Abstract
In the last century, research in the field of spinal cord trauma has brought insightful knowledge which has led to a detailed understanding of mechanisms that are involved in injury- and recovery-related processes. The quest for a cure for the yet generally incurable condition as well as the exponential rise in gained information has brought about the development of numerous treatment approaches while at the same time the abundance of data has become quite unmanageable. Owing to an enormous amount of preclinical therapeutic approaches, this report highlights important trends rather than specific treatment strategies. We focus on current advances in the treatment of spinal cord injury and want to further draw attention to arising problems in spinal cord injury (SCI) research and discuss possible solutions.

Regeneration in the central nervous system
For a very long time, the generally accepted hypothesis—initially proposed in the Edwin Smith papyrus in 2,550 BCE—had been that an injury of the spinal cord is an untreatable condition. In the 1920s, Ramon y Cajal postulated that central nervous system (CNS) axons have an intrinsic ability to regrow after injury but that the lack of trophic support and the barrier function of the lesion scar resulted in the observed lack of axonal regeneration after CNS trauma [1]. Despite almost a century of intensive investigation, the progress of therapeutic interventions to treat SCI remains very limited.

Advances in spinal cord injury research
In the early 1980s, David and Aguayo reported that CNS axonal processes were able to regenerate for remarkable distances when provided the opportunity to grow through long peripheral nerve bridges circumventing a spinal cord lesion [2]. However, the respective nerve fibers did not leave the graft to re-enter the distal spinal cord, an observation that still holds for most therapeutic approaches in the field of SCI. Since then, diagnostic SCI imaging techniques have been immensely improved, and many important growth factors and receptors, signaling cascades, cellular processes, and arising mechanisms of action have been investigated and characterized. Potential drug and cell treatment approaches have been developed based on these findings, and therapeutic interventions have been invented and successfully tested in preclinical studies. A few of these innovative therapies have already been subject to clinical trials, but the promising effects that were observed in preclinical animal studies could never be achieved to comparable degrees in human subjects [3].

Improved SCI outcome has been achieved by different repair strategies in animal models; the aim of neuroprotective agents is to counteract secondary injury processes that lead to a progressive post-traumatic destruction of spinal cord tissue [4]. Examples of neuroprotective agents that have proven effective in animal models are the phosphodiesterase-4 inhibitor rolipram [5] and the Rho inhibitor cethrin [6]. Repair via regenerative sprouting can be achieved by (1) neutralization of inhibitory factors (e.g. the myelin protein Nogo-A [7]) or (2) administration of neurotrophic factors (e.g. neurotrophins [8]) or chemokines (e.g. CXCL12/SDF-1 [9,10]) to induce the intrinsic neuronal regeneration.
program promoting axon growth and plasticity. On the other hand, those factors could influence axon regeneration and guidance through activation or inhibition of signaling pathways regulating the expression or activity of chemorepellent guidance molecules [11,12]. Axon regeneration can be further promoted by inhibition of (glial/fibrotic) scarring, either via degradation or suppression of inhibitory molecules [13,14] or by bridging the injury [15,16]. Although reactive astrocytes are often regarded to be detrimental to the functional outcome of SCI, these cells also mediate important protective functions [17]. Because astrocytes can play such dual roles in SCI response, the transplantation of specifically pre-differentiated astrocytes has also been proposed as a possible treatment for SCI and has been shown to promote functional recovery in animal models [18]. The death of oligodendrocytes, the myelinating cells of the CNS, is an acute result of SCI. In addition to axonal damage, demyelination leads to loss of axonal signal conduction and therefore to functional impairment in SCI. While mature oligodendrocytes are often lost to necrotic and apoptotic injury-related processes, a rapid proliferation and migration of oligodendrocyte precursor cells, especially at the lesion borders, can be observed [19]. For this reason, protected oligodendrocytic cells or their replacement or both are additional promising targets for therapeutic intervention after SCI. Promotion of remyelination is a key point in therapy development. Remyelination can be achieved by the induction of endogenous myelinating cells or by transplantation of myelin-producing cells [20,21]. Cell transplantation therapies have been developed to stimulate regenerative axon growth [22] or to replace lost cells and thereby repair the injured spinal cord [23], and gene therapeutic approaches with genetically modified cells or in vivo gene therapy can further support spinal cord repair [24]. Through transplantation of neural stem cells, lost glial and neuronal cells could be replaced, leading to remyelination [25] and axon regeneration [26] in animal models of SCI.

Single-treatment approaches

Effective therapies are available for several SCI symptoms: brain stimulation can be used to treat neuropathic pain [27], and pharmacological treatments can act as neuroprotectants [28] or can reduce spasticity [29,30] or detrimental inflammation at the injury site [31]. Furthermore, therapeutic approaches to achieve improvements in quality of life by regaining breathing function [32], bladder/bowel function [33,34], or hand function [35] have proven quite successful in animal models of SCI. Existing treatment strategies as well as the majority of animal models generally target distinct symptoms of SCI, thereby neglecting the complexity of a wide range of additional parameters. However, many of these approaches have delivered important insight into SCI pathology and have helped bring SCI therapies closer to feasibility. Examples are numerous approaches targeting the injury scar [13,14] to make it more permissive for regenerative axon growth [7,13,14,36,37], influencing inflammatory processes [38-40], peripheral nerve transplants [41-43], numerous cellular transplantation approaches [22,44-46], conditioning lesions [47], or gene therapy [48,49].

Several inhibitory molecules and some of their receptors have been identified and can be targeted by therapy. Some inhibitors of axonal growth are associated with white matter myelin (e.g. Nogo-A, myelin associated glycoprotein [MAG], and oligodendrocyte myelin glycoprotein [OMgp]) [50,51], whereas examples for scar-based inhibitory molecules which accumulate in the SCI lesion scar are members of the large class of chondroitin sulfate proteoglycans (CSPGs) [7,13]. Methods to block or disable the inhibitory function of these molecules have been developed. The myelin-associated inhibitor Nogo-A, for instance, can be neutralized by a specific antibody (IN-1)[7,52], and the glycosaminoglycan side chains of CSPGs can be degraded enzymatically by the bacterial enzyme chondroitinase ABC [7,13].

Strategies to improve locomotor function have demonstrated that small numbers of regenerating nerve fibers can suffice to achieve varying degrees of locomotor functional recovery [13,14,53]. At the same time, high numbers of regenerating nerve fibers—which can be achieved by cell transplantation—do not necessarily result in a considerably improved degree of functional recovery [26] when compared with “conventional” treatments [16,22]. On the contrary, regenerative axon growth, whether at a high or a low rate, could always result in adverse effects such as plastic changes leading to neuropathic pain [54,55]. Strategies to improve locomotor function have also shown that intrinsic spinal neuronal networks such as central pattern generators (CPGs) mediate certain aspects of locomotion even in the absence of sensory feedback [56,57]. CPGs are also important for functions like swallowing and breathing. Finally, (personalized) neuroprosthetics can aid in restoring locomotion even in the absence of axon regeneration and re-synaptogenesis. Therefore, such devices are very promising for future clinical applications [58-61].

Questions of age and timing

Regeneration studies are generally performed in young adult animals, whereas the SCI epidemiology shows that there is an increased incidence at older ages [62] in
human patients. Older age seems to impair axonal plasticity rather than axon regeneration [63,64]. This finding could be of importance because it suggests that effective therapies to promote axon regeneration are still feasible for elderly patients, but it also suggests that different efficacies must be expected for treatments in young and aged patients. Additionally and very importantly, many therapies are being developed in acute injury models. However, a successful treatment for acute SCI may not be equally effective in sub-acute or even chronic SCI. The fibrous SCI scar develops in the first week after the insult [65]; therefore, many treatments target the lesion scar because it is a major physical and molecular barrier to regenerative axon growth. For a large number of treatments, the existing scar at the site of injury is an obstacle that needs to be overcome, especially in sub-acute and chronic SCI. There are different ways of approaching this matter: cellular or acellular matrices, filaments, or channels can be inserted, which function as bridging or guidance structures (or both) or deliver pharmaceutically active substances [15,16,66-69]. A very innovative treatment tool for this purpose is a recently described mechanical microconnector system [70], which actively reconnects severed spinal cord tissue stumps and can further deliver fluid pharmaceuticals into the lesion center cross-section, which is generally not well accessible for continuous in situ treatment. With this microconnector system, as with all experimental treatments, a major challenge will be the translation into large animal models up to the potential future clinical application where spinal defects will be of considerably larger size than in rodents. From a clinical point of view, a sub-acute therapy might be the most reasonable because patients with SCI might be reluctant to undergo further invasive interventions once they have come to terms with their situation. In this context, psychological care is absolutely vital to help the patient to accept his or her fate [71]. Regarding SCI in general and sub-acute and chronic SCI in particular, rehabilitative training requires a mention: it can increase neuronal plasticity in the absence of supraspinal control and thereby can reduce spasticity [73]. Active exercise can promote recovery by mediating plasticity at multiple levels of the neuraxis [73]. Active exercise requires varying degrees of supraspinal or spinal control or both. Unlike passive exercise, active exercise is, therefore, appropriate only after incomplete SCI. Whereas passive training can activate and increase joint motion, active exercise can improve motor recovery by further activating the muscles and multiple modes of afferent stimulation, possibly by changing the expression of inhibitory or supporting factors (or both) [74] or by altering electrophysiological properties in the lumbar enlargement [75].

Combinatory treatments on the rise

Aside from obvious differences (e.g. spinal level, nature of the injury, and gross classification of the severity), no two cases of SCI are alike. Some single treatments can have multiple (additive or synergistic) effects (e.g. cell transplantation strategies [76,77], the administration of neurotrophic factors [78], or modulation of the SCI scar [13-15,79]). The multitude of research foci reflects the diversity of SCI. Therefore, the current trend is moving from single treatments to more holistic combinatory approaches [80]. As an example for a scar-modulating therapy, the bacterial enzyme chondroitinase ABC has been applied initially as a single treatment in rodents and currently is used in different small and large experimental animal studies [13,32,33,81,82] and also in numerous combinatory approaches [32,33,83-87]. At present, there are also numerous attempts to combine available pharmacological treatments with training in order to maximize the treatment effects. However, such combinatory strategies raise many new questions regarding, for example, the right timing (delay) to start the training, the intensity of the training sessions, or possible adverse effects [72]. Generally, a holistic combinatory SCI therapy should address as many aspects as possible, including neuroprotection (at early post-injury phases), the promotion of axonal growth, and modulating the lesion scar to make it more permissive for growing axons. Regular rehabilitative training should be a self-evident component of any SCI treatment. The major challenge in designing effective strategies will be the potential negative effects of the combination of generally beneficial single approaches. The development of such a comprehensive treatment requires intensive research and careful considerations to reduce the currently unmanageable number of potential treatment strategies.

Managing the data overflow

The list of varying parameters and protocols in SCI research is already daunting (e.g. different injury models...
Clinical trials – neuroprotection, functional repair, and regeneration

In addition to a network of scientific (see above) and clinical databases, e.g. the European Multicenter Study about Spinal Cord Injury (EM-SCI [95]), the successful translation of preclinical animal models requires the enforcement of strict criteria, which are established by regulatory agencies. Recently, various clinical trials based on innovative and novel experimental approaches have shown an efficacy in preclinical animal studies and safety in SCI patients but failed to show significant and reproducible efficacy [96]. One of the early clinical SCI trials was conducted by Proneuron Biotechnologies [97]. It comprised the transplantation of autologous (the patient’s own) activated macrophages as a treatment for acute SCI. The phase II study was suspended prematurely (supposedly not because of clinical or safety concerns). Some current/planned early-phase (phase I and II) clinical trials include conventional drug and molecule therapies such as the anti-NOGO A antibody therapy (antibody directed against an axon growth inhibitory protein in CNS myelin; desired effects: neuroprotection, axonal sprouting, and regeneration [98-100]) or cethrin treatment (cethrin acts as a C3 Rho inhibitor; desired effects: neuroprotection, axonal sprouting, and regeneration [101-103]). Cell transplantation approaches like the transplantation of autologous olfactory ensheathing glia (desired effects: axonal sprouting and regeneration [104,105]), of autologous bone marrow cells (desired effect: functional repair [20,106-109]), and of autologous Schwann cells (desired effect: functional repair [20,110,111]) are also very promising. However, in contrast to the transplantation of the latter cells, clinical approval of embryonic stem cells (ESCs) remains highly questionable because of the tumorigenic potential of ESC or ESC-derived precursor cells [112] in spite of potential beneficial treatment effects.

Perspective

This short summary describing SCI symptoms, recent research approaches, and treatments up to current clinical applications is far from being complete. It highlights certain facets of a very complex disease pattern and outlines some attempts of aiding the patients’ recovery. The hope remains that GLP (good laboratory practice) standardization of SCI studies, the availability and management of necessary data, and well-conducted clinical trials will eventually lead to the development of effective and, most likely, combinatorial treatments from which SCI patients can benefit.

Abbreviations

CNS, central nervous system; CPG, central pattern generator; CSPG, chondroitin sulfate proteoglycan; ESC, embryonic stem cell; SCI, spinal cord injury.

Disclosures

The authors declare that they have no disclosures.

References

1. Ramon y Cajal, S: Degeneration and regeneration of the nervous system. New York: Oxford University Press; 1928.

2. David S, Aguayo AJ: Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats. Science 1981, 214:931-3.

3. Meurer WJ, Barsan WG: Spinal Cord Injury Neuroprotection and the Promise of Flexible Adaptive Clinical Trials. World Neurosurg 2013.
4. Becker D, McDonald JW: Approaches to repairing the damaged spinal cord: overview. Handb Clin Neurol 2012, 109:445-61.

5. Nikulina E, Tidwell JL, Dai HN, Bregman BS, Filbin MT: The phosphodiesterase inhibitor rolipram delivered after a spinal cord lesion promotes axonal regeneration and functional recovery. Proc Natl Acad Sci USA 2004, 101:8786-90.

6. McKerracher L, Higuchi H: Targeting Rho to stimulate repair after spinal injury. J Neurotrauma 2006, 23:309-17.

7. Fawcett JW, Schwab ME, Montani L, Brazda N, Müller HW: Defeating inhibition of regeneration by scar and myelin components. Handb Clin Neurol 2012, 109:503-22.

8. Hollis ER, Tuszynski MH: Neurotrophins: potential therapeutic tools for the treatment of spinal cord injury. Neurotherapeutics 2011, 8:694-703.

9. Jaerve A, Bosse F, Müller HW: SDF-1/CXCL12: its role in spinal cord injury. Int J Biochem Cell Biol 2012, 44:452-6.

10. Opatz J, Kury P, Schiwy N, Jarve A, Estrada V, Brazda N, Bosse F, Müller HW: SDF-1 stimulates neurite growth on inhibitory CNS myelin. Mol Cell Neurosci 2009, 40:293-300.

11. Giger RJ, Hollis ER, Tuszynski MH: Guidance molecules in axon regeneration. Cold Spring Harb Perspect Biol 2010, 2:a001867.

12. Niclou SP, Ehlert EM, Verhaagen J: Chemorepellent axon guidance molecules in spinal cord injury. J Neurotrauma 2006, 23:409-21.

13. Bradbury EJ, Moon LD, Popat RJ, King VR, Bennet GS, Patel PN, Fawcett JW, McMahon SB: Chondroitinase ABC promotes functional recovery after spinal injury. Nature 2002, 416:636-40.

14. Klapka N, Hermanns S, Storzen G, Masanneck C, Duis S, Hamers FP, Frank P T, Muller D, Zschatter W, Muller HW: Suppression of fibrous scarring in spinal cord injury of rat promotes long-distance growth of corticospinal tract axons, rescue of primary motoneurons in somatosensory cortex and significant functional recovery. Eur J Neurosci 2004, 22:3047-58.

15. Estrada V, Brazda N, Schmitz C, Heller S, Blazyczka H, Martini R, Muller HW: Long-lasting significant functional improvement in chronic severe spinal cord injury following scar resection and polyethylene glycol implantation. Neurobiol Dis 2014, 67C:165-79.

16. Sakiyama-Elbert S, Johnson PJ, Hodgetts SI, Plant GW, Harvey AR: Scaffolds to promote spinal cord regeneration. Handb Clin Neurol 2012, 109:575-94.

17. Faulkner JR, Herrmann JE, Woo MJ, Tansey KE, Doan NB, Sofroniew MV: Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci 2004, 24:1143-1155.

18. Davies SJ, Shih CH, Noble M, Mayer-Proeschel M, Davies JE, Proeschel C: Transplantation of specific human astrocytes promotes functional recovery after spinal cord injury. PLoS One 2011, 6:e17328.

19. Almad A, Sahinlastra FR, McGtigue DM: Oligodendrocyte fate after spinal cord injury. Neurotherapeutics 2011, 8:262-273.

20. Guest J, Santamaria AJ, Benavides FD: Clinical translation of autologous Schwann cell transplantation for the treatment of spinal cord injury. Curr Opin Organ Transplant 2013, 18:682-89.

21. Nakamura M, Okano H: Cell transplantation therapies for spinal cord injury focusing on induced pluripotent stem cells. Cell Res 2013, 23:70-80.

22. Schira J, Gasis M, Estrada V, Hendricks M, Schmitz C, Trapp T, Kruse F, Kögler G, Wernet P, Hartung H, Müller HW: Significant clinical, neuropathological and behavioural recovery from acute spinal cord trauma by transplantation of a well-defined somatic stem cell from human umbilical cord blood. Brain 2012, 135:431-61.

23. Cao Q, Whitemore SR: Cell transplantation: stem cells and precursor cells. Handb Clin Neurol 2012, 109:551-61.

24. Franzi S, Weidner N, Blesch A: Gene therapy approaches to enhancing plasticity and regeneration after spinal cord injury. Exp Neurol 2012, 235:62-69.

25. Yasuda A, Tsuji O, Shibata S, Nori S, Takano M, Kobayashi Y, Takahashi Y, Fujihoshi K, Haram CM, Miyawaki A, Okano HJ, Toyama Y, Nakamura M, Okano H: Significance of reneurination by neural stem/progenitor cells transplanted into the injured spinal cord. Stem Cells 2011, 29:1983-94.

26. Lu P, Yang W, Graham L, McHale K, Gao M, Wu D, Brock J, Blesch A, Rosenweig E, Havton LA, Zheng B, Conner JM, Marsala M, Tuszynski MH: Long-distance growth and connectivity of neural stem cells after severe spinal cord injury. Cell 2012, 150:1264-73.

27. Nardone R, Holler Y, Leis S, Holler P, Thon N, Thomschewski A, Golaszewski S, Brigo F, Trinka E: Invasive and non-invasive brain stimulation for treatment of neuropathic pain in patients with spinal cord injury: A review. J Spinal Cord Med 2014, 37:19-31.

28. Garrido-Mesa N, Zarzuela A, Galvez J: Minocycline: far beyond an antibiotic. Br J Pharmacol 2013, 169:337-52.

29. Dietz V, Sinkjaer T: Spasticity. Handb Clin Neurol 2012, 109:197-211.

30. McNtiyre A, Mays R, Mehta S, Janzen S, Townson A, Hsieh J, Wolfe D, Teasell R: Examining the effectiveness of intrathecal baclofen on spasticity in individuals with chronic spinal cord injury: A systematic review. J Spinal Cord Med 2014, 37:11-8.

31. Juknis N, Cooper JM, Voloshyn O: The changing landscape of spinal cord injury. Handb Clin Neurol 2012, 109:49-66.

32. Allain WJ, Horn KP, Hu H, Dick TE, Silver J: Functional regeneration of respiratory pathways after spinal cord injury. Nature 2011, 475:196-200.

33. Lee YS, Lin CY, Jiang HH, Depaul M, Lin VW, Silver J: Nerve regeneration restores supraspinal control of bladder function after complete spinal cord injury. J Neurosci 2013, 33:10591-606.

34. Pan Y, Liu B, Li R, Zhang Z, Lu L: Bowel Dysfunction in Spinal Cord Injury: Current Perspectives. Cell Biochem Biophys 2014, 69:385-9.

35. Nishimura Y, Perlmuttner SI, Fetz EE: Restoration of upper limb movement via artificial corticospinal and musculospinal connections in a monkey with spinal cord injury. Front Neural Circuits 2013, 7:57.

36. Cregg JM, Depaul MA, Filous AR, Lang BT, Tran A, Silver J: Functional regeneration beyond the glial scar. Exp Neurol 2014, 253C:197-207.

37. Silver J, Miller J: Regeneration beyond the glial scar. Nat Rev Neurosci 2004, 5:146-156.
40. Popovich PG, Longbrake EE: Can the immune system be harnessed to repair the CNS? Nat Rev Neurosci 2008, 9:481-93.
41. Cote MP, Amin AA, Tom VJ, Houle JD: Peripheral nerve grafts support regeneration after spinal cord injury. Neurotherapeutics 2011, 8:294-303.
42. Fraidakis MJ, Spengler C, Olson L: Partial recovery after treatment of chronic paraplegia in rats. Exp Neurol 2004, 188:33-42.
43. Hill CE, Brodak DM, Bartlett BM: Dissociated predegenerated peripheral nerve transplants for spinal cord injury repair: a comprehensive assessment of their effects on regeneration and functional recovery compared to Schwann cell transplants. J Neurotrauma 2012, 29:2226-43.
44. Li J, Lepski G: Cell transplantation for spinal cord injury: a systematic review. Biomed Res Int 2013, 2013:786475.
45. Franz S, Weidner N, Blesch A: Gene therapy approaches to enhancing plasticity and regeneration after spinal cord injury. Exp Neurol 2012, 235:62-9.
46. Hou T, Wu Y, Wang L, Liu Y, Zeng L, Li M, Long Z, Chen H, Li Y, Wang Z: Cellular prostheses fabricated with motor neurons seeded in self-assembling peptide promotes partial functional recovery following spinal cord injury in rats. Tissue Eng Part A 2012, 18:B974-85.
47. Blesch A, Lu P, Tsukada S, Alto LT, Roet K, Coppola G, Geschwind D, Tuszynski MH: Lesions before or after spinal cord injury recruit broad genetic mechanisms that sustain axonal regeneration: superiority to camp-mediated effects. Exp Neurol 2012, 235:162-73.
48. Blesch A, Fischer I, Tuszynski MH: Gene therapy, neurotrophic factors and spinal cord regeneration. Handb Clin Neurol 2012, 109:563-74.
49. Verhaagen J, Van Kesteren RE, Bossers KA, Macgillivray HD, Mason MR, Smit AB: Molecular target discovery for neural repair in the functional genomics era. Handb Clin Neurol 2012, 109:595-616.
50. Filbin MT: Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat Rev Neurosci 2003, 4:703-13.
51. Lee JK, Zheng B: Role of myelin-associated inhibitors in axonal repair after spinal cord injury. Exp Neurol 2012, 235:33-42.
52. Caroni P, Schwab ME: Antibody against myelin-associated inhibitor of neurite growth neutralizes nonpermissive substrate properties of CNS white matter. Neuron 1988, 1:85-96.
53. Fawcett JW: Repair of spinal cord injuries: where are we going? Spinal Cord 2002, 40:615-23.
54. Ferguson AR, Huie JR, Crown ED, Baumbauer KM, Hook MA, Garraway SH, Lee KH, Hoy KC, Grau JW: Maladaptive spinal plasticity opposes spinal learning and recovery in spinal cord injury. Front Physiol 2012, 3:399.
55. Nardone R, Holler Y, Brigo F, Seidl M, Christova M, Bergmann J, Golaszewski S, Trinka E: Functional brain reorganization after spinal cord injury: systematic review of animal and human studies. Brain Res 2013, 1504:58-73.
56. Musienko P, Heutschi J, Friedli L, van den BR, Courtine G: Multi-system neurorehabilitative strategies to restore motor functions following severe spinal cord injury. Exp Neurol 2012, 235:100-9.
57. Edgerton VR, Roy RR: Robotic training and spinal cord plasticity. Brain Res Bull 2009, 78:4-12.
58. Borton D, Micera S, Millan JR, Courtine G: Personalized neuroprosthetics. Sci Transl Med 2013, 5:210rv2.
59. Borton D, Bonizzato M, Beauparlant J, DiGiovanna J, Moraud EM, Wenger N, Musienko P, Minev IR, Lacour SP, Millán, José del R, Micera, S, Courtine G: Corticospinal neuroprostheses to restore locomotion after spinal cord injury. Neurosci Res 2014, 78:21-9.
60. Courtine G, Micera S, DiGiovanna J, Millan JR: Brain-machine interface: closer to therapeutic reality? Lancet 2013, 381:515-17.
61. van den BR, Heutschi J, Barraud Q, DiGiovanna J, Bartholdi K, Huerlimann M, Friedli L, Vollenweider I, Moraud EM, Duis S, Dominici N, Micera S, Musienko P, Courtine G: Restoring voluntary control of locomotion after paralyzing spinal cord injury. Science 2012, 336:1182-85.
62. Johns Hopkins University School of Medicine. [http://www.johndepsomo.edu/]
63. Wirz M, Dietz V: Concepts of aging with paralysis: implications for recovery and treatment. Handb Clin Neurol 2012, 109:77-84.
64. Joosten EA: Biodegradable biomatrices and bridging the injured spinal cord: the corticospinal tract as a proof of principle. Cell Tissue Res 2012, 349:375-95.
65. Kubinova S, Sykova E: Biomaterials combined with cell therapy for treatment of spinal cord injury. Regen Med 2012, 7:207-24.
66. Hejil A, Jendelova P, Sykova E: Experimental reconstruction of the injured spinal cord. Adv Tech Stand Neurosurg 2011, 37:65-95.
67. Garbossa D, Boido M, Fontanella M, Fronda C, Ducati A, Vercelli A: Biodegradable biomatrices and bridging the injured spinal cord: the corticospinal tract as a proof of principle. Cell Tissue Res 2012, 349:375-95.
68. Brahida N, Voss C, Estrada V, Lodin H, Weinrich N, Seide K, Müller J, Müller HW: A mechanical microconnector system for restoration of tissue continuity and long-term drug application into the injured spinal cord. Biomaterials 2013, 34:1003-64.
69. Grundy D, Swain A (eds.): ABC of spinal cord injury BMJ Books; 2002.
70. Foad K, Tetzall W: Rehabilitative training and plasticity following spinal cord injury. Exp Neurol 2012, 235:91-9.
71. Lysik P, Jv, Belanger A, just P: Activity-dependent plasticity in spinal cord injury. J Rehabil Res Dev 2008, 45:229-40.
72. Houle JD, Cote MP: Axon regeneration and exercise-dependent plasticity after spinal cord injury. Ann N Y Acad Sci 2013, 1279:154-63.
73. Beaumont E, Kaloostian S, Rousseau G, Cormery B: Training improves the electrophysiological properties of lumbar neurons and locomotion after thoracic spinal cord injury in rats. Neurosci Res 2008, 62:147-54.
74. Garbossa D, Boido M, Fontanella M, Fronda C, Ducati A, Vercelli A: Recent therapeutic strategies for spinal cord injury treatment: possible role of stem cells. Neurosurg Rev 2012, 35:293-311.
75. Ruff CA, Wilcox JT, Fehlings MG: Cell-based transplantation strategies to promote plasticity following spinal cord injury. Exp Neurol 2012, 235:78-90.
76. Weishaupt N, Blesch A, Foad K: BDNF: the career of a multifaceted neurotrophin in spinal cord injury. Exp Neurol 2012, 238:254-64.
77. Barritt AW, Davies M, Marchand F, Hartley R, Grist J, Yip P, McMahan SB, Bradbury EJ: Chondroitinase ABC promotes sprouting of intact and injured spinal systems after spinal cord injury. J Neurosci 2006, 26:10856-67.
78. Oudega M, Bradbury EJ, Ramer MS: Combination therapies. Handb Clin Neurol 2012, 109:617-36.

50. Filbin MT: Myelin-associated inhibitors of axonal regeneration in the injured mouse spinal cord. J Neurosci 2009, 29:13435-44.
81. Bowes C, Massey JM, Burish M, Cerkovich CM, Kaas JH: Chondroitinase ABC promotes selective reactivation of somatosensory cortex in squirrel monkeys after a cervical dorsal column lesion. Proc Natl Acad Sci USA 2012, 109:2595-600.

82. Garcia-Alias G, Lin R, Akrami SF, Story D, Bradbury EJ, Fawcett JW: Therapeutic time window for the application of chondroitinase ABC after spinal cord injury. Exp Neurol 2008, 210:331-8.

83. Wang D, Ichiyama RM, Zhao R, Andrews MR, Fawcett JW: Chondroitinase combined with rehabilitation promotes recovery of forelimb function in rats with chronic spinal cord injury. J Neurosci 2011, 31:9332-44.

84. Kannapum, Bunge MB: Combination of engineered Schwann cell grafts to secrete neurotrophin and chondroitinase promotes axonal regeneration and locomotion after spinal cord injury. J Neurosci 2014, 34:1838-55.

85. Coleman S, Filippov MA, Dityatev A, Fawcett JW: Targeting the neural extracellular matrix in neurological disorders. Neuroscience 2013, 251:194-213.

86. Zhao RR, Andrews MR, Wang D, Warren P, Gullo M, Schnell L, Schwab ME, Fawcett JW: Combination treatment with anti-Nogo-A and chondroitinase ABC is more effective than single treatments at enhancing functional recovery after spinal cord injury. Eur J Neurosci 2013, 38:2946-51.

87. Zhao RR, Fawcett JW: Combination treatment with chondroitinase ABC in spinal cord injury—breaking the barrier. Neurosci Bull 2013, 29:47-73.

88. Kwon BK, Okon EB, Plane W, Baptiste D, Fawcett JW, Hillyer J, Weaver LC, Fehlings MG, Tetzlaff W: A systematic review of directly applied biologic therapies for acute spinal cord injury. J Neurotrauma 2011, 28:1589-610.

89. Kwon BK, Okon E, Hillyer J, Mann C, Baptiste D, Weaver LC, Fehlings MG, Tetzlaff W: A systematic review of non-invasive pharmacologic neuroprotective treatments for acute spinal cord injury. J Neurotrauma 2011, 28:1545-88.

90. Kwon BK, Okon E, Hillyer J, Mann C, Baptiste D, Weaver LC, Fehlings MG, Tetzlaff W: A grading system to evaluate objectively the strength of pre-clinical data of acute neuroprotective therapies for clinical translation in spinal cord injury. J Neurotrauma 2011, 28:1525-43.

91. Tetzlaff W, Okon EB, Karimi-Abdolrezaee S, Hill CE, Sparling JS, Pinenel JR, Planer WT, Tsai EC, Baptiste D, Smithson LJ, Kawaja MD, Fehlings MG, Kwon BK: A systematic review of cellular transplantation therapies for spinal cord injury. J Neurotrauma 2011, 28:1611-82.

92. Steward O, Popovich PG, Dieterich WD, Kleitman N: Replication and reproducibility in spinal cord injury research. Exp Neural 2012, 233:597-605.

93. The Center for Neuronal Regeneration. [http://www.cnr.de]