Review

The stunting syndrome in developing countries

Andrew J. Prendergast1,2,3, Jean H. Humphrey2,3

1Centre for Paediatrics, Blizard Institute, Queen Mary University of London, UK, 2Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe, 3Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA

Linear growth failure is the most common form of undernutrition globally. With an estimated 165 million children below 5 years of age affected, stunting has been identified as a major public health priority, and there are ambitious targets to reduce the prevalence of stunting by 40% between 2010 and 2025. We view this condition as a ‘stunting syndrome’ in which multiple pathological changes marked by linear growth retardation in early life are associated with increased morbidity and mortality, reduced physical, neurodevelopmental and economic capacity and an elevated risk of metabolic disease into adulthood. Stunting is a cyclical process because women who were themselves stunted in childhood tend to have stunted offspring, creating an intergenerational cycle of poverty and reduced human capital that is difficult to break. In this review, the mechanisms underlying linear growth failure at different ages are described, the short-, medium- and long-term consequences of stunting are discussed, and the evidence for windows of opportunity during the life cycle to target interventions at the stunting syndrome are evaluated.

Keywords: Stunting, Malnutrition, Mortality, Neurodevelopment, Infections

Introduction

Linear growth failure in childhood is the most prevalent form of undernutrition globally.1 An estimated 165 million children under 5 years of age are stunted, with a height-for-age Z-score (HAZ) below −2 (i.e. more than two standard deviations below the population median), but a larger number of children with HAZ > −2 still have inadequate linear growth and are therefore experiencing stunting.1 Undernutrition underlies 45% of all child deaths among children <5 years,2 although mortality has been described as the ‘tip of the iceberg’ of malnutrition.3 Stunting more pervasively hinders developmental potential and human capital of entire societies due to its longer-term impact on cognitive function and adult economic productivity; it is therefore considered the best surrogate marker of child health inequalities.4,5

After many years of neglect, stunting has now been identified as a major global health priority.6 Ambitious World Health Assembly targets aim to reduce stunting by 40% between 2010 and 2025.7 Whilst impressive progress has been made in Asia, with a decline in the proportion of stunted children from 49% to 28% between 1990 and 2010, this is still the continent with the most stunted children globally (approximately 100 million); in Africa, stunting prevalence has remained stagnant around 40% and, owing to population growth, the absolute number of stunted children is increasing.8 Millennium Development Goal 1 (MDG 1), which focuses on eradicating extreme hunger and poverty, uses underweight rather than stunting as its target (http://www.un.org/millenniumgoals/). Weight is more frequently used to monitor growth than is height, because of ease of measurement; however, underweight (low weight-for-age) does not distinguish between stunting (low height-for-age) and wasting (low weight-for-height). In settings where stunting is highly prevalent and wasting is rare, underweight therefore underestimates the burden of malnutrition.9–11 Overall, developing countries have <5% chance of achieving MDG 1 (reducing the proportion of children with WAZ<−2 by half between 1990 and 2015), although 61 of 141 countries are estimated to have a 50–100% chance of success.12 Even regions such as the Caribbean and Latin America which are on target to reach MDG 1 when measured as WAZ would not achieve this target if using HAZ as the indicator.13

Although usually described separately, stunting, underweight and wasting frequently co-exist and children with multiple measures of anthropometric failure have a compounded risk of morbidity and mortality.14,15 For example, analysis of data on 53,767 children in Africa, Asia and Latin America demonstrated that mortality in those who were stunted and underweight was more than three times
greater than in well nourished children [HR 3.4 (95% CI 2.6–4.3)]; this risk rose to >12-fold [HR 12.3 (7.7–19.6)] in children who were stunted, underweight and wasted.15 Thus, although stunting and wasting have tended to be viewed separately, there is a growing impetus to consider both conditions together.16 Weight-for-height tends to reflect more short-term inadequacy of dietary intake or utilization; the effectiveness of therapeutic feeding for wasted children is well established.17 By contrast, the mechanisms underlying linear growth failure and interventions to prevent or ameliorate stunting are less clearly defined.16

The Stunting Syndrome

Although stunted children are identified by comparing their height to an age- and sex-matched reference population, short stature is not usually in itself problematic. Instead, we view this condition as a ‘stunting syndrome’ in which multiple pathological changes marked by linear growth retardation increase morbidity and mortality and reduce physical, neurodevelopmental and economic capacity. The short-, medium- and long-term sequelae of stunting, summarised in Figure 1, are discussed in detail later. Stunting is a cyclical process because women who were themselves stunted in childhood tend to have stunted offspring, creating an intergenerational cycle of poverty and reduced human capital that is difficult to break,18 although potential windows of opportunity have been identified (Fig. 1).

Determinants of Healthy Growth

There are four interlinked phases of growth during the life-course: fetal, infant, childhood and pubertal, each governed by different regulatory mechanisms. A study of healthy children who were measured frequently during the first 21 months of life demonstrated that growth is an episodic phenomenon, with long periods of stasis (between 2 and 63 days) punctuated by short phases of saltation (growth spurts), so that there is no growth during 90–95% of
healthy infancy. Although height is a highly heritable trait, with over 200 genes identified in genome-wide association studies, together they explain only about 10% of the variation in adult height. Children from different geographical areas grow at a remarkably similar rate during fetal life and the first few years of postnatal life if born to mothers whose nutritional and health needs are met and if raised in unconstrained conditions. Environmental factors such as maternal nutritional status, feeding practices, hygiene and sanitation, frequency of infections and access to healthcare are therefore the major determinants of growth in the first 2 years of life.

Studies of variation in stunting prevalence across countries and between different populations within countries demonstrate the importance of socio-economic factors. Stunting prevalence is therefore a good indicator of inequalities in human development across 80 countries, those with a high prevalence of stunting tended also to have larger socio-economic inequalities in children with stunting. An analysis for the Lancet Nutrition Series incorporating data from 79 countries showed that stunting prevalence was 2.47 (range 1.00–7.64) times higher in the poorest than in the richest quintile. In China, where there was marked economic development between 1975 and 2010, there was a parallel improvement in the growth of children and adolescents; height showed a strong positive correlation with GDP per capita (r = 0.90, P < 0.0001) and with urbanisation (r = 0.92, P < 0.0001), and a negative correlation with the under-5 mortality rate (r = –0.95, P < 0.0001). Using data from 7630 mother–child pairs enrolled in the COHORTS study in Brazil, Guatemala, Philippines, India and South Africa, children on average had better heights than their mothers owing to secular trends arising from improvements in economic and environmental conditions over time. Improvements in growth are seen when people migrate from poor nations to countries with better socio-economic conditions.

The Timing of Growth Faltering
Stunting begins in utero and continues for at least the first 2 years of postnatal life; the period from conception to a child’s second birthday (the first thousand days) has therefore been identified as the most critical window of opportunity for interventions (www.thousanddays.org). The average length-for-age Z-score among newborns in developing countries is approximately –0.5 and continues to decline after birth to a nadir of around –2.0 by 18–24 months of age. Upon publication of new WHO growth standards in 2006, it became apparent that linear growth faltering in developing countries occurs sooner after birth that had been appreciated using prior National Center for Health Statistics (NCHS) data, which were based on the growth of predominantly formula-fed infants. Although stunting at a population level follows the trajectory described above, there are widespread between-child differences in stunting patterns when individual child growth curves are examined (Prendergast et al., unpublished data). There are some difficulties in interpreting the patterns of long-term linear growth from published data, because many studies are cross-sectional rather than longitudinal; most focus on children <5 years of age; and height is generally presented as Z-scores, which can be problematic when used to describe growth over time, as discussed later. Across multiple countries in sub-Saharan Africa it has been shown that boys are more likely to be stunted than girls (odds ratio 1.16, 95% CI 1.12–1.20) for reasons which remain unclear.

The Pathogenesis of Stunting
Despite the high global prevalence of stunting, the pathogenesis underlying linear growth failure is surprisingly poorly understood. For this reason, the most tractable pathways for effective interventions to promote healthy growth remain unclear, and no research study has ever normalised linear growth among children living in developing countries. From epidemiological studies it is apparent that suboptimal breastfeeding and complementary feeding practices, recurrent infections and micronutrient deficiencies are important proximal determinants of stunting. Linear growth failure also occurs within a complex interplay of more distal community and societal factors, such as access to healthcare and education, political stability, urbanisation, population density and social support networks, which have been captured in the WHO Conceptual Framework on Childhood Stunting, as recently reviewed. Below we review the current understanding of growth failure across the life-course and try to identify potential windows of opportunity for interventions (Fig. 1).

Antenatal period
Fetal growth is governed by complex interactions between maternal nutritional status, endocrine and metabolic signals and placental development. Newborn size is therefore a reflection of the intrauterine environment; prevalence of low birthweight (<2.5 kg) is approximately six times higher in developing compared to developed countries. The INTERGROWTH-21st Project, a population-based study of fetal growth across eight countries, showed that newborn length was very similar across sites among affluent, healthy, educated women. Low birthweight babies include those born too soon (preterm), too small (small for gestational age, SGA), or both. In 2010, 27% of liveborn infants
globally were SGA and almost 3 million infants were born preterm and SGA; but risks of poor growth and mortality are compounded among those born preterm-SGA. Using data from 19 birth cohorts, Christian et al. showed that, relative to infants born appropriate for gestational age and at term, the risk of postnatal stunting increased markedly among infants born preterm [OR 1.93 (95% CI 1.71–2.18)], SGA [2.43 (2.22–2.66)] and SGA-preterm [4.51 (3.42–5.93)].

Overall, they estimated that 20% of stunting has in utero origins. In some settings, antenatal determinants of stunting appear to be even more important than postnatal determinants.

Maternal undernutrition contributes to an estimated 20% of maternal deaths and increases the risk of adverse pregnancy outcomes, childhood mortality and stunting. Short maternal stature, low body mass index and poor weight gain during pregnancy are the major indices associated with low birthweight. Early pregnancy during adolescence, when mothers are themselves still growing, increases the risk of further maternal stunting and leads to adverse obstetric outcomes. Closely spaced births also increase nutritional demands on the mother.

Maternal height is associated with size at birth and with postnatal stunting, which compounds the intergenerational cycle of stunting (Fig. 1). Birthweight and length are themselves related to subsequent growth in childhood. A longitudinal analysis of data from five birth cohorts which used a measure of conditional height across the life-course to account for the colinearity of multiple growth measures showed that maternal height was related to offspring height at all ages (correlations ranging from 0.15 to 0.55, P<0.001) and maternal height was strongly associated with stunting prevalence at 2 years, similar to findings from previous cross-sectional studies. The largest study to date incorporating data from 109 demographic and health surveys across 54 countries showed that maternal height was inversely associated with mortality, underweight and stunting during infancy and childhood.

Given these strong intergenerational effects, the concept of stunted families rather than stunted children has been proposed, particularly since maternal nutritional status can also influence childhood stunting. It has been argued that these intergenerational influences on health have been ignored in setting the Millennium Development Goals, which are unlikely to be attained if maternal health is not addressed. Since infants are entirely dependent on their mother for nutrition during the first 500 days of life, several trials have focused on improving maternal nutritional status. Prenatal multiple micronutrients and provision of balanced energy and protein to mothers reduce SGA by 9% and 31%, respectively. Daily iron supplementation during pregnancy reduces low birthweight by 20% but zinc supplementation has no significant effect on birthweight. Calcium supplementation in pregnant women increases birthweight by 85 g (95% CI 37–133) compared with controls, and three trials of vitamin D in pregnancy showed a borderline significant effect on low birthweight (relative risk 0.48, 95% CI 0.23–1.01).

Various human and animal studies have shown that maternal diet can mediate epigenetic changes in the fetus. In a Gambian trial of multiple micronutrient supplementation during the peri-conception period, epigenetic changes were seen in several differentially methylated regions which govern growth or immune function. Prenatal interventions can therefore have an impact on postnatal growth as was shown in the MINIMAT trial in Bangladesh in which early food supplementation during pregnancy reduced postnatal stunting in boys (but not girls), consistent with a fetal programming effect; however, not all antenatal interventions have demonstrated a long-term effect.

Birth to 6 months

Healthy infants experience maximal growth velocity between birth and 6 months of age. Furthermore, the first few months of life appear particularly critical for long-term neurodevelopment. When linear growth among infants in developing countries was evaluated using 2006 WHO growth standards, the prevalence of stunting in the first half of infancy doubled compared to prior estimates; in some countries, such as India, 20% of infants are stunted before 6 months of age. There is therefore an increasing appreciation of undernutrition in infants under 6 months, who are often excluded from nutrition surveys and marginalised in nutrition programmes, and a realisation that interventions need to be targeted earlier than was previously appreciated.

Exclusive breastfeeding (EBF) for the first 6 months has been recommended by WHO since 2001. Although the benefits of EBF for reduced morbidity and mortality and improved cognition are clear, evidence for an effect on linear growth is surprisingly weak. Promotion of EBF is effective at increasing EBF rates, but in a cluster-randomised trial of EBF promotion in three African countries, increased rates of EBF were not associated with improved HAZ scores at 6 months. In a secondary data analysis of national survey data from India, even among infants categorized as practicing EBF, stunting prevalence was 21% by 6 months, although the definition of EBF was based only on a 24-hour recall period. Growth failure that is continuous from fetal life through the first 6 months of postnatal life suggests the existence of common factors, which have...
not been well defined.88 In a study of Zimbabwean mother–infant pairs, there was evidence of chronic inflammation very early in life (by 6 weeks of age). Levels of inflammatory markers (e.g. CRP) were persistently higher in stunted than in non-stunted infants, and were associated with the level of maternal inflammation at birth, suggesting one potential common mechanism linking antenatal and postnatal growth failure.89

6–24 months of age

The period from 6 to 24 months of age is one of the most critical periods for linear growth;90 it is also the time of peak stunting prevalence in developing countries, due to high demand for nutrients coupled with limited quality and quantity of complementary foods.91 Complementary feeding refers to the timely introduction of safe and nutritious foods in addition to continued breastfeeding;92 the majority of stunting interventions have been targeted at improving infant and young child feeding (IYCF) practices, which are known to be poor in many settings.93 WHO has developed a set of IYCF indicators to evaluate feeding practices; although in some studies these show associations with stunting,94 in others they have been found to lack sensitivity and specificity.95

Interventions to improve IYCF have generally focused on nutrition counselling, providing complementary food with or without micronutrients, and increasing energy density of complementary foods through simple technology.91 A meta-analysis of 42 studies showed a modest impact of complementary feeding interventions; the best improvement in linear growth was around +0.7 gain in HAZ, which is around one-third of the average deficit.91 Generally, studies providing complementary foods in food-insecure regions showed some benefit; micronutrient fortification alone showed little or no impact on growth. Complementary feeding education improves linear growth, and leads to declines in stunting among food-insecure populations, but effect sizes are modest.96 Community-based supplementary feeding (i.e. giving additional food beyond the normal home diet) has a limited evidence base; the only impact on length was seen in children below 12 months of age in two trials.97

Lipid-based nutrient supplements (LNS), which are micronutrient-fortified ready-to-use products, have been used during the complementary feeding period in several trials. LNS showed a significant impact on linear growth in studies from Ghana,98 Congo,99 and Haiti100 but not in two trials from Malawi.101,102 Another Malawian study103 showed an impact of LNS on severe stunting when provided to 6-month-old infants for 1 year, but not during a short 12 week intervention;104 the effect was sustained up to 3 years of age;105 although, of note, there was no control group in these trials. Taken together, despite differences in treatment duration, comparator groups, primary outcomes (use of absolute HAZ score vs proportion stunted) and length of follow-up, there is some evidence from trials for a small but measurable effect of LNS on linear growth.

Deficiencies of vitamin A, zinc, iron and iodine are common,47 and multiple micronutrient deficiencies are often found in the same child,106 affecting many aspects of physiology, including neural and immune function. Globally, two billion people are at risk of micronutrient deficiency, which has been termed ‘hidden hunger’ due to its impact on health and human capital.107 A systematic review of micronutrient powders108 found relatively few studies which evaluated growth; none suggested benefit and there was increased diarrhoea in some children taking micronutrient powders. An estimated 17.3% (95% CI 15.9–18.8) of the global population is at risk of zinc deficiency2 and country-specific prevalence of inadequate zinc intake correlated with stunting prevalence in 138 low- and middle-income countries (r 0.48, \(P<0.001\)).109 Daily zinc (10 mg/day) for 24 weeks leads to a mean (SD) height gain of approximately 0.38 cm (0.25).110 Studies investigating the impact of vitamin A on growth have reported mixed results.111–114

Several decades ago, detailed longitudinal studies in Guatemala showed that recurrent infections can impair growth, particularly during the second half of infancy;115 subsequent studies have confirmed this observation.90,116–119 However, there is a bidirectional relationship between infections and malnutrition; several studies show that malnourished children have an increased frequency, duration and severity of infections.116,120–123 It can therefore be difficult to distinguish cause and effect, although animal models provide a useful system to explore these interactions. Mice experimentally infected with Cryptosporidium, entero-aggregative Escherichia coli or Giardia lamblia develop enteropathy and growth impairment; when they are malnourished, they have a higher pathogen load and more severe enteropathy.124–127

Stunting and parasitic infections overlap geographically, and several studies have explored associations between them. Studies conducted over a 25-year period variously reported that malaria was associated with an increased risk of stunting,128–132 a decreased risk133 or no association;134–137 methodological differences, confounding and the possibility of reverse causality made it difficult to interpret these conflicting findings. A study that used Mendelian randomisation to explore associations between malaria and stunting has helped to clarify these associations.138 Children with sickle cell trait are asymptomatic but protected from malaria; using matching to control for unmeasured confounding, the authors showed a
causal effect of malaria on stunting, since sickle cell trait can only influence stunting through its effect on malaria. Intestinal helminths affect two billion people worldwide and may affect nutritional status through reduced digestion and absorption, chronic inflammation and loss of nutrients. However, as for malaria, the impact of helminths on stunting is difficult to assess because of confounding and the possibility of reverse causality in published studies. Polyparasitism is common and is associated with adverse child health outcomes; there is a growing appreciation of the burden of helminths in pre-school children in whom infection may have the greatest impact on growth and development.

Diarrhoea is one of the most frequent infections in childhood, particularly in conditions of poor sanitation and hygiene, although early studies varied in their conclusions as to whether diarrhoea did or did not affect stunting. Effects of diarrhoea may be short term because catch-up growth can occur between episodes. In an analysis of data from nine community-based studies with daily diarrhoea data and longitudinal anthropometric measurements, the odds of stunting by 24 months increased multiplicatively with each episode of diarrhoea; overall, 25% of stunting was attributed to five or more episodes of diarrhoea. In a more recent study of seven longitudinal infant cohorts, cumulative diarrhoeal burden had a smaller but measurable effect on linear growth; a child with the typical diarrhoea burden (equivalent to 23 days per year) was 0.38 cm shorter at 2 years of age than a child without diarrhoea. It is increasingly apparent that subclinical infection with enteric pathogens is common, even in the absence of diarrhoea. In conditions of poverty, where children experience frequent exposure to enteric pathogens due to faeco-oral transmission, a population shift in gut structure and function occurs. This subclinical pathology, characterised by villous atrophy and chronic inflammation of the small intestine, has been termed environmental enteric dysfunction (EED), and is associated with modest malabsorption and increased intestinal permeability. Even mild malabsorption may be important in the context of a marginal diet and rapid growth, and permeability enables translocation of microbial products from the lumen of the gut to the systemic circulation, where they can trigger chronic inflammation, which suppresses IGF-1. Early studies from The Gambia and elsewhere confirmed that abnormal intestinal permeability is common; linear growth in Gambian infants was inversely related to permeability. More recent studies and reviews have focused attention on the plausible links between gut inflammation and stunting; given its chronic nature, it has been argued that EED may be a more important pathway to stunting than is diarrhoea. We therefore view stunting as an inflammatory disease arising, in part, from primary gut pathology. Since gut damage also occurs with recurrent (especially persistent) diarrhoea, severe acute malnutrition, HIV infection and micronutrient deficiencies, there are multiple overlapping causes of enteropathy in settings of poverty which may exacerbate the growth failure arising from EED.

In the last few years, studies using next-generation sequencing have begun to characterise the composition and function of the intestinal microbiota during malnutrition (recently reviewed by Ahmed et al.). Assembly of the microbiota occurs over the first 3 years of life, with a founding population acquired from the mother and subsequent composition shaped by environmental influences, including the diet. The microbiota has important roles in metabolism of macro- and micronutrients, immune development, integrity of the intestinal barrier and defence against enteric pathogens. A study of Malawian twin pairs discordant for kwashiorkor highlighted the importance of the gut microbiome (the genes expressed by the microbiota) in malnutrition. Kwashiorkor was characterised by a functionally immature microbiome, which matured during therapeutic feeding (with enrichment of potentially beneficial organisms, such as Bifidobacteria and Lactobacillus) but was not sustained once therapeutic feeding was stopped. In a subsequent study from Bangladesh, sequencing of monthly faecal samples from 50 children with healthy growth enabled ‘microbiota-for-age’ Z-scores to be developed. Children with acute malnutrition showed immaturity of their microbiota, and the microbiota-for-age Z score correlated with weight-for-height Z-score at 18 months of age. Whilst these studies provide emerging evidence for a role of the microbiota in malnutrition, no published studies to date have characterised the microbiota of children with stunting.

Recurrent infections, inflammation and gut damage are all potentially amenable to interventions. A meta-analysis of ten trials from low- and middle-income countries showed that antibiotics had a significant impact on both weight and height gain; although antibiotics were given for a range of indications (not specifically for growth), a side-benefit may have been growth-promoting modulation of the intestinal microbiota and/or resolution of subclinical infections. There is current interest in azithromycin, a broad-spectrum, long-acting, immunomodulatory antibiotic that is commonly used in mass drug administration programmes for trachoma and improves child survival. However, a comparison...
of one versus two doses of azithromycin in Niger showed no difference in height between groups, although the study was cross-sectional and underpowered for this outcome;\(^1\) other trials are underway. A trial of rifaximin, a non-absorbable broad-spectrum antibiotic, among 3–5 year old children in Malawi was designed to test the hypothesis that a short course of antibiotics would reduce EED.\(^2\) At baseline and after 7 days of rifaximin, children were administered a combination of lactulose and mannitol, and researchers measured the ratio of the two sugars in the urine (L:M ratio), which provides a measure of small intestinal absorption and permeability. Although changes in L:M (the primary endpoint) were similar between rifaximin and placebo groups, leading the authors to speculate that bacterial overgrowth was not important, the trial assessed only one domain of EED,\(^3\) and the treatment duration was short.\(^2\) The same researchers undertook a three-arm randomised trial among 1–3 year old asymptomatic Malawian children, comparing single-dose albendazole, 14 days of zinc, or placebo; increases in L:M ratio were greater in the placebo compared to intervention groups, providing some promise that a short intervention may modulate markers of EED, although growth was not assessed.\(^2\) Several studies have evaluated the impact of probiotics on growth at different ages; overall, results are conflicting due to differences in duration, strain and dose of probiotics,\(^2\) but some have suggested benefit, mostly in weight gain.\(^2\) A trial of probiotics (\emph{Lactobacillus GG}) in Malawian children at risk of EED showed no difference in L:M ratio after 30 days of treatment compared to placebo.\(^2\) The first study to evaluate an immunomodulatory approach to EED randomised children with severe acute malnutrition to 28 days of mesalazine (an aminosalicylate) or placebo during nutritional rehabilitation; although designed as a safety study with a primary outcome of adverse events (which were similar between groups), there was a trend towards reduction in several systemic inflammatory markers, suggesting that anti-inflammatory interventions are safe and warrant further evaluation in larger trials including growth outcomes.\(^2\)

Millennium Development Goal 7c aims to halve the proportion of the population without sustainable access to safe drinking water and basic sanitation by 2015. The benefits of improved water, sanitation and hygiene (WASH) have mostly been evaluated in terms of reducing diarrhoea\(^2\) and soil-transmitted helminth infections,\(^2\) but it has been argued that the potential impact of WASH on EED and stunting has been undervalued.\(^2\) Observational studies support an association between WASH conditions and child height,\(^2\) and a recent meta-analysis of five cluster-randomised controlled trials which evaluated water disinfection, provision of soap or improvement in water quality (although no trials of improved sanitation) showed a small but significant impact on HAZ (mean difference 0.08, 95% CI 0.00–0.16).\(^2\) It has also been argued that WASH has potential to improve early child development through effects on inflammation, anaemia and stunting.\(^2\) Interventions need to be targeted at the pathways through which faeco-oral transmission commonly occurs in infancy, such as exploratory behaviour leading to ingestion of animal faeces and soil,\(^2\) known to be highly contaminated in settings where people live with livestock,\(^2\)\(^2\) this infant-targeted approach has been termed ‘baby WASH’\(^2\). Cluster-randomised trials are currently evaluating the impact of improved WASH on stunting in Zimbabwe (clinicaltrials.gov identifier NCT01824940), Kenya (NCT01704105) and Bangladesh (NCT01590095).

There are observational data supporting associations between other environmental exposures and stunting. Mycotoxins are fungal metabolites that frequently contaminate staple foods such as maize and ground nuts in developing countries; infants tend to be particularly vulnerable to exposure in the food chain.\(^2\) Levels of aflatoxin were related to stunting in a cross-sectional study of children aged 9 months to 5 years in Benin and Togo\(^2\) and in Tanzania, exposure to fumonisin was inversely associated with linear growth in infancy.\(^2\) Mycotoxins might mediate stunting through multiple pathways, including enteropathy, although further studies are needed to clarify causation.\(^2\) Arsenic exposure during pregnancy has been linked to low birthweight\(^2\) and urinary arsenic metabolites were inversely related to plasma IGF-1 levels in Bangladeshi pre-school children.\(^2\) Half the global population uses biomass fuels such as dung, coal, charcoal or wood, which give rise to indoor pollution. In some studies,\(^2\) but not others,\(^2\) exposure to biomass fuels was associated with stunting in children, after adjusting for covariates.

\textbf{Beyond 24 months of age}

Stunting has tended to be viewed as a condition determined in the first 1000 days, because linear growth failure begins antenatally\(^2\) and continues over the first 24 months, with little apparent recovery thereafter.\(^2\) However, recently it has been proposed that the window of opportunity for catch-up growth may extend beyond 24 months, using longitudinal data from the COHORTS study,\(^2\) from rural Gambia,\(^2\) and from the Young Lives study in Ethiopia, Peru, India and Vietnam.\(^2\)\(^2\) However, there has been debate about the use of height-for-age Z-scores to describe changes in growth over time, because HAZ calculations include the age- and sex-
specific standard deviation for height as the denominator, which increases with age; for a constant absolute height deficit, therefore, the HAZ will tend to become less negative over time, leading to apparent recovery in linear growth. This was well demonstrated in a recent analysis in which HAZ among children from three birth cohorts (South Africa, Guatemala, The Philippines) appeared to improve from 24 months to mid-childhood whilst the absolute height deficit continued to accumulate. Leroy et al. in a comparison of absolute height-for-age differences (HAD) with HAZ in 51 nationwide surveys showed that whilst HAZ appeared to level off between 24 and 60 months, HAD continued to increase: 70% of the shortfall in height occurred in the first 1000 days and 30% between 2 and 5 years of age.

The question of potential recovery beyond the first 1000 days remains important and windows of opportunity for different components of the stunting syndrome may open and close at different times (Fig. 1). What causes ongoing linear growth faltering beyond 24 months, and whether interventions would usefully improve lean mass rather than increasing the risk of long-term obesity, remain uncertain. Adolescence is the time beyond infancy when growth velocity is maximal and represents the last opportunity for catch-up growth, although to achieve full growth potential probably requires intergenerational catch-up growth.

Consequences of the Stunting Syndrome

Short stature is an easily measurable indicator of a syndrome that has far-reaching consequences across the life-course (Fig. 1).

Morbidity and mortality

Short-term, stunting is associated with increased morbidity and mortality from infections, in particular pneumonia and diarrhoea. In a recent large analysis including individual-level data from 10 studies in Asia, Africa and South America, there was a clear dose-response relationship between HAZ and mortality, although not all datasets had information on potential confounders. Even children who were stunting but not stunted (HAZ between −2 and −1) had an elevated risk of respiratory infections (HR 1.55, 95% CI 1.02–2.37) and diarrhoea (HR 1.67, 95% CI 1.20–2.30); children who were severely stunted (HAZ <−3) had a much greater risk (HR 6.39, 95% CI 4.19–9.75 and 6.33, 4.64–8.65, respectively). Severely stunted children also had a three-fold increased risk of mortality from other infections including sepsis, meningitis, tuberculosis, hepatitis and cellulitis (HR 3.01, 95% CI 1.55–5.82), suggesting a generalised immune defect in children with poor linear growth.

Although undernutrition is the commonest global immunodeficiency, the specific immune defects associated with stunting have not been well characterised. A recent systematic review summarised the literature on immune function in malnutrition but highlighted that most are cross-sectional studies of hospitalised children with SAM, using varied definitions of malnutrition, and conducted several decades ago. Malnourished children have complex derangements in physiology, impaired mucosal integrity, poor macro- and micro-nutrient status and multiple co-infections, and picking apart these contributory factors is challenging. Undernutrition appears to affect both innate and adaptive immunity, but more carefully designed, contemporary studies of well characterised longitudinal cohorts, including well-nourished control children, using modern immunological techniques, would help to understand better the immunology of stunting.

Cognition and behaviour

In the medium-term, the cognitive, educational and behavioural components of the stunting syndrome impact child development. Stunting is one of the major risk factors, together with inadequate cognitive stimulation, iodine deficiency and iron-deficiency anaemia, for failure to attain full developmental potential. Stunted children have impaired behavioural development in early life, are less likely to enroll at school or enroll late, tend to achieve lower grades and have poorer cognitive ability than non-stunted children. Furthermore, stunted children are more apathetic, display less exploratory behaviour and have altered physiological arousal. Stunted children followed longitudinally in Jamaica were found to have more anxiety and depression and lower self-esteem than non-stunted children at age 17, after adjusting for age, gender and social background variables.

Undernutrition affects areas of the brain involved in cognition, memory and locomotor skills. The brain has major energy demands in early childhood and most cerebral growth occurs in the first 2 years of life. However, the associations between poor linear growth and impaired neurodevelopment are not well understood. Whether there are defects in myelination, establishment of neural pathways or synaptic proliferation and subsequent pruning, or evidence for neuroinflammation is not clear, but field studies employing more sophisticated measures of brain structure and function are underway. Furthermore, malnutrition, micronutrient deficiencies (especially iron), recurrent infections, apathy, reduced exploration, poverty, low maternal education and decreased stimulation often co-exist in the same household, and all are likely to affect child development.
The window of opportunity for improving cognitive outcomes remains uncertain. In long-term follow-up of a Guatemalan trial, individuals randomised to energy/protein supplementation had a 10% improvement in non-verbal cognitive ability, but only if supplements were given in the first 2-3 years of life. In the COHORTS study, growth in the first 2 years of life, but not later, was associated with higher school grades among adults. However, among children in the Young Lives study, those who caught up with physical growth after 8 years of age had improved cognitive testing scores compared with those who remained stunted. In Peru, these cognitive testing scores were very similar to those of children who had never been stunted. In the same Peruvian cohort, current rather than previous stunting was the more important factor associated with cognitive skills at school entry, and in Filipino children, change in HAZ from 2 to 11 years was associated with cognitive ability at 11 years. Taken together, studies suggest potential for catch-up in cognition, although the greatest improvements may be in those receiving interventions in early life before trajectories have been firmly established.

Long-term health and disease

Children who become stunted between conception and 2 years of age are at greater risk of poor health and lower socio-economic attainment throughout their lifetime. The excess risk of infectious morbidity and mortality apparent during childhood extends into adulthood. Stunted children lose ~3.2 cm in adult stature for each decrement in HAZ at age 2 years; these negative impacts on stature (which translate into physical stamina) and cognition result in lower economic productivity, earning 8-46% lower wages and owning up to 66% fewer assets. Additionally, these effects are intergenerational: low birthweight is more common among infants whose mothers and even grandmothers were themselves stunted during early childhood. For Africa and Asia where 36% and 27% of children are stunted, respectively, these socio-economic consequences have a profound impact on the developmental capacity of entire societies.

Paradoxically, the metabolic syndrome, usually associated with over-nutrition, is more common in adults who were stunted in early childhood compared to those who experienced normal child growth. The ‘Developmental Origins of Health and Disease’ hypothesis proposes that nutritional deprivation during fetal or infant life triggers permanent epigenetic changes in metabolism (e.g. of lipids and glucose and organ anatomy and function (e.g. of blood vessels, liver and kidney). While these changes may provide some survival benefit during fetal life by diverting nutrients away from growth to preserve vital functions, these same changes result in heightened risks of hypertension, cardiovascular disease, and type 2 diabetes, especially when aggravated by rapid weight gain and obesity after age 2 years. Accordingly, populations who have undergone a rapid transition from poverty and food insecurity to abundant access to a high-energy Western diet, such as India, are experiencing epidemics of diabetes and coronary heart disease. Conversely, in The Gambia, where socio-economic growth has been modest, little association between child stunting and adult metabolic syndrome has been detected.

Observational data from birth cohorts indicate these associations between child stunting and adult disease are complex. Reviews of studies conducted primarily among high-income populations report that low birthweight is associated with elevated blood pressure during adulthood. Similarly, in pooled analyses of five birth cohorts from low- and middle-income countries, birthweight was inversely associated with adult blood pressure levels in analyses adjusting for adult BMI and height, but rapid (i.e. ‘catch-up’) linear growth between birth and mid-childhood was positively associated with elevated systolic blood pressure during adulthood. In these same cohorts, higher birthweight and catch-up rates of linear and ponderal growth between birth and mid-childhood were also associated with adult overweight. Importantly, the adverse associations with better linear growth were modest while increases in schooling, adult stature and wealth were substantial. Accordingly, increase in birthweight and linear growth velocity between conception and 2 years of age in children in developing countries is likely to reduce morbidity and mortality and provide substantial increases in human capital, with only modest trade-offs.

Policy and Programme Implications

By current estimates, stunting prevalence is likely to decline to 20% (or 127 million children) by 2025, which is some way off the World Health Assembly target. The current evidence base for interventions to improve maternal and child undernutrition has been comprehensively reviewed as part of the recent Lancet Nutrition series. These authors estimated that if a package of nutrition-specific interventions (provision of maternal folic acid, calcium, multiple micronutrients and balanced energy protein supplementation; promotion of breastfeeding and appropriate complementary feeding; management of moderate and severe acute malnutrition and preventive zinc and vitamin A supplementation) was scaled up to 90% coverage, stunting would be reduced by mean 20.3% (range...
Trends in stunting reduction are uneven within regions, or even within countries; modelling suggests that an equity-based approach targeting the poorest and most marginalised communities would be more cost-effective and lead to more rapid declines in stunting prevalence. Many countries require policies that tackle the ‘dual burden’ of stunting and overweight that is emerging during the nutrition transition. Multi-sectoral approaches which combine nutrition-sensitive with nutrition-specific interventions are likely to have a greater impact on reducing stunting. For example, the Millennium Villages project in which simultaneous investments were made in agriculture, the environment, business, education, infrastructure and health showed reductions in stunting (from 36% to 28% among children <2 years) across nine countries after 3 years. In addition, an enabling environment needs to be built to address more distal factors causing stunting; these constitute long-term developmental goals that underlie the impressive reductions in stunting seen in some countries. In Brazil, for example, stunting declined from 37% in 1974–7 to 7% in 2006–7 following economic growth and reduced disparity, increased urbanisation, improved female education, decreased fertility rates, improved WASH and health service reform. Whilst awaiting such long-term national development, programmes should focus on implementing packages of evidence-based, multi-sectoral interventions which cover the life-course to achieve the intergenerational investment in human capital that stunting reduction could provide.

Disclaimer statements

Contributors AJP wrote the first draft of the manuscript, which was critically revised by JHH.

Funding AJP is funded by the Wellcome Trust (093768/Z/10/Z).

Conflicts of interest AJP and JHH are both investigators on the SHINE trial.

Ethics approval None.

Acknowledgment We thank Sarah Donahue for help with designing the figure.

References

1. UNICEF, WHO, World Bank. Levels and Trends in Child Malnutrition. Joint Child Malnutrition Estimates. New York, NY: United Nations International Children’s Fund; Geneva: WHO, Washington, DC: World Bank, 2012. Available from: http://www.who.int/nutgrowthdb/estimates/en/.
2. Black RE, Victora CG, Walker SP, Bhutta ZA, Christian P, de Onis M, et al. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet. 2013;382:427–51.
3. Grantham-McGregor S, Cheung YB, Cueto S, Glewwe P, Richter L, Strupp B. Developmental potential in the first 5 years for children in developing countries. Lancet. 2007;369:60–70.
4. World Health Organization. Physical Status: The Use and Interpretation of Anthropometry. Report of a WHO Expert Committee. Technical Report Series No. 854. Geneva: WHO, 1995. Available from: http://www.who.int/childgrowth/publications/physical_status/en/.
5. Pradhan M, Sahn DE, Younger SD. Decomposing world health inequality. J Health Econ. 2003;22:271–93.
6. UNICEF, Tracking Progress on Child and Maternal Nutrition: A survival and development priority. UNICEF, 2009. Available from: http://www.unicef.org/publications/index_51656.html.
7. World Health Organization. Global Targets 2025. Available from: http://www.who.int/nutrition/topics/nutrition_globaltarg gets2025/en/.
8. de Onis M, Blossner M, Borghi E. Global prevalence and trends of overweight and obesity among preschool children. Am J Clin Nutr. 2010;92:1257–64.
9. Instituto de Nutricion de Centro America y Panama. Food and nutritional situation and health in Central America. Guatemala: INCAP, 1992 (ME/003). Available from: http://pesquisa.bvsalud.org/portal/resource/pb-pah-17160.
10. Ruel MT, Rivera J, Habicht JP. Length screens better than weight in stunted populations. J Nutr. 1995;125:1222–8.
11. Simkiss D. Stunted growth. J Trop Pediatr. 2011;57:321–2.
12. Stevens GA, Paciorek CJ, Flaxman SR, White RA, Donner AJ, et al. Trends in mild, moderate, and severe stunting and overweight, and progress towards MDG 1 in 141 developing countries: a systematic analysis of population-representative data. Lancet. 2012;380:824–34.
13. Lutter CK, Chaparro CM, Munoz S. Progress towards Millennium Development Goal 1 in Latin America and the Caribbean: the importance of the choice of indicator for undernutrition. Bull WHO. 2011;89:22–30.
14. Nandy S, Irving M, Gordon D, Subramanian SV, Smith GD. Poverty, child undernutrition and morbidity: new evidence from India. Bull WHO. 2005;83:210–16.
15. McDonald CM, Olofini I, Flaxman SR, Fawzi WW, Spiegelman D, Caulfield LE, et al. The effect of multiple anthropometric deficits on child mortality: meta-analysis of individual data in 10 prospective studies from developing countries. Am J Clin Nutr. 2013;97:896–901.
16. Emergency Nutrition Network. Review of the Links Between Wasting and Stunting. ENN, 2014. Available from: http://www.ennonline.net/ourwork/reviews/wastingstunting.
17. Richard SA, Black RE, Checkley W. Revisiting the relationship of weight and height in early childhood. Adv Nutr. 2012;3:250–4.
18. Martorell R, Zongrone A. Intergenerational influences on child growth and undernutrition. Paediatr Perinat Epidemiol. 2012;26 (suppl 1):302–14.
19. Lampl M, Veldhuis JD, Johnson ML. Salutation and stasis: a model of human growth. Science. 1992;258:801–3.
20. Berndt SI, Gustafsson S, Magi R, Ganna A, Wheeler E, Feitosa MF, et al. Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture. Nat Genet. 2013;45:501–12.
21. Lango Allen H, Estrada K, Lettre G, Berndt SI, Weedon MN, Rivadeneria F, et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature. 2010;467:832–8.
22. Villar J, Papageorghiou AT, Pung R, Ohuma EO, Imsai LC, Barros FC, et al. The likeness of fetal growth and newborn size across non-isolated populations in the INTERGROWTH-21 Project: the Fetal Growth Longitudinal Study and Newborn Cross-Sectional Study. Lancet Diab Endocrinol. 2014. doi: 10.1016/S2213-8587(14)00121-4.
23. WHO Working Group on the Growth Reference Protocol, WHO Task Force on Methods for the Natural Regulation of Fertility. Growth patterns of breastfed infants in seven countries. Acta Paediatr. 2000;89:215–22.
24. Habicht JP, Martorell R, Yarbrough C, Malina RM, Klein RE. Height and weight standards for preschool children. How relevant are ethnic differences in growth potential? Lancet. 1974;1:611–14.
25 Bhandari N, Bahl R, Taneja S, de Onis M, Bhan MK. Growth performance of affluent Indian children is similar to that in developed countries. Bull WHO. 2002;80:189–95.

26 Frongillo EA Jr, de Onis M, Hanus KD. Socioeconomic and demographic factors are associated with worldwide patterns of stunting and wasting of children. J Nutr. 1997;127:2302–9.

27 Quinn VJ, Chiligo-Mpoma MO, Simler K, Milner J. The growth of Malawian preschool children from different socioeconomic groups. Eur J Clin Nutr. 1995;49:66–72.

28 Shet T, Habicht JP, Chang Y. Effect of economic reforms on child growth in urban and rural areas of China. N Engl J Med. 1996;335:400–6.

29 de Onis M, Frongillo EA, Blossmer M. Is malnutrition declining? An analysis of changes in levels of child malnutrition since 1980. Bull WHO. 2000;78:1222–33.

30 Bredekamp C, Buisman LR, Van de Poel E. Persistent inequalities in child undernutrition: evidence from 80 countries, from 1990 to today. Int J Epidemiol. 2014;43:1328–35.

31 Zong X-N, Li H. Physical growth of children and adolescents in China over the past 35 years. Bull WHO. 2014;92:555–64.

32 Addo OY, Stein AD, Fall CH, Gigante DP, Guntupalli AM, Martial C, et al. Maternal height and child growth patterns. J Pediatr. 2013;163:549–54.

33 Victora CG, de Onis M, Hallal PC, Blossmer M, Shrimpton R. Worldwide timing of growth faltering: revisiting implications for interventions. Pediatrics. 2010;125:e473–80.

34 World Health Organization. Multicentre Growth Reference Study Group. WHO Child Growth Standards: Length/height-for-age, weight-for-age, weight-for-length, weight-for-height and Body Mass Index-for-age: Methods and development. Geneva: WHO, 2006. Available from: http://www.who.int/childgrowth/standards/technical_report/en/.

35 Hamill PV, Drizd TA, Johnson CL, Reed RB, Roche AF, Moore WH. Physical growth: National Center for Health Statistics percentiles. Am J Clin Nutr. 1979;32:607–29.

36 de Onis M, Onyango AW, Borghi E, Garza C, Yang H. Comparison of the World Health Organization (WHO) Child Growth Standards and the National Center for Health Statistics (NCHS) Growth Charts: implications for child health programmes. Public Health Nutr. 2006;9:942–7.

37 Wamani H, Astrom AN, Peterson S, Tumwine JK, Tylleskar T. Boys are more stunted than girls in sub-Saharan Africa: a meta-analysis of 16 demographic and health surveys. BMC Pediatr. 2007;7:17. doi: 10.1186/1471-2431-7-17.

38 Piwoz E, Sundberg S, Fall CH, Tylleskar T. Boys are more stunted than girls in sub-Saharan Africa: a meta-analysis of 16 demographic and health surveys. BMC Pediatr. 2007;7:17. doi: 10.1186/1471-2431-7-17.

39 Victora CG, de Onis M, Hallal PC, Blossmer M, Shrimpton R. Physical growth: National Center for Health Statistics percentiles. Am J Clin Nutr. 1979;32:607–29.

40 Bartels M, Sachse S. Determinants and consequences of low ponderal index for age in children and adolescents: a systematic review. J Nutr. 2001;131:1122–31.

41 Black RE, Allen LH, Bhutta ZA, Caulfield LE, de Onis M, Ezzati M, et al. Maternal and child undernutrition: global and regional exposures and health consequences. Lancet. 2008;371:243–60.

42 Lee AC, Katz J, Blencowe H, Cousens S, Kozuki N, Vogel JP, et al. Maternal and child undernutrition: global and regional exposures and health consequences. Lancet. 2008;371:243–60.

43 Neufeld LM, Haas JD, Grajeda R, Martorell R. Changes in height-for-age and weight-for-age distribution since 1980. Bull WHO. 2000;78:1222–33.

44 Black RE, Allen LH, Bhutta ZA, Caulfield LE, de Onis M, Ezzati M, et al. Maternal and child undernutrition: global and regional exposures and health consequences. Lancet. 2008;371:243–60.

45 Neufeld LM, Haas JD, Grajeda R, Martorell R. Changes in height-for-age and weight-for-age distribution since 1980. Bull WHO. 2000;78:1222–33.

46 Black RE, Allen LH, Bhutta ZA, Caulfield LE, de Onis M, Ezzati M, et al. Maternal and child undernutrition: global and regional exposures and health consequences. Lancet. 2008;371:243–60.

47 Schmidt MK, Muslimatun S, West CE, Schultink W, Gross R, Hautvast JG. Nutritional status and linear growth of Indonesian infants in west java are determined more by prenatal environment than by postnatal factors. J Nutr. 2002;132:2202–7.
Postintervention growth of Malawian children at around 2 years of age. Food Nutr Bull. 2012;33:161–75. (Available from: http://www.who.int/maternal_child_adolescent/health/questionnaire/WHO_2003_05_EN.pdf)

Prentice AM, Guerrini R, marsa D, Dibari F, Prentice AM, Guerrini R, marsa D, Dibari F, et al. Evidence-based interventions for improving maternal and child nutrition: what can be done and at what cost? Lancet. 2013;382:452–77.

Phuka JC, Maleta K, Thakwalakwa C, Cheung YB, Briend A, Phuka JC, Maleta K, Thakwalakwa C, Cheung YB, Briend A, et al. Complementary feeding with fortified spread and incidence of severe stunting in 6- to 18-month-old infants and children in rural Malawi. Matern Child Nutr. 2013. doi: 10.1111/mcn.12068 [Epub ahead of print].

Lin CA, Manary MJ, Maleta K, Briend A, Ashorn P. An energy-dense complementary food is associated with a modest increase in weight gain when compared with a fortified porridge in Malawian children aged 6–18 months. J Nutr. 2008;138:593–8.

Maagani C, Maleta K, Phuka J, Cheung YB, Thakwalakwa C, Dewey K, et al. Effect of complementary feeding with lipid-based nutrient supplements and corn-soy blend on the incidence of stunting and linear growth among 6- to 18-month-old infants and children in rural Malawi. Matern Child Nutr. 2014;10:170–82.

Phuka JC, Maleta K, Thakwalakwa C, Cheung YB, Briend A, Manary MJ, et al. Postintervention growth of Malawian children who received 12-mo dietary complementation with a soybean-maize-sorghum-based ready-to-use complementary food paste on infant growth in South Kivu, Democratic Republic of Congo. Am J Clin Nutr. 2012;95:1157–64.

Iannotti LL, Dulience SJ, Green J, Joseph S, Francois J, Antenor ML, et al. Linear growth increased in young children in an urban slum of Haiti: a randomized controlled trial of a lipid-based nutrient supplement. Am J Clin Nutr. 2014;99:198–208.

Lin CA, Manary MJ, Maleta K, Briend A, Ashorn P. An energy-dense complementary food is associated with a modest increase in weight gain when compared with a fortified porridge in Malawian children aged 6–18 months. J Nutr. 2008;138:593–8.

Maagani C, Maleta K, Phuka J, Cheung YB, Thakwalakwa C, Dewey K, et al. Effect of complementary feeding with lipid-based nutrient supplements and corn-soy blend on the incidence of stunting and linear growth among 6- to 18-month-old infants and children in rural Malawi. Matern Child Nutr. 2014;10:170–82.

Phuka JC, Maleta K, Thakwalakwa C, Cheung YB, Briend A, Manary MJ, et al. Postintervention growth of Malawian children who received 12-mo dietary complementation with a lipid-based nutrient supplement or maize-soy flour. Am J Clin Nutr. 2009;89:382–90.

Abu-Saad K, Fraser D. Maternal nutrition and birth outcomes. Epidemiol Rev. 2010;32:5–25.
2014 NOV VOL S. haematobium–S. mansoni The stunting syndrome Persistent diarrhea

127 Bartelt LA, Roche J, Kolling G, Bolick D, Noronha F, Naylor C, et al. Persistent G. lamblia impairs growth in a murine malnutrition model. J Clin Invest. 2012;123:2672–80.

128 Arratwe ET, Cerisiera A, Verret W, Homoy J, Wanza H, Kakuru A, et al. The association between malnutrition and the incidence of malaria among young HIV-infected and -uninfected Ugandan children: a prospective study. Malaria J. 2012;11:90. doi: 10.1186/1475-2875-11-90.

129 Bradley-Moore AM, Greenwood BM, Bradley AK, Kirkwood BR, Gilles HM. Malaria chemoprophylaxis with chloroquine in young Nigerian children. III. Its effect on nutrition. Ann Trop Med Parasitol. 1985;79:575–84.

130 Deen JL, Walraven GE, von Seidlein L. Increased risk for malarial chemotherapy failure in children aged 57 years of age in rural Gambia. J Trop Pediatr. 2002;48:78–83.

131 Ehrhardt S, Burchard GD, Mantel C, Cramer JP, Kaiser S, Kubo M, et al. Malaria, anemia, and malnutrition in african children – defining intervention priorities. J Infect Dis. 2006;194:106–14.

132 ter Kuile FO, Terlouw DJ, Kariuki SK, Phillips-Howard PA, Mirel LB, Hawley WA, et al. Impact of permethrin-treated bed nets on malaria, anemia, and growth in infants in an area of intense perennial malaria transmission in western Kenya. Am J Trop Med Hyg. 2003;68:68–77.

133 Benton G, Al-Yamani F, Ginny M, Tairaka J, Alpers MP. Relation of anthropometry to malaria morbidity and immunity in Papua New Guinean children. Am J Clin Nutr. 1998;68:734–41.

134 Crookston BT, Alder SC, Boakye Y, Merrill RM, Amuah JS, Porucznik CA, et al. Exploring the relationship between chronic undernutrition and asymptomatic malaria in Ghanaian children. Malaria J. 2010;9:39. doi: 10.1186/1475-2875-11-93.

135 Deribew A, Alemseged F, Tessema F, Sena L, Birhanu Z, Zeynudin A, et al. Malaria and under-nutrition: a community based study among under-five children at risk of malaria, south-west Ethiopia. PLoS One. 2010;5:e10775.

136 Fillo F, Sarr JB, Boulanger D, Cisse B, Sokhna C, Riveau G, et al. Impact of child malnutrition on the specific anti-Plasmodium falciparum antibody response. Malaria J. 2009;8:116. doi: 10.1186/1475-2875-8:1-116.

137 Snow RW, Byass P, Shenton FC, Greenwood BM. The relationship between anthropometric measurements and measurements of respiratory disease and growth. Eur J Clin Nutr. 1993;47:88–99.

138 Kang H, Kruels B, Adjei O, Krumkamp R, May J, Small DS. The causal effect of malaria on stunting: a Mendelian randomization and matching approach. Int J Epidemiol. 2013;42:1309–80.

139 Mupfasoni D, Karibushi B, Koukounari A, Ruberanziza E, Kaberuka T, Kramer MH, et al. Polyparasite helminth infections and their association to anaemia and undernutrition in Northern Rwanda. PLoS Negl Trop Dis. 2012;6:e50568.

140 Koukounari A, Gabrielli AF, Toure S, Bosque-Oliva E, Babiker AE, Ahmed A, et al. Relationship between anthropometric measurements and measurements of respiratory disease and growth in schoolchildren – defining intervention priorities. J Infect Dis. 2006;194:106–14.

141 Ezeama AE, Fried JF, Acosta LP, Bellinger DC, Langdon GC, Manalo DL, et al. Helminth infection and cognitive impairment among Filipino children. Am J Trop Med Hyg. 2005;72:540–8.

142 Ezeama AE, McGarvey ST, Acosta LP, Zierler S, Manalo DL, Wu HW, et al. The synergistic effect of concomitant schistosomiasis, hookworm, and trichuris infections on children’s anemia burden. PLoS Negl Trop Dis. 2008;2:e245.

143 Stephenson LS, Latham MC, Kurz KM, Komiti SN, Oduor ML, Crompton DW. Relationships of Schistosoma hematobium, hookworm and malarial infections and metrifonate treatment to hemoglobin level in Kenyan school children. Am J Trop Med Hyg. 1985;34:519–28.

144 Bosompem KM, Bentum IA, Otchere J, Anyan WK, Brown CA, Osada Y, et al. Infant schistosomiasis in Ghana: a survey in an irri-gation community. Trop Med Int Health. 2004;9:917–22.

145 Garba A, Barkire N, Djibo A, Lamine MS, Sofo B, Gouvas AN, et al. Schistosomiasis in infants and preschool-aged children: Infection in a single Schistosoma haematobium and a mixed S. haematobium–S. mansoni foci of Niger. Acta Trop. 2010;115:212–19.
Diet drives convergence in gut microbiota: a quantitative study in Gambian village children. Br J Nutr. 1977;37:441–50.

Rowland MG, Rowland SG, Cole TJ. Impact of infection on the growth of children from 0 to 2 years in an urban West African community. Am J Clin Nutr. 1988;47:134–8.

Prendergast A, Kelly P. Review: Enteropathies in the developing world: neglected effects on global health. Am J Trop Med Hyg. 2012;86:756–63.

Ahmed T, Auble D, Berkle R, Black R, Ahern PP, Hossain M, et al. An evolving perspective about the origins of childhood undernutrition and nutritional interventions that includes the gut microbiome. Ann N Y Acad Sci. 2014. doi: 10.1111/nyas.12487 [Epub ahead of print].

Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486:222–7.

Ley RE, Hamady M, Lozupone C, Turnbaugh P, Ramey RR, Bircher JS, et al. Evolution of mammals and their gut microbes. Science. 2008;320:1647–51.

Mueggde B, Kuczyński J, Knights D, Clemente JC, Gonzalez-A, Fontana L, et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science. 2011;332:970–4.

Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, et al. Microbial communities in the skin of twins discordant for kwashiorkor. Science. 2013;343:548–54.

Smith MI, Yatsunenko T, Manary MJ, Trehan I, Makosza R, Cheng J, et al. Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science. 2013;343:548–54.

Amza A, Kadri B, Nassaour B, Stoller NE, Yu SN, Zhou Z, et al. A cluster-randomized controlled trial evaluating the effects of mass azithromycin treatment on growth and nutrition in Niger. Am J Trop Med Hyg. 2013;88:138–43.

Trehan I, Shulman RJ, Ou CN, Maleta K, Manary MJ. A randomized, double-blind, placebo-controlled trial of rifaximin, a nonabsorbable antibiotic, in the treatment of tropical enteropathy. Am J Gastroenterol. 2009;104:2326–33.

Ryan KN, Stephenson KB, Trehan I, Shulman RJ, Thakwalakwa C, Murray E, et al. Zinc or albendazole attenuates the progression of environmental enteropathy: a randomized controlled trial. Clin Gastroenterol Hepatol. 2014;12:1507–13.

Braegger C, Chmielewska A, Deesi T, Kolacsek S, Mithatsch W, Moreno L, et al. Supplementation of infant formula with probiotics and/or prebiotics: a systematic review and comment by the ESPGHAN committee on nutrition. J Pediatr Gastroenterol Nutr. 2011;52:238–50.

Saran S, Gopalan S, Krishna TP. Use of fermented foods to combat stunting and failure to thrive. Nutrition. 2002;18:399–503.

Campbell DI, Murch SH, Elia M, Sullivan PB, Sanyang NMS, Jobarteh B, et al. Chronic T-cell-mediated enteropathy in rural West African children: relationship with nutritional status and small bowel function. Pediatr Res. 2003;54:306–11.

Fagundes Neto U, Martins MC, Lima FL, Patricio FR, Toledo MR. Asymptomatic environmental enteropathy among slum-dwelling infants. J Am Coll Nutr. 1994;13:51–6.

Roy SK, Behrens RH, Haider R, Akramuzzaman SM, Mahalanabis D, Wahed MA, et al. Impact of zinc supplementation on intestinal permeability in Bangladeshi children with acute diarrhoea and persistent diarrhoea syndrome. J Peditr Gastroenterol Nutr. 1992;15:289–96.

Lunn PG, Northrop-Clewes CA, Downes RM. Intestinal permeability, mucosal injury, and growth faltering in Gambian infants. Lancet. 1991;338:907–10.

Kosek M, Haque R, Lima A, Bhatretha S, Qureshi S, et al. Fecal markers of intestinal inflammation and permeability associated with the subsequent acquisition of linear growth deficits in infants. Am J Trop Med Hyg. 2013;88:390–6.

Lin A, Arnold BF, Afreen S, Goto R, Huda TM, Haque R, et al. Household environmental conditions are associated with enteropathy and impaired growth in rural Bangladesh. Am J Trop Med Hyg. 2013;89:130–7.

Liu JR, Sheng XY, Hu YQ, Yu XG, Westcott JE, Miller LV, et al. Fecal calprotectin levels are higher in rural than in urban Chinese infants and negatively associated with growth. BMC Pediatr. 2012;12:129. doi: 10.1186/1471-2431-12-129.

Korpe PS, Petri WA, Jr. Environmental enteropathy: critical implications of a poorly understood condition. Trends Mol Med. 2012;18:328–36.

Prendergast A, Kelly P. Review: Enteropathies in the developing world: neglected effects on global health. Am J Trop Med Hyg. 2012;86:756–63.

Richard SA, Black RE, Gilman RH, Guerrant RL, Kang G, Walker SP, Grantham-McGregor SM, Powell CA, Himes JH, Rowland MG, et al. A quantitative study into the role of infection in determining nutritional status in Gambian village children. Br J Nutr. 1977;37:441–50.

Rowland MG, Rowland SG, Cole TJ. Impact of infection on the growth of children from 0 to 2 years in an urban West African community. Am J Clin Nutr. 1992;56:504–10.

Briend A, Hasan KZ, Aziz KM, Hoque BA. Are diarrhoea control programmes likely to reduce childhood malnutrition? Lancet. 1989;2:219–22.

Rowland MG, Cole TJ, Whitehead G. A quantitative study into the role of infection in determining nutritional status in Gambian village children. Br J Nutr. 1977;37:441–50.

Checkley W, Buckley G, Gilman RH, Assis AM, Guerrant RL, Morris SS, et al. Multi-country analysis of the effects of diarrheaea on childhood stunting. Int J Epidemiol. 2008;37:816–30.

Richard SA, Black RE, Gilman RH, Guerrant RL, Kang G, Lanata CF, et al. Diarrhea in early childhood: short-term association with weight and long-term association with length. Am J Epidemiol. 2013;178:1129–38.

Kotloff KL, Haque R, Lima A, Babji S, Shrestha S, Qureshi S, et al. Household environmental conditions are associated with acute diarrhoea and persistent diarrhoea syndrome. J Pediatr Gastroenterol Nutr. 2010;51:341–6.

Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, et al. Microbial communities in the skin of twins discordant for kwashiorkor. Science. 2013;343:548–54.

Amza A, Kadri B, Nassaour B, Stoller NE, Yu SN, Zhou Z, et al. A cluster-randomized controlled trial evaluating the effects of mass azithromycin treatment on growth and nutrition in Niger. Am J Trop Med Hyg. 2013;88:138–43.

Trehan I, Shulman RJ, Ou CN, Maleta K, Manary MJ. A randomized, double-blind, placebo-controlled trial of rifaximin, a nonabsorbable antibiotic, in the treatment of tropical enteropathy. Am J Gastroenterol. 2009;104:2326–33.

Ryan KN, Stephenson KB, Trehan I, Shulman RJ, Thakwalakwa C, Murray E, et al. Zinc or albendazole attenuates the progression of environmental enteropathy: a randomized controlled trial. Clin Gastroenterol Hepatol. 2014;12:1507–13.

Braegger C, Chmielewska A, Deesi T, Kolacsek S, Mithatsch W, Moreno L, et al. Supplementation of infant formula with probiotics and/or prebiotics: a systematic review and comment by the ESPGHAN committee on nutrition. J Pediatr Gastroenterol Nutr. 2011;52:238–50.

Saran S, Gopalan S, Krishna TP. Use of fermented foods to combat stunting and failure to thrive. Nutrition. 2002;18:399–503.

Silva MR, Dias G, Ferreira CL, Franceschini SC, Costa NM. Growth of preschool children was improved when fed an iron-fortified fermented milk beverage supplemented with Lactobacillus acidophilus. Nutrition. 2010;26:282–5.

Braegger C, Chmielewska A, Deesi T, Kolacsek S, Mithatsch W, Moreno L, et al. Supplementation of infant formula with probiotics and/or prebiotics: a systematic review and comment by the ESPGHAN committee on nutrition. J Pediatr Gastroenterol Nutr. 2011;52:238–50.

Saran S, Gopalan S, Krishna TP. Use of fermented foods to combat stunting and failure to thrive. Nutrition. 2002;18:399–503.

Agustina R, Bovec-Oudenhamen IM, Lukito W, Fahmidu V, de Vries O, Zimmermann MB, et al. Probiotics Lactobacillus reuteri DSM 17938 and Lactobacillus casei CRL 431 modestly increase growth, but not iron and zinc status, among Indonesian children aged 1–6 years. J Nutr. 2013;143:1184–93.
et al. Effect of Lactobacillus GG on intestinal integrity in Malawian children at risk of tropical enteropathy. Am J Clin Nutr. 2002;76:223–9.

Jones D, et al. Water, sanitation, and hygiene interventions and improved child growth. Eur J Clin Nutr. 2003;57:1562–8.

Herrera MG, et al. Environmental enteropathy, nutrition, and early child development up to age 8 years in Ethiopia, India, Peru and Vietnam: key distal household and community factors. Soc Sci Med. 2013;79:278–87.

Leroy JL, Ruel M, Habicht JP. Critical windows for nutritional interventions against stunting. Am J Clin Nutr. 2013;97:911–18.

Lundeen EA, Behrman JR, Crookston BT, Dearden KA, Engle P, Georgiadis AM, et al. Growth faltering and recovery in children aged 1–8 years in four low- and middle-income countries: Young Lives. Public Health Nutr. 2013;17:1–18.

Fink G. Rockers PC. Childhood growth, schooling, and cognitive development: further evidence from the Young Lives study. Am J Clin Nutr. 2014;100:182–8.

Schott WB, Crookston BT, Lundeen EA, Stein AD, Behrman JR. Periods of growth up to age 8 years in Ethiopia, India, Peru and Vietnam: key distal household and community factors. Soc Sci Med. 2013:17:1–18.

Leroy JL, Ruel M, Habicht JP. Critical windows for nutritional interventions against stunting. Am J Clin Nutr. 2013;97:854–5.

Lundeen EA, Stein AD, Adair LS, Behrman JR, Bhargava SK, Dearden KA, et al. Height-for-age z scores increase despite increasing height deficits among children in 5 developing countries. Am J Clin Nutr. 2014;100:821–5.

Leroy JL, Ruel M, Habicht JP. Linear growth deficit continues to accumulate beyond the first 1000 days in low- and middle-income countries: global evidence from 51 national surveys. J Nutr. 2014;144:1460–6.

Coly AN, Milet J, Dioulo A, Ndiaye T, Benefice E, Simonond F, et al. Preschool stunting and adoptal migration: growth, adult height and young senegalese men and women of rural origin. J Nutr. 2006;136:2412–20.

Golden MM. Is complete catch-up possible for stunted malnourished children? Eur J Clin Nutr. 1994;48 (suppl 1):S58–70; discussion S71.

Kossman J, Nestel P, Herrera MG, El Amin A, Fawzi WW. Undernutrition in relation to childhood infections: a prospective study in the Sudan. Eur J Clin Nutr. 2000;54:463–72.

Olofin I, McDonald CM, Ezzati M, Flaxman S, Black RE, Fawzi WW, et al. Associations of suboptimal growth with cause and cause-specific mortality in children under five years: a pooled analysis of ten prospective studies. PLoS One. 2013;8:e64636.

Peltier DL, Frongillo EA Jr, Schroeder DG, Habicht JP. The effects of malnutrition and domestic animals on child mortality in developing countries. Bull WHO. 1995;73:433–4.

Ryter MJ, Kolte L, Briand A, Friis H, Christensen VB. The immune system in children with malnutrition-a systematic review. PLoS One. 2014;9:e105017.

Walker SP, Wachu TD, Grantham-McGregor S, Black MM, Nelson CA, Huffman SL, et al. Inequality in early childhood: risk and protective factors for early child development. Lancet. 2011:378:1325–38.

Lasky RE, Klein RE, Yarbrough C, Engle PL, Letchig A, Martorell R. The relationship between physical growth and infant behavioral development in rural Guatemala. Child Dev. 1981;52:219–26.

Beasley NM, Hall A, Tomkins AM, Donnelly C, Ntimba P, Kivuga J, et al. The health of enrolled and non enrolled children of school age in Tanzania. Acta Trop. 2000;76:223–9.
230 Moock PR, Leslie J. Childhood malnutrition and schooling in the Terri region of Nepal. J Dev Econ. 1986;20:33–52.

231 Jamison D. Child malnutrition and school performance in China. Dev Econ. 1986;20:299–309.

232 Casale D, Desmond C, Richter L. The association between stunting and psychosocial development among preschool children: a study using the South African Birth to Twenty cohort data. Child Dev. 2014. doi:10.1111/ced.12143.

233 Crookston BT, Schott W, Cueto S, Dearden KA, Engle P, Georgiadis A, et al. Postinfancy growth, schooling, and cognitive achievement: Young Lives. Am J Clin Nutr. 2013;98:1555–63.

234 Sandjaja, Poh BK, Rojroowsankul N, Le Nyugen BK, Budiman B, Ng LO, et al. Relationship between anthropometric indicators and cognitive performance in Southeast Asian school-aged children. Br J Nutr. 2013;110 (Suppl 2):T21–T33.

235 Webb KE, Horton NJ, Katz DL. Parental IQ and cognitive development of malnourished Indonesian children. Eur J Clin Nutr. 2005;59:618–20.

236 Gardner JM, Grantham-McGregor SM, Himes J, Chang S. Behaviour and development of stunted and nonstunted Jamaican children. J Child Psychol Psychiatry. 1999;40:819–27.

237 Fernald LC, Grantham-McGregor SM. Stress response in school-age children who have been growth retarded since early childhood. Am J Clin Nutr. 1998;68:691–8.

238 Walker CA, Simo SM, Powell CA, Simonoff E, Grantham-McGregor SM. Early childhood stunting is associated with poor psychological functioning in late adolescence and effects are reduced by psychosocial stimulation. J Nutr. 2007;137:1–4.

239 Levitsky DA, Strupp BJ. Malnutrition and the brain: changing levels of cognition. J Nutr. 2010;140:1996–2001.

240 Ranade SC, Rose A, Rao M, Gallego J, Gressens P, Mani S. Different types of nutritional deficiencies affect different domains of spatial memory function checked in a radial arm maze. Neuroscience. 2008;152:859–66.

241 Benitez-Bribiesca L, De la Rosa-Alvarez I, Mansilla-Olivares A. Dendritic spine pathology in infants with severe protein-calorie malnutrition. Pediatrics. 1999;104:621.

242 Rosenman R. Global child health: burden of disease, achievements, and future challenges. Curr Probl Pediatr Adolese Health Care. 2007;37:338–62.

243 Stein AD, Wang M, DiGirolamo A, Grajeda R, Rosenberg M. Global child health: burden of disease, achievements, and future challenges. Curr Probl Pediatr Adolese Health Care. 2007;37:338–62.

244 Adair LS, Fall CH, Osmond C, Stein AD, Martorell R, Wang M, DiGirolamo A, Grajeda R, Rosenberg M. Global child health: burden of disease, achievements, and future challenges. Curr Probl Pediatr Adolese Health Care. 2007;37:338–62.

245 Levitsky DA, Strupp BJ. Malnutrition and the brain: changing concepts, changing concerns. J Nutr. 1995;125:2212–20.

246 Gardner JM, Grantham-McGregor SM, Himes J, Chang S. Behaviour and development of stunted and nonstunted Jamaican children. J Child Psychol Psychiatry. 1999;40:819–27.

247 Fernald LC, Grantham-McGregor SM. Stress response in school-age children who have been growth retarded since early childhood. Am J Clin Nutr. 1998;68:691–8.

248 Walker CA, Simo SM, Powell CA, Simonoff E, Grantham-McGregor SM. Early childhood stunting is associated with poor psychological functioning in late adolescence and effects are reduced by psychosocial stimulation. J Nutr. 2007;137:1–4.

249 Victora CG, Adair L, Fall C, Hallal PC, Martorell R, Richter L, et al. Maternal and child undernutrition: consequences for adult health and human capital. Lancet. 2008;371:340–57.

250 Moore SE, Cole TJ, Collinson AC, Poskitt EM, McGregor IA, Prentice AM. Prenatal or early postnatal events predict infectious deaths in young adulthood in rural Africa. Int J Epidemiol. 1999;28:1088–95.

251 Crookston BT, Dearden KA, Alder SC, Porucznik CA, Stanford JB, Merril RM, et al. Impact of early and current stunting on cognition. Matern Child Nutr. 2011;7:397–409.

252 Barker DJ, Hales CN, Fall CH, Osmond C, Phipps K, Clark PM. Type 2 (non-insulin-dependent) diabetes mellitus, hyper tension and hyperlipidaemia (syndrome X): relation to growth in utero and serum cholesterol concentrations in adult life. Br Med J. 1993;307:1524–7.

253 Barker DJ, Martyn CN, Osmond C, Hales CN, Fall CH. Growth in utero and serum cholesterol concentrations in adult life. Br Med J. 1989;298:564–7.

254 Cheung YF, Taylor MJ, Fisk NM, Redington AN, Gardiner HM. Fetal origins of reduced arterial distensibility in the donor twin in twin-twin transfusion syndrome. Lancet. 2000;355:1157–8.

255 Ozanne SE. Metabolic programming in animals. Br Med Bull. 2001;60:143–52.

256 Mackenzie HS, Brenner BM. Fewer nephrons at birth: a missing link in the etiology of essential hypertension? Am J Kidney Dis. 1995;26:69–80.

257 Sachdev HS, Fall CH, Osmond C, Lakshmi R, Dew Biswas SK, Leary SD, et al. Anthropometric indicators of body composition in young adults: relation to size at birth and serial measurements of body mass index in childhood in the New Delhi birth cohort. Am J Clin Nutr. 2007;85:859–66.

258 Moore SE, Halsall I, Howarth D, Poskitt EM, Prentice AM. Glucose, insulin and lipid metabolism in rural Gambians exposed to early malnutrition. Diabet Med. 2001;18:646–53.

259 Huxley RR, Shell AW, Law CM. The role of size at birth and postnatal catch-up growth in determining systolic blood pressure: a systematic review of the literature. J Hypertens. 2000;18:815–31.

260 Hardy R, Sovio U, King VJ, Skidmore PM, HELMSDAL G, Olsen SF, et al. Birthweight and blood pressure in five European birth cohort studies: an investigation of confounding factors. Eur J Public Health. 2006;16:21–30.

261 Fanjo JC, Pronyk PM. A review of global progress toward the Millennium Development Goal 1 Hunger Target. Food Nutr Bull. 2011;32:144–58.

262 Adekanmbi VT, Uttham OA, Mudasiru OM. Exploring variations in childhood stunting in Nigeria using league table, control chart and spatial analysis. BMC Public Health. 2013;13:361. doi:10.1186/1471-2458-13-361.

263 Amugsi DA, Mittelmark MB, Larrey A. An analysis of socio-demographic patterns in child malnutrition trends using Ghana demographic and health survey data in the period 1993-2008. BMC Public Health. 2013;13:960. doi:10.1186/1471-2458-13-960.

264 Carrera C, Azrack A, Begkouyan G, Pfaffmann J, Ribaera E, O’Connell T, et al. The comparative cost-effectiveness of an equity-focused approach to child survival, health, and nutrition: a modelling approach. Lancet. 2012;380:1341–51.

265 Sunguya BF, Ong KI, Dhakal S, Mlunde LB, Shibanuma A, Yasuoka J, et al. Strong nutrition governance is a key to addressing nutrition transition in low and middle-income countries: review of countries’ nutrition policies. Nutr J. 2014;13:65. doi:10.1186/1475-2891-13-65.

266 Casanova M, Björk A, Mwangi M, Mwadime R, Hajebyho N, Aguilar AM, et al. Multi-sectoral interventions for healthy growth. Matern Child Nutr. 2013;9(suppl 2):46–57.

267 Pronyk PM, Munuz M, Nemser B, Somers MA, McClellan L, Palm CA, et al. The effect of an integrated multisector model for achieving the Millennium Development Goals and improving child survival in rural sub-Saharan Africa: a non-randomised controlled assessment. Lancet. 2012;379:217–88.

268 Remans R, Pronyk PM, Fanzo JC, Chen J, Palm CA, Nemser B, et al. Multi-sector intervention to accelerate reductions in child stunting: an observational study from 9 sub-Saharan African countries. Am J Clin Nutr. 2011;94:1632–42.

269 Milman A, Frongillo EA, de Onis M, Hwang JY. Differential improvement among countries in child stunting is associated with long-term development and specific interventions. J Nutr. 2005;135:1415–22.

270 Victora CG, Aquino EM, do Carmo Leal M, Monteiro CA, Barros FC, Szwarczewski CL. Maternal and child health in Brazil: progress and challenges. Lancet. 2011;377:1863–76.