Computational studies indicated the effectiveness of human metabolites against SARS-Cov-2 main protease

Rajarshi Roy1 · Md Fulbabu Sk1 · Omprakash Tanwar2 · Parimal Kar1

Received: 8 April 2022 / Accepted: 8 August 2022 / Published online: 18 August 2022
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022

Abstract
To fight against the devastating coronavirus disease 2019 (COVID-19), identifying robust anti-SARS-CoV-2 therapeutics from all possible directions is necessary. To contribute to this effort, we selected a human metabolites database containing waters and lipid-soluble metabolites to screen against the 3-chymotrypsin-like proteases (3CLpro) protein of SARS-CoV-2. The top 8 hits from virtual screening displayed a docking score varying between ~ −11 and ~ −14 kcal/mol. Molecular dynamics simulations complement the virtual screening study in conjunction with the molecular mechanics generalized Born surface area (MM/GBSA) scheme. Our analyses revealed that (HMDB0132640) has the best glide docking score, −14.06 kcal/mol, and MM-GBSA binding free energy, −18.08 kcal/mol. The other three lead molecules are also selected along with the top molecule through a critical inspection of their pharmacokinetic properties. HMDB0132640 displayed a better binding affinity than the other three compounds (HMDB0127868, HMDB0134119, and HMDB0125821) due to increased favorable contributions from the intermolecular electrostatic and van der Waals interactions. Further, we have investigated the ligand-induced structural dynamics of the main protease. Overall, we have identified new compounds that can serve as potential leads for developing novel antiviral drugs against SARS-CoV-2 and elucidated molecular mechanisms of their binding to the main protease.

Graphical abstract
Identification of probable hits from human metabolites against SARS-CoV-2 using integrated computational approaches-Missed against MS

Keywords SARS-COV-2 · Main protease · Human metabolites · Virtual screening · Molecular dynamics · Free energy

Introduction
In China, a very contagious and severe viral disease was reported at the end of 2019 [1, 2]. This causative agent was later detected as a novel coronavirus (SARS-CoV-2). The
3CLpro is a heart-shaped protein also known as the main druggable target for SARS-CoV-2. Thus, metabolites can be an important lead for drug development, for example: (i) 6-Mercaptopurine (HMDB ID-HMDB0015167), azathioprine metabolite, which is an FDA-approved drug used to treat cancer and autoimmune; (ii) Oxazepam (HMDB ID-HMDB0014980), a benzodiazepine derivative which is used to treat anxiety; and (iii) Canrenone (HMDB ID- HMDB0003033), an important active metabolite of spironolactone, which is used as a diuretic agent and treatment of hirsutism [25].

Herein, we have screened the HMDB molecules against SARS-CoV-2 3CLpro to find some potential small molecules that might be useful to combat such deadly diseases. This study may be the first to use in-silico investigations to give an idea of the blocking function of 3CLpro using human metabolites. Finally, we reported promising human metabolites against 3CLpro, which may be further developed as a therapeutic agent against COVID-19 based on their molecular mechanics generalized Born surface area (MM-GBSA) results.

Materials and methods

Preparation of protein

The primary atomic coordinates of 3CLpro (PDB ID- 6LU7, resolution ~ 2.16 Å) [7] were downloaded from the protein data bank and prepared using the protein preparation wizard of the Schrödinger suite [26]. The water molecules and co-factors were removed before minimization, while only the co-crystalized ligand was kept for final energy minimization. The energy minimization was restricted to an RMSD cut-off value of 0.3 Å with the original structure under the OPLS3 force field [27]. The prepared protein was then used for the grid box generation, and a 20 Å box was created, keeping the crystallized ligand in the center. The same grid was used for our entire virtual screening protocol.

Ligand selection, preparation, and virtual screening protocol

We downloaded metabolites from the HMDB database (HMDB 4.0, accessed in May 2021) [24] and converted them to 3D structures using the Schrödinger software. HMDB contains various metabolites such as small molecules, peptides, triglycerides, etc. For curating potential leads from the metabolites, we selected compounds with molecular weights between 70 and 600 Da (~26,000 molecules). Since we are interested in studying all the metabolites in this range, we did not filter this database further using Lipinski’s and related filters. Next, we performed the ligand preparation using the LigPrep module of the same suit, which resulted in ~36,801 entries. This module helps assign each ligand molecule’s protonation and ionization
states. Several structures from each ligand were generated with different ionization states, tautomers, stereochemical information, and ring conformations. Finally, ligands were optimized, yielding low-energy isomers.

The virtual screening was done against 3CLpro with the help of the virtual screening workflow (VSW) of the GLIDE module of Schrödinger \cite{28-30}. The three tiers of virtual screening protocol, namely HTVS (high throughput virtual screening), SP (standard precision), and extra precision (XP), were sequentially employed to obtain potential lead molecules. To reduce the size of the database, we selected the top 30\% of the docked complexes obtained from HTVS and used them for screening via Glide-SP. Finally, the top 20\% of the SP docking results were considered for the Glide-XP (extra precision) docking. Moreover, the final compound selection was based on a visual inspection of the docking poses and the corresponding XP-docking scores, resulting in 17 unique molecules that were subjected to further analyses and

Fig. 1 Ribbon representation of COVID-19 3CLpro complexed with the inhibitor, shown in ball and stick representation. The different part of 3CLpro is shown in different color, i.e., Green: Domain I, Cyan: Domain II, Blue: Domain III, Brown: Inter-domain connecting loop, and Red: Ligand molecules. The top 8 molecules which are screened by the virtual screening workflow are shown in 2D illustration.
investigations. A similar protocol for the virtual screening study was used in our previous work on COVID-19 3CLpro [15].

Molecular dynamics (MD) simulation

Selected docked structures obtained from the virtual screening were used as an input to the LEaP module of AmberTools19 [31] to generate the input structure for MD simulations. The TIP3P [32] water model was used to solvate the structure in an octahedron water box with a 10 Å buffer region from all directions. An adequate number of ions were also added to neutralize the system. All the complexes were simulated using the Amber ff14SB forcefield [33] for protein and generalized Amber force field (GAFF2) [34] for ligand molecules. A 10 Å cut-off was fixed for calculating the long-range interaction with the help of the particle-mesh Ewald (PME) scheme [35]. The SHAKE [36] algorithm involved the bond length having hydrogen atoms to keep its motion constant. All the systems were simulated at a constant temperature of 300 K, which was maintained using a Langevin thermostat with a collision frequency of 2 \(\text{ps}^{-1} \). A detailed description of the simulation protocol was discussed in our previous studies on COVID-19 [11, 37]. All complex structures were subjected to \(3 \times 100 \) ns production runs under the NPT ensemble. Trajectories were analyzed using the cpptraj module of AmberTools19, and the last 50 ns trajectories were used for the binding free energy calculation.

Protein–ligand-binding free energy calculation

The molecular mechanics Poisson–Boltzmann (generalized Born) surface area (MM-PB(GB)SA) scheme [38–42] is widely used to determine the binding free energy between protein-inhibitor [14, 43], protein-nucleic acid [44–46] as well as protein-carbohydrate [47, 48] complexes. The total binding free energy \(\Delta G_{\text{bind}} \) comprises internal energy \(\Delta E_{\text{internal}} \), desolvation free energy \(\Delta G_{\text{solv}} \), and configurational entropy \(T \Delta S \).

\[
\Delta G_{\text{bind}} = \Delta H - T \Delta S \approx \Delta E_{\text{internal}} + \Delta G_{\text{solv}} - T \Delta S \tag{1}
\]

To estimate the binding free energy, 2500 frames were selected uniformly from the last 50 ns trajectories, and calculation was done with the help of the \texttt{MMPSA.py} script available on AmberTools19. The entropic contribution was estimated using the normal mode analysis, and the MM-GBSA pair-wise decomposition scheme also assessed the contribution from each amino acid.

ADMET studies of top ligands

To compute the top lead molecules’ absorption, distribution, metabolism, and excretion properties, the \textit{QikProp} module of the Schrödinger suite was used. Thirty-five significant pharmaceutical properties were monitored, such as CNS activity, % of human oral absorption, blood–brain barrier prediction, cell permeability, Lipinski rule, etc. The toxicity-related parameters, such as hepatotoxicity, carcinogenicity, mutagenicity, and cytotoxicity, were calculated using the ProTox-II web server [54].

Results and discussions

Virtual screening of metabolites against 3CLpro

To conduct the virtual screening of the human metabolite database, we started with \(\approx 36,801 \) entries out of 114,214 HMDB metabolites, which have been further screened using HTVS, Glide-SP, and Glide-XP protocol to get the top 17 lead compounds. These compounds were ranked according to their glide score, and the top 8 ligands were selected by keeping a cut-off value of \(\approx 11 \text{ kcal/mol} \). To verify the docking poses, the top 8 ligand molecules were re-docked using Autodock Vina [55] and Glide-XP separately. Superimposition of the docked structures using both methods suggested similar binding poses, as shown in Supporting Information Fig. S1. We also investigated similarities of our principal metabolites by estimating the Tanimoto coefficient.

Further, this estimation was also carried out for five FDA-approved drugs: Remdesivir, Ritonavir, Favipiravir, Indinavir, and Beclabuvir, as shown in Supporting Information (Table S1). Most of the metabolites are chemically distinct except \textit{Ligand5} and \textit{Ligand8}. All other combinations showed a very low similarity like 0.14 (\textit{Ligand3} vs. \textit{Ligand4}) to moderate similarity like 0.58 (\textit{Ligand4} vs. \textit{Ligand7}). On the other hand, FDA-approved drugs showed significantly less similarity, ranging from 0.06 to 0.15. So, this suggests our metabolites are very much exclusive from the commonly used drugs showing a good binding.

The best lead molecule results in a Glide score of \(\approx 14 \text{ kcal/mol} \), indicating a promising candidate for drug design. The docking score of the top 8 lead compounds is shown in Table 1. We provided the SMILES of all top 8 ligands in Supporting Information Table S2. One of the best hits in the present study is HMDB0132640, i.e., \textit{Ligand1}, which is a predicted metabolite of 1-(2,4,6-trihydroxy-3-(3-methyl-2-en-1-yl)phenyl)-3-(2,4,5-trihydroxy phenyl)propan-1-one, a non-cyclic derivative of 2-phenylchromen-4-one flavonoids. It belongs to the class of organic compounds known as flavonoid o-glycosides. It can also be classified as 2'-hydroxy-dihydrochalones,
which is biosynthesized by reducing α,β-unsaturated ketone (chalcone) in the Human gut and is considered to be a flavonoid type of molecule. This type of flavonoid is present in many plants and has shown antiviral properties. The flavonoids have been reported to have a complementary therapeutic role in the treatment of COVID-19 [56]. Ligand 1 is one of the predicted metabolites of Isobavachalcone, which is obtained from the seeds of Psoralea corylifolia. Isobavachalcone has proven effective against papain-like protease (PL$^{\text{pro}}$) of SARS-CoV [57]. Isobavachalcone has also been found active against 3C-like protease/main protease (3CL$^{\text{pro}}$/M$^{\text{pro}}$) of the Middle East respiratory syndrome coronavirus (MERS-CoV) [58]. Thus, HMDB0132640 can be a potential compound for interventional therapy for COVID-19.

Another hit from HMDB is HMDB0127868 (Ligand 6) which belongs to the 5,7-Dihydroxy flavonoid class. It is a predicted metabolite of 2-(4-ethyl-3-hydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-3,5,7-triol. It is a polyphenolic compound and can have a potential antiviral property. Its binding energy and docking score are also good (-10.33 kcal/mol, -11.13, respectively). HMDB0134119 (Ligand 7) is our next hit and is a stilbene glycoside. It is a predicted metabolite of (E)-4-(3,5-dihydroxystyryl)benzene-1,3-diol. Some studies support the potential use of stilbene derivatives in treating SARC-COV infection [19, 59]. Its binding energy and docking score are good (-9.53 kcal/mol, -11.19, respectively). Another hit (HMDB0125821/Ligand 8) belongs to the 1-benzopyran class of compounds and are polyphenolic compounds. It is a predicted metabolite of 2,2-dimethyl-3,4-dihydro-2H-1-benzopyran-4,5,7-triol. These benzopyran compounds are found in mushrooms and are the biomarker for consuming these foods. Its binding energy and docking score are good (-10.28 kcal/mol, -11.05, respectively).

Structural stability and flexibility of complexes

Overall 3CL$^{\text{pro}}$ structure

About eight human metabolites were found to be potential after the virtual screening competition. These compounds were identified as interacting with the binding cavity and catalytic dyads of the SARS-CoV-2 major protease. To further validate the thermodynamics stability and flexibility of the complexes, 100 ns molecular dynamics simulations were carried out, and we monitored each system’s structural and energetic properties during the production simulations.

To verify the convergence of simulations, we calculate the time evolution of our system’s receptor backbone atoms root mean square deviation (RMSD) concerning their corresponding initial coordinates. The temporal distribution of RMSD of each system is shown in Fig. 2A, B, and their average values for the last 50 ns are listed in Table 2. The RMSD profile of the other two replica runs is shown in Supporting Information Fig. S2. It is evident from Fig. S2 that the overall RMSD profile was the same in all replica runs, suggesting a converged simulation for all but complex 3. In the case of complex 3, relatively large fluctuations were observed compared to other complexes. The other seven complex simulations attained stability in the last 50 ns.

Figure 2A, B shows that each system reached a good equilibrium state after 50 ns and maintained it throughout the last 50 ns of production simulations. The average RMSD value was found to vary between (1.5 ± 0.2) Å and (3.0 ± 0.1) Å for all cases. The highest average RMSD value (3.0 ± 0.1) Å was obtained for complex 1 and the lowest value (1.5 ± 0.2) Å for complex 4. For the comparison purpose, we

Lead molecule	Molecular weight	G-scorea	Glide-lipob	Glide-hbondc	Glide-evdwd
Ligand 1 (HMDB0132640)	568.657	-14.060	-4.160	0.000	-39.543
Ligand 2 (HMDB0030665)	622.706	-12.399	-2.859	-0.339	-61.108
Ligand 3 (HMDB0128347)	573.59	-12.151	-2.359	-0.800	-48.830
Ligand 4 (HMDB0134117)	598.64	-11.724	-2.228	-0.769	-36.536
Ligand 5 (HMDB0125819)	424.444	-11.534	-3.702	-0.160	-47.989
Ligand 6 (HMDB0127868)	492.564	-11.134	-2.904	-0.887	29.007
Ligand 7 (HMDB0134119)	598.64	-11.119	-3.060	-0.430	40.603
Ligand 8 (HMDB0125821)	394.418	-11.051	-3.639	-0.480	44.484

aGlide score (kcal/mol)

bLipophilic term derived from hydrophobic grid potential

cHydrogen bonding term in GlideScore

dVan der Waals energy
also estimated the RMSD of the apo structure from our previous work, which was simulated under the same condition and shown in Supporting Information (Fig. S3A). The average RMSD for the apo form was 2.0 ± 0.01 Å, comparable to the RMSD value of complexes.

We extended our residual fluctuation study, and the root mean square fluctuations (RMSFs) of Cα atoms in each protein complex were explored throughout the simulations and displayed in Fig. 2C, D. Figure 2C, D shows that all complexes’ overall atomic fluctuations pattern is the same. Due to the inhibitor binding, we observed lower fluctuations for domain I (residues 8–101) and domain II (residues 102–184). On the other hand, domain III (residues 201–306) showed relatively higher fluctuations than domains I and II. RMSF values rarely crossed 2 Å for most of the Cα atoms, except terminal residues, which is a usual phenomenon. Further, it is evident from Fig. 2C, D that the ligand-binding sites, including Leu27, His41, Cys145, His163, His164, Met165, Glu166, and Pro168, displayed the lowest fluctuation. It can further be observed from Fig. 2C, D that the off-binding site residues like Ser46, Glu47, Leu50, and Pro52 from domain I; Asn151, Ile152, Asp153, Tyr154, and Asp155 from domain II; Met276, Asn277, Gly278, Arg279, Thr280, and Gly302 from domain II showed higher fluctuations compared to other residues. However, our previous study on SARS-CoV-2 3CLpro [60] suggested that the apo 3CLpro protein structure had less atomic fluctuations than the ligand-bound protease, indicating that the apo 3CLpro is less flexible (see Fig. S3B).

Ligand dynamics and binding pocket stability

After investigating the overall 3CLpro structure, we also explored the conformation of all the ligands and the respective binding pocket stability in terms of its heavy atoms and backbone atoms RMSD, respectively, as shown in Fig. 3. As shown in Fig. 3A, B, the ligand RMSD values fluctuated within 3 Å, and the average RMSD values ranged from...
1.1 to 2.5 Å. Initially, all ligand RMSDs except for ligand 3 increased up to 30 ns and stabilized afterward. In the case of ligand 3, we observed more fluctuations than other ligands bound to 3CLpro, suggesting that it may make unstable interactions with the binding pocket of 3CLpro. This may weaken its affinity toward 3CLpro. Overall, the flexibility observed from the ligand RMSD profile is evident as these are small molecules. We also estimated the ligand stability by calculating the ligand–protein distance, which is discussed in the subsequent section. However, in the last 30 ns, all ligand RMSDs attain a steady state, which signifies a continuous binding.

Similarly, in Fig. 3C, D, we explore the time evolution of backbone atoms deviation at residues of 5 Å around each ligand. As the RMSD plot suggests, the fluctuations of all system’s ligand-binding pockets are lower. The average RMSD values range from 1.0 to 2.0 Å. If we see the fluctuation pattern, all the complexes except (complex 1 and complex 4) reached stability after 20 ns. The pocket RMSD of complex 1 and complex 4 revealed the two complexes have almost similar behavior during the entire production simulation and achieved structural stabilities during the initial 80 ns and the final 15 ns. These results suggest that the binding pocket of 3CLpro bound to human metabolites is relatively rigid and compact, which is suitable for better affinity.

Protein compactness and solvent exposure of binding sites

The residual compactness of the protein–ligand structure during molecular dynamics simulation is best described by the radius of gyration (RoG) and the solvent exposure measure in terms of solvent-accessible surface area (SASA). We computed RoG for all the complexes, shown in supporting information, Fig S4A, B, and the last 50 ns trajectories’ average values are listed in Table 2. It is evident from Fig. S4A, B that all the complexes were stable and compact throughout the 100 ns simulations, and the average RoG values range from 21.8 to 22.1 Å for all cases. The initial RoG value for all is high compared to the last 50 ns trajectory. It may indicate that all complexes become more compact due to the binding of human metabolites.

In order to know the solvent exposure of the 3CLpro binding cavity for all the eight simulated systems, we estimated the solvent-accessible surface area (SASA) of protein structures as shown in Fig. S4C, D. The average SASA values of the last 50 ns simulations are listed in Table 2. The initial surface area occupied by each complex is relatively high compared to the final 50 ns. It is evident from Table 2 that SASA values vary between 137.1 nm2 and 144.1 nm2 for all systems. On the other hand, the SASA value for the apo 3CLpro was estimated as 146.5 nm2 [60]. The lower SASA value signifies strong ligand-binding inside the cavity, suggesting the water molecule’s displacement from it. A similar observation was found in earlier studies [61–63].
Human metabolites and 3CLpro domains distance analysis

The 3CLpro has divided into three different domains, see Fig. 1. If we talk about the binding of any small molecules on the 3CLpro, then domain I and domain II are mainly responsible for that, and domain III is involved in the dimerization of 3CLpro. Therefore, to explore the structural displacement of the binding pocket and ligand behavior inside the binding cavity, we calculate the center of mass (CoM) distance among human metabolites (ligands) and domains (mainly domain I and domain II) see Fig. 4. As suggested in Fig. 4, except for complex3, complex4, and complex5, the rest have shown no change in their distance plots. It is evident from Fig. 4D that the distance between ligand and domains initially decreases up to 37 ns; afterward, it increases up to 80 ns and finally reaches stable equilibrium and fluctuates around 20 Å for the last 20 ns of simulations. Similarly, we also see some drifting in the distance plot of complex3 and complex5. The binding of human metabolites to 3CLpro is directly affected by these distance deflections.

Energetics of human metabolites affinity

To further elucidate the recognition, binding affinity, and specificity of human metabolites against SARS-CoV-2 main protease 3CLpro, we have estimated the total binding affinity (\(\Delta G_{\text{bind}}\)) and energetic components using molecular mechanics generalized Born surface area.

Fig. 4 The time evolution of distance between ligand and domain I (in red), ligand and domain II (in violet), ligand and domain I & II (in green).
A complex1, B complex2, C complex3, D complex4, E complex5, F complex6, G complex7 and H complex8, respectively.
Table 3 Energetic components of the binding free energy for 3CLpro of SARS-CoV-2 complexed with human metabolites, estimated using the MM/GBSA (kcal/mol) method

Systems	ΔE_{vdW}	ΔE_{elec}	ΔG_{pol}	ΔG_{ap}	ΔE_{MM}	ΔG_{pol}^b	ΔH	$-T\Delta S$	ΔG_{bind}^d
Complex1	−52.91 (0.10)	−57.22 (0.35)	70.40 (0.30)	−6.79 (0.01)	−110.13 (0.39)	63.61 (0.29)	−46.51 (0.11)	28.43 (0.86)	−18.08 (0.87)
Complex2	−44.26 (0.11)	−45.62 (0.30)	62.87 (0.22)	−6.34 (0.01)	−89.88 (0.32)	56.53 (0.21)	−33.35 (0.14)	28.01 (0.67)	−5.34 (0.68)
Complex3	−32.39 (0.10)	−79.24 (0.32)	87.79 (0.29)	−5.40 (0.01)	−111.64 (0.39)	87.29 (0.29)	−29.25 (0.10)	30.43 (0.70)	1.18 (0.71)
Complex4	−29.93 (0.09)	−23.86 (0.20)	38.44 (0.16)	−4.46 (0.01)	−57.52 (0.10)	28.70 (0.25)	−28.82 (0.13)	20.07 (0.57)	−8.75 (0.58)
Complex5	−37.50 (0.11)	−20.02 (0.30)	33.29 (0.26)	−4.59 (0.01)	−57.52 (0.34)	28.70 (0.25)	−28.82 (0.13)	20.07 (0.57)	−8.75 (0.58)
Complex6	−48.53 (0.05)	−27.72 (0.10)	48.09 (0.07)	−5.89 (0.00)	−76.25 (0.10)	42.20 (0.07)	−34.05 (0.05)	23.67 (0.46)	−10.33 (0.46)
Complex7	−44.14 (0.11)	−32.75 (0.22)	47.63 (0.16)	−5.95 (0.01)	−76.89 (0.28)	41.68 (0.15)	−35.21 (0.16)	25.68 (0.84)	−9.53 (0.85)
Complex8	−33.95 (0.06)	−17.63 (0.17)	28.26 (0.15)	−4.18 (0.01)	−51.58 (0.17)	24.09 (0.15)	−27.49 (0.06)	17.21 (0.58)	−10.28 (0.58)
are the hotspot residues. The van der Waals interactions with these residues have essential contributions to the overall binding affinity of the metabolite. This result implies that the human metabolite in complex 1 depicted a tendency to develop hydrophobic interactions with most of these binding site residues. This interaction is thought to reduce binding site residues’ flexibility, as seen in the RMSF analysis (Fig. 2C, D).

Next, we estimated the temporal evolution of the number of hydrogen bonds between 3CL^{pro} and metabolites throughout the simulation (see Fig. 6C, D). Detailed profiling of the prominent hydrogen bonds is listed in Supporting Information Table S4. It is evident from Fig. 6C, D that complex 3

Hydrogen bonds and hydrophobic interactions stability analysis

To complement the energetic analysis and understand the complex stability, we determined the time evolution of the center of the mass distance between the 3CL^{pro} and eight human metabolites into their respective complex, shown in Fig. 6A, B. As suggested in Fig. 6A, B, the CoM distance of these complexes is at a stable equilibrium. Although we see some deflection in complex 4 up to 80 ns, after that, it fluctuated around 23 Å.

Next, we estimated the temporal evolution of the number of hydrogen bonds between 3CL^{pro} and metabolites throughout the simulation (see Fig. 6C, D). Detailed profiling of the prominent hydrogen bonds is listed in Supporting Information Table S4. It is evident from Fig. 6C, D that complex 3
shows the highest number of hydrogen bonds compared to the rest of the complexes. This high number of hydrogen bonds increases the electrostatic interactions between 3CLpro and human metabolites. However, in complex3, this electrostatic interaction is compensated by polar solvation energy, which is the highest among all complexes. Thus, the number of hydrogen bonds alone is insufficient for obtaining high affinity, as also shown in an earlier study \cite{67}. However, ligand1 has very stable hydrogen between Gln192 and the oxygen (O3) atom (80.39%), which is missing in the case of complex3. The complex2, complex4, complex6, and complex8 have less than two hydrogen bonds in the 100 ns simulation. These results suggest that non-polar solvation and hydrophobic van der Waals interactions are the primary binding force.

Furthermore, we supplemented the above findings for the top four molecules by exploring various hydrogen bonding and hydrophobic interaction profile between the main protease, 3CLpro, and human metabolites for the final production simulation structure, as shown in Fig. 7. The interaction profiles for complex2, complex3, complex4, and complex5 are shown in Supplementary Information, Fig. S6. The 3D conformation of ligands in the binding site shows the possible orientation of the different ring structures, which leads to the possible set hydrogen bonding pattern (Fig. 7A–D). The detailed interaction profiles were estimated using Ligplot+ (Fig. 7E–H) \cite{68}. For the complex1, Fig. 7E displayed ten hydrophobic interactions with Cys44, Gly143, Tyr54, Gln189, Met49, Asp187, Glu166, Met165, Gln192, and Leu167. These extensive hydrophobic interactions account for the high affinity and stability of human metabolites in complex1. Similarly, residues, including Thr26, His41, Arg188, and Thr190, form strong hydrogen bonding with metabolites. In complex6, seven hydrophobic interactions with residues His163, Arg188, His41, His164, Asp187, Met165, and Gln189 were found, as revealed by Fig. 7F. Figure 7G, H shows that Ala191, Arg188, Met165, Gln189, His41, Met49, and Asn142 are strongly involved in hydrophobic interactions. His164, Gln189, Gln166, and Gln192 participate in the hydrogen bonding interactions for complex7 and complex8. Due to extensive hydrophobic interactions and strong hydrogen bonding, complex1 may be more potent against SARS-CoV-2 3CLpro.

Prediction of pharmacological and toxicological properties

Different physicochemical properties like CNS, Molecular weight, acceptor and donor hydrogen bond cut-off, octanol/water partition coefficient, brain–blood barrier coefficient, and others were calculated and listed in Supporting Information (Table S5). Ligand8 is the least violated Lipinski’s rule among all other top leads. The best lead ligand obtained from the MD simulation studies shows poor druggability.
as it has the highest number of rule violations. However, recently, it has been found that many drugs do not follow Lipinski’s rule and are presently found on the FDA-approved drug list [69]. Instead of being employed as a therapeutic candidate, these compounds will be used as lead molecules.

© Springer
Ligand6 and **Ligand8** have less than 500 Dalton molecular weights, indicating a promising lead molecule for drug design. Only in the case of human oral absorption, all four ligands were out of the acceptable ranges. Compared with all the parameters, **Ligand8** stands out to be the best choice for a lead molecule. Toxicity profiling is one of the critical parameters for successful drug development, which was done in our lead molecules and shown in Supporting Information, Table S6. **Ligand1** and **Ligand7** were estimated as toxicity group 4, whereas **Ligand6** and **Ligand8** were estimated as group 5 on a scale of 1 to 5 (higher the number, lower the toxicity). All four lead ligands were evaluated as non-hepatotoxic, non-carcinogenic, non-mutagenic, and non-cytotoxic. In comparison to **Ligand1**, which has the highest binding free energy of all the molecules, **Ligand8** exhibits several interesting features.

Conclusion

This study concludes that the natural compounds and their metabolites can play a promising role in managing the SARS-COV-2 infection. The current study is a reference model in which we recommend adjusting the body’s metabolites or eating enough food to develop appropriate metabolites to combat viral infections. We screened the human metabolite database and selected the top 8 lead molecules for further validation. The chosen molecules were further screened using 3 × 100 ns long conventional molecular dynamics simulations and the free energy calculation using the MM/GBSA scheme. Based on our computational study, we identified top four lead compounds to become possible drug candidates. We found that one of the metabolites of isobavachalcone (**Ligand1**; HMDB0132640) binds very well (−18.08 kcal/mol) to 3CLpro of SARS-COV-2. Although it does not follow all the druggability rules, it is worth trying a molecule that can bind very well to 3CLpro and may serve as the best lead for this target. On the other hand, **Ligand8** is another suitable candidate based on suitable ADMET properties. Therefore, despite some deviations from drug-likeness, four of the eight hits can be taken further as they have ideal interactions with 3CLpro, excellent binding free energy, and good pharmacokinetic properties. Overall, these metabolites have a good chance of being developed as possible COVID-19 protease inhibitors.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s11030-022-10513-6.

Acknowledgements This work was partially supported by the Department of Science and Technology, Govt. of India (grant number DST/NSM/R&D_HPC_Applications/2021/03.18). RR thanks the Indian Institute of Technology Indore for financial assistance. MFS would like to thank the Department of Science and Technology, Govt. of India, for providing a doctoral fellowship under the INSPIRE fellowship scheme (DST/INSPIRE Fellowship/2017/IF170145).

Data availability The data supporting this study’s findings are available from the corresponding author (PK) upon reasonable request.

Declarations

Conflict of interest The authors declare that there is no conflict of interest.

Research involving human and animal rights There is no human or animal experiment in this study.

References

1. Wu JT, Leung K, Leung GM (2020) Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. Lancet 395(10225):689–697. https://doi.org/10.1016/S0140-6736(20)30260-9
2. Xu X et al (2020) Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci China Life Sci 63(3):457–460. https://doi.org/10.1007/s11427-020-1637-5
3. Hui DS et al (2020) The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health—the latest 2019 novel coronavirus outbreak in Wuhan, China. Int J Infect Dis 91:264–266. https://doi.org/10.1016/j.ijid.2020.01.009
4. Wu F et al (2020) A new coronavirus associated with human respiratory disease in China. Nature 579(7798):265–269. https://doi.org/10.1038/s41586-020-2008-3
5. Madboly WE, Shehata MG, Nashed MSM, Abu-Dief AM (2022) Using safe calculated low power of electrons to cut, analyze and exterminate the outer and inner biological elements of SARS-CoV-2, MERS-CoV-2 and influenza viruses in vitro. J Sci Res Rep 28(1):1–15. https://doi.org/10.9734/jsrr/2022/v28i130482
6. Woo PCY, Huang Y, Lau SKP, Yuen KY (2010) Coronavirus genomics and bioinformatics analysis. Viruses 2(8):1804–1820. https://doi.org/10.3390/v2081803
7. Jin Z et al (2020) Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 582(7811):289–293. https://doi.org/10.1038/s41586-020-2223-y
8. Choudhary MI, Shaikh M, tul-Wahab A, ur-Rahman A (2020) In silico identification of potential inhibitors of key SARS-CoV-2 3CLpro hydrolyase (Mpro) via molecular docking, MMGBSA predictive binding energy calculations, and molecular dynamics simulation. PLoS ONE 15(7):e0235030. https://doi.org/10.1371/journal.pone.0235030
9. Alamri MA et al (2021) Pharmacoinformatics and molecular dynamics simulation studies reveal potential covalent and FDA-approved inhibitors of SARS-CoV-2 main protease 3CLpro. J Biomol Struct Dyn 39(13):4936–4948. https://doi.org/10.1080/07391102.2020.1782768
10. Khan RJ et al (2021) Targeting SARS-CoV-2: a systematic drug repurposing approach to identify promising inhibitors against 3CL-like proteaseina and 2′-O-ribosyl methyltransferase. J Biomol Struct Dyn 39(8):2679–2692. https://doi.org/10.1080/07391102.2020.1753577
13. Bzówka M, Mitusińska K, Raczyńska A, Samol A, Tuszyński JA, Góra A (2020) Structural and evolutionary analysis indicate that the SARS-CoV-2 Mpro is a challenging target for small-molecule inhibitor design. Int J Mol Med 29(3):1099. https://doi.org/10.3890/ijmms.2019.0930

14. Thurakkal L, Singh S, Roy R, Kar P, Sadhukhan S, Porel M (2021) An in-silico study on selected organosulfur compounds as potential drugs for SARS-CoV-2 infection via binding multiple drug targets. Chem Phys Lett 763:138193. https://doi.org/10.1016/j.cplett.2020.138193

15. Roy R, Sk MF, Jonniya NA, Poddar S, Kar P (2021) Finding potent inhibitors against SARS-CoV-2 main protease through virtual screening, ADMET, and molecular dynamics simulation studies. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2021.1897680

16. Abu-Dief AM, El-Sagher HM, Shehata MR (2019) Fabrication, biophysical basis of binding of inhibitors to SARS-CoV-2 main protease by using molecular dynamics simulations and free energy calculations. J Biomol Struct Dyn 39(10):3649–3661. https://doi.org/10.1080/0739110120.201768149

17. Sk MF, Jonniya NA, Poddar S, Kar P (2021) Elucidating the extra domain in dimerization of the enzyme: defining the extra calculation as a new target for design of highly specific protease inhibitors. J Biol Chem 279(23):24765–24773. https://doi.org/10.1074/jbc.M311744200

18. Bzówka M, Mitusińska K, Raczyńska A, Samol A, Tuszyński JA, Góra A (2020) Structural and evolutionary analysis indicate that the SARS-CoV-2 Mpro is a challenging target for small-molecule inhibitor design. Int J Mol Med 29(3):1099. https://doi.org/10.3890/ijmms.2019.0930

19. Thirukkan L, Singh S, Roy R, Kar P, Sadhukhan S, Porel M (2021) An in-silico study on selected organosulfur compounds as potential drugs for SARS-CoV-2 infection via binding multiple drug targets. Chem Phys Lett 763:138193. https://doi.org/10.1016/j.cplett.2020.138193

20. Roy R, Sk MF, Jonniya NA, Poddar S, Kar P (2021) Finding potent inhibitors against SARS-CoV-2 main protease through virtual screening, ADMET, and molecular dynamics simulation studies. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2021.1897680

21. Abu-Dief AM, El-Sagher HM, Shehata MR (2019) Fabrication, biophysical basis of binding of inhibitors to SARS-CoV-2 main protease by using molecular dynamics simulations and free energy calculations. J Biomol Struct Dyn 39(10):3649–3661. https://doi.org/10.1080/0739110120.201768149

22. Thurakkal L, Singh S, Roy R, Kar P, Sadhukhan S, Porel M (2021) An in-silico study on selected organosulfur compounds as potential drugs for SARS-CoV-2 infection via binding multiple drug targets. Chem Phys Lett 763:138193. https://doi.org/10.1016/j.cplett.2020.138193

23. Roy R, Sk MF, Jonniya NA, Poddar S, Kar P (2021) Finding potent inhibitors against SARS-CoV-2 main protease through virtual screening, ADMET, and molecular dynamics simulation studies. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2021.1897680

24. Abu-Dief AM, El-Sagher HM, Shehata MR (2019) Fabrication, biophysical basis of binding of inhibitors to SARS-CoV-2 main protease by using molecular dynamics simulations and free energy calculations. J Biomol Struct Dyn 39(10):3649–3661. https://doi.org/10.1080/0739110120.201768149

25. Gardiner P et al (1989) Spiroonolactone metabolism: steady-state serum levels of the sulfur-containing metabolites. J Clin Pharmacol 29(4):342–347. https://doi.org/10.1002/j.1552-4406.1989.tb03339.x

26. Sastry GM, Adzhigirey M, Day T, Annabhimouj, Sherman W (2013) Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des 27(3):221–234. https://doi.org/10.1007/s10822-013-9644-8

27. Harder E et al (2016) OPLS3: a force field providing broad coverage of drug-like small molecules and proteins. J Chem Theory Comput 12(1):281–296. https://doi.org/10.1021/acs.jctc.5b00864

28. Friesner RA et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47(7):1739–1749. https://doi.org/10.1021/jm0306430

29. Friesner RA et al (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein–ligand complexes. J Med Chem 49(21):6177–6196. https://doi.org/10.1021/jm0512509

30. Halgren TA et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47(7):1750–1759. https://doi.org/10.1021/jm030644s

31. Case DA et al (2018) AMBER 2018. University of California, San Francisco

32. Price DJ, Brooks CL (2004) A modified TIP3P water potential for the average of drug-like small molecules and proteins. J Chem Theory Comput 12(1):281–296. https://doi.org/10.1021/acs.jctc.5b00864

33. Mallbaum T, Kollman PA (2000) Combined molecular mechanical and continuum solvent approach (MM-PBSA/GBSA) to predict ligand complexes. J Med Chem 43(21):4493–4502. https://doi.org/10.1021/jm990020f

34. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25(9):1157–1174. https://doi.org/10.1002/jcc.20035

35. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N⋅log(N) method for Ewald sums in large systems. J Chem Phys 98(12):10089–10092. https://doi.org/10.1063/1.464397

36. Kräutler V, van Gunsteren WF, Hünenberger PH (2001) A fast SHAKE algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations. J Comput Chem 22(5):501–508. https://doi.org/10.1002/jcc.1001451

37. Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C (2015) ff14SB: improving the accuracy of the all-atom force field side chain and backbone parameters from ff99SB. J Chem Theory Comput 11(8):3696–3713. https://doi.org/10.1021/acs.jctc.5b00255

38. Sk MF, Jonniya NA, Roy R, Poddar S, Kar P (2020) Computational investigation of structural dynamics of SARS-CoV-2 methyltransferase-stimulatory factor heterodimer nsp16/nsp10 bound to the cofactor SAM. Front Mol Biosci 7:590165. https://doi.org/10.3389/fmolb.2020.590165

39. Massova I, Kollmann PA (2000) Combined molecular mechanical and continuum solvent approach (MM-PBSA/GBSA) to predict ligand binding. Perspect Drug Discov 18(1):113–135. https://doi.org/10.2174/105205200090763014207

40. Kar P, Seel M, Hansmann UHE, Höfinger S (2007) Dispersion terms and analysis of size- and charge dependence in an enhanced Poisson–Boltzmann approach. J Phys Chem B 111(30):8910–8918. https://doi.org/10.1021/jp072302u

41. genheden S, Ryde U (2015) The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov 10(5):449–461. https://doi.org/10.1517/17464041.2015.1032936

42. Wang C, Greene D, Xiao L, Qi R, Luo R (2018) Recent developments and applications of the MM-PBSA method. Front Mol Biosci 4:87. https://doi.org/10.3389/fmolb.2017.00087

43. Wang C et al (2019) End-point binding free energy calculation with MM/PBSA and MM/GBSA: strategies and applications in

44. Springer

45. Molecular Diversity (2023) 27:1587–1602
drug design. Chem Rev 119(16):9478–9508. https://doi.org/10.1021/acs.chemrev.9b00055

43. Sk MF, Haridev S, Roy R, Kar P (2021) Investigating potency of TMC-126 against wild-type and mutant variants of HIV-1 protease: a molecular dynamics and free energy study. SAR QSAR Environ Res 32(11):941–962. https://doi.org/10.1080/10692936.2021.1999318

44. Chang S, Zhang D-W, Xu L, Wan H, Hou T-J, Kong R (2016) Exploring the molecular basis of RNA recognition by the dimeric RNA-binding protein via molecular simulation methods. RNA Biol 13(11):1133–1143. https://doi.org/10.1080/15476266.2016.1223007

45. Peng Y, Sun L, Jia Z, Li L, Alexov E (2018) Predicting protein-DNA binding free energy change upon missence mutations using modified MM/PBSA approach: SAMPDI webserver. Bioinformatics 34(5):779–786. https://doi.org/10.1093/bioinformatics/btx698

46. Roy R, Mishra A, Poddar S, Nayak D, Kar P (2022) Investigating the mechanism of recognition and structural dynamics of nucleoprotein-RNA complex from Peste des petits ruminants virus via Gaussian accelerated molecular dynamics simulations. J Biomol Struct Dyn 40(5):2302–2315. https://doi.org/10.1080/07391102.2020.1838327

47. Roy R, Ghosh B, Kar P (2020) Investigating conformational dynamics of Lewis Y oligosaccharides and elucidating blood group dependency of cholera using molecular dynamics. ACS Omega 5(8):3932–3942. https://doi.org/10.1021/acsofma.0c03698

48. Roy R, Joniyia NA, Sk MF, Kar P (2022) Comparative structural dynamics of isoforms of helicobacter pylori adhesin BabA bound to Lewis b hexasaccharide via multiple replica molecular dynamics simulations. Front Mol Biosci 9:852895. https://doi.org/10.3389/fmolb.2022.852895

49. Kollman PA et al (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33(12):889–897. https://doi.org/10.1021/ar000033j

50. Abu-Dief AM et al (2022) Synthesis, structural elucidation, DFT calculation, biological studies and DNA interaction of some aryl hydrazone Cr(III), Fe(III), and Cu(II) chelates. Comput Biol Chem 97:107643. https://doi.org/10.1016/j.compbiolchem.2022.107643

51. Abu-Dief AM et al (2021) Synthesis and intensive characterization for novel Zn(II), Pd(II), Cr(III) and VO(II)-Schiff base complexes; DNA interaction, DFT, drug-likeness and molecular docking studies. J Mol Struct 1242:130693. https://doi.org/10.1016/j.molstruc.2021.130693

52. Abu-Dief AM, Abdel-Rahman LH, Abdel-Mawgoud AAH (2020) A robust in vitro anticancer, antioxidant and antimicrobial agents based on new metal-azomethine chelates incorporating Ag(I), Pd (II) and VO (II) cations: probing the aspects of DNA interaction. Appl Organomet Chem 34(2):e5373. https://doi.org/10.1002/aoc.5373

53. Abderahman LH, Abu-Dief AM, El-Khatib RM, Abdel-Fatah SM, Adam AM, Ibrahim EMM (2018) Sonochrome synthesis, structural inspection and semiconductor behavior of three new nano sized Cu(II), Co(II) and Ni(II) chelates based on tri-dentate NOO imine ligand as precursors for metal oxides. Appl Organomet Chem 32(3):e4174. https://doi.org/10.1002/aoc.4174

54. Banerjee P, Eckert AO, Schrey AK, Preissner R (2018) ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res 46(W1):W257–W263. https://doi.org/10.1093/nar/gky318

55. Trot O, Olson AJ (2009) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461. https://doi.org/10.1002/jcc.21334
Authors and Affiliations

Rajarshi Roy1 · Md Fulbabu Sk1 · Omprakash Tanwar2 · Parimal Kar1

1 Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh 453552, India

2 Department of Pharmacy, Shri G. S. Institute of Technology and Science, Indore, Madhya Pradesh 452003, India