AEC IN A NETSHELL:
ON TARGET AND TOPOLOGY CHOICES
FOR FCRN ACOUSTIC ECHO CANCELLATION

Jan Franzen, Ernst Seidel, Tim Fingscheidt

Institute for Communications Technology, Technische Universität Braunschweig,
Schleinitzstr. 22, 38106 Braunschweig, Germany
{ j.franzen, ernst.seidel, t.fingscheidt }@tu-bs.de

ABSTRACT
Acoustic echo cancellation (AEC) algorithms have a long-term steady role in signal processing, with approaches improving the performance of applications such as automotive hands-free systems, smart home and loudspeaker devices, or web conference systems. Just recently, very first deep neural network (DNN)-based approaches were proposed with a DNN for joint AEC and residual echo suppression (RES)/noise reduction, showing significant improvements in terms of echo suppression performance. Noise reduction algorithms, on the other hand, have enjoyed already a lot of attention with regard to DNN approaches, with the fully convolutional recurrent network (FCRN) architecture being among state of the art topologies. The recently published impressive echo cancellation performance of joint AEC/RES DNNs, however, so far came along with an undeniable impairment of speech quality. In this work we will heal this issue and significantly improve the near-end speech component quality over existing approaches. Also, we propose for the first time—to the best of our knowledge—a pure DNN AEC in the form of an echo estimator, that is based on a competitive FCRN structure and delivers a quality useful for practical applications.

Index Terms—acoustic echo cancellation, echo suppression, convolutional neural network, ConvLSTM

1. INTRODUCTION
Applications such as automotive hands-free systems, smart home and loudspeaker devices, web conference systems, and many more share a similar underlying challenge: The microphone signal picks up an undesired echo component stemming from the system’s own loudspeakers. With acoustic echo cancellation (AEC) algorithms having a steady role in signal processing over the past decades, these algorithms typically deploy an adaptive filter to estimate the impulse response (IR) of the loudspeaker-enclosure-microphone (LEM) system. The echo component is then estimated and subsequently subtracted from the microphone signal to obtain a widely echo-free enhanced near-end speech signal.

Traditional AEC algorithms [1–3] have a long-term role in signal processing, with the approaches steadily evolving, resulting in renowned algorithms using normalized least mean squares (NLMS) algorithm [4] or the Kalman filter [5, 6], and including residual echo suppression (RES) approaches [7,8]. In the recent past, neural networks—especially convolutional neural networks—have shown significant performance in speech enhancement in general, e.g., the work of Strake et al. [9] for noise reduction. However, AEC has only seen very few data-driven approaches so far. Initially, only networks for RES were among them [10,11].

Just recently, a fully learned AEC was proposed by Zhang et al. [12,13], revealing an impressive echo cancellation performance. An interesting aspect of these works is the way the AEC problem is tackled. It is treated as source separation approach with the networks being trained to directly output the estimated enhanced signal.

The difficulty with AEC DNNs is, however, that they so far come along with an undeniable impairment of the near-end speech component quality. In this work, we will investigate this issue with a set of experiments to show and reveal trade-offs between different performance aspects in terms of echo suppression, noise reduction, and near-end speech quality. With the fully convolutional recurrent network (FCRN) [9,14] and its proven capability of auto-encoding speech at high fidelity as a basis, we will introduce several DNN AEC architectures overcoming earlier problems, thereby significantly improving over existing approaches. We will provide useful insights into network design choices, giving the reader guidance on the not yet widely explored field of DNN AEC.

The remainder of this paper is structured as follows: In Section 2, a system overview including the framework and general network topology is given. The training and different experimental variants including novel network topology choices are described in Section 3. In Section 4, the experimental validation and discussion of all approaches is given. Section 5 provides conclusions.

2. NETWORK TOPOLOGY, SIMULATION FRAMEWORK, AND DATA

2.1. Novel FCRN Network Topology
In contrast to traditional adaptive filters, the AEC itself is performed by a neural network in this work. Basis for our experiments is the well-performing fully convolutional recurrent network (FCRN) encoder-decoder structure proposed for noise reduction in [9]. However, we introduce important AEC specifics into the network topology. Our proposed network is depicted within the green box of Figure 1, operates on discrete Fourier transform (DFT) inputs $X_t(k)$ with frame index t and frequency bin k, and contains a couple of novelties: Originally consisting of only one encoder (i.e., here, most likely comparable to performing early fusion with the microphone signal DFT $Y_t(k)$ and following only the respective dashed signal path), we investigate a parallel second encoder (portion) consisting of up to two times two convolutional layers, followed by maximum pooling over the feature dimension with stride 2. The first two convolutional layers use F filter kernels of size $N \times 1$ (convolution over...
the feature axis), whereas the latter two use $2F$ filter kernels of the same size. Leaky ReLU activations \[15\] are used for these layers. For easier readability, feature dimensions can be seen at the in- and output of each layer, denoted as \textit{feature axis} \times \textit{time axis} \times \textit{number of feature maps}. During inference, the network is subsequently processing single input frames, which is indicated by the time axis value being set to 1.

At the bottleneck, right after the encoder, where the feature axis reaches its maximum compression of $M/4$, a convolutional LSTM \[16\] with F filter kernels of size $N \times 1$ is placed, enabling the network to model temporal context. The decoder is set up exactly as inverse to the encoder and followed by a final convolutional layer with linear activations to yield the final output of dimension $M \times 1 \times C$. To extract input features and training targets for the structures given in Figure \[1\], at a sampling rate of $f_s = 16$ kHz a frame length of $K = 512$ samples is used and the frame shift is set to 256 samples. By applying a square root Hann window and 512-point DFT, complex spectra are obtained. Separated into real and imaginary parts, and zero-padded to feature maps of height $M = 260$, this leads to $C = 2$ channels for the reference, the microphone, and the estimated echo or (clean) speech signal.

2.2. Simulation Framework and Data
To model the acoustic setup shown in Figure \[1\] we adopt the procedure described in \[13\] with some modifications. Thus, to model typical single- and double-talk scenarios, far-end speech $x(n)$ and near-end speech $s(n)$ are set up using the TIMIT dataset \[17\]. Background noises $n(n)$ are taken from the QUT dataset \[18\] for training and validation, while babble, white noise, and the operation room noises are used from the NOISEX-92 dataset \[19\] for the test set. Noise $n(n)$ is superimposed with near-end speech $s(n)$ at the microphone, and echo signals $d(n)$ are generated by imposing loudspeaker nonlinearities \[13\] on far-end signals $x(n)$ and convolving them with impulse responses (IRs) of 512 samples length. The IRs are created using the image method \[20\] with reverberation times $T_{60} \in \{0.2, 0.3, 0.4\}$ s for training and validation, and 0.2 s for test mixtures, thereby following \[13\]. A test with additional real IRs is omitted here for space reasons, since it was impressively shown in \[13\] that apparently for DNN AECs comparable results are obtained for both, real and simulated IRs. For a broad variety of simulations, signal-to-echo ratios (SER) are selected randomly between $\{-6,-3,0,3,6,\infty\}$ dB per mixture and signal-to-noise ratios (SNR) are selected randomly between $\{8,10,12,14,\infty\}$ dB per mixture. Note, that we included ∞ dB to the SER and SNR values, since for a practical application it is absolutely mandatory that the absence of echo or noise can be handled by the network as well. In our setup this leads to a total of 3000 training, 500 evaluation, and 280 test mixtures, whereas the latter—differing from \[13\]—consists of \textit{unseen} speakers from the CSTR VCTK database \[21\] with unseen utterances, impulse responses, and noise sequences. SER and SNR for the test mixtures are set to 0 dB and 10 dB, respectively. For
deeper insights into the network performance, we additionally evaluate the test files but consisting either of echo only, or of near-end noise or near-end speech only.

3. EXPERIMENTAL VARIANTS AND TRAINING

3.1. Training Target Variants

One major question we investigate is rather significant and concerns the choice of the training targets. Here, \(\mathbb{E} \) differs from the traditional concept for AEC, where an estimated echo \(\hat{d}(n) \) is generated, which is then subtracted from the microphone signal to obtain an (ideally) echo-free enhanced signal \(e(n) \). In \([12, 13]\), however, the echo problem is tackled by a source separation approach trained to directly output the estimated enhanced signal \(E_t(k) \), thereby enabling two meaningful possibilities for the regression training targets \(T_t(k) \): the complex-valued target can either be chosen as \(E_t(k) = S_t(k) + N_t(k) \) (i.e., only echo cancellation is performed by the network), or just as \(E_t(k) = S_t(k) \) (i.e., echo and noise cancellation are performed). This leads to the question which of the mentioned targets are best suited and if there are any tradeoffs to be dealt with.

Indicated by the network output switch in Figure \(\mathbb{E} \) we investigate the different combinations of targets leading to an MSE loss \(J = \ell\sum_{k \in S} |E_t(k) - T_t(k)|^2 \) in the frequency domain (switch position \(\mathbb{E} \)), with \(E_t(k) \) being the respective network outputs.

As the third variant, the MSE loss \(J = \ell\sum_{k \in S} |D_t(k) - D_t(k)|^2 \) is applied using the echo component training targets \(D_t(k) = D_t(k) \) directly with subsequent subtraction from the microphone signal (switch position \(\mathbb{D} \)).

3.2. Skip Connection Variants

Throughout this work we will experiment with different positions for skip connections reaching from encoder to decoder. The original model has a skip connection placed between the red marked points \(\text{SkipB1} \) and another one between the points \(\text{SkipB2} \). Hereinafter, this setup will be denoted as \(\text{SkipB} \). With the varying dimensions of the feature maps, a second possibility is given by placing the skip connections in a symmetric manner, i.e., one between the points \(\text{SkipA} \) and another one between the points \(\text{SkipA2} \). This setup will be denoted as \(\text{SkipA} \). The last variant is to use no skip connections at all, which will be denoted as \(\text{NoSkips} \).
Table 1. Experiment results: ERLE and deltaSNR given in [dB], and PESQ MOS LQO for all models with clean speech training target $\text{OutE}: E_D(k) = S_t(k)$ following [13]. For deeper insights, the three columns on the right show the respective performance when only one component is present at the microphone. Best result per measure is marked in bold font, second best is underlined.

Model/Skip	full mixture	PESQ ERLE dB SNR dB	$d(n)$	$r(n)$	$s(n)$	
Kalman	1.15	3.49	-0.94	4.64	18.36	—
EarlyF/B	1.52	19.49	11.05	2.82	11.83	32.94
EarlyF/A	1.44	20.73	10.94	2.56	13.20	33.33
EarlyF/—	1.57	25.85	11.47	2.64	**21.33**	32.94
MidF/B	1.52	20.87	10.24	2.83	13.79	29.65
MidF/A	1.49	21.00	11.25	2.70	15.45	32.12
MidF/—	1.56	24.63	11.05	2.81	18.25	32.97
LateF/B	1.45	23.27	**11.68**	2.62	17.77	27.87
LateF/A	1.52	20.40	10.43	2.70	15.23	27.38
LateF/—	1.53	24.80	10.81	2.66	**19.23**	**33.62**

Table 2. Experiment results for all models as in Table 1 but with noisy speech training target $\text{OutE}: E_D(k) = S_t(k) + N_t(k)$. Best result per measure is marked in bold font, second best is underlined. Additional result for best model EarlyF/A with separate subsequent noise reduction from [9], retrained on this work’s data (EarlyF/A+).

Model/Skip	full mixture	PESQ ERLE dB SNR dB	$d(n)$	$r(n)$	$s(n)$	
Kalman	1.15	3.49	-0.94	4.64	18.36	—
EarlyF/B	1.51	8.99	0.63	3.10	6.95	3.20
EarlyF/A	1.46	9.57	0.76	2.85	15.93	0.66
EarlyF/—	1.44	11.24	0.79	2.70	15.89	2.62
MidF/B	1.46	9.41	0.73	2.94	13.39	-0.99
MidF/A	1.49	9.21	0.68	2.91	16.01	-1.08
MidF/—	1.47	8.48	0.53	3.00	15.68	0.85
LateF/B	1.43	**11.67**	0.76	2.64	**18.51**	-0.62
LateF/A	1.46	10.12	0.57	2.82	14.90	2.39
LateF/—	1.44	9.56	0.41	2.80	17.74	1.19
EarlyF/A+	1.49	18.78	4.44	2.38	19.96	14.95

Table 3. Experiment results for all models as in Table 2 but with echo training target $\text{OutD}: D_D(k) = D_t(k)$, and subsequent subtraction from the microphone signal, are displayed in Table 3. The later fusion positions proof highly beneficial and lead to the best model LateF/A for these targets. In contrast to the previous tables, this model does not only achieve a high echo suppression but maintains the best near-end speech quality at the same time. While this specific model also outperforms the best trade-off model from Table 2, the PESQ scores on the full mixture remain comparable to those in Table 1. The diversity of the results again shows how important the design choices are in order to find a good tradeoff between suppression performance and near-end speech quality.

5. CONCLUSIONS

We presented a deeper investigation of acoustic echo cancellation with fully convolutional neural networks. Along with a newly proposed network structure in the form of an echo estimator that delivers a significantly improved near-end speech quality over existing approaches (model: LateF/A DNN, echo target, Table 3), we revealed trade-offs between different performance aspects in terms of echo suppression, noise reduction, and near-end speech quality, thereby giving the reader guidance on crucial design choices for the not yet widely explored field of DNN AEC.

6. REFERENCES

[1] E. H"ansler and G. Schmidt, Acoustic Echo and Noise Control: A Practical Approach, Wiley-Interscience, Hoboken, NJ, USA, 2004.
[1] J. Lee and C. Un, “Block Realization of Multirate Adaptive Digital Filters,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 34, no. 1, pp. 105–117, Feb. 1986.

[2] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, and X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W. Wong, and H. Zhang and D. L. Wang, “Deep Learning for Acoustic Echo Cancellation in Noisy and Double-Talk Scenarios,” in Proc. of ICASSP, Las Vegas, NV, USA, Apr. 2008, pp. 1521–1524.

[3] H. Shin, A. H. Sayed, and W. Song, “Variable Step-Size NLMS and Aﬁne Projection Algorithms,” IEEE Signal Processing Letters, vol. 11, no. 2, pp. 132–135, Feb. 2004.

[4] K. Steinert, M. Schöne, C. Beaugeant, and T. Fingscheidt, “Hands-free system with Low-Delay Subband Acoustic Echo Control and Noise Reduction,” in Proc. of ICASSP, Las Vegas, NV, USA, Apr. 2008, pp. 231–234.

[5] G. Enzner and P. Vary, “Frequency-Domain Adaptive Kalman Filter for Acoustic Echo Control in Hands-Free Telephones,” Signal Processing (Elsevier), vol. 86, no. 6, pp. 1140–1156, June 2006.

[6] J. Franzen and T. Fingscheidt, “A Delay-Flexible Stereo Acoustic Echo Cancellation for DFT-Based In-Car Communication (ICC) Systems,” in Proc. of INTERSPEECH, Stockholm, Sweden, Aug. 2017, pp. 181–185.

[7] F. Kuech, E. Mabande, and G. Enzner, “State-Space Architecture of the Partitioned-Block-Based Acoustic Echo Controller,” in Proc. of ICASSP, Florence, Italy, May 2014, pp. 1295–1299.

[8] J. Franzen and T. Fingscheidt, “An Efﬁcient Residual Echo Suppression for Multi-Channel Acoustic Echo Cancellation Based on the Frequency-Domain Adaptive Kalman Filter,” in Proc. of ICASSP, Calgary, AB, Canada, Apr. 2018, pp. 226–230.

[9] M. Strake, B. Defraene, K. Fuyt, W. Tirry, and T. Fingscheidt, “Fully Convolutional Recurrent Networks for Speech Enhancement,” in Proc. of ICASSP, Barcelona, Spain, May 2020, pp. 6674–6678.

[10] A. Schwarz, C. Hofmann, and W. Kellermann, “Spectral Feature-Based Nonlinear Residual Echo Suppression,” in Proc. of WASPAA, New Paltz, NY, USA, Oct. 2013, pp. 1–4.

[11] G. Carbajal, R. Serizel, E. Vincent, and E. Humbert, “Multiple-Input Neural Network-Based Residual Echo Suppression,” in Proc. of ICASSP, Calgary, AB, Canada, Apr. 2018, pp. 231–235.

[12] H. Zhang and D. L. Wang, “Deep Learning for Acoustic Echo Cancellation in Noisy and Double-Talk Scenarios,” in Proc. of INTERSPEECH, Hyderabad, India, Sept. 2018, pp. 3239–3243.

[13] H. Zhang, K. Tan, and D. L. Wang, “Deep Learning for Joint Acoustic Echo and Noise Cancellation with Nonlinear Distortions,” in Proc. of INTERSPEECH, Graz, Austria, Sept. 2019, pp. 4255–4259.

[14] Z. Zhao, H. Liu, and T. Fingscheidt, “Convolutional Neural Networks to Enhance Coded Speech,” IEEE/ACM Trans. on Audio, Speech, and Language Processing, vol. 27, no. 4, pp. 663–678, Apr. 2019.

[15] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectiﬁer Nonlinearities Improve Neural Network Asymmetric Models,” in Proc. of ICML Workshop on Deep Learning for Audio, Speech, and Language Processing, Atlanta, GA, USA, June 2013, pp. 1–6.

[16] X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W. Wong, and W. Woo, “Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting,” in Proc. of NIPS, Montreal, QC, Canada, Dec. 2015, pp. 802–810.

[17] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, and D. S. Pallett, “TIMIT Acoustic-Phonetic Continental Speech Corpus,” Linguistic Data Consortium, Philadelphia, PA, USA, 1993.

[18] D. B. Dean, S. Sridharan, R. J. Vogt, and M. W. Mason, “The QUT-NOISE-TIMIT Corpus for the Evaluation of Voice Activity Detection Algorithms,” in Proc. of INTERSPEECH, Makuhari, Japan, Sept. 2010, p. 3110–3113.

[19] A. Varga and H. J. Steeneken, “Assessment for Automatic Speech Recognition: II. NOISEX-92: A Database and an Experiment to Study the Effect of Additive Noise on Speech Recognition Systems,” Speech Communication, vol. 12, no. 3, pp. 247–251, 1993.

[20] J. B. Allen and D. A. Berkley, “Image Method for Efﬁciently Simulating Small-Room Acoustics,” The Journal of the Acoustical Society of America, vol. 65, no. 4, pp. 943–950, 1979.

[21] J. Yamagishi, C. Veaux, and K. MacDonald, “CSTR VCTK Corpus: English Multi-speaker Corpus for CSTR Voice Cloning Toolkit,” University of Edinburgh. The Centre for Speech Technology Research, 2017.

[22] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” in Proc. of ICLR, San Diego, CA, USA, May 2015, pp. 1–15.

[23] “ITU-T Recommendation P.862.2, Wideband Extension to Recommendation P.862 for the Assessment of Wideband Telephone Networks and Speech Codecs,” ITU, Nov. 2007.

[24] “ITU-T Recommendation P.862.2 Corrigendum 1, Wideband Extension to Recommendation P.862 for the Assessment of Wideband Telephone Networks and Speech Codecs,” ITU, Oct. 2017.

[25] M.-A. Jung and T. Fingscheidt, “A Shadow Filter Approach to a Wideband FDF-Based Automotive Handsfree System,” in 5th Biennial Workshop on DSP for In-Vehicle Systems, Kiel, Germany, Sept. 2011, pp. 60–67.

[26] “ITU-T Recommendation P.1110, Wideband Hands-Free Communication in Motor Vehicles,” ITU, Mar. 2017.

[27] T. Fingscheidt and S. Suhadi, “Quality Assessment of Speech Enhancement Systems by Separation of Enhanced Speech, Noise, and Echo,” in Proc. of INTERSPEECH, Antwerp, Belgium, Aug. 2007, pp. 818–821.

[28] T. Fingscheidt, S. Suhadi, and K. Steinert, “Towards Objective Quality Assessment of Speech Enhancement Systems in a Black Box Approach,” in Proc. of ICASSP, Las Vegas, NV, USA, Apr. 2008, pp. 273–276.

[29] K. Steinert, S. Suhadi, T. Fingscheidt, and M. Schöne, “Instrumental Speech Distortion Assessment of Black Box Speech Enhancement Systems,” in Proc. of IWAENC, Seattle, WA, USA, Sept. 2008, pp. 1–4.

[30] S. Malik and J. Benesty, “Variationally Diagonalized Multi-channel State-Space Frequency-Domain Adaptive Filtering for Acoustic Echo Cancellation,” in Proc. of ICASSP, Vancouver, BC, Canada, May 2013, pp. 595–599.

[31] M. A. Jung, S. Elshamy, and T. Fingscheidt, “An Automotive Wideband Stereo Acoustic Echo Canceller Using Frequency-Domain Adaptive Filtering,” in Proc. of EUSIPCO, Lisbon, Portugal, Sept. 2014, pp. 1452–1456.

[32] J. Franzen and T. Fingscheidt, “In Car Communication: From Single- to Four-Channel with the Frequency Domain Adaptive Kalman Filter,” in Vehicles, Drivers, and Safety, John H. L. Hansen et al., Eds., pp. 213–227. Walter de Gruyter GmbH Berlin/Boston, 2020.