Low-mass doubly-charged Higgs bosons at LHC

Saiyad Ashanujjaman, Kirtiman Ghosh, and Rameswar Sahu

1 Institute of Physics, Bhubaneswar, Sachivalaya Marg, Sainik School, Bhubaneswar 751005, India
2 Department of Physics, SGTB Khalsa College, Delhi 110007, India
3 Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India
4 Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India

Search for light (within the mass range 84–200 GeV) doubly-charged Higgs bosons decaying into a pair of W-bosons has been deemed challenging using the conventional LHC searches with leptons, jets and missing transverse momentum in the final state. Such Higgses, together with slightly heavier singly-charged and neutral Higgses, when arranged in an SU(2)L triplet as in the type-II see-saw model, are lately shown to accommodate the recent measurement of the W-boson mass by the CDF collaboration. These, when produced in a highly Lorentz-boosted regime, tend to manifest themselves as a single fat-jet or a pair of adjacent same-sign leptons plus missing transverse momentum. First, we perform a multivariate analysis to discern such exotic jets from the SM jets. Then, we present a novel search in the final state with an exotic jet and two same-sign leptons plus missing transverse momentum. We find that such low-mass doubly-charged Higgses could be directly probed with the already collected Run 2 LHC data.

I. INTRODUCTION

Despite being remarkably successful in understanding particle physics phenomenology, the Standard Model (SM) in its present form lacks a mass term for the neutrinos. However, a trivial Dirac mass term for the neutrinos can be effectuated with the usual Higgs mechanism by introducing right-handed neutrinos to the SM. Although plausible, this warrants philosophical displeasure as it calls for diminutive Yukawa couplings. Conversely, a well-founded remedy to this menace is offered by the so-called see-saw mechanism, wherein a lepton number violating New Physics beyond the SM is invoked at tree level [7, 8], extending the SM with an UV completion of the Weinberg operator at the electroweak (EW) scale and the Planck scale, so that on integrating out the heavy fields, the SM neutrinos are left with observed sub-eV masses after the EW symmetry breaking. Pointedly, numerous models of varying complexity and testability at colliders have been proposed over the last few decades. The type-II see-saw model [1–6], a UV completion of the Weinberg operator at the tree level [7, 8], extending the SM with an SU(2)_L triplet scalar field with hypercharge Y = 1, is arguably the most widely-studied variant [9–62]. For one, the flavour structure of the Yukawa coupling driving the leptonic decays of the triplet-like scalars ensues to be governed by the neutrino oscillation data up to the scalar triplet VEV. Moreover, the presence of the doubly-charged scalars (H^{±±}) and their characteristic decays to a pair of same-sign leptons (\ell^±\ell^±) or W-bosons offer interesting ways to probe them directly at the current and near-future experiments.

The experimental collaborations have carried out several searches for H^{±±} [63–74], and non-observations of any significant excess over the SM expectations have led to stringent limits on them. For H^{±±} decaying into \ell^±\ell^±, the ATLAS collaboration has set a lower limit of 1020 GeV assuming equal branching fractions across modes [74]. This search considers only light leptons in the final states, and thus not sensitive for H^{±±} decaying into τ^±τ^±. The CMS collaboration has set a lower limit of 535 GeV on such scalars [68]. For H^{±±} decaying into W^±W^±, the ATLAS collaboration has excluded them within the mass range 200–350 GeV considering their Drell-Yan pair production [73]. An orderly re-interpretation of this search considering all possible Drell-Yan production modes for the triplet-like scalars results in an improved exclusion range of 200–400 GeV [60]. Moreover, a re-interpretation of the ATLAS same-sign dilepton search in Ref. [65] has derived an exclusion limit of 84 GeV [38].

In a nutshell, H^{±±} decaying into WW(\tau\tau) are still allowed in the 84–200 GeV mass window. In this mass window, the type-II see-saw model predicts a cross-section between 1.5 pb to 65 fb for pp → H^{±±}H^{−−} at the 13 TeV LHC. Despite a sizeable cross-section, searching such an H^{±±} using the conventional LHC searches with leptons, jets, and missing transverse momentum in the final state has been challenging. The CMS and ATLAS collaborations have turned a blind eye to this. Presumably, for one, their eventual decay products tend to be not so hard and are likely to be drowned in the LHC environment owing to the inherent towering EW and QCD backgrounds. Moreover, ineludible contamination from the SM resonances makes the state of affairs worse. To the extent of our knowledge, the only notable effort in probing this mass window was made in Ref. [75]. Lately, Refs. [76–79] have demonstrated that the recently reported measurement of the W-boson mass by the CDF experiment [80] which substantially differs from the global EW fit [81] can be explained within the type-II see-saw model predicting such low-mass H^{±±} and slightly heavier singly-charged and neutral scalars. Therefore, it is paramount to look...
for such $H^{\pm\pm}$ at the LHC.

In this work, we present a novel search strategy for such $H^{\pm\pm}$. We consider their pair production in a highly Lorentz-boosted regime such that they are produced back-to-back with large transverse momenta, manifesting themselves as a single fat-jet or a pair of adjacent same-sign leptons plus missing transverse momentum. Obviously, this would reduce the signal cross-section significantly. However, should we be able to discern such exotic jets from the SM jets, a final state with such a jet and two same-sign leptons plus missing transverse momentum would have a compensating advantage of reducing the SM background more aggressively, thereby ameliorating the signal-to-background ratio. Keeping that in mind, first, we perform a multivariate analysis incorporating the jet mass, jet charge, N-subjettiness, etc. variables as inputs to the boosted decision tree (BDT) classifier to discern such exotic jets (dubbed $H^{\pm\pm}$-jets hereafter) from the SM jets. Then, we perform a search in the final state with an $H^{\pm\pm}$-jet and two same-sign leptons plus missing transverse momentum.

The rest of this work is structured as follows. In Section II, we briefly discuss the doubly-charged Higgses in the type-II see-saw model. We perform a detailed collider analysis in Section III. Finally, we summarise in Section IV.

II. THE DOUBLY-CHARGED HIGGSES

In the type-II see-saw model, the SM is augmented with an $SU(2)_L$ triplet scalar field with hypercharge $Y = 1$

$$\Delta = \begin{pmatrix} \Delta^+ / \sqrt{2} & \Delta^{++} \\ \Delta^0 & -\Delta^- / \sqrt{2} \end{pmatrix}.$$

The scalar potential involving Δ and the SM Higgs doublet $\Phi = (\Phi^+ \Phi^0)^T$ is given by

$$V(\Phi, \Delta) = -m_3^2 \Phi^\dagger \Phi + \frac{\lambda}{4} (\Phi^\dagger \Phi)^2 + m_\Delta^2 \text{Tr}(\Delta^\dagger \Delta)$$

$$+ |\mu (\Phi^T i \sigma^2 \Delta^\dagger \Phi | + h.c.) + \lambda_1 (\Phi^\dagger \Phi) \text{Tr}(\Delta^\dagger \Delta)$$

$$+ \lambda_2 [\text{Tr}(\Delta^\dagger \Delta)^2 + \lambda_3 \text{Tr}((\Delta^\dagger \Delta)^2) + \lambda_4 \Phi^\dagger \Delta^\dagger \Delta^\dagger \Phi],$$

where m_3^2, m_Δ and μ are the mass parameters, λ and λ_i ($i = 1, \ldots, 4$) are the dimensionless quartic couplings, and σ^2 is one of the Pauli matrices. The neutral components Φ^0 and Δ^0 procure respective VEVs v_d and v_t that $\sqrt{v_d^2 + 2v_t^2} = 246$ GeV. For detailed discussions of the main dynamical features of the scalar potential, see Refs. [24, 28, 31, 44]. After the EW symmetry is broken, the degrees of freedom carrying identical electric charges mix, thereby resulting in several physical Higgs states:

(i) the neutral states Φ^0 and Δ^0 mix into two CP-even states (h and $H0$) and two CP-odd states (G^0 and A^0),

(ii) the singly-charged states Φ^\pm and Δ^\pm mix into two mass states G^\pm and H^\pm,

(iii) the doubly-charged state $\Delta^{\pm\pm}$ is aligned with its mass state $H^{\pm\pm}$.

The mass states G^0 and G^\pm are the would-be Nambu-Goldstone bosons, h^0 is identified as the 125 GeV Higgs observed at the LHC, and the rest follows the sum rule

$$m_{H^{\pm\pm}}^2 - m_{H^\pm}^2 \approx m_{H^0}^2 - m_{A^0}^2 \approx -\frac{\lambda_4}{4} v_d^2.$$

The Yukawa interaction $Y_{ij} L_i^T C i \sigma^2 \Delta L_j$ (L_i stands for the SM lepton doublet with $i = e, \mu, \tau$, and C the charge-conjugation operator) induces masses for the neutrinos:

$$m_i = \sqrt{2} Y_{i\nu} v_t.$$

The doubly-charged Higgses are pair produced aplenty at the LHC by quark-antiquark annihilation via the neutral current Drell-Yan mechanism:

$$q \bar{q} \rightarrow \gamma^*/Z^* \rightarrow H^{++} H^{--}.$$

We evaluate the leading order (LO) cross-sections using the SARAH 4.14.4 [82, 83] generated UFO [84] modules in MadGraph5_aMCv2.7.3 [85, 86] with the NNPDF23 Lo_as_0130_qed parton distribution function [87, 88]. Fig. 1 shows the LO doubly-charged Higgs pair production cross-section at the 13 TeV LHC as a function of their mass. Following the relevant QCD corrections estimated in Refs. [13, 89], we naively scale the LO cross-section by an overall next-to-leading (NLO) K-factor of 1.15. Therefore, the resulting $pp \rightarrow H^{++} H^{--}$ cross-section varies from 1.72 pb to 74.5 fb for 84 GeV to 200 GeV mass.

![FIG. 1. LO cross-section for $pp \rightarrow H^{++} H^{--}$ at the 13 TeV LHC.](image-url)
After being produced, $H^{\pm\pm}$ decays into $\ell^\pm\ell^\pm$, $W^\pm W^{\mp(*)}$ and $H^\pm W^\mp$, if kinematically allowed. In broad terms, the dominance of one decay mode over the others depends on three parameters, namely $m_{H^{\pm\pm}}$, ν_t and $\Delta m = m_{H^{\pm\pm}} - m_{H^\pm}$, see Refs. [20, 26, 60] for detailed discussions. For the present work, without committing to a fixed value for ν_t and Δm, we assume exclusive prompt decays of $H^{\pm\pm}$ to $W^\pm W^{\mp(*)}$.

III. COLLIDER ANALYSIS

In this section, we present a novel search strategy for $H^{\pm\pm}$ with $m_{H^{\pm\pm}} \in [84-200]$ GeV. We only consider $H^{\pm\pm}$ which are produced in a highly Lorentz-boosted regime, manifesting themselves as a single fat-jet or a pair of adjacent same-sign leptons plus missing transverse momentum. Such a requirement significantly reduces the signal cross-section.\(^2\) As argued earlier, despite such a notable reduction in the signal cross-section, the final state with an $H^{\pm\pm}$-jet and two same-sign leptons plus missing transverse momentum (see Fig. 2) is expected to have a compensating advantage of reducing the SM background more aggressively with the proviso that we discern the $H^{\pm\pm}$-jets from the SM jets.

![Diagram of q$qbar$ → $H^{\pm\pm}H^{\pm\pm}$ decay](image)

FIG. 2. Schematic Feynman diagram for $q\bar{q} \rightarrow H^{\pm\pm}H^{\pm\pm}$ and its subsequent decays to one $H^{\pm\pm}$-jet, two same-sign leptons and neutrinos.

In the following, we briefly describe the reconstruction and selection of various physics objects, then perform a multivariate analysis to discern the $H^{\pm\pm}$-jets from the SM jets, viz. QCD jets, W/Z-jets, h-jets, and t-jets, and finally delineate a search in the final state with an $H^{\pm\pm}$-jet and two same-sign leptons plus missing transverse momentum.

A. Object reconstruction and selection

We pass the parton-level events into *PYTHIA 8.2* [90] to simulate subsequent decays for the unstable particles, initial and final state radiations (ISR and FSR), showering, fragmentation and hadronisation, and then into Delphes 3.4.2 with the default CMS card [91] for simulating detector effects as well as reconstructing various physics objects, viz. photons, electrons, muons and jets.

Constituents of the *would-be* fat-jets are clustered using the *anti-k_T* algorithm [92] with a characteristic jet radius $R = 1.0$ as implemented in *FastJet 3.3.2* [93]. To remove the soft yet wide-angle QCD emissions from the fat-jets, we use the *jet pruning* algorithm [94, 95] with the default values for the pruning parameters: $z_{cut} = 0.1$ and $R_{cut} = 0.5$ [94]. Further, to unfold the multi-prong nature of the fat-jets, we use an inclusive jet shape termed as N-*subjettiness* τ_N [96, 97]\(^3\) choosing one-pass *k_T*-axes for the minimisation procedure and $\beta = 1$. Reconstructed jets are required to be within the pseudorapidity range $|\eta| < 2.5$ and have a transverse momentum $p_T > 30$ GeV, whereas the leptons (electrons and muons) are required to have $|\eta| < 2.5$ and $p_T > 10$ GeV. Moreover, we demand the scalar sum of the p_Ts of all other objects lying within a cone of radius 0.3(0.4) around an electron (a muon) to be smaller than 10%/15% of its p_T. This ensures that the leptons are isolated. Finally, the missing transverse momentum \not{p}_T (with magnitude p_T^{miss}) is estimated from the momentum imbalance in the transverse direction associated to all reconstructed objects in an event.

B. Multivariate analysis: discerning the $H^{\pm\pm}$-jets from the SM jets

Here we perform a multivariate analysis with the BDT classifier implemented in the TMVA 4.3 toolkit integrated into the analysis framework *ROOT 6.24*. For training and testing the classifier, we use 600000 events for each category of the SM jets and 300000 for each $m_{H^{\pm\pm}}$ within the [85,195] GeV range in steps of 10 GeV. Of these, 80% are picked randomly for training, and the rest are used for testing.

We use the following kinematic features of the jets as inputs to the BDT classifier:

(i) invariant mass m

(ii) *b*-tag\(^4\)

(iii) jet charge Q_k [98]\(^5\)

\(^2\) For example, a parton level cut of $p_T(H^{\pm\pm}) > 300$ GeV reduces the $pp \rightarrow H^{\pm\pm}H^{\pm\pm}$ cross-section by a factor of 48(4.4) to 37.4(17.0) fb for $m_{H^{\pm\pm}} = 84(200)$ GeV.

\(^3\) It is defined as $\tau_N = \sum_1^N \min \left(\Delta R_{i,k}^0, \Delta R_{i,k}^1, \ldots, \Delta R_{i,k}^{N-1} \right)$, where N is the number of subjects a jet is presumably composed of, k runs over the jet constituents with transverse momentum p_T, $\Delta R_{i,k}$ is the distance in the rapidity-azimuth plane between a candidate subject i and a jet constituent k, $d_0 = \sum_k p_T, R_k^0$ with $R_0(=1.0)$ being the characteristic jet radius used in the original jet clustering algorithm, and β is an angular weighting exponent dubbed *thrust parameter*.

\(^4\) It is a *boolean* indicating whether or not at least one of the constituent subjet is a *b*-jet.

\(^5\) Jet charge is defined as $Q_k = \sum_i q_i \frac{p_T(i)}{p_T}$, where i runs over the associated tracks with transverse momentum p_T, and charge q_i, and k is a free regularisation exponent which we take to be 0.2.
The normalised distributions for some of the input features are shown in Fig. 3, the rest are not shown for brevity. These variables constitute a minimal set with (a) good discrimination power between the $H^\pm\pm$-jets and the SM jets, and (b) low correlations among themselves. The method-unspecific separation is a good measure of the former. For a given feature x, this is defined as

$$\langle S^2 \rangle = \frac{1}{2} \int \frac{[\bar{x}_H(x) - \bar{x}_{SM}(x)]^2}{\bar{x}_H(x) + \bar{x}_{SM}(x)} dx$$

where $\bar{x}_H(x)$ and $\bar{x}_{SM}(x)$ are the probability density functions of x for the $H^\pm\pm$-jets and the SM jets, respectively. Table I shows method-unspecific separation for the input features, while Fig. 4 show their Pearson’s linear correlation coefficients defined as

$$\rho(x, y) = \frac{\langle xy \rangle - \langle x \rangle \langle y \rangle}{\sigma_x \sigma_y},$$

where $\langle x \rangle$ and σ_x, respectively, are the expectation value and standard deviation of x.

To enhance the BDT classification, we use the adaptive boost algorithm with a learning rate of 0.1, and combine 1000 decision trees with 5% minimum node size and a depth of 4 layers per tree into a forest. As the separation criterion for node splitting, we use the so-called Gini index. The relevant BDT hyperparameters are summarised in Table II. Table I also shows the method-specific ranking of the input features. In other words, this shows the relative importance of the input features in separating the $H^\pm\pm$-jets from the SM jets. As we see from Table I, the N-subjettiness variable τ_{21} is the best separating variable, while the jet-charge Q_b is the one with least separating power. Finally, we check the classifier for overtraining by performing the Kolmogorov-Smirnov (KS) test which compares the BDT response curves for the training and testing subsamples, see Fig. 5. These

$\tau_{N,N-1} = \tau_{N}/\tau_{N-1}$ is an useful discriminant between N- and $(N-1)$-prong jets.

(iv) N-subjettiness variables $\tau_1, \tau_{21}, \tau_{32}$ and τ_{43}.

![FIG. 3. Normalised distributions for some of the input features. The signal distributions are for $m_H = 150$ GeV.](image)

Feature	Method-unspecific separation ranking	Method-specific separation ranking
m	0.064 (0.152)	0.099 (0.167)
b-tag	0.052 (0.101)	0.134 (0.151)
Q_b	0.075 (0.120)	0.066 (0.102)
τ_1	0.104 (0.208)	0.134 (0.151)
τ_{21}	0.075 (0.120)	0.066 (0.102)
τ_{32}	0.075 (0.120)	0.066 (0.102)
τ_{43}	0.075 (0.120)	0.066 (0.102)

![FIG. 4. Correlations in % among the input features for the $H^\pm\pm$-jets (left) and the SM jets (right).](image)
response curves exhibit no considerable overtraining.

BDT hyperparameter	Optimised choice
NTrees	1000
MinNodeSize	5%
MaxDepth	4
BoostType	AdaBoost
AdaBoostBeta	0.1
UseBaggedBoost	True
BaggedSampleFraction	0.5
SeparationType	GiniIndex
nCuts	-1

TABLE II. Summary of optimised BDT hyperparameters.

In the left panel of Fig. 6, we show the receiver-operator-characteristic (ROC) curve, which quantifies the combined BDT performance, for $m_{H^\pm \pm} = 150$ GeV. The right panel of Fig. 6 shows the signal (with $m_{H^\pm \pm} = 150$ GeV) and background efficiencies (ϵ_{Sig} and ϵ_{Bckg}) as a function of the BDT response. The area below the ROC curve is ~ 0.13, indicating considerably well separation between the signal and background. For a BDT response greater than 0, not only ϵ_{Bckg} but also ϵ_{Sig} falls to lower values, whereas for a BDT response less than 0, both rises to higher values. Therefore, we choose an optimum value of 0.1 for the BDT response. In Fig. 7, we show the variation of ϵ_{Sig} with $m_{H^\pm \pm}$ for the chosen value of the BDT response. The abrupt drop in ϵ_{Sig} for $m_{H^\pm \pm} \lesssim 100$ GeV is ascribed to the small mass difference between $m_{H^\pm \pm}$ and the W-mass. For small mass difference, the decay products of the off-shell W-boson emanating from $H^\pm \pm$ tend to be very soft, and thus are not likely to pass the object reconstruction and selection criteria discussed in Section III A. As a consequence of this, the features of an $H^\pm \pm$-jet resemble to that of an SM jet, thereby making the former indiscernible from the latter.

C. SM backgrounds

As the background for the present analysis, we consider numerous SM processes such as diboson, triboson and tetraboson processes, Higgsstrahlung processes, single and multi-top productions in association with/without gauge bosons, and Drell-Yan processes. All these processes are generated in association with up to two jets at the LO using MadGraph5_aMC@NLO v2.7.3 [85, 86] at least of worth 3000 fb$^{-1}$ luminosity of data at the 13 TeV LHC, followed by the MLM matching using PYTHIA 8.2 [90], and then naively scaled by appropriate NLO (or higher, whichever is available in the literature) K-factors [86, 99–113].

The relevant backgrounds can be broadly classified into two classes: prompt and non-prompt. While most of these processes contribute to the former, only the pro-
cesses where a jet is misidentified as a lepton or additional leptons originate from ISR/FSR photon conversions and in-flight heavy-flavour decays constitute the latter. Though the lepton isolation requirement (mentioned in Section III A) and the b-jet veto (mentioned later in Section III D) significantly subdue the latter, a considerable fraction of this still passes the object selection. The estimation of this contribution requires a data-driven approach, namely the so-called fake factor method, which is beyond the realm of this work. We adopt a conservative approach, assuming a p_T-dependent probability of $0.1-0.3\%$ for a jet to be misidentified as a lepton [114]. Further, to account for the electron charge misidentification due to their bremsstrahlung interactions with the inner detector material, all prompt electrons are naively corrected with a p_T- and η-dependent charge misidentification probability: $P(p_T, \eta) = \sigma(p_T) \times f(\eta)$, where $\sigma(p_T)$ and $f(\eta)$ ranges from 0.02 to 0.1 and 0.03 to 1, respectively [115].

D. Event selection and analysis

Here we discuss the selection criteria that are adept in ameliorating the signal-to-background ratio. Only the events satisfying the following selection cuts ($S0$) are considered for further analysis:

(i) one fat-jet with $p_T > 300$ GeV,
(ii) two same-sign leptons,
(iii) the angular separation between the leptons $\Delta R_{\ell\ell} > 0.05$,
(iv) the dilepton invariant mass $m_{\ell\ell} > 1$ GeV as well as $m_{\ell\ell} \notin [3, 3.2]$ GeV.

The requirements $\Delta R_{\ell\ell} > 0.05$ and $m_{\ell\ell} > 1$ GeV vanquishes the background contributions from muon bremsstrahlung interactions as well as ISR/FSR photon conversions, and $m_{\ell\ell} \notin [3, 3.2]$ GeV suppresses contributions from J/ψ decays.

The events satisfying the $S0$ cut are then fed to the trained BDT classifier described in Section III B. Following the discussion in Section III B, we impose a modest cut on the BDT response

$S1 : \text{BDT response} > 0.1.$

Figure 8 shows the normalised distributioin of $m_{\ell\ell}$ for the signal with $m_{H^{\pm\pm}} = 150$ GeV and background events satisfying the $S1$ cut. For the signal, it is a monotonically falling distribution with an end point near 120 GeV as ocassioned by the low mass of $H^{\pm\pm}$. On the contrary, the background boasts a peak at the Z-boson mass with the lion’s share of the contributions accruing from $Z \to e^- e^+$ when one of the electrons charge get misidentified. To supress the $Z \to e^- e^+$ contribution, we require that $S2 : m_{\ell\ell} < 80$ GeV.

In the left panel of Fig. 8, displayed is the normalised distribution for p_T^{miss} suggesting that the signal looks much harder than the background. Therefore, a reasonably strong cut on p_T^{miss} would be helpful in curtailing the latter without impinging much on the former. In Fig. 8, also displayed are the distributions for the angular separation between the two leptons ($\Delta R_{\ell\ell}$) and the azimuthal separation between the dilepton system and p_T^{miss} ($\Delta \phi(\ell\ell, p_T^{\text{miss}})$). As we see, unlike the background, most of the signal events are contained within $\Delta R_{\ell\ell} \sim 1$ and $\Delta \phi(\ell\ell, p_T^{\text{miss}}) \sim 1$ showing that, as we expect, the leptons and neutrinos emanating from highly Lorentz-boosted $H^{\pm\pm}$ are adjacent to each other. Guided by these distribution, we impose the following set of cuts:

$S3 : \Delta R_{\ell\ell} < 1.2, \ p_T^{\text{miss}} > 80$ GeV, $\Delta \phi(\ell\ell, p_T^{\text{miss}}) < 0.8.$

Event sample	$S0$	$S1$	$S2$	$S3$
γ^*/Z^*	11.49	2.432	0.154	0.004
$t\bar{t}$	3.931	0.436	0.120	0.028
$W^\pm Z$	3.238	0.784	0.216	0.057
$t\bar{t}W^\pm$	2.461	0.311	0.084	0.018
$W^\pm W^\pm jj$	1.992	0.480	0.107	0.023
W^\pm	1.985	0.473	0.334	0.116
$W^\pm W^\pm W^\pm$	1.474	0.284	0.076	0.022
Others	3.579	0.598	0.168	0.046
Total background	30.15	5.798	1.250	0.314
Signal: $m_{H^{\pm\pm}} = 90$ GeV	0.946	0.387	0.387	0.312
Signal: $m_{H^{\pm\pm}} = 120$ GeV	1.087	0.735	0.731	0.586
Signal: $m_{H^{\pm\pm}} = 150$ GeV	0.976	0.652	0.560	0.434

Table III. Signal and background cross-sections (fb) after different selection cuts.

Table III shows the progression of the background and signal (with $m_{H^{\pm\pm}} = 90, 120$ and 150 GeV) cross-sections at the 13 TeV LHC as subsequent selection cuts are imposed. As we see, all these cuts turn out be very efficacious in subjugating the background while keeping the signal relatively less harmed.

E. Discovery and exclusion projection

Next, we estimate the discovery and exclusion projection for different $m_{H^{\pm\pm}}$. Following the Refs. [116–118], we use the following approximated expressions for the median expected discovery and exclusion significances:
The estimation of the background uncertainty arising from several sources such as the reconstruction, identification, isolation and trigger efficiency, the energy scale and resolution of different physics objects, the luminosity measurements, the pile-up modelling, the parton-shower modelling, the higher-order QCD corrections, etc. is beyond the scope of this work. We adopt a conservative approach, following the typical LHC searches [119, 120], for which both the theoretical and experimental uncertainties are $O(10)\%$ each, we assume an overall 20% total uncertainty for the same.

In Table 9, we show the required luminosities (in fb$^{-1}$) needed to achieve a median expected $Z_{\text{exc}} \geq 1.645$ (95% CL exclusion) as well as $Z_{\text{dis}} \geq 5$ (5σ discovery) for different $m_{H^{\pm\pm}}$. The rise in the required luminosity for $m_{H^{\pm\pm}} \lesssim 100$ GeV could be attributed to, as discussed in the end of Section III B, the poor separation between the $H^{\pm\pm}$-jets and the SM jets, whereas for larger masses it is due to the fall in the signal cross-section (see Fig. 1).

We find that $H^{\pm\pm}$ within the [84,200] GeV mass range could be probed with 5σ discovery significance with the already collected Run 2 LHC data. On the other hand, in the case of the data found to be consistent with the SM background, only a fraction of the collected data suffices to exclude them at the 95% CL.

IV. SUMMARY

Doubly-charged Higgs bosons within the mass range 84–200 GeV decaying into a pair of W-bosons have been overlooked by the LHC searches. Lately, Refs. [76–79] have demonstrated that the recently reported measurement of the W-boson mass by the CDF experiment can be accommodated within the type-II see-saw model predicting such low-mass $H^{\pm\pm}$ and slightly heavier singly- and neutral scalars. In view of this, it has been paramount to look for such $H^{\pm\pm}$ at the LHC. In this work, we have presented a novel search strat-
nergy for such $H^{±±}$ considering their pair production in a highly Lorentz-boosted regime such that they are produced back-to-back with large transverse momenta, manifesting themselves as a single fat-jet or a pair of adjacent same-sign leptons plus missing transverse momentum. First, we perform a multivariate analysis to discern such exotic $H^{±±}$-jets from the SM jets. Then, we perform a search in the final state with an $H^{±±}$-jet and two same-sign leptons plus missing transverse momentum. We find that such low-mass $H^{±±}$ could be directly probed with the already collected Run 2 LHC data.

In closing this section, we mention that the search strategy presented here is applicable to any low-mass BSM Higgses (charged as well as neutral) decay into a pair of SM gauge bosons.

ACKNOWLEDGMENTS

SA acknowledges the SERB Core Research Grant CRG/2018/004889, and KG acknowledges the DST INSPIRE Research Grant DST/INSPIRE/04/2014/002158 and SERB Core Research Grant CRG/2019/006831. The simulations were supported in part by the SAMKHYA: High Performance Computing Facility provided by Institute of Physics, Bhubaneswar.

Note added: While preparing this manuscript, an article [121] with similar motivation appeared on the arXiv, concluding that the most of the favoured space for the CDF discrepancy is already excluded by the existing LHC Run 2 data. While our proposed search strategy is completely different from Ref. [121], we also arrived at the same conclusion, i.e., the LHC run II data is sufficient to probe the low mass doubly charged Higgs bosons in type-II seesaw model. Moreover, our strategy is applicable to any low-mass BSM Higgses (charged as well as neutral) decaying into a pair of SM gauge bosons.

REFERENCES

[1] W. Konetschny and W. Kummer, Nonconservation of Total Lepton Number with Scalar Bosons, Phys. Lett. B 70, 433 (1977).
[2] T. P. Cheng and L.-F. Li, Neutrino Masses, Mixings and Oscillations in SU(2) x U(1) Models of Electroweak Interactions, Phys. Rev. D 22, 2860 (1980).
[3] G. Lazarides, Q. Shafi, and C. Wetterich, Proton Lifetime and Fermion Masses in an SO(10) Model, Nucl. Phys. B 181, 287 (1981).
[4] J. Schechter and J. W. F. Valle, Neutrino Masses in SU(2) x U(1) Theories, Phys. Rev. D 22, 2227 (1980).
[5] R. N. Mohapatra and G. Senjanovic, Neutrino Masses and Mixings in Gauge Models with Spontaneous Parity Violation, Phys. Rev. D 23, 165 (1981).
[6] M. Magg and C. Wetterich, Neutrino Mass Problem and Gauge Hierarchy, Phys. Lett. B 94, 61 (1980).
[7] S. Weinberg, Baryon and Lepton Nonconserving Processes, Phys. Rev. Lett. 43, 1566 (1979).
[8] E. Ma, Pathways to naturally small neutrino masses, Phys. Rev. Lett. 81, 1171 (1998), arXiv:hep-ph/9805219.
[9] K. Huitu, J. Maalampi, A. Pietila, and M. Raidal, Doubly charged Higgs at LHC, Nucl. Phys. B 487, 27 (1997), arXiv:hep-ph/9606311.
[10] J. F. Gunion, C. Loomis, and K. T. Pitts, Searching for doubly charged Higgs bosons at future colliders, eConf C960625, LTH096 (1996), arXiv:hep-ph/9610237.
[11] S. Chakrabarti, D. Choudhury, R. M. Godbole, and B. Mukhopadhyaya, Observing doubly charged Higgs bosons in photon-photon collisions, Phys. Lett. B 434, 347 (1998), arXiv:hep-ph/9804207.
[12] E. J. Chun, K. Y. Lee, and S. C. Park, Testing Higgs triplet model and neutrino mass patterns, Phys. Lett. B 566, 142 (2003), arXiv:hep-ph/0304009.
[13] M. Muhlleitner and M. Spira, A Note on doubly charged Higgs pair production at hadron colliders, Phys. Rev. D 68, 117701 (2003), arXiv:hep-ph/0305288.
[14] A. G. Akroyd and M. Aoki, Single and pair production of doubly charged Higgs bosons at hadron colliders, Phys. Rev. D 72, 035011 (2005), arXiv:hep-ph/0506176.
[15] A. G. Akroyd, M. Aoki, and H. Sugiyama, Probing Majorana Phases and Neutrino Mass Spectrum in the Higgs Triplet Model at the CERN LHC, Phys. Rev. D 77, 075010 (2008), arXiv:0712.4019 [hep-ph].
[16] J. Garayoa and T. Schwetz, Neutrino mass hierarchy and Majorana CP phases within the Higgs triplet model at the LHC, JHEP 03, 009, arXiv:0712.1453 [hep-ph].
[17] T. Han, B. Mukhopadhyaya, Z. Si, and K. Wang, Pair production of doubly-charged scalars: Neutrino mass constraints and signals at the LHC, Phys. Rev. D 76, 075013 (2007), arXiv:0706.0441 [hep-ph].
[18] M. Kadastik, M. Raidal, and L. Rebane, Direct determination of neutrino mass parameters at future colliders, Phys. Rev. D 77, 115023 (2008), arXiv:0712.3912 [hep-ph].
[19] F. del Aguila and J. A. Aguilar-Saavedra, Distinguishing seesaw models at LHC with multi-lepton signals, Nucl. Phys. B 813, 22 (2009), arXiv:0808.2468 [hep-ph].
[20] P. Fileviez Perez, T. Han, G.-y. Huang, T. Li, and K. Wang, Neutrino Masses and the CERN LHC: Testing Type II Seesaw, Phys. Rev. D 78, 015018 (2008), arXiv:0805.3536 [hep-ph].
[21] P. Fileviez Perez, T. Han, G.-y. Huang, T. Li, and K. Wang, Neutrino Masses and the CERN LHC: Testing Type II Seesaw, Phys. Rev. D 78, 015018 (2008), arXiv:0805.3536 [hep-ph].
[22] A. G. Akroyd and C.-W. Chiang, Doubly charged Higgs bosons and three-lepton signatures in the Higgs Triplet Model, Phys. Rev. D 80, 113010 (2009), arXiv:0909.4419 [hep-ph].
[23] A. G. Akroyd, C.-W. Chiang, and N. Gaur, Leptonic signatures of doubly charged Higgs boson production at the LHC, JHEP 11, 005, arXiv:1009.2780 [hep-ph].
[24] A. Arhrib, R. Benbrik, M. Chabab, G. Moultaka, M. C. Peyranere, L. Rahili, and J. Ramadan, The Higgs Potential in the Type II Seesaw Model, Phys. Rev. D 84, 095005 (2011), arXiv:1105.1925 [hep-ph].
[25] A. Melfo, M. Nemevsek, F. Nesti, G. Senjanovic, and Y. Zhang, Type II Seesaw at LHC: The Roadmap, Phys. Rev. D 85, 055018 (2012), arXiv:1108.4416 [hep-ph].
[26] M. Aoki, S. Kanemura, and K. Yagyu, Testing the Higgs triplet model with the mass difference at the LHC, Phys.
F. Arbabifar, H. Sugiyama, Production of doubly charged scalars from the decay of singly charged scalars in the Higgs Triplet Model, Phys. Rev. D 84, 035010 (2011), arXiv:1105.2209 [hep-ph].

F. Arbabifar, S. Bahrami, and M. Frank, Neutral Higgs Bosons in the Higgs Triplet Model with nontrivial mixing, Phys. Rev. D 87, 015020 (2013), arXiv:1211.6797 [hep-ph].

C.-W. Chiang, T. Nomura, and K. Tsumura, Search for doubly charged Higgs bosons using the same-sign diboson mode at the LHC, Phys. Rev. D 85, 095023 (2012), arXiv:1202.2014 [hep-ph].

A. G. Akeroyd and H. Sugiyama, Production of doubly charged scalars from the decay of singly charged scalars from the decay of singly charged scalars in the Higgs Triplet Model with nontrivial mixing, Phys. Rev. D 87, 015020 (2013), arXiv:1211.6797 [hep-ph].

F. del Aguila and M. Chala, LHC bounds on Leptonic Yukawa interactions with doubly charged scalar at the ILC, Nucl. Phys. B 929, 193 (2018), arXiv:1702.03390 [hep-ph].

S. Antusch, O. Fischer, A. Hammad, and C. Scherb, Low scale type II seesaw: Present constraints and prospects for displaced vertex searches, JHEP 02, 157, arXiv:1811.03476 [hep-ph].

P. S. Bhupal Dev and Y. Zhang, Displaced vertex signatures of doubly charged scalars in the type-II seesaw and its left-right extensions, JHEP 10, 199, arXiv:1808.00943 [hep-ph].

A. Crivellin, M. Ghezzi, L. Panizzi, G. M. Pruna, and A. Signer, Lower and high-energy phenomenology of a doubly charged scalar, Phys. Rev. D 99, 035004 (2019), arXiv:1807.10224 [hep-ph].

P. Agrawal, M. Mitra, S. Niyogi, S. Shil, and M. Spannowsky, Probing the Type-II Seesaw Mechanism through the Production of Higgs Bosons at a Lepton Collider, Phys. Rev. D 98, 015024 (2018), arXiv:1803.00677 [hep-ph].

L. Rahili, A. Arhrib, and R. Benbrik, Associated production of SM Higgs with a photon in type-II seesaw models at the ILC, Eur. Phys. J. C 79, 940 (2019), arXiv:1909.07793 [hep-ph].

T. B. de Melo, F. S. Queiroz, and V. Villamizar, Doubly Charged Scalar at the High-Luminosity and High-Energy LHC, Int. J. Mod. Phys. A 34, 1950157 (2019), arXiv:1909.07429 [hep-ph].

P. S. B. Dev, S. Khan, M. Mitra, and S. K. Rai, Doubly-charged Higgs boson at a future electron-proton collider, Phys. Rev. D 99, 115015 (2019), arXiv:1903.01431 [hep-ph].

R. Primulando, J. Julio, and P. Ullayarat, Scalar phenomenology in type-II seesaw model, JHEP 08, 024, arXiv:1903.02493 [hep-ph].

E. J. Chun, S. Khan, S. Mandal, M. Mitra, and S. Shil, Same-sign tetra-lepton signature at the Large Hadron Collider and a future pp collider, Phys. Rev. D 101, 075008 (2020), arXiv:1911.00971 [hep-ph].

R. Padhan, D. Das, M. Mitra, and A. Kumar Nayak, Probing doubly and singly charged Higgs bosons at the pp collider HE-LHC, Phys. Rev. D 101, 075050 (2020), arXiv:1909.10495 [hep-ph].

P. Bandypadhyay, A. Karan, and C. Sen, Discerning Signatures of Seesaw Models and Complementarity of Leptonic Colliders, (2020), arXiv:2011.04191 [hep-ph].

S. Ashanujjaman and K. Ghosh, Revisiting type-II see-
et al. (ATLAS), Search for doubly-charged Higgs production at future ep colliders, Chin. Phys. C 46, 063107 (2022), arXiv:2103.11412 [hep-ph].

S. Aslanujiama, K. Ghosh, and K. Huitu, Type-II see-saw: searching the LHC elusive low-mass triplet-like Higgses at e^-e^+ colliders, (2022), arXiv:2205.14983 [hep-ph].

G. Aad et al. (ATLAS), Search for doubly-charged Higgs bosons in like-sign dilepton final states at $\sqrt{s} = 7$ TeV with the ATLAS detector, Eur. Phys. J. C 72, 2244 (2012), arXiv:1210.5070 [hep-ex].

S. Chatrchyan et al. (CMS), A Search for a Doubly-Charged Higgs Boson in pp Collisions at $\sqrt{s} = 7$ TeV, Eur. Phys. J. C 72, 2189 (2012), arXiv:1207.2666 [hep-ex].

G. Aad et al. (ATLAS), Search for anomalous production of prompt same-sign lepton pairs and pair-produced doubly charged Higgs bosons with $\sqrt{s} = 8$ TeV pp collisions using the ATLAS detector, JHEP 03, 041, arXiv:1412.0237 [hep-ex].

V. Khachatryan et al. (CMS), Study of vector boson scattering and search for new physics in events with two same-sign leptons and two jets, Phys. Rev. Lett. 114, 051801 (2015), arXiv:1410.6315 [hep-ex].

Search for a doubly-charged Higgs boson with $\sqrt{s} = 8$ TeV pp collisions at the CMS experiment, (2016). A search for doubly-charged Higgs boson production in three and four lepton final states at $\sqrt{s} = 13$ TeV, (2017).

M. Aaboud et al. (ATLAS), Search for doubly charged Higgs boson production in multi-lepton final states with the ATLAS detector using proton–proton collisions at $\sqrt{s} = 13$ TeV, Eur. Phys. J. C 78, 199 (2018), arXiv:1710.09748 [hep-ex].

A. M. Sirunyan et al. (CMS), Observation of electroweak production of same-sign W boson pairs in the two jet and two same-sign lepton final state in proton-proton collisions at $\sqrt{s} = 13$ TeV, Phys. Rev. Lett. 120, 081801 (2018), arXiv:1709.05822 [hep-ex].

M. Aaboud et al. (ATLAS), Search for doubly charged scalar bosons decaying into same-sign W boson pairs with the ATLAS detector, Eur. Phys. J. C 79, 58 (2019), arXiv:1808.01890 [hep-ex].

G. Aad et al. (ATLAS), Search for doubly and singly charged Higgs bosons decaying into vector bosons in multi-lepton final states with the ATLAS detector using proton–proton collisions at $\sqrt{s} = 13$ TeV, JHEP 06, 146, arXiv:2101.11961 [hep-ex].

G. Aad et al. (ATLAS), Search for doubly and singly charged Higgs bosons decaying into vector bosons in multi-lepton final states with the ATLAS detector using proton–proton collisions at $\sqrt{s} = 13$ TeV, JHEP 06, 146, arXiv:2101.11961 [hep-ex].

Search for doubly charged Higgs boson production in multi-lepton final states using 139 fb$^{-1}$ of proton–proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, (2022).

Z. Kang, J. Li, T. Li, Y. Liu, and G.-Z. Ning, Light Doubly Charged Higgs Boson via the WW^* Channel at LHC, Eur. Phys. J. C 75, 574 (2015), arXiv:1404.5207 [hep-ph].

S. Kanemura and K. Yagyu, Implication of the W boson mass anomaly at CDF II in the Higgs triplet model with a mass difference, Phys. Lett. B 831, 137217 (2022), arXiv:2204.07511 [hep-ph].

J. Heeck, W-boson mass in the triplet seesaw model, Phys. Rev. D 106, 015004 (2022), arXiv:2204.10274 [hep-ph].

H. Bahl, W. H. Chiu, C. Gao, L.-T. Wang, and Y.-M. Zhong, Tripling down on the W boson mass, (2022), arXiv:2207.04059 [hep-ph].

Y. Cheng, X.-G. He, F. Huang, J. Sun, and Z.-P. Xing, Electroweak precision tests for triplet scalars, (2022), arXiv:2208.06760 [hep-ph].

T. Aaltonen et al. (CDF), High-precision measurement of the W boson mass with the CDF II detector, Science 376, 170 (2022).

M. Awramik, M. Czakon, A. Freitas, and G. Weiglein, Precise prediction for the W boson mass in the standard model, Phys. Rev. D 69, 053006 (2004), arXiv:hep-ph/0311148.

F. Staub, SARAH 4: A tool for (not only SUSY) model builders, Comput. Phys. Commun. 185, 1773 (2014), arXiv:1309.7223 [hep-ph].

F. Staub, Exploring new models in all detail with SARAH, Adv. High Energy Phys. 2015, 804780 (2015), arXiv:1503.04200 [hep-ph].

C. Degrande, C. Duhr, S. Fuks, D. Grellscheid, O. Mattelaer, and T. Reiter, UFO - The Universal FeynRules Output, Comput. Phys. Commun. 183, 1201 (2012), arXiv:1108.2040 [hep-ph].

J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, and T. Stelzer, MadGraph 5 : Going Beyond, JHEP 06, 128, arXiv:1106.0522 [hep-ph].

J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao, T. Stelzer, P. Torrielli, and M. Zaro, The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 07, 079, arXiv:1405.0301 [hep-ph].

R. D. Ball, V. Bertone, S. Carrazza, L. Del Debbio, S. Forte, A. Guftanti, N. P. Hartland, and J. Rojo (NNPDF), Parton distributions with QED corrections, Nucl. Phys. B 877, 290 (2013), arXiv:1308.0598 [hep-ph].

R. D. Ball et al. (NNPDF), Parton distributions for the LHC Run II, JHEP 04, 040, arXiv:1410.8849 [hep-ph].

B. Fuks, M. Nemevišek, and R. Ruiz, Doubly Charged Higgs Boson Production at Hadron Colliders, Phys. Rev. D 101, 075022 (2020), arXiv:1912.08975 [hep-ph].

T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C. O. Rasmussen, and P. Z. Skands, An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191, 159 (2015), arXiv:1410.3012 [hep-ph].

J. de Favereau, C. Delaere, P. Demin, A. Giammanco, V. Lemaître, A. Mertens, and M. Selvaggi (DELPHES 3), DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP 02, 057, arXiv:1307.6346 [hep-ex].

M. Cacciari, G. P. Salam, and G. Soyez, The anti-k_t jet clustering algorithm, JHEP 04, 063, arXiv:0802.1189 [hep-ph].

M. Cacciari, G. P. Salam, and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72, 1896 (2012), arXiv:1111.6097 [hep-ph].
[94] S. D. Ellis, C. K. Vermilion, and J. R. Walsh, Techniques for improved heavy particle searches with jet substructure, Phys. Rev. D 80, 051501 (2009), arXiv:0903.5081 [hep-ph].

[95] S. D. Ellis, C. K. Vermilion, and J. R. Walsh, Recombination Algorithms and Jet Substructure: Pruning as a Tool for Heavy Particle Searches, Phys. Rev. D 81, 094023 (2010), arXiv:0912.0033 [hep-ph].

[96] J. Thaler and K. Van Tilburg, Identifying Boosted Objects with N-subjettiness, JHEP 03, 015, arXiv:1011.2268 [hep-ph].

[97] J. Thaler and K. Van Tilburg, Maximizing Boosted Top Identification by Minimizing N-subjettiness, JHEP 02, 093, arXiv:1108.2701 [hep-ph].

[98] D. Krohn, M. D. Schwartz, T. Lin, and W. J. Waalewijn, NLO corrections to single W production at the Fermilab Tevatron A. Vicini, Combination of electroweak and QCD corrections to single W production at the LHC, JHEP 07, 018, arXiv:1105.0020 [hep-ph].

[99] J. Thaler and K. Van Tilburg, Testing the Scalar Triplet Solution to CDF’s Problem at the LHC, (2022), arXiv:2210.13496 [hep-ph].

[100] G. Balossini, G. Montagna, C. M. Carloni Calame, M. Moretti, O. Nicrosini, F. Piccinini, M. Treccani, and A. Vicini, Combination of electroweak and QCD corrections to single W production at the Fermilab Tevatron and the CERN LHC, JHEP 01, 013, arXiv:0907.0276 [hep-ph].

[101] J. M. Campbell, R. K. Ellis, and C. Williams, Vector boson pair production at the LHC, JHEP 07, 018, arXiv:1105.0020 [hep-ph].

[102] F. Cascioli, T. Gehrmann, M. Grazzini, S. Kallweit, F. Piccinini, M. Treccani, and A. Vicini, Computation of electroweak and QCD corrections to single W production at the Fermilab Tevatron and the CERN LHC, JHEP 01, 013, arXiv:1007.0276 [hep-ph].

[103] J. M. Campbell, R. K. Ellis, and C. Williams, Associated production of a Higgs boson at NNLO, JHEP 06, 179, arXiv:1601.00658 [hep-ph].

[104] D. de Florian et al. (LHC Higgs Cross Section Working Group), Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector 2/2017, 10.23731/CYRM-2017-002 (2016), arXiv:1610.07922 [hep-ph].

[105] Y.-B. Shen, R.-Y. Zhang, W.-G. Ma, X.-Z. Li, and L. Guo, NLO QCD and electroweak corrections to WW production at the LHC, Phys. Rev. D 95, 073005 (2017), arXiv:1605.00554 [hep-ph].

[106] D. T. Nhung, L. D. Ninh, and M. M. Weber, NLO corrections to WWZ production at the LHC, JHEP 12, 096, arXiv:1307.7403 [hep-ph].

[107] Y.-B. Shen, R.-Y. Zhang, W.-G. Ma, X.-Z. Li, Y. Zhang, and L. Guo, NLO QCD + NLO EW corrections to WZZ productions with lepton decays at the LHC, JHEP 10, 186, [Erratum: JHEP 10, 156 (2016)], arXiv:1507.03693 [hep-ph].

[108] H. Wang, R.-Y. Zhang, W.-G. Ma, L. Guo, X.-Z. Li, and S.-M. Wang, NLO QCD + EW corrections to ZZ production with subsequent leptonic decays at the LHC, J. Phys. G 43, 115001 (2016), arXiv:1610.05876 [hep-ph].

[109] R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, P. Torrielli, E. Vryonidou, and M. Zaro, Higgs pair production at the LHC with NLO and parton-shower effects, Phys. Lett. B 732, 142 (2014), arXiv:1401.7340 [hep-ph].

[110] N. Kidonakis, Theoretical results for electroweak-boson and single-top production, PoS DIS2015, 170 (2015), arXiv:1506.04072 [hep-ph].

[111] C. Muselli, M. Bonvini, S. Forte, S. Marzani, and G. Ridolfi, Top Quark Pair Production beyond NNLO, JHEP 08, 076, arXiv:1505.02006 [hep-ph].

[112] A. Broggi, A. Ferroglio, R. Frederix, D. Pagani, B. D. Pecjak, and I. Tsinikos, Top-quark pair hadroproduction in association with a heavy boson at NLO+NNLL including EW corrections, JHEP 08, 039, arXiv:1907.04343 [hep-ph].

[113] R. Frederix, D. Pagani, and M. Zaro, Large NLO corrections in tW± and ttt hadroproduction from supposedly subleading EW contributions, JHEP 02, 031, arXiv:1711.02116 [hep-ph].

[114] Electron efficiency measurements with the ATLAS detector using the 2015 LHC proton-proton collision data, (2016).

[115] M. Aaboud et al. (ATLAS), Search for doubly charged Higgs boson production in multi-lepton final states with the ATLAS detector using proton-proton collisions at $\sqrt{s} = 13$ TeV, Eur. Phys. J. C 78, 199 (2018), arXiv:1710.09748 [hep-ex].

[116] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71, 1554 (2011), [Erratum: Eur.Phys.J.C 73, 2501 (2013)], arXiv:1007.1727 [physics.data-an].

[117] T. P. Li and Y. Q. Ma, Analysis methods for results in gamma-ray astronomy, Astrophys. J. 272, 317 (1983).

[118] R. D. Cousins, J. T. Linnemann, and J. Tucker, Evaluation of three methods for calculating statistical significance when incorporating a systematic uncertainty into a test of the background-only hypothesis for a Poisson process, Nucl. Instrum. Meth. A 595, 480 (2008), arXiv:physics/0702156.

[119] A. M. Sirunyan et al. (CMS), Search for physics beyond the standard model in multilepton final states in proton-proton collisions at $\sqrt{s} = 13$ TeV, JHEP 03, 051, arXiv:1911.04968 [hep-ex].

[120] Search for new phenomena in three- or four-lepton events in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, (2021).

[121] J. Butterworth, J. Heeck, S. H. Jeon, O. Mattelaer, and R. Ruiz, Testing the Scalar Triplet Solution to CDF’s Fat W Problem at the LHC, (2022), arXiv:2210.13496 [hep-ph].