Dioxin Receptor Expression Inhibits Basal and Transforming Growth Factor β-induced Epithelial-to-mesenchymal Transition*

Eva M. Rico-Leo 1,2, Alberto Alvarez-Barrientos 3, and Pedro M. Fernandez-Salguero 1,2

From the 1 Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias and the 2 Servicio de Técnicas Aplicadas a las Biociencias, Universidad de Extremadura, 06071 Badajoz, Spain

Background: The dioxin receptor (AhR) regulates cell migration and has a role in TGFβ activation.

Results: AhR expression inhibits basal and TGFβ-induced epithelial-to-mesenchymal transition (EMT).

Conclusion: AhR has an intrinsic role in EMT and cross talks with TGFβ.

Significance: The involvement of AhR in EMT can help explain its functions in organ homeostasis and tumor progression.

Recent studies have emphasized the role of the dioxin receptor (AhR) in maintaining cell morphology, adhesion, and migration. These novel AhR functions depend on the cell phenotype, and although AhR expression maintains mesenchymal fibroblasts migration, it inhibits keratinocytes motility. These observations prompted us to investigate whether AhR modulates the epithelial-to-mesenchymal transition (EMT). For this, we have used primary AhR+/+ and AhR−/− keratinocytes and NMuMG cells engineered to knock down AhR levels (sh-AhR) or to express a constitutively active receptor (CA-AhR). Both AhR+/− keratinocytes and sh-AhR NMuMG cells had increased migration, reduced levels of epithelial markers E-cadherin and β-catenin, and increased expression of mesenchymal markers Snail, Slug/Snaï2, vimentin, fibronectin, and α-smooth muscle actin. Consistently, AhR+/+ and CA-AhR NMuMG cells had reduced migration and enhanced expression of epithelial markers. AhR activation by the agonist FICZ (6-formylindolo[3,2-b]carbazole) inhibited NMuMG migration, whereas the antagonist α-naphthoflavone induced migration as did AhR knockdown. Exogenous TGFβ exacerbated the promigratory mesenchymal phenotype in both AhR-expressing and AhR-depleted cells, although the effects on the latter were more pronounced. Rescuing AhR expression in sh-AhR cells reduced Snail and Slug/Snaï2 levels and cell migration and restored E-cadherin levels. Interference of AhR in human HaCaT cells further supported its role in EMT. Interestingly, co-immunoprecipitation and immunofluorescence assays showed that AhR associates in common protein complexes with E-cadherin and β-catenin, suggesting the implication of AhR in cell-cell adhesion. Thus, basal or TGFβ-induced AhR down-modulation could be relevant in the acquisition of a motile EMT phenotype in both normal and transformed epithelial cells.

The aryl hydrocarbon receptor (AhR) is a basic-helix-loop-helix (bHLH) transcription factor (1) well known for its relevant role in xenobiotic-induced toxicity and carcinogenesis and, more recently, for its implication in different cellular processes including proliferation, differentiation, cell adhesion, and migration and organ homeostasis (2–6). Cell morphology, adhesion, and migration are essential cell properties requiring endogenous AhR activity. AhR exerts a differential effect on cell motility depending on the mesenchymal, epithelial, or endothelial phenotype of the target cell. Thus, immortalized and embryonic primary murine fibroblasts lacking AhR have spread morphology and impaired adhesion and migration (7–9). Contrary to mesenchymal fibroblasts, AhR knockout in epidermal keratinocytes increases their motility and migration both in vitro and in vivo (10). In additional cell types such as primary mouse endothelial cells (11) and CD4+ CD8+ thymocytes (4, 12), AhR activation promoted cell migration to newly formed blood vessels and to the spleen, respectively. The fact that AhR depletion increased primary keratinocytes migration and improved wound healing in vivo led us to suggest that AhR could be involved in the epithelial-to-mesenchymal transition (EMT).

EMT is a phenotypic switch that permanently or transiently converts epithelial cells into motile mesenchymal-like cells. During this process, epithelial cells suffer a spectrum of changes that affect their adhesion to neighboring cells and to the substratum, their migration, and their normal functioning (13). EMT is essential during embryonic development and in tissue repair, although a large body of evidence indicates that it also contributes to pathology (13–15). Because EMT enables epithelial cells with migration and invasion capabilities, it is generally accepted that it contributes to the early stages of tumor metastasis (15, 16). Among the EMT features that are conserved in most epithelial cell types are the repression of the

*This work was funded by grants from the Spanish Ministry of Science and Innovation (SAF2008-00462 and BFU2011-22678), the Red Temática de Investigación Cooperativa en Cáncer, Fondo de Investigaciones Sanitarias, Carlos III Institute, Spanish Ministry of Health (RD06/0020/1016 and RD12/0036/0032), and the Junta de Extremadura (GRU10008). All Spanish funding was co-sponsored by the European Union FEDER (Fondo Europeo de Desarrollo Regional) program.

1 Supported by the Red Temática de Investigación Cooperativa en Cáncer.

2 To whom correspondence should be addressed. Tel.: 34924289422; Fax: 34924289419; E-mail: pmfersal@unex.es.

3 The abbreviations used are: AhR, dioxin receptor; EMT, epithelial-to-mesenchymal transition; α-naph, α-naphthoflavone; CA-AhR, constitutively active AhR receptor; E-Cad and N-Cad, E-cadherin and N-cadherin, respectively; β-Cat, β-catenin; FICZ, 6-formylindolo[3,2-b]carbazole; sh-AhR, small-hairpin for AhR; TER, trans-epithelial resistance; qRT, quantitative real-time; EV, empty vector.
AhR Expression Blocks EMT

AhR is a negative regulator of EMT and suggest that metastasis process. These results support a mechanism by which AhR deficiency seems to cooperate with TGF-β/N-cadherin (Calbiochem); AhR (Immunostep and Biomol); TGF-β (R&D Systems); p-Smad2 (Cell Signaling); Slug/Sna12 (Santa Cruz); N-cadherin (Invitrogen); fibronectin (Chemicon), vimentin, α-smooth muscle actin, and β-actin (Sigma). The AhR agonist 6-formylindolo[3,2-b]carbazole (FICZ) was from Enzo, and the AhR antagonist α-naphthoflavone (α-naph) was from Sigma. The pharmacological inhibitor of the TGF-β pathway SB431542 was from Selleckchem. Rhodamine-phalloidin was from Invitrogen. Matrigel solution was from BD Biosciences. TaqDNA polymerase was from EcoGen. iScript reverse transcription supermix and SYBR Green master mix were obtained from Bio-Rad. Small hairpin RNA was from Sigma. Small interfering RNA for AhR and scrambled siRNA were synthesized by Dharmacon. The constitutively active form of the AhR (CA-AhR) was produced from the wild type mouse receptor by deleting the minimal PAS-B motif (amino acids 288–421) without altering the N-terminal half of the binding domain (PAS-A). This constitutively active receptor heterodimerizes with ARNT and has intrinsic transcriptional activity in a ligand-independent manner (34). Recombinant human TGF-β (Sigma) was added to the cultures at 10 ng/ml (primary keratinocytes and HaCaT cells) or 5 ng/ml (NMuMG cells). Control cultures were treated with the same volume of solvent (PBS).

Retroviral Transduction—NMuMG cells were stably transduced with expression vectors containing a small hairpin RNA for AhR (sh-AhR) or a constitutively active form of the protein (CA-AhR) as described (Stanford University Medical Center). In brief, constructs LMP-sh-AhR, pBABE-CA-AhR, or the empty vectors pBABE+LMP were transducted by calcium phosphate precipitation in Phoenix cells, and virus production was allowed for 48 h. NMuMG cells were exposed overnight to the viral supernatants, and 48 h later selection was started with 1 μg/ml puromycin for 14 days. Individual clones surviving selection were isolated by cell sorting and then analyzed for AhR expression by immunoblotting or for the Cyp1a1 AhR target gene by qRT-PCR.

Transient Transfection and RNA Interference—NMuMG cells were transiently transduced using the Turbofect reagent (Fermentas). Briefly, the DNA was incubated for 15 min at room temperature with Turbofect, and the mix was added to the cells in complete medium. After 24 h–48 h of transfection, cultures were processed and analyzed. HaCaT cells were trans-
AhR Expression Blocks EMT

AhR Knockdown Induces EMT under Basal Cell Conditions—To analyze the role of AhR in EMT under normal cellular conditions, we have used primary keratinocytes from AhR+/+ and AhR−/− mouse pups and NMuMG epithelial cells engineered by retroviral transduction to encode a small hairpin RNA for AhR (sh-AhR) or a constitutively active AhR receptor (CA-AhR). NMuMG cells were also transduced with an empty retrovirus to account for the basal AhR expression. After antibiotic selection, clones carrying each of those constructs were isolated. Immunoblotting analysis with an AhR-specific antibody revealed a marked knockdown of the endogenous AhR expression in the sh-AhR cell line (supplemental Fig. S1A). Constitutively active AhR was ectopically expressed in CA-AhR cells, and it was functional as determined by the increase in mRNA expression observed for its canonical target gene Cyp1a1 (supplemental Fig. S1B).

EMT is generally followed by a change in morphology toward a mesenchymal-like phenotype in parallel with a switch in the pattern of expression of cell adhesion molecules and their regulators. AhR depletion significantly reduced the circularity of NMuMG cells, inducing a more elongated morphology, whereas AhR over-activation further stressed their circular pattern of expression of cell adhesion molecules and their regulators. AhR depletion significantly reduced the circularity of NMuMG cells, inducing a more elongated morphology, whereas AhR over-activation further stressed their circular pattern of expression of cell adhesion molecules and their regulators. AhR depletion significantly reduced the circularity of NMuMG cells, inducing a more elongated morphology, whereas AhR over-activation further stressed their circular pattern of expression of cell adhesion molecules and their regulators. AhR depletion significantly reduced the circularity of NMuMG cells, inducing a more elongated morphology, whereas AhR over-activation further stressed their circular pattern of expression of cell adhesion molecules and their regulators. AhR depletion significantly reduced the circularity of NMuMG cells, inducing a more elongated morphology, whereas AhR over-activation further stressed their circular pattern of expression of cell adhesion molecules and their regulators. AhR depletion significantly reduced the circularity of NMuMG cells, inducing a more elongated morphology, whereas AhR over-activation further stressed their circular pattern of expression of cell adhesion molecules and their regulators.

EMT is generally followed by a change in morphology toward a mesenchymal-like phenotype in parallel with a switch in the pattern of expression of cell adhesion molecules and their regulators. AhR depletion significantly reduced the circularity of NMuMG cells, inducing a more elongated morphology, whereas AhR over-activation further stressed their circular pattern of expression of cell adhesion molecules and their regulators. AhR depletion significantly reduced the circularity of NMuMG cells, inducing a more elongated morphology, whereas AhR over-activation further stressed their circular pattern of expression of cell adhesion molecules and their regulators. AhR depletion significantly reduced the circularity of NMuMG cells, inducing a more elongated morphology, whereas AhR over-activation further stressed their circular pattern of expression of cell adhesion molecules and their regulators. AhR depletion significantly reduced the circularity of NMuMG cells, inducing a more elongated morphology, whereas AhR over-activation further stressed their circular pattern of expression of cell adhesion molecules and their regulators. AhR depletion significantly reduced the circularity of NMuMG cells, inducing a more elongated morphology, whereas AhR over-activation further stressed their circular pattern of expression of cell adhesion molecules and their regulators.

EMT is generally followed by a change in morphology toward a mesenchymal-like phenotype in parallel with a switch in the pattern of expression of cell adhesion molecules and their regulators. AhR depletion significantly reduced the circularity of NMuMG cells, inducing a more elongated morphology, whereas AhR over-activation further stressed their circular pattern of expression of cell adhesion molecules and their regulators. AhR depletion significantly reduced the circularity of NMuMG cells, inducing a more elongated morphology, whereas AhR over-activation further stressed their circular pattern of expression of cell adhesion molecules and their regulators. AhR depletion significantly reduced the circularity of NMuMG cells, inducing a more elongated morphology, whereas AhR over-activation further stressed their circular pattern of expression of cell adhesion molecules and their regulators. AhR depletion significantly reduced the circularity of NMuMG cells, inducing a more elongated morphology, whereas AhR over-activation further stressed their circular pattern of expression of cell adhesion molecules and their regulators. AhR depletion significantly reduced the circularity of NMuMG cells, inducing a more elongated morphology, whereas AhR over-activation further stressed their circular pattern of expression of cell adhesion molecules and their regulators. AhR depletion significantly reduced the circularity of NMuMG cells, inducing a more elongated morphology, whereas AhR over-activation further stressed their circular pattern of expression of cell adhesion molecules and their regulators.
AhR Expression Blocks EMT

AhR NMuMG cells with the TGFβ-RI inhibitor SB431542. SB431542 was effective in blocking TGFβ-dependent signaling in this cell line, as determined by a significant reduction in Smad2 phosphorylation (Fig. 2D). SB431542 increased E-Cad expression (Fig. 2D), suggesting that enhanced TGFβ signaling could contribute to the EMT-like features observed under absent or reduced AhR expression.

Because E-Cad is regulated by transcription factors Snail and Slug/Sna12 (20, 21), we next investigated if their expression was AhR-dependent. As shown in Fig. 3A, AhR knockdown significantly increased Slug/Sna12 mRNA expression in NMuMG cells (upper panel) and in primary keratinocytes (lower panel); Snail expression was largely increased in primary cells (lower panel) but only marginally in NMuMG cells (upper panel). Consistently, constitutive AhR activation diminished Slug/Sna12 and Snail mRNA levels in NMuMG cells (Fig. 3A). Immunocytochemical analysis showed that Slug/Sna12 and Snail were barely detectable in wild type and CA-AhR NMuMG cells but significantly expressed in sh-AhR cells (Fig. 3B). These data support that AhR represses Slug/Sna12 and Snail and maintains the expression and localization of E-Cad at the plasma membrane.

We then explored if the mesenchymal-like status of sh-AhR NMuMG cells affected their clonogenic and migratory potentials. Experiments in two dimensions (2-D) cultures revealed that AhR knockout produced a larger number of clones that were significantly more spread and that contained mesenchymal-like cells readily moving out from the periphery (Fig. 4A).
AhR Expression Blocks EMT

sh-AhR NMuMG cells grown in three dimensions (3-D) cultures also formed more and larger clones than wild type (EV) and CA-AhR cells (Fig. 4B). The EMT generally induces a pro-migratory phenotype (15) that can be associated to the clonogenic potential of the cell. Wound healing experiments indicated that sh-AhR NMuMG cells had a moderate increase in migration with respect to wild type (EV) cells, unlike CA-AhR cells, which had a significantly reduced motility as compared with both EV and sh-AhR cells (Fig. 5A). Likewise, primary AhR+/− keratinocytes had increased migration rates with respect to AhR+/+ cells (Fig. 5B). Thus, the EMT process induced by AhR depletion concurs with enhanced migration and increased clonogenic potential.

Pharmacological Modulation of AhR Affects EMT Markers and Epithelial Cell Migration—These results suggested that non-toxic (e.g. potentially endogenous) molecules known to regulate AhR could be potential EMT modulators. To address this issue, we have investigated the effects of the AhR antagonist α-naphthoflavone (38) and of the potential AhR endogenous ligand derived from tryptophan FICZ (39, 40) on relevant EMT parameters (Fig. 6). FICZ was an efficient AhR agonist in NMuMG cells markedly inducing Cyp1a1 mRNA expression (Fig. 6A). Although its effects on fibronectin protein levels were only slight, FICZ significantly increased E-Cad levels (Fig. 6B) and inhibited cell migration in wound healing assays (Fig. 6C). Treatment of NMuMG cells with the antagonist α-naph, on the contrary, reduced AhR levels and increased fibronectin expression while diminishing E-Cad amounts (Fig. 6D). Regarding its effects on migration, α-naph increased the ability of NMuMG cells to close wounds and to spread out at the margin of the wounds (Fig. 6E and insets). These results support our hypothesis that increasing AhR activity by an endogenous ligand inhibits EMT-like processes, whereas blockade of AhR enhances EMT properties in epithelial cells.

AhR Knockdown Has Synergistic Effects with TGFβ in EMT—Considering the results above, we decided to address how knockdown or constitutive activation of AhR affected cell response to exogenous TGFβ. In wild type NMuMG cells,
TGFβ induced a mesenchymal-like morphology that was exacerbated in sh-AhR but not in CA-AhR cells (Fig. 7A). Immunoblot analysis of EMT markers confirmed the lower basal levels of E-Cad and the higher amounts of fibronectin in sh-AhR cells (Fig. 7, B–D). TGFβ treatment reduced E-Cad to almost undetectable levels in sh-AhR cells, although a significant reduction was also observed in CA-AhR cells (Fig. 7, B and D). Fibronectin content was enhanced by 48 and 72 h of TGFβ treatment in all cell lines (Fig. 7, B and C). Interestingly, TGFβ reduced AhR protein levels in all three cell lines, particularly in EV and CA-AhR cells (Fig. 7E). Primary keratinocytes from AhR-null mice treated with TGFβ grew as more elongated cells with loosen cell-cell interactions (Fig. 7F). E-Cad protein levels were adversely affected by TGFβ in both primary cell lines, reaching very low levels in AhR−/− cells (Fig. 7, G and I). α-Smooth muscle actin was overexpressed in AhR−/− cells and remained unchanged after TGFβ treatment (Fig. 7G); fibronectin expression, on the other hand, increased upon TGFβ addition in AhR-
FIGURE 5. AhR expression modulates cell migration in epithelial cells. Wild type (EV), sh-AhR, and CA-AhR NMuMG cells (A) or primary AhR+/+ and AhR−/− keratinocytes (B) were grown to confluence, and their ability to migrate was analyzed in wound healing assays after 48 h. The experiments were done in triplicate in three independent cultures of each genotype. Data are shown as the mean ± S.D. Bar, 200 μm. A.U., arbitrary units.

FIGURE 6. Pharmacological modulation of AhR alters EMT markers and epithelial cell migration. A, wild type NMuMG cells were treated with the AhR endogenous agonist FICZ (5 nM) for 16 h, and Cyp1a1 mRNA expression was analyzed by real-time RT-PCR. The expression of Gapdh was used to normalize gene expression. B, protein expression of fibronectin and E-Cad was analyzed at different times of FICZ treatment by immunoblotting. β-Actin was used as normalization control. C, cells were treated with FICZ for 48 h and then used to analyze migration in wound healing assays. A.U., arbitrary units. D, wild type NMuMG cells were exposed to the AhR antagonist α-naph (50 μM) for the indicated times. Protein levels of fibronectin, E-Cad, and AhR were determined by immunoblotting. β-Actin was used as normalization control. E, cell migration in wound healing assays was also analyzed in cells treated with α-naph for 48 h. Inset, higher magnification of cells at the leading edge of migration. The experiments were done in duplicate in three independent cultures of each genotype. Data are shown as the mean ± S.D. Bar, 200 μm. Statistical significance: *, p < 0.05; **, p < 0.001; ***, p < 0.0001.
null keratinocytes (Fig. 7, G and H). Similarly to NMuMG cells, TGFβ also reduced AhR protein amounts in AhR+/+ cells (Fig. 7, G and J). Confocal microscopy was used to analyze by immunocytochemistry the pattern of EMT regulators in NMuMG cells and in primary keratinocytes exposed to TGFβ (Fig. 8). E-Cad staining was reduced and delocalized from the plasma membrane in sh-AhR NMuMG cells, and such a pattern was stressed by 48 h treatment with TGFβ (Fig. 8A). The well-defined membrane location of E-Cad was disturbed by the cytokine in wild type (EV) and CA-AhR cells, although to a lesser degree than in AhR-depleted cells. F-actin was enhanced by TGFβ to a similar extent in each cell line despite its higher basal levels in sh-AhR cells (Fig. 8A). Primary keratinocytes responded alike to TGFβ, delocalizing E-Cad from the plasma membrane and increasing F-actin fibers content, although as for NMuMG cells, both effects were more apparent in AhR−/− than in AhR+/+ cells (Fig. 8B). We subsequently examined how AhR expression modulates the effects of TGFβ on Snail and Slug/Snai2. In agreement with the effects seen on E-Cad, TGFβ increased Snail mRNA levels in sh-AhR, wild type (EV) and CA-AhR NMuMG cells (Fig. 9A, left panel). Despite its higher basal levels in sh-AhR cells, Slug/Snai2 was not significantly induced by TGFβ treatment in either cell line (Fig. 9A, right panel). Similar results were also found for primary keratinocytes, in which TGFβ increased their Snail mRNA levels (with a delayed kinetics in AhR−/− with respect to AhR+/+ cells) with-
out significantly affecting Slug/Snai2 mRNA (Fig. 9B). Wound healing assays revealed no significant differences in migration between NMuMG cell lines by TGFβ treatment (Fig. 10A), whereas TGFβ markedly enhanced migration rates in AhR knockout primary keratinocytes with respect to wild type cells (Fig. 10B). Altogether, these results suggest that AhR expression counteracts the EMT-like phenotype induced by TGFβ.

The antagonism between TGFβ and AhR in EMT was also investigated in the human HaCaT cell line. TGFβ altered EMT markers, promoting a mesenchymal-like morphology with a reduction in E-Cad levels and an increase in fibronectin and F-actin contents (Fig. 11A). Interestingly, TGFβ reduced AhR levels in HaCaT cells (Fig. 11A, right panel), which is consistent with the effects found in NMuMG and primary keratinocytes. TGFβ increased Snail and Slug/Snai2 mRNA levels in basal HaCaT cells, whereas transient AhR knockdown (si-AhR) slightly enhanced Snail without a significant change in Slug/Snai2 expression (Fig. 11B). TGFβ treatment of si-AhR cells markedly increased both Snail and Slug/Snai2 mRNAs (Fig. 11B). Because TGFβ reduced AhR levels in HaCaT cells (Fig. 11A, right panel), it is likely that the cytokine acts synergistically with AhR knockdown in inducing EMT. Indeed, AhR depletion by si-AhR not only reduced E-Cad protein levels in basal HaCaT cells but also enhanced the effects of TGFβ (Fig. 11C).

The causal role of AhR in EMT was analyzed by rescue experiments in which the CA-AhR construct was transfected in sh-AhR HaCaT cells. TGFβ treatment of these cells markedly increased both Snail and Slug/Snai2 mRNAs (Fig. 11B). Because TGFβ reduced AhR levels in HaCaT cells (Fig. 11A, right panel), it is likely that the cytokine acts synergistically with AhR knockdown in inducing EMT. Indeed, AhR depletion by si-AhR not only reduced E-Cad protein levels in basal HaCaT cells but also enhanced the effects of TGFβ (Fig. 11C).
AhR NMuMG cells (Fig. 12). CA-AhR efficiently restored AhR expression and activity in sh-AhR cells as determined by immunoblotting and qRT-PCR for the canonical target gene *Cyp1a1* (Fig. 12A). Although under these conditions E-Cad was only slightly modified, CA-AhR significantly reduced fibronectin levels (Fig. 12B) and *Snail* and Slug/Snaï2 mRNA expression (Fig. 12C). The apparent mild increase in E-Cad observed under *Snail* and Slug/Snaï2 repression in CA-AhR-rescued cells

AhR Expression Blocks EMT

FIGURE 9. TGFβ increases the expression of Snail and Slug/Snaï2 in NMuMG cell lines and primary keratinocytes. Wild type (EV), sh-AhR, and CA-AhR NMuMG cell lines (A) or primary AhR+/+ and AhR−/− keratinocytes (B) were left untreated (control) or treated with TGFβ for 48 h or 72 h, and the mRNA expression of *Snail* and Slug/Snaï2 was quantified by qRT-PCR. mRNA levels were normalized by the expression of Gapdh and referred to the expression of untreated control cells (EV or AhR+/+). Three different cultures of each genotype were analyzed in triplicate experiments. Data are shown as the mean ± S.D.

FIGURE 10. Effect of TGFβ on the migratory potential of NMuMG cell lines and primary keratinocytes. Wound healing experiments were performed in wild type (EV), sh-AhR, and CA-AhR cell lines (A) or in primary AhR+/+ and AhR−/− keratinocytes (B) treated with TGFβ for 48 h. Cell migration was quantified using the ImageJ software (Version 1.45S). The experiments were done in triplicate in at least three different cultures of each genotype (three wounds per experiment). Data are shown as the mean ± S.D. Bar, 200 μm. A.U., arbitrary units.
could derive from slow accumulation kinetics not fully addressed in the 48-h time frame of the experiment. Yet in vitro wound healing showed that CA-AhR was able to reduce the migration potential of sh-AhR cells (Fig. 12D). Therefore, AhR re-expression can partially reestablish EMT markers and impair the migration of cells undergoing EMT by AhR down-modulation.

AhR Associates to E-Cad and β-Cat in NMuMG Epithelial Cells—The mechanisms by which AhR participates in signaling pathways controlling EMT are practically unknown. One possibility is that AhR interacts with the function of molecules maintaining cell-cell adhesions such as E-Cad and β-Cat. Co-immunoprecipitation experiments for AhR showed that it was associated in a common protein complex with both E-Cad and β-Cat.

FIGURE 11. TGFβ induces EMT in HaCaT cells and alters AhR expression. A, human HaCaT cells were left untreated or treated with TGFβ for 48 h or 72 h, and the expression of E-cad and F-actin was determined by confocal microscopy (left panel). Protein expression of E-cad, fibronectin, and AhR was also determined by immunoblotting using specific antibodies (right panel). B, the effects of TGFβ, a siRNA against AhR (si-AhR), or both on Snail and Slug/Snaï2 mRNA expression were analyzed by qRT-PCR. mRNA levels were normalized by the expression of Gapdh and referred to the expression of control cells (EV). C, the effects of TGFβ on the expression of EMT markers in the absence or presence of a si-AhR were also analyzed by immunoblotting. The expression of β-actin was used to normalize protein levels. Three experiments were performed in at least three independent HaCaT cultures. Data are shown as mean ± S.D. Bar, 50 μm. Statistical significance: * p < 0.05, ** p < 0.001, *** p < 0.0001.
β-Cat in wild type (EV) and CA-AhR NMuMG cells (Fig. 13A). Consistently, E-Cad was also able to co-immunoprecipitate with AhR in both cell lines (Fig. 13B). For β-Cat, co-immunoprecipitation with AhR was more evident in CA-AhR than in wild type (EV) cells (Fig. 13C), although the presence of AhR in the immunoprecipitates was reproducibly observed in the latter. The plausible association of AhR in a common protein complex with E-Cad and β-Cat gained additional support by confocal microscopy analysis. As shown in Fig. 13D, AhR co-localized with both E-Cad and β-Cat at the periphery of NMuMG cells (yellow color in merge panels). Thus, one likely mechanism for AhR to modulate EMT is through interaction with proteins preserving epithelial integrity and cell-cell interactions. In addition, the fact that the constitutively active AhR did not show an increased association to E-Cad suggests that AhR could modulate additional signaling pathways unrelated to its intrinsic transcriptional activity.

DISCUSSION

The interest in understanding the physiological functions of AhR has significantly increased as recent studies have anticipated an important and perhaps causal role of this receptor in reproduction and organ homeostasis (6). In addition to the control of cell cycle and cell proliferation (28, 41, 42), cell adhesion and migration are recognized as important cellular functions requiring AhR activity (43). This assumption is partially based on *in vitro* studies using MCF-7 breast tumor cells (44–46), thymocytes (4, 12, 47), and hematopoietic stem cells (48).
AhR Expression Blocks EMT

AhR associates in a common protein complex with E-cad and β-cat in NMuMG cells. A, AhR was immunoprecipitated (IP) in wild type (EV), sh-AhR, and CA-AhR NMuMG cell lines, and the amounts of associated E-cad and β-cat were determined by immunoblotting using specific antibodies. AhR association to E-cad (E) and β-cat (C) was also determined in E-cad and β-cat immunoprecipitates, respectively. Total cell lysates are shown on the right side of panels A, B, and C, D, the pattern of association of AhR to E-cad and β-cat was analyzed by confocal microscopy. Merge for each pair of proteins is shown on the right panel. Determinations were done in triplicate in three independent cultures of each genotype. Bar, 30 μm.

related to such a scenario is the epithelial-to-mesenchymal transition that provides epithelial cells with some, but generally not all, mesenchymal characteristics of a migratory cell (13, 15, 50).

In this study we have decided to investigate if the cellular levels of AhR are enough to block EMT and if this receptor antagonizes the effects of TGFβ. The latter hypothesis is based on previous studies revealing a cross-regulation between AhR and TGFβ in epithelial cells (10, 32) and mesenchymal fibroblasts (28, 30, 31).

Cell morphology is closely related and, in a large part dependent, on cell-cell and cell-substratum interactions (51). As a result, changes in cell attachment largely influence cell migration and can be relevant in processes such as EMT (52). AhR expression affects epithelial cell morphology as receptor depletion in NMuMG cells induced a mesenchymal-like phenotype that was AhR-dependent because it was also observed in primary AhR−/− keratinocytes but not in NMuMG cells having a constitutively active receptor. The mesenchymal-like morphology of AhR knockout/knockdown cells apparently reduced the strength of their cell-cell interactions as revealed by their lower trans-epithelial resistance when grown at confluence. Based on these results, we considered the possibility that AhR down-modulation could alter the expression of proteins maintaining epithelial identity. In AhR-interfered NMuMG cells and primary AhR-null keratinocytes, epithelial markers E-Cad and β-Cat were significantly reduced, whereas mesenchymal markers fibronectin, vimentin, α-smooth muscle actin, and F-actin were increased, suggesting that AhR expression could impair EMT under normal cellular conditions and in the absence of exogenous stimuli. Additional sets of data strengthen this conclusion. First, a constitutively active CA-AhR was able to rescue epithelial markers and to inhibit cell migration in AhR-depleted cells, showing that AhR has a causal role in the EMT phenotype. Second, AhR appears to be associated to and to co-localize with E-Cad and β-Cat in the periphery of NMuMG cells, indicating that AhR deficiency could enhance EMT-dependent cell migration through altered cell-cell adhesion. In agreement with these results, early studies showed that AhR becomes induced in 10T1/2 fibroblasts after de-assembling of cell-cell contacts (53). Finally, the increased migration of AhR knockdown cells is consistent with the more efficient wound healing found in AhR-null mice due to increased keratinocyte migration (10). Importantly, the fact that AhR inhibition by the antagonist α-naph switched E-Cad, fibronectin, and migration to a pattern similar to that of both AhR−/− and sh-NMuMG cells, strongly support that AhR depletion favors an EMT-like phenotype. Moreover, the effects induced by the potential endogenous AhR ligand FICZ not only indicate that AhR expression could impair EMT but also offer the possibility to block EMT by pharmacological modulation of AhR activity.

Interestingly, although AhR knockout/knockdown homogeneously affects most EMT markers, constitutive AhR activation produces a more variable phenotype that significantly alters such markers as E-Cad and fibronectin but that does not significantly influence cell morphology, TER, or β-Cat levels. Although more extensive studies need to be done, it is probable that AhR functionally interacts with different signaling pathways requiring increased transcriptional activity of the recep-
AhR Expression Blocks EMT

tor. Alternatively, wild type AhR activity could suffice to repress certain EMT markers, thus attenuating the potential effects of constitutive AhR activation.

It is generally accepted that the initial steps in EMT require the induction of the E-Cad transcriptional repressors Snail and/or Slug/Snai2 (19–21, 54). The reduced levels of E-Cad in AhR-depleted cells was accompanied by a significant increase in Snail and Slug/Snai2 expression, further supporting that a lack of AhR induces an EMT-like phenotype. Indeed, AhR deficiency increased clonogenicity, spreading and migration of epithelial cells, demonstrating that AhR is functionally relevant in EMT. The link between AhR and Slug/Snai2 appears likely as we have found that both proteins cooperate to repress the expression of genes harboring a novel murine SINE B1-X35S retrotransposon in their promotors (55). In addition, treatment of rat mammary cells with the tumor promoter DMBA (7,12-dimethylbenz(a)anthracene) induced EMT by activating c-Rel/CK2-dependent signaling and the downstream target proteins AhR and Slug/Snai2 (56). Although this study suggests that Slug/Snai2 can be a putative AhR target gene, our data clearly indicate that steady AhR knockdown significantly increases Slug/Snai2 expression, represses E-Cad, and promotes cell migration, in agreement with an EMT process. Interestingly, Slug/Snai2 was similarly induced in sh-AhR NMuMG and primary keratinocytes, whereas Snail induction was more significant in the latter, suggesting that the two proteins can be differentially affected by cell type-specific AhR expression. In support of such a possibility, we have found that the AhR-dependent B1-X35S retrotransposon has insulator activity when bound to Slug/Snai2 but not to Snail (37), and an additional study in MDCK epithelial cells has shown that Snail and Slug/Snai2 induce common as well as specific genetic programs during EMT (22).

TGFβ addition enhanced EMT features in AhR knockdown cells (sh-AhR NMuMG and primary keratinocytes) with respect to either wild type (EV and AhR+/+) keratinocytes) or constitutively active CA-AhR. This includes the repression of E-Cad and the induction of Snail, Slug/Snai2, fibronectin, and F-actin. Accordingly, TGFβ increased the migration of primary AhR+/− keratinocytes but not of sh-AhR NMuMG cells, perhaps because the addition of exogenous TGFβ to this cell line overrides the stimulatory effect induced by AhR depletion. The cross-talk between AhR and TGFβ in EMT was also observed in HaCaT cells in which AhR down-modulation potentiated the effects of TGFβ on Snail and Slug/Snai2 expression and on E-Cad repression. It has been shown (57) that short term (e.g. 1 h) treatment with the AhR ligand 3-methylcholanthrene of si-AhR-interfered HaCaT cells blocked Slug/Snai2 mRNA expression, a result differing from ours most probably because of the use of an exogenous ligand (versus none) and a much shorter time of treatment (1 versus 48 h). In fact, the increased response to exogenous TGFβ exhibited by AhR-depleted cells could help explain the effects seen under basal cell conditions. Immunoblotting experiments revealed that sh-AhR NMuMG cells and primary AhR+/− keratinocytes had slightly higher TGFβ protein content and markedly increased levels of activated pSmad2, suggesting that their basal EMT-like phenotype is at least partially due to enhanced TGFβ-dependent signaling. This possibility is in agreement with previous reports indicating that AhR negatively regulates TGFβ activation under basal cell conditions in mouse fibroblasts (8, 28, 30, 58), hepatocytes (59), and dermal fibroblasts (10). Therefore, TGFβ, by reducing AhR levels, could have synergistic activity in inducing molecular and phenotypical features of EMT in epithelial cells.

In summary, we propose that AhR deficiency in epithelial cells is enough to trigger morphological and phenotypical changes indicative of EMT, likely because of increased TGFβ signaling. Exogenous TGFβ further intensifies the EMT phenotype induced by AhR deficiency, probably because of its inhibitory role on AhR expression. This cross-talk could be relevant to the study of tumors in which AhR activity presumably varies during metastatic progression of the disease. In this context, several studies suggest that AhR has tumor suppressor activity and that certain human tumors tend to reduce their AhR expression. For instance, AhR expression was lowered by promoter hypermethylation in close to 35% of acute lymphoblastic leukemia patients (60). We have also found using tissue microarrays that AhR levels are significantly reduced in a large fraction of human glioblastomas and melanomas but not in low grade astrocytomas or benign nevi,4 again supporting an inhibitory role for this receptor in certain types of cancers. A recent study analyzing a panel of 947 human tumor cell lines identified AHR as a predictor of drug sensitivity associated with the efficacy of MEK inhibitors in NRAS-mutant lines (61).

Acknowledgments—We are very grateful to Drs. Alberto Muñoz, Xose R. Bustelo, and Jesús M. Paramio for technical assistance with TER measurements, retroviral transduction, and primary keratinocytes cultures, respectively. We also thank Drs. Antonio García de Herreros for the NMuMG cells and the anti-Snail antibody, Yoshiaki Fujii-Kuriyama for the CA-AhR construct, and Miguel Quintanilla for the HaCaT cell line. The technical help of Eva Barrasa is greatly appreciated. Support of the Servicio de Técnicas Aplicadas a las Biociencias of the Universidad de Extremadura is greatly acknowledged.

REFERENCES

1. Massari, M. E., and Murre, C. (2000) Helix-loop-helix proteins. Regulators of transcription in eucaryotic organisms. Mol. Cell. Biol. 20, 429–440
2. Abbott, B. D., Birnbaum, L. S., and Perdew, G. H. (1995) Developmental expression of two members of a new class of transcription factors. I. Expression of aryl hydrocarbon receptor in the C57BL/6N mouse embryo. Dev. Dyn. 204, 133–143
3. Barouki, R., Coumoul, X., and Fernandez-Salguedo, P. M. (2007) The aryl hydrocarbon receptor, more than a xenobiotic-interacting protein. FEBs Lett. 581, 3608–3615
4. Esser, C., Rannug, A., and Stockinger, B. (2009) The aryl hydrocarbon receptor in immunity. Trends Immunol. 30, 447–454
5. Furness, S. G., Lees, M. J., and Whitelaw, M. L. (2007) The dioxin (aryl hydrocarbon) receptor as a model for adaptive responses of bHLH/PAS transcription factors. FEBs Lett. 581, 3616–3625
6. Pohjanvirta, R. (2012) The Ah Receptor in Biology and Toxicology, John Wiley & Sons, New York
7. Carvajal-Gonzalez, J. M., Mulero-Navarro, S., Roman, A. C., Sauzeau, V., Merino, J. M., Bustelo, X. R., and Fernandez-Salguedo, P. M. (2009) The dioxin receptor regulates the constitutive expression of the vap3 proto-

4 E. M. Rico-Leo, M. Contador-Troca, I. Catalina-Fernández, A. Gómez-Durán, J. Sáenz-Santamaria, and P. M. Fernandez-Salguedo, unpublished observations.
AhR Expression Blocks EMT

oncogene and modulates cell shape and adhesion. Mol. Biol. Cell 20, 1715–1727
8. Gomez-Duran, A., Carvajal-Gonzalez, J. M., Mulero-Navarro, S., Santiagio-Josefat, B., Bose, R., Barrios-Rodiles, M., Wang, H. R., Zhang, Y., and Wrana, J. L. (2005) Regulation of the polarity protein Par6 by TGFβ receptors controls epithelial cell plasticity. Science 307, 1621–1625
9. Chang, X., Fan, Y., Karyala, S., Schwemmer, S., Tomlinson, C. R., Sartor, M. A., and Puga, A. (2007) Ligand-independent regulation of transforming growth factor β1 expression and cell cycle progression by the aryl hydrocarbon receptor. Mol. Cell. Biol. 27, 6127–6139
10. Gomes-Duran, A., Ballesta, E., Carvajal-Gonzalez, J. M., Marlowe, J. L., Puga, A., Esteller, M., and Fernandez-Salgueiro, P. M. (2008) Recruitment of CREB1 and histone deacetylase 2 (HDAC2) to the mouse Ltbp-1 promoter regulates its constitutive expression in a dioxin receptor-dependent manner. J. Biol. Chem. 283, 1–16
11. Gomes-Duran, A., Mulero-Navarro, S., Chang, X., and Fernandez-Salgueiro, P. M. (2006) LTBP-1 blockade in dioxin receptor-null mouse embryo fibroblasts decreases TGF-β activity. Role of extracellular proteases plasmin and elastase. J. Cell. Biochem. 97, 380–392
12. Santiago-Josefat, B., Mulero-Navarro, S., Dallas, S. L., and Fernandez-Salgueiro, P. M. (2004) Overexpression of latent transforming growth factor-β-binding protein 1 (LTBP-1) in dioxin receptor-null mouse embryo fibroblasts. J. Cell. Sci. 117, 849–859
13. Thiery, J. P., and Sleeman, J. P. (2006) Complex networks orchestrate wound healing in vivo by a mechanism involving TGFβ. J. Cell Sci. 122, 1823–1833
14. Radisky, D. C. (2005) Epithelial-mesenchymal transition. J. Cell Biol. 170, 548–558
15. Temchura, V. V., Frericks, M., Nacken, W., and Esser, C. (2005) Role of the aryl hydrocarbon receptor in thymocyte emigration in vivo. Eur. J. Immunol. 35, 2738–2747
16. Prall, F. (2007) Tumour budding in colorectal carcinoma. Histopathology 50, 151–162
17. Hata, K., and Fearon, E. R. (2002) Cadherin and catenin alterations in human cancer. Genes Chromosomes Cancer 34, 255–268
18. Huber, M. A., Krut, N., and Beug, H. (2005) Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr. Opin. Cell Biol. 17, 548–558
19. Battle, E., Sancho, E., Franci, C., Dominguez, D., Monfar, M., Baulida, J., and Garcia De Herreros, A. (2000) The transcription factor snail regulates its constitutive expression in a dioxin receptor-dependent manner. J. Cell Sci. 113, 1715–1727
20. Bagwell, C., Wahlstrom, N., Alsberg, T., Bergman, J., Rannug, A., and Rannug, U. (2009) The suggested physiologic aryl hydrocarbon receptor ligand 6-formylindolo[3,2-b]carbazole by liquid chromatography-mass spectrometry and NMR. Drug Metab. Dispos. 37, 233–241
21. B disagreed with the original statement and suggested a different approach.}

MARCH 15, 2013 • VOLUME 288 • NUMBER 11
JOURNAL OF BIOLOGICAL CHEMISTRY 7855
AhR Expression Blocks EMT

Coumoul, X. (2009) Nedd9/Hef1/Cas-L mediates the effects of environmental pollutants on cell migration and plasticity. *Oncogene* 28, 3642–3651

45. Diry, M., Tomkiewicz, C., Koehle, C., Coumoul, X., Bock, K. W., Barouki, R., and Tranzy, C. (2006) Activation of the dioxin/aryl hydrocarbon receptor (AhR) modulates cell plasticity through a JNK-dependent mechanism. *Oncogene* 25, 5570–5574

46. Seifert, A., Rau, S., Küllertz, G., Fischer, B., and Santos, A. N. (2009) TCDD induces cell migration via NFATc1/ATX-signaling in MCF-7 cells. *Toxicol. Lett.* 184, 26–32

47. Frericks, M., Burgoon, L. D., Zacharewski, T. R., and Esser, C. (2008) Promoter analysis of TCDD-inducible genes in a thymic epithelial cell line indicates the potential for cell-specific transcription factor crosstalk in the AhR response. *Toxicol. Appl. Pharmacol.* 232, 268–279

48. Casado, F. L., Singh, K. P., and Gasiewicz, T. A. (2011) Aryl hydrocarbon receptor activation in hematopoietic stem/progenitor cells alters cell function and pathway-specific gene modulation reflecting changes in cellular trafficking and migration. *Mol. Pharmacol.* 80, 673–682

49. Roman, A. C., Carvajal-Gonzalez, J. M., Mulero-Navarro, S., Gomez-Duran, A., Rico-Leo, E., Merino, J. M., and Fernandez-Salguero, P. M. (2012) in *The AH receptor in Biology and Toxicology* (Pohjanvirta, R., ed.) pp. 485–497, John Wiley & Sons, New York

50. Peinado, H., Olmeda, D., and Cano, A. (2007) Snail, Zeb, and bHLH factors in tumour progression. An alliance against the epithelial phenotype? *Nat. Rev. Cancer* 7, 415–428

51. Mitra, S. K., Hanson, D. A., and Schlaepfer, D. D. (2005) Focal adhesion kinase. In command and control of cell motility. *Nat. Rev. Mol. Cell Biol.* 6, 56–68

52. Li, S., Guan, J. L., and Chien, S. (2005) Biochemistry and biomechanics of cell motility. *Annu. Rev. Biomed. Eng.* 7, 105–150

53. Cho, Y. C., Zheng, W., and Jefcoate, C. R. (2004) Disruption of cell-cell contact maximally but transiently activates AhR-mediated transcription in 10T1/2 fibroblasts. *Toxicol. Appl. Pharmacol.* 199, 220–238

54. Barrallo-Gimeno, A., and Nieto, M. A. (2005) The Snail genes as inducers of cell movement and survival. Implications in development and cancer. *Development* 132, 3151–3161

55. Roman, A. C., Benitez, D. A., Carvajal-Gonzalez, J. M., and Fernandez-Salguero, P. M. (2008) Genome-wide B1 retrotransposon binds the transcription factors dioxin receptor and Slug and regulates gene expression *in vivo*. *Proc. Natl. Acad. Sci. U.S.A.* 105, 1632–1637

56. Belguise, K., Guo, S., Yang, S., Rogers, A. E., Seldin, D. C., Sherr, D. H., and Sonenshein, G. E. (2007) Green tea polyphenols reverse cooperation between c-Rel and CK2 that induces the aryl hydrocarbon receptor, slug, and an invasive phenotype. *Cancer Res.* 67, 11742–11750

57. Ikuta, T., and Kawajiri, K. (2006) Zinc finger transcription factor Slug is a novel target gene of aryl hydrocarbon receptor. *Exp. Cell Res.* 312, 3585–3594

58. Elizondo, G., Fernandez-Salguero, P., Sheikh, M. S., Kim, G. Y., Fornace, A. J., Lee, K. S., and Gonzalez, F. J. (2000) Altered cell cycle control at the G2/M phases in aryl hydrocarbon receptor-null embryo fibroblast. *Mol. Pharmacol.* 57, 1056–1063

59. Zaher, H., Fernandez-Salguero, P. M., Letterio, J., Sheikh, M. S., Fornace, A. J., Roberts, A. B., and Gonzalez, F. J. (1998) The involvement of aryl hydrocarbon receptor in the activation of transforming growth factor-β and apoptosis. *Mol. Pharmacol.* 54, 313–321

60. Mulero-Navarro, S., Carvajal-Gonzalez, J. M., Herranz, M., Ballestar, E., Fraga, M. F., Ropero, S., Esteller, M., and Fernandez-Salguero, P. M. (2006) The dioxin receptor is silenced by promoter hypermethylation in human acute lymphoblastic leukemia through inhibition of Sp1 binding. *Carcinogenesis* 27, 1099–1104

61. Barretina, J., Caponigro, G., Stranks, N., Venkatesan, K., Margolin, A. A., Kim, S., Wilson, C. J., Lehár, J., Kryukov, G. V., Sonkin, D., Reddy, A., Liu, M., Murray, L., Berger, M. F., Monahan, J. E., Morais, P., Meltzer, J., Korejwa, A., Jané-Valbuena, J., Mapa, F. A., Thibault, J., Bric-Furlong, E., Raman, P., Shipway, A., Engels, I. H., Cheng, J., Yu, G. K., Yu, J., Aspesi, P., Jr., de Silva, M., Jagtap, K., Jones, M. D., Wang, L., Hatton, C., Palescandolo, E., Gupta, S., Mahan, S., Sougnez, C., Onofrio, R. C., Liefeld, T., MacConaill, L., Winckler, W., Reich, M., Li, N., Mesirov, J. P., Gabriel, S. B., Getz, G., Ardile, K., Chan, V., Myer, V. E., Weber, B. L., Porter, J., Warmuth, M., Finan, P., Harris, I. L., Meyerson, M., Golub, T. R., Morrissey, M. P., Sellers, W. R., Schlegel, R., and Garraway, L. A. (2012) The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. *Nature* 483, 603–607