A NOTE ON SUBGROUPS IN A DIVISION RING THAT ARE LEFT ALGEBRAIC OVER A DIVISION SUBRING

BUI XUAN HAI, VU MAI TRANG, AND MAI HOANG BIEN

Abstract. Let \(D \) be a division ring with center \(F \) and \(K \) a division subring of \(D \). In this paper, we show that a non-central normal subgroup \(N \) of the multiplicative group \(D^* \) is left algebraic over \(K \) if and only if so is \(D \) provided \(F \) is uncountable and contained in \(K \). Also, if \(K \) is a field and the \(n \)-th derived subgroup \(D^{(n)} \) of \(D^* \) is left algebraic of bounded degree \(d \) over \(K \), then \(\dim_F D \leq d^2 \).

1. Introduction

Let \(D \) be a division ring with center \(F \) and \(K \) a division subring of \(D \). Recall that an element \(a \in D \) is left algebraic over \(K \) if there exist \(a_0, a_1, \ldots, a_n \in K \) not all zeros such that \(a_0 + a_1a + \cdots + a_na^n = 0 \), or equivalently, there exists a non-zero polynomial \(f(t) \in K[t] \) whose coefficients are written on the left such that \(f(a) = 0 \). Here, we have to emphasize the convention that for polynomials over a ring \(R \) (commutative or not), a polynomial \(f(t) \in R[t] \) can be written in two ways such as

\[
 f(t) = \sum_{\text{finite}} a_it^i = \sum_{\text{finite}} t^ia_i.
\]

However, if \(a \in S \), where \(S \) is a ring containing \(R \), the substitution functions may give the different values, i.e., we may have

\[
 \sum_{\text{finite}} a_ia^i \neq \sum_{\text{finite}} a^ia_i.
\]

In this paper, we always mean

\[
 f(a) = \sum_{\text{finite}} a_ia^i,
\]

and then \(a \) is called a right root of \(f(t) \). A left root of \(f(t) \) and a right algebraic element are defined similarly. A subset \(S \) is called left algebraic (resp., right algebraic) over \(K \) if every element in \(S \) is left algebraic (resp., right algebraic) over \(K \). If \(K \) is central, that is, \(K \subseteq F \), then the right algebraicity coincides with the left one. However, if \(K \) is not central, then there are division rings \(K \subseteq D \) such that \(D \) is left algebraic but not right algebraic over \(K \). Observe that with division rings \(K \subseteq D \) which were presented by Cohn in [6, Page 548], we can show that the division ring \(D \) is left algebraic but not right algebraic over \(K \). In Section 2, we give a natural and simple example of division rings \(K \subseteq D \) such that \(D^* \) contains a proper normal subgroup \(N \) which is left algebraic but not right algebraic over \(K \).

Key words and phrases. right (left) algebraic, derived subgroup, normal subgroup
2010 Mathematics Subject Classification. 16K20, 16K40, 16R20.
In the case when K is a subfield of D, it is not known whether D is left algebraic over K provided it is right algebraic over K (see [4, Page 1610]).

The notion of one-sided (right or left) algebraicity has been introduced to study polynomials over division rings. For example, [9] (see Chapter 7) is one of the oldest books mentioning this notion. Some special cases of one-sided algebraicity were studied by several authors. For instance, C. Faith [7] investigated division rings that are radical over their division subrings, P. M. Cohn and A. H. Schofield [6, 13] studied the left and right dimension of a division ring D over its division subring K. Recently (e.g., see [11, 13]), division rings whose elements are algebraic (left or right) over some division subring have been received considerable attention. In [11], Mahdavi-Hezavehi conjectured that in a division ring D with center F, if a non-central subnormal subgroup N of D^* is algebraic over F, then so is D. Hazrat [8, Theorem 2.4] shows that this conjecture is true if N contains some term in the descending central series of D^*. However, in general, the conjecture remains still without the answer even if N is normal in D^*. This inspired us to pose the following more general conjecture.

Conjecture 1. Let D be a division ring with center F, K a division subring of D containing F, and N a subnormal subgroup of D^*. If N is non-central, then N is left algebraic (resp., right algebraic) over K if and only if so is D.

In Section 3 (see Theorem 3.3), we give the answer to this conjecture in the case when N is a normal subgroup of D^* and F is uncountable. Further, in Section 4 we study a division ring D whose n-th derived subgroup $D^{(n)}$ of D^* is left algebraic of bounded degree over some subfield (recall that the n-th derived subgroup $D^{(n)}$ of D^* is defined as follow: $D^{(1)} = D'$ is the commutator subgroup of D^* and $D^{(n)}$ is the commutator subgroup of $D^{(n-1)}$ for $n > 1$). Note that in [4], it was proved that if D is a division ring with center F and there exists a subfield K of D such that D is left algebraic over K of bounded degree d, then $\dim_F D \leq d^2$. This result was extended for the commutator subgroup D' instead of D in [11, Theorem 17]. The result we get in Theorem 4.4 generalizes this fact by considering $D^{(n)}$ for an arbitrary $n \geq 1$ instead of D'.

2. Example

In this section, we give an example of division rings $K \subseteq D$ such that D^* contains a proper normal subgroup N which is left algebraic but not right algebraic over K.

Let F be a field with an endomorphism σ and t an indeterminate. We denote by $F((t, \sigma)) = \{ \sum_{i=0}^{\infty} a_i t^i \mid a_i \in F, n \in \mathbb{Z} \}$ the ring of Laurent skew series in t over F with respect to σ in which the addition is defined as usual, and the multiplication is an extension of the rule $ta = \sigma(a)t$. In general, $F((t, \sigma))$ is not a division ring (for example, if σ is not injective, then there exists $a \in F^*$ such that $\sigma(a) = 0$, so $ta = \sigma(a)t = 0$). However, if σ is an automorphism, then $F((t, \sigma))$ is a division ring. For $\alpha = \sum_{i=0}^{\infty} a_i t^i$, the lowest power appearing in α is denoted by $\degmin(\alpha)$. That is, $\degmin(\alpha) = \min\{i \mid a_i \neq 0\}$.

Now let k be a field of characteristic 0 and $\{x_0, x_1, \ldots\}$ a countable set of commuting indeterminates. Consider the field of fractions $F = k[x_0, x_1, \ldots]$ of the polynomial ring $k[x_0, x_1, \ldots]$, and the endomorphism $\sigma : F \to F$ defined by $\sigma(x_i) = x_{i+1}$ for $i \in \mathbb{N}$. Then, we have the following easy lemma.
Lemma 2.1. Let $F = k(x_0, x_1, \ldots)$ and $\sigma : F \to F$ be defined above. Then $D = F((t, \sigma))$ is a division ring and
\[
\degmin(\alpha, \beta) = \degmin(\alpha) + \degmin(\beta)
\]
for every $\alpha, \beta \in D$. In particular, $\degmin(\alpha^{-1}) = -\degmin(\alpha)$ for every $\alpha \in D^*$.

Proof. The proof of first conclusion is essentially due to that of [11, Example 1.7 and Proposition 14.2]. The proof of second one is elementary by the fact that σ is injective. □

Now, we are ready to give an example we have mentioned in the beginning of this section.

Example 2.2. Let $D = F((t, \sigma))$ be as in Lemma 2.1 and consider the following subset in D:
\[
K = F((t^2, \sigma)) = \left\{ \sum_{i=n}^{\infty} a_i t^{2i} \mid n \in \mathbb{Z}, a_i \in F \right\}.
\]
It is easy to see that K is a division subring of D. It is obvious that if $\alpha = \sum_{i=n}^{\infty} a_i t^i \in D$, then
\[
\alpha = \sum_{i=2j \geq n} a_i t^i + \sum_{i=2j+1 \geq n} a_i t^i,
\]
that is, $\alpha = \alpha_1 + \alpha_2 t$, where $\alpha_1, \alpha_2 \in K$. Hence, $\{1, t\}$ is a basis of the left vector space D over K, which implies that the dimension of the left vector space D over K is 2. Hence, every element of D is left algebraic of degree ≤ 2 over K.

Now, let $N = \{ \alpha \in D^* \mid \degmin(\alpha) = 0 \}$. We claim that N is a proper normal subgroup of D^*. Indeed, it is trivial that $N \neq D^*$. For $\alpha, \beta \in N$, the condition $\degmin(\alpha) = \degmin(\beta) = 0$ implies $\degmin(\alpha \beta) = \degmin(\alpha) + \degmin(\beta) = 0$ and $\degmin(\alpha^{-1}) = -\degmin(\alpha) = 0$. Therefore, $\alpha \beta, \alpha^{-1} \in N$, which shows that N is subgroup of D^*. Assume that $\alpha \in N$ and $\beta \in D^*$. Then,
\[
\degmin(\beta^{-1} \alpha \beta) = \degmin(\beta^{-1}) + \degmin(\alpha) + \degmin(\beta)
\]
\[= -\degmin(\beta) + \degmin(\beta) = 0.
\]
As a corollary, $\beta^{-1} \alpha \beta \in N$, so N is normal in D^*.

Consider the element $x_0 + t \in N$. To finish example, we will show that $x_0 + t$ is not right algebraic over K. Suppose that there exist $h_0(t^2), h_1(t^2), \ldots, h_n(t^2) \in K$ such that $h_n(t^2) \neq 0$ and
\[
h_0(t^2) + (x_0 + t) h_1(t^2) + \cdots + (x_0 + t)^n h_n(t^2) = 0.
\]
We seek a contradiction. Indeed, observe that, after expanding, $(x_0 + t)^i$ is written as a linear sum of term $x_0^m x_1^m \cdots x_{i-1}^m t^m$ over \mathbb{Z}, so one sees that the term $x_0^{n-1} t$ appears in $(x_0 + t)^n$ but does not in $(x_0 + t)^i$ with $i < n$. Moreover, all powers of t appearing in $h_0(t^2), \ldots, h_{n-1}(t^2)$ is even, so $x_0^{n-1} t h_n(t^2) = 0$, equivalently, $h_n(t^2) = 0$, a contradiction. Thus, $x_0 + t$ is not right algebraic over K.

3. LEFT ALGEBRAIC NORMAL SUBGROUPS IN A DIVISION RING

For a division ring D and its division subring K, KD and D_K denote the left and right vector space over K respectively. In this section, we give the affirmative answer to Conjecture 1 in the case when F is uncountable and N is a non-central normal subgroup of D^*.

We need some lemmas.
Let D be a division ring with center F and N a normal subgroup of D^*. If N is non-central, then $C_D(N) = F$.

Lemma 3.2. Let D be a division ring with center F, K a division subring of D containing F and a an element of D. Assume that $\alpha_1, \alpha_2, \ldots, \alpha_n$ are distinct elements in F such that all elements $a - \alpha_i$ are non-zeros. Then, either a is left (resp. right) algebraic over K or the set $\{(a - \alpha_i)^{-1} \mid i = 1, 2, \ldots, n\}$ is left (resp. right) linearly independent over K.

Proof. It is enough to prove the lemma for the left case since the right case is similar. Assume that a is not left algebraic over K and

$$\beta_1(a - \alpha_1)^{-1} + \beta_2(a - \alpha_2)^{-1} + \cdots + \beta_n(a - \alpha_n)^{-1} = 0$$

for some $\beta_i \in K$. Consider the polynomials

$$f(t) = (t - \alpha_1)(t - \alpha_2)\cdots(t - \alpha_n) \in F[t] \subseteq K[t]$$

and $f_i(t) = f(t)/(t - \alpha_i)$ for $1 \leq i \leq n$. Multiplying both sides of (1) on the right by $f(a)$, we get $\beta_1 f_1(a) + \beta_2 f_2(a) + \cdots + \beta_n f_n(a) = 0$. This shows that a is a right root of the polynomial $g(t) = \beta_1 f_1(t) + \beta_2 f_2(t) + \cdots + \beta_n f_n(t)$, so $g(t) \equiv 0$ because a is not left algebraic over K. Then, for every $1 \leq i \leq n$, we have $0 = g(\alpha_i) = \beta_i f_i(\alpha_i)$. Therefore, $\beta_i = 0$ for all i. Hence, the set $\{(a - \alpha_i)^{-1} \mid i = 1, 2, \ldots, n\}$ is left linearly independent over K. \hfill \Box

Note that the special case of Lemma 3.2 when $K = F$ was considered in [12, Proposition 5.2.21].

Theorem 3.3. Let D be a division ring with uncountable center F, K a division subring of D containing F and N a normal subgroup of D^*. If N is non-central, then N is left algebraic (resp., right algebraic) over K if and only if so is D.

Proof. We show that the theorem is true for the left case since the proof for the right case is similar. Thus, assume that N is a non-central normal subgroup of D^* which is left algebraic over K. For any $a \in D$, we have to prove that a is left algebraic over K. If $a \in C_D(N)$, then by Lemma 3.1 $a \in F \subseteq K$, and there is nothing to prove. Now, assume that $a \notin C_D(N)$. Take $b \in N$ such that $d = ba - ab \neq 0$. For every $\alpha \in F$, one has

$$d = ba - ab = b(a + \alpha) - (a + \alpha)b$$

$$= b(a + \alpha)(1 + (a + \alpha)^{-1}b^{-1}(a + \alpha)b) = b(a + \alpha)(1 + c),$$

where $c = (a + \alpha)^{-1}b^{-1}(a + \alpha)b \in N$. Since c is left algebraic over K and $c + 1 \neq 0$, the element $(c + 1)^{-1}$ is left algebraic over K. Consequently, $d^{-1}b(a + \alpha) = (c + 1)^{-1}$ is left algebraic over K. Hence, there exist $\beta_1, \beta_2, \cdots, \beta_n \in K$ such that

$$\beta_n(d^{-1}b(a + \alpha))^n + \beta_{n-1}(d^{-1}b(a + \alpha))^{n-1} + \cdots + \beta_1(d^{-1}b(a + \alpha)) + 1 = 0.$$}

We can write this equality as follows:

$$1 = (-\beta_n(d^{-1}b(a + \alpha))^{n-1} - \cdots - \beta_1(d^{-1}b))(a + \alpha).$$

Therefore, $(a + \alpha)^{-1} = -\beta_n(d^{-1}b(a + \alpha))^{n-1} - \cdots - \beta_1d^{-1}b$ is in the left vector K-subspace W, which is generated by the subgroup $\langle a, b, d \rangle$ of D^* generated by a, b, d. Since $\langle a, b, d \rangle$ is a finitely generated subgroup, the cardinality of the basis of W over K is countable. Observe that F is uncountable, so is the set $\{(a + \alpha)^{-1} \mid \alpha \in F\}$.
As a corollary, the set \{(a + a)^{-1} | a \in F\} is left linearly dependent over K. In view of Lemma 3.2, a is left algebraic over K.

The following corollary gives the affirmative answer to [11, Problem 13] in the case of uncountable center F of D and N is normal in D*.

Corollary 3.4. Let D be a division ring with uncountable F. Assume that N is a non-central normal subgroup of D*. If N is algebraic over F, then so is D.

4. Left algebraic n-th derived subgroup of bounded degree

Let D be a division ring and K a subfield of D. In this section, we prove that if for some integer n ≥ 1, the n-th derived subgroup D(n) is left algebraic of bounded degree d over K, then dimF D ≤ d^2.

The proof of the following lemma is elementary, so we omit it.

Lemma 4.1. Let D be a division ring, K a division subring and x an element in D. The following conditions are equivalent.

1. The element x is left algebraic (resp., right algebraic) over K of degree d.
2. d is the largest integer such that \{xa^n | n = 1, 2, \ldots, d - 1\} is a left (resp., right) linearly independent set in KD (resp., DK).
3. d is the largest integer such that the sum \sum_{i=0}^{d-1} Kx^i (resp., \sum_{i=0}^{d-1} x^iK) is a direct sum in KD (resp., DK).

Lemma 4.2. Let D be a division ring with infinite center, N a non-central normal subgroup of D* and K a subfield of D. If N is left (or right) algebraic over K of bounded degree, then D is centrally finite, that is, D is a finite dimensional vector space over its center.

Proof. Since N is non-central, there exists a \in N \setminus F. For every x \in D*, one has axa^{-1}x^{-1} = a(axa^{-1}x^{-1}) \in N, so axa^{-1}x^{-1} is left (resp., right) algebraic of bounded degree over K. By [1, Theorem 11], D is centrally finite.

Corollary 4.3. Let D be a division ring with infinite center. For any positive integer n, if the n-th derived subgroup D(n) is left (or right) algebraic of bounded degree over some subfield of D, then D is centrally finite.

Proof. If D(n) is central, then D* is solvable, so D is a field by [14, 14.4.4, Page 440]. Hence, we can assume that D(n) is non-central. Since D(n) is normal in D*, by Lemma 4.2, D is centrally finite.

The following theorem extends [4, Theorem 1.3] and [11, Theorem 17].

Theorem 4.4. Let D be a division ring with infinite center F, K a subfield of D and n be a positive integer. If the n-th subgroup D(n) is left (or right) algebraic of bounded degree d over K, then dimF D ≤ d^2.

Proof. We prove the theorem for the left case since the right case is similar. Without loss of generality, we assume that K is a maximal subfield of D. According to Corollary 4.3, dimF D = m^2 < \infty is finite. We must show that m ≤ d. By [2, Theorem 7], there exists x \in D(n) such that L = F(x) is a maximal subfield of D. It is well known that dimF L = m (or see [10, Proposition 15.7 and Theorem 15.8]). One has that D is a left D \otimes_F L-module in which the operator is defined by (\alpha \otimes x^i) \beta = \alpha \beta x^i for every \alpha, \beta \in D and i \in N. Observe that D \otimes_F L is simple,
so D is faithful. On the other side, D may be considered as a left K-space. Now, consider $T \in \text{End}_K D$ which is defined by $T(\alpha) = \alpha x$ for every $\alpha \in D$. We claim that the set $\{T^i \mid i = 0, 1, \ldots, m - 1\}$ is left linearly independent over K. Indeed, assume that $\sum_{i=0}^{m-1} c_i T^i = 0$ for some $c_0, c_1, \ldots, c_{m-1} \in K$. Then, for every $\alpha \in D$,$$
ul = \left(\sum_{i=0}^{m-1} c_i T^i \right) (\alpha) = \sum_{i=0}^{m-1} c_i \alpha x^i = \left(\sum_{i=0}^{m-1} c_i \otimes x^i \right) \alpha.$$Observe that D is faithful, so $\sum_{i=0}^{m-1} c_i \otimes x^i = 0$, which implies that$$c_0 = c_1 = \cdots = c_{m-1} = 0.$$The claim is proved. The next claim is that there exists $y \in D$ such that $K y + K T(y) + \cdots + K T^{m-1}(y)$ is a direct sum. Indeed, let t be an indeterminate and $K[t]$ be the polynomial ring in t over K. Then, we can consider D as a left $K[t]$-module with operator defined by the rule $f(t) \alpha = f(T)(\alpha)$ for every $\alpha \in D$ and $f(t) \in K[t]$. Since $\dim_K D < \infty$, there exists a non-zero element $g(t) \in K[t]$ such that $g(T) = 0$. Hence, for every $\alpha \in D$, one has $g(t) \alpha = g(T)(\alpha) = 0$, so it follows that D is torsion as a left $K[t]$-module. Moreover, it is obvious that D is finitely generated as left K-space, so is D as a left $K[t]$-module. Therefore, D is torsion finitely generated as a left module over a PID. Hence, there exist $f_1(t), f_2(t), \cdots, f_\ell(t) \in K[t]$ such that$$\langle f_1(t) \rangle \supseteq \langle f_2(t) \rangle \supseteq \cdots \supseteq \langle f_\ell(t) \rangle$$and an isomorphism$$\phi : K[t]/\langle f_1(t) \rangle \oplus K[t]/\langle f_2(t) \rangle \oplus \cdots \oplus K[t]/\langle f_\ell(t) \rangle \to D,$$where $\langle f(t) \rangle$ denotes the ideal of $K[t]$ generated by some element $f(t) \in K[t]$. Put $y = \phi(1 + \langle f_\ell(t) \rangle) \in D$. We will show that y is the element we need to find. Indeed, assume that $f(t) = c_0 + c_1 t + \cdots + c_{m-1} t^{m-1} \in K[t]$ such that $f(T)(y) = 0$. Then, $f(t)y = 0$, equivalently, $f(t) \in \text{ann}_{K[t]} y$. Observe that $\langle y \rangle \cong R/\langle f_\ell(t) \rangle$ and by direct calculation, one has$$\text{ann}_{K[t]}(D) = \bigcap_{i=1}^{\ell} \text{ann}_{K[t]} K[t]/\langle f_i(t) \rangle = \bigcap_{i=1}^{\ell} \langle f_i(t) \rangle = \text{ann}_{K[t]} y.$$Hence, $f(t) \in \text{ann}_{K[t]} y = \text{ann}_{K[t]} D$. As a corollary, $f(T)(\alpha) = 0$ for every $\alpha \in D$ which contradicts to the fact that $\{T^i \mid i = 0, 1, \ldots, m - 1\}$ is left linearly independent over K. Therefore, the claim is proved. Put $u = yxy^{-1}$. Then,$$K + Ku + \cdots + Ku^{m-1} = (K y + K y x + \cdots + K y x^{m-1}) y^{-1}$$is a direct sum. By Lemma 4.1 it follows that u is left algebraic of degree m over K. On the other hand, since x is in $D^{(n)}$ and left algebraic of bounded degree d over K, so is $u \in D^{(n)}$. Thus, again by Lemma 4.1 $m \leq d$. The proof is now complete.

References

[1] M. Aaghabali, S. Akbari, M. H. Bien, Division Algebras with Left Algebraic Commutators, Algebr. Represent. Theor. 21 (2018) 807–816.

[2] M. Aaghabali, M. H. Bien, Certain Simple Maximal Subfields in Division Rings, submitted, arXiv:1908.08335
[3] J. P. Bell, D. Rogalski, Free subalgebras of division algebras over uncountable fields, *Math. Z.* **277** (2014), 591–609.

[4] J. P. Bell, V. Drensky, Y. Sharifi, Shirshov’s theorem and division rings that are left algebraic over a subfield, *J. Pure Appl. Algebra* **217** (2013), 1605–1610.

[5] T. T. Deo, M. H. Bien, B. X. Hai, On weakly locally finite division rings, *Acta Math. Vietnam.* (2018), http://dx.doi.org/10.1007/s40306-018-0292-x

[6] P. M. Cohn, Quadratic extensions of skew field, *Proc. London Math. Soc.* **11** (1961) 531–56.

[7] C. Faith, Algebraic Division Ring Extensions, *Proc. Amer. Math. Soc.* **11** (1960), 43–53.

[8] R. Hazrat, On central series of the multiplicative group of division rings, *Algebra Colloq.* **9** (2002), 99–106.

[9] N. Jacobson, *Structure of rings*, rev. ed., Amer. Math Soc. Colloq. Publ. **37**, Amer. Math. Soc, Providence, R. I., 1964.

[10] T. Y. Lam, *A First Course in Noncommutative Rings*, in: Grad. Texts in Math., **131**, Springer-Verlag, Berlin, 1991.

[11] M. Mahdavi-Hezavehi, Commutators in division rings revisited, *Bull. Iran. Math. Soc.* **26** (2000), 7–88.

[12] L. H. Rowen, *Ring Theory*, Student Edition, Academic Press, Boston, 1991.

[13] A. H. Schofield, Artin’s problem for skew field extensions, *Math. Proc. Camb. Phil. Soc.* **97** (1985), 1–6.

[14] W. R. Scott, *Group theory*, Dover Publications Inc., New York, second edition, 1987.

E-mail address: bxhai@hcmus.edu.vn; trangvn8234@gmail.com; mhbien@hcmus.edu.vn

Faculty of Mathematics and Computer Science, VNUHCM-University of Science, 227 Nguyen Van Cu Str., Dist. 5, Ho Chi Minh City, Vietnam.