HOPF POINT ANALYSIS FOR RATIO-DEPENDENT FOOD CHAIN MODELS

Rukiye Kara
Mathematics Department
Istanbul Technical University
34469 Istanbul Turkey
ru_kara@hotmail.com

Mehmet Can
Faculty of Arts and Social Sciences
International University of Sarajevo
Paromlinska 66, 71000 Sarajevo, Bosnia and Herzegovina
mcan@ius.edu.ba

Abstract - In this paper periodic and quasi-periodic behavior of a food chain model with three trophic levels are studied. Michaelis-Menten type ratio-dependent functional response is considered. There are two equilibrium points of the system. It is found out that at most one of these equilibrium points is stable at a time. In the parameter space, there are passages from instability to stability, which are called Hopf bifurcation points. For the first equilibrium point, it is possible to find bifurcation points analytically and to prove that the system has periodic solutions around these points. However for the second equilibrium point the computation is more tedious and bifurcation points can only be found by numerical experiments. It has been found that around these points there are periodic solutions and when this point is unstable, the solution is an enlarging spiral from inside and approaches to a limit cycle.

Keywords: Food chain models, Hopf bifurcation, limit cycles, periodic solutions.

1. INTRODUCTION

The term “ratio-dependent predation” is introduced in [1] to describe situations in which the feeding rates of predators depend on the ratio of the number of preys to the number of predators rather than on prey density alone, as is the case in most classical models. One advantage of the ratio dependence is that they prevent paradoxes of enrichment and biological control predicted by classical models [2,3].

Experimental observations [4] suggest that prey dependent models are appropriate in homogeneous situations and ratio-dependent models are good in heterogeneous cases. By many investigators [4, 5] it has also been concluded that
natural systems are closer to the models with ratio dependence than to the ones with prey density dependence [6].

Generally, a ratio-dependent predator-prey model leads to a system of nonlinear ordinary differential equations. The classical food chain models with only two trophic levels are shown to be insufficient to produce realistic dynamics [12-16]. Therefore we consider the following three trophic levels food chain model with ratio-dependence which is a simple relation between the populations of the three species: z prey on y and only y, and y prey on x and nutrient recycling is not accounted for. After non dimensionalization we have the following system:

\[
\begin{align*}
\dot{x} &= \left(1 - x - \frac{c_1 y}{x+y}\right) x, & x(0) > 0, \\
\dot{y} &= \left(\frac{m_1 x}{x+y} - d_1 - \frac{c_2 z}{y+z}\right) y, & y(0) > 0, \\
\dot{z} &= \left(-d_2 + \frac{m_2 y}{y+z}\right) z, & z(0) > 0, \\
c_1 &= m_1 / (\eta_1 a_1 r), & c_2 = m_2 / (\eta_2 a_2 r).
\end{align*}
\]

Where \(x, y, z\) stand for the non dimensional population density of the prey, predator and top predator respectively. For \(i=1,2\), \(\eta_i, m_i, a_i, d_i\) are the yield constants, maximal predator growth rates, half-saturation constants and predators’ death rates, \(r\) is the prey intrinsic growth rate.

2. EQUILIBRIUM POINTS

Equilibrium points are the solutions of the nonlinear algebraic system of equations [17,18],

\[
\begin{align*}
1 - x - \frac{c_1 y}{x+y} &= 0, \\
\frac{m_1 x}{x+y} - d_1 - \frac{c_2 z}{y+z} &= 0, \\
-d_2 + \frac{m_2 y}{y+z} &= 0, \\
x(0), y(0), z(0) &> 0.
\end{align*}
\]

Considering the nonnegative ness of the parameters and unknowns, we get two equilibrium points. One of them is of the form \(E_0(\bar{x}, \bar{y}, 0)\) and the other is \(E_1(x^*, y^*, z^*)\).

**The Equilibrium Point \(E_0(\bar{x}, \bar{y}, 0)\)**

The first equilibrium point \(E_0(\bar{x}, \bar{y}, 0)\) with

\[
\begin{align*}
\bar{x} &= \frac{m_1 (1-c_1) + c_1 d_1}{m_1}, & \bar{y} = \frac{m_1 - d_1}{d_1}\bar{x}, & \bar{z} = 0
\end{align*}
\]
is a nonnegative equilibrium point of the system (1) if
\[ m_1(1-c_1) + c_1d_1 > 0 \text{ and } m_1 > d_1. \]  

**The Equilibrium Point** \( E_1(x^*, y^*, z^*) \)

The second equilibrium point \( E_1(x^*, y^*, z^*) \) with
\[ x^* = 1 + c_1B, \quad y^* = -(B/(1+B))x^*, \quad z^* = (m_2 / d_2 - 1)y^*, \quad B = (c_2(m_2 - d_2) + m_2(d_1 - m_1)) / (m_1m_2) \]  
is an interior equilibrium of the system (1) if
\[ \max(-1, -1/c_1) < B < 0, \text{ and } d_2 < m_2. \]  

**3. STABILITY OF EQUILIBRIUMS**

The dynamical behavior of equilibrium points is studied by computation of the eigenvalues of the variational matrix \( J \):
\[
\begin{bmatrix}
1 - 2x - \frac{c_1y^2}{(x+y)^2} & -\frac{c_1x^2}{(x+y)^2} & 0 \\
-\frac{m_1y^2}{(x+y)^2} - d_1 + \frac{m_1x^2}{(x+y)^2} - \frac{c_2z^2}{(y+z)^2} & -\frac{c_2y^2}{(y+z)^2} & -\frac{m_2z^2}{(y+z)^2} \\
0 & \frac{m_2z^2}{(y+z)^2} - d_2 + \frac{m_2y^2}{(y+z)^2} & 0
\end{bmatrix}
\]  

Where \( v = (x, y, z), \mu = (c_1, d_1, m_1, c_2, d_2, m_2) \), at each equilibrium point.

For the equilibrium point \( E_0 \): The eigenvalues are:
\[
\lambda_1 = \frac{1}{2m_1^2} \left(L + \sqrt{M} \right), \quad \lambda_2 = \frac{1}{2m_2^2} \left(L - \sqrt{M} \right), \quad \lambda_3 = -d_2 + m_2.
\]  

Where
\[
L = c_1m_1^2 - d_1^2 - d_1m_1(m_1 - d_1) - m_1^2, \\
M = L^2 + 4m_1^2d_1(d_1 - m_1)(m_1(1-c_1) + c_1d_1).
\]  

\( E_0 \) is a nonnegative equilibrium point of the system (1), if \( m_1(1-c_1) + c_1d_1 > 0 \) and \( m_1 > d_1 \). Hence one has \( 4m_1^2d_1(d_1 - m_1)(m_1(1-c_1) + c_1d_1) < 0 \), and therefore
\[
\lambda_1 \lambda_2 = \frac{L^2 - M}{4m_1^4} = -4m_1^2d_1(d_1 - m_1)(m_1(1-c_1) + c_1d_1) > 0.
\]
That is the roots have the same sign if they are real. On the other hand if \( L > 0 \) one also has
\[
\lambda_1 + \lambda_2 = \frac{L}{m_1^2} > 0. \tag{11}
\]

Hence is \( \lambda_1, \lambda_2 > 0 \) if the roots are real and \( \Re(\lambda_1) = \Re(\lambda_2) > 0 \) if the two roots are complex conjugate. If \( m_2 > d_2 \), then \( \lambda_3 > 0 \) and in this case \( E_0 \) is a repeller point. If \( m_2 < d_2 \), one has \( \lambda_3 < 0 \) then \( E_0 \) is saddle point, that is, \( E_0 \) is unstable in both cases [19,20].

On the other hand, if \( L < 0 \), then \( \lambda_1, \lambda_2 < 0 \) if the two roots are real. \( \Re(\lambda_1) = \Re(\lambda_2) < 0 \) if the two roots are complex conjugate. If \( m_2 > d_2 \) then \( \lambda_3 > 0 \) and \( E_0 \) is saddle point. If \( m_2 < d_2 \), then \( \lambda_3 < 0 \) and \( E_0 \) is spiral node. In the latter case, the second equilibrium point \( E_1(z^*, y^*, z^*) \) does not lie in the physical space. Hence the system can not have two stable equilibrium points for the same set of parameters.

**For the equilibrium point** \( E_1 \):

It can be shown that the real parts of the roots of the cubic algebraic equation
\[
\lambda^3 + A_1 \lambda^2 + A_2 \lambda + A_3 = 0
\]
with real coefficients are all with negative real parts if and only if \( A_1, A_2, A_3 > 0 \) and \( A_1 A_2 > A_3 \).

For the Jacobi matrix
\[
\mathbf{J}(E_1, \mathbf{v}) = \begin{bmatrix}
a_{11} & a_{12} & 0 \\
a_{21} & a_{22} & a_{23} \\
0 & a_{32} & a_{33}
\end{bmatrix}, \tag{12}
\]

one has

\[
\begin{align*}
a_1 &= -a_{11} - a_{22} - a_{33}, \\
a_2 &= a_{22}a_{33} + a_{11}a_{22} + a_{13}a_{33} - a_{12}a_{21} - a_{23}a_{32}, \\
a_3 &= a_{12}a_{21}a_{33} + a_{11}a_{22}a_{32} - a_{12}a_{22}a_{33}.
\end{align*} \tag{13}
\]

Using equilibrium conditions obtained from (2), we see that

\[
\begin{align*}
a_{11} &= x \left( 1 - \frac{e_1 y}{(x + y)^2} \right), \\
a_{12} &= \frac{-e_1 x^2}{(x + y)^2}, \\
a_{21} &= \frac{-m_1 x^2}{(x + y)^2}, \\
a_{22} &= y \left( -\frac{m_1 x}{(x + y)^2} + \frac{e_2 z}{(y + z)^2} \right), \\
a_{23} &= \frac{-e_2 y^2}{(y + z)^2}, \\
a_{32} &= \frac{m_2 z^2}{(y + z)^2}, \\
a_{33} &= \frac{m_2 y z}{(y + z)^2}.
\end{align*} \tag{14}
\]

It can be shown that the coefficients \( A_1, A_2, A_3 \) satisfy the inequalities \( A_1, A_2, A_3 > 0 \) and \( A_1 A_2 > A_3 \) if
\[
\frac{c_1y^*}{(x^*+y^*)^2} < 1, \quad \frac{c_2z^*}{(y^*+z^*)^2} < \frac{m_1x^*}{(x^*+y^*)^2} \tag{15}
\]

Therefore the characteristic equation of the Jacobi matrix (12) has roots with all negative real parts, and hence \( E_1 \) is a stable equilibrium point under these conditions [21].

## 4. HOPF BIFURCATION POINTS

When interested in periodic or quasi periodic behavior of a dynamical system, Hopf points are the points which are first to be considered. If we write the autonomous system (1) in the form

\[
\dot{v} = F(v, \mu), \tag{16}
\]

where

\[
v = (x, y, z), \quad \mu = (c_1, d_1, m_1, c_2, d_2, m_2). \tag{17}
\]

We say that an ordered pair \((v_0, \mu_0)\) is a Hopf bifurcation point if

1. \( F(v_0, \mu_0) = 0 \),
2. \( J(v, \mu) \) has two complex conjugate eigenvalues around \((v_0, \mu_0)\), \( \lambda_{1,2} = a(v, \mu) \pm i b(v, \mu) \),
3. \( a(v_0, \mu_0) = 0, \nabla a(v_0, \mu_0) \neq 0, \ b(v_0, \mu_0) \neq 0 \),
4. The third eigenvalue \( \lambda_3(v_0, \mu_0) \neq 0 \).

For the system (1), at two points \( E_0(\bar{x}, \bar{y}, 0) \) and \( E_1(x^*, y^*, z^*) \), one has \( F(v_0, \mu) = 0 \).

**I. For the equilibrium point \( E_0 \):**

At \( E_0(\bar{x}, \bar{y}, 0) \) one has two complex conjugate eigenvalues if \( M < 0 \) in (8). The real parts of the eigenvalues are zero if \( L = 0 \) in the same expression:

\[
M = 4m_1^2d_1(d_1 - m_1)(m_1(1-c_1)+c_1d_1) < 0 \tag{18}
\]
\[
L = c_1(m_1^2-d_1^2) - d_1m_1(m_1 - d_1) - m_1^2 = 0. \tag{19}
\]

Inequalities in (4) that guarantees the existence of \( E_0(\bar{x}, \bar{y}, 0) \) as a real world point, also assures (18). (19) is satisfied if \( c_1 \) is chosen as

\[
c_{10} = \frac{d_1m_1(m_1 - d_1) + m_1^2}{m_1^2 - d_1^2}. \tag{20}
\]
The last condition $\lambda_3(v_0, \mu_0) \neq 0$ is satisfied if $d_2 \neq m_2$.

$L$ is an increasing function of $c_1$, hence $E_0$ is stable for $c_1 < c_{10}$ and unstable for $c_1 > c_{10}$. Hence the point $(v_0, \mu_0)$ corresponding to $c_1 = c_{10}$ is a Hopf bifurcation point.

### 4.1 Numerical Experiments

1. **Periodic Solutions Around $E_0$**

   For $d_1 = 1.0$, $m_1 = 1.1$, $c_{10}$ calculated from (20) is $c_{10} = 6.28571$. For the set of parameters
   \[ \mu_0 = \{6.2857142857143, 11., 1., 2.1., 1.1, 2\} \]  
   (21)
   The coordinates of $E_0$ becomes $v_0 = \{0.428571, 0.0428571, 0\}$. Eigenvalues are obtained as $\lambda_1 = 0.197385 I$, $\lambda_2 = -0.197385 I$, $\lambda_3 = -1$.

   For an initial point $\{0.436, 0.044, 0.00000001\}$, very near to $E_0$, the solution is periodic with period 31.94 as seen in Fig.1.

   ![Fig.1. Solution for the parameter set $\mu_0 = \{6.2857142857143, 11., 1., 2.1., 1.1, 2\}$ and initial data $\{0.436, 0.044, 0.00000001\}$.](image)

2. **$E_0$ is a spiral node**

   For the set of parameters
   \[ \mu_0 = \{5., 11., 1., 2.1., 1.1, 2\} \]  
   (22)
   The coordinates of $E_0$ becomes
   \[ v_0 = \{0.545455, 0.0545455, 0.\} \]  
   (23)
   Eigenvalues are obtained as $\lambda_1 = -0.11157 + 0.192714 I$, $\lambda_2 = -0.11157 - 0.192714 I$, $\lambda_3 = -1$.

   For an initial point $\{0.545, 0.054, 0.00001\}$, very near to $E_0$, the solution is a spiral that terminates at the spiral node $E_0$, as seen in Fig.2.
Fig. 2. Solution for the parameter set $\mathbf{\mu}_0 = [5.1, 1.2, 1.1, 2]$ and initial data $[0.545, 0.054, 0.00001]$ is a spiral terminating at $E_0$.

3. At $E_0$, the solution is an enlarging spiral
For the set of parameters

$$\mathbf{\mu}_0 = [6.5, 11.1, 2.1, 1.1, 2]$$

The coordinates of $E_0$ becomes

$$\mathbf{v}_0 = [0.409091, 0.0409091, 0]$$

(24)

(25)

Eigenvalues are obtained as $\lambda_1 = 0.18595 + 0.191949 i$, $\lambda_2 = 0.18595 - 0.191949 i$, $\lambda_3 = -1$. For an initial point $[0.405, 0.0405, 0.000001]$, very near to $E_0$, the solution is a spiral that runs away of $E_0$, as seen in Fig. 3.

Fig. 3. Solution for the parameter set $\mathbf{\mu}_0 = [6.5, 11.1, 2.1, 1.1, 2]$ and initial data $[0.405, 0.0405, 0.000001]$ is a spiral running away of $E_0$. 
II. For the equilibrium point \( E_1 \):

In a nine dimensional \((v,\mu)\) space, even when we restrict ourselves to the point \( E_1 \), the computational difficulties to find Hopf points are enormous. Hence we restrict ourselves to the hyper surface \((E_1,\mu_m)\) with
\[
\mu_m = \{1,11,1,1,10,m_2\}. \tag{26}
\]
It has been showed numerically that the only Hopf point is found when
\[
m_2 = 2.0061353417583831
\]
in sixteen digits. \( E_1 \) is stable when
\[
m_2 < 2.0061353417583831
\]
and unstable when
\[
m_2 > 2.0061353417583831.
\]

1. Limit Cycle Around \( E_1 \):

For \( m_2 = 2.0061353417583831 \),
\[
\mu_1 = [1,11,1,1,10,2.0061353417583831] \tag{27}
\]
the coordinates of \( E_1 \) and the corresponding eigenvalues are:
\[
v_1 = \{0.651682,0.348318,0.350455\}, \quad \lambda_1 = 1.28951, \quad \lambda_2 = -1.28951, \quad \lambda_3 = -0.44617.
\]
For an initial point \( \{0.651682,0.348318,0.350455\} \), close to \( E_1 \), the solution approaches to a limit cycle with period 4.87 as seen in Fig.4.

![Fig.4. For initial data \{0.651682,0.348318,0.350455\} and \( \mu_1 = [1,11,1,1,10,2.0061353417583831] \). Solution has a limit cycle with period 4.87.](image)

2. Spiral node at \( E_1 \):

For \( m_2 = 1.5 < 2.0061353417583831 \), \( \mu_1 = [1,11,1,1,10,1.5] \) the coordinates of \( E_1 \) and the corresponding eigenvalues are:
\[
v_1 = \{0.466667,0.533333,0.266667\}
\]
\[
\lambda_1 = -0.163679 + 1.19028 \, \text{i}, \quad \lambda_2 = -0.163679 - 1.19028 \, \text{i}, \quad \lambda_3 = -0.268198 \, \text{i}.
\]
For an initial point \( \{0.4,0.5,0.3\} \) the solution is a spiral terminating at \( E_1 \), as in Fig.5.
3. **Enlarging spiral at** $E_1$

For $m_2 = 2.3 > 2.0061353417583831$, $\mu_1 = [1., 1., 1., 1., 10., 2.3]$ the coordinates of $E_1$ and the corresponding eigenvalues are:

$$v_1 = \{0.721739, 0.278261, 0.361739\};$$

$$\lambda_1 = 0.0695709 + 1.24092I, \lambda_2 = 0.0695709 - 1.24092I, \lambda_3 = -0.530371.$$

For an initial point close to $E_1$, the solution is an enlarging spiral as seen in Fig. 6.

![Fig. 6. For initial data close to $E_1$ and parameters $\mu_1 = [1., 1., 1., 1., 10., 2.3]$, the solution is an enlarging spiral.](image)

4. **Limit Cycle around** $E_1$

For $m_2 = 2.007 > 2.0061353417583831$, $\mu_1 = [1., 1., 1., 1., 1., 10., 2.007]$ the coordinates of $E_1$ and the corresponding eigenvalues are $v_1 = \{0.651918, 0.348082, 0.350518\}$ and

$$\lambda_1 = 0.00022607 + 1.28942I, \lambda_2 = 0.00022607 - 1.28942I, \lambda_3 = -0.446435.$$

For an initial point at $\{0.7, 0.35, 0.5\}$, the solution enlarges by the time, and eventually reaches to a limit cycle with period 8.37 as shown in Fig. 7.

![Fig. 7. For initial data $\{0.7, 0.35, 0.5\}$ and parameter values $\mu_1 = [1., 1., 1., 1., 10., 2.007]$, the solution has a limit cycle with period 8.37.](image)
5. VANISHING TOP PREDATOR

When the top predator vanishes, some nonlinear oscillatory phenomena for the first predator and pray occurs. Consider the system

\[
\begin{align*}
\dot{x} &= \left(1 - x - \frac{c_1 y}{x + y}\right) x, \quad x(0) > 0, \\
\dot{y} &= \left(\frac{m_1 x}{x + y} - d_1\right) y, \quad y(0) > 0, \\
c_1 &= \frac{m_1}{(\eta, a, r)}. 
\end{align*}
\]

which is obtained deleting \(z\) from (1).

Considering the nonnegative ness of the parameters and unknowns, we get two equilibrium points. One of them is \(C_0(1,0)\) and the other is \(C_1(\bar{x}, \bar{y})\). The point \(C_0(1,0)\) is always a positive equilibrium point.

**The Equilibrium Point** \(C_1(\bar{x}, \bar{y})\)

The second equilibrium point \(C_1(\bar{x}, \bar{y})\) with

\[
\bar{x} = \frac{m_1 (1 - c_1) + c_1 d_1}{m_1}, \quad \bar{y} = \frac{m_1 - d_1}{d_1} \bar{x},
\]

is a nonnegative equilibrium point of the system (28) if

\[
m_1 (1 - c_1) + c_1 d_1 > 0 \quad \text{and} \quad m_1 > d_1.
\]  

For the equilibrium point \(C_0(1,0)\):

The eigenvalues are \(\lambda_1 = -1.0, \lambda_2 = 0.1\), and hence \(C_0(1,0)\) is always a saddle point.

**For the equilibrium point** \(C_1(\bar{x}, \bar{y})\): The eigenvalues are

\[
\lambda_1 = \frac{1}{2m_1^*} \left( L + \sqrt{M} \right), \quad \lambda_2 = \frac{1}{2m_1^*} \left( L - \sqrt{M} \right)
\]

Where
Hopf Point Analysis for Ratio-Dependent Food Chain Models

\[ L = c_1 (m_1^2 - d_1^2) - d_1 m_1 (m_1 - d_1) - m_1^2, \]
\[ M = L^2 + 4m_1^2 d_1 (d_1 - m_1) (m_1 (1 - c_1) + c_1 d_1). \]

\( C_1(\bar{x}, \bar{y}) \) is a nonnegative equilibrium point of the system (28) if \( m_1 (1 - c_1) + c_1 d_1 > 0 \) and \( m_1 > \theta \). Hence one has \( 4m_1^2 d_1 (d_1 - m_1) (m_1 (1 - c_1) + c_1 d_1) < 0 \), and therefore

\[ \lambda_1 \lambda_2 = \frac{L^2 - M}{4m_1^2} = -4m_1^2 d_1 (d_1 - m_1) (m_1 (1 - c_1) + c_1 d_1) > 0. \]

(34)

That is the roots have the same sign if they are real. On the other hand if \( L > 0 \) one also has

\[ \lambda_1 + \lambda_2 = \frac{L}{m_1^2} > 0. \]

(35)

Hence, \( \lambda_1, \lambda_2 > 0 \) if the roots are real and \( \Im(\lambda_1) = \Im(\lambda_2) > 0 \) if the two roots are complex conjugate, and in this case \( C_1(\bar{x}, \bar{y}) \) is unstable [19]. If \( L < 0 \), then \( \lambda_1, \lambda_2 < 0 \) if the two roots are real. \( \Im(\lambda_1) = \Im(\lambda_2) < 0 \) if the two roots are complex conjugate, and \( C_1(\bar{x}, \bar{y}) \) is stable and is a spiral node. The state \( L = 0 \) corresponds to a Hopf bifurcation point.

**Numerical Experiments**

At \( C_1(\bar{x}, \bar{y}) \) one has two complex conjugate eigenvalues if \( M < 0 \) in (33). The real parts of eigenvalues are zero if \( L = 0 \) in the same expression:

\[ M = 4m_1^2 d_1 (d_1 - m_1) (m_1 (1 - c_1) + c_1 d_1) < 0 \]
\[ L = c_1 (m_1^2 - d_1^2) - d_1 m_1 (m_1 - d_1) - m_1^2 = 0. \]

(36)

(37)

Inequalities in (30) that guaranties the existence of \( C_1(\bar{x}, \bar{y}) \) as a real world point, also assures (36). (37) is satisfied if \( c_1 \) is chosen as

\[ c_{10} = \frac{d_1 m_1 (m_1 - d_1) + m_1^2}{m_1^2 - d_1^2}. \]

(38)

\( L \) is an increasing function of \( c_1 \), hence \( C_1(\bar{x}, \bar{y}) \) is stable for \( c_1 < c_{10} \) and unstable for \( c_1 > c_{10} \). Hence points \((v_0, \mu_0)\) corresponding to \( c_1 = c_{10} \) defines a hyper surface of Hopf bifurcation points in the five dimensional space \( (v, \mu) \).

**Numerical Experiments**

1. **Periodic Solutions Around \( C_1(\bar{x}, \bar{y}) \)**

For \( d_1 = 1.0, m_1 = 1.1 \), \( c_{10} \) from (38) is \( c_{10} = 6.2857142857142857142857142857142857142857 \) in 28 digits. For the set of parameters

\[ \mu_0 = \{6.2857142857143, 1.0, 1.1\} \]

(39)
The coordinates of $C_1(\bar{x}, \bar{y})$ becomes $v_0 = (0.428571, 0.0428571)$. Eigenvalues are obtained as $\lambda_1 = 0.197385$, $\lambda_2 = -0.197385$. Therefore $C_1(\bar{x}, \bar{y})$ is a center. For an initial point $(0.429, 0.043)$, near $C_1(\bar{x}, \bar{y})$, the solution is periodic with period 31.83 as seen in Fig.8.

![Fig.8](image)

Fig.8. For initial data $(0.429, 0.043)$ and $\mu_0 = \{6.2857142857143, 1.0, 1.1\}$, the solution is periodic with period 31.83.

2. **Stable spiral point at $C_1(\bar{x}, \bar{y})$**

For the set of parameters $\mu_1 = \{5.0, 1.0, 1.1\}$, the coordinates of $C_1(\bar{x}, \bar{y})$ becomes $v_1 = \{0.545, 0.0545\}$. Eigenvalues are obtained as $\lambda_1 = \{-0.11157 + 0.192714i, -0.11157 - 0.192714i\}$. Hence $C_1(\bar{x}, \bar{y})$ is a stable spiral point. For an initial point $(0.545, 0.0545)$ very close to $C_1(\bar{x}, \bar{y})$, the solution is a spiral as seen in Fig.9.

![Fig.9](image)

Fig.9. For initial data $v_1 = \{0.545, 0.0545\}$ and $\mu_1 = \{5.0, 1.0, 1.1\}$, the solution is a spiral.
3. An unstable spiral point at $C_1(\bar{x}, \bar{y})$

For the set of parameters

$$\mathbf{\mu}_2 = \{6.5, 1.0, 1.1\} \tag{41}$$

The coordinates of $C_1(\bar{x}, \bar{y})$ are $v_2 = \{0.41, 0.041\}$. Eigenvalues are obtained as $\lambda_1 = \{0.018595 + 0.191949 i, 0.018595 - 0.191949 i\}$. Hence $C_1(\bar{x}, \bar{y})$ is an unstable spiral point. For an initial point $\{0.545, 0.0545\}$ very close to $C_1(\bar{x}, \bar{y})$, the solution is an enlarging spiral as seen in Fig.10.

![Fig.10. For initial data $v_2 = \{0.41, 0.041\}$ and $\mathbf{\mu}_2 = \{6.5, 1.0, 1.1\}$, the solution is an enlarging spiral.](image)

5. CONCLUSION

In this study, a ratio-dependent food chain model is analyzed and possible dynamical behavior of this system investigated at equilibrium points. It has been shown that, the solutions posses Hopf bifurcations. The system has periodic solutions in a small neighborhood of centers. For unstable nodes, for suitable initial conditions, it is seen that the system undergoes limit cycles. In the case of vanishing top predator, the equilibrium points, the stability of solutions, the existence of limit cycles, the Hopf bifurcation and stability of the periodic solution created by the bifurcation are all studied. A limit cycle in the two dimensional stable manifold is seen to be a periodic solution in the three dimensional system.
REFERENCES

[1] R. Arditi, L.R. Ginzburg, Coupling in predator-prey dynamics: ratio-dependence, J. Theoretical Biology 139, 311-326, 1989.
[2] R. Arditi, H. Saiah, Empirical evidence of the role of predator-prey theory, Ecology 73, 1530-1535, 1982.
[3] S. Gakkar, R. K. Naji, Order and chaos in predator to prey ratio-dependent food chain, Chaos, Solitons and Fractals 18, 229-239, 2003.
[4] L.R. Ginzburg, H.R. Akçakaya, Consequences of ratio-dependent predation for steady state properties of ecosystems, Ecology 73, 1536-1543, 1992.
[5] M.A. McCarthy, L.R. Ginzburg, H.R. Akçakaya, Predator interference across trophic chains, Ecology 76(4), 1310-1319, 1995.
[6] C. Jost, O. Arino, R. Arditi, About deterministic extinction in ratio-dependent predator-prey models, Bull. Math. Biol. 61, 19-32, 1999.
[7] S.B. Hsu, T.W. Hwang, Y. Kuang, Global analysis of the Michaelis-Menten type ratio-dependent predator-prey system, J. Math. Biol. 42, 489-506, 2001.
[8] S.B. Hsu, T.W. Hwang, Y. Kuang, A ratio-dependent food chain model and its applications to biological control, Mathematical Biosciences 181, 55-83, 2003.
[9] P.A. Abrams, The fallacies of ratio-dependent predation, Ecology 75, 1842-1850, 1994.
[10] P.A. Abrams, L.R. Ginzburg, The nature of predation: prey dependent, ratio dependent or neither? Trends Ecol. Evol. 15, 337-341, 2000.
[11] E. Beretta, Y. Kuang, Global analyses in some delayed ratio-dependent predator-prey systems, Nonlinear Anal., TMA 32, 381-408, 1998.
[12] H.I. Freedman, P. Waltman, Mathematical analysis of some three-species food-chain models, Math. Biosci. 33, 257-276, 1977.
[13] A. Hastings, T. Powell, Chaos in a three-species food chain, Ecology 72, 896-903, 1991.
[14] A. Klebanoff, A. Hastings, Chaos in three species food chains, J. Math. Biol. 32, 427-451, 1994.
[15] W. Feng, J. Hinson, Stability and pattern in two-patch predator-prey population dynamics, Proceeding of the fifth international conference on dynamical systems and differential equations, USA, 2004.
[16] B. Dubey, R.K. Upadhyay, Persistence and extinction of one-prey and two-predator system, Nonlinear Analysis 9(4), 307-329, 2004.
[17] H.C. Hilborn, Chaos and Nonlinear Dynamics, Oxford University Press, New York, 1994.
[18] A. Clark, Jr. Dynamical Systems, Report, Univ. of Rochester, 1996.
[19] G.W. Harrison, Global stability of predator-prey interactions, J.Math. Biol. 8 (1979) 159-171.
[20] R. Kara, M. Can, Ratio-dependent food chain models with three trophic levels, Int. J. of Comp. Sci. 1/2 (2006) 85-92.
[21] R.M. May, Stability and Complexity in Model Ecosystems, Princeton, NJ, Princeton University Press, 2001.