Natural Remedies – A cure for arthritis?

Raveesha Peeriga a, *, Chandrasekhar Kothapalli Banoth b

a Department of Pharmacognosy, V. V. Institute of Pharmaceutical Sciences, Gudlavalleru-521356, A.P, India.

b Director, Oil Technological Research Institute, JNTU, Anantapur-515001, A.P, India.

INTRODUCTION

Musculoskeletal diseases such as arthritis, gout, osteomalacia, osteoporosis etc., cause severe long term joint pain, swelling and limitation of the movement. These diseases affect a significant population of the society and often lead to major personal, family and financial consequences as well as increased mortality [1].

Arthritis is a disease as old as mankind and is globally the most common musculoskeletal disorder. The word arthritis is derived from Greek word arthron meaning ‘joint’ and the Latin word itis means ‘inflammation’. There are more than 100 forms of arthritis. Some of them are osteoarthritis, rheumatoid arthritis, psoriatic arthritis and other related autoimmune diseases.

In the year of 2007, arthritis foundation has estimated that two-third of the population was suffering from arthritis and census reports that by 2030 it increases beyond to 40% [2]. It also have been reported that women were affected more comparatively with men.

Numerous treatments are available for various arthritis but they have their own drawbacks. The regular usage of conventional medicines such as NSAIDS like Ibuprofen, Acceclofenac etc are limited to minimize the degree of pain and steroids such as cortisone and hydrocortisone remains unsatisfactory for prolonged treatment. The prolonged usage of steroids results in deleterious effects like GI disturbances and renal morbidity.
S.No.	Botanical Name of plant and family	Common name	Bioactive compounds	Mechanism of Action	Animal model activity	References
1	Curcuma longa (Zingiberaceae)	Turmeric	Curcumin, Demethoxycurcumin, Bisdesmethoxycurcumin,	Inhibits NF-κB, COX-2, and MMP-9	Streptococcal cell wall-induced arthritis	[3]
2	Zingiber officinialis (Zingiberaceae)	Ginger	Sesquiterpenes, camphene, β-phellandrene, curcumene, cineole, geranyl acetate, terpineol, terpenes, borneol, geraniol, limonene, β-elemene, 6-Shogaol	Inhibits NF-κB, COX-2, PGE2	Freund’s Adjuvant-induced arthritis	[1,2]
3	Boswellia serrata (Burseraceae)	Indian Frankincense	Boswellic acid and its derivatives	Inhibits IL-1, IL-6, TNF-α, PGs, Nitric oxide (NO), NF-κB, COX-2 and 5-LOX	Bovine serum albumin-induced arthritis	[2,4]
4	Carica papaya (Cracicaeae)	Papaya	Inhibits prostaglandin-mediated inflammation	Formaldehyde-induced arthritis	Antiarthritic and anti-inflammatory	[2]
5	Camellia sinensis (Theaceae)	Green Tea	Epigallocatechin-3-gallate	Inhibits COX-2, interferon-γ, TNF-α, NF-κB, iNOS, PGE2 phosphorylation of c-Jun-N-terminal kinase (JNK) p46 and decreases phosphor-c-Jun and DNA-binding activity of AP-1	Collagen-Induced Arthritis	[2,3]
6	Cynodon dactylon (Graminacae)	Durva Grass	Decreases myeloperoxidase, nitrite, C-reactive protein, ceruloplasmin and thiobarbituric acid reactive substances and increases antioxidants	Adjuvant-Induced arthritis	Antiarthritic	[2]
7	Semecarpus anacardium (Anacardiaceae)		Inhibits production of IL-1β and IL-12p40. Suppresses LPS-induced nuclear translocation of NF-kB, inhibits IκBa phosphorylation and nuclear translocation of AP-1 and increases	Adjuvant-Induced arthritis	Antiarthritic	[5]
No.	Species (Family)	Antioxidant/Inflammation Compounds	Antioxidant/Inflammation Activities	Antioxidant status		
-----	--------------------------	-----------------------------------	---	----------------------------------		
8	*Vitis vinifera* (Vitaceae)	Grape vine, Resveratrol	Inhibits NF-κB, COX-2, PGE2, IL-1β and IL-6	Antiarthritic		
9	*Commiphora mukul* (Burseraceae)	Guggul, Guggulisterone	Inhibits NF-κB, COX-2 and MMP-9	Adjuvant-Induced arthritis		
10	*Withania somnifera* (Solanaceae)	Withania, Withanolide	Inhibits NF-κB	Adjuvant-Induced arthritis		
11	*Costus speciosus* (Zingiberaceae)	Crepe Ginger, Alkaloids and flavonoids	Inhibits COX-2 pathway	Freunde’s Adjuvant-induced arthritis		
12	*Ficus lacor* (Moraceae)	Fig, Alkaloids, glycosides and flavonoids		Antiarthritic		
13	*Strychnos potatorum* (Loganiaceae)	Clearing-nut	Inhibits increase of Lipid peroxidation, Nitric oxide	Freund’s Adjuvant-induced arthritis		
14	*Nigella sativa* (Ranunculaceae)	Nigella, Thymoquinone	Inhibits increase of Lipid peroxidation, Nitric oxide	Collagen-Induced Arthritis		
15	*Plumeria alba* (Apocynaceae)	Frangipani	Maybe inhibition of PGs	Antiarthritic		
16	*Ajuga bracteosa* (Labiatae)	Bugle weed, Ajugarin, lupulin A, Withaferin A, repto side and 6-deoxyharpagide	Inhibits COX-1 and COX-2	Formaldehyde induced arthritis		
17	*Cassia uniflora* (Caesalpinaceae)	Oneleaf senna, Sennosides A, B, C & D	Maybe due to Inhibition of histamine and PGs	Complete Freunds Adjuvant Arthritis		
18	*Mytilus edulis* (Mytilidae)	Black Mussel, n-3 analogue of arachidonic acid, 7,11,14,17- eicosatetraenoic acid (20: 4n-3)	Inhibition of COX-1 and COX-2	Adjuvant induced arthritis		
19	*Costus afer* (Zingiberaceae)	Ginger-Lily	May due to Inhibition of PGs	Complete Freunds Adjuvant Arthritis		
20	*Bergenia strachey* (Saxifragaceae)	Elephant ears, Bergenin and Norbergenin	Decreases in lipophilic character O-demethylation	Adjuvant induced arthritis		
Hydrotherapy is one of the oldest forms of treatment for patients with arthritis but the beneficiary of this treatment is very few. Podiatry deals with the importance of appropriate footwear provision for comfort, mobility and stability is well recognised in clinical practice but there is little evidence based research to support such observations in patients with early RA (Management of early rheumatoid arthritis a national clinical guideline, Scottish Intercollegiate Guidelines Network 2011). To overcome all these difficulties, the uses of natural remedies from plant origin were considered for safety, effectiveness and devoid of side effects which offers a novel opportunity.

The phytoconstituents derived from plants like flavonoids, terpenes, quinines, catechins, alkaloids, anthocyanins and anthoxanthins are potential against arthritis by modulating the expression of proinflammatory signals. Few natural remedies were addressed in Table No. 1:

Others:

Several other natural phytoconstituents have also been found to exhibit antiarthritis potential. For instance – Dihydrourucurbitacin B—the active principle of *Cayaponia tayuva* was justified its potential antiarthritic activity. J.M. Escandel et al. [16] found that Dihydrourucurbitacin B reduces chronic inflammatory response in the arthritic paws of female lewis rats. The mechanism of Dihydrourucurbitacin B is associated by modifying the cell infiltration and the expression of both Nitric Oxide Synthase 2 and Cyclooxygenase 2.

Apart from the treatment of arthritis by natural remedies, it is utmost importance for the reliable assessment of parameters which is having a great potential to identify arthritis. One parameter namely Range of Motion (ROM) is of great clinical importance in arthritis patients. This measure describes the maximum flexion and extension measurements in a joint from a neutral angle. There are many readout systems to monitor the locomotion of the animals in the study. In the year 2011 Video graphic analysis was employed for the first time to describe the ROM in inflamed and noninflamed knee joints of freely moving rats. Videoradiography is a digital high speed x-ray system. Radiographs were recorded with a sampling rate of 500Hz and a resolution of 1,530 x 1,024 pixels from the amplifier using a high speed camera (Speed cam Visario G2; Weinberger Vision Gmbtt, Erlangen, Germany).

Conclusion:

Even though many treatments are available for the treatment of arthritis but they have their own drawbacks. In order to overcome these drawbacks the conventional treatments are made replaced by the natural remedies which results in safety, effective, devoid of side effects, low cost and readily available. Few plants like *Curcuma longa, Zingiber officinalis* etc., shows promising effects against arthritis but with the other plants the well characterization of the extracts are required at the level of bioactive compounds to make the observations are valid and reproducible.

References:

1. Baliga MS, Latheef L, Haniadka R, Fazal F, Chacko J, Arora R. Ginger (*Zingiber officinale Roscoe*) in the treatment and prevention of arthritis. Bioactive Food as Dietary Interventions for Arthritis and Related Inflammatory Diseases 2013:529-544.
2. Arora R, Malhotra P, Sharma A, Haniadka R, Yashawanth HS, Baliga MS. Medicinal efficacy of Indian herbal remedies for the treatment of arthritis. Bioactive Food as Dietary Interventions for Arthritis and Related Inflammatory Diseases 2013:601-617.
3. Khanna D, Sethi G, Ahn KS, Pandey MK, Kunnunakkara AB, Sung B et al. Natural products as a gold mine for arthritis treatment. Curr Opin Pharmacol. 2007;7(3):344-351.
4. Sabina EP, Indu H, Rasool M. Efficacy of boswellic acid on lysosomal acid hydrolases, lipid peroxidation and anti-oxidant status in gouty arthritic mice. Asian Pac J Trop Biomed. 2012;2(2):128-133.
5. Ramprasath VR, Shanthi P, Sachdanandam P, Semecarpus anacardium Linn. nut milk extract, an indigenous drug preparation, modulates reactive oxygen/nitrogen species levels and antioxidative system in adjuvant arthritic rats. Mol Cell Biochem. 2005;276(1-2):97-104.
6. Srivastava S, Singh P, Jha KK, Mishra G, Srivastava S, Khosa RL. Evaluation of anti-arthritic potential of the methanolic extract of the aerial parts of *Costus speciosus*. J Ayurveda Integr Med. 2012;3(4):204-208.
7. Sindhu RK, Arora S. Therapeutic effect of Ficus lacor aerial roots of various functions on Adjuvant-Induced Arthritic Rats. ISRN Pharmacology. 2013:1-8.
8. Ekambaram S, Perumal SS, Subramanian V. Evaluation of antiarthritic activity of *Strychnos potatorum* Linn seeds in Freund’s adjuvant induced arthritic rat model. BMC Complementary and Alternative Medicine 2010;10:56.
9. Umar S, Zargan J, Umar K, Ahmad S, Katiyar CK, Khan HA. Modulation of the oxidative stress and inflammatory cytokine response by thymoquinone in the collagen induced arthritis.
in Wistar rats. Chemico-Biological Interactions 2012;197:40-46.

10. Choudhary M, Kumar V, Gupta P, Singh S. Investigation of antiarthritis potential of Plumeria alba L. leaves in acute and chronic models of arthritis. Biomed Res Int. 2014;2014:474616.

11. Kaithwas G, Gautam R, Jachak SM, Saklani A. Antiarthritic effects of Ajuga bracteosa Wall ex Benth. in acute and chronic models of arthritis in albino rats. Asian Pac J Trop Biomed. 2012;2(3):185-188.

12. Chaudari SS, Chaudari SR, Chavan MJ. Analgesic, anti-inflammatory and anti-arthritic activity of Cassia uniflora Mill. Asian Pac J Trop Biomed. 2012;2(2):970-975.

13. McPhee S, Hodges LD, Wright PFA, Wayne PM, Kalafatis N, Macrides TA. Prophylactic and therapeutic effects of Mytilus edulis fatty acids on adjuvant-induced arthritis in male Wistar rats. 2010;82(2-3):97-103.

14. Anyasor GN, Onajobi F, Osilesi O, Adebawo O, Oboutor EM. Anti-inflammatory and antioxidant activities of Costus afer Ker Gawl. hexane leaf fraction in arthritic rat models. 2014;155(1):543-551.

15. Nazir N, Koul S, Qurishi MA, Taneja SC, Ahmad SF, Bani S, Qazi GN. Immunomodulatory effect of bergenin and norbergenin against adjuvant-induced arthritis--a flow cytometric study. 2007;112(2):401-405.

16. Escandell JM, Recio MC, Manez S, Giner RM, Cerda-Nicolás M, Rios JL. Dihydrocucurbitacin B, isolated from Cayaponia tayuya, reduces damage in adjuvant-induced arthritis. Eur J Pharmacol. 2006;532(1-2):145-154.

17. Boettger MK, Leuchtevis J, Schaible HG, Schmidt M. Videoradiographic analysis of the range of motion in unilateral experimental knee joint arthritis in rats. 2011;13(3):R79.

18. Somasundaram SG, Oomen B. Antioxidant Flavonoids for Arthritis Treatment: Human and Animal Models. 2013:1-16.

Cite this article as: Peeriga R, Banoth CK. Natural Remedies – A cure for arthritis? J Compr Phar 2015;2(4):115-119.