Supplementary Information

Zinc oxide nanocrystals as nano-antibiotic and osteogenic/osteinductive agents

Nadia Garino¹, Pasquale Sanvitale¹, Bianca Dumontel¹, Marco Laurenti¹, Montserrat Colilla²,³, Isabel Izquierdo Barba²,³, Valentina Cauda¹*, Maria Vallet-Regí²,³*

¹ Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy;
² Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
³ Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain

Figure S1. Size distribution curves deriving from Dynamic Light Scattering (DLS) measurements for ZnO and ZnO-NH₂ NCs in Ethanol (top) and water (bottom)
The FT-IR spectra (Figure S2) of ZnO and ZnO–NH$_2$ nanocrystals show both an intense mode at 440 cm$^{-1}$ typical of Zn–O vibration. In addition, the two spectra show, with different intensities, the symmetric and antisymmetric stretching of –CH$_2$ and –CH$_3$ groups at 2860 and 2925 cm$^{-1}$, respectively. These vibrations are attributed to residual acetate groups on the ZnO surface due to the precursors used in the synthetic procedure. However, in the case of ZnO–NH$_2$ NCs, the 2860 and 2925 cm$^{-1}$ stretching modes are more intense because of the presence of the propyl chain of the amine-functional group, thus confirming the successful functionalization of the ZnO surface. Moreover, the broad band from 3600 to 3400 cm$^{-1}$, due to the stretching vibrations of hydroxyl groups on the ZnO surface, are less pronounced in the ZnO–NH$_2$ sample with respect to the pristine ZnO. Since the APTMS moiety links through hydroxyl groups to the oxide surface (Zn–OH), leading to Zn–O–SiR bonds, the above-mentioned-observation further confirms the successful amine functionalization of our ZnO NCs.
Figure S3. Fluorescent microscope images of pre-osteoblasts cultured up to 70% of confluence after incubation for 4 days with ZnO NCs at different concentrations.
Figure S4. Fluorescent microscope images of pre-osteoblasts cultured up to 70 % of confluence after incubation for 4 days with ZnO-NH$_2$ NCs at different concentrations.
Figure S5. Differentiation assays in term of total protein content after 10 days of incubation with ZnO (top) and ZnO-NH$_2$ (bottom) NCs at different concentrations. (p < 0.05, significant differences compared to control denoted by an asterisk.)
Figure S6. Cell morphology evaluation by optical microscopy of MC3T3-E1 pre-osteoblast cells after 10 days of incubation with ZnO NCs.
Figure S7. Cell morphology evaluation by optical microscopy of MC3T3-E1 pre-osteoblast cells after 10 days of incubation with ZnO-NH$_2$ NCs.
Table S1. Reduction in bacteria viability after 24 h of incubation with ZnO and ZnO-NH$_2$ NCs, respectively. The values shown in bold indicate a CFU concentration less than 10^2 CFU/ml, which is considered as positive effectiveness.

Concentration	E. coli vs ZnO	E. coli vs ZnO-NH$_2$	S. aureus vs ZnO	S. aureus vs ZnO-NH$_2$
5 μg/mL	99.999%	100%	99.923%	99.935%
10 μg/mL	100%	100%	99.965%	99.963%
25 μg/mL	100%	100%	99.985%	99.990%
50 μg/mL	100%	100%	99.940%	99.853%
100 μg/mL	100%	100%	99.963%	99.883%