SIGNED CLASP NUMBERS AND FOUR-GENUS BOUNDS

CHARLES LIVINGSTON

Abstract. There exist knots having positive and negative four-dimensional clasp numbers zero but having four-genus, and hence clasp number, arbitrarily large. Such examples were first constructed by Allison Miller, answering a question of Juhász–Zemke. Further examples are constructed here, complementing those of Miller in that they are of infinite order in the concordance group, rather than being two-torsion.

1. Introduction

Let $q = p^2$, where p is an odd prime integer. We consider the two-bridge knot $B(q, 2)$, abbreviated B_q, which can also be described as the k-twisted positive Whitehead double of the unknot, $D_+(U, k)$, where $k = (q - 1)/4$. Figure 1 is an illustration of B_q in which the k in the box denotes k full right-handed twists. If $k = 1$ in the diagram, the resulting knot is the figure eight. We prove the following theorem, which holds in the smooth and topological locally-flat categories.

Theorem 1. If $p \geq 5$ is prime and $q = p^2$, then there exists a real number $c_p > 0$ such that the four-genus satisfies $g_4(nB_q) \geq c_p n$ for all $n > 0$.

![Figure 1. The knot B_q, where $k = (q - 1)/4$ denotes full right-handed twists.](image)

Finding this result was motivated by a question of Juhász–Zemke [7] concerning signed four-dimensional clasp numbers. Let $c(K)$ denote the *four-dimensional clasp number*: this is the minimum value of m for which K bounds a smooth immersed disk in B^4 with m double points. Let $c^+(K)$ denote the minimum value of m for which K bounds a smooth disk in B^4 with m positive double points, and define $c^-(K)$ similarly, minimizing negative double points. In [7] it was asked whether $c(K) - (c^+(K) + c^-(K))$ can be arbitrarily large.

Miller [10] provided the first examples answering the Juhász–Zemke question positively. It follows from Theorem 1 that the knots B_q are also examples. From the diagram it is clear that B_q, and hence nB_q, can be unknotted using only positive, or only negative, crossing changes. Hence, $c^+(nB_q) = 0$. If nB_q bounds a disk in B^4 with a double points, then those double points could be resolved to form an embedded surface of genus a; it follows that $g_4(nB_q) \leq c(nB_q)$ and thus Theorem 1 implies $c(nB_q) \geq c_p n$.

The examples of this paper are complementary to Miller’s. The examples of [10] are all amphichiral knots and thus satisfy $c^+(2K) = c^-(2K) = c(2K) = 0$; stated differently, the knots are of order two in the knot concordance group. In contrast, the fact that $c(nB_q) > 0$ for all $n > 0$ implies that B_q is of infinite order in the concordance group.

Remarks.

This work was supported by a grant from the National Science Foundation, NSF-DMS-1505586.
Acknowledgements. This is essentially the key numeric computation of [1]. The invariant restrict attention to even values of \(H \) generator of \(\text{im} \) the immediate consequence of [1, Theorem 3]. Theorem 3. We isolate the result we need. In this statement, \(\sigma_2 \) permits Jiang’s result to be improved to give a linearly increasing genus bound. The proof of Theorem 1 provides a specific value of \(c_p \) that is close to, but always less than, 1/2. For instance, we find \(c_5 = 1/4 \) and \(c_7 = 5/14 \). Finding any genus one knot \(K \) for which \(c^+(K) = c^-(K) = 0 \) and \(g_4(nK) \geq n/2 \) for all \(n \geq 1 \) appears to be especially challenging.

The standard Seifert surface \(F_q \) for \(B_q \) contains simple closed curves of framing \(\frac{q-1}{2} \) and \(-1 \) that are unknotted in \(S^3 \). Using these curves we can construct an unknotted essential curve \(\alpha \) on the Seifert surface \(G \) for \(B_q \# \frac{q-1}{2} B_q = \frac{q^2+3}{2} B_q \) of Seifert framing 0. Surgery can be performed on \(G \) along \(\alpha \) to produce a surface \(B^4 \) bounded by \(\frac{q^2+3}{2} B_q \) of genus one less than the genus of \(G \); that is, it is of genus \(\frac{q-1}{2} \). Thus, \(g_4(\frac{q^2+3}{2} B_q) \leq \frac{q-1}{2} \). It follows that \(g_4(nB_q) \) is asymptotically bounded above by \((\frac{q-1}{2})n \).

The invariants studied here are all knot concordance invariants. From a modern perspective it would be interesting to prove the analog of Theorem 1 for a family of topologically slice knots.

Acknowledgements. I appreciate helpful feedback from Pat Gilmer and Allison Miller. Comments of a referee of an early version of this paper led to significant improvements.

2. Casson-Gordon invariants and four-genus bounds

For a knot \(K \), let \(M_2(K) \) denote its 2-fold branched cover and let \(\chi: H_1(M_2(K)) \to \mathbb{C}^* \) be a character taking values in the group of units generated by \(e^{2\pi i/q} \), where \(q \) is a prime power. (Such characters are naturally identified with homomorphism \(\chi: H_1(M_2(K)) \to \mathbb{Z}_q \).) In [1], Casson and Gordon defined two rational-valued invariants, \(\sigma(K, \chi) \) and \(\sigma_1 \tau(K, \chi) \). The first is more readily computable in the case that \(M_2(K) \) is a lens space; the second provides an obstruction to the knot being slice. They are related by the following result, an immediate consequence of [1] Theorem 3.

Theorem 2. If \(M_2(K) \) is a lens space and \(\chi: H_1(M_2(K)) \to \mathbb{Z}_q \) is a nontrivial character, then

\[
|\sigma(K, \chi) - \sigma_1 \tau(K, \chi)| \leq 1.
\]

Proof. This is essentially the key numeric computation of [1]. The invariant \(\sigma(K, \chi) \) is defined in terms of signatures of Hermitian forms and is thus symmetric: \(\sigma(K, \chi^*) = \sigma(K, \chi^{−1}) = \sigma(K, \chi^{p−1}). \) This permits us to restrict attention to even values of \(r \): \(\{\sigma(B_q, \chi^{2r})\}_{0 < r < p/2} \). In [1] it is shown that \(\sigma(B_q, \chi^{2r}) = 4r^2 - 2pr + 1 \) for \(0 < r < p/2 \). (The result appears on page 196, with the values “m” and “n” there having the value \(p \) in our application.)

2.1. Computing \(\sigma(B_q, \chi^r) \) for \(r \neq 0 \mod p \). We have the following result.

Theorem 3. Let \(q = p^2 \), where \(p \) is an odd prime. Let \(\chi \) denote a character that takes value \(e^{2\pi i/p} \) on some generator of \(H_1(M_2(B_q)) \cong \mathbb{Z}_q \). Then

\[
\{\sigma(B_q, \chi^r)\}_{0 < r < p} = \{4r^2 - 2pr + 1\}_{0 < r < p/2}.
\]

Proof. This is essentially the key numeric computation of [1]. The invariant \(\sigma(K, \chi) \) is defined in terms of signatures of Hermitian forms and is thus symmetric: \(\sigma(K, \chi^*) = \sigma(K, \chi^{−1}) = \sigma(K, \chi^{p−1}). \) This permits us to restrict attention to even values of \(r \): \(\{\sigma(B_q, \chi^{2r})\}_{0 < r < p/2} \). In [1] it is shown that \(\sigma(B_q, \chi^{2r}) = 4r^2 - 2pr + 1 \) for \(0 < r < p/2 \). (The result appears on page 196, with the values “m” and “n” there having the value \(p \) in our application.)

2.2. Computing \(\sigma_1 \tau(B_q, \chi^0) \). In general, there are few methods available for computing \(\sigma_1 \tau(K, \chi) \). However, in the case that \(K \) is of three-genus one and is algebraically slice, the invariant is determined by the Levine-Tristram signature functions of certain knots formed as simple closed curves on a genus one Seifert surface. This is a consequence of results related to companionship proved independently by Cooper [2], Gilmer [3], and Litherland [8]. The paper [5] presents a more recent exposition. We isolate the result we need. In this statement, \(\sigma_K(\omega) \) denotes the Tristram-Levine signature function defined on the unit circle in \(\mathbb{C}^* \).

Theorem 4. Suppose that \(K \) bounds a genus one Seifert surface \(F \) and \(H_1(M_2(K)) \cong \mathbb{Z}_q \) with \(q = p^2 \) for some prime \(p \). Suppose that \(\alpha \) is an essential simple closed curve on \(F \) for which the value \(V(\alpha, [\alpha]) = 0 \), where \(V \) is the Seifert form of \(F \). Then for \(\chi: H_1(M_2(K)) \to \mathbb{Z}_p \subset \mathbb{C}^* \),

\[
\sigma_1 \tau(K, \chi) = 2\sigma_\alpha(\zeta^r),
\]

for some \(r \), where \(\chi(x) = \zeta \in \mathbb{C}^* \) for a generator \(x \) in \(H_1(M_2(K)) \).
The Levine-Tristram signature function satisfies \(\sigma_K(1) = 0 \) for all \(K \). Thus we have the following corollary when applied to \(\chi^0 \), which is trivial.

Corollary 5. Suppose that \(K \) bounds a genus one Seifert surface \(F \), \(H_1(M_2(K)) \cong \mathbb{Z}_q \), and \(V(\alpha, \alpha) = 0 \) for a simple closed curve \(\alpha \) representing a nontrivial homology class, \([\alpha] \in H_1(F)\). Then \(\sigma_1 \tau(K, \chi^0) = 0 \) for all \(\chi \).

2.3. Bounds on \(\sigma_1 \tau(B_q, \chi^r) \).

Theorem 6. Assume \(q = p^2 \) where \(p \geq 5 \) is an odd prime.

- There exists a generator \(\chi \) of the group of order \(p \) characters on \(H_1(M_2(B_q)) \) such that \(\sigma_1 \tau(B_q, \chi) \leq \frac{9p^2}{4} \).
- \(\sigma_1 \tau(B_q, \chi^r) \leq 0 \) for all \(r \).

Proof. We consider the function \(f(r) = 4r^2 - 2pr + 1 \) that appears in Theorem \(5 \) as a real quadratic in the variable \(r \). Its minimum occurs at \(p/4 \). The closest integer point to \(p/4 \) is either \((p - 1)/4 \) or \((p + 1)/4 \) depending on whether \(p \equiv 1 \) mod 4 or \(p \equiv 3 \) mod 4. In both cases the value at this point is \((5 - p^2)/4 < -1\). Since \(\sigma(B_q, \chi^r) \) and \(\sigma_1 \tau(B_q, \chi^r) \) differ by at most one, we have the first statement.

For integers \(r \) with \(1 \leq r \leq p/2 \), the maximum value of the quadratic \(f(r) \) must be at an endpoint, either \(r = 1 \) or \(r = (p - 1)/2 \). We compute \(f(1) = (5 - 2p) \) and \(f((p - 1)/2) = 2 - p \). The larger of the two is \(2 - p < 1 \). Even upon adding 1, this is negative. Thus, if \(\sigma_1 \tau(B_q, \chi^r) \) were to be positive for some \(r \), it would have to be at \(r = 0 \), where the value was shown to be 0 in Corollary \(5 \).

\[\square \]

3. The genus bound

The proof of Theorem \(1 \) depends on the following special case of a theorem of Gilmer \(3 \). Theorem 1] that relates values of \(\sigma_1 \tau(K, \chi) \) to \(g_4(K) \).

Theorem 7. Let \(K \) be a knot for which \(H_1(M_2(K)) \cong (\mathbb{Z}_q)^n \), where \(q \) is a prime power. If \(g_4(K) \leq n/2 \) and the classical signature of \(K \) satisfies \(\sigma(K) = 0 \), then there is a subgroup \(M \subset (\mathbb{Z}_q)^n \subset H_1(M_2(K)) \) of order at least \(q^{(n-2g_4(K))/2} \) such that for all \(\chi \in M \),

\[|\sigma_1 \tau(K, \chi)| \leq 4g_4(K) \]

We will refer to the subgroup \(M \) as a *metabolizer*. In the statement of Gilmer’s theorem in \(3 \) there is an additional term \(\mu(K, \chi) \), but prior to the statement of that theorem he points out that \(\mu(K, \chi) = 0 \) in the case of characters \(\chi \) of prime power order.

3.1. Proof of Theorem 1.

The continuing assumption is that \(q = p^2 \) where \(p \geq 5 \) is a prime. Here is a restatement of the theorem with the value of \(c_p \) specified.

Theorem 1 For every odd prime \(p \geq 5 \), let \(c_p = (\frac{1}{2} - \frac{8}{p^2 + 7})n \). Then for \(q = p^2 \), \(g_4(nB_q) \geq c_p n \).

Proof. We will first assume that \(n \) is such that \(g_4(nB_q) < n/2 \) and find a value of \(c_p < 1/2 \) for which \(g_4(nB_q) \geq c_p n \) for all such \(n \). Then, in any cases that \(g_4(nB_q) \geq n/2 \) we will certainly also have that \(g_4(nB_q) \geq c_p n \).

We abbreviate \(g_4(nB_q) = g \). We have the \(H_1(nB_q) \cong (\mathbb{Z}_q)^n \). The metabolizer \(M \) given by Theorem \(7 \) has order at least \(p^{(n-2g)/2} \). Since each element in \(M \) has order at most \(p^2 \), an independent set of generators of \(M \) must have at least \(p^{(n-2g)/2} \) elements. Since the value is an integer, we can take the ceiling and let \(d = \lceil \frac{p^{(n-2g)/2}}{2} \rceil \).

Represent a set of generators of \(M \) as vectors in \((\mathbb{Z}_q)^n \). Together these can be used to form the rows of a matrix with at least \(d \) rows. Row operations and column interchanges can convert this into a matrix for which the top left \(d \times d \) block is an upper triangular matrix with nonzero diagonal entries and with the further property that rows corresponding to diagonal entries divisible by \(p \) have all their entries divisible by \(p \). We can multiply each of the elements of \(M \) that correspond to these rows by some element in \(\mathbb{Z}_q \) so that the first non-zero entry is \(p \). Further row operations can transform this so that the top left \(d \times d \) block is diagonal with all entries \(p \).

The sum of the vectors formed from the first \(d \) rows of that matrix is an element of \(M \) for which the first \(d \) values are all \(p \). This element can be multiplied by \(k \) so that the \(d \) diagonal entries are \(kp \). We can choose
k so that the character χ on $H_1(B_q)$ that corresponds to kp is the same as χ given in Theorem 6 for which $
abla_1(B_q, \chi) \leq (9 - p^2)/4$. The vector corresponds to a character χ: $H_1(M_3(nB_q)) \to \mathbb{C}^*$ taking values among p-roots of unity.

Applying the fact that $\nabla_1(B_q, \chi) \leq 0$ for all χ, along with the additivity of ∇_1 (see 4), after taking absolute values we have

$$d(\frac{p^2 - 9}{4}) = \frac{(n - 2g)(p^2 - 9)}{8} \leq |\nabla_1(nB_q, \chi)| \leq 4g,$$

where the second inequality comes from Theorem 7.

Solving for g we find

$$g \geq \left(\frac{p^2 - 9}{2p^2 + 14} \right) n = \left(\frac{1}{2} - \frac{8}{p^2 + 7} \right) n.$$

4. Observations and questions

(1) The stable clasp number. A function $f: \mathbb{Z}_{\geq 0} \to \mathbb{R}_{\geq 0}$ is called subadditive if $f(a + b) \leq f(a) + f(b)$ for all a and b. For any such function, $\lim_{n \to \infty} f(n)/n$ exists. In [9] this is used to define the stable four-genus of a knot K: $g_s(K) = \lim_{n \to \infty} g_4(nK)/n$. In the exact same way, one can define the stable clasp number of a knot K to be $c_s(K) = \lim_{n \to \infty} c(nK)/n$. For Miller’s examples [10], $c_s(K) = 0$. We have

$$\frac{q - 9}{2q - 14} \leq c_s(B_q) \leq 1.$$

Problems. Determine $c_s(B_q)$ exactly. Find any knot K for which $c_s(K)$ for which $c_s(K) \notin \mathbb{Z}$. I

(2) Find topologically slice knots K_n for which $c(K_n) - (c^+(K_n) + c^-(K_n))$ goes to infinity as n increases. Can such example be found for which $c^+(K_n) = 0 = c^-(K_n)$ for all n?

(3) The examples in this paper and those in [10] depended on estimates of the four-genus. Are there examples of knots K for which $c^+(K) = 0 = c^-(K)$ and $c(K) > g_4(K)$?

References

[1] A. J. Casson and C. McA. Gordon, Cobordism of classical knots, à la recherche de la topologie perdue, 1986, pp. 181–199.

[2] With an appendix by P. M. Gilmer.

[3] D. Cooper, Signatures of surfaces with applications to knot and link cobordism, 1982. Warick Thesis.

[4] [4], On the slice genus of knots, Invent. Math. 66 (1982), no. 2, 191–197.

[5] [4], Slice knots in S^3, Quart. J. Math. Oxford Ser. (2) 34 (1983), no. 135, 305–322.

[6] [5] and Charles Livingston, On surgery curves for genus-one slice knots, Pacific J. Math. 265 (2013), no. 2, 405–425.

[7] Bo Ju Jiang, A simple proof that the concordance group of algebraically slice knots is infinitely generated, Proc. Amer. Math. Soc. 83 (1981), no. 1, 189–192.

[8] [7] and Ian Zemke, New Heegaard Floer slice genus and clasp number bounds, arXiv:2007.07106 (2020).

[9] [8] and Ian Zemke, Cohomology of satellite knots, Four-manifold theory (Durham, N.H., 1982), 1984, pp. 327–362.

[10] [8] and Ian Zemke, The stable 4-genus of knots, Algebr. Geom. Topol. 10 (2010), no. 4, 2191–2202.

A. N. Miller, Amphichiral knots with large 4-genus, Bull. Lond. Math. Soc. 54 (2022), no. 2, 624–634.

Charles Livingston: Department of Mathematics, Indiana University, Bloomington, IN 47405

Email address: livingst@indiana.edu