DIVERSITY OF SHRUBS AND TREES IN THE ISLAND TOWNS OF NORTHERN SAMAR, PHILIPPINES

Divina Minguez-Galenzoga *1
*1 College of Science, University of Eastern Philippines, Catarman, Northern Samar 6400 Philippines

Abstract

This study aimed to identify the shrubs and trees in the five island towns of Northern Samar, Philippines; determine their abundance, community structure; and economic uses to the locals. Four barangays in every island town represented the north, south, east, and west sides. Line Intercept Transect (LIT) at intervals of 100m and plot method with an area of 10m x 10m were used in gathering the data. Transect walks, field plots, and transects were also used in gathering data. There were 207 species of shrubs and trees belonging to 152 genera and 64 families. Shrubs constituted 55.33% and trees 44.67% of the total number of species. Mangifera indica (Anacardiaceae) ranked first in relative density (25.50%), relative frequency (25.30%), and importance value (59.15%). Plots in the island of Laoang were observed to have the highest Shannon Diversity Index (3.25%) and Simpson’s Dominance Index (1.86%). The most abundant shrub and tree species in the island towns were Citrus microcarpa (Cucurbitaceae) and Mangifera indica (Anacardiaceae) respectively. The least abundant shrub and tree species were Gardenia jasminoides (Rubiaceae) and Cananga odorata (Annonaceae) respectively. There were more species of shrubs and trees in the island town of Laoang than in the other four island towns.

Keywords: Community Structure; Diversity; Island Towns; Shrubs; Trees.

Cite This Article: Divina Minguez-Galenzoga. (2019). “DIVERSITY OF SHRUBS AND TREES IN THE ISLAND TOWNS OF NORTHERN SAMAR, PHILIPPINES.” International Journal of Research - Granthaalayah, 7(3), 208-216. 10.29121/granthaalayah.v7.i3.2019.961.

1. Introduction

Shrubs are woody perennial plants that possess multiple stems arising from a common point known as the crown. Trees are woody perennial plants, such as shrubs, by the presence of usually but not always, a single woody stem known as the trunk. Both shrubs and trees inhabit virtually all climates and soil types, with a large variation in form, adaptability and stress tolerance from species to species [1].

The Philippines is one of the megadiversity countries of the world. It has also a large population, which exerts tremendous pressure to transform these biodiversity resources into material wealth
that will lift the people out of poverty [2], [3]. Awareness of the people about the rich biodiversity and the role of education should be emphasized. Attempts to identify methods of maintaining and using biodiversity in ways that can benefit the human population is the major role of conservation biology [4]. Systematics plays a vital role in conservation biology in determining the limits of species; only if these taxonomic entities are clearly defined can they be evaluated for rarity and the threat of extinction. In addition, floristic studies and phylogenetic analyses may have an impact on which species or biogeographic regions are most worthy of protection, given limited resources [5]. Naturalists, scientists, researchers, and conservationists predict that at 1% extinction rate, these resources will be gone by 2050 [6]. Organisms in small restricted areas, such as islands, are more prone to extinction because an environmental change in their locale can eliminate the entire species at once [7].

Living organisms provide us with many useful drugs. The United Nations Development Programme (UNDP) estimates the value of pharmaceutical products derived from developing world. Plants, animals, and microbes are estimated to be more than 30 billion dollars per year [8]. Because we don’t fully understand the complex interrelationships between organisms, we often are surprised and dismayed at the effects of removing seemingly insignificant members of biological communities. Maintaining biodiversity is essential to preserving these biological and ecological services [9].

Thus, this study of shrubs and trees may open for more conservation and preservation practices for these woody plants for now and the future generations of island folks in the country.

2. Objectives

The objectives of this study are:

1) To identify the shrubs and trees in the island towns of Northern Samar, Philippines;
2) To determine their community structure; and
3) To determine the most abundant shrubs and trees in the island towns.

3. Methodology

The province of Northern Samar consists of 24 municipalities, i.e. 15 coastal towns, 5 island towns, and 4 interior towns. Catarman is the capital town of the province of Northern Samar.

Sampling areas included the five island towns of the province; i.e. Laoang, Biri, Capul, San Antonio, and San Vicente. The study was conducted during the summer months of April and May 2012-2014. Four barangays in every island town represented the north, south, east, and west sides. Line Intercept Transect (LIT) at intervals of 100m and Plot Method with an area of 10m x 10m were used in gathering the data. The preliminary identification was done on-site in the study area through personal communication with the foresters and local residents (local names). Further identification and verification were done at the College of Science Laboratory. Simpson’s Dominance and Shannon-Wiener indices were used to verify the diversity status of shrubs and trees.
4. Results and Discussion

4.1. Shrubs and Trees in the Island Towns of Northern Samar

There were 207 species of shrubs and trees belonging to 152 genera and 64 families. Trees constituted 55.33% of the total number of species; while the shrubs 44.67%.

Table 1: Shrubs and Trees in the Island Towns of Northern Samar, Philippines

No.	Family Name	Species Name
1.	Family Acanthaceae	Barleria cristata
		P. atropurpureum
2.	Family Agavaceae	Pleomele reflexa variegata
3.	Family Anacardiaceae	Mangifera indica
		Anacardium occidentale
		Buchanania arborescens
		Spondias pinnata
		Spondias purpurea
4.	Family Annonaceae	Annona muricata
		Annona squamosa
		Annona reticulata
		Cananga odorata
		Polyalthia longifolia
5.	Family Apocynaceae	Nerium indicum
		Thevetia peruviana
		Alstonia scholaris
		Plumeria rubra
		Erythrina orientalis
		Gliricidia sepium
		Pterocarpus indicus
		Acacia mangium
		Albizia lebbeck
		Leucaena leucocephala
		Erythrina orientalis
6.	Family Araliaceae	Polyscias bifouriana
		Polyscias guilfoylei
		Trevesia palmata
7.	Family Arecaceae	Caryota mitis
		Cyrtostachys renda
		Cocos nucifera
		Areca catechu
8.	Family Avicenniaceae	Avicennia lanata
		Avicennia officinalis
9.	Family Bixaceae	Bixa orellana
10.	Family Bromeliaceae	Ananas comosus
11.	Family Burseraceae	Canarium ovatum
12.	Family Caesalpinia	Caesalpinia pulcherrima
		Leucaena leucocephala
		Erythrina orientalis
13.	Family Combretaceae	Lumnitzera littorea
		Terminalia catappa
		Lumnitzera littorea
		Lumnitzera racemosa
		Terminalia catappa
14.	Family Cucurbitaceae	Citrullus lanatus
		Citrullus vulgaris
		Citrus maxima
		Citrus microcarpa
		Citrus medica
		Citrus reticulate
		Citrus japonica
15.	Family Euphorbiaceae	Macaranga tanarius
		Melanolepis multiglandulosa
		Reutealis trisperma
		Jatropha multifida
		Euphorbia milii
		Jatropha curcas
		Excoecaria agallocha
16.	Family Gnetaceae	Gnetum gnemon
17.	Family Goodeniaceae	Scaevola taccada
18.	Family Labiatae	Gmelina arborea
		Premna odorata
		Vitex parviflora
19.	Family Lauraceae	Persea americana
20.	Family Leguminosae	Tamarindus indica
		Osbornia octodonta
		Sesbania grandiflora
		Peltophorum pterocarpum
		Cassia bakeriana
		Cassia fistula
		Delonix regia
		Saraca thapingensis
		Cassia siamea
		Cassia alata
		Cassia auriculata
		Adenanthera pavonina
21.	Family Liliaceae	Asparagus setaceus
		Asparagus asparagoides
		Asparagus densiflorus
		Asparagus falcatus
		Asparagus plomosus
22.	Family Loganiaceae	Fagraea fragrans
23.	Family Magnoliaceae	Lagerstroemia speciosa
24.	Family Magnoliaceae	Pemphis acidula
25.	Family Magnoliaceae	Shorea macropera
10. **Family Bignoniaceae**		

Tecoma stans		
Crescentia cujete		
Jacaranda acutifolia		
Dolichandrone spathacea		

23. **Family Ebenaceae**
Diospyros philippinensis

24. **Family Ericaceae**
Rhododendron obtusum
Rhododendron simsii

35. **Family Malvaceae**
Hibiscus tiliaceus
Hibiscus mutabilis
Hibiscus rosa-sinensis
Ceiba pentandra
Pachira aquatic
Kleinhovia hospital
Theobroma cacao

36. **Family Melastomataceae**
Melastoma malabathricum
Lantana camara

37. **Family Meliaceae**
Lansium aqueum
Lansium domesticum
Azadirachta indica
Melia azedarach
Sandoricum koetjape
Swietenia macrophylla
Swietenia mahogany
Artocarpus altilis
Artocarpus blanchoi
Artocarpus odoratissimus
Artocarpus heterophyllus
Xylocarpus granatum
Xylocarpus moluccensis

38. **Family Mimosaceae**
Calliandra emarginata
Adenanthera pavonina
Samanea saman

39. **Family Moraceae**
Ficus microcarpa
Ficus variegate
Ficus religiosa
Ficus elastica
Ficus lyrata
Ficus nota

40. **Family Moringaceae**
Moringa oleifera

41. **Family Muntingiaceae**
Muntingia calabura

42. **Family Myrtaceae**
Callistemon citrinus
Syzygium samargense
Psidium guajava
Eugenia cumin
Syzygium polycaphalum
Eugenia javanica
Eugenia malaccensis
Eugenia aquae
Syzygium jambos

43. **Family Myrsinaceae**
Aegiceras floridum

44. **Family Oleaceae**
Osmanthus heterophyllus

45. **Family Onagraceae**
Fuchsia spp.

46. **Family Oxalidaceae**
Averrhoa bilimbi
Averrhoa carambola

47. **Family Palmae**
Rhaps excelsis
Phoenix canariensis
Microcoelom weddellianum
Livistona chinensis
Livistona australis
Nypa fruticans
Chamaedorea elegans
Caryota mitis
Chamaerops humilis

48. **Family Pandanaeae**
Pandanus odoratissimus

49. **Family Pittosporaceae**
Pittosporum tobira

50. **Family Podocarpaceae**
Podocarpus wallichiana

51. **Family Pteridaceae**
Acrostichum aureum
Acrostichum speciosum

52. **Family Proteaceae**
Grevillea robusta

53. **Family Rhizophoraceae**
Rhizophora mucronata
Bruguiera gymnorrhiza
Ceriops decandra
Ceriops tagal
Rhizophora apiculata
Rhizophora stylosa
Rhizophora mucronata
Bruguiera cylindrical
Bruguiera gymnorrhiza
Bruguiera parviflora
Bruguiera sexangula

54. **Family Rosaceae**
Rosa centifolia
Rosa chinensis

55. **Family Rubiaceae**
Morinda citrifolia
Gardenia jasminoides
Ixora javanica
Ixora coccinea
Mussaenda glabrate
Coffea arabica
Scyphiphora hydrophyllacum

56. **Family Rutaceae**
Citrus grandis
Citrus microcarpa

57. **Family Sapindaceae**
Nepheleum lappaceum

58. **Family Sapotaceae**
Manilkara achras
Chrysophyllum cainito
Pouteria campechiana
Mimusops elengi

59. **Family Solanaceae**
Capsicum annuum
Vestia foetids
Solanum melongena

60. **Family Sonneratiace**
Sonnertia caseolaris

61. **Family Theaceae**
Camellia japonica

62. **Family Tilaceae**
Colona serratifolia

63. **Family Urticaceae**
Clerodendrum paniculatum
Tectona philippinensis

64. **Family Verbenaceae**

DOI: 10.5281/zenodo.2631388
ISSN-2350-0530(O), ISSN-2394-3629(P)
Http://www.granthaalayah.com ©International Journal of Research - GRANTHAALAYAH
4.2. Community Structure of Shrubs and Trees

There were 207 species of shrubs and trees with average DBH (Diameter Breast Height) of ≥ 10cm. The density, relative density, frequency, relative frequency, dominance in terms of basal area, relative dominance, and importance value were calculated for each of the species of shrubs and trees. The results were:

Relative Density (RD) – *Mangifera indica* (Anacardiaceae) had the highest relative density at 25.50%, followed by *Tamarindus indica* (Leguminosae) at 12.10%, and *Chrysophyllum cainito* (Sapotaceae) at 10.82%. The other shrub and tree species accounted for 51.58% total relative density.

Relative Frequency (RF) – Among the shrubs and trees, the most frequently seen in all of the five island towns is the presence of *Mangifera indica* (Anacardiaceae) which is a fruit tree, and favorite fruit among the islander folks since the fruit tree is seen everywhere, i.e. in the farms, at house front and back yards, in schools, churches, markets, and seashores. *Mangifera indica* (Anacardiaceae) had the highest relative frequency at 25.30%, followed by *Tamarindus indica* (Leguminosae) at 12.78%, and *Chrysophyllum cainito* (Sapotaceae) at 10.36. The other shrub and tree species accounted for 51.56% total relative frequency.

Relative Dominance (RD) – *Mangifera indica* (Anacardiaceae) dominated the shrubs and trees in terms of basal area with 8.35%, followed by *Canarium ovatum* (Burseraceae) with 7.89%, and *Chrysophyllum cainito* (Sapotaceae) with 6.41%. Other shrub and tree species accounted for a total of 77.35%.

Importance Value (IV) – For the 207 species of shrubs and trees, importance value was calculated by adding the relative density (RD), relative frequency (RF), and relative dominance (RD). The species with the highest importance value was the fruit tree *Mangifera indica*, (Anacardiaceae) with 59.15%.

Diversity Status – Among the five island towns being surveyed, Laoang had the most number of species. This was also reflected by Shannon Index of 4.75 and Simpson’s Dominance of 1.86. The high value for the island town of Laoang was attributed to its favorable location - it is near the mainland; i.e. Samar Island-considered as third largest island in the Philippines; only 5-10 minutes motorboat ride compared to the other island towns whereby, they can be reached from 30-90 minutes motorboat ride.

4.3. Abundant Shrubs and Trees

The most abundant shrub and tree species in the island towns were *Citrus microcarpa* (Cucurbitaceae) and *Mangifera indica* (Anacardiaceae) respectively. The least abundant shrub and tree species were *Gardenia jasminoides* (Rubiaceae) and *Cananga odorata* (Annonaceae) respectively. There were more species of shrubs and trees in the island town of Laoang than in the other four island towns; i.e. Biri, Capul, San Antonio, and San Vicente. Plots in the island of Laoang was observed to have the highest Shannon Diversity Index (3.25%) and Simpson’s
Dominance Index (1.86%). Fifty-three percent (53%) of the species were endemic to the island towns.

Families Caesalpiniaceae and Meliaceae respectively had the largest number of species which is 13; followed by Family Leguminosae which had 12 species; followed by Family Rhizophoraceae which had 11 species; and Families Palmae and Myrtaceae had both 9 species.

Other abundant species of shrubs in the island towns were: *Avicennia marina* (Avicenniaceae), *Rhizophora mucronata* (Rhizophoraceae), *Nypa fruticans* (Palmae), *Psidium guajava* (Myrtaceae), and *Hibiscus rosa-sinensis* (Malvaceae). Other abundant species of trees were: *Cocos nucifera* (Arecaceae), *Canarium ovatum* (Burseraceae), *Hibiscus tiliaceus* (Malvaceae), *Artocarpus blancoi* (Meliaceae), and *Tamarindus indica* (Leguminosae).

Other least abundant species of shrubs in the island towns were: *Rosa centifolia* (Rosaceae), *Eugenia aquea* (Myrtaceae), *Nephelium lappaceum* (Sapindaceae), *Manilkara acharas* (Sapotaceae), and *Annona squamosa* (Annonaceae). Other least abundant species of trees were: *Eugenia javanica* (Myrtaceae), *Ficus elastica* (Moraceae), *Syzygium samargense* (Myrtaceae), *Lansium domesticum* (Meliaceae), and *Bixa orellana* (Bixaceae).

It is observed that food requirement is the main reason of the abundance of trees in the island towns. Island folks plant them to provide nourishment, and store/preserve them during times of need. On the other hand, the abundant shrubs are used for construction purposes, for fuel, and for other uses. Some are ornamental flowering plants, which provide aesthetic value to the surroundings, especially for island people seeking for inspiration and adventure.

Family	No. of Species	No. of Genera
1. Family Acanthaceae	2	2
2. Family Agavaceae	1	1
3. Family Anacardiaceae	5	4
4. Family Annonaceae	5	3
5. Family Apocynaceae	8	7
6. Family Araliaceae	3	2
7. Family Araucariaceae	1	1
8. Family Arecaceae	4	4
9. Family Avicenniaceae	4	1
10. Family Bignoniaceae	4	4
11. Family Bixaceae	1	1
12. Family Bromeliaceae	1	1
13. Family Burseraceae	1	1
14. Family Caesalpiniaceae	13	10
15. Family Casuarinaceae	1	1
16. Family Caricaceae	1	1
17. Family Clusiaceae	1	1
18. Family Combretaceae	5	2
19. Family Cucurbitaceae	7	2
20. Family Cycadaceae	1	1
21. Family Dilleniaceae	2	1
22. Family Dipterocarpaceae	1	1
23. Family Ebenaceae	1	1
Family	Species	Total
-------------------------	---------	-------
Family Ericaceae	2	1
Family Euphorbiaceae	7	6
Family Gnetaceae	1	1
Family Goodeniaceae	1	1
Family Labiatae	3	3
Family Lauraceae	1	1
Family Leguminosae	12	11
Family Liliaceae	5	1
Family Loganiaceae	1	1
Family Lythraceae	2	2
Family Magnoliaceae	1	1
Family Malvaceae	7	5
Family Melastomataceae	2	2
Family Meliaceae	13	8
Family Mimosaceae	3	3
Family Moraceae	6	1
Family Moringaceae	1	1
Family Muntingiaceae	1	1
Family Myrtaceae	9	5
Family Myrsinaceae	1	1
Family Oleaceae	1	1
Family Onagraceae	1	1
Family Oxalidaceae	2	1
Family Palmae	9	8
Family Pandanaceae	1	1
Family Pittosporaceae	1	1
Family Podocarpaceae	1	1
Family Pteridaceae	2	1
Family Proteaceae	1	1
Family Rhizophoraceae	11	4
Family Rosaceae	2	2
Family Rubiaceae	7	6
Family Rutaceae	2	1
Family Sapindaceae	1	1
Family Sapotaceae	4	4
Family Solanaceae	3	3
Family Sonneratiace	1	1
Family Theaceae	1	1
Family Tiliaceae	1	1
Family Theaceaez	1	1
Fa62	2	2
Fa63	207	152
Family Urticaceae		
Family Verbenaceae		

5. Conclusions

1) There were 207 species of shrubs and trees belonging to 152 genera and 64 families. Shrubs constituted 55.33% and trees 44.67% of the total number of species.

2) Mangifera indica (Anacardiaceae) had the highest relative density at 25.50%, followed by Tamarindus indica (Leguminosae) at 12.10%, and Chrysophyllum cainito (Sapotaceae) at 10.82%. The other shrub and tree species accounted for 51.58% total relative density. Mangifera indica (Anacardiaceae) had the highest relative frequency at 25.30%, followed by Tamarindus indica (Leguminosae) at 12.78%, and Chrysophyllum cainito (Sapotaceae)
at 10.36. The other shrub and tree species accounted for 51.56% total relative frequency. Mangifera indica (Anacardiaceae) dominated the shrubs and trees in terms of basal area with 8.35%, followed by Canarium ovatum (Burseraceae) with 7.89%, and Persea americana (Lauraceae) with 6.41%. Other shrub and tree species accounted for a total of 77.35%. The species with the highest importance value was the fruit tree Mangifera indica, (Anacardiaceae) with 59.15%.

3) The most abundant shrub and tree species in the island towns were Citrus microcarpa (Cucurbitaceae) and Mangifera indica (Anacardiaceae) respectively. The least abundant shrub and tree species were Gardenia jasminoides (Rubiacae) and Cananga odorata (Annonaceae) respectively. There were more species of shrubs and trees in the island town of Laoang than in the other four island towns; i.e. Biri, Capul, San Antonio, and San Vicente. Plots in the island of Laoang was observed to have the highest Shannon Diversity Index (4.75%) and Simpson’s Dominance Index (1.075%). Fifty-three percent (53%) of the species were endemic to the island towns.

Families Caesalpiniaeae and Meliaceae respectively had the largest number of species which is 13; followed by Family Leguminosae which had 12 species; followed by Family Rhizophoraceae which had 11 species; and Families Palmae and Myrtaceae had both 9 species.

6. Recommendations

1) Conserve and preserve the economically and ethnobotanically important shrubs and trees; and other plant life.
2) Greening of the island towns by assigning botanical gardens and parks to central site locations in the community.
3) Evaluate shrubs and trees, as well as other plant life in the island, using the IUCN Red List Categories Version 3.1, series 2001, or the latest reference.

Acknowledgment

The author would like to thank the following: Rolando A. Delorino Ph.D., President, University of Eastern Philippines; Dr. Pio P. Tuan, Research Director, UEP; Dr. Karina Milagros R. Cui-Lim, Dean, College of Science, UEP; Municipal Mayors of the five island towns; and Mr. Ranulfo A. Arbiol, former PGENRO, DENR, Northern Samar.

References

[1] W. Cunningham and M. Cunningham, Principles of Environmental Science: Inquiry and Applications, 3rd ed., New York:McGraw-Hill Book Co., 2006.
[2] Dogma, G. Trono, and R. del Rosario, Guide to Philippine Flora and Fauna, Quezon City: Goodwill Bookstore, Ministry of Natural Resources, UP-Diliman, 1986.
[3] E. Enger and B. Smith, Environmental Science: A Study of Interrelationships, 11th ed., New York: McGraw-Hill Book Co., 2008.
[4] M.G.Simpson, Plant Systematics, 2nd ed., London, England: Elsevier, Inc., 2010.
[5] J. Ghazoul and D. Sheil, Tropical Rainforest Ecology, Diversity and Conservation, Great Britain: Oxford University Press, 2010.
[6] T. Millerand S. Spoolman, Environmental Science, 13th ed., USA: Brooks/Cole, Cengage Learning, 2010.

[7] Polunin, Plants and Flowers of Singapore, Malaysia: Times Offset, 2010.

[8] C. Starr, C. Evers and L. Starr, Basic Concepts in Biology, 6th ed., USA: Thomson Brooks/ Cole Corp., 2006.

[9] Philippine Biodiversity: An Assessment and Plan of Action. Makati: UNEP, DENR, Bookmark Inc., 1997.

[10] Trees and Shrubs: A Gardener’s Encyclopedia, USA: Firefly Books Inc., 2011.

[11] J.C. Kurian, Amazing Healing Plants, Vols. I and II, Saraburi, Thailand, Reprinted by Philippine Publishing House, Manila, Philippines, 2010.

[12] Reader’s Digest Success With House Plants, Italy: The Reader’s Digest Association Inc., 1986.

[13] R. Garcia, Guide to Philippine Flora and Fauna, Vol.VI Philippines: Natural Resources Management Center, Ministry of Natural Resources and University of the Philippines, 1986.

[14] M. Caldas, V. Cuevas, C. Cervantes, and Z. Sierra, Laboratory Guide in Ecology, IBS, CAS, UP at Los Banos, Laguna, Philippines, 1990.

[15] P. Stiling, Ecology: Theories and Applications, 2nd ed., Singapore: Prentice Hall International, Inc., 1998.

[16] A. Tomera, Understanding Basic Ecological Concepts, Portland, Maine: J. Weston Walch Publications, 1989.

*Corresponding author.

E-mail address: galenzoga@yahoo.com