Gonçalo Tabuada

Witt vectors and K-theory of automorphisms via noncommutative motives

Received: 25 July 2012
Published online: 18 June 2013

Abstract. We prove that the functor ring-of-rational-Witt-vectors $W_0(\cdot)$ becomes co-representable in the category of noncommutative motives. As an application, we obtain an immediate extension of $W_0(\cdot)$ from commutative rings to schemes. Then, making use of the theory of noncommutative motives, we classify all natural transformations of the functor K-theory-of-automorphisms.

1. Introduction and statement of results

The theory of **noncommutative motives**, envisioned by Kontsevich [9] in his seminal talk, was initiated in a series of articles [4,5,10,11,15,16]. Among other applications, this theory allowed the first conceptual characterization of algebraic K-theory since Quillen’s pioneering work, a streamlined construction of all the higher Chern characters, a universal characterization of Drinfeld’s DG quotient, etc; see the survey [17]. Here we further the study of noncommutative motives by developing its interactions with Witt vectors and K-theory of automorphisms.

Witt vectors

Witt vectors were introduced in the thirties by Witt [21] in his work on algebraic number theory. Given a commutative ring A, the *Witt ring* $W(A)$ of A is the abelian group of all power series of the form $1 + a_1 t + a_2 t^2 + \cdots$, with $a_i \in A$, endowed with the multiplication \ast determined by the equality $(1 - a_1 t) \ast (1 - a_2 t) = (1 - a_1 a_2 t)$. The *rational* Witt ring $W_0(A)$ of A consists of the elements of the form

$$\left\{ \frac{1 + a_1 t + \cdots + a_i t^i + \cdots + a_n t^n}{1 + b_1 t + \cdots + b_j t^j + \cdots + b_m t^m} \mid a_i, b_j \in A \right\} \subset W(A);$$

consult [7] for details. Although widely used in several branches of mathematics the rings $W(R)$ and $W_0(R)$ remain rather mysterious. Our co-representability Theorem 1.2 below offers a new viewpoint on the subject.

Mathematics Subject Classification (2000): 13F35, 18D20, 18F30

The author was partially supported by the NEC Award-2742738 and by the Portuguese Foundation for Science and Technology through PEst-OE/MAT/UI0297/2011 (CMA).

DOI: 10.1007/s00229-013-0632-z
Recall from [16] the construction of the universal additive invariant

\[U: \text{dgcat} \longrightarrow \text{Hmo}_0. \]

Roughly speaking, \(U \) is the universal functor (defined on dg categories) with values in an idempotent complete additive category which inverts Morita equivalences and satisfies additivity; see Sect. 4. Examples of additive invariants include algebraic \(K \)-theory, Hochschild homology, cyclic homology (and all its variants), and even topological Hochschild homology. Because of its universal property, which is a reminiscence of motives, \(\text{Hmo}_0 \) is called the category of noncommutative motives.

The tensor product of rings extends naturally to dg categories and, as proved in Proposition 4.3, induces in a universal way a symmetric monoidal structure on \(\text{Hmo}_0 \) making the functor \(U \) symmetric monoidal. The ring homomorphisms

\[
\begin{align*}
\Delta : \mathbb{Z}[r] &\rightarrow r \otimes r, \\
\epsilon : \mathbb{Z}[r] &\rightarrow \mathbb{Z}
\end{align*}
\]

(1.1)

endow the ring of polynomials \(\mathbb{Z}[r] \) with a co-unital co-associative co-algebra structure. Since \(U \) is symmetric monoidal the noncommutative motive \(U(\mathbb{Z}[r]) \) becomes then a co-unital co-associative co-monoid in \(\text{Hmo}_0 \). As a consequence, given any unital associative monoid \(O \in \text{Hmo}_0 \), the symmetric monoidal structure of \(\text{Hmo}_0 \) gives rise to a unital associative convolution ring structure on \(\text{Hom}_{\text{Hmo}_0}(U(\mathbb{Z}[r]), O) \). Our first main result is the following:

Theorem 1.2. The natural homomorphisms \(\mathbb{Z} \rightarrow \mathbb{Z}[r] \) and \(\mathbb{Z}[r] \rightarrow \mathbb{Z} \) give rise to a direct sum decomposition \(U(\mathbb{Z}[r]) \simeq U(\mathbb{Z}) \oplus W_0 \) of co-unital co-associative co-monoids in \(\text{Hmo}_0 \).

For every (flat) commutative ring \(A \) we have a ring isomorphism

\[
\text{Hom}_{\text{Hmo}_0}(W_0, U(A)) \simeq W_0(A).
\]

(1.3)

Note that the isomorphism (1.3) furnish us a conceptual characterization of the ring of rational Witt vectors since \(\text{Hom}_{\text{Hmo}_0}(W_0, U(A)) \) is defined solely in terms of precise universal properties. Roughly speaking, the noncommutative motive associated to the “affine line” decomposes into a “point” plus a “formal variable” which co-represents the ring of rational Witt vectors.

As an application, Theorem 1.2 allows us to immediately extend the functor \(W_0(-) \) from commutative rings to schemes. Let \(X \) be a quasi-compact and quasi-separated scheme. Recall from [12] that the derived category of perfect complexes of \(O_X \)-modules admits a (unique) differential graded enhancement \(D_{\text{perf}}^\alpha(X) \), under which the bi-exact functor \((E^\bullet, F^\bullet) \mapsto E^\bullet \otimes_{O_X} F^\bullet \) lifts to a dg functor \(D_{\text{perf}}^\alpha(X) \otimes D_{\text{perf}}^\alpha(X) \rightarrow D_{\text{perf}}^\alpha(X) \). The noncommutative motive \(U(X) := U(D_{\text{perf}}^\alpha(X)) \) becomes then a unital associative monoid and so the abelian group \(\text{Hom}_{\text{Hmo}_0}(W_0, U(X)) \) carries a unital associative convolution ring structure. It is then natural to call \(\text{Hom}_{\text{Hmo}_0}(W_0, U(X)) \) the rational Witt ring of \(X \). To the best of the author’s knowledge this invariant of schemes is new in the literature.

K-theory of automorphisms

Given a ring \(A \), let \(P(A) \) be the category of finitely generated projective \(A \)-modules and \(\text{Aut}(P(A)) \) the category of automorphisms. This latter category inherits from \(P(A) \) a natural exact structure in the sense of Quillen and so following [1,2] one can consider its
Grothendieck group. This construction extends naturally to dg categories giving rise to a well-defined functor $K_{0}\text{Aut} : \text{dgcat} \to \text{Ab}$ with values in abelian groups; see Sect. 3. Moreover, when A is commutative the tensor product over A endows $K_{0}\text{Aut}(A)$ with a ring structure.

Theorem 1.4. The functor $K_{0}\text{Aut}$ becomes co-representable in Hmo_{0} by the ring $\mathbb{Z}[r, r^{-1}]$ of Laurent polynomials, i.e. for every dg category A there is a group isomorphism

$$\text{Hom}_{\text{Hmo}_{0}}\left(\mathcal{U}(\mathbb{Z}[r, r^{-1}]), \mathcal{U}(A)\right) \simeq K_{0}\text{Aut}(A).$$

Moreover, $\mathbb{Z}[r, r^{-1}]$ inherits naturally from $\mathbb{Z}[r]$ a co-unital co-associative co-algebra structure such that for every (flat) commutative ring A we have a ring isomorphism

$$\text{Hom}_{\text{Hmo}_{0}}\left(\mathcal{U}(\mathbb{Z}[r, r^{-1}]), \mathcal{U}(A)\right) \simeq K_{0}\text{Aut}(A).$$

Informally speaking, Theorem 1.4 shows us that $K_{0}\text{Aut}$ becomes co-represented by the noncommutative motive associated to the “punctured affine line”.

Classically the K-theory of automorphisms comes equipped with several natural transformations such as the Frobenius (F_{n}) and the Verschiebung (V_{n}) operations; consult [1,2]. A fundamental problem in the field is then the classification of all the natural transformations of $K_{0}\text{Aut}$. Making use of noncommutative motives and the above co-representability Theorem 1.4 we solve this problem as follows:

Theorem 1.7. There is a natural isomorphism of abelian groups

$$\text{Nat}(K_{0}\text{Aut}, K_{0}\text{Aut}) \simeq K_{0}\text{Aut}\left(\mathbb{Z}[r, r^{-1}]\right),$$

where Nat stands for the abelian group of natural transformations. Moreover, the quotient of $K_{0}\text{Aut}(\mathbb{Z}[r, r^{-1}])$ by the relations

$$\left\{[(M, \alpha)] + [(M, \beta)] = [(M, \alpha \beta)] \mid M \in P(\mathbb{Z}[r, r^{-1}]), \alpha, \beta \text{ automorphisms}\right\}$$

identifies with $\{-1, 1\} \times \mathbb{Z}$. Furthermore, under the quotient homomorphism

$$\text{Nat}(K_{0}\text{Aut}, K_{0}\text{Aut}) \twoheadrightarrow \{-1, 1\} \times \mathbb{Z},$$

the Frobenius operation F_{n} corresponds to $(1, n)$ and the Verschiebung operation V_{n} to $((-1)^{n+1}, 1)$.

Theorem 1.7 shows us that all the information concerning a natural transformation of $K_{0}\text{Aut}$ can be completely encoded into an element of $K_{0}\text{Aut}(\mathbb{Z}[r, r^{-1}])$. Moreover, by imposing the relations (1.9) this data reduces simply to a parity plus an integer. The Frobenius (resp. Verschiebung) operations become then the simplest ones with respect to the parity (resp. to the integer).

2. Differential graded categories

A differential graded (=dg) category is a category enriched over (unbounded) cochain complexes of abelian groups in such a way that composition fulfills the Leibniz rule: $d(f \circ g) = d(f) \circ g + (-1)^{\deg(f)} f \circ d(g)$. For a survey article, consult Keller’s ICM address [8]. The category of dg categories will be denoted by dgcat. Given a ring A, we will still denote by A the dg category with a single object and A as the dg ring of endomorphisms (concentrated in degree zero).
Dg (bi-)modules

Let \mathcal{A} be a dg category. Recall from [8, §3] the construction of the category $\mathcal{C}(\mathcal{A})$ of \mathcal{A}-modules. We will denote by $\mathcal{D}(\mathcal{A})$ the derived category of \mathcal{A}, i.e. the localization of $\mathcal{C}(\mathcal{A})$ with respect to the class of quasi-isomorphisms. Recall from [8, §2.3] that the tensor product endows dgcat with a symmetric monoidal structure with \otimes-unit \mathbb{Z}. Finally, recall that a \mathcal{A}-\mathcal{B}-bimodule is simply a dg functor $\mathcal{A}^{\text{op}} \otimes \mathcal{B} \to \mathcal{C}_{\text{dg}}(\mathbb{Z})$ with values in the dg category of complexes of abelian groups.

Morita equivalences

A dg functor $F : \mathcal{A} \to \mathcal{B}$ is called a Morita equivalence if the derived extension of scalars functor $L_{F_!} : \mathcal{D}(\mathcal{A}) \sim \to \mathcal{D}(\mathcal{B})$ is an equivalence of (triangulated) categories; see [8, §4.6].

Recall from [8, Thm. 4.10] that dgcat carries a Quillen model structure, whose weak equivalences are the Morita equivalences. We will denote by Hmo the homotopy category hence obtained. The tensor product of dg categories can be naturally derived $- \otimes L_{-}$, thus giving rise to a symmetric monoidal structure on Hmo. Given dg categories \mathcal{A} and \mathcal{B}, let $\text{rep}(\mathcal{A}, \mathcal{B})$ be the full triangulated subcategory of $\mathcal{D}(\mathcal{A}^{\text{op}} \otimes \mathcal{B})$ spanned by the cofibrant \mathcal{A}-\mathcal{B}-bimodules X such that for every object $x \in \mathcal{A}$ the associated \mathcal{B}-module $X(x, -)$ becomes compact (see [13, Def. 4.2.7]) in $\mathcal{D}(\mathcal{B})$.

3. K-theory of automorphisms of dg categories

Given a dg category \mathcal{A}, let $\text{perf}(\mathcal{A})$ be the full subcategory of $\mathcal{C}(\mathcal{A})$ consisting of those \mathcal{A}-modules which are cofibrant in the projective model structure and which become compact in $\mathcal{D}(\mathcal{A})$. As explained in [6, Example 3.5], $\text{perf}(\mathcal{A})$ carries a Waldhausen structure [19] and so by passing to the Grothendieck group of the associated category $\text{Aut}(\text{perf}(\mathcal{A}))$ of automorphisms we obtain the following composed functor

$$K_0 \text{Aut} : \text{dgcat} \xrightarrow{\text{perf}} \text{Wald} \xrightarrow{\text{Aut}} \text{Wald} \xrightarrow{K_0} \text{Ab} \quad \mathcal{A} \mapsto K_0 \text{Aut}(\text{perf}(\mathcal{A})).$$

Proposition 3.1. (Agreement) For every ring \mathcal{A}, the exact functor $\mathbf{P}(\mathcal{A}) \to \text{perf}(\mathcal{A})$ (mapping a \mathcal{A}-module to the associated complex of \mathcal{A}-modules concentrated in degree zero) gives rise to an abelian group isomorphism

$$K_0 \text{Aut}(\mathbf{P}(\mathcal{A})) \sim \to K_0 \text{Aut}(\text{perf}(\mathcal{A})). \quad (3.2)$$

Proof. The following assignment

$$(M^\bullet, \alpha) \mapsto \sum_{n \in \mathbb{Z}} (-1)^n \left[\left(H^n(M^\bullet), H^n(\alpha) \right) \right]$$

gives rise to the inverse to (3.2). □
4. Noncommutative motives

For a survey article on noncommutative motives we invite the reader to consult [17]. Recall from [16] the construction of the category \(\mathrm{Hmo}_0 \) of noncommutative motives. It is defined as the pseudo-abelian envelope of the category whose objects are the dg categories and whose abelian groups of morphisms are given by

\[
\text{Hom}_{\text{Hmo}_0}(A, B) := K_0 \text{rep}(A, B).
\]

Composition is induced by the derived tensor product of bimodules. The category \(\text{Hmo}_0 \) is additive, idempotent complete, and there is a natural functor

\[
U : \text{dgcat} \to \text{Hmo}_0,
\]

sending a dg functor \(F : A \to B \) to the class in the Grothendieck group \(K_0 \text{rep}(A, B) \) of the bimodule in \(\text{rep}(A, B) \) naturally associated to \(F \). Recall also that a functor \(\text{dgcat} \to D \), with values in an idempotent complete additive category, is called an additive invariant if it inverts Morita equivalences and satisfies additivity. As explained in [17, §4], the above functor (4.1) is the universal additive invariant, i.e. given any idempotent complete additive category \(D \) we have an induced equivalence of categories

\[
U^* : \text{Fun}_{\text{add}}^{\otimes}(\text{Hmo}_0, D) \sim \to \text{Fun}^{\otimes}_A(\text{dgcat}, D),
\]

where \(\text{Fun}_{\text{add}}(\text{Hmo}_0, D) \) denotes the category of additive functors and \(\text{Fun}^{\otimes}_A(\text{dgcat}, D) \) the category of additive invariants.

Now, recall from [16, Lemma 4.3] that the derived tensor product \(- \otimes^L - \) on \(\text{Hmo} \) (see Sect. 2) induces a symmetric monoidal structure on \(\text{Hmo}_0 \) making the functor \(U \) symmetric monoidal. This symmetric monoidal structure is characterized by the following universal property.

Proposition 4.3. Given any idempotent complete symmetric monoidal additive category \(D \), the above equivalence (4.2) admits the following monoidal refinement

\[
U^* : \text{Fun}_{\text{add}}^{\otimes}(\text{Hmo}_0, D) \sim \to \text{Fun}^{\otimes}_A(\text{dgcat}, D),
\]

where \(\text{Fun}_{\text{add}}^{\otimes}(\text{Hmo}_0, D) \) denotes the category of symmetric monoidal additive functors and \(\text{Fun}^{\otimes}_A(\text{dgcat}, D) \) the category of additive invariants which are moreover symmetric monoidal.

Proof. Let \(E \) be an object of \(\text{Fun}_{\text{add}}^{\otimes}(\text{Hmo}_0, D) \). Since \(U \) is symmetric monoidal the composite \(E \circ U \) is also symmetric monoidal and so by equivalence (4.2) we conclude that it belongs to \(\text{Fun}^{\otimes}_A(\text{dgcat}, D) \). Now, let \(H \) be an object of \(\text{Fun}^{\otimes}_A(\text{dgcat}, D) \). By equivalence (4.2) it factors uniquely through \(U \) giving rise to an additive invariant \(\overline{H} : \text{Hmo}_0 \to D \). By construction of \(\text{Hmo}_0 \) the functor \(\overline{H} \) remains symmetric monoidal and so it belongs to \(\text{Fun}_{\text{add}}^{\otimes}(\text{Hmo}_0, D) \). This achieves the proof. \(\square \)

5. Proofs

Proof of Theorem 1.2

Let us start by showing that the natural ring homomorphisms \(\iota : \mathbb{Z} \to \mathbb{Z}[r] \) and \(\pi : \mathbb{Z}[r] \overset{r=0}{\twoheadrightarrow} \mathbb{Z} \) give rise to a direct sum decomposition \(\mathcal{U}(\mathbb{Z}[r]) \simeq \mathcal{U}(\mathbb{Z}) \oplus \mathcal{W}_0 \) of co-unital co-associative
co-monoids in \(\text{Hmo}_0 \). Since \(\pi \circ \iota = \text{id}_2 \) the composite \(\iota \circ \pi \) is an idempotent endomorphism of \(\mathbb{Z}[r] \) and hence \(U(\iota \circ \pi) \) is an idempotent endomorphism of \(U(\mathbb{Z}[r]) \). By construction the category \(\text{Hmo}_0 \) is idempotent complete and so we obtain a direct sum decomposition \(U(\mathbb{Z}) \oplus \mathcal{W}_0 \). The noncommutative motive \(\mathcal{W}_0 \) identifies then with the kernel of the map
\[U(\pi) : U(\mathbb{Z}[r]) \to U(\mathbb{Z}). \]

The following commutative diagram

\[
\begin{array}{ccc}
\mathbb{Z}[r] & \xrightarrow{\Delta} & \mathbb{Z}[r] \otimes \mathbb{Z}[r] \\
\pi & \downarrow & \pi \otimes \pi \\
\mathbb{Z} & \xrightarrow{1 \otimes 1} & \mathbb{Z} \otimes \mathbb{Z}
\end{array}
\]

allows us then to conclude that the co-monoid structure on \(U(\mathbb{Z}[r]) \) restricts to \(\mathcal{W}_0 \). Its co-unit is given by the composition \(\mathcal{W}_0 \hookrightarrow U(\mathbb{Z}[r]) \xrightarrow{U(\epsilon)} U(\mathbb{Z}) \).

Let us now construct the ring isomorphism (1.3). Recall from [18, Thm. 1.1] that for every ring \(A \) we have a natural isomorphism

\[
\text{Hom}_{\text{Hmo}_0}(U(\mathbb{Z}[r]), U(A)) \simeq K_0\text{End}(A),
\]

where \(K_0\text{End}(A) \) denotes the Grothendieck group of endomorphisms of \(A \). We start by proving that (5.1) is a ring isomorphism whenever \(A \) is commutative. The isomorphism (5.1) is obtained by composing

\[
\text{Hom}_{\text{Hmo}_0}(U(\mathbb{Z}[r]), U(A)) := K_0\text{rep}(\mathbb{Z}[r], A) \xrightarrow{\sim} K_0\text{End}(\text{perf}(A))
\]

with \(K_0\text{End}(\text{perf}(A)) \simeq K_0\text{End}(\text{P}(A)) \). The tensor product of perfect \(A \)-modules induces naturally a ring structure on \(K_0\text{End}(\text{perf}(A)) \) making the isomorphism \(K_0\text{End}(\text{perf}(A)) \simeq K_0\text{End}(\text{P}(A)) \) into a ring isomorphism. Hence, it suffices to show that under the above group isomorphism (5.2) the convolution multiplication (on the left-hand-side) identifies with the one given by the tensor product (on the right-hand-side). Let \(X, Y \in \text{rep}(\mathbb{Z}[r], A) \). Since the underlying abelian group of \(\mathbb{Z}[r] \) is torsionfree, [20, Corollary 3.1.5] implies that the ring \(\mathbb{Z}[r] \oplus A \) (and hence the dg category \(\mathbb{Z}[r] \)) is flat. As a consequence, \(\mathbb{Z}[r] \otimes A \simeq \mathbb{Z}[r] \otimes A \) and so \(\text{rep}(\mathbb{Z}[r], A) \) identifies with the full triangulated subcategory of \(D(\mathbb{Z}[r]^{\text{op}} \otimes A) \) spanned by those \(\mathbb{Z}[r] \)-\(A \)-bimodules \(X \) such that the \(A \)-module \(X \) belongs to \(\text{perf}(A) \), where \(* \) is the unique object of \(\mathbb{Z}[r] \). Let us denote by \([X, \alpha] \) and \([Y, \beta] \) the images of \([X] \) and \([Y] \) under the isomorphism (5.2), where \(\alpha \) and \(\beta \) are the endomorphisms associated to the left action of \(\mathbb{Z}[r] \) on \(X \) and \(Y \). The multiplication of \([X, \alpha] \) with \([Y, \beta] \) is then the element

\[
[(X \otimes_A Y), \alpha \otimes_A \beta] \in K_0\text{End}(\text{perf}(A)).
\]

Note that by definition of the category \(\text{perf}(A) \) there is no need to derive the tensor product over \(A \). Now, let us analyze the convolution multiplication. Since by hypothesis \(A \) is commutative, its multiplication \(m : A \otimes A \to A \) is a ring homomorphism. Hence, we have a well-defined dg functor \(m : A \otimes A \to A \). Let us denote by \(mA \) the associated bimodule and by \([mA] \) its class in \(K_0\text{rep}(A \otimes A, A) \). Note that since by hypothesis \(A \) is flat, the bimodule \(mA \) belongs to \(\text{rep}(A \otimes A, A) \). Similarly, let us denote by \(\Delta(\mathbb{Z}[r] \otimes \mathbb{Z}[r]) \) the bimodule associated to \(\Delta \) (see (1.1)) and by \([\Delta(\mathbb{Z}[r] \otimes \mathbb{Z}[r])] \) its class in \(K_0\text{rep}(\mathbb{Z}[r], \mathbb{Z}[r] \otimes \mathbb{Z}[r]) \). Note that the (derived) tensor product of \(X \) with \(Y \) is an element of \(\text{rep}(\mathbb{Z}[r] \otimes \mathbb{Z}[r], A \otimes A) \). The convolution multiplication of \([X] \) with \([Y] \) is then the following composition

\[
\begin{array}{ccc}
\mathbb{Z}[r] & \xrightarrow{[\Delta(\mathbb{Z}[r] \otimes \mathbb{Z}[r])]} & \mathbb{Z}[r] \otimes \mathbb{Z}[r] \\
& \xrightarrow{[X \otimes Y]} & A \otimes A \\
& \xrightarrow{[mA]} & A
\end{array}
\]
in the category Hmo_0. By definition of Hmo_0 this composition corresponds to the class

$$\Delta([\mathbb{Z}[r] \otimes \mathbb{Z}[r]) \otimes_{[\mathbb{Z}[r] \otimes [\mathbb{Z}[r]} (X \otimes Y) \otimes_A m A],$$

which naturally identifies with $[X \otimes_A Y]$. Since the left action of $\mathbb{Z}[r]$ on $X \otimes_A Y$ is the diagonal one, we conclude finally that the image of $[X \otimes_A Y]$ under the above isomorphism (5.2) is precisely the element (5.3). This shows that (5.1) is a ring isomorphism.

Now, note that the exact functors $P(A) \rightarrow \text{End}(P(A)), M \mapsto (M, 0)$, and $\text{End}(P(A)) \rightarrow P(A), (M, \alpha) \mapsto M$, induce a splitting $K_0\text{End}(P(A)) \simeq K_0(A) \oplus \tilde{K}_0\text{End}(P(A))$ of abelian groups which is moreover compatible with the ring structure. In order to simplify the exposition let us denote the ring $\tilde{K}_0\text{End}(P(A))$ by $\tilde{K}_0\text{End}(A)$. The map

$$\text{Hom}_{\text{Hmo}_0}(\mathcal{U}(\mathbb{Z}[r]), \mathcal{U}(A)) \simeq K_0\text{End}(A) \overset{\mathcal{U}(\iota)^*}{\longrightarrow} K_0(A) \simeq \text{Hom}_{\text{Hmo}_0}(\mathcal{U}(\mathbb{Z}), \mathcal{U}(A))$$

induced by $\mathcal{U}(\iota)$ identifies with the homomorphism

$$K_0\text{rep}(\mathbb{Z}[r], A) \longrightarrow K_0\text{rep}(\mathbb{Z}, A) \quad [(M, \alpha)] \mapsto [M].$$

As a consequence, the abelian group $\text{Hom}_{\text{Hmo}_0}(\mathcal{W}_0, \mathcal{U}(A))$ identifies with the kernel of $\mathcal{U}(\iota)^*$. This kernel is by construction $\tilde{K}_0\text{End}(A)$ and so we obtain the following abelian group isomorphism

$$\text{Hom}_{\text{Hmo}_0}(\mathcal{W}_0, \mathcal{U}(A)) \simeq \tilde{K}_0\text{End}(A). \tag{5.4}$$

From the above ring isomorphism (5.1) and the decomposition of $K_0\text{End}(A)$ one concludes that (5.4) preserves moreover the ring structure.

Now, recall from [2] that we have the following ring isomorphism

$$\tilde{K}_0\text{End}(A) \longrightarrow W_0(A) \quad (M, \alpha) \mapsto \det(\text{Id} + \alpha t).$$

By combining it with (5.4) we obtain then the searched ring isomorphism (1.3).

Proof of Theorem 1.4

Recall that by construction we have

$$\text{Hom}_{\text{Hmo}_0}(\mathcal{U}(\mathbb{Z}[r, r^{-1}]), \mathcal{U}(A)) := K_0\text{rep}(\mathbb{Z}[r, r^{-1}], A).$$

Similarly to the proof of Theorem 1.2, the ring $\mathbb{Z}[r, r^{-1}]$ is flat and so $\text{rep}(\mathbb{Z}[r, r^{-1}], A)$ identifies with the full triangulated subcategory of $\mathcal{D}(\mathbb{Z}[r, r^{-1}]^{\text{op}} \otimes A)$ spanned by the $\mathbb{Z}[r]$.-A-bimodules X such that the A-module $X(\cdot, \ast)$ belongs to $\text{perf}(A)$. Such a bimodule consists precisely on the same data as an object of $\text{Aut}(\text{perf}(A))$. Hence, we have an equivalence $\text{rep}(\mathbb{Z}[r, r^{-1}], A) \simeq \text{Aut}(\text{perf}(A))[w^{-1}]$, where w denotes the class of quasi-isomorphisms. Since $K_0\text{Aut}(\text{perf}(A)) \simeq K_0\text{Aut}(\text{perf}(A)[w^{-1}])$ we obtain then the searched abelian group isomorphism (1.5).

When $A = A$, with A a commutative ring, an argument analogous to the one used in the proof of Theorem 1.2 (with $\mathbb{Z}[r]$ replaced by $\mathbb{Z}[r, r^{-1}]$) shows us that (1.5) reduces to the ring isomorphism (1.6). This concludes the proof.
Proof of Theorem 1.7

Let us start by constructing the isomorphism (1.8). The co-representability of the functor $K_0\text{Aut}$ in the category Hm_0 of noncommutative motives (see Theorem 1.4) implies that $K_0\text{Aut}$ is an additive invariant of dg categories. Hence, $K_0\text{Aut}$ belongs to the category $\text{Fun}_A(\text{dgcat, Ab})$. Using the equivalence (4.2) we obtain then an abelian group isomorphism

$$\text{Nat}(K_0\text{Aut}, K_0\text{Aut}) \cong \text{Nat}(K_0\text{Aut}, K_0\text{Aut}) \eta \mapsto \eta.$$ \hfill (5.5)

By Theorem 1.4 the additive functor $K_0\text{Aut}$ is co-represented in Hm_0 by $\mathcal{U}(\mathbb{Z}[r, r^{-1}])$ and so using the enriched Yoneda lemma [3, Thm. 8.3.5] one obtains the following abelian group isomorphism

$$\text{Nat}(K_0\text{Aut}, K_0\text{Aut}) \cong K_0\text{Aut}(\mathcal{U}(\mathbb{Z}[r, r^{-1}])) \eta \mapsto \eta(\mathbb{Z}[r, r^{-1}])([\text{id}_{\mathbb{Z}[r, r^{-1}]}]).$$

By construction of Hm_0 the class $[\text{id}_{\mathbb{Z}[r, r^{-1}]}]$ identifies with $[(\mathbb{Z}[r, r^{-1}], \cdot r)]$. Hence, by combining this latter isomorphism with (5.5) we obtain the isomorphism

$$\text{Nat}(K_0\text{Aut}, K_0\text{Aut}) \cong K_0\text{Aut}(\mathbb{Z}[r, r^{-1}]),$$ \hfill (5.6)

sending a natural transformation η to $\eta(\mathbb{Z}[r, r^{-1}])((\mathbb{Z}[r, r^{-1}], \cdot r))$. This is the searched isomorphism (1.8).

Let us now prove the remaining claims of the Theorem. As explained in [14, Def. 3.1.6], the quotient group $K_0\text{Aut}(\mathbb{Z}[r, r^{-1}])/(1.9)$ identifies with the K_1-group of the category $\mathcal{P}(\mathbb{Z}[r, r^{-1}])$, which by [14, Thm. 3.1.7] is isomorphic to $K_1(\mathbb{Z}[r, r^{-1}])$. Since \mathbb{Z} is a regular ring we have by Bass-Heller-Swan (see [14, Cor. 3.2.20]) an isomorphism $K_1(\mathbb{Z}[r, r^{-1}]) \simeq K_1(\mathbb{Z}) \oplus K_0(\mathbb{Z})$. Finally, since $K_1(\mathbb{Z}) \simeq \{-1, 1\}$ (see [14, Cor. 2.3.3]) and $K_0(\mathbb{Z}) \simeq \mathbb{Z}$, we conclude that

$$K_0\text{Aut}(\mathbb{Z}[r, r^{-1}])/(1.9) \simeq \{-1, 1\} \times \mathbb{Z}.$$ \hfill (5.7)

Now, let us show that under the quotient homomorphism (1.10) the Frobenius operation F_n corresponds to $(1, n)$ and that the Verschiebung operation V_n corresponds to $((-1)^{n+1}, 1)$. We start with the Frobenius operation

$$F_n : K_0\text{Aut} \to K_0\text{Aut} \quad [(M, \alpha)] \mapsto [(M, \alpha^n)].$$

Its image under the above canonical map (5.6) is the element $[(\mathbb{Z}[r, r^{-1}], \cdot r^n)]$. It suffices then to understand the image of this element under the homomorphism

$$K_0\text{Aut}(\mathbb{Z}[r, r^{-1}]) \to K_1(\mathcal{P}(\mathbb{Z}[r, r^{-1}])), \Phi : K_1(\mathcal{P}(\mathbb{Z})) \oplus K_0(\mathbb{Z}) \sim \{-1, 1\} \times \mathbb{Z},$$

where the right-hand-side isomorphism is induced by the determinant and rank assignments. In order to simplify the exposition we will make no notational distinction between the elements of $K_0\text{Aut}(\mathbb{Z}[r, r^{-1}])$ and $K_1(\mathcal{P}(\mathbb{Z}[r, r^{-1}]))$. The relations (1.9) imply that the image of $[(\mathbb{Z}[r, r^{-1}], \cdot r^n)]$ under (5.7) identifies with n-times the image of $[(\mathbb{Z}[r, r^{-1}], \cdot r)]$ (corresponding to the Frobenius operation F_1). As explained in [14, Prop. 3.2.18], the inverse of the isomorphism Φ is given by

$$[(M, \alpha)] \mapsto [(\mathbb{Z}[r, r^{-1}] \otimes M, \text{id} \otimes \alpha)] + [(\mathbb{Z}[r, r^{-1}] \otimes M' , r \otimes \text{id})].$$ \hfill (5.8)
Hence, we observe that the element \(((\mathbb{Z}, \text{id})], [\mathbb{Z}])\) corresponds to \(((\mathbb{Z}[r, r^{-1}], \text{id})] + \{([\mathbb{Z}, r^{-1}], r)\} \). Since \(((\mathbb{Z}[r, r^{-1}], \text{id})]\) is the trivial element of \(K_1(\mathbb{P}(\mathbb{Z}[r, r^{-1}]))\) we conclude that the image of \(((\mathbb{Z}[r, r^{-1}], r)\]) under \((5.7)\) is \((1, 1)\). By the previous arguments the image of \(((\mathbb{Z}[r, r^{-1}], r^n)\]) is then \((1, n)\).

Let us now study the Verschiebung operation

\[V_n : K_0 \text{Aut} \to K_0 \text{Aut} \quad [(M, \alpha)] \mapsto [(M^\oplus, V_n(\alpha))], \]

where

\[V_n(\alpha) := \begin{bmatrix} 0 & \cdots & 0 & \alpha \\ 1 & \ddots & \vdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \end{bmatrix}_{(n \times n)}. \]

Its image under \((5.6)\) is the element \(((\mathbb{Z}[r, r^{-1}]^\oplus n), V_n(r))\]) and so it suffices to study the image of this element under \((5.7)\). The matrix equality \(V_n(\alpha) = W_n \cdot I_n(\alpha)\), where

\[W_n := \begin{bmatrix} 0 & \cdots & 0 & 1 \\ 1 & \ddots & \vdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \end{bmatrix}_{(n \times n)}, \quad I_n(\alpha) := \begin{bmatrix} 1 & \cdots & 0 & 0 \\ 0 & \ddots & \vdots & 0 \\ 0 & \ddots & \ddots & 1 \\ 0 & \cdots & 0 & \alpha \end{bmatrix}_{(n \times n)} \]

combined with the relations \((1.9)\) implies that the image of \(((\mathbb{Z}[r, r^{-1}]^\oplus n), V_n(r))\]) under the homomorphism \((5.7)\) agrees with the sum of the images of \(((\mathbb{Z}[r, r^{-1}]^\oplus n), W_n)\]) and \(((\mathbb{Z}[r, r^{-1}]^\oplus n), I_n(\alpha))\]). Under the assignment \((5.8)\), \(((\mathbb{Z}^\oplus n, W_n), [0])\) corresponds to \(((\mathbb{Z}[r, r^{-1}]^\oplus n), W_n))\]). Since the determinant of the matrix \(W_n\) equals \((-1)^{n+1}\), we then conclude that the image of \(((\mathbb{Z}[r, r^{-1}]^\oplus n), W_n)\]) under \((5.7)\) is exactly \((-1)^{n+1}, 0\). In what concerns the element \(((\mathbb{Z}[r, r^{-1}]^\oplus n), I_n(\alpha))\]) we have the following short exact sequence

\[0 \to [(\mathbb{Z}[r, r^{-1}]^\oplus (n-1), \text{Id})] \to [(\mathbb{Z}[r, r^{-1}]^\oplus n, I_n(\alpha))] \to [(\mathbb{Z}[r, r^{-1}], r)] \to 0, \]

where the first map corresponds to the upper-left-block matrix inclusion. Since \(((\mathbb{Z}[r, r^{-1}]^\oplus (n-1), \text{Id})]\) is the trivial element of \(K_1(\mathbb{P}(\mathbb{Z}[r, r^{-1}]))\) we conclude that \(((\mathbb{Z}[r, r^{-1}]^\oplus n), I_n(\alpha))\]) agrees with \(((\mathbb{Z}[r, r^{-1}], r)\]). As explained above the image of \(((\mathbb{Z}[r, r^{-1}], r)\]) under \((5.7)\) is \((1, 1)\). Hence, by adding \((-1)^{n+1}, 0\) with \((1, 1)\) we conclude finally that the image of \(((\mathbb{Z}[r, r^{-1}]^\oplus n), V_n(\alpha))\]) under \((5.7)\) is \((-1)^{n+1}, 1\). This achieves the proof.

References

[1] Almkvist, G.: \(K\)-theory of endomorphisms. J. Algebra 55, 308–340 (1978)
[2] Almkvist, G.: The Grothendieck ring of the category of endomorphisms. J. Algebra 28, 365–388 (1974)
[3] Borceux, F.: Handbook of Categorical Algebra 2. Encyclopedia of Mathematics and its Applications, vol. 51. Cambridge University Press, Cambridge (1994)
[4] Cisinski, D.-C., Tabuada, G.: Non-connective K-theory via universal invariants. Compos. Math. 147, 1281–1320 (2011)
[5] Cisinski, D.-C., Tabuada, G.: Symmetric monoidal structure on noncommutative motives. J. K-Theory 9(2), 201–268 (2012)
[6] Dugger, D., Shipley, B.: K-theory and derived equivalences. Duke Math. J. 124(3), 587–617 (2004)
[7] Hazewinkel, M. Witt Vectors I. Handbook of Algebra, vol. 6, pp. 319–472 (2009)
[8] Keller, B.: On Differential graded categories. In: International Congress of Mathematicians (Madrid), vol. II, pp. 151–190. Eur. Math. Soc., Zürich (2006)
[9] Kontsevich, M.: Noncommutative Motives. Talk at the Institute for Advanced Study on the Occasion of the 61st Birthday of Pierre Deligne, October 2005. Video available at http://video.ias.edu/Geometry-and-Arithmetic
[10] Marcolli, M., Tabuada, G.: Kontsevich’s Noncommutative Numerical Motives. Available at arXiv:1108.3785. To appear in Compositio Mathematica 148, 1811–1820 (2012)
[11] Marcolli, M., Tabuada, G.: Non-commutative Motives, Numerical Equivalence, and Semi-simplicity. Available at arXiv:1105.2950. To appear in American Journal of Mathematics
[12] Lunts, V., Orlov, D.: Uniqueness of enhancement for triangulated categories. J. Am. Math. Soc. 23, 853–908 (2010)
[13] Neeman, A.: Triangulated Categories. Annals of Mathematics Studies, vol. 148. Princeton University Press, Princeton (2001)
[14] Rosenberg, J.: Algebraic K-theory and its Applications. Graduate Texts in Mathematics, vol. 147. Springer, New York (1994)
[15] Tabuada, G.: Higher K-theory via universal invariants. Duke Math. J. 145(1), 121–206 (2008)
[16] Tabuada, G.: Additive invariants of dg categories. Int. Math. Res. Not. 53, 3309–3339 (2005)
[17] Tabuada, G.: A guided tour through the garden of noncommutative motives. Clay Math. Proc. 16, 259–276 (2012)
[18] Tabuada, G.: Co-representability of the Grothendieck group of endomorphisms functor in the category of noncommutative motives. Homol. Homotopy Appl. 13(2), 315–328 (2011)
[19] Waldhausen, F.: Algebraic K-theory of spaces, Algebraic and geometric topology (New Brunswick, NJ, 1983), Lecture Notes in Math., vol. 1126, pp. 318–419. Springer, Berlin (1985)
[20] Weibel, C.: An Introduction to Homological Algebra. Cambridge Studies in Advanced Mathematics, vol. 38. Cambridge University Press, Cambridge (1994)
[21] Witt, E.: Theorie der quadratischen Formen in beliebigen Körperrn. J. Reine. Angew. Math. 176, 31–44 (1937)