MODELS FOR q-COMMUTATIVE TUPLES OF ISOMETRIES

JOSEPH A. BALL AND HARIPADA SAU

Abstract. A pair of Hilbert space linear operators (V_1, V_2) is said to be q-commutative, for a unimodular complex number q, if $V_1V_2 = qV_2V_1$. A concrete functional model for q-commutative pairs of isometries is obtained. The functional model is parametrized by a collection of Hilbert spaces and operators acting on them. As a consequence, the collection serves as a complete unitary invariance for q-commutative pairs of isometries. A q-commutative operator pair (V_1, V_2) is said to be doubly q-commutative, if in addition, it satisfies $V_2V_1^* = qV_1^*V_2$. Doubly q-commutative pairs of isometries are also characterized. Special attention is given to doubly q-commutative pairs of shift operators. The notion of q-commutativity is then naturally extended to the case of general tuples of operators to obtain a similar model for tuples of q-commutative isometries.

1. Introduction

A stepping stone to the development of model theory for contractive Hilbert space operators is what is known as the Wold decomposition: every isometric operator V acting on a Hilbert space H is unitarily equivalent to the direct sum $S \oplus W$, where W is a unitary operator and S is a shift operator, i.e., S is an isometry with $S^*n \to 0$, in the strong operator topology, as $n \to \infty$. This is due to [9, 13] and [25]. There has been numerous generalizations of this classical decomposition theorem. For example, see [2, 22] for development in the commutative setting and [19, 23] for doubly commutative setting; also see [4, 5, 8, 14, 15, 16, 17, 24] and references therein for results in this direction.

The objective of this paper is to further extend these decomposition results in the q-commutative and doubly q-commutative settings.

Definition 1.1. A pair (V_1, V_2) of operators is said to be q-commutative, if

$$V_1V_2 = qV_2V_1.$$

Such pairs seem to be of significant importance in the area of quantum theory, see [6, 12, 18]. Recently, q-commutative operators have been studied by some operator theorists. To mention some of these works, Bhat and Bhattacharyya [3] studied q-commutative row contractions $((T_1, T_2, \ldots, T_d)$ (i.e., $T_iT_j = q(i, j)T_jT_i$ for each i, j and $\sum_{i=1}^d T_iT_i^* \leq I$) in quest of its model. Later, Dey [7] studied q-commutative row contractions for its dilation theory. In contrast to the consideration in this paper, $q(i, j)$ were allowed to be any non-zero complex numbers in both the papers [3, 7].
Recently, Keshari and Mallick [11] showed by a commutant lifting approach, that any q-commutative pair of contractive operators has a q-commutative unitary dilations, where q is a unimodular complex number. Thus this is an extension of Andô’s dilation theorem [1] and that of Sebestyén [21], where the result was proved for the case $q = -1$.

First, we note that unlike the commutative case, q-commutativity is ‘order-sensitive’, i.e., if (V_1, V_2) is q-commutative, then (V_2, V_1) is \overline{q}-commutative. However, it follows from the definition that if (V_1, V_2) is q-commutative, then so is (V_1^*, V_2^*). For a concrete example of a q-commutative pair of isometries, let us choose a unimodular complex number q and define the rotation operator R_q on $H^2(\mathbb{D}^d)$, the Hardy space over the d-disk, as

$$R_q f(\bar{z}) := f(q \bar{z}) \quad \text{for all} \quad f \in H^2(\mathbb{D}^d),$$

where for $\bar{z} = (z_1, z_2, \ldots, z_d) \in \mathbb{D}^d$, $q \bar{z} := (q z_1, q z_2, \ldots, q z_d)$. For each $j = 1, 2$, let M_{z_j} denote the multiplication by ‘z_j’ operator on $H^2(\mathbb{D})$. Consider the pair on $H^2(\mathbb{D}^2)$

$$(V_1, V_2) = (R_q M_{z_1}, M_{z_2}) \quad \text{or,} \quad (M_{z_1} R_q, M_{z_2}).$$

(1.2)

It is easy to verify that (V_1, V_2) is a q-commutative pair of isometries. Let us note that if R_q is the rotation operator on $H^2(\mathbb{D})$ (simply denoted by H^2 in the sequel), then the rotation operator on $H^2(\mathbb{D}^d)$ is given by taking the d-fold tensor product of R_q. With a slight abuse of notation, we use the same notation R_q regardless of the dimension of the polydisk. It follows easily that the rotation operator R_q does not commute with M_z, the multiplication by ‘z’ operator on H^2. Indeed, for every $f \in H^2$,

$$R_q M_z f(z) = q z f(qz) = q M_z R_q f(z).$$

Thus (R_q, M_z) is actually q-commutative.

For a Hilbert space \mathcal{H}, the standard notation $\mathcal{B}(\mathcal{H})$ is used to denote the algebra of bounded linear operators on \mathcal{H}. Among several generalizations of the classical Wold decomposition, perhaps the most appealing is the one obtained by Berger, Coburn and Lebow [2, Theorem 3.1]. We extend the Berger-Coburn-Lebow program to the decomposition, perhaps the most appealing is the one obtained by Berger, Coburn bounded linear operators on \mathcal{H}.

A commutative pair $(\mathcal{F}, \mathcal{K}_u; P, U, W_1, W_2)$ in $\mathcal{B}(\mathcal{F})$, and a q-commutative pair of unitaries (W_1, W_2) in $\mathcal{B}(\mathcal{K}_u)$, the pair

$$\begin{bmatrix}
R_q \otimes P^\perp U + M_z R_q \otimes PU & 0 \\
0 & W_1
\end{bmatrix}, \begin{bmatrix}
R_{\overline{q}} \otimes U^* P + R_{\overline{q}} M_z \otimes U^* P^\perp & 0 \\
0 & W_2
\end{bmatrix}$$

(1.3)

on $[H^2 \otimes \mathcal{F}]_{\mathcal{K}_u}$ is a q-commutative pair of isometries. And most importantly, for every q-commutative pair (V_1, V_2) of isometries, there exists a collection $\{\mathcal{F}, \mathcal{K}_u; P, U, W_1, W_2\}$ of Hilbert spaces and operators as above such that (V_1, V_2) is jointly unitarily equivalent to the model (1.3). This is the content of Theorem 2.2. Moreover, the correspondence between q-commutative pairs of isometries and the parameters $\{\mathcal{F}, \mathcal{K}_u; P, U, W_1, W_2\}$ is one-to-one in the sense explained in Theorem 2.3.

Recall that a commutative pair (V_1, V_2) is said to be doubly commutative, if in addition, $V_2 V_1^* = V_1^* V_2$. Let (W_1, W_2) be a q-commutative pair of unitaries, i.e., $W_1 W_2 = q W_2 W_1$. On multiplying W_1^* from left and right successively, we see that q-commutativity of (W_1, W_2) is equivalent to $W_2 W_1^* = q W_1^* W_2$. In view of this, the following definition comes as a natural analogue of double commutativity.
Definition 1.2. A q-commutative pair of operators (V_1, V_2) is said to be \emph{doubly q-commutative}, if in addition, it satisfies

$$V_2 V_1^* = q V_1^* V_2. \quad (1.4)$$

We remark that if V_1 and V_2 are isometries satisfying just $V_2 V_1^* = q V_1^* V_2$, then an easy computation shows that $(V_1 V_2 - q V_2 V_1)^* (V_1 V_2 - q V_2 V_1) = 0$ and thus $V_1 V_2 = q V_2 V_1$. Thus condition (1.4) implies q-commutativity of (V_1, V_2), if V_1, V_2 are isometries. The pair (V_1, V_2) where each V_j is as defined in (1.2) is an example of a doubly q-commutative pairs of isometries on $H^2(\mathbb{D}^2)$. However, it can be shown that the same pair when restricted to the space $H^2(\mathbb{D}^2) \oplus \{\text{constants}\}$, is not doubly q-commutative; this is explained in §4, where we discuss several other simple examples to illustrate the model theory. Theorem 3.1 characterizes doubly q-commutative pairs of isometries.

As an application of the model theory, we exhibit a passage between commutative and q-commutative pairs of isometries. Similarly, we exhibit a way to go back and forth between the classes of doubly commutative and doubly q-commutative pairs of isometries. See Theorem 2.6 and Theorem 3.3 for these connections. As a consequence of these correlations, we show in Corollary 3.4 that given a doubly q-commutative pair of shift operators (V_1, V_2), there is a unitary s_q on $H^2(\mathbb{D}^2)$ such that (V_1, V_2) is jointly unitarily equivalent to $(M_{z_1} s_q, M_{z_2})$ on $H^2(\mathbb{D}^2)$. This is an analogue of Słociński [22] who showed that every doubly commutative pair of shift operators is unitarily equivalent to (M_{z_1}, M_{z_2}) on $H^2(\mathbb{D}^2)$.

The notion of q-commutativity is naturally extended to the case of general tuples of operators, see Definition 5.1. This model theory for the pair case is then applied to the case of a general d-tuple ($d > 2$) of q-commutative isometries to obtain a similar model – see Theorem 5.2. In §6 we show that every q-commutative tuple of isometries (X_1, X_2, \ldots, X_d) can be extended to a q-commutative tuple of unitaries (Y_1, Y_2, \ldots, Y_d) (and hence doubly q-commutative) such that the unitary $Y_1 Y_2 \cdots Y_d$ is the minimal unitary extension of the isometry $X_1 X_2 \cdots X_d$. This both improves and gives a new proof of the ‘dilation’ result of [10] where it was shown that every doubly q-commutative tuple of isometries extends to a doubly q-commutative tuple of unitaries.

2. Functional models for q-commutative pairs of isometries

We begin with the following lemma which will be used in our quest for a functional model of q-commutative pairs of isometries. For a contraction T, we use the following standard notations for the \emph{defect operator} and the \emph{defect space} of T:

$$D_T = (I - T^* T)^{1/2} \quad \text{and} \quad D_T^* = \overline{\text{Ran} \ D_T}.$$

Lemma 2.1. Let (V_1, V_2) be a q-commutative pair of isometries on a Hilbert space \mathcal{H} and $V = V_1 V_2$. Then

(i)

$$\left\{ \begin{bmatrix} D_{V_1} V_2^* \\ D_{V_2} \end{bmatrix} h : h \in \mathcal{H} \right\} = \left[\begin{bmatrix} D_{V_1}^* \\ D_{V_2} \end{bmatrix} \right] = \left\{ \begin{bmatrix} D_{V_2}^* \\ D_{V_2} V_1^* \end{bmatrix} h : h \in \mathcal{H} \right\}; \quad (2.1)$$

$$D_{V_1} V_2^* = q V_1^* V_2.$$
(ii) the defect space D_{V^*} is unitarily equivalent to $\begin{bmatrix} D_{V_1^*} & D_{V_2^*}^* \\ D_{V_2^*} & V_1^* \end{bmatrix}$ via the unitary

$$D_{V^*} h \mapsto \begin{bmatrix} D_{V_1^*} \\ D_{V_2^*} V_1^* \end{bmatrix} h; \quad \text{and}$$

(iii) for every $j \geq 1$,

$$V^{*j} V_1 = q^{j-1} V_2^* V^{*j-1} \quad \text{and} \quad V^{*j} V_2 = \overline{q}^j V_1^* V^{*j-1}.$$

Proof. We only establish the first equality in (2.1), the proof of the second equality is similar. We use the general fact that if V is an isometry, then D_{V^*} is the projection onto $\text{Ran} \ V^\perp$. Let $f \oplus g \in D_{V_1^*} \oplus D_{V_2^*}$ be such that

$$\langle D_{V_1^*} V_2^* h + D_{V_2^*} f, f \oplus g \rangle = 0 \text{ for all } h \in H.$$

This is equivalent to $\langle D_{V_1^*} V_2^* h, f \rangle + \langle D_{V_2^*} h, g \rangle = 0$ for all $h \in H$, or, equivalently, $\langle h, V_2 f \rangle + \langle h, g \rangle = 0$ for all $h \in H$. Consequently, $g = -V_2 f$, which implies that $g = D_{V_2^*} g = -(I - V_2^* V_2) V_2 f = 0$ and since V_1 is an isometry f must also be 0. This proves (i).

For (ii), we note that

$$D_{V^*}^2 = I - V V^* = I - V_1 V_1^* + V_1 V_1^* V_2 V_2^* V_1^* = D_{V_1^*}^2 + V_1 D_{V_2^*} V_1^*$$

$$= I - V_2 V_2^* + V_2 V_2^* V_1 V_1^* V_2^* = V_2 D_{V_1^*}^2 + V_2^2 + D_{V_2^*}^2. \quad \text{(2.4)}$$

This implies that for every vector $h \in H$,

$$\|D_{V^*} h\|^2 = \|D_{V_1^*} V_2^* h\|^2 + \|D_{V_2^*} h\|^2 = \|D_{V_1^*} h\|^2 + \|D_{V_2^*} V_1^* h\|^2. \quad \text{(2.6)}$$

Therefore to show that D_{V^*} is isomorphic to $\begin{bmatrix} D_{V_1^*} & D_{V_2^*}^* \\ D_{V_2^*} & V_1^* \end{bmatrix}$, we can consider the map

$$D_{V^*} h \mapsto \begin{bmatrix} D_{V_1^*} \\ D_{V_2^*} V_1^* \end{bmatrix} h \text{ for every } h \in H. \quad \text{(2.7)}$$

Note that this is an isometry by (2.6) and surjective by part (ii) of the lemma.

For the intertwining relations (2.3), we see that for every $j \geq 1$,

$$V^{*j} V_1 = (V_2^* V_1^*)^j V_1 = V_2^* (V_1^* V_2^*)^j = q^{j-1} V_2^* V^{*j-1} \quad \text{(2.8)}$$

and

$$V^{*j} V_2 = (V_2^* V_1^*)^j V_1 = \overline{q}^j (V_1^* V_2^*)^j V_2 = \overline{q}^j V_1^* (V_2^* V_1^*)^j = \overline{q}^j V_1^* V^{*j-1}. \quad \text{(2.9)}$$

This completes the proof of the lemma. □

Now for the main theorem of this section, let us recall that the rotation operator R_q is the unitary defined on H^2 as

$$R_q : f(z) \mapsto f(qz).$$

Theorem 2.2. Let V_1 and V_2 be two operators acting on a Hilbert space H. Then the following are equivalent.

(i) **q-commutativity:** The pair (V_1, V_2) is q-commutative;
(ii) **BCL-1 q-model:** There exist Hilbert spaces \mathcal{F} and \mathcal{K}_u, a projection P and a unitary U in $\mathcal{B}(\mathcal{F})$, and a pair (W_1, W_2) of q-commuting unitaries in $\mathcal{B}(\mathcal{K}_u)$ such that (V_1, V_2) is unitarily equivalent to

$$\left(\begin{bmatrix} R_q \otimes P^\perp U + M_z R_q \otimes PU & 0 \\ 0 & W_1 \end{bmatrix}, \begin{bmatrix} \bar{R}_{\bar{q}} \otimes U^* P + \bar{R}_{\bar{q}} M_z \otimes U^* P^\perp & 0 \\ 0 & W_2 \end{bmatrix} \right) \text{ on } \begin{bmatrix} H^2 \otimes \mathcal{F} \\ \mathcal{K}_u \end{bmatrix}.$$ \tag{2.10}

Moreover, the tuple $(\mathcal{F}, \mathcal{K}_u; P, U, W_1, W_2)$ can be chosen to be such that

$$\begin{align*}
\mathcal{F} &= \left[\begin{bmatrix} D_{V_1^*} \\ D_{V_2^*} \end{bmatrix}, \mathcal{K}_u \right] = \bigcap_{m \geq 0} (V_1 V_2)^n \mathcal{H}, \quad P : \left[\begin{bmatrix} f \\ g \end{bmatrix} \right] \mapsto \left[\begin{bmatrix} f \\ g \end{bmatrix} \right],
U : \left[\begin{bmatrix} D_{V_1^*} \\ D_{V_2^*} \end{bmatrix} \right] \mapsto \left[\begin{bmatrix} D_{V_1^*} \\ D_{V_2^*} \end{bmatrix} \right] \quad \text{and} \quad (W_1, W_2) = (V_1, V_2)|_{\mathcal{K}_u},
\end{align*}$$

and the unitary operator $\tau_{\text{BCL}} : \mathcal{H} \rightarrow \begin{bmatrix} H^2 \otimes \mathcal{F} \\ \mathcal{K}_u \end{bmatrix}$ can be chosen to be such that

$$\tau_{\text{BCL}} h = \begin{bmatrix} D_{V_1^*} \\ D_{V_2^*} \end{bmatrix} (I - z V^*)^{-1} h \otimes \lim_{n \to \infty} (V_1 V_2)^n (V_2^* V_1^*)^n h;$$ \tag{2.12}

(iii) **BCL-2 q-model:** There exist Hilbert spaces \mathcal{F}_1 and $\mathcal{K}_{u\uparrow}$, a projection P_1 and a unitary U_1 in $\mathcal{B}(\mathcal{F}_1)$, and a pair (W_1, W_2) of q-commuting unitaries in $\mathcal{B}(\mathcal{K}_{u\uparrow})$ such that (V_1, V_2) is unitarily equivalent to

$$\left(\begin{bmatrix} R_q \otimes P_1^\perp U_1 + M_z R_q \otimes PU_1 & 0 \\ 0 & W_1 \end{bmatrix}, \begin{bmatrix} \bar{R}_{\bar{q}} \otimes P_1^\perp U_1 + \bar{R}_{\bar{q}} M_z \otimes P_1^\perp U_1 & 0 \\ 0 & W_2 \end{bmatrix} \right) \text{ on } \begin{bmatrix} H^2 \otimes \mathcal{F}_1 \\ \mathcal{K}_{u\uparrow} \end{bmatrix}.$$ \tag{2.13}

Moreover, the tuple $(\mathcal{F}_1, \mathcal{K}_{u\uparrow}; P_1, U_1, W_1, W_2)$ can be chosen to be such that

$$\begin{align*}
(\mathcal{F}_1, \mathcal{K}_{u\uparrow}; P_1, U_1, W_1, W_2) &= (\mathcal{F}, \mathcal{K}_u; P, U^*, W_1, W_2),
\end{align*}$$

where $(\mathcal{F}, \mathcal{K}_u; P, U, W_1, W_2)$ is as in item (i) above, and the unitary operator $\tau_{\downarrow} : \mathcal{H} \rightarrow \begin{bmatrix} H^2 \otimes \mathcal{F}_1 \\ \mathcal{K}_{u\uparrow} \end{bmatrix}$ can be chosen to be as in (2.12).

Proof of (i) \Leftrightarrow (ii). We first show that the pair in (2.10) is a q-commuting pair of isometries. To that end, let ξ be in \mathcal{F} and n be a non-negative integer. We see that

$$\begin{align*}
(R_q \otimes U^* P + R_{\bar{q}} M_z \otimes U^* P^\perp)(z^n \otimes \xi) &= \bar{q}^n z^n \otimes U^* P \xi + \bar{q}^{n+1} z^{n+1} \otimes U^* P^\perp \xi
\end{align*}$$

and therefore

$$\begin{align*}
(R_q \otimes P^\perp U + M_z R_q \otimes PU)(R_q \otimes U^* P + R_{\bar{q}} M_z \otimes U^* P^\perp)(z^n \otimes \xi)
&= (R_q \otimes P^\perp U + M_z R_q \otimes PU)(\bar{q}^n z^n \otimes U^* P \xi + \bar{q}^{n+1} z^{n+1} \otimes U^* P^\perp \xi)
&= z^{n+1} \otimes P^\perp \xi + z^{n+1} \otimes P \xi = (M_z \otimes I_{\mathcal{F}})(z^n \otimes \xi).
\end{align*}$$ \tag{2.15}

On other hand, we have

$$\begin{align*}
(R_q \otimes P^\perp U + M_z R_q \otimes PU)(z^n \otimes \xi) &= q^n z^n \otimes P^\perp U \xi + q^n z^{n+1} \otimes PU \xi
\end{align*}$$

and hence

$$\begin{align*}
(R_q \otimes U^* P + R_{\bar{q}} M_z \otimes U^* P^\perp)(R_q \otimes P^\perp U + M_z R_q \otimes PU)(z^n \otimes \xi)
&= (R_q \otimes U^* P + R_{\bar{q}} M_z \otimes U^* P^\perp)(q^n z^n \otimes P^\perp U \xi + q^n z^{n+1} \otimes PU \xi)
&= \bar{q} z^{n+1} \otimes U^* PU \xi + \bar{q} z^{n+1} \otimes U^* P^\perp U \xi = \bar{q} (M_z \otimes I_{\mathcal{F}})(z^n \otimes \xi).
\end{align*}$$ \tag{2.16}
From equations (2.15) and (2.16) therefore follows the q-commutativity of the BCL-1 q-model (2.10). It remains to show that the entries of the BCL-1 q-model are isometries. But this is clear because the BCL-1 q-model is of the form

$$
\left(\begin{bmatrix} M_{(P^\perp Z + P)U} & 0 \\ 0 & W_1 \end{bmatrix} \begin{bmatrix} R_q & 0 \\ 0 & I_{K_u} \end{bmatrix}, \begin{bmatrix} R_{\bar{q}} & 0 \\ 0 & I_{K_u} \end{bmatrix} \begin{bmatrix} M_{U^*(P^\perp Z P)} & 0 \\ 0 & W_2 \end{bmatrix} \right),
$$

and that the operators (neither q-commutative nor q-commutative)

$$
\begin{bmatrix} M_{(P^\perp Z + P)U} & 0 \\ 0 & W_1 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} M_{U^*(P^\perp Z P)} & 0 \\ 0 & W_2 \end{bmatrix}
$$

are isometries. Now it follows from the fact that the product of an isometry and a unitary is always an isometry. Therefore $(ii) \Rightarrow (i)$.

We now establish the direction $(i) \Rightarrow (ii)$. Let us denote the isometry $V := V_1 V_2 = qV_2 V_1$. By Wold decomposition V is unitarily equivalent to

$$
\begin{bmatrix} M_z & 0 \\ 0 & W \end{bmatrix} : \begin{bmatrix} H^2(D_{V^*}) \\ K_u \end{bmatrix} \rightarrow \begin{bmatrix} H^2(D_{V^*}) \\ K_u \end{bmatrix}
$$

via the unitary

$$
h \mapsto \begin{bmatrix} D_{V^*}(I - zV^*)^{-1} h \\ \lim_n V^n V^{*n} h \end{bmatrix}. \quad (2.17)
$$

Here W is a unitary operator on $K_u = \cap_{n \geq 0} V^n H$. We first note that the subspace K_u is invariant under both V_1 and V_2. We make use of the following q-intertwining relations, which are easy to establish:

$$
V_1 V^n = q^n V^n V_1 \quad \text{and} \quad V_2 V^n = \bar{q}^n V^n V_2 \quad \text{for every} \quad n \geq 1.
$$

Let us suppose that for every $n \geq 0$, $g = V^n h_n$ for some $h_n \in H$. Then

$$
V_1 g = V_1 V^n h_n = V^n (q^n V_1 h_n) \quad \text{and} \quad V_2 g = V_2 V^n h_n = V^n (\bar{q}^n V_2 h_n).
$$

Therefore K_u is jointly (V_1, V_2)-invariant. So for each $j = 1, 2$, the avatar of V_j on $H^2(D_{V^*}) \oplus K_u$ is of the form

$$
\bar{V}_j = \begin{bmatrix} V_{1j}^j & 0 \\ V_{2j}^j & V_{22}^j \end{bmatrix}.
$$

Note that (V_{12}^2, V_{22}^2) is a pair of q-commuting isometries such that

$$
W = V_{12}^2 V_{22}^2 = q V_{22}^2 V_{22}^1.
$$

Since W is a unitary, the pair (V_{12}^1, V_{22}^1) must be a q-commutative pair of unitaries – a fact that trivially follows from (2.6) when applied to the pair (V_{22}^2, V_{22}^2). Therefore, each \bar{V}_j must be a block diagonal matrix. Consequently, it is enough to assume – as we do for the rest of the proof – that $V = V_1 V_2$ is a shift. Therefore the operator $\tau_{\text{BCL}} : \mathcal{H} \rightarrow H^2 \left(\begin{bmatrix} D_{V_1^*} \\ D_{V_2^*} \end{bmatrix} \right)$ defined as

$$
\tau_{\text{BCL}} h = \begin{bmatrix} D_{V_1^*} \\ D_{V_2^*} \end{bmatrix} h + z \begin{bmatrix} D_{V_1^*} \\ D_{V_2^*} \end{bmatrix} V^* h + z^2 \begin{bmatrix} D_{V_1^*} \\ D_{V_2^*} \end{bmatrix} V^{*2} h + \cdots \quad (2.18)
$$
is a unitary and satisfies $\tau_{BCL} V = M_z \tau_{BCL}$. To establish the unitary equivalence in part (ii) of the theorem, we use \((2.3)\) to first note that for every $h \in \mathcal{H}$

$$
\tau_{BCL} V_1 h = \left[\begin{array}{c} D_{V_1^*}^1 \\ D_{V_2^*} V_1^* \end{array} \right] V_1 h + z \left[\begin{array}{c} D_{V_1^*}^1 \\ D_{V_2^*} V_1^* \end{array} \right] V^* V_1^* h + z^2 \left[\begin{array}{c} D_{V_1^*}^1 \\ D_{V_2^*} V_1^* \end{array} \right] V^* V_1^* V_1^* h + \ldots
$$

is the same as

$$
\left[\begin{array}{c} D_{V_1^*}^0 \\ D_{V_2^*} \end{array} \right] h + z \left[\begin{array}{c} D_{V_1^*}^1 \\ D_{V_2^*} V_1^* \end{array} \right] h + qz \left[\begin{array}{c} D_{V_1^*}^1 \\ D_{V_2^*} V_1^* \end{array} \right] V^* h + q^2 z^2 \left[\begin{array}{c} D_{V_1^*}^1 \\ D_{V_2^*} V_1^* \end{array} \right] V^* V_1^* h + \ldots,
$$

which we split in two parts as

$$
\left(\left[\begin{array}{c} D_{V_1^*}^0 \\ D_{V_2^*} \end{array} \right] h + qz \left[\begin{array}{c} D_{V_1^*}^1 \\ D_{V_2^*} V_1^* \end{array} \right] V^* h + q^2 z^2 \left[\begin{array}{c} D_{V_1^*}^1 \\ D_{V_2^*} V_1^* \end{array} \right] V^* V_1^* h + \ldots \right)
$$

$$
+ \left(\left[\begin{array}{c} D_{V_1^*}^1 \\ D_{V_2^*} V_1^* \end{array} \right] h + qz \left[\begin{array}{c} D_{V_1^*}^1 \\ D_{V_2^*} V_1^* \end{array} \right] V^* h + (qz)^2 \left[\begin{array}{c} D_{V_1^*}^1 \\ D_{V_2^*} V_1^* \end{array} \right] V^* V_1^* h + \ldots \right),
$$

which is equal to \((R_q \otimes P^\perp U + M_z R_q \otimes PU) \tau h\), where P and U are as describe in \((2.11)\) because for every $h \in \mathcal{H}$

$$
P^\perp U \left[\begin{array}{c} D_{V_1^*}^0 \\ D_{V_2^*} V_1^* \end{array} \right] h = P^\perp \left[\begin{array}{c} D_{V_1^*}^1 \\ D_{V_2^*} V_1^* \end{array} \right] h = \left[\begin{array}{c} D_{V_1^*}^0 \\ D_{V_2^*} \end{array} \right] h \quad \text{and} \quad PU \left[\begin{array}{c} D_{V_1^*}^0 \\ D_{V_2^*} V_1^* \end{array} \right] h = \left[\begin{array}{c} D_{V_1^*}^0 \\ D_{V_2^*} V_1^* \end{array} \right] h.
$$

It remains to show that

$$
\tau_{BCL} V_2 = \left(R_{\bar{V}} \otimes U^* P + R_{\bar{V}} M_z \otimes U^* P^\perp \right) \tau_{BCL}.
$$

For this we again use the relations \((2.3)\) to note that

$$
\tau_{BCL} V_2 h = \left[\begin{array}{c} D_{V_1^*}^1 \\ D_{V_2^*} \end{array} \right] V_2 h + z \left[\begin{array}{c} D_{V_1^*}^1 \\ D_{V_2^*} V_1^* \end{array} \right] V^* V_2 h + z^2 \left[\begin{array}{c} D_{V_1^*}^1 \\ D_{V_2^*} V_1^* \end{array} \right] V^* V_2 h + \ldots
$$

$$
= \left(I_{H^2} \otimes U^* \right) \left[\begin{array}{c} D_{V_1^*}^1 \\ D_{V_2^*} \end{array} \right] V_2 h + z \left[\begin{array}{c} D_{V_1^*}^1 \\ D_{V_2^*} V_1^* \end{array} \right] V^* V_2 h + z^2 \left[\begin{array}{c} D_{V_1^*}^1 \\ D_{V_2^*} V_1^* \end{array} \right] V^* V_2 h + \ldots
$$

$$
= \left(I_{H^2} \otimes U^* \right) \left[\begin{array}{c} D_{V_1^*}^0 \\ D_{V_2^*} \end{array} \right] h + \bar{V}z \left[\begin{array}{c} D_{V_1^*}^0 \\ D_{V_2^*} V_1^* \end{array} \right] V^* h + (\bar{V}z)^2 \left[\begin{array}{c} D_{V_1^*}^0 \\ D_{V_2^*} V_1^* \end{array} \right] V^* V_1^* h + \ldots
$$

As before, we split the last term in two parts as

$$
\left(I_{H^2} \otimes U^* \right) \left[\begin{array}{c} D_{V_1^*}^0 \\ D_{V_2^*} \end{array} \right] h + \bar{V}z \left[\begin{array}{c} D_{V_1^*}^0 \\ D_{V_2^*} V_1^* \end{array} \right] V^* h + (\bar{V}z)^2 \left[\begin{array}{c} D_{V_1^*}^0 \\ D_{V_2^*} V_1^* \end{array} \right] V^* V_1^* h + \ldots
$$

$$
+ \left(I_{H^2} \otimes U^* \right) \bar{V}z \left[\begin{array}{c} D_{V_1^*}^0 \\ D_{V_2^*} \end{array} \right] h + \bar{V}z \left[\begin{array}{c} D_{V_1^*}^0 \\ D_{V_2^*} V_1^* \end{array} \right] V^* h + (\bar{V}z)^2 \left[\begin{array}{c} D_{V_1^*}^0 \\ D_{V_2^*} V_1^* \end{array} \right] V^* V_1^* h + \ldots
$$

which is essentially equal to \((R_{\bar{V}} \otimes U^* P + R_{\bar{V}} M_z \otimes U^* P^\perp) \tau_{BCL} h\), where P and U are as describe in \((2.11)\). This establishes the equivalence of (i) and (ii). The equivalence of (i) with (iii) can be established in a similar way.

Definition 2.3. For a q-commutative pair of isometries the tuples \((\mathcal{F}, K_u; P, U, W_1, W_2)\) as in item (i) and \((\mathcal{F}, K_u; P, U, W_1, W_2)\) as in item (ii) of Theorem 2.2, will be referred to as the BCL-1 and BCL-2 q-tuples of \((V_1, V_2)\), respectively, and (as is indicated in the statement) the models as in \((2.10)\) and \((2.13)\) will be called the BCL-1 and BCL-2 q-models of \((V_1, V_2)\), respectively.

Remark 2.4. Note that the BCL-2 q-model can be obtained from the BCL-1 q-model by the following transformation of the BCL q-tuples

\[(\mathcal{F}, K_u; P, U, W_1, W_2) \mapsto (\mathcal{F}, K_u; U^* PU, U^*, W_1, W_2).\]

This indicates that it is enough to work with either of the model.
It was observed in [2] that a commutative pair of isometries is uniquely determined by the data set \((F, K_u; P, U, W_1, W_2)\). The same remains true in the case of \(q\)-commutativity also.

Theorem 2.5. Let \((V_1, V_2)\) and \((V'_1, V'_2)\) be two \(q\)-commutative pairs of isometries with \((F, K_u; P, U, W_1, W_2)\) and \((F', K'_u; P', U', W'_1, W'_2)\) as their respective BCL-1 \(q\)-tuples. Then \((V_1, V_2)\) and \((V'_1, V'_2)\) are unitarily equivalent if and only if there exist unitary operators \(\omega : F \to F'\) and \(\omega_u : K_u \to K'_u\) such that

\[
\omega(P, U) = (P', U')\omega \quad \text{and} \quad \omega_u(W_1, W_2) = (W'_1, W'_2)\omega_u.
\]

The statement remains true in case of BCL-2 \(q\)-tuples also.

Proof. The easier direction is the ‘if’ part. Note that if \((2.19)\) is true, then the unitary \[
[I_{H^2} \otimes \omega \quad 0 \atop 0 \quad \omega_u] : [H^2 \otimes F \atop K_u] \to [H^2 \otimes F' \atop K'_u]
\]
intertwines the BCL-1 (and BCL-2) \(q\)-models of \((V_1, V_2)\) and \((V'_1, V'_2)\). For the converse part, suppose that the BCL-1 \(q\)-models

\[
(V_1, V_2) = \left(\begin{bmatrix} M_{p+q\pm p} & 0 \\ 0 & W_1 \end{bmatrix}, \begin{bmatrix} R_q & 0 \\ 0 & I_{K_u} \end{bmatrix}, \begin{bmatrix} M_{U^*-(p+q\pm p)} & 0 \\ 0 & W_2 \end{bmatrix} \right)
\]

and

\[
(V'_1, V'_2) = \left(\begin{bmatrix} M_{p+q\pm p} & 0 \\ 0 & W'_1 \end{bmatrix}, \begin{bmatrix} R_q & 0 \\ 0 & I_{K_u} \end{bmatrix}, \begin{bmatrix} M_{U^*-(p+q\pm p)} & 0 \\ 0 & W'_2 \end{bmatrix} \right)
\]

are unitarily equivalent via, say,

\[
\tau = \begin{bmatrix} \tau' & \tau_{12} \\ \tau_{21} \omega_u \end{bmatrix} : [H^2(F) \atop K_u] \to [H^2(F') \atop K'_u].
\]

Adopting the notations \(W := W_1W_2\) and \(W' = W'_1W'_2\), we see that \(\tau\) must satisfy

\[
[\tau' \atop \tau_{21} \omega_u] \begin{bmatrix} M_z & 0 \\ 0 & W \end{bmatrix} = \tau V_1V_2 = V'_1V'_2\tau = [\tau' \atop \tau_{21} \omega_u],
\]

equivalently, \(\tau\) must satisfy

\[
\tau' M_z = \tau' M_z, \quad \omega_u W = W' \omega_u \quad \text{and} \quad \tau_{12} W = M_z \tau_{12}, \quad \tau_{21} M_z = W' \tau_{21}.
\]

We now use the general functional analysis result that if \(X\) is any operator that satisfies \(XU = M_z X\) for some unitary \(U\), then \(X = 0\). Therefore from \((2.22)\), we see that \(\tau_{12} = 0\). Since \(\tau\) is a unitary that satisfies \((2.20)\), it must also satisfy

\[
[\tau' \atop \tau_{21} \omega_u] \begin{bmatrix} M_z^* & 0 \\ 0 & W'^* \end{bmatrix} = [\tau' \atop \tau_{21} \omega_u],
\]

comparing the \((12)\)-entries of which we get \(\tau_{21} M_z^* = W'^* \tau_{21}\). Since \(W'\) is unitary, \(\tau_{21} = 0\). Therefore the unitary \(\tau\) reduces to the block diagonal matrix \(\text{diag}(\tau', \omega_u)\).

From the first equation in \((2.21)\) we see that \(\tau' = I_{H^2} \otimes \omega\) for some unitary \(\omega : F \to F'\). Remembering that \(\tau\) intertwines \((V_1, V_2)\) and \((V'_1, V'_2)\), we readily have the second equality in \((2.19)\) and for the first equality we note that \(w\) must satisfy

\[
wP^\perp U = P'^\perp U' \omega \quad \text{and} \quad \omega PU = P'U' \omega.
\]

Adding these two equations we get \(\omega U = U' \omega\), which then implies that \(\omega P = P' \omega\). The proof for the case of BCL-2 \(q\)-tuples is along the same line as above. This completes the proof. \(\Box\)
The rest of this section is devoted to finding a connection between commutativity and \(q \)-commutativity. Let \((V_1, V_2)\) be a \(q \)-commutative pair of isometries on \(\mathcal{H} \) such that \(V = V_1 V_2 \) is a shift. Note that in this case the space \(\mathcal{K}_u \) in BCL-1 \(q \)-tuple will be zero, and hence by Theorem 2.2, \((V_1, V_2)\) is unitarily equivalent to
\[
(M_{(P_{++} Semester}) U R_q, R_{\mathcal{F} U^* (P_{++} Semester)})
\]
via the unitary similarity
\[
\tau_{\text{BCL}} : h \mapsto \left[\frac{D_{V_1^*}}{D_{V_2^*} V_1^*} \right] h + z \left[\frac{D_{V_1^*}}{D_{V_2^*} V_1^*} \right] V^* h + z^2 \left[\frac{D_{V_1^*}}{D_{V_2^*} V_1^*} \right] V^* h + \cdots .
\]
(2.23)
Let us denote the unitary
\[
r_q := \tau_{\text{BCL}}^* R_q \tau_{\text{BCL}} : \mathcal{H} \to \mathcal{H}.
\]
(2.24)
To compute the unitary \(r_q \) explicitly, proceed as follows. For \(h, k \in \mathcal{H} \),
\[
\langle r_q h, k \rangle = \langle \tau_{\text{BCL}}^* R_q \tau_{\text{BCL}} h, k \rangle = \langle \left[\frac{D_{V_1^*}}{D_{V_2^*} V_1^*} \right] (I - qz V^*)^{-1} h, \tau_{\text{BCL}} k \rangle
\]
\[
= \sum_{n \geq 0} q^n \langle \left[\frac{D_{V_1^*}}{D_{V_2^*} V_1^*} \right] V^n h, \left[\frac{D_{V_1^*}}{D_{V_2^*} V_1^*} \right] V^n k \rangle
\]
\[
= \sum_{n \geq 0} q^n \langle D_{V^*} V^n h, D_{V^*} V^n k \rangle \quad \text{[using Lemma 2.1 part (ii)]}
\]
\[
= \sum_{n \geq 0} q^n \langle V^n D_{V^*} V^n h, k \rangle.
\]
Thus
\[
r_q h = D_{V^*} h + q V D_{V^*} V^n h + \cdots q^n V^n D_{V^*} V^n h + \cdots .
\]
(2.25)
As a consequence of this observation and Theorem 2.2, we get the following connection between commutativity and \(q \)-commutativity of a pair of isometries.

Theorem 2.6. Let \(V_1 \) and \(V_2 \) be isometric operators such that \(V = V_1 V_2 \) is a shift operator. Then with the unitary \(r_q \) as defined in (2.24),

1. \((V_1, V_2)\) is commutative if and only if \((V_1 r_q, r_q V_2)\) is \(q \)-commutative;
2. \((V_1, V_2)\) is \(q \)-commutative if and only if \((V_1 r_q, r_q V_2)\) is commutative.

Proof. We prove only part (1) because it implies part (2). Suppose \((V_1, V_2)\) is a commutative pair of isometries and \((\mathcal{F}; P, U)\) is a BCL-1 tuple of \((V_1, V_2)\). Then applying Theorem 2.2 for the \(q = 1 \) case,
\[
\tau_{\text{BCL}}(V_1, V_2) = (M_{(P_{++} Semester)} U, M_{U^* (P_{++} Semester)}) \tau_{\text{BCL}}
\]
(2.26)
via the unitary similarity \(\tau_{\text{BCL}} \) as in (2.23) above. In view of (2.24) and (2.26),
\[
(M_{(P_{++} Semester)} U R_q, R_{\mathcal{F} U^* (P_{++} Semester)}) = (M_{(P_{++} Semester)} U \tau_{\text{BCL}} r_q^* \tau_{\text{BCL}}^*, \tau_{\text{BCL}}^* \tau_{\text{BCL}} r_q^* \tau_{\text{BCL}}^* M_{U^* (P_{++} Semester)})
\]
\[
= \tau_{\text{BCL}}(V_1 r_q, r_q V_2) \tau_{\text{BCL}}^*.
\]
By the equivalence of (1) and (2) of Theorem 2.2, the pair
\[
(M_{(P_{++} Semester)} U R_q, R_{\mathcal{F} U^* (P_{++} Semester)})
\]
is \(q \)-commutative, and thus so is the pair \((V_1 r_q, r_q V_2)\). \(\square \)
In view of the fact that \((R_q, M_z)\) is \(q\)-commutative, the following is an abstract version of Theorem \[2.6\]

Theorem 2.7. Suppose that \(V_1, V_2\) are some operators acting on a Hilbert space \(\mathcal{H}\), \(r\) is a unitary operator on \(\mathcal{H}\) such that for a uni-modular \(q\),
\[r V_1 V_2 = q \cdot V_1 V_2 r. \]
(2.27)

Then \((V_1, V_2)\) is commutative if and only if \((V_1 r, r^* V_2)\) is \(q\)-commutative.

Proof. Let us denote \((W_1, W_2) = (V_1 r, r^* V_2)\). Suppose that \((V_1, V_2)\) is commutative and compute
\[W_1 W_2 = V_1 r^* r V_2 = V_1 V_2 =: V \]
while
\[W_2 W_1 = r^* V_2 V_1 r = r^* V r = \overline{q} \cdot V = \overline{q} \cdot W_1 W_2. \]

So \((W_1, W_2)\) is \(q\)-commutative. Conversely, suppose \(W_1 W_2 = q \cdot W_2 W_1\), i.e., \(V_1 V_2 = q \cdot r^* V_2 V_1 r\). By (2.27), this is same as \(q \cdot r^* V_1 V_2 r = q \cdot r^* V_2 V_1 r\). This implies \(V_1 V_2 = V_2 V_1\). \(\Box\)

3. Doubly \(q\)-commutative pairs of isometries

Let us recall that a \(q\)-commutative pair of operators \((V_1, V_2)\) is said to be **doubly \(q\)-commutative**, if in addition, it satisfies \(V_2 V_1^* = q V_1^* V_2\). Note that if \((V_1, V_2)\) is doubly \(q\)-commutative, then so is \((V_1^*, V_2^*)\). Then next result is a characterization of doubly \(q\)-commutative pairs of isometries.

Theorem 3.1. Let \((V_1, V_2)\) be a pair of \(q\)-commutative isometries with BCL-1 and BCL-2 \(q\)-tuples as \((\mathcal{F}, \mathcal{K}_u; P, U, W_1, W_2)\) and \((\mathcal{F}_1, \mathcal{K}_{u1}; P_1, U_1, W_{11}, W_{21})\), respectively. Then the following are equivalent:

1. \((V_1, V_2)\) is doubly \(q\)-commutative;
2. \(PU P^\perp = 0\); and
3. \(P_1^\perp U_1 P_1^\perp = 0\).

Proof. By Theorem \[2.2\], we can assume without loss of generality that \((V_1, V_2)\) is either the BCL-1 \(q\)-model \[2.10\] or the BCL-2 \(q\)-model \[2.13\]; to prove (1) \(\Leftrightarrow\) (2), we work with the BCL-1 \(q\)-model. Since, \(q\)-commutativity of a pair of unitaries implies its doubly \(q\)-commutativity, we disregard the unitary part \((W_1, W_2)\) in the model \[2.10\] and suppose that
\[(V_1, V_2) = (R_q \otimes P^\perp U + M_z R_q \otimes P U, R_\overline{q} \otimes U^* P + R_\overline{q} M_z \otimes U^* P^\perp) \]
on \(H^2 \otimes \mathcal{F}\).

We shall make use of the following identities concerning the two operators \(R_q\) and \(M_z\) on \(H^2\). We do not prove these relations as the proofs are elementary. For every \(n \geq 1\),
\[
R_\overline{q} M_z R_\overline{q}(z^n) = \overline{q}^{2n+1} z^n, \quad R_\overline{q} M_z R_\overline{q} M_z^*(z^n) = \overline{q}^{2n-1} z^n \\
R_\overline{q} M_z^* R_\overline{q}(z^n) = \overline{q}^{2n-1} z^{n-1}, \quad R_\overline{q} M_z^* R_\overline{q} M_z(z^n) = \overline{q}^{2n+1} z^n.
\]

With the above relations in mind, we compute
\[
V_2 V_1^* = (R_\overline{q} \otimes U^* P + R_\overline{q} M_z \otimes U^* P^\perp)(R_\overline{q} \otimes U^* P^\perp + R_\overline{q} M_z^* \otimes U^* P) \\
= R_\overline{q}^2 \otimes U^* P U^* P^\perp + R_\overline{q}^2 M_z^* \otimes U^* P U^* P + R_\overline{q} M_z R_\overline{q} \otimes U^* P^\perp U^* P^\perp \\
+ R_\overline{q} M_z R_\overline{q} M_z^* \otimes U^* P^\perp U^* P
\]
and
\[V_1^*V_2 = (R_{\psi} \otimes U^* P^\perp + R_{\psi} M_z^* \otimes U^* P)(R_{\psi} \otimes U^* P + R_{\psi} M_z \otimes U^* P^\perp) \]
\[= R_{\psi}^2 \otimes U^* P^\perp U^* P + R_{\psi}^2 M_z \otimes U^* P^\perp U^* P^\perp + R_{\psi} M_z^* M_{\psi} \otimes U^* P U^* P \]
\[+ R_{\psi} M_z^* R_{\psi} M_z \otimes U^* P U^* P^\perp. \]

Suppose \(n \geq 1 \) and \(\xi \in \mathcal{F} \). Then
\[V_2 V_1^* (z^n \otimes \xi) = \overline{q}^{2n} z^n \otimes U^* P U^* P^\perp \xi + \overline{q}^{2n-2} z^{n-1} \otimes U^* P U^* P \xi \]
\[+ \overline{q}^{2n+1} z^{n+1} \otimes U^* P^\perp U^* P^\perp \xi + \overline{q}^{2n-1} z^n \otimes U^* P^\perp U^* P \xi \]
and
\[V_1^* V_2 (z^n \otimes \xi) = \overline{q}^{2n} z^n \otimes U^* P^\perp U^* P^\perp \xi + \overline{q}^{2n+2} z^{n+1} \otimes U^* P^\perp U^* P \xi \]
\[+ \overline{q}^{2n-1} z^{n-1} \otimes U^* P^\perp U^* P^\perp \xi + \overline{q}^{2n+1} z^n \otimes U^* P^\perp U^* P \xi. \]

From the above expressions of \(V_2 V_1^* (z^n \otimes \xi) \) and \(q V_1^* V_2 (z^n \otimes \xi) \), one readily observes that
\[V_2 V_1^* (z^n \otimes \xi) = q V_1^* V_2 (z^n \otimes \xi) \]
whenever \(n \geq 1 \) and \(\xi \in \mathcal{F} \).

We now compute
\[V_2 V_1^* (1 \otimes \xi) = U^* P U^* P^\perp \xi + \overline{q} z \otimes U^* P^\perp U^* P \xi \]
and
\[V_1^* V_2 (1 \otimes \xi) = U^* P^\perp U^* P \xi + \overline{q}^2 z \otimes U^* P^\perp U^* P^\perp \xi + \overline{q} U^* P U^* P^\perp \xi. \]

Therefore \(V_2^* V_1 = q V_1^* V_2 \) if and only if for every \(\xi \in \mathcal{F} \),
\[V_2 V_1^* (1 \otimes \xi) = V_1^* V_2 (1 \otimes \xi), \]
which, in view of the above computation, is true if and only if
\[P U P^\perp = 0. \]

This completes the proof of \((1) \iff (2) \). To complete the proof of the theorem, one can either work with the BCL-2 \(q \)-model in (2.13) and proceed as before to prove \((1) \iff (3) \),
or, simply apply Remark 2.4 and establish the equivalence of (2) and (3).

We wish to establish a connection between double commutativity and \(q \)-double commutativity in analogue of Theorem 2.6. We first observe the following.

Lemma 3.2. The BCL-1 model
\[(M_{(P^\perp + z P) U} \oplus W_1, M_{U^* (P^\perp + z P)} \oplus W_2) \]
of a commutative pair of isometries is doubly commutative if and only if \(P U P^\perp = 0 \).

Proof. Since a commuting pair of unitaries is automatically doubly commuting, we only investigate the doubly commutativity of the pair
\[(V_1, V_2) = (I_{H^2} \otimes P^\perp U + M_z \otimes PU, I_{H^2} \otimes U^* P + M_z \otimes U^* P^\perp). \]

We note that
\[V_2^* V_1 = (I_{H^2} \otimes PU + M_z^* \otimes P^\perp U)(I_{H^2} \otimes P^\perp U + M_z \otimes PU) \]
\[= I_{H^2} \otimes PU P^\perp U + M_z \otimes PU PU + M_z^* \otimes P^\perp U P^\perp U + I_{H^2} \otimes P^\perp U P^\perp U. \]
and
\[V_1V_2^* = (I_{H^2} \otimes P^1U + M_z \otimes PU)(I_{H^2} \otimes PU + M_z^* \otimes P^1U) \]
\[= I_{H^2} \otimes P^2U PittU + M_z \otimes PUPU + M_z^* \otimes P^1UP^1U + M_zM_z^* \otimes PUP^1U. \]

From the above two expressions, we see after cancellation of common terms that
\[V_2^*V_1 - V_1V_2^* = (I - M_zM_z^*) \otimes PUP^1U. \]

Since \(I_{H^2} - M_zM_z^* \) is the projection of \(H^2 \) on the constant functions in \(H^2 \), we see that \(V_1 \) double commutes with \(V_2 \) exactly when \(PUP^1U = 0 \), or, equivalently, \(PUP^1 = 0 \). \(\square \)

Theorem 3.3. Let \(V_1 \) and \(V_2 \) be isometries such that \(V = V_1V_2 \) is a shift, and \(\tau_q \) be the unitary as in (2.23). Then

1. \((V_1, V_2)\) is doubly commutative if and only if \((V_1\tau_q, \tau_qV_2)\) is doubly \(q \)-commutative;
2. \((V_1, V_2)\) is doubly \(q \)-commutative if and only if \((V_1\tau_q^*, \tau_q^*V_2)\) is doubly commutative.

Proof. The proof is similar to that of Theorem 2.6. For part (1), suppose \((V_1, V_2)\) is a commutative and \((F; P, U)\) is a BCL-1 tuple of \((V_1, V_2)\). By Theorem 2.2
\[\tau_{BCL}(V_1, V_2) = (M_{(P+\overline{z}P)}U, M_{U^*(P+\overline{z}P)}) \tau_{BCL}. \]
where \(\tau_{BCL} : \mathcal{H} \to H^2(\mathcal{F}) \) is the unitary as in (2.23). Suppose that \((V_1, V_2)\) is doubly commutative. Hence by Lemma 3.2, we have \(PUP^1 = 0 \). By Theorem 3.1, this is equivalent to the BCL-1 \(q \)-model \((M_{(P+\overline{z}P)}U, R_q, R_q^*M_{U^*(P+\overline{z}P)})\) being doubly \(q \)-commutative. But as observed in the proof of Theorem 2.6,
\[(M_{(P+\overline{z}P)}U, R_q, R_q^*M_{U^*(P+\overline{z}P)}) = (V_1^*\tau_{BCL}\tau_q^*\tau_{BCL}, \tau_{BCL}\tau_q^*\tau_{BCL}V_2^*) = \tau_{BCL}(V_1\tau_q, \tau_q^*V_2)\tau_{BCL}. \]
Therefore equivalently, the pair \((V_1\tau_q, \tau_q^*V_2)\) must also be doubly \(q \)-commutative. Now part (1) implies part (2) and therefore the proof is complete. \(\square \)

Słociński [22] proved that any pair of doubly commuting shift operators is unitarily equivalent to \((M_{z_1}, M_{z_2})\) on \(H^2(\mathbb{D}^2) \). As a corollary to Theorem 3.3, we get the following analogue of Słociński’s result in the \(q \)-commutative setting.

Corollary 3.4. A pair of shift operators \((V_1, V_2)\) is doubly \(q \)-commutative if and only if it is unitarily equivalent to \((M_{z_1}, M_{z_2})\) on \(H^2(\mathbb{D}^2) \) for some unitary \(s_q \) on \(H^2(\mathbb{D}^2) \).

Proof. Suppose that \((V_1, V_2)\) is doubly \(q \)-commutative pair of shift operators. It is a general fact that if \((V_1, V_2)\) is \(q \)-commutative pair of isometries with one of the entries a shift, then the product \(V = V_1V_2 \) is also a shift. To see this we shall use the general fact that if \((T_1, T_2)\) is \(q \)-commutative, then with \(T = T_1T_2 \),
\[T^n = q^{x_n}T_1^nT_2^n = q^{y_n}T_2^nT_1^n \quad \text{for every } n \geq 1, \]
where the sequences \(\{x_n\}_{n \geq 1} \) and \(\{y_n\}_{n \geq 1} \) are given by the iterative relations
\[x_1 = 0, \quad x_n = x_{n-1} + n - 1, \quad \text{and } y_1 = 1, \quad y_n = y_{n-1} + n. \]

We omit the proof of (3.2) as it is routine. Applying this fact to the \(q \)-commutative pair \((V_1, V_2)\) of shift operators, we see that
\[V^{*n} = q^{x_n}V_2^{*n}V_1^{*n} \to 0 \quad \text{as } n \to \infty. \]
Invoking part (2) of Theorem 3.3 we get \((V_1 \tau_q^*, r_q V_2)\) is doubly commutative, where \(r_q\) is the unitary as in (2.24). By Ślociński’s characterization of doubly commutative pair of shifts, there exist a unitary \(\tau_S: \mathcal{H} \to H^2(\mathbb{D}^2)\) such that
\[
\tau_S(V_1 \tau_q^*, r_q V_2) = (M_{z_1}, M_{z_2})\tau_S.
\]

The first component of (3.3) gives \(\tau_S V_1 = M_{z_1} \tau_S r_q = M_{z_1} \tau_S r_q \tau_S^* \tau_S\). This and a similar treatment for the second component give
\[
\tau_S(V_1, V_2) = (M_{z_1} \tau_S r_q \tau_S^* \tau_S, \tau_S r_q \tau_S^* M_{z_2}) \tau_S,
\]
which readily implies that with
\[
\mathcal{S}_q := \tau_S r_q \tau_S^* = \tau_S \mathcal{S}_{BCL} R_q \mathcal{S}_{BCL} \tau_S^* \tau_S
\]
the doubly \(q\)-commutative pair \((V_1, V_2)\) is unitarily equivalent to \((M_{z_1} \mathcal{S}_q, \mathcal{S}_q M_{z_2})\).

\[
\square
\]

4. Examples

It is interesting to work with some concrete examples to illustrate the model theory. First we exhibit a simple example of a pair of isometric operators that is doubly \(q\)-commutative.

Example 4.1. Consider the pair \((V_1, V_2) = (R_q, M_z)\) on the Hardy space \(H^2\). We have seen in the introduction that this pair is \(q\)-commutative. To see that this is doubly \(q\)-commutative, we prove the general fact that if a pair \((T_1, T_2)\) is \(q\)-commutative and \(T_1\) is unitary, then it is doubly \(q\)-commutative. For this we simply multiply \(T_1 T_2 = q T_2 T_1\) by \(T_1^*\) from right and left successively, to get \(T_2 T_1^* = q T_1^* T_2\). It is interesting to note that if, instead of \(T_1, T_2\) is unitary, then \((T_1, T_2)\) would be doubly \(\overline{q}\)-commutative.

Below we illustrate the equivalence of (1) and (2) of Theorem 2.2 for this particular example. First we compute explicitly the BCL-1 \(q\)-tuple for this pair.

Let us first note that if \((V_1, V_2) = (R_q, M_z)\), then
\[
\begin{bmatrix}
D_{V_1^*} \\
D_{V_2^*}
\end{bmatrix} = \begin{bmatrix}
0 & P_C \\
H^2 & H^2
\end{bmatrix} \to \begin{bmatrix}
H^2 & H^2
\end{bmatrix},
\]
and therefore \(\mathcal{F} = \begin{bmatrix}
D_{V_1^*} \\
D_{V_2^*}
\end{bmatrix} = \begin{bmatrix}
0 \\
C
\end{bmatrix}\),

where \(P_C\) is the orthogonal projection of \(H^2\) onto the constant functions. Let \(f(z) = a_0 + za_1 + \cdots + z^n a_n + \cdots\) be in \(H^2\). We note that
\[
D_{V_1^*} V_2^* f = 0 \text{ and } D_{V_2^*} V_1^* f = D_{M_z} R_q = a_0.
\]

Therefore
\[
U : \begin{bmatrix}
D_{V_1^*} \\
D_{V_2^*}
\end{bmatrix} = \begin{bmatrix}
0 \\
a_1
\end{bmatrix} \mapsto \begin{bmatrix}
0 \\
a_0
\end{bmatrix} = \begin{bmatrix}
D_{V_1^*} V_2^* \\
D_{V_2^*}
\end{bmatrix}
\]
is essentially \(I_{C^2}\). It is interesting to note that if \(P\) is the projection of \(D_{V_1^*} \oplus D_{V_2^*}\) onto \(D_{V_1^*}\) (which is zero), then \(P\) is essentially \([0 0] [0 0]\), while \(P^\perp = [0 0] [0 0]\). Since \((R_q, M_z)\) is \(q\)-commutative, applying (3.2) to the pair \((R_q, M_z)\), we get with \(V = R_q M_z\)
\[
V^m f = \overline{q}^m R_q M_z^m f = \overline{q}^m (a_n, \overline{q}^n a_{n+1}, \overline{q}^{2n} a_{n+2}, \ldots).
\]

Since \(V = V_1 V_2\) on \(H^2\) is a shift operator, the general unitary identification \(\tau_{BCL}\) from \(H^2\) onto \(H^2 \otimes \begin{bmatrix}
D_{V_1^*} \\
D_{V_2^*}
\end{bmatrix}\), which is of the form (as shown in (2.13))
\[
\tau_{BCL} h = \begin{bmatrix}
D_{V_1^*} \\
D_{V_2^*}
\end{bmatrix} h + z \begin{bmatrix}
D_{V_1^*} \\
D_{V_2^*}
\end{bmatrix} V^* h + z^2 \begin{bmatrix}
D_{V_1^*} \\
D_{V_2^*}
\end{bmatrix} V^{*2} h + \cdots
\]

Therefore...
is given in this case as
\[
qf \mapsto [q^{0}_0] + zq^{0}_1 + \cdots + z^nq^{0}_{a_n} + \cdots.
\] (4.1)
Therefore
\[
(P^\perp U + M_z PU)R_q\tau_{BCL}f(z) = \left([0^{0}_0] + z[0^{0}_1] + \cdots + z^n[0^{0}_{a_n}] + \cdots\right)
\]
= \left([0^{0}_0] + zq^{0}_1 + \cdots + z^nq^{0}_{a_n} + \cdots\right) = R_q\tau_{BCL}f(z).

Similar computation for the intertwining relation \(R_q(U^*P+M_zU^*P^\perp)\tau_{BCL} = R_qM_z\tau_{BCL}\).

In view of Theorem 3.1 that the pair \((R_qM_z, M_z)\) is doubly \(q\)-commutative is reflected in the fact that
\[
PU^2 = [0^{0}_0][0^{0}_0][0^{0}_0] = [0^{0}_0].
\]

Next we find an example of a pair of shift operators that is \(q\)-commutative but not doubly \(q\)-commutative.

Example 4.2. Consider the pair \((V_1, V_2) = (R_qM_z, M_z)\) on \(H^2\). Then for every \(f \in H^2\),
\[
V_1V_2f(z) = R_qM_z^2f(z) = q^2z^2f(qz) \quad \text{while,}
\]
\[
V_2V_1f(z) = M_zR_qM_zf(z) = M_zqzf(qz) = qz^2f(qz),
\]
showing that \((V_1, V_2)\) is a \(q\)-commutative pair. However, it should be noted that the pair is not doubly \(q\)-commutative. One way to see this is that
\[
V_2V_1^*(1) = M_zM_z^*R_q(1) = 0 \quad \text{but} \quad V_1^*V_2(1) = M_z^*R_qM_z(1) = \overline{q}.
\]
Therefore \(V_2V_1^* \neq qV_1^*V_2\). To see that \(V_1 = R_qM_z\) is actually a shift operator, we apply (3.2) to the \(q\)-commutative pair \((R_q, M_z)\) to note
\[
V_1^n = (M_z^*R_q^n)\overline{q} = q^nR_q^nM_z^n \to 0 \quad \text{in the strong operator topology as} \ n \to \infty.
\]

Below we compute the BCL-1 \(q\)-tuple corresponding to the pair \((V_1, V_2) = (R_qM_z, M_z)\).

Let us first note that \(D_{V_1^*} = I - V_1V_1^* = I - R_qM_z^*R_{\overline{q}} = R_qD_{M_z^*}R_{\overline{q}}\), which is essentially the same as \(D_{M_z^*} = P_C\). Therefore
\[
\begin{bmatrix}
D_{V_1^*} \\
D_{V_2^*}
\end{bmatrix} = \begin{bmatrix}
P_C \\
P_C
\end{bmatrix} : \begin{bmatrix}
H^2 \\
H^2
\end{bmatrix} \to \begin{bmatrix}
H^2 \\
H^2
\end{bmatrix} , \quad \text{and therefore} \quad \begin{bmatrix}
D_{V_1^*} \\
D_{V_2^*}
\end{bmatrix} = \begin{bmatrix}
P_C \\
P_C
\end{bmatrix}.
\]
Let \(f(z) = a_0 + za_1 + \cdots + z^n a_n + \cdots \) be in \(H^2\). We note that
\[
D_{V_1^*}V_2^*f = D_{M_z^*}M_z^*f = a_1 \quad \text{and} \quad D_{V_1}V_1^*f = D_{M_z^*}M_z^*R_{\overline{q}} = qa_1.
\]
Therefore
\[
U : \begin{bmatrix}
D_{V_1^*} \\
D_{V_2^*}
\end{bmatrix} = \begin{bmatrix}
a_0 \\
a_0
\end{bmatrix} \mapsto \begin{bmatrix}
a_1 \\
0
\end{bmatrix} = \begin{bmatrix}
D_{V_1^*}V_2^* \\
D_{V_2^*}V_1^*
\end{bmatrix}
\]
is given by \(U = \begin{bmatrix}
0 \\
0
\end{bmatrix} \overline{q}\). Next we note that since \((R_q, M_z)\) is \(q\)-commutative, \((R_q, M_z^2)\) is \(q^2\)-commutative, and therefore applying (3.2) we get with \(V = V_1V_2\)
\[
V^{*n}f = \overline{q}^{2n}R_{\overline{q}}M_z^{2n}f = \overline{q}^{2n}(a_{2n}, \overline{q}^n a_{2n+1}, \overline{q}^{2n} a_{2n+2}, \cdots).
\]
Since \(V\) is a shift operator, the unitary identification \(\tau_{BCL}\) from \(H^2\) onto \(H^2 \otimes \begin{bmatrix}
D_{V_1^*} \\
D_{V_2^*}
\end{bmatrix}\) in this case is given by
\[
f \mapsto \begin{bmatrix}
a_0 \\
0
\end{bmatrix} + z\overline{q}^{a_2} \begin{bmatrix}
a_3 \\
a_0
\end{bmatrix} + \cdots + z^n\overline{q}^{2n} \begin{bmatrix}
0 \\
a_0
\end{bmatrix} + \cdots.
\] (4.2)
To demonstrate that this τ_{BCL} intertwines (V_1, V_2) and $(M_{(P_{\perp+}z)UR_q, R_q^\perp M_{U^*}(P_{\perp+}zP_{\perp})})$, we compute

$$P_{\perp}UR_q^\perp \tau_{\text{BCL}}f = P_{\perp}U \left([\frac{a_0}{q_1}] + z\tau [\frac{a_2}{q_{a_2}}] + \cdots + z^n\frac{a_{2n}}{q_{a_{2n}}} [\frac{a_{2n+1}}{q_{a_{2n+1}}} + \cdots] \right)$$

$$= P_{\perp} \left([\frac{a_0}{q_1}] + z\tau [\frac{a_1}{q_{a_1}}] + \cdots + z^n\frac{a_{2n}}{q_{a_{2n}}} [\frac{a_{2n+1}}{q_{a_{2n+1}}} + \cdots] \right)$$

$$= [\frac{a_0}{q}] + z\tau [\frac{a_1}{q}] + \cdots + z^n\tau^2y^n - n [\frac{a_n}{q}] + \cdots$$

and (using the action of $UR_q^\perp \tau_{\text{BCL}} f$ from the above computation)

$$M_zPUPR_q^\perp \tau_{\text{BCL}}f = M_zP \left([\frac{a_0}{q_1}] + z\tau [\frac{a_2}{q_{a_2}}] + \cdots + z^n\frac{a_{2n}}{q_{a_{2n}}} [\frac{a_{2n+1}}{q_{a_{2n+1}}} + \cdots] \right)$$

$$= z [\frac{a_0}{q}] + z^2\tau [\frac{a_2}{q_2}] + \cdots + z^{n+1}\tau^2y^n - n [\frac{a_n}{q}] + \cdots.$$

Therefore

$$(P_{\perp}U + M_z PU)R_q^\perp \tau_{\text{BCL}}f = [\frac{a_0}{q}] + z [\frac{a_1}{q}] + \cdots + z^n\tau^2y^n - n [\frac{a_n}{q}] + \cdots. \quad (4.3)$$

We note that

$$V_1f(z) = R_qM_zf = za_0q + z^2a_1q^2 + \cdots + z^n a_{n-1}q^n + \cdots = \sum_{n \geq 0} z^n b_n.$$

Therefore replacing f by $V_1 f$ in the expression (4.2) of τ_{BCL}, we get $\tau_{\text{BCL}}V_1f$ the same as $(P_{\perp}U + M_z PU)R_q^\perp \tau_{\text{BCL}}f$. Similar computation for the other intertwining relation.

In view of Theorem 3.1 that the pair (R_qM_z, M_z) is not doubly q-commutative is reflected in the fact that

$$PU^{\perp} = [\frac{1}{0} \frac{1}{0}] [\frac{0}{q} \frac{0}{1}] [\frac{0}{q} \frac{0}{1}] = [\frac{0}{q} \frac{0}{1}] \neq [\frac{0}{q} \frac{0}{1}].$$

The following couple of examples are interesting to note.

Example 4.3. Consider the pair $(V_1, V_2) = (R_qM_{z_1}, M_{z_2})$ on $H^2(D^2)$. We have noticed in the Introduction that this is indeed q-commuting. The computation below shows that it is actually doubly q-commutative.

$$V_2V_1^* f(z_1, z_2) = M_{z_2}M_{z_1}^* R_q f(z_1, z_2) = M_{z_2}M_{z_1}^* f(\overline{q}z_1, \overline{q}z_2) = M_{z_1}^* M_{z_2} f(\overline{q}z_1, \overline{q}z_2) \text{ and}$$

$$V_1^* V_2 f(z_1, z_2) = M_{z_1}^* R_q M_{z_2} f(z_1, z_2) = \overline{q} M_{z_1}^* M_{z_2} f(\overline{q}z_1, \overline{q}z_2).$$

Consider the subspace $H_\circ := H^2(D^2) \ominus \{\text{constants}\}$. Just like commutativity, it is trivial that q-commutativity is hereditary, i.e., the restriction of a q-commutative pair is q-commutative. However, the restriction $(V_1', V_2') = (R_qM_{z_1}, M_{z_2})|_{H_\circ}$ is not doubly q-commutative as the following computation reveals:

$$V_2'V_1'' f(z_1) = M_{z_2}M_{z_1}^* R_q f(z_1) = 0 \neq \overline{q}z_2 = M_{z_1}^* M_{z_2} f(\overline{q}z_1, \overline{q}z_2) = q M_{z_2} M_{z_2}^* f(z_1) = qV_1'' V_2'(z_1).$$

It is interesting to have an example of a pair of isometries which is not q-commutative for any complex number q. Let α, β are two distinct numbers in \mathbb{T}. Consider

$$V_1 = [\frac{\alpha}{0} \frac{0}{\beta}] \text{ and } V_2 = \left[\frac{\overline{\alpha}}{\sqrt{2}} \frac{\sqrt{2}}{\overline{\beta}} \right].$$

Then clearly

$$V_1 V_2 = \left[\frac{\overline{\alpha}}{\sqrt{2} \beta - \sqrt{2} \beta} \right] \neq q \left[\frac{\overline{\alpha}}{\sqrt{2} \beta - \sqrt{2} \beta} \right] = q V_2 V_1$$

for any number q, because α and β are distinct.
5. The tuple case

In this section, we use the model for the pair case to exhibit a parallel model for tuples \((V_1, V_2, \ldots, V_d)\) of \(q\)-commutative isometries. We first define \(q\)-commutativity for tuples of operators.

Definition 5.1. Let \(q : \{1, 2, \ldots, d\} \times \{1, 2, \ldots, d\} \to \mathbb{T}\) be a function such that \(q(i, i) = 1\) and \(q(i, j) = q(j, i)\) for each \(i, j = 1, 2, \ldots, d\). A \(d\)-tuple \((V_1, V_2, \ldots, V_d)\) of operators is said to be \(q\)-commutative, if

\[
V_i V_j = q(i, j) V_j V_i \quad \text{for each} \quad i, j = 1, 2, \ldots, d.
\]

As an example of a \(q\)-commutative tuple of isometries, let us define \(V_j\) on \(H^2(\mathbb{D}^d)\), the Hardy space of the \(d\)-disk, as

\[
V_j = R_{q^{d-j}} M_{z_j} \quad \text{or} \quad M_{z_j} R_{q^{d-j}} \quad \text{for each} \quad j = 1, 2, \ldots, d, \tag{5.1}
\]

and \(q : \{1, 2, \ldots, d\} \times \{1, 2, \ldots, d\} \to \mathbb{T}\) as \(q(i, j) = q^{j-i}\). To see that \((V_1, V_2, \ldots, V_d)\) is \(q\)-commutative, we compute

\[
V_i V_j f(z) = R_{q^{d-i}} M_{z_i} R_{q^{d-j}} M_{z_j} f(z) = q^{d-j} R_{q^{d-i}} z_i z_j f(q^{d-j} z) = q^{3d-2i-j} z_i z_j f(q^{2d-i-j} z)
\]

while \(V_j V_i f(z) = q^{3d-i-2j} z_i z_j f(q^{2d-i-j} z)\) (obtained by just switching \((i, j)\) to \((j, i)\) in the above expression).

Let us denote

\[
V_{(i)} := V_1 \cdots V_{i-1} V_{i+1} \cdots V_d.
\]

A key observation that makes it possible to apply the results for the pair case to the general case, is that if \((V_1, V_2, \cdots, V_d)\) is \(q\)-commutative, then for each \(i = 1, 2, \ldots, d\), the pair \((V_i, V_{(i)})\) is \(q_i\)-commutative, where

\[
q_i := \prod_{j=1}^{d} q(i, j). \tag{5.2}
\]

This is because for each \(i\),

\[
V_i V_{(i)} = V_i V_1 V_2 \cdots V_{i-1} V_{i+1} \cdots V_d = \prod_{i \neq j=1}^{d} q(i, j) V_{(i)} V_i = q_i V_{(i)} V_i,
\]

where we used the fact that \(q(i, i) = 1\). This observation makes it easy to obtain a Berger–Coburn–Lebow-type model for any \(q\)-commutative tuples of isometries \((V_1, V_2, \ldots, V_d)\). Indeed, the idea is to just apply Theorem 2.2 to each of the \(q_i\)-commutative pairs \((V_i, V_{(i)})\). However, unlike the pair case, a BCL-1 and BCL-2 \(q\)-models need not in general be \(q\)-commutative. This will happen when the BCL-1 and BCL-2 \(q\)-tuples satisfy some compatibility conditions.

Theorem 5.2. Let \((V_1, V_2, \ldots, V_d)\) be a \(d\)-tuple of \(q\)-commutative isometries. Then

1. **BCL-1 \(q\)-model:** there exist Hilbert spaces \(\mathcal{F}\) and \(\mathcal{K}_u\), projections \(P_1, P_2, \ldots, P_d\) and unitaries \(U_1, U_2, \ldots, U_d\) in \(\mathcal{B}(\mathcal{F})\), and a \(q\)-commutative tuple \((W_1, W_2, \ldots, W_d)\) of unitaries in \(\mathcal{B}(\mathcal{K}_u)\) such that for each \(i = 1, 2, \ldots, d\), \(V_i\) is unitarily equivalent to

\[
\begin{bmatrix}
R_{q_i} \otimes P_i^+ U_i + M_{z_i} R_{q_i} \otimes P_i U_i & 0 \\
0 & W_i
\end{bmatrix} \text{ on } \begin{bmatrix} H^2 \otimes \mathcal{F} \\ \mathcal{K}_u \end{bmatrix}, \tag{5.3}
\]
and $V(i)$ is unitarily equivalent to
\[
\begin{bmatrix}
R_{q_i} \otimes U_{i}^* P_i + R_{q_i} M_i \otimes U_{i}^* P_i + R_{q_i} M_i \otimes U_{i}^* P_i^i & 0
\end{bmatrix}
\text{ on } \begin{bmatrix} H^2 \otimes F \end{bmatrix}.
\]

Moreover, the tuple $(F, K_{u^i}; P_i, U_i, W_i)_{i=1}^d$ can be chosen to be such that
\[
F = D_{V_i^*} \oplus D_{V_2} \oplus \cdots \oplus D_{V_d}, \quad K_{u^i} = \bigcap_{n \geq 0} (V_1 V_2 \cdots V_d)^n \mathcal{H},
\]
\[
(W_1, W_2, \ldots, W_d) = (V_1, V_2, \ldots, V_d)|_{K_{u^i}}, \quad P_i = \text{projection onto } D_{V_i^*}, \quad \text{and}
\]
\[
U_i : D_{V_i^*} \oplus \Delta_i D_{V_i^*} \rightarrow D_{V_i^*} V_i^* \oplus \Delta_i D_{V_i^*} \text{ for some unitary }
\]
\[
\Delta_i : D_{V_i^*} \rightarrow \bigoplus_{i \neq j=1} D_{V_j^*} \text{ given explicitly in (5.12) below,}
\]

and

(2) BCL-2 q-model: there exist Hilbert spaces F_i and K_{u^i}, projections P_i and a unitary U_i in $B(F_i)$, and a tuple (W_1, W_2, \ldots, W_d) of q-commutative unitaries in $B(K_{u^i})$ such that for each $i = 1, 2, \ldots, d$, V_i is unitarily equivalent to
\[
\begin{bmatrix}
R_{q_i} \otimes U_{i}^* P_i + R_{q_i} M_i \otimes U_{i}^* P_i + R_{q_i} M_i \otimes U_{i}^* P_i^i & 0
\end{bmatrix}
\text{ on } \begin{bmatrix} H^2 \otimes F_i \end{bmatrix}.
\]

and $V(i)$ is unitarily equivalent to
\[
\begin{bmatrix}
R_{q_i} \otimes P_i U_i + R_{q_i} M_i \otimes P_i U_i & 0
\end{bmatrix}
\text{ on } \begin{bmatrix} H^2 \otimes F_i \end{bmatrix}.
\]

Moreover, the tuple $(F_i, K_{u^i}; P_i, U_i, W_i)_{i=1}^d$ can be chosen to be such that
\[
(F_i, K_{u^i}; P_i, U_i, W_i)_{i=1}^d = (F, K_{u^i}; P_i, U_i, W_i)_{i=1}^d \quad \text{for each } i,
\]

where $(F, K_{u^i}; P_i, U_i, W_i)_{i=1}^d$ is as in part (1) above.

Proof. As in the pair case, we only do the analysis for part (1), as a similar analysis works for part (2). The first step is to fix $i = 1, 2, \ldots, d$ and apply the implication (1) \Rightarrow (2) of Theorem 2.2 to the q_i-commutative pair $(V_i, V(i))$. This will give us Hilbert spaces F_i, K_{iu}, a projection P_i, a unitary U_i in $B(F_i)$, and a pair (W_i, W_i') of q_i-commuting unitaries in $B(K_{iu})$ such that $(V_i, V(i))$ is unitarily equivalent to
\[
\left(\begin{bmatrix} R_{q_i} \otimes P_i U_i + R_{q_i} M_i \otimes P_i U_i & 0 \\
0 & 0 \end{bmatrix}, \begin{bmatrix} R_{q_i} \otimes U_i^* P_i + R_{q_i} M_i \otimes U_i^* P_i^i & 0 \\
0 & 0 \end{bmatrix}\right) \text{ on } \begin{bmatrix} H^2 \otimes F_i \end{bmatrix},
\]

where by (2.11) the parameters $(F_i, K_{iu}; P_i, U_i, W_i, W_i')$ can be chosen to be
\[
\begin{cases}
F_i = \begin{bmatrix} D_{V_i^*} \\ D_{V_i^*} \\ D_{V_i^*} \\ D_{V_i^*} \end{bmatrix}, & K_{iu} = \bigcap_{n \geq 0} (V_1 V_2 \cdots V_d)^n \mathcal{H}, \quad P_i : [f] \mapsto [f], \\
U_i : \begin{bmatrix} D_{V_i^*} \\ D_{V_i^*} \\ D_{V_i^*} \end{bmatrix} \mapsto \begin{bmatrix} D_{V_i^*} \\ D_{V_i^*} \end{bmatrix} \quad \text{and } (W_i, W_i') = (V_i, V(i))|_{K_{iu}}.
\end{cases}
\]

Let us first note that by definition of $V(i)$ it follows that
\[
W_i' = \prod_{i \neq j=1}^d W_j = W(i).
\]

Next we note that for each $i = 1, 2, \ldots, d$,
\[
K_{iu} = \bigcap_{n \geq 0} (V_1 V_2 \cdots V_d)^n \mathcal{H} = q(i, 1) q(i, 2) \cdots q(i, i-1) \bigcap_{n \geq 0} V^n \mathcal{H} =: \mathcal{K}_u,
\]
where \(V = V_1 V_2 \cdots V_d \) and we used the fact that for every \(i \),
\[
V_i V(i) = V_i V_1 V_2 \cdots V_{i-1} V_{i+1} \cdots V_d = q(i, 1) q(i, 2) \cdots q(i, i-1) V.
\]

We next argue that for each \(i = 1, 2, \ldots, d \), \(F_i = D_{V_i^*} \oplus D_{V_2^*} \oplus \cdots \oplus D_{V_d^*} \). By the expression of \(F_i \) as given in (5.10), this will be achieved if we can show that
\[
D_{V_i^*} \quad \text{is unitarily equivalent to} \quad \oplus_{i \neq j=1}^d D_{V_j^*}.
\]

For (5.11), we define the map \(\Delta_i : D_{V_i^*} h \mapsto \oplus_{i \neq j=1}^d D_{V_j^*} \) by
\[
\Delta_i : D_{V_i^*} h \mapsto D_{V_i^*} V_2^* \cdots V_{i-1}^* V_{i+1}^* \cdots V_d^* h \oplus D_{V_2^*}^* V_3^* \cdots V_{i-1}^* V_{i+1}^* \cdots V_d^* h \\
\quad \oplus \cdots \oplus D_{V_{d-1}^*} V_d^* h \oplus D_{V_d^*} h.
\]

Using the general fact that for a contraction \(T \), \(\| D_T h \|^2 = \| h \|^2 - \| Th \|^2 \), we see that
\[
\| D_{V_1^*} V_2^* \cdots V_{i-1}^* V_{i+1}^* \cdots V_d^* h \|^2 + \| D_{V_2^*} V_3^* \cdots V_{i-1}^* V_{i+1}^* \cdots V_d^* h \|^2 \\
\quad + \cdots + \| D_{V_{d-1}^*} V_d^* h \|^2 + \| D_{V_d^*} h \|^2
\]

is a telescopic sum and is equal to
\[
\| h \|^2 - \| V_1^* V_2^* \cdots V_{i-1}^* V_{i+1}^* \cdots V_d^* h \|^2 = \| D_{V_i^*} h \|^2.
\]

Therefore \(\Delta_i \) is an isometry. We claim that
\[
\{ D_{V_1^*} V_2^* \cdots V_{i-1}^* V_{i+1}^* \cdots V_d^* h \oplus D_{V_2^*} V_3^* \cdots V_{i-1}^* V_{i+1}^* \cdots V_d^* h \\
\quad \oplus \cdots \oplus D_{V_{d-1}^*} V_d^* h \oplus D_{V_d^*} h : h \in \mathcal{H} \} = \oplus_{i \neq j=1}^d D_{V_j^*}.
\]

We follow the same technique as used to prove Lemma 2.1; we show that the orthocomplement of the space on the left-hand side in \(\oplus_{i \neq j=1}^d D_{V_j^*} \) is zero. Let \(\oplus_{i \neq j=1}^d f_j \in \oplus_{i \neq j=1}^d D_{V_j^*} \) be such that for every \(h \in \mathcal{H} \),
\[
0 = \langle \oplus_{i \neq j=1}^d f_j, D_{V_1^*} V_2^* \cdots V_{i-1}^* V_{i+1}^* \cdots V_d^* h \oplus D_{V_2^*} V_3^* \cdots V_{i-1}^* V_{i+1}^* \cdots V_d^* h \\
\quad \oplus \cdots \oplus D_{V_{d-1}^*} V_d^* h \oplus D_{V_d^*} h \rangle.
\]

This implies that for every \(h \in \mathcal{H} \)
\[
\langle h, f_d + V_d f_{d-1} + \cdots + V_d V_{d-1} V_{i+1} V_{i-1} \cdots V_d f_1 \rangle = 0,
\]
which means that
\[
f_d + V_d f_{d-1} + \cdots + V_d V_{d-1} V_{i+1} V_{i-1} \cdots V_d f_1 = 0.
\]
Since \(D_{V_i^*} f_d = f_d \) and \(D_{V_i^*} V_d = 0 \), we conclude by applying \(D_{V_d^*} \) on the vector above that \(f_d = 0 \). A similar analysis yields that each of the vectors \(f_{d-1}, \ldots, f_{i+1}, f_i-1, \ldots, f_1 \) are zero vectors. Consequently, \(\Delta_i \) is a unitary. Hence claim (5.11) is proved.

Remark 5.3. As in the pair case, for a tuple of \(q \)-commutative isometries, the BCL \(q \)-tuples uniquely determine a tuple of \(q \)-commutative isometries in the sense that is explained for the pair case in the statement of Theorem 2.5. The proof is similar.
6. \(q \)-COMMUTATIVE UNITARY EXTENSION OF \(q \)-COMMUTATIVE ISOMETRIES

Just as in the commutative case, every \(q \)-commutative tuple of isometries can be extended to a \(q \)-commutative tuple of unitaries. Moreover, as the following theorem shows, this unitary extension can be made so as to have some additional structure.

Theorem 6.1. Every \(d \)-tuple \((X_1, X_2, \ldots, X_d)\) of \(q \)-commutative isometric operators has a \(q \)-commutative unitary extension \((Y_1, Y_2, \ldots, Y_d)\). Moreover, there is an extension \((Y_1, Y_2, \ldots, Y_d)\) such that \(Y = Y_1 Y_2 \cdots Y_d \) is the minimal unitary extension of \(X = X_1 X_2 \cdots X_d \).

Proof. Let us suppose without loss of generality that the \(q \)-commutative isometric tuple \((X_1, X_2, \ldots, X_d)\) is given exactly in the BCL-1 \(q \)-model (5.3). Consider the tuple \((Y_1, Y_2, \ldots, Y_d)\) given for each \(i = 1, 2, \ldots, d \), by

\[
Y_i = \begin{bmatrix} R_{q_i} \odot P_{U_i} + M_i R_{q_i} \odot P_{U_i} & 0 \\ 0 & W_i \end{bmatrix} \quad \text{on} \quad L^2 \odot F \oplus K_u. \tag{6.1}
\]

Here \(L^2 \) denotes the usual \(L^2 \) space over \(\mathbb{T} \) with respect to the arc-length measure. It is a routine computation that the tuple \((Y_1, Y_2, \ldots, Y_d)\) above is a \(q \)-commutative tuple of unitary operators. Moreover, it extends the model in (2.13) in view of the natural embedding of \((H^2 \otimes F) \oplus K_u\) into \((L^2 \otimes F) \oplus K_u\):

\[
\begin{bmatrix} z^n \otimes \xi \\ \eta \end{bmatrix} \mapsto \begin{bmatrix} z^n \otimes \xi \\ \eta \end{bmatrix} \quad \text{for} \quad \xi \in F, \eta \in K_u \quad \text{and} \quad n \geq 0.
\]

For the second part of the lemma, we note that

\[
X = X_1 X_2 \cdots X_d = X_1 X_1 = M_z \oplus W_1 W_2 \cdots W_d \quad \text{on} \quad H^2(F_+^1) \oplus K_u
\]

and

\[
Y = Y_1 Y_2 \cdots Y_d = M_\zeta \oplus W_1 W_2 \cdots W_d \quad \text{on} \quad L^2(F_+^1) \oplus K_u.
\]

Therefore it follows from the classical theory that \(Y \) as above is indeed the minimal unitary extension of \(X \). \(\square \)

Let us say that a \(q \)-commutative tuple \((X_1, X_2, \ldots, X_d)\) is doubly \(q \)-commutative, if in addition, it satisfies

\[
X_j X_i^* = q(i, j) X_i^* X_j \quad \text{for each} \quad i, j = 1, 2, \ldots, d.
\]

As in the pair case, a \(q \)-commutative tuple of unitaries is automatically doubly \(q \)-commutative. A doubly \(q \)-commutative version of Theorem 6.1 can be easily derived.

Corollary 6.2 (See also §6 of [10]). Every doubly \(q \)-commutative tuple of isometries extends to a doubly \(q \)-commutative tuple of unitaries.

Proof. This follows from Theorem 6.1 and the fact that a \(q \)-commutative tuple of unitaries is doubly \(q \)-commutative. \(\square \)

7. MODELS FOR \(q \)-COMMUTATIVE CONTRACTIONS

Let \((T_1, T_2)\) be a pair of operators acting on a Hilbert space \(\mathcal{H} \). Let us call a pair \((U_1, U_2)\) of operators acting on \(\mathcal{K} \supset \mathcal{H} \) a dilation of \((T_1, T_2)\), if

\[
T_1^m T_2^n = P_H U_1^m U_2^n \mid \mathcal{H} \quad \text{for every non-negative integers} \quad m \quad \text{and} \quad n,
\]
where P_H is the orthogonal projection of K onto H. Andô’s dilation theorem \cite{Ando} states that every pair of commutative Hilbert space operators has a dilation to a pair of commutative unitary operators. Thus, a natural generalization of Andô’s dilation theorem is whether every q-commutative pair of contractions has a dilation to a q-commutative unitary operators. This question is beautifully answered in affirmative very recently in \cite{KeshariMallick} using a commutant lifting approach. In an upcoming paper, we plan to give two constructive proofs of this q-dilation theorem and use the Berger–Coburn–Lebow-type model proved in this paper to consequently produce functional models for q-commutative pairs of contractions; the $q = 1$ case is done in \cite{Sau}.

References

\[1\] T. Andô, *On a Pair of Commuting Contractions*, Acta Sci. Math. (Szeged) 24 (1963), 88-90.

\[2\] C. A. Berger, L. A. Coburn and A. Lebow, *Representation and index theory for C^*-algebras generated by commuting isometries*, J. Funct. Anal. 27 (1978), 51-99.

\[3\] B. V. R. Bhat and T. Bhattacharyya, *A model theory for q-commuting contractive tuples*, 47 (2002), 97-116.

\[4\] T. Binzar, Z. Burdak, C. Lăzureanu, D. Popovici, and M. Slociński, *Wold–Slociński decompositions for commuting isometric triples* J. Math. Anal. Appl. 472 (2019), 1660-1677.

\[5\] Z. Burdak, *On the model and invariant subspaces for pairs of commuting isometries*, Integr. Equ. Oper. Theory (2019) 91: 22. https://doi.org/10.1007/s00020-019-2516-4.

\[6\] A. Connes, Noncommutative Geometry, Academic Press, 1994.

\[7\] S. Dey, *Standard dilations of q-commuting tuples* Colloq. Math. 107 (2007), 141-165.

\[8\] D. Gaspar, N. Suciu, *Wold decompositions for commutative families of isometries* An. Univ. Timișoara Ser. Științ. Mat. 27 (1989), 31-38.

\[9\] P.R. Halmos, *Shifts on Hilbert spaces*, J. Reine Angew. Math. 208 (1961) 102-112.

\[10\] M. de Jeu and P. R. Pinto, *The structure of doubly non-commuting isometries* Adv. Math. 368 (2020), 107149.

\[11\] D. K. Keshari, N. Mallick, *q-commuting dilation* Proc. Amer. Math. Soc. 147 (2019), 655-669.

\[12\] S. Majid, Foundations of Quantum Group Theory, Cambridge University Press, 1995.

\[13\] J. von Neumann, *Allgemeine eigenwerttheorie hermitischer funktionaler operatoren*, Math. Ann. 102 (1929) 49-131.

\[14\] G. Popescu, *Noncommutative Wold decompositions for semigroups of isometries* Indiana Univ. Math. J., 47 (1998), 277-296.

\[15\] D. Popovici, *On the structure of c.n.u. bi-isometries* Acta Sci. Math. (Szeged) 66 (2000), 719-729.

\[16\] D. Popovici, *On the structure of c.n.u. bi-isometries II* Acta Sci. Math. (Szeged) 68 (2002), 329-347.

\[17\] D. Popovici, *A Wold-type decomposition for commuting isometric pairs*, Proc. Amer. Math. Soc., 132 (2004) 2303-2314.

\[18\] E. Prugovecki, Quantum Mechanics in Hilbert Space, Academic Press, 1981.

\[19\] J. Sarkar, *Wold decomposition for doubly commuting isometries*, Linear Algebra Appl. 445 (2014), 289–301.

\[20\] H. Sau, *Andô dilations for a pair of commuting contractions: two explicit constructions and functional models*, arXiv:1710.11368 [math.FA].

\[21\] Z. Sebestyén, *Anticommutant lifting and anticommuting dilation*, Proc. Amer. Math. Soc. 121 (1994), 133-136.

\[22\] M. Slociński, *On the Wold-type decomposition of a pair of commuting isometries*, Annales Polonici Mathematici XXXVII (1980), 255–262.

\[23\] M. Slociński, *Models for doubly commuting contractions*, Annales Polonici Mathematici XLV (1985), 23–42.

\[24\] A. Skalski, J. Zacharias, *Wold decomposition for representations of product systems of C^*-correspondences*, Internat. J. Math., 19 (2008) 455-479.
[25] H. Wold, *A Study in the Analysis of Stationary Time Series*, Almquist and Wiksell, Uppsala (1938).

Department of Mathematics, Virginia Tech, Blacksburg, VA 24061-0123, USA
Email address: joball@math.vt.edu

Department of Mathematics, Indian Institute of Science Education and Research,
Pashan, Pune, Maharashtra 411008, India
Email address: hsau@iiserpune.ac.in, haripadasau215@gmail.com