Combined mechanistic modelling predicts changes in species distribution and increased co-occurrence of a tropical urchin herbivore and a habitat-forming temperate kelp

Louise C. Castro1,2,3 | Paulina Cetina-Heredia1,3 | Moninya Roughan1,3 | Symon Dworjanyn4 | Loic Thibaut5 | Matthew A Chamberlain6 | Ming Feng7 | Adriana Vergés1,2,8

Abstract

Aim: Identify climate change impacts on spawning and settlement of a tropical herbivore (Tripneustes), optimal habitat of a temperate kelp (Ecklonia) and implications for these species regions of interaction under future climate.

Location: Along eastern Australia and into the Tasman Sea including Lord Howe Island (LHI).

Time period: A contemporary scenario (2006–2015) and future “business as usual” RCP 8.5 climate change scenario (2090–2100).

Major taxa studied: The tropical sea urchin, Tripneustes gratilla, and the temperate kelp, Ecklonia radiata.

Methods: We combined mechanistic models to create a predictive map of Ecklonia and Tripneustes distributions, and their future potential to co-occur. We use 3D velocity and temperature fields produced with a state-of-the-art configuration of the Ocean Forecasting Model version 3 that simulates the contemporary oceanic environment and projects it under an RCP 8.5 climate change scenario. We map the contemporary and future Ecklonia’s realized and fundamental thermal niche; and simulate Tripneustes larval dispersal under both climate scenarios.

Results: Based on the thermal affinity of kelp and increases in projected temperatures, we predict a poleward range contraction of ~530 km by 2100 for kelp on Australia’s east coast. Climate-driven changes in dispersal of Tripneustes lead to its range expansion into Bass Strait and poleward, ~340–650 km further into Ecklonia’s habitat range inducing new areas of co-occurrence in the future. We find warming decreases spawning and settlement of Tripneustes in the tropics by 43%, and causes significant connectivity changes for LHI with future reliance on self-recruitment.

Major conclusions: We predict novel regions of co-occurrence between a temperate Ecklonia and tropical Tripneustes species which may lead to greater loss of kelp. Our results provide a new modelling approach for predicting species range shifts that
1 | INTRODUCTION

Globally, a large proportion of terrestrial and marine species are responding to climate change by undergoing range redistributions (Chen, Hill, Ohlemüller, Roy, & Thomas, 2011; Poloczanska et al., 2013), with effects on biodiversity and ecosystem structure (Pecl et al., 2017). Warming is one of the primary causes leading to species range shifts (Chen et al., 2011; Poloczanska et al., 2013). All species have an optimal thermal range where they best function; outside of this range, performance decreases and extreme temperatures lead to demise (Angilletta, 2009; Pörtner & Knust, 2007). Ocean isotherms are shifting at an equal or faster rate than terrestrial isotherms, resulting in a greater range shift for marine species, as they move to new areas that encompass their thermal range (Burrows et al., 2011; Poloczanska et al., 2013; Sen Gupta et al., 2015).

Dispersal is a central process in distributional shifts (Garcia Molinos, Burrows, & Poloczanska, 2017; Travis et al., 2013); it is particularly important for marine organisms as most species rely on the release of reproductive propagules into the water column where they are then carried by ocean currents (Kinland & Gaines, 2003) to replenish populations across their biogeographical range. Oceanic conditions strongly influence dispersal, as temperature often triggers reproduction and spawning events (Fincham, Rijnsdorp, & Engelhard, 2013; Yang & Rudolf, 2010) and ocean currents determine propagule trajectories influencing settlement patterns (Werner, Cowen, & Paris, 2007). Thus, diagnosing the impact of climate-driven circulation changes on larval dispersal is important to anticipate changes in species ranges (e.g. Cetina-Heredia, Roughan, van Sebille, Feng, & Coleman, 2015).

The Biotic–Abiotic–Mobility (BAM) framework highlights the three key factors that should be considered when predicting species range shifts in response to climate change (Peterson, Papeş, & Soberón, 2015). However, changes in species distributions are commonly predicted using correlative models such as species distribution models (SDMs; Peterson et al., 2015), which focus mostly on abiotic factors, by statistically relating known occurrence data of a species to environmental variables in order to predict a species range (Guisan & Zimmermann, 2000). Differently, mechanistic models use a biophysical approach to associate population processes with abiotic conditions. For instance, Rodríguez, García, Carreño, and Martínez (2019) forecasted *Millepora alcicornis* future habitat constructing a physio-climatic predictor which combined the coral maximal quantum yield of photosynthesis with sea surface temperatures (SSTs) into a raster reflecting coral optimal conditions. Nonetheless, there are other evolutionary and ecological processes which determine species distribution, such as reproduction and dispersal (i.e. mobility; Leroux et al., 2013), which are often lacking or simplified in correlative or mechanistic approaches (Robinson et al., 2011). Leroux et al. (2013) modelled the impact of climate change for North American butterflies, through a reaction-diffusion framework, which considered the population growth rate (which depends on both abiotic conditions and biological interactions), climate envelope (i.e. abiotic conditions) and diffusion rate (i.e. rate of movement) for the butterflies. Though Leroux et al. (2013) integrated all three factors of the BAM framework in the model, the research highlighted the need to also consider changes to species interactions which are often not considered but can be fundamental in determining ecosystem function and structure (Blois, Zarnetske, Fitzpatrick, & Finnegan, 2013).

Tropicalization offers a striking example of how distribution shifts of tropical species into temperate habitats can create novel biotic interactions, with consequences cascading through entire ecosystems (Vergés, Steinberg, et al., 2014). Tropicalization has been seen along Western Boundary Currents (WBC) such as the East Australian Current (EAC), whose climate-driven intensification (Wu et al., 2012) contributes to the greater transport of warm tropical water and larvae being carried into temperate ecosystems (Vergés, Steinberg, et al., 2014). Globally, this has resulted in new herbivore–alga interactions that have led to phase shifts, as areas once inhabited by dense kelp forests turn into turf algae dominated reefs, with tropical consumers preventing the re-establishment of temperate kelp (Bennett, Wernberg, Harvey, Santana-Garcon, & Saunders, 2015; Vergés et al., 2016, 2019; Vergés, Tomas, et al., 2014). This example highlights the importance of understanding and identifying climate-mediated changes in species interactions to understand future ecosystem composition and enable adaptive management decisions (Koehn, Hobday, Prachett, & Gillanders, 2011).

We develop a new combined mechanistic modelling approach to predict distributional range shifts and changes in regions of co-occurrence that allow for biotic interactions under climate change. We use a case study that forecasts future range shifts of a tropical herbivore, the tropical sea urchin *Tripneustes gratilla* (hereafter *Tripneustes*) and a temperate habitat-forming kelp *Ecklonia radiata* (hereafter “Ecklonia”). *Ecklonia* forms ecologically and economically important kelp forests that support a high diversity of organisms along 8,000 km of Australia’s temperate reefs, from 27.7°S on the west coast to 27°S on the east coast (Bennett et al., 2016; Wernberg

KEYWORDS

climate change, dispersal, *Ecklonia radiata*, herbivory, kelp, Lagrangian particle-tracking, mechanistic model, species distribution model, species range shifts, *Tripneustes gratilla*, tropicalization
Tripneustes is an important herbivore that preferentially consumes Ecklonia when a range of seaweeds are on offer, as demonstrated through both aquaria assays (Dworjanyn, Pirozzi, & Liu, 2007) and field experiments (Vergés et al., 2016). Further, Tripneustes is able to overgraze seagrass and macroalgae forests when present in high densities, as was seen in east Africa and Lord Howe Island (LHI), respectively (Eklöf et al., 2008; Valentine & Edgar, 2010). To develop our model, first, we characterize the fundamental niche and the realized niche (sensu Hutchinson (Vandermeer, 1972)) of thermal tolerance of Ecklonia. We then use temperature predictions under future Representative Concentration Pathway 8.5 (RCP 8.5) carbon emissions scenario to predict its distribution in the future. RCP 8.5 is a “business as usual” scenario where emissions and the population continue to grow throughout the 21st century (van Vurren et al., 2011). Second, we model the impact of a changing climate on the dispersal and geographical patterns of settlement of Tripneustes using the Connectivity Modelling System (CMS; Paris, Helgers, van Sebille, & Srinivasan, 2013). CMS is a Lagrangian-tracking algorithm that allows implementing organism’s life traits to simulate the advection of particles such as larvae by ocean currents. Finally, we combine these results to determine the new overlapping areas where biotic interactions are likely to occur under this future climate scenario.

Through this case study approach, we seek to answer the following two questions: (a) how will spawning and settlement of Tripneustes larvae change in the future along the east coast of Australia? And (b) could Tripneustes pose an increased threat to Ecklonia in the future by increasing the overlap, and therefore the potential to interact, between these two species?

2 | METHODS

2.1 | Model details

The oceanographic data used to forecast the impact of climate change on the dispersal of Tripneustus and distribution of Ecklonia came from the Ocean Forecasting Australian Model version 3 (OFAM3; Oke et al., 2013) configured to downscale and project future climate as detailed in Feng, Zhang, Sloyan, and Chamberlain (2017) and Zhang et al. (2016). The climate projection includes changes in temperature and circulation. OFAM3 is an eddy-resolving ocean model (1/10° spatial resolution) that has been thoroughly validated in the study region of eastern Australia (Oke et al., 2013). This configuration of OFAM downscales climate models with spatial resolution of 1° to a much finer grid (i.e. 1/10°) and daily temporal resolution. Using a downscaled model is of paramount importance, because it captures circulation features with spatial scales in the order of 10’s km such as mesoscale eddies that are key drivers of larval transport along the east coast of Australia (Cetina-Heredia, Roughan, Liggins, Coleman, & Jeffs, 2019; Cetina-Heredia, Roughan, van Sebille, Keating, & Brassington, 2019; Malan et al., 2020; Roughan, Macdonald, Baird, & Glasby, 2011; Wilson et al., 2016). Due to the complexity of the systems represented in climate models, some physical processes are parameterized; such parameterizations can lead to biases or spurious trends denominated climate drift (Sen Gupta et al., 2012). An advantage of the OFAM3 configuration is that it reduces model drift by using non-adaptive relaxation (Zhang et al., 2016). Relaxation is a forcing term that prevents the modelled fields to diverge from a known climatology; in the OFAM3 configuration such forcing does not depend on differences between the climatology and the model state; thus, climate change signals are not masked (Zhang et al., 2016). Additionally, the climate signal used to force this OFAM3 configuration is an ensemble of climatologies from 17 CMIP5 climate models (Feng et al., 2017), averaging out non-systematic biases of individual climate models, and therefore avoiding the introduction of errors associated with a specific climate model. As such, the configuration of OFAM3 used in this study is a state-of-the-art product used to examine impacts of climate change on dispersal. We compare outputs for 10 years of contemporary (2006–2015) and 11 years of future (2090–2100) circulation to reduce the potential influence of interannual variability that can weaken significant results (Coleman et al., 2017).

2.2 | Optimal temperature range distribution of Ecklonia

Ecklonia is distributed throughout temperate Australia and its northern range edge lies within the temperate–tropical transition zone, where further expansion equatorward is mostly limited by temperature (Lüning, 1990; Martínez et al., 2018). On the east coast of Australia, the northern distribution of shallow (<25 m) Ecklonia forests stretches to Brunswick Heads (28.6°S; A. Vergés, personal communication). The northern limit of distribution, however, is in southern Queensland around Henderson (27°S), where deep Ecklonia forests (25–60 m) are present (Marzinelli et al., 2015; Richmond & Stevens, 2014). The poleward limit of distribution of Ecklonia in south-eastern Australia is the southern end of Tasmania (43.6°S; Wernberg et al., 2019).

We characterized the realized thermal niche of Ecklonia: its actual distribution with respect to temperature by using the mean temperature range of its present habitat in eastern Australia. Specifically, we use depth-averaged (surface to the 75 m isobath) temperatures from the contemporary scenario (2006–2015) to calculate the temperature mean and standard deviation (SD) at Brunswick Heads (28.6°S) and at the southernmost point of Tasmania (43.6°S) over this 10-year period. The mean temperature + SD (23.9°C + 1.7°C) at Brunswick Heads was identified as the upper temperature threshold where presently Ecklonia survives at all depths (i.e. surface to 75 m). Similarly, the mean temperature – SD (14.4–1.3°C) in southern Tasmania was identified as the lower temperature threshold for Ecklonia’s present habitat range. We then mapped the proportion of time (%) that daily depth-averaged temperature fell within this range in both contemporary and future scenarios. We found that at the northernmost location where Ecklonia is still observed at depth (>25 m in Henderson), these temperature conditions were met 70% of the time. We then
used the 70% contour in the future scenario to infer the equatorial limit of Ecklonia’s distribution in the future. We did not focus on changes in the poleward limit of their distribution because future temperatures in those regions are not projected to shift outside of Ecklonia’s optimal thermal range (Martínez et al., 2018), and poleward expansion is indeed limited by the continental shelf.

We then characterized the fundamental thermal niche of Ecklonia by compiling reported upper survival threshold from the literature. Tolerance to high temperatures, usually experienced during summer (Lüning, 1984; Martínez et al., 2018), also affects habitat range. This climate envelope determines the potential niche (sensu Grinnell; Vandermeer, 1972), that is, the potential geographical distribution considering temperature as the only limiting factor. Wernberg, de Bettignies, Joy, and Finnegan (2016) found that Ecklonia could tolerate short-term temperatures of up to 26.5°C for ~45 min, after which net photosynthetic rate, an indicator of stress (Hurd, Harrison, Bischof, & Lobban, 2014), significantly decreased. We constructed maps of the proportion of time that the daily depth-averaged (surface −75 m isobath) temperature was >26.5°C for both the contemporary and future scenarios. At Ecklonia’s northernmost location (i.e. Henderson), the daily depth-averaged temperature was >26.5°C in a contemporary scenario, <20% of the time. Therefore, the 20% contour in the future scenario was used to predict the equatorial limit of Ecklonia’s distribution based on tolerance to maximum temperatures. We then superimposed the realized thermal niche onto these maps and compared the output of distribution models based on the two different niche indicators.

In order to explore changes to overlap between Ecklonia and Tripneustes and determine new areas of interactions in the future, we created a figure encompassing Ecklonia and Tripneustes’ present and predicted future distributions, based on isothermal shifts for Ecklonia and: (a) suitability of spawning habitat for Tripneustes based on temperature; and (b) simulated dispersal and settlement of Tripneustes.

2.3 Spawning and settlement behaviour of Tripneustes

A Lagrangian framework, which uses as reference the position of a particle over time, is ideal to study the transport of larvae by ocean currents. We used the CMS (Paris et al., 2013) to simulate the dispersal of virtual Tripneustes sea urchin larvae. CMS is a Lagrangian algorithm that allows simulating the advection of particles by ocean currents while incorporating species-specific life traits. In this study, larvae are advected with 3-dimensional velocity fields produced by the ocean model (OFAM3), that is with ocean current vectors defined by north–south, east–west and up–down components, which are used to advect larvae both horizontally and vertically. In addition to advection by the velocity fields, diffusion is implemented following Cetina-Heredia et al. (2015, 2019). Spawning and settlement criteria are dictated by Tripneustes reproductive behaviour and larval development. Tripneustes is a fast-growing sea urchin commonly found in tropical/subtropical regions globally (Lawrence & Agatsuma, 2013). To simulate contemporary and predict future dispersal of Tripneustes larvae, we based our particle releases on known biological spawning behaviours of adult Tripneustes and simulated advection over a time period that corresponds to its pelagic larval duration (PLD). The conditions that enable spawning of Tripneustes are temperature-dependent (Chang-Po & Kun-Hsiung, 1981). Mos, Cowden, Nielsen, and Dworjanyn (2011) describe that Tripneustes could be consistently induced to spawn every 4–6 weeks when kept at a constant 25°C and fed an abundance of macroalgae. Rahman, Tsuchiya, and Uehara (2009) found that healthy embryonic development of Tripneustes occurred at temperatures between 22 and 29°C. Tripneustes has been found up to a depth of 75 m (Lane, Marsh, Vandenberg & Rowe, 2000). We combined these conditions and allowed the daily release of particles, from the surface up to the 75 m isobath at all model grid-cell locations, if the mean temperature fell within 22–29°C over the past 6 weeks. A maximum of one particle could be released per day at any location (given by latitude, longitude and depth). As we had no larval supply or adult population data for specific locations (Everett et al., 2017), we could not include this information. Hence, spawning was based on empirical data of temperature suitability for spawning, which also appeared to reflect present distribution and abundance of Tripneustes. For instance, in our model Tripneustes was able to spawn all year round in the tropics as has been suggested by Malay, Junio-Menez, and Villanoy (2000), with less spawning in temperate regions where abundance is very low (Williamson, 2015). Hence, spawning in our model reflected only “potential spawning” of larvae.

Tripneustes has a PLD of 15–52 days (Scholtz, Bolton, & Macey, 2013). Therefore, we considered virtual larvae could settle after 15 days and up to 52 days if they came close to the coast (i.e. anywhere between the coastline and the 75 m isobath). No other settlement conditions were considered due to lack of information or model resolution, and hence, we only consider “potential settlement.”

2.4 Data analysis of spawning and settlement across regions and seasons

To understand changes to potential spawning and settlement in both contemporary and future scenarios, we looked at differences in the total yearly number of virtual larvae released or settled within subtropical, tropical and temperate regions, as well as into downstream regions (Tasmania and LHI; Figure S1). Understanding shifts between these regions can help determine whether Tripneustes is likely to contribute to the tropicalization of temperate Australia in the future (i.e. an increase in the proportion of Tripneustes inhabiting temperate ecosystems and a poleward shift in Tripneustes distribution). It also enabled us to target specific areas of interest, such as LHI, where a population outbreak of Tripneustes in the past caused significant loss of canopy seaweeds (Valentine & Edgar, 2010). In addition, we investigated monthly differences in total number of larvae spawned and settled within regions. We also recorded the PLD and distance (km) that larvae travelled before settling.
Tropical and subtropical regions were classified according to the IMCRA 4.0: Provincial Bioregions (Commonwealth of Australia, 2006). Tropical-temperate transition zone was determined as subtropical (Figure S1), with areas north (>24.5°S) considered tropical and areas south (<30.5°S), temperate. The temperate region originally included a section that combined mainland south-eastern Australia and Tasmania, since the maximum depth within the Bass Strait (between mainland Australia and Tasmania) is mostly shallower than 75 m. These two regions were subsequently split into two using shallower 50 m isobaths in this region, with each settlement region extending roughly halfway into Bass Strait (Figure S1). These regions remained the same for contemporary and future scenarios.

Larval trajectories were analysed using MATLAB (version R2018a) to quantify spawning, settlement and determine changes in connectivity between sources and sinks.

Changes to potential spawning and settlement within specific regions were analysed using the statistical platform R version 3.4.4. (R Core Team, 2018). To determine statistical differences between the total number of particles spawned and settled within a specific region, an unpaired two-sample Wilcoxon test was used with contemporary and future scenarios as the arguments and the number of years within each scenario as the replicates. To ensure years were
independent samples, we corroborated autocorrelations of total spawning and settlement for each region across years. These were not strongly autocorrelated, and therefore, assumptions of independent sample units were met.

3 | RESULTS

3.1 | Temperature as a predictor of Ecklonia’s future distribution

In the future scenario, Ecklonia’s northern distribution experiences a poleward contraction of ~530 km (from 27°S to 31.8°S) based on shifts in its realized thermal niche (Figures 1 and 2). This range contraction is supported by forecasts based on changes in its fundamental thermal niche, that is high temperatures (>26.5°C) above Ecklonia’s maximum thermal tolerance threshold (Figure S2). In most northern areas of Ecklonia’s predicted new range, high temperatures are expected to be experienced 0%–20% of the time (Figure S2c,d), as is presently experienced in Ecklonia’s northern distribution (Figure S2a,b, around Henderson and Brunswick Heads). The only exception is the northernmost point at 31.8°S, where in future predicted conditions high temperatures will be reached 20%–30% of the time (Figure S2d).

3.2 | Changes in potential spawning and settlement of Tripneustes

Modelled spawning potential in a contemporary scenario adequately reflected present Tripneustes occurrence. In the contemporary scenario, greatest spawning of Tripneustes occurred in its usual habitat range (the tropics and subtropics). Spawning then gradually decreased towards Sydney, where Tripneustes is still found but in low abundances (Williamson, 2015). No spawning occurred south of 35.8°S, which is close to Merimbula, the furthest point where Tripneustes has been recorded (Williamson, 2015). Hence, temperature-based spawning in the model appears to appropriately reflect Tripneustes’ broad present distribution (Figure 3a), suggesting this is a suitable abiotic driver to predict future spawning grounds and range shifts.

Temperate regions experienced a 3.6-fold increase in potential spawning of Tripneustes (Figure 4a; Table S1). In a contemporary scenario, potential spawning within temperate regions typically occurs less than 40% of the time, never exceeds 70%, and no spawning occurs poleward of 35.8°S (Figure 3). In a future scenario, spawning potential in temperate regions increased dramatically, with areas suitable for spawning 50%-100% of the time stretching from 30.5–35.8°S and with the southernmost possible spawning location predicted in Tasmania at 42.5°S (Figure 3). This equates to a ~650 km poleward range expansion in suitable spawning grounds (Figure 2). Temperatures within the subtropics also became more suited to enable spawning (Figure 3), resulting in an 8.1% increase in future spawning (Figure 4a; Table S1). Conversely, the model predicts the tropics will become less suitable for the spawning of Tripneustes, which decreases by 43% in the future (Figure 4a; Table S1). In a contemporary scenario, temperatures are suitable for spawning 40%-100% of the time in the tropics, while temperatures are only suitable for spawning 10%-70% of the time in the future (Figure 3). LHI experienced a significant 47.8% increase in spawning potential of Tripneustes (Figure 4a; Table S1), evidenced by a change in the occurrence of suitable temperature for spawning from 60%-70% to 90%-100% (Figure 3).

FIGURE 2 | Maps of change in the distribution of Ecklonia and Tripneustes. The black region indicates the area where Ecklonia will be lost according to changes in temperature. The blue outlines areas where Ecklonia and Tripneustes presently co-exist and will continue to co-occur in the future based on model simulations for (a) potential spawning and (b) potential settlement of Tripneustes larvae. Merimbula denotes the present southernmost recorded location of Tripneustes (Williamson, 2015). The orange indicates areas where Ecklonia and Tripneustes may co-exist in the future only based on model simulations for (a) potential spawning and (b) potential settlement of Tripneustes larvae. The green indicates areas where Ecklonia will exist in the future but will likely not interact with Tripneustes.
Contemporary settlement extends further south than spawning grounds reaching regions within the continental shelf between mainland Australia and Tasmania (Figure 5); however, south of 35.2°S, the southernmost spawning latitude, settlement density (i.e. within grid cells of ~10 km²) accounts for less than 0.01% relative to total settlement. In the future scenario, settlement occurs as far south as 43.6°S along the coast off Tasmania and settlement densities larger than 0.01% extend ~400 km poleward to 39.2°S, relative to those in the contemporary scenario. Maximum settlement densities within temperate latitudes off Tasmania increase two orders of magnitude.
from ~0.0003% in the contemporary scenario to 0.01% in the future (Figure 5). Similar to changes in spawning within the tropics, settlement densities decrease noticeably, rarely falling below 0.03% in the contemporary scenario, while often being an order of magnitude smaller (~0.003%) in the future (Figure 5).

Temperate regions experienced the greatest changes to potential settlement, with a 1.5-fold increase in temperate zones (not including Tasmania) and a 677-fold increase in Tasmania, where previously settlement was close to zero (Figure 4b; Table S1). Settlement in the tropics and subtropics experienced a decrease of 43% and 13.7% with respect to contemporary settlement, respectively (Figure 4b; Table S1). However, potential settlement was still greater in the tropics and subtropics than within temperate regions. LHI experienced no significant change in settlement (Figure 4b; Table S1).

3.3 | Changes in regions of Tripneustes and Ecklonia co-occurrence

Future predictions of regions suitable for Tripneustes spawning and settlement show a poleward expansion of Tripneustes into areas where Ecklonia occurs, and the rise of new areas of interaction between this tropical herbivore and habitat-forming kelp in temperate regions (Figure 2, orange region). Additionally, areas where they currently co-occur, at the equatorward range edge of Ecklonia’s future distribution (Figure 2, blue region), temperatures will become more suitable for year-round spawning of Tripneustes and settlement densities are predicted to increase (Figure 3).

3.4 | Main Tripneustes larval sources

Climate change leads to substantial changes on the connectivity between urchin populations in different regions. Under the contemporary scenario, only 21.7% of the larvae that settle in temperate regions are sourced from within temperate latitudes, whereas in the future nearly half of the larvae (45.1%) settling in temperate reefs will be sourced from within that same region (Figure 6a,b). Additionally, the proportion of larvae released in the subtropics that are predicted to settle in temperate regions also changes, increasing from 14.6% to 22.6% (contemporary and future climate, respectively; Figure 6c,d). LHI experienced the greatest changes to larval sources. In a contemporary scenario, both the tropics and subtropics are significant sources of larvae for LHI urchin populations, with the subtropics contributing most larvae (Figure 6a). In a future scenario, self-recruitment becomes the largest source of larvae to LHI, and almost no larvae are sourced from the tropics (Figure 6b).

3.5 | Phenology changes

The most obvious changes to phenology occur in the tropics and subtropics for both potential spawning and settlement (Figures 7 and 8). In the tropics, spawning and settlement in a contemporary scenario are highest across eight months of the year from May to December (late autumn–early summer). In a future scenario, this is halved to only four months of the year and the timing shifts from July to October (mid-winter–early spring). In the subtropics contemporary scenario, spawning and settlement are constant throughout the year with a small decline in late winter–early spring. In contrast, in the future scenario, the decline occurs in late summer–early autumn. In temperate regions, no clear phenological changes can be seen, with seasonal patterns of potential spawning and settlement remaining constant across both scenarios. In Tasmania, settlement experiences an increase in autumn with little settlement throughout the rest of the year. In LHI, future spawning remains constant throughout the year, whereas in a contemporary scenario it declines in late winter–spring. No clear changes in settlement patterns can
be observed for LHI, although settlement appears less variable in the future.

3.6 | Larvae dispersal distance

In both, a contemporary and future scenario most larvae settled within 15 days (Figure S3a,b) and travelled <400 km (Figure S3c,d) while potential for dispersal was >3,500 km.

4 | DISCUSSION

In this study, we have used a combined mechanistic modelling approach to create a predictive map that investigates climate-driven changes in the habitat suitability of a habitat-forming kelp species (*Ecklonia*), climate-driven changes in the distribution of an ecologically important tropical herbivore (*Tripneustes*) that account for dispersal processes, and lastly potential changes in the future interaction between these two species caused by new areas of co-occurrence. Overall, we predict that *Ecklonia*'s range will contract poleward substantially due to warming; additionally, we find that climate-driven changes in the oceanic environment shift the spawning and settlement range of *Tripneustes*, causing its poleward expansion, and an increased area of interaction between this herbivore and *Ecklonia* with potential consequences on ecosystem health if kelp is overgrazed (Figures 2, 3 and 5). Our case study explores a new method to model species range shifts that incorporates all three aspects of the BAM framework including the anticipation of species interactions in new regions of co-occurrence, a concept that is often overlooked in SDMs. As climate change strengthens WBCs and creates global warming hotspots alongside the eastern coasts of many continents (Cetina-Heredia et al., 2015; Hobday & Pecl, 2014), this approach is relevant and can be applied to predict future shifts and interactions between foundation species and consumers in other temperate ecosystems globally aiding adaptive management.
Our findings predict a smaller range contraction for *Ecklonia* based on temperature changes alone (Figures 1 and 2) than a previous study by Martinez et al. (2018), which used an SDM approach through MAXENT to also model the future distribution of *Ecklonia*. Their investigation resulted in a more extreme range-shift estimation for kelp (~1,200 km range retraction), with *Ecklonia* restricted to only Australia’s south coast (<37.7°S) under more optimistic climate conditions.
FIGURE 8 The total number of Tripneustes larvae settled each month within each region of a contemporary (left panel, n = 10 monthly; 2006–2015) and future RCP 8.5 scenario (right panel, n = 11 monthly; 2090–2100). Letters on x-axis indicate months of the year. Boxplots indicate the distribution, median and whiskers plot 1.5× IQR. IQR, interquartile range; RCP, Representative Concentration Pathway.
change scenarios by 2100 (RCP 2.6 and 6.0). We suggest that disparities in results may be caused by the different datasets used in each study for predicting future conditions. For instance, Martínez et al. (2018) MAXENT predictions use monthly maximum and minimum mean SSTs to determine habitat range, while our approach considered daily depth-averaged (surface to 75 m) temperatures. Furthermore, future conditions used in MAXENT were obtained from Bio-ORACLE, which provides ocean data produced from averaging three CMIP5 climate models (Assis et al., 2017). In contrast, OFAM3 future projection (Zhang et al., 2016) uses an ensemble of three CMIP5 climate models (Assis et al., 2017).

Biological management techniques, such as ensuring Tripneustes predators are not overfished (Eklof et al., 2008; Ling et al., 2009) or potentially harvesting urchins as a new commercial fishery (Scheibling, Hennigal, & Balch, 1999) would aid in decreasing the risk of population outbreaks in the future.

4.2 Drivers of change in Tripneustes settlement patterns

Within the aspects considered in the BAM framework, warming (abiotic factor) rather than changes in larval pathways (movement) appeared to be a greater driver of poleward range expansion for Tripneustes. This may also be the case for species with short PLD for which changes in transport by altered ocean currents is restricted to a few days, while changes in temperature affect species throughout their life span. Opening up of temperate spawning grounds in the future substantially increased the supply of larvae recruiting into temperate regions (Figures 3 and 6b). As temperatures become suitable for spawning, they are likely to allow the persistence of settlers that can develop into adult populations. For instance, currently there are no Tripneustes in Tasmania (Figure 3) but in the future scenario 87% of future recruits will originate from adults breeding in Tasmania (Figure 6c,d). The proportions of settlement in each region relative to total larvae sourced from the tropics remain similar across scenarios (Figure 6c,d). Thus, it is more likely that the increase of future settlement in temperate regions is driven by warming enabling greater spawning of larvae in temperate areas rather than current intensification carrying larvae from the tropics further poleward into temperate regions. Perhaps dispersal pathways from the tropics in a future scenario could have resulted in increased settlement in temperate regions had the PLD and distance travelled by larvae been greater (Figure S3). However, warming also increases the metabolism of larvae, accelerating growth and resulting in a reduced PLD up until a certain temperature threshold after which mortality increases (McLeod et al., 2015; O’Connor et al., 2007). This is likely the case for Tripneustes larvae, as warming of +3°C (27°C) increased growth of early-stage larvae, but a +6°C (30°C) triggered abnormal development in most larvae (Sheppard Brennand, Soars, Dworjanyn, Davis, & Byrne, 2010). The study by Sheppard Brennand et al. (2010) suggests that settlement patterns of larvae that drift the minimum time of the pelagic stage (i.e. 15 days) rather than the maximum (52 days) are more likely to represent settlement patterns of a warming scenario. This was the case in our simulations, where maximum settlement occurred in the first 15 days (Figure S3a,b). Future research may consider separating the effects of a strengthened EAC from warming, to determine precisely the dispersal mechanisms for increased poleward range shift of Tripneustes into temperate ecosystems.

Conversely, in the tropics potential spawning and settlement is predicted to decrease due to warming temperatures reducing suitability as a year-round spawning location (Figures 3–5 and 7). This could
contribute to reduced health of tropical coral reef ecosystems in the future, as sea urchins are considered to have an important ecological role in maintaining the balance of coral–algae competition on coral reefs (Coyer, Ambrose, Engle, & Carroll, 1993). Removal of important herbivores such as sea urchins can cause overgrowth of algae and facilitate ecosystem phase shifts from coral to algae dominated reefs (Coyer et al., 1993; Hughes, Reed, & Boyle, 1987). Consequently, a reduction in Tripneustes urchins may have negative consequences to tropical coral reefs, particularly if other important herbivores like fish also shift their ranges poleward (Vergés, Steinberg, et al., 2014).

4.3 | Connectivity implications for LHI

The results from LHI have particular conservation relevance due to the unique status of this island as a UNESCO World Heritage site (Environment Australia, 2002) and given records of past outbreaks of Tripneustes in this region (Valentine & Edgar, 2010). They also highlight the importance of considering dispersal when predicting species range shifts. Even though we did find that warming increased the suitability of LHI as a year-round spawning site (Figures 3 and 4a), we found no significant difference in settlement (Figure 4b) and there appeared to be less variability in monthly settlement rates (Figure 8), suggesting no particular greater risk of outbreaks. However, we discovered a significant change in source regions supplying Tripneustes larvae to LHI (Figure 6a,b). In the future scenario, most larvae are self-recruited from LHI itself, the proportion of larvae exported from temperate regions remains unchanged and small, and there is a drastic reduction in supply from the sub-tropics and tropics (only significant sources in the contemporary scenario). These changes are most likely driven by alterations to ocean circulation; as the EAC strengthens with increased flow in a poleward direction, eastward flow towards New Zealand diminishes (Oliver & Holbrook, 2014), which may reduce larval transport from mainland Australia to South Pacific Islands such as LHI of all species with a planktonic phase. Furthermore, the EAC is projected to separate further south (Oliver & Holbrook, 2014); therefore, the EAC eastward flowing extension may also extend poleward and bypass LHI. These changes imply that LHI may become more isolated from tropical/subtropical Australia in the future, which could alter ecosystem composition and reduce population resilience through gene flow changes decreasing genetic diversity (Sgrò, Lowe, & Hoffmann, 2011), as species rely more on self-recruitment to maintain populations. The changes in connectivity patterns revealed here are likely to influence many other species and highlight the benefits of using a Lagrangian approach that considers dispersal mechanisms.

4.4 | Limitations to the dispersal model

We included the most current research on the biological properties of Tripneustes into our model, however, there are still knowledge gaps that limited our dispersal simulations. For example, in our model Tripneustes spawning was based solely on temperature determined by laboratory experiments in controlled environments (Mos et al., 2011; Rahman et al., 2009), as there is currently no certainty of spawning cues for wild populations. Furthermore, ocean acidification may have important impacts on future populations of calcifying organisms like Tripneustes, reducing reproductive output (Dworjanyn & Byrne, 2018) and larval success (Sheppard Brennand et al., 2010). Ocean pH was not projected with the downscaled ocean climate model; therefore, we could not incorporate these effects. Further research into these areas would improve representation of Tripneustes larvae and are factors to consider if using this approach for other species.

Additionally, the very recent discovery of a new species of sea urchin Tripneustes kermadecensis, which overlaps in range and has long been confused with T. gratilla, may mean that some of the biological properties used in our model may have potentially come from studies that unknowingly used T. kermadecensis or hybrids of the two species in their research. Bronstein et al. (2019) suggest that populations poleward of Sydney are likely to belong to T. kermadecensis. Given that frequency of suitable spawning temperature in our models is only high north of Sydney (Figure 3) and this coincides with the southernmost distribution of T. gratilla inferred from genetic analysis (Bronstein et al., 2019), we are fairly confident that T. gratilla's distribution was well represented in our model. Nonetheless, findings should be interpreted with some caution until further genetic sampling is undertaken to determine with certainty the full range of the two species.

4.5 | Concluding remarks

This study provides a novel combined modelling approach that accounts for all three aspects of the BAM framework (Peterson et al., 2015) to address the limitations that other SDMs and mechanistic models encounter when modelling species distributions. The model uses output from OFAM3 to map the contemporary and future realized and fundamental thermal niches of a dominant temperate kelp species, and a Lagrangian particle-tracking framework to forecast and map range shifts of a tropical sea urchin due to climate-driven changes in dispersal. The output from these two approaches is then combined into one predictive map, which shows potential for strengthened interactions between the species in the future due to new regions of co-occurrence, possibly leading to greater kelp loss through increased grazing pressure. We were also able to inadvertently discover changes to connectivity of Tripneustes between source–sink locations. Our approach of niche characterization, dispersal modelling and distributional prediction is transferable to other marine ecosystems and can be used to determine range shifts and forecast changes to species interactions between other foundation species and consumers. It can assist managers worldwide to predict future ecosystem composition and important species interactions, and potentially prepare adaptive measures to better manage changing marine ecosystems.

ACKNOWLEDGEMENTS

CSIRO's Ocean Downscaling Strategic Project provided the OFAM3 model output. P.C.-H. and this work were partially supported by
Lawrence, J. M., & Agatsuma, Y. (2013). Chapter 32 –…

Kinland, B. P., & Gaines, S. D. (2003). Propagule dispersal in marine and terrestrial environments: A community perspective. Ecology, 84, 2007–2020. https://doi.org/10.1890/01-0622

Koehn, J. D., Hobday, A. J., Prachett, M. S., & Gillanders, B. M. (2011). Climate change and Australian marine and freshwater environments, fish and fisheries: Synthesis and options for adaptation. Marine Freshwater Research, 62, 1148–1164. https://doi.org/10.1071/MF11139

Lane, D. J. W., Marsh, L. M., VandenSpiegle, D., & Rowe, F. W. E. (2000). Echinoderm fauna of the South China Sea: An inventory and analysis of distribution patterns. Raffles Bulletin of Zoology, 48, 459–493.

Lawrence, J. M., & Agatsuma, Y. (2013). Chapter 32 – Tripneustes. In J. M. Lawrence (Ed.), Sea Urchins: Biology and ecology (Vol. 38, pp. 491–507). London, UK: Elsevier

Leroux, S. J., Larrivée, M., Boucher-Lalonde, V., Hurford, A., Zuloaga, J., Lane, D. J. W., Marsh, L. M., VandenSpiegle, D., & Rowe, F. W. E. (2000). Echinoderm fauna of the South China Sea: An inventory and analysis of distribution patterns. Raffles Bulletin of Zoology, 48, 459–493.

Lüning, K. (1984). Temperature tolerance and biogeography of seaweeds: The marine algal flora of Helgoland (North Sea) as an example. Helgoländer Meeresuntersuchungen, 38(2), 305–317. https://doi.org/10.1007/BF01979486

Lüning, K. (1990). Seaweeds: Their environment, biogeography and ecophysiology. New York, NY: John Wiley & Sons.

Malan, N., Archer, M., Roughan, M., Catina-Heredia, P., Hemming, M., Rocha, C., ... Queiróz, E. (2020). Eddy-driven cross-shelf transport in the East Australian Current separation zone. Journal of Geophysical Research: Oceans, 125, e2019JC015613. https://doi.org/10.1029/2019JC015613

Malay, M. C. D., Juinio-Menez, M. A., & Villanoy, C. J. (2000). Population genetic structure of the sea urchin Tripneustes gratilla from selected sites in Western Luzon and Eastern Philippines. Paper presented at the proceedings 9th International Coral Reef Symposium, Bali, Indonesia.

Martínez, B., Carreño, F., Malay, M. C. D., & Villanoy, C. J. (2000). Population genetic structure of the sea urchin Tripneustes gratilla from selected sites in Western Luzon and Eastern Philippines. Paper presented at the proceedings 9th International Coral Reef Symposium, Bali, Indonesia.

Martin, B., Radford, B., Thomsen, M. S., Connell, S. D., Carreño, F., Bradshaw, C. J. A., ..., Wernberg, T. (2018). Distribution models predict large contractions of habitat-forming seaweeds in response to ocean warming. Diversity and Distributions, 24, 1350–1366. https://doi.org/10.1111/ddi.12767

Marzinni, E. M., Williams, S. B., Babcock, R. C., Barrett, N. S., Johnson, C. R., Jordan, A., ... Steinberg, P. D. (2015). Large-scale geographic variation in distribution and abundance of Australian deep-water kelp forests. PLoS ONE, 10(2), e0118390. https://doi.org/10.1371/journal.pone.0118390

MeLaud, I. M., McCormick, M. I., Munday, P. L., Clark, T. D., Wenger, A. S., Brooker, R. M., ... Jones, G. P. (2015). Latitudinal variation in larval development of coral reef fishes: Implications of a warming ocean. Marine Ecology Progress Series, 521, 129–141. https://doi.org/10.3354/meps11136

Mos, B., Cowden, K. L., Nielsen, S. J., & Dworjanyn, S. A. (2011). Do cues matter? Highly inductive settlement cues don’t ensure high post-settlement survival in sea urchin aquaculture. PLoS ONE, 6(12), e28054. https://doi.org/10.1371/journal.pone.0028054

O’Connor, M. I., Bruno, J. F., Gaines, S. D., Halpern, B. S., Lester, S. E., Kinlan, B. P., & Weiss, J. M. (2007). Temperature control of larval dispersal and the implications for marine ecology, evolution, and conservation. Proceedings of the National Academy of Sciences of the United States of America, 104(4), 1266–1271. https://doi.org/10.1073/pnas.0603422104

Oke, P. R., Griffin, D. A., Schiller, A., Matear, R. J., Friedler, R., Mansbridge, J., ... Ridgway, K. (2013). Evaluation of a near-global eddy-resolving ocean model. Geoscientific Model Development, 6, 591–615. https://doi.org/10.5194/gmd-6-591-2013

Oliver, E. C. J., & Holbrook, N. J. (2014). Extending our understanding of South Pacific gyre “spin-up”: Modeling the East Australian Current in a future climate. Journal of Geophysical Research: Oceans, 119, 2788–2805. https://doi.org/10.1002/2013JC009591

Paris, C. B., Helgers, J., van Sebille, E., & Srinivasan, A. (2013). Connectivity modeling system: A probabilistic modelling tool for the multi-scale tracking of biotic and abiotic variability in the ocean. Environmental Modelling & Software, 42, 47–54. https://doi.org/10.1016/j.envsoft.2012.12.006

Pee, G. T., Araujo, M. B., Bell, J. D., Blanchard, J., Bonebrake, T. C., Chen, J. C., ... Williams, S. E. (2017). Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science, 355(6332), eaai9214. https://doi.org/10.1126/science.aai9214

Peterson, A. T., Papeş, M., & Soberón, J. (2015). Mechanistic and correlative models of ecological niches. European Journal of Ecology, 1(2), 28–38. https://doi.org/10.1515/eje-2015-0014

Poloczanska, E. S., Brown, C. J., Sydeman, W. J., Kiessling, W., Schoeman, D. S., Moore, P. J., ... Richardson, A. J. (2013). Global imprint of climate change on marine life. Nature Climate Change, 3(10), 919–925. https://doi.org/10.1038/nclimate1958

Pörtner, H. O., & Knust, R. (2007). Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science, 315(5808), 95–97. https://doi.org/10.1126/science.1135471

R Core Team. (2018). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/

Rahman, S., Tsuchiya, M., & Uehara, T. (2009). Effects of temperature on hatching rate, embryonic development and early larval survival of the edible sea urchin, Tripneustes gratilla. Biologia, 64, 768–775. https://doi.org/10.2478/bi-2012-0066

Richmond, S., & Stevens, T. (2014). Classifying benthic biotopes on sub-tropical continental shelf reefs: How useful are abiotic surrogates? Estuarine, Coastal and Shelf Science, 138, 79–89. https://doi.org/10.1016/j.ecss.2013.12.012

Robinson, L. M., Eith, J., Hobday, A. J., Pearson, R. G., Kendall, B. E., Possingham, H. P., ... Richardson, A. J. (2011). Pushing the limits in marine species distribution modelling: Lessons from the land present challenges and opportunities. Global Ecology and Biogeography, 20, 789–802. https://doi.org/10.1111/j.1466-8238.2010.00636.x

Rodríguez, L., García, J. J., Carreño, F., & Martínez, B. (2019). Integration of physiological knowledge into hybrid species distribution modelling to improve forecast of distributional shifts of tropical corals. Diversity and Distributions, 25(5), 715–728. https://doi.org/10.1111/ddi.12883

Roughan, M., Macdonald, H. S., Baird, M. E., & Glasby, T. M. (2011). Modelling coastal connectivity in a Western Boundary Current: Inter-annual variability. Deep-Sea Research II, 58, 628–644. https://doi.org/10.1016/j.dsr2.2010.06.004

Scheibling, R. E., Hennigar, A. W., & Balch, T. (1999). Destructive grazing, epiphytism, and disease: The dynamics of sea urchin-kelp interactions in Nova Scotia. Canadian Journal of Fisheries and Aquatic Sciences, 56(12), 2300–2314. https://doi.org/10.1139/f99-163

Scholtz, R., Bolton, J. J., & Macey, B. M. (2013). Effects of different microalgal feeds and their influence on larval development in the white-spined sea urchin Tripneustes gratilla. African Journal of Marine Science, 35(1), 25–34. https://doi.org/10.2989/1814232x.2013.769902

Sen Gupta, A., Brown, J. N., Jourdain, N. C., van Sebille, E., Ganachaud, A., & Vergès, A. (2015). Episodic and non-uniform shifts of thermal habitats in a warming ocean. Deep-Sea Research Part II: Topical
Studies in Oceanography, 113, 59–72. https://doi.org/10.1016/j. dsr2.2013.12.002

Sen Gupta, A., Muir, L. C., Brown, J. N., Phipps, S. J., Durack, P. J., Monselesan, D., & Wijffels, S. E. (2012). Climate drift in the CMIP3 models. *Journal of Climate*, 25(13), 4621–4640. https://doi.org/10.1175/jcli-d-11-00312.1

Sgrò, C. M., Lowe, A. J., & Hoffmann, A. A. (2011). Building evolutionary resilience for conserving biodiversity under climate change. *Evolutionary Applications*, 4(2), 326–337. https://doi.org/10.1111/j.1752-4571.2010.00157.x

Sheppard Brennand, H., Soars, N., Dworjanyn, S. A., Davis, A. R., & Byrne, M. (2010). Impact of ocean warming and ocean acidification on larval development and calcification in the sea urchin *Tripneustes gratilla*. *PLoS ONE*, 5(6), e11372. https://doi.org/10.1371/journal.pone.0011372

Smale, D. A., Wernberg, T., & Vanderklift, M. A. (2017). Regional-scale variability in the response of benthic macroinvertebrate assemblages to a marine heatwave. *Marine Ecology Progress Series*, 568, 17–30. https://doi.org/10.3354/meps12080

Travis, J. M., Delgado, M., Bocedi, G., Baguette, M., Barón, K., Bonte, D., ... Bullock, J. M. (2013). Dispersal and species’ responses to climate change. *Oikos*, 122(11), 1532–1540. https://doi.org/10.1111/j.1600-0706.2013.00399.x

Valentine, J. P., & Edgar, G. J. (2010). Impact of a population outbreak of the urchin *Tripneustes gratilla* amongst Lord Howe Island coral communities. *Coral Reefs*, 29, 399–410. https://doi.org/10.1007/s00338-010-0610-9

van Vuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., … Thomson, A., … Thomson, A., … Thomson, A. (2011). The representative concentration pathways: An overview. *Climate Change*, 109, 5–31. https://doi.org/10.1007/s10584-011-0148-z

Vandermeer, J. H. (1972). Niche theory. *Annual Review of Ecology and Systematics*, 3(1), 107-132. https://doi.org/10.1146/annurev.es.03.110172.000543

Vergés, A., Doropoulos, C., Malcolm, H. A., Skye, M., Garcia-Piza, M., Marzinelli, E. M., ... Steinberg, P. D. (2016). Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. *Proceedings of the National Academy of Sciences of the United States of America*, 113(48), 13791–13796. https://doi.org/10.1073/pnas.1610725113

Vergés, A., Mccosker, E., Mayer-Pinto, M., Coleman, M. A., Wernberg, T., Ainsworth, T., & Steinberg, P. D. (2019). Tropicalisation of temperate reefs: Implications for ecosystem functions and management actions. *Functional Ecology*. https://doi.org/10.1111/1365-2435.13310

Vergés, A., Steinberg, P. D., Hay, M. E., Poore, A. G., Campbell, A. H., Ballesteros, E., … Wilson, S. K. (2014). The tropicalization of temperate marine ecosystems: Climate-mediated changes in herbivory and community phase shifts. *Proceedings of the Royal Society B: Biological Sciences*, 281(1789), 20140846. https://doi.org/10.1098/rspb.2014.0846

Vergés, A., Tomas, F., Cebrian, E., Ballesteros, E., Kizilkaya, Z., Dendrinos, P., ... Buckley, Y. (2014). Tropical rabbitfish and the deforestation of a warming temperate sea. *Journal of Ecology*, 102(6), 1518–1527. https://doi.org/10.1111/1365-2745.12324

Wernberg, T., Bennett, S., Babcock, R. C., de Bettignies, T., Cure, K., Depczynski, M., ... Wilson, S. (2016). Climate-driven regime shift of a temperate marine ecosystem. *Science*, 353(6295), 169–172. https://doi.org/10.1126/science.aad8745

Wernberg, T., Coleman, M. A., Babcock, R. C., Bell, S. Y., Bolton, J. J., Connell, S. D., ... Wright, J. T. (2019). Biology and ecology of the globally significant kelp *Ecklonia radiata*. *Oceanography and Marine Biology*, 57, 265–323. https://doi.org/10.1201/9780429026379-6

Wernberg, T., de Bettignies, T., Joye, B. A., & Finnegans, P. M. (2016). Physiological responses of habitat-forming seaweeds to increasing temperatures. *Limbology and Oceanography*, 61(6), 2180–2190. https://doi.org/10.1002/lno.10362

Werner, F. E., Cowen, R. K., & Paris, C. B. (2007). Coupled biological and physical models: Present capabilities and necessary developments for future studies of population. *Oceanography*, 20, 54–69. https://doi.org/10.5670/oceanog.2007.29

Williamson, J. E. (2015). Sea urchin aquaculture in Australia. In N. P. Brown & S. D. Eddy (Eds.), *Echinoderm aquaculture* (pp. 225–243). New York, NY: Wiley Blackwell.

Wilson, L. J., Fulton, C. J., Hogg, A. M., Joyce, K. E., Radford, B. T. M., & Fraser, C. I. (2016). Climate-driven changes to ocean circulation and their inferred impacts on marine dispersal patterns. *Global Ecology and Biogeography*, 25(8), 923–939. https://doi.org/10.1111/gab.12456

Wu, L., Wenju, C., Zhang, L., Nakamura, H., Timmermann, A., Joyce, T., ... Giese, B. (2012). Enhanced warming over the global subtropical western boundary currents. *Nature Climate Change*, 2(3), 161–166. https://doi.org/10.1038/nclimate1353

Yang, L. H., & Rudolf, V. H. W. (2010). Phenology, ontogeny and the effects of climate change on the timing of species interactions. *Ecology Letters*, 13, 1–10. https://doi.org/10.1111/j.1461-0248.2009.01402.x

Zhang, X., Oke, P. R., Feng, M., Chamberlain, M., Church, J. A., Monselesan, D., ... Fiedler, P. (2016). A near-global eddy-resolving OGCM for climate studies. *Geoscientific Model Development Discussions*, 1–52. https://doi.org/10.5194/gmd-2016-17

BIOSKETCH

Louise C. Castro has just completed her MPhil (Science) at UNSW Sydney, jointly supervised by A.V., who leads a research team that investigates the impacts of climate change in our oceans and develops coastal restoration solutions, and P. C.-H. and M.R. from the Regional and Coastal Oceanography Research Lab.

Author contributions: L.C., P.C.-H., A.V. and M.R. conceived the idea; S.D. informed the modelling of *Tripneustes* spawning; M.C. and M.F. provided the hydrodynamic model data for dispersal simulations; L.C. and P. C.-H. conducted dispersal simulations, analysed the data and interpreted results; L.C. led the writing; L.T. contributed to the statistical analyses of the data. All authors contributed to the writing.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section.

How to cite this article: Castro LC, Cetina-Heredia P, Roughan M, et al. Combined mechanistic modelling predicts changes in species distribution and increased co-occurrence of a tropical urchin herbivore and a habitat-forming temperate kelp. *Divers Distrib.* 2020;26:1211-1226. https://doi.org/10.1111/ddi.13073