SOIL & CROP SCIENCES | RESEARCH ARTICLE

Land suitability analysis for sorghum crop production in northern semi-arid Ethiopia: Application of GIS-based fuzzy AHP approach

Araya Kahsay¹,²*, Mitiku Haile³, Girmay Gebresamuel³ and Muktar Mohammed⁴

Abstract: The mismatch between the actual requirements and what is actually implemented in a given land could be avoided through land suitability evaluation through its contribution in identifying the inherent land potentials and constraints. This study aims to assess suitability for sorghum (Sorghum bicolor L. Moench) crop by integrating geographic information system (GIS), fuzzy set models and analytical hierarchy process (AHP) methods. Soil, climate and topographic characteristics were considered in the study. As evidenced from the model output, 29,534 ha (30.54%), 34,984.74 ha (36.17%), 17,455 ha (18.05%), 14,744.61 ha (15.24%) of the area is moderately suitable, marginally suitable, currently not suitable and permanently not suitable for sorghum crop production respectively. Slope gradient, altitude, temperature, length of growing period, available water capacity, mean weight diameter, total nitrogen, available phosphorus and soil organic carbon contents were found the main limiting factors constraining cultivation of that crop in the area. Organic and inorganic fertilizer application, tillage and soil and water management activities are needed to boost the productivity of the area.

Subjects: Crop science; Soil science; Climatology; Geomorphology; Landscape

Keywords: suitability class; sorghum; geographic information system; multi-criteria decision-making; analytical hierarchy process

ABOUT THE AUTHORS

Araya Kahsay is a PhD candidate in Soil Science at Haramaya University and lecturer at Natural Resources Management department in Dilla University. His area of focus is GIS for natural resources evaluation and soil pedology. Mitiku Haile is a professor of Soil Science in Mekelle University. His spheres of professional expertise are pedology, soil and water management, hydrology and land-use planning. Girmay Gebresamuel is associate professor of soil and water management in Mekelle University. He carried out several researches on soil quality management, environmental and climate circumstances. Muktar Mohammed, an associate professor of Agroforestry in Oda-Bultum University, is with specialized skills of remote sensing and GIS Application and sustainable agriculture.

PUBLIC INTEREST STATEMENT

Ethiopia has large potential of arable land supporting the growth of diverse crops. Unwise use of natural resources and lack of appropriate soil management practices commonly observed in smallholder farmers of the country are, however, resulting in below global average yield of crops. Land suitability evaluation is crucial to identify land potentials and constraints and accordingly recognize portions of land (un)suitable for crop production. This helps to develop appropriate land management. Land suitability evaluation for sorghum crop production was conducted. Topographic, climatic and edaphic factors (though with varying degrees) severely limited the cultivation potential of the area for sorghum crop. This indicates the area is in need of soil fertility, tillage and soil and water management practices in order to boost its sorghum crop yield.
1. Introduction

The unbalanced increase in population growth and food production (FAO, 2009; Grafton, Daugbjerg, & Qureshi, 2015; McKenzie & Williams, 2015; Scherer, Verburg, & Schulp, 2018) supported by greater reliance of rural livelihoods on agriculture-led income sources (Davis, Giuseppe, & Zezza, 2017) is leading to a decline in health and productivity of global land resources (Cowie et al., 2018). Land and soil degradation emanated from such factors is the main concern of the world (Keessstra et al., 2016; Popp, Lakner, Harangi-Rakos, & Fari, 2014) today as it might lead to serious threats in sustainability of agricultural systems. Limited natural resources, degradation, water scarcity and climatic variability are critically constraining agricultural development of arid to dry sub-humid areas (Elalem, Comber, & Fisher, 2011; Robinson, Erickson, Chesterman, & Worden, 2015). Even though not evenly distributed, Ethiopia has large potential of arable land (Chamberlin, Jayne, & Headey, 2014; Kebede, 2002; You et al., 2011) supporting the suggestion noting the presence of vast acreages of suitable but unused land in the world (IIASA/FAO, 2012) in general and Africa (Deininger & Byerlee, 2011) in particular for crop production. Agriculture in Ethiopia, however, is mostly rain-fed subjected to high inter-annual and seasonal rainfall variability (Mekuriaw, 2017; Seleshi & Camberlin, 2006) and land degradation (Abegaz, Winowiecki, Vågen, Langan, & Smith, 2016; Gebreselassie, Kirui, & Mirzabaev, 2016; Nyessen, Frankle, Zebele, Deckers, & Poesen, 2015; Pender, Place, & Ehui, 2006). Unwise use of natural resources (Negusse, Yazew, & Tadesse, 2013) and lack of appropriate soil management practices are commonly observed (Worqlul et al., 2017; Yebo, 2015) in smallholder farmers.

Moreover, timely and reliable land resources information with respect to their nature, extent and spatial distribution are missing in the country even though they are very fundamental for optimal utilization of available natural resources on a sustained basis (Karlen & Rice, 2015; Sahu, Reddy, Kumar, & Nagaraju, 2015; Tóth, Jones, & Montanarella, 2013). Observation of high cereal yield gaps in the country (Van Ittersum et al., 2016) might be related with those factors. Its increase in agricultural production, due those reasons, could never been able to keep pace with raising demands of its drastic population growth in the past decades (Beyene, 2008). More than 65% of the land in Tigray region of northern Ethiopia is under cultivation (Beyene, Gibbon, & Haile, 2006). It has rugged topography and variable and erratic but intense rainfall (Vanmaercke et al., 2010; Hadgu Tesfaye, & Mamo, 2015; Meaza et al., 2017; Tesfaye, Birhane, Leijnse, & van der Zee, 2017). Its soils are not well studied in terms of their fertility and productivity classes. Similarly, the study area which is located in Enderta dry midlands of southern Tigray is characterized by limited information on soil characteristics, their potentials and limitations; climate and topographic derivatives despite they are fundamental requirements of developing appropriate land-use planning. The degrees of suitability of the area for crop production purposes, accordingly, do not well studied. Goals of sustainable agriculture would, however, be achieved when lands were categorized and utilized based up on their different use (FAO, 1993).

Land suitability evaluation made by matching land characteristics with land utilization requirements (Mustafa et al., 2011) is needed to match land resources and land use in an effective and logical way (Abd-Elmabod et al., 2017; Bagherzadeh & Gholizadeh, 2016; Jiao, Zhang, & Xu, 2017; Li et al., 2017). It is fundamental to reduce unwise utilization of natural resources (AbdelRahman, Natarajan, & Hegde, 2016; Yu, Shi, Huai, & Li, 2013) by avoiding the mismatch between the actual requirement and what is actually implemented in the field (Hegde, Niranjan, Nataraman, & Naidu, 2012) and accordingly develop strategies for achieving optimum agricultural outputs (Pramonik, 2016; Zabihi et al., 2015) by identifying its inherent potentials and constraints (Bagherzadeh, Ghdiri, Darban, & Gholizadeh, 2016; Mousavi, Sarmadian, Alijani, & Taati, 2017). Apart from this, land evaluation is necessary for land-use planners in avoiding costly mistakes and improving efficiency of investments (Young, 2000) and sustainability of crop production over time (Qureshi, Singh, & Hasan, 2018).
Land suitability, however, needs information integration from different streams of science (Otgonbayar et al., 2017) and asks multiple criteria (Duc, 2006; Kidanu, Kindu, & Chernet, 2009; Prakash, 2003; Yalew, Van Griensven, Mul, & van der Zaag, 2016b). Geographical information systems (GIS) is a powerful tool in storing, retrieving, processing and analyzing multi-source spatial/temporal data needed for spatial planning and management (Kamkar, Dorri, & da Silva, 2014; Singh, Jha, & Chowdary, 2017). However, GIS does not take in to account criteria preferences as all criteria are not equally important (Gigović, Pamućar, Bajić, & Drobnjak, 2017; Kazemi, Sadeghi, & Akinci, 2016). It cannot overcome the issue of inconsistency when judging and assigning relative importance of criteria (Rad & Haghyghy, 2014) required for land suitability evaluation. In such conditions, advancements in geo-spatial domain generated multiple-criteria decision-making (MCDM) tools to expand the decision support capabilities of GIS (Malczewski & Rinner, 2015). Those techniques aid decision-makers in formally structuring multi-faceted decisions and evaluating the alternatives (Greene, Devillers, Luther, & Eddy, 2011; Zavadskas, Stević, Tanackov, & Prentkovskis, 2018) by ranking sets of alternatives for problem solving (Romano, Dal Sasso, Liuzzi, & Gentile, 2015).

Due to these reasons, planners are encouraged to use MCDM tools in combination with GIS (Mosadeghi, Warnken, Tomlinson, & Mirfendereski, 2015) for in integrating and handling multiple and heterogeneous factors (Harper, Anderson, James, & Bahaj, 2017; Houshyar, Smith, Mahmoodi-Eshkaftaki, & Azadi, 2017; Torrieri & Batô, 2017). Those techniques provide structured and spatially explicit evaluation frameworks (Seyedmohammadi, Sarmadian, Jafarzadeh, Ghorbani, & Shahbazi, 2018; Yalew et al., 2016b) and facilitate evidence-based judgments for sustainable land-use management practices (Musakwo, 2017; Singh & Swain, 2016). Moreover, those methods are proved to be flexible, effective and powerful approaches in the area of land suitability (Al-Mashreki, Akhir, Rahim, Lihan, & Haider, 2011a; Bagheri, Sulaiman, & Vaghefi, 2013; Xu & Zhang, 2013) as they present options for developing feasible land suitability maps (Van Chuong, 2008). Analytical hierarchy process (AHP) technique is one of the most commonly used MCDM techniques in GIS-based suitability procedures (Din & Yunusova, 2016) because of its appropriateness for making decisions on the basis of multiple factors ranked according experts’ preferences (Qureshi et al., 2018; Wijenayake, Amarasinghe, & De Silva, 2016).

Integrating AHP with fuzzy set theory provides more sophisticated results as fuzzy set theories use advanced algorithms to address uncertainties, incompleteness and vagueness (Elaalem, 2012; Pamućar, Gigović, Bajić, & Janošević, 2017; Zhang & Achari, 2010) and increase robustness associated with suitability criteria (Liu, Jiao, Liu, & He, 2013; Malmir, Zarkesh, Monavari, Jazi, & Sharifi, 2016; Pichaimani & Manjula, 2016). Several researchers all over the world (Table 2) used GIS techniques and multi-criteria analysis in land suitability evaluation of different purposes. The objective of this study was to identify suitable lands for sorghum crop production using GIS-based fuzzy AHP techniques for Enderta dry midlands of northern semiarid Ethiopia.

| Table 1. Data used for land suitability, their details and data sources |
|-----------------------------|---------------------------------|---------|
| Data type | Source | Year |
| Soil morphological and environmental characteristics | Field work survey | 2016 |
| Soil physical and chemical properties | Laboratory analysis results (Tigray agricultural research institute; soil laboratory section) | 2016 |
| Landform information (slope and elevation) | Topographic maps (1:50,000 scale) (Ethiopian mapping authority) | 1997 |
| Aster DEM | | 2015 |
| Climate variables | National and regional meteorological services agency of Ethiopia | 2015 |
Table 2. Review of papers that used GIS-based MCDM for land suitability evaluation

Author	MCDM technique	Criteria used	Suitability Field
Hossain and Das (2010)	AHP	Water temperature, water pH, dissolved oxygen, Nitrate-N, Phosphate-P, total dissolved solids, texture, slope, pH, soil organic carbon, land use, distance to road, distance to electricity, distance to market, distance to fry source, labor availability	Aquaculture
Feizizadeh and Blaschke (2012)	AHP	Elevation, slope, aspect, fertility, pH, temperature, precipitation, ground water storage	Rainfed and irrigated agriculture
Mendas and Delali (2012)	ELECTRE Tri	Easily utilizable water reserve, drainage, permeability, pH, EC, CaCO3, CEC, texture, soil depth, slope, labor availability, distance to road	Durum wheat
Walke, Reddy, Maji, and Thayalan (2012)	MOS	Precipitation, temperature, LGP, RH, Slope, erosion, drainage, flooding, AWC, stoniness, texture, coarse fragments, soil depth, CaCO3, gypsum, CEC, PBS, SOC, EC, texture	Cotton
Akinci, Özalp, and Turgut (2013)	AHP	Soil group; LUCS, LUCSS, soil depth, slope, aspect, elevation, erosion, other soil properties	General agriculture
Ayehu and Besufekad (2015)	AHP	Slope, soil depth, temperature, precipitation, pH, texture	Rice
Mighty (2015)	AHP	Precipitation, temperature, soil group, geology, distance to roads, Easily utilizable water reserve, elevation, slope	Coffee
Mishra, Deep, and Choudhary (2015)	AHP	Distance to roads, drainage, soil groups, slope, geology, LULC	Organic farming
Zhang, Su, Wu, and Liang (2015)	Fuzzy AHP	Precipitation, temperature, sunshine hours, soil soluble chlorine, pH, SOC, AN, AP, AK, calcium, magnesium, molybdenum, relief, elevation, slope, soil types	Tobacco
Zolekar and Bhagat (2015)	AHP	Slope, soil depth, texture, SOC, WHC, pH, TN, AP, exchangeable potassium, erosion, LULC	General agriculture
Gigović, Pamučar, Lukić, and Marković (2016)	Fuzzy DEMATEL	Elevation, slope, aspect, visibility, precipitation, temperature, geology, soil cover, vegetation type and density, LULC, reservation, stable water, distance from settlements, distance from road, distance from cultural sites and negative factors (constraints)	Ecotourism development
Pramanik (2016)	AHP	Slope, elevation, LULC, soil moisture, drainage, texture, geology, aspect, distance from roads, distance from water sources	General agriculture
Yalew et al. (2016a)	AHP	Soil moisture, stoniness, soil group, water resources, elevation, slope, soil depth, distance from roads	General agriculture
Yalew et al. (2016b)	AHP	LULC, slope, stoniness, soil group, soil depth, soil moisture, elevation, distance from settlements, distance from roads, water resources	General agriculture
Aburas, Abdullah, Ramli, and Asha‘ari (2017)	AHP	Elevation, slope, texture, population density, LULC, distance from roads, distance to infrastructures	Urban planning
Diop, Ndiaye, Sambou, Dacosta, and Sambou (2017)	AHP	Elevation, slope, ground water level, soil type, distance between dwelling areas and wetlands	Flood vulnerability

(Continued)
Author	MCDM technique	Criteria used	Suitability Field
Gigović, Parnučar, Božanić, and Ljubojević (2017)	DEMATEL, ANP and MABAC	Wind speed, LULC, distance from settlements, distance from constraints, distance from power lines and telecommunication, slope, distance from roads, aspect, population density	Wind farm
Maleki, Kazemi, Siahmarguee, and Kamkar (2017)	AHP	Temperature, precipitation, sunshine hours, frost hazard, RH, permeability, texture, pH, elevation, slope, aspect	Saffron
Otgonbayar et al. (2017)	AHP	Slope, elevation, soil humus, depth of soil humus, texture, pH, stoniness, SOC, above ground biomass, NDVI, LAI, GPP, Temperature, precipitation, river density, permafrost distribution, water index, distance from settlements, population density, availability of water resources	Cropland agriculture
Owusu et al. (2017)	AHP	LULC, slope, soil unit, flow accumulation, transmissivity, regolith, water availability, borehole, distance from roads, population density	Aquifer storage and recharge site locations
Bagdanavičiūtė et al. (2018)	AHP	EC, current velocity and stability, suspended materials, marine protected areas, distance from roads, ice cover, water resources	Zebra mussel farming
Buruso (2018)	AHP	LULC, slope, distance from settlements, availability of water resources, elevation	Hillside development
Dell'Ovo, Capolongo, and Oppio (2018)	MC-SDSS	Distance from settlements, building density, accessibility to public, private and parking areas, green area, distance to infrastructures, noise pollution, air pollution, unhealthy industries	Hospital installation
Kazemi and Akinci (2018)	AHP	LULC, SOC, pH, EC, texture, erosion, precipitation, temperature, sunshine hours, slope, elevation	Rainfed agriculture
Purnamasari, Ahamed, and Naguchi (2018)	ANP and AHP	LULC, slope, precipitation, temperature, water resources availability, elevation, soil group, NDVI	Cassava
Raza, Mahmood, Khan, and Liesenberg (2018)	AHP	Leaf emergency, tillering, panical primoda, flowering, milky dough, ripening, soil group, drainage, pH, EC	Rice
Ristić, Maksin, Nenković-Riznić, and Basarić (2018)	AHP and Delphi process	Protection level of natural heritage, restrictions in protection, bearing capacity, seismicity, Erosion, landslide, rockfall, exposure, slope, hypsometry, distance from power lines, snowfall, avalanche, ground water storage, flooding, LULC	Site selection for protected areas
Roy and Saha (2018)	AHP	Precipitation, temperature, slope, relief, water resources, geology, texture, depth, pH, TN, AP, exchangeable potassium, micro nutrients	Rice
Tomić, Mastelić Ivić, and Roić (2018)	AHP and PROMETHEE	Share of agricultural land, average size and shape of agricultural parcel, number of agricultural holdings and their fragmentation index, share of state owned agricultural land, regional development index	Land consolidation suitability

Table 2. (Continued)

AHP = analytical hierarchy process; ELECTRE Tri = ELimitation Et Choix Traduisant la Réalité; DEMATEL = Decision-Making Trial and Evaluation Laboratory; ANP = Analytic Network Process; MABAC = Multi-Attributive Border Approximation area Comparison; LUCS = land-use capability class; LUCSS = land-use capability sub class; EC = electrical conductivity; CaCO3 = calcium carbonate; CEC = cation-exchange capacity; LGP = length of growing period; RH = relative humidity; PBS = percentage base saturation; SOC = soil organic carbon; LULC = land use/cover class; AN = available nitrogen; AP = available phosphorus; AK = available potassium; WHC = water holding capacity; TN = total nitrogen; NDVI = normalized difference vegetation index; LAI = leaf area index; GPP = gross primary productivity; PROMETHEE = Preference Ranking Organisation Method for Enrichment Evaluation.
2. Materials and methods

2.1. Study area
The study area encompasses the central plateau regions of northern Ethiopia which lies between latitudes of 12º 55' N to 13º 20' N and longitudes of 39º 20' E to 39º 55' E with elevation ranging from 2000 to 3500 m above sea level (Figure 1). The area consists of rolling and undulating plains, medium to high gradient slopes consisting valleys, hills and mountainous landforms. Its land use is mainly subsistence rain-fed agriculture and has a semi-arid climate with mean annual rainfall of 500–850 mm and daily mean temperature of 15–30°C. The lithology comprises mesozoic Antalo limestone, Amba Aradom sandstone, Tertiary basalt and dolerites (Arndt & Menzies, 2005; Nyssen et al., 2004).

2.2. Data collection
Land characteristics influencing rain-fed sorghum production (Table 4) were identified based on different literatures and available data. Accordingly, climate, soil and topographic factors mostly taken as critical determinant parameters of land suitability evaluation (Al-Mashreki et al., 2011b; Bhagat et al., 2009; Guan, Wu, & Carnes, 2016; Mesgaran, Madani, Hashemi, & Azadi, 2017) were used to determine the overall suitability of the area for that crop. Data needed for land suitability modeling were collected from different sources (Table 1). Physical and chemical soil data were collected from laboratory analysis results while environmental and site factors were gathered during field work. Soil characteristics were averaged according to the effective rooting depth (control section) of sorghum which was taken as 1m (FAO, 1992). Slope and elevation information was obtained from Topographic maps of 1:50,000 scale and ASTER DEM (Advanced Spaceborne Thermal Emission and Reflection Radiometer) downloaded from Unites States Geological Survey (USGS) databases using different GIS softwares. Climate variables were assembled from national and regional meteorological agencies and then were exported to ArcMap10 and their spatial variability over the area was expressed by using “kriging” interpolation method.

Sorghum is among the major cereal crops grown in Ethiopia accounted for staple food of local people (Kidanu et al., 2009; Motuma, Suryabhagavan, & Balakrishnan, 2016). It grows in diverse agro-ecologies but adapts well to warm climates worldwide (AbdelRahman et al., 2016). It requires 450–650 mm rain and fairly long and frost-free growing season for high rain-fed production.

Intensity of importance	Definition	Explanation
1	Equal importance	Two activities contribute equally to the objective.
3	Moderate importance of one over another	Experience and judgment slightly favor one activity over another.
5	Essential or strong importance	Experience and judgment strongly favor one activity over another.
7	Demonstrated importance	An activity is strongly favored and its dominance is demonstrated in practice.
9	Extreme importance	The evidence favoring one activity over another is of the highest possible order of affirmation.
2, 4, 6, 8	Intermediate values between the two adjacent judgments	When compromise is needed
Reciprocal of above non zero numbers	If activity “m” has one of the above non zero numbers assigned to it when compared with activity “n”, then n has the reciprocal value when compared with m.	
It is intolerant to low temperature conditions and permits completion of its growing period within the rainy season (FAO, 1987c). It needs at least 0.50 m soil depth (Verdoodt & Van Ranst, 2003), higher CEC, nutrient and moisture contained clayey soils but asks high fertilizer application when grown in light-textured soils (Naidu, Ramamurthy, Challa, Hegde, & Krishnan, 2006) to allow optimal growth. It moderately tolerates drainage, salinity and sodicity and has moderate fertility requirement but asks high workability (FAO, 1987c).

2.3. Methods

The overall methodology followed in the study is illustrated in Figure 2. Criteria maps showing the spatial distribution of attributes were constructed based on different GIS functions. Criteria maps showing the spatial distribution of attributes were constructed based on different GIS functions. Fuzzy membership functions which gives more informative results by reducing vagueness and uncertainty (Elaalem, 2012) with membership grades ranging from 0 (non-membership) to 1 (complete membership) were used to standardize criteria maps. Higher pixel score indicates a higher suitability level for that pixel. Suitable ranges of the factors that determine the lowest and greatest suitability levels were determined based on different scientific resources (Table 4) in order to apply fuzzy membership functions. Standardized factor maps (Figures 3 and 4) were accordingly developed using sigmoidal fuzzy membership function (Table 4) using the decision support tool of IDRISI software.

All criteria were ranked according to their significance following expert opinions and literatures. Accordingly, weights of criteria used for suitability evaluation were obtained using professional experiences of local experts in Hintalo Wajerat district supported by different scientific literatures through pair-wise comparisons following AHP (a widely accepted decision-making method (Eskandari, Homae, & Mahmoodi, 2012; Feizizadeh & Blaschke, 2013)) in IDRISI software. AHP constructs a pair-wise comparison matrix by assigning values in the range of 1–9 (Table 3) for each factor against every other (Saaty, 1980) which finally gives in eigenvector weights indicating...
Table 4. Ranges of factor suitability used for fuzzy membership function for rainfed sorghum

Factor	Shape of fuzzy membership function	Non-membership (unsuitable)	Membership grade (suitable range)	References
Depth (cm)	MI	<30	30–100	Kaaya et al. (1994); Naidu et al. (2006)
Structure (class)	-	-	Granular and crumb to sub-angular blocky	Crumb and granular structures are most suitable, (sub)-angular blocky and prismatic moderately suitable, single grain and massive marginally suitable (adapted from FAO (1987b) and Lal (1994))
Consistency (class)	-	-	Loose and (very) friable	Loose and very friable are most suitable; friable moderately suitable; (extremely) hard marginally suitable (adapted from FAO (1987a,b), Lal (1994))
Rock out crops (%)	MD	>40	0–40	Nedeco (1997), IAO (2008)
Coarse fragments (%)	MD	>55	0–55	Sys, Van Ranst, and Debaveye (1993)
Drainage (class)	MI	-	Well to moderately drained	Well drained to moderately drained soils are highly suitable; imperfectly drained moderately suitable; very poor to extremely poor marginally suitable (Verdoodt and Van Ranst (2003); Naidu et al. (2006))
Erosion (class)	MD	-	Nil to moderate	Nil erosion level is highly suitable; slight is moderately suitable; moderate, severe and very severe marginally suitable (Elaalem, 2012)
Texture (class)	SM	-	C, CL, SiCL, SC, L, SiL, SiC, SCI, SL, LS	C, CL, SiCL, and SC are highly suitable; L, SiL, SiC, SCI moderately suitable; Si and LS marginally suitable (Naidu et al. (2006); Ahmed and Jeb (2014); Van Orshoven, Terres, & Tóth, 2014)
Bulk density (g cm\(^{-3}\))	MD	>1.6	1.2–1.6	FAO (1987a,b), Lal (1994)
MWD (mm)	MI	<0.5	0.5–2.5	Lal (1994)
AWC (% vol/vol)	MI	<7.5	7.5–20	Naidu et al. (2006), Elaalem (2012)
pH	SM	<5/>8.5	5–8.5	Kaaya et al. (1994), Elaalem (2012)
EC (dSm\(^{-1}\))	MD	>10	0–10	Naidu et al. (2006), Elaalem (2012), Ahmed and Jeb (2014)
CaCO\(_3\) (%)	MD	>25	0–25	Naidu et al. (2006)
CEC (cmol\((\text{Kg}^{-1}))	MI	<10	10–30	Naidu et al. (2006)
PBS (%)	MI	<35	35–80	Kaaya et al. (1994), Naidu et al. (2006)
Ex.bases (cmol\((\text{Kg}^{-1}))	MI	<2	2–5	Sys et al. (1993)
ESP (%)	MD	>15	0–15	Naidu et al. (2006)
Ca\(^{2+}\) (cmol\((\text{Kg}^{-1}))	MI	<4	4–10	FAO (1987a, b), Ahmed and Jeb (2014)
Mg\(^{2+}\) (cmol\((\text{Kg}^{-1}))	MI	<0.3	0.3–5	FAO (1987a, b)
K\(^{+}\) (cmol\((\text{Kg}^{-1}))	MI	<0.15	0.15–0.4	FAO (1987a, b), Ahmed and Jeb (2014)

(Continued)
the relative importance of the various factors considered (Bagherzadeh & Gholizadeh, 2016; Li et al., 2017; Saatsaz, Monsef, Rahmani, & Ghods, 2018). Consistency ratio (CR) was used to evaluate the degree of consistency of comparison of the factors (Saaty, 1977). A CR value of less than 10% was considered acceptable (Brunelli, 2014; Liu, Peng, Zhang, & Pedrycz, 2017).

After weightings and rating of all criteria over the hierarchy obtained, standardized criteria maps were multiplied with these criteria weights (Ayoade, 2017; Romano et al., 2015) at each level of the hierarchy by pertaining weighted linear combination (the most common method in MCDA

Table 4. (Continued)

Factor Shape of fuzzy membership function	Non-membership (unsuitable)	Membership grade (suitable range)	References
SOC (%) MI	<0.5	0.5–2	Kaaya et al. (1994)
TN (cmolKg⁻¹) MI	<0.02	0.02–0.2	Kaaya et al. (1994)
AP (ppm) MI	<3	3–40	Kaaya et al. (1994)
ppt (mm) SM	<450>1400	450–1400	Sys et al. (1993), Naidu et al. (2006)
T° (°C) SM	<15>32	15–32	Sys et al. (1993), Elaalem (2012)
LGP (days) SM	<90>310	90–310	FAO (1987c), Naidu et al. (2006)
Slope (%) MD	>16	0–16	Naidu et al. (2006), Ahmed and Jeb (2014)
Altitude (m) SM	<500>2300	500–2300	FAO (1988), Verdoodt and Van Ranst (2003)

Figure 2. Flow chart of the land suitability evaluation for sorghum crop.
Figure 3. Standardized factor maps of criteria used for sorghum suitability.

Figure 4. Standardized factor maps of criteria used for sorghum suitability.
(Malczewski & Rinner, 2015)) in order to produce an overall sorghum crop suitability map following the equation below.

\[SI = \sum Wi \times Xi, \text{ Where: } SI = \text{Suitability Index}, \ Wi = \text{weight of factor I}, \text{ and } Xi = \text{normalized criterion score}. \]

The map produced was reclassified as permanently not suitable (<0.2), currently not suitable (0.2–0.4), marginally suitable (0.4–0.6), moderately suitable (0.6–0.8) and highly suitable (>0.8) (FAO, 1976, 1983; Sys, Van Ranst, & Debaveye, 1991).

3. Results and discussion

According to the pair-wise comparison results (Table 5), climate, soil and topographic factors were assigned weight values of 0.4126, 0.3275 and 0.2599, respectively. From the climate sub-criteria, length of growing period (0.5396) followed by precipitation (0.2970) got high weight values. Contribution of slope was superior (0.6) over altitude (0.4) from the topographic sub-criteria in relation to sorghum crop production. Among the main soil factors, chemical (0.4434) followed by physical (0.3874) got higher values than site and morphological soil characteristics (which scored weight value of 0.1692). The matrix result indicated that depth (0.2613), erosion (0.2063) and coarse fragments (0.1687) from morphological; texture (0.2894) and bulk density (0.2894) from physical factors and soil organic carbon (0.1941), total nitrogen (0.1217) and available phosphorus (0.1204) from chemical factors were the most important factors for sorghum production. Drainage (0.0496) and consistency (0.0636) followed by soil structure (0.1119); mean weight diameter (0.1750); exchangeable sodium percentage (0.0180), electrical conductivity (0.0248) and calcium carbonate (0.0348) were considered least important from morphological, physical and chemical factors respectively for cultivation of that crop. For sorghum production, the matrix produced CR values ranging between 0.00 and 0.05 indicating that the results were within the 0.1 (the threshold value).

The result of land suitability classification for sorghum is presented in Figure 5 and Table 7. The area was moderately suitable (29,534.86 ha or 30.54% of it) scattered in the eastern and northwestern parts of the area, marginally suitable (34,984.74 ha/36.17%) concentrated in western, central and partly eastern locations of the area, currently not suitable (17,455.81 ha/18.05%) dominating the south and southwestern portions and permanently not suitable (14,744.61 ha/15.24%) to the south and southeast parts of the area (Table 7). Short length of growing period was more serious for that crop. Mean weight diameter, available water capacity, soil organic carbon, total nitrogen and available phosphorus (Figures 3 and 4) were below optimum posing very severe limitations. Taking in to account the weights of main and sub-factors. The weights of main and sub-factors (Table 5), overall weight of each factor (Table 6) was calculated by multiplying the weight of main factors and sub-factors.

Moreover, limitations of depth and coarse fragments (western parts of the area), bulk density (southern, eastern and northern parts), magnesium (central, western and north eastern locations) and precipitation (its southern parts) constrained the sorghum production capacity of the area (Figures 5 and 6). Altitude and temperature are above optimum level resulting in moderate to severe limitations. Influences of high pH and calcium carbonate were noticeable in the valley floors, plateau and sloping land situated in central and (north) eastern part of the study area. Similarly, Ahmed and Jeb (2014) reported that areas in Bunkure Kano state of Nigeria were moderately suitable to permanently unsuitable for growing sorghum since they exhibited limitations in soil organic carbon, soil depth and rockout crops.

Low soil organic carbon, total nitrogen, available phosphorus and soil moisture of an agricultural farm in Tanzania (Kaaya, Msanya, & Mrema, 1994) limited its suitability for sorghum cultivation. Moreover, rainfall, temperature and calcium carbonate content expressed serious limitations in suitability of micro-water watershed for sorghum production (Mohan, 2008). Temperature of
Table 5. Pair-wise comparison matrix for evaluating relative importance of the factors used for suitability evaluation of sorghum crop

Criteria and classes within each criteria	Pair-wise comparison matrix	Weight												
Main criteria	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	
(1) Climate	1	1	2											0.4126
(2) Soil	1	1	1											0.3275
(3) Topography	1/2	1	1											0.2599
Consistency ratio														0.05
Climate sub criteria														
(1) Precipitation (ppt)	1	2	1/2											0.2970
(2) Temperature (°)	1/2	1	13											0.1634
(3) Length of growing period (LGP)	2	3	1											0.5396
Consistency ratio														0.01
Topography sub-criteria														
(1) Slope	1	3/2												0.06
(2) Altitude	2/3	1												0.04
Consistency ratio														0.00
Soil criteria: morphological, physical and chemical properties														
(1) Morphological	1	1/2	1/3											0.1692
(2) Physical	2	1	1											0.3874
(3) Chemical	3	1	1											0.4434
Consistency ratio														0.02
Soil sub-criteria: morphological and site factors														
(1) Depth	1	3	4	2	2	1	4							0.2613
(2) Structure	1/3	1	2	1	1/2	1/2	3							0.1119
(3) Consistency	1/4	1/2	1	1/3	1/3	1/3	2							0.0636
(Continued)														
Table 5. (Continued)

Pair-wise comparison matrix	Weight	
Criteria and classes within each criteria		
(4) Rockout crops	1/2 1 3 1 1 1/2 3	0.1386
(5) Coarse fragments	1/2 2 3 1 1 1 2	0.1687
(6) Erosion	1 2 3 2 1 1 3	0.2063
(7) Drainage	1/4 1/3 1/2 1/3 1/3 1/3 1	0.0394
Consistency ratio	0.02	
Soil sub-criteria: physical factors		
(1) Texture	1 1 2 1 1	0.2894
(2) Bulk density	1 1 2 1 1	0.2894
(3) Mean weight diameter	1/2 1/2 1 1 1/2	0.1750
(4) Available water capacity	1 1 1 1 1	0.2463
Consistency ratio	0.02	
Soil sub-criteria: chemical factors		
(1) pH	1 4 2 1/3 1/2 1/2 1 3 3 2 4 1 5	0.0248
(2) Electrical conductivity (EC)	1/4 1 1/2 1/6 1/4 1/3 1/3 1/3 1/4 1/2 1/4 3	0.0348
(3) Calcium carbonate (CaCO₃)	1/2 2 1 1/5 1/3 1/3 1/2 1/2 1/2 1/3 1/3 1/4 4	0.0348
(4) Soil organic carbon (SOC)	3 6 5 1 2 2 3 4 4 3 4 2 8	0.1941
(5) Total nitrogen (TN)	2 4 3 1/2 1 1 2 3 3 2 3 1 6	0.1217
(6) Available phosphorus (AP)	2 4 3 1/2 1 1 2 3 3 2 3 1 5	0.1204
(7) Cation exchange capacity (CEC)	1 3 2 1/3 1/2 1/2 1 2 2 1 2 1 4	0.0754

(Continued)
Criteria and classes within each criteria	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
Exchangeable bases	1/3	3	2	1/4	1/3	1/3	1/2	1	1/2	2	1/3	1	2
Percentage base saturation (PBS)	1/3	3	2	1/4	1/3	1/3	1/2	1	1/2	2	1/3	1	2
Exchangeable calcium (Ca)	1/2	4	3	1/4	1/3	1/3	1/2	1	2	1/2	3	1	2
Exchangeable magnesium (Mg)	1/2	4	3	1/4	1/3	1/3	1/2	1	2	1/2	3	1	2
Exchangeable potassium (K)	1/4	1	4	3	1/2	1	1	1	3	3	2	3	1
Exchangeable sodium percentage	1/5	1/3	1/8	1/6	1/5	1/5	1/4	1/5	1/5	1/5	1/5	1/5	1/5
Consistency ratio	1												

Consistency ratio = 0.03
Main criteria	Level 1	Level 2	Partial weight	Overall Weight
Climate	0.4126			
Soil	0.3275			
Morphological and site factors				
Physical factors				
Chemical factors				

(Continued)
Main criteria	Level1	Level 2	Partial weight	Overall Weight
Ex.bases			0.0466	0.0068
PBS			0.0409	0.0059
Ca²⁺			0.0722	0.0105
Mg²⁺			0.0464	0.0067
K⁺			0.1075	0.0156
ESP			0.0180	0.0026
Topography	0.2599		0.4434^a	
			0.1452^b	
Altitude	0.4			0.1040

^a = weight value of soil criteria (morphological and site, physical and chemical factors); ^b = combined weight value of soil and its subdivisions (morphological and site, physical and chemical factors); ESP = exchangeable sodium percentage; Ex. bases = exchangeable bases
Wogdie district in south Wollo of Ethiopia, similarly, was found moderately and marginally suitable for cultivation of the crop (Motuma et al., 2016). Sorghum production in western Ethiopia was influenced by shallow depth, limited amounts of total nitrogen, organic carbon and available phosphorus (Yitbarek, Kibret, Gebrekidan, & Beyene, 2013). In a study by AbdelRahman et al. (2016), limitations posed by slope grouped the area under moderate suitability for that crop. In support of this result, slope steepness and low soil moisture content were found the major
problems influencing agricultural suitability of north western and central Ethiopian highlands (Yalew, Van Griensven, & van der Zaag, 2016a).

The study has shown that the area is potential for producing that crop. However, considerable attention should be given to crop selection that best fit the agro-ecology and proper management of the soils in order to get optimum yield.

4. Conclusion
Soil, climate and topographic characteristics were the main criteria used to generate land suitability evaluation for sorghum crop in Enderta dry midlands of northern semi arid highlands, Ethiopia. GIS-based fuzzy AHP model was employed in identifying potential sorghum areas. Soil, climate and topographic criteria were used in the study. According to the land suitability map produced, moderately suitable, marginally suitable, currently not suitable and permanently not suitable lands cover 29,534.86 ha (30.54%), 34,984.74 ha (36.17%), 17,455.81 ha (18.05%) and 14,744.61 ha (15.24%), respectively. Slope gradient, altitude, temperature, length of growing period, available water capacity, mean weight diameter, total nitrogen, available phosphorus and soil organic carbon contents and partly rockout crops, coarse fragments, depth, CaCO$_3$, bulk density and pH were severely limiting the cultivation potential of the area for sorghum crop. It should be noted that careful use of organic and inorganic (acidifying) fertilizers, tillage management, soil and water conservation measures should be taken into consideration in order to maintain soil health and accordingly improve the yield of the crop. Even though climate limitation is difficult to overcome, since the area best suits for very short maturing crop verities (60–90 days Yizengaw (1994)), growing crops which best fit LGP of the area should be taken into consideration. GIS integrated with MCDM analysis was found with great assistance in integrating soil, climate and topographic parameters for land suitability evaluation in the study. The criteria considered for land suitability evaluation were mainly biophysical and, hence, further studies can be made by incorporating socio-economic variables so as to improve the suitability results.

Acknowledgments
Special thanks to the Ethiopian Mistry of Education and Haramaya University for supporting this study. The authors also would like to acknowledge the farmers, agri-cultural development agents and local administrators of the study area for their field support.

Funding
The research was financially supported by Ethiopian Ministry of Education.

Author details
Araya Kahsay1,2
E-mail: araya.kahsay26@gmail.com
Mitiku Haile1
E-mail: qualmitiku@yahoo.com
Girmay Gebresamuel3
E-mail: girmaygsab@yahoo.com
Muktar Mohammed4
E-mail: muktarmhol@yahoo.com

1 Department of Natural Resource Management, Dilla University, P. O. Box 419, Dilla, Ethiopia.
2 School of Natural Resources Management and Environmental Sciences, Haramaya University, P. O. Box 138, Dire Dawa, Ethiopia.
3 Department of Land Resources Management and Environmental Protection, Mekelle University, P.O. Box 231, Mekelle, Ethiopia.
4 Department of Forest Resources Management, Oda-Bultum University, P. O. Box 226, Chiro, Ethiopia.

Competing interests
The authors declare no competing interest.

Citation information
Cite this article as: Land suitability analysis for sorghum crop production in northern semi-arid Ethiopia: Application of GIS-based fuzzy AHP approach, Araya Kahsay, Mitiku Haile, Girmay Gebresamuel & Muktar Kahsay et al., Cogent Food & Agriculture (2018), 4: 1507184
https://doi.org/10.1080/23311932.2018.1507184

Table 7. Area and percentage distribution of suitability classes

Level of suitability	Area coverage	%
Highly suitable (S1)	0	0
Moderately suitable (S2)	29,534.86	30.54
Marginally suitable (S3)	34,984.74	36.17
Currently not suitable (N1)	17,455.81	18.05
Permanently not suitable (N2)	14,744.61	15.24

Kahsay et al., Cogent Food & Agriculture (2018), 4: 1507184
https://doi.org/10.1080/23311932.2018.1507184
Mohammed, Cogent Food & Agriculture (2018), 4: 1507184.

References
Abd-Elmabod, S. K., Jordan, A., Flasckens, L., Phillips, J. D., Muñoz-Rojas, M., van der Ploeg, M., … de La Rosa, D. (2017). Modeling agricultural suitability along soil transects under current conditions and improved scenario of soil factors. In Pereira, P., Brevik, E., Muñoz-Rojas, M., and Miller, B. (Eds.) Soil mapping and process modeling for sustainable land use management (pp. 191–219). Amsterdam, Netherlands: Elsevier.

Abdelrahman, M. A., Nataraajan, A., & Hegde, R. (2016). Assessment of land suitability and capability by integrating remote sensing and GIS for agriculture in Chamarajanagar district, Karnataka, India. The Egyptian Journal of Remote Sensing and Space Science, 19(1), 125–141. doi:10.1016/j.ejrs.2016.02.001

Abegaz, A., Winowiecki, L. A., Vågen, T. G., Langan, S., & Smith, J. U. (2016). Spatial and temporal dynamics of soil organic carbon in landscapes of the upper blue nile basin of the ethiopian highlands. Agriculture, Ecosystems & Environment, 218, 190–208. doi:10.1016/j.agee.2015.11.019

Aburas, M. M., Abdullah, S. H., Ramli, M. F., & Asha’ari, Z. H. (2017). Land suitability analysis of urban growth in Seremban Malaysia, using GIS based analytical hierarchy process. Procedia Engineering, 198, 1128–1136. doi:10.1016/j.proeng.2017.07.155

Ahmed, M., & Jeb, D. N. (2014). Land suitability for sorghum using multicriteria evaluation (MCE) and analytical hierarchy process (AHP) in Bunkure Kano State, Nigeria. Journal of Agriculture and Veterinary Science (IOSRJAVS) e-ISSN, 7(19), 2319–2380.

Akinci, H., Özlalp, A. Y., & Turgut, B. (2013). Agricultural land use suitability analysis using GIS and AHP technique. Computers and Electronics in Agriculture, 97, 71–82. doi:10.1016/j.compag.2013.07.006

Al-Mashrekli, M. H., Akhir, J. B. M., Rahim, S. A., Kaddere, D. M., Tukimat, L., & Haider, A. R. (2016b). Land suitability evaluation for sorghum crop in the Ibb Governorate, Republic of Yemen using remote sensing and GIS techniques. Australian Journal of Basic and Applied Sciences, 5(3), 359–368.

Al-Mashrekli, M. H., Akhir, J. B. M., Rahim, S. A., Liwan, K. M. D. T., & Haider, A. R. (2016c). GIS-based sensitivity analysis of multi-criteria weights for land suitability evaluation of sorghum crop in the Ibb Governorate Republic of Yemen. Journal of Basic and Applied Scientific Research, 1(9), 1102–1111.

Arndt, N., & Menzies, M. A. (2005). The ethiopian large igneous province. http://www.largeigneousprovinces.org/print/05jan.

Ayehu, G. T., & Besufekad, S. A. (2015). Land suitability analysis for rice production: A GIS based multi-criteria decision approach. American Journal of Geographic Information System, 4(3), 95–104.

Ayooade, M. A. (2017). Suitability assessment and mapping of Oyo State, Nigeria, for rice cultivation using GISs. Theoretical and Applied Climatology, 129(3–4), 1341–1354. doi:10.1007/s00704-016-1852-4

Bagdanovičiūtė, I., Umgiesser, G., Vaičiūtė, D., Bresciani, M., Kozlov, I., & Žaiko, A. (2018). GIS-based multi-criteria site selection for zebra mussel cultivation: Addressing end-of-pipe remediation of a eutrophic coastal lagoon ecosystem. The Science of the Total Environment, 634, 990–1003. doi:10.1016/j.scitotenv.2018.03.361

Bagheri, M., Sulaiman, W. N. A., & Vaghefi, N. (2013). Application of geographic information system technique and analytical hierarchy process model for land-use suitability analysis on coastal area. Journal of Coastal Conservation, 17(1), 1–10. doi:10.1007/s11852-012-0213-4

Bagherzadeh, A., Ghahdi, E., Darban, A. R. S., & Golizadeh, A. (2016). Land suitability modeling by parametric-based neural networks and fuzzy methods for soybean production in a semi-arid region. Modeling Earth Systems and Environment, 2(2), 104. doi:10.1007/s40808-016-0152-4

Bagherzadeh, A., & Golizadeh, A. (2016). Modeling land suitability evaluation for wheat production by parametric and TOPSIS approaches using GIS, northeast of Iran. Modeling Earth Systems and Environment, 2(3), 126. doi:10.1007/s40808-016-0177-8

Beye, A., Gibbon, D., & Haile, M. (2006). Heterogeneity in land resources and diversity in farming practices in Tigray, Ethiopia. Agricultural Systems, 88(1), 61–74. doi:10.1016/j.agsy.2005.06.004

Beye, H. (2008). Adoption of improved Teff and Wheat production technologies in Crop and Livestock mixed systems in Northern and Western Shewa Zones of Ethiopia (Doctoral dissertation). University of Pretoria, Pretoria.

Bhagat, R. M., Singh, S., Sood, C., Rana, R. S., Kalia, V., Pradhan, S., … Shrestha, B. (2009). Land suitability analysis for cereal production in Himachal Pradesh (India) using geographical information system. Journal of the Indian Society of Remote Sensing, 37(2), 233. doi:10.1007/s12524-009-0018-6

Brenelli, M. (2014). Introduction to the analytic hierarchy process (pp. 82). New York, NY: USA, Springer Briefs in Operations Research.

Buruso, F. H. (2018). Habitat suitability analysis for hippopotamus (H. amphibius) using GIS and remote sensing in Lake Tana and its environs, Ethiopia. Environmental Systems Research, 6(1), 6. doi:10.1186/s40668-017-0083-8

Chamberlin, J., Jayne, T. S., & Headey, D. (2014). Scarcity amidst abundance? Reassessing the potential for cropland expansion in Africa. Food Policy, 48, 51–65. doi:10.1016/j.foodpol.2014.05.002

Cowie, A. L., Orr, B. J., Sanchez, V. M. C., Chasek, P., Crossman, N. D., Erlewein, A., … Tengberg, A. E. (2018). Land in balance: The scientific conceptual framework for land degradation neutrality. Environmental Science & Policy, 79, 25–35. doi:10.1016/j.envsci.2017.10.011

Dois, B. Di Giuseppe, S., & Zezza, A. (2017). Are African households (not) leaving agriculture? Patterns of households’ income sources in rural Sub-Saharan Africa. Food Policy, 67, 153–174. doi:10.1016/j.foodpol.2016.09.018

Deininger, K., & Byerlee, D. (2011). Rising global interest in farmland: Can it yield sustainable and equitable benefits? Washington, DC: World Bank Publications.

Dell’Ovo, M., Capolongo, S., & Oppio, A. (2018). Combining spatial analysis with MCDM for the siting of healthcare facilities. Land Use Policy, 76, 634–644. doi:10.1016/j.landusepol.2018.02.044

Din, G. Y., & Yunusova, A. B. (2016). Using AHP for evaluation of criteria for agro-industrial projects. International Journal of Horticulture & Agriculture, 1(1), 6.

Diop, A., Ndiaye, M. L., Sambou, H., Dacosta, H., & Sambou, B. (2017). Integrated a GIS and multicriteria evaluation approach for mapping flood vulnerability of buildings in the Grande Niaye Watershed of Dakar, Senegal. American Journal of Geographic Information System, 6(2), 41–53.

Duc, T. T. (2006). Using GIS and AHP technique for land-use suitability analysis. In International symposium on geoinformatics for spatial
infrastructure development in earth and allied sciences (pp. 1–6). Vietnam: Ho Chi Minh.

Elaoelem, M. (2012). Land suitability evaluation for sorghum based on boolean and fuzzy-multi-criteria decision analysis methods. International Journal of Environmental Science and Development, 3(4), 357–361. doi:10.7763/IJESD.2012.V3.247

Elaoelem, M., Comber, A., & Fisher, P. (2011). A comparison of fuzzy AHP and ideal point methods for evaluating land suitability. Transactions in GIS, 15(3), 329–346. doi:10.1111/j.1467-9671.2011.01260.x

Eskandari, M., Horneae, M., & Mahmodi, S. (2012). An integrated multi criteria approach for landfill siting in a conflicting environmental, economical and socio-cultural area. Waste Management, 32(8), 1528–1538. doi:10.1016/j.wasman.2012.03.014

FAO. (1976). A framework for land evaluation. Soils Bulletin No. 32, Food and Agriculture Organization of the United Nations, Rome, Italy.

FAO. (1983). Guidelines: land evaluation for rain fed agriculture. FAO Soils Bulletin No. 52, Author, Rome.

FAO. (1987a). Land Evaluation and recommendations for land use planning in the Borkena study area (Wela’ Shewa), AG/DPI/ETH/82/010, Field Document No.18. Author.

FAO. (1987b). Land Evaluation and recommendations for land use planning in the Bichena study area (Gogam). AG: DPI/ETH/82/010 Field Document No. 19. Author.

FAO. (1987c). Manual on a computerized land evaluation system for Ethiopia with special reference to the high-lands of Ethiopia: volume ii: the influence of environmental conditions on plant growth and development. AG: DPI/ETH/82/010, Field Document No. 17. Author.

FAO. (1988). A summary of the agricultural ecology of Ethiopia. Prepared under FAO projects Food Information Systems (GCP/ETH/04/1NOR), Zonation and Calibration for Project Planning (TCP/ETH/866/58), Master Land Use Plan (ETH/82/010), FAO, Rome. doi:10.1686/j.sso.2017-0302(88)79586-7

FAO. (1992). Crop water requirements. FAO irrigation and drainage paper 24.

FAO. (1993). Guidelines for land-use planning (Vol. 1). FAO Development Series 1.

FAO. (2009, October). How to Feed the World in 2050. Paper prepared for the high level expert forum. Author, Rome. http://www.fao.org/fileadmin/templates/wfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf

Feizizadeh, B., & Blaschke, T. (2012). Land suitability analysis for Tabriz County, Iran: A multi-criteria evaluation approach using GIS. Journal of Environmental Planning and Management, 56(1), 1–23. doi:10.1080/09638143.2011.646964

Feizizadeh, B., & Blaschke, T. (2013). GIS-multicriteria decision analysis for landslide susceptibility mapping: Comparing three methods for the Urmia lake basin, Iran. Natural Hazards, 65(3), 2105–2128. doi:10.1007/s11069-012-0463-3

Gebreselasie, S., Kiriu, O. K., & Mirzabaev, A. (2016). Economics of land degradation and improvement in Ethiopia. In E. Nkonya, A. Mirzabaev, & J. Van Braun (Eds.), Economics of land degradation and improvement–A global assessment for sustainable development (pp. 401–430). Cham: Springer.

Gigović, L., Pamučar, D., Ćipojić, Z., Drobnjak, S. (2017). Application of GIS-interval rough AHP methodology for flood hazard mapping in urban areas. Water, 9(6), 360. doi:10.3390/w9060360

Gigović, L., Pamučar, D., Božanić, D., & Ljubojević, S. (2017). Application of the GIS-DANP-MABAC multicriteria model for selecting the location of wind farms: A case study of Vojvodina, Serbia. Renewable Energy, 103, 501–521. doi:10.1016/j.renene.2016.11.057

Gigović, L., Pamučar, D., Ćipojić, Z., & Marković, S. (2016). GIS-Fuzzy-DEMATEL MCDM model for the evaluation of the sites for ecotourism development: A case study of “Dunovski klijut” region, Serbia. Land Use Policy, 58, 348–365. doi:10.1016/j.landusepol.2016.07.030

Grafon, R. G., Daugbjerg, C., & Qureshi, M. E. (2015). Towards food security by 2050. Food Security, 7(2), 179–183. doi:10.1007/s12571-015-0445-x

Greene, R., Devillers, R., Luther, J. E., & Eddy, B. G. (2011). GIS-based multiple-criteria decision analysis. Geography Compass, 5(6), 412–432. doi:10.1111/j.1749-8198.2011.00431.x

Guo, W. W., Wu, K., & Cornes, F. (2016). Modeling spatio-temporal pattern of agriculture-feasible land in China. Transactions in GIS, 20(3), 426–447. doi:10.1111/tgis.2016.20.issue-3

Hodgus, G., Tesfaye, K., & Mamo, G. (2013). Analysis of climate change in Northern Ethiopia: Implications for agricultural production. Theoretical and Applied Climatology, 121(3–4), 733–747. doi:10.1007/s00704-013-1251-5

Harper, M., Anderson, B., James, P., & Bahaj, A. (2017, July). Identifying suitable locations for onshore wind turbines using a GIS-MCD A approach. In the 17th International conference on sustainable energy technologies. Bologna, Italy.

Heade, R. Niranjana, K. V., Natarajan, A., & Naidu, L. G. K. (2012, January). Efficient techniques for detailed land resources inventorying using remote sensing and conventional tools: A case study of Tirumale sub-watershed in Magadi Taluk, Karnataka. In Prabhuraj, D., K. Reddy, R.S., Murthy, T.R.S., Vadivelu, S., Bokre, S.S., Pratham, K., Brunda, D.D., & Priya, H. (Eds.). National seminar on geospatial solutions for resource conservation and management (pp. 1–16). Bengaluru, India.

Hossain, M. S., & Das, N. G. (2010). GIS-based multi-criteria evaluation land suitability modelling for giant prawn (Macrobrachium rosenbergii) farming in Companigonj Upazila of Noakhali, Bangladesh. Computers and Electronics in Agriculture, 70(1), 172–186. doi:10.1016/j.compag.2009.10.003

Houshyar, E., Smith, P., Mahmoodi-Eshkaftaki, M., & Azadi, H. (2017). Sustainability of wheat production in Southwest Iran: A fuzzy-GIS based evaluation by ANFIS. Cogent Food & Agriculture, 3(1), 1327682. doi:10.1080/23313193.2017.1327682

IAO. (2008). Land evaluation in Enderta district-Tigray region, Ethiopia. 28th course professional master in Geomatics and Natural resources evaluation. Istituto Agronomico per l’Oltremare, pp. 241.

IIASA/FAO. (2012). Global agro-ecological zones-model documentation (GAEZ v. 3.0). Luxembourg, Austria & Rome, Italy: International Institute of Applied Systems Analysis & Food and Agricultural Organization.

Jiao, S., Zhang, X., & Xu, Y. (2017). A review of Chinese land suitability assessment from the rainfall-water-logging perspective: Evidence from the Su Yu Yuan area. Journal of Cleaner Production, 144, 100–106. doi:10.1016/j.jclepro.2016.12.162

Kayaa, A. K., Msanya, B. M., & Mrema, J. P. (1994). Soils and land evaluation of part of the Sokoine University of agriculture farm (Tanzania) for some crops under rainfed conditions. African Study Monographs, 15(2), 97–117.

Kamkar, B., Dorri, M. A., & da Silva, J. A. T. (2014). Assessment of land suitability and the possibility and performance of a canola (Brassica napus L.)-soybean (Glycine max L.) rotation in four basins of Golestan
Methods and guidelines for assessing sustainable use of soil and water resources in the tropics. Washington, US: Soil Management Support Services.

Li, Q., Huang, J., Wang, C., Lin, H., Zhang, J., Jiang, J., & Wang, B. (2017). Land development suitability evaluation of Pingtan island based on scenario analysis and landscape ecological quality evaluation. Sustainability, 9(7), 1292. doi:10.3390/su9071292

Liu, F., Peng, Y., Zhang, W., & Pedrycz, W. (2017). On consistency in AHP and Fuzzy AHP. Journal of Multicriteria Decision Analysis, 24(4), 226–234. doi:10.1057/s41276-017-0049-1

Malczewski, J., & Rinner, C. (2015). Multicriteria decision analysis in geographic information science (pp. 331). New York, NY: Springer Science.

Maleki, F., Kazemi, H., Siahmarguee, A., & Kamkar, B. (2017). Development of a land use suitability model for saffron (Crocus sativus L.) cultivation by multi-criteria evaluation and spatial analysis. Ecological Engineering, 106, 140–153. doi:10.1016/j.ecoleng.2017.05.050

Malnin, M., Zarkesh, M. M. K., Monavari, S. M., Jaziz, A. A., & Sharifi, E. (2016). Analysis of land suitability for urban development in Ahwaz County in southwestern Iran using fuzzy logic and analytic network process (ANP). Environmental Monitoring and Assessment, 188(8), 447. doi:10.1007/s10661-016-5401-5

McKenzie, F. C., & Williams, J. (2015). Sustainable food production: Constraints, challenges and choices by 2050. Food Security, 7(2), 221–233. doi:10.1007/s12571-015-0441-1

Mekuriaw, A. (2017). Assessing the effectiveness of land resource management practices on erosion and vegetative cover using GIS and remote sensing techniques in Meloka watershed, Ethiopia. Environmental Systems Research, 6(1), 16. doi:10.1186/s40068-017-0093-6

Mendes, A., & Delali, A. (2012). Integration of multicriteria decision analysis in GIS to develop land suitability for agriculture: Application to durum wheat cultivation in the region of Mota in Algeria. Computers and Electronics in Agriculture, 83, 117–126. doi:10.1016/j.compag.2012.02.003

Mehran, M., Modani, K., Hashemi, H., & Azadi, P. (2017). Iran’s land suitability for agriculture. Scientific Reports, 7(1), 7670. doi:10.1038/s41598-017-08066-y

Mighty, M. A. (2015). Site suitability and the analytic hierarchy process: How GIS analysis can improve the competitive advantage of the Jamaican coffee industry. Applied Geography, 58, 84–93. doi:10.1016/j.apgeog.2015.01.010

Mishra, A. K., Deep, S., & Choudhary, A. (2015). Identification of suitable sites for organic farming using AHP & GIS. The Egyptian Journal of Remote Sensing and Space Science, 18(2), 181–193. doi:10.1016/j.ejrs.2015.06.005

Mohan, M. M. (2008). Characterization and classification of soils and land suitability of a micro-watershed in Hanagal taluk (Master’s thesis). UAS, Dharwad.

Mosadeghi, R., Warnken, J., Tomlinson, R., & Mirfendereski, H. (2015). Comparison of Fuzzy-AHP and AHP in a spatial multi-criteria decision making model for urban land-use planning. Computers, Environment and Urban Systems, 49, 54–65. doi:10.1016/j.compenvurbsys.2014.10.001

Motuma, M., Suryabhagavan, K. V., & Balakrishnan, M. (2016). Land suitability analysis for wheat and sorghum crops in Woogdie District, South Wollo, Ethiopia, using geospatial tools. Applied Geomatics, 8(1), 57–66. doi:10.1007/s10668-016-9168-5

Mousavi, S. R., Sarmadian, F., Alijani, Z., & Toatti, A. (2017). Land suitability evaluation for irrigating wheat by geopedological approach and geographic information system: A case study of Oozvin plain, Iran. Eurasian Journal of Soil Science, 6(3), 275–284.

Musakwo, W. (2017). Identifying land suitable for agricultural land reform using GIS-MCDA in South Africa. Environment, Development and Sustainability, 1–19. doi:10.1007/s10668-017-9889-4

Mustafa, A. A., Singh, M., Sahoo, R. N., Ahmed, N., Khanna, M., Sarangi, A., & Mishra, A. K. (2011). Land suitability analysis for different crops: A multi criteria decision making approach using remote sensing and GIS. Researcher, 3(12), 61–84.

Naidu, L. G. K., Ramamurthy, V., Challa, O., Hegde, R., & Krishnan, P. (2005). Manual on soil-site suitability criteria for major crops. Amravati, Road, Nagpur, India: National Bureau of Soil Survey and Land Use Planning (I CAR).

Nedeco, N., 1997. Tekeze river basin integrated development master plan project. Second phase report vol. NR. 2-Solils and terrain.

Negusse, T., Yazew, E., & Tadesse, N. (2013). Quantification of the impact of integrated soil and water conservation measures on groundwater availability in Mendae Catchment, Abraha We-Atseboa, eastern Tigray, Ethiopia. Mamon Ethiopian Journal of Science, 5(2), 117–136.

Nyssen, J., Frankl, A., Zenebe, A., Deckers, J., & Poens, J. (2015). Land management in the northern Ethiopian highlands: Local and global perspectives; past,
present and future. Land Degradation & Development, 26(7), 759–764. doi:10.1002/ldr.2336
Nyssen, J., Poensen, J., Moeyersons, J., Deckers, J., Haile, M., & Long, A. (2004). Human impact on the environment in the Ethiopian and Eritrean highlands—a state of the art. Earth-Science Reviews, 64(3–4), 273–320. doi:10.1016/s0012-8252(03)00078-3
Otgonbayar, M., Atzberger, C., Chambers, J., Amarsaikhan, D., Böck, S., & Tsogbayar, J. (2017). Land suitability evaluation for agricultural cropland in Mongolia using the spatial MCDM method and AHP based GIS. Journal of Geoscience and Environment Protection, 5(09), 238–263. doi:10.4236/geb.2017.59017
Owusu, S., Mul, M. L., Ghansah, B., Osei-Owusu, P. K., Awotwe-Pratt, V., & Kiddyampakeni, D. (2017). Assessing land suitability for aquifer storage and recharge in northern Ghana using remote sensing and GIS multi-criteria decision analysis technique. Modeling Earth Systems and Environment, 3, 1383–1393. doi:10.1007/s40808-017-0360-6
Pamucar, D., Gigović, L., Bajić, Z., & Janošević, M. (2017). Location selection for wind farms using GIS multi-criteria hybrid model: An approach based on fuzzy and rough numbers. Sustainability, 9(18), 3115. doi:10.3390/su9081315
Pender, J., Place, F., & Ehiu, S. (Eds.). (2006). Strategies for sustainable land management in the East African highlands. Washington, DC: Intl Food Policy Res Inst.
Pichaimani, V., & Manjula, K. R. (2016). Research directions on GIS database design and management. Indian Journal of Science and Technology, 9, 39. doi:10.17485/ijst/2016/v9i39/92774
Popp, J., Lokner, Z., Harangi-Rakos, M., & Fari, M. (2014). The effect of bioenergy expansion: Food, energy, and environment. Renewable and Sustainable Energy Reviews, 32, 559–578. doi:10.1016/j.rser.2014.01.056
Prakash, T. N. (2003). Land suitability analysis for agricultural crops: a fuzzy multicriteria decision making approach. ITC (Master’s thesis). Retrieved from: https://webapps.itc.utwente.nl/librarywww/papers_2003/mScThmfp/prakash.pdf.
Pramanik, M. K. (2016). Site suitability analysis for agricultural land use of Darjeeling district using AHP and GIS techniques. Modeling Earth Systems and Environment, 2(2), 56. doi:10.1007/s40808-016-0116-8
Purnamasari, R. A., Ahamed, T., & Noguchi, R. (2018). Land suitability assessment for cassava GIS-production in Indonesia using GIS, remote sensing and multi-criteria analysis. Asia-Pacific Journal of Regional Science, 2(1), 1–32.
Qureshi, M. R. N., Singh, R. K., & Hasan, M. A. (2018). Decision support model to select crop pattern for sustainable agricultural practices using fuzzy MCDM. Environmental Development and Sustainability, 20(2), 641–659. doi:10.1016/j.envdev.2016.09.003
Rad, L. K., & Haghhyghy, M. (2014). Integrated analytical hierarchy process (AHP) and GIS for land use suitability analysis. World Applied Sciences Journal, 32(4), 587–594.
Raza, S. M. H., Mahmood, S. A., Khan, A. A., & Liesenberg, V. (2018). Delineation of potential sites for rice cultivation through multi-criteria evaluation (MCE) using remote sensing and GIS. International Journal of Plant Production, 12(1), 1–11. doi:10.1016/j.ijpp.2017.017-0001-2
Ristić, V., Maksin, M., Nenković-Rnić, M., & Basarić, J. (2018). Land use evaluation for sustainable construction in a protected area: A case of Sara mountain national park. Journal of Environmental Management, 206, 430–445. doi:10.1016/j.jenvman.2017.09.080
Robinson, L. W., Erickson, P. J., Chesterman, S., & Worden, J. S. (2015). Sustainable intensification in drylands: What resilience and vulnerability can tell us? Agricultural Systems, 135, 133–140. doi:10.1016/j.agsy.2015.01.005
Romano, G., Dal Sasso, P., Liuzzi, G. T., & Gentile, F. (2015). Multi-criteria decision analysis for land suitability mapping in a rural area of Southern Italy. Land Use Policy, 58, 131–143. doi:10.1016/j.landusepol.2015.05.013
Roy, J., & Saha, S. (2018). Assessment of land suitability for theaddy cultivation using analytical hierarchical process (AHP): A study on Hinglo river basin, Eastern India. Modeling Earth Systems and Environment, 4(2), 1–18.
Saatsaz, M., Monsef, I., Rahmani, M., & Ghods, A. (2018). Site suitability evaluation of aquifer recharge in northern Ghana using remote sensing and GIS techniques and integrated hydrogeological and geophysical surveys. Environmental Monitoring and Assessment, 190(3), 144. doi:10.1007/s10661-018-6505-x
Saaty, T. (1980). The analytical hierarchy process, planning priority. Resource Allocation, TWS Publications. USA, 287.
Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 15(3), 234–281. doi:10.1016/0022-4470(77)90033-5
Sahu, N., Reddy, G. O., Kumar, N., & Nagaraju, M. S. S. (2015). High resolution remote sensing, GPS and GIS in soil resource mapping and characterization-A review. Agricultural Reviews, 36(1), 14–25. doi:10.5958/0976-0741.2015.00021.1
Scherer, L. A., Verburg, P. H., & Schulp, C. J. E. (2018). Opportunities for sustainable intensification in European agriculture. Global Environmental Change, 48, 43–55. doi:10.1016/j.gloenvcha.2017.11.009
Seleshi, Y., & Camberlin, P. (2006). Recent changes in dry spell and extreme rainfall events in Ethiopia. Theoretical and Applied Climatology, 83(1–4), 181–191.
Seyedmohammadi, J., Sarmadian, F., Jafarzadeh, A. A., Ghorbani, M. A., & Shohbazi, F. (2018). Application of SAW, TOPSIS and fuzzy TOPSIS models in cultivation priority planning for maize, rapeseed and soybean crops. Geoderma, 310, 178–190.
Singh, L. K., Jha, M. K., & Chowdary, V. M. (2017). Multi-criteria analysis and GIS modeling for identifying prospective water harvesting and artificial recharge sites for sustainable water supply. Journal of Cleaner Production, 142, 1436–1456.
Singha, C., & Swain, K. C. (2016). Land suitability evaluation criteria for agricultural crop selection: A review. Agricultural Reviews, 37(2), 125–132.
Smith, J. M. B. (1997). Cropland, pasture and timber yield estimates for KwaZulu-Natal (Cedara Report No. N/A/97/9). KwaZulu-Natal Department of Agriculture, Cedara.
Sys, C., Van Ranst, B., & Debaveye, J., 1993. Land evaluation. Part I: Methods in land evaluation. Agricultural publication No. 7. International training center for post graduate soil scientists, University Ghent, Belgium.
Sys, C., Van Ranst, E., & Debaveye, J. (1991). Land evaluation. Part II: Method of land evaluation. General administration for development cooperation, International training center for post graduate soil scientists. University GHENT, Brussels, Belgium. Agric Publication No. 7:1–265.
Tesfaye, S., Birhane, E., Leijnse, T., & van der Zee, S. E. A. T. (2017). Climatic controls of ecohydrological...
responses in the highlands of northern Ethiopia. Science of the Total Environment, 609, 77–91.
Tomić, H., Mastelić Ivic, S., & Roić, M. (2018). Land consolidation suitability ranking of cadastral municipal-
ties: Information-based decision-making using multi-
criteria analyses of official registers’ data. ISPRS International Journal of Geo-Information, 7(3), 87.
Torrieri, F., & Batò, A. (2017). Spatial multi-criteria decision support system and strategic environmental assessment: A case study. Buildings, 7(4), 96.
Tóth, G., Jones, A., & Montanarella, L. (2013). The LUCAS topsoil database and derived information on the regional variability of cropland topsoil properties in the European Union. Environmental Monitoring and Assessment, 185(9), 7409–7425.
Van Chuong, H. (2008, December). Multicriteria land suitability evaluation for crops using GIS at community level in central Vietnam. In International Symposium on geoinformatics for spatial-infrastructure development in earth and allied sciences. Hanoi, Vietnam.
Van Ittersum, M. K., Van Bussel, L. G., Wolf, J., Grassini, P., Van Wart, J., Guilpart, N., … Yang, H. (2016). Can sub-Saharan Africa feed itself? Proceedings of the National Academy of Sciences, 113(52), 14964–14969.
Van Orshoven, J., Terres, J. M., & Tóth, T. (2016). Updated common bio-physical criteria to define natural con-
straints for agriculture in Europe. JRC Scientific and Technical Report, European Commission Joint Research Centre Institute for Environment and Sustainability-IES, Luxembourg.
Vanmaercke, M., Zenebe, A., Poesen, J., Nyssen, J., Verstraeten, G., & Deckers, J. (2010). Sediment dynamics and the role of flash floods in sediment export from medium-sized catchments: A case study from the semi-arid tropical highlands in northern Ethiopia. Journal of Soils and Sediments, 10(4), 611–627.
Verdoort, A., & Van Ranst, E. (2003). Land evaluation for agricultural production in the tropics: A large-scale land suitability classification for Rwanda. Ghent University. Laboratory of Soil Science, Krijgslaan 281 S8, B-9000 Gent, Belgium.
Walke, N., Reddy, G. O., Maji, A. K., & Thayalan, S. (2012). GIS-based multicriteria overlay analysis in soil-suit-
ability evaluation for cotton (Gossypium spp.): A case study in the black soil region of Central India. Computers & Geosciences, 47, 108–118.
Wijenayake, W. K., Amarasinghe, U. S., & De Silva, S. S. (2016). Application of a multiple-criteria decision making approach for selecting non-perennial reservoirs for culture-based fishery development: Case study from Sri Lanka. Aquaculture, 459, 26–35.
Worglul, A. W., Jeong, J., Dile, Y. T., Osorio, J., Schmitter, P., Gerik, T., … Clark, N. (2017). Assessing potential land suitable for surface irrigation using groundwater in Ethiopia. Applied Geography, 85, 1–13.
Xu, E., & Zhang, H. (2013). Spatially-explicit sensitivity analysis for land suitability evaluation. Applied Geography, 45, 1–9.
Yalew, S. G., van Giensven, A., Mul, M. L., & van der Zaag, P. (2016b). Land suitability analysis for agriculture in the Abbay basin using remote sensing, GIS and AHP techniques. Modeling Earth Systems and Environment, 2(1), 101.
Yalew, S. G., Van Giensven, A., & van der Zaag, P. (2016a). AgriSuit: A web-based GIS-MCDA framework for agricultural land suitability assessment. Computers and Electronics in Agriculture, 128, 1–8.
Yebo, B. (2015). Integrated soil fertility management for better crop production in Ethiopia. International Journal of Soil Science, 10(1), 1–16.
Yitbarek, T., Kibret, K., Gebrekidan, H., & Beyene, S. (2013). Physical land suitability evaluation for rainfed pro-
duction of cotton, maize, upland rice and sorghum in Abobo Area, western Ethiopia. American Journal of Research Communication, 1(10), 296–318.
Yizengaw, T. (1996a). An approach towards a macro-scale land evaluation as a basis to identify resource man-
agement options in Central Ethiopia (Doctoral disserta-
tion). Univ. Gent, Belgium.
You, L., Ringler, C., Wood-Sichra, U., Robertson, R., Wood, S., Zhu, T., … Sun, Y. (2021). What is the irrigation potential for Africa? A combined biophysical and socioeconomic approach. Food Policy, 36(6), 770–782.
Young, A. (2000). Land resources: Now and for the future. Cambridge University Press, Cambridge, UK.
Yu, Y., Shi, L., Huai, H., & Li, C. (2013, September). Study on the application of information technologies on suit-
ability evaluation analysis in agriculture. In Li, D. and Chen, Y. (Eds.), International conference on computer and computing technologies in agriculture (pp. 165–176). Berlin, Heidelberg: Springer.
Zabihi, H., Ahmad, A., Vogeler, I., Said, M. N., Golmohammadi, M., Golein, B., & Nilashi, M. (2015).
Land suitability procedure for sustainable citrus planning using the application of the analytical network process approach and GIS. Computers and Electronics in Agriculture, 117, 114–126.

Zavadskas, E. K., Stević, Z., Tonackov, J., & Prentkovskis, O. (2018). A novel multicriteria approach—rough step-wise weight assessment ratio analysis method (R-SWARA) and its application in logistics. Studies in Informatics and Control, 27(1), 97–106.

Zhang, J., Su, Y., Wu, J., & Liang, H. (2015). GIS based land suitability assessment for tobacco production using AHP and fuzzy set in Shandong province of China. Computers and Electronics in Agriculture, 114, 202–211.

Zhang, K., & Achari, G. (2010). Uncertainty propagation in environmental decision making using random sets. Procedia Environmental Sciences, 2, 576–584.

Zolekar, R. B., & Bhagat, V. S. (2015). Multi-criteria land suitability analysis for agriculture in hilly zone: Remote sensing and GIS approach. Computers and Electronics in Agriculture, 118, 300–321.