Acute lymphoblastic leukemia - Section 3

New concepts in acute lymphoblastic leukemia frontline trials

Trausti Oskarsson, Mats Heyman
Karolinska Institutet, Stockholm, Sweden

Take Home Messages
- Treatment is so successful that improvements are difficult to show for reasons of statistical power. There is call for even wider collaborations.
- There is considerable over-treatment. We should aim to identify groups and test de-escalated therapy for patients who would potentially benefit from less therapy.
- Translational research gives us new prognostic markers and potential new targets for intervention, but proving the effect of targeted therapy is difficult.
- Innovative immunotherapy is currently one of the most promising new modalities.

Introduction
Contemporary treatment of acute lymphoblastic leukemia (ALL) cures >90% of children and >70% of young adults. However, some patients still relapse and die of ALL while others die from complications or suffer from toxicity and long-term sequelae as survivors. For children, the risk of dying from therapy is approaching the risk of dying from ALL. Thus, despite its curability, the potential therapeutic window for improvement is paradoxically narrowing. Further intensification risks causing the death of curable patients whereas de-intensification may result in increased risk of relapse and death from disease. Increasing knowledge of the pathogenesis provides markers for improved stratification as well as new targets for therapy. Manipulation of the immune-system and the use of immunological targets provide additional therapeutic possibilities (Table 1).

Current state-of-the-art
Power
Designing trials for rare diseases with good prognosis, such as ALL, is challenging. Statistical power is a major issue. In standard risk ALL with >95% survival, studies need to recruit immense numbers to detect differences between both intensification and de-escalation interventions. Smaller subsets with worse prognosis need smaller numbers, but recruitment takes longer because of the low incidence. This frequently necessitates the expansion of the recruitment base to international and inter-group collaborations. The formation of the ALLTogether consortium by European study-groups, the Interfant-collaboration for infants, the EsPhALL-COG protocol for Ph+ALL and the expansion of the BFM and ALLIC-groups are such examples.

Children and adults
Recent improvements have come from the adoption of “pediatric-style” treatment for young adults, in protocols for adults, or by collaborations including both age groups. Such integration has clarified some reasons for the age-difference in prognosis: Immunophenotype, genetics and MRD-response work in concert to produce a worse risk-profile with age. Out of 47 open or recently closed optimization-trials listed at www.clinicaltrials.gov only 15 were exclusive to adults, 9 included a wide range of ages, 11 included children and younger adults and 12 were pediatric studies with 18 as the upper age-limit.

De-intensification
Treatment for ALL is associated with severe toxicity, partly related to the treatment intensity. However, treatment-related death, second malignancies and serious long-term side effects occur even in standard risk patients. To identify patients, who may be cured with less therapy without increasing deaths from relapse, is one of the major challenges in ALL trials. One de-intensification successfully carried out for most children, is the removal of CNS-irradiation. Modest MRD-directed de-intensifications have been tried by several pediatric groups, but take a long time to evaluate and the conclusions drawn may have limited external validity. Subgroups with an elevated toxicity risk have been described, e.g. osteonecrosis in adolescents, thrombosis in adults and severe myelotoxicity in patients with low TPMT/NUDT15 activity. Both clinical risk-groups and patients with genetic susceptibility may be candidates for targeted de-intensification. To facilitate the comparison across treatment protocols common toxicity definitions as suggested by the Ponte di Legno group and the international pediatric classification of treatment-related mortality should be used.
New markers and targets

Modern genetic technology may help both in stratifying patients into known sub-groups as well as identifying new genetic aberrations, forming both the basis for new risk-groups and targets for directed therapy. Novel potentially prognostic and in some protocols stratifying genetic markers include Ph-like ALL,12 IKZF1-mutations and connected copy-number alteration patterns,13 TCF3-HLF fusion transcripts,14 ETV6-RUNX1-like ALL, DUX-4-, MEF2D- and ZNF384 rearrangements.15 Tyrosine kinase inhibitors (TKIs) are used in Ph+ALL. Similar therapy has been shown to have effect on “ABL-class”-kinases (ABL1, ABL2, PDGFRB and CSF1R)16 with alternative partners or JAK-STAT pathway activation (involving CRLF2, JAK2 and EPOR).17 A COG phase III trial adds the TKI dasatinib to chemotherapy in patients with Ph-like mutations. St.Jude’s Total Therapy XVII incorporates dasatinib, ruxolitinib or bortezomib based on molecular targets and treatment response. The upcoming European ALLTogether trial will also test TKIs in patients with ABL-class fusions.

Immunotherapy

Allogeneic hematopoietic stem-cell transplantation (HSCT), the traditional general immunotherapy for ALL is burdened with treatment related mortality and permanent side effects. The ongoing FORUM-trial is attempting to omit irradiation to children to reduce long-term effects. Targeted immunotherapy with monoclonal antibodies use activation/modulation of immune responses. Targets under current study include CD20 and CD22. Epratuzumab (anti-CD22) is tested in the IntReALL-trial for relapsed BCP-ALL. Anti-CD38 antibodies are starting early phase trials in relapsed/refractory patients. Bi-specific antibodies (BITEs) elicit autologous T-cell responses against leukemic cells by docking the T-cell receptor with a target antigen on the leukemic cells.18 Similarly, autologous T-cells can be genetically engineered to express a chimeric T-cell receptor directed against a leukemic cell antigen (CAR-T cells). The most common target for both therapies is CD19, but several others are under development. Both BITEs and CAR-T cells have shown remarkable effects with successful eradication of bulky, refractory disease. Side-effects include cytokine-release syndrome, CNS-toxicity and B-cell aplasia. One CAR-T (Tsagenlecleucel) and one BITE (Blinatumomab) have recently received a label for treatment of refractory ALL.19 The appropriate place in the therapy for these agents is currently under intense study. There are >50 ongoing trials using CAR-T cells and >10 studies including BITEs worldwide. Antibodies linked to chemotherapeutic agents should probably be considered targeted chemotherapy rather than immunotherapy. Antigen-targets include CD22, 19, 20 and 123. Inotuzumab ozogamicin (CD22) linked to the toxin calicheamicin, has recently been approved for relapsed and refractory B-lineage ALL.20 Trials including modulation of T-cell responses by the use of checkpoint-inhibitors targeting PDL-1, its receptor or CTLA-4 are also ongoing.

Table 1 Moving towards personalized medicine in ALL. Summary of main categories and interventions.

Examples	Intervention
Clinical factors, e.g. T-cell immunophenotype, CNS3-status	Stratification
Genetic aberrations, e.g.	Stratification
IKZF1 mutations, CNA-profile, TCF3-HLF fusion transcript, JAM21	Dose-Intensification
Minimal residual disease	Stratification
Pharmacodynamics	Therapeutic drug monitoring
Pharmacogenomics	Dose-adjustment TPM7/NUDT15
TYK-fusions	Tyrosine kinase inhibitors
JAK-STAT pathway activation	JAK kinase inhibitors
NOTCH pathway activation	NOTCH1 inhibitors
CD20-expression	Monoclonal antibodies
CD38-expression	Bi-specific antibodies
CD19-expression	Chimeric antigen receptor (CAR) T-cells
CD22-expression	Antibody-drug conjugates
PDL1-expression	Checkpoint Inhibitors

CNA: copy number alterations.
References

*1. Pui CH, Yang JJ, Hunger SP, et al. Childhood acute lymphoblastic leukemia: Progress Through collaboration. J Clin Oncol 2015;33:2938-48.

A comprehensive review of the lessons from collaborative group studies on childhood ALL and how they changed our view on personalized approaches in the diagnosis and treatment.

2. Kansagra A, Litzow M. Treatment of young adults with acute lymphoblastic leukemia. Curr Hematol Malig Rep 2017;12:187-96.

3. Hough R, Rowntree C, Goulden N, et al. Efficacy and toxicity of a paediatric protocol in teenagers and young adults with Philadelphia chromosome negative acute lymphoblastic leukaemia: results from UKALL 2003. Br J Haematol 2016;172:439-51.

4. Toft N, Birgens H, Abrahamsson J, et al. Results of NOPHO ALL2008 treatment for patients aged 1-45 years with acute lymphoblastic leukaemia. Leukemia 2017;32:606-15.

A clinical trial showing that a pediatric-based treatment is both effective and tolerable in patients 18-45 years.

5. Gokbuget N, Hoelzer D. Treatment of adult acute lymphoblastic leukaemia. Semin Hematol 2009;46:64-75.

6. Muffly L, Lichtensztajn D, Shiraz P, et al. Adoption of pediatric-inspired acute lymphoblastic leukaemia regimens by adult oncologists treating adolescents and young adults: A population-based study. Cancer 2017;123:122-30.

7. Toft N, Birgens H, Abrahamsson J, et al. Risk group assignment differs for children and adults 1-45 yr with acute lymphoblastic leukaemia treated by the NOPHO ALL-2008 protocol. Eur J Haematol 2013;90:404-12.

8. Vora A, Goulden N, Wade R, et al. Treatment reduction for children and young adults with low-risk acute lymphoblastic leukaemia defined by minimal residual disease (UKALL 2003): a randomised controlled trial. Lancet Oncol 2013;14:199-209.

A randomized clinical trial providing evidence that treatment reduction is feasible in standard risk and intermediate risk patients with rapid clearance of MRD by the end of induction.

9. Schrappe M, Bleckmann K, Zimmermann M, et al. Reduced-intensity delayed intensification in standard-risk pediatric acute lymphoblastic leukemia defined by undetectable minimal residual disease: Results of an international randomized trial (AIOP-BFM ALL 2000). J Clin Oncol 2018;36:244-53.

10. Schmiegelow K, Attarbaschi A, Barzilai S, et al. Consensus definitions of 14 severe acute toxic effects for childhood lymphoblastic leukaemia treatment: a Delphi consensus. Lancet Oncol 2016;17:e231-9.

11. Alexander S, Pole JD, Gibson P, et al. Classification of treatment-related mortality in children with cancer: a systematic assessment. Lancet Oncol 2015;16:e604-e10.

12. Boer JM, den Boer ML. BCR-ABL1-like acute lymphoblastic leukaemia: From bench to bedside. Eur J Cancer 2017;82:203-18.

13. Moorman AV, Enshaei A, Schwab C, et al. A novel integrated cytogenetic and genomic classification refines risk stratification in pediatric acute lymphoblastic leukemia. Blood 2014;124:1434-44.

14. Fischer U, Forster M, Rinaldi A, et al. Genomics and drug profiling of fatal TCF3-HLF-positive acute lymphoblastic leukaemia identifies recurrent mutation patterns and therapeutic options. Nat Genet 2015;47:1020-9.

15. Lillegaard H, Fioretos T. New oncogenic subtypes in pediatric B-cell precursor acute lymphoblastic leukemia. Blood 2017;130:1395-401.

16. Schwab C, Ryan SL, Chilton L, et al. EBF1-PDGFRB fusion in pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL): genetic profile and clinical implications. Blood 2016;127:2214-8.

17. Roberts KG, Yang YL, Payne-Turner D, et al. Oncogenic role and therapeutic targeting of ABL-class and JAK-STAT activating kinase alterations in Ph-like ALL. Blood Adv 2017;1:1657-71.

An in vitro study demonstrating the targetability of 14 different kinase-activating alterations in Ph-like ALL.

18. Topp MS, Kufer P, Gokbuget N, et al. Targeted therapy with the T-cell-engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. J Clin Oncol 2011;29:2493-8.

19. Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med 2018;378:439-48.

A phase II multisite study on CAR T-cell therapy in children and young adults with relapsed and refractory B-precursor ALL showing a high remission rate and a durable remission after a single infusion in patients with otherwise dismal prognosis.

20. Kantarjian HM, DeAngelo DJ, Stelljes M, et al. Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia. N Engl J Med 2016;375:740-53.