Optimizing High-Efficiency Quantum Memory with Quantum Machine Learning for Near-Term Quantum Devices

Laszlo Gyongyosi* Sandor Imre†

Abstract

Quantum memories are a fundamental of any global-scale quantum Internet, high-performance quantum networking and near-term quantum computers. A main problem of quantum memories is the low retrieval efficiency of the quantum systems from the quantum registers of the quantum memory. Here, we define a novel quantum memory called high-retrieval-efficiency (HRE) quantum memory for near-term quantum devices. An HRE quantum memory unit integrates local unitary operations on its hardware level for the optimization of the readout procedure and utilizes the advanced techniques of quantum machine learning. We define the integrated unitary operations of an HRE quantum memory, prove the learning procedure, and evaluate the achievable output signal-to-noise ratio values. We prove that the local unitaries of an HRE quantum memory achieve the optimization of the readout procedure in an unsupervised manner without the use of any labeled data or training sequences. We show that the readout procedure of an HRE quantum memory is realized in a completely blind manner without any information about the input quantum system or about the unknown quantum operation of the quantum register. We evaluate the retrieval efficiency of an HRE quantum memory and the output SNR (signal-to-noise ratio). The results are particularly convenient for gate-model quantum computers and the near-term quantum devices of the quantum Internet.

1 Introduction

Quantum memories are a fundamental of any global-scale quantum Internet [1–6]. However, while quantum repeaters can be realized without the necessity of quantum memories [7,8], these units, in fact, are required for guaranteeing an optimal performance in any high-performance quantum networking scenario [9,11–22,27,30,32,39]. Therefore, the utilization of quantum memories still represents a fundamental problem in the quantum Internet [41–45,126–130], since the near-term quantum devices (such as quantum repeaters [5,6,39,76,79,82,84]) and gate-model quantum computers [23,26,47,54] have to store the quantum states in their local quantum memories [55,60,88]. The main problem here is the efficient readout of the stored quantum systems and the low retrieval efficiency of these systems from the quantum registers of the quantum memory. Currently, no general solution to this problem is available, since the quantum register evolves the stored
quantum systems via an unknown operation, and the input quantum system is also unknown, in a general scenario \[4, 5, 8, 10, 12, 13\]. The optimization of the readout procedure is therefore a hard and complex problem. Several physical implementations have been developed in the last few years \[89–109\]. However, these experimental realizations have several drawbacks, in general because the output signal-to-noise ratio (SNR) values are still not satisfactory for the construction of a powerful, global-scale quantum communication network. As another important application field in quantum communication, the methods of quantum secure direct communication \[131–134\] also require quantum memory.

Here, we define a novel quantum memory called high-retrieval-efficiency (HRE) quantum memory for near-term quantum devices. An HRE quantum memory unit integrates local unitary operations on its hardware level for the optimization of the readout procedure. An HRE quantum memory unit utilizes the advanced techniques of quantum machine learning \[57–59\] to achieve a significant improvement in the retrieval efficiency. We define the integrated unitary operations of an HRE quantum memory, prove the learning procedure, and evaluate the achievable output SNR values. The local unitaries of an HRE quantum memory achieve the optimization of the readout procedure in an unsupervised manner without the use of any labeled data or any training sequences. The readout procedure of an HRE quantum memory is realized in a completely blind manner. It requires no information about the input quantum system or about the quantum operation of the quantum register. (It is motivated by the fact that this information is not accessible in any practical setting.)

The proposed model assumes that the main challenge is the recovery the stored quantum systems from the quantum register of the quantum memory unit, such that both the input quantum system and the transformation of the quantum memory are unknown. The optimization problem of the readout process also integrates the efficiency of the write-in procedure. In the proposed model, the noise and uncertainty added by the write-in procedure are included in the unknown transformation of the \(QR\) quantum register of the quantum memory that results in a \(\sigma_{QR}\) mixed quantum system in \(QR\).

The novel contributions of our manuscript are as follows:

1. We define a novel quantum memory called high-retrieval-efficiency (HRE) quantum memory.
2. An HRE quantum memory unit integrates local unitary operations on its hardware level for the optimization of the readout procedure and utilizes the advanced techniques of quantum machine learning.
3. We define the integrated unitary operations of an HRE quantum memory, prove the learning procedure, and evaluate the achievable output signal-to-noise ratio values. We prove that local unitaries of an HRE quantum memory achieve the optimization of the readout procedure in an unsupervised manner without the use of any labeled data or training sequences.
4. We evaluate the retrieval efficiency of an HRE quantum memory and the output SNR.
5. The proposed results are convenient for gate-model quantum computers and near-term quantum devices.

This paper is organized as follows. Section 2 defines the system model and the problem statement. Section 3 evaluates the integrated local unitary operations of an HRE quantum memory. Section 4 proposes the retrieval efficiency in terms of the achievable output SNR values. Finally, Section 5 concludes the results. Supplemental material is included in the Appendix.
2 System Model and Problem Statement

2.1 System Model

Let \(\rho_{in} \) be an unknown input quantum system formulated by \(n \) unknown density matrices,

\[
\rho_{in} = \sum_{i=1}^{n} \lambda_{i}^{(in)} |\psi_i\rangle \langle \psi_i|,
\]

where \(\lambda_{i}^{(in)} \geq 0 \), and \(\sum_{i=1}^{n} \lambda_{i}^{(in)} = 1 \).

The input system is received and stored in the \(QR \) quantum register of the HRE quantum memory unit. The quantum systems are \(d \)-dimensional systems (\(d = 2 \) for a qubit system). For simplicity, we focus on \(d = 2 \) dimensional quantum systems throughout the derivations.

The \(U_{QR} \) unknown evolution operator of the \(QR \) quantum register defines a mixed state \(\sigma_{QR} \) as

\[
\sigma_{QR} = U_{QR} \rho_{in} U_{QR}^{\dagger} = \sum_{i=1}^{n} \lambda_{i} |\varphi_i\rangle \langle \varphi_i|,
\]

where \(\lambda_{i} \geq 0 \), \(\sum_{i=1}^{n} \lambda_{i} = 1 \).

Let us allow to rewrite (2) for a particular time \(t \), \(t = 1, \ldots, T \), where \(T \) is a total evolution time, via a mixed system \(\sigma_{QR}^{(t)} \), as

\[
\sigma_{QR}^{(t)} = U_{QR}^{(t)} \rho_{in} U_{QR}^{(t)} \dagger = \sum_{i=1}^{n} \lambda_{i}^{(t)} |\varphi_{i}^{(t)}\rangle \langle \varphi_{i}^{(t)}|,
\]

where \(\lambda_{i}^{(t)} \geq 0 \), \(\sum_{i=1}^{n} \lambda_{i}^{(t)} = 1 \), while \(X_{i}^{(t)} \in \mathbb{C} \) is an unknown complex quantity, defined as

\[
X_{i}^{(t)} = \sqrt{\lambda_{i}^{(t)}} |\varphi_{i}^{(t)}\rangle,
\]

and

\[
X^{(t)} = \sum_{i=1}^{n} X_{i}^{(t)}.
\]
Then, let us rewrite $\sigma_{QR}^{(t)}$ from (3) as
\[
\sigma_{QR}^{(t)} = \rho_{in} + \zeta_{QR}^{(t)},
\]
where ρ_{in} is as in (1), and $\zeta_{QR}^{(t)}$ is an unknown residual density matrix at a given t.

Therefore, (7) can be expressed as a sum of M source quantum systems,
\[
\sigma_{QR}^{(t)} = \sum_{m=1}^{M} \rho_m,
\]
where ρ_m is the m-th source quantum system and $m = 1, \ldots, M$, where
\[
M = 2,
\]
in our setting, since
\[
\rho_1 = \rho_{in}
\]
and
\[
\rho_2 = \zeta_{QR}^{(t)}.
\]

In terms of the M subsystems, (3) can be rewritten as
\[
\begin{align*}
\sigma_{QR}^{(t)} &= \sum_{m=1}^{M} \sum_{i=1}^{n} \lambda_i^{(m,t)} |\varphi_i^{(m,t)}\rangle \langle \varphi_i^{(m,t)}| \\
&= \sum_{m=1}^{M} \sum_{i=1}^{n} \sqrt{\lambda_i^{(m,t)}} |\varphi_i^{(m,t)}\rangle \sqrt{\lambda_i^{(m,t)}} \langle \varphi_i^{(m,t)}| \\
&= \sum_{m=1}^{M} \sum_{i=1}^{n} X_i^{(m,t)} (X_i^{(m,t)})^\dagger \\
&= \sum_{m=1}^{M} X^{(m,t)} (X^{(m,t)})^\dagger,
\end{align*}
\]
where $X_i^{(m,t)}$ is a complex quantity associated with an m-th source system,
\[
X_i^{(m,t)} = \sqrt{\lambda_i^{(m,t)}} |\varphi_i^{(m,t)}\rangle,
\]
with $0 \leq \lambda_i^{(m,t)} \leq 1$, $\sum_m \sum_i \lambda_i^{(m,t)} = 1$, and
\[
X^{(m,t)} = \sum_{i=1}^{n} X_i^{(m,t)}.
\]

The aim is to find the V_{QG} inverse matrix of the unknown evolution matrix U_{QR} in (2), as
\[
V_{QG} = U_{QG}^{-1},
\]
that yields the separated readout quantum system of the HRE quantum memory unit for \(t = 1, \ldots, T \), such that for a given \(t \),

\[
\sigma_{\text{out}}^{(t)} = V^{(t)}_{QG} \sigma_{QR}^{(t)} \left(V^{(t)}_{QG} \right)^\dagger,
\]

where

\[
V^{(t)}_{QG} = \left(U^{(t)}_{QG} \right)^{-1}.
\]

For a total evolution time \(T \), the target \(\sigma_{\text{out}} \) density matrix is yielded at the output of the HRE quantum memory unit, as

\[
\sigma_{\text{out}} \approx \sum_{i=1}^{n} \lambda^{(m)}_{i} |\psi_i\rangle\langle \psi_i|,
\]

with a sufficiently high SNR value,

\[
\text{SNR} (\sigma_{\text{out}}) \geq x,
\]

where \(x \) is an SNR value that depends on the actual physical layer attributes of the experimental implementation.

The problem is therefore that both the input quantum system (1) and the transformation matrix \(U_{QR} \) in (2) of the quantum register are unknown. As we prove, by integrating local unitaries to the HRE quantum memory unit, the unknown evolution matrix of the quantum register can be inverted, which allows us to retrieve the quantum systems of the quantum register. The retrieval efficiency will be also defined in a rigorous manner.

2.2 Problem Statement

The problem statement is as follows.

Let \(M \) be the number of source systems in the \(QR \) quantum register such that the sum of the \(M \) source systems identifies the mixed state of the quantum register. Let \(m \) be the index of the source system, \(m = 1, \ldots, M \), such that \(m = 1 \) identifies the unknown input quantum system stored in the quantum register (target source system), while \(m = 2, \ldots, M \) are some unknown residual quantum systems. The input quantum system, the residual systems, and the transformation operation of the quantum register are unknown. The aim is then to define local unitary operations to be integrated on the HRE quantum memory unit for an HRE readout procedure in an unsupervised manner with unlabeled data.

The problems to be solved are summarized in Problems 1–4.

Problem 1 Find an unsupervised quantum machine learning method, \(U_{ML} \), for the factorization of the unknown mixed quantum system of the quantum register via a blind separation of the unlabeled quantum register. Decompose the unknown mixed system state into a basis unitary and a residual quantum system.

Problem 2 Define a unitary operation for partitioning the bases with respect to the source systems of the quantum register.

Problem 3 Define a unitary operation for the recovery of the target source system.

Problem 4 Evaluate the retrieval efficiency of the HRE quantum memory in terms of the achievable SNR.
The resolutions of the problems are proposed in Theorems 1–4.

The schematic model of an HRE quantum memory unit is depicted in Fig. 1.

Figure 1: The schematic model of a high-retrieval-efficiency (HRE) quantum memory unit. The HRE quantum memory unit contains a QR quantum register and integrated local unitary operations. The \(n \) input quantum systems, \(\rho_1 \ldots \rho_n \), are received and stored in the quantum register. The state of the QR quantum register defines a mixed state, \(\sigma_{QR} = \sum_i \lambda_i \rho_i \), where \(\sum_i \lambda_i = 1 \). The stored density matrices of the QR quantum register are first transformed by a \(U_{ML} \), a quantum machine learning unitary (depicted by the orange-shaded box) that implements an unsupervised learning for a blind separation of the unlabeled input, and decomposable as \(U_{ML} = U_F U_{CQT} U_P U_{CQT}^\dagger \), where \(U_F \) is a factorization unitary, \(U_{CQT} \) is the quantum constant \(Q \) transform with a windowing function \(f_W \) for the localization of the wave functions of the quantum register, \(U_P \) is a basis partitioning unitary, while \(U_{CQT}^\dagger \) is the inverse of \(U_{CQT} \). The result of \(U_{ML} \) is processed further by the \(\tilde{U}_{DSTFT}^\dagger \) unitary (depicted by the green-shaded box) that realizes the inverse quantum discrete short-time Fourier transform (DSTFT) operation (depicted by the yellow-shaded box), and by the \(U_{DFT} \) (quantum discrete Fourier transform) unitary to yield the desired output \(\rho_1' \ldots \rho_n' \).

The procedures realized by the integrated unitary operations of the HRE quantum memory are depicted in Fig. 2.

2.3 Experimental Implementation

An experimental implementation of an HRE quantum memory in a near-term quantum device can integrate standard photonics devices, optical cavities and other fundamental physical devices.
Figure 2: Detailed procedures of an HRE quantum memory. The unknown input quantum system is stored in the QR quantum register that realizes an unknown transformation. The density matrix of the quantum register is the sum of $M = 2$ source systems, where source system $m = 1$ identifies the valuable unknown input quantum system stored in the quantum register, while $m = 2$ identifies an unknown undesired residual quantum system. The U_F unitary evaluates K bases for the source system and defines a W auxiliary quantum system. The U_{CQT} unitary is a preliminary operation for the partitioning of the K bases onto M clusters via unitary U_P. The U_P unitary regroups the bases with respect to the $M = 2$ source systems. The results are then processed by the U_{DSTFT}^\dagger and U_{DFT} unitaries to extract the source system $m = 1$ on the output of the memory unit.
The quantum operations can be realized via the framework of gate-model quantum computations of near-term quantum devices \cite{47-52}, such as superconducting units \cite{48}. The application of a HRE quantum memory in a quantum Internet setting \cite{1,2,4-6} can be implemented via noisy quantum links between the quantum repeaters \cite{9,39,76,77,79,82,84} (e.g., optical fibers \cite{8,46,73}, wireless quantum channels \cite{34,35}, free-space optical channels \cite{56}) and fundamental quantum transmission protocols \cite{7,30,31,40}.

3 Integrated Local Unitaries

This section defines the local unitary operations integrated on an HRE quantum memory unit.

3.1 Quantum Machine Learning Unitary

The U_{ML} quantum machine learning unitary implements an unsupervised learning for a blind separation of the unlabeled quantum register. The U_{ML} unitary is defined as

$$U_{ML} = U_F U_{CQT} U_P U_{CQT}^\dagger,$$

where U_F is a factorization unitary, U_{CQT} is the quantum constant Q transform, U_P is a partitioning unitary, while U_{CQT}^\dagger is the inverse of U_{CQT}.

3.1.1 Factorization Unitary

Theorem 1 (Factorization of the unknown mixed quantum system of the quantum register). The U_F unitary factorizes the unknown σ_{QR} mixed quantum system of the QR quantum register into a unitary $u_{mk} = e^{-iH_{mk}\tau/\hbar}$, with a Hamiltonian H_{mk} and application time τ, and into a system $\vec{\rho}_W$, where $t = 1, \ldots, T$, $m = 1, \ldots, M$, and $k = 1, \ldots, K$, and where T is the evolution time, M is the number of source systems of σ_{QR}, and K is the number of bases.

Proof. The aim of the U_F factorization unitary is to factorize the mixed quantum register (2) into a basis matrix U_B and a quantum system $\tilde{\rho}_W$, as

$$U_F \sigma_{QR} U_F^\dagger = U_F \left(U_{QR} \rho_m U_{QR}^\dagger \right) U_F^\dagger = U_B \tilde{\rho}_W U_B^\dagger,$$

where U_B is a complex basis matrix, defined as

$$U_B = \{ u_{mk} \} \in \mathbb{C}^{M \times K},$$

and $\tilde{\rho}_W \in \mathbb{C}^{K \times T}$ is a complex matrix, defined as

$$\tilde{\rho}_W = \left\{ \rho_W^{(t)} \right\}_T^{t=1},$$
where

\[
\rho_{W}^{(t)} = \sum_{k=1}^{K} v_{k}^{(t)} |\phi_{k}\rangle \langle \phi_{k}|
\]

\[
= \sum_{k=1}^{K} \sqrt{v_{k}^{(t)}} |\phi_{k}\rangle \sqrt{v_{k}^{(t)}} \langle \phi_{k}|
\]

\[
= \sum_{k=1}^{K} W_{k}^{(t)} (W_{k}^{(t)})^\dagger,
\]

(24)

where \(0 \leq v_{k}^{(t)} \leq 1\), and \(\sum_{k=1}^{K} v_{k}^{(t)} = 1\), while \(K\) is the total number of bases of \(U_{B}\), while \(W_{k}^{(t)} \in \mathbb{C}\) is a complex quantity, as

\[
W_{k}^{(t)} = \sqrt{v_{k}^{(t)}} |\phi_{k}\rangle.
\]

(25)

The first part of the problem is therefore to find \(22\), where \(u_{mk}\) is a unitary that sets a computational basis for \(W_{k}^{(t)}\) in \(25\), defined as

\[
u_{mk} = e^{-iH_{mk} \tau / \hbar},
\]

(26)

where \(H_{mk}\) is a Hamiltonian, as

\[
H_{mk} = G_{mk} |k_{m}\rangle \langle k_{m}|,
\]

(27)

where \(G_{mk}\) is the eigenvalue of basis \(|k_{m}\rangle\), \(H_{mk} |k_{m}\rangle = G_{mk} |k_{m}\rangle\), while \(\tau\) is the application time of \(u_{mk}\).

The second part of the problem is to determine \(W\), as

\[
W = \{W_{k}^{(t)} = w_{kt}\} \in \mathbb{C}^{K \times T},
\]

(28)

where \(W_{k}^{(t)} = w_{kt}\) is a system state, that formulates \(\tilde{X}^{(m,t)}\) as

\[
\tilde{X}^{(m,t)} = [U_{B}W]_{mt}
\]

\[
= \sum_{k=1}^{K} u_{mk} w_{kt},
\]

(29)

where \(\tilde{X}^{(m,t)}\) is an approximation of \(X^{(m,t)}\),

\[
\tilde{X}^{(m,t)} \approx X^{(m,t)},
\]

(30)

where \(X^{(m,t)}\) is defined in \(14\).

As follows, for the total evolution time \(T\), \(\tilde{X} \in \mathbb{C}^{M \times T}\) can be defined as

\[
\tilde{X} = \left\{ X^{(1,t)}, \ldots, X^{(M,t)} \right\}_{t=1}^{T},
\]

(31)
and the challenge is to evaluate (31) as a decomposition

\[\tilde{X} = U_B W \]

\[= e^{-i H_\Sigma \tau / \hbar} W \]

\[= \sum_{m=1}^M \sum_{t=1}^T \sum_{k=1}^K u_{mk} W_k^{(t)} \]

\[= \sum_{m=1}^M \sum_{t=1}^T \sum_{k=1}^K e^{-i H_{mk} \tau / \hbar} \sqrt{v_k^{(t)}} | \phi_k^{(m,t)} \rangle. \tag{32} \]

Thus, by applying of the \(u_{mk} \) unitaries for the total evolution time \(T \), \(\tilde{X} \in \mathbb{C}^{M \times T} \) is as

\[\tilde{X} = U_B W \]

\[= \sum_{m=1}^M \sum_{k=1}^K \ell_{m,k} \left(\tau \right) | k_m \rangle, \tag{33} \]

\[= \alpha \left(\sum_{k_1=1}^{K_1} | k_1 \rangle + \ldots + \sum_{k_M=1}^{K_M} | k_M \rangle \right), \]

where \(K_m \) is the number of bases associated with the \(m \)-th source system,

\[\sum_{m=1}^K K_m = K, \tag{34} \]

and \(0 \leq |\ell_{m,k} (\tau)|^2 \leq 1, \sum_{m=1}^M \sum_{k=1}^K |\ell_{m,k} (\tau)|^2 = 1. \)

In our setting \(M = 2 \), and our aim is to get the system state \(m = 1 \) on the output of the HRE quantum memory, thus a \(|\Phi^*\rangle \) target output system state is defined as

\[|\Phi^*\rangle = \frac{1}{\sqrt{K_1}} \sum_{k_1=1}^{K_1} | k_1 \rangle, \tag{35} \]

where \(K_1 \) is the number of bases for source system \(m = 1, k_1 = 1, \ldots, K_1. \)

Let rewrite the system state \(\tilde{X} \) (32) as

\[\tilde{X} = \left\{ \tilde{X}^{(1,t)}, \ldots, \tilde{X}^{(M,t)} \right\}^T_{t=1}, \tag{36} \]

and let

\[X^{(t)} = \sum_{m=1}^M X^{(m,t)}, \tag{37} \]

and

\[\tilde{X}^{(t)} = \sum_{m=1}^M \tilde{X}^{(m,t)}. \tag{38} \]
Then, let $\rho_{\vec{X}}$ be a density matrix associated with \vec{X}, defined as
\[
\rho_{\vec{X}} = \sum_{m=1}^{M} \sum_{t=1}^{T} \vec{X}(m,t) (\vec{X}(m,t))^\dagger
\] (39)
and let
\[
\rho_{\tilde{X}} = \sum_{m=1}^{M} \sum_{t=1}^{T} \tilde{X}(m,t) (\tilde{X}(m,t))^\dagger
\] (40)
be the density matrix associated with \vec{X}.

The aim of the estimation is to minimize the $D(\cdot\|\cdot)$ quantum relative entropy function taken between $\rho_{\vec{X}}$ and $\rho_{\tilde{X}}$, thus an $f(U_F)$ objective function for U_F is defined via (37) and (38) as
\[
f(U_F) = \min_{\tilde{X}} D(\rho_{\vec{X}}\|\rho_{\tilde{X}})
= \min_{\tilde{X}} \text{Tr} (\rho_{\vec{X}} \log (\rho_{\vec{X}})) - \text{Tr} (\rho_{\tilde{X}} \log (\rho_{\tilde{X}})).
\] (41)

To achieve the objective function $f(U_F)$ in (41), a factorization method is defined for U_F that is based on the fundamentals of Bayesian nonnegative matrix factorization [110–119] (Footnote: The U_F factorization unitary applied on the mixed state of the quantum register is analogous to a Poisson-Exponential Bayesian nonnegative matrix factorization [110–113] process.). The method adopts the Poisson distribution as $L(\cdot)$ likelihood function and the exponential distribution for the control parameters α_{mk} and β_{kt} defined for the controlling of u_{mk} and w_{kt}.

Let u_{mk} and w_{kt} from (29) be defined via the control parameters α_{mk} and β_{kt} as exponential distributions
\[
u_{mk} \simeq \alpha_{mk} e^{-\alpha_{mk}u_{mk}},
\] (42)
with mean α_{mk}^{-1}, and
\[
u_{kt} \simeq \beta_{kt} e^{-\beta_{kt}w_{kt}},
\] (43)
with mean β_{kt}^{-1}.

Using (41), (42) and (43), a $L(\cdot)$ log likelihood function
\[-L(x,y|z) = -\log Pr (x,y|z)
\] (44)
can be defined as
\[-L(U_B,W|\vec{X})
= D(\rho_{\vec{X}}\|\rho_{\tilde{X}}) + \sum_{m=1}^{M} \sum_{k=1}^{K} \alpha_{mk}u_{mk}(\alpha_{mk}u_{mk})^\dagger + \sum_{k=1}^{K} \sum_{t=1}^{T} \beta_{kt}w_{kt}(\beta_{kt}w_{kt})^\dagger,
\] (45)
thus the objective function $f(U_F)$ can be rewritten via as (45)
\[f(U_F) = \min_{\tilde{X}} \left(-L(U_B,W|\vec{X})\right).
\] (46)

The problem is therefore can be reduced to determine the model parameters
\[\zeta = \{U_B, W\}\] (47)
that are treated as latent variables for the estimation of the control parameters \(\tau_{mk} \) represented by \(\tau_{mk} = \{\alpha_{mk}, \beta_{kt}\} \).

A maximum likelihood estimation \(\tilde{\zeta} \) of (47) is as
\[
\tilde{\zeta} = \arg \max \mathcal{D} \left(\mathbf{X} \bigg| \zeta \right),
\]
where \(\mathcal{D} (\cdot) \) is some distribution, that identifies an incomplete estimation problem.

The estimation of (47) can also be yielded from a maximization of a marginal likelihood function \(\mathcal{L} \left(\mathbf{X} \bigg| \zeta \right) \) as
\[
\mathcal{L} \left(\mathbf{X} \bigg| \zeta \right) = \iint \sum \mathcal{D} \left(\mathbf{X} \bigg| \mathbf{\kappa} \right) \mathcal{D} \left(\mathbf{\kappa} \bigg| U_B, W \right) \mathcal{D} \left(U_B, W \bigg| \zeta \right) dU_B dW,
\]
where \(\mathbf{\kappa} \) is a complex matrix, \(\mathbf{\kappa} \in \mathbb{C}^{M \times T} \),
\[
\mathbf{\kappa} = \left\{ \kappa^{(1,t)}, \ldots, \kappa^{(M,t)} \right\}_t,
\]
where
\[
\kappa^{(m,t)} = \left(\kappa^{(m,k),}, \cdots, \kappa^{(m,K)} \right)_k,
\]
with
\[
\kappa^{(m,k)} = \kappa_{mk}
\]
where
\[
\kappa_{mk} = u_{mk}^w w_{kt}.
\]
The quantity in (54) can be estimated via (42) and (43) as
\[
\kappa_{mk} \approx \alpha_{mk} e^{-\alpha_{mk} u_{mk}^w} \beta_{kt} e^{-\beta_{kt} w_{kt}}.
\]
Using (54), \(\mathbf{X}^{(m,t)} \) in (29) can be rewritten as
\[
\mathbf{X}^{(m,t)} = \sum_{m=1}^{M} \sum_{k=1}^{K} \kappa_{mk}.
\]
However, since the exact solution does not exists, since it would require the factorization of \(\mathcal{D} \left(\mathbf{\kappa}, U_B, W \bigg| \mathbf{X}, \zeta \right) \), such that \(\zeta, U_B, W \) are unknown.

This problem can be solved by a variational Bayesian inference procedure, via the maximization of the lower bound of a likelihood function \(\mathcal{L}_{D_v} \),
\[
\mathcal{L}_{D_v} = \iint \sum \mathcal{D}_v \left(\mathbf{\kappa}, U_B, W \right) \log \frac{\mathcal{D} \left(\mathbf{X}, \mathbf{\kappa}, U_B, W \bigg| \zeta \right)}{\mathcal{D}_v \left(\mathbf{\kappa}, U_B, W \right)} dU_B dW
= \mathbb{E} \left(\log \mathcal{D} \left(\mathbf{X}, \mathbf{\kappa}, U_B, W \bigg| \zeta \right) \right) + H \left(\mathcal{D}_v \left(\mathbf{\kappa}, U_B, W \right) \right),
\]
where D_v is a variational distribution, while $H(D_v(\bar{\kappa}, U_B, W))$ is the entropy of variational distribution $D_v(\bar{\kappa}, U_B, W)$,

$$H(D_v(\bar{\kappa}, U_B, W)) = \sum_{m=1}^{M} \sum_{t=1}^{T} H\left(\kappa^{(m,t)}\right) + \sum_{m=1}^{M} \sum_{k=1}^{K} H(u_{mk}) + \sum_{k=1}^{K} \sum_{t=1}^{T} H(w_{kt}),$$

and where $D_v(\bar{\kappa}, U_B, W)$ is a joint variational distribution, as

$$D_v(\bar{\kappa}, U_B, W) = D_v(\bar{\kappa}) D_v(U_B) D_v(W) = \prod_{m} \prod_{t} \prod_{k} D_v(\kappa_{mkt}) D_v(u_{mk}) D_v(w_{kt}),$$

from which distribution $D(\bar{\kappa}, U_B, W|\vec{X}, \zeta)$ can be approximated as

$$D(\bar{\kappa}, U_B, W|\vec{X}, \zeta) \approx \prod_{m} \prod_{t} \prod_{k} D_v(\kappa_{mkt}) D_v(u_{mk}) D_v(w_{kt}).$$

The function L_{D_v} in (57) is related to (50) as

$$L(\vec{X} \mid \zeta) \geq L_{D_v}.$$

The result in (59) therefore also determines the number K of bases selected for the factorization unitary U_F. The D_v variational distributions $D_v(\kappa_{mkt})$, $D_v(u_{k})$ and $D_v(w_{kt})$ are determined for the unitary U_F as follows.

Let $D_v(\Phi)$ refer to the variational distribution of a given Φ,

$$\Phi \in \{\bar{\kappa}, U_B, W\}.$$

Since only the joint (posterior) distribution $D(\vec{X}, \bar{\kappa}, U_B, W|\zeta)$ is obtainable, the variational distributions have to be evaluated as

$$E_{D_v(i \neq \Phi)} \left(\log D(\vec{X}, \bar{\kappa}, U_B, W|\zeta)\right) = \log D_v(\Phi),$$

where $E_{D_v(i \neq \Phi)} (\cdot)$ is the expectation function of the $D_v(i)$ variational distribution of i, such that $i \neq \Phi$, where Φ is as in (62), with

$$E_a(f(a) + g(a)) = E_a(f(a)) + E_a(g(a)),$$

for some functions $f(a)$ and $g(a)$, and

$$E_a(bf(a)) = bE_a(f(a))$$

for some constant b, (note: for simplicity, we use $E(\cdot)$ for the expectation function), while

$$\log D(\vec{X}, \bar{\kappa}, U_B, W|\zeta) = \sum_{m=1}^{M} \sum_{t=1}^{T} \log f_\delta \left(X^{(m,t)} - \sum_{k=1}^{K} \kappa_{mkt}\right) + \sum_{m=1}^{M} \sum_{k=1}^{K} \sum_{t=1}^{T} (\kappa_{mkt} \log (u_{mk}w_{kt})$$

$$- u_{mk}w_{kt} - \log f_{I_T}(\kappa_{mkt} + 1) + \sum_{m=1}^{M} \sum_{k=1}^{K} (\log \alpha_{mk} - \alpha_{mk}u_{mk})$$

$$+ \sum_{k=1}^{K} \sum_{t=1}^{T} (\log \beta_{kt} - \beta_{kt}w_{kt}),$$
where \(f_\delta (\cdot) \) is the Dirac delta function, while \(f_\Gamma (\cdot) \) is the Gamma function,

\[
f_\Gamma (x) = \int_0^\infty t^{x-1}e^{-t}dt.
\] (67)

By utilizing a variational Poisson–Exponential Bayesian learning [110–113], these variational distributions can be evaluated as follows.

The \(\mathcal{D}_v (\kappa_{mkt}) \) variational distribution is as

\[
\mathcal{D}_v (\kappa_{mkt}) = \mathcal{M} (\kappa_{mkt}|\eta_{mkt})
\] (68)

where \(\mathcal{M} \) is a multinomial distribution, while \(\eta_{mkt} \) is a multinomial parameter

\[
\eta_{mkt} = \frac{e^{E(\log u_{mk})+E(\log w_{kt})}}{\sum_j e^{E(\log u_{mj})+E(\log w_{jt})}},
\] (69)

while the \(\mathcal{D}_v (\kappa^{(m,t)}) \) variational distribution is as

\[
\mathcal{M} \left(\kappa^{(m,t)} \mid X^{(m,t)}, \eta^{(m,t)} \right)
= f_\delta \left(X^{(m,t)} - \sum_{k=1}^K \kappa_{mkt} \right) X^{(m,t)} \prod_k \frac{(\eta_{mkt})^{\kappa_{mkt}}}{\kappa_{mkt}!},
\] (70)

where \(\eta^{(m,t)} \) is a multinomial parameter vector

\[
\eta_k^{(m,t)} = \left(\eta_{k=1}^{(m,t)}, \ldots, \eta_{k=K}^{(m,t)} \right)^T,
\] (71)

such that

\[
\sum_{k=1}^K \eta_k^{(m,t)} = 1.
\] (72)

The \(\mathcal{D}_v (u_{mk}) \) variational distribution is as

\[
\mathcal{D}_v (u_{mk})
= e^{\sum_{t=1}^T E(\kappa_{mkt}) \log u_{mk} - \left(\sum_{t=1}^T E(\kappa_{mkt}) \log u_{mk} + \alpha_{mk} \right) u_{mk}}
= \mathcal{G} \left(u_{mk} \mid \tilde{\alpha}_{mk} \left(A \right), \tilde{\alpha}_{mk} \left(B \right) \right),
\] (73)

where \(\mathcal{G} (\cdot) \) is a Gamma distribution,

\[
\mathcal{G} (x; a, b) = e^{(a-1)\log x - \frac{x}{b} - \log f_\Gamma (a) - a \log b},
\] (74)

where \(a \) is a shape parameter, while \(b \) is a scale parameter, \(f_\Gamma (\cdot) \) is the Gamma function [67]. The entropy of (74) is as

\[
H \left(\mathcal{G} (x; a, b) \right) = -(a-1) \partial_{\log} \left(a \right) + \log b + a + \log f_\Gamma (a),
\] (75)
where \(\partial_{\text{log}} \Gamma \) is the derivative of the log gamma function (digamma function),

\[
\partial_{\text{log}} \Gamma (x) = \frac{d \log f_r(x)}{dx},
\]

while \(\mathbb{E}(\kappa_{mkt}) \) is evaluated as

\[
\mathbb{E}(\kappa_{mkt}) = X^{(m,t)} \eta_{mkt},
\]

while \(\tilde{\alpha}_{mk} (A) \) and \(\tilde{\alpha}_{mk} (B) \) are control parameters for \(U_B \), defined as

\[
\tilde{\alpha}_{mk} (A) = 1 + \sum_{t=1}^{T} \mathbb{E}(\kappa_{mkt}),
\]

while \(\tilde{\alpha}_{mk} (B) \) is defined as

\[
\tilde{\alpha}_{mk} (B) = \frac{1}{\sum_{t=1}^{T} \mathbb{E}(w_{kt}) + \alpha_{mk}}.
\]

The \(D_v(w_{kt}) \) variational distribution is as

\[
D_v(w_{kt}) = e^{\left(\sum_{m=1}^{M} \mathbb{E}(\kappa_{mkt}) \log w_{kn} - \left(\sum_{m=1}^{M} \mathbb{E}(u_{mk}) + \beta_{kt} \right) w_{kt} \right)} \]

\[
\mathbb{E}(\log w_{kt}) = \partial_{\text{log}} \Gamma \left(\tilde{\beta}_{kt} (A) \right) + \log \tilde{\beta}_{kt} (B),
\]

where \(\tilde{\beta}_{kt} (A) \) and \(\tilde{\beta}_{kt} (B) \) are control parameters for \(W \), defined as

\[
\tilde{\beta}_{kt} (A) = 1 + \sum_{m=1}^{M} \mathbb{E}(\kappa_{mkt}),
\]

and

\[
\tilde{\beta}_{kt} (B) = \frac{1}{\sum_{m=1}^{M} \mathbb{E}(u_{mk}) + \beta_{kt}}.
\]

Given the variational parameters \(\tilde{\alpha}_{mk} (A) \), \(\tilde{\alpha}_{mk} (B) \), \(\tilde{\beta}_{kt} (A) \) and \(\tilde{\beta}_{kt} (B) \) in (78), (79), (81) and (82), the estimates of \(U_B \) and \(W \) are realized by the determination of the Gamma means \(\mathbb{E}(u_{mk}) \) and \(\mathbb{E}(w_{kt}) \) as a mean of a Gamma distribution \(\mathbb{E}(w_{kt}) = \tilde{\beta}_{kt} (A) \tilde{\beta}_{kt} (B) \),

while \(\mathbb{E}(\log w_{kt}) \) is as

\[
\mathbb{E}(\log w_{kt}) = \partial_{\text{log}} \Gamma \left(\tilde{\beta}_{kt} (A) \right) + \log \tilde{\beta}_{kt} (B),
\]

where \(\partial_{\text{log}} \Gamma \) digamma function (76).

The mean \(\mathbb{E}(u_{mk}) \) in (80) and (82) can be evaluated via (78) and (79), as a mean of a Gamma distribution

\[
\mathbb{E}(u_{mk}) = \tilde{\alpha}_{mk} (A) \tilde{\alpha}_{mk} (B),
\]

and \(\mathbb{E}(\log u_{mk}) \) is yielded as

\[
\mathbb{E}(\log u_{mk}) = \partial_{\text{log}} \Gamma (\tilde{\alpha}_{mk} (A)) + \log \tilde{\alpha}_{mk} (B).
\]
As the $D_v(\kappa_{mkt})$, $D_v(u_{mk})$ and $D_v(w_{kt})$ variational distributions are determined via (68), (73) and (80) the evaluation of (59) is straightforward.

Using the defined terms, the term $E\left(\log D\left(\vec{X}, \vec{\kappa}, U_B, W | \zeta\right)\right)$ from (57) can be evaluated as

$$E\left(\log D\left(\vec{X}, \vec{\kappa}, U_B, W | \zeta\right)\right) = \sum_{m=1}^{M} \sum_{t=1}^{T} \sum_{k=1}^{K} \log f_\Gamma\left(X^{(m,t)} - \sum_{k=1}^{K} \kappa_{mkt}\right) + \sum_{m=1}^{M} \sum_{k=1}^{K} \sum_{t=1}^{T} \log \eta_{mkt}$$

$$+ \sum_{k=1}^{K} \sum_{t=1}^{T} \log \beta_{kt} - \beta_{kt} E\left(w_{kt}\right),$$

while the $H\left(D_v(\vec{\kappa}, U_B, W)\right)$ entropy of the variational distribution from (58) can be evaluated as

$$H\left(D_v(\vec{\kappa}, U_B, W)\right) = \sum_{m=1}^{M} \sum_{k=1}^{K} \sum_{t=1}^{T} \log f_\Gamma\left(X^{(m,t)} + 1\right) - \sum_{k=1}^{K} \log \eta_{mkt}$$

$$+ \sum_{m=1}^{M} \sum_{k=1}^{K} \sum_{t=1}^{T} \log f_\Gamma\left(\kappa_{mkt} + 1\right)$$

$$- \sum_{m=1}^{M} \sum_{k=1}^{K} \sum_{t=1}^{T} \log f_\delta\left(X^{(m,t)} - \sum_{k=1}^{K} \kappa_{mkt}\right)$$

$$+ \sum_{m=1}^{M} \sum_{k=1}^{K} \log \alpha_{mk} - \alpha_{mk} E\left(u_{mk}\right)$$

$$+ \sum_{k=1}^{K} \sum_{t=1}^{T} \log \beta_{kt} - \beta_{kt} E\left(w_{kt}\right).$$
Thus, from (87) and (88), the lower bound L_Dv in (57) is as

$$
\mathcal{L}_{Dv} = - \sum_{m=1}^{M} \sum_{t=1}^{T} \sum_{k=1}^{K} \mathbb{E}(u_{mk}) \mathbb{E}(w_{kt}) \\
+ \sum_{m=1}^{M} \sum_{t=1}^{T} \left(- \log f_r(\mathbf{X}^{(m,t)} + 1) - \sum_{k=1}^{K} \mathbb{E}(\kappa_{mkt}) \log \eta_{mkt} \right) \\
+ \sum_{m=1}^{M} \sum_{t=1}^{T} \mathbb{E}(\log u_{mk}) \sum_{k=1}^{K} \mathbb{E}(\kappa_{mkt}) \\
+ \sum_{m=1}^{M} \sum_{k=1}^{K} \mathbb{E}(\log w_{kt}) \sum_{m=1}^{M} \kappa_{mkt} \\
+ \sum_{m=1}^{M} \sum_{k=1}^{K} (\log \alpha_{mk} - \alpha_{mk} \mathbb{E}(u_{mk})) + \sum_{k=1}^{K} \sum_{t=1}^{T} (\log \beta_{kt} - \beta_{kt} \mathbb{E}(w_{kt})) \\
+ \sum_{m=1}^{M} \sum_{k=1}^{K} (- (\bar{\alpha}_{mk}(A) - 1) \partial_{\log}(\bar{\alpha}_{mk}(A)) + \log \bar{\alpha}_{mk}(B) + \bar{\alpha}_{mk}(A) + \log f_r(\bar{\alpha}_{mk}(A))) \\
+ \sum_{k=1}^{K} \sum_{t=1}^{T} (- (\bar{\beta}_{kt}(A) - 1) \partial_{\log}(\bar{\beta}_{kt}(A)) + \log \bar{\beta}_{kt}(B) + \bar{\beta}_{kt}(A) + \log f_r(\bar{\beta}_{kt}(A)))
$$

(89)

The next problem is the $\bar{\tau}^{(t)}_k$ estimation of the control parameters α_{mk}, β_{kt} in (48) as

$$
\bar{\tau}^{(t)}_k = \{E_{mk}, F_{kt}\},
$$

(90)

such that E_{mk} is a basis estimation

$$
E_{mk} \approx \alpha_{mk}
$$

(91)

and F_{kt} is a system estimation

$$
F_{kt} \approx \beta_{kt}
$$

(92)

such that the variational lower bound L_Dv in (89) is maximized [110-113]. It is achieved for the unitary U_F as follows. The maximization problem can be formalized via the $\partial (\mathcal{L}_{Dv})$ derivative of L_{Dv}

$$
\frac{\partial (\mathcal{L}_{Dv})}{\partial \alpha_{mk}} = \frac{1}{\alpha_{mk}} - \mathbb{E}(u_{mk}) + \frac{\partial (\log(\tilde{\alpha}_{mk}(B)))}{\partial \alpha_{mk}} = 0,
$$

(93)

and

$$
\frac{\partial (\mathcal{L}_{Dv})}{\partial \beta_{kt}} = \frac{1}{\beta_{kt}} - \mathbb{E}(w_{kt}) + \frac{\partial (\log(\tilde{\beta}_{kt}(B)))}{\partial \beta_{kt}} = 0,
$$

(94)

which is solvable via [110,112]

$$
(\alpha_{mk})^2 + \sum_{t=1}^{T} \mathbb{E}(w_{kt}) \alpha_{mk} - \sum_{t=1}^{T} \mathbb{E}(w_{kt}) \alpha_{mk} = 0,
$$

(95)
and
\[(\beta_{kt})^2 + \sum_{m=1}^{M} \mathbb{E}(u_{mk}) \beta_{kt} - \sum_{m=1}^{M} \frac{\mathbb{E}(u_{mk})}{\mathbb{E}(w_{kt})} = 0.\] (96)

After some calculations, \(E_{mk}\) and \(F_{kt}\) from (90) are as
\[E_{mk} = \frac{1}{2} \left(-\sum_{t=1}^{T} \mathbb{E}(w_{kt}) + \left(\sum_{t=1}^{T} \mathbb{E}(w_{kt}) \right)^2 + 4 \sum_{t=1}^{T} \frac{\mathbb{E}(w_{kt})}{\mathbb{E}(u_{mk})} \right) \frac{1}{2},\] (97)
and
\[F_{kt} = \frac{1}{2} \left(-\sum_{m=1}^{M} \mathbb{E}(u_{mk}) + \left(\sum_{m=1}^{M} \mathbb{E}(u_{mk}) \right)^2 + 4 \sum_{m=1}^{M} \frac{\mathbb{E}(u_{mk})}{\mathbb{E}(w_{kt})} \right) \frac{1}{2},\] (98)
respectively.

From (97) and (98), the \(\tilde{\tau}_{mk}\) estimation in (90) is therefore straightforwardly yielded. Therefore, using the parameters \(\tilde{\alpha}_{mk}(B), \tilde{\alpha}_{mk}(A), \tilde{\beta}_{kt}(A), \tilde{\beta}_{kt}(B)\) and \(\eta_{mkkt}\), the optimal variational distributions \(\mathcal{D}_v(\kappa_{mkkt}), \mathcal{D}_v(u_{mk})\) and \(\mathcal{D}_v(w_{kt})\) can be substituted to estimate \(\tilde{\tau}_{mk}^{(t)}\).

Using (97) and (98), the estimation of terms \(u_{kt}\), \(w_{kt}\) and \(\kappa_{kt}\) are yielded as
\[\tilde{u}_{mk} = E_{mk}e^{-\tilde{E}_{mk}\tilde{u}_{mk}},\] (99)
and
\[\tilde{w}_{kt} = F_{kt}e^{-\tilde{F}_{kt}\tilde{w}_{kt}},\] (100)

The evaluation of (97) and (98) therefore is yielded in an iterative manner through the \(\tilde{\alpha}_{mk}(B), \tilde{\alpha}_{mk}(A), \tilde{\beta}_{kt}(A), \tilde{\beta}_{kt}(B)\) and \(\eta_{mkkt}\), and the \(K^*\) optimal number of bases, \(K\), is determined with respect to (89) such that
\[K^* = \arg \max_K \mathcal{L}_\mathcal{D}_v(K),\] (102)
where \(\mathcal{L}_\mathcal{D}_v(K)\) refers to \(\mathcal{L}_\mathcal{D}_v\) from (89) at a particular base number \(K\).

The proof is concluded here. ■

3.1.2 Quantum Constant Q Transform

As the \(\{\tilde{u}_{mk}\}\) basis estimations (99) are determined via \(\{E_{mk}\}\) (97), the next problem is the partitioning of the \(K\) bases with respect to \(M\), see (8). To achieve the partitioning, first the bases of \(U_B\) are transformed by the \(U_{CQT}\) is the quantum constant Q transform [123]. The \(U_{CQT}\) operation is similar to the discrete QFT (quantum Fourier transform) transform [40], and defined in the following manner.

The \(U_{CQT}\) transform is defined as
\[U_{CQT}(|k\rangle, m) = \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} f_W(j - m) e^{2\pi ijQ/m} |j\rangle = |\varphi_k\rangle,\] (103)
Figure 3: Representation of the U_F unitary over a total evolution time T, with K factored bases and M source systems ($M = 2$ in our setting). The factorization is represented by the solid-line arrows. At a given t, $t = 1, \ldots, T$, the input system of U_F subject of factorization is $X^{(m,t)} = \sqrt{\lambda_i^{(m,t)}} \left| \varphi_i^{(m,t)} \right\rangle$, $m = 1, \ldots, M$. Term κ_{mkt} is expressed as $\kappa_{mkt} = u_{mk} w_{kt}$, where $u_{mk} = e^{-iH_{mk} \tau / \hbar}$ is a unitary, $u_{mk} \in \mathbb{C}$, $k = 1, \ldots, K$, which sets a computational basis for w_{kt}, $w_{kt} = W_k^{(t)} = \sqrt{v_k^{(t)}} | \phi_k \rangle$. The basis matrix is $U_B = \{u_{mk}\} \in \mathbb{C}^{M \times K}$ with K bases, $H_{mk} = G_{mk} | k_m \rangle \langle k_m |$ is a Hamiltonian, and $W = \left\{ W_k^{(t)} = w_{kt} \right\} \in \mathbb{C}^{K \times T}$, $w_{kt} \in \mathbb{C}$. The factorization decomposes $X^{(m,t)}$ into $X^{(m,t)} = [U_B \bar{W}]_{mt}$, and for the total evolution $\tilde{X} = U_B \tilde{W}$, where $\tilde{X} = \{X^{(1,t)}, \ldots, X^{(M,t)}\}_{t=1}^T$, while κ_{kt} is as $\kappa_{mkt} = u_{mk} w_{kt}$. Terms α_{mk} and β_{kt} are control parameters for u_{mk} and w_{kt} (controlling is depicted by the dashed-line arrows) to evaluate the parameters as $u_{mk} \simeq \alpha_{mk} e^{-\alpha_{mk} u_{mk}}$ and $w_{kt} \simeq \beta_{kt} e^{-\beta_{kt} w_{kt}}$, estimated by E_{mk} and F_{kt} as $\tilde{u}_{mk} = E_{mk} e^{-E_{mk} \tilde{u}_{mk}}$ and $\tilde{w}_{kt} = F_{kt} e^{-F_{kt} \tilde{w}_{kt}}$.
where $|k\rangle$ is a quantum state of the computational basis B, and in the current setting
\begin{equation}
N = K,
\end{equation}
and
\begin{equation}
|k\rangle = E_{mk},
\end{equation}
thus B is as
\begin{equation}
B : \{|0\rangle, \ldots, |K - 1\rangle\},
\end{equation}
while h is selected such that
\begin{equation}
0 \leq (j - h) \leq N - 1 = K - 1
\end{equation}
holds, and Q is defined via the following relation
\begin{equation}
\frac{2\pi k}{K} = \frac{2\pi Q}{h},
\end{equation}
from which Q is yielded at a given h, k and K, as
\begin{equation}
Q = \frac{hk}{K},
\end{equation}
while $f_W(\cdot)$ is a windowing function \footnote{The function in (110) is the so-called Hanning window \cite{124}.} that localizes the wavefunctions of the quantum register, defined via parameter h as
\begin{equation}
f_W(j - h) = \frac{1}{2} \left(1 - \cos\left(\frac{2\pi (h - m)}{K - 1}\right)\right).
\end{equation}
The $|\varphi_k\rangle$ output states of U_{CQT} therefore identify a set \mathcal{S}_φ of states, as
\begin{equation}
\mathcal{S}_\varphi : \{|\varphi_k\rangle : k = 0, \ldots, K - 1\}
\end{equation}
that formulates an orthonormal basis.

The U_{CQT}^\dagger inverse of U_{CQT} will be processed as the U_P partitioning is completed, with the same $f_W(\cdot)$ windowing function, defined as
\begin{equation}
U_{CQT}^\dagger(|k\rangle, h) = \frac{1}{\sqrt{K}} \sum_{j=0}^{K-1} f_W(j - h) e^{-2\pi ijQ/h|j\rangle}.
\end{equation}
Applying (103) on the K estimated bases $\{E_{mk}\}$ yields the C_B transformed bases, as
\begin{equation}
C_B = U_{CQT}(U_B) = \{C_{mk}\} \in \mathbb{C}^{M \times K},
\end{equation}
where C_{mk} is as,
\begin{equation}
C_{mk} = U_{CQT}(E_{mk}).
\end{equation}
After the application of (113), the resulting system is therefore as
\begin{equation}
C_B W = (U_{CQT} U_B) W,
\end{equation}
where $C_B W \in \mathbb{C}^{M \times T}$.

20
3.1.3 Basis Partitioning Unitary

Theorem 2 (Partitioning the bases of source systems.) The Q transformed bases can be partitioned to M partitions via the U_P partitioning unitary operation.

Proof. As the U_{CQT} transforms of the $\{E_{mk}\}$ basis estimations (99) are determined via C_B (113), the Q transformed bases are partitioned to M partitions via the U_P unitary operation, as follows.

Let the system state from (115) be denoted by

$$S = C_B W$$

and let \tilde{S} be the estimation of S (120), defined as

$$\tilde{S} = \langle \langle \mathcal{RE} \rangle \mathcal{H} \rangle,$$

where

$$\mathcal{T} \in \{\mathcal{R}, \mathcal{E}, \mathcal{H}\}$$

is a tensor (multidimensional array) (121) with dimension $\dim(\mathcal{T})$, and size

$$s(\mathcal{T}) = \prod_{i=1}^{\dim(\mathcal{T})} |d_i(\mathcal{T})|,$$

where $|d_i(\mathcal{T})|$ is the size of the i-th dimension $d_i(\mathcal{T})$.

Let

$$\mathcal{R} = A \circ B$$

be a translation tensor of size

$$s(\mathcal{R}) = \prod_{i=1}^{\dim(\mathcal{R})} |d_i(\mathcal{R})|$$

$$= \prod_{i=1}^{\dim(\mathcal{A})} |d_i(\mathcal{A})| \times \prod_{i=1}^{\dim(\mathcal{B})} |d_i(\mathcal{B})|,$$

with

$$\dim(\mathcal{R}) = 3,$$

as

$$|d_1(\mathcal{R})| = M,$$

$$|d_2(\mathcal{R})| = 1,$$

and

$$|d_3(\mathcal{R})| = M$$

and let

$$\mathcal{E} = A \circ C$$

21
be a tensor of size
\[s(E) = \prod_{i=1}^{\dim(E)} |d_i(E)| \]
\[= \prod_{i=1}^{\dim(A)} |d_i(A)| \times \prod_{i=1}^{\dim(C)} |d_i(C)|, \]
(127)

with
\[\dim(E) = 2 \]
(128)
as
\[|d_1(E)| = M, \]
(129)
\[|d_2(E)| = K, \]
(130)
and with
\[\dim(H) = 3, \]
(131)
as
\[|d_1(R)| = 1, \]
(132)
\[|d_2(R)| = K \]
(133)
and
\[|d_3(R)| = T, \]
(134)
thus
\[\dim(A) = M \]
(135)
and
\[\dim(B) = M \]
(136)
while
\[\dim(C) = K. \]
(137)
The term \(\langle \mathcal{RE} \rangle \) is evaluated as
\[\langle \mathcal{RE} \rangle \{1: \dim(A), 1: \dim(A)\} \left(j_1, \ldots, j_{\dim(B)}, k_1, \ldots, k_{\dim(C)} \right) \]
\[= \sum_{i_1=1}^{d_1(A)} \cdots \sum_{i_{\dim(A)}=1}^{d_{\dim(A)}(A)} \mathcal{R} \left(i_1, \ldots, i_{\dim(A)}, j_1, \ldots, j_{\dim(B)} \right) \mathcal{E} \left(i_1, \ldots, i_{\dim(A)}, k_1, \ldots, k_{\dim(C)} \right), \]
(138)
where \(\mathcal{R} (i, j) \) is the indexing for the elements of the tensor.

Let \(\mathcal{E} (\forall m, k) \) refer to the \(j \)-th column of \(\mathcal{E} \), and let \(\mathcal{H} (1, k, \forall t) \) refer to the \(j \)-th lateral slice of \(\mathcal{H} \). Then, let be a \(U_P \) unitary operation that achieves the decomposition of \ref{117} with respect to a given \(k, k = 1, \ldots, K \), as
\[[S]_k = \langle \langle \mathcal{RE} (\forall m, k) \rangle \mathcal{H} (1, k, \forall t) \rangle \]
(139)
with a particular cost function \(f(U_P) \) of the \(U_P \) unitary defined via the quantum relative entropy function, as

\[
\begin{align*}
 f(U_P) &= \min_S D(\rho_S || \tilde{S}\tilde{S}^\dagger) \\
 &= \min_S \text{Tr}(\rho_S \log(\rho_S)) - \text{Tr}(\rho_S \log(\tilde{S}\tilde{S}^\dagger)),
\end{align*}
\]

where \(\rho_S \) is the density matrix associated with \(S \) as in (116),

\[
\rho_S = U_P U_{CQT} U_F \left(\sum_{m=1}^M \sum_{t=1}^T \vec{X}(m,t) \left(\vec{X}(m,t) \right)^\dagger \right),
\]

while \(\tilde{S} \) is given in (117).

Using (139), the \(Q \)-transformed bases are partitioned into \(M \) classes, the partition \(\Omega \) outputted by \(U_P \) is evaluated as

\[
\Omega = \arg \max_k ([Q]_k),
\]

where \(Q \) is a \(1 \times K \) size matrix, such that

\[
[Q]_k = \sum_{m=1}^M \langle \langle R(\forall,1,\forall) E(\forall,k) \rangle \mathcal{H}(1,k,\forall) \rangle.
\]

Since \(M = 2 \) in our setting, the partition (142) can be rewritten as

\[
\Omega = \Omega^{(1)}_Q + \Omega^{(2)}_Q,
\]

where \(\Omega^{(m)}_Q \) identifies a cluster of \(K_m \) \(Q \)-transformed bases for \(m \)-th system state,

\[
\Omega^{(m)}_Q = \left\{ \Omega^{(m,k_m)}_Q \right\}_{k_m=1}^{K_m},
\]

of

\[
\left| \Omega^{(m)}_Q \right| = K_m
\]

bases formulated via the base estimations (99) for the \(m \)-th system state in (8), such that

\[
\sum_{m=1}^M K_m = K.
\]

Since the partitioning is made over the \(Q \) transformed bases, the output of \(U_P \) is then transformed by the \(U_{CQT}^\dagger \) inverse transformation (112).

3.1.4 Inverse Quantum Constant Q Transform

Applying the \(U_{CQT}^\dagger \) inverse transformation (112) on the partitions (143) of the \(Q \) transformed bases yields the decomposition of the bases of \(U_B \) onto \(M \) classes, as

\[
U_{CQT}^\dagger(\Omega) = \theta = \sum_{m=1}^M \gamma^{(m)},
\]
and since $M = 2$

$$\theta = \gamma^{(1)} + \gamma^{(2)},$$

(149)

where $\gamma^{(m)}$ identifies a cluster of K_m bases for m-th system state.

Therefore, the resulting system state is as

$$U_{CQT}^\dagger (U_P (C_B W)) = U_{CQT}^\dagger (U_P U_{CQT} U_B) W = \chi W.$$

(150)

The next problem is therefore the evaluation of the estimations of the $M = 2$ source systems ρ_in and $\zeta^{(t)}_{QR}$, as given in (7) from χW. Using the system state (150), the system separation is produced by the U_{DSTFT}^\dagger unitary that realizes the inverse quantum DSTFT (discrete short-time Fourier transform) [124].

3.2 Inverse Quantum DSTFT and Quantum DFT

The result of unitary U_{ML} is evaluated further by the U_{DSTFT}^\dagger unitary.

Theorem 3 (Target source system recovery). Source system $m = 1$ can be extracted by the U_{DSTFT}^\dagger and U_{DFT} discrete quantum Fourier transform on the output of an HRE quantum memory.

Proof. The U_{DSTFT}^\dagger inverse quantum DSTFT transformation applied to a state $|k\rangle$ of the computational basis

$$B : \{|0\rangle, \ldots, |K-1\rangle\},$$

(151)

is defined as

$$U_{\text{DSTFT}}^\dagger (|k\rangle, h) = \frac{1}{\sqrt{K}} \sum_{j=0}^{K-1} f_W (j - h) e^{-2\pi i j k/K} |j\rangle = |\psi_k\rangle,$$

(152)

where h is selected such that

$$0 \leq (j - h) \leq K - 1$$

(153)

holds, set

$$S_{\psi} : \{|\psi_k\rangle : k = 0, \ldots, K-1\}$$

(154)

formulates an new orthonormal basis, while $f_W (\cdot)$ is a windowing function [124].

Using system state χW in (150), let $\gamma^{(m,k)}$ be a k-th basis of cluster $\gamma^{(m)}$, and let $(\chi W)^{(m,t)}$ be defined as

$$(\chi W)^{(m,t)} = [\chi W]_{mk} = \sum_{k=1}^{K} \gamma^{(m,k)} W_k^{(m,t)}$$

(155)

and let system $|\chi W\rangle$ identify (33) as

$$|\chi W\rangle = \alpha \sum_{m=1}^{M} \sum_{k_m=1}^{K_m} |k_m\rangle,$$

(156)

where $|k_m\rangle$ is the eigenvector of the Hamiltonian of $\gamma^{(m,k_m)}$, K_m is the cardinality of cluster $\gamma^{(m)}$, while $\sum_{m=1}^{M} \sum_{k_m=1}^{K_m} \alpha = 1$.

24
Since the $|k_1\rangle$ values are some parameters of U_{ML}, we can redefine (156) as

$$|\chi W\rangle = \alpha \sum_{m=1}^{M} \sum_{k_m=1}^{K_m} |k_1 + x_{m,k_m}\rangle, \quad (157)$$

where

$$x_{m,k_m} = \begin{cases} 0, & \text{if } m = 1 \\ 0, & \text{otherwise} \end{cases}, \quad (158)$$

and

$$\alpha = \frac{1}{\sqrt{K}}. \quad (159)$$

In our setting, using $k_{m=1}$ as input parameter available from the U_{ML} block, we redefine the formula of (152) via a unitary \hat{U}_{DSTFT}^\dagger, as

$$\hat{U}_{DSTFT}^\dagger (|k_m\rangle, h) = \frac{1}{\sqrt{K}} \sum_{j=0}^{K-1} f_W (j - h) e^{-2\pi i j k_1 / K} |j\rangle = |\psi_{k_m}\rangle, \quad (160)$$

where we set $f_W (j - h)$ to unity,

$$f_W (j - h) = 1. \quad (161)$$

Thus, applying (160) on (157) yields

$$\hat{U}_{DSTFT}^\dagger \left(\alpha \sum_{m=1}^{M} \sum_{k_m=1}^{K_m} |k_1 + x_{m,k_m}\rangle \right)$$

$$= \frac{1}{\sqrt{K}} \sum_{j=0}^{K-1} \left(\alpha \sum_{m=0}^{M-1} \sum_{k_m=0}^{K_m-1} e^{-2\pi i j k_1 / K} \right) e^{-2\pi i j x_{m,k_m} / K} |j\rangle \quad (162)$$

$$= \frac{1}{\sqrt{K}} \left(\sum_{j=0}^{K-1} e^{-2\pi i j x_{m,k_m} / K} \right) \left(\alpha \sum_{m=0}^{M-1} \sum_{k_m=0}^{K_m-1} e^{-2\pi i j k_1 / K} \right) |j\rangle,$$

where

$$j = \frac{K}{k_m}, \quad (163)$$

and $\sum_{j=0}^{K-1} e^{-2\pi i j x_{m,k_m} / K} = 1$, thus (162) can be rewritten as

$$\hat{U}_{DSTFT}^\dagger \left(\alpha \sum_{m=1}^{M} \sum_{k_m=1}^{K_m} |k_1 + x_{m,k_m}\rangle \right)$$

$$= \frac{1}{\sqrt{K}} \left(\alpha \sum_{m=0}^{M-1} \sum_{k_m=0}^{K_m-1} e^{-2\pi i \left(\frac{K}{k_m} \right) k_1 / K} \right) |\frac{K}{k_m}\rangle. \quad (164)$$

As follows, if

$$j = \frac{K}{k_1}, \quad (165)$$
then, the resulting $\Pr(j)$ probability is

$$\Pr(j) = \frac{1}{K} \left| \alpha \sum_{k=0}^{K_1-1} e^{-2\pi i j k / K_1} \right|^2$$

$$= \frac{1}{K} \left| \alpha \sum_{k=0}^{K_1-1} e^{-2\pi i j K_1 / K_1} \right|^2$$

$$= \frac{1}{K} |\alpha|^{2} K_1^2$$

$$= \frac{1}{K^2} K_1^2,$$ \hspace{1cm} (166)

while for the remaining j-s, the probabilities are vanished out, thus

$$\Pr(j) = 0,$$ \hspace{1cm} (167)

if

$$j \neq \frac{K_1}{K_1}.$$ \hspace{1cm} (168)

Therefore, applying the U_{DFT} discrete quantum Fourier transform on the resulting system state (164), defined in our setting as

$$U_{DFT}(|k\rangle) = \frac{1}{\sqrt{K_1}} \sum_{j=0}^{K_1-1} e^{2\pi i j K_1 / K_1} |j\rangle,$$ \hspace{1cm} (169)

yields the source system $m = 1$ in terms of the K_1 bases, as

$$U_{DFT} \tilde{U}_{DSTFT}^\dagger \left(\alpha \sum_{m=1}^{M} \sum_{k_m=1}^{K_m} |k_1 + x_{m,k_m}\rangle \right) = \frac{1}{\sqrt{K_1}} \sum_{k_m=1}^{K_1} |k_1\rangle$$

$$= |\Phi^*\rangle,$$ \hspace{1cm} (170)

that identifies the target system from (35).

The proof is concluded here. \quad ■

The state of the QR quantum register after the \tilde{U}_{CQT}^\dagger operation and after the $\tilde{U}_{DSTFT}^\dagger$ operation is depicted in Fig. 4.

4 Retrieval Efficiency

This section evaluates the retrieval efficiency of an HRE quantum memory in terms of the achievable output SNR values.

Theorem 4 \textit{(Retrieval efficiency of an HRE quantum memory).} The SNR of the output quantum system of an HRE quantum memory is evolvable from the difference of the wave function energy ratios taken between the input system, the quantum register system, and the output quantum system.
Figure 4: (a) The state of the QR quantum register after the $\hat{U}_{\text{CQT}}^\dagger$ operation. The quantum register contains $K = \sum_m K_m$ states, $|k_1 + x_{m,1}\rangle$, each with probability $|\alpha|^2 = 1/K$, with a unit distance between the states (depicted by the red dots). (b) The state of the QR quantum register after the $\hat{U}_{\text{DSTFT}}^\dagger$ operation. The quantum register contains K_1 quantum states, $|\frac{K}{K_1}\rangle$, $k_1 = 0, \ldots, K_1 - 1$, each with probability $\frac{1}{K} |\alpha|^2 K_1^2 = \frac{1}{K^2} K_1^2$, with a distance $\frac{K}{K_1 - K_1}$ between the states (depicted by the red dots; the vanished-out states of the quantum register are depicted by the black dots).

Proof. Let $|\psi_m\rangle$ be an arbitrary quantum system fed into the input of an HRE quantum memory unit,

$$|\psi_m\rangle = \sum_i a_i |i\rangle,$$

and let $|\varphi\rangle$ be the state outputted from the QR quantum register,

$$|\varphi\rangle = U_{QR} |\psi_m\rangle,$$

where U_{QR} is an unknown transformation.

Let $|\Phi^*\rangle$ be the output system of as given in (170), that can be rewritten as

$$|\Phi^*\rangle = U|\varphi\rangle = U (U_{QR}|\psi_m\rangle),$$

where U is the operator of the integrated unitary operations of the HRE quantum memory, defined as

$$U = U_{ML} U_{\text{DSTFT}} U_{DFT} = U_F U_{\text{CQT}} U_P U_{\text{CQT}} U_{\text{DSTFT}} U_{DFT}. $$

Then, let O_V be a verification oracle that computes the energy E of a wavefunction $|\psi\rangle = \sum_i c_i |\phi_i\rangle$ as

$$E (\psi) = \frac{\int \langle \psi | \hat{H} | \psi \rangle}{\int \langle \psi | \psi \rangle} = \sum_{ij} c_i^* c_j \int \langle \phi_i | \hat{H} | \phi_j \rangle \int \langle \phi_i | \phi_j \rangle,$$

where \hat{H} is a Hamiltonian.

Then, let evaluate the corresponding energies of wavefunctions $|\psi_m\rangle$, $|\varphi\rangle$ and $|\Phi^*\rangle$ via O_V, as

$$S = E (|\psi_m\rangle),$$

(176)
\[X = E(\varphi), \quad (177) \]

and
\[T = E(\Phi^*). \quad (178) \]

Then, let \(\Delta \) be the difference of the ratios of wavefunction energies, defined as
\[\Delta = R(S, T) - R(S, X) \quad (179) \]

where
\[R(S, T) = \frac{S}{T}, \quad (180) \]

and
\[R(S, X) = \frac{S}{X}. \quad (181) \]

From the quantities of (176)-(178), let \(\text{SNR}(\Phi^*) \) be the SNR of the output system \(|\Phi^*\rangle \), defined as
\[\text{SNR}(\Phi^*) = 10\log_{10}R(S, T) = \log_{10}\Delta + \frac{1}{10}\text{SNR}(X), \quad (182) \]

where
\[\text{SNR}(X) = 10\log_{10}R(S, X), \quad (183) \]

while \(\Delta \) is as given in (179).

Therefore, the SNR of the output system can be evolved from the difference of the ratios of the wavefunction energies as
\[\text{SNR}(\Phi^*) = 10\log_{10}R(S, T) = 10\left(\log_{10}\Delta + \log_{10}R(S, X)\right) \]
\[= 10\left(\log_{10}\frac{R(S, T)}{R(S, X)} + \log_{10}R(S, X)\right). \quad (184) \]

It also can be verified that \(\Delta \) from (179) can be rewritten as
\[\Delta = 10^{\Delta_{\text{SNR}}/10}, \quad (185) \]

where \(\Delta_{\text{SNR}} \) is an SNR difference, defined as
\[\Delta_{\text{SNR}} = \text{SNR}(\Phi^*) - \text{SNR}(X). \quad (186) \]

The high SNR values are reachable at moderate values of wavefunction energy ratio differences (179), therefore a high retrieval efficiency (high SNR values) can be produced by the local unitaries of the memory unit (see also Fig. 6).

The proof is concluded here. ■

The verification of the retrieval efficiency of the output of an HRE quantum memory unit is depicted in Fig. 5.

The output SNR values in the function of the \(\Delta \) wave function energy ratio difference are depicted in Fig. 6.
Figure 5: Verification of the retrieval efficiency of an HRE quantum memory unit via an \mathcal{O}_V verification oracle. In the verification procedure, an unknown quantum system $|\psi\rangle$ is stored in the QR quantum register that is evolved by an unknown operation U_{QR} of the QR quantum register. The output of QR is an unknown quantum system $|\varphi\rangle$ that is processed further by the U integrated unitary operations of the HRE quantum memory. The output system of the HRE quantum memory is $|\Phi^*\rangle$ (170). The \mathcal{O}_V oracle evaluates the SNR of the readout quantum system $|\Phi^*\rangle$.

5 Conclusions

Quantum memories are a cornerstone of the construction of quantum computers and a high-performance global-scale quantum Internet. Here, we defined the HRE quantum memory for near-term quantum devices. We defined the unitary operations of an HRE quantum memory and proved the learning procedure. We showed that the local unitaries of an HRE quantum memory integrates a group of quantum machine learning operations for the evaluation of the unknown quantum system, and a group of unitaries for the target system recovery. We determined the achievable output SNR values. The HRE quantum memory is a particularly convenient unit for gate-model quantum computers and the quantum Internet.

Acknowledgements

The research reported in this paper has been supported by the Hungarian Academy of Sciences (MTA Premium Postdoctoral Research Program 2019), by the National Research, Development and Innovation Fund (TUDFO/51757/2019-ITM, Thematic Excellence Program), by the National Research Development and Innovation Office of Hungary (Project No. 2017-1.2.1-NKP-2017-00001), by the Hungarian Scientific Research Fund - OTKA K-112125 and in part by the BME Artificial Intelligence FIKP grant of EMMI (Budapest University of Technology, BME FIKP-MI/SC).
Figure 6: The output SNR values, SNR (|Φ^*⟩) = 10 \log_{10} R(S, T), of an HRE quantum memory in the function of ∆ = R(S, T) − R(S, X), where R(S, T) = \frac{S}{T}, R(S, X) = \frac{S}{X}, S = E(\psi_{in}), X = E(\varphi), and T = E(\Phi^*).
References

[1] Pirandola, S. and Braunstein, S. L. Unite to build a quantum internet. *Nature* 532, 169–171 (2016).

[2] Lloyd, S., Shapiro, J. H., Wong, F. N. C., Kumar, P., Shahriar, S. M. and Yuen, H. P. Infrastructure for the quantum Internet. *ACM SIGCOMM Computer Communication Review*, 34, 9–20 (2004).

[3] Pirandola, S. End-to-end capacities of a quantum communication network, *Commun. Phys.* 2, 51 (2019).

[4] Wehner, S., Elkouss, D., and R. Hanson. Quantum internet: A vision for the road ahead, *Science* 362, 6412, (2018).

[5] Van Meter, R. *Quantum Networking*. ISBN 1118648927, 9781118648926, John Wiley and Sons Ltd (2014).

[6] Kimble, H. J. The quantum Internet. *Nature*, 453:1023–1030 (2008).

[7] Gyongyosi, L., Imre, S. and Nguyen, H. V. A Survey on Quantum Channel Capacities, *IEEE Communications Surveys and Tutorials*, DOI: 10.1109/COMST.2017.2786748 (2018).

[8] Van Meter, R., Ladd, T. D., Munro, W. J. and Nemoto, K. System Design for a Long-Line Quantum Repeater, *IEEE/ACM Transactions on Networking* 17(3), 1002-1013, (2009).

[9] Van Meter, R., Satoh, T., Ladd, T. D., Munro, W. J. and Nemoto, K. Path selection for quantum repeater networks, *Networking Science*, Volume 3, Issue 1–4, pp 82–95, (2013).

[10] Van Meter, R. and Devitt, S. J. Local and Distributed Quantum Computation, *IEEE Computer* 49(9), 31-42 (2016).

[11] Pirandola, S., Laurenza, R., Ottaviani, C. and Banchi, L. Fundamental limits of repeaterless quantum communications, *Nature Communications*, 15043, doi:10.1038/ncomms15043 (2017).

[12] Pirandola, S., Braunstein, S. L., Laurenza, R., Ottaviani, C., Cope, T. P. W., Spedalieri, G. and Banchi, L. Theory of channel simulation and bounds for private communication, *Quantum Sci. Technol.* 3, 035009 (2018).

[13] Pirandola, S. Bounds for multi-end communication over quantum networks, *Quantum Sci. Technol.* 4, 045006 (2019).

[14] Pirandola, S. Capacities of repeater-assisted quantum communications, *arXiv:1601.00966* (2016).

[15] Gyongyosi, L. and Imre, S. Decentralized Base-Graph Routing for the Quantum Internet, *Physical Review A*, American Physical Society, DOI: 10.1103/PhysRevA.98.022310, https://link. Aps. Org/doi/10.1103/PhysRevA.98.022310 (2018).

[16] Gyongyosi, L. and Imre, S. Dynamic topology resilience for quantum networks, *Proc. SPIE 10547*, Advances in Photonics of Quantum Computing, Memory, and Communication XI, 105470Z; doi: 10.1117/12.2288707 (2018).
[17] Gyongyosi, L. and Imre, Topology Adaption for the Quantum Internet, Quantum Information Processing, Springer Nature, DOI: 10.1007/s11128-018-2064-x, (2018).

[18] Gyongyosi, L. and Imre, S. Entanglement Access Control for the Quantum Internet, Quantum Information Processing, Springer Nature, DOI: 10.1007/s11128-019-2226-5, (2019).

[19] Gyongyosi, L. and Imre, S. Opportunistic Entanglement Distribution for the Quantum Internet, Scientific Reports, Nature, DOI:10.1038/s41598-019-38495-w, (2019).

[20] Gyongyosi, L. and Imre, S. Adaptive Routing for Quantum Memory Failures in the Quantum Internet, Quantum Information Processing, Springer Nature, DOI: 10.1007/s11128-018-2153-x, (2018).

[21] Quantum Internet Research Group (QIRG), web: https://datatracker.ietf.org/rg/qirg/about/ (2018).

[22] Laurenza, R. and Pirandola, S. General bounds for sender-receiver capacities in multipoint quantum communications, Phys. Rev. A 96, 032318 (2017).

[23] Gyongyosi, L. and Imre, S. Training Optimization for Gate-Model Quantum Neural Networks, Scientific Reports, Nature, DOI: 10.1038/s41598-019-48892-w (2019).

[24] Gyongyosi, L. and Imre, S. Dense Quantum Measurement Theory, Scientific Reports, Nature, DOI: 10.1038/s41598-019-43250-2 (2019).

[25] Gyongyosi, L. and Imre, S. State Stabilization for Gate-Model Quantum Computers, Quantum Information Processing, Springer Nature, DOI: 10.1007/s11128-019-2397-0, (2019).

[26] Gyongyosi, L. and Imre, S. Quantum Circuit Design for Objective Function Maximization in Gate-Model Quantum Computers, Quantum Information Processing, DOI: 10.1007/s11128-019-2326-2 (2019).

[27] Gyongyosi, L. and Imre, S. Multilayer Optimization for the Quantum Internet, Scientific Reports, Nature, DOI:10.1038/s41598-018-30957-x, (2018).

[28] Gyongyosi, L. and Imre, S. Entanglement Availability Differentiation Service for the Quantum Internet, Scientific Reports, Nature, (DOI:10.1038/s41598-018-28801-3), https://www.nature.com/articles/s41598-018-28801-3 (2018).

[29] Gyongyosi, L. and Imre, S. Entanglement-Gradient Routing for Quantum Networks, Scientific Reports, Nature, (DOI:10.1038/s41598-017-14394-w), https://www.nature.com/articles/s41598-017-14394-w (2017).

[30] Gyongyosi, L. and Imre, S. A Survey on Quantum Computing Technology, Computer Science Review, Elsevier, DOI: 10.1016/j.cosrev.2018.11.002, ISSN: 1574-0137, (2018).

[31] Gyongyosi, L., Bacsardi, L. and Imre, S. A Survey on Quantum Key Distribution, Infocom. J XI, 2, pp. 14-21 (2019).

[32] Rozpedek, F., Schiet, T., Thinh, L., Elkouss, D., Doherty, A., and S. Wehner, Optimizing practical entanglement distillation, Phys. Rev. A 97, 062333 (2018).
[33] Humphreys, P. et al., Deterministic delivery of remote entanglement on a quantum network, *Nature* 558, (2018).

[34] Liao, S.-K. et al. Satellite-to-ground quantum key distribution, *Nature* 549, pages 43–47, (2017).

[35] Ren, J.-G. et al. Ground-to-satellite quantum teleportation, *Nature* 549, pages 70–73, (2017).

[36] Hensen, B. et al., Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres, *Nature* 526, (2015).

[37] Hucul, D. et al., Modular entanglement of atomic qubits using photons and phonons, *Nature Physics* 11(1), (2015).

[38] Noelleke, C. et al, Efficient Teleportation Between Remote Single-Atom Quantum Memories, *Physical Review Letters* 110, 140403, (2013).

[39] Sangouard, N. et al., Quantum repeaters based on atomic ensembles and linear optics, *Reviews of Modern Physics* 83, 33, (2011).

[40] Imre, S. and Gyongyosi, L. *Advanced Quantum Communications - An Engineering Approach*. New Jersey, Wiley-IEEE Press (2013).

[41] Caleffi, M. End-to-End Entanglement Rate: Toward a Quantum Route Metric, 2017 IEEE GLOBECOM, DOI: 10.1109/GLOCOMW.2017.8269080, (2018).

[42] Caleffi, M. Optimal Routing for Quantum Networks, *IEEE Access*, Vol 5, DOI: 10.1109/ACCESS.2017.2763325 (2017).

[43] Caleffi, M., Cacciapuoti, A. S. and Bianchi, G. Quantum Internet: from Communication to Distributed Computing, *arXiv:1805.04360* (2018).

[44] Castelvecchi, D. The quantum internet has arrived, *Nature*, News and Comment, https://www.nature.com/articles/d41586-018-01835-3, (2018).

[45] Cacciapuoti, A. S., Caleffi, M., Tafuri, F., Cataliotti, F. S., Gherardini, S. and Bianchi, G. Quantum Internet: Networking Challenges in Distributed Quantum Computing, *arXiv:1810.08421* (2018).

[46] Kok, P., Munro, W. J., Nemoto, K., Ralph, T. C., Dowling, J. P. and Milburn, G. J., Linear optical quantum computing with photonic qubits, *Rev. Mod. Phys.* 79, 135-174 (2007).

[47] Preskill, J. Quantum Computing in the NISQ era and beyond, *Quantum* 2, 79 (2018).

[48] Arute, F. et al. Quantum supremacy using a programmable superconducting processor, *Nature*, Vol 574, DOI:10.1038/s41586-019-1666-5 (2019).

[49] Harrow, A. W. and Montanaro, A. Quantum Computational Supremacy, *Nature*, vol 549, pages 203-209 (2017).
[50] Aaronson, S. and Chen, L. Complexity-theoretic foundations of quantum supremacy experiments. *Proceedings of the 32nd Computational Complexity Conference*, CCC ’17, pages 22:1-22:67, (2017).

[51] Farhi, E., Goldstone, J., Gutmann, S. and Neven, H. Quantum Algorithms for Fixed Qubit Architectures. *arXiv:1703.06199v1* (2017).

[52] Farhi, E. and Neven, H. Classification with Quantum Neural Networks on Near Term Processors, *arXiv:1802.06002v1* (2018).

[53] Alexeev, Y. et al. Quantum Computer Systems for Scientific Discovery, *arXiv:1912.07577* (2019).

[54] Loncar, M. et al. Development of Quantum InterConnects for Next-Generation Information Technologies, *arXiv:1912.06642* (2019).

[55] Petz, D. *Quantum Information Theory and Quantum Statistics*, Springer-Verlag, Heidelberg, Hiv: 6. (2008).

[56] Bacsardi, L. On the Way to Quantum-Based Satellite Communication, *IEEE Comm. Mag.* 51:(08) pp. 50-55. (2013).

[57] Biamonte, J. et al. Quantum Machine Learning. *Nature*, 549, 195-202 (2017).

[58] Lloyd, S., Mohseni, M. and Rebentrost, P. Quantum algorithms for supervised and unsupervised machine learning. *arXiv:1307.0411* (2013).

[59] Lloyd, S., Mohseni, M. and Rebentrost, P. Quantum principal component analysis. *Nature Physics*, 10, 631 (2014).

[60] Lloyd, S. Capacity of the noisy quantum channel. *Physical Rev. A*, 55:1613–1622 (1997).

[61] Lloyd, S. The Universe as Quantum Computer, A *Computable Universe: Understanding and exploring Nature as computation*, Zenil, H. ed., World Scientific, Singapore, *arXiv:1312.4455v1* (2013).

[62] Shor, P. W. Scheme for reducing decoherence in quantum computer memory. *Phys. Rev. A*, 52, R2493-R2496 (1995).

[63] Chou, C., Laurat, J., Deng, H., Choi, K. S., de Riedmatten, H., Felinto, D. and Kimble, H. J. Functional quantum nodes for entanglement distribution over scalable quantum networks. *Science*, 316(5829):1316–1320 (2007).

[64] Muralidharan, S., Kim, J., Lutkenhaus, N., Lukin, M. D. and Jiang, L. Ultrafast and Fault-Tolerant Quantum Communication across Long Distances, *Phys. Rev. Lett.* 112, 250501 (2014).

[65] Yuan, Z., Chen, Y., Zhao, B., Chen, S., Schmiedmayer, J. and Pan, J. W. *Nature* 454, 1098-1101 (2008).

[66] Kobayashi, H., Le Gall, F., Nishimura, H. and Rotteler, M. General scheme for perfect quantum network coding with free classical communication, *Lecture Notes in Computer Science* (Automata, Languages and Programming SE-52 vol. 5555), Springer pp 622-633 (2009).
[67] Hayashi, M. Prior entanglement between senders enables perfect quantum network coding with
modification, Physical Review A, Vol.76, 040301(R) (2007).

[68] Hayashi, M., Iwama, K., Nishimura, H., Raymond, R. and Yamashita, S. Quantum network
coding, Lecture Notes in Computer Science (STACS 2007 SE52 vol. 4393) ed Thomas, W. and
Weil, P. (Berlin Heidelberg: Springer) (2007).

[69] Chen, L. and Hayashi, M. Multicopy and stochastic transformation of multipartite pure states,
Physical Review A, Vol.83, No.2, 022331, (2011).

[70] Schoute, E., Mancinska, L., Islam, T., Kerenidis, I. and Wehner, S. Shortcuts to quantum
network routing, arXiv:1610.05238 (2016).

[71] Lloyd, S. and Weedbrook, C. Quantum generative adversarial learning. Phys. Rev. Lett., 121,
arXiv:1804.09139 (2018).

[72] Gisin, N. and Thew, R. Quantum Communication. Nature Photon. 1, 165-171 (2007).

[73] Xiao, Y. F., Gong, Q. Optical microcavity: from fundamental physics to functional photonics
devices. Science Bulletin, 61, 185-186 (2016).

[74] Zhang, W. et al. Quantum Secure Direct Communication with Quantum Memory. Phys. Rev.
Lett. 118, 220501 (2017).

[75] Enk, S. J., Cirac, J. I. and Zoller, P. Photonic channels for quantum communication. Science,
279, 205-208 (1998).

[76] Briegel, H. J., Dur, W., Cirac, J. I. and Zoller, P. Quantum repeaters: the role of imperfect
local operations in quantum communication. Phys. Rev. Lett. 81, 5932-5935 (1998).

[77] Dur, W., Briegel, H. J., Cirac, J. I. and Zoller, P. Quantum repeaters based on entanglement
purification. Phys. Rev. A, 59, 169-181 (1999).

[78] Duan, L. M., Lukin, M. D., Cirac, J. I. and Zoller, P. Long-distance quantum communication
with atomic ensembles and linear optics. Nature, 414, 413-418 (2001).

[79] Van Loock, P., Ladd, T. D., Sanaka, K., Yamaguchi, F., Nemoto, K., Munro, W. J. and
Yamamoto, Y. Hybrid quantum repeater using bright coherent light. Phys. Rev. Lett., 96,
240501 (2006).

[80] Zhao, B., Chen, Z. B., Chen, Y. A., Schmiedmayer, J. and Pan, J. W. Robust creation of
entanglement between remote memory qubits. Phys. Rev. Lett. 98, 240502 (2007).

[81] Goebel, A. M., Wagenknecht, G., Zhang, Q., Chen, Y., Chen, K., Schmiedmayer, J. and Pan, J. W. Multistage Entanglement Swapping. Phys. Rev. Lett. 101, 080403 (2008).

[82] Simon, C., de Riedmatten, H., Afzelius, M., Sangouard, N., Zbinden, H. and Gisin N. Quantum
Repeaters with Photon Pair Sources and Multimode Memories. Phys. Rev. Lett. 98, 190503
(2007).

[83] Tittel, W., Afzelius, M., Chanciere, T., Cone, R. L., Kroll, S., Moiseev, S. A. and Sellars, M.
Photon-echo quantum memory in solid state systems. Laser Photon. Rev. 4, 244-267 (2009).
[84] Sangouard, N., Dubessy, R. and Simon, C. Quantum repeaters based on single trapped ions. *Phys. Rev. A*, 79, 042340 (2009).

[85] Dur, W. and Briegel, H. J. Entanglement purification and quantum error correction. *Rep. Prog. Phys*, 70, 1381-1424 (2007).

[86] Sheng, Y. B., Zhou, L. Distributed secure quantum machine learning. *Science Bulletin*, 62, 1025-1019 (2017).

[87] Leung, D., Oppenheim, J. and Winter, A. *IEEE Trans. Inf. Theory* 56, 3478-90. (2010).

[88] Kobayashi, H., Le Gall, F., Nishimura, H. and Rotteler, M. Perfect quantum network communication protocol based on classical network coding, *Proceedings of 2010 IEEE International Symposium on Information Theory* (ISIT) pp 2686-90. (2010).

[89] Distante, E. et al. Storing single photons emitted by a quantum memory on a highly excited Rydberg state. *Nat. Commun.* 8, 14072 doi: 10.1038/ncomms14072 (2017).

[90] Albrecht, B., Farrera, P., Heinze, G., Cristiani, M. and de Riedmatten, H. Controlled rephasing of single collective spin excitations in a cold atomic quantum memory. *Phys. Rev. Lett.* 115, 160501 (2015).

[91] Choi, K. S. et al. Mapping photonic entanglement into and out of a quantum memory. *Nature* 452, 67–71 (2008).

[92] Chaneliere, T. et al. Storage and retrieval of single photons transmitted between remote quantum memories. *Nature* 438, 833–836 (2005).

[93] Fleischhauer, M. and Lukin, M. D. Quantum memory for photons: Dark-state polaritons. *Phys. Rev. A* 65, 022314 (2002).

[94] Korber, M. et al. Decoherence-protected memory for a single-photon qubit, *Nature Photonics* 12, 18–21 (2018).

[95] Yang, J. et al. Coherence preservation of a single neutral atom qubit transferred between magic-intensity optical traps. *Phys. Rev. Lett.* 117, 123201 (2016).

[96] Ruster, T. et al. A long-lived Zeeman trapped-ion qubit. *Appl. Phys. B* 112, 254 (2016).

[97] Neuzner, A. et al. Interference and dynamics of light from a distance-controlled atom pair in an optical cavity. *Nat. Photon.* 10, 303-306 (2016).

[98] Yang, S.-J., Wang, X.-J., Bao, X.-H. and Pan, J.-W. An efficient quantum light-matter interface with sub-second lifetime. *Nat. Photon.* 10, 381-384 (2016).

[99] Uphoff, M., Brekenfeld, M., Rempe, G. and Ritter, S. An integrated quantum repeater at telecom wavelength with single atoms in optical fiber cavities. *Appl. Phys. B* 122, 46 (2016).

[100] Zhong, M. et al. Optically addressable nuclear spins in a solid with a six-hour coherence time. *Nature* 517, 177-180 (2015).
[101] Sprague, M.R. et al. Broadband single-photon-level memory in a hollow-core photonic crystal fibre. *Nat. Photon.* 8, 287-291 (2014).

[102] Gouraud, B., Maxein, D., Nicolas, A., Morin, O. and Laurat, J. Demonstration of a memory for tightly guided light in an optical nanofiber. *Phys. Rev. Lett.* 114, 180503 (2015).

[103] Razavi, M., Piani, M. and Lutkenhaus, N. Quantum repeaters with imperfect memories: Cost and scalability. *Phys. Rev. A* 80, 032301 (2009).

[104] Langer, C. et al. Long-lived qubit memory using atomic ions. *Phys. Rev. Lett.* 95, 060502 (2005).

[105] Maurer, P. C. et al. Room-temperature quantum bit memory exceeding one second. *Science* 336, 1283-1286 (2012).

[106] Steger, M. et al. Quantum information storage for over 180 s using donor spins in a 28Si semiconductor vacuum. *Science* 336, 1280-1283 (2012).

[107] Bar-Gill, N., Pham, L. M., Jarmola, A., Budker, D. and Walsworth, R. L. Solid-state electronic spin coherence time approaching one second. *Nature Commun.* 4, 1743 (2013).

[108] Riedl, S. et al. Bose-Einstein condensate as a quantum memory for a photonic polarisation qubit. *Phys. Rev. A* 85, 022318 (2012).

[109] Xu, Z. et al. Long lifetime and high-fidelity quantum memory of photonic polarisation qubit by lifting Zeeman degeneracy. *Phys. Rev. Lett.* 111, 240503 (2013).

[110] Chien, J-T. *Source Separation and Machine Learning*, Academic Press (2019).

[111] Yang, P.-K., Hsu, C.-C., Chien, J.-T., Bayesian factorization and selection for speech and music separation. In: *Proc. of Annual Conference of International Speech Communication Association*, pp. 998–1002. (2014).

[112] Yang, P.-K., Hsu, C.-C., Chien, J.-T., Bayesian singing-voice separation. In: *Proc. of Annual Conference of International Society for Music Information Retrieval* (ISMIR), pp. 507–512. (2014).

[113] Chien, J.-T., Yang, P.-K., Bayesian factorization and learning for monaural source separation. *IEEE/ACM Transactions on Audio, Speech and Language Processing* 24 (1), 185–195. (2016).

[114] Bishop, C. M. *Pattern Recognition and Machine Learning*. Springer Science, (2006).

[115] Vembu, S. and Baumann, S. Separation of vocals from polyphonic audio recordings. In: *Proc. of ISMIR*, pages 375–378, (2005).

[116] Lee, D. D. and Seung, H. S. Algorithms for nonnegative matrix factorization. *Advances in Neural Information Processing Systems*, 556–562, (2000).

[117] Cemgil, A. T. Bayesian inference for nonnegative matrix factorisation models. *Computational Intelligence and Neuroscience*, 785152, (2009).
[118] Schmidt, M. N., Winther, O. and Hansen, L. K. Bayesian non-negative matrix factorization. In: Proc. of ICA, 540–547, (2009).

[119] Tibshirani, R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B, 58(1):267–288, (1996).

[120] Jaiswal, R. et al. Clustering NMF Basis Functions Using Shifted NMF for Monaural Sound Source Separation. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), (2011).

[121] FitzGerald, D., Cranitch, M. and Coyle, E. Shifted Nonnegative matrix factorisation for sound source separation, IEEE Workshop of Statistical Signal Processing, Bordeaux, France, (2005).

[122] Bader, B. W. and Kolda, T. G. MATLAB Tensor Classes for Fast Algorithm Prototyping, Sandia National Laboratories Report, SAND2004-5187 (2004).

[123] Brown, J. C. Calculation of a Constant Q spectral transform, Journal of the Acoustic Society of America, vol. 89, no.1, pp 425-434, (1991).

[124] Quatieri, T. F. Discrete-Time Speech Signal Processing: Principles and Practice, Prentice Hall, ISBN-10: 013242942X, ISBN-13: 978-0132429429 (2002).

[125] Sherrill, C. D. A Brief Review of Elementary Quantum Chemistry, Lecture Notes, web: http://vergil.chemistry.gatech.edu/notes/quantrev/quantrev.html (2001).

[126] Chakraborty, K., Rozpedeky, F., Dahlbergz, A. and Wehner, S. Distributed Routing in a Quantum Internet, arXiv:1907.11630v1 (2019).

[127] Khatri, S., Matyas, C. T., Siddiqui, A. U. and Dowling, J. P. Practical figures of merit and thresholds for entanglement distribution in quantum networks, Phys. Rev. Research 1, 023032 (2019).

[128] Kozlowski, W. and Wehner, S. Towards Large-Scale Quantum Networks, Proc. of the Sixth Annual ACM International Conference on Nanoscale Computing and Communication, Dublin, Ireland, arXiv:1909.08396 (2019).

[129] Pathumsoot, P., Matsuo, T., Satoh, T., Hajdusek, M., Suwanna, S. and Van Meter, R. Modeling of Measurement-based Quantum Network Coding on IBMQ Devices, arXiv:1910.00815v1 (2019).

[130] Pal, S., Batra, P., Paterek, T. and Mahesh, T. S. Experimental localisation of quantum entanglement through monitored classical mediator, arXiv:1909.11030v1 (2019).

[131] Zhu, F., Zhang, W., Sheng, Y. B. and Huang, Y. D. Experimental long-distance quantum secret direct communication. Sci. Bull. 62, 1519 (2017).

[132] Wu, F. Z., Yang, G. J., Wang, H. B., et al. High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states. Sci. China Phys. Mech. Astron, 60, 120313 (2017).
[133] Chen, S. S., Zhou, L., Zhong, W. and Sheng, Y. B. Three-step three-party quantum secure direct communication, *Sci. China Phys. Mech. Astron.* 61, 090312 (2018).

[134] Niu, P. H., Zhou, Z. R., Lin, Z. S., Sheng, Y. B., Yin, L. G. and Long, G. L. Measurement-device-independent quantum communication without encryption. *Sci. Bull.* 63, 1345-1350 (2018).
A Appendix

A.1 Abbreviations

DFT Discrete Fourier Transform

DSTFT Discrete Short-Time Fourier Transform

HRE High-Retrieval Efficiency

SNR Signal-to-Noise Ratio

A.2 Notations

The notations of the manuscript are summarized in Table A.1.

Notation	Description					
\(\rho_m \)	An unknown input quantum system formulated by \(n \) unknown density matrices.					
\(\rho_i \)	An \(i \)-th density matrix, \(i = 1, \ldots, n \).					
\(QR \)	Quantum register of an HRE quantum memory.					
\(\sigma_{QR} \)	Mixed state of the \(QR \) quantum register.					
\(T \)	Total evolution time, \(t = 1, \ldots, T \).					
\(\sigma_{QR}^{(t)} \)	Mixed state of the \(QR \) quantum register at a given \(t \), \(\sigma_{QR}^{(t)} \in \mathbb{C} \), \(\sigma_{QR}^{(t)} = \sum_{i=1}^{n} \lambda_i^{(t)}	\varphi_i^{(t)}\rangle \langle \varphi_i^{(t)}	\), \(t = 1, \ldots, T \).			
\(U_{QR}^{(t)} \)	Unknown evolution matrix of the \(QR \) quantum register at a given \(t \).					
\(\dim(U_{QR}^{(t)}) \)	Dimension of \(U_{QR}^{(t)} \), \(\dim(U_{QR}^{(t)}) = d^n \times d^n \), where \(d \) is the dimension of the quantum system.					
\(X_i^{(t)} \)	A complex quantity, defined as \(X_i^{(t)} = \sqrt{\lambda_i^{(t)}}	\varphi_i^{(t)}\rangle \), \(i = 1, \ldots, n \), \(t = 1, \ldots, T \).				
\(X^{(t)} \)	Sum of \(n \) complex quantities, \(X^{(t)} = \sum_{i=1}^{n} X_i^{(t)} \).					
\(\zeta_{QR}^{(t)} \)	An unknown residual density matrix at a given \(t \), it formulates the mixed system of the quantum register as \(\sigma_{QR}^{(t)} = \rho_{in} + \zeta_{QR}^{(t)} \).					
\(M \)	Number of source systems of the mixed quantum register, \(\sigma_{QR}^{(t)} = \sum_{m=1}^{M} \rho_m \), where \(\rho_m \) is an \(m \)-th source system, \(m = 1, \ldots, M \).					
\(\rho_m \)	An \(m \)-th source density matrix of the mixed quantum register state, \(m = 1, \ldots, M \).					
Symbol	Definition					
-----------------	---					
$X^{(m,t)}_i$	A complex quantity associated with an m-th source system, $X^{(m,t)}_i = \sqrt{\lambda^{(m,t)}_i} \varphi^{(m,t)}_i$, $m = 1, \ldots, M$, $i = 1, \ldots, n$, $t = 1, \ldots, T$.					
$X^{(m,t)}$	Sum of n complex quantities, $X^{(m,t)} = \sum_{i=1}^{n} X^{(m,t)}_i$, $m = 1, \ldots, M$, $t = 1, \ldots, T$.					
$\tilde{X}^{(m,t)}$	An approximation of $X^{(m,t)}$.					
U_{QR}	Unknown transformation matrix of the QR quantum register over the total evolution time T.					
V_{QG}	Inverse matrix of the unknown U_{QR}.					
σ_{out}	Output quantum system.					
U_{ML}	Unitary of a quantum machine learning procedure.					
U_F	Factorization unitary, evaluates K bases for the source system decomposition, and defines a W auxiliary quantum system.					
U_{CQT}	Unitary of the quantum constant Q transform. The U_{CQT} transform is a preliminary operation for the partitioning of the K bases onto M clusters via unitary U_P.					
f_W	A windowing function in U_{CQT}.					
U_P	A basis partitioning unitary that clusters the bases with respect to the M source systems.					
U_{CQT}^\dagger	A unitary, inverse of U_{CQT}.					
$\tilde{U}_{DSTFT}^\dagger$	Unitary of the inverse quantum DSTFT (discrete short-time Fourier transform) operation.					
U_{DFT}	Quantum discrete Fourier transform.					
u_{mk}	Parameter in the basis estimation procedure of U_{ML}, $m = 1, \ldots, M$, $k = 1, \ldots, K$.					
H_{mk}	A Hamiltonian, $H_{mk} = G_{mk}	k_m\rangle\langle k_m	$, where G_{mk} is the eigenvalue of basis $	k_m\rangle$, $H_{mk}	k_m\rangle = G_{mk}	k_m\rangle$.
τ	Application time, sub-parameter of u_{mk}.					
w_{kt}	A system state evolved via U_{ML}.					
K	Number of bases evolved via U_{ML}.					
T	Total evolution time of the quantum system in the quantum register.					
M	Number of source systems of the mixed quantum system σ_{QR} of the quantum register.					
A complex basis matrix, \(U_B = \{u_{mk}\} \in \mathbb{C}^{M \times K}, m = 1, \ldots, M, k = 1, \ldots, K \).

A complex matrix, \(\tilde{\rho}_W \in \mathbb{C}^{K \times T}, \tilde{\rho}_W = \{\rho_W(t)\}_T^{t=1} \).

A complex quantity, \(W_k^{(t)} \in \mathbb{C}, W_k^{(t)} = \sqrt{v_k^{(t)}|\phi_k\rangle}, m = 1, \ldots, M, k = 1, \ldots, K \).

A complex quantity, \(w_{kt} = W_k^{(t)}, m = 1, \ldots, M, k = 1, \ldots, K \).

A complex matrix, \(W = \left\{W_k^{(t)} = w_{kt}\right\} \in \mathbb{C}^{K \times T} \).

A complex matrix, \(\vec{\rho}_W \) as \(\vec{\rho}_W = U_B W \).

A complex matrix, \(\vec{X} \in \mathbb{C}^{M \times T} \).

A complex matrix, \(\tilde{X} \in \mathbb{C}^{M \times T} \), an approximation of \(\vec{X} \), as \(\tilde{X} = U_B W \).

The number of bases associated with the \(m \)-th source system, \(m = 1, \ldots, M \), \(\sum_m K_m = K \).

Target output system state, \(|\Phi^*\rangle = \frac{1}{\sqrt{K_1}} \sum_{k_1=1}^{K_1} |k_1\rangle \), where \(K_1 \) is the number of bases for the source system \(m = 1, k_1 = 1, \ldots, K_1 \).

A density matrix associated with \(\vec{X} \), \(\rho_{\vec{X}} = \sum_{m=1}^{M} \sum_{t=1}^{T} \vec{X}(m,t) \left(\vec{X}(m,t)^\dagger\right) \).

A density matrix associated with \(\tilde{X} \), \(\rho_{\tilde{X}} = \sum_{m=1}^{M} \sum_{t=1}^{T} \tilde{X}(m,t) \left(\tilde{X}(m,t)^\dagger\right) \).

Quantum relative entropy function.

Objective function of unitary \(U_F \).

A likelihood function.

A control parameter defined for \(u_{mk} \), such that \(u_{mk} \simeq \alpha_{mk} e^{-\alpha_{mk} u_{mk}} \).

A control parameter defined for \(w_{kt} \), such that \(w_{kt} \simeq \beta_{kt} e^{-\beta_{kt} w_{kt}} \).

A set of model parameters, \(\zeta = \{U_B, W\} \).

A set of control parameters, \(\tau_{mk}^{(t)} = \{\alpha_{mk}, \beta_{kt}\} \).

A maximum likelihood estimation of \(\zeta \).

A probability distribution.

An estimation coefficient, \(\kappa_{mkt} = u_{mk} w_{kt} \).

A complex matrix, \(\vec{\kappa} \in \mathbb{C}^{M \times T}, \vec{\kappa} = \{\kappa_k^{(1,t)}, \ldots, \kappa_k^{(M,t)}\}_t^{t=1}, \) where \(\kappa_k^{(m,t)} = \left(\kappa_k^{(m,t)}_1, \ldots, \kappa_k^{(m,t)}_{k=K}\right) \), with \(\kappa_k^{(m,t)} = \kappa_{mkt} \).
Symbol	Definition
$\mathcal{D}_v (\cdot)$	A variational distribution.
$H (\mathcal{D}_v (\cdot))$	Entropy of a variational distribution $\mathcal{D}_v (\cdot)$.
$\mathcal{L}_{\mathcal{D}_v}$	A likelihood function.
$\mathbb{E}_{\mathcal{D}_v (i \neq \Phi)} (\cdot)$	Expectation function of the $\mathcal{D}_v (i)$ variational distribution of i, such that $i \neq \Phi$, $\Phi \in \{\bar{\kappa}, U_B, W\}$, $\mathbb{E}_a (f (a) + g (a)) = \mathbb{E}_a (f (a)) + \mathbb{E}_a (g (a))$, for some functions $f (a)$ and $g (a)$, and $\mathbb{E}_a (bf (a)) = b \mathbb{E}_a (f (a))$ for some constant b.
$f_\delta (\cdot)$	Dirac delta function.
$f_\Gamma (\cdot)$	Gamma function.
\mathcal{M}	A multinomial distribution.
η_{mkt}	A multinomial parameter.
$\eta_k^{(m,t)}$	A multinomial parameter vector, $\eta_k^{(m,t)} = \left(\eta_{k=1}^{(m,t)}, \ldots, \eta_{k=K}^{(m,t)} \right)^T$, $\sum_{k=1}^K \eta_k^{(m,t)} = 1$.
$\mathcal{G} (\cdot)$	A Gamma distribution, $\mathcal{G} ((x; a, b) = e^{(a-1) \log x - K \log f_\Gamma (x) - a \log b}$, where a is a shape parameter, while b is a scale parameter.
$f_\Gamma (\cdot)$	Gamma function.
$H (\mathcal{G} (\cdot))$	Entropy of Gamma distribution $\mathcal{G} (\cdot)$.
$\partial_{\mathcal{G} \log} (\cdot)$	Derivative of the log gamma function (digamma function), $\partial_{\mathcal{G} \log} (x) = \frac{d \log f_\Gamma (x)}{dx}$.
$\mathbb{E} (\kappa_{mkt})$	Expected value of κ_{mkt}, $\mathbb{E} (\kappa_{mkt}) = X^{(m,t)} \eta_{mkt}$.
$\tilde{\alpha}_{mk} (A)$	Control parameter for U_B, $\tilde{\alpha}_{mk} (A) = 1 + \sum_{t=1}^T \mathbb{E} (\kappa_{mkt})$.
$\tilde{\alpha}_{mk} (B)$	Control parameter for U_B, $\tilde{\alpha}_{mk} (B) = \frac{1}{\sum_{t=1}^T \mathbb{E}(w_{kt})+\alpha_{mk}}$.
$\tilde{\beta}_{kt} (A)$	Control parameter for W, $\tilde{\beta}_{kt} (A) = 1 + \sum_{m=1}^M \mathbb{E} (\kappa_{mkt})$.
$\tilde{\beta}_{kt} (B)$	Control parameter for W, $\tilde{\beta}_{kt} (B) = \frac{1}{\sum_{m=1}^M \mathbb{E}(u_{mk})+\beta_{kt}}$.
$\mathbb{E} (w_{kt})$	Expected value of $\mathbb{E} (w_{kt})$, $\mathbb{E} (w_{kt}) = \tilde{\beta}_{kt} (A) \tilde{\beta}_{kt} (B)$.
$\mathbb{E} (\log w_{kt})$	Expected value of $\mathbb{E} (\log w_{kt})$, $\mathbb{E} (\log w_{kt}) = \partial_{\mathcal{G} \log} (\tilde{\beta}_{kt} (A)) + \log \tilde{\beta}_{kt} (B)$.
\[
\begin{array}{	l
\hline	
E(u_{mk}) & \text{Expected value of } E(u_{mk}), \ E(u_{mk}) = \hat{\alpha}_{mk}(A) \hat{\alpha}_{mk}(B). \\	
E(\log u_{mk}) & \text{Expected value of } E(\log u_{mk}), \ E(\log u_{mk}) = \partial_{\log} \hat{\alpha}_{mk}(A) + \log \hat{\alpha}_{mk}(B). \\	
E_mk & \text{A basis estimation, } E_mk \approx \alpha_{mk}. \\	
F_{kt} & \text{A system state estimation, } F_{kt} \approx \beta_{kt}. \\	
\tilde{\tau}^{(t)}_{mk} & \text{Estimation of the control parameters } \alpha_{mk}, \beta_{kt}, \text{ as } \tilde{\tau}^{(t)}_{mk} = \{E_mk, F_{kt}\}. \\	
K^* & \text{An optimal number of bases, } K^* = \arg \max_K L_{D_{C}}(K), \text{ where } L_{D_{C}}(K) \text{ is the likelihood function } L_{D_{C}} \text{ at a particular base number } K. \\	
Q & \text{Parameter of } U_{CQT}. \\	
f_W(\cdot) & \text{Windowing function for } U_{CQT}. \\	
h & \text{Parameter of } f_W(\cdot). \\	
C_{B} & \text{A complex matrix of transformed bases, } C_{B} = U_{CQT}(U_{B}) = \{C_{mk}\} \in \mathbb{C}^{M \times K}. \\	
C_{mk} & \text{A } Q\text{-transformed basis estimation parameter, } C_{mk} = U_{CQT}(E_{mk}). \\	
S & \text{A complex matrix, } S = C_{B}W, \ S \in \mathbb{C}^{M \times T}, \ C_{B}W = (U_{CQT}U_{B})W. \\	
T & \text{A tensor (multidimensional array).} \\	
dim(T) & \text{Dimension of tensor } T. \\	
R & \text{A translation tensor.} \\	
f(U_{P}) & \text{A cost function of } U_{P}. \\	
\Omega & \text{A sum of partitioned bases.} \\	
[\Omega_{Q}^{(m)}] & \text{A cluster of } [\Omega_{Q}^{(m)}] Q\text{-transformed bases for the } m\text{-th system state, } \\	
[\Omega_{Q}^{(m)}] = \{\Omega_{Q}^{(m,k_m)}\}_{k_m = 1}^{K_m}, \ m = 1, \ldots, M. \\	
[K_m^{(m)}] & \text{Cardinality of cluster } [\Omega_{Q}^{(m)}], \ [\Omega_{Q}^{(m)}] = K_m. \\	
\theta & \text{Partitioned bases transformed by } U_{CQT}^{t}. \\	
\gamma^{(m)} & \text{A cluster of } K_m \text{ bases for } m\text{-th system state.} \\	
\chi_{W} & \text{A system state, defined as } \chi_{W} = U_{CQT}^{t}(U_{P}(C_{B}W)) = U_{CQT}^{t}(U_{P}U_{CQT}U_{B}). \\	
k_m⟩ & \text{A basis state associated with the } m\text{-th source.} \\	
\hline	
\end{array}	
\]	
x_{m,k_m}	Model parameter, defined as $x_{m,k_m} = \begin{cases} 0, & \text{if } m = 1 \\ 0, & \text{otherwise} \end{cases}$.
---	---
$	\psi_{in}\rangle$
$	\Phi^*\rangle$
O_V	A verification oracle that computes the energy E of a wavefunction $
$E(\psi)$	Energy E of a wavefunction $
Δ	Wavefunction energy ratio difference, $\Delta = R(S,T) - R(S,X)$, where $R(S,T) = \frac{S}{T}$, $R(S,X) = \frac{S}{X}$, and $S = E(
Δ_{SNR}	An SNR difference.