THE BOUNDEDNESS OF MULTI-LINEAR AND
MULTI-PARAMETER PSEUDO-DIFFERENTIAL OPERATORS

LIANG HUANG

School of Science, Xi’an University of Posts and Telecommunications
Xi’an, Shanxi 710121, China

JIAO CHEN∗

School of Mathematical Sciences, Chongqing Normal University
Chongqing 400000, China

(Communicated by Guozhen Lu)

Abstract. In this paper, we establish the boundedness on $L^r(\mathbb{R}^{n_1} \times \mathbb{R}^{n_2})$ of bilinear and bi-parameter pseudo-differential operators whose symbols $\sigma(x, \xi, \eta) \in S_{(1,1), (0,0)}^{(\delta_1, \delta_2)}$ for $x, \xi, \eta \in \mathbb{R}^{n_1} \times \mathbb{R}^{n_2}$ and $0 \leq \delta_1, \delta_2 < 1$, which extends the result of Dai and Lu in [8].

1. Introduction. The theory of multi-linear and multi-parameter multipliers and pseudo-differential operators play important roles in many aspects of harmonic analysis. We denote by $M(\mathbb{R}^d)$ the set of all bounded functions m on $\mathbb{R}^d \setminus \{0\}$, and satisfies the classical Hörmander-Mikhlin condition

$$|\partial^\alpha\xi m(\xi)| \leq C_\alpha \frac{1}{|\xi||\alpha|}$$ \hspace{1cm} (1.1)

for sufficiently many multi-indices $\alpha \in \mathbb{N}^d$ and each $\xi \in \mathbb{R}^d \setminus \{0\}$. The N-linear Fourier multiplier operator T_m is defined by

$$T_m(f_1, \ldots, f_N)(x) = \int_{\mathbb{R}^{Nn}} m(\xi)e^{2\pi i \xi \cdot (x_1 + \cdots + x_N)} \widehat{f_1}(\xi_1) \cdots \widehat{f_N}(\xi_N) d\xi$$ \hspace{1cm} (1.2)

for f_1, \ldots, f_N are Schwartz functions on \mathbb{R}^n, where $x \in \mathbb{R}^n$, $\xi = (\xi_1, \ldots, \xi_N) \in (\mathbb{R}^n)^N$ and $d\xi = d\xi_1 \cdots d\xi_N$. A classical result of Coifman and Meyer says that

Theorem 1.1. Let $m \in M(\mathbb{R}^n)$. Then T_m is bounded from $L^{p_1}(\mathbb{R}^n) \times \cdots \times L^{p_N}(\mathbb{R}^n)$ to $L^p(\mathbb{R}^n)$ for $1 < p_1, \ldots, p_N \leq \infty$ satisfying $0 < \frac{1}{p} = \frac{1}{p_1} + \cdots + \frac{1}{p_N}$.

2020 Mathematics Subject Classification. Primary: 42B15, 42B25.

Key words and phrases. Maximal function, L^p estimates, bi-parameter pseudo-differential operators.

The authors were supported partly by NNSF of China (Grant No.11801049), the Open Project of Key Laboratory (No.CSSXKFKTZ202004), School of Mathematical Sciences, Chongqing Normal University, the Natural Science Foundation of Chongqing (cstc2019jcyj-mxsmX0374,cstc2019jcyj-mxsmX0295), Technology Project of Chongqing Education Committee (Grant No. KJQN201800514).

∗ Corresponding author.
The case $1 \leq p < \infty$ was proved by Coifman and Meyer [7] and the extension to the range $p \leq 1$ was established by Kenig and Stein [15] and Grafakos and Torres [12].

The bilinear and bi-parameter Fourier multiplier operator J_m is defined by

$$J_m(f, g)(x) := \int_{\mathbb{R}^4} m(\xi, \eta) e^{2\pi i x \cdot (\xi + \eta)} \hat{f}(\xi) \hat{g}(\eta) d\xi d\eta,$$

(1.3)

where the symbol m is smooth away from the planes $(\xi_1, \eta_1) = (0, 0)$ and $(\xi_2, \eta_2) = (0, 0)$ in $\mathbb{R}^2 \times \mathbb{R}^2$ and satisfies the less restrictive Marcinkiewicz conditions

$$\left| \partial_{\xi_1}^{\alpha_1} \partial_{\xi_2}^{\alpha_2} \partial_{\eta_1}^{\beta_1} \partial_{\eta_2}^{\beta_2} m(\xi, \eta) \right| \leq C \frac{1}{(|\xi_1| + |\eta_1|)^{\alpha_1} + |\beta_1|} \frac{1}{(|\xi_2| + |\eta_2|)^{\alpha_2} + |\beta_2|}$$

(1.4)

for sufficiently many multi-indices $\alpha = (\alpha_1, \alpha_2)$, $\beta = (\beta_1, \beta_2)$ and $\xi = (\xi_1, \xi_2)$, $\eta = (\eta_1, \eta_2)$. Muscalu, Pipher, Tao and Thiele [20] proved the following L^r estimates for J_m with $0 < r < \infty$.

Theorem 1.2. The bilinear and bi-parameter operator J_m defined by (1.3) maps $L^p(\mathbb{R}^2 \times \mathbb{R}^2) \rightarrow L^q(\mathbb{R}^2)$ boundedly, as long as $1 < p, q \leq \infty$, $\frac{1}{p} + \frac{1}{q} = \frac{1}{r}$ and $0 < r < \infty$.

In [21, 22], Muscalu, Pipher, Tao and Thiele generalized Theorem 1.2 to the n-linear and K-parameter setting for any $n \geq 1$, $K \geq 2$.

After that, J. Chen and G. Lu [4] provided an alternative proof of the L^p estimates for the multilinear and multi-parameter Coifman-Meyer Fourier multipliers established in [20, 21] using the multi-parameter Littlewood-Paley theory instead of the time-frequency and para-product theory. More precisely, to describe their theorem, we need recall some notation. Let $\omega \in \mathcal{S}(\mathbb{R}^d)$ be a Schwartz function satisfying

$$\text{supp}\omega \subset \{ \xi \in \mathbb{R}^d : \frac{1}{2} \leq |\xi| \leq 2 \}, \sum_{j \in \mathbb{Z}} \omega\left(\frac{2^j \xi}{2}\right) = 1 \text{ for all } \xi \in \mathbb{R}^d \setminus \{0\}.$$

(1.5)

For $s_1, s_2 \in \mathbb{R}$, the bi-parameter Sobolev space $W^{s_1, s_2}(\mathbb{R}^{2n})$ consists of all $f \in \mathcal{S}'(\mathbb{R}^{2n})$ such that

$$\|f\|_{W^{s_1, s_2}} = \|(I - \Delta)^{s_1/2, s_2/2} f\|_{L^2} < \infty,$$

where

$$(I - \Delta)^{s_1/2, s_2/2} f = \mathcal{F}^{-1}[(1 + |\xi_1|^2 + |\eta_1|^2)^{s_1/2}(1 + |\xi_2|^2 + |\eta_2|^2)^{s_2/2} \hat{f}(\xi_1, \xi_2, \eta_1, \eta_2)]$$

where $\xi_1, \xi_2, \eta_1, \eta_2 \in \mathbb{R}^n$. In [4], the following theorem was established by Chen and Lu.

Theorem 1.3. Let $m \in L^\infty(\mathbb{R}^{4n})$. Set

$$m_{j,k}(\xi_1, \xi_2, \eta_1, \eta_2) = m(2^j \xi_1, 2^k \xi_2, 2^j \eta_1, 2^k \eta_2) \omega_1(\xi_1, \eta_1) \omega_2(\xi_2, \eta_2),$$

where ω_1, ω_2 are the same as (1.5) with $d = 2n$. Let $s_1, s_2 > n$, $s = \min(s_1, s_2)$, $1 < p, q < \infty$, $p > \frac{2n}{s}$, $q > \frac{2n}{s}$ and $\frac{1}{p} + \frac{1}{q} = \frac{1}{r}$ with $0 < r < \infty$. If $m \in L^\infty(\mathbb{R}^{4n})$ satisfies

$$\sup_{j,k \in \mathbb{Z}} \|m_{j,k}\|_{W^{s_1, s_2}(\mathbb{R}^{4n})} < \infty,$$

then \tilde{T}_m is bounded from $L^p(\mathbb{R}^{2n}) \times L^q(\mathbb{R}^{2n})$ to $L^r(\mathbb{R}^{2n})$, where \tilde{T}_m is defined by

$$\tilde{T}_m(f, g)(x) = \int_{\mathbb{R}^{4n}} m(\xi, \eta) e^{2\pi i x \cdot (\xi + \eta)} \hat{f}(\xi) \hat{g}(\eta) d\xi d\eta.$$
On the other hand, let us recall some results about pseudo-differential operator. For the corresponding pseudo-differential operator of the classical Coifman-Meyer theorem, suppose that the symbol $\sigma(x, \xi, \eta)$ belongs to the Hörmander symbol class $BS_{1,0}^0(\mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^d)$, that is, σ satisfies the following condition

\[|\partial_{x}^\alpha \partial_{\xi}^\gamma \partial_{\eta}^\delta \sigma(x, \xi, \eta)| \leq C_{\kappa, \alpha, \beta} \frac{1}{(1 + |\xi| + |\eta|)^{\kappa + |\alpha| + |\beta|}} \]

(1.6)

for sufficiently many multi-indices $\kappa, \alpha, \beta \in \mathbb{N}^d$. For these symbols, the following multi-linear, single parameter case has been studied (see [2], and see [3] for $d = 1$ case).

Theorem 1.4. Let $\sigma(x, \xi, \eta) \in BS_{1,0}^0(\mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^d)$. The operator

\[\hat{T}_\sigma(f, g)(x) = \int_{\mathbb{R}^{2d}} \sigma(x, \xi, \eta)e^{2\pi \xi \cdot x}\hat{f}(\xi)\hat{g}(\eta)d\xi d\eta \]

is bounded from $L^{p_1}(\mathbb{R}^d) \times L^{p_2}(\mathbb{R}^d)$ to $L^p(\mathbb{R}^d)$ for $1 < p_1, p_2 \leq \infty$ satisfying $\frac{1}{p} = \frac{1}{p_1} + \frac{1}{p_2} > 0$, where $f, g \in S(\mathbb{R}^d)$.

For large amounts of literature involving estimates for multi-linear Calderón-Zygmund operators and multi-linear pseudo-differential operators, refer to [1, 6, 12, 15].

The corresponding bilinear and bi-parameter pseudo-differential operator was studied in [8].

Theorem 1.5. Define

\[T_a(f, g)(x) = \int_{\mathbb{R}^4} a(x, \xi, \eta)e^{2\pi \xi \cdot x}\hat{f}(\xi, \eta_{2})\hat{g}(\eta_{1}, \eta_{2})d\xi d\eta \]

where

\[|\partial_{x_{1}}^{\alpha_{1}} \partial_{x_{2}}^{\alpha_{2}} \partial_{\xi_{1}}^{\gamma_{1}} \partial_{\xi_{2}}^{\gamma_{2}} \partial_{\eta_{1}}^{\delta_{1}} \partial_{\eta_{2}}^{\delta_{2}} a(x, \xi, \eta)| \leq C \frac{1}{(1 + |\xi_{1}| + |\eta_{1}|)^{\kappa_{1}}} \frac{1}{(1 + |\xi_{2}| + |\eta_{2}|)^{\kappa_{2}}} \cdot \]

Then T_a is bounded on $L^p(\mathbb{R}^2) \times L^q(\mathbb{R}^2) \to L^r(\mathbb{R}^2)$ provided that $1 < p, q \leq \infty$ and $\frac{1}{r} = \frac{1}{p} + \frac{1}{q} > 0$.

The L^p estimates for the trilinear pseudo-differential operators with flag symbols has also been established by G. Lu and L. Zhang in [17] while the L^p estimates for the trilinear Fourier multipliers with flag singularity was proved by C. Muscalu [19].

The main purpose of this paper is to establish the L^p estimates for the bilinear and bi-parameter pseudo-differential operators extend the result of Dai and Lu [8]. Now we state the result for the corresponding multi-linear and multi-parameter pseudo-differential operators. Let

\[T_\sigma(f, g)(x) := \int_{\mathbb{R}^{n_1+n_2} \times \mathbb{R}^{n_1+n_2}} \sigma(x, \xi, \eta)\hat{f}(\xi)\hat{g}(\eta)e^{2\pi \xi \cdot x}\hat{\sigma}(\xi, \eta_{2})\hat{\sigma}(\eta_{1}, \eta_{2})d\xi d\eta, \]

(1.7)

where $f, g \in S(\mathbb{R}^{n_1} \times \mathbb{R}^{n_2})$, and the bi-parameter smooth symbols $a \in BS_{(1,1),(\delta_1, \delta_2)}^{(0,0)}$ with $0 \leq \delta_1, \delta_2 < 1$ satisfies the following condition

\[|\partial_{x_{1}}^{\alpha_{1}} \partial_{x_{2}}^{\alpha_{2}} \partial_{\xi_{1}}^{\gamma_{1}} \partial_{\xi_{2}}^{\gamma_{2}} \partial_{\eta_{1}}^{\delta_{1}} \partial_{\eta_{2}}^{\delta_{2}} \sigma(x, \xi, \eta)| \]

\[\leq C \frac{1}{(1 + |\xi_{1}| + |\eta_{1}|)^{\delta_{1}}} \frac{1}{(1 + |\xi_{2}| + |\eta_{2}|)^{\delta_{2}}} \cdot \]

(1.8)
for every $x = (x_1, x_2), \xi = (\xi_1, \xi_2), \eta = (\eta_1, \eta_2) \in \mathbb{R}^{n_1} \times \mathbb{R}^{n_2}$ and all multi-indices $
abla = (\alpha_1, \alpha_2), \beta = (\beta_1, \beta_2)$ and $\gamma = (\gamma_1, \gamma_2) \in \mathbb{N}^{n_1} \times \mathbb{N}^{n_2}$. We will prove the following theorem.

Theorem 1.6. Let $0 \leq \delta_1, \delta_2 < 1$. The bilinear and bi-parameter pseudo-differential operator T_{σ} with $\sigma \in B_{(1,1)}^{(0,0)}(\delta_1, \delta_2)$ defined by (1.7) maps $L^p(\mathbb{R}^{n_1} \times \mathbb{R}^{n_2}) \times L^q(\mathbb{R}^{n_1} \times \mathbb{R}^{n_2}) \to L^r(\mathbb{R}^{n_1} \times \mathbb{R}^{n_2})$ for $1 < p, q < \infty$ with $\frac{1}{p} + \frac{1}{q} = \frac{1}{r}$ and $0 < r < \infty$.

The organization of this paper is as follows: In Section 2 we recall some preliminary facts and give some relevant definitions. In Section 3, we decompose the symbol and prove Theorem 1.6.

2. Preliminaries. First, we make some conventions. Throughout the paper, C denotes a positive constant that is independent of the main parameters involved, but whose value may vary from line to line. For two nonnegative quantities A and B, the notation $A \approx B$ means that $A \leq CB$ and $C^{-1}B \leq A$ for some unspecified constant $C > 0$. We use the symbol N to denote the class of all natural numbers, that is, $N = \{0, 1, 2, 3, \ldots\}$.

Let $S(\mathbb{R}^{n_1} \times \mathbb{R}^{n_2})$ and $S'(\mathbb{R}^{n_1} \times \mathbb{R}^{n_2})$ be the Schwartz class of all rapidly decreasing smooth functions and tempered distributions, respectively. We define the Fourier transform $\mathcal{F}f$ and the inverse Fourier transform $\mathcal{F}^{-1}f$ of $f \in S(\mathbb{R}^{n_1} \times \mathbb{R}^{n_2})$ by

$$\mathcal{F}f(\xi, \eta) = \hat{f}(\xi, \eta) = \int_{\mathbb{R}^{n_1} \times \mathbb{R}^{n_2}} f(x_1, x_2)e^{-2\pi i(x_1 \cdot \xi_1 + x_2 \cdot \xi_2)}dx_1dx_2$$

and

$$\mathcal{F}^{-1}f(x_1, x_2) = f^{\mathcal{F}}(x_1, x_2) = \int_{\mathbb{R}^{n_1} \times \mathbb{R}^{n_2}} f(\xi, \eta)e^{2\pi i(x_1 \cdot \xi_1 + x_2 \cdot \xi_2)}d\xi_1d\xi_2.$$

For $m_1, m_2 \in \mathbb{R}$ and $0 \leq \rho_1, \rho_2, \delta_1, \delta_2 \leq 1$, the bilinear and bi-parameter H"{o}rmander symbol class $B_{(\rho_1, \rho_2), (\delta_1, \delta_2)}^{(m_1, m_2)}$ consists of all $\sigma(x, \xi, \eta) \in C^\infty(\mathbb{R}^{3n_1} \times \mathbb{R}^{3n_2})$ such that

$$|\partial_{x_1}^{\alpha_1}\partial_{\xi_1}^{\alpha_2}\partial_{\eta_1}^{\alpha_3}\partial_{x_2}^{\beta_1}\partial_{\xi_2}^{\beta_2}\partial_{\eta_2}^{\beta_3}\sigma(x_1, x_2, \xi_1, \xi_2, \eta_1, \eta_2)| \leq C(1 + |\xi_1| + |\eta_1|)^{m_1 + \delta_1|\alpha_1| - \rho_1(|\alpha_1| + |\gamma_1|)}(1 + |\xi_2| + |\eta_2|)^{m_2 + \delta_2|\alpha_2| - \rho_2(|\beta_2| + |\gamma_2|)}$$

for all multi-indices $\alpha_i, \beta_i \in \mathbb{N}^{n_i}$ with $i = 1, 2$ and $x = (x_1, x_2), \xi = (\xi_1, \xi_2), \eta = (\eta_1, \eta_2) \in \mathbb{R}^{n_1} \times \mathbb{R}^{n_2}$.

Let $\Phi(\mathbb{R}^d)$ (with d changing from time to time as needed) be the set of $\varphi \in S(\mathbb{R}^d)$ such that

$$\text{supp}\varphi \subset \{\zeta \in \mathbb{R}^d : 1/2 \leq |\zeta| \leq 2\},$$

$$\sum_{j \in \mathbb{Z}} \varphi(\zeta/2^j) = 1 \text{ for every } \zeta \in \mathbb{R}^d \setminus \{0\},$$

$$\varphi_0(\zeta) = 1 - \sum_{j=1}^{\infty} \varphi(\zeta/2^j), \varphi_j(\zeta) = \varphi(\zeta/2^j), j \geq 1. \hspace{1cm} (2.1)$$

Notice that $\varphi \in \Phi(\mathbb{R}^{n_i})$ with $d = n_i$, we have $\text{supp}\varphi_0 \subset \{\zeta \in \mathbb{R}^{n_i} : |\zeta| \leq 2\}, \text{supp}\varphi_j \subset \{\zeta \in \mathbb{R}^{n_i} : 2^{j-1} \leq |\zeta| \leq 2^j\}$ for $j \geq 1$, and $\sum_{j=0}^{\infty} \varphi_j(\zeta) = 1$ for all $i = 1, 2$.

Ding, Lu and Zhu [9] defined the bi-parameter local Hardy spaces $h^p(\mathbb{R}^{n_1} \times \mathbb{R}^{n_2})$ and obtained some properties of $h^p(\mathbb{R}^{n_1} \times \mathbb{R}^{n_2})$.
Definition 2.1. For $0 < p < \infty$ and $\varphi(x_i) \in \Phi(\mathbb{R}^{n_i})$ with $d = n_i$ for $i = 1, 2$. Then the bi-parameter local Hardy space $h^p(\mathbb{R}^{n_1} \times \mathbb{R}^{n_2})$ is defined by

$$h^p(\mathbb{R}^{n_1} \times \mathbb{R}^{n_2}) = \{ f \in S'(\mathbb{R}^{n_1} \times \mathbb{R}^{n_2}) : \| f \|_{h^p(\mathbb{R}^{n_1} \times \mathbb{R}^{n_2})} = \| S(f) \|_{L^p(\mathbb{R}^{n_1} \times \mathbb{R}^{n_2})} < \infty \},$$

where

$$S(f) = \left(\sum_{j_1, j_2 = 0}^{\infty} |\varphi_{j_1}(D_1)\varphi_{j_2}(D_2)f|^2 \right)^{1/2}.$$

Remark 1. They point out that the definition of bi-parameter local Hardy space is well defined. That is, the above definition is independent of the choice of the functions $\varphi(x_1)$ and $\varphi(x_2)$.

Remark 2. They also prove that the bi-parameter local Hardy spaces $h^p(\mathbb{R}^{n_1} \times \mathbb{R}^{n_2})$ are the same as the Lebesgue spaces $L^p(\mathbb{R}^{n_1} \times \mathbb{R}^{n_2})$ if $p > 1$ and the Schwartz function spaces $S(\mathbb{R}^{n_1} \times \mathbb{R}^{n_2})$ are dense in $h^p(\mathbb{R}^{n_1} \times \mathbb{R}^{n_2})$ for $0 < p < \infty$. For more details, we refer the reader to see the work of [9].

The strong maximal operator M_s for a function f on $\mathbb{R}^{n_1} \times \mathbb{R}^{n_2}$ is defined by

$$M_s f(x_1, x_2) = \sup_{r_1, r_2 > 0} \frac{1}{r_1^{n_1} r_2^{n_2}} \int_R |f(y_1, y_2)| dy_1 dy_2,$$

where $R = \{(y_1, y_2) \in \mathbb{R}^{n_1} \times \mathbb{R}^{n_2} : |y_1 - x_1| < r_1, |y_2 - x_2| < r_2 \}$ and f is a locally integrable function. We recall the following inequality, see [11, 4]

Lemma 2.2. Let $1 < p, q < \infty$. Then there exists a constant $C > 0$ such that

$$\| \{ \sum_{k \in \mathbb{N}} (M_s f_k)^q \}^{1/q} \|_{L^p(\mathbb{R}^{n_1} \times \mathbb{R}^{n_2})} \leq C \| \{ \sum_{k \in \mathbb{N}} |f_k|^q \}^{1/q} \|_{L^p(\mathbb{R}^{n_1} \times \mathbb{R}^{n_2})}$$

for all sequences $\{ f_k \}_{k \in \mathbb{N}}$ of locally integrable functions on $\mathbb{R}^{n_1} \times \mathbb{R}^{n_2}$.

And the following lemma is well known and can be proved by the characterization of Hardy spaces using Littlewood-Paley square functions([18]).

Lemma 2.3. Let $A > 1$ and $0 < p < \infty$, Then

$$\| \sum_j f_j \|_{H^p(\mathbb{R}^n)} \leq C \| (\sum_j |f_j|^2)^{1/2} \|_{L^p(\mathbb{R}^n)}$$

for all sequences $\{ f_j \}_{j \in \mathbb{N}}$ satisfying $\text{supp } \hat{f}_j \subset \{ \xi \in \mathbb{R}^n : A^{-1} 2^j \leq |\xi| \leq A 2^j \}$.

For the characterization of product Hardy spaces using Littlewood-Paley square functions, it can be founded in [5] and [13].

Lemma 2.4. Let $A > 1, B > 1$ and $0 < p < \infty$, Then

$$\| \sum_{j_1, j_2} f_{j_1, j_2} \|_{H^p(\mathbb{R}^{n_1} \times \mathbb{R}^{n_2})} \leq C \| (\sum_{j_1, j_2} |f_{j_1, j_2}|^2)^{1/2} \|_{L^p(\mathbb{R}^{n_1} \times \mathbb{R}^{n_2})}$$

for all sequences $\{ f_{j_1, j_2} \}_{j_1, j_2}$ satisfying $\text{supp } \hat{f}_{j_1, j_2} \subset \{ (\xi_1, \xi_2) \in \mathbb{R}^{n_1} \times \mathbb{R}^{n_2} : A^{-1} 2^{j_1} \leq |\xi_1| \leq A 2^{j_1}, B^{-1} 2^{j_2} \leq |\xi_2| \leq B 2^{j_2} \}$.
3. Proof of Theorem 1.6.

Proof. To prove this theorem, we start with the decomposition and reduction of the symbol $\sigma(x, \xi, \eta)$. First, we use the standard decomposition for $\sigma(x, \xi, \eta)$. Let $\varphi \in \Phi(\mathbb{R}^n)$ as in (2.1) for $i = 1, 2$, then we can write

$$1 = \sum_{k_1=0}^{\infty} \sum_{j_1=0}^{\infty} \sum_{k_2=0}^{\infty} \sum_{j_2=0}^{\infty} \varphi_{k_1}(\xi_1)\varphi_{j_1}(\eta_1)\varphi_{k_2}(\xi_2)\varphi_{j_2}(\eta_2)$$

$$= (\sum_{k_1 > j_1 + 2} + \sum_{k_1 + 2 < j_1} + \sum_{|k_1 - j_1| \leq 2})\varphi_{k_1}(\xi_1)\varphi_{j_1}(\eta_1)$$

$$\times (\sum_{k_2 > j_2 + 2} + \sum_{k_2 + 2 < j_2} + \sum_{|k_2 - j_2| \leq 2})\varphi_{k_2}(\xi_2)\varphi_{j_2}(\eta_2).$$

Applying the above decomposition to $\sigma(x, \xi, \eta)$, we obtain that

$$\sigma(x, \xi, \eta) = (\sum_{k_1=0}^{\infty} \sum_{j_1=0}^{\infty} \sum_{k_2=0}^{\infty} \sum_{j_2=0}^{\infty} \varphi_{k_1}(\xi_1)\varphi_{j_1}(\eta_1))$$

$$\times (\sum_{k_3=0}^{\infty} \sum_{j_3=0}^{\infty} \sum_{k_4=0}^{\infty} \sum_{j_4=0}^{\infty} \varphi_{k_3}(\xi_3)\varphi_{j_3}(\eta_3)) \varphi_{k_4}(\xi_4)\varphi_{j_4}(\eta_4).$$

By symmetry it suffices to consider the following symbols:

$$\sigma_1(x, \xi, \eta) = \sum_{k_1=3}^{\infty} \sum_{k_2=3}^{\infty} \sigma(x, \xi, \eta)\varphi_{k_1}(\xi_1)\varphi_0(2^{-k_1+3}\eta_1)\varphi_{k_2}(\xi_2)\varphi_0(2^{-k_2+3}\eta_2),$$

$$\sigma_2(x, \xi, \eta) = \sum_{k_1=3}^{\infty} \sum_{k_2=3}^{\infty} \sigma(x, \xi, \eta)\varphi_{k_1}(\xi_1)\varphi_0(2^{-k_1+3}\eta_1)\varphi_0(2^{-k_2+3}\xi_2)\varphi_{k_2}(\eta_2),$$

$$\sigma_3(x, \xi, \eta) = \sum_{k_1=3}^{\infty} \sum_{k_2=3}^{\infty} \sigma(x, \xi, \eta)\varphi_{k_1}(\xi_1)\varphi_0(2^{-k_1+3}\eta_1)\varphi_{k_2}(\xi_2)\varphi_{k_2}(\eta_2),$$

$$\sigma_4(x, \xi, \eta) = \sum_{k_1=3}^{\infty} \sum_{k_2=3}^{\infty} \sigma(x, \xi, \eta)\varphi_{k_1}(\xi_1)\varphi_{k_2}(\eta_1)\varphi_{k_2}(\xi_2)\varphi_{k_2}(\eta_2),$$

where

$$\varphi_j(\zeta) = \sum_{|j-l| \leq 2} \varphi_j(2^{-l}\zeta)$$

for fixed $j \in \mathbb{N}$ and $l \geq 0$.

We now rewrite these symbols using their Fourier series expansions. Hence, we can have

$$\sigma_1(x, \xi, \eta) = \sum_{k_1,k_2=0}^{\infty} \sum_{l_1,l_2 \in \mathbb{Z}} \sum_{l_1',l_2' \in \mathbb{Z}} c_{k_1,k_2,l_1,l_2,l_1',l_2'}^{(1)}(x) e^{il_1(2^{-k_1+3}\xi_1)} e^{il_1'(2^{-k_1+3}\eta_1)}$$

$$\times e^{il_2(2^{-k_2+3}\xi_2)} e^{il_2'(2^{-k_2+3}\eta_2)} \varphi_{k_1}(\xi_1)\varphi_0(2^{-k_1+3}\eta_1)\varphi_{k_2}(\xi_2)\varphi_0(2^{-k_2+3}\eta_2),$$

where

$$c_{k_1,k_2,l_1,l_2,l_1',l_2'}^{(1)}(x) = \int_{\mathbb{R}^n \times \mathbb{R}^n} \sigma(x, 2^{k_1}\xi_1, 2^{k_2}\xi_2, 2^{k_1}\eta_1, 2^{k_2}\eta_2) \varphi(\xi_1)\varphi_0(2^{k_1}\eta_1)$$

$$\times \varphi(\xi_2)\varphi_0(2^{k_2}\eta_2) e^{il_1(2^{-k_1+3}\xi_1)} e^{il_1'(2^{-k_1+3}\eta_1)} e^{il_2(2^{-k_2+3}\xi_2)} e^{il_2'(2^{-k_2+3}\eta_2)} d\xi d\eta.$$
It follows from integration by parts that
\[\sup_{k_1, k_2 \in \mathbb{N}} 2^{-k_1 \delta_1 |\alpha_1|} 2^{-k_2 \delta_2 |\alpha_2|} |\partial_{x_1}^\alpha x_2^\beta e^{(1)}_{k_1, k_2, l_i, l'_i, d_i, d'_i}(x)| \leq C \frac{1}{(1 + |l_1| + |l'_1|)^{2M_1}} \frac{1}{(1 + |l_2| + |l'_2|)^{2M_2}} \]
for sufficiently large \(M_1, M_2 > 0 \) and all multi-indices \(\alpha_1, \alpha_2 \).
Moreover, for simplicity of presentation, we denote by
\[
\psi_{k_1}^l(\xi_t) = (1 + |l|)^{-M_1} e^{i l_t (2^{-k_1} \xi_t)} \varphi_{k_1}(\xi_t),
\phi_{k_1}^{l_1}(\xi_t) = (1 + |l|)^{-M_1} e^{i l'_1 (2^{-k_1} \xi_t)} \varphi_{0}(2^{-k_1} + 3 \xi_t),
\psi_{k_1}^{l_1}(\xi_t) = (1 + |l|)^{-M_1} e^{i l_2 (2^{-k_1} \xi_t)} \varphi_{k_1}(\xi_t),
\phi_{k_1}^{l_1, l_1, l'_1, l'_2}(x) = (1 + |l_1| + |l'_1|) 2^{M_1} (1 + |l_2| + |l'_2|)^{2M_2} e^{(1)}_{k_1, k_2, l_i, l'_i, d_i, d'_i}(x),
\]
where \(t = 1, 2, M_1 = M'_1 + M''_1 \) and \(M_2 = M'_2 + M''_2 \).
Then we have
\[
\sigma_1(x, \xi, \eta) = \sum_{l_1, l_2 \in \mathbb{Z}^n} \sum_{l'_1, l'_2 \in \mathbb{Z}^n} (1 + |l_1| + |l'_1|)^{-M_1} (1 + |l_2| + |l'_2|)^{-M_2} \sum_{k_1, k_2 = 0}^\infty a_{l_1, l_2, l'_1, l'_2}^{l_1, l_1, l'_1, l'_2} (x) \psi_{k_1}^{l_1}(\xi_1) \psi_{k_2}^{l_2}(\xi_2) \phi_{k_1}^{l_1}(\eta_1) \phi_{k_2}^{l_2}(\eta_2). \tag{3.1}
\]
Due to the decay in the coefficient, we can fix \(l_1, l_2, l'_1, l'_2 \) and only take the summation over \(k_1, k_2 \).
Hence, we can reduce the (3.1) to
\[
\sigma_1(x, \xi, \eta) = \sum_{k_1, k_2 = 0}^\infty a_{k_1, k_2}(x) \psi_{k_1}(\xi_1) \psi_{k_2}(\xi_2) \phi_{k_1}(\eta_1) \phi_{k_2}(\eta_2),
\]
where \(\{a_{k_1, k_2}\} \) satisfies
\[
\|\partial_{x_1}^\alpha \partial_{x_2}^\beta a_{k_1, k_2}\|_{L^\infty} \leq C 2^{k_1 \delta_1 |\alpha_1|} 2^{k_2 \delta_2 |\alpha_2|}, \tag{3.2}
\]
\(\{\psi_{k_1}\} \) satisfies
\[
\text{supp} \psi_{k_1} \subseteq \{ \xi_1 \in \mathbb{R}^n : |\xi_1| \leq C \}, \quad \|\partial_{x_1}^\alpha \psi_{k_1}\|_{L^\infty} \leq C 2^{-k_1 |\alpha_1|},
\]
\(\{\psi_{k_1}'\} \) satisfies
\[
\text{supp} \psi_{k_1}' \subseteq \{ \xi_1 \in \mathbb{R}^n : |\xi_1| \leq C \}, \quad \|\partial_{x_1}^\alpha \psi_{k_1}'\|_{L^\infty} \leq C, \quad k_1 = 0,
\]
\(\{\phi_{k_1}\} \) satisfies
\[
\text{supp} \phi_{k_1} \subseteq \{ \xi_1 \in \mathbb{R}^n : |\xi_1| \approx 2^{k_1} \}, \quad \|\partial_{x_1}^\alpha \phi_{k_1}\|_{L^\infty} \leq C 2^{-k_1 |\alpha_1|}, \quad k_1 \geq 1, \tag{3.3}
\]
and \(\{\phi_{k_1}\} \) satisfies
\[
\text{supp} \phi_{k_1} \subseteq \{ \xi_1 \in \mathbb{R}^n : |\xi_1| \leq C 2^{k_1} \}, \quad \|\partial_{x_1}^\alpha \phi_{k_1}\|_{L^\infty} \leq C 2^{-k_1 |\alpha_1|} \tag{3.4}
\]
for \(i = 1, 2 \).
Similarly, we can reduce \(\sigma_i(x, \xi, \eta) \) for \(i = 2, 3, 4 \) to
\[
\sigma_2(x, \xi, \eta) = \sum_{k_1, k_2 = 0}^\infty b_{k_1, k_2}(x) \psi_{k_1}(\xi_1) \phi_{k_2}(\xi_2) \phi_{k_1}(\eta_1) \phi_{k_2}(\eta_2),
\]
in the boundedness of pseudo-differential operators.
\[
\sigma_3(x, \xi, \eta) = \sum_{k_1, k_2=0}^{\infty} c_{k_1, k_2}(x) \psi_{k_1}(\xi_1) \psi_{k_2}(\xi_2) \psi'_{k_1}(\eta_1) \phi_{k_2}(\eta_2),
\]
\[
\sigma_4(x, \xi, \eta) = \sum_{k_1, k_2=0}^{\infty} d_{k_1, k_2}(x) \psi_{k_1}(\xi_1) \psi_{k_2}(\xi_2) \psi'_{k_1}(\eta_1) \phi_{k_2}(\eta_2),
\]
where the coefficients \(a_{k_1, k_2}(x), b_{k_1, k_2}(x)\) and \(c_{k_1, k_2}(x)\) satisfy the same estimate
\[
\|\partial^{\alpha_1} \partial^{\alpha_2} a_{k_1, k_2}\|_{L^\infty} \leq C 2^{k_1 \delta_1[|\alpha_1|] + k_2 \delta_2[|\alpha_2|]},
\]
and \(\psi_{k_1}, \psi'_{k_2}\) and \(\phi_{k_2}\) also satisfy (3.3), (3.4) and (3.5), respectively. Furthermore, to consider the symbol \(\sigma_i(x, \xi, \eta)\) for \(i = 1, 2, 3\), we need to decompose the coefficients \(a_{k_1, k_2}(x), b_{k_1, k_2}(x)\) and \(c_{k_1, k_2}(x)\). To decompose \(a_{k_1, k_2}(x)\), we use the partition of unity that defined in (2.1). Since
\[
1 = (\varphi_0(2^{-(k_1+3)\xi_1}) + \sum_{k'_1=1}^{\infty} \varphi(2^{-(k_1-3+k'_1)\xi_1})) (\varphi_0(2^{-(k_2+3)\xi_2}) + \sum_{k'_2=1}^{\infty} \varphi(2^{-(k_2-3+k'_2)\xi_2}))
\]
\[
= \varphi_0(2^{-(k_1+3)\xi_1}) \varphi_0(2^{-(k_2+3)\xi_2}) + \sum_{k'_1, k'_2=1}^{\infty} \varphi(2^{-(k_1-3+k'_1)\xi_1}) \varphi_0(2^{-(k_2-3+k'_2)\xi_2})
\]
\[
+ \sum_{k'_1=1}^{\infty} \varphi_0(2^{-(k_1+3)\xi_1}) \varphi(2^{-(k_2-3+k'_2)\xi_2})
\]
\[
+ \sum_{k'_2=1}^{\infty} \sum_{k'_1=1}^{\infty} \varphi(2^{-(k_1-3+k'_1)\xi_1}) \varphi(2^{-(k_2-3+k'_2)\xi_2}).
\]
Hence, we can decompose \(a_{k_1, k_2}(x)\) as
\[
a_{k_1, k_2}(x) = a^{(0,0)}_{k_1, k_2}(x) + \sum_{k'_1=1}^{\infty} a^{(k'_1,0)}_{k_1, k_2}(x) + \sum_{k'_2=1}^{\infty} a^{(0,k'_2)}_{k_1, k_2}(x) + \sum_{k'_1=1}^{\infty} \sum_{k'_2=1}^{\infty} a^{(k'_1,k'_2)}_{k_1, k_2}(x),
\]
with
\[
a^{(0,0)}_{k_1, k_2}(x) = \varphi_0(2^{-(k_1+3)}D_1) \varphi_0(2^{-(k_2+3)}D_2) a_{k_1, k_2}(x),
\]
\[
\sum_{k'_1=1}^{\infty} a^{(k'_1,0)}_{k_1, k_2}(x) = \sum_{k'_1=1}^{\infty} \varphi(2^{-(k_1-3+k'_1)}D_1) \varphi_0(2^{-(k_2+3)}D_2) a_{k_1, k_2}(x),
\]
\[
\sum_{k'_2=1}^{\infty} a^{(0,k'_2)}_{k_1, k_2}(x) = \sum_{k'_2=1}^{\infty} \varphi_0(2^{-(k_1+3)}D_1) \varphi(2^{-(k_2-3+k'_2)}D_2) a_{k_1, k_2}(x),
\]
\[
\sum_{k'_1=1}^{\infty} \sum_{k'_2=1}^{\infty} a^{(k'_1,k'_2)}_{k_1, k_2}(x) = \sum_{k'_1=1}^{\infty} \sum_{k'_2=1}^{\infty} \varphi(2^{-(k_1-3+k'_1)}D_1) \varphi(2^{-(k_2-3+k'_2)}D_2) a_{k_1, k_2}(x).
\]
By the moment condition of \(\Psi = \mathcal{F}^{-1}\varphi\) and Taylor’s formula,
\[
a^{(k'_1,k'_2)}_{k_1, k_2}(x)
\]
\[
= \delta^{(k_1-3+k'_1)n_1} \delta^{(k_2-3+k'_2)n_2} \int \Psi(2^{k_1-3+k'_1}(x_1 - y_1)) \Psi(2^{k_2-3+k'_2}(x_2 - y_2))
\]
\[
	imes (a_{k_1, k_2}(y_1, y_2) - \sum_{|\alpha_1|<N_1} \frac{\partial^{\alpha_1} a_{k_1, k_2}(x_1, x_2)}{\alpha_1!}(y_1 - x_1)^{\alpha_1}) dy.
\]
\[= 2^{(k_1 - 3 + k_1')_N_1} 2^{(k_2 - 3 + k_2')_N_2} \int \Psi(2^{k_1 - 3 + k_1'} (x_1 - y_1)) \Psi(2^{k_2 - 3 + k_2'} (x_2 - y_2)) N_1 \]
\[\times \left(\sum_{|\alpha_1| = N_1} \frac{(y_1 - x_1)^{\alpha_1}}{\alpha_1!} \int_0^1 (1 - t_1)^{N_1 - 1} (\partial^{\alpha_1} a_{k_1, k_2})(x_1 + t_1(y_1 - x_1), x_2) dt_1 dy \right) \]
\[= 2^{(k_1 - 3 + k_1')_N_1} 2^{(k_2 - 3 + k_2')_N_2} \int \Psi(2^{k_1 - 3 + k_1'} (x_1 - y_1)) \Psi(2^{k_2 - 3 + k_2'} (x_2 - y_2)) \]
\[\times \left(\sum_{|\alpha_1| = N_1} \sum_{|\alpha_2| = N_2} \frac{(y_1 - x_1)^{\alpha_1} (y_2 - x_2)^{\alpha_2}}{\alpha_1! \alpha_2!} \int_0^1 \int_0^1 (1 - t_1)^{N_1 - 1} (1 - t_2)^{N_2 - 1} (\partial^{\alpha_1} \partial^{\alpha_2} a_{k_1, k_2})(x_1 + t_1(y_1 - x_1), x_2 + t_2(y_2 - x_2)) dt_1 dt_2 \right) dy, \]
where \(k_1', k_2' \geq 1 \), \(dt = dt_1 dt_2 \) and \(dy = dy_1 dy_2 \). Then, by (3.2), we obtain the following estimate
\[\| a_{k_1, k_2}(k_1', k_2') \|_{L^\infty} \leq C 2^{-k_1' N_1} 2^{-k_2' N_2} 2^{-k_1 N_1(1 - \delta_1)} 2^{-k_2 N_2(1 - \delta_2)}, \]
where \(N_1 \) and \(N_2 \) can be chosen arbitrary large and \(0 \leq \delta_1, \delta_2 < 1 \). By the same argument as the above estimate, we also have
\[\| a_{k_1, k_2}(0, 0) \|_{L^\infty} \leq C, \]
\[\| a_{k_1, k_2}(k_1', 0) \|_{L^\infty} \leq C 2^{-k_1' N_1} 2^{-k_1 N_1(1 - \delta_1)}, \]
\[\| a_{k_1, k_2}(0, k_2') \|_{L^\infty} \leq C 2^{-k_2' N_2} 2^{-k_2 N_2(1 - \delta_2)}. \]

On the other hand, recall the definition of \(a_{k_1, k_2}(k_1', k_2') \), we obtain the following support conditions
\[\text{supp} \mathcal{F} [a_{k_1, k_2}(0, 0)] \subseteq \{ |\xi_1| \leq C 2^{k_1}, |\xi_2| \leq C 2^{k_2} \}, \]
\[\text{supp} \mathcal{F} [a_{k_1, k_2}(k_1', 0)] \subseteq \{ |\xi_1| \approx 2^{k_1 + k_1'}, |\xi_2| \leq C 2^{k_2} \}, \]
\[\text{supp} \mathcal{F} [a_{k_1, k_2}(0, k_2')] \subseteq \{ |\xi_1| \leq C 2^{k_1}, |\xi_2| \approx 2^{k_2 + k_2'} \}, \]
\[\text{supp} \mathcal{F} [a_{k_1, k_2}(k_1', k_2')] \subseteq \{ |\xi_1| \approx 2^{k_1 + k_1'}, |\xi_2| \approx 2^{k_2 + k_2'} \}, k_1', k_2' \geq 1. \]

By this decomposition, we obtain that
\[\sigma_1(x, \xi, \eta) = \sum_{k_1, k_2 = 0}^\infty \sum_{k_1', k_2' = 0}^\infty a_{k_1, k_2}(k_1', k_2') (x) \psi_{k_1} (\xi_1) \psi_{k_2} (\xi_2) \phi_{k_1} (\eta_1) \phi_{k_2} (\eta_2), \]
\[\sigma_2(x, \xi, \eta) = \sum_{k_1, k_2 = 0}^\infty \sum_{k_1', k_2' = 0}^\infty b_{k_1, k_2}(k_1', k_2') (x) \psi_{k_1} (\xi_1) \phi_{k_2} (\xi_2) \phi_{k_1} (\eta_1) \psi_{k_2} (\eta_2), \]
\[\sigma_3(x, \xi, \eta) = \sum_{k_1, k_2 = 0}^\infty \sum_{k_1', k_2' = 0}^\infty c_{k_1, k_2}(k_1', k_2') (x) \psi_{k_1} (\xi_1) \psi_{k_2} (\xi_2) \phi_{k_1} (\eta_1) \phi_{k_2} (\eta_2), \]
where \(b_{k_1, k_2}(k_1', k_2') (x) \) and \(c_{k_1, k_2}(k_1', k_2') (x) \) also satisfy the similar estimates as \(a_{k_1, k_2}(k_1', k_2') (x) \), we omit the details. For the sake of simplicity of notations, we use
\[\tilde{\Delta}_j h(\xi) = \psi_j(\xi) \hat{h}(\xi), \quad \tilde{\Delta}_j^\prime h(\xi) = \psi_j^\prime(\xi) \hat{h}(\xi), \quad \tilde{S}_j h(\xi) = \phi_j(\xi) \hat{h}(\xi). \]
Then finally we reduce our original operator to the study of the following two cases

\[T_{\sigma_1}(f, g)(x) = \sum_{k_1, k_2=0}^{\infty} \sum_{k_1', k_2'=0}^{\infty} a_{k_1, k_2}^{(k_1', k_2')} \Delta_{k_1} \Delta_{k_2} f S_{k_1} S_{k_2} g, \]

\[T_{\sigma_2}(f, g)(x) = \sum_{k_1, k_2=0}^{\infty} \sum_{k_1', k_2'=0}^{\infty} b_{k_1, k_2}^{(k_1', k_2')} \Delta_{k_1} S_{k_2} f S_{k_1} \Delta_{k_2} g, \]

\[T_{\sigma_3}(f, g)(x) = \sum_{k_1, k_2=0}^{\infty} \sum_{k_1', k_2'=0}^{\infty} c_{k_1, k_2}^{(k_1', k_2')} \Delta_{k_1} \Delta_{k_2} f \Delta_{k_1'} S_{k_2} g, \]

and

\[T_{\sigma_4}(f, g)(x) = \sum_{k_1, k_2=0}^{\infty} d_{k_1, k_2} \Delta_{k_1} \Delta_{k_2} f \Delta_{k_1'} \Delta_{k_2'} g. \]

Notice the fact in \(T_{\sigma_1} \) and \(T_{\sigma_2} \), the support for each of the Fourier transform of \((\Delta_{k_1} \Delta_{k_2} f S_{k_1} S_{k_2} g)(x), (\Delta_{k_1} S_{k_2} f S_{k_1} \Delta_{k_2} g)(x)\) are contained in \(\{|\xi_1| \approx 2^{k_1}, |\xi_2| \approx 2^{k_2}, k_1, k_2 \geq 1\} \) with the usual modification when \(k_i = 0 \) for \(i = 1, 2 \).

3.1. Estimates for \(T_{\sigma_1} \)

We prove the \(L^p \times L^q \to L^r \) estimate for \(1 < p, q < \infty \) for the operator \(T_{\sigma_1} \). We can rewrite \(T_{\sigma_1}(f, g)(x) \) that

\[
T_{\sigma_1}(f, g)(x) = \sum_{k_1, k_2=0}^{\infty} \sum_{k_1', k_2'=0}^{\infty} a_{k_1, k_2}^{(k_1', k_2')} \Delta_{k_1} \Delta_{k_2} f S_{k_1} S_{k_2} g
\]

\[
= \sum_{k_1, k_2=0}^{\infty} a_{k_1, k_2}^{(0,0)} \Delta_{k_1} \Delta_{k_2} f S_{k_1} S_{k_2} g + \sum_{k_1, k_2=0}^{\infty} \sum_{k_1', k_2'=0}^{\infty} a_{k_1, k_2}^{(k_1', k_2')} \Delta_{k_1} \Delta_{k_2} f S_{k_1} S_{k_2} g
\]

\[
+ \sum_{k_1, k_2=0}^{\infty} \sum_{k_1', k_2'=0}^{\infty} a_{k_1, k_2}^{(0, k_2')} \Delta_{k_1} \Delta_{k_2} f S_{k_1} S_{k_2} g
\]

\[
+ \sum_{k_1, k_2=0}^{\infty} \sum_{k_1', k_2'=0}^{\infty} a_{k_1, k_2}^{(k_1', 0)} \Delta_{k_1} \Delta_{k_2} f S_{k_1} S_{k_2} g
\]

\[
= T_{\sigma_1}^{(0,0)}(f, g)(x) + T_{\sigma_1}^{(1,0)}(f, g)(x) + T_{\sigma_1}^{(0,1)}(f, g)(x) + T_{\sigma_1}^{(1,1)}(f, g)(x).
\]

Case 1: Estimates for \(T_{\sigma_1}^{(0,0)} \).

Since the support of the Fourier transform of \(T_{\sigma_1}^{(0,0)} \) for fixed \(k_1, k_2 \) is included in \(\{|\xi_1| \approx 2^{k_1}, |\xi_2| \approx 2^{k_2}\} \) with the usual modification when \(k_i = 0 \) for \(i = 1, 2 \). Then, by Hölder’s inequality and Littlewood-Paley theory, the \(L^r \)-norm is estimated by

\[
\| T_{\sigma_1}^{(0,0)}(f, g) \|_{L^r} = \Big\| \sum_{k_1, k_2=0}^{\infty} a_{k_1, k_2}^{(0,0)} \Delta_{k_1} \Delta_{k_2} f S_{k_1} S_{k_2} g \Big\|_{L^r}
\]

\[
\leq C \| (\sum_{k_1, k_2=0}^{\infty} | a_{k_1, k_2}^{(0,0)} \Delta_{k_1} \Delta_{k_2} f S_{k_1} S_{k_2} g |^2)^{\frac{1}{2}} \|_{L^r}
\]

\[
\leq C \| (\sum_{k_1, k_2=0}^{\infty} | \Delta_{k_1} \Delta_{k_2} f |^2)^{\frac{1}{2}} \sup_{k_1, k_2 \in \mathbb{N}} | S_{k_1} S_{k_2} g | \|_{L^r}
\]
for fixed operator and the estimate of \(a_{k_1, k_2}(x) \) for \(0 < \frac{1}{r} = \frac{1}{p} + \frac{1}{q} \) with \(1 < p, q < \infty \).

Case 2: Estimates for \(T_{\sigma_1}^{(1, 0)} \) and \(T_{\sigma_1}^{(0, 1)} \)

Since the situations of \(T_{\sigma_1}^{(1, 0)} \) and \(T_{\sigma_1}^{(0, 1)} \) are symmetrical, we only consider the operator \(T_{\sigma_1}^{(1, 0)} \). By our estimates, the support of the Fourier transform of \(T_{\sigma_1}^{(1, 0)} \) for fixed \(k_2 \geq 1, k_1, k_1' \) is included in \(\{ |\xi_1| \leq C2^{k_1+k_1'}, |\xi_2| \approx 2^{k_2} \} \), and for fixed \(k_2 = 0, k_1', k_1 \) is included in \(\{ |\xi_1| \leq C2^{k_1+k_1'}, |\xi_2| \leq C \} \). Hence, by Hölder inequality and the estimate of \(a_{k_1, k_2}(x) \), we obtain that

\[
\|T_{\sigma_1}^{(1, 0)}(f, g)\|_{L^r} = \left\| \sum_{k_1, k_2 = 0}^{\infty} \sum_{k_1' = 1}^{\infty} a_{k_1, k_2}^{(k_1', 0)}(x) \Delta_{k_1} \Delta_{k_2} f S_{k_1} S_{k_2} g \right\|_{L^r}
\]

\[
\leq C \left\| \left(\sum_{k_2 = 0}^{\infty} \sum_{k_1 = 0}^{\infty} \sum_{k_1' = 1}^{\infty} a_{k_1, k_2}^{(k_1', 0)}(x) \Delta_{k_1} \Delta_{k_2} f S_{k_1} S_{k_2} g |^{2} \right)^{\frac{1}{2}} \right\|_{L^r}
\]

\[
\leq C \left\| \left(\sum_{k_2 = 0}^{\infty} \sum_{k_1 = 0}^{\infty} \sum_{k_1' = 1}^{\infty} 2^{-k_1' N_1} 2^{-k_1 N_1(1-\delta_1)} \Delta_{k_1} \Delta_{k_2} f S_{k_1} S_{k_2} g \right) \right\|_{L^r}
\]

\[
\leq C \left\| \left(\sum_{k_2 = 0}^{\infty} \sum_{k_1 = 0}^{\infty} \sum_{k_1' = 1}^{\infty} 2^{-k_1' N_1} 2^{-k_1 N_1(1-\delta_1)} \Delta_{k_1} \Delta_{k_2} f S_{k_1} S_{k_2} g \right)^{2} \right\|_{L^r}
\]

where

\[
\|a_{k_1, k_2}^{(k_1', 0)}\|_{L^\infty} \leq C 2^{-k_1' N_1} 2^{-k_1 N_1(1-\delta_1)}
\]

for \(k_1' \geq 1 \) and \(0 < \frac{1}{r} = \frac{1}{p} + \frac{1}{q} \) with \(1 < p, q < \infty \).

Case 3: Estimates for \(T_{\sigma_1}^{(1, 1)} \)

Since the support of the Fourier transform of \(T_{\sigma_1}^{(1, 1)} \) for fixed \(k_1, k_2, k_1', k_2' \) is included in \(\{ |\xi_1| \leq C2^{k_1+k_1'}, |\xi_2| \leq C2^{k_2+k_2'} \} \). Then, by Hölder inequality and (3.6), the \(L^r \)-norm is estimated by

\[
\|T_{\sigma_1}^{(1, 1)}(f, g)\|_{L^r} = \left\| \sum_{k_1, k_2 = 0}^{\infty} \sum_{k_1' = 1}^{\infty} a_{k_1, k_2}^{(k_1', k_2')}(x) \Delta_{k_1} \Delta_{k_2} f S_{k_1} S_{k_2} g \right\|_{L^r}
\]

\[
\leq C \left\| \left(\sum_{k_2 = 0}^{\infty} \sum_{k_1 = 0}^{\infty} \sum_{k_1' = 1}^{\infty} 2^{-k_1' N_1} 2^{-k_1 N_1(1-\delta_1)} 2^{-k_2' N_2} 2^{-k_2 N_2(1-\delta_2)} \Delta_{k_1} \Delta_{k_2} f S_{k_1} S_{k_2} g \right) \right\|_{L^r}
\]

\[
\leq C \left\| \left(\sum_{k_2 = 0}^{\infty} \sum_{k_1 = 0}^{\infty} \sum_{k_1' = 1}^{\infty} 2^{-k_1' N_1} 2^{-k_1 N_1(1-\delta_1)} 2^{-k_2' N_2} 2^{-k_2 N_2(1-\delta_2)} \Delta_{k_1} \Delta_{k_2} f S_{k_1} S_{k_2} g \right)^{2} \right\|_{L^r}
\]
3.2. Estimates for T_{σ_2}. In this subsection, We consider the boundedness of T_{σ_2}. As before, we decompose $T_{\sigma_2}(f, g)(x)$ as

$$T_{\sigma_2}(f, g)(x) = \sum_{k_1, k_2 = 0}^\infty \sum_{k_1', k_2' = 0}^\infty b_{k_1, k_2}^{(0, 0)}(x) \Delta_{k_1} S_{k_2} f S_{k_1} \Delta_{k_2} g$$

$$= \sum_{k_1, k_2 = 0}^\infty b_{k_1, k_2}^{(0, 0)}(x) \Delta_{k_1} S_{k_2} f S_{k_1} \Delta_{k_2} g + \sum_{k_1, k_2 = 0}^\infty \sum_{k_1' = 1}^\infty b_{k_1, k_2}^{(k_1', 0)}(x) \Delta_{k_1} S_{k_2} f S_{k_1} \Delta_{k_2} g$$

$$+ \sum_{k_1, k_2 = 0}^\infty \sum_{k_2' = 1}^\infty b_{k_1, k_2}^{(0, k_2')}(x) \Delta_{k_1} S_{k_2} f S_{k_1} \Delta_{k_2} g$$

$$+ \sum_{k_1, k_2 = 0}^\infty \sum_{k_1', k_2' = 1}^\infty b_{k_1, k_2}^{(k_1', k_2')}(x) \Delta_{k_1} S_{k_2} f S_{k_1} \Delta_{k_2} g$$

$$= T_{\sigma_2}^{(0, 0)}(f, g)(x) + T_{\sigma_2}^{(0, 1)}(f, g)(x) + T_{\sigma_2}^{(1, 0)}(f, g)(x) + T_{\sigma_2}^{(1, 1)}(f, g)(x).$$

Case I: Estimates for $T_{\sigma_2}^{(0, 0)}$

Since the support of the Fourier transform of $T_{\sigma_2}^{(0, 0)}$ for fixed k_1, k_2 is included in $\{||\xi|| \approx 2^{k_1}, ||\xi|| \approx 2^{k_2}\}$ with the usual modification when $k_i = 0$ for $i = 1, 2$. Then, by H"older inequality and Lemma 2.2, the L^r-norm is estimated by

$$\|T_{\sigma_2}^{(0, 0)}(f, g)\|_{L^r} = \| \sum_{k_1, k_2 = 0}^\infty b_{k_1, k_2}^{(0, 0)}(x) \Delta_{k_1} S_{k_2} f S_{k_1} \Delta_{k_2} g \|_{L^r}$$

$$\leq C \| \left(\sum_{k_1, k_2 = 0}^\infty |b_{k_1, k_2}^{(0, 0)}(x) \Delta_{k_1} S_{k_2} f S_{k_1} \Delta_{k_2} g|^2 \right)^{\frac{1}{2}} \|_{L^r}$$

$$\leq C \| \left(\sum_{k_1 = 0}^\infty \left(\sup_{k_2} |\Delta_{k_1} S_{k_2} f|^2 \right)^{\frac{1}{2}} \left(\sum_{k_1 = 0}^\infty \left(\sup_{k_2} |S_{k_1} \Delta_{k_2} g|^2 \right)^{\frac{1}{2}} \right)^{\frac{1}{2}} \right) \|_{L^r}$$

$$\leq C \| \left(\sum_{k_1 = 0}^\infty \left(\sup_{k_2} |\Delta_{k_1} f|^2 \right)^{\frac{1}{2}} \left(\sum_{k_1 = 0}^\infty \left(\sup_{k_2} |S_{k_1} \Delta_{k_2} g|^2 \right)^{\frac{1}{2}} \right)^{\frac{1}{2}} \right) \|_{L^r}$$

$$\leq C \| \left(\sum_{k_1 = 0}^\infty \left(\sup_{k_2} |\Delta_{k_1} f|^2 \right)^{\frac{1}{2}} \left(\sum_{k_2 = 0}^\infty |\Delta_{k_2} g|^2 \right)^{\frac{1}{2}} \right) \|_{L^r} \leq C \| f \|_{L^p} \| g \|_{L^q},$$

where $0 < \frac{1}{r} = \frac{1}{p} + \frac{1}{q}$ with $1 < p, q < \infty$.

Case II: Estimates for $T_{\sigma_2}^{(1, 0)}$ and $T_{\sigma_2}^{(0, 1)}$
By symmetry, it is sufficient to consider $T_{\sigma_2}^{(1,0)}$, and the operator $T_{\sigma_2}^{(0,1)}$ can be treated in the same way. Since the support of the Fourier transform of $T_{\sigma_1}^{(1,0)}$ for fixed k'_1, k_1, k_2 is included in $\{ |\xi_1| \leq C2^{k_1 + k'_1}, |\xi_2| \approx 2^{k_2} \}$ with the usual modification when $k_2 = 0$. Hence, we obtain that

$$\|T_{\sigma_2}^{(1,0)}(f, g)\|_{L^r} = \left\| \sum_{k_1, k_2 = 0}^{\infty} \sum_{k'_1, k'_2 = 0}^{\infty} b(k'_1, k'_2) f S_{k_2} \Delta_{k_1} \Delta_{k_2} g \right\|_{L^r} \leq C \left\| \sum_{k_2 = 0}^{\infty} \sum_{k'_1, k'_2 = 0}^{\infty} b(k'_1, k'_2) f S_{k_2} \Delta_{k_1} \Delta_{k_2} g \right\|_{L^r} \leq C \left\| \sup_{k_1, k_2 \in \mathbb{N}} |\Delta_{k_1} S_{k_2} f| \right\|_{L^p} \left\| \sum_{k_2 = 0}^{\infty} (\sup_{k_1} |S_{k_1} \Delta_{k_2} g|)^2 \right\|_{L^q} \leq C \left\| f \right\|_{L^p} \|g\|_{L^q},$$

where $0 < \frac{1}{r} = \frac{1}{p} + \frac{1}{q}$ with $1 < p, q < \infty$.

Case III: Estimates for $T_{\sigma_2}^{(1,1)}$

As before, the L^r-norm of $T_{\sigma_2}^{(1,1)}$ is estimated by

$$\|T_{\sigma_2}^{(1,1)}(f, g)\|_{L^r} \leq C \left\| \sum_{k_1, k_2 \in \mathbb{N}} |\Delta_{k_1} S_{k_2} f| \right\|_{L^p} \left\| \sum_{k_1, k_2 \in \mathbb{N}} |S_{k_1} \Delta_{k_2} g| \right\|_{L^q} \leq C \left\| f \right\|_{L^p} \|g\|_{L^q},$$

where $0 < \frac{1}{r} = \frac{1}{p} + \frac{1}{q}$ with $1 < p, q < \infty$.

Hence, we obtain

$$\|T_{\sigma_2}(f, g)\|_{L^r} \leq C \left\| f \right\|_{L^p} \|g\|_{L^q}$$

for $0 < \frac{1}{r} = \frac{1}{p} + \frac{1}{q}$ with $1 < p, q < \infty$.

3.3. Estimates for T_{σ_3}

In this subsection, We consider the boundedness of T_{σ_3}. As before, we decompose $T_{\sigma_3}(f, g)(x)$ as

$$T_{\sigma_3}(f, g)(x) = \sum_{k_1, k_2 = 0}^{\infty} c_{k_1, k_2}^{(0)}(x) \Delta_{k_1} \Delta_{k_2} S_{k_2} g$$

$$+ \sum_{k_1, k_2 = 0}^{\infty} c_{k_1, k_2}^{(1)}(x) \Delta_{k_1} \Delta_{k_2} \Delta_{k_1} S_{k_2} g$$

$$= T_{\sigma_3}^{(0)}(f, g)(x) + T_{\sigma_3}^{(1)}(f, g)(x).$$

Case A: Estimates for $T_{\sigma_3}^{(0)}$

Similarly, by Lemma 2.3 for the second variable, the L^r-norm is estimated by

$$\|T_{\sigma_3}^{(0)}(f, g)\|_{L^r} = \left\| \sum_{k_1, k_2 = 0}^{\infty} c_{k_1, k_2}^{(0)}(x) \Delta_{k_1} \Delta_{k_2} S_{k_2} g \right\|_{L^r}$$
\[\leq C \| \sum_{k_1=0}^{\infty} \sum_{k_2=0}^{\infty} c_{k_1,k_2}^{(0)}(x) \Delta_{k_1} \Delta_{k_2} f \Delta_{k_1}' \Delta_{k_2}' S_{k_2} g \|^2_{L^r} \]

\[\leq C \| \sum_{k_1,k_2=0}^{\infty} \Delta_{k_1} \Delta_{k_2} f \|^2_{L^r} \cdot \| \{ \sum_{k_2=0}^{\infty} (\sup_{k_1} |S_{k_1} \Delta_{k_2} g|)^2 \}^{\frac{1}{2}} \|_{L^q} \]

\[\leq C \| f \|_{L^r} \| g \|_{L^q}, \]

where \(0 < \frac{1}{r} = \frac{1}{p} + \frac{1}{q} \) with \(1 < p, q < \infty \).

Case B: Estimates for \(T_{\sigma_3}^{(1)} \).

As before, the \(L^r \)-norm of \(T_{\sigma_3}^{(1)} \) is estimated by

\[\| T_{\sigma_3}^{(0)}(f,g) \|_{L^r} = \| \sum_{k_1,k_2=0}^{\infty} \sum_{k_2'=1}^{\infty} c_{k_1,k_2}^{(1)}(x) \Delta_{k_1} \Delta_{k_2} f \Delta_{k_1}' \Delta_{k_2}' S_{k_2} g \|_{L^r} \]

\[\leq C \| \sum_{k_1,k_2=0}^{\infty} \sum_{k_2'=1}^{\infty} c_{k_1,k_2}^{(1)}(x) \Delta_{k_1} \Delta_{k_2} f \Delta_{k_1}' \Delta_{k_2}' S_{k_2} g \|_{L^r} \]

\[\leq C \| \sum_{k_1=0}^{\infty} (\sup_{k_2} |\Delta_{k_1} \Delta_{k_2} f|) (\sup_{k_2} |\Delta_{k_1}' \Delta_{k_2}' S_{k_2} g|) \|_{L^r} \]

\[\leq C \| \left\{ \sum_{k_1=0}^{\infty} (\sup_{k_2} |\Delta_{k_1} \Delta_{k_2} f|)^2 \right\}^{\frac{1}{2}} \|_{L^p} \cdot \| \left\{ \sum_{k_2=0}^{\infty} (\sup_{k_1} |\Delta_{k_1}' \Delta_{k_2}' S_{k_2} g|)^2 \right\}^{\frac{1}{2}} \|_{L^q} \]

\[\leq C \| f \|_{L^r} \| g \|_{L^q}, \]

where \(0 < \frac{1}{r} = \frac{1}{p} + \frac{1}{q} \) with \(1 < p, q < \infty \).

Hence, we obtain

\[\| T_{\sigma_3}(f,g) \|_{L^r} \leq C \| f \|_{L^r} \| g \|_{L^q} \]

for \(0 < \frac{1}{r} = \frac{1}{p} + \frac{1}{q} \) with \(1 < p, q < \infty \).

3.4. Estimates for \(T_{\sigma_4} \).

In this subsection, We consider the boundedness of \(T_{\sigma_4} \).

It is easy to see that

\[\| T_{\sigma_4}(f,g) \|_{L^r} = \| \sum_{k_1,k_2=0}^{\infty} d_{k_1,k_2}(x) \Delta_{k_1} \Delta_{k_2} f \Delta_{k_1}' \Delta_{k_2}' g \|_{L^r} \]

\[\leq C \| \sum_{k_1,k_2=0}^{\infty} |\Delta_{k_1} \Delta_{k_2} f \Delta_{k_1}' \Delta_{k_2}' g| \|_{L^r} \]

\[\leq C \| \left\{ \sum_{k_1,k_2=0}^{\infty} |\Delta_{k_1} \Delta_{k_2} f|^2 \right\}^{\frac{1}{2}} \|_{L^p} \cdot \| \left\{ \sum_{k_1,k_2=0}^{\infty} |\Delta_{k_1}' \Delta_{k_2}' g|^2 \right\}^{\frac{1}{2}} \|_{L^q} \]

\[\leq C \| f \|_{L^r} \| g \|_{L^q}, \]

This completes the proof of Theorem 1.6. \(\square \)

Acknowledgments. The authors would like to thank the referees for carefully reading the manuscript and giving many useful advice.
REFERENCES

[1] Á. Bényi, D. Maldonado, V. Naibo and R. H. Torres, On the Hörmander classes of bilinear pseudodifferential operators, *Integral Equ. Oper. Theory*, 67 (2010), 341–264.

[2] Á. Bényi and R. H. Torres, Symbolic calculus and the transposes of bilinear pseudodifferential operators, *Commun. Partial Differ. Equ.*, 28 (2003), 1161–1181.

[3] F. Bernicot, Local estimates and global continuities in Lebesgue spaces for bilinear operators, *Anal. PDE*, 1 (2008), 1–27.

[4] J. Chen and G. Lu, Hörmander type theorems for multi-linear and multi-parameter Fourier multiplier operators with limited smoothness, *Nonlinear Anal.*, 101 (2014), 98–112.

[5] J. Chen and G. Lu, Hörmander type theorem on Bi-parameter Hardy spaces for Fourier multipliers with optimal smoothness, *Rev. Mat. Iberoam.*, 34 (2018), 1541–1561.

[6] M. Christ and J. L. Journé Polynomial growth estimates for multilinear singular integral operators, *Acta Math.*, 159 (1987), 51–80.

[7] R. Coifman and Y. Meyer, On commutators of singular integrals and bilinear singular integrals, *Trans. Amer. Math. Soc.*, 212 (1975), 315–331.

[8] W. Dai and G. Lu, L^p estimates for multi-linear and multi-parameter pseudo-differential operators, *Bull. Soc. Math. France.*, 143 (2013), 567–597.

[9] W. Ding, G. Lu and Y. Zhu, Multi-parameter local Hardy spaces, *Nonlinear. Anal.*, 184 (2019), 352–380.

[10] C. Fefferman, L^p bounds for pseudo-differential operators, *Israel J. Math.*, 14 (1973), 413–417.

[11] C. Fefferman and E. M. Stein, Some maximal inequalities, *Am. J. Math.*, 93 (1971), 107–115.

[12] L. Grafakos and R. H. Torres, Multilinear Calderón-Zygmund theory, *Adv. Math.*, 165 (2002), 124–164.

[13] Y. Han, G. Lu and E. Sawyer, Flag Hardy spaces and Marcinkiewicz multipliers on the Heisenberg group, *Anal. PDE*, 7 (2014), 1465–1534.

[14] L. Hörmander, On the L^2 continuity of pseudo-differential operators, *Commun. Pure Appl. Math.*, 24 (1971), 529–535.

[15] C. Kenig and E. M. Stein, Multilinear estimates and fractional integration, *Math. Res. Lett.*, 6 (1999), 1–15.

[16] K. Koekoek and N. Tomita, Bilinear pseudo-differential operators with symbols in BS^m_1, on Triebel-Lizorkin spaces, *J. Fourier Anal. Appl.*, 24 (2018), 309–319.

[17] G. Lu and L. Zhang, L^p estimates for a trilinear pseudo-differential operator with flag symbols, *Indiana Univ. Math. J.*, 66 (2017), 877–900.

[18] A. Miyachi and N. Tomita, Estimates for trilinear flag paraproducts on L^∞ and Hardy spaces, *Math. Z.*, 282 (2016), 577–613.

[19] C. Muscalu, Paraproducts with flag singularities. I. A case study, *Rev. Mat. Iberoam.*, 23 (2007), 705–742.

[20] C. Muscalu, J. Pipher, T. Tao and C. Thiele, Bi-parameter paraproducts, *Acta Math.*, 193 (2004), 269–296.

[21] C. Muscalu, J. Pipher, T. Tao and C. Thiele, Multi-parameter paraproducts, *Rev. Mat. Iberoam.*, 22 (2006), 963–976.

[22] C. Muscalu and W. Schlag, *Classical and Multilinear Harmonic Analysis II*, Cambridge Univ. Press, 2013.

Received June 2020; revised October 2020.

E-mail address: huangliang@mail.bnu.edu.cn

E-mail address: chenjiaobnu@163.com