Review

G-protein signaling: back to the future

C. R. McCudden, M. D. Hains, R. J. Kimple, D. P. Siderovski* and F. S. Willard

Department of Pharmacology, Lineberger Comprehensive Cancer Center, and UNC Neuroscience Center, The University of North Carolina at Chapel Hill, 1106 Mary Ellen Jones Building, Chapel Hill, North Carolina 27599-7365 (USA), Fax: +1 919 966 5640, e-mail: dsiderov@med.unc.edu

Received 21 October 2004; received after revision 20 November 2004; accepted 30 November 2004

Abstract. Heterotrimeric G-proteins are intracellular partners of G-protein-coupled receptors (GPCRs). GPCRs act on inactive Gα·GDP/Gbg heterotrimers to promote GDP release and GTP binding, resulting in liberation of Gα from Gbg. Gα·GTP and Gbg target effectors including adenylyl cyclases, phospholipases and ion channels. Signaling is terminated by intrinsic GTPase activity of Gα and heterotrimer reformation – a cycle accelerated by ‘regulators of G-protein signaling’ (RGS proteins). Recent studies have identified several unconventional G-protein signaling pathways that diverge from this standard model. Whereas phospholipase C (PLC) β is activated by Gαq and Gβγ; novel PLC isoforms are regulated by both heterotrimeric and Ras-superfamily G-proteins. An Arabidopsis protein has been discovered containing both GPCR and RGS domains within the same protein. Most surprisingly, a receptor-independent Gα nucleotide cycle that regulates cell division has been delineated in both Caenorhabditis elegans and Drosophila melanogaster. Here, we revisit classical heterotrimeric G-protein signaling and explore these new, non-canonical G-protein signaling pathways.

Key words. Asymmetric cell division; GoLoco motif; G-protein; phospholipase C; RGS proteins.

The standard model of heterotrimeric G-protein signaling

Cellular signaling is accomplished by a myriad of proteins, peptides, lipids, ions and small molecules. Signals are commonly transmitted by the actions of hormones released from the same cell (autocrine), a neighboring cell (paracrine) or distant cells (endocrine). For example, neurotransmitter release at the synaptic cleft can propagate signals to neurons, muscle cells and neuroendocrine cells, and can also participate in autocrine feedback signals to the neuron releasing the neurotransmitter. Kinases, phosphatases, proteases and nucleotide binding proteins all contribute to the intracellular propagation of signaling. Many of these proteins alternate between an ‘on’ and an ‘off’ state to regulate the duration and intensity of the signal. Guanine nucleotide binding proteins or ‘G-proteins’ are among the most ubiquitous of these cellular switches and alternate between a GDP-bound off state and a GTP-bound on state.

The standard model of G-protein-coupled receptor (GPCR) signaling is outlined in figure 1. Heterotrimeric G-proteins are the intracellular partners of seven transmembrane-domain (7TM) GPCRs. Membrane-bound heterotrimers composed of Ga, Gβ and Gγ subunits are closely associated with the intracellular faces of GPCRs. GDP-bound Ga subunits bind tightly to the obligate heterodimer of Gβγ. This association aids Ga localization to the plasma membrane (e.g. [1]; reviewed in [2]) and is essential for functional coupling to GPCRs [3]. In addition, Gβγ binding to GDP-bound Ga slows the spontaneous rate of GDP release, thus acting as a guanine-nucleotide dissociation inhibitor (GDI) [4, 5]. Agonist-bound GPCRs act as guanine nucleotide exchange factors (GEFs), promoting the release of bound GDP by Ga.
Nucleotide-free Ga then binds GTP, which is present at a significant molar excess over GDP in cells. The binding of GTP results in conformational changes within the three flexible switch regions of Ga [6], resulting in the dissociation of Gβγ. Both GTP-bound Ga and free Gβγ are capable of initiating signals by interacting with downstream effector proteins. The intrinsic guanosine triphosphatase (GTPase) activity of the Ga subunit causes the hydrolysis of GTP to GDP, returning the Ga subunit to its inactive state. Reassociation of Gβγ with Ga·GDP terminates all effector interactions [7,8]. Thus, the standard model of GPCR signaling assumes that the Ga subunit’s lifetime in the GTP-bound state controls the duration of signaling of both Ga·GTP and free Gβγ subunits.

G-protein subunits

The Ga subunit

There are 16 Ga genes in the human genome which encode 23 known Ga proteins. These proteins can be divided into four major classes based on sequence similarity: Gaα (11/12/13/o/rod), Gaβ (11/12/13/o/t-cone/gust/x) and Gaγ (11/12/13) [9]. Ga subunits range in size from 39 to 45 kilodaltons (kDa) [10], and are N-terminally modified by the cotranslational modification of the fatty acids acetylated and/or palmitoylated near the N-terminus [11]. Lipid modification of Ga subunits is important for membrane localization. Palmitoylation results in the stable attachment of Ga subunits to the membrane [12]. Myristoylation contributes to membrane localization, although expression of myristoylated but not palmitoylated Ga footprint results in the localization of a substantial portion of the Ga subunits to the cytosolic fraction [13–15]. Myristoylation and/or palmitoylation of Ga subunits affects targeting to specific cell membrane regions and regulates interactions with other proteins such as adenylyl cyclase, Gβγ, and GPCRs [16–19].

The Gβγ dimer

There are 5 known human Gβ [20, 21] and 12 human Gγ subunit genes [9, 22, 23], resulting in a large number of potential combinations of Gβγ dimers. All Ga subunits are C-terminally prenylated post-synthetically: Gγ2, Gγ4 and Gγ11 with a 15-carbon farnesyl moiety, and the rest with a 20-carbon geranylgeranyl group [11]. This lipid modification of the Gγ polypeptide is important for the resultant membrane localization of the Gβγ dimer. Most Gβγ combinations can form functional heterodimers [24]; however, there are exceptions; e.g. Gβ3 can pair with Gγ12 but not Gγ5 [25].

Evidence supporting the role of specific Gβγ combinations in receptor coupling and effector activation is sparse but growing [24]. Most in vitro assays show little difference in receptor coupling profile or effector activation. However, there are some in vivo examples of the importance of specific Gβγ pairs for specific signaling pathways. Gβ1γ1 interacts more robustly with rhodopsin and phosducin than other Gβγ combinations [26]. Inhibition of α1H low-voltage-activated T-type (Ca,3.2) calcium channels is mediated selectively by Gβ1γ1 [27]. Gγ12 was shown to be important for coupling the somatostatin receptor to voltage-sensitive L-type calcium channels, while Gγ13 was found to be required for coupling the muscarinic receptor to the same channels [28].

Recent studies by Robishaw and co-workers have defined specific roles for Gγ12 in coupling heterotrimeric G-proteins to receptors [29–32]. Endogenous Gγ12 expression was suppressed in HEK-293 cells using a ribozyme approach, resulting in a coincident decrease in expression of Gβ1, but not Gβ2 through Gβ, subunits. PGE1, muscarinic and purinergic GPCR signals were unaffected by Gγ12 knockout; however, isoproterenol-induced adenylyl cyclase activity was abrogated suggesting a specific role for Gγ12 in β-adrenergic receptor signaling. Gγ12-knockout mice are fertile and of normal weight, but exhibit an
increased startle response. Notable are the striking changes in the striatum, with \(G_{\alpha_{i}} \) expression reduced 82\%, whereas \(G_{\alpha_{n}}, G_{\alpha_{r}}, G_{\alpha_{q}} \) and \(G_{\alpha_{q}} \) are expressed at normal levels. \(G_{\gamma}\)-null mice also show reduced levels of D1 dopamine receptor-induced adenylyl cyclase activity in the striatum, complementing the reduced D1 receptor function found previously in \(G_{\gamma}\)-knockdown cells.

G-protein structure

The \(G_{\alpha} \) subunit

The \(G_{\alpha} \) subunit (fig. 2A) is composed of two domains: a nucleotide binding domain with high structural homology to Ras-superfamily GTPases, and an all-alpha-helical domain that, in combination with the Ras-like domain, helps to form a deep pocket for binding guanine nucleotide (fig. 2B; reviewed in [33]). \(G_{\alpha} \) subunits contain three flexible regions designated switch-I, -II and -III that change conformation in response to GTP binding and hydrolysis [34–38]. The GTP-bound conformation of \(G_{\alpha} \), which can be mimicked by the nonhydrolyzable GTP analogue, GTP\(\gamma \)S, results in decreased affinity for \(G_{\beta \gamma} \), subunit dissociation and increased affinity for \(G_{\alpha} \) effectors. The planar ion aluminum tetrafluoride (\(\text{AlF}_4^- \)) mimics the conformation of the terminal \(\gamma \)-phosphate of GTP during the transition state of GTP hydrolysis [39], and is useful for studying the in vitro interactions of \(G_{\alpha} \) subunits with various regulators and effectors [40, 41].

Structural studies of \(G_{\alpha} \cdot \text{GDP} \cdot \text{AlF}_4^- \) alone [34, 38] and in combination with RGS4 [37] have provided a better understanding of how nucleotide hydrolysis occurs. Indeed, mutations to a critical arginine (e.g. R178 in \(G_{\alpha_{n}} \); fig. 2B) or glutamine (e.g. Q204 in \(G_{\alpha_{n}} \)), each involved in stabilizing the \(\gamma \)-phosphate leaving group during hydrolysis [34, 38], are commonly used to make \(G_{\alpha} \) subunits GTPase-deficient and thus constitutively active (e.g. [42]). The Ras-like domain, a variation on the nucleotide-binding fold [43], adopts a conformation also seen in EF-Tu, Ras and Rap1A [44–46]. The helical domain, an insertion between the \(\alpha \)-helix and \(\beta \)-strand of the core Ras-like domain, folds into a six-alpha-helix bundle (fig. 2A). Interactions of residues which span the domain interface are thought to be involved in receptor-mediated nucleotide exchange and subsequent G-protein dissociation [47]. \(G_{\alpha} \) subunits also contain an extended N-terminal region of 26–36 residues. The first 23 residues are disordered in the structure of \(G_{\alpha} \), in both the GDP and the GTP\(\gamma \)S bound state [35, 48]. Structures of the heterotrimer show that this region forms an \(\alpha \)-helix that interacts with \(G_{\beta \gamma} \) [36, 49]. Recent evidence from Hamm and colleagues suggests that the N-terminal myristate of the \(G_{\alpha} \) subunit imparts conformational rigidity to the amino terminus of the \(G_{\alpha} \) subunit and implies that the N-terminus of \(G_{\alpha} \) may be highly ordered in vivo [50].

The \(G_{\beta \gamma} \) dimer

The \(G_{\beta \gamma} \) subunit is a functional heterodimer (fig. 2C, D) that forms a stable structural unit. All \(G_{\beta \gamma} \) subunits contain seven WD-40 repeats, a tryptophan-aspartic acid sequence that repeats about every 40 amino acids and forms small antiparallel \(\beta \) strands [51]. Crystal structures of the \(G_{\beta \gamma} \) dimer (fig. 2C) and \(G_{\alpha \beta \gamma} \) trimer (fig. 2D) revealed that the seven WD-40 repeats of the \(G_{\beta \gamma} \) subunit folds into a seven-bladed \(\beta \)-propeller or torus-like structure, while the N-terminus forms an \(\alpha \)-helix [36, 49, 52]. \(G_{\gamma} \) folds into two \(\alpha \)-helices; the N-terminal helix forms a coiled-coil with the \(\alpha \)-helix of \(G_{\beta} \), while the C-terminal helix makes extensive contacts with the base of the \(G_{\beta} \) torus [36, 49, 52]. Unlike the conformationally flexible \(G_{\alpha} \) subunit, the \(G_{\beta \gamma} \) dimer does not change conformation when it dissociates from the G-protein heterotrimer [52]. In addition, \(G_{\beta \gamma} \) association with \(G_{\alpha} \) prevents \(G_{\beta \gamma} \) from activating its effectors. These two findings suggest that the binding sites on \(G_{\beta \gamma} \) for \(G_{\alpha} \) and \(G_{\beta \gamma} \) effectors are at least partially shared. In support of this hypothesis,
mutation of several residues on \(G\beta \) that contact \(G\alpha \) can abrogate \(G\beta\gamma \)-mediated phospholipase C-\(\beta \), and adenylyl cyclase activation [7, 8]. Several groups have identified other regions of \(G\beta \) that are important for effector activation, indicating that the \(G\alpha \) binding site on \(G\beta\gamma \) is not the only effector contact region [53, 54].

G-protein signaling pathways

\(G\alpha \) effectors

All four classes of \(G\alpha \) subunits now have well-established cellular targets. The first recognized \(G\alpha \) effector was adenylyl cyclase (AC), first described by Sutherland and Rall [55, 56]. Nearly 20 years after the identification of AC as an important component of intracellular signaling, a GTP binding protein that stimulated AC was isolated; it has since been termed \(G\alpha \) [57]. Shortly thereafter, \(G\alpha_q \), which inhibits AC and thus opposes the action of \(G\alpha_s \), was identified [58–61]. In recent years, it has become clear that the membrane-bound ACs exhibit a diverse expression pattern and respond positively or negatively to distinct sets of regulatory inputs including \(G\beta\gamma \) and divalent cations [62, 63].

\(G\alpha \) protein signaling is also critically involved in sensory transduction. GPCRs can act as tantant and odorant receptors, coupling internally to G-proteins such as \(G\alpha_{\text{gust}} \) and \(G\alpha_{\text{alt}} \), respectively [64, 65]. Similarly, vision is dependent on GPCR-mediated phototransduction, a unique signaling cascade that utilizes \(G\alpha \) to regulate a cyclic GMP-gated \(Na^-/Ca^{2+} \) channel through its effector cGMP phosphodiesterase [66].

G-protein subunits of the \(G\alpha \) class (\(G\alpha_q \), \(G\alpha_{11} \), \(G\alpha_4 \), and \(G\alpha_13 \)) activate phosphoinositide-specific phospholipase C (PI-PLC) isozymes [67]. PI-PLCs hydrolyze the phosphoether bond of the plasma membrane lipid phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P_2], generating the ubiquitous second messengers inositol 1,4,5-trisphosphate [Ins(1,4,5)P_3] and diacylglycerol (DAG) [67]. Regulation of PLC isozymes by heterotrimeric G-proteins is discussed in a subsequent section.

\(G\alpha_{12/13} \) proteins can regulate the small G-protein RhoA via effectors that possess Dbl-homology (DH) and pleckstrin-homology (PH) domain cassettes characteristic of Rho-family guanine nucleotide exchange factors [68]. Activated \(G\alpha_{12} \) and \(G\alpha_{13} \) subunits can stimulate PDZ-RhoGEF activity [69, 70]; in common with activated \(G\alpha_{3/4} \), \(G\alpha_{12/13} \) subunits are also capable of stimulating the activity of leukemia-associated RhoGEF (LARG) [71, 72]. Furthermore, \(G\alpha_{13} \) (but not \(G\alpha_{12} \)) can stimulate \(p115\)RhoGEF activity [73, 74]. Each of these three RhoGEFs activate RhoA by promoting exchange of GDP for GTP which, in the case of constitutive overactivation, can result in cell transformation [75–78].

\(G\beta\gamma \) effectors

The \(G\beta\gamma \) dimer was once thought only to facilitate coupling of \(G\alpha\beta\gamma \) heterotrimeric to GPCRs and act as a \(G\alpha \) inhibitor given its guanine nucleotide dissociation inhibitor (GDI) activity. However, it is now known that, following dissociation of \(G\alpha\beta\gamma \)GTP, \(G\beta\gamma \) is free to activate a large number of its own effectors [21, 24]. The first \(G\beta\gamma \) effectors identified were the G-protein-regulated inward-rectifier K+ channels (GIRK or K_3.1 channels) [79]. Since then, \(G\beta\gamma \) has been found to bind directly to both the N- and C-termini of GIRK1-4 [80–85]. GIRK channels are synergistically activated by PtdIns(4,5)P_2, intracellular Na+ and \(G\beta\gamma \) [86, 87]. Neuronal N- and P/Q-type \(Ca^{2+} \) channels are also regulated by both \(G\alpha \) and \(G\beta\gamma \) subunits [88–90]. A number of findings suggest that the interaction between \(G\beta\gamma \) and \(Ca^{2+} \) channels is direct. For example, overexpression of \(G\beta\gamma \) in various cell lines inhibits \(Ca^{2+} \) channel activity [91], while overexpression of \(G\beta\gamma \) scavengers, such as the C-terminus of G-protein-coupled receptor kinase-2 (GRK2), suppresses this effect [88]. Furthermore, mutation of residues within the putative \(G\beta\gamma \) binding site on the \(\alpha \) pore-forming subunit of \(Ca^{2+} \) channels eliminates channel inhibition caused by GPCR activation [91–93].

\(G\beta\gamma \) subunits can also regulate kinases and small G-proteins. Activation of certain GPCRs results in \(G\beta\gamma \)-mediated stimulation of ERK1/2, JNK and p38 mitogen-activated protein kinases (MAPKs); a response that is inhibited by agents that sequester \(G\beta\gamma \) dimers [94–97]. Phosphoinositide-3'-kinase-\(\gamma \) (PI3K_\(\gamma \)), a key signaling enzyme found downstream of GPCRs in leukocytes, is directly activated by \(G\beta\gamma \) subunits [98–101]. \(G\beta\gamma \) has been shown to both positively and negatively regulate various AC isoforms [102–104], activate PLC-\(\beta \) and PLC-\(\epsilon \) [67, 105, 106], and localize GRK2 and GRK3 to the plasma membrane (reviewed in [107, 108]). A recent exciting finding has been the purification of a PtdIns(3,4,5)P_3-dependent \(Rac \) nucleotide exchange factor (P-Rex1) from neutrophil extracts [109]. The P-Rex1 protein serves as a coincidence detector for PI3K and \(G\beta\gamma \) signaling to facilitate Rac activation [109]. PtdIns(3,4,5)P_3 produced from receptor-mediated PI3K_\(\gamma \) activation synergizes with receptor-mobilized free \(G\beta\gamma \) to regulate Rac activation via the tandem DH/PH domains of P-Rex1 [109]. Although P-Rex1 has a DH domain (along with DH, tandem DEP, tandem PDZ and inositol phosphatase domains), its \(G\beta\gamma \) interaction site has yet to be delineated.

In general, the mechanism of \(G\beta\gamma \) interaction with its effectors is not entirely clear. Many, but not all, \(G\beta\gamma \) effectors contain DH domains; however, not all PH domain-containing proteins interact with \(G\beta\gamma \), making the prediction of all PH-domain \(G\beta\gamma \) interaction sites challenging. The molecular determinants of \(G\beta_3\gamma_2 \) interaction with the GRK2 PH domain has recently been elu-
ated by Tesmer and colleagues [110], and this may provide a basis for the discovery of novel PH-domain containing Gβγ effectors.

The G-protein signaling field is becoming increasingly populated with findings of cross-talk and integration between previously ‘distinct’ signaling pathways, and thus many new targets of Gα and Gβγ regulation are being described. In such situations, a clear distinction between ‘direct’ and ‘indirect’ effectors should be made. The test for the former should ideally include demonstrations of (i) direct interaction between homogenous purified components, but also (ii) physiologically relevant (i.e. endogenous) interaction of proposed signaling partners.

Regulation of heterotrimeric G-protein signaling

RGS domain-containing proteins

It was originally thought that the duration of heterotrimeric G-protein signaling could be modulated by only two factors: the intrinsic GTP hydrolysis rate of the Gα subunit and acceleration of that rate by certain Gα effectors such as PLC-β [111]. In 1996, several groups discovered a new family of GTPase-accelerating proteins (GAPs) for Gα proteins: the ‘regulators of G-protein signaling’ or RGS proteins (fig. 3) [112–114]. Each RGS protein contains a hallmark ~120 amino-acid ‘RGS domain’ – a nine-alpha-helix bundle which contacts the Gα switch regions, stabilizing the transition state for GTP hydrolysis [37, 41]. Many RGS proteins catalyze rapid GTP hydrolysis by isolated Gα subunits in vitro and attenuate agonist/GPCR-stimulated cellular responses in vivo [115]. Because of their GAP activity, RGS proteins are now considered key desensitizers of heterotrimeric G-protein-signaling pathways.

RGS proteins are no longer considered exclusively as desensitizing agents, but also as scaffolds that coordinate multiple components of GPCR signaling to overcome diffusional limitations and facilitate rapid, receptor-specific signal onset and termination. For example, studies of GPCR signaling to G-protein-regulated inward rectifier potassium (GIRK) channels have found that RGS1, -2, -3, -4, -5, -7 and -8 accelerate both the activation and deactivation kinetics of agonist-dependent GIRK currents without necessarily altering either current amplitudes or steady-state dose-response relationships [116–121]. Modulatory effects of RGS proteins on GPCR signaling are not easily predicted solely on the basis of RGS domain-mediated Gα GAP activity. There is an emerging view that RGS domain-containing proteins have multifaceted functions in signal transduction.

As shown in figure 3, several RGS family members contain multiple signaling and scaffolding domains. The R7 subfamily of RGS proteins, consisting of RGS6, -7, -9 and -11, have an additional domain that interacts with Gβ5 subunits: the G-protein γ subunit-like (GGL) domain [122–125]. R7 subfamily members contain not only the GGL domain, but also a DEP (Dishevelled/EGL-10/Pleckstrin homology domain), GSK3β (glycogen synthase kinase-3β binding domain), PP2A (phosphatase PP2A binding domain), DIX (domain present in Dishevelled and Axin), DH (Dbl homology domain), PH (Pleckstrin homology domain), Ser/Thr-kinase (serine-threonine kinase domain).
member, RGS14, contain tandem Ras-binding domains (RBDs) [130]; in the case of RGS14, these RBDs bind the Rap subfamily of small G-proteins [131]. RGS12 and RGS14 also share a single GoLoco motif that binds Gαi subunits [132–134]. Members of the RhoGEF subfamily of G-proteins couple GPCR activation to RhoA via Gβγ binding to their N-terminal RGS domains and the consequent activation of the RhoA-directed GEF activity embodied in their tandem DH/PH domains [70, 71, 73, 74, 135].

GRK2 is involved in desensitization and downregulation of GPCR activation via phosphorylation of the intracellular loops and carboxy-terminus of activated GPCRs; GRK2 has also been shown to act as an effector antagonist for Gαq via its conserved RGS domain [136, 137]. The recent structural determination of GRK2 in complex with Gβγ underscores the fact that GRKs are multifaceted signaling regulators given the ability of GRK2 to directly attenuate Gαq, Gβγ, and GPCR signaling [110]. Mounting evidence suggest distinct modalities of regulation by GRKs may apply for different GPCRs. For instance, GRK2 regulates metabotropic glutamate receptor signaling by a kinase-independent mechanism, presumably by sequestration of both Gαq and Gβγ subunits [138, 139]. This is in stark contrast to the traditional model of regulation (such as that of the β-adrenergic receptor), in which GRK2 phosphorylates the receptor to facilitate arrestin binding, thus preventing further G-protein activation while also facilitating downstream signaling cascades [140].

Further insight into the regulatory mechanisms governing GRK2-mediated desensitization has recently been described [141]. The Raf kinase inhibitor protein (RKIP) is a physiological inhibitor of both GRK2 and Raf-1 [141, 142]; RKIP can sterically inhibit protein-protein interactions transacted by both kinases. Lorenz and co-workers observed that GPCR activation causes protein kinase-C (PKC)-mediated phosphorylation of RKIP on Ser153 [141]. Ser153 phosphorylation is sufficient to change RKIP specificity from Raf-1 to GRK2. Thus, a two-pronged facilitation of GPCR signaling can occur: PKC activity removes tonic inhibition of Raf-1 by RKIP and, simultaneously, GRK2-mediated phosphorylation and internalization of the GPCR is prevented. Hence, this is a novel mechanism of positive feedback for GPCR signaling or, potentially, cross-talk between GPCRs coupled to different effector pathways (e.g. PLC/PKC versus MAPK). Provocatively, the site of RKIP/GRK2 interaction maps to the N-terminal 185 amino acids of GRK2. This region encompasses the RGS domain of GRK2. Thus, it is tempting to speculate that RKIP binds to the GRK2 RGS domain. Defining the molecular determinants of this protein complex could shed additional light on Gαq-independent protein-protein interactions mediated by RGS domains, as first identified in the case of the Axin RGS domain binding to the adenomatous polyposis coli (APC) tumor suppressor protein [143].

Novel G-protein signaling regulators

PLC-ε: a multifunctional nexus for heterotrimeric and monomeric G-protein signaling pathways

Stimulation of phosphoinositide-hydrolyzing PLC isozymes by extracellular stimuli such as neurotransmitters, hormones, chemokines, inflammatory mediators and odorants is one of the major signal transduction pathways used by cell surface receptors to mediate downstream signaling events [144]. At least five classes of PLC isozymes underlie these signals: PLC-β, PLC-γ, PLC-δ, PLC-ε and PLC-ζ (fig. 4) [67, 145]. Until recently, PLC-β was the isozyme most commonly found to be activated by GPCRs and heterotrimeric G-proteins. GPCRs activate PLC-β enzymes either via release of α-subunits of the Gq family of G-proteins [146–149] or by Gβγ dimers from activated Gi family members [105, 150, 151]. In contrast, PLC-γ, PLC-δ and PLC-ζ isoforms differ largely in their regulatory mechanisms. PLC-γ enzymes are regulated by receptor and non-receptor tyrosine kinases [152–154]. PLC-δ isoforms may be regulated by Ca2+ [155] and/or the high-molecular-weight G-protein (G αs) [67, 156], however, the mechanisms by which PLC-δ enzymes couple to and are regulated by membrane receptors is less clear [67]. PLC-ζ, the most recently identified PLC isozyme, is reportedly responsible for sperm-mediated Ca2+ oscillations that occur during fertilization [145].

A novel class of PI-PLC was first revealed with the identification of the protein PLC210 in a screen for Caenorhabditis elegans Ras (LET-60) effectors [157]. Cloning of the full coding sequence of PLC210, the prototypical member of the PLC-ε family, identified functional domains not previously described in other PLCs. PI-PLCs generally contain a PH domain, an EF-hand domain, X and Y catalytic domains, and a C2 domain (notably PLC-ζ lacks a PH domain) (fig. 4). However, PLC210 and mammalian PLC-ε uniquely possess an N-terminal CDC25-homology domain and two C-terminal Ras-associating (RA) domains [157–160]. It is now known that upstream regulators of PLC-ε include Ras subfamily [158, 160] and Rho subfamily [161] GTPases, as well as subunits of the heterotrimeric G-protein family [106, 159]. Activation of PLC-ε by GPCRs coupled to Gαs subunits of the Gq11, G12/13 and Gs families has also been demonstrated, revealing that PLC-ε is yet another PLC isozyme regulated by GPCRs [162–164]. In addition to generating the second messengers Ins(1,4,5)P3 and diacylglycerol, PLC-ε has also been shown to trigger other downstream signals independent of its phosphoinositide-hydrolyzing activity. PLC-ε, via
the CDC25-homology domain at its amino terminus, functions as a GEF for Ras-family GTPases [159, 160, 165, 166]. In light of these findings, PLC-ε appears to be a candidate scaffold protein to integrate and mediate cross-talk between monomeric and heterotrimeric G-proteins [167].

PLC-ε contains tandem Ras-associating domains (RA1 and RA2) (fig. 4); thus, the observation that various monomeric G-proteins activate PLC-ε was not surprising. However, further examination of small GTPase activation of PLC-ε has revealed that both RA-dependent as well as RA-independent interactions can occur. Specifically, the Ras family G-proteins H-Ras, TC21, Rap1A, Rap2A and Rap2B stimulate PLC-ε in an RA2-dependent manner, whereas Ral, Rho and Rac activation of PLC-ε appears to be primarily RA independent [158, 161, 164]. The mechanism by which Ral and Rac activate PLC-ε is unknown; however, the interaction and mode of activation of PLC-ε by Rho has been elucidated [158, 161, 164]. Wing and colleagues [161] identified a unique 65-amino acid insert within the catalytic core of PLC-ε, not present in other PLC isozymes, as the region within PLC-ε that imparts responsiveness to Rho. Interestingly, this region also appears to be essential for Gαs activation of PLC-ε. Thus, it is possible that Gαs activation of a Rho-GEF such as p115RhoGEF or LARG leads to activation of Rho and subsequently of PLC-ε. Heterotrimeric G-protein activation of PLC-ε by Gαi1, Gα12, and Gβγ has been demonstrated upon cellular co-transfection [106]; however, whether heterotrimeric G-protein-mediated activation requires direct interaction of these subunits with PLC-ε is unclear. Demonstration that PLC-ε activation occurs via monomeric GTPases known to be downstream of heterotrimeric G-proteins suggests that heterotrimeric G-protein-promoted PLC-ε stimulation is more likely indirect, and more closely resembles that of the novel PLC-β interactions described below.

Until recently, regulation of PLC-β isozymes by GPCRs was thought to occur primarily via direct interactions with either Gα subunits of the Gₛ family or Gβγ subunits [67]. However, the assumption that PLC-β signaling is solely regulated by heterotrimeric G-proteins was dramatically altered with the observation by Illenberger and colleagues that members of the Rho subfamily of small GTPases, specifically Rac1 and Rac2, activate PLC-β isozymes [169, 170]. This finding raises the question of how integrated regulation of these isozymes by small GTPases and heterotrimeric G-proteins occurs, and within what signaling cascades this phenomenon elicits specific cellular responses. In addition, these findings highlight the possibility that heterotrimeric G-protein activation of PLC-β isozymes might be synergistic via direct and indirect mechanisms involving Gβγ. For instance, Gβγ subunits can activate Rac directly via the Rac-GEF P-Rex1 [109], as previously mentioned. Thus, it may be that in certain signaling cascades, Gβγ subunits from heterotrimeric G-proteins might stimulate PLC-β directly and activate a Rac-GEF such as P-Rex1 to increase Rac-GTP levels, thus activating PLC-β indirectly. Although PLC-β activation via this type of mechanism...
has not been demonstrated, activation of PLC-ε by Gαs-coupled receptors via a similar pathway has been described, as detailed below. Schmidt and colleagues [162, 171, 172] made the observation that Gαs-coupled receptors are capable of activating PLC-ε, and that this activation is dependent upon both heterotrimeric and monomeric G-proteins. Specifically, β2-adrenergic-, M3-muscarinic- and prostaglandin E3 receptor-mediated activation of PLC-ε was reported [162, 171], with the mechanism of activation hypothesized as follows. Gαs-coupled receptors stimulate adenylyl cyclase, which results in increased cyclic AMP levels and thus activation of the Rap-GEF EPAC (exchange protein activated by cAMP) [173, 174]. Once activated, EPAC is thought to catalyze GTP loading on Rap2B, leading to activation of PLC-ε. In addition to providing a potential mechanism by which GPCRs activate a PLC isozyme via integration of heterotrimeric and monomeric G-protein signaling, the findings of Schmidt and colleagues also provide evidence for a positive interaction between cAMP-promoted and PLC signaling pathways.

In addition to GPCR-mediated stimulation of PLC-ε, tyrosine kinase receptor-mediated regulation has been observed. Receptor tyrosine kinases such as those for the epidermal growth factor (EGF) and platelet-derived growth factor (PDGF) have been shown to activate PLC-γ enzymes by recruitment of the enzyme to the autophosphorylated receptor and subsequent tyrosine phosphorylation [67]. In contrast, the mechanism of PLC-ε activation by tyrosine kinase receptors appears to involve small GTPases. Specifically, Ras and Rap GTPases have been reported to participate in the activation of PLC-ε in a number of cell types [160, 164–166]. The mechanism of activation of PLC-ε by these GTPases appears to involve small GTPases. Specifically, Ras and Rap GTPases have been reported to participate in the activation of PLC-ε in a number of cell types [160, 164–166]. The mechanism of activation of PLC-ε by these GTPases appears to involve the RA2 domain, as mutations in RA2 either reduce or completely inhibit activation of the enzyme by the EGF receptor [164].

The direct contribution of PLC-γ to the activation of PLC-ε has also been examined. Song et al. found that a platelet-derived growth factor (PDGF) receptor mutant, deficient with respect to PLC-γ activation, still activates PLC-ε, via H-Ras and Rap1A as intermediaries [165]. Recently, however, Stope et al. reported that the mechanism of PLC-ε stimulation by the EGF receptor in HEK-293 cells involves not only small GTPase activation, but also PLC-γ mediated activation [175]. Specifically, the EGF receptor was identified as a ‘platform’ that assembles and activates two direct effectors, PLC-γ1 and the nonreceptor tyrosine kinase c-Src. Upon activation, PLC-γ1 and c-Src recruit and activates the Ca2+/diacylglycerol-regulated guanine nucleotide exchange factor for Ras-like GTPases, RasGRP3, via second messenger formation and tyrosine phosphorylation, respectively. Once active, RasGRP3 catalyzes nucleotide exchange on Rap2B, inducing activation of this small GTPase. Active Rap2B then binds to PLC-ε and translocates the lipase to the plasma membrane where it can efficiently propagate signaling.

The molecular mechanisms of PLC-ε regulation have been intensively studied; however, little is known about the function of PLC-ε in physiological processes. Studies indicate that the regional and temporal expression profile of each PLC isoform may account for its physiological function [67]. For example, PLC-β1 is highly expressed in the hippocampus and cerebral cortex [176], and PLC-β1 knockout mice exhibit minor developmental abnormalities in the hippocampus and develop epilepsy [177]. To begin to understand the physiological function of PLC-ε, Kataoka and colleagues examined the spatial and temporal expression patterns of PLC-ε in the central nervous system of mouse embryos and adults [178]. The induction of PLC-ε expression appears to be associated specifically with the commitment of neuronal precursor cells to the neuronal lineage, and seems to persist after terminal differentiation into neurons [178]. In contrast to PLC-β1, which exhibits region-specific expression [176], PLC-ε expression is observed in almost all regions containing mature neurons [178]. These results suggest that PLC-ε may be involved in a more general aspect of neuronal differentiation and neuronal function than a region-specific isoform such as PLC-β1, which is critical for very selective neuronal functions such as those associated with the hippocampus. It is possible that PLC-ε, via Ras and/or Rap regulation, may have a general role in fibroblast growth factor and neurotrophic factor signaling, both of which have been implicated in neuronal development. Recently, the physiological function of PLC-ε in the nematode C. elegans was addressed. C. elegans ovulation and fertility are regulated by an Ins(1,4,5)P3 signaling pathway activated by the receptor tyrosine kinase LET-23 [179, 180]. PI-PLCs generate Ins(1,4,5)P3, by catalyzing the hydrolysis of PtdIns(4,5)P2 into Ins(1,4,5)P3; thus, it is possible that an enzyme involved in generation of Ins(1,4,5)P3 would also play an important regulatory role in fertility and ovulation. Kataoka and colleagues used deletion mutants of the PLC-ε gene in C. elegans, plc-l, to investigate the role of the gene in ovulation. Two deletion alleles were generated that removed regions important for the catalytic activity of PLC-ε, and both exhibited reduced fertility as a result of ovulation defects [181]. This is the first genetic analysis of PLC-ε in an intact organism, and adds further complexity to our understanding of the potential role(s) PLC-ε is playing in physiological processes. Future studies examining the cellular function and regulation of PLC-ε both in vitro and in vivo will help to merge the gap between molecular and functional analyses of PLC-ε regulation, and thus provide evidence in support of PLC-ε as a critical player in mammalian physiology.
In addition to regulation of PLC-ε, other novel forms of PLC regulation have recently been revealed. PLC-L2 is a novel PLC-like protein that is most similar to PLC-δ but lacks lipase activity due to replacement of a conserved histidine residue in the X domain [182]. PLC-L2 is expressed in hematopoietic cells, where PLC-γ1 and γ2 play important roles downstream of the T cell receptor (TCR) and B cell receptor (BCR), respectively [183]; however, the physiological role of this catalytically inactive PLC in these cells was unknown. Recently, Takenaka et al. generated mice with a targeted deletion of the PLC-L2 gene to examine the role of PLC-L2 in hematopoietic cell signaling [184]. When PLC-L2 is absent, B cells exhibit a hyper-reactive phenotype which strongly suggests that the physiological role of PLC-L2 is to negatively regulate BCR signaling and immune responses.

The finding that PLC-L2 negatively regulates signaling indicates that PLCs may play more complex roles in signaling cascades than originally thought. With the recent discovery of two new PLCs, PLC-ε and PLC-ζ, the physiological functions of PLCs are constantly being redefined.

Receptor-independent guanine nucleotide exchange factors

In the past few years there have been several reports of receptor-independent activators of G-protein signaling. Cismowski and colleagues used a yeast-based screen to identify potential receptor-independent activators of heterotrimeric G-protein signaling [185]. One gene isolated in this screen was Dextras1 (renamed by Cismowski et al. as AGS1), a previously described dexamethasone-inducible Ras-family GTPase [186]. Dextras1 has been characterized as a putative GEF for Gαi/o subunits [187] and can regulate heterotrimeric G-protein signaling pathways under certain circumstances [188, 189]. Intriguingly, Dextras1 was also shown to be activated by N-methyl-D-aspartate (NMDA) receptor-dependent nitric oxide (NO) production in vitro and in vivo [190]. A recent study has further characterized Dextras1 as a regulator of the circadian clock via NMDA and Gαi/o-dependent pathways [191]. Dextras1 is highly expressed in the suprachiasmatic nucleus, the ‘pacemaking’ centre of circadian rhythm control [192]. Mice deficient in Dextras1 are abnormal in both photic (NMDA-dependent) and non-photic (neuropeptide Y-dependent) responses, probably via modulation of Gαi/o signaling pathways [191].

Recently Tall and colleagues identified mammalian Ric-8A (Synembryn) as a receptor-independent GEF for Gαi/o but not Gαs, using in vitro assays [193]. The inability of Ric-8A to activate Gαi/o subunits bound within heterotrimeric Gαβγ complexes has led to the hypothesis that Ric-8 proteins may act as signal amplifiers following initial heterotrimer activation by GPCRs [193]. More recently, we have shown that Ric-8 plays a fundamental role in regulating G-protein signaling during C. elegans asymmetric cell division in embryogenesis (discussed in detail below).

GoLoco motif-containing proteins

In a genetic screen in Drosophila to discover glial cell-specific targets of the transcription factor pointed, Granderath and colleagues cloned Drosophila loco (for ‘locomotion defects’), the fly orthologue to RGS12 [194]. This group also identified a Gαi/o-interacting region in Loco that was distinct from the RGS domain. Using this information and the sequences of other described Gαi/o-interacting proteins, we discovered a conserved 19-amino acid sequence motif, dubbed the Gαi/o-Loco or GoLoco motif, that is present in Loco, RGS12, RGS14 and many other metazoan proteins [195]. A similar in silico discovery was independently made by Ponting [130], and GoLoco motifs have also been referred to as G-protein regulatory (GPR) motifs [196]. The GoLoco motif/Gαi/o interaction is generally selective for Gαi/o subunits in their GDP-bound form; the interaction results in a slowing of the spontaneous GDP release by Gαi/o. The molecular determinants of GoLoco motif-mediated GDI activity [133], as well as the putative roles of these proteins as regulators of GPCR signaling and cell division processes are discussed at length in our recent review [134].

GoLoco motifs, either individually or in tandem repeats, have been discovered within several diverse proteins (fig. 5) including C. elegans GPR-1/2 [197–199], Drosophila Pins [200, 201] and the mammalian proteins: Purkinje cell protein-2 (Pcp-2) [202, 203], Rap1GAP1 [204, 205], G18 [206, 207], LGN [208–210] and AGS3 [196, 211, 212]. As many of the GoLoco motif-containing proteins have two or more names, the Human Genome Organization (HUGO http://www.gene.ucl.ac.uk/nomenclature/) has reclassified some of the human GoLoco motif proteins using a standardized nomenclature: AGS3 is now called G-protein signaling modulator-1 (GPSM1), LGN (also known as mammalian Pins; [213]) is called GPSM2, G18 (also called NG1 and AGS4) is now named GPSM3, and Pcp-2 (a.k.a. L7) is now GPSM4.

G-protein signaling in model organisms

Many eukaryotic organisms employ heterotrimeric G-proteins for signal processing and homeostasis. For instance, the budding yeast Saccharomyces cerevisiae responds to peptide ‘pheromones’, a-factor and α-factor, to accomplish mating (haploid cell fusion). Pheromone signaling in yeast is propagated and regulated via GPCRs, heterotrimeric G-proteins and a Gβγ-mediated
MAPK pathway [214]. The study of this system in yeast has provided enormous insight into G-protein-linked systems in mammals, mainly due to the tractability of the yeast system to genetic manipulation. For instance, the archetypal yeast RGS protein Sst2 was isolated in a genetic screen as a negative regulator of pheromone signaling [215], 14 years before the first functional identification of a mammalian RGS protein [112, 114]. Likewise, the slime mould Dictyostelium discoideum responds to bacterially secreted extracellular cyclic AMP (cAMP) [216] by chemotaxis and phagocytosis of the bacteria. This process is transacted by a canonical heterotrimeric G-protein signaling system and is akin to chemotactic and phagocytic processes in mammalian leukocytes [217]. This experimental system has provided superlative information about the cell biological mechanisms of directional sensing, polarization, cell motility and lipid metabolism controlled by G-protein-coupled pathways. The particulars of non-conventional G-protein signaling in Drosophila and C. elegans are discussed elsewhere in this review, while the genetic dissection of mammalian G-protein signaling via gene inactivation studies has recently been thoroughly reviewed in the literature [218].

A GPCR-RGS protein in plants?
An enigmatic, but potentially very enlightening, example of G-protein signaling exists in the Plantae model organism Arabidopsis thaliana. Heterotrimeric G-protein signaling in Arabidopsis controls both cell proliferation [219] and inhibition of stomatal opening by abscisic acid (via inhibition of guard cell inwardly rectifying K+ channels) [220]. The Arabidopsis G-protein signaling repertoire contains an unusually restricted set of elements. At present only one prototypical Ga subunit (AtGPA1), one Gβ subunit (AGB1) and two Gγ subunits (AGG1 and AGG2) have been described [221]. Metazoan systems typically have hundreds to thousands of GPCRs, 10–20 Ga subunits, 2–5 Gβ subunits and 2–12 Gγ subunits. Intriguingly, no definitive report of either an Arabidopsis GPCR or a direct effector of AtGPA1 has been made, although candidates have been identified [222, 223]. Similarly, until recently, no RGS protein nor GAP of any kind for Ga had been identified in Arabidopsis. We discovered the first plant RGS protein, subsequently named AtRGS1, as an anonymous open-reading frame with homology to mammalian RGS domains [224]. Provocatively, AtRGS1 contains an N-terminal region with the predicted topology and structure of a GPCR (fig. 6) [225], bringing forth the possibility that AtRGS1 is a conjoint guanine nucleotide exchange factor and GTPase-accelerating protein for AtGPA1. The RGS domain of AtRGS1 acts as a potent GAP for AtGPA1 in vitro [224, 225]. In vivo, the phenotype of AtRGS1 ablation or overexpression is consistent with the role of AtRGS1 as a negative regulator of AtGPA1 signaling, based on analyses of cell proliferation in the apical root meristem [224]. Currently, no evidence exists as to whether the 7TM component of AtRGS1 is a guanine nucleotide exchange factor for AtGPA1, and the identity of potential ligands remains elusive, although a sugar is a most likely candidate [226].

The ultimate receptor-selective RGS protein?
Evidence from mammalian systems has brought forth the hypothesis that RGS protein regulation of Ga signaling can be ‘receptor selective’ [227–229]. For instance, RGS1 is a 1000-fold more potent inhibitor of muscarinic-
versus cholecystokinin-receptor stimulated Ca\(^{2+}\) mobilization in pancreatic acinar cells; this is despite the receptor signaling pathways to \(\mathrm{G}_\alpha_4\) being apparently indistinguishable [228]. The simplest mechanism for receptor selectivity would be direct interaction between GPCRs and RGS proteins. Alluring evidence supports the notion that some RGS proteins may be present in signaling complexes with GPCRs; for instance, the PDZ (PSD-95/Dlg/ZO-1 homology) domain of RGS12 directly interacts in vitro with peptides corresponding to the C-terminus of the interleukin-8 receptor B (CXCR2) [129]. In a similar fashion, a GST-fusion protein of the third intracellular loop of the \(\mathrm{M}_i\)-muscarnic acetylcholine receptor can co-precipitate with ectopically expressed or purified recombinant RGS2 but not other RGS proteins [230], and this correlates with the high potency of RGS2 inhibition of \(\mathrm{M}_i\) versus other muscarinic acetylcholine receptor signaling. However, it is important to note that no cellular, nor even in vitro, interaction between a full-length GPCR and a full-length RGS protein has yet been described.

Thus in the \textit{Arabidopsis} G-protein signaling paradigm, it may be that AtRGS1 is the archetypal example of receptor selectivity by RGS proteins. By having conjoint GEF and GAP activities, the AtRGS1 protein potentially forms a precisely controlled and localized signaling complex: the so-called ‘spatial focusing’ hypothesis (fig. 6). Thus the concept has evolved that receptor selectivity of RGS proteins determines functional signaling outcomes, and evidence now exists that RGS proteins, first identified as negative regulators of GPCR signaling, may actually facilitate signal transduction by ‘spatial focusing’, as outlined by Neubig and colleagues [231]. This concept stems from demonstrations that RGS proteins can positively (as well as negatively) modulate GIRK channels. RGS proteins can accelerate both the activation and deactivation kinetics of GIRK channels without altering the current amplitude or dose-response relationship to agonist application [116, 117]. Similarly, in the presence of GTP, RGS proteins can potentiate receptor-mediated GTP\(\gamma\)S binding by \(\mathrm{G}_\alpha\) subunits [231]. Thus, RGS proteins may add a level of selectivity to GPCR action by permitting effector activation exclusively within the proximity of the GPCR while providing (via GAP activity) a constant supply of \(\mathrm{G}_\alpha\)-GDP for continued GPCR coupling [231].

Fat-free RGS protein membrane association

An alternative explanation for the domain structure of AtRGS1 is that the N-terminal 7TM segment acts solely as a membrane anchor for the C-terminal RGS domain. AtGPA1 is predicted to be N-terminally myristoylated and, therefore, plasma membrane localized. Thus, forced membrane localization will enhance interaction between the cognate \(\mathrm{G}_\alpha\) and RGS domain pair. It is important to note that no mammalian RGS proteins have demonstrable transmembrane domains, although the RGS domain-containing sorting nexins, SNX13, -14 and -25, are reported to have one or two potential transmembrane-spanning sequences [232]. However, it has been established that phospholipid binding by RGS domains [233–235] and palmitoylation of RGS domains [236, 237] each can negatively affect the ability of RGS domains to serve as GAPs for \(\mathrm{G}_\alpha\) subunits. Thus, it appears that interactions between lipids and RGS domains may be intimately linked to physiological function [238], and independent methods to evoke the membrane localization of RGS proteins may have evolved in plants versus mammals. In mammalian cells, the membrane translocation of RGS proteins can be induced by GPCRs [239] and constitutively activated \(\mathrm{G}_\alpha\) subunits [240]; however, recent evidence suggests that significant differences exist between endogenous and ectopically overexpressed RGS proteins [241]. This can include the mislocalization, mistranslation and altered half-life of RGS proteins. Thus, the physiological relevance of the transcription and localization of ectopically expressed RGS proteins needs to be carefully evaluated.

Turning on the off signal?

An alternative, and provocative, hypothesis to explain the convergence of seven transmembrane and RGS domains in the same polypeptide is that AtRGS1 is a ligand-regulated GAP for AtGPA1 (fig. 6) whereby a soluble ligand serves to activate (agonist), or to repress (inverse agonist), AtRGS1 GAP activity. The kinetic parameters
of the Arabidopsis G-protein cycle support this scenario, given that AtGPA1 has a rapid nucleotide exchange rate but slow intrinsic GTP hydrolysis activity [225]. Unfortunately, for a definitive answer to these questions, a ligand for AtRGS1 needs to be discovered. Deorphaning putative GPCRs is inherently problematic [242]. Despite massive effort, a wealth of knowledge about mammalian signal transduction, and a broad range of techniques to measure well-characterized G-protein effector systems, only a small quotient of orphan GPCRs have had ligands identified for them [242]. Accordingly, more information needs to be ascertained about AtGPA1 signaling through the use of genetic and biochemical approaches. The biochemical characterization of direct effectors, such as the putative AtGPA1 effector phospholipase-D α1 (PLDα1) [223], and the creation of robust cell biological assays, is a necessity for any deorphaning effort. Conversely, genetic studies may serve to elucidate a ligand for AtRGS1. To this end, a recent report suggests that sphingosine 1-phosphate (S1P) is a potential plant-GPCR ligand. Abscisic acid inhibits stomatal opening caused by the activation of sphingosine kinase and, consequently, the production of S1P [243]. In mammalian systems, S1P is a well-described intracellular and extracellular messenger that activates a large family of GPCRs [244]. Thus it is possible that S1P is a ligand for AtRGS1 or other candidate plant GPCRs. Future studies should be directed towards fully elucidating the signaling components of this pathway. The potential for a novel receptor-activated GAP activity to occur in vivo seems highly likely as plants are the only sessile organisms known to utilize heterotrimeric G-protein signaling. Thus their mechanisms of signal perception and response to environmental conditions are likely to be dramatically different than that of the paradigmatic model organisms used to study G-protein signal transduction.

Figure 7. Models of asymmetric cell division in Drosophila and C. elegans. (A) In delaminating neuroblasts, two apical complexes (Bazooka [Baz], atypical protein kinase C [DaPKC] and Par6; Insuteable [Insc], Partner of Insuteable [Pins] and Gai) facilitate the localization of cell-fate determinants to the basal lateral membrane and the orientation of the mitotic spindle. (B) In sensory precursor (SOP) cells, planar polarity is established by counteracting complexes of Baz-DaPKC towards the posterior and Discs Large (Dlg)-Pins-Gai towards the anterior. (C) In C. elegans one-cell zygotes, PAR-1/-2 proteins enrich GPR-1/2-GOA-1 complex localization towards the posterior, resulting in greater astral microtubule pulling forces on the posterior spindle pole and a resultant smaller P1 daughter cell.
A novel role for heterotrimeric G-protein subunits in mitotic spindle force generation and asymmetric cell division

A non-canonical G-protein cycle is emerging from studies of asymmetric cell division. Asymmetric cell division (ACD) is a mechanism, used by metazoan organisms to create cellular diversity, in which two unique daughter cells are generated from a single precursor. In this process, cell-fate determinants are localized to one pole or another and the mitotic spindle is orientated such that, upon division, these cell-fate determinants are asymmetrically partitioned. Heterotrimeric G-proteins are associated with protein complexes that control cell polarity, and play an integral role in mitotic spindle pulling force generation (reviewed in [134, 245–247]). The fruit fly *D. melanogaster* and the nematode worm *C. elegans* are two model organisms commonly used for the study of asymmetric cell division. Both delaminating neuroblasts and sensory organ precursors in *Drosophila*, and the *C. elegans* early embryo, utilize a similar set of proteins to control polarity and spindle pulling forces (fig. 7A–C). The following sections detail the roles of heterotrimeric G-proteins in these two model systems and reviews what is known of related proteins in mammals.

Asymmetric cell division in *Drosophila*

Delaminating neuroblasts

In the *Drosophila* embryo, the central nervous system is derived from epithelial neuroprogenitor cells or ‘neuroblasts’ that divide asymmetrically into a smaller ganglion mother cells (GMCs) and larger neuroblasts (fig. 7A) [248]. After division, daughter GMCs terminally differentiate into neurons, whereas daughter neuroblasts retain their neural pluripotency. Neuroblast ACD is an intricate process that begins with delamination of cells from the neuroectoderm, followed by establishment of apical-basolateral cell polarity and localization of cell-fate proteins, and finally orientation of the mitotic spindle for division. Cell-fate determinants Miranda, Prospero and Numb are localized at the basolateral membrane of the dividing neuroblast where they segregate into the smaller GMCs. Prospero is a transcription factor that activates GMC-specific genes and inhibits neuroblast-specific genes [249–253]. *prospero* RNA is asymmetrically localized by Staufen, an RNA-binding protein [254–256]. The cortical localization of both Staufen and Prospero during mitosis are in turn controlled by the coiled-coil protein Miranda [257, 258]. Finally, the cell-fate determinant Numb, which is localized by partner of numb (PON), inhibits Notch signaling after the first division by polarizing the distribution of α-adaptin, resulting in enhanced endocytosis of Notch at one pole [259–262]. Orientation of cell polarity and mitotic spindle positioning for proper segregation of these cell-fate determinants requires a network of proteins that localize to the apical membrane at the beginning of mitosis as neuroblasts delaminate. At the apical membrane, a complex of Gαi, Partner of Inscurtaeble (Pins), *Drosophila* atypical protein kinase C (DaPKC), *Drosophila* partitioning defect protein 6 (DmPAR6), Bazooka (Baz) and Inscurtaeble establish polarity cues and the axis of division. Inscurtaeble, a key player in this apical complex, is required for proper spindle orientation and localization of cell-fate determinants [263, 264]. Inscurtaeble binds to both Pins [201] and Bazooka [265], serving as the linchpin between Pins/Gai and Baz/DaPKC/DmPAR6 complexes (discussed below). Binding to both Baz and Pins occurs through a central asymmetry domain [265, 266] comprising a series of putative Armadillo repeats.

Pins is a multi-domain protein consisting of seven tetra-tricopeptide repeats (TPRs) at its N-terminus and three GoLoco motifs at its C-terminus (fig. 5). Consistent with other GoLoco motif proteins, Pins binds the GDP-bound form of *Drosophila* Gai, and the addition of GTPγS to neuroblast lysates strongly inhibits coimmunoprecipitation of Gai with Pins [267]. While a biochemical analysis of Pins has not been performed, closely related mammalian GoLoco motif proteins such as GPSM2 (LGN) and GSPM1 (AGS3) display GDI activity [209, 212, 268]. It appears that Gai is the physiologically relevant G-protein, as Gao is not detected in complex with Pins [267], and in general, the majority of GoLoco proteins display a strong preference for Gaα over Gaα subunits. Loss of Pins, Inscurtaeble or other apical components results in an increased rate of spindle misorientation and loss or mislocalization of cell-fate determinants. However, none of these result in the loss of asymmetric division. Partial recovery, known as telophase rescue, can occur in some cells lacking individual components of the apical cortex complex [269, 270]. This may be explained by recent studies suggesting that the two complexes (Baz/DaPKC/Par6 and Pins/Gai) are at least partially redundant. While mutation of a single component results in spindle mislocalization, simultaneous mutation of components in both complexes results in symmetric division as well as the characteristic spindle misorientation and cell-fate determinant mislocalization [270]. Genetic studies by Izumi and colleagues suggest that the two complexes perform both overlapping and unique roles, where Bazooka localizes Miranda and partially contributes to asymmetry, and Pins/Gai orients the spindle and contributes to asymmetry [271]. The redundancy of the system suggests that asymmetry and spindle position are extremely important for viability.

The Gβ subunit Gβ13F is also involved in regulating asymmetric cell division in *Drosophila* neuroblasts. Unlike Gai, Gβ13F has a uniform cortical distribution...
[267]. Either elimination of Gβ13F or overexpression of Gaᵢ results in symmetric division [267, 272]. Until recently, it was unknown how Gaᵢ- and Gβ-subunits individually contributed to asymmetric division, as RNA-interference (RNAi) of Gβ13F expression also resulted in a concomitant loss of Gaᵢ. To ameliorate this, Yu et al. used Gaᵢ mutants to establish the relative roles of Gaᵢ and Gβ13F [273]. Gaᵢ mutants demonstrate similar phenotypes to those of Baz, Pins, DaPKC or Insucutable mutants, where a fraction of cells still undergo asymmetric division. However, loss of Gβ expression results in near complete (96%) loss of asymmetric division, similar to mutations to both the Gaᵢ/Pins and Baz/DaPKC pathways, leading to the proposal that Gβ13F acts upstream of the other components [273]. Cell-fate determinants are still localized accurately in Gβ and Gy double mutants, suggesting that the Gβ dimer is primarily involved in spindle positioning rather than determinant localization. Furthermore, an increase in either Gβ or Gy expression results in small spindles, while a decrease in Gβ expression results in large symmetric spindles [272]. Given the uniform cortical expression of Gβ, additional regulation by apical components must control Gβ subunits in order for an asymmetric spindle to form [274]. The precise nature of the hierarchy between individual apical membrane complex components and Gβγ subunits remains to be elucidated.

Sensory organ precursor cells
A contrasting example of heterotrimeric G-protein signaling in the context of spindle positioning is found in Drosophila sensory organ precursor (SOP) cells (fig. 7B). Parts of the peripheral nervous system in Drosophila are derived from SOP cells [275], and involve Gaᵢ- and Gβγ-subunit control of spindle positioning and cell-fate determinant localization [267]. Spindle orientation and cell-fate determinants in neuroblasts are oriented around an apical-basolateral axis, whereas SOP cells exhibit planar polarity along the anterior-posterior axis. In this system, the pl (primary precursor) cell divides asymmetrically into an anterior pIIa, which inherits cell-fate determinants such as Numb and PON, and a posterior pIIb [276, 277]. In contrast to neuroblasts, SOP cells have two counter-acting complexes, (i) Gaᵢ/Pins towards the anterior and (ii) DmPar6/DaPKC/Baz towards the posterior [278]. Furthermore, Insucutable is not expressed in pl cells [279], and its ectopic expression reverses polarity, bringing Bazooka into the anterior complex with Pins, such that cell-fate determinants such as Numb mislocalize to the posterior [280]. Division of SOP cells is asymmetric only in the context of cell-fate determinant distribution to daughter cells, as the cells and spindle sizes are equal. Asymmetric division only occurs in these cells during simultaneous loss of components from each of the Gaᵢ/Pins and DaPKC/Baz/DmPar6 complexes, a situation mimicked by loss of Gβ subunit function [278]. Finally, in another contrast to the neuroblast, expression of the constitutively-active GaᵢQ205L mutant perturbs spindle orientation in SOP cells [267], suggesting that there may be some GPCR-mediated signal in this context (i.e. generation of active Gaᵢ-GTP). To this end, the Frizzled receptor, proposed to be a de facto GPCR [281], modulates spindle rotation and polarity in the pl to pIIa/b division [276, 282].

Asymmetric cell division in C. elegans
In Caenorhabditis elegans embryos, the first division is asymmetric (fig. 7C) [283–285]. The zygote divides into a larger AB anterior cell and a smaller P1 posterior cell. Polarity is established by the sperm at fertilization [285], and as with Drosophila neuroblasts, spindle positioning and the expression and localization of cell-fate determinants are coordinated by a complex array of proteins. At the top of the hierarchy are the PAR (Partitioning defective) proteins, a group of structurally unrelated proteins isolated in a screen for regulators of asymmetric cell division [286]. There are six PAR proteins, which, in combination with atypical protein kinase C-3 (aPKC-3) and the small G-protein Cdc42, establish the anterior-posterior axis of cell polarity. PAR-3/-6 and aPKC-3 localize to the anterior cortex [287–289], while PAR-1/-2 define the posterior end [290, 291]. Mutation of any of the PAR proteins or aPKC results in symmetric division [283, 286, 289, 292]. As previously discussed, heterotrimeric G-protein subunits and modulators such as Pins are directly involved in establishing cell polarity in Drosophila ACD systems. In contrast, in the C. elegans zygote, G-protein subunits, GoLoco proteins and other modulators appear to act downstream of polarity determinants (such as aPKC-3 and the PAR proteins) in positioning the mitotic spindle and regulating pulling forces on this spindle during the first zygotic division. There are four G-protein subunits relevant to asymmetric cell division in C. elegans: GPA-16 and GOA-1 are Ga subunits (most similar to mammalian Gaᵢ and Gaᵢo, respectively) and GPB-1 and GPC-2 are Gβ and Gy subunits, respectively. Concurrent inactivation of GOA-1 and GPA-16 leads to a loss of asymmetric pulling force (fig. 8), causing daughter cells to be the same size [291]; loss-of-function mutations or RNAi of either gpb-1 or gpc-2 results in improper centrosome rotation, leading to spindle misorientation [291, 293]. The hierarchy of PAR proteins being upstream of G-protein subunit involvement is confirmed by the lack of any defect in the localization of PAR proteins or cell-fate determinants in response to reduction of Gaᵢ expression [197, 291].

A functional genomic screen by Gönczy and colleagues identified the single GoLoco motif-containing proteins
GPR-1 and GPR-2 (fig. 5) as crucial for asymmetric cell division [197]. We and others have shown that the single GoLoco motif of GPR-1 acts as a GDI towards the C. elegans Ga subunit GOA-1 [198, 294]. As GPR-1 and GPR-2 are nearly identical at their protein and nucleotide sequence levels, a single interfering RNA is able to knock down expression of both proteins; RNAi-mediated knock down of gpr-1/2 results in a loss of asymmetric division, and mislocalization of spindles in two-cell embryos – a phenotype identical to that of concomitant goa-1 and gpa-16 RNAi [197]. RNAi of either G-protein subunits, both GoLoco motif proteins gpr-1/2 or the receptor-independent Ga GEF ric-8 causes symmetric division due to loss or mislocalization of pulling force generators. Simultaneous loss of ric-8 and gpb-1 leads to an enhancement of anterior pulling forces indistinguishable from gpb-1 RNAi alone [294]. In contrast, rgs-7 mutants display reduced anterior pulling forces, resulting in exaggerated asymmetry and a smaller P1 cell [305]. In all cases, pulling forces were determined by laser ablation of central mitotic spindles and direct measurement of resultant peak velocities of spindle poles.

Involvement of heterotrimeric G-proteins in mammalian cell division

In contrast to the considerable wealth of studies in C. elegans and D. melanogaster, information regarding the role of heterotrimeric G-proteins in mammalian cell division is relative scarce. There are, however, mammalian orthologues to the G-protein subunits, GoLoco motif proteins and even cell-fate determinants with cognate roles in asymmetric cell division in vertebrates (e.g. Numb; [296, 297]). For example, GPSM2 (LGN) [208] has 47% overall sequence identity with Drosophila Pins [274], displaying 67 and 32% identity to fly Pins in the TPR and GoLoco repeat regions, respectively. Several studies have demonstrated subcellular translocation of GPSM2 during cell division, including movement from the cytoplasm to the midbody [298], the spindle pole [213] or the cortex [268]. Either ectopic expression or RNAi-mediated knockdown of GPSM2 results in spindle disorganization and abnormal chromosome segregation [213], leading to cell cycle disruption [268]. Detailed studies by Du and colleagues have revealed that GPSM2
localizes to the spindle poles during cell division where it binds to the nuclear mitotic apparatus protein (NuMA) [213]. NuMA is involved in microtubule stabilization and organization at spindle poles; it is believed to nucleate microtubule bundles as a multimeric complex [299]. NuMA association with microtubules occurs through a C-terminal domain, and GPSM2 binds directly to NuMA through an overlapping region of the same C-terminal domain. Thus GPSM2 affects spindle organization by limiting the amount of NuMA available for microtubule nucleation [210].

The GoLoco domains of GPSM2 display GDI activity on Ga and Gα, although binding affinity and GDI activity towards Gαi are an order of magnitude lower than towards Gαq [309]. During cell division, GPSM2 localizes to the cell cortex, and the multiple GoLoco motif C-terminus is sufficient for this distribution [268] as is the case with the Drosophila homologue Pins [300]. It is likely that binding to Gα subunits directs this membrane association, as ectopic expression of Gαi is reported to induce cortical localization of GPSM2 in non-dividing cells [268]. Another closely-related TPR- and GoLoco motif-containing protein present in metazoans is GPSM1 (AGS3); however, this protein has not been functionally analyzed with respect to its involvement in cell division to the same degree as GPSM2.

The usual suspects: GEF, GDI and GAP activities in asymmetric cell division

The discovery of Gα subunits as key constituents in the protein machinery of asymmetric cell division has led to the proposal that heterotrimeric G-protein signaling in ACD could occur in the absence of any canonical GPCR-mediated signal [200]. This is supported by circumstantial evidence that the in vitro culturing of fly neuroblasts, which effectively eliminates external signaling cues, does not perturb spindle positioning or segregation of cell-fate determinants [301, 302]. In a corresponding fashion, the shell surrounding C. elegans embryos makes it improbable that the first zygotic division receives or requires any extrinsic cue.

RIC-8 might act in lieu of receptor-mediated GEF activity in C. elegans embryo division. As mentioned previously, mammalian Ric-8A is a receptor-independent GEF for Gαi and Gaq subunits in vitro [193]. In C. elegans, ric-8 mutations cause defects in spindle orientation and lead to a frequency of embryonic lethality of 15–30% [303]. ric-8 mutant lethality can be augmented to 100% with concomitant mutation to goa-1, suggesting that these gene products might act in the same pathway [303]. Indeed, in collaboration with Pierre Gönczy, we have shown that C. elegans Ric-8 interacts with GOA-1 (selectively with its GDP-bound form) and acts as a GEF for GOA-1 as observed by RIC-8-dependent increases in GTPγS binding and steady-state GDP hydrolysis [294]. RNAi-mediated elimination of RIC-8 function (in a background of loss-of-function ric-8 alleles) leads to reduced anterior and posterior pulling forces on the mitotic spindle of the one-cell zygote [294] – a phenotype identical to that of concomitant goa-1 and gpa-16 RNAi and of gpr-1/2 RNAi (fig. 8). Elimination of RIC-8 function also reduces the level of GOA-1-GDP/GPR-1 complex observed in C. elegans embryonic extracts [294]; however, concomitant inactivation of Gβγ (via gpb-1 RNAi) along with ric-8 RNAi restores levels of the GOA-1-GDP/GPR-
1/2 complex as well as restoring robust anterior and posterior pulling forces on the mitotic spindle (fig. 8).

As a whole, these genetic and biochemical observations have led to the idea that RIC-8 functions in cell division upstream of GPR-1/2—a function that somehow counteracts the entrapment of Gα·GDP in the Gaβγ heterotrimer and leads to production of a GOA-1-GDP/GPR-1/2 complex, as illustrated in the working model of figure 9. This model considers the GOA-1-GDP/GPR-1/2 complex as the active species in signaling to pulling force generation. It is important to note that some of our findings regarding C. elegans RIC-8 have been independently confirmed by Gotta and co-workers [304], although this group interprets the involvement of RIC-8 GEF activity in asymmetric cell division as evidence that Gα·GTP is the active species in force generation required for this process. Remarkably, as in GPCR-stimulated heterotrimeric G-protein signaling, RGS proteins are emerging as critical regulators of Gα action in cell division. For example, Hess and colleagues recently reported that the C. elegans RGS-7 protein can act to accelerate GTP hydrolysis by GOA-1 [305]; loss of RGS-7 function leads to hyper-asymmetric spindle movements in the one-cell zygote, resulting from a decreased anterior spindle pulling force (summarized in fig. 8). In the working model of Gα involvement in pulling force generation (fig. 9), the findings of Hess et al. could be explained by RGS-7 acting selectively at the anterior cortex to accelerate conversion of Gα·GTP to Gα·GDP for interaction with GPR-1/2; loss of RGS-7 GAP activity would therefore lead to less anterior GOA-1-GDP/GPR-1/2 complex and less force generation from the anterior cortex (fig. 9D). Unfortunately, the initial studies by Hess and colleagues did not include an examination of the distribution of endogenous RGS-7 protein in the dividing one-cell zygote, and thus future studies are required to ascertain whether RGS-7 function is indeed restricted to the anterior cortex.

Intriguingly, recent evidence supports a similar role for RGS proteins in mammalian cell division. With our colleagues Josef Penninger and Tony D’Souza, we generated Rgs14 knockout mice; lack of RGS14 expression in the mouse zygote leads to an early embryonic lethality, specifically at the first zygotic division [306]. RGS14 was found to be one of the earliest proteins expressed by the mouse embryonic genome immediately prior to the first division; the protein was observed to co-localize with microtubules forming the anastral mitotic apparatus of the dividing one-cell zygote. Immunofluorescence microscopy of mouse embryos lacking RGS14 revealed misaligned chromatin and a dearth of microtubule organization or diffuse tubulin and DNA staining, the latter phenotype suggestive of chromosomal fragmentation. In all mammalian cell types examined, RGS14 segregated to the mitotic spindle and centrosomes during mitosis [306]; alteration of RGS14 levels in exponentially proliferating cells, either by RNAi-mediated knockdown or constitutive expression, was found to be deleterious to continued cell proliferation—a phenomenon very similar to that observed by Du and colleagues with GPSM2/LGN overexpression or knockdown [210, 213]. We have also recently reported that RGS14 is a microtubule-associated protein and its depletion from mitotic cell extracts prevents aster formation normally catalyzed by the addition of ATP and taxol [307]. Our findings implicate RGS14 (and its Gα targets) as critical players in cell division processes from the very first zygotic division and suggest that heterotrimeric G-protein regulation of microtubules may be a conserved mechanism by which metazoans control spindle organization and force generation during chromosomal DNA segregation into daughter cells.

Unanswered questions and future directions

Many questions remain unanswered as far as the detailed mechanism of G-protein regulation of spindle pulling forces during cell division. It has been proposed that tubulin may be a direct downstream target of G-proteins in the context of cell division [134]. This is supported by evidence that both Gα and Gβγ subunits can regulate tubulin assembly and microtubule dynamics [308–313]. In particular, GTP-bound Gαi can bind directly to tubulin, transactivate its intrinsic GTPase activity and modulate microtubule assembly [308, 310]. Using a novel form of microscopy, Labbé and colleagues have demonstrated that microtubule residence at the cell cortex is significantly longer on the anterior versus posterior side of the C. elegans early embryo [314]. In contrast, upon RNAi-mediated elimination of goa-1 and gpa-16 expression, microtubule residence time is equivalent at the anterior and posterior cortex (i.e. both equal to that of the posterior cortex in wild-type embryos), thus reinforcing the evidence that Gα subunits are responsible for asymmetric force generation. It is of note that microtubule residence time was not changed in general [314], indicating that force generation does not involve changes in microtubule cortical dynamics but, more likely, in the machinery regulating microtubule polymerization and depolymerization.

Whereas the GTP-bound form of Gα subunits is the active species in canonical GPCR signaling pathways, it remains to be proven if this is the case in asymmetric cell division. With the potential exception of Rap1GAP [204], GoLoco motif-containing proteins such as Pins, GPSM2 and GPR-1/2 only bind to the GDP-bound form of Gα subunits. Thus it remains to be established if the active species responsible for controlling spindle pulling forces is Gα·GDP, Gα·GTP, GoLoco-bound Gα·GDP (as suggested in our working model; fig. 9), or something else entirely. In addition, it is unclear how the Gaβγ het-
erotrimer is dissociated to allow Ric-8 and GoLoco proteins unfettered access to the GDP-bound Ga subunit. In vitro studies with rat Ric-8A, Tall and colleagues have suggested that Ric-8 GEF activity cannot operate on Goβγ-complexed Ga-GDP [193]; perhaps C. elegans Ric-8 does not share this restriction or a cellular context with appropriately membrane-targeted G-protein subunits is required to observe GEF activity on the heterotrimer. Some have proposed that GoLoco motif proteins can disrupt Goβγ heterotrimeric complexes [199, 267, 315]; however, in electrophysiological studies of the influence of GoLoco motif peptides on GPCR coupling to Goβγ-gated GIRQ potassium channels, we have been unable to observe GoLoco motif-mediated activation of Gα-heterotrimerics in a fully integrated cellular context [316]. Moreover, our recent evidence that Ric-8 acts upstream of GPR-1/2 in the cycle underlying GOA-1-mediated spindle pulling force generation ([294]; fig. 9) disavows this possibility. Other proteins are clearly involved in spindle dynamics and may be directly engaged in generating Ga free from Goβγ. LIN-5 has been identified as a binding partner of GPR-1/2 in C. elegans (fig. 9), and disruption of lin-5 results in a symmetric zygotic division phenotype akin to that of gpr-1/2 or gpa-16/goa-1 RNAi [198, 199]. LIN-5 is a coiled-coil protein that localizes GPR-1/2 to the posterior cortex and is thus paramount for correct pulling force distribution. Another protein, LET-99, appears to counteract the Ga/GPR-1/2 pathway, such that loss-of-function let-99 mutations result in increased pulling forces and a hyperactive rocking motion during spindle rotation [317]. The apparent multiple levels of control and complexity of this system are not surprising in light of the essential nature of correct asymmetric division for embryo viability. Further studies will be required to identify the precise role of each of the heterotrimeric subunits in cell division, delineate the complex interactions between polarity cues and spindle positioning, and identify the mechanism by which heterotrimeric G-proteins regulate pulling forces.

Acknowledgements. We thank Christopher A. Johnston for critical appraisal of this review. C.R.M. and F.S.W. are postdoctoral fellows of the Natural Sciences and Engineering Council of Canada and the American Heart Association, respectively. R.J.K. acknowledges postdoctoral fellowship support from the NIMH F30 MH64319. Work in the Siderovski laboratory is funded by U.S. National Institutes of Health grants GM062338 and GM065533.

1 Evanko D. S., Thiagarajan M. M., Siderovski D. P. and Wedegaertner P. B. (2001) Gbeta gamma isoforms selectively rescue plasma membrane localization and palmitoylation of mutant Galphas and Galphaq. J. Biol. Chem. 276: 23945–23953
2 Chen C. A. and Manning D. R. (2001) Regulation of G proteins by covalent modification. Oncogene 20: 1643–1652
3 Robillard L., Ethier N., Lachance M. and Hebert T. E. (2000) Gbetagamma subunit combinations differentially modulate receptor and effector coupling in vivo. Cell Signal. 12: 673–682
4 Brandt D. R. and Ross E. M. (1985) GTPase activity of the stimulatory GTP-binding regulatory protein of adenylyl cyclase, Gαs. Accumulation and turnover of enzyme-nucleotide intermediates. J. Biol. Chem. 260: 266–272
5 Higashijima T., Ferguson K. M., Sternweis P. C., Smigel M. D. and Gilman A. G. (1987) Effects of Mg2+ and the beta gamma-subunit complex on the interactions of guanine nucleotides with G proteins. J. Biol. Chem. 262: 762–766
6 Wall M. A., Posner B. A. and Sprang S. R. (1998) Structural basis of activity and subunit recognition in G protein heterotrimerics. Structure 6: 1169–1183
7 Ford C. E., Skiba N. P., Bae H., Daaka Y., Reuvény E., Sheler L. R. et al. (1998) Molecular basis for interactions of G protein betagamma subunits with effectors. Science 280: 1271–1274
8 Li Y., Sternweis P. M., Charnecki S., Smith T. F., Gilman A. G., Neer E. J. et al. (1998) Sites for Galphas binding on the G protein beta subunit overlap with sites for regulation of phopholipase Cbeta and adenylyl cyclase. J Biol Chem 273: 16265–16272
9 Simon M. I., Strathmann M. P. and Gautam N. (1991) Diversity of G proteins in signal transduction. Science 252: 802–808
10 Nurnberg B., Guerdemann T. and Schultz G. (1995) Receptors and G proteins as primary components of transmembrane signal transduction. Part 2. G proteins: structure and function. J. Mol. Med. 73: 123–132
11 Wedegaertner P. B., Wilson P. T. and Bourne H. R. (1995) Lipid modifications of trimeric G proteins. J. Biol. Chem. 270: 503–506
12 Peitczsch R. M. and McLaughlin S. (1993) Binding of acylated peptides and fatty acids to phospholipid vesicles: pertinence to myristoynlated proteins. Biochemistry 32: 10436–10443
13 Grassie M. A., McCallum J. F., Guzzi F., Magee A. I., Milligan G. and Parenti M. (1994) The palmitoylation status of the G-protein G(o)1 alpha regulates its activity of interaction with the plasma membrane. Biochem. J. 302: 913–920
14 Galbiati F., Guzzi F., Magee A. I., Milligan G. and Parenti M. (1994) N-terminal fatty acylation of the alpha-subunit of the G-protein Gi1: only the myristoynlated protein is a substrate for palmitoylation. Biochem. J. 303: 697–700
15 Mumbay S. M., Kleuss C. and Gilman A. G. (1994) Receptor regulation of G-protein palmitoylation. Proc. Natl. Acad. Sci. USA 91: 2800–2804
16 Kisselev O., Ermolaeva M. and Gautam N. (1995) Efficient interaction with a receptor requires a specific type of prenyl group on the G protein gamma subunit. J. Biol. Chem. 270: 25356–25358
17 Moffett S., Brown D. A. and Linder M. E. (2000) Lipid-dependent targeting of G proteins into rafts. J. Biol. Chem. 275: 2191–2198
18 Myung C. S., Y asuda H., Liu W. W., Harden T. K. and Garrison J. C. (1999) Role of isoprenoid lipids on the heterotrimeric G protein gamma subunit in determining effector activation. J. Biol. Chem. 274: 16595–16603
19 Dohlim H. G., Song J., Ma D., Courchesne W. E. and Thorner J. (1996) Sst2, a negative regulator of pheromone signaling in the yeast Saccharomyces cerevisiae: expression, localization and genetic interaction and physical association with Gpa1 (the G-protein alpha subunit). Mol. Cell. Biol. 16: 5194–5209
20 Fletcher J. E., Lindorfer M. A., DeFilippo J. M., Y asuda H., Guilmaid M. and Garrison J. C. (1998) The G protein beta5 subunit interacts selectively with the Gq alpha subunit. J. Biol. Chem. 273: 636–644
adenylate cyclase are not associated with the subunit of adenylate cyclase ADP-ribosylated by cholera toxin. J. Biol. Chem. 257: 10471–10478

59 Hsia J. A., Moss J., Hewlett E. L. and Vaughan M. (1984) ADP-ribosylation of adenylate cyclase by pertussis toxin. Effects on inhibitory agonist binding. J. Biol. Chem. 259: 1086–1090

60 Hildebrandt J. D. and Birnbaumer L. (1983) Inhibitory regulation of adenyl cyclase in the absence of stimulatory regulation. Requirements and kinetics of guanine nucleotide-induced inhibition of the cycl-S49 adenyl cyclase. J. Biol. Chem. 258: 13141–13147

61 Hildebrandt J. D., Sekura R. D., Codina J., Iyengar R., Manclark C. R. and Birnbaumer L. (1983) Stimulation and inhibition of adenyl cyclases mediated by distinct regulatory proteins. Nature 302: 706–709

62 Sunahara R. K. and Taussig R. (2002) Isoforms of mammalian adenyl cyclase: multiplicities of signaling. Mol. Interv. 2: 168–184

63 Hanoune J. and Defer N. (2001) Regulation and role of adenyl cyclase isoforms. Annu. Rev. Pharmacol. Toxicol. 41: 145–174

64 Buck L. B. (2000) The molecular architecture of odor and pheromone sensing in mammals. Cell 100: 611–618

65 Margolskee R. F. (2002) Molecular mechanisms of bitter and sweet taste transduction. J. Biol. Chem. 277: 1–4

66 Arshavsky V. Y., Lamb T. D. and Pugh E. N. Jr (2002) G proteins and phototransduction. Annu. Rev. Physiol. 64: 153–187

67 Rhee S. G. (2001) Regulation of phosphoinositide-specific phospholipase C. Annu. Rev. Biochem. 70: 281–312

68 Worthylake D. K., Rossman K. L. and Sondek J. (2000) Crystal structure of Rac1 in complex with the guanine nucleotide exchange region of Tiam1. Nature 408: 682–688

69 Longenecker K. L., Lewis M. E., Chikumi H., Gutkind J. S. and Der C. J. (2002) Structure of the RGS-like do–main from PDZ-RhoGEF: linking heterotrimeric G protein-coupled signaling to Rho GTTPases. Structure 9: 559–569

70 Fukuhara S., Murga C., Zohar M., Iigishi T. and Gutkind J. S. (1999) A novel PDZ domain containing guanine nucleotide exchange factor links heterotrimeric G proteins to Rho. J. Biol. Chem. 274: 5868–5879

71 Booden M. A., Siderovski D. P. and Der C. J. (2002) Leukemia-associated Rho guanine nucleotide exchange factor promotes G alpha q-coupled activation of RhoA. Mol. Cell. Biol. 22: 4053–4061

72 Vogt S., Grosse R., Schultz G. and Offermanns S. (2003) Receptor-dependent RhoA activation in G12/G13-deficient cells: genetic evidence for an involvement of Gq/G11. J. Biol. Chem. 278: 28743–28749

73 Kozasa T., Jiang X., Hart M. J., Sternweis P. M., Singer W. D., Gilman A. G. et al. (1998) p115 RhoGEF, a GTPase activating protein for Galpha12 and Galpha13. Science 280: 2109–2111

74 Hart M. J., Jiang X., Kozasa T., Roscoe W., Singer W. D., Gilman A. G. et al. (1998) Direct stimulation of the guanine nucleotide exchange activity of p115 RhoGEF by Galpha13. Science 280: 2112–2114

75 Zohn I. E., Klinger M., Karp X., Kirk H., Symons M., Chrzanowska-Wodnicka M. et al. (2000) G2A is an oncogenic G protein-coupled receptor. Oncogene 19: 3866–3877

76 Whitehead I. P., Zohn I. E. and Der C. J. (2001) Rho GTTPase-dependent transformation by G protein coupled receptors. Oncogene 20: 1547–1555

77 Martin C. B., Mahon G. M., Klinger M. B., Kay R. J., Symons M., Der C. J. et al. (2001) The thrombin receptor, PAR-1, causes transformation by activation of Rho-mediated signaling pathways. Oncogene 20: 1953–1963

78 Fukuhara S., Chikumi H. and Gutkind J. S. (2001) RGS-containing RhoGEFs: the missing link between transforming G proteins and Rho? Oncogene 20: 1661–1668

79 Logothetis D. E., Kurachi Y., Galper J., Neer E. J. and Clapham D. E. (1987) The beta gamma subunits of GTP-binding proteins activate the muscarinic K+ channel in heart. Nature 325: 321–326

80 Lei Q., Jones M. B., Talley E. M., Schrier A. D., McIntire W. E., Garrison J. C. et al. (2000) Activation and inhibition of G protein-coupled inwardly rectifying potassium (Kir3) channels by G protein beta gamma subunits. Proc. Natl. Acad. Sci. USA 97: 9771–9776

81 Huang C. L., Siesingr P. A., Casey P. J., Jan Y. N. and Jan L. Y. (1995) Evidence that direct binding of G beta gamma to the GIRQ1 G protein-gated inwardly rectifying K+ channel is important for channel activation. Neuron 15: 1133–1143

82 Huang C. L., Jan Y. N. and Jan L. Y. (1997) Binding of the G protein beta gamma subunit to multiple regions of G protein-gated inward-rectifying K+ channels. FEBS Lett. 405: 291–298

83 Inanobe A., Morishige K. I., Takahashi N., Ito H., Yamada M., Takumi T. et al. (1995) G beta gamma directly binds to the carboxyl terminus of the G protein-gated muscarinic K+ channel, GIRK1. Biochem. Biophys. Res. Commun. 212: 1022–1028

84 Kunkel M. T. and Peralta E. G. (1995) Identification of domains conferring G protein regulation on inward rectifier potassium channels. Cell 83: 443–449

85 Doupnik C. A., Dellauer C. W., Slepak V. Z., Gilman A. G., Davidson N. and Lester H. A. (1996) Time resolved kinetics of direct G beta 1 gamma 2 interactions with the carboxyl terminus of Kir3.4 inward rectifier K+ channel subunits. Neuropharmacology 35: 923–931

86 Dascal N. (1997) Signalling via the G protein-activated K+ channels. Cell Signal. 9: 551–573

87 Mark M. D. and Herlitze S. (2000) G-protein mediated gating of inward-rectifier K+ channels. Eur. J. Biochem. 267: 5830–5836

88 Kammermeier P. J., Ruiz-Velasco V. and Ikeda S. R. (2000) A voltage-independent calcium current inhibitory pathway activated by muscarinic agonists in rat sympathetic neurons requires both Galpha q11 and Gbeta gamma. J. Neurosci. 20: 5623–5629

89 Delmas P., Abogadie C. W., Buckley N. J. and Brown D. A. (2000) Calcium channel gating and modulation by transmitters depend on cellular compartmentalization. Nat. Neurosci. 3: 670–678

90 Lu Q., Atkinson M. S., Jarvis S. E., Feng Z. P., Zamponi G. W. and Dunlap K. (2001) Syntaxin 1A supports voltage-dependent inhibition of alpha1B Ca2+ channels by Gbetagamma in chick sensory neurons. J. Neurosci. 21: 2949–2957

91 Garcia D. E., Li B., Garcia-Ferreiro R. E., Hernandez-Ochoa E. O., Yan K., Gautam N. et al. (1998) G-protein beta-subunit specificity in the fast membrane-delimited inhibition of Ca2+ channels. J. Neurosci. 18: 9163–9170

92 Furukawa T., Miura R., Mori Y., Strobeck M., Suzuki K., Ogihara Y. et al. (1998) Differential interactions of the C terminus and the cytoplasmic I-II loop of neuronal Ca2+ channels with G-protein alpha and beta gamma subunits. II. Evidence for direct binding. J. Biol. Chem. 273: 17595–17603

93 Mirshahi T., Mittal V., Zhang H., Linder M. E. and Logothetis D. E. (2002) Distinct sites on G protein beta gamma subunits regulate different effector functions. J. Biol. Chem. 277: 36345–36350

94 Yamauchi J., Nago M., Kaziro Y. and Itoh H. (1997) Activation of p38 mitogen-activated protein kinase by signaling through G protein-coupled receptors. Involvement of Gbetagamma and Galpha11 subunits. J. Biol. Chem. 272: 27771–27777
95 Coso O. A., Teramoto H., Simonds W. F. and Gutkind J. S. (1996) Signaling from G protein-coupled receptors to c-Jun kinase involves beta gamma subunits of heterotrimeric G proteins acting on a Ras and Rac1-dependent pathway. J. Biol. Chem. 271: 3963–3966

96 Crespo P., Xu N., Simonds W. F. and Gutkind J. S. (1994) Ras-dependent activation of MAP kinase pathway mediated by G-protein beta/gamma subunits. Nature 369: 418–420

97 Faure M., Voyer-Yasenetkskaya T. A. and Bourne H. R. (1994) cAMP and beta/gamma subunits of heterotrimeric G proteins stimulate the mitogen-activated protein kinase pathway in COS-7 cells. J. Biol. Chem. 269: 7851–7854

98 Stephens L. R., Eguinoa A., Erdjument-Bromage H., Lui M., Cooke F., Coadwell J. et al. (1997) The G beta gamma sensitivity of a PI3K is dependent upon a tightly associated adapter, p101. Cell 99: 105–114

99 Maier U., Babich A. and Nurnberg B. (1999) Roles of non-catalytic subunits in gbetagamma-activated expression of class I phosphoinositide 3-kinase isoforms beta and gamma. J. Biol. Chem. 274: 29311–29317

100 Maier U., Babich A., Macrez N., Leopoldt D., Gierschik P., Stephens L., Smrcka A., Cooke F., T. A., and Horvitz H. R. (1996) EGL-10 regulates G protein signaling (GRS) proteins constitutively activate Gbeta/gamma-gated neuronal membrane ion channels. J. Biol. Chem. 271: 4999–4999

101 Thomas J. L. et al. (2000) RGS14 is a novel Rap effector that negatively regulates Rap1 and other RGS proteins. Proc. Natl. Acad. Sci. USA 97: 13037–13042

102 Snow B. E., Betts L., Mangion J., Siderovski D. P. (1999) Five G protein beta-subunit-independent domains of mammalian G protein beta subunits. Proc. Natl. Acad. Sci. USA 96: 6489–6494

103 Makino E. R., Handy J. W., Li T. and Arshavsky V. Y. (1999) The GT-Pase activating factor for transducin in rod photoreceptors is the complex between RGS9 and type 5 G protein beta subunit. Proc. Natl. Acad. Sci. USA 96: 1947–1952

104 Levay K., Cabrera J. L., Patapiev D. K. and Slepak V. Z. (1999) RGS5 prevents the RGS7–Galpha-o interaction through binding to a distinct Ggamma-like domain found in RGS7 and other RGS proteins. Proc. Natl. Acad. Sci. USA 96: 2503–2507

105 Hu G. and Wensel T. G. (2002) R9AP, a membrane anchor for the photoreceptor GTPase activating protein, RGS9-1. Proc. Natl. Acad. Sci. USA 99: 9755–9760

106 Lishko P. V., Martemyanov K. A., Hopp J. A. and Arshavsky V. Y. (2002) Specific binding of RGS9–Gbeta5 to protein anchor in photoreceptor membranes greatly enhances its catalytic activity. J. Biol. Chem. 277: 24376–24381

107 Schiff M. L., Siderovski D. P., Jordan D. J., Brothers G., Snow B., De Vries L. et al. (2000) Tyrosine kinase-dependent recruitment of RGS12 to the N-type calcium channel. Nature 408: 723–727

108 Snow B. E., Hall R. A., Krumins A. M., Brothers G. M., Bouc hand D., Brothers C. A. et al. (1998) GT-Pase activating specificity of RGS12 and binding specificity of an alternatively spliced PDZ (PSD-95/Dlg/ZO-1) domain. J. Biol. Chem. 273: 17749–17755

109 Pinto P. C. (1999) Raf-like Ras/Rap-binding domains in RGS12 and still life like signalling proteins. J. Mol. Med. 77: 695–698

110 Traver S., Bidot C., Spassky N., Baltauss T., De Tand M. F., Thomas J. L. et al. (2000) RGS14 is a novel Rap effector that...
preferentially regulates the GTPase activity of galphao. Biochem. J. 350: 19–29.

132 Kimple R. J., De Vries L., Tronchere H., Behe C. I., Morris R. A., Farquhar M. G. et al. (2001) RGS12 and RGS14 GoLoco motifs are Galpha (i) interaction sites with guanine nucleotide dissociation inhibitor activity. J. Biol. Chem. 276: 29275–29281.

133 Kimple R. J., Kimple M. E., Betts L., Sondek J. and Siderovski D. P. (2002) Structural determinants for GoLoco-induced inhibition of nucleotide release by Galphap subunits. Nature 416: 878–881.

134 Willard F. S., Kimple R. J. and Siderovski D. P. (2004) Return of the GDI: the GoLoco motif in cell division. Annu. Rev. Biochem. 73: 925–951.

135 Fukuhara S., Chikumi H. and Gutkind J. S. (2000) Leukemia-associated rho guanine nucleotide exchange factor (LARG) links heterotrimeric G proteins of the G12 family to Rho [In Process Citation]. FEBS Lett. 485: 183–188.

136 Ferguson S. S. (2001) Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol. Rev. 53: 1–24.

137 Carman C. V., Parent J. L., Day P. W., Pronin A. N., Sternweis P. M., Wedegaertner P. B. et al. (1999) Selective regulation of Galpha(q(11)) by an RGS domain in the G protein-coupled receptor kinase, GRK2. J. Biol. Chem. 274: 34483–34492.

138 Dhami G. K., Dale L. B., Anborgh P. H., O’Connor-Halligan K. E., Sterne-Marr and Ferguson S. F. (2004) G Protein-coupled receptor kinase 2 regulator of G protein signaling homology domain binds to both metabotropic glutamate receptor 1a and Galphap to attenuate signaling. J. Biol. Chem. 279: 16614–16620.

139 Iacovelli L., Capobianco L., Iula M., Di Giorgi Gerevini V., Picascia A., Blahos J. et al. (2004) Regulation of mGlur metabotropic glutamate receptor signaling by type-2 G-protein coupled receptor kinase (GRK2). Mol. Pharmacol. 65: 1103–1110.

140 Kohout T. A. and Lefkowitz R. J. (2003) Regulation of G protein-coupled receptor kinases and arrestins during receptor desensitization. Mol. Pharmacol. 63: 9–18.

141 Lorenz K., Lohse M. J. and Quitterer U. (2003) Protein kinase C switches the Raf kinase inhibitor from Raf-1 to GRK-2. Nature 426: 574–579.

142 Yeung K., Seitz T., Li S., Janosch P., McFerran B., Kaiser C. et al. (2001) Suppression of Raf-1 kinase activity and MAP kinase signalling by RKIP. Nature 401: 173–177.

143 Spink K. E., Polakis P. and Weis W. I. (2000) Structural basis of the Axin adenomatous polyposis coli interaction. EMBO J. 19: 2270–2279.

144 Berridge M. J. (1987) Inositol trisphosphate and diacylglycerol: two interacting second messengers. Annu. Rev. Biochem. 56: 159–193.

145 Saunders C. M., Larman M. G., Parrington J., Cox L. J., Royse J., Blayney L. M. et al. (2002) PLC zeta: a sperm-specific trigger of Ca(2+)-oscillations in eggs and embryo development. Development 129: 3533–3544.

146 Smrcka A. V., Hepler J. R., Brown K. O. and Sternweis P. C. (1991) Regulation of polyphosphoinositide-specific phospholipase C activity by purified Gq. Science 251: 804–807.

147 Taylor S. J., Chae H. Z., Rhee S. G. and Exton J. H. (1991) Activation of the beta 1 isozyme of phospholipase C by alpha subunits of the Gq class of G proteins. Nature 350: 516–518.

148 Wada G. L., Boyer J. L., Morris A. J. and Harden T. K. (1991) Purification of an ALF4- and G-protein beta-gamma subunit-regulated phospholipase C-activating protein. J. Biol. Chem. 266: 14217–14225.

149 Wu D. Q., Lee C. H., Rhee S. G. and Simon M. I. (1992) Activation of phospholipase C by the alpha subunits of the Gq and G11 proteins in transfected Cos-7 cells. J. Biol. Chem. 267: 1811–1817.

150 Blank J. L., Brattain K. A. and Exton J. H. (1992) Activation of cytosolic phosphoinositide phospholipase C by G-protein beta gamma subunits. J. Biol. Chem. 267: 23069–23075.

151 Camps M., Carozzi A., Schnabel P., Scheer A., Parker P. J. and Gierschik P. (1992) Isozyme-selective stimulation of phospholipase C-beta 2 by G protein beta gamma-subunits. Nature 360: 684–686.

152 Wahl M. I., Nishibe S., Suh P. G., Rhee S. G. and Carpenter G. (1989) Epidermal growth factor stimulates tyrosine phosphorylation of phospholipase C-II independently of receptor internalization and extracellular calcium. Proc. Natl. Acad. Sci. USA 86: 1568–1572.

153 Meisenholder J., Suh P. G., Rhee S. G. and Hunter T. (1989) Phospholipase C-gamma is a substrate for the PDGF and EGF receptor protein-tyrosine kinases in vivo and in vitro. Cell 57: 1109–1122.

154 Rhee S. G. and Choi K. D. (1992) Regulation of inositol phospholipid-specific phospholipase C isozymes. J. Biol. Chem. 267: 12393–12396.

155 Kim Y. H., Park T. J., Lee Y. H., Baek K. J., Suh P. G., Ryu S. H. et al. (1999) Phospholipase C-delta1 is activated by capacitative calcium entry that follows phospholipase C-beta activation upon bradykinin stimulation. J. Biol. Chem. 274: 26127–26134.

156 Baek K. J., Kang S., Damron D. and Im M. (2001) Phospholipase Cdelta1 is a guanine nucleotide exchanging factor for transglutaminase II (Galpha h) and promotes alpha 1B-adrenoreceptor-mediated GTP binding and intracellular calcium release. J. Biol. Chem. 276: 5591–5597.

157 Shibatohge M., Kariya K., Liao Y., Hu C. D., Watari Y., Goshima M. et al. (1998) Identification of PLC210, a Caenorhabditis elegans phospholipase C, as a putative effector of Ras. J. Biol. Chem. 273: 6218–6222.

158 Kelley G. G., Reks S. E., Ondrako J. M. and Smrcka A. V. (2001) Phospholipase C epsilon: a novel Ras effector. EMBO J. 20: 743–754.

159 Lopez I., Mak E. C., Ding J., Hamm H. E. and Lomasney J. W. (2001) A novel bifunctional phospholipase C that is regulated by Galphap 12 and stimulates the Ras/mitogen-activated protein kinase pathway. J. Biol. Chem. 276: 2758–2765.

160 Song C., Hu C. D., Masago M., Kariya K., Yamawaki-Kataoka Y., Shibatohge M. et al. (2001) Regulation of a novel human phospholipase C, PLCepsilon I, through membrane targeting by Ras. J. Biol. Chem. 276: 2752–2757.

161 Wing M. R., Snyder J. T., Sondek J. and Harden T. K. (2003) Direct activation of phospholipase C epsilon by Rho. J. Biol. Chem. 278: 41253–41258.

162 Schmidt M., Evelinn S., Weerink P. A., von Dorph P., Rehmann H., Lomasney J. W. et al. (2001) A new phospholipase-C-calcium signalling pathway mediated by cyclic AMP and a Rap GTPase. Nat. Cell Biol. 3: 1020–1024.

163 Hains D. M., Siderovski D. P. and Harden T. K. (2004) Application of RGS box genes to evaluate G-protein selectivity in receptor-promoted signaling. Methods Enzymol 389: 71–88.

164 Kelley G. G., Reks S. E. and Smrcka A. V. (2004) Hormonal regulation of phospholipase C epsilon through distinct and overlapping pathways involving G12 and Ras family G-proteins. Biochem. J. 378: 129–139.

165 Song C., Satoh T., Edamatsu H., Wu D., Tadano M., Gao X. et al. (2002) Differential roles of Ras and Rap1 in growth factor-dependent activation of phospholipase C epsilon. Oncogene 21: 8105–8113.

166 Jin T. G., Satoh T., Liao Y., Song C., Gao X., Kariya K. et al. (2001) Role of the CDC25 homology domain of phospholipase C epsilon in amplification of Rap1-dependent signaling. J. Biol. Chem. 276: 30301–30307.
167 Wing M. R., Bourdon D. M. and Harden T. K. (2003) PLC-epsilon: a shared effector protein in Ras-, Rho- and Gαi/o-mediated signaling. Mol. Interv. 3: 273–280

168 Serfert J. P., Wing M. R., Snyder J. T., Gershburg S., Sondek J. and Harden T. K. (2004) RhoA activates purified phospholipase C epsilon by a guanine nucleotide-dependent mechanism. J. Biol. Chem. 279:47992–47997

169 Illenberger D., Schwald C., Nurnberg B., Diaz Lorente M. and Gierschik P. (2003) Specificity and structural requirements of phospholipase C-beta stimulation by Rho GTPases versus G protein beta gamma dimers. J. Biol. Chem. 278:3006–3014

170 Evelin S., Nolte J., Tysack K., von Dorp F., Thiel M., Weernink P. A. et al. (2002) Stimulation of phospholipase C-epsilon by the M3 muscarinic acetylcholine receptor mediated by cyslic AMP and the GTPase Rap2B. J. Biol. Chem. 277:16805–16813

171 von Dorp F., Sari A. Y., Sanders H., Keiper M., Weernink P. A., Jakobs K. H. et al. (2004) Inhibition of phospholipase C-epsilon by Gi-coupled receptors. Cell Signal. 16:921–928

172 de Rooij J., Zwaanveld J. F., Verheijen M. H., Cool R. H., Nijman S. M., Wittinghofer A. et al. (1998) Epa is a Rap1 guanine-nucleotide-exchange factor directly activated by cyslic AMP. Nature 396:474–477

173 Ross C. A., MacCumber M. W., Glatt C. E. and Snyder S. H. (1989) Brain phospholipase C isozymes: differential mRNA localization by in situ hybridization. Proc. Natl. Acad. Sci. USA 86:2923–2927

174 Kim D., Jun K. S., Lee S. B., Kang N. G., Min D. S., Kim Y. H. et al. (1997) Phospholipase C isozymes selectively couple to specific neurotransmitter receptors. Nature 389:290–293

175 Wu D., Tanado M., Edamatsu H., Masago-Toda M., Yamawaki-Kataoka Y., Terashima T. et al. (2003) Neuronal lineage-specific induction of phospholipase C epsilon expression in the developing mouse brain. Eur. J. Neurosci. 17:1571–1580

176 Clandinin T. R., DeModena J. A. and Sternberg P. W. (1998) Inositol trisphosphate mediates a RAS-independent response to LET-23 receptor tyrosine kinase activation in C. elegans. Cell 92:523–533

177 Bui Y. K. and Sternberg P. W. (2002) Caenorhabditis elegans inositol 5-phosphatase homolog negatively regulates inositol 1,4,5-trisphosphate signaling in oocytes. Mol. Biol. Cell 13:1641–1651

178 Kariya K., Kim Bui Y., Gao X., Sternberg P. W. and Kataoka T. (2004) Phospholipase C epsilon regulates oocyte maturation in Caenorhabditis elegans. Dev. Biol. 274:201–210

179 Otsuki M., Fukami K., Kohno T., Yokota J. and Takenawa T. (1999) Identification and characterization of a new phospholipase C-like protein, PLC-L(2). Biochem. Biophys. Res. Commun. 266:97–103

180 Kurosaki T., Maeda A., Ishii M., Hashimoto A., Inabe K. and Takata M. (2000) Regulation of the phospholipase C gamma2 pathway in B cells. Immunol. Rev. 176:19–29

181 Takenaka K., Fukami K., Otsuki M., Nakamura Y., Kataoka Y., Wada M. et al. (2003) Role of phospholipase C-L2, a novel phospholipase C-like protein that lacks lipase activity, in B-cell receptor signaling. Mol. Cell. Biol. 23:7329–7338

182 Cisowski M. J., Takesono A., Ma C., Lizano J. S., Xie X., Fuenkranz H. et al. (1999) Genetic screens in yeast to identify mammalian nonreceptor modulators of G-protein signaling. Nat. Biotechnol. 17:878–883

183 Kemppainen R. J. and Behrend E. N. (1998) Dexamethasone rapidly induces a novel ras superfamily member-related gene in AT-20 cells. J. Biol. Chem. 273:3129–3131

184 Cisowski M. J., Ma C., Ribas C., Xie X., Spruyt M., Lizano J. S. et al. (2000) Activation of heterotrimeric G-protein signaling by a ras-related protein. Implications for signal integration. J. Biol. Chem. 275:23421–23424

185 Graham T. E., Prossnitz E. R. and Dorin R. I. (2002) Dextras1/AGS-1 inhibits signal transduction from the Gαi-coupled formyl peptide receptor to Erk-1/2 MAP kinases. J. Biol. Chem. 277:10876–10882

186 Takesono A., Nowak M. W., Cisowski M., Duzic E. and Lanier S. M. (2002) Activator of G-protein signaling 1 blocks GIRQ channel activation by a G-protein-coupled receptor: apparent disruption of receptor signaling complexes. J. Biol. Chem. 277:13827–13830

187 Fang M., Jaffrey S. R., Sawa A., Ye K., Luo X. and Snyder S. H. (2000) Dextras1: a G protein specifically coupled to neuronal nitric oxide synthase via CAPON. Neuron 28:183–193

188 Cheng H. Y., Obrietan K., Cain S. W., Lee B. Y., Agostino P. V., Joza N. A. et al. (2004) Dextras1 potentiates photic and suppresses nonphotic responses of the circadian clock. Neuron 43:715–728

189 Takahashi H., Umeda N., Tsutsu Y., Fukumura R., Okhaze H., Sujino M. et al. (2003) Mouse dexamethasone-induced RAS protein 1 gene is expressed in a circadian rhythmic manner in the suprachiasmatic nucleus. Brain Res. Mol. Brain. Res. 110:1–6

190 Tall G. G., K rumms A. M. and Gilman A. G. (2003) Mammalian RIC-8A (Synembryn) is a heterotrimeric Gαi protein guanine nucleotide exchange factor. J. Biol. Chem. 278:8356–8362

191 Granderrath S., Stollerwerk A., Greeg S., Goodman C. S., O’Kane C. J. and Klambt C. (1999) loco encodes an RGS protein required for Drosophila glial differentiation. Development 126:1781–1791

192 Siderovski D. P., Diverse-Pierluissi M. A. and DeVries L. (1999) The Glc GoLoco motif: a G alpha i/o binding motif and potential guanine-nucleotide-exchange factor. Trends Biochem. Sci. 24:340–341

193 Takesono A., Cisowski M. J., Ribas C., Bernard M., Chung P., Hazard S. III et al. (1999) Receptor-independent activators of heterotrimeric G-protein signaling pathways. J. Biol. Chem. 274:33202–33205

194 Colombo K., Grill S. W., Kimple R. J., Willard F. S., Siderovski D. P. and Gonczy P. (2003) Translation of polarity cues into asymmetric spindle positioning in Caenorhabditis elegans embryos. Science 300:1957–1961

195 Gotta M., Dong Y., Peterson Y. K., Lanier S. M. and Ahringer J. (2003) Asymmetrically distributed C. elegans homologs of AGS3/PINS control spindle position in the early embryo. Curr. Biol. 13:1029–1037

196 Srinivasan D. G., Fisk R. M., Xu H. and van den Heuvel S. (2003) A complex of LIN-5 and GPR proteins regulates G protein signaling and spindle function in C. elegans. Genes Dev. 17:1225–1239

197 Schaefer M., Shevchenko A., Shevchenko A. and Knoblich J. A. (2000) A protein complex containing Inscurable and the G alpha i/o binding protein PIns orients asymmetric cell divisions in Drosophila. Curr. Biol. 10:353–362

198 Yu F., Morin X., Cai Y., Yang X. and Chia W. (2000) Analysis of partner of inscurable, a novel player of Drosophila asymmetric divisions, reveals two distinct steps in inscurable apical localization. Cell 100:399–409
202 Luo Y. and Denker B. M. (1999) Interaction of heterotrimeric G protein Galphao with Purkinje cell protein-2. J. Biol. Chem. 274: 10685–10688

203 Zhang X., Zhang H. and Oberdick J. (2002) Conservation of the developmentally regulated dendritic localization of a Purkinje cell-specific mRNA that encodes a G-protein modulator: comparison of rodent and human Pcp2(L7) gene structure and expression. Brain Res. Mol. Brain. Res. 105: 1–10

204 Meng J., Glick J. L., Polakis P. and Casey P. J. (1999) Functional interaction between Galphla(z) and Rap1GAP suggests a novel form of cellular cross-talk. J. Biol. Chem. 274: 36663–36669

205 Mochizuki N., Ohba Y., Kiyokawa E., Kurata T., Murakami T., Ozaki T. et al. (1999) Activation of the ERK/MAPK pathway by an isoform of rapiGAP associated with G alpha(i). Nature 400: 891–894

206 Kimple R. J., Willard F. S., Hains M. D., Jones M. B., Nweke G. K. and Siderovski D. P. (2004) Guanine nucleotide dissociation inhibitor variant activity of the triple GoLoco motif protein G18: alanine-to-aspartate mutation restores function to an inactive second GoLoco motif. Biochem. J. 378: 801–808

207 Cao X., Cismowski M. J., Sato M., Blumer J. B. and Lanier S. M. (2004) Identification and characterization of AGS4: a protein containing three G-protein regulatory motifs that regulate the activation state of Gialpha. J. Biol. Chem. 279: 27567–27574

208 Mochizuki N., Cho G., Wen B. and Insel P. A. (1996) Identification and cDNA cloning of a novel human mosaics protein, LGN, based on interaction with G alpha i2. Gene 181: 39–43

209 Natochin M., Gasimov K. G. and Artemyev N. O. (2001) Inhibition of GDP/GTP exchange on G alpha subunits by proteins containing G-protein regulatory motifs. Biochemistry 40: 5322–5328

210 Du Q., Taylor L., Compton D. A. and Macara I. G. (2002) LGN blocks the ability of NuMA to bind and stabilize microtubules. A mechanism for mitotic spindle assembly regulation. Curr. Biol. 12: 1928–1933

211 Natochin M., Lester B. R., Peterson Y. K., Bernard M. L., Dohlman H. G. and Siderovski D. P. (2000) Purification and in vitro functional analysis of the Arabidopsis thaliana regulator of G-protein signaling-1. Methods Enzymol. 359: 320–338

212 Adhikari A. and Sprang S. R. (2003) Thermodynamic characterization of the binding of activator of G protein signaling 3 (AGS3) and peptides derived from AGS3 with Galphai. J. Biol. Chem. 278: 51825–51832

213 Du Q., Stukenberg P. T. and Macara I. G. (2001) A mammalian partner of inositol binding to bind and stabilize microtubules. A mechanism for mitotic spindle assembly regulation. Nat. Rev. Mol. Cell. Biol. 3: 919–931

214 Cao X., Cismowski M. J., Sato M., Blumer J. B. and Lanier S. M. (2004) Identification and characterization of AGS4: a protein containing three G-protein regulatory motifs that regulate the activation state of Gialpha. J. Biol. Chem. 279: 27567–27574

215 Willard F. S. and Siderovski D. P. (2004) Purification and in vitro functional analysis of the Arabidopsis thaliana regulator of G-protein signaling-1. Methods Enzymol. 359: 320–338

216 Chen J. G. and Jones A. M. (2004) An ADP-G18: alanine-to-aspartate mutation restores function to an inactive second GoLoco motif. Biochem. J. 378: 801–808

217 Willard F. S. and Siderovski D. P. (2004) Purification and in vitro functional analysis of the Arabidopsis thaliana regulator of G-protein signaling-1. Methods Enzymol. 359: 320–338

218 Wettschureck N., Moers A. and Offermanns S. (2004) Mouse models to study G-protein-mediated signaling. Pharmacol. Ther. 101: 75–89

219 Ullah H., Chen J. G., Young J. C., Im K. H., Sussman M. R. and Jones A. M. (2001) Modulation of cell proliferation by heterotrimeric G protein in Arabidopsis. Science 292: 2066–2069

220 Wang X. Q., Ullah H., Jones A. M. and Assmann S. M. (2001) G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells. Science 292: 2070–2072

221 Jones A. M. (2002) G-protein-coupled signaling in Arabidopsis. Curr Opin Plant Biol 5: 402–407

222 Apone F., Alyeshmerni N., Wiens K., Chalmers D., Chrispeels M. J. and Colucci G. (2003) The G-protein-coupled receptor GCR1 regulates DNA synthesis through activation of phosphatidylinositol-specific phospholipase C. Plant Physiol. 133: 571–579

223 Zhao J. and Wang X. (2004) Arabidopsis phospholipase Dalphas interacts with the heterotrimeric G-protein alpha-subunit through a motif analogous to the DRY motif in G-protein-coupled receptors. J Biol Chem 279: 1794–1800

224 Chen J. G., Willard F. S., Huang J., Liang J., Chasse S. A., Jones A. M. et al. (2003) A seven-transmembrane RGS protein that modulates plant cell proliferation. Science 301: 1728–1731

225 Willard F. S. and Siderovski D. P. (2004) Purification and in vitro functional analysis of the Arabidopsis thaliana regulator of G-protein signaling-1. Methods Enzymol. 359: 320–338

226 Chen J. G. and Jones A. M. (2004) ARKGS1 function in Arabidopsis thaliana. Methods Enzymol. 359: 338–350

227 Wang Q., Liu M., Mullah B., Siderovski D. P. and Neubig R. R. (2002) Receptor-selective effects of endogenous RGS3 and RGS5 to regulate mitogen-activated protein kinase activation in rat vascular smooth muscle cells. J. Biol. Chem. 277: 24949–24958

228 Xu X., Zeng W., Popov S. D., Berman D. M., Davignon I., Yu K. et al. (1999) RGS proteins determine signaling specificity of G-coupled receptors. J. Biol. Chem. 274: 3549–3556

229 Zeng W., Xu X., Popov S., Mukhopadhyay S., Chidiac P., Swistok J. et al. (1998) The N-terminal domain of RGS4 confers receptor-selective inhibition of G protein signaling. J. Biol. Chem. 273: 34687–34690

230 Bernstein L. S., Ramineni S., Hague C., Cladman W., Chidiac P., Levey A. I. et al. (2004) RGS2 binds directly and selectively to the M1 muscarinic acetylcholine receptor third intracellular loop to modulate Gq/11alpha signaling. J. Biol. Chem. 279: 21248–21256

231 Zhong H., Wade S. M., Woolf P. J., Linderman J. J., Traynor J. R. and Neubig R. R. (2003) A spatial focusing model for G protein signals. Regulator of G protein signaling (RGS) protein-mediated kinetic scaffolding. J. Biol. Chem. 278: 7278–7284

232 Worby C. A. and Dixon J. E. (2002) Sorting out the cellular functions of sorting nexins. Nat. Rev. Mol. Cell. Biol. 3: 919–931

233 Popov S. G., Krishna U. M., Falek J. R. and Wilkie T. M. (2000) Ca2+-/Calmodulin reverses phosphatidylinositol 3,4,5-trisphosphate-dependent inhibition of regulators of G protein-signaling GTase-activating protein activity. J. Biol. Chem. 275: 18962–18968

234 Tu Y. and Wilkie T. M. (2004) Allosteric regulation of GAP activity by phospholipids in regulators of G-protein signaling. Methods Enzymol. 389: 89–1005

235 Ishii M. and Kurachi Y. (2004) Assays of RGS protein modulation by phosphatidylinositides and calmodulin. Methods Enzymol. 389: 105–118

236 Tu Y., Popov S., Slaughter C. and Ross E. M. (1999) Palmitoylation of a conserved cysteine in the regulator of G protein signaling (RGS) domain modulates the GTase-activating activity of RGS4 and RGS10. J. Biol. Chem. 274: 38260–38267

237 Jones T. L. (2004) Role of palmitoylation in RGS protein function. Methods Enzymol. 389: 33–55

238 Ishii M., Inanobe A. and Kurachi Y. (2002) PI(3)P inhibition of RGS protein and its reversal by Ca2+-/calmodulinmediate
voltage-dependent control of the G protein cycle in a cardiac K+ channel. Proc. Natl. Acad. Sci. USA 99: 4325–4330

239 Roy A. A., Lemberg K. E. and Chidicac P. (2003) Recruitment of RGS2 and RGS4 to the plasma membrane by G proteins and receptors reflects functional interactions. Mol. Pharmacol. 64: 587–593

240 Druey K. M., Sullivan B. M., Brown D., Fischer E. R., Watson N., Blumer K. J. et al. (1998) Expression of GTPase-deficient Galpha2 results in translocation of cytoplasmic RGS4 to the plasma membrane. J. Biol. Chem. 273: 18405–18410

241 Krumins A. M., Barker S. A., Huang C., Sunahara R. K., Yu K., Wilkie T. M. et al. (2004) Differentially regulated expression of endogenous RGS4 and RGS7. J. Biol. Chem. 279: 2593–2599

242 Wise A., Jupe S. C. and Rees S. (2004) The identification of ligands at orphan G protein coupled receptors. Annu. Rev. Pharmacol. Toxicol. 44: 43–66

243 Coussol S., Fan L. M., Le Stunff H., Spiegel S., Gilroy S. and Assmann S. M. (2003) Sphingolipid signalling in Arabidopsis guard cells involves heterotrimeric G proteins. Nature 423: 651–654

244 Chun J., Goetzl E. J., Hla T., Igarashi Y., Lynch K. R., Moolenaar W. et al. (2002) International Union of Pharmacology. XXXIV. lysophospholipid receptor nomenclature. Pharmacol. Rev. 54: 265–269

245 Gonczi P. (2002) Mechanisms of spindle positioning: focus on flies and worms. Trends Cell Biol. 12: 332–339

246 Macara I. G. (2004) Parsing the polarity code. Nat. Rev. Mol. Cell. Biol. 5: 220–231

247 Wodorz A. and Huttner W. B. (2003) Asymmetric cell division during neurogenesis in Drosophila and vertebrates. Mech. Dev. 120: 1297–1309

248 Chia W. and Yang X. (2002) Asymmetric division of Drosophila neural progenitors. Curr. Opin. Genet. Dev. 12: 459–464

249 Vaessin H., Grell E., Wolff E., Bier E., Jan L. Y. and Jan Y. N. (1991) Prospero is expressed in neuronal precursors and encodes a nuclear protein that is involved in the control of axonal outgrowth in Drosophila. Cell 67: 941–953

250 Doe C. Q., Chu-LaGraff Q., Wright D. M. and Scott M. P. (1991) The Prospero gene specifies cell fates in the Drosophila central nervous system. Cell 65: 451–464

251 Knoblich J. A., Jan L. Y. and Jan Y. N. (1995) Asymmetric segregation of Numb and Prospero during cell division. Nature 377: 624–627

252 Hirata J., Nakagoshi H., Nabeshima Y. and Matsuzaki F. (1997) Asymmetric segregation of the homeodomain protein Prospero during Drosophila development. Nature 377: 627–630

253 Spana E. P. and Doe C. Q. (1995) The Prospero transcription factor is asymmetrically localized to the cell cortex during neuroblast mitosis in Drosophila. Development 121: 3187–3195

254 Schuldt A. J., Adams J. H., Davidson C. M., Micklem D. R., Haseloff J., St Johnston D. et al. (1998) Miranda mediates asymmetric protein and RNA localization in the developing nervous system. Genes Dev. 12: 1847–1857

255 Li P., Yang X., Wasser M., Cai Y. and Chia W. (1997) Incisurate and Staufen mediate asymmetric localization and segregation of prospero RNA during Drosophila neuroblast cell divisions. Cell 90: 437–447

256 Broadus J., Fuerstenberg S. and Doe C. Q. (1998) Staufen-dependent localization of prospero mRNA contributes to neuroblast daughter-cell fate. Nature 391: 792–795

257 Shen C. P., Jan L. Y. and Jan Y. N. (1997) Miranda is required for the asymmetric localization of Prospero during mitosis in Drosophila. Cell 90: 449–458

258 Ikeshima-Kataoka H., Skeath J. B., Nabeshima Y., Doe C. Q. and Matsuzaki F. (1997) Miranda directs Prospero to a daughter cell during Drosophila asymmetric divisions. Nature 390: 625–629

259 Guo M., Jan L. Y. and Jan Y. N. (1996) Control of daughter cell fates during asymmetric division: interaction of Numb and Notch. Neuron 17: 27–41

260 Frise E., Knoblich J. A., Younger-Shepherd S., Jan L. Y. and Jan Y. N. (1996) The Drosophila Numb protein inhibits signaling of the Notch receptor during cell-cell interaction in sensory organ lineage. Proc. Natl. Acad. Sci. USA 93: 11925–11932

261 Lu B., Rothenberg M., Jan L. Y. and Jan Y. N. (1998) Partner of Numb colocalizes with Numb during mitosis and directs Numb asymmetric localization in Drosophila neural and muscle progenitors. Cell 95: 225–235

262 Berndt D., Torok T., Gonzalez-Gaitan M. and Knoblich J. A. (2002) The endocytic protein alpha-Adaptin is required for numb-mediated asymmetric cell division in Drosophila. Dev. Cell 3: 221–231

263 Kraut R. and Campos-Ortega J. A. (1996) Inscuruable, a neural precursor gene of Drosophila, encodes a candidate for a cytoskeleton adapter protein. Devel. Biol. 174: 65–81

264 Kraut R., Chia W., Jan L. Y., Jan Y. N. and Knoblich J. A. (1996) Role of inscuruable in orienting asymmetric cell divisions in Drosophila. Nature 383: 50–55

265 Schaefer M., Schaefer M. and Knoblich J. A. (1999) Bazooka recruits Inscuruable to orient asymmetric cell divisions in Drosophila neuroblasts. Nature 402: 548–551

266 Schaefer M. and Knoblich J. A. (2001) Protein localization during asymmetric cell division. Exp. Cell. Res. 271: 66–74

267 Schaefer M., Petronczki M., Dorner F., Forte M. and Knoblich J. A. (2001) Heterotrimeric G proteins direct two modes of asymmetric cell division in the Drosophila nervous system. Cell 107: 183–194

268 Kaushik R., Yu F., Chia W., Yang X. and Bahri S. (2003) Subcellular localization of LGN during mitosis: evidence for its cortical localization in mitotic cell culture systems and its requirement for normal cell cycle progression. Mol. Biol. Cell. 14: 3144–3155

269 Jiang X., Wilford C., Duensing S., Munger K., Jones G. and Jones D. (2001) Participation of Survivin in mitotic and apoptotic activities of normal and tumor-derived cells. J. Cell. Biochem. 83: 342–354

270 Cai Y., Chia W. and Yang X. (2001) A family of snail-related zinc finger proteins regulates two distinct and parallel mechanisms that mediate Drosophila neuroblast asymmetric divisions. EMBO J. 20: 1704–1714

271 Izumi Y., Ohta N., Itoh-Furuya A., Fuse N. and Matsuzaki F. (2004) Differential functions of G protein and Baz-alphaK signaling pathways in Drosophila neuroblast asymmetric division. J. Cell Biol. 164: 729–738

272 Fuse N., Hisata K., Katzen A. L. and Matsuzaki F. (2003) Heterotrimeric G proteins regulate daughter cell size asymmetry in Drosophila neuroblast divisions. Curr. Biol. 13: 947–954

273 Yu F., Cai Y., Kaushik R., Yang X. and Chia W. (2003) Distinct roles of Galpha-i and Gbeta13F subunits of the heterotrimeric G protein complex in the mediation of Drosophila neuroblast asymmetric divisions. J. Cell Biol. 162: 623–633

274 Fuja T. J., Schwartz P. H., Darcy D. and Bryant P. J. (2004) Asymmetric localization of LGN but not AGS3, two homologs of Drosophila pins, in dividing human neural progenitor cells. J. Neurosci Res 78: 782–793

275 Hartenstein V. and Posakony J. W. (1989) Development of adult sensilla on the wing and notum of Drosophila melanogaster. Development 107: 389–405

276 Gho M., Bellaiche Y. and Schweisguth F. (1999) Revisiting the Drosophila microchaete lineage: a novel intrinsically asymmetric cell division generates a glial cell. Development 126: 3573–3584
277 Rhym M. S., Jan L. Y. and Jan Y. N. (1994) Asymmetric distribution of numb protein during division of the sensory organ precursor cell confers distinct fates to daughter cells. Cell 76: 477–491

278 Cai Y., Yu F., Lin S., Chia W. and Yang X. (2003) Apical complex genes control mitotic spindle geometry and relative size of daughter cells in Drosophila neuroblast and pl asymmetric divisions. Cell 112: 51–62

279 Roegiers F. (2003) Insights into mRNA transport in neurons. Proc. Natl. Acad. Sci. USA 100: 1465–1466

280 Bellaiche Y., Radovic A., Woods D. F., Hough C. D., Parmenier M. L., O’Kane C. J. et al. (2001) The partner of Insucetable/Discs-large complex is required to establish planar polarity during asymmetric cell division in Drosophila. Cell 106: 355–366

281 Malbon C. C. (2004) Frizzleds: new members of the superfamily of G-protein-coupled receptors. Front. Biosci. 9: 1048–1058

282 Bellaiche Y., Gho M., Kalschtschmidt J. A., Brand A. H. and Schweigswuth F. (2001) Frizzled regulates localization of cell-fate determinants and mitotic spindle rotation during asymmetric cell division. Nat. Cell. Biol. 3: 50–57

283 Gonczy P., Grill S., Stelzer E. H., Kirkham M. and Hyman A. A. (2001) Spindle positioning during the asymmetric first cell division of Caenorhabditis elegans embryos. Novartis Found. Symp. 221: 143–152

284 Knoblich J. A. (2001) Asymmetric cell division during animal development. Nat. Rev. Mol. Cell. Biol. 2: 11–20

285 Schneider S. Q. and Bowerman B. (2003) Cell polarity and the cytoskeleton in the Caenorhabditis elegans zygote. Annu. Rev. Genet. 37: 221–249

286 Kemphues K. J., Priess J. R., Morton D. G. and Cheng N. S. (1988) Identification of genes required for cytoplasmic localization in early C. elegans embryos. Cell 52: 311–320

287 Etemad-Moghadam B., Guo S. and Kemphues K. J. (1995) Asymmetrically distributed PAR-3 protein contributes to cell polarity and spindle alignment in early C. elegans embryos. Cell 83: 743–752

288 Hung T. J. and Kemphues K. J. (1999) PAR-6 is a conserved PDZ domain-containing protein that colocalizes with PAR-3 in Caenorhabditis elegans embryos. Development 126: 127–135

289 Tabuse Y., Izumi Y., Piano F., Kemphues K. J., Miwa J. and Ohno S. (1998) Atypical protein kinase C cooperates with PAR-3 to establish embryonic polarity in Caenorhabditis elegans. Development 125: 3607–3614

290 Gotta M., Abraham M. C. and Ahringer J. (2001) CDC-42 and Gbetagamma in regulating spindle position and orientation in Caenorhabditis elegans. Dev Biol. 240: 164–175

291 Gotta M. and Ahringer J. (2001) Distinct roles for Galpha and Gbetagamma in regulating spindle position and orientation in C. elegans. Cell 105: 314–321

292 Miller K. G. and Rand J. B. (2000) A role for RIC-8 (Synambyrn) and GOA-1 (Go-alpha) in regulating a subset of centrosome movements during early embryogenesis in Caenorhabditis elegans. Genetics 156: 1649–1660

293 Couwenbergs C., Spilker A. C. and Gotta M. (2004) Control of embryonic spindle positioning and G-alpha activity by C. elegans RIC-8. Curr. Biol. 14: 1871–1876

294 Hess H. A., Roper J.-C., Grill S. W. and Koelle M. R. (2004) RGS-7 completes a receptor-independent heterotrimeric G protein cycle to asymmetrically regulate mitotic spindle positioning in C. elegans. Cell 119: 209–218

295 Martin-McCaffrey L., Willard F. S., Oliveira-dos-Santos A. J., Natale D. R. C., Snow B. E., Kimple R. J. et al. (2004) RGS14 is a mitotic spindle protein essential from the first division of the mammalian zygote. Developmental Cell 7: 763–769

296 Verdi J. M., Schmand R., Bashirullah A., Jacob S., Salvinio R., Craig C. G. et al. (1996) Mammalian NUMB is an evolutionarily conserved signaling adapter protein that specifies cell fate. Curr. Biol. 6: 1134–1145

297 Cayouette M. and Raff M. (2002) Asymmetric segregation of Numb: a mechanism for neural specification from Drosophila to mammals. Nat. Neurosci. 5: 1265–1269

298 Blumer J. B., Chandler L. J. and Lanier S. M. (2002) Expression analysis and subcellular distribution of the two G-protein regulators AG83 and LGN indicate distinct functionality. Localization of LGN to the midbody during cytokinesis. J. Biol. Chem. 277: 15897–15903

299 Cleveland D. W. (1995) NuMA: a protein involved in nuclear structure, spindle assembly, and nuclear re-formation. Trends Cell Biol. 5: 60–64

300 Yu F., Ong C. T., Chia W. and Yang X. (2002) Membrane targeting and asymmetric localization of Drosophila partner of Insucetable are discrete steps controlled by different regions of the protein. Mol. Cell. Biol. 22: 4230–4240

301 Broadus J. and Doe C. Q. (1997) Extrinsic cues, intrinsic cues and microfilaments regulate asymmetric protein localization in Drosophila neuroblasts. Curr. Biol. 7: 827–835

302 Qian X., Goderie S. K., Shen Q., Stern J. H. and Temple S. (1998) Intrinsic programs of patterned cell lineages in isolated vertebrate CNS ventricular zone cells. Development 125: 237: 3143–3152

303 Miller K. G. and Rand J. B. (2000) A role for RIC-8 (Symnabrym) and GOA-1 (Go-alpha) in regulating a subset of centrosome movements during early embryogenesis in Caenorhabditis elegans. Genetics 156: 1649–1660

304 Couwenbergs C., Spilker A. C. and Gotta M. (2004) Control of embryonic spindle positioning and G-alpha activity by C. elegans RIC-8. Curr. Biol. 14: 1871–1876

305 Hess H. A., Roper J.-C., Grill S. W. and Koelle M. R. (2004) RGS-7 completes a receptor-independent heterotrimeric G protein cycle to asymmetrically regulate mitotic spindle positioning in C. elegans. Cell 119: 209–218

306 Martin-McCaffrey L., Willard F. S., Oliveira-dos-Santos A. J., Natale D. R. C., Snow B. E., Kimple R. J. et al. (2004) RGS14 is a mitotic spindle protein essential from the first division of the mammalian zygote. Developmental Cell 7: 763–769

307 Martin-McCaffrey L., Willard F. S., Pajak A., Dagnino L., Siderowski D. P. and D’Souza S. J. A. (2004) Analysis of interactions between Regulator of G-protein Signaling-14 and microtubules. Methods Enzymol. 390: 240–258

308 Chen N.-F., Yu J.-Z., Skiba N. P., Hamm H. E. and Rasenick M. M. (2003) A specific domain of Galpha required for the transactivation of Gialpha by tubulin is implicated in the organization of cellular microtubules. J. Biol. Chem. 278: 15285–15290

309 Popova J. S. and Rasenick M. M. (2003) Gbg mediates the interplay between tubulin dimers and microtubules in the modulation of Gq signaling. J. Biol. Chem. 278: 34299–34308

310 Roychowdhury S., Panda D., Wilson L. and Rasenick M. M. (1999) G protein alpha subunits activate tubulin GTPase and modulate microtubule polymerization dynamics. J. Biol. Chem. 274: 13485–13490

311 Roychowdhury S. and Rasenick M. K. (1997) G Protein beta 1gamma 2 subunits promote microtubule assembly. J. Biol. Chem. 272: 31576–31581

312 Wang N., Yan K. and Rasenick M. (1990) Tubulin binds specifically to the signal-transducing proteins, Gs alpha and Gq alpha 1. J. Biol. Chem. 265: 1239–1242

313 Sarma T., Vovoyn-Yasnetskayta T., Hope T. J. and Rasenick M. M. (2003) Heterotrimeric G-proteins associate with microtubules during differentiation in PC12 pheochromocytoma cells. FASEB J. 17: 848–859
314 Labbe J.-C., Maddox P. S., Salmon E. D. and Goldstein B. (2003) PAR proteins regulate microtubule dynamics at the cell cortex in *C. elegans*. *Curr. Biol.* 13: 707–714

315 Ghosh M., Peterson Y. K., Lanier S. M. and Smrcka A. V. (2003) Receptor- and nucleotide exchange-independent mechanisms for promoting G protein subunit dissociation. *J. Biol. Chem.* 278: 34747–34750

316 Webb C. K., McCudden C. R., Willard F. S., Kimple R. J., Siderovski D. P. and Oxford G. S. (2005) D2 dopamine receptor activation of potassium channels is selectively decoupled by G-alpha-i-specific GoLoco motif peptides. *J. Neurochem.* in press

317 Tsou M.-F. B., Hayashi A. and Rose L. S. (2003) LET-99 opposes Galpha/GPR signaling to generate asymmetry for spindle positioning in response to PAR and MES-1/SRC-1 signaling. *Development* 130: 5717–5730

318 Ross E. M. and Wilkie T. M. (2000) GTPase-activating proteins for heterotrimeric G proteins: regulators of G protein signaling (RGS) and RGS-like proteins. *Annu. Rev. Biochem.* 69: 795–827

319 Singer A. U., Waldo G. L., Harden T. K. and Sondek J. (2002) A unique fold of phospholipase C-beta mediates dimerization and interaction with G alpha q. *Nat. Struct. Biol.* 9: 32–36

320 Wang Z. and Moran M. F. (2002) Phospholipase C-gamma1: a phospholipase and guanine nucleotide exchange factor. *Mol. Interv.* 2: 352–355