Expression pattern of leptin and leptin receptor (OB-R) in human gastric cancer

Makoto Ishikawa, Joji Kitayama, Hirokazu Nagawa

Abstract
AIM: To examine the expression of leptin and its receptor, OB-R, in normal gastric mucosa and neoplasia.

METHODS: By immunohistochemical staining using specific antibodies, we evaluated the expression of leptin and OB-R in 207 gastric carcinomas (100 early and 107 advanced carcinomas) and analyzed their relationship with clinicopathological features.

RESULTS: Both normal gastric epithelium and carcinoma cells expressed a significant level of leptin. In cases with OB-R staining, carcinoma cells showed OB-R-positive expression, but the intensity was weaker than that in normal mucosa. The expression of OB-R showed a significant correlation with the level of leptin expression. The expression levels of both leptin and OB-R tended to increase as the depth of tumor invasion or TMN stage increased (P < 0.01). Lymph node metastasis was detected in 49.5% (47/95) of leptin-strong cases and in 50.5% (48/95) of OB-R-positive cases, and the rate was 33% (37/126) in leptin-weak cases and 17% (19/112) in OB-R-negative cases. Both venous and lymphatic invasion also tended to be observed frequently in positive tumors as compared with negative tumors. Interestingly, in the 96 leptin- or OB-R-positive tumors, hematogenous metastasis was detected preoperatively in 3 (3.1%) patients. In contrast, none of the carcinomas that lacked expression of leptin and OB-R showed hematogenous metastasis.

CONCLUSION: Overexpression of leptin and expression of OB-R may play a positive role in the process of progression in gastric cancer. Functional upregulation of leptin/OB-R may have a positive role in the development and initial phase of progression in gastric cancer.

© 2006 The WJG Press. All rights reserved.
the brain, placenta, pancreas, adrenal gland, hematopoietic cells, liver, lung and heart\cite{21,24-26}. In addition, OB-R has been identified in malignant cells, including lung and gastric carcinoma and leukemic cells\cite{22,29-32}.

In this study, therefore, we used antibodies to leptin and OB-R, and immunohistochemically characterized the expression pattern of these two proteins in gastric carcinoma and evaluated the possible role of leptin in the tumorigenesis and spread of gastric cancer.

MATERIALS AND METHODS

Two hundred and seven carcinomas, which were surgically resected in the Department of Surgery, The University of Tokyo, from 1991 to 2002, were included in this study. In all cases, serial-step sections 3-mm wide were cut, fixed in 10% formalin solution, and then embedded in paraffin. All the resected primary tumors and regional lymph nodes were histologically examined by hematoxylin-eosin staining according to the Japanese Classification of Gastric Carcinoma\cite{33}. Tumors were histologically classified into two types based on the predominant features: differentiated type (well and moderately differentiated adenocarcinoma) and undifferentiated type (poorly differentiated adenocarcinoma and signet ring cell carcinoma). In addition, we examined several discrete histological parameters, including lymphatic invasion, venous invasion and lymph node metastasis.

Immunohistochemical study of leptin and OB-R

We investigated the expression of OB-R and leptin with immunohistochemical staining using affinity purified rabbit polyclonal antibodies against leptin (Santa Cruz, Biotech, CA, USA) and goat polyclonal antibodies against OB-R (M-18, Santa Cruz Biotech)\cite{30,32}, respectively. Sections (3-μm thick) were deparaffinized in xylene, hydrated through a graded series of ethanol, and heated in a microwave oven for two 7-min cycles (500 W). After being rinsed in phosphate buffered saline (PBS), endogenous peroxidase activity was inhibited by incubation with 0.3% hydrogen peroxide in 100% methanol for 30 min. After 3 washes in PBS, nonspecific reaction was blocked by incubation with PBS containing 5% skimmed milk for 30 min at room temperature, and then the sections were incubated with normal rabbit or goat serum for 30 min. The sections were incubated overnight at 4°C in humid chambers with the primary antibody to leptin at 1/70 dilution or the primary antibody to OB-R at 1/100. After three washes with PBS, the sections were incubated with biotinylated rabbit anti-goat or anti-rabbit immunoglobulin for 30 min. After washing again with PBS, the slides were treated with peroxidase-conjugated streptavidin for 30 min, and developed by immersion in 0.01% H2O2 and 0.05% diaminobenzidine tetrahydrochloride for 3 min. Light counterstaining with Mayer’s hematoxylin was performed.

Statistical analysis

All statistical calculations were carried out using Stat View-J 5.0 statistical software (SAS Institute, USA). Student’s t-test and Wilcoxon’s test were used to analyze data. Differences with a P value of less than 0.05 were considered to be statistically significant.

RESULTS

Immunohistochemical detection of leptin and OB-R in normal mucosa and carcinoma

In all cases, the lower part of the fundic glands in the normal part of the mucosa expressed a significant level of leptin, suggesting that leptin is mainly produced in chief and parietal cells (Figure 1A). Leptin could be detected in the cytoplasm as well as in the cell membrane, but not in the nucleus. However, the surface epithelium of normal gastric mucosa totally lacked expression of leptin. This staining pattern was similar to that described in the gastric epithelium in a previous report\cite{22}.

Gastric carcinoma cells mostly showed positive immunoreactivity, although the staining intensity varied among the samples. According to the staining pattern, tumors were subdivided into two groups. When investigators agreed that the staining intensity of carcinoma cells was significantly weaker than that of chief and parietal cells in corresponding normal mucosa, those tumors were categorized as having weak expression (Figure 1B). In contrast, when carcinoma cells stained to a similar degree or more strongly than normal gastric mucosa, those tumors were categorized as having strong expression (Figure 1C).

OB-R was also detected in normal mucosa, and the immunostaining pattern was mostly consistent with that of leptin staining (Figure 1D). In cancer tissue, however, some carcinoma cells showed significant expression while
was significantly higher than 31.3% (47/150) of OB-R-negative cases. Interestingly, in the 74 tumors with high leptin expression, hematogenous metastasis was detected preoperatively in 3 (4.1%) patients, and peritoneal dissemination was detected intraoperatively in 5 (6.8%) patients. However, in 133 tumors with low leptin expression, only one case showed peritoneal dissemination and none was associated with hematogenous metastasis (P < 0.05).

DISCUSSION

Leptin is well known to play a major role in the regulation of weight and adiposity. Recently, many studies have shown that increased body weight is associated with increased risk of cancer and cancer-related mortality, suggesting a possible role of leptin in the pathogenesis of cancer. Leptin is reported to be abundantly produced in the stomach[34,35]. In gastric carcinoma, some reports have shown that obesity is one of the main risk factors[36,42]. These findings suggest that leptin may be critically involved in the development and progression of gastric cancer. This idea encouraged us to evaluate the expression of leptin and its receptor in gastric cancer tissues.

In our series, leptin and OB-R were predominantly expressed in chief and parietal cells but not in the surface epithelium in normal parts of the gastric mucosa that were adjacent to cancer tissue, which is mostly consistent with data of previous studies[22,43,44]. However, carcinoma cells showed a variety of staining patterns for leptin or OB-R. Leptin was detected in all carcinoma cells, although the level of expression could be divided into two categories according to the staining intensity, whereas OB-R was detected in some tumors but not in others, and the level of expression of leptin showed a positive correlation with OB-R expression. This suggests the existence of a common regulatory mechanism in the expression of leptin and its receptor in the gastric epithelium.

The main finding in our study was that the expression levels of both leptin and OB-R tended to increase as the depth of tumor invasion or TMN stage increased (P < 0.01). Moreover, nodal and distant metastasis, as well as pathological lymphatic or vascular invasion, was frequently detected in leptin-strong and OB-R-positive tumors as compared with leptin-weak and OB-R-negative tumors. Shunieder et al[43] reported that leptin led to significantly increased proliferation in AGS cells, and the MAP-kinase-1 specific inhibitor U0126 blocked leptin-induced cell proliferation in a dose-dependent manner. Tessitore reported that in colorectal cancer patients, plasma leptin level in stage IV patients was significantly higher than that in stage I patients. In addition to stimulating proliferation, leptin has been shown to promote invasiveness of renal and colonic epithelial cells via PI3-kinase-, rho- and rac-dependent cascades[35]. All these findings support that leptin may have a promoting effect on cancer invasion and metastasis. Our findings were consistent with these results and suggest that leptin and OB-R might function as an autocrine growth factor during the development and progression of gastric cancer.

Another interesting finding was that the expression of

Table 1 Relationship between expression of Ob-R and leptin

Leptin expression	Ob-R expression	Positive (67)	Negative (140)	P
Strong (74)	OB-R expression	45	29	< 0.001
Weak (133)		22	111	
leptin/OB-R was correlated with the differentiation of gastric cancer. In our series, cancers of undifferentiated type tended to have weak expression of leptin as well as negative OB-R expression as compared with differentiated cancers. In each type, expression of leptin/OB-R showed a positive association with stage and metastasis (data not shown). This suggests that the different expression of leptin/OB-R was determined at the early stage of carcinogenesis. The carcinogenic pathway of differentiated type carcinoma is considered to begin with _H pylori_ infection, followed by atrophic gastritis and intestinal metaplasia, and inappropriate activation of gut specific transcription factor CDX2 has an important role in the early stage of carcinogenesis. In contrast, dysfunction

| Table 2 Expression of leptin and clinicopathologic characteristics of patients |
|---------------------------------|------------------|------------------|------------------|------------------|
| | Leptin expression | | OB-R expression | |
| | High (74) | Low (133) | P | Positive (67) | Negative (140) | P |
| Age (yr) | 62.7 ± 8.9 | 61.3 ± 11.2 | 0.98 | 64.2 ± 9.9 | 61.6 ± 10.8 | 0.167 |
| Sex | | | | | | |
| Male | 64 | 91 | | 53 | 102 | |
| Female | 10 | 42 | 0.003 | 14 | 38 | 0.33 |
| BMI | 22.4 ± 3.1 | 22.7 ± 2.8 | 0.48 | 22.4 ± 3.2 | 22.7 ± 2.8 | 0.49 |
| Tumor markers | | | | | | |
| CEA | 8.6 ± 17.7 | 14.7 ± 111.3 | 0.65 | 9.9 ± 19.6 | 13.8 ± 108.3 | 0.79 |
| CA19-9 | 89.8 ± 453.5 | 75.4 ± 347.6 | 0.81 | 138.3 ± 561.4 | 53.8 ± 270.8 | 0.16 |
| Size (cm) | 6.0 ± 3.2 | 5.1 ± 3.6 | 0.13 | 5.8 ± 3.2 | 5.2 ± 3.6 | 0.25 |
| Location | | | | | | |
| Upper part (51) | 23 | 28 | | 19 | 32 | |
| Middle part (94) | 36 | 58 | | 29 | 65 | |
| Lower part (62) | 15 | 47 | 0.03 | 19 | 43 | 0.51 |
| Depth of tumor invasion | | | | | | |
| T1 | 24 | 76 | | 20 | 80 | |
| T2 | 28 | 29 | | 27 | 37 | |
| T3 | 18 | 28 | | 16 | 30 | |
| T4 | 4 | 0 | 0.001 | 4 | 0 | < 0.001 |
| Macroscopic type | | | | | | |
| Elevated | 57 | 62 | | 48 | 71 | |
| Depressed/flat | 17 | 71 | < 0.001 | 19 | 69 | 0.005 |
| Histological type | | | | | | |
| Differentiated | 45 | 43 | | 43 | 45 | |
| Undifferentiated | 29 | 90 | < 0.001 | 24 | 95 | < 0.001 |
| TNM stage | | | | | | |
| IA | 20 | 67 | | 15 | 72 | |
| IB | 17 | 23 | | 15 | 25 | |
| II | 8 | 12 | | 9 | 11 | |
| IIIA | 10 | 17 | | 11 | 16 | |
| IIIB | 5 | 7 | | 7 | 5 | |
| IV | 14 | 7 | 0.001 | 10 | 11 | < 0.001 |
| Lymphatic invasion | | | | | | |
| Positive | 39 | 45 | | 39 | 46 | |
| Negative | 34 | 87 | 0.002 | 28 | 94 | < 0.001 |
| Venous invasion | | | | | | |
| Positive | 46 | 49 | | 45 | 50 | |
| Negative | 28 | 84 | < 0.001 | 22 | 90 | < 0.001 |
| Lymph node metastasis | | | | | | |
| Positive | 47 | 48 | | 48 | 47 | |
| Negative | 37 | 85 | 0.052 | 19 | 93 | 0.001 |
| Hematogeneous metastasis | | | | | | |
| Positive | 3 | 0 | | 2 | 1 | |
| Negative | 71 | 134 | 0.02 | 65 | 139 | 0.19 |
| Peritoneal dissemination | | | | | | |
| Positive | 5 | 1 | | 2 | 4 | |
| Negative | 69 | 133 | 0.01 | 65 | 136 | 0.95 |
of E-cadherin is considered to have critical roles in the development of undifferentiated carcinoma. The molecular interaction between leptin/OB-R and CDX2 or E-cadherin is an interesting subject for future research.[48]

In conclusion, we confirmed that the expression level of leptin/OB-R showed a positive correlation with the depth of tumor invasion, stage, and metastasis as well as tumor differentiation. Our findings suggest that coexpression of leptin and OB-R may have a positive role in the progression in gastric cancer in an autocrine or paracrine manner. Functional inhibition of leptin/leptin receptor mRNAs may effectively suppress the growth and metastasis of gastric cancer.

REFERENCES

1. Fund WCR. Food, nutrition and the prevention of cancer: a global perspective. American Institute for Cancer Research, 1997: 371-373
2. Carroll KK. Obesity as a risk factor for certain types of cancer. Lipids 1998; 33: 1055-1059
3. Bergström A, Pisani P, Tenet V, Wolk A, Adami HO. Overweight as an avoidable cause of cancer in Europe. Int J Cancer 2001; 91: 421-430
4. Vainio H, Kaaks R, Bianchini F. Weight control and physical activity in cancer prevention: international evaluation of the evidence. Eur J Cancer Prev 2002; 11 Suppl 2: S94-S100
5. Petö J. Cancer epidemiology in the last century and the next decade. Nature 2003; 411: 390-395
6. Correa P. Epidemiological correlations between diet and cancer frequency. Cancer Res 1981; 41: 3685-3690
7. Carroll KK. Neutral fats and cancer. Cancer Res 1981; 41: 3695-3699
8. Cleary MP, Maihle NJ. The role of body mass index in the relative risk of developing premenopausal versus postmenopausal breast cancer. Proc Soc Exp Biol Med 1997; 216: 28-43
9. Willett WC. Fat, energy and breast cancer. J Natr 1997; 127: 9215-9235
10. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med 2003; 348: 1625-1638
11. Collins S, Kuhn CM, Petro AE, Swick AG, Chrunyk BA, Sur M. Positional cloning of the mouse obese gene and its human homologue. Nature 1994; 372: 425-432
12. Caro JF, Simha MK, Kolaczynski JW, Zhang PL, Considine RV. Leptin: the tale of an obesity gene. Diabetes 1996; 45: 1455-1462
13. Caro JF. Leptin: from 1958 to the present. Can J Diabetes Care, 1998: 18-23
14. Flister JS, Maratos-Flier E. Obesity and the hypothalamus: novel peptides for new pathways. Cell 1998; 92: 437-440
15. Daggo-Jack S, Fanelli C, Paramore D, Brothers J, Landt M. Plasma leptin and insulin relationships in obese and nonobese humans. Diabetes 1996; 45: 695-698
16. Smith FJ, Rivera I, Tanenbaum R, et al. Weight loss reverses decreased sensitivity to exogenous ob protein (leptin) in diet induced obese mice. Int J Obesity 1998; 41
17. Ganong WF. Review of Medical Physiology. 18th ed. New York: Appleton and Lange, 1997: 223
18. Hoggard N, Hunter L, Duncan JS, Williams LM, Trayhurn P, Mercer JC. Leptin and leptin receptor mRNA and protein expression in the murine uterus and placenta. Proc Natl Acad Sci USA 1997; 94: 11073-11078
19. Mix H, Widjaja A, Jandl O, Comberg M, Kaul A, Göke M, Beil W, Kuske M, Brabant G, Manns MP, Wagner S. Expression of leptin and leptin receptor isoforms in the human stomach. Gut 2000; 47: 481-486
20. Isono M, Inoue R, Kamida T, Kobayashi H, Matsuyama J. Significance of leptin expression in invasive potential of pituitary adenomas. Clin Neurol Neurosurg 2003; 105: 111-116
21. Briscoe CP, Hanif S, Arch JR, Tadayyon M. Leptin receptor long-form signalling in a human liver cell line. Cytokine 2001; 14: 225-229
22. Altoub S, Nee V, Pirola L, Bruyneel E, Chastre E, Mareel M, Wymann MP, Geschap C. Leptin promotes invasiveness of kidney and colonic epithelial cells via phosphoinositide 3-ki
23. Sauer MV, Carmina E, Chang PL, Zimmerman M, Kuske M, Brabant G, Manns MP, Wagner S. Expression of leptin and leptin receptor isoforms in the human stomach. Gut 2000; 47: 481-486
24. Cioffi JA, Shafer AW, Zupancic TJ, Smith-Bhar J, Mikhail A, Platika D, Snodgrass HR. Novel B219/OB receptor isoforms: possible role of leptin in hematopoiesis and reproduction. Nat Med 1998; 4: 585-590
25. Emilsson V, Liu YL, Cawthorne MA, Morton NM, Davenport M. Expression of the functional leptin receptor mRNA in pancreatic islets and direct inhibitory action of leptin on insulin secretion. Diabetes 1997; 46: 313-316
26. Glassow A, Haidan A, Hilbers U, Breidert M, Gillespie J, Scherbaum WA, Chrroues GP, Bornstein SR. Expression of Ob receptor in normal human adrenals: differential regulation of adrenocortical and adrenomedullary function by leptin. J Clin Endocrinol Metab 1998; 83: 4459-4466
27. Morash B, Johnstone J, Leopold C, Li A, Murphy P, Ur E, Wilkinson M. The regulation of leptin gene expression in the C6 glioblastoma cell line. Mol Cell Endocrinol 2000; 165: 97-105
28. Tsuchiya T, Shimizu H, Horie T, Mori M. Expression of leptin receptor in lung: leptin as a growth factor. Eur J Pharmacol 1999; 365: 273-279
29. Hino M, Nakao T, Yamane T, Ohta K, Takubo T, Tatsumi N. Leptin receptor and leukemia. Leuk Lymphoma 2000; 36: 457-461
30. Hardwick JC, Van Den Brink GR, Offerhaus GJ, Van Deventer SJ, Peppelenbosch MP. Leptin is a growth factor for colonic epithelial cells. Gastroenterology 2001; 121: 79-90
31. Japanese Gastric Cancer Association. Japanese Classification of Gastric Carcinoma - 2nd English Edition. Gastric Cancer 1998; 1: 10-24
32. Bado A, Levalleau B, Sauleau S, Kermorgant E, Scaleux JP, Bortoluzzi MN, Moizo L, Lehty T, Guerre-Millo M, Le Marchand-Brustel Y, Lewin MJ. The stomach is a source of leptin. Nature 2000; 404: 425-432
33. Nakao T, Yamane T, Ohta K, Takubo T, Tatsumi N. Leptin receptor and leukemia. Leuk Lymphoma 2000; 36: 457-461
34. Hardwick JC, Van Den Brink GR, Offerhaus GJ, Van Deventer SJ, Peppelenbosch MP. Leptin is a growth factor for colonic epithelial cells. Gastroenterology 2001; 121: 79-90
35. Japanese Gastric Cancer Association. Japanese Classification of Gastric Carcinoma - 2nd English Edition. Gastric Cancer 1998; 1: 10-24
36. Chow WH, Blot WJ, Vaughan TL, Risch HA, Gammon MD, Stanford JL, Dubrow R, Schoenberg JB, Mayne ST, Farrow DC, Ahsan H, West AB, Rotterdam H, Niwa S, Fraumeni JF Jr. Body mass index and risk of adenocarcinomas of the esophagus and gastric cardia. J Natl Cancer Inst 1998; 90: 150-155
37. Lagergren J, Bergström R, Nyrén O. Association between body mass and adenocarcinoma of the esophagus and gastric cardia. Ann Intern Med 1999; 130: 883-890
38. Brenner CG, Lynch VP, Ellis FH Jr. Barrett’s esophagus: congenital or acquired? An experimental study of esophageal mucosal regeneration in the dog. Surgery 1970; 68: 209-216
39. Bremner CG, Lynch VP, Ellis FH Jr. Barrett’s esophagus: congenital or acquired? An experimental study of esophageal mucosal regeneration in the dog. Surgery 1970; 68: 209-216
40. Vaughan TL, Farrow DC, Hansten PD, Chow WH, Gammon MD, Risch HA, Stanford JL, Schoenberg JB, Mayne ST, Rotterdam H, Dubrow R, Ahsan H, West AB, Blot WJ, Fraumeni JF Jr. Risk of esophageal and gastric adenocarcinomas in relation to use of calcium channel blockers, asthma drugs, and other medications that promote gastroesophageal reflux. Cancer Epi
41 You WC, Blot WJ, Chang YS, Ershow AG, Yang ZT, An Q, Henderson B, Xu GW, Fraumeni JF Jr, Wang TG. Diet and high risk of stomach cancer in Shandong, China. Cancer Res 1988; 48: 3518-3523

42 Galanis DJ, Kolonel LN, Lee J, Nomura A. Intakes of selected foods and beverages and the incidence of gastric cancer among the Japanese residents of Hawaii: a prospective study. Int J Epidemiol 1998; 27: 173-180

43 Schneider R, Bornstein SR, Chrousos GP, Boxberger S, Ehninger G, Breidert M. Leptin mediates a proliferative response in human gastric mucosa cells with functional receptor. Horm Metab Res 2001; 33: 1-6

44 Azuma T, Suto H, Ito Y, Ohtani M, Dojo M, Kuriyama M, Kato T. Gastric leptin and Helicobacter pylori infection. Gut 2001; 49: 324-329

45 Yuasa Y. Control of gut differentiation and intestinal-type gastric carcinogenesis. Nat Rev Cancer 2003; 3: 592-600