Development of Crispy Sweet Potato Chips Utilizing Vacuum Fryer

Arthur G. Ibañez, Denis V. Policar

Abstract: Objectives: The study aimed to (1) develop a shelf-stable and acceptable vacuum fried sweet potato chips, (2) establish process schedule to conduct material balance, (3) evaluate the sensory characteristics of the chips and (4) determine its nutrient composition. Methodology: Sweet potato (Ipomoea batatas) was utilized and vacuum fried. The production of the crispy sweet potato chips comprised of selecting quality and newly harvested sweet potato, washing the selected sweet potato with 50ppm chlorinated water peeling and slicing the sweet potato with 2mm thickness cooking the sliced sweet potato for 10minutes, freezing the cooked sweet potato overnight, vacuum frying the frozen sweet potato, cooling the vacuum fried sweet potato to room temperature and weighing and packing on an 89µm thickness laminated stand – up pouch. Then, material balance was evaluated accounting to wastage and moisture loss. Finally, the quality of the product was tested through sensory evaluation. There were three mass treatments used: Treatment A with 1.0kg; Treatment B with 3.0kg; and, Treatment C with 50kg. Each treatment had three (3) replicates and were fried at 100°C. Findings: Vacuum fried sweet potatoes for The three treatments recorded average bubble end – points of 42.33 (A), 47.67(B), and 52.67 (C) minutes. This shows that the weight to be processed per batch is directly proportional with the bubble end-point as temperature and pressure were held constant. Applications: Sweet Potatoes can be developed as crispy chips utilizing vacuum fryer.

Keywords: sweet potato, chips, vacuum fryer

I. INTRODUCTION

Vacuum frying is a promising technology for the production of snacks such as fruit and vegetable crisps that achieves the desired quality and responds to the new health trends. This technique of frying food at a low temperature and pressure makes the nutritional quality of the food maintained and the quality of the used oil not quickly declined to become saturated oils which are harmful for human health. Significantly, this technique produces chips that have physical, chemical, and sensorial properties generally better than those produced by conventional deep-fat frying methods. Presently, vacuum frying is already being employed commercially by neighboring countries of the Philippines for the manufacture of non-traditional fried foods and snacks. Vacuum fried fruits sold commercially include apple, pears, pineapple, jackfruit, mango, durian, while fried vegetables include string beans, carrots, taro, sweet potato, okra, and squash.

II. MATERIALS AND METHOD

Raw material specifications are as follows:

Commodity	Parameters (Commodity, Variety, Color, Size, Maturity/ Ripeness)
Sweet potato	Orange-flesh sweet potato varieties orange 4-6 cm, dia. 10-15 cm long 110-130 days harvest-fit

The process flow diagram for the development of crispy sweet potato chips is presented in Figure 1.

![Figure 1: Process Flow of Vacuum Fried Sweet Potato Chips Development](image)

Sensory Evaluation

The sensory characteristics of the vacuum fried sweet potato were evaluated based on color, appearance, texture, flavor, and aroma as well as on general acceptability using the 9-point Hedonic Scale.

The following criteria were used:

a) **Color** was evaluated from **Light** (1 as lowest) to **Bright** (9 as highest);
b) **Appearance** was evaluated from *Unappetizing* (1 as lowest) to *Appetizing* (9 as highest);
c) **Texture** was evaluated from *Soft* (1 as lowest) to *Crispy* (9 as highest);
d) **Flavor** was evaluated from *Bland* (1 as lowest) to *Strong* (9 as highest);
e) **Aroma** was evaluated from *Weak* (1 as lowest) to *Strong* (9 as highest);
f) **General acceptability** was evaluated from *Disliked Extremely* (1 as lowest) to *Liked Extremely* (9 as highest).

III. DISCUSSION OF RESULT

Bubble end-points for each treatment were determined during the vacuum frying process. Material balances were conducted to account for wastage and for food material moisture reduction.

Final product’s sensory characteristics, through quality scoring and consumer acceptance, and nutritional content were also determined.

3.1 Bubble End-Points Determination

In the vacuum frying process, temperature was set to 100°C and vessel pressure was held constant at 76 cmHg vacuum. Bubble end-points, as an indicator of the end of the frying process, for the three treatments are shown in **Table 1**. The results show that the span of time to reach bubble end-point is directly proportional to the amount of food material being fried. Treatment 1 achieved bubble end-point at an average of 42.33 minutes, Treatment 2 at 47.67 minutes, and Treatment 3 at 52.67 minutes.

Replicates	Mass (g)	Bubble End-Point (min)	Ave. Bubble End-Point (min)
A1	1,000	44	42
A2		42	
A3		41	
B1	3,000	47	47.67
B2		48	
B3		48	
C1	5,000	51	52.67
C2		54	
C3		53	

Material Balance

The overall material balance of the process shows that a 30 kg of fresh sweet potatoes yielded to a 94% recovery (28.20 kg) of peeled and sliced food material and 6% (1.80 kg) wastage.

Out of the 28.20 kg, 27.0 kg was pre-treated and vacuum fried. Corresponding to moisture loss of the food material for the three treatments, an average of 30% of the initial mass was recovered while 70% was lost during the operation.

Summary Evaluation

For sensory evaluation, the mean score of the panelists’ valuation for the three treatments for color, appearance, texture, flavor, and aroma are 8, 8, 8, 8, and 7, respectively.

The corresponding qualitative scale for a mean average of 8 of the quality attributes are as follows: (1) color is close to bright orange indicating product’s retention of its natural color during the process; (2) appearance is close to appetizing indicating the product’s wholesome aesthetic presentation; (3) texture corresponds that the product is nearly crispy; and (4) flavor is close to having strong appealing taste.

Only the aroma got a mean average of 7, scale in between strong and average, corresponding to the product’s noticeable pleasant smell.

For the consumers’ acceptability evaluation, the three (3) different treatments got an average of 8 which indicates “liked very much”.

Nutritional Content of Sweet Potato

Result of nutritional content analysis of the product is as follows: 2.10% moisture, 2.67% coarse protein, 36.71% total fat, and 57.76% carbohydrates.

Production Cost of the Developed Food Product

The production cost of vacuum fried sweet potato, for every 50 g, without packaging and label, is 18.719 Php.

IV. CONCLUSIONS AND RECOMMENDATIONS

A. Conclusions

Peeled and sliced sweet potatoes were vacuum fried according to the following weight: 1.0 kg (Treatment A), 3.0 kg (Treatment B), and 5.0 kg (Treatment C) in triplicates with recorded average bubble end-points of 42.33, 47.67, and 52.67 minutes, respectively. This shows that the weight to be processed per batch is directly proportional with the bubble end-point as temperature and pressure were held constant.

During the process, an average of 30% of the initial mass was recovered while 70% was lost during the operation which is associated with moisture loss of the food material.

The output of this study was shelf-stable and acceptable vacuum fried sweet potato chips. The developed food product was evaluated in terms of color (8), appearance (8), texture (8), flavor (8), and aroma (7) as well as its general acceptability (8). The corresponding scores showed that the developed product has high quality attributes and is “highly acceptable”.

The product nutritional content are 2.10% moisture, 2.67% crude protein, and 36.71% total fat and 57.75% carbohydrates.

B. Recommendations

The herein researchers recommend: (1) the use of other variety of sweet potato locally abundant in the region, (2) the use of coconut oil instead of palm oil, (3) there is a need to test the product in different temperatures and pressures, and (4) the promotion of the product for mass production.

REFERENCES

1. Department of Agricultural Statistics, Department of Agriculture (2013). Selected Statistics on Agriculture 2013.
2. Diamante, L.M., Shi, S., Helfman, A., Busch, J. (2015). Vacuum frying foods: products, process and optimization. International Food Research Journal 22(1): 15-22 (2015).
3. Lehman, S. (2018). How Nitrogen Flushing Protects and Preserves Foods. Updated: April 18, 2018.
4. New Mexico Foods (2001). How Nitrogen Flushing Works. http://newmexicofoods.net/about.html
5. Paik, J.S., Shint, J.I., Kim, J.L., Chooi, P.K. (2006). Effect of nitrogen flushing on shelf-life of packaged potato fries. Packaging Technology and Science 7(2): 81-85.
6. Pandey, A.K., Chauhan O.P., Ravi, N., Roopa, N., Kumar, S., Sharma, R.K. (2017). Vacuum Frying of Fruits and Vegetables for Development of Healthy Snacks. Defense Food Research Laboratory, Siddarthanagar, Mysore, India 5700.
Development of Crispy Sweet Potato Chips Utilizing Vacuum Fryer

Conferred by the Structural Engineering Division of PICE
PICE National, Manila, Philippines
June 20, 2008
Specialist in Structural Engineering
Member, Institution of Specialist Structural Engineers of the
Philippines (ISSEP) No. 063
Dec. 5, 2015
Structural Engineer
Conferred by the Association of Structural Engineers of the
Philippines (ASEP)
2006
Royal Engineer
Royal Institute of Civil Engineers
Singapore

OTHER PROFESSIONAL QUALIFICATIONS
ASEP Regional Coordinating Committee Chairman for Region O2
FY 2018 – 2019
July 30, 2018
UNDP Senior Quality Assurance Supervisor for LGU Projects
(RO2 and Abra)
August 2018 onward
Regional Quality Assessment Team (RQAT) Member for the
Engineering Education Cluster
Commission on Higher Education Regional Office O2
SY 2011-2012 & SY 2012-2013
Local Economic Development Council Member
City Government of Tuguegarao
2011
Chapter President
Philippine Institute of Civil Engineers Cagayan Chapter
2010-2014
Trainor/Speaker
National Building Code Speakers’ Bureau, 2007-2008
PICE Manila
Regional Coordinator (Team Leader), 2008-2010
Disaster Quick Response Program (DQRP)
PICE Region II
Designee/Consultant and Construction Engineer/Manager
Various Infrastructure Projects
Technical Evaluator DOST2 Regional Technical Evaluation
Committee (RTEC) for Metals and Engineering
2017-2018
Tuguegarao City, Cagayan
“Upgrading of Metal and Stainless Fabrication Process”
“Upgrading the Calibration Services of E.C. Calibration Center”
“Upgrading of CJ’S Motor Parts and Accessories”
“Upgrading the Metal Fabrication Process”
“Upgrading the Services of J.H. Auto Parts Using Advance
Automotive Technology in Calibration, Wheel Aligning and Tire
Changing”
“Expansion of Metal Production Services of Agri-Machinery
Fabrication”
“Upgrading of the Services of IsuyoshiMotorworks thru the
Integration of Advance Technology
“Upgrading the Fabrication of Services of KCH Welding Shop”
“Flooring System Upgrading thru the Application of Polischrete
Technology”
“Upgrading the Fabrication process for Machineries”
“Upgrading the Metal Fabrication Process of L. Welding Shop”
“Expansion of D’ Islands Gasoline Station (Petron) with
Calibrated Digital Fuel Dispenser”
“Upgrading the Calibration, Automotive and Fabrication Services
of Addmoli Service Center”
“Upgrading of Metal Fabrication Process of IBP welding Shop
Improving the Production Process for Iron and Aluminum
Works”
“Upgrading of Metalwork Production Process”
“Upgrading the Metal Fabrication Process of JM Roofing”
“Upgrading the Metalworks Production Process of Jewilson Glass
and Aluminum
“Production Process Improvement of Cristofer Welding Shop”

MEMBERSHIPS IN
ORGANIZATIONS
- Disaster, Emergency, &
Accident Response Team
EDUCATION
2003 – PHD in
Educational
Management
University of La Salle
1999-2000 – Master in Public
Administration
Isabela Colleges
1992-1993 – Master in Science in Biology
De La Salle University
1984-1988 – Bachelor of Science in Biology
University of the Philippines Los Baños
ELIGIBILITY
Career Civil Service Professional
91.17% average
July 26, 1991
Tuguegarao City, Cagayan

dv_policar@yahoo.com

Retrieval Number K12690981119/2019CEJIESP
DOI: 10.35940/ijitee.K1269.0981119

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication