Supportive Information

Highly Efficient Multisubstrate Agricultural Waste-Derived Activated Carbon for Enhanced CO₂ Capture

Mardikios Maja Bade ¹, Amare Aregahegn Dubale ¹,*, Dawit Firemichael Bebizuh ¹ and Minaleshewa Atlabachew ²

¹ Department of Chemistry, College of Natural and Computational Science, Energy and Environment Research Center, Dilla University, PO. Box 419, Dill, Ethiopia
² Department of Chemistry, College of Science, Bahir Dar University, PO. Box 79, Bahir Dar Ethiopia

*Corresponding authors
Email: amare2122@gmail.com

Chemicals and Reagents
All the reagents were commercially available and were used as received without further purification. Hydrochloric acid (HCl) was used to remove inorganic impurity from the surface of activated carbon, distilled water < 5.0 µS, potassium iodide (KI), Iodine (I₂), sodium thiosulphate (Na₂S₂O₄), and starch were used for conducting iodine test, sodium carbonate (Na₂CO₃), sodium hydroxide (NaOH) and potassium hydroxide (KOH) were used as activation of the powder composite precursor of activated carbon and acts as dehydration reagent during chemical activation, nitric acid (HNO₃), sulfuric acid (H₂SO₄), glacial acetic acid (CH₃COOH), D-glucose as well as anthrone reagent were used for conducting cellulose estimation.

Apparatus and Instruments
Drying oven, model DHG-9030, made in Japan was used for sample drying purpose, electronic balance model ESJ-200-4 made in Japan was used to measure sample weight, mortar and pestle for grinding, 250 µm mesh size sieve, electrical muffle furnace, model 91E, made in England was used for carbonization, graduated cylinders (100, 500, 1000 and 2000 mL) to measure volume, Mercury thermometer to measure temperature, heating mantle with a stirrer (Horst),
water bath model W14, centrifuge, test tubes, cubit 1 cm, UV-visible spectrophotometry NV203 used for cellulose estimation purpose, pH meter, Platinum crucible, Burette digital model 10E31273 made in Germany was used for iodine test, Air compress was used to water displacement test, 1 mL 30G× 80 mm syringe was used as a column, Gas analyzer GeoTech UK Model used to analyze the gas composition, and airtight syringe was used to measure gas volume.

Cellulose content and proximate analysis of agricultural wastes

The composition of the raw material is an important factor in selecting precursor for activated carbon production. The chemical composition of the precursor materials, mainly the percentages of the cellulose in agricultural wastes were set up by means of standard procedures.

a. Estimation of Cellulose

Cellulose is a major structural polysaccharide in plants and the most rich organic compound in nature, as well as is composed of glucose units joined together in the form of the repeating units of the disaccharide with several cross associations. The percentages of the cellulose in agricultural wastes were estimated by standard methods [1]. The ratio 3 mL of acetic acid and nitric acid mixture (150 mL of 80 % acetic acid + 15 mL of concentrated nitric acid) was mixed with 1.0 g of powdered sample and placed in a water bath at 100 °C for 30 min. After centrifugation, the collected residue was washed with distilled water, added 1 mL of 67 % H₂SO₄ and left for 1 h. Then 1 mL of the solution was diluted to 100 mL, and 10 mL of anthrone reagent was added to 1 mL of this solution and mixed well. The tubes were heated in a water bath for 10 min and measured the absorbance at 630 nm after cooling. The amount of cellulose was determined from the standard graph.

b. Proximate Analysis

Proximate analysis was done to determine the average of the percentage volatile matter content, ash content, moisture content and content of fixed carbon of the biomass obtained from three repeats. The procedures of the ASTM standard D5373-02 [2] was adopted to obtain the percentage of ash, volatile matter and moisture contents in the peanut shell, coffee husk, corn cob and banana peels used as starting materials.
i) Percentage moisture content
Moisture analysis was carried out using the drying oven method. Porcelain crucibles were weighed and their masses recorded. About 2 g of each agricultural waste sample was weighed into pre-weighed crucibles, and it was dried in the drying oven at 105 °C for 3 h. Then it was cooled in desiccators for 1 h and reweighed. The percentage moisture content was determined by the following formula:

$$\text{percentage of moisture} = \frac{\text{initial mass (g)} - \text{mass after oven dried (g)}}{\text{mass of sample (g)}} \times 100$$

ii) Percentage ash content
Ash content of agricultural wastes were determined by heating 2 g weight of powdered sample into ceramic crucibles and it was dried and reweighed to obtain the dry carbon weight. The sample was heated in an electrical furnace at 650 ± 25 °C for 3 h. The crucible was cooled in a desiccator, and remaining solids was weighed. The percentage of ash is calculated by:

$$\text{Ash\%} = \frac{\text{remaining solids weight (g)}}{\text{original carbon weight (g)}} \times 100$$

iii) Percentage volatile matter
The percentage volatile matter (PVM) was determined by 2 g of powdered sample was placed into weighed crucible and set it in air drying oven until a constant weight was obtained. The portions are then kept in a furnace at a temperature of 900 °C for 7 min and weighed after cooling in a desiccator for 30 minutes. The PVM was calculated using the equation below:

$$\text{PVM} = \frac{A - B}{A} \times 100$$

where, A is the weight of the oven-dried sample and B is the weight of the sample after 7 min in the furnace at 900 °C.

Percentage of fixed carbon = 100 – (% ash + % moisture + % volatile matter)

Preparation of multi-substrate AC composite
a. The effect of chemical activating agents
The efficient or effective activating agent was obtained, the agricultural wastes composite substrate impregnated with different chemicals such as sodium hydroxide (NaOH), potassium...
hydroxide (KOH), and sodium carbonate (Na$_2$CO$_3$). Previously achieved agricultural wastes composite substrate impregnated with chemical activating agents ratio (w/w) 1:1 for 12 h and dried for 8 h in oven at 110 °C. The dried impregnated composite sample was carbonized in an electric muffle furnace at 400 °C for 90 minutes. After carbonization, the mixture was removed from the furnace and allowed to cool at room temperature. The pyrolyzed carbon was washed with 5% HCl for 2 to 3 times, then washed several times with distilled water until a neutral pH reached. Afterward, the carbon paste was dried in a drying oven at 110 °C for 24 h, then cooled at room temperature and sieved by 250 µm mesh size to attain a uniform particle size besides the iodine test performed.

b. **Optimization of activated carbon production parameters**

Optimization is carried out to make some parameters function at their best by varying one parameter while keeping other parameters constant. The effect of major parameters such as impregnation ratio, activation (impregnation) time, carbonization temperature, and holding (carbonization) time were optimized as follows.

i. **Optimization of chemical impregnation ratio**

The effect of impregnation ratio of chemical agents such as sodium carbonate (Na$_2$CO$_3$) on the porous characteristics was studied by varying the impregnation ratios of activating agent to agricultural wastes composite (w/w) from 0.2 to 1.5 (0.2, 0.25, 0.5, 1.0, and 1.5) and fixing the other parameters such as impregnation time 12 h, carbonization temperature 400 °C and holding time 90 minute. After 12 h activating time the excess solution was filtered and dried for 8 h in oven at 110 °C. The dried sample was carbonized in an electric muffle furnace at 400 °C for 90 minute. After carbonization, the mixture was removed from the furnace and allowed to cool at room temperature and sieved through 250 µm mesh size and also iodine test was achieved.

ii. **Optimization of activation/impregnation time**

The optimum impregnation time was attained, previously optimized impregnation ratio mean Na$_2$CO$_3$ to composite substrate impregnated for 6 h, 12 h, 24 h, 36 h and 48 h with fixed other parameters as previously well-defined for chemical impregnation ratio. After the impregnation time was achieved, the excess solution was filtrated and air-dried for 8 h in oven at 110 °C.
A dried sample was carbonized in an electric muffle furnace at 400 °C for 90 minutes. After carbonization, the mixture was removed from the furnace and allowed to cool at room temperature and sieved as well as iodine test performed.

iii. **Optimization of carbonization temperature**

Carbonization temperature is one of the most influencing factors for the development of porosity in the activated carbon. Effect of carbonization temperature on porous characteristics of produced activated carbon was studied in the range 350 – 550 °C (350, 400, 450, 500, and 550°C) with fixing other parameters as described above for chemical impregnation ratio and activation time.

iv. **Optimization of carbonization time**

Holding time is the duration of the sample kept at the final carbonization temperature. Previously optimized parameters such as impregnation ratio, impregnation time, and carbonization temperature are fixed, and holding time was varied in between 30 – 150 min (30, 60, 90, 120, and 150 min) to investigate its effect on porous characteristics.

Iodine Test

The iodine number is determined according to the ASTM D4607-94 [3] method. The iodine number is defined as the milligrams of iodine adsorbed by 1.0 g of carbon when the iodine concentration of the filtrate is 0.02 N. The experiment consists of 1 g activated carbon powdered sample treated with 10.0 mL of 5% HCl. This mixture is boiled for 30 s and then cooled. Before long then, 100.0 mL of 0.1 N iodine solutions was added to the mixture and stirred for 30 s. The resulting solution was filtered and 50.0 mL of the filtrate was titrated with 0.1 N sodium thiosulfate, used starch as indicator. The iodine number \(\frac{X}{M} \) is calculated as follow:

\[
\frac{X}{M} = \left\{ \frac{(N_1 \times 126.93 \times V_1) - \left[\frac{(V_1 + V_{HCl})}{V_F} \right] \times (N_2 \times 126.93 \times V_2)}{M_C} \right\}
\]

where \(N_1 \) is the iodine solution normality, \(V_1 \) is the added volume of iodine solution, \(V_{HCl} \) is the added volume of 5% HCl, \(V_F \) is the filtrate volume used in titration, \(N_2 \) is the sodium thiosulfate
solution normality, \(V_2 \) is the consumed volume of sodium thiosulfate solution and \(M_C \) is the mass of activated carbon.

![Figure S1](image.png)

Figure S1. Adsorption experimental design (a) CO\(_2\) gas cylinder with flow rate controller, (b) gas analyzer and (c) air tight syringe

AC	Trial	AC (g)	\(V_{\text{HCl}} \) (mL)	\(V_{\text{Iodine}} \) (mL)	\(V_{\text{filtrate}} \) (mL)	\(V_{\text{Titrant}} \) (mL)	\(X/M \) (mg/g)	Mean \(X/M \) (mg/g)
SH-CAC	1	1	10	100	50	25.3	564	
	2	1	10	100	50	25.3	564	564 ± 0.6
	3	1	10	100	50	25.2	565	
	1	1	10	100	50	24.1	597	
PH-CAC	2	1	10	100	50	24.1	596	597 ± 0.85
	3	1	10	100	50	24.1	598	
SC-CAC	1	1	10	100	50	23.0	627	
	2	1	10	100	50	23.0	628	627 ± 0.55
	3	1	10	100	50	23.0	626	

At the 0.05 level, the means are significantly different.
Table S2: Optimum impregnation ratio

Chemical to composite ratio (w/w)	IT (h)	CT (°C)	HT (min)	X/M (mg/g)
0.2	12	400	90	691 ± 0.3
0.25	12	400	90	721 ± 0.2
0.5	12	400	90	664 ± 0.1
1	12	400	90	627 ± 0.6
1.5	12	400	90	533 ± 0.6

Table S3: Optimum impregnation time

Chemical to composite ratio (w/w)	IT (h)	CT (°C)	HT (min)	X/M (mg/g)
0.25	6	400	90	654 ± 0.7
0.25	12	400	90	721 ± 0.2
0.25	24	400	90	741 ± 0.9
0.25	36	400	90	679 ± 0.2
0.25	48	400	90	637 ± 0.3

Table S4: Optimum carbonization temperature

Chemical to composite ratio (w/w)	IT (h)	CT (°C)	HT (min)	X/M (mg/g)
0.25	24	350	90	678 ± 0.6
0.25	24	400	90	741 ± 0.9
0.25	24	450	90	774 ± 0.1
0.25	24	500	90	695 ± 0.3
0.25	24	550	90	590 ± 0.1
Table S5: Optimum carbonization /holding time

Chemical to composite ratio (w/w)	IT (h)	CT (°C)	HT (min)	X/M (mg/g)
0.25	24	450	30	580 ± 0.6
0.25	24	450	60	608 ± 0.4
0.25	24	450	90	774 ± 0.1
0.25	24	450	120	651 ± 0.1
0.25	24	450	150	605 ± 0.1

Table S6: Comparison of iodine adsorption capacities of various activated carbons.

Adsorbent	X/M (mg/g)	Reference
Almond shell activated carbon	737	[4]
Hazelnut shell activated carbon	731	[4]
Walnut shell activated carbon	679	[4]
Bio-waste activated carbon	704	[5]
SH-CAC	655	This study
PH-CAC	680	This study
SC-CHAC	706	This study
SC-CAC	774	This study

Table S7. Percentage yield of the as-prepared composite activated carbon

Sample	Weight of Na₂CO₃ (g)	Activation parameters	Percentage yield (%)		
		Impregnation time (h)	Carbonization temperature (°C)	Carbonization time (min)	
AC-0	0	24	450	90	31.4
AC-0.2	0.2	24	450	90	58.1
AC-0.25	0.25	24	450	90	92.3
AC-1.1	1.1	24	450	90	41.7
Sample name	grain size(Å)				
---------------	---------------				
SH-CAC	16.2				
PH-CAC	15.0				
SC-CAC	0.477				
SC-CHAC	0.677				

Table S9: BET information for the prepared composite AC

Sample	BET information		
	S_{BET} (m2 g$^{-1}$)	Pore size (nm)	Pore volume (cm3 g$^{-1}$)
SH-CAC	275	1.63	0.014
PH-CAC	426	4.25	0.021
SC-CAC	1239	14.7	0.097
SC-CHAC	931	7.47	0.043

Table S10: Comparison of surface area and total pore volume of various activated carbon.

Adsorbent	BET surface area (m2 g$^{-1}$)	Total pore volume (cm3 g$^{-1}$)	Reference
Spent Tea leave AC	1044	0.590	[6]
Pumpkin seed shell AC	1421	0.908	[7]
Bagasse AC	923	0.530	[8]
Rice husk AC	927	0.560	[8]
Olive stones AC	1173	-	[9]
Jute fibers AC	1224	0.740	[10]
SC-CAC	1239	0.973	This study
Figure S2. Carbon dioxide adsorption capacity at different residence time

References:

1. Kumar, M. and Turner, S. Protocol: a medium-throughput method for determination of cellulose content from single stem pieces of Arabidopsis thaliana, *Plant Methods* **2015**, 11, 46 DOI 10.1186/s13007-015-0090-6

2. Standard Test Method Instrumental Determination of Carbon, Hydrogen and Nitrogen in Laboratory Samples of Coal and Coke. ASTM International: West Conshohocken, PA, 2003.

3. Standard Test Method for Determination of Iodine Number of Activated Carbon. ASTM International, West Conshohocken, PA, 2006.

4. Ramesh, T.; Rajalakshmi, N; and Dhathathreyan, K.S. Synthesis and characterization of activated carbon from jute fibers for hydrogen storage. *Renew. Energy Environ. Sustain.* **2017**, 2, 1–8.

5. Pongener, C.; Kibami, D.; Rao, K.S.; Goswamee R.L. and Sinha, D. Synthesis and Characterization of Activated Carbon from the Bio-waste of the Plant Manihot Esculenta. *Chem. Sci. Tran.*, 2015, **4**, 59–68.

6. Menon, R.; Singh, J.; Doshi, V. and Lim. Y. Investigation on Spent Tea Leaves Derived Activated Carbon for CO₂ Adsorption. *Journal of Engineering Science and Technology*, **2015**, 20, 50–61.
7. Demiral, I and Samdan, C.A. Preparation and Characterisation of activated carbon from pumpkin seed shell using H₃PO₄. Anadolu Univ. J. of Sci. and Technology – A – Appl. Sci. and Eng. **2016**, 17, 125 –138.

8. Martins, D.; Catarino, I.; Lopes, D.; Esteves, I.A.A.C.; Mota, J.P. and Bonfait, G. Low temperature adsorption versus pore size in activated carbons, in: Cryocoolers 16: International Cryocooler Conference Inc., Boulder C.O., 2011.

9. Wang, J.; Huang, L.; Yang, R.; Zhang, Z.; Wu, J.; Gao, Y.; Wang, Q.; O'Hareb, D. and Zhong, Z.. Recent advances in solid sorbents for CO₂ capture and new development trends. *Energy and Environ. Sci.*, **2014**, 7, 3478–3518.

10. Jadhav, A.S. and Mohanraj, G.T. Synthesis and characterization of chemically activated carbon derived from arecanut shell. *Carbon – Sci. Tech.*, **2016**, 8, 32–39.