Seawater Acidification and Elevated Temperature Affect Gene Expression Patterns of the Pearl Oyster *Pinctada fucata*

Wenguang Liu, Xiande Huang, Jianshi Lin, Maoxian He*

Key Laboratory of Marine Bio-resources Sustainable Utilization, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China

Abstract

Oceanic uptake of anthropogenic carbon dioxide results in decrease in seawater pH and increase in temperature. In this study, we demonstrated the synergistic effects of elevated seawater temperature and declined seawater pH on gene expression patterns of *aspein*, *calmodulin*, *nacrein*, *she-7-F10* and *hsp70* in the pearl oyster *Pinctada fucata*. Under 'business-as-usual' scenarios, four treatments were examined: (1) ambient pH (8.10) and ambient temperature (27°C) (control condition), (2) ambient pH and elevated temperature (+3°C), (3) declined pH (7.70) and ambient temperature, (4) declined pH and elevated temperature. The results showed that under warming and acidic seawater conditions, expression of *aspein* and *calmodulin* showed no significant differences among different time point in condition 8.10 T. But the levels of *aspein* and *calmodulin* in conditions 8.10 +3°C, 7.70 T and 7.70 +3°C, and levels of *nacrein*, *she-7-F10* in all the four treatments changed significantly. Low pH and pH×temperature interaction influenced the expression of *aspein* and *calmodulin* significantly after hours 48 and 96. Significant effects of low pH and pH×temperature interaction on the expression of *nacrein* were observed at hour 96. The expression level of *she-7-F10* was affected significantly by pH after hours 48 and 96. The expression of *hsp70* was significantly affected by temperature, pH, temperature×pH interaction at hour 6, and by temperature×pH interaction at hour 24. This study suggested that declined pH and pH×temperature interaction induced down regulation of calcification related genes, and the interaction between declined seawater pH and elevated temperature caused up regulation of *hsp70* in *P. fucata*. These results demonstrate that the declined seawater pH and elevated temperature will impact the physiological process, and potentially the adaptability of *P. fucata* to future warming and acidified ocean.

Introduction

Increasing concentrations of CO₂ in the atmosphere are causing the ocean to become warmer and acidify [1]. Global surface temperatures rose by 0.76°C and global seawater pH decreased by 0.1 unit due to increasing CO₂ emissions since the industrial revolution [2]. Under ‘business as usual’ scenarios, the ocean is predicted to increase in sea surface temperature by 1–4°C and decrease in ocean pH by 0.3–0.4 units by the year 2100 [3,4]. Ocean absorbing of emitted CO₂ lead to profound changes in the seawater carbonate chemistry with decrease in calcite, aragonite saturation state and seawater carbonate ions. These changes have been identified as a great threat to marine organisms, particularly to calcifying organisms [5,6].

Effects of ocean acidification on calcification of marine organisms have been a focus in recent studies [7]. Decreasing in seawater pH has negative effects on calcification rate of organisms like coral *Stylophora pistillata* [8], echinoderm *Amphiura filiformis* [9] and molluscs *Limaquina helicina* and *Crassostrea gigas* [10,11]. However, other studies reported that calcification rate showed no significant change in *Mytilus edulis*, and increased in *Littorina littorea* and *Sepia officinalis* when exposed to low seawater pH [12,13]. Hence, marine organisms’ response to carbonate system variations is diverse.

It is predicted that the oceans will warm and acidify simultaneously. Therefore, studies that include both decreased seawater pH and increased temperature will provide a more realistic assessment of marine organism’s responses to future environmental change, than studies limited to a single factor [14]. In studies examining the synergistic impacts of declined seawater pH and elevated temperature on marine organisms, Reynaud et al. [15] found no reduction in calcification in the coral *S. pistallata* when reared at reduced seawater pH but a 50% reduction in calcification when reared at declined seawater pH and elevated temperature. Metzger et al. [16] showed that the crab *Cancer pagurus* was more sensitive to increased temperature under low pH conditions. Byrne et al. [17] demonstrated that exposure of the abalone *Halilius coccoceradata* and sea urchin *Heliocidaris erythrogramma* to warming (+2°C to 4°C) and acidification (pH 7.6–7.8) resulted in unsushed larvae and abnormal juveniles. Martin et al. [18] reported that the death of algae *Lithophyllum cabiochae* was observed only under elevated temperature and was two- to threefold higher under elevated pCO₂. They also found that net calcification of *L. cabiochae*

Citation: Liu W, Huang X, Lin J, He M (2012) Seawater Acidification and Elevated Temperature Affect Gene Expression Patterns of the Pearl Oyster *Pinctada fucata*. PLoS ONE 7(3): e33679. doi:10.1371/journal.pone.0033679

Editor: Inés Álvarez, University of Vigo, Spain

Received September 27, 2011; Accepted February 15, 2012; Published March 16, 2012

Copyright: © 2012 Liu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study is supported by national Natural Science Foundation of China (41006090), the Joint Program of NSFC-Guangdong (U0831001) and the funds of knowledge innovation program of Chinese Academy of Sciences (KZCX2-YW-Q07-03 and ZCX2-EW-Q21). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: hmx@scsio.ac.cn

PLoS ONE | www.plosone.org | March 2012 | Volume 7 | Issue 3 | e33679
from CO2 injection poses physiological challenges to marine selected dumping sites. Immersion in CO2-laden, acidic seawater [21]. Ocean sequestration may directly affect marine life in the most important are ocean sequestration of carbon dioxide expression pattern of genes responsible for calcification under modulation of gene expression can be one of the most rapid and processes during stressful events, and the regulation and understanding the core physiological mechanisms behind calcification to assess better the sensitivity of these organisms to ocean warming [23,24]. Shell matrix proteins such as Aspein, Nacrein, Calmodulin and Nacrein was believed to mediate both the regulation of the uptake and transport of calcium in the calcitic prismatic layer of P. fucata [29]. Nacrein has been used as a marker to evaluate cellular metabolism during biomineralization. Its production increases with increasing calcium concentration and means that a higher biomineralization rate is occurring [31]. She-7-F10 shared high levels of identity with shell matrix structural proteins and was thought to be involved in the process of shell biomineralization [32]. Hsp70 comprise a group of highly conserved proteins that have general protective function in all living organisms [33]. It has been reported that P. fucata has the ability to express Hsp70 in response to stressful stimuli [34]. This study investigates the synergistic effects of seawater warming and declined pH on gene expression patterns of calmodulin, nacrein, aspein, she-7-F10 and hsp70 in P. fucata to provide the first hand molecular evidence to evaluate the mechanisms for marine mollusc in response to elevated CO2 seawater and temperature.

Results
Total alkalinity (TA) and salinity showed no clear change between treatments throughout the experiment. However, pH, CO2, saturation states for aragonite and calcite differed clearly between different pH levels (pH 8.10 vs. 7.70) throughout the experiment (Table 1). The natural temperature in Daya Bay ranged from 26.5 to 27.5 during the experiment. There showed no tank effects among different tanks in each treatment (p>0.1).

The relative expression level of aspein fluctuated gradually during hours 0-96 in condition 8.10 T and showed no significant difference among different time point (p>0.1). In conditions 8.10 T+3, 7.70 T and 7.70 T+3, the levels decreased significantly to minimum values on hour 96 (p<0.1) (Fig. 1, Table 2). The

8.10 T	T	Sal	pH	TA	PCO2	DIC	ara	cal
0 h	27±0.1	33.36±0.31	8.13±0.02	2187.04±36.04	421.51±22.42	1912.22±20.17	3.14±0.20	4.75±0.21
48 h	27±0.2	33.71±0.12	8.14±0.01	2189.36±41.29	422.16±34.81	1914.75±18.37	3.15±0.09	4.77±0.16
96 h	27±0.1	32.88±0.24	8.14±0.02	2183.68±37.92	421.24±29.17	1915.63±30.13	3.15±0.13	4.76±0.19
7.70 T								
0 h	27±0.2	32.87±0.45	7.70±0.01	2184.11±43.17	1424.40±37.31	2119.23±24.25	1.27±0.07	1.92±0.12
48 h	27±0.3	33.12±0.17	7.69±0.01	2185.73±29.88	1425.48±25.72	2116.44±23.56	1.27±0.09	1.92±0.17
96 h	27±0.1	33.26±0.15	7.70±0.03	2187.39±37.27	1462.75±34.19	2120.57±28.93	1.24±0.12	1.88±0.11
8.10 T+3								
0 h	30±0.1	33.28±0.22	8.14±0.02	2182.76±36.55	427.93±31.55	1868.31±19.08	3.43±0.14	5.16±0.11
48 h	30±0.2	33.31±0.40	8.14±0.01	2180.93±23.61	439.89±27.18	1864.52±26.17	3.37±0.13	5.04±0.13
96 h	30±0.1	32.68±0.51	8.13±0.03	2187.26±29.43	428.86±23.79	1870.24±23.72	3.44±0.15	5.15±0.22
7.70 T+3								
0 h	30±0.1	33.30±0.39	7.70±0.01	2189.56±25.16	1459.84±32.63	2106.77±34.15	1.39±0.09	2.09±0.14
48 h	30±0.2	33.21±0.46	7.71±0.01	2184.11±33.47	1419.84±26.48	2107.62±27.82	1.42±0.12	2.12±0.13
96 h	30±0.2	32.46±0.37	7.68±0.02	2187.68±21.59	1422.21±33.69	2107.80±21.37	1.42±0.17	2.13±0.11

T: temperature (°C), Sal: salinity, TA: total alkalinity (μmol/kg), PCO2: CO2 partial pressure (μatm), DIC: dissolved inorganic carbon (μmol/kg), ara: aragonite saturation state, cal: calcite saturation state.

Table 1. Parameters of the carbonate system in each treatment.

doi:10.1371/journal.pone.0033679.t001
The expression level of nacrein at hours 24, 48 and 96 showed significantly different from the level of time 0 in all the four treatments (p<0.1) (Table 2). ANOVA demonstrated a significant effect of pH and pH×temperature interaction on the expression of the nacrein gene on hour 96 (p<0.1) (Fig. 3). Significant difference was observed between condition 8.10 T, 8.10 T+3 and 7.70 T+3, 7.70 T (Table 3). The variations in the expression level of she-7-F10 in the four treatments during the experiment were similar to those of nacrein (p<0.1) (Table 2). The expression level of she-7-F10 was affected significantly by pH at hours 48 and 96 (p<0.1) (Fig. 4). The levels of expression were significantly different between conditions 8.10 T, 8.10 T+3 and conditions 7.70 T, 7.70 T+3 (Table 3).

The expression level of hsp70 increased significantly to a higher level on hours 6 and 24 in condition 8.10 T, 8.10 T+3, 7.70 T and 7.70 T+3, and then decreased markedly (p<0.1) (Table 2). The expression of hsp70 was significantly affected by temperature, pH, temperature×pH interaction on hour 6, and by temperature×pH interaction on hour 24 (p<0.1) (Fig. 5, Table 3).

Discussion

In the present study, environmental parameters that could affect the comparison between treatments were monitored. The gentle bubbling protocol maintained the seawater carbonate buffer system in a relatively stable condition in each treatment throughout the experiment. The seawater was saturated with respect to aragonite and calcite in each treatment. This demonstrates that the high seawater renewal rate used, successfully prevented any “aquarium” effect. We are, therefore, confident that P. fucata responses were only caused by pH and temperature treatment.

Table 2. Results of statistical tests performed to test the differences of aspein, calmodulin, nacrein, she-7-F10 and hsp70 in Pinctada fucata among different time point.

Gene	Group	0 h	6 h	24 h	48 h	96 h
aspein	8.10 T	96.04±8.14a	97.1±10.08a	100.65±10.32a	97.93±7.34a	100.73±5.47a
	8.10 T+3	96.04±8.14a	104.40±8.52a	91.90±7.50ab	90.51±3.65ab	86.73±2.42b
	7.70 T	96.04±8.14a	101.30±12.02a	94.90±6.06a	79.55±4.36b	70.48±2.58c
	7.70 T+3	96.04±8.14a	91.65±6.59b	86.40±9.96b	73.71±3.09f	60.71±3.78e
calmodulin	8.10 T	0.12±0.01a	0.13±0.01a	0.12±0.01a	0.12±0.02a	0.13±0.01a
	8.10 T+3	0.12±0.01a	0.11±0.01a	0.11±0.01a	0.11±0.01a	0.12±0.01a
	7.70 T	0.12±0.01a	0.11±0.01a	0.09±0.01b	0.07±0.01c	0.06±0.01df
	7.70 T+3	0.12±0.01a	0.13±0.01a	0.09±0.01b	0.07±0.01c	0.04±0.01ef
nacrein	8.10 T	6.02±0.50a	5.78±0.22a	6.26±0.72a	5.88±0.49b	5.85±0.37b
	8.10 T+3	6.02±0.50a	6.23±0.28a	5.64±0.12a	4.88±0.26d	4.66±0.30e
	7.70 T	6.02±0.50a	5.94±0.42a	5.20±0.31b	4.19±0.38f	4.28±0.22g
	7.70 T+3	6.02±0.50a	5.55±0.52a	4.84±0.37e	3.89±0.37d	1.96±0.11i
she-7-F10	8.10 T	2.61±0.24a	2.69±0.20a	2.29±0.27b	2.31±0.12b	2.46±0.07f
	8.10 T+3	2.61±0.24a	2.53±0.21a	2.47±0.10c	2.00±0.16f	1.98±0.11b
	7.70 T	2.61±0.24a	2.21±0.15a	2.10±0.24b	1.67±0.12c	0.79±0.05f
	7.70 T+3	2.61±0.24a	2.02±0.17a	1.81±0.18d	1.81±0.07f	0.21±0.01ef
hsp70	8.10 T	1.30±0.16a	2.25±0.14a	2.26±0.17a	1.79±0.08c	1.90±0.11d
	8.10 T+3	1.30±0.16a	2.99±0.31a	2.89±0.26b	2.20±0.13c	1.42±0.10d
	7.70 T	1.30±0.16a	3.80±0.33b	3.34±0.27c	2.37±0.23d	1.22±0.09f
	7.70 T+3	1.30±0.16a	4.30±0.37c	4.20±0.18d	2.77±0.19d	1.03±0.08e

Means not sharing the same superscript in each line are significantly different (p<0.1).

doi:10.1371/journal.pone.0033679.t002

Figure 1. Real-time PCR analysis of expression of aspein in response to elevated temperature and declined pH.

doi:10.1371/journal.pone.0033679.g001
This study examined expression changes in genes of *aspein*, *calmodulin*, *nacrein*, *she-7-F10* and *hsp70* in *Pinctada fucata* associated with calcification under low pH and high temperature conditions. Shell and pearl formation of *P. fucata* needs a large amount of calcium and biomineralization implies the transport and control of calcium ions [35]. The present study showed that pH was the driving factor influencing levels of mRNA transcript for *aspein*, *calmodulin* and *nacrein*, whereas temperature aggravated the sensitivity of *P. fucata* to pH. The expression level of *she-7-F10* was affected significantly by pH only, suggesting that different genes respond differently to elevated temperature and declined pH. The down regulation of *aspein*, *calmodulin*, *nacrein* and *she-7-F10* was in accordance with Todgham and Hofmann [36], who found down regulation of calcification genes when sea urchin larvae of early prism stage were exposed to pCO2 values of 543 atm. In contrast to these results, CO2 induced seawater acidification down to pH of 7.5 and 7.25 caused a compensatory increase in transcript

Table 3. Results of statistical tests performed to test the effects of pH and temperature on gene expression patterns of *aspein*, *calmodulin*, *nacrein*, *she-7-F10* and *hsp70* in *Pinctada fucata*.

Source of variation	6 h	24 h	48 h	96 h								
dF	F	P	F	P	F	P	F	P	F	P	F	P
aspein												
pH	1	1.123	0.320	5.524	0.336	7.017	0.029*	a a b b	1.047	0.047*	a a b b	
Tem	1	2.072	0.188	2.842	0.181	4.822	0.112	3.151	0.114			
Tem*pH	1	2.130	0.183	7.820	0.111	6.779	0.051*	a a b b	3.208	0.053*	a a b b	
calmodulin												
pH	1	5.230	0.148	0.953	0.358	3.027	0.013*	a a b b	0.011	0.001*	a a b b	
Tem	1	5.518	0.151	58.026	0.120	10.046	0.120	25.980	0.918			
Tem*pH	1	0.419	0.536	10.460	0.260	3.648	0.093*	a a b b	1.467	0.062*	a a b b	
nacrein												
pH	1	2.904	0.127	0.274	0.615	2.321	0.166	0.056	0.024*	a a b b		
Tem	1	0.577	0.469	46.744	0.973	2.691	0.140	22.591	0.819			
Tem*pH	1	0.978	0.352	2.330	0.209	0.234	0.641	1.864	0.052*	a a b b		
she-7-F10												
pH	1	0.022	0.885	0.063	0.808	11.986	0.079*	a a b b	3.730	0.010*	a a b b	
Tem	1	0.179	0.684	0.533	0.486	1.300	0.287	11.293	0.134			
Tem*pH	1	0.254	0.628	0.488	0.505	0.758	0.409	0.268	0.618			
hsp70												
pH	1	3.765	0.088*	a a b b	10.662	0.910	1.570	0.246	1.887	0.207		
Tem	1	1.351	0.058*	a a b b	2.927	0.216	3.450	0.100	8.740	0.179		
Tem*pH	1	0.881	0.029*	a a b b	3.227	0.011*	a a b b	7.030	0.375	1.975	0.198	

Two-way repeated measures analysis of variance (ANOVA) significant at the p<0.1 level is indicated by asterisks. Results of multiple (Dunn-Sidak test) comparisons are given. Means not sharing the same superscript are significantly different (p<0.1). (1) 8.10 T, (2) 8.10 T+3, (3) 7.70 T, (4) 7.70 T+3.

doi:10.1371/journal.pone.0033679.t003

Figure 2. Real-time PCR analysis of expression of *calmodulin* in response to elevated temperature and declined pH.
doi:10.1371/journal.pone.0033679.g002

Figure 3. Real-time PCR analysis of expression of *nacrein* in response to elevated temperature and declined pH.
doi:10.1371/journal.pone.0033679.g003
levels of a range of calcification genes (msp130, SM30) in 3 day old Paracentrotus lividus larvae [37]. Zippay and Hofmann [38] showed that decreased pH did not affect the expression pattern of two shell formation genes at any of the abalone larval stages. The differences in results suggested that given no differences in methodology that responses may be due to adaptive capacity of a species to changing climatic conditions which differed between populations with a large geographic distribution.

The decrease in expression level of aspein, calmodulin, nacrein and she-7-F10 may be linked to the decrease in calcification rate. The high sensitivity of these genes to declined pH was consistent with the general consensus on the negative relationship between pCO2 and calcification of marine bivalves [39]. If the elevated temperature and declined pH are maintained for longer, this decrease could trigger a cascading effect on shell growth and pearl formation of P. fucata. Considering the down regulation of calcification related genes observed in this study, it is possible that disturbances in the balance between the coordinated production of mineral and organic matrix could affect the composition and mechanical properties of the shell and pearl. This will further increase the ratio of low-quality pearls. When investigating the microstructure of larval spicules, Clark et al [40] noted eroded surface structures in two out of four sea urchin species at CO2 acidified seawater of pH 7.70.

Living systems have evolved a variety of strategies to respond to external or internal environmental challenges. While these responses are often behavioral or metabolic, a powerful mechanism widely employed to maintain cellular homeostasis under stress is the adjustment of gene expression [36]. Bivalves will be affected by ocean warming and acidification predicted under climate change scenarios, and only those endowed with sufficient defense mechanisms will be able to survive. Expression of hsp70 is frequently used as a component of physiological mechanisms through which bivalves cope with environmental challenges [41]. The present study showed that in the warming and acidified seawater conditions, activation of the heat shock response occurs in P. fucata. It was worth noting that combined exposure to elevated temperature and declined pH resulted in up regulation of hsp70, suggesting that elevated pCO2 aggravated the sensitivity of P. fucata to temperature. The interactive effects of temperature and pCO2 had already been reported in other studies. Anthony et al. reported higher reductions in algal calcification rate at high temperature (28–29°C; −190%) than at low temperature (25–26°C; −130%) under elevated pCO2 (1000–1400 ppm) relative to control conditions [42]. Reynaud et al. [15] reported that elevated pCO2 had no effects on coral calcification rates at 25°C, but caused a significant calcification decrease at 28°C. The up regulation of hsp70 seemed to be consistent with the suggestion of O’Donnell et al. [43] that the gradual accumulation of hsp70 might acted as a buffer against subsequent heat stress and support increased stress protection in gradually warming and acidified environments. The heat shock response was an energy consuming process. A shift to anaerobiosis as a result of thermally induced hypoxia in marine bivalves will caused metabolic depression and consequently a reduction in ATP turnover. If this was the case, there might be an effect on the expression of hsp70. Liu et al. [44] found that the clearance, respiration, and excretion rates of P. fucata decreased under low pH conditions. Thus, decrease in the expression of hsp70 on hours 48 and 96 in the present study, may be related to decrease in the energy budget to meet the energy demand for hsp70 synthesis. However, the response of hsp70 to low pH and high temperature over long-term scales is still unknown and need further studies.

This study examined the short-term acute responses of P. fucata to seawater acidification. This led to some limitations for the results of the experiment. In the context of the results of this study, it is likely that this physiological stress was a result of the acute shock of transfer to treatment pH and temperature levels, and not evidence of physiological stress caused by long-term seawater acidification. These results provide fundamental information for the response of marine organism to CCS. However, further studies are needed to evaluate responses to elevated pCO2 and seawater temperature of marine organisms over longer time-scales.

In summary, our study showed that acidified and warming seawater resulted in a significant down regulation of calcification related genes, and the interaction between declined pH and elevated temperature caused up regulation of hsp70 in P. fucata. The potential economic implications of this study for aquaculture industries include reduced growth rate of the pearl oyster and reduction in yield of the pearl. Our approach provides molecular elements on the response of P. fucata to CCS and projected climate change.

Materials and Methods

Seawater acidification and experimental design

One declined pH level (7.70), one ambient pH level (current level of 8.10), one elevated temperature (+3°C) and one ambient temperature (27°C) were selected for the study, based on projections by IPCC [2,3] for the year 2100. Three replicates
were set up for each temperature x pH treatment. Seawater was collected from Daya Bay Station, Chinese Academy of Sciences, on the southern coast of China (23°31'–24°50’N and 113°29’–114°49’E, average natural seawater pH 8.10±0.05, salinity 30±0.5%). Water temperatures in elevated temperature treatments were maintained to 30±0.5°C using external chillers or unmanipulated for the ambient control. Temperatures were measured three times daily with a mercury thermometer. The pH in the acid seawater group (pH 7.70) was regulated by bubbling CO2 gas into the seawater until the desired pH was reached. The pH of each level in the experimental chamber was checked three times daily before and after water exchange to ensure stability throughout the experiment using a pH meter (PHS-3E Rex Instrument) calibrated with NBS standard buffers. With this high frequency of pH checks, we were able to sustain the targeted pH values with only a small range of variation over the course of the study (8.10±0.05 and 7.70±0.05). TA in each experimental tank was determined by potentiometric titration [45,46] at hours 0, 48 and 96 before water exchange. The saturation states for aragonite, calcite and βCO2 values were determined from TA, pH and salinity data using CO2SYS [47] with the constants supplied by Mehrbach et al. [48] refitted by Dickson and Millero [49] and the KSO4 dissociation constant from Dickson [50].

Animal collection and acclimation

Animals of similar sizes (shell height 48.92±1.41 mm) for the experiment were collected from the major pearl oyster growing area in Daya Bay Station (23°31’–24°50’N and 113°29’–114°49’E) (temperature 27±0.5°C, pH 8.10±0.05). This sampling procedure was done to ensure that the effects of ocean warming and acidification on gene expression patterns were reflective of the response of pearl oyster in their main area of distribution. The animals were selected and cleaned off epibionts, then acclimated in one 500 L aquarium at ambient seawater temperature (27±0.5°C) and pH (8.10±0.05) for one week prior to experimentation. This temperature was optimal for growth of *P. fucata* on the southern coast of China. They were fed daily with *Platymonas subcordiformis* at the satiation feed rate. Excess food and feces were removed by siphoning from the bottom of the aquarium, and fresh filtered seawater (salinity 30±0.5%) was added into the aquarium every day.

After the acclimation period, animals were randomly assigned in twelve 75-L aquariums (about 50 individual per aquarium) and maintained in four conditions: (1) ambient pH (8.10) and ambient temperature (27°C) (8.10 T, control condition), (2) ambient pH and elevated temperature (8.10 T+3), (3) declined pH (7.70) and ambient temperature (7.70 T), and (4) declined pH and elevated temperature (7.70 T+3). Each condition has three replicates. The header tanks were continuously bubbled with air to aid mixing and to maintain dissolved oxygen (DO)>90%. The experiment lasted for four days. The animals were fed daily with *Platymonas subcordiformis*. To ensure that similar conditions prevailed in each aquarium, except for the carbonate chemistry, water changes were performed daily in the aquariums. Seawater pH (7.70) of the low pH treatment was manipulated by bubbling CO2 gas into 100 L header tank. Water from the header tank was gravity-fed to replicate aquariums of pH 7.70. There was an individual header tank for each experimental aquarium. Water temperature was warmed to the required temperature (+3°C), or unmanipulated for the ambient control. To ensure no substantial change in pH and temperature occurred within experimental aquariums, pH and temperature in each aquarium were measured immediately after water changes. The pearl oysters from all groups were sampled on hours 0, 6, 24, 48 and 96. On each sampling time point, 5 new individuals were randomly selected from each aquarium.

Molecular analyses

Total RNA was extracted from the mantle tissue of *P. fucata* using the Mollusc RNA Kit (Omega Bio-Tek, Inc, Georgia, America) according to the manufacturer’s instructions. The RNA quantity was analyzed on Thermo NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific Inc, Wilmington, America) and quality was checked by gel electrophoresis. Then, high-quality total RNA was reverse transcribed to cDNA using the PrimeScript™ reagent kit (TaKaRa) following the manufacturer’s instructions.

Quantitative real-time PCR reactions were carried out on Roche LightCycler480 thermal cycler (Roche Applied Science, Germany). The amplifications were performed in triplicate in a total volume of 10 µl containing 5 µl of 2x SYBR Premix Ex Taq™ (TaKaRa), 2 µl of diluted cDNA, 0.2 µl of each primer (10 µM) and 2.6 µl of double-distilled water. The cycle conditions were as follows: 1 cycle of 95°C for 10 s, 45 cycles of 95°C for 5 s, 60°C for 25 s, and 80°C for 1 s, 1 cycle of 95°C for 1 s, 65°C for 15 s, and 60°C for 1 s, 1 cycle of 40°C for 1 s. The specificity of the PCR amplification was verified from the melting curve. The housekeeping gene gene *gapdh* was selected as references for the calculation of relative expression levels of the genes. Primers sequences of calmodulin, nacrein, aspein, she-7-F10, hsp70 and gapdh in *P. fucata* were outlined in Table 4.

Statistical analysis

To avoid pseudoreplication, all variables measured were averaged for 5 pearl oysters in each aquarium, and these aquarium means were used in all statistical analyses. All data were tested for homoscedasticity and normality and were log-transformed if necessary. The dependent variables (expression levels of the genes) at each time point were analyzed by two-way repeated measures ANOVA with temperature and pH as fixed factors. Dunn-Sidak tests followed ANOVA were used to assess differences among treatments and among different time point.

Table 4. Primers sequences of genes used in real-time PCR analysis.

Gene	Accession no.	Primer sequence (5'-3')
she-7-F10: F	EU177506	GAGGTCTCCGGTGAAGTAAGTG
she-7-F10: R	AAACCTGCCGAGTCCTCCTAAAT	
aspein: F	AB094512	TTCAATTGCCTCTTACCAG
aspein: R	GCATTCCGAAGACAAAGGGT	
calmodulin: F	YA341376	TGAACGGTGACGGACGTTA
calmodulin: R	GGTGACAAATGGGTTATACG	
nacrein: F	DB3523	TGTGCATCAACACCGGAGATG
nacrein: R	TGAAGACCCCTTCTTGACCC	
hsp70: F	EU822509	TTTGACCTGGAGAAGGAAC
hsp70: R	CTCACACCTTTGTTGACAA	
gapdh: F	AB205404	TCTCGCTATGTCCTATGTTG
gapdh: R	CGTTGATATCCTGCCGAGTG	

doi:10.1371/journal.pone.0033679.t004
SPSS 16.0 was used for analyses.

References

1. Caldeira K, Wickett ME (2005) Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J Geophys Res 110:C09S04.
2. IPCC (Intergovernmental Panel on Climate Change) (2007) The 4th Assessment Report of the IPCC. Cambridge: UK; Cambridge University Press.
3. Solomon S, Qin D, Manning M (2007) Climate change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.
4. Caldeira K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature 425: 363.
5. Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, et al. (2005) Anthropogenic CO₂ emissions have caused multi-century acidification of the surface ocean. Geophys Res Lett 32: L13608.
6. Doney SC, Fabry VJ, Feely RA (2009) Ocean acidification: the other CO₂ problem. Annu Rev Mar Sci 1: 169–192.
7. Dupont S, Thornley M (2009) Impact of CO₂-driven ocean acidification on invertebrates early life history – What we know, what we need to know and what we can do. Biogeosciences Discuss 6: 3019–3031.
8. Marubini F, Ferrier-Pages C, Farla P, Almann D (2008) Coral calcification responds to seawater acidification: a working hypothesis towards a physiological mechanism. Coral Reefs 27: 491–499.
9. Wang N, Huang J, Fang Z, Zhang GY, et al. (2008) Culture of outer epithelial cells from mantle tissue to study shell matrix protein secretion for biomineralization. Cell Tissue Res 333: 493–501.
10. Comeau S, Gorsky G, Jeffree R, Teyssie JL, Gattuso JP (2009) Impact of ocean acidification on a key Arctic pelagic mollusc (Lingulina helicina). Biogeosciences 6: 1877–1882.
11. Gazeau F, Quiblier C, Jansen JM, Gattuso J-P, Middelburg JJ, et al. (2007) Impact of elevated CO₂ on shellfish calcification. Geophys Res Lett 34: L07603.
12. Findlay HS, Wood HL, Kendall MA, Spicer JI, Twitchett RJ, et al. (2009) Calcification, a physiological process to be considered in the context of the whole organism. Biogeosciences Discuss 6: 2267–2284.
13. Goutowska MA, Melzer F, Püterme Ho, Meier S (2010) Cucumber calcification increases during exposure to elevated seawater pCO₂ in the cephalopod Squid sepia officinalis. Mar Biol 157: 1633–1663.
14. Gooding RA, Harley CDG, Tang E (2009) Elevated water temperature and carbon dioxide concentration increase the growth of a keystone echinoderm. Proc Natl Acad Sci 106: 9316–9321.
15. Reynaud S, Leclercq N, Romain-Liébou S, Ferrier-Pages C, Jaubert J, et al. (2003) Interacting effects of CO₂ partial pressure and temperature on photosynthesis and calcification in a scleractinian coral. Global Change Biol 9: 1660–1668.
16. Metzger R, Sartoris FJ, Langenbuch M, Portner HO (2007) Influence of elevated CO₂ concentrations on thermal tolerance of the edible crab Cancer pagurus. J Thermal Biol 32: 144–151.
17. Byrne M, Ho M, Wong E, Soars NA, Selvakumaraswamy P, et al. (2010) Unshelled abalone and corrupted urchins: development of marine calcifiers in a changing ocean. Proc R Soc B, pp 1–8.
18. Martin SE, Gattuso J-P (2009) Response of Mediterranean coralline algae to increased sea water concentrations of CO₂ on growth of the bivalve Mytilus edulis L. Chemosphere 62: 681–687.
19. Clark D, Lamare M, Barker M (2009) Response of a sea urchin pleurodeid Echinometra mathaei to CO₂-driven seawater acidification. J Exp Biol 212: 2579–2594.
20. Martin S, Richier S, Pedrotti M-L, Dupont S, Gaston J, et al. (2011) Early development and molecular plasticity in the Mediterranean sea urchin Paracentrotus lividus exposed to CO₂ driven ocean acidification. J Exp Biol 214: 1357–1368.
21. Zippay M, Hofmann GE (2010) Effect of pH on gene expression and thermal tolerance of early life history stages of red abalone (Haliotis rufescens). J Shellfish Res 29: 429–439.
22. Benj AJ, Berkeng B, Pettersson O, Schanning MT, Oxnard S (2006) Effects of increased sea water concentrations of CO₂ on growth of the bivalve Mytilus edulis L. Chemosphere 62: 681–687.
23. Turley C, Blackford JC, Widdicombe S, Lowe D, Nightingale PD, et al. (2006) Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc Natl Acad Sci 103: 17472–17476.
24. O’Donnell MJ, Hammond LM, Hofmann GE (2009) Predicted impact of ocean acidification on a marine invertebrate: elevated CO₂ alters response to thermal stress in sea urchin larvae. Mar Biol 156: 439–446.
25. Wu LG, Liu JS, He MX (2011) Seawater acidification has species-specific effects on the metabolic rate of three bivalves from the southern coast of China. Chin J Oceanol Limnol In press.
26. Mehrbach C, Culberson CH, Hawley JE, Perryman RN (1973) Measurement of the dissociation of carbonic-acid in seawater media. Deep Sea Res 34: 1001–1007.
27. Dickson AG, Afghan JD, Anderson GC (2003) Reference materials for oceanic CO₂ system calculations. ORNL/CDIAC-105a. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, TN.
28. Mehrlach C, Calleho SR, Howley JE, Pytkowicz RN (1975) Measurement of apparent dissociation constant for carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18: 897–907.
29. Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic-acid in seawater media. Deep Sea Res 34: 1733–1743.
30. Dickson AG (1990) Thermodynamics of the dissociation of boric-acid in potassium-chloride solutions form 273.15K to 318.15K. K J Chem Thermodynamics 22: 113–127.