Prevalence and Impact of Glenoid Augmentation in American Football Athletes Participating in the National Football League Scouting Combine

Derrick M. Knapik,*† MD, Robert J. Gillespie,* MD, Michael J. Salata,* MD, and James E. Voos,* MD

Investigation performed at University Hospitals Sports Medicine Institute, Cleveland, Ohio, USA

Background: Bony augmentation of the anterior glenoid is used in athletes with recurrent shoulder instability and bone loss; however, the prevalence and impact of repair in elite American football athletes are unknown.

Purpose: To evaluate the prevalence and impact of glenoid augmentation in athletes invited to the National Football League (NFL) Scouting Combine from 2012 to 2015.

Study Design: Case series; Level of evidence, 4.

Methods: A total of 1311 athletes invited to the NFL Combine from 2012 to 2015 were evaluated for history of either Bristow or Latarjet surgery for recurrent anterior shoulder instability. Athlete demographics, surgical history, imaging, and physical examination results were recorded using the NFL Combine database. Prospective participation data with regard to draft status, games played, games started, and status after the athletes’ first season in the NFL were gathered using publicly available databases.

Results: Surgical repair was performed on 10 shoulders in 10 athletes (0.76%), with the highest prevalence in defensive backs (30%; n = 3). Deficits in shoulder motion were exhibited in 70% (n = 7) of athletes, while 40% (n = 4) had evidence of mild glenohumeral arthritis and 80% demonstrated imaging findings consistent with a prior instability episode (8 labral tears, 2 Hill-Sachs lesions). Prospectively, 40% (n = 4) of athletes were drafted into the NFL. In the first season after the combine, athletes with a history of glenoid augmentation were not found to be at significant risk for diminished participation with regard to games played or started when compared with athletes with no history of glenoid augmentation or athletes undergoing isolated shoulder soft tissue repair. After the conclusion of the first NFL season, 60% (n = 6 athletes) were on an active NFL roster.

Conclusion: Despite being drafted at a lower rate than their peers, there were no significant limitations in NFL participation for athletes with a history of glenoid augmentation when compared with athletes without a history of shoulder surgery or those with isolated soft tissue shoulder repair. Glenohumeral arthritis and advanced imaging findings of labral tearing and Hill-Sachs lesions in elite American football players with a history of glenoid augmentation did not significantly affect NFL participation 1 year after the combine.

Keywords: coracoid; glenoid; American football; shoulder instability; augmentation

1Address correspondence to Derrick M. Knapik, MD, University Hospitals Case Medical Center, 11100 Euclid Ave, Cleveland, OH 44106, USA (email: Derrick.Knapik@gmail.com).

*University Hospitals Sports Medicine Institute, Cleveland, Ohio, USA.

One or more of the authors has declared the following potential conflict of interest or source of funding: R.J.G. is a paid presenter for DJ Orthopaedics and Wright Medical Technology Inc. M.J.S. is a paid consultant for Smith & Nephew. J.E.V. is a paid consultant for Arthrex.

Ethical approval for this study was obtained from University Hospitals Case Medical Center (IRB No. 04-15-50).

The Orthopaedic Journal of Sports Medicine, 5(8), 2325967117722945
DOI: 10.1177/2325967117722945
© The Author(s) 2017

This open-access article is published and distributed under the Creative Commons Attribution - NonCommercial - No Derivatives License (http://creativecommons.org/licenses/by-nc-nd/3.0/), which permits the noncommercial use, distribution, and reproduction of the article in any medium, provided the original author and source are credited. You may not alter, transform, or build upon this article without the permission of the Author(s). For reprints and permission queries, please visit SAGE’s website at http://www.sagepub.com/journalsPermissions.nav.

As the shoulder is the most unstable joint in the body, injuries to the shoulder with resultant glenohumeral dislocation are common in American football athletes.33,40 Shoulder trauma comprises roughly 10% to 20% of injuries in American football, the fourth most common musculoskeletal injury behind hand, knee, and ankle injuries.27,38 Shoulder injury with resultant dislocation and/or subluxation is often accompanied by a bony avulsion fracture from the anteroinferior glenoid, a “bony Bankart lesion.”14,41 In the presence of bony damage, continued participation places athletes at high risk for recurrent injury, time lost from sport, and long-term damage to the shoulder.3
Bony injury occurs secondary to acute fracturing or attri-
tional bone loss from recurrent episodes of dislocation or
subluxation. Because of the high rate of continued insta-
bility after nonsurgical management, surgical correction
using the Bristow or Latarjet techniques is preferred in
elite-level athletes to restore glenohumeral stability and to
minimize additional injury and time lost from play. Transfer of the coracoid to the anterior glenoid allows for
restoration of the inherent articular arc of the glenoid, help-
ing maintain the humeral head within the glenoid fossa dur-
ring range of motion, preventing engagement of Hill-Sachs
lesions, and effectively restoring stability. Compared to
the use of structural bone graft or allograft alone, transfer of the coracoid also allows for associated repositioning of the
conjoint tendon (short head of the biceps and coracobrachial,
providing increased dynamic stability to the glenohum-
eral joint, known as the “sling effect.”

Elite-level athletes undergoing bony glenoid augmenta-
tion have demonstrated high return-to-play rates, with
decreased recurrence of shoulder instability. However, no
study has analyzed the prevalence and impact after repair
in elite American collegiate football athletes. The purpose
of this study was to evaluate: (1) the prevalence of glenoid
augmentation surgery in American football athletes par-
ticipating in the National Football League (NFL) Scouting
Combine from 2012 to 2015, (2) the prevalence of postoper-
ative limitations in range of motion and strength to the
operative shoulder and concurrent shoulder pathology
based on imaging, and (3) the prospective participation of
athletes with a history of Bristow or Latarjet repair during
their first season in the NFL compared to athletes with no
history of glenoid bone augmentation and to those with
isolated soft tissue augmentation procedures to the
shoulder.

METHODS

The study protocol was preapproved by our institutional
review board and the NFL Research Committee. Evalua-
tions of 1311 athletes participating in the NFL Scouting
Combine from 2012 to 2015 were retrospectively reviewed
using the NFL Combine database. Information collected
from the database consisted of athlete position, year at the
combine, ethnicity, medical and surgical history, radi-
ographic magnetic resonance imaging (MRI) without arthro-
graphy and/or computed tomography (CT) findings, along
with physical examination results.

Inclusion criteria consisted of athletes with a history of
Bristow or Latarjet surgery with physical examination and
imaging recorded at the NFL Combine. Athletes were
excluded if they had no history of shoulder surgery (n = 1123
athletes) or a history of bony or soft tissue shoulder
surgery not consistent with Bristow or Latarjet repair (n = 178
athletes). One athlete was currently undergoing rehabili-
tation following repair performed 1 month prior to the
combine and was excluded, as no physical examination to
the operative shoulder was performed.

Surgical history was evaluated for athlete age at the time of
glenoid augmentation surgery and time from surgery to
participation in the NFL Combine, as well as whether other
procedures to the shoulder were performed to address addi-
tional pathologies in the operative shoulder. Imaging was
assessed by the senior authors and an independent muscu-
loskeletal radiologist at the NFL Combine to evaluate the
status of the coracoid bone block and screw integrity, as
well as the presence of additional shoulder pathology (pres-
ence and location of labral tearing, rotator cuff disease,
Hill-Sachs lesions). The extent of arthritic changes in the
shoulder was independently graded as stage I (normal),
stage II (minimal joint space narrowing), stage III (moder-
ate joint space narrowing), or stage IV (severe loss of joint
space with osteophyte formation) by the senior authors
using the classification system described by Weinstein
et al.44 Physical examination results were reviewed for the
presence of any deficits in shoulder strength (tested in flex-
ion, extension, abduction, external and internal rotation at
90° of abduction, graded subjectively by physicians) or
range of motion (tested in flexion, extension, abduction,
external and internal rotation at 90° of abduction). Physician’s notes on the presence of subjective discomfort, spe-
cifically with regard to pain, instability, or laxity to the
operative shoulder throughout range of motion, during
strength testing, or during practice and game play, were
recorded. Prospective information on NFL participation
with regard to draft status, along with games played and
games started in the first NFL year after the combine, was
compared between athletes with a history of glenoid aug-
mentation and all other athletes participating in the NFL
Combine from 2012 to 2015 (n = 1303). In addition, NFL
participation in athletes with glenoid augmentation was
further compared against athletes with a history of isolated
shoulder soft tissue repair without bony augmentation or
fracture fixation (n = 144 athletes), specifically athletes
with a history of labral repair (n = 132), rotator cuff repair
(n = 9), and acromioclavicular joint reconstruction (n = 3).
Continuous variables were compared using the Student t test.

RESULTS

Ten athletes (0.76%; 10 shoulders) who were invited to the
NFL Combine from 2012 to 2015 reported a history of glen-
oid augmentation surgery for recurrent anterior shoulder
instability (Table 1). Glenoid augmentation repair was per-
fomed in 3 defensive backs (30%), 2 wide receivers (20%),
2 defensive linemen (20%), as well as 1 running back, line-
backer, and offensive lineman each. The mean age at the
time of surgery was 19.3 years, and surgery was performed
an average of 3.2 years prior to participation in the NFL
Combine. The cohort consisted of 100% black athletes. No
athletes reported any subjective complaints with regard to
pain or instability during range of motion, strength testing,
or practice or game play after augmentation. One athlete
demonstrated ≥ anterior laxity on physical examination;
however, he reported no limitations and denied any pain.
Two athletes reported a history of surgery to the operative
shoulder before glenoid augmentation; however, no athlete
reported repeat surgery for continued laxity or episodes of
instability after repair and before the combine.
When compared to the contralateral shoulder, limitations in range of motion on physical examination were present in 70% (n = 7 athletes), specifically, decreased external rotation (n = 4 athletes; mean, 14°; range, 5°–20°); internal rotation (n = 3 athletes; mean, 10°; range, 5°–20°), and abduction (n = 1 athlete; mean, 20°) (Table 1). No deficits in shoulder strength in the tested planes were appreciated in 2 athletes (mean, 80%); 866 drafted of 1301 athletes) or those with a history of glenoid augmentation did not play (P = .59) or start (P = .12) in significantly fewer regular-season games compared to athletes who had not undergone shoulder surgery (Table 3). Similarly, athletes with glenoid augmentation did not play (P = .77) or start (P = .12) in fewer regular-season games compared to athletes with a history of isolated soft tissue shoulder surgery. Following the conclusion of their respective first seasons, 60% (n = 6) of athletes with glenoid augmentation remained on an active NFL roster.

DISCUSSION

Despite the low prevalence of glenoid augmentation surgery present in this cohort of athletes, the true prevalence of shoulder instability secondary to bony Bankart lesions in athletes is likely significantly greater. Neyton et al\(^2\) found that, after initial dislocation in young athletes secondary to sports-related trauma, 73% had evidence of glenoid bone loss. Meanwhile, in athletes with prior shoulder injury

TABLE 1

Overview of Athletes With History of Glenoid Augmentation at the NFL Combine\(^a\)

Athlete	Combine Year	Position	Years From Surgery to Combine	Age at Surgery	Functional Deficits	Recurrent Instability on Exam	OA Grading on X-Ray	Concomitant Pathology on MRI/CT	Prior Shoulder Surgery
1	2012 OL	4	20	Decreased IR 5°	No	Stage 1	+Posterior labral tear	+Labral repair	None
2	2012 DB	4	21	Decreased ER 20°	No	Stage 2	+Anteroinferior labral tear	None	None
3\(^b\)	2013 WO	2	20	Decreased ER 20°	2+ anterior laxity	Stage 2	+Anterior labral tear	None	None
4\(^b\)	2013 LB	5	18	Decreased IR 5°	No	Stage 2	No	None	None
5	2014 RB	4	18	None	No	Stage 2	+Posterior labral tear	None	None
6	2014 DB	3	21	Decreased IR 20°	No	Stage 1	+Hill-Sachs lesion, +anterosuperior labral tear	None	None
7	2014 DL	4	19	None	No	Stage 1	+Hill-Sachs lesion, +anterosuperior labral tear	None	None
8	2014 DB	1	24	None	No	Stage 1	+Posterior labral tear	None	None
9	2015 WO	2	21	Decreased IR 5°	No	Stage 1	No	None	None
10	2015 DL	3	20	Decreased IR 10°	No	Stage 1	+Posterior labral tear	None	None

\(^a\)CT, computed tomography; DB, defensive back; DL, defensive linemen; ER, external rotation; IR, internal rotation; LB, linebacker; MRI, magnetic resonance imaging; NFL, National Football League; OA, osteoarthritis; OL, offensive linemen; RB, running back; RTC, rotator cuff; WO, wide out.

\(^b\)Evidence of screw breakage on imaging.
and evidence of recurrent anterior shoulder instability, bony injury has been observed in up to 90%. As such, athletes are at higher risk than the general population for recurrent injury and exacerbation of bony and/or soft tissue damage with continued participation. Moreover, studies have found that young athletes playing contact sports are more prone to recurrent instability in the presence of bony defects measuring >30% of the glenoid width, and as low as 21%, increasing the likelihood of requiring bony reconstruction for continued sports participation. Shoulder instability in the presence of glenoid bone loss in contact athletes requires surgical repair with bony augmentation to improve clinical outcomes and minimize the potential for recurrent instability. Due to the high degree of stress placed on the shoulder during competition, outcomes following nonsurgical management of shoulder injury in contact athletes with glenoid bone loss are suboptimal with instability rates ranging between 55% and 82% in young male athletes. The current study found that in comparison to athletes undergoing isolated soft tissue shoulder repair, those with glenoid bone loss undergoing isolated soft tissue and/or Bankart repair have been noted to experience poor clinical and functional outcomes. Burkhart and De Beer found that in professional rugby and American football players with glenoid bone loss treated arthroscopically without bony reconstruction, 89% of athletes experienced recurrence of shoulder instability. Bessiere et al reported a 2-fold increase in recurrence of instability following isolated Bankart repair (23.5%) versus open Latarjet (11.7%) in competitive athletes at 5-year follow-up. Furthermore, shoulder stability appeared to decline over time following isolated Bankart repair when compared to coracoid transfer procedures, with failures generally occurring within the first 2 years.

While good outcomes have been reported with both techniques, the Latarjet procedure is preferred by many surgeons for glenoid augmentation. Compared to the Bristow technique, the Latarjet procedure provides a more anatomic reconstruction of the glenoid arc by using a longer segment of the coracoid. However, as both techniques provide a combination of bony, muscular, and capsular repair, known as the “triple blocking effect,” instability rates after repair are significantly lower, yielding high satisfaction and return-to-play rates.

Athlete	Combine Year	Drafted (Round)	Total NFL Games Played	Total NFL Games Started	Status After Season Conclusion
1	2012	No	0	0	Practice squad
2	2012	No	0	0	Out of league
3	2013	No	0	0	Practice squad
4	2013	Yes (6)	4	0	Active roster
5	2014	No	0	0	Free agent
6	2014	Yes (7)	13	4	Active roster
7	2014	Yes (1)	16	0	Active roster
8	2014	No	12	1	Active roster
9	2015	Yes (3)	16	8	Active roster
10	2015	No	0	0	Active roster

a Excluding preseason games.
b Retirement.

table 2

Athlete	Combine Year	Drafted (Round)	Total NFL Games Played	Total NFL Games Started	Status After Season Conclusion
1	2012	No	0	0	Practice squad
2	2012	No	0	0	Out of league
3	2013	No	0	0	Practice squad
4	2013	Yes (6)	4	0	Active roster
5	2014	No	0	0	Free agent
6	2014	Yes (7)	13	4	Active roster
7	2014	Yes (1)	16	0	Active roster
8	2014	No	12	1	Active roster
9	2015	Yes (3)	16	8	Active roster
10	2015	No	0	0	Active roster

a Excluding preseason games.
b Retirement.

table 3

| Participation Outcomes in Athletes Based on Surgical History
+Glenoid Augmentation	−Glenoid Augmentation Shoulder Surgery	P Value	+Glenoid Augmentation	+Isolated Soft Tissue Repair	P Value	
Total No. of athletes	10	1301	.59	10	6.2	.77
Mean No. NFL regular-season games played	6.2	7.5	.12	1.3	2.8	.12
Mean No. NFL regular-season games started	1.3	2.8	.12	1.3	2.8	.12

a NFL, National Football League.
b Athletes with or without a history of shoulder surgery, not involving glenoid augmentation (n = 1301).
c Athletes with a history of shoulder soft tissue repair (n = 144 athletes: 132, labral repair; 9, rotator cuff repair; 3, acromioclavicular joint reconstruction).
Other investigations examining limitations after bony repair have reported stiffness and loss of external rotation in up to 89% of patients, with multiple studies citing an average loss of 9° to 20° of external rotation. Castagna et al found >15° loss of external rotation in 42.8% of athletes, while Hovelius et al reported a mean loss of 12.4° of external rotation with the arm in the abducted position. Tenotomy of the subscapularis during glenoid exposure has been implicated as a potential cause for the loss in external rotation, shown to persist despite tendon reattachment. In contrast, multiple authors have reported improved outcomes with splitting of the subscapularis, citing benefit by allowing the tendon to remain functional as an effective sling. While screw breakage was discovered in 2 cases in the current study, other reported complications after repair, such as screw migration, fracture, lateral overhang, and nonunion of the coracoid bone block, were not encountered in any athlete.

No prior study in the literature has reported on the impact of concurrent lesions (labral tears, rotator cuff disease, Hill-Sachs lesions) on the risk of recurrent instability, complications, or time away from sport for rehabilitation following glenoid augmentation. Within the current study cohort, advanced imaging reports noted concurrent pathology in 80% (8 athletes) of the study cohort (labral tearing, n = 8; Hill-Sachs lesions, n = 2). Only Nevin et al, reporting on 34 rugby athletes who underwent Latarjet repair, found that 68% of the athletes demonstrated Hill-Sachs lesions; however, the authors did not comment on outcome comparisons in patients with and without lesions. As such, future studies enrolling large cohorts of athletes after Bristow and Latarjet repairs with and without concurrent shoulder pathology are needed to determine if additional injuries effectively have an impact on athlete participation in the NFL.

Concern for late-onset glenohumeral arthrosis following coracoid transfer has been well documented, with continued participation in competitive contact sports representing a serious risk factor for arthritic development and progression. Hovelius et al found the incidence of osteoarthritis at 15-year follow-up to be twice as high in athletes with projecting bone blocks (17%) when compared to well-positioned, flush blocks (8%). Meanwhile, Bouju et al found osteoarthritis in 8.5% of a cohort of 76 patients, including 59 high-level athletes, at a minimum 10-year follow-up. Other reported risk factors for arthritic development include advanced age during first dislocation and surgery, recurrence of instability, presence of arthritis before surgery, presence of rotator cuff disease, lateral overhang of the coracoid, accidental intra-articular screw placement, excessive anterior tightening, and longer follow-up. Within this study, the average time from surgery to participation in the NFL Combine (3.2 years) likely underestimates the true incidence of glenohumeral arthritis after reconstruction, warranting longer follow-up within this athletic population given the repetitive trauma placed on the repair following return to sport. It is important to note that the athletes in this cohort demonstrated only mild-to-moderate radiographic findings of arthritis. Athletes with more severe arthritis may not demonstrate the same functional ability; therefore, the results of this study cannot be extrapolated to this group.

This study is not without limitations. The collection of data was retrospective in nature, and history was taken from athletes at a single point in time at the NFL Scouting Combine. Specific details regarding injury mechanisms and the date of injury were infrequently reported and thus not included in the analysis. Moreover, surgery dates and time away from play were likely not precise because of potential recall bias by the athletes. We did not have access to operative reports, limiting information regarding surgical indications, surgical approach, type of repair (Bristow vs Latarjet), whether subscapularis was split or detached, the degree of bony or soft tissue damage, or the incidence of any peri-or postoperative complications. Only 2 athletes underwent CT scan, which at the time of the combine is decided by NFL physicians, preventing thorough assessment of bony union and the presence of potential lateral overhang in the operative shoulder. Furthermore, MRI was performed without arthrography, resulting in a small degree of decreased visibility in assessment of labral integrity in the presence of metal screws. Because of the small sample size of athletes with a history of repair, no meaningful statistical analysis examining for position- or injury-specific predictors for future participation in NFL, such as the presence of screw breakage, osteoarthritis, or concomitant pathology, could be evaluated. Moreover, only athletes with successful augmentation repair, enabling a return to elite-level football, were invited to the NFL Combine and included within the study. Athletes with failed repairs or persistent symptoms limiting optimal performance were likely not invited to the combine, leading to a selection bias within our results and preventing an evaluation of the true success rate of glenoid augmentation in this population. Finally, due to lack of publicly available information, we were unable to prospectively examine athlete data after the combine with regard to recurrent episodes of instability or the development of new or existing shoulder injuries requiring medical or surgical intervention.

While the prevalence of glenoid augmentation in elite American football athletes for anterior shoulder instability remains low, athletes undergoing repair frequently demonstrate limitations in range of motion, with concurrent lesions in the operative shoulder. However, when compared to athletes without a history of glenoid augmentation or those with only soft tissue repair, no significant limitations in games played or started in the season after participation in the NFL Combine were appreciated in athletes with glenoid augmentation and mild-to-moderate degenerative changes on imaging. Regardless, surgeons and team physicians must be aware of the potential for the development of glenohumeral arthritis and associated shoulder pathology after glenoid augmentation in elite-level athletes involved in contact sports. Prospective, long-term studies analyzing the influence of Bristow and Latarjet repair on participation, performance, and career length in NFL players are warranted to better understand the impact of glenoid augmentation in athletes with recurrent anterior shoulder instability.
REFERENCES

1. Allain J, Goutallier D, Glorion C. Long-term results of the Latarjet procedure for the treatment of anterior instability of the shoulder. J Bone Joint Surg Am. 1998;80(6):841-852.

2. Bossiennec C, Trojni C, Pelegri C, Carles M, Boileau P. Coracoid bone block versus arthroscopic Bankart repair: a comparative paired study with 5-year follow-up. Orthop Traumatol Surg Res. 2013;99(2):123-130.

3. Bhatia S, Ghodadra NS, Romeo AA, et al. The importance of the recognition and treatment of glenoid bone loss in an athletic population. Sports Health. 2011;3(5):435-440.

4. Bigliani LU, Newton PM, Steinmann SP, Connor PM, McIlvane SJ. Glenoid rim lesions associated with recurrent anterior dislocation of the shoulder. Am J Sports Med. 1998;26(1):41-45.

5. Boileau P, Villalba M, Hery JY, Balg F, Ahrens P, Neyton L. Risk factors for recurrence of shoulder instability after arthroscopic Bankart repair. J Bone Joint Surg Am. 2006;88(8):1755-1763.

6. Bottoni CR, Wilckens JH, DeBerardino TM, et al. A prospective, randomized evaluation of arthroscopic stabilization versus nonoperative treatment in patients with acute, traumatic, first-time shoulder dislocations. Am J Sports Med. 2002;30(4):576-580.

7. Bouju Y, Gadea F, Stanovici J, Moubarak H, Favard L. Shoulder stabilization by modified Latarjet-Patte procedure: results at a minimum 10 years' follow-up, and role in the prevention of osteoarthritis. Orthop Traumatol Surg Res. 2014;100(4 suppl):S213-S218.

8. Burkhart SS, De Beer JF. Traumatic glenohumeral bone defects and their relationship to failure of arthroscopic Bankart repairs: significance of the inverted-pear glenoid and the humeral engaging Hill-Sachs lesion. Arthroscopy. 2000;16(7):677-694.

9. Burkhart SS, De Beer JF, Barth JR, Cresswell T, Roberts C, Richards DP. Results of modified Latarjet reconstruction in patients with anteroinferior instability and significant bone loss. Arthroscopy. 2007;23(10):1033-1041.

10. Buscabayet F, Edwards TB, Szabo I, Adeleine P, Coudhane H, Walch G. Glenohumeral arthrothesis in anterior instability before and after surgical treatment: incidence and contributing factors. Am J Sports Med. 2004;32(5):1165-1172.

11. Calvo E, Granizo JJ, Fernandez-Yruegas D. Criteria for arthroscopic treatment of anterior instability of the shoulder: a prospective study. J Bone Joint Surg Br. 2005;87(5):677-683.

12. Cassagnaud X, Maynou C, Mestdagh H. Clinical and computed tomography results of 106 Latarjet-Patte procedures at mean 7.5 year follow-up. Rev Chir Orthop Reparatrice Appar Mot. 2003;89(8):683-692.

13. Castagna A, Markopoulos N, Conti M, Delle Rose G, Papadakou E, Boileau P. Coracoid bone block versus arthroscopic Bankart repair: a comparative paired study with 5-year follow-up. Orthop Traumatol Surg Res. 2013;99(2):123-130.

14. Edwards TB, Boulahia A, Walch G. Radiographic analysis of bone defects in chronic anterior shoulder instability. Arthroscopy. 2003;19(7):732-739.

15. Handoll HH, Almayerah MA, Rangan A. Surgical versus non-surgical treatment for acute anterior shoulder dislocation. Cochrane Database Syst Rev. 2004(1):CD004325.

16. Headey J, Brooks JH, Kemp SP. The epidemiology of shoulder injuries in English professional rugby union. Am J Sports Med. 2007;35(9):1537-1543.

17. Heffet AJ. Coracoid transplantation for recurrent dislocation of the shoulder. J Bone Joint Surg Br. 1958;40-B(2):198-202.

18. Hovelius L, Augustini BG, Fredin H, Johansson O, Norlin R, Thorling J. Primary anterior dislocation of the shoulder in young patients. A ten-year prospective study. J Bone Joint Surg Am. 1996;78(11):1677-1684.

19. Hovelius L, Komer L, Lundberg B, et al. The coracoid for recurrent dislocation of the shoulder. Technical aspects of the Bristow-Latarjet procedure. J Bone Joint Surg Am. 1983;65(7):926-934.

20. Hovelius L, Sandstrom B, Sundgren K, Saedo M. One hundred eighteen Bristow-Latarjet repairs for recurrent anterior dislocation of the shoulder prospectively followed for fifteen years: study I. Clinical results. J Shoulder Elbow Surg. 2004;13(5):509-516.

21. Hovelius L, Vikerfors O, Olofsson A, Svensson O, Rahme H. Bristow-Latarjet and Bankart: a comparative study of shoulder stabilization in 185 shoulders during a seventeen-year follow-up. J Shoulder Elbow Surg. 2011;20(7):1095-1101.

22. Hovelius LK, Sandstrom BC, Rosmark DL, Saedo M, Sundgren KH, Malmvig BG. Long-term results with the Bankart and Bristow-Latarjet procedures: recurrent shoulder instability and arthropathy. J Shoulder Elbow Surg. 2001;10(5):445-452.

23. Itoui E, Lee SB, Amrami KK, Wenger DE, An KN. Quantitative assessment of classic anteroinferior bony Bankart lesions by radiography and computed tomography. Am J Sports Med. 2003;31(1):112-118.

24. Itoui E, Lee SB, Berglund LJ, Borge LL, An KN. The effect of a glenoid defect on anteroinferior stability of the shoulder after Bankart repair: a cadaveric study. J Bone Joint Surg Am. 2000;82(1):35-46.

25. Jakobsen BW, Johannsen HV, Suder P, Sojbjerg JO. Primary repair versus conservative treatment of first-time traumatic anterior dislocation of the shoulder: a randomized study with 10-year follow-up. Arthroscopy. 2007;23(2):118-123.

26. Joshi MA, Young AA, Balestro JC, Walch G. The Latarjet-Patte procedure for recurrent anterior shoulder instability in contact athletes. J Shoulder Elbow Surg. 2015;24(1):105-111.

27. Kaplan LD, Flanagan DC, Norwig J, Jost P, Bradley J. Prevalence and variance of shoulder injuries in elite collegiate football players. Am J Sports Med. 2005;33(8):1142-1146.

28. Kirkley A, Griffin S, Richards C, Griffin S. Prospective randomized clinical trial comparing the effectiveness of immediate arthroscopic stabilization versus immobilization and rehabilitation in first traumatic anterior dislocations of the shoulder. Arthroscopy. 1999;15(5):507-514.

29. Lazarus MD, Sidles JA, Harryman DT II, Matsen FA III. Effect of a chondral-labral defect on glenoid concavity and glenohumeral stability. A cadaveric model. J Bone Joint Surg Am. 1996;78(1):94-102.

30. Maynocu C, Casasnaud X, Mestdagh H. Function of subscapularis after surgical treatment for recurrent instability of the shoulder using a bone-block procedure. J Bone Joint Surg Br. 2005;87(8):1096-1101.

31. Mizuno N, Denard PJ, Rass P, Melis B, Walch G. Long-term results of the Latarjet procedure for anterior instability of the shoulder. J Shoulder Elbow Surg. 2014;23(11):1691-1699.

32. Neyton L, Young A, Dawidziak B, et al. Surgical treatment of anterior instability in rugby union players: clinical and radiographic results of the Latarjet-Patte procedure with minimum 5-year follow-up. J Shoulder Elbow Surg. 2012;21(12):1721-1727.

33. Owens BD, Agel J, Mountcastle SB, Cameron KL, Nelson BJ. Incidence of glenohumeral instability in collegiate athletes. Am J Sports Med. 2009;37(9):1750-1754.

34. Owens BD, Dickens JF, Kilcoyne KG, Rue JP. Management of midseason traumatic anterior shoulder instability in athletes. J Am Acad Orthop Surg. 2012;20(8):518-526.

35. Piaiesecki DP, Verma NN, Romeo AA, Levine WN, Bach BR, Jr, Provencer MT. Glenoid bone deficiency in recurrent anterior shoulder instability: diagnosis and management. J Am Acad Orthop Surg. 2009;17(8):482-493.

36. Rhee YG, Cho NS, Cho SH. Traumatic anterior dislocation of the shoulder: factors affecting the progress of the traumatic anterior dislocation. Clin Orthop Surg. 2009;1(4):188-193.

37. Rowe CR, Zarinis B. Recurrent transient subluxation of the shoulder. J Bone Joint Surg Am. 1981;63(8):863-872.
38. Saal JA. Common American football injuries. Sports Med. 1991;12(2):132-147.
39. Singer GC, Kirkland PM, Emery RJ. Coracoid transposition for recurrent anterior instability of the shoulder. A 20-year follow-up study. J Bone Joint Surg Br. 1995;77(1):73-76.
40. Streubel PN, Krych AJ, Simone JP, et al. Anterior glenohumeral instability: a pathology-based surgical treatment strategy. J Am Acad Orthop Surg. 2014;22(5):283-294.
41. Sugaya H, Moriiishi J, Dohi M, Kon Y, Tsuchiya A. Glenoid rim morphology in recurrent anterior glenohumeral instability. J Bone Joint Surg Am. 2003;85-A(5):878-884.
42. Taylor DC, Arciero RA. Pathologic changes associated with shoulder dislocations. Arthroscopic and physical examination findings in first-time, traumatic anterior dislocations. Am J Sports Med. 1997;25(3):306-311.
43. Voos JE, Livermore RW, Feeley BT, et al. Prospective evaluation of arthroscopic Bankart repairs for anterior instability. Am J Sports Med. 2010;38(2):302-307.
44. Weinstein DM, Bucchieri JS, Pollock RG, Flatow EL, Bigliani LU. Arthroscopic debridement of the shoulder for osteoarthritis. Arthroscopy. 2000;16(5):471-476.
45. Young DC, Rockwood CA Jr. Complications of a failed Bristow procedure and their management. J Bone Joint Surg Am. 1991;73(7):969-981.
46. Zacchilli MA, Owens BD. Epidemiology of shoulder dislocations presenting to emergency departments in the United States. J Bone Joint Surg Am. 2010;92(3):542-549.
47. Zuckerman JD, Matsen FA III. Complications about the glenohumeral joint related to the use of screws and staples. J Bone Joint Surg Am. 1984;66(2):175-180.