The ubiquitin ligase APC/CCdh1 puts the brakes on DNA-end resection

Lorenzo Lafranchi and Alessandro A Sartori*

Institute of Molecular Cancer Research; University of Zurich; Zurich, Switzerland

Keywords: anaphase promoting complex/cyclosome (APC/C), cell cycle, Cdh1, CtIP, DNA damage, DNA double-strand break repair, DNA-end resection, genomic instability, ubiquitin-dependent proteolysis.

Genomic instability is a hallmark of cancer cells and predominantly arises as a result of defects in components of the DNA damage response (DDR) machinery.1 DNA double-strand breaks (DSBs) are among the most dangerous lesions a cell can encounter as they could result in cancer-promoting chromosomal rearrangements. To optimally deal with DSBs, cells have evolved a number of repair pathways including non-homologous end joining (NHEJ) and homologous recombination (HR).1 NHEJ is fast and operates throughout the cell cycle, whereas HR is slower and the predominant repair mechanism during S phase. However, only HR is able to faithfully restore the original information by using the undamaged sister chromatid as a template for repair. HR is initiated by DNA-end resection, which requires the collaborative action of several enzymes, most importantly CtBP-interacting protein (CtIP, also known as RBBP8) and the MRE11-RAD50-NBS1 complex.2 Moreover, DNA-end resection is considered pivotal for the maintenance of genome stability.

The anaphase-promoting complex/cyclosome (APC/C), a multisubunit E3 ubiquitin ligase, orchestrates cell cycle progression by targeting critical cell cycle regulator proteins for proteasomal degradation.3 APC/C activity is mainly controlled through the mutually exclusive binding of 2 coactivators, cell division cycle protein 20 (Cdc20) and Cdc20-homolog 1 (Cdh1). APC/CCdc20 predominantly targets destruction box (D box)-containing substrates during the metaphase to anaphase transition. In anaphase, Cdc20 is replaced by Cdh1, which mostly recognizes KEN box-containing substrates and keeps APC/C active until the end of G1 phase. Although APC/CCdh1 is normally kept inactive during S and G2 phase, premature activation has been reported after genotoxic stress in G2 to establish an efficient DNA damage checkpoint.4,5 Moreover, loss of Cdh1 was shown to result in increased genomic instability.6 Consistent with data from the Malumbres laboratory, we found that Cdh1 downregulation leads to hypersensitivity to DSB-inducing agents.7,8 This prompted us to investigate whether APC/CCdh1 plays a more prominent role in DSB repair.

Indeed, using an integrated proteomics and bioinformatics approach, we identified the DNA-end resection factor CtIP as a novel APC/CCdh1 substrate.8 Protein sequence alignments highlighted the presence of an evolutionary conserved KEN box in CtIP, mutation of which resulted in defective Cdh1 interaction and CtIP ubiquitination. Furthermore, we showed that APC/CCdh1 exerts a dual control over CtIP, triggering its proteasome-dependent degradation both during G1 and following DSB formation in G2. First, we found that interfering with APC/C activity following mitotic exit led to increased CtIP protein levels in G1 cells. Second, in G2 phase following exposure to ionizing irradiation (IR), we showed that the CtIP KEN box mutant displays increased protein stability and prolonged retention at sites of DSBs when compared with the wild-type CtIP protein. As a logical consequence, cells expressing this mutant exhibit increased hyperphosphorylation of the replication protein A 32-kDa subunit (RPA2), a widely accepted marker for DNA-end resection.5 Although technically challenging, it would be interesting to further investigate whether increased ssDNA formation was due to either a fixed number...
hypothesized that under conditions of high genotoxic stress (e.g., after radiotherapy), cells prematurely activate APC/C_{CDh1} and degrade CtIP in an attempt to minimize DNA-end resection, thereby increasing the capacity of NHEJ.

Based on our data, we concluded that APC/C_{CDh1}-mediated degradation of CtIP contributes to the regulation of DNA-end resection and therefore plays an unexpected role in the coordination of DSB repair pathways (Fig. 1). In G1 cells, when the sister chromatid template is unavailable for HR-mediated DSB repair, APC/C_{CDh1} targets CtIP to minimize DNA-end resection and allow efficient identified other DDR factors as candidate substrates of the APC/C (e.g., RIF1, SMC5, and MDC1). A detailed characterization of additional APC/C_{CDh1} substrates involved in the regulation of DSB repair, in addition to CtIP, may eventually provide us with a more comprehensive picture of how APC/C_{CDh1} contributes to the maintenance of genome stability.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.
A Synthetic Lethal Interaction between APC/C and Topoisomerase Poisons Uncovered by Proteomic Screens. Cell Rep 2014; 6:670-83; PMID:24508461; http://dx.doi.org/10.1016/j.celrep.2014.01.017

8. Lafranchi L, de Boer HR, de Vries EG, Ong S-E, Sartori AA, van Vugt MA. APC/C/Cdh1 controls CtIP stability during the cell cycle and in response to DNA damage. EMBO J 2014; 33:2860-79; PMID:25349192; http://dx.doi.org/10.15252/embj.201489017

9. Shibata A, Conrad S, Birraux J, Geuting V, Barton O, Ismail A, Kakarougkas A, Meek K, Taucher-Scholz G, Lobrich M, et al. Factors determining DNA double-strand break repair pathway choice in G2 phase. EMBO J 2011; 30:1079-92; PMID:21317870; http://dx.doi.org/10.1038/emboj.2011.27

10. Barton O, Naumann SC, Diemer-Biehs R, Künel J, Steinlage M, Conrad S, Makharashvili N, Wang J, Feng L, Lopez BS, et al. Polo-like kinase 3 regulates CtIP during DNA double-strand break repair in G1. J Cell Biol 2014; 206:877-94; PMID:25267294; http://dx.doi.org/10.1083/jcb.201401146