Intersectionality and inequalities in medical risk for severe COVID-19 in the Canadian Longitudinal Study on Aging

Shen (Lamson) Lin, MA1,2,*

(Database: Lin, S. L.)

1. Factor-Inwentash Faculty of Social Work, University of Toronto
2. Institute for Life Course and Aging, University of Toronto

* Address correspondence to: Shen (Lamson) Lin, MA, course instructor and doctoral candidate (gerontology), Factor-Inwentash Faculty of Social Work, and Institute for Life Course and Aging, University of Toronto, 246 Bloor Street W, Toronto, Ontario, M5S 1V4, Canada. ORCID: https://orcid.org/0000-0002-9792-2372 E-mail: lamsonlin.lin@mail.utoronto.ca
Funding:
The author received no financial support for the research, authorship, and/or publication of this article.

Conflict of Interest:
The author declared no potential conflict with respect to the research, authorship, and/or publication of this article.

Acknowledgements:
The author wishes to thank the CLSA National Coordinating Centre for providing the data for this analysis. This research was made possible using the data collected by the Canadian Longitudinal Study on Aging (CLSA). Funding for the Canadian Longitudinal Study on Aging (CLSA) is provided by the Government of Canada through the Canadian Institutes of Health Research (CIHR) under grant reference: LSA 9447 and the Canada Foundation for Innovation. This research has been conducted using the CLSA Baseline Comprehensive Dataset version 4.0, under Application ID 170605. The CLSA is led by Drs. Parminder Raina, Christina Wolfson and Susan Kirkland.

Disclaimer:
The opinions expressed in this manuscript are the author's own and do not reflect the views of the CLSA administrators.

Authors’ Contribution statement using CRediT:
This is a solo-authored paper. Shen (Lamson) Lin: Conceptualization (lead); writing – original draft (lead); formal analysis (lead); writing – review and editing (lead).

Ethical approval:
The secondary analysis of CLSA data conducted in this paper was approved by the University of Toronto's Health Sciences Research Ethics Board (protocol number: 34065).
Abstract

Background and Objectives: Older populations with underlying medical conditions are at higher risk of COVID-19 severity and mortality once infected. Intersectional gerontology considers the compounding effects of multiple forms of social inequity. This study explores how racial-nativity status, family income, education level and the intersecting profile of these three social standings stratify differential patterns of chronic conditions among Canadians aged 45 years and older.

Research Design and Methods: Using the baseline Canadian Longitudinal Study on Aging (n = 29,748), multinomial logistic regression analyses were conducted to estimate multivariable-adjusted odds of having one and/or two (≤ 2) or multiple (≥3) medical conditions (i.e., diabetes, asthma, cancer, previous heart attack, cardiovascular disease, kidney disease, hypertension, chronic obstructive pulmonary disease, and obesity) based on socio-demographic characteristics.

Results: There were significant racial-nativity disparities and social-class gradients in multimorbidity. The odds of having ≥3 medical conditions were greater for Black immigrants (OR=1.79, 95% CI=1.13, 2.82), South Asian immigrants (OR=1.49, 95% CI=1.02, 2.19) and close to double for Aboriginal Canadians (OR=1.96, 95% CI=1.37, 2.80) relative to Canadian-born Whites. Black, South Asian and Aboriginal populations from disadvantaged socioeconomic backgrounds had the highest odds of having ≥3 medical conditions (OR=3.50, 95% CI=1.41, 8.70).

Discussion and Implications: Despite a universal health system, marginalized older Canadians who are racialized foreign-born, less educated, and/or low-income have a higher prevalence of multimorbidity that are associated with COVID-19 severe illness and mortality. Upstream health policy and social care tackling intersecting structural inequities should be undertaken to prevent increasing multimorbidity among underserved aging populations.

Keywords: COVID-19; Multimorbidity; Health inequalities; ethnicity and health; Canadian Longitudinal Study on Aging (CLSA); Intersectionality
Background

Although the novel coronavirus disease 2019 (COVID-19) can infect anyone, racialized and impoverished populations carry a disproportionate burden of the disease (Abrams & Szefler, 2020; Ahmed, Ahmed, Pissarides, & Stiglitz, 2020; Bambra, Riordan, Ford, & Matthews, 2020), which has heightened awareness of existing health gaps between the privileged social groups and those vulnerable populations. Similar to previous outbreaks of influenza and severe acute respiratory syndrome (Quinn et al., 2011), what the COVID-19 pandemic brings to the forefront is that both exposure to health hazards and access to health-enhancing resources are fundamentally different based on race, nativity, class and many other social positions (Wright, Steptoe, & Fancourt, 2020), also known as social determinants of health (Marmot, 2005). A burgeoning body of evidence has demonstrated overrepresentation of racialized, low-income, and other socially marginalized populations among cases of and deaths from COVID-19 across the globe. For example, in the USA, counties in which the majority of the population are Black have three times the prevalence of COVID-19 and six times the fatality rate of White majority counties (Dyer, 2020). These Black-White gaps in COVID-19 mortality are especially prominent among middle-aged Americans (Ford, Reber, & Reeves, 2020). In the UK, persons with disadvantaged socioeconomic backgrounds suffered from greater adversities in the lockdown due to COVID-19, including higher rates of job loss, food insecurity, lower access to medication, and inability to pay bills (Wright et al., 2020).

Social inequalities in pre-existing medical conditions

The framework of the World Health Organization (WHO) Commission on Social Determinants of Health (SDoH) asserts that social vulnerabilities, produced by one’s multiple social locations in hierarchical social orders (Bourgois, Holmes, Sue, & Quesada, 2017), are root causes of population health inequalities in the upstream casual pathway to ill-health (WHO, 2008). In the case of the COVID-19 pandemic, the distal impact of social vulnerabilities, such as racial stratification and poverty, could be transmitted through many downstream channels (Krieger, Nancy, 2005; Link &
Phelan, 1995; Palmer, Ismond, Rodríguez, & Kaufman, 2019). These proximal risk factors may include underlying medical conditions (e.g., heart disease, hypertension, chronic kidney disease, asthma, obesity) that have been associated with critical illness among COVID-19 patients (Bello-Chavolla et al., 2020; Petrilli et al., 2020). For example, previous studies have suggested that the most deprived populations were 60% more likely to develop chronic kidney disease than their wealthiest counterparts (Webster, Nagler, Morton, & Masson, 2017). Aboriginal populations in Canada and Australia, Hispanics in the USA, and Black people in the UK had a higher likelihood of chronic kidney disease than their White peers (Morton et al., 2016). Likewise, social inequalities in cardiovascular disease (Harper, Lynch, & Smith, 2011), cancers (Hovanec et al., 2018; Merletti, Galassi, & Spadea, 2011), body-mass index (Bann, Johnson, Li, Kuh, & Hardy, 2018; Kim, Kawachi, Coull, & Subramanian, 2018), and asthma-related mortality (Gupta, Mukherjee, Sheikh, & Strachan, 2018) are well documented across the life course. This research on social inequalities underscores the necessity of considering social conditions in which people live and grow to address population health disparities.

Previous research has demonstrated the individual-level etiologic mechanism to explain how social inequalities could “get under the skin” via biological regulatory systems (Seeman, Epel, Gruenewald, Karlamangla, & McEwen, 2010). Adversities and stressors faced by vulnerable populations, including food and employment insecurity, precarious housing and barriers to accessing quality health and social services (Raphael, Curry-Stevens, & Bryant, 2008), impose physiological and psychological harm (Kawachi, Subramanian, & Almeida-Filho, 2002). Mounting evidence (Seeman et al., 2010) suggests that individuals in disadvantaged social conditions are more susceptible to circumstances that exceed their coping resources and thus are chronically exposed to unmanaged stress (Phelan & Link, 2005; Phelan, Link, & Tehranifar, 2010; Williams, Lawrence, & Davis, 2019). Exposure to chronic stress increases the allostatic load, a measure of multiple physiologic parameters such as blood pressure and cholesterol levels (Geronimus, Hicken, Keene, & Bound,
2006), resulting in a wide range of negative health and illness outcomes (James et al., 2006; Seeman et al., 2010).

Intersectionality of race, nativity and social class

While health inequalities are well documented in relation to race/ethnicity (Siddiqi, Shahidi, Ramraj, & Williams, 2017; Veenstra, 2009; Veenstra & Patterson, 2016), nativity (Davison et al., 2020) and socioeconomic status (Minkler, Fuller-Thomson, & Guralnik, 2006), prior research has typically examined these health differences separately. In immigrant health literature, the conventional approach tends to homogenise the experience of racialized and White immigrants (Brown, 2018). The intersectionality lens of race, immigration and old age has been largely overlooked (Gkiouleka, Huijts, Beckfield, & Bambra, 2018). Ignoring the heterogeneity among immigrant populations is a serious shortcoming because race/ethnicity, language and cultural differences may cumulatively influence the health and wellbeing of immigrants who are aging in a foreign land (Ferrer, Grenier, Brotman, & Koehn, 2017). As such, intersectionality theory has much to offer to population health research because it unpacks various minority struggles that are often obscured within a discourse of multiculturalism and diversity (Hankivsky & Christoffersen, 2008). Therefore, an investigation of how race, nativity and social class combine to shape health outcomes in late life is warranted.

Objectives

The arrival of COVID-19 in Canada presents an unprecedented public health challenge, with over one hundred thousand confirmed cases, eight thousand death to date (Public Health Agency of Canada, 2020a), and a crude case fatality rate of 4.9% on April 22, 2020 (Abdollahi, Champredon, Langley, Galvani, & Moghadas, 2020), which is substantially greater than seasonal influenza death rate of approximately 0.1% (Jordan, Adab, & Cheng, 2020). Although the Canadian government has taken rapid response measures to slow the rate of COVID-19 infection and to mitigate the risk of
severe complications (Public Health Agency of Canada, 2020b), few studies have been devoted to identifying which older populations in Canada are facing greater challenges because of the pre-existing epidemics of chronic disease. Given that Canada does not collect socio-demographic and race-based data on COVID-19 cases at the federal level (Osman, 2020), there is no investigation of the impact of social inequalities on COVID-19 testing, infection and mortality rates in Canada. Alternatively, using observational databases that captured demographic patterns and clinical characteristics of the Canadian population in previous years could offer reasonable estimates for health risk assessment in the ongoing pandemic. This retrospective approach to evaluate population at risk has been applied in preventive science (Gibson & Greene, 2020; Raifman & Raifman, 2020).

Intersectional gerontology as a critical lens illuminates the compounding effects of inequity and places the experience of those inequities within the context of systemic oppression among older persons (Koehn, Neysmith, Kobayashi, & Khamisa, 2013). Guided by the intersectionality lens of SDoH, this study aimed to explore the differential patterns of pre-existing multimorbidity known to be associated with COVID-19 mortality by (1) racial-nativity status; (2) family income; (3) education; and (4) the intersecting profile of these three social positionings. This study has important implications for health equity policy and provides a timely frame of reference for public health decision-makers, which may help to improve surveillance systems, allocate critical care interventions, advance health equity and mitigate the pandemic’s long-term societal harms. Recognizing that minority communities with adverse social determinants may be more susceptible to severe forms of COVID-19 (Abrams & Szefler, 2020; Ahmed et al., 2020; Dyer, 2020; Wright et al., 2020), the present study examined the following three hypotheses.
H1 Racial-nativity inequalities hypothesis: Older adults who are racialized and foreign-born would be more likely to have pre-existing medical conditions, compared to Canadian-born Whites.

H2 Socioeconomic inequalities hypothesis: Older adults who are less educated and/or low-income would be more likely to have pre-existing medical conditions, compared to their peers in higher social class.

H3 Intersecting inequalities hypothesis: Multiple jeopardies of three disadvantaged social positions in terms of racial-nativity, income and education would put older adults at a higher risk of having pre-existing medical conditions, compared to their peers with relative social privilege.

Methods

Data Sources and Study Population

This study used the comprehensive cohort data (n=30,163) from the baseline collection (2012-2015) of the Canadian Longitudinal Study on Aging (CLSA), a unique population-based study of community-dwelling Canadians aged 45 to 85 who will be followed for 20 years across 10 provinces (Raina et al., 2009). The detailed methodology of the CLSA has been previously published (Davison et al., 2020; Lin et al., 2020). The CLSA excludes Canadians residing in long-term care facilities, on First Nations reserves, members of the armed forces, non-English or non-French speakers, and those with dementia. The comprehensive cohort data were collected through in-home face-to-face interviews and at 1 of 11 data collection sites. In this study, participants were excluded if they did not respond to the survey questions about all of the underlying medical conditions (n=67), racial-nativity status (n=125) or relationship status (n=90). This yielded to a final sample size of 29,748 respondents.
Study Variables

Pre-existing medical conditions as risk factors for COVID-19 severity. This study estimated the proportion of adults having one or more out of nine underlying medical conditions that have been identified as clinical risk factors for severe illness from COVID-19 by the U.S. Centers for Disease Control and Prevention (Raifman & Raifman, 2020). Consistent with recent U.S. studies (Gibson & Greene, 2020; Raifman & Raifman, 2020), these nine physician-diagnosed medical conditions include: diabetes, asthma, cancer, previous heart attack or myocardial infarction, kidney disease, cardiovascular disease (angina or chest pain due to heart disease), hypertension, chronic obstructive pulmonary disease (COPD), and obesity (as assessed by body mass index >30 kg/m²). The outcome measure was an aggregated variable grouped into 3 levels: none; ≤ 2 medical conditions; and ≥ 3 medical conditions (i.e., multimorbidity).

Social determinants of health (SDoH). In light of the WHO’s SDoH paradigm (Marmot, 2005), racial-nativity status, income and education levels were selected as three key equity stratifiers in this study. Racial-nativity status was classified into 11 groups, including Canadian-born (CB) categories (White, non-White), aboriginal Canadians (including First Nations, Inuit and Métis) and eight foreign-born (FB) categories by their self-identified racial backgrounds (i.e., White, Black, Latin American, East Asian, West Asian, South Asian, Southeast Asian and others) (Gkiouleka et al., 2018). Because of small numbers, Filipinos were combined with Southeast Asians and Arabs with West Asians (Quan et al., 2006). The operationalization of racial-nativity status recognizes race as a social construct rooted in broader structures of racial oppression (Krieger, N., 2000) and immigration as a complete realignment of life (Castañeda et al., 2015). Due to the small sample size (n=242), detailed ethnic groups could not be disaggregated among Canadian-born non-Whites. Highest level of education was divided into four categories: grade 11 or less, high-school graduate, some college, and post-secondary education. Income was defined as the household income received by all family
members in the past 12 months (<$20k; $20k to <$50k; $50k to <$100k; $100k to <$150k; ≥$150k, and non-response).

Intersecting social vulnerability. Informed by the intersectionality lens to examine multiple forms of marginalization (Gkiouleka et al., 2018; Kapilashrami & Hankivsky, 2018; Shi & Stevens, 2005), a cumulative profile of social vulnerabilities was created to identify respondents in one or more out of three disadvantaged social positions: racial-nativity minorities status (South Asian immigrants, Black immigrants, aboriginal Canadians), middle-to-lower annual household income (<$50k), less educated (≤ high school graduates). These three racial categories were selected as they have been consistently associated with adverse health outcomes (e.g., hypertension, diabetes) in Canada (Chiu, Maclagan, Tu, & Shah, 2015; Ramraj et al., 2016; Veenstra, 2009). Since only 4.4% respondents with <$20k household income, we adopted <$50k as the cut-off value that was less than the median after-tax income for senior families ($63,500) reported in 2018 Canadian income survey.

Covariates. To consider other potential confounders and/or effect modifiers known to be involved in the ageing process, control variables include social demographics (age groups, sex, marital status, retirement status), health indicators (chronic pain, functional limitation), a behavioral health risk factor (never-vs.-ever smokers using the cut-off value of 100 cigarettes per lifetime), and health care utilization (past-year contact with general practitioners). Functional limitation assessed respondent’s capacity to perform basic and instrumental activities of daily living (ADLs) such as eating or bathing (Fillenbaum & Smyer, 1981) and the summation index was dichotomized into two levels of ADLs impairments.
Statistical Analysis

Weighted statistics were applied to describe sample characteristics by racial-nativity status. The weights provided by CLSA were normalized to produce population-representative estimates corrected for the sample size and nonresponse bias. First, chi-square tests were used to test the statistical differences at the bivariate level. Second, multinomial logistic regression models were undertaken to calculate multivariable-adjusted odds ratio (OR) and 95% confidence intervals (95% CI) of having ≤ 2 and ≥ 3 medical conditions (risk factors) for racial-nativity, income and educational levels, after controlling for known health determinants. Third, multinomial logistic regression analysis was for the same outcome measure included the cumulative profile of social vulnerabilities as the key explanatory variable adjusted for covariates. Lastly, a sensitivity test was conducted for two stratified samples by age (middle-aged group: 45-65; older-aged group: 66-85) to examine whether racial health inequalities are consistent between younger and older generations. Statistical analyses and data management were performed using SPSS software package, Version 26 (IBM Corp., Armonk, N.Y., USA). A p-value <.05 (two-tailed) was considered statistically significant.

Results

Sample characteristics and prevalence of risk factors

[Editor: please insert Table 1 & Figure 1 here from the Appendix]

Table 1 summarizes the sample characteristics for all variables by racial-nativity status. The sample (n=29,748) mainly consisted of respondents who were Canadian-born White (80%), aged 45–76 years (82.5%), earning > $50,000/year (67.3%), in a relationship (68.7%), had a post-secondary diploma or degree (77.5%), had no/mild ADLs impairment (98.6%), had no chronic pain (76.4%) and had past-year contacts with family doctors (84.1%). The sex distribution was even (men: 49%; women: 51%). Around half of the sample was ever smoker (50.4%) and retired (56.8%). Approximately 68% of the middle-aged and older Canadians (n=20,248) had at least one pre-existing
medical condition that had placed them at higher risk of severe illness from COVID-19. Fourteen percent of respondents (n=5,033) had three or more of these medical conditions. Among racial immigrants (average time since immigration: 42.7 years), aboriginal populations, Black immigrants and South Asian immigrants were over-represented in low-income group (<$20k: 7.4%, 6.7%, 8.4%) compared to Canadian-born Whites (4.5%). Only 4.6% (n=244) of immigrants had lived in Canada fewer than 10 years. All aforementioned categorical indicators were significantly linked to the underlying medical conditions and thus were included the multivariable analyses.

Figure 1 illustrates weighted prevalence of nine specific underlying medical conditions stratified by race-nativity status. The most prevalent medical condition for the overall sample was hypertension (32%), followed by obesity (27.5%), diabetes (15.4%), asthma (13.6%), cancer (12.5%), COPD (4.8%), previous heart attack (3.6%), angina (3.5%) and kidney disease (2.6%). Among racial communities, aboriginal populations, Black immigrants and South Asian immigrants had the highest prevalence of obesity (40.3%), hypertension (44.6%) and diabetes (31.2%), respectively. All differences in these nine medical conditions by race-nativity status were significant based on chi-square tests (p<0.05), except for kidney disease (p=0.30) and heart attack (p=0.12).

Multivariable logistic regression

Table 2 displays the unweighted counts of overall sample characteristics, weighted prevalence and multivariable-adjusted odds of having one and/or two (≤ 2) and multiple (≥3) underlying medical conditions. Figure 2 shows a series of eight figures including four bar charts of weighted prevalence (Figure 2A, 2C, 2E, 2G) and four odds ratio plots of logistic-regression analyses (Figure 2B, 2D, 2F, 2H) stratified by each social position. All selected covariates were associated with multimorbidity and thus they were retained in the statistical model (see Table 2). Older age (ORs range 2.38-4.57), being male (OR=1.52), being single (OR=1.14), chronic pain (OR=2.29), ADLs disability (OR=2.39), being retired (OR=1.25), lifetime smoking >100 cigarettes (OR=1.52) and past-year contact with family doctors (OR=2.96) were all linked to increased likelihood of multimorbidity.
Racial-nativity inequalities (H1)

As shown in Table 2, even after adjusting for confounders, several minority populations had significantly elevated risk of having multiple medical conditions. Figure 2A and 2B display these racial-nativity gaps in multimorbidity prevalence and odds ratios. The aboriginal and black communities were affected disproportionately. In the adjusted logistic-regression analyses, 58.7% of Black immigrants (OR=1.74, 95% CI=1.27, 2.37) and 53.7% of aboriginal populations (OR=1.52, 95% CI=1.16, 1.99) were at higher risk of having 1-2 medical conditions relative to 49.7% of White adults. Similarly, the odds of having ≥ 3 medical conditions were greater for Black immigrants (OR=1.79, 95% CI=1.13, 2.82), South Asian immigrants (OR=1.49, 95% CI=1.02, 2.19) and close to double for aboriginal populations (OR=1.96, 95% CI=1.37, 2.80) relative to Canadian-born Whites. On the contrary, White immigrants (OR=0.83, 95% CI=0.74, 0.93) and East Asian immigrants (OR=0.31, 95% CI=17, 0.57) both experienced decreased odds of having multiple underlying medical conditions, when compared to Canadian-born Whites. There were no significant differences in either outcome measure for Canadian-born non-White, Latin American immigrants, Southeast Asian immigrants and other racialized immigrants when compared to Whites born in Canada. A separate sensitivity test (available upon request) further indicated an age-stratification pattern where racial-nativity gaps in multimorbidity were wider among participants aged 66 to 85 years: Black immigrants and Aboriginal Canadians had 5 times (OR=5.11, 95% CI=1.89-13.80) and almost 3 times (OR=2.78, 95% CI=1.34, 5.76) higher odds of having ≥ 3 medical conditions respectively, compared to Canadian-born Whites.

Socioeconomic inequalities (H2)

A salient social-class gradient in underlying medical conditions of severe COVID-19 illness stood out, especially among those with ≥ 3 medical conditions (see Table 2). As shown in Figure 2C and 2D, there was a dose-response relationship between family income level and multiple medical
conditions. In other words, with decreasing income, the odds of reporting ≥ 3 medical conditions significantly escalated, ranging from middle-income persons with 17% higher odds (OR=1.17, 95% CI=1.01, 1.34) to individuals in the poorest bracket having close to two-and-a-half greater odds (OR=2.44, 95% CI=1.96, 3.04), compared to the wealthiest respondents. Likewise, as illustrated in Figure 2E and 2F, there was a similar dose-response pattern between educational attainment and multiple medical conditions. As education level decreased, a greater proportion of respondents reported having ≥ 3 medical conditions (ORs range from 1.21 to 2.10), among whom the odds of having ≥ 3 medical conditions in the lowest educational group rose more than two times (OR=2.10, 95% CI=1.76, 2.50) in comparison to their peers in the highest educational bracket. The educational gradient was also visible in the odds of having ≤ 2 medical conditions (ORs range from 1.11 to 1.15), whereas the income gradient was less pronounced.

Intersecting social vulnerabilities (H3)

Table 2 also demonstrates a clear dose-response relationship between cumulative social vulnerabilities and the possibility of having underlying medical conditions which are risk factors of severe COVID19 illness. This association remained even after controlling for known covariates. As depicted in Figure 2G and 2H, individuals who had more social vulnerabilities had higher odds of having multiple medical conditions. The largest jump in odds was observed in the transition from one to two social vulnerabilities. While a single marginalized status had 64% higher odds of having ≥ 3 medical conditions (OR=1.64, 95% CI=1.50, 1.79), adding a second social vulnerability more than tripled the likelihood (OR=3.08, 95% CI=2.03, 4.66), compared to those in the privileged status with no social vulnerability. The most marginalized group with a combination of three vulnerable conditions (i.e., racialized populations without any post-secondary education who are earning less than the median household income) had the highest odds of having ≥ 3 medical conditions (OR=3.50, 95% CI=1.41, 8.70).
Discussion

The current investigation examined the relationship between three sources of social status (i.e., income, education and racial-nativity status) and the prevalence of having multiple medical conditions among Canadians who aged 45 years and older. These relationships may shed some light on who may have higher susceptibility to negative sequelae of COVID-19 illness. The findings reveal that multimorbidity is more prevalent among marginalized people who are Aboriginal, South Asian immigrants, Black immigrants, those with less educational attainment, and those living in low-income households in comparison to those who are White, more educated and/or wealthier. The results of this research indicate that health inequities by social status exist in Canada as they do in the US (Raifman & Raifman, 2020). Despite the fact that Canada has a universal health system and the USA has a market-oriented health system, Canada is not immune to structural drivers of health disparities (Ramraj et al., 2016; Siddiqi et al., 2017).

The racial-nativity inequalities hypothesis (H1) was partially supported because Aboriginal, Black and South Asian individuals, but not all racialized immigrants, had health disadvantages which persisted regardless of demographic, socioeconomic, and behavioural factors. Such inequalities observed in this study are consistent with previous research in Canada (Chiu et al., 2015; Ramraj et al., 2016; Veenstra & Patterson, 2016), UK (Raisi-Estabragh et al., 2020) and the U.S. (Dyer, 2020; Quinn et al., 2011). The magnitude of aboriginal-White inequalities in multimorbidity was as large as the health gap between the lowest and highest educational groups, which highlights the health impact of colonization on First Nations communities. The social-class gradient in multimorbidity prevalence confirms the socioeconomic inequalities hypothesis (H2) and is in keeping with prior epidemiological studies (Luchenski, Quesnel-Vallée, & Lynch, 2008; Mondor, Cohen, Khan, & Wodchis, 2018; Sakib, Shooshtari, St John, & Menec, 2019). Supporting the intersecting inequalities hypothesis (H3), the largest health gap was found when racial minority identity, immigration status and unfavorable socioeconomic positions were combined, which substantiates the utility of
intersectionality as an analytical tool for examining health inequalities (Bauer, 2014). This finding adds to the emerging scholarship that bridges structural, intersectional and health equity lenses to ageing and immigration research (Grenier, et al., 2019; Viruell-Fuentes, Miranda, & Abdulrahim, 2012).

This study extends existing research on the healthy immigrant effect (HIE), a phenomenon that immigrants appear to in better health than the host populations, resulting from the selective immigration policy and mandatory health screening (Vang et al., 2017; Kobayashi & Prus, 2012). The findings show that, relative to Canadian-born Whites, White and East Asian immigrants have a persistent health advantage, whereas Black and South Asian immigrants have significant worse health consequences and other racialized immigrants (i.e., Latin American, West Asian and Southeast Asian) tend to have comparable health profiles. This study challenges previous studies that may overgeneralize the HIE experience to racial minority immigrants in mid-to-late life (McDonald & Kennedy, 2004; Newbold, 2006). In line with intersectionality research (Adjei, Adu, & Ackah, 2020; Brown, 2018; Kobayashi & Prus, 2012), this study suggests that, for Black and South Asian immigrants, any immigrant health advantage may be offset by cumulative exposure to stressors (e.g., language difficulties, racism, cultural misunderstanding) in the post-migration period that lead to the accumulation of chronic conditions at later life stages (Bailey et al., 2017).

The findings of our study are particularly relevant in the context of COVID-19 pandemic, where racialized and socially disadvantaged individuals experience structural inequities that increase the risk of exposure to pathogens (Wright et al., 2020), such as precarious work which require extensive interaction with the public (e.g. retail positions, cleaners, or cashiers), the need to use public transit rather than driving a car (Van et al., 2020), and living in overcrowded housing that makes self-isolation difficult (Selden & Berdahl, 2020). Racialized populations are also over-represented in frontline healthcare occupations including personal support worker and nursing (Raphael et al., 2008). Blacks and Aboriginals in Canada are more prone to everyday discrimination.
associated with chronic conditions (Siddiqi et al., 2017) and the experiences of othering may be further reinforced during the COVID-19 crisis (Devakumar, Shannon, Bhopal, & Abubakar, 2020). Many of the First Nations, Inuit and Métis communities locate in remote areas resulting in geographical barriers to accessing timely medical care.

Limitations

This study has several strengths, including its large sample size, its ability to include measures of intersecting social positions, its pragmatic categorization of diverse racialized immigrant populations and its attention to the clustering of underlying medical conditions. However, several methodological flaws and biases limited the generalisability of this study. Relatively small sample sizes of certain minority groups and low response rates in the CLSA have weakened the study’s power. This study relied on self-reported survey data and may induce recall bias. The non-random sample seems to be unusually well-educated, perhaps due to self-selection. The reported rates of chronic diseases from this healthy sample may, therefore, be lower than actual prevalence in the Canadian population. This is particularly true for immigrants who were more likely to have had post-secondary education than Canadian-born Whites in this sample and thus survival bias may be stronger in these populations that could lead to an underestimation of racial-nativity inequalities.

The CLSA baseline survey does not cover all underlying conditions (i.e., liver disease, HIV, hepatitis) identified by the CDC or any direct measures of COVID-19 confirmed cases. Because of the sensitive nature of income reporting, the CLSA only collected family income information in categorical format, which is subject to an unquestioned assumption that material resources are distributed equally according to needs within the household. The absence of absolute income value precludes further calculation of income-to-needs ratios to adjust for the poverty threshold and family size. Since CLSA only includes participants speaking English or French, immigrants facing language barriers were less likely to be surveyed and at elevated risk of under-detection of health problems. In addition, the CLSA excludes individuals residing in nursing home where are the loci of
COVID-19 transmission in Canada thus represents a large national sample of Canadians living in the community. Lastly, many individuals with medical conditions may have not been diagnosed. Such a limitation of under-reporting would probably bias the results toward the null and result in an underestimate of the population at risk of severe COVID-19 illness.

Conclusion

Overall, this nationwide study has demonstrated inequalities by race, nativity, income and education in the prevalence of pre-existing medical conditions associated with greater COVID-19 severity among middle-aged and older Canadians in a universal health system. Such multimorbidity inequalities are potentially amenable to policy beyond the scope of the traditional health sector. Policies that redistribute resources could address this problem (Phelan et al., 2010), for example, by expanding social welfare programs (e.g., old-age pension, unemployment insurance, public housing). Such policies could tackle upstream social inequities and enhance vulnerable individuals’ capacity to cope with day-to-day life challenges during a public health emergency (Wang & Tang, 2020). Another rapid approach lies in redirecting health-enhancing resources to people living in lower-income and minority communities. This initiative involves the formulation of community outreach and health screening programs targeted for vulnerable older adults that are potentially left behind by the current health system. With COVID-19 spreading globally, health equity should be placed at the center of all policy responses designed to mitigate the disproportionate impact of the pandemic on underserved aging communities.
References

Abdollahi, E., Champredon, D., Langley, J. M., Galvani, A. P., & Moghadas, S. M. (2020). Temporal estimates of case-fatality rate for COVID-19 outbreaks in Canada and the United States. *CMAJ: Canadian Medical Association Journal = Journal De L'Association Medecale Canadienne*, 192(25), E666-E670. https://doi.org/10.1503/cmaj.200711

Abrams, E. M., & Szefler, S. J. (2020). COVID-19 and the impact of social determinants of health. *The Lancet. Respiratory Medicine*, 8(7), 659-661. https://doi.org/10.1016/S2213-2600(20)30234-4

Adjei, J. K., Adu, P. A., & Ackah, B. B. B. (2020). Revisiting the healthy immigrant effect with diabetes risk in Canada: Why race/ethnicity matters. *Ethnicity & Health*, 25(4), 495-507. https://doi.org/10.1080/13557858.2019.1567697

Ahmed, F., Ahmed, N., Pissarides, C., & Stiglitz, J. (2020). Why inequality could spread COVID-19. *The Lancet. Public Health*, 5(5), e240. https://doi.org/10.1016/S2468-2667(20)30085-2

Bailey, Z. D., Krieger, N., Agenor, M., Graves, J., Linos, N., & Bassett, M. T. (2017). Structural racism and health inequities in the USA: Evidence and interventions. *The Lancet*, 389(10077), 1453-1463. https://doi.org/10.1016/S0140-6736(17)30569-X

Bambra, C., Riordan, R., Ford, J., & Matthews, F. (2020). The COVID-19 pandemic and health inequalities. *Journal of Epidemiology & Community Health*. Advance online publication. https://doi.org/10.1136/jech-2020-214401

Bann, D., Johnson, W., Li, L., Kuh, D., & Hardy, R. (2018). Socioeconomic inequalities in childhood and adolescent body-mass index, weight, and height from 1953 to 2015: An analysis of four longitudinal, observational, British birth cohort studies. *The Lancet. Public Health*, 3(4), e194-e203. https://doi.org/10.1016/S2468-2667(18)30045-8
Bauer, G. R. (2014). Incorporating intersectionality theory into population health research methodology: Challenges and the potential to advance health equity. *Social Science & Medicine, 110*, 10-17. https://doi.org/10.1016/j.socscimed.2014.03.022

Bello-Chavolla, O. Y., González-Díaz, A., Antonio-Villa, N. E., Fermín-Martínez, C. A., Márquez-Salinas, A., Vargas-Vázquez, A., Bahena-López, J. P., García-Peña, C., Aguilar-Salinas, C. A., Gutiérrez-Robledo, L. M., & Gutiérrez-Robledo, L. M. (2020). Unequal impact of structural health determinants and comorbidity on COVID-19 severity and lethality in older Mexican adults: Considerations beyond chronological aging. *The Journals of Gerontology, Series A: Biological Sciences and Medical Sciences*. Advance online publication. https://doi.org/10.1093/gerona/glaa163

Bourgois, P., Holmes, S. M., Sue, K., & Quesada, J. (2017). Structural vulnerability: Operationalizing the concept to address health disparities in clinical care. *Academic Medicine, 92*(3), 299-307. https://doi.org/10.1097/ACM.0000000000001294

Brown, T. H. (2018). Racial stratification, immigration, and health inequality: A life course-intersectional approach. *Social Forces, 96*(4), 1507-1540. https://doi.org/10.1093/sf/soy013

Public Health Agency of Canada (2020a). Coronavirus disease (COVID-19): Outbreak update. https://www.canada.ca/en/public-health/services/diseases/2019-novel-coronavirus-infection.html?topic=tilelink

Public Health Agency of Canada (2020b). Vulnerable populations and COVID-19. https://www.canada.ca/en/public-health/services/publications/diseases-conditions/vulnerable-populations-covid-19.html

Castañeda, H., Holmes, S. M., Madrigal, D. S., Young, M. D., Beyeler, N., & Quesada, J. (2015). Immigration as a social determinant of health. *Annual Review of Public Health, 36*, 375-392. https://doi.org/10.1146/annurev-publhealth-032013-182419
Chiu, M., Maclagan, L. C., Tu, J. V., & Shah, B. R. (2015). Temporal trends in cardiovascular disease risk factors among White, South Asian, Chinese and Black groups in Ontario, Canada, 2001 to 2012: A population-based study. *BMJ Open, 5*(8), e007232. https://doi.org/10.1136/bmjopen-2014-007232

Davison, K. M., Lung, Y., Lin, S. L., Tong, H., Kobayashi, K. M., & Fuller-Thomson, E. (2020). Psychological distress in older adults linked to immigrant status, dietary intake, and physical health conditions in the Canadian Longitudinal Study on Aging (CLSA). *Journal of Affective Disorders, 265*, 526-537. https://doi.org/10.1016/j.jad.2020.01.024

Devakumar, D., Shannon, G., Bhopal, S. S., & Abubakar, I. (2020). Racism and discrimination in COVID-19 responses. *The Lancet, 395*(10231), 1194. https://doi.org/10.1016/S0140-6736(20)30792-3

Dyer, O. (2020). Covid-19: Black people and other minorities are hardest hit in US. *BMJ (Clinical Research Ed.), 369*, m1483. https://doi.org/10.1136/bmj.m1483

Ferrer, I., Grenier, A., Brotman, S., & Koehn, S. (2017). Understanding the experiences of racialized older people through an intersectional life course perspective. *Journal of Aging Studies, 41*, 10-17. https://doi.org/10.1016/j.jaging.2017.02.001

Fillenbaum, G. G., & Smyer, M. A. (1981). The development, validity, and reliability of the OARS multidimensional functional assessment questionnaire. *Journal of Gerontology, 36*(4), 428-434. https://doi.org/10.1093/geronj/36.4.428

Ford, T., Reber, S., & Reeves, R. (2020, June 16). Race gaps in COVID-19 deaths are even bigger than they appear. https://www.brookings.edu/blog/up-front/2020/06/16/race-gaps-in-covid-19-deaths-are-even-bigger-than-they-appear/

Geronimus, A. T., Hicken, M., Keene, D., & Bound, J. (2006). "Weathering" and age patterns of allostatic load scores among Blacks and Whites in the united states. *American Journal of Public Health, 96*(5), 826-833. https://doi.org/10.2105/AJPH.2004.060749
Gibson, D. M., & Greene, J. (2020). Risk for severe COVID-19 illness among health care workers who work directly with patients. *Journal of General Internal Medicine, 35*, 2804-2806. https://doi.org/10.1007/s11606-020-05992-y

Gkiouleka, A., Huijts, T., Beckfield, J., & Bambra, C. (2018). Understanding the micro and macro politics of health: Inequalities, intersectionality & institutions - A research agenda. *Social Science & Medicine, 200*, 92-98. https://doi.org/10.1016/j.socscimed.2018.01.025

Grenier, A., Hatzifilalithis, S., Laliberte-Rudman, D., Kobayashi, K., Marier, P., & Phillipson, C. (2019). Precarity and aging: A scoping review. *The Gerontologist*. Advance online publication. http://doi.org/10.1093/geront/gnz135

Gupta, R. P., Mukherjee, M., Sheikh, A., & Strachan, D. P. (2018). Persistent variations in national asthma mortality, hospital admissions and prevalence by socioeconomic status and region in England. *Thorax, 73*(8), 706-712. https://doi.org/10.1136/thoraxjnl-2017-210714

Hankivsky, O., & Christoffersen, A. (2008). Intersectionality and the determinants of health: A Canadian perspective. *Critical Public Health, 18*(3), 271-283. https://doi.org/10.1080/09581590802294296

Harper, S., Lynch, J., & Smith, G. D. (2011). Social determinants and the decline of cardiovascular diseases: Understanding the links. *Annual Review of Public Health, 32*, 39-69. https://doi.org/10.1146/annurev-publhealth-031210-101234

Hovanec, J., Siemiatycki, J., Conway, D. I., Olsson, A., Stücker, I., Guida, F., Jockel, K., Pohlabeln, H., Ahrens, W., Bruske, I., Wichmann, H., Gustavsson, P., Consonini, D., Merletti, F., Richiardi, L., Simonato, L., Fortes, C., Parent, M., McLaughlin, J., Demers, P., …Behrens, T. (2018). Lung cancer and socioeconomic status in a pooled analysis of
case-control studies. PloS One, 13(2), e0192999.

https://doi.org/10.1371/journal.pone.0192999

James, S. A., Van Hoewyk, J., Belli, R. F., Strogatz, D. S., Williams, D. R., & Raghunathan, T. E. (2006). Life-course socioeconomic position and hypertension in African American men: The Pitt County study. American Journal of Public Health, 96(5), 812-817.

https://doi.org/10.2105/AJPH.2005.076158

Jordan, R. E., Adab, P., & Cheng, K. K. (2020). Covid-19: Risk factors for severe disease and death. BMJ (Clinical Research Ed.), 368, m1198. https://doi.org/10.1136/bmj.m1198

Kapilashrami, A., & Hankivsky, O. (2018). Intersectionality and why it matters to global health. The Lancet, 391(10140), 2589-2591. https://doi.org/10.1016/S0140-6736(18)31431-4

Kawachi, I., Subramanian, S. V., & Almeida-Filho, N. (2002). A glossary for health inequalities. Journal of Epidemiology and Community Health, 56(9), 647-652.

https://doi.org/10.1136/jech.56.9.647

Kim, R., Kawachi, I., Coull, B. A., & Subramanian, S. V. (2018). Contribution of socioeconomic factors to the variation in body-mass index in 58 low-income and middle-income countries: An econometric analysis of multilevel data. The Lancet. Global Health, 6(7), e777-e786. https://doi.org/10.1016/S2214-109X(18)30232-8

Kobayashi, K. M., & Prus, S. G. (2012). Examining the gender, ethnicity, and age dimensions of the healthy immigrant effect: Factors in the development of equitable health policy. International Journal for Equity in Health, 11, 8. https://doi.org/10.1186/1475-9276-11-8

Krieger, N. (2000). Refiguring "race": Epidemiology, racialized biology, and biological expressions of race relations. International Journal of Health Services: Planning,
Administration, Evaluation, 30(1), 211-216. https://doi.org/10.2190/672J-1PPF-K6QT-9N7U

Krieger, N. (2005). Embodiment: A conceptual glossary for epidemiology. Journal of Epidemiology and Community Health, 59(5), 350-355. https://doi.org/10.1136/jech.2004.024562

Lin, S. L., Kobayashi, K., Tong, H., Davison, K. M., Arora, S. R. A., & Fuller-Thomson, E. (2020). Close relations matter: The association between depression and refugee status in the Canadian Longitudinal Study on Aging (CLSA). Journal of Immigrant and Minority Health, https://doi.org/10.1007/s10903-020-00980-0

Link, B. G., & Phelan, J. (1995). Social conditions as fundamental causes of disease. Journal of Health and Social Behavior, Spec No, 80-94.

Luchenski, S., Quesnel-Vallée, A., & Lynch, J. (2008). Differences between women’s and men’s socioeconomic inequalities in health: Longitudinal analysis of the Canadian population, 1994–2003. Journal of Epidemiology & Community Health, 62(12), 1036-1044. https://doi.org/10.1136/jech.2007.068908

Marmot, M. (2005). Social determinants of health inequalities. The Lancet, 365(9464), 1099-1104. https://doi.org/10.1016/S0140-6736(05)71146-6

McDonald, J. T., & Kennedy, S. (2004). Insights into the 'healthy immigrant effect': Health status and health service use of immigrants to Canada. Social Science & Medicine, 59(8), 1613-1627. https://doi.org/10.1016/j.socscimed.2004.02.004

Merletti, F., Galassi, C., & Spadea, T. (2011). The socioeconomic determinants of cancer. Environmental Health: A Global Access Science Source, 10 Suppl 1, S7. https://doi.org/10.1186/1476-069X-10-S1-S7
Minkler, M., Fuller-Thomson, E., & Guralnik, J. M. (2006). Gradient of disability across the socioeconomic spectrum in the united states. The New England Journal of Medicine, 355(7), 695-703. https://doi.org/10.1056/NEJMsa044316

Mondor, L., Cohen, D., Khan, A. I., & Wodchis, W. P. (2018). Income inequalities in multimorbidity prevalence in ontario, canada: A decomposition analysis of linked survey and health administrative data. International Journal for Equity in Health, 17(1), 90. https://doi.org/10.1186/s12939-018-0800-6

Morton, R. L., Schlackow, I., Mihaylova, B., Staplin, N. D., Gray, A., & Cass, A. (2016). The impact of social disadvantage in moderate-to-severe chronic kidney disease: An equity-focused systematic review. Nephrology Dialysis Transplantation, 31(1), 46-56. https://doi.org/10.1093/ndt/gfu394

Newbold, K. B. (2006). Chronic conditions and the healthy immigrant effect: Evidence from canadian immigrants. Journal of Ethnic and Migration Studies, 32(5), 765-784. https://doi.org/10.1080/13691830600704149

Palmer, R. C., Ismond, D., Rodriquez, E. J., & Kaufman, J. S. (2019). Social determinants of health: Future directions for health disparities research. American Journal of Public Health, 109(S1), S70-S71. https://doi.org/10.2105/AJPH.2019.304964

Petrilli, C. M., Jones, S. A., Yang, J., Rajagopalan, H., O'Donnell, L., Chernyak, Y., Tobin, K. A., Cerfolio, R. J., Francois, F., & Horwitz, L. I. (2020). Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: Prospective cohort study. BMJ (Clinical Research Ed.), 369, m1966. https://doi.org/10.1136/bmj.m1966

Phelan, J. C., & Link, B. G. (2005). Controlling disease and creating disparities: A fundamental cause perspective. The Journals of Gerontology, Series B: Psychological
Phelan, J. C., Link, B. G., & Tehranifar, P. (2010). Social conditions as fundamental causes of health inequalities: Theory, evidence, and policy implications. *Journal of Health and Social Behavior, 51 Suppl*, 28. https://doi.org/10.1177/0022146510383498

Quan, H., Fong, A., De Coster, C., Wang, J., Musto, R., Noseworthy, T. W., & Ghali, W. A. (2006). Variation in health services utilization among ethnic populations. *Canadian Medical Association Journal = Journal De L'Association Medicale Canadienne, 174*(6), 787-791. https://doi.org/10.1503/cmaj.050674

Quinn, S. C., Kumar, S., Freimuth, V. S., Musa, D., Casteneda-Angarita, N., & Kidwell, K. (2011). Racial disparities in exposure, susceptibility, and access to health care in the US H1N1 influenza pandemic. *American Journal of Public Health, 101*(2), 285-293. https://doi.org/10.2105/AJPH.2009.188029

Raifman, M. A., & Raifman, J. R. (2020). Disparities in the population at risk of severe illness from COVID-19 by race/ethnicity and income. *American Journal of Preventive Medicine*, https://doi.org/10.1016/j.amepre.2020.04.003

Raina, P. S., Wolfson, C., Kirkland, S. A., Griffith, L. E., Oremus, M., Patterson, C., . . . Brazil, K. (2009). The canadian longitudinal study on aging (CLSA)*. *Canadian Journal on Aging / La Revue Canadienne Du Vieillissement, 28*(3), 221-229. https://doi.org/10.1017/S0714980809990055

Raisi-Estabragh, Z., McCracken, C., Bethell, M. S., Cooper, J., Cooper, C., Caulfield, M. J., . . . Petersen, S. E. (2020). Greater risk of severe COVID-19 in black, asian and minority ethnic populations is not explained by cardiometabolic, socioeconomic or behavioural factors, or by 25(OH)-vitamin D status: Study of 1326 cases from the UK biobank. *Journal of Public Health*, https://doi.org/10.1093/pubmed/fdaa095
Ramraj, C., Shahidi, F. V., Darity, W., Kawachi, I., Zuberi, D., & Siddiqi, A. (2016). Equally inequitable? A cross-national comparative study of racial health inequalities in the united states and canada. Social Science & Medicine, 161, 19-26. https://doi.org/10.1016/j.socscimed.2016.05.028

Raphael, D., Curry-Stevens, A., & Bryant, T. (2008). Barriers to addressing the social determinants of health: Insights from the canadian experience. Health Policy, 88(2-3), 222-235. https://doi.org/10.1016/j.healthpol.2008.03.015

Sakib, M. N., Shooshtari, S., St John, P., & Menec, V. (2019). The prevalence of multimorbidity and associations with lifestyle factors among middle-aged canadians: An analysis of canadian longitudinal study on aging data. BMC Public Health, 19(1), 243. https://doi.org/10.1186/s12889-019-6567-x

Selden, T. M., & Berdahl, T. A. (2020). COVID-19 and racial/ethnic disparities in health risk, employment and household composition: Study examines potential explanations for racial-ethnic disparities in COVID-19 hospitalizations and mortality. Health Affairs, 10-1377. https://doi.org/10.1377/hlthaff.2020.00897

Seeman, T., Epel, E., Gruenewald, T., Karlamangla, A., & McEwen, B. S. (2010). Socio-economic differentials in peripheral biology: Cumulative allostatic load. Annals of the New York Academy of Sciences, 1186, 223-239. https://doi.org/10.1111/j.1749-6632.2009.05341.x

Shi, L., & Stevens, G. D. (2005). Vulnerability and unmet health care needs. Journal of General Internal Medicine, 20(2), 148-154. https://doi.org/10.1111/j.1525-1497.2005.40136.x

Siddiqi, A., Shahidi, F. V., Ramraj, C., & Williams, D. R. (2017). Associations between race, discrimination and risk for chronic disease in a population-based sample from canada.
Social Science & Medicine, 194, 135-141.
https://doi.org/10.1016/j.socscimed.2017.10.009

Van Bavel, J. J., Baicker, K., Boggio, P. S., Capraro, V., Cichocka, A., Cikara, M., ... & Drury, J. (2020).
Using social and behavioural science to support COVID-19 pandemic response. Nature
Human Behaviour, 1-12. https://doi.org/10.1038/s41562-020-0884-z.

Vang, Z. M., Sigouin, J., Flenon, A., & Gagnon, A. (2017). Are immigrants healthier than native born Canadians? A systematic review of the healthy immigrant effect in Canada. Ethnicity & Health, 22(3), 209-241. https://doi.org/10.1080/13557858.2016.1246518.

Veenstra, G. (2009). Racialized identity and health in canada: Results from a nationally representative survey. Social Science & Medicine, 69(4), 538-542.
https://doi.org/10.1016/j.socscimed.2009.06.009

Veenstra, G., & Patterson, A. C. (2016). Black-White health inequalities in Canada. Journal of Immigrant and Minority Health, 18(1), 51-57. https://doi.org/10.1007/s10903-014-0140-6

Viruell-Fuentes, E. A., Miranda, P. Y., & Abdulrahim, S. (2012). More than culture: structural racism, intersectionality theory, and immigrant health. Social Science & Medicine, 75(12), 2099-2106. https://doi.org/10.1016/j.socscimed.2011.12.037

Wang, Z., & Tang, K. (2020). Combating COVID-19: Health equity matters. Nature Medicine, 26(4), 458. https://doi.org/10.1038/s41591-020-0823-6

Webster, A. C., Nagler, E. V., Morton, R. L., & Masson, P. (2017). Chronic kidney disease. The Lancet, 389(10075), 1238-1252. https://doi.org/10.1016/S0140-6736(16)32064-5

WHO. (2008). Closing the gap in a generation: Health equity through action on the social determinants of health.
http://www.who.int/social_determinants/thecommission/finalreport/en/
Williams, D. R., Lawrence, J. A., & Davis, B. A. (2019). Racism and health: Evidence and needed research. *Annual Review of Public Health, 40*, 105-125.
https://doi.org/10.1146/annurev-publhealth-040218-043750

Wright, L., Steptoe, A., & Fancourt, D. (2020). Are we all in this together? longitudinal assessment of cumulative adversities by socioeconomic position in the first 3 weeks of lockdown in the UK. *Journal of Epidemiology and Community Health.*
https://doi.org/10.1136/jech-2020-214475
Table 1 Sample characteristics (weighted %) by racial-nativity status in the CLSA (n=29,748)

	CB White	CB non-White	FB White	FB East Asian	FB South Asian	FB Black	FB Southeast Asian	FB Latin American	FB West Asian	Other immigrants	Aboriginals
Sample size	23802	242	4264	173	268	200	114	119	126	102	338
Age											
45 to 55	42.1%	60.7%	33.9%	59.1%	53.8%	54.5%	46.7%	62.9%	69.2%	47.1%	54.7%
56 to 65	30.8%	23.1%	25.7%	26.0%	24.4%	20.5%	33.6%	25.9%	24.9%	28.8%	27.3%
66 to 75	16.3%	7.8%	24.8%	10.3%	11.7%	16.5%	12.4%	8.2%	3.0%	18.3%	14.1%
76 to 85	10.7%	8.5%	15.6%	4.5%	10.0%	8.5%	7.3%	2.9%	3.0%	5.8%	3.9%
Sex											
Male	48.8%	45.9%	51.9%	55.0%	61.9%	55.4%	50.7%	62.4%	63.3%	47.1%	47.6%
Female	51.2%	54.1%	48.1%	45.0%	38.1%	44.6%	49.3%	37.6%	36.7%	52.9%	52.4%
Family income											
< $20k	4.5%	5.1%	2.9%	2.5%	8.4%	6.7%	7.3%	5.9%	5.3%	2.9%	7.4%
$20k to <$50k	17.4%	13.9%	17.8%	17.4%	18.1%	28.4%	19.0%	30.8%	29.6%	16.5%	13.5%
$50k to <$100k	31.3%	24.4%	32.5%	31.1%	31.1%	27.6%	35.0%	30.8%	32.5%	37.9%	33.8%
<$100k to <$150k	21.3%	24.1%	20.0%	18.3%	12.7%	18.7%	18.2%	17.2%	14.8%	25.2%	22.5%
≥ $150k	20.1%	26.1%	20.3%	20.7%	22.4%	8.9%	16.8%	10.7%	9.5%	11.7%	18.6%
Not answered	5.4%	6.4%	6.4%	10.0%	7.4%	9.8%	3.6%	4.7%	8.3%	5.8%	4.2%
Education											
<high school	5.4%	1.7%	2.7%	0.4%	2.0%	4.0%	1.4%	2.4%	3.6%	2.9%	5.2%
High school	9.6%	7.8%	6.9%	3.3%	5.4%	4.0%	2.9%	4.1%	4.1%	5.7%	9.0%
Some post-secondary	6.7%	7.4%	7.1%	5.0%	2.7%	8.4%	2.9%	4.1%	2.4%	10.5%	11.0%
Post-secondary	78.3%	83.1%	83.0%	91.3%	89.9%	83.1%	92.8%	88.2%	89.3%	81.0%	74.8%
Not answered	0.1%	0.0%	0.4%	0.0%	0.0%	0.4%	0.0%	1.2%	0.6%	0.0%	0.0%
Relationship											
Single/separated	24.9%	24.4%	20.8%	15.3%	12.7%	28.6%	18.1%	15.3%	8.3%	19.0%	29.9%
Married	75.1%	75.6%	79.2%	84.7%	87.3%	71.4%	81.9%	84.7%	91.7%	81.0%	70.1%
Chronic pain

	FB 19.5%	CB 14.2%	CB 19.3%	CB 9.5%	CB 23.4%	CB 18.7%	CB 13.8%	CB 17.6%	CB 23.2%	CB 20.0%	CB 30.9%
Have pain	76.7%	80.4%	76.6%	81.8%	71.2%	71.1%	71.0%	72.4%	70.2%	76.2%	64.6%
No pain	3.8%	5.4%	4.1%	8.7%	5.4%	10.2%	15.2%	10.0%	6.5%	3.8%	4.5%
Not answered	96.2%	94.6%	95.9%	91.3%	89.8%	89.8%	89.0%	89.0%	96.2%	94.6%	95.9%

ADLs disability

	FB 1.0%	CB 0.7%	CB 1.0%	CB 0.8%	CB 2.7%	CB 0.0%	CB 0.0%	CB 1.2%	CB 1.2%	CB 0.0%	CB 0.6%
Severe disability	98.6%	99.3%	98.6%	99.2%	96.7%	100.0%	96.4%	97.6%	97.0%	100.0%	99.0%
No/mild disability	96.2%	94.6%	95.9%	91.3%	89.8%	89.8%	89.0%	89.0%	96.2%	94.6%	95.9%
Not complete	96.2%	94.6%	95.9%	91.3%	89.8%	89.8%	89.0%	89.0%	96.2%	94.6%	95.9%

Retirement status

	FB 43.3%	CB 29.4%	CB 47.6%	CB 31.4%	CB 26.3%	CB 26.8%	CB 19.4%	CB 14.2%	CB 29.5%	CB 33.1%	
Retired	56.4%	70.6%	51.8%	68.6%	67.6%	72.8%	73.2%	80.6%	85.8%	70.5%	65.3%
Not retired	0.0%	0.0%	0.6%	0.0%	1.0%	0.9%	0.0%	0.0%	0.0%	1.6%	0.0%

Lifetime Smoking

	FB 51.8%	CB 35.8%	CB 48.6%	CB 22.7%	CB 23.4%	CB 13.8%	CB 23.4%	CB 48.8%	CB 48.5%	CB 43.3%	CB 67.2%
≥100 cigarettes	48.2%	64.2%	51.4%	77.3%	76.6%	86.2%	76.6%	51.2%	51.5%	56.7%	32.8%
<100 cigarettes	96.2%	94.6%	95.9%	91.3%	89.8%	89.8%	89.0%	89.0%	96.2%	94.6%	95.9%

Past-year GP contact

	FB 84.2%	CB 82.4%	CB 85.3%	CB 82.2%	CB 84.9%	CB 75.9%	CB 73.9%	CB 70.0%	CB 72.6%	CB 84.6%	CB 85.5%
Have contact	12.0%	11.5%	11.2%	10.3%	9.1%	13.4%	10.1%	20.0%	20.8%	12.5%	10.0%
No contact	3.8%	6.1%	3.6%	7.4%	6.0%	10.7%	15.9%	10.0%	6.5%	2.9%	4.5%
No answer	96.2%	94.6%	95.9%	91.3%	89.8%	89.8%	89.0%	89.0%	96.2%	94.6%	95.9%

Cumulative profile

	FB 69.8%	CB 75.7%	CB 73.7%	CB 76.9%	CB 0.0%	CB 0.0%	CB 71.0%	CB 62.4%	CB 62.1%	CB 73.3%	CB 0.0%
0 vulnerability	30.2%	24.3%	26.3%	23.1%	69.8%	62.5%	29.0%	37.6%	37.9%	26.7%	70.4%
1 vulnerability	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
2 vulnerabilities	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
3 vulnerabilities	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%

Medical conditions

	FB 36.6%	CB 39.7%	CB 37.7%	CB 59.1%	CB 32.6%	CB 27.7%	CB 46.0%	CB 41.2%	CB 52.4%	CB 34.6%	CB 27.0%
0 risk	49.7%	50.2%	49.0%	36.0%	52.7%	58.0%	40.9%	50.0%	38.1%	53.8%	53.7%
1 or 2 risks	13.7%	10.2%	13.3%	5.0%	14.8%	14.3%	13.1%	8.8%	9.5%	11.5%	19.3%
≥3 risks	13.7%	10.2%	13.3%	5.0%	14.8%	14.3%	13.1%	8.8%	9.5%	11.5%	19.3%

Notes: FB=Foreign-born; CB=Canadian-born. All differences by race-nativity status reached the 0.05 level of statistically significance in the chi-square test (p<0.05). ADLs= Activities of Daily Living.
Table 2 Weighted prevalence and adjusted odds ratios of medical conditions as risk factors of severe COVID-19 illness by upstream social determinants of health and covariates in the CLSA, persons aged 45–85 years (n=29,748)

Variables	Unwtg. Total N	1 or 2 risk (n=15,215) (vs. 0 risk)	≥ 3 risks (n=5,033) (vs. 0 risk)			
	wtg. % OR 95%CI	p-value wtg. % OR 95%CI p-value				
Nativity/Race (Ref. CB White)						
FB Black	200	58.0% 1.74 1.27 2.37 0.001	14.3% 1.79 1.13 2.82 0.013			
Aboriginals	338	53.7% 1.52 1.16 1.99 0.002	19.3% 1.96 1.37 2.80 0.000			
FB South Asian	268	52.7% 1.28 0.99 1.66 0.065	14.8% 1.49 1.02 2.19 0.039			
Other immigrants	102	53.8% 1.27 0.82 1.95 0.280	11.5% 1.06 0.53 2.11 0.877			
CB non-White	242	50.2% 1.09 0.85 1.39 0.520	10.2% 1.04 0.68 1.59 0.865			
FB Latin American	119	50.0% 1.05 0.76 1.45 0.775	8.8% 0.77 0.43 1.38 0.377			
FB White	4264	49.0% 0.88 0.82 0.95 0.001	13.3% 0.83 0.74 0.93 0.001			
FB Southeast Asian	114	40.9% 0.71 0.49 1.03 0.071	13.1% 0.99 0.57 1.72 0.970			
FB West Asian	126	38.1% 0.63 0.45 0.88 0.007	9.5% 0.65 0.37 1.15 0.137			
FB East Asian	173	36.0% 0.52 0.39 0.68 <0.001	5.0% 0.31 0.17 0.57 <0.001			
Family Income (Ref. ≥$150k)						
< $20k	1533	47.8% 1.14 0.96 1.34 0.127	27.0% 2.44 1.96 3.04 <0.001			
$20k to <$50k	6271	53.0% 1.22 1.11 1.34 <0.001	20.1% 1.94 1.67 2.26 <0.001			
$50k to <$100k	9791	49.3% 1.01 0.94 1.09 0.773	14.8% 1.53 1.35 1.75 <0.001			
$100k to <$150k	5461	49.0% 1.02 0.94 1.10 0.705	9.2% 1.17 1.01 1.35 0.033			
No answer	1912	49.8% 0.96 0.84 1.09 0.496	15.6% 1.41 1.16 1.72 0.001			
Education (Ref. Post-secondary)						
<secondary school	1621	51.9% 1.45 1.25 1.68 <0.001	28.7% 2.10 1.76 2.50 <0.001			
Secondary school	2812	51.2% 1.11 1.01 1.22 0.029	16.6% 1.21 1.06 1.38 0.004			
Some post-secondary	2210	53.3% 1.33 1.19 1.48 <0.001	17.7% 1.53 1.32 1.78 <0.001			
No answer	46	46.3% 0.95 0.45 2.02 0.891	24.4% 1.26 0.51 3.14 0.621			
Age (Ref. 45-55)						
56-65	9762	49.9% 1.35 1.26 1.44 <0.001	14.9% 2.38 2.13 2.65 <0.001			
66-75	7266	52.8% 1.77 1.61 1.95 <0.001	21.4% 3.72 3.23 4.30 <0.001			
76-85	5204	58.7% 2.78 2.46 3.14 <0.001	24.1% 5.40 4.57 6.37 <0.001			
Gender (Ref. Female)	15161	49.0% 1.00	13.2% 1.00			
Variable	N	Male (%)	OR	95% CI	P-value	
---	-----	----------	------	---------	---------	
Male	14587	50.2%	1.23	1.17	<0.001	
Relationship (Ref. Married)	20446	49.3%	1.00	1.00		
Single/separated	9302	50.3%	1.04	0.97	0.124	
Chronic pain (Ref. No pain)	22322	49.2%	1.00	1.00		
Have chronic pain	6007	51.0%	1.53	1.42	<0.001	
No answer	1419	49.2%	0.98	0.65	0.935	
ADLs disability (Ref. no/mild)	29282	49.6%	1.00	1.00		
ADLs severe disability	363	44.7%	1.22	0.88	0.267	
Assessment not complete	103	54.3%	1.41	0.91	0.127	
Retirement status (Ref. No)	13168	46.9%	1.00	1.00		
Completely retired	16473	53.1%	1.12	1.04	1.20	0.003
No answer	107	48.2%	0.85	0.56	1.29	0.447
Lifetime Smoking (Ref. <100)	14111	48.8%	1.00	1.00		
≥100 cigarettes	15637	50.3%	1.14	1.08	1.20	<0.001
Past-year GP contact (Ref. No)	2796	40.7%	1.00	1.00		
Have past-year GP contact	25606	50.8%	1.72	1.59	1.85	<0.001
No answer	1346	49.8%	2.02	1.33	3.08	0.001
Cumulative profile (Ref. 0)	19115	48.5%	1.00	1.00		
1 vulnerability (R/E/I)	10336	51.8%	1.25	1.18	1.33	<0.001
2 vulnerabilities (R+E/R+I/E+I)	243	54.9%	1.89	1.36	2.63	<0.001
3 vulnerabilities (R+E+I)	54	48.8%	1.63	0.74	3.59	0.221

Notes: FB=Foreign-born; CB=Canadian-born; Unwtg.= Unweighted; Wtg.=Weighted; OR=odds ratio; 95%CI=95% Confidence Interval; GP=general practitioners; ADLs=Activities of Daily Living Scales; Statistics for multinominal logistic regression that reach the 0.05 level of significance are bolded (Nagelkerke R^2 = 0.14). Cumulative profile was tested in a separated identical analysis adjusted for same covariates (not shown; Nagelkerke R^2 = 0.13). Cumulative profile=a sum of three social positions (R=South Asian, Black or Aboriginals; and/or I=household income <$50k; and/or E=≤ high school graduates).
Figure 1 Weighted prevalence of 9 specific medical conditions as risk factors of severe COVID-19 illness by race-nativity status in the CLSA, persons aged 45–85 years (n=29,748)

Condition	Total sample	Aboriginals	FB South Asian	FB Black	CB White	FB White	FB Southeast Asian	CB non-White	FB West Asian	FB Latin American	FB East Asian
Morbidity ≥ 3 diseases	13.60%	19.3%	14.8%	14.3%	13.7%	13.3%	13.1%	10.2%	9.5%	8.8%	5.0%
Hypertension	32.1%	32.2%	34.0%	44.6%	32.0%	32.8%	36.2%	34.6%	21.3%	18.9%	21.9%
Obesity	27.5%	40.3%	19.9%	37.5%	28.2%	25.5%	13.8%	18.0%	23.4%	23.1%	3.3%
Diabetes	15.4%	26.2%	31.2%	18.5%	15.0%	15.3%	20.3%	18.2%	14.9%	17.9%	13.2%
Asthma	13.6%	21.9%	14.7%	10.7%	13.8%	11.7%	11.6%	13.9%	8.9%	16.5%	12.8%
Cancer	12.5%	7.4%	5.4%	7.1%	12.7%	14.7%	4.3%	8.4%	7.7%	3.5%	5.0%
COPD	4.8%	9.0%	2.7%	0.9%	4.9%	4.6%	0.7%	4.8%	2.4%	1.8%	4.1%
Heart Attack	3.6%	1.9%	5.1%	0.9%	3.7%	3.7%	2.9%	2.9%	5.9%	2.4%	2.1%
Angina	3.5%	2.9%	6.4%	3.1%	3.6%	3.7%	2.9%	2.9%	5.9%	2.4%	0.4%
Kidney disease	2.6%	2.3%	1.7%	2.7%	2.5%	2.7%	4.3%	2.9%	4.3%	2.9%	1.7%

Notes: FB=Foreign-born; CB=Canadian-born; CLSA= Canadian Longitudinal Study on Aging (baseline comprehensive cohort). COPD=chronic obstructive pulmonary disease. All differences by race-nativity status reached the 0.05 level of statistically significance in the chi-square test (p<0.05), except for kidney disease (p=0.30) and heart attack (p=0.12).

*P <0.05; **P <0.01; ***P <0.001; ns=not significant. Multimorbidity: having ≥ 3 medical conditions (risks).
Figure 2 Weighted prevalence and adjusted odds ratios of multiple medical conditions as risk factors of severe COVID-19 illness by race/nativity, income, education and cumulative profile (n=29,748)

Notes: FB=Foreign-born; CB=Canadian-born; 95%CI=95% Confidence Interval; Risk factors=underlying medical conditions. Odds ratio (ORs) was adjusted for age, sex, marital status, retirement status, chronic pain, smoking, physical impairment, and health care use. Ref=reference group. ORs were considered to be statistically significant when 95%CI did not overlap with 1.0. Cumulative profile=a sum of three social positions (South Asian, Black or Aboriginals; and/or household income <$50k; and/or ≤ high school graduates).