Random Boolean Networks

Barbara Drossel
Institute of Condensed Matter Physics, Darmstadt University of Technology, Hochschulstraße 6, 64289 Darmstadt, Germany
(Dated: June 2007)

This review explains in a self-contained way the properties of random Boolean networks and their attractors, with a special focus on critical networks. Using small example networks, analytical calculations, phenomenological arguments, and problems to solve, the basic concepts are introduced and important results concerning phase diagrams, numbers of relevant nodes and attractor properties are derived.

PACS numbers:

1. INTRODUCTION

Random Boolean networks (RBNs) were introduced in 1969 by S. Kauffman [1, 2] as a simple model for gene regulatory networks. Each gene was represented by a node that has two possible states, “on” (corresponding to a gene that is being transcribed) and “off” (corresponding to a gene that is not being transcribed). There are altogether \(N \) nodes, and each node receives input from \(K \) randomly chosen nodes, which represent the genes that control the considered gene. Furthermore, each node is assigned an update function that prescribes the state of the node in the next time step, given the state of its input nodes. This update function is chosen from the set of all possible update functions according to some probability distribution. Starting from some initial configuration, the states of all nodes of the network are updated in parallel. Since configuration space is finite and since dynamics is deterministic, the system must eventually return to a configuration that it has had before, and from then on it repeats the same sequence of configurations periodically: it is on an attractor.

S. Kauffman focussed his interest on critical networks, which are at the boundary between frozen networks with only very short attractors and chaotic networks with attractors that may include a finite proportion of state space. He equated attractors with cell types. Since each cell contains the same DNA (i.e., the same network), cells can only differ by the pattern of gene activity. Based on results of computer simulations for the network sizes possible at that time, S. Kauffman found that the mean number of attractors in critical networks with \(K = 2 \) inputs per node increases as \(\sqrt{N} \). This finding was very satisfying, since the biological data available at that time for various species indicated that the number of cell types is proportional to the square root of the number of genes. This would mean that the very simple model of RBNs with its random wiring and its random assignment of update functions displays the same scaling laws as the more complex reality. The concept of universality, familiar from equilibrium critical phenomena, appeared to work also for this class of nonequilibrium systems. Kauffman found also that the mean length of attractors increases as \(\sqrt{N} \).

Today we know that the biological data and the computer simulation data are both incorrect. The sequencing of entire genomes in recent years revealed that the number of genes is not proportional to the mass of DNA (as was assumed at that time), but much smaller for higher organisms. The square-root law for attractor numbers and lengths in RBNs survived until RBNs were studied with much more powerful computers. Then it was found that for larger \(N \) the apparent square-root law does not hold any more, but that the increase with system size is faster. The numerical work was complemented by several beautiful analytical papers, and today we know that the attractor number and length of \(K = 2 \) networks increases with network size faster than any power law. We also know that, while attractor numbers do not obey power laws, other properties of critical RBNs do obey power laws.

It is the purpose of this review to explain in an understandable and self-contained way the properties of RBNs and their attractors, with a special focus on critical networks. To this aim, this review contains examples, short calculations, phenomenological arguments, and problems to solve. Long calculations and plots of computer simulation data were not included and are not necessary for the understanding of the arguments. The readers will also benefit from consulting the review [3], which, while not containing the more recent findings, covers many important topics related to Boolean networks.

Boolean networks are used not only to model gene regulation networks, but also neural networks, social networks, and protein interaction networks. The structure of all these networks is different from RBNs with their random wiring and random assignment of update functions, and with the same number of inputs for every node. Nevertheless, understanding RBNs is a first and important step on our way to understanding the more complex real networks.

2. MODEL

A random Boolean network is specified by its topology and its dynamical rules. The topology is given by the nodes and the links between these nodes. The links are directed, i.e., they have an arrow pointing from a node to those nodes that it influences. The dynamical rules describe how the states of the nodes change with time.
The state of each node is “on” or “off”, and it is determined by the state of the nodes that have links to it (i.e., that are its inputs). In the following, we first describe the topology, and then the dynamics of RBNs.

A. Topology

For a given number N of nodes and a given number K of inputs per node, a RBN is constructed by choosing the K inputs of each node at random among all nodes. If we construct a sufficiently large number of networks in this way, we generate an ensemble of networks. In this ensemble, all possible topologies occur, but their statistical weights are usually different. Let us consider the simplest possible example, $N = 2$ and $K = 1$, shown in Figure 2A. There are 3 possible topologies. Topologies (a) and (b) have each the statistical weight 1/4 in the ensemble, since each of the links is connected in the given way with probability 1/2. Topology (c) has the weight 1/2, since there are two possibilities for realizing this topology: either of the two nodes can be the one with the self-link.

While the number of inputs of each node is fixed by the parameter K, the number of outputs (i.e. of outgoing links) varies between the nodes. The mean number of outputs must be K, since there must be in total the same number of outputs as inputs. A given node becomes the input of each of the N nodes with probability K/N. In the thermodynamic limit $N \to \infty$ the probability distribution of the number of outputs is therefore a Poisson distribution

$$P_{\text{out}}(k) = \frac{K^k}{k!} e^{-K}. \quad (1)$$

B. Update functions

Next, let us specify the dynamics of the networks. Each node can be in the state $\sigma_i = 1$ (“on”) or in the state $\sigma_i = 0$ (“off”), where i is the index of the node. The N nodes of the network can therefore together assume 2^N different states. An update function specifies the state of a node in the next time step, given the state of its K inputs at the present time step. Since each of the K inputs of a node can be on or off, there are $M = 2^K$ possible input states. The update function has to specify the new state of a node for each of these input states. Consequently, there are 2^M different update functions.

Table I lists the 4 possible update functions for $K = 1$. The first two functions are constant, or “frozen”, i.e. the state of the node is independent of its inputs. The other two functions change whenever an input changes, i.e., they are reversible. The third function is the “copy” function, the fourth is the “invert” function.

Table II lists the 16 possible update functions for $K = 2$. There are again two constant and two reversible functions. Furthermore, there are canalyzing functions. A function is canalyzing if at least for one value of one of its inputs the output is fixed, irrespective of the values of the other inputs. The first class of canalyzing functions do not depend at all on one of the two inputs. They simply copy or invert the value of one of the inputs. In Table II these are the C_1 functions. The second class of canalyzing functions has three times a 1 or three times a 0 in its output (the C_2 functions). For each of the two inputs there exists one value that fixes the output irrespective of the other input. In fact, constant functions can also be considered as canalyzing functions, because the output is fixed for any value of the inputs.

Each node in the network is assigned an update function by randomly choosing the function from all possible functions with K inputs according to some probability distribution. The simplest probability distribution is a constant one. For $K = 2$ networks, each function is then chosen with probability 1/16. In the previous section, we have introduced the concept an ensemble of networks. If we are only interested in topology, an ensemble is defined by the values of N and K. When we want to study network dynamics, we have to assign update functions to each network, and the ensemble needs to be specified.

![Figure 1: The possible topologies for $N = 2$ and $K = 1$.](image)

TABLE I: The 4 update functions for nodes with 1 input. The first column lists the 2 possible states of the input, the other columns represent one update function each, falling into two classes.

In	F	R
0	10	01
1	11	10

TABLE II: The 16 update functions for nodes with 2 inputs. The first column lists the 4 possible states of the two inputs, the other columns represent one update function each, falling into four classes.

In	F	C_1	C_2	R
00	10	0101	10001	11
01	10	0110	10011	10
10	10	1001	01101	11
11	10	1010	01111	10
by also indicating which probability distribution of the update functions shall be used. If all 4 update functions are allowed, there are 36 different networks in the ensemble shown in Figure 2.1. For topologies (a) and (b), there are 10 different possibilities to assign update functions, for topology (c) there are 16 different possibilities. The determination of the statistical weight of each of the 36 networks for the case that every update function is chosen with the same probability is left to the reader....

In the following we list several frequently used probability distributions for the update functions. Throughout this article, we will refer to these different "update rules".

1. Biased functions: A function with \(n \) times the output value 1 and \(M - n \) times the output value 0 is assigned a probability \(p^n(1-p)^{M-n} \). Then the two frozen functions in table 1 have the probabilities \(p^4 \) and \((1-p)^4 \), each of the \(C_1 \) functions and of the reversible functions has the probability \(p^2(1-p)^2 \), and the \(C_2 \) functions have the probabilities \((1-p)^3 \) and \(p^3(1-p) \). For the special case \(p = 1/2 \), all functions have the same probability 1/16.

2. Weighted classes: All functions in the same class are assigned the same probability. \(K = 1 \) networks are most interesting if the two reversible functions occur with probability 1/2 each, and the two constant functions with probability 0. In general \(K = 1 \) networks, we denote the weight of the constant functions with \(\delta \). An ensemble of \(K = 2 \) networks is specified by the four parameters \(\alpha, \beta, \gamma, \) and \(\delta \) for the weight of \(C_1 \), reversible, \(C_2 \) and frozen functions. The sum of the four weights must be 1, i.e., \(1 = \alpha + \beta + \gamma + \delta \).

3. Only canalyzing functions are chosen, often including the constant functions. This is motivated by the finding that gene regulation networks appear to have many canalyzing functions and by considerations that canalyzing functions are biologically meaningful [1, 3]. Several authors create canalyzing networks using three parameters [2]. One input of the node is chosen at random to be a canalyzing input. The first parameter, \(\eta \), is the probability that this input is canalyzing if its value is 1. The second parameter, \(r \), is the probability that the output is 1 if the input is on its canalyzing value. The third parameter, \(p \), assigns update functions for the \(K-1 \) other inputs according to rule 1 (biased functions), for the case that the canalyzing input is not on its canalyzing value. (This notation is not uniform throughout literature. For instance, in [1], the second and third parameter are named \(p_1 \) and \(p_2 \).)

4. Only threshold functions are chosen, i.e. the update rule is

\[
\sigma_i(t+1) = \begin{cases}
1 & \text{if } \sum_{j=1}^{N} (c_{ij}(2\sigma_j - 1) + h) \geq 0 \\
0 & \text{else}
\end{cases}
\] (2)

The couplings \(c_{ij} \) are zero if node \(i \) receives no input from node \(j \), and they are \(\pm 1 \) with equal probability if node \(j \) is an input to node \(i \). Negative couplings are inhibitory, positive couplings are excitatory. The parameter \(h \) is the threshold. Threshold networks are inspired by neural networks, but they are also used in some models for gene regulation networks [1, 2, 3].

5. All nodes are assigned the same function. The network is then a cellular automaton with random wiring.

C. Dynamics

Throughout this paper, we only consider the case of parallel update. All nodes are updated at the same time according to the state of their inputs and to their update function. Starting from some initial state, the network performs a trajectory in state space and eventually arrives on an attractor, where the same sequence of states is periodically repeated. Since the update rule is deterministic, the same state must always be followed by the same next state. If we represent the network states by points in the \(2^N \)-dimensional state space, each of these points has exactly one "output", which is the successor state. We thus obtain a graph in state space.

The size or length of an attractor is the number of different states on the attractor. The basin of attraction of an attractor is the set of all states that eventually end up on this attractor, including the attractor states themselves. The size of the basin of attraction is the number of states belonging to it. The graph of states in state space consists of unconnected components, each of them being a basin of attraction and containing an attractor, which is a loop in state space. The transient states are those that do not lie on an attractor. They are on trees leading to the attractors.

Let us illustrate these concepts by studying the small \(K = 1 \) network shown in Figure 2.2, which consists of 4 nodes:

![FIG. 2: A small network with \(K = 1 \) input per node.](image)

If we assign to the nodes 1,2,3,4 the functions invert, invert, copy, copy, an initial state 1111 evolves in the following way:

1111 \(\rightarrow \) 0011 \(\rightarrow \) 0100 \(\rightarrow \) 1111
This is an attractor of period 3. If we interpret the bit sequence characterizing the state of the network as a number in binary notation, the sequence of states can also be written as

\[15 \rightarrow 3 \rightarrow 4 \rightarrow 15\]

The entire state space is shown in Figure 2C.

![FIG. 3: The state space of the network shown in Figure 2.2, if the functions copy, copy, invert, invert are assigned to the four nodes. The numbers in the squares represent states, and arrows indicate the successor of each state. States on attractors are shaded.](image)

There are 4 attractors, two of which are fixed points (i.e., attractors of length 1). The sizes of the basins of attraction of the 4 attractors are 6,6,2,2. If the function of node 1 is a constant function, fixing the value of the node at 1, the state of this node fixes the rest of the network, and there is only one attractor, which is a fixed point. Its basin of attraction is of size 16. If the functions of the other nodes remain unchanged, the state space then looks as shown in Figure 2.4.

![FIG. 4: The state space of the network shown in Figure 2.2, if the functions 1, copy, invert, invert are assigned to the four nodes.](image)

Before we continue, we have to make the definition of attractor more precise: as the name says, an attractor “attracts” states to itself. A periodic sequence of states (which we also call cycle) is an attractor if there are states outside the attractor that lead to it. However, some networks contain cycles that cannot be reached from any state that is not part of it. For instance, if we removed node 4 from the network shown in Figure 2.2, the state space would only contain the cycles shown in Figure 2C and not the 8 states leading to the cycles. In the following, we will use the word “cycle” whenever we cannot be confident that the cycle is an attractor.

D. Applications

Let us now make use of the definitions and concepts introduced in this section in order to derive some results concerning cycles in state space. First, we prove that in an ensemble of networks with update rule 1 (biased functions) or rule 2 (weighted classes), there is on an average exactly one fixed point per network. A fixed point is a cycle of length 1. The proof is slightly different for rule 1 and rule 2. Let us first choose rule 2. We make use of the property that for every update function the inverted function has the same probability. The inverted function has all 1s in the output replaced with 0s, and vice versa. Let us choose a network state, and let us determine for which fraction of networks in the ensemble this state is a fixed point. We choose a network at random, prepare it in the chosen state, and perform one update step. The probability that node 1 remains in the same state after the update, is 1/2, because a network with the inverted function at node 1 occurs equally often. The same holds for all other nodes, so that the chosen state is a fixed point of a given network with probability \(2^{-N}\). This means that each of the \(2^N\) states is a fixed point in the proportion \(2^{-N}\) of all networks, and therefore the mean number of fixed points per network is 1. We will see later that fixed points may be highly clustered: a small proportion of all networks may have many fixed points, while the majority of networks have no fixed point.

Next, we consider rule 1. We make now use of the property that for every update function a function with any permutation of the input states has the same probability. This means that networks in which state A leads to state B after one update, and networks in which another state C leads to state B after one update, occur equally often in the ensemble. Let us choose a network state with \(n\) 1s and \(N-n\) 0s. The average number of states in a network leading to this state after one update is \(2^Np^n(1-p)^{N-n}\). Now, every state leads equally often to this state, and therefore this state is a fixed point in the proportion \(p^n(1-p)^{N-n}\) of all networks. Summation over all states gives the mean number of fixed points per network, which is 1.

Finally, we derive a general expression for the mean number of cycles of length \(L\) in networks with \(K=2\) inputs per node. The generalization to other values of \(K\) is straightforward. Let \((C_L)_N\) denote the mean number of cycles in state space of length \(L\), averaged over the ensemble of networks of size \(N\). On a cycle of length \(L\), the state of each node goes through a sequence of 1s and 0s of period \(L\). Let us number the \(2^L\) possible sequences of period \(L\) of the state of a node by the index \(j\), ranging from 0 to \(m = 2^L-1\). Let \(n_j\) denote the number of nodes that have the sequence \(j\) on a cycle of length \(L\), and \((P_L)_j\) the probability that a node that has the input sequences \(l\) and \(k\) generates the output sequence \(j\). This probability depends on the probability...
distribution of update functions. Then
\[
(C_L)_N = \frac{1}{L} \sum_{\{n_j\}} \frac{N!}{n_0! \ldots n_m!} \prod_j \left(\sum_{l,k} \frac{n_l n_k}{N^2} (P_L)_{l,k}^j \right)^{n_j}.
\]
(3)
The factor \(1/L\) occurs because any of the \(L\) states on the cycle could be the starting point. The sum is over all possibilities to choose the values \(\{n_j\}\) such that \(\sum_j n_j = N\). The factor after the sum is the number of different ways in which the nodes can be divided into groups of the sizes \(n_0, n_1, n_2, \ldots, n_m\). The product is the probability that each node with a sequence \(j\) is connected to nodes with the sequences \(l\) and \(k\) and has an update function that yields the output sequence \(j\) for the input sequences \(l\) and \(k\). This formula was first given in the beautiful paper by Samuelsson and Troein [10].

We conclude this section with a picture of the state space of a network consisting of 10 nodes.

FIG. 5: The state space of a network with 10 nodes

E. Problems

1. Show that the fraction 3/32 of all networks in the ensemble with \(N = 4\) and \(K = 1\) have the topology shown in Figure 2.2.

2. Show that the fraction \(3^3/2^{10}\) of all networks with the topology shown in Figure 2.2 have the state space topology shown in Figure 2.3, if the distribution of update functions is given by rule 1 with \(p = 1/4\).

3. Which functions in Table III correspond to the threshold functions in networks with \(K = 2\), if we set \(h = 0\) ?

4. Consider again \(K = 2\) networks, and choose the update rules 3 (canalyzing functions), which are characterized by the parameters \(\eta, r,\) and \(p\). Express the weight of each function in Table III in terms of \(\eta, r,\) and \(p\).

5. Using Equation 3, show that in an ensemble of networks with update rule 1 or 2, there is on an average exactly one fixed point per network.

3. ANNEALED APPROXIMATION AND PHASE DIAGRAMS

The annealed approximation, which is due to Derrida and Pomeau [11], is a useful tool to calculate certain network properties. It is a mean-field theory, which neglects possible correlations between nodes. The first assumption of the annealed approximation is that the network is infinitely large. This means that fluctuations of global quantities are negligible. The second assumption of the annealed approximation is that the inputs of each node can be assigned at every time step anew. The following quantities can be evaluated by the annealed approximation:

1. The time evolution of the proportion of 1s and 0s.

2. The time evolution of the Hamming distance between the states of two identical networks.

3. The statistics of small perturbations.

We will discuss these in the following in the order given in this list. One of the main results of these calculations will be the phase diagram, which indicates for which parameter values the networks are frozen, critical or chaotic.

A. The time evolution of the proportion of 1s and 0s

Let \(b_t\) denote the number of nodes in state 1, divided by \(N\). The proportion of nodes in state 0 is then \(1 - b_t\). We want to calculate \(b_{t+1}\) as function of \(b_t\) within the annealed approximation. Since the \(K\) inputs of each node are newly assigned at each time step, the probability that \(m\) inputs of a node are in state 1 and the other inputs in state 0 is \(b_t^m (1 - b_t)^{K-m}\). Since we consider an infinitely large network, this probability is identical to the proportion of nodes that have \(m\) inputs in state 1.

Let \(p_m\) be the probability that the output value of a node with \(m\) inputs in state 1 is 1. Then we have

\[
b_{t+1} = \sum_{m=0}^K \binom{K}{m} p_m b_t^m (1 - b_t)^{K-m}.
\]
(4)

If \(p_m\) is independent of \(m\), the right-hand side is identical to \(p_m\), and \(b_t\) reaches after one time step its stationary value, which is the fixed point of Equation 3. Among the above-listed update rules, this happens for rules 1 (biased functions) and 2 (weighted classes) and 4 (threshold functions). For rule 1, we have \(p_m = 1/2\), since the output values 0 and 1 occur with equal probability within each class of update functions. For rule 2,
we have $p_m = p$ by definition. For rule 4, the value of p_m is independent of m because the value of c_{ij} is 1 and -1 with equal probability, making each term $c_{ij}(2\sigma_j - 1)$ to $+1$ and -1 with equal probability. Therefore p_m is identical to the probability that the sum of K random numbers, each of which is $+1$ or -1 with probability $1/2$, is at least as large as $-h$,

$$p_m = \left(\frac{1}{2}\right)^K \sum_{l \geq (K-h)/2} \binom{K}{l}.$$

Here, l is the number of $+1$s, and $K - l$ the number of -1s.

For rule 3 (canalyzing functions) we get [6]

$$b_{t+1} = b_t \eta r + (1 - b_t)(1 - \eta)r + b_t(1 - \eta)p + (1 - b_t)\eta p = \eta(p - r) + b_t(p - r)(1 - 2\eta). \quad (5)$$

The first two terms are the probability that the canalyzing input is on its canalyzing value, and that the output is then 1. The second two terms are the probability that the canalyzing input is not on its canalyzing value, and that the output is then 1. This is a one-dimensional map. The only fixed point of this map is

$$b^* = \frac{\eta(p - r)}{1 - \eta(p - r)(1 - 2\eta)}.$$

Since the absolute value of the slope of this map is smaller than 1 everywhere, every iteration [5] will bring the value of b_t closer to this fixed point.

There exist also update rules where the fixed points are unstable and where periodic oscillations or chaos occur. This occurs particularly easily when all nodes are assigned the same function (rule 5). For instance, if all nodes are assigned the last one of the canalyzing functions occurring in the table of update functions [11] we have the map

$$b_{t+1} = 1 - b_t^2. \quad (6)$$

The fixed point

$$b^* = \frac{-1 + \sqrt{5}}{2}$$

is unstable, since the slope of the map is $(1 - \sqrt{5})$ at this fixed point, i.e., it has an absolute value larger than 1. The iteration [6] moves b_t away from this fixed point, and eventually the network oscillates between all nodes being 1 and all nodes being 0.

A map that allows for oscillations with larger period and for chaos is obtained for the update rule that the output is 1 only if all inputs are equal. This map is defined for general values of K and is given by

$$b_{t+1} = b_t^K + (1 - b_t)^K. \quad (7)$$

Let us consider K as a continuous parameter. When it is increased, starting at 1, the map first has a stable fixed point and then shows a period-doubling cascade and the Feigenbaum route to chaos shown in Figure [6A] [12].

All these results for b_t were derived within the annealed approximation, but they are generally believed to apply also to the original networks with fixed connectivity patterns, if the thermodynamic limit is taken. If this is correct, the following three statements are also correct:

- All (apart from a vanishing proportion of) initial states with a given value of b_0 undergo the same trajectory b_t with time.
- This trajectory is the same for all networks (apart from a vanishing proportion).
- When time is so large that the dynamics have reached an attractor, the map $b_{t+1}(b_t)$ is the same as in the initial stage for those values of b that can occur on the attractors.

These assumptions appear plausible, since the paths through which a node can affect its own input nodes are infinitely long in a randomly wired, infinitely large network. Therefore we do not expect correlations between the update function assigned to a node and the states of its input nodes. Neither do we expect a correlation between the function $b_{t+1}(b_t)$ and the question of whether a state is on an attractor.

B. The time evolution of the Hamming distance

With the help of the Hamming distance, one can distinguish between a frozen and a chaotic phase for RBNs. We make an identical copy of each network in the ensemble, and we prepare the two copies of a network in different initial states. The Hamming distance between the two networks is defined as the number of nodes that are in a different state. For the following, it is more convenient to use the normalized Hamming distance, which
is the Hamming distance divided by N, i.e., the proportion of nodes that are in a different state,

$$h_t = \frac{1}{N} \sum_{i=1}^{N} (\sigma_i^{(1)} - \sigma_i^{(2)})^2 .$$ \hspace{1cm} (8)

If h_t is very small, the probability that more than one input of a node differ in the two copies, can be neglected, and the change of h_t during one time step is given by

$$h_{t+1} = \lambda h_t ,$$ \hspace{1cm} (9)

where λ is called the *sensitivity* 13. It is K times the probability that the output of a node changes when one of its inputs changes.

For the first four update rules listed in Section 2.2, the value of λ is

$$\lambda = 2Kp(1-p) \quad \text{(biased functions)}$$

$$\lambda = 1 - \delta \quad \text{(weighted classes, } K = 1)$$

$$\lambda = \alpha + 2\beta + \gamma = 1 + \beta - \delta \quad \text{(weighted classes, } K = 2)$$

$$\lambda = r(1-p) + (1-r)p + (K-1)(\eta(1-b_t) + (1-\eta)b_t)2p(1-p) \quad \text{(canalyzing functions)}$$

$$\lambda = K\left(\frac{1}{2}\right)^{K-1} \left(\frac{K-1}{l}\right) \quad \text{(threshold functions)}$$ \hspace{1cm} (10)

with l in the last line being the largest integer smaller than or equal to $(K-h)/2$. For rule 3 (canalyzing functions), the first two terms are the probability that the output changes when the canalyzing input is in a different state in the two network copies; the last term is the probability that the output changes when one of the other inputs is in a different state in the two copies, multiplied by the number of noncanalyzing inputs. This is the only one out of the 4 rules where the value of λ depends on b_t and therefore on time.

The networks are in different phases for $\lambda < 1$ and $\lambda > 1$, with the critical line at $\lambda = 1$ separating the two phases. In the following, we derive the properties of the networks in the two phases as far as possible within the annealed approximation.

If $\lambda < 1$, the normalized Hamming distance decreases to 0. If the states of the two copies differ initially in a small proportion of all nodes, they become identical for all nodes, apart from possibly a limited number of nodes, which together make a contribution 0 to the normalized Hamming distance. $\lambda < 1$ means also that if the two copies are initially in identical states and the state of one node in one copy is changed, this change propagates on an average to less than one other node. When the two copies differ initially in a larger proportion of their nodes, we can argue that their states also become identical after some time: we produce a large number Q of copies of the same network and prepare their initial states such that copy number q and copy number $q + 1$ (for all $q = 1, \ldots, Q$) differ only in a small proportion of their nodes. Then the states of copy number q and copy number $q + 1$ will become identical after some time, and therefore the states of all Q copies become identical (again apart from possibly a limited number of nodes). The final state at which all copies arrive must be a state where all nodes (apart from possibly a limited number) become frozen at a fixed value. If the final state was an attractor where a nonvanishing proportion of nodes go through a sequence of states with a period larger than 1, different network copies could be in different phases of the attractor, and the normalized Hamming distance could not become zero. Ensembles with $\lambda < 1$ are said to be in the *frozen* phase.

All these considerations did not take into account that λ itself may not be constant. For those update rules where b_t assumes its fixed point value after the first time step, one can apply the reasoning of the previous paragraph starting at time step 2. For rule 3, the value b_t approaches its fixed point more slowly, and therefore the value of λ changes over a longer time period. It is therefore possible that the Hamming distance shows initially another trend as during later times. Once b_t has reached its fixed point value, λ has become constant, and if then $\lambda < 1$, the normalized Hamming distance will decrease to zero. In order to decide whether an ensemble is in the frozen phase, one must therefore evaluate λ in the stationary state.

For ensembles that have no stable stationary value of b_t, the above considerations do not apply directly, since b_t cycles through different values, and so does λ. Furthermore, the two copies may be in different phases of the cycle and will then never have a small normalized Hamming distance. For ensembles with a finite oscillation period T, one should evaluate the product of all values of λ during one period. If this product is smaller than 1, a small normalized Hamming distance created in a copy of a network with a stationary oscillation, will decrease after one period. Using a similar reasoning as before, we conclude that then the normalized Hamming distance between any two copies of the network will decrease to zero if they have initially the same value of b_t. This means that all nodes (apart from possibly a limited number) go through a sequence of states that has the same period as b_t.

If $\lambda > 1$ when b_t has reached its stationary value, the normalized Hamming distance increases from then on with time and has a nonzero stationary value. A change in one node propagates on an average to more than one other node. If there is a fixed point or a short attractor, it is unstable under many possible perturbations. There is therefore no reason why all attractors should be short. In fact, attractors can be very long, and the ensemble is in a phase that is usually called *chaotic*, even though this is no real chaos because state space is finite and every trajectory becomes eventually periodic. When b_t does not become stationary but periodic, we consider again the product of all values of λ during one period. If this product is larger than 1, a small normalized Hamming distance between two copies with the same value of b_t
will eventually become larger. This means that attractors can be very long and need not have the period of \(b_t \).

For \(\lambda = 1 \), the ensemble is at the boundary between the two phases: it is critical. A change in one node propagates on an average to one other node. The critical line can be obtained from Eqs. 11, leading to the phase diagram shown in Figure 7.

All our results are based on a calculation for small \(h_t \). When \(h_t \) is not infinitesimally small, 11 has the more general form

\[
h_{t+1} = \lambda h_t + \nu h_t^2 + \ldots ,
\]

with the highest power of \(h_t \) being \(K \), but we do not make here the effort to calculate the coefficient \(\nu \) or that of a higher-order term. We use this result only to obtain a relation between the stationary value of \(h_t \) and the distance from the critical line: In the chaotic phase, but close to the critical line (where \(\lambda \) is only slightly larger than 1), the stationary value of \(h_t \) obtained from 11 is

\[
h^* = (\lambda - 1)/\nu .
\]

It increases linearly with the distance from the critical line, as long as this distance is small.

C. The statistics of small perturbations in critical networks

Now let us have a closer look at the propagation of a perturbation that begins at one node in a critical network. Let us consider again two identical networks, and let them be initially in the same state. Then let us flip the state of one node in the first network. One time step later, the nodes that receive input from this node differ in the two systems each with probability \(\lambda/K = 1/K \) (since \(\lambda = 1 \) in a critical network). On an average, this is one node. Since the perturbation propagates to each node in the network with probability \((K/N)^s (\lambda/K) = 1/N \), the probability distribution is a Poisson distribution with mean value 1. We keep track of all nodes to which the perturbation propagates, until no new node becomes affected by it. We denote the total number of nodes affected by the perturbation by \(s \). The size distribution of perturbations is a power law

\[
n(s) \sim s^{-3/2}
\]

for values of \(s \) that are so small that the finite system size is not yet felt, but large enough to see the power law. There are many ways to derive this power law. The annealed approximation consists in assuming that loops can be neglected, so that the perturbation propagates at every step through new bonds and to new nodes. In this case, there is no difference (from the point of view of the propagating perturbation) between a network where the connections are fixed and a network where the connections are rewired at every time step.

We begin our calculation with one “active” node at time 0, \(n_a(t = 0) = 1 \), which is the node that is perturbed. At each “time step” (which is different from real time!), we choose one active node and ask to how many nodes the perturbation propagates from this node in one step. These become active nodes, and the chosen node is now “inactive”. We therefore have a stochastic process

\[
n_a(t + 1) = n_a(t) - 1 + \xi
\]

for the number of “active” nodes, with \(\xi \) being a random number with a Poisson distribution with mean value 1. The stochastic process is finished at time \(t = s \) when \(n_a(s) = 0 \). \(s \) is the total number of nodes affected by the perturbation.

Now we define \(P_0(y, t) \) as the probability that the stochastic process has arrived at \(y = 0 \) before or at time \(t \), if it has started at \(n_a = y \) at time \(t = 0 \). During the first step, \(y \) changes by \(\Delta y = \xi - 1 \). If we denote the probability distribution of \(\Delta y \) with \(P(\Delta y) \), we obtain

\[
P_0(y, t) = \int d(\Delta y) P(\Delta y) P_0(y + \Delta y, t - 1)
\]

\[
\approx \int d(\Delta y) P(\Delta y) \left[P_0(y, t) + \Delta y \frac{\partial P_0}{\partial y} + \frac{1}{2} (\Delta y)^2 \frac{\partial^2 P_0}{\partial y^2} - \frac{\partial P_0}{\partial t} \right].
\]

The first term on the right-hand side cancels the left-hand side. The second term on the right-hand side is the mean value of \(\Delta y \), which is zero, times \(\partial_y P_0 \). Were are
therefore left with the last two terms, which give after integration
\[\frac{\partial P_0}{\partial t} = \frac{1}{2} \frac{\partial^2 P_0}{\partial y^2}. \] (14)

This is a diffusion equation, and we have to apply the initial and boundary conditions
\[P_0(0, t) = 1 \]
\[P_0(y, 0) = 0 \]
\[P_0(y, \infty) = 1. \] (15)

Expanding P_0 in terms of eigenfunctions of the operator $\partial/\partial t$ gives the general solution
\[P_0(y, t) = a + by + \int d\omega e^{-\omega^2 t/4} (c_\omega \sin(\omega y) + d_\omega \cos(\omega y)). \]

The initial and boundary conditions fix the constants to $a = 1$ and $d_\omega = 0$ and $c_\omega = -2/\pi \omega$. We therefore have
\[P_0(y, t) = 1 - \frac{2}{\pi} \int d\omega \frac{\sin(\omega y)}{\omega} e^{-\omega^2 t/4}, \] (16)

which becomes for $y = 1$
\[P_0(1, t) = 1 - \frac{2}{\pi} \int d\omega \frac{\sin(\omega)}{\omega} e^{-\omega^2 t/4} \]
\[\to 1 - \mathcal{O}(t^{-1/2}) \] (17)

for large t. The size distribution of perturbations is obtained by taking the derivative with respect to t, leading to \[\| \] .

Readers familiar with percolation theory will notice that the spreading of a perturbation in a critical RBN is closely related to critical percolation on a Bethe lattice. Only the probability distribution of the stochastic variable ξ is different in this case. Since the result depends only on the existence of the second moment of y, it is not surprising that the size distribution of critical percolation clusters on the Bethe lattice follows the same power law.

3. If in a frozen network only a limited number of nodes may not be frozen for large times, and if in a chaotic network a nonvanishing proportion of nodes remain nonfrozen, what do you expect in a critical network?

4. NETWORKS WITH $K = 1$

Many properties of networks with $K = 1$ inputs per node can be derived analytically. Nevertheless, these networks are nontrivial and share many features with networks with larger values of K. Therefore it is very instructive to have a closer look at $K = 1$ networks. In this review, we will not reproduce mathematically exact results that require long calculations, as is for instance done in[14, 15]. Instead, we will present phenomenological arguments that reproduce correctly the main features of these networks and that help to understand how these features result from the network structure and update rules. We begin by studying the topology of $K = 1$ networks. Then, we will investigate the dynamics on these networks in the frozen phase and at the critical point. Finally, we will show that the topology of $K = 1$ networks can be mapped on the state space of $K = N$ networks, which allows us to derive properties of the attractors of $K = N$ networks, which are chaotic.

A. Topology of $K = 1$ networks

If each node has one input, the network consists of different components, each of which has one loop and trees rooted in this loop, as shown in Figure 4A. $K = 1$ networks have the same structure as the state space pictures of other random Boolean networks, like the ones shown in Figures 2.3 and 2.4, only the arrows are inverted.

![FIG. 8: Example of a network with one input per node. It has two components, the larger component has a loop of size 3 and two trees rooted in it (one of size 1 and one of size 6), and the smaller component has a loop of size 1 and one tree of size 1.](image)

Let us first calculate the size distribution of loops. We consider the ensemble of all networks of size N. In each network of the ensemble, each node chooses its input at random from all other nodes. The probability that a
The probability that a given node is sitting on any loop is therefore

\[P(l) = \left(1 - \frac{1}{N}\right)\left(1 - \frac{2}{N}\right)\ldots\left(1 - \frac{l - 1}{N}\right)\frac{1}{N} \]

\[\approx \frac{e^{-1/N}e^{-2/N}\ldots e^{-(l-1)/N}}{N} = \frac{e^{-l(l-1)/2N}}{N} \approx \frac{e^{-l^2/2N}}{N}. \quad (18) \]

The first factor is the probability that the input to the first node is not this node. The second factor is the probability that the input to the second node is not the first or second node, etc. The last factor is the probability that the input of the \(l \)th node is the first node. The approximation in the second step becomes exact in the thermodynamic limit \(N \to \infty \) for values of \(l \) that satisfy \(\lim_{N \to \infty} l/N = 0 \). The approximation in the last step can be made if \(l \) is large.

The probability that a given node is sitting on any loop is therefore proportional to

\[\int_1^\infty P(l)dl \approx N^{-1/2} \int_0^\infty e^{-x^2/2}dx \propto N^{-1/2}. \]

This means that the total number of nodes sitting on loops is proportional to \(\sqrt{N} \).

The mean number of nodes sitting on loops of size \(l \) in a network is

\[NP(l) \approx e^{-l^2/2N}. \]

The cutoff in loop size is proportional to \(\sqrt{N} \). For \(l \ll \sqrt{N} \), the mean number of nodes in loops of size \(l \) is 1. This result can also be obtained by a simple argument: The probability that a given node is sitting on a loop of size \(l \) is in the limit \(N \to \infty \) simply \(1/N \), since the node almost certainly does not choose itself as input or as input of its input etc, but in the \(l \)th step the first node must be chosen as input, which happens with probability \(1/N \).

The mean number of loops of size \(l \) in a network is

\[\frac{NP(l)}{l} \approx e^{-l^2/2N}/l. \]

For \(l \ll \sqrt{N} \), this is simply \(1/l \). Since loops are formed independently from each other in the limit \(N \to \infty \), the probability distribution of the number of loops of size \(l \) is a Poisson distribution with mean value \(1/l \).

The mean number of loops per network is

\[N \int_1^\infty \frac{NP(l)}{l}dl = \int_0^\infty \frac{e^{-x^2/2}}{x}dx \simeq \frac{1}{2} \ln N \]

for large \(N \). This is identical to the mean number of components.

Next, let us consider the trees rooted in the loops. There are of the order of \(N \) nodes, which sit in \(\sim \sqrt{N} \) trees, each of which is rooted in a relevant node. This means that the average tree size is proportional to \(\sqrt{N} \).

The construction of a tree can be described formally exactly in the same way as we described the propagation of a perturbation in a critical network in the last section: we begin with a node sitting in a loop. The nodes that are not sitting in loops receive their input with equal probability from any node in the network. Our node is therefore chosen with probability \(1/N \) by every node outside the loops as an input, and the probability distribution of the number of outputs into the tree is a Poisson distribution with mean value 1 (neglecting terms of the order \(N^{-1/2} \)). In the same way, we find that the number of outputs of each of the newly found tree nodes is again a Poisson distribution with mean value 1. We iterate this process until we have identified all nodes that are part of this tree.

The size distribution of trees is \(\sim s^{-3/2} \). The cutoff must be \(s_{\text{max}} \sim N \) in order to be consistent with what we know about the mean tree size and the total number of nodes in trees: The mean tree size is

\[\bar{s} \sim \int_1^{s_{\text{max}}} ss^{-3/2}ds \sim s_{\text{max}}^{1/2} \sim \sqrt{N}. \]

The total number of nodes in trees is proportional to

\[\sqrt{N} \int_1^{s_{\text{max}}} ss^{-3/2}ds \sim N. \]

B. Dynamics on \(K = 1 \) networks

Knowing the topology of \(K = 1 \) networks, allows us to calculate their dynamical properties. After a transient time, the state of the nodes on the trees will be independent of their initial state. If a node on a tree does not have a constant function, its state is determined by the state of its input node at the previous time step. All nodes that are downstream of a node with a constant function will become frozen. If there is no constant function in the loop and the path from the loop to a node, the dynamics of this node is slaved to the dynamics of the loop.

If the weight of constant functions, \(\delta \), is nonzero, the probability that a loop of size \(l \) does not contain a frozen function is \((1 - \delta)^l \), which goes to zero when \(l \) is much larger than \(1/\delta \). Therefore only loops smaller than a cutoff size can have nontrivial dynamics.

The number and length of the attractors of the network are determined by the nonfrozen loops only. Once the cycles that exist on each of the nonfrozen loops are determined, the attractors of the entire network can be found from combinatorial arguments.

1. Cycles on loops

Let us therefore focus on a loop that has no constant function. If the number of “invert” functions is odd, we
call the loop an odd loop. Otherwise it is an even loop.
Replacing two “invert” functions with copy functions and replacing the states \(\sigma_i(t) \) of the two nodes controlled by these functions and of all nodes in between with \(1 - \sigma_i(t) \), is a bijective mapping from one loop to another. In particular, the number and length of cycles on the loop is not changed. All odd loops can thus be mapped on loops with only one “invert” function, and all even loops can be mapped on loops with only “copy” functions.

We first consider even loops with only “copy” functions. These loops have two fixed points, where all nodes are in the same state. If \(l \) is a prime number, all other states belong to cycles of period \(l \). Any initial state occurs again after \(l \) time steps. Therefore the number of cycles on an even loop is

\[
\frac{2^l - 2}{l} + 2
\]

if \(l \) is a prime number. The numerator counts the number of states that are not fixed points. The first term is therefore the number of cycles of length \(l \). Adding the two fixed points gives the total number of cycles. If \(l \) is not a prime number, there exist cycles with all periods that are a divisor of \(l \).

Next, let us consider odd loops with one “invert” function. After \(2l \) time steps, the loop is in its original state. If \(l \) is a prime number, there is only one cycle that has a shorter period. It is a cycle with period 2, where at each site 0s and 1s alternate. The total number of cycles on an odd loop with a prime number \(l \) is therefore

\[
\frac{2^l - 2}{2l} + 1.
\]

If \(l \) is not a prime number, there are also cycles with a period that is twice a divisor of \(l \).

2. \(K = 1 \) networks in the frozen phase

For networks with \(K = 1 \) input per node, the parameter \(\lambda \) is

\[
\lambda = 1 - \delta.
\]

Therefore, only networks without constant functions are critical. Networks with \(\delta > 0 \) are in the frozen phase. The mean number of nonfrozen nodes on nonfrozen loops is given by the sum

\[
\sum_l (1 - \delta)^l = \frac{1 - \delta}{\delta}.
\]

We call these loops the relevant loops. We call the nodes on the relevant loops the relevant nodes, and we denote their number with \(N_{\text{rel}} \). The mean number of relevant loops is given by the sum

\[
\sum_l \frac{1}{l} (1 - \delta)^l \approx \ln \delta^{-1},
\]

with the last step being valid for small \(\delta \).

The probability that the activity moves up the tree to the next node is \(1 - \delta \) at each step. The mean number of nonfrozen nodes on trees is therefore

\[
\frac{1 - \delta}{\delta} \sum_l (1 - \delta)^l = \left(\frac{1 - \delta}{\delta} \right)^2,
\]

and the total mean number of nonfrozen nodes is \((1 - \delta)/\delta^2 \). This is a finite number, which diverges as \(\delta^{-2} \) when the critical point \(\delta = 0 \) is approached.

3. Critical \(K = 1 \) networks

If the proportion of constant functions \(\delta \) is zero, the network is critical, and all loops are relevant loops. There are no nodes that are frozen on the same value on all attractors. A loop of size 1 has a state that is constant in time, but it can take two different values. Larger loops have also two fixed points, if they are even. Part of the nodes in a critical \(K = 1 \) networks are therefore frozen on some attractors or even on all attractors, however, they can be frozen in different states.

The network consists of \(\sim \ln N/2 \) loops, each of which has of the order \(2^l/\delta \) cycles of a length of the order \(l \). The size of the largest loop is of the order of \(\sqrt{N} \). The number of attractors of the network results from the number of cycles on the loops. It is at least as large as the product of all the cycle numbers of all the loops. If a cycle is not a fixed point, there are several options to choose its phase, and the number of attractors of the network becomes larger than the product of the cycle numbers. An upper bound is the total number of states of all the loops, which is of the order of \(2^{N_{\text{rel}}} \sim e^{a\sqrt{N}} \), and a lower bound is the number of attractors on the largest loop, which is of the order of \(e^{b\sqrt{N}} \), with \(b' < b < a \). From this it follows that the mean number of attractors of critical \(K = 1 \) networks increases exponentially with the number of relevant loops. A complementary result for the number of cycles \(\langle C_L \rangle \) of length \(L \), which is valid for fixed \(L \) in the limit \(N \to \infty \) is obtained by the following quick calculation:

\[
\langle C_L \rangle_N \sim \sum_{\{n_l\} \leq L} \prod_{l \leq L} \left(\frac{e^{-1/l} \left(\frac{1}{l} \right)^{n_l}}{n_l!} \right)
\]

\[
= \sum_{\{n_l\} \leq L} \prod_{l \leq L} \left(\frac{e^{-1/l} \left(\frac{k_l}{l} \right)^{n_l}}{n_l!} \right)
\]

\[
\sim \prod_{l \leq L} e^{(k_l - 1)/l} = e^{(k_1 - 1)/l} \sum_{l \leq L} e^{(k_l - 1)/l} \sim e^{(k_l - 1)}_{\text{tree}} \sum_{l \leq L} e^{(k_l - 1)/l}
\]

\[
\sim e^{(H_L - 1)\ln \sqrt{N}} \sim N^{(H_L - 1)/2}.
\]
is zero for many loops. The average over an l-interval of size L is identical to H_L, which is the number of cycles on an even loop of size L. A more precise derivation of this relation, starting from the $K = 1$ version of \[3\] and evaluating it by making a saddle-point approximation, can be found in \[10\], which is inspired by the equivalent calculation for $K = 2$ critical networks in \[10\].

The length of an attractor of the network is the least common multiple of the cycle lengths of all the loops. A quick estimate gives

$$N^a \log N$$

since the length of the larger loops is proportional to \sqrt{N}, and this has to be taken to a power which is the number of loops. A more precise calculation \[17\] gives this expression, multiplied with a factor $N^b / \log N$, which does not modify the leading dependence on N.

\section{C. Dynamics on $K = N$ networks}

The topology of a $K = 1$ network is identical to the topology of the state space of a $K = N$ network, when all update functions are chosen with the same weight. The reason is that in a $K = N$ network, the state that succeeds a given state can be every state with the same probability. Thus, each state has one successor, which is chosen at random among all states. In the same way, in a $K = 1$ network, each node has one input node, which is chosen at random among all nodes. The state space of a $K = N$ network consists of 2^N nodes, each of which has one successor. We can now take over all results for the topology of $K = 1$ networks and translate them into state space:

The $K = N$ networks have of the order of $\log(2^N) \propto N$ attractors. The largest attractor has a length of the order $\sqrt{2N} = 2^{N/2}$, and this is proportional to the total number of states on attractors. All other states are transient states. An attractor of length l occurs with probability $1/l$ if $l \ll 2^{N/2}$.

Clearly, $K = N$ networks, where all update functions are chosen with the same weight, are in the chaotic phase. The mean number of nodes to which a perturbation of one node propagates, is $N/2$. At each time step, half the nodes change their state, implying also that the network is not frozen.

\section{D. Application: Basins of attraction in frozen, critical and chaotic networks}

The advantage of $K = 1$ networks is that they are analytically tractable and can teach us at the same time about frozen, chaotic and critical behavior. We will discuss in the next section to what extent the results apply to networks with other values of K. Based on our insights into $K = 1$ networks, we derive now expressions for the dependence on N of the number and size of the basins of attraction of the different attractors.

Let us first consider networks in the frozen phase. As we have seen, there is at most a limited number of small nonfrozen loops. Their number is independent of system size, and therefore the number of attractors is also independent of the system size. The initial state of the nodes on these nonfrozen loops determines the attractor. The initial states of all other nodes are completely irrelevant at determining the attractor.

The size of the basin of attraction of an attractor is therefore $2^{N - N_{rel}}$, multiplied with the length of the attractor, i.e., it is 2^N, divided by a factor that is independent of N. The proportion of state space belonging to a basin is therefore also independent of N. If we define the basin entropy \[18\] by

$$S = - \sum_a p_a \ln p_a$$

with p_a being the fraction of state space occupied by the basin of attraction of attractor a, we obtain

$$S = \text{const}$$

for a $K = 1$ network in the frozen phase.

Next, let us consider the chaotic $K = N$ network ensemble. There are on an average $1/l$ attractors of length l, with a cutoff around $2^{N/2}$. The basin size of an attractor of length l is of the order $2^{N/2}$, which is l times the average tree size. The basin entropy is therefore

$$S \simeq \sum_l \frac{l}{l} 2^{N/2} \log \frac{l}{2^{N/2}} \simeq \int_{2^{-N/2}}^1 \log x dx = \text{const}.$$ \hspace{1cm} (27)

Finally, we evaluate the basin entropy for a critical $K = 1$ network. There are of the order $e^{a\sqrt{N}}$ attractors with approximately equal basin sizes, and therefore the basin entropy is

$$S \sim \sqrt{N} \propto N_{rel}.$$ \hspace{1cm} (28)

While frozen and chaotic networks have a finite basin entropy, the basin entropy of critical networks increases as the number of relevant nodes \[18\].

\section{E. Problems}

1. How many cycles does an even (odd) loop of size 6 have?
2. Count the attractors of the network shown in Figure 4.1 for all four cases where loop 1 and/or loop 2 are even/odd.
3. How does the transient time (i.e. the number of time steps until the network reaches an attractor) increase with N for (a) $K = 1$ networks in the frozen phase, (b) critical $K = 1$ networks, (c) chaotic $K = N$ networks?
4. Consider the subensemble of all critical $K = 1$ networks that have the same wiring, but all possible assignments of "copy" and "invert" functions. Which property determines the probability that a network has a fixed point attractor? If it has such an attractor, how many fixed point attractors does the network have in total? Conclude that there is on average one fixed point per network in this subensemble.

5. Verify the identity $\bar{k}_l = H_L$ used in calculation (25).

6. How does the basin entropy for $K = 1$ networks depend on the parameter δ when δ becomes very small? Find an answer without performing any calculations.

5. CRITICAL NETWORKS WITH $K = 2$

In the previous section, we have derived many properties of frozen, critical and chaotic networks by studying ensembles with $K = 1$. Many results are also valid for RBNs with general values of K. In this section, we focus on critical $K = 2$ networks. These networks, as well as critical networks with larger values of K, differ in one important respect from critical $K = 1$ networks: they have a frozen core, consisting of nodes that are frozen on the same value on all attractors. We have obtained this result already with the annealed approximation: The normalized Hamming distance between two identical networks is close to the critical point given by (12), which means that it is zero exactly at the critical point. For $K = 1$, there exists no chaotic phase and no Equation (12), and therefore the observation that all nodes may be nonfrozen in critical $K = 1$ networks is not in contradiction with the annealed approximation.

We will first explain phenomenologically the features of critical $K = 2$ networks, and then we will derive some of these features analytically.

A. Frozen and relevant nodes

The frozen core arises because there are constant functions that fix the values of some nodes, which in turn lead to the fixation of the values of some other nodes, etc. Let us consider Figure 5A as an example. This network has the same number of constant and reversible functions, as is required for critical networks (although this classification only makes sense for large networks, where the thermodynamic limit becomes visible). Node 5 has a constant function and is therefore frozen on the value 0 (indicated by a darker grey shade) after the first time step. Node 6 has a canalyzing function which gives 1 as soon as one of the inputs is 1, and will therefore end up in state 0. These four nodes constitute the frozen core of this network. At most after 4 time steps, each of these nodes assumes its stationary value.

We can conclude that this network has 4 attractors: two fixed points and two cycles of length 3.

There is a different mechanism by which a frozen core can arise, which is illustrated by assigning another set of update functions to the same network, as shown in Figure 5.2. This network contains only canalyzing update functions of the type C_2, and such a network could be classified as critical if it was much larger. We begin again by fixing node 5 at value 1, and we denote this as 5_1. In the next time step, this node may have changed its state,
but then node 7 will be in state 1, because it is canalyzed to this value by node 5. By continuing this consideration, we arrive at the following chain of states:

\[5_1 \rightarrow 7_1 \rightarrow 4_1 \rightarrow 5_0. \]

This means that node 5 must eventually assume the state 0, and we continue from here by following again canalyzing connections:

\[5_0 \rightarrow 6_1 \rightarrow 7_1 \rightarrow (4_1, 8_0) \rightarrow (5_0, 6_1) \rightarrow (6_1, 7_1) \]
\[\rightarrow (4_1, 7_1, 8_0) \rightarrow (4_1, 5_0, 6_1, 8_0) \rightarrow (5_0, 6_1, 7_1) \]
\[\rightarrow (4_1, 6_1, 7_1, 8_0) \rightarrow (4_1, 5_0, 6_1, 7_1, 8_0) \rightarrow (4_1, 5_0, 6_1, 7_1, 8_0) \]

From this moment on, nodes 4 to 8 are frozen. Nodes 1, 2, 3 form a relevant loop with the functions invert, invert, copy, just as in the previous example.

In order to better understand how the frozen core arises in this case, consider the loop formed by the nodes 6, 7, 8: This is a self-freezing loop. If the nodes 6, 7, 8 are in the states 1, 1, 0, they remain forever in these states, because each node is canalyzed to this value by the input it receives within the loop. This loop has the same effect on the network as have nodes with constant functions. Once this loop is frozen, nodes 4 and 5 become also frozen. One can imagine networks where such a loop never freezes, but this becomes very unlikely for large networks.

The networks shown in the previous two figures were designed to display the desired properties. In general, small networks differ a lot in the number of frozen and nonfrozen nodes, as well as in the size and structure of their relevant component(s) and their attractors. The specific properties particular to the frozen and chaotic phase and to the critical line become clearly visible only for very large networks.

A network of intermediate size is the basis of Figure 5.3, which shows the nonfrozen part of a critical \(K = 2 \) network with 1000 nodes. There are 100 nonfrozen nodes in this network, indicating that the majority of nodes are frozen. Among the 100 nonfrozen nodes, only 5 nodes are relevant, and only 6 nodes have two nonfrozen inputs. The relevant nodes are arranged in 2 relevant components. They determine the attractors of the network, while all other nodes sit on outgoing trees and are slaved to the dynamics of the relevant nodes. This figure resembles a lot a \(K = 1 \) network. The only difference is that there are a few nodes with two inputs.

Analytical calculations, part of which are explained in the next section, give the following general results for critical \(K = 2 \) networks in the thermodynamic limit \(N \rightarrow \infty \):

1. The number of nodes that do not belong to the frozen core, is proportional to \(N^{2/3} \) for large \(N \).
2. If the proportion of nodes with a constant function is nonzero, the frozen core can be determined by starting from the nodes with constant functions and following the cascade of freezing events.

3. If the proportion of nodes with a constant function is zero (which means that the network contains only canalyzing functions), the frozen core can be determined by starting from self-freezing loops.
4. The number of nodes that are nonfrozen and that receive 2 nonfrozen inputs is proportional to \(N^{1/3} \).
5. The number of relevant nodes is proportional to \(N^{1/3} \). They are connected to relevant components, which consist of loops and possibly additional links within and between the loops.
6. The number of relevant nodes that have two relevant inputs remains finite in the limit \(N \rightarrow \infty \).
7. The number of relevant components increases as \(\log N^{1/3} \).
8. The cutoff of the size of relevant components scales as \(N^{1/3} \).

The complete list of these results is given in [20] but part of the results can be found in earlier papers [21, 22].

B. Analytical calculations

After this qualitative introduction to critical networks, let us derive the main results for the scaling of the number of nonfrozen and relevant nodes with \(N \). Computer simulations of critical networks show the true asymptotic...
scaling only for very larger networks with more than 100000 nodes. For this reason, the values 2/3 and 1/3 for the critical exponents characterizing the number of nonfrozen and relevant nodes has been known only since 2003.

Flyvbjerg [22] was the first one to use a dynamical process that starts from the nodes with constant update functions and determines iteratively the frozen core. Performing a mean-field calculation for this process, he could identify the critical point. We will go now beyond mean-field theory.

We consider the ensemble of all $K = 2$ networks of size N with update rule 2 (weighted functions), where the weights of the C_1, reversible, C_2 and constant functions are α, β, γ and δ. These networks are critical for $\beta = \delta$. We begin by assigning update functions to all nodes and by placing these nodes according to their functions in four containers labelled F, C_1, C_2, and R. These containers then contain N_f, N_{c1}, N_{c2}, and N_r nodes. We treat the nodes in container C_1 as nodes with only one input and with the update functions “copy” or “invert”. As we determine the frozen core, the contents of the containers will change with time. The “time” we are defining here is not the real time for the dynamics of the system. Instead, it is the time scale for the process that we use to determine the frozen core. One “time step” consists in choosing one node from the container F, in selecting the nodes to which this node is an input, and in determining its effect on these nodes. These nodes change containers accordingly. Then the frozen node need not be considered any more and is removed from the system. The containers now contain together one node less than before. This means that container F contains only those frozen nodes, the effect of which on the network has not yet been evaluated. The other containers contain those nodes that have not (yet) been identified as frozen. The process ends when container F is empty (in which case the remaining nodes are the nonfrozen nodes), or when all the other containers are empty (in which case the entire network freezes). The latter case means that the dynamics of the network go to the same fixed point for all initial conditions.

This process is put into the following equations, which describe the changes of the container contents during one “time step”.

$$\Delta N_r = -\frac{2N_r}{N}$$
$$\Delta N_{c2} = -\frac{2N_{c2}}{N}$$
$$\Delta N_{c1} = \frac{2N_r}{N} + \frac{N_{c2}}{N} - \frac{N_{c1}}{N}$$
$$\Delta N_f = -1 + \frac{N_{c2}}{N} + \frac{N_{c1}}{N} + \xi$$
$$\Delta N = -1$$

The terms in these equations mean the following: Each node in container R chooses the selected frozen node as an input with probability $2/N$ and becomes then a C_1-node. This explains the first equation and the first term in the third equation. Each node in container C_2 chooses the selected frozen node as an input with probability $2/N$. With probability 1/2, it then becomes frozen, because the frozen node is with probability 1/2 in the state that fixes the output of a C_2-node. If the C_2-node does not become frozen, it becomes a C_1-node. This explains the terms proportional to N_{c2}. Each node in container C_1 chooses the selected frozen node as an input with probability $1/N$. It then becomes a frozen node. Finally, the -1 in the equation for ΔN_f means that the chosen frozen node is removed from the system. In summary, the total number of nodes, N, decreases by one during one time step, since we remove one node from container F. The random variable ξ captures the fluctuations around the mean change ΔN_f. It has zero mean and variance $(N_{c2} + N_{c1})/N$. The first three equations should contain similar noise terms, but since the final number of nodes of each class is large for large N, the noise can be neglected in these equations. We shall see below that at the end of the process most of the remaining nodes are in container C_1, with the proportion of nodes left in containers C_2 and R vanishing in the thermodynamic limit.

Figure 12 illustrates the process of determining the frozen core.

![Figure 12: Illustration of the freezing process. (1) Initially, a frozen node is chosen (marked in white). (2) then it is determined to which node(s) this is an input and the effect on those nodes is determined. (3) Then, the selected frozen node is removed. (4) The last picture sketches the final state, where all frozen nodes have been removed and most remaining nodes have 1 nonfrozen input.](image-url)

The number of nodes in the containers, N, can be used instead of the time variable, since it decreases by one during each step. The equations for N_r and N_{c2} can
then be solved by going from a difference equation to a differential equation,
\[
\frac{\Delta N_r}{\Delta N} \simeq \frac{dN_r}{dN} = -\frac{2N_r}{N},
\]
which has the solution
\[
N_r = \frac{\beta N^2}{N_{ini}}, \quad N_{c2} = \frac{\gamma N^2}{N_{ini}},
\]
where we have now denoted the total number of nodes with \(N_{ini}\), since the value of \(N\) changes during the process. Similarly, we find if we neglect the noise term for a moment
\[
N_f = N(\delta - \beta) + \frac{\beta N^2}{N_{ini}},
\]
\[
N_{c1} = N(\alpha + \gamma + 2\beta) - 2\frac{N^2(\beta + \gamma)}{N_{ini}}.
\]
From this result, one can derive again the phase diagram, as we did by using the annealed approximation: For \(\delta < \beta\), i.e. if there are more frozen than reversible update functions in the network, we obtain \(N_f = 0\) at a nonzero value of \(N\), and the number of nonfrozen nodes is proportional to \(N_{ini}\). We are in the chaotic phase. For \(\delta > \beta\), there exists no solution with \(N_f = 0\) and \(N > 0\). The network is in the frozen phase. For the critical networks that we want to focus on, we have \(\delta = \beta\), and the process stops at \(N_f = 1 = \frac{\beta N^2}{N_{ini}}\) if we neglect noise. This means that \(N = \sqrt{N_{ini}/\beta}\) at the end of the process. The number of nonfrozen nodes would scale with the square root of the network size. This is not what is found in numerical studies of sufficiently large networks. We therefore must include the noise term. Noise becomes important only after \(N_f\) has become small, when most nodes are found in container \(C_1\), and when the variance of the noise has become unity, \(\langle \xi^2 \rangle = 1\). Inserting the solution for \(N_r\) into the equation for \(N_f\), we obtain then
\[
\frac{dN_f}{dN} = \frac{N_f}{N} + \frac{\beta N}{N_{ini}} + \xi
\]
with the step size \(dN = 1\). We want to transform this into a Fokker-Planck equation. Let \(P(N_f, N)\) be the probability that there are \(N_f\) nodes in container \(C\) at the moment where there are \(N\) nodes in total in the containers. This probability depends on the initial node number \(N_{ini}\), and on the parameter \(\beta\). The sum
\[
\sum_{N_f=1}^{\infty} P(N_f, N) \approx \int_0^{\infty} P(N_f, N) dN_f
\]
is the probability that the stochastic process is not yet finished, i.e. the probability that \(N_f\) has not yet reached the value 0 at the moment where the total number of nodes in the containers has decreased to the value \(N\). This means that systems that have reached \(N_f = 0\) must be removed from the ensemble, and we therefore have to impose the absorbing boundary condition \(P(0, N) = 0\). Exactly in the same way as with calculation \((14)\), we obtain then
\[
-\frac{\partial P}{\partial N} = \frac{\partial}{\partial N_f} \left(\frac{N_f}{N} + \frac{\beta N}{N_{ini}} \right) P + \frac{1}{2} \frac{\partial^2 P}{\partial N_f^2}.
\]
We introduce the variables
\[
x = \frac{N_f}{\sqrt{N}} \quad \text{and} \quad y = \frac{N}{(N_{ini}/\beta)^{2/3}}
\]
and the function \(f(x, y) = (N_{ini}/\beta)^{1/3} P(N_f, N)\). We will see in a moment that \(f(x, y)\) does not depend explicitly on the parameters \(N_{ini}\) and \(\beta\) with this definition. The Fokker-Planck equation then becomes
\[
y \frac{\partial f}{\partial y} + f \left(\frac{x}{2} + y^{3/2} \right) \frac{\partial f}{\partial x} + \frac{1}{2} \frac{\partial^2 f}{\partial x^2} = 0.
\]
Let \(W(N)\) denote the probability that \(N\) nodes are left at the moment where \(N_f\) reaches the value zero. It is
\[
W(N) = \int_0^{\infty} P(N_f, N) dN_f - \int_0^{\infty} P(N_f, N - 1) dN_f.
\]
Consequently,
\[
W(N) = \frac{\partial}{\partial N} \int_0^{\infty} P(N_f, N) dN_f
\]
\[
= \left(N_{ini}/\beta \right)^{-1/3} \frac{\partial}{\partial N} \sqrt{N} \int_0^{\infty} f(x, y) dx
\]
\[
= \left(N_{ini}/\beta \right)^{-2/3} \frac{\partial}{\partial y} \sqrt{N} \int_0^{\infty} f(x, y) dx
\]
\[
= \left(N_{ini}/\beta \right)^{-2/3} G(y)
\]
with a scaling function \(G(y)\). \(W(N)\) must be a normalized function,
\[
\int_0^{\infty} W(N) dN = \int_0^{\infty} G(y) dy = 1.
\]
This condition is independent of the parameters of the model, and therefore \(G(y)\) and \(f(x, y)\) are independent of them, too, which justifies our choice of the prefactor in the definition of \(f(x, y)\). The mean number of nonfrozen nodes is therefore
\[
\bar{N} = \int_0^{\infty} N W(N) dN = \left(N_{ini}/\beta \right)^{2/3} \int_0^{\infty} G(y) y dy,
\]
which is proportional to \(\left(N_{ini}/\beta \right)^{2/3}\). From Equations \((30)\) and the corresponding equation for the \(C_2\)-nodes we find then that the number of nonfrozen nodes with two nonfrozen inputs is proportional to \(N^{1/3}\). This is a vanishing proportion of all nonfrozen nodes.

The nonfrozen nodes receive their (remaining) input from each other, and we obtain the nonfrozen part of the network by randomly making the remaining connections. If we neglect for a moment the second input of
those nonfrozen nodes that have two nonfrozen inputs, we obtain a $K = 1$ network. The number of relevant nodes must therefore be proportional to the square root of number of nonfrozen nodes, i.e. it is $N_{\text{rel}} \sim N^{1/3}$, and the number of relevant components is of the order \(\ln N^{1/3} \) with the largest component of the order of $N^{2/3}$ nodes (including the trees). Adding the second input to the nonfrozen nodes with two nonfrozen inputs does not change much: The total number of relevant nodes that receive a second input is a constant (since each of $\sim N^{1/3}$ relevant nodes receives a second input with a probability proportional to $N^{-1/3}$). Only the largest loops are likely to be affected, and therefore only the large relevant components may have a structure that is more complex than a simple loop. Most nonfrozen nodes with two nonfrozen inputs sit in the trees, as we have seen in Figure 5.3. The mean number and length of attractors can now be estimated in the following way: The attractor number must be at least as large as the number of cycles on the largest relevant loop, and therefore it increases exponentially with the number of relevant nodes. The mean attractor length becomes larger as for $K = 1$ networks, since complex relevant components can have attractors that comprise a large part of their state space, as was shown in [24]. Such components arise with a nonvanishing probability, and they dominate therefore the mean attractor length, which therefore increases now exponentially with the number of relevant nodes.

The conclusions derived in the last paragraph can be made more precise. Interested readers are referred to [19].

All these results are also valid for $K = 2$ networks with only canalyzing functions. As mentioned before, the frozen core of canalyzing networks arises through self-freezing loops. The resulting power laws are the same as for networks with constant functions, as was shown in [25].

C. Problems

1. What is the number of attractors of the network shown in Figure 5.3 for all four cases where loop 1 and/or loop 2 are even/odd?

2. Assume there are 4 relevant nodes, one of them with two relevant inputs. List all topologically different possibilities for the relevant components.

3. Using Equation (36), figure out how the probability that the entire network freezes depends on N.

6. NETWORKS WITH LARGER K

Just as we did for $K = 2$, we consider larger values of K only for those update rules that lead to fixed points of b_l (i.e. of the proportion of 1s), and therefore to a critical line separating a frozen and a chaotic phase.

Let us first consider the frozen phase, where the sensitivity λ is smaller than 1. The probability that a certain node is part of a relevant loop of size l is for large N obtained by the following calculation: the node has K inputs, which have again each K inputs, etc., so that there are K^{l-1} nodes that might choose the first node as one of its K inputs, leading to a connection loop. The chosen node is therefore part of K^l/N connection loops of length l on an average. The probability that a given connection loop has no frozen connection is $(1/\lambda)^l$, and therefore the mean number of relevant loops of size l is λ^l/l. The mean number of relevant nodes is then

$$\langle N_{\text{rel}} \rangle = \sum_l \frac{\lambda^l}{l} = \frac{\lambda}{1 - \lambda}. \quad (38)$$

This is the same result as [22], which we derived for $K = 1$. The mean number of nonrelevant nodes to which a change of the state of a relevant node propagates is given by the same sum, since in each step the change propagates on an average to λ nodes. By adding the numbers of relevant and nonrelevant nonfrozen nodes, we obtain again a mean number of $\lambda/(1 - \lambda)^2$ nonfrozen nodes, just as in the case $K = 1$. We conclude that the frozen phases of all RBNs are very similar.

Now we consider critical networks with $K > 2$. The number of nonfrozen nodes scales again as $N^{2/3}$ and the number of relevant nodes as $N^{1/3}$. The number of nonfrozen nodes with k nonfrozen inputs scales with N as $N^{(3-k)/3}$. These results are obtained by generalizing the procedure used in the previous section for determining the frozen core [26]. By repeating the considerations of the previous paragraph with the value $\lambda = 1$, we find that in all critical networks the mean number of relevant loops of size l is $1/l$ – as long as l is smaller than a cutoff, the value of which depends on N. For $K = 1$ the cutoff is at \sqrt{N}, for $K = 2$, it is at $N^{1/3}$, and this value does not change for larger K. There exists a nice phenomenological argument to derive the scaling $\sim N^{2/3}$ of the number of nonfrozen nodes [27]: The number of nonfrozen nodes should scale in the same way as the size of the largest perturbation, since the largest perturbation affects all nodes on the largest nonfrozen component. The cutoff s_{max} in the size of perturbations (see Equation (13)) is given by the condition that $n(s_{\text{max}}) \sim 1/N$. Perturbations larger than this size occur only rarely in networks of size N, since $n(s)$ is the probability that a perturbation of one specific node (out of N the nodes) affects s nodes in total. Using Equation (13), we therefore obtain

$$s_{\text{max}} \sim N^{2/3}. \quad (39)$$

This argument does not work for $K = 1$, where we have obtained $s_{\text{max}} \sim N$ in section 3. The reason is that critical networks with $K = 1$ have no frozen core, but every node that receives its input from a perturbed node will also be perturbed.

As far as the chaotic phase is concerned, there are good reasons to assume that it displays similar features for all
system size
number of relevant loops increases logarithmically with
one successor in state space (apart from itself). If the
as a power law of K.

We have explicitly considered the case $K = N$. Num-
erical studies show that the basin entropy approaches
a constant with increasing K also when the value of K is
fixed. When λ is close to 1, there is a frozen core that
comprises a considerable part of the network. We can ex-
pect that the nonfrozen part has a state space structure
similar to that of the $K = N$ networks.

7. OUTLOOK

There are many possibilities of how to go beyond RBNs
with synchronous update. In this last section, we will
briefly discuss some of these directions.

A. Noise

Synchronous update is unrealistic since networks do
not usually have a central pacemaker that tells all nodes
when to perform the next update. Asynchronous up-
date can be done either deterministically by assigning to
each node an update time interval and an initial phase
(i.e. the time until the first update), or stochastically
by assigning to each node a time-dependent probability
for being updated. We focus here on stochastic update,
since all physical systems contain some degree of noise.
In particular, noise is ubiquitous in gene regulatory net-
works. Boolean networks with stochastic update are
for instance investigated in [29, 30]. The frozen core ob-
viously remains a frozen core under stochastic update,
and the relevant nodes remain relevant nodes. The most
fundamental change that occurs when one switches from
deterministic to stochastic update is that there is now in
general more than one successor to a state. The set of
recurrent states comprises those states that can reoccur
infinitely often after they have occurred for the first time.
However, if there is a path in state space from each state
to a fixed point or to a cycle that has only one succe-
sor for each state, the network behaves deterministically
for large times, in spite of the stochastic update. This
occurs in networks where all relevant nodes sit on loops:
an even loop has two fixed points, and an odd loop has
an attractor cycle of length $2l$, where each state has only
one successor in state space (apart from itself). If the
number of relevant loops increases logarithmically with
system size N, the number of attractors then increases
as a power law of N. This means that critical $K = 1$ net-
works with asynchronous update have attractor numbers
that increases as a power law with system size. In [30]
it is argued that in critical $K = 2$ networks, where not
all relevant components are simple loops, the attractor
number is still a power law in N.

The situation becomes different when the noise does
not only affect the update time but also the update func-
tion. Then the output of a node can deviate from the
value prescribed by the update function with a proba-
bility that depends on the strength of the noise. The

B. Scale-free networks and other realistic network
structures

Real networks do not have a fixed number of inputs per
node, but do often have a power-law distribution in the
number of inputs or the number of outputs. Boolean
dynamics on such networks has been studied [31, 32], how-
ever, how this affects the power laws in critical networks,
is only partially known [27].

There are many more characteristics of real networks
that are not found in random network topologies, such
as clustering, modularity, or scale invariance. The effect
of all these features on the network dynamics is not yet
sufficiently explored.

C. External inputs

Real networks usually have some nodes that respond to
external inputs. Such an external input to a node can be
modelled by switching the constant function from 1 to 0
or vice versa. The set of nodes that cannot be controlled
in this way is called the computational core. Networks
with a higher proportion of C_2 functions tend to have
a larger computational core, since the C_2 functions can
mutually fix or control each other. Investigations of this
type can be found in [33].

D. Evolution of Boolean networks

Ensembles of networks that are completely different
from the random ensembles studied in this review can
be generated by evolving networks using some rule for
mutations and for the network “fitness”. For instance, by
selecting for robustness of the attractors under noise, one
obtains networks with short attractors that have large
basins of attraction, but that do not necessarily have a
large frozen core [34, 35].

In another class of evolutionary models, fitness is not
assigned to the entire network, but links or functions
are changed if they are associated with nodes that do
not show the “desired” behavior, for instance if they are
mostly frozen (or active), or if they behave most of the
time like the majority of other nodes [36, 37].
E. Beyond the Boolean approximation

There exist several examples of real networks, where the essential dynamical steps can be recovered when using simple Boolean dynamics. If a sequence of states shall be repeatable and stable, and if each state is well enough approximated by an “on”-“off” description for each node, Boolean dynamics should be a good approximation. However, wherever the degree of activity of the nodes is important, the Boolean approximation is not sufficient. This is the case for functions such as continuous regulation or stochastic switching or signal amplification. Clearly, in those cases a modelling is needed that works with continuous update functions or rate equations based on concentrations of molecules. The different types of network modelling are reviewed for instance in [42].

Acknowledgement

Many results reported in this article were obtained in collaboration with former and present members of my group, Viktor Kaufman, Tamara Mihalev, Florian Greil, Agnes Szejka. I want to thank all those who read earlier versions of this article and made suggestions for improvements: Tamara Mihalev, Florian Greil, Agnes Szejka, Christoph Hamer, Carsten Marr, Christoph Fretter.

[1] S. A. Kauffman, J. Theor. Biol. 22 (1969), p. 437.
[2] S. A. Kauffman, Nature 224 (1969), p. 177.
[3] M. Aldana-Gonzalez, S. Coppersmith, and L. P. Kadanoff, in Perspectives and Problems in Nonlinear Science, A celebratory volume in honor of Lawrence Sirovich, eds. E. Kaplan, J. E. Marsden and K. R. Sreenivasan (2003), Springer, New York.
[4] S. E. Harris et al., Complexity 7 (2002), p. 23.
[5] S. A. Kauffman, C. Peterson, B. Samuelsson, and C. Troein, Proc. Nat. Acad. Sci. USA 101 (2004), p. 17101.
[6] A. Moreira and L. A. N. Amaral, Phys. Rev. Lett. 94 (2005), 218702.
[7] F. Li, T. Long, Y. Lu, Q. Quyang, and C. Tang, Proc. Nat. Acad. Sci. USA 101 (2004), p. 4781.
[8] T. Rohlf and S. Bornholdt, Physica A 310 (2002), p. 245.
[9] S. Bornholdt and K. Sneppen, Proc. Roy. Soc. London. B 267 (2000), p. 2281.
[10] B. Samuelsson and C. Troein, Phys. Rev. Lett. 90 (2003), 098701.
[11] B. Derrida and Y. Pomeau, Europhys. Lett. 1 (1986), p. 45.
[12] M. Andrecut and M. K. Ali, Int. J. Mod. Phys. B 15 (2001), p. 17.
[13] I. Shmulevich and S. A. Kauffman, Phys. Rev. Lett. 93 (2004), 048701.
[14] H. Flyvbjerg and N. J. Kjaer, J. Phys. A 21 (1988), p. 1695.
[15] B. Samuelsson and C. Troein, Phys. Rev. E 72 (2005), 046112.
[16] B. Drossel, Phys. Rev. E 72 (2005), 016110.
[17] B. Drossel, T. Mihaljev and F. Greil, Phys. Rev. Lett. 94 (2005), 088701.
[18] P. Krawitz and I. Shmulevich, Phys. Rev. Lett. 98 (2007), 158701.
[19] V. Kaufman, T. Mihaljev and B. Drossel, Phys. Rev. E 72 (2005), 046124.
[20] U. Bastolla and G. Parisi, Physica D 115 (1998), p. 203.
[21] U. Bastolla and G. Parisi, Physica D 115 (1998), p. 219.
[22] J. E. S. Socolar and S. A. Kauffman, Phys. Rev. Lett. 90 (2003), 068702.
[23] H. Flyvbjerg, J. Phys. A 21 (1988), p. L955.
[24] V. Kaufman and B. Drossel, Eur. Phys. J. B 43 (2005), p. 115.
[25] U. Paul, V. Kaufman and B. Drossel, Phys. Rev. E 73 (2006), 028118.
[26] T. Mihaljev and B. Drossel, Phys. Rev. E 74 (2006), 046101.
[27] D.-S Lee and H. Rieger, cond-mat/0605725 (2006).
[28] H.H. McAdams and A. Arkin, Proc. Nat. Acad. Sci. USA 94 (1997), p. 814.
[29] K. Klemm and S. Bornholdt, Phys. Rev. E 72 (2005), 055101(R).
[30] F. Greil and B. Drossel, Phys. Rev. Lett. 95 (2005), 048701.
[31] I. Shmulevich, E.R. Dougherty, and W. Zhang, Proceedings of the IEE 90 ((2002), pg. 1778.
[32] X. Qu, M. Aldana and L. P. Kadanoff, nlin.AO/0207016 (2006).
[33] R. Albert and A. L. Barabasi, Rev. Mod. Phys. 74 (2002), pg. 47.
[34] M. Aldana, Physica D 185 (2003), p. 45.
[35] L. Correale, M. Leone, A. Pagnani, M. Weigt, R. Zecchina, J. Stat. Mech. (2006), P03002.
[36] S. Bornholdt and K. Sneppen, Phys. Rev. Lett. 81 (1998), p. 236.
[37] S. Bornholdt and K. Sneppen, Proc. Roy. Soc. London. B 267 (2000), p. 2281.
[38] A. Szejka and B. Drossel, Eur. Phys. J. B 56 (2007), p. 373.
[39] M. Paczuski, K. E. Bassler, and Á. Corral, Phys. Rev. Lett 84, (2000), p. 3185.
[40] K. E. Bassler, C. Lee, and Y. Lee, Phys. Rev. Lett. 93 (2004), 038101.
[41] M. Liu and K. E. Bassler, Phys. Rev. E 74 (2006), 041910.
[42] H. de Jong, Journal of Computational Biology 9 (2002), p. 67.
