Ropivacaine Decreases Tissue Oxygen Saturation Following Peripheral Nerve Block in Children

Nina Deutsch*, Mamta Singh, Sophie R. Pestieau, Sean P. Alexander, Domiciano Santos, and Richard J. Levy

Division of Anesthesiology and Pain Medicine, Children’s National Medical Center, The George Washington University, Washington DC, USA

Abstract

Background: Local anesthetics can cause vasoconstriction and disrupt neuronal impulses, reducing regional blood flow and increasing tissue oxygen consumption. This could alter regional oxygen supply and demand. Because microcirculation modifies during development and oxygen consumption kinetics differ between children and adults, we aimed to assess effects of ropivacaine Peripheral Nerve Block (PNB) on regional tissue saturation in children and young adults using Near-Infrared Spectroscopy (NIRS).

Methods: Following Institutional Review Board approval and informed consent, 20 patients undergoing PNB for various orthopedic surgeries were studied. NIRS sensors were placed on the operative limb, contralateral limb, and forehead. Tissue saturations (rSO2) were recorded at baseline and every 5 minutes for 60 minutes following ropivacaine PNB. Mean rSO2 was assessed with repeated measures ANOVA. Correlation of tissue rSO2 with cerebral oximetry was calculated and significance determined with student’s t-test.

Results: In all patients, blocked limb rSO2 decreased significantly compared to control limb 20 minutes after injection and remained lower. Control limb rSO2 and cerebral oximetry did not change over time. Non-blocked limb rSO2 demonstrated weak but significant correlation with cerebral oximetry while blocked limb rSO2 showed no correlation. Mean change in blocked limb rSO2 from baseline was significantly negative compared to a net positive mean change in the non-blocked limb.

Conclusions: Decreased rSO2 following PNB suggests reduced local blood flow due to vasoconstriction, increased tissue oxygen consumption, or both. Changes in rSO2 provide an opportunity to develop NIRS as a non-invasive tool to identify successful PNB. Local anesthetic-induced decline in rSO2 could have implications in operative settings with ischemia or low-flow.

Keywords: Local anesthetic ropivacaine; Peripheral nerve block; Tissue oxygenation; Spectroscopy; Near-infrared; Vasoconstriction

Introduction

Local anesthetics have intrinsic vasoactive properties and have been shown to cause dose-dependent vasodilation across a range of clinical concentrations [1]. However, by contrast, amide anesthetics can also cause dose-dependent vasoconstriction at lower concentrations [1]. Such vasoconstriction has been demonstrated following intradermal forearm injection of bupivacaine and levobupivacaine in humans and following direct tail artery application of ropivacaine in rats [1,2]. Furthermore, ropivacaine-induced vasoconstriction has been reported following peripheral and neuraxial nerve blockade [3]. Thus, it is possible that Peripheral Nerve Block (PNB) with amide local anesthetics could reduce regional blood flow or impair the microcirculation.

Nerve conduction and intact innervation are important for the regulation of muscle mitochondrial homeostasis [4,5]. Denervation affects tissue oxidative capacity differently over time. For example, chronic denervation results in progressive decline in mitochondrial electron transport chain enzyme function while acute denervation increases muscle oxygen consumption and resting metabolic rate [5-9]. In addition, post-ganglionic sympathectomy has been shown to increase oxidative phosphorylation in the affected tissue and organs [10]. It is possible, then, that local anesthetic-induced disruption of neuronal impulses following PNB could alter muscle and tissue bioenergetics.

Due to their potential direct and indirect effects on blood flow and tissue mitochondrial function, local anesthetics have the propensity to disrupt the balance of tissue oxygen supply and demand. The microcirculation and functional capillary density change during development and oxygen consumption kinetics differ between children and adults, yet the effect of local anesthetics on tissue oxygenation has never been assessed in the paediatric population [11,12]. Therefore, the aim of this study was to assess the effect of ropivacaine on tissue oxygen saturation in vivo in children and young adults. We tested the hypothesis that local anesthetics could affect tissue oxygenation by measuring changes in regional limb tissue saturation (rSO2) using Near-Infrared Spectroscopy (NIRS) following PNB with ropivacaine.

Methods

This is a prospective observational study and was approved by the Institutional Review Board (IRB) of Children’s National Medical Center. Written informed consent from each patient’s parent or legal guardian and patient assent were obtained.

Patients

Twenty ASA status I and II patients aged between 8 and 18 years (weighing between 39 kg and 120 kg) undergoing orthopedic surgical...
procedures under general anesthesia with a PNB as part of their routine care were studied (Table 1). Each patient served as his/her own control. Exclusion criteria consisted of known allergy to the local anesthetic, ropivacaine, local infection in the area to be injected, coagulation disorder, or known neurologic, motor, or sensory deficits.

Study Protocol

Following induction of anesthesia with either inhalational sevoflurane (up to 8%) or intravenous propofol (up to 2 mg/kg) and placement of an appropriately sized endotracheal tube, three NIRS sensors (Somanetics Paediatric SomaSensor, Troy, MI) were placed. For femoral nerve block, a limb sensor was placed on the operative limb in the L2-3 dermatome on the upper thigh. For interscalene block, the limb sensor was placed in the C5-6 dermatome on the anterolateral aspect of the arm. For popliteal block, the sensor was placed in the L5-S1 dermatome on the lateral aspect of the lower leg. For axillary nerve block, the sensor was placed in the C8-T1 dermatome on the median surface of the upper arm. Sensors on the operative limb were placed a minimum of 15 cm from the injection site for PNB in order to avoid the possibility of measuring infiltrative effect of the local anesthetic. A second sensor was placed in the identical location on the contralateral non-operative limb as a control. A third sensor was placed across the forehead to measure cerebral oximetry to serve as a non-invasive indicator of global cardiac output [13,14]. The sensors were connected to an INVOS 5100C monitor (Somanetics Corp, Troy, MI) and baseline rSO2 was recorded 20 minutes after induction. General endotracheal anesthesia was maintained with sevoflurane (up to 2.5%) or desflurane (up to 6%), based on anesthesiologists’ preference, and 0.5 FiO2 (air and oxygen).

The regional block was performed with ultrasound guidance (SonoSite, Bothell, WA). PNB was achieved with ropivacaine (0.5% without epinephrine, 0.3-0.4 mg/kg, with a maximum volume of 20-30 mL). Successful needle placement was further confirmed with use of a Stimuplex DIG nerve stimulator (Braun, Bethlehem, PA) at 0.4 m Amp or lower. Following injection of ropivacaine, bilateral limb and cerebral rSO2 were recorded every 5 minutes for 60 minutes. At no time during the recording of data was a tourniquet used. Each subject was continuously monitored with pulse oximetry, non-invasive blood pressure, end-tidal CO2 and temperature measurement.

Statistical Analysis

A sample size of 20 was chosen to provide at least 80% statistical power with a 2-tailed alpha level of 0.05 to detect a 15% difference in tissue oxygen saturation between the blocked and non-blocked limb. This estimate took into account 12 measurements per hour and assumed a 70% correlation between measurements on the same patient in the same limb. Data was assessed for normality by examining histograms and box plots.

Repeated measures ANOVA with post hoc Tukey’s test were used to compare tissue oxygen saturation within and between groups. Correlation coefficients between time-matched tissue rSO2 and cerebral oximetry were calculated and significance determined with student’s t-test. The mean rSO2 difference from baseline was calculated for the blocked and non-blocked limb and was compared by two-tailed Student’s t-test. Statistical significance was set at P<0.05.

Results

All twenty patients had successful location of the peripheral nerve. All patients had verification of a successful block through clinical exam upon emergence from anesthesia at the end of the case. There was no difference in baseline tissue rSO2 between limbs prior to placement of the nerve block. Tissue rSO2 decreased significantly in the blocked limb compared to the non-blocked limb beginning 20 minutes after ropivacaine injection. Blocked limb rSO2 remained significantly decreased compared to measurements at several different time points in the control limb beyond 20 minutes. Tissue rSO2 remained significantly lower in the blocked limb compared to control limb for the remainder of the study. Although rSO2 in the non-blocked limb and cerebral oximetry fluctuated over time, these changes were not significant. Furthermore, rSO2 in both limbs did not differ significantly from cerebral oximetry at any time point (Figure 1).

Mean rSO2 difference across all time points from baseline was

Age (years)	Mean ± SD	14.5 ± 2.8
Weight (kg)	Mean ± SD	67 ± 23.3
	Range	41-120

Number of patients
Sex
Male
Female

Type of Surgery
Repair of anterior cruciate ligament
Knee arthroscopy
Repair syndactyly
Shoulder arthroscopy
Open reduction/intermal fixation ankle

Type of Peripheral Nerve Block
Femoral
Interscalene
Popliteal
Axillary

Table 1: Demographic characteristics of patients undergoing peripheral nerve block.

Figure 1: Tissue oxygen saturation (rSO2) over time. Mean rSO2 values are depicted. Zero minutes represents baseline measurements. Values are means +/- standard deviation. Closed squares represent non-blocked limb rSO2, open circles represent blocked limb rSO2, and grey circles represent cerebral rSO2. *P<0.0001 vs. all time points in non-blocked limb; †P<0.0001 vs. 5, 15, 20, 25, and 35 minute values in non-blocked limb; #P<0.0001 vs. 60 minute time point values in non-blocked limb.
There were no significant changes in tissue saturation in the control 20 minutes post injection and persisted throughout the study period. This decrease began significantly following injection with ropivacaine. This decrease began in the non-blocked limb rSO2 and cerebral oximetry. Tissue rSO2 in the non-blocked limb showed no significant increase in tissue rSO2 from baseline in the non-blocked limb by 1.9% (+/- 0.5%) from baseline compared to a 1.1% (+/- 0.3%) increase in tissue rSO2 with standard deviations are depicted. (A) For non-blocked limb rSO2, r²=0.364, *P<0.001. (B) For blocked limb rSO2, r²=0.003, P=NS.

Correlation coefficients were calculated between time-matched limb rSO2 and cerebral oximetry. Linear regression analyses between time-matched mean (A) non-blocked limb rSO2 or (B) blocked limb rSO2 and cerebral rSO2 with standard deviations are depicted. (A) For non-blocked limb rSO2, r²=0.364, *P<0.001. (B) For blocked limb rSO2, r²=0.003, P=NS.

Correlation coefficients were calculated between time-matched mean (A) non-blocked limb rSO2 or (B) blocked limb rSO2 and cerebral rSO2 with standard deviations are depicted. (A) For non-blocked limb rSO2, r²=0.364, *P<0.001. (B) For blocked limb rSO2, r²=0.003, P=NS.

Discussion

Here we demonstrate that tissue oxygenation decreased significantly following injection with ropivacaine. This decrease began 20 minutes post injection and persisted throughout the study period. There were no significant changes in tissue saturation in the control limb or cerebral oximetry over time and minor fluctuations likely reflected normal variation in cardiac output and oxygen delivery under general anesthesia following induction. Tissue rSO2 in the non-blocked limb demonstrated a weak but significant correlation with cerebral oximetry. On the other hand, decreases in rSO2 following ropivacaine injection had no correlation with cerebral oximetry. The significant net negative change in mean rSO2 from baseline in the blocked limb compared to the net positive change in the control limb along with the lack of correlation of rSO2 following ropivacaine injection with cerebral oximetry indicates that decreased tissue saturation in the blocked limb must have been due to ropivacaine and were independent of changes in global cardiac output.

Reduction in tissue saturation indicates a mismatch in oxygen supply and demand [15]. This can be due to increased oxygen consumption in the setting of unchanged or reduced oxygen supply or due to decreased oxygen delivery with unchanged or increased oxygen consumption. Since there was no significant change in control limb saturation and no correlation between tissue saturation in the blocked limb with cerebral saturation, any change in the blocked limb must have been due to local effect. Thus, ropivacaine either caused a reduction in blood flow to the blocked limb or increased tissue oxygen consumption or both.

PNB has been shown to cause local vasodilation and increase regional blood flow in animal models and adult patients [16-18]. In recent work, NIRS technology demonstrated that tissue oxygen saturation increased in the ipsilateral blocked limb following PNB with ropivacaine compared to control, non-blocked, limb in adults [19].

PNB has been shown to cause local vasodilation and increase regional blood flow in animal models and adult patients [16-18]. In recent work, NIRS technology demonstrated that tissue oxygen saturation increased in the ipsilateral blocked limb following PNB with ropivacaine compared to control, non-blocked, limb in adults [19].

Reduction in tissue saturation indicates a mismatch in oxygen supply and demand [15]. This can be due to increased oxygen consumption in the setting of unchanged or reduced oxygen supply or due to decreased oxygen delivery with unchanged or increased oxygen consumption. Since there was no significant change in control limb saturation and no correlation between tissue saturation in the blocked limb with cerebral saturation, any change in the blocked limb must have been due to local effect. Thus, ropivacaine either caused a reduction in blood flow to the blocked limb or increased tissue oxygen consumption or both.

Reduction in tissue saturation indicates a mismatch in oxygen supply and demand [15]. This can be due to increased oxygen consumption in the setting of unchanged or reduced oxygen supply or due to decreased oxygen delivery with unchanged or increased oxygen consumption. Since there was no significant change in control limb saturation and no correlation between tissue saturation in the blocked limb with cerebral saturation, any change in the blocked limb must have been due to local effect. Thus, ropivacaine either caused a reduction in blood flow to the blocked limb or increased tissue oxygen consumption or both.

PNB has been shown to cause local vasodilation and increase regional blood flow in animal models and adult patients [16-18]. In recent work, NIRS technology demonstrated that tissue oxygen saturation increased in the ipsilateral blocked limb following PNB with ropivacaine compared to control, non-blocked, limb in adults [19].

Reduction in tissue saturation indicates a mismatch in oxygen supply and demand [15]. This can be due to increased oxygen consumption in the setting of unchanged or reduced oxygen supply or due to decreased oxygen delivery with unchanged or increased oxygen consumption. Since there was no significant change in control limb saturation and no correlation between tissue saturation in the blocked limb with cerebral saturation, any change in the blocked limb must have been due to local effect. Thus, ropivacaine either caused a reduction in blood flow to the blocked limb or increased tissue oxygen consumption or both.

PNB has been shown to cause local vasodilation and increase regional blood flow in animal models and adult patients [16-18]. In recent work, NIRS technology demonstrated that tissue oxygen saturation increased in the ipsilateral blocked limb following PNB with ropivacaine compared to control, non-blocked, limb in adults [19].

Reduction in tissue saturation indicates a mismatch in oxygen supply and demand [15]. This can be due to increased oxygen consumption in the setting of unchanged or reduced oxygen supply or due to decreased oxygen delivery with unchanged or increased oxygen consumption. Since there was no significant change in control limb saturation and no correlation between tissue saturation in the blocked limb with cerebral saturation, any change in the blocked limb must have been due to local effect. Thus, ropivacaine either caused a reduction in blood flow to the blocked limb or increased tissue oxygen consumption or both.

PNB has been shown to cause local vasodilation and increase regional blood flow in animal models and adult patients [16-18]. In recent work, NIRS technology demonstrated that tissue oxygen saturation increased in the ipsilateral blocked limb following PNB with ropivacaine compared to control, non-blocked, limb in adults [19].

Reduction in tissue saturation indicates a mismatch in oxygen supply and demand [15]. This can be due to increased oxygen consumption in the setting of unchanged or reduced oxygen supply or due to decreased oxygen delivery with unchanged or increased oxygen consumption. Since there was no significant change in control limb saturation and no correlation between tissue saturation in the blocked limb with cerebral saturation, any change in the blocked limb must have been due to local effect. Thus, ropivacaine either caused a reduction in blood flow to the blocked limb or increased tissue oxygen consumption or both.

PNB has been shown to cause local vasodilation and increase regional blood flow in animal models and adult patients [16-18]. In recent work, NIRS technology demonstrated that tissue oxygen saturation increased in the ipsilateral blocked limb following PNB with ropivacaine compared to control, non-blocked, limb in adults [19].

Reduction in tissue saturation indicates a mismatch in oxygen supply and demand [15]. This can be due to increased oxygen consumption in the setting of unchanged or reduced oxygen supply or due to decreased oxygen delivery with unchanged or increased oxygen consumption. Since there was no significant change in control limb saturation and no correlation between tissue saturation in the blocked limb with cerebral saturation, any change in the blocked limb must have been due to local effect. Thus, ropivacaine either caused a reduction in blood flow to the blocked limb or increased tissue oxygen consumption or both.
tissue saturation determined by NIRS devices is usually distributed in a 70% venous to 30% arterial proportion [20,21]. Thus, our measurements likely reflect oxygen saturation within muscle and subcutaneous tissue. Although aromatic amine local anesthetics, such as ropivacaine, have been shown to disrupt mitochondrial function and uncouple oxidative phosphorylation, direct effect on tissue mitochondria due to local spread following subcutaneous infiltration is unlikely to explain our observations given that the sensors were placed at least 15 cm distal to the injection site [22-24].

Prior work suggests that intact innervation helps to regulate muscle mitochondrial enzyme function and homeostasis [4,5]. Disruption of neuronal input is known to affect tissue oxygen consumption. For example, acute denervation has been shown to increase resting metabolic rate in perfused rat skeletal muscle by 28% [8]. It is possible that local anesthetic-mediated inhibition of nerve conduction induces a state of reversible chemical denervation. Such functional denervation could disrupt neuronal regulation of mitochondria and result in increased muscle and tissue oxygen consumption. Increased metabolic demand could explain the reduced tissue saturation we observed following PNB with ropivacaine. However, our study design did not permit determination of the exact mechanism of ropivacaine-induced reductions in tissue saturation. Furthermore, we only studied one specific local anesthetic. These represent important limitations of this work. Thus, future study will focus on identifying the mechanism of decreased tissue saturation following PNB and the effects of blockade using a variety of other local anesthetics.

Regardless of the mechanism of decreased tissue oxygen saturation following PNB with ropivacaine, our findings raise some points to consider. First, regional changes in tissue saturation provide a potential novel method to monitor for successful nerve block using NIRS technology. Because most nerve blocks in children and young adults are often placed under sedation or general anesthesia, immediate confirmation of successful block within a specific dermatome is challenging. Although use of a nerve stimulator permits immediate assessment of the effect of local injection on the targeted nerve, currently there is no technique to confirm local anesthetic effect in the dermatome of interest under general anesthesia. Thus, future efforts should focus on developing this potential tool as an adjunct to confirm onset and success of PNB.

Second, a fall in tissue saturation following local anesthetic injection, whether due to reduced blood flow or increased oxygen consumption, raises concerns. Oxygen supply and demand mismatch is known to affect tissue oxygen consumption. Although aromatic amine local anesthetics, such as ropivacaine, have been shown to disrupt mitochondrial function and uncouple oxidative phosphorylation, direct effect on tissue mitochondria due to local spread following subcutaneous infiltration is unlikely to explain our observations given that the sensors were placed at least 15 cm distal to the injection site [22-24].

In summary, PNB with ropivacaine decreased tissue oxygen saturation in vivo in children and young adults beginning 20 minutes following injection in the ipsilateral limb. Change in saturation suggests ropivacaine-induced local vasoconstriction or increased regional oxygen consumption due to uncoupling of oxidative phosphorylation. Future work will focus on defining the exact mechanisms and assessing the safety of local anesthetics in surgically induced low flow states.

Declaration of Interests

There are no conflicts of interest to report on behalf of any of the authors of this manuscript.

Funding

This study was supported by the Division of Anesthesiology and Pain Medicine at Children's National Medical Center, Washington, DC.

References

1. Newton DJ, McLeod GA, Khan F, Belch JJ (2005) Vasotoxic characteristics of bupivacaine and levobupivacaine with and without adjuvant epinephrine in peripheral human skin. Br J Anaesth 94: 662-667.
2. Wienzek H, Freise H, Giesler I, Van Aken HK, Sielenkaemper AW (2007) Altered blood flow in terminal vessels after local application of ropivacaine and prilocaine. Reg Anesth Pain Med 32: 233-239.
3. Burke D, Joypaul V, Thomson MF (2000) Circumcision supplemented by dorsal penile nerve block with 0.75% ropivacaine: a complication. Reg Anesth Pain Med 25: 424-427.
4. Ongvarrassopone C, Kennedy JM (1998) Developmentally regulated expression of cytochrome-c oxidase isofoms in regenerating rat skeletal muscle. J Appl Physiol 85: 246-253.
5. Nemeth PM, Meyer D, Kark RA (1980) Effects of denervation and simple disuse on rates of oxidation and on activities of four mitochondrial enzymes in type I muscle. J Neurochem 35: 1351-1360.
6. Humoller FL, Hatch D, McIntyre AR (1952) Cytochrome oxidase activity in muscle following neurotomy. Am J Physiol 170: 371-374.
7. O’Leary MF, Vainshtein A, Carter HN, Zhang Y, Hood DA (2012) Denervation-induced mitochondrial dysfunction and autophagy in skeletal muscle of apoptosis-deficient animals. Am J Physiol Cell Physiol 303: C447-C454.
8. Joffe M, Savage N, Isaacs H (1981) Biochemical functioning of mitochondria in normal and denervated mammalian skeletal muscle. Muscle Nerve 4: 514-519.
9. Kolár F, Mejsnar J (1981) Effect of denervation and phenolamine on the thermogenic action of noradrenaline in rat skeletal muscle. Physiol Bohemoslov 30: 123-128.
10. Yakushiji T, Kikuchi T, Yamamoto J, Kuriaki K (1958) Effect of sympathectomy and vagotomy on carbonic anhydrase activity, oxidative phosphorylation, high energy phosphates content and electrolytes content of the gastric mucosa. Am J Physiol 192: 476-478.
11. Terada H (1990) Uncouplers of oxidative phosphorylation. Environ Health Perspect 87: 213-218.
12. Garlid KD, Nakashima RA (1983) Studies on the mechanism of uncoupling by amine local anesthetics. Evidence for mitochondrial proton transport mediated by lipophilic ion pairs. J Biol Chem 258: 7974-7980.
13. Dabadie P, Bendriss P, Emry P, Mazat JP (1987) Uncoupling effects of local anesthetics on rat liver mitochondria. FEBS Lett 226: 77-82.
14. Top AD, Tasker RG, Ince C (2011) The microcirculation of the critically ill pediatric patient. Crit Care 15: 213.
15. Armon Y, Cooper DM, Flores R, Zanconato S, Barstow TJ (1991) Oxygen uptake dynamics during high-intensity exercise in children and adults. J Appl Physiol 70: 841-848.
16. Mittnacht AJ (2010) Near infrared spectroscopy in children at high risk of low perfusion. Curr Opin Anaesthesiol 23: 342-347.
17. Tortoriello TA, Slayer SA, Mott AR, McKenzie ED, Fraser CD, et al. (2005) A noninvasive estimation of mixed venous oxygen saturation using near-infrared spectroscopy by cerebral oximetry in pediatric cardiac surgery patients. Paediatr Anaesth 15: 495-503.
18. McQuillen PS, Nishimoto MS, Bottrell CL, Fineman LD, Hamrick SE, et al. (2007) Regional and central venous oxygen saturation monitoring following pediatric cardiac surgery: concordance and association with clinical variables. Pediatr Crit Care Med 8: 154-160.
19. Galvin EM, Niehof S, Verbruggje SJ, Maissan I, Jahn A, et al. (2006) Peripheral
flow index is a reliable and early indicator of regional block success. Anesth Analg 103: 239-243.

20. Takahashi Y, Yamaguchi S, Tezuka M, Kimura Y, Nagao M, et al. (2004) Comparison of 0.2% ropivacaine, 0.125% bupivacaine, and 0.25% bupivacaine for duration and magnitude of action in peripheral arterial blood flow induced by sympathetic block in dogs. Reg Anesth Pain Med 29: 441-445.

21. Su HH, Lui PW, Yu CL, Liew CS, Lin CH, et al. (2005) The effects of continuous axillary brachial plexus block with ropivacaine infusion on skin temperature and survival of crushed fingers after microsurgical replantation. Chang Gung Med J 28: 567-574.

22. Tighe PJ, Elliott CE, Lucas SD, Boezzaart AP (2011) Noninvasive tissue oxygen saturation determined by near-infrared spectroscopy following peripheral nerve block. Acta Anaesthesiol Scand 55: 1239-1246.

23. Dahl JB, Simonsen L, Mogensen T, Henriksen JH, Kehlet H (1990) The effect of 0.5% ropivacaine on epidural blood flow. Acta Anaesthesiol Scand 34: 308-310.

24. Murkin JM, Arango M (2009) Near-infrared spectroscopy as an index of brain and tissue oxygenation. Br J Anaesth 103 Suppl 1: 3-13.