Magnetism at the interface of non-magnetic Cu and C$_{60}$

Purbasha Sharangi,1 Pierluigi Gargiani,2 Manuel Valvidares,2 and Subhankar Bedanta1,a)

1) Laboratory for Nanomagnetism and Magnetic Materials (LNMM), School of Physical Sciences, National Institute of Science Education and Research (NISER), HBNI, P.O.- Jatni, 752050, India
2) Alba Synchrotron Light Source, E-08290 Barcelona, Spain

(Dated: September 2020)

The signature of magnetism without a ferromagnet in a non-magnetic heterostructure is novel as well as fascinating from fundamental research point of view. It has been shown by Al'Mari et al. that magnetism can be induced at the interface of Cu/C$_{60}$ due to change in density of states. However, the quantification of such interfacial magnetic moment has not been performed yet. In order to quantify the induced magnetic moment in Cu, we have performed X-ray magnetic circular dichroism (XMCD) measurements on Cu/C$_{60}$ multilayers. We have observed room temperature ferromagnetism in Cu/C$_{60}$ stack. Further XMCD measurements show that $\sim 0.01 \mu_B$/atom magnetic moment has been induced in Cu at the Cu/C$_{60}$ interface.

Organic semiconductors (OSC) are potential candidates for spintronics based applications due to various reasons such as low spin orbit coupling (light weight element), mechanical flexibility, and versatility of material synthesis1–4. Buckminsterfullerene (C$_{60}$) has drawn immense research interest in organic spintronics due to its structural simplicity, robustness, and high electron affinity. Large spin dependent transport length and large spin relaxation time ($> 1\mu$s) have been observed using C$_{60}$ as a spacer layer in between two ferromagnet (FM) layers. Due to the absence of hydrogen and associated hyperfine interaction, C$_{60}$ exhibits less spin scattering. Hence, it has large spin dependent transport length in comparison to conventional inorganic semiconductors. Spin polarized charge transfer occurs at the FM-OSC interface due to orbital hybridization leading to the modification of density of states. However, the quantification of such electronic states (DOS) of the Cu layer and a band splitting, which leads to magnetic ordering. Density functional theory calculation and high-resolution angle-resolved photoemission spectroscopy revealed that the modification in the electronic structure occurs at the interface between a highly ordered C$_{60}$ monolayer and Cu (111) surface. In this context it is desired to quantify the magnetic moment at the interface of such non-FM/OSC layers. In this paper we have studied the magnetic properties of Cu/C$_{60}$ heterostructure and quantified the magnetic moment induced in Cu using XMCD sum rules.

We have prepared multilayers of Cu/C$_{60}$ on Si (100) substrate using DC magnetron sputtering and thermal evaporation techniques for Cu and C$_{60}$, respectively, in a multi-deposition HV chamber manufactured by Mantis Deposition Ltd., UK. The base pressure of the deposition chamber was better than 5×10^{-8} mbar. All the Cu and C$_{60}$ layers have been deposited without breaking the vacuum. The deposition pressure was 5×10^{-3} mbar for Cu and 1×10^{-7} mbar for C$_{60}$ evaporation. The Cu and C$_{60}$ layers were deposited at a rate of 0.1 and $0.1 - 0.15$ Å/s, respectively. For better growth of Cu, a 5 nm thick Ta layer was taken as a seed layer. The schematic (not to be scaled) of the prepared samples structure is shown in figure 1. The sample structure is the following: Si/Ta(3)/C$_{60}$(X)/[Cu(Y)/C$_{60}$(Z)]$_n$/Ta(t), where X, Y, Z and t are in nm and the values are referred in figure 1. To prevent oxidation, a capping layer of Ta has been deposited on top of C$_{60}$.

FIG. 1. Schematic (not to be scaled) of the prepared samples structure.

a)Electronic mail: sbedanta@niser.ac.in
To estimate the interdiffusion of the Cu/C$_{60}$ and C$_{60}$/Cu, we have performed X-ray reflectivity (XRR) measurements with the X-ray diffractometer (XRD) manufactured by Rigaku. We have carried out in-plane field dependent magnetic measurements (M-H) by superconducting quantum interferences device (SQUID) magnetometry (MPMS3) manufactured by Quantum Design, USA. The magnetic field was applied along the film plane.XMCD is the perfect tool to determine the localized magnetization and quantify the element specific magnetic moment. The XMCD measurements were performed at BOREAS beamline at Alba Synchrotron Light Source, E-08290 Barcelona, Spain15. In order to excite the core electron, circularly polarized X-rays were directed onto the sample with an energy of 80-1500 eV and maximum resolution of $\Delta E/E = 10^{-4}$. The electrons released from the sample via this process were collected as a drain current in a total electron yield (TEY) mode. To saturate the sample, ± 6 T magnetic field was applied collinear to the impinging X-rays. The energy was calibrated at the beginning of the experiment with the known CoO reference. All the measurements were performed in a UHV condition with a base pressure better than 2×10^{-10} mbar and at a sample temperature of 1.7 K.

Interference plays an important role to induce magnetism at Cu/C$_{60}$ interface. Generally the interdiffusion of metal/OSC interface is higher than that of OSC/metal. From XRR fit (shown in supplementary figure S1) we found that interdiffusion is present at both the Cu and C$_{60}$ interfaces. The thickness of the interdiffused layers are 0.58 and 0.53 nm for the Cu/C$_{60}$ and C$_{60}$/Cu interfaces, respectively. Figure 2 shows the hysteresis loops measured by SQUID magnetometer at 10 and 300 K. It is observed that all the samples exhibit ferromagnetism even when no ferromagnetic element is present in the samples. The coercivities (H_C) at 10 K for samples S1, S2 and S3 are 6.40, 6.55 and 6.50 mT, respectively. Further, at 300 K, the H_C values for samples S1, S2 and S3 are 3.60, 3.80 and 3.75 mT, respectively. It has been observed that magnetization increases with number of Cu/C$_{60}$ interfaces, which is in agreement with the previous report11. Magnetization also depends on the thickness of the Cu layer. From the hysteresis loops we have observed that magnetization is slightly higher for samples S2 and S3, where the thickness of Cu is 1.8 nm.

Magnetic moment is observed in the samples probably due to the charge transfer and the molecular coupling between the metal (Cu) and C. C$_{60}$ induced interface reconstruction have been observed for C$_{60}$/Au (110)13, C$_{60}$/Pt (111)12, C$_{60}$/Al (111)13, C$_{60}$/Ag (100)16, and even for C$_{60}$/Ag (111)17 and C$_{60}$/Cu (111)18 systems. Reconstructed C$_{60}$/Cu (111) interface has a 1-3 electron transfer per C$_{60}$ cage whereas, an unreconstructed one receives a much smaller amount (< 0.8e-)19,20. The origin of the charge state of C$_{60}$ to a reconstructed interface is due to (4 x 4) 7-atom vacancy holes in the surface21. The possible reason of this induced magnetic moment is hy-
FIG. 3. XAS and XMCD spectra of the sample S2 measured at (a) 6 T, (b) -6 T and (c) 0 T magnetic field at Cu L_{2,3} edges. All the measurements were performed at 1.7 K.

FIG. 4. Cu L_{2,3} XAS (a) and XMCD (b) spectra and their integrations calculated from the spectra are shown for the sample S2 at -6 T. The green solid line is the integral of the XAS after subtracting two-step-like function from XAS spectra. The red solid line represents the spectra after subtracting a two-step function from XAS spectra. The p, q and r are the three integrals needed in the sum-rule analysis.

Hybridization between d_{Cu} and $p_{C_{60}}$ orbitals$^{11,22-24}$. Cu has the ability to transfer up to 3 electrons per C_{60} cage due to the high electron affinity of C, which modifies the density of state of Cu11,25. Further, the modified density of states of Cu satisfies the Stoner Criteria and exhibits ferromagnetism11.

XMCD determines the difference between two X-ray absorption spectra (XAS) recorded under a magnetic field, one taken with right circularly polarized x-rays and the other one with left circularly polarized x-rays. Analysis of the XMCD spectrum gives information about the electronic and magnetic properties of the atoms, such as orbital and spin angular momentum. Using magneto-optical sum rules one can obtain the ground state expectation values of the orbital (L_z) and the spin (S_z) angular momentum$^{26-29}$. Hence, XMCD is an efficient experimental tool to study element specific magnetic properties. For 3d transition metals the experiments are performed at the $L_{2,3}$ absorption edges ($2p \rightarrow 3d$ transition), since the magnetic moment is mostly carried out by the $3d$ electrons30.

Figure 3 shows the XAS and XMCD spectra of the sample S2 at (a) 6 T, (b) -6 T, and (c) 0 T magnetic field, respectively. The same for sample S3 are shown in supplementary (figure S2). The sign of the dichroism was changed when a negative magnetic field was applied, confirming that the measured signal was not due to spurious experimental effects. To compare the XMCD intensities we have normalized XAS spectra at L_3 edge. Integration of XMCD signals at L_2 and L_3 edges lead to the orbital and spin magnetic moment under the applications of magneto-optical sum rules$^{26,28-30}$. Cu $L_{2,3}$ edges spectra are observed at 933.4 eV and 953.06 eV, which correspond to the transition from $2p$ to $3d$ state. A very small difference between the L_2 and L_3 edge XMCD intensities offers a small anisotropic orbital magnetic moment in Cu31. We have observed a XMCD signal from the pre-peak which corresponds to Cu$_2$O (930.8 eV) similar to the results reported by Ma’Mari et al.11,32,33. However, we have also observed a significant XMCD signal from the Cu L_2 and L_3 peaks. It has been shown by Ma’Mari et al. that on introduction of Al or Al$_2$O$_3$ between Cu and C_{60} layers resulted in vanishing of magnetization. This indicates that the interface between Cu/C_{60} plays a big role in inducing the magnetism at Cu11. The Cu atoms in Co/Cu multilayers exhibit induced magnetism.
due to exchange coupling between d electrons of Cu and Co layers. Orbital and spin angular momentum are calculated using the following sum rule formula:

$$m_{\text{orb}} = \frac{-4q(10-n_{3d})}{3r}$$ \hspace{1cm} (1)

$$m_{\text{spin effective}} = \frac{-(6p-4q)(10-n_{3d})}{r}$$ \hspace{1cm} (2)

where, $q = \int_{L_{2}+L_{3}}(\mu_{+}-\mu_{-})dE$, $p = \int_{L_{3}}(\mu_{+}-\mu_{-})dE$, $r = \int_{L_{2}+L_{3}}(\mu_{+}+\mu_{-})dE$, m_{orb} and $m_{\text{spin effective}}$ are the orbital and spin magnetic momentum in units of μ_{B}/atom, respectively. n_{3d} is the 3d electron occupation number of the specified transition metal. L_{2} and L_{3} denote the integration range. The ratio of orbital to spin magnetic moments has been calculated using the following equation:

$$\frac{m_{\text{orb}}}{m_{\text{spin effective}}} = \frac{-2q}{9p-6q}$$ \hspace{1cm} (3)

Figure 4 shows $L_{2,3}$ edge XMCD, summed XAS spectra and the integrations calculated from the spectra for sample S2 at -6 T. The same for sample S3 at 6 T field has been shown in figure 5. We have subtracted a two-step function from XAS spectra before the integration to remove all the contribution which does not come from the 2p - 3d transition. The integral for the whole $L_{3}+L_{2}$ range (q value) and for the L_{3} edge (p value) can be precisely determined from the integrated spectrum, which are shown in figure 4 and 5. The r value corresponds to the XAS integral in the individual sum rule calculation. Using XMCD sum rules we have calculated the orbital and spin magnetic moments for Cu

The sum rule analysis for sample S2 at 6 T field also yielded $0.0071 \mu_{B}/\text{atom}$ magnetic moment induced in Cu (shown in supplementary figure S3). Although paramagnetism in Cu has been reported previously, our SQUID magnetometry and XMCD signal confirm that the magnetism is coming from the Cu/C$_{60}$ interface is not due to the metallic state of Cu.

In conclusion, we have investigated the induced magnetic moment in Cu/C$_{60}$ interface via SQUID magnetometry and XMCD. Due to the charge transfer at the reconstructed Cu/C$_{60}$ interface, the density of state of Cu is modified and exhibits a magnetic moment of $0.01 \mu_{B}/\text{atom}$. Future work may bring new insights to (i) which other non-magnetic metals can also exhibit ferromagnetism in such NM/OSC heterostructures, (ii) why Cu exhibits such FM only at ultrathin limit; (iii) exploration with other organic materials to exhibit similar physical phenomena etc. The answers to these questions will have significant importance in the field of organic spintronics.

This work is financially supported by Department of Atomic Energy, and Department of Science and Technology - Science and Engineering Research Board, Govt. of India (DST/EMR/2016/007725). The authors thank NFFA-Europe for funding the XMCD measurement (proposal ID488). The authors would also like to thank Dr. Srijani Mallik for discussion and help during sample preparations.
C. Deranlot, P. Graziosi, L. Hueso, I. Bergenti, V. Dediu, et al., “Unravelling the role of the interface for spin injection into organic semiconductors,” Nature Physics 6, 615 (2010).

7 T. D. Nguyen, F. Wang, X.-G. Li, E. Ehrenfreund, and Z. V. Vardeny, “Spin diffusion in fullerene-based devices: morphology effect,” Physical Review B 87, 075205 (2013).

8 S. Sanvito, “Molecular spintronics: The rise of spinference science,” Nature Physics 6, 562 (2010).

9 F. Djighoul, F. Ibrahim, M. Candoni, M. Bowen, L. Joly, S. Boulari, P. Oehresser, F. Bertran, P. Le Fèvre, P. Thakur, et al., “Direct observation of a highly spin-polarized organic spinference at room temperature,” Scientific reports 3, 1277 (2013).

10 T. Moorsom, M. Wheeler, T. M. Khan, F. Al Ma’Mari, C. Knane, S. Langridge, A. Bedoya-Pinto, L. Hueso, G. Teobaldi, V. K. Lazarov, et al., “Spin-polarized electron transfer in ferromagnet/c 60 interfaces,” Physical Review B 90, 125311 (2014).

11 T. L. A. Tran, P. K. J. Wong, M. P. de Jong, W. G. van der Wiel, Y. Zhan, and M. Fahlman, “Hybridization-induced oscillatory magnetic polarization of c 60 orbitals at the c 60/fe (001) interface,” Applied physics letters 98, 222505 (2011).

12 S. Mallik, S. Mattauch, M. K. Dalai, T. Brückel, and S. Bedanta, “Effect of magnetic fullerene on magnetization reversal created at the fe/c 60 interface,” Scientific reports 8, 5515 (2018).

13 T. K. J. Wong, M. P. de Jong, W. G. van der Wiel, Y. Zhan, M. Fahlman, and M. P. de Jong, “Magnetic nanojunctions created by c 60 adsorption on cu (111) surfaces,” Physical Review B 91, 014401 (2015).

14 F. Al Ma’Mari, T. Moorsom, G. Teobaldi, W. Deacon, T. Prokscha, H. Luetkens, S. Lee, E. G. Sterbinsky, D. A. Arena, D. A. MacLaren, et al., “Beating the stoner criterion using molecular interfaces,” Nature 524, 69 (2015).

15 R. Felici, M. Pedio, F. Borgatti, S. Iannotta, M. Capozzi, G. Ciullo, and A. Stierle, “X-ray-diffraction characterization of pt (111) surface nanopatterning induced by c 60 adsorption,” Nature materials 4, 688 (2005).

16 M. Steggl, A. De Vita, and A. Baldreschi, “Adatom-vacancy mechanisms for the c 60/a l (111)-(6 x 6) reconstruction,” Physical review letters 91, 166101 (2003).

17 I. Shoup, D. Arena, J. A. Borchers, B. J. Kirby, A. Caruana, C. Kinane, S. Langridge, M. Rogers, and O. Cespedes, “Structural studies of magnetic c 60/cu multilayers,” AIP Advances 10, 025312 (2020).

18 A. Barla, J. Nicolás, D. Cocco, S. M. Valvidares, J. Herrero-Martín, F. Gargiani, J. Moldes, C. Ruget, E. Pellegrin, and S. Ferrier, “Design and performance of boreas, the beamline for resonant x-ray absorption and scattering experiments at the al synchrotron light source,” Journal of synchrotron radiation 23, 1507–1517 (2016).

19 W. W. Pai and C.-L. Hsu, “Ordering of an incommensurate molecular layer with adsorbate-induced reconstruction: C 60/ag (100),” Physical Review B 68, 121403 (2003).

20 H.-I. Li, K. Puosi, K. Hanna, L.-L. Wang, D. D. Johnson, H.-F. Cheng, H. Shin, S. Curtarolo, W. Moritz, J. Smerdon, et al., “Surface geometry of c 60 on ag (111),” Physical review letters 103, 056101 (2009).

21 W. W. Pai, C.-L. Hsu, M.-C. Lin, K. Lin, and T. Tang, “Structural relaxation of adlayers in the presence of adsorbate-induced reconstruction: C 60/cu (111),” Physical Review B 69, 125405 (2004).

22 K.-D. Tsuei, J.-Y. Yuh, C.-T. Tseng, R.-Y. Chu, S.-C. Chung, and K.-L. Tsang, “Photoemission and photoabsorption study of c 60 adsorption on cu (111) surfaces,” Physical Review B 56, 15412 (1997).

23 T.-L. Wang and H.-P. Cheng, “Rotation, translation, charge transfer, and electronic structure of c 60 on cu (111) surface,” Physical Review B 69, 045404 (2004).

24 W. W. Pai, H. Jeng, C.-M. Cheng, C.-H. Lin, X. Xiao, A. Zhao, X. Zhang, G. Xu, X. Shi, M. Van Hove, et al., “Optimal electron doping of a c 60 monolayer on cu (111) via interface reconstruction,” Physical review letters 104, 036103 (2010).

25 F. Al Ma’Mari, M. Rogers, S. Alghamdi, T. Moorsom, S. Lee, T. Prokscha, H. Luetkens, M. Valvidares, G. Teobaldi, M. Flodström, et al., “Emergent magnetism at transition-metal–nanocarbon interfaces,” Proceedings of the National Academy of Sciences 114, 5583–5587 (2017).

26 A. Tamai, A. Seitsonen, F. Baumberger, M. Hengsberger, Z.-X. Shen, T. Greber, and J. Osterwalder, “Electronic structure at the c 60/metal interface: an angle-resolved photoemission and first-principles study,” Physical Review B 77, 075134 (2008).

27 K. V. Raman and J. S. Moodera, “Materials chemistry: A magnetic facelift for non-magnetic metals,” Nature 524, 42 (2015).

28 S. Cho, Y. Yi, J. Soo, C. Kim, M. Noh, K.-H. Yoo, K. Jeong, and C.-N. Whang, “Origin of charge transfer complex resulting in ohmic contact at the c 60/cu interface,” Synthetic metals 157, 160–164 (2007).

29 B. Thole, P. Carra, F. Sette, and G. Van der Laan, “X-ray circular dichroism as a probe of orbital magnetization,” Physical review letters 68, 1943 (1992).

30 P. Carra, B. Thole, M. Altarelli, and X. Wang, “X-ray circular dichroism and local magnetic fields,” Physical Review Letters 70, 694 (1993).

31 C. Chen, Y. Izderza, H.-J. Lin, N. Smith, G. Meigs, E. Chaban, G. Ho, E. Pellegrin, and F. Sette, “Experimental confirmation of the x-ray magnetic circular dichroism sum rules for iron and cobalt,” Physical review letters 75, 152 (1995).

32 J. Störh, “Exploring the microscopic origin of magnetic anisotropies with x-ray magnetic circular dichroism (xmcld) spectroscopy,” Journal of Magnetism and Magnetic Materials 200, 470–497 (1999).

33 B. Thole, G. Van der Laan, J. Fuggle, G. Sawatzky, R. Karnatak, and J.-M. Esteva, “3d x-ray-absorption lines and the 3 d 9 4 f n+1 multiplets of the lanthanides,” Physical Review B 32, 5107 (1985).

34 J. Okabayashi, T. Koyama, M. Suzuki, M. Tsujikawa, M. Shirai, and D. Chiba, “Induced perpendicular magnetization in a cu layer inserted between co and pt layers revealed by x-ray magnetic circular dichroism,” Scientific reports 7, 46132 (2017).

35 G. Van der Laan, R. Patrick, C. Henderson, and D. Vaughan, “Oxidation state variations in copper minerals studied with cu 2p x-ray absorption spectroscopy,” Journal of Physics and Chemistry of Solids 53, 1185–1190 (1992).

36 M. Greiner, T. Jones, B. Johnson, T. Rocha, Z.-J. Wang, M. Armbrüster, M. Willinger, A. Knop-Gericke, and R. Schlägl, “The oxidation of copper catalysts during ethylene epoxidation,” Physical Chemistry Chemical Physics 17, 25073–25089 (2015).

37 M. Samant, J. Störh, S. Parkin, G. Held, B. Hermensmeier, F. Herman, M. Van Schilfgaarde, L.-C. Duda, D. Mancini, N. Wassdahl, et al., “Induced spin polarization in cu spacer layers in co/cu multilayers,” Physical review letters 72, 1112 (1994).

38 H. Ebert and S. Man’kovsky, “Field-induced magnetic x-ray dichroism in paramagnetic solids: A new magneto-optical effect,” Physical review letters 90, 077404 (2003).

39 A. Yaouanc, P. D. de Réotier, and G. Van der Laan, “Comment on ‘field-induced magnetic circular x-ray dichroism in paramagnetic solids: A new magneto-optical effect’,” Physical review letters 93, 019701 (2004).
Supplementary Information

Magnetism at the interface of non-magnetic Cu and C$_{60}$

Purbasha Sharangi,1 Pierluigi Gargiani,2 Manuel Valvidares,2 and Subhankar Bedanta1.

1) Laboratory for Nanomagnetism and Magnetic Materials (LNMM), School of Physical Sciences, National Institute of Science Education and Research (NISER), HBNI, P.O.- Jatni, 752050, India

2) Alba Synchrotron Light Source, E-08290 Barcelona, Spain

We have performed X-ray reflectivity (XRR) to quantify the interdiffusion of Cu/C$_{60}$ and C$_{60}$/Cu. Figure S1 shows the XRR data and its best fit for the sample S2. We have fitted the XRR data using GenX software. From XRR fit we have seen that interdiffusion is present at both the Cu and C$_{60}$ interfaces. The thickness of the interdiffused layer are 0.58 and 0.53nm for the Cu/C$_{60}$ and C$_{60}$/Cu interfaces.

![XRR fit for sample S2](image)

Figure S2 (a-c) show the X-ray absorption spectra (XAS) and X-ray magnetic circular dichroism (XMCD) spectra for sample S3 at 6 T, -6 T and 0 T, respectively.

We have performed the sum rule analysis of XMCD data for sample S2 at 6 T. Figure S3 shows the XAS and XMCD spectra and their integration for sample S2. The calculated magnetic moment for Cu is 0.0071 μ_B/atom.

1Electronic mail: sbedanta@niser.ac.in

aElectronic mail: sbedanta@niser.ac.in
FIG. 2. XAS and XMCD spectra of the sample S3 measured at (a) 6 T, (b) -6 T and (c) 0 T magnetic field at Cu $L_{2,3}$ edges. All the measurements were performed at 1.7 K.

FIG. 3. Cu $L_{2,3}$ XAS (a) and XMCD (b) spectra and their integrations calculated from the spectra are shown for the sample S2 at 6 T. The red dotted line is the integral of the XAS after subtracting two-step-like function from XAS spectra. The green solid line represents the spectra after subtracting a two-step function from XAS spectra. The p, q and r are the three integrals needed in the sum-rule analysis.