RESEARCH

MADGAN: unsupervised Medical Anomaly Detection GAN using multiple adjacent brain MRI slice reconstruction

Changhee Han1*, Leonardo Rundo2,3, Kohei Murao4, Tomoyuki Noguchi5, Yuki Shimahara1, Zoltán Ádám Milacski7, Saori Koshino6, Evis Sala2,3, Hideki Nakayama8,9 and Shin’ichi Satoh4

*Correspondence: han@lpixel.net
1LPIXEL Inc., Tokyo, Japan
Full list of author information is available at the end of the article

Abstract

Background: Unsupervised learning can discover various unseen diseases, relying on large-scale unannotated medical images of healthy subjects. Towards this, unsupervised methods reconstruct a 2D/3D single medical image to detect outliers either in the learned feature space or from high reconstruction loss. However, without considering continuity between multiple adjacent slices, they cannot directly discriminate diseases composed of the accumulation of subtle anatomical anomalies, such as Alzheimer’s Disease (AD). Moreover, no study has shown how unsupervised anomaly detection is associated with either disease stages, various (i.e., more than two types of) diseases, or multi-sequence Magnetic Resonance Imaging (MRI) scans.

Results: We propose unsupervised Medical Anomaly Detection Generative Adversarial Network (MADGAN), a novel two-step method using GAN-based multiple adjacent brain MRI slice reconstruction to detect various diseases at different stages on multi-sequence structural MRI: (Reconstruction) Wasserstein loss with Gradient Penalty + 100 ℓ1 loss—trained on 3 healthy brain axial MRI slices to reconstruct the next 3 ones—reconstructs unseen healthy/abnormal scans; (Diagnosis) Average ℓ2 loss per scan discriminates them, comparing the ground truth/reconstructed slices. For training, we use 1,133 healthy T1-weighted (T1) and 135 healthy contrast-enhanced T1 (T1c) brain MRI scans. Our Self-Attention MADGAN can detect AD on T1 scans at a very early stage, Mild Cognitive Impairment (MCI), with Area Under the Curve (AUC) 0.727, and AD at a late stage with AUC 0.894, while detecting brain metastases on T1c scans with AUC 0.921.

Conclusions: Similar to physicians’ way of performing a diagnosis, using massive healthy training data, our first multiple MRI slice reconstruction approach, MADGAN, can reliably predict the next 3 slices from the previous 3 ones only for unseen healthy images. As the first unsupervised various disease diagnosis, MADGAN can reliably detect the accumulation of subtle anatomical anomalies and hyper-intense enhancing lesions, such as (especially late-stage) AD and brain metastases on multi-sequence MRI scans.

Keywords: Generative adversarial networks; Self-attention; Unsupervised anomaly detection; Brain MRI reconstruction; Various disease diagnosis

Background

Machine Learning has revolutionized life science research, especially in Neuroimaging and Bioinformatics [1, 2], such as by modeling interactions between whole
brain genomics/imaging [3, 4] and identifying Alzheimer’s Disease (AD)-related proteins [5]. Especially, Deep Learning can achieve accurate computer-assisted diagnosis when large-scale annotated training samples are available. In Medical Imaging, unfortunately, preparing such massive annotated datasets is often unfeasible [6, 7]; to tackle this pervasive problem, researchers have proposed various data augmentation techniques, including Generative Adversarial Network (GAN)-based ones [8, 9, 10, 11, 12]; alternatively, Rauschecker et al. combined Convolutional Neural Networks (CNNs), feature engineering, and expert-knowledge Bayesian network to derive brain Magnetic Resonance Imaging (MRI) differential diagnoses that approach neuroradiologists’ accuracy for 19 diseases. However, even exploiting these techniques, supervised learning still requires many images with pathological features, even for rare disease, to make a reliable diagnosis; nevertheless, it can only detect already-learned specific pathologies. In this regard, as physicians notice previously unseen anomaly examples using prior information on healthy body structure, unsupervised anomaly detection methods leveraging only large-scale healthy images can discover and alert overlooked diseases when their generalization fails.

Towards this, researchers reconstructed a single medical image via GANs [13], AutoEncoders (AEs) [14], or combining them, since GANs can generate realistic images and AEs, especially Variational AEs (VAEs), can directly map data onto its latent representation [15]; then, unseen images were scored by comparing them with reconstructed ones to discriminate a pathological image distribution (i.e., outliers either in the learned feature space or from high reconstruction loss). However, those single image reconstruction methods mainly target diseases easy-to-detect from a single image even for non-expert human observers, such as glioblastoma on MR images [15] and lung cancer on Computed Tomography (CT) images [14]. Without considering continuity between multiple adjacent images, they cannot directly discriminate diseases composed of the accumulation of subtle anatomical anomalies, such as AD. Moreover, no study has shown so far how unsupervised anomaly detection is associated with either disease stages, various (i.e., more than 2 types of) diseases, or multi-sequence MRI scans.

Therefore, this paper proposes unsupervised Medical Anomaly Detection GAN (MADGAN), a novel two-step method using GAN-based multiple adjacent brain MRI slice reconstruction to detect various diseases at various stages on multi-sequence structural MRI (Fig. 1): (Reconstruction) Wasserstein loss with Gradient Penalty (WGAN-GP) [16, 17] + 100 \(\ell_1 \) loss—trained on 3 healthy brain axial MRI slices to reconstruct the next 3 ones—reconstructs unseen healthy/abnormal scans; the \(\ell_1 \) loss generalizes well only for unseen images with a similar distribution to the training images while the WGAN-GP loss captures recognizable structure; (Diagnosis) Average \(\ell_2 \) loss per scan discriminates them, comparing the ground truth/reconstructed slices; the \(\ell_2 \) loss clearly discriminates the healthy/abnormal scans as squared error becomes huge for outliers. Using Receiver Operating Characteristics (ROCs) and their Area Under the Curves (AUCs), we evaluate the diagnosis performance of AD on T1-weighted (T1) MRI scans, and brain metastases/various diseases (e.g., small infarctions, aneurysms) on contrast-enhanced T1 (T1c) MRI scans. Using 1,133 healthy T1 and 135 healthy T1c scans for training, our Self-Attention (SA) MADGAN approach can detect AD at a very early stage, Mild
Cognitive Impairment (MCI), with AUC 0.727, and AD at a late stage with AUC 0.894, while detecting brain metastases with AUC 0.921.

Contributions. Our main contributions are as follows:

- **MRI Slice Reconstruction:** This first multiple MRI slice reconstruction approach can reliably predict the next 3 slices from the previous 3 ones only for unseen images similar to training data by combining SAGAN and ℓ_1 loss.

- **Unsupervised Anomaly Detection:** This first unsupervised multi-stage anomaly detection reveals that, like physicians’ way of performing a diagnosis, massive healthy data can aid early diagnosis, such as of MCI, while also detecting late-stage disease much more accurately by discriminating with ℓ_2 loss.

- **Various Disease Diagnosis:** This first unsupervised various disease diagnosis can reliably detect the accumulation of subtle anatomical anomalies and hyper-intense enhancing lesions, such as AD and brain metastases on multi-sequence MRI scans.

Related work

Alzheimer’s disease diagnosis

Even though the clinical, social, and economic impact of early AD diagnosis is of paramount importance [18]—primarily associated with MCI detection [19]—it generally relies on subjective assessment by physicians (e.g., neurologists, geriatricians, and psychiatrists). Towards quantitative and reproducible approaches, many traditional supervised Machine Learning-based methods—which rely on handcrafted MRI-derived features—were proposed in the literature [20, 21]. In this context, diffusion-weighted MRI tractography enables reconstructing the brain’s physical connections that can be subsequently investigated by complex network-based techniques. Lella et al. [22] employed the whole brain structural communicability as a graph-based metric to describe the AD-relevant brain connectivity disruption. This approach achieved comparable performance with classic Machine Learning models—namely, Support Vector Machines, Random Forests, and Artificial Neural Networks—in terms of classification and feature importance analysis.

In the latest years, Deep Learning has achieved outstanding performance by exploiting more multiple levels of abstraction and descriptive embeddings in a hierarchy of increasingly complex features [23]: Liu et al. devised a semi-supervised CNN to significantly reduce the need for labeled training data [24]; for clinical decision-making tasks, Suk et al. integrated multiple sparse regression models (i.e., Deep Ensemble Sparse Regression Network) [25]; Spasov et al. proposed a parameter-efficient CNN for 3D separable convolutions, combining dual learning and a specific layer to predict the conversion from MCI to AD within 3 years [26]; different from CNN-based approaches, Parisot used a semi-supervised Graph Convolutional Network trained on a sub-set of labeled nodes with diagnostic outcomes to represent sparse clinical data [27]. However, to the best of our knowledge, no existing work has conducted fully unsupervised anomaly detection for AD diagnosis since capturing subtle anatomical differences between MCI and AD is challenging.
Unsupervised medical anomaly detection

Unsupervised disease diagnosis is challenging because it requires estimating healthy anatomy’s normative distributions only from healthy examples to detect outliers either in the learned feature space or from high reconstruction loss. The latest advances in Deep Learning, mostly GANs [8] and VAEs [28], have allowed for the accurate estimation of the high-dimensional healthy distributions. Except for discriminative-boundary-based approaches including [29], almost all unsupervised medical anomaly detection studies have leveraged reconstruction: as pioneering research, Schlegl et al. proposed AnoGAN to detect outliers in the learned feature space of the GAN [30]; then, the same authors presented fast AnoGAN that can efficiently map query images onto the latent space [13]; since the reconstruction-based models often suffer from many false positives, Chen et al. penalized large deviations between original/reconstructed images in gliomas and stroke lesion detection on brain MRI [31]. However, to the best of our knowledge, all previous studies are based on 2D/3D single image reconstruction, without considering continuity between multiple adjacent slices. Moreover, no existing work has investigated how unsupervised anomaly detection is associated with either disease stages, various (i.e., more than two types of) diseases, or multi-sequence MRI scans.

Self-Attention GANs (SAGANs)

Zhang et al. proposed SAGAN that deploys an SA mechanism in the generator/discriminator of a GAN to learn global and long-range dependencies for diverse image generation [32]; for further performance improvement, they suggested to apply the SA modules to large feature maps. The SAGANs have shown great promise in various tasks, such as human pose estimation [33], image colorization [34], photo-realistic image de-quantization [35], and large-scale image generation [36]. This SAGAN trend also applies to Medical Imaging to extract multi-level features for better super-resolution/denoising and lesion characterization: to mitigate the problem of thin slice thickness, Kudo et al. and Li et al. applied the SA modules to GANs on CT and MRI scans, respectively [37, 38]; similarly, in [39], the authors proposed to fuse plane SA modules and depth SA modules for low-dose 3D CT denoising; Lan et al. synthesized multi-modal 3D brain images using SA conditional GAN [39]; Ali et al. incorporated SA modules into progressive growing of GANs to generate realistic and diverse skin lesion images for data augmentation [40]. However, to the best of our knowledge, no existing work has directly exploited the SAGAN for medical disease diagnosis.

Datasets

AD MRI dataset: OASIS-3

We use a longitudinal dataset of $176 \times 240/176 \times 256$ T1 brain axial MRI slices containing both normal aging subjects/AD patients, extracted from the Open Access Series of Imaging Studies-3 (OASIS-3) [41]. The 176×240 slices are zero-padded to reach 176×256 pixels. Relying on Clinical Dementia Rating (CDR) [42], common clinical scale for the staging of dementia, the subjects are comprised of:

- **Unchanged CDR = 0**: Cognitively healthy population;
- **CDR = 0.5**: Very mild dementia (∼MCI);
• CDR = 1: Mild dementia;
• CDR = 2: Moderate dementia.

Since our dataset is longitudinal and the same subject’s CDRs may vary (e.g., CDR = 0 to CDR = 0.5), we only use scans with unchanged CDR = 0 to assure certainly healthy scans. As CDRs are not always assessed simultaneously with the MRI acquisition, we label MRI scans with CDRs at the closest date. We only select brain MRI slices including hippocampus/amygdala/ventricles among whole 256 axial slices per scan to avoid over-fitting from AD-irrelevant information; the atrophy of the hippocampus/amygdala/cerebral cortex, and enlarged ventricles are strongly associated with AD, and thus they mainly affect the AD classification performance of Machine Learning [43]. Moreover, we discard low-quality MRI slices. The remaining dataset is divided as follows:

• Training set: Unchanged CDR = 0 (408 subjects/1,133 scans/57,834 slices);
• Test set: Unchanged CDR = 0 (168 subjects/473 scans/24,278 slices),
 CDR = 0.5 (152 subjects/253 scans/13,813 slices),
 CDR = 1 (90 subjects/135 scans/7,532 slices),
 CDR = 2 (6 subjects/10 scans/500 slices).

The same subject’s scans are included in the same dataset. The datasets are strongly biased towards healthy scans similarly to MRI inspection in the clinical routine. During training for reconstruction, we only use the training set—structural MRI alone—containing healthy slices to conduct unsupervised learning. We do not use a validation set as our unsupervised diagnosis step is non-trainable.

Brain metastasis and various disease MRI dataset

This paper also uses a non-longitudinal, heterogeneous dataset of 190 × 224/216 × 256/256 × 256/460 × 460 T1c brain axial MRI slices, collected by the authors (National Center for Global Health and Medicine, Tokyo, Japan) and currently not publicly available for ethical restrictions. The dataset contains both healthy subjects, brain metastasis patients [44], and patients with various diseases different from brain metastases. The slices are resized to 176 × 256 pixels. The various diseases include but are not limited to:

• Small infarctions;
• Aneurysms;
• Benign tumors;
• Hemorrhages;
• Cysts;
• White matter lesions;
• Post-operative inflammations.

Conforming to T1 slices, we also only select T1c slices including hippocampus, amygdala, and ventricles—a large portion of various diseases also appear in the mid-brain. The remaining dataset is divided as follows:

• Training set: Normal (135 subjects/135 scans/7,793 slices);
• Test set: Normal (58 subjects/58 scans/3,353 slices),
 Brain Metastases (79 subjects/79 scans/4,872 slices),
 Various Diseases (66 subjects/66 scans/4,195 slices).
Since we cannot collect large-scale T1c scans from healthy patients like OASIS-3 dataset, during training for reconstruction, we use both T1/T1c training sets containing healthy slices simultaneously for the knowledge transfer. In the clinical practice, T1c MRI is well-established in detecting various diseases, including brain metastases [45], thanks to its high-contrast in the enhancing region—however, the contrast agent is not suitable for screening studies. Accordingly, such inter-sequence knowledge transfer is valuable in computer-assisted MRI diagnosis. During testing, we make an unsupervised diagnosis on T1 and T1c scans separately.

Methods

MADGAN-based multiple adjacent brain MRI slice reconstruction

To model strong consistency in healthy brain anatomy (Fig. 1), in each scan, we reconstruct the next 3 MRI slices from the previous 3 ones using an image-to-image GAN (e.g., if a scan includes 40 slices \(s_i \) for \(i = 1, \ldots, 40 \), we reconstruct all possible 35 setups: \((s_i)_{i \in \{1,2,3\}} \mapsto (s_i)_{i \in \{4,5,6\}} ; (s_i)_{i \in \{2,3,4\}} \mapsto (s_i)_{i \in \{5,6,7\}} ; \ldots ; (s_i)_{i \in \{35,36,37\}} \mapsto (s_i)_{i \in \{38,39,40\}} \)). As Fig. 2 shows, our MADGAN uses a U-Net-like [46, 47] generator with 4 convolutional layers in encoders and 4 deconvolutional layers in decoders respectively with skip connections, as well as a discriminator with 3 decoders. We apply batch normalization to both convolution with Leaky Rectified Linear Unit (ReLU) and deconvolution with ReLU. Between the designated convolutional/deconvolutional layers and batch normalization layers, we apply SA modules [32] for effective knowledge transfer via feature recalibration between T1 and T1c slices; we compare the MADGAN models with a different number of the SA modules: (i) no SA modules (i.e., MADGAN); (ii) 3 (red-contoured) SA modules (i.e., 3-SA MADGAN); (iii) 7 (red- and blue-contoured) SA modules (i.e., 7-SA MADGAN). To confirm how reconstructed slices’ realism and anatomical continuity affect medical anomaly detection, we also compare the MADGAN models with different loss functions: (i) WGAN-GP loss + 100 \(\ell_1 \) loss (i.e., MADGAN); (ii) WGAN-GP loss (i.e., MADGAN w/o \(\ell_1 \) loss).

Implementation details
Each MADGAN training lasts for \(1.8 \times 10^6 \) steps with a batch size of 16. We use \(2.0 \times 10^{-4} \) learning rate for Adam optimizer [48]. Such as in RGB images, we concatenate adjacent 3 grayscale slices into 3 channels. During training, the generator uses two dropout [49] layers with 0.5 rate. We flip the discriminator’s real/synthetic labels once in three times for robustness. The framework is implemented on TensorFlow.

Unsupervised medical anomaly detection

During diagnosis, we use average \(\ell_2 \) loss per scan since squared error is sensitive to outliers and it significantly outperformed other losses (i.e., \(\ell_1 \) loss, Dice loss, Structural Similarity loss) in our preliminary paper [50]. To evaluate its unsupervised AD diagnosis performance on a T1 MRI test set, we show ROCs —along with the AUC values—between CDR = 0 vs (i) all the other CDRs; (ii) CDR = 0.5; (iii) CDR = 1; (iv) CDR = 2. We also show the AUCs under different training steps (i.e., 150k, 300k, 600k, 900k, 1.8M steps) and confirm the effect of calculating average \(\ell_2 \) loss (among whole slices or continuous 10 slices exhibiting the highest loss) per
scan. Moreover, we visualize pixelwise ℓ_2 loss between real/reconstructed 3 slices, along with distributions of average ℓ_2 loss per scan of $\text{CDR} = 0/0.5/1/2$ to know how disease stages affect its discrimination. In exactly the same manner, we evaluate the diagnosis performance of brain metastases/various diseases on a T1c MRI test set, showing ROCs/AUCs between normal vs (i) brain metastases + various diseases; (ii) brain metastases; (iii) various diseases.

Results

Reconstructed brain MRI slices

Fig. 3 illustrates example real T1 MRI slices from a test set and their reconstruction by MADGAN and 7-SA MADGAN. Similarly, Figs. 4 and 5 show example real T1c MRI slices and their reconstructions. Figs. 6 and 7 indicate distributions of average ℓ_2 loss per scan on T1 and T1c scans, respectively. Thanks to ℓ_1 loss’ good realism sacrificing diversity (i.e., generalizing well only for unseen images with a similar distribution to training images) and WGAN-GP loss’ ability to capture recognizable structure, the MADGAN can successfully capture T1-specific appearance and anatomical changes from the previous 3 slices. Meanwhile, the 7-SA MADGAN tends to be less stable in keeping texture but more sensitive to abnormal anatomical changes due to the SA modules’ feature recalibration, resulting in moderately higher average ℓ_2 loss than the MADGAN.

Since the models are trained only on healthy slices, as visualized by an overimposed Jet colormap, reconstructing slices with higher CDRs tends to comparatively fail, especially around hippocampus, amygdala, cerebral cortex, and ventricles due to their insufficient atrophy after reconstruction. The T1c scans show much lower average ℓ_2 loss than the T1 scans due to darker texture. Since most training images are the T1 slices with brighter texture than the T1c slices, reconstruction quality clearly decreases on the T1c slices, occasionally exhibiting bright texture. Accordingly, reconstruction failure from anomaly contributes comparatively less to the average ℓ_2 loss, especially when local small lesions, such as brain abscess and enhanced lesions, appear—unlike global big lesions, such as multiple cerebral infarction and blood component retention. However, the average ℓ_2 loss remarkably increases on brain metastases scans due to their hyper-intensity, especially for the 7-SA MADGAN.

Unsupervised anomaly detection results

Figs. 8 and 9 show AUCs of unsupervised anomaly detection on T1 and T1c scans under different training steps, respectively. The AUCs generally increase as training progresses, but more SA modules require more training steps until convergence due to their feature recalibration—7-SA MADGAN might perform even better if we continue its training. All the best results in specific tasks, except for $\text{CDR} = 0$ vs $\text{CDR} = 0.5$, are from the SA models (e.g., 7-SA MADGAN w/o ℓ_1 loss under 900k steps: AUC 0.783 in $\text{CDR} = 0$ vs $\text{CDR} = 0.5 + 1 + 2$, 3-SA MADGAN under 300k steps: AUC 0.966 in normal vs brain metastases, 3-SA MADGAN under 600k steps: AUC 0.638 in normal vs various diseases); thus, whereas the SA models, which do not know the task to optimize in an unsupervised manner, perform unstably, we might use them similarly to supervised learning if we could obtain good parameters.
for a certain disease. Without ℓ_1 loss, the AUCs tend to decrease, also accompanying large fluctuations; 7-SA MADGAN w/o ℓ_1 loss performs well on the T1 scans but poorly on the T1c scans due to the instability.

Figs. 10 and 11 illustrate ROC curves and their AUCs on T1 and T1c scans under 1.8M training steps, respectively. Since brains with higher CDRs accompany stronger anatomical atrophy from healthy brains, their AUCs between unchanged CDR = 0 remarkably increase as CDRs increase. MADGAN and 7-SA MADGAN both achieves good AUCs, especially for higher CDRs—The MADGAN obtains AUC 0.750/0.707/0.829 in CDR = 0 vs CDR = 0.5/1/2, respectively; the discrimination between healthy subjects vs MCI patients (i.e., CDR = 0 vs CDR = 0.5) is extremely difficult even in a supervised manner [43]. Whereas detecting various diseases is difficult in an unsupervised manner, the 7-SA MADGAN outperforms the MADGAN and achieves AUC 0.921 in brain metastases detection. As Tables 1 and 2 show, the effect of how to calculate average ℓ_2 loss (among whole slices or continuous 10 slices exhibiting the highest loss) per scan is limited.

Discussion and conclusions

Using massive healthy data, our MADGAN-based multiple MRI slice reconstruction can reliably discriminate AD patients from healthy subjects for the first time in an unsupervised manner; to detect the accumulation of subtle anatomical anomalies, our solution leverages a two-step approach: (Reconstruction) ℓ_1 loss generalizes well only for unseen images with a similar distribution to training images while WGAN-GP loss captures recognizable structure; (Diagnosis) ℓ_2 loss clearly discriminates healthy/abnormal data as squared error becomes huge for outliers. Using 1,133 healthy T1 MRI scans for training, our approach can detect AD at a very early stage, MCI, with AUC 0.727 while detecting AD at a late stage with AUC 0.894. Accordingly, this first unsupervised anomaly detection across different disease stages reveals that, like physicians’ way of performing a diagnosis, large-scale healthy data can reliably aid early diagnosis, such as of MCI, while also detecting late-stage disease much more accurately.

To confirm its ability to also detect other various diseases, even on different MRI sequence scans, we firstly investigate how unsupervised medical anomaly detection is associated with various diseases and multi-sequence MRI scans, respectively. Due to the different texture of T1/T1c slices, reconstruction quality clearly decreases on the data-sparse T1c slices, and thus reconstruction failure from anomaly contributes comparatively less to the average ℓ_2 loss. Nevertheless, we generally succeed to unravel diseases hard-to-detect and easy-to-detect in an unsupervised manner: it is hard to detect local small lesions, such as brain abscess and enhanced lesions; but, it is easy to detect hyper-intense enhancing lesions, such as brain metastases (AUC 0.921), especially for 7-SA MADGAN thanks to its feature recalibration. Our visualization of differences between real/reconstructed slices might play a key role in understanding and preventing various diseases, including rare disease.

As future work, we will investigate more suitable SA modules in a reconstruction model, such as Dual Attention Network that capture feature dependencies in both spatial/channel dimensions [51]; here, optimizing where to place how many SA modules is the most relevant aspect. We will validate combining new loss functions
for both reconstruction/diagnosis, including sparsity regularization [52], structural similarity [53], and perceptual loss [54]. Lastly, we plan to collect a higher amount of healthy T1c scans to reliably detect and locate various diseases, including cancers and rare diseases. Integrating multi-modal imaging data, such as Positron Emission Tomography with specific radiotracers [55], might further improve disease diagnosis [56], even when analyzed modalities are not always available [57].

List of abbreviations used
Area Under the Curve: AUUs, AutoEncoder: AE, Alzheimer’s Disease: AD, Clinical Dementia Rating: CDR, Contrast-enhanced T1-weighted: T1c, Convolutional Neural Network: CNN, Computed Tomography: CT, Generative Adversarial Network: GAN, Magnetic Resonance Imaging: MRI, Medical Anomaly Detection Generative Adversarial Network: MADGAN, Mild Cognitive Impairment: MCI, Open Access Series of Imaging Studies-3: OASIS-3, Receiver Operating Characteristic: ROC, Rectified Linear Unit: ReLU, Self-Attention: SA, T1-weighted: T1, Variational AutoEncoder: VAE, Wasserstein loss with Gradient Penalty: WGAN-GP.

Competing interests
The authors declare that they have no competing interests.

Author’s contributions
Conceived the idea: CH, LR, ZAM, KM. Designed the code: CH, LR, ZAM. Collected the T1c dataset: TN. Implemented the experiments: CH. Analyzed the results: CH, LR. Wrote the manuscript: CH, LR. Critically read the manuscript and contributed to the discussion of the whole work: KM, TN, ZAM, YS, SK, ES, HN, SS.

Acknowledgements
This research was partially supported both by AMED Grant Number JP18lk1010028 and The Mark Foundation for Cancer Research and Cancer Research UK Cambridge Centre [C9685/A25177]. Additional support has been provided by the National Institute of Health Research (NIHR) Cambridge Biomedical Research Centre. Zoltán Ádám Milascki was supported by Grant Number VEKOP-2.2.1-16-2017-00006. The OASIS-3 dataset has Grant Numbers P50 AG05681, P01 AG03991, R01 AG021910, P50 MH071616, U24 RR021382, and R01 MH56584.

Author details
1. LPIXEL Inc., Tokyo, Japan. 2. Department of Radiology, University of Cambridge, Cambridge, United Kingdom. 3. Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, United Kingdom. 4. Research Center for Medical Big Data, National Institute of Informatics, Tokyo, Japan. 5. National Center for Global Health and Medicine, Tokyo, Japan. 6. Department of Radiology, Juntendo University, Tokyo, Japan. 7. Department of Artificial Intelligence, ELTE Eötvös Loránd University, Budapest, Hungary. 8. Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan. 9. International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo, Japan.

References
1. Gao, L., Pan, H., Li, Q., Xie, X., Zhang, Z., Han, J., Zhou, X.: Brain medical image diagnosis based on corners with importance-values. BMC Bioinform 18(1), 1–13 (2017). doi:10.1186/s12859-017-1903-6
2. Serra, A., Galdi, P., Tagliaferri, R.: Machine learning for bioinformatics and neuroimaging. Wiley Interdisc Rev Data Min Knowl Discov 8(5), 1248 (2018). doi:10.1002/widm.1248
3. Park, B., Lee, W., Han, K.: Modeling the interactions of Alzheimer-related genes from the whole brain microarray data and diffusion tensor images of human brain 13(S7), 10 (2012). doi:10.1186/1471-2105-13-S7-S10. Springer
4. Medland, S.E., Jahanshad, N., Neale, B.M., Thompson, P.M.: Whole-genome analyses of whole-brain data: working within an expanded search space. Nat Neurosci 17(6), 791–800 (2014). doi:10.1038/nn.3718
5. Zhao, T., Hu, Y., Zhang, T., Cheng, L.: Identifying Alzheimer’s disease-related proteins by LRRGD. BMC Bioinform 20(18), 570 (2019). doi:10.1186/s12859-019-3124-7
6. Han, C., Rundo, L., Murao, K., Nemoto, T., Nakayama, H., Satoh, S.: Bridging the gap between AI and healthcare sides: towards developing clinically relevant AI-powered diagnosis systems. In: Proc. International Conference on Artificial Intelligence Applications and Innovations (AIAI), pp. 320–333 (2020). doi:10.1007/978-3-030-49186-4_27
7. Cheplygina, V., de Bruijne, M., Pluim, J.P.: Not-so-supervised: a survey of semi-supervised, multi-instance, and transfer learning in medical image analysis. Med Image Anal 54, 280–296 (2019). doi:10.1016/j.media.2019.03.009
8. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., et al.: Generative adversarial nets. In: Proc. Advances in Neural Information Processing Systems (NIPS), pp. 2672–2680 (2014)
9. Frid-Adar, M., Diamant, I., Klang, E., Amitai, M., Goldberger, J., Greenspan, H.: GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification. Neurocomputing 321, 321–331 (2018). doi:10.1016/j.neucom.2018.09.013
10. Han, C., Rundo, L., Araki, R., Nagano, Y., Furukawa, Y., et al.: Combining noise-to-image and image-to-image GANs: brain MR image augmentation for tumor detection. IEEE Access 7(1), 156966–156977 (2019). doi:10.1109/ACCESS.2019.2947606
11. Han, C., Kitamura, Y., Kudo, A., Ichinose, A., Rundo, L., Furukawa, Y., et al.: Synthesizing diverse lung nodules wherever massively: 3D multi-conditional GAN-based CT image augmentation for object detection. In: Proc. International Conference on 3D Vision (3DV), pp. 729–737 (2019). doi:10.1109/3DV.2019.00085

12. Han, C., Murao, K., Noguchi, T., et al.: Learning more with less: Conditional PGGAN-based data augmentation for brain metastases detection using highly-rough annotation on MR images. In: Proc. ACM International Conference on Information and Knowledge Management (CIKM), pp. 119–127 (2019). doi:10.1145/3357384.3357890

13. Schlegl, T., Seeböck, P., Waldstein, S.M., Langs, G., Schmidt-Erfurth, U.: f-AnoGAN: fast unsupervised anomaly detection with generative adversarial networks. Med Image Anal 54, 30–44 (2019)

14. UzuNova, H., Schultz, S., Handels, H., Ehrhardt, J.: Unsupervised pathology detection in medical images using conditional variational autoencoders. Int J Comput Assist Radiol Surg 14(3), 451–461 (2019). doi:10.1007/s11548-018-1896-0

15. Chen, X., Konukoglu, E.: Unsupervised detection of lesions in brain MRI using constrained adversarial auto-encoders. In: Proc. International Conference on Medical Imaging with Deep Learning (MIDL) (2018). arXiv preprint arXiv:1806.04972

16. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of Wasserstein GANs. In: Proc. Advances in Neural Information Processing Systems (NIPS), pp. 5769–5779 (2017)

17. Han, C., Hayashi, H., Rundo, L., Araki, R., Shimoda, W., Muramatsu, S., et al.: GAN-based synthetic brain MRI image generation. In: Proc. International Symposium on Biomedical Imaging (ISBI), pp. 734–738 (2018). doi:10.1109/ISBI.2018.8363678. IEEE

18. Arvanitakis, Z., Shah, R.C., Bennett, D.A.: Diagnosis and management of dementia. JAMA 322(16), 1589–1599 (2019). doi:10.1001/jama.2019.4782

19. Moscoso Rial, A., Silva Rodríguez, J., Aldrey Vázquez, J.M., Cortés Hernández, J., Fernández Ferreiro, A., Gómez Lado, N., et al.: Prediction of Alzheimer’s disease dementia with MRI beyond the short-term: Implications for the design of predictive models. NeuroImage 23, 101837 (2019). doi:10.1016/j.neuroimage.2019.101837

20. Salvatore, C., Cerasa, A., Battista, P., Giglardi, M.C., Quattrone, A., Castiglioni, I.: Magnetic resonance imaging biomarkers for the early diagnosis of Alzheimer’s disease: a machine learning approach. Front Neurosci 9, 307 (2015). doi:10.3389/fnins.2015.00307

21. Nanni, L., Brahnam, S., Salvatore, C., Castiglioni, I.: Texture descriptors and voxels for the early diagnosis of Alzheimer’s disease. Artif. Intell. Med. 97, 19–26 (2019). doi:10.1016/j.artmed.2019.05.003

22. Lella, E., Lombardi, A., Amoroso, N., Diugenio, D., Maggipinto, T., Monaco, A., Bellotti, R., Tangaro, S.: Machine learning and DWI brain communicability networks for Alzheimer’s disease detection. Appl Sci 10(3), 934 (2020). doi:10.3390/app10030934

23. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015). doi:10.1038/nature145

24. Liu, S., Liu, S., Cai, W., Pujol, S., Kimik, R., Feng, D.: Early diagnosis of alzheimer’s disease with deep learning. In: Proc. International Symposium on Biomedical Imaging (ISBI), pp. 1015–1018 (2014). doi:10.1109/ISBI.2014.6868045. IEEE

25. Suk, H.-I., Lee, S.-W., Shen, D.: Deep ensemble learning of sparse regression models for brain disease diagnosis. Med. Image Anal. 37, 101–113 (2017). doi:10.1016/j.media.2017.01.008

26. Spasov, S., Passamonti, L., Duggento, A., Li`o, P., Toschi, N., Initiative, A.D.N., et al.: A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer’s disease. NeuroImage 189, 276–287 (2019). doi:10.1016/j.neuroimage.2019.01.031

27. Parisot, S., Ktena, S.I., Ferrante, E., Lee, M., Guerrero, R., Glocker, B., Rueckert, D.: Disease prediction using graph convolutional networks: application to autism spectrum disorder and Alzheimer’s disease. Med Image Anal 48, 117–130 (2018). doi:10.1016/j.media.2018.06.001

28. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. In: Proc. International Conference on Learning Representations (ICLR) (2014). arXiv preprint arXiv:1312.6114

29. Alaverdyan, Z., Jung, J., Bouet, R., Lartizien, C.: Regularized siamese neural network for unsupervised outlier detection on brain multiparametric magnetic resonance imaging: application to epilepsy lesion screening. Med Image Anal 60, 101618 (2020)

30. Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G.: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: Proc. Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), pp. 146–157 (2017). Springer

31. Chen, X., You, S., Tezcan, K.C., Konukoglu, E.: Unsupervised lesion detection via image restoration with a graph convolutional networks: application to autism spectrum disorder and Alzheimer’s disease. Med Image Anal 101837 (2019). doi:10.1016/j.media.2019.101837

32. Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: Proc. Advances in Neural Information Processing Systems (NIPS), pp. 5769–5779 (2017)

33. Brock, A., Donahue, J., Simonovsky, K.: Large scale GAN training for high fidelity natural image synthesis. In: Proc. International Conference on Learning Representations (ICLR) (2018). arXiv preprint arXiv:1809.11096

34. Kudo, A., Kitamura, Y., Li, Y., Iizuka, S., Simo-Serra, E.: Virtual thin slice: 3D conditional GAN-based super-resolution for CT slice interval. In: Proc. MICCAI International Workshop on Machine Learning for Medical Image Reconstruction (MLMIR). LNCS, vol. 11905, pp. 91–100 (2019). doi:10.1007/978-3-030-33843-5_9. Springer
38. Li, Y., Huang, H., Zhang, L., Wang, G., Zhang, H., Zhou, W.: Super-resolution and self-attention with generative adversarial network for improving malignancy characterization of hepatocellular carcinoma. In: Proc. IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 1556–1560 (2020). doi:10.1109/ISBI45749.2020.9098705. IEEE

39. Lan, H., Toga, A.W., Sepahband, F., Initiative, A.D.N., et al.: SC-GAN: 3D self-attention conditional GAN with spectral normalization for multi-modal neuroimaging synthesis. bioRxiv (2020). doi:10.1101/2020.06.09.143297

40. Ali, I.S., Mohamed, M.F., Mahdy, Y.B.: Data augmentation for skin lesion using self-attention based progressive generative adversarial network. arXiv preprint arXiv:1910.11960 (2019)

41. LaMontagne, P.J., Keefe, S., Lauren, W., et al.: OASIS-3: longitudinal neuroimaging, clinical, and cognitive dataset for normal aging and Alzheimer’s disease. Alzheimers Dement 14(7), 1097 (2018). doi:10.1016/j.jalz.2018.06.1439

42. Morris, J.C.: The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology 43(11), 2412–2414 (1993). doi:10.1212/wnl.43.11.2412-a

43. Ledig, C., Schuh, A., Guerrero, R., Heckemann, R.A., Rueckert, D.: Structural brain imaging in Alzheimer’s disease and mild cognitive impairment: biomarker analysis and shared morphometry database. Sci Rep 8, 11258 (2018). doi:10.1038/s41598-018-29295-9

44. Rundo, L., Militello, C., Russo, G., Vitabile, S., Gilardi, M.C., Mauri, G.: GTVcut for neuro-radiosurgery treatment planning: an MRI brain cancer seeded image segmentation method based on a cellular automata model. Nat Comput 17, 521–536 (2018). doi:10.1007/s11047-017-9636-z

45. Rundo, L., Han, C., Nagano, Y., et al.: USE-Net: incorporating squeeze-and-excitation blocks into U-Net for prostate zonal segmentation of multi-institutional MRI datasets. Neurocomputing 365, 31–43 (2019). doi:10.1016/j.neucom.2019.07.006

46. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

47. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. JMLR 15(1), 1929–1958 (2014)

50. Han, C., Rundo, L., Murao, K., Milacski, Z. ´A., Umemoto, K., Sala, E., Nakayama, H., Satoh, S.: GAN-based multiple adjacent brain MRI slice reconstruction for unsupervised Alzheimer’s disease diagnosis. In: Proc. International Conference on Computational Intelligence Methods for Bioinformatics and Biostatistics (CIBB). LNBI (2020). arXiv preprint arXiv:1906.06114

51. Fu, J., Liu, J., Tian, H., Li, Y., Bao, Y., Fang, Z., Lu, H.: Dual attention network for scene segmentation. In: Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 3146–3154 (2019). doi:10.1109/CVPR.2019.00326. IEEE

52. Zhou, K., Gao, S., Cheng, J., Gu, Z., Fu, H., Tu, Z., Yang, J., Zhao, Y., Liu, J.: Sparse-GAN: sparsity-constrained generative adversarial network for anomaly detection in retinal OCT image. In: Proc. IEEE International Symposium on Biomedical Imaging (ISBI), pp. 1227–1231 (2020). doi:10.1109/ISBI45749.2020.9096374. IEEE

53. Haselmann, M., Gruber, D.P., Tabatabai, P.: Anomaly detection using deep learning based image completion. In: Proc. IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 1237–1242 (2018). doi:10.1109/ICMLA.2018.00201. IEEE

54. Tulytceva, N., Bakker, B., Fedulova, I., Schulz, H., Dylov, D.V.: Anomaly detection with deep perceptual autoencoders. arXiv preprint arXiv:2006.13265 (2020)

55. Rundo, L., Stefano, A., Militello, C., Russo, G., Sabini, M.G., D’Arrigo, C., Marletta, F., Ippolito, M., Mauri, G., Vitabile, S., Gilardi, M.C.: A fully automatic approach for multimodal PET and MR image segmentation in Gamma Knife treatment planning. Comput Methods Programs Biomed 144, 77–96 (2017). doi:10.1016/j.cmpb.2017.03.011

56. Brier, M.R., Gordon, B., Friedrichsen, K., McCarthy, J., Stern, A., Christensen, J., Owen, C., Aldea, P., Su, Y., Hassenstab, J., et al.: Tau and Aβ imaging, CSF measures, and cognition in Alzheimer’s disease. Sci Transl Med 8(338), 338–663 (2016). doi:10.1126/scitranslmed.aaf2362

57. Li, R., Zhang, W., Suk, H.-I., Wang, L., Li, J., Shen, D., Ji, S.: Deep learning based imaging data completion for improved brain image diagnosis. In: Proc. Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). LNCS, vol. 8675, pp. 305–312 (2014). doi:10.1007/978-3-319-10443-0_39. Springer
Figure 1 Unsupervised medical anomaly detection framework: we train WGAN-GP w/ ℓ_1 loss on 3 healthy brain axial MRI slices to reconstruct the next 3 ones, and test it on both unseen healthy and abnormal scans to classify them according to average ℓ_2 loss per scan.
Figure 2 Proposed MADGAN architecture for the next 3-slice generation from the input 3 256×176 brain MRI slices: 3-SA MADGAN has only 3 (red-contoured) SA modules after convolution/deconvolution whereas 7-SA MADGAN has 7 (red- and blue-contoured) SA modules. Similarly to RGB images, we concatenate adjacent 3 gray slices into 3 channels.

Figure 3 Example T1 brain MRI slices with CDR = 0/0.5/1/2 from a test set: (a) Input 3 real slices; (b) Ground truth next 3 real slices; (c, d) Next 3 slices reconstructed by MADGAN and 7-SA MADGAN. To compare the real/reconstructed next 3 slices, we show pixelwise ℓ_2 loss values in (b) vs (c) and (b) vs (d) columns, respectively. Using a Jet colormap in $[0, 0.2]$ with alpha-blending, we overlay the obtained maps onto the ground truth slices. The achieved slice-level ℓ_2 loss values are also displayed.
Figure 4 Example T1c brain MRI slices with no abnormal findings/three brain metastases from a test set: (a) Input 3 real slices; (b) Ground truth next 3 real slices; (c, d) Next 3 slices reconstructed by MADGAN and 7-SA MADGAN. To compare the real/reconstructed next 3 slices, we show pixelwise ℓ_2 loss values in (b) vs (c) and (b) vs (d) columns, respectively. Using a Jet colormap in $[0, 0.06]$ with alpha-blending, we overlay the obtained maps onto the ground truth slices. The achieved slice-level ℓ_2 loss values are also displayed.

Figure 5 Example T1c brain MRI slices with four different brain diseases from a test set: (a) Input 3 real slices; (b) Ground truth next 3 real slices; (c, d) Next 3 slices reconstructed by MADGAN and 7-SA MADGAN. To compare the real/reconstructed next 3 slices, we show pixelwise ℓ_2 loss values in (b) vs (c) and (b) vs (d) columns, respectively. Using a Jet colormap in $[0, 0.06]$ with alpha-blending, we overlay the obtained maps onto the ground truth slices. The achieved slice-level ℓ_2 loss values are also displayed.
Figure 6 Distributions of average ℓ_2 loss per scan evaluated on T1 slices with CDR = 0/0.5/1/2 reconstructed by: (a) MADGAN and (b) 7-SA MADGAN.

Figure 7 Distributions of average ℓ_2 loss per scan evaluated on T1c slices with no abnormal findings/brain metastases/various diseases reconstructed by: (a) MADGAN and (b) 7-SA MADGAN.
Figure 8 AUC performance on T1 scans using average ℓ_2 loss per scan under different training steps (i.e., 150k, 300k, 600k, 900k, 1.8M steps). Unchanged CDR = 0 (i.e., cognitively healthy population) is compared against: (a) all the other CDRs (i.e., dementia); (b) CDR = 0.5 (i.e., very mild dementia); (c) CDR = 1 (i.e., mild dementia); (d) CDR = 2 (i.e., moderate dementia).
Figure 9 AUC performance on T1c scans using average ℓ_2 loss per scan under different training steps (i.e., 150k, 300k, 600k, 900k, 1.8M steps). No abnormal findings are compared against: (a) brain metastases + various diseases; (b) brain metastases; (c) various diseases.
Unsupervised anomaly detection results using average ℓ_2 loss per scan on reconstructed T1 slices (ROCs and AUCs). Unchanged CDR = 0 (i.e., cognitively healthy population) is compared against: (a) all the other CDRs (i.e., dementia); (b) CDR = 0.5 (i.e., very mild dementia); (c) CDR = 1 (i.e., mild dementia); (d) CDR = 2 (i.e., moderate dementia). Each model is trained for 1.8M steps.

Figure 10
Figure 11 Unsupervised anomaly detection results using average ℓ_2 loss per scan on reconstructed T1c slices (ROCs and AUCs). No abnormal findings are compared against: (a) brain metastases + various diseases; (b) brain metastases; (c) various diseases. Each model is trained for 1.8M steps.
Table 1. AUC performance of unsupervised anomaly detection on T1 scans using average ℓ_2 loss (among whole slices/continuous 10 slices exhibiting the highest loss) per scan. Unchanged CDR = 0 (i.e., cognitively healthy population) is compared against: Unchanged CDR = 0 (i.e., cognitively healthy population) is compared against: (i) all the other CDRs (i.e., dementia); (ii) CDR = 0.5 (i.e., very mild dementia); (iii) CDR = 1 (i.e., mild dementia); (iv) CDR = 2 (i.e., moderate dementia). Each model is trained for 1.8M steps.

CDR = 0 vs	CDR = 0.5 + 1 + 2	CDR = 0.5	CDR = 1	CDR = 2
MADGAN	0.768	0.750	0.797	0.829
MADGAN (10 slices)	0.764	0.745	0.793	0.830
MADGAN w/o ℓ_2 Loss	0.693	0.689	0.699	0.711
MADGAN w/o ℓ_1 Loss (10 slices)	0.705	0.697	0.717	0.736
3-SA MADGAN	0.752	0.736	0.775	0.835
3-SA MADGAN (10 slices)	0.739	0.725	0.760	0.810
3-SA MADGAN w/o ℓ_1 Loss	0.728	0.715	0.748	0.785
3-SA MADGAN w/o ℓ_1 Loss (10 slices)	0.735	0.721	0.756	0.806
7-SA MADGAN	0.765	0.743	0.800	0.832
7-SA MADGAN (10 slices)	0.764	0.743	0.798	0.835
7-SA MADGAN w/o ℓ_1 Loss	0.759	0.727	0.809	0.894
7-SA MADGAN w/o ℓ_1 Loss (10 slices)	0.746	0.710	0.803	0.868
Table 2: AUC performance of unsupervised anomaly detection on T1c scans using average ℓ_2 loss (among whole slices/continuous 10 slices exhibiting the highest loss) per scan. No abnormal findings are compared against: (i) brain metastases + various diseases; (ii) brain metastases; (iii) various diseases. Each model is trained for 1.8M steps.

Normal vs	BM + VD	BM	VD
MADGAN	0.765	0.888	0.618
MADGAN (10 slices)	0.769	0.905	0.607
MADGAN w/o ℓ_1 Loss	0.688	0.773	0.586
MADGAN w/o ℓ_1 Loss (10 slices)	0.696	0.778	0.597
3-SA MADGAN	0.756	0.859	0.633
3-SA MADGAN (10 slices)	0.760	0.871	0.626
3-SA MADGAN w/o ℓ_1 Loss	0.677	0.749	0.589
3-SA MADGAN w/o ℓ_1 Loss (10 slices)	0.708	0.780	0.622
7-SA MADGAN	0.781	0.921	0.613
7-SA MADGAN (10 slices)	0.776	0.917	0.608
7-SA MADGAN w/o ℓ_1 Loss	0.233	0.063	0.436
7-SA MADGAN w/o ℓ_1 Loss (10 slices)	0.234	0.091	0.405