Supplementary Material for Fako et al. Gene signature predictive of hepatocellular carcinoma patient response to transarterial chemoembolization

Supplementary Methods

Clinical Specimens

Test Cohort
The training/validation cohort was derived from the Liver Cancer Institute (LCI) cohort in which a total of 247 HCC patients were prospectively recruited and underwent radical resection at the Liver Cancer Institute and Zhongshan Hospital (Fudan University) between 2002 and 2003. Microarray profiling of LCI cohort patients was performed previously. Briefly, gene expression using RNA extracted from flash-frozen tumor tissue were previously profiled using Affymetrix Human Genome U133 2.0 microarray platform in two formats, Affymetrix GeneChip HG-U133A 2.0 or 96 HT HG-U133A 2.0 microarray platform, each containing the same probesets, as described (NCBI GEO accession number GSE14520). Data were processed by combining the CEL files from the two Affymetrix series using the matchprobes package in the R programming environment. Thereafter, the RMA method in the R affy package was used to obtain probe set expression summaries. Both raw and processed data are available in the GSE14520 at NCBI GEO. This dataset contains 488 samples: 247 tumor samples and 239 non-tumor samples, with expression information of the 13,101 genes in which signal could be measured. Of the 488 tumor and non-tumor samples contained in this data set, all 247 patients with tumor tissue available were considered for this study. Archived RNA extracted from the flash-frozen tumor tissue was stored at -80°C.

All TACE patients from the LCI cohort received a combination of cisplatin, fluorouracil and mitomycin C. Of the remaining patients, 86 received no additional therapy (Resection Only) and 51 received other forms of therapy (Other Therapy), not including TACE, following surgical resection. Patients who were administered TACE as adjuvant therapy following resection were those who were deemed to have a high probability of relapse (e.g. tumor size > 10 cm; >1 tumor nodules; or with vascular invasion, etc.). In this context, TACE is used for both diagnosis and treatment, in which digital subtraction angiography is performed to identify any tumor staining in the liver following resection. If tumor stains are noted, the size, location and number of stains are evaluated and TACE treatment is performed with superselective catheterization. If no tumor stains are noted, 1/3 of the standard dose of chemotherapy and lipiodol are injected into the hepatic artery. Patients designated as Other Therapy did not receive TACE during their treatment. Following surgical resection, Other Therapy patients received portal vein chemotherapy, interferon alfa therapy, radiofrequency ablation, percutaneous ethanol injection, or traditional Chinese medicine, or a combination thereof, and were treated outside usual clinical guidelines.

Validation
In the Hong Kong test cohort, patients who received TACE were those who were judged to have a high risk of recurrence following resection by the operating surgeons. The presence of tumor vs. non-tumor tissue was verified by H&E staining, and tumor tissue was collected by scraping five 5μm tumor sections for each patient. Total RNA was isolated using the Roche High Pure FFPET RNA Isolation Kit (Indianapolis, IN) according to manufacturer’s instructions. All patients in the Hong Kong test cohort received cisplatin during the TACE procedure.
For the Shandong test cohort, patients who received TACE were those who were judged to have a high risk of recurrence following resection by the operating surgeons. The presence of tumor tissue was verified by H&E staining. Tumor tissue was collected by scraping five 10μm tumor sections for each patient. Total RNA was isolated using a MasterPure RNA Purification Kit (Epicenter, Madison, WI) according to manufacturer’s instructions. For patients in the Shandong cohort, doxorubicin and cisplatin-based regimens were predominantly used.

For the Mainz test cohort, patients were treated with palliative TACE in accordance with BCLC guidelines. Total RNA was isolated using a peqGOLD Total RNA Kit (VWR, Darmstadt, Germany) according to manufacturer’s instructions. For patients in the Mainz cohort, most patients received doxorubicin with drug-eluting beads (DEB TACE), while a minority of patients received TACE with Mitomycin C.

Signature Development and Patient Assignment

Bioinformatic analyses, including class comparison and survival risk prediction algorithms, were then used to identify genes that were predictive of overall survival in the group of 105 patients receiving TACE, but not in 86 other patients who received no additional therapy following resection. All bioinformatic analyses were performed using BRB-ArrayTools (Bethesda, MD). TACE Navigator was developed using a custom nCounter Gene Expression Codeset from NanoString (Seattle, Washington), consisting of 15-signature genes and six control genes. NanoString Digital Gene Expression Analysis was performed by the Center for Cancer Research Genomics Core in 93 TACE patients from the training/validation cohort. A prognostic index equation prediction module based on the expression of each signature gene was created using the survival risk prediction function in BRB-ArrayTools. Validation was performed using 10-fold cross validation. NanoString analysis was then performed in a double-blind manner in the test and verification cohorts. Gene expression, measured by NanoString counts, was Log2 transformed and then converted to Z-score within each cohort. Patients were assigned into predicted Responders or Non-Responder groups using the prognostic index equation. Data were subsequently decoded and clinical data for each patient was obtained.

Univariable and Multivariable Analysis

Univariable and multivariable analyses were performed with Cox proportional hazards regression analysis using STATA 14.0 (College Station, TX). The association of each clinical variable on survival was first evaluated with univariable analysis, followed by multivariable analysis, which included clinical variables that were significantly associated with survival in the univariable analysis. Age grouping was chosen by median age in the training/validation cohort. Alanine aminotransferase and alpha-fetoprotein groupings were chosen based on commonly used normal vs. abnormal clinical values. For TNM staging, stage I indicates a single tumor with no vascular invasion whereas stage II and greater indicates that multiple tumors or vascular invasion has taken place, thus groups II and III were grouped together. No multicollinearity of covariates was found, and the proportional hazards assumption was met in the final models.
Supplementary Figure 1. Affymetrix expression of TACE Navigator genes is correlated to NanoString expression.
Correlation between gene expression (Log2), as measured by Affymetrix chip and NanoString, is shown for (A) TACE Navigator signature genes and (B) accompanying housekeeping genes. P and R values shown in each panel were calculated by Pearson Correlation, with a P value of less than 0.05 indicating statistical significance.
Supplementary Figure 2. The TACE Navigator gene signature does not predict overall survival in patients who did not receive TACE

HCC patients from two independent cohorts who did not receive TACE: (A) TIGER-LC and (B) Korean Cohort were assigned into predicted Responder or Non-Responder groups using our developed prognostic index equation and prognostic threshold. In both cohorts, no significant difference in overall survival was seen in patients assigned to the two groups, as shown by Kaplan-Meier curve.
Supplementary Figure 3. Responders and Non-Responders exhibit differential expression of hypoxia-related genes

Heat map of 155 hypoxia target genes in TACE Responders and Non-Responders with columns representing individual patients and rows representing expression of each variable gene (A). Both patients and genes were clustered using Pearson Correlation distance and average linkage using the Genesis program. 100% concordance of TACE Responder and Non-Responder groups were observed following clustering. Expression values are Log2, and yellow indicates relative under-expression and purple indicates relative over-expression of each gene.
Predicting TACE treatment response in HCC patients

Supplementary Table 1. Inclusion of patients from LCI cohort (GSE14520) and assignment into each therapy group

Adjuvant TACE subset (Included)	Post-Recurrence TACE subset (Included)	Resection Only (Included)	Other Therapy (Excluded)	Missing Survival Data (Excluded)
LCS_007A	LCS_008A	LCS_010A	LCS_002A	LCS_204A
LCS_009A	LCS_012A	LCS_014A	LCS_004A	LCS_283A
LCS_019A	LCS_023A	LCS_015A	LCS_005A	LCS_347A
LCS_020A	LCS_024A	LCS_016A	LCS_011A	X02_342A
LCS_025A	LCS_032A	LCS_018A	LCS_021A	
LCS_027A	LCS_035A	LCS_022A	LCS_036A	
LCS_028A	LCS_067A	LCS_040A	LCS_039A	
LCS_029A	LCS_072A	LCS_041A	LCS_042A	
LCS_031A	LCS_088A	LCS_044A	LCS_054A	
LCS_033A	LCS_096A	LCS_045A	LCS_066A	
LCS_034A	LCS_120A	LCS_046A	LCS_074A	
LCS_038A	LCS_138A	LCS_048A	LCS_083A	
LCS_043A	LCS_139A	LCS_051A	LCS_089A	
LCS_047A	LCS_145A	LCS_056A	LCS_093A	
LCS_049A	LCS_178A	LCS_057A	LCS_095A	
LCS_050A	LCS_190A	LCS_061A	LCS_103A	
LCS_062A	LCS_194A	LCS_063A	LCS_107A	
LCS_065A	LCS_198A	LCS_064A	LCS_123A	
LCS_068A	LCS_200A	LCS_069A	LCS_125A	
LCS_071A	LCS_207A	LCS_073A	LCS_126A	
LCS_075A	LCS_224A	LCS_076A	LCS_129A	
LCS_079A	LCS_227A	LCS_078A	LCS_135A	
LCS_085A	LCS_234A	LCS_084A	LCS_143A	
LCS_086A	LCS_238A	LCS_090A	LCS_148A	
LCS_092A	LCS_267A	LCS_091A	LCS_149A	
LCS_097A	LCS_273A	LCS_094A	LCS_152A	
LCS_100A	LCS_274A	LCS_099A	LCS_153A	
LCS_104A	LCS_281A	LCS_101A	LCS_157A	
LCS_110A	LCS_333A	LCS_102A	LCS_162A	
LCS_116A	LCS_403A	LCS_105A	LCS_164A	
LCS_117A	LCS_106A	LCS_108A	LCS_175A	
LCS_118A	LCS_109A	LCS_119A	LCS_182A	
LCS_121A	LCS_119A	LCS_122A	LCS_183A	
LCS_127A	LCS_130A	LCS_131A	LCS_188A	
LCS_134A	LCS_136A	LCS_130A	LCS_193A	
LCS_136A	LCS_140A	LCS_131A	LCS_195A	
LCS_142A	LCS_132A	LCS_132A	LCS_199A	
LCS_146A	LCS_137A	LCS_144A	LCS_203A	
LCS_154A	LCS_147A	LCS_147A	LCS_206A	
LCS_158A	LCS_150A	LCS_150A	LCS_219A	
LCS_159A	LCS_151A	LCS_151A	LCS_230A	
LCS_161A	LCS_156A	LCS_156A	LCS_248A	
LCS_166A	LCS_160A	LCS_160A	LCS_250A	
LCS_167A	LCS_163A	LCS_163A	LCS_256A	
LCS_170A	LCS_165A	LCS_165A	LCS_277A	
LCS_171A	LCS_169A	LCS_169A	LCS_290A	
LCS_177A	LCS_172A	LCS_172A	LCS_339A	
LCS_185A	LCS_174A	LCS_174A	LCS_341A	
LCS_191A	LCS_179A	LCS_179A	LCS_401A	
LCS_192A	LCS_180A	LCS_180A	LCS_285A	
LCS_196A	LCS_184A	LCS_184A	LCS_285A	
LCS_208A	LCS_189A	LCS_189A	LCS_285A	
LCS_209A	LCS_205A	LCS_205A	LCS_285A	
LCS_212A	LCS_210A	LCS_210A	LCS_285A	
LCS_213A	LCS_211A	LCS_215A	LCS_285A	
LCS_223A	LCS_215A	LCS_216A	LCS_285A	
LCS_228A	LCS_222A	LCS_226A	LCS_285A	
LCS_240A	LCS_236A	LCS_236A	LCS_285A	
LCS_241A	LCS_237A	LCS_237A	LCS_285A	
LCS_245A	LCS_243A			
Predicting TACE treatment response in HCC patients

| LCS_251A | LCS_259A | LCS_260A | LCS_263A | LCS_264A | LCS_265A | LCS_266A | LCS_270A | LCS_272A | LCS_284A | LCS_289A | LCS_393A | LCS_247A | LCS_249A | LCS_253A | LCS_254A | LCS_261A | LCS_262A | LCS_268A | LCS_269A | LCS_275A | LCS_278A | LCS_279A | LCS_282A | LCS_285A | LCS_286A | LCS_291A | LCS_343A | LCS_344A | LCS_346A | LCS_400A | LCS_406A | LCS_415A | LCS_424A | LCS_426A |
Predicting TACE treatment response in HCC patients
Supplementary Table 2. Clinical characteristics of LCI test cohort treatment groups

Variable	TACE (N=105)	Resection Only (N=86)	P Value*
Age—year			
Median	50	50	0.71
Range	27-73	21-77	
Sex—no. (%)			
Female	8 (7.6)	12 (14.0)	0.16
Male	97 (92.4)	74 (86.0)	
HBV—no. (%)			
Chronic carrier	71 (67.6)	63 (73.3)	0.74
Active virus	28 (26.7)	21 (24.4)	
Negative	6 (5.7)	2 (2.3)	
Cirrhosis—no. (%)			0.06
No	12 (11.4)	3 (3.5)	
Yes	93 (88.6)	83 (96.5)	
Alanine aminotransferase—no. (%)			0.14
Normal	56 (53.3)	55 (64.0)	
(≤50 U/L)			
Elevated	49 (46.7)	31 (36.0)	
Alpha-fetoprotein—no. (%)			0.99
≤200 ng/mL	52 (49.5)	43 (50.0)	
>200 ng/mL	52 (49.5)	42 (48.8)	
Missing Data	1 (1.0)	1 (1.2)	
Tumor Size—no. (%)			0.99
≤3 cm	30 (28.6)	24 (27.9)	
>3 cm	75 (71.4)	62 (72.1)	
Microvascular Invasion—no. (%)			0.23
No	68 (64.8)	48 (55.8)	
Yes	37 (35.2)	38 (44.2)	
Multinodular Tumor—no. (%)			0.60
No	84 (80.0)	66	
Yes	21 (20.0)	20	
TNM Stage—no. (%)			0.44
I	44 (41.9)	29 (33.7)	
II+III	56 (53.3)	49 (57.0)	
Missing Data	5 (4.8)	8 (9.3)	
BCLC State—no. (%)			0.86
0+A	76 (72.4)	58 (67.4)	
B+C	24 (22.8)	20 (23.3)	
Missing Data	5 (4.8)	8 (9.3)	
Survival (mo)			0.22
Median	>66.3	54.8	
Range	1.8–>67	2.5–>67	

A P value of less than 0.05 was considered to indicate statistical significance. P values were calculated with the use of Fisher’s exact tests, except for age, which was calculated with 2-tailed Student’s t-test, and survival, which was calculated with the log-rank test.
Predicting TACE treatment response in HCC patients

Supplementary Table 3. Clinical characteristics of test cohort TACE patients and test cohorts TACE patients

Variable	LCI Training/Validation Cohort (N=105)	Hong Kong Cohort (N=49)	Test Cohort (N=50)	Shandong Test Cohort (N=50)	Mainz Test Cohort (N=31)
Age—year	Median 50	54	51	70	57-91
	Range 27-73	24-74	31-71	57-91	
Sex—no. (%)	Female 8 (7.6)	7 (14.3)	5 (10.0)	26 (83.9)	
	Male 97 (92.4)	42 (85.7)	45 (90.0)	5 (16.1)	
HBV—no. (%)	Chronic carrier 71 (67.6)	34 (69.4)	42 (84.0)	5 (16.1)	
	Active virus 28 (26.7)	9 (18.4)	1 (2.0)	0 (0.0)	
	Negative/Missing data 6 (5.7)	6 (12.2)	7 (14.0)	26 (83.9)	
Cirrhosis—no. (%)	No 12 (11.4)	19 (38.8)	n.a.	8 (25.8)	
	Yes 93 (88.6)	30 (61.2)	n.a.	23 (74.2)	
Alpha-fetoprotein—no. (%)	Negative (≤200 ng/mL) 52 (49.5)	24 (49.0)	24 (48.0)	14 (45.2)	
	Positive (>200 ng/mL) 52 (49.5)	24 (49.0)	19 (38.0)	9 (29.0)	
	Missing Data 1 (1.0)	1 (2.0)	7 (14.0)	7 (22.6)	
Tumor Size—no. (%)	≤3 cm 30 (28.6)	8 (16.3)	19 (38.0)	4 (12.9)	
	>3 cm 75 (71.4)	41 (83.7)	29 (58.0)	25 (80.6)	
	Missing Data 0 (0.0)	0 (0.0)	2 (4.0)	2 (0.05)	
Microvascular Invasion—no. (%)	No 68 (64.8)	22 (44.9)	n.a.	20 (64.5)	
	Yes 37 (35.2)	27 (55.1)	n.a.	11 (35.5)	
TNM Stage—no. (%)	I 44 (41.9)	11 (22.4)	27 (54.0)	16 (51.6)	
	II+III+IV 56 (53.3)	38 (77.6)	23 (46.0)	11 (35.5)	
	Missing Data 5 (4.8)	0 (0.0)	0 (0.0)	4 (12.9)	
BCLC Stage—no (%)	0+ A 24 (22.9)	n.a.	32 (64.0)	19 (61.3)	
	B+C 75 (72.4)	n.a.	18 (36.0)	12 (38.7)	
	Missing Data 5 (4.7)	n.a.	0 (0.0)	0 (0.0)	
Survival (mo)	Median >67	44.1	>60	59.1	
	Range 2.5-76.3	4.8-60	3.7-60	5.5-60	

n.a. denotes data not available
Supplementary Table 4. Hazard ratios for death among TACE Cluster 1 and Resection Only patients, according to univariable and multivariable analysis

Clinical Variable	Univariable Analysis	Multivariable Analysis	P Value	
	Hazard Ratio (95% CI)	Hazard Ratio (95% CI)		
	P Value	P Value		
Treatment Group (TACE Cluster 1 vs. Resection Only)				
TACE Cluster 1: 39 (31.2%)	0.45 (0.23-0.88)	0.66 (0.33-1.35)	0.260	
Resection Only: 86 (68.8%)				
Age (≤50 yr vs. >50 yr)				
≤50 yr: 56 (44.8%)	0.59 (0.35-1.02)	0.58	n.a.	
>50 yr: 69 (55.2%)				
Sex (male vs. female)				
Male: 111 (88.8%)	1.41 (0.56-3.56)	0.453	n.a.	
Female: 14 (11.2%)				
HBV (active virus vs. chronic carrier)				
Active virus: 31 (24.8%)	1.82 (1.02-3.26)	1.63 (0.85-3.13)	0.143	
Chronic carrier: 91 (72.8%)				
Missing data/no virus: 3 (2.4%)				
Cirrhosis (yes vs. no)				
Yes: 118 (94.4%)	1.65 (0.40-6.78)	0.488	n.a.	
No: 7 (5.6%)				
Alanine aminotransferase (>50 U/L vs. ≤50 U/L)				
Elevated (>50 U/L): 50 (40.0%)	1.32 (0.77-2.28)	0.309	n.a.	
Normal (≤50 U/L): 75 (60.0%)				
Alpha-fetoprotein (>200 ng/mL vs. ≤200 ng/mL)				
>200 ng/mL: 53 (42.4%)	1.79 (1.04-3.10)	1.09 (0.58-2.02)	0.812	
≤200 ng/mL: 71 (56.8%)				
Missing data: 1 (0.8%)				
Tumor size (>3 cm vs. ≤3 cm)				
>3 cm: 84 (67.2%)	1.51 (0.84-2.72)	0.170	n.a.	
≤3 cm: 41 (32.8%)				
Microvascular invasion (yes vs. no)				
Yes: 50 (40.0%)	1.92 (1.12-3.29)	2.38 (1.30-4.33)	0.005	
No: 75 (60.0%)				
Multinodular tumor (yes vs. no)				
Yes: 25 (20.0%)	1.79 (0.97-3.29)	0.064	n.a.	
No: 100 (80.0%)				
TNM Stage (II+III vs. I)				
II+III: 67 (61.6%)	2.69 (1.41-5.10)	0.003	n.a.	
I: 49 (39.2%)				
Missing data: 9 (7.2%)				
BCLC Stage (B+C vs. 0+A)				
B+C: 24 (19.2%)	3.44 (1.84-6.45)	<0.001	2.77 (1.35-5.69)	0.005
0+A: 92 (73.6%)				
Missing data: 9 (7.2%)				
Predicting TACE treatment response in HCC patients
Supplementary Table 5. 15 TACE Navigator genes

Gene Symbol	Description	Fold Change	Change vs. Non-Responders	Parametric p-value
ASNS	Asparagine synthetase	0.33	<1x10^-7	
CDK1	Cyclin-dependent kinase 1	0.54	3.4x10^-6	
DNASE1L3	Deoxyribonuclease 1-like 3 (DNase)	2.91	<1x10^-7	
FBXL5	F-box and leucine-rich repeat protein 5	1.52	1.8x10^-4	
GABARAPL3	GABA(A) receptors associated protein like 3	1.41	8.5x10^-6	
GOT2	Glutamic-oxaloacetic transaminase 2, mitochondrial	1.92	1x10^-7	
GRHPR	Glyoxylate reductase/hydroxypyruvate reductase	2.20	<1x10^-7	
IARS	Isoleucyl-tRNA synthetase	0.64	4x10^-7	
LGALS3	Lectin, galactoside-binding, soluble 3	0.35	<1x10^-7	
LHFPL2	Lipoma HMGIC fusion partner-like 2 protein	0.57	<1x10^-7	
MFGE8	Milk fat globule-EGF factor 8 protein	0.80	8.16x10^-3	
MKI67	Antigen Ki-67	0.63	<1x10^-7	
PEBP1	Phosphatidylethanolamine binding protein 1	1.74	<1x10^-7	
TNFSF10	Tumor necrosis factor superfamily, member 10 (TRAIL)	2.05	1.7x10^-4	
UBB	Ubiquitin B	1.23	6.8x10^-4	

*Note: CDK1 is abbreviated as CDC2 in the training/validation cohort dataset.
Predicting TACE treatment response in HCC patients

Supplementary Table 6. Hazard ratios for death among TACE Responders and Resection Only patients, according to univariable and multivariable analysis

Clinical Variable	Univariable Analysis	P Value	Multivariable Analysis	Hazard Ratio (95 % CI)	P Value
Treatment Group					
(TACE Responders vs. Resection Only)					
Resection Only: 86 (65.7%)	0.16 (0.06-0.41)	<0.001	0.21 (0.08-0.55)	0.001	
TACE Responders: 45 (34.3%)					
Age (≤50 yr vs. >50 yr)					
≤50 yr: 57 (43.5%)	0.64 (0.37-1.15)	0.137	n.a.		
>50 yr: 74 (56.5%)					
Sex (male vs. female)					
Male: 116 (88.6%)	1.24 (0.49-3.14)	0.650	n.a.		
Female: 15 (11.4%)					
HBV (active virus vs. chronic carrier)					
Active virus: 29 (22.1%)	1.88 (1.00-3.54)	**0.049**	1.59 (0.79-3.23)	0.196	
Chronic carrier: 99 (75.6%)					
Missing data/no virus: 3 (2.3%)					
Cirrhosis (yes vs. no)					
Yes: 122 (93.1%)	1.90 (0.46-7.83)	0.375	n.a.		
No: 9 (6.9%)					
Alanine aminotransferase (>50 U/L vs. ≤50 U/L)					
Elevated (>50 U/L): 52 (39.7%)	1.45 (0.82-2.57)	0.205	n.a.		
Normal (≤50 U/L): 79 (60.3%)					
Alpha-fetoprotein (>200 ng/mL vs. ≤200 ng/mL)					
>200 ng/mL: 60 (45.8%)	2.03 (1.12-3.65)	**0.019**	1.23 (0.64-2.37)	0.532	
≤200 ng/mL: 69 (52.7%)					
Missing data: 2 (1.5%)					
Tumor size (>3 cm vs. ≤3 cm)					
>3 cm: 86 (65.7%)	1.45 (0.78-2.68)	0.237	n.a.		
≤3 cm: 45 (34.3%)					
Microvascular invasion (yes vs. no)					
Yes: 30 (22.9%)	0.75 (0.37-1.57)	0.456	n.a.		
No: 101 (77.1%)					
Multinodular tumor (yes vs. no)					
Yes: 26 (19.8%)	2.14 (1.14-4.00)	**0.018**	0.64 (0.26-1.61)	0.348	
No: 105 (80.2%)					
TNM Stage (II+III vs. I)					
II+III: 67 (51.1%)	2.68 (1.37-5.27)	**0.004**	n.a.		
I: 56 (42.7%)					
Missing data: 8 (6.2%)					
BCLC Stage (B+C vs. 0+A)					
B+C: 24 (18.3%)	4.65 (2.41-9.00)	**<0.001**	3.99 (1.70-9.37)	**0.001**	
0+A: 98 (74.8%)					
Missing data: 9 (6.9%)					
Supplementary Table 7. Known and predicted HIF-1α targets used for TACE Responder and Non-Responder patient clustering

Known HIF-1α Targets: Expression Data Available	Known HIF-1α Targets: Expression Data Unavailable	Predicted Core Hypoxia Response Genes: Expression Data Available*	Predicted Core Hypoxia Response Genes: Expression Data Unavailable
ABCB1	CYP2S1	ABCF2, ACTR1A, ALDOC, ANKRD37, ASCCI, ASPH, ATF3, ATF7IP, BNIP3, C14orf169, C3orf28, CAD, CCNB1, CLK3, CRKL, CXCR4*, CYCS, DDIT4*, DHX40, EDEM3, EFNA1, EIF1, EIF2B3, ERO1L, FH, GADD45B, GAPDH*, GOSR2, GRK6, GYS1, HIG2, ILF3, INSIG2, JMJD1A, JMJD2B, JMJD2C, KLF10, LDHA*, LOCI162073, LOX*, MIF, MRPL4, MRPS12, MXI1*, NARF, NDRG1, NF2, NR3C1, NFX1, OXSR1, P4HA1, P4HA2, PBEF1, PER2, PGAM1, PGK1*, PHLDA1, PIM1, PJA2, PLOD1, PPME1, R3HDM1	
ABCG2	PROK1	ANKR37, GOPC, LOC162073	
ADM			
ADRAL1B			
AK3			
ALDOA			
BHLHB2			
BHLHB3			
BNIP3			
BNIP3L			
CA9			
CCNG2			
CD99			
CDKN1A			
CITED2			
COL5A1			
CP			
CTGF			
CTSD			
CXCL12			
CXCR4			
DDIT4			
DEC1			
EDN1			
EGLN1			
EGLN3			
ENG			
ENO1			
EPO			
ETS1			
FCH			
FN1			
FURIN			
GAPDH			
GPI			
GPX3			
HK1			
HK2			
HMox1			
HS90B1			
ID2			
IGF2			
IGFBP1			
IGFBP2			
IGFBP3			
ITGB2			
KRT14			
KRT18			
KRT19			
LDHA			
LEP			
LOX			
LRP1			
MCL1			
MET			
MMP14			
MMP2			
MXI1			
NOS2A			
NOS3			
NPM1			
NR4A1			
NT5E			
Predicting TACE treatment response in HCC patients

PDGFA	PDK1	PFKFB3	PFKL	PGK1	PH-4	PGM2	PLAUR	PMAIP1	PPP5C	SERPINE1	SLC2A1	TERT	TF	TFF3	TFRC	TGFA	TGFβ3	TOM2	TPI1	VEGFA	VIM
RAB8B	RARA	RBPJ	RRAPG	RSBN1	SEC61G	SFRS7	SLC16A1	SLC7A6	SNRPE1	SEC61G	SLC16A1	TMEM45A	TPCN1	TUBG1	VDAC1	WSB1					

*Genes denoted with an asterisk indicate genes from the core hypoxia response that are previously known HIF-1α targets. Other genes in this column are predicted hypoxia response genes.