Identification of new long non-coding RNAs associated with medullary thyroid cancer

Luzón-Toro Berta1,2, Fernández Raquel M1,2, Martos-Martínez Juan Manuel1, Antiñolo Guillermo1,2 and Borrego Salud1,2*

1Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocio/CSIC/ University of Seville, Seville, Spain
2Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
3Endocrine Surgery Unit, General Surgery Department, University Hospital Virgen del Rocio, Seville, Spain

Abstract
Medullary thyroid carcinoma (MTC) represents just 5–10% of all thyroid malignancies. In contrast to the familial MEN2, little is known about the etiology of sporadic MTC. New approaches are required to elucidate the mechanisms underlying the pathogenesis of sMTC. Long noncoding RNAs (lncRNAs), are well-recognized post-transcriptional regulators of genetic expression and recent studies have described multiple aberrantly expressed non-coding RNAs in thyroid cancers. In the current study we have aimed to perform the first screening of multiple lncRNAs in tumoral tissues from MTC patients by qRT-PCR. Our analysis showed the association of 15 lncRNAs from which 6 where new in association with this disease (RMST, SNHG16, FTX, GdSS, IPW, MEG3). The association of these new lncRNAs with overall survival was analyzed by Kaplan-Meier curve.

Introduction
Medullary thyroid carcinoma (MTC) is a tumor originated from C-cells and derived from the neural crest which accounts for only 1%–2% of thyroid cancers, although it is responsible for about 13% of all thyroid cancer–related deaths [1,2]. MTC can occur either sporadically (75%) or as the dominant component of the type 2 multiple endocrine neoplasia syndromes (MEN2, 25%). It is considered a rare disease, with an estimated prevalence in the general population of 1/14,300 [http://www.orpha.net; ORPHA Nº: 1332].

The broad term long non-coding RNA (lncRNA) refers to a class of non-coding RNA transcript of minimum 200 nucleotides in length. They have gained widespread attention in recent years as new players in transcriptional, epigenetic, or post-transcriptional regulation of gene expression [3]. To date, only one study has examined the expression of lncRNAs in patients with MTC [4]. Consequently, lncRNAs are attractive and promising targets in cancer prognosis and treatment.

The purpose of this study is to bring insight and deeper understanding into the etiology of sMTC, to a deeper understanding of disease mechanisms, pathogenesis, and searching of new therapeutic targets. To afford this aim, we have analyzed the expression of lncRNAs in this type of tumors.

Materials and methods
Experimental subjects
In this study, we have performed lncRNA expression analysis on four sMTC cases (Table 1). All MTC tissues and their corresponding adjacent non-tumor thyroid tissues were obtained from these patients after undergoing surgical resection. The samples were snap frozen in liquid nitrogen and stored at −80 °C until use. A written informed consent was obtained from all the participants for clinical and molecular genetic studies. The study was approved by the Ethics Committee for clinical research in the University Hospital Virgen del Rocio (Seville, Spain) and complies with The Code of Ethics of the World Medical Association (Declaration of Helsinki), printed in the British Medical Journal (18 July 1964).

Screening by lncRNA PCR Array
Total RNA was obtained from tissues of our patients and commercial cells by using RNEasy Purification Kit (Qiagen), according to the manufacturer’s instructions. The RNA was quantified by Nanodrop (Invitrogen, USA) and 1 μg of total RNA was reverse transcribed into...
cDNA using PrimeScript RT Reagent Kit (Perfect Real Time; TaKaRa, Osaka, Japan) to determine IncRNA expression levels, using GAPDH as internal control. For IncRNA expression analysis, laboratory-verified SYBR Green qPCR assays (RT² IncRNA PCR Array, Qiagen) were used. Each plate contains 84 IncRNAs already associated with different cancer pathways (Supplementary Table 1). The quantitative real-time PCR (qRT-PCR) was performed at the 7900HT Fast Real-Time PCR System with the 384-Well Block Module (Applied Biosystems). We used the ΔΔCt method for relative quantitation of IncRNAs level expression, where a fold-change of at least two times and a corrected p-value of < 0.05 were used as a criterion of selection.

Results

The expression profiles of 84 IncRNAs, already associated with different cancer pathways, in 4 tumoral and non-tumoral paired tissues were determined by SYBR Green qPCR assays. Fifteen differentially expressed IncRNAs were detected in our samples (all adjusted p ≤ 0.05). All available information about their implication in other type of cancers is also compiled on the last column of the table, with special mention when they have been linked with thyroid cancer.

Table 2. Aberrant LncRNAs in MTC tissues

Sample	Detector	Avg Ct	Avg Delta Ct	Delta Delta Ct SD	RQ	Described in cancer (is it described into thyroid cancer)?
Non-tumoral	ZFAS1	29.275	3.833	0.000	1.000	Not associated with thyroid cancer but it is related with colorectal, gastric, ovarian, prostate, hepatic, bladder, esophagus and breast cancers.
Tumoral	ZFAS1	23.903	2.997	-0.836	1.785	Not associated with thyroid cancer but it is related with breast cancer.
Non-tumoral	RMST	30.659	5.217	0.000	1.000	Associated with thyroid cancer among other tumors (Epigenetic players in thyroid cancer pathogenesis.
Tumoral	RMST	24.888	3.982	-1.235	2.353	The polymorphism rs944289 predisposes to papillary thyroid carcinoma through a large intergenic noncoding RNA gene of tumor suppressor type.
Non-tumoral	SNHG16	31.328	5.885	0.000	1.000	Not associated with thyroid cancer but it is related with esophageal squamous cell carcinoma, gastric, lung, glioma, bladder, breast, colorectal and cervical cancers.
Tumoral	SNHG16	25.200	4.294	-1.591	3.014	Not associated with thyroid cancer but it is related with hepatocellular, colorectal, renal, breast cancers as well as in leukemia and melanoma.
Non-tumoral	FTX	30.498	5.056	0.000	1.000	Associated with thyroid cancer, among other tumors (Low expression of long non-coding RNA GAS5 is associated with poor prognosis of patients with thyroid cancer.
Tumoral	FTX	23.914	3.008	-2.048	4.135	Associated with thyroid cancer Long noncoding RNAs: emerging players in thyroid cancer pathogenesis.
Non-tumoral	GAS5	30.056	4.613	0.000	1.000	The polymorphism rs944289 predisposes to papillary thyroid carcinoma through a large intergenic noncoding RNA gene of tumor suppressor type.
Tumoral	GAS5	23.297	2.390	-2.223	4.668	Not associated with thyroid cancer.
Non-tumoral	IPW	30.182	4.739	0.000	1.000	Not associated with thyroid cancer.
Tumoral	IPW	23.908	3.002	-1.738	3.335	Associated with different cancers and other pathologies, and with thyroid cancer (Upregulation of long noncoding RNA MALAT1 in papillary thyroid cancer and its diagnostic value. Liu J et al. Future Oncol. 2018 Jul 10; MicroRNA-21 and long non-coding RNA MALAT1 are overexpressed markers in medullary thyroid carcinoma.
Non-tumoral	MALAT1	31.932	6.489	0.000	1.000	Associated with different cancers and other pathologies, and with thyroid cancer (Long noncoding RNA MALAT1 in papillary thyroid cancer and its diagnostic value. Liu J et al. Future Oncol. 2018 Jul 10; MicroRNA-21 and long non-coding RNA MALAT1 are overexpressed markers in medullary thyroid carcinoma.
Tumoral	MALAT1	26.359	5.453	-1.036	2.051	Associated with different cancers and other pathologies, and with thyroid cancer Long noncoding RNAs: emerging players in thyroid cancer pathogenesis.
Non-tumoral	MEG3	31.919	6.477	0.000	1.000	Not associated with thyroid cancer but it is related with breast, lung and glioma cancers.
Tumoral	MEG3	22.835	1.928	-4.548	23.397	The polymorphism rs944289 predisposes to papillary thyroid carcinoma through a large intergenic noncoding RNA gene of tumor suppressor type.
Non-tumoral	PTCS1	28.910	3.467	0.000	1.000	Associated with thyroid cancer Long noncoding RNAs: emerging players in thyroid cancer pathogenesis.
Tumoral	PTCS1	26.362	5.455	1.988	0.252	Not associated with thyroid cancer but it is related with breast, lung and glioma cancers.
Non-tumoral	PTCS3	29.431	3.989	0.000	1.000	Not associated with thyroid cancer but it is related with breast, lung and glioma cancers.
Tumoral	PTCS3	26.283	5.377	1.388	0.382	Not associated with thyroid cancer but it is related with breast, lung and glioma cancers.
Non-tumoral	TUG1	29.886	4.443	0.000	1.000	Not associated with thyroid cancer but it is related with breast, lung and glioma cancers.
Tumoral	TUG1	24.500	3.593	-0.849	1.802	Not associated with thyroid cancer but it is related with breast, lung and glioma cancers.
Non-tumoral	ADAMTS9-4S2	31.702	6.259	0.000	1.000	Associated with thyroid cancer Long noncoding RNAs: emerging players in thyroid cancer pathogenesis.
Tumoral	ADAMTS9-4S2	27.908	7.002	0.743	0.598	Not associated with thyroid cancer but it is related with breast, lung and glioma cancers.
Non-tumoral	PRNCR1	31.918	6.475	0.000	1.000	Not associated with thyroid cancer but it is related with breast, lung and glioma cancers.
Tumoral	PRNCR1	28.308	7.402	0.927	0.526	Not associated with thyroid cancer but it is related with breast, lung and glioma cancers.
Non-tumoral	BMPR	22.623	-2.820	0.000	1.000	Not associated with thyroid cancer but it is related with breast, lung and glioma cancers.
Tumoral	BMPR	18.382	1.928	-4.548	23.397	Associated with thyroid cancer, among other tumors (Epigenetic Modifications in Thyroid Cancer Cells Restore NIS and Radio-Iodine Uptake and Promote Cell Death.
Non-tumoral	HI19	31.640	6.197	0.000	1.000	Associated with thyroid cancer, among other tumors (Epigenetic Modifications in Thyroid Cancer Cells Restore NIS and Radio-Iodine Uptake and Promote Cell Death.
Tumoral	HI19	27.891	6.984	0.787	0.580	Associated with thyroid cancer, among other tumors (Epigenetic Modifications in Thyroid Cancer Cells Restore NIS and Radio-Iodine Uptake and Promote Cell Death.
0.05). From all the differentially expressed lncRNAs, 8 downregulated and 7 upregulated lncRNAs had not been published yet in association with any thyroid carcinoma (Table 2).

In addition, analysis of overall survival was performed by using Kaplan-Meier curve although it is not significant (available under request).

Discussion

Many efforts are being made to establish the biological and clinical relationships between IncRNAs and cancer. They are involved in a variety of biological processes through the regulation of gene expression [5,6]. In this manner, IncRNAs regulate transcription and epigenetic events, leading cells adapting to a changing environment.

It is important to highlight that one of the upregulated lncRNAs that we have obtained in this study was MALAT1, which has been already associated with MTC [4]. This fact reinforces the validity of our approach. In this study, we have evaluated 84 different lncRNAs, already associated with cancer pathways, in 4 MTC patients through qRT-PCR, showing the significant association of 3 downregulated and 4 upregulated new lncRNAs that had not been published yet in association with neither MTC nor any thyroid carcinoma.

This study is not devoid of limitations. We have compared by qRT-PCR the expression levels of different lncRNAs in a group of MTC patients and normalizing to the levels detected in normal adjacent thyroid tissues (with mostly follicular cells). Although normal C-Cells would be our perfect control tissue, there is very little number of them in the normal thyroid. Thus, we decided to use thyroid follicular cells because they are very close to the MTCs and they express the thyroid transcription factor 1, as well as C-Cells do. Then, we consider that this comparison approach was a good alternative, as some previous studies also confirmed [4,7,8].

Conclusions

We describe here six new lncRNAs (RMST, SNHG16, FTX, GAS5, IPW, MEG3) which could play an interesting role in this rare tumor, that to date has any effective therapy or prognosis. Further studies with larger sample sizes would be needed to confirm the role of these new lncRNAs in MTC that maybe can serve as predictive cancer biomarkers or targets for preventive drugs.

Data availability

The expression data from the qPCR assays used to support the findings of this study are available from the corresponding author upon request.

Conflicts of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Funding statement

This study was supported by Instituto de Salud Carlos III (ISCIII), Spanish Ministry of Economy and Competitiveness, Spain and co-funded by European Union (ERDF/ESF, "Investing in your future") [PI16/0142]. In addition, it has been funded by the Regional Ministry of Innovation, Science and Enterprise of the Regional Government of Andalusia [CTS-7447]. CIBERER is an initiative of the ISCIII, Spanish Ministry of Economy and Competitiveness.

Acknowledgments

The authors thank the patients that have participated in this study, as well as the donors and the Hospital Universitario Virgen del Rocio-Instituto de Biomedicina de Sevilla Biobank (Andalusian Public Health System Biobank and ISCIII-Red de Biobancos PT13/0010/0056) for the human specimens used in this study.

Supplementary material

Supplementary table 1: The 84 lncRNAs from the RT+IncRNA PCR Arrays.

References

1. Noone AM, Cronin KA, Altekruse SF, Howlader N, Lewis DR, et al. (2017) Cancer Incidence and Survival Trends by Subtype Using Data from the Surveillance Epidemiology and End Results Program, 1992-2013. Cancer Epidemiol Biomarkers Prev 26: 632-641. [Crossref]
2. Kebebew E, Inuarte PH, Siperstein AE, Duh QV, Clark OH (2000) Medullary thyroid carcinoma: clinical characteristics, treatment, prognostic factors, and a comparison of staging systems. Cancer 88: 1139-1148. [Crossref]
3. Huarte M (2015) The emerging role of lncRNAs in cancer. Nat Med 21: 1253-1261. [Crossref]
4. Chu YH, Hardin H, Schneider DF, Chen H, Lloyd RV (2017) MicroRNA-21 and long non-coding RNA MALAT1 are overexpressed markers in medullary thyroid carcinoma. Exp Mol Pathol 103: 229-236. [Crossref]
5. Haemmerle M, Gutschner T (2015) Long non-coding RNAs in cancer and development: where do we go from here? Int J Mol Sci 16: 1395-1405. [Crossref]
6. Terracciano D, Terreri S, de Nigris F, Costa V, Calin GA, et al. (2017) The role of a new class of long noncoding RNAs transcribed from ultraconserved regions in cancer. Biochim Biophys Acta Rev Cancer 1868: 449-455. [Crossref]
7. Mian C, Pennelli G, Fassan M, Balistreri M, Barollo S, et al. (2012) MicroRNA profiles in familial and sporadic medullary thyroid carcinoma: preliminary relationships with RET status and outcome. Thyroid 22: 890-896. [Crossref]
8. Starenki D, Hong SK, Lloyd RV, Park JI (2015) Mortalin (GRP75/HSPA9) upregulation promotes survival and proliferation of medullary thyroid carcinoma cells. Oncogene 34: 4624-4634. [Crossref]