SOM-Net: Unrolling the Subspace-Based Optimization for Solving Full-Wave Inverse Scattering Problems

Yu Liu*, Member, IEEE, Hao Zhao, Rencheng Song*, Member, IEEE, Xudong Chen**, Fellow, IEEE, Chang Li*, Member, IEEE, and Xun Chen*, Senior Member, IEEE

Abstract—In this article, an unrolling algorithm of the iterative subspace-based optimization method (SOM) is proposed for solving full-wave inverse scattering problems (ISPs). The unrolling network, named SOM-Net, inherently embeds the Lippmann–Schwinger physical model into the design of network structures. The SOM-Net takes the deterministic induced current and the raw permittivity image obtained from backpropagation (BP) as the input. It then updates the induced current and the permittivity successively in subnetwork blocks of the SOM-Net by imitating iterations of the SOM. The final output of the SOM-Net is the full predicted induced current, from which the scattered field and the permittivity image can also be deduced analytically. The parameters of the SOM-Net are optimized in a supervised manner with the total loss to simultaneously ensure the consistency of the induced current, the scattered field, and the permittivity in the governing equations. Numerical tests on both synthetic and experimental data verify the superior performance of the proposed SOM-Net over typical ones. The results on challenging examples, such as scatterers with tough profiles or high permittivity, demonstrate the good generalization ability of the SOM-Net. With the use of deep unrolling technology, this work builds a bridge between traditional iterative methods and deep learning methods for solving ISPs.

Index Terms—Deep unrolling, inverse scattering problem (ISP), subspace-based optimization.

I. INTRODUCTION

FULL-WAVE electromagnetic inverse scattering problems (ISPs) aim at determining the shape, position, and constitutive parameters of unknown scatterers from the measured scattering field. It is well known that the full-wave ISP is usually highly nonlinear and ill-posed [1], which needs to be solved by nonlinear iterative methods based on governing physical models. Typical nonlinear iterative ISP methods include the distorted Born iterative method (DBIM) [2], the contrast source inversion (CSI) method [3], the contrast source extended Born (CS-EB) method [4], and the subspace-based optimization method (SOM) [5], [6]. Those methods have achieved great success in reconstructing scatterers in various ISP applications. However, one main bottleneck of nonlinear iterative methods is the lack of real-time reconstruction performance due to the expensive computational cost. In addition, the reconstruction quality is also highly dependent on the complicated regularization.

In recent years, researchers have successfully introduced deep learning (DL) technology to solve ISPs [7], [8], [9]. Many studies demonstrate that DL-based methods outperform conventional iterative ones for both reconstruction speed and accuracy. Nevertheless, a major concern of DL-based methods is the generalization ability of the learned models. Namely, the performance of DL-based methods may degrade significantly when the testing target is quite different from those training ones on the aspects such as shape, size, and parameter ranges. This is because DL models are typically data-driven, and the constraints of the governing physical laws are only partially satisfied compared to existing iterative full-wave methods.

Many efforts have been made to improve the model generalization ability of DL-based inversion methods, which are often referred to as physics-inspired models. In general, existing physics-inspired methods can be divided into two types according to the different ways of model learning. The first type of methods accelerates the conventional iterative methods using the DL technique, which only adopts neural networks to replace some expensive components in the traditional objective function method.

For example, Guo et al. [10] introduced a supervised descent method (SDM) to learn the average descent directions from data. Guo et al. [11] applied the SDM to the pixel- and model-based inversion of microwave data for dielectric targets. This type of methods has a great advantage on generalization ability, but the real-time performance is still a challenge.

The second type of physics-inspired methods is composed of two steps, i.e., a rough permittivity image reconstruction...
by a fast imaging method, followed by a permittivity image enhancement to get a high-resolution target [12], [13]. Among these methods, the backpropagation (BP) method is commonly used to reconstruct the rough permittivity image from the scattered field. Then, the resolution of rough input image is enhanced in an image-to-image translation way using various networks, such as the U-Net [14], GANs [15], [16], and cGANs [17]. The performance of this kind of methods is dominated by both the quality of input images and the way of conducting image resolution enhancement. Wei and Chen [18] proposed the dominant current scheme (DCS) instead of BP to generate a better rough input for the U-Net. Zhang et al. [19] improved the input by combining the rough images from both qualitative and quantitative methods. Yao et al. [20] proposed to obtain the initial input image using a shallow convolutional neural network (CNN) and then enhance the resolution using U-Net. In addition to these efforts to improve the quality of input images, Huang et al. [21] adopted the structural similarity index measure (SSIM) loss and the mean squared error (MSE) loss to jointly constrain image features and improve the reconstruction quality. Song et al. [22] defined a novel perceptual adversarial network to improve the quality of image-to-image translation. Wei and Chen [23] introduced an induced current learning method (ICLM) to solve the translation in the contrast source domain instead of the contrast domain. Although these methods achieve better reconstructions, the image-to-image translation in ISP is still lacking of physical insight, thereby restricting the generalization ability of this kind of DL-based ISP method. Specifically, the image-to-image translation in existing ISP methods only restricts the match of a single physical variable, which is usually the permittivity. The ignoring of the consistency of other physical parameters may also degenerate the model generalization ability.

Recently, the unrolling technique [24] has attracted extensive attention in image processing and computational imaging research, which builds a bridge between conventional iterative methods and DL-based methods. The deep unrolling technique constructs neural networks with a few subnetwork modules to imitate iterations of conventional methods. The unknown target parameters are successively updated in each subnetwork module like doing iterations. It effectively embeds physical knowledge into deep neural networks, which makes the DL model more interpretable and efficient. The unrolling technique has been verified to be efficient in solving various tasks such as medical imaging [25], [26], [27] and image restoration [28], [29]. It has also been introduced to solve nonlinear ISPs very recently. Liu et al. [30] introduced the PM-Net to simulate the alternating direction method of multiplier (ADMM) iterative process, which defines four unconstrained subproblems to achieve the alternating optimization of contrast source and contrast. Guo et al. [31] proposed an ISP SOLVER to simulate the iterative gradient-based inversion method, where a pretrained forward model is used repeatedly to calculate the data fitness. The performance of the ISP SOLVER is strongly affected by that of the pretrained FWD SOLVER model. These methods have been verified to obtain good generalization capability compared to direct data-to-model networks. However, only partial physical variables are explicitly enforced to satisfy the consistency in these methods. The embedding of the governing physical law in learned networks can still be further improved.

In this work, an unrolling of the subspace-based optimization, named SOM-Net, is proposed to solve nonlinear ISPs. The input of the SOM-Net is taken as the deterministic induced current obtained by the singular value decomposition (SVD) and the raw permittivity image obtained from BP, while the output of SOM-Net is the predicted full induced current. The induced current and the permittivity image are updated alternatively by passing through the subnetwork blocks in SOM-Net, which is like performing successive iterations in SOM. In particular, the update of the induced current in the SOM-Net is realized by the mapping of each subnetwork, while the permittivity is still updated analytically. Finally, the scattered field and the permittivity are also deduced analytically from the output induced current. The whole SOM-Net model is optimized with residuals defined simultaneously on the induced current, the scattered field, and the permittivity image in a supervised manner. The match of all these physical parameters, which are governed by the Lippmann–Schwinger equation, ensures the generalization ability of the SOM-Net model. Numerical tests on both synthetic and experimental data verify the superior performance of the proposed SOM-Net over existing ones.

In summary, the contributions of this work are listed as follows.

1) The proposed SOM-Net inherently embeds physical knowledge by unrolling SOM, which introduces an effective way to design physics-inspired DL networks from the conventional iterative methods. Specifically, the update of the induced current and the permittivity image within each subnetwork of the SOM-Net effectively reduces the nonlinearity of mapping. Besides, the permittivity is always updated analytically in SOM-Net, which greatly simplifies the network structure. Therefore, the SOM-Net is physically interpretable and efficient.

2) The full constraints of physical variables, including the induced current, the scattered field, and the permittivity image, make the output of the SOM-Net physically consistent with the governing law. Guided by those constraints, the prediction of the SOM-Net is more reliable and consistent, in terms of not only the reconstructed images but also the induced current and the scattered field.

3) The testing results on various challenging examples demonstrate the effectiveness and good generalization ability of the SOM-Net. In particular, the comparison results on scatterers with tough profiles or high permittivity verify the advantages of the proposed method over other comparable ones in terms of both accuracy and generalization ability.

This article is organized as follows. In Section II, we introduce the formulations of the proposed algorithm.
Synthetic and experimental data are then tested in Section III for the performance verification. In Section IV, we discuss the benefit of SOM-Net and its applications in other scenarios. Finally, we conclude our work in Section V.

II. Method

For clarity, the notations are declared first. We use \bar{X} and \bar{X} to denote the matrix and vector of the discretized operator or parameter X, respectively. The superscripts H and \dagger, respectively, indicate the conjugate transpose and the complex conjugate of a matrix or vector.

A. Formulation of the Problem

The configuration of ISPs is shown in Fig. 1. For convenience, a 2-D transverse magnetic (TM) wave is considered, where the longitude direction is along \hat{z}. The background is free space with permittivity ε_0 and permeability μ_0. The unknown scatterers are supposed to be lossless by default and located in the domain of interest (DOI) D. The N_t transmitters located at r_l with $l = 1, 2, \ldots, N_t$ sequentially illuminate the unknown scatterers, and the N_r receivers located at r_q with $q = 1, 2, \ldots, N_r$, simultaneously measure the scattered field.

1) Forward Scattering: The forward scattering aims to calculate the scattered field with known permittivity of scatterers. The method of moments (MoM) is taken to calculate the scattered field. The domain D is discretized into M subunits, and the centers of subunits are located at r_m with $m = 1, 2, \ldots, M$. Accordingly, considering all subunits, the state equation is discretized as

$$E^i = E^i + \bar{G}_D \cdot J$$

where E^i and E^t represent the incident and total electric field in domain D, respectively. The matrix \bar{G}_D with $M \times M$ dimensions maps the induced current to the scattered field in domain D. In the forward problem, (1) describes the wave-scattering interaction in domain D.

The induced current \bar{J} is defined as $\bar{J} = \bar{\chi} \cdot \bar{E}^i$. It is well known that the contrast $\bar{\chi}$ and the relative permittivity $\bar{\varepsilon}_r$ have a relationship of $\bar{\chi} = -i(k_0/\eta_0)(\bar{\varepsilon}_r - 1)$, where $i = \sqrt{-1}$ and k_0 and η_0, respectively, represent the wavenumber and the impedance of homogeneous medium background.

The discretized data equation is expressed as

$$\bar{E}^s = \bar{G}_S \cdot \bar{J}$$

where \bar{E}^s is the scattered field measured by all receivers. The matrix \bar{G}_S with $N_r \times M$ dimensions maps the induced current from the domain D to the space of scattered field in domain S. In the forward problem, (2) describes the scattered field as a reradiation of the induced current.

2) SOM Algorithm: The purpose of the inverse problem is to retrieve the relative permittivity $\bar{\varepsilon}_r$ of the scatterer from the measured scattering field \bar{E}^s. For solving nonlinear ISPs, the induced current cannot be obtained directly from (2). Suppose that the SVD of \bar{G}_S is $\bar{G}_S = \sum_n \bar{u}_n \sigma_n \bar{v}_n^H$ with $\sigma_1 \geq \sigma_2 \geq \ldots, \sigma_M = 0$, where \bar{u}_n, \bar{v}_n, and σ_n are the orthogonal left, right singular vectors, and singular values of \bar{G}_S, respectively. The singular values are sorted in the descending order.

In SOM, the full induced current \bar{J} is decoupled into the deterministic induced current \bar{J}^+ and the ambiguous induced current \bar{J}^- as

$$\bar{J} = \bar{J}^+ + \bar{J}^- = \bar{J}^+ + \bar{V}^- \cdot \bar{a}^-$$

where \bar{V}^- is composed of the last $M - L$ columns of right singular vectors, \bar{a}^- is the unknown coefficient vector with the length of $M - L$, and \bar{J}^+ satisfies

$$\bar{J}^+ = \sum_{j=1}^{L} \bar{\mu}_j^H \cdot \bar{E}^s / \sigma_j$$

The initializations of SOM are taken as the deterministic induced current \bar{J}^+ and the contrast $\bar{\chi}^{bp}$ obtained by BP in the following equation:

$$\bar{\chi}^{bp}(r) = \frac{\sum_{l=1}^{N_r} \bar{J}_l(r) \cdot \overline{[\bar{E}_l(r)]^*}}{\sum_{l=1}^{N_r} \overline{[\bar{E}_l(r)]^*}^2}$$

In SOM, the unknown parameters \bar{a}^- and $\bar{\chi}$ are updated alternatively. For the mth subunit, the induced current (\bar{J}_m) is updated by (3), the total field (\bar{E}_m^t) is updated by (1), and the contrast $(\bar{\chi})_m$ is straightforwardly updated by the following equation [1]:

$$\bar{\chi}_m = \frac{\sum_{l=1}^{N_r} \overline{[(\bar{E}_m^t)_l]}^2}{\overline{\sum_{l=1}^{N_r} \overline{[(\bar{E}_l^t)_l]}^2}}$$

where N_t is the total number of transmitters, which is set as 16.

B. SOM-Net Algorithm

1) Structure of SOM-Net: The flowchart of the proposed SOM-Net is shown in Fig. 2. The SOM-Net is designed by unrolling the iterations in SOM, which not only incorporates physical knowledge into the model but also alleviates the nonlinear coupling of the induced current and the permittivity.

As seen, there are K subnetworks in SOM-Net to imitate the SOM iterations. Suppose that $\bar{\chi}_r^{bp}$ denotes the permittivity image reconstructed by the BP method with all scattered fields. \bar{J}^+ represents the deterministic induced current matrix reformulated from the vector \bar{J}^+. For the ith incidence, the deterministic induced current \bar{J}_i^+ is concatenated with the permittivity image $\bar{\chi}_r^{bp}$ as a single input sample of the SOM-Net. Accordingly, the input of the SOM-Net model is
denoted as \(\bar{J} + \bar{\varepsilon}^{bp} \) with the number of input channels as 3, in which the first two channels are occupied by the real and imaginary part of the induced current and the third channel is occupied by the permittivity image, and the symbol \(\oplus \) indicates the concatenation operation of two variables on the real and imaginary channels. For the same reconstruction, all the \(N_f \) resulting samples from the total \(N_f \) incidences will be simultaneously employed to train the SOM-Net. Namely, the batch size is set to \(N_f \).

Similar to SOM, the SOM-Net updates the induced current \(\bar{J}_{(k)} \) and the permittivity variable \(\bar{\varepsilon}_{r,(k)} \) alternatively by passing variables across the subnetwork \(S_{b,k}, k = 1, 2, \ldots, K \), where \(\theta \) indicates model parameters. Finally, the predicted induced current \(\bar{J}^{pre} \) with the channel number as 2 at all incidences is directly obtained by network reconstruction. Then, the predicted scattered field \(\bar{E}^{x,pre} \) is calculated analytically by (2) and the permittivity image \(\bar{\varepsilon}^{pre} \) can also be reconstructed directly from the contrast \(\bar{J}^{pre} \) by (6). In SOM-Net, the analytical update of physical variables is indicated by orange arrows in Fig. 2. It significantly simplifies the network complexity and embeds physical knowledge into the model.

Overall, the data flow in SOM-Net is summarized in Algorithm 1, where \(F \) represents the analytical update of permittivity from the contrast \(\bar{J} \) by (6). Specifically, four subnetworks (i.e., \(K = 4 \) are experimentally taken to design SOM-Net in this article. It is worth noting that \(K \) can be adjusted according to the complexity of the target ISP.

2) Loss Functions: In this article, a comprehensive loss function is defined to train the SOM-Net \(S_{b} \). The full loss function \(L_S(\theta) \) of SOM-Net is defined as

\[
L_S(\theta) = L_J(\theta) + L_E(\theta) + \lambda_1 L_{SSIM}(\theta) + \lambda_2 L_{MSE}(\theta)
\]

where \(L_J(\theta) \) denotes the induced current loss, \(L_E(\theta) \) is the scattered field loss, \(L_{SSIM}(\theta) \) indicates the structural similarity loss of two permittivity images, and \(L_{MSE}(\theta) \) is the pixelwise MSE loss. Here, \(\lambda_i (i = 1, 2) \) are hyperparameters.

Algorithm 1 Data Flow in SOM-Net

1: Calculate \(\bar{E}^i, \bar{G}_D, \bar{G}_S \);
2: Obtain network input \(\bar{J}_{(0)} \leftarrow \bar{J}^+, \bar{\varepsilon}_{r,(0)} \leftarrow \bar{\varepsilon}^{bp} \);
3: for each \(k \in [2, K] \) do
4: \(\bar{J}_{(k-1)} = S_{b,k-1}(\bar{J}_{(k-2)} \oplus \bar{\varepsilon}_{r,(k-2)}) \);
5: \(\bar{\varepsilon}_{r,(k-1)} = F(\bar{J}_{(k-1)}) \);
6: end for
7: \(\bar{J}^{pre} \leftarrow \bar{J}_{(K)} \);
8: \(\bar{E}^{x,pre} = \bar{G}_S \cdot \bar{J}^{pre} \);
9: \(\bar{\varepsilon}^{pre} \leftarrow \bar{\varepsilon}_{r,(K)} \);

Specifically, each term of \(L_S(\theta) \) is defined as

\[
L_J = \frac{1}{N_f} \sum_{i=1}^{N_f} \left| \bar{J}^{pre} - \bar{J}^{MoM} \right|^2
\]

\[
L_E = \frac{1}{N_r} \sum_{q=1}^{N_r} \left| \bar{E}^{x,pre} - \bar{E}_q \right|^2
\]

\[
L_{SSIM} = 1 - SSIM(\bar{\varepsilon}^{pre}, \bar{\varepsilon}^r)
\]

\[
L_{MSE} = \left| \bar{\varepsilon}^{pre} - \bar{\varepsilon}^r \right|^2
\]

where \(\bar{J}^{pre}, \bar{E}^{x,pre}, \) and \(\bar{\varepsilon}^{pre} \) are the predicted induced current, the predicted scattered field, and the permittivity image, respectively, while \(\bar{J}^{MoM}, \bar{E}^i \) and \(\bar{\varepsilon}^r \) are the corresponding reference variables, respectively.

It can be seen that the total loss \(L_S(\theta) \) enforces the consistency of the induced current, the scattered field, and the permittivity. The use of SSIM and MSE constraints on the permittivity image further ensures the structural and pixelwise

![Fig. 2. Structure of the proposed SOM-Net. The input of the SOM-Net is a combined variable with three input channels, which contains the deterministic induced current and the raw permittivity image obtained from BP. The output of the SOM-Net is the predicted full induced current.](image-url)
match with the reference one. Hence, from the physical point of view, the total loss $L_S(\theta)$ guarantees the consistency of all physical variables in the Lippmann–Schwinger governing equation, thereby improving the prediction accuracy of the SOM-Net model. The proper design of network and loss functions enables the model to learn physical laws from the data, thereby making the model good generalization ability.

C. Computational Complexity

The computational complexity of the SOM-Net is mainly divided into three parts, preparing input data, feedforward calculation of SOM-Net, and the estimation of the scattered field and the permittivity.

To prepare input data, it needs to obtain the raw permittivity image $\tilde{\epsilon}_{bp}$ by BP and gets the deterministic induced current \bar{J}^+. The computational complexity of BP is $O(N_i \log M)$ [18] if the fast Fourier transform (FFT) is applied in the matrix–vector multiplication, and N_i is the number of incidences. The computational cost of obtaining \bar{J}^+ is $O(N_r^2 M)$ [34], which lies in the thin SVD decomposition of \tilde{G}_S.

For the feedforward of SOM-Net, the computational cost includes several basic operations such as convolutions, activation function, and max pooling, where the complexity is dominated by convolutions. In particular, assume that when performing convolution operation, the number of input feature maps is Q_i and the number of output feature maps is Q_o. Thus, the complexity is calculated as $O(Q_o Q_i M_1 M_2 K_f^2)$ [18], where the feature map size and the convolution kernel size are $M_1 \times M_2$ and $K_f \times K_f$ ($K_f = 3$ in this article), respectively.

To calculate the scattered field, the computational cost of the matrix–vector multiplication in (2) is $O(N_r M)$. To calculate the permittivity, the computational cost of the vector–vector multiplication in (6) is $O(M)$.

III. NUMERICAL AND EXPERIMENTAL RESULTS

In this section, we conduct verifications of SOM-Net with both synthetic and experimental examples. The performance of the SOM-Net is compared with the classical SOM method and U-Net [18]. The comparison with SOM indicates the benefit of the improvement on reconstruction quality and speed of SOM-Net, while the comparison with U-Net denotes the superior performance of SOM-Net over existing physics-inspired DL methods.

A. Configuration of the Scattering System

The configuration of synthetic ISPs is defined as follows; 16 line sources and 32 line receivers are equally placed on a circle with a radius of 3 m centered at the origin. The operating frequency is 400 MHz. For each transmitting antenna, all receivers measure the scattered field. By default, each scatterer is assumed to be lossless if not mentioned. Also, the inversion of lossy scatterers will be described in the discussions. The domain D has the size of 2×2 m in a free-space background. It is discretized into 100×100 grids to simulate the measured scattered field by MoM, while the discretization is changed to 64×64 grids in inversion to avoid the inverse crime. Suppose that the measured scattered fields of all receivers from all transmitters are recorded in a matrix \bar{E}_s with the size of $N_r \times N_i$. \bar{E}_s is noise-free in the training stage, while Gaussian noise is added to \bar{E}_s in the testing stage to validate the robustness of SOM-Net against noise. The noise level is defined as $\|\tilde{n}\|_F/\|\bar{E}_s\|_F$, where $\|\cdot\|_F$ represents the Frobenius norm of a matrix.
TABLE I
ERROR METRICS OF RECONSTRUCTION RESULTS FOR 1500 TESTING SAMPLES FROM THE MNIST DATASET BY SOM, U-NET, AND SOM-Net IN FIG. 3

Method	Test#1	Test#2	Test#3	Test#4	1500 MNIST					
	SSIM	RMSE	SSIM	RMSE	SSIM	RMSE				
SOM	0.84	0.09	0.84	0.11	0.77	0.18	0.83	0.12	0.80	0.13
U-Net	0.89	0.09	0.88	0.11	0.84	0.20	0.87	0.10	0.85	0.13
SOM-Net	0.92	0.07	0.94	0.07	0.88	0.14	0.95	0.07	0.91	0.10

B. Training Details

The training details of the SOM-Net are given as follows. The MNIST dataset [35] is used to generate the training data. Considering the complexity of the ISP, we randomly choose 5000 handwritten digits in the MNIST database for training and another 2500 digits for validation. In order to increase the richness of data and enhance the generalization ability of the model, each digit is randomly rotated with an angle of $[-170^\circ, 170^\circ]$ degrees. Besides, a circle with a random radius between 0.1 and 0.5 m is also added in D. The relative permittivity of all training scatterers is set between 1.5 and 2.5. Here, $L = 15$ is used in (4) to generate deterministic induced current following the criterion of [18].

The hyperparameters for training the SOM-Net are set as follows. Both λ_1 and λ_2 are experimentally set to 2.0. The Adam optimizer is taken to optimize the SOM-Net with $\beta_1 = 0.9$ and $\beta_2 = 0.999$. The batch size is set to 16, and the training epochs are set to 40. The first 20 epochs are running with the same learning rate of 0.0002, while the learning rate decays linearly to 0 from the 21st to the 40th epochs. The code is implemented using PyTorch on a server with Intel1 Core2 i9-10900X CPU @3.70 GHz and GeForce RTX 3090 GPU.

1Registered trademark.
2Trademarked.

The training process of the SOM-Net took about 7.26 h under the above configurations.

C. Within-Database Test: Synthetic Data

In the first example, we randomly select another 1500 images from the MNIST database as the testing set. All the scattered fields of testing samples are added with 10% white Gaussian noise. The relative permittivity of all testing scatterers is between 1.5 and 2.5. The reconstruction results of four randomly selected examples, i.e., Test#1–Test#4, are shown in Fig. 3. We take the SSIM and the root-mean-square error (RMSE) of the relative permittivity of scatterers as the quality metrics [22] to evaluate the performance of all methods. The results are summarized in Table I. It can be seen that the SOM-Net achieves superior performance compared to the other two methods.

Since the SOM-Net is trained by enforcing the consistency of the induced current, the scattered field, and the permittivity images, Fig. 4 shows the deterministic induced current, the predicted induced current distribution, and the corresponding target one for Test#1–Test#4. The induced currents of other transmitters are similar and are omitted here. Meanwhile, the predicted scattered field and its reference with respect to all incidences are plotted in Fig. 5, where the predicted
Fig. 5. Fitting of all scattered fields for Test#1–Test#4: (a) Test#1, (b) Test#2, (c) Test#3, and (d) Test#4. For each test, the predicted scattered field by SOM-Net is represented by the orange dots, and the reference one is indicated by the blue line.

Fig. 6. Reconstruction results of Test#5–Test#12 for scatterers with complex profiles. The field is represented by the orange dots and the reference one is indicated by the blue line. It is observed that the physical constraints of SOM-Net on the induced current and the scattered field make all those variables consistent with their references. Therefore, the SOM-Net learns the governing physical law and achieves much better reconstruction results compared to U-Net.

Considering the simulation time, the SOM-Net only takes about 0.53 s to reconstruct a single result with given inputs. Specifically, it takes about 0.03 s to obtain the rough contrast by BP and another 1.4 s to obtain the deterministic induced current \bar{J}^+. Thus, the whole simulation time of SOM-Net to reconstruct one example is about 1.96 s. In comparison, the SOM method needs about 27.5 s for 50 iterations of reconstruction. The simulation time has been significantly reduced by 92% with the SOM-Net.

D. Cross-Database Test: Synthetic Data

To verify the generalization ability of SOM-Net, we also test the SOM-Net with more challenging examples, including scatterers with complex shapes, high-level noise interference, and scatterers with high relative permittivity. We still use the same testing model as the MNIST examples.

1) Complex Profiles: We test Test#5–Test#12 where scatterers have complex shapes different from the MNIST training data. All the scattered fields are contaminated with 10% white Gaussian noise. The reconstruction results of Test#5–Test#12 are shown in Fig. 6, where the quality metrics are summarized in Table II. The results show that the SOM-Net outperforms the comparison methods. In particular, in Test#11 and Test#12, although there are three different scatterers and scatterers have diverse permittivity values, the
TABLE II
ERROR METRICS OF RECONSTRUCTION RESULTS FOR TEST#5–TEST#12

Method	Test#5	Test#6	Test#7	Test#8	Test#9	Test#10	Test#11	Test#12
	SSIM	RMSE	SSIM	RMSE	SSIM	RMSE	SSIM	RMSE
SOM	0.77	0.07	0.84	0.07	0.80	0.13	0.91	0.07
U-Net	0.84	0.09	0.85	0.07	0.76	0.20	0.94	0.08
SOM-Net	0.93	0.05	0.91	0.05	0.83	0.12	0.86	0.10

TABLE III
ERROR METRICS OF RECONSTRUCTION RESULTS FOR TEST#13–TEST#16

Method	Test#13	Test#14	Test#15	Test#16
	SSIM	RMSE	SSIM	RMSE
SOM	0.69	0.15	0.68	0.15
U-Net	0.80	0.16	0.77	0.17
SOM-Net	0.90	0.11	0.88	0.11

Fig. 7. Reconstruction results of the “Austria” profile with the relative permittivity of 2.0 under different noise levels. From Test#13 to Test#16, 10%, 20%, 25%, and 30% white Gaussian noises are added to the scattered field.

SOM-Net still accurately reconstructs all examples. The results effectively verify the good generalization ability of the SOM-Net, which is attributed to the unrolling model design and the physical loss constraints for model training.

2) High-Level Noise Interference: We also test the noise robustness of the SOM-Net model under different noise levels. In this testing, we choose the “Austria” profile as the scatterer with ε_r as 2.0. Also, 10%, 20%, 25%, and 30% white Gaussian noise are, respectively, added to the scattered field. The reconstruction results of Test#13–Test#16 with different noise levels are shown in Fig. 7. The corresponding error metrics are summarized in Table III. It demonstrates that the SOM-Net is still robust against noise, which achieves better reconstruction results compared to the other methods. It is worth noting that compared with the “Austria” test in existing unrolling ISP methods [30], [31], the SOM-Net obtains better imaging results, especially showing clear gaps between two small rings and large rings. It can be considered that the high-quality restoration of induced current plays an important role in the reconstruction of permittivity images.

The fitting of induced current and the scattered field is shown in Figs. 8 and 9, respectively. The induced current is still from the first transmitter and the one for other transmitters is similar. Figs. 8 and 9 show that the SOM-Net can accurately predict the induced current and the scattered field for “Austria” profile with 25% and 30% high-level noise. These results verify the noise robustness of the SOM-Net.

3) Scatterers With Different Permittivities: To further check the generalization ability of the SOM-Net, we also test the reconstruction performance of a star profile with varying permittivities. The results of Test#17–Test#20 are shown in Fig. 10, where the relative permittivity ranges from 1.5 to...
TABLE IV
ERROR METRICS OF RECONSTRUCTION RESULTS FOR TEST #17–TEST #20

Method	Test #17	Test #18	Test #19	Test #20				
	SSIM	RMSE	SSIM	RMSE	SSIM	RMSE	SSIM	RMSE
SOM	0.92	0.05	0.91	0.09	0.92	0.11	0.78	0.16
U-Net	0.93	0.06	0.94	0.08	0.83	0.23	0.83	0.24
SOM-Net	0.94	0.05	0.94	0.08	0.93	0.11	0.92	0.16

3.0. Also, 10% white Gaussian noise is added to all testing cases. The corresponding error metrics are summarized in Table IV. It is worth noting that the SOM-Net has shown superior performance even for the case of the relative permittivity of 3.0, where the shape and the acute angles of the scatterer can still be recovered. The explicit constraints on physical variables and the unrolling design of SOM-Net ensure that the network learns the ISP mapping with good generalizations.

Although the SOM-Net successfully retrieves the high-permittivity scatterer, it is still very challenging to reconstruct scatterers with a quite high permittivity. One potential way to overcome this issue is to unroll the existing model that can handle the ISP with high permittivity. For example, Zhong et al. [36] demonstrated that the contraction integral equation for inversion (CIE-I) is very effective to solve highly nonlinear ISP with high contrasts. Sanghvi et al. [37] introduced a DL method to provide good initials for the twofold SOM (TSOM) to reconstruct scatterers with high permittivity. Dubey et al. [38] introduced a new Rytov approximation for solving high-permittivity ISP with phaseless data. It is meaningful to unroll such iterative methods into neural networks to retrieve high-permittivity scatterers.

E. Cross-Database Test: Experimental Data

We finally validate the proposed method with the experimental data provided by the Fresnel Institute [39]. As shown in Fig. 11, the “FoamDielExt” profile is considered in this section. It is composed of two cylinders: a foam cylinder with a diameter of 80 mm and $\varepsilon_r = 1.45 \pm 0.15$, and a plastic cylinder with a diameter of 31 mm and $\varepsilon_r = 3.0 \pm 0.3$. Different from the previous synthetic examples, there are eight linear transmitters and 241 receivers to measure experimental data, which are located on a circle with a radius of 1.67 m from the center of the target.

The operating frequency is 3 and 4 GHz, instead of 400 MHz used in the synthetic examples. Accordingly, the size of DOI is also changed from 2×2 m to 0.2×0.2 m. In this experimental example, we use the same MNIST profiles with a random circle to generate the training dataset, and the relative permittivity range of all scatterers is between 1.1 and 3.0. In Fig. 12, we present the reconstruction profiles of SOM-Net, SOM, and U-Net. The corresponding error metrics are summarized in Table V. Specifically, the best SSIM is
Fig. 10. Reconstruction results of the star profile with the relative permittivity of 1.5, 2.0, 2.5, and 3.0.

Fig. 11. “FoamDielExt” profile from the Fresnel experimental data.

Fig. 12. Reconstruction results of the “FoamDielExt” profile at 3 and 4 GHz.

0.94 at 3 GHz and 0.92 at 4 GHz. The comparison results of the induced current and the scattered field are shown in Figs. 13 and 14, respectively. The preferable reconstruction results once again verify the strong generalization ability of the SOM-Net.

IV. DISCUSSION

In this section, we further discuss some aspects of the SOM-Net. It includes the comparison of SOM-Net with existing unrolling methods [30], [31] and the extension of SOM-Net for other cases such as limited aperture and lossy scatterers.
Fig. 14. Fitting of all scattered fields for the “FoamDielExt” profile at (a) 3 and (b) 4 GHz. For each test, the predicted scattered field by SOM-Net is represented by the orange dots every five points, and the reference one is indicated by the blue line.

Fig. 15. Fresnel experimental data. (a) “FoamDielInt” profile. (b) “FoamTwinDiel” profile.

Fig. 16. Reconstruction results of the experimental data. (a) “FoamDielExt” profile. (b) “FoamDielInt” profile. (c) “FoamTwinDiel” profile at 4 GHz.

A. Comparison With Existing Unrolling Methods

Here, we take a further comparison of SOM-Net with the existing unrolling work [30], [31] using Fresnel’s experimental data in Figs. 11 and 15. In order to take a fair comparison, we employ the same configurations of generating training data as in [31], where each training sample consists of two or three random circles. More details can be seen in [31, Table II]. In particular, the predicted results of the SOM-Net are presented in Fig. 16, where both the reconstructed relative permittivity values and the shape are of high precision. Meanwhile, the corresponding SSIM and RMSE metrics are summarized in Table VI. Considering the complexity to implement the methods in [30] and [31], we directly compare the SOM-Net results with those ones in the two papers. In comparison, the reconstruction results of SOM-Net are visually superior to the comparison algorithms. It should be noted that there is no quality metric given in [30], and only the metric of data misfit (rms$_D$) on the scattered field is defined in [31]. Accordingly, rms$_D$ of SOM-Net results for the “FoamDielExt” and “FoamDielInt” examples in Fig. 16(a) and (b) reaches 0.08 and 0.07, respectively, while that in [31] is 0.12 and 0.08, respectively. It shows that the predicted scattered field of the proposed method also matches better with the observed field.

B. Limited Aperture

Measurement within a limited aperture is a common ISP configuration in many real applications. Here, we conduct the limited-aperture experiment using the same setup as the above full-aperture ones for synthetic examples, except that only measurements from transmitters and receivers within the observable aperture are used. Since available measurements are limited if the aperture is too small, we only consider an experiment with a 270° aperture, where 12 line sources and 24 line receivers are available.

The reconstruction results with the 270° aperture are shown in Fig. 17, and the corresponding quality metrics are summarized in Table VII, where we use (L) and (F) to represent the results of limited and full apertures, respectively. As observed, the proposed SOM-Net can still achieve better reconstruction performance for challenging cases than the SOM and U-Net. Meanwhile, the fitting results of the induced current by the first transmitter and the corresponding scattered fields for Test#21 are shown in Fig. 18, which indicates a good consistency with the references.

Meanwhile, it is also found that the reconstruction performance of SOM-Net degrades in the limited-aperture case compared to the full-aperture ones. As shown in the comparison results of SOM-Net(L) and SOM-Net(F) in Fig. 17 and Table VII, it is observed that the SOM-Net with full-aperture data achieves better reconstruction results compared to that of SOM-Net(L). For example, there is a noticeable deterioration in the image quality for Test#21 in the limited-aperture case. Meanwhile, the SSIM decreases from 0.91 to 0.88, and the RMSE changes from 0.13 to 0.11. Similar quality dropping has also been observed in other examples. This suggests that extra regularization is required to improve the reconstruction of SOM-Net for dealing with such a challenging case, which needs further research but is beyond the scope of the current work.

TABLE VI

| Error Metrics of Reconstruction Results of SOM-Net in Fig. 16 for Experimental Data at 4 GHz |
|----------------------------------|----------------------------------|
| Test | SSIM | RMSE |
| FoamDielExt | 0.95 | 0.09 |
| FoamDielInt | 0.95 | 0.08 |
| FoamTwinDiel | 0.90 | 0.16 |
Fig. 17. Reconstruction results of Test#21–Test#28 for scatterers with 10% white Gaussian noise.

Table VII

Method	Test#21	Test#22	Test#23	Test#24	Test#25	Test#26	Test#27	Test#28	1500 MNIST
SSIM	RMSE		SSIM	RMSE	SSIM	RMSE	SSIM	RMSE	SSIM RMSE
SOM(L)	0.69	0.15	0.91	0.07	0.83	0.10	0.81	0.12	0.78
U-Net(L)	0.79	0.15	0.93	0.07	0.91	0.10	0.88	0.10	0.84
SOM-Net(L)	0.86	0.13	0.96	0.04	0.93	0.08	0.91	0.09	0.87
SOM-Net(P)	0.90	0.11	0.97	0.04	0.94	0.08	0.95	0.07	0.91

Fig. 18. Fitting results of induced currents and scattered field in Test#21. (a) Fitting of induced currents by the first transmitter, where the left, middle, and right columns are the input, the output, and the target induced current, respectively. (b) Fitting of all scattered fields, where the predicted scattered field by SOM-Net is represented by the orange dots and the reference one is indicated by the blue line.

Table VIII

Test	Test#29	Test#30	Test#31	Test#32	Test#33	Test#34	Test#35	Test#36	1500 MNIST
SSIM	Re	Im	Re	Im	Re	Im	Re	Im	Re Im
SOM	0.64	0.13	0.67	0.21	0.68	0.29	0.77	0.19	0.76
U-Net	0.87	0.75	0.89	0.81	0.75	0.67	0.95	0.90	0.89
SOM-Net	0.87	0.84	0.92	0.86	0.89	0.89	0.96	0.94	0.92

C. Lossy Profiles

Finally, we verify the performance of the SOM-Net for the reconstruction of lossy profiles. Accordingly, we still conduct the lossy experiments using the same configurations as the synthetic lossless ones. The only difference is that each scatterer here has an imaginary part randomly defined between 0 and 0.9. In addition, another channel representing...
the imaginary part of the complex relative permittivity image for lossy profiles also needs to be added to the SOM-Net. The reconstruction results of the real and imaginary parts for some typical samples are shown in Figs. 19 and 20, respectively. The corresponding quality metrics are listed in Table VIII.

According to the reconstruction results, it can be seen that the average results of 1500 lossy samples in the MNIST dataset verify the superior performance of SOM-Net over the compared ones. In particular, as observed in Figs. 19 and 20, the proposed SOM-Net can still reconstruct challenging lossy...
profiles in high quality. In Fig. 21, the fitting results of the induced current and all scattered fields for the “Austria” profile are drawn to further demonstrate the effective learning of physical knowledge. Note that in the presentation of concrete results, the first row is the real part (Re) and the second row is the imaginary part (Im) for the induced current and the scattered field.

It should be mentioned that, although we only describe the SOM-Net with a TM case, considering the similarity of the iterative SOM algorithms for the TM [5] and transverse electric (TE) [40] cases, it is also easy to extend the SOM-Net to the TE case. However, the computational complexity will increase quickly compared to the TM case.

V. CONCLUSION

In this work, we have proposed the SOM-Net for solving the full-wave ISPs by unrolling the iterative SOM. The SOM-Net has been designed with several subnetworks to imitate the iterations of the SOM. The deterministic induced current and the rough permittivity image got by BP are used as the input, while the direct output of the SOM-Net is the full induced current. The induced current and the permittivity variables have been updated alternately in the cascade subnetworks of SOM-Net, which greatly reduces the nonlinearity of the ISP. Joint physical constraints of the induced current, the scattered field, and the permittivity image have been employed to guide the training of the SOM-Net model. The generalization ability of the resulting SOM-Net model has been greatly enhanced, considering the inherent embedding of physical law on the network structure and the consistent matches of all physical variables of the governing Lippmann–Schwinger equations. All numerical tests have validated that the proposed SOM-Net has superior performance than SOM and U-Net. Overall, the SOM-Net has been verified to be a learning-based fast inversion method with strong generalization ability and good physical interpretability, which provides a new idea for the application of deep unrolling technology to solve ISPs.

Despite the good results achieved, the proposed SOM-Net still needs to be further improved and extended in many aspects, such as the inversion under a limited aperture and the extension to the 3-D case.

REFERENCES

[1] X. Chen, Computational Methods for Electromagnetic Inverse Scattering. Hoboken, NJ, USA: Wiley, 2018.
[2] W. C. Chew and Y. M. Wang, “Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method,” IEEE Trans. Med. Imag., vol. 9, no. 2, pp. 218–225, Jun. 1990.
[3] P. M. van den Berg and R. E. Kleinman, “A contrast source inversion method,” Inverse Problems, vol. 13, no. 6, p. 1607, Dec. 1997.
[4] L. Crocco, M. D’Urso, and T. Isernia, “Testing the contrast source extended Born inversion method against real data: The TM case,” Inverse Problems, vol. 21, no. 6, pp. S33–S50, Dec. 2005.
[5] X. Chen, “Subspace-based optimization method for solving inverse-scattering problems,” IEEE Trans. Geosci. Remote Sens., vol. 48, no. 1, pp. 42–49, Jan. 2009.
[6] K. Xu, Y. Zhong, and G. Wang, “A hybrid regularization technique for solving highly nonlinear inverse scattering problems,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 1, pp. 11–21, Jan. 2018.
[7] A. Massa, D. Marcantonio, X. Chen, M. Li, and M. Salucci, “DNNs as applied to electromagnetics, antennas, and propagation—A review,” IEEE Antennas Wireless Propag. Lett., vol. 18, no. 11, pp. 2225–2229, Nov. 2019.
[8] X. Chen, Z. Wei, M. Li, and P. Rocca, “A review of deep learning approaches for inverse scattering problems (invited review),” Prog. Electromagn. Res., vol. 167, pp. 67–81, 2020.
[9] M. Li et al., “Machine learning in electromagnetics with applications to biomedical imaging: A review,” IEEE Antennas Propag. Mag., vol. 63, no. 3, pp. 39–51, Jun. 2021.
[10] R. Guo, X. Song, M. Li, F. Yang, S. Xu, and A. Abubakar, “Supervised descent learning technique for 2-D microwave imaging,” IEEE Trans. Antennas Propag., vol. 67, no. 5, pp. 3550–3554, May 2019.
[11] R. Guo et al., “Pixel- and model-based microwave inversion with supervised descent method for dielectric targets,” IEEE Trans. Antennas Propag., vol. 68, no. 12, pp. 8114–8126, Dec. 2020.
[12] L. Li, L. G. Wang, F. L. Teixeira, C. Liu, A. Nehorai, and T. J. Cui, “DeepPINS: Deep neural network for nonlinear electromagnetic inverse scattering,” IEEE Trans. Antennas Propag., vol. 67, no. 3, pp. 1819–1825, Mar. 2019.
[13] Y. Sun, Z. Xia, and U. S. Kamilov, “Efficient and accurate inversion of multiple scattering with deep learning,” Opt. Exp., vol. 26, no. 11, pp. 14678–14688, 2018.
[14] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks for biomedical image segmentation,” in Proc. Int. Conf. Med. Image Comput. Comput.-Assist. Intervent. Cham, Switzerland: Springer, 2015, pp. 234–241.
[15] I. Goodfellow et al., “Generative adversarial nets,” in Proc. Adv. Neural Inf. Process. Syst., vol. 2, 2014, pp. 2672–2680.
[16] X. Ye, Y. Bai, R. Song, K. Xu, and J. An, “An inhomogeneous background imaging method based on generative adversarial network,” IEEE Microw. Theory Techn., vol. 68, no. 11, pp. 4684–4693, Nov. 2020.
[17] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with conditional adversarial networks,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 1125–1134.
[18] Z. Wei and X. Chen, “Deep-learning schemes for full-wave nonlinear inverse scattering problems,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 4, pp. 1849–1860, Apr. 2019.
[19] L. Zhang, K. Xu, R. Song, X. Ye, G. Wang, and X. Chen, “Learning-based quantitative microwave imaging with a hybrid input scheme,” IEEE Sensors J., vol. 20, no. 24, pp. 15007–15013, Dec. 2020.
[20] H. M. Yao, W. E. I. Sha, and L. Jiang, “Two-step enhanced deep learning approach for electromagnetic inverse scattering problems,” IEEE Antennas Wireless Propag. Lett., vol. 18, no. 11, pp. 2254–2258, Nov. 2019.
[21] Y. Huang, R. Song, K. Xu, X. Ye, C. Li, and X. Chen, “Deep learning-based inverse scattering with structural similarity loss functions,” IEEE Sensors J., vol. 21, no. 4, pp. 4900–4907, Feb. 2021.
[22] R. Song, Y. Huang, K. Xu, X. Ye, C. Li, and X. Chen, “Electromagnetic inverse scattering with perceptual generative adversarial networks,” IEEE Trans. Comput. Imag., vol. 7, pp. 689–699, 2021.
[23] Z. Wei and X. Chen, “Physics-inspired convolutional neural network for solving full-wave inverse scattering problems,” IEEE Trans. Antennas Propag., vol. 67, no. 9, pp. 6138–6148, Sep. 2019.
[24] V. Monga, Y. Li, and Y. C. Eldar, “Algorithm unrolling: Interpretable, efficient deep learning for signal and image processing,” IEEE Signal Process. Mag., vol. 38, no. 2, pp. 18–44, Mar. 2021.
[25] K. H. Jin, M. T. McCann, E. Froustey, and M. Unser, “Deep convolutional neural network for inverse problems in imaging,” IEEE Trans. Image Process., vol. 26, no. 9, pp. 4509–4522, Sep. 2016.
[26] J. Adler and O. Öktem, “Solving ill-posed inverse problems using iterative deep neural networks,” Inverse Problems, vol. 33, no. 12, 2017, Art. no. 124007.
[27] Y. Yang, J. Sun, H. Li, and Z. Xu, “ADMM-CSNet: A deep learning approach for image compressive sensing,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 3, pp. 521–538, Mar. 2020.
[28] Y. Li, M. Tofighi, J. Geng, V. Monga, and Y. C. Eldar, “Efficient and interpretable deep blind image deblurring via algorithm unrolling,” IEEE Trans. Comput. Imag., vol. 6, pp. 666–681, 2020.
[29] C. J. Schuler, M. Hirsch, S. Harmeling, and B. Schölkopf, “Learning to deblur,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 7, pp. 1439–1451, 2016.
[30] J. Liu, H. Zhou, T. Ouyang, Q. Liu, and Y. Wang, “Physical model-inspired deep unrolling network for solving nonlinear inverse scattering problems,” IEEE Trans. Antennas Propag., vol. 70, no. 2, pp. 1236–1249, Feb. 2022.
[31] R. Guo et al., “Physics embedded deep neural network for solving full-wave inverse scattering problems,” IEEE Trans. Antennas Propag., vol. 70, no. 8, pp. 6148–6159, Aug. 2022.
A. Dubey, S. Deshmukh, L. Pan, X. Chen, and R. Murch, “A phaseless L. Pan, X. Chen, and S. P. Yeo, “Application of the subspace-based J.-M. Geffrin, P. Sabouroux, and C. Eyraud, “Free space experimental Y. Sanghvi, Y. Kalepu, and U. Khankhoje, “Embedding deep learning in inverse scattering problems,” IEEE Trans. Comput. Imag., vol. 6, pp. 46–56, 2020. A. Dubey, S. Deshmukh, L. Pan, X. Chen, and R. Murch, “A phaseless extended Rytov approximation for strongly scattering low-loss media and its application to indoor imaging,” IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1–17, 2022. J.-M. Geffrin, P. Sabouroux, and C. Eyraud, “Free space experimental scattering database continuation: Experimental set-up and measurement precision,” Inverse Problems, vol. 21, no. 6, pp. S117–S130, Dec. 2005. L. Pan, X. Chen, and S. P. Yeo, “Application of the subspace-based optimization method in the framework of the method of moments: Transverse electric case,” in Proc. Asia Pacific Microw. Conf., Dec. 2009, pp. 980–983. Yu Liu (Member, IEEE) received the B.S. and Ph.D. degrees from the Department of Automation, University of Science and Technology of China, Hefei, China, in 2011 and 2016, respectively. He is currently an Associate Professor with the Department of Biomedical Engineering, Hefei University of Technology, Hefei, China. His research interests include biomedical signal processing, computer vision, and machine learning. In particular, he is interested in image fusion, image restoration, visual recognition, and deep learning. Dr. Liu is serving as an Editorial Board Member for Information Fusion. He was a recipient of the IEEE Instrumentation and Measurement Society Andi Chi Best Paper Award in 2020 and the IET Image Processing Premium (Best Paper) Award in 2017. Hao Zhao received the B.S. degree from the Department of Biomedical Engineering, Xixiang Medical University, Xixiang, China, in 2020. She is currently pursuing the M.S. degree with the Hefei University of Technology, Hefei, China. Her research interests include electromagnetic inverse scattering imaging. Rencheng Song (Member, IEEE) received the B.S. degree in computational mathematics from Jilin University, Changchun, China, in 2005, and the Ph.D. degree in computational mathematics from Zhejiang University, Hangzhou, China, in 2010. From 2010 to 2012, he was a Research Fellow with the Department of Electrical and Computer Engineering, National University of Singapore, Singapore. From 2013 to 2017, he was a Principal Scientist with Halliburton Far East Pte Ltd., Singapore. Since May 2017, he has been an Associate Professor with the Department of Biomedical Engineering, Hefei University of Technology, Hefei, China. His research interests include mainly electromagnetic/video-based contactless intelligent perceptions, such as electromagnetic imaging, remote photoplethysmography, and physics-inspired machine learning methods. Xudong Chen (Fellow, IEEE) received the B.S. and M.S. degrees from Zhejiang University, Hangzhou, China, in 1999 and 2001, respectively, and the Ph.D. degree from the Massachusetts Institute of Technology, Cambridge, MA, USA, in 2005. Since 2005, he has been with the National University of Singapore, Singapore, where he is currently a Professor. He has published over 100 scientific articles in prestigious IEEE/Elsevier journals and conferences. His research interests include biomedical signal processing, hyperspectral image analysis, computer vision, and machine learning. Chang Li (Member, IEEE) received the B.S. degree in information and computing science from the Wuhan Institute of Technology, Wuhan, China, in 2012, and the Ph.D. degree in circuits and systems from the School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, China, in 2018. He is currently an Associate Professor with the Department of Biomedical Engineering, Hefei University of Technology, Hefei, China. His research interests include biomedical signal processing, hyperspectral image analysis, computer vision, and machine learning. Xun Chen (Senior Member, IEEE) received the B.Sc. degree in electrical engineering from the University of Science and Technology of China, Hefei, China, in 2009, and the Ph.D. degree in biomedical engineering from The University of British Columbia (UBC), Vancouver, BC, Canada, in 2014. He was a Research Scientist with the Department of Electrical and Computer Engineering, UBC. He is currently a Full Professor and the Head of the Department of Electrical Engineering and Information Science, University of Science and Technology of China. He has published over 100 scientific articles in prestigious IEEE/Elsevier journals and conferences. His research interests include the broad areas of statistical signal processing and machine learning in biomedical applications.