Half-Integer Filling Factor States in Quantum Dots

A. Harju,1, H. Saarikoski,2,1 and E. Räsänen3,1

1Laboratory of Physics, Helsinki University of Technology, P.O. Box 1100, FI-02015 HUT, Finland
2Kavli Institute of NanoScience, Delft University of Technology, 2628 CJ Delft, the Netherlands
3Institut für Theoretische Physik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany

(Dated: March 23, 2022)

Emergence of half-integer filling factor states, such as $\nu=5/2$ and 7/2, is found in quantum dots by using numerical many-electron methods. These states have interesting similarities and differences with their counterstates found in the two-dimensional electron gas. The $\nu=1/2$ states in quantum dots are shown to have high overlaps with the composite fermion states. The lower overlap of the Pfaffian state indicates that electrons might not be paired in quantum dot geometry. The predicted $\nu=5/2$ state has high spin polarization which may have impact on the spin transport through quantum dot devices. PACS: 71.10.-w, 73.21.La, 73.43.-f, 85.35.Be

The fractional quantum Hall state at filling factor $\nu=5/2$ in the two-dimensional electron gas (2DEG) is widely thought to be a Moore-Read state of p-wave paired electrons with unusual topological properties [1]. The state has recently attracted much theoretical interest together with other half-integer filling factor states, mainly due to proposals for using it in quantum computing [2]. The 2DEG $\nu=5/2$ state is expected to consist of two Landau levels (LL), where the filled lowest LL (0LL) is spin-compensated and the half-filled next LL (1LL) is spin polarized state described by a Pfaffian (PF) wave function [3]. This wave function explicitly describes the electron pairing which is analogous to that in the BCS theory of superconductivity. Due to the half-filling of 1LL at $\nu=5/2$, the properties of the $\nu=5/2$ state is usually analyzed using the $\nu=1/2$ state with an interaction Hamiltonian corrected for the screening effects of the electrons in the filled 0LL.

Unlike half-integer filling factor states in the 2DEG, the corresponding states in quantum dots (QD’s) have got almost no attention until now (see Ref. [4] for an exception). In this Letter we analyze the electronic structure of QD’s in magnetic fields and find new states which can be regarded as finite size counterparts of the half-integer filling factor states in the 2DEG. Since the emergence of fractional quantum Hall states is always a result of electron-electron interactions, we use numerical methods which can take into account the complex correlation effects in the system. The results indicate analogies but also important differences between the states in the half-integer filling factor range in the 2DEG and QD’s. The mean-field method predicts that due to the presence of an external confining potential in QD’s, the $\nu=5/2$ state appears as a mixture of $\nu=2$ and 3. We analyze also the internal structure of the many-body state at $\nu=1/2$ in QD’s and compare it to the PF wave function and the composite fermion (CF) model [5]. Unlike the CF model, which yields high overlaps with the exact state, the PF wave function is found to poorly describe the pure $\nu=1/2$ state and also the excited 1LL of the $\nu=5/2$ state in QD’s. Therefore, we find no evidence of electron pairing near half-integer LL fillings in QD’s. We finally discuss the impact of the $\nu=5/2$ state on the ground state energetics and on the spin transport through the QD and find that signatures of this state can be found, e.g., in magnetization measurements or electron tunneling experiments.

We define our QD system by an effective-mass Hamiltonian for N electrons

$$H = \sum_{i=1}^{N} \left[\frac{(\mathbf{p}_i + e\mathbf{A})^2}{2m^*} + V_c(r_i) + g^*\mu_B S_{z,i} \right] + \sum_{i<j}^{N} \frac{e^2}{4\pi\epsilon r_{ij}},$$

with material parameters for GaAs, i.e., $m^*=0.067$, $\epsilon/\epsilon_0=12.4$, and $g^*-0.44$. Unless stated otherwise, we apply a parabolic confining potential, $V_c(r) = m^*\omega_0^2 r^2/2$ with a strength $\hbar\omega_0 = 5.7N^{-1/7}$ meV. The N dependence in ω_0 is introduced to keep the electron density in the dot approximately constant. We solve the associated Schrödinger equation using the mean-field spin-density functional theory (SDFT) and the exact diagonalization (ED) method [6]. We use the SDFT to calculate the electronic structure of large quantum dots which are beyond reach of exact many-body method. The internal structure of the half-filled LL is then analyzed in detail with the ED method which is, however, restricted to fairly low electron numbers.

We analyze the polarization and occupations of the LL’s in large QD’s using the SDFT. We focus here on the filling factor regime $\nu \geq 2$. One finds that the filling factor for the finite electron systems is position dependent [6]. Even at integer filling factors (where most physics can be understood on a single-particle level), the 2DEG and QD’s have differences due to the overlapping of LL’s in QD’s in low magnetic fields. In QD’s we identify the integer ν as states, where the increasing magnetic field has emptied one of the LL’s completely of electrons. For example, $\nu=3$ corresponds to case where magnetic field has emptied 2LL and the spin-compensated 1LL has approximately one third of the electrons, the rest being at 0LL. In the 2DEG, 1LL is spin split at $\nu=3$ and has one spin channel fully occupied.
spin polarization in the core region of the dot. (c) Occupation

We find a peak in

is the

30, 48, and 60 electrons, respectively. Our starting point

to 0LL leaving 1LL totally spin polarized with angular

the spins anti-parallel to the magnetic field have fallen

In addition,

identify this state as a finite-size counterpart of

spin polarization of 1LL agrees with the expected spin

agreement with the calculated maximum spin polarization of the two largest dots in Fig. 1(a). This result is in accord with the results of Ciorga and coworkers who found the collapse of the spin singlet state in large QD’s at \(\nu = 2 \) (Ref. \(\text{[6]} \)).

The results at \(\nu = 5/2 \) can be generalized to larger particle numbers by assuming a spin compensated 0LL and polarized 1LL. The formula of \(\nu_{\text{ML}} \) (see Ref. \(\text{[7]} \)) gives \(S \approx N/10 \) for the spin polarization at \(\nu = 5/2 \), which is in a reasonable agreement with the calculated maximum spin polarization of the two largest dots in Fig. 1(a). As seen above in the case of \(\nu = 7/2 \), we find also evidence of analogous polarization of the highest occupied LL in lower magnetic fields. This suggests that the results can be generalized to higher half-integer filling factor states (\(\nu = 9/2 \text{ etc.} \)) in sufficiently large QD’s.

The predicted spin polarization of the states between \(2 \leq \nu \leq 3 \) is interesting with a viewpoint on the spintronics in which electron spin degree is exploited to create novel device concepts and new functionality for electronic circuits. It is assumed that the alternation of states in the \(2 < \nu < 3 \) regime leads to the familiar checkerboard pattern of conductance peak heights in the electron tunneling through a QD device \(\text{[10, 11]} \). However, the details of the current patterns are not completely understood. The checkerboard behavior is usually explained assuming oscillations between the spin singlet \(S = 0 \) and triplet \(S = 2 \) states, which can be qualitatively modeled within the constant-interaction picture \(\text{[13]} \) with a phenomenological exchange term. Our SDFT calculations indicate that this model is sufficiently accurate in low electron numbers [see, e.g., data for \(N = 12 \) in Fig. 1(a)], but there are significant deviations from it for \(N \geq 20 \). The constant-interaction model cannot take into account the correlation effects which give rise to the high spin polarization near the \(\nu = 5/2 \) state in large QD’s. This might affect electron tunneling probability through the dot for high electron numbers and, as a consequence, leave a trace to the pattern of conductance peak heights. However, the high probability transmission in the experiments occurs mainly through the edge region which is not spin polarized \(\text{[10]} \). The transport through the center of the dot gives rise to lower conductance peak heights, and evolution of the ground state spin might leave a systematic pattern in the low probability transmission peak heights.

We turn now into analysis of the exact many-body
wave function of the $\nu = 1/2$ state. We use the ED method on 0LL, and the results are compared to two models, the PF and the CF wave functions. The PF wave function is defined as

$$\Psi_{PF} = Pf \left(\frac{1}{z_i - z_j} \right) \prod_{i<j}(z_i - z_j)^2 \exp \left(-\frac{1}{2} \sum_i r_i^2 \right),$$

with angular momentum $L = N(N-1) - N/2$. The value of the filling factor at $\nu < 1$, i.e., beyond the maximum-density-droplet (MDD) domain is widely approximated to be $\nu_1 = L_{MDD}/L$. This definition is based on Jastrow states but the PF wave function has ν_1 which is slightly higher than 1/2. As the number of particles in the system increases, ν_1 for the PF approaches 1/2 from above as $\nu_1 = 1/2 + 1/2N + O(1/N^2)$. The PF state is constructed for even N, and we are computationally limited to $N \leq 8$.

The CF wave function is used here as

$$\Psi_{CF} = \exp \left(-\frac{1}{2} \sum_i r_i^2 \right) \Psi_0 \prod_{i<j}(z_i - z_j)^2,$$

where Ψ_0 is a determinant formed from the single-particle states $\psi_{n,l} \propto z^{n+l}e^{l^2}$, with l the angular momentum and $n = 0,1,2 \ldots$ is the LL index. The derivative is with respect to z, and the resulting many-body state has a total angular momentum $L = N(N-1) + \sum_{i=1}^N l_i$.

There are several possibilities for the single-particle occupations in Ψ_0 for the states near $\nu_1 \approx 1/2$. We consider two different CF wave functions: CF1 that have the same angular momentum as PF states, and CF2 that have $\nu_1 = 1/2$, so that $L = N(N-1) = 2L_{MDD}$. The first type has single-particle quantum numbers (n,l) of the occupied states as $(0,i-1)$ and $(i,-i)$, $i = 1,\ldots,N/2$, and in the second one the asymmetry in l quantum numbers is recovered by moving a particle from $(N/2,-N/2)$ to $(1,0)$. The CF2 wave function is constructed also for odd N. The numerical projection to 0LL (derivatives in Ψ_0) is doable up to $N = 6$. From these wave functions, CF1 (and thus also PF) has an angular momentum that corresponds to the ground-state of $N = 4$, and CF2 for $N = 5$ and 6. In Table I we show the accuracy of the three wave functions discussed above. PF is clearly less accurate than CF which has very high overlaps. The reason why, however, that PF cannot be an accurate excited state. Therefore we find no evidence of electron pairing in the $\nu = 1/2$ state.

Figure 2 shows the conditional wave functions, obtained by fixing $N-1$ electrons and moving the remaining electron, for the PF and corresponding ED state. One can see that the most probable positions are different in ED and PF and the ED conditional density is more localized than the PF one.

![Table I: Overlaps of the trial wave functions with exact one for different particle number N.](image)

N	PF	CF1	CF2
4	0.922124	0.999903	0.997978
5	-	-	0.998921
6	0.789996	0.933461	0.996096
8	0.586370	-	-

FIG. 2: (color online) Electron positions (crosses), conditional electron densities (contours), and phases (gray-scale) of the $N = 8$, $L = 52$ state from ED (a) and PF model (b and c). We probe with the rightmost electron and densities are on logarithmic scale. The phase changes from π to $-\pi$ on the lines where the shadowing changes from the darkest gray to the white. In (a) and (c) electrons are on the most probable positions, and in (b) we use ED coordinates for PF.
as we demonstrate in Fig. 2 showing the SDFT result of the magnetization, $M = -\partial E_{\text{tot}}/\partial B$, for 60-electron parabolic and infinite-well QD's, respectively. The peaks in M coincide with the integer filling factors and constitute the finite size counterpart of the de Haas–van Alphen effect. In both cases, the $\nu = 5/2$ state leaves cusps in the magnetization, and the data shows also possible development of other half-integer filling-factor states such as $\nu = 7/2$ in lower magnetic fields. The results are consistent with the few direct magnetization measurements of ensembles of large QD's which have shown a cusp-like structure near $\nu = 5/2$ (Ref. 13). Visible signatures are also expected to be found in the chemical potentials of electron tunneling experiments.

To conclude, we predict emergence of states in quantum dots which can be regarded as finite size counterparts of the half-integer filling factor states in the 2D electron gas. The highest occupied Landau level of these states is found to be spin-polarized and the formation of them leaves signatures in the ground state energetics. The numerical results indicate that these states share many of the characteristics of their infinite size counterparts in the 2D electron gas, although we find also major differences. Due to observed stability of these states we postulate that the formation of them is a general property of finite fermion systems in external confinement. In parabolic confining potential the composite fermion picture is found to be a more accurate description of the $\nu = 1/2$ state than the Pfaffian wave function, which suggests that electrons are not paired in this geometry. The electron pairing, which is predicted to occur in the two-dimensional electron gas, might be recovered in quantum dots in the limit of very large electron numbers and with a weak non-parabolic external confinement potential.

We thank S. Siljamäki for the CF wave function code, and J. Suorsa, G. E. W. Bauer, M. Schwarz, S. Reimann and D. Grundler for fruitful discussions. This work was supported by the Academy of Finland through the Centre of Excellence Program (2000-2011) and by the NANOQUANTA NOE and the Finnish Academy of Science and Letters, Vilho, Yrjö and Kalle Väisälä Foundation (to E. R.).

* Electronic address: ari.harju@hut.fi

[1] N. Read, Physica B 298, 121 (2001).
[2] M. Freedman, C. Nayak, and K. Walker, cond-mat/0512066 (2005).
[3] E. H. Rezayi and P. D. M. Haldane, Phys. Rev. Lett. 84 4685 (2000).
[4] A. Emperador, E. Lipparini, and F. Pederiva, Phys. Rev. B 72, 033306 (2005).
[5] J. K. Jain and R. K. Kamilla, Int. J. Mod. Phys. B 11, 2621 (1997).
[6] H. Saarikoski, A. Harju, M. J. Puska, and R. M. Nieminen, Phys. Rev. Lett. 93, 116802 (2004).
[7] One possibility to define ν of a particular state in QD is from the number of electrons on 0LL (N_{0LL}) as $\nu_{0LL} = 2N/N_{0LL}$. A second option is by Kinaret et al. (Ref. 12) who defined the average filling factor as $\nu_{avg} = N^2/2(N + L)$, where L is the total angular momentum. These two definitions differ especially in the low magnetic field range.
[8] J. M. Kinaret, Y. Meir, N. S. Wingreen, P. A. Lee, and X. G. Wen Phys. Rev. B 46, 4681 (1992).
[9] M. Ciorga, A. Wensauer, M. Pioro-Ladriere, M. Korkusinski, J. Kyriakidis, A. S. Sachrajda, and P. Hawrylak, Phys. Rev. Lett. 88 256804 (2002).
[10] M. Keller, U. Wilhelm, J. Schmid, J. Weis, K. v. Klitzing, and K. Eberl, Phys. Rev. B, 64, 033302 (2001).
[11] K. Hitachi, M. Yamamoto, and S. Tarucha, unpublished.
[12] S. Tarucha, D. G. Austing, Y. Tokura, W. G. van der Wiel, and L. P. Kouwenhoven, Phys. Rev. Lett. 84, 2485 (2000).
[13] M. Stopa, W. G. van der Wiel, S. De Franceschi, S. Tarucha, and L. P. Kouwenhoven, Phys. Rev. Lett. 91, 046601 (2003).
[14] N. A. Bruce and P. A. Maksym, Phys. Rev. B 61, 4718 (2000).
[15] M. P. Schwarz, D. Grundler, Ch. Heyn, D. Heitmann, D. Reuter, and A. Wieck, Phys. Rev. B 68, 245315 (2003).