Revisiting the Z-dependence of the electron density at the nuclei

Alireza Marefat Khah and Shant Shahbazian*

Faculty of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran, Iran
19839. P.O. box 19395-4716
Tel/Fax: 98-21-22431661

E-mail:
Shant Shahbazian: chemist_shant@yahoo.com

*Corresponding author
Abstract

A new formula that relates the electron density at the nucleus of atoms, $\rho(0,Z)$, and the atomic number, Z, is proposed. This formula, $\rho(0,Z) = a(Z - b\sqrt{Z})^3$, contains two unknown parameters (a, b) that are derived using a least square regression to the ab initio derived $\rho(0,Z)$ of Koga’s dataset from He ($Z=2$) to Lr ($Z=103$) atoms (Theor Chim Acta 95, 113 (1997)). In comparison to the well-known formula, $\rho(0,Z) = aZ^b$, used for the same purpose previously, the resulting new formula is capable of reproducing the ab initio $\rho(0,Z)$ dataset an order of magnitude more precisely without introducing more regression parameters. This new formula may be used to transform the equations that relate correlation energy of atoms and $\rho(0,Z)$ into simpler equations just containing the atomic number as a fundamental property of atoms.

Keywords: Electron density, Electron density at nucleus, Z-dependence, Bare Coulomb Model, Atomic correlation energy.

Some years ago Liu and Parr proposed an empirical relationship between the electron correlation energies of atoms (E_{corr}) and the electron density on the nuclei $\rho(0,Z)$; $E_{corr} = CN\rho(0,Z)^{-\gamma}$ (C and γ are constants while Z and N are the atomic number and the number of electrons, respectively) [1]. Using a relatively large dataset of the correlation energies and $\rho(0,Z)$, employing a least square regression, they succeeded to determine the optimum values for the constants. The resulting compact equation is
capable of reproducing atomic correlation energies accurately, albeit in a narrow range of Z. Interestingly $\rho(0, Z)$ appears as an “independent” variable in their equation that is used besides N and Z as fundamental parameters of an atom. Because of the importance of the correlation energies, it is tempting to trace a theoretical route to this equation and the origin of the significance of $\rho(0, Z)$ as seemingly something unrelated, at least directly, to the correlation energy. An alternative possibility is that $\rho(0, Z)$ itself is related in a compact way to Z and its role in the aforementioned equation is just “absorbing” part of the Z-dependence of the atomic correlation energies. If true, then the equation may be transformed into a new equation just depending on the fundamental parameters (N and Z), i.e. $E_{\text{corr}}(N, Z)$. Accordingly, in this short communication the Z-dependence of $\rho(0, Z)$ is considered.

The direct Z-dependence of $\rho(0, Z)$ as well as the indirect Z-dependence, through considering the relationship of $\rho(0, Z)$ with various quantum observables, were considered in several previous theoretical and computational studies [2-16]. Seeking the relationship of $\rho(0, Z)$ with various quantum observables was particularly stimulated from the derivation of lower and upper bounds for $\rho(0, Z)$ [3], through a set inequalities, which triggered several subsequent studies [6-10]. However, comparison of the computed bounds for large sets of atoms, using inequalities containing various moments of the position, i.e. $\langle r^k \rangle$, with ab initio $\rho(0, Z)$ derived directly from atomic Hartree-Fock wavefunctions demonstrated just a semi-quantitative agreement [8,9]. As realized early by Cioslowski [8], from a theoretical viewpoint by extending the original inequalities it is possible to set more accurate lower/upper bounds for $\rho(0, Z)$. However,
this extension is not computationally cost effective since one must include higher
moments of position in inequalities and compute them with a high precision. As an
alternative and to simplify the whole analysis, the Bare Coulomb Model (BCM), which
eglects the electron-electron interactions in atom but retains electron-nucleus
interactions, has been employed as a simple yet analytically tractable model for real
atoms. Although this simplified model is capable of explaining certain aspects of the Z -
dependence of $\rho(0,Z)$ in real atoms, it is unable to reproduce the ab initio $\rho(0,Z)$
datasets quantitatively [12].

From a semi-empirical viewpoint one may use theoretically motivated direct Z -
dependent equations and then supplement them with appropriate empirical parameters to
be determined from a regression to a set of known $\rho(0,Z)$ dataset. This path has been
pursued using a simple compact equation:

$$\rho(0,Z) = aZ^b$$

where a and b are determined by a least square regression ($a \approx 3, b \approx 0.5$) [5]. The
contribution of 1s orbital to $\rho(0,Z)$ derived assuming a single s-type Slater function,
$\rho_{1s}(0,Z) = (2/\pi)Z^3$, has been the theoretical motivation behind this equation [5] (see the
supporting information for details). Although the resulting optimized equation is superior
in reproduction of the ab initio computed $\rho(0,Z)$ datasets in comparison to the
previously mentioned inequalities, it is yet incapable of an accurate reconstruction of the
Hartree-Fock computed $\rho(0,Z)$.

Based on these reports it was decided to maintain the above mentioned semi-
empirical viewpoint but seek for a more accurate but yet compact equation. At first stage
Equation (1) was used in a regression procedure to reproduce Koga’s ab initio $\rho(0,Z)$ dataset derived at the Hartree-Fock level and depicted in Figure 1 ($Z = 2–103$) [17] (see the supporting information for the dataset). The resulting optimized parameters, gathered in Table 1, are not far from what was reported previously [5] while the detailed results for each atom have been offered in the supporting information. The mean absolute error is not large, however the errors are not evenly distributed among atoms; the equation works well for large Z and the percentage error is less than 1% for $Z > 31$ and less than 0.1% for $Z > 53$, but for smaller atomic numbers the percentage error grows rapidly. While equation (1) describes the main trend of the Z-dependence correctly, it is not capable of reproducing the ab initio $\rho(0,Z)$ dataset with reasonable accuracy, a percentage error less than 1%, and for a more quantitative description one must go beyond equation (1).

After some heuristic attempts the following equation was proposed based on modification of the BCM model (see the supporting information for details):

$$\rho(0,Z) = a[Z - b\sqrt{Z}]^3 \quad (2)$$

This equation is slightly more complicated than equation (1) but still has just two unknown parameters to be determined in a least square regression procedure. Table 1 offers the optimized parameters as well as the results of statistical analysis while the detailed results for each atom have been gathered in the supporting information.

Evidently, in comparison to the results of equation (1), equation (2) is a marked refinement and now only for four atoms ($Z = 2, 4, 6$) the percentage error is more than 1%; even in these cases the maximum percentage error does not exceed from 3.5% while for $Z > 18$ the percentage error is equal or less than 0.1%. By the way, like equation (1), the errors are not evenly distributed among atoms and no simple Z-dependent pattern emerges for
the remaining absolute errors making further modification of equation (2) practically hard. Since the number of parameters is equal in equations (1) and (2) the much better performance of equation (2) does not seem to originate from its more “flexibility”. It is tempting to introduce an effective atomic number, \(Z_{\text{eff}} = Z - b\sqrt{Z} \), and conceiving \(b\sqrt{Z} \) as some kind of average screening constant that transforms equation (2) to: \(\rho(0, Z) = a(Z_{\text{eff}})^3 \). However, at present state of knowledge no theoretical reasoning justifies this interpretation.

In a nutshell quantitative reproduction of the \(Z \)-dependence of the ab initio electron densities at the nucleus is feasible without any need to complicated formulas. This cast some doubt that \(\rho(0, Z) \) may be treated as an independent variable in equations used to reproduce atomic correlation energies and probably by adding an extra non-linear parameter to such equations, e.g. \(b \) in the case of equation (2), one may transform them into formulas just based on the fundamental parameters of atom (\(N \) and \(Z \)). A detailed analysis in this direction will be offered in a separate forthcoming report.

Acknowledgments

The authors are grateful to Prof. Toshikatsu Koga for sharing his database of atomic electron densities and to Cina Foroutan-Nejad for reading a previous draft of this paper and his helpful suggestions. This communication is part of the results of the project “3D structure of free atoms” done during the period 2010-2012 and supported by the research council of Shahid Beheshti University.
References

[1] Liu S, Parr RG (2007) J Phys Chem A 111: 10422
[2] Rédei LB (1963) Phys Rev 130: 420
[3] Hoffmann-Ostenhoff M, Hoffmann-Ostenhoff T, Thirring W. (1978) J Phys B: Atom Mol Phys 11: L571
[4] Westgate W, Byrne AD, Smith VH Jr, Simas A (1986) Can J Phys 64: 1351
[5] Simas A, Sagar RP, Ku ACT, Smith VH Jr (1988) Can J Chem 66: 1923
[6] Gálvez FJ, Porras I, Angulo JC, Dehesa JS (1988) J Phys B: Atom Mol Phys 21: L271.
[7] Gálvez FJ, Dehesa JS (1988) Phys Rev A 37: 3154
[8] Cioslowski J (1989) Phys Rev A 39: 378
[9] Angulo JC, Dehesa JS (1991) Phys Rev A 44: 1516
[10] Angulo JC, Dehesa JS, Gálvez FJ (1991) Z Phys D: Atom Mol Clusters 18: 127
[11] Pacios LF (1992) J Phys Chem 96: 7294
[12] Esquivel RO, Chen J, Stott MJ, Sagar RP, Smith VH Jr (1993) Phys Rev A 47: 936
[13] Heilmann OJ, Lieb EH (1995) Phys Rev A 52: 3628
[14] Liu S (2006) Int J Quantum Chem 2006, 106 1762.
[15] Cordero NA, March NH, Alonso JA (2007) Phys Rev A 75: 052502
[16] Amovilli C, March NH (2009) Int J Quantum Chem 109: 1024
[17] Koga T (1997) Theor Chim Acta 95: 113
Table 1- The optimized parameters and some statistical parameters resulting from the least square regression of equations (1) and (2) to the dataset (All results are given in atomic units).

Equation	Optimized parameters	Statistical parameters			
(1)	$a = 0.605959$	$b = 3.038611$	$MAE^* = 115.3$	$MaxAE^{**} = 326.0 (Z = 103)$	$MaxPE^{***} = 38.5\% (Z = 2)$
(2)	$a = 0.773780$	$b = 0.220476$	$MAE^* = 22.0$	$MaxAE^{**} = 64.8 (Z = 79)$	$MaxPE^{***} = 3.5\% (Z = 2)$

* The mean absolute error (MAE) was computed according to:
$$ \sum_{Z=2}^{102} \left| \rho(0,Z) - \rho_{ab \text{ initio}}(0,Z) \right|.$$

** Maximum absolute error (MaxAE): $$\max_{Z=2}^{102} \left| \rho(0,Z) - \rho_{ab \text{ initio}}(0,Z) \right|.$$

*** The Maximum percentage error (MaxPE) was computed according to:
$$ \left| \rho(0,Z) - \rho_{ab \text{ initio}}(0,Z) \right| \times 100 \left/ \rho_{ab \text{ initio}}(0,Z) \right| \times 100.$$

Figure 1- The ab initio $\rho(0,Z)$ (in atomic units) against the atomic number $(Z = 2 - 103)$.
Supporting Information

Revisiting the Z-dependence of the electron density at the nuclei

Alireza Marefat Khah and Shant Shahbazian*

Faculty of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran, Iran
19839. P.O. box 19395-4716
Tel/Fax: 98-21-22431661

E-mail:
Shant Shahbazian: chemist_shant@yahoo.com

* Corresponding author
Table of contents

Pages 3-5: The ab initio and computed $\rho(0,Z)$ based on equation: $\rho(0,Z) = aZ^b$ ($a \approx 0.605959, b \approx 3.038611$) and the absolute error, $\rho(0,Z) - \rho^{ab\ initio}(0,Z)$, and the percentage errors $\left|\rho(0,Z) - \rho^{ab\ initio}(0,Z)\right|/\rho^{ab\ initio}(0,Z) \times 100$. All results are in atomic units ($Z = 2 - 103$).

Pages 6-7: Deriving $\rho(0,Z)$ within and beyond the context of the Bare Coulomb Model (BCM)

Pages 8-10: The ab initio and computed $\rho(0,Z)$ based on equation: $\rho(0,Z) = a(Z - b\sqrt{Z})^3$ ($a \approx 0.773780, b \approx 0.220476$) and the absolute error, $\rho(0,Z) - \rho^{ab\ initio}(0,Z)$, and the percentage errors $\left|\rho(0,Z) - \rho^{ab\ initio}(0,Z)\right|/\rho^{ab\ initio}(0,Z) \times 100$. All results are in atomic units ($Z = 2 - 103$).
The ab initio and computed $\rho(0,Z)$ based on equation: $\rho(0,Z)= aZ^b$ ($a \approx 0.605959, b \approx 3.038611$) and the absolute error, $\rho(0,Z)-\rho^{ab\text{ initio}}(0,Z)$, and the percentage errors $\left(\rho(0,Z)-\rho^{ab\text{ initio}}(0,Z)\right)/\rho^{ab\text{ initio}}(0,Z)\times 100$. All results are in atomic units ($Z = 2-93$).

Atomic number	Ab initio	Predicted	Absolute error	Percentage error	
2	3.5959183	4.9791652	1.38	38.47	
3	13.8148199	17.0698402	3.26	23.56	
4	35.3877167	40.9137919	5.53	15.62	
5	71.9213707	80.6012187	8.68	12.07	
6	127.4579724	140.2628471	12.80	10.05	
7	205.9683473	224.0618577	18.09	8.78	
8	311.6608926	336.1885570	24.53	7.87	
9	448.3222768	480.8565853	32.53	7.26	
10	619.9220741	662.3000736	42.38	6.84	
11	833.7575330	884.7714308	51.01	6.12	
12	1093.7178333	1152.5395705	58.82	5.38	
13	1402.8456067	1469.8884576	67.04	4.78	
14	1765.6069489	1841.1158947	75.51	4.28	
15	2186.3141472	2270.5324929	84.22	3.85	
16	2669.4696949	2762.4607881	92.99	3.48	
17	3219.1903560	3321.2344732	102.04	3.17	
18	3839.7818294	3951.1977251	111.42	2.90	
19	4538.6539527	4656.7046099	118.05	2.60	
20	5319.6071378	5442.1185530	122.51	2.30	
21	6182.3043131	6311.8118639	129.51	2.09	
22	7133.2302762	7270.1653082	136.94	1.92	
23	8176.9553727	8321.5677196	144.61	1.77	
24	9313.7337083	9470.4156463	156.68	1.68	
25	10560.0774220	10721.1130282	161.04	1.52	
26	11908.7041093	12078.0708997	169.37	1.42	
27	13367.3818433	13545.7071169	178.33	1.33	
28	14940.5685578	15128.4461046	187.88	1.26	
29	16625.2578185	16830.7186220	205.46	1.24	
30	18447.6758062	18656.9615453	209.29	1.13	
31	20397.2023524	20611.6176639	214.42	1.05	
32	22480.1179151	22699.1354912	219.02	0.97	
33	24700.9397021	24923.9690869	223.03	0.90	
34	27064.3939486	27290.5778896	226.18	0.84	
35	29574.5677455	29803.4265605	228.86	0.77	
36	32235.8905704	32466.984351	231.09	0.72	
37	35057.6269605	35285.7273840	228.10	0.65	
---	---	---	---	---	---
38	38042.8130871	38264.1336809	221.32	0.58	
39	41189.2831327	41406.6878775	217.40	0.53	
40	44504.2576002	44717.8786851	213.62	0.48	
41	51652.6838972	51864.1471080	211.46	0.41	
42	55507.1007900	55708.2239588	201.12	0.36	
43	59535.0084813	59738.936931	203.93	0.34	
44	63760.7088305	63960.7922375	200.08	0.31	
45	68175.4587346	68378.3074789	202.85	0.30	
46	72803.4422348	72995.9991792	192.56	0.26	
47	77641.558679	77818.388949	176.83	0.23	
48	82686.1651837	82850.0018989	163.84	0.20	
49	87945.280043	88095.3671064	150.09	0.17	
50	93423.5694503	93559.0170031	135.45	0.14	
51	99125.8851161	99245.4875767	119.60	0.12	
52	105056.3401530	105159.3182506	102.98	0.10	
53	111219.4378538	111305.0518208	85.61	0.08	
54	117625.4594547	117687.234942	61.78	0.05	
55	124276.8627369	124310.4153298	33.55	0.03	
56	131169.6899884	131179.1471819	9.46	0.01	
57	138302.0318203	138297.9856451	-4.05	0.00	
58	145677.7921546	145671.4895014	-6.30	0.00	
59	153321.8352627	153304.2205691	-17.61	0.01	
60	161228.7478630	161200.7436527	-8.00	0.02	
61	169402.779128	169365.6264960	-37.15	0.02	
62	177848.3206763	177803.4397349	-44.88	0.03	
63	186582.1334510	186518.7568530	-63.38	0.03	
64	195574.5872401	195516.1541378	-58.43	0.03	
65	204862.9091934	204800.2106391	-62.70	0.03	
66	214440.8840924	214375.5081274	-65.38	0.03	
67	224312.9700261	224246.6310549	-66.34	0.03	
68	234483.4108352	234418.1665166	-65.24	0.03	
69	244956.5775624	244894.7042129	-61.87	0.03	
70	255751.3634655	255680.8364137	-70.53	0.03	
71	266859.0363919	266781.1579228	-77.88	0.03	
72	278284.5922307	278200.2660434	-84.33	0.03	
73	290032.4982964	289942.7605450	-89.74	0.03	
74	302107.0340496	302013.2436309	-93.79	0.03	
75	314513.8065538	314416.3199065	-97.49	0.03	
76	327256.1172759	327156.5963483	-99.52	0.03	
77	340321.8743360	340238.6822743	-83.19	0.02	
78	353747.2980290	353667.1893144	-80.11	0.02	
79	367542.1407648	367446.7313821	-95.41	0.03	
80	381684.6768487	381581.9246465	-102.75	0.03	
---	---	---	---	---	
82	396186.2648546	396077.3875055	-108.88	0.03	
83	411051.7229656	410937.7405591	-113.98	0.03	
84	426286.0829013	426167.6065836	-118.48	0.03	
85	441893.3324702	441771.6105063	-121.72	0.03	
86	457878.0175128	457754.3793812	-123.64	0.03	
87	474252.9676674	474120.5423645	-132.43	0.03	
88	491019.4693657	490874.7306914	-144.74	0.03	
89	508169.9490505	508021.5776533	-148.37	0.03	
90	525715.2949823	525565.7185745	-149.58	0.03	
91	543637.9234086	543511.7907913	-126.13	0.02	
92	561973.8984700	561864.4336297	-109.46	0.02	
93	580717.6617327	580628.2883849	-89.37	0.02	
94	599861.4409745	599807.9983003	-53.44	0.01	
95	619433.5358297	619408.2085476	-25.33	0.00	
96	639440.7655708	639433.5662070	-7.20	0.00	
97	659861.8226208	659888.7202479	26.90	0.00	
98	680698.4603668	680778.3215100	79.86	0.01	
99	701983.6347821	702107.0226848	123.39	0.02	
100	723708.1993401	723879.4782971	171.28	0.02	
101	745876.4772165	746100.3446878	223.87	0.03	
102	768492.9042216	768774.2799958	281.38	0.04	
103	791579.9781787	791905.9441412	325.97	0.04	
Deriving $\rho(0,Z)$ within and beyond the context of the Bare Coulomb Model (BCM):

Within the context of the BCM the electron density of an atom is written as:

$$
\rho(\mathbf{r},Z) = \left| \sum_{m=-l}^{l} \sum_{n=1}^{\infty} c_{n,l,m}(\mathbf{r},Z) \right|^2 \quad (S1)
$$

In this equation $\psi_{n,l,m}(\mathbf{r},Z)$ are the eigenfunctions of the hydrogen-like atoms (n,l,m are the corresponding quantum numbers) while $c_{n,l,m}$ are the occupation numbers ($\sum_{m=-l}^{l} \sum_{n=1}^{\infty} c_{n,l,m} = N$) of the BCM atom. If one incorporates the radial and angular function then the equation transforms to:

$$
\rho(\mathbf{r},Z) = \left| \sum_{m=-l}^{l} \sum_{n=1}^{\infty} c_{n,l,m} \left(\frac{2Z}{n} \right)^{3/2} Y_{l,m}(\theta,\phi) \right|^2 \quad (S2)
$$

In this equation L_{n-1}^{2l+1} and $Y_{l,m}$ are the associated Laguerre polynomials and the spherical harmonics, respectively [S1]. After some mathematical manipulations $\rho(0,Z)$ is derived:

$$
\rho(0,Z) = \left(\frac{Z^3}{\pi} \right) \sum_{n=1}^{\infty} c_{n,0,0} \left(\frac{1}{n} \right)^3 \quad (S3)
$$

Evidently, only s-orbitals are contributing to the electron density at nucleus. Two “limiting” cases are conceivable for the series namely, $c_{1,0,0} = 2$ and others occupation numbers being zero, and alternatively $c_{n,0,0} = 2$ for all n. In the former case only 1s orbital is contributing to the electron density at the nucleus and the known $\rho(0,Z) = (2/\pi)Z^3 \approx 0.637Z^3$ is derived whereas in the latter case infinite number of the s-orbitals all contributing and the following equation emerges:

$$
\rho(0,Z) = \left(\frac{2\xi(3)}{\pi} \right) Z^3 \approx 0.765Z^3 \quad (S4)
$$

where $\xi(s) = \sum_{n=1}^{\infty} \left(\frac{1}{n^s} \right)$ is the Riemann zeta function ($\xi(3) \approx 1.202$) [S1]. For any intermediate situation a coefficient in the narrow range between ~ 0.637 and ~ 0.765 is conceivable. Evidently, both the coefficient and the exponent of the equation (1) (see the main text), derived from regression procedure namely, $\rho(0,Z) \approx 0.606Z^{3.039}$, are reproduced properly within the context of the BCM. The following equation is then proposed, heuristically, as a modification of equation (S4):

$$
\rho(0,Z) = (1 + \alpha) \left(\frac{2\xi(3)}{\pi} \right) (Z + \beta\sqrt{Z})^3 \quad (S5)
$$
The coefficient \((1 + \alpha)\) is used since upon regression to ab initio \(\rho(0, Z)\) dataset only small deviation are observable from the analytical coefficient: \(\left(\frac{2\xi(3)}{\pi}\right)\), \(\alpha \approx 0.011\) is derived after the regression). Equation (S5) may be written in a more compact form:

\[
\rho(0, Z) = a\left(Z - b\sqrt{Z}\right)^3
\]

(S6)

where \(a = (1 + \alpha)\left(\frac{2\xi(3)}{\pi}\right)\) and \(b = -\beta\). This equation is used for the regression and introduced as equation (2) in the main text.

References:

[S1] Arfken G (1985) Mathematical Methods for Physicists. Academic Press Inc., San Diego
The ab initio and computed \(\rho(0,Z) \) based on equation:
\[
\rho(0,Z) = a[Z - b\sqrt{Z}]
\]
\((a \approx 0.773780, b \approx 0.220476) \) and the absolute error, \(\rho(0,Z) - \rho^{ab\ initio}(0,Z) \), and the percentage errors \(\left| \rho(0,Z) - \rho^{ab\ initio}(0,Z) \right| / \rho^{ab\ initio}(0,Z) \times 100 \). All results are in atomic units \((Z = 2 - 103) \).

Atomic number	Ab initio	Predicted	Absolute error	Percentage error			
2	3.5959183	3.7229677	0.13	3.53			
3	13.8148199	13.8863626	0.07	0.52			
4	35.3877167	34.8834328	-0.50	1.43			
5	71.9213707	70.8403255	-1.08	1.50			
6	127.4579724	125.9455393	-1.51	1.19			
7	205.963473	204.4315269	-1.54	0.75			
8	311.6608926	310.5639194	-1.10	0.35			
9	448.3222768	448.6345565	0.31	0.07			
10	619.9220741	622.9566680	3.03	0.49			
11	833.757533	837.8613737	4.10	0.49			
12	1093.7178333	1097.6950475	3.98	0.36			
13	1402.8456067	1406.8172720	3.97	0.28			
14	1765.6069489	1769.5992133	3.99	0.23			
15	2186.3141472	2190.4230444	4.11	0.19			
16	2669.4696499	2673.6771611	4.21	0.16			
17	3219.1903560	3223.7626759	4.57	0.14			
18	3839.7818294	3845.0852521	5.30	0.14			
19	4538.6539527	4542.0581496	3.40	0.08			
20	5319.6071378	5319.1009197	-0.51	0.01			
21	6182.3043131	6180.6389144	-1.67	0.03			
22	7133.2302762	7131.1028561	-2.13	0.03			
23	8176.9553727	8174.9245676	-2.03	0.02			
24	9313.7337083	9316.5560856	2.82	0.03			
25	10560.074220	10560.4304601	0.35	0.00			
26	11908.7041093	11911.0003846	2.30	0.02			
27	13367.381433	13372.7185036	5.34	0.04			
28	14940.5685578	14950.0410827	9.47	0.06			
29	16625.2578185	16647.4278093	22.17	0.13			
30	18447.6758062	18469.3416105	21.67	0.12			
31	20397.2023524	20420.2484872	23.05	0.11			
32	22480.1179151	22504.6173614	24.50	0.11			
33	24700.9397021	24726.9199358	25.98	0.11			
34	27064.3939486	27091.6305647	27.24	0.10			
35	29574.5677455	29603.2261342	28.66	0.10			
36	32235.8905704	32266.1859509	30.30	0.09			
37	35057.6269605	35084.9916395	27.36	0.08			
---	---	---	---	---			
38	38042.8130871	38064.1270465	21.31	0.06			
39	41189.2831327	41208.0781505	18.80	0.05			
40	44504.2576002	44521.3329790	17.08	0.04			
41	47987.0982651	48008.3815298	21.28	0.04			
42	51652.6838972	51673.7156974	21.03	0.04			
43	55507.1007900	55521.8292045	14.73	0.03			
44	59535.0084813	59557.2175367	22.21	0.04			
45	63760.7088305	63784.3778814	23.67	0.04			
46	68175.4587346	68207.8090701	32.35	0.05			
47	72803.4422348	72832.0115240	28.57	0.04			
48	77641.5588679	77661.4872022	19.93	0.03			
49	82686.1651837	82700.7395533	14.57	0.02			
50	87945.2800043	87954.2173486	8.99	0.01			
51	93423.5694503	93426.5952383	3.03	0.00			
52	99125.8851161	99122.2125099	-3.67	0.00			
53	105056.3401530	105045.6342484	-10.71	0.01			
54	111219.4378538	111201.3706984	-18.07	0.02			
55	117625.4549547	117593.933481	-31.52	0.03			
56	124276.8627369	124227.8348947	-49.03	0.04			
57	131169.6899884	131107.5892120	-62.10	0.05			
58	138302.0318203	138237.7113188	-64.32	0.05			
59	145677.7921546	145622.7173486	-55.07	0.04			
60	153321.8352627	153267.1245215	-54.71	0.04			
61	161228.7487630	161175.4511162	-53.30	0.03			
62	169402.7779128	169352.2164438	-50.56	0.03			
63	177848.3206763	177801.9408225	-46.38	0.03			
64	186582.1334510	186529.1455535	-52.99	0.03			
65	195574.5872401	195538.3528973	-36.23	0.02			
66	204862.9091934	204834.0860518	-28.82	0.01			
67	214440.8840924	214420.8691303	-20.01	0.01			
68	224312.9700261	224303.2271409	-9.74	0.00			
69	234483.4108352	234485.6859669	2.28	0.00			
70	244956.5775624	244972.7723470	16.19	0.01			
71	255751.3634655	255769.0138570	17.65	0.01			
72	266859.0363919	266878.9388922	19.90	0.01			
73	278284.5922307	278307.0766498	22.48	0.01			
74	290032.4982964	290057.9571122	25.46	0.01			
75	302107.0340496	302136.1110312	29.08	0.01			
76	314513.8065538	314546.0699124	32.26	0.01			
77	327256.1172759	327292.3660000	36.25	0.01			
78	340321.8743360	340379.5322624	57.66	0.02			
79	353747.2980290	353812.1023781	64.80	0.02			
80	367542.1407648	367594.6107222	52.47	0.01			
81	381684.6768487	381731.5923530	46.92	0.01			
---	----	----	----	----	----	----	----
82	396186.2648546	396227.5829993	41.32	0.01			
83	411051.7229656	411087.1190483	35.40	0.01			
84	426286.0829013	426314.7375330	28.65	0.01			
85	441893.3324702	441914.9761212	21.64	0.00			
86	457878.0175128	457892.3731038	14.36	0.00			
87	474252.9676674	474251.4673841	-1.50	0.00			
88	491019.4693657	490996.7984668	-22.67	0.00			
89	508169.9490505	508132.9064479	-37.04	0.01			
90	525715.2949823	525664.3320047	-50.96	0.01			
91	543637.9234086	543595.6163860	-42.31	0.01			
92	561973.8984700	561931.3014023	-42.60	0.01			
93	580776.6617327	580675.9294171	-41.73	0.01			
94	599861.4409745	599834.0433374	-27.40	0.00			
95	619433.5358297	619410.1866053	-23.35	0.00			
96	639440.7655708	639408.9031893	-31.86	0.00			
97	659861.8226208	659834.7375760	-27.09	0.00			
98	680698.4603668	680692.2347623	-6.23	0.00			
99	701983.6347821	701985.9402471	2.31	0.00			
100	723708.1993401	723720.4000241	12.20	0.00			
101	745876.4772165	745900.1605738	23.68	0.00			
102	768492.9042216	768529.7688567	36.86	0.00			
103	791579.9781787	791613.7723060	33.79	0.00			