Combining the AFLOW GIBBS and Elastic Libraries for efficiently and robustly screening thermo-mechanical properties of solids

Cormac Toher, Corey Oses, Jose J. Plata, David Hicks, Frisco Rose, Ohad Levy, Maarten de Jong, Marco Asta, Marco Fornari, Marco Buongiorno Nardelli, and Stefano Curtarolo

1 Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA
2 Department of Physics, NRCN, Beer-Sheva, 84190, Israel
3 Department of Materials Science and Engineering, University of California, Berkeley, 210 Hearst Memorial Mining Building, Berkeley, USA
4 Space Exploration Technologies, 1 Rocket Road, Hawthorne, CA 90250
5 Department of Physics, Central Michigan University, Mount Pleasant, MI 48858, USA
6 Department of Physics and Department of Chemistry, University of North Texas, Denton TX
7 Materials Science, Electrical Engineering, Physics and Chemistry, Duke University, Durham NC, 27708

(Dated: October 2, 2018)

Thorough characterization of the thermo-mechanical properties of materials requires difficult and time-consuming experiments. This severely limits the availability of data and is one of the main obstacles for the development of effective accelerated materials design strategies. The rapid screening of new potential materials requires highly integrated, sophisticated and robust computational approaches. We tackled the challenge by developing an automated, integrated workflow with robust error-correction within the AFLOW framework which combines the newly developed “Automatic Elasticity Library” with the previously implemented GIBBS method. The first extracts the mechanical properties from automatic self-consistent stress-strain calculations, while the latter employs those mechanical properties to evaluate the thermodynamics within the Debye model. This new thermo-elastic workflow is benchmarked against a set of 74 experimentally characterized systems to pinpoint a robust computational methodology for the evaluation of bulk and shear moduli, Poisson ratios, Debye temperatures, Grüneisen parameters, and thermal conductivity of materials. The effect of different choices of equations of state and exchange-correlation functionals is examined and the optimum combination of properties for the Leibfried-Schlömann prediction of thermal conductivity is identified, leading to improved agreement with experimental results than the GIBBS-only approach. The framework has been applied to the AFLOW.org data repositories to compute the thermo-elastic properties of over 3500 unique materials. The results are now available online by using an expanded version of the REST-API described in the appendix.

PACS numbers: 66.70.-f, 66.70.Df

I. INTRODUCTION

Calculating the thermal and elastic properties of materials is important for predicting the thermodynamic and mechanical stability of structural phases [1–4] and assessing their importance for a variety of applications. Elastic and mechanical properties such as the shear and bulk moduli are important for predicting the hardness of materials [5], and thus their resistance to wear and distortion. Thermal properties, such as specific heat capacity and lattice thermal conductivity, are important for applications including thermal barrier coatings, thermoelectrics [6–8], and heat sinks [9, 10].

Elasticity. There are two main methods for calculating the elastic constants, based on the response of either the stress tensor or the total energy to a set of applied strains [11–16]. In this study, we obtain the elastic constants from the calculated stress tensors for a set of independent deformations of the crystal lattice. This method is implemented within the AFLOW framework for computational materials design [17–19], where it is referred to as the Automatic Elasticity Library (AEL). A similar implementation within the Materials Project [14] allows extensive screening studies by combining data from these two large repositories of computational materials data.

Thermal properties. The determination of the thermal conductivity of materials from first principles requires either calculation of anharmonic interatomic force constants (IFCs) for use in the Boltzmann Transport Equation (BTE) [20–27], or molecular dynamics simulations in combination with the Green-Kubo formula [28, 29], both of which are highly demanding computationally even within multiscale approaches [30]. These methods are unsuitable for rapid generation and screening of large databases of materials properties in order to identify trends and simple descriptors [31]. Previously, we have implemented the “GIBBS” quasi-harmonic Debye model [32, 33] within both the Automatic GIBBS Library (AGL) [34] of the AFLOW [17, 35–38] and Materials Project [39–41] frameworks. This approach does not require large supercell calculations since it relies merely on first-principles calculations of the energy as a function of unit cell volume. It is thus much more tractable computationally and eminently suited to investigating the thermal properties of entire classes of materials in a highly-automated fashion to identify promising candidates for more in-depth experimental and computational analysis.

The data set of computed thermal and elastic properties produced for this study is available in the AFLOW [35] online data repository, either using the

* stefano@duke.edu
AFLOW REpresentational State Transfer Application Programming Interface (REST-API) [36] or via the aflow.org web portal [35, 42].

II. THE AEL-AGL METHODOLOGY

The AEL-AGL methodology combines elastic constants calculations, in the Automatic Elasticity Library (AEL), with the calculation of thermal properties within the Automatic GIBBS Library (AGL [34]) - “GIBBS” [32] implementation of the Debye model. This integrated software library includes automatic error correction to facilitate high-throughput computation of thermal and elastic materials properties within the AFLOW framework [17, 35–43, 47]. The principal ingredients of the calculation are described in the following Sections.

A. Elastic properties

The elastic constants are evaluated from the stress-strain relations

\[
\begin{pmatrix}
 s_{11} \\
 s_{22} \\
 s_{33} \\
 s_{23} \\
 s_{13} \\
 s_{12}
\end{pmatrix} =
\begin{pmatrix}
 c_{11} & c_{12} & c_{13} & c_{14} & c_{15} & c_{16} \\
 c_{12} & c_{22} & c_{23} & c_{24} & c_{25} & c_{26} \\
 c_{13} & c_{23} & c_{33} & c_{34} & c_{35} & c_{36} \\
 c_{14} & c_{24} & c_{34} & c_{44} & c_{45} & c_{46} \\
 c_{15} & c_{25} & c_{35} & c_{45} & c_{55} & c_{56} \\
 c_{16} & c_{26} & c_{36} & c_{46} & c_{56} & c_{66}
\end{pmatrix}
\begin{pmatrix}
 \epsilon_{11} \\
 \epsilon_{22} \\
 \epsilon_{33} \\
 \epsilon_{23} \\
 \epsilon_{13} \\
 \epsilon_{12}
\end{pmatrix}
\]

(1)

with stress tensor elements \(s_{ij} \) calculated for a set of independent normal and shear strains \(\epsilon_{ij} \). The elements of the elastic stiffness tensor \(c_{ij} \), written in the 6x6 Voigt notation using the mapping [2]: 11 ↦ 1, 22 ↦ 2, 33 ↦ 3, 23 ↦ 4, 13 ↦ 5, 12 ↦ 6; are derived from polynomial fits for each independent strain, where the polynomial degree is automatically set to be less than the number of strains applied in each independent direction to avoid overfitting. The elastic constants are then used to compute the bulk and shear moduli, using either the Voigt approximation

\[
B_{\text{Voigt}} = \frac{1}{9} \left[(c_{11} + c_{22} + c_{33}) + 2(c_{12} + c_{23} + c_{13}) \right]
\]

(2)

for the bulk modulus, and

\[
G_{\text{Voigt}} = \frac{1}{15} \left[(c_{11} + c_{22} + c_{33}) - (c_{12} + c_{23} + c_{13}) \right] + \frac{1}{5} (c_{44} + c_{55} + c_{66})
\]

(3)

for the shear modulus; or the Reuss approximation, which uses the elements of the compliance tensor \(s_{ij} \) (the inverse of the stiffness tensor), where the bulk modulus is given by

\[
\frac{1}{B_{\text{Reuss}}} = (s_{11} + s_{22} + s_{33}) + 2(s_{12} + s_{23} + s_{13})
\]

(4)

and the shear modulus is

\[
\frac{15}{G_{\text{Reuss}}} = 4(s_{11} + s_{22} + s_{33}) - 4(s_{12} + s_{23} + s_{13}) + 3(s_{14} + s_{55} + s_{66})
\]

(5)

For polycrystalline materials, the Voigt approximation corresponds to assuming that the strain is uniform and that the stress is supported by the individual grains in parallel, giving the upper bound on the elastic moduli; while the Reuss approximation assumes that the stress is uniform and that the strain is the sum of the strains of the individual grains in series, giving the lower bound on the elastic moduli [2]. The two approximations can be combined in the Voigt-Reuss-Hill (VRH) [48] averages for the bulk modulus

\[
B_{\text{VRH}} = \frac{B_{\text{Voigt}} + B_{\text{Reuss}}}{2};
\]

(6)

and the shear modulus

\[
G_{\text{VRH}} = \frac{G_{\text{Voigt}} + G_{\text{Reuss}}}{2}.
\]

(7)

The Poisson ratio \(\sigma \) is then obtained by:

\[
\sigma = \frac{3B_{\text{VRH}} - 2G_{\text{VRH}}}{6B_{\text{VRH}} + 2G_{\text{VRH}}}
\]

(8)

These elastic moduli can also be used to compute the speed of sound for the transverse and longitudinal waves, as well as the average speed of sound in the material [2]. The speed of sound for the longitudinal waves is

\[
v_L = \left(\frac{B + \frac{4}{3} G}{\rho} \right)^{-\frac{1}{2}}
\]

(9)

and for the transverse waves

\[
v_T = \left(\frac{G}{\rho} \right)^{-\frac{1}{2}}
\]

(10)

where \(\rho \) is the mass density of the material. The average speed of sound is then evaluated by

\[
v = \left[\frac{1}{3} \left(\frac{2}{v_L^2} + \frac{1}{v_T^2} \right) \right]^{-\frac{1}{2}}
\]

(11)

B. The AGL quasi-harmonic Debye-Grüneisen model

The Debye temperature of a solid can be written as [2]

\[
\theta_D = \frac{h}{k_B} \left[\frac{6\pi^2 n}{V} \right]^{1/3} \bar{\nu},
\]

(12)

where \(n \) is the number of atoms in the cell, \(V \) is its volume, and \(\bar{\nu} \) is the average speed of sound of Eq. (11). It can be
shown by combining Eqs. (8), (9), (10) and (11) that \(\bar{\sigma} \) is equivalent to [2]

\[
\bar{\sigma} = \sqrt{\frac{B_s}{\rho}} f(\sigma),
\]

(13)

where \(B_s \) is the adiabatic bulk modulus, \(\rho \) is the density, and \(f(\sigma) \) is a function of the Poisson ratio \(\sigma \):

\[
f(\sigma) = \left\{3 \left[2 \left(\frac{2}{3} \frac{1+\sigma}{1-2\sigma} \right)^{3/2} + \left(\frac{1}{3} \frac{1+\sigma}{1-\sigma} \right)^{3/2} \right]^{-1}\right\}^{1/3},
\]

(14)

In an earlier version of AGL [34], the Poisson ratio in Eq. (14) was assumed to have the constant value \(\sigma = 0.25 \) which is the ratio for a Cauchy solid. This was found to be a reasonable approximation, producing good correlations with experiment. The AEL approach, Eq. (8), directly evaluates \(\sigma \) assuming only that it is independent of temperature and pressure. Substituting Eq. (13) into Eq. (12), the Debye temperature is obtained as

\[
\theta_D = \frac{h}{k_B} \left(3\pi^2 \frac{V}{M} \right)^{1/3} f(\sigma) \sqrt{\frac{B_s}{M}},
\]

(15)

where \(M \) is the mass of the unit cell. The bulk modulus \(B_s \) is obtained from a set of DFT calculations for different volume cells, either by fitting the resulting \(E_{\text{DFT}}(V) \) data to a phenomenological equation of state or by taking the numerical second derivative of a polynomial fit

\[
B_s(V) \approx B_{\text{static}}(\bar{x}) \approx B_{\text{static}}(\bar{x}_{\text{opt}}(V)) = V \left(\frac{\partial^2 E(\bar{x}_{\text{opt}}(V))}{\partial V^2} \right) = V \left(\frac{\partial^2 E(V)}{\partial V^2} \right).
\]

(16)

Inserting Eq. (16) into Eq. (15) gives the Debye temperature as a function of volume \(\theta_D(V) \), for each value of pressure, \(p \), and temperature, \(T \).

The equilibrium volume at any particular \((p, T)\) point is obtained by minimizing the Gibbs free energy with respect to volume. First, the vibrational Helmholtz free energy, \(F_{\text{vib}}(\bar{x}; T) \), is calculated in the quasi-harmonic approximation

\[
F_{\text{vib}}(\bar{x}; T) = \int_0^\infty \frac{h\omega}{2} + k_B T \log \left(1 - e^{-h\omega/k_B T} \right) g(\bar{x}; \omega) d\omega,
\]

(17)

where \(g(\bar{x}; \omega) \) is the phonon density of states and \(\bar{x} \) describes the geometrical configuration of the system. In the Debye-Grüneisen model, \(F_{\text{vib}} \) can be expressed in terms of the Debye temperature \(\theta_D \)

\[
F_{\text{vib}}(\theta_D; T) = n k_B T \left[\frac{9}{8} \frac{\theta_D}{T} + 3 \log \left(1 - e^{-\theta_D/T} \right) - D \left(\frac{\theta_D}{T} \right) \right],
\]

(18)

where \(D(\theta_D/T) \) is the Debye integral

\[
D(\theta_D/T) = 3 \int_0^{\theta_D/T} \frac{x^3}{e^x - 1} dx.
\]

(19)

The Gibbs free energy is calculated as

\[
G(V; p, T) = E_{\text{DFT}}(V) + F_{\text{vib}}(\theta_D(V); T) + pV,
\]

(20)

and fitted by a polynomial of \(V \). The equilibrium volume, \(V_{eq} \), is that which minimizes \(G(V; p, T) \).

Once \(V_{eq} \) has been determined, \(\theta_D \) can be determined, and then other thermal properties including the Grüneisen parameter and thermal conductivity can be calculated as described in the following Sections.

C. Equations of State

Within AGL the bulk modulus can be determined either numerically from the second derivative of the polynomial fit of \(E_{\text{DFT}}(V) \), Eq. (16), or by fitting the \((p, V)\) data to a phenomenological equation of state (EOS). Three different analytic EOS have been implemented within AGL: the Birch-Murnaghan EOS [32, 49]; the Vinet EOS [32, 50]; and the Baonza-Cáceres-Núñez spinodal EOS [32, 51].

The Birch-Murnaghan EOS is

\[
\frac{p}{3f(1+2f)^2} = \sum_{i=0}^{a_0} a_i f^i,
\]

(21)

where \(p \) is the pressure, \(a_i \) are polynomial coefficients, and \(f \) is the “compression” given by

\[
f = \frac{1}{2} \left[\left(\frac{V}{V_0} \right)^{-\frac{2}{3}} - 1 \right].
\]

(22)

The zero pressure bulk modulus is equal to the coefficient \(a_0 \).

The Vinet EOS is [32, 50]

\[
\log \left(\frac{p x^2}{3(1-x)} \right) = \log B_0 + a(1-x),
\]

(23)

where \(a \) and \(B_0 \) are fitting parameters and

\[
x = \left(\frac{V}{V_0} \right)^\frac{1}{3}, \quad a = 3(B_0 - 1)/2.
\]

(24)

The isothermal bulk modulus \(B_I \) is given by [32, 50]

\[
B_I = -x^{-2}B_0 e^{a(1-x)} f(x),
\]

(25)

where

\[
f(x) = x - 2 - ax(1-x).
\]

The Baonza-Cáceres-Núñez spinodal equation of state has the form [32, 51]

\[
V = V_{sp} \exp \left[- \frac{K^*}{1-\beta} \left(p - p_{sp} \right)^{1-\beta} \right],
\]

(26)

where \(K^* \), \(p_{sp} \) and \(\beta \) are the fitting parameters, and \(V_{sp} \) is given by

\[
V_{sp} = V_0 \exp \left[\frac{\beta}{(1-\beta)B_0} \right],
\]
where \(B_0 = [K^*]^{-1}(-p_{up})^\beta \) and \(B_0' = (-p_{up})^{-1}\beta B_0 \). The isothermal bulk modulus \(B_T \) is then given by \([32, 51]\)

\[
B_T = \frac{(p - p_{up})^\beta}{K^*}.
\] (27)

Note that AGL uses \(B_T \) instead of \(B_s \) in Eq. 15 when one of these phenomenological EOS is selected. \(B_s \) can then be calculated as

\[
B_s = B_T (1 + \alpha \gamma T),
\] (28)

where \(\gamma \) is the Grüneisen parameter (described in Section IID below), and \(\alpha \) is the thermal expansion

\[
\alpha = \frac{\gamma C_V}{B_T V},
\] (29)

where \(C_V \) is the heat capacity at constant volume, given by

\[
C_V = 3n k_B \left[4D \left(\frac{\theta_D}{T} \right) - \frac{3\theta_D/T}{\exp(\theta_D/T) - 1} \right].
\] (30)

D. The Grüneisen Parameter

The Grüneisen parameter describes the variation of the thermal properties of a material with the unit cell size, and contains information about higher order phonon scattering which is important for calculating the lattice thermal conductivity \([34, 52–55]\), and thermal expansion \([2, 32, 56]\). It is defined as the phonon frequencies dependence on the unit cell volume

\[
\gamma_i = -\frac{V}{\omega_i} \frac{\partial \omega_i}{\partial V}.
\] (31)

Debye’s theory assumes that the volume dependence of all mode frequencies is the same as that of the cut-off Debye frequency, so the Grüneisen parameter can be expressed in terms of \(\theta_D \)

\[
\gamma = -\frac{\partial \log(\theta_D(V))}{\partial \log V}.
\] (32)

This macroscopic definition of the Debye temperature is a weighted average of Eq. (31) with the heat capacities for each branch of the phonon spectrum

\[
\gamma = \sum_i \frac{\gamma_i C_{V,i}}{\sum_i C_{V,i}}.
\] (33)

Within AGL \([34]\), the Grüneisen parameter can be calculated in several different ways, including direct evaluation of Eq. 32, by using the more stable Mie-Grüneisen equation \([2]\),

\[
p - p_T = \gamma \frac{U_{\text{ vib}}}{V},
\] (34)

where \(U_{\text{ vib}} \) is the vibrational internal energy \([32]\)

\[
U_{\text{ vib}} = n k_B T \left[\frac{9 \theta_D}{8 T} + 3D \left(\frac{\theta_D}{T} \right) \right].
\] (35)

The “Slater gamma” expression \([2]\)

\[
\gamma = -\frac{1}{6} + \frac{1}{2} \frac{\partial \theta_D}{\partial p}
\] (36)

is the default method in the automated workflow used for the AFLOW database.

E. Thermal conductivity

In the AGL framework, the thermal conductivity is calculated using the Leibfried-Schlömann equation \([52–54]\)

\[
\kappa_l(\theta_a) = \frac{0.849 \times 3\sqrt{3}}{20\pi^4 (1 - 0.514 \gamma a^{-1} + 0.228 \gamma a^{-2})} \times \left(\frac{k_B \theta_a}{\hbar} \right)^2 \frac{k_B m V^{\frac{3}{2}}}{\hbar \gamma a^2}.
\] (37)

where \(V \) is the volume of the unit cell and \(m \) is the average atomic mass. It should be noted that the Debye temperature and Grüneisen parameter in this formula, \(\theta_D \) and \(\gamma_a \), are slightly different from the traditional Debye temperature, \(\theta_D \), calculated in Eq. (15) and Grüneisen parameter, \(\gamma \), obtained from Eq. (36). Instead, \(\theta_a \) and \(\gamma_a \) are obtained by only considering the acoustic modes, based on the assumption that the optical phonon modes in crystals do not contribute to heat transport \([53]\). This \(\theta_a \) is referred to as the “acoustic” Debye temperature \([53, 54]\). It can be derived directly from the phonon DOS by integrating only over the acoustic modes \([53, 57]\). Alternatively, it can be calculated from the traditional Debye temperature \(\theta_D \) \([53, 54]\)

\[
\theta_a = \theta_D n^{-\frac{1}{3}}.
\] (38)

There is no simple way to extract the “acoustic” Grüneisen parameter from the traditional Grüneisen parameter. Instead, it must be calculated from Eq. (31) for each phonon branch separately and summed over the acoustic branches \([56, 58]\). This requires using the quasi-harmonic phonon approximation which involves calculating the full phonon spectrum for different volumes \([56–58]\), and is therefore too computationally demanding to be used for high-throughput screening, particularly for large, low symmetry systems. Therefore, we use the approximation \(\gamma_a = \gamma \) in the AEL-AGL approach to calculate the thermal conductivity. The dependence of the expression in Eq. (37) on \(\gamma \) is weak \([34, 54]\), thus the evaluation of \(\kappa_l \) using the traditional Grüneisen parameter introduces just a small systematic error which is insignificant for screening purposes \([58]\).

The thermal conductivity at temperatures other than \(\theta_a \) is estimated by \([53–55]\):

\[
\kappa_l(T) = \kappa_l(\theta_a) \frac{\theta_a}{T}.
\] (39)
F. DFT calculations and workflow details

The DFT calculations to obtain $E(V)$ and the strain tensors were performed using the VASP software [59] with projector-augmented-wave pseudopotentials [60] and the PBE parameterization of the generalized gradient approximation to the exchange-correlation functional [61], using the parameters described in the AFLOW Standard [37]. The energies were calculated at zero temperature and pressure, with spin polarization and without zero-point motion or lattice vibrations. The initial crystal structures were fully relaxed (cell volume and shape and the basis atom coordinates inside the cell).

For the AEL calculations, 4 strains were applied in each independent lattice direction (two compressive and two expansive) with a maximum strain of 1% in each direction, for a total of 24 configurations [14]. For cubic systems, the crystal symmetry was used to reduce the number of required strain configurations to 8. For each configuration, two ionic positions AFLOW Standard RELAX [37] calculations at fixed cell volume and shape were followed by a single AFLOW Standard STATIC [37] calculation. The elastic constants are then calculated by fitting the elements of stress tensor obtained for each independent strain. The stress tensor from the zero-strain configuration (i.e. the initial unstrained relaxed structure) can also be included in the set of fitted strains, although this was found to have negligible effect on the results. Once these calculations are complete, it is verified that the eigenvalues of the stiffness tensor are all positive, that the stiffness tensor obeys the appropriate symmetry rules for the lattice type [3], and that the applied strain is still within the linear regime, using the method described by de Jong et al. [14]. If any of these conditions fail, the calculation is repeated with adjusted applied strain.

The AGL calculation of $E(V)$ is fitted to the energy at 28 different volumes of the unit cell obtained by increasing or decreasing the relaxed lattice parameters in fractional increments of 0.01, with a single AFLOW Standard STATIC [37] calculation at each volume. The resulting $E(V)$ data is checked for convexity and to verify that the minimum energy is at the initial volume (i.e. at the properly relaxed cell size). If any of these conditions fail, the calculation is repeated with adjusted parameters, e.g. increased k-point grid density.

G. Correlation Analysis

Pearson and Spearman correlations are used to analyze the results for entire sets of materials. The Pearson coefficient r is a measure of the linear correlation between two variables, X and Y. It is calculated by

$$r = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2 \sum_{i=1}^{n} (Y_i - \bar{Y})^2}}, \quad (40)$$

where \bar{X} and \bar{Y} are the mean values of X and Y.

The Spearman coefficient ρ is a measure of the monotonicity of the relation between two variables. The raw values of the two variables X_i and Y_i are sorted in ascending order, and are assigned rank values x_i and y_i which are equal to their position in the sorted list. If there is more than one variable with the same value, the average of the position values are assigned to all duplicate entries. The correlation coefficient is then given by

$$\rho = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sum_{i=1}^{n} (y_i - \bar{y})^2}}. \quad (41)$$

It is useful for determining how well the ranking order of the values of one variable predict the ranking order of the values of the other variable.

The discrepancy between the AEL-AGL predictions and experiment is evaluated in terms normalized root-mean-square relative deviation

$$\text{RMSrD} = \sqrt{\frac{\sum_{i=1}^{n} (X_i - Y_i)^2}{N - 1}}, \quad (42)$$

In contrast to the correlations described above, lower values of the RMSrD indicate better agreement with experiment. This measure is particularly useful for comparing predictions of the same property using different methodologies that may have very similar correlations with, but different deviations from, the experimental results.

III. RESULTS

We used the AEL-AGL methodology to calculate the mechanical and thermal properties, including the bulk modulus, shear modulus, Poisson ratio, Debye temperature, Gruneisen parameter and thermal conductivity for a set of 74 materials with structures including diamond, zincblende, rocksalt, wurzite, rhombohedral and body-centred tetragonal. The results have been compared to experimental values (where available), and the correlations between the calculated and experimental values were deduced. In cases where multiple experimental values are present in the literature, we used the most recently reported value, unless otherwise specified.

In Section II A, three different approximations for the bulk and shear moduli are described: Voigt (Eqs. (2), (3)), Reuss (Eqs. (4), (5)), and the Voigt-Reuss-Hill (VRH) average (Eqs. (6), (7)). These approximations give very similar values for the bulk modulus for the set of materials included in this work, particularly those with cubic symmetry. Therefore only $R_{\text{VRH}}^{\text{AGL}}$ is explicitly cited in the following listed results (the values obtained for all three approximations are available in the AFLOW database entries for these materials). The values for the shear modulus in these three approximations exhibit larger variations, and are therefore all listed and compared to experiment. In several cases, the experimental values of the bulk and shear moduli have been calculated from the measured
elastic constants using Eqs. (2) through (7), and an experimental Poisson ratio \(\sigma^{\exp} \) was calculated from these values using Eq. (8).

As described in Section II C, the bulk modulus in AGL can be calculated from a polynomial fit of the \(E(V) \) data as shown in Eq. (16), or by fitting the \(E(V) \) data to one of three empirical equations of state: Birch-Murnaghan (Eq. (21)), Vinet (Eq. (23)), and the Baonza-Cáceres-Núñez (Eq. (26)). We compare the results of these four methods, labeled \(B_{\text{AGL}}^{\text{stat}}, B_{\text{BM}}^{\text{stat}}, B_{\text{Vinet}}^{\text{stat}} \), and \(B_{\text{BCN}}^{\text{stat}} \), respectively, with the experimental values \(B^{\exp} \) and those obtained from the elastic calculations \(B_{\text{AGL}}^{\text{VHRIH}} \). The Debye temperatures, Grüneisen parameters and thermal conductivities depend on the calculated bulk modulus and are therefore also cited below for each of the equations of state. Also included are the Debye temperatures derived from the calculated elastic constants and speed of sound as given by Eq. (11). The Debye temperatures, \(\theta_{\text{D}}^{\text{AGL}} \) (Eq. (21)), \(\theta_{\text{D}}^{\text{BM}} \) (Eq. (23)), \(\theta_{\text{D}}^{\text{VHRIH}} \) (Eq. (26)), calculated using the Poisson ratio \(\sigma^{\text{AGL}} \) obtained from Eq. (8), are compared to \(\theta_{\text{D}}^{\text{exp}} \), obtained from the numerical fit of \(E(V) \) (Eq. (16)) using both \(\sigma^{\text{AGL}} \) and the approximation \(\sigma = 0.25 \) used in Ref. 34, to \(\theta_{\text{D}}^{\text{VHRIH}} \), calculated with the speed of sound obtained using Eq. (11), and to the experimental values \(\theta^{\exp} \). The values of the acoustic Debye temperature (\(\theta_{\text{A}} \), Eq. (38)) are shown, where available, in parentheses below the traditional Debye temperature value.

The experimental Grüneisen parameter, \(\gamma^{\exp} \), is compared to \(\gamma^{\text{AGL}} \) (Eq. (16)), obtained using the numerical polynomial fit of \(E(V) \) and both values of the Poisson ratio \(\sigma^{\text{AGL}} \) and the approximation \(\sigma = 0.25 \) from Ref. 34), and to \(\gamma^{\text{BM}} \) (Eq. (21)), \(\gamma^{\text{VHRIH}} \) (Eq. (23)), and \(\gamma^{\text{BCN}} \) (Eq. (26)), calculated using \(\sigma^{\text{AGL}} \) only. Similarly, the experimental lattice thermal conductivity \(\kappa^{\exp} \) is compared to \(\kappa^{\text{AGL}} \) (Eq. (16)), obtained using the numerical polynomial fit and both the calculated and approximated values of \(\sigma \), and to \(\kappa^{\text{BM}} \) (Eq. (21)), \(\kappa^{\text{VHRIH}} \) (Eq. (23)), and \(\kappa^{\text{BCN}} \) (Eq. (26)), calculated using only \(\sigma^{\text{AGL}} \).

The AEL methodology to predict the elastic and mechanical properties of materials.

The Materials Project values of \(B_{\text{VHRIH}}^{\exp}, G_{\text{VHRIH}}^{\exp} \), and \(\sigma^{\exp} \) for diamond and zincblende structure materials are also shown in Table I, where available. The Pearson correlation values for the experimental results with the available values of \(B_{\text{VHRIH}}^{\exp}, G_{\text{VHRIH}}^{\exp} \) and \(\sigma^{\exp} \) were calculated to be 0.995, 0.987 and 0.952, respectively, while the respective Spearman correlations were 0.963, 0.977 and 0.977, and the RMSrD values were 0.149, 0.116 and 0.126. For comparison, the corresponding Pearson correlations for the same subset of materials for \(B_{\text{VHRIH}}^{\exp}, G_{\text{VHRIH}}^{\exp} \) and \(\sigma^{\exp} \) are 0.997, 0.987, and 0.957 respectively, while the respective Spearman correlations were 0.982, 0.977 and 0.977, and the RMSrD values were 0.129, 0.114 and 0.108. These correlation values are very similar, and the general close agreement for \(B_{\text{VHRIH}}^{\exp}, G_{\text{VHRIH}}^{\exp} \) and \(\sigma^{\exp} \) with \(B_{\text{VHRIH}}^{\exp}, G_{\text{VHRIH}}^{\exp} \) and \(\sigma^{\exp} \) demonstrate that the small differences in the parameters used for the DFT calculations make little difference to the results, indicating that the parameter set used here is robust for high-throughput calculations.

The thermal properties Debye temperature, Grüneisen parameter and thermal conductivity calculated using AGL for this set of materials are compared to the experimental values taken from the literature in Table II and are also plotted in Fig. 1. The Debye temperature, the experimental values \(\theta^{\exp} \) are compared to \(\theta^{\text{AGL}} \), \(\theta^{\text{BM}} \), \(\theta^{\text{VHRIH}} \), and \(\theta^{\text{BCN}} \) in Fig. 1(c), while the values for the empirical equations of state are provided in the supplementary information. Note that the \(\theta^{\exp} \) values taken from Ref. 53 and Ref. 54 are for \(\theta_{\text{A}} \), and generally are in good agreement with the \(\theta^{\text{AGL}} \) values. The values obtained using the numerical \(E(V) \) fit and the three different equations of state are also in good agreement with each other, whereas

A. Zincblende and diamond structure materials

The mechanical and thermal properties were calculated for a set of materials with the zincblende (spacegroup: \(F\bar{T}3m \), #216; Pearson symbol: cf8; AFLFlow prototype: \(\text{AB}_c \text{cf}8_{-227}, \text{a} \) [62] and diamond (\(F\bar{T}3m \), #227; cf8; \(A_c \text{cf}8_{-227}, \text{a} \) [62] structures). This is the same set of materials as in Table I of Ref. 34, which in turn are from Table II of Ref. 53 and Table 2.2 of Ref. 54.

The elastic properties bulk modulus, shear modulus and Poisson ratio calculated using AEL and AGL are shown in Table I and Fig. 1, together with experimental values from the literature where available. As can be seen from the results in Table I and Fig. 1(a), the \(B_{\text{AGL}}^{\text{VHRIH}} \) values are generally closest to experiment as shown by the RMSrD value of 0.13, producing an underestimate of the order of 10%. The AGL values from both the numerical fit and the empirical equations of state are generally very similar to each other, while being slightly less than the \(B_{\text{VHRIH}}^{\exp} \) values.

For the shear modulus, the experimental values \(\sigma^{\exp} \) are compared to the AEL values \(\sigma^{\text{AGL}}, \sigma^{\text{BM}}, \sigma^{\text{VHRIH}} \), and \(\sigma^{\text{BCN}} \). As can be seen from the values in Table I and Fig. 1(b), the agreement with the experimental values is generally good with a very low RMSrD of 0.111 for \(\sigma^{\text{VHRIH}} \) vs. the Voigt approximation tending to overestimate and the Reuss approximation tending to underestimate, as would be expected. The experimental values of the Poisson ratio \(\sigma^{\exp} \) and the AEL values \(\sigma^{\text{AGL}} \) (Eq. (8)) are also shown in Table I and Fig. 1(c), and the values are generally in good agreement. The Pearson (i.e. linear, Eq. (40)) and Spearman (i.e. rank order, Eq. (41)) correlations between all of the AEL-AGL elastic property values and experiment are shown in Table III, and are generally very high for all of these properties, ranging from 0.977 and 0.982 respectively for \(\sigma^{\exp} \) vs. \(\sigma^{\text{AGL}} \) up to 0.999 and 0.992 for \(B^{\exp} \) vs. \(B_{\text{VHRIH}}^{\exp} \). These very high correlation values demonstrate the validity of using the AEL-AGL methodology to predict the elastic and mechanical properties of materials.
the values of θ_{D}^{AGL} calculated using different σ values differ significantly, indicating that for this property the value of σ used is far more important than the equation of state used. The correlation between θ_{D}^{\exp} and the various AGL values is also very high, of the order of 0.999, and the RMSrD is low, of the order of 0.13.

The experimental values γ_{\exp} of the Grüneisen parameter are plotted against γ_{AGL}, γ_{BM}, γ_{Vinet} and γ_{BCN} in Fig. 1(f), and the values are listed in Table II and in the supplementary information. The high RMSrD values (see Table III) show that AGL has problems accurately predicting the Grüneisen parameter for this set of materials, as the calculated value is often 2 to 3 times larger than the experimental one. Note also that there are quite large differences between the values obtained for different equations of state, with γ_{BCN} generally having the lowest values while γ_{Vinet} has the highest values. On the other hand, in contrast to the case of θ_{D}^{AGL}, the value of σ used makes little difference to the value of γ_{AGL}. The correlations between γ_{\exp} and the AGL values, as shown in Table III, are also quite poor, with no value higher than 0.2 for the Pearson correlations, and negative Spearman correlations.

The experimental thermal conductivity κ_{\exp} is compared in Fig. 1(d) to the thermal conductivities calculated with AGL using the Leibfried-Schlömann equation (Eq. (37)): κ_{AGL}, κ_{BM}, κ_{Vinet} and κ_{BCN}, while the values are listed in Table II and in the supplementary information. The absolute agreement between the AGL values and κ_{\exp} is quite poor, with RMSrD values of the order of 0.8 and discrepancies of tens, or even hundreds, of percent quite common. Considerable disagreements also exist between different experimental reports of these properties, in almost all cases where they exist. Unfortunately, the scarcity of experimental data from different sources on the thermal properties of these materials prevents reaching definite conclusions regarding the true values of these properties. The available data can thus only be considered as a rough indication of their order of magnitude.

The Pearson correlations between the AGL calculated thermal conductivity values and the experimental values are high, ranging from 0.871 to 0.932, while the Spearman correlations are even higher, ranging from 0.905 to 0.954, as shown in Table III. In particular, note that using the σ_{AGL} in the AGL calculations improves the correlations by about 5%, from 0.878 to 0.927 and from 0.905 to 0.954. For the different equations of state, κ_{AGL} and κ_{BCN} appear...
to correlate better with κ_{exp} than κ_{BM} and κ_{Vinh} for this set of materials.

As we noted in our previous work on AGL [34], some of the inaccuracy in the thermal conductivity results may be due to the inability of the Leibfried-Schlömann equation to fully describe effects such as the suppression of phonon-phonon scattering due to large gaps between the branches of the phonon dispersion [26]. This can be seen from the thermal conductivity values shown in Table 2.2 of Ref. 54 calculated using the experimental values of θ_a and γ in the Leibfried-Schlömann equation. There are large discrepancies in certain cases such as diamond, while the Pearson and Spearman correlations of 0.932 and 0.941 respectively are very similar to the correlations we calculated using the AGL evaluations of θ_a and γ.

Thus, the unsatisfactory quantitative reproduction of these quantities by the Debye quasi-harmonic model has little impact on its effectiveness as a screening tool for identifying high or low thermal conductivity materials. The model can be used when these experimental values are unavailable to help determine the relative values of these quantities and for ranking materials conductivity.

B. Rocksalt structure materials

The mechanical and thermal properties were calculated for a set of materials with the rocksalt structure (space-group: Fm3m, #225; Pearson symbol: cF8; AFLOW Prototype: AB.cF8_225_a_b [62]). This is the same set of materials as in Table II of Ref. 34, which in turn are from the sets in Table III of Ref. 53 and Table 2.1 of Ref. 54.

The elastic properties of bulk modulus, shear modulus and Poisson ratio, as calculated using AEL and AGL are shown in Table IV and Fig. 2, together with experimental values from the literature where available. As can be seen from the results in Table IV and Fig. 2(a), for this set of materials the B_{AGL} values are closest to experiment, with an RMSrD of 0.078. The AGL values from both the numerical fit and the empirical equations of state are generally very similar to each other, while being slightly less than the B_{VRH} values.

For the shear modulus, the experimental values G_{exp} are compared to the AEL values $G_{\text{AEL}}^{\text{Voigt}}$, $G_{\text{AEL}}^{\text{Reuss}}$, and G_{VRH}. As can be seen from the values in Table IV and Fig. 2(b), the agreement with the experimental values is generally good with an RMSrD of 0.105 for G_{VRH}, with the Voigt approximation tending to overestimate and the Reuss approximation tending to underestimate, as would be expected. The experimental values of the Poisson ratio σ_{exp} and the AEL values σ_{AEL} (Eq. (8)) are also shown in Table IV and Fig. 2(c), and the values are generally in good agreement. The Pearson (i.e. linear, Eq. (40)) and Spearman (i.e. rank order, Eq. (41)) correlations between all of the the AEL-AGL elastic property values and experiment are shown in Table VI, and are generally very high for all of these properties, ranging from 0.959 and 0.827 respectively for σ_{exp} vs. σ_{AEL}, up to 0.998 and 0.995 for B_{exp} vs. B_{VRH}. These very high correlation values demonstrate the validity of using the AEL-AGL methodology to predict the elastic and mechanical properties of materials.

The values of B_{VRH}, G_{VRH} and σ_{VRH} for rocksalt struc-
TABLE II. Thermal properties lattice thermal conductivity at 300K, Debye temperature and Grüneisen parameter of zincblende (AFLOW prototype: AB_cF8_216_c,a [62]) and diamond (A_cF8_227_a [62]) structure semiconductors, comparing the effect of using the calculated value of the Poisson ratio to the previous approximation of $\sigma = 0.25$. The values listed for θ^{exp} are θ_{A}, except 141K for HgTe which is θ_{D} [85]. Units: κ in (W/(m-K)), θ in (K).

Comp.	κ^{exp}	κ^{AGL}	θ^{exp}	$\theta^{AGL}(\sigma = 0.25)$	$\theta_{A}^{AGL}(\sigma = 0.25)$	γ^{exp}	γ^{AGL}	$\gamma^{AGL}(\sigma = 0.25)$
C	3000 [54]	169.1	419.9	1450 [53, 54]	1536 (1219)	2094	2222	0.75 [54]
Si	360 [86]	67.19	113.0	740 [53]	928 (737)	1106	1143	0.76 [53]
Ge	166 [54]	20.58	26.19	395 [53, 54]	568 (451)	610	624	1.06 [54]
Si	760 [54]	138.4	281.6	1200 [54]	1409 (235)	1793	1887	0.7 [54]
BP	350 [54]	52.56	105.0	670 [53, 54]	811 (644)	1025	1062	0.75 [54]
AlP	90 [87, 88]	21.16	19.33	381 [54]	542 (430)	525	531	0.75 [54]
AlSb	98 [54]	12.03	11.64	270 [53, 54]	378 (300)	373	377	0.66 [53, 54]
GaP	100 [54]	11.76	13.34	275 [53, 54]	396 (314)	412	423	0.75 [54]
GaAs	45 [54]	7.2	8.0	220 [53, 54]	302 (240)	313	322	0.75 [53, 54]
GaSb	40 [54]	4.62	4.96	165 [53, 54]	234 (186)	240	248	0.75 [53, 54]
InP	93 [54]	7.78	6.53	220 [53, 54]	304 (241)	286	287	0.6 [53, 54]
InSb	50 [54]	5.36	4.33	165 [53, 54]	246 (195)	229	231	0.57 [53, 54]
ZnS	20 [54]	3.64	3.02	135 [53, 54]	199 (158)	187	190	0.56 [53, 54]
ZnS	27 [54]	11.33	8.83	230 [53, 54]	379 (301)	341	346	0.75 [53, 54]
ZnSe	19 [54]	7.46	5.44	190 [53, 54]	290 (230)	313	322	0.75 [53, 54]
ZnTe	18 [54]	4.87	3.83	155 [53, 54]	228 (181)	210	212	0.97 [53, 54]
CdSe	4.4 [85]	4.99	2.04	130 [54]	234 (186)	173	174	0.6 [54]
CdTe	7.5 [54]	3.49	1.71	120 [53, 54]	191 (152)	150	152	0.52 [53, 54]
HgSe	3 [89]	3.22	1.32	110 [53]	190 (151)	140	140	0.17 [53]
HgTe	2.5 [85]	2.36	1.21	141 [85]	162 (129)	129	130	1.9 [85]

The Pearson correlations for the experimental results with the available values of B_{VRH}^{MP}, G_{VRH}^{MP} and σ^{MP} were calculated to be 0.997, 0.994 and 0.890, respectively, while the respective Spearman correlations were 0.979, 0.998 and 0.817, and the RMSrd values were 0.153, 0.105 and 0.126. For comparison, the corresponding Pearson correlations for the same subset of materials for B_{VRH}^{AGL}, G_{VRH}^{AGL} and σ^{AGL} are 0.998, 0.995, and 0.951 respectively, while the respective Spearman correlations were 0.996, 1.0 and 0.843, and the RMSrd values were 0.079, 0.111 and 0.071. These correlation values are very similar, and the general close agreement for the results of B_{VRH}^{AGL}, G_{VRH}^{AGL} and σ^{AGL} with those of B_{VRH}^{MP}, G_{VRH}^{MP} and σ^{MP} demonstrate that the small differences in the parameters used for the DFT calculations make little difference to the results, indicating that the parameter set used here is robust for high-throughput calculations.

The thermal properties of Debye temperature, Grüneisen parameter and thermal conductivity calculated using AGL are compared to the experimental values taken from the literature in Table V and are also plotted in Fig. 2. For the Debye temperature, the experimental values θ^{exp} are compared to θ_{D}^{AGL}, θ_{D}^{BM}, θ_{D}^{Vinet} and θ_{D}^{JC} in Fig. 2(e), while the actual values for the empirical equations of state are provided in the supplementary...
TABLE III. Correlations and deviations between experimental values and AEL and AGL results for elastic and thermal properties for zincblende and diamond structure semiconductors.

Property	Pearson (Linear)	Spearman (Rank Order)	RMSrD
κ_{exp} vs. κ_{AGL} ($\sigma = 0.25$) [34]	0.878	0.905	0.776
κ_{exp} vs. κ_{AML}	0.927	0.95	0.796
κ_{exp} vs. κ_{RM}	0.871	0.954	0.787
κ_{exp} vs. κ_{Vinet}	0.908	0.954	0.815
κ_{exp} vs. κ_{BCN}	0.932	0.954	0.771
θ_{D}^\exp vs. θ_{D}^{AGL} ($\sigma = 0.25$) [34]	0.995	0.984	0.200
θ_{D}^\exp vs. θ_{D}^{AML}	0.999	0.998	0.132
θ_{D}^\exp vs. θ_{D}^{RM}	0.999	0.998	0.132
θ_{D}^\exp vs. $\theta_{D}^{\text{Vinet}}$	0.999	0.998	0.127
θ_{D}^\exp vs. θ_{D}^{BCN}	0.999	0.998	0.136
γ^\exp vs. γ_{AGL} ($\sigma = 0.25$) [34]	0.137	-0.187	3.51
γ^\exp vs. γ_{AML}	0.145	-0.165	3.49
γ^\exp vs. γ_{RM}	0.169	-0.178	3.41
γ^\exp vs. γ_{Vinet}	0.171	-0.234	3.63
γ^\exp vs. γ_{BCN}	0.144	-0.207	3.32
$B_{\text{exp}}^\text{VRH}$ vs. $B_{\text{VRH}}^{\text{AGL}}$	0.999	0.992	0.130
$B_{\text{exp}}^\text{VRH}$ vs. $B_{\text{VRH}}^{\text{AML}}$	0.999	0.986	0.201
$B_{\text{exp}}^\text{VRH}$ vs. $B_{\text{VRH}}^{\text{RM}}$	0.999	0.986	0.189
$G_{\text{exp}}^\text{VRH}$ vs. $G_{\text{VRH}}^{\text{AGL}}$	0.999	0.986	0.205
$G_{\text{exp}}^\text{VRH}$ vs. $G_{\text{VRH}}^{\text{AML}}$	0.999	0.986	0.185
$G_{\text{exp}}^\text{VRH}$ vs. $G_{\text{VRH}}^{\text{RM}}$	0.999	0.980	0.111
σ^\exp vs. σ_{AEL}	0.977	0.982	0.095

Below the table, the text continues with information. Note that the θ_{D}^\exp values taken from Ref. 53 and Ref. 54 are for θ_a, and generally are in good agreement with the θ_{D}^{AGL} values. The values obtained using the numerical $\tilde{E}(V)$ fit and the three different equations of state are also in good agreement with each other, whereas the values of θ_{D}^{AGL} calculated using different σ values differ significantly, indicating that, as in the case of the zincblende and diamond structures, the value of σ used is far more important for this property than the equation of state used. The correlation between θ_{D}^\exp and the various AGL values is also quite high, of the order of 0.98 for the Pearson correlation and 0.92 for the Spearman correlation.

The experimental values γ^\exp of the Grüneisen parameter are plotted against γ_{AGL}, γ_{RM}, γ_{Vinet} and γ_{BCN} in Fig. 2(f), and the values are listed in Table V and in the supplementary information. These results show that AGL has problems accurately predicting the Grüneisen parameter for this set of materials as well, as the calculated values are often 30% to 50% larger than the experimental ones and the RMSrD values are of the order of 0.5. Note also that there are quite large differences between the values obtained for different equations of state, with γ_{BCN} generally having the lowest values while γ_{Vinet} has the highest values, a similar pattern to that seen above for the zincblende and diamond structure materials. On the other hand, in contrast to the case of θ_{D}^{AGL} the value of σ used makes little difference to the value of γ_{AGL}. The correlation values between γ^\exp and the AGL values, as shown in Table VI, are also quite poor, with values ranging from -0.098 to 0.118 for the Pearson correlations, and negative values for the Spearman correlations.

The experimental thermal conductivity κ^\exp is compared in Fig. 2(d) to the thermal conductivities calculated with AGL using the Leibfried-Schlömann equation.
For the different equations of state, the results for Ref. 54. Most of these materials have the wurtzite structure (Table III of Ref. 34, taken from Table 2.3 of Ref. 54), and Spearman correlations are somewhat lower, ranging from 0.445 to 0.556. In particular, note that using the σ_{AEL} in the AGL calculations improves the correlations by about 2% to 8%, from 0.851 and 0.893 respectively for σ_{exp}, up to 0.998 and 1.0 for G_{exp} vs. G_{EXP}, respectively.

As can be seen in Table VII and Fig. 3(b), the agreement with the experimental values is very good. Similarly good agreement is obtained for the Poisson ratio of most materials (Table VII and Fig. 3(c)), with a single exception for InSe where the calculation deviates significantly from the experiment. The Pearson (i.e. linear, Eq. (40)) and Spearman (i.e. rank order, Eq. (41)) correlations between the calculated elastic properties and their experimental values are generally quite high (Table IX), ranging from 0.851 and 0.893 respectively for σ_{exp} vs. σ_{AEL}, up to 0.998 and 1.0 for G_{exp} vs. G_{EXP}.

The Materials Project values of B_{VRH} and G_{VRH} for hexagonal structure materials are also shown in Table VII, where available. The Pearson correlations values for the experimental results with the available values of B_{VRH}, G_{VRH}, and σ_{AEL} were calculated to be 0.984, 0.998 and 0.993, respectively, while the respective Spearman correlations were 0.943, 1.0 and 0.943, and the RMSrD values were 0.117, 0.116 and 0.034. For comparison, the corresponding Pearson correlations for the same subset of materials for B_{AEL}, G_{AEL} and σ_{AEL} are 0.986, 0.998, and 0.998 respectively, while the respective Spearman correlations were 0.943, 1.0 and 1.0, and the RMSrD values were

C. Hexagonal structure materials

The experimental data for this set of materials appears in Table III of Ref. 34, taken from Table 2.3 of Ref. 54. Most of these materials have the wurtzite structure (P6$_3$mc, #186; Pearson symbol: hP4; AFLOW prototype: AB$_{\text{hP4}}$186.b.b [62]) except InSe which is P6$_3$mmc, #194; Pearson symbol: hP8.

The calculated elastic properties are shown in Table VII and Fig. 3. The bulk moduli values obtained from a direct calculation of the elastic tensor, B_{VRH}, are usually slightly higher than those obtained from the $E(V)$ curve and are also closer to experiment (Table VII and Fig. 3(a)), with the exception of InSe where it is noticeably lower.

For the shear modulus, the experimental values G_{exp} are compared to the AEL values G_{AEL}, G_{VRH}, and G_{EXP}. As can be seen in Table VII and Fig. 3(b), the agreement with the experimental values is very good. Similarly good agreement is obtained for the Poisson ratio of most materials (Table VII and Fig. 3(c)), with a single exception for InSe where the calculation deviates significantly from the experiment. The Pearson (i.e. linear, Eq. (40)) and Spearman (i.e. rank order, Eq. (41)) correlations between the calculated elastic properties and their experimental values are generally quite high (Table IX), ranging from 0.851 and 0.893 respectively for σ_{exp} vs. σ_{AEL}, up to 0.998 and 1.0 for G_{exp} vs. G_{EXP}.
TABLE V. Thermal properties lattice thermal conductivity at 300K, Debye temperature and Grüneisen parameter of rocksalt structure (AFLOW Prototype: ABcF8.225_a,b [62]) semiconductors, comparing the effect of using the calculated value of the Poisson ratio to previous approximation of $\sigma = 0.25$. The values listed for θ^{exp} are θ_a, except 155K for SnTe which is θ_b [85]. “N/A” = Not available for that source. Units: κ in (W/(m·K)), θ in (K).

Comp.	κ^{exp}	κ^{AGL}	κ^{AGL}	θ^{exp}	θ_a^{AGL}	θ_D^{AGL}	θ_D^{AGL}	γ^{exp}	γ^{AGL}	γ^{AGL}
LiH	15 [54]	8.58	18.6	615 [53, 54]	743	962	1175	1.28 [53, 54]	1.62	1.66
LiF	17.6 [54]	8.71	9.96	500 [53, 54]	591	617	681	1.5 [53, 54]	2.02	2.03
NaF	18.4 [54]	4.52	4.67	395 [53, 54]	411	416	455	1.5 [53, 54]	2.2	2.21
NaCl	7.1 [54]	2.43	2.12	220 [53, 54]	284	271	289	1.56 [53, 54]	2.23	2.23
NaBr	2.8 [54]	1.66	1.33	150 [53, 54]	203	188	198	1.5 [53, 54]	2.22	2.22
NaI	1.8 [54]	1.17	0.851	100 [53, 54]	156	140	147	1.56 [53, 54]	2.22	2.22
KF	N/A	2.68	2.21	235 [53, 54]	305	288	309	1.52 [53, 54]	2.29	2.32
KCl	7.1 [54]	1.4	1.25	172 [53, 54]	220	213	226	1.45 [53, 54]	2.38	2.40
KBr	3.4 [54]	1.0	0.842	117 [53, 54]	165	156	162	1.45 [53, 54]	2.37	2.37
KI	2.6 [54]	0.72	0.525	87 [53, 54]	129	116	120	1.45 [53, 54]	2.35	2.35
RbCl	2.8 [54]	1.09	0.837	124 [53, 54]	168	155	160	1.45 [53, 54]	2.34	2.37
RbBr	3.8 [54]	0.76	0.558	105 [53, 54]	134	122	129	1.45 [53, 54]	2.40	2.43
Rbl	2.3 [54]	0.52	0.368	84 [53, 54]	109	97	102	1.41 [53, 54]	2.47	2.47
AgCl	1.0 [87, 99]	2.58	0.613	124 [53]	235	145	148	1.9 [53]	2.5	2.49
MgO	60 [54]	31.9	44.5	600 [53, 54]	758	849	890	1.44 [53, 54]	1.95	1.96
CaO	27 [54]	19.5	24.3	450 [53, 54]	578	620	638	1.57 [53, 54]	2.07	2.06
SrO	12 [54]	12.5	13.4	270 [53, 54]	399	413	421	1.52 [53, 54]	2.09	2.13
BaO	2.3 [54]	8.88	7.10	183 [53, 54]	305	288	292	1.5 [53, 54]	2.09	2.14
PbS	2.9 [54]	6.48	6.11	115 [53, 54]	226	220	221	2.0 [53, 54]	2.02	2.00
PbSe	2.0 [54]	4.88	4.81	100 [53, 54]	197	194	196	1.5 [54]	2.1	2.07
PbTe	2.5 [54]	4.15	4.07	105 [53, 54]	170	172	175	1.45 [53, 54]	2.04	2.09
SnTe	1.5 [85]	4.46	5.24	155 [53, 54]	202	210	212	2.1 [85]	2.15	2.11

0.100, 0.091 and 0.036. These correlation values are very similar, and the general close agreement for the results for the values of B^{AGL}_{VRH}, G^{AGL}_{VRH} and σ^{AGL} with those of B^{MP}_{VRH}, G^{MP}_{VRH} and σ^{MP} demonstrate that the small differences in the parameters used for the DFT calculations make little difference to the results, indicating that the parameter set used here is robust for high-throughput calculations.

The thermal properties calculated using AGL are compared to the experimental values in Table VIII and are also plotted in Fig. 3. For the Debye temperature, the θ^{exp} values taken from Ref. 54 are for θ_a, and are mostly in good agreement with the calculated θ^{AGL}_D values. As in the case of the other materials sets, the values obtained using the numerical $E(V)$ fit and the three different equations of state are very similar to each other, whereas θ^{AGL}_D calculated using $\sigma = 0.25$ differs significantly. In fact, the values of θ^{AGL}_D calculated with σ^{AGL} have a lower the correlation with θ^{exp} than the values calculated with $\sigma = 0.25$.

VIII
TABLE VI. Correlations between experimental values and AEL and AGL results for elastic and thermal properties for rocksalt structure semiconductors.

Property	Pearson	Spearman	RMSrD
κ^{exp} vs. κ^{AEL} ($\sigma = 0.25$)	0.910	0.445	1.093
κ^{exp} vs. κ^{AGL}	0.932	0.528	1.002
κ^{exp} vs. κ^{BM}	0.940	0.556	1.038
κ^{exp} vs. κ^{Vinet}	0.933	0.540	0.920
κ^{exp} vs. κ^{BCN}	0.930	0.554	1.082
γ^{exp} vs. γ^{AEL} ($\sigma = 0.25$)	0.985	0.948	0.253
γ^{exp} vs. γ^{AGL}	0.978	0.928	0.222
γ^{exp} vs. γ^{BM}	0.980	0.926	0.222
γ^{exp} vs. γ^{Vinet}	0.979	0.925	0.218
γ^{exp} vs. γ^{BCN}	0.978	0.929	0.225

do, although the RMSrD values are lower when σ^{AGL} is used. However, most of this discrepancy appears to be due to the clear outlier value for the material InN. When the values for this material are removed from the data set, the Pearson correlation values become very similar when both the $\sigma = 0.25$ and $\sigma = \sigma^{\text{AEL}}$ values are used, increasing to 0.995 and 0.994 respectively.

The experimental and calculated values of the Grüneisen parameter are listed in Table VIII and in the supplementary information, and are plotted in Fig. 3(f). Again, the Debye model does not reproduce the experimental data, as the calculated values are often 2 to 3 times too large and the RMSrD is larger than 1.5. The corresponding correlation, shown in Table IX, are also quite poor, with no value higher than 0.160 for the Spearman correlations, and negative values for the Pearson correlations.

The comparison between the experimental thermal conductivity κ^{exp} and the calculated values is also quite poor (Fig. 3(d) and Table VIII), with RMSrD values of the order of 0.9. Considerable disagreements also exist between different experimental reports for most materials. Nevertheless, the Pearson correlations between the AGL calculated thermal conductivity values and the experimental values are high, ranging from 0.974 to 0.980, while the Spearman correlations are even higher, ranging from 0.976 to 1.0.

As for the rocksalt and zincblende material sets, Ref. 54 (Table 2.3) includes values of the thermal conductivity at 300K for wurzite structure materials, calculated using the experimental values of the Debye temperature and Grüneisen parameter in the Leibfried-Schl"{o}mann equation. The Pearson and Spearman correlations are 0.996 and 1.0 respectively, which are slightly higher than the correlations obtained using the AGL calculated quantities.
The difference is insignificant since all of these correlations are very high and could reliably serve as a screening tool of the thermal conductivity. However, as we noted in our previous work on AGL [34], the high correlations calculated with the experimental θ_d and γ were obtained using $\gamma = 0.75$ for BeO. Table 2.3 of Ref. 54 also cites an alternative value of $\gamma = 1.38$ for BeO (Table VIII). Using this outlier value would severely degrade the results down to 0.7, for the Pearson correlation, and 0.829, for the Spearman correlation. These values are too low for a reliable screening tool. This demonstrates the ability of the AEL-AGL calculations to compensate for anomalies in the experimental data when they exist and still provide a reliable screening method for the thermal conductivity.

D. Rhombohedral materials

The elastic properties of a few materials with rhombohedral structures (spacegroups: $R\bar{3}mR$, #166, $R\bar{3}nH$, #166; Pearson symbol: $hR5$; AFLOW prototype: A2B3,hR5_166,c_ac [62]; and spacegroup: R3cH, #167; Pearson symbol: $hR10$; AFLOW prototype: A2B3,hR10_167,c_e [62]) are shown in Table X (we have left out the material Fe$_2$O$_3$ which was included in the data set in Table IV of Ref. 34, due to convergence issues with some of the strained structures required for the calculation of the elastic tensor). The comparison between experiment and calculation is qualitatively reasonable, but the scarcity of experimental results does not allow for a proper correlation analysis.

The thermal properties calculated using AGL are compared to the experimental values in Table XI and the thermal conductivity is also plotted in Fig. 4(a). The experimental Debye temperatures are θ_d for Bi$_2$Te$_3$ and Sb$_2$Te$_3$, and θ_s for Al$_2$O$_3$. The values obtained using the numerical $E(V)$ fit and the three different equations of state (see supplementary material) are very similar, but just roughly reproduce the experiments.

The calculated Grüneisen parameters are about 50%
larger than the experimental ones, and the value of \(\sigma \) used makes a little difference in the calculation. The absolute agreement between the AGL values and \(\kappa^{\text{exp}} \) is also quite poor (Fig. 4(a)). However, despite all these discrepancies, the Pearson correlations between the calculated thermal conductivities and the experimental values are all high, of the order of 0.998, while the Spearman correlations range from 0.7 to 1.0, with all of the different equations of state having very similar correlations with experiment. Using the calculated \(\sigma^{\text{AGL}} \), vs. the rough Cauchy approximation, improves the Spearman correlation from 0.7 to 1.0.

E. Body-centred tetragonal materials

The mechanical properties of the body-centred tetragonal materials (spacegroup: \(\text{I\dagger}2d, \#122 \); Pearson symbol: \(t16; \) AFLOW prototype: \(\text{ABC2}_{-}t16_122_a_b_c \) of Table V of Ref. 34) are reported in Table XIII. The calculated bulk moduli miss considerably the few available experimental results, while the shear moduli are well reproduced. Reasonable estimates are also obtained for the Poisson ratio.

The thermal properties are reported in Table XIV and Fig. 4(b). The \(\theta^{\text{exp}} \) values are all for \(\theta_0 \), and in most cases are in good agreement with the values obtained with the AEL calculated \(\sigma \). The values from the numerical \(E(V) \) fit and the three different equations of state are again very similar, but differ significantly from \(\theta^{\text{AGL}}_0 \) calculated with \(\sigma = 0.25 \).

The comparison of the experimental thermal conduc-

tivity \(\kappa^{\text{exp}} \) to the calculated values, in Fig. 4(b), shows poor reproducibility. The available data can thus only be considered a rough indication of their order of magnitude. The Pearson and Spearman correlations are also quite low for all types of calculation, but somewhat better when the calculated \(\sigma^{\text{AGL}} \) is used instead of the Cauchy approximation.

F. Miscellaneous materials

In this Section we consider materials with various other structures, as in Table VI of Ref. 34: \(\text{CoSb}_3 \) and \(\text{IrSb}_2 \) (spacegroup: \(\text{Im\dagger}3, \#204 \); Pearson symbol: \(cI32; \) AFLOW prototype: \(\text{A3B}_{-}cI32_204_g_c \) [62]), \(\text{ZnSb} \) (Pbca, \#61; \(\text{oP16}; \) AFLOW prototype: \(\text{AB}_{-}\text{oP16}_61_c_c \) [62]), \(\text{Sb}_2\text{O}_3 \) (Pccn, \#56; \(\text{oP20}, \) In\(\text{Te} \) (Pn\(\text{3m}, \#221; \) cP2; AFLOW prototype: \(\text{AB}_{-}\text{cP2}_221_b_a \) [62]), and \(\text{I4/mcm}, \#140; t16), \(\text{Bi}_2\text{O}_3 \) (P121/c1, \#14; mP20); and \(\text{SnO}_2 \) (P42/mnm, \#136; tP6; A2B_{tP6}_136_f_a [62]). Two different structures are listed for In\(\text{Te} \). In Ref. 34, we consid-

TABLE IX. Correlations between experimental values and AEL and AGL results for elastic and thermal properties for hexagonal structure semiconductors.

Property	Pearson	Spearman	RMSrD
\(\kappa^{\text{exp}} \) vs. \(\kappa^{\text{AGL}}(\sigma = 0.25) \) [34]	0.977	1.0	0.887
\(\kappa^{\text{exp}} \) vs. \(\kappa^{\text{AEL}} \)	0.980		0.911
\(\kappa^{\text{exp}} \) vs. \(\kappa^{\text{BM}} \)	0.974		0.904
\(\kappa^{\text{exp}} \) vs. \(\kappa^{\text{Vinet}} \)	0.980		0.926
\(\theta^{\text{exp}} \) vs. \(\theta^{\text{AGL}}(\sigma = 0.25) \) [34]	0.960		0.233
\(\theta^{\text{exp}} \) vs. \(\theta^{\text{AEL}} \)	0.921		0.216
\(\theta^{\text{exp}} \) vs. \(\theta^{\text{BM}} \)	0.921		0.217
\(\theta^{\text{exp}} \) vs. \(\theta^{\text{Vinet}} \)	0.920		0.218
\(\theta^{\text{exp}} \) vs. \(\theta^{\text{BCN}} \)	0.921		0.216
\(\gamma^{\text{exp}} \) vs. \(\gamma^{\text{AGL}}(\sigma = 0.25) \) [34]	-0.039		1.566
\(\gamma^{\text{exp}} \) vs. \(\gamma^{\text{AEL}} \)	-0.029		1.563
\(\gamma^{\text{exp}} \) vs. \(\gamma^{\text{BM}} \)	-0.124		1.547
\(\gamma^{\text{exp}} \) vs. \(\gamma^{\text{Vinet}} \)	-0.043		1.677
\(\gamma^{\text{exp}} \) vs. \(\gamma^{\text{BCN}} \)	-0.054		1.467
\(B^{\text{exp}} \) vs. \(B^{\text{AGL}} \)	0.990		0.201
\(B^{\text{exp}} \) vs. \(B^{\text{AEL}} \)	0.990		0.138
\(B^{\text{exp}} \) vs. \(B^{\text{Vinet}} \)	0.988		0.133
\(B^{\text{exp}} \) vs. \(B^{\text{BCN}} \)	0.988		0.139
\(G^{\text{exp}} \) vs. \(G^{\text{AGL}} \)	0.998		0.090
\(G^{\text{exp}} \) vs. \(G^{\text{Vinet}} \)	0.998		0.076
\(G^{\text{exp}} \) vs. \(G^{\text{BCN}} \)	0.998		0.115
\(\sigma^{\text{exp}} \) vs. \(\sigma^{\text{AGL}} \)	0.851		0.143

FIG. 4. (a) Lattice thermal conductivity of rhombohedral semiconductors at 300K. (b) Lattice thermal conductivity of body-centred tetragonal semiconductors at 300K.
TABLE X. Bulk modulus, shear modulus and Poisson ratio of rhombohedral semiconductors. “N/A” = Not available for that source. Units: B and G in (GPa).

Comp.	B_{exp}	B_{VRH}	$B_{\text{-static}}$	B_{Vinet}	B_{AGL}	G_{exp}	G_{VRH}	G_{AGL}	σ_{exp}	σ_{AGL}	σ_{AGL}					
Bi$_2$Te$_3$	37.0 [112]	28.8	15.0	43.7	44.4	43.3	44.5	22.4 [111]	23.5	16.3	19.9	10.9	0.248	[111]	0.219	0.21
Sb$_2$Te$_3$	N/A	22.9	N/A	45.3	46.0	45.2	46.0	N/A	20.6	14.5	17.6	N/A	N/A	0.195	N/A	
Al$_2$O$_3$	254 [112]	231	222	225	224	224	163.1 [112]	149	144	147	0.235 [112]	0.238	0.24			
Cr$_2$O$_3$	234 [113]	203	192	202	201	201	129 [113]	115	112	113	0.266 [113]	0.265	0.27			
Bi$_2$Se$_3$	N/A	93.9	N/A	57.0	57.5	56.4	57.9	N/A	53.7	28.0	40.9	N/A	N/A	0.310	N/A	

TABLE XI. Lattice thermal conductivity, Debye temperatures and Grüneisen parameter of rhombohedral semiconductors, comparing the effect of using the calculated value of the Poisson ratio to previous approximation of θ. θ_{exp} is compared in Table XVII to the thermal conductivity calculated in order to identify candidate materials for specific thermal applications. This is partly due to the fact that the Grüneisen parameter values tend to be similar for materials, so that it is a good measure of the Grüneisen parameter. For these materials, the Pearson correlation between κ_{exp} and κ_{AGL} is quite poor. The scarcity of experimental data from different sources on the thermal properties of these materials prevents reaching definite conclusions regarding the true values of these properties. The available data can thus only be considered as a rough indication of their order of magnitude.

For these materials, the Pearson correlation between the calculated and experimental values of the thermal conductivity ranges from 0.438 to 0.937, while the corresponding Spearman correlations range from -0.143 to 0.071. In this case, using σ_{AGL} in the AGL calculations does not improve the correlations, instead actually lowering the values somewhat. However, it should be noted that the correlation is heavily influenced by the values for SnO$_2$. When this entry is removed from the list, the Pearson correlation values fall to -0.471 and -0.466 when the σ and σ_{AGL} values are used, respectively. The low correlation values, particularly for the Spearman correlation, for this set of materials demonstrates the importance of the information about the material structure when interpreting results obtained using the AGL method in order to identify candidate materials for specific thermal applications. This is partly due to the fact that the Grüneisen parameter values tend to be similar for mate-
TABLE XIII. Bulk modulus, shear modulus and Poisson ratio of body-centred tetragonal semiconductors. Note that there appears to be an error in Table 1 of Ref. 116 where the bulk modulus values are stated to be in units of 10^{12} Pa. This seems unlikely, as that would give a bulk modulus for CuInTe$_2$ an order of magnitude larger than that for diamond. Also, units of 10^{12} Pa would be inconsistent with the experimental results listed in Ref. 117, so therefore it seems that these values are in units of 10^{10} Pa, which are the values shown here. “N/A” = Not available for that source. Units: B and G in (GPa).

Comp.	B_{exp}	B_{VH}	B_{VH}	B_{Static}	B_{Static}	G_{exp}	G_{VH}	G_{VH}	σ_{exp}	σ_{exp}	σ_{exp}
CuGaTe$_2$	N/A	47.0	N/A	42.5	43.2	42.0	43.5	N/A	25.1	22.1	23.6
ZnGeP$_2$	N/A	73.1	74.9	70.1	71.0	70.0	71.4	N/A	50.5	46.2	48.4
ZnSiAs$_2$	N/A	67.4	65.9	63.4	64.3	63.1	64.6	N/A	44.4	40.4	42.4
CuInTe$_2$	36.0	53.9	53.0	38.6	39.2	38.2	39.4	N/A	20.4	17.2	18.8
ZnGeAs$_2$	N/A	45.4	45.4	116	45.4	45.4	116	45.4	45.4	116	45.4

TABLE XIV. Lattice thermal conductivity at 300K, Debye temperatures and Grüneisen parameter of body-centred tetragonal semiconductors, comparing the effect of using the calculated value of the Poisson ratio to previous approximation of $\sigma = 0.25$. “N/A” = Not available for that source. Units: κ in (W/(m-K)), θ in (K).

Comp.	κ_{exp}	κ_{VH}	κ_{VH}	θ_{exp}	θ_{VH}	θ_{VH}	γ_{exp}	γ_{exp}	γ_{exp}
CuGaTe$_2$	2.2	[85]	1.77	1.36	226	[85]	254	[117]	215
ZnGeP$_2$	35	[87, 121]	4.45	5.07	500	[87]	390	[195]	408
ZnGeAs$_2$	18	[87, 123, 124]	3.70	3.96	347	[87, 125]	342	[171]	350
CuInTe$_2$	10	[87, 126]	1.55	0.722	185	[87, 126]	215	[195]	166
AgGaS$_2$	1.4	[87, 121]	2.97	0.993	255	[87, 122]	324	[162]	224
CdGeP$_2$	1.4	[87, 123, 124]	3.40	2.96	340	[87, 122]	335	[168]	320
CdGeAs$_2$	42	[87, 123]	2.44	2.11	241	[125]	266	[133]	254
CuGaS$_2$	5.09	[87]	3.78	2.79	356	[87, 122]	387	[194]	349
CuGaSe$_2$	12.9	[87, 126]	2.54	1.46	262	[87, 127]	294	[147]	244
ZnGeAs$_2$	11	[87, 123]	2.95	3.18	N/A	N/A	299	[150]	307

TABLE XV. Correlations between experimental values and AEL and AGL results for elastic and thermal properties for body-centred tetragonal structure semiconductors.

Property	Pearson (Linear)	Spearman (Rank Order)	RMSR
κ_{exp} vs. κ_{VH} ($\sigma = 0.25$)	0.265	0.201	0.812
κ_{exp} vs. κ_{AGL}	0.472	0.608	0.766
κ_{exp} vs. κ_{BCN}	0.467	0.608	0.750
κ_{exp} vs. κ_{VH}	0.464	0.608	0.778
κ_{exp} vs. κ_{BCN}	0.460	0.608	0.741

rivals with the same structure. Therefore, the effect of the Grüneisen parameter on the ordinal ranking of the lattice thermal conductivity of materials with the same structure is small.

G. Thermomechanical properties from LDA

The thermomechanical properties of a randomly-selected subset of the materials investigated in this work were calculated using LDA in order to check the impact of the choice of exchange-correlation functional on the results. For the LDA calculations, all structures were first relaxed using the LDA exchange-correlation functional with VASP using the appropriate parameters and poten-
TABLE XVI. Bulk modulus, shear modulus and Poisson ratio of materials with various structures. “N/A” = Not available for that source. Units: B and G in (GPa).

Comp.	Pearson	B_{exp}	B_{VRH}	B_b	B_{static}	B_{VRH}	B_b	B_{static}	G_{exp}	G_{VRH}	G_b	G_{static}	σ_{exp}	σ_{VRH}	σ_b	σ_{Static}
CoSb3	cI32	N/A	78.6	82.9	75.6	76.1	75.1	76.3	N/A	57.2	55.1	56.2	57.0	N/A	0.211	0.22
IrSb3	cI32	N/A	97.5	98.7	94.3	94.8	93.8	95.5	N/A	60.9	59.4	60.1	59.7	N/A	0.244	0.25
ZnSb	oP16	N/A	47.7	47.8	46.7	47.0	46.0	47.7	N/A	29.2	27.0	28.1	28.2	N/A	0.253	0.25
Sb₂O₃	oP20	N/A	16.5	19.1	19.7	19.8	19.8	19.7	N/A	22.8	16.4	19.6	20.4	N/A	0.0749	0.11
InTe	cI2P	90.2 [128]	41.7	N/A	34.9	34.4	34.4	34.7	N/A	8.41	8.31	8.36	N/A	0.406	N/A	
InTe	tI16	46.5 [128]	20.9	N/A	32.3	33.1	32.2	33.2	N/A	13.4	13.0	13.2	N/A	N/A	0.239	N/A
Bi₂O₃	mP20	N/A	48.0	54.5	108	110	109	109	N/A	30.3	25.9	28.1	29.9	N/A	0.255	0.27
SnO₂	tP6	212 [129]	159	N/A	158	162	161	161	106 [129]	86.7	65.7	76.2	N/A	0.285	0.293	N/A

TABLE XVII. Lattice thermal conductivity at 300K, Debye temperatures and Grüneisen parameter of materials with various structures, comparing the effect of using the calculated value of the Poisson ratio to previous approximation of \(\sigma = 0.25 \). The experimental Debye temperatures are \(\theta_0 \), except ZnSb for which it is \(\theta_a \). “N/A” = Not available for that source. Units: \(\kappa \) in \((W/(m·K))\), \(\theta \) in (K).

Comp.	Pearson	\(\kappa \)^{exp}	\(\kappa \)^{AGL}	\(\theta \)^{exp}	\(\theta \)^{AGL}	\(\theta \)^{EL}	\(\gamma \)^{exp}	\(\gamma \)^{AGL}	\(\gamma \)^{EL}	\(\sigma \)^{exp}	\(\sigma \)^{AGL}	\(\sigma \)^{EL}	\(\sigma \)^{Static}
CoSb3	cI32	10 [85]	1.60	2.60	307	284	310	312	0.95 [85]	2.63	2.33		
IrSb3	cI32	16 [85]	2.64	2.73	308	283	286	286	1.42 [85]	2.34	2.34		
ZnSb	oP16	3.5 [55, 130]	1.24	1.23	92	244	242	237	0.76 [55, 130]	2.24	2.23		
Sb₂O₃	oP20	0.4 [87]	3.45	8.74	N/A	418	572	238	N/A	2.13	2.12		
InTe	cI2P	N/A	3.12	0.709	N/A	191	113	116	N/A	2.28	2.19		
InTe	tI16	1.7 [85, 88]	1.32	1.40	186	189	193	150	1.0 [85]	2.23	2.24		
Bi₂O₃	mP20	0.8 [87]	3.04	2.98	N/A	345	342	223	N/A	2.10	2.10		
SnO₂	tP6	98 [131]	55 [131]	9.56	6.98	N/A	541	487	480	2.48	2.42		

TABLE XVIII. Correlations between experimental values and AEL and AGL results for elastic and thermal properties for materials with miscellaneous structures. All thermal properties listed in Table XX were calculated using \(\sigma_{AGL} \) in the expression for the Debye temperature.

Property	Pearson	Spearman	RMSrD
\(\kappa \)^{exp} vs. \(\kappa \)^{AGL} (\(\sigma = 0.25 \)) [34]	0.937	0.071	3.38
\(\kappa \)^{exp} vs. \(\kappa \)^{EL}	0.438	-0.143	8.61
\(\kappa \)^{exp} vs. \(\kappa \)^{BM}	0.498	-0.143	8.81
\(\kappa \)^{exp} vs. \(\kappa \)^{Vinet}	0.445	0.0	8.01
\(\kappa \)^{exp} vs. \(\kappa \)^{BCN}	0.525	-0.143	9.08

In general, the LDA values for elastic and thermal properties are slightly higher than the GGA values, as would be generally expected due to their relative tendencies to overbind and underbind, respectively [132, 133]. The correlations and RMSrD of both the LDA and GGA results with experiment for this set of materials are listed in Table XXI. The Pearson and Spearman correlation values for LDA and GGA are very close to each other for most of the listed properties. The RMSrD values show greater differences, although it isn’t clear that one of the exchange-correlation functionals consistently gives better predictions than the other. Therefore, the choice of exchange-correlation functional will make little difference to the predictive capability of the workflow, so we choose to use GGA-PBE as it is the functional used for performing the structural relaxation for the entries in the AFLOW data repository.

All properties as described in the AFLOW standard [37], and then the appropriate strained structures were calculated using LDA. These calculations were restricted to a subset of materials to limit the total number of additional first-principles calculations required, and the materials were selected randomly from each of the sets in the previous sections so as to cover as wide a range of different structure types as possible, given the available experimental data. Results for elastic properties obtained using LDA, GGA and experimental measurements are shown in Table XIX, while the thermal properties are shown in Table XX.
TABLE XIX. Bulk modulus, shear modulus and Poisson ratio of a subset of the materials investigated in this work, comparing the effect of using different exchange-correlation functionals. “N/A” = Not available for that source. Units: B and G in (GPa).

Comp.	σ_{B}^{\exp}			
Si	97.8 [63, 68]	89.1 96.9 84.2 92.1 66.5 [63, 68]	64 65 61 61.9 62.5 63.4 0.223 [63, 68]	0.216 0.231
BN	367.0 [64]	472 402 353 382 N/A	387 411 374 395 380 403 N/A	0.119 0.124
GaSb	57.0 [64]	47.0 58.3 41.6 52.3 34.2 [75]	30.8 35.3 28.3 32.2 29.6 33.7 0.248 [75]	0.240 0.258
InAs	60.0 [64]	50.1 62.3 45.7 57.4 29.5 [63, 78]	27.3 30.1 24.2 26.4 25.7 28.2 0.282 [63, 78]	0.281 0.303
ZnS	77.1 [64]	71.2 88.4 65.8 83.3 30.9 [63]	36.5 42.1 31.4 35.7 33.9 38.9 0.318 [63]	0.294 0.308
NaCl	25.1 [91]	24.9 33.3 20.0 27.6 14.6 [91]	14.0 19.8 12.9 16.6 13.5 18.2 0.255 [91]	0.271 0.269
KI	12.2 [91]	10.9 16.3 8.54 13.3 5.96 [64]	6.05 9.39 4.39 5.3 5.22 7.35 0.290 [64]	0.294 0.309
RbI	11.1 [91]	9.90 14.8 8.01 12.1 5.03 [91]	5.50 8.54 3.65 3.94 4.57 6.24 0.303 [91]	0.300 0.315
MgO	164 [93]	152 164 142 163 131 [93]	119 138 115 136 117 137 0.185 [93]	0.194 0.173
CaO	113 [94]	105 129 99.6 122 81.0 [94]	73.7 87.4 73.7 86.3 73.7 86.9 0.210 [94]	0.216 0.225
GaN	195 [63, 103]	175 202 166 196 51.6 [63, 103]	107 116 105 113 106 114 0.378 [63, 103]	0.248 0.262

TABLE XX. Thermal properties lattice thermal conductivity at 300K, Debye temperature and Grüneisen parameter of a subset of materials, comparing the effect of using different exchange-correlation functionals. The values listed for θ_{D}^{\exp} are θ_{D}, except 340K for CdGeP 2 [87, 122], 262K for CuGaSe 2 [87, 127] and 307K for CoSb 3 [85] which are θ_{D}. Units: κ in (W/(m-K)), θ in (K).

Comp.	κ_{\exp}	κ_{\exp}	κ_{\exp}	θ_{\exp}	θ_{\exp}	γ_{\exp}	γ_{\exp}	γ_{\exp}	γ_{\exp}
Si	166 [54]	26.19 27.23 395 [53, 54]	610 614 1.06 [54]	2.06 2.03					
BN	760 [54]	281.6 312.9 1200 [54]	1793 1840 0.7 [54]	1.75 1.72					
GaSb	40 [54]	4.96 5.89 165 [53, 54]	240 254 0.75 [53, 54]	2.28 2.25					
InAs	30 [54]	4.33 4.92 165 [53, 54]	229 238 0.57 [53, 54]	2.26 2.22					
ZnS	27 [54]	8.38 9.58 230 [53, 54]	341 363 0.75 [53, 54]	2.00 2.02					
NaCl	7.1 [54]	2.12 2.92 220 [53, 54]	271 312 1.56 [53, 54]	2.23 2.29					
KI	2.6 [54]	0.525 0.811 87 [53, 54]	116 137 1.45 [53, 54]	2.35 2.37					
RbI	2.3 [54]	0.368 0.593 84 [53, 54]	97 115 1.41 [53, 54]	2.47 2.45					
MgO	60 [54]	44.5 58.4 600 [53, 54]	849 935 1.44 [53, 54]	1.96 1.95					
CaO	27 [54]	24.3 28.5 450 [53, 54]	620 665 1.57 [53, 54]	2.06 2.09					
GaN	210 [54]	18.5 21.34 390 [54]	595 619 0.7 [54]	2.08 2.04					
CdS	16 [54]	1.76 1.84 135 [54]	211 217 0.75 [54]	2.14 2.14					
Al 2O 3	30 [114]	21.92 25.36 390 [53]	952 1002 1.32 [53]	1.91 1.91					
CdGeP 2	11 [87, 123, 124]	2.96 3.47 340 [87, 122]	320 337 N/A	2.21 2.18					
CuGaSe 2	12.9 [87, 126]	1.46 2.23 262 [87, 127]	244 281 N/A	2.26 2.23					
CoSb 3	10 [85]	2.60 3.25 307 [85]	310 332 0.95 [85]	2.33 2.28					

H. AGL predictions for thermal conductivity

The AEL-AGL methodology has been applied for high-throughput screening of the elastic and thermal properties of over 3000 materials included in the AFLOW database [36]. Tables XXII and XXIII list those found to have the highest and lowest thermal conductivities, respectively. The high conductivity list is unsurprisingly dominated by various phases of elemental carbon, boron nitride, boron carbide and boron carbon nitride, while all other high-conductivity materials also contain at least one of the elements C, B or N. The low thermal conductivity list tends
TABLE XXI. Correlations between experimental values and AEL and AGL results for elastic and thermal properties comparing the LDA and GGA exchange-correlation functionals for this subset of materials.

Property	Pearson (Linear)	Spearman	RMSrD
\(\kappa_{\text{exp}}\) vs. \(\kappa_{\text{LDA}}\)	0.963	0.867	0.755
\(\theta_{\text{exp}}\) vs. \(\theta_{\text{GGA}}\)	0.959	0.848	0.706
\(\gamma_{\text{exp}}\) vs. \(\gamma_{\text{GGA}}\)	0.996	0.996	0.119
\(\rho_{\text{exp}}\) vs. \(\rho_{\text{LDA}}\)	0.996	0.996	0.174
\(\gamma_{\text{exp}}\) vs. \(\gamma_{\text{LDA}}\)	0.172	0.130	1.514
\(\theta_{\text{exp}}\) vs. \(\theta_{\text{GGA}}\)	0.265	0.296	1.490
\(\kappa_{\text{exp}}\) vs. \(\kappa_{\text{GGA}}\)	0.995	1.0	0.111
\(\sigma_{\text{exp}}\) vs. \(\sigma_{\text{GGA}}\)	0.996	1.0	0.205
\(\sigma_{\text{exp}}\) vs. \(\sigma_{\text{LDA}}\)	0.998	1.0	0.072
\(\kappa_{\text{exp}}\) vs. \(\kappa_{\text{LDA}}\)	0.999	0.993	0.108
\(\rho_{\text{exp}}\) vs. \(\rho_{\text{GGA}}\)	0.997	0.986	0.153
\(\sigma_{\text{exp}}\) vs. \(\sigma_{\text{GGA}}\)	0.998	0.993	0.096
\(\rho_{\text{exp}}\) vs. \(\rho_{\text{LDA}}\)	0.996	0.986	0.315
\(\kappa_{\text{exp}}\) vs. \(\kappa_{\text{GGA}}\)	0.999	0.993	0.163
\(\sigma_{\text{exp}}\) vs. \(\sigma_{\text{LDA}}\)	0.997	0.993	0.111
\(\sigma_{\text{exp}}\) vs. \(\sigma_{\text{GGA}}\)	0.982	0.986	0.037
\(\rho_{\text{exp}}\) vs. \(\rho_{\text{LDA}}\)	0.983	0.993	0.052

TABLE XXII. Materials from AFLOW database with the highest thermal conductivities as predicted using the AEL-AGL methodology. Units: \(\kappa\) in (W/(m·K)).

Comp. Pearson Space Group	\(\kappa_{\text{AGL}}\)		
C	cF8	227	420
BN	cF8	216	282
C	hP4	194	272
C	tI8	139	206
BC3N	oP4	25	188
BN	hP4	186	178
C	hP8	194	167
C	cI16	206	162
C	cI16	65	147
C	mI16	12	145
BC7	tI8	115	145
BC5	oI12	44	137
Be2C	cF12	225	129
CN2	tI6	119	127
C	hP12	194	127
BC7	oP8	25	125
B2C4N2	oP8	17	120
Mn2B2	hP3	191	117
C	hP4	194	117
SiC	cF8	216	113
TiB2	hP3	191	110
AlN	cF8	225	107
BP	cF8	216	105
C	hP16	194	105
VN	hP2	187	101

TABLE XXIII. Materials from AFLOW database with the lowest thermal conductivities as predicted using the AEL-AGL methodology. Units: \(\kappa\) in (W/(m·K)).

Comp. Pearson Space Group	\(\kappa_{\text{AGL}}\)		
Hg33Sr3	cP36	221	0.0113
Hg33K3	cP36	221	0.0116
Cs8Hg40	cP46	223	0.0136
Ca16Hg36	cP52	215	0.0751
CrTe	cF8	216	0.081
Hg5K2	oI12	74	0.086
Sb6Ti121	cI54	229	0.089
Se	cF24	227	0.093
Cs4I24Sn4	cF36	225	0.104
Ag2Cr4Te8	cF56	227	0.107
AsCdLi	cF12	216	0.116
Au36In16	cF52	215	0.117
Cd3In	cP4	221	0.128
AuLiSb	cF12	216	0.130
K3Pb24	cI58	217	0.135
K8Sn46	cP54	223	0.142
Au7Cd16Na6	cF116	225	0.145
Cs	cI2	229	0.148
Cs8Pb4Cl24	cF36	225	0.157
Au4In8Na12	cF96	227	0.158
SeTi	cP2	221	0.164
Cd33Na6	cP39	200	0.166
Au18In15Na6	cP39	200	0.168
Cd26Cs2	cF112	226	0.173
Ag2J2	hP4	186	0.192

to contain materials with large unit cells and heavier elements such as Hg, Tl, Pb and Au.

By combining the AFLOW search for thermal conductivity values with other properties such as chemical, electronic or structural factors, candidate materials for specific engineering applications can be rapidly identified for further in-depth analysis using more accurate computational methods and for experimental examination. The full set of thermomechanical properties calculated using AEL-AGL for over 3500 entries can be accessed online at AFLOW.org [134], which incorporates search and sort functionality to generate customized lists of materials.

IV. CONCLUSIONS

We have implemented the “Automatic Elasticity Library” framework for ab-initio elastic constant calculations, and integrated it with the “Automatic GIBBS Library” implementation of the GIBBS quasi-harmonic Debye model within the AFLOW and Materials Project ecosystems. We used it to automatically calculate the bulk modulus, shear modulus, Poisson ratio, thermal conductivity, Debye temperature and Grüneisen parameter of materials with various structures and compared them with available experimental results.

A major aim of high-throughput calculations is to identify useful property descriptors for screening large datasets of structures [31]. Here, we have examined whether the inexpensive Debye model, despite its well known deficiencies, can be usefully leveraged for estimating thermal properties of materials by analyzing correlations between calculated and corresponding experimental quantities.

It is found that the AEL calculation of the elastic moduli reproduces the experimental results quite well, within 5% to 20%, particularly for materials with cubic and hexagonal structures.
TABLE XXIV. Correlations between experimental values and AEL and AGL results for elastic and thermal properties for the entire set of materials.

\[
\begin{array}{|c|c|c|c|}
\hline
\text{Property} & \text{Pearson} & \text{Spearman} & \text{RMSrD} \\
\text{(Linear)} & \text{(Rank Order)} & \text{Rank Order} \\
\hline
\kappa_{\exp} \text{ vs. } \kappa_{\text{AGL}} \text{ (} \sigma = 0.25 \text{)} & 0.880 & 0.752 & 1.293 \\
\kappa_{\exp} \text{ vs. } \kappa_{\text{BL}} & 0.928 & 0.720 & 2.614 \\
\kappa_{\exp} \text{ vs. } \kappa_{\text{Vint}} & 0.879 & 0.735 & 2.673 \\
\kappa_{\exp} \text{ vs. } \kappa_{\text{BCN}} & 0.912 & 0.737 & 2.443 \\
\kappa_{\exp} \text{ vs. } \kappa_{\text{BCN}} & 0.933 & 0.733 & 2.751 \\
\hline
\end{array}
\]

with \(\sigma = 0.25 \), consistently improves the correlations of the AGL-Debye temperatures with experiments. However, it has very little effect on the values obtained for the Gruneisen parameter. Simple approximations lead to more numerically-robust and better system-size scaling calculations, as they avoid the complications inherent in obtaining the elastic tensor. Therefore, AGL could also be used on its own for initial rapid screening, with AEL being performed later for potentially interesting materials to increase the accuracy of the results.

With respect to rapid estimation of thermal conductivities, the approximations in the Leibfried-Schlömann formalism miss some of the details affecting the lattice thermal conductivity, such as the suppression of phonon-phonon scattering due to large gaps between the branches of the phonon dispersion [26]. Nevertheless, the high correlations between \(\kappa_{\exp} \) and \(\kappa_{\text{AGL}} \) found for most of the structure families in this study demonstrate the utility of the AEL-AGL approach as a screening method for large databases of materials where experimental data is lacking or ambiguous. Despite its intrinsic limitations, the synergy presented by the AEL-AGL approach provides the right balance between accuracy and complexity in identifying materials with promising properties for further investigation.

V. ACKNOWLEDGMENTS

We thank Drs. Kristin Persson, Gerbrand Ceder, Geoffrey Hautier, Anubhav Jain, Shyue Ping Ong, Wei Chen, Patrick Huck, Kiran Mathew, Joseph Montoya and Donald Winston for various technical discussions. We acknowledge support by the DOE (DE-AC02-05CH11231), specifically the Basic Energy Sciences program under Grant # EDCBEE. C.T., M.F., M.B.N. and S.C. acknowledge partial support by DOD-ONR (N00014-13-1-0655, N00014-11-1-0136, N00014-15-1-2863). The consortium AFLOW.org acknowledges Duke University – Center for Materials Genomics — and the CRAY corporation for computational support.

Appendix A: AFLOW AEL-AGL REST-API

The AEL-AGL methodology described in this work is being used to calculate the elastic and thermal prop-
erties of materials in a high-throughput fashion by the AFLOW consortium. The results are now available on the AFLOW database [35, 134] via the AFLOW REST-API [36]. The following optional materials keywords have now been added to the AFLOW REST-API to facilitate accessing this data.

- **ael_bulk_modulus_reuss**
 - *Description.* Returns AEL bulk modulus as calculated using the Reuss average.
 - *Type.* number.
 - *Units.* GPa.
 - *Example.* ael_bulk_modulus_reuss=105.315.
 - *Request syntax.* $aurl/?ael_bulk_modulus_reuss.

- **ael_bulk_modulus_voigt**
 - *Description.* Returns AEL bulk modulus as calculated using the Voigt average.
 - *Type.* number.
 - *Units.* GPa.
 - *Example.* ael_bulk_modulus_voigt=105.315.
 - *Request syntax.* $aurl/?ael_bulk_modulus_voigt.

- **ael_bulk_modulus_vrh**
 - *Description.* Returns AEL bulk modulus as calculated using the Voigt-Reuss-Hill (VRH) average.
 - *Type.* number.
 - *Units.* GPa.
 - *Example.* ael_bulk_modulus_vrh=105.315.
 - *Request syntax.* $aurl/?ael_bulk_modulus_vrh.

- **ael_elastic_anisotropy**
 - *Description.* Returns AEL elastic anisotropy.
 - *Type.* number.
 - *Units.* dimensionless.
 - *Example.* ael_elastic_anisotropy=0.000816153.
 - *Request syntax.* $aurl/?ael_elastic_anisotropy.

- **ael_poisson_ratio**
 - *Description.* Returns AEL Poisson ratio.
 - *Type.* number.
 - *Units.* dimensionless.
 - *Example.* ael_poisson_ratio=0.21599.
 - *Request syntax.* $aurl/?ael_poisson_ratio.

- **ael_shear_modulus_reuss**
 - *Description.* Returns AEL shear modulus as calculated using the Reuss average.
 - *Type.* number.
 - *Units.* GPa.
 - *Example.* ael_shear_modulus_reuss=73.7868.
 - *Request syntax.* $aurl/?ael_shear_modulus_reuss.

- **ael_shear_modulus_voigt**
- **Description.** Returns AEL shear modulus as calculated using the Voigt average.
- **Type.** number.
- **Units.** GPa.
- **Example.** `ael_shear_modulus_voigt=73.7989`.
- **Request syntax.** `$aurl/?ael_shear_modulus_voigt`.

• **ael_shear_modulus_vrh**

- **Description.** Returns AEL shear modulus as calculated using the Voigt-Reuss-Hill (VRH) average.
- **Type.** number.
- **Units.** GPa.
- **Example.** `ael_shear_modulus_vrh=73.7929`.
- **Request syntax.** `$aurl/?ael_shear_modulus_vrh`.

• **ael_speed_of_sound_average**

- **Description.** Returns AEL average speed of sound calculated from the transverse and longitudinal speeds of sound.
- **Type.** number.
- **Units.** m/s.
- **Example.** `ael_speed_of_sound_average=500.0`.
- **Request syntax.** `$aurl/?ael_speed_of_sound_average`.

• **ael_speed_of_sound_longitudinal**

- **Description.** Returns AEL speed of sound in the longitudinal direction.
- **Type.** number.
- **Units.** m/s.
- **Example.** `ael_speed_of_sound_longitudinal=500.0`.
- **Request syntax.** `$aurl/?ael_speed_of_sound_longitudinal`.

• **ael_speed_of_sound_transverse**

- **Description.** Returns AEL speed of sound in the transverse direction.
- **Type.** number.
- **Units.** m/s.
- **Example.** `ael_speed_of_sound_transverse=500.0`.
- **Request syntax.** `$aurl/?ael_speed_of_sound_transverse`.

• **agl_acoustic_debye**

- **Description.** Returns AGL acoustic Debye temperature.
- **Type.** number.
- **Units.** K.
- **Example.** `agl_acoustic_debye=492`.
- **Request syntax.** `$aurl/?agl_acoustic_debye`.

• **agl_bulk_modulus_isothermal_300K**

- **Description.** Returns AGL isothermal bulk modulus at 300K and zero pressure.
- **Type.** number.
- **Units.** GPa.
- **Example.** `agl_bulk_modulus_isothermal_300K=96.6`.
- Request syntax. $aurl/?agl_bulk_modulus_isothermal_300K.

- **agl_bulk_modulus_static_300K**
 - **Description.** Returns AGL static bulk modulus at 300K and zero pressure.
 - **Type.** number.
 - **Units.** GPa.
 - **Example.** agl_bulk_modulus_static_300K=99.59.
 - **Request syntax.** $aurl/?agl_bulk_modulus_static_300K.

- **agl_debye**
 - **Description.** Returns AGL Debye temperature.
 - **Type.** number.
 - **Units.** K.
 - **Example.** agl_debye=620.
 - **Request syntax.** $aurl/?agl_debye.

- **agl_gruneisen**
 - **Description.** Returns AGL Grüneisen parameter.
 - **Type.** number.
 - **Units.** dimensionless.
 - **Example.** agl_gruneisen=2.06.
 - **Request syntax.** $aurl/?agl_gruneisen.

- **agl_heat_capacity_Cv_300K**
 - **Description.** Returns AGL heat capacity at constant volume (C_V) at 300K and zero pressure.
 - **Type.** number.
 - **Units.** k$_B$/cell.
 - **Example.** agl_heat_capacity_Cv_300K=4.901.
 - **Request syntax.** $aurl/?agl_heat_capacity_Cv_300K.

- **agl_heat_capacity_Cp_300K**
 - **Description.** Returns AGL heat capacity at constant pressure (C_p) at 300K and zero pressure.
 - **Type.** number.
 - **Units.** k$_B$/cell.
 - **Example.** agl_heat_capacity_Cp_300K=5.502.
 - **Request syntax.** $aurl/?agl_heat_capacity_Cp_300K.

- **agl_poisson_ratio_source**
 - **Description.** Returns source of Poisson ratio used to calculate Debye temperature in AGL. Possible sources include ael_poisson_ratio_<value>, in which case the Poisson ratio was calculated from first principles using AEL; empirical_ratio_<value>, in which case the value was taken from the literature; and Cauchy_ratio_0.25, in which case the default value of 0.25 of the Poisson ratio of a Cauchy solid was used.
 - **Type.** string.
 - **Example.** agl_poisson_ratio_source=ael_poisson_ratio_0.193802.
 - **Request syntax.** $aurl/?agl_poisson_ratio_source.

- **agl_thermal_conductivity_300K**
 - **Description.** Returns AGL thermal conductivity at 300K.
- **Type.** number.
- **Units.** W/m*K.
- **Example.** agl_thermal_conductivity_300K=24.41.
- **Request syntax.** $aurl/?agl_thermal_conductivity_300K.

- **agl_thermal_expansion_300K**
 - **Description.** Returns AGL thermal expansion at 300K and zero pressure.
 - **Type.** number.
 - **Units.** 1/K.
 - **Example.** agl_thermal_expansion_300K=4.997e-05.
 - **Request syntax.** $aurl/?agl_thermal_expansion_300K.

[1] G. N. Greaves, A. L. Greer, R. S. Lakes, and T. Rouxel, Poisson’s ratio and modern materials, Nat. Mater. **10**, 823–837 (2011).

[2] J.-P. Poirier, *Introduction to the Physics of the Earth’s Interior* (Cambridge University Press, 2000), 2nd edn.

[3] F. Mouhat and F.-X. Coudert, Necessary and sufficient elastic stability conditions in various crystal systems, Phys. Rev. B **90**, 224104 (2014).

[4] S. Barzilai, C. Toher, S. Curtarolo, and O. Levy, Evaluation of the tantalum-titanium phase diagram from ab initio calculations, Acta Mater. **120**, 255–263 (2016).

[5] X. Q. Chen, H. Niu, D. Li, and Y. Li, Modeling hardness of polycrystalline materials and bulk metallic glasses, Intermetallics **19**, 1275–1281 (2011).

[6] M. Zebarjadi, K. Esfarjani, M. S. Dresselhaus, Z. F. Ren, and G. Chen, Perspectives on thermoelastics: from fundamentals to device applications, Energy Environ. Sci. **5**, 5147–5162 (2012).

[7] J. Carrete, W. Li, N. Mingo, S. Wang, and S. Curtarolo, Finding Unprecedently Low-Thermal-Conductivity Half-Heusler Semiconductors via High-Throughput Materials Modeling, Phys. Rev. X **4**, 011019 (2014).

[8] K. F. Garrity, First principles search for n-type oxide thermoelastics, Phys. Rev. B **94**, 045122 (2016).

[9] K. Watari and S. L. Shinde, High thermal conductivity materials, MRS Bull. **26**, 440–444 (2001).

[10] L.-T. Yeh and R. C. Chu, *Thermal Management of Microelectronic Equipment: Heat Transfer Theory, Analysis Methods, and Design Practices* (ASME Press, 2002).

[11] M. J. Mehl and D. A. Papaconstantopoulos, Applications of a tight-binding total-energy method for transition and noble metals: Elastic constants, vacancies, and surfaces of monatomic metals, Phys. Rev. B **54**, 4519–4530 (1996).

[12] M. J. Mehl, B. M. Klein, and D. A. Papaconstantopoulos, *First Principles Calculation of Elastic Properties in Intermetallic Compounds: Principles and Practice*, edited by J. H. Westbrook and R. L. Fleischer (Wiley, 1995).

[13] R. Gelesorkhtabar, P. Pavone, J. Spitaler, P. Puschnig, and C. Draxl, ElaStic: A tool for calculating second-order elastic constants from first principles, Comput. Phys. Commun. **184**, 1861–1873 (2013).

[14] M. de Jong, W. Chen, T. Angsten, A. Jain, R. Notestine, A. Gamst, M. Sluiter, C. K. Ande, S. van der Zwaag, J. J. Plata, C. Toher, S. Curtarolo, G. Ceder, K. A. Persson, and M. D. Asta, Charting the Complete Elastic properties of Inorganic Crystalline Compounds, Sci. Data **2**, 150009 (2015).

[15] P. R. C. da Silveira, C. R. S. da Silva, and R. M. Wentzcovitch, Metadata management for distributed first principles calculations in VLab—A collaborative cyberinfrastructure for materials computation, Comput. Phys. Commun. **178**, 186–198 (2008).

[16] C. R. S. da Silva, P. R. C. da Silveira, B. Karki, R. M. Wentzcovitch, P. A. Jensen, E. F. Bollig, M. Pierce, G. Erlebacher, and D. A. Yuen, Virtual laboratory for planetary materials: System service architecture overview, Phys. Earth Planet. Inter. **163**, 321–332 (2007).

[17] S. Curtarolo, W. Stryawan, G. L. W. Hart, M. Jahnáték, R. V. Chepulskii, R. H. Taylor, S. Wang, J. Xue, K. Yang, O. Levy, M. J. Mehl, H. T. Stokes, D. O. Demchenko, and D. Morgan, AFLOW: An automatic framework for high-throughput materials discovery, Comput. Mater. Sci. **58**, 218–226 (2012).

[18] O. Levy, G. L. W. Hart, and S. Curtarolo, Uncovering Compounds by Synergy of Cluster Expansion and High-Throughput Methods, J. Am. Chem. Soc. **132**, 4830–4833 (2010).

[19] G. L. W. Hart, S. Curtarolo, T. B. Massalski, and O. Levy, Comprehensive Search for New Phases and Compounds in Binary Alloy Systems Based on Platinum-Group Metals, Using a Computational First-Principles Approach, Phys. Rev. X **3**, 041035 (2013).

[20] D. A. Broido, M. Malorny, G. Birner, N. Mingo, and D. A. Stewart, Intrinsic lattice thermal conductivity of semiconductors from first principles, Appl. Phys. Lett. **91**, 231922 (2007).

[21] W. Li, N. Mingo, L. Lindsay, D. A. Broido, D. A. Stewart, and N. A. Katcho, Thermal conductivity of diamond nanowires from first principles, Phys. Rev. B **85**, 195436 (2012).

[22] A. Ward, D. A. Broido, D. A. Stewart, and G. Deinzer,
Ab initio theory of the lattice thermal conductivity in diamond, Phys. Rev. B 80, 125203 (2009).

[23] A. Ward and D. A. Broido, Intrinsic phonon relaxation times from first-principles studies of the thermal conductivities of Si and Ge, Phys. Rev. B 81, 085205 (2010).

[24] Q. Zhang, F. Cao, K. Lukas, W. Liu, K. Esfarjani, C. Opeil, D. Broido, D. Parker, D. J. Singh, G. Chen, and Z. Ren, Study of the thermoelastic properties of lead selenide doped with Boron, gallium, indium, or thallium, J. Am. Chem. Soc. 134, 17731–17738 (2012).

[25] W. Li, L. Lindsay, D. A. Broido, D. A. Stewart, and N. Mingo, Thermal conductivity of bulk and nanowire Mg$_2$Si$_{1–x}$Sn$_x$ alloys from first principles, Phys. Rev. B 86, 1743071–1743078 (2012).

[26] L. Lindsay, D. A. Broido, and T. L. Reinecke, First-principles determination of ultrahigh thermal conductivity of boron arsenide: A competitor for diamond?, Phys. Rev. Lett. 111, 0259011–0259015 (2013).

[27] L. Lindsay, D. A. Broido, and T. L. Reinecke, Ab initio thermal transport in compound semiconductors, Phys. Rev. B 87, 1652011–165220115 (2013).

[28] M. S. Green, Markoff random processes and the statistical mechanics of time-dependent phenomena. II. Irreversible processes in fluids, J. Chem. Phys. 22, 398–413 (1954).

[29] R. Kubo, Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems, J. Phys. Soc. Jpn. 12, 570–586 (1957).

[30] S. Curtarolo and G. Ceder, Dynamics of an Inhomogeneously Coarse Grained Multiscale System, Phys. Rev. Lett. 88, 255504 (2002).

[31] S. Curtarolo, G. L. W. Hart, M. Buongiorno Nardelli, N. Mingo, S. Sanvito, and O. Levy, The high-throughput highway to computational materials design, Nat. Mater. 12, 191–201 (2013).

[32] M. A. Blanco, E. Francisco, and V. Luañá, GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model, Comput. Phys. Commun. 158, 57–72 (2004).

[33] M. A. Blanco, A. M. Pendás, E. Francisco, J. M. Recio, and R. Franco, Thermodynamical properties of solids from microscopic theory: Applications to MgF$_2$ and Al$_2$O$_3$, J. Mol. Struct., Theochem 368, 245–255 (1996).

[34] C. Toher, J. J. Plata, O. Levy, M. de Jong, M. D. Asta, M. Buongiorno Nardelli, and S. Curtarolo, High-throughput computational screening of thermal conductivity, Debye temperature, and Grüneisen parameter using a quasiharmonic Debye Model, Phys. Rev. B 90, 174107 (2014).

[35] S. Curtarolo, W. Setyawan, S. Wang, J. Xue, K. Yang, R. H. Taylor, L. J. Nelson, G. L. W. Hart, S. Sanvito, M. Buongiorno Nardelli, N. Mingo, and O. Levy, AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations, Comput. Mater. Sci. 58, 227–235 (2012).

[36] R. H. Taylor, F. Rose, C. Toher, O. Levy, K. Yang, M. Buongiorno Nardelli, and S. Curtarolo, A RESTful API for exchanging Materials Data in the AFLOWLIB.org consortium, Comput. Mater. Sci. 93, 178–192 (2014).

[37] C. E. Calderon, J. J. Plata, C. Toher, C. Oses, O. Levy, M. Fornari, A. Natan, M. J. Mehl, G. L. W. Hart, M. Buongiorno Nardelli, and S. Curtarolo, The AFLOW standard for high-throughput materials science calculations, Comput. Mater. Sci. 108 Part A, 233–238 (2015).

[38] K. Yang, C. Oses, and S. Curtarolo, Modeling Off-Stoichiometry Materials with a High-Throughput Ab-Initio Approach, Chem. Mater. 28, 6484–6492 (2016).

[39] A. Jain, G. Hautier, C. J. Moore, S. P. Ong, C. C. Fischer, T. Mueller, K. A. Persson, and G. Ceder, A high-throughput infrastructure for density functional theory calculations, Comput. Mater. Sci. 50, 2295–2310 (2011).

[40] A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K. A. Persson, Commentary: The Materials Project: A materials genome approach to accelerating materials innovation, APL Mater. 1, 011002 (2013).

[41] S. P. Ong, W. D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V. L. Chevrier, K. A. Persson, and G. Ceder, Python Materials Genomics (pyMatgen): A robust, open-source python library for materials analysis, Comput. Mater. Sci. 68, 314–319 (2013).

[42] W. Setyawan and S. Curtarolo, High-throughput electronic band structure calculations: Challenges and tools, Comput. Mater. Sci. 49, 299–312 (2010).

[43] O. Levy, R. V. Chepulskii, G. L. W. Hart, and S. Curtarolo, The New face of Rhodium Alloys: Revealing Ordered Structures from First Principles, J. Am. Chem. Soc. 132, 833–837 (2010).

[44] O. Levy, G. L. W. Hart, and S. Curtarolo, Structure maps for hcp metals from first-principles calculations, Phys. Rev. B 81, 174106 (2010).

[45] O. Levy, M. Jahnáték, R. V. Chepulskii, G. L. W. Hart, and S. Curtarolo, Ordered Structures in Rhenium Binary Alloys from First-Principles Calculations, J. Am. Chem. Soc. 133, 158–163 (2011).

[46] M. Jahnáték, O. Levy, G. L. W. Hart, L. J. Nelson, R. V. Chepulskii, J. Xue, and S. Curtarolo, Ordered phases in ruthenium binary alloys from high-throughput first-principles calculations, Phys. Rev. B 84, 214110 (2011).

[47] R. H. Taylor, S. Curtarolo, and G. L. W. Hart, Guiding the experimental discovery of magnesium alloys, Phys. Rev. B 84, 084101 (2011).

[48] R. Hill, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. Sect. A 65, 349 (1952).

[49] F. Birch, The Effect of Pressure Upon the Elastic Parameters of Isotropic Solids, According to Murnaghan’s Theory of Finite Strain, J. Appl. Phys. 9, 279 (1938).

[50] P. Vinet, J. H. Rose, J. Ferrante, and J. R. Smith, Universal features of the equation of state of solids, J. Phys.: Conden. Matt. 1, 1941–1963 (1989).

[51] V. G. Baonza, M. Cáceres, and J. Núñez, Universal compressibility behavior of dense phases, Phys. Rev. B 51, 28–37 (1995).

[52] G. Leibfried and E. Schlömann, Wärmeleitung in elektrisch isolierenden Kristallen, Nachrichten d. Akad. d. Wiss. in Göttingen. Math.-physik. Kl. 2a. Math.-physik.-chem. Abt (Vandenhoeck & Ruprecht, 1954).

[53] G. A. Slack, The thermal conductivity of nonmetallic crystals, in Solid State Physics, edited by H. Ehrenreich, F. Seitz, and D. Turnbull (Academic, New York, 1979), vol. 34, p. 1.

[54] D. T. Morelli and G. A. Slack, High Lattice Thermal Conductivity Solids, in High Thermal Conductivity Materials, edited by S. L. Shindé and J. S. Goela (Springer, 2006).

[55] L. Bjerg, B. B. Iversen, and G. K. H. Madsen, Modeling the thermal conductivities of the zinc antimonides ZnSb
and Zn$_4$Sb$_3$, Phys. Rev. B 89, 024304 (2014).

[56] P. Nath, J. J. Plata, D. Usanmaz, R. A. R. Al Orabi, M. Fornari, M. Buongiorno Nardelli, C. Toher, and S. Curtarolo, High-throughput prediction of finite-temperature properties using the quasi-harmonic approximation, Comput. Mater. Sci. 125, 82–91 (2016).

[57] D. Wei, B. Kozinsky, B. Pavan, and M. Fornari, Quasi-harmonic Vibrational Properties of TiNiSn from Ab-Initio Phonons, J. Elec. Mat. 41, 977–983 (2012).

[58] P. Nath, J. J. Plata, D. Usanmaz, C. Toher, M. Fornari, M. Buongiorno Nardelli, and S. Curtarolo, High throughput combinatorial method for fast and robust prediction of lattice thermal conductivity, Scr. Mater. 129, 88–93 (2017).

[59] G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47, 558–561 (1993).

[60] P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50, 17953–17979 (1994).

[61] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77, 3865–3868 (1996).

[62] M. J. Mehdi, D. Hicks, C. Toher, O. Levy, R. M. Hans, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes, Comput. Mater. Sci. (DOI:10.1016/j.commatsci.2017.01.017) (2017).

[63] O. Madelung, ed., Semiconductors - Basic Data (Springer, Berlin, 1996), 2nd edn.

[64] P. K. Lam, M. L. Cohen, and G. Martinez, Analytic relation between bulk moduli and lattice constants, Phys. Rev. B 35, 9190 (1987).

[65] M. H. Grimsditch and A. K. Ramdas, Brillouin scattering in diamond, Phys. Rev. B 11, 3139 (1975).

[66] K. Strössner, M. Cardona, and W. J. Choyke, Elastic anharmonicity of GaSb and GaP from ultrasonic-velocity measurements between 4.2 and 300 K, Phys. Rev. B 11, 2933 (1975).

[67] T. B. Bateman, H. J. McSkimin, and J. M. Whelan, Elastic Moduli of Single-Crystal Gallium Arsenide, J. Appl. Phys. 30, 544 (1959).

[68] D. N. Nichols, D. S. Rimai, and R. J. Sladek, Elastic anharmonicity of InP: Its relationship to the high pressure transition, Solid State Commun. 36, 667–669 (1980).

[69] D. Gerlich, Elastic Constants of Single-Crystal Indium Arsenide, J. Appl. Phys. 34, 2915 (1963).

[70] L. H. DeVaux and F. A. Pizzarello, Elastic Constants of Indium Antimonide, Phys. Rev. 102, 85 (1956).

[71] L. J. Shtyky and C. W. Garland, Elastic Constants of Indium Antimonide from 4.2 °K to 300 °K, Phys. Rev. 113, 167 (1959).

[72] C. A. Vanderborgh, Y. K. Vohra, and A. L. Ruoff, Structural phase transitions in InSb to 66 GPa, Phys. Rev. B 40, 12450 (1989).

[73] B. H. Lee, Elastic Constants of ZnTe and ZnSe between 77–300 °K, J. Appl. Phys. 41, 2984 (1970).

[74] A. Lehoczky, D. A. Nelson, and C. R. Whitsett, Elastic Constants of Mercury Selenide, Phys. Rev. 188, 1069 (1969).

[75] R. I. Cottam and G. A. Saunders, The elastic behaviour of mercury telluride, J. Phys. Chem. Solids 36, 187–192 (1975).

[76] E. S. Toberer, A. Zevalkink, and G. J. Snyder, Phonon engineering through crystal chemistry, J. Mater. Chem. 21, 15843–15852 (2011).

[77] Ioffe Physico - Technical Institute, http://www.ioffe.ru/SVA/NSM/Semicond/index.html.

[78] Springer Materials: The Landolt-Börnstein Database, http://www.springermaterials.com/docs/index.html.

[79] D. P. Spitzer, Lattice thermal conductivity of semiconductors: a chemical bond approach, J. Phys. Chem. Solids 31, 19–40 (1970).

[80] C. R. Whitsett, D. A. Nelson, J. G. Broerman, and E. C. Paxhia, Lattice thermal conductivity of mercury selenide, Phys. Rev. B 7, 4625–4640 (1973).

[81] D. Laplaze, M. Boissier, and R. Vacher, Velocity of hypersonic sounds in lithium hydride by spontaneous Brillouin scattering, Solid State Commun. 19, 445–446 (1976).

[82] S. Haussühl, Thermo-elastische Konstanten der Alkalihalogenide vom NaCl-Typ, Z. Phys. 159, 223–229 (1960).

[83] W. C. Hughes and L. S. Cain, Second-order elastic constants of AgCl from 20 to 430 °C, Phys. Rev. B 53, 5174 (1996).

[84] Y. Sumino, I. Ohno, T. Goto, and M. Kumazawa, Measurement of elastic constants and internal frictions on single-crystal MgO by rectangular parallelepiped resonance, J. Phys. Earth 24, 263–273 (1976).

[85] Z. P. Chang and E. K. Graham, Elastic properties of oxides in the NaCl-structure, J. Phys. Chem. Solids 38, 1355–1362 (1977).

[86] G. I. Peresada, E. G. Ponyatovskii, and Z. D. Sokolovskaya, Pressure dependence of the elastic constants of PbS, Phys. Stat. Solidi A 35, K177–K180 (1976).

[87] G. Lippmann, P. Kästner, and W. Wanninger, Elastic constants of PbSe, Phys. Stat. Solidi A 6, K159–K161 (1971).

[88] A. J. Miller, G. A. Saunders, and Y. K. Yogurtcu, Pressure dependences of the elastic constants of PbTe, SnTe and Ge$_{0.08}$Sn$_{0.92}$Te, J. Phys. C: Solid State Phys. 14, 1569–1584 (1981).

[89] T. Seddon, S. C. Gupta, and G. A. Saunders, Hole contribution to the elastic constants of SnTe, Solid State Commun. 20, 69–72 (1976).

[90] M. Anis-ur-Rehman and A. Maqsood, Measurement of...
Thermal Transport Properties with an Improved Transient Plane Source Technique, Int. J. Thermophys. 24, 867–883 (2003).

100] G. Arlt and G. R. Schodder, Some Elastic Constants of Silicon Carbide, J. Acoust. Soc. Am. 37, 384 (1965).

101] L. E. McNeil, M. Grimsditch, and R. H. French, Vibrational spectroscopy of Alumina Nitride, J. Am. Ceram. Soc. 76, 1132–1136 (1993).

102] S. P. Dodd, G. A. Saunders, M. Cankurtaran, and M. Gatulle, M. Fischer, and A. Chevy, V. A. Savastenko and A. U. Sheleg, Elastic con-

103] L. E. McNeil, M. Grimsditch, and R. H. French, Some Elastic Constants of C. F. Cline, H. L. Dunegan, and G. W. Henderson, Elastic, piezoelectric and dielectric prop-

104] I. B. Kobiakov, G. A. Slack, H. L. Alberts and J. C. A. Boeyens, Specific heat of Cr

105] M. H. Grimsditch and G. D. Holah, Brillouin scattering and elastic moduli of silver thioigallate (AgGaS2), Phys. Rev. B 12, 4377 (1975).

106] R. H. Bruce and D. S. Cannell, Specific Heat, Debye temperature, and related properties of compound semiconductors \(A^2^B^V^V^C^O^2 \), Phys. Stat. Solidi A 65, 563–569 (1981).

107] C. F. Cline, H. L. Dunegan, and G. W. Henderson, Elastic Constants of Hexagonal BeO, ZnS, and CdS, E. Appl. Phys. 38, 1944–1948 (1967).

108] M. Gatulle, M. Fischer, and A. Chevy, Elastic constants of the layered compounds GaS, GaSe, InSes, and their pressure dependence I. Experimental part, Phys. Stat. So-
lidi B 119, 327–336 (1983).

109] M. Ueno, M. Yoshida, A. Onodera, O. Shimomura, and K. Takemura, Stability of the wurzite-type structure under high pressure: GaN and InN, Phys. Rev. B 49, 14–21 (1994).

110] S. Krukowski, A. Witek, J. Adamczyk, J. Jun, S. P. Dodd, G. A. Saunders, M. Cankurtaran, and M. Gatulle, Elastic constants of gallium nitride, J. Phys. Appl. 79, 3343 (1996).

111] T. Chattopadhyay, R. P. Santandrea, and H. G. von Schnering, Temperature and pressure dependence of the crystal structure of InTe: A new high pressure phase of InTe, J. Phys. Chem. Solids 46, 351–356 (1985).

112] E. Chang and E. K. Graham, The elastic constants of cassiterite SnO2 and their pressure and temperature dependence, J. Geophys. Res. 80, 2595–2599 (1975).

113] T. Goto, O. L. Anderson, I. Ohno, and S. Yamamoto, Elastic constants of corundum up to 1825 K, J. Geophys. Res. Solid Earth 94, 7588–7602 (1989).

114] H. L. Alberts and J. C. A. Boeyens, The elastic constants and distance dependence of the magnetic interactions of Cor2O3, J. Magn. Magn. Mater. 2, 327–333 (1976).

115] G. A. Slack, Thermal conductivity of MgO, Al2O3, MgAl2O4, and Fe2O3 crystals from 3° to 300°K, Phys. Rev. 126, 427–441 (1962).

116] R. H. Bruce and D. S. Cannell, Specific heat of Cor2O3 near the Néel temperature, Phys. Rev. B 15, 4451–4459 (1977).

117] B. Fernandez and S. M. Wasim, Sound Velocities and Elastic Moduli in CuInTe2 and CuInSe2, Phys. Stat. Solidi A 122, 235–242 (1990).

118] H. Neumann, Bulk Modulus-Volume Relationship in Ternary Chalcopyrite Compounds, Phys. Stat. Solidi A 96, K121–K125 (1986).

119] T. Hailing, G. A. Saunders, W. A. Lambson, and R. S. Feigelson, Elastic behaviour of the chalcopyrite CdGeAs2, J. Phys. C: Solid State Phys. 15, 1399–1418 (1982).

120] M. Bettini and W. B. Holzapfel, Gruneisen parameters of \(\Gamma \) phonons in CdSIP2, CuAlS2, and CuGaS2, Solid State Commun. 16, 27–30 (1975).

121] J. D. Beasley, Thermal conductivities of some novel nonlinear optical materials, Applied Optics 33, 1000–1003 (1994).

122] S. C. Abrahams and F. S. L. Hsu, Debye temperatures and cohesive properties, J. Chem. Phys. 63, 1162–1165 (1975).

123] J. L. Shay and J. H. Wernick, Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Applications (Pergamon, 1975), doi:10.1016/B978-0-08-017883-7.50002-0.

124] K. Masumoto, S. Isomura, and W. Goto, The preparation and properties of ZnSiAs2, ZnGeP2 and CdGeP2 semiconducting compounds, J. Phys. Chem. Solids 27, 1939–1947 (1966).

125] K. Bohnhammel, P. Deus, and H. A. Schneider, Specific heat, Debye temperature, and related properties of compound semiconductors \(A^2^I^I^B^V^V^C^O^2 \), Phys. Stat. Solidi A 65, 563–569 (1981).

126] C. Rincón, M. L. Valeri-Gil, and S. M. Wasim, Room-Temperature Thermal Conductivity and Gruneisen Parameter of the I–III–VI2 Chalcopyrite Compounds, Phys. Stat. Solidi A 147, 409–415 (1995).

127] K. Bohnhammel, P. Deus, G. Kühn, and W. Möller, Specific Heat, Debye Temperature, and Related Properties of Chalcopyrite Semiconductor Compounds CuGaSe2, CuGaTe2, CuInTe2, Phys. Stat. Solidi A 71, 505–510 (1982).

128] T. Chattopadhyay, R. P. Santandrea, and H. G. von Schnering, Temperature and pressure dependence of the crystal structure of InTe: A new high pressure phase of InTe, J. Phys. Chem. Solids 46, 351–356 (1985).

129] P. H. M. Böttger, K. Valset, S. Deledda, and T. G. Finstad, Influence of Ball-Milling, Nanostructuring, and Ag Inclusions on Thermoelectric Properties of ZnSb, J. Elect. Mat. 39, 1583 (2010).

130] P. Türkes, C. Plunktke, and R. Helbig, Thermal conductivity of SnO2 single crystals, J. Phys. C: Solid State Phys. 13, 4941–4951 (1980).

131] L. He, F. Liu, G. Hautier, M. J. T. Oliveira, M. A. L Marques, F. D. Vila, J. J. Rehr, G.-M. Rignanese, and A. Zhou, Accuracy of generalized gradient approximation functionals for density-functional perturbation theory calculations, Phys. Rev. B 89, 064305 (2014).

132] F. Saadaoui, F. Z. D. Khodja, A.-E.-D. Kadoun, M. D. Khodja, A. Elias, and A. Boudali, First-principles calculations of structural, elastic, thermodynamic, and electronic properties of anti-perovskites \(A^2^I^I^C^N_3 \) (\(A^2^I^I^ = \) Al, Ga, In), Eur. Phys. J. D 88, 316 (2015).

133] W. Setyawan and S. Curtarolo, AflowLib: Ab-initio Electronic Structure Library Database, http://www.aflow.org (2011).

134] X. L. Liu, B. K. VanLeewen, S.-L. Shang, Y. Du, and Z.-K. Liu, On the scaling factor in Debye–Gruneisen model: A case study of the Mg–Zn binary system, Comp. Mat. Sci. 98, 34–41 (2015).