Synergies in offshore energy: a roadmap for the Danish sector

Matteo D’Andrea, Russell McKenna (University of Aberdeen)

Mario Garzón González (Technical University of Denmark)

21st April 2021
Agenda

• Introduction
• Methodology
• Results & Discussion
Introduction
Project aim

- Exploit synergies between the oil & gas sector and the offshore renewable energy to reduce:
 - CO2 emissions during the oil & gas platforms’ lifetime.
 - the economic and environmental impact of decommissioning oil & gas platforms by providing new uses for the infrastructures.

- Develop a roadmap for the Danish offshore O&G sector, which highlights the locations and timing of the strongest synergies and provides concrete recommendations in terms of how to exploit these.
Scenarios

- **Electrification and Repurposing**: The model can electrify the platforms and further repurpose the existing decommissioned infrastructure.
Area of interest
Methodology
Modelling Assumptions

- Whole system cost minimisation, including:
 - Investment/decommissioning in new/existing plants
 - Operation and costs of plants
- Planned developments in offshore wind are considered.
- Long term modelling horizon to 2050 with 6 modelling years from 2025.
- Perspective of the system planner, not the individual operators
- The Natural Gas prices reflect the market price cost; the development towards 2050 is based on a study from DEA.
- The CO2 tax development is based on the Balmorel model.
Hydrogen Production

- **Hydrogen** as a *commodity* is not implemented in the model.
- We included an *electricity demand* for the *decarbonization* of the *transport sector*.
- The model can **allocate** this *demand* between all *countries* included in the model (see figure).
 - It chooses the *cheapest regions* based on the electricity price.
 - The maximum demand allocation in each region is limited.
- When the *demand* is **allocated** on the *platform*, it is considered as the *input electricity* of the *electrolyser*.
- *Demand* for *hydrogen* across all these countries increases towards **2050**.
- The **allocation** of the **hydrogen production** is only *optimum* in this *larger context* (i.e. not just Danish O&G).
Repurposing Costs

For each cluster the repurposing costs are assumed as the following:

- The wells, the jackets, the pipelines and the subsea structure can be used as they are. The decommissioning costs of these structures are saved.

- 50%\(^a\) of the platforms can be renovated with a new topside to host the hydrogen plant. For these platforms, the old topside is decommissioned with a cost about 30%\(^b\) of the full decommissioning cost.

- The new topside has the same weight of the old one and costs 40 €/Kg \(^c\).

\[^a\] Own assumption based on future uses of the platform.
\[^b\] UKCS Decommissioning - Cost Estimate 2020, Oil & Gas Authority
\[^c\] On the economics of offshore energy conversion: smart combinations, 2017, Energy Delta Institute
Scenarios

Main scenarios

• **Decommissioning (BAU)**: Platforms are decommissioned according to the timeline.
• **Electrification and repurpose (E&R)**: Platforms are electrified and the existing infrastructure is repurposed for alternative uses.

Sensitivity Analysis scenarios

The sensitivity analysis scenarios are based on the E&R scenario.

Scenario’s name	Variable	Unit	Variation
FW-high	Floating Wind turbines LCOE	€/MWh	+25%
FW-low	Floating Wind turbines LCOE	€/MWh	-25%
TL-25, TL-50	Electricity transmission line	€/MWh	+25%, +50%
CO₂-low	CO₂ Tax	€/tCO	Linear increase from 8 to 60 €/tCO in 2050.
CO₂-mod	CO₂ Tax	€/tCO	Linear increase from 8 to 90 €/tCO in 2050.
H₂-low	Reuse of existing gas pipeline to transport hydrogen	€/MW/Km	Existing gas pipelines can be used for hydrogen at 10% of the costs of a new Hydrogen pipeline.
Results & Discussion
Decommissioning (BAU) scenario

- All platforms increase in costs towards 2050 until decommissioning.
- CO$_2$ and Fuel related expenses represent the highest share of costs among all clusters.
- CO$_2$ has the highest impact on the costs.
- The clusters’ OPEX ranges from 0.74% to 1.44% of the cumulative energy related yearly costs.

The costs shown are energy related. Decommissioning costs and the platform OPEX are not considered.
Electrification

- The platform Electrification results in large savings in Costs (129 M€_{2012}) and CO$_2$ emissions (1 MtCO$_2$) in 2025
Repurposing

- All platforms are repurposed in alternative to a Full Decommissioning.

- The hydrogen plant accounts for 60% of the costs, on average 428 \([\text{M\euro}_{2012}]/\text{year} \).

- The costs related to repurposing and operate the platforms account for 14%, in average 90 \([\text{M\euro}_{2012}]/\text{year} \).
Floating Wind installed capacity

- In E&R (reference) scenario FW is installed from 2045.
- Halfdan and Tyra have the largest share of FW capacity in 2045.
- FW reaches the aggregated capacity limit in 2050 (5.8 GW).
- FW is installed at the earliest in 2035.
Hydrogen plant per scenario

• In E&R (reference) scenario, Hydrogen is produced from 2045.
• Halfdan, Tyra and Harald are the first platform to produce hydrogen.
• On average about 3 GW of electrolyser capacity is installed across all fields.
• In a low FW scenario, production starts in 2035 with 0.4 GW plus.
Layout in 2050

- Pipelines are used only from 2045
- All platforms are interconnected to mainland in 2025
- Each cluster has invested in Floating Wind
- The Energy Island works as a bridge between the shore and the platforms
Discussion

• Platform operational costs (e.g. fuel consumption, CO2 taxes)
• Platform electrification (e.g. requirements, limitations)
• Platform repurposing (e.g. costs, technical issues)
• Costs allocation of investments (e.g. subsidies, ...)

References

- [1] Danish Energy Agency website [Web link]
- [2] Ospar survey [Web link]
- [3] Danish Energy Agency website [Web link]
- [4] COWI 2020, Tillæg til finscreening af havarealer til etablering af nye havmølleparker med forbindelse til energiø/hub September [Web link]
- [5] COWI 2020, Finscreening af havarealer til etablering af nye havmølleparker med direkte forbindelse til land [Web link]
- [6] IMSA Amsterdam, 2011, Decommissioning of North Sea oil and gas facilities. [Web link]
- [7] Energy Delta Institute, 2017, On the economics of offshore energy conversion: smart combinations [Web link]
- [8] Energy Islands - Developing Renewable Energy Hubs (Webinar) IEA, DEA, DTU
Transforming the world with greater knowledge and learning