CASE REPORT

VARIATION IN THE NERVE SUPPLY OF EXTENSOR CARPI RADIALIS BREVIS: A CASE REPORT
B. Narayana Rao¹, Praveen Vaddadi², D. A. V. S. Sesi³

HOW TO CITE THIS ARTICLE:
B. Narayana Rao, Praveen Vaddadi, D. A. V. S. Sesi. “Variation in the Nerve Supply of Extensor Carpi Radialis Brevis: A Case Report”. Journal of Evidence based Medicine and Healthcare; Volume 2, Issue 28, July 13, 2015; Page: 4143-4148, DOI: 10.18410/jebmh/2015/588

ABSTRACT: AIM: To show the anatomical variation in the nerve supply of extensor carpi radialis brevis. RESULTS: The nerve to extensor carpi radialis brevis was found arising from the superficial branch of radial nerve, i.e. the radial nerve proper. CONCLUSION: The awareness of variation or nerve supply to extensor carpi radialis brevis from superficial branch of radial nerve is clinically important of surgeons, orthopaedicians, anaesthetists, physiotherapist & plastic surgeons to avoid damage to nerve during surgery and in interpretation of results.

KEYWORDS: Ercb, Suprficial radial nerve, Posterior interosseous nerve, Compression neuropathies, Orthopaedicians, Pain management therapy.

INTRODUCTION:
- Normally radial nerve proper supplies triceps, anconeus, brachioradialis, extensor carpi radialis longus.
- Extensor carpi radialis brevis is supplied by posterior interosseous nerve (deep branch of radial nerve along with supinator.

Fig. 1: Photograph showing radial nerve in the spiral groove
Fig. 2: Photograph showing the extensor carpi radialis nerve being supplied by deep branch of radial nerve.

RN – Radial nerve; S – Superficial branch of radial nerve; D – Deep branch of radial nerve; ECRL – Extensor carpi radialis longus; ECRB – Extensor carpi radialis brevis.
CASE REPORT

AIM:
- To show the anatomical variation in the nerve supply to extensor carpi radialis brevis, found in routine dissection.

RESULTS:
- It is found that extensor carpi radialis brevis is supplied by branch of radial nerve (i.e) radial nerve proper in our dissected specimen.

DISCUSSION: The nerve supply to the extensor carpi radialis brevis muscle is studied by many authors in the past.\(^{(1,2,3,4,5,6)}\)

The standard text book did not mention about the nerve supply to the extensor carpi radialis brevis arising from the superficial branch of radial nerve i.e., the radial nerve proper.\(^{(7)}\)

The incidence of nerve supply to the extensor carpi radialis brevis muscle from superficial branch of radial nerve has been reported by,
- SALISBURY – 56.\(^{\circ}\%)\(^{(8)}\)
- AL-QATTAN – 48.\(^{\circ}\%)\(^{(9)}\)
- BRASH - 21\%.\(^{(10)}\)
- SHARADKUMAR ET AL - 42\%.\(^{(11)}\)
- Dhall, U. & Kanta, S. - 35\%.\(^{(12)}\)

In tennis elbow the muscle involves is the extensor carpi radialis brevis. The non-inflammatory, chronic degenerative changes occur in the origin of the extensor carpi radialis muscle.\(^{(13)}\)
CASE REPORT

Knowledge of variant of the nerve supply to the muscle is important before injecting corticosteroid injection in the treatment of tennis elbow.\(^{(14)}\)

The surgeon performing z-shaped tenotomy on tennis elbow to lengthen the tendon must be aware of this variation in order to avoid unwanted complications.\(^{(15,16)}\)

The extensor carpi radialis brevis may be spared in injuries to the posterior interosseous nerve, thereby explaining the preservation of wrist functions clinically after penetrating injuries which may otherwise resulted in complete wrist drop.

Similarly the injuries to the superficial branch of radial nerve, which is supposed to be sensory nerve, may lead to pain during the extension of wrist and slight weakness on extension of the wrist joint due to involvement of the nerve supply of the ecrb.\(^{(17)}\)

Extensor carpi radialis brevis has gained importance for use in free functional muscle transfer. i.e., transfer of a muscle with its motor nerve and vascular pedicle, from one site of the body to another site to restore motor function.\(^{(18)}\)

The knowledge of the variation in the nerve supply is thus important while this muscle is being harvested.

It is well known that the normal origin & course of nerve to ecrb lies very close to posterolateral aspect of the radius, a frequent site of pathology, trauma & surgical procedures.\(^{(19,20,21)}\)

The anterior approach to elbow & variations in this approach are used frequently in surgical management of proximal radial fracture as well as variety of other pathologies.\(^{(22,23)}\)

Phylogeny: In lower mammals the extensor carpi radialis longus and brevis are represented by one muscle.\(^{(24)}\) Where as in humans extensor carpi radialis longus and brevis are separate muscles having separate nerve supply. Due to anatomical variation during development extensor carpi radialis longus and extensor carpi radialis brevis has been separated but their nerve supply has not been separated coming from only the radial nerve proper.

Hence the knowledge of variation of the nerve supply of extensor carpi radialis brevis is essential in preventing injury to this nerve branch by retractors.

Thus the awareness of the nerve supply to extensor carpi radialis brevis from the superficial branch of radial nerve is clinically important for surgeons dealing with entrapment or compression neuropathies.

Orthopaedicians operating on fracture of lower end of humerus.

Anaesthetists performing pain management therapies on upper limb.

Physiotherapists doing electromyography for evaluating and recording electrical activity produced by skeletal muscle.

Plastic surgeons performing free functional muscle transfer.

CONCLUSION: The nerve supply to the extensor carpi radialis brevis from superficial branch of radial nerve is not a rare occurrence.

This should be mentioned in the standard text books.

REFERENCES:

1. Hamilton WJ. Textbook of the Human Anatomy, 2\(^{nd}\) ed, Macmillan Press Ltd., London 1976; 651.
2. Last RJ. Anatomy: Regional and Applied, 7\(^{th}\) ed, Churchill Livingstone, Edinburgh 1984; 89.
CASE REPORT

3. Kaplan EB, Taleisnik J. The wrist. In: Kaplan's Functional and Surgical Anatomy of the Hand, 3rd edn, J. B Lippincott, Philadelphia; 1984; 153-178.

4. Snell RS. Clinical Anatomy for Medical Students, 5th ed, Little Brown and Company, USA; 1995; 434.

5. Turck SL. Orthopaedic principles and their applications, 4th ed, JB Lippincott., Philadelphia; 1984; 497-498.

6. Sabistons DC. The biological basis of modern surgical practice. In: The Textbook of Surgery, 15th ed, W. B. Saunders Company, Philadelphia; 1997; 1484.

7. Williams PL, Bannister LH, Berry MM, Collins P, Dyson M, Dussek JE, et al. The Nervous system. In: Gray's Anatomy, 39th edn, Churchill Livingstone, New York; 2005; 879 – 880.

8. Salisbury CR. The nerve to the extensor carpi radialis brevis. Brit. J. Surg. 1938; 26: 95–98

9. Al-Qattan M.M. The nerve supply to the extensor carpi radialis brevis. J. Anat. 1996; 188: 249-50.

10. Brash JC. Neurovascular hila of the limb muscles. E and S Livingstone Ltd., Edinburgh; 1955; 36.

11. Sharadkumar et al: study of nerve supply of extensor carpi radialis brevis muscle IJAPBS 2278-0246

12. Dhall, U. & Kanta, S. Variations In The Nerve Supply To Extensor Carpi Radialis Brevis J Anat. Soc. India 50(2) 134-136 (2001).

13. Garden RS. Tennis elbow. J Bone Joint Surg. 1961; 43B(1): 100–106.

14. Edwards SG, Calandruccio JH. Autologous blood injections for refractory lateral epicondylitis. J Hand Surg [Am] 2003; 28(2): 272–278.

15. Boyer MI, Hastings H (1999). "Lateral tennis elbow: "Is there any science out there?"". Journal of Shoulder and Elbow Surgery 8 (5): 481–91. doi: 10.1016/S1058-2746(99)90081-2. PMID 10543604.

16. Meyer NJ, Walter F, Haines B, Orton D, Daley RA. Modeled evidence of force reduction at the extensor carpi radialis brevis origin with the forearm support band. J Hand Surg [Am] 2003; 28(2): 279–287.

17. Lluch AL, Beasley RW. Treatment of dysesthesia of the sensory branch of the radial nerve by distal posterior interosseous neurectomy. J. Hand. Surg. 1989; 14A: 121-24.

18. Binhammer P, Manktelow RT, Haswell T. Applications of the extensor carpi radialis brevis for facial reanimation. Journal of Reconstructive Microsurgery. 1994; 10: 109.

19. Prasartritha T, Liupolvanish P, Rojanakit A. A study of the posterior interosseous nerve and the radial tunnel in 30 Thai cadavers. J. Hand Surg 1993;. 18A: 107-12.

20. Crecenti SV, DeAngelis MS, DiDio LJA., Ebraheim NA, Rupp RE, DiDio AS. Innervation of the extensor carpi radialis brevis and the supinator muscles: Levels of origin and penetration of these muscular branches from the posterior interosseous nerve. Shoulder Elbow Surg. 1994; 3: 390-94.

21. Abrahms RA, Ziets RJ, Lieber RL, Botte MJ, Diego S. Anatomy of the motor branches of the radial nerve in the forearm. J. Hand Surg. 1997; 22A: 232-37.

22. Branovacki G, Hanson M, Crash R, Gonzalez M. The innervation pattern of the radial nerve at the elbow and in the forearm. J. Hand Surg. 1998; 23B (2): 167-69.
CASE REPORT

23. Thomas SJ, Yakin DE, Parry BR, Lubahn JD, Erie PA. The anatomical relationship between the posterior interosseous nerve and the supinator muscle. J. Hand Surg. 2000; 25A: 936-4
24. Bergman, R. A.; Thompson, S. A.; Afifi, A. K. & Saddeh, F. A. Copendium of Human Anatomical Variation. Urban and Schwarzenburg, Baltimore, 1988. Pp.138-9.

AUTHORS:
1. B. Narayana Rao
2. Praveen Vaddadi
3. D. A. V. S. Sesi

PARTICULARS OF CONTRIBUTORS:
1. Associate Professor, Department of Anatomy, Rangaraya Medical College.
2. Senior Resident, Department of Anatomy, Rangaraya Medical College.
3. Professor, Department of Anatomy, Rangaraya Medical College.

NAME ADDRESS EMAIL ID OF THE CORRESPONDING AUTHOR:
Dr. B. Narayana Rao,
Associate Professor,
Department of Anatomy,
Rangaraya Medical College,
Kakinada.
E-mail: narayanaraaortho@gmail.com

Date of Submission: 20/06/2015.
Date of Peer Review: 21/06/2015.
Date of Acceptance: 10/07/2015.
Date of Publishing: 13/07/2015.