Laura Piccio, MD, PhD, is a Clinician Scientist with research interests in integrating clinical and research aspects related to neuroimmunology and autoimmune diseases. One of her major areas of study is the complex interaction between diet, the immune system, and metabolism in multiple sclerosis and its animal models. She completed her medical degree and neurology residency at the University of Milan, Italy. Then, she was awarded a post-doctoral fellowship during which she worked under the mentorship of Dr. Laura Piccio at Washington University in St Louis, USA. Dr. Piccio has published over 70 peer-reviewed articles in international journals. In February 2019, she joined the University of Sydney, Australia, as an Associate Professor at the Brain and Mind Centre. She has a dual appointment at Washington University in St Louis, USA.

Eileen Liao, BSc Hon's, completed her honours thesis in the laboratory of Dr Laura Piccio on the effects of high-fibre diet in combination with intermittent fasting in the experimental autoimmune encephalomyelitis model of multiple sclerosis. She will be entering the Doctor of Medicine programme at the University of Sydney, Australia, commencing in 2022.

Laura Ghezzi, MD, is a Neurologist with a strong research interest in understanding inflammatory and immune-mediated mechanisms involved in the pathogenesis of multiple sclerosis (MS). She completed her medical degree and neurology residency at the University of Milan, Italy. In 2015, during her residency, she joined the group of Dr Laura Piccio at Washington University in St Louis, USA, where she spent 18 months performing research on the effects of intermittent fasting in preclinical MS models and in people with MS. During this period, she developed her passion for Neuroimmunology. In 2019, she went back to Washington University as a post-doctoral fellow in the Neurology Department supported by a fellowship from Fondazione Italiana Sclerosi Multipla (FISMA). In 2020, she was awarded a three-year post-doctoral fellowship from the National MS Society to work on a project focused on mucosal associated invariant T cells in MS.

Dietary restriction in multiple sclerosis: evidence from preclinical and clinical studies

Abstract

Dietary restriction (DR) interventions, which encompass both chronic and intermittent reductions in energy intake, are emerging as potential therapeutic approaches for dampening neuroinflammation and demyelination in multiple sclerosis (MS). Mechanisms mediating the beneficial effects of DR include the regulation of pro- and anti-inflammatory signalling molecules and gut microbiome remodelling. This article summarises the preclinical evidence supporting the role of DR in attenuating disease in animal models of MS and the developing clinical evidence indicating the safety and feasibility of such DR interventions in people with MS (pwMS).

Multiple sclerosis (MS) is considered an autoimmune disease of the central nervous system (CNS), resulting from the complex interplay between genetic and environmental risk factors. Several epidemiological studies conducted over the last decade have established the association between early-life obesity and elevated future risk of MS development [1]. Overweight and obesity (BMI ≥25 or 30, respectively) in adolescents and young adults increased MS risk by two-fold [2-5]. Mendelian randomisation studies have correlated genetic determinants of high BMI with heightened MS susceptibility, accounting for possible confounding lifestyle and socioeconomic factors and supporting a causal relationship between obesity and MS [6-7]. Moreover, obesity was associated with an almost two-fold increased relapse risk, greater annual increase in disability [8], and higher brain volume loss [9].

Multiple mechanisms may underlie the obesity-mediated increase of MS risk, some of which are not clearly understood and are the subject of ongoing investigations. Firstly, obesity is characterised by chronic low-grade inflammation with increased secretion of inflammatory mediators including IL-6, IL-12 and TNF-α and enhanced production of reactive oxygen species by adipose tissue macrophages [10-11]. Furthermore, higher adiposity is associated with increased serum levels of leptin, a pro-inflammatory adipokine [12]. This chronic inflammatory state may act to predispose overweight and obese individuals to the development of autoimmunity. Moreover, obesity is linked to dysbiotic alterations of the gut microbiota [13-14]. The gut microbiota is emerging as a potential modulator of pathogenic immune responses, with animal studies providing evidence for the role of gut microbiota in regulating T lymphocyte differentiation, CNS inflammation and microglia function, as well as myelination and blood-brain barrier integrity [15-18]. Correspondingly, people with MS (pwMS) display moderately gut microbiota dysbiosis [19-20].

Dietary restriction (DR) without malnutrition is a powerful intervention shown to extend healthy lifespan in many animal species, including non-human primates [21]. Furthermore, DR promotes weight loss and reduces multiple markers of inflammation in humans and also the experimental autoimmune encephalomyelitis (EAE) model of MS [22-27]. DR also prevents demyelination and promotes remyelination in toxin-induced models of MS [26,28-30]. In this article, we will review the beneficial effects of DR, including its ability to lower levels of pro-inflammatory molecules and reshape gut microbiome composition, highlighting the potential utility of DR for protecting against neuroinflammation and demyelination in pwMS.

Dietary restriction

Dietary restriction (DR) is defined here as a reduction in total food intake, either chronically or intermittently, whilst maintaining proper nutrition. Chronic DR, also known as calorie restriction (CR), entails a variable reduction in energy intake every day (usually ~20% in humans and up to 40-50% in preclinical models), wherein meal frequency remains unchanged. Intermittent fasting (IF) involves complete abstinence or substantial reduction of energy intake for periods of time, usually
12 hours or longer, and unrestricted feeding during meal times [31]. Examples of IF regimens include time-restricted feeding (TRF), in which total daily food intake is limited to a specific timeframe within the day (typically lasting between 6-8 hours), lasting or drastic caloric reduction (e.g., consumption of 500 calories per day) on alternate days (alternate day fasting or alternate day modified fasting), fasting for 2 days per week (5:2 diet), and fasting mimicking diet (FMD) which comprises several days (usually 5-7 days in humans or 3 days in preclinical models) of drastically reduced calorie intake [32]. Collectively, DR interventions can induce healthy weight loss in overweight individuals and more importantly, exert beneficial anti-inflammatory and neuroprotective effects both in relation to and independent of reduced adiposity [24].

**Balancing the pro-inflammatory versus anti-inflammatory cytokine milieu**

The adipose tissue serves as not only an energy reservoir, but also an endocrine organ, secreting cytokines and hormones, collectively termed “adipokines”, which can modulate immune responses [33]. A standard Western diet (WD) is characterised by the regular intake of high amounts of processed foods, red meat, high-fat dairy products, high-sugar, and pre-packaged foods and leads to excess adiposity with consequent adipokine dysregulation characterised by upregulation of pro-inflammatory molecules, such as leptin, C-reactive protein, TNFa and IL-6, and down-regulation of anti-inflammatory factors, such as adiponectin [34] (Figure 1). CR and IF interventions reduce visceral adiposity in humans [35,36] and restore the balance between pro-inflammatory and anti-inflammatory mediators in animals and humans [22,37,38]. DR reliably decreases leptin levels and increases adiponectin levels in animals and humans [24,39,40] (Figure 1). Pertinently, pwMS display elevated leptin and reduced adiponectin levels, with leptin concentration correlating negatively with the number of regulatory T cells [41,42]. Hence, DR restriction may be an effective tool for tempering the dysregulated cytokine milieu in MS (Figure 1).

**Gut microbiome and neuroinflammation**

A considerable number of studies have reported alterations in the gut microbiome composition in pwMS. Unfortunately, there is little overlap in results between studies and only some taxa are consistently reported as differentially represented. Several studies reported an over-representation of the genera Akkermansia in pwMS compared to healthy controls [15,19,43] together with a reduced abundance of Bacteroidaceae, Faecalibacterium, Clostridium species and Prevotella strains [44-46]. Both Clostridium and Bacteroidaceae have immunomodulatory effects, promoting the differentiation of murine regulatory T cells and the production of IL-10 [47-49] (Figure 1). It is unclear whether these gut-microbiota alterations in MS are a consequence of the disease or contribute to disease pathogenesis. However, in support of a real pathogenic role is the finding that gut microbiota or gut-derived molecules obtained from pwMS can modulate disease in the main MS animal model, EAE, when transferred into mice [15,43]. Specifically, recipient mice inoculated with microbiota from pwMS showed increased incidence of spontaneous EAE [43] and exacerbated EAE clinical severity with decreased regulatory T cell expression compared to those inoculated with healthy control microbiota [15]. Furthermore, extracts from specific MS-associated bacterial species increased in vitro differentiation of pathogenic CD4+ T helper 1 cells, whilst extracts from bacterial species that were diminished in pwMS boosted regulatory T cell differentiation [15]. These findings indicate a role for MS-related microbiota in shaping immune phenotypes and function.

DR interventions have the potential to positively influence gut microbiota composition. For example, life-long calorie restriction changed gut microbiota structure in mice, as marked by an enrichment of anti-inflammatory bacterial strains including *Lactobacilli* [50]. Microbial alterations were accompanied by reductions in serum levels of lipopolysaccharide-binding protein, a marker of gut-derived endotoxin load [50], which is also correlated with systemic inflammation.

**Search strategy**

To find studies testing DR regimens in preclinical models of MS and pwMS, a literature search was conducted in PubMed in September 2021 using the search string (“multiple sclerosis” OR (CNS autoimmunity) OR (experimental autoimmune encephalomyelitis) OR (experimental allergic encephalomyelitis)) AND ((dietary restriction) OR (calorie restriction) OR (caloric restriction) OR (fasting) OR (intermittent)). After reading titles and abstracts, only original research articles investigating restriction of total food intake (not specific macronutrients or micronutrients) were included.

**Effects of dietary restriction in preclinical models**

There is strong preclinical evidence supporting the efficacy of DR regimens, including both CR and IF, in protecting against neuroinflammation and demyelination (Table 1). The preventative effects of CR in EAE were first demonstrated in 2004 [51]. Prior to immunisation, Lewis rats were subjected to 15 days of severe CR, equivalent to 66% reduction from ad libitum intake and then monitored for EAE symptoms. Whilst 8 out of 9 ad libitum-fed rats developed clinical signs of EAE, calorie-restricted rats did not display any disease manifestations and demonstrated reduced lymphocyte response to T-cell mitogen concanavalin A [51]. A follow-up study utilising the same 15-day CR protocol revealed that moderate CR (33% reduction) was insufficient for preventing EAE progression, whilst severe 66% CR-induced inhibition of EAE development was likely mediated by decreased IFN-γ production [52]. Our group demonstrated that a month of 40% CR in mice delayed EAE clinical onset and decreased disease severity [23]. CR was associated with increased levels of adiponectin and corticosterone, and decreased levels of IL-6 and leptin [23].

IF administered before immunisation and throughout the course of EAE similarly delayed disease onset and reduced the incidence and severity of disease [24,53]. Along with atten-
Ameliorates EAE clinical course and promotes recovery as demonstrated by reduced pro-inflammatory cytokines, Th17 cells and antigen-presenting cells [28]. IF – alternate-day fasting increased remyelination in aged rats [29].

**Effects of dietary restriction in people with MS**
The effects, safety and feasibility of DR in pwMS have been investigated in several studies (Table 2). A 6-month prospective study of 40 pwMS with mild disability (expanded disability status scale-EDSS score ≤3) found that Ramadan fasting, lasting approximately 13 hours daily for a month (however fasting periods can vary between 11 to 18 hours depending on year and geographical location), was safe and did not exacerbate disease [56]. Ramadan fasting (14-hour daily fast) in pwMS with mild disability also significantly boosted physical and mental health measures including energy, health perception and emotional well-being [57]. Several interventional DR regimens have been tested in pwMS. A single 7-day cycle of FMD followed by a Mediterranean diet for 6 months improved health-related quality of life metrics and mildly reduced EDSS scores [26]. We compared the effects of 15 days of IF (intake limited to 500 calories every second day) and regular feeding in 16 pwMS undergoing acute MS relapse and receiving corticosteroid treatment [24]. IF was well-tolerated, reduced leptin levels, and recapitulated gut microbiome effects.
Table 2. Summary of studies that tested DR regimens in people with MS (pwMS)

| Type of DR and duration | Study design, sample size, subject clinical characteristics | DR effects on inflammatory markers | Main outcomes of DR in pwMS | Reference |
|-------------------------|-------------------------------------------------------------|----------------------------------|-----------------------------|-----------|
| Ramadan fasting          | Prospective study (subjects followed for 6 months after Ramadan to assess clinical outcomes) 2 groups – (1) pwMS who fasted during Ramadan, (2) pwMS who did not fast during Ramadan matched for age, gender, EDSS scores and relapse rates (n=40 per group) pwMS with mild disability (EDSS ≤3), type of MS not specified | Not reported                      | Well tolerated No significant differences in EDSS scores or number of clinical relapses between 2 groups | [56]      |
| 13-hour daily fasting   | Prospective study (subjects assessed before and after month of Ramadan) 1 group – pwMS who fasted during Ramadan (n=218) pwMS (RRMS) with mild disability (EDSS ≤3) | Not reported                      | Significantly improves physical health and mental health composites of QOL, including role limitations due to emotional problems, emotional wellbeing, energy, health perception, sexual function | [57]      |
| 1 month                 | Single-centre randomised controlled trial 3 dietary intervention groups – (1) 7 days FMD followed by MD for 6 months, (2) ketogenic diet for 6 months, and control diet for 6 months (n=20 per group) pwMS (RRMS) with EDSS ≤6.5 | Slight ↓ blood lymphocyte and WBC counts after 6 months of FMD + MD compared to control diet (p=0.07) >20% reduction in lymphocyte count directly after 7 days of FMD in 72% of pwMS given FMD treatment | Well-tolerated (100% compliance rate), safe and feasible Significantly improves health-related QOL measures including overall QOL, change in health, physical health composite, and mental health composite compared to control; mild reduction in EDSS scores | [26]      |
| Single cycle of FMD for | IF – alternate-day fasting (fasting days restricted to 500 kcal) 15 days | Single-centre randomised controlled pilot trial 2 groups, both given same corticosteroid treatment for acute relapse – (1) pwMS subjected to IF, (2) control group of pwMS eating their regular diet (n=8 per group); no significant differences in age, BMI and EDSS score between groups pwMS (RRMS) experiencing acute clinical relapse at time of study; BMI ≥23 | ↓ leptin, ↓ blood B cell and naïve CD4+ count, ↑ Treg cell in vitro suppressive capacity | [24]      |
| 7 days (200-350 kcal per day, consisting of vegetable broth/juice and linseed oil) followed by Mediterranean diet (MD) for 6 months | | | Well tolerated, safe and feasible, ↓ BMI at day 15 | |
| 22% CR or IF (75% calorie reduction for 2 days per week) | 8 weeks, with all meals delivered to homes | Single-centre randomised controlled trial 3 groups – (1) pwMS subjected to CR, (2) pwMS subjected to IF, (3) control group pwMS subjected to diet comprising 100% of calorie needs (n=12 per group) pwMS (RRMS) with EDSS <6 and new lesion or relapse within the past 2 years; BMI ≥23 | Not reported | Safe and feasible Both 22% CR and IF induce weight loss, improve emotional wellbeing, and have no negative impact on fatigue or sleep quality; ↓ adherence to diet in IF group compared to CR group (measured as per-day difference in calorie consumption from assigned intake) | [58]      |
| 22% CR or IF (75% calorie reduction for 2 days per week) | 48 weeks (meals delivered in first 8 weeks, followed by self-directed IF (75% calorie reduction for 2 days per week) in last 40 weeks) | Single-centre randomised controlled trial 3 groups in first 8 weeks – (1) pwMS subjected to CR, (2) pwMS subjected to IF, (3) control group pwMS subjected diet comprising 100% of calorie needs (n=12 per group) followed by transition to IF for all groups pwMS (RRMS) with EDSS <6 and new lesion or relapse within the past 2 years; BMI ≥23 | Not reported | Safe and feasible, but poor adherence (only 16% of remaining participants reporting adherence to IF at 48 weeks) No significant differences in weight or patient-reported outcomes (fatigue, sleep quality, quality of life) | [59]      |
| 22% CR or IF (75% calorie reduction for 2 days per week) | 6 months | Single-centre randomised controlled trial Participants allowed to select either (1) CR (n=11) or (2) IF (n=8): 5 CR and 5 IF participants randomised to receive weekly text message communication pwMS (RRMS) receiving natalizumab with BMI ≥25 | Not reported | Safe and feasible with 50% adherence Text message communication did not improve adherence or patient-reported outcomes (fatigue, sleep quality, quality of life) | [59]      |
| TRF (16-hour daily fasting period) | 6 months | Single-centre randomised controlled trial 2 groups – (1) pwMS undergoing TRF, (2) control group of pwMS eating their regular diet (n=12 per group) pwMS (RRMS) receiving natalizumab | Not reported | Safe and feasible, with 83.3% adherence No significant differences in weight or patient-reported outcomes (fatigue, sleep quality, quality of life) | [59]      |

Abbreviations: ↑, increase; ↓, decrease; BMI, body mass index; CR, calorie restriction; DR, dietary restriction; EDSS, expanded disability status scale; FMD, fasting mimicking diet; IF, intermittent fasting; pwMS, people with MS; QOL, quality of life; RRMS, relapsing-remitting multiple sclerosis; Treg, regulatory T cell; TRF, time restricted feeding; WBC, white blood cell.
alterations seen in EAE mice subjected to IF [24]. An 8-week randomised controlled study assessed the effects of 22% CR and IF (2 days of 75% reduction in energy intake and 5 days of ad libitum feeding) in 36 pwMS [58]. Both dietary regimens were concluded to be safe and feasible and were associated with significant improvements in emotional health, whilst adherence was reduced in the CR regimen [58]. The same research group performed a month pragmatic randomised controlled trials of 22% CR, IF (75% calorie reduction for 2 days per week) and TRF (in which consumption of all daily calories was limited to an 8-hour interval), with feasibility and patient adherence as primary outcome measures [59]. Whilst all DR regimens tested proved to be feasible, self-reported adherence was much higher for the TRF diet than both CR and IF regimens over 6 months, which both demonstrated poor long-term adherence [59]. Altogether, a variety of dietary regimens with IF have been proven to be safe and feasible in pwMS.

Presently, there are several ongoing clinical trials of DR in pwMS to investigate whether the anti-inflammatory and gut microbiome-modulating properties of IF observed in preclinical studies are recapitulated in pwMS, we are currently conducting a 12-week randomised controlled study investigating the effects of IF (2 fasting days/week) on peripheral blood immunological parameters, metabolic profiles and gut microbiota composition in pwMS (NCT03508904). Other ongoing trials are focused on determining whether DR can improve clinical outcomes, which is currently inconclusive. An 18-month, 3-armed study is comparing the occurrence of new cerebral lesions as measured by magnetic resonance imaging between 111 pwMS randomly assigned either a ketogenic diet, an IF regimen consisting of TRF (fasting for 14 hours per day) and an additional 1 week of fasting every 6 months, or a control vegetarian-based diet (NCT03508414). Lastly, a study is investigating the effects of 15-20% calorie restriction, with or without abstinence from dairy and gluten products, on MS progression as well as immune cell activity and metabolism (NCT0421415).

Potential risks of DR

Whilst no serious adverse effects have been reported in clinical trials of DR in pwMS, it is important to be aware of the potential risks that may accompany DR and potential contraindications that may render individuals unsuitable for DR. Mild symptoms experienced by pwMS undergoing DR included fatigue and headaches [26,58,59], although these may or may not be directly related to DR. An assessment of adverse events occurring during medically supervised water-only fasting for 2 days consecutively, with a patient cohort not specific to pwMS, described fatigue, insomnia, nausea, headache, hypertension (which was likely incidental due to pre-existing hypertension), presyncope, dyspepsia, and back pain as effects present in more than 25% of visits (from a total of 768 visits), in order of frequency [60]. Contraindications to DR may include low body weight or BMI, pregnancy, very young or old age, comorbidities such as diabetes, and prescription of specific medications. Further, clinical trials have been conducted only in relapsing-remitting MS (RRMS) patients with mild to moderate disability, thus DR may not be appropriate for pwMS with severe disability.

Conclusion and future perspectives

Since the characterisation of obesity as a risk factor for MS, subsequent investigations into the mechanisms underlying this association have implicated the involvement of cytokines from adipose tissue and dysbiotic microbiota in MS. In particular, DR has emerged as an effective method of counteracting the detrimental effects associated with increased adiposity. Indeed, mounting preclinical evidence suggests that DR exerts neuro-protective effects, which are mediated by the modulation of pro- and anti-inflammatory molecules and alterations to the gut microbiome, among other possible mechanisms. Clinical trials have confirmed the safety and feasibility of various DR regimens and demonstrated DR-induced improvements in quality of life measures in pwMS. There is a need for larger and longer randomised controlled studies to produce strong definitive evidence linking DR with improved clinical outcomes before any clinical recommendations can be made. Long-term patient adherence has been a barrier to determining whether DR can improve clinical disease outcomes and is an important factor to consider when selecting any particular DR regimen. It’s important to recognise that DR alone might not be effective in significantly improving clinical outcomes. However, it can be considered a valuable complementary intervention to commonly used disease modifying treatments and future trials should take into consideration the possibility of an integrated approach. Additionally, the potential risks of DR need to be understood and vulnerable populations of pwMS unsuited to DR regimens need to be identified.

References

1. Olsson T, Barcellos LF, Alfredsson L. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nat Rev Neurol. 2017;13(1):25–36. https://doi.org/10.1038/nrneurol.2016.187
2. Munger KL, Chitnis T, Ascherio A. Body size and risk of MS in two cohorts of US women. Neurology. 2009;73(15):1543–50. https://doi.org/10.1212/01.wnl.0000331810.05660.50
3. Hedstrom AK, Olsson T, Alfredsson L. High body mass index before age 20 is associated with increased risk for multiple sclerosis in both men and women. Mult Scler. 2012;18(9):1334–6. https://doi.org/10.1177/1352458512453656
4. Wresni K, Rixe T, Casetta I, Drucej J, Craneri I, Holmøy T, et al. Body size and the risk of multiple sclerosis in Norway and Italy: the EnMS study. Mult Scler. 2015;21(6):838–9. https://doi.org/10.1177/1352458514566785
5. Gianfrancesco MA, Ansanà B, Shen L, Briggs FB, Barcellos LF. Obesity and Multiple Sclerosis Susceptibility: A Review. J Neurol Sci. 2016;366:128–36. https://doi.org/10.1016/j.jns.2016.08.033
6. Gianfrancesco MA, Barcellos LF. Obesity and Multiple Sclerosis Susceptibility: A Mendelian Randomization Study. PLoS Med. 2016;13(6):e1002053. https://doi.org/10.1371/journal.pmed.1002053
7. Mokry LE, Ross S, Timpson NJ, Sawcer S, Davey Smith G, Richards JB. Obesity and the human microbiome. Curr Opin Gastroenterol. 2016;32(5):5–11. https://doi.org/10.1097/MOG.0000000000000573
8. Tettey P, Simpson S, Taylor B, Ponsonby AL, Lucas RM, Dwyer T, et al. An adverse lipid profile and increased levels of adiposity significantly predict clinical course after a first attack in multiple sclerosis. Neurol Neuromedicine. 2016;1(7):1–5. https://doi.org/10.29245/2572.942X/2016/7.1064
9. Hoban AE, Stilling RM, Ryan FJ, Shanahan F, Dinan TG, Claesson MJ, et al. Regulation of adipocyte polarization. J Clin Invest. 2007;117(1):175–84. https://doi.org/10.1172/JCI29881
10. Russo L, Lumeng CN. Properties and functions of adipose tissue macrophages in obesity. Immunology. 2018;155(4):407–17. https://doi.org/10.1111/imn.13002
11. Russo L, Lumeng CN. Properties and functions of adipose tissue macrophages in obesity. Immunology. 2018;155(4):407–17. https://doi.org/10.1111/imn.13002
12. Procaccini C, Puzino V, Mantzoros CS, Matarrese G. Leptin in autoimmune diseases. Metabolism. 2015;64(1):92–104. https://doi.org/10.1016/j.metabol.2014.10.014
13. Ley RE. Obesity and the human microbiome. Curr Opin Gastroenterol. 2010;26(1):5–11. https://doi.org/10.1097/MOG.0b013e328335f753
14. Aron-Wisnewskyj J, Phipps I, Ebdale E, Ichou F, Kayar BD, Dao MC, et al. Major microbiota dysbiosis in severe obesity: fate after bariatric surgery. Gut. 2019;68(1):70–82. https://doi.org/10.1136/gutjnl-2018-316103
15. Cakmakciucevic I, Yao BB, Runia TF, Debeljuk JW, Singh S, Nelson CA, et al. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proc Natl Acad Sci U S A. 2017;114(40):10713–8. https://doi.org/10.1073/pnas.1711235114
16. Braniste V, Al-Ashmakh M, Kowal C, Anuar F, Abbaspour A, Toth M, et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med. 2014;6(263):263ra158. https://doi.org/10.1126/scitranslmed.3009759
17. Hoban AF, Stilling RM, Ryan FJ, Shanahan F, Dinan TG, Claesson MJ, et al. Regulation of peripheral cortical myelination by the microbiota. Transl Psychiatry. 2016;6:674. https://doi.org/10.1038/tp.2016.42
18. Ogbonnaya ES, Clarke G, Shanahan F, Dinan TG, Cryan JF, O’Leary OF. Adult Hippocampal Neurogenesis is Regulated by the Microbiome. Biol Psychiatry. 2015;78(4):e7–9. https://doi.org/10.1016/j.biopsych.2014.12.023
19. Jang S, Gandhi R, Cox LM, Li N, von Glehn F, Yan R, et al. Alterations of the human gut microbiome in multiple sclerosis. Nat Commun. 2016;7:10358. https://doi.org/10.1038/ncomms12105
20. Chen J, Chu N, Kalari KR, Yao JZ, Novotna M, Paz Soldan MM, et al. Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Sci Rep. 2016;6:28484. https://doi.org/10.1038/srep28484
21. Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Brashear TM, et al. Calcium restriction delays disease onset and mortality in rhesus monkeys. Science. 2009;325(5937):201–4. https://doi.org/10.1126/science.1173655
22. Meydani SN, Das SK, Pieper CF, Lewis MR, Klein S, Dixit VD, et al. Long-term moderate calorie restriction inhibits inflammation without impairing cell-mediated immunity: a randomized controlled trial in non-obese humans. Aging (Albany NY). 2016;8(7):1416–31. https://doi.org/10.18632/aging.100994
23. Picco L, Stark JL, Cross AH. Chronic calorie restriction attenuates experimental autoimmune encephalomyelitis. J Leukoc Biol. 2018;104(4):846-904. https://doi.org/10.1189/jlb.0318-078R.
24. Cignarella F, Cantoni C, Ghetti L, Salter A, Dorsett Y, Chen L, et al. Intermittent Fasting Cofactors Protection in CNS Autoimmunity by Altering the Gut Microbiota. Cell metabolism. 2018;27(6):1227-35.46. https://doi.org/10.1016/j.cmet.2018.05.006
25. Jordan S, Tung N, Casanova-Arboles M, Chang C, Cantoni C, Zhang D, et al. Dietary Intake Regulates the Circulating Inflammatory Monocyte Pool. Cell. 2019;178(5):1112-14. https://doi.org/10.1016/j.cell.2019.07.050
26. Choi Y, Picco L, Childress P, Boltam B, Chochi A, Brandhorst S, et al. A Diet Mimicking Fasting Promotes Remodelation and Reduces Autoimmunity and Multiple Sclerosis Symptoms. Cell Rep. 2016;15(10):2136-46. https://doi.org/10.1016/j.celrep.2016.05.009
27. Bai M, Wang Y, Han R, Xu L, Huang M, Zhao J, et al. Intermittent calorie restriction with a modified fasting-mimicking diet ameliorates autoimmunity and promotes recovery in a mouse model of multiple sclerosis. J Nutr Biochem. 2021;87:108493. https://doi.org/10.1016/j.jnutbio.2020.108493
28. Majpourostani S, Basbahel P, Madad S, Nekoonam S, Zarini D, Noon L, et al. Calorie restriction promotes remyelination in a Cuprizone-induced demyelination mouse model of multiple sclerosis. Metab Brain Dis. 2020;35(7):1211-24. https://doi.org/10.1007/s11011-020-00597-0
29. Zarini D, Basbahel P, Nekoonam S, Majpourostani S, Chasemi S, Shabas M, et al. Protective Features of Calorie Restrict-Shion on Cuprizone-induced Demyelination via Modulating Microglial Phenotype. J Chem Neuroanat. 2021;116:102031. https://doi.org/10.1016/j.jchemn.2021.102031
30. Neumann B, Baror R, Zhao C, Segel M, Dietmam S, Rawis KS, et al. Metformin Restores CNS Remyelination Capacity by Rejuvenating Aged Stem Cells. Cell Stem Cell. 2019;25(4):473-85 e8. https://doi.org/10.1016/j.stem.2019.08.015
31. Longo VD. Panda S. Fasting. Circadian Rhythms, and Time-Restricted Feeding in Healthy Lifespan. Cell Metab. 2016;23(6):1048-59. https://doi.org/10.1016/j.cmet.2016.06.001
32. Anton SD, Moehl K, Donahoo WT, Marosi K, Lee SA, Mainous AG, et al. Dietary overload with high-fat or high-fructose diet in mice. J Nutr Biochem. 2020;83:108419. https://doi.org/10.1016/j.jnutbio.2019.09.002
33. Barthorpe S, Kafami L, Raza M, Razavi A, Mirshafiey A, Movahedian M, et al. A chart review of adverse events during medically supervised, water-only fasting. BMC Complement Altern Med. 2019;20(1):67. https://doi.org/10.1186/s12906-018-2136-6
34. Racette SB, Weiss EP, Villareal DT, Arif H, Steger-May K, Troffaes M, et al. One year of caloric restriction in humans: the impact of dietary restriction and exercise on glucose tolerance, insulin sensitivity, and hypothalamic neuropeptides in a volume and microstructure, and the influence of calorie restriction and endurance exercise on glucose tolerance, insulin sensitivity, and hypothalamic neuropeptides in a volume and microstructure, and the influence of calorie restriction and endurance exercise on glucose tolerance, insulin sensitivity, and hypothalamic neuropeptides in a volume and microstructure, and the influence of calorie restriction and endurance exercise on glucose tolerance, insulin sensitivity, and hypothalamic neuropeptides in a volume and microstructure, and the influence of calorie restriction and endurance exercise on glucose tolerance, insulin sensitivity, and hypothalamic neuropeptides in a volume and microstructure, and the influence of calorie restriction and endurance exercise on glucose tolerance, insulin sensitivity, and hypothalamic neuropeptides in a volume and microstructure, and the influence of calorie restriction and endurance exercise on glucose tolerance, insulin sensitivity, and hypothalamic neuropeptides in a volume and microstructure, and the influence of calorie restriction and endurance exercise on glucose tolerance, insulin sensitivity, and hypothalamic neope...