Uniqueness of a 3-D coefficient inverse scattering problem without the phase information

Michael V Klibanov1 and Vladimir G Romanov2

1 Department of Mathematics and Statistics, University of North and Carolina at Charlotte, Charlotte, NC 28223, United States of America
2 Sobolev Institute of Mathematics, Novosibirsk 630090, Russia

E-mail: mklibanv@uncc.edu and romanov@math.nsc.ru

Received 2 March 2017, revised 8 June 2017
Accepted for publication 19 June 2017
Published 18 August 2017

Abstract

We use a new method to prove the uniqueness theorem for a coefficient inverse scattering problem without the phase information for the 3-D Helmholtz equation. We consider the case when only the modulus of the scattered wave field is measured and the phase is not measured. The spatially distributed refractive index is the subject of interest in this problem. Applications of this problem are in imaging of nanostructures and biological cells.

Keywords: phaseless data, inverse scattering problem, uniqueness theorem

1. Introduction

We consider an inverse problem of the determination of an unknown coefficient of the 3-D Helmholtz equation from measurements of only the modulus of the scattering part of the solution of this equation outside the scatterer. Since the phase of the complex valued wave field is not measured and since we search for an unknown coefficient of the 3-D Helmholtz equation, we call our problem coefficient phaseless inverse scattering problem (CPISP). The goal of this paper is to prove uniqueness theorem for this problem. The method of our proof is new. It was not used in proofs of previous uniqueness results for CPISPs \cite{13, 15--17, 23, 24}. Recall that it is assumed in the majority of publications about inverse scattering problems that both the phase and the modulus of the complex valued wave field are measured, see, e.g. \cite{4, 9, 10, 25, 28--30}. Note that publications \cite{28--30} are concerned with the scattering data measured at a single frequency.

Let u_0 be the incident wave field generated by a point source. Let u_{sc} be the wave field, which occurs due to scattering by the scatterer. The total wave field is $u = u_0 + u_{sc}$. The goal of this paper is to prove uniqueness theorem for a CPISP in the case when the modulus $|u_{sc}|$ of the scattered wave field is measured on a certain surface. In the previous publication \cite{23}...
uniqueness was proven for the case when the modulus $|u|$ of the total wave field is measured. Compared with [23], the main difficulty here is caused by the interference of two wave fields: the total wave field and the incident wave field. In [24] uniqueness was also proven for the case when $|u_{sc}|^2$ is measured. However, there is one inconvenient condition of the uniqueness theorem of [24], see remark in section 2. Using the above mentioned new idea, we lift this condition here.

CPISPs have applications in imaging of nanostructures whose sizes are about 100 nm, which is 0.1 micron. Hence, the wavelength of the probing radiation must be also about 0.1 micron (0.1 μm). In this case the frequencies are millions of gigahertz [36]. It is well known that it is possible to measure only the intensity of the scattered wave at such huge frequencies, whereas the phase cannot be measured [8, 34, 40]. The intensity is the square of the modulus. To image a nanostructure, one needs to compute its unknown spatially distributed dielectric constant using measurements of only the intensity of the scattered wave field. Also, CPISPs have applications in optical imaging of biological cells, since their sizes are between 1−10 μm [35].

The light generated by lasers is used in this imaging. The diameter of the laser beam is a few millimeters (mm). Recall that 1 mm = 10^3 μm. Hence, inside of the laser beam the intensity of this beam significantly exceeds the intensity of the portion of light scattered by nanostructures. In addition, it is well known that if a light detector is placed inside of this beam, then it is burned. Therefore, these detectors are placed outside of this beam. This means that so placed detectors measure only the intensity of the portion of light, which is scattered by those nanostructures, i.e. they measure $|u_{sc}|^2$. We point out that the precise mathematical model of the laser beam is outside of the scope of this publication. So, the above was given only to explain why it is important to consider the case when the function $|u_{sc}|^2$ rather than the function $|u|^2$ is assumed to be given outside of a scatterer.

For the first time, the uniqueness result for a CPISP was proven in [13]. This was done for the 1-D case. As to the 3-D case, first uniqueness theorems were proven in [15, 16] for the case when the Schrödinger equation

$$
\Delta v + k^2 v - q(x)v = -\delta(x-y), x \in \mathbb{R}^3
$$

(1.1)

is the underlying one and the potential $q(x)$ is unknown. We note that equation (1.1) is easier to work with than with the Helmholtz equation. This is because, unlike the Helmholtz equation, the potential $q(x)$ is not multiplied by k^2 in (1.1). The multiplication of the unknown coefficient by k^2 prompts the use of the apparatus of the Riemannian geometry in the case of the Helmholtz equation, see [23, 24], which is unlike (1.1). In addition to uniqueness theorems, reconstruction procedures for 3-D CPISPs were developed by the authors both for the Schrödinger equation [20, 21] and for the Helmholtz equation [18, 19]. A modified reconstruction procedure of [18] was numerically implemented in [22].

Our CPISP is over-determined: the data depend on five variables, whereas the unknown coefficient depends on three variables. On the other hand, the authors are unaware about uniqueness results for 3-D coefficient inverse scattering problems which would not use over-determined data even in the case when both the phase and the modulus of the scattered waves are measured. As to the uniqueness theorems for non over-determined 3-D coefficient inverse problems without the phase information, we refer to [17] for the case of the Helmholtz equation with single measurement data. The price to pay for this is the assumption that the right hand side of the Helmholtz equation is a non-vanishing function $r(x)$, whereas the right hand side in [23, 24] and the current paper is the $\delta-$function. In addition, similar results for the Schrödinger equation are in theorems 3 and 4 of [15] and in theorem 2 of [16]. In all these
latter results for single measurement data the method of [7] is applied on the last step of the proof. This method is based on Carleman estimates, also see, e.g. the recent survey of this method in [14].

CPISPs were also considered by Novikov in [31, 32]. Statements of CPISPs in [31, 32] differ from ours in some respects. In these publications, uniqueness theorems are proven and reconstruction procedures are developed.

Recall that a CPISP is about the reconstruction of an unknown coefficient from phaseless measurements. Along with reconstructions of unknown coefficients in CPISPs, phaseless inverse problems of the reconstruction of unknown surfaces of scatterers are also attractive. In this regard, we refer to [1–3, 11, 12, 26] for numerical solutions of some inverse scattering problems without the phase information in the case when the surface of a scatterer was reconstructed. In addition, in [44] the phaseless inverse problem of the reconstruction of a source was considered.

In section 2 we formulate our CPISP as well as the uniqueness theorem of our paper. In section 3 we prove this theorem.

2. Statement of the problem

Below \(x = (x_1, x_2, x_3) \in \mathbb{R}^3 \). Consider a non-magnetic and non-conductive medium, which occupies the entire space \(\mathbb{R}^3 \). Let \(\Omega \subset \mathbb{R}^3 \) be a bounded domain. Let \(S \in C^2 \) be a surface, which is the boundary of another bounded convex domain \(G \subset \mathbb{R}^3, S = \partial G \). We assume that \(\Omega \subseteq G \). Hence, \(S \cap \Omega = \emptyset \), although the surface \(S \) might be the boundary of \(\Omega \). Let \(n^2(x) \) be the spatially varying dielectric constant of the medium, where \(n(x) \) is the refractive index. We assume below that the function \(n(x) \) satisfies the following conditions:

\[
\begin{align*}
n(x) &\in C^{15}(\mathbb{R}^3), \\
n(x) &\geq 1 \text{ in } \mathbb{R}^3, \\
n(x) &= 1 \text{ for } x \in \mathbb{R}^3 \setminus \Omega.
\end{align*}
\]

Condition (2.2) means that the refractive index of the medium is not less than the refractive index of the vacuum, which equals 1. Condition (2.3) means that the vacuum is outside of the domain \(\Omega \). To explain the smoothness condition (2.1), we note that lemma 1 formulated below follows from results of [18, 23]. On the other hand, those results of [18] use the fundamental solution of the hyperbolic equation

\[
n^2(x)\nabla^2 v = \Delta v.
\]

The construction of this solution works only if \(n(x) \in C^{15}(\mathbb{R}^3) \) [18, 38]. In addition, the constructions of [18, 38] require the regularity of geodesic lines, see Condition below. We also note that the minimal smoothness requirements for unknown coefficients are rarely a significant concern in uniqueness theorems for multidimensional coefficient inverse problems, see, e.g. [29, 30], theorem 4.1 in section 4 of [37] and [14].

The function \(n(x) \) generates the conformal Riemannian metric,

\[
d\tau = n(x) \|dx\|, \quad |dx| = \sqrt{(dx_1)^2 + (dx_2)^2 + (dx_3)^2}.
\]

We now formulate the assumption of the regularity of geodesic lines:
2.1. Assumption of the regularity of geodesic lines

Geodesic lines generated by the metric (2.5) are regular. In other words, each pair of points \(x, y \in \mathbb{R}^3 \) can be connected by a single geodesic line \(\Gamma(x, y) \).

A sufficient condition of the regularity of geodesic lines is [39]

\[
\sum_{i,j=1}^{3} \frac{\partial^2 \ln n(x)}{\partial x_i \partial x_j} \xi_i \xi_j \geq 0, \quad \forall \xi \in \mathbb{R}^3, \forall x \in \mathbb{R}^3.
\]

For an arbitrary pair of points \(x, y \in \mathbb{R}^3 \) consider the travel time \(\tau(x, y) \) between them due to the Riemannian metric (2.5). Then [37]

\[
\tau(x, y) = \int_{\Gamma(x, y)} n(\xi) d\sigma,
\]

where \(d\sigma \) is the Euclidean arc length.

Let \(y \in \mathbb{R}^3 \) be the position of the point source, \(r = |x - y| \) and \(k > 0 \) be the wavenumber. We consider the Helmholtz equation with the radiation condition at the infinity

\[
\Delta u + k^2 n^2(x) u = -\delta(x - y), \quad x \in \mathbb{R}^3,
\]

\[
\partial_r u - i k u = o\left(1/r\right), \quad r \to \infty.
\]

Let \(u_0 \) be the incident spherical wave and \(u_{sc} \) be the scattered wave,

\[
u_{0}(x, y, k) = A_0(x, y) e^{ik|x-y|}, \quad A_0(x, y) = \frac{1}{4\pi |x-y|},
\]

\[
u_{sc}(x, y, k) = u(x, y, k) - u_0(x, y, k).
\]

We model the propagation of the electric wave field in \(\mathbb{R}^3 \) by the solution of the problem (2.7) and (2.8). This model was justified numerically in [6] in the case of the time domain. Numerical results of section 7.2.2 of [6] demonstrate that this model can replace the modeling via the full Maxwell’s system, provided that only a single component of the electric field is incident upon the medium. Then this component dominates two other components while propagating through the medium. Furthermore, the propagation of this component is well governed by the single PDE (2.4), which is the time domain analog of equation (2.7), see figure 19(b) in [6] and the discussion in the paragraph just above section 8 of [6]. This conclusion was verified via accurate imaging using electromagnetic experimental data in, e.g. section 5 of [5] and [41, 42].

Let \((a, b) \subset \{ k : k > 0 \} \) be an arbitrary interval. Our interest in this paper is in the following CPISP.

2.2. Coefficient phaseless inverse scattering problem

Suppose that the function \(n(x) \) satisfies conditions (2.1)–(2.3). Assume that the following function \(f(x, y, k) \) is given

\[
f(x, y, k) = |u_{sc}(x, y, k)|^2, \quad \forall x, y \in S, x \neq y, \forall k \in (a, b).
\]

Determine the function \(n(x) \) for \(x \in \Omega \).
For an arbitrary number $\theta > 0$ denote $\mathbb{C}_\theta = \{ z \in \mathbb{C} : \text{Im} \, z > -\theta \}$.

Lemma 1. Choose an arbitrary bounded domain $G_1 \subset \mathbb{R}^3$ such that $G \subset G_1$ and $S \cap \partial G_1 = \emptyset$. Then there exists a number $\theta = \theta (G_1) > 0$ such that for each $y \in \mathbb{R}^3$ and for all $x \in G_1$, $x \neq y$ the function $u_\infty (x,y,k)$ is analytic as the function of $k \in \mathbb{C}_\theta$ and the function $f (x,y,k)$ is analytic as the function of $k \in \mathbb{R}$. Next, for any pair $x, y \in \mathbb{R}^3$, $x \neq y$ the asymptotic behavior of the function $u_\infty (x,y,k)$ as $k \to \infty$ is

$$u_\infty (x,y,k) = A(x,y)e^{ik\tau (x,y)} - A_0 (x,y)e^{ik|x-y|} + \hat{u} (x,y,k),$$

(2.12)

where the function $\hat{u} (x,y,k) = O (1/k)$ as $k \to \infty$ and the function $A(x,y) > 0$. Furthermore, the function $\hat{u} (x,y,k)$ is such that

$$\frac{\partial}{\partial k} \hat{u} (x,y,k) = O \left(\frac{1}{k} \right), \quad k \to \infty.$$

(2.13)

Remark 1.

1. Since by lemma 1 the function $f (x,y,k)$ is analytic with respect to $k \in \mathbb{R}$ for any fixed pair of points $x, y \in S$, $x \neq y$, then the uniqueness of the analytic continuation implies that the values of this function for $k \in (a,b)$ uniquely define its values for all $k \in \mathbb{R}$. This fact is used in our proof of theorem 1.

2. Since $S \cap \Omega = \emptyset$, then it follows from (2.3) and (2.11) that measurements are performed outside of the domain Ω where possible heterogeneities are. Thus, (2.11) removes an inconvenient assumption of [24], which requires to perform measurements at a surface, which is located inside of the domain with heterogeneities.

We assume below that conditions (2.1)–(2.3) as well as the assumption of the regularity of geodesic lines hold true and devote the rest of this paper to the proof of theorem 1.

3. Proof

Fix a pair of points $x, y \in S$, $x \neq y$. Then the function $f (x,y,k)$ is determined uniquely for all $k \in \mathbb{R}$, see item 1 of remark 1. Consider the asymptotic expansion of the function $f (x,y,k)$ at $k \to \infty$. Denote

$$\alpha = \alpha (x,y) = \tau (x,y) - |x-y|.$$

(3.1)

By lemma 1 the function $f (x,y,k)$ is known for all $k > 0$. It follows from (2.11)–(3.1) that

$$f (x,y,k) = A^2 (x,y) + A_0^2 (x,y) - 2A(x,y)A_0 (x,y) \cos (k\alpha) + \hat{f} (x,y,k),$$

(3.2)

where the functions $\hat{f} (x,y,k) = O (1/k)$ and $\partial_k \hat{f} (x,y,k) = O (1/k)$ as $k \to \infty$. We prove below that the number α can be uniquely recovered from the function $f (x,y,k)$.
First, we find $A(x, y)$. To do this, we prove first that

$$\lim_{k' \to \infty} \sup_{k \in (k', \infty)} \left[-2A(x, y)A_0(x, y) \cos (k \alpha) + \hat{f} (x, y, k) \right] = 2A(x, y)A_0(x, y). \tag{3.3}$$

Indeed, since $A(x, y) > 0$ and $A_0(x, y) > 0$, we have

$$\sup_{k \in (k', \infty)} \left[2A(x, y)A_0(x, y) \cos (k \alpha) + \hat{f} (x, y, k) \right]$$

$$\geq \sup_{k \in (k', \infty)} \left[2A(x, y)A_0(x, y) \cos (k \alpha) \right] - \sup_{k \in (k', \infty)} |\hat{f} (x, y, k)|$$

$$= 2A(x, y)A_0(x, y) - \sup_{k \in (k', \infty)} |\hat{f} (x, y, k)|.$$

On the other hand,

$$\sup_{k \in (k', \infty)} \left[2A(x, y)A_0(x, y) \cos (k \alpha) + \hat{f} (x, y, k) \right] \leq 2A(x, y)A_0(x, y) + \sup_{k \in (k', \infty)} |\hat{f} (x, y, k)|.$$

Hence, we have obtained that

$$2A(x, y)A_0(x, y) - \sup_{k \in (k', \infty)} |\hat{f} (x, y, k)|$$

$$\leq \sup_{k \in (k', \infty)} \left[2A(x, y)A_0(x, y) \cos (k \alpha) + \hat{f} (x, y, k) \right] \leq 2A(x, y)A_0(x, y) + \sup_{k \in (k', \infty)} |\hat{f} (x, y, k)|. \tag{3.4}$$

We also have $\sup_{k \in (k', \infty)} |\hat{f} (x, y, k)| = O (1/k')$. Hence, taking the limit in first and third lines of (3.4) as $k' \to \infty$, we obtain (3.3). Therefore,

$$f^*(x, y) := \lim_{k' \to \infty} \sup_{k \in (k', \infty)} f (x, y, k) = (A(x, y) + A_0(x, y))^2. \tag{3.5}$$

The number $A(x, y) > 0$ can be uniquely found from (3.5) as

$$A(x, y) = \sqrt{f^*(x, y)} - A_0(x, y).$$

Introduce the functions g and p,

$$g(x, y, k) = \frac{A^2(x, y) + A_0^2(x, y) - f (x, y, k)}{2A(x, y)A_0(x, y)},$$

$$p(x, y, k) = \frac{1}{2A(x, y)A_0(x, y)} \hat{f}(x, y, k).$$

Then equation (3.2) can be rewritten in the form

$$g(x, y, k) = \cos(k \alpha) - p(x, y, k), \tag{3.6}$$

where the function $g(x, y, k)$ is known and $p(x, y, k) = O(1/k), \partial_k p(x, y, k) = O(1/k).$

First, if $\alpha \neq 0$, then it follows from (3.6) that the limit
\[
\lim_{k \to \infty} g(x, y, k) \tag{3.7}
\]
does not exist. On the other hand, if \(\alpha = 0 \), then \(\lim_{k \to \infty} g(x, y, k) = 0 \). Thus, we have established that the limit (3.7) exists if and only if (see (3.1))

\[
\tau(x, y) = |x - y|. \tag{3.8}
\]

Since the function \(g \) is known, then one can establish whether or not the limit (3.7) exists, thus establishing whether or not (3.8) holds.

Assume now that (3.8) does not hold. Hence, \(\alpha \neq 0 \). By (2.6) and (3.1)

\[
\alpha(x, y) > 0. \tag{3.9}
\]

We show now how to find the number \(\alpha(x, y) \). First we show that there exist a countable number of zeros \(k_n \) of the function \(g(x, y, k) \) and

\[
\lim_{n \to \infty} k_n = \infty. \tag{3.10}
\]

We have:

\[
g(x, y, k) = 0 \iff \cos(\alpha(x, y)) = p(x, y, k). \tag{3.11}
\]

Let

\[
k\alpha \in (\pi(n-1), \pi n) \tag{3.12}
\]

for a sufficiently large integer \(n > 1 \). Then \(p(x, y, k) = O(1/n) \) and also \(\partial_k p(x, y, k) = O(1/n) \) as \(n \to \infty \). Rewrite the equation \(\cos(\alpha(x, y)) = p(x, y, k) \) in the form

\[
\sin(\pi/2 + k\alpha) = -p(x, y, k). \tag{3.13}
\]

Since \(|p(x, y, k)| < 1 \) for sufficiently large \(n \) for \(k \) satisfying (3.12), then (3.13) is equivalent with

\[
k\alpha = \frac{\pi}{2} + (-1)^{(n+1)} \arcsin p(x, y, k) + n\pi. \tag{3.14}
\]

For \(k \) satisfying (3.12), consider the function \(F_n(k, x, y) \),

\[
F_n(k, x, y) = k\alpha + \frac{\pi}{2} + (-1)^{(n)} \arcsin p(x, y, k) - n\pi.
\]

Then

\[
\partial_k F_n(x, y, k) = \alpha + O\left(\frac{1}{n}\right), \quad n \to \infty.
\]

Hence, \(\partial_k F_n(x, y, k) > 0 \) for sufficiently large \(n \). This means that the function \(F_n(x, y, k) \) is monotonically increasing with respect to \(k \) on the interval (3.12). Next,

\[
F_n(x, y, (n-1)\pi/\alpha) = -\frac{\pi}{2} + O\left(\frac{1}{n}\right), \quad F_n(x, y, n\pi/\alpha) = \frac{\pi}{2} + O\left(\frac{1}{n}\right). \tag{3.15}
\]

Since the function \(F_n(x, y, k) \) is continuous with respect to \(k \) and has different signs on the edges of the interval (3.12), then the mon monotonicity of this function implies that it has unique zero inside of this interval. Denote this zero by \(\hat{k}_n \). The asymptotic formula for these zeros follows from (3.14):
\[k_n \alpha = \frac{\pi}{2} + n\pi + O\left(\frac{1}{n}\right), \quad n \to \infty. \]

Hence,
\[\alpha (k_{n+1} - k_n) = \pi + O\left(\frac{1}{n}\right), \quad n \to \infty. \quad (3.16) \]

Therefore the number \(\alpha \) is uniquely determined as
\[\alpha = \lim_{n \to \infty} \frac{\pi}{k_{n+1} - k_n}. \quad (3.17) \]

Finally, since we know the function \(g(x,y,k) \) as the function of \(k \) and numbers \(k_n \) are zeros of this function, then we know the numbers \(k_n \) as well. Hence, (3.1) and (3.17) imply that the number \(\tau(x,y) \) is determined uniquely from the function \(f(x,y,k) \) in (2.11) for any fixed pair of points \(x,y \in S, x \neq y \). Therefore, the first assertion of theorem 1 is proved.

We now prove the second assertion of theorem 1. To do this, we apply theorem 3.4 of section 3 of the book [37]. This is the theorem about stability and uniqueness of the so-called inverse kinematic problem of seismic in the 3-D case. We use notations of that theorem for the convenience of the reader. It follows from the assumption of the regularity of geodesic lines and condition (2.3) that the Riemannian metric is simple in any convex domain \(P \subset \mathbb{R}^3, \Omega \subset P \). Recall that a metric is called simple in \(P \) if any two points \(x \) and \(y \) can be connected by a single geodesic line lying in \(P \) and the boundary \(\partial P \) is convex with respect to geodesic lines. As to the 2-D case, for the first time the stability and uniqueness theorem was proved in [27]. The most general 2-D result in this direction is the one of [33] about the rigidity of a simple 2-D metric.

Suppose that there exist two coefficients \(n_1(x) \) and \(n_2(x) \), which generate the same function \(f(x,y,k) \) in (2.11). Consider corresponding functions \(\tau_1(x,y) \) and \(\tau_2(x,y) \) defined via (2.6),
\[\tau_1(x,y) = \int_{\Gamma_1(x,y)} n_1(\xi)d\sigma, \quad \tau_2(x,y) = \int_{\Gamma_2(x,y)} n_2(\xi)d\sigma, \forall x,y \in \mathbb{R}^3, \]
where \(\Gamma_1(x,y) \) and \(\Gamma_2(x,y) \) are geodesic lines generated by functions \(n_1(x) \) and \(n_2(x) \) respectively. Then the first assertion of theorem 1 implies that
\[\tau_1(x,y) = \tau_2(x,y), \forall x,y \in S. \quad (3.18) \]
It follows from (2.2) that
\[n_1(x), n_2(x) \geq 1. \quad (3.19) \]
Using (2.1) and (3.19), we obtain that there exists a number \(n_{00} > 1 \) such that
\[\|n_1(x)\|_{C^1(\Gamma)}, \|n_2(x)\|_{C^1(\Gamma)} \leq n_{00}. \quad (3.20) \]

Let \(\Lambda(1,n_{00}) \) be the set of functions \(n(x) \) defined in \(\overline{G} \) and satisfying the following conditions:

1. the function \(n(x) \in C^{15}(\overline{G}) \), \(\|n(x)\|_{C^1(\overline{G})} \leq n_{00} \) and also \(n(x) \geq 1 \) in \(\overline{G} \).

2. The function \(n(x) \) satisfies condition of section 2 about the regularity of geodesic lines generated by metric (2.5).

By (3.18)–(3.20) functions \(n_1(x), n_2(x) \in \Lambda(1,n_{00}) \). Thus, (3.18) and the estimate (3.66) of theorem 3.4 of section 3 of the book [37] imply that \(n_1(x) \equiv n_2(x) \). \(\square \)
Acknowledgments

The work of MVK was supported by the US Army Research Laboratory and the US Army Research Office grant W911NF-15-1-0233 and by the Office of Naval Research grant N00014-15-1-2330. The work of VGR was partially supported by the Russian Foundation for Basic Research grant No. 17-01-00120-a.

References

[1] Ammari H, Chow Y T and Zou J 2016 Phased, phaseless domain reconstruction in inverse scattering problem via scattering coefficients SIAM J. Appl. Math. 76 1000–30
[2] Bao G, Li P and Lv J 2013 Numerical solution of an inverse diffraction grating problem from phaseless data J. Opt. Soc. Am. A 30 293–9
[3] Bao G and Zhang L 2016 Shape reconstruction of the multi-scale rough surface from multi-frequency phaseless data Inverse Problems 32 085002
[4] Bao G, Li P, Lin J and Triki F 2015 Inverse scattering problems with multi-frequencies Inverse Problems 31 093001
[5] Beilina L and Klibanov M V 2012 Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems (New York: Springer)
[6] Beilina L 2013 Energy estimates, numerical verification of the stabilized domain decomposition finite element/finite difference approach for the Maxwell’s system in time domain Cent. Eur. J. Math. 11 702–33
[7] Bukhgeim A L and Klibanov M V 1981 Uniqueness in the large of a class of multidimensional inverse problems Sov. Math.—Dokl. 17 244–7
[8] Darahanau A V, Nikulin A Y, Souvorov A, Nishino Y, Muddle B C and Ishikawa T 2005 Nano-resolution profiling of micro-structures using quantitative x-ray phase retrieval from Fraunhofer diffraction data Phys. Lett. A 335 494–8
[9] Hu G, Li J, Liu H and Sun H 2014 Inverse elastic scattering for multiscale rigid bodies with a single far-field pattern SIAM J. Imaging Sci. 7 1799–825
[10] Isakov V 2006 Inverse Problems for Partial Differential Equations 2nd edn (New York: Springer)
[11] Ivanyshyn O, Kress R and Serranho P 2010 Huygens’ principle, iterative methods in inverse obstacle scattering Adv. Comput. Math. 33 413–29
[12] Ivanyshyn O and Kress R 2011 Inverse scattering for surface impedance from phaseless far field data J. Comput. Phys. 230 3443–52
[13] Klibanov M V and Sacks P E 1992 Phaseless inverse scattering, the phase problem in optics J. Math. Phys. 33 3813–21
[14] Klibanov M V 2013 Carleman estimates for global uniqueness, stability, numerical methods for coefficient inverse problems J. Inverse Ill-Posed Problems 21 477–560
[15] Klibanov M V 2014 Phaseless inverse scattering problems in three dimensions SIAM J. Appl. Math. 74 392–410
[16] Klibanov M V 2014 On the first solution of a long standing problem: uniqueness of the phaseless quantum inverse scattering problem in 3-D Appl. Math. Lett. 37 82–5
[17] Klibanov M V 2014 Uniqueness of two phaseless non-overdetermined inverse acoustics problems in 3-D Appl. Anal. 93 1135–49
[18] Klibanov M V and Romanov V G 2016 Reconstruction procedures for two inverse scattering problems without the phase information SIAM J. Appl. Math. 76 178–96
[19] Klibanov M V and Romanov V G 2016 Two reconstruction procedures for a 3-D phaseless inverse scattering problem for the generalized Helmholtz equation Inverse Problems 32 015005
[20] Klibanov M V and Romanov V G 2015 The first solution of a long standing problem: reconstruction formula for a 3-D phaseless inverse scattering problem for the Schrödinger equation J. Inverse Ill-Posed Problems 23 415–26
[21] Klibanov M V and Romanov V G 2015 Explicit solution of 3-D phaseless inverse scattering problem for the Schrödinger equation: the plane wave case Eurasian J. Math. Comput. Appl. 3 48–63
Klibanov M V, Nguyen L H and Pan K 2016 Nanostructures imaging via numerical solution of a 3-D inverse scattering problem without the phase information Appl. Numer. Math. 110 190–203

Klibanov M V 2017 A phaseless inverse scattering problem for the 3-D Helmholtz equation Inverse Problems Imaging 11 263–76

Klibanov M V 2017 An inverse problem without the phase information (arXiv: 1701.00211)

Li J, Liu H, Shang Z and Sun H 2013 Two single-shot methods for locating multiple electromagnetic scatterers SIAM J. Appl. Math. 73 1721–46

Li J, Liu H and Wang Y 2017 Recovering an electromagnetic obstacle by a few phaseless backscattering measurements Inverse Problems 32 035011

Mukhometov R G 1977 The reconstruction problem of a two-dimensional Riemannian metric integral geometry Sov. Math.—Dokl. 18 32–5

Nachman A 1988 Reconstructions from boundary measurements Ann. Math. 128 531–76

Novikov R G 1988 A multidimensional inverse spectral problem for the equation \[-\Delta \psi + (\nu(x) - Eu(x))\psi = 0 \] Funct. Anal. Appl. 22 263–72

Novikov R G 1992 The inverse scattering problem on a fixed energy level for the two-dimensional Schrödinger operator J. Funct. Anal. 103 409–63

Novikov R G 2016 Explicit formulas, global uniqueness for phaseless inverse scattering in multidimensions J. Geom. Anal. 26 346–59

Novikov R G 2015 Formulas for phase recovering from phaseless scattering data at fixed frequency Bull. Sci. Math. 139 923–36

Pestov L and Uhlmann G 2005 Two dimensional compact simple Riemannian manifolds are boundary distance rigid Ann. Mathe. 161 1093–110

Petersen T C, Keast B J and Paganin D M 2008 Quantitative TEM-based phase retrieval of MgO nano-cubes using the transport of intensity equation Ultramicroscopy 108 805–15

Phillips R and Milo R 2009 A feeling for numbers in biology Proc. Natl Acad. Sci. USA 106 21465–471

Brigham Young University Frequency to wavelength to energy calculator http://photonics.byu.edu/fwnomograph.phtml.

Romanov V G 1987 Inverse Problems of Mathematical Physics (Utrecht: VNU Science)

Romanov V G 2002 Investigation Methods for Inverse Problems (Utrecht: VNU Science)

Romanov V G 2014 Inverse problems for differential equations with memory Eurasian J. Math. Comput. Appl. 2 51–80

Ruhlrandt A, Krenkel M, Bartels M and Salditt T 2014 Three-dimensional phase retrieval in propagation-based phase-contrast imaging Phys. Rev. A 89 033847

Thành N T, Belina L, Klibanov M V and Fiddy M A 2014 Reconstruction of the refractive index from experimental backscattering data using a globally convergent inverse method, SIAM J. Sci. Comput. 36 B273–93

Thành N T, Belina L, Klibanov M V and Fiddy M A 2015 Imaging of buried objects from experimental backscattering time dependent measurements using a globally convergent inverse algorithm SIAM J. Imaging Sci. 8 757–86

Vainberg B R 1989 Asymptotic Methods in Equations of Mathematical Physics (New York: Gordon and Breach Science Publishers)

Wang X, Guo Y, Zhang D and Liu H 2017 Fourier method for recovering acoustic sources from multi-frequency far-field data Inverse Problems 33 035001