Research Article

Enhancing Roentgen Sensitivity of Gold-Doped CdIn$_2$S$_4$ Thiospinel for X-Ray Detection Applications

Solmaz N. Mustafaeva, MirSalim M. Asadov, and Djahan T. Guseinov

1Institute of Physics, Azerbaijan National Academy of Sciences, 1143 Baku, Azerbaijan
2Institute of Catalysis and Inorganic Chemistry, Azerbaijan National Academy of Sciences, 1143 Baku, Azerbaijan

Correspondence should be addressed to Solmaz N. Mustafaeva; solmust@gmail.com

Received 29 May 2015; Accepted 12 July 2015

Academic Editor: Iwan Kityk

Copyright © 2015 Solmaz N. Mustafaeva et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The single crystals CdIn$_2$S$_4$(Au) were grown from preliminarily synthesized polycrystals by the method of chemical transport reactions in a closed volume with iodine used as a carrier. The influence of doping CdIn$_2$S$_4$ single crystals by gold (3 mol %) on their X-ray dosimetric parameters is studied. It is found that the X-ray sensitivity coefficients of CdIn$_2$S$_4$(Au) crystals increase 6–8 times compared with undoped CdIn$_2$S$_4$ at effective radiation hardness $V_a = 25–50$ keV and dose rate $E = 0.75–78.05$ R/min. Moreover, the persistence of the crystal characteristics completely disappears and the supple voltage of a CdIn$_2$S$_4$(Au) roentgen detector decreases threefold. The dependence of the steady X-ray-induced current in CdIn$_2$S$_4$(Au) on the X-ray dose is described by linear law. The studied crystals have a rather high room-temperature X-ray sensitivity ($K = 2 \cdot 10^{-9}–1.5 \cdot 10^{-8}$ (A-min)/(R·V)) and are attractive as materials for X-ray detectors.

1. Introduction

Single crystals of the CdIn$_2$S$_4$ compound belong to the class of wide-band-gap semiconductors [1] with a high specific resistance on the level of $\rho \sim 10^7$ Ohm-cm. The band gap of CdIn$_2$S$_4$ thiospinel is indirect, and values between 2.1 and 2.4 eV (between 2.5 and 2.7 eV for direct gap) have been reported by different authors [2]. According to [3, 4], the band gap of CdIn$_2$S$_4$ at room temperature is 2.62 eV. CdIn$_2$S$_4$ is a highly photosensitive semiconductor in the visible range of spectrum and may be used as active material for creation of solar cells and various optoelectronic devices [5–9]. Of interest is also the sensitivity of this material to X-rays. With time, more and more X-ray sensitive materials attract the attention of designers of X-ray detectors. The rather large values of the effective atomic number and the energy gap make CdIn$_2$S$_4$ a suitable material for the fabrication of X-ray detectors, which do not require being cooled. In our previous work [10], we reported the X-ray dosimetric properties of CdIn$_2$S$_4$ single crystals. It was shown that the X-ray sensitivity coefficient of CdIn$_2$S$_4$ is sufficiently high and ranged from $2.4 \cdot 10^{-10}$ to $2.4 \cdot 10^{-9}$ (A-min)/(R·V) at effective radiation hardness $V_a = 25–50$ keV and dose rate $E = 0.75–78.05$ R/min. But experimental data demonstrate that the photocurrent-dose curves of CdIn$_2$S$_4$ single crystals have some time lag: after X-rays are turned off, it takes several minutes for the current through CdIn$_2$S$_4$ to reach its dark level. Doping of CdIn$_2$S$_4$ single crystals with metals makes it possible to vary their roentgen dosimetric properties. Earlier, we reported the X-ray dosimetric properties of CdIn$_2$S$_4$ single crystals doped with Cu [11] and Fe [12]. For example, it was shown that the doping of CdIn$_2$S$_4$ single crystals with copper and iron substantially increases their coefficients of X-ray conductivity (K_r) and completely removes the inertia of X-ray-ampere characteristics.

It must be noted that in such kind of doped sulfide crystals a cationic disordering plays a principal role [13]. This in turn has a significant effect on the physical properties of these objects.

The aim of this work was to study the effect of doping CdIn$_2$S$_4$ single crystals with gold on their X-ray dosimetric characteristics. Therefore, the fabrication of CdIn$_2$S$_4$(Au)
crystals and the experimental studies of their X-ray conductivity at room temperature became our priority direction.

2. Experiment

The gold-doped (3 mol%) CdIn$_2$S$_4$ (Au) compound was prepared using the method of high-temperature synthesis by alloying high-purity (no lower than 99.999%) constituents in an evacuated quartz ampoule. CdIn$_2$S$_4$ (Au) crystals were grown from synthesized pellets by the chemical transport technique with iodine as a carrier gas. Crystal thus obtained had an octahedral shape with clear-cut faceting and a high optical transparency. X-ray studies showed that CdIn$_2$S$_4$ (Au) crystals have a normal-spinel-like cubic structure and their dark specific conductivity is $\sigma = 2 \times 10^{-7}$ Ohm$^{-1}$-cm$^{-1}$ at $T = 300$ K.

Ohmic contacts to CdIn$_2$S$_4$ (Au) samples were made by firing indium into the end faces. The contact spacing, which was exposed to X-ray radiation, was 0.1 cm.

A URS X-ray setup with a BSV-2 tube (Cu radiation) was used as an X-ray source. The X-ray intensity was controlled by varying the current in the tube at each value of the applied accelerating voltage (V_a). The absolute X-ray dose was measured with a DRGZ-02 X-ray dosimeter. The sample to be examined was placed in a light-tight X-ray chamber. An X-ray-induced change in the current through the sample was detected by U5-9 electrometric amplifier using a low-value load resistor. During the measurements, the effective radiation hardness was $V_a = 25-50$ keV and interval of dose rate $E = 0.75-78.05$ R/min. All measurements were taken at $T = 300$ K.

3. Experimental Results

The X-ray conductivity coefficient characterizing the X-ray sensitivity of crystals is defined as a relative X-ray-induced change in the conductivity per unit dose rate:

$$K_\sigma = \frac{\sigma_E - \sigma_0}{\sigma_0 \cdot E},$$

(1)

where σ_E is the conductivity of a crystal subjected to X-ray radiation with dose rate E and σ_0 is the dark conductivity at 300 K.

The X-ray sensitivity coefficient was determined by the formula

$$K = \frac{I_E - I_0}{U \cdot E},$$

(2)

where I_E is the current through the sample subjected to X-ray radiation with dose rate E, I_0 is the dark current, and U is the applied voltage.

Experimental values of X-ray conductivity coefficients K_σ obtained for CdIn$_2$S$_4$ (Au) crystals at different values of accelerating potential V_a across the tube and dose rates are listed in Table 1. Associated values of K_σ for undoped CdIn$_2$S$_4$ single crystal are also given in Table 1 for comparison. The values of K_σ for CdIn$_2$S$_4$ (Au) are seen to far exceed K_σ for CdIn$_2$S$_4$.

![Figure 1: Dose dependence of the X-ray sensitivity coefficient for the gold-doped (3 mol%) CdIn$_2$S$_4$ single crystal for accelerating voltage $V_a = (1)25$, (2)30, (3)35, (4)40, (5)45, and (6)50 keV. $U = 0.8$ V; $T = 300$ K.](image)

Figure 1 plots X-ray sensitivity coefficient K calculated by formula (2) versus the X-ray dose rate for the CdIn$_2$S$_4$ (Au) crystal at $T = 300$ K and $U = 0.8$ V. It is seen that X-ray sensitivity of the CdIn$_2$S$_4$ (Au) crystal varies between 2×10^{-3} and 1.5×10^{-3} (A-min)/(V-R). These values of K for CdIn$_2$S$_4$ (Au) exceed K by 6–8 times for undoped CdIn$_2$S$_4$ [10]. It must be noted that X-ray sensitivity coefficients of studied CdIn$_2$S$_4$ (Au) crystals exceed also values of K for CdIn$_2$S$_4$ single crystals doped with Cu [11] and Fe [12]. These values of K for CdIn$_2$S$_4$ single crystals undoped and doped with Fe, Cu, and Au are listed in Table 2 for comparison.

From experimental data (Figure 1), it follows that the $K(E)$ dependence for CdIn$_2$S$_4$ (Au) at low dose rates is an increasing function (curve 1, Figure 1). Curves 2–6 first increase with the dose rate and then decrease starting from certain E; at $E > 30$ R/min, X-ray sensitivity coefficient becomes almost independent of E.

Figure 2 shows the roentgen-ampere characteristics of the CdIn$_2$S$_4$ (Au) crystal at different radiation hardness. With an increase in V_a, the roentgen current through the sample decreases whatever the dose rate E is.

Figure 3 plots the roentgen current versus the radiation hardness for CdIn$_2$S$_4$ (Au) at $E = 10$ R/min. When V_a rises from 30 to 50 keV, $\Delta I_{E,0} = I_E - I_0$ linearly drops.

The roentgen-ampere characteristics of the CdIn$_2$S$_4$ (Au) crystal for all values of E (except for the initial points) and V_a were almost linear; that is,

$$\Delta I_{E,0} \sim E.$$

(3)

Linear dosimetric characteristics are most suitable for practical use.

Figure 4 illustrates dose dependence of resistance of the CdIn$_2$S$_4$ (Au) crystal at various radiation hardness values. Dark resistance of studied sample was equal to 10 MOhm.
As it is seen from Figure 4 at all radiation hardness values, the CdIn$_2$S$_4$⟨Au⟩ resistance drops when E rises from 0.75 to 78.05 R/min. For example, at $V_a = 50$ keV, the value of the CdIn$_2$S$_4$⟨Au⟩ resistance decreases from 10 to 2.2 MΩhm.

Earlier [10], when studying the X-ray dosimetric characteristics of undoped CdIn$_2$S$_4$ single crystals, we found that when X-ray radiation is switched off, the dark current reaches a steady-state value within 5-6 min rather than at once. Doped CdIn$_2$S$_4$⟨Au⟩ crystals compare favorably with undoped ones in that the roentgen current in them does not relax with time. When X-ray radiation is switched off, the dark current is established almost at once. In addition, the supply voltage of a CdIn$_2$S$_4$ X-ray detector is 24 V/cm, while 8 V/cm is sufficient for a CdIn$_2$S$_4$⟨Au⟩ detector. The values of supply voltage for CdIn$_2$S$_4$ crystals undoped and doped with Fe, Cu, and Au are listed in Table 2. It must be noted that roentgen dosimetric characteristics of studied CdIn$_2$S$_4$⟨Au⟩ single crystals were well reproduced.

Table 1: X-ray conductivity coefficients of CdIn$_2$S$_4$ and CdIn$_2$S$_4$⟨Au⟩ crystals at 300 K.

Dose rate E, R/min	K_σ, 10^{-2} min/R	V_a, keV	Dose rate E, R/min	K_σ, 10^{-2} min/R	V_a, keV
CdIn$_2$S$_4$	26.7	7.0	CdIn$_2$S$_4$	0.93	5.72
CdIn$_2$S$_4$⟨Au⟩	2.4	1.04	CdIn$_2$S$_4$	1.00	7.15
	29.8	1.10	CdIn$_2$S$_4$	2.20	7.34
	30.3	2.09	CdIn$_2$S$_4$	3.40	7.23
	29.5	23.8	CdIn$_2$S$_4$	3.80	7.25
	29.0	16.38	CdIn$_2$S$_4$	4.50	7.19
	29.3	20.09	CdIn$_2$S$_4$	5.10	7.13
	29.2	27.58	CdIn$_2$S$_4$	5.70	7.10

Table 2: X-ray sensitivity coefficients at $E = 0.75$–78.05 R/min and $V_a = 25$–50 keV and the supply voltages of CdIn$_2$S$_4$ specimens undoped and doped with Fe, Cu, and Au ($T = 300$ K).

Crystal	K_V, (A/min)/(R-V)	U, V/cm
CdIn$_2$S$_4$	2.4 · 10^{-10}–2.4 · 10^{-9}	24
CdIn$_2$S$_4$⟨Fe⟩ (3 mol%)	2.0 · 10^{-12}–2.2 · 10^{-11}	500
CdIn$_2$S$_4$⟨Cu⟩ (3 mol%)	10 · 10^{-9}	5
CdIn$_2$S$_4$⟨Au⟩ (3 mol%)	2 · 10^{-9}–1.5 · 10^{-8}	8

As it is seen from Figure 4 at all radiation hardness values, the CdIn$_2$S$_4$⟨Au⟩ resistance drops when E rises from 0.75 to 78.05 R/min. For example, at $V_a = 50$ keV, the value of the CdIn$_2$S$_4$⟨Au⟩ resistance decreases from 10 to 2.2 MΩhm. Earlier [10], when studying the X-ray dosimetric characteristics of undoped CdIn$_2$S$_4$ single crystals, we found that when X-ray radiation is switched off, the dark current reaches a steady-state value within 5-6 min rather than at once. Doped CdIn$_2$S$_4$⟨Au⟩ crystals compare favorably with undoped ones in that the roentgen current in them does not relax with time. When X-ray radiation is switched off, the dark current is established almost at once. In addition, the supply voltage of a CdIn$_2$S$_4$ X-ray detector is 24 V/cm, while 8 V/cm is sufficient for a CdIn$_2$S$_4$⟨Au⟩ detector. The values of supply voltage for CdIn$_2$S$_4$ crystals undoped and doped with Fe, Cu, and Au are listed in Table 2. It must be noted that roentgen dosimetric characteristics of studied CdIn$_2$S$_4$⟨Au⟩ single crystals were well reproduced.
4 Journal of Materials

Δ/E,0 (10−8 A)

4
3
2
1
0
30 35 40 45 50
Va (keV)

Figure 3: Roentgen current through the gold-doped (3mol%) CdInS4 single crystal versus the X-radiation hardness at dose rate $E = 10$ R/min.

Figure 4: Dose dependence of CdInS4(Au) resistance for effective radiation hardness $V_a = (1)25$, (2)30, (3)35, (4)40, and (5)50 keV.

4. Conclusions
The gold-doped (3 mol%) CdIn$_2$S$_4$(Au) compound was prepared by high-temperature synthesis. CdIn$_2$S$_4$(Au) single crystals were grown from synthesized pellets by the chemical transport technique with iodine as a carrier gas. X-ray studies showed that CdIn$_2$S$_4$(Au) crystals have a normal-spinel-like cubic structure. Comparative analysis shows that values of X-ray conductivity coefficient (K_x) and X-ray sensitivity coefficient (K) for CdIn$_2$S$_4$(Au) far exceed K_x and K for CdIn$_2$S$_4$. The roentgen current in CdIn$_2$S$_4$(Au) crystals does not relax with time, and their roentgen-ampere characteristics are linear. Thus, it can be concluded that gold-doped (3 mol%) CdIn$_2$S$_4$ single crystals are highly sensitive to X-rays and can be used for fabrication of low-power fast-response X-ray detectors, which do not require cooling.

Conflict of Interests
The authors declare that there is no conflict of interests regarding the publication of this paper.

References
[1] A. N. Georgobiani, S. I. Radautsan, and I. M. Tiginyanu, “High energy–gap semiconductors: optical and photoelectric properties and application trends,” Fizika i Tekhnika Poluprovodnikov (Leningrad), vol. 19, pp. 193–212, 1985. Translated in: Soviet Physics: Semiconductors, vol. 19, pp. 121–130, 1985.
[2] O. Madelung, U. Rossler, and M. Schulz, Cadmium Thioindate (CdIn$_2$S$_4$) Electronic Properties, Ternary Compounds, Organic Semiconductors, Landolt-Bornstein Database, Springer, New York, NY, USA, 2000.
[3] H. Nakanish, “Fundamental absorption edge in CdInS$_4$,” Japanese Journal of Applied Physics, vol. 19, no. 1, p. 103, 1980.
[4] S. Yun and K. Hong, “Growth and temperature dependence of band gap for CdIn$_2$S$_4$ epilayers by hot wall epitaxy,” Journal of the Korean Physical Society, vol. 45, pp. S661–S664, 2004.
[5] B. B. Kale, J.-O. Baeg, S. M. Lee, H. Chang, S.-J. Moon, and C. W. Lee, “CdIn$_2$S$_4$ nanotubes and ‘marigold’ nanostructures: a visible-light photocatalyst,” Advanced Functional Materials, vol. 16, no. 10, pp. 1349–1354, 2006.
[6] S. K. Apte, S. N. Garaje, R. D. Bolade et al., “Hierarchical nanostructures of CdIn$_2$S$_4$ via hydrothermal and microwave methods: efficient solar-light-driven photocatalysts,” Journal of Materials Chemistry, vol. 20, no. 29, pp. 6095–6102, 2010.
[7] I. Aguilera, P. Palacios, K. Sanchez, and P. Wahnon, “Theoretical optoelectronic analysis of MgIn$_2$S$_4$ and CdIn$_2$S$_4$-thiospinels: effect of transition-metal substitution in intermediate-band formation,” Physical Review B, vol. 81, no. 7, Article ID 075206, 2010.
[8] M. J. Lucero, I. Aguilera, C. V. Diaconu, P. Palacios, P. Wahnon, and G. E. Scuseria, “Screened hybrid and self-consistent,” Physical Review B, vol. 83, no. 20, 2011.
[9] Y. Seminovski, P. Palacios, P. Wahnon, and R. Grau-Crespo, “Band gap control via tuning of inversion degree in CdIn$_2$S$_4$ spinel,” Applied Physics Letters, vol. 100, no. 10, Article ID 102112, 2012.
[10] S. N. Mustafaeva, M. M. Asadov, and D. T. Guseinov, “X-ray electric properties of CdIn$_2$S$_4$ monocystal,” Inorganic Materials: Applied Research, vol. 1, no. 4, pp. 293–296, 2010, Translated from Perspektivnye Materialy, no. 1, pp. 45–48, 2010.
[11] S. N. Mustafaeva, M. M. Asadov, and D. T. Guseinov, “X-ray dosimetric characteristics of CdIn$_2$S$_4$(Cu) single crystals,” Technical Physics, vol. 56, no. 1, pp. 139–142, 2011, translated from Zhurnal Tekhnicheskoi Fiziki, vol. 81, no. 1, pp. 144–147, 2011.
[12] S. N. Mustafaeva, M. M. Asadov, and D. T. Guseinov, “X-ray induced conductivity of CdIn$_2$S$_4$(Fe) crystals,” Inorganic Materials, vol. 49, no. 7, pp. 643–646, 2013, Russian Translation: Neorganicheskie Materialy, vol. 49, pp. 689–692, 2013.
[13] G. P. Gorgut, A. O. Fedorchuk, I. V. Kityk, V. P. Sachanyuk, I. D. Oleksyuk, and O. V. Parasyuk, “Synthesis and structural properties of CuInGe$_2$S$_4$,” Journal of Crystal Growth, vol. 324, no. 1, pp. 212–216, 2011.

Radiation hardness prepared by high-temperature synthesis. CdIn

The gold-doped (3mol%) CdIn$_2$S$_4$(Au) compound was prepared by high-temperature synthesis. CdIn$_2$S$_4$(Au) single crystals were grown from synthesized pellets by the chemical transport technique with iodine as a carrier gas. X-ray studies showed that CdIn$_2$S$_4$(Au) crystals have a normal-spinel-like cubic structure. Comparative analysis shows that values of X-ray conductivity coefficient (K_x) and X-ray sensitivity coefficient (K) for CdIn$_2$S$_4$(Au) far exceed K_x and K for CdIn$_2$S$_4$. The roentgen current in CdIn$_2$S$_4$(Au) crystals does not relax with time, and their roentgen-ampere characteristics are linear. Thus, it can be concluded that gold-doped (3 mol%) CdIn$_2$S$_4$ single crystals are highly sensitive to X-rays and can be used for fabrication of low-power fast-response X-ray detectors, which do not require cooling.
