The Antiviral Effects of the Symbiont Bacteria Wolbachia in Insects

André C. Pimentel, Cássia S. Cesar, Marcos Martins and Rodrigo Cogni*

Department of Ecology, University of São Paulo, São Paulo, Brazil

Wolbachia is a maternally transmitted bacterium that lives inside arthropod cells. Historically, it was viewed primarily as a parasite that manipulates host reproduction, but more recently it was discovered that Wolbachia can also protect Drosophila species against infection by RNA viruses. Combined with Wolbachia’s ability to invade insect populations due to reproductive manipulations, this provides a way to modify mosquito populations to prevent them transmitting viruses like dengue. In this review, we discuss the main advances in the field since Wolbachia’s antiviral effect was discovered 12 years ago, identifying current research gaps and potential future developments. We discuss that the antiviral effect works against a broad range of RNA viruses and depends on the Wolbachia lineage. We describe what is known about the mechanisms behind viral protection, and that recent studies suggest two possible mechanisms: activation of host immunity or competition with virus for cellular resources. We also discuss how association with Wolbachia may influence the evolution of virus defense on the insect host genome. Finally, we investigate whether the antiviral effect occurs in wild insect populations and its ecological relevance as a major antiviral component in insects.

Keywords: antiviral, Wolbachia, insects, arboviruses, evolution, wild populations, review, endosymbiont

INTRODUCTION

Wolbachia pipientis is a maternally transmitted alphaproteobacterium that lives obligatorily within the cytoplasm of arthropod cells (1). Until recently it was viewed primarily as a parasite that manipulates host reproduction, most commonly by inducing cytoplasmic incompatibility (2, 3). Cytoplasmic incompatibility allows Wolbachia to invade insect populations by causing embryonic mortality when uninfected females mate with infected males, thus conferring a selective advantage to infected females (4, 5). In 2008, two studies discovered that Wolbachia can protect Drosophila melanogaster against RNA viruses (6, 7). Subsequently, it was discovered that Wolbachia can block dengue virus replication in mosquitoes (8, 9). These findings provided a new way in which Wolbachia can be used to control human arboviruses, since previous attempts relied on using cytoplasmic incompatibility as a transgene driver, or reduction of mosquito longevity by a virulent Wolbachia strain. Wolbachia lineages from different insects that were transferred to the mosquito Aedes aegypti can limit the replication of arboviruses such as Dengue virus (DENV), Chikungunya virus (CHIKV), Yellow Fever virus (YFV), Zika virus (ZIKV) and West Nile virus (WNV) (9–12). Wolbachia can spread quickly through mosquito populations by cytoplasmic incompatibility (13–15), and large field trials have been successful in reducing dengue prevalence in human populations (16, 17).
In this Mini Review, we discuss the main advances in the field since the Wolbachia antiviral effect was discovered 12 years ago, current research gaps, and potential future developments. First, we address the generality of the antiviral effect and how it depends on Wolbachia lineage and on virus identity. Second, we discuss the possible mechanisms of antiviral protection. Third, we discuss how association with Wolbachia may influence the evolution of virus defense on the insect host genome. Finally, we discuss the virus blocking ecological relevance by addressing if it occurs in wild insect populations.

GENERALITY: DIFFERENT VIRUSES AND DIFFERENT WOLBACHIA LINEAGES

After the first studies showing that Wolbachia protects flies and mosquitoes against RNA viruses (6–8) and its potential to control insect-born human diseases (8–10, 14), there was a great interest in the area. Many studies conducted on mosquitoes tested for their vector competence and revealed that Wolbachia reduces infection and, in some cases, the dissemination and transmission of diseases such as dengue, chikungunya, yellow fever, zika, and West Nile fever (Table 1). In flies, Wolbachia protects mostly against Flock House virus (FHV), and Drosophila C virus (DCV). However, DCV is not commonly found in wild Drosophila populations (41) and there is limited information on protection against viruses that are common in nature, such as Nora (6) and Kallithea virus (36) (Table 1). Although many studies report Wolbachia protection against different viruses, there are a few cases in which Wolbachia provides no protection or even increases the host susceptibility to viral infection (Table 1). Furthermore, only three studies investigated Wolbachia protection against DNA viruses (6, 36, 40) and none found evidence of protection (Table 1). Therefore, Wolbachia protection in insects is a general phenomenon only against RNA viruses.

The level of protection against viruses varies among Wolbachia strains and depends on their density within the host (22, 42). It is common to transfer high density strains into new hosts, such as mosquitoes, to test for protection against viruses (Figure 1A). Thus, protection generally occurs in host-Wolbachia interactions that are not natural, but artificial (43).

For example, the virulent strain wMelPop, originally isolated from D. melanogaster (44, 45), protects against different viruses in Aedes aegypti (Table 1). However, wMelPop is a strain that was identified only in laboratory and there is no record of it in nature. Other Wolbachia strains commonly used in experiments that have broad protection against viruses are wMel, wMelCS, both isolated from D. melanogaster, wAu, isolated from D. simulans, wAlbB, isolated from Aedes albopictus, and wStri, isolated from the planthopper Laodelphax striatellus (Table 1). Martinez and colleagues investigated antiviral protection in many Wolbachia strains originated from different Drosophila species after transfer into the same genetic background of D. simulans. Interestingly, they found that protection is not determined by host genotype, but by Wolbachia strain (23).

These studies showing that different strains protect different hosts against many RNA viruses were conducted in the laboratory, and there is still little evidence of the Wolbachia antiviral effect in nature (see last section below).

Another issue is that most studies that test for virus protection by Wolbachia are carried out using only the adult stage. So far, only Graham et al. (40) tested for viral protection in larval stages of Spodoptera exempta, and we still have no information of protection on pupae. Moreover, these results may be affected by the inoculation method in the laboratory. All studies in flies use systemic infection (stabbing or microinjection), while in mosquitoes some studies use oral infection besides microinjection. Although methods such as microinjection allow greater viral dose precision, we know that in nature insects acquire many pathogens by feeding (46, 47). Therefore, although there is a general pattern of protection against viruses in laboratory studies, there are some limitations on the methods used. Further studies testing Wolbachia’s antiviral protection in insect host using methods that approximate of how infections occur in nature, such as oral infection (46, 47), are essential to understanding the dynamics between Wolbachia and viruses in wild populations.

Wolbachia infects about 50% of all insect species (48), and we can hypothesize that the antiviral protection may be one of the reasons for Wolbachia being so widely spread among arthropods. However, studies on Wolbachia’s viral protection are still limited to flies and mosquitoes, with the exception of one study on a Lepidoptera host (40) and one study on a Hemiptera host (33). Thus, more studies on different insect families are essential to test if the antiviral effect also occurs in other insects, and how likely it may be one of the main reasons for the high prevalence of Wolbachia in natural insect populations.

THE POSSIBLE MECHANISMS

Since the discovery of Wolbachia antiviral protection different mechanisms of action have been proposed, but up to now, there is no consensus on the underlying mechanism [reviewed by Lindsey et al (49)]. Current studies work on two main hypotheses to explain Wolbachia interference in viral replication: the activation of host immunity and competition with virus for cellular resources (Figure 1B).

The first hypothesis is that Wolbachia can directly activate innate immunity of the host prior to virus infection (immune priming), interfering with virus replication. The presence of the bacterium in host cells leads to cellular stress, including oxidative stress that activates host immune pathways (50). Wolbachia preactivates mosquito innate immunity by the oxidative stress, upregulating Toll pathway genes, known to be responsible for protection against dengue virus (8, 9, 50). Immune effector genes upregulation in A. aegypti suggests that the protection due to immune priming is responsible for the viral interference (8, 9).

However, the upregulation in the immune pathway genes is variable in different species and it seems to be influenced by the time of host-Wolbachia coevolution. For instance, there is no
TABLE 1 | Wolbachia antiviral effect on insects.

Wolbachia effect	Wolbachia strain	Natural host species	Tested host species	Tested virus	Study
Protection	wAlbB	Aedes albopictus	Aedes aegypti, Aedes polynesiensis, Aedes aegypti	DENV, SFV, ZIKV	Bian et al., 2010 (9), Bian et al., 2013 (18), Ant et al., 2018 (19), Joubert et al., 2016 (20)
	wAlbB + wMel	Aedes albopictus + Drosophila melanogaster	DENV	Joubert et al., 2016 (20)	
	wAlbA + wAlbB	Aedes albopictus + Drosophila melanogaster	Tested virus Study	Protection wAlbB	
	wC. quinquefasciatus wAna	Drosophila ananassae + Culex quinquefasciatus	Tested virus Study	Protection wAlbB	
	wAra	Drosophila arawakan	Tested virus Study	Protection wAlbB	
	wAu	Drosophila simulans	Aedes aegypti, Drosophila simulans	DENV, ZIKV, SFV, DCV, FHV	Ant et al., 2018 (19), Martinez et al., 2014 (22), Martinez et al., 2017 (23), Osborne et al., 2009 (24)
	wHa	Drosophila simulans	Drosophila simulans	DCV, FHV	Martinez et al., 2017 (23), Osborne et al., 2009 (24)
	wMel	Drosophila melanogaster	Aedes aegypti, Aedes albopictus, Drosophila simulans, Drosophila melanogaster	CHIKV, DCV, DENV, FHV, Flavivirus OTU2, ZIKV, SFV, WNV	Martinez et al., 2018 (25), Ant et al., 2018 (19), Biagrove et al., 2012 (26), Martinez et al., 2014 (22), Fraser et al., 2017 (27), Hussain et al., 2013 (28), Joubert et al., 2016 (20), Martinez et al., 2017 (23), Osborne et al., 2009 (24), Van den Hurk et al., 2012 (26), Moreira et al., 2009 (9), Rance et al., 2012 (30)
	wMelCs	Drosophila melanogaster	Aedes aegypti, Drosophila simulans, Drosophila melanogaster	CHIKV, OrPV, DCV, DENV, FHV, WNV	Martinez et al., 2014 (22), Hedges et al., 2008 (7), Fraser et al., 2017 (27), Hussain et al., 2013 (28), Martinez et al., 2017 (23), Glaser & Meola, 2010 (12)
	wMelPop	Drosophila melanogaster	Aedes aegypti, Drosophila simulans, Drosophila melanogaster	CHIKV, DCV, DENV, FHV, Noravirus, YFV	Hedges et al., 2008 (7), Joubert et al., 2016 (20), Martinez et al., 2017 (23), Teixeira et al., 2008 (6), Van den Hurk et al., 2012 (26), Walker et al., 2011 (14), Ye et al., 2015 (29), Glaser & Meola, 2010 (12)
	wStv	Drosophila sturtevanti	Drosophila simulans	DCV	Martinez et al., 2014 (22)
	wTei	Drosophila teissieri	Drosophila simulans, Drosophila teissieri	DCV, FHV	Martinez et al., 2014 (22), Martinez et al., 2017 (23)
	wTro	Drosophila tropicalis	Drosophila simulans, Drosophila tropicalis	DCV, FHV	Martinez et al., 2014 (22), Martinez et al., 2017 (23)
	wMa	Drosophila simulans	Drosophila simulans	FHV	Martinez et al., 2014 (22), Martinez et al., 2017 (23)
	wRi	Drosophila simulans	Aedes aegypti, Drosophila simulans	DCV, DENV, FHV	Fraser et al., 2017 (27), Martinez et al., 2017 (23), Osborne et al., 2009 (24)
	wPro	Drosophila prosaltans	Drosophila prosaltans, Drosophila simulans	FHV	Martinez et al., 2017 (23)
	wYak	Drosophila yakuba	Drosophila simulans	FHV	Martinez et al., 2014 (22)
	wInn	Drosophila innubila	Drosophila innubila	FHV	Uncless and Jaenike et al., 2012 (31)
	wSuz	Drosophila suzuki	Drosophila suzuki	DCV, FHV	Cattel et al., 2016 (32)
	wStri	Laodelphax striatellus	Nilaparvata lugens	RRSV	Gong et al., 2020 (33)

(Continued)
Wolbachia effect	Wolbachia strain	Natural host species	Tested host species	Tested virus	Study
No protection	wPip	Culex pipiens	Culex pipiens	CpVD	Atinii et al., 2019b (34)
	wNoto	Aedes notoscriptus	Aedes notoscriptus	DENV	Skelton et al., 2018b,c (33)
	wMel	Drosophila melanogaster	Aedes aegypti, Drosophila melanogaster, Drosophila simulans	CHIKV, DENV, Flavivirus OTU1, Flavivirus OTU3, Flavivirus OTU16, Flavivirus OTU25, Flavivirus OTU20, Flavivirus OTU21, FHV, ZIKV, WNV, YFV	Amuzu et al., 2018b (39), Ant et al., 2018b (19), Martinez et al., 2014b (22), Amuzu et al., 2018b (39), Ant et al., 2018b (19), Martinez et al., 2014b (22), Hussain et al., 2013b (28), Van den Hurk et al., 2012b,c (28), Ye et al., 2016b,c (29)
	wMelPop	Drosophila melanogaster	Aedes aegypti, Drosophila melanogaster	FHV, IV-6, YFV	Teixeira et al., 2008a,b (6), Van den Hurk et al., 2012b,c,e,h,i (10)
	wMelCS	Drosophila melanogaster	Drosophila melanogaster	Kallithea virus, La Crosse virus	Palmer et al., 2018a (36), Glaser & Meola, 2010b (12)
	wAlbB	Aedes albopictus	Aedes aegypti, Culex tarsalis	CHIKV, DENV, WNV	Ant et al., 2018b (19)
	wAlbA	Aedes albopictus	Aedes aegypti	SFV	Ant et al., 2018b (19)
	wAlbA + wAlbB	Aedes albopictus	Aedes aegypti	CHIKV, DENV	Mousson et al., 2010b (37), Mousson et al., 2012a,b (21)
Male-killing wD.bifasciata	wBai	Drosophila bifasciata	Drosophila bifasciata	DGV, FHV	Longdon et al., 2012a (38)
	wBic	Drosophila simulans	Drosophila simulans	DGV, FHV	Martinez et al., 2014a,b (22)
	wBoR	Drosophila simulans	Drosophila simulans	DGV, FHV	Martinez et al., 2014a,b (22)
	wHa	Drosophila simulans	Drosophila simulans	DGV, FHV	Martinez et al., 2014a,b (22), Martinez et al., 2017b (23), Osborne et al., 2009b (24)
	wRi	Drosophila simulans	Drosophila simulans	DGV, FHV	Martinez et al., 2014a,b (22), Martinez et al., 2017b (23), Osborne et al., 2009b (24)
	wNo	Drosophila simulans	Drosophila simulans	DGV, FHV	Martinez et al., 2014a,b (22), Martinez et al., 2017b (23), Osborne et al., 2009a,b (24)
	wTni	Drosophila simulans	Drosophila simulans	DGV, FHV	Martinez et al., 2014a,b (22)
	wMa	Drosophila simulans	Drosophila simulans	DGV, FHV	Martinez et al., 2014a,b (22), Martinez et al., 2017b (23)
	wPro	Drosophila simulans	Drosophila simulans, Drosophila prosaltans	DGV, FHV	Martinez et al., 2014a,b (22), Martinez et al., 2017b (23)
	wSan	Drosophila simulans	Drosophila simulans, Drosophila simulans, Drosophila simulans	DGV, FHV	Martinez et al., 2014a,b (22)
	wSh	Drosophila simulans	Drosophila simulans, Drosophila simulans, Drosophila simulans	DGV, FHV	Martinez et al., 2014a,b (22), Martinez et al., 2017a,b (23)
	wTri	Drosophila simulans	Drosophila simulans, Drosophila simulans, Drosophila simulans	DGV, FHV	Martinez et al., 2014a,b (22), Martinez et al., 2017a,b (23)
	wTei	Drosophila simulans	Drosophila simulans, Drosophila simulans, Drosophila simulans	DGV, FHV	Martinez et al., 2014a,b (22)
	wYak	Drosophila simulans	Drosophila simulans, Drosophila simulans, Drosophila simulans	DGV, FHV	Martinez et al., 2014a,b (22)
	wAna	Drosophila simulans	Drosophila simulans, Drosophila simulans, Drosophila simulans	FHV	Martinez et al., 2014a,b (22), Martinez et al., 2017a,b (23)

(Continued)
upregulation on Toll or IMD genes by *Wolbachia* in its native host *Aedes aegypti*, but other immune-related genes are indeed modulated, as oxidative stress-related genes (51). The generation of oxygen reactive species itself is an example of immune response that vary between novel and native host, ranging from triggering oxidative stress to redox homeostasis restoration [reviewed by Zug and Hammerstein (52)]. But there is evidence that *Wolbachia*-induced oxidative stress is involved in virus blocking both in transinfected mosquito and *Drosophila* with a natural *Wolbachia* infection (50, 53).

The second hypothesis is that resources shared by *Wolbachia* and the virus can represent a limitation for development of the latter when they are co-infecting their host. As discussed in the previous section, *Wolbachia* protects mainly against RNA viruses which depends on specific cellular resources, the integrity of intracellular membranes for replication, and the host translation apparatus for virus protein production (49). Any disturbance caused by *Wolbachia* on these cellular components presumably interferes with virus replication. For instance, depletion, reduction, or modification of certain host lipids affect virus replication (54, 55). In particular for cholesterol, providing or restoring its intracellular availability seems to modulate *Wolbachia* infection in host lipid availability (55, 56). In another recent example, it was found that *Wolbachia* and virus have antagonistic effect in the host expression of *prat2*, a gene involved in nucleotide synthesis (57).

Additionally, several approaches have shown that antiviral protection occurs in host bearing high density of *Wolbachia*, with no detectable protection is host with low symbiont density (22, 24). The same result is obtained in experimental manipulation of *Wolbachia* density with antibiotics (58). The control of symbiont density is dependent on the symbiont genotype and, in the case of *Wolbachia* strains isolated from *D. melanogaster*, the genetic basis of density determination has been assigned to the Octomom region which presents several duplications, or a deletion of the entire region, in high-density *Wolbachia*-infected host (59-61). However, one recent study with controlled genetic background showed an intriguing example of *Wolbachia* with no antiviral action in *A. aegypti*, even in relatively high density (62). Other than density, host development stage and temperature seem to modulate *Wolbachia* antiviral properties (61, 63).

The mechanism behind *Wolbachia* antiviral protection became an active area of research. New experimental approaches, such as the forward genetic screens applicable on genetically tractable bacteria (61), are extremely promising to pursue this question. One example of how recent experimental advances can bring progress to long standing questions is the case of cytoplasmic incompatibility caused by *Wolbachia*. Cytoplasmic incompatibility has been studied since 1971, yet

TABLE 1 | Continued

Wolbachia effect	*Wolbachia* strain	Natural host species	Tested host species	Tested virus	Study
wStv	*Drosophila* sturtevantii	*Drosophila ananassae*	*Drosophila simulans*	*FHV*	Martinez et al., 2014^ab (22), Martinez et al., 2017^ab (23)
wA. subalbatus	*Armigeres* subalbatus	*Armigeres subalbatus*	*JEV*	Tsai et al., 2006^c (39)	
wTro	*Drosophila* tropicalis	*Drosophila simulans*, *Drosophila tropicalis*	*DCV*, *FHV*	Martinez et al., 2014^ab (22), Martinez et al., 2017^ab (23)	
wSuz	*Drosophila* suzuki	*Drosophila* suzuki	*DCV*, *FHV*	Cattel et al., 2016^ab (32), Martinez et al., 2017^ab (23)	
Increase in susceptibility	*wMel*	*Drosophila* melanogaster	*Aedes aegypti*	*Flavivirus OTU1, Flavivirus OTU2, Flavivirus OTU3, Flavivirus OTU20, Flavivirus OTU21*	Amuzu et al., 2018^b (25)
wExe1	*Spodoptera* exempta	*Spodoptera* exempta	*SpexNPV*	Graham et al., 2012^a (40)	
wHa	*Drosophila* simulans	*Drosophila* simulans	*DCV*	Martinez et al., 2014^ab (22)	
wSan	*Drosophila* santomea	*Drosophila* simulans, *Drosophila simulans*	*FHV*	Martinez et al., 2014^ab (22)	

Wolbachia and virus have antagonistic effect in the host expression of *prat2*, a gene involved in nucleotide synthesis (57).

Studied measured: a) Host survival, b) viral titer, c) infection rate.

Result varied among: d) Host genotype, e) infection/transmission/dissemination, f) days post infection, g) infection type (oral or intratoracic), h) virus strain, i) viral titer inoculated in the host.

CHIKV, chikungunya virus; CIPV, cricket paralysis virus; QPVD, Culex pipiens densivos virus; DCV, Drosophila C virus; DENV, dengue virus; FHV, Flock House virus; IV-6, insect iridescent virus 6; JEV, Japanese encephalitis virus, RRSV, rice ragged stunt virus SFV, Semliki forest virus; SpexNPV, Spodoptera exempta nucleopolyhedrovirus; WNV, West Nile virus; YFV, yellow fever virus; ZIKV, Zika virus.

For each *Wolbachia* strain tested we report if there was protection, no protection or increase in susceptibility to viral infection. We present the natural host species of the strains, the hosts species in which the strains were tested, and the virus in which they were tested in the hosts.
only recently its mechanism was uncovered (1, 64, 65). The cytoplasmic incompatibility is controlled by two phage WO genes, cifAwMel and cifBwMel, present in the Wolbachia genome (66). Similar advances are likely to figure out the specific antiviral mechanism in the following years.

INFLUENCE ON EVOLUTION OF HOST “INTRINSIC” IMMUNOLOGICAL RESISTANCE MECHANISMS

Although Wolbachia confers viral protection to insects, natural insect populations have other means to fight against viruses (67, 68). Insects usually rely on the mechanisms of RNA interference, apoptosis, NF-κB pathways and translation control from its innate immune system to get along viral pathogens (69). Nevertheless, the population’s ability to resist the plethora of viruses present in nature lies on its standing genetic variation on these mechanisms or the sudden appearance of beneficial mutations (70). However, in the presence of Wolbachia, the extended mutualistic genotype could mask or even substitute host’s intrinsic mechanisms of antiviral defenses, shifting its adaptive landscape (71) (Figure 1C). Some recent experimental evolution studies have addressed how the presence of Wolbachia can alter the evolution of intrinsic antiviral mechanisms in insects.

In a pioneer study, Martins and colleagues used an experimental evolution approach in which Drosophila melanogaster populations were subjected to continuous DCV injections for a few generations (72). Compared with control populations that were not exposed to the virus, infected populations showed increased survival after DCV infection, and also increased survival after infection by cricket paralysis virus (CrPV) and FHV (72). This increased resistance to viral infection was associated with three candidate genes on the fly’s genome - pastrel, Ubc-E2H and CG8492 (72). In another experimental evolution study, Martinez and colleagues directly tested how the presence of Wolbachia can alter evolution of intrinsic antiviral mechanisms (71). They focused on a polymorphism of the gene pastrel that explains most of the variation on DCV resistance in D. melanogaster populations (73, 74). They infected populations with and without Wolbachia for nine generations. Resistance to DCV and the frequency of the resistant pastrel allele increased in all populations exposed to the virus compared with virus-free control populations (71). Most interestingly, the frequency of the resistant pastrel allele after nine generations was lower in Wolbachia infected populations than in the symbiont-free populations. After experimentally removing Wolbachia, the populations that had Wolbachia...
during the selection experiment was much less resistant to the virus than the Wolbachia-free populations. This experiment shows that the presence of Wolbachia resulted in weaker selection on the host intrinsic antiviral defenses, making the host addicted to the protection caused by the symbiont (71). Another study showed that DCV infection selected for a particular Wolbachia strain that enhances survival and fecundity in the presence of DCV (75). Finally, Faria and colleagues showed that intrinsic antiviral defenses can replace symbiont protection (72, 76). They used previously selected populations for increased virus resistance (72), and removed the symbiont from these populations. They first observed a severe drop in survival after DCV infection, but resistance significantly increased in subsequent generations reaching the same levels as seen in the presence of Wolbachia after 20 generations (76).

These studies show that Wolbachia can change the strength of selection on host antiviral mechanisms, leading to evolutionary addiction (71, 72, 75, 76). Because Wolbachia prevalence varies in natural populations, this may be one mechanism that maintains genetic variation in intrinsic antiviral resistance in populations (76). One interesting interplay is that different Drosophila clades respond differently to viral infections (77), therefore, variation in resistance and susceptibility of hosts could be mirrored by the success and establishment of Wolbachia in some clades but not others in nature (78). In addition, it would be remarkably interesting to investigate how the presence of Wolbachia in some clades may affect the evolution of host-shifts by viruses (79).

IMPORTANCE IN WILD POPULATIONS

The Wolbachia antiviral effects were intensely studied in the last decade because of its importance in the field of public health. However, their ecological importance in wild populations has rarely being addressed. Around 50% of insect species may carry one or more strains of Wolbachia (48), meaning that almost 3 million insect species are infected. Therefore, Wolbachia may be a major component of antiviral defenses in nature (43). But just recently some studies started to test if Wolbachia can confer protection against viruses in wild insect populations. The antiviral effects of Wolbachia may mean that in nature it is frequently a mutualist that protects its host against infection. This may explain why Wolbachia strains that do not cause cytoplasmic incompatibility and have no obvious phenotypic effect can invade and be maintained in populations (80). Theory predicts that cytoplasmic incompatibility can only invade when local infection frequencies becomes sufficiently high to offset imperfect maternal transmission and infection costs (81, 82). However, recent data suggested that Wolbachia can spread from arbitrarily low frequencies (80). In this scenario, there appears to be a fitness advantage for the host caused by Wolbachia in natural populations (83). This fitness advantage may be Wolbachia antiviral effects. This is expected by the studies carried out in the laboratory showing the antiviral effect, but just now some studies started to test this in wild populations. It is interesting to notice that Wolbachia can also protect insects against bacteria and entomopathogenic fungi (84–86), and this can also add to the possible mutualistic effect in natural populations.

Drosophila flies have been used as the main model to study insect virus interactions, but until recently we knew extraordinarily little about the virus community that infect wild Drosophila populations. This is changing rapidly with recent studies using metagenomic approaches (87). In 2015, Webster and colleagues used metagenomic techniques in more than 2000 wild collect Drosophila melanogaster flies and discovered more than 20 new viruses (41). They found a high prevalence of virus infection with more than 30% of the wild collected individuals carrying a virus. There was also large variation in prevalence among the 17 sampled locations across the world. Because Wolbachia prevalence in these locations varied from 1.6% to 98% - with a mean of about 50% - they tested for associations between the prevalence of Wolbachia and the different viruses among and within populations. They could not find any association, indicating that Wolbachia is not an important determinant of virus incidence in the wild (41). However, as pointed by the authors, they had a small sample size per population resulting in low statistical power to detect an association. In addition, they looked only on the effect of Wolbachia on prevalence, but Wolbachia can also be influencing virus titer on infected flies.

In 2018, Shi and colleagues tested the effect of Wolbachia on viral abundance on six D. melanogaster populations sampled in Australia (88). They first sequenced total transcriptome of pools of Wolbachia-infected and Wolbachia-free lines to estimate viral abundance. Despite finding high RNA virus' abundance in all pools, they did not find any Wolbachia protective effect. They also sequenced the transcriptome of individual Wolbachia-infected and Wolbachia-free flies from one location, but again did not find any Wolbachia protective effect (88). These results should be interpreted with caution as well, since they sequenced only 122 flies in the pools, plus 40 individual flies. Given the large variation among pools in viral abundance and in the prevalence that varied from two to five viruses per pool, the statistical power to detect an effect was low. Additionally, they did not sequence wild collected flies, but F1 or F3 of laboratory cultured lines that were kept at 19°C. Unfortunately, it was discovered, very recently, that the antiviral effect of the Wolbachia strain wMel in D. melanogaster depends on temperature (63). The strong protection observed when flies develop from egg to adult at 25°C is greatly reduced or disappear when flies develop at 18°C (63). Therefore, the development conditions used by Shi et al. may have masked any possible Wolbachia protective effect.

Interestingly, the recent study on the effect of temperature on the Wolbachia antiviral effect (63) offers a hint on this puzzle. It is interesting that the Wolbachia antiviral effect observed at high development temperature is extremely reduced when flies develop at low temperatures. This was observed with different genotypes of D. melanogaster, different Wolbachia lineages, and different viruses, suggesting this is a general phenomenon (63).
These results suggest that in nature the mutualistic effect of virus protection will vary geographically and seasonally depending on climate, and this will result in the prevalence of Wolbachia being higher in tropical regions (Figure 1D). This is indeed what is observed in nature, where the frequency of Wolbachia is generally higher in populations from tropical regions (89). This pattern, although only a correlative suggestion, indicates that the antiviral protection may be the mutualistic effect in natural populations responsible for the widespread success of Wolbachia.

CONCLUSIONS

Since the Wolbachia antiviral effect in insects was discovered 12 years ago (6, 7), researchers have intensely studied this phenomenon. Wolbachia has even been successfully used to control the prevalence of human arboviruses, such as dengue, in mosquito populations (16, 17, 90). We learned a lot about the basic biology of the host-Wolbachia-virus interaction, but there are still many knowledge gaps. We now know the antiviral effect depends on Wolbachia strain, with only high-density strains having the antiviral effect. However, it is still unknown whether the antiviral effect occurs in insect species other than mosquitoes, flies and a planthopper. Importantly, the specific mechanism underlying antiviral protection has not been fully elucidated; upregulation of the host immune system or competition between Wolbachia and RNA viruses inside the host cell for some yet unknown resource necessary for virus replication are likely hypothesis (49, 52, 56). We have also learned that Wolbachia can alter the intensity of selection on host antiviral defenses, making the host more dependent on the symbiont for protection (71). We still do not know if the antiviral effect occurs in natural populations of insects and if it is the major mutualistic effect responsible for the extremely high prevalence of Wolbachia in insects. If it does, Wolbachia may be a major component of antiviral defense in nature.

REFERENCES

1. Werren JH. Biology of Wolbachia. *Annu Rev Entomol.* (1997) 42:587–609. doi: 10.1146/annualrev.enyto.42.1.587
2. Bourtzis K, Nirgianaki A, Markakis G, Savakis C. Wolbachia infection and cytoplasmic incompatibility in Drosophila species. *Genetics* (1996).
3. Yen JH, Barr AR. The etiological agent of cytoplasmic incompatibility in Culex pipiens. *J Invertebr Pathol* (1973). doi: 10.1016/0022-2011(73)90141-9
4. Teixeira L, Ferreira A, Ashburner M. The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. *PLoS Biol.* (2008). doi: 10.1371/journal.pbio.1000002
5. Hedges LM, Brownlie JC, O'Neill SL, Johnson KN. Wolbachia and virus protection in insects. *Sci (80-)* (2008). doi: 10.1126/science.1162418
6. Bian G, Xu Y, Lu P, Xie Y, Xi Z. The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti. *PLoS Pathog* (2010) 6: e1000833. doi: 10.1371/journal.ppat.1000833
7. Moreira LA, Feitosa CA, Marins STD, dos Santos AF, Zanotto PM,pena. 2010. Wolbachia infectivity and virulence: a review. *Zoonoses Public Health* (2010). doi: 10.1111/j.1863-2383.2010.01360.x
8. Bian G, Joshi D, Dong T, Lu P, Zhao G, Pan X, et al. Reduced dengue incidence following deployments of Wolbachia-infected Aedes aegypti in Yogyakarta, Indonesia: A quasi-experimental trial using controlled interrupted time series analysis. *Gates Open Res* (2020). doi: 10.12688/gatesopenres.13061.2
9. Anders KL, Indriani C, Tantowijoyo W, Rancès E, Andari B, Prabowo E, et al. Establishment of wMel Wolbachia in Aedes aegypti mosquitoes and reduction of local dengue transmission in Cairns and surrounding locations in northern Queensland, Australia. *Gates Open Res* (2020). doi: 10.12688/gatesopenres.13061.2
10. Ryan PA, Turley AP, Wilson G, Hurst TP, Retskii K, Brown-Kenyon J, et al. Establishment of wMel Wolbachia in Aedes aegypti mosquitoes and reduction of local dengue transmission in Cairns and surrounding locations in northern Queensland, Australia. *Gates Open Res* (2020). doi: 10.12688/gatesopenres.13061.2
11. Aliota MT, Peinado SA, Velez ID, Osorio JE. The wMel strain of Wolbachia reduces transmission of Zika virus by Aedes aegypti. *Sci Rep* (2016). doi: 10.1038/srep28792

AUTHOR CONTRIBUTIONS

AP, CC, MM, and RC wrote the paper. All authors contributed to the article and approved the submitted version.

FUNDING

Funding for this work was provided by São Paulo Research Foundation (FAPESP) (2013/25991-0, 2015/08307-3, 2018/01295-8 and 2019/03997-2), CNPq (154568/2018-0, 307015/2015-7 and 307447/2018-9), and a Newton Advanced Fellowship from the Royal Society.

ACKNOWLEDGMENTS

The authors thank Camila Beraldo and Murillo Rodrigues for suggestions on the manuscript.

12. Glaser RL, Meola MA. The native Wolbachia endosymbionts of Drosophila melanogaster and Culex quinquefasciatus increase host resistance to west nile virus infection. *PLoS One* (2010). doi: 10.1371/journal.pone.0011977
13. Hofmann AA, Montgomery BL, Popovici J, Iturbe-Ormaetxe I, Johnson PH, Muzzi F, et al. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. *Nature* (2011). doi: 10.1038/nature10356
14. Walker T, Johnson PH, Moreira LA, Iturbe-Ormaetxe I, Frentiu FD, McMeniman CJ, et al. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. *Nature* (2011). doi: 10.1038/nature10353
15. Xi Z, Kho CCH, Dobson SL. Ecology: Wolbachia establishment and invasion in an Aedes aegypti laboratory population. *Sci (80-)* (2005). doi: 10.1126/science.1117607
16. Ryan PA, Turley AP, Wilson G, Hurst TP, Retskii K, Brown-Kenyon J, et al. Establishment of wMel Wolbachia in Aedes aegypti mosquitoes and reduction of local dengue transmission in Cairns and surrounding locations in northern Queensland, Australia. *Gates Open Res* (2020). doi: 10.12688/gatesopenres.13061.2
17. Anders KL, Indriani C, Tantowijoyo W, Rancès E, Andari B, Prabowo E, et al. Reduced dengue incidence following deployments of Wolbachia-infected Aedes aegypti in Yogyakarta, Indonesia: A quasi-experimental trial using controlled interrupted time series analysis. *Gates Open Res* (2020). doi: 10.12688/gatesopenres.13061.2
18. Bian G, Joshi D, Dong T, Lu P, Zhao G, Pan X, et al. Wolbachia invades caged Aedes aegypti mosquitoes and reduces local dengue transmission in Cairns and surrounding locations in northern Queensland, Australia. *Gates Open Res* (2020). doi: 10.12688/gatesopenres.13061.2
Mosquitoes as a Potential Approach for Future Resistance Management. *PloS Pathog* (2016) 12:e1005434. doi: 10.1371/journal.ppat.1005434

Mousson L, Zouache K, Arias-Goeta C, Raquin V, Mavingui P, Failloux AB. The Native Wolbachia Symbionts Limit Transmission of Dengue Virus in *Aedes aegypti*. *PloS Negl Trop Dis* (2012) 6:e1989. doi: 10.1371/journal.pntd.0001989

Martinez J, Longdon B, Bauer S, Chan YS, Miller WJ, Bourtis K, et al. Symbionts Commonly Provide Broad Spectrum Resistance to Viruses in Insects: A Comparative Analysis of Wolbachia Strains. *PloS Pathog* (2014) 10:e1004369. doi: 10.1371/journal.ppat.1004369

Martinez J, Tolosana I, Ok S, Smith S, Snoeck K, Day JP, et al. Symbiont strain is the main determinant of variation in Wolbachia-mediated protection against viruses across Drosophila species. *MolEcol* (2017) 26:4072–84. doi: 10.1111/mec.14164

Osborne SE, Leong YS, O’Neill SL, Johnson KN. Variation in antiviral protection mediated by different Wolbachiastrains in Drosophila simulans. *PloS Pathog* (2009) 5:e1000656. doi: 10.1371/journal.ppat.1000656

Amuzu HE, Tsyganov K, Koh C, Herbert RI, Powell DR, McGraw EA. Wolbachia enhances insect-specific flavivirus infection in Aedes aegypti mosquitoes. *Ecol Evol* (2018) 8:5441–54. doi: 10.1002/ece3.4066

Blagrove MSC, Arias-Goeta C, Failloux A-B, Sinkins WP. Wolbachia strain wMel induces cytoplasmic incompatibility and blocks dengue transmission in *Aedes albopictus*. *Proc Natl Acad Sci* (2012) 109:255–60. doi: 10.1073/pnas.1112021108

Fraser JE, De Bruyne JT, Iturbe-Ormaetxe I, Stepnell J, Burns RL, Flores HA, et al. Wolbachia mediated antiviral protection in different Drosophila species. *Proc Biol Sci* (2013) 280:1560. doi: 10.1098/rspb.2012.2318

Hussain M, Lu G, Torres S, Edmonds JH, Kay BH, Hromyk AH, et al. Effect of Wolbachia on Replication of West Nile Virus in a MosquitoCell Line and its Impact on Movement of Wolbachia. *Appl Environ Microbiol* (2013) 79:3185–93. doi: 10.1128/AEM.00245-13

Cattel J, Martinez J, Jiggins F, Mouton L, Gibert P. Wolbachia-mediated mechanisms. *Evol (N Y)* (2016) 25:595. doi: 10.1111/evo.13322

Ranci E, Zuccarello E, Furlan G, Baldo M, Pacitti M, Rebora S, et al. The relative importance of innate immune priming in Wolbachia-mediated dengue interference. *PloS Pathog* (2012) 8:e1002548. doi: 10.1371/journal.ppat.1002548

Unckless RL, Jaenike J. Maintenance of a male-killing wolbachia in drosophila insecta nubilula by male-killing dependent and male-killing independent mechanisms. *Evol (N Y)* (2012) 66:678–89. doi: 10.1111/j.1558-5646.2011.01485.x

Cattel J, Martinez J, Jiggins F, Mouton L, Gibert P. Wolbachia-mediated protection against viruses in the invasive Drosophila suzuki. *Insect Mol Biol* (2012) 21:259–63. doi: 10.1111/j.1365-2583.2012.01224.x

Gong JT, Li Y, Li TP, Liang Y, Hu L, Zhang D, et al. Stabilized Introduction of *Wolbachia* by Natural Infection and Transovarial Transmission in *Drosophila* Flies. *NatCommun* (2015) 6:7882. doi: 10.1038/ncomms8882

Aitnili M, Soms J, Ravallec M, Justy F, Bonneau M, Weill M, et al. Sharing cells mechanisms. *Evol (N Y)* (2009) 25:595. doi: 10.1111/j.1558-5646.2009.00745.x

Gupta V, Stewart CO, Rund SSC, Montête K, Vale PF. Costs and benefits of sublethal *Drosophila* C virus infection. *J Evol Biol* (2017). doi: 10.1111/jeb.13096

Zug R, Hammarstrom P. Bad guys turned nice? A critical assessment of antiviral effects of *Wolbachia* melongenator. *PloS Pathog*. doi: 10.1371/journal.ppat.1000521

Min KT, Benzer S. *Wolbachia*, normally a symbiont of *Drosophila*, can be virulent, causing degeneration and early death. *Proc Natl Acad Sci USA* (1997). doi: 10.1073/pnas.94.20.10792

Carrotn LE, Leslie J, Weeks AR, Hoffmann AA. The popcorn wolbachia infection of drosophila melongenator: Can selection alter wolbachia longevity effects? *Evol (N Y)* (2009). doi: 10.1111/j.1558-5646.2009.00745.x

Siva-Jothy JA, Prakash A, Vasanthakrishnan RB, Montête KM, Vale PF. Oral bacterial infection and shedding in *Drosophilamelongenator*. *J Exp (2012) 18:*155766. doi: 10.1038/jem.2012.197

Weinert LA, Araujo-Inr EV, Ahmed MZ, Welch J. The incidence of bacterial endosymbionts in terrestrial arthropods. *Proc R Soc B Biol Sci* (2015) 282:20150249. doi: 10.1098/rspb.2015.0249

Lindsey AR, Bhattacharya T, Newton IJL, Hardy RW. Conflict in the intracellular lives of endosymbionts and viruses: A mechanistic look at Wolbachia-mediated pathogen-blocking. *Viruses* (2018) 10:1–29. doi: 10.3390/v10040141

Pan X, Zhou G, Wu J, Bian G, Lu P, Raihelh AS, et al. Wolbachia induces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito *Aedes aegypti*. *Proc Natl Acad Sci USA* (2012) 109:23–31. doi: 10.1073/pnas.1116932108

Caragata EP, Pais FS, Batson LA, Silva JBL, Sorgine MHF, Moreira LA. The transcriptional regulation of the mosquito *Aedes* flaviviruses (Diptera:Culicidae), and transcriptional changes associated with its native Wolbachiainfecion. *BMC Genomics* (2017)18:1–19. doi: 10.1186/s12864-016-3441-4

Zug R, Hammarstrom P. Wolbachia and the insect immune system: What reactive oxygen species can tell us about the mechanisms of Wolbachia-host interactions. *Front Microbiol* (2015). doi: 10.3389/fmicb.2015.01201

Wong ZS, Brownlie JC, Johnson KN. Oxidative stress correlates with Wolbachia-mediated antiviralprotection in *Drosophila*-mediated associations. *Appl EnvironMicrobiol* (2015) 81:3001–5. doi: 10.1128/AEM.03847-14

Molloy JC, Sommer U, Viant MR, Sinkins SP. Wolbachia modulates lipid metabolism in *Aedes aegypti* mosquito cells. *Appl Environ Microbiol* (2016) 82:3109–20. doi: 10.1128/AEM.00275-16

Geoghegan V, Stainton K, Rainey SM, Ant TH, Dowle AA, Larson T, et al. Perturbed cholesterol and vesicular trafficking associated withdengue blocking in Wolbachia-infected Aedes aegypti cells. *NatCommun* (2017) 8:1–10. doi: 10.1038/s41467-017-00610-8

Caragata EP, Rancée E, Hedges LM, Gofon AW, Johnson KN, O’Neill SL, et al. Dietary Cholesterol Modulates Pathogen Blocking by Wolbachia. *PloS Pathog* (2013) 9:e1003459. doi: 10.1371/journal.ppat.1003459

Lindsey AR, Bhattacharya T, Hardy R, Newton IL. Wolbachia and viruses in the host transcriptome at the interface of nucleotide metabolism pathways. *bioRxiv* (2020) 1–38. doi: 10.1101/2020.06.18.160317

Pa Lu, Bian G, Pan X, Xi Z. Wolbachia induces density-dependent inhibition to dengue virus in mosquito cells. *PloS Negl Trop Dis* (2012) 6:1–8. doi: 10.1371/journal.pntd.0001754

Chrostek E, Marialva MSP, Esteves SS, Weinart LA, Martinez J, Jiggins FM, et al. Wolbachia Variants Induce Differential Protection to Viruses in Drosophila melanogaster: A Phenotypic and Phylogenomic Analysis. *PloS Genet* (2013). doi: 10.1371/journal.pgen.1003896

Chrostek E, Teixeira L. Mutualism Breakdown by Amplification of Wolbachia Genes. *PloS Biol* (2015). doi: 10.1371/journal.pbio.1002065
Longdon B, Hadfield JD, Day JP, Smith SCL, McGonigle JE, Cogni R, et al. The Causes and Consequences of Changes in Virulence following Pathogen Host Shifts. PLoS Pathog (2015). doi: 10.1371/journal.ppat.1004278

Duarte EH, Carvalho A, Verde UDC, Lisboa U. Regulation of Wolbachia proliferation by the amplification and deletion of an addictive genomic island. bioRxiv (2020). doi: 10.1101/2020.09.08.288217

Fraser JE, O'Donnell TB, DuveySTM J, O'NeiLL SL, Simmons CP, Flores HA. Novel phenotype of Wolbachia strain wPip in Aedes aegyptii challenges assumptions on mechanisms of Wolbachia-mediated dengue virus inhibition. PLoS Pathog (2020) 16:1–21. doi: 10.1371/journal.ppat.1008410

Chrostek E, Martins NE, Marialva MS, Teixeira L. Wolbachia-conferred antiviral protection is determined by developmental temperature. bioRxiv (2020). doi: 10.1101.2020.06.24.169169

Le Page DP, Metcalf JA, Bordenstein SR, On J, Perlmutter JJ, Shropshire JD, et al. Prophage WO genes recapitulate and enhance Wolbachia-induced cytoplasmic incompatibility. Nature (2017) 543:243–7. doi: 10.1038/nature21391

Yen JH, Barr AR. New hypothesis of the cause of cytoplasmic incompatibility in Coeloxpiens L. [31]. Nature (1971) 232:657–8. doi: 10.1038/232657a0

Shropshire JD, Bordenstein SR. Two-by-one model of cytoplasmic incompatibility: Synthetic recapitulation by transgenic expression of cif a and cifb in drosophila. PLoS Genet (2019). doi: 10.1371/journal.pgen.1008221

Palmer WH, Varghese FS, Van Rij RP. Natural variation in resistance to virus infection in dipteran insects. Viruses (2018). doi: 10.3390/v10030118

Cogni R, Cao C, Day JP, Bridson C, Jiggins FM. The genetic architecture of resistance to virus infection in Drosophila. Mol Ecol (2016). doi: 10.1111/mec.13769

Marques JT, Imler JL. The diversity of insect antiviral immunity: Insights from viruses. Curr Opin Microbiol (2016). doi: 10.1016/j.mib.2016.05.002

Duxbury EML, Day JP, Vespasiani DM, Thöerner Y, Tolosa I, Smith SCL, et al. Host-pathogen coevolution increases genetic variation in susceptibility to infection. Elife (2019). doi: 10.7554/elife.46440

Martinez J, Cogni R, Cao C, Smith S, Illingworth CJR, Jiggins FM. Addicted? Reduced host resistance in populations with defensive symbionts. Proc R Soc B Biol Sci (2016). doi: 10.1098/rspb.2016.0778

Martins NE, Faria VG, Nolte V, Schlöterer C, Teixeira L, Sucena É, et al. Host adaptation to viruses relies on few genes with different cross-resistance properties. Proc Natl Acad Sci USA (2014). doi: 10.1073/pnas.1400378111

Magiere MM, Fabian DK, Schweyen H, Cao C, Longdon B, Bayer F, et al. Genome-Wide Association Studies Reveal a Simple Genetic Basis of Resistance to Naturally Coevolving Viruses in Drosophila melanogaster. PLoS Genet (2012). doi: 10.1371/journal.pgen.1003057

Cao C, Cogni R, Barbier V, Jiggins FM. Complex coding and regulatory polymorphisms in a restriction factor determine the susceptibility of Drosophila to viral infection. Genetics (2017). doi: 10.1534/genetics.117.201970

Faria VG, Martins NE, Magalhães S, Paulo TF, Nolte V, Schlöterer C, et al. Drosophila Adaptation to Viral Infection through Defensive Symbiont Evolution. PLoS Genet (2016). doi: 10.1371/journal.pgen.1006297

Faria VG, Martins NE, Schlöterer C, Sucena É. Readapting to DCV infection without Wolbachia: Frequency changes of Drosophila antiviral alleles can replace endosymbiont protection. Genome Biol Evol (2018). doi: 10.1093/gbe/evy137

Longdon B, Hadfield JD, Day JP, Smith SCL, McGonigle JE, Cogni R, et al. The Causes and Consequences of Changes in Virulence following Pathogen Host Shifts. PLoS Pathog (2015). doi: 10.1371/journal.ppat.1004728

Mateos M, Castrezzana SJ, Nankivell BJ, Estes AM, Markow TA, Moran NA. Heritable endosymbionts of Drosophila. Genetics (2006) 174:363–76. doi: 10.1534/genetics.106.058818

Pimentel AC, Beraldo CS, Cogni R. Host-shift as the cause of emerging infectious diseases: Experimental approaches using Drosophila -virus interactions. Genet Mol Biol (2021) 44:e20200197. doi: 10.1590/1985-4865-gmb-2020-0197

Kriens P, Hoffmann AA, Lee SF, Turelli M, Weeks AR. Rapid Sequential Spread of Two Wolbachia Variants in Drosophilasimulans. PLoS Pathog (2013) 9:e1003607. doi: 10.1371/journal.ppat.1003607

Hoffmann AA, Turelli M. Unidirectional incompatibility in Drosophila simulans: inheritance, geographic variation and fitness effects. Genetics (1988). doi: 10.1093/genetics/119.2.435

Hoffmann AA, Hercus M, Dagher H. Population dynamics of the Wolbachia infection causing cytoplasmic incompatibility in Drosophila melanogaster. Genetics (1998).

Harcombe W, Hoffmann AA. Wolbachia effects in Drosophila melanogaster: In search of fitness benefits. J Invertebr Pathol (2004). doi: 10.1016/j.jip.2004.07.003

Panteleev DY, Goryacheva II, Andrianov BV, Reznik NL, Lazebny OE, Kulikov AM. The endosymbiotic bacterium Wolbachia enhances the nonspecific resistance to insect pathogens and alters behavior of Drosophila melanogaster. Russ J Genet (2007). doi: 10.1134/S1022795407090153

Ye YH, Woolfitt M, Rancés E, O’Neill SL, McGraw EA. Wolbachia-Associated Bacterial Protection in the Mosquito Aedes aegypti. PloS Negl Trop Dis (2013). doi: 10.1371/journal.pntd.0002362

Pan X, Pike A, Joshi D, Bian G, McFadden MJ, Lu P, et al. The bacterium Wolbachia exploits host innate immunity to establish a symbiotic relationship with the dengue vector mosquito Aedes aegypti. ISME J (2018). doi: 10.1038/ismej.2017.174

Zhang YZ, Shi M, Holmes EC. Using Metagenomics to Characterize an Expanding Virosphere. Cell (2018). doi: 10.1016/j.cell.2018.02.043

Shi M, White VL, Schub T, Eden JS, Hoffmann AA, Holmes EC. No detectable effect of Wolbachia wMel on the prevalence and abundance of the RNA virome of Drosophila melanogaster. Proc R Soc B Biol Sci (2018). doi: 10.1098/rspb.2018.1165

Kriens P, Conner WR, Weeks AR, Turelli M, Hoffmann AA. Persistence of a Wolbachia infection frequency cline in Drosophila melanogaster and the possible role of reproductive dormancy. Evol (N Y) (2016). doi: 10.1111/evol.12932

Nazni WA, Hoffmann AA, NoorAfzah A, Cheong YL, Mancini MV, Golding N, et al. Establishment of Wolbachia Strain wAlbB in Malaysian Populations of Aedes aegypti for Dengue Control. Curr Biol (2019) 29:4241–8. doi: 10.1016/j.cub.2019.11.007

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Pimentel, Cesar, Martins and Cogni. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.