EXPOSITIONAL POLYNOMIALS, STIRLING NUMBERS, AND EVALUATION OF SOME GAMMA INTEGRALS

Khristo N. Boyadzhiev

Department of Mathematics, Ohio Northern University
Ada, Ohio 45810, USA
k-boyadzhiev@onu.edu

Abstract. This article is a short elementary review of the exponential polynomials (also called single-variable Bell polynomials) from the point of view of Analysis. Some new properties are included and several Analysis-related applications are mentioned. At the end of the paper one application is described in details - certain Fourier integrals involving \(\Gamma(a + it) \) and \(\Gamma(a + it) \Gamma(b - it) \) are evaluated in terms of Stirling numbers.

Mathematics Subject Classification 11B68, 11C08, 11M35, 33B99.

Keywords Exponential polynomial, Bell polynomial, Bell number, Dobinski formula, Stirling number, Mellin derivative, Gamma function.

1. Introduction.

We review the exponential polynomials \(\phi_a(x) \) and present a list of properties for easy reference. Exponential polynomials in Analysis appear, for instance, in the rule for computing derivatives like \(\left(\frac{d}{dt} \right)^n e^{ax} \) and the related Mellin derivatives

\[
(x \frac{d}{dx})^n f(x), \quad (\frac{d}{dx} - x)^n f(x).
\]

Namely, we have
or, after the substitution $x = e^t$,

$$
\left(x \frac{d}{dx}\right)^n e^{ax} = \phi_n(ax) e^{ax}.
$$

(1.2)

We also include in this review two properties relating exponential polynomials to Bernoulli numbers, B_k. One is the semi-orthogonality

$$
\int_{-\infty}^{0} \phi_n(x) \phi_m(x) e^{2x} \frac{dx}{x} = (-1)^n \frac{2^{n+m}-1}{n+m} B_{n+m},
$$

(1.3)

where the right hand side is zero if $n + m$ is odd. The other property is (2.10).

At the end we give one application. Using exponential polynomials we evaluate the integrals

$$
\int_{\mathbb{R}} e^{-it\lambda} t^n \Gamma(a + it) dt,
$$

(1.4)

and

$$
\int_{\mathbb{R}} e^{-it\lambda} t^n \Gamma(a + it) \Gamma(b - it) dt,
$$

(1.5)

for $n = 0, 1, \ldots$ in terms of Stirling numbers.

2. Exponential polynomials

The evaluation of the series

$$
S_n = \sum_{k=0}^{\infty} \frac{k^n}{k!}, \quad n = 0, 1, 2, \ldots
$$

(2.1)

has a long and interesting history. Clearly, $S_0 = 1$, with the agreement that $0^0 = 1$. Several reference books (for instance, [31]) provide the following numbers.

$$
S_1 = e, \quad S_2 = 2e, \quad S_3 = 5e, \quad S_4 = 15e, \quad S_5 = 52e, \quad S_6 = 203e, \quad S_7 = 877e, \quad S_8 = 4140e.
$$
As noted by H. Gould in [19, p. 93], the problem of evaluating S_n appeared in the Russian journal *Matematicheskii Sbornik*, 3 (1868), p.62, with solution ibid , 4 (1868-9), p. 39.) Evaluations are presented also in two papers by Dobiński and Ligowski. In 1877 G. Dobiński [15] evaluated the first eight series S_1, \ldots, S_8 by regrouping:

\[
S_1 = \sum_{k=1}^{\infty} \frac{k}{k!} = 1 + \frac{2}{2!} + \frac{3}{3!} + \ldots = 1 + \frac{1}{1!} + \frac{1}{2!} + \ldots = e
\]

\[
S_2 = \sum_{k=1}^{\infty} \frac{k^2}{k!} = 1 + \frac{2^2}{2!} + \frac{3^2}{3!} + \ldots = 1 + \frac{2}{1!} + \frac{3}{2!} + \frac{4}{3!} + \ldots = \left(1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \ldots\right) + \left(\frac{1}{1!} + \frac{2}{2!} + \frac{3}{3!} + \ldots\right) = e + S_1 = 2e,
\]

and continuing like that to S_8. For large n this method is not convenient. However, later that year Ligowski [27] suggested a better method, providing a generating function for the numbers S_n.

\[
e^{xe^x} = \sum_{k=0}^{\infty} \frac{e^{kx}}{k!} = \sum_{k=0}^{\infty} \sum_{n=0}^{\infty} \frac{k^n}{k!} \frac{x^n}{n!} = \sum_{n=0}^{\infty} S_n \frac{x^n}{n!}.
\]

Further, an effective iteration formula was found

\[
S_n = \sum_{j=0}^{n-1} \binom{n-1}{j} S_j
\]

by which every S_n can be evaluated starting from S_1.

These results were preceded, however, by the work [23] of Johann August Grunert (1797-1872), professor at Greifswalde. Among other things, Grunert obtained formula (2.2) below from which the evaluation of (2.1) follows immediately.

The structure of the series S_n hints at the exponential function. Differentiating the expansion
\[e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!} \]

and multiplying both sides by \(x \) we get

\[xe^x = \sum_{k=0}^{\infty} \frac{kx^k}{k!} \]

which, for \(x = 1 \), gives \(S_1 = e \). Repeating the procedure, we find \(S_2 = 2e \) from

\[x(xe^x)' = (x + x^2)e^x = \sum_{k=0}^{\infty} \frac{k^2 x^k}{k!} \]

and continuing like that, for every \(n = 0, 1, 2, \ldots \), we find the relation

\[(x \frac{d}{dx})^n e^x = \phi_n(x) e^x = \sum_{k=0}^{\infty} \frac{k^n x^k}{k!} \] (2.2)

where \(\phi_n \) are polynomials of degree \(n \). Thus,

\[S_n = \phi_n(1)e, \quad \forall \ n \geq 0. \]

The polynomials \(\phi_n \) deserve a closer look. From the defining relation (2.2) we obtain

\[x(\phi_n e^x)' = x(\phi_n' + \phi_n) e^x = \phi_{n+1} e^x \]

i.e.

\[\phi_{n+1} = x(\phi_n' + \phi_n) \] (2.3)

which helps to find \(\phi_n \) explicitly starting from \(\phi_0 \).

\[\phi_0(x) = 1 \]
\[\phi_1(x) = x \]
\[\phi_2(x) = x^2 + x \]
\[\phi_3(x) = x^3 + 3x^2 + x \]
\[\phi_4(x) = x^4 + 6x^3 + 7x^2 + x \]
and so on. Another interesting relation that easily follows from (2.2) is

\[\phi_{n+1}(x) = x \sum_{k=0}^{n} \binom{x}{k} \phi_k(x). \]

(2.4)

Here is a short proof. Starting from

\[\phi_k(x) e^x = \sum_{j=0}^{\infty} \frac{j^k x^j}{j!} \]

we compute

\[\sum_{k=0}^{\infty} \binom{x}{k} \phi_k(x) e^x = \sum_{j=0}^{\infty} \frac{x^j}{j!} \sum_{k=0}^{\infty} \binom{x}{k} j^k = \sum_{j=0}^{\infty} \frac{x^j}{j!} (j+1)^n \]

\[= \frac{1}{x} \sum_{j=0}^{\infty} \frac{(j+1)^n x^{j+1}}{(j+1)!} = \frac{1}{x} \phi_{n+1}(x) e^x \]

and (2.4) is ready.

From (2.3) and (2.4) one finds immediately

\[\phi'_n(x) = \sum_{k=0}^{n-1} \binom{n}{k} \phi_k(x). \]

(2.5)

Obviously, \(x = 0 \) is a zero for all \(\phi_n \), \(n > 0 \). It can be seen that all the zeros of \(\phi_n \) are real, simple, and nonpositive. The nice and short induction argument belongs to Harper [24].

The assertion is true for \(n = 1 \). Suppose that for some \(n \) the polynomial \(\phi_n \) has \(n \) distinct real non-positive zeros (including \(x = 0 \)). Then the same is true for the function

\[f_n(x) = \phi_n(x) e^x. \]

Moreover, \(f_n \) is zero at \(-\infty \) and by Rolle’s theorem its derivative

\[\lim_{x \to -\infty} f_n(x) = 0. \]
\[\frac{d}{dx} \phi_n(x) = \frac{d}{dx} \left(\phi_n(x)e^x \right) \]

has \(n \) distinct real negative zeros. It follows that the function

\[\phi_{n+1}(x)e^x = x \frac{d}{dx} \left(\phi_n(x)e^x \right) \]

has \(n+1 \) distinct real non-positive zeros (adding here \(x = 0 \)).

The polynomials \(\phi_n \) can be defined also by the exponential generating function (extending Ligowski’s formula)

\[\exp[^{(e^x-1)}] = \sum_{n=0}^{\infty} \phi_n(x) \frac{x^n}{n!} . \tag{2.6} \]

It is not obvious, however, that the polynomials defined by (2.2) and (2.6) are the same, so we need the following simple statement.

Proposition 1. The polynomials \(\phi_n(x) \) defined by (2.2) are exactly the partial derivatives \(\frac{\partial}{\partial z} z^n \exp[^{(e^z-1)}] \) evaluated at \(z = 0 \).

(2.6) follows from (2.2) after expanding the exponential \(\exp[^{(e^z-1)}] \) in double series and changing the order of summation. A different proof will be given later.

Setting \(z = 2k\pi i \), \(k = \pm 1, \pm 2, \ldots \), in the generating function (2.6) one finds

\[\exp[^{(2ki\pi)}] = 1, \exp[^{(e^{ki\pi-1})}] = e^{ki\pi} = 1, \]

which shows that the exponential polynomials are linearly dependent

\[1 = \sum_{n=0}^{\infty} \phi_n(x) \frac{(2k\pi i)^n}{n!} \text{ or } 0 = \sum_{n=1}^{\infty} \phi_n(x) \frac{(2k\pi i)^n}{n!}, k = \pm 1, \pm 2, \ldots . \tag{2.7} \]

In particular, \(\phi_n \) are not orthogonal for any scalar product on polynomials. (However, they have
the semi-orthogonality property mentioned in the introduction and proved in Section 4.)

Comparing coefficient for z in the equation

$$e^{(x+y)z^2} = e^{xz} e^{yz}$$

yields the binomial identity

$$\phi_n(x+y) = \sum_{k=0}^{n} \binom{n}{k} \phi_k(x) \phi_{n-k}(y).$$ \hfill (2.8)

With $y = -x$ this implies the interesting “orthogonality” relation for $n \geq 1$

$$\sum_{k=0}^{n} \binom{n}{k} \phi_k(x) \phi_{n-k}(-x) = 0.$$ \hfill (2.9)

Next, let $B_n, n \geq 0, 1, \ldots$, be the Bernoulli numbers. Then for $p = 0, 1, \ldots$, we have

$$\int_{0}^{x} \phi_p(t) dt = \frac{1}{p+1} \sum_{k=1}^{p+1} \binom{p+1}{k} B_{p+1-k} \phi_k(x).$$ \hfill (2.10)

For proof see Example 4 in [3, p.51], or [6].

Some historical notes

As already mentioned, formula (2.2) appears in the work of Grunert [23], on p. 260, where he gives also the representation (3.3) below and computes explicitly the first six exponential polynomials. The polynomials ϕ_n were studied more systematically (and independently) by S. Ramanujan in his unpublished notebooks. Ramanujan’s work is presented and discussed by Bruce Berndt in [3, Part 1, Chapter 3]. Ramanujan, for example, obtained (2.6) from (2.2) and also proved (2.4), (2.5) and (2.10). Later, these polynomials were studied by E.T. Bell [1] and Jacques Touchard [39], [40]. Both Bell and Touchard called them “exponential” polynomials, because of their relation to the exponential function, e.g. (1.1), (1.2), (2.2) and (2.6). This name was used also by Gian-Carlo Rota [34]. As a matter of fact, Bell introduced in [1] a more general class of polynomials of many variables, $\Psi_{n,k}$, including ϕ_n as a particular case. For this reason ϕ_n are known also as the single-variable Bell polynomials [13], [20], [21], [41]. These polynomials are also a special case of the actuarial polynomials introduced by Toscano [38] which, on their part, belong to the more general class of Sheffer polynomials [7].
The exponential polynomials appear in a number of papers and in different applications - see [4], [5], [6], [29], [32], [33], [34] and the references therein. In [35] they appear on p. 524 as the horizontal generating functions of the Stirling numbers of the second kind (see below (3.3)).

The numbers

\[b_n = \phi_n(1) = \frac{1}{e} S_n \]

(2.11)

are sometimes called exponential numbers, but a more established name is Bell numbers. They have interesting combinatorial and analytical applications [2], [8], [14], [16], [20], [21], [25], [30], [37], [38]. An extensive list of 202 references for Bell numbers is given in [18].

We note that equation (2.2) can be used to extend \(\phi_n \) to \(\phi_z \) for any complex number \(z \) by the formula

\[\phi_z(x) = e^{-z} \sum_{k=0}^{\infty} \frac{k^z x^k}{k!} \]

(2.12)

(Butzer et al. [9], [10]). The function appearing here is an interesting entire function in both variables, \(x \) and \(z \). Another possibility is to study the polyexponential function

\[e_z(x, \lambda) = \sum_{n=0}^{\infty} \frac{x^n}{n!(n+\lambda)^z}, \]

(2.13)

where \(\Re \lambda > 0 \). When \(s \) is a negative integer, the polyexponential can be written as a finite linear combination of exponential polynomials (see [6]).

3. Stirling numbers and Mellin derivatives

The iteration formula (2.3) shows that all polynomials \(\phi_n \) have positive integer coefficients. These coefficients are the Stirling numbers of the second kind \(\{ n \atop k \} \) (or \(S(n,k) \)) - see [12], [14], [17], [22], [26], [35]. Given a set of \(n \) elements, \(\{ n \atop k \} \) represents the number of ways this set can be partitioned into \(k \) nonempty subsets \((0 \leq k \leq n) \). Obviously,
\{\frac{n}{1}\} = 1, \{\frac{n}{n}\} = 1 \text{ and a short computation gives } \{\frac{n}{2}\} = 2^{n-1} - 1. \text{ For symmetry one sets } \\
\{\frac{0}{0}\} = 1, \{\frac{0}{n}\} = 0. \text{ The definition of } \{\frac{n}{k}\} \text{ implies the property } \\
\{\frac{n+1}{k}\} = k \{\frac{n}{k}\} + \{\frac{n}{k-1}\} \\
(3.1) \\
(see \ p.259 \ in \ [22]) \text{ which helps to compute all } \{\frac{n}{k}\} \text{ by iteration. For instance, } \\
\{\frac{n}{3}\} = \frac{3^{n-1} - 2^n + 1}{2}. \\
A \text{ general formula for the Stirling numbers of the second kind is } \\
\{\frac{n}{k}\} = \frac{1}{k!} \sum_{j=1}^{k} (-1)^{k-j} \binom{k}{j} j^n. \\
(3.2) \\
Proposition 2. \text{ For every } n = 0, 1, 2, \ldots \text{ } \\
\phi_n(x) = \{\frac{n}{0}\} + \{\frac{n}{1}\} x + \{\frac{n}{2}\} x^2 + \ldots + \{\frac{n}{n}\} x^n = \sum_{k=0}^{n} \{\frac{n}{k}\} x^k. \\
(3.3) \\
The proof is by induction and is left to the reader. Setting here } x = 1 \text{ we come to the well-known representation for the numbers } S_n \\
S_n = e \{\frac{n}{0}\} + \{\frac{n}{1}\} + \{\frac{n}{2}\} + \ldots + \{\frac{n}{n}\}. \\
It is interesting that formula (3.3) is very old - it was obtained by Grunert \[23, \ p \ 260\] together with the representation (3.2) for the coefficients which are called now Stirling numbers of the second kind. In fact, coefficients of the form \\
\{\frac{n}{k}\} k! \text{ appear in the computations of Euler - see } [17]. \\
It is good to note that the representation (3.2) quickly follows from (3.3) and (2.2). First \text{ we write } \\
\sum_{k=0}^{n} \{\frac{n}{k}\} x^k = e^{-x} \sum_{k=0}^{\infty} \frac{k^n x^k}{k!} = (\sum_{j=0}^{\infty} \frac{(-1)^{j} x^j}{j!}) \{\sum_{k=0}^{\infty} \frac{k^n x^k}{k!}\}. \\
9
then we multiply the two series by Cauchy’s rule and compare coefficients. Thus we come to (3.2). This proof shows very well that the right-hand side in (3.2) is zero when \(k > n \).

Next we turn to some special differentiation formulas. Let \(D = \frac{d}{dx} \).

Mellin derivatives. It is easy to see that the first equality in (2.2) extends to equation (1.2), where \(a \) is an arbitrary complex number i.e.,

\[
(xD)^n e^{ax} = \phi_n(ax) e^{as}
\]

by the substitution \(x \to ax \). Even further, this extends to

\[
(xD)^n e^{ax^p} = \phi_n(ax^p) e^{as^p}
\]

for any \(a, p \) and \(n = 0, 1, \ldots \) (simple induction and (2.3)). Again by induction, it is easy to prove that

\[
(xD)^n f(x) = \sum_{k=0}^{n} \binom{n}{k} x^k D^k f(x)
\]

for any \(n \)-times differentiable function \(f \). This formula was obtained by Grunert [23, pp 257-258] (see also p. 89 in [19], where a proof by induction is given).

As we know the action of \(xD \) on exponentials, formula (3.5) can be “discovered” by using Fourier transform. Let

\[
F[f](t) = \int_{\mathbb{R}} e^{-i\xi t} f(x) \, dx
\]

be the Fourier transform of some function \(f \). Then

\[
f(x) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{i\xi t} F[f](t) \, dx
\]

\[
(xD)^n f(x) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{i\xi t} \phi_n(ixt) F[f](t) \, dx
\]

\[
\sum_{k=0}^{n} \binom{n}{k} x^k F^{-1}[(it)^k F[f]](x) = \sum_{k=0}^{n} \binom{n}{k} x^k D^k f(x)
\]

Next we turn to formula (1.1) and explain its relation to (1.2). If we set \(x = e^t \), then for
any differentiable function f

$$\frac{d}{dt} f = \left(\frac{d}{dx} f \right) \frac{dx}{dt} = \left(\frac{d}{dx} f \right) e^t = (xD)f$$

and we see that (1.1) and (1.2) are equivalent.

$$(\frac{d}{dt})^n e^{az^t} = (xD)^n e^{ax} = \phi_n(ax) e^{ax} = \phi_n(ae^t) e^{ax} \quad (3.8)$$

Proof of Proposition 1. We apply (1.1) to the function $f_x(z) = e^{x(e^z-1)} = e^{xe^z} e^{-z}$

$$(\frac{d}{dz})^n f_x(z) = \phi_n(xe^z) f_x(z)$$

From here, with $z = 0$

$$(\frac{d}{dz})^n f_x(z) \bigg|_{z=0} = \phi_n(x)$$

as needed.

Now we list some simple operational formulas. Starting from the obvious relation

$$(xD)^n x^k = k^n x^k, \quad n = 0, 1, ..., k \in \mathbb{R}. \quad (3.9)$$

for any function of the form

$$f(t) = \sum_{n=0}^{\infty} a_n t^n, \quad (3.10)$$

we define the differential operator

$$f(xD) = \sum_{n=0}^{\infty} a_n (xD)^n$$
with action on functions $g(x)$,

$$f(xD)g(x) = \sum_{n=0}^{\infty} a_n (xD)^n g(x). \quad (3.11)$$

When $g(x) = x^k$, (3.9) and (3.11) show that

$$f(xD)x^k = \sum_{n=0}^{\infty} a_n k^nx^k = f(k)x^k.$$

If now

$$g(x) = \sum_{k=0}^{\infty} c_k x^k$$

is a function analytical in a neighborhood of zero, the action of $f(xD)$ on this function is given by

$$f(xD)g(x) = \sum_{k=0}^{\infty} c_k f(k)x^k, \quad (3.12)$$

provided the series on the right side converges. When f is a polynomial, formula (3.12) helps to evaluate series like

$$\sum_{k=0}^{\infty} c_k f(k)x^k$$

in a closed form. This idea was exploited by Schwatt [36] and more recently by the present author in [4]. For instance, when $g(x) = e^x$ equation (3.12) becomes

$$\sum_{k=0}^{\infty} f(k) \frac{x^k}{k!} = e^x \sum_{n=0}^{\infty} a_n \phi_n(x). \quad (3.13)$$
As shown in [4] this series transformation can be used for asymptotic series expansions of certain functions.

Leibniz Rule. The higher order Mellin derivative \((x D)^n\) satisfies the Leibniz rule

\[
(x D)^n (fg) = \sum_{k=0}^{n} \binom{n}{k} [(x D)^{n-k} f] [(x D)^k g]
\]

(3.14)

The proof is easy, by induction, and is left to the reader. We shall use this rule to prove the following proposition.

Proposition 3. For all \(n, m = 0, 1, 2, \ldots\)

\[
\phi_{n+m}(x) = \sum_{k=0}^{n} \sum_{j=0}^{m} \binom{n}{j} j^{n-k} x^j \phi_k(x)
\]

(3.15)

Proof.

\[
\phi_{n+m}(x) = (x D)^n e^x = (x D)^n (x D)^m e^x = (x D)^n (\phi_m(x) e^x),
\]

which by the Leibniz rule (3.14) equals

\[
\sum_{k=0}^{n} \binom{n}{k} [(x D)^{n-k} \phi_m(x)] [(x D)^k e^x].
\]

Using (3.2) and (3.9) we write

\[
(x D)^{n-k} \phi_m(x) = \sum_{j=0}^{n} \binom{n}{j} j^{n-k} x^j,
\]

and since also

\[
(x D)^k e^x = \phi_k(x) e^x,
\]
we obtain (3.15) from (3.14). The proof is completed.

Setting $x = 1$ in (3.14) yields an identity for the Bell numbers.

$$b_{n+m} = \sum_{k=0}^{n} \sum_{j=0}^{m} \binom{n}{j} \binom{m}{k} j^{n-k} b_k.$$ \hspace{1cm} (3.16)

This identity was recently published by Spivey [37], who gave a combinatorial proof. After that Gould and Quaintance [21] obtained the generalization (3.15) together with two equivalent versions. The proof in [21] is different from the one above.

Using the Leibniz rule for xD we can prove also the following extension of property (2.9)

Proposition 4. For any two integers $n, m \geq 0$

$$(xD)^n \Phi_m(x) = \sum_{k=0}^{n} \binom{n}{k} k^n x^k = \sum_{k=0}^{n} \binom{n}{k} \Phi_{m+k}(x) \Phi_{n-k}(-x).$$ \hspace{1cm} (3.17)

The proof is simple. Just compute

$$(xD)^n \Phi_m(x) = (xD)^n \left[(e^{-x}) (\Phi_m(x) e^x) \right]$$

$$= \sum_{k=0}^{n} \binom{n}{k} \left[(xD)^{n-k} e^{-x} \right] \left[(xD)^k (\Phi_m(x) e^x) \right]$$

and (3.17) follows from (1.2).

For completeness we mention also the following three properties involving the operator Dx. Proofs and details are left to the reader.

$$(Dx)^n e^{ax} = \frac{\Phi_{n+1}(ax)}{ax} e^{ax},$$ \hspace{1cm} (3.18)
\[(Dx)^n f(x) = \sum_{k=0}^{n} \binom{n+1}{k+1} x^k D^k f(x), \quad \text{(3.19)} \]

and
\[f(Dx) g(x) = \sum_{k=0}^{\infty} c_k f(k+1) x^k, \quad \text{(3.20)} \]

analogous to (1.2), (3.5), and (3.12) correspondingly.

For a comprehensive study of the Mellin derivative we refer to [11].

More Stirling numbers. The polynomials \(\phi_n, n = 0, 1, \ldots \) form a basis in the linear space of all polynomials. Formula (3.3) shows how this basis is expressed in terms of the standard basis \(1, x, x^2, \ldots \). We can solve for \(x^k \) in the equations (3.3) and express the standard basis in terms of the exponential polynomials

\[
\begin{align*}
1 &= \phi_0 \\
x &= \phi_1 \\
x^2 &= -\phi_1 + \phi_2 \\
x^3 &= 2\phi_1 - 3\phi_2 + \phi_3 \\
x^4 &= -6\phi_1 + 11\phi_2 - 6\phi_3 + \phi_4,
\end{align*}
\]

etc. The coefficients here are also special numbers. If we write
\[x^n = \sum_{k=0}^{n} (-1)^{n-k} \left[\begin{array}{c} n \\ k \end{array} \right] \phi_k \quad \text{(3.21)} \]

then \(\left[\begin{array}{c} n \\ k \end{array} \right] \) are the (absolute) Stirling numbers of first kind, as defined in [22]. (The numbers \(\left[\begin{array}{c} n \\ k \end{array} \right] \)
are non-negative. The symbol \(s(n, k) = (-1)^{n-k}\binom{n}{k} \) is used for Stirling numbers of the first kind with changing sign - see [14], [18] and [26] for more details. \(\binom{n}{k} \) is the number of ways to arrange \(n \) objects into \(k \) cycles. According to this interpretation,

\[
\binom{n}{k} = (n - 1)\binom{n-1}{k} + \binom{n-1}{k-1}, \quad n \geq 1.
\]

4. Semi-orthogonality of \(\phi_n \)

Proposition 5. For every \(n, m = 1, 2, \ldots \), we have

\[
\int_0^\infty \phi_n(-x) \phi_m(-x) e^{-2x} \frac{dx}{x} = (-1)^{n-1} \frac{2^{n+m} - 1}{n + m} B_{n+m}.
\]

(4.1)

Here \(B_k \) are the Bernoulli numbers. Note that the right hand side is zero when \(k + m \) is odd, as all Bernoulli numbers with odd indices > 1 are zeros.

Using the representation (3.3) in (4.1) and integrating termwise we obtain an equivalent form of (4.1)

\[
\sum_{k=0}^n \sum_{j=0}^m (-1)^{k+j} \binom{n}{k} \binom{m}{j} \frac{(k+j-1)!}{2^{k+j}} = (-1)^{n-1} \frac{2^{n+m} - 1}{n + m} B_{n+m}.
\]

(4.2)

This (double sum) identity extends the known identity [22, p.317, Problem 6.76]

\[
\sum_{j=0}^m (-1)^j \binom{m}{j} \frac{j!}{2^{j+1}} = \frac{2^{m+1} - 1}{m+1} B_{m+1}.
\]

(4.3)

Namely, (4.3) results from (4.2) for \(n = 1 \). The presence of \((-1)^{n-1} \) at the right hand side in (4.1) is not a “break of symmetry”, because when \(n + m \) is even, then \(n \) and \(m \) are both even or
both odd.

Proof of the proposition. Starting from

\[\Gamma(z) = \int_0^\infty x^{z-1} e^{-x} \, dx \] \hspace{1cm} (4.4)

we set \(x = e^\lambda, \quad z = a + it \), to obtain the representation

\[\Gamma(a + it) = \int_{-\infty}^\infty e^{i \lambda t} e^{a \lambda} e^{-\lambda^2} \, d\lambda, \] \hspace{1cm} (4.5)

which is a Fourier transform integral. The inverse transform is

\[e^{a \lambda} e^{-\lambda^2} = \frac{1}{2\pi} \int_\mathbb{R} e^{-i \lambda t} \Gamma(a + it) \, dt. \] \hspace{1cm} (4.6)

When \(a = 1 \) this is

\[-e^\lambda e^{-e^\lambda} = \frac{d}{d\lambda} e^{-\lambda^2} = \frac{-1}{2\pi} \int_\mathbb{R} e^{-i \lambda t} \Gamma(1 + it) \, dt. \] \hspace{1cm} (4.7)

Differentiating (4.7) \(n - 1 \) times for \(\lambda \) we find

\[(\frac{d}{d\lambda})^n e^{-\lambda^2} = \Phi_n (-e^\lambda) e^{-\lambda^2} = \frac{-1}{2\pi} \int_\mathbb{R} e^{-i \lambda t} (-it)^{n-1} \Gamma(1 + it) \, dt, \] \hspace{1cm} (4.8)

and Parceval’s formula yields the equation

\[\int_\mathbb{R} \Phi_n (-e^\lambda) \Phi_m (-e^\lambda) e^{-2x^2} \, d\lambda = \frac{1}{2\pi} \int_\mathbb{R} (-it)^{n-1} (it)^{m-1} |\Gamma(1 + it)|^2 \, dt \]

or, with \(x = e^\lambda \)

\[\int_0^\infty \Phi_n (-x) \Phi_m (-x) e^{-\frac{2x^2}{x}} \, dx = \frac{(-1)^n i^{n+m}}{2\pi} \int_\mathbb{R} \frac{x^{n+m-2} \pi i t}{\sinh(\pi t)} \, dt. \] \hspace{1cm} (4.9)
The right hand side is 0 when \(n + m \) is odd. When \(n + m \) is even, we use the integral [31, p.351]

\[
\int_0^\infty \frac{t^{2p-1}}{\sinh(\pi t)} \, dt = \frac{2^{2p-1}}{2p} (-1)^p B_{2p} \tag{4.10}
\]

to finish the proof.

Property (4.1) resembles the semi-orthogonal property of the Bernoulli polynomials

\[
\int_0^1 B_n(x) B_m(x) \, dx = (-1)^{n-1} \frac{n! \, m!}{(n+m)!} B_{n+m} \tag{4.11}
\]

- see, for instance, [35, p.530].

5. Gamma integrals.

We use the technique in the previous section to compute certain Fourier integrals and evaluate the moments of \(\Gamma(a + it) \) and \(\Gamma(a + it) \Gamma(b - it) \).

Proposition 6. For every \(n = 0, 1, \ldots \), and \(a, b > 0 \) we have

\[
\int_{\mathbb{R}} e^{-\lambda t} t^n \Gamma(a+it) \Gamma(b-it) \, dt \tag{5.1}
\]

\[
eq i^n 2\pi e^{-\mu} \sum_{k=0}^n \sum_{m=0}^k \binom{n}{k} \binom{k}{m} (-1)^m a^{n-k} \frac{\Gamma(a+b+m)}{(1+e^{-\mu})^{a+b+m}} ;
\]

\[
\int_{\mathbb{R}} e^{-\lambda^2 t} t^n \Gamma(a+it) \, dt \tag{5.2}
\]
In particular, when $\lambda = \mu = 0$, we obtain the moments

$$\Gamma_n(a, b) = \int_{\mathbb{R}} t^n \Gamma(a + it) \Gamma(b - it) \, dt$$

(5.3)

$$= i^n \pi \sum_{k=0}^{n} \sum_{m=0}^{k} \binom{n}{k} \binom{k}{m} (-1)^m a^{n-k} \frac{\Gamma(a+b+m)}{2^{a+b+m-1}}.$$

(5.4)

When $n = 0$ in (5.1) we have the known integral

$$\int_{\mathbb{R}} e^{-it} \Gamma(a+it) \Gamma(b-it) \, dt = 2\pi \Gamma(a+b) e^{-b} (1 + e^{-t})^{a-b},$$

(5.5)

which can be found in the form of an inverse Mellin transform in [28].

Proof. Using again equation (4.6)

$$e^{a\lambda} e^{-b} = \frac{1}{2\pi} \int_{\mathbb{R}} e^{-it} \Gamma(a+it) \, dt$$

(5.6)

we differentiate both side n times

$$\left(\frac{d}{d\lambda} \right)^n [e^{a\lambda} e^{-b}] = \frac{1}{2\pi} \int_{\mathbb{R}} e^{-it} (-it)^n \Gamma(a+it) \, dt,$$

and then, according to the Leibniz rule and (1.1) the left hand side becomes.
\[
\left(\frac{d}{d\lambda} \right)^n [e^{\lambda x} e^{-\lambda y}] = e^{\lambda x} e^{-\lambda y} \sum_{k=0}^{n} \binom{n}{k} \phi_k (-\lambda)^{n-k} a^{n-k}.
\]

Therefore,
\[
e^{\lambda x} e^{-\lambda y} \sum_{k=0}^{n} \binom{n}{k} \phi_k (-\lambda)^{n-k} a^{n-k} = \frac{1}{2\pi} \int_{\mathbb{R}} e^{-i\lambda t} e^{i\mu t} \Gamma(a+it) \Gamma(b-it) dt.
\]

and (5.2) follows from here.

Replacing \(\lambda \) by \(\lambda - \mu \) we write (5.6) in the form
\[
e^{\lambda x} e^{-\lambda y} \sum_{k=0}^{n} \binom{n}{k} \phi_k (-\lambda)^{n-k} a^{n-k} = \frac{1}{2\pi} \int_{\mathbb{R}} e^{-i\lambda t} e^{i\mu t} \Gamma(b+it) \Gamma(b-it) dt.
\]

and then Parceval’s formula for Fourier integrals applied to (5.7) and (5.8) yields
\[
e^{-\mu x} \sum_{k=0}^{n} \binom{n}{k} \phi_k (-\lambda)^{n-k} \int_{\mathbb{R}} e^{(a+b)\lambda} e^{-\lambda(t+x)} \phi_k (-\lambda)^{n-k} d\lambda
\]
\[
= \frac{(-i)^n}{2\pi} \int_{\mathbb{R}} e^{-i\mu t} t^n \Gamma(a+it) \Gamma(b-it) dt.
\]

Returning to the variable \(x = e^{\lambda} \) we write this in the form
\[
\frac{1}{2\pi} \int_{\mathbb{R}} e^{-\mu x} t^n \Gamma(a+it) \Gamma(b-it) dt
\]
\[
= i^n e^{-\mu x} \sum_{k=0}^{n} \binom{n}{k} \phi_k(-x) x^{a+b-1} e^{-x(1+\mu x)} dx
\]
\[
= i^n e^{-\mu x} \sum_{k=0}^{n} \sum_{j=0}^{k} \binom{k}{j} \phi_{k-j}(-1)^j \int_{0}^{\infty} x^{a+b+j-1} e^{-x(1+\mu x)} dx
\]
\[i^n e^{-b^2} \sum_{k=0}^{n} \sum_{j=0}^{k} \left(\begin{array}{c} n \\ k \end{array} \right) \left(\begin{array}{c} k \\ j \end{array} \right) a^{n-k} (-1)^j \frac{\Gamma(a+b+j)}{(1+e^{-\nu})^{a+b+j}} \]

which is (5.1). The proof is complete.

Next, we observe that for any polynomial

\[p(t) = \sum_{n=0}^{m} a_n t^n \quad (5.11) \]

one can use (5.4) to write the following evaluation

\[\int_{\mathbb{R}} p(t) \Gamma(a+it) \, dt = \sum_{n=0}^{m} a_n G_n(a). \quad (5.12) \]

In particular, when \(a = 1 \) we have

\[G_n(1) = 2\pi i^n e^{-1} \phi_{n+1}(-1), \quad (5.13) \]

and therefore,

\[\int_{\mathbb{R}} p(t) \Gamma(1+it) \, dt = \frac{2\pi}{e} \sum_{n=0}^{m} a_n t^n \phi_{n+1}(-1). \quad (5.14) \]

More applications can be found in the recent papers [4], [5] and [6].

References

1. E. T. Bell, Exponential polynomials, \textit{Ann. of Math.}, 35, (1934), 258-277.

2. E. T. Bell, Exponential Numbers. \textit{Amer. Math. Monthly}, 41, (1934), 411-419.

3. B.C. Berndt, \textit{Ramanujan’s Notebooks, Part 1}, Springer-Verlag, New York, 1985, 1989

4. Khristo N. Boyadzhiev, A series transformation formula and related polynomials, \textit{In. J. Math. Math. Sc.} 2005:23 (2005), 3849-3866.
5. Khristo N. Boyadzhiev, On the Taylor coefficients of the Hurwitz zeta function, *JP Journal of Algebra, Number Theory and Applications*, 12, Issue 1, (2008), 103-112.

6. Khristo N. Boyadzhiev, Polyexponentials. Available at http://www.arxiv.org/pdf/0710.1332

7. R.P. Boas, R.C. Buck, *Polynomial expansions of analytic functions*, Academic Press, New York, 1964.

8. N. G. De Bruijn, *Asymptotic Methods in Analysis*, Dover, New York, 1981.

9. P. L. Butzer, M. Hauss, M. Schmidt, Factorial functions and Stirling numbers of fractional order, *Results Math.* 16 (1-2), (1989), 16-48.

10. P. L. Butzer and M. Hauss, On Stirling functions of the second kind, *Stud. Appl. Math.*, 84(1991), 71-79.

11. P. L. Butzer, Anatoly A. Kilbas, Juan J. Trujilo, *Fractional Calculus in the Mellin setting and Hadamard-type fractional integrals*, J. Math. Anal. Appl., 269, No.1 (2002), 1-27; ibid v. 269, No.2, (2002), 387-400; ibid v. 270, No. 1 (2002), 1-15.

12. L. Comtet, *Advanced Combinatorics*, D. Reidel Publ. Co. Boston,1974.

13. L. Carlitz, Single variable Bell polynomials, *Collect. Math.* 14 (1962) 13-25.

14. M.E. Dasef, S.M. Kautz, Some sums of some significance, *The College Math. J.*, 28, (1997), 52-55.

15. G. Dobinski, Summerung der Reihe..., *Arch. Math. Phys.*, 61, (1877),333-336.

16. Leo F. Epstein, A related to the series for exp(exp (x)), *Journal of Mathematics and Physics*, 18 (1939), 153-173

17. H. W. Gould, Euler’s formula for the –th differences of powers, *Amer. Math. Monthly*, 85, (1978), 450-467.

18. H. W. Gould, *Catalan and Bell Numbers: Research Bibliography of Two Special Number Sequences*, Published by the author, fifth edition, 1979
19. **Henry W. Gould**, *Topics in Combinatorics*, Published by the author, second edition, 2000.

20. **Henry W. Gould, Jocelyn Quaintance**, A linear binomial recurrence and the Bell numbers and polynomials, *Applicable Analysis and Discrete Mathematics*, vol. 1, No.2, (2007), 371-385 (Available electronically at http://pefmath.etf.bg.ac.yu).

21. **Henry W. Gould, Jocelyn Quaintance**, Implications of Spivey’s Bell number formula, *J. Integer Sequences*, 11 (2008), Article 08.3.7 (electronic).

22. **Ronald L. Graham, Donald E. Knuth, Oren Patashnik**, *Concrete Mathematics*, Addison-Wesley Publ. Co., New York, 1994.

23. **Johan A. Grunert**, Über die Summerung der Reihen..., *J. Reine Angew. Math.*, 25, (1843), 240-279.

24. **L. H. Harper**, Stirling behavior is asymptotically normal, *Ann. Math. Stat.*, 38 (1967), 410-414.

25. **Martin Klazar**, Bell numbers, their relatives, and algebraic differential equations, *Journal of Combinatorial Theory Series A*, 102, Issue 1 (2003), 63 - 87.

26. **Donald E. Knuth**, Two notes on notation, *Amer. Math. Monthly*, 99, (1992), 403-422.

27. **W. Ligowski**, Zur summerung der Reihe..., *Archiv Math.Phys.*, 62, (1878), 334-335.

28. **F. Oberhettinger**, *Tables of Mellin Transforms*, Springer, 1974.

29. **Athanasios Papoulis**, *Probability, Random Variables, and Stochastic Processes*, McGraw-Hill, Inc., New York, 1991.

30. **Jim Pitman**, Some probabilistic aspects of set partitions, *Amer. Math. Monthly*, 104 (3), (1997), 201-209

31. **A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev**, *Integrals and Series, Volume 1: Elementary Functions*, Gordon and Breach Science Publishers, New York, 1986.

32. **John Riordan**, *Combinatorial Identities*, J. Wiley, New York, 1969.
33. John Riordan, *An introduction to Combinatorial Analysis*, J. Wiley, New York, 1967.

34. Gian-Carlo Rota, *Finite Operator Calculus*, Academic Press, New York, 1975.

35. J. Sandor, B. Crstici, *Handbook of Number Theory*, Part II, Springer / Kluwer, Dordrecht, 2004.

36. I. J. Schwatt, *An Introduction to the Operations with Series*, Chelsea, New York, 1962.

37. Michael Z. Spivey, A generalized recurrence for Bell numbers, *J. Integer Sequences*, 11 (2008), 1-3.

38. L. Toscano, Una classa di polinomi della matematica atturiale, *Riv. Mat. Univ. Parma*, 1, (1950), 459-470.

39. Jacques Touchard, Nombres exponentiels et nombres de Bernoulli, *Canadian J. Math.*, 8, (1956), 305-320.

40. Jacques Touchard, Propriétes arithmetiques de certains nombres recurrences. *Ann. Soc. Sci. Bruxelles*, A 53, (1933), 21-31.

41. Yu-Qiu Zhao, A uniform asymptotic expansion of the single variable Bell polynomials, *J. Comput. Applied Math.*, 150 (2) (2003), 329-355