Diverse Roles of PUF Proteins in Germline Stem and Progenitor Cell Development in C. elegans

Xiaobo Wang and Ekaterina Voronina*

Division of Biological Sciences, University of Montana, Missoula, MT, United States

Stem cell development depends on post-transcriptional regulation mediated by RNA-binding proteins (RBPs) (Zhang et al., 1997; Forbes and Lehmann, 1998; Okano et al., 2005; Ratti et al., 2006; Kwon et al., 2013). Pumilio and FBF (PUF) family RBPs are highly conserved post-transcriptional regulators that are critical for stem cell maintenance (Wickens et al., 2002; Quenault et al., 2011). The RNA-binding domains of PUF proteins recognize a family of related sequence motifs in the target mRNAs, yet individual PUF proteins have clearly distinct biological functions (Lu et al., 2009; Wang et al., 2018). The C. elegans germ line is a simple and powerful model system for analyzing regulation of stem cell development. Studies in C. elegans uncovered specific physiological roles for PUFs expressed in the germline stem cells ranging from control of proliferation and differentiation to regulation of the sperm/oocyte decision. Importantly, recent studies started to illuminate the mechanisms behind PUF functional divergence. This review summarizes the many roles of PUF-8, FBF-1, and FBF-2 in germline stem and progenitor cells (SPCs) and discusses the factors accounting for their distinct biological functions. PUF proteins are conserved in evolution, and insights into PUF-mediated regulation provided by the C. elegans model system are likely relevant for other organisms.

Keywords: germline, C. elegans, pumilio and fem-3-binding factor, RNA regulation, stem cells

INTRODUCTION

Post-transcriptional regulation of gene expression governs the rate of protein production through the control of key steps in mRNA life cycle. In eukaryotes, RNA-binding proteins (RBPs) play critical roles in mRNA biogenesis, stability, function, transport, and cellular localization essential for post-transcriptional regulation (Glisovic et al., 2008). RBPs expressed in stem cells contribute to the regulation of stem cell self-renewal and differentiation (Zhang et al., 1997; Forbes and Lehmann, 1998; Okano et al., 2005; Ratti et al., 2006; Kwon et al., 2013), while misregulation of RBP activity can lead to tumors (Rezza et al., 2010; Degrawwe et al., 2016). Post-transcriptional regulation in stem cells relies on the combined activities of many RBPs (Eckmann et al., 2004; Arvola et al., 2017). Investigating the basic mechanisms of RBP function in stem cells will advance our understanding of abnormal post-transcriptional regulation relevant to human diseases, such as cancer.

Pumilio and FBF family RBPs are highly conserved eukaryotic posttranscriptional regulators (Wickens et al., 2002; Quenault et al., 2011). The name of this family comes from the first identified PUF proteins, *Pumilio* in *D. melanogaster* and fem-3-binding factor (FBF) in *C. elegans*.
PUF proteins control diverse biological processes including oogenesis (Parisi and Lin, 1999), organelle biogenesis (García-Rodriguez et al., 2007), neuronal function (Mee et al., 2004), and memory formation (Dubnau et al., 2003; Zhang et al., 2017). In addition to these roles, PUF proteins share an evolutionarily conserved role in stem cell maintenance. Mutation of Pumilio induces loss of female germline stem cells in Drosophila due to differentiation to cystoblasts and then egg chambers (Lin and Spradling, 1997; Forbes and Lehmann, 1998). Similarly, loss of PUF proteins in C. elegans results in germline stem cells entering meiosis and undergoing spermatogenesis (Zhang et al., 1997; Crittenden et al., 2002; Haupt et al., 2019b) and knockdown of planarian homolog DjPum by RNA interference induces loss of totipotent stem cells called neoblasts (Salvetti et al., 2005). In mammals, PUM proteins contribute to stem cell maintenance across multiple tissues (Shigunov et al., 2012; Naudin et al., 2017; Zhang et al., 2017).

Canonical PUF proteins are characterized by a conserved RNA-binding domain (Pumilio homology domain, PUM-HD) with eight consecutive α-helical PUM repeats (Zamore et al., 1997; Zhang et al., 1997; Wang et al., 2001; Hall, 2016). Crystal structures of the classical PUM-HD uncover a crescent arrangement of PUM repeats. Single-stranded RNA binds to the inner concave surface of PUM-HD. Typically, one PUM repeat contacts one RNA base. A five-amino-acid motif in the second alpha helix of a PUM repeat determines the sequence specificity of RNA base recognition (Wang et al., 2002; Cheong and Hall, 2006; Campbell et al., 2014). Three key residues in the motif directly interact with RNA, thus comprising the tripartite recognition motifs (TRMs) (Wang et al., 2002; Campbell et al., 2014; Hall, 2016). Although individual PUF proteins preferentially associate with RNA motifs of distinct lengths and sequences, the canonical target motifs share the core UGU triplet (Lu et al., 2009; Wang et al., 2018).

Pumilio and FBF proteins control stability and translation of their target mRNAs by binding to their 3′UTRs (Zamore et al., 1997; Zhang et al., 1997). The best-documented mechanism of PUF-mediated regulation is through deadenylation of the target mRNAs that results in translational repression or mRNA decay (Wreden et al., 1997; Goldstrohm et al., 2006; Kadyrova et al., 2007; Van Etten et al., 2012; Weidmann et al., 2014). Alternatively, PUFs can interfere with recognition of cap structure by translation initiation factors through directly binding to the cap (Cao et al., 2010) or through recruiting cap-binding cofactors (Cho et al., 2005, 2006). Additionally, PUFs might attenuate translational elongation through an interaction with Argonaute family proteins (Friend et al., 2012). For all PUFs investigated to date, high-throughput approaches have suggested a large number of putative regulatory targets. Putative PUF-regulated transcripts have been identified in yeast, Drosophila, C. elegans, and humans by using RIP (RNA Immunoprecipitation)-Chip, RIP-seq, and CLIP (Cross-linking Immunoprecipitation)-seq (Gerber et al., 2004, 2006; Morris et al., 2008; Hafner et al., 2010; Prasad et al., 2016; Porter et al., 2019). The conservation of a number of PUF targets between nematodes and other species including humans was first reported in a microarray study (Kershner and Kimble, 2010) and then confirmed and expanded by CLIP-seq analysis (Prasad et al., 2016; Porter et al., 2019). The shared PUF target mRNAs are enriched for biological process GO terms such as cell cycle, cell division, and nuclear division. Cell cycle regulation is central to stem cell maintenance (Boward et al., 2016), and mRNA target conservation reflects PUF proteins’ ancient role in stem cell maintenance.

The C. elegans germline is a powerful model that revealed many aspects of PUF protein function in germline stem cells. Ten PUF proteins identified in C. elegans are clustered into 4 subfamilies: PUF-8/9, FBF-1/2, PUF-3/11/4, and PUF-5/6/7 (Wickens et al., 2002; Stumpf et al., 2008; Hubstenberger et al., 2012; Liu et al., 2012). Five of these PUF proteins, FBF-1 and FBF-2, as well as PUF-8, PUF-3, and PUF-11 are enriched in germline stem cells and support stem cell maintenance (Crittenden et al., 2002; Lamont et al., 2004; Ariz et al., 2009; Racher and Hansen, 2012; Voronina et al., 2012; Haupt et al., 2019b), yet each is functionally distinct. In-depth studies of C. elegans germline PUF proteins provided novel insights into the mechanisms mediating this functional specialization. This review provides an overview of C. elegans germline stem cells and focuses on the contribution of PUF-8, FBF-1, and FBF-2 to germline stem and progenitor cell function, since PUF-3 and PUF-11 are less well-studied. We then discuss recent advances in uncovering the determinants that mediate the divergence of PUF biological functions.

C. elegans GERMLINE, A POWERFUL MODEL FOR STEM CELL STUDIES

Overall Structure of C. elegans Germline

The C. elegans germline is a simple but very powerful model system for studying stem cell biology (Figure 1A). C. elegans can exist as hermaphrodites or males, and in this review, we are focusing on hermaphrodites, although mechanisms regulating germline stem cells are similar in the two sexes. A C. elegans adult contains two symmetric U-shaped germlines. Most of the C. elegans germline, except for late oocytes, is a syncytium, where individual germ cells have an opening to a central shared cytoplasmic core (Hirsh et al., 1976). Although germ cells have access to continuous cytoplasm, the communication between cells is limited and neighboring germ cells can be seen at distinct stages of cell cycle or differentiation. Similar to the germlines of other organisms, the C. elegans germline is maintained by a population of proliferative stem cells in the stem cell niche at its distal end (Figure 1A; Pazdernik and Schedl, 2013). When progenitor cells leave the niche, they enter meiosis followed by differentiation into sperm during larval development and into oocytes in adulthood. Maintenance of stem and progenitor cells (SCPs) in the mitotic zone is critical for C. elegans germline development and worm fertility.

Germline Stem and Progenitor Cells

The proliferative zone of the C. elegans germline extends about 20 cell diameters from the distal tip, and contains cells in a mitotic cell cycle and cells that have entered meiotic S-phase (Crittenden et al., 2006; Jaramillo-Lambert et al., 2007; Fox et al., 2011).
SPCs. The collectively refer to the cells that have not entered meiosis as equivalent cells (Fox and Schedl, 2015). In this review, we amplifying cells, the proliferative zone contains developmentally Wang and Voronina PUFs in Stem Cells

GLP-1, signaling components such as the receptor and Kimble, 1987). Loss-of-function mutations of GLP-1/Notch is highly conserved in most multi-cellular organisms (Austin and Kimble, 1987; Henderson et al., 1997; Nadarajan et al., 2009; Kershner et al., 2014). By contrast, germ cells of the germ line are found in RNA granules (Noble et al., 2008). PUF proteins expressed in the C. elegans germ line are found in RNA granules (Noble et al., 2008; Ariz et al., 2009; Voronina et al., 2012; Haupt et al., 2019b). PUF-5 colocalizes with processing body components (Noble et al., 2008), PUF-8 and FBF-2 localize to P granules (Ariz et al., 2009; Voronina et al., 2012; Wang et al., 2016), and the identities of RNA granules containing FBF-1 or PUF-3 and PUF-11 are currently unknown.

Cytoplasmic Organization of RNA Regulation

Many RBPs that mediate post-transcriptional regulation of germ cell development are found enriched at cytoplasmic foci called RNA granules. Germ cells have a number of RNA granule subtypes (Figure 1A), including germ granules or P granules in C. elegans, processing bodies, and stress granules (Voronina et al., 2011). The processing bodies and stress granules are distributed throughout the cytoplasm in somatic cells as well as in germ cells (Boag et al., 2005; Noble et al., 2008; Hubstenberger et al., 2017; Lechler et al., 2017). By contrast, P granules are perinuclear cytoplasmic RNA granules specific to germ cells and present throughout germ line development, excluding mature sperm (Strome and Wood, 1982). All PUF proteins expressed in the C. elegans germ line are found in RNA granules (Noble et al., 2008; Ariz et al., 2009; Voronina et al., 2012; Haupt et al., 2019b). PUF-5 colocalizes with processing body components (Noble et al., 2008), PUF-8 and FBF-2 localize to P granules (Ariz et al., 2009; Voronina et al., 2012; Wang et al., 2016), and the identities of RNA granules containing FBF-1 or PUF-3 and PUF-11 are currently unknown.

REGULATORY ROLES OF PUF PROTEINS IN C. ELEGANS GERMLINE STEM AND PROGENITOR CELLS

PUF Function in Maintaining Germline SPCs

Germ line stem cells are maintained by promoting proliferation and/or inhibiting cell death and differentiation. FBF-1 and FBF-2 are redundantly required for maintaining germline SPCs in adult hermaphrodites since a C. elegans double mutant for both FBFs lose their germ line stem cells by 24 h after the last larval stage (Crittenden et al., 2002). Several FBF targets have been proposed to contribute to FBFs’ role in SPC maintenance (Figure 2A). First, FBFs are suggested to repress expression of MPK-1, a homolog of Mitogen-activated protein kinase (MAPK)/ERK, and mpk-1 mRNA contains two FBF binding elements in its 3’UTR (Lee et al., 2007a). This repression was

RNA-Binding Protein Network Downstream of GLP-1/Notch

Post-transcriptional control is a widespread mechanism for regulating gene expression in the C. elegans oogenic germline (Merritt et al., 2008). Downstream of GLP-1/Notch, germline stem cell development is regulated by a network of posttranscriptional regulators that includes a large number of RBPs, a subset of which is shown in Figure 1B. FBF-1 and FBF-2, PUF family RBPs expressed in the distal germ line, control stem cell maintenance and sex fate (Zhang et al., 1997; Crittenden et al., 2002). Additionally, four RNA regulators, including three GLD proteins and NOS-3, act in two parallel pathways that inhibit mitosis and promote meiosis (Hansen et al., 2004), while the cytoplasmic poly(A) polymerase formed by the complex of GLD-2 [the poly(A) polymerase enzyme] and GLD-3 (a homolog of Bicaudal-C RBP) constitutes a translational activation pathway (Eckmann et al., 2004).

Unlike other stem cell systems with distinct stem cells and transit amplifying cells, the proliferative zone contains developmentally equivalent cells (Fox and Schedl, 2015). In this review, we collectively refer to the cells that have not entered meiosis as SPCs. The C. elegans germ line SPC zone is maintained within a niche formed by a single mesenchymal cell, called the distal tip cell (DTC), which caps the distal end of the germ line and extends its cytoplasmic processes proximally (Kimble and White, 1981; Crittenden et al., 2006; Byrd et al., 2014). The DTC preserves the mitotic identity and promotes mitotic division of SPCs through the canonical GLP-1/Notch signaling that is highly conserved in most multi-cellular organisms (Austin and Kimble, 1987). Loss-of-function mutations of GLP-1/Notch signaling components such as the receptor glp-1, ligands lag-2 and apx-1, and downstream transcriptional targets lst-1 and sygl-1 cause germ line stem cells to enter meiosis prematurely, which is similar to the DTC removal (Kimble and White, 1981; Austin and Kimble, 1987; Henderson et al., 1997; Nadarajan et al., 2009; Kershner et al., 2014). By contrast, germ cells of the glp-1(oz112gf) gain-of-function mutant with constitutive GLP-1 signaling fail to exit from the mitotic cell cycle leading to tumorous germ lines (Berry et al., 1997).
hypothesized to be important for stem cell maintenance since RNAi-mediated knockdown of mpk-1 increased the number of mitotic germ cells, while promoting MPK-1 activity by a Ras gain-of-function mutation let-60(n1046) decreased the number of mitotic germ cells (Lee et al., 2006). Similarly, MAPK repression is observed to promote self-renewal of embryonic stem cells and skeletal muscle stem cells (Burdon et al., 1999; Bernet et al., 2014). However, in addition to repressing MPK-1, FBFs repress the expression of its negative regulator, MAPK inactivating phosphatase LIP-1 (Lee et al., 2006). Therefore, an fbf mutation would derepress both MPK-1 and LIP-1 that inhibits MAPK activity and thus might not result in abnormal activation of MPK-1 in SPCs. Instead, such mutation would result in a sensitized background that might deregulate MPK-1 following additional genetic lesions. Regulation of MAPK by PUF homologs appears conserved in evolution, and was also documented in human embryonic stem cells as well as in mouse spermatocytes (Lee et al., 2007a; Chen et al., 2012). Second, FBFs promote self-renewal of germline stem cells by repressing expression of CKI-2 (Kalchhauser et al., 2011), a Cyclin-dependent kinase inhibitor that regulates cell cycle entry/exit decisions (Buck et al., 2009). Removing cki-2 partially rescues the germline stem cell depletion phenotype in fbf-1 fbf-2 double mutant adult hermaphrodites (Kalchhauser et al., 2011), suggesting that repression of cki-2 is not the only mechanism by which FBFs promote stem cell proliferation. CIP/KIP family cyclin-dependent kinase inhibitors are conserved targets of PUF proteins as they were found to be regulated by PUFs in mouse embryos and human cells (Kedde et al., 2010; Lin et al., 2019). Interestingly, genes encoding diverse cell cycle regulators, beyond cki-2 and its homologs, are enriched among target mRNAs pulled down with FBFs as well as PUF proteins from other organisms (Hafner et al., 2010; Kershner and Kimble, 2010; Chen et al., 2012; Prasad et al., 2016; Porter et al., 2019), suggesting a conserved mechanism of PUF-mediated control of cell proliferation. Third, FBFs prevent premature meiotic entry of SPCs by inhibiting expression of target mRNAs that encode differentiation-promoting regulators, such as GLD-1 (Crittenden et al., 2002), GLD-2 (Millonigg et al., 2014), and GLD-3 (Eckmann et al., 2004), as well as structural components of meiotic chromosomes, such as HTP-1, -2 orthologs of human HOR1 and 2 (Merritt and Seydoux, 2010).

PUF-8 promotes germline SPC proliferation by acting redundantly with a KH domain-containing RBP MEX-3 (Figure 2A; Ariz et al., 2009). This function might be explained by PUF-8-dependent translational control of cell cycle regulators, but the analysis of GLP-1/Notch receptor in the mutant germlines uncovered mislocalization of GLP-1 protein (Ariz et al., 2009). It appears that PUF-8 facilitates translation of the endoplasmic reticulum protein FARL-11 that is required for GLP-1 membrane localization (Maheshwari et al., 2016), suggesting another potential mechanism of PUF-8 promoting SPC proliferation.

PUF Function in Inhibiting Mitotic Cell Fate of SPCs and Promoting Differentiation

In addition to facilitating stem cell maintenance, both FBFs and PUF-8 were unexpectedly found to limit stem cell numbers by promoting stem cell exit from mitosis and differentiation (Figure 2B). The GLP-1/Notch signaling within the distal niche maintains the mitotic cell fate of germline SPCs (Hansen and Schedl, 2006; Kimble and Crittenden, 2007). Temperature-sensitive glp-1(gf) mutant animals with excessive GLP-1 activity have slightly enhanced proliferation of germline SPCs at the permissive temperature, and produce tumorous germlines at the restrictive temperature (Berry et al., 1997; Pepper et al., 2003; Wang et al., 2012). Interestingly, puf-8 knockout strongly enhances germ cell over-proliferation of several glp-1(gf) mutants at the permissive temperature. This suggests that puf-8 might inhibit mitotic cell fate of SPCs through negatively regulating the GLP-1/Notch signaling or by functioning parallel to it (Racher and Hansen, 2012). One relevant target mRNA for PUF-8-mediated inhibition of the mitotic cell fate is *C. elegans* RAS.

![Figure 2](https://www.frontiersin.org)
homolog LET-60. Loss of puf-8 promotes accumulation of both endogenous LET-60 and a GFP:H2B reporter under the control of the let-60 3′UTR in mitotic germ cells as well as in early meiotic cells, suggesting direct regulation of let-60 by PUF-8 (Vaid et al., 2013). Increased levels of LET-60 in puf-8 mutant are not sufficient to ectopically activate MPK-1 in SPCs (Vaid et al., 2013). However, additional loss of LET-60 negative regulator gap-3 in the puf-8; gap-3 double mutant leads to activation of MPK-1 throughout the germline, abnormal mitotic proliferation, and tumorous germlines (Vaid et al., 2013). Interestingly, tumor formation in this genetic background was dependent on MAPK signaling and was repressed by RNAi-mediated depletion of MAPK pathway components (Vaid et al., 2013). It appears that MAPK activation doesn’t always cause the proliferative response of SPCs, since the presence of activated MPK-1 in a different double mutant background (fbf-1; lip-1) fails to elicit abnormal proliferation (Lee et al., 2007a). This brings up a question whether MAPK signaling promotes SPC proliferation (Lee et al., 2006) or differentiation (Vaid et al., 2013). Analysis of null mutants in lin-45/Raf; mek-2/MEK, and mpk-1/ERK suggested that MAPK components are not essential for SPC maintenance, but each leads to a decrease in SPC numbers especially as animals age (Lee et al., 2007b). Additionally, null mutants in lin-45/Raf, mek-2/MEK, and mpk-1/ERK enhance premature meiotic entry defect of a temperature-sensitive gdp-1 loss-of-function allele at the permissive temperature, suggesting that MAPK signaling promotes SPC proliferation (Lee et al., 2007b). On the other hand, RNAi depletion of mpk-1 increased SPC numbers (Lee et al., 2006). The null mutations and RNAi treatment might not affect gene function with the same efficiency, and disparate results obtained by the two approaches might point to the critical differences in specific levels and developmental dynamics of MAPK activity underlying each phenotype. Considering this, regulation of multiple genes affecting the levels of MPK-1-mediated signaling by FBFs and PUF-8 (Lee et al., 2006, 2007a; Vaid et al., 2013) might allow SPCs to maintain precise control of MPK-1 activity during development.

Genetic evidence suggests that FBFs act to promote meiotic entry of SPCs through the GLD-2, GLD-3 genetic pathway (Crittenden et al., 2002). GLD-1, NOS-3 and GLD-2, GLD-3 are the two main pathways that redundantly promote SPC meiotic entry (Figure 1B; Kimble and Crittenden, 2007). In the absence of gdp-1, FBFs are no longer required to sustain germline proliferation and the gdp-1; fbf-1 fbf-2 mutant worms have tumorous germline with all mitotic cells (Crittenden et al., 2002). This tumorous germline phenotype is similar to the tumors observed in gdp-1; gld-2 and gdp-1; gld-3 mutants (Kadyk and Kimble, 1998; Eckmann et al., 2004), suggesting a possibility that FBFs proteins function through the GLD-2, GLD-3 genetic pathway to promote meiotic entry. Direct interaction of FBF with GLD-3 that might underlie this function is discussed further in section “Protein Cofactors That Change PUF Regulatory Outcome.”

The fact that PUF proteins appear to regulate both proliferation and differentiation is enigmatic and has promoted several interpretations. For example, PUF-8 represses some mRNAs associated with proliferation while facilitating expression of other targets promoting proliferation in the same cells. As a result, it is possible that the overall effect of PUF-8 on germline proliferation is minor, and it acts to fine-tune SPC proliferation rather than as an all-or-none switch specifying stem cell fate. In a similar vein, functional annotation of mRNAs co-isolated with FBFs suggests that they associate with and repress mRNAs required for both differentiation as well as cell cycle progression of germ cells (Prasad et al., 2016; Porter et al., 2019). One intriguing interpretation is that this allows FBFs to simultaneously control the rate of both SPC proliferation and differentiation, thus maintaining the balance between these two cell fates. In order to maintain stem cell numbers over time, their self-renewal needs to be matched with differentiation (Morrison and Kimble, 2006). In C. elegans, SPC homeostasis is controlled at a population level, where some progenitor cells are lost through differentiation, while other cells proliferate, with both outcomes observed at the same frequency (Kimble and Crittenden, 2007). Although C. elegans SPCs proliferate continuously, the rate of SPC proliferation changes during development and is responsive to environmental conditions and nutrition (Hubbard et al., 2013). Simultaneous control of SPC proliferation and differentiation by FBFs might work to match the output of the stem cell compartment to the proliferative demands of the germline, while keeping the two fates in a balance.

PUF Function in Controlling the Sperm/Oocyte Decision in Germline Mitotic Zone

The mechanism underlying sperm/oocyte decision has been a long-standing question in all animals (Casper and Van Doren, 2006; Kimble and Page, 2007). In C. elegans hermaphrodites, germlines first produce sperm and then oocytes, but it is still not clear when, where, and how the sperm/oocyte switch is executed. As recently reviewed (Zanetti and Puoti, 2013), the germline sex determination is executed through an elaborate pathway involving more than 30 regulators for sperm or oocyte specification, part of which is shown in Figure 2C. These regulators, including GLD-1, TRA-1 (GLI transcription factor homolog; Hodgkin, 1987), and FOG-1 (feminization of the germline, a member of cytoplasmic polyadenylation element binding protein family; Jin et al., 2001) are expressed in the proximal mitotic region and transition zone, suggesting that the commitment of germ cells to the sperm or oocyte fate might occur in distal germline. Studies of sex determination in a temperature-sensitive fog-1 mutant suggested that germ cells might become committed to the sperm or oocyte fate when they enter meiosis (Barton and Kimble, 1990). Further analysis of sex determination in puf-8; lip-1 worms that permit chemical manipulation of the sperm/oocyte decision supported these earlier conclusions by mapping the sex fate determination to the progenitor cells moving proximally to transition zone (Morgan et al., 2013). PUF-8, FBF-1, and FBF-2 contribute to the control of the sperm/oocyte decision by regulating expression of sex-determination regulators (Figure 2C).

FBF-1 and FBF-2 are redundantly required for controlling the sperm/oocyte switch. Nematodes mutant for individual fbf
genes produce both sperm and oocytes, but the \(\text{fhl} \) double mutants fail to switch from spermatogenesis to oogenesis and only produce sperm (Zhang et al., 1997). The two FBF paralogs promote oogenesis by repressing several target mRNAs including \(\text{fem-3, fog-1} \), and possibly \(\text{fog-3} \) that are positive regulators for sperm fate decision (Zhang et al., 1997; Thompson et al., 2005). Additionally, Nanos homolog NOS-3 physically interacts with FBF proteins and participates in the FBF-mediated sperm/oocyte switch through forming a regulatory complex that represses the translation of \(\text{fem-3} \) mRNA (Kraemer et al., 1999; Arur et al., 2011). The binding between NOS-3 and FBF-1 is disrupted by MPK-1/ERK-dependent phosphorylation of NOS-3 to limit formation of the functional complex to the distal germine (Arur et al., 2011). Lastly, functional splicing machinery promotes efficient sperm/oocyte switch (Kerins et al., 2010), and a combination of \(\text{fhl} \) single mutants and splicing factor knockdown results in enhanced germline masculinization, suggesting that the splicing machinery facilitates FBF function in sex determination (Novak et al., 2015).

PUF-8 and FBF-1 also redundantly promote the germline sperm/oocyte switch (Bachorik and Kimble, 2005). A mutation in \(\text{pfu-8} \) results in a low percentage of germlines that develop excess sperm and fail to switch to oogenesis, whereas most of the \(\text{fhl-1 pfu-8} \) double mutants result in germlines with a failed sperm/oocyte switch. GLD-1 and FOG-2 proteins can physically interact (Clifford et al., 2000), and both are required for the sperm fate determination (Jan et al., 1999; Clifford et al., 2000; Hu et al., 2019). The dramatic increase in FOG-2 protein abundance in \(\text{fhl-1 pfu-8} \) double mutants and rescue of oogenesis in \(\text{fhl-1 pfu-8} \) suggests that FBF-1 and PUF-8 function upstream of FOG-2 in the sex determination pathway (Bachorik and Kimble, 2005). In addition, PUF-8 acts redundantly with MEX-3 to promote the sperm/oocyte switch (Ariz et al., 2009). Although \(\text{pfu-8, mex-3} \) mutant germlines have severe proliferation defects and never produce any gametes, 34% of \(\text{pfu-8, mex-3(+/-)} \) mutant worms produce only sperm (Ariz et al., 2009). This suggests that MEX-3 contributes to the sperm/oocyte switch in the absence of PUF-8, although the relevant regulatory targets have not yet been identified (Ariz et al., 2009).

One of the many functions of MAPK/ERK signaling pathway in \(C. \) elegans is to promote the sperm fate (Lee et al., 2007b). Therefore, regulation of MPK-1 activity by PUF-8 and FBF-1 reviewed above contributes to germline sex determination. Hyperactivation of MPK-1 and excessive spermatogenesis were observed in \(\text{pfu-8, lip-1} \) as well as in \(\text{fhl-1, lip-1} \) genetic backgrounds (Morgan et al., 2010; Sorokin et al., 2014). In these genetic backgrounds, spermatogenesis was dependent on MPK-1 activity and repressed by a small molecule MEK inhibitor U0126 (Morgan et al., 2010; Sorokin et al., 2014). Activation of MPK-1 in \(\text{fhl-1, lip-1} \) genetic background likely results from the loss of FBF-mediated repression of \(\text{mpk-1} \) translation and the loss of LIP-1-mediated post-translational inhibition of MPK-1 (Lee et al., 2007a). On the other hand, PUF-8 limits ERK activity by repressing LET-60/RAS (Vaid et al., 2013), and the \(\text{pfu-8, lip-1} \) double mutant results in hyperactivation of MPK-1/ERK at meiotic entry in the transition zone (Morgan et al., 2013).

PUF-8 Function in Protecting Germ Cell Fate

In multicellular organisms, diverse factors and mechanisms, including posttranscriptional regulation, contribute to the maintenance of germ cell fate and protect germ cells from reprogramming toward somatic cells (Strome and Updike, 2015). To protect germ cell identity, PUF-8 suppresses the expression of \(\text{pal-1} \) in germline stem cells of \(C. \) elegans (Figure 2D; Mainpal et al., 2011). PAL-1 is a somatic homeodomain transcription factor that activates transcription of its downstream targets such as \(\text{hhl-1} \) (Hunter and Kenyon, 1996; Lei et al., 2009). In turn, \(\text{hhl-1} \) encodes the myogenic regulatory factor HLH-1/MyoD homolog that is normally expressed in the embryonic muscle lineage (Krause et al., 1990). Deletion of \(\text{pfu-8} \) results in derepression of \(\text{PAL-1} \) in germline SPCs and PAL-1-dependent misexpression of HLH-1 in germ cells (Mainpal et al., 2011). These findings suggest that PUF-8 protects germline SPCs from the impact of somatic differentiation factors such as PAL-1.

MECHANISMS BEHIND FUNCTIONAL DIVERGENCE OF PUF PROTEINS

The highly conserved RNA-binding domain of canonical PUF family proteins recognizes stereotypical consensus binding sites in target mRNAs (Wang et al., 2018). Yet, as reviewed in the previous section, individual PUF proteins have clearly distinct regulatory functions. In \(C. \) elegans germline stem cells, activities of multiple PUF proteins combine to promote many aspects of healthy stem cell function. This made \(C. \) elegans germine an excellent model to probe the mechanisms mediating functional specialization of PUFs. Here we will survey the recent insights into the mechanisms specifying unique non-redundant aspects of RNA regulation mediated by FBF-1, FBF-2, and PUF-8.

Structural Differences in RNA-Binding Domains Determine the Specificity of Binding RNA

All canonical PUF proteins contain a highly conserved RNAS-binding domain, PUF domain (also known as PUM-HD), with eight consecutive \(\alpha \)-helical repeats. Crystal structures of the PUM-HDs from different organisms bound to short target RNA motifs revealed that the PUM-HD forms a crescent shape molecule with eight \(\alpha \)-helical repeats (Edwards et al., 2001; Wang et al., 2001, 2002, 2009; Zhu et al., 2009). Mutational analysis of \(Drosophila \) Pumilio revealed the amino acids mediating contacts with the mRNA and protein partners (Zamore et al., 1997; Wharton et al., 1998; Sonoda and Wharton, 1999, 2001). Subsequent structural studies of \(Drosophila, C. \) elegans, and mammalian PUFs extended the genetic and biochemical data and have identified the TRMs that contact RNA on the concave surface as well as the sites on the convex surface that interact
with protein partners (Edwards et al., 2001; Wang et al., 2002, 2009; Campbell et al., 2014; Bhat et al., 2019; Qiu et al., 2019). Differences in the PUF RNA-binding domains result in distinct RNA motifs bound by PUF homologs.

In vitro biochemical studies using isolated PUF domains found that C. elegans FBFs bind to the same RNA motif, a 9-nt motif (5′-UGURHHAUA-3′; Bernstein et al., 2005; Opperman et al., 2005; Campbell et al., 2012), while PUF-8 recognizes an 8-nt motif (5′-UGUANAUA-3′; Opperman et al., 2005; Bhat et al., 2019). Crystal structures of FBF and PUF-8 PUM-HDs in complex with their preferred RNA oligonucleotides uncovered RNA-binding modes for each protein. FBF's PUM repeats R8–R6 bind to the 5′-UGU sequence and PUM repeats R1–R3 bind to the AUA-3′ element. The purine in the fourth position is recognized by PUM repeat R4, while bases in positions five and six turn away from the RNA-binding surface. Interactions between base five and the protein depend on the identities of the fourth and fifth bases, and base six does not interact with PUM-HD at all (Wang et al., 2009). By comparison, PUF-8's PUM repeats R8–R5 bind to the 5′-UGA sequence, while PUM repeats R3–R1 bind to the AUA-3′ sequence with central fifth base stacked with the fourth base and not recognized by the protein (Bhat et al., 2019). Distinct binding site preferences between FBFs and PUF-8 are expected to result in specific mRNA populations associated with these proteins. FBF-1 and FBF-2 share most of their target mRNAs, which has been demonstrated by immunoprecipitation followed by CLIP-seq analyses (Prasad et al., 2016; Porter et al., 2019).

Initial characterization of PUF-8 target mRNAs was carried out through a pull-down with recombinant protein followed by micro-array analysis (Mainpal et al., 2011). Although PUF-8 target data is less extensive than those available for FBFs, several notable observations emerge. A number of PUF-8 targets are also present in FBF target lists and some, such as ubc-6, are regulated by both PUF-8 and FBFs (Mainpal et al., 2011; Prasad et al., 2016). However, overall the mRNAs bound to PUF-8 and FBFs are largely distinct. While further studies will determine the extent of PUF-8’s targets overlapping with those of FBFs, these initial results provide an attractive model of specifying distinct but redundant functions of FBFs and PUF-8 in the germline.

If distinct binding preferences of PUF proteins underlie the differences in their function, one might expect to elicit functional changes in PUFs through changing the RNA-binding interface. Recent structural study revealed that the RNA-binding preference of FBF-2 can be changed to become similar to that of PUF-8 through mutations in TRM of PUM repeat R5 (Bhat et al., 2019). The FBF-2 R5 variant was tested for its ability to mediate a PUF-8-specific function, namely promoting SPC differentiation in a genetic background of a temperature-sensitive glp-1(gf) mutation. While 98% of glp-1(gf) germlines with the wild-type FBF-2 developed tumors upon puf-8 knockdown, over-proliferation was only observed in 36% germlines expressing FBF-2 R5 variant (Bhat et al., 2019). This partial rescue supports the importance of PUF domain RNA-binding preference in specifying function, but it still remains to be determined whether FBF-2 R5 variant truly elicits its new effect through associating with and regulating PUF-8 targets in vivo.

Protein Cofactors That Change RNA Target Preference

While determination of in vivo FBF targets confirmed FBF preferential association with mRNAs containing canonical FBF-binding element identified in vitro, many of the identified targets did not contain the canonical motif, suggesting that FBF binding specificity may be altered in vivo (Prasad et al., 2016; Porter et al., 2019). Biochemical and structural studies of PUFs in complex with their partner proteins revealed that several PUF interacting partners can affect the RNA-binding affinity and specificity of PUF proteins (Figures 3A,B). Crystal structure of Nanos-Pumilio-RNA complex from Drosophila suggested that Nanos embraces Pumilio and RNA, contributes to sequence-specific contacts, and increases Pumilio affinity for hunchback mRNA (Weidmann et al., 2016; Malik et al., 2019). By contrast, association of Pumilio with mothers against dpp (mad) mRNA requires Bm and Bgcn proteins, but not Nanos (Malik et al., 2019). In C. elegans, both FBF proteins physically interact with CPB-1, a cytoplasmic polyadenylation element binding protein (Luitjens et al., 2000; Menichelli et al., 2013). The assay investigating binding of FBF-2 PUF domain to target mRNA in the presence of a 40-amino-acid fragment of CPB-1 outside of the RNA-binding domain demonstrated that association with CPB-1 fragment alters FBF’s preference for specific RNA sequences (Campbell et al., 2012; Menichelli et al., 2013). Additional FBF interaction partners include novel proteins SYGL-1 and LST-1 that are required for FBF-dependent target mRNA repression in germline SPCs (Kershner and Kimble, 2010; Brenner and Schedl, 2016; Shin et al., 2017; Haupt et al., 2019a). Using SEQRs (in vitro selection, high-throughput sequencing of RNA, and sequence specificity landscapes), analysis of RNA-binding preference of FBF-2 PUF domain bound to a 150-amino-acid LST-1 fragment...
containing one of FBF-binding sites revealed a distinct RNA-binding specificity of the FBF-2/LST-1 complex (Qiu et al., 2019). Crystal structure of FBF-2 in complex with a 24- amino-acid fragment of LST-1 and an 8-nucleotide RNA oligo isolated by in vitro selection showed that FBF-2 PUF domain changes its RNA-binding mode to 1:1 association of PUM repeats R4-R5 with GA in positions four and five (Qiu et al., 2019). However, the structural basis for the changes in the RNA-binding specificity is not entirely clear since association with LST-1 peptide appeared to weaken FBF-2 affinity for all tested target sequences (Qiu et al., 2019). Further studies are necessary to understand whether association with full-length LST-1 has similar effects on FBF-2 binding to its targets.

Protein Cofactors That Change PUF Regulatory Outcome

Pumilio and FBF proteins lack enzymatic activity and often mediate their regulatory influence by recruiting specific cofactors to their target mRNAs (Sonoda and Wharton, 1999; Eckmann et al., 2002; Cho et al., 2005, 2006; Goldstrohm et al., 2006; Kadyrova et al., 2007; Suh et al., 2009; Friend et al., 2012). PUF proteins typically reduce expression of their target mRNAs by repressing translation or promoting RNA decay (Wreden et al., 1997; Olivas and Parker, 2000; Crittenden et al., 2002; Goldstrohm et al., 2006; Cao et al., 2010; Weidmann and Goldstrohm, 2012). This repressive function of PUF proteins in C. elegans and other species can be mediated by CCR4-NOT deadenylase that promotes RNA deadenylation and decay (Figure 3C), and FBF-1, FBF-2, and PUF-8 all bind deadenylase enzyme CCF-1 (Goldstrohm et al., 2006; Suh et al., 2009). One alternative repressive mechanism suggested for FBFs relies on PUF domain interaction with Argonautes resulting in attenuated translational elongation (Friend et al., 2012).

In several cases, PUF proteins appear to activate translation: FBFs are suggested to promote GLD-1 expression in spermatogenic germline as well as translation of EGL-4 in neurons, while PUF-8 facilitates translation of FARL-11 in germline SPCs (Kaye et al., 2009; Suh et al., 2009; Maheshwari et al., 2016). A search for cofactors of FBFs uncovered an interaction with poly(A) polymerase complex identifying one potential mechanism for translational activation (Figure 3D; Eckmann et al., 2002; Kimble and Crittenden, 2007). FBFs interact with the GLD-3 subunit of GLD-3/GLD-2 cytoplasmic poly(A) polymerase complex (Eckmann et al., 2002). FBFs also interact with the GLD-2 subunit in the RNA-independent manner, and this interaction is facilitated by formation of a larger complex including GLD-3 (Suh et al., 2009). Interaction with GLD-3 does not affect FBFs binding to their target mRNA, and is instead hypothesized to switch the regulatory outcome from repression to activation (Wu et al., 2013).

It is still unknown what cofactors are required for PUF-8-mediated translational activation. Since FBF interacts with GLD-3 via its conserved RNA-binding domain (Wu et al., 2013), it is possible that PUF-8 RNA-binding domain might interact with GLD-3 as well. Additionally, a recent study found that PUF-8 promotes accumulation of several of its target mRNAs through interaction with mRNA processing/export machinery components, such as the nuclear cap-binding protein NCBP-2 (Pushpa et al., 2013).

Distinct PUF Localization

FBF-1 and FBF-2 are nearly identical in primary sequence, share most of the target mRNAs (Prasad et al., 2016; Porter et al., 2019), and function redundantly in maintaining germline SPCs. Nevertheless, they differentially affect germline SPC gene expression. Therefore, the mechanisms behind diverse biological activities of PUFs are required for many aspects of germline SPCs, development, and each facilitates specific aspects of SPC function. Studies in C. elegans resulted in considerable advances in understanding the mechanisms behind diverse biological activities of PUFs as shown in Figure 3. The next challenge to the field is to uncover the mechanisms directing PUF protein’s choice of specific cofactors and influencing PUFs function as negative or positive translational regulators in stem cells.

CONCLUSION

Pumilio and FBF family RBPs have evolved as essential post-transcriptional regulators of stem cell development in eukaryotes. PUF-mediated RNA regulation is achieved through recognizing target mRNAs and subsequently changing their rates of degradation or translation. Three PUF proteins, PUF-8, FBF-1 and FBF-2, expressed in C. elegans germline mitotic region are required for many aspects of germline SPCs development, and each facilitates specific aspects of SPC function. Studies in C. elegans resulted in considerable advances in understanding the mechanisms behind diverse biological activities of PUFs as shown in Figure 3. The next challenge to the field is to uncover the mechanisms directing PUF protein’s choice of specific cofactors and influencing PUFs function as negative or positive translational regulators in stem cells.
PUF protein Puf3p at the N-terminal low complexity region

their cofactors. In yeast, nutrient-responsive phosphorylation of activation. Since GLD-3 becomes expressed as SPCs transition doesn’t affect FBF target selection, but rather might change FBF this binding site is also shared by GLD-3, a protein that across development. Both CPB-1 and LST-1 appear to bind to the same site on FBF RNA-binding domain. Interestingly, might result in a shifting repertoire of FBF regulatory targets (Shin et al., 2017). Their stage-specific association with FBFs to the same site on FBF RNA-binding domain. As a result, FBF might become recruited to different sites on RNA transcripts, leading to the activation or repression of different target genes. This flexibility in RNA-binding specificity could provide an additional layer of regulation that affects FBF protein activity.

AUTHOR CONTRIBUTIONS

XW and EV contributed equally to writing of the manuscript.

FUNDING

This work was supported by the NIH grants GM109053 and GM103546 CoBRE to EV, and the American Heart Association Fellowship 18PRE34070028 to XW.

REFERENCES

Ariz, M., Mainpal, R., and Subramaniam, K. (2009). *C. elegans* RNA-binding proteins PUF-8 and MEX-3 function redundantly to promote germline stem cell mitosis. *Dev. Biol.* 326, 295–304. doi: 10.1016/j.ydbio.2008.11.024

Arur, S., Ohmachi, M., Berkseth, M., Nayak, S., Hansen, D., Zarkower, D., et al. (2011). MPK-1 ERK controls membrane organization in *C. elegans* oogenesis via a sex-determination module. *Dev. Cell* 20, 677–688. doi: 10.1016/j.devcel.2011.04.009

Arvola, R. M., Weidmann, C. A., Tanaka Hall, T. M., and Goldstrohm, A. C. (2017). Combinatorial control of messenger RNAs by Pumilio, Nanos and brain tumor proteins. *RNA Biol.* 14, 1445–1456. doi: 10.1080/15476286.2017.1306168

Austin, J., and Kimble, J. (1987). gpl-1 is required in the germ line for regulation of the decision between mitosis and meiosis in *C. elegans*. *Cell* 51, 589–599.

Bachorik, J. L., and Kimble, J. (2005). Redundant control of the *Caenorhabditis elegans* sperm/oocyte switch by PUF-8 and FBF-1, two distinct PUF RNA-binding proteins. *Proc. Natl. Acad. Sci. U.S.A.* 102, 10893–10897.

Barton, M. K., and Kimble, J. (1990). fog-1, a regulatory gene required for specification of spermatogenesis in the germ line of *Caenorhabditis elegans*. *Genetics* 125, 29–39.

Bernet, J. D., Doles, J. D., Hall, J. K., Kelly Tanaka, K., Carter, T. A., and Olwin, B. B. (2014). p38 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice. *Nat. Med.* 20, 265–271. doi: 10.1038/nm.3465

Bernstein, D., Hook, B., Hajarnavis, A., Opperman, L., and Wickens, M. (2005). Binding specificity and mRNA targets of a *C. elegans* PUF protein, FBF-1. *RNA* 11, 447–458.

Berry, L. W., Westlund, B., and Schedl, T. (1997). Germ-line tumor formation caused by activation of glp-1, a *Caenorhabditis elegans* member of the Notch family of receptors. *Development* 124, 925–936.

Bhat, V. D., McCann, K. L., Wang, Y., Fonseca, D. R., Shukla, T., Alexander, J. C., et al. (2019). Engineering a conserved RNA regulatory protein repurposes its biological function. *eLife* 8:e43788. doi: 10.7554/eLife.43788

Boag, P. R., Nakamura, A., and Blackwell, T. K. (2005). A conserved RNA-protein complex component involved in physiological germline apoptosis regulation in *C. elegans*. *Development* 132, 4973–4986.

Boward, B., Wu, T., and Dalton, S. (2016). Concise review: control of cell fate through cell cycle and pluripotency networks. *Stem Cells* 34, 1427–1436. doi: 10.1002/stem.2345

Brenner, J. L., and Schedl, T. (2016). Germline stem cell differentiation entails regional control of cell fate regulator GLD-1 in *Caenorhabditis elegans*. *Genetics* 202, 1085–1103. doi: 10.1534/genetics.115.185678

Buck, S. H., Chiu, D., and Saito, R. M. (2009). The cyclin-dependent kinase inhibitors, cki-1 and cki-2, act in overlapping but distinct pathways to control cell cycle quiescence during *C. elegans* development. *Cell Cycle* 8, 2613–2620.

Burdon, T., Stracey, C., Chambers, I., Nichols, J., and Smith, A. (1999). Suppression of SHP-2 and ERK signalling promotes self-renewal of mouse embryonic stem cells. *Dev. Biol.* 210, 30–43.

Byrd, D. T., Knobel, K., Affeldt, K., Crittenden, S. L., and Kimble, J. (2014). A DTC niche plexus surrounds the germline stem cell pool in *Caenorhabditis elegans*. *PLoS One* 9:e88372. doi: 10.1371/journal.pone.0088372

Campbell, Z. T., Bhinsaria, D., Valley, C. T., Rodriguez-Martinez, J. A., Menichelli, E., Williamson, J. R., et al. (2012). Cooperativity in RNA-protein interactions: global analysis of RNA binding specificity. *Cell Rep.* 1, 570–581.

Campbell, Z. T., Valley, C. T., and Wickens, M. (2014). A protein-RNA specificity code enables targeted activation of an endogenous human transcript. *Nat. Struct. Mol. Biol.* 21, 732–738. doi: 10.1038/nsmb.2847

Cao, Q., Padmanabhan, K., and Richter, J. D. (2010). Pumilio 2 controls translation by competing with eIF4E for 7-methyl guanosine cap recognition. *RNA* 16, 221–227. doi: 10.1261/rna.1884610

Casper, A., and Van Doren, M. (2006). The control of sexual identity in *Drosophila* germ line. *Development* 133, 2783–2791.

Chen, D., Zheng, W., Lin, A., Uyhazi, K., Zhao, H., and Lin, H. (2012). Pumilio 1 suppresses multiple activators of p53 to safeguard spermatogenesis. *Curr. Biol.* 22, 420–425. doi: 10.1016/j.cub.2012.01.039

Cheong, C. G., and Hall, T. M. (2006). Engineering RNA sequence specificity of Pumilio repeats. *Proc. Natl. Acad. Sci. U.S.A.* 103, 13635–13639.

Cho, P. F., Gamberi, C., Cho-Park, Y. A., Cho-Park, I. B., Lasko, P., and Sonenberg, N. (2006). Cap-dependent translational inhibition establishes two opposing morphogen gradients in *Drosophila* embryos. *Curr. Biol.* 16, 2035–2041.

Cho, P. F., Poulin, F., Cho-Park, Y. A., Cho-Park, I. B., Chicoine, J. D., Lasko, P., et al. (2005). A new paradigm for translational control: inhibition via 5′-3′ mRNA tethering by Bicoid and the eIF4E cognate 4EHP. *Cell* 121, 411–423.

Clifford, R., Lee, M. H., Nayak, S., Ohmachi, M., Giorgini, F., and Schedl, T. (2000). FOG-2, a novel F-box containing protein, associates with the GLD-1 RNA binding protein and directs male sex determination in the *C. elegans* hermaphrodite germ line. *Development* 127, 5265–5276.

Crittenden, S. L., Bernstein, D. S., Bachorik, J. L., Thompson, B. E., Gallegos, M., Petcherski, A. G., et al. (2002). A conserved RNA-binding protein controls germline stem cells in *Caenorhabditis elegans*. *Nature* 417, 660–663.

Crittenden, S. L., Leonhard, K. A., Byrd, D. T., and Kimble, J. (2006). Cellular analyses of the mitotic region in the *Caenorhabditis elegans* adult germ line. *Mol. Biol. Cell* 17, 3051–3061.

Degrauwe, N., Suvá, M. L., Janiszewska, M., Riggi, N., and Stamenkovic, I. (2016). IMPs: an RNA-binding protein family that provides a link between stem cell maintenance in normal development and cancer. *Genes Dev.* 30, 2459–2474.

Dubnau, J., Chiang, A. S., Grady, L., Barditch, J., Gossweiler, S., Meneil, J., et al. (2003). The staufen/pumilio pathway is involved in *Drosophila* long-term memory. *Curr. Biol.* 13, 286–296.

Eckmann, C. R., Crittenden, S. L., Suh, N., and Kimble, J. (2004). GLD-3 and control of the mitosis/meiosis decision in the germline of *Caenorhabditis elegans*. *Genetics* 168, 147–160.

Eckmann, C. R., Kraemer, B., Wickens, M., and Kimble, J. (2002). GLD-3, a bicaudal-C homolog that inhibits FBF to control germline sex determination in *C. elegans*. *Dev. Cell* 3, 697–710.
Edwards, T. A., Pyle, S. E., Wharton, R. P., and Aggarwal, A. K. (2001). Structure of Pumilio reveals similarity between RNA and peptide binding motifs. Cell 105, 281–289.

Forbes, A., and Lehmann, R. (1998). Nanos and Pumilio have critical roles in the development and function of Drosophila germline stem cells. Development 125, 673–690.

Fox, P. M., and Schedl, T. (2015). Analysis of germline stem cell differentiation following loss of GLP-1 notch activity in Caenorhabditis elegans. Genetics 201, 167–184. doi: 10.1534 gcetics.115.178061

Fox, P. M., Vought, V. E., Hanazawa, M., Lee, M. H., Maine, E. M., and Schedl, T. (2011). Cylcin E and CDK-2 regulate proliferative cell fate and cell cycle progression in the C. elegans germline. Development 138, 2223–2234. doi: 10.1242/dev.059535

Friend, K., Campbell, Z. T., Cooke, A., Kroll-Conner, P., Wickens, M. P., and Schaff, T. (2004). Control of the proliferation-meiotic entry decision in the Caenorhabditis elegans germ line. Development 131, 1122–1130. doi: 10.1242/dev.059535

Hubstenberger, A., Cameron, C., Shotman, R., Gutman, S., and Evans, T. C. (2012). A network of PUF proteins and Ras signaling promote mRNA repression and oogenesis in C. elegans. Dev. Biol. 366, 218–231. doi: 10.1016/j.ydbio.2012.03.019

Hubschenberger, A., Courel, M., Benard, M., Souquere, S., Ermoljuy, M., Chouaib, R., et al. (2017). P-body purification reveals the condensation of repressed mRNA regulons. Mol. Cell. 68, 144–157.e5. doi: 10.1016/j.molcel.2017.09.003

Hunter, C. P., and Kenyon, C. (1996). Spatial and temporal controls target pal-1 blasto meric specification activity to a single blastomere lineage in C. elegans embryos. Cell 87, 217–226.

Jan, E., Motzny, C. K., Graves, L. E., and Goodwin, E. B. (1999). The STAR protein, GLD-1, is a translational regulator of sexual identity in Caenorhabditis elegans. EMBO J. 18, 258–269.

Jaramillo-Lambert, A., Elleson, M., Villeneuve, A. M., and Engebrecht, J. (2007). Differential timing of S phases, X chromosome replication, and meiotic prophase in the C. elegans germ line. Dev. Biol. 308, 206–221.

Jin, S. W., Kimble, J., and Ellis, R. E. (2001). Regulation of cell fate in Caenorhabditis elegans by a novel cytoplasmic polyadenylation element binding protein. Dev. Biol. 229, 537–553.

Kadka, L. C., and Kimble, J. (1998). Genetic regulation of entry into meiosis in Caenorhabditis elegans. Development 125, 1803–1813.

Kadrova, L. Y., Habara, Y., Lee, T. H., and Wharton, R. P. (2007). Translational control of maternal Cylcin B mRNA by Nanos in the Drosophila germ line. Development 134, 1519–1527.

Kalchhauser, I., Farley, B. M., Pauli, S., Ryder, S. P., and Ciosk, R. (2011). FBF represses the Cip/Kip cell-cycle inhibitor CKI-2 to promote self-renewal of germine stem cells in C. elegans. EMBO J. 30, 3823–3829. doi: 10.1038/emboj.2011.263

Kaye, J. A., Rose, N. C., Goldsworthy, B., Goga, A., and Leetoile, N. D. (2009). A 3’UTR pumilio-binding element directs translational activation in oalfatory sensory neurons. Neuron 61, 57–70. doi: 10.1016/j.neuron.2008.11.012

Kedde, M., Van Kouwenhove, M., Zwart, W., Oude Vrielink, J. A., Elkon, R., and Agami, R. (2010). A Pumilio-induced RNA structure switch in p27-3’UTR controls miR-221 and miR-222 accessibility. Nat. Cell Biol. 12, 1040–1020. doi: 10.1038/ncll2105

Kerins, J. A., Hanazawa, M., Dorsett, M., and Schedl, T. (2010). PRP-17 and the pre-mRNA splicing pathway are preferentially required for the proliferation versus meiotic development decision and sex determination in Caenorhabditis elegans. Dev. Dyn. 239, 1555–1572. doi: 10.1002/dvdy.22274

Kershner, A. M., and Kimble, J. (2010). Genome-wide analysis of mRNA targets for Caenorhabditis elegans FBG; a conserved stem cell regulator. Proc. Natl. Acad. Sci. U.S.A. 107, 3976–3981. doi: 10.1073/pnas.0906666107

Kershner, A. M., Shin, H., Hansen, T. J., and Kimble, J. (2014). Discovery of two GLP-1/Notch target genes that account for the role of GLP-1/Notch signaling in stem cell maintenance. Proc. Natl. Acad. Sci. U.S.A. 111, 3739–3744. doi: 10.1073/pnas.1401857111

Kimble, J., and Crittenod, S. L. (2007). Controls of governine stem cells, entry into meiosis, and the sperm/oocyte decision in Caenorhabditis elegans. Annu. Rev. Cell Dev. Biol. 23, 405–433.

Kimble, J., and Page, D. C. (2007). The mysteries of sexual identity. The germ cell's perspective. Science 316, 400–401.

Kimble, J., and White, J. G. (1981). On the control of germ cell development in Caenorhabditis elegans. Dev. Biol. 81, 208–219.

Kraemer, B., Crittenod, S., Gallegos, M., Moulder, G., Barrstead, R., Kimble, J., et al. (1999). NANOS-3 and FBF proteins physically interact to control the Differential timing of S phases, X chromosome replication, and meiotic prophase in the C. elegans germ line. Mol. Cell. 107, 3936–3941. doi: 10.1073/pnas.1000495107

Kraemer, B. A., Shi, H., and Kimble, J. (2014). The mysteries of sexual identity. The germ cell's perspective. Science 316, 400–401.

Kraemer, B., Crittenod, S., Moulder, G., Barstead, R., Kimble, J., et al. (1999). NANOS-3 and FBF proteins physically interact to control the...
Lee, C. D., and Tu, B. P. (2015). Glucose-regulated phosphorylation of the PUF protein Pu3 regulates the translational fate of its bound mRNAs and association with RNA granules. Cell Rep. 11, 1638–1650. doi: 10.1016/j.celrep.2015.05.014
Lee, M. H., Hook, B., Lamont, L. B., Wickens, M., and Kimble, J. (2006). LIP-1 phosphatase controls the extent of germline proliferation in Caenorhabditis elegans. Development 133, 2223–2234. doi: 10.1242/dev.034663
Naudin, C., Hattabi, A., Michelet, F., Mirit-Nezhad, A., Benyoucef, A., Pflumio, F., et al. (2017). PUMILO/FOXPI1 signaling drives expansion of hematopoietic stem/progenitor and leukemia cells. Blood 129, 2493–2506. doi: 10.1182/blood-2016-10-747436
Noble, S. L., Allen, B. L., Goh, L. K., Nordick, K., and Evans, T. C. (2008). Maternal mRNAs are regulated by diverse P body-related mRNP granules during early Caenorhabditis elegans development. J. Cell Biol. 182, 559–572. doi: 10.1083/jcb.200802128
Novak, P., Wang, X., Ellenbecker, M., Feilzer, S., and Voronina, E. (2015). Splicing machinery facilitates post-transcriptional regulation by FBPs and other RNA-binding proteins in Caenorhabditis elegans germ line. G3 5, 2051–2059. doi: 10.1534/g3.115.019315
Okano, H., Kawahara, H., Toriya, M., Nakao, K., Shibata, S., and Imai, T. (2005). Function of RNA-binding protein Musashi-1 in stem cells. Exp. Cell Res. 306, 349–356.
Olivas, W., and Parker, R. (2000). The Pu3 protein is a transcript-specific regulator of mRNA degradation in yeast. EMBO J. 19, 6602–6611.
Opperman, L., Hook, B., Defino, M., Bernstein, D. S., and Wickens, M. (2005). A single spacer nucleotide determines the specificities of two mRNA regulatory proteins. Nat. Struct. Mol. Biol. 12, 945–951.
Parisi, M., and Lin, H. (1999). The Drosophila pumilio gene encodes two functional protein isoforms that play multiple roles in germline development, gonadogenesis, oogenesis and embryogenesis. Genetics 153, 235–250.
Pazdernik, N., and Schied, T. (2013). Introduction to germ cell development in Caenorhabditis elegans. Adv. Exp. Med. Biol. 757, 1–16. doi: 10.1007/978-1-4614-4015-4_1
Pepper, A. S., Lo, T. W., Killian, D. J., Hall, D. H., and Hubbard, E. J. (2003). The establishment of Caenorhabditis elegans germ line pattern is controlled by overlapping proximal and distal somatic gonad signals. Dev. Biol. 259, 336–350.
Porter, D. F., Prasad, A., Carrick, B. H., Kroll-Conner, P., Wickens, M., and Kimble, J. (2019). Toward identifying subnetworks from FBF binding landscapes in G3 9, 1026–1043. doi: 10.1261/rna.055871.116
Pushpa, K., Kumar, G. A., and Subramaniam, K. (2013). PUF-8 and TCER-1 are primary regulators of gene expression in the C. elegans germline. Dev. Biol. 360, 195–207. doi: 10.1016/j.ydbio.2011.09.021
Raffer, H., and Hansen, D. (2012). Pu3, a Pumilio homolog, inhibits the proliferative fate in the Caenorhabditis elegans germ line. G3 2, 1197–1205. doi: 10.1534/g3.112.003350
Rezza, A., Fallini, C., Cova, L., Fantozzi, R., Calzarossa, C., Zennaro, E., et al. (2006). A role for the ELAV RNA-binding proteins in neural stem cells: stabilization of Msi1 mRNA. J. Cell Sci. 119, 1442–1452.
Salar, S., Shook, S., Regec, C., Nizam, J., Samar, J., and Plateroti, M. (2010). The overexpression of the putative gut stem cell marker Musashi-1 induces tumorigenesis through Wnt and Notch activation. J. Cell Sci. 123, 3256–3265. doi: 10.1242/jeb.065284
Raci, T., Lithgow, T., and Traven, A. (2011). PUF proteins: repression, activation and mRNA localization. Trends Cell Biol. 21, 104–112. doi: 10.1016/j.tcb.2010.09.013
Racher, H., and Hansen, D. (2012). Pu3-8, a Pumilio homolog, inhibits the proliferative fate in the Caenorhabditis elegans germ line. G3 2, 1197–1205. doi: 10.1534/g3.112.003350
Ratti, A., Fallini, C., Cova, L., Fantozzi, R., Calzarossa, C., Zennaro, E., et al. (2006). A role for the ELAV RNA-binding proteins in neural stem cells: stabilization of Msi1 mRNA. J. Cell Sci. 119, 1442–1452.
Rezza, A., Skah, S., Roche, C., Nadjar, J., Samarut, J., and Plateroti, M. (2010). The overexpression of the putative gut stem cell marker Musashi-1 induces tumorigenesis through Wnt and Notch activation. J. Cell Sci. 123, 3256–3265. doi: 10.1242/jeb.065284
Salvetti, A., Rossi, L., Lena, A., Batistoni, R., Deri, P., Rainaldi, G., et al. (2005). DIPum, a homologue of Drosophila Pumilio, is essential to planarian stem cell maintenance. Development 132, 1863–1874.
Shibayama, P., Sotelo-Silveira, J., Kuligowski, C., De Aguilar, A. M., Rebelatto, C. K., Moutinho, J. A., et al. (2012). PUMILO-2 is involved in the positive regulation of cellular proliferation in human adipose-derived stem cells. Stem Cells Dev. 21, 217–227. doi: 10.1089/scd.2011.0143

Frontiers in Cell and Developmental Biology | www.frontiersin.org 11 February 2020 | Volume 8 | Article 29
Sonoda, J., and Wharton, R. P. (1999). Recruitment of Nanos to germ-line-specific cytoplasmic granules in embryos, larvae, and adults of Caenorhabditis elegans. Genetics 189, 561–575. doi: 10.1534/genetics.114.169409

Stumpf, C. R., Kimble, J., and Wickens, M. (2008). A PUF family protein with distinct RNA binding specificity. RNA 14, 1550–1557. doi: 10.1261/rna.1095908

Suh, N., Crittenstein, S. L., Goldstrohm, A., Hook, B., Thompson, B., Wickens, M., et al. (2009). FBF and its dual control of gld-1 expression in the Caenorhabditis elegans germline. Genetics 181, 1249–1260. doi: 10.1534/genetics.108.099440

Thompson, B. E., Bernstein, D. S., Bachorik, J. L., Petcherski, A. G., Wickens, M., and Kimble, J. (2005). Nanos and pumilio encode a conserved RNA-binding protein and accelerate deadenylation. Development 132, 3471–3481.

Vaid, S., Ariz, M., Chaturbedi, A., Kumar, G. A., and Subramaniam, K. (2013). PUF-8 negatively regulates RAS/ MAPK signalling to promote differentiation of C. elegans germ cells. Development 140, 1645–1654. doi: 10.1242/dev.088013

Van Etten, J., Schagat, T. L., Hriss, J., Weidmann, C. A., Brumbaugh, J., Coon, J. J., et al. (2012). Human Pumilio proteins recruit multiple deadenylases to efficiently repress messenger RNAs. J. Biol. Chem. 287, 36370–36383. doi: 10.1074/jbc.M111.237522

Voronina, E., Paix, A., and Seydoux, G. (2012). The P granule component PGL-1 promotes the localization and silencing activity of the PUF protein FBF-2 in germline stem cells. Development 139, 3732–3740.

Voronina, E., Seydoux, G., Sassone-Corsi, P., and Nagamori, I. (2011). RNA granules in germ cells. Cold Spring Harb. Perspect. Biol. 3:a002774. doi: 10.1101/cshperspect.a002774

Wang, C., Wilson-Berry, L., Schedl, T., and Hansen, D. (2012). TEG-1 CD2BP2 regulates stem cell proliferation and sex determination in the C. elegans germ line and physically interacts with the UAF-1 U2AF65 splicing factor. Dev. Dyn. 241, 505–521. doi: 10.1002/dvdy.23735

Wang, M., Ogé, L., Perez-Garcia, M. D., Hamama, L., and Sakr, S. (2018). The PUF protein family: overview on PUF RNA targets, biological functions, and post transcriptional regulation. Int. J. Mol. Sci. 19:E410. doi: 10.3390/ijms19020410

Wang, X., Olson, J. R., Rasoloson, D., Ellenbecker, M., Bailey, J., and Voronina, E. (2016). Dynein light chain DLC-1 promotes localization and function of the PUF protein FBF-2 in germline progenitor cells. Development 143, 4643–4653.

Wang, X., Zamore, P. D., and Hall, T. M. (2001). Crystal structure of a Pumilio homology domain. Mol. Cell 7, 855–865.

Wang, Y., Opperman, L., Wickens, M., and Hall, T. M. (2009). Structural basis for specific recognition of multiple mRNA targets by a PUF regulatory protein. Proc. Natl. Acad. Sci. U.S.A. 106, 20186–20191. doi: 10.1073/pnas.0812076106

Weidmann, C. A., and Goldstrohm, A. C. (2012). Drosophila Pumilio protein contains multiple autonomous repression domains that regulate mRNAs independently of Nanos and brain tumor. Mol. Cell. Biol. 32, 527–540. doi: 10.1128/MCB.00522-11

Weidmann, C. A., Qiu, C., Arvalo, R. M., Lou, T. F., Killingsworth, J., Campbell, Z. T., et al. (2016). Drosophila Nanos acts as a molecular clasp that modulates the RNA-binding and repression activities of Pumilio. eLife 5:e17906. doi: 10.7554/eLife.17906

Weidmann, C. A., Raynard, N. A., Blewett, N. H., Van Etten, J., and Goldstrohm, A. C. (2014). The RNA binding domain of Pumilio antagonizes poly-adenosine binding protein and accelerates deadenylation. RNA 20, 1298–1319. doi: 10.1261/rna.046029.114

Wharton, R. P., Sonoda, J., Lee, T., Patterson, M., and Murata, Y. (1998). The Pumilio RNA-binding domain is also a translational regulator. Mol. Cell 1, 863–872.

Wickens, M., Bernstein, D. S., Kimble, J., and Parker, R. (2002). A PUF family protein: 3’UTR regulation as a way of life. Trends Genet. 18, 150–157.

Wrede, C., Verrotti, A. C., Schisa, J. A., Lieberfarb, M. E., and Strickland, S. (1997). Nanos and pumilio establish embryonic polarity in Drosophila by promoting posterior deadenylation of hunchback mRNA. Development 124, 3015–3023.

Wu, J., Campbell, Z. T., Menichelli, E., Wickens, M., and Williamson, J. R. (2013). A protein–protein interaction platform involved in recruitment of GLD-3 to the FBF-fem-3 mRNA complex. J. Mol. Biol. 425, 738–754. doi: 10.1016/j.jmb.2012.11.013

Zamore, P. D., Williamson, J. R., and Lehmann, R. (1997). The Pumilio protein binds RNA through a conserved domain that defines a new class of RNA-binding proteins. RNA 3, 1421–1433.

Zanetti, S., and Puoti, A. (2013). Sex determination in the Caenorhabditis elegans germline. Adv. Exp. Med. Biol. 757, 41–69. doi: 10.1007/978-1-4614-4015-4_3

Zhang, B., Gallegos, M., Puoti, A., Durkin, E., Fields, S., Kimble, J., et al. (1997). A conserved RNA-binding protein that regulates sexual fates in the C. elegans hermaphrodite germline. Nature 390, 477–484.

Zhang, M., Chen, D., Xia, J., Han, W., Cui, X., Neuenkirchen, N., et al. (2017). Post-transcriptional regulation of mouse neurogenesis by Pumilio proteins. Genes Dev. 31, 1354–1369. doi: 10.1101/gad.298752.117

Zhu, D., Stumpf, C. R., Krahm, J. M., Wickens, M., and Hall, T. M. (2009). A 5’ cytosine binding pocket in Puf3p specifies regulation of mitochondrial mRNAs. Proc. Natl. Acad. Sci. U.S.A. 106, 20192–20197. doi: 10.1073/pnas.081207 9106

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Wang and Voronina. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.