LONG TIME DECAY TO THE LEI-LIN SOLUTION OF 3D NAVIER-STOKES EQUATIONS

JAMEL BENAMEUR

Abstract. In this paper we prove, if \(u \in C([0, \infty), X^{-1}(\mathbb{R}^3)) \) is global solution of 3D Navier-Stokes equations, then \(\|u(t)\|_{X^{-1}} \) decays to zero as time goes to infinity. Fourier analysis and standard techniques are used.

Contents

1. Introduction
2. Notations and Preliminaries Results
 2.1. Notations
 2.2. Preliminaries Results
3. Proof of Theorem 1.3
4. Stability of global solutions
References

1. Introduction

In this paper we deal with the following 3-D incompressible Navier-Stokes equations:

\[
\begin{cases}
\partial_t u - \nu \Delta u + (u, \nabla) u = -\nabla p, & \text{in } \mathbb{R}^+ \times \mathbb{R}^3 \\
\text{div } u = 0 & \text{in } \mathbb{R}^+ \times \mathbb{R}^3 \\
u|_{t=0} = u^0 & \text{in } \mathbb{R}^3,
\end{cases}
\]

where \(\nu > 0 \) is the viscosity of the fluid, and \(u = u(t, x) = (u_1, u_2, u_3) \) and \(p = p(t, x) \) denote respectively the unknown velocity and the unknown pressure of the fluid at the point \((t, x) \in \mathbb{R}^+ \times \mathbb{R}^3 \). Here, \(u^0 = (u^0_1, u^0_2, u^0_3) \) is a given initial velocity. If the condition is fairly regular, one can express the pressure using the speed. The study of local existence is studied by several researchers, Leray [11, 12], Kato [8], etc.... The global existence of weak solutions goes back to Leray [11] and Hopf [7]. The global well-posedness of strong solutions for small initial data is due to Fujita and Kato [5] in the critical Sobolev space \(\dot{H}^{1/2} \) also Chemin [3] has prove the case of \(\dot{H}^s \), \(s > 1/2 \), Kato [9] in the Lebesgue space \(L^3 \), and Koch and Tataro [10] in the space...
BMO$^{-1}$ (see also [2, 11, 14]). It should be noted, in all these works, that the norms in corresponding spaces of the initial data are assumed to be very small, smaller than the viscosity coefficient ν multiplied by tiny positive constant c. For further results and details can consult the book by Cannone [1]. In [13], the authors consider a new critical space that is contains in BMO$^{-1}$, where they show it is sufficient to assume the norms of initial data are less that the viscosity coefficient ν. Then the space used in [13] is the following

$$\mathcal{X}^{-1}(\mathbb{R}^3) := \{ f \in \mathcal{D}'(\mathbb{R}^3), \int_{\mathbb{R}^3} |\hat{f}(\xi)| d\xi < \infty \},$$

with the norm

$$\| f \|_{\mathcal{X}^{-1}} = \int_{\mathbb{R}^3} |\hat{f}(\xi)| d\xi.$$

We will also use the notation, for $i = 0, 1,$

$$\mathcal{X}^i(\mathbb{R}^3) := \{ f \in \mathcal{D}'(\mathbb{R}^3), \int_{\mathbb{R}^3} |\xi|^i |\hat{f}(\xi)| d\xi < \infty \}.$$

For the small initial data, the authors proved the global existence, precisely:

Theorem 1.1. [13] Let $u^0 \in \mathcal{X}^{-1}(\mathbb{R}^3)$, such that $\| u^0 \|_{\mathcal{X}^{-1}} < \nu$, then there is a unique $u \in C(\mathbb{R}^+, \mathcal{X}^{-1})$ such that $\Delta u \in L^1(\mathbb{R}^+, \mathcal{X}^{-1})$. Moreover, for all $t \geq 0$

$$\sup_{0 \leq t < \infty} \left(\| u(t) \|_{\mathcal{X}^{-1}} + (\nu - \| u^0 \|_{\mathcal{X}^{-1}}) \int_{0}^{t} \| \nabla u(t) \|_{L^\infty} \right) \leq \| u^0 \|_{\mathcal{X}^{-1}}. \hspace{1cm} (1.1)$$

To show this theorem, the authors used a method of regularization of the initial data $u^0_\lambda = \zeta^\lambda \ast u^0$, in order to use the standard local existence theory of the Navier-Stokes equations. They obtain uniform estimates in suitable spaces, and pass to the weak limit as λ tends towards zero. If we change this method, and by using Fixed Point Theorem on $C([0, T], \mathcal{X}^{-1}(\mathbb{R}^3)) \cap L^1([0, T], \mathcal{X}^1(\mathbb{R}^3))$ and Lemma [2, 11] we can deduce the following: Let $u^0 \in \mathcal{X}^{-1}(\mathbb{R}^3)$, such that $\| u^0 \|_{\mathcal{X}^{-1}} < \nu$, then there is a unique $u \in C(\mathbb{R}^+, \mathcal{X}^{-1})$ such that $\Delta u \in L^1(\mathbb{R}^+, \mathcal{X}^{-1})$. Moreover, for all $t \geq 0$

$$\| u(t) \|_{\mathcal{X}^{-1}} + (\nu - \| u^0 \|_{\mathcal{X}^{-1}}) \int_{0}^{t} \| u(z) \|_{\mathcal{X}^1} dz \leq \| u^0 \|_{\mathcal{X}^{-1}}. \hspace{1cm} (1.2)$$

Moreover, in [15] Zhang and Yin prove the local existence for large initial data and blow up criteria if the maximal time is finite, precisely:

Theorem 1.2. Let u^0 be in $\mathcal{X}^{-1}(\mathbb{R}^3)$. There exists time T such that the system (NS) has unique solution u in $L^2([0, T], \mathcal{X}^{-1}(\mathbb{R}^3))$ which also belongs to $C([0, T]; \mathcal{X}^{-1}(\mathbb{R}^3)) \cap L^1([0, T], \mathcal{X}^1(\mathbb{R}^3)) \cap L^\infty([0, T]; \mathcal{X}^{-1}(\mathbb{R}^3))$.

Let T^* denote the maximal time of existence of such solution. Then:

(i) If $\| u^0 \|_{\mathcal{X}^{-1}} < \nu$, then $T^* = \infty$.

(ii) If T^* is finite, then

$$\int_{0}^{T^*} \| u(t) \|_{\mathcal{X}^0}^2 dt = \infty.$$
Our main result is to prove non-blowup at large time and the norm of the global solution in \(\mathcal{X}^{-1}(\mathbb{R}^3) \) goes to zero at infinity.

Theorem 1.3. Let \(u \in C(\mathbb{R}^+, \mathcal{X}^{-1}(\mathbb{R}^3)) \) be a global solution of \((NS)\), then
\[
\limsup_{t \to \infty} \|u(t)\|_{\mathcal{X}^{-1}} = 0.
\]

In the following we give a natural application of Theorem 1.3, it is the stability of global solutions of \((NS)\) system.

Theorem 1.4. Let \(u \in C(\mathbb{R}^+, \mathcal{X}^{-1}(\mathbb{R}^3)) \) be a global solution of \((NS)\), then for all \(v^0 \in \mathcal{X}^{-1}(\mathbb{R}^3) \) such that
\[
\|v^0 - u(0)\|_{\mathcal{X}^{-1}} < \nu \frac{2}{3} \int_0^\infty \|\widehat{u}(s)\|_{L^1}^2 ds,
\]
then, Navier-Stokes system starting by \(v^0 \) has a global solution. Moreover, if \(v \) is the corresponding global solution; then, for all \(t \geq 0 \),
\[
\|v(t) - u(t)\|_{\mathcal{X}^{-1}} + \frac{\nu}{2} \int_0^t \|v(s) - u(s)\|_{\mathcal{X}^1} ds \leq \|v^0 - u(0)\|_{\mathcal{X}^{-1}} e^{\frac{2}{3} \int_0^\infty \|\widehat{u}(s)\|_{L^1}^2 ds}.
\]

The remainder of this paper is organized in the following way: In section 2 we give some notations and important preliminaries results. Section 3 is devoted to prove the principle result. In section 4 we prove the stability result for global solutions.

2. Notations and Preliminaries Results

2.1. **Notations.** In this short section we collect some notations and definitions that will be used later on.

- The Fourier transformation is normalized as
 \[
 \mathcal{F}(f)(\xi) = \hat{f}(\xi) = \int_{\mathbb{R}^3} \exp(-ix.\xi)f(x)dx, \quad \xi = (\xi_1, \xi_2, \xi_3) \in \mathbb{R}^3.
 \]

- The inverse Fourier formula is
 \[
 \mathcal{F}^{-1}(g)(x) = (2\pi)^{-3} \int_{\mathbb{R}^3} \exp(i\xi.x) f(\xi)d\xi, \quad x = (x_1, x_2, x_3) \in \mathbb{R}^3.
 \]

- For \(s \in \mathbb{R} \), \(H^s(\mathbb{R}^3) \) denotes the usual non homogeneous Sobolev space on \(\mathbb{R}^3 \) and \(\langle ., . \rangle_{H^s(\mathbb{R}^3)} \) denotes the usual scalar product on \(H^s(\mathbb{R}^3) \).

- For \(s \in \mathbb{R} \), \(\dot{H}^s(\mathbb{R}^3) \) denotes the usual homogeneous Sobolev space on \(\mathbb{R}^3 \) and \(\langle ., . \rangle_{\dot{H}^s(\mathbb{R}^3)} \) denotes the usual scalar product on \(\dot{H}^s(\mathbb{R}^3) \).

- The convolution product of a suitable pair of functions \(f \) and \(g \) on \(\mathbb{R}^3 \) is given by
 \[
 (f * g)(x) := \int_{\mathbb{R}^3} f(y)g(x-y)dy.
 \]

- If \(f = (f_1, f_2, f_3) \) and \(g = (g_1, g_2, g_3) \) are two vector fields, we set
 \[
 f \otimes g := (g_1f, g_2f, g_3f),
 \]
 and
 \[
 \text{div}(f \otimes g) := (\text{div}(g_1f), \text{div}(g_2f), \text{div}(g_3f)).
 \]
For any subset X of a set E, the symbol 1_X denote the characteristic function of X defined by

$$1_X(x) = 1 \text{ if } x \in X, \quad 1_X(x) = 0 \text{ elsewhere}.$$

2.2. Preliminaries Results.

Lemma 2.1. (i) If $f, g \in X^0(\mathbb{R}^3)$, then $fg \in X^0(\mathbb{R}^3)$ and

$$\|fg\|_{X^0} \leq \|f\|_{X^0} \|g\|_{X^0}.$$

(ii) If $f \in X^{-1}(\mathbb{R}^3) \cap X^1(\mathbb{R}^3)$, then $f \in X^{-1}(\mathbb{R}^3)$ and

$$\|f\|_{X^0} \leq \|f\|_{X^{-1}}^{1/2} \|f\|_{X^1}^{1/2}.$$

Proof of lemma 2.1. (i) is a given by direct application of Young inequality. To prove (ii), we can write

$$\|f\|_{X^0} = \int_\xi |\hat{f}(\xi)|d\xi = \int_\xi |\xi|^{1/2} |\hat{f}(\xi)|^{1/2} |\xi|^{1/2} |\hat{f}(\xi)|^{1/2} d\xi.$$

Cauchy-Schwartz inequality gives the desired result.

Lemma 2.2. If $s > 1/2$, we have $H^s(\mathbb{R}^3) \hookrightarrow X^{-1}(\mathbb{R}^3)$ and

$$\|f\|_{X^{-1}} \leq C_s \|f\|_{H^s} \|f\|_{L^2}^{1/2} \|f\|_{H^s}^{1/2}.$$

Proof of lemma 2.2. For $R > 0$, we have

$$\|f\|_{X^{-1}} \leq \|f1_{\{|D|<R\}}\|_{X^{-1}} + \|f1_{\{|D|>R\}}\|_{X^{-1}}.$$

Cauchy-Schwartz inequality gives

$$\|f1_{\{|D|<R\}}\|_{X^{-1}} = \int_{|\xi|<R} |\hat{f}(\xi)| \frac{1}{|\xi|^s} d\xi \leq \left(\int_{|\xi|<R} \frac{1}{|\xi|^s} d\xi \right)^{1/2} \|f\|_{L^2} \leq \sqrt{4\pi R^{2-s}} \|f\|_{H^s},$$

and

$$\|f1_{\{|D|<R\}}\|_{X^{-1}} = \int_{|\xi|>R} \frac{1}{|\xi|^{s+1}} |\xi|^s |\hat{f}(\xi)| d\xi \leq \left(\int_{|\xi|>R} \frac{1}{|\xi|^{2s+2}} d\xi \right)^{1/2} \|f\|_{H^s} \leq \sqrt{4\pi} R^{2-s} \|f\|_{L^2},$$

To conclude, it suffices to take $R = (\|f\|_{L^2})^{1/s}$.
Remark 2.3. In the case $s = 1/2$ there is no comparison between $H^{1/2}(\mathbb{R}^3)$ and $\mathcal{X}^{-1}(\mathbb{R}^3)$. It suffices to consider the functions f and g defined as follows

$$f = \mathcal{F}^{-1}\left(\frac{1}{|\xi|^{3/2}}1_{\{\xi|<1\}}\right) \quad \text{and} \quad g = \mathcal{F}^{-1}\left(\frac{1}{|\xi|^{7/4}}1_{\{|\xi|>1\}}\right).$$

Indeed:

$$\|f\|_{\mathcal{X}^{-1}} = 4\pi \int_0^1 \frac{1}{r^{1/2}} dr = 8\pi, \quad \|f\|_{H^{1/2}}^2 = 4\pi \int_0^1 \frac{1}{r} dr = \infty$$

and

$$\|g\|_{\mathcal{X}^{-1}} = 4\pi \int_1^\infty \frac{1}{r^{3/4}} dr = \infty, \quad \|g\|_{H^{1/2}}^2 = 4\pi \int_1^\infty \frac{1}{r^{3/2}} dr = 8\pi.$$

3. Proof of Theorem 1.3

This proof is inspired from the work of Gallagher-Iftimie-Planchon in [6]. Let $\varepsilon > 0$, a sufficient condition on ε is as follows

$$\varepsilon \leq \frac{\nu}{2}.$$

For $k \in \mathbb{N}$, put

$$\mathcal{A}_k = \{\xi \in \mathbb{R}^3; \quad |\xi| \leq k \quad \text{and} \quad |\hat{u}^0(\xi)| \leq k\}$$

Clearly $\mathcal{F}^{-1}(1_{\mathcal{A}_k}\hat{u}^0)$ converges to u^0 in $\mathcal{X}^{-1}(\mathbb{R}^3)$. Then, there is $k \in \mathbb{N}$ such that

$$\|u^0 - \mathcal{F}^{-1}(1_{\mathcal{A}_k}\hat{u}^0)\|_{\mathcal{X}^{-1}} < \varepsilon/2.$$

Put v^0_k and w^0_k as follows

$$v^0_k = \mathcal{F}^{-1}(1_{\mathcal{A}_k}\hat{u}^0) \quad \text{and} \quad w^0_k = u^0 - v^0_k.$$

Then $\|w^0_k\|_{\mathcal{X}^{-1}} < \varepsilon/2$ and $v^0_k \in \mathcal{X}^{-1}(\mathbb{R}^3) \cap L^2(\mathbb{R}^3)$. Now, consider the following system

$$(NS_k) \quad \left\{ \begin{array}{l}
\partial_t w - \nu \Delta w + w \cdot \nabla w = -\nabla p_{1,k}, \quad \text{in} \quad \mathbb{R}^+ \times \mathbb{R}^3 \\
\text{div} \ w = 0 \quad \text{in} \quad \mathbb{R}^+ \times \mathbb{R}^3 \\
w|_{t=0} = w^0_k \quad \text{in} \quad \mathbb{R}^3.
\end{array} \right.$$

As $\|w^0_k\|_{\mathcal{X}^{-1}} < \varepsilon/2 < \nu$ and by using Theorem 1.1 and inequality 1.2, we get a unique global solution w_k of (NS_k) such that $w_k \in \mathcal{C}(\mathbb{R}^+, \mathcal{X}^{-1}(\mathbb{R}^3)) \cap L^1(\mathbb{R}^+, \mathcal{X}^1(\mathbb{R}^3))$. Moreover,

$$\|w_k(t)\|_{\mathcal{X}^{-1}} + \frac{\nu}{2} \int_0^t \|w_k(z)\|_{\mathcal{X}^{-1}} dz \leq \|w^0_k\|_{\mathcal{X}^{-1}}, \quad \forall t \geq 0.$$

Put $v_k = u - w_k$, clearly $v_k \in \mathcal{C}(\mathbb{R}^+, \mathcal{X}^{-1}(\mathbb{R}^3))$ and satisfies

$$\left\{ \begin{array}{l}
\partial_t v_k - \nu \Delta v_k + v_k \cdot \nabla v_k + w_k \cdot \nabla v_k + v_k \cdot \nabla w_k = -\nabla p_{2,k}, \quad \text{in} \quad \mathbb{R}^+ \times \mathbb{R}^3 \\
\text{div} \ v_k = 0 \quad \text{in} \quad \mathbb{R}^+ \times \mathbb{R}^3 \\
v_k|_{t=0} = v^0_k \quad \text{in} \quad \mathbb{R}^3.
\end{array} \right.$$

Taking the inner product in $L^2(\mathbb{R}^3)$ with v_k, we get

$$\frac{1}{2} \frac{d}{dt} \|v_k\|^2_{L^2} + \nu \|\nabla v_k\|^2_{L^2} \leq |\langle w_k \cdot \nabla v_k / v_k \rangle_{L^2}|.$$
To estimate the RHT,

\[
\langle w_k \cdot \nabla v_k / v_k \rangle_{L^2} = \langle \text{div} (w_k \otimes v_k) / v_k \rangle_{L^2} = \langle w_k \otimes v_k / \nabla v_k \rangle_{L^2} \leq \|w_k \otimes v_k\|_{L^2} \|\nabla v_k\|_{L^2} \leq \|\mathcal{F}(w_k \otimes v_k)\|_{L^2} \|\nabla v_k\|_{L^2} \leq \|w_k * \hat{v}_k\|_{L^2} \|\nabla v_k\|_{L^2}.
\]

Young inequality and Lemma 2.1 give

\[
\langle w_k \cdot \nabla v_k / v_k \rangle_{L^2} \leq \|\hat{w}_k\|_{L^1} \|\hat{v}_k\|_{L^2} \|\nabla v_k\|_{L^2} \leq \|w_k\|_{X^{-1}}^{1/2} \|w_k\|_{X^1}^{1/2} \|v_k\|_{L^2} \|\nabla v_k\|_{L^2}.
\]

Using inequality \(ab \leq \frac{a^2}{2} + \frac{b^2}{2}\), we get

\[
\langle w_k \cdot \nabla v_k / v_k \rangle_{L^2} \leq \frac{1}{2\nu} \|w_k\|_{X^{-1}} \|w_k\|_{X^1} \|v_k\|_{L^2}^2 + \frac{\nu}{2} \|\nabla v_k\|_{L^2}^2.
\]

and

\[
\frac{d}{dt} \|v_k\|_{L^2}^2 + \nu \|\nabla v_k\|_{L^2}^2 \leq \frac{1}{\nu} \|w_k\|_{X^{-1}} \|w_k\|_{X^1} \|v_k\|_{L^2}^2.
\]

Gronwall Lemma yields

\[
\|v_k\|_{L^2}^2 + \nu \int_0^t \|\nabla v_k\|_{L^2}^2 \leq \|v_k^0\|_{L^2}^2 e^{\frac{\nu}{2} \int_0^t \|w_k\|_{X^{-1}} \|w_k\|_{X^1}}.
\]

Using inequality (3.2), we get

\[
\|v_k\|_{L^2}^2 + \nu \int_0^t \|\nabla v_k\|_{L^2}^2 \leq \|v_k^0\|_{L^2}^2 e^{\frac{\nu}{2} \int_0^t \|w_k\|_{X^{-1}}^2}.
\]

Combining the above inequality and Lemma 2.2, we can deduce that \(v_k \in L^4(\mathbb{R}^+, X^{-1}(\mathbb{R}^3))\), and

\[
\int_0^\infty \|v_k\|_{X^{-1}}^4 \leq \int_0^\infty \|v_k\|_{L^2}^2 \|\nabla v_k\|_{L^2}^2 \leq \nu^{-1} \|v_k^0\|_{L^2}^2 e^{\frac{\nu}{2} \int_0^t \|w_k\|_{X^{-1}}^2}.
\]

By continuity of \(v_k\) in \(X^{-1}(\mathbb{R}^3)\), there is a time \(t_0\) such that \(\|v_k(t_0)\|_{X^{-1}} < \varepsilon/2\). Using equation (3.2), we get

\[
\|u(t_0)\|_{X^{-1}} \leq \|v_k(t_0)\|_{X^{-1}} + \|w_k(t_0)\|_{X^{-1}} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.
\]

Now, consider the Navier-Stokes system starting at \(t = t_0\) and using the global existence for the small initial data, we get

\[
\|u(t)\|_{X^{-1}} + (\nu - \varepsilon) \int_{t_0}^t \|\Delta u(\tau)\|_{X^{-1}} d\tau \leq \varepsilon, \forall t \geq t_0.
\]

Then, the desired result is proved.
4. Stability of global solutions

In this section we prove Theorem 1.4. This proof is done in two steps.

Step 1: Beginning by proving the following property: If u is a maximal solution of (NS) system with $u^0 \in \mathcal{X}^{-1}(\mathbb{R}^3)$ and T^* is the maximal time of existence. We know that $u \in C([0, T^*); \mathcal{X}^{-1}(\mathbb{R}^3)) \cap L^1_{loc}([0, T^*), \mathcal{X}^1(\mathbb{R}^3))$. We have, if $T^* < \infty$ then

\[\int_0^{T^*} \|u(t)\|_{\mathcal{X}^1} dt = \infty. \]

Indeed: Suppose that $\int_0^{T^*} \|u(t)\|_{\mathcal{X}^1} dt < \infty$. Let a time $T \in (0, T^*)$ such that $\int_T^{T^*} \|u(t)\|_{\mathcal{X}^1} dt < 1/2$. Lemma 2.1 gives, for all $t \in [T, T^*)$,

\[
\|u(t)\|_{\mathcal{X}^1} \geq \|u(T)\|_{\mathcal{X}^1} + \int_T^t \|u(s)\|_{\mathcal{X}^1} ds \\
\leq \|u(T)\|_{\mathcal{X}^1} + \frac{1}{2} \sup_{z \in [T, t]} \|u(z)\|_{\mathcal{X}^1}. \\
\]

We can deduce

\[\|u(s)\|_{\mathcal{X}^1} \leq 2\|u(T)\|_{\mathcal{X}^1}, \forall s \in [T, T^*). \]

Let $M = \sup_{z \in [T, T^*)} \|u(z)\|_{\mathcal{X}^1} < \infty$. We have

\[u(t') - u(t) = \nu \int_t^{t'} \Delta u - \int_t^{t'} \text{div} (u \otimes u) \]

Using Lemma 2.1 we get

\[
\|u(t') - u(t)\|_{\mathcal{X}^1} \leq \nu \int_t^{t'} \|u(s)\|_{\mathcal{X}^1} ds + \int_t^{t'} \|u(s)\|_{\mathcal{X}^1} \|u(s)\|_{\mathcal{X}^1} ds \\
\leq (\nu + M) \int_t^{t'} \|u(s)\|_{\mathcal{X}^1} ds \\
\]

where the RHT goes to zero as t and t' tends to T^*. Then $u(t)$ is a Cauchy type at T^*. As $\mathcal{X}^{-1}(\mathbb{R}^3)$ is Banach space, then there is an element u^* in $\mathcal{X}^{-1}(\mathbb{R}^3)$ such that $u(t) \to u^*$ in $\mathcal{X}^{-1}(\mathbb{R}^3)$ if t goes to T^*. Now, consider the Navier-Stokes system starting by u^*, using Theorem 1.2 we get a unique solution which extend u beyond to T^* which is absurd.

Step 2: Let $v \in C([0, T^*), \mathcal{X}^{-1}(\mathbb{R}^3))$ be the maximal solution of (NS) corresponding to the initial condition v^0. We want to prove $T^* = \infty$. Beginning by using Theorem 1.2 we get $v \in L^1_{loc}([0, T^*), \mathcal{X}^1(\mathbb{R}^3))$. Put $w = v - u$ and $w^0 = v^0 - u(0)$. We have

\[\partial_t w - \nu \Delta w + w.\nabla w + u.\nabla w + w.\nabla u = -\nabla P \]

or

\[\partial_t w - \nu \Delta w + \text{div} (w \otimes w) + \text{div} (u \otimes w) + \text{div} (w \otimes u) = -\nabla P. \]
Then, for $t \in [0, T^*)$
\[\|w(t)\|_{\chi^{-1}} + \nu \int_0^t \|w(t)\|_{\chi^1} \leq \|w^0\|_{\chi^{-1}} + (I) + (II)\]

where
\[(I) = \int_0^t \|\text{div} (w \otimes w)\|_{\chi^{-1}}\]
\[(II) = \int_0^t \|\text{div} (u \otimes w)\|_{\chi^{-1}} + \|\text{div} (w \otimes u)\|_{\chi^{-1}}.\]

Lemma 2.1 gives
\[(I) \leq \int_0^t \|w \otimes w\|_{\chi^0} \leq \int_0^t \|w\|_{\chi^{-1}} \|w\|_{\chi^1},\]
and
\[(II) \leq \int_0^t \|u \otimes w\|_{\chi^0} + \|w \otimes u\|_{\chi^0} \leq 2 \int_0^t \|u\|_{\chi^0} \|w\|_{\chi^{-1}} \|w\|_{\chi^1} \leq \frac{4}{\nu} \int_0^t \|u\|_{\chi^0}^2 \|w\|_{\chi^{-1}} + \frac{\nu}{4} \int_0^t \|w\|_{\chi^1}.\]

Then
\[\|w(t)\|_{\chi^{-1}} + \frac{3\nu}{4} \int_0^t \|w(t)\|_{\chi^1} \leq \|w^0\|_{\chi^{-1}} + \int_0^t \|w\|_{\chi^{-1}} \|w\|_{\chi^1} + \frac{2}{\nu} \int_0^t \|u\|_{\chi^0}^2 \|w\|_{\chi^{-1}}.\]

Put
\[T = \sup\{t \in [0, T^*), \sup_{z \in [0, t]} \|w(z)\|_{\chi^{-1}} < \frac{\nu}{4}\}.\]

For $t \in [0, T)$, we have
\[\|w(t)\|_{\chi^{-1}} + \frac{\nu}{2} \int_0^t \|w(t)\|_{\chi^1} \leq \|w^0\|_{\chi^{-1}} + \frac{2}{\nu} \int_0^t \|u\|_{\chi^0}^2 \|w\|_{\chi^{-1}}.\]

Gronwall Lemma yields
\[\|w(t)\|_{\chi^{-1}} + \frac{\nu}{2} \int_0^t \|w(t)\|_{\chi^1} \leq \|w^0\|_{\chi^{-1}} e^2 f_0^t \|g\|_{\chi^1}^2 \leq \|w^0\|_{\chi^{-1}} e^{\frac{2}{\nu} f_0^T \|g\|_{\chi^1}^2} < \frac{\nu}{8}.\]

Then $T = T^*$ and $\int_0^{T^*} \|w(t)\|_{\chi^1} < \infty$, therefore $T^* = \infty$ and the proof is finished.

REFERENCES

[1] M. Cannone, Harmonic analysis tools for solving the incompressible Navier-Stokes equations, Diterot Editeur, Paris, 1995.

[2] M. Cannone, Ondelettes, paraproduct et Navier-Stokes. Harmonic analysis tools for solving the incompressible Navier-Stokes equations, in: S. Friedlander, D. Serre (Eds), Handbook of Mathematical Fluid Dynamics, vol. 3, Elsevier, 2003.

[3] J.-Y. Chemin, Remarque sur l’existence globale pour le système de Navier-Stokes incompressible, SIAM J. Math. Anal. 26, no 2, pages 599-624, 2009.
[4] J.-Y. Chemin and I. Gallagher, Wellposedness and stability results for the Navier-Stokes in \mathbb{R}^3, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26, no 2, pages 599-624, 2009.

[5] H. Fujita and T. Kato, On the Navier-Stokes initial value problem I, Archive for rational mechanics and analysis 16, pages 269-315, 1964.

[6] I. Gallagher, D. Iftimie and F. Planchon, Non-blowup at large times and stability for global solutions to the Navier-Stokes equations, C. R. Acad. Sc. Paris, Ser. I334, pages 289-292, 2002.

[7] E. Hopf, Über die Anfangswertaufgabe für die hydrodinamischen Grundgleichungen, Math. Nach., 4, pages 213-231, 1951.

[8] T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations, Lecture Notes in Mathematics, 448, Springer-Verlag, pages 25-70, 1975.

[9] T. Kato, L^p-solutions of the Navier-Stokes equations in \mathbb{R}^m, with applications to weak solutions, Math. Z., 187, no 4, pages 471-480, 1984.

[10] H. Koch and D. Tataro, Well-posedness for the Navier-Stokes equations, Adv. Math., 157, no 1, pages 22-35, 2001.

[11] J. Leray, Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta mathematica, 63, no 1, pages 193-248, 1934.

[12] J. Leray, Essai sur le mouvement d’un liquide visqueux emplissant l’espace, Acta mathematica, 63, pages 22-25, 1933.

[13] Z. Lei and F. Lin, Global Mild Solutions of Navier-Stokes Equations, Communications on Pure and Applied Mathematics, Vol. LXIV, pages 1297-1304, 2011.

[14] F. Planchon, Global strong solutions in Sobolev or Lebesgue spaces to the incompressible Navier-Stokes Equations in \mathbb{R}^3, Ann. Ins. H. Poincaré Anal. Non Linéaire, 13, no 3, pages 319-336, 1996.

[15] Z. Zhang and Z. Yin, Global Well-posedness for the Generalized Navier-Stokes System, arXiv: 1306.3735v1 [math.Ap] 17 June 2013.

DEPARTMENT OF MATHEMATICS, COLLEGE OF SCIENCE, KING SAUD UNIVERSITY, RIYADH 11451, KINGDOM OF SAUDI ARABIA

E-mail address: jbennameur@ksu.edu.sa