DiPD: Disruptive event Prediction Dataset from Twitter

SANSKAR SONI, DEV MEHTA, VINUSH VISHWANATH, ADITI SEETHA, and SATYENDRA SINGH CHOUHAN, Malaviya National Institute of Technology Jaipur, INDIA

Riots and protests, if gone out of control, can cause havoc in a country. We have seen examples of this, such as the BLM movement, climate strikes, CAA Movement, and many more, which caused disruption to a large extent. Our motive behind creating this dataset was to use it to develop machine learning systems that can give its users insight into the trending events going on and alert them about the events that could lead to disruption in the nation. If any event starts going out of control, it can be handled and mitigated by monitoring it before the matter escalates. This dataset collects tweets of past or ongoing events known to have caused disruption and labels these tweets as 1. We also collect tweets that are considered non-eventful and label them as 0 so that they can also be used to train a classification system. The dataset contains 94855 records of unique events and 168706 records of unique non-events, thus giving the total dataset 263561 records. We extract multiple features from the tweets, such as the user’s follower count and the user’s location, to understand the impact and reach of the tweets. This dataset might be useful in various event related machine learning problems such as event classification, event recognition, and so on.

Additional Key Words and Phrases: Twitter dataset, Disruptive events, Event classification

ACM Reference Format:
Sanskar Soni, Dev Mehta, Vinush Vishwanath, Aditi Seetha, and Satyendra Singh Chouhan. 2021. DiPD: Disruptive event Prediction Dataset from Twitter. 1, 1 (December 2021), 5 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION AND SPECIFICATION

A disruptive event is an event that obstructs routine process to fulfill their goal and instructed by many unauthorized sources [3, 4]. Its duration is often unpredictable and it may happen for one or two days or may be continuing for several days. It can spoil law and order situations that may lead to a civil unrest [5, 6]. The objective of such events are often unclear therefore it happens in a very unplanned and unstructured manner. Nowadays social media has become a primary source of information. The common man and authorities report every event or incident on social media. For example, social media became a tool for Protest against Citizen Amendment Act (CAA) in India [2]. In such scenarios, any misleading information spread over the social microblogging sites can convert peaceful protest into violence [1]. However, if we can get the early indication of the disruptive events using social media information then preventive measures can be taken at an early stage. In this work, first, we are collecting Disruptive Event data from the social media (twitter) that will be updated and gathered continuously. A part of this dataset is now being available and published. Table 1 shows the specification of dataset. The description of the dataset is given in the subsequent sections.

Authors’ address: Sanskar Soni, 2018ucp1265@mnit.ac.in; Dev Mehta, 2018ucp1382@mnit.ac.in; Vinush Vishwanath, 2018ucp1491@mnit.ac.in; Aditi Seetha, aditiseetha28@gmail.com; Satyendra Singh Chouhan, sschouhan@mnit.ac.in, Malaviya National Institute of Technology Jaipur, JLN Marg, Jaipur, Rajasthan, INDIA, 302017.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

XXX-XXXX/2021/12-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn
Table 1. Specifications Table

Subject Area	Computer science
Specific subject Area	Artificial Intelligence
Type of data	Textual tweets along with numeric attributes
How data was acquired	Data were acquired by extracting tweets using the open source tweepy library along with the features of that tweet
Data Format	Raw csv file
Parameters for data collection	Only those tweets having keywords from the events and the non event set were extracted.
Description of data collection	The data (a total of 2 files belonging to the event and non-event categories) comprises of features extracted from the tweeter’s profile itself using the Tweepy API. The data consists of 6 features, namely the time at which it was tweeted, retweet count, follower count, location (only of those whose location services were turned on at the time of posting), username, and statuses count
Data source location	Worldwide
Data accessibility	The dataset can be accessed through the URL: https://vj-creation.github.io/krl-webpage/resources.html or GitHub Link https://github.com/devmehta01/DiPD
Related research article	Given in the references

2 VALUE OF THE DATA

- This data consists of a collection of eventful and non-eventful tweets. Each tweet is assigned a value of 1 or 0. 1 meaning eventful and 0 meaning non-eventful. The data can be used as input for machine learning systems.
- Machine Learning researchers can benefit from this dataset, while Governmental and Security agencies can also benefit from the machine learning models resulting from this dataset. Government organizations can use this on future tweets to keep track of events and mitigate them before they become violent.
- Features such as tweet location are extracted and can be used to determine where the events are occurring. It also includes features such as user followers and retweet count, which can be used to find the impact factor of the tweet.
- The provided dataset can also be used as a performance benchmark for developing state-of-the-art machine learning systems for disruptive event prediction

3 DATA DESCRIPTION

This paper contains twitter data for the prior prediction of disruptive events. The target class contains two labels - event and non-event. The dataset contains 7 attributes and 263,561 records, out of which 94,855 records are of event class, and 168,706 records are of non-event class. The attributes described in Table 2, contain details about the tweet and information about the user. The data contains numerical and continuous data to be used for analysis based on classification, prediction, segmentation, and association algorithms. The dataset folder contains four csv files,
two for event records (containing both raw and preprocessed tweets) and another for non-event records (with raw and preprocessed tweets).

Table 2. Attributes Table

Nr.	Attribute	Description	Format	Values
1.	created_at	This feature shows us the time and date at which	YYYY/MM/DD	YYYY/MM/DD
		tweet was tweeted	HH:MM:SS	HH:MM:SS
2.	retweet_count	This feature depicts the number of time the given	Numeric	Numeric
		tweet was retweeted		
3.	follower_count	This feature shows the number of followers the	Numeric	Numeric
		tweeter has		
4.	location	This feature depicts the approximate location of	Alphanumeric	Alphanumeric
		the place from where tweet was posted		
5.	username	The feature shows the twitter handle of the user	Alphanumeric	Alphanumeric
6.	statuses_count	The feature shows the number of tweets (including	Numeric	Numeric
		retweets) issued by the user		
7.	label	This feature shows whether the tweet lies in	Boolean	[0,1]
		event or non-event category		

3.1 Data Extraction

In order to extract the tweets, Python’s Twitter API ‘Tweepy’ was used. Event class data was gathered by using keywords containing examples of major disruptive events such as the Farmer’s protests in India and the ‘Black Lives Matter protests. Similarly, Non-event class data was obtained by using a different set of keywords. The algorithm avoids storing retweets. The attributes of the tweet stored are of two types: User-specific information such as the screen name and tweet-specific information such as the text, the number of retweets, the date and more. Extraction was performed multiple times over a few weeks so as to collect as many unique tweets as possible. The data was then preprocessed to remove duplicate tweets. The dataset is deliberately kept slightly unbalanced in accordance to the fact that most of the tweets are usually non-events. Few examples from the dataset are presented in Table 3.

Table 3. Example instances from the dataset

Tweet	Label
@DschlopesIsBack @lickofcow @DoomerCoomer At a black lives matter protest. This isn’t about self de-	1(Event)
fense, this is about rittenhouse not liking BLM standing up to police brutality. Not liking people taking	
a knee, not liking the civil disturbances and protest. Thats why he killed them	
@ArvindKejriwal Ideally pollution should stop after #Diwali What is your excuse now?	1(Event)
"BARRI MASJID" The judgement given over the Babri Masjid verdict was utterly biased just make the ma-	1(Event)
jority happy!! #BabriMasjidVictimOfInjustice https://t.co/qoX2z92ghS"	
This affair has become a toxic combination of the methods of the #MeToo movement and the escalating	1(Event)
aggression by the United States ruling elite toward China.	
#Bitcoin is at 63636 USD	0(Non-event)
Play the #TheLastOfUsPartII on grounded difficulty with permadeath enabled... With a PS4 that random ejects	0(Non-event)
the disk! It’s a different kinda rush cuz.	
so glad seeing taeyong spending his time with his friends	0(Non-event)
Sorry Zomato we are not same.... Prefer Dal Bhaath or Kaanji Bhaath...... Your choices in vast India is very	0(Non-event)
limited. @zomato @zomatocare https://t.co/blHn191Rts	
3.2 Distribution of tweets
As illustrated in Figure 1, tweets from various countries and domains are extracted and their share in the whole dataset is presented. The share of different topics have been drawn out and one
can clearly see the importance of #metoo and climate change. The list of event and non-event keywords which were used for extraction are given in Table 4.

Event Keywords	Non-Event Keywords
#farmersprotest, Black lives matter, Citizenship, #CAAProtest,	Bitcoin, Cricket,
#BLM, #KashmirBeeds, #WeDemandJusticeForAlttaaf, Nabhana	Football, Tennis,
#TamilNaduRain, #DelhiRiot, #BangaloreRiot, #TripuraRiot, #UAPA,	Clothes, Vacation,
#LakhimpurKheri, #IranProtests, #BabriMasjidVictimOfInjustice,	Crypto, Sports,
#RamMandiir, Ayodhya, #MaharashtraRiots, #JusticeForNirbahaya,	Guitar, Keyboard,
#MaharashtraUnsafeWomen, rape, 26/11, #StandWithTaiwan, #FreeHong	Happy Birthday,
Kong, #JusticeForponthanari, section 144, kashmir, article 370,	Movies, music,
#PetrolDieselPriceHike, animal rights, #metoo, #LGBT, climate	leisure, galaxy,
change, yellow vest, NRF, #rotterdamprotest, netherland,	NASA, Science,
#Belgium, #Brussels, Kyle	School, KPop, Fruits
Rittenhouse, cog26, green pass,	Mango, Gym, Workout,
#IranProtests, #BabriMasjidVictimOfInjustice, #RamMandiir, Ayodhya,	Decoration, Mothers
#MaharashtraRiots, #JusticeForNirbahaya, #MaharashtraUnsafeWomen,	day, Teachers day,
rape, 26/11, #StandWithTaiwan, #FreeHongKong, #JusticeForponthan	phone, violin,
#Farmerprotest, Black lives matter, Citizenship, #CAAProtest,	youtube, hiking,
#BLM, #KashmirBeeds, #WeDemandJusticeForAlttaaf, Nabhana	Exam, Haircut,
#TamilNaduRain, #DelhiRiot, #BangaloreRiot, #TripuraRiot, #UAPA,	Outfit, Diwali,
#LakhimpurKheri, #IranProtests, #BabriMasjidVictimOfInjustice,	Shopping, Spotify,
#RamMandiir, Ayodhya, #MaharashtraRiots, #JusticeForNirbahaya,	Facebook, Samsung,
#MaharashtraUnsafeWomen, rape, 26/11, #StandWithTaiwan, #FreeHong	Apple, Phone, Marvel,
Kong, #JusticeForponthanari, section 144, kashmir, article 370,	DC, Pizza
#PetrolDieselPriceHike, animal rights, #metoo, #LGBT, climate	
change, yellow vest, NRF, #rotterdamprotest, netherland,	
#Belgium, #Brussels, Kyle	
Rittenhouse, cog26, green pass,	

The distribution as a whole of event and non-event classes has been shown in the Figure 2. About 36% belong to the event class and the rest to the non-event category. Even though the keywords for event category were more but the tweets extracted were less.

ACKNOWLEDGMENT

This work is supported by a Research Grant under National Supercomputing Mission (India), Grant number: DST/NSM/R&D_HPC_Applications/2021/24.

REFERENCES

[1] [n.d.]. Das M., “Social media posts trigger seven communal riots in a month in West Bengal”. https://economictimes.indiatimes.com/news/. Accessed: 2019-12-10.

[2] [n.d.]. Manuvie, Ritumbra. Explaining the impact of Citizenship (Amendment) ACT: FAQs for the uninitiated. https://www.researchgate.net/publication/338140129. Accessed: 2019-12-24.

[3] Nasser Alsaedi and Pete Burnap. 2015. Feature extraction and analysis for identifying disruptive events from social media. In Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015. 1495–1502.

[4] Nasser Alsaedi, Pete Burnap, and Omer Rana. 2017. Can we predict a riot? Disruptive event detection using Twitter. ACM Transactions on Internet Technology (TOIT) 17, 2 (2017), 1–26.

[5] Mohsen Bahrami, Yasin Findik, Burcin Bozkaya, and Selim Balcisoy. 2018. Twitter reveals: using twitter analytics to predict public protests. arXiv preprint arXiv:1805.00358 (2018).

[6] Panagiotis Panagiopoulos, Alimaghi Ziaee Bigdeli, and Steven Sams. 2012. "5 Days in August"—How London local authorities used Twitter during the 2011 riots. In International Conference on Electronic Government. Springer, 102–113.