An Additively Manufactured Titanium Alloy in the Focus of Metallography

Abstract
Additive manufacturing processes allow the production of geometrically complex lightweight structures with specific material properties. However, by contrast with ingot metallurgy methods, the manufacture of components using this process also brings about some challenges. In the field of microstructural characterization, where mostly very fine structures are analyzed, it is thus indispensable to optimize the classic sample preparation process and to furthermore implement additional preparation steps. This work focuses on the metallography of additively manufactured Ti-6Al-4V components produced in a selective laser melting process. It offers a guideline for the metallographic preparation along the process chain of additive manufacturing from the metal powder characterization to the macro- and microstructural analysis of the samples.

Kurzfassung
Additive Fertigungsprozesse ermöglichen die Herstellung von geometrisch komplexen Leichtbaustrukturen mit spezifischen Werkstoffeigenschaften. Die Bauteilfertigung über diesen Prozess bringt aber, im Vergleich zu den schmelzmetallurgischen Verfahren, einige Herausforderungen mit sich. So auch im Bereich der Mikrostrukturalcharakterisierung des meist sehr feinen Gefüges, wobei es unumgänglich ist, die klassische Probenpräparation zu optimieren sowie darüber hinaus zusätzliche Präparationsschritte zu implementieren. Diese Arbeit beschäftigt sich mit der Metallographie von additiv gefertigten Ti-6Al-4V-Bauteilen, hergestellt durch selektives Laserschmelzen. Beginnend bei der Metallpulvercharakterisierung bis hin zur makro- und mikrostrukturellen Analyse der lasergeschmolzenen Probekörper bietet diese Arbeit einen Leitfaden für die metallographische Präparation entlang der Herstellung.

Authors:
Christian Fleißner-Rieger, Thomas Pogrielz, David Obersteiner, Helmut Clemens, Svea Mayer
Department Werkstoffwissenschaft, Montanuniversität Leoben, Franz-Josef Straße 18, 8700 Leoben, Österreich; e-mail: christian.fleissner-rieger@unileoben.ac.at
Tanja Pfeifer Pankl Systems Austria GmbH, Additive Manufacturing Technologies, Industriestraße Ost 4, 8605 Kapfenberg, Österreich

Open Access. © 2020 Christian Fleißner-Rieger, published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.
laser melted sample. Apart from developing preparation parameters, selected etching methods were examined with regard to their practicality.

1. Einleitung

Die Herstellung von metallischen Strukturbau- teilen über additive Fertigungsverfahren (engl.: Additive Manufacturing, AM) ist in den letzten 20 Jahren etabliert worden. Universitäten und Forschungseinrichtungen haben wesentlich dazu beigetragen, dass AM in industriellen Anwendungen zum Einsatz kommt. Auch im Bereich der Leichtbauwerkstoffe, wie Titan und Titanlegierungen, ist AM bereits ein etabliertes Fertigungsverfahren und wird in der Luftfahrt, Medizintechnik, Automobil- und Schiffahrtindustrie für die Herstellung von zum Teil komple- xen Bauteilen verwendet, die dann z.B. bei erhöhten Temperaturen und in korrosiven Medien eingesetzt werden [1]. Titanlegierungen werden in Abhängigkeit der Legierungselemente in α, near-α, α+β und β Legierungen aufgeteilt [2]. Die α+β Legierung Ti-6Al-4V (m.%) ist die am häufigsten eingesetzte Titanlegierung [3, 4]. Die α+β-Legierung Ti-6Al-4V (m.%) [3, 4]. Bau- teile daraus werden bspw. über das pulverbett- basierte selektive Laserschmelzen (engl.: Laser Powder Bed Fusion, LPBF) hergestellt. Dabei erstreckt sich die Materialcharakterisierung, vor dem Hintergrund der Qualitätssicherung von Prozess und Produkt, von metallischen Ausgangspulver bis hin zur additiv gefertigten dichten Materialprobe. Da die Qualität des Pulvers eng mit der Qualität des Endprodukts verknüpft ist, werden Parameter, wie die chemische Zusammensetzung, das Fließverhalten, die Klopf- und Fülldichte, die Sphärizität, der Porenanteil und die Partikelgrößenverteilung analysiert [5]. Die am häufigsten eingesetzte Titanlegierung ist die α+β-Legierung Ti-6Al-4V (m.%) [3, 4]. Bau- teile daraus werden bspw. über das pulverbett- basierte selektive Laserschmelzen (engl.: Laser Powder Bed Fusion, LPBF) hergestellt. Dabei erstreckt sich die Materialcharakterisierung, vor dem Hintergrund der Qualitätssicherung von Prozess und Produkt, von metallischen Ausgangspulver bis hin zur additiv gefertigten dichten Materialprobe. Da die Qualität des Pulvers eng mit der Qualität des Endprodukts verknüpft ist, werden Parameter, wie die chemische Zusammensetzung, das Fließverhalten, die Klopf- und Fülldichte, die Sphärizität, der Porenanteil und die Partikelgrößenverteilung analysiert [5]. Bei der Untersuchung der additiv gefertigten Ti-6Al-4V Proben wird das Hauptaugenmerk auf mikrostrukturrelle Charakteristi- ka, wie z.B. Gefügehomogenität; Aussehen der hexagonalen (hex) martensitischen α’-Phase sowie auf die Phasenanteile gelegt [6, 7]. Durch den AM-Fertigungsprozess entstehen Gefügestrukturen, welche sich grundlegend vom
 klassischen schmelzmetallurgischen Herstellungsprozess unterscheiden. Beispielsweise kommt es bei der additiven Fertigung von Ti-6Al-4V zu sogenannten „Layer-Bands“ bzw. zur Ausbildung einer schichtartigen Struktur. Diese Schichtstruktur entsteht durch Segregationen der Legierungsbestandteile während des Erstarrungsprozesses sowie der Reaktion der Oberfläche mit der Umgebungsluft und repräsentiert somit die Schmelzbadgrenzen des Fertigungsprozesses [8, 9]. Im Rahmen dieser Arbeit wird auf die Kontrastierung dieser Schichtstrukturen eingegangen.

Aus mikrostrukturerlicher Sicht erstarren SLM gefertigte $\alpha+\beta$-Legierungen, wie z. B. Ti-6Al-4V, episaktisch in Form der primären β-Phase über mehrere aufgebrachte Schichten, was zu anisotropem Materialverhalten führt [8]. Die kubisch raumzentrierte (krz) β-Phase, die Hochtemperaturphase des Ti und seiner Legierungen, zeigt beim Erstarrungsprozess eine Vorzugsorientierung in $\langle 100 \rangle$-Richtung. Da Größe und Form dieser kolumnaren β-Kornstruktur von den SLM-Fertigungsparametern abhängen und in weiterer Folge die Bauteil- eigenschaften beeinflussen, ist das Erfassen dieser Prozess-Mikrostruktur-Eigenschaftsbeziehung von besonderer Bedeutung. Die Kenntnis dieser Beziehungen macht es möglich, optimale Einstellung der SLM Fertigungsparameter und dadurch der mechanischen Eigenschaften zu erzielen [8]. Die visuelle Darstellung der β-Kornstruktur, welche sich im epitaktischen Erstarrungsprozess aus der Schmelze bildet, ist aufgrund der allotropen Phasenumwandlung ($\beta \rightarrow \alpha'$) entweder über Ätzen, oder durch eine Rekonstruktion über eine programmbasierte Rückrechnung möglich. Die programmbasierte Rückrechnung basiert auf Daten aus Experimenten der Elektronenruckstreueugung und die Auswertung erfolgt z. B. mit ARPGE [10, 11] (engl.: Automatic Reconstruction of Parent Grains from EBSD).

Nach Abschluss des additiven Fertigungsprozesses wird das Bauteil meist einem Nach-
subjected to a post-processing step [12]. Post-processing steps such as Hot Isostatic Pressing, HIP, can induce further changes to the microstructure within the component or in surface-near layers [13]. In order to analyze the effectiveness and efficiency of the additive manufacturing process and/or post-processing, the metallographic preparation for the respective material characterization must therefore imperatively take into account process-microstructure relationships.

Components made of titanium alloys are usually prepared in a multi-stage grinding and polishing process subsequent to which they are directly examined or etched. In this context, Kroll etching is a frequently applied method for revealing the microstructure of the castings and forgings [7, 14–17]. The suitability of this preparation technique for additively manufactured titanium components is assessed in this work and the optimization of the metallographic preparation along the process chain, from the powdery raw material to the additively manufactured component, is outlined taking the example of the two-phase alloy Ti-6Al-4V.

2. Experimental Procedure

The metallographic preparation was carried out on additively manufactured components made of gas-atomized titanium alloy powder Ti-6Al-4V, grade 23 ELI (Extra Low Interstitials). For comparison purposes, the powder’s particle size determination was performed applying two different methods. In addition to dry screening with mesh widths of 100, 63, 40, and 25 μm, a Sympatec HELOS laser diffraction spectrometer was used to determine the grain size. The chemical composition of the powder was determined by atomic emission spectroscopy for the elements Al (6.27 m.%), V (3.9 m.%), and Fe (0.2 m.%), and by carrier gas hot extraction for the elements.

In der Regel werden Bauteile aus Titanlegierungen über einen mehrstufigen Schleif- und Polierprozess präpariert und in weiterer Folge direkt untersucht oder geätzt. Die Ätzung nach Kroll ist dabei eine häufig angewandte Methode, um die Mikrostruktur der Guss- und Schmiedeteile zu visualisieren [7, 14–17]. Die Eignung dieser Präparationstechnik für additiv gefertigte Titanbauteile wird in dieser Arbeit beleuchtet. So wird am Beispiel der zweiphasigen Ti-6Al-4V-Legierung die Optimierung der metallographischen Präparation entlang der Prozesskette, beginnend vom pulverförmigen Ausgangsprodukt bis zum additiv gefertigten Bauteil, gezeigt.

2. Experimentelles

Die metallographische Präparation erfolgte an additiv gefertigten Bauteilen, hergestellt aus gasverdüstem Pulver der Titanlegierung Ti-6Al-4V Grade 23 ELI (engl.: Extra Low Interstitials). Die Partikelgrößenbestimmung des Pulvers erfolgte aus Vergleichszwecken mittels zweier unterschiedlicher Verfahren. Zusätzlich zu einer Trockensiebanalyse mit den Maschenweiten 100, 63, 40 und 25 μm wurde ein HELOS Laserbeugungsspektrometer der Fa. Sympatec GmbH zur Korngrößenbestimmung eingesetzt. Die Bestimmung der chemischen Zusammensetzung des Pulvers erfolgte mittels Atomemissionspektroskopie für die Elemente Al (6,27 m.%), V (3,9 m.%) und Fe (0,2 m.%) bzw. einer Trägergas-Heiß-
ments O (0.083 m.%) and N (0.0205 m.%), respectively. To characterize the powder, the powder flowability was determined by measuring the flow rate (ASTM B964 [18]) using a Carney funnel, while the powder bulk density was measured according to ASTM B212 [19] using a Hall flow meter. The sphericity measurements were carried out using a Retsch Technology particle size analyzer CAMSIZER XT.

The samples for the test series were manufactured on an EOS machine of the type M290. SLM manufactured density cubes with the dimensions 22 × 22 × 25 mm³ were manufactured for the characterization of the microstructure. Not just the as-built condition, i. e. the condition immediately subsequent to the manufacturing process, but also a heat-treated variant was analyzed. The heat treatment was performed by applying temperatures ranging from 800 °C to 850 °C for 1 – 3 hours in Ar atmosphere. Due to non-disclosure agreements, the exact parameters of the heat treatment must not be specified. The samples were cut in a cutting machine ATM Brilliant 221 using a resin-bonded, abrasive diamond cut-off wheel of the type BOD13 (Struers). It should be noted here that more detailed information about the preparation methods and parameters can be found in the next chapter. Subsequent to the cutting process, the sample material was embedded using the Struers hot mounting press CitoPress-20. For the sample mounting process, we had the bakelite-based mounting resin PolyFast (Struers) and the Cu-based mounting compound ProbeMet (Buehler) at our disposal. Grinding and polishing of the mounted samples were performed on a semi-automatic grinding and polishing machine Struers Tegramin-30. The vibratory polishing machine VibroMet-2 was used in combination with a chemically resistant polishing cloth of the type MicroCloth (Buehler) for further polishing. Electrolytic polishing and etching steps were performed on a
Struers LectroPol-5 machine using the electrolytes listed in Tab. 1. The lower part of the table also lists the etchants used to reveal the macro and microstructure. The present phases were also analyzed in X-ray diffraction experiments (XRD). For this purpose, a Bruker D8 Advance diffractometer was used in Bragg-Brentano geometry with a parallel beam configuration applying Cu-K\textsubscript{α} radiation (\(\lambda=1.54\) Å). The diffractograms were acquired using a Sol-X detector applying the following measurement parameters: step size of 0.02°, measuring time of 2 s.

The light microscope examinations were performed on a Zeiss AXIO Imager.M2 light microscope (LM) equipped with an Axios-Cam HRc.5 camera. A Versa 3D Dual Beam type FEI scanning electron microscope (SEM) with a field emission cathode and a

Name	Composition / Zusammensetzung
Electrolyte A3 (Struers) / Elektrolyt A3 der Fa. Struers	Mixture of methanol CH\textsubscript{3}OH and 2-butoxyethanol / Gemisch aus Methanol CH\textsubscript{3}OH und 2-Butoxy-Ethanol
Electrolyte Ti Em3 / Elektrolyt Ti Em3	35 ml distilled water, 60 ml methanol CH\textsubscript{3}OH-99.8 %, 10 ml lactic acid C\textsubscript{3}H\textsubscript{6}O\textsubscript{3-32 %}, 5 ml phosphoric acid H\textsubscript{3}PO\textsubscript{4-85 %}, 5 g citric acid C\textsubscript{6}H\textsubscript{8}O\textsubscript{7}, and 5 g oxalic acid C\textsubscript{2}H\textsubscript{2}O\textsubscript{4}[31] / 35 ml destilliertes Wasser, 60 ml Methanol CH\textsubscript{3}OH-99,8 %, 10 ml Milchsäure C\textsubscript{3}H\textsubscript{6}O\textsubscript{3-32 %}, 5 ml Phosphorsäure H\textsubscript{3}PO\textsubscript{4-85 %}, 5 g Zitronensäure C\textsubscript{6}H\textsubscript{8}O\textsubscript{7} und 5 g Oxalsäure C\textsubscript{2}H\textsubscript{2}O\textsubscript{4}[31]
Wet etching according to Kroll / Nassätzung nach Kroll	100 ml distilled water, 2–6 ml nitric acid HNO\textsubscript{3-65 %}, and 1–3 ml hydrofluoric acid HF-40 % [31] / 100 ml destilliertes Wasser, 2–6 ml Salpetersäure HNO\textsubscript{3-65 %} und 1–3 ml Flusssäure HF-40 % [31]
Wet etching according to Weck / Nassätzung nach Weck	100 ml distilled water, 50 ml ethanol C\textsubscript{2}H\textsubscript{5}OH-50 %, 2 g ammonium bifluoride NH\textsubscript{4}HF\textsubscript{2} [31] / 100 ml destilliertes Wasser, 2–6 ml Salpetersäure HNO\textsubscript{3-65 %} und 1–3 ml Flusssäure HF-40 % [31]
Thermal etching according to Barnes / Thermische Ätzung nach Barnes	30 and 120 min heat treatment at 540 °C, respectively [29] / Wärmebehandlung bei 540 °C für 30 bzw. 120 min [29]

Tab. 1: List of the electrolytes used for electrolytic polishing and of etchants used to reveal the macro and microstructure.

Tab. 1: Auflistung der für das elektrolytische Polieren verwendeten Elektrolyte sowie die verwendeten Ätzmittel zur Sichtbarmachung der Makro- und Mikrostruktur.
secondary electron detector was used for high resolution examinations. The electron backscatter diffraction (EBSD) measurements for a determination of the crystallographic structure and the orientation of the crystalline phases were also performed on the above-mentioned FEI device using a Hikari XP EBSD camera and an EDAX EBSD detector. Data were acquired and analyzed using the EDAX software OIM Data Collection and OIM Analysis 7 based on the following EBSD measurement parameters: accelerating voltage of 20 kV, step size of 100 nm and a 4×4 binning mode of the EBSD camera.

3. Results and Discussion
3.1 Material Sampling and Mounting

Fig. 1 shows the metallographic sample preparation workflow. In a first step, the sample material is taken. First, the powder is sampled. It should preferably be taken at several container positions. It is thus ensured that no individual powder fractions of a particular particle size are preferably examined, such as due to segregations.

3. Ergebnisse und Diskussion
3.1 Entnahme des Probenmaterials und Einbetten

In Bild 1 ist der Verlauf der metallographischen Probenpräparation dargestellt. Der erste Schritt dabei ist die Entnahme des Probenmaterials. Beginnend beim Pulver sollte die Entnahme an mehreren Stellen des Behälters erfolgen. Hierdurch wird vermieden, dass bezüglich der Partikelgröße, z.B. aufgrund von Entmischungen, einzelne Pulverfraktionen bevorzugt untersucht werden.
Subsequent to the powder sampling process, the particles are characterized. For this purpose, particle size distribution, morphology, sphericity, flow rate, and bulk density are determined. In the diagram in Fig. 2, the cumulative powder particle distribution is plotted against the particle size. As is apparent from the diagram, there is a significant difference between the particle size distribution determined by laser diffraction and the distribution determined by sieve analysis. It should be taken into consideration that the sieve analysis was performed with a limited number of mesh sizes. As compared to the distribution obtained by laser diffraction-based particle sizing which allows for a finer gradation, this limited number of mesh sizes as well as sieve clogging by fine particles therefore resulted in a coarser distribution and over-estimated d-values (d_{10}, d_{50}, d_{90}). Due to the mentioned problem, dry sieving should therefore be dispensed with for an examination of particles with a diameter of < 40 µm.

Fig. 3a) shows the powder particle morphology in a secondary electron SEM image. The SEM images reveal that the particles have a smaller fraction of satellites and...
are very spherical which is reflected by a high sphericity value (0.95) according to ISO 9276 [20]. The bulk density of the powder is 2.49 g/cm³. It thus amounts to 56% of the theoretical density of Ti-6Al-4V [21]. The Carney flow rate of the powder according to ASTM B964 [18] is 6.4 s/50 g.

A metallographic section of the powder has to be prepared for the purpose of examining any existing gas pores within the powder particles and for the structural analysis. As is apparent from Fig. 3b), individual powder particles may be removed during the metal powder mounting process (marked in red). To avoid this, it is recommended to either mix the metal powder particles with a sieved fine fraction (< 25 µm) of the mounting medium before mounting or to use a very fine mounting material with a low grain size. The use of a fine mounting material allows for reducing the fraction of removed powder particles.

Figs. 3a and b: a) The SEM image (secondary electron mode) of the Ti-6Al-4V powder’s particle morphology is characterized by very spherical shapes with a small proportion of satellites; b) LM image of the powder section, embedded in the bakelite-based mounting resin PolyFast. The dashed red circles mark positions where powder particles have been removed.

Bilder 3a und b: a) Die REM-Aufnahme (Sekundärelektronen-Modus) der Partikelmorphologie des Ti-6Al-4V Pulvers zeigt eine sphärische Form mit einem geringen Anteil an Satelliten; b) LM-Aufnahme des Pulverschliffs, eingebettet in das kunststoffbasierte Einbettmittel Polyfast. Die rot strichlierten Kreise markieren die Positionen, aus denen sich Pulverpartikelchen herausgelöst haben.
Die Entnahme der Vollmaterialproben erfolgt über einen Probenzuschnitt durch abrasiv wirkende Schneidscheiben. Diese bieten den Vorteil ein breites Spektrum an Werkstoffen trennen zu können und darüber hinaus eine gute Oberflächenqualität nach dem Trennprozess zu gewährleisten [16]. Bei unzureichender Kühlung oder durch einen zu hohen Vorschub der Trenscheibe kann es jedoch zum Überhitzen des Werkstoffs kommen. Während des Schneidvorgangs sollte daher stets auf eine ausreichende Kühlung sowie die richtige Vorschubgeschwindigkeit geachtet werden, da derartige Probenschäden nur sehr aufwendig wieder entfernt werden können bzw. zu Fehlinterpretationen des Gefüges führen können. Bei einer Vorschubgeschwindigkeit von 1 mm/min ist es zweckmäßig eine Umdrehungsgeschwindigkeit der Trenscheibe von 2500–3600 min⁻¹ einzuhalten. Das verwendete Kühlmittel sollte eine Mixtur aus Wasser, Schmiermittel und einem Korrosionsschutz in Form eines Additivs sein. Das Einbetten der additiv gefertigten Vollmaterialproben erfolgte entweder durch ein kunststoff- oder ein Cu-basiertes Einbettmittel. Bei der Verwendung des Cu-basierten ProbeMet ist der Härteunterschied zwischen Probe und Einbettmittel geringer, was eine bessere mechanische Präparation, auch im Bereich der Randschichten, ermöglicht. Gerade bei additiv gefertigten Bauteilen ist eine Oberflächen- und Randschichtuntersuchung von besonderer Bedeutung. Aufgrund der guten elektrischen Leitfähigkeit des Kupfers ist zusätzlich für einen hohen und stabilen Sekundärelektronenstrom (und damit einem guten Kontrast) im Zuge der elektronenmikroskopischen Untersuchung gesorgt. Nachteile dieses Einbettmittels sind jedoch eine höhere Aushärtezeit sowie höhere Materialkosten bei der Anschaffung. Im Zuge dieser Arbeit wurde für Untersuchungen im REM das Cu-basierte Einbettmittel ProbeMet verwendet. Für alle anderen Untersuchungen fand das kunststoffbasierte Einbettmittel seine Anwendung. Zur Herstellung der Schliffe wurden folgende Einstellungen an der Einbettpressse vorgenommen:
3.2 Schleifen und Polieren

Nach dem Trenn- und Einbettvorgang stellt Nassschleifen und Polieren die nächsten Schritte der Probenpräparation dar. Während des Planschleifvorgangs wird die durch den Trennvorgang entstandene, aber für die Analyse ungeeignete, Rauigkeit- und Deformationszone entfernt und eine planparallele Oberfläche der Probe erzeugt [16, 17]. Folgend werden aneinander gereihte Feinschleifschritte mit jeweils abnehmender Körnung des Schleifens durchgeführt. Es sollte dabei beachtet werden, dass schwerwiegende Schädigungen (Kratzer, Relief, Ausbrüche, Risse) in den nachfolgenden Polierschritten nicht mehr entfernt werden können [16, 17].

Eine Herausforderung bei der Präparation von Ti-Legierungen stellt aufgrund der hohen Affinität zu Sauerstoff die dichte, dünne und stabile Oxidschicht auf der Oberfläche dar. Diese Schicht ist ein effektiver Korrosionsschutz [22], muss jedoch im Rahmen der Probenpräparation abgetragen werden. Eine chemisch-mechanische Polierschichtung ist ein effektiver Korrosionsschutz [22], muss jedoch im Rahmen der Probenpräparation abgetragen werden. Um die Bildung der Oxidschicht zu unterdrücken, ist speziell bei den letzten Polierschritten ein chemisch-mechanischer Poliervorgang zweckmäßig. Durch Zugabe von Wasserstoffperoxid H_2O_2 zu der kolloidalen Siliziumdioxid SiO_2 Poliersuspension (OPS) wird die Deckschichtbildung auf der Oberfläche unterdrückt, d.h. die Abtragsrate erhöht sowie eine Schmier- schichtbildung verhindert [16, 23]. Tab. 2 zeigt die angewandten Parameter der Schleif- und Polierschritte, welche zu reproduzierbaren Ergebnissen und einer optimalen metallographischen Probenpräparation mit einer hervorragenden Oberflächenqualität führten. Durch den Härteunterschied zwischen Einbettmasse und Probe sowie der dadurch entstehenden Probenüberhöhung kann es im Schleifprozess...
During the grinding process [24]. It is particularly important to counter these rocking motions. Therefore, after the mounting process, all sample surfaces to be ground were given a chamfered edge. The sample motions can further be reduced by firmly fixing all samples in a sample holder instead of using a non-fixing sample holder with single piston force transmission. However, it should be taken into consideration here, that, owing to the fact that an uneven force application can occur induced by the central contact pressure, at least three samples are prepared simultaneously when using a fixing sample holder. In the course of the preparation optimization process, the removal of scratches was also analyzed with regard to the rotational motion of the sample holder relative to a undesired rocking motion of the sample [24]. If necessary to reduce these rocking motions, all samples were given a chamfered edge after the mounting process. Further reduction of sample motions is possible by firmly fixing all the samples in a sample holder instead of using a non-fixing sample holder with single piston force transmission. However, it should be considered that uneven force application can occur due to the central contact pressure. Therefore, at least three samples are prepared simultaneously when using a fixing sample holder. In the course of the preparation optimization process, the removal of scratches was also analyzed with regard to the rotational motion of the sample holder relative to the grinding and polishing machine Struers Tegramin-30 with a fixed sample holder. during the grinding process [24]. It is particularly important to counter these rocking motions. Therefore, after the mounting process, all sample surfaces to be ground were given a chamfered edge. The sample motion can further be reduced by firmly fixing all samples in a sample holder instead of using a non-fixing sample holder with single piston force transmission. However, it should be taken into consideration here, that, owing to the fact that an uneven force application can occur induced by the central contact pressure, at least three samples are prepared simultaneously when using a fixing sample holder. In the course of the preparation optimization process, the removal of scratches was also analyzed with regard to the rotational motion of the sample holder relative to the grinding and polishing machine Struers Tegramin-30 with a fixed sample holder.

Step / Stufe	Grinding/ polishing pad / Schleif-/Polierauflage	Time [min] / Zeit [min]	Force per Sample [N] / Kraft pro Probe [N]	Rotational speed / Drehgeschwindigkeit Pad [rpm] / Auflage [U/min]	Sample holder [rpm] / Probenhalter [U/min]	Cooling/ polishing agent / Kühl- / Poliermittel
1	Diamond grinding wheel MD-Piano 220 / Diamant-schleifscheibe MD-Piano 220	03:00 – 04:00	40	300	150	H₂O
2	SiC paper #1200 / SiC-Papier #1200	00:15 – 00:20	40	140	150	H₂O
3	SiC paper #2000 / SiC-Papier #2000	00:15 – 00:20	40	140	150	H₂O
4	SiC paper #2000 / SiC-Papier #2000	00:15 – 00:20	40	140	150	H₂O
5	SiC paper #2000 / SiC-Papier #2000	00:15 – 00:20	40	140	150	H₂O
6	Polishing cloth MD-Chem / Poliertuch MD-Chem	up to / bis zu 08:00	40	140	150	OPS/H₂O₂, 90 ml:15 ml

Tab. 2: Metallographic sample preparation parameters using the grinding and polishing machine Struers Tegramin-30 with a fixed sample holder.

Tab. 2: Parameter der metallographischen Probenpräparation am Schleif- und Polierautomat Tegramin-30 der Fa. Struers unter Verwendung eines fixierten Probenhalters.
bewegung des Probenhalters zur Schleif- und Polierauffläche untersucht. Es zeigte sich, dass durch Gleichlauf von Probenhalter und Arbeitscheibe die Verformungszone geringer war als bei einer Schaltung im Gegenlauf. Durch den Gleichlauf von Probe und Arbeitsscheibe wird die Relativgeschwindigkeit reduziert und auch Wippbewegungen der Schliffe unterdrückt.

Wie in Tab. 2 dargestellt, wurde im Präparationsschritt 1 die kunststoffgebundene Diamantschleifscheibe MD-Piano 220 (Struers) verwendet, um eine Planparallelität herzustellen und die Ebenheit der Schliffoberfläche zu gewährleisten. Da dieser Vorgang bis zu 4 Minuten dauern kann, ist der Einsatz einer manuell nachschärfbaren Diamantschleifscheibe von Vorteil. Diese sorgt für eine gleichbleibende Abtragsleistung bei einem geringeren Verschleiß im Vergleich zu SiC-Papier. Da der Materialabtrag bei Verwendung eines SiC-Papiers innerhalb kürzester Zeit signifikant abnimmt, wurde bei den Präparationsschritten 2 bis 5 die Zeit auf 15 bis 20 Sekunden begrenzt. Im letzten Präparationsschritt 6 erfolgte die Politur mittels OPS. In diesem Schritt wird ein OPS-H₂O₂-Gemisch im Verhältnis 90 ml-OPS:15 ml-H₂O₂ auf ein chemisch beständiges Poliertuch (Struers) aufgebracht. Die Entfernung der Deformationszone aus Stufe 5 mit Hilfe der OPS-Politur kann bis zu 8 Minuten dauern.

Von besonderer Bedeutung ist darüber hinaus die Zwischenreinigung der Probe nach jedem Präparationsschritt. Durch diese wird vermie-
den, dass herausgelöste Partikel aus der Rau-
igkeits- und Deformationszone in den nächsten Präparationsschritt übertragen werden und so die Oberfläche schädigen. Die Probenreini-
gung während den Präparationsschritten wurde durch ein gründliches seifenbasiertes Waschen des Probenhalters und der eingespannten Proben sichergestellt. Am Ende der Präpara-
tionsschritte ist es sinnvoll die metallgraphi-
schen Schliffe aus dem Probenhalter zu ent-
fernen und in einem Ultraschallbad, z.B. in einer Ethanollösung, für wenige Minuten zu reinigen. Des Weiteren wird nach dem Ultraschallbad

the grinding and polishing pad. It was found that the deformation zone was smaller when sample holder and working disk work in syn-
chronization than when they are configured in counter rotation. Synchronism of the sam-
ple and the working disk reduces the rela-
tive speed and simultaneously suppresses
rocking motions of the sections.

As is shown in Tab. 2, the plastic bonded
diamond grinding wheel MD-Piano 220
(Struers) was used in preparation step 1
to provide plane-parallelism and to ensure
the flatness of the section’s surface. As this
procedure may take up to 4 minutes, it is
advantageous to use a manually resharpen-
able grinding wheel. It ensures a con-
sistent removal rate and causes less wear
as compared to SiC paper. When using
SiC paper, the material removal rate is sig-
nificantly reduced within a very short time.
Therefore, the grinding time was limited to
15 to 20 seconds for the preparation steps 2
to 5, respectively. The last preparation step,
step 6, is an OPS polishing process. For this
procedure, a mixture of OPS and H₂O₂ with
a ratio of 90 ml OPS:15 ml H₂O₂ is applied to
a chemically resistant polishing cloth (Stru-
ers). It may take up to 8 minutes to remove
the deformation zone of step 5 by OPS pol-
ishing.

It is equally important to perform intermi-
date sample cleaning after each preparation
step. This ensures that no particles dis-
lodged from the roughness and deformation
zone are transferred to the next preparation
step and, as a result, damage the surface.
The sample cleaning processes during the
preparation were carried out by thoroughly
washing the sample holder and the clamped
samples with soap. Once the preparation
steps are completed, it is appropriate to re-
move the metallographic samples from the
sample holder in order to clean them in an
ultrasonic bath, for instance in ethanol solu-
tion, for several minutes. Subsequent to the
ultrasonic bath, highly volatile substances
such as isopropyl or petroleum ether are furthermore applied to avoid the formation of drying artifacts on the final, glassy surface.

Microstructural Examination by Light Microscopy

In the SLM process, powder layers are selectively heated and molten. Once the molten pool is solidified, further cooling results in \(\alpha \) lamellae growth at the \(\beta \) grain boundaries from the moment of reaching the \(\beta \)-transus temperature. Given sufficient undercooling, a diffusion-less martensitic transformation to acicular \(\alpha' \) martensite takes place induced by Umklapp processes once the temperature falls below the martensite start temperature. Moreover, the repeated thermal cycles of the AM process lead to an epitaxial growth of the \(\beta \) grains induced by the steep temperature gradient in the molten pool and the resulting lower nucleation rate, as is described in [6]. The aforementioned microstructure formation can be evidenced after the basic sample preparation. The crystallographic orientations of the material can be revealed as early as after preparation step 6 by using a polarization filter in the LM without recourse to specific surface-modifying methods such as for selective etching. Fig. 4a) is a LM image of an additively manufactured Ti-6Al-4V sample in the as-built condition using a polarization filter combined with increased light intensity. Not only the acicular \(\alpha' \) martensite structure, but also the former \(\beta \) grain boundaries can be recognized (dashed lines). It is apparent that the columnar \(\beta \) grains extend over several hundred micrometers in the build direction, BD.

Pore Analysis

Fig. 4b) presents a LM image of the surface of an as-built sample prepared for the pore analysis. It shows that the pore structures are clearly visible. The pore walls are smooth and the pores are round in shape. The pores are distributed evenly throughout the sample, indicating a uniform porosity.

Mikrostrukturuntersuchung mittels Lichtmikroskopie

Durch den SLM-Herstellungsprozess werden Pulverschichten selektiv erwärmt und aufgeschmolzen. Nach der Erstarrung des Schmelzbades beginnen bei weiterer Abkühlung ab Erreichen der \(\beta \)-Transustemperatur an den \(\beta \)-Korn grenzen \(\alpha \)-Lamellen zu wachsen. Bei ausreichender Unterkühlung kommt es nach Unterschreiten der Martensit-Start-Temperatur durch Umklappprozesse zu einer diffusionslosen martensitischen Umwandlung in nadelligen \(\alpha' \)-Martensit. Die wiederholten thermischen Zyklen des AM Prozesses führen darüber hinaus zu einem epitaktischen Wachstum der \(\beta \)-Körner, welches durch den steilen Temperaturgradient im Schmelzbad und der daraus resultierenden geringen Keimbildungsrate hervorgerufen wird, wie es in [6] beschrieben ist. Der Nachweis der soeben beschriebenen Gefügeentstehung ist bereits nach der allgemeinen Probenpräparation möglich. Ohne Anwendung von speziellen oberflächenverändernden Methoden, wie z. B. für eine selektive Ätzung, können bereits nach Präparationsschritt 6 durch den Einsatz eines Polarisationsfilters im LM die kristallographischen Orientierungen des Materials sichtbar gemacht werden. Bild 4a) zeigt eine LM-Aufnahme einer additiv gefertigten Ti-6Al-4V-Probe im as-built Zustand unter Verwendung eines Polarisationsfilters in Kombination mit einer erhöhten Lichtstärke. Neben der nadeligen \(\alpha' \)-Martensitstruktur sind auch die ehemaligen \(\beta \)-Korn grenzen anhand der gestrichelten Linien erkennbar. Es ist ersichtlich, dass sich die kolonnaren \(\beta \)-Körner über mehrere hundert Mikrometer in Baurichtung (engl.: Build direction, BD) erstrecken.

Porenanalyse

Bild 4b) zeigt eine für die Porenanalyse präparierte Aufnahme der Oberfläche einer as-built
Not only gas pores (continuous red circles), but also a lack of fusion defect (dashed red ellipse) could be detected in this sample during the 2D pore analysis. It is important to make sure the section’s surface is dust-free, especially when determining the porosity in AM manufactured samples of a very high density (> 99.95%), as otherwise the result may be distorted. In addition to that, a preferably large part of the surface should be considered and evaluated in order to ensure a statistically relevant result. The magnification for the LM images should not be less than 200× to ensure that smaller pores can be detected. The porosity was evaluated by phase fraction analysis using the software Olympus Stream Motion 1.9.3. The pores must additionally be manually sorted as a function of the surface area, and smaller pores (< 5 µm²) must be removed to avoid that pixels appearing dark are erroneously assigned to the pore fraction. By adhering to the mentioned process steps, a very precise porosity determination can be achieved.

Figs. 4 a and b: a) Light microscope image of the martensitic microstructure of an additively manufactured Ti-6Al-4V sample in the as-built condition using a polarization filter. The dashed lines mark the epitaxial growth of a β grain in the build direction (BD) of the SLM process; b) light microscope BF image of the sample surface used to determine the porosity. The circles with solid lines mark gas pores, while the dashed ellipse indicates a lack of fusion defect.

Bilder 4 a und b: a) Lichtmikroskopische Aufnahme der martensitischen Mikrostruktur einer additiv gefertigten Ti 6Al 4V-Probe im as-built Zustand unter Verwendung eines Polarisationsfilters. Die gestrichelten Linien markieren das epitaktische Wachstum eines β Korns in Baurichtung BD des SLM Prozesses; b) Lichtmikroskopische HF-Aufnahme der Probenoberfläche zur Bestimmung der Porosität. Die durchgehenden Kreise markieren Gasporen, die gestrichelte Ellipse zeigt einen Anbindefehler.
and reproducible porosity can be represented. In this work, a surface area of at least 100 mm² covering different positions of the section represented in different images was accounted for during the pore analysis. For this purpose, a section from the center of the component was taken for examination. Care should be taken that the examined site is not located too near the component's edge, as, due to the high roughness in the edge areas, a non-representative porosity may be accounted for. A porosity of 0.028 vol.% was measured for the as-built sample shown in Fig. 4b). By comparison, the heat-treated variant has an even lower porosity of 0.008 vol.%, i.e. the sample is virtually completely dense.

Phase Analysis
One of the methods used to determine the phases and phase fractions, is the X-ray diffraction examination. As it is a surface sensitive method, a deformed sample surface may lead to distorted measurement results and thus to misinterpretations. Turk et al. [25] showed that preparation-related residual compressive stresses induced by the grinding and polishing processes result in shifted and broadened XRD peaks. It is thus indispensable to ensure a deformation-free plane surface.

Fig. 5 shows an extract of XRD measurements performed on laser melted samples and on the powder sample. The solid material samples were treated following the preparation method presented in Tab. 2, removed from the mounting material, and analyzed. The powder samples were poured on a monocrystalline Si wafer plate for their examination and, as opposed to the solid material samples, the measurement was carried out without sample rotation.

and reproducible porosity can be represented. In this work, a surface area of at least 100 mm² covering different positions of the section represented in different images was accounted for during the pore analysis. For this purpose, a section from the center of the component was taken for examination. Care should be taken that the examined site is not located too near the component’s edge, as, due to the high roughness in the edge areas, a non-representative porosity may be accounted for. A porosity of 0.028 vol.% was measured for the as-built sample shown in Fig. 4b). By comparison, the heat-treated variant has an even lower porosity of 0.008 vol.%, i.e. the sample is virtually completely dense.

Phases Analysis
One of the methods used to determine the phases and phase fractions, is the X-ray diffraction examination. As it is a surface sensitive method, a deformed sample surface may lead to distorted measurement results and thus to misinterpretations. Turk et al. [25] showed that preparation-related residual compressive stresses induced by the grinding and polishing processes result in shifted and broadened XRD peaks. It is thus indispensable to ensure a deformation-free plane surface.

Fig. 5 shows an extract of XRD measurements performed on laser melted samples and on the powder sample. The solid material samples were treated following the preparation method presented in Tab. 2, removed from the mounting material, and analyzed. The powder samples were poured on a monocrystalline Si wafer plate for their examination and, as opposed to the solid material samples, the measurement was carried out without sample rotation.
The obtained diffraction spectra show that the α/α' peaks (dashed peak position) are shifted from the powder samples to the heat-treated sample via the as-built sample. The diagram furthermore reveals that the bcc β phase (dash-dotted position) occurs in the heat-treated condition. The shift of the hex 0002 peak and the precipitation of the β phase are an indication of a phase transformation towards the thermodynamic equilibrium ($\alpha' \rightarrow \alpha+\beta$). The atomic radii of Al (0.143 nm) and V (0.132 nm), smaller as compared to those of Ti (0.147 nm), thus lead to an increasing α lattice parameter (decreasing 2θ angle) for an enrichment of V in the β phase [7].

Die erhaltenen Beugungsspektren zeigen, dass es zu einer Verschiebung des α/α'-Peaks (gestrichelte Peakposition) von den Pulverproben über die as-built Probe bis zur wärmebehandelten Probe kommt. Darüber hinaus tritt im wärmebehandelten Zustand die krz β-Phase (strichpunktierte Linie) auf. Die Verschiebung des hex 0002 Peaks sowie die Ausscheidung der β-Phase deuten auf eine Phasenumwandlung in Richtung des thermodynamischen Gleichgewichts hin ($\alpha' \rightarrow \alpha+\beta$). Die kleineren Atomradien von Al (0.143 nm) und V (0.132 nm) im Vergleich zu Ti (0.147 nm) führen dementsprechend bei Anreicherung von V in der β-Phase zu einem größer werdenden α-Gitterparameter (abnehmender 2θ-Winkel) [7].
3.3 Enhanced Sample Preparation

Electrochemical Etching

Electrochemical etching is a corrosive process generating a metallographic microstructural contrast based on a potential difference of different surface areas [26]. Potential differences occur owing to physical, structural, and chemical inhomogeneities such as those generated by the presence of multiple phases of varying density, with varying crystallographic orientations, or segregations [16]. At room temperature, the hex α phase and the bcc β phase are present in the thermodynamic equilibrium in Ti-6Al-4V. A potential difference is already present here due to the different chemical compositions of these phases. An etchant frequently used for Ti-6Al-4V is the so-called Kroll’s reagent. It contains hydrofluoric acid for a selective attack of the less noble Al-rich α-phase, and nitric acid to brighten the surface [16]. The exact composition of Kroll’s reagent is given in Tab. 1. Fig. 6 is a LM image of a laser-molten Ti-6Al-4V sample after ten-second Kroll etching. For the purpose of representing this 3D cube, three metallographic

Fig. 6: Three-dimensional representation of a contrasted and laser-melted Ti-6Al-4V sample etched using Kroll’s etching solution, acquired in the LM (BF mode). The dashed lines indicate the epitaxial growth of a β grain, while the black circles mark individual β grains in the X-Y cross section. The Z direction represents the BD of the SLM process.

3.3 Erweiterte Probenpräparation

Elektrochemisches Ätzen

Eine elektrochemische Ätzung ist ein korrosiver Prozess, in welchem durch eine Potentialdifferenz verschiedener Oberflächenbereiche eine metallographische Gefügekontrastierung generiert wird [26]. Potentialunterschiede entstehen durch physikalische, strukturelle und chemische Inhomogenitäten, wie z.B. durch Mehrphasigkeit unterschiedlicher Dichte, unterschiedliche kristallographische Orientierungen oder Seigerungen [16]. Im Fall von Ti-6Al-4V liegt bei Raumtemperatur im thermodynamischen Gleichgewicht sowohl die hex α-Phase als auch die krd β-Phase vor. Hier besteht bereits ein Potentialunterschied aufgrund der unterschiedlichen chemischen Zusammensetzung dieser Phasen. Ein häufig eingesetztes Ätzmittel für Ti-6Al-4V ist die sogenannte Kroll-Ätzung. Dieses Reagenz enthält Flusssäure zum selektiven Angriff der unedleren, Al-reichen α-Phase und Salpetersäure zum Aufhellen der Oberfläche [16]. Die genaue Zusammensetzung des Kroll-Ätzmittels ist in Tab. 1 angeführt. Bild 6 zeigt eine LM-Aufnahme einer lasergeschmolzenen Ti-6Al-4V-Probe nach einer 10-sekündigen
sections were prepared, where the Z axis represents the BD of the SLM process. This three-dimensional representation provides an overview of different areas of the additively manufactured components. The columnar grain structure (dashed lines) can be recognized in the X-Z cross section, while the β grain structure can be seen in the X-Y cross section.

Another way of representing the microstructure is Weck's etching [27]. Figs. 7a–c) show the results of etching by immersion according to Weck. During the test series, it was found that an optimal microstructural contrast is achieved after a period of 35 seconds. Fig. 7a) shows the LM image (BF mode) of an as-built sample. This magnification reveals the layer structure (marked by black arrows). Owing to their different coloration, columnar grain structures (dashed lines) can also be observed normal to the BD. Fig. 7b) is a light microscope image of the same image detail at a higher magnification. It is apparent that this etching method provides an excellent contrast revealing the martensitic α’ needles.

In order to compensate the microstructural defects induced by the manufacturing process, components are subjected to a heat-treatment or to HIP [28]. HIP reduces the porosity of the components and increases their density. Fig. 7c) shows the structure after Weck’s etching of a heat-treated sample (1–3 hours at 800–850 °C). Compared to the as-built sample, the needles appear broader, indicating a transformation of the martensite towards the thermodynamic equilibrium (α’→α+β). The gray and black appearance of the α’ needles in Fig. 7c) indicates, moreover, that the needles belong to the former mother phase, the β phase.

Kroll-Ätzung. Zur Darstellung dieses 3D-Würfels wurden drei metallographische Schliffe angefertigt, wobei die Z-Achse die BD im SLM-Prozess repräsentiert. Durch diese dreedimensionale Darstellung kann ein Überblick über verschiedene Bereiche des additiv gefertigten Bauteils geschaffen werden. Neben der kolumnaren Kornstruktur (gestrichelte Linien) im X-Z-Querschnitt ist auch die β-Kornstruktur im X-Y-Querschnitt zu erkennen.

Eine andere Möglichkeit um die Mikrostruktur abzubilden ist die Ätzmethode nach Weck [27]. Die Ergebnisse der Tauchätzung nach Weck sind in den Bildern 7a–c) dargestellt. Im Rahmen der Versuchsreihe zeigte sich, dass nach einer Dauer von 35 Sekunden die Mikrostruktur optimal kontrastiert wird. In Bild 7a) ist die LM-Aufnahme (HF-Modus) einer as-built Probe dargestellt. In dieser Vergrößerung sind die Schichtstruktur (markiert durch schwarze Pfeile) und, aufgrund unterschiedlicher Färbung, auch kolumnare Kornstrukturen (gestrichelte Linien) normal zur BD zu erkennen. Bild 7b) zeigt eine lichtmikroskopische Aufnahme desselben Bildausschnitts bei höherer Vergrößerung. Es ist zu erkennen, dass sich diese Ätzmethode durch eine deutliche Kontrastierung der martensitischen α’-Nadeln auszeichnet.

Um mikrostrukturelle Defekte, hervorgerufen durch den Herstellungsprozess, auszuleiten, werden Bauteile einer Wärmebehandlung oder HIP unterzogen [28]. Beim HIPen wird die Porosität des Bauteils reduziert und die Dichte erhöht. Des Weiteren ermöglicht HIPen die Minimierung des Anteils an geschlossenen Poren, welche durch Gaseinschlüsse entstehen. In Bild 7c) ist die Ätzung nach Weck an einer wärmebehandelten Probe (1–3 Stunden bei 800–850 °C) gezeigt. Im Vergleich zur as-built Probe erscheinen die Nadeln breiter, was auf eine Umwandlung des Martensits in Richtung des thermodynamischen Gleichgewichts (α’→α+β) hindeutet. Aufgrund der grau bzw. schwarz erscheinenden α’-Nadeln in Bild 7c) ist auch die Zugehörigkeit dieser zur ehemaligen Mutterphase, der β-Phase, zu erkennen.
Thermal Etching

Another possibility to visualize the microstructure is a thermal etching process. During thermal etching, a physical etching method, an oxide layer is generated on the surface by elevated temperatures. In the LM, this layer appears in colors varying as a function of the present phases and their respective crystallographic orientation. The colors vary from brown (for shorter etching times) to red and blue (for longer etching times) [29]. Fig. 8 shows the result of a 120 min thermal etching process at 540 °C in air atmosphere. The image detail clearly shows the α needles. Given that elevated temperatures are required to generate the oxide layers, it must be noted at this point that thermal

![Image of α needles](image)

Thermisches Ätzen

Eine weitere Möglichkeit die Mikrostruktur zu visualisieren ist das Durchführen einer thermischen Ätzung. Bei dieser zu den physikalischen Ätzungen zählenden Methode, wird durch erhöhte Temperaturen eine Oxidschicht auf der Oberfläche erzeugt. Diese erscheint im LM in verschiedenen Farben in Abhängigkeit der auftretenden Phasen und deren kristallographischer Orientierung. Die Farben variieren dabei von braun bei kürzerer Zeit bis rot und blau bei längeren Ätzeiten [29]. Das Ergebnis einer 120 min andauernden thermischen Ätzung unter Luftatmosphäre bei 540 °C wird in Bild 8 gezeigt. In diesem Bildausschnitt sind deutlich die α-Nadeln zu erkennen. An dieser Stelle muss aber auch darauf hingewiesen werden, dass bei An-
Electrolytic Preparation

Owing to a an electric current flow between the sample (anode) and the counter electrode (cathode) and the use of an electrolyte, the surface is anodically dissolved during the electrolytic preparation. In addition, the potential difference results in precipitations and a varying surface layer thickness caused by the electrolyte [26, 30]. Fig. 9 shows the results of an electrolytic sample preparation using the electrolyte Ti Em3 on an as-built component. Owing to the varying surface layer coverage, the columnar β grain structure is particularly well contrasted applying a voltage of 100 V and a polishing time of 10 s. As shown in Fig. 9a), it is also possible to capture a large number of β grains, thus subsequently allowing a quantitative evaluation. The higher magnification of Fig. 9b) furthermore reveals the martensitic α’ needles, marked by arrows. They appear considerably brighter.

As opposed to anodic etching, where a surface layer is produced, a surface layer formation must be suppressed in case of a thermal etching.

Electrolytische Präparation

Bei einer elektrolytischen Präparation wird aufgrund eines Stromes zwischen Probe (Anode) und Gegenelektrode (Kathode) und durch die Verwendung eines Elektrolyten die Oberfläche anodisch aufgelöst. Wird bei diesem Verfahren ein Elektrolyt verwendet, der zusätzlich zur Auflösung einen Niederschlag bzw. eine Deckschicht verursacht, werden aufgrund der Potentialunterschiede Kornflächen unterschiedlich stark belegt [26, 30]. Bild 9 zeigt eine elektrolytische Probenpräparation unter Verwendung des Elektrolyt Ti Em3 an einem as-built Bauteil. Bei Anlegung einer Spannung von 100 V und einer Polierzeit von 10 s kann durch die variierende Deckschichtbelegung besonders die kolumnare β-Kornstruktur kontrastiert werden. Wie aus Bild 9a) hervorgeht, ist es hierbei möglich, auch eine große Anzahl von β-Körnern zu erfassen, was in weiterer Folge eine quantitative Auswertung zulässt. Des Weiteren zeigt eine höhere Vergrößerung in Bild 9b) die martensitischen α’-Nadeln, angedeutet durch Pfeile, welche deutlich heller erscheinen.

Im Gegensatz zur anodischen Ätzung mit Deckschichtbildung muss bei der Präparation für die Elektronenrückstreubeugung eine
Deckschichtbildung unterdrückt werden, da diese passiv wirkt und ein Austreten von Elektronen aus der Oberfläche erschwert. Bei der Probenvorbereitung für EBSD-Messungen sollte deshalb sichergestellt werden, dass die Oberfläche frei von Oberflächenschichten ist sowie eine durch den Materialabtrag geschaffene verformungsfreie Oberfläche entsteht [15]. In dieser Arbeit wurden deshalb Polierparameter, wie z. B. Spannung, Flussrate und Polierzeit, variiert, um das Präparationsergebnis zu verbessern. Bei gleichbleibenden Umfeldbedingungen im REM, wie Probentyp, Beschleunigungsspannung, Probenstrom und Vergrößerung, wurde mittels der Auswertesoftware OIM ein durchschnittlicher Vertrauensindex (engl.: Confidence Index, CI) für die jeweilige EBSD gemessene Fläche ermittelt. Der CI ist ein Wert für die Richtigkeit der Indizierung einer kristallographischen Orientierung. In dieser Arbeit wird dieser Wert als Vergleichswert für den Präpa-

Fig. 9 a and b: Light microscope images in the BF mode: a) 25-fold and b) 200-fold magnification of an electrolytically polished as-built sample. The electrolyte Ti Em3 forms a surface layer as a function of the grain orientations. It is thus particularly suited to reveal the columnar β grain structure, while also contrasting the martensitic α’ needles (see arrows).

Bilder 9 a und b: Lichtmikroskopische Aufnahmen im HF -Modus: a) 25-fache und b) 200-fache Vergrößerung einer elektrolytisch polierten as ‑built Probe. Der Elektrolyt Ti Em3 bildet eine Deckschicht in Abhängigkeit der Kornorientierungen und eignet sich daher besonders gut zur Visualisierung der kolumnaren β -Kornstruktur. Die martensitischen α’ ‑Nadeln werden ebenfalls kontrastiert (siehe Pfeile).
the same environmental conditions, higher CI values indicate a better sample surface quality. The preparation studies have shown that the best surface quality could be obtained using the electrolyte A3 at a voltage of 30 V and a flow rate of 10 for a polishing time of 40 s. The highest CI values were reached based on these parameters for both, the as-built samples and the heat-treated samples.

Vibratory Polish

Apart from the described electrolytic preparation methods, it is also possible to prepare the surface of a sample for an EBSD measurement by subjecting it to a vibratory polish. However, in this case, the polishing rate is very low and the polishing process generally takes several hours [16]. For vibratory polishing, the mounted samples are clamped into a sample holder, thus providing the required contact pressure on the polishing disk. The holder is subsequently placed on a polishing cloth moistened with a polishing suspension and moved over the cloth by vibrations. For the vibratory polish, a chemically resistant MicroCloth polishing cloth (Buehler) was used in combination with an OPS. It was found that the highest CI index for as-built samples was obtained after a polishing time of 8 hours. Owing to their lower hardness, the vibratory polishing time was reduced to 4 hours for the heat-treated Ti-6Al-4V samples.

EBSD Examinations

Figs. 10 a) and b) show the grain orientation and the Image-Quality map (IQ) of an EBSD measurement on an as-built sample after 8 hours of vibratory polishing, respectively. The Z axis of the EBSD coordinate system runs parallel to the BD. The martensitic microstructure’s α’ needles and their crystallographic orientations can clearly be recognized, whereas, due to the heat-treat-
Fleißner-Rieger C. et al.: Additively Manufactured Ti-Alloy / Additiv gefertigte Ti-Legierung

Through the optimized sample preparation procedure, it is now also possible to perform EBSD measurements of larger areas. Fig. 11 shows the result of an EBSD measurement of a heat-treated sample after 4 hour vibra-

ment, the microstructure in the figs. 10 c) and d) appears considerably coarser suggesting a temperature-induced grain growth. As opposed to the grain interior presenting higher values, the areas in the IQ images appearing darker are grain boundaries with low CI values. The heat treatment induced low β phase fraction (< 5 vol.%) is located at the α grain boundaries. As the fraction is too low and the spatial resolution of the EBSD measurement is insufficient, it cannot be imaged.

Applying the optimized sample preparation procedure, it is now also possible to perform EBSD measurements of larger areas. Fig. 11 shows the result of an EBSD measurement of a heat-treated sample after 4 hour vibra-

erscheint die Mikrostruktur durch die Wärmebehandlung in den Bildern 10 c) und d) deutlich gröber, was auf ein Kornwachstum aufgrund der verwendeten Temperatur schließen lässt. Die dunklen Bereiche in den IQ-Aufnahmen sind Korngrenzen, an denen die CI-Werte, im Gegensatz zum Korninneren, gering sind. Der durch die Wärmebehandlung entstandene geringe β-Phasenanteil (< 5 vol.%) befindet sich an den α-Korngrenzen und kann aufgrund des geringen Anteils und einer zu geringen Ortsauflösung der EBSD Messung bildlich nicht erfasst werden.

Durch die optimierte Probenpräparation ist es nun möglich, auch EBSD-Messungen an größeren Bereichen durchzuführen. Bild 11 zeigt das Ergebnis einer EBSD-Messung einer wärmebehandelten Probe nach einer Vi-
brationspolitur von 4 Stunden. Wie in Bild 11a) ersichtlich, konnte mit der Software ARPGE [10, 11] über die sogenannte Burgers Orientierungsbeziehung die kolumnare β-Kornstruktur rekonstruiert werden. In b) ist eine Überlagerung der berechneten β-Kornstruktur mit der zugehörigen EBSD-Kornorientierungsabbildung und der entsprechenden Orientierungslegenden.

4. Conclusions

In this work, the sample preparation process for additively manufactured Ti-6Al-4V components was fundamentally analyzed. With this in mind, the entire process chain, from the preparation of powder samples to the sample preparation of SLM manufactured components, was outlined. An optimized sample preparation not just allows standard polishing, as apparent in Fig. 11a), the columnar β grain structure could be reconstructed based on the so-called Burger’s orientation relationship using the software ARPGE [10, 11]. b) presents a superposition of the ARPGE file and the original file. This superposition reveals the β grain structure in the EBSD grain orientation image. In this way, not only an image detail can be examined. Crystallographic information of individual β grains can also be obtained by singling out and cutting along grain boundaries.

Figs. 11 a and b: a) β grain structure of a heat-treated Ti-6Al-4V sample with Y orientation calculated using the software ARPGE [10, 11]; b) superposition of the calculated β grain structure and the respective EBSD grain orientation image indicating the respective orientation legends.

Bilder 11 a und b: a) Mit der Software ARPGE [10, 11] berechnete β-Kornstruktur einer wärmebehandelten Ti-6Al-4V-Probe mit Y-Ausrichtung; b) Überlagerung der berechneten β-Kornstruktur mit der zugehörigen EBSD-Kornorientierungsabbildung und der entsprechenden Orientierungslegenden.

4. Schlussfolgerungen

In dieser Arbeit wurde grundlegend die Probenpräparation für additiv gefertigte Ti-6Al-4V-Bauteile untersucht. Hierfür wurde die gesamte Prozesskette, beginnend bei der Präparation von Pulverproben bis hin zur Probenvorbereitung von SLM-gefertigten Bauteilen, beleuchtet. Eine optimierte Probenpräparation ermöglicht, neben den
ard examinations by LM and SEM. It also permits further crystallography investigations by EBSD of additively manufactured components. The preparations carried out on Ti-6Al-4V powder samples and AM components defined in this work lead to the following findings:

• During mounting, the hardness difference between a SLM manufactured solid material sample and the mounting material should be minimal in order to ensure an optimal preparation including the surface layer.

• The parameters listed in Tab. 2 allowed the manufacture of reproducible sections providing an excellent surface quality – a requirement and thus a precondition for a variety of examination methods.

• The β grain structures formed during the SLM process based on which the microstructural evolution can be interpreted can be contrasted by selective etching or electrolytic preparation methods. Another possibility to reveal the β grains is using a polarization filter in the LM.

• Specific etching processes, such as etching by immersion according to Weck, do not only reveal the microstructure. They also visualize the layer structure and the molten pool boundaries in the SLM manufactured components.

• High-resolution EBSD analyses presuppose an artifact and a deformation-free surface. Not only electrolytic polishing, but also vibratory polishing can be carried out to ensure a sufficient surface quality.

• Superposing numerically calculated β grain structures and EBSD measurement data allows a targeted examination of the crystallography of individual β grains.

Standarduntersuchungen mittels LM und REM, weiterführende Untersuchungen der Kristallographie mittels EBSD an additiv gefertigten Bauteilen durchzuführen. Die in dieser Arbeit definierten Präparationen an Ti-6Al-4V Pulverproben sowie AM-Bauteilen führten zu folgenden grundlegenden Erkenntnissen:

• Beim Einbetten von SLM-gefertigtem Vollmaterial sollte der Härteunterschied zwischen der Probe und dem Einbettmittel minimal sein, um eine optimale Präparation bis zur Randschicht zu ermöglichen.

• Mit dem in Tab. 2 beschrieben Verfahren konnten durchwegs reproduzierbar Schliffe mit hervorragender Oberflächenqualität hergestellt werden, was für eine Vielzahl von Untersuchungsmethoden notwendig ist und daher eine Voraussetzung ist.

• Die zur Interpretation der Gefügeentwicklung während des SLM-Prozesses entstehenden β-Kornstrukturen können mittels selektiven Ätzungen oder elektrolytischen Präparationsmethoden kontrastiert werden. Eine weitere Möglichkeit, die β-Körner zu visualisieren, ist die Verwendung eines Polarisationsfilters im LM.

• Mit speziellen Ätzungen, wie z.B. der Tauchätzung nach Weck, werden neben der Mikrostruktur auch die Schichtstruktur bzw. die Schmelzbadgrenzen in den SLM-gefertigten Bauteilen sichtbar.

• Hochauflösende EBSD-Analysen setzen eine artefakt- und deformationsfreie Oberfläche voraus. Neben einer elektrolytischen Politur kann auch durch eine Vibrationspolitur für eine ausreichende Oberflächenqualität gesorgt werden.

• Die Überlagerung von numerisch berechneten β-Kornstrukturen mit EBSD-Messdaten ermöglicht es, die Kristallographie einzelner β-Körner gezielt zu untersuchen.
References / Literatur

[1] DebRoy, T.; Wei, H.L.; Zuback, J.S.; Mukherjee, T.; Elmer, J.W.; Milewski, J.O.; Beese, A.M.; Wilson-Heid, A.; De, A.; Zhang, W.: Prog. Mater. Sci. 92 (2018), 112–224
DOI: 10.1016/j.pmatsci.2017.10.001

[2] Peters, M.; Leyens (Eds.), C.: Titanium and Titanium Alloys: Fundamentals and Applications, John Wiley & Sons, 2003
DOI: 10.1002/3527602119

[3] Uhlmann, E.; Kersting, R.; Klein, T.B.; Cruz, M.F.; Borille, A.V.: Procedia Cirp. 35 (2015), 55–60
DOI: 10.1016/j.procir.2015.08.061

[4] Barriobero-Vila, P.: Phase transformation kinetics during continuous heating of $\alpha + \beta$ and metastable β titanium alloys, PhD Thesis, TU Vienna, Austria, 2015

[5] Wimler, D.; Kardos, S.; Lindemann, J.; Clemens, H.; Mayer, S.: Pract. Metallogr. 55 (2018), 620–636
DOI: 10.3139/147.110547

[6] Frazier, W.E.: J. Mater. Eng. Perform. 23 (2014), Nr. 6, 1917–1928
DOI: 10.1007/s11665-014-0958-z

[7] Ter Haar, G.; Becker, T.: Materials. 11 (2018), Nr. 1, 146
DOI: 10.3390/ma11010146

[8] Liu, S.; Shin, Y.C.: Mater. Des. 164 (2019), 107552
DOI: 10.1016/j.matdes.2018.107552

[9] Neikter, M.; Huang, A.; Wu, X.; Int. J. Adv. Manuf. Technol. 104 (2019), Nr. 1–4, 1381–1391
DOI: 10.1007/s00170-019-04002-8

[10] Cayron, C.: J. Appl. Crystallogr. 40 (2007), Nr. 6, 1183–1188
DOI: 10.1107/S0021889807048777

[11] Cayron, C.; Artaud, B.; Briottet, L.: Mater. Charact. 57 (2006), Nr. 4–5, 386–401
DOI: 10.1016/j.matchar.2006.03.008

[12] Lachmayer, R.; Lippert, R.B.: Additive Manufacturing Quantifiziert, Springer-Verlag, Berlin, 2017
DOI: 10.1007/978-3-662-54113-5

[13] Neikter, M.; Äkerfeldt, P.; Pederson, R.; Antti, M.L.: Microstructure characterisation of Ti-6Al-4V from different additive manufac-
[28] Dutta, B.; Froes, F.H.: Additive manufacturing of Titanium alloys: state of the art, challenges and opportunities, Butterworth-Heinemann, 2016
DOI: 10.1016/B978-0-12-804782-8.00003-3
[29] Barnes, D.: Metallogr. Microstruct. Anal. 5 (2016), Nr. 6, 536-539
DOI: 10.1007/s13632-016-0320-y
[30] Schiebold, K.: Zerstörende Werkstoffprüfung: Metallographische Werkstoffprüfung und Dokumentation der Prüfergebnisse, Springer-Verlag, Berlin, 2018
DOI: 10.1007/978-3-662-57803-2

[31] Petzow, G.: Metallographisches, Keramographisches, Plastographisches Ätzen, 7. Auflage, Borntraeger Gebrueder, 2015

Bibliography
DOI 10.1515/pm-2020-0001
Pract. Metallogr. 58 (2021) 1; page 4–31
© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany
ISSN 0032-678X · e-ISSN 2195-8599

Christian Fleißner-Rieger
was born 1993 in Innsbruck, Austria. He studied Materials Science at the Montanuniversität Leoben, Austria. Currently he is working on his PhD thesis at the Department of Materials Science, Montanuniversität Leoben. His research work focuses on additive manufacturing of titanium alloys with a special focus on alloy development.

Thomas Pogrielz
is master student in the field of Materials Science at the Montanuniversität Leoben. In his bachelor thesis at the Department of Materials Science he dealt with metallographic preparation methods for the application on additively manufactured titanium alloys.