Coupling of the Muscarinic m2 Receptor to G Protein-activated K⁺ Channels via Gaᵢ and a Receptor-Gaᵢ Fusion Protein

FUSION BETWEEN THE RECEPTOR AND Gaᵢ ELIMINATES CATALYTIC (COLLISION) COUPLING

Dmitry Vorobiov‡, Amal Kanti Bera‡, Tal Keren-Raifman, Rachel Barzilai, and Nathan Dascal§

From the Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel

G protein-activated K⁺ channel (GIRK), which is activated by the Gᵢᵣ subunit of heterotrimeric G proteins, and muscarinic m2 receptor (m2R) were coexpressed in Xenopus oocytes. Acetylcholine evoked a K⁺ current, I_{ACH}, via the endogenous pertussis toxin (PTX)-sensitive Gᵢₒ proteins. Activation of I_{ACH} was accelerated by increasing the expression of m2R, suggesting a collision coupling mechanism in which one receptor catalytically activates several G proteins. Coexpression of the α subunit of the PTX-insensitive G protein Gᵢₒ, Gαᵢ, induced a slowly activating PTX-insensitive I_{ACH}, whose activation kinetics were also compatible with the collision coupling mechanism. When GIRK was coexpressed with an m2R-Gaᵢ fusion protein (tandem), in which the C terminus of m2R was tethered to the N terminus of Gaᵢₒ, part of I_{ACH} was still eliminated by PTX. Thus, the m2R of the tandem activates the tethered Gaᵢₒ but also the nontethered Gᵢₒ proteins. After PTX treatment, the speed of activation of the m2R-Gaᵢₒ-mediated response did not depend on the expression level of m2R-Gaᵢₒ and was faster when m2R and Gaᵢₒ were coexpressed as separate proteins. These results demonstrate that fusing the receptor and the receptor-Gaᵢₒ strengthens their coupling, support the collision-coupling mechanism between m2R and the G proteins, and suggest a noncatalytic (stochiometric) coupling between the G protein and GIRK in this model system.

Members of the Gᵢₒ family of heterotrimeric G proteins (Gᵢ₁, Gᵢ₂, Gᵢ₃, Gᵢ₅, Gᵢ₆, and Gᵢ₇) regulate numerous effectors such as adenyl cyclase, ion channels, protein kinases, etc. (1–5). A great number of heptahelical G protein-coupled receptors (GPCRs) activate Gᵢₒ proteins while usually being rather ineffective in interacting with the other three large families (Gᵢ₁, Gᵢ₅, and G₁₂) (6, 7). The diversity of Gᵢₒ-coupled GPCRs and of the Gᵢₒ subunits suggests that the various GPCRs should specifically activate different cellular responses via different Gᵢₒ proteins. Many outstanding examples of specific regulation of effectors by certain Gᵢₒ-coupled GPCRs have been described in vivo; however, only limited specificity is observed on the level of receptor-Gaᵢₒ interaction in intact cells and especially in model expression systems (for review see Ref. 2). It is widely accepted that the overall GPCR-effector coupling specificity is defined by factors such as colocalization or scaffolding of the signaling components, the presence of additional regulatory proteins such as regulators of G proteins signaling, effector/G protein specificity, etc. (6–9). However, in the Gᵢₒ-related pathways, these factors still remain poorly understood. One proposed mechanism of ensuring a specific activation of a certain Gα by a GPCR is the existence of a stable complex between the receptor and the G protein in the absence of agonist. The existence of such complexes is supported by several lines of data, among them coimmunoprecipitation of several GPCRs with the corresponding Gα proteins in many cell types (6–9). However, in other systems, a collision coupling-type mechanism (10, 11) between GPCRs and the G proteins has been demonstrated. In these systems, the receptor is not a priori coupled to Gα, and the coupling takes place only after the binding of an agonist to the receptor. A receptor activated in this way shuttles between and catalytically activates several G proteins in succession.

To study activation and effector coupling of individual Gαᵢₒ proteins in separation from the other members of the family, it is necessary to overcome the problem that each of the Gαᵢₒ can be activated by almost any Gᵢₒ-interacting GPCR. Attempts to achieve specific coupling in GPCR-Gαᵢₒ pairs were made by creating GPCR-Gαᵢₒ fusion proteins (12–14). However, in Gᵢₒ-containing GPCR-Gαᵢₒ tandems, the tethered receptor still activates “nearby” nontethered Gᵢₒ proteins (15). This problem has been partly overcome (14) by utilizing the pertussis toxin (PTX) sensitivity, which is a characteristic of all Gαᵢₒ proteins except Gα₁ (16, 17). PTX catalyzes ADP-ribosylation of a cysteine near the end of the C terminus, preventing the coupling of the agonist-bound receptor to Gα, the dissociation of Gα and Gᵢᵣ subunits, and the activation of their effectors (1). Changing the C-terminal cysteine to glycine or serine renders Gα insensitive to PTX, but it can still be activated by the receptors (18, 19). Thus, after PTX treatment, the GPCR of the tandem containing such a mutant Gαᵢₒ interacts only with the tethered Gα. However, another problem arose. In the best studied case, a tandem of the α2A adrenergoreceptor with a PTX-resistant mutant Gαᵢₒ(C351G) both the receptor-activated GTPase activity and the coupling to the effector (adenylyl cyclase) were substantially impaired as compared with the wild-type Gα (20, 21). This is not surprising, given the importance of the C-terminal end of Gα in receptor recognition and coupling (18, 19) and the devastating effects of some (although not all) mutations of the C-terminal cysteine on receptor-Gα coupling (22, 23).

To avoid the use of mutant Gα and to still be able to compare effector activation by free versus receptor-fused Gαᵢₒ protein,
we utilized the naturally PTX-resistant $G_{i/o}$, and the \textit{Xenopus} oocyte expression system. $G_{i/o}$ is activated by a variety of $G_{i/o}$-coupled GPCRs and inhibits adenyl cyclase like other $G_{i/o}$ proteins (reviewed in Refs. 16 and 17), but $G_{i/o}$ shows a slower GDP-GTP exchange rate and a very low GTPase activity (17). Recently, endogenous $\alpha$-adrenergic receptors have been shown to inhibit N-type Ca$^{2+}$ channels and to activate the $G$ protein-activated, inwardly rectifying K$^+$ channels (GIRK) in a PTX-resistant manner in sympathetic neurons after overexpression of $G_{i/o}$ (26). Both Ca$^{2+}$ channel inhibition and GIRK activation are mediated by a direct interaction of these channels with $G_{i/o}$, normally released from $G_{i/o}$ proteins (4, 27–29).

The use of GIRK channels expressed in \textit{Xenopus} oocytes as an assay to study the receptor-$G$ protein-effector coupling has been widely utilized (28, 30). It allows a controlled expression of different amounts of proteins under study, simply by injecting different amounts of the encoding RNAs, enabling a quantitative study of various aspects of the coupling mechanism. Furthermore, the binding and unbinding of $G_{i/o}$ to and from the channel are fast. The rise and decay times of the GIRK current upon agonist application and washout are believed to be limited primarily by the rate of $G$ protein activation (normally, the GDP-GTP exchange at the $G$α) and by the rate of GTP hydrolysis by $G$α, respectively (28, 31, 32). Therefore, the kinetics of GIRK currents reflect the kinetics of $G$ protein activation and deactivation. Here, using this system, we demonstrate a collaboration coupling-type (10) mechanism in activation of the GIRK by m2R via PTX-sensitive $G_{i/o}$ proteins and via $G_{i/o}$ and a substantial improvement of the efficiency of coupling by tethering m2R and $G_{i/o}$ in tandem.

**EXPERIMENTAL PROCEDURES**

cDNA Constructs and mRNA—Materials and enzymes for molecular biology were from Roche Molecular Biochemicals, Promega, or MBI Fermentas. The cDNA of GIRK2 (33) was a gift from H. A. Lester. cDNA of cPCRK (34) was a gift from E. Reuveni. The coding sequences of m2R (35) were a gift from E. Peralta. $G_{i/o}$ (24) and $G_{i/o}$ (36) (gifts from M. I. Simon) were subcloned into the pGEMHJ vector (34) using a standard polymerase chain reaction procedure in which an EcoRI restriction site was created immediately before the ATG initiation codon, and another EcoRI (m2R), HindIII (Gα), or BstEI (Gα) site was created immediately after the stop codon. The pGEMHJ vector provides 5′- and 3′- untranslated regions of the \textit{Xenopus} $\beta$-globin RNA (37), ensuring a high level of protein expression in the oocytes. The m2R-$G_{i/o}$ and m2R-$G_{i/o}$ tandem cDNAs were created by ligating the m2R cDNA sequence into the EcoRI site of the corresponding $G_{i/o}$ DNA. Thus, in each tandem protein, the full primary sequences of m2R and the $G_{i/o}$ are connected by a short, 2-amino acid linker (Glu-Phe) encoded by the EcoRI restriction site sequence GAAATTC. High-quality capped RNA was prepared as described (38).

Oocytes and Electrophysiology—\textit{Xenopus} laevis oocytes were prepared and injected with RNAs as described (39) and incubated for 3–5 days before the experiment in the ND96 solution (96 mM NaCl, 2 mM KCl, 1 mM CaCl$_2$, 1 mM MgCl$_2$, 5 mM Heps/NaOH) supplemented with 50 µg/ml gentamycin and 2.5 mM sodium pyruvate. cPCRK RNA (5 ng/oocyte) was injected 2 days after the other RNAs, 2 days before the experiment. Two-electrode voltage clamp experiments were performed as described (39). Data acquisition and analysis were done using pCLAMP software (Axon Instruments). The membrane potential was set at −80 or −40 mV in the ND96 solution, and GIRK currents were induced and measured in the high K$^+$ solution (KCl, 96; NaCl, 2; CaCl$_2$, 1; MgCl$_2$, 1; Heps/NaOH, 5). Exchange of solutions was performed using the BSP-4 fast perfusion system (ALAMA Instruments, New York). Full exchange of solution in the experimental bath (50 µl volume) occurred within less than 0.5 s. The shift from ND96 to the high K$^+$ solution evokes a basal current, $I_{basal}$ (see Fig. 1A), which flows mainly via the GIRK channels, with a minor (2–5%) contribution of a $G$ protein-independent endogenous current, $I_{narrow}$ (39, 40). Therefore, $I_{basal}$ was corrected by subtracting the average $I_{narrow}$ measured in native (not injected with RNA) oocytes. PTX treatment was done by injecting the oocytes with the activated A promoter of PTX (Alomone Labs, Jerusalem, Israel) 4–24 h before the experiment (39).

**Immunoechemistry of the Expressed m2R and m2R-$G_{i/o}$ Tandems in**

**RESULTS AND DISCUSSION**

Collision Coupling of m2 Receptor to GIRK via the Endogenous PTX-sensitive G Proteins—We used the GIRK1/GIRK2 subunit composition of the G protein-gated channels, which is abundant in the brain (see Refs. 28 and 30 for review). Expression of m2R with GIRK1 and GIRK2 in \textit{Xenopus} oocytes gave rise to inwardly rectifying K$^+$ currents (42, 43) that were measured using the two-electrode voltage clamp method (Fig. 1A). Exchanging the high Na$^+$ solution (ND96) to a high K$^+$ solution elicited a basal current ($I_{basal}$), and the addition of 10 µM agonist (acetylcholine (ACh)) caused an additional current ($I_{ACh}$), which gradually inactivated over a few minutes (39, 44, 45). 10 µM of ACh was a saturating concentration, because a maximal response was observed already at 1 µM (data not shown). In each experiment, all oocytes were injected with the same amount of channel RNA. We used relatively low doses of RNA of the channel subunits (50, 80, or 100 pg/oocyte each) to ensure that the amount of the endogenous G$_{i/o}$ subunits was sufficient to activate all the channels. Indeed, larger currents were evoked by ACh at 200–500 pg/oocyte of GIRK1 and GIRK2 RNAs (data not shown). $I_{ACh}$ was inhibited by ~90% by the injection of the A promoter of PTX (Refs. 39; Figs. 1E and 2B), suggesting that the response is mediated by the endogenous PTX-sensitive G$_{i/o}$ proteins.

Increasing the dose of m2R RNA caused an increase in $I_{ACh}$; the dose-response relationship almost saturated at 500 pg/oocyte (Fig. 1B, C). $I_{basal}$ was unchanged by coexpression of Xeno...
activity of $G_a$. These features are similar to those described by Jeong and Ikeda (26) for $G_b$-mediated activation of GIRK in sympathetic neurons, suggesting that the slow component is contributed by $G_{b\gamma}$ released from $G_o/\beta\gamma$ heterotrimers. Indeed, PTX treatment eliminated the fast component of activation, leaving the slow one intact (Figs. 1E and 2E). On the other hand, the ACh-evoked response was still mediated by $G_{b\gamma}$, because coexpression of a myristoylated C-terminal part of $\beta$-adrenergic receptor kinase (c\$\beta$ARK), which is a strong $G_{b\gamma}$ chelator and blocks agonist-evoked GIRK currents in the oocytes (47), reduced $I_{ACH}$ by $85 \pm 6\%$ (mean $\pm$ S.E., $n = 3$) in oocytes injected with 1 ng of $G_o$ RNA.

Fig. 2 summarizes the results of $G_a$ coexpression experiments. Without PTX, the amplitudes of either $I_{basal}$ or $I_{ACH}$ (Fig. 2, A and B) were not changed by coexpression of $G_o$, supporting the notion that the overall amplitude of the response was limited by the number of expressed channels. Without $G_{a\gamma}$ PTX strongly reduced $I_{basal}$ and almost fully suppressed the $I_{ACH}$ (39), and both $I_{basal}$ and $I_{ACH}$ were dose-dependently rescued by coexpression of $G_o$ (Fig. 2, A and B). At 1 ng of $G_o$ RNA/oocyte, $I_{basal}$ and $I_{ACH}$ were already almost fully restored. The speed of activation of $I_{ACH}$ became progressively slower with increasing dose of $G_o$ with $t_{50\%\,act}$ reaching $35 \pm 5$ s at 1 ng of $G_o$ RNA in the presence of PTX (Fig. 2C). At all concentrations of $G_o$, $50\%\,act$ was lower in cells untreated with PTX, although this difference was reduced from 2.9-fold at 10 pg to 1.7-fold at 1 ng of $G_o$ RNA (Fig. 2C). The fast component of activation could be reasonably well fitted by a single exponent with time constant of activation ($\tau$) of 1–3 s in a majority of cells (Fig. 2D). This allowed to estimate its contribution to the peak amplitude of $I_{ACH}$ (Fig. 2E). This analysis showed that in PTX the fast component of activation was practically absent. As expected, in the absence of PTX the contribution of the fast component decreased as the expression of $G_a$ increased; about 30% of total agonist-evoked current was still contributed by the endogenous $G_{a\gamma}$ even at 1 ng of $G_o$ RNA.

The results of Fig. 2 (A—E) demonstrate that the endogenous $G_{a\gamma}$ and the expressed $G_o$ compete for the available m2R, to donate $G_{b\gamma}$ for channel activation. In the absence of PTX, a fast component of activation is contributed by the endogenous $G_{b\gamma}$ at all doses of $G_o$ RNA, even 1 ng/oocyte, and only after PTX treatment all channels can be activated solely via $G_{b\gamma}$ coming from $G_o$. PTX reveals the actual kinetics of the response evoked via $G_o$.

These experiments also have an important general implication: PTX is often used to suppress agonist-evoked responses mediated by $G_{i\alpha}$ proteins, to evaluate in this way what part of the cellular response evoked by this agonist is mediated by PTX-insensitive $G$ proteins. Our results call for caution in such interpretations by showing that after PTX treatment, PTX-insensitive $G$ proteins may “take over” the function of PTX-sensitive $G_{i\alpha}$, proteins and couple to a larger proportion of effector molecules than under normal conditions.

The smaller amplitude of $I_{ACH}$ at low levels of $G_o$ expression suggests that $G_{i\alpha}$ protein expression is limiting; each $G_{i\alpha}$ may donate $G_{b\gamma}$ for the activation of a limited number of channels (maybe only one). The progressive increase in $t_{50\%\,act}$ with increasing $G_o$ expression in the presence of PTX (Fig. 2C) is compatible with the collision coupling mechanism: when more $G_o$ are available, each receptor can activate more $G$ proteins (hence a greater $I_{ACH}$; compare with Fig. 2B); but activation of more $G$ proteins by each receptor simply takes more time. An alternative explanation is the presence of a diffusional barrier between $G_i$ and GIRKs (because of channel scaffolding with other $G$ proteins such as $G_{a\gamma}$, etc.), when some of the channels are poorly accessible to $G_{b\gamma}$ derived from $G_o$. Expression of

m2R at RNA doses between 10 and 100 pg/oocyte (40) but increased at 500 pg/oocyte (Fig. 1B, ○), suggesting that at high m2R densities, the agonist-free receptor activates the G proteins. The speed of activation of $I_{ACH}$ (expressed as the time by which $I_{ACH}$ reaches 50% of peak amplitude, $t_{50\%\,act}$) became progressively faster with increasing expression of m2R, reaching 1.4 s at 500 pg of m2R RNA/oocyte (Fig. 1C). The simplest explanation for this phenomenon is a collision coupling-type mechanism (11, 46), in which one receptor shuttles between and catalytically activates several G proteins in succession. The active state of a $G$ persists after unbinding of the receptor until GTP is hydrolyzed; only then it can bind $G_{b\gamma}$. Until then, $G_{b\gamma}$ remains free (“active”) too. This model predicts that the response will develop faster when more receptors are present, because each receptor has to activate less molecules of $G$, saving the shuttling and binding/unbinding time. There is an alternative theoretical possibility that each m2R is always found in a tight complex with a $G_{i\alpha}$, and each complex releases one $G_{b\gamma}$. In such a case, to explain the acceleration of activation at increased levels of m2R, one must assume that each $G_{b\gamma}$ activates several channels in succession, and a channel previously activated by $G_{b\gamma}$ remains open at least until and during the activation of the next one. This, however, is highly unlikely in view of the fast channel deactivation upon unbinding of $G_{b\gamma}$ (31, 32).

**GIRK Channels Are Activated by $G_{b\gamma}$ Released from $G_o/\beta\gamma$ Heterotrimers**—Expression of increasing amounts of $G_o$, while keeping the levels of m2R and GIRK constant slowed down the speed of activation of $I_{ACH}$ (Fig. 1D). This activation appeared composed of a fast and a slow component, with the slow one becoming more prominent as the concentration of $G_o$ RNA was increased. At the same time, the inactivation of $I_{ACH}$ became less apparent. The deactivation of the current upon wash-out of ACh became extremely slow, taking many minutes for completion (data not shown), in line with the slow GTPase

---

**Fig. 2.** Effect of varying the level of expression of $G_o$ and of PTX treatment on GIRK currents. A–C, dependence of amplitude of $I_{basal}$ (A), amplitude of $I_{ACH}$ (B), and speed of activation of $I_{ACH}$ (C) on the level of expression of $G_o$, and on PTX treatment. Each point represents mean $\pm$ S.E. from 12–33 oocytes from at least three donors. All oocytes were injected with 100 pg/oocyte of m2R RNA and the indicated amounts of $G_o$ RNA. Empty bars, no PTX treatment; black bars, cells treated with PTX. In each oocyte, the currents were normalized to the average value recorded in the control group ($G_o = 0$). D, an example of the fitting procedure used to estimate the contribution of the fast component to the total $I_{ACH}$. The oocyte was injected with RNAs of m2R, $G_o$, GIRK1, and GIRK2 (100 pg of each). E, summary of the analysis of the kind shown in D, 4–6 oocytes from two batches. F, the dose dependence of $t_{50\%\,act}$ on the dose of m2R RNA in oocytes of one batch, treated with PTX ($G_o$ RNA was 1 ng/oocyte). The points are mean $\pm$ S.E. of 4–6 oocytes.
more Gz might eventually force the activation of the previously inaccessible population of channels, but with a slower time course, reflecting the slower diffusion of Gz to these channels. We view the collision coupling mechanism between m2R and Gz as a more plausible explanation, because it is supported by an independent experiment showing acceleration of activation of IACH by increasing the level of expression of m2R, in the presence of PTX (Fig. 2F). Importantly, the activation of GIRK by Gz is much slower than by PTX-sensitive Gz. Comparison of the group in which all the channels were activated by the endogenous Gz (0 pg of Gz, no PTX) and the group in which the same amount of channels was activated by Gz (1 ng of Gz RNA, with PTX) reveals a 22-fold difference in t50% act (Fig. 2C).

To understand the reasons for this poor speed of activation, we have created an m2R-Gz tandem and studied its interaction with GIRK. For comparison, an m2R-Gz tandem was also made and tested.

**Stoichiometric Coupling of the m2R-Gz Tandem to GIRK—** Metabolically labeled m2R, m2R-Gz, and m2R-Gz were immunoprecipitated from oocytes injected with 100 pg of each RNA with a polyclonal antibody against m2R. The amounts of all three proteins were approximately equal (Fig. 3A). m2R (calculated molecular mass, 51.7 kDa) is a glycosylated protein (48) with an apparent molecular mass of 65–80 kDa in mammalian cells (48, 49). In the oocytes, it ran as a diffuse band of ~90 kDa (Fig. 3A), suggesting that it was glycosylated stronger than in mammalian cells. The apparent sizes of the tandem proteins were 116–120 kDa, above the calculated ~92 kDa, suggesting that these proteins were also glycosylated. Uninjected oocytes were devoid of label.

In oocytes coexpressing the m2R-Gz tandem with GIRK, Ibasal was stable in the range 50–300 pg of m2R-Gz RNA but grew at higher doses (Fig. 3B), suggesting a substantial basal activity of the receptor at high expression levels. IACH grew dose-dependently with increasing amounts of tandem RNA (Fig. 3C). PTX reduced both Ibasal and IACH at lower doses of m2R-Gz, confirming that a GPCR, even when tethered to a Gz, can still activate other nontethered G proteins (15). Above 300 pg/oocyte of tandem RNA, PTX had little effect on either Ibasal or IACH (Fig. 3, B and C), suggesting that there were enough tandems to donate Gz for activation of most channels. The m2R-Gz-mediated IACH was fully Gz-dependent, because coexpression of cβARK completely abolished it (data not shown). Examination of the rising phase of IACH (Fig. 3D) revealed that activation by m2R-Gz was accelerated by the PTX treatment (Fig. 3D, trace 2, and Fig. 3F). This was true at most doses of m2R-Gz (Fig. 3E). These results reveal that the coupling of the tethered receptor to Gz within the tandem is better (faster) than its coupling to the nontethered Gz. Again, PTX treatment reveals the real kinetics of GIRK activation by the tandem. Fig. 3F summarizes the differences in the kinetics of GIRK activation, obtained in several experiments at the same doses of RNAs of m2R, Gz, or m2R-Gz: 100 pg/oocyte. The activation of GIRK by the m2R-Gz (in PTX) is 4-fold faster than by separately expressed m2R and Gz, suggesting that the slowness of coupling of m2R to GIRK via Gz is primarily the result of poor receptor-Gz coupling. Yet, activation by the m2R-Gz tandem is still slower (p > 0.001) than by m2R via the endogenous Gz (t50% act, 3.6 ± 0.4 s, n = 16, versus 1.9 ± 0.1 s, n = 53). This may reflect the slow intrinsic kinetics of Gz activation, because a structurally similar tandem, m2R-Gz, activated the channel even faster than m2R via the endogenous Gz (t50% act, 0.8 ± 0.2 s, n = 7).

The most striking consequence of the physical link between m2R and Gz was revealed after PTX treatment, which eliminated the contribution of the endogenous Gz (Fig. 3E): the speed of activation of the m2R-Gz-mediated response did not depend on the expression level of the tandem. This result clearly demonstrates a stoichiometric interaction between m2R and Gz in the tandem protein, confirming that tethering produces an active GPCR-Gz complex and eliminates the collision coupling. Furthermore, it confirms that collision coupling (if any) between free Gz and GIRK does not contribute to the activation kinetics. This, in turn, strengthens the conclusion reached above, that the collision coupling under normal conditions (free expressed m2R; Figs. 1C and 2F) occurs on the receptor-G protein level. The stoichiometric (noncatalytic) coupling between the released Gz and the channel may simply reflect the fast dissociation of Gz (see above). A more tantalizing possibility is that there is a high affinity preformed complex between a G protein heterotrimer and the GIRK (50, 51), so that dissociation between Go and Gz is immediately followed by the activation of the effector, saving the time lag introduced by the diffusion. Such a scheme explains well the fast kinetics of GIRK activation in atrial myocytes and in neurons (32, 52).

**Conclusions—** Using the Xenopus oocyte expression system, we have performed a quantitative comparison of activation of an effector (GIRK) by a GPCR (m2R) via endogenous PTX-sensitive G proteins, via a coexpressed Gz, and via an m2R-Gz tandem (fusion) protein. The efficiency (in terms of kinetics) of coupling of the components of the signaling pathway was monitored by measuring the activation kinetics of the GIRK current. Our results demonstrate a collision coupling between m2R and the Gz proteins (either endogenous Gz or...
m2R-Gα2 Tandem Activates GIRK

coexpressed Gα2). In contrast, the relationship between the amount of activated G proteins and the activated effector is stoichiometric. The latter is in line with the existence of a preformed complex between a G protein heterotrimer and the effector. Although m2R is able to elicit a full effector response via Gα2, the slow kinetics of the response reveals an inherent inefficiency of this signaling pathway, compared with m2R-GIRK signaling via PTX-sensitive Gαq proteins. The use of m2R-Gα revealed that the poor coupling between m2R and Gαq and the intrinsic slow activation of Gαq are important rate-limiting steps in the Gα pathway.

Acknowledgments—We are grateful to T. Ivanina, D. Singer-Lahat, I. Lotan, and A. Levitzki for the comments on the manuscript.

REFERENCES

1. Gilman, A. G. (1987) Annu. Rev. Biochem. 56, 615–649
2. Gudermann, T., Kulkarni, F., and Schultz, G. (1996) Annu. Rev. Pharmacol. Toxicol. 36, 429–459
3. Birnbaumer, L. (1992) Cell 71, 1069–1072
4. Wickman, K., and Clapham, D. E. (1995) J. Biol. Chem. 270, 134–142
5. Luttrell, L. M., Daaka, Y., and Lefkowitz, R. J. (1999) J. Biol. Chem. 274, 589–595
6. Simon, M. I., Strathmann, M. P., and Gautam, N. (1991) Science 252, 802–808
7. Neubig, R. R. (1994) FASEB J. 8, 939–946
8. Gudermann, T., Schoneberg, T., and Schultz, G. (1997) Annu. Rev. Neurosci. 20, 399–427
9. Berman, D. M., and Gilman, A. G. (1998) J. Biol. Chem. 273, 1269–1272
10. Levitzki, A., Marbach, I., and Bar-Sinai, A. (1993) Life Sci. 52, 2093–2100
11. Levitzki, A. (1988) Science 241, 800–806
12. Medici, R., Bianchi, E., Di Segni, G., and Tocchi-Valentini, G. P. (1997) EMBO J. 16, 7241–7249
13. Bertin, B., Freismuth, M., Jockers, R., Strusberg, A. D., and Marullo, S. (1994) Proc. Natl. Acad. Sci. U. S. A. 91, 8827–8831
14. Wise, A., and Milligan, G. (1997) J. Biol. Chem. 272, 24673–24678
15. Burt, A. R., Sautel, M., Wilson, M. A., Rees, S., Wise, A., and Milligan, G. (1998) J. Biol. Chem. 273, 10367–10375
16. Ho, M. K., and Wong, Y. H. (1998) Biol. Signals Recept. 7, 80–89
17. Fields, T. A., and Casey, P. J. (1997) Biochem. J. 321, 561–571
18. Kostenis, E., Zeng, F. Y., and Wess, J. (1999) J. Life Sci. 64, 355–362
19. Bourne, H. R. (1997) Curr. Opin. Cell Biol. 9, 134–142
20. Carr, I. C., Burt, A. R., Jackson, V. N., Wright, J., Wise, A., Rees, S., and Milligan, G. (1998) FEBS Lett. 428, 17–22
21. Sautel, M., and Milligan, G. (1998) FEBS Lett. 436, 46–50
22. Garcia, P. D., Orust, R., Bell, S. M., Sakmar, T. P., and Bourne, H. R. (1995) EMBO J. 14, 4460–4469
23. Osawa, S., and Weiss, E. R. (1995) J. Biol. Chem. 270, 31052–31058
24. Feng, H. K., Yoshimoto, K. K., Eversole-Cire, P., and Simon, M. I. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 3066–3070
25. Matsuoka, M., Itoh, H., Kozasa, T., and Kaziro, Y. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 5384–5388
26. Jeong, S. W., and Bodea, S. R. (1998) Neuron 21, 1201–1212
27. Dolphin, A. C. (1998) J. Physiol. 506, 3–11
28. Dascal, N. (1997) Cell. Signal. 9, 551–573
29. Ikeda, S. R., and Dunlap, K. (1999) Adv. Second Messenger Phosphoprotein Res. 33, 131–151
30. Yamada, M., Inanobe, A., and Kurachi, Y. (1988) Pharmacol. Rev. 50, 723–757
31. Breitwieser, G. E., and Szabo, G. (1988) J. Gen. Physiol. 91, 469–483
32. Hille, B. (1992) Neuron 9, 187–195
33. Silverman, S. K., Lester, H. A., and Dougherty, D. A. (1996) J. Biol. Chem. 271, 30524–30528
34. Jing, J., Chikvashvili, D., Singer-Lahat, I., Thornhill, W. B., Reuveny, E., and Lotan, I. (1999) EMBO J. 18, 1245–1256
35. Dascal, N., Lim, N. F., Schreibmayer, W., Wang, W., Davidson, N., and Lester, H. A. (1993) Proc. Natl. Acad. Sci. U. S. A. 90, 6596–6600
36. Beals, C. R., Wilson, C. B., and Perlmutt, R. M. (1987) Proc. Natl. Acad. Sci. U. S. A. 84, 7886–7890
37. Liman, E. R., Trygat, J., and Hess, P. (1992) Neuron 9, 861–871
38. Dascal, N., and Lotan, I. (1992) in Protocols in Molecular Neurobiology, Vol. 13, Chapter 13, pp. 205–225, Humana Press, Totowa, NJ
39. Sharon, D., Vorobiov, D., and Dascal, N. (1997) J. Gen. Physiol. 109, 477–490
40. Vorobiov, D., Levin, G., Lotan, I., and Dascal, N. (1998) Pflugers Arch. Eur. J. Physiol. 436, 56–68
41. Ivanina, T., Perets, T., Thornhill, W. B., Levin, G., Dascal, N., and Lotan, I. (1994) Biochemistry 33, 8786–8792
42. Lesage, F., Guellemare, E., Fink, M.,Duprat, F., Heurteaux, C., Fosset, M., Roney, G., Barhanin, J., and Laduzinski, M. (1995) J. Biol. Chem. 270, 28660–28667
43. Kong, P., Davidson, N., and Lester, H. A. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 6542–6546
44. Kovoor, A., Henry, D. J., and Chavkin, C. (1995) J. Biol. Chem. 270, 589–595
45. Dascal, N., Schreibmayer, W., Lim, N. F., Wang, W., Chavkin, C., DiMaggio, L., Labarca, C., Kieffer, B. L., Gaveriaux-Ruff, C., Trottier, D., Lester, H. A., and Davidson, N. (1993) Proc. Natl. Acad. Sci. U. S. A. 90, 10235–10239
46. Lamb, T. D. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 566–570
47. Ho, I. H. M., and Murrell-Lagnado, R. D. (1999) J. Biol. Chem. 274, 8639–8648
48. van Koppen, C. J., and Nathanson, N. M. (1990) J. Biol. Chem. 265, 20987–20992
49. Fu, M. L., Gerd, W., Ake, H., and Johan, H. (1994) Receptors Channels 2, 121–130
50. Slesinger, P. A., Reuveny, E., Jan, Y. N., and Jan, L. Y. (1995) Neuron 15, 1145–1156
51. Huang, C. L., Slesinger, P. A., Casey, P. J., Jan, Y. N., and Jan, L. Y. (1995) Neuron 15, 1133–1143
52. Sodickson, D. L., and Bean, B. P. (1998) J. Neurosci. 18, 8153–8162