S-wave $\pi - \pi$ Scattering Lengths in the SU(2) NJL Model

Beyond Mean-field Approximation

Mei Huang1, Pengfei Zhuang2,3, Weiqin Chao2,1

1 Institute of High Energy Physics, Chinese Sciences Academy, Beijing 100039, China

2 China Center of Advanced Science and Technology, World Laboratory, Beijing 100080, China

3 Physics Department, Tsinghua University, Beijing 100084, China

(November 27, 2017)

The S-wave $\pi - \pi$ scattering lengths a_0 and a_2 are calculated to the lowest order of $1/N_c$ expansion in the general framework of SU(2) NJL model beyond mean-field approximation. It is shown that using the universal curve of a_0 and a_2 the four NJL parameters, i.e., the current quark mass m_0, the four fermion coupling constant G, the quark momentum cut-off Λ_f and the meson momentum cut-off Λ_b, also the S-wave $\pi - \pi$ scattering lengths in NJL model can be uniquely determined.
I. INTRODUCTION

Pion-pion scattering at threshold became more interesting recently, because it could provide a test to the mechanism of chiral dynamics.

The Nambu-Jona-Lasinio (NJL) model [1] has been regarded as a cornerstone to understand the chiral dynamics by assuming that the spontaneous chiral symmetry breaking be triggered by the large quark condensate in the vacuum. And it is described through two Schwinger-Dyson (SD) equations for quark propagator and meson propagator respectively [2] - [4]. The S-wave $\pi - \pi$ scattering lengths a_0 and a_2 have been investigated to the leading order of $1/N_c$ expansion (where N_c is the number of color degrees of freedom) in the mean-field approximation, i.e., Hartree plus RPA, of SU(2) NJL model [5] - [8]. We know that at the mean-field approximation level, the two SD equations are not fully coupled, i.e., the solution of the meson SD equation has no feedback to the quark propagator, which induces the loss of the information of meson modes [9] [10]. Therefore, it is necessary to go beyond mean-field approximation.

In this paper, we calculate the S-wave pion-pion scattering lengths a_0 and a_2 in the general framework of SU(2) NJL model including current quark mass explicitly [10], which is based on a chirally symmetric self-consistent scheme considering meson cloud contributions [11]. There are four parameters to be fixed, i.e., the current quark mass m_0, the four fermion coupling constant G, the quark momentum cut-off Λ_f and the meson momentum cut-off Λ_b.

It is very difficult to extract precise values of the two scattering amplitudes in the experimental analysis [11]. However, from either forward dispersion relations or from the Roy equations, one can find that a_0 and a_2 are constrained to lie on a universal curve [12]. We try to find an appropriate series of NJL parameters by using the new universal scattering length relation newly evaluated by M. G. Olsson in [13] together with the two observables $m_\pi = 139$ MeV and $f_\pi = 92.4$ MeV.
II. SU(2) NJL MODEL BEYOND MEAN-FIELD APPROXIMATION

The two-flavor NJL model is defined through the Lagrangian density,

$$\mathcal{L} = \bar{\psi}(i\gamma^\mu \partial_\mu - m_0)\psi + G[(\bar{\psi}\psi)^2 + (\bar{\psi}i\gamma_5 \vec{\tau}\psi)^2],$$ \hspace{1cm} (1)$$

where G is the effective coupling constant with dimension GeV$^{-2}$, m_0 the current quark mass, and $\psi, \bar{\psi}$ quark fields with flavor, colour and spinor indices suppressed, assuming isospin degeneracy of the u and d quarks.

We first briefly review the general scheme of the NJL model beyond mean-field approximation [10]. Including current quark mass explicitly, the quark self-energy m expanded to $O(1/N_c)$ order can be expressed as

$$m = m_0 + m_H + \delta m,$$ \hspace{1cm} (2)$$

where m_H and δm are the leading $O(1)$ and subleading $O(1/N_c)$ contributions shown in Fig. 1. The solid lines in Fig. 1 indicate quark propagator $S(p) = 1/(p - m)$ with full m. The quark condensate $\langle \bar{q}q \rangle$ is a one-loop quark integral

$$\langle \bar{q}q \rangle = \frac{1}{N_f} \langle \bar{\psi}\psi \rangle = -4iN_cm \int \frac{d^4p}{(2\pi)^4} \frac{1}{p^2 - m^2}.$$ \hspace{1cm} (3)$$

The corresponding meson propagator $D_M(k)$ (M means π or σ) has the form

$$-iD_M(k) = \frac{2iG}{1 - 2G\Pi_M(k)},$$

$$\Pi_M(k) = \Pi_M^{(RPA)}(k) + \delta\Pi_M^{(b)}(k) + \delta\Pi_M^{(c)}(k) + \delta\Pi_M^{(d)}(k),$$ \hspace{1cm} (4)$$

where Π_M is the meson polarization function, which includes the leading order $\Pi_M^{(RPA)}$ and subleading order $\delta\Pi_M^{(b,c,d)}$, shown in Fig. 1. The above constituent quark mass and the meson propagator, namely the Eqs. (2) and (4), or the Feynman diagrams in Fig. 1, form a self-consistent description of the SU(2) NJL model to the subleading order of $1/N_c$ expansion, which is different from the earlier calculations [3] - [7] where only the mean-field quark mass m_H and the Random-Phase-Approximation (RPA) meson polarization function $\Pi_M^{(RPA)}$ are considered.
The meson mass m_M satisfies the total meson propagator’s pole condition

$$1 - 2G\Pi_M(k^2 = m_M^2) = 0,$$

and the meson-quark coupling constant g_{Mqq} is determined by the residue at the pole

$$g_{Mqq}^{-2} = (\partial \Pi_M(k)/\partial k^2)^{-1}|_{k^2=m_M^2}. \quad (6)$$

Another important quantity in the meson sector is the pion decay constant f_π which generally satisfies

$$m_\pi^2 f_\pi = m_0^2 G.$$

In the chiral limit, f_π satisfies the Goldberger-Treiman relation $f_\pi(k)g_{\pi qq}(k) = m.$

III. $\pi - \pi$ SCATTERING AT THRESHOLD AND THE UNIVERSAL CURVE

Now we turn to the calculation of the S-wave $\pi - \pi$ scattering length a_0 and a_2. The invariant scattering amplitude can be generally written as

$$T_{ab,cd} = A(s, t, u)\delta_{ab}\delta_{cd} + B(s, t, u)\delta_{ac}\delta_{bd} + C(s, t, u)\delta_{ad}\delta_{bc}, \quad (8)$$

where a, b and c, d are the isospin labels of the initial and final states respectively, and s, t and u are the Mandelstam variables, $s = (p_a + p_b)^2$, $t = (p_a - p_c)^2$, $u = (p_a - p_d)^2$, where $p_a \sim p_d$ are initial and final isospin momentum. Using perfect crossing symmetry, one can project out isospin amplitudes

$$A_0 = 3A + B + C, \quad A_1 = B - C, \quad A_2 = B + C. \quad (9)$$

In the limit of scattering at threshold, $\sqrt{s} = 2m_\pi$, $t=u=0$, the S-wave scattering lengths a_I (given in units of m_π^{-1}) are:

$$a_I = \frac{1}{32\pi}A_I(s = 4m_\pi^2, t = 0, u = 0), \quad I = 0, 2. \quad (10)$$
It is known that the two scattering lengths a_0 and a_2 at threshold are not independent, they are constrained to lie on a universal curve [12] [13]:

$$2a_0 - 5a_2 = \frac{12}{\pi} \int_0^\infty \frac{dq}{q(1+q^2)} \text{Im}A_{I=1}(q),$$

(11)

where q is the c.m. momentum in units of m_π. And in [13], M. G. Olsson evaluated the new universal relation as:

$$2(a_0 - \frac{4}{3\pi}a_0^2) - 5(a_2 - \frac{4}{3\pi}a_2^2) = L_0,$$

(12)

$$L_0 = \frac{12}{\pi} \int_0^\infty \frac{dq}{q(1+q^2)} \text{Im}A_{I=1}^{(0)}(q),$$

(13)

The integrand of $L_0 = 0.58 \pm 0.015 \ m_\pi^{-1}$ in [13] includes the dominant contribution of $\rho(770)$ and other small contributions of higher resonances.

We will calculate the scattering lengths to the lowest order in $1/N_c$ expansion of the process $\pi\pi \to \pi\pi$ in the general framework of SU(2) NJL model beyond mean-field approximation. The Feynman diagrams include box and $\sigma -$ exchange diagrams, which are the same as those in [7]. The only difference is that in [7] quark mass m_H is in the mean-field approximation and meson polarization function $\Pi_M^{(RPA)}$ in RPA, while in our calculations, quark mass m and meson polarization function Π_M include the subleading order contributions.

To keep the lowest order of the σ exchange diagrams, the internal σ propagator should be in leading $O(1/N_c)$ order, which has the same form as that in RPA $\Pi_M^{(RPA)}$ [10]. So what we need to do is using the expression formulae given in [7] directly, and replacing the quantities in the mean-field approximation with those beyond mean-field approximation, i.e., the external pion propagator becomes the total propagator Eq. (4), the pole for quark propagator becomes the total quark self-energy m defined in Eq. (2), and the coupling constant $g_{\pi qq}$ now is the one expressed in Eq. (6).

IV. NUMERICAL RESULTS

For the numerical calculations, we adopt the external momentum expansion method as discussed in detail in [10]. We introduce a quark momentum cut-off Λ_f in Pauli-Villars
regularization and a meson momentum cut-off \(\Lambda_b \) in covariant regularization for the divergent momentum integrals. Using only the two experimental observables \(m_\pi = 139 \) MeV and \(f_\pi = 92.4 \) MeV, one cannot give fixed values of the four parameters in the model, namely the current quark mass \(m_0 \), coupling constant \(G \), and the two momentum cuts \(\Lambda_f \) and \(\Lambda_b \).

We introduce one more free parameter \(z = \Lambda_b/\Lambda_f \), which characterizes the meson cloud contributions. Especially, in the limit of \(z = 0 \), the model goes back to the mean-field approximation automatically.

For each \(z \), with quark mass \(m \) changing from 200 MeV to 1200 MeV, we solve the three equations (2), (5) and (7) to get a series of \(\Lambda_f \), \(m_0 \) and \(G \), and then calculate other quantities like \(\langle \bar{q}q \rangle \) and \(g_{\pi qq} \). Finally, we can calculate the S-wave \(\pi - \pi \) scattering lengths \(a_0 \) and \(a_2 \) as functions of \(m \).

We show in Fig. 2 \(a_0 \) as a function of \(m \) for different \(z \). It is seen that for each \(z \), there is a minimum value of \(a_0 \), around which there is a plateau that \(a_0 \) changes slowly with \(m \). We have pointed out in [10], that for each \(z \), there is also a plateau around the minimum of quark condensate varying slowly with \(m \). The two \(m \) regions corresponding to the \(a_0 \) plateau and quark condensate plateau almost coincide.

And in Fig. 3, \(a_2 \) as a function of \(a_0 \) for different \(z \) is shown in the \((a_0, a_2)\) plane. It can be seen that in the \((a_0, a_2)\) plane, there is a turning-point of the NJL \(a_2(a_0) \) curve for each \(z \), which corresponds to the minimum value of \(a_0 \) for each \(z \). It is noticeable that all the turning-points for different \(z \) in the \((a_0, a_2)\) plane are on a line! Remembering that \(a_0 \) and \(a_2 \) are constrained to lie on a universal curve Eqs. (12) with \(L_0 = 0.58 \pm 0.015 \ m_\pi^{-1} \), we show this curve as double solid lines in the \((a_0, a_2)\) plane. It can be seen that the turning-point \((a_0 = 0.1796 \ m_\pi^{-1}, a_2 = -0.0489 \ m_\pi^{-1})\) is shown as a solid circle in the \((a_0, a_2)\) plane.

To compare our results with other theoretical predictions, we also plot all the predictions (in units of \(m_\pi^{-1} \)) in Fig. 3: 1), The Weinberg values \((a_0 = 0.158, a_2 = -0.045)\) [14]; 2), The chiral perturbation theory at one-loop (ChPT 1loop) [15] predicted \((a_0 = 0.200, a_2 = -0.043)\); 3), The chiral perturbation theory at two-loop (ChPT 2loop) [16] predicted \((a_0 = \ldots\}\).
0.217, \(a_2 = -0.0413 \); 4), Olsson’s dispersion-relation constraint of the heavy baryon chiral perturbation theory [17] results (HBChPT Olsson) [13] \((a_0 = 0.235, a_2 = -0.031) \). It can be seen that the turning-point of the NJL \(a_2(a_0) \) curve for \(z = 0 \), i.e., \((a_0 = 0.1576, a_2 = -0.0446) \) shown as a × coincides with the Weinberg values shown as a star.

V. CONCLUSIONS AND DISCUSSIONS

Our results show that, in the framework of SU(2) NJL model, there is a turning-point of the \(a_2(a_0) \) curve for each \(z \) in the \((a_0, a_2)\) plane, and the turning-point corresponds to the region of the quark-condensate plateau; And the turning-point for \(z = 0 \) is almost the same as the Weinberg values; Moreover, we find that all the turning-points in the \((a_0, a_2)\) plane are on a line, which has a intersecting point with the universal curve at the turning-point of \(z = 0.7 \).

We then can read the four parameters corresponding to this point: \(m_0 = 8.22 \) MeV, \(\Lambda_f = 667.5 \) MeV, \(\Lambda_b = \Lambda_f \times 0.7 \) MeV, and \(GA_f^2 = 4.36 \). And also we can calculate the other corresponding quantities at this intersecting point: the constituent quark mass \(m = 400 \) MeV and the quark condensate \(\langle \bar{q}q \rangle^{-1/3} = 223.4 \) MeV.

Also we find that our results of pion-pion scattering lengths determined by the universal curve, i.e., the turning-point of \(z = 0.7 \), are smaller than other predictions. The reasons maybe lie in that: a), From [13] we know that the \(L_0 \) integrand of the universal curve include dominantly the \(\rho \)'s contribution and other higher resonances. Here, we only consider the sigma exchange contributions. If one wants to investigate \(\rho \)'s contribution, the extended NJL model should be used like in Ref. [13]; b), We only calculate to the lowest order in \(1/N_c \) expansion of pion-pion scattering Feynman diagrams.

ACKNOWLEDGEMENT

The authors would like to thank Dr. Bing-Song Zou for his help during the work, we also thank S. P. Klevansky for helpful discussions. This work is supported by NNSF of
REFERENCES

[1] Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961); bf 124, 246 (1961).

[2] U. Vogl and W. Weise, Prog. Part. Nucl. Phys. 27, 195 (1991);

[3] S.P. Klevansky, Rev. Mod. Phys. 64, 649 (1992);

[4] T. Hatsuda and T. Kunihiro, Phys. Rep. 247, 221 (1994).

[5] V. Bernard, U.-G. Meißner, A.H. Blin and B. Hiller, Phys. Lett. B 253, 443(1991).

[6] V. Bernard, A.A.Osipov and U.-G.Meissner, Phys. Lett. B 285, 119(1992).

[7] H-J. Schulze, J. Phys. G 21, 185(1995).

[8] E. Quack, P. Zhuang, Y. Kalinovsky, S.P. Klevansky and J.Hüfner, Phys. Lett. B 348, 1(1995).

[9] V Dmitrašinović, H-J Schulze, R Tegen and R H Lemmer, Ann.Phys. 238, 332 (1995).

[10] Mei Huang, Pengfei Zhuang and Wei-qin Chao, hep-ph/9903304.

[11] D. Počanić, Proceedings of the Chiral Dynamics Workshop in Mainz, Germany, Sept 1997, hep-ph/9801366.

[12] B. R. Martin, D. Morgan and G. Shaw, Pion − pion interactions in particle physics, (Academic Press, London, 1976).

[13] M. G. Olsson, Phys. Lett. B 410, 311 (1997).

[14] S. Weinberg, Phys. Rev. Lett. 17, 616(1966).

[15] J. Gasser and H. Leutwyler, Ann. Phys. B 158, 142(1984).
FIG. 1. Feynman digrams for leading and subleading order quark self-energy m_H and δm, and meson polarization functions $\Pi_M^{(RPA)}(k)$ and $\delta \Pi_M^{(b,c,d)}(k)$. The solid and dashed lines indicate the quark internal meson propagators respectively.
FIG. 2. a_0 as a function of m for different z.
FIG. 3. The \((a_0, a_2)\) plane include 1), \(a_2\) as a function of \(a_0\) for different \(z\) i.e. \(a_2(a_0)\) curve in NJL model; 2), the universal curve shown as solid double lines; 3), other theoretical predictions.