Methylenetetrahydrofolate Reductase Gene Polymorphism C677T is Associated With Increased Risk of Coronary Heart Disease in Chinese Type 2 Diabetic Patients

Kunrong Wu1#, Shufang Zhang2#, Ziwan Guan1, Xiaoli Li2, Rui Li1, Ying Yin2, Yan Li1*

1Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University, Ji'nan 250014, Shandong, China
2School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271000, Shandong, China

Key words: methylenetetrahydrofolate reductase; gene polymorphisms; type 2 diabetes mellitus; coronary heart disease; homocysteine

Objective Chronic cardiovascular diseases induced by long-term poor blood glucose control are the main cause of death in patients with type 2 diabetes mellitus (T2DM). Previous research reports that methylenetetrahydrofolate reductase gene (MTHFR) polymorphisms might influence the occurrence of coronary heart disease (CHD) in T2DM patients. The purpose of this study was to evaluate whether MTHFR C677T and A1298C mutations are associated with the risk of CHD in T2DM patients.

Methods A total of 197 subjects with T2DM were studied, of which 95 patients with CHD. The genotypes of MTHFR C677T and A1298C were analyzed by using the dideoxy chain-termination method, and compared between patients with CHD and those without CHD.

Results We found that the frequency of the 677T allele was significantly higher in T2DM patients with CHD than those without CHD (P=0.011). However, there was no
significant difference in any of the examined haplotypes between T2DM patients with and without CHD. Furthermore, the 677T allele was associated with a higher risk of CHD development in diabetic patients with lower homocysteine (Hcy) levels (≤15 μmol/L) \((P=0.006)\), while no effect of \(MTHFR\) gene polymorphism on the incidence of CHD was found in patients with higher Hcy levels (>15 μmol/L) \((P=0.491)\).

Conclusion The \(MTHFR\) C677T gene polymorphism is associated with the risk of CHD of diabetic patients and could be used as an effective marker for CHD in Chinese diabetic populations with normal Hcy levels.

At present, the prevalence of type 2 diabetes mellitus (T2DM) has been rapidly increasing worldwide.\(^\text{[1]}\) According to the latest statistics of the International Diabetes Federation (IDF), there were approximately 415 million diabetics worldwide in 2015, of which about 109.6 million were Chinese.\(^\text{[2]}\) The complications of T2DM mainly include cardiovascular disease, cerebrovascular disease, peripheral vascular disease, nephropathy, neuropathy and retinopathy.\(^\text{[3-5]}\) Coronary heart disease (CHD) is one of the major macrovascular complications of T2DM, which is main cause of morbidity and mortality in T2DM.\(^\text{[6]}\)

Methylenetetrahydrofolate reductase (MTHFR) encoded by the \(MTHFR\) gene is a key enzyme in the homocysteine (Hcy) metabolic pathway, which re-methylates Hcy to methionine.\(^\text{[7]}\) \(MTHFR\) polymorphisms had been reported to be associated with elevated plasma Hcy.\(^\text{[6, 8]}\) There are two common polymorphisms of the \(MTHFR\) gene: one is a Cytosine (C) to Thymine (T) mutation at nucleotide C677T, which results in an alanine to valine substitution, and another is an Adenine (A) to Cytosine (C) mutation at nucleotide A1298C, resulting in an alanine to valine substitution.\(^\text{[9, 10]}\) The dysfunctional mutations in C677T and A1298C are related to a decrease of \(MTHFR\) activity, leading to a relatively insufficient methylation process and consequently increasing the plasma concentration of Hcy.\(^\text{[8, 10, 11]}\) Elevated plasma Hcy level has
been identified as a potential risk factor for the development of vascular diseases.[12, 13] Hyperhomocysteinemia (Hhcy) is associated with endothelial dysfunction, prethrombotic state and coronary atherosclerosis in patients with T2DM.[6, 14-17]

However, the frequency of the \textit{MTHFR} mutation varies by ethnicity, and the conclusions are not consistent whether the polymorphism of \textit{MTHFR} could be a predictor for the CHD in T2DM patients.[6, 18-23] The main purpose of this study was to evaluate the frequency of C677T and A1298C mutations in the Chinese population with T2DM and to assess whether their polymorphisms are associated with the risk of CHD in T2DM.

MATERIALS AND METHODS

Study subjects and data collection

A total of 197 subjects with T2DM were included in this study, of which 95 patients were combined with CHD. All of the study subjects were older than 30 years old. Basic information including gender, age, height and weight was collected by questionnaire.

Diabetes was diagnosed according to the diabetes diagnostic criteria published by the World Health Organization (WHO).[24] CHD was diagnosed according to the patient’s physical examination, supplementary examination, and medical history. All of the diagnoses of CHD were consistent with the diagnostic criteria for International Society of Cardiology and WHO.[25] Exclusion criteria: pregnancy and lactating women; patients with primary heart disease; severe kidney disease with serum creatinine (Scr) levels>132 μmol/L (serious kidney disease may be an important factor leading to atherosclerosis); patients taking folic acid or vitamin B\textsubscript{6} or B\textsubscript{12}. The study was approved by the Medical Ethics Committee of The First Affiliated Hospital of Shandong First Medical University and complied with the principles of the Helsinki Declaration of 1975. Informed consent was obtained from all subjects prior
to enrollment.

Biochemical assay
After overnight fasting, 2 ml of venous blood of the study subjects were collected into an EDTA-tube. Plasma was immediately separated at 4°C and kept at −80°C. The remaining blood was dispensed into 1.5 ml of enzyme-free EP tubes and kept at −80°C for DNA extraction. The plasma concentration of Hcy was measured using an enzyme-linked immunosorbent assay (ELISA) kit. Total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), Hemoglobin A1c (HbA1c) and Scr concentrations were measured via enzymatic method using an automatic biochemical analyzer (7600, Hitachi Inc, Japan). Fasting plasma glucose (FPG) was assessed by the glucose oxidase method.

DNA extraction and genotyping
Genomic DNA was extracted from the peripheral venous blood using the Tiangen Blood DNA Kit (Tiangen, Beijing, China). The genotype of *MTHFR* C677T and A1298C was analyzed by the dideoxy chain-termination method. A 25 μl reaction mixture for Polymerase Chain Reaction (PCR) system contained 0.25 μl 2×Taq DNA polymerase, 1 μl forward primer (3.2 pmol/μl), 1 μl reverse primer (3.2 pmol/μl), 1 μl DNA, 0.5 μl dNTP mixture, and added ddH2O to 25 μl finally. The PCR reaction conditions included pre-denaturation at 95°C for 5 min; 40 cycle of denaturation at 95°C for 30 s, annealing at 58°C for 30 s, and extension at 72°C for 1 min; and a final extension at 72°C for 5 min. The primers sequences for the *MTHFR* C677T and A1298C amplification were as follows: *MTHFR* C677T (forward 5'GTGTGGGGAGTTTGAGCAAT3', reverse 5'GGGAGCTTATGGGCTCTC3'), *MTHFR* A1298C (forward 5'TACCCAGGAGTGGGACGAGT3', reverse 5'GCACCCCTGAGTCCCTCCTC3'). The PCR product was electrophoresed by an ABI3730XL (ABI, Carlsbad, California, America) sequencer after purified.
Statistical analysis
All statistical analyses were performed using the SPSS 22.0 statistical analysis software (IBM, Armonk, New York, USA). The continuous variables were expressed as mean±standard deviation, and the categorical variables were expressed as percentages. Two-sided t test and Chi-square test were used to analyze continuous and categorical variables, respectively. Haplotypes analysis was performed using SHEsis online haplotype analysis software (http://analysis.bio-x.cn/). Results were considered statistically significant for the value of P<0.05. Chi-square test was used to validate the Hardy-Weinberg equilibrium. The value P>0.05 indicated that the genotype frequencies of the samples were consistent with Hardy-Weinberg equilibrium.

RESULTS
Clinical characteristics of the study patients
The clinical characteristics of the participants are shown in Table 1. There were no significant differences in the variables including gender, age, FPG, lipid, blood pressure, or Scr among T2DM subjects with or without CHD (P>0.05).

Table 1. Characteristics of T2DM patients with and without CHD

Items	T2DM patients without CHD	T2DM patients with CHD	P value
n	102	95	
Male [n (%)]	67 (65.69)	62 (65.26)	0.950
Age (yrs)	63.14±6.78	64.34±8.11	0.263
Current smoker [n (%)]	26 (25.49)	27 (28.42)	0.547
Age at T2DM diagnosis (yrs)	50.23±7.93	51.67±9.80	0.257
Diabetes duration (yrs)	12.91±5.97	12.66±6.66	0.642
BMI (kg/m²)	25.07±2.99	25.18±2.79	0.787
FPG (mmol/L)	7.95±2.08	8.10±2.33	0.733
HbA1c (%)	8.57±1.67	8.33±2.17	0.115
TC (mmol/L)	4.59±1.02	4.44±1.05	0.337
TG (mmol/L)	1.60±0.96	1.42±0.67	0.553
HDL-C (mmol/L)	1.21±0.28	1.20±0.39	0.523
LDL-C (mmol/L)	2.64±0.83	2.52±0.75	0.436
SBP (mm Hg) 133.26±12.42 131.01±13.62 0.228
DBP (mm Hg) 75.85±7.34 74.89±9.17 0.420
Scr (μmol/L) 66.21±18.40 70.25±22.48 0.128

T2DM: type 2 diabetes mellitus; CHD: coronary heart disease; BMI: body mass index; FPG: fasting plasma glucose; TC: total cholesterol; TG: triglycerides; HDL-C: high-density lipoprotein cholesterol; LDL-C: low-density lipoprotein cholesterol; SBP: systolic blood pressure; DBP: diastolic blood pressure; Scr: serum creatinine.

Association between MTHFR C677T and A1298T polymorphisms and CHD development in T2DM patients

MTHFR C677T and A1298C were genotyped by dideoxy chain-termination method, with the sequencing map shown in Figure 1. All 197 subjects with T2DM were genotyped at *MTHFR* C677T, and only 167 subjects (100 with CHD and 67 without CHD) were genotyped at A1298C.

The distributions of *MTHFR* C677T and A1298C genotypes in T2DM patients with or without CHD are shown in Table 2 and Table 3. The frequencies of *MTHFR* 677CT+TT in T2DM patients with and without CHD were 90.53% and 78.43%, respectively. The frequencies of the CT+TT genotype and T allele were more common in T2DM patients with CHD than in those without CHD (P=0.020, 0.011). However, the frequencies of *MTHFR* 1298AC+CC genotype or alleles showed no significant difference between these two groups (P>0.05).

There were three haplotypes at the two loci of *MTHFR* (C677T and A1298C) when the haplotype frequency is >3%. The haplotypes of the *MTHFR* (C677T and A1298C) are showed in Table 4. No significant difference was found in any of the examined haplotypes between T2DM patients with CHD and those without CHD.
Figure 1. The sequencing maps of *MTHFR* A1298C genotypes AA (I), AC (II) and CC (III) as well as C677T genotypes CC (IV), CT (V) and TT (VI). Arrows indicate the mutation sites.

Table 2. Distribution of *MTHFR* C677T genotype in T2DM patients with and without CHD

Genotypes and alleles	T2DM patients [n (%)]	OR (95% CI)	P value	
	Without CHD (n=102)	With CHD (n=95)		
CC	22 (21.57)	9 (9.47)		
CT+TT	80 (78.43)	86 (90.53)	2.63 (1.14-6.05)	0.020
C allele	92 (45.10)	62 (32.63)		
T allele	112 (54.90)	128 (67.37)	1.70 (1.13-2.56)	0.011

MTHFR: methylenetetrahydrofolate reductase gene; T2DM: type 2 diabetes mellitus; CHD: coronary heart disease; OR: odds ratio; CI: confidence interval.
Table 3. Distribution of MTHFR A1298C genotype in T2DM patients with and without CHD

Genotypes and alleles	T2DM patients [n (%)]	OR (95%CI)	P value
	Without CHD (n=100)	With CHD (n=67)	
AA	64 (69.07)	48 (74.60)	
AC+CC	36 (30.93)	19 (25.40)	0.70 (0.36-1.38) 0.303
A allele	162 (83.51)	115 (87.30)	
C allele	38 (16.49)	19 (12.70)	0.70 (0.39-1.28) 0.251

Table 4. Association of haplotypes in the MTHFR gene with risk of CHD

Haplotypes	T2DM without CHD (n=67)	T2DM with CHD (n=67)	OR (95%CI)	P value
C-A	0.267	0.216	0.75 (0.45-1.26) 0.275	
C-C	0.183	0.142	0.73 (0.40-1.34) 0.310	
T-A	0.543	0.642	1.49 (0.95-2.33) 0.084	

*The order of polymorphism in haplotypes: C677T and A1298C.

Interaction between MTHFR (C677T and A1298C) gene polymorphism and Hcy levels

The Hcy levels in T2DM patients with CHD were significantly higher than those without CHD (14.26±6.09 vs. 11.76±4.13 μmol/L; P=0.001). We divided the diabetic patients into two groups according to Hcy levels (lower levels: ≤15.0 μmol/L; higher levels: >15 μmol/L) and assessed the relationship between MTHFR polymorphism and CHD development. Data showed that the frequency of the MTHFR 677CT+TT genotype was significantly higher in patients with CHD than that in those without CHD in the lower Hcy levels group (P=0.006), while no significant difference was observed in the higher Hcy levels group (P>0.05). There was no significant difference in the distribution of A1298C genotypes (AA vs. AC+CC) between patients with and without CHD, neither in lower nor in higher Hcy levels groups (P>0.05) (Table 5).
Table 5. Association of MTHFR (C677T and A1298C) gene polymorphism with the risk of CHD in T2DM patients among different Hcy levels groups

Hcy levels (μmol/L)	MTHFR genotype	Patients without CHD (n)	Patients with CHD (n)	OR (95%CI)	P value
5-15.0	677CC	21	4		
	677CT+TT	67	56	4.39 (1.42-13.54)	0.006
	1298AA	55	31		
	1298AC+CC	31	10	0.57 (0.25-1.32)	0.189
>15.0	677CC	1	5		
	677CT+TT	13	30	0.46 (0.05-4.35)	0.491
	1298AA	9	17		
	1298AC+CC	5	9	0.95 (0.25-3.71)	0.945

Hcy: homocysteine.

DISCUSSION

In the pathway of Hcy metabolism MTHFR is a key enzyme that is able to re-methylate Hcy into methionine.\(^7\) Dysfunctional mutations of the MTHFR gene are related to a decrease in MTHFR activity, resulting in an increase in the plasma concentration of Hcy.\(^8,10,11\) Several studies have confirmed the important role of Hhcy in vascular complications.\(^12,13\) An elevated plasma level of Hcy is associated with endothelial dysfunction, prethrombotic state and coronary atherosclerosis in patients with T2DM.\(^6,14-17\) These effects of Hcy could be explanatory of a close correlation between the mutations of MTHFR gene that cause Hhcy and the presence of CHD in patients with T2DM.

In the present study, the data showed that the 677T allele was significantly associated with an increased risk of CHD in patients with T2DM, while no association was found between A1298C polymorphism and CHD development. These results are in accordance with previous research results conducted in including Czech, Polish and Chinese participants.\(^20,26-28\) Although MTHFR 677T has been verified to be a risk allele for CHD in the past. However, opposite conclusions still exist. Several studies
have reported no association between CHD and the MTHFR 677T allele in patients with T2DM.[29-31] The contradictory results exist in various populations, suggesting that further studies including a larger sample size and different populations are required before confirming the role of the MTHFR 677T allele in CHD development. Our results showed that there was no significant difference in the haplotypes of MTHFR (C677T and A1298C) gene between T2DM patients with CHD and those without CHD. These findings suggested that the haplotypes of the MTHFR (C677T and A1298C) gene are not associated with susceptibility of CHD in patients with T2DM.

On the other hand, studies have confirmed that an elevated plasma levels of Hcy has been identified as a potential risk factor for the development of CHD in patients with T2DM.[6,32-34] Our findings also show that plasma Hcy values were significantly higher in T2DM patients with CHD than those without CHD. Clinically, Hcy could be a useful predictive biomarker for CHD risk in type 2 diabetic patients. However, for the patients with normal Hcy levels, it is necessary to find another reliable biomarker to predict CHD. In our study, MTHFR C677T mutation showed great value in predicting CHD in T2DM patients with lower Hcy levels. We have found that the MTHFR 667T allele could be used as a biomarker of CHD risk in T2DM patients with “normal” Hcy levels. However, for patients with higher Hcy levels, it seems that MTHFR gene polymorphism could not be a valuable marker to predict CHD progression.

The small sample size is one of the main limitations of this study. Our study was conducted with 197 T2DM patients. Therefore, there was insufficient statistical power to detect correlation. In particular, the sample size of the present study was limited when stratified by Hcy levels. The limitation of the sample size may cause deviations in the statistical results. Furthermore, this study was performed with a Chinese population, and the results need further investigation to confirm whether they could
be generalized to other ethnic groups.

In conclusion, the \textit{MTHFR} C677T gene polymorphism is associated with the risk of CHD and can be used as an effective marker for CHD prediction in diabetic patients with normal Hcy levels.

\textit{Conflict of Interests Statement}

The authors declare no conflict interests.

\textbf{REFERENCES}

1. Chen L, Magliano DJ, Zimmet PZ. The worldwide epidemiology of type 2 diabetes mellitus--present and future perspectives. Nat Rev Endocrinol 2011; 8(4):228-36. doi: 10.1038/nrendo.2011.183.

2. International Diabetes Federation Diabetes Atlas Group. Update of mortality attributable to diabetes for the IDF Diabetes Atlas: Estimates for the year 2013. Diabetes Res Clin Pract 2015; 109(3):461-5. doi: 10.1016/j.diabres.2015.05.037.

3. American Diabetes Association. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 2004; 27 Suppl 1:S5-S10. doi: 10.2337/diacare.27.2007.s5.

4. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001; 414(6865):813-20. doi: 10.1038/414813a.

5. Rizvi S, Raza ST, Mahdi F. Association of genetic variants with diabetic nephropathy. World J Diabetes 2014; 5(6):809-16. doi: 10.4239/wjd.v5.i6.809.

6. Sun J, Xu Y, Zhu Y, et al. Methylene tetrahydrofolate reductase gene polymorphism, homocysteine and risk of macroangiopathy in type 2 diabetes mellitus. J Endocrinol Invest 2006; 29(9):814-20. doi: 10.1007/BF03347376.

7. Fekih-Mrissa N, Mrad M, Ibrahim H, et al. Methylene tetrahydrofolate Reductase (MTHFR) (C677T and A1298C) polymorphisms and vascular complications in patients with type 2 diabetes. Can J Diabetes 2017; 41(4):366-71. doi: 10.1016/j.jcjd.2016.11.007.
8. Frosst P, Blom HJ, Milos R, et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 1995; 10(1):111-3. doi: 10.1038/ng0595-111.

9. Harmon DL, Woodside JV, Yarnell JW, et al. The common 'thermolabile' variant of methylene tetrahydrofolate reductase is a major determinant of mild hyperhomocysteinaemia. QJM 1996; 89(8):571-7. doi: 10.1093/qjmed/89.8.571.

10. van der Put NM, Gabreëls F, Stevens EM, et al. A second common mutation in the methylenetetrahydrofolate reductase gene: an additional risk factor for neural-tube defects? Am J Hum Genet 1998; 62(5):1044-51. doi: 10.1086/301825.

11. van der Put NM, Blom HJ. Neural tube defects and a disturbed folate dependent homocysteine metabolism. Eur J Obstet Gynecol Reprod Biol 2000; 92(1):57-61. doi: 10.1016/s0301-2115(00)00426-7.

12. Hankey GJ, Eikelboom JW. Homocysteine and vascular disease. Lancet 1999; 354(9176):407-13. doi: 10.1016/S0140-6736(98)11058-9.

13. Stehouwer CD, Weijenberg MP, van den Berg M, et al. Serum homocysteine and risk of coronary heart disease and cerebrovascular disease in elderly men: a 10-year follow-up. Arterioscler Thromb Vasc Biol 1998; 18(12):1895-901. doi: 10.1161/01.atv.18.12.1895.

14. Aso Y, Yoshida N, Okumura K, et al. Coagulation and inflammation in overt diabetic nephropathy: association with hyperhomocysteinemia. Clin Chim Acta 2004; 348(1-2):139-45. doi: 10.1016/j.cccn.2004.05.006.

15. Doupis J, Eleftheriadou I, Kokkinos A, et al. Acute hyperhomocysteinemia impairs endothelium function in subjects with type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes 2010; 118(7):453-8. doi: 10.1055/s-0030-1248290.

16. Mtiraoui N, Ezzidi I, Chaieb M, et al. MTHFR C677T and A1298C gene polymorphisms and hyperhomocysteinemia as risk factors of diabetic nephropathy in type 2 diabetes patients. Diabetes Res Clin Pract 2007; 75(1):99-106. doi: 10.1016/j.diabres.2006.05.018.
17. Sun J, Xu Y, Zhu Y, et al. The relationship between MTHFR gene polymorphisms, plasma homocysteine levels and diabetic retinopathy in type 2 diabetes mellitus. Chin Med J (Engl) 2003; 116(1):145-7.

18. Cao H, Huang DF, Mao L, et al. Association of homocysteine, methylenetetrahydrofolate reductase gene polymorphism with type 2 diabetes mellitus with cerebral infarction. Chin J Dis Control Prev 2010; 14(3):196-8. (In Chinese)

19. Luo D, Yan SK, Cheng XQ, et al. Levels of homocysteine and polymorphisms of homocysteine metabolism related enzymes in patients with type 2 diabetes mellitus and coronary heart disease. J Hygiene Res 2009; 38(1):39-42. (In Chinese)

20. Sun J, Xu Y, Xue J, et al. Methylene tetrahydrofolate reductase polymorphism associated with susceptibility to coronary heart disease in Chinese type 2 diabetic patients. Mol Cell Endocrinol 2005; 229(1-2):95-101. doi: 10.1016/j.mce.2004.09.003.

21. Wu XF, Cheng LX, He MA. Association between polymorphism of methylenetetrahydrofolate reductase C677T and coronary heart disease. Acta Med Univ Sci Technol Huazhong 2009; 38(3):296-300. doi: 10.3870/j.issn.1672-0741.2009.03.004. (In Chinese)

22. Zhao XD, Wang L. The relationship of plasma homocysteine and the polymorphism of MTHFR gene with brain infarction in type 2 diabetes mellitus. Chin J Diabetes 2015; 23(2):107-9. doi: 10.3969/j.issn.1006-6187.2015.02.003. (In Chinese)

23. Wang GB, Shen QD, ping LD. Correlation between Homocysteine Levels and MTHFR C677T Gene Polymorphism of Cerebral inFarction. J Med Res 2017; 46(5):154-8. doi: 10.11969/j.issn.1673-548X.2017.05.038. (In Chinese)

24. Mata-Cases M, Artola S, Escalada J, et al. Consensus on the detection and management of prediabetes. Consensus and Clinical Guidelines Working Group of the Spanish Diabetes Society. Rev Clin Esp 2015;215(2):117-29. doi: 10.1016/j.rce.2014.10.012.
25. Cardiovascular Specialty Group in the First National Internal Medicine Conference. Recommendations on the naming and diagnostic criteria of coronary heart disease. Chin J Int Med 1981; 20(4):253-5. (In Chinese)
26. Dzida G, Bilan A, Golon-Siekierska P, et al. Methylene-tetrahydrofolate reductase gene polymorphism in patients with type 2 diabetes. Pol Arch Med Wewn 2001; 106(1):543-9.
27. Beneš P, KaňkováK, Mužík J, et al. Methylene-tetrahydrofolate reductase polymorphism, type II diabetes mellitus, coronary artery disease, and essential hypertension in the Czech population. Mol Genet Metab 2001; 73(2):188-95. doi: 10.1006/mgme.2001.3188.
28. Settin A, El-Baz R, Ismaeel A, et al. Association of ACE and MTHFR genetic polymorphisms with type 2 diabetes mellitus: susceptibility and complications. J Renin Angiotensin Aldosterone Syst 2015; 16(4):838-43. doi: 10.1177/1470320313516172.
29. Böger CA, Stubanus M, Haak T, et al. Effect of MTHFR C677T genotype on survival in type 2 diabetes patients with end-stage diabetic nephropathy. Nephrol Dial Transplant 2007; 22(1):154-62. doi: 10.1093/ndt/gfl512.
30. Brulhart MC, Dussoix P, Ruiz J, et al. The (Ala-Val) mutation of methylenetetrahydrofolate reductase as a genetic risk factor for vascular disease in non-insulin-dependent diabetic patients. Am J Hum Genet 1997; 60(1):228-9.
31. Wirta V, Huang XH, Wirta O, et al. Mutation C677T of methylenetetrahydrofolate reductase gene is not associated with coronary artery disease, but possibly with albuminuria, in type 2 diabetic patients. Clin Chem Lab Med 1998; 36(8):625-8. doi: 10.1515/CCLM.1998.109.
32. Audelin MC, Genest JJ. Homocysteine and cardiovascular disease in diabetes mellitus. Atherosclerosis 2001; 159(2):497-511. doi: 10.1016/s0021-9150(01)00531-7.
33. Hoogeveen EK, Kostense PJ, Bekx PJ, et al. Hyperhomocysteinemia is associated with an increased risk of cardiovascular disease, especially in non-insulin-dependent
diabetes mellitus: a population-based study. Arterioscler Thromb Vasc Biol 1998; 18(1):133-8. doi: 10.1161/01.atv.18.1.133.

34. Yeromenko Y, Lavie L, Levy Y. Homocysteine and cardiovascular risk in patients with diabetes mellitus. Nutr Metab Cardiovasc Dis 2001; 11(2):108-16.