ROTSE-III OBSERVATIONS OF THE EARLY AFTERGLOW FROM GRB 030329

SMITH, D. A.1, RYKOFF, E. S.1,akerlof, C. W.1, ASHLEY, M. C. B.2, BIZYAEV, D.4,6, MCKAY, T. A.1, MUKADUM, A.3, PHILLIPS, A.2, QUIMBY, R.3, SCHAEPFER, B.4, SULLIVAN, D.5, SWAN, H. F.1, VESTRAND, W. T.3, WHEELER, J. C.3, and WREN, J.5

Accepted to Astrophysical Journal Letters, 4 Sept 2003

ABSTRACT

Using two identical telescopes at widely separated longitudes, the ROTSE-III network observed decaying emission from the remarkably bright afterglow of GRB 030329. In this report we present observations covering 56% of the period from 1.5–47 hours after the burst. We find that the light curve is piecewise consistent with a powerlaw decay. When the ROTSE-III data are combined with data reported by other groups, there is evidence for five breaks within the first 20 hours after the burst. Between two of those breaks, observations from 15.9–17.1 h after the burst at 1-s time resolution with McDonald Observatory’s 2.1-m telescope reveal no evidence for fluctuations or deviations from a simple power law. Multiple breaks may indicate complex structure in the jet. There are also two unambiguous episodes at 23 and 45 hours after the burst where the intensity becomes consistent with a constant for several hours, perhaps indicating multiple injections of energy into the GRB/afterglow system.

Subject headings: Gamma-rays: bursts

1. INTRODUCTION

The ROTSE program is dedicated to recording optical observations of Gamma-Ray Bursts (GRBs) within seconds of their detection at high energies. Although the study of late-time afterglows has revolutionized our understanding of GRBs, comparatively little is known about the nature and diversity in the prompt optical and early afterglow emission (Piran 1999). To date the ROTSE-I observations of GRB 990123 remain the only optical detections of a GRB while the burst was still bright in gamma-rays (Akerlof et al. 1999). ROTSE-I and LOTIS observations of many bursts demonstrate that prompt emission is not, in general, well represented by extrapolation of late time decay curves (Kehoe et al. 2001, Park et al. 1999). More sensitive instruments are required to study prompt emission from typical bursts.

In preparation for HETE-2 (Vanderspek et al. 1999), the Swift satellites (Gehrels 2000), which can distribute rapid localizations of GRBs with arcminute accuracy, the ROTSE team developed a new set of 0.45-m telescopes. The ROTSE-III instruments use fast optics (f/1.9) to yield a 1º.85 x 1º.85 field of view over a four megapixel CCD camera. Four of these robotically controlled, automatically scheduled instruments are being erected around the globe, both to increase the amount of sky available for instant viewing and to enable around-the-clock coverage of GRB afterglow behavior (Akerlof et al. 2003). At the time of this writing, the first two instruments, labeled ROTSE-IIIa and ROTSE-IIIb, are operating at Siding Spring Observatory in New South Wales, Australia, and McDonald Observatory at Ft. Davis, Texas, USA, respectively. The installation of ROTSE-IIIc is nearing completion in Namibia, and ROTSE-IIId is slated to arrive in Turkey in the Fall of 2003.

Within a week of the first two ROTSE-III instruments becoming fully operational, the network was tested by the discovery with HETE-2 of GRB 030329. Spectroscopic observations found the source to lie at a redshift of z = 0.168 (Greiner et al. 2003), which makes it the closest GRB to the Earth yet to be measured, with the possible exception of the anomalously faint GRB 980425 (Galama et al. 1999). This event provided the first direct spectral evidence for a supernovae associated with a high redshift GRB (Stanek et al. 2003, Hjorth et al. 2003; Kawabata et al. 2003). We report here on the light curve of GRB 030329 for the first two days of observations by ROTSE-IIIa & b.

2. OBSERVATIONS AND ANALYSIS

GRB 030329 was first observed by the instruments on board the HETE-2 satellite at 11:37:14.67 UTC. Ground analysis of the SXC data produced a localization that was reported in a Gamma-Ray Burst Coordinate Network (GCN) Notice 73 minutes after the burst (Vanderspek et al. 2003). Although the burst’s celestial location was above the Australian horizon at the time, the ROTSE-IIIa connection to the GCN was temporarily experiencing sporadic outages. It was therefore impossible for the ROTSE automated scheduler daemon to respond to the alert. However, electronic mail was also distributed to ROTSE team members, and a manual response by the ROTSE-IIIa telescope was initiated over the Internet within 15 minutes of the alert’s distribution, 88 minutes after the burst itself.
Fig. 1.— Decay of GRB 030329 over the first two days of observations. Magnitudes are calibrated to V_{ROTSE} as described in the text. Diamonds indicate measurements made with ROTSE-IIIa and triangles those made with ROTSE-IIIb. Intervals when the source was above the horizon at each site are indicated by horizontal bars at the top of the graph.

Clouds and intermittent rain interfered with observations and delayed analysis of the images, but once Peterson & Price (2003) and Torii (2003) identified the optical counterpart, we were able to extract a light curve from the setting source. Our earliest useful images began 92 minutes after the burst event (Rykoff & Smith 2003). At 4.8 h after the burst, the air mass to the source grew too large for further observation.

ROTSE-IIIb (in Texas) began observations 14.8 h after the burst, and followed the source for a further 8.5 h. Once the source had risen again in Australia, contemporaneous observation from both ROTSE-III instruments was possible for 1.8 h. The ROTSE-III automatic scheduler normally plans observations of fading GRB afterglows to occur at logarithmically increasing intervals, leading to gaps in coverage at the start of each night’s observing. As it became clear how bright this source was, we overrode the default schedule to instruct the instruments to look at nothing else as long as GRB 030329 was above the local horizon.

The ROTSE-III images were bias-subtracted and flat-fielded in the standard way. For images recorded later than 10 h after the burst, we co-added sets of ten frames before deriving a light curve. We applied SExtractor (Bertin & Arnouts 1996) with aperture photometry to these co-added images to detect objects and derive their intensities. We compared these intensities to the USNO A2.0 catalog to derive an approximate R-band magnitude zero-point offset for the field. Zero-point offsets among the ROTSE images are determined through application of a relative photometry procedure. Absolute calibration to a V-magnitude equivalent (dubbed V_{ROTSE}) is derived by comparison of several nearby stable stars to the $UBVR_{\text{c}}$ photometry of Henden (2003).

The offset between unfiltered V_{ROTSE} observations and standard V magnitudes is a function of color. Without color information for the early-time afterglow, we have not applied any color correction to these data. However, from 6.0–14.4 h after the burst, during observations reported by Burenin et al. (2003), the afterglow color is rather blue, with $V - R \approx 0.3$. This color remained stable through a break in the light curve. If the afterglow maintained this color throughout the ROTSE-III observations, it would be appropriate to further adjust the V_{ROTSE} magnitudes reported here to be approximately 0.5 magnitudes brighter.

GRB 030329 was also observed with a time resolution of 1-second using a CCD time-series photometer mounted at the prime focus position of the McDonald Observatory 2.1-m telescope. The photometer “Argos” (Nather & Mukadam, in preparation) operates in frame transfer mode, and thus allows rapid exposures as short as one second. The time-series photometry started 15.87 hours after the burst trigger, and continued for 4290 seconds in essentially photometric conditions. No filter was used, so the spectral response of the instrument was dominated by the combination of a typical CCD sensitivity and the Earth’s atmosphere: the transmission is about 70% in the wavelength range 560–640 nm, and greater than 50% in the wavelength range 450–800 nm.

Typical ADU count rates for the optical transient were 17,000 per second, while the sky contributed about 10,500 counts per second in the chosen software aperture. There were two comparison stars in the 2.8 arcminute...
field of view of the instrument, and sky-subtracted light curves for each object were obtained by using an optimized circular software aperture. A corrected light curve for the target object was then generated by dividing its light curve to the sum of the two comparison star light curves (which have been normalized to unity).

3. RESULTS

The full light curve from both ROTSE-IIIa & b is shown on a logarithmic scale in the top panel of Figure 1. Figure 2 shows two segments of the light curve on expanded scales. In this section, we describe the behavior of the afterglow during each observing sequence.

The poor observing conditions during the first observing run (from 1.5 to 4.8 h after the burst) introduce large systematic errors into the photometry, but there is no evidence for any significant deviations from a power law decay with an index of 0.88±0.05, a value not atypical for early GRB afterglows. The earliest detections reveal an unfiltered V_{ROTSE} magnitude of 12.55, over 100 times brighter than any other afterglow to date to be observed at this epoch (Price et al. 2003), consistent with the very low redshift for the object. The latest points in this sequence, recorded after an hour during which ROTSE-IIIa automatically ceased operation due to a light rain, are also consistent with the same decay curve.

When ROTSE-IIIb commenced observations at 14.8 h, the intensity of GRB 030329 was decaying much more rapidly, consistent with a power law index of 1.85±0.07 and strongly inconsistent with the earlier curve observed with ROTSE-IIIa. If we assume a single, sharp transition from one decay mode to the other, these data predict a transition time of ~ 12–14 h after the burst. Over the course of the 8.5 h observing sequence with ROTSE-IIIb on 30 Mar 2003, the decay slope steepened further, demanding the introduction of a third power law with decay index of 2.25±0.08. The best-fit transition time to this decay slope is at 19.0 h after the burst.

The interval during which GRB 030329 was observed by the 2.1-m coincided with the early part of this decay phase, before the break at 19 h. The corrected light curve at 1-s resolution shows the optical transient to be fading smoothly. The fitted power law decline has an index of 1.98±0.02. This power law fits well to both the beginning and ending 500-second time intervals with the same normalization to within 0.2%, thus indicating that there were no departures from the overall power law decline. The largest deviation from the best fit power law was one point that was low by only 4.4σ. Analysis of binned light curves reveals no significant fluctuations from the power law on any longer time scales. The computed discrete Fourier transform did not reveal any power out to the Nyquist frequency of 0.5 Hz up to a limit of 2 millimag (i.e., 0.2% change in intensity). In all, we found no deviations from a simple power law decline.

During the interval when both ROTSE-III instruments could observe the source simultaneously, our calibration procedure yielded consistent results. However, ROTSE-IIIa subsequently observed the source intensity to level off and remain constant for at least three hours. When the source again became visible to ROTSE-IIIb in Texas, it was found to still have the same intensity as when last seen by ROTSE-IIIa. It shortly commenced a rapid decay phase, consistent with a single power law of index 2.34±0.08. This decay rate is consistent with the decay slope observed at the end of the previous night. The decay phase lasted for approximately six hours. The source then entered a second flattening phase that was still continuing when observations ceased for the night two hours later.

The decay curve for GRB 030329 over its first two days is clearly inconsistent with a single power-law function. We find that at least four power laws plus two intervals of constant intensity are necessary to adequately reproduce the behavior of the light curve. Three of these functions are plotted as broken lines in Figure 2. The decay indices as well as the intervals over which each power-law segment applies are given in Table I.

4. DISCUSSION

The world-wide distribution of the ROTSE-III network allows for unprecedented coverage of the early decay curve of GRB afterglows, and in the case of GRB 030329, the afterglow was above the horizon for 56% of the first 47 h after the event. Since the ROTSE-III network was only half complete at the time of GRB 030329, there

Fig. 2. Expanded views of two segments of the ROTSE-III light curve for GRB 030329. Diamonds indicate measurements made with ROTSE-IIIa and triangles those made with ROTSE-IIIb. The top panel shows the interval from 14 to 30 h after the burst, while the bottom panel covers the time from 38 to 48 h. These panels also overlay best-fit power law functions onto the observations. The data in the top panel are clearly inconsistent with a single power law decay. Parameters for these functions are given in Table I. The curve for GRB 030329. Diamonds indicate measurements made with ROTSE-IIIa and triangles those made with ROTSE-IIIb. The top panel shows the interval from 14 to 30 h after the burst, while the bottom panel covers the time from 38 to 48 h. These panels also overlay best-fit power law functions onto the observations. The data in the top panel are clearly inconsistent with a single power law decay. Parameters for these functions are given in Table I. The curve for GRB afterglows, and in the case of GRB 030329, the afterglow was above the horizon for 56% of the first 47 h after the event. Since the ROTSE-III network was only half complete at the time of GRB 030329, there...
are still large gaps in the derived light curve when the source was not visible to either telescope. However, at least two groups have published observations of the afterglow’s behavior during the time on the first day when neither ROTSE-IIIa nor ROTSE-IIIb could observe it. Uemura et al. (2003) observed GRB 030329 with a variety of telescopes from 1.2 h to ∼ 14 h after the event, and they report three breaks in the light curve during this time: from 0.74 ± 0.02 to 0.95 ± 0.01 at $t = 2.04$ h, to 0.65 ± 0.04 at $t = 3.9$ h, and again to 1.16 ± 0.01 at $t = 5.4$ h. This characterization is consistent with the ROTSE-IIIa data, which have neither sufficient coverage nor small enough errors to distinguish between this and the best-fit single power law reported above in Section 4. Burenin et al. (2003) present observations taken with the 1.5 m Russian-Turkish Telescope shortly after the time of this last transition and give a slope of 1.19 ± 0.01 from 6.2 h to 14.4 h after the burst, after which the slope changes to ∼ 1.9, which is consistent with the ROTSE-IIIb observations at 14.8 h. The Japanese and Turkish programs, therefore, neatly fill in the gap between ROTSE-III observations, and the joint data set provides evidence for five changes in slope decay index within the first 20 hours after the burst.

No GRB afterglow has been observed nearly as intensely as GRB 030329, and for most other bursts only a single steepening in the light curve decay has been reported. These breaks have been taken as evidence for deceleration of a relativistic jet: as the jet decelerates, the beaming angle must increase, and when the beaming angle exceeds the jet angle, the intensity of visible light is expected to decrease more rapidly (Rhoads 1997, Sari, Piran, & Halpern 1999, Perna, Sari, & Frail 2003). Multiple breaks within a single decay curve are more difficult to interpret in this paradigm, but Wei & Jin (2003), for example, have suggested that they may result from off-axis viewing geometry or perhaps non-uniform structure within the jet. A detailed analysis of what geometry five decay breaks might demand is beyond the scope of this paper, but the data clearly are not consistent with the simplest models and demand caution when trying to interpret $t ∼ 0.5$ d as the jet break (Granot, Nakar, & Piran 2003; Burenin et al. 2003; Price et al. 2003).

The other striking feature of the afterglow is the deviation from its rapid decay, beginning at ∼ 23 h after the burst. In the ROTSE-III observations, the intensity levels off and remains constant for several hours. A second decay phase begins ∼ 39 h after the burst. It is unlikely that this episode is related to the emergence of a supernova in the light curve, as the first spectral evidence for a supernova associated with GRB 030329 emerged only after ∼ 7 d (Stanek et al. 2003). At one day after the event, the optical intensity should be dominated by the burst afterglow. Furthermore, the light curve flattens yet again at ∼ 44 h. Wei & Jin (2003) argue that geometric factors could produce a flattening of the light curve at about this time, but it is hard to understand the repeating nature of the phenomenon within that paradigm. On the other hand, Granot, Nakar, & Piran (2003) have interpreted these episodes as refreshed shocks produced by further ejection events from the central engine catching up with the decelerating blast wave. In this interpretation, the central engine remains an active part of the GRB process well into the afterglow phase, further underscoring the need for early and thorough observations of the entire burst event if the complex physical interactions are ever to be teased out.

This work has been supported by NASA grants NAG 5-5281 and F006794, NSF grant AST 01-19685, the Michigan Space Grant Consortium, the Australian Research Council, the University of New South Wales, the University of Texas, and the University of Michigan. DAS is supported by an NSF Astronomy and Astrophysics Postdoctoral Fellowship under award AST 01-05221. Work performed at LANL is supported by NASA SR&T through Department of Energy (DOE) contract W-7405-ENG-36 and through internal LDRD funding.

Table 1. Parameters of Best-Fit Power-Law Decay Curve

Start Time (h)	Stop Time (h)	Index
1.5	4.8	0.87±0.03
14.8	19.0	1.85±0.06
19.0	23.0	2.25±0.08
23.0	26.0	<0.4
39.5	45.0	2.34±0.08
45.0	46.5	<0.4

REFERENCES

- Akerlof, C., et al. 1999, Nature, 398, 400
- Akerlof, C., et al. 2003, PASP, 115, 132
- Bertin, E. & Arnouts, S. 1996, A&AS, 117, 393
- Burenin, R., et al. 2003, Astronomy Letters, 9, 31
- Galama, T. J., et al. 1999, A&AS, 138, 465
- Gehrels, N. A. 2000, in Proc. SPIE Vol. 4140, p. 42-49, X-Ray and Gamma-Ray Instrumentation for Astronomy XI, Kathryn A. Flanagan; Oswald H. Siegmund; Eds., 42
- Granot, J., Nakar, E., & Piran, T. 2003, astro-ph/0304563
- Greiner, J., Peimbert, M., Estaban, C., Kauer, A., Vreeswijk, P., Jaunsen, A., Smoke, J., Kloke, S., & Reimer, O. 2003, GCN Circ. No. 2020
- Henden, A. 2003, GCN Circ. No. 2023
- Hjorth, J., et al. 2003, Nature, 423, 847
- Kawabata, K. S. et al. 2003, ApJ, in press, astro-ph/0306155
- Kehoe, R., et al. 2001, ApJ, 554, L159
- Park, H. S., et al. 2003, A&A, 138, 577
- Perna, R., Sari, R., & Frail, D. 2003, ApJ, astro-ph/0305145
- Price, P., et al. 2003, Nature, 423, 844
- Rhoads, J. E. 1997, ApJ, 487, L1
- Rykoff, E. S. & Smith, D. A. 2003, GCN Circ. No. 1995
- Sari, R., Piran, T., & Halpern, J. P. 1999, ApJ, 519, L17
- Stanek, K. Z., et al. 2003, ApJ, 591, L17
- Torii, K. 2003, GCN Circ. No. 1986
- Uemura, M., Kato, T., Ishioka, R., Yamaoka, H., Monard, B., Nogami, D., Maehara, H., Sugie, A., & Takahashi, S. 2003, Nature, astro-ph/0306396
- Vanderspek, R., et al. 2003, GCN Circ. No. 1997
- Vanderspek, R., Villaseñor, J., Doty, J., Jernigan, J. G., Levine, A., Monnelly, G., & Ricker, G. R. 1999, A&AS, 138, 565
- Wei, D. M. & Jin, Z. P. 2003, A&A, 400, 415