The antioxidant potential of the plant extract was evaluated by 2,2-diphenyl-1-picrylhydrazyl assay in which 50% sugars, terpenoids, alkaloids, steroids, tannins, flavonoids, and phenolic compounds led to perform the wound healing activity and scavenging and antioxidant effects in mice [4]. Phytochemical screening of the methanolic extract of the stem of E. hirta revealed the presence of secondary metabolites as reducing and antioxidant effects with the presence of polyphenolic compounds such as scopoletin, scoparone, isoscopoletin, quercetin, hecin, and urinogenital disorders. The biological activities of isolated compounds such as scopoletin, scoparone, isoscopoletin, quercetin, isorhamnetin, pinocembrin, kaemferol, luteolin, and gallic acid from the enriched flavonoid fraction [3]. The plant is widely used in the traditional system of medicines for the treatment of respiratory diseases, gastrointestinal disorders, tumors, lactation in women, wound healing, and urinogenital disorders. The biological activities of isolated compounds such as scopoletin, scoparone, isoscopoletin, quercetin, isorhamnetin, pinocembrin, kaemferol, luteolin, and gallic acid from the E. hirta leaf extract revealed the presence of secondary metabolites as reducing sugars, terpenoids, alkaloids, steroids, tannins, flavonoids, and phenolic compounds. The methanol extract of E. hirta was reported to show the potent antitumor activity [5]. The ethanol extract of E. hirta showed a significant decreased in blood glucose level on alloxan-induced diabetic rats [6]. Ethanol extract and ethyl acetate fractions of the plant had α-glucosidase inhibition activity while n-hexane, chloroform, butanol, and water fractions had no α-glucosidase inhibitory effect [7]. Antibacterial sensitivity test indicated that the extract of E. hirta had little or no zone of inhibition (ZOI) against Haemophilus influenzae [8]. The natural compounds quinine and Cephaelis have been used for the management of protozoan parasitic diseases, malaria, and amoebiasis.

The compound holamine and hydroxyl holamine showed potent antileishmanial activity against L. donovani [9].

The present study focus on the antimicrobial, antioxidant, phytotoxic, and antileishmanial activities of the methanolic extract of E. hirta collected from Chitwan district of Nepal.

INTRODUCTION

The plant *Euphorbia hirta* is commonly known as dudhe jhar. The plant is very frequent in rice fields, especially in Terai region of Nepal. The plant belongs to the family Euphorbiaceae. The plant has been traditionally used for the treatment of different diseases basically for skin diseases. The phytochemical screening of the methanolic extract of the stem of *E. hirta* revealed that the plant is the rich source of secondary metabolites. The compound teraxerol isolated from this plant showed the antithymic activity carried out on histamine-induced bronchospasm in guinea pigs that significantly inhibited the contractile effect of histamine [1]. Thin-layer chromatography showed the presence of quercetin, ferulic acid, and gallic acid in flavonoid fraction of *E. hirta* whole plant [2]. *E. hirta* has been used as a traditional medicine for antidiabetic, antinflammatory, anti-ulcerative, and antidenticidal activity [3]. The plant was used widely in the traditional system of medicines for the treatment of respiratory diseases, gastrointestinal disorders, tumors, lactation in women, wound healing, and urinogenital disorders. The biological activities of isolated compounds such as scopoletin, scoparone, isoscopoletin, quercetin, isorhamnetin, pinocembrin, kaemferol, luteolin, and gallic acid from the *E. hirta* were also studied [4]. The extract and active component showed strong inhibition in nitric oxide production that showed antidiabetic and antioxidant effects in mice [4]. Phytochemical screening of *E. hirta* leaf extract revealed the presence of secondary metabolites as reducing sugars, terpenoids, alkaloids, steroids, tannins, flavonoids, and phenolic compounds. The methanol extract of *E. hirta* was reported to show the potent antitumor activity [5]. The ethanol extract of *E. hirta* showed a significant decreased in blood glucose level on alloxan-induced diabetic rats [6]. Ethanol extract and ethyl acetate fractions of the plant had α-glucosidase inhibition activity while n-hexane, chloroform, butanol, and water fractions had no α-glucosidase inhibitory effect [7]. Antibacterial sensitivity test indicated that the extract of *E. hirta* had little or no zone of inhibition (ZOI) against Haemophilus influenzae [8]. The natural compounds quinine and Cephaelis have been used for the management of protozoan parasitic diseases, malaria, and amoebiasis.

The compound holamine and hydroxyl holamine showed potent antileishmanial activity against *L. donovani* [9].

RESULTS

MATERIALS AND METHODS

Plant materials

The whole plants (leaves, stems, and roots) of *E. hirta* were collected from Chitwan district of Nepal in 2014. The plant was identified by Rita Chhetry, Research Officer, National Herbarium and Plant Resources, Ministry of Forests and Soil Conservation, Godawari, Nepal. The plant was washed with tap water to remove the soil and other debris, dried under shade and kept at 2°C until extraction. The whole

Phytochemical screening

The phytochemical screening of the methanolic extract of the stem of *E. hirta* showed low leishmanicidal activity IC_{50} = 68.1±1.2 µg/ml standard deviation (SD) as compared to the standard drug amphotericin B 0.29±0.05 µg/ml and pentamidine 5.09±0.09 µg/ml SD. The radical scavenging activity shows IC_{50} = 29.23±0.61 µg/ml SD which is found potent than the standard ascorbic acid IC_{50} = 45.93 µg/ml. The extract of *E. hirta* contains high value of total phenolic content milligram gallic acid equivalent per gram (138.10±4.50 mg GAE/g SD) and flavonoid content milligram quercetin equivalent per gram (11.54±0.00 mg QE/g SD). The plant extract exhibits weak antibacterial activity against *Staphylococcus aureus* (9.0 mm), *Bacillus subtilis* (11.0 mm), *Escherichia coli* (9.0 mm), and *Salmonella Typhi* (9.0 mm) at a concentration of 1.0 mg/ml in which 50 µl was loaded per well. Plant extract exhibits moderate phytotoxic activity with the number of fronds 3, 10, and 14 against the different concentrations of plant extract.

Conclusions:

The preliminary results of this study have put forward *E. hirta* into promising herbs with good antioxidant activities, moderate phytotoxic activity, and potential source of antimicrobial agent with a significant amount of total phenolic and flavonoid contents. Although the plant extract shows the potent biological activity, further studies are needed to assess its mechanism of action.

Keywords: *Euphorbia hirta*, Phytotoxic, Antioxidant, Antimicrobial, Antileishmanial, Methanolic extract.

© 2020 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/) DOI: http://dx.doi.org/10.22159/ajpcr.2020.v13i2.36469
plant was powdered then weighed (50.0 g), soaked in methanol (about 400 ml) for 72 h and filtered using Whatman No 1 filter paper. The filtrate obtained was concentrated under reduced pressure in a rotary evaporator at 45°C to obtain the crude extract.

Phytochemical screening

The methanolic extracts of plant sample were analyzed for the presence of secondary metabolites such as polyphenols, alkaloids, flavonoids, tannin, carotenoids, saponins, reducing sugars, cardiac glycosides, steroids, terpenoids, glycoside, and anthraquinone by adopting the standard procedures of analysis [10,11].

2.2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay

The free radical scavenging activity was measured using DPPH radical scavenging assay [12-14]. Different concentrations of test samples (5, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 µg/ml) were prepared while the concentration of DPPH was 0.2 mM in the reaction mixture. These reaction mixtures were taken in tubes and incubated at 37°C for 30 min. Discolorations were measured at 517 nm using a ultraviolet (UV)-visible spectrophotometer. Percent radical scavenging activity was calculated by comparison with the methanol treated control group; ascorbic acid was used as a positive control. Measurement was performed at least in triplicate. The percentage scavenging of the DPPH free radical was calculated using the equation. The inhibition curve was plotted for the triplicate experiments and represented as the percentage of mean inhibition: standard deviation (SD) and the inhibitory concentration (IC50) values were obtained.

Total phenolic content determination

The total phenolic content was determined using the Folin-Ciocalteu phenol reagent 0.1 ml of each extract (2.5 mg/ml) was separately mixed with 1.0 ml of Folin-Ciocalteu phenol reagent and 0.05 ml of the 1M Na2CO3 solution. The reaction mixture was allowed to stand for about 15 min, and the absorbance of the reactant was measured at 765 nm using the UV-visible spectrophotometer. The calibration curve was constructed using the methanolic solution of gallic acid as standard with the concentration ranging from 25 to 250 µg/ml. With the help of this calibration curve of gallic acid, the concentration of the sample was calculated. The total polyphenol content was expressed in milligrams of the gallic acid equivalent per gram of the dry mass (mg GAE/g) [15].

Total flavonoid content determination

The total flavonoid content was estimated using the aluminum chloride (AlCl3) colorimetric method. In this method, 0.25 ml of each extract (10 mg/ml) was separately mixed with the 0.75 ml of methanol, 0.05 ml of the 10% aluminum chloride, 0.05 ml of the 1M potassium acetate (CH3COOK), and 1.4 ml of the distilled water. The reaction mixture was allowed to stand for about 30 min at room temperature. The mixture was subjected to measure the absorbance at 415 nm in UV-visible spectrophotometer. The calibration curve was constructed with the help of standard quercetin solutions in methanol with concentration ranging from 10 to 100 µg/ml. The total flavonoid content was expressed in milligrams of quercetin equivalent per gram of the dry mass (mg QE/g) [15].

Statistical analysis

Antioxidant activity, total phenolic content, and flavonoid content reported as the mean±SD. A significant difference for multiple comparisons was calculated using a one-way analysis of variance. p<0.05 was considered statistically significant.

Antimicrobial activity

The antibacterial activity of the methanol extract of *E. hirta* was tested against the test organisms by the agar well diffusion method. Sterile Muller-Hinton agar plates of approximately 6 mm thickness were prepared. The inoculated plates were left to dry for a few minutes at room temperature with the lid closed. Five different wells were made in the inoculated media plates with the help of sterile cork borer no. 6 and labeled properly. Hence, the diameter of a well was 6 mm. Then, 50 µl of the plant extract was introduced into the respective well. In one well pure methanol was filled as a negative control. The plates were then left for ½ h with the lid closed so that the extract diffused into media. The plate was incubated overnight at 37°C. After proper incubation (18-24 h), the plates were observed for the ZOI around well.

In vitro phytotoxic bioassay

The phytotoxic bioassay was performed by adopting the standard protocol in which E-Medium was prepared by mixing various constituents in 1000 ml distilled water, and pH was adjusted between 6.0 and 7.0 by adding potassium hydroxide pellets. Plant growth inhibitors and promoters serving as negative and positive controls, respectively. The number of fronds was counted and recorded on a daily basis.

RESULTS AND DISCUSSION

Phytochemical analysis

The result of phytochemical screening is presented in Table 1. Plant extract of *E. hirta* showed a good source of secondary metabolites such as flavonoids, terpenoids, polyphenols, glycosides, reducing sugars, cardiac glycosides, anthraquione, carotenoids, and saponin. It shows that the plant extract can be used to isolate the active compounds for different biological activities.

Antimicrobial activity

The result of antibacterial activity is shown in Table 2. The plant extract is the rich source of secondary metabolite with mild antibacterial activity against Gram-positive and Gram-negative organisms. The plant extract possess weak antibacterial effects against Gram-positive bacteria *Staphylococcus aureus* (9.0 mm) and *Bacillus subtilis* (11.0 mm) and Gram-negative bacteria *Escherichia coli* (9.0 mm) and *Salmonella Typhi* (9.0 mm) at a concentration of 10.0 mg/ml in which 50 µl was loaded per well. Plant extract revealed the most significant antibacterial activity and broad antimicrobial spectrum against the strains of *S. aureus*, *Acinetobacter baumannii*, and *Pseudomonas aeruginosa*, with moderate zones of inhibition 26.0 mm, 20.3 mm, and 17.0 mm, respectively. The ethyl acetate extract presented a slightly lower antibacterial activity than the ether extract [20].

Phytotoxic activity

Plant extract exhibits moderate phytotoxic activity with the number of fronds 3, 10, and 14 against the concentration of 1000, 100, and

| Table 1: Phytochemical analysis of plant extract |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| Polyphenols | + | Reducing sugar | – |
| Steroids | – | Tanning | – |
| Alkaloids | – | Cardiac glycoside| + |
| Flavonoids | + | Anthraquione | + |
| Terpenoids | – | Carotenoids | + |
| Glycerides | – | Saponin | – |

+: Presence, -: Absence
Table 2: Antimicrobial activity of plant extract

Plant extract	Concentration	Staphylococcus aureus	ZOI, mm	Bacillus subtilis	Salmonella Typhi	Escherichia coli
Euphorbia hirta	10 mg/ml	9	11	9	9	9
	15 mg/ml	9	11	9	9	9
	20 mg/ml	10	12	10	10	10

ZOI: Zone of inhibition

Table 3: In vitro phytotoxic activity

Name of the plant	Concentration of plant extract (µg/ml)	No of fronds	% growth regulation	Concentration of standard drug (µg/ml)
Lemna minor	1000	3	85	0.015
	100	10	50	
	10	14	30	

Standard drug paraquat, incubation condition=(28±1°C)

Table 4: Antileishmanial activity

Leishmanicidal activity	IC_{50} (µg/ml)±SD
Test compound (plant extract)	68.1±1.2
Standard drugs	
Amphotericin B	0.29±0.05
Pentamidine	5.09±0.09

Incubation period 72 h, incubation temperature 22°C, IC_{50}: Inhibitory concentration, SD: Standard deviation

Table 5: DPPH scavenging (IC_{50}) value, total flavonoid, and phenolic content

Total flavonoid content	IC_{50} (µg/ml)±SD
Total phenolic content	11.54±0.00 mg QE/g SD
DPPH scavenging (IC_{50})	138.10±4.90 mg GAE/g SD
	29.23±0.21 µg/ml SD

DPPH: 2,2-diphenyl-1-picrylhydrazyl, IC_{50}: Inhibitory concentration, SD: Standard deviation

Fig. 1: Percentage scavenging of 2,2-diphenyl-1-picrylhydrazyl free radical of Euphorbia hirta and ascorbic acid

10 µg/ml whereas the standard drug paraquat has 20 fronds at a concentration of 0.015 µg/ml. The moderate phytotoxic activity was found in the 100 µg/ml (50% inhibition). Significant phytotoxicity was shown in 100 and 1000 µg/ml with 50% and 85% growth inhibition (Table 3). The result obtained in this study was found comparable to the previously reported results where the phytotoxicity of the investigated samples on Lemna minor was detected in the n-hexane fraction with 12.5% and 18.7% inhibition at 10 and 100 µg/ml, respectively. Moderate phytotoxic activity detected in the methanol extract (40.0% inhibition) at 1000 µg/ml. Good phytotoxic activity was detected in the chloroform fraction (68.7% inhibition) at 100 µg/ml and n-butanol fraction (62.6% inhibition) at 1000 µg/ml [21].

Antileishmanial activity

The results of antileishmanial activity are shown in Table 4. The methanolic extract of E. hirta showed moderate antileishmanial activity with IC_{50} 68.1±1.2 µg/ml as compared to the standard drugs. The result found comparable to the previously reported in which the aqueous extract of the stem bark of Enantia chlorantha gave a powerful effect with an IC_{50} 10.08 µg/ml [22]. Antileishmanial activity of aqueous and methanol extract of Aloe vera leaves against Leishmania major showed moderate activity with percent mortality 5.30±5.10 and 68.40±6.30 in concentration 1 mg/ml, respectively [23]. These difference results of the antileishmanial activity could be attributed to the chemical composition of plants by active molecules such as phenols, flavonoids, and terpenes.

Antioxidant activity

The result of antioxidant activity is shown in Fig. 1 and Table 5. Antioxidant minimizes the oxidative stress by scavenging the free radicals inhibiting lipid peroxidation. Antioxidants terminate the chain reaction by converting the unpaired electrons to paired ones. The concentration-dependent inhibition of DPPH free radical indicates that plant extract causes a reduction of DPPH radical in a quantitative weight relation manner. The plant extract of E. hirta was found as the source of potent antioxidants with the strongest DPPH radical scavenging activity (IC_{50}=29.23±0.21 µg/ml SD) whereas standard ascorbic acid has IC_{50} of 45.93 µg/ml. The result of the antioxidant activity of this plant extract found comparable to Nauplius graveolens, Picris asplenioides, Reichardia tingitana, and Urospernum picroides with radical scavenging activity 14.3%, 6.25%, 7.73%, and 4.14%, respectively [24].

The result showed significant total phenolic and flavonoid content in the plant extract. The extract of E. hirta contains high value of phenolic (138.10±4.90 mg GAE/g SD) and flavonoid content (11.54±0.00 mg QE/g SD) exhibited the greatest antioxidant activity.

CONCLUSIONS

From this study, it is concluded that the plant extracts are the potent source of phytoconstituents and could be used for the isolation of active natural compounds. The susceptibility of various microbial agents to different concentration of plant extract indicated that plant is the potential source for the antimicrobial compound. DPPH scavenging activity showed that the methanol extract is the potent source of antioxidant natural
compounds with IC_{50} 29.23±0.21 µg/ml SD with respect to the standard ascorbic acid IC_{50} 45.93 µg/ml. Phenolic and flavonoids have been reported to be associated with antioxidant action in the biological system, acting as scavengers of singlet oxygen and free radicals. The plant extract showed moderate phytotoxic activity 85%, 50%, and 30% growth regulation with the number of fronds 3, 10, and 14, respectively, which is lower than the standard drug parاخرات with the number of fronds 20 at a concentration of 0.015 µg/ml. Methanolic extracts of E. hirta showed moderate phytotoxic activity. The plant extract showed weak leishmanicidal activity 68.1±1.2 µg/ml SD against L. major. Plant extract showed mild activity against Gram-positive and Gram-negative bacteria. The plant extract was found a rich source of total phenolic and flavonoid content.

ACKNOWLEDGMENTS

The author is thankful to National Herbarium and Plant Resources, Ministry of Forests and Soil Conservation, Godawari, for identification of plant and thankful to the Central Department of Chemistry and Biotechnology, Tribhuvan University, for laboratory facilities.

AUTHOR’S CONTRIBUTIONS

The author declares that this work done by the author mentioned in this article.

CONFLICTS OF INTEREST

There are no conflicts of interest the author alone responsible for the content and writing of this manuscript.

AUTHOR’S FUNDING

The author himself bears the publication fees of this paper.

REFERENCES

1. Saxena P, Tiwari P. 13a-methyl-27-norolean-14-en-3β-ol, atrerpen isolated from the stem of Euphorbia hirta Linn. Possess an antiasthmatic properties. Res J Chem Sci 2014;4:21-6.
2. Bigoniya P, Agrawal S, Verma NK. Potential wound healing activity of Euphorbia hirta Linn total flavonoid fraction. Int J Pharm Sci Res 2013;22:149-56.
3. Ping KY, Darah L, Chen Y, Sasidharan S. Cytotoxicity and genotoxicity assessment of Euphorbia hirta in MCF-7 cell line model using comet assay. Asian Pac J Trop Biomed 2013;3:692-6.
4. Kumar S, Malhotra R, Kumar D. Antidiabetic and free radicals scavenging potential of Euphorbia hirta flower extract. Indian J Pharm Sci 2010;72:533-7.
5. Patil SB, Magdum CK. Phytochemical investigation and antitumour activity of Euphorbia hirta Linn. Eur J Exp Biol 2011;1:51-6.
6. Uppal G, Nagam V, Kumar A. Antidiabetic activity of ethanolic extract of Euphorbia hirta Linn. Pharm Lett 2012;4:1155-61.
7. Widharna RM, Soemardji AA, Wirasatinsa KR, Kardono LB. Antidiabetes mellitus activity in vivo of ethanolic extract and ethyl acetate fraction of Euphorbia hirta Linn. Herb. Int J Pharm 2010;6:231-40.
8. Karem KT, Ezen AR, Christiana OC, Kehinde ER, Ombolaji JN, Olajad AJ. In vitro antimicrobial activities of Euphorbia hirta against some clinical isolates. Agric Biol J North Am 2012;3:169-74.
9. Wright CW, Phillipson JD. Natural products and the development of selective antiprotozoal drugs. Phytother Res 1996;4:127-39.
10. Dabur R, Gupta A, Mandal TK, Singh DD, Bajpai V, Garav AM, et al. Antimicrobial activity of some Indian medicinal plants. Afr J Tradit Complement Altern Med 2007;4:313-8.
11. Khan I, Surya RS, Surekha D, Srujana DG, Hemasandura A. Phytochemical studies and screening of leaf extracts of Azadirachta indica for its antimicrobial activity against dental pathogens. Arch Appl Sci Res 2010;2:246-50.
12. Subedi L, Timalsena S, Duwadi P, Thapa R, Paudel A, Parajuli K. Antioxidant activity and phenol and flavonoid contents of eight medicinal plants from Western Nepal. J Tradit Chin Med 2014;34:584-90.
13. Maharjan B, Baral B. Antioxidant capacity and phenolic content of some Nepalese medicinal plants. Am J Plant Sci 2013;4:1660-5.
14. Subedi A, Shrestha M, Mishra SK, Pokharel BM. Antioxidant and antibacterial activity of methanol extract of Machilus odoratissima. J Sci Eng Technol 2012;8:73-80.
15. Zhou D, Ruan J, Cai Y, Xiong Z, Fu W, Wei A. Antioxidant and hepatoprotective activity of ethanol extract of Arachniodes exilis (Hance) Ching. J Ethnopharmacol 2010;129:232-7.
16. Rehman AU. Studies in Natural Product Chemistry. Netherlands: Elsevier Science Publishers; 1991. p. 383-409.
17. Hideji Y, Oshida A, Ikuta H, Inatom T. Phenolic plant growth inhibitors from the flowers of Cucurbita pepo. Phytochemistry 1982;21:1935-7.
18. Choudhary MI, Yousaf S, Ahmed S, Samreen, Yasmeen K, Atta-ur-Rahman. Antileishmanial phsysalins from Physalis minima. Chem Biodivers 2005;2:1164-73.
19. Habtemariam S. In vitro antileishmanial effects of antibacterial diterpenes from two Ethiopian Premna species: P. schimperi and P. oligotricha. Biomed Cent Pharmacol 2003;3:1-6.
20. Su PW, Yang CH, Yang JF, Su PY, Chuang LY. Antibacterial activities and antibacterial mechanism of Polygonum cuspidatum extracts against nosocomial drug-resistant pathogens. Molecules 2015;20:11119-30.
21. Fatma A, Nurgün K, Hayr D, Bilge S, Choudhary MI. Cytotoxic, phytotoxic and insecticidal activities of Chrysophthalmum montanum (DC.) Boiss. Turk J Pharm Sci 2017;14:290-3.
22. Munganza DM, Frath BI, Lami IN, Mesia GK, Kambu OK, Tona GL, et al. In vitro antiprotozoal and cytotoxic activity of 33 ethnopharmacologically selected medicinal plants from Democratic Republic of Congo. J Ethnopharmacol 2012;141:301-8.
23. Kigondu EV, Rukunga GM, Keriko JM, Tonui WK, Gathiru JW, Kirira PG, et al. Anti-parasitic activity and cytotoxicity of selected medicinal plants from Kenya. J Ethnopharmacol 2009;123:504-9.
24. El-Amier YA, Abbas MA. Phytotoxic effect of plant extracts from Asteraceae on germination and growth of Echinochloa crus-galli. Int J Dev Res 2015;5:4926-31.