Factors Predicting Blood Culture Positivity in Children With Enteric Fever

Manikandan Srinivasan,1,a Kulandaipalayam Natarajan Sindhu,1,a Karthikeyan Ramanujam,1,a Ranjith Kumar Ramasamy,1 Sathyapriya Subramaniam,1 Santhosh Kumar Ganesan,1 Swathi Vajja,1 Anita Shirley David,1 Pramitha Lankala,2 Winsley Rose,3 Prabhakar D. Moses,4 Nicholas C. Grassly,5 Gagandeep Kang,6,a and Jacob John1,a

1Division of Gastrointestinal Sciences, Wellcome Trust Research Laboratory, Christian Medical College, Vellore, India, 2Department of Community Health, Christian Medical College, Vellore, India, 3Wellcome Trust Research Laboratory, Division of Gastrointestinal Sciences, Christian Medical College, Vellore, India, and 4Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom

Background. Blood culture, despite low sensitivity, is the gold standard for enteric fever diagnosis. Understanding predictors of blood culture positivity may help design strategies to optimize enteric fever diagnosis.

Methods. A cohort of 6760 children aged 0.5–15 years was followed for 3 years for enteric fever with blood cultures in an automated system, for fevers >3 days. Factors affecting test positivity in fevers and participant-level predictors for culture refusals were analyzed using regression models.

Results. Overall, 6097 suspected typhoid/paratyphoid fever (STF) episodes were reported, of which 5703 (93.5%) STFs had sampling for blood cultures, with 394 (6.5%) refusals. Salmonella enterica serovar Typhi/Paratyphi positivity was culture-confirmed in 3.8% (218/5703) of STF episodes. Older children (odds ratio [OR], 1.96 [95% CI, 1.39–2.77]), larger blood volume inoculated (OR, 2.82 [95% CI, 1.71–4.66]), higher temperatures during fever (OR, 3.77 [95% CI, 2.89–4.91]), and fevers diagnosed as suspected typhoid or acute undifferentiated fever (OR, 6.06 [95% CI, 3.11–11.78]) had a higher probability of culture positivity. Antibiotics before culture did not decrease culture positivity. Blood culture refusals were higher for children from wealthier households or with milder illness.

Conclusions. Performing blood cultures in older children with fever, especially those fevers with toxic presentation and increasing blood volume for inoculation are strategies to improve enteric fever detection in surveillance settings.

Keywords. blood culture; children; enteric fever; India; Salmonella Typhi.

The global burden of typhoid and paratyphoid fever was estimated to be 14.3 million cases with 135 900 deaths in 2017 [1]. South Asia accounted for approximately 72% of global enteric fever cases, with a substantial burden in India [1]. The pooled incidence of typhoid fever in India was 377 per 100 000 population, with children being at the highest risk [2]. Given the substantial burden, the World Health Organization (WHO) has recommended the use of typhoid vaccines in endemic settings [3].

The introduction of typhoid vaccines in India requires an accurate estimate of enteric fever burden based on blood culture since blood culture is the gold standard diagnostic for typhoid/paratyphoid fever [4, 5]. However, blood culture has a low sensitivity of 40%–60%, requires special equipment and care to prevent contamination, and is not available everywhere [6]. On the other hand, the Widal test, which is widely available at low cost in India, has high false positivity, resulting in overdiagnosis and inappropriate antibiotic prescriptions [7–9]. Thus, in the absence of alternative standardized and validated tests, blood culture remains crucial in the accurate estimation of typhoid disease burden in low- and middle-income settings [5].

Studies based on blood culture have shown that duration of illness at the time of culture, age of the patient, prior use of antibiotics, and inoculating higher blood volumes in the culture bottle are associated with higher typhoid culture positivity [6, 10]. Prospective population-based surveillance of acute febrile illness additionally allows investigation of clinical and demographic characteristics that affect health care seeking and blood culture testing, as well as blood culture positivity. Identifying the participant-level characteristics associated with culture positivity could potentially allow the comparative application of these findings to those participants who presented with fever in the surveillance but refused a blood culture. This information is crucial in surveillance studies in developing settings to compute an accurate estimate of typhoid disease burden, by factoring in the underestimation, if any, that could have resulted due to the missing blood cultures from those subjects who were otherwise
eligible to receive a blood culture for suspected typhoid fever. Furthermore, studying the clinical characteristics that predict blood culture positivity could help clinicians in urban settings to prioritize patients with febrile presentations to receive a blood culture, particularly during the early phase of illness to optimize the yield from blood culture, especially in those settings with limited resources.

Taking the opportunity of Surveillance for Enteric Fever in India (SEFI), a multisite prospective pediatric cohort for fever surveillance and enteric fever, we identified factors associated with blood culture positivity for enteric fever in children and, furthermore, the clinical and demographic factors associated with blood culture refusals.

METHODS

During 2016–2017, a prospective pediatric cohort of approximately 6000 children, aged between 0.5 and 15 years, was recruited and followed up from 4 contiguous urban settlements in Vellore (Kaspa; Chinnallapuram [CAP]; Ramnaiikanpalayam [RNP]; Vasanthapuram [VSPM]) for fever. This cohort was later nested within the SEFI, a multisite surveillance between 2017 and 2019 to estimate the incidence of blood culture–confirmed enteric fever in India [11]. During the surveillance, families of the study children were contacted weekly by designated field research assistants (FRAs) for identification of fevers. Fever in a child was defined as a parent/primary caregiver–reported rise in body temperature or a documented temperature >37.2°C (99°F) (a thermometer and a fever diary was given to the parent/primary caregiver, who was taught to document temperature during a fever). All fevers were followed up by field research assistants daily to document the temperature recorded during the fever episode. Children with fevers for ≥3 days who met the study protocol criteria of “suspected typhoid/paratyphoid fever” (STF) were requested to visit the study clinic for clinical evaluation and a blood culture. Children with STF were evaluated by the study physician, in the majority of the cases, on day 4 of fever. The study physician ascertained the calendar days of fever and documented the clinical symptoms and antibiotics used, if any, during the fever episode. Children with STF satisfying the blood culture eligibility criteria (febrile for >12 hours before the clinic visit) were requested for a blood culture. If a culture was deferred for an STF when the child was afebrile in the last 12 hours, the child was followed up for the next 24 hours, with a blood culture being performed if there was a subsequent fever spike. Furthermore, the study physician made a provisional diagnosis during the clinical assessment, documenting the reason for not having performed a blood culture in cases where the culture was deferred or refused by the parent/primary caregiver. For children with STF who did not visit the clinic by day 4 or refused a blood culture, a home visit was made by the study supervisor documenting details of the fever episode, treatment sought, and the reason for not visiting the study clinic. Children with STFs found eligible for culture during home visits but who had not yet visited the study clinic were requested to visit the clinic, encouraging the families to continue treatment with the physician of their choice. All STFs were followed up until 3 fever-free days from the last day of defervescence, the third afebrile day marking the resolution of the fever episode. Following this, a final diagnosis was made by the physician based on clinical findings, investigations, and treatment received.

Blood sample for blood culture was collected and processed in BacT/ALERT automated system. Using age-based criteria, a blood volume of at least 3 mL and 5 mL was drawn for children aged ≤3 years and >3 to 15 years, respectively. The accurate volume of blood inoculated was determined by comparing the weight of the culture bottle measured pre- and post-inoculation of the sampled blood. Blood culture samples were transported within 4 hours of collection in ambient temperature to the Department of Clinical Microbiology, Christian Medical College, Vellore.

Statistical Analysis

The baseline characteristics along with the categorical outcomes such as the number of eligible STFs, STFs that were blood culture positive for *Salmonella enterica* serovars Typhi/Paratyphi, and refusals for blood culture were expressed as percentages. Categorical variables such as clinical diagnosis, antibiotics used before blood culture, day of fever, outpatient visits, and seasonality were presented as percentages. Continuous variables such as age, fever duration (in days), body temperature (°C), and blood volume (mL) were expressed as median (interquartile range). The precise blood volume (mL) inoculated into the culture bottle was calculated using the formula:

\[
\text{Innoculated blood volume (mL)} = \frac{\text{Post weight (g)} - \text{Pre weight (g)}}{1.06}
\]

Broadly, this study undertook 2 analyses. First, to study the factors affecting blood culture positivity and the second being factors associated with culture refusals in the eligible STF episodes (Figure 1). Multilevel logistic regression was used for each of these analyses separately, considering the cluster effect at the level of subject and family, as appropriate. In the regression model studying factors affecting blood culture positivity, independent variables considered were age, day of fever when the blood sample was collected, blood volume, highest body temperature, initial clinical diagnosis and the month (to study the influence of seasonality) when the blood culture was performed. Also, an interaction term between the blood volume and age of the child was included in this model. To study factors associated with refusals for culture, predictors included in the model were sociodemographic characteristics
of study children/family, characteristics of the febrile episode, treatment-seeking behavior, and clinical diagnosis of the fever episode. A P value < .05 was considered as the level of statistical significance. All statistical analyses were carried out using Stata version 14 software (StataCorp, College Station, Texas). Using the general additive models, nonlinear relationships between blood culture positivity with that of the age of the child was derived using cubic spline penalized regression in R software version 3.5.1 [12]. SEFI was approved by the Institutional Review Board (IRB) of Christian Medical College, Vellore (IRB Min number 10393).

RESULTS

Of the 6760 children in the study cohort, 5073 (75%) were aged between 6 months and 10 years, with 4578 (69.9%) children belonging to the lower socioeconomic strata (Table 1). Comparison of demographic characteristics across the 4 study areas showed that VSPM had the highest proportion of children belonging to low socioeconomic status (80%) compared with CAP (72%), Kaspa (68%), and RNP (65%). Children from Kaspa had better access to an improved source of drinking water (Kaspa, 16%; RNP, 8%; CAP, 7%; and VSPM, 7%) and those from RNP had better access to sanitary facilities (RNP, 54%; CAP, 31%; VSPM, 31%; and Kaspa, 28%), compared to other areas. VSPM had the highest proportion of study households that practiced open-air defecation (35%) compared with other areas (CAP, 5%; RNP, 2.2%; and Kaspa, 0.3%) (data not shown).

During the surveillance period of 3 years and 2 months, a total of 9346 STF episodes were reported from 4208 children.

Figure 1. Flowchart depicting the number of children enrolled in the Vellore Surveillance for Enteric Fever in India cohort who were followed up for suspected typhoid fever (STF) with blood cultures being performed to detect Salmonella enterica serovars Typhi/Paratyphi among the eligible cases.
DISCUSSION

The Vellore SEFI cohort estimated an enteric fever culture positivity of 3.8% (95% CI, 3.3%–4.4%) in children aged <15 years.
that showed a linear relationship with the increasing age of the child. Fever episodes with higher peak temperatures and those with a provisional physician diagnosis of suspected typhoid fever or acute undifferentiated fevers were more likely to be culture positive for typhoid. Children from lower socioeconomic strata, those with a prolonged fever episode, and those having higher temperatures were less likely to refuse a blood culture where there was a clinical suspicion of typhoid. Children with STFs who presented with fevers with perceived subjective severity were also less likely to refuse a blood culture.

Population-based studies done in South Asia and Africa have reported typhoid blood culture positivity rates between 2.6% and 6.4%, with those aged 5–9 years showing the highest positivity rate as observed in our study [13–16]. In our study, the rate of the proportion of typhoid positivity showed a steep rise from <1% to 5% in the age group 1–7 years, followed by a marginal increase of 5%–6% in the group aged 8–15 years (Figure 2). Systematic reviews have demonstrated blood volume to be an independent predictor for typhoid culture positivity, with the sensitivity of a blood culture test increasing by 3% for every

Factor	STF Episodes Positive for S Typhi/Paratyphi (n = 218)	STF Episodes Negative for S Typhi/Paratyphi (n = 5485)	Univariate OR (95% CI) P Value	Multivariate OR (95% CI) P Value
Age at blood culture, y, median (IQR)	7.9 (5.7–10.7)	5.7 (3.5–9.1)	1.14 (1.09–1.19) < .001	1.96 (1.39–2.77) < .001
Age category at the time of blood culture				
0.5–<2 y	4 (1.8)	399 (73)	1 Ref	
2–<5 y	41 (18.8)	1965 (35.8)	2.12 (.72–6.24) < .73	
5–<10 y	102 (46.8)	2051 (37.4)	5.22 (1.80–15.09) .002	
10–15 y	71 (32.6)	1070 (19.5)	7.47 (2.54–21.95) < .001	
Sex				
Male	119 (54.6)	2911 (53.1)	1 Ref	
Female	99 (45.4)	2574 (46.9)	0.93 (.67–1.28) .845	
Highest temperature during fever, °C, median (IQR)	39.4 (38.7–39.8)	38.7 (38.1–39.2)	3.44 (2.69–4.40) < .001	3.77 (2.89–4.91) < .001
Initial clinical diagnosisa				
RTIs	99 (45.4)	3889 (71.0)	1 Ref	
RTIs with other presentationsc	9 (4.1)	128 (2.3)	3.20 (1.42–7.26) .005	3.18 (1.29–7.87) .013
Acute undifferentiated illness	67 (30.7)	901 (16.4)	3.43 (2.37–4.99) < .001	2.96 (1.97–4.43) < .001
Clinically suspected typhoid fever	26 (11.9)	153 (2.8)	7.73 (4.34–13.78) < .001	6.06 (3.11–11.78) < .001
Others	17 (7.8)	410 (75)	1.74 (0.97–3.13) .066	1.19 (0.61–2.31) .604
Antibiotic usage prior to blood culture				
Yes	55 (25.2)	1397 (25.5)	1.05 (.74–1.50) .802	
No	163 (74.8)	4088 (74.5)	1 Ref	
Day of fever on which blood culture was performed				
1–3d	14 (6.4)	244 (4.4)	1.14 (0.55–2.36) .724	0.49 (0.21–1.12) .091
4	142 (65.1)	3334 (60.8)	0.90 (0.58–1.39) .635	0.73 (0.44–1.20) .218
5	29 (13.3)	1232 (22.5)	0.49 (0.28–0.86) .012	0.48 (0.26–0.89) .021
≥6	33 (15.1)	675 (12.3)	1 Ref	1 Ref
Blood volume inoculated for culture, mLb, median (IQR)	5.1 (4.8–5.3)	5 (4.7–5.2)	1.36 (1.15–1.60) < .001	2.82 (1.71–4.66) < .001
Seasonality				
Jan–Mar	19 (8.7)	1341 (24.5)	1 Ref	1 Ref
Apr–June	77 (35.3)	691 (12.6)	10.12 (5.67–18.06) < .001	13.16 (6.89–25.16) < .001
Jul–Sep	73 (33.5)	1422 (26.3)	3.85 (2.21–6.72) < .001	4.23 (2.31–7.73) < .001
Oct–Dec	49 (22.5)	2011 (36.7)	1.63 (0.92–2.88) .097	1.90 (1.03–3.52) .039
Age × blood volume				
Data are presented as No. (%) unless otherwise indicated. Blood volume was added to the model as an interacting term with age of the child. The final model accounted for clustering at the family level. Intraclass correlation at family level was 0.39 and the variance was 2.11 (95% CI, 1.19–3.72). Values in bold represent significant P values (P < .05).				
Abbreviations: CI, confidence interval; IQR, interquartile range; OR, odds ratio; RTI, respiratory tract infection; STF, suspected typhoid fever.				
aTemperature was not recorded for 3 STF episodes.				
bInitial diagnosis was not available for 4 STF episodes.				
cOther presentations include acute gastroenteritis, urinary tract infections, acute hepatitis, or skin infections.				
dCultures were also performed when requested by the parent of the child, even for fevers <3 days.				
eInformation on blood volume was not available for 59 STF episodes.				

...
Factors in Enteric Fever

additional milliliter of blood inoculated [12, 17]. This is in congruence with our study finding where the culture positivity increased with higher volumes of blood inoculated. Considering the required critical concentration of S Typhi in the blood of 1 colony-forming unit/mL to diagnose typhoid fever, it is plausible that the additional volume of blood inoculated added to the culture positivity yield [18]. Literature indicates that S Typhi blood culture yield could be improved with equivalence to that of a bone marrow culture with a 90% sensitivity when >10 mL of blood is inoculated [19]. However, blood draws of >10 mL, especially in children, are challenging in surveillance settings such as ours. Hence, a blood volume of approximately 7 mL is suggested, giving a 90% chance of isolating S Typhi in blood culture [10, 19].

A higher peak temperature during a fever episode in our cohort of children was associated with a higher probability of blood culture positivity. This is similar to findings from a study in Nepal as well as Middle Eastern settings where a greater chance for typhoid positivity was demonstrated among fevers with temperatures >38°C (100.4°F) [12, 20]. The plausible explanation for this would be the peak temperatures during the fever episode reflects high systemic bacteremia, perhaps augmenting the probability of culture positivity [19]. This emphasizes that fevers with toxic presentation should raise the suspicion for typhoid by physicians in endemic settings and be investigated with a blood culture.

The use of antibiotics before a blood culture did not influence culture positivity in our study. This is in contrast to the finding from a recent systematic review of studies between 1937 and 2008. The review reported a decrease in blood culture sensitivity for enteric fever when antibiotics were used prior to culture [10]. This contrasting finding from our surveillance could be explained by the fact that the BACTEC blood culture system was used in our surveillance, where the resins incorporated in blood culture media could have potentially neutralized the antibiotics in the inoculated blood samples. This finding is supported by typhoid surveillance studies from the South Asian settings of Bangladesh, Nepal, and Pakistan [21].

STFs in our study with a provisional diagnosis of “suspected typhoid” stood a higher chance of culture positivity of 15%,

Figure 2. Relationship between blood culture positivity for Salmonella enterica serovars Typhi/Paratyphi and age of children in the Surveillance for Enteric Fever in India cohort. Position of each circle in the graph represents the proportion of blood cultures positive in children in each age group; size of circle represents the number of fever episodes included in each age category.
Table 3. Factors Associated With Refusals for Blood Culture in the Eligible Suspected Typhoid Fever Episodes Reported in the Cohort (N = 6097)\(^a\)

Factor	Refusals for Blood Culture (n = 394)\(^a\)	STFs That Had a Blood Culture (n = 5703)\(^a\)	Univariate	Multivariate
	OR (95% CI)	P Value	OR (95% CI)	P Value
Age at the time of fever episode				
0.5–<2 y	31 (7.9)	407 (7.1)	1.42 (.85–2.37)	.176
2–<5 y	143 (36.3)	2006 (35.2)	1.27 (.90–1.81)	.175
5–<10 y	155 (39.3)	2153 (37.8)	1.31 (.93–1.81)	.125
10–15 y	65 (16.5)	1137 (19.9)	1	Ref
Sex				
Male	191 (48.5)	3030 (53.1)	0.84 (.66–1.06)	.146
Female	203 (51.5)	2673 (46.9)	1 Ref	Ref
Type of family\(^b\)				
Nuclear	217 (55.8)	3176 (56.1)	0.98 (.76–1.28)	.904
Joint/3-generation family	172 (44.2)	2490 (43.9)	1 Ref	Ref
Religion\(^c\)				
Hindu	145 (36.9)	2588 (45.4)	1 Ref	Ref
Muslim	228 (58.0)	2734 (48.7)	1.58 (1.21–2.06)	.001
Christian	19 (4.8)	286 (5.2)	1.26 (.70–2.28)	.443
Others	1 (0.3)	37 (0.7)	0.45 (.05–4.29)	.486
Type of house\(^b\)				
Pucca/mixed	383 (98.5)	5460 (96.4)	1 Ref	Ref
Kuttha/government	6 (1.5)	206 (3.6)	0.39 (.16–.98)	.045
Mother's education\(^d\)				
No formal education	39 (10.0)	554 (9.8)	1 Ref	Ref
1–5 y	85 (21.7)	1056 (18.6)	1.35 (.82–2.21)	.229
6–8 y	97 (24.7)	1534 (27.0)	0.96 (.59–1.55)	.777
9–12 y	140 (35.7)	2061 (36.3)	1.03 (.65–1.63)	.898
>13 y	31 (7.9)	473 (8.3)	1.05 (.57–1.92)	.84
Presence of smartphone\(^e\)				
Yes	307 (78.9)	4085 (71.7)	1.47 (1.09–1.99)	.012
No	82 (21.1)	1601 (28.3)	1 Ref	Ref
Socioeconomic status				
Low	271 (69.7)	4010 (70.8)	1 Ref	Ref
Middle	105 (27)	1495 (26.4)	1.01 (.78–1.35)	.941
High	13 (3.3)	161 (2.8)	1.17 (.59–2.36)	.679
Area				
Chinnallapuram	100 (25.4)	1350 (23.8)	1 Ref	Ref
Kaspa	115 (29.2)	1960 (34.3)	0.83 (.50–1.16)	.268
Ramnackanpalayam	137 (34.9)	1477 (25.9)	1.25 (.96–1.61)	.081
Vazanthapuram	42 (10.7)	916 (16.0)	0.62 (.40–.96)	.034
Antibiotic usage in first 3 days of fever				
Yes	109 (27.7)	1652 (25.5)	1.02 (.79–1.32)	.888
No	285 (72.3)	4251 (74.5)	1 Ref	Ref
Highest temperature during fever, °C, median (IQR)\(^f\)	38.3 (37.8–39.0)	38.7 (38.1–39.2)	0.64 (.55–.73)	.001
Duration of fever, d, median (IQR)	4 (4–4)	4 (4–5)	0.57 (.48–.67)	.001
Final clinical diagnosis\(^1\)				
Upper respiratory tract infection	203 (51.5)	3241 (56.9)	1 Ref	Ref
Acute febrile illness	81 (20.6)	967 (17.0)	1.35 (1.00–1.82)	.064
Lower respiratory tract infection	17 (4.3)	746 (13.1)	0.33 (.19–.57)	<.001
Suspected typhoid fever	4 (1.0)	179 (3.1)	0.35 (.12–1.00)	.050
>1 of the above diagnoses	2 (0.5)	137 (2.4)	0.23 (.05–1.00)	.047
Others\(^g\)	87 (22.1)	425 (73.5)	4.06 (2.90–5.67)	<.001

The final model included random effects at both family and individual levels, with the intraclass correlation at family and individual level being 0.28 and 0.34, respectively. The variance at the level of family and individual subjects was 1.38 (95% CI, .83–2.31) and 0.29 (95% CI, .02–3.63), respectively. Values in bold represent P < .05.

Abbreviations: CI, confidence interval; IQR, interquartile range; OR, odds ratio; STF, suspected typhoid fever.

\(^a\)Of the 6097 STF episodes, there was a total of 394 refusals for blood cultures among the 3606 children (the 3249 STFs that were finally not eligible for a blood culture were excluded) (Figure 1).

\(^b\)Information on type of family, type of house, and smartphone was not available for 42 subjects.

\(^c\)Information on religion was not available for 7 subjects.

\(^d\)Information on mother’s education was not available for 7 subjects.

\(^e\)Temperature recording was not available for 11 STF episodes.

\(^f\)Final diagnosis was not available for 8 STF episodes.

\(^g\)The top 3 causes associated with refusals were fever with rash (71.4%), mumps (30.4%), and viral fever (4.7%).
which was twice the recent Nepal study estimate of 7% [12]. This could be due to the strict surveillance criteria used in our study where a fever of ≥3 days called in for a blood culture, compared to the Nepal study where fevers of ≥2 days received a blood culture [11, 12]. “Acute undifferentiated fever” (AUF) as the next common initial diagnosis had a typhoid positivity of 7% in our study compared to a previous hospital-based study from the same setting (Vellore) that showed a typhoid positivity of 3.7% [22]. Thus, AUF presentations are associated with a higher likelihood for culture positivity for typhoid and must be investigated in clinical practice using blood cultures, preferably by the first week of illness.

A seasonal pattern was observed with high typhoid blood culture positivity during the summer and monsoon seasons in Vellore corresponding to April–June and July–September, respectively. This probably mirrors the typhoid outbreaks in our study during the surveillance period of 3 years with an outbreak in year 1 being precipitated by flooding following monsoon rains and the other outbreak in year 3 by the high summer temperatures. This surge in typhoid cases during extreme heat conditions and following rains is explained and supported by evidence from a recent systematic review [23].

A low refusal rate for blood culture was noted in the Vellore SEFI cohort (6.5%) when compared to the Nepal study (30%) [12]. This difference in refusal rates between the 2 studies can be explained by the different definitions used to identify fevers eligible for blood culture in the 2 studies (SEFI definition of ≥3 days of fever eligible for a blood culture vs the Nepal study definition of fevers up to 2 days or a temperature >38°C (100.4°F) being eligible for a culture). This perhaps led to more conservative blood cultures being performed at Vellore with subsequent lower culture refusals (frequent blood draws in children implying blood culture refusals in the future) [13]. The clinical severity of fever in our study, in terms of duration of illness or having higher temperatures and an initial physician diagnosis of suspected typhoid or lower respiratory infection, was associated with lower refusals, as also noted in the Nepal study [12]. Lower refusals among children with fevers of clinical severity could be because of primary caregivers perceiving these fevers to be “serious enough,” making them more inclined toward accepting a blood culture. Another interesting finding from our study was the high refusal rate for blood cultures in presentations such as fever with rash and mumps, illnesses that this community associates with religious sentiments (a fever with rash generally being attributed to the “wrath of god”). Furthermore, no visit to any health care facility is made nor are health personnel permitted into their homes during these illnesses, using only home-based remedies for management. Considering the lower refusal rates for blood culture in SEFI and the fact that the fever episodes where blood culture was not performed despite being eligible (because of participant’s refusal) were low, it is unlikely that these missing cultures could have resulted in underestimation of typhoid burden in our study.

SEFI is one of the very few large population-based studies from the Indian setting that estimated blood culture–based typhoid disease burden, using a cohort surveillance approach. The strength of the study is the highly intensive daily follow-up of fever episodes in children that facilitated real-time data capture on fever-related clinical characteristics, minimizing the recall bias that undermines the usually done hospital-based studies. We followed a strict surveillance blood culture eligibility definition of fever for ≥3 days in our study, as per the WHO guidelines, which provided a vital window of opportunity to compare our findings to those generated from other surveillance settings [5]. The blood culture testing rate in our study was high, with 93.6% of all eligible STFs receiving a culture. This study has a few limitations. Although it is known that that typhoid culture positivity increases with inoculation of larger blood volumes, the inoculated volume in our study was limited to <6 mL factoring in the parents’/primary caregivers’ concerns over the excessive blood draws (published elsewhere) [10, 24]. Moreover, although our study noted relatively lower body temperatures and shorter duration of fevers in children who refused a culture compared to those who did not, the actual difference noted is very small to draw concrete conclusions in real-world settings. While antibiotic usage for fevers in this surveillance was based on the primary caregiver’s history, underreporting of antibiotic use in this cohort is a possibility, particularly when no physician prescriptions were available, with the caregiver being unable to differentiate an antibiotic from other prescribed medications. This could have been overcome by performing tests to detect antibiotic levels in the urine giving a robust estimate of antibiotic usage in children, but this was beyond the scope of this large surveillance cohort [21].

CONCLUSIONS

The potential inclusion of the typhoid conjugate vaccine within the immunization schedule in many developing countries like India necessitates the availability of a precise estimate of the typhoid disease burden in these settings. Given the high endemicity of typhoid fever in these settings and the fact that typhoid fever presents frequently with symptoms suggestive of respiratory infections, it is important to investigate fever episodes lasting 3 or more days, with or without an indication of a systemic focus of infection, with a blood culture. In the road toward typhoid control in India, the need of the hour also lies in reliable and inexpensive rapid diagnostic tests for typhoid, considering the challenges with the upscaling of blood culture–based surveillance in resource-constrained settings. Furthermore, incorporating factors associated with blood culture positivity for typhoid fever such as age, the volume of blood inoculated for culture, and
clinical severity, as well as the adjustment for eligible subjects who did not opt for a blood culture within the surveillance program, are pivotal in estimating the true typhoid disease burden estimate.

Supplementary Data
Supplementary materials are available at The Journal of Infectious Diseases online. Consisting of data provided by the authors to benefit the reader, the posted materials are not copyedited and are the sole responsibility of the authors, so questions or comments should be addressed to the corresponding author.

Supplementary Figure 1. Relationship between blood volume and age of children in the SEFI cohort.

Notes
Author contributions. J. J. and G. K. conceived the study, drafted the protocol, and provided critical revision of the final draft. M. S., K. N. S., and K. R. were involved in the conduct of the study, did statistical analyses, and wrote and revised the manuscript. R. K. R., S. S., and S. K. G. did the data management and assisted in statistical analyses. N. G. provided epidemiological expertise. S. V., A. S. D., P. L., W. R., and P. D. M. provided the clinical support for the Surveillance for Enteric Fever in India (SEFI) cohort at Vellore. All authors approved the final version of the manuscript; agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved; and confirm that all persons designated as authors qualify for authorship and all those who qualify for authorship are listed.

Acknowledgments. We thank the parents and the children of the SEFI study, and the field research assistants and supervisors of the Vellore SEFI cohort. We also thank Mr Surendar, Mr Chandru, Ms Jackline, Mr Humayun, Mr Abbas, and Mr Selvakumar for their field support in coordinating the blood culture sampling. We are grateful for the support by study clinic team and the study physicians for the clinical support.

Supplement sponsorship. This supplement is sponsored by the Christian Medical College Vellore Association.

Financial support. The study was supported by the Bill & Melinda Gates Foundation (grant number OPP1159351 to G. K.).

Potential conflicts of interest. All authors: No reported conflicts of interest.

All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed.

References
1. Stanaway JD, Reiner RC, Blacker BF, et al. The global burden of typhoid and paratyphoid fevers: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Infect Dis 2019;19:369–81.
2. John J, Van Aart CJC, Grassly NC. The burden of typhoid and paratyphoid in India: systematic review and meta-analysis. PLoS Negl Trop Dis 2016;10:e0004616.
3. World Health Organization. Typhoid vaccines: WHO position paper—March 2018. Wkly Epidemiol Rec 2018;93:152–72.
4. Crump JA, Sjölund-Karlsson M, Gordon MA, Parry CM. Epidemiology, clinical presentation, laboratory diagnosis, antimicrobial resistance, and antimicrobial management of invasive Salmonella infections. Clin Microbiol Rev 2015;28:901–37.
5. World Health Organization. Typhoid and other invasive salmonellosis—surveillance standards. https://www.who.int/immunization/monitoring_surveillance/burden/vpd/WHO_SurveillanceVaccinePreventable_21_Typhoid_BW_R1.pdf?ua=1. Accessed 18 May 2020.
6. Parry CM, Wijedoru L, Arjyal A, Baker S. The utility of diagnostic tests for enteric fever in endemic locations. Expert Rev Anti Infect Ther 2011;9:711–25.
7. Ranjalkar J, Chandy SJ. India’s National action plan for antimicrobial resistance—an overview of the context, status, and way ahead. J Fam Med Prim Care 2019;8:1828–34.
8. Mukhopadhyay B, Sur D, Gupta SS, Ganguly NK. Typhoid fever: control & challenges in India. Indian J Med Res 2019;150:437–47.
9. Wijedoru L, Mallett S, Parry CM. Rapid diagnostic tests for typhoid and paratyphoid (enteric) fever. Cochrane Database Syst Rev 2017;5:CD008892.
10. Antillon M, Saad NJ, Baker S, Pollard AJ, Pitzer VE. The relationship between blood sample volume and diagnostic sensitivity of blood culture for typhoid and paratyphoid fever: a systematic review and meta-analysis. J Infect Dis 2018;218:255–67.
11. John J, Bavdekar A, Rongsen-Chandola T, Dutta S, Kang G; NSSEFI Collaborators. Estimating the incidence of enteric fever in children in India: a multi-site, active fever surveillance of pediatric cohorts. BMC Public Health 2018;18:594.
12. Voysey M, Pant D, Shakya M, et al. Under-detection of blood culture-positive enteric fever cases: the impact of missing data and methods for adjusting incidence estimates. PLoS Negl Trop Dis 2020;14:e0007805.
13. Ochiai RL, Acosta CJ, Danovaro-Holliday MG, et al. A study of typhoid fever in five Asian countries: disease burden and implications for controls. Bull World Health Organ 2008;86:260–8. Erratum: Bull World Health Organ 2015;93:284. Erratum: Bull World Health Organ 2015;93:440.
14. Breiman RF, Cosmas L, Njuguna H, et al. Population-based incidence of typhoid fever in an urban informal settlement and a rural area in Kenya: implications for typhoid vaccine use in Africa. PLoS One 2012;7:e29119.
15. Sur D, von Seidlein L, Manna B, et al. The malaria and typhoid fever burden in the slums of Kolkata, India: data from a prospective community-based study. Trans R Soc Trop Med Hyg 2006; 100:725–33.

16. Brooks WA, Hossain A, Goswami D, et al. Bacteremic typhoid fever in children in an urban slum, Bangladesh. Emerg Infect Dis 2005; 11:326–9.

17. Mogasale V, Ramani E, Mogasale VV, Park J. What proportion of Salmonella Typhi cases are detected by blood culture? A systematic literature review. Ann Clin Microbiol Antimicrob 2016; 15:32.

18. Wain J, Diep TS, Ho VA, et al. Quantitation of bacteria in blood of typhoid fever patients and relationship between counts and clinical features, transmissibility, and antibiotic resistance. J Clin Microbiol 1998; 36:1683–7.

19. Wain J, Pham VB, Ha V, et al. Quantitation of bacteria in bone marrow from patients with typhoid fever: relationship between counts and clinical features. J Clin Microbiol 2001; 39:1571–6.

20. Shaw AB, Mackay HA. Factors influencing the results of blood culture in enteric fever. J Hyg 1951; 49:315–23.

21. Vaidya K, Aiemjoy K, Qamar FN, et al. Antibiotic use prior to hospital presentation among individuals with suspected enteric fever in Nepal, Bangladesh, and Pakistan. Clin Infect Dis 2020; 71:285–92.

22. Abhilash KP, Jeevan JA, Mitra S, et al. Acute undifferentiated febrile illness in patients presenting to a tertiary care hospital in south India: clinical spectrum and outcome. J Glob Infect Dis 2016; 8:147–54.

23. Kim S, Lee KS, Pak GD, et al. Spatial and temporal patterns of typhoid and paratyphoid fever outbreaks: a worldwide review, 1990–2018. Clin Infect Dis 2019; 69(Suppl 6):S499–509.

24. Sindhu KN, Srinivasan M, Subramaniam S, et al. Why do participants drop-out: findings from a prospective pediatric cohort for fever surveillance established at Vellore, southern India. BMC Med Res Methodol 2019; 19:244.

25. Kattula D, Venugopal S, Velusamy V, et al. Measuring poverty in southern India: a comparison of socio-economic scales evaluated against childhood stunting. PLoS One 2016; 11:e0160706.