Iron-mediated redox modulation in neural plasticity

Pablo Muñoz
Centro Interdisciplinario de Neurociencias de Valparaíso; Universidad de Valparaíso; Valparaíso, Chile

Keywords: iron, ryanodine receptor, synaptic plasticity, redox signaling, gene expression

Submitted: 11/07/11
Accepted: 11/08/11
http://dx.doi.org/10.4161/cib.18710
Correspondence to: Pablo Muñoz; Email: pablo.munoz@cinv.cl

The role of iron in brain physiology has focused on the neuropathological, effects due to iron-induced oxidative stress. However, our recent work has established a physiological relationship between the iron-mediated oxidative modification and normal neuronal function. Our results obtained from hippocampal neurons suggest that iron-generated reactive species oxygen (ROS) are involved in calcium signaling initiated by stimulation of NMDA receptors. This signal is amplified by ryanodine receptors (RyR), a redox-sensitive calcium channel, allowing the phosphorylation and nuclear translocation of ERK1/2. Furthermore, using electrophysiological approaches, we showed that iron is required for basal synaptic transmission and full expression of long-term potentiation, a type of synaptic plasticity. Our data combined suggest that the oxidative effect of iron is critical to activate processes that are downstream of NMDAR activation. Finally, due to the high reactivity of DNA with iron-generated ROS, we hypothesize an additional function of iron in gene regulation.

Due to its ability to accept or transfer electrons, iron participates in a series of redox reactions such as the Fenton reaction that generates hydroxyl free radicals or the Haber-Weiss reaction that combines the reduction of Fe³⁺ by superoxide plus oxygen to produce Fe²⁺.

When iron accumulates, it can promote oxidative stress which in turn triggers neuronal death. As a result of iron-mediated reactions, the study of iron in the brain has been focused on its neuropathological role. However, our recent work has established a physiological relationship between the iron-mediated oxidative modification and normal neuronal function. This work also suggests that iron-generated reactive species oxygen (ROS) could be a new class of molecules that act as second messengers in signaling cascades related to synaptic plasticity (SP), the putative cellular substrate of memory.

Consistent with a potential physiological role of iron, the activation of N-Methyl-D-aspartate (NMDA) receptors (NMDAR) induces iron uptake in cultured cortical neurons (Fig. 1), which in turn induces the production of the hydroxyl free radical-mediated Fenton reaction. Similarly, in cultured hippocampal neurons, we showed that the entry of iron rapidly increased labile iron for the Fenton reaction.

Why are there different mechanisms to incorporate iron, after neuronal activity? We propose that iron uptake is needed to provide a neuronal oxidative tone necessary for the proper functioning and operation of components sensitive to this tone. In agreement with this idea, ryanodine receptors (RyR), a channel involved in calcium-induced calcium release (CICR) which activates various signaling pathways involved in synaptic plasticity, has a group of oxidation-sensitive cysteines that could be one of the putative targets of iron-mediated oxidative attacks, as proposed by earlier work in PC12 cells. Our latest work in hippocampal neurons suggests that iron-generated ROS are involved in calcium signaling initiated by stimulation of NMDA receptors and amplified by the RyR. An iron chelator, deferrioxamine, prevents CICR as well as the phosphorylation and nuclear translocation of ERK1/2 necessary to establish synaptic plasticity (SP) and gene expression-dependent...
CREB (Fig. 1). Furthermore, using electrophysiological approaches, we showed that iron is required for basal synaptic transmission and full expression of long-term potentiation (LTP), suggesting that ROS generated by iron is an important component for SP. Recent work showing that generation of ROS-dependent activation of NMDAR is required for the SP and hippocampal-dependent memory is in agreement with the potential role of iron in SP.

Figure 1. For figure legend, see page 168.
There is intensive research into the identification of other molecular targets of iron-mediated oxidation, although to date not all processes modulated by iron have been uncovered.

Given the high sensibility of DNA to iron-generated ROS, it is intriguing to speculate about the normal function of iron in gene regulatory mechanisms. In particular, methylation of cytosine residues that are adjacent to a guanosine base is an epigenetic mechanism that has been implicated in the regulation of genes involved in SP and memory. Interestingly, methylation sites are frequently clustered in regulatory regions called CpG islands, which are particularly sensitive to oxidative damage. Thus, iron-dependent oxidative reactions could also regulate gene expression by oxidizing DNA; leading to the formation of different adduct bases which may alter gene expression (Fig. 1). In fact, the 8-hydroxyguanosine (8OHG) has been described as a marker of DNA damage. However, the 5-hydroxymethylcytosine (5hmC) is formed by enzymatic oxidation over the 5methylcytosine catalyzed by a family of iron-dependent dioxygenases, recently identified in neurons. The functional significance of these oxidative modifications is unknown; however, they have been involved in the dynamics of DNA methylation.

Finally, combined data from our study suggest that the oxidative effect of iron is critical to activate processes that are downstream of NMDAR activation which are required for SP, like calcium release from ryanoide-sensitive intracellular store or gene expression.

Acknowledgments

We thank O. Schmachtenberg and K. Whitlock for critically reading the manuscript. This work was supported by Millennium Scientific Initiative Grant ICM, FONDAP and FONDECYT. Centro Interdisciplinario de Neurociencias de Valparaíso is a Millennium Institute.

References

1. Kehrer JP. The Haber-Weiss reaction and mechanisms of toxicity. Toxicology 2000; 149:43-50; PMID: 10963860; http://dx.doi.org/10.1016/S0300-488X(00)00231-6
2. Cheah JH, Kim SF, Hester LD, Clancy KW, Patterson SE, 3rd, Papadopoulos V, et al. NMDA receptor-nitric oxide transmission mediates neuronal iron homoeostasis through the GTase Dnaxa. Neuron 2006; 51:43-49; PMID:16908409; http://dx.doi.org/10.1016/j.neuron.2006.07.011
3. Salazar J, Mena N, Hunor S, Prigent A, Alvarez-Fischer D, Arredondo M, et al. Divalent metal transporter 1 (DMT1) contributes to neurodegeneration in animal models of Parkinson’s disease. Proc Natl Acad Sci U S A 2008; 105:18578-83; PMID:191011085; http://dx.doi.org/10.1073/pnas.0804373105
4. Jung SM, Kim JW, Kim CH, An JH, Kang EJ, Kim CG, et al. Control of transferrin expression by 5-arylmethyl through the GP2/CP2 transcription factor. FEBs J 2010; 277:405-65; PMID:20796026; http://dx.doi.org/10.1111/j.1174-4658.2010.07801.x
5. Gille G, Reichmann H. Iron-dependent functions of mitochondria–relation to neurodegeneration. J Neural Transm 2011; 118:549-59; PMID:21161382; http://dx.doi.org/10.1007/s00702-010-0503-7
6. Muñoz P, Humetes A, Elgueta C, Kirkwood A, Hidalgo C, Núñez MT. Iron mediates N-methyl-D-aspartate receptor-dependent stimulation of calcium-induced pathways and hippocampal synaptic plasticity. J Biol Chem 2011; 286:13382-92; PMID:21296883; http://dx.doi.org/10.1074/jbc.M110.213785
7. Adams T, Haeger P, Paula-Lima AC, Espinosa I, Casas-Alarcón MM, Carrasco MA, et al. Involvement of mRNA receptors of neurons in neuroprotection-induced hippocampal synaptic plasticity and spatial memory formation. Proc Natl Acad Sci U S A 2011; 108:3029-34; PMID:21226265; http://dx.doi.org/10.1073/pnas.1015808108
8. Aracena-Parks P, Goonasekera SA, Gilman CP, Dirksen RT, Hidalgo C, Hamilton SL. Identification of cystines involved in S-nitrosylation, S-glutathionylation, and oxidation to disulfides in ryanodine receptor type 1. J Biol Chem 2006; 281:40354-68; PMID: 17071618; http://dx.doi.org/10.1074/jbc.M600876200
9. Muñoz P, Zavala G, Castillo K, Agüerre P, Hidalgo C, Núñez MT. Effect of iron on the activation of the MAPK/ERK pathway in PC12 neuroblastoma cells. Biol Res 2006; 39:189-99; PMID:16629179; http://dx.doi.org/10.4067/S0716-97622006001000012
10. Massaad CA, Klann E. Reactive oxygen species in the regulation of synaptic plasticity and memory. Annu Top Redox Signal 2011; 14:2013-54; PMID:20649743; http://dx.doi.org/10.1016/j.ata.2010.12.0208
11. Valavanidis A, Vlahoyianni T, Fiotakis K. Comparative study of the formation of oxidative damage marker 8-hydroxy-2′-deoxyguanosine (8-OHdG) adduct from the nucleoside 2′-deoxyguanosine by transition metals and suspensions of particulate matter in relation to metal content and redox reactivity. Free Radic Res 2005; 39:1071-81; PMID:16298732; http://dx.doi.org/10.1080/10707570500188671
12. Feng J, Zhou Y, Campbell SL, Le T, Li E, Sweatt JD, et al. Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat Neurosci 2010; 13:423-30; PMID:20228804; http://dx.doi.org/10.1038/nn.2514
13. Lennon JM, Roth TL, Lubin JD, Miller CA, Huang IC, Deasi P, et al. Evidence that DNA (cytosine-5) methyltransferase regulates synaptic plasticity in the hippocampus. J Biol Chem 2006; 281:15763-73; PMID:1606618; http://dx.doi.org/10.1074/jbc.M511767200
14. Valenzuela V, Tsai HH, Rogosek DK, Burdzy A, Bird A, Sowers LC. Oxidative damage to methyl-Cpg sequences inhibits the binding of the methyl-Cpg binding domain (MBD) of methyl-Cpg binding protein 2 (Mecp2). Nucleic Acids Res 2004; 32:4100-8; PMID:15302911; http://dx.doi.org/10.1093/nar/gkh739
15. Guo JY, Su X, Zheng C, Ming GL, Song H. Oxidation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 2011; 145:423-34; PMID:21496894; http://dx.doi.org/10.1016/j.cell.2011.03.022
16. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Bhnudo Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 2009; 324:930-5; PMID:19372991; http://dx.doi.org/10.1126/science.1170116