Sonographic presentation of metastases to the thyroid gland: a case-series.

Rosa Falcone, Valeria Ramundo, Livia Lamartina, Valeria Ascoli, Daniela Bosco, Cira Di Gioia, Teresa Montesano, Marco Biffoni, Marco Bononi, Laura Giacomelli, Antonio Minni, Maria Segni, Marianna Maranghi, Vito Cantisani, Cosimo Durante, Giorgio Grani

Journal of the Endocrine Society
Endocrine Society

Submitted: April 27, 2018
Accepted: June 18, 2018
First Online: June 21, 2018

Advance Articles are PDF versions of manuscripts that have been peer reviewed and accepted but not yet copyedited. The manuscripts are published online as soon as possible after acceptance and before the copyedited, typeset articles are published. They are posted "as is" (i.e., as submitted by the authors at the modification stage), and do not reflect editorial changes. No corrections/changes to the PDF manuscripts are accepted. Accordingly, there likely will be differences between the Advance Article manuscripts and the final, typeset articles. The manuscripts remain listed on the Advance Article page until the final, typeset articles are posted. At that point, the manuscripts are removed from the Advance Article page.

DISCLAIMER: These manuscripts are provided "as is" without warranty of any kind, either express or particular purpose, or non-infringement. Changes will be made to these manuscripts before publication. Review and/or use or reliance on these materials is at the discretion and risk of the reader/user. In no event shall the Endocrine Society be liable for damages of any kind arising references to, products or publications do not imply endorsement of that product or publication.
US presentation of metastases to the thyroid

Sonographic presentation of metastases to the thyroid gland: a case-series.

Rosa Falcone¹, Valeria Ramundo¹, Livia Lamartina¹, Valeria Ascoli², Daniela Bosco², Cira Di Gioia², Teresa Montesano¹, Marco Biffoni³, Marco Bononi⁴, Laura Giacomelli⁴, Antonio Minni⁵, Maria Segni⁶, Marianna Maranghi¹, Vito Cantisani², Cosimo Durante¹, Giorgio Grani¹

¹ Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
² Dipartimento di Scienze Radiologiche, Oncologiche ed Anatomo Patologiche, Sapienza Università di Roma, Rome, Italy
³ Dipartimento di Scienze Chirurgiche, Sapienza Università di Roma, Rome, Italy
⁴ Dipartimento di Chirurgia “P. Valdoni”, Sapienza Università di Roma, Rome, Italy
⁵ Dipartimento Organi di Senso, Sapienza Università di Roma, Rome, Italy
⁶ Dipartimento di Pediatria e Neuropsichiatria infantile, Sapienza Università di Roma, Rome, Italy

Received 27 April 2018. Accepted 18 June 2018.

Incidental sonographic discovery of thyroid nodules is an increasingly common event. The vast majority are benign, and those that are malignant are generally associated with an indolent course and low mortality. Sonographic scoring systems have been developed to help clinicians identify nodules that warrant prompt fine-needle aspiration cytology (FNAC), but they are based largely on experience with papillary thyroid cancers. We analyzed the performance of four scoring systems widely used for this purpose (ATA Guidelines, AACE/ACE/AME Guidelines, EU-TIRADS, and K-TIRADS) in patients whose nodules proved to be metastases from other solid cancers. Such nodules reportedly account for 0.2-3% of all thyroid malignancies. Each scoring system was used to retrospectively assess the malignancy risk and indications for FNAC of 5 patients’ thyroid nodules that were ultimately diagnosed as metastases (from renal cell carcinoma, breast cancer, lung cancer in two cases, and esophageal cancer). The primaries identified in these cases are those most commonly reported to metastasize to the thyroid. In two cases, the thyroid metastases were the first sign of undetected neoplastic disease. Although sonography alone cannot distinguish thyroid metastases from primary thyroid malignancies, all four scoring systems classified the metastatic nodules as suspicious enough to require FNAC. The five cases accounted for 0.2% of those cytologically examined in our center. In most cases, cytology provided useful guidance for the subsequent management of these lesions, which differs from that of primary thyroid cancers and requires multidisciplinary input.

Sonographic systems for assessing the risk of primary thyroid cancer in thyroid nodules can also guide management decisions for the rare nodules that prove to be metastases from other solid tumors.

Introduction

Detection of asymptomatic thyroid nodules during ultrasound screening programs or imaging performed for other indications is increasingly common, and the clinical management of these lesions is a challenge. Because most nodules are benign, it is important to avoid overdiagnosis and overtreatment. Clinical practice guidelines recommend restricting fine-needle aspiration cytology (FNAC) to selected lesions whose ultrasonographic features are associated with malignancy. Several scoring systems have been developed for this purpose (1-4). The “suspicious” features considered vary from system to system, but most (e.g., marked hypoechogenicity, irregular margins, microcalcifications) have been selected on the
basis of studies of papillary thyroid cancers. Some of the systems have also been found to perform well in the detection of medullary thyroid cancer (5), but they are less accurate in patients with follicular thyroid cancers (6).

What about the 0.2-3.0% of thyroid malignancies that ultimately prove to be metastases from other solid tumors (7,8)? Thyroid metastases have been reported in several types of cancer, the most common being renal-cell, lung, breast (9), and colon carcinomas (10). Despite their rarity, these entities must be considered during the work-up of new thyroid nodules. No data are available on the performance of ultrasound risk assessment systems in patients whose thyroid nodules are metastatic. To address this gap, we re-analyzed five cases of thyroid metastases referred to our unit for assessment of thyroid nodules, retrospectively calculating the indication for FNAC using four of the ultrasound-based systems most widely used for this purpose (Table 1).

Cases

Patient 1 was a 57-year woman being followed for three small apparently benign thyroid nodules detected in 2005. The patient had had a right nephrectomy with adrenalectomy in 2003 for clear-cell renal carcinoma (AJCC TNM stage pT1b), but regular oncologic follow-up assessments had been negative. Neck ultrasound performed in November 2012 revealed growth of one of the three nodules (Figure 1A). Given its ultrasound features (Table 1), this nodule was subjected to FNAC, which yielded indeterminate results (Bethesda class III, Italian Consensus for Thyroid Cytopathology [ICTC] TIR3B). Total thyroidectomy was performed, and the nodule was histologically diagnosed as metastatic renal-cell carcinoma; the patient’s other two nodules were benign.

Patient 2 was a 69-year man who had undergone right pulmonary lobectomy in March 2013 for lung adenocarcinoma (AJCC TNM stage pT2, pN0). Follow-up imaging studies (full-body computed tomography [CT] and 18-fluorodeoxyglucose [FDG]-positron emission tomography [PET]-CT) were unremarkable until April 2015, when focal FDG uptake was noted in the left thyroid lobe. In 2005, the patient had undergone radioiodine treatment for a hyperfunctioning thyroid nodule and had remained euthyroid since then. He was referred to our unit for assessment of the new nodule. Given its size and sonographic appearance (Table 1, Figure 1B), FNAC was performed. The lesion, unequivocally malignant (Bethesda class VI; ICTC TIR5), was composed of epithelial cells compatible with lung cancer. Total thyroidectomy was performed, and the lesion was histologically confirmed to be metastatic lung adenocarcinoma.

Patient 3 was a 47-year woman with metastatic ductal breast carcinoma (estrogen- and progesterone-receptor-positive). In 2005 she had had a right mastectomy with homolateral lymph node dissection followed by adjuvant chemotherapy. Reconstructive surgery performed in 2010 revealed other metastatic nodes in the right axilla, and bone metastases were discovered shortly thereafter. These metastases were treated with several courses of chemotherapy. In 2014, routine ultrasonography by her oncologist revealed a single, non-suspicious nodule in the thyroid isthmus, which was being managed with sonographic surveillance alone. A repeat sonogram obtained in November 2017 because of a palpable neck mass disclosed three additional thyroid nodules (one in the right lobe, two in the left) and a suspicious lymph node in the right lateral neck (Table 1, Figure 1C and 1D). FNAC of the lymph node and the right-lobe thyroid nodule revealed epithelial cells suggestive of metastatic breast carcinoma (Bethesda class VI; ICTC TIR5). Surgery—performed mainly for diagnostic purposes (lymph node biopsy, thyroid lobectomy)—confirmed the cytological findings, showing diffuse infiltration by ductal breast cancer.

Patient 4, a 39-year man, was referred to our unit by his otolaryngologist in November 2017 for assessment of recent-onset dysphagia and a palpable mass in the left lateral neck.
Neck ultrasonography revealed a highly suspicious nodule in the left thyroid lobe (Figure 1E), along with other smaller nodules, and a suspicious lymph node in the right lateral neck (level III). FNAC of the left-lobe thyroid nodule and contralateral lymph node revealed neoplastic epithelial cells suggestive of a non-thyroidal primary malignancy. In light of these findings, thyroid surgery was deferred and an 18-FDG-PET-CT scan ordered. Focal uptake was seen in the esophageal wall, and the presence of esophageal adenocarcinoma was confirmed by endoscopic biopsy.

Patient 5 was a 69-year-old man undergoing follow-up in the hematology outpatient clinic for a cutaneous marginal zone lymphoma. In February 2018, a palpable lymph node was noted in the lateral neck. The sonographic examination by the hematology staff revealed an enlarged thyroid with hypoechoic nodules in each lobe. Multiple, suspicious lymph nodes were seen bilaterally. Surgical biopsy of the most suspicious lymph node revealed connective and muscle tissues infiltrated by malignant epithelial cells, extensive necrosis, and no lymphoid tissue. Immunohistochemical findings (positivity for CKAE1/AE3, CK8/18, CK19, CK7, TTF1; negativity for CK20, napsin A, chromogranin A, melan-A, PSA, PSAP, NCAM, p63, p40, and synaptophysin) were considered compatible with metastasis from a pulmonary or possibly thyroid malignancy. FNAC of the left-lobe thyroid nodule (Table 1, Figure 1F) performed by our staff revealed malignancy (Bethesda class VI; ICTC TIR5) with poorly differentiated epithelial cells. Full-body CT confirmed the presence of multiple solid nodules in both lungs, the largest (33 x 24 mm) located at the apex of the left lung.

Conclusions

Solid tumor metastases to the thyroid gland are rare: the lesions reported above represented 0.2% of the thyroid nodules subjected to FNAC in our unit. The origins of the metastases in these five cases were those most commonly reported in the literature (i.e., kidney, lung, breast, gastrointestinal tract) (7,8). The possibility of metastasis must be considered in the differential diagnosis of any new thyroid nodule. This is especially true in patients with histories of cancer, regardless of how long ago it was diagnosed and the current status of the disease. However, as illustrated by Cases 4 and 5, thyroid metastases can also be the first sign of unsuspected cancer.

Systems currently used to sonographically assess the likelihood of malignancy in patients with thyroid nodules are helpful (1-4), but sonographic features alone cannot distinguish primary and metastatic malignancies of the thyroid. However, all four of the systems we tested consistently classified our patients’ metastatic lesions among those few that were suspicious enough to warrant cytological evaluation. And in most cases, cytological findings provided useful guidance for subsequent management, highlighting the need for additional diagnostic procedures rather than immediate thyroidectomy (the option chosen in Case 1, where the FNAC was indeterminate). Treatment decisions in these cases require multidisciplinary input. Thyroid surgery can be palliative when metastases are causing compressive symptoms, but it has traditionally been regarded as futile in the presence of diffuse metastatic involvement, which is generally associated with a poor prognosis. However, a recent meta-analysis (8) showed that total thyroidectomy increases both disease-free and overall survival in patients with thyroid metastases, even when accompanied by disseminated disease.

Grants or fellowships supporting the writing of the paper:

RF, VR, LL, and GG contributed to this paper as recipients of the PhD program of Biotechnologies and Clinical Medicine of the University of Rome, Sapienza. Writing support
was provided by Marian Everett Kent, BSN, and funded by the Umberto Di Mario Foundation.

Sapienza Università di Roma http://dx.doi.org/10.13039/501100004271, Rosa Falcone; Sapienza Università di Roma http://dx.doi.org/10.13039/501100004271, Valeria Ramundo; Sapienza Università di Roma http://dx.doi.org/10.13039/501100004271, Livia Lamartina; Sapienza Università di Roma http://dx.doi.org/10.13039/501100004271, Giorgio Grani

Corresponding author: Giorgio Grani, M.D., Dipartimento di Medicina Interna e Specialità Mediche, Università di Roma Sapienza, Viale del Policlinico, 155, 00161 Rome - Italy , Phone: +39 (0)6 49975130, giorgio.grani@uniroma1.it

Disclosure summary:
None of the authors have any conflict of interest relevant to the subject matter or materials included in this paper.

References
1. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, Pacini F, Randolph GW, Sawka AM, Schlumberger M, Schuff KG, Sherman SI, Sosa JA, Steward DL, Tuttle RM, Wartofsky L. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016; 26:1-133
2. Gharib H, Papini E, Garber JR, Duick DS, Harrell RM, Hegedüs L, Paschke R, Valcavi R, Vitti P. American Association of Clinical Endocrinologists, American College of Endocrinology, and Associazione Medici Endocrinologi medical guidelines for clinical practice for the diagnosis and management of thyroid nodules - 2016 update. Endocr Pract 2016; 22:622-639
3. Russ G, Bonnema SJ, Erdogan MF, Durante C, Ngu R, Leenhardt L. European Thyroid Association Guidelines for Ultrasound Malignancy Risk Stratification of Thyroid Nodules in Adults: The EU-TIRADS. Eur Thyroid J 2017; 6:225-237
4. Shin JH, Baek JH, Chung J, Ha EJ, Kim JH, Lee YH, Lim HK, Moon WJ, Na DG, Park JS, Choi YJ, Hahn SY, Jeon SJ, Jung SL, Kim DW, Kim EK, Kwak JY, Lee CY, Lee HJ, Lee JH, Lee KH, Park SW, Sung YJ, Korean Society of Thyroid R, Korean Society of R. Ultrasonography Diagnosis and Imaging-Based Management of Thyroid Nodules: Revised Korean Society of Thyroid Radiology Consensus Statement and Recommendations. Korean J Radiol 2016; 17:370-395
5. Valderrabano P, Klippenstein DL, Tourtelot JB, Ma Z, Thompson ZJ, Lilienfeld HS, McIver B. New American Thyroid Association Sonographic Patterns for Thyroid Nodules Perform Well in Medullary Thyroid Carcinoma: Institutional Experience, Systematic Review, and Meta-Analysis. Thyroid 2016; 26:1093-1100
6. Grani G, Lamartina L, Durante C, Filetti S, Cooper DS. Follicular thyroid cancer and Hürthle cell carcinoma: challenges in diagnosis, treatment, and clinical management. Lancet Diabetes Endocrinol 2017; doi: 10.1016/S2213-8587(17)30325-X.
7. Chung AY, Tran TB, Brumund KT, Weisman RA, Bouvet M. Metastases to the thyroid: a review of the literature from the last decade. Thyroid 2012; 22:258-268
8. Straccia P, Mosseri C, Brunelli C, Rossi ED, Lombardi CP, Pontecorvi A, Fadda G. Diagnosis and Treatment of Metastases to the Thyroid Gland: a Meta-Analysis. Endocr Pathol 2017; 28:112-120
9. Hegerova L, Griebeler ML, Reynolds JP, Henry MR, Gharib H. Metastasis to the thyroid gland: report of a large series from the Mayo Clinic. Am J Clin Oncol 2015; 38:338-342

10. Lievre A, Leboulleux S, Boige V, Travagli JP, Domain C, Elias D, Ducreux M, Malka D. Thyroid metastases from colorectal cancer: the Institut Gustave Roussy experience. Eur J Cancer 2006; 42:1756-1759

Figure 1: Ultrasonographic images of the metastatic lesions (A) renal cell carcinoma metastasis to the thyroid; (B) thyroid metastasis from lung adenocarcinoma; (C) thyroid metastasis and (D) level 2 cervical lymph node metastasis from breast cancer; (E) thyroid metastasis from esophageal cancer; (F) thyroid metastasis from lung cancer. Detailed descriptions and US classifications are provided in Table 1.

Table 1. Features of the metastatic thyroid nodules and their sonographically estimated risks of malignancy

Case / Source of the metastasis	Sonographic features	Estimated risk of malignancy
Patient 1 - Renal cell carcinoma (Figure 1A)	Solid, inhomogeneous (central hypoechogetic), smooth margins. Dimensions: 9.5 x 8.7 x 17.5 mm	AACE: intermediate ATA: intermediate EU-TIRADS: 4 K-TIRADS: 4
Patient 2 - Lung adenocarcinoma (Figure 1B)	Solid, hypoechoic, irregular margins. Dimensions: 13.3 x 17.6 x 20.4 mm	AACE: high ATA: high EU-TIRADS: 5 K-TIRADS: 5
Patient 3 - Breast cancer (Figure 1C and D)	Solid, hypoechoic, irregular margins. Dimensions: 20.3 x 16.9 x 25.9 mm One suspicious lymph node (ipsilateral)	AACE: high ATA: high Suspicious lymph nodes (ipsilateral) EU-TIRADS: 5 K-TIRADS: 5
Patient 4 - Esophageal cancer (Figure 1E)	Solid, markedly hypoechoic, irregular margins. Dimensions: 20.7 x 20.8 x 32.3 mm Suspicious lymph nodes (bilateral)	AACE: high ATA: high Suspicious lymph nodes (bilateral) EU-TIRADS: 5 K-TIRADS: 5
Patient 5 - Lung cancer (Figure 1F)	Solid, hypoechoic with focal marked hypoechogeticity, irregular margins. Dimensions: 23 x 22 mm Suspicious lymph nodes (bilateral)	AACE: high ATA: high Suspicious lymph nodes (bilateral) EU-TIRADS: 5 K-TIRADS: 5
