Asymmetric Functional Organozinc Additions to Aldehydes Catalyzed by 1,1′-Bi-2-naphthols (BINOLs) †

Lin Pu*
Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904-4319, United States

CONSPECTUS: Chiral alcohols are ubiquitous in organic structures. One efficient method to generate chiral alcohols is the catalytic asymmetric addition of a carbon nucleophile to a carbonyl compound since this process produces a C−C bond and a chiral center simultaneously. In comparison with the carbon nucleophiles such as an organolithium or a Grignard reagent, an organozinc reagent possesses the advantages of functional group tolerance and more mild reaction conditions. Catalytic asymmetric reactions of aldehydes with arylic zincs, vinylzincs, and alkynylzincs to generate functional chiral alcohols are discussed in this Account. Our laboratory has developed a series of 1,1′-bi-2-naphthol (BINOL)-based chiral catalysts for the asymmetric organozinc addition to aldehydes. It is found that the 3,3′-dianisyl-substituted BINOLs are not only highly enantioselective for the alkylzinc addition to aldehydes, but also highly enantioselective for the diphenylzinc addition to aldehydes. A one-step synthesis has been achieved to incorporate Lewis basic amine groups into the 3,3′-positions of the partially hydrogenated H8BINOL. These H8BINOL−amine compounds have become more generally enantioselective and efficient catalysts for the diphenylzinc addition to aldehydes to produce various types of chiral benzylic alcohols. The application of the H8BINOL−amine catalysts is expanded by using in situ generated diarylzinc reagents from the reaction of aryl iodides with ZnEt2, which still gives high enantioselectivity and good catalytic activity. Such a H8BINOL−amine compound is further found to catalyze the highly enantioselective addition of vinylzincs, in situ generated from the treatment of vinyl iodides with ZnEt2 to aldehydes to give the synthetically very useful chiral allylic alcohols.

We have discovered that the unfunctionalized BINOL in combination with ZnEt2 and Ti(OiPr)4 can catalyze the terminal alkylene addition to aldehydes to produce chiral propargylic alcohols of high synthetic utility. The reaction was conducted by first heating an alkylene with ZnEt2 in refluxing toluene to generate an alkynylzinc reagent, which can then add to a broad range of aldehydes at room temperature in the presence of BINOL and Ti(OiPr)4 with high enantioselectivity. It was then found that the addition of a catalytic amount of dicyclohexylamine (Cy2NH) allows the entire process to be conducted at room temperature without the need to generate the alkynylzincs at elevated temperature. This BINOL−ZnEt2−Ti(OiPr)4−Cy2NH catalyst system can be used to catalyze the reaction of structurally diverse alkynes with a broad range of aldehydes at room temperature with high enantioselectivity and good catalytic activity.

The work described in this Account demonstrates that BINOL and its derivatives can be used to develop highly enantioselective catalysts for the asymmetric organozinc addition to aldehydes. These processes have allowed the efficient synthesis of many functional chiral alcohols that are useful in organic synthesis.

1. INTRODUCTION

Since Oguni and Omi reported that an amino alcohol, (S)-leucinol, catalyzed the reaction of ZnEt2 with benzaldehyde to give the corresponding chiral alcohol with 49% ee in 1984, 1 a tremendous amount of research has been conducted in the area of catalytic asymmetric organozinc additions to carbonyl compounds, and many highly enantioselective catalysts have been obtained. 2−4 Besides the extensive work on the catalytic asymmetric ZnEt2 addition to aldehydes, recent years have seen rapid growth in the study of the addition of functional organozincs such as arylic zincs, 5−7 vinylzincs, 8−11 and alkynylzincs 12−15 to carbonyl compounds. These reactions can produce a variety of functional chiral alcohols that are important in organic syntheses.
1,1′-Bi-2-naphthol (BINOL) is an easily available chiral molecule whose chirality is derived from the restricted rotation around its 1,1′-bond. The two enantiomers of BINOL can be readily resolved and have exhibited high configurational stability. In the past four decades, the optically active BINOL has served as an important chirality source for the research fields of molecular recognition and asymmetric synthesis.16–19

In our laboratory, we have studied the use of BINOL to build novel chiral materials for diverse applications.20 We have also explored the application of chiral Lewis acid complexes of BINOL and its derivatives to catalyze the asymmetric functional organozinc additions to aldehydes. Highly enantioselective catalysts for the reaction of aldehydes with arylzincs, vinylzincs, and alkynylzincs have been obtained. These studies are discussed in this Account.

2. CATALYTIC ASYMMETRIC ARYLZINC ADDITION TO ALDEHYDES

2.1. Using the Commercially Available Diphenylzinc

In 1999, we prepared the 3,3′-dianisyl-substituted BINOL compound (R)-1 from (R)-BINOL according to Scheme 1.21

This compound showed high enantioselectivity for the asymmetric reaction of alkylzincs with aldehydes. In the presence of 5 mol % of (R)-1, the reaction of an alkylzinc with aliphatic, aromatic, and α,β-unsaturated aldehydes proceeded at 0 °C with 90% to >99% ee’s (Table 1). It represents the most generally enantioselective catalysts for the asymmetric alkylzinc addition to aldehydes.

In 1997, Fu reported a catalytic asymmetric diphenylzinc addition to an aldehyde but with only 57% ee.6a We found that (R)-1 was the first highly enantioselective catalyst for the diphenylzinc addition to aldehydes with up to 94% ee.22a This reaction generates chiral α-substituted benzylic alcohols that exist in many organic structures. As shown in Table 2, in the presence of 10–20 mol % of (R)-1, high enantioselectivities (83–94% ee) were observed for the reaction of the commercially available diphenylzinc with aliphatic, aromatic,

Aldehyde	Alkylzinc	Isolated Yield (%)	ee (%)
HOCHO	ZnEt2	95	99
HOCHO	ZnEt2	91	98
HOCHO	ZnEt2	92	97
HOCHO	ZnEt2	96	>99
HOCHO	ZnEt2	97	98
HOCHO	ZnEt2	95	99
HOCHO	ZnEt2	93	94
HOCHO	ZnEt2	90	94
HOCHO	ZnEt2	92	>99
HOCHO	ZnEt2	94	99
HOCHO	ZnEt2	90	91
HOCHO	ZnEt2	90	91
HOCHO	ZnEt2	90	91
HOCHO	ZnEt2	92	98
HOCHO	ZnEt2	86	98
HOCHO	ZnEt2	86	98
HOCHO	ZnEt2	66	91a
HOCHO	ZnEt2	62	93b
HOCHO	ZnEt2	64	97
HOCHO	ZnEt2	90	98
HOCHO	ZnEt2	90	93c

*Solvent EtOAc. aConditions: --40 °C, 0.3 equiv of (R)-1. With 0.2 equiv of (R)-1. Solvent THF; --10 °C; distilled aldehyde.

and vinyl aldehydes in 10–96 h. The reaction conditions were found to be substrate dependent. For different aldehydes, the
Table 2. Asymmetric Diphenylzinc Addition to Aldehydes Catalyzed by (R)-1

Aldehyde	(R)-1 or +Additive (mol%)	Aldehyde Conc. (mM)	Solv	T (°C)	Time (h)	Isolated Yield (%)	ee (%)
O	10	100	Tol	0	20	90	87
MeO	20 + 40 ZnEt₂	50	Tol	-30	24	84	93
Cl	20 + 40 ZnEt₂	5	Et₂O	r.t.	10	86	94
CHO	20 + 40 ZnEt₂	5	THF	-10	96	66	87
CHO	20 + 80 ZnEt₂ + 40 MeOH	5	CH₂Cl₂	reflux	10	94	83

For the asymmetric diphenylzinc addition to aldehydes, one of the main challenges is the uncatalyzed reaction often in competition with the chiral catalyst-controlled reaction, which leads to reduced enantioselectivity. In order to increase the catalytic activity of (R)-1, electron-withdrawing groups are introduced to the 3,3'-anisyl substituents. This strategy could increase the Lewis acidity of the corresponding zinc complex and thus increase the catalytic activity. As shown in Scheme 2, we prepared a series of 3,3'-bisanisyl BINOL ligands (S)-2a through (S)-2e (Scheme 2). These compounds were tested for the reaction of diphenylzinc with cinnamaldehyde without using methanol as an additive, and the results are compared in Table 3. In these experiments, the BINOL compounds were first treated with 2 equiv of ZnEt₂ in methylene chloride to generate the corresponding zinc complexes. The zinc complex (20 mol %) was then used to catalyze the diphenylzinc addition to cinnamaldehyde. As shown in Table 3, all these electronically and sterically modified ligands exhibited improved enantioselectivity over (R)-1. Among these, ligand (S)-2c gave the best result with up to 87% ee. Addition of methanol could not further increase the enantioselectivity of (S)-2c.

Table 3. Reaction of Cinnamaldehyde with Diphenylzinc in the Presence of the Chiral Ligands

Ligand	Isolated yield (%)	ee (%)	Config.
(R)-1	88	50	S
(S)-2a	90	73	R
(S)-2b	88	81	R
(S)-2c	92	87	R
(S)-2d	90	81	R
(S)-2e	88	70	R

The reaction was carried out under nitrogen at room temperature in CH₂Cl₂ in the presence of 20 mol % of the chiral ligand and 40 mol % of ZnEt₂. The concentration of aldehyde was 5 mM. The reaction was quenched in 5 h.

Scheme 3 shows a proposed mechanism for the diphenylzinc addition catalyzed by (S)-2c. Treatment of (S)-2c with 2 equiv
of ZnEt₂ could form 3a, which upon coordination of diphenylzinc could generate the zinc complex 3b. An aldehyde molecule can coordinate to the zinc centers to generate 3c. In 3c, the electron-withdrawing fluorine atoms on the anisyl substituent can increase the Lewis acidity of the Zn center of the [ZnEt] unit. This should provide more catalyst control for the diphenylzinc addition to aldehydes, leading to the much higher enantioselectivity of (S)-2c than (R)-1. However, the additional fluorine atoms in (S)-2d did not further increase the enantioselectivity. The fluorine atom adjacent to the alkoxyl group may have an unfavorable interaction with the [ZnEt] unit to reduce the enantioselectivity. The significantly lower enantioselectivity of (S)-2e than (S)-2b shows that the electron-withdrawing bromine atoms on the BINOL unit are not favorable for the diphenylzinc addition. As shown in intermediate 3b, coordination of ZnPh₂ with the Lewis base central oxygen atoms of the BINOL unit should have activated the subsequent phenyl addition to the aldehyde. When the bromine atoms are introduced to the 6,6′-positions of the BINOL unit, it should reduce the Lewis basicity of the central two oxygen atoms. This should reduce the activation effect for the coordinated ZnPh₂ unit and decrease the catalyst-controlled diphenylzinc addition. The lower catalyst control means more of the uncatalyzed diphenylzinc addition. This could explain the lower enantioselectivity of (S)-2e than (S)-2c.

In order to further improve the asymmetric diphenylzinc addition, we have examined the introduction of amine substituents to the 3,3′-positions of BINOL to modify the catalyst structure. We have developed a one-step synthesis of the 3,3′-dimorpholinomethyl BINOL (S)-4 from the Mannich-type reaction of (S)-BINOL with morpholine and paraformaldehyde (Scheme 4).²³ At 110 °C, partial racemization was observed, which gave (S)-4 with 75% ee and 55% yield. Recrystallization gave the optically pure (S)-4. When the partially hydrogenated BINOL, (S)-H₆BINOL, was used to react with morpholine and paraformaldehyde, the reaction could be conducted at a much lower temperature of 60 °C, and the (S)-H₆BINOL–amine product (S)-5 was obtained with >99% ee and 95% yield.²⁴ Upon treatment with ZnR₂, these 3,3′-dimorpholinomethyl compounds could form a zinc complex similar to 3a generated from (S)-2c. In such an intermediate, the cyclic amine groups of (S)-4 and (S)-5 could provide a better defined steric environment around the catalytically active zinc center than the MeO group of (S)-2c, which could potentially be translated into an increased steric control. In addition, it is also possible to systematically vary the alkyl groups on the nitrogen atoms to tune the catalytic properties of (S)-4 and (S)-5.

Both (S)-4 and (S)-5 were tested for the diphenylzinc addition to aldehydes.²⁵,²⁶ It was found that the H₆BINOL–amine (S)-5 gave higher enantioselectivity than the BINOL–amine (S)-4 for the reaction of diphenylzinc with valeraldehyde (92% ee versus 87% ee). Unlike the 3,3′-anisyl-substituted BINOL compounds (R)-1 and (S)-2c that require the addition of ZnEt₂ to generate the enantioselective catalysts, the 3,3′-morpholinomethyl-substituted BINOL compounds (S)-4 and (S)-5 did not need ZnEt₂ to achieve the observed high enantioselectivity. We used (S)-5 to catalyze the reaction of diphenylzinc with a variety of aldehydes, and the results are

Table 4. Synthesis of Chiral Diarylcarbinols by the Diphenylzinc Addition to Aryl Aldehydes Catalyzed by (S)-2c

Aldehyde	Isolated Yield (%)	ee (%)	Config.
CH₃CHO	92	87	R
OCH₃CHO	92	95	S
CH₃C₆H₄CHO	87	91	S
CH₃C₆H₄CHO	90	88	S
NH₃CHO	86	80	(+)
CH₃C₆H₄CHO	89	86	(+)

“The reaction was carried out under nitrogen at room temperature in CH₂Cl₂ in the presence of 20 mol % (S)-2c and 40 mol % Et₂Zn. The concentration of aldehyde was 5 mM. The reaction was quenched in 5 h. Et₃B-pretreated aldehyde was used.

Scheme 3. A Proposed Mechanism for the Catalytic Asymmetric Diphenylzinc Addition by (S)-2c

Scheme 4. Preparation of the BINOL–Amine (S)-4 and the H₆BINOL–Amine (S)-5
summarized in Table 5. In the presence of 10 mol % (S)-5 and 1.2 equiv of Ph₂Zn at room temperature in THF in 6–16 h, highly enantioselective (81–98% ee) additions to linear and branched aliphatic aldehydes, p-substituted aromatic aldehydes, and an α-substituted vinyl aldehyde were observed. The enantioselectivities for the reactions of ortho-substituted aromatic aldehydes, a meta-substituted aromatic aldehyde, and cinnamaldehyde were lower (51–78% ee).

We found that the ee of (S)-5 exhibited a linear relationship with those of the diphenylzinc addition products. This indicates that the catalytically active species may contain only one H₂BINOL unit. A detailed NMR spectroscopic study was conducted that allowed us to propose a mechanism for this reaction as shown in Scheme 5. When (S)-5 was treated with 1 equiv of ZnPh₂, the resulting complex such as 6 could not react with 2,2-dimethylpropanal to give the addition product. When (S)-5 was treated with 1.5 equiv of ZnPh₂, a two-ligand—three-Zn (2 + 3) complex 7a might be generated. This complex was also unreactive with the aldehyde. The interaction of 7a with excess ZnPh₂ gave a symmetric intermediate with a possible structure of 7b, which was found to be catalytically active for the ZnPh₂ addition to the aldehyde. A transition state 7c might be involved for the migration of Ph from the coordinated ZnPh₂ unit to the coordinated aldehyde. After the consumption of the aldehyde, 7b was regenerated.

2.2. Using the in Situ Generated Diarylzincs

In order to expand the application of catalyst (S)-5, we investigated its catalytic properties for the in situ generated diarylzincs. We adopted Knochel’s method to prepare diarylzincs such as 8 from the reaction of an aryl iodide with ZnEt₂ (Scheme 6). These in situ generated diarylzincs were of low reactivity for the addition to aldehydes as shown in the reaction with cyclohexanecarboxaldehyde in Scheme 6. However, when (S)-5 (10 mol %) was introduced to this reaction, the desired addition product was obtained with both high yield (93%) and high enantioselectivity (>99% ee). Thus, (S)-5 not only enhanced the reactivity of the diarylzinc but also provided excellent stereocontrol. Catalyst (S)-5 was used to catalyze the addition of the in situ generated diarylzinc to various aldehydes, and the results are summarized in Table 6. These reactions were conducted in three steps. In the first step, the aryl iodide was mixed with ZnEt₂ in the presence of Li(acac) and NMP at 0 °C for 12 h. Here, the Lewis basic Li(acac) facilitated the transmetalation of ZnEt₂ with the aryl iodide. Then the THF solution of (S)-5 was added, and the resulting solution was stirred at 0 °C for 1 h. In the third step, the solution was warmed to room temperature, and the aldehyde was added. As shown in Table 6, high enantioselectivities (83% to >99% ee) were obtained for the reaction of both aromatic and aliphatic aldehydes.

We also tested the use of methyl p-iodobenzoate for the diarylzinc addition catalyzed by (S)-5. It was found that for this substrate the conditions of Table 6 could not give high enantioselectivity. However, when the solvent in the second step was changed to CH₂Cl₂ and the amount of (S)-5 was increased to 20 mol %, the entire process could be conducted at 0 °C to give the aryl addition products with high enantioselectivity (88–96% ee) for the aromatic, aliphatic, and α,β-unsaturated aldehydes (Table 7).

In Tables 6 and 7, (S)-5 exhibited high enantioselectivity for the reaction of the in situ generated diarylzincs with the aromatic aldehydes containing p- or m-substituents. However, for the reaction of α-substituted aromatic aldehydes such as o-anisaldehyde, the enantioselectivity was much lower (79% ee). In order to improve the enantioselectivity of this reaction, we prepared a variety of analogues of (S)-5, such as (S)-9 to (S)-17.

Table 5. Asymmetric Diphenylzinc Addition to Aliphatic Aldehydes Catalyzed by (S)-4 and (S)-5

Catalyst	Aldehyde	Isolated Yield (%)	ee (%)
(S)-4	CHO	>82	87
(S)-5	CHO	87	92
	CHO	78	93
	CHO	75	92
	CHO	96	98
	CHO	93	98
	CHO	82	92
	CHO	80	81
	CHO	90	89
	CHO	91	89
	CHO	90	89
	CHO	92	94
	CHO	91	91
	CHO	97	89
	CHO	80	78
	CHO	95	51
	CHO	94	60
	CHO	78	68
	CHO	88	96
	CHO	98	77
(Table 8), by using the same one-step reaction shown in Scheme 4. These compounds were used to catalyze the reaction of methyl p-iodobenzoate with o-anisyaldehyde, and the results are summarized in Table 8. As shown in entry 7, (S)-14 containing 3,3'-bis(pyrrolidinylmethyl) groups gave excellent enantioselectivity for the reaction (93% ee). The additional sulfur atoms in (S)-15 did not change the enantioselectivity (entry 8). Other H$_2$BINOL–amine derivatives gave lower enantioselectivity. No enantioselectivity was observed when the dicyclohexylamine-based compound (S)-10 was used (entry 3).

Scheme 5. A Proposed Mechanism for the Diphenylzinc Addition Catalyzed by (S)-5

Scheme 6. Preparation of a Substituted Arylzinc and Its Addition to an Aldehyde

Table 6. Addition of the Arylzinc Generated from m-Iodoanisole to Aldehydes in the Presence of (S)-5

Table 7. Addition of the Arylzinc Generated from Methyl p-Iodobenzoate to Aldehydes in the Presence of (S)-5

*Combined yield of both diastereomers.
Thus, the very bulky amine groups of this compound might have prevented the reaction from taking place around the central chiral H₈BINOL unit, giving no chiral induction for the arylzinc addition reaction. We have further found that (S)-14 is generally more enantioselective than (S)-5 for the reaction of methyl p-iodobenzoate and 2-halothiophene with other aldehydes. The smaller ring size of (S)-14 might provide a less sterically hindered catalytic site than that by (S)-5 or the other H₈BINOL–amine derivatives, which could be responsible for the improved enantioselectivity.

Using iodobenzene allowed us to replace the commercial diphenylzinc for the asymmetric diphenylzinc addition. In the presence of (S)-14 (10 mol %), the reaction of iodobenzene (2.2 equiv) with p-anisaldehyde in the presence of Li(acac) (26 mol %), ZnEt₂ (1.21 equiv), and NMP (1.5 mL) at room temperature gave the alcohol product with 98% yield and 93% ee.

3. CATALYTIC ASYMMETRIC VINYLZINC ADDITION TO ALDEHYDES

Previously, several highly enantioselective catalysts were reported for the asymmetric vinylzinc addition to carboxyls to generate the synthetically very useful chiral allylic alcohols.⁸⁻¹¹ Those vinylzincs were prepared by using methods such as the hydrozirconation or hydroboration of alkynes followed by transmetalation, the use of vinyl boronic acids or esters,¹¹a and the Ni-catalyzed ZnMe₂ addition to alkynes.¹¹b

One limitation for the use of the hydrozirconation and hydroboration of terminal alkynes is that they cannot be applied to make normal cycloalkenylzincs.

We tested the treatment of vinyl iodides with ZnEt₂ to generate vinylzincs for the catalytic asymmetric vinylzinc addition to aldehydes to generate chiral allylic alcohols. Scheme 7

Scheme 7. Reaction of Vinyl Iodides with Aldehydes in the Presence of ZnEt₂

![Scheme 7. Reaction of Vinyl Iodides with Aldehydes in the Presence of ZnEt₂](image-url)
shows the reaction of a vinyl iodide, E-1-iodo-1-phenyl-1-pentene, with c-C₆H₅CHO in the presence of ZnEt₂, which gave the corresponding allylic alcohol in only 17% yield. The reactions of other vinyl iodides with aldehydes also did not give good yield except in a few cases. Thus, the vinylzincs prepared directly from the vinyl iodides generally have low reactivity for the addition to aldehydes. However, when the H₂BINOL–amine (S)-14 (10 mol %) was added to this reaction, good yield and high enantioselectivity were achieved. Table 9 shows that the reaction of vinyl iodides with aromatic, aliphatic, and vinyl aldehydes proceeded with 90–98% ee and 60–90% yields at room temperature or 0 °C in the presence of (S)-14 and ZnEt₂. These reactions can tolerate functional groups such as ester, chlorine, ether, and silyl ether on the substrates.

4. CATALYTIC ASYMMETRIC ALKYNYLZINC ADDITION TO ALDEHYDES

Asymmetric alkyne addition to aldehydes is an efficient way to generate chiral propargylic alcohols that are versatile precursors to many organic compounds. In 2000, Carreria reported the highly enantioselective reaction of alkynes with aldehydes in the presence of Zn(OTf)₂, Et₃N, and an amino alcohol N-methyl ephedrine. In this process, a terminal alkyne reacted with Zn(OTf)₂ first in the presence of Et₃N to give an alkynylzinc reagent. At room temperature, the alkynylzinc addition to aldehydes required 1.2 equiv of the amino alcohol. Later, they found that when the temperature was increased to 60 °C, the reaction could proceed with a catalytic amount of both Zn(OTf)₂ and N-methyl ephedrine. This catalytic process was good for α-substituted aliphatic aldehydes but not good for linear aliphatic, vinyl, and aromatic aldehydes.

Table 9. Reaction of Vinyl Iodides with Aldehydes in the Presence of (S)-14

Vinyl iodide	Aldehyde	Yield (%)	ee (%)
Ph–nPr	CHO	82	90
Ph–nPr	CHO	68	97
Ph–Me	CHO	79	97
Ph–Me	CHO	60	90
Ph–Me	CHO	84	97
Ph–Me	n-C₅H₅CHO	68	90
Ph–Ph	CHO	90	97
Ph–Ph	CHO	75	94
Ph–Ph	CHO	90	97
Ph–nBu	CHO	73	98

Vinyl iodide	Aldehyde	Yield (%)	ee (%)
CHO	CHO	80	91
CHO	CHO	91	96
CHO	CHO	84	96
CHO	CHO	88	93
CHO	CHO	88	93
CHO	CHO	91	90
CHO	CHO	84	96

*Reagents for entries 1–16: vinyl iodide (2.2 equiv), ZnEt₂ (1.2 equiv), Li(acac) (26 mol %), NMP (1.0 mL in entries 1–6 and 10–16; 450 μL in entries 7–9), (S)-14 (10 mol %), aldehyde (1.0 equiv). Reagents for entries 17–21: vinyl iodide (8.0 equiv), ZnEt₂ (4.0 equiv), Li(acac) (50 mol %), NMP (1.0 mL), (S)-14 (10 mol %), aldehyde (1.0 equiv). At 0 °C except at room temperature for entries 7–9.
In order to develop generally useful catalysts for the asymmetric alkyne addition to aldehydes, we have studied the use of BINOL and its derivatives to catalyze these reactions in the presence of dialkylzincs. Highly enantioselective catalysts for structurally diverse substrates have been obtained. In this section, our methods by using the commercially available unfunctionalized BINOL are discussed. References 14 and 15 give some selected reports and reviews for other work on the catalytic asymmetric alkyne addition to aldehydes including a review of our work on the use of BINOL derivatives.15f

4.1. Catalysis Using the BINOL−ZnEt2−Ti(OiPr)4 System

In 2002, our laboratory reported that BINOL in combination with ZnEt2 and Ti(OiPr)4 can catalyze the highly enantioselective reaction of phenylacetylene with aromatic aldehydes.31a At about the same time, Chan reported the use of BINOL in combination with ZnMe2 and Ti(OiPr)4 to catalyze the alkyne addition to aldehydes.14a A two step procedure for the BINOL-catalyzed alkyne addition to aldehydes was developed (Scheme 8): (1) treatment of a terminal alkyne with ZnEt2 in refluxing toluene; (2) addition of (S)-BINOL, Ti(OiPr)4, an aldehyde, and CH2Cl2. The first step probably generated the alkynylzinc intermediate 18, which then underwent nucleophilic addition to benzaldehyde in the presence of BINOL and Ti(OiPr)4 to form the chiral propargylic alcohol product. Table 10 gives the results obtained for the reactions of phenylacetylene and triisopropylsilylacetylene with aromatic aldehydes by using the conditions of Scheme 8. It shows that the reactions of alkynes with a variety of aromatic aldehydes gave excellent enantioselectivity (92−97% ee).

For the reaction of phenylacetylene with aliphatic aldehydes, the reaction conditions of Scheme 8 were modified.31b As summarized in Table 11, highly enantioselective alkyne additions to various aliphatic aldehydes were achieved in Et2O by using the BINOL−ZnEt2−Ti(OiPr)4 catalyst system (91−95% ee). The reactions of various α,β-unsaturated aldehydes also gave very high enantioselectivity (96−99% ee). Besides the aryl alkyne, this catalyst system was also effective for alkyl alkynes, as demonstrated by the addition of 4-phenyl-1-butyne to linear aliphatic aldehydes (90−95% ee).32

We studied the effect of the ee of BINOL on the ee of the propargylic alcohol product for the reaction of phenylacetylene with benzaldehyde in the presence of BINOL−ZnEt2−Ti(OiPr)4, which gave a small negative nonlinear relationship. This indicates that this catalytic process might not simply contain a monomeric BINOL unit and catalysts containing multiple BINOL or Ti units are possible.33 Structure 19 only gives a working model for an intermediate with a monomeric BINOL unit. The migration of the alkynyl group in 19 to the coordinated carbonyl group would generate the chiral propargyl center.

4.2. Catalysis Using the BINOL−ZnEt2−Ti(OiPr)4−Hexamethylphosphoramide (HMPA) System

The BINOL−ZnEt2−Ti(OiPr)4 system described above has shown a broad substrate scope with respect to the aldehydes in the catalytic asymmetric alkyne addition. However, because the first step of this process requires heating an alkyne with ZnEt2 in refluxing toluene, a number of functional alkynes showed side reactions or underwent decomposition under these conditions. It was previously reported that deprotonation of terminal alkynes by ZnEt2 could take place rapidly at room temperature in highly polar solvents such as DMSO, DMF, and HMPA.34 However, these highly polar solvents were found to
be unsuitable for the asymmetric alkyne addition to aldehydes. We then tested the use of these molecules as additive and found that HMPA showed better catalytic properties than the other compounds. Addition of 2 equiv of HMPA facilitated the deprotonation of terminal alkynes by ZnEt₂ and allowed the BINOL⁻ZnEt₂⁻Ti(OiPr)₄ catalyzed alkyne addition to aldehydes to be conducted entirely at room temperature. Using the BINOL⁻ZnEt₂⁻Ti(OiPr)₄⁻HMPA system at room temperature gave high enantioselectivity not only for the phenylacetylene addition to aromatic aldehydes but also for the functional alkyne addition to aromatic aldehydes (Scheme 9).³⁵

In these reactions, it is proposed that HMPA should act as a Lewis base to coordinate to ZnEt₂ to increase the basicity of its Et group and accelerate the subsequent deprotonation of the alkyne. Using HMPA led to a slight reduction of the enantioselectivity from 97% to 93% ee for the reaction of phenylacetylene with benzaldehyde. This indicates that the coordination of HMPA with the zinc center might also influence the alkyne addition step. Compound 20 is a proposed intermediate for the HMPA promoted alkyne addition to an aldehyde.

The BINOL⁻ZnEt₂⁻Ti(OiPr)₄⁻HMPA system was applied to the addition of methyl propiolate to aldehydes to generate γ-hydroxy-α,β-acetylenic esters, a class of synthetically very useful functional propargylic alcohols.³⁶ As shown in Table 12, high enantioselectivities were obtained for the addition of methyl propiolate to a range of aromatic, aliphatic, and α,β-unsaturated aldehydes (81−95% ee).³⁷

4.3. Catalysis Using the BINOL⁻ZnEt₂⁻Ti(OiPr)₄⁻Dicyclohexylamine (Cy₂NH) System

Through a further screening of a broad range of nitrogen-based Lewis bases, we found that a bulky secondary amine additive, dicyclohexylamine (Cy₂NH), showed remarkable improvement of the catalytic process. Using only a catalytic amount (5 mol %) of Cy₂NH in place of the 2 equiv of HMPA in the BINOL⁻ZnEt₂⁻Ti(OiPr)₄⁻HMPA system allowed the catalytic alkyne addition to aldehydes to be conducted at room temperature with high enantioselectivity.³⁸ For example, the BINOL⁻ZnEt₂⁻Ti(OiPr)₄⁻Cy₂NH system was found to be good for the reaction of 1,3-diynes with aldehydes.³⁹,¹⁴d As shown in Table 13, the reaction of 6-phenylhexa-1,3-diyne with aromatic aldehydes in the presence of BINOL⁻ZnEt₂⁻Ti(OiPr)₄⁻Cy₂NH gave the corresponding addition products with 56−98% yield and 85−94% ee. Table 14 gives the conditions and results for the reaction of aliphatic and α,β-unsaturated aldehydes with 6-phenylhexa-1,3-diyne, which shows high enantioselectivity (87−92% ee) and yields (80−99%). High enantioselectivities have also been achieved for the addition of aryl, alkyl, and silyl substituted 1,3-diynes to a variety of aldehydes.³⁹

Besides 1,3-diynes, a broad range of functional alkynes containing vinyl, aryl, alkyl, or silyl substituents could also be added to many aldehydes in the presence of the BINOL⁻ZnEt₂⁻Ti(OiPr)₄⁻Cy₂NH catalyst system to give structurally diverse functional propargylic alcohols with high enantioselectivity.³⁰ These propargylic alcohols were used to construct multicyclic organic compounds of potential biological and pharmaceutical applications.³¹ For most of the substrates, the BINOL⁻ZnEt₂⁻Ti(OiPr)₄⁻Cy₂NH catalyst system could be used to replace the other BINOL-based catalyst systems for the asymmetric alkyne addition to aldehydes.

Alkyne	Aldehyde	Isolated Yield (%)	ee (%)
PhH₂	PhCHO	70	93
PhH₂	PhCHO	84	97
PhH₂	PhCHO	58	95
PhH₂	PhCHO	99	93
PhH₂	PhCHO	93	91
PhH₂	PhCHO	92	96
PhH₂	PhCHO	93	96
PhH₂	PhCHO	89	97
PhH₂	PhCHO	96	99
PhH₂	PhCHO	95	95
PhH₂	PhCHO	83	90

Table 11. BINOL⁻ZnEt₂⁻Ti(OiPr)₄ Catalyzed Alkyne Addition to Aliphatic and α,β-Unsaturated Aldehydes

Scheme 9. BINOL⁻ZnEt₂⁻Ti(OiPr)₄⁻HMPA Catalyzed Alkyne Addition to Aromatic Aldehydes
5. SUMMARY

In this Account, we have shown that efficient catalysts based on BINOL and its derivatives have been developed for the asymmetric reaction of organozincs with aldehydes. The 3,3′-dianisyl BINOL (R)-1 and (S)-2c were found to be highly enantioselective for the asymmetric dialkylzinc and diphenylzinc addition to aldehydes. A one-step method was developed for the synthesis of the 3,3′-bismorpholinomethyl H8BINOL (S)-5 and the 3,3′-bispyrrolidinylmethyl H8BINOL (S)-14. These compounds have exhibited high enantioselectivity and good catalytic activity for the arylzinc and vinylzinc additions to aldehydes to generate the synthetically useful chiral benzylic alcohols and allylic alcohols, respectively. In these reactions, aryl iodides and vinyl iodides are converted to the corresponding organozinc reagents in situ by treatment with ZnEt2, which in the presence of the chiral catalysts undergo efficient addition to a broad range of aldehydes with high stereocontrol. We have demonstrated that the commercially available unfunctionalized BINOL in combination with ZnEt2, Ti(OiPr)4, and Cy2NH can be used to catalyze the reaction of structurally diverse alkynes with a broad range of aldehydes at room temperature with high enantioselectivity and good catalytic activity. These processes generate many types of chiral propargylic alcohols that are important precursors to diverse organic compounds.

Despite the progress described in this Account, as well as in other reports in this area, there are still many challenges in this research such as reducing the catalyst and reagent loading and shortening the reaction time. We are continuously working on developing new, more efficient, and more broadly applicable catalysts for organozinc chemistry.
Table 14. BINOL−ZnEt₂−Ti(OMe)₄,C₆H₄NH Catalyzed 1,3-diyne Addition to Aliphatic Aldehydes

RCHO	Isolated Yield (%)	ee (%)
PhCHO	92	92
PhCHO	93	88
CHO	91	91
CHO	95	90
CHO	90	87
CHO	80	92
CHO	82	89
CHO	86	90
CHO	99	92

catalysts for the asymmetric addition of functional organozincs to carbonyl compounds aiming at providing the synthetic community with practically useful methods to access structurally diverse chiral alcohols.

REFERENCES

(1) Oguni, N.; Omi, T. Enantioselective Addition of Diethylzinc to Benzaldehyde Catalyzed by a Small Amount of Chiral 2-Amino-1-alkohols. *Tetrahedron Lett.* 1984, 25, 2823−2824.

(2) (a) Kitamura, M.; Suga, S.; Kawai, K.; Noyori, R. Catalytic Asymmetric Induction − Highly Enantioselective Addition of Dialkylzincs to Aldehydes. *J. Am. Chem. Soc.* 1986, 108, 6071−6072. (b) Schmidt, B.; Seebach, D. Catalytic and Stoichiometric Enantioselective Addition of Diethylzinc to Aldehydes Using a Novel Chiral Spirorotanate. *Angew. Chem., Int. Ed. Engl.* 1991, 30, 99−101.

(3) (a) Soai, K.; Niwa, S. Enantioselective Addition of Organozinc Reagents to Aldehydes. *Chem. Rev.* 1992, 92, 833−856. (b) Pu, L.; Yu, H.-B. Catalytic Asymmetric Organozinc Additions to Carbonyl Compounds. *Chem. Rev.* 2001, 101, 757−824.

(4) Hatano, M.; Miyamoto, T.; Ishihara, K. Recent Progress in Selective Additions of Organometal Reagents to Carbonyl Compounds. *Curr. Org. Chem.* 2007, 11, 127−157.

(5) Schmidt, F.; Stemmler, R. T.; Rudolph, J.; Bolm, C. Catalytic Asymmetric Approaches towards Enantioomerically Enriched Diarylmethanols and Diarylmethylamines. *Chem. Soc. Rev.* 2006, 35, 454−470.

(6) (a) Dosa, P. I.; Ruble, J. C.; Fu, G. C. Planar-Chiral Heterocycles as Ligands in Metal-Catalyzed Processes: Enantioselective Addition of Organozinc Reagents to Aldehydes. *J. Org. Chem.* 1997, 62, 444−445. (b) Bolm, C.; Muñoz, K. Catalytic Enantioselective Aryl Transfer: Asymmetric Addition of Diphenylzinc to Aldehydes. *Chem. Commun.* 1999, 1295−1296.

(7) Kim, J. G.; Walsh, P. J. From Aryl Bromides to Enantioenriched Benzylic Alcohols in a Single Flask: Catalytic Asymmetric Arylation of Aldehydes. *Angew. Chem., Int. Ed.* 2006, 45, 4175−4178.

(8) (a) Wipf, P.; Ribe, S. Zirconocene-zinc transmetalation and in situ catalytic asymmetric addition to aldehydes. *J. Org. Chem.* 1998, 63, 6454−6455. (b) Li, H.; Walsh, P. J. Catalytic Asymmetric Vinylation and Dienylation of Ketones. *J. Am. Chem. Soc.* 2005, 127, 8355−8361.

(9) (a) Srebnik, M. Stereospecific Preparation of Trihaloalkylzincs by Alkene Transfer from Boron to Zinc. *Tetrahedron Lett.* 1991, 32, 2449−2452. (b) Oppolzer, W.; Radinov, R. N. Catalytic Asymmetric Synthesis of Secondary (E)-Alky Alcohols from Acetylenes and Aldehydes via 1-Alkenylzinc Intermediates−Preliminary Communication. *Helv. Chim. Acta* 1992, 75, 170−173.

(10) (a) Srebnik, M. Stereospecific Preparation of Trialkylzincs by Alkene Transfer from Boron to Zinc. *Tetrahedron Lett.* 1991, 32, 2449−2452. (b) Oppolzer, W.; Radinov, R. N. Catalytic Asymmetric Synthesis of Secondary (E)-Alky Alcohols from Acetylenes and Aldehydes via 1-Alkenylzinc Intermediates−Preliminary Communication. *Helv. Chim. Acta* 1992, 75, 170−173.

(11) (a) Schmidt, F.; Rudolph, J.; Bolm, C. Catalyzed Enantioselective Synthesis of Allylic Alcohols from Aldehydes and Alkenylboronic Acids. *Synthesis* 2006, 3625−3630. (b) Yang, Y.; Zhu, S.-F.; Zhou, Q.-L. Nickel-Catalyzed Enantioselective Allylation Coupling of Alkynes and Aldehydes: Synthesis of Chiral Allylic Alcohols with Tetra substituted Olefins. *J. Am. Chem. Soc.* 2008, 130, 14052−14053.

(12) Niwa, S.; Soai, K. Catalytic Asymmetric Synthesis of Optically Active Alkynyl Alcohols by Enantioselective Allyklynation of Aldehydes and by Enantioselective Alkylation of Aldehydes. *J. Chem. Soc., Perkin Trans. 1* 1990, 937−943.

(13) (a) Frantz, D. E.; Fassler, R.; Carreira, E. M. Facile Enantioselective Synthesis of Propargylic Alcohols by Direct Addition of Terminal Alkynes to Aldehydes. *J. Am. Chem. Soc.* 2000, 122, 1806−1807. (b) Anand, N.; Carreira, E. M. A Simple, Mild, Catalytic, Enantioselective Addition of Terminal Acetylenes to Aldehydes. *J. Am. Chem. Soc.* 2001, 123, 9687−9688.

(14) (a) Lu, G.; Li, X.; Chan, W. L.; Chan, A. S. C. Titanocatalyzed Enantioselective Alkylation of Aldehydes. *J. Chem. Soc., Chem. Commun.* 2002, 172−173. (b) Xu, Z.; Wang, R.; Xu, J.; Da, C.;
Tetrahedron to Aldehydes. Facile Synthesis and Its High Enantioselectivity in the Alkyne Addition

983. (f) Turlington, M.; Pu, L. Asymmetric Alkyne Addition to Aldehydes. Angew. Chem., Int. Ed. Engl. 2008, 10, 2709.

(g) Pu, L. Preparation of Highly Enantioselective Diphenylzinc Addition to Aliphatic and Aromatic Aldehydes Catalyzed by a Readily Available H8BINOL Derivative. Angew. Chem., Int. Ed. 2006, 45, 273–277.

(h) Qin, Y.-C.; Liu, L.; Sabat, M.; Pu, L. Synthesis of the Bifunctional BINOL Ligands and Their Application in the Asymmetric Additions to Carbonyl Compounds. Tetrahedron 2006, 62, 9335–9348.

(i) DeBerardinis, A. M.; Turlington, M.; Pu, L. Activation of Functional Arylzincs Prepared from Aryl Iodides and Highly Enantioselective Addition to Aldehydes. Org. Lett. 2008, 10, 2709.

(j) DeBerardinis, A. M.; Turlington, M.; Pu, L. Catalytic Asymmetric Addition of an in-situ Prepared Arylzinc to Cyclodexanecarboxaldehyde. Org. Syn. 2010, 87, 68–76.

(k) DeBerardinis, A. M.; Turlington, M.; Ko, J.; Sole, L.; Pu, L. Facile Synthesis of a Family of H8BINOL-Amine Compounds and Catalytic Asymmetric Arylzinc Addition to Aldehydes. J. Org. Chem. 2010, 75, 2836–2850.

(l) DeBerardinis, A. M.; Turlington, M.; Pu, L. From Highly Enantioselective Catalytic Enyne Addition to Aldehydes and Rh(I)-Catalyzed Asymmetric Enyne Addition to Aldehydes and Rh(I)-Catalyzed Asymmetric Enyne Addition to Aldehydes. Acc. Chem. Res. 2010, 43, 1017–1021.

(m) Kneisel, F. F.; Dochnahl, M.; Knochel, P. Nucleophlic Catalysis of the Iodine-Zinc Exchange Reaction: Preparation of Highly Functionalized Diaryl Zinc Compounds. Angew. Chem., Int. Ed. 2004, 43, 1017–1021.

(n) DeBerardinis, A. M.; Turlington, M.; Pu, L. Activation of Vinyl Iodides for Highly Enantioselective Addition to Aldehydes. Angew. Chem., Int. Ed. 2011, 50, 2416–2418.

(o) Pu, L. Highly Enantioselective Phenylacetylene Additions to both Aliphatic and Aromatic Aldehydes. Org. Lett. 2002, 4, 4143–4146.

(p) DeBerardinis, A. M.; Turlington, M.; Pu, L. High enantioselective terminal alkylzinc additions to aromatic aldehydes. Org. Lett. 2002, 4, 1179–1182.

(q) Turlington, M. Ph. D. Dissertation, University of Virginia, 2011.

(r) DeBerardinis, A. M.; Turlington, M.; Pu, L. Catalytic Asymmetric Addition of an in-situ Prepared Arylzinc to Cyclodexanecarboxaldehyde. Org. Lett. 2002, 4, 4143–4146.

(s) DeBerardinis, A. M.; Turlington, M.; Pu, L. Catalytic Asymmetric Addition of an in-situ Prepared Arylzinc to Cyclodexanecarboxaldehyde. Org. Lett. 2002, 4, 4139–4142.

(t) Turlington, M.; Pinto, J. D.; Desert, J. Nonlinear Optical Properties of Metal complexes. J. Am. Chem. Soc. 2003, 125, 1017–1018.

(u) DeBerardinis, A. M.; Turlington, M.; Pu, L. Catalytic Asymmetric Addition of an in-situ Prepared Arylzinc to Cyclodexanecarboxaldehyde. Org. Lett. 2002, 4, 4187–4188.

(v) DeBerardinis, A. M.; Turlington, M.; Pu, L. Catalytic Asymmetric Addition of an in-situ Prepared Arylzinc to Cyclodexanecarboxaldehyde. Org. Lett. 2002, 4, 4181–4184.

(w) DeBerardinis, A. M.; Turlington, M.; Pu, L. Catalytic Asymmetric Addition of an in-situ Prepared Arylzinc to Cyclodexanecarboxaldehyde. Org. Lett. 2002, 4, 4179–4180.

(x) DeBerardinis, A. M.; Turlington, M.; Pu, L. Catalytic Asymmetric Addition of an in-situ Prepared Arylzinc to Cyclodexanecarboxaldehyde. Org. Lett. 2002, 4, 4173–4176.

(y) DeBerardinis, A. M.; Turlington, M.; Pu, L. Catalytic Asymmetric Addition of an in-situ Prepared Arylzinc to Cyclodexanecarboxaldehyde. Org. Lett. 2002, 4, 4169–4171.

(z) DeBerardinis, A. M.; Turlington, M.; Pu, L. Catalytic Asymmetric Addition of an in-situ Prepared Arylzinc to Cyclodexanecarboxaldehyde. Org. Lett. 2002, 4, 4159–4162.

{(#) DeBerardinis, A. M.; Turlington, M.; Pu, L. Catalytic Asymmetric Addition of an in-situ Prepared Arylzinc to Cyclodexanecarboxaldehyde. Org. Lett. 2002, 4, 4149–4152.}