Climate Transition From Warm-dry to Warm-wet in Eastern Northwest China

Jinhu Yang
Lanzhou Regional Climate Center
https://orcid.org/0000-0002-9097-2529

Qiang Zhang
Institute of Arid Meteorology, China Meteorological Administration, Key Laboratory of Arid Climatic Change and Reducing Disaster of Gansu Province; Key Open Laboratory of Arid Climatic Change and Disaster Reduction of CMA, Lanzhou 730020, China

Guoyang Lu
Lanzhou Regional Climate Center, Lanzhou 730020, China

Xiaoyun Liu
Institute of Arid Meteorology, China Meteorological Administration, Key Laboratory of Arid Climatic Change and Reducing Disaster of Gansu Province; Key Open Laboratory of Arid Climatic Change and Disaster Reduction of CMA, Lanzhou 730020, China

Youheng Wang
Lanzhou Regional Climate Center, Lanzhou 730020, China

Dawei Wang
Lanzhou Regional Climate Center, Lanzhou 730020, China

Weiping Liu
Lanzhou Regional Climate Center, Lanzhou 730020, China

Ping Yue
Institute of Arid Meteorology, China Meteorological Administration, Key Laboratory of Arid Climatic Change and Reducing Disaster of Gansu Province; Key Open Laboratory of Arid Climatic Change and Disaster Reduction of CMA, Lanzhou 730020, China

Biao Zhu
Lanzhou Regional Climate Center, Lanzhou 730020, China

Research Article

Keywords: Eastern Northwest China, Warming, Dry–wet, Transition

Posted Date: February 13th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-211791/v1
Climate transition from warm-dry to warm-wet in eastern Northwest China

Jinhu Yang1 · Qiang Zhang2,3 · Guoyang Lu1 · Xiaoyun Liu2 · Youheng Wang1 · Dawei Wang1 · Weiping Liu1 · Ping Yue2 · Biao Zhu1

Abstract: During the second half of the 20th century, eastern Northwest China experienced a warming and drying climate change. To determine whether this trend has continued or changed during the present century, this study systematically analyzes the characteristics of warming and dry-wet changes in eastern Northwest China based on the latest observational data and World Climate Research Programme (WCRP) Coupled Model Intercomparison Project Phase 6 (CMIP6) collection data. The results show that eastern Northwest China has warmed continuously during the past 60 years with a sudden temperature change occurring in the late 1990s. However, the temperature in the 2000s decreased slowly, and that in the 2010s showed a warming trend. The amount of precipitation began to increase in the late 1990s, which indicates a contemporary climate transition from warm-dry to warm-wet in eastern Northwest China. The contribution of precipitation to humidity is significantly more than that of temperature. Long-term and interannual variations dominate the temperature change, with the contribution of the former much stronger than that of the latter. However, interannual variation dominates the precipitation change. The warming accelerates from period to period, and the temperature spatial consistently increased during the three most recent climatic periods. The precipitation decreased from 1961–1990 to 1981–2010, whereas its spatial consistency increased from 1981–2010 to 1991–2019. The significant warming and humidification that began in the late 1990s and is expected to continue until the end of the 21st century in the medium emission scenario. However, the current sub-humid climate will not easily be changed. The warming could cause a climate transition from warm temperate to subtropical by 2040. The dry-to-wet climate transition in eastern Northwest China could be related to synergistic enhancement of the East Asian summer monsoon and the westerly circulation. This research provides a scientific decision-making basis for implementing western development strategies, ecological protection, and high-quality development of the

Corresponding author: Jinhu Yang
Yjh740701@sina.com

1. Lanzhou Regional Climate Center, Lanzhou 730020, China
2. Institute of Arid Meteorology, China Meteorological Administration, Key Laboratory of Arid Climatic Change and Reducing Disaster of Gansu Province; Key Open Laboratory of Arid Climatic Change and Disaster Reduction of CMA, Lanzhou 730020, China
3. Gansu Provincial Meteorological Bureau, Lanzhou 730020, China
Yellow River Basin Area as well as that for ecological construction planning and water resource management of eastern Northwest China.

Keywords: Eastern Northwest China; Warming; Dry–wet; Transition

1. Introduction

Located on the Qinghai–Tibet Plateau slope, eastern Northwest China has complex topography and diverse landforms. The sensitive climate and fragile ecological environment of this region are crucial in the global environmental system (Zhang et al., 2010). As the confluence area of the Yellow River Basin’s upper reaches, this region has a climate that affects the ecological construction and high-quality development of the Yellow River Basin area. Therefore, climate change in this region has long been a vital issue that has been studied extensively by researchers and the Chinese government (Ye and Huang, 1991; Qian et al., 2001).

Many studies suggest that an aridification trend has occurred in eastern Northwest China under the background of global warming, particularly since the 1970s (Huang et al., 1999; Li et al., 2002); some researchers (Ma and Fu, 2005; Wang et al., 2019) have found that warming is a critical factor in this trend. The increasing temperature has enhanced the intensity and scope of aridification by 4% to 7%. Therefore, the warming and drying trend in eastern Northwest China has been identified by many scholars. However, Ma et al. (2018) and Liu et al. (2018) recently found that although the precipitation in Northwest China has shown a long-term decreasing trend from 1951 to 2001, an increasing trend is indicated from 2001 to 2016. This phenomenon forms the basis of our theory such that the climate in North China changed from dry to wet in 2001.

Although global warming has long been a consensus of the international community, the issue of global warming stagnation has attracted recent attention (Franzke, 2014; Fyfe and Gillett, 2014; Lovejoy, 2014). Scholars (Wang et al., 2014; Ge et al., 2014; Su et al., 2016; Ma et al., 2019) conducting in-depth research on this issue have determined that this warming has slowed since the late 1990s in China. The question remains whether eastern Northwest China has been affected by the increase in temperature and increased precipitation since the beginning of this century.

Academicians Shi et al. (2002, 2003) proposed a hypothesis of warm-dry to warm-wet transition in Northwest China. They found that western Northwest China has undergone such a transition, whereas eastern Northwest China is still showing a warming and drying trend that could change in the future. Although their view on climate transition has not been widely accepted owing
to a short observation period, it has attracted significant attention. With the accumulation of more observational data, it has become necessary to comprehensively and objectively discuss the evolution and transition of the climate in eastern Northwest China.

The present study uses extended comprehensive observational data to systematically analyze the temporal and spatial evolution of precipitation and temperature in eastern Northwest China and to study its climate transition. In addition, the future temperature and humidity changes are examined, and the leading causes of such dry-to-wet changes are discussed. Further, a scientific guarantee is provided for implementing western development strategies and the ecological construction and high-quality development of the Yellow River Basin area. The results of this study provide a decision-making basis for the formulation of ecological construction planning, water resource management policies, and socio-economic development goals in this region.

2 Data and methods

2.1 Study area

Eastern Northwest China includes Shaanxi, Ningxia, and part of Gansu, east of the Yellow River (Fig. 1), and is located in the East Asian summer monsoon zone (Zhang et al., 2019a). This area also includes the Qinling Mountains, Gannan Plateau, Loess Plateau, Guanzhong Plain, and Hanshui Valley with complex terrain and a fragile ecological environment (Fig. 1a) of mid-temperate, warm-temperate, and subtropical zones (Fig. 1b) from the northwest to southeast (Ma et al., 2017). The climate in this area also changes from semi-arid to dry-wet to wet (Fig. 1c) from the northwest to southeast (Huang et al., 2017). In general, this region has a temperate and semi-humid climate.
2.2 Data

Meteorological observation, circulation, and forecast data were analyzed in this study. The meteorological data of 124 stations in eastern Northwest China were obtained by the National Meteorological Information Center of China Meteorological Administration (Fig. 1a), including average temperature, maximum temperature, minimum daily temperature, precipitation, wind speed, relative humidity, and sunshine hours from 1961 to 2019.

To ensure the representativeness of the observation data and to maintain consistency in the research time series, homogenization correction and quality control were performed on the site data (Li et al., 2010; Yang and Li, 2014). The circulation data were obtained from the reanalyzed altitude and wind fields from 1961 to 2019 jointly produced by the National Center for Environmental Prediction (NCEP) and the National Center for Atmospheric Research (NCAR).

The projected data adopt the multi-model ensemble data from 2015 to 2099 (O'Neill et al., 2016; Eyring et al., 2015) under the medium-emission scenario climate models Shared Socio-Economic Pathway 2 and Representative Concentration Pathway 4.5 (SSP2–RCP4.5) of the World Climate Research Programme (WCRP) Coupled Model Intercomparison Project (CMIP6). The ensemble grid data (https://esgf-node.llnl.gov/projects/cmip6/) are interpolated to 124 meteorological stations. The observed and estimated data from 2015 to 2019 showed good agreement (Fig. 2), although the estimated temperature (precipitation) data were lower (higher) than the observed data. Therefore, we established a linear relationship between the observed and estimated monthly precipitation and temperature from 2015 to 2019 and used the results to correct the forecast temperature and precipitation from 2020 to 2099. Thus, the revised forecast data had
relatively good continuity with the observational data of 1961 to 2019.

The linear fitting formulas for temperature and precipitation are

\[T = 2.65 + 0.90 \times t_y, \quad (1) \]
\[P = -5.97 + 0.72 \times p_y, \quad (2) \]

where \(T \) and \(P \) are the corrected temperature and precipitation, respectively; and \(t_y \) and \(p_y \) are the estimated temperature and precipitation, respectively.

![Figure 2. Observed versus estimated monthly (a) temperature and (b) precipitation from 2015 to 2019](image)

2.3 Method

The Dryness Index (\(I_{AI} \)) was applied the following index defined by Zhang et al. (2016):

\[I_{AI} = \frac{E_{TO} - P_{RE}}{E_{TO}}, \quad (3) \]

where \(E_{TO} \) is the potential evapotranspiration calculated using the Penman–Monteith model (Paredes et al., 2018), and \(P_{RE} \) is the precipitation. In this relationship, a larger aridity index relates to a drier climate.

Many indices are currently used to express East Asian summer monsoon activity (Yim et al., 2014). In the present study, the East Asian summer monsoon index established by Wang and Fan (1999) was used:

\[MI = U_{850}[5^\circ-15^\circN, 90^\circ-130^\circE] - U_{850}[22.5^\circ-32.5^\circN, 110^\circ-140^\circE], \quad (4) \]

where \(MI \) is the index of the East Asian summer monsoon, and \(U \) is the average zonal wind at 850 hPa (m s\(^{-1}\)). The index \(MI \) uses the difference of regional average zonal wind at 850 hPa between \((5^\circ - 15^\circN, 90^\circ-130^\circE)\) and \((22.5^\circ - 32.5^\circN, 110^\circ-140^\circE)\) to express the intensity of East Asian
summer monsoon (Zhang et al., 2019b).

The Westerly Index, also known as the Rossby Index, can be expressed in many ways (Vicente-Serrano et al., 2016; Yan et al., 2007). In the present study, the regional Westerly Index given by (Li et al., 2008) was used:

\[WI = \frac{1}{17} \left[\sum_{\lambda=1}^{17} H(\lambda, 35^\circ N) - \sum_{\lambda=1}^{17} H(\lambda, 50^\circ N) \right], \]

(5)

where \(WI \) is the regional westerly index; \(H \) is the 500 hPa height field (gpm) averaged along the 35°N and 50°N latitudes, respectively; and \(\lambda \) is the longitude taken along the latitude at an interval of 2.5°. This index uses the difference in zonal average 500 hPa height field between 35°N and 50°N in the longitude range of 70° – 110°E to characterize the strength of the westerly circulation.

The Ensemble Empirical Mode Decomposition (EEMD) method averages the measured values of multiple decompositions and adds appropriate white noise to the original data to simulate multiple observations. The results are then averaged after multiple calculations. This model shows improvement over the empirical mode decomposition method (EMD), which is suitable for processing nonstationary data series and decomposing the fluctuations and trends of various scales in the signal to obtain the intrinsic mode function (IMF) component, i.e., a data series with different characteristic time scales. Although the EMD method has obvious advantages in signal analysis, it also has defects such as edge effects and scale mixing.

New noise-assisted data analysis adopted in the EEMD method can solve the scale-mixing problem of the EMD method. The widely used EEMD method (Huang and Shen, 2005; Wu and Huang, 2009; Bi et al., 2018) is characterized by introducing Gaussian white noise and averaging the data set; this effectively avoids the scale-mixing problem and makes the obtained IMF components physically unique. The most important feature is that each IMF component needs to comply with two prerequisites: 1) the number of local extreme points and that of zero-crossing points during the entire perspective of the analysis period must be equal or at most different by one and 2) the envelope average determined by the local extrema must be zero.

3. Temporal and spatial characteristics of temperature and precipitation

3.1 Temporal evolution of temperature and precipitation

The temperature and precipitation variations in eastern Northwest China from 1961 to 2019 are plotted in Fig. 3a and Fig. 3b, respectively. The temperature curve indicates a continuous increase
of 0.27°C/10 years since the early 1960s followed by a sudden change in the late 1990s. However, the temperatures of the 2000s decreased slowly during the warming process, which might be a response to global warming stagnation (Franzke, 2014; Fyfe and Gillett, 2014; Lovejoy, 2014), and another warming trend occurred during the 2010s. Precipitation decreases of 26.2 mm/10 years before 1997 and 32.9 mm/10 years after 1997 were noted. Eastern Northwest China showed significant warming and drying before 1997, significant warming and humidification afterward, which implies a transition from warm-dry to warm-wet around 1997.

Precipitation increases enhance a humid climate, and temperature increases often cause dry climates by accelerating the potential evaporation. An aridity index change curve was plotted in Fig. 3c to clarify the dry–wet changes under the combined effects of precipitation and temperature. The fitting curve of precipitation and dryness was symmetrical near the horizontal axis. The dry-to-wet climate transition occurring around 1997 indicates that the climate change in eastern Northwest China was dominated by precipitation, which might be related to the impact of the temperate climate zone.

However, the sudden change in mean temperature is consistent with the sudden dry-to-wet transition. Thus, we speculate that the transition is related to the dominant effects of precipitation and temperature. Precipitation can cool the atmosphere through the land surface evaporation process, and the increased cloud cover decreases the solar radiation; of these, the latter has a more notable effect. Temperature affects atmospheric saturated water vapor pressure and large-scale circulation through atmospheric thermal processes and influences the local water cycle through land surface processes to significantly affect precipitation. Eastern Northwest China has a semi-humid climate with relatively high precipitation. Before 1997, the leading role of precipitation was prominent, causing an opposite relationship between temperature and precipitation. Temperature increase accompanied the precipitation decrease, producing warm and dry conditions. After 1997, the temperature increased owing to the continuous heating in the previous period, making the temperature more dominant. The precipitation increase accompanied the increased temperature, creating warm and humid conditions.
3.2 Multiple time scales of temperature and precipitation

The evolution curves of temperature and precipitation indicate both prominent interannual and interdecadal variations. The widely used EEMD method (Wu et al., 2007; Wu and Huang, 2009) was applied to clarify the multiple time scales of temperature and precipitation in depth. We decomposed the precipitation and temperature sequence on multiple time scales and extracted different periodic oscillation components/IMF and long-term trend signals, recorded as IMF1, IMF2, IMF3, IMF4, and ST. These IMF values refer to interannual to multi-decadal scales. These components further explain the multiple time-scale characteristics of temperature and precipitation occurring in eastern Northwest China since 1961.

IMF1	IMF2	IMF3	IMF4	Trend	Period (years)	Contribution (%)
3.3	9.1	19.7	39.3	/	3.0	62.7
28.0	13.1	4.4	8.7	45.8	5.9	26.8
10.7	29.5	2.6	4.9	3.0		

Long-term variation dominated the temperature change, with a contribution rate of 45.8%. The interannual variation was also notable, with a contribution of 28.0%. The quasi-decadal (9.1 years)-scale contribution rate was 13.1%, whereas that at the multi-decadal scale was only 13.1%. The
contribution of the IMF4, at 39.3 years, was slightly larger than that of the IMF3, at 19.7 years. For precipitation, the interannual scale contribution rate reached 89.5%, of which the contribution rates of the IMF1, at 3.0 years, and IMF2, at 5.9 years, were 62.7% and 26.8%, respectively. The contribution of the long-term trend was only 3.0%; the decadal and multi-decadal scales were also not prominent, with a total contribution rate of only 7.5%.

![Image of temperature and precipitation variation](image)

Figure 4: Decomposition of (a) temperature and (b) precipitation variation derived from EEMD

The multiple time-scale variations shown in Fig. 4 indicate that the continuous warming since 1961 is attributed to long-term increases in temperature and precipitation. The significant increase in precipitation after 1997 was caused by the increase in the trend item and IMF4.

Multiple time scale analysis showed that temperature in eastern Northwest China was dominated mainly by long-term variation during the past half-century. The quasi-three year interannual variation was also notable, whereas the interdecadal and multi-decadal scales were negligible. The significant warming of the past 60 years resulted from a significant long-term increase. The precipitation changes were mainly on the interannual scale; those on the decadal-scale were not obvious. The quasi-30 year scale variation superimposed the long-term increase result of the precipitation increase since 1997.

4. Dynamics of warming and dry-wet transition

Under the overall trend, regional climate change will inevitably have specific spatial differences; the same applies to eastern Northwest China. To further understand the dynamics of warming and dry–wet transition in eastern Northwest China, we analyzed the spatial distribution evolution of the linear temperature and precipitation tendency rates.
4.1 Dynamic spatial variation in temperature increase

The spatial distribution of the annual average temperature change rate during the four climatic periods of 1961–1990, 1971–2000, 1981–2010, and 1991–2019 were plotted to compare the spatial characteristics of warming (Figure 5). During 1961 and 1990, the temperature increased in the north and decreased in the south at a small range. The temperature increased consistently in the entire region during the other three periods. In the range of -0.5 – 0°C/10 years, the linear tendency rate of the temperature during the four periods was 52.4%, 0.0%, 0.0%, and 0.0%, respectively; that in the range of 0 – 0.5°C/10 years was 46.8%, 87.9%, 50.0%, and 80.7%, respectively; and that in the range of 0.5°C/10 years was 0.8%, 12.1%, 50.0%, and 19.3%, respectively.

Figure 5: Spatial distribution of temperature change rate in different periods (unit: °C/10 years): (a) 1961 – 1990; (b) 1971 – 2000; (c) 1981 – 2010; (d) 1991 – 2019

The normal probability distribution of the linear temperature tendency rate of the four climatic periods (Fig. 6) was concentrated at -0.01°C/10 years, 0.29°C/10 years, 0.52°C/10 years, and 0.35°C/10 years, respectively. The warming strength during 1991–2019 was weaker than that during 1981 – 2010, whereas the warming strength increased during the other three climatic periods. During the last period, the warming strength was weaker than that in 1981–2010, which might be a response to the slowing of global warming. Therefore, the warming trend in eastern Northwest...
China has generally been increasing since 1961.

![Figure 6: Probability distribution of annual temperature change rate in different periods](image)

4.2 Dynamic spatial variation of the dry-to-wet transition

The precipitation change rates of the spatial distribution in different climatic periods were plotted to analyze the spatial dynamic variation in the dry–wet transition (Fig. 7). The precipitation during the first three periods showed a decreasing trend with a local increase in small areas. From 1991 to 2019, the precipitation in eastern Northwest China showed a consistent increasing trend.

The possibility range of the precipitation linear tendency rates at less than -50 mm/10 years for the four climatic periods was 0.8%, 3.2%, 6.5%, and 0.0%, respectively; that in the range of -50 – 0 mm/10 years was 75.0%, 81.4%, 79.0%, and 2.4%, respectively; that in the range of 0 – 50 mm/10 years was 24.2%, 15.3%, 14.5%, and 67.0%, respectively; and that at more than 50 mm/10 years was 0.0%, 0.0%, 0.0%, and 30.6%, respectively.

The precipitation linear tendency rates of the four periods showed concentrations of -8.8 mm/10 years, -19.7 mm/10 years, -20.1. mm/10 years, and 37.1 mm/10 years, respectively (Fig. 8). The periods of 1961–1990, 1971–2000, and 1981–2010 showed a drying trend. That from 1961–1990 to 1971–2000 was significant, whereas that from 1971–2000 to 1981–2010 was relatively weak. The transition showed significant wetting from 1981–2010 to 1991–2019. It can be inferred that the dry-to-wet transition around 1997 resulted in the wetting trend of the last period.
Figure 7: Annual precipitation change rate in different time periods (unit: mm/10 years): (a) 1961 – 1990; (b) 1971 – 2000; (c) 1981 – 2010; (d) 1991 – 2019

Figure 8: Probability distribution of annual precipitation change rate in different periods

5. Discussion

The previous analysis showed that eastern Northwest China has been warming continuously since 1961 and has also became wetter since the late 1990s. Will this warming and humidification continue in the future? If it continues, what are its extent and duration? Will it change the current climate pattern?
Based on the past 59 years of observation, the multi-model ensemble has predicted the inter-annual variation of the average temperature and precipitation for the next 80 years under the CMIP6 medium-emission scenario (Fig. 9). The temperature increased 0.27°C/10 years during the past 59 years and will continue to rise at almost the same rate during the next 80 years, at 0.28°C/10 years. The continuous warming since 1961 has not changed the overall warm-temperate climate, according to the temperature zone division of Ma et al. (2017), with regional average temperatures ranging between 9.3°C and 12.3°C. However, it is expected that the temperature will reach 12.3°C in 2040, which would cause the climate in eastern Northwest China to transition from warm temperate to subtropical.

The precipitation decreased 87 mm at 26.2 mm/10 years during 1961–1997 but increased about 76 mm at 32.9 mm/10 years from 1997 to 2019. The current total precipitation is less than that of the 1960s. A precipitation increase of 10.2 mm/10 years is expected during the next 80 years, although the growth rate will be significantly slower than that currently noted. The regional average precipitation will reach 600 mm around 2040 but will not exceed 800 mm by the end of this century. The humidification lasting from the late 1990s to 2100, according to the climate zone division of Huang et al. (2017), would not change the overall semi-humid climate. Therefore, under the medium-emission scenario, eastern Northwest China would continue to show warming and humidification trends during the next 80 years, and the warming rate would be the same as the current rate. The warming will cause a climate transition from warm temperate to subtropical. The humidification degree will be weaker than the current rate, which will not change the current sub-humid climate.

Figure 9. Observed and predicted temperature and precipitation values
No clear or convincing scientific conclusions have been drawn to explain the precipitation changes in eastern Northwest China. However, one indication is that this climate is affected mainly by the East Asian summer monsoon, and the influence of westerly circulation is prominent (Wang et al., 2005). Therefore, it is necessary to consider the westerly circulation movement and the East Asian summer monsoon when analyzing the climate transition from warm-dry to warm-wet in eastern Northwest China.

The decadal changes in the Westerly Index, East Asian Summer Monsoon Index, and Northwestern East Precipitation Index (standardized precipitation) since the 1960s are plotted in Fig. 10. These three indices showed consistent interdecadal changes from the 1970s to the 2010s. Increases were noted from the 1970s to 1980s followed by decreases from 1980s to 1990s and increases from 1990s to 2010s. That is, the transition from dry to wet in eastern Northwest China in the late 1990s might be related to the interdecadal synergistic enhancement of the westerly circulation and the East Asian monsoon circulation.

![Figure 10: Interdecadal changes of Westerly Wind, East Asian Summer Monsoon, and Precipitation indices](image)

6. Conclusions

The temperature in eastern Northwest China has continued to increase since the early 1960s, with a sudden change in average temperature occurring in the late 1990s. A gradual decrease in temperature occurred in the 2000s, which might be a response to global warming stagnation, followed by a warming trend in the 2010s. Significant warm-dry and warm-wet trends occurred in eastern Northwest China before and after 1997, respectively, which indicates a transition from warm-dry to warm-wet during the late 1990s. The humidity change in eastern Northwest China since 1961 was
caused mainly by precipitation, whereas the contribution of temperature to humidity was relatively low. This might be related to the temperate climate of the study area.

The sudden temperature increase is consistent with the change in humidity, which was very likely caused by the differences from the dominant effect of precipitation and temperature interaction. Precipitation can cool the atmosphere through evaporation of the land surface process, and the increased cloud cover decreases the solar radiation, which has a more prominent effect on the temperature. The temperature affects atmospheric saturated water vapor pressure and large-scale circulation through atmospheric thermal processes and the local water cycle through land surface processes, which significantly affects the precipitation.

Eastern Northwest China has a semi-humid climate with relatively high precipitation. Before 1997, the leading role of precipitation was prominent, causing an opposite relationship between the temperature and precipitation. Thus, a temperature increase accompanied a precipitation decrease, resulting in warm and dry conditions. After 1997, the temperature was more prominent owing to continuous temperature increases, which caused consistently changes in temperature and precipitation. Thus, the increase in precipitation was accompanied by an increase in temperature, resulting in rise warm and humid conditions.

During the past half-century, the long-term change dominated the temperature variation. The quasi-three year interannual scale variation was also notable, whereas the interdecadal- and multi-decadal-scale changes were relatively weak. The significant warming in the past half-century relates to the significant long-term temperature increase. However, the interannual-scale change controlled mainly the precipitation; the decadal change was relatively weak. The superimposed effect of long-term variation and the quasi-30 year scale change caused the precipitation to increase since 1997.

Consistent spatial temperature increases were noted in the three climatic periods from 1971 to 2000. The warming lasted for three periods from 1961–1990 to 1981–2010 but weakened during the last climatic period, which might be a response to the slowed global warming. In general, the warming trend in Northwest China has been accelerating since 1961.

The climate became drier period-by-period from 1961–1990 to 1981–2010. However, the humidity in 1991–2019 was higher than that in 1981–2010. Spatially constant humidification occurred in the area from 1991 to 2019. The dry-to-wet transition around 1997 caused the wetting trend in the last period.
Eastern Northwest China has shown significant warming and humidification trends since the late 1990s, which are expected to last until the end of the 21st century under the medium-emission scenario. Under this scenario, however, the humidification will not change the overall semi-humid climate in the study area, although warming might cause a climate transition from warm temperate to subtropical around 2040.

Among the factors affecting the precipitation in eastern Northwest China, it is worth noting that the westerly and East Asian summer wind circulations have been relatively consistent with the interdecadal precipitation changes since the 1970s. It can be inferred that the dry-to-wet transition in the late 1990s is related to the synergistic enhancement of the East Asian summer monsoon and westerly circulation.

This study analyzed the warm-dry to warm-wet transition in eastern Northwest China but did not statistically analyze the cause of the precipitation changes. Further research from different approaches and as well as numerical simulation experiments are necessary to fully understand this phenomenon. Moreover, because the global climate model projection data have considerable uncertainty, various downscaling methods need to be applied to simulate and predict the climate of the region.

Acknowledgments

We thank International Science Editing (http://www.internationalscienceediting.com) for editing this manuscript.

Authors’ contributions

Jinhu Yang: methodology, software, formal analysis, writing—original draft. Qiang Zhang: writing—review and editing. Guoyang Lu: writing—review and editing. Xiaoyun Liu: writing and editing. Youheng Wang: writing and editing. Dawei Wang: writing and editing. Weiping Liu: writing and editing. Ping Yue: writing and editing. Biao Zhu: writing and editing.

Funding

The project was funded by the National Natural Science Foundation of China (41630426, 41975016), the Special Project Fund of Climate Change in China Meteorological Administration (CCSF201913, CCSF202010), and The Basic Research Innovation Group Project of Gansu Province (20JR5RA121).
Compliance with ethical standards

Competing interests The authors declare that they have no competing interests.
Reference

Bi SB, Sun L, Li XY, Chen CC, Lu Y (2018) Characteristics of drought and flood disasters in the middle and lower reaches of the Yellow River from 1470 to 1911 based on EEMD method. Journal of Natural Disasters 27(1):137–147. https://doi.org/10.13577/j.jnd.2018.0117

Eyring V, Bony S, Meehl GA, Senior C, Stevens B, Stouffer RJ, Taylor KE (2015) Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organisation. Geosci. Model Dev. Discuss. 8:10539–10583. https://doi.org/10.5194/gmdd-8-10539-2015

Franzke CLE (2014) Nonlinear climate change. Nature. Clim. Change 4(6):423–424. https://doi.org/10.1038/nclimate2245

Fyfe JC, Gillett NP (2014) Recent observed and simulated warming. Nature. Clim. Change 4(3):150–151. https://doi.org/10.1038/nclimate2111

Ge QS, Wang F, Wang SW, Cheng BB (2014) Certainty and Uncertainty in Global Warming Studies. China Population,Resources and Environment 1:1–6. https://doi.org/10.3969/j.issn.1002–2104.2014.01.001

Huang JP, Xie YK, Guan XD, Li DD, Ji F (2017) The dynamics of the warming hiatus over the Northern Hemisphere. Clim. Dyn. 48:429–446. https://doi.org/10.1007/s00382-016-3085-8

Huang NE, Shen SP (2005) Hilbert-Huang Transform and Its Applications, Interdisciplinary Mathematical Sciences. World Scientific 2005:56-62. https://doi.org/10.1142/5862

Huang RH, Xu YH, Zhou LT (1999) The interdecadal variation of summer precipitations in china and the drought trend in north China. Plateau Meteorology 18(4):465–476.

Li QX, Dong WJ, Li W, Gao XR, Jones P, Kennedy J, Parker D (2010) Assessment of the uncertainties in temperature change in China during the last century. Chin. Sci. Bull. 55(16):1974–1982. https://doi.org/10.1007/s11434-010-3209-1

Li QX, Liu XN, Li XQ (2002) Drought trend in North China in recent half century. Journal of Natural Disasters 11(3):50–56. https://doi.org/DOI :10.13577/j.jnd.2002.0309

Li WL, Wang KL, Fu SM, Jiang H (2008) The Interrelationship between Regional Westerly Index and the Water Vapor Budget in Northwest China. Journal of Glaciology and Geocryology 30(1):28–34.

Liu Q., Zhan XP, Zhang ZB, Zhang B (2018) The Analysis of Spatiotemporal Climate Change in the Western Hexi Region. Plateau Meteorology 37(5):1353–1363. https://doi.org/10.7522/j.issn.1000-0534.2018.00031

Lovejoy S (2014) Return periods of global climate fluctuations and the pause: LOVEJOY; RETURN PERIODS. Geophys. Res. Lett. 41(13):4704–4710. https://doi.org/10.1002/2014GL060478

Ma C, Zhao PF, Ma W, Ma WS, Liu WW, Tian SI (2017) The difference of the temperature field in Chinese mainland in recent 30 years. Journal of Henan Polytechnic University(Natural Science) 36(5):53–59. https://doi.org/10.16186/j.cnki.1673-9787.2017.05.009

Ma ZZ, Zhang MJ, Wang SJ, Qiu X, Du QQ, Guo R (2019) Characteristics and Differences of Temperature Rise between the Qinghai-Tibetan Plateau Region and Northwest Arid Region of China During 1960-2015. Plateau Meteorology 38(1):42–54. https://doi.org/10.7522/j.issn.1000-0534.2018.00074

O'Neill BC, Tebaldi C, van-Vuuren DP, Eyring V, Friedlingstein P, Hurtt G, Knutti R, Kriegler E, Lamarque JF, Lowe J, Meehl GA, Moss R, Riahi K, Sanderson BM (2016) The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9:3461–3482. https://doi.org/10.5194/gmd-9-3461-2016
Paredes P, Fontes JC, Azevedo EB, Pereira LS (2018) Daily reference crop evapotranspiration in the humid environments of Azores islands using reduced data sets: accuracy of FAO-PM temperature and Hargreaves-Samani methods. Theor. Appl. Climatol. 134:595–611. https://doi.org/10.1007/s00704-017-2295-2

Qian ZA, Wu TW, Song MH, Ma XB, Cai Y, Liang XY (2001) Arid Disaster and Advances in Arid Climate Researches over Northwest China. Advance in Earth Sciences 16(1):28–38. https://doi.org/10.3321/j.issn:1001-8166.2001.01.007

Shi YF, Shen YP, Hu RJ (2002) Preliminary Study on Signal, Impact and Foreground of Climatic Shift from Warm Dry to Warm Humid in Northwest China. Journal of Glaciology and Geocryology 24(3):219–226. https://doi.org/10.3969/j.issn.1000-0240.2002.03.001

Shi YF, Shen YP, Li DL, Zhang GW, Ding YJ, Hu RJ, Kang ES (2003) Discussion on the present climate change from warm-dry to warm wet in northwest China. Quaternary Sciences 23(2):152–164.

Su JZ, Wen M, Ding YH, Gao YQ, Song YF (2016) Hiatus of Global Warming: A Review. Chinese Journal of Atmospheric Sciences 40(6):1143–1153. https://doi.org/10.3878/j.issn.1006-9895.1512.15242

Wang B, Fan Z (1999) Choice of South Asian Summer Monsoon Indices. Bulletin of the American Meteorological Society 80:629–638. https://doi.org/10.1175/1520-0477(1999)080<0629:COSASM>2.0.CO;2

Wang CL, Si JH, Zhao CY, Li PD, Zhang JT (2019) Analysis of Temporal and Spatial Evolution Characteristics of Drought Disasters in the Hexi Corridor in Recent 57 Years. Plateau Meteorology 38(1):196–205. https://doi.org/10.7522/j.issn.1000-0534.2018.00081

Wang KL, Jiang H, Zhao HY (2005) Atmospheric Water Vapor Transport from Westerly and Monsoon over the Northwest China. Advances in Water Science 16(3):432–438. https://doi.org/DOI :10.14042/j.cnki.32.1309.2005.03.021

Wang SW, Luo Y, Zhao ZC, Wen XY, Hang JB (2014) Pause for Thought. Progressus Inquisitiones de Mutatione Climatis 10(4):303–306. https://doi.org/10.3969/j.issn.1673-1719.2014.04.012

Wu ZH, Huang NE (2009) Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Adapt. Data Anal. 1:1–41. https://doi.org/10.1142/S1793536909000047

Wu ZH, Huang NE, Long SR, Peng CK (2007) On the trend, detrending, and variability of nonlinear and nonstationary time series. Proceedings of the National Academy of Sciences 104(38):14889–14894. https://doi.org/10.1073/pnas.0701020104

Yan HS, Hu J, Fan K, Zhang YJ (2007) The Analysis of Relationship between the Variation of Westerly Index in Summer and Precipitation during the Flood Period over China in the Last 50 Years. Chinese Journal of Atmospheric Sciences 31(4):717–726.

Yang S, Li QX (2014) Improvement in Homogeneity Analysis Method and Update of China Precipitation Data. Progressus Inquisitiones De Mutatione Climatis 10(4):276–281. https://doi.org/10.3969/j.issn.1673-1719.2014.04.008

Ye DZ, Huang RH (1991) Advances, Results and Problems of the Project “Investigation on Laws, Causes and Prediction of Droughts and Floods in the Yellow River Valley and the Yangtze River Valley of China.” Advance in Earth Sciences 6(4):24–29.

Yim SY, Wang B, Liu J, Wu Z (2014) A comparison of regional monsoon variability using monsoon indices. Clim Dyn 43:1423–1437. https://doi.org/10.1007/s00382-013-1956-9

Zhang HL, Zhang Q, Yue P, Zhang L, Liu Q, Qiao SB, Yan PC (2016) Aridity over a semi-arid zone in northern China
and responses to the East Asian summer monsoon: ARIDITY RESPONSE TO EASM MARGIN. J. Geophys. Res. Atmos. 121(23):13,901–13,918. https://doi.org/10.1002/2016JD025261

Zhang Q, Lin JJ, Liu WC, Han LY (2019a) Precipitation seesaw phenomenon and its formation mechanism in the eastern and western parts of Northwest China during the flood season. Sci. China Earth Sci. 62(12):2083–2098. https://doi.org/10.1007/s11430-018-9357-y

Zhang Q, Yue P, Zhang L, Wang S, Zhang J, Zhao JH, Wang RY Yang FL (2019b) Land-atmosphere interaction over the summer monsoon transition zone in China: A review and prospects. Acta Meteorologica Sinica 77(4):758–773. https://doi.org/10.11676/qxxb2019.038

Zhang Q, Zhang CJ, Bai HZ, Li L, Sun LD, Liu DX, Wang JS, Zhao HY (2010) New Development of Climate Change in Northwest China and Its Impact on Arid Environment. Journal of Arid Meteorology 28(1):1–7. https://doi.org/10.3969/j.issn.1006-7639.2010.01.001
Figures

Figure 1

Overview of the study area: (a) digital elevation model and representative stations; (b) temperature zone division; (c) precipitation zone division Note: The designations employed and the presentation of the material on this map do not imply the expression of any opinion whatsoever on the part of Research Square concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. This map has been provided by the authors.

Figure 2

Observed versus estimated monthly (a) temperature and (b) precipitation from 2015 to 2019
Figure 3

Variation curve of (a) temperature, (b) precipitation, and (c) aridity index from 1961 to 2019
Figure 4

Decomposition of (a) temperature and (b) precipitation variation derived from EEMD
Figure 5

Spatial distribution of temperature change rate in different periods (unit: °C/10 years): (a) 1961–1990; (b) 1971–2000; (c) 1981–2010; (d) 1991–2019 Note: The designations employed and the presentation of the material on this map do not imply the expression of any opinion whatsoever on the part of Research Square concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. This map has been provided by the authors.
Figure 6

Probability distribution of annual temperature change rate in different periods
Figure 7

Annual precipitation change rate in different time periods (unit: mm/10 years): (a) 1961–1990; (b) 1971–2000; (c) 1981–2010; (d) 1991–2019

Note: The designations employed and the presentation of the material on this map do not imply the expression of any opinion whatsoever on the part of Research Square concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. This map has been provided by the authors.
Figure 8

Probability distribution of annual precipitation change rate in different periods

Figure 9

Observed and predicted temperature and precipitation values
Figure 10

Interdecadal changes of Westerly Wind, East Asian Summer Monsoon, and Precipitation indices