Review

Surveillance of Hepatocellular Carcinoma in Nonalcoholic Fatty Liver Disease

Yoshio Sumida 1, Masashi Yoneda1, Yuya Seko2, Hiroshi Ishiba3, Tasuku Hara4, Hidenori Toyoda5, Satoshi Yasuda5, Takashi Kumada5, Hideki Hayashi6, Takashi Kobayashi7, Kento Imao7, Masato Yoneda7, Toshifumi Tada8, Takashi Kawaguchi9, Yuichiro Eguchi10, Satoshi Oeda11, Hirokazu Takahashi11, Eiichi Tomita6, Takeshi Okanoue12, Atsushi Nakajima7 and Japan Study Group of NAFLD (JSG-NAFLD)13

1 Division of Hepatology and Pancreatologia, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi 480-1195, Japan; yoneda@aichi-med-u.ac.jp (M.Y.)
2 Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan; yuyaseko@koto.kpu-m.ac.jp
3 Department of Gastroenterology, Kyoto Redcross Hospital, Kyoto, Japan; chiroinu@koto.kpu-m.ac.jp
4 Department of Gastroenterology, Fukuchiyama City Hospital, Fukuchiyama, Kyoto, Japan; thara@koto.kpu-m.ac.jp
5 Department of Gastroenterology, Ogaki Municipal Hospital, Ogaki, Gifu 503-8502, Japan; hmttoyoda@spice.ocn.ne.jp (H.T.); satoshi.yasuda.1982@gmail.com (S.Y.); takashi.kumada@gmail.com (T.K.)
6 Department of Gastroenterology, Gifu Municipal Hospital, Gifu 500-8513, Japan; hide-hayashi@umin.ac.jp (H.H.); etomita_jp@yahoo.co.jp (E.T.)
7 Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan; takabayashi-hok@umin.ac.jp (T.K.); kento318@yokohama-cu.ac.jp (K.I.); yoneda-ycu@umin.ac.jp (M.Y.); nakajimatky@umin.ac.jp (A.N.)
8 Department of Hepatology, Himeji Redcross Hospital, Himeji, Hyogo 670-8540, Japan; tadat0627@gmail.com
9 Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan; takumi@med.kurume-u.ac.jp
10 Loco Medical General Institute, 1178-1 Kanada Mikatsuki Ogi, Saga 849-8501, Japan; eguchiyu@eguchi-hospital.com
11 Liver Center, Saga Medical Hospital. takahas2@cc.saga-u.ac.jp (H.T.); ooedasa@edu.cc.saga-u.ac.jp (S.O.)
12 Hepatology Center, Saiseikai Suita Hospital, Suita, Osaka 564-0013, Japan; okanoue@suitei.saiseikai.or.jp
13 Japan Strategic Medical Administration Research Center (J-SMARC), Nagoya, Aichi 460-0011, Japan
* Correspondence: sumida@koto.kpu-m.ac.jp; Tel.: +81-561-62-3311; Fax: +81-561-62-1508
Abstract

Nonalcoholic fatty liver disease (NAFLD) is becoming the leading cause of hepatocellular carcinoma (HCC), liver-related mortality, and liver transplantation. There is reasonable epidemiological cohort data to recommend surveillance of patients with NAFLD based upon the incidence of HCC. The American Gastroenterology Association (AGA) expert review published in 2020 recommend that NAFLD patients with cirrhosis or advanced fibrosis estimated by non-invasive tests (NITs) should consider HCC surveillance. NITs include fibrosis-4 (FIB-4) index, the enhanced liver fibrosis (ELF) test, FibroScan, and MR elastography. The recommended surveillance modality is abdominal ultrasound (US) given that it is cost effective and noninvasive with good sensitivity. However, US is limited in obese patients and those with NAFLD. In NAFLD patients with a high likelihood of having an inadequate US or if US is attempted but inadequate, CT or MRI may be utilized. The GALAD score, consisting of age, gender, AFP, lens culinaris-agglutinin-reactive fraction of AFP (AFP-L3), and protein induced by vitamin K absence or antagonist-II (PIVKA-II), can help to identify high risk of incident HCC in NAFLD patients. Innovative parameters including Mac-2 binding protein glycated isomer, type IV collagen 7S, free apoptosis inhibitor of macrophage, combination of single nucleoside polymorphisms are expected to be established. Considering a large number of NAFLD population, optimal screening tests must meet several criteria including high sensitivity, cost effectiveness and availability.

Key words: hepatic fibrosis; Mac-2 binding protein glycated isomer; apoptosis inhibitor of macrophage; patatin-like phospholipase domain-containing protein 3; α-fetoprotein; PIVKA-II protein induced by vitamin K absence or antagonist-II

1. Introduction

Control of viral hepatitis (hepatitis B virus [HBV] and hepatitis C virus [HCV]) has become possible, and so-called “non-HBV non-HCV hepatocellular carcinoma (NBNC-HCC)” has become 1/3 of the total HCC in Japan [1]. The main background of NBNC-HCC is fatty liver disease (FLD), which is caused by alcohol consumption and/or lifestyle-related diseases [1]. In the past, low-drinking FLD has been called nonalcoholic fatty liver disease (NAFLD). The nomenclature “NAFLD” has proposed to change the name to metabolic dysfunction associated fatty liver disease (MAFLD) [2]. A part of NAFLD patients with progression of fibrosis is leading to liver disease-related mortality (HCC, liver failure, or esophageal varices hemorrhage) and liver transplantation [3]. NAFLD affects about 25% of adults [4,5], but about 25% (6.7%-59%) of the transition to nonalcoholic steatohepatitis (NASH) [6], and 25% of that change to
cirrhosis. Since 25% of cancers occur in 10 years [7] (Fig. 1, **25% rule**), it is estimated that only 1 or 2 of 100 NAFLD cases develop HCC (Fig 1). [8,9] Although it is clear that NAFLD portends a lower risk for HCC than HBV or HCV, the high prevalence of NAFLD in the population underlies the importance of NAFLD in the development of HCC [10]. However, poor surveillance is a constant problem for patients with NAFLD. According to cohort studies from Italy and US cohort, a lot of patients with NAFLD-related HCC were not diagnosed on regular surveillance compared to patients with HCV-related HCC, resulting in more advanced HCC burden at diagnosis [11,12]. This review outlines the efficient surveillance of HCC in NAFLD.

Figure 1 “25% rule” in NAFLD [8]

Although 25% of adults have NAFLD, about 25% will progress to NASH in their lifetime, 25% will progress from NASH to liver cirrhosis, and the incident HCC rate for 10 years after liver cirrhosis will be about 25%. Among 100 NAFLD patients, it is rare for 1-2 people with NAFLD to develop HCC. J-SMARC has copyright of this figure.
2. Carcinogenic risk in nonalcoholic fatty liver disease

The risk of hepatocarcinogenesis from NAFLD varies depending on the background of the population. Comparing 296,707 NAFLD patients with 296,707 matched controls without known liver disease, the incident HCC rate was 0.02 per 1,000 person-years in normal subjects, while 0.21 per 1,000 person-years in NAFLD. NAFLD has higher risk compared to healthy people (hazard ratio [HR] 7.62, 95% confidence interval [CI] 5.76-10.09) [2]. In Japan, the annual rate is 0.04% in cases of NAFLD diagnosed by ultrasonography (US) [13], 0.4-0.8% in cases of NAFLD diagnosed by liver biopsy [14], and 2 to 3% with NASH associated cirrhosis [7]. In a study comparing the incidence of HCC among patients with HCV infection and NAFLD [15], 315 patients with HCV-cirrhosis and 195 with cirrhosis due to NAFLD were followed for a median of 3.2 years. Cumulative incidence of HCC is slightly lower in NAFLD related cirrhosis compared to HCV cirrhosis (2.6% vs. 4%, p=0.09) [15]. The best available evidence suggests that NAFLD-related cirrhosis is a risk factor for HCC, but at a lower rate compared to HCV-related cirrhosis though the annual incidence rate in NASH-cirrhosis remains higher than 1%. HCC has also been observed in NAFLD patients without cirrhosis, but incidence rates at lower than 1% a year [16, 17]. Surveillance of HCC in every patient with NAFLD is unrealistic, while screening for HCC in cirrhotic patients is justifiable, based on cost-effectiveness considerations. An important issue is how to enclose high-risk cases from a large number of NAFLD patients and to lead to early diagnosis and treatment of HCC. Advanced fibrosis (F3/4), old age, male, low platelets (less than 150,000/μL), high AST, existence of diabetes, patatin-like phospholipase domain-containing protein 3 (PNPLA3) single nucleotide polymorphism (SNP) GG homozygote [4,13,14] have been established as carcinogenic risk factors in Japan, and these results are consistent with the data form Asian and western countries [15, 18-20].

3. Non-invasive diagnostic method for liver fibrosis

The degree of liver fibrosis also contributes to the prognosis of NAFLD [20, 21]. In the United States, HCC surveillance targets highly fibrotic cases (particularly liver cirrhosis) [22]. The American Association for the study of Liver Disease (AASLD) Practice Guide 2018 recommends four noninvasive test (NITs) to evaluate hepatic fibrosis such as Fibrosis-4 (FIB-4) index, NAFLD fibrosis score (NFS), vibration-controlled transient elastography (VCTE), and magnetic resonance elastography (MRE) [23]. Kanwal et al. [18] showed that FIB-4 index >2.67 is associated with increased risk of HCC not only in those with known cirrhosis but also in those without prior diagnosis of cirrhosis. When utilizing NITs to risk stratify patients for HCC screening, a higher cut-point threshold is desirable to maximize specificity (90%). The following cut points for VCTE and MRE may be considered for noninvasive detection of cirrhosis for purposes of HCC screening: VCTE 16.1 kPa and MRE of 5 kPa [23]. In recent years, a two-step diagnostic algorithm that combines these has become widespread [24-26] for stratify patients with advanced fibrosis. The simplest FIB-4 index has become the first step, and the use of VCTE (FibroScan) is recommended mainly in the United States as the second step [25,26]. Since FIB-4 index has a high negative predictive value, it is useful for excluding highly fibrotic cases. There is no problem regarding FIB-4 index as the 1st step premised on the use at the primary care physician or health checkup facility. However, among hepatologists, the low cutoff value should be 1.45 [27,28], or 1.3 [29], or the low cutoff value should be 2.0 because Fb-4 index can overpredict in the elderly [30-31], the possibility that the FIB-4 index may show a false low value in diabetic patients [32] is not controversial, but it is sufficient to use it for the 1st step targeting 2 billion NAFLD patients
On the other hand, VCTE (FibroScan) is not widely used in all institutions, and there are great expectations for serum markers. In Europe, the ELF (enhanced liver fibrosis) test, consisting of hyaluronic acid and tissue inhibitor of matrix metalloproteinase type 1 (TIMP-1), and P3NP (aminoterminal propeptide of type 3 procollagen), established a position as the 2nd step [33]. A validation study for efficacy of ELF test was conducted in Japan [34]. In Japan, liver fibrosis markers such as type IV collagen 7S and Mac-2 binding protein glycosylation isomer (M2BPGi) are generally used by hepatologists. Elevated type IV collagens 7s reflecting severe fibrosis [35,36] are at increased risk for extrahepatic cancer and overall mortality in Japanese patients with biopsy-proven NAFLD [37]. Type IV collagen 7S was previously measured by the radioimmunoassay (RIA) method, but since August 2020 it has become possible to measure by the high-sensitivity ELISA method, we hope that it will spread internationally in the future. We would like to expect future discussion on which parameter is best to use, but it is necessary to discuss not only the diagnostic accuracy but also the cost-benefit balance including medical economic efficiency [24,37].

Table 1 NIT for stratifying high risk of HCC in NAFLD

NIT	Formula	HCC high risk
FIB-4 index	(age [years] × AST [U/L]/(platelet count [10^9/L] × √ALT [U/L]))	>2.67
	https://www.eapharma.co.jp/medicalexpert/product/livact/fib-4/calculator.html	
NAFLD fibrosis score	−1.675 + 0.037 × age (years) + 0.094 × BMI (kg/m²) + 1.13 × impaired fasting glucose/diabetes (yes=1, no=0) + 0.99 × AST/ALT ratio − 0.013 × platelet count (×10^9/L) − 0.66 × albumin (g/dL)	>0.676
	http://nafldscore.com/	
ELF test	−7.412 + (ln [HA] × 0.681) + (ln [P3NP] × 0.775) + (ln [TIMP1] × 0.494)	>11.3
GALAD score	10.08 + 1.67 × gender (male: 1, female: 0) + 0.09 × age (years) + 2.34 × log10 (AFP [ng/mL]) + 0.04 × AFP-L3 (%) + 1.33 × log10 (DCP [ng/mL])	>0.63
	https://www.mdcalc.com/galad-model-hepatocellular-carcinoma-hcc	

FIB-4: fibrosis-4, AST: aspartate aminotransferase, ALT: alanine aminotransferase, BMI: body mass index, HA: hyaluronic acid, P3NP: aminoterminal propeptide of type 3 procollagen. TIMP-1: tissue inhibitor of matrix metalloproteinase type 1, ELF: enhanced liver fibrosis, AFP: αfetoprotein, DCP: des-γ-carboxy pro-thrombin

4. HCC Surveillance in NAFLD Advocated by the American Gastroenterology Association

This year, eight recommendations (best practices) were published by the American Gastroenterology Association (AGA) for HCC surveillance in NAFLD patients [22] (Table 2). It is recommended that HCC surveillance be performed in cases of cirrhosis or in cases where NIT suspect severe liver fibrosis (Recommendations 1 and 2). According to the data of NASH-associated HCC from Ministry of Health, Labor and Welfare NASH research group (Director: Dr. Takeshi Okanoue, Saiseikai Suita Hospital, Osaka, Japan), most women (%) developed HCC from severe fibrosis (F3/4), while men (%) developed HCC even from mild fibrosis [17]. It has also been reported that NASH has a high risk of carcinogenesis from non-cirrhotic liver...
compared with other liver diseases in the United States [39]. However, the incidence of HCC in those with NAFLD and earlier stages of fibrosis (F0–F2) is extremely low and not precisely defined. Threshold incidence for efficacy of surveillance (> 0.25 Life-years gained) is 1.5% per year [40], but NAFLD without cirrhosis is annual incidence of HCC < 1.5% per year. Therefore, systematic HCC screening may not be prudent at this time [18,40]. Although there is a higher risk of developing HCC in those with earlier stages of NAFLD than people without NAFLD, the incidence rates and determinants of risk have not been well-quantified and are probably too low to justify routine screening at this point. The American Association for the Study of Liver Diseases (AASLD) practice guide 2018 [41] recommends that the risk of HCC is significantly lower in those with NAFLD and no cirrhosis compared to those with cirrhosis, and surveillance is not recommended for these patients. The risk factors of carcinogenesis from non-cirrhotic NAFLD includes men, low alcohol consumption, and high FIB-4 index [42]. Given the large number of cases with mild liver fibrosis, routine surveillance is irrational, and it may be efficient to focus on males, light alcohol consumption, and high FIB-4 index. Although AFP measurement is taken up as a tumor marker in the recommendations (Proposal 5), PIVKA-II has a higher positive rate than AFP in the data of the NASH research group of the Ministry of Health, Labor and Welfare [38], or Japan Study Group of NAFLD (JSG-NAFLD) data from Japanese multi-center study [43]. PIVKA-II may be superior to AFP for detecting NASH-HCC, although this point needs to be validated in an international study. In HCV infected patients, HCC screening using either biannual AFP and annual abdominal US or triple phase computed tomography (CT) were cost effective compared to no surveillance, with cost effectiveness ratio less than $50000 quality-adjusted life year (QALY) [44,45]. The AASLD guidance 2018 for HCC surveillance recommends HCC surveillance using US with or without AFP every 6 mo [44]. US is an inexpensive and noninvasive surveillance method without any risk or radiation exposure for the patient [41]. The AGA expert review recommends to consistently record the adequacy of liver US, including parenchyma heterogeneity, visualization of entire liver, and beam attenuation, because Surveillance on abdominal US are often difficult to visualize in many cases of severe obesity. The visualization US score for HCC screening is graded into the following categories: A as no or minimal limitation; B as moderate limitation defined, as the examination may obscure small masses; and C as severe limitation, defined as the examination may miss focal liver lesions [22]. Consequently, if US quality is inadequate (especially if category C or in some cases with category B), we recommend considering other imaging modalities (eg, CT scan or magnetic resonance imaging [MRI]) for HCC screening (Proposal 5). Compared with multidetector CT (MDCT) and extracellular contrast media-enhanced MRI (ECCM-MRI), Gd-EOB-DTPA-MRI could be the first-choice imaging modality for medical care of HCC among patients with hepatitis or liver cirrhosis in Japan [46], China [47], Thailand and Korea [48].
Optimal interval of imaging studies are obscure. In the aforementioned meta-analysis by Singal et al. [49], surveillance US every 6 mo significantly improve the sensitivity for detection of early stage HCC when compared to annual exams. More frequent imaging (every 3 mo) did not improve survival or increase detection of small HCC lesions and is therefore not recommended at this time [50]. It is also necessary to discuss domestic best practices for this recommendation in NAFLD.

Table 2 Summary of recommendations for HCC surveillance in Nonalcoholic Fatty Liver Disease [22]

Best Practice Advice 1	Screening for HCC Should Be Considered in All Patients With Cirrhosis due to NAFLD
Best Practice Advice 2	Patients With NAFLD With Noninvasive Markers Showing Evidence of Advanced Liver Fibrosis or Cirrhosis Should Be Considered for HCC Screening
Best Practice Advice 3	Patients With NAFLD in the Absence of Advanced Liver Fibrosis Should Not Be Routinely Considered for HCC Screening
Best Practice Advice 4	Adequacy of Ultrasound in Assessing the Liver Parenchyma for Mass Lesions Should Be Documented When Used for HCC Screening in Patients With Cirrhosis Due to NAFLD
Best Practice Advice 5	When the Quality of Ultrasonography Is Suboptimal for Screening of HCC (eg, Due to Obesity) Future Screening Should Be Performed by Either Computed Tomography or Magnetic Resonance Imaging Scan, With or Without α-Fetoprotein, Every 6 Months
Best Practice Advice 6	Patients With Cirrhosis Due to NAFLD Should Be Counseled on Abstaining From Alcohol Drinking and Tobacco Smoking
Best Practice Advice 7	Optimal Management of Diabetes and Dyslipidemia Through Lifestyle Modification and Pharmacotherapy Is Encouraged in Patients With NAFLD and Advanced Liver Fibrosis Who Are at Risk for HCC
Best Practice Advice 8	Optimal Management of Obesity Through Lifestyle Modification, Pharmacotherapy or Endoscopic or Surgical Bariatric Procedures Is Encouraged in Patients With NAFLD and Advanced Liver Fibrosis Who Are at Risk for HCC

HCC: hepatocellular carcinoma, NAFLD: nonalcoholic fatty liver disease
5. Novel indicators for predicting incident HCC risk

A method of assessing the risk of hepatocarcinogenesis itself, rather than the assessment of advanced fibrosis, has also been studied. It has been reported that FIB-4 index and NFS are also useful for predicting cancer risk [51]. In a national multicenter study led by JSG-NAFLD, Kawaguchi and colleagues reported that a favorable prognostic factor in NASH-HCC includes serum albumin was 4.0 g/dl or more, and early detection of HCC that is an indication for curative treatment such as surgery and radiofrequency ablation therapy [52]. This suggests the importance of diagnosing HCC at an early stage when hepatic reserve is maintained. Most of NASH-HCC patients did not undergo regular surveillance, and the tumor size is large at the time of diagnosis, resulting in a poor prognosis [53,54].

5.1. Mac2 protein glycosylated isomer

M2BPGi was developed in Japan and its usefulness as a liver fibrosis marker in various liver diseases including NAFLD has been reported [55,56]. According to a report by Kawanaka et al. [57], the carcinogenic rate was as high as 6.8% for 5 years and 21.1% for 10 years in NAFLD cases where M2BPGi was 1.26 or higher, while the rate was as low as 1.7% for 5 years and 1.7% for 10 years in patients where M2BPGi was below 1.26 [57]. It has been suggested that it may be a predictor of hepatocarcinogenesis as well as fibrosis, but its mechanism has not been clarified.

5.2. GALAD Score

In Japan, AFP, AFP-L3 fraction, and PIVKA-II (des-γ-carboxy pro-thrombin [DCP] in foreign countries) have been used for many years as a tumor marker. According to Toyoda et al., the sensitivity was 60% and the specificity was 85% in HCC stage 1 (n=235) when these three types of tumor markers were combined [58]. In Japan, the combination of these tumor markers has been followed up with combination of imaging tests as surveillance for HCC. The GALAD score calculated from age, sex, AFP, AFP-L3 fraction and DCP has been reported to be useful in the early diagnosis of HCC from all over the world [59]. PIVKA-II 1 mAU/mL = DCP 0.012 ng/mL can be calculated. Even in a study comparing NAS with HCC and without HCC at 8 facilities in Germany, the GALAD score was highly diagnostic for HCC (AUROC 0.93) compared to AFP (AUROC 0.88), AFP-L3 fractionation (AUROC 0.86), PIVKA2 alone (AUROC 0.87) [22]. The GALAD score was useful independent of the existence of liver cirrhosis, and a cutoff value of -0.63 was appropriate even if only 25 patients within the Milan criteria were examined. The sensitivity was good at 68%, specificity 95%, and AUROC 0.91. In a prospective
study of 392 NAFLD patients (of which 17 had HCC incidence during the course) at Ogaki Municipal Hospital, the GALAD score was characterized by an upward trend from one and a half years before the diagnosis of HCC. GALAD score was effective for surveillance of NASH patients [60]. This is data from a single facility, and a multi-center validation study is desired in the future.

5.3. Apoptosis inhibitor of macrophage

Apoptosis inhibitor of macrophage (AIM) is a protein with a molecular weight of about 40 kD that was discovered by Professor Miyazaki of the University of Tokyo in 1999 [61] and is produced by Kupffer cells in the liver and macrophages in the abdominal cavity [62]. IgM behaves as a carrier of the AIM protein, storing a large amount of the inactivated form of AIM in the blood. Under certain disease conditions, AIM can dissociate from IgM locally or systemically to exert its function, inducing the removal of various biological debris such as excess fat, bacteria, cancer cells or dead cell debris [63]. In patients with NASH-HCC, AIM is dissociated from the IgM pentamer as compared with non-tumor-bearing patients, and IgM-unbound AIM (free AIM) in blood increases in NASH-HCC [64]. Since free AIM (cutoff value: 1.6 μg/mL) can detect HCC with higher sensitivity (88.5%) than PIVKA-II (53.8%) or AFP (26.9%), it is expected as a diagnostic marker for detecting NASH-HCC. Since it may be used as a predictor of carcinogenesis in the future, we would like to pay attention to future data collection. Since AIM has an inhibitory effect on HCC carcinogenesis in animal models [65,66], clinical application of AIM to HCC treatment is also expected. Increased blood free AIM in NASH-HCC may be a biodefense response.

5.4. SNP “combo”

Various SNPs can related to hepatocarcinogenesis in NAFLD. PNPLA3 SNP, which has the most abundant evidence, contributes not only to the development of hepatic fibrosis but also to hepatocarcinogenesis [14, 67, 68]. According to the report from the United Kingdom, 100 Caucasian NAFLD associated HCC cases were reported. In a study of 275 NAFLD non-carcinoma cases diagnosed by liver biopsy, it was revealed that CG hetero carriers had a 2.52-fold higher risk and GG homo carriers had a 12.19-fold higher risk of liver carcinogenesis than PNPLA3 CC homo carriers [67]. Since PNPLA3 GG homozygotes were a risk factor even when examined only in patients with liver cirrhosis, PNPLA3 SNP GG homozygotes were at high risk of hepatocarcinogenesis independently of liver fibrosis. The cumulative hepatocarcinogenesis
rate of 238 Japanese NAFLD patients diagnosed by biopsy was examined by PNPLA3 SNP [14], and GG homozygotes had significantly higher hepatocarcinogenesis rates than C allele carriers. 4,047 in Sweden A study on the risk of hepatocarcinogenesis from obese individuals using an example obesity cohort revealed that the G allele carriers were 5.9 times higher (95% CI: 1.5-23.8 times) [19]. An analysis of the risk of hepatocarcinogenesis in Japanese diabetic patients whose denial was confirmed revealed that JAZF1 G allele in addition to PNPLA3 SNP GG homozygotes was a risk factor [69]. It has been reported that the T allele of membrane bound O-acyl-transferase domain circulating 7 (MBOAT7) is involved in hepatocarcinogenesis in patients without cirrhosis [70]. We previously reported that the combination of PNPLA3 and dysferlin in patients with NAFLD in Japan had a high risk of developing HCC in the case of both risk alleles [71], but further cases need to be accumulated for validation. PNPLA3 G alleles is prevalent in Japan, South Korea, Taiwan, and Mexico [5], and there is concern that NASH-HCC will increase in these countries. A report from Europe indicates that risk alleles of PNPLA3, transmembrane 6 superfamily member 2 (TM6SF2), hydroxysteroid 17-beta dehydrogenase 13 (HSD17B13) were 29 times as high as the risk of hepatocarcinogenesis compared to the general population [72]. NAFLD patients with TM6SF2 risk allele accumulate hepatic steatosis, but atherosclerosis is low in NAFLD risk alleles due to excretion as VLDL. HSD17B13 modulates the action of the PNPLA3 gene, and when PNPLA3G allele is a TA variant of HSD17B13, inflammation and fibrosis are suppressed [73]. In this way, it is important to incorporate the SNP “combo” into the risk assessment, but the issue is its versatility in daily clinical practice, such as cost and protection of personal information. It is important to take a family history of HCC and cirrhosis as a simple alternative method [74].

5.5. Noninvasive 'liquid biopsy'

The concept of liquid biopsy was developed to address the need for reliable, minimally invasive methods of diagnosis, prognosis and overall disease monitoring. It is a modality where body fluids samples, instead of solid tissue, are used for pathophysiological or molecular analyses. It has been introduced for many clinically relevant fields, including cancer research and, in general, any body fluids can be used as potential samples for liquid biopsy. The term liquid biopsy can apply to cancer by-products including circulating tumor cells (CTC), cell-free DNA (cfDNA), cell-free RNA (cfRNA), microRNA (miRNA), extracellular vesicles (EVs), and tumor-derived metabolites [75]. The most widely used markers are CTCs and ctDNA. ctDNA carrying cancer-specific genetic and epigenetic aberrations may enable a noninvasive 'liquid biopsy' for diagnosis and monitoring of cancer [76, 77].
Figure 2. NITs for surveillance of severe fibrosis and HCC in NAFLD

First of all, NIT is used to pick up advanced fibrosis (F3/4) from NAFLD. In cases of advanced fibrosis, regular image examination is performed to detect HCC early. Then we conduct strict surveillance in patients with high GALAD score (> -0.63), high M2bpGi cases (> 1.26), and PNPLA3 GG homozygous cases.

6. **Algorithm for HCC surveillance in Nonalcoholic Fatty Liver Disease**

We construct algorithm for HCC surveillance in NAFLD in reference to the AGA expert review (Figure 3). NAFLD patients with cirrhosis should undergo HCC surveillance. NAFLD patients who are likely to have advanced fibrosis evaluated by NITs (FIB-4 index, ELF test, VCTE, and MRE) should consider HCC surveillance. US is the first method for surveillance of HCC, but adequacy of US should be documented because of its difficulty in obese patients. In NAFLD patients with a high likelihood of having an inadequate US or if US is attempted but
inadequate, CT or MRI may be utilized. Tumor markers such as PIVKA-II, AFP, AFP-L3 may help us to identify high risk of incident HCC in NAFLD. NAFLD patients who are unlikely to have advanced fibrosis evaluated by NITs should not undergo routine surveillance.

Figure 3. Algorithm for HCC surveillance in Nonalcoholic Fatty Liver Disease

NIT: noninvasive test, FIB-4: fibrosis-4, ELF: enhanced liver fibrosis, VCTE: vibration-controlled transient elastography, MRE: magnetic resonance elastography, HCC: hepatocellular carcinoma, US: ultrasonography, CT: computed tomography, MRI: magnetic resonance imaging, PIVKA-II: protein induced by vitamin K, AFP: α-fetoprotein, M2BPGi: Mac-2 binding protein glycosylated isomer. MetS: metabolic syndrome. The visualization score for ultrasound for HCC screening is graded into the following categories: A as no or minimal limitation; B as moderate limitation defined, as the examination may obscure small masses; and C as severe limitation, defined as the examination may miss focal liver lesions [22].
Conclusion

Surveillance of HCC is unreasonable for every patient with NAFLD estimated to be more than 2 billion worldwide. For cases of cirrhosis, suspected advanced fibrosis by NITs, and cases of diabetes mellitus, HCC should be surveyed by semi-annual US and tumor marker measurements such as AFP, AFP-L3, or PIVKA-II (Fig. 3). Because it is difficult to visualize the HCC in NAFLD patients by abdominal US due to obesity, we will consider alternative imaging such as CT or MRI. Early identification through surveillance provides more curative treatment options. If SNP measurement can be performed in general clinical settings, more efficient surveillance can be expected, but evidence construction considering cost benefit balances will be necessary in the future [78,79]. We also hope to establish innovative parameters for HCC surveillance such as M2bpGi, GALAD score, and free AIM. Precision tools that better predict the development of HCC in individual patients with NAFLD are needed.

Author Contributions: Conceptualization, Y.S., Y.S. (Yuya Seko), M.Y. (Masashi Yoneda), and A.N.; writing—original draft preparation, S.O. Y.S., H.I., T.H. H.T. S.Y. T.K. K.J. and H.Y.; writing—review and editing, H.Y. H.H. H.T. M.Y. (Masato Yoneda), T.T.; supervision: Y.E. T.K. T.W. E.T., A.N., and T.O. All authors have read and agreed to the published version of the manuscript.

Funding: Sumida received honoraria from Mitsubishi Tanabe, Sumitomo Dainippon, Astrazeneca, Ono, and Taisho pharm. Sumida received research funding from Bristol-Meyers Squibb. Nakajima received honoraria from Gilead, Bristol-Meyers Squibb, Novartis, and EA Pharma. Nakajima received research funding from EA pharma, Mylan, and EPD.

Acknowledgments: This research was supported by AMED under Grant Number 20fk0210040h0002. We acknowledge the scientific contribution and support of the JSG-NAFLD in the Japan Strategic Medical Administration Research Center (J-SMARC). Division of Hepatology and Pancreatotolgy, Department of Internal Medicine, Aichi Medical University (Nagakute, Japan): Satoshi Kimoto. Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine (Yokohama, Japan): Yuji Ogawa, Yasushi Honda, and Takaomi Kessoku. Department of Hepatology, Gifu Municipal Hospital (Gifu, Japan): Yoichi Nishigaki, and Takafumi Uchiki. Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Sciences, Hiroshima University (Hiroshima, Japan): Takashi Nakahara. Department of Internal Medicine II, Shimane University Faculty of Medicine (Izumo, Japan): Hiroshi Tobita. Department of Internal Medicine, Izumo City General Medical Center (Izumo, Japan). Shuichi Satoh. Department of Medicine, Division of Gastroenterology and Hematology/Oncology, Asahikawa Medical University (Asahikawa, Japan): Koji Sawada. Department of Gastroenterology and Hepatology, Kochi Medical School
(Kochi, Japan): Kensuke Munekage and Tsunehiro Ochi. Department of Internal Medicine, Institute of Gastroenterology, Tokyo Women’s Medical University (Tokyo, Japan): Tomomi Kogiso and Katsutoshi Tokushige. Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University (Kagawa, Japan): Tomohiro Morishita. Department of Gastroenterology, Fukushima Medical University School of Medicine (Fukushima, Japan): Atsushi Takahashi. Second Department of Internal Medicine, Osaka Medical College (Osaka, Japan): Shinya Fukunishi. Department of Hepatology, Hamamatsu University School of Medicine (Hamamatsu, Japan): Kazuhiro Kawata. Department of General Internal Medicine, Fukui-ken Saiseikai Hospital (Fukui, Japan): Kazuo Notsumata. Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Defense Medical College (Tokorozawa, Japan): Kengo Tomita. Department of Liver, Biliary Tract and Pancreas Diseases, Fujita Health University (Toyoake, Japan): Naoto Kawabe. Department of Gastroenterology, JA Hiroshima General Hospital (Hiroshima, Japan): Michihiro Nonaka and Hideyuki Hyogo. Division of Gastroenterology, Department of Internal Medicine, Nippon Medical School Musashikosugi Hospital (Kawasaki, Japan): Taeang Arai. Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan: Tadashi Ikekamari. Department of General Internal Medicine2, Kawasaki Medical School (Okayama, Japan): Miwa Kawanaka. Department of Hepatology, Graduate School of Medicine, Osaka City University (Osaka, Japan): Hideki Fujii.

Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tokyo Women’s Medical University Medical Center East, (Tokyo, Japan): Masafumi Ono. Department of Gastroenterology, National Center for Global Health and Medicine (Tokyo, Japan): Yuichi Nozaki. Division of Cardiovascular Medicine, Department of Medicine, Osaka University Graduate School of Medicine (Suita, Japan): Masahiro Koseki. Department of Gastroenterology and Hepatology, Suita Municipal Hospital, (Suita Japan): Yuchi Yoshida. Department of Molecular Biochemistry & Clinical Investigation, Osaka University Graduate School of Medicine (Suita, Japan): Yoshihiro Kamada.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References

[1] Tateishi R, Uchino K, Fujiwara N, et al. A nationwide survey on non-B, non-C hepatocellular carcinoma in Japan: 2011-2015 update. J Gastroenterol 2019; 54: 367.

[2] Eslem M, Newsome PN, Sarin SK, et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J Hepatol 2020; 73: 202.
[3] Younossi, Z., Stepanova, M., Ong, J. P., Jacobson, I. M., Bugianesi, E., Duseja, A., Eguchi, Y., Wong, V. W., Negro, F., Yilmaz, Y. et al. Global Nonalcoholic Steatohepatitis Council. Nonalcoholic Steatohepatitis Is the Fastest Growing Cause of Hepatocellular Carcinoma in Liver Transplant Candidates. *Clin Gastroenterol Hepatol*. 2019, 17, 748-755.e3.

[4] Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. *Hepatology* 2016, 64, 73-84.

[5] Younossi, Z., Anstee, Q. M., Marietti, M., Hardy, T., Henry, L., Eslam, M., George, J., Bugianesi, E. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. *Nat Rev Gastroenterol Hepatol*. 2018, 15, 11-20.

[6] Williams CD, Stengel J, Asike MI, et al. Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study. *Gastroenterology*. 2011, 140, 124-31.

[7] Yatsuji S, Hashimoto E, Tobari M, et al. Clinical features and outcomes of cirrhosis due to non-alcoholic steatohepatitis compared with cirrhosis caused by chronic hepatitis C. *J Gastroenterol Hepatol* 2009;24:248–254.

[8] Sumida Y, Yoneda M, Tokushige K, et al; Japan Study Group of NAFLD (JSG-NAFLD). Estimated Prevalence of Advanced Hepatic Fibrosis by Elastography in Patients with Type 2 Diabetes. *Interventions Obes Diabetes* 2020; 3: 287

[9] Diehl AM, Day C. Cause, Pathogenesis, and Treatment of Nonalcoholic Steatohepatitis. *N Engl J Med*. 2017;377:2063–2072.

[10] Marrero JA, Kulik LM, Sirlin CB, Zhu AX, Finn RS, Abecassis MM, Roberts LR, Heimbach JK. Diagnosis, Staging, and Management of Hepatocellular Carcinoma: 2018 Practice Guidance by the American Association for the Study of Liver Diseases. *Hepatology*. 2018, 68, 723–75

[11] Piscaglia F, Svegliati-Baroni G, Barchetti A. HCC-NAFLD Italian Study Group Clinical patterns of hepatocellular carcinoma in nonalcoholic fatty liver disease: A multicenter prospective study. *Hepatology* 2016, 63, 827–838.

[12] Mittal S, Sada Y, El-Serag HB, Kanwal F, Duan Z, Temple S, et al. Temporal trends of nonalcoholic fatty liver disease-related hepatocellular carcinoma in the Veteran Affairs Population. *Clin Gastroenterol Hepatol* 2015, 13, 594–601.

[13] Kawamura, Y., Arase, Y., Ikeda, K., Seko, Y., Imai, N., Hosaka, T., Kobayashi, M., Saitoh, S., Sezaki, H., Akuta, N., et al. Large-scale long-term follow-up study of Japanese patients with non-alcoholic Fatty liver disease for the onset of hepatocellular carcinoma. *Am J Gastroenterol*.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 July 2020
2012, 107, 253-261.
[14] Seko Y, Sumida Y, Tanaka S, et al. Development of hepatocellular carcinoma in Japanese patients with biopsy-proven non-alcoholic fatty liver disease: Association between PNPLA3 genotype and hepatocarcinogenesis/fibrosis progression. *Hepatol Res* 2019, 47, 1083.

[15] Ascha MS, Hanouneh IA, Lopez R, et al. The incidence and risk factors of hepatocellular carcinoma in patients with nonalcoholic steatohepatitis. *Hepatology* 2010;51:1972–1978.

[16] Leung C, Yeoh SW, Patrick D, Ket S, Marion K, Gow P, Angus PW. Characteristics of hepatocellular carcinoma in cirrhotic and non-cirrhotic non-alcoholic fatty liver disease. *World J Gastroenterol* 2015, 21, 1189-1196.

[17] Perumpail RB, Wong RJ, Ahmed A, Harrison SA. Hepatocellular carcinoma in the setting of non-cirrhotic nonalcoholic fatty liver disease and the metabolic syn-drome: US experience. *Dig Dis Sci* 2015, 60, 3142-3148.

[18] Kanwal F, Kramer JR, Mapakshi S, et al. Risk of Hepatocellular Cancer in Patients With Non-Alcoholic Fatty Liver Disease. *Gastroenterology* 2018; 155:1828.

[19] Burza MA, Pirazzi C, Maglio C, et al. PNPLA3 I148M (rs738409) genetic variant is associated with hepatocellular carcinoma in obese individuals. *Dig Liver Dis* 2012, 44, 1037.

[20] Dulai, P. S., Singh, S., Patel, J., Soni, M., Prokop, L. J., Younossi, Z., Sebastiani, G., Ekstedt, M., Hagstrom, H., Nasr, P., et al. Increased risk of mortality by fibrosis stage in nonalcoholic fatty liver disease: Systematic review and meta-analysis. *Hepatology* 2017, 65, 1557–1565.

[21] Taylor RS, Taylor RJ, Bayliss S, Hagström H, Nasr P, Schattenberg JM, Ishigami M, Toyoda H, Wai-Sun Wong V, Peleg N, et al. Association Between Fibrosis Stage and Outcomes of Patients With Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. *Gastroenterology*. 2020:S0016-5085(20)30137-2

[22] Loomba R, Lim JK, Patton H, El-Serag HB. AGA Clinical Practice Update on Screening and Surveillance for Hepatocellular Carcinoma in Patients With Nonalcoholic Fatty Liver Disease: Expert Review. *Gastroenterology* 2020; 158:1822.

[23] Chalasani N, Younossi Z, Lavine JE, et al. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. *Hepatology* 2018; 67:328.

[23] Hsu C, Caussy C, Imajo K, et al. Magnetic resonance vs transient elastography analysis of patients with nonalcoholic fatty liver disease: a systematic review and pooled analysis of individual participants. *Clin Gastroenterol Hepatol* 2019;17:630–637.e8.

[24] Sumida Y, Shima T, Mitsumoto Y, et al. Epidemiology, Pathogenesis, and Diagnostic Strategy
of Diabetic Liver Disease in Japan. *Int J Mol Sci* 2020; 21: 4337

[25] Yoneda M, Imajo K, Takahashi H, et al. Clinical strategy of diagnosing and following patients with nonalcoholic fatty liver disease based on invasive and noninvasive methods. *J Gastroenterol* 2018; 53:181.

[26] Chan, W. K., Treeprasertsuk, S., Goh, G. B., Fan, J. G., Song, M. J., Charatcharoenwitthaya, P., Duseja, A., Dan, Y. Y., Imajo, K., Nakajima, A., et al. Optimizing Use of Nonalcoholic Fatty Liver Disease Fibrosis Score, Fibrosis-4 Score, and Liver Stiffness Measurement to Identify Patients With Advanced Fibrosis. *Clin Gastroenterol Hepatol*. 2019, 17, 2570-2580.e37.

[27] Chan WK, Treeprasertsuk S, Goh GB, et al. Optimizing Use of Nonalcoholic Fatty Liver Disease Fibrosis Score, Fibrosis-4 Score, and Liver Stiffness Measurement to Identify Patients With Advanced Fibrosis. *Clin Gastroenterol Hepatol* 2019; 17: 2570.

[28] Sumida Y, Yoneda M, Hyogo H, et al. Validation of the FIB4 index in a Japanese nonalcoholic fatty liver disease population. *BMC Gastroenterol*. 2012; 12: 2.

[29] Shah AG, Lydecker A, Murray K, et al. Comparison of noninvasive markers of fibrosis in patients with nonalcoholic fatty liver disease. *Clin Gastroenterol Hepatol* 2009; 7:1104.

[30] McPherson S, Hardy T, Dufour JF, et al. Age as a Confounding Factor for the Accurate Non-Invasive Diagnosis of Advanced NAFLD Fibrosis. *Am J Gastroenterol* 2017; 112: 740.

[31] Ishiba H, Sumida Y, Tanaka S, et al; Japan Study Group of Non-Alcoholic Fatty Liver Disease (JSG-NAFLD). The novel cutoff points for the FIB4 index categorized by age increase the diagnostic accuracy in NAFLD: a multi-center study. *J Gastroenterol* 2018; 53:1216.

[32] Ishiba Y, Sumida Y, Tanaka S, et al. Type IV collagen 7S is the most accurate test for identifying advanced fibrosis in non-alcoholic fatty liver disease with type 2 diabetes. (submitted)

[33] Srivastava A, Gailer R, Tanwar S, et al. Prospective evaluation of a primary care referral pathway for patients with non-alcoholic fatty liver disease. *J Hepatol*. 2019; 71: 371.

[34] Inadomi, C., Takahashi, H., Ogawa, Y., Oeda, S., Imajo, K., Kubotsu, Y., Tanaka, K., Kessoku, T., Okada, M., Isoda, H., et al. Accuracy of the Enhanced Liver Fibrosis test, and combination of the Enhanced Liver Fibrosis and non-invasive tests for the diagnosis of advanced liver fibrosis in patients with non-alcoholic fatty liver disease. *Hepatol Res* 2020, 50, 682-692.

[35] Ogawa Y, Honda Y, Kessoku T, et al. Wisteria floribunda agglutinin-positive Mac-2-binding protein and type 4 collagen 7S: useful markers for the diagnosis of significant fibrosis in patients with non-alcoholic fatty liver disease. *J Gastroenterol Hepatol*. 2018, 33, 1795-803.
[36] Okanoue T, Ebise H, Kai T, et al. A simple scoring system using type IV collagen 7s and aspartate aminotransferase for diagnosing nonalcoholic steatohepatitis and related fibrosis. *J Gastroenterol*. 2018, 53, 129-39.

[37] Seko, Y., Sumida, Y., Tanaka, S., Taketani, H., Kanemasa, K., Ishiba, H., Okajima, A., Nishimura, T., Yamaguchi, K., Moriguchi, M., et al. Predictors of malignancies and overall mortality in Japanese patients with biopsy-proven non-alcoholic fatty liver disease. *Hepatol Res*. 2015, 45, 728–738.

[38] Yasui K, Hashimoto E, Komorizono Y, et al. Characteristics of patients with nonalcoholic steatohepatitis who develop hepatocellular carcinoma. *Clin Gastroenterol Hepatol* 2011; 9: 428.

[39] Stine JG, Wentworth BJ, Zimmet A, et al. Systematic review with meta-analysis: risk of hepatocellular carcinoma in non-alcoholic steatohepatitis without cirrhosis compared to other liver diseases. *Aliment Pharmacol Ther* 2018; 48: 696.

[40] Patrick S Harris, Ross M Hansen, Meagan E Gray, Omar I Massoud, Brendan M McGuire, and Mohamed G Shoreibah. Hepatocellular carcinoma surveillance: An evidence-based approach. *World J Gastroenterol*. 2019, 25, 1550–1559.

[41] Marrero JA, Kulik LM, Sirlin CB, Zhu AX, Finn RS, Abecassis MM, Roberts LR, Heimbach JK. Diagnosis, Staging, and Management of Hepatocellular Carcinoma: 2018 Practice Guidance by the American Association for the Study of Liver Diseases. *Hepatology*. 2018, 68, 723–750.

[42] Tobari M, Hashimoto E, Taniai M, et al. The characteristics and risk factors of hepatocellular carcinoma in nonalcoholic fatty liver disease without cirrhosis. *J Gastroenterol Hepatol* 2020; 35: 862.

[43] Tokushige, K., Hyogo, H., Nakajima, T., Ono, M., Kawaguchi, T., Honda, K., Eguchi, Y., Nozaki, Y., Kawanaka, M., Tanaka, S., et al. Hepatocellular carcinoma in Japanese patients with nonalcoholic fatty liver disease and alcoholic liver disease: multicenter survey. *J Gastroenterol*. 2016, 51, 586-596.

[44] Lin OS, Keeffe EB, Sanders GD, Owens DK. Cost-effectiveness of screening for hepatocellular carcinoma in patients with cirrhosis due to chronic hepatitis C. *Aliment Pharmacol Ther*. 2004, 19, 1159–1172.

[45] Arguedas MR, Chen VK, Eloubeidi MA, Fallon MB. Screening for hepatocellular carcinoma in patients with hepatitis C cirrhosis: a cost-utility analysis. *Am J Gastroenterol*. 2003, 98, 679–690.

[46] Nishie, A., Goshima, S., Haradome, H., Hatano, E., Imai, Y., Kudo, M., Matsuda, M., Motosugi, U., Saitoh, S., Yoshimitsu, K., et al. Cost-effectiveness of EOB-MRI for Hepatocellular Carcinoma in Japan. *Clinical Therapeutics*, 2017, 39, 738–750.e4.
[47] He, X., Wu, J., Holtorf, A. P., Rinde, H., Xie, S., Shen, W., Hou, J., Li, X., Li, Z., Lai, J., et al. Health economic assessment of Gd-EOB-DTPA MRI versus ECCM-MRI and multi-detector CT for diagnosis of hepatocellular carcinoma in China. *PLOS One* 2018, 13, e0191095.

[48] Lee, J. M., Kim, M. J., Phongkitkarun, S., Sobhonslidsuk, A., Holtorf, A. P., Rinde, H., & Bergmann, K. Health economic evaluation of Gd-EOB-DTPA MRI vs ECCM-MRI and multi-detector computed tomography in patients with suspected hepatocellular carcinoma in Thailand and South Korea. *J Med Econ.* 2016, 19, 759-768.

[49] Singal A, Volk ML, Waljee A, Salgia R, Higgins P, Rogers MA, Marrero JA. Meta-analysis: surveillance with ultrasound for early-stage hepatocellular carcinoma in patients with cirrhosis. *Aliment Pharmacol Ther.* 2009, 30, 37–47.

[50] Trinchet JC, Chaffaut C, Bourcier V, Degos F, Henrion J, Fontaine H, Roulot D, Mallat A, Hillaire S, Cales P, et al. Ultrasonographic surveillance of hepatocellular carcinoma in cirrhosis: a randomized trial comparing 3- and 6-month periodicities. *Hepatology.* 2011, 54, 1987–1997.

[51] Kim, G. A., Lee, H. C., Choe, J., Kim, M. J., Lee, M. J., Chang, H. S., Bae, I. Y., Kim, H. K., An, J., Shim, J. H., Kim, K. M., Lim, Y. S. Association between non-alcoholic fatty liver disease and cancer incidence rate. *J Hepatol* 2017, S0168-8278(17)32294-8.

[52] Kawaguchi T, Tokushige K, Hyogo H, et al. A Data Mining-based Prognostic Algorithm for NAFLD-related Hepatoma Patients: A Nationwide Study by the Japan Study Group of NAFLD. *Sci Rep.* 2018; 8: 10434.

[53] Tavakoli, H., Robinson, A., Liu, B., Bhuket, T., Younossi, Z., Saab, S., Ahmed, A., Wong, R. J. Cirrhosis Patients with Nonalcoholic Steatohepatitis Are Significantly Less Likely to Receive Surveillance for Hepatocellular Carcinoma. *Dig Dis Sci.* 2017, 62, 2174-2181.

[54] Younossi, Z. M., Otgonsuren, M., Henry, L., Venkatesan, C., Mishra, A., Erario, M., Hunt, S. Association of nonalcoholic fatty liver disease (NAFLD) with hepatocellular carcinoma (HCC) in the United States from 2004 to 2009. *Hepatology* 2015, 62, 1723–1730.

[55] Ogawa, Y., Honda, Y., Kessoku, T., Tomeno, W., Imao, K., Yoneda, M., Kawanaka, M., Kirikoshi, H., Ono, M., Taguri, M., et al. Wisteria floribunda agglutinin-positive Mac-2-binding protein and type 4 collagen 7S: useful markers for the diagnosis of significant fibrosis in patients with non-alcoholic fatty liver disease. *J Gastroenterol Hepatol.* 2018, 33, 1795-1803.

[56] Alkhouri, N., Johnson, C., Adams, L., Kitajima, S., Tsuruno, C., Colpitts, T. L., Hatcho, K., Lawitz, E., Lopez, R., & Feldstein, A. E. Serum Wisteria floribunda agglutinin-positive Mac-2-binding protein levels predict the presence of fibrotic nonalcoholic steatohepatitis (NASH) and NASH cirrhosis. *PLOS One.* 2018, 13, e0202226.
[57] Kawanaka M, Tomiyama Y, Hyogo H, et al. Wisteria floribunda agglutinin-positive Mac-2 binding protein predicts the development of hepatocellular carcinoma in patients with non-alcoholic fatty liver disease. *Hepatol Res* 2018; 48: 521.

[58] Toyoda, H., Kumada, T., Tada, T., Kaneoka, Y., Maeda, A., Kanke, F., Satomura, S. Clinical utility of highly sensitive Lens culinaris agglutinin-reactive alpha-fetoprotein in hepatocellular carcinoma patients with alpha-fetoprotein <20 ng/mL. *Cancer Science*, 2011, 102, 1025–1031.

[59] Johnson, P. J., Pirrie, S. J., Cox, T. F., Berhane, S., Teng, M., Palmer, D., Morse, J., Hull, D., Patman, G., Kagebayashi, C., et al. The detection of hepatocellular carcinoma using a prospectively developed and validated model based on serological biomarkers. *Cancer Epidemiol Biomarkers Prev.* 2014, 23, 144-153.

[60] Best J, Bechmann LP, Sowa JP, et al. GALAD Score Detects Early Hepatocellular Carcinoma in an International Cohort of Patients With Nonalcoholic Steatohepatitis. *Clin Gastroenterol Hepatol* 2020; 18: 728.

[61] Miyazaki, T., Hirokami, Y., Matsuhashi, N., Takatsuka, H., Naito, M. Increased susceptibility of thymocytes to apoptosis in mice lacking AIM, a novel murine macrophage-derived soluble factor belonging to the scavenger receptor cysteine-rich domain superfamily. *J Exp Med.* 1999, 189, 413-422.

[62] Arai, S., Miyazaki, T. Impacts of the apoptosis inhibitor of macrophage (AIM) on obesity-associated inflammatory diseases. *Semin Immunopathol.* 2014, 36, 3-12.

[63] Miyazaki, T., Yamazaki, T., Sugisawa, R., Gershwin, M. E., Arai, S. AIM associated with the IgM pentamer: attackers on stand-by at aircraft carrier. *Cell Mol Immunol.* 2018, 15, 563-574.

[64] Koyama N, Yamazaki T, Kanetsuki Y, et al. Activation of apoptosis inhibitor of macrophage (AIM) is a sensitive diagnostic marker for NASH-associated hepatocellular carcinoma. *J Gastroenterol* 2018; 53: 770.

[65] Maehara, N., Arai, S., Mori, M., Iwamura, Y., Kurokawa, J., Kai, T., Kusunoki, S., Taniguchi, K., Ikeda, K., Ohara, O., Yamamura, K. I., & Miyazaki, T. Circulating AIM prevents hepatocellular carcinoma through complement activation. *Cell Rep.* 2014, 9, 61-74.

[66] Ozawa, T., Maehara, N., Kai, T., Arai, S., & Miyazaki, T. Dietary fructose-induced hepatocellular carcinoma development manifested in mice lacking apoptosis inhibitor of macrophage (AIM). *Genes Cells.* 2016, 21, 1320-1332.

[67] Liu YL, Patman GL, Leathart JB, et al. Carriage of the PNPLA3 rs738409 C>G polymorphism confers an increased risk of non-alcoholic fatty liver disease associated hepatocellular carcinoma. *J Hepatol* 2014, 61, 75.
[68] Seko, Y., Yamaguchi, K., Itoh, Y. The genetic backgrounds in nonalcoholic fatty liver disease. Clin J Gastroenterol. 2018, 11, 97-102.

[69] Ueyama M, Nishida N, Korenaga M, et al. The impact of PNPLA3 and JAZF1 on hepatocellular carcinoma in non-viral hepatitis patients with type 2 diabetes mellitus. J Gastroenterol 2016, 51, 370.

[70] Donati B, Dongiovanni P, Romeo S, et al. MBOAT7 rs641738 variant and hepatocellular carcinoma in non-cirrhotic individuals. Sci Rep 2017, 7, 4492.

[71] Kawaguchi T, Shima T, Mizuno M, et al. Risk estimation model for nonalcoholic fatty liver disease in the Japanese using multiple genetic markers. PLoS One. 2018, 13, e0185490.

[72] Gellert-Kristensen H, Richardson TG, Davey Smith G, et al. Combined Effect of PNPLA3, TM6SF2, and HSD17B13 Variants on Risk of Cirrhosis and Hepatocellular Carcinoma in the General Population. Hepatology, in press.

[73] Seko, Y., Yamaguchi, K., Tochiki, N., Yano, K., Takahashi, A., Okishio, S., Kataoka, S., Okuda, K., Umemura, A., Moriguchi, M., et al. Attenuated effect of PNPLA3 on hepatic fibrosis by HSD17B13 in Japanese patients with non-alcoholic fatty liver disease. Liver Int. 2020, 40, 1686-1692.

[74] Caussy, C., Soni, M., Cui, J., Bettencourt, R., Schork, N., Chen, C. H., Ikhwan, M. A., Bassirian, S., Cepin, S., Gonzalez, M. P., et al. Familial NAFLD Cirrhosis Research Consortium. Nonalcoholic fatty liver disease with cirrhosis increases familial risk for advanced fibrosis. J Clin Invest. 2017, 127, 2697-2704.

[75] Mocan, T., Simão, A. L., Castro, R. E., Rodrigues, C., Slomka, A., Wang, B., Strassburg, C., Wöhler, A., Willms, A. G., & Kornek, M. Liquid Biopsies in Hepatocellular Carcinoma: Are We Winning?. J Clin Med. 2020, 9, 1541.

[76] Xu RH, Wei W, Krawczyk M, et al. Circulating tumor DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma. Nat Mater. 2017, 16, 1155-1161.

[77] Li, X., Wang, H., Li, T., Wang, L., Wu, X., Liu, J., Xu, Y., Wei, W. Circulating tumor DNA/circulating tumor cells and the applicability in different causes induced hepatocellular carcinoma. Curr Probl Cancer. 2020, 44, 100516.

[78] Srivastava A, Jong S, Gola A, et al. Cost-comparison analysis of FIB-4, ELF and fibroscan in community pathways for non-alcoholic fatty liver disease. BMC Gastroenterol 2019;19:122.

[79] European Association for the Study of the Liver (EASL) European Association for the Study of Diabetes (EASD) European Association for the Study of Obesity (EASO). EASL-EASD-EASO
Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. *J Hepatol* 2016, 64, 1388–1402.
Berhane, S., Toyoda, H., Tada, T., Kumada, T., Kagebayashi, C., Satomura, S., Schweitzer, N., Vogel, A., Manns, M. P., Benckert, J., et al. Role of the GALAD and BALAD-2 Serologic Models in Diagnosis of Hepatocellular Carcinoma and Prediction of Survival in Patients. *Clin Gastroenterol Hepatol*. 2016, 14, 875-886.e6.

Abbreviation

AASLD American Association for the study of Liver Diseases

AFP: α-Fetoprotein

AFP-L3: Lens culinaris-agglutinin-reactive fraction of AFP

AGA: American Gastroenterology Association

AIM Apoptosis inhibitor of macrophage

AST: aspartate aminotransferase

ALT: alanine aminotransferase

BMI: body mass index

HA: hyaluronic acid

P3NP: aminoterminal propeptide of type 3 procollagen

TIMP-1: tissue inhibitor of matrix metalloproteinase type 1

CTC circulating tumor cells

CfDNA cell-free DNA

cfRNA cell-free RNA

EV extracellular vesicle

DCP: des-γ-carboxy pro-thrombin

CI confidence interval

CT: computed tomography

ELF: enhanced liver fibrosis
ELISA:
FIB-4: Fibrosis-4
NFS: NAFLD fibrosis score
HBV: hepatitis B virus
HCV: hepatitis C virus
HCC: hepatocellular carcinoma
HR: hazard ratio
HSD17B13 hydroxysteroid 17-beta dehydrogenase 13
FLD: fatty liver disease
M2BPGi Mac-2 binding protein glycosylation isomer
MBOAT7 membrane bound O-acyl-transferase domain circulating 7
MDCT multidetector CT
miRNA microRNA
MRE: magnetic resonance elastography
MRI: magnetic resonance imaging
ECCM-MRI: extracellular contrast media-enhanced MRI
NAFLD: nonalcoholic fatty liver disease
NASH: nonalcoholic steatohepatitis
NIT: noninvasive test
TIMP-1: tissue inhibitor of matrix metalloproteinase type 1,
PIVKA-II: protein induced by vitamin K
P3NP: aminoterminal propeptide of type 3 procollagen
PNPLA3: patatin-like phospholipase domain-containing protein 3
QALY: quality-adjusted life year (QALY)
RIA: radioimmunoassay
SNP: single nucleotide polymorphism
TIMP-1: tissue inhibitor of matrix metalloproteinase type 1
TM6SF: transmembrane 6 superfamily member 2
US: ultrasonography
VCTE: vibration-controlled transient elastography