X)^{-1} = \begin{bmatrix} -i\varepsilon((\lambda - x)(\lambda - x)^* + \varepsilon^2)^{-1} & (\lambda - x)((\lambda - x)(\lambda - x)^* + \varepsilon^2)^{-1} \\ (\lambda - x)^*(\lambda - x)(\lambda - x)^* + \varepsilon^2)^{-1} & -i\varepsilon((\lambda - x)^*(\lambda - x) + \varepsilon^2)^{-1} \end{bmatrix}.
\]
G and (2.10) $E((\Theta(\lambda, \varepsilon) - X)^{-1}) = \begin{bmatrix} g_{X,11}(\lambda, \varepsilon) & g_{X,12}(\lambda, \varepsilon) \\ g_{X,21}(\lambda, \varepsilon) & g_{X,22}(\lambda, \varepsilon) \end{bmatrix}$.

where

$g_{X,11}(\lambda, \varepsilon) = -i\varepsilon \phi \left(((\lambda - x)(\lambda - x)^* + \varepsilon^2)^{-1} \right)$

$g_{X,12}(\lambda, \varepsilon) = \phi \left((\lambda - x)(\lambda - y)(\lambda - y)^* (\lambda - x)^* + \varepsilon^2)^{-1} \right)$

$g_{X,21}(\lambda, \varepsilon) = \phi \left((\lambda - x)^* (\lambda - x)(\lambda - x)^* + \varepsilon^2)^{-1} \right)$

$g_{X,22}(\lambda, \varepsilon) = -i\varepsilon \phi \left(((\lambda - x)^* (\lambda - x) + \varepsilon^2)^{-1} \right)$.

We observe that entries of the Cauchy transform (2.9) have symmetry similar to the matrix $\Theta(\lambda, \varepsilon)$. This can be explained as follows. Define the map $J : M_2(\mathbb{C}) \to M_2(\mathbb{C})$ by $b \mapsto J(b) = -b^*$. Then we have $G_X(J(b)) = J(G_X(b))$. Notice that $J(\Theta(\lambda, \varepsilon)) = \Theta(\lambda, \varepsilon)$ and hence $G_X(\Theta(\lambda, \varepsilon))$ has symmetric property (2.10).

Equations (2.9) show that two diagonal entries of $G_X(\Theta(\theta, \lambda))$ carry important information to calculate the Brown measure of x. Let x and y be two $*$-free random variables. We have to understand the $M_2(\mathbb{C})$-valued distribution of

$\begin{bmatrix} 0 & x + y \\ (x + y)^* & 0 \end{bmatrix} = X + Y = \begin{bmatrix} 0 & x \\ x^* & 0 \end{bmatrix} + \begin{bmatrix} 0 & y \\ y^* & 0 \end{bmatrix}$

in terms of the $M_2(\mathbb{C})$-valued distributions of X and of Y. Note that X and Y are free over $M_2(\mathbb{C})$. The subordination functions in this context are two analytic self-maps Ω_1, Ω_2 of the upper half-plane $\mathbb{H}^+(M_2(\mathbb{C}))$ so that

$(\Omega_1(b) + \Omega_2(b) - b)^{-1} = G_X(\Omega_1(b)) = G_Y(\Omega_2(b)) = G_{X+Y}(b),$ for every $b \in \mathbb{H}^+(M_2(\mathbb{C}))$. We shall be concerned with $b = \Theta(\varepsilon, \lambda)$. Indeed, we have, by (2.9),

$G_{X+Y}(\Theta(\lambda, \varepsilon)) = \begin{bmatrix} g_{X+Y,11}(\lambda, \varepsilon) & g_{X+Y,12}(\lambda, \varepsilon) \\ g_{X+Y,21}(\lambda, \varepsilon) & g_{X+Y,22}(\lambda, \varepsilon) \end{bmatrix}$

where

$g_{X+Y,11}(\lambda, \varepsilon) = -i\varepsilon \phi \left(((\lambda - x - y)(\lambda - x - y)^* + \varepsilon^2)^{-1} \right)$

$g_{X+Y,12}(\lambda, \varepsilon) = \phi \left((\lambda - x - y)(\lambda - x - y)^* (\lambda - x - y)^* + \varepsilon^2)^{-1} \right)$

$g_{X+Y,21}(\lambda, \varepsilon) = \phi \left((\lambda - x - y)^* (\lambda - x - y)(\lambda - x - y)^* + \varepsilon^2)^{-1} \right)$

$g_{X+Y,22}(\lambda, \varepsilon) = -i\varepsilon \phi \left(((\lambda - x - y)^* (\lambda - x - y) + \varepsilon^2)^{-1} \right)$.

The idea of calculating the Brown measure of $x + y$ is to separate the information of X and Y in some tractable way. We achieve this by using subordination functions (2.11).
2.4. The elliptic operator and the operator-valued semicircular element. In the tracial W^*-probability space (M, ϕ), for $t > 0$, Voiculescu’s circular operator with variance t, denoted by c_t, is defined as

$$c_t = \frac{1}{\sqrt{2}}(gt + ig_t^*)$$

where $\{gt, g_t^*\}$ is a free semicircular family and each of them has variance t.

Let $t > 0$ and $\gamma \in \mathbb{C}$ such that $|\gamma| \leq t$. The twisted elliptic operator operator $g_{t, \gamma}$ can be constructed as follows. Let $\{gt, g_t^*\}$ be semicircular operators with zero expectation and variance t_1, t_2 respectively such that $\{gt, g_t^*\}$ are freely independent. For $\theta \in [0, 2\pi]$, consider the operator $y_{t_1, t_2, \theta} = e^{i\theta}(gt_1 + ig_t^*)$, by choosing t_1, t_2 such that $t_1 + t_2 = t$, $t_1 - t_2 = |\gamma|$ and $e^{i2\theta} = \gamma/|\gamma|$, we can check directly that $g_{t, \gamma}$ and $y_{t_1, t_2, \theta}$ have the same $*$-distribution, whose only nonzero free cumulants are given by

$$\kappa(y, y^*) = \kappa(x, x^*) = \gamma,$$

where $y = g_{t, \gamma}$. The operator $g_{t, \gamma}$ include the following operators as special cases: (i) if $\gamma = 0$, y is a circular operator with variance t; (ii) if $\gamma = t$, y is a semicircular operator g_t with variance t; (iii) if $\gamma = -t$, then y has the distribution as ig_t; (iv) if $\gamma \in [-t, t]$, then y has the same distribution as an elliptic operator.

In the operator-valued W^*-probability space (A, E, B), following Voiculescu [48] and Speicher [45], we say $Y \in A$ is B-Gaussian or an operator-valued semicircular element if and only if the R-transform has a particular simple form

$$(2.12) \quad R_Y(b) = E_B(YbY).$$

Condition (2.12) says that only B-cumulants of length two survive. Note that a linear combination of two operator-valued semicircular elements in (A, E, B) is again an operator-valued semicircular element.

The following result is a special case of [40] Example 19 in Section 9.4]. One can also deduce it from a general formula about a relation between matrix-valued and scalar-valued free cumulants in [41] Theorem 6.2] (or [40] Proposition 13 in Section 9.3).

Proposition 2.1. Let $g_{t, \gamma}$ be a twisted elliptic operator with parameters t, γ in the tracial W^*-probability space (M, ϕ) and $\lambda \in \mathbb{C}$. Denote

$$Y = \begin{bmatrix} 0 & g_{t, \gamma} \\ g_{t, \gamma}^* & 0 \end{bmatrix} \in M_2(M).$$

Then Y is an operator-valued semicircular element in the operator-valued W^*-probability space $(M_2(M), E, M_2(\mathbb{C}))$.

3. The Fuglede-Kadison determinant and subordination functions

Given $t > 0$ and $\gamma \in \mathbb{C}$ such that $|\gamma| \leq t$, let $y = g_{t, \gamma}$ be a twisted elliptic operator and let x_0 be a random variable that is $*$-free from y. In this section, we study the Fuglede-Kadison determinant $\Delta(x_0 + y - \lambda I)$ for $\lambda \in \mathbb{C}$. We denote

$$(3.1) \quad X = \begin{bmatrix} 0 & x_0 \\ x_0^* & 0 \end{bmatrix}, \quad Y = \begin{bmatrix} 0 & y \\ y & 0 \end{bmatrix}. $$

Note that X and Y are free over $M_2(\mathbb{C})$. There exist two analytic self-maps Ω_1, Ω_2 of upper half-plane $\mathbb{H}(M_2(\mathbb{C}))$ of $M_2(\mathbb{C})$ such that

$$(3.2) \quad (\Omega_1(b) + \Omega_2(b) - b)^{-1} = G_X(\Omega_1(b)) = G_Y(\Omega_2(b)) = G_{X+Y}(b),$$

where

$$G_X(\Omega_1(b)) = G_Y(\Omega_2(b)) = G_{X+Y}(b),$$

and variance (3.1)
for all $b \in M_2(\mathbb{C})$ with $\Re b > 0$. We choose

$$\Theta(\lambda, \varepsilon) = \begin{bmatrix} i\varepsilon & \lambda \\ \lambda & i\varepsilon \end{bmatrix}$$

where $\varepsilon > 0$ and $\lambda \in \mathbb{C}$. Our strategy is to find more explicit formulations for subordination functions Ω_1, Ω_2.

3.1. Subordination functions in free convolution with a semicircular distribution.

Recall that $\lambda \in \Xi_t$ defined in (1.1) if the following condition holds

$$(3.3) \quad \phi \left(\left((x_0 - \lambda 1)^* (x_0 - \lambda 1) \right)^{-1} \right) > \frac{1}{t}.$$

For such $\lambda \in \Xi_t$, let $w = w(0; \lambda, t)$ be a positive function of such λ such that

$$(3.4) \quad \phi \left(\left((x_0 - \lambda 1)^* (x_0 - \lambda 1) + w^2 1 \right)^{-1} \right) = \frac{1}{t}.$$

In this section, we show that $w(0; \lambda, t)$ is the imaginary part of a subordination function and it is a real analytic function of λ as long as (3.3) holds.

Proposition 3.1. The set Ξ_t is bounded and open for any $t > 0$.

Proof. For $|\lambda|$ large enough, $\lambda \notin \sigma(x_0)$ and

$$\lim_{\lambda \to \infty} \phi \left(\left((x_0 - \lambda 1)^* (x_0 - \lambda 1) \right)^{-1} \right) = 0.$$

Hence, the set Ξ_t is bounded. For any $\varepsilon \geq 0$, denote the function f_ε of λ by

$$f_\varepsilon(\lambda) = \phi \left(\left((x_0 - \lambda 1)^* (x_0 - \lambda 1) + \varepsilon 1 \right)^{-1} \right).$$

For any $\varepsilon > 0$, the function $f_\varepsilon(\lambda)$ is a continuous function of λ. Observe that f_0 is the limit of the increasing sequence of f_ε, hence it is lower semi-continuous. The set Ξ_t can be rewritten as $\Xi_t = \{ \lambda : f_0(\lambda) > 1/t \}$ and therefore Ξ_t is open for any $t > 0$. \square

Proposition 3.2. For a random variable $x_0 \in M$, define

$$h(\varepsilon, \lambda) = \varepsilon \phi((|\lambda 1 - x_0|^2 + \varepsilon^2)^{-1}), \quad \varepsilon > 0.$$

Then the function

$$\varepsilon, a, b \mapsto h(\varepsilon, a + bi)$$

is real analytic on $(0, \infty) \times \mathbb{R} \times \mathbb{R}$.

Proof. Since

$$h(\varepsilon, \lambda) = \frac{1}{2} \int_0^\infty \left(\frac{1}{\varepsilon + iu} + \frac{1}{\varepsilon - iu} \right) d\mu_{|\lambda - x_0|}(u), \quad \varepsilon > 0,$$

the function $\varepsilon \mapsto h(\varepsilon, \lambda)$ has a complex analytic extension

$$\tilde{h} : \{ z \in \mathbb{C} | \Re z > 0 \} \to \mathbb{C}$$

given by the same formula. It follows that \tilde{h} is analytic in ε. For $\lambda = a + bi$, it is clear that

$$(a, b) \mapsto h(\varepsilon, \lambda)$$

is real analytic on $\mathbb{R} \times \mathbb{R}$ when $s > 0$. \square
Lemma 3.3. For a probability measure \(\mu \) on \([0, \infty)\), let
\[
h_\mu(s) = \int_0^\infty \frac{s}{s^2 + u^2} \, d\mu(u)
\]
and put
\[
k(s, \varepsilon) = \frac{s - \varepsilon}{h_\mu(s)}, \quad s > 0, \quad \varepsilon > 0.
\]
Then \(k \) is an analytic function on \((0, \infty) \times (0, \infty)\). Moreover, for \(\varepsilon > 0 \), the map \(s \mapsto k(s, \varepsilon) \) is a strictly increasing bijection of \((\varepsilon, \infty)\) onto \((0, \infty)\), and for \(\varepsilon = 0 \), the map \(s \mapsto k(s, 0) \) is a strictly increasing bijection of \((0, \infty)\) onto \((\lambda_1(\mu)^2, \infty)\), where
\[
\lambda_1(\mu)^2 = \left(\int_0^\infty \frac{1}{u^2} \, d\mu(u) \right)^{-1}.
\]

Proof. It is clear that \(k \) is analytic. Moreover, for \(\varepsilon > 0 \),
\[
k(s, \varepsilon) = \frac{s - \varepsilon}{h_\mu(s)} \left(\int_0^\infty \frac{1}{s^2 + u^2} \, d\mu(u) \right)^{-1},
\]
which is a product two increasing and positive functions of \(s \) on \((\varepsilon, \infty)\). The monotonicity properties of \(s \mapsto k(s, \varepsilon) \) follows for \(\varepsilon \geq 0 \).

Definition 3.4. For \(\lambda \in \mathbb{C} \), set \(\mu = \mu_{[(x_0 - \lambda 1)]} \). Let \(h_\mu, k \) as in Lemma 3.3. For \(\varepsilon, t \in (0, \infty) \), let \(w(\varepsilon; \lambda, t) \) denote the unique solution \(w \in (\varepsilon, \infty) \) to the equation \(k(w, \varepsilon) = t \) following Lemma 3.3. In other words, \(w = w(\varepsilon; \lambda, t) \in (\varepsilon, \infty) \) is the unique solution of the equation
\[
\int_0^\infty \frac{w}{w^2 + u^2} \, d\mu_{|x_0 - \lambda 1}(u) = \frac{w - \varepsilon}{t}.
\]

Note that \(\lambda \in \Xi_t \) if and only if \(t \in (\lambda_1(\mu)^2, \infty) \). For \(\lambda \in \Xi_t \), let \(w(0; \lambda, t) \) be the unique solution \(w \in (0, \infty) \) to the equation \(k(w, 0) = t \), which is equivalent to
\[
\int_0^\infty \frac{1}{w^2 + u^2} \, d\mu_{|x_0 - \lambda 1}(u) = \frac{1}{t},
\]
and can be rewritten as
\[
\phi \left[(x_0 - \lambda 1)^2 (x_0 - \lambda 1) + w(0; \lambda, t)^2 1 \right]^{-1} = \frac{1}{t}.
\]
For \(\lambda \in \mathbb{C} \setminus \Xi_t \), set \(w(0; \lambda, t) = 0 \).

For \(\mu \in \text{Prob}(\mathbb{R}, \mathcal{B}) \) let \(\tilde{\mu} \) denote the symmetrization of \(\mu \). That is, \(\tilde{\mu} \in \text{Prob}(\mathbb{R}, \mathcal{B}) \) is given by
\[
\tilde{\mu}(B) = \frac{1}{2}(\mu(B) + \mu(-B)), \quad (B \in \mathcal{B}).
\]
Our next result shows that \(w(\varepsilon; \lambda, t) \) is the subordination of a symmetric probability measure with a semicircular distribution.

Proposition 3.5. Let \(\mu_1 = \tilde{\mu}_{[(x_0 - \lambda 1)]} \) and \(\mu_2 \) be the semicircular distribution with variance \(t \). Denote \(\mu = \mu_1 \boxplus \mu_2 \). Let \(\omega_1, \omega_2 \) be subordination functions such that
\[
F_{\mu_1}(z) = F_{\tilde{\mu}_1}(\omega_1(z)) = F_{\mu_2}(\omega_2(z)).
\]
Then for any \(\varepsilon > 0 \), \(w(\varepsilon; \lambda, t) \) is the imaginary part of \(\omega_1(\varepsilon) \). That is, \(w(\varepsilon; \lambda, t) = \Im \omega_1(\varepsilon) \).
We now calculate the determinant of Jacobian of F function λ

Proof. Let λ. By Lemma 3.3, F is one-to-one map of Ω onto $(0, \infty) \times (0, \infty)$. Moreover, its inverse function $F^{-1}: (0, \infty) \times (0, \infty) \to \Omega$ is given by

$$F^{-1}(t, \varepsilon) = (w(\varepsilon; \lambda, t), \varepsilon), \quad t, \varepsilon > 0.$$

We now calculate the determinant of Jacobian of F as

$$\det(J(F))(s, \varepsilon) = \frac{\partial}{\partial s} k(s, \varepsilon) > 0$$

by (3.6). Hence, F^{-1} is analytic on $(0, \infty) \times (0, \infty)$. Consequently, $w(\varepsilon; \lambda, t)$ is analytic on $(0, \infty) \times (0, \infty).$
Following notations in Lemma 3.3, we set $\mu = \mu_{|x_0 - \lambda_1|}$ and $\lambda_1(\mu)^2 = (\int_0^\infty \frac{1}{u^2} d\mu(u))^{-1}$.

Recall that $\lambda \in \Xi_t$ if and only if $t > \lambda_1(\mu)^2$. For $\lambda \in \Xi_t$, then $t \in (\lambda_1(\mu)^2, \infty)$ and $w(0; \lambda, t) > 0$ by Definition 3.4. Hence, for $\lambda

\frac{\partial}{\partial s} k(s, 0) = \frac{\partial}{\partial s} h_\lambda(s) > 0

\text{for } s > 0, \text{ where } h_\mu \text{ is defined in Lemma 3.3. It follows that } F \text{ is also analytic in some neighborhood } U_0 \text{ of } (w(0; \lambda, t), 0) \text{ and } F \text{ has an analytic inverse } F^{-1} \text{ in a neighborhood } V_0 \text{ of } F(s, 0) = (t, 0). \text{ Now}

\lim_{\varepsilon \to 0^+} F^{-1}(t, \varepsilon) = F^{-1}(t, 0) = (w(0; \lambda, t), 0).

Hence, for $\lambda \in \Xi_t$,

$$\lim_{\varepsilon \to 0^+} w(\varepsilon; \lambda, t) = w(0; \lambda, t).$$

Moreover, the function $w(0; \lambda, t)$ is a real analytic function of (a, b) where $\lambda = a + bi$.

We next study convergence for $\lambda \in \mathbb{C} \setminus \Xi_t$. Note that for fixed $\varepsilon > 0$, the map $t \mapsto w(\varepsilon; \lambda, t)$ is an increasing function of t, which can be verified directly from Lemma 3.3 and Definition 3.4. Hence, for $\lambda \in \mathbb{C} \setminus \Xi_t$, then $t \leq \lambda_1(\mu)^2$, and for any $t' > \lambda_1(\mu)^2$ we have

$$\lim_{t \to 0^+} w(\varepsilon; \lambda, t) \leq \lim_{t \to 0^+} w(\varepsilon; \lambda, t') = w(0; \lambda, t').$$

But $t' \mapsto w(0; \lambda, t')$ is a bijection of $(\lambda_1(\mu)^2, \infty)$ onto $(0, \infty)$. It then follows that

$$\lim_{t \to 0^+} w(\varepsilon; \lambda, t) = 0$$

whenever $\lambda \in \mathbb{C} \setminus \Xi_t$.

Recall that $w(0; \lambda, t) = 0$ for $\lambda \in \mathbb{C} \setminus \Xi_t$ and $w(0; \lambda, t) > 0$ in the open set Ξ_t. Hence, to show that $\lambda \mapsto w(0; \lambda, t)$ is a continuous function in \mathbb{C}, it remains to show that for any $\lambda_0 \in \mathbb{C} \setminus \Xi_t$ and a sequence $\{\lambda_n\} \subset \Xi_t$ converging to λ_0, we have

$$\lim_{n \to \infty} w(0; \lambda_n, t) = 0.$$

Suppose this is not true. By dropping to a subsequence if necessary, we may assume that there exists $\delta > 0$ such that for all n, $w(0; \lambda_n, t) > \delta$. In this case, we have

$$\int_0^\infty \frac{1}{w(0; \lambda_n, t)^2 + u^2} d\mu_{|x_0 - \lambda_n|}(u) = \frac{1}{t},$$

which yields

$$\int_0^\infty \frac{1}{\delta^2 + u^2} d\mu_{|x_0 - \lambda_n|}(u) > \frac{1}{t}.

Hence we have

$$\phi((|x_0 - \lambda_0|^2 + \delta^2)^{-1}) = \lim_{n \to \infty} \phi((|x_0 - \lambda_n|^2 + \delta^2)^{-1}) \geq \frac{1}{t},$$

which implies that $w(0; \lambda_0, t) \geq \delta$. This contradicts to our choice $\lambda_0 \in \mathbb{C} \setminus \Xi_t$. Therefore, $\lambda \mapsto w(0; \lambda, t)$ is a continuous function in \mathbb{C}.

\begin{lemma}
Fix $t > 0$, then the functions $\lambda \mapsto w(\varepsilon; \lambda, t)$ converge to the function $\lambda \mapsto w(0; \lambda, t)$ uniformly on \mathbb{C} as ε tends to zero.
\end{lemma}
Proof. We denote \(w_1 = w(\varepsilon_1; \lambda, t), w_2 = w(\varepsilon_2; \lambda, t) \). We observe that \(\varepsilon_1 < w_1 < w_2 \) for any \(0 < \varepsilon_1 < \varepsilon_2 \). Indeed, \(w_1 \) is the unique solution of
\[
\int_0^\infty \frac{w_1}{w_1^2 + u^2} d\mu_{|x_0-\lambda_1|}(u) = \frac{w_1 - \varepsilon_1}{t},
\]
which yields
\[
\int_0^\infty \frac{w_1}{w_1^2 + u^2} d\mu_{|x_0-\lambda_1|}(u) > \frac{w_1 - \varepsilon_2}{t}.
\]
That is \(k(w_1, \varepsilon_2) < t \). On the other hand, \(k(w_2, \varepsilon_2) = t \). It follows from the monotonicity of \(s \mapsto k(s, \varepsilon) \) in Lemma 3.8 that \(w_1 < w_2 \).

We claim that \(w(\varepsilon; \lambda, t) < 2\varepsilon \) uniformly as \(\varepsilon \) tends to zero for \(\mathbb{C} \setminus B \) where \(B \) is a closed ball with large radius. Assume that \(|x_0 - \lambda| > M \gg 1 \) for \(\lambda \in \mathbb{C} \setminus B \). Since \(w = w(\varepsilon; \lambda, t) \) is the unique solution of
\[
\int_0^\infty \frac{w}{w^2 + u^2} d\mu_{|x_0-\lambda_1|}(u) = \frac{w - \varepsilon}{t},
\]
it follows that
\[
(3.16) \quad \frac{w - \varepsilon}{t} < \frac{w}{w^2 + M^2} < \frac{w}{M^2}.
\]
One can then verify that \(w(\varepsilon; \lambda, t) < 2\varepsilon \) for \(\lambda \in \mathbb{C} \setminus B \) provided that the radius of \(B \) is large so that \(M \) is sufficiently large.

By Lemma 3.6 the function \(\lambda \mapsto w(\varepsilon; \lambda, t) \) is a continuous function of \(\lambda \) for any \(\varepsilon \geq 0 \). Let \(B \) be a closed ball in \(\mathbb{C} \) with large radius so that \(\Xi_t \subset B \). Because \(w(\varepsilon; \lambda, t) \) converges pointwise to the continuous function \(w(0; \lambda, t) \) as \(\varepsilon \) tends to zero by Lemma 3.6 and \(\{w(\varepsilon; \lambda, t)\}_{\varepsilon > 0} \) is a monotone sequence of continuous functions of \(\lambda \), it follows by Dini’s theorem that \(w(\varepsilon; \lambda, t) \) converge to the function \(w(0; \lambda, t) \) uniformly on the closed ball \(B \) as \(\varepsilon \) tends to zero.

The above discussions show that \(w(\varepsilon; \lambda, t) \) converge to the function \(w(0; \lambda, t) \) uniformly on \(\mathbb{C} \) as \(\varepsilon \) tends to zero. \(\square \)

3.3. The operator-valued subordination functions. Let \(y = g_{t, \gamma} \) be a twisted elliptic operator in \((\mathcal{M}, \phi)\) and let \(x_0 \in \mathcal{M} \) be a random variable that is \(\ast \)-free from \(y \). We recall that
\[
G_X(\Theta(\lambda, \varepsilon)) = \begin{bmatrix}
g_{X,11}(\lambda, \varepsilon) & g_{X,12}(\lambda, \varepsilon) \\
g_{X,21}(\lambda, \varepsilon) & g_{X,22}(\lambda, \varepsilon)
\end{bmatrix},
\]
and
\[
G_{X_Y}(\Theta(\lambda, \varepsilon)) = \begin{bmatrix}
g_{X+Y,11}(\lambda, \varepsilon) & g_{X+Y,12}(\lambda, \varepsilon) \\
g_{X+Y,21}(\lambda, \varepsilon) & g_{X+Y,22}(\lambda, \varepsilon)
\end{bmatrix}.
\]

The main result in this section is the following.

Theorem 3.8. Let \(y = g_{t, \gamma} \in \mathcal{M} \) and \(x_0 \) be a random variable that is free from \(y \). For any \(\varepsilon > 0 \) and \(\lambda \in \mathbb{C} \), using notations in \((3.1)\) and \((3.2)\), and set
\[
(3.17) \quad z = \lambda + \gamma \cdot \phi \left((\lambda - x_0)^* (\lambda - x_0)^* + w(\varepsilon; \lambda, t)^2 \right)^{-1}
\]
Then \(\Omega_1(\Theta(z, \varepsilon)) = \Theta(\lambda, w(\varepsilon; \lambda, t)) \). That is,
\[
(3.18) \quad \Omega_1 \left(\begin{bmatrix}
i\varepsilon & z \\
1 & i\varepsilon
\end{bmatrix} \right) = \begin{bmatrix}
iw(\varepsilon; \lambda, t) & \lambda \\
\lambda & i\varepsilon
\end{bmatrix}.
\]
The subordination relation $G_{X+Y}(\Theta(z, \varepsilon)) = G_X(\Omega_1(\Theta(z, \varepsilon)))$ is expressed as
\[
\mathbb{E}_0 \left(\left[\frac{i\varepsilon}{z - (x_0 + y)} \right] \right) = \mathbb{E}_0 \left(\left[\frac{i\varepsilon z}{\lambda - x_0} \right] \right),
\]
which is also equivalent to
\[
(3.19) \quad g_{X+Y,11}(z, \varepsilon) = g_{X,11}(\lambda, w(\lambda, t)), \quad g_{X+Y,12}(z, \varepsilon) = g_{X,12}(\lambda, w(\lambda, t)).
\]

Proof. The only nonzero free cumulants of \{y, y^*\} are
\[
\kappa(y, y^*) = \kappa(y^*, y) = t, \quad \kappa(y, y) = \gamma, \quad \kappa(y^*, y^*) = \overline{\gamma}.
\]
The operator $Y = \begin{bmatrix} 0 & y \\ y^* & 0 \end{bmatrix}$ is an operator-valued semicircular element whose R-transform is explicitly given by
\[
R_Y(b) = \mathbb{E}(YbY), \quad b \in M_2(\mathbb{C}).
\]
Hence, for $b = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$,
\[
R_Y \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} a_{22}\kappa(y, y^*) & a_{21}\kappa(y, y) \\ a_{12}\kappa(y^*, y) & a_{11}\kappa(y^*, y) \end{bmatrix} = \begin{bmatrix} a_{22}t & a_{21}\gamma \\ a_{12}\overline{\gamma} & a_{11}t \end{bmatrix}.
\]
In particular, for any $\varepsilon > 0$ and $z \in \mathbb{C}$, we have
\[
R_Y(\Theta(z, \varepsilon)) = R_Y \begin{bmatrix} i\varepsilon & z \\ \overline{z} & i\varepsilon \end{bmatrix} = \begin{bmatrix} i\varepsilon t & \overline{z}\gamma \\ z\overline{\gamma} & i\varepsilon t \end{bmatrix}.
\]

Since X, Y are free with amalgamation in the operator-valued W^*-probability space $(M_2(\mathbb{M}), \mathbb{E}, M_2(\mathbb{C}))$, we have
\[
R_{X+Y}(b) = R_X(b) + R_Y(b).
\]
Hence
\[
G_{X+Y}^{(-1)}(b) = G_{X}^{(-1)}(b) + R_Y(b).
\]
By replacing b with $G_{X+Y}(\beta)$, we obtain a formula for the subordination function
\[
(3.20) \quad \Omega_1(\beta) = G_{X}^{(-1)}(G_{X+Y}(\beta)) = \beta - R_Y(G_{X+Y}(\beta))
\]
for β in a neighborhood of infinity. Hence, for and $z \in \mathbb{C}$ and ε large, we have
\[
(3.21) \quad \Omega_1(\Theta(z, \varepsilon)) = \Theta(z, \varepsilon) - R_Y(G_{X+Y}(\Theta(z, \varepsilon))).
\]

We will show that (3.21) holds for any $z = \lambda + \gamma \cdot g_{X,12}(\lambda, w(\lambda))$ with $\lambda \in \mathbb{C}$ and $\varepsilon > 0$. Indeed, recall that
\[
G_{X+Y}(\Theta(z, \varepsilon)) = \begin{bmatrix} g_{X+Y,11}(z, \varepsilon) & g_{X+Y,12}(z, \varepsilon) \\ g_{X+Y,21}(z, \varepsilon) & g_{X+Y,22}(z, \varepsilon) \end{bmatrix}
\]
holds for any $z \in \mathbb{C}$ and $\varepsilon > 0$. Hence,
\[
R_Y(G_{X+Y}(\Theta(z, \varepsilon))) = \begin{bmatrix} t \cdot g_{X+Y,22}(z, \varepsilon) & \gamma \cdot g_{X+Y,21}(z, \varepsilon) \\ \overline{\gamma} \cdot g_{X+Y,12}(z, \varepsilon) & t \cdot g_{X+Y,11}(z, \varepsilon) \end{bmatrix},
\]
where we remind the reader that
\[
g_{X+Y,11}(z, \varepsilon) = g_{X+Y,22}(z, \varepsilon), \quad g_{X+Y,12}(z, \varepsilon) = g_{X+Y,21}(z, \varepsilon).
\]
Therefore, we can rewrite (3.21) as
\[
\Omega_1(\Theta(z, \varepsilon)) = \begin{bmatrix} i\varepsilon - t \cdot g_{X+Y,22}(z, \varepsilon) & z - \gamma \cdot g_{X+Y,21}(z, \varepsilon) \\ \overline{\gamma} \cdot g_{X+Y,12}(z, \varepsilon) & i\varepsilon - t \cdot g_{X+Y,11}(z, \varepsilon) \end{bmatrix}.
\]
Denote
\begin{equation}
\varepsilon_0 = \varepsilon + it \cdot g_{X+Y,22}(z, \varepsilon),
\end{equation}
and
\begin{equation}
\lambda = z - \gamma \cdot g_{X+Y,21}(z, \varepsilon).
\end{equation}
Then
\begin{equation}
\Omega_1(\Theta(z, \varepsilon)) = \Theta(\lambda, \varepsilon_0) = \begin{bmatrix} i\varepsilon_0 & \lambda \\ \lambda & i\varepsilon_0 \end{bmatrix}
\end{equation}
Hence, the Cauchy transform of \(X \) at \(\Omega_1(\Theta(z, \varepsilon)) \) is given by
\[
G_X(\Omega_1(\Theta(z, \varepsilon))) = E[(\Theta(z, \varepsilon) - X)^{-1}] = \begin{bmatrix} g_{X,11}(\lambda, \varepsilon_0) & g_{X,12}(\lambda, \varepsilon_0) \\ g_{X,21}(\lambda, \varepsilon_0) & g_{X,22}(\lambda, \varepsilon_0) \end{bmatrix}.
\]
On the other hand, we have
\[
G_{X+Y}(\Theta(z, \varepsilon)) = \begin{bmatrix} g_{X+Y,11}(z, \varepsilon) & g_{X+Y,12}(z, \varepsilon) \\ g_{X+Y,21}(z, \varepsilon) & g_{X+Y,22}(z, \varepsilon) \end{bmatrix}.
\]
Therefore the subordination relation \(G_{X+Y}(\Theta(z, \varepsilon)) = G_X(\Omega_1(\Theta(z, \varepsilon))) \) is equivalent to
\begin{equation}
\begin{align*}
g_{X+Y,11}(z, \varepsilon) &= g_{X,11}(\lambda, \varepsilon_0), \\
g_{X+Y,12}(z, \varepsilon) &= g_{X,12}(\lambda, \varepsilon_0), \\
g_{X+Y,21}(z, \varepsilon) &= g_{X,21}(\lambda, \varepsilon_0), \\
g_{X+Y,22}(z, \varepsilon) &= g_{X,22}(\lambda, \varepsilon_0).
\end{align*}
\end{equation}
We remind the reader that
\[
g_{X,11}(\lambda, \varepsilon_0) = g_{X,22}(\lambda, \varepsilon_0), \quad g_{X,12}(\lambda, \varepsilon_0) = g_{X,21}(\lambda, \varepsilon_0).
\]
Now the relation (3.22) can be rewritten as
\[
\varepsilon_0 = \varepsilon + it \cdot g_{X,22}(\lambda, \varepsilon_0)
\]
which is equivalent to
\[
\varepsilon_0 = \varepsilon + t \cdot \varepsilon_0 \phi \left(((\lambda - x_0)^* (\lambda - x_0) + \varepsilon_0^2)^{-1} \right).
\]
This can be further rewritten as
\[
\frac{\varepsilon_0 - \varepsilon}{\varepsilon_0} \left(\int_0^\infty \frac{1}{\varepsilon_0^2 + u^2} d\mu_{|x_0-\lambda_1|}(u) \right)^{-1} = t.
\]
Hence, \(\varepsilon_0 = w(\varepsilon; \lambda, t) \) is the unique solution to the above equation following Definition 3.4.

We argue that (3.21) or equivalently (3.24) holds for any \(\varepsilon > 0 \) and \(\lambda \in \mathbb{C} \). For any \(\lambda \in \mathbb{C} \) and \(\varepsilon > 0 \), we choose \(\varepsilon_0 = w(\varepsilon; \lambda, t) \) and, following (3.23) we let
\[
z = \lambda + \gamma \cdot g_{X,21}(\lambda, \varepsilon_0) = \lambda + \gamma \cdot \phi \left((\lambda - x_0)^* ((\lambda - x_0)(\lambda - x_0)^* + \varepsilon_0^2)^{-1} \right).
\]
Then, the above calculation shows that (3.21) holds if \(\varepsilon \) is large. Notice that \(R_Y(G_{X+Y}(b)) \) is an analytic function defined on \(\mathbb{H}^+(M_2(\mathbb{C})) \). Hence (3.21) and (3.24) hold for any \(\lambda \in \mathbb{C} \), and \(\varepsilon > 0 \) by analytic continuation provided that they satisfy (3.22) and (3.23). Consequently, (3.25) holds for any \(\lambda \in \mathbb{C} \), and \(\varepsilon > 0 \). This finishes the proof. \(\square\)
3.4. The coupling Fuglede-Kadison determinants. To help us remember entries of the Cauchy transform as in (2.9) are derivatives, we introduce the following notation.

Notation 3.9. For any \(t > 0 \), let \(c_t \) be a circular operator with variance \(t \). For \(\gamma \in \mathbb{C} \) such that \(|\gamma| \leq t\), denote by \(g_{t,\gamma} \) the twisted elliptic operator with parameters \(t, \gamma \). For any \(x \in \mathcal{M}, \lambda \in \mathbb{C} \) and \(\varepsilon \geq 0 \), we set

\[
S(x, \lambda, \varepsilon) = \log \Delta((x - \lambda 1)^*(x - \lambda 1) + \varepsilon^2 1)
\]

It is convenient to introduce the following notations

\[
p_{\lambda}^{c(t)}(\varepsilon) = \frac{\partial S}{\partial \lambda}(x_0 + c_t, \lambda, \varepsilon)
\]

\[
p_{\lambda}^{\varepsilon(t,\gamma)}(\varepsilon) = \frac{\partial S}{\partial \varepsilon}(x_0 + c_t, \lambda, \varepsilon)
\]

\[
p_{\lambda}^{(0)}(\varepsilon) = \frac{\partial S}{\partial \lambda}(x_0, \lambda, \varepsilon)
\]

\[
q_{\varepsilon}^{c(t)}(\lambda) = \frac{1}{2} \frac{\partial S}{\partial \varepsilon}(x_0 + c_t, \lambda, \varepsilon) = \varepsilon \phi \left((x_0 + c_t - \lambda 1)^*(x_0 + c_t - \lambda 1) + \varepsilon^2 1 \right)^{-1}
\]

Proof. We note that

\[
G_{X+Y}(\Theta(\lambda, \varepsilon)) = E \left[(\Theta(\lambda, \varepsilon) - X - Y)^{-1} \right] = \begin{bmatrix} -iq_{\varepsilon}^{(t,\gamma)}(\lambda) & p_{\lambda}^{(t,\gamma)}(\varepsilon) \\ p_{\lambda}^{(t,\gamma)}(\varepsilon) & -iq_{\varepsilon}^{(t,\gamma)}(\lambda) \end{bmatrix}.
\]

Corollary 3.10. The subordination relation (3.19) is equivalent to

\[
q_{w(\varepsilon)}^{(0)}(\lambda) = q_{\varepsilon}^{c(t,\gamma)}(z) = q_{\varepsilon}^{c(t)}(\lambda), \quad p_{\lambda}^{(0)}(w(\varepsilon)) = p_{\varepsilon}^{(t,\gamma)}(\varepsilon) = p_{\lambda}^{c(t)}(\varepsilon).
\]

where \(w(\varepsilon) = w(\varepsilon; \lambda, t) \).

Proof. We note that \(c_t = g_{t,0} \). Then (3.17) reads \(z = \lambda \) if \(\gamma = 0 \). The result follows from (3.19) and (3.26).

The following proof was inspired by the proof of [27, Lemma 4.14].
Lemma 3.11. Let \(y = g_{t,\gamma} \) and \(x_0 \) be a random variable free from \(y \). For any \(\lambda \in \mathbb{C} \) and \((\varepsilon, t) \in (0, \infty) \times (0, \infty) \), we have the coupling Fuglede-Kadison determinant formula

\[
\Delta((x_0 + y - z 1^*) (x_0 + y - z 1)) + \varepsilon^2 1^* = \Delta((x_0 - \lambda 1^*) (x_0 - \lambda 1) + w(\varepsilon)^2 1^*)
\]

(3.28) \[
\exp \left[\Re \left(\gamma \cdot (p_\lambda^{(0)}(w(\varepsilon))) - \frac{(w(\varepsilon) - \varepsilon)^2}{t} \right) \right]
\]

where \(z = \lambda + \gamma \cdot p_\lambda^{(0)}(w(\varepsilon)) \) and \(w(\varepsilon) = w(\varepsilon; \lambda, t) \) is defined in Definition 3.4.

Proof. Fix \(\lambda \in \mathbb{C} \), then \(w(\varepsilon) = w(\varepsilon; \lambda, t) \) and \(p_\lambda^{(0)}(w(\varepsilon)) \) are then completely determined by \(\varepsilon \). We denote

(3.29) \[
H_{x_0 + y - z}(\varepsilon) = \frac{1}{2} \log \Delta((x_0 + y - z 1^*) (x_0 + y - z 1) + \varepsilon^2 1^*)
\]

and

\[
H_{x_0 - \lambda}(\varepsilon) = \frac{1}{2} \log \Delta((x_0 - \lambda 1^*) (x_0 - \lambda 1) + \varepsilon^2 1^*).
\]

We have

\[
H_{x_0 - \lambda}(\varepsilon) = \frac{1}{2} \int_0^\infty \log(u^2 + \varepsilon^2) d\mu_{|x_0 - \lambda 1}(u).
\]

Hence

(3.30) \[
\lim_{\varepsilon \to \infty} (H_{x_0 - \lambda}(\varepsilon) - \log \varepsilon) = \frac{1}{2} \lim_{\varepsilon \to \infty} \log (1 + u^2 \varepsilon^2) d\mu_{|x_0 - \lambda 1}(u) = 0.
\]

Observe that \(\lim_{\varepsilon \to \infty} w(\varepsilon) = 0 \). Consequently, \(\lim_{\varepsilon \to \infty} p_\lambda^{(0)}(w(\varepsilon)) = 0 \). Hence

\[
\lim_{\varepsilon \to \infty} z = \lim_{\varepsilon \to \infty} (\lambda + t p_\lambda^{(0)}(w(\varepsilon))) = \lambda
\]

and by a similar estimation as (3.30)

\[
\lim_{\varepsilon \to \infty} (H_{x_0 + y - z}(\varepsilon) - \log \varepsilon) = 0
\]

Recall that \(z = \lambda + t p_\lambda^{(0)}(w(\varepsilon)) \) and \(p_\lambda^{(0)}(w(\varepsilon)) = p_\lambda^{(t,\gamma)}(\varepsilon) \), we have

\[
z = \lambda + p_\lambda^{(t,\gamma)}(\varepsilon).
\]

Therefore,

\[
\frac{d}{d\varepsilon} H_{x_0 + y - z}(\varepsilon) = \frac{1}{2} \frac{d}{d\varepsilon} S(x_0 + y, z, \varepsilon)
\]

\[
= q_\varepsilon^{(t,\gamma)}(z) + \frac{1}{2} \left(\gamma \cdot p_\lambda^{(t,\gamma)}(\varepsilon) \frac{d}{d\varepsilon} p_\lambda^{(t,\gamma)}(\varepsilon) + \gamma \cdot p_\lambda^{(t,\gamma)}(\varepsilon) \frac{d}{d\varepsilon} p_\lambda^{(t,\gamma)}(\varepsilon) \right)
\]

\[
= q_\varepsilon^{(0)}(\lambda) + \frac{1}{2} \left(\gamma \cdot p_\lambda^{(0)}(w(\varepsilon)) \frac{d}{d\varepsilon} p_\lambda^{(0)}(w(\varepsilon)) + \gamma \cdot p_\lambda^{(0)}(w(\varepsilon)) \frac{d}{d\varepsilon} p_\lambda^{(0)}(w(\varepsilon)) \right)
\]

and

\[
\frac{d}{d\varepsilon} H_{x_0 - \lambda}(\varepsilon) = q_\varepsilon^{(0)}(\lambda).
\]

Definition 3.4 says that \(w(\varepsilon) \) satisfies

\[
\frac{w(\varepsilon) - \varepsilon}{t} = q_\varepsilon^{(0)}(\lambda).
\]
We then have
\[
\int_{\varepsilon_0}^\varepsilon q_{w(u)}^{(0)}(\lambda)du
= \int_{\varepsilon_0}^\varepsilon q_{w(u)}^{(0)}(\lambda)\frac{d}{du}w(u)du + \int_{\varepsilon_0}^\varepsilon q_{w(u)}^{(0)}(\lambda)\frac{d}{du}(u - w(u))du
= (H_{x_0 - \lambda}(w(\varepsilon)) - H_{x_0 - \lambda}(w(\varepsilon_0))) - t \cdot \int_{\varepsilon_0}^\varepsilon q_{w(u)}^{(0)}(\lambda)\left(\frac{d}{du}q_{w(u)}^{(0)}(\lambda)\right)
= (H_{x_0 - \lambda}(w(\varepsilon)) - H_{x_0 - \lambda}(w(\varepsilon_0))) - \frac{t}{2} \left((q_{w(\varepsilon)}^{(0)}(\lambda))^2 - (q_{w(\varepsilon_0)}^{(0)}(\lambda))^2\right)
\]
and
\[
\gamma \int_{\varepsilon_0}^\varepsilon p_{\lambda}^{(0)}(w(u))\left(\frac{d}{du}p_{\lambda}^{(0)}(w(u))\right)du + \varphi \int_{\varepsilon_0}^\varepsilon p_{\lambda}^{(0)}(w(u))\left(\frac{d}{du}p_{\lambda}^{(0)}(w(u))\right)
= \frac{\gamma}{2} \left((p_{\lambda}^{(0)}(w(\varepsilon)))^2 - (p_{\lambda}^{(0)}(w(\varepsilon_0)))^2\right) + \frac{\varphi}{2} \left((p_{\lambda}^{(0)}(w(\varepsilon)))^2 - (p_{\lambda}^{(0)}(w(\varepsilon_0)))^2\right)
\]
Hence, there exists a constant C such that
\[
H_{x_0 + y - z}(\varepsilon) = H_{x_0 - \lambda}(w(\varepsilon))
+ \frac{1}{4} \left(\gamma \cdot (p_{\lambda}^{(0)}(w(\varepsilon)))^2 + \varphi \cdot (p_{\lambda}^{(0)}(w(\varepsilon)))^2 - 2t \cdot (q_{w(\varepsilon)}^{(0)}(\lambda))^2\right) + C.
\]
Observe that \(\lim_{\varepsilon \to \infty}(w(\varepsilon) - \varepsilon) = 0\). Consequently, \(\lim_{\varepsilon \to \infty}p_{\lambda}^{(0)}(w(\varepsilon)) = 0\). Hence
\[
\lim_{\varepsilon \to \infty} z = \lim_{\varepsilon \to \infty} (\lambda + t p_{\lambda}^{(0)}(w(\varepsilon))) = \lambda
\]
and by a similar estimation as (3.30)
\[
\lim_{\varepsilon \to \infty} (H_{x_0 + y - z}(\varepsilon) - \log \varepsilon) = 0
\]
Moreover,
\[
\lim_{\varepsilon \to \infty} q_{w(\varepsilon)}^{(0)}(\lambda) = 0.
\]
We conclude that C must be zero. Therefore,
\[
\exp(2H_{x_0 + y - z}(\varepsilon)) = \exp(2H_{x_0 - \lambda}(w(\varepsilon)))
\times \exp\left[\frac{1}{2} \left(\gamma \cdot (p_{\lambda}^{(0)}(w(\varepsilon)))^2 + \varphi \cdot (p_{\lambda}^{(0)}(w(\varepsilon)))^2 - 2t \cdot (q_{w(\varepsilon)}^{(0)}(\lambda))^2\right)\right]
\]
Finally, we can replace \(q_{w(\varepsilon)}^{(0)}(\lambda)\) by \(\frac{w(\varepsilon) - \varepsilon}{t}\). The result follows by recalling (3.29). \(\square\)

Theorem 3.12. For \(\lambda \in \mathbb{C}\), set \(\mu = \mu_{|x_0 - \lambda|}\) and let \(w(0; \lambda, t)\) be as in Definition 3.4

1. If \(\lambda \in \Xi_t\), then
\[
\Delta(x_0 + c_t - \lambda 1)^2 = \Delta((x_0 - \lambda 1)^t(x_0 - \lambda 1) + w(0; \lambda, t)^2 1)
\times \exp\left(-\frac{(w(0; \lambda, t))^2}{t}\right).
\]
(3.31)

2. If \(\lambda \notin \Xi_t\), then
\[
\Delta(x_0 + c_t - \lambda 1) = \Delta(x_0 - \lambda 1).
\]
Proof. The circular operator c_t corresponds to $\gamma = 0$ for a twisted elliptic operator. If $
abla \in \Xi_t$, then $w(0; \lambda, t) > 0$. Hence the first part follows from (3.28) by letting ε tend to zero. For the second part, note that

$$\Delta(x_0 + c_t - \lambda 1)^2 = \lim_{\varepsilon \rightarrow 0^+} \Delta((x_0 + c_t - \lambda 1)^+(x_0 + c_t - \lambda 1) + \varepsilon^2 1).$$

By Lemma 3.6 we know if $\lambda \notin \Xi_t$, then $\lim_{\varepsilon \rightarrow 0^+} w(\varepsilon; \lambda, t) = 0$. Hence by (3.28), we have

$$\Delta(x_0 + c_t - \lambda 1)^2 = \lim_{\varepsilon \rightarrow 0^+} \Delta((x_0 + c_t - \lambda 1)^+(x_0 + c_t - \lambda 1) + \varepsilon^2 1)$$

$$= \lim_{\varepsilon \rightarrow 0^+} \Delta((x_0 - \lambda 1)^+(x_0 - \lambda 1) + w(\varepsilon)^2 1) \times \exp \left[\frac{(w(\varepsilon) - \varepsilon)^2}{t} \right]$$

$$= \Delta(x_0 - \lambda 1)^2.$$

This finishes the proof. \hfill \Box

In light of Lemma 3.11 we would like to let ε tend to zero for both sides of (3.28). Note that the left hand side of (3.28) is $\Delta((x_0 + y - z 1)^+(x_0 + y - z 1)) + \varepsilon^2 1$ where $z = \lambda + \gamma \cdot p^{(0)}(w(\varepsilon; \lambda, t))$ also depends on ε. Hence, we need some regularity results to allow us to take the limit as we wish. To this end, we introduce the map $\Psi_{c,0}$ given by

$$\Psi_{c,0}(\lambda, \varepsilon) = (\lambda, w(\varepsilon; \lambda, t))$$

where $w(\varepsilon; \lambda, t)$ was given in Definition 3.4 and the map $\Psi_{c,0}$ by

$$\Psi_{c,0}(\lambda, \varepsilon) = (z, \varepsilon)$$

where

$$z = \lambda + \gamma \cdot p^{(0)}(w(\varepsilon; \lambda, t)).$$

Lemma 3.13. If $\lambda \in \Xi_t$, the Jacobian of $\Psi_{c,0}$ at $(\lambda, 0)$ is invertible.

Proof. To show the Jacobian of $\Psi_{c,0}$ is invertible, it suffices to show that $\frac{\partial w(\varepsilon; \lambda, t)}{\partial \varepsilon} \neq 0$ at $\varepsilon = 0$. Recall that $w(\varepsilon; \lambda, t)$ is the unique solution $s > 0$ for

$$\int_0^s \frac{s}{s^2 + u^2} d\mu_{\lambda}(u) = \frac{s - \varepsilon}{t}.$$

When $\varepsilon = 0$, note that $w(0; \lambda, t) > 0$ and we can rewrite (3.9) as

$$\int_0^\infty \frac{1}{w(0; \lambda, t)^2 + u^2} d\mu_{\lambda}(u) = \frac{1}{t}.$$

A direct calculation shows that $\frac{\partial w(\varepsilon; \lambda, t)}{\partial \varepsilon} \neq 0$ at $\varepsilon = 0$ \hfill \Box

Theorem 3.14. Let $y = g_{t, \gamma}$ and x_0 be a random variable free from x. Define the map $\Phi_{t, \gamma} : \mathbb{C} \rightarrow \mathbb{C}$ by

$$\Phi_{t, \gamma}(\lambda) = \lambda + \gamma \cdot p^{(0)}(w(0; \lambda, t)), \quad \lambda \in \mathbb{C}. $$

Assume that $\Phi_{t, \gamma}$ is non-singular at $\lambda \in \Xi_t$ (the Jacobian of $\Phi_{t, \gamma}$ is invertible at λ). Then, $(z, \varepsilon) \mapsto \Delta((x_0 + g_{t, \gamma} - \lambda 1)^2 + \varepsilon^2)$ has a real analytic extension in a neighborhood of $(\Phi_{t, \gamma}(\lambda), 0)$. Moreover,

$$\Delta(x_0 + g_{t, \gamma} - \lambda 1)^2 = \Delta(x_0 + c_t - \lambda 1)^2 \exp \left[\Re(\gamma(p^{(0)}(w(0; \lambda, t))^2)) \right]$$

where $z = \Phi_{t, \gamma}(\lambda)$.

Proof. The circular operator c_t corresponds to $\gamma = 0$ for a twisted elliptic operator. If $\lambda \in \Xi_t$, then $w(0; \lambda, t) > 0$. Hence the first part follows from (3.28) by letting ε tend to zero. For the second part, note that
Proof. Notice that the right hand side of (3.31) is a real analytic function of \(\lambda \) by the analyticity of \(w(0; \lambda, t) \) in Lemma 3.6. By Lemma 3.12, the Jacobian of the map \((\lambda, \varepsilon) \mapsto \Phi_{\varepsilon, 0}(\lambda, \varepsilon) = (\lambda, w(\varepsilon; \lambda, t))\) is invertible. An application of inverse function theorem implies that the map
\[
(\lambda, \varepsilon) \mapsto \Delta(|x_0 + c_t - \lambda 1|^2 + \varepsilon^2)
\]
has a real analytic extension in some neighborhood of \((\lambda, 0)\). By choosing \(\gamma = 0 \) and an arbitrary \(\gamma \) in Lemma 3.11, we can obtain that
\[
\Delta(|x_0 + g_{t, \gamma} - z 1|^2 + \varepsilon^2) = \Delta(|x_0 + c_t - \lambda 1|^2 + \varepsilon^2) \exp \left[\Re(\gamma p^{(0)}_\lambda(w(\varepsilon; \lambda, t)))^2 \right],
\]
where
\[
z = \lambda + \gamma \cdot p^{(0)}_\lambda(w(\varepsilon; \lambda, t)).
\]
Note that
\[
\lim_{\varepsilon \to 0^+} p^{(0)}_\lambda(w(\varepsilon; \lambda, t)) = p^{(0)}_\lambda(w(0; \lambda, t)).
\]
Hence, \(\lim_{\varepsilon \to 0^+} \Phi_{\varepsilon, \gamma}(\lambda, \varepsilon) = (\Phi_{0, \gamma}(\lambda), 0) \). Since \(w(0; \lambda, t) > 0 \), then the assumption that \(\Phi_{t, \gamma} \) is non-singular at \(\lambda \in \Xi_t \) implies that the Jacobian of the map \((\lambda, \varepsilon) \mapsto \Phi_{\varepsilon, \gamma}(\lambda, \varepsilon) = (z, \varepsilon) \) at \((\lambda, 0)\) is invertible. Hence, the analyticity of \(\Delta(|x_0 + c_t - \lambda 1|^2 + \varepsilon^2) \) in some neighborhood of \((\lambda, 0)\) implies that the map \((z, \varepsilon) \mapsto \Delta(|x_0 + g_{t, \gamma} - z 1|^2 + \varepsilon^2)\) has a real analytic extension in a neighborhood of \((\Phi_{t, \gamma}(\lambda), 0)\) by inverse function theorem. Hence, (3.33) follows from (3.34) by letting \(\varepsilon \) tend to zero. \(\square \)

Corollary 3.15. If \(\lambda \in \Xi_t \), assume that \(\Phi_{t, \gamma} \) is non-singular at \(\lambda \in \Xi_t \), then
\[
\Delta\left((x_0 + y - z 1)^*(x_0 + y - z 1)\right) = \Delta\left((x_0 - \lambda 1)^*(x_0 - \lambda 1) + w(0; \lambda, t)^2 1\right)
\]
\[
(3.35) \quad \times \exp \left[\frac{1}{2} \left(\gamma \cdot (p^{(0)}_\lambda(w(0; \lambda, t)))^2 + \nabla \cdot (p^{(0)}_\lambda(w(0; \lambda, t)))^2 - \frac{2w(0; \lambda, t)^2}{t} \right) \right],
\]
where
\[
z = \lambda + \gamma \cdot p^{(0)}_\lambda(w(0; \lambda, t)).
\]

4. Brown Measure of Addition with a Circular Operator

In this section, we show that the Brown measure of \(x_0 + c_t \) has no atom and it is absolutely continuous with respect to Lebesgue measure with strictly positive and real analytic density in the open set \(\Xi_t \), and the density formula can be expressed explicitly in terms of the function \(w(0; \lambda, t) \).

4.1. The density formula in the domain \(\Xi_t \). We first study the limits of \(p^{c, (t)}_\lambda(\varepsilon) \) as \(\varepsilon \) tends to zero.

Lemma 4.1. For any \(t > 0 \). The function \(\lambda \mapsto S(x_0 + c_t, \lambda, 0) \) is a real analytic function for \(\lambda \in \Xi_t \), and we have
\[
p^{c, (t)}_\lambda(0) = p^{(0)}_\lambda(w(0; \lambda, t)),
\]
Proof. By Corollary 3.10, we have
\[
p^{c, (t)}_\lambda(\varepsilon) = p^{(0)}_\lambda(w(\varepsilon; \lambda, t)),
\]
Recall that, by Lemma 3.6, for \(\lambda \in \Xi_t \), \(\lim_{\varepsilon \to 0} w(\varepsilon; \lambda, t) = w(0; \lambda, t) \in (0, \infty) \). The result then follows by letting \(\varepsilon \) tend to zero. \(\square \)

The following result generalizes [35 Theorem 3.10] where \(x_0 \) is assumed to be selfadjoint and [14 Theorem 1.4] where \(x_0 \) is assumed to be a Gaussian distributed normal operator (their techniques extend to the case when \(x_0 \) is a normal operator).
The Brown measure is absolutely continuous with respect to Lebesgue measure in the open set Ξ. The density of the Brown measure at $\lambda \in \Xi$ is given by

$$\frac{1}{\pi} \left(\frac{1}{t} - \frac{\partial}{\partial \lambda} \left(\phi(x_0^*((x_0 - \lambda 1)^*(x_0 - \lambda 1) + w(0; \lambda, t)^2 1)^{-1}) \right) \right)$$

where $w = w(0; \lambda, t)$ is determined by

$$\phi((x_0 - \lambda 1)^*(x_0 - \lambda 1) + w(0; \lambda, t)^2 1)^{-1}) = \frac{1}{t}.$$

It can also be expressed as

$$\frac{1}{\pi} \left(\frac{\phi((\lambda 1 - x_0)^2)}{\phi(h^{-1} 2^2)} + \omega(0; \lambda, t)^2 \phi(h^{-1} k^{-1}) \right)$$

where $h = h(\lambda, w(0; \lambda, t))$ and $k = k(\lambda, w(0; \lambda, t))$ for

$$h(\lambda, w) = (\lambda 1 - x_0)^*(\lambda 1 - x_0) + w^2$$

and

$$k(\lambda, w) = (\lambda 1 - x_0)(\lambda 1 - x_0)^* + w^2.$$

In particular, the density of the Brown measure of $x_0 + c_1$ is strictly positive in the set Ξ.

Proof. For $\lambda \in \Xi$, we have $\phi \left[((x_0 - \lambda 1)^*(x_0 - \lambda))^{-1} \right] > \frac{1}{t}$, and

$$\Delta((x_0 + c_1 - \lambda 1)^*(x_0 + c_1 - \lambda 1))$$

$$= \Delta((x_0 - \lambda 1)^*(x_0 - \lambda 1) + w(0; \lambda, t)^2 1) \cdot \exp \left[-t(g^{(0)}_{\omega(0; \lambda, t)}(\lambda))^2 \right]$$

by Theorem 3.12. In addition, $w(0; \lambda, t) \in (0, \infty)$ and $(a, b) \mapsto w(0; \lambda, t)$ for $\lambda = a + bi$ is real analytic by Lemma 3.6. Hence, $\lambda \mapsto \log \Delta((x_0 + c_1 - \lambda 1)$ is real analytic. We put

$$g(\lambda) = \log \Delta((x_0 + c_1 - \lambda 1)^*(x_0 + c_1 - \lambda 1))$$

The Brown measure can be calculated as

$$d\mu_{x_0 + c_1}(\lambda) = \frac{1}{\pi} \frac{\partial^2}{\partial \lambda \partial \lambda} g(\lambda).$$

where the Laplacian can be calculated in the usual sense.

Then Lemma 4.1 is equivalent to

$$\frac{\partial}{\partial \lambda} g(\lambda) = \phi \left(h^{-1} \frac{\partial h}{\partial \lambda} \right)$$

where $\frac{\partial h}{\partial \lambda} = (\lambda 1 - x_0)^*$. We can continue to take the derivative directly

$$\frac{\partial^2}{\partial \lambda \partial \lambda} g(\lambda) = \frac{\partial}{\partial \lambda} \phi \left(h^{-1} \frac{\partial h}{\partial \lambda} \right)$$

$$= \frac{\partial}{\partial \lambda} \phi((\lambda 1 - x_0)^*(x_0 - \lambda 1)^* (x_0 - \lambda 1) + w(0; \lambda, t)^2 1)^{-1})$$

$$= \frac{\partial}{\partial \lambda} \phi \left(\frac{x_0^*}{t} \left(x_0^* - \phi(x_0^* (x_0 - \lambda 1)^* (x_0 - \lambda 1) + w(0; \lambda, t)^2 1)^{-1}) \right) \right)$$

$$= \frac{1}{t} - \frac{\partial}{\partial \lambda} \left(\phi(x_0^* (x_0 - \lambda 1)^* (x_0 - \lambda 1) + w(0; \lambda, t)^2 1)^{-1}) \right).$$

Then the first formula (4.1) is established.
We adapt the calculation in [27, Lemma 2.8] to get another form of the density formula. By [29, Lemma 3.2], since \(g(\lambda) \) is a real analytic function of \(\lambda \), we have

\[
\frac{\partial^2}{\partial \lambda \partial \lambda} g(\lambda) = \frac{\partial}{\partial \lambda} \phi \left(h^{-1} \frac{\partial h}{\partial \lambda} \right) = \phi \left(-h^{-1} \left(\frac{\partial h}{\partial \lambda} + 2w \frac{\partial w}{\partial \lambda} \right) h^{-1} \frac{\partial h}{\partial \lambda} + h^{-1} \frac{\partial^2 h}{\partial \lambda \partial \lambda} \right) = \phi \left(-h^{-1} \frac{\partial h}{\partial \lambda} h^{-1} \frac{\partial h}{\partial \lambda} + h^{-1} \frac{\partial^2 h}{\partial \lambda \partial \lambda} \right) - 2w \frac{\partial w}{\partial \lambda} \phi \left(\frac{\partial h}{\partial \lambda} (h^{-1})^2 \right)
\]

(4.3)

and

\[
\frac{\partial h}{\partial \lambda} = \frac{\partial h(\lambda, w)}{\partial \lambda} = \lambda 1 - x_0;
\]

and

\[
\frac{\partial^2 h}{\partial \lambda \partial \lambda} = \frac{\partial}{\partial \lambda}(\lambda 1 - x_0)^* = 1.
\]

We now apply the identity \(x(x^* x + \varepsilon 1)^{-1} = (xx^* + \varepsilon 1)^{-1}x \) to \(x = \lambda 1 - x_0 \) and \(\varepsilon = w^2 \), we find that

\[
-\frac{\partial h}{\partial \lambda} h^{-1} \frac{\partial h}{\partial \lambda} + \frac{\partial^2 h}{\partial \lambda \partial \lambda} = 1 - x(x^* x + w^2 1)^{-1} x^* = 1 - (xx^* + w^2 1)^{-1} xx^* = w^2 (xx^* + w^2 1)^{-1} = w^2 k^{-1}.
\]

Now, \(w(0; \lambda, t) \) is determined by

\[
\phi((x_0 - \lambda 1)^* (x_0 - \lambda 1) + w(0; \lambda, t)^2 1)^{-1}) = \frac{1}{t}
\]

which can be rewritten as

\[
\phi(h^{-1}) = \frac{1}{t}.
\]

Take implicit differentiation \(\frac{\partial}{\partial \lambda} \) and apply again [29 Lemma 3.2], we then obtain

\[
\phi \left(h^{-1} \left(\frac{\partial h}{\partial \lambda} + 2w \frac{\partial w}{\partial \lambda} \right) h^{-1} \right) = 0,
\]

where \(\frac{\partial h}{\partial \lambda} = \lambda 1 - x_0 \). This implies

\[
-2w \frac{\partial w}{\partial \lambda} = \frac{\phi \left(\frac{\partial h}{\partial \lambda} (h^{-1})^2 \right)}{\phi((h^{-1})^2)}.
\]

By the tracial property, we observe that

\[
\phi \left(\frac{\partial h}{\partial \lambda} (h^{-1})^2 \right) = \phi \left(\frac{\partial h}{\partial \lambda} (h^{-1})^2 \right).
\]
We therefore can continue to simplify (4.3) as
\[
\frac{\partial^2}{\partial \lambda^2} g(\lambda) = \phi \left(-h^{-1} \frac{\partial h}{\partial \lambda} h^{-1} \frac{\partial h}{\partial \lambda} + h^{-1} \frac{\partial^2 h}{\partial \lambda^2} \right) - 2w \frac{\partial w}{\partial \lambda} \phi \left(\frac{\partial h}{\partial \lambda} (h^{-1})^2 \right)
\]
\[
= w^2 \phi(h^{-1}k^{-1}) + \frac{\phi \left(\frac{\partial h}{\partial \lambda} (h^{-1})^2 \right)^2}{\phi((h^{-1})^2)}
\]
\[
= w^2 \phi(h^{-1/2}k^{-1}h^{-1/2}) + \frac{\phi \left((\lambda - x_0)(h^{-1})^2 \right)^2}{\phi((h^{-1})^2)} > 0
\]
for any $\lambda \in \Xi_t$. This finishes the proof. \hfill \Box

4.2. The support of the Brown measure of $x_0 + c_\varphi$. Theorem 4.2 does not tell us the Brown measure of $x_0 + c_\varphi$ outside the open set Ξ_t. We will show that the Brown measure of $x_0 + c_\varphi$ is supported in the closure of Ξ_t.

Lemma 4.3. The Brown measures of x_0 and $x_0 + c_\varphi$ coincide in the complement of the closure Ξ_t. That is
\[
\mu_{x_0} |_{(\Xi_t)^c} = \mu_{x_0 + c_\varphi} |_{(\Xi_t)^c}.
\]
In particular, $\mu_{x_0 + c_\varphi}(\Xi_t) = 1$ if and only if $\mu_{x_0}(\Xi_t) = 1$.

Proof. For $\lambda \in (\Xi_t)^c$, by Theorem 3.12 we have
\[
\log \Delta(x_0 - \lambda 1) = \log \Delta(x_0 + c_\varphi - \lambda 1).
\]
Hence,
\[
\int_{\Xi_t} \log |z - \lambda| d\mu_{x_0}(z) = \int_{\Xi_t} \log |z - \lambda| d\mu_{x_0 + c_\varphi}(z)
\]
for any $\lambda \in (\Xi_t)^c$. Then two Brown measures coincide in the open set $(\Xi_t)^c$ due to the Unicity Theorem of logarithmic potential (see [43] Theorem 2.1 in Chapter II). \hfill \Box

We are grateful to Hari Bercovici for providing us a proof of the following result which is a refinement of an argument in [26 Proposition 4.6].

Lemma 4.4. Let μ be a finite Borel measure on \mathbb{C}. Define $I : \mathbb{C} \to (0, \infty]$ by
\[
I(\lambda) = \int_{\mathbb{C}} \frac{1}{|z - \lambda|^2} d\mu(z).
\]
Then $I(\lambda)$ is infinite almost everywhere relative to μ.

Proof. If it is not true, by restricting to a bounded subset of \mathbb{C} where $I(\lambda)$ is bounded if necessary, we may assume that $I(\lambda)$ is finite almost everywhere relative to μ and $\text{supp}(\mu)$ is contained in the ball $D(0, r)$ centered at the origin with radius r. We may further assume that there exists $C > 0$ such that
\[
I(\lambda) < C, \quad \forall \lambda \in \mathbb{C}.
\]
Fix any $\lambda \in \text{supp}(\mu)$, for any $\delta > 0$ there exists $\varepsilon = \varepsilon(\lambda) \in (0, 1)$ such that
\[
\int_{|z - \lambda| < \varepsilon} \frac{1}{|z - \lambda|^2} d\mu(z) < \delta
\]
by continuity of the integration. Hence
\[
\mu(D(\lambda, \varepsilon)) < \delta \varepsilon^2
\]
where $D(\lambda, \varepsilon)$ is the disc centered at λ with radius ε. The Vitali covering lemma tells us there is a countable family of discs $(D(\lambda_i, \varepsilon_i))_{i=1}^{\infty}$ that are pairwise disjoint, such that

$$\text{supp}(\mu) \subset \bigcup_{i=1}^{\infty} (5 \cdot D(\lambda_i, \varepsilon_i)).$$

By choosing larger r if needed, we may choose ε_i so that $5 \cdot D(\lambda_i, \varepsilon_i) \subset D(0, r)$. Hence,

$$\mu(C) \leq 5\delta \sum_{i=1}^{\infty} \varepsilon_i^2 \leq 5\delta r^2.$$

Note that r can be chosen to be independent of δ since μ is compactly supported. This implies that μ is zero measure and we conclude that $I(\lambda)$ is infinite almost everywhere relative to μ.

The following result provides a new characterization of the support of the Brown measure of an arbitrary operator. The result also improves [33, Theorem 1.2] where a condition of local boundedness of $(T - \lambda 1)^{-1}$ in L^2-norm is required.

Theorem 4.5. Let $\lambda \in \mathbb{C}$ and $T \in \mathcal{M}$. If $\phi(|T - \lambda|^{-2}) < \infty$, then

$$\int_{\mathbb{C}} \frac{1}{|z - \lambda|^2} d\mu_T(z) \leq \phi(|T - \lambda|^{-2}).$$

If $\phi(|T - \lambda|^{-2}) < \infty$ in some neighborhood of λ_0, then $\lambda_0 \notin \text{supp}(\mu_T)$.

Proof. Observe that for any $t \in (0, 1)$, we have $2 \log t > -\frac{1}{t^2}$. Hence,

$$2 \int_0^1 \log t d\mu_T[T - \lambda](t) > -\int_0^1 \frac{1}{t^2} d\mu_T[T - \lambda](t)$$

$$> -\int_0^\infty \frac{1}{t^2} d\mu_T[T - \lambda](t)$$

$$= -\phi(|T - \lambda|^{-2}) > -\infty.$$

By [27, Proposition 2.16], the operator $T - \lambda$ has an inverse $(T - \lambda)^{-1}$ that is possibly unbounded operator affiliated with \mathcal{M} and the Brown measure $\mu_{(T - \lambda)^{-1}}$ of $(T - \lambda)^{-1}$ can be defined. Moreover, $\mu_{(T - \lambda)^{-1}}$ is the push-forward measure of μ_T via the map $z \mapsto (z - \lambda)^{-1}$. Hence, by [27, Theorem 2.19], we obtain

$$\int_{\mathbb{C}} \frac{1}{|z - \lambda|^2} d\mu_T(z) = \int_{\mathbb{C}} |z|^2 d\mu_{(T - \lambda)^{-1}}(z) \leq \|\mu_{(T - \lambda)^{-1}}\|_2 = \phi(|T - \lambda|^{-2}).$$

If $\phi(|T - \lambda|^{-2}) < \infty$ in some neighborhood of λ_0. It then follows by Lemma 4.4 that $\mu_T(U) = 0$ thanks to (4.4). Hence, $\lambda_0 \notin \text{supp}(\mu_T)$.

Theorem 4.6. For any $x_0 \ast$-free from c_t, the Brown measure $\mu_{x_0 + c_t}$ of $x_0 + c_t$ has no atom and is supported in the closure $\overline{\Xi_t}$.

Proof. Given $\lambda \in (\Xi_t)^c$, we have

$$\log \Delta(x_0 - \lambda 1) = \log \Delta(x_0 + c_t - \lambda 1),$$

which yields that

$$\int_0^\infty \log |t| d\mu_{|x_0 - \lambda 1|}(t) = \int_0^\infty \log |t| d\mu_{|x_0 + c_t - \lambda 1|}(t).$$
In addition, we have \(\phi(|x_0 - \lambda 1|^2) \leq 1/t \), and as in the proof of Theorem 4.5, we have
\[
\int_0^1 \log t \, d\mu_{|x_0 - \lambda 1|}(t) > -\infty.
\]
Hence,
\[
\int_0^1 \log t \, d\mu_{|x_0 + \epsilon - \lambda 1|}(t) > -\infty.
\]
It follows by [27, Proposition 2.16] that \(\mu_{x_0 + \epsilon - \lambda}(\{0\}) = 0 \). Hence \(\mu_{x_0 + \epsilon}(\{\lambda\}) = 0 \) for any \(\lambda \in \mathbb{C} \setminus \Xi_t \), since \(\mu_{x_0 + \epsilon - \lambda 1} \) is the translation of \(\mu_{x_0 + \epsilon} \) by \(-\lambda \). Recall that \(\mu_{x_0 + \epsilon} \) is absolutely continuous in \(\Xi_t \). It follows that \(\mu_{x_0 + \epsilon} \) has no atom in \(\mathbb{C} \).

For any \(\lambda \in (\Xi_t)^c \), there is some neighborhood \(U \) of \(\lambda \) such that \(\phi(|x_0 - z 1|^2) \leq 1/t \) for \(z \in U \). By Theorem 4.5, \(\mu_{x_0}(U) = 0 \). Hence, \(\mu_{x_0}((\Xi_t)^c) = 0 \). By Lemma 4.3, the Brown measure of \(x_0 + \epsilon \) coincides with the Brown measure of \(x_0 \) within the open set \((\Xi_t)^c \). Hence, \(\mu_{x_0 + \epsilon}((\Xi_t)^c) = 0 \) and thus the Brown measure is supported in the closure \(\Xi_t \), thanks to Theorem 4.2.

5. Brown Measure of Addition with an Elliptic Operator

In this section, we show the Brown measure of \(\mu_{x_0 + g_t, \gamma} \) is the pushforward measure of \(\mu_{x_0 + \epsilon} \) under the map \(\Phi_{t, \gamma} \) defined in (3.32), which is
\[
\Phi_{t, \gamma}(\lambda) = \lambda + \gamma \cdot p^{(0)}_\lambda (w(0; \lambda, t)), \quad \lambda \in \mathbb{C}.
\]
We define the function \(\Phi_{t, \gamma}^{(e)} \) on \(\mathbb{C} \) by
\[
(5.1) \quad \Phi_{t, \gamma}^{(e)}(\lambda) = \lambda + \gamma \cdot p^{(0)}_\lambda (w(\epsilon; \lambda, t)), \quad \lambda \in \mathbb{C}
\]
where
\[
p^{(0)}_\lambda (w(\epsilon; \lambda, t)) = -\phi \left((x_0 - \lambda 1)^* (x_0 - \lambda 1)^* + w(\epsilon; \lambda, t) 1 \right)^{-1}.
\]
By Notation 3.39 these maps can also be expressed as
\[
\Phi_{t, \gamma}(\lambda) = \lambda + \gamma \cdot \frac{\partial S}{\partial \lambda}(x_0, \lambda, w(0; \lambda, t)),
\]
and
\[
\Phi_{t, \gamma}^{(e)}(\lambda) = \lambda + \gamma \cdot \frac{\partial S}{\partial \lambda}(x_0, \lambda, w(\epsilon; \lambda, t)).
\]
Our strategy is to show first that the regularized Brown measure \(\mu_{x_0 + g_t, \gamma, \epsilon} \) is the pushforward measure of the regularized Brown measure of \(\mu_{x_0 + \epsilon, \epsilon} \) under that map \(\Phi_{t, \gamma}^{(e)} \). We then show that \(\Phi_{t, \gamma}^{(e)} \) converges to \(\Phi_{t, \gamma} \) uniformly on \(\mathbb{C} \) as \(\epsilon \) tends to zero.

5.1. Regularized Brown Measure and the regularized pushforward map.

Proposition 5.1. The map \(\Phi_{t, \gamma}^{(e)} \) is an one-to-one, onto, and real analytic selfmap of \(\mathbb{C} \).

Proof. It is clear that \(\Phi_{t, \gamma}^{(e)} \) is a real analytic map of \(\mathbb{C} \). Assume that \(z = \Phi_{t, \gamma}^{(e)}(\lambda_1) = \Phi_{t, \gamma}^{(e)}(\lambda_2) \) for \(\lambda_1, \lambda_2 \in \Xi_t \). Then, by the subordination relation in Theorem 3.8, we have, for \(i = 1, 2 \),
\[
p^{(e)}_{\lambda_i}(\epsilon) = p^{(e)}_{\lambda_i}(\epsilon) = p^{(0)}_{\lambda_i}(w(\epsilon; \lambda_i, t)),
\]
where \(z = \Phi_{t, \gamma}^{(e)}(\lambda_i) \) for \(i = 1, 2 \). Rewrite the map \(\Phi_{t, \gamma}^{(e)} \) as
\[
\Phi_{t, \gamma}^{(e)}(\lambda) = \lambda + p^{(0)}_\lambda (w(\epsilon; \lambda, t)) = \lambda + p^{(e)}_{\lambda_i}(\lambda_i, t) = \lambda + p^{(e)}_{\lambda_i}(\epsilon).
\]
Then the condition \(z = \Phi_{t,\gamma}^{(e)}(\lambda_1) = \Phi_{t,\gamma}^{(e)}(\lambda_2) \) yields that \(\lambda_1 = \lambda_2 \). Hence, \(\Phi_{t,\gamma}^{(e)} \) is one-to-one in \(\mathbb{C} \).

The proof of Lemma \ref{lem:regularization} shows that \(w(\varepsilon; \lambda, t) \leq 2\varepsilon \) for \(|\lambda| \) sufficiently large. It follows that

\[
\lim_{|\lambda| \to \infty} \phi \left[(x_0 - \lambda \mathbf{1})^* ((x_0 - \lambda \mathbf{1})(x_0 - \lambda \mathbf{1})^* + w(\varepsilon; \lambda, t)^2 \mathbf{1})^{-1} \right] = 0,
\]

and \(\lim_{|\lambda| \to \infty} \Phi_{t,\gamma}^{(e)}(\lambda) = \infty \). Hence, the map \(\Phi_{t,\gamma}^{(e)} \) is injective and maps \(\infty \to \infty \). It follows that it is also surjective.

Let \(Q \) be an operator in the tracial \(W^* \)-probability space \((\mathcal{M}, \phi)\). For \(\lambda \in \mathbb{C} \) and \(\varepsilon > 0 \), denote \(Q_\lambda = Q - \lambda \), and recall that the regularized Brown measure of \(Q \) is defined as

\[
\mu_{Q,\varepsilon} = \frac{1}{2\pi} \nabla^2 L_{Q,\varepsilon}(\lambda),
\]

where \(L_{Q,\varepsilon}(\lambda) = \log \Delta((Q_\lambda^*Q_\lambda + \varepsilon^2)^{1/2}) \).

Theorem 5.2. The regularized Brown measure \(\mu_{x_0 + g_\varepsilon, \varepsilon} \) is the pushforward measure of the regularized Brown measure of \(x_0 + c_\varepsilon \) under that map \(\Phi_{t,\gamma}^{(e)} \). That is,

\[
\mu_{x_0 + g_\varepsilon, \varepsilon}(\cdot) = \mu_{x_0 + c_\varepsilon, \varepsilon}((\Phi_{t,\gamma}^{(e)})^{-1}(\cdot)).
\]

Proof. Let \(\Gamma \subset \Xi_t \) be a simply connected domain in the set \(\Xi_t \) with piecewise smooth boundary. Since the regularized map \(\Phi_{t,\gamma}^{(e)} \) is an one-to-one, onto, and real analytic selfmap of \(\mathbb{C} \), it suffices to show that

\[
\mu_{x_0 + c_\varepsilon, \varepsilon}(\Gamma) = \mu_{x_0 + g_\varepsilon, \varepsilon}((\Phi_{t,\gamma}^{(e)}(\Gamma))).
\]

The domain \(\Phi_{t,\gamma}^{(e)}(\Gamma) \) is also a simply connected domain with piecewise smooth boundary. For \(\lambda = \lambda_1 + i\lambda_2 \in \mathbb{C} \) and \(z = z_1 + z_2 \in \mathbb{C} \), we denote the vector fields

\[
P^c(\lambda_1, \lambda_2) = \Re(p^{c,(t)}_\lambda(\varepsilon)), \quad Q^c(\lambda_1, \lambda_2) = -\Im(p^{c,(t)}_\lambda(\varepsilon));
\]

and

\[
P^g(z_1, z_2) = \Re(p^{g,(t,\gamma)}_2(\varepsilon)), \quad Q^g(z_1, z_2) = -\Im(p^{g,(t,\gamma)}_2(\varepsilon)).
\]

For \(\lambda \in \mathbb{C} \), set

\[
z = \Phi_{t,\gamma}^{(e)}(\lambda) = \lambda + \gamma \cdot p^{(0)}_{\lambda}(w(\varepsilon; \lambda, t)).
\]

By Theorem \ref{thm:regularization} and Notation \ref{not:regularization}, we have

\[
p^{(0)}_{\lambda}(w(\varepsilon; \lambda, t)) = p^{c,(t)}_{\lambda}(\varepsilon) = 2 \frac{\partial L_{x_0 + c_\varepsilon, \varepsilon}(\lambda)}{\partial \lambda} = p^{g,(t,\gamma)}_2(\varepsilon) = 2 \frac{\partial L_{x_0 + g_\varepsilon, \varepsilon}(z)}{\partial z},
\]

where \(z = \Phi_{t,\gamma}^{(e)}(\lambda) \). We note that

\[
p^{c,(t)}_{\lambda}(\varepsilon) = \frac{\partial L_{x_0 + c_\varepsilon, \varepsilon}(\lambda)}{\partial \lambda_1} - i \frac{\partial L_{x_0 + c_\varepsilon, \varepsilon}(\lambda)}{\partial \lambda_2} = P^c(\lambda_1, \lambda_2) - i Q^c(\lambda_1, \lambda_2).
\]

Hence, we have

\[
P^c(\lambda_1, \lambda_2) = P^g(z_1, z_2) = \frac{\partial L_{x_0 + c_\varepsilon, \varepsilon}(\lambda)}{\partial \lambda_1},
\]

and

\[
Q^c(\lambda_1, \lambda_2) = Q^g(z_1, z_2) = \frac{\partial L_{x_0 + c_\varepsilon, \varepsilon}(\lambda)}{\partial \lambda_2}.
\]
Let \(\gamma = \gamma_1 + i\gamma_2 \), then we have
\[
\begin{align*}
z_1 &= \lambda_1 + \gamma_1 P^c(\lambda_1, \lambda_2) + \gamma_2 Q^c(\lambda_1, \lambda_2); \\
z_2 &= \lambda_2 + \gamma_2 P^c(\lambda_1, \lambda_2) - \gamma_1 Q^c(\lambda_1, \lambda_2).
\end{align*}
\]

(5.3)

Denote the differential form \(\alpha \) in \(\mathbb{C} \) as
\[
\alpha = \frac{\partial L_{x_0 + g_1, \gamma, \varepsilon}}{\partial z_1} + \frac{\partial L_{x_0 + g_1, \gamma, \varepsilon}}{\partial z_2} = -Q^c dz_1 + P^c dz_2.
\]

(5.4)

Since \(\Phi_{t, \gamma}^{(\varepsilon)} \) is one-to-one, we can change variables from \(z \) to \(\lambda \), which really means that we pull back the 1-form \(\alpha \) by the map \(\Phi_{t, \gamma}^{(\varepsilon)} \). Letting \(\beta \) be the pulled-back form, and also using formulas (5.3) for \(z_1, z_2 \), we get
\[
\begin{align*}
\beta &= -Q^c d(\lambda_1 + \gamma_1 P^c + \gamma_2 Q^c) \\
&\quad + P^c d(\lambda_2 + \gamma_2 P^c - \gamma_1 Q^c).
\end{align*}
\]

We can write this as
\[
\begin{align*}
\beta &= -Q^c d\lambda_1 + P^c d\lambda_2 - \gamma_1 (P^c dQ^c + Q^c dP^c) + \gamma_2 (P^c dP^c - Q^c dQ^c) \\
&= -Q^c d\lambda_1 + P^c d\lambda_2 + d\left[-\gamma_1 P^c Q^c + \frac{1}{2} \gamma_2 ((P^c)^2 - (Q^c)^2) \right].
\end{align*}
\]

(5.5)

Hence, by Green’s formula and the definition of 1-forms \(\alpha \) and \(\beta \), we have
\[
\mu_{x_0 + g_1, \gamma, \varepsilon}(\Phi_{t, \gamma}^{(\varepsilon)}(\Gamma)) = \frac{1}{2\pi} \int_{\partial \Phi_{t, \gamma}^{(\varepsilon)}(\Gamma)} \alpha = \frac{1}{2\pi} \int_{\partial \Gamma} \beta \\
= \frac{1}{2\pi} \int_{\partial \Gamma} -Q^c (\lambda_1, \lambda_2) d\lambda_1 + P^c (\lambda_1, \lambda_2) d\lambda_2 \\
= \frac{1}{2\pi} \int_{\partial \Gamma} -P_{x_0 + c_{1, \varepsilon}} d\lambda_1 + \frac{\partial L_{x_0 + c_{1, \varepsilon}, \varepsilon}}{\partial \lambda_1} d\lambda_2 \\
= \mu_{x_0 + c_{1, \varepsilon}}(\Gamma),
\]

where we used (5.5) to deduce the fourth identity. \(\square \)

5.2. Addition with an elliptic operator.

In this section, we show the Brown measure of \(\mu_{x_0 + g_1, \gamma} \) is the pushforward measure of \(\mu_{x_0 + c_{1, \varepsilon}} \) under the map \(\Phi_{t, \gamma}^{(\varepsilon)} \). Hence, the following diagram commutes.

\[
\begin{array}{ccc}
\mu_{x_0 + c_{1, \varepsilon}} & \xrightarrow{\Phi_{t, \gamma}^{(\varepsilon)}} & \mu_{x_0 + g_1, \gamma, \varepsilon} \\
\varepsilon \to 0 & & \varepsilon \to 0 \\
\mu_{x_0 + c_{1, \varepsilon}} & \xrightarrow{\Phi_{t, \gamma}} & \mu_{x_0 + g_1, \gamma}
\end{array}
\]

Lemma 5.3. The function \(\Phi_{t, \gamma}^{(\varepsilon)} \) converges uniformly to \(\Phi_{t, \gamma} \) uniformly in \(\mathbb{C} \) as \(\varepsilon \) tends to zero.
Proof. For $\varepsilon_2 > \varepsilon_1 > 0$, we set $w_i = w(\varepsilon_i; \lambda, t)(i = 1, 2)$. Recall that $w(\varepsilon; \lambda, t) > \varepsilon$. By the proof of Lemma 5.7, we have $w_1 < w_2$. By the resolvent identity, we have

$$p^{(0)}_\lambda(w(\varepsilon_2; \lambda, t)) - p^{(0)}_\lambda(w(\varepsilon_1; \lambda, t))$$

$$= \phi \left[(\lambda I - x_0)^* (x_0 - \lambda I)(x_0 - \lambda I)^* + w^2_2 1 - 1 \right] - \phi \left[(\lambda I - x_0)^* (x_0 - \lambda I)(x_0 - \lambda I)^* + w^2_1 1 - 1 \right]$$

$$= \phi(AH_1H_2B)(w_2 - w_1),$$

where

$$A = (\lambda I - x_0)^* (x_0 - \lambda I)(x_0 - \lambda I)^* + w^2_1 1 - 1/2$$

$$B = ((x_0 - \lambda I)(x_0 - \lambda I)^* + w^2_2 1)^{-1/2}(w_1 + w_2)$$

$$H_1 = ((x_0 - \lambda I)(x_0 - \lambda I)^* + w^2_1 1)^{-1/2}$$

$$H_2 = ((x_0 - \lambda I)(x_0 - \lambda I)^* + w^2_2 1)^{-1/2}.$$

Since $\varepsilon_1 < w_1 < w_2$, we have

$$||A|| \leq 1, \quad ||B|| \leq 2.$$

We also have, for $i = 1, 2$,

$$\phi(H_i^2) = \phi((x_0 - \lambda I)(x_0 - \lambda I)^* + w^2_1 1)^{-1}$$

$$\leq \phi((x_0 - \lambda I)(x_0 - \lambda I)^* + w(0; \lambda, t)^2 1)^{-1} \leq \frac{1}{t},$$

due to $w(0; \lambda, t) \leq w_i$. Therefore,

$$|\phi(AH_1H_2B)| \leq 2\phi(H_1H_2) \leq 2\sqrt{\phi(H_1^2)\phi(H_2^2)} \leq \frac{2}{t},$$

which yields

$$|p^{(0)}_\lambda (w(\varepsilon_2; \lambda, t)) - p^{(0)}_\lambda (w(\varepsilon_1; \lambda, t))| \leq \frac{2}{t}(w(\varepsilon_2; \lambda, t) - w(\varepsilon_1; \lambda, t)).$$

Hence, $p^{(0)}_\lambda (w(\varepsilon; \lambda, t))$ converges uniformly to $p^{(0)}_\lambda (w(0; \lambda, t))$ as ε tends to zero, thanks to the uniform convergence of $w(\varepsilon; \lambda, t)$ to $w(0; \lambda, t)$ proved in Lemma 5.7. It follows that $\Phi^{(\varepsilon)}_{t, \gamma}$ converges to $\Phi_{t, \gamma}$ uniformly in C as ε tends to zero.

Theorem 5.4. The Brown measure of $\mu_{x_0 + g_{t, \gamma}}$ is the pushforward measure of the Brown measure $\mu_{x_0 + c}$ under the map $\Phi_{t, \gamma}$.

Proof. It is known in Theorem 5.2 that

$$\int_C F(u) d\mu_{x_0 + g_{t, \gamma}} = \int_C F \circ \Phi^{(\varepsilon)}_{t, \gamma} d\mu_{x_0 + \varepsilon, \gamma}(u)$$

for any $F \in C^\infty(\mathbb{C})$. The regularized Brown measure converges to the Brown measure weakly as ε tends to zero. In addition, $\Phi^{(\varepsilon)}_{t, \gamma}$ converges to $\Phi_{t, \gamma}$ uniformly by Lemma 5.7. It follows that, for any $F \in C^\infty(\mathbb{C})$,

$$\int_C F(u) d\mu_{x_0 + g_{t, \gamma}} = \int_C F \circ \Phi_{t, \gamma} d\mu_{x_0 + c}(u).$$

Hence, $\mu_{x_0 + g_{t, \gamma}}$ is the pushforward measure of $\mu_{x_0 + c}$ under the map $\Phi_{t, \gamma}$. □
5.3. Some further properties of the pushforward map. In this section, we study the special case when the map $\Phi_{t,\gamma}$ is nonsingular.

For $Q \in \mathcal{M}$, $\lambda \in \mathbb{C}$, set $Q_\lambda = Q - \lambda \mathbf{1}$. We remind the reader that

$$L_{Q,\varepsilon}(\lambda) = \frac{1}{2} S(Q, \lambda, \varepsilon) = \frac{1}{2} \phi(\log((Q - \lambda \mathbf{1})(Q - \lambda \mathbf{1}^* + \varepsilon^2 \mathbf{1}))$$

and $L_Q(\lambda) = L_{Q,0}(\lambda)$. For $\varepsilon \geq 0$, if $(\lambda_1, \lambda_2) \mapsto L_{Q,\varepsilon}(\lambda)$ is differentiable at $\lambda = \lambda_1 + i \lambda_2$, we record that the gradient of $L_{Q,\varepsilon}$ is given by

\begin{align*}
(5.6) & \quad \frac{\partial}{\partial \lambda_1} L_{Q,\varepsilon}(\lambda) = -\Re(\phi(Q_\lambda^*(Q_\lambda Q_\lambda^* + \varepsilon^2 \mathbf{1})^{-1})), \\
(5.7) & \quad \frac{\partial}{\partial \lambda_2} L_{Q,\varepsilon}(\lambda) = \Im(\phi(Q_\lambda^*(Q_\lambda Q_\lambda^* + \varepsilon^2 \mathbf{1})^{-1})),
\end{align*}

where $\lambda_1 = \Re(\lambda), \lambda_2 = \Im(\lambda)$. That is,

$$\frac{\partial}{\partial \lambda} L_{Q,\varepsilon}(\lambda) = \frac{1}{2} \left[\frac{\partial}{\partial \lambda_1} L_{Q,\varepsilon}(\lambda) - i \frac{\partial}{\partial \lambda_2} L_{Q,\varepsilon}(\lambda) \right].$$

We then denote the derivative with respect to real variables λ_1, λ_2 as

$$p_{\lambda_1} = 2\Re(p_\lambda^{(0)}(w(0; \lambda, t))) = 2 \left(\frac{\partial}{\partial \lambda_1} L_{x_0,\varepsilon}(\lambda) \right) \bigg|_{\varepsilon = w(0; \lambda, t)} = \left(\frac{\partial}{\partial \lambda_1} S(x_0, \lambda, \varepsilon) \right) \bigg|_{\varepsilon = w(0; \lambda, t)}$$

and

$$p_{\lambda_2} = -2\Im(p_\lambda^{(0)}(w(0; \lambda, t))) = -2 \left(\frac{\partial}{\partial \lambda_2} L_{x_0,\varepsilon}(\lambda) \right) \bigg|_{\varepsilon = w(0; \lambda, t)} = - \left(\frac{\partial}{\partial \lambda_2} S(x_0, \lambda, \varepsilon) \right) \bigg|_{\varepsilon = w(0; \lambda, t)}.$$

That is

$$p_\lambda^{(0)}(w(0; \lambda, t)) = \frac{1}{2} (p_{\lambda_1} - ip_{\lambda_2}).$$

For $\gamma = \gamma_1 + i \gamma_2$, then $\Phi_{t,\gamma}$ can be written as

$$\Phi_{t,\gamma}(\lambda) = \lambda + \gamma p_\lambda^{(0)}(w(0; \lambda, t))$$

(5.8)

$$= (\lambda_1 + i \lambda_2) + \frac{1}{2}(\gamma_1 + i \gamma_2)(p_{\lambda_1} - ip_{\lambda_2})$$

$$= \left(\lambda_1 + \frac{1}{2}(\gamma_1 p_{\lambda_1} + \gamma_2 p_{\lambda_2}) \right) + i \left(\lambda_2 + \frac{1}{2}(\gamma_2 p_{\lambda_1} - \gamma_1 p_{\lambda_2}) \right).$$

Hence, the Jacobian of the map $\Phi_{t,\gamma}$ in coordinates (λ_1, λ_2) is given by

$$\text{Jacobian}(\Phi_{t,\gamma})(\lambda) = \begin{bmatrix}
1 + \frac{1}{2} \left(\gamma_1 \frac{\partial p_{\lambda_1}}{\partial \lambda_1} + \gamma_2 \frac{\partial p_{\lambda_2}}{\partial \lambda_1} \right) & \frac{1}{2} \left(\gamma_1 \frac{\partial p_{\lambda_1}}{\partial \lambda_2} + \gamma_2 \frac{\partial p_{\lambda_2}}{\partial \lambda_2} \right) \\
\frac{1}{2} \left(\gamma_2 \frac{\partial p_{\lambda_1}}{\partial \lambda_1} - \gamma_1 \frac{\partial p_{\lambda_2}}{\partial \lambda_1} \right) & 1 + \frac{1}{2} \left(\gamma_2 \frac{\partial p_{\lambda_1}}{\partial \lambda_2} - \gamma_1 \frac{\partial p_{\lambda_2}}{\partial \lambda_2} \right)
\end{bmatrix}.$$

Lemma 5.5. Given $t > 0, \gamma \in \mathbb{C}$ such that $|\gamma| \leq t$, and $\lambda \in \Xi_t$, assume that the Jacobian of $\Phi_{t,\gamma}$ is invertible at λ, then the function $z \mapsto S(x_0 + g_{t,\gamma}(z), 0)$ is a real analytic function of z in a neighborhood of $\Phi_{t,\gamma}(\lambda)$. Moreover, we have

\begin{align*}
(5.10) & \quad p_z^{g_{t,\gamma}(\lambda)}(0) = p_\lambda^{c_{t}(\lambda)}(0), \\
& \quad p_z^{g_{t,\gamma}(\lambda)}(0) = p_\lambda^{c_{t}(\lambda)}(0),
\end{align*}
where $z = \Phi_{t,\gamma}(\lambda)$.

In particular, if the map $\lambda \mapsto \Phi_{t,\gamma}(\lambda)$ is non-singular at all $\lambda \in \Xi_t$, the functions $z \mapsto S(x_0 + g_{t,\gamma}, z, 0)$ is a real analytic function of z for all $z \in \Phi_{t,\gamma}(\Xi_t)$, and the identities (5.10) hold for any $\lambda \in \Xi_t$.

Proof. By Theorem 3.14 under assumption that the Jacobian of $\Phi_{t,\gamma}$ at λ is invertible, we know that the functions $z \mapsto S(x_0 + g_{t,\gamma}, z, 0)$ is a real analytic function of z in some neighborhood of $\Phi_{t,\gamma}(\lambda)$. In addition, for any $\lambda \in \Xi_t$, we have

\begin{equation}
\Delta \left((x_0 + y - z)^*(x_0 + y - z)\right) = \Delta \left((x_0 + c_1 - \lambda \mathbf{1}^*)(x_0 + c_1 - \lambda \mathbf{1})\right) \exp (H(\lambda)),
\end{equation}

where $z = \Phi_{t,\gamma}(\lambda)$ and $H(\lambda) = \Re \left(\gamma (p_\lambda(0)(w))^2\right)$. That is,

\[S(x_0 + y, z, 0) = S(x_0 + c_1, \lambda, 0) + H(\lambda). \]

Note that both sides of the above equation are real differentiable functions in Ξ_t. Put $p_\lambda = p_\lambda(0)w(0; \lambda, t)$. Take the derivative $\frac{\partial}{\partial \lambda}$, we obtain

\[\frac{\partial S(x_0 + y, z, 0)}{\partial \lambda} = p_\lambda^{g_i(t,\gamma)}(0) \left(\frac{\partial \Phi_{t,\gamma}(\lambda)}{\partial \lambda}\right) + p_\gamma^{g_i(t,\gamma)}(0) \left(\frac{\partial \Phi_{t,\gamma}(\lambda)}{\partial \lambda}\right) \]

\[= p_\lambda^{g_i(t,\gamma)}(0) \left(1 + \gamma \frac{\partial p_\lambda}{\partial \lambda} + p_\gamma^{g_i(t,\gamma)}(0) \left(\frac{\partial p_\lambda}{\partial \lambda}\right), \right. \]

and $\frac{\partial S(x_0 + y, z, 0)}{\partial \lambda} = p_\lambda^{c_i(t)}(0)$, and

\[\frac{\partial S(x_0 + c_1, \lambda, 0)}{\partial \lambda} = \gamma \cdot \frac{\partial p_\lambda}{\partial \lambda} + \frac{\partial p_\gamma}{\partial \lambda}. \]

Hence,

\[p_\lambda^{g_i(t,\gamma)}(0) \left(1 + \gamma \frac{\partial p_\lambda}{\partial \lambda}\right) + p_\gamma^{g_i(t,\gamma)}(0) \left(\frac{\partial p_\gamma}{\partial \lambda}\right) = p_\lambda^{c_i(t)}(0) + \gamma \cdot \frac{\partial p_\lambda}{\partial \lambda} + \frac{\partial p_\gamma}{\partial \lambda}. \]

By using $p_\lambda = p_\lambda^{c_i(t)}(0)$ in Lemma 4.1, we can then rewrite the above identity as

\begin{equation}
\left(p_\lambda^{g_i(t,\gamma)}(0) - p_\lambda^{c_i(t)}(0) \right) \left(1 + \gamma \frac{\partial p_\lambda}{\partial \lambda} + \frac{\partial p_\gamma}{\partial \lambda}\right) = 0.
\end{equation}

We shall show that (5.12) implies that

\[p_\lambda^{g_i(t,\gamma)}(0) - p_\lambda^{c_i(t)}(0) = 0 \]

Indeed, put $p_\lambda^{g_i(t,\gamma)}(0) - p_\lambda^{c_i(t)}(0) = c + id$, by using (5.3), a simple algebraic computation yields that the identity (5.12) is equivalent to

\[\begin{bmatrix} c & d \end{bmatrix} \cdot M = 0 \]

where M is the matrix

\begin{equation}
M = \begin{bmatrix}
1 + \frac{1}{2} \left(\gamma_1 \frac{\partial p_{\lambda_1}}{\partial \lambda_1} + \gamma_2 \frac{\partial p_{\lambda_2}}{\partial \lambda_1} \right) & \frac{1}{2} \left(\gamma_1 \frac{\partial p_{\lambda_1}}{\partial \lambda_1} + \gamma_2 \frac{\partial p_{\lambda_2}}{\partial \lambda_1} \right) \\
\frac{1}{2} \left(\gamma_1 \frac{\partial p_{\lambda_1}}{\partial \lambda_1} - \gamma_2 \frac{\partial p_{\lambda_2}}{\partial \lambda_1} \right) & -1 + \frac{1}{2} \left(\gamma_1 \frac{\partial p_{\lambda_1}}{\partial \lambda_1} - \gamma_2 \frac{\partial p_{\lambda_2}}{\partial \lambda_1} \right)
\end{bmatrix}.
\end{equation}

If Jacobian($\Phi_{t,\gamma}$(\lambda)) is invertible, then the map $\Phi_{t,\gamma}$ is non-singular in neighborhood of λ. Hence,

\[\det(M) = (-1) \det \left(\text{Jacobian}(\Phi_{t,\gamma}(\lambda)) \right) \neq 0. \]
We then conclude that \(c = d = 0 \). That is,

\[
P_z^\tau(0) - P_{\lambda}(0) = 0.
\]

Therefore,

\[
P_z^\tau(0) - P_{\lambda}(0) = 0
\]
as well. The above argument works for any \(\lambda \in \Xi_t \) if the map \(\Phi_{t,\tau} \) is non-singular at any \(\lambda \in \Xi_t \). This concludes the statement.

Remark 5.6. It is interesting to compare Lemma 5.5 with Lemma 4.1. Choose \(z = \lambda + \gamma p_{0}(w(\varepsilon; \lambda, t)) \). If the map \(\Phi_{t,\tau} \) associated with \(x_0 \) is singular, it turns out \(\lim_{\varepsilon \to 0^+} p_{z}^{\tau}(\varepsilon) \) has a limit that depends on \(\lambda \). Hence, the condition in Lemma 5.5 is necessary. See Example 6.15.

Proposition 5.7. If the map \(\lambda \mapsto \Phi_{t,\tau}(\lambda) \) is non-singular at all \(\lambda \in \Xi_t \), then the map \(\lambda \mapsto \Phi_{t,\tau}(\lambda) \) is one-to-one in \(\Xi_t \).

Proof. Assume that \(z = \Phi_{t,\tau}(\lambda_1) = \Phi_{t,\tau}(\lambda_2) \) for \(\lambda_1, \lambda_2 \in \Xi_t \). Then, by Lemma 5.5 we have, for \(i = 1, 2 \),

\[
P_z^{\tau}(0) = P_{\lambda_i}(0) = P_{\lambda_i}(w(0; \lambda_i, t)).
\]

Rewrite the map \(\Phi_{t,\tau} \) as

\[
\Phi_{t,\tau}(\lambda) = \lambda + \gamma p_{0}(w(0; \lambda, t)) = \lambda + p_{z}^{\tau}(0),
\]

where \(z = \Phi_{t,\tau}(\lambda) \). Then the condition \(z = \Phi_{t,\tau}(\lambda_1) = \Phi_{t,\tau}(\lambda_2) \) yields that \(\lambda_1 = \lambda_2 \). Hence, \(\Phi_{t,\tau} \) is one-to-one in \(\Xi_t \). \(\square \)

6. ADDITION WITH A SELFADJOINT OPERATOR

The special case when \(x_0 \) is selfadjoint has drawn much attention in previous work [30, 34, 35]. In this section, we apply our main result to generalize main results in those works. The generalization can be viewed as the addition analogue of recent work [31] concerning free multiplicative Brownian motions.

6.1. Subordination functions. Let \(x_0 \) be selfadjoint and \(\mu = \mu_{x_0} \) be its spectral measure. We first study the subordination function as in Definition 3.4 and Proposition 3.5. The set \(\Xi_t \) is expressed as

\[
\Xi_t = \left\{ \lambda = a + bi : \int_{\mathbb{R}} \frac{1}{(u-a)^2 + b^2} d\mu(u) > \frac{1}{t} \right\}.
\]

For \(\lambda \in \Xi_t \) (which is equivalent to \(t > \lambda_1(\mu)^2 \)), the condition subordination function \(w(0; \lambda, t) \) is determined by the condition (3.8), that can be rewritten as

\[
\int_{\mathbb{R}} \frac{1}{(u-a)^2 + b^2 + w(0; \lambda, t)^2} d\mu(u) = \frac{1}{t}.
\]

Following Biane’s work [10] Section 3] on the spectral measure of \(x_0 + g_t \), we set

\[
U_t = \left\{ a \in \mathbb{R} : \int_{\mathbb{R}} \frac{1}{(u-a)^2} d\mu(u) > \frac{1}{t} \right\},
\]

and define \(v_t \) as follows

\[
v_t(a) = \inf \left\{ y > 0 : \int_{\mathbb{R}} \frac{1}{(a-x)^2 + y^2} d\mu(x) \leq \frac{1}{t} \right\}, \quad a \in \mathbb{R}.
\]
The domain Ξ_t for $t = 1$ and x_0 distributed as $0.4\delta_{-2} + 0.1\delta_{-0.8} + 0.5\delta_1$. The graph of v_t is the solid red curve above the x-axis.

The 5000×5000 random matrix simulation for the Brown measure of $x_0 + c$.

Figure 1. The domain Ξ_t, the graph of v_t, and Brown measure simulation.

We then set

$$\Omega_t = \{a + bi : |b| > v_t(a)\}.$$

It follows that $v_t(a)^2 = b^2 + w(0; \lambda, t)^2$ with $\lambda = a + bi$ if $\lambda \in \Xi_t$; and $v_t(a) = 0$ if $\{a + ib : b \in \mathbb{R}\} \cap \Xi_t = \emptyset$. By regularity of $w(0; \lambda, t)$ in Lemma 3.6 we see that v_t is a continuous function (see [10] for the original definition and [35] Section 2.3 for a review).

Proposition 6.1. The subordination function $w(0; \lambda, t)$ as in Definition 3.4 can be expressed as

$$w(0; \lambda, t) = \begin{cases} \sqrt{v_t(a)^2 - b^2}, & \text{for } \lambda = a + bi \in \Xi_t; \\ 0, & \text{for } \lambda = a + bi \notin \Xi_t. \end{cases}$$

In particular, $a \mapsto v_t(a)$ is a continuous function defined on \mathbb{R}, and is real analytic and $v_t(a) > 0$ if $\{a + bi : b \in \mathbb{R}\} \cap \Xi_t \neq \emptyset$.

Moreover, we have $\Xi_t \cap \mathbb{R} = U_t$, and

$$\Xi_t = \{a + ib \in \mathbb{C} : |b| < v_t(a)\}$$

and

$$\overline{\Omega_t} = \{a + bi : |b| \geq v_t(a)\} = (\Xi_t)^c.$$

Definition 6.2. For $t > 0$ and v_t as defined in (6.3), we set

$$(6.4) \quad \psi_t(a) = a + t \int_{\mathbb{R}} \frac{a - u}{(a - u)^2 + v_t(a)^2} \mu(u), \quad a \in \mathbb{R},$$
and

\[h_t(a) = t \int_R \frac{a - u}{(a-u)^2 + v_t(a)^2} d\mu(u), \quad a \in \mathbb{R}. \]

The following result plays a key role in the following discussion. It is taken from [10, Lemma 5] and [35, Theorem 3.14].

Proposition 6.3. The function \(a \mapsto \psi_t(a) \) is a homeomorphism of \(\mathbb{R} \) onto \(\mathbb{R} \). Moreover, if \(v_t(a) > 0 \) or equivalently \(\{a + ib : b \in \mathbb{R}\} \cap \Xi_t \neq \emptyset \), then

\[0 < \frac{d\psi_t(a)}{da} < 2. \]

Consequently, if \(v_t(a) > 0 \), then

\[-1 < \frac{d h_t(a)}{da} < 1. \]

Finally, we need the following useful result taken from [10].

Lemma 6.4. [10, Lemma 3] and [10, Proposition 3] The Cauchy transform of \(G_\mu \) has a continuous extension to \(\overline{\Omega_t} \) which is Lipschitz with Lipschitz constant \(\leq \frac{1}{t} \), and one has

\[|G_\mu(z)|^2 \leq \int_R \frac{1}{|z-u|^2} d\mu(u) \leq \frac{1}{t} \]

for \(z \in \overline{\Omega_t} \). Moreover, the support of \(\mu \) is contained in the closure of \(U_t \). Consequently, \(\text{supp}(\mu) \subset \Xi_t \).

6.2. The push-forward map.

Let \(x_0 \) be a selfadjoint operator and \(\mu = \mu_{x_0} \) be its spectral measure. We study the map \(\Phi_{t,\gamma} \) as defined in Section 4. We note that when \(\gamma = t \), the operator \(g_{t,\gamma} \) is a semicircular operator \(g_t \) with mean zero and variance \(t \) and the Brown measure of \(x_0 + g_t \) is just the spectral measure of \(x_0 + g_t \). Hence, we will assume that \(\gamma \neq t \) throughout this section. Let \(\tau = t - \gamma \) and \(\tau = \tau_1 + i\tau_2 \). Since \(|\gamma| \leq t \), we see that \(\tau_1 > 0 \) if \(\gamma \neq t \).

Using notations in Subsection 6.1, we have

\[\Phi_{t,\gamma}(\lambda) = \lambda + \gamma \int_R \frac{\overline{\lambda} - u}{(u-a)^2 + b^2 + w(0;\lambda,t)^2} d\mu(u), \quad \lambda \in \mathbb{C}, \]

and, if \(\lambda \in \Xi_t \) then \(\Phi_{t,\gamma}(\lambda) \) can be rewritten as

\[\Phi_{t,\gamma}(\lambda) = \lambda + \gamma \int_R \frac{\overline{\lambda} - u}{(u-a)^2 + v_t(a)^2} d\mu(u), \quad \lambda \in \Xi_t. \]

Proposition 6.5. For any \(|\gamma| \leq t \) and \(\gamma \neq t \), we have

\[\Phi_{t,\gamma}(\lambda) = \begin{cases} \psi_t(a) - \frac{\tau}{t} h_t(a) + i \frac{\tau b}{t}, & \text{for } \lambda \in \Xi_t; \\ \lambda + \gamma G_\mu(\lambda), & \text{for } \lambda \notin \Xi_t. \end{cases} \]

Proof. We rewrite \(\Phi_{t,\gamma}(\lambda) \) as

\[\Phi_{t,\gamma}(\lambda) = \Phi_{t,\gamma}(\lambda) - \tau \int_R \frac{\overline{\lambda} - u}{(u-a)^2 + b^2 + w(0;\lambda,t)^2} d\mu(u); \]
Then, by Cauchy-Schwartz inequality,
\[
\Phi_{t,\gamma}(\lambda) = \Phi_{t,t}(\lambda) - \tau \int_{\mathbb{R}} \frac{\lambda - u}{(u-a)^2 + v_t(a)^2} d\mu(u) \\
= \Phi_{t,t}(\lambda) - \frac{\tau}{t} h_t(a) + i \frac{\tau b}{t}, \quad \lambda \in \Xi_t,
\]
where we used \(6.2\) and the definition of \(h_t\) in \(6.5\). If \(\lambda \in \Xi_t\), we have
\[
\Phi_{t,t}(\lambda) = \lambda + t \int_{\mathbb{R}} \frac{\lambda - u}{(u-a)^2 + b^2 + w(0; \lambda, t)^2} d\mu(u) \\
= \psi_t(a) + i \left(b - t \int_{\mathbb{R}} \frac{b}{(u-a)^2 + b^2 + w(0; \lambda, t)^2} d\mu(u) \right) = \psi_t(a)
\]
where we used \(6.2\) and the definition of \(\psi_t\) in \(6.4\). This proves the case when \(\lambda \in \Xi_t\).

Recall that \((\Xi_t)^c = \Omega_t\) and \(\text{supp}(\mu) \subset U_t \subset \Xi_t\) (recall Lemma \(6.4\)). When \(\lambda \notin \Xi_t\), then \(w(0; \lambda, t) = 0\). Hence, when \(\lambda = a + bi \notin \Xi_t\),
\[
\Phi_{t,\gamma}(\lambda) = \lambda + \gamma \int_{\mathbb{R}} \frac{\lambda - u}{(u-a)^2 + b^2} d\mu(u) \\
= \lambda + \gamma \int_{\mathbb{R}} \frac{1}{\lambda - u} d\mu(u) = \lambda + \gamma G_\mu(\lambda).
\]
This finishes the proof. \(\square\)

The following result says that \(\Phi_{t,\gamma}\) is injective on \((\Xi_t)^c\). It can be viewed as a generalization of \([10, \text{Lemma 4}]\) where the latter studies the inverse map of subordination function for the free additive convolution of \(x_0 + g_t\) (see also \([35, \text{Section 2.4}]\) and \([31, \text{Proposition 5.5}]\)). We include a proof for convenience.

Proposition 6.6. The map \(\Phi_{t,\gamma}(\lambda)\) is an injective map when restricted to \((\Xi_t)^c\) and is conformal when \(\lambda\) is in the interior of \((\Xi_t)^c\).

Proof. If \(\lambda \in (\Xi_t)^c\), by Proposition \(6.5\), we have \(\Phi_{t,\gamma}(\lambda) = \lambda + \gamma G_\mu(\lambda)\). Hence, for \(\alpha_1, \alpha_2 \in (\Xi_t)^c\), we have
\[
\Phi_{t,\gamma}(\alpha_1) - \Phi_{t,\gamma}(\alpha_2) = \alpha_1 - \alpha_2 + \gamma(G_\mu(\alpha_1) - G_\mu(\alpha_2)) \\
= (\alpha_1 - \alpha_2) \left(1 + \gamma \frac{G_\mu(\alpha_1) - G_\mu(\alpha_2)}{\alpha_1 - \alpha_2} \right).
\]

Then, by Cauchy-Schwartz inequality,
\[
\left| \frac{G_\mu(\alpha_1) - G_\mu(\alpha_2)}{\alpha_1 - \alpha_2} \right| = \left| \int_{\mathbb{R}} \frac{1}{(\alpha_1 - u)(\alpha_2 - u)} d\mu(u) \right| \\
\leq \left(\int_{\mathbb{R}} d\mu(u) \int_{\mathbb{R}} \frac{d\mu(u)}{|\alpha_1 - u|^2} \right)^{1/2} \leq \frac{1}{t}
\]
where we used Lemma \(6.4\) in the final step. It can be shown that we cannot have equality in the Cauchy-Schwartz inequality used above. Indeed, if equality holds, then
\[
\left| \int_{\mathbb{R}} \frac{1}{(\alpha_1 - u)(\alpha_2 - u)} d\mu(u) \right| = \frac{1}{t}
\]
forsome \(\alpha_1, \alpha_2 \in (\Xi_t)^c = \Omega_t\). One can show that \(\mu\) must be a Dirac measure (see \([10, \text{Lemma 4}]\) for details). Therefore,
\[
\Phi_{t,\gamma}(\alpha_1) - \Phi_{t,\gamma}(\alpha_2) \neq 0
\]
for \(\alpha_1 \neq \alpha_2\) and \(\alpha_1, \alpha_2 \in (\Xi_t)^c\). □

Lemma 6.7. For \(|\gamma| \leq t\) and \(\gamma \neq t\), let \(\tau = t - \gamma\) and \(\tau = \tau_1 + i\tau_2\), then we have \(0 < \frac{|\tau|^2}{t\tau_1} \leq 2\).

Proof. The assumption implies directly that \(\tau_1 > 0\). Write \(\gamma = \gamma_1 + i\gamma_2\), then \(\tau_1 = t - \gamma_1\) and \(\tau_2 = \gamma_2\). Hence

\[
|\tau|^2 - 2t\tau_1 = (t - \gamma_1)^2 + \gamma_2^2 - 2t(t - \gamma_1) = |\gamma|^2 - t^2 \leq 0.
\]

The result then follows. □

Theorem 6.8. For any \(|\gamma| \leq t\) and \(\gamma \neq t\), the map \(\Phi_{t,\gamma}\) is a smooth, injective map on \(\Xi_t\). Moreover, the determinant of the Jacobian of \(\Phi_{t,\gamma}\) is strictly positive at all \(\lambda \in \Xi_t\) and can be expressed

\[
(6.7) \quad \det(\text{Jacobian}(\Phi_{t,\gamma})) = \frac{\tau_1}{t} \left[1 + \left(1 - \frac{|\tau|^2}{t\tau_1}\right) \left. \frac{d}{da} h_t(a) \right|_{a = \lambda} \right], \quad \lambda = a + ib,
\]

where \(\tau = \tau_1 + i\tau_2\) and \(h_t\) is defined in 6.5.

Proof. By Proposition 6.5 for \(\lambda \in \Xi_t\), we have

\[
\Phi_{t,\gamma}(\lambda) = \psi_t(a) - \frac{\tau}{t} h_t(a) + i\frac{\tau b}{t}.
\]

Recall \(\psi_t(a) = a + h_t(a)\). Hence, for \(\Phi_{t,\gamma}(\lambda) = z_1 + iz_2\), we deduce

\[
(6.8) \quad z_1 = z_1(a, b) = a + \left(1 - \frac{\tau_1}{t}\right) h_t(a) - \frac{\tau_2}{t} b, \quad z_2 = z_2(a, b) = -\frac{\tau_2}{t} h_t(a) + \frac{\tau_1}{t} b.
\]

We then have

\[
\text{Jacobian}(\Phi_{t,\gamma}(\lambda)) = \begin{bmatrix}
1 + \left(1 - \frac{\tau_1}{t}\right) h_t'(a) & -\frac{\tau_2}{t} \\
-\frac{\tau_2}{t} h_t'(a) & \frac{\tau_1}{t}
\end{bmatrix}.
\]

It follows that

\[
\det(\text{Jacobian}(\Phi_{t,\gamma})) = \frac{\tau_1}{t} \left[1 + \left(1 - \frac{|\tau|^2}{t\tau_1}\right) \left. \frac{d}{da} h_t(a) \right|_{a = \lambda} \right].
\]

By Proposition 6.3, \(-1 < h_t'(a) < 1\), hence we have

\[
-1 < \left(1 - \frac{|\tau|^2}{t\tau_1}\right) \left. \frac{d}{da} h_t(a) \right|_{a = \lambda} < 1
\]

thanks to Lemma 6.7. This implies that \(\det(\text{Jacobian}(\Phi_{t,\gamma}))\) is independent of \(b\) and \(\det(\text{Jacobian}(\Phi_{t,\gamma})) > 0\) for all \(\lambda \in \Xi_t\).

The non-singular property of \(\Phi_{t,\gamma}\) implies that \(\Phi_{t,\gamma}\) is one-to-one in \(\Xi_t\) by Proposition 5.7. In this case, we can actually prove it directly. If \(a_1 + ib_1, a_2 + ib_2 \in \Xi_t\) and \(\Phi_{t,\gamma}(a_1 + ia_2) = \Phi_{t,\gamma}(b_1 + ib_2)\), then we have, by using 6.8,

\[
\begin{align*}
\lambda_1 - \lambda_2 + (1 - \frac{\tau_1}{t}) (h_t(a_1) - h_t(a_2)) &= -\frac{\tau_2}{t} (b_2 - b_1) \\
-\frac{\tau_2}{t} (h_t(a_1) - h_t(a_2)) &= \frac{\tau_1}{t} (b_2 - b_1),
\end{align*}
\]

which yields (by canceling \(b_2 - b_1\)),

\[
(a_1 - a_2) + \left(1 - \frac{|\tau|^2}{t\tau_1}\right) (h_t(a_1) - h_t(a_2)).
\]
By the first part of the proof, we see that the function \(a \to \frac{2t}{\pi} \left[1 + \left(1 - \frac{t^2}{\lambda^2} \right) \frac{d h_t(a)}{da} \right] \) is strictly positive. Consequently, \(a_1 = a_2 \). We then deduce that \(b_1 = b_2 \). The injectivity property is established.

Corollary 6.9. For any \(|\gamma| \leq t\) and \(\gamma \neq t \), the map \(\Phi_{t, \gamma} \) is a homeomorphism of \(\mathbb{C} \) to \(\mathbb{C} \).

Proof. We show that \(\Phi_{t, \gamma}(\Xi_t) \cap \Phi_{t, \gamma}((\Xi_t)^c) = \emptyset \). Recall that
\[
(\Xi_t)^c = \{ a + bi : |b| \geq v_t(a) \} = \overline{\Omega_t}.
\]
For \(\lambda_0 = a + ib \) so that \(b \geq v_t(a) \), if \(\Phi_{t, \gamma}(\lambda_0) \in \Phi_{t, \gamma}(\Xi_t) \), consider the vertical half-line \(\{ \lambda = a + id : d \geq b \} \) starting at \(\lambda_0 \). Since \(\lim_{d \to \infty} \Phi_{t, \gamma}(a + id) = \infty \), we then see that there is another point \(\lambda_1 = a + ib_1 \) where \(b_1 > b \) so that \(\Phi_{t, \gamma}(\lambda_1) \in \partial(\Phi_{t, \gamma}(\Xi_t)) \), the boundary of \(\Phi_{t, \gamma}(\Xi_t) \). On the other hand \(\Phi_{t, \gamma}(a + iv_t(b)) \in \partial(\Phi_{t, \gamma}(\Xi_t)) \), and both \(\lambda_1 \) and \(a + iv_t(b) \) are in \((\Xi_t)^c\), this contradicts to Proposition 6.6. Therefore,
\[
\Phi_{t, \gamma}(\Xi_t) \cap \Phi_{t, \gamma}((\Xi_t)^c) = \emptyset.
\]

Since \(\Phi_{t, \gamma} \) is a continuous function on \(\mathbb{C} \) and it maps a neighborhood of infinity to some neighborhood of infinity, one can then deduce that \(\Phi_{t, \gamma}(\mathbb{C}) = \mathbb{C} \) by some standard arguments in topology. We conclude that \(\Phi_{t, \gamma} \) is a homeomorphism of \(\mathbb{C} \) to \(\mathbb{C} \) due to Proposition 6.6 and Theorem 6.8.

6.3. Brown measure of addition with a selfadjoint operator

We apply results in Section 4 to give a new proof for the Brown measure of \(x_0 + c_t \) and recover a result in our previous work with Ho [35]. We then study the Brown measure of \(x_0 + g_t, \gamma \) that extends results by Hall and Ho [30] [34] to all twisted elliptic operators.

Theorem 6.10. [35] Theorem 3.10] For \(\lambda = a + bi \in \Xi_t \), then the Brown measure of \(x_0 + c_t \) is absolutely continuous at \(\lambda \) and the density at \(\lambda \) is given by
\[
d\mu_{x_0 + c_t}(a + ib) = \frac{1}{\pi t} \left(1 - \frac{t}{2} \frac{d}{da} \int_{\mathbb{R}} \frac{u}{(a-u)^2 + v_t(a)^2} d\mu(u) \right) \, da \, db,
\]
which can also be expressed as
\[
d\mu_{x_0 + c_t}(a + ib) = \frac{1}{2\pi t} \frac{d\psi_t(a)}{da} \, da \, db.
\]
In particular, the density is constant along the vertical directions.

Proof. One can deduce the density formula directly from the general formula in Theorem 4.2. We note that
\[
\frac{\partial}{\partial \lambda} \left(\phi(x_0^*(x_0 - \lambda 1)^*(x_0 - \lambda 1) + w(0; \lambda, t)^2)^{-1} \right)
= \frac{\partial}{\partial \lambda} \left(\int_{\mathbb{R}} \frac{u}{(a-u)^2 + b^2 + w(0; \lambda, t)^2} d\mu(u) \right)
= \frac{1}{2} \frac{\partial}{\partial a} \left(\int_{\mathbb{R}} \frac{u}{(a-u)^2 + v_t(a)^2} \frac{d\mu(u)}{\mu(u)} \right)
\]
where we used the fact that the integration is independent of \(b \). The first formula then follows from (4.1). Using the formula for \(\psi_t \) in (6.4), we have
\[
\frac{d\psi_t(a)}{da} = \frac{d}{da} \left(a + t \int_{\mathbb{R}} \frac{a-u}{(a-u)^2 + v_t(a)^2} d\mu(u) \right)
= 2 - \frac{d}{da} \int_{\mathbb{R}} \frac{u}{(a-u)^2 + v_t(a)^2} d\mu(u)
\]
where we used (6.2). This establish the second formula. □

Proposition 6.11. [35] Lemma 3.11 and Proposition 3.16] and [10] Corollary 3 and Proposition 3] The Brown measure \(\mu_{x_0+c_t} \) concentrates in \(\Xi_t \). In other words, \(\mu_{x_0+c_t}(\Xi_t) = 1 \).

The spectral measure of \(x_0 + g_t \) is the push-forward of the Brown measure \(\mu_{x_0+c_t} \) under the map \(\lambda \mapsto \Phi_{t,\xi} \), where

\[
\Phi_{t,\xi}(a + ib) = \psi_t(a), \quad \text{for} \quad a \in U_t, |b| \leq v_t(a).
\]

Consequently, the spectral measure of \(x_0 + g_t \) is absolutely continuous and its density is given by

\[
p_t(\psi_t(a)) = \frac{v_t(a)}{\pi t}.
\]

Moreover, the support of \(\mu \) is contained in the closure of \(U_t \).

Proof. Recall that \(\Xi_t = \{a + ib \in \mathbb{C} : a \in U_t, |b| < v_t(a)\} \), and \(v_t > 0 \) if \(a \in U_t \), and \(v_t = 0 \) if \(a \in \mathbb{R} \setminus U_t \). Since \(\tau = 0 \) in this case, it follows by Proposition 6.3 that the pushforward map \(\Phi_{t,\xi} \) from \(\mu_{x_0+c_t} \) to \(\mu_{x_0+g_t} \) can be calculated as

\[
\Phi_{t,\xi}(\lambda) = \begin{cases}
\psi_t(a), & \text{for } \lambda \in \Xi_t, \\
\lambda + tG_{\mu}(\lambda), & \text{for } \lambda \notin \Xi_t,
\end{cases}
\]

where \(\lambda = a + ib \). Moreover, for \(a \in U_t \), the integration of the density of \(\mu_{x_0+c_t} \) over the vertical line segment \(\{a + ib : |b| < v_t(a)\} \) is \(\frac{v_t(a)}{\pi t} \frac{d\mu(a)}{da} \) by the density formula (6.9). By the pushforward property from \(\mu_{x_0+c_t} \) to \(\mu_{x_0+g_t} \), it then follows that

\[
p_t(\psi_t(a)) = \frac{v_t(a)}{\pi t}.
\]

The measure \(\mu_{x_0+g_t} \) has no atom at ending points of components of \(U_t \) because \(\mu_{x_0+c_t} \) has no atom. Hence, \(\mu_{x_0+g_t} \) is absolutely continuous. It follows that \(\mu_{x_0+c_t}(\Xi_t) = \mu_{x_0+g_t}(U_t) = 1 \). This finishes the proof. □

Lemma 6.12. Let \(\delta(a) = \delta_{t,\gamma}(a) = a + \left(1 - \frac{|a|^2}{\tau^2}\right)h_t(a) \), then \(a \mapsto \delta(a) \) is a homeomorphism of \(\mathbb{R} \) onto \(\mathbb{R} \). Then,

\[
0 < \delta'(a) < 2
\]

for all \(a \in U_t \) and \(a \in (\overline{U_t})^c \). Moreover, if \(a \in U_t \),

\[
\delta'(a) = \frac{t}{\tau} \cdot \text{det}(\text{Jacobian}(\Phi_{t,\xi}))(\lambda).
\]

Proof. Using the characterization of \(\Xi_t \) and \(U_t \) in Proposition 6.1 it follows that the result holds for \(a \in U_t \). Indeed, we have

\[
\delta'(a) = \frac{t}{\tau} \cdot \text{det}(\text{Jacobian}(\Phi_{t,\xi}))(\lambda)
\]

for any \(\lambda \in \Xi_t \) such that \(\Re(\lambda) = a \). If \(a \in (\overline{U_t})^c \), by Lemma 6.4 then \(\text{supp}(\mu) \cap (\overline{U_t})^c = \emptyset \). Hence, \(v_t(a) = 0 \) and

\[
h_t(a) = t \int_{\mathbb{R}} \frac{1}{a-u} d\mu(u) = tG_{\mu}(a).
\]

It follows that \(|h_t'(a)| \leq 1 \) thanks to Lemma 6.4. Note that \(a \mapsto h_t(a) \) is strictly convex on any open interval in \((\overline{U_t})^c \). Hence, \(h_t'(a) \) can not take local maximum in the open interval. We then conclude that \(0 < h_t'(a) < 1 \) if \(a \in (\overline{U_t})^c \). □
Theorem 6.13. Let x_0 be a selfadjoint operator that is free from $g_{t,\gamma}$. For any $|\gamma| \leq t$ with $\gamma \neq t$, the map $\Phi_{t,\gamma}$ is non-singular at any $\lambda \in \Xi_t$. The Brown measure of $x_0 + g_{t,\gamma}$ is the push-forward map of the Brown measure of $x_0 + c_t$ under the map $\Phi_{t,\gamma}$.

Moreover, the Brown measure $\mu_{x_0+g_{t,\gamma}}$ takes the full measure on $\Phi_{t,\gamma}(\Xi_t)$ and the density is given by

\[
d\mu_{x_0+g_{t,\gamma}}(z) = \frac{1}{2\pi t_1} \frac{d\psi_t(a)}{d\delta(a)} dz_1 dz_2, \quad z \in \Phi_{t,\gamma}(\Xi_t)
\]

where $z = z_1 + iz_2 = \Phi_{t,\gamma}(a + ib)$ and

\[
\delta(a) = a + \left(1 - \frac{1}{t_1} \right) h_t(a).
\]

Proof. By Theorem 6.8, we deduce that $\Phi_{t,\gamma}$ is non-singular at any $\lambda \in \Xi_t$. Recall that if $a + ib \in \Xi_t$, then $a \in U_t$. Using the density formula for $x_0 + c_t$ in (6.9) and determinant of the Jacobian of $\Phi_{t,\gamma}$ as in (6.7), it then follows that the density of $x_0 + g_{t,\gamma}$ can be expressed as

\[
\frac{1}{2\pi t \det(\text{Jacobian}(\Phi_{t,\gamma})(\lambda))} \frac{d\psi_t(a)}{d\delta(a)} = \frac{1}{2\pi t_1} \frac{d\psi_t(a)}{d\delta(a)} = \frac{1}{2\pi t_1} \frac{d\psi_t(a)}{d\delta(a)}.
\]

The result is established. \qed
Example 6.14. [12 Example 5.3] The Brown measure of \(g_{t, \gamma} \) is the uniform measure in the rotated ellipse with parametrization

\[
e^{i\alpha} \left(\sqrt{t} e^{i\theta} + \frac{|\gamma|}{\sqrt{t}} e^{-i\theta} \right),
\]

for \(\theta \in [0, 2\pi] \), where \(\alpha \) is such that \(|\gamma| e^{2i\alpha} \).

Proof. Take \(x_0 = 0 \) and \(\mu = \delta_0 \). In this case, the formula for the set \(\Xi_t \) is simplified as

\[
\Xi_t = \{ \lambda = a + ib : |\lambda| < \sqrt{t} \},
\]

which is also the support of the circular operator \(c_t \). Then the condition determining \(w(0; \lambda, t) \) is written as

\[
\frac{1}{|\lambda|^2 + w(0; \lambda, t)^2} = \frac{1}{t}, \quad |\lambda| < \sqrt{t}.
\]

Hence \(w(0; \lambda, t) = \sqrt{t - |\lambda|^2} \). Then the push forward map is

\[
\Phi_{t, \gamma} (\lambda) = \lambda + \frac{\lambda}{|\lambda|^2 + w(0; \lambda, t)^2} = \lambda + \frac{\gamma}{t} \lambda
\]

for \(|\lambda| < \sqrt{t} \). Write \(\gamma = |\gamma| e^{i\alpha} \). Then for any \(0 < r < \sqrt{t} \), the circle centered at origin with radius \(r \) is mapped to the ellipse with parametrization

\[
re^{i\theta} + \frac{r|\gamma|}{t} e^{i(\alpha - \theta)}.
\]

Moreover, for \(|\lambda| < \sqrt{t} \) and \(\lambda = a + ib \), we have

\[
h_t(a) = t \frac{a}{|\lambda|^2 + w(0; \lambda, t)^2} = a.
\]

Hence, the determinant of the Jacobian of the push forward map \(\Phi_{t, \gamma} \) is the constant

\[
\text{det}(\text{Jacobian}(\Phi_{t, \gamma})) (\lambda) = \frac{\tau_1}{t} \left[1 + \left(1 - \frac{|\tau|^2}{t \tau_1} \right) \right], \quad \lambda = a + ib,
\]

where \(\tau_1 + i \tau_2 = \tau = t - \gamma \). Recall that the density of the Brown measure of \(c_t \) is the uniform measure on the circle \(\{ \lambda : |\lambda| < \sqrt{t} \} \). Therefore, the Brown measure of \(g_{t, \gamma} \) is the uniform measure on the ellipse with parametrization \(\sqrt{t} e^{i\theta} + |\gamma| e^{i(\alpha - \theta)} / \sqrt{t} \) for \(\theta \in [0, 2\pi] \), where \(\alpha \) is determined by \(\gamma = |\gamma| e^{2i\alpha} \). The result follows.

We now discuss some special cases which allow us to recover main results in [30, 34].

Example 6.15 (The semicircular operator). If \(\gamma = t \), the operator \(g_{t, \gamma} \) is a semicircular operator \(g_t \) with mean zero and variance \(t \). The pushforward map is given in Proposition 6.11. In this case, the statement of Lemma 5.5 does hold in this case. Indeed, by Theorem 3.8 for any \(\varepsilon > 0 \), we have

\[
p_{z}^{\theta, \varepsilon, t, \gamma}(\varepsilon) = p_{\lambda}^{(0)}(w(\varepsilon))
\]

where \(w(\varepsilon) = w(\varepsilon; \lambda, t) \) and \(z = \Phi_{t, \gamma}(\lambda) \). By the Notation 3.9 This can be rewritten as

\[
-\phi \left[(x_0 + g_t - z \mathbf{1})^* ((x_0 + g_t - z \mathbf{1})^* (x_0 + g_t - z \mathbf{1}) + \varepsilon^2 \mathbf{1})^{-1} \right]
\]

\[
= -\phi \left[(x_0 - \lambda \mathbf{1})^* ((x_0 - \lambda \mathbf{1})^* (x_0 - \lambda \mathbf{1}) + w(\varepsilon)^2 \mathbf{1})^{-1} \right].
\]
By Lemma 3.6, for any \(\lambda \in \Xi_t \) (equivalently, \(t > \lambda_1(\mu_{|x_0-\lambda 1}) \)), we have

\[
\lim_{\varepsilon \to 0^+} p^{(0)}_\lambda(w(\varepsilon)) = -\phi \left[(x_0 - \lambda 1)^*(x_0 - \lambda 1) + w(0; \lambda, t)^2 1 \right]^{-1}
\]

\[
= p^{(0)}_\lambda(w(0; \lambda, t)).
\]

Hence, for any \(\lambda \in \Xi_t \), by choosing \(z = \lambda(t) = \lambda + \gamma p^{(0)}_\lambda(w(\varepsilon)) \), we have

\[
\lim_{\varepsilon \to 0^+} p^{g(t,t)}(z)(\varepsilon) = -\phi \left[(x_0 - \lambda 1)^*(x_0 - \lambda 1) + w(0; \lambda, t)^2 1 \right]^{-1}
\]

\[
= p^{(0)}_\lambda(w(0; \lambda, t)).
\]

We note that \(p^{(0)}_\lambda(w(0; \lambda, t)) \) can be expressed as

\[
p^{(0)}_\lambda(w(0; \lambda, t)) = \int_{\mathbb{R}} \frac{\bar{x} - u}{(a-u)^2 + b^2 + w(0; \lambda, t)^2} d\mu(u)
\]

\[
= \int_{\mathbb{R}} \frac{a - u}{(a-u)^2 + v_t(a)^2} d\mu(u) - ib\frac{t}{t},
\]

where we used (6.2) and the fact that \(b^2 + w(0; \lambda, t)^2 = v_t(a)^2 \) for any \(a + ib \in \Xi_t \).

To summarize, for \(a \in \mathbb{R} \) fixed so that \(v_t(a) > 0 \), then: (1) the limit \(p^{g(t,t)}(\varepsilon) \) as \(\varepsilon \) tends to zero have different limit as long as \((z, \varepsilon) \) tends to \((\psi_t(a), 0) \) along different paths \((\lambda(t), \varepsilon) \) depending on \(b \); (2) although the limit \(\lim_{\varepsilon \to 0^+} \lambda(t) = \Phi_t,t(a + ib) = \psi_t(a) \) for any \(-v_t(a) \leq b \leq v_t(a) \), the limit of the partial derivative \(\lim_{\varepsilon \to 0^+} p^{g(t,t)}(\varepsilon) \) detects the value \(b \) and remembers where it came from. Namely, by looking at the limit \(\lim_{\varepsilon \to 0^+} \lambda(t) = \Phi_t,t(a + ib) \) we can not identify \(b \) since \(\Phi_t,t \) is not one-to-one, but the limit of the partial derivative \(\lim_{\varepsilon \to 0^+} p^{g(t,t)}(\varepsilon) \) does the work. This phenomena is different from what Lemma 5.5 told us when \(\Phi_t,\gamma \) is one-to-one.

Example 6.16 (The imaginary multiple of a semicircular operator). If \(\gamma = it \), the operator \(g_{t,\gamma} \) has the same distribution as \(ig_t \). In this case, \(\tau = 2t \), and for \(\lambda \in \Xi_t \), we have

\[
\Phi_{t,u}(\lambda) = \psi_t(a) - 2h_t(a) + 2ib
\]

\[
= a - h_t(a) + 2ib
\]

\[
= t \int_{\mathbb{R}} \frac{u}{(u-a)^2 + v_t(a)^2} d\mu(u) + 2ib
\]

and

\[
\delta_{t,u}(a) = a - h_t(a) = t \int_{\mathbb{R}} \frac{u}{(u-a)^2 + v_t(a)^2} d\mu(u).
\]

Example 6.17 (The elliptic operator). If \(\gamma = s \in \mathbb{R} \) with \(-t < s < t \), the operator \(g_{t,\gamma} \) has the same distribution as an elliptic operator. In this case, \(\tau = t-s \), and for \(\lambda \in \Xi_t \), we have

\[
\Phi_{t,s}(\lambda) = \psi_t(a) - t - s h_t(a) + i \frac{t-s}{t} b
\]

\[
= a + \frac{s}{t} h_t(a) + i \frac{t-s}{t} b
\]

\[
= \left(a + s \int_{\mathbb{R}} \frac{a - u}{(a-u)^2 + v_t(a)^2} d\mu(u) \right) + i \frac{(t-s)b}{t},
\]
and
\[
\delta_{t,s}(a) = a + s \int_{\mathbb{R}} \frac{a - u}{(a - u)^2 + v_t(a)^2} \, d\mu(u).
\]

We also note that \(\Phi_{t,s}(\lambda) = z_1 + iz_2\) where
\[
z_1 = \delta_{t,s}(a), \quad z_2 = \frac{(t-s)b}{t}
\]
and \(\psi_t(a)\) can be written as
\[
\psi_t(a) = z_1 + \frac{t-s}{t} h_t(a) = z_1 + (t-s) \int_{\mathbb{R}} \frac{a - u}{(a - u)^2 + v_t(a)^2} \, d\mu(u).
\]

Therefore, the density of the Brown measure at its support \(\Phi_{t,s}(\Xi_t)\) is given by
\[
d\mu_{x_0 + g_{t,s}}(z_1 + iz_2)
\]
\[
= \frac{1}{2\pi(t-s)} \left(1 + (t-s) \int_{\mathbb{R}} \frac{a - u}{(a - u)^2 + v_t(a)^2} \, d\mu(u) \right) \, d\mu_{x_0 + g_{t,s}}(z_1 + iz_2),
\]
if \(v_t(a) > 0\). Here we remind the reader that the map \(a \mapsto z_1 = \delta_{t,s}(a)\) is a homeomorphism from \(\mathbb{R}\) to \(\mathbb{R}\). This recovers the main result in [30, 34].

Remark 6.18. [The twisted \((\nu, \delta)\)-coordinate.] Fix \(a \in \mathbb{R}\), as in the proof of Theorem 6.8 (see (6.8)), the map \(b \mapsto \Phi_{t,s}(a + bi)\) is an affine transform of \(b\). The density formula of \(x_0 + c_t\) in Theorem 6.10 is independent of \(b\). Hence, the density formula of \(x_0 + g_{t,\gamma}\) must depend only on one parameter. It is indeed the case as in Theorem 6.13 where the density is expressed in terms of parameter \(a\) coming from \(\Xi_t\), the support of \(x_0 + c_t\).

We now describe an analogue of the formulation in the recent work [31] where the authors study the free multiplicative Brownian motions as follows. For \(z = z_1 + iz_2\), consider twisted \((\nu, \delta)\)-coordinate determined by
\[
a + ib = i\tau \nu + \delta,
\]
where \(\nu, \delta \in \mathbb{R}\). They can be written as
\[
\delta = a + \frac{\tau_2}{\tau_1} b, \quad \nu = \frac{b}{\tau_1}.
\]

Using notations in the proof of Theorem 6.8 and the formula of \(\Phi_{t,s}(\lambda)\) as in (6.8), for \(\lambda = \lambda_1 + i\lambda_2 \in \Xi_t\), we have
\[
\delta(\Phi_{t,s}(\lambda)) = z_1 + \frac{\tau_2}{\tau_1} z_2
\]
\[
= a + \left(1 - \frac{\tau_1}{t}\right) h_t(a) - \frac{\tau_2}{t} b + \frac{\tau_2}{\tau_1} \left(-\frac{\tau_2}{t} h_t(a) - \frac{\tau_1}{t} b\right)
\]
\[
= a + \left(1 - \frac{|\tau|^2}{t\tau_1}\right) h_t(a) = \delta_{t,s}(a),
\]
and
\[
\nu(\Phi_{t,s}(\lambda)) = \frac{\tau_2}{\tau_1} = \frac{1}{t} \left[b - \frac{\tau_2}{\tau_1} h_t(a)\right].
\]

We can then say that the Brown measure \(\mu_{x_0 + g_{t,\gamma}}\) is constant along the \(\nu\)-direction.
7. Addition with an R-diagonal operator

The family of R-diagonal operators was introduced by Nica-Speicher [42] which covers a large class of interesting operators in free probability theory. The circular operator and Haar unitary operator are special examples of R-diagonal operators. They have a number of remarkable symmetric properties. In a breakthrough paper, Haagerup–Larsen [26] calculated the Brown measure of any bounded R-diagonal operator and they showed that the Brown measure of T can be expressed in terms of the S-transform of the operator T^*T. This is the first nontrivial example of Brown measure formula after L. Brown introduced the definition in 1983. In [27], Haagerup-Schultz gave a second proof of the Brown measure formula of R-diagonal operators which also work for unbounded R-diagonal operators. In [50], we used subordination ideas and obtained simplification of technical arguments in Haagerup-Schultz’s work.

The Brown measure of an R-diagonal operator is the limit of the ESD of certain non-normal random matrix model called single ring theorem named after Feinberg and Zee (see [24] and the earlier physics paper [20, 19]).

In this section, we apply the results in Section 4 and Section 5 to study the Brown measures of $T + c_1$ and $T + g_{t,\gamma}$ where T and $\{c_1, g_{t,\gamma}\}$ are $*$-free. It is well-known that the sum of two R-diagonal operator is again R-diagonal. We show that the Brown measure of $T + g_{t,\gamma}$ is supported in a deformed ring where the inner boundary is a circle and the outer boundary is an ellipse. The pushforward map $\Phi_{t,\gamma}$ sends a family of circles to a family of ellipses.

7.1. The work of Haagerup–Schultz and gradient functions. Following [27 Section 4], we introduce some auxiliary functions. Let $\lambda \in \mathbb{C} \setminus \{0\}$, we set

\[
(7.1) \quad h_T(s) = s \phi((T^*T + s^21)^{-1}), \quad s > 0, \\
(7.2) \quad h_{T-\lambda_1}(\varepsilon) = \varepsilon \phi((T - \lambda_1)^*(T - \lambda_1) + \varepsilon^21)^{-1}), \quad \varepsilon > 0.
\]

and

\[
\lambda_1(T) = 1/\sqrt{\phi((T^*T)^{-1}), \quad \lambda_2(T) = \sqrt{\phi(T^*T)}.
\]

It is known that the Brown measure of T is supported in a single ring and $\lambda_1(T), \lambda_2(T)$ are inner and outer radii of this ring.

Proposition 7.1. [27] Definition 4.9] For any $\lambda \in \mathbb{C} \setminus \{0\}$, the equation

\[
(7.3) \quad (s - \varepsilon)^2 - \frac{s - \varepsilon}{h_T(s)} + |\lambda|^2 = 0
\]

has a unique solution $s = s(|\lambda|, t)$ in the interval $(0, \infty)$ and

\[
h_{T-\lambda_1}(\varepsilon) = h_T(s(|\lambda|, \varepsilon), \quad \varepsilon > 0.
\]

For $\lambda \in (\lambda_1(T), \lambda_2(T))$, the equation

\[
(7.4) \quad s^2 - \frac{s}{h_T(s)} + |\lambda|^2 = 0
\]

has a unique solution $s = s(|\lambda|, 0)$ in the interval $(0, \infty)$.

Proposition 7.2. [27] Lemma 4.10, Remark 4.11] The function $(\lambda, \varepsilon) \mapsto s(\lambda, \varepsilon)$ is analytic in $(0, \infty) \times (0, \infty)$. Moreover,

\[
\lim_{\varepsilon \to 0} s(\lambda, \varepsilon) = \begin{cases}
0, & \text{if } 0 < \lambda \leq \lambda_1(T); \\
\epsilon(\lambda, 0), & \text{if } \lambda \in (\lambda_1(T), \lambda_2(T)); \\
+\infty, & \text{if } \lambda \geq \lambda_2(T).
\end{cases}
\]
From now on, we denote by \(s(\lambda, 0) = \lim_{\varepsilon \to 0} s(\lambda, \varepsilon) \) for any \(\lambda > 0 \).

Lemma 7.3. [27] Lemma 4.14] Let \(T \) be an \(R \)-diagonal element in \(\mathcal{M} \), let \(\lambda \in \mathbb{C} \setminus \{0\} \)
and let \(\varepsilon > 0 \). We then have:

\[
\Delta((T - \lambda 1)^* (T - \lambda 1) + \varepsilon^2 1) = \frac{|\lambda|^2}{|\lambda|^2 + (s(\lambda)|, \varepsilon)^2)} \Delta(T^* T + s(\lambda|^2 1).
\]

Theorem 7.4. [27] Theorem 4.15] Let \(T \in \mathcal{M} \) be \(R \)-diagonal, we have:

(i) If \(\lambda_1(T) < |\lambda| < \lambda_2(T) \), then

\[
\Delta(T - \lambda 1) = \left(\frac{|\lambda|^2}{|\lambda|^2 + s(\lambda|^0 2^2)} \Delta(T^* T + s(\lambda|^0 2^1) \right)^{1/2}.
\]

(ii) If \(|\lambda| \leq \lambda_1(T) \), then \(\Delta(T - \lambda 1) = \Delta(T) \).

(iii) If \(|\lambda| \geq \lambda_2(T) \), then \(\Delta(T - \lambda 1) = |\lambda| \).

Remark 7.5. The reader might notice that formulas in this section are similar to our results in Section 3. Indeed, circular operator is an \(R \)-diagonal operator. In [50], we used subordination ideas to give a simplified proof for Haagerup-Schultz’s results and the Brown measure formula of \(R \)-diagonal operators. By choosing \(x_0 = 0 \), then Theorem 3.12 is a special case of Theorem 7.4. In a joint work with Bercovici [9], we obtained a Fuglede-Kadison formula for operator \(T + x_0 \) where \(x_0 \) is an arbitrary operator \(\ast \)-free from \(T \).

The following result can be deduced from the Fuglede-Kadison formulas in Lemma 7.6 and Theorem 7.4 and the defining equations for \(s(\lambda|^|, \varepsilon) \) and \(s(\lambda|^0 0) \). See [50] for details.

Lemma 7.6. [50] Section 4] Let \(T \) be an \(R \)-diagonal operator. We have partial derivative formula

\[
\phi((\lambda 1 - T)^*[(\lambda 1 - T)(\lambda 1 - T)^* + \varepsilon^2]^{-1}) = \frac{\lambda}{|\lambda|^2} \frac{(s(\lambda|^0 0) - \varepsilon)^2}{s(\lambda|^0 0)^2 + |\lambda|^2},
\]

for any \(\varepsilon > 0 \), and

\[
\phi((\lambda 1 - T)^*[(\lambda 1 - T)(\lambda 1 - T)^*]^{-1}) = \begin{cases}
0, & \text{for } 0 < |\lambda| \leq \lambda_1(T); \\
\frac{\lambda}{|\lambda|^2} \frac{s(|\lambda|^0 0)^2}{s(|\lambda|^0 0)^2 + |\lambda|^2}, & \text{for } \lambda_1(T) < |\lambda| < \lambda_2(T); \\
\frac{\lambda}{|\lambda|^2}, & \text{for } |\lambda| \geq \lambda_2(T),
\end{cases}
\]

where \(s(|\lambda|^, \varepsilon) \) and \(s(|\lambda|^0 0) \) are defined in Definition 7.7. Moreover, the Brown measure \(\mu_T \) is the rotationally invariant probability measure such that

\[
\mu_T\{z \in \mathbb{C} : |z| \leq r \} = \frac{s(r|^0 0)^2}{s(r|^0 0)^2 + r^2}, \quad 0 < r < \infty
\]

7.2. The pushforward map and Brown measure. We use Lemma 7.6 to study properties of the pushforward map from the Brown measure of \(T + c_t \) to the Brown measure of \(T + g_{t, \gamma} \). Observe that the Brown measure of \(T + e^{i\theta} g_{t, \gamma} \) is the same as the Brown measure of \(e^{i\theta} (T + g_{t, \gamma}) \). We may restrict ourselves to the case \(\gamma \in \mathbb{R} \) in this section, but we still keep using complex \(\gamma \) as before since the calculation remains the same.
Proposition 7.7. For $x_0 = T$, the map $\Phi_{t,\gamma}$ is expressed as

$$\Phi_{t,\gamma}(\lambda) = \lambda + \frac{\gamma}{\lambda} \frac{s(|\lambda|, 0)^2}{s(|\lambda|, 0)^2 + |\lambda|^2} = \lambda + \gamma \cdot \frac{\mu_{T+c_t}}{\lambda} \{ z \in \mathbb{C} : |z| \leq |\lambda| \},$$

for any $\lambda \in \mathbb{C}$, where for $\lambda \in \Xi_t$, $s = s(|\lambda|, 0)$ is determined by

$$s^2 - \frac{s}{h(s)} + |\lambda|^2 = 0$$

and $h(s) = s \cdot \phi(((T + c_t)^* (T + c_t) + s^2)^{-1})$.

The regularized map $\Phi_{t,\gamma}^{(\varepsilon)}$ is expressed as

$$\Phi_{t,\gamma}^{(\varepsilon)}(\lambda) = \lambda + \frac{\gamma}{\lambda} \frac{(s(|\lambda|, \varepsilon) - \varepsilon)^2}{(s(|\lambda|, \varepsilon) - \varepsilon)^2 + |\lambda|^2},$$

where $s = s(|\lambda|, \varepsilon)$ is determined by

$$(s - \varepsilon)^2 - \frac{s - \varepsilon}{h(s)} + |\lambda|^2 = 0.$$

Proof. We have the following equivalent definition of the pushforward maps

$$\Phi_{t,\gamma}(\lambda) = \lambda + \frac{\partial}{\partial \lambda} S(T + c_t, \lambda, 0),$$

and

$$\Phi_{t,\gamma}^{(\varepsilon)}(\lambda) = \lambda + \frac{\partial}{\partial \lambda} S(T + c_t, \lambda, \varepsilon).$$

The result follows by applying Lemma 7.6. \hfill \square

Since T and c_t are free to each other, we can calculate

$$\phi((T + c_t)^* (T + c_t)) = \phi(T^* T) + \phi(c_t^* c_t) = \lambda_2(T)^2 + t.$$

Hence, $\lambda_2(T + c_t) = \sqrt{\lambda_2(T)^2 + t}$. Although it is not important here, one can actually show that $\lambda_1(T + c_t) = \sqrt{(\lambda_1(T)^2 - t)^+}$ (9). When x_0 is an R-diagonal operator T, the set Ξ_t is also the interior of the support of the Brown measure of $T + c_t$. That is,

$$\Xi_t = \{ \lambda \in \mathbb{C} : (\lambda_1(T)^2 - t)^+ < |\lambda|^2 < \lambda_2(T)^2 + t \}.$$

Theorem 7.8. Let $\gamma = |\gamma| e^{i\alpha}$ such that $|\gamma| \leq t$. Set $x_0 = T$ and use notations in Section 5. For any $r > 0$, the pushforward map $\Phi_{t,\gamma}$ sends the circle C_r centered at the origin with radius r to the ellipse

$$(7.10)\quad e^{i\alpha} \left(re^{i\theta} + \frac{e^{i\theta} \gamma |g(r)|}{r} \right), \quad 0 \leq \theta \leq 2\pi,$$

where

$$g(r) = \mu_{T+c_t} \{ z \in \mathbb{C} : |z| \leq r \}.$$

The semi-axes of the ellipse are

$$a(r) = r - |\gamma| g(r)/r, \quad b(r) = r + |\gamma| g(r)/r.$$

In addition, both $a(r)$ and $b(r)$ are increasing functions of r in the interval $(0, \infty)$.

In particular, the Brown measure of $T + g_{t,\gamma}$ is supported in the deformed ring where the inner boundary is the circle with radius $\lambda_1(T + c_t)$ and the outer boundary is the ellipse

$$e^{i\alpha} \left(\frac{\lambda_2 e^{i\theta} + e^{i\theta} \gamma |\gamma|}{\lambda_2} \right), \quad 0 \leq \theta \leq 2\pi,$$

where $\lambda_2 = \lambda_2(T + c_t)$ is the outer radii of the support of the Brown measure of $T + c_t$.

\begin{itemize}
 \item \textbf{Proposition 7.7.} Let $x_0 = T$, the map $\Phi_{t,\gamma}$ is expressed as
 \end{itemize}
We follow notations used in Proposition 7.7. Recall that, by Lemma 7.6, we have
\[g(r) = \mu_{T+c_\gamma}\{z \in \mathbb{C} : |z| \leq r\} = \frac{s(r,0)^2}{s(r,0)^2 + r^2}. \]

We can rewrite \(a(r), b(r)\) as
\[a(r) = r - \gamma \frac{s(r,0)^2}{r s(r,0)^2 + r^2}, \quad b(r) = r + \gamma \frac{s(r,0)^2}{r s(r,0)^2 + r^2}. \]

For any \(\varepsilon > 0\), we set
\[a(r,\varepsilon) = r - \gamma \frac{(s(r,\varepsilon) - \varepsilon)^2}{r (s(r,\varepsilon) - \varepsilon)^2 + r^2}, \quad b(r,\varepsilon) = r + \gamma \frac{(s(r,\varepsilon) - \varepsilon)^2}{r (s(r,\varepsilon) - \varepsilon)^2 + r^2}. \]

Then, by (7.9), we see that the regularized map \(\Phi_{t,\gamma}^{(\varepsilon)}\) sends \(C_r\) to an ellipse \(E_{r,\varepsilon}\) centered at the origin, whose semi-axes \(|a(r,\varepsilon)|, |b(r,\varepsilon)|\). Since \(a(r,\varepsilon) > 0\) for large \(r\) and \(\Phi_{t,\gamma}^{(\varepsilon)}\) is a homeomorphism (see Proposition 5.1), it follows that \(a(r,\varepsilon) > 0\) for any \(r > 0\). Moreover, it forces that the region enclosed by the ellipse \(E_{r,\varepsilon}\) increases as \(r\) increases. That is,
\[a(r_1,\varepsilon) < a(r_2,\varepsilon), \quad b(r_1,\varepsilon) < b(r_2,\varepsilon) \]

for any \(0 < r_1 < r_2\). By letting \(\varepsilon\) go to zero and using Proposition 7.2 (or the fact that \(\Phi_{t,\gamma}^{(\varepsilon)}\) converges uniformly to \(\Phi_{t,\gamma}\) in \(\mathbb{C}\) by Lemma 5.3), we deduce
\[a(r_1) \leq a(r_2), \quad b(r_1) \leq b(r_2), \quad 0 < r_1 < r_2. \]

Note that \(a(r) = b(r) = r\) for \(0 < r \leq \lambda_1(T+c_\gamma)\) and
\[g(r) = \begin{cases} 0, & \text{for } 0 \leq r \leq \lambda_1(T+c_\gamma), \\ 1, & \text{for } r > \lambda_2(T+c_\gamma). \end{cases} \]

Hence, for \(r > \lambda_1(T+c_\gamma)\), we have \(a(r) > \lambda_1(T+c_\gamma)\). Therefore, \(a(r) > 0\) for all \(r\).

From (7.3), we then see that \(\Phi_{t,\gamma}\) maps the circle \(C_r := \{z : |z| = r\}\) to an ellipse \(E_r\) with parametrization
\[e^{i\alpha} \left(r e^{i\theta} + \frac{\gamma |e^{-i\theta} g(r)|}{r} \right), \quad 0 \leq \theta \leq 2\pi, \]

whose semi-axes are \(a(r), b(r)\). This finishes the proof. \(\blacksquare\)

Remark 7.9. We believe that \(a(r), b(r)\) are strictly increasing functions of \(r\) for any \(R\)-diagonal operator. However, such result requires a more careful understanding of the Brown measure \(\mu_{T+c_\gamma}\), which we do not pursue here. See Proposition 8.6 for a proof of the special case when \(T\) is a Haar unitary operator.

8. Example of Explicit Formulas

In this section, we compute two examples of \(x_0\) for the Brown measure of \(x_0 + c_\gamma\) and \(x_0 + g_{t,\gamma}\). The first example is quasi-nilpotent DT operator, and the second example is Haar unitary operator.
8.1. The quasi-nilpoten DT operator. The quasi-nilpotent DT-operator T was introduced by Dykema–Haagerup [17]. The operator played a key role in Brown measure of free random variables and invariant subspace problem in type II_1 factors [18, 28]. It can be described as the limit in $+$-moments of random matrices of the form

$$T^{(n)} = \begin{bmatrix}
0 & t_{1,2} & \cdots & t_{1,n} \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & t_{n-1,n} \\
0 & \cdots & 0 & 0
\end{bmatrix}$$

where $\{\Re(t_{i,j}), \Im(t_{i,j})\}$ is a set of $n(n-1)$ independent identically distributed Gaussian random variables with mean zero and variance $\frac{1}{2n}$. We refer the reader to [18, 17, 1] for the construction of T in a finite von Neumann algebra.

Proposition 8.1. Given $\lambda \in \mathbb{C}$ let $\sigma \in \mathbb{R}$ with $1 + |\lambda|^2 \sigma > 0$ and $\mu^2 = -\frac{\sigma}{\sigma}(1 + |\lambda|^2 \sigma)$. We have

$$\begin{cases}
\phi((T - \lambda^1)^*(T - \lambda^1) + \mu^2)^{-1}) = e^{-\sigma} - 1 \\
\phi((T - \lambda^1)((T - \lambda^1)^*(T - \lambda^1) + \mu^2)^{-1}) = \lambda \sigma \\
\phi((T - \lambda^1)^*((T - \lambda^1)^*(T - \lambda^1) + \mu^2)^{-1}) = \lambda \sigma.
\end{cases}$$

Proof. It can be obtained by taking the expectation of (3.3) in [1]. See [1, Pages 586-588].

Proposition 8.2. [1] Theorem 4.3] For any $t > 0$, the Brown measure of $T + c_t$ is the uniform measure on the closed disk $B(0, \frac{1}{\sqrt{\log(1+1/t)}})$.

Proof. Choose σ so that $e^{-\sigma} - 1 = \frac{1}{t}$. Then $\sigma = -\log(1 + 1/t)$. Consider the solution of $\varepsilon > 0$ for the equation

$$\phi((T - \lambda^1)^*(T - \lambda^1) + \varepsilon^2) = \frac{1}{t},$$

we then deduce that $w(0; \lambda, t)^2 = \mu^2 = -\frac{\sigma}{\sigma}(1 + |\lambda|^2 \sigma)$ by applying the results in Section 5 for $x_0 = T$. Hence, $w(0; \lambda, t) > 0$ if and only if $(1 + |\lambda|^2 \sigma) > 0$. Therefore,

$$\Xi_t = \left\{ \lambda : \phi((T - \lambda^1)^*(T - \lambda^1) + \mu^2)^{-1}) > \frac{1}{t} \right\} = \left\{ \lambda : w(0; \lambda, t) > 0 \right\} = \left\{ \lambda : 1 + |\lambda|^2 \sigma > 0 \right\} = \left\{ \lambda : |\lambda| < \frac{1}{\sqrt{\log(1+1/t)}} \right\}.$$

In addition, by the Proof of Theorem 4.2, we have

$$\frac{\partial}{\partial \lambda} \log \Delta((T + c_t - \lambda^1)^*(T + c_t - \lambda^1)) = p^{(t)}(0) = p^{(0)}(w(0; \lambda, t)) = -\phi((T - \lambda^1)^*((T - \lambda^1)^*(T - \lambda^1) + w(0; \lambda, t^2)^{-1}) = -\lambda \sigma.$$
Hence, the density of $T + c_t$ at $\lambda \in \Omega_t = B(0, \frac{1}{\sqrt{\log(1+1/t)}})$ is given by
\[
d\mu_{T+c_t} = \frac{1}{\pi} \frac{\partial^2}{\partial \lambda^2} \log \Delta((T + c_t - \lambda I)^*(T + c_t - \lambda I)) = -\frac{\lambda}{\pi} = \frac{\log(1+t)}{\pi}.
\]
It follows that the Brown measure of $T + c_t$ is equal to the uniform measure on the bounded by $B(0, \frac{1}{\sqrt{\log(1+1/t)}})$. \hfill \square

We then calculate the push-forward map from $T + c_t$ to $T + g_{t,\gamma}$. We have
\[
\Phi_{t,\gamma} = \lambda - \gamma \phi\left((T + \lambda I)^*(T - \lambda I)^*(x_0 - \lambda I) + w(0; \lambda, t^2)^{-1}\right) = \lambda - \gamma \Phi_t,
\]
where $\sigma = -\log(1+t)/t$. Therefore,
\[
\Phi_{t,\gamma} = \lambda + \gamma \Phi_t - \log(1+t).
\]
Recall that $|\gamma| \leq t$. In particular, it follows that $\Phi_{t,\gamma}$ is non-singular in the disk $B(0, \frac{1}{\sqrt{\log(1+1/t)}})$. Hence, by the pushforward connection in Theorem 5.4, the Brown measure of $T + g_{t,\gamma}$ is supported in the ellipse with parametrization
\[
\frac{1}{\sqrt{\log(1+1/t)}} e^{i\theta} + |\gamma| \sqrt{\log(1+t)} e^{i(\alpha-\theta)}, \quad \theta \in [0, 2\pi]
\]
where $\alpha = \arg \gamma$. In fact, the Brown measure of $T + g_{t,\gamma}$ is the uniform measure on its support.

8.2. The Haar unitary. The Haar unitary operator u is R-diagonal. Hence, results in Section 7 apply to $u + g_{t,\gamma}$. The Brown measure of $u + c_t$ is R-diagonal and the density formula is determined by the S-transform of $(u + c_t)^*(u + c_t)$ [26, 27]. However, it is not easy to obtain a precise formula for the Brown measure of $u + c_t$ by calculating the S-transform. See [25, Section 3.1] for a relevant calculation on the Cauchy transform of $c + \lambda u$ where c is the standard circular operator with variance one and $\lambda \in \mathbb{C} \setminus \{0\}$. Hence, we do not apply Proposition 7.7 directly. We calculate the push-forward map from the Brown measure of $u + c_t$ to $u + g_{t,\gamma}$ using formulas in Section 5 and as a by product we are able to calculate the Brown measure of $u + c_t$.

For $t > 0$, following Definition 5.4, we would like to determine the choice of s so that
\[
\int_0^\infty \frac{1}{s^2 + x^2} d\mu_{u - \lambda I}(x) = \frac{1}{t}.
\]
To this end, we write down the following elementary results for convenience. Given $\lambda_0 \neq 0$, consider the quadratic equation
\[
(z - \lambda_0)(1 - z\lambda_0) + s^2 z = 0.
\]
Rewrite it as
\[
\lambda_0 z^2 - (|\lambda_0|^2 + 1 + s^2) z + \lambda_0 = 0.
\]
We set
\[
\delta = |\lambda_0|^2 + 1 + s^2.
\]
Then (8.1) has two solutions
\[
Z_1 = \frac{\delta - \sqrt{\delta^2 - 4|\lambda_0|^2}}{2\lambda_0}, \quad Z_2 = \frac{\delta + \sqrt{\delta^2 - 4|\lambda_0|^2}}{2\lambda_0}.
\]
Note that $Z_1 Z_2 = \lambda_0/\lambda_0$, $|Z_1 Z_2| = 1$, and
\[
\delta^2 - 4|\lambda_0|^2 \geq (|\lambda_0|^2 + 1)^2 - 4|\lambda_0|^2 = (|\lambda_0|^2 - 1)^2 \geq 0
\]
for any s. Hence, for any $\lambda_0 \neq 0$, we have $|Z_1| \leq 1$ and $|Z_2| \geq 1$. Moreover, when $s > 0$, we have $|Z_1| < 1$ and $|Z_2| > 1$.

Lemma 8.3. For any λ_0, we have

\[
\frac{1}{2\pi} \int_0^{2\pi} \frac{1}{|e^{i\theta} - \lambda_0|^2 + s^2} d\theta = \frac{1}{\sqrt{\delta^2 - 4|\lambda_0|^2}}
\]

where $\delta = |\lambda_0|^2 + 1 + s^2$ is given by (8.2) and the integration is infinity if $\delta^2 = 4|\lambda_0|^2$. In particular, when $s = 0$,

\[
\frac{1}{2\pi} \int_0^{2\pi} \frac{1}{|e^{i\theta} - \lambda_0|^2} d\theta = \begin{cases}
\frac{1}{1 - |\lambda_0|^2}, & \text{if } 0 \leq |\lambda_0| < 1, \\
\frac{1}{|\lambda_0|^2 - 1}, & \text{if } |\lambda_0| > 1, \\
\infty, & \text{if } |\lambda_0| = 1.
\end{cases}
\]

Proof. We note that

\[
\frac{1}{|e^{i\theta} - \lambda_0|^2 + s^2} = \frac{e^{i\theta}}{(e^{i\theta} - \lambda_0)(1 - e^{i\theta} \lambda_0) + s^2 e^{i\theta}}.
\]

Using the formula (8.3) for roots of the quadratic equation (8.1), we have

\[
\frac{1}{2\pi} \int_0^{2\pi} \frac{1}{|e^{i\theta} - \lambda_0|^2 + s^2} d\theta = \frac{1}{2\pi i} \int_{|z| = 1} \frac{1}{(z - \lambda_0)(1 - \frac{z}{\lambda_0}) + s^2 z} dz
\]

\[
= \frac{1}{2\pi i} \int_{|z| = 1} \frac{1}{-\lambda_0(z - Z_1)(z - Z_2)} dz
\]

\[
= \frac{1}{\sqrt{\delta^2 - 4|\lambda_0|^2}}
\]

provided that $\delta^2 - 4|\lambda_0|^2 \neq 0$. When $s = 0$ and $|\lambda_0| \neq 1$, the above calculation still works.

For the case that $\delta^2 - 4|\lambda_0|^2 = 0$. By using (8.4), we see that $\delta^2 - 4|\lambda_0|^2 = 0$ if and only if $|\lambda_0| = 1$ and $s = 0$. It is clear the integration is infinity in this case. \hfill \Box

Lemma 8.4. For any λ_0, we have

\[
\frac{1}{2\pi} \int_0^{2\pi} \frac{e^{i\theta}}{|e^{i\theta} - \lambda_0|^2 + s^2} d\theta = \begin{cases}
\frac{\lambda_0}{\sqrt{\delta^2 - 4|\lambda_0|^2}} \frac{\delta - \sqrt{\delta^2 - 4|\lambda_0|^2}}{2|\lambda_0|^2}, & \text{if } \lambda_0 \neq 0 \\
0, & \text{if } \lambda_0 = 0.
\end{cases}
\]

where $\delta = |\lambda_0|^2 + 1 + s^2$ is given by (8.2) and the integration is infinity if the denominator is zero. In particular, when $u = 0$,

\[
\frac{1}{2\pi} \int_0^{2\pi} \frac{e^{i\theta}}{|e^{i\theta} - \lambda_0|^2} d\theta = \begin{cases}
\frac{\lambda_0}{|\lambda_0|^2 (|\lambda_0|^2 - 1)} \frac{1}{\lambda_0} & \text{if } |\lambda_0| < 1, \\
\frac{1}{|\lambda_0|^2 (|\lambda_0|^2 - 1)} & \text{if } |\lambda_0| > 1 \\
\infty & \text{if } |\lambda_0| = 1.
\end{cases}
\]

Similarly,

\[
\frac{1}{2\pi} \int_0^{2\pi} \frac{e^{-i\theta}}{|e^{i\theta} - \lambda_0|^2 + s^2} d\theta = \begin{cases}
\frac{\lambda_0}{\sqrt{\delta^2 - 4|\lambda_0|^2}} \frac{\delta - \sqrt{\delta^2 - 4|\lambda_0|^2}}{2|\lambda_0|^2}, & \text{if } \lambda_0 \neq 0 \\
0, & \text{if } \lambda_0 = 0.
\end{cases}
\]
where $\delta = |\lambda_0|^2 + 1 + s^2$ is given by (8.2) and the integration is infinity if the denominator is zero. In particular, when $u = 0$.

\begin{equation}
\frac{1}{2\pi} \int_0^{2\pi} \frac{e^{-i\theta}}{|e^{i\theta} - \lambda_0|^2 + s^2} d\theta = \begin{cases} \frac{-\langle \delta \rangle}{|\lambda_0|^2(|\lambda_0|^2 - 1)} & \text{if } |\lambda_0| < 1 \\ \frac{\langle \delta \rangle}{|\lambda_0|^2(|\lambda_0|^2 - 1)} & \text{if } |\lambda_0| > 1 \\ \infty & \text{if } |\lambda_0| = 1. \end{cases}
\end{equation}

Proof. Recall that $|Z_1| < 1$ and $|Z_2| > 1$. Using the formula (8.3) for roots of the quadratic equation (8.1), we have

\begin{align*}
\frac{1}{2\pi} \int_0^{2\pi} \frac{e^{i\theta}}{|e^{i\theta} - \lambda_0|^2 + s^2} d\theta &= \frac{1}{2\pi i} \int_{|z|=1} \frac{z}{(z - \lambda_0)(1 - z \lambda_0) + s^2 z} dz \\
&= \frac{1}{2\pi i} \int_{|z|=1} \frac{z}{-\lambda_0 (z - Z_1)(z - Z_2)} dz \\
&= \frac{\lambda_0}{|\lambda_0|^2 (Z_1 - Z_2)} \frac{\lambda}{\sqrt{\delta^2 - 4|\lambda_0|^2}} \\
&\quad - \lambda_0 \frac{\delta - \sqrt{\delta^2 - 4|\lambda_0|^2}}{2|\lambda_0|^2},
\end{align*}

provided that $\delta^2 - 4|\lambda_0|^2 \neq 0$ and $\lambda_0 \neq 0$. If $\lambda_0 = 0$, the integration is clearly equal to zero. Note that $\delta^2 - 4|\lambda_0|^2 = 0$ if and only if $|\lambda_0| = 1$ and $s = 0$ (see (8.4)). The integration is infinity in this case. Hence (8.7) and (8.8) are proved.

Finally, when $s = 0$, we have $\delta^2 - 4|\lambda_0|^2 = (|\lambda_0|^2 - 1)^2$. Plugging this into (8.7), we obtain (8.6). By taking conjugation, we obtain (8.9) and (8.10).

Hence, we have

\begin{equation}
p_{\lambda}^{(0)}(s) = \phi \left((\lambda - u)^* [(\lambda - u)^* (\lambda - u) + s^2]^{-1} \right)
\end{equation}

\begin{align*}
\frac{1}{2\pi} \int_0^{2\pi} \frac{\lambda - e^{-i\theta}}{|e^{i\theta} - \lambda|^2 + s^2} d\theta &= \frac{\lambda}{\sqrt{\delta^2 - 4|\lambda|^2}} - \frac{\delta - \sqrt{\delta^2 - 4|\lambda|^2}}{2|\lambda|^2},
\end{align*}

where $\delta = |\lambda|^2 + 1 + s^2$.

A direct application of (8.6) yields that

\begin{equation}
\Xi_t = \left\{ \lambda : \phi \left[((u - \lambda_1)^* (u - \lambda_1))^{-1} \right] > \frac{1}{t} \right\} = \left\{ \lambda : \lambda_1 < |\lambda| < \lambda_2 \right\}
\end{equation}

where $\lambda_1 = \sqrt{(1 - t)}$ and $\lambda_2 = \sqrt{1 + t}$.

Proposition 8.5. The support of the Brown measure of $u + c_t$ is the single ring

\[\Xi_t = \{ \lambda : \lambda_1 \leq |\lambda| \leq \lambda_2 \} \]

Moreover, the Brown measure is absolutely continuous and the density of $u + c_t$ is strictly positive on its support.

\begin{proof}
By (8.12) and Theorem 4.6 it follows that the support of the Brown measure of $u + c_t$ is Ξ_t. One can also compare it with the general result for the Brown measure of R-diagonal operators [26].
\end{proof}
We can now calculate the subordination function \(w(0; \lambda, t) \) in this context. For any \(\lambda \in \Xi_t \), following Definition 3.4, \(w(0; \lambda, t) \) is determined by the condition
\[
\phi \left[\left((u - \lambda 1)^*(u - \lambda 1) + w(0; \lambda, t)^2 \right)^{-1} \right] = \frac{1}{t}.
\]
By (8.5), this condition is equivalent to
\[
\delta^2 - 4|\lambda|^2 = (|\lambda|^2 + 1 + w(0; \lambda, t)^2)^2 - 4|\lambda|^2 = t^2.
\]
It follows that
\[
(8.13) \quad w(0; \lambda, t)^2 = \sqrt{4|\lambda|^2 + t^2} - (|\lambda|^2 + 1), \quad \lambda_1 < |\lambda| < \lambda_2.
\]
We now describe the map \(\Phi_{t, \lambda} \) more closely. For \(\lambda \in \Xi_t \), we set \(s = |\lambda|^2 - 1 \), where \(\lambda_1^2 - 1 < s < \lambda_2^2 - 1 \). Let \(\delta = |\lambda|^2 + 1 + w(0; \lambda, t)^2 \). Since \(\delta^2 - 4|\lambda|^2 = t^2 \), we now have
\[
\frac{\delta - \sqrt{\delta^2 - 4|\lambda|^2}}{2|\lambda|^2} = \frac{\delta - t}{2|\lambda|^2} = \sqrt{4(1 + s) + t^2 - t}
\]
for \(\lambda_1 < |\lambda| < \lambda_2 \).
Therefore, for \(\lambda_1^2 - 1 < s < \lambda_2^2 - 1 \) and \(\lambda \) such that \(|\lambda|^2 = s + 1 \), by (8.11), we have,
\[
\Phi_{t, \lambda}(\lambda) = \lambda + \gamma p_{\lambda}^{(0)}(w(0; \lambda, t))
\]
(8.14)
\[
= \lambda + \gamma \left(\sqrt{\delta^2 - 4|\lambda|^2} \frac{\delta - \sqrt{\delta^2 - 4|\lambda|^2}}{2|\lambda|^2} \right)
\]
where \(\delta = |\lambda|^2 + 1 + w(0; \lambda, t)^2 \).

We first look at the case when \(\gamma = t \). Since \(\delta^2 - 4|\lambda|^2 = t^2 \), for \(\lambda = re^{i\theta} \) where \(r = \sqrt{s + 1} \), \(\Phi_{t, \lambda} \) as in (8.14) can be further simplified as
\[
(8.15) \quad \Phi_{t, \lambda}(re^{i\theta}) = re^{i\theta} + tre^{-i\theta} \left(\frac{1}{t} + \frac{1}{2r^2 - \frac{4r^2 + t^2}{2r^2 t}} \right)
\]
\[
= re^{i\theta} + re^{-i\theta} \left(1 - \frac{\sqrt{4(1 + s) + t^2 - t}}{2(1 + s)} \right)
\]
(8.16)
\[
= a(s) \cos(\theta) + ib(s) \sin(\theta)
\]
where, \(\lambda_1^2 - 1 < s < \lambda_2^2 - 1 \), and
\[
(8.17) \quad \begin{cases}
 a(s) = \frac{2\sqrt{1 + s} - \sqrt{4(1 + s) + t^2 - t}}{2\sqrt{1 + s}}; \\
 b(s) = \frac{\sqrt{4(1 + s) + t^2 - t}}{2\sqrt{1 + s}}.
\end{cases}
\]
In particular, if \(\lambda_1^2 - 1 = s \), we have \(1 + s = \lambda_1^2 = (1 - t)_+ \) and \(4(1 + s) + t^2 = (4(1 - t)_+) + t^2 \). Then for \(s = ((1 - t)_+) - 1 \),
\[
\begin{cases}
 a(s) = a^- = \sqrt{(1 - t)_+} \\
 b(s) = b^- = \sqrt{(1 - t)_+}.
\end{cases}
\]
Similarly, when \(\lambda_2^2 - 1 = s \), we have \(s = t \) and
\[
\begin{cases}
 a(s) = a^+ = \frac{2t + 1}{\sqrt{t + 1}} \\
 b(s) = b^+ = \frac{1}{\sqrt{t + 1}}.
\end{cases}
\]
Proposition 8.6. For $\lambda_1^2 - 1 < s < \lambda_2^2 - 1$, the circle $C_s := \{ \lambda : |\lambda|^2 = 1 + s \}$ is mapped to the ellipse centered at the origin with semi-axes $a(t)$ and $b(t)$ as in (8.17). Moreover, the function $s \mapsto a(s)$ is a strictly increasing function from $(\lambda_1^2 - 1, \lambda_2^2 - 1)$ onto (a^-, a^+); and the the function $s \mapsto b(s)$ is a strictly increasing function from $(\lambda_1^2 - 1, \lambda_2^2 - 1)$ onto (b^-, b^+).

Proof. We have

$$a'(s) = \frac{t^2}{\sqrt{4s + t^2 + 4}} + 4s - t + 4 \quad \text{and} \quad b'(s) = \frac{t (\sqrt{4s + t^2 + 4} - t)}{4(s + 1)^{3/2}\sqrt{4s + t^2 + 4}}.$$

Hence $b'(s) > 0$. To show $a'(s) > 0$, we set

$$f(s) = \frac{t^2}{\sqrt{4s + t^2 + 4}} + 4s - t + 4$$

and calculate its derivatives

$$f'(s) = 4 - \frac{2t^2}{(4s + t^2 + 4)^{3/2}}$$

and

$$f''(s) = \frac{12t^2}{(4s + t^2 + 4)^{5/2}} > 0.$$

Hence $f''(s) > f''(\lambda_1^2 - 1) = f'((1 - t)_+) > 0$. Consequently, f is increasing. We then check that

$$f((1 - t)_+) > 0.$$

It follows that $a'(s) > 0$ for $\lambda_1^2 - 1 < s < \lambda_2^2 - 1$. \hfill \square

Proposition 8.7. The map $\Phi_{t, t}$ is non-singular at any $\lambda \in \{ z : \lambda_1 < |z| < \lambda_2 \}$.

Proof. Choose the coordinate (s, θ) so that $x = r \cos \theta$ and $y = r \sin \theta$, where $r^2 = s + 1$ and $\lambda_1^2 - 1 < s < \lambda_2^2 - 1$. The map $(s, \theta) \mapsto \Phi_{t, t}(re^{i\theta}) = a(s) \cos(\theta) + ib(s) \sin(\theta)$ has the Jacobian given by

$$D\Phi_{t, t}(s, \theta) = \begin{bmatrix} a'(s) \cos \theta & -a(s) \sin \theta \\ b'(s) \sin \theta & b(s) \cos \theta \end{bmatrix}.$$

By Proposition 8.6, we have $a'(s) > 0, b'(s) > 0$, we hence have $\det(D\Phi_{t, t}) > 0$. \hfill \square

Theorem 8.8. The Brown measure of $u + c_t$ is given by

$$\mu_{u + c_t}(\{ \lambda : |\lambda| \leq r \}) = r^2 \left(1 + \frac{1}{2r^2} - \frac{r^2}{2r^2t} \right),$$

where $\sqrt{(1 - t)_+} \leq r \leq \sqrt{1 + t}$.

Proof. By Lemma [76] ([50] Corollary 4.4), for $\sqrt{(1 - t)_+} \leq |\lambda| \leq \sqrt{1 + t}$,

$$p_{\lambda}^c(t)(0) = \partial S \partial \lambda (u + c_t, \lambda, 0)$$

$$= \frac{\partial}{\partial \lambda} \log \Delta((u + c_t - \lambda 1^*)(u + c_t - \lambda 1))$$

$$= \mu_{u + c_t}(\{ \lambda : |\lambda| \leq r \}),$$

which yields $\Phi_{t, t}(\lambda) = \lambda + \frac{\lambda}{t}\mu_{u + c_t}(\{ \lambda : |\lambda| \leq r \})$. Hence, the result follows by comparing this general formula with the explicit formula of $\Phi_{t, t}(\lambda)$ as in (8.16). \hfill \square
Theorem 8.9. The support of the Brown measure of \(u + g_t \) is the deformed single ring where the inner boundary is the circle centered at the origin with radius \(\sqrt{(1-t)} \) and the outer boundary is the ellipse centered at the origin with semi-axes \(\frac{2t+1}{\sqrt{t+1}} \) and \(\frac{1}{\sqrt{1+t}} \). The Brown measure is absolutely continuous and its density is strictly positive in the support.

Moreover, the Brown measure of \(u + g_t \) is the push-forward map of the Brown measure of \(u + c_t \) under the map \(\Phi_{t,t} \) defined as

\[
\Phi_{t,t}(re^{i\theta}) = a(s) \cos(\theta) + ib(s) \sin(\theta), \quad r = \sqrt{s+1},
\]

where \((1-t)^{-1} < s < t\) and \(a(s), b(s)\) are given by (8.17).

Proof. It follows from Proposition 8.7 that the map \(\Phi_{t,t} \) is, non-singular, one-to-one and onto from the single ring \(\{ \lambda : \lambda_1 < |\lambda| < \lambda_2 \} \), the support of the Brown measure of \(u + c_t \), to the deformed ring. Theorem 5.4 applies and the push-forward map is given by (8.15) and (8.17). Since the Brown measure of \(u + c_t \) is strictly positive on its support, the result then follows.

We now fix \(\gamma = |\gamma| e^{2i\alpha} \) such that \(|\gamma| \leq t \) and \(\lambda_1^2 - 1 < s < \lambda_2^2 - 1 \) and \(r^2 = |\lambda|^2 = s+1 \), then similar to the case \(\gamma = t \) as in (8.14), we have

\[
\Phi_{t,\gamma}(re^{i\theta}) = re^{i\theta} + re^{i(2\alpha-\theta)} \frac{|\gamma|}{t} \left(1 - \frac{\sqrt{4(1+s) + t^2 - t}}{2(1+s)} \right)
\]

\[
(8.19) = e^{i\alpha} \left[\sqrt{s+1} e^{i(\theta-\alpha)} + \frac{|\gamma|}{t} e^{i(\alpha-\theta)} \left(\sqrt{s+1} - \frac{\sqrt{4(1+s) + t^2 - t}}{2\sqrt{1+s}} \right) \right],
\]

which is an ellipse twisted by angle \(\alpha \) with semi-axes

\[
(8.20) \begin{cases} f(s) = \frac{t-|\gamma|}{t} \sqrt{s+1} + \frac{|\gamma|}{t} a(s), \\ g(s) = \frac{t-|\gamma|}{t} \sqrt{s+1} + \frac{|\gamma|}{t} b(s), \end{cases}
\]

where \(a(s), b(s) \) are given by (8.17). It follows by Proposition 8.6 that both \(f \) and \(g \) are increasing function of \(s \) in the interval \((\lambda_1^2 - 1, \lambda_2^2 - 1)\).

Then we deduce the following result in the same was as Theorem 8.9. We leave details for interested readers.
Theorem 8.10. The support of the Brown measure of \(u + g_{t,\gamma} \) is the deformed single ring where the inner boundary is the circle centered at the origin with radius \(\sqrt{1-t} \), and the outer boundary is the ellipse twisted by angle \(\alpha \), centered at the origin, with semi-axes \(\frac{t+|\gamma|+1}{\sqrt{t+1}} \) and \(\frac{-|\gamma|+1}{\sqrt{t+1}} \).

Moreover, the Brown measure of \(u + g_{t,\gamma} \) is the push-forward map of the Brown measure of \(u + c \) under the map \(\Phi_{t,\gamma} \), defined as

\[
\Phi_{t,\gamma} (re^{i\theta}) = e^{i\alpha} \left(f(s) \cos(\theta - \alpha) + ig(s) \sin(\theta - \alpha) \right), \quad r = \sqrt{s+1}
\]

where \((1-t)^+ - 1 < s < t \), \(f(s), g(s) \) are defined by (8.20).

Remark 8.11. It is interesting to observe that the outer boundary of \(u + g_{t,\gamma} \) is the same as the outer boundary of the Brown measure of \(c + g_{t,\gamma} \) where \(c \) is the standard circular operator with variance one. The outer boundary for \(c + g_{t,\gamma} \) can be checked by using Example 6.14.

The Brown measure of \(u + g_{t,\gamma} \) is a rotation of the Brown measure of \(u + y \) where \(y \) is an elliptic operator by the angle \(\alpha \) with \(e^{2i\alpha} = \gamma/|\gamma| \). This can be seen directly by the fact that \(g_{t,\gamma} \) is a twisted elliptic operator of the form \(e^{i\alpha}(g_1 + ig_2) \) where \(g_1, g_2 \) are free independent semicircular elements with variances \(t_1, t_2 \) respectively so that \(t_1 + t_2 = t \) and \(t_1 - t_2 = |\gamma| \). Then \(u + g_{t,\gamma} \) has the same distribution as \(e^{i\alpha}(u + g_1 + ig_2) \).

Acknowledgment. The author would like to express his deep gratitude to Hari Bercovici and Zhi Yin for many valuable discussions during the course of the investigation and for careful reading of earlier versions of this paper. Special thanks to Serban Belinschi for his comments on Hermitian reduction method and subordination functions. The author also wants to thank Brian Hall, Ching-Wei Ho, Dang-Zheng Liu, Weihua Liu, Alexandru Nica, and Zhuang Niu for discussions on the topics of Brown measures. He also wants to thank Edward Saff for communications on potential theory and Piotr Śniady for helpful comments on the work [44].

References

[1] Aagaard, L., and Haagerup, U. Moment formulas for the quasi-nilpotent DT-operator. Internat. J. Math. 15, 6 (2004), 581–628.
[2] Belinschi, S. T. The Lebesgue decomposition of the free additive convolution of two probability distributions. Probab. Theory Related Fields 142, 1-2 (2008), 125–150.
[3] Belinschi, S. T., and Bercovici, H. A new approach to subordination results in free probability. J. Anal. Math. 101 (2007), 357–365.
[4] Belinschi, S. T., Mai, T., and Speicher, R. Analytic subordination theory of operator-valued free additive convolution and the solution of a general random matrix problem. J. Reine Angew. Math. 732 (2017), 21–53.
[5] Belinschi, S. T., Śniady, P., and Speicher, R. Eigenvalues of non-Hermitian random matrices and Brown measure of non-normal operators: Hermitian reduction and linearization method. Linear Algebra and its Applications 537 (2018), 48 – 83.
[6] Bercovici, H. Free convolution. Free probability and operator algebras - Chapter V, Münster Lectures in Mathematics. European Mathematical Society (EMS), Zürich, 2016. Lecture notes from the masterclass held in Münster.
[7] Bercovici, H., and Voiculescu, D. Free convolution of measures with unbounded support. Indiana Univ. Math. J. 42, 3 (1993), 733–773.
[8] Bercovici, H., and Voiculescu, D. Regularity questions for free convolution. In Nonselfadjoint operator algebras, operator theory, and related topics, vol. 104 of Oper. Theory Adv. Appl. Birkhäuser, Basel, 1998, pp. 37–47.
[9] Bercovici, H., and Zhong, P. The Brown measure of the sum of an R-diagonal operator and a free random variable, preprint in preparation.

[10] Biane, P. On the free convolution with a semi-circular distribution. Indiana Univ. Math. J. 46, 3 (1997), 705–718.

[11] Biane, P. Processes with free increments. Math. Z. 227, 1 (1998), 143–174.

[12] Biane, P., and Lehner, F. Computation of some examples of Brown’s spectral measure in free probability. Colloq. Math. 90, 2 (2001), 181–211.

[13] Bordenave, C., and Capitaine, M. Outlier eigenvalues for deformed i.i.d. random matrices. Comm. Pure Appl. Math. 69, 11 (2016), 2131–2194.

[14] Bordenave, C., Caputo, P., and Chafaï, D. Spectrum of Markov generators on sparse random graphs. Comm. Pure Appl. Math. 67, 4 (2014), 621–669.

[15] Bordenave, C., and Chafaï, D. Around the circular law. Probab. Surv. 9 (2012), 1–89.

[16] Brown, L. G. Lidskii’s theorem in the type II case. In Geometric methods in operator algebras (Kyoto, 1983), vol. 123 of Pitman Res. Notes Math. Ser. Longman Sci. Tech., Harlow, 1986, pp. 1–35.

[17] Dykema, K., and Haagerup, U. DT-operators and decomposability of Voiculescu’s circular operator. Amer. J. Math. 126, 1 (2004), 121–189.

[18] Dykema, K., and Haagerup, U. Invariant subspaces of the quasinilpotent DT-operator. J. Funct. Anal. 209, 2 (2004), 332–366.

[19] Feinberg, J., Scalettar, R., and Zee, A. “Single ring theorem” and the disk-annulus phase transition. J. Math. Phys. 42, 12 (2001), 5718–5740.

[20] Feinberg, J., and Zee, A. Non-Gaussian non-Hermitian random matrix theory: phase transition and addition formalism. Nuclear Phys. B 501, 3 (1997), 643–669.

[21] Feinberg, J., and Zee, A. Non-Hermitian random matrix theory: method of Hermitian reduction. Nuclear Phys. B 504, 3 (1997), 579–608.

[22] Fuglede, B., and Kadison, R. V. Determinant theory in finite factors. Ann. of Math. (2) 55 (1952), 520–530.

[23] Ginibre, J. Statistical Ensembles of Complex, Quaternion and Real Matrices. J. Math. Phys. 6 (1965), 440–449.

[24] Guionnet, A., Krishnapur, M., and Zeitouni, O. The single ring theorem. Ann. of Math. (2) 174, 2 (2011), 1189–1217.

[25] Haagerup, U., Kemp, T., and Speicher, R. Resolvents of R-diagonal operators. Trans. Amer. Math. Soc. 362, 11 (2010), 6029–6064.

[26] Haagerup, U., and Larsen, F. Brown’s spectral distribution measure for R-diagonal elements in finite von Neumann algebras. J. Funct. Anal. 176, 2 (2000), 331 – 367.

[27] Haagerup, U., and Schultz, H. Brown measures of unbounded operators affiliated with a finite von Neumann algebra. Math. Scand. 100, 2 (2007), 209–263.

[28] Haagerup, U., and Schultz, H. Invariant subspaces for operators in a general II_1-factor. Publ. Math. Inst. Hautes Études Sci., 109 (2009), 19–111.

[29] Haagerup, U., and Thorbjørnsen, S. A new application of random matrices: Ext(C^*_red(F_2)) is not a group. Ann. of Math. (2) 162, 2 (2005), 711–775.

[30] Hall, B. C., and Ho, C.-W. The Brown measure of the sum of a self-adjoint element and an imaginary multiple of a semicircular element. arXiv:2006.07168 (2020).

[31] Hall, B. C., and Ho, C.-W. The Brown measure of a family of free multiplicative brownian motions. arXiv:2104.07859 (2021).

[32] Hall, B. C., and Ho, C.-W. The heat flow conjecture for random matrices. arXiv:2202.09660 (2022).

[33] Hall, B. C., and Kemp, T. Brown measure support and the free multiplicative Brownian motion. Adv. Math. 355 (2019), 106771, 36.

[34] Ho, C.-W. The Brown measure of the sum of a self-adjoint element and an elliptic element. arXiv:2007.06100 (2020).

[35] Ho, C.-W., and Zhong, P. Brown measures of free circular and multiplicative brownian motions with self-adjoint and unitary initial conditions. arXiv:1908.08150, to appear in J. Eur. Math. Soc. (2019).

[36] Janik, R. A., Nowak, M. A., Papp, G., and Zahed, J. Non-Hermitian random matrix models. Nuclear Phys. B 501, 3 (1997), 603–642.

[37] Jarosz, A., and Nowak, M. A. A novel approach to non-hermitian random matrix models. preprint arXiv:math-ph/0402057.

[38] Jarosz, A., and Nowak, M. A. Random Hermitian versus random non-Hermitian operators—unexpected links. J. Phys. A 39, 32 (2006), 10107–10122.
[39] Larsen, F. Brown measures and R-diagonal elements in finite von neumann algebras. *Ph.D. Thesis, University of Southern Denmark* (1999).

[40] Mingo, J. A., and Speicher, R. *Free probability and random matrices*, vol. 35 of *Fields Institute Monographs*. Springer, New York; Fields Institute for Research in Mathematical Sciences, Toronto, ON, 2017.

[41] Nica, A., Shlyakhtenko, D., and Speicher, R. H-cyclic families of matrices in free probability. *J. Funct. Anal.* 188, 1 (2002), 227–271.

[42] Nica, A., and Speicher, R. H-diagonal pairs—a common approach to Haar unitaries and circular elements. In *Free probability theory (Waterloo, ON, 1995)*, vol. 12 of *Fields Inst. Commun.* Amer. Math. Soc., Providence, RI, 1997, pp. 149–188.

[43] Saff, E. B., and Totik, V. *Logarithmic potentials with external fields*, vol. 316 of *Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]*. Springer-Verlag, Berlin, 1997. Appendix B by Thomas Bloom.

[44] Šniady, P. Random regularization of Brown spectral measure. *J. Funct. Anal.* 193, 2 (2002), 291–313.

[45] Speicher, R. Combinatorial theory of the free product with amalgamation and operator-valued free probability theory. *Mem. Amer. Math. Soc.* 132, 627 (1998), x+88.

[46] Tao, T., and Vu, V. Random matrices: universality of ESDs and the circular law. *Ann. Probab.* 38, 5 (2010), 2023–2065. With an appendix by Manjunath Krishnapur.

[47] Voiculescu, D. Limit laws for random matrices and free products. *Invent. Math. 104*, 1 (1991), 201–220.

[48] Voiculescu, D. Operations on certain non-commutative operator-valued random variables. No. 232. 1995, pp. 243–275. Recent advances in operator algebras (Orléans, 1992).

[49] Voiculescu, D. The coalgebra of the free difference quotient and free probability. *Int. Math. Res. Not.* 2000, 2 (01 2000), 79–106.

[50] Zhong, P. Brown measure of R-diagonal operators, revisited. *arXiv:2204.01896* (2022).

Ping Zhong, Department of Mathematics and Statistics, University of Wyoming, Laramie, WY 82070, pzhong@uwyo.edu