Of mice and men: models and mechanisms of diabetic cardiomyopathy

Christian Riehle1 · Johann Bauersachs1

Received: 11 October 2018 / Accepted: 9 November 2018 / Published online: 15 November 2018
© The Author(s) 2018

Abstract
Diabetes mellitus increases the risk of heart failure independent of co-existing hypertension and coronary artery disease. Although several molecular mechanisms for the development of diabetic cardiomyopathy have been identified, they are incompletely understood. The pathomechanisms are multifactorial and as a consequence, no causative treatment exists at this time to modulate or reverse the molecular changes contributing to accelerated cardiac dysfunction in diabetic patients. Numerous animal models have been generated, which serve as powerful tools to study the impact of type 1 and type 2 diabetes on the heart. Despite specific limitations of the models generated, they mimic various perturbations observed in the diabetic myocardium and continue to provide important mechanistic insight into the pathogenesis underlying diabetic cardiomyopathy. This article reviews recent studies in both diabetic patients and in these animal models, and discusses novel hypotheses to delineate the increased incidence of heart failure in diabetic patients.

Keywords Heart failure · Diabetes mellitus · Diabetic cardiomyopathy · Cardiac energetics · Mitochondria · Animal models

Introduction
The prevalence of diabetes is increasing at an alarming rate. Estimations by the World Health Organization (WHO) reported that 422 million adults were affected by diabetes in 2014, compared to 108 million in 1980. In 2004, 3.4 million people died due to complications associated with diabetes, and this number is expected to double by 2030 (www.who.int). There are two predominant types of diabetes; type 1 diabetes (T1D) is characterized by impaired insulin production and insulinopenia as a primary result of an autoimmune response against pancreatic β-cells. In contrast, hallmarks of type 2 diabetes (T2D) are peripheral insulin resistance and pancreatic β-cell failure during the later course of the disease [164].

Diabetes induces micro- and macroangiopathy. The main cause of morbidity and mortality in diabetic patients are cardiovascular complications [175]. Numerous clinical trials indicate diabetes as a major risk factor for myocardial infarction. Similarly, diabetes increases the risk of future heart failure up to fivefold [66, 104, 105, 109, 137]. However, the high prevalence of heart failure in diabetic patients is not explained by concomitant hypertension and coronary artery disease. Over four decades ago, Rubler and colleagues reported autopsy data from diabetic patients with left ventricular (LV) dilatation in the absence of any obvious aetiology for heart failure [169]. Later reports confirmed the initial observation [89, 161], resulting in the concept of “diabetic cardiomyopathy” (DCM). DCM is mainly characterized by diastolic dysfunction in the absence of systolic dysfunction (heart failure with preserved ejection fraction, HFpEF) [125] and increased fibrosis in the absence of hypertension or coronary artery disease. The pathomechanisms underlying the development of DCM are multifactorial and incompletely understood. Consequently, no treatment to prevent or reverse the underlying molecular changes exists at this time [133].

Diabetes has adverse effects on the different cell types of the heart, including endothelial cells [63], fibroblasts [170] and cardiomyocytes. Various small and large animal models of T1D and T2D have been generated to study the impact of diabetes on the heart. These models are based on genetic manipulations, dietary interventions, and treatment with pancreatic toxins, which mimic many aspects of diabetes and DCM. In the present review, we will focus on studies...
performed on diabetic patients and rodent models. We will explore mechanisms, which are mainly present in cardiomyocytes and underlie the pathogenesis of DCM. Before these mechanisms will be discussed in detail, a brief introduction of the most commonly used animal models of T1D and T2D including their strengths and limitations of their use is warranted.

Animal models

Rodents, especially mice and rats, are powerful tools to study the mechanisms involved in the development of DCM. The human, mouse, and rat genomes have nearly the same size, each containing about 30,000 protein-coding genes, with about 99% of the genes encoded in the mouse genome having a homologue in humans [82, 142]. In addition to these genomic similarities, further advantages of rodent models are the short breeding cycle and the availability of a variety of genetically engineered gain-of-function and loss-of-function models. The main characteristics of commonly used rodent models to study various aspects of DCM in comparison with findings from T1D and T2D patients are summarized in the Table 1, and will be discussed in detail below.

Streptozotocin (STZ) is a glucosamine-nitrosourea compound, which is toxic to pancreatic β-cells. Following intraperitoneal injection, STZ is transported into pancreatic β-cells by the glucose transporter 2 (GLUT2) based on its structural similarity to glucose, which results in necrosis and subsequent loss of insulin production [23]. STZ models are used to study both T1D and T2D. High-dose STZ protocols are primarily used to study T1D. Owing to the low penetrance of T2D development with high fat diet (HFD) chow feeding, more recent models have taken advantage of the clinical presentation of late stage T2D and β-cell destruction by adding in very low dose of STZ [11, 132, 144, 160, 218]. Another model of T1D is the OVE26 mouse, which overexpresses the Ca\(^{2+}\)-binding protein calmodulin in pancreatic β-cells, resulting in pancreatic β-cell damage. Non-obese diabetic (NOD) mice develop T1D as a result of leukocyte infiltrate of the pancreatic islets, causing insulitis, and β-cell failure [131]. T1D Akita mice (Ins2\(^{Akita+/−}\)) exhibit a spontaneous mutation in the Insulin2 gene, which facilitates misfolding of the insulin protein, endoplasmic reticulum (ER) stress and ultimately β-cell failure [227]. Although each of these models accurately reflects the insulin deficient nature of T1D, there are some limitations of which the most noteworthy is that they do not adequately capture the autoimmune contribution to the development of T1D in human patients [71, 155].

Commonly used transgenic models of obesity, insulin resistance and T2D are ob/ob [76] and db/db [40] mice, which are based on leptin deficiency or resistance, respectively. Similarly, Zucker fatty (ZF) rats develop obesity as a consequence of non-functional leptin receptors [154]. Zucker diabetic fatty (ZDF) rats were generated by inbreeding ZF rats with high serum glucose levels [51]. Goto-Kakizaki (GK) rats are an inbred strain derived from Wistar rats that spontaneously develop T2D [81]. Mice with adipose tissue-specific overexpression of sterol regulatory element-binding protein-1c (SREBP-1c) develop insulin resistance and elevated plasma triglyceride levels [183]. To avoid potential perturbations based on altered leptin concentrations and signalling, a variety of studies feed rodent models a HFD with increased caloric intake to induce obesity, insulin resistance, and T2D, which will be discussed in detail below.

In addition to these more direct models of diabetes, transgenic models that replicate aspects of DCM have been generated. For example, mice with cardiomyocyte-specific overexpression of the transcription factor peroxisome proliferator activated receptor α driven by the α myosin heavy chain gene promoter (MHC-PPARα) exhibit increased cardiac fatty acid oxidation (FAO) and a phenotype similar to DCM. The investigation of this models helps to explore mechanisms by which perturbed cardiac substrate oxidation impairs contractile function without systemic metabolic alterations that are associated with diabetes [72, 73]. Cardiomyocyte-selective insulin receptor knockout (CIRKO) mice are used to study the effect of decreased insulin signalling in cardiomyocytes without causing systemic metabolic disturbances [14]. The following sections and Fig. 1 summarize the main mechanisms that have been proposed to explain the increased risk of heart failure observed in T1D and T2D. The hypotheses generated are based on studies conducted on either animal models or diabetic patients.

Animal studies with high caloric diets

Numerous studies use dietary treatments to induce obesity, insulin resistance, and T2D in rodents and large animal models [189]. The term “Western” diet is commonly used for diets with a high total fat and sucrose content, which allows mimicking pathologies that have been associated with the “Western” human dietary pattern. In contrast, rodent HFD chow typically contains a variable amount of fat and a variable amount of added cholesterol [94]. Importantly, rodents usually eat any kind of fruit or grain from plants when living in their natural habitat. “Western” diet and HFD chow, which is typically used for laboratory experiments, may contain a fat content of up to 60%. In comparison, the increase in fat intake in rodent models is proportionally higher compared to humans consuming “Western” diets.

HFD feeding with a relatively low fat content (45% calories from fat) is not associated with contractile dysfunction following a short feeding duration in mice; however, systolic
	Type 1 diabetes	Type 2 diabetes	Additional transgenic mouse models
Patients			
Pharmacological			
STZ			
Transgenic			
OVE26			
NOD			
Akita			
Animal models			
Type 1 diabetes			
Patients			
Obesity/Type 2			
diabetes			
Diet-induced ± low-dose STZ			
Transgenic			
ob/ob			
db/db			
ZF/ZDF			
GK			
MHC-PPARα			
CIRKO			
Additional			
transgenic			
mouse models			
Fatty acid oxidation	↑	↑	↑
Oxidation	↑	↑	↑
Glucose oxidation	↓	↓	=/↑
Cardiac efficiency	=/↑	=/↑	=/↑
Mitochondrial function	↓	↓	=/↑
Mitochondrial content	↑	↑	↑
Ca²⁺ dynamics	↓	↓	=/↑
Oxidative stress	↑	↑	↑
Triglycerides/lipo-toxicity	=/↑	↑	↑
RAAS activation	↑	↑	↑
Inflammation	↑	↑	↑
AGE	↑	↑	↑
ER stress	↑	↑	↑
Autophagy	↓	↓	=/↑

*References: [92, 93], [36, 95], [12, 34], [153], [27, 219], [32, 134], [2, 32], [95], [208], [73], [14], [12], [34], [152, 153], [219], [32, 134], [32, 95], [83], [73], [26], [153], [27], [28], [29, 95], [228], [179], [180], [34, 35], [5, 141], [27, 219], [28], [29], [34], [141], [25], [29], [179], [180], [34, 35], [65, 70], [120], [15, 151], [58], [73], [7, 36, 117, 187], [34], [5, 6, 84, 141], [27, 193], [132, 144], [120], [29], [7, 54, 205], [172], [72], [26], [72], [12, 156], [135, 145, 167, 177], [13, 27, 43, 158], [32, 48], [1, 32], [177, 232], [72], [14], [30, 187], [196, 210, 214–217], [111, 139, 193], [149], [193], [147], [7], [119, 124, 222], [231], [221], [141, 143], [91, 112, 136].
Table 1 (continued)

	Type 1 diabetes	Type 2 diabetes	Additional transgenic mouse models											
Patients	Animal models													
	Pharmacological	Transgenic												
STZ	OVE26	NOD	Akita											
	Diet-induced ± low-dose STZ	HFD/HSD	HFD + low-dose STZ	ob/ob	db/db	ZF/ZDF	GK	MHC-PPARα	CIRKO					
Cell death	↑ [46]	↑ [22, 96, 103, 173]	↑ [6, 46, 77]	↑ [10]	↑ [10]	↑ [232]								
Fibrosis	↑ [37, 187, 203]	↑ [210]	= [12]	↑ [161, 182]	↑ [136, 158]	= [48, 202]	↑ [232]	= [73]	= [14]					
Contractile function	↓/=↑ [31, 47, 168, 174, 184, 229]	↓ [96, 114, 128, 195]	↓ [179, 210, 221, 226]	↓ [64, 150]	↓ [12, 34]	↓ [69, 75, 104, 105, 109]	=/=↑ [32, 48, 134]	=/=↑ [1, 29, 32, 147]	↓ [83, 177]	↓ [98]	↓ [73]	=/=↑ [14, 26]		
Cardiac size	=/=↑ [47, 110, 108, 174]	↓ [36, 37, 95]	↑ [210]	↓ [150]	↓ [12, 34]	↑ [62]	=/=↑ [43, 158, 193, 198]	=/=↑ [132, 144]	=/=↑ [28, 32, 48, 65, 120, 134]	=↑ [1, 2, 29, 32]	↑ [54]	↑ [61]	↑ [73]	=↑ [14]

↑ increased; ↓ decreased; = no difference observed. AGE, advanced glycation end products; CIRKO, mice with cardiomyocyte-selective insulin receptor deletion; ER, endoplasmic reticulum; GK, Goto-Kakizaki rats; HFD/HSD, high fat/high sucrose diet; MHC-PPARα, mice with cardiomyocyte-specific overexpression of peroxisome proliferator activated receptor α (PPARα); NOD, non-obese diabetic mice; OVE26, OVE26 diabetic mice; RAAS, renin–angiotensin–aldosterone system; STZ, streptozotocin; ZDF, Zucker diabetic fatty rats; ZF, Zucker fatty rats.
dysfunction develops after a prolonged duration of 20 weeks [198]. In contrast, HFD feeding of mice with 60% fat content contributes to systolic dysfunction after only 10 weeks of feeding and increases mortality [13], which suggests potential toxic effects for high caloric diets with a relatively high fat content. Similarly, exposure to “Western” diet (36% fat content and 36% sugar content) leads to solely diastolic dysfunction, while systolic function is preserved after a total duration of 8 months [158]. Other important parameters that could provide an explanation for the different phenotypes observed are the duration of the dietary treatment and the genetic background of the species used [211].

An additional mechanism is a potential biphasic response of cardiac insulin signalling, even though not directly proven across these studies. Cardiac insulin signalling is preserved in T2D humans and rodent models following short-term HFD feeding [55, 219]. However, prolonged HFD feeding in animal models impairs Akt activation and forkhead box O-1 (FOXO1) transcription factor phosphorylation [13], which results in persistent FOXO1 nuclear localization.
and activation. The FOXO1-mediated adverse effects are multifactorial, including induction of autophagy, atrophy, and MHC isoform switching. The adverse consequences of persistent FOXO1 activation are supported by attenuated systolic dysfunction following long-term HFD feeding of mice with genetic deletion of FOXO1 [13]. Further experimental evidence is provided by transgenic animals with cardiomyocyte-specific deletion of IRS1 and IRS2, which exhibit severe heart failure [157, 166]. This effect is ameliorated by the deletion of FOXO1 [157]. The potential biphasic response of insulin signalling is important to consider in the design of future studies. Posttranslational modification of FoxO1 also mediates cardiac collagen and protein metabolism as reported in the context of ischemic heart failure [107].

Several studies subjected rodents to high caloric diets in addition to low-dose STZ treatment [11, 132, 144, 160, 218] to induce ß-cell dysfunction and insulinopenia, which are long-term complications of T2D. To objective of these studies is to overcome the potential low penetrance of diabetes development following HFD feeding in rodents. Similar to studies using HFD, the additional treatment with STZ promoted oxidative stress, cardiac hypertrophy and contractile dysfunction in diabetic mice [132, 144].

Mechanisms contributing to myocardial dysfunction in diabetic patients and rodent models of T1D and T2D

Altered substrate metabolism

Diabetes is characterized by increased FAO and decreased glucose oxidation (GLOX, Figs. 1, 2) in the heart as described for T1D [92, 93] and T2D patients [152, 153], and several rodent models (summarized in the Table 1). Multiple mechanisms mediate the shift in substrate oxidation. The earliest defects are impaired translocation and abundance of glucose transporter 4 (GLUT4), as observed in a rodent model of HFD-induced obesity and insulin resistance [219]. These data imply impaired myocardial glucose utilization for the initial increase in FAO (Randle phenomenon [159]), even before any change in serum concentrations of free fatty acids and triglycerides. Glucose uptake and cellular membrane GLUT4 expression are decreased in heart tissue from T2D patients, while insulin receptor (IR) mediated signalling is increased [55]. An independent mechanism, which may increase fatty acid uptake in diabetic hearts, is enhanced fatty acid translocase (FAT/CD36) transport to the plasma membrane [57]. Under diabetic conditions, increased circulating concentrations of fatty acids increase the activity of the transcription factor PPARα [24]. PPARα drives the expression of genes involved in fatty acid uptake, transport, and oxidation [165]. In addition, PPARα induces the expression of pyruvate dehydrogenase kinase 4 (PDK4), thereby decreasing pyruvate dehydrogenase (PDH) activity and further suppressing GLOX [32, 219]. Importantly, hearts from MHC-PPARα mice are characterized by increased FAO and a metabolic phenotype similar to that found in DCM [73, 87].

ATP production from fatty acid substrates is less efficient than glucose-based ATP production (ATP generated/O₂ consumed). Increased FAO rates in diabetic hearts enhance myocardial oxygen consumption (mVO₂). However, contractile function does not increase and cardiac efficiency (cardiac work/mVO₂) decreases. Studies in ob/ob and db/db mice indicate that mitochondrial uncoupling and increased reactive oxygen species (ROS) levels parallel the increase in FAO [28, 29]. The increase in ROS might be a consequence of an imbalance between a dysfunction of the mitochondrial electron transport chain and the increased amount of reducing equivalents generated by increased FAO. ROS have a very short half-life and are considered to cause cellular damage in close proximity to their origin, which implies mitochondria as a primary target of ROS [33]. ROS activate uncoupling proteins (UCPs) [67] that enable protons to bypass the ATP synthase embedded in the inner mitochondrial membrane, resulting in mitochondrial uncoupling (decreased coupling of mitochondrial ATP production to mVO₂). Subsequently, FAO increases and cardiac efficiency is further impaired. Similar to T2D animal models, obese young women exhibit insulin resistance, increased mVO₂ and FAO [153]. Importantly, fatty acid-mediated mitochondrial uncoupling, increased ROS levels and decreased cardiac efficiency are not present in T1D Akita mice [34], which is in contrast to T2D ob/ob and db/db mice [29, 120]. Thus, varied mechanisms might be responsible for the altered myocardial substrate utilization in the different types of diabetes. The hypothesis has been raised that ROS-mediated mitochondrial uncoupling may not be attributable to hyperglycaemia alone and may be a potential consequence of insulin resistance and T2D. This is supported by recent studies in CIRKO hearts, which exhibit increased oxidative stress and mitochondrial uncoupling under normoglycaemic conditions [26].

Mitochondrial dysfunction

Mitochondrial dysfunction is a key feature of DCM and is observed in cardiac tissue from diabetic patients and models of T1D and T2D (see Table 1). Based on the mechanistic insight gained from rodent studies, the mechanisms for decreased mitochondrial oxidative capacity [5, 26–29, 34–36, 74, 95, 117, 179, 180, 219] include altered mitochondrial ultrastructure [25, 26, 29, 179, 180], proteomic remodelling [35, 88, 180, 200], and oxidative damage of
proteins and mitochondrial DNA [206]. Additional mechanisms for mitochondrial dysfunction comprise perturbed mitochondrial Ca\(^{2+}\) dynamics, mitochondrial uncoupling in T2D and decreased cardiac insulin signalling in T1D, which are described in detail in the corresponding sections of this review. Compelling data for mitochondrial dysfunction in T2D patients have been provided by a series of studies by Anderson and colleagues. These studies utilized right atrial cardiac tissue, which exhibit mitochondrial dysfunction, increased oxidative stress, increased H\(_2\)O\(_2\) emission, and increased sensitivity to Ca\(^{2+}\)-induced opening of the mitochondrial permeability transition pore (mPTP) [5, 6].

Recently, Jelenik and colleagues showed decreased mitochondrial coupling and efficiency in ventricular tissue from patients with impaired insulin sensitivity [101]. Importantly, mitochondrial capacity is greater in ventricular compared to atrial tissue samples in humans, which provides a rationale to study mitochondrial function preferably in ventricular tissue [118]. Maximum respiration capacity is impaired in isolated mitochondria from patients with non-alcoholic steatohepatitis (NASH) and hepatic insulin resistance. This provides evidence for mitochondrial dysfunction under...
conditions of insulin resistance even before the onset of diabetes [113].

Impaired Ca²⁺ handling

Ca²⁺ enters cardiomyocytes through voltage-dependent L-type Ca²⁺ channels (dihydropyridine receptor, DHPR) contributing to Ca²⁺ release from the sarcoplasmic reticulum by ryanodine receptors (RyR) and contraction in systole. Intracellular Ca²⁺ concentrations decrease to diastolic levels following Ca²⁺ transport into the sarcoplasmic reticulum via SERCA2a and into the extracellular environment via the sarcolemmal Na⁺/Ca²⁺ exchanger (NCX). In addition to these widely studied mechanisms of Ca²⁺ handling more recent evidence supports that regulation of store-operated Ca²⁺ entry (SOCE) may also be important in the development of DCM, specifically via post-translational regulation of stromal interaction molecule 1 (STIM1) [233]. Intramitochondrial Ca²⁺ concentrations change during the contraction cycle [99], which promotes the activity of mitochondrial enzymes, i.e. PDH, isocitrate dehydrogenase and α-ketoglutarate dehydrogenase [60, 146]. Ca²⁺ handling is perturbed in T1D animal models; for example, following STZ treatment [190, 195, 230]. In T2D db/db mice, sarcoplasmic reticulum Ca²⁺ load is decreased, Ca²⁺ leakage from the sarcoplasmic reticulum is increased, and rates of Ca²⁺ decay are reduced [15, 151]. Similarly, ob/ob mice exhibit impaired mitochondrial Ca²⁺ handling and decreased rates of intracellular Ca²⁺ release following electrical stimulation [65, 70]. Cardiac fibres from T2D patients show decreased myofilament function as a consequence of impaired Ca²⁺ sensitivity and support the findings from rodent models [102]. Together, these studies indicate that perturbed Ca²⁺ handling accelerates the development of contractile dysfunction in T1D and T2D (Figs. 1 and 2).

Oxidative stress

Oxidative stress plays an essential role in the development of DCM, as described for humans [5, 6, 84, 141] and rodent models of T1D and T2D (summarized in the Table 1). Oxidative stress can result from increased levels of ROS, which is caused by either increased mitochondrial ROS generation or decreased efficiency of ROS scavengers, i.e. glutathione peroxidase (GPX), catalase, and manganese superoxide dismutase (MnSOD). Oxidative stress regulates several adverse mechanisms, including protein oxidation, generation of lipid peroxides, and formation of reactive nitrogen species from nitric oxide, which contributes to intracellular nitrosylation, such as protein tyrosine nitration [199]. Evidence for increased oxidative stress is provided by a study that utilized cardiac tissue from T2D patients, in which increased emission of mitochondrial H₂O₂ and increased abundance of 3-nitrotyrosine- and 4-hydroxyxenonenal (HNE)-modified proteins were observed [6]. Furthermore, overexpression of MnSOD or catalase attenuates the onset of mitochondrial dysfunction and impaired cardiomycyte contractility in T1D OVE26 mice [179, 226].

Renin–angiotensin–aldosterone system (RAAS) activation

RAAS hyperactivation contributes to cardiac remodelling. RAAS inhibitors (angiotensin-converting enzyme (ACE) inhibitors, angiotensin (AT) receptor blockers and aldosterone receptor antagonists) are well-established standard treatments for chronic heart failure. The activity of the RAAS is increased under diabetic conditions [53]. Similarly, in vitro studies in neonatal rat ventricular myocytes (NRVM) identified high glucose levels as stimulators for intracellular AT II synthesis [186]. AT II receptor type 1 (AT1R) density and synthesis are increased in T1D hearts, and the increase in fibrosis is partially inhibited following treatment with ACE inhibitors and AT receptor blockers [30, 187, 214]. Together, these studies suggest that RAAS activation adversely affects cardiac structure in DCM.
Inflammation

Studies using rodent models of T1D and T2D identified a critical role for increased myocardial inflammation in the progression of DCM. Hearts from T1D mice and rats show increased leukocyte infiltration, increased levels of pro-inflammatory cytokines (TNFα and IL-1β), increased expression of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1, and increased activity of the collagen degrading matrix metalloproteinase (MMP), which increases inflammation and fibrosis [196, 214, 217]. Similar data were obtained from HFD-fed and T2D rodents [100, 111, 139]. The detrimental effects caused by increased inflammation are further supported by the beneficial outcomes of a variety of interventions, which decrease inflammation in the hearts of diabetic rodents, i.e. TNFα antagonist treatment [214], AT receptor antagonist treatment [214], and pharmacological inhibition of p38 MAPK [215] or interleukin converting enzyme [216].

Advanced glycation end products (AGE)

Under hyperglycaemic conditions, AGE are formed both intra- and extracellularly via the Maillard reaction. AGE are a heterogeneous group of compounds that are formed following non-enzymatic binding of sugar derivatives to proteins, lipids and nucleic acids, which impairs the physiological function of the molecules bound [21, 185]. For example, AGE are formed on SERCA2a and Ryr, which perturbs Ca²⁺ dynamics [18, 19]. Furthermore, AGE cross-link collagen molecules, contributing to increased fibrosis and contractile dysfunction [148]. In addition, AGE bind to their cognate receptor, receptor for advanced glycation end products (RAGE), which is located on the cellular membrane. One mechanism for RAGE-mediated heart failure is activation of NF-κB signalling, which increases β-MHC expression, as evidenced by attenuated contractile dysfunction and β-MHC expression in db/db mice following blockade of RAGE signalling [147]. Similar effects are present in T1D and T2D rats following treatment with the antioxidant dehydroepiandrosterone (DHEA), thus indicating a critical role for oxidative stress in the activation of RAGE-mediated pathways under diabetic conditions [7]. Additional RAGE-mediated mechanisms are increased ROS production and pro-inflammatory signalling [21]. Transgenic overexpression of the methylglyoxal-metabolizing enzyme glyoxalase-1 (GLO1) in mice decreases methylglyoxal-AGE levels and attenuates the onset of heart failure following myocardial infarction. These mice exhibit increased vascular density and decreased cardiomyocyte apoptosis compared to wild-type controls, which is paralleled by increased recruitment of c-kit⁺ progenitor cells and their incorporation into the vasculature [20]. Repeated percutaneous infusions of cardiac mesenchymal cells in mice with ischemic cardiomyopathy significantly improve contractile function compared to a single dose treatment, which suggests that multiple infusions are required for the full therapeutic potential of cell therapy [86]. In STZ-induced T1D rats, treatment with the cross-link breaker ALT-711 decreases cardiac AGE levels, restores collagen solubility, and diminishes diabetes-induced gene expression [37]. Similarly, siRNA-mediated knockdown of RAGE attenuates LV dysfunction in T1D mice [128].

ER stress

The main physiological function of the ER is Ca²⁺ storage and folding of proteins. Accumulation of unfolded proteins inside the ER lumen causes a stress response, termed ER stress, which can result in apoptotic cell death in rodent models of T1D and T2D [115, 222]. ER stress also activates the unfolded protein response (UPR), which attenuates this effect. The main task of the UPR is to maintain cellular integrity by decreasing protein synthesis, degrading misfolded proteins, and increasing the synthesis of chaperones, which facilitate protein folding. Numerous studies have suggested a causative role for oxidative stress in the induction of ER stress under diabetic conditions [119, 124, 222].

Autophagy

Autophagy is an evolutionarily conserved process that recycles long-lived proteins and organelles to maintain cellular homeostasis. Depending on the extent of autophagy and its duration, autophagy can have both beneficial and detrimental effects. Perturbed autophagy is associated with the pathogenesis of infectious diseases, cancer, obesity, and various disease conditions of the heart, including ischemia/reperfusion injury, cardiac hypertrophy and DCM [112, 163]. Studies have provided opposing results in the context of DCM. Autophagy is decreased in rodent models of T1D [221, 231]. The proposed mechanisms comprise repression of AMPK and activation of mTOR under hyperglycaemic conditions. In contrast, autophagy is increased in some animal models of diet-induced obesity and T2D, but the evidence for this has not been consistent [91, 112, 136]. The underlying mechanisms for the differences in autophagy in T1D relative to T2D and the various models investigated need further investigation.

While T1D is associated with insulinopenia and impaired cardiac insulin signalling, proximal insulin signalling is preserved in T2D [55, 219]. Preserved insulin/mTOR signalling could be predicted to suppress autophagy in T2D, which is in contrast to some of the prior investigations. Therefore, differences in insulin signalling cannot fully explain the differences in autophagy when comparing the different types of
diabetes. This also suggests that multiple mechanisms regulate autophagy in DCM that are, at least in part, independent of cardiac insulin signalling. It is also important to note that autophagy is a highly dynamic process and the differences detected might be attributed to experimental limitations in determining autophagic flux. Thus, additional research is warranted to gain further mechanistic insight and elucidate the impact of autophagy in DCM.

Posttranslational modification (PTM)

PTMs can alter the activity of proteins. Metabolic-driven PTMs are particularly important in diabetes, i.e. acetylation and O-GlcNAcylation. Sirtuins (SIRTs) are defined as NAD+-dependent class III histone deacetylases that deacetylase target proteins involved in FAO, glucose metabolism, and mitochondrial energetics. SIRTs are differentially regulated in models of heart failure and in animal models of T1D and T2D. For example, cardiac SIRT3 expression is decreased in HFD-fed mice, which increases acetylation of mitochondrial β-oxidation enzymes and increases FAO [4]. Expression of SIRT isoforms is mediated by dietary interventions and pharmacological treatment; for example, treatment with the anti-oxidant resveratrol increases the expression of SIRT1 [207], implying SIRTs as potential pharmacological targets.

Increased protein O-GlcNAcylation has adverse effects in DCM as recently reviewed [212]. Glucose is converted to fructose-6-phosphate in the first steps of glycolysis, which enters the hexosamine biosynthesis pathway (HBP). Under physiological conditions, about 5% of total glucose is metabolized in the HBP, which is further increased under diabetic conditions. Multiple pathways provide intermediates for the HBP, including metabolic pathways for the biosynthesis and degradation of amino acids, fatty acids, and nucleotides, which directly links the availability of nutrients to the substrate supply of the HBP. The end product of the HBP, uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc), is transferred to serine or threonine residues of target proteins by the enzyme O-GlcNAc transferase (OGT), a process termed O-GlcNAcylation. In contrast to non-enzymatic AGE formation, O-GlcNAcylation is a reversible postranslational modification, with UDP-GlcNAc removal catalysed by O-GlcNAcase (OGA). Multiple nuclear, cytoplasmic, and mitochondrial proteins are targets for O-GlcNAc modification. O-GlcNAcylation also plays a central role in Ca^{2+} homeostasis, as evidenced by the modification of transcription factors regulating the expression of SERCA2a [52] and the sarcoplasmic reticulum protein STIM1, thereby attenuating SOCE and Ca^{2+} signalling [233]. O-GlcNAcylation of Ca^{2+}/calmodulin-dependent protein kinase 2 (CAMKII) impairs Ca^{2+} handling and increases the risk of cardiac arrhythmia in diabetes [68].

O-GlcNAcylation directly impairs mitochondrial capacity. Proteomic studies identified 86 mitochondrial proteins as O-GlcNAc targets, with target proteins involved in major metabolic pathways, including the FAO and tricarboxylic acid (TCA) cycles [129]. UDP-GlcNAc is transported from the cytosol into mitochondria by the pyrimidine nucleotide carrier (PNC1) and cardiac mitochondria express both OGA and OGT [9]. OGT expression is increased in mitochondria from T1D rat hearts and modulation of OGT or OGA activity affects mitochondrial capacity [9]. These data indicate that cardiac mitochondria express the required machinery for O-GlcNAc modification which, in turn, regulates mitochondrial capacity. Together, O-GlcNAcylation provides an exciting new area of research, linking the availability of nutrients to cardiac energetics and contractile dysfunction, which may accelerate the onset of heart failure in diabetes.

Epigenetics

Epigenetics is a rapidly expanding area of research and refer to a heritable modification of gene expression without alterations in DNA sequences. The modifications include non-coding RNAs (i.e. microRNAs and long-noncoding RNAs), DNA methylation, and histone modifications. Epigenetics are important during embryogenesis and play a central role during development and the pathogenesis of various disease conditions, including DCM. In addition to the transgenerational nature of epigenetics, these modifications can also be part of transcriptional regulation and may be regulated by altered metabolic flux directly associated with hyperglycaemia and other metabolic changes seen in diabetes [56].

miRNAs and IncRNAs

MicroRNAs (miRNAs or miRs) are short, single-stranded, non-coding RNA molecules consisting of about 22 nucleotides. The majority of miRNAs are encoded within the introns of protein-coding and non-coding genes. miRNAs are evolutionarily conserved and regulate gene expression at the post-transcriptional level. The mechanisms of miRNA-based gene regulation include binding of miRNAs to mRNAs for later degradation or repression of translation. Each miRNA can target multiple mRNAs, which provides the possibility to a single miRNA to orchestrate an entire pattern of gene expression. miRNAs play an important role in the regulation of cellular energy homeostasis, metabolism, and pathogenesis of numerous diseases, including diabetes. For example, miRNAs-103/107 are up-regulated in livers from ob/ob and diet-induced obese mice, and silencing of miRNAs-103/107 improves glucose homeostasis and insulin sensitivity [194]. Numerous miRNAs regulate cardiac fibrosis and hypertrophy [191]. For example, miRNA-21 augments pathological cardiac...
remodelling by stimulating MAP kinase signalling in fibroblasts [192]. Similarly, miRNAs are differentially regulated in diabetic hearts [85, 126, 178]. One example is miRNA-223, which is upregulated in LV biopsies from T2D patients and regulates GLUT4 expression and glucose uptake [126]. As previously reviewed, miRNA expression is altered in rodent models of T1D and T2D [85, 176]. One example of this has been observed in T2D ZDF rats, in which dysregulated miRNA-29 expression is correlated with cardiac structural damage [8]. Furthermore, differences in miRNA profiles regulate the hyperglycaemic memory in DCM. miRNA array analysis performed on LV tissue from STZ-induced T1D mice indicated dysregulation of 316 out of 1008 miRNAs. Following normalization of blood glucose levels by insulin treatment, the expression of 268 miRNAs remained significantly altered, thus suggesting a contribution of miRNAs to glycemic memory. Ingenuity pathway analysis indicates that dysregulated miRNAs are implicated in myocardial signalling networks regulating autophagy, hypertrophic growth, oxidative stress, fibrosis, and heart failure, all of which are characteristics of DCM [39].

Long-non-coding RNAs (lncRNAs) are transcripts that are longer than 200 nucleotides, which can repress or enhance gene expression [204]. Similarly to miRNAs, lncRNAs contribute to the development of DCM [121, 127]. Circulating lncRNAs predict LV diastolic function and remodelling in patients with T2D [59]. The rapidly growing field of non-coding RNA research will likely provide additional insights into non-coding RNAs and the development of DCM.

DNA methylation

DNA methylation involves the transfer of a methyl group to cytosine of CpG dinucleotides in promoter regions to form 5-methylcytosine, which typically represses gene transcription. The expression of genes associated with the development of DCM is regulated by the methylation status of CpG islands, for example SERCA2a [106]. Another example is the expression of liver X receptor-α (LXRα), which is increased in cardiac tissue from T1D rats and regulates the expression of fatty acid metabolism genes. Bisulfite genomic sequencing showed significant differences in the methylation status of the CpG island at the LXRα promoter region [42]. Oxidative stress mediates DNA methylation in T1D hearts, which inhibits DNA synthesis and increases p53-dependent cell death signalling. Oxidative stress-mediated mechanisms involve methylation of the gene encoding the p53-inducible cyclin-dependent kinases (cdks) inhibitor p21WAF1/CIP1, which inhibits DNA synthesis and prevents the replication of damaged DNA [140]. These data link epigenetic DNA modifications to the pathogenesis of DCM.

Histones modifications

Histones package DNA into structural units called nucleosomes, which are the first level of chromatin organization. Each nucleosome consists of an octameric histone core wrapped in 147 base pairs of DNA. Histone tails are modified by a variety PTMs, including methylation, phosphorylation, ubiquitylation, and acetylation, which regulates gene expression. The acetylation status of histones is a major epigenetic mechanism that is mediated by histone acetyltransferases (HATs) and histone deacetylases (HDACs). HDACs play a critical role in embryonic development, cardiac hypertrophy and heart failure. There is emerging evidence that HDACs are involved in the development of DCM, as indicated by attenuated interstitial fibrosis and apoptosis following HDAC inhibition in T1D mice [41, 223]. Furthermore, histones H2A, H2B and H4 are modified by O-GlcNAcylation [171], thereby directly linking nutrient availability to gene expression.

Decreased β‑adrenergic signalling

Signalling pathways transduced by the IR and β‑adrenergic receptors (βARs) mediate divergent and overlapping pathways in the heart. Recent studies revealed a critical crosstalk between insulin and β-adrenergic signalling, which impairs cardiac contractility in T2D [78, 209]. βAR signalling is increased in heart failure. Studies in humans and animal models show that cardiac insulin signalling is preserved or increased in diet-induced obesity, T2D, and heart failure [55, 181, 219]. Pressure overload-induced hypertrophy and heart failure result in hyperinsulinemia and systemic insulin resistance, which accelerate adverse LV remodelling. This effect is attenuated by systemic insulin deficiency or genetic reduction of cardiac IR-transduced signalling by heterozygous cardiomyocyte-specific deletion of the IR [181]. Importantly, large clinical studies have shown that strict insulin treatment of T2D patients increases mortality, despite a reduced incidence of microvascular complications, such as nephropathy and neuropathy [3].

β1AR is the predominant βAR receptor subtype expressed in cardiomyocytes, which couples to stimulatory G protein, Gs. In contrast, β2ARs bind to both Gs and inhibitory G protein, Gi. Gi-mediated signalling induces cyclic adenosine 3′,5′-monophosphate (cAMP)-dependent activation of protein kinase A (PKA) and phosphorylation of phospholamban, which increases myocyte contractility [220]. IR and βARs share Gi [188] and G-protein receptor kinase 2 (GRK2) [49, 50, 201] as common downstream effectors, which serve as nodes linking these two signalling pathways. A functional membrane complex consisting of the IR and β2AR was also recently discovered [78, 79]. Insulin stimulates translocation of GRK2 to the IR, which contributes to...
GRK2-mediated phosphorylation of the β2AR and enhanced G_i-mediated signalling. Insulin increases the expression of phosphodiesterase 4D (PDE4D), which antagonizes cAMP activity and decreases PKA phosphorylation, thereby promoting contractile dysfunction [209]. Induction of PDE4D and contractile dysfunction are attenuated in HFD-fed mice following pharmacological inhibition of GRK2 with paroxetine, a FDA-approved selective serotonin reuptake inhibitor. Similar data were obtained following treatment with the β2AR blocker Carvedilol [209]. This mechanism provides a potential explanation for the harmful effects of intensive insulin treatment observed in T2D patients, suggesting GRK2 and β2AR as potential promising pharmacological targets for the treatment of cardiomyopathy in T2D.

Increased cell death

Increased apoptotic and necrotic cardiomyocyte death is commonly detected in patients [6, 46, 77] and rodent models of T1D and T2D [10, 22, 96, 103, 173, 232]. Right atrial appendages from T1D and T2D patients subjected to elective coronary artery bypass surgery exhibit increased rates of apoptosis and necrosis, which are exacerbated following simulated ischemia/reperfusion [46]. The proposed mechanisms triggering cell death are increased caspase activation [46], ROS production [96], ER stress [173], activation of death-receptor- and mitochondrion-dependent pro-apoptotic pathways [22], RAAS activation [103], and leptin deficiency, as indicated by decreased apoptosis in ob/ob mice following leptin treatment [10].

Structural and functional consequences

Increased fibrosis

In DCM, increased collagen accumulation is observed in perivascular loci, between myofibers, and as replacement fibrosis [161]. Similarly, type III, but not type I or IV collagen deposition, is increased in myocardial biopsies from T2D patients without prior history of hypertension and coronary artery disease [182]. Increased myocardial fibrosis may contribute to diastolic dysfunction in DCM. Serum concentrations of the carboxy-terminal propeptide of procollagen type I (PIP), a marker of myocardial fibrosis, are increased in T2D patients with overt diastolic function, in which lower mitral and tricuspid E/A ratios were detected [97]. Fibrosis is also increased in some animal models of T1D [37, 187, 203, 210] and T2D [138, 232]. The mechanisms responsible for increased fibrosis and connective tissue content include AGE-mediated remodelling of the extracellular matrix (ECM), increased transforming growth factor β (TGFβ)-mediated signalling, increased connective tissue growth factor (CTGF) expression, and decreased expression of MMP-2, resulting in attenuated extracellular matrix degradation [203].

Diastolic dysfunction

A key clinical feature of DCM is diastolic dysfunction (see Fig. 3) with preserved ejection fraction (HFpEF), which may precede the later onset of systolic dysfunction (heart failure with reduced ejection fraction, HFrEF). As discussed in the

Fig. 3 Diastolic dysfunction in the absence of coronary artery disease in a patient with type 2 diabetes. **a** Preserved diastolic function in a normal subject as indicated by the E/A wave ratio (E: peak velocity blood flow in early diastole, A: peak velocity blood flow in late diastole caused by atrial contraction). **b** E/A’ wave ratio (E’: peak mitral annular velocity during early diastolic filling, A’: peak mitral annular velocity during late diastolic filling caused by atrial contraction). **c** Diastolic dysfunction in a patient with type 2 diabetes as indicated by an abnormal high (“pseudonormal”) E/A wave ratio and E/E’ wave ratio as calculated from the values presented in panels (c) and (d). Images were adjusted to the same scales. Coronary angiogram of the e right coronary artery system and f left main coronary artery system from the same patient presented in panels (c/d) indicating no concomitant coronary artery disease.
Cardiac hypertrophy

Another clinical feature of DCM is LV hypertrophy, especially in T2D. While data from the Framingham Heart Study and the Framingham Offspring Study show an association between diabetes, LV wall thickness and mass in women, but not in men [80], the Strong Heart Study conducted in Native Americans reports increased LV mass and wall thickness in both men and women [62]. Data from the Strong Heart Study suggest that LV hypertrophy increases the risk of future heart failure, especially in the context of co-existing hypertension [17]. LV hypertrophy is not observed in patients with impaired fasting glucose [162], indicating that LV hypertrophy might result from hyperglycaemia and other metabolic changes associated with longer existing diabetes. Proposed mechanisms contributing to LV hypertrophy are hyperactivation of the insulin signalling cascade in obese and T2D patients [55, 108] and increased levels of circulating pro-inflammatory cytokines. In contrast, most studies do not report myocardial hypertrophy in T1D patients [47, 168, 174] and animal models of T1D (see Table 1). Similarly, genetic deletion of the insulin receptor decreases cardiac size [14]. These studies further highlight the impact of insulin as a growth factor and hyperinsulinemia as a pathomechanism for LV hypertrophy in obesity and T2D.

Summary and conclusions

Various pathomechanisms contribute to the pathogenesis of DCM. Rodent models are essential tools to decipher these mechanisms and mimic perturbations observed in T1D and T2D patients. Despite specific limitations of the models generated, transgenic mice are indispensable for mechanistic studies that provide mechanistic insight into the pathogenesis of DCM. Different treatment strategies have been tested in patients with diabetes mellitus and heart failure. These studies indicate that diabetic patients benefit from standard heart failure treatment. However, previous studies also suggest that selected diabetes mellitus treatment regimens may have adverse effects on cardiac function and increase heart failure hospitalization [130, 164]. These observations also emphasize the need for additional studies to gain further mechanistic insight. Recent advancements in genome editing will result in the generation of novel models in the near future. These models will aid our understanding of the pathophysiology of DCM and hopefully accelerate the development of new therapeutic strategies for this rapidly expanding form of heart disease.

Acknowledgements

This work was supported by the German Research Foundation, Clinical Research Unit (KFO) 311. Figures were produced using templates from Servier Medical Art (www.servier.com). The authors thank Dr. Jan-Thorben Sieweke for his help in preparing the figures.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Open Access

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Aasum E, Belke DD, Severson DL, Riemersma RA, Cooper M, Andreassen M, Larsen TS (2002) Cardiac function and metabolism in Type 2 diabetic mice after treatment with BM 17.0744, a novel PPAR-alpha activator. Am J Physiol Heart Circ Physiol 283:H949–957. https://doi.org/10.1152/ajpheart.00226.2001
2. Aasum E, Hafstad AD, Severson DL, Larsen TS (2003) Age-dependent changes in metabolism, contractile function, and
6. Anderson EJ, Rodriguez E, Anderson CA, Thayne K, Chitwood
5. Anderson EJ, Kypson AP, Rodriguez E, Anderson CA, Lehr EJ,
4. Alrob OA, Sankaralingam S, Ma C, Wagg CS, Fillmore N, Jas-
3. Action to Control Cardiovascular Risk in Diabetes Study G,
9. Banerjee PS, Ma J, Hart GW (2015) Diabetes-associated dys-
8. Arnold N, Koppula PR, Gul R, Luck C, Pulakat L (2014) Regu-
7. Aragno M, Mastrocola R, Medana C, Catalano MG, Vercellin-
11. Barriere DA, Noll C, Roussy G, Lizotte F, Kessai A, Kirby K,
13. Battiprolu PK, Hojayev B, Jiang N, Wang ZV, Luo X, Iglewski
15. Belke DD, Swanson EA, Dillmann WH (2004) Decreased sar-
coplasmic reticulum activity and contractility in diabetic db/db
dmouse heart. Diabetes 53:3201–3208. https://doi.org/10.2337/
diabetes.53.12.3201
16. Bell DS (2003) Diabetic cardiomyopathy. Diabetes Care
26:2949–2951. https://doi.org/10.2337/diabetescare.26.10.2949
17. Bella MN, Devereux RB, Roman MJ, Palmieri V, Liu JE, Parani-
cas M, Welty TK, Lee ET, Fabsitz RR, Howard BV (2001) Sep-
rate and joint effects of systemic hypertension and diabetes
elitis on left ventricular structure and function in American
Indians (the Strong Heart Study). Am J Cardiol 87:1260–1265.
https://doi.org/10.1016/S0002-9149(01)01516-8
18. Bidasee KR, Nallani K, Yu Y, Cocklin RR, Zhang Y, Wang M,
Dincer UD, Besch HR Jr (2003) Chronic diabetes increases
advanced glycation end products on cardiac ryanodine recep-
tors/calcium-release channels. Diabetes 52:1825–1836.
https://doi.org/10.2337/diabetes.52.7.1825
19. Bidasee KR, Zhang Y, Shao CH, Wang M, Patel KP, Dincer UD,
Besch HR Jr (2004) Diabetes increases formation of advanced
glycation end products on Sarco(endo)plasmic reticulum
Ca2+-ATPase. Diabetes 53:463–473. https://doi.org/10.2337/
diabetes.53.2.463
20. Blackburn NJR, Vulesevic B, McNeill C, Cimence CI, Ahmadi
A, Gonzalez-Gomez M, Ostojic A, Zhong Z, Brownlee M, Beis-
wenger PJ, Milne RW, Suuronen EJ (2017) Methyglyoxal-
derived advanced glycation end products contribute to negative
cardiac remodeling and dysfunction post-myocardial infar-
cation. Basic Res Cardiol 112:57. https://doi.org/10.1007/s0039
5-017-0646-x
21. Bodiga VL, Eda SR, Bodiga S (2014) Advanced glycation end
products: role in pathology of diabetic cardiomyopathy. Heart
Fail Rev 19:49–63. https://doi.org/10.1007/s10741-013-9374-y
22. Bojunga J, Nowak D, Mitrou PS, Hoelzer D, Zeuzem S, Chow
KU (2004) Antioxidative treatment prevents activation of death-
receptor- and mitochondrion-dependent apoptosis in the
hearts of diabetic rats. Diabetologia 47:2072–2080. https://doi.
group.org/10.1007/s00125-004-1572-7
23. Bonnevie-Nielsen V, Steffes MW, Lernmark A (1981) A major
loss in islet mass and B-cell function precedes hyperglycemia
in mice given multiple low doses of streptozotocin. Diabetes
30:424–429. https://doi.org/10.2337/dba.30.5.424
24. Boudina S, Abel ED (2007) Diabetic cardiomyopathy revisited.
Circulation 115:3213–3223. https://doi.org/10.1161/CIRCULA
TIONAHA.106.679597
25. Boudina S, Abel ED (2006) Mitochondrial uncoupling: a key
contributor to reduced cardiac efficiency in diabetes. Physiol
(Bethesda) 21:250–258. https://doi.org/10.1152/physiol.00008
2006
26. Boudina S, Bugger H, Sena S, O’Neill BT, Zaha VG, Ikun O,
Wright JJ, Mazumder PK, Palfreyman E, Tidewell TJ, Theobald
H, Khali monchuk O, Wayment B, Sheng X, Rodnick KJ, Centini
R, Chen D, Litwin SE, Weimer BE, Abel ED (2009) Contribution
of impaired myocardial insulin signaling to mitochondrial dys-
function and oxidative stress in the heart. Circulation 119:1272–
1283. https://doi.org/10.1161/CIRCULATIONAHA.108.792101
27. Boudina S, Han YH, Pei S, Tidewell TJ, Henriët B, Tuijn E, Olsen
U, Sena S, Abel ED (2012) UCPC3 regulates cardiac efficiency
and mitochondrial coupling in high fat-fed mice but not in leptin-
deficient mice. Diabetes 61:3260–3269. https://doi.org/10.2337/
db12-0063
28. Boudina S, Sena S, O’Neill BT, Tathireddy P, Young ME,
Abel ED (2005) Reduced mitochondrial oxidative capacity and
increased mitochondrial uncoupling impair myocardial ener-
gencies in obesity. Circulation 112:2686–2695. https://doi.
group.org/10.1161/CIRCULATIONAHA.105.553460
29. Boudina S, Sena S, Theobald H, Sheng X, Wright JJ, Hu XX, Aziz S, Johnson JI, Bugger H, Zaha VG, Abel ED (2007) Mitochondrial energetics in the heart in obesity-related diabetes: direct evidence for increased uncoupled respiration and activation of uncoupling proteins. Diabetes 56:2457–2466. https://doi.org/10.2337/db07-0481

30. Brown L, Wall D, Marchant C, Sernia C (1997) Tissue-specific changes in angiotensin II receptors in streptozotocin-diabetic rats. J Endocrinol 154:355–362. https://doi.org/10.1677/joe.0.154035

31. Brunvand L, Fugelseth D, Stensaeth KH, Dahl-Jorgensen K, Buchanan J, Mazumder PK, Hu P, Chakrabarti G, Roberts MW, Bugger H, Abel ED (2010) Mitochondria in the diabetic heart. Basic Research in Cardiology (2019) 114:2

32. Costantino S, Paneni F, Luscher TF, Cosentino F (2016) MicroRNA profiling unveils hyperglycaemic memory in the diabetic heart. Cardiovasc Res 103:300–309. https://doi.org/10.1093/cvr/cvq149

33. Cook SA, Varela-Carver A, Mongillo M, Kleinert C, Khan MT, Leccisotti L, Strickland N, Matsui T, Das S, Rosenzweig A, Punjabi P, Camici PG (2010) Abnormal myocardial insulin signalling in type 2 diabetes and left-ventricular dysfunction. Eur Heart J 31:100–111. https://doi.org/10.1093/eurheartj/ehp396

34. Chess DJ, Khairallah RJ, O’Shea KM, Xu W, Stanley WC (2009) A high-fat diet increases adiposity but maintains mitochondrial oxidative enzymes without affecting development of heart failure with pressure overload. Am J Physiol Heart Circ Physiol 297:H1585–1593. https://doi.org/10.1152/ajpheart.00599.2009

35. Chavali V, Tyagi SC, Mishra PK (2014) Differential expression of liver X receptor alpha (LXRalpha) in myocardium of streptozotocin-induced diabetic rats. Inflammation 34:698–706. https://doi.org/10.1007/s10753-010-9281-5

36. Christoffersen C, Bollano E, Lindegaard ML, Bartels ED, Gottardi J, Andersen CM (2012) Genetic loss of uncoupling protein 2 activity impairs cardiac glucose uptake and promotes insulin resistance after myocardial ischemia. Circulation 126:1953–1962. https://doi.org/10.1161/CIRCULATIONAHA.110.988642

37. Cipolletta E, Campanile A, Santulli G, Sanzari E, Leosco D, Campiglia P, Tricarico B, Iaccono G, Koch WJ (2011) G protein–coupled receptor kinase 2 activity regulates cardiac glucose uptake and promotes insulin resistance after myocardial ischemia. J Mol Cell Cardiol 52:1019–1026. https://doi.org/10.1016/j.yjmcc.2012.02.001

38. Connelly KA, Boyle AJ, Kelly DJ (2007) Angiotensin II and the cardiac complications of diabetes mellitus. Curr Pharm Des 13:2721–2729. https://doi.org/10.2174/138161207781662984

39. Conti M, Renaud IM, Poirier B, Michel O, Belair MF, Mandet C, Bruneval P, Myara I, Chevalier J (2004) High levels of myocardial antioxidants in aging nondiabetic normotensive Zucker obese rats. Am J Physiol Regul Integr Comp Physiol 286:R793–800. https://doi.org/10.1152/ajpregu.00521.2002
56. Cooper ME, El-Osta A (2010) Epigenetics: mechanisms and implications for diabetic complications. Circ Res 107:1403–1413. https://doi.org/10.1161/CIRCRESAHA.110.223552

57. Coort SL, Hasselbaink DM, Koonen DP, Willems J, Coumans WA, Chabowski A, van der Vusse GJ, Bonen A, Glatz JF, Luiken JJ (2004) Enhanced sarcosomial FAT/CD36 content and triacylglycerol storage in cardiac myocytes from obese Zucker rats. Diabetes 53:1655–1663. https://doi.org/10.2373/diabetes.53.7.1655

58. Darmellah A, Baetz D, Prunier F, Tamareille S, Rucker-Martín C, Feuvray D (2007) Enhanced activity of the myocardial Na+/H+ exchanger contributes to left ventricular hypertrophy in the Goto-Kakizaki rat model of type 2 diabetes: critical role of Akt. Diabetologia 50:1335–1344. https://doi.org/10.1007/s00125-007-0628-x

59. de Gonzalo-Calvo D, Kennesweg F, Bang C, Toro R, van der Meer RW, Rijzewijk LJ, Smit JW, Lamb HJ, Llorente-Cortes V, Thum T (2016) Circulating long-non coding RNAs as biomarkers of left ventricular diastolic function and remodelling in patients with well-controlled type 2 diabetes. Sci Rep 6:37354. https://doi.org/10.1038/srep37354

60. Denton RM, Randle PJ, Martin BR (1972) Stimulation by calcium ions of pyruvate dehydrogenase phosphate phosphatase. Biochem J 128:161–163. https://doi.org/10.1042/bj1280161

61. Desrois M, Sidell RJ, Gauguier D, Davey CL, Radda GK, Clarke Dong F, Zhang X, Yang X, Esberg LB, Yang H, Zhang Z, Culver B, Ren J (2006) Impaired cardiac contractile function in ventricular myocytes from leptin-deficient ob/ob obese mice. J Biol Chem 281:2689–2695. https://doi.org/10.1074/jbc.M208262200

62. Erickson JR, Pereira L, Wang L, Han G, Ferguson A, Dao K, Copeland RJ, Despa F, Hart GW, Ripplinger CM, Bers DM (2013) Diabetic hyperglycemia activates CaMKII and arrhythmias by O-linked glycosylation. Nature 502:372–376. https://doi.org/10.1038/nature12537

63. Fang ZY, Schull-Meadle R, Leano R, Mottram PM, Prins JB, Marwick TH (2005) Screening for heart disease in diabetic subjects. Am Heart J 149:349–354. https://doi.org/10.1016/j.ahj.2004.06.021

64. Fauconnier J, Lanner JT, Zhang SJ, Tavi P, Brutton JD, Katz A, Westerblad H (2005) Insulin and inositol 1,4,5-trisphosphate trigger abnormal cytosolic Ca2+ transients and reveal mitochondrial Ca2+ handling defects in cardiomyocytes of ob/ob mice. Diabetes 54:2375–2381. https://doi.org/10.2373/diabetes.54.8.2375

65. Feduska JM, Tse HM (2018) The proinflammatory effects of macrophage-derived NADPH oxidase function in autoimmune diabetes. Free Radic Biol Med 125:81–89. https://doi.org/10.1016/j.freeradbiomed.2018.04.081

66. Finck BN, Han X, Courtois M, Aimond F, Nerbomme JM, Kovacs A, Gross RW, Kelly DP (2003) A critical role for PPARalpha-mediated lipotoxicity in the pathogenesis of diabetic cardiomyopathy: modulation by dietary fat content. Proc Natl Acad Sci USA 100:1226–1231. https://doi.org/10.1073/pnas.0336724100

67. Finck BN, Lehman JJ, Leone TC, Welch MJ, Bennett MJ, Kovacs A, Han X, Gross RW, Kozak Z, Lopaschuk GD, Kelly DP (2002) The cardiac phenotype induced by PPARalpha overexpression mimics that caused by diabetes mellitus. J Clin Invest 109:121–130. https://doi.org/10.1172/JCI14080

68. Flarsheim CE, Grupp IL, Mathil MA (1996) Mitochondrial dysfunction accompanies diastolic dysfunction in diabetic rat heart. Am J Physiol 271:H192–202. https://doi.org/10.1152/ajpheart.1996.271.1.H192

69. Fontes-Carvalho R, Ladeiras-Lopes R, Bettencourt P, Leite-Moreira A, Azvedo A (2015) Diastolic dysfunction in the diabetic continuum: association with insulin resistance, metabolic syndrome and type 2 diabetes. Cardiovasc Diabetol 14:54. https://doi.org/10.1186/s12933-014-0168-x

70. Friedman JM, Halaas JL (1998) Leptin and the regulation of body weight in mammals. Nature 395:763–770. https://doi.org/10.1038/37237

71. Frustaci A, Kajstura J, Chimenti C, Jakoniuk I, Leri A, Maseri A, Nadal-Ginard B, Anversa P (2000) Myocardial cell death in human diabetes. Circ Res 87:1123–1132. https://doi.org/10.1161/01.RES.87.12.1123

72. Fu Q, Xu B, Liu Y, Parihi D, Li J, Li Y, Zhang Y, Riehle C, Zhu Y, Rawlings T, Shi Q, Clark RB, Chen X, Abel ED, Xiang YK (2014) Insulin inhibits cardiac contractility by inducing a Gβi-biased β2-adrenergic signaling in hearts. Diabetes 63:2676–2689. https://doi.org/10.2373/diab13-1763

73. Fu Q, Xu B, Parihi D, Cervantes D, Xiang YK (2015) Insulin induces IRK2-dependent and GRK2-mediated beta2AR internalization to attenuate betaAR signaling in cardiomyocytes. Cell Signal 27:707–715. https://doi.org/10.1016/j.cellsig.2014.11.018

74. Galderisi M, Anderson KM, Wilson PW, Levy D (1991) Echocardiographic evidence for the existence of a distinct diabetic cardiomyopathy (the Framingham Heart Study). Am J Cardiol 68:85–89. https://doi.org/10.1016/0002-9149(91)90716-X

75. Gauguier D, Popuelo P, Parent V, Bernard C, Bihoreau MT, Marwick TH (2005) Screening for heart disease in diabetic subjects according to the etiology of left ventricular systolic dysfunction. J Am Coll Cardiol 45:201–209. https://doi.org/10.1161/01.RES.87.12.1123

76. Gibbons RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ, Shriver S, Scott G, Stelten D, Worley KC, Burch PE, Okwongu G, Hines S, Lewis L, DeRamo C, Delgado O, Dugan-Rocha S, Miner G, Morgan M, Hayes A, Gill R, Cerera Holt RA, Adams MD, Amanatides PG, Baden-Tillson H, Barnstead M, Chin S, Evans CA, Ferriera S, Fosler C, Glodek A, Gu J, Jennings D, Kraft CL, Nguyen T, Pfannkoch C, Sitter C, Sutton GG, Venter JC, Woodage T, Smith D, Lee HM, Gutafson E, Cahill P, Kana A, Doucette-Stamm L, Weinstock K, Fechtel K, Weiss RB, Dunn DM, Green ED, Blakesley RW, Bouffard GG, De Jong PJ, Osoegawa K, Zhu B, Marra M, Schein J, Bosdet I, Fjell C, Jones S, Krzywinski M, Mathewson
C. Siddiqui A, Wye N, McPherson J, Zhao S, Fraser CM, Shetty J, Shatsman S, Geer K, Chen Y, Abramzon S, Nierman WC, Hlavak PH, Chen R, Durbin KJ, Egan A, Ren Y, Song XZ, Li B, Liu Y, Qin X, Cawley S, Worley KC, Cooney AJ, D’Souza LM, Martin K, Wu QJ, Gonzalez-Garay ML, Jackson AR, Kalafus KJ, McLeod MP, Milosavljevic A, Virk D, Volkov A, Wheeler DA, Zhang Z, Bailey JA, Eichler EE et al (2004) Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428:493–521. https://doi.org/10.1038/nature02426

83. Golffman LS, Wilson CR, Sharma S, Burgmaier M, Young ME, Gonzalez-Vilchez F, Ayuela J, Ares M, Pi J, Castillo L, Mar –
1 3
13

87. Hafstad AD, Khalid AM, Hagve M, Lund T, Larsen TS, Severson DL (2004) Increased myocardial oxygen consumption reduces cardiac efficiency in diabetic mice. Diabetes 55:466–473. https://doi.org/10.2337/diabetes.55.02.06.db05-1164

84. Gonzalez-Vilchez F, Ayuela J, Ares M, Pi J, Castillo L, Martin-Duran R (2005) Oxidative stress and fibrosis in incipient myocardial dysfunction in type 2 diabetic patients. Int J Cardiol 101:53–58. https://doi.org/10.1016/j.ijcard.2004.03.009

85. Guo R, Nair S (2017) Role of microRNA in diabetic cardiomyopathy: from mechanism to intervention. Biochim Biophys Acta Mol Basis Dis 1863:2070–2077. https://doi.org/10.1016/j.bbadis.2017.03.013

86. Guo Y, Wysoczynski M, Nong Y, Tomlin A, Zhu X, Gumpert AM, Nasr M, Mathusamy S, Li H, Book M, Khan A, Hong KU, Li Q, Bolli R (2017) Repeated doses of cardiac mesenchymal cells are therapeutically superior to a single dose in mice with old myocardial infarction. Basic Res Cardiol 112:18. https://doi.org/10.1007/s00395-017-0606-5

87. Hafstad AD, Khalid AM, Hagve M, Lund T, Larsen TS, Severson DL, Clarke K, Berge RK, Aasum E (2009) Cardiac peroxisome proliferator-activated receptor-alpha activation causes increased fatty acid oxidation, reducing efficiency and post-ischemic functional loss. Cardiovasc Res 83:519–526. https://doi.org/10.1093/cvr/cvp132

88. Hamblin M, Friedman DB, Hill S, Capirolim SM, Smith HM, Hill MF (2007) Alterations in the diabetic myocardial proteome coupled with increased myocardial oxidative stress underlies diabetic cardiomyopathy. J Mol Cell Cardiol 42:884–895. https://doi.org/10.1016/j.yjmcc.2006.12.018

89. Hamby RH, Zoneraich S, Sherman L (1974) Diabetic cardiomyopathy. JAMA 229:1749–1754. https://doi.org/10.1001/jama.1974.0302051023016

90. Hammer S, Jonker JT, Lamb HJ, van der Meer RW, Zondag W, Sepeps JM, de Roos A, Smit JW, Romijn JA (2008) Short-term hyperglycemic exposure in patients with type 1 diabetes does not change myocardial triglyceride content or myocardial function. Diabetes Care 31:1613–1614. https://doi.org/10.2337/dc08-0515

91. He C, Bassik MC, Moresi V, Sun K, Wei Y, Zou Z, An Z, Loh J, Fisher J, Sun Q, Korsmeyer S, Packer M, May Hl, Hill JA, Virgin HW, Gilpin C, Xiao G, Bassel-Duby R, Scherer PE, Levine B (2012) Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature 481:511–515. https://doi.org/10.1038/10578

92. Herrera P, McGill J, Dence C, Gropler RJ (2006) Increased myocardial fatty acid metabolism in patients with type 1 diabetes mellitus. J Am Coll Cardiol 47:598–604. https://doi.org/10.1016/j.jacc.2005.09.030

93. Hintze KJ, Benninghoff AD, Cho CE, Ward RE (2018) Modelling the western diet for preclinical investigations. Adv Nutr 9:263–271. https://doi.org/10.1093/advances/mny002

94. Herrero P, McGill J, Dence C, Gropler RJ, Ritchie RH (2013) Targeting the upregulation of reactive oxygen species subsequent to hyperglycemia prevents type 1 diabetic cardiomyopathy in mice. Free Radic Biol Med 60:307–317. https://doi.org/10.1016/j.freeradbiomed.2013.02.021

95. Herrero P, McGill J, Lesniak DS, Dence CS, Scott SW, Kislit-Duran R (2005) Oxidative stress and fibrosis in incipient myocarditis. Int J Cardiol 122:e36–38. https://doi.org/10.1016/j.ijcard.2007.05.077

96. Huyhnh K, Kiziazis H, Du XJ, Love JE, Gray SP, Jandeleit-Dahm KA, McMullen JR, Herrero P, McGill J, Lesniak D, Dence C, Gropler RJ (2008) PET detection of the impact of tumor necrosis factor alpha decreases sarcoplasmic reticulum Ca2+ -ATPase expressions via the promoter methylation. Cardiovasc Res 27:1800–1809. https://doi.org/10.1124/jpet.112.200808

97. Isenberc G, Han S, Schiefer A, Wendt-Gallistel MF (1993) Changes in mitochondrial calcium concentration during the cardiac contraction cycle. Cardiovasc Res 27:1800–1809. https://doi.org/10.1124/jpet.112.200808

98. Jafervia-Ware Z, Gropler RJ (2008) Tumor necrosis factor-alpha decreases sarcoplasmic reticulum Ca2+ -ATPase expressions via the promoter methylation. Cardiovasc Res 27:1800–1809. https://doi.org/10.1124/jpet.112.200808
Atherosclerosis 249:148–156. https://doi.org/10.1016/j.atherosclerosis.2016.04.001

108. Karason K, Sjostrom L, Wallentin I, Peltonen M (2003) Impact of blood pressure and insulin on the relationship between body fat and left ventricular structure. Eur Heart J 24:1500–1505. https://doi.org/10.1016/S0195-6688(03)00312-9

109. Kenchiaia S, Evans JC, Levy D, Wilson PW, Benjamin EJ, Larson MG, Kannel WB, Vasan RS (2002) Obesity and the risk of heart failure. N Engl J Med 347:305–313. https://doi.org/10.1056/NEJMoA0245

110. Kimball TR, Daniels SR, Khoury PR, Magnotti RA, Turner AM, Kenchaiah S, Evans JC, Levy D, Wilson PW, Benjamin EJ, Larson MG, Kannel WB, Vasan RS (2002) The impact of diabetes on left ventricular filling pattern in normotensive and hypertensive adults: the Strong Heart Study. J Am Coll Cardiol 37:1943–1949. https://doi.org/10.1016/S0735-1097(01)01230-X

111. Li X, Xu Q, Wang X, Zhao Z, Zhang L, Li, X, Wang W, Zhang Y, Ge Z (2015) Irbesartan ameliorates diabetic cardiomyopathy by regulating protein kinase D and ER stress activation in a type 2 diabetes rat model. Pharmacol Res 93:43–51. https://doi.org/10.1016/j.phrs.2015.01.001

112. Liu ZW, Zhu HT, Chen KL, Dong X, Wei J, Qiu C, Xue JH (2013) Protein kinase RNA-like endoplasmic reticulum kinase (PERK) signaling pathway plays a major role in reactive oxygen species (ROS)-mediated endoplasmic reticulum stress-induced apoptosis in diabetic cardiomyopathy. Cardiovasc Diabetol 12:158. https://doi.org/10.1186/1475-2840-12-158

113. Lourenco AP, Leite-Moreira AF, Balligand JL, Bauersachs J, Dawson D, de Boer RA, de Windt LJ, Falcao-Pires I, Fontes-Caravelho R, Franz S, Giaccu M, Hifliker-Kleiner D, Hirsch E, Maack C, Mayr M, Pieske B, Thum T, Tocchetti CG, Brutsaert DL, Heymans S (2018) An integrative translational approach to study heart failure with preserved ejection fraction: a position paper from the Working Group on Myocardial Function of the European Society of Cardiology. Eur Heart J 20:216–227. https://doi.org/10.1002/ejhf.1059

114. Lu H, Buchan RJ, Cook SA (2010) MicroRNA-223 regulates Glut4 expression and cardiomyocyte glucose metabolism. Cardiovasc Res 86:410–420. https://doi.org/10.1093/cvr/cvp010

115. Ma C, Luo H, Liu B, Li F, Tschope C, Fu X (2018) Long non-coding RNAs: a new player in the prevention and treatment of diabetic cardiomyopathy? Diabetes Metab Res Rev. https://doi.org/10.1002/dmrr.3056

116. Ma H, Li SY, Xu P, Babcock SA, Dolence EK, Brownlee M, Li, J, Ren J (2009) Advanced glycation endproduct (AGE) accumulation and AGE receptor (RAGE) up-regulation contribute to the onset of diabetic cardiomyopathy. J Cell Mol Med 13:1751–1764. https://doi.org/10.1111/j.1582-4934.2008.00547.x

117. Ma J, Liu T, Wei AC, Banerjee P, O’Rourke B, Hart GW (2015) O-GlcNAc profiling identifies widespread O-Linked beta-N-acetylglucosamine modification (O-GlcNAcylation) in oxidative phosphorylation system regulating cardiac mitochondrial function. J Biol Chem 290:29141–29153. https://doi.org/10.1074/jbc.M115.691741

118. Maack C, Lehrke M, Backs J, Heinzel FR, Hulot JS, Marx N, Maack C, Mayr M, Pieske B, Thum T, Tocchetti CG, Brutsaert DL, Heymans S (2018) Heart failure and diabetes: metabolic alterations and therapeutic interventions: a state-of-the-art review from the Translational Research Committee of the Heart Failure Association-European Society of Cardiology. Eur Heart J. https://doi.org/10.1093/eurheartj/ehy596

119. Makino S, Kikumori K, Muraoka Y, Mizushima Y, Catagiri K, Tochino Y (1980) Breeding of a non-obese, diabetic strain of mouse. Jikken Dobutsu 29:1–13. https://doi.org/10.1538/expan.29.1

120. Makino S, Kumaoka Y, Mizushima Y, Katagiri K, Tochino Y (1980) Breeding of a non-obese, diabetic strain of mouse. Jikken Dobutsu 29:1–13. https://doi.org/10.1538/expan.29.1

121. Li X, Wang H, Yao B, Xu W, Chen J, Zhou X (2016) IncRNA H19/miR-675 axis regulates cardiomyocyte apoptosis by targeting VDAC1 in diabetic cardiomyopathy. Sci Rep 6:36340. https://doi.org/10.1038/srep36340

122. Liu J, Palmieri V, Roman M, Bell JN, Fabits R, Howard BV, Welty TK, Lee ET, Devereux RB (2001) The impact of diabetes on left ventricular filling pattern in normotensive and hypertensive adults: the Strong Heart Study. J Am Coll Cardiol 37:1943–1949. https://doi.org/10.1016/S0735-1097(01)01230-X

123. Li X, Xu Q, Wang X, Wang Z, Zhang L, Zhang L, Li, X, Wang W, Zhang Y, Ge Z (2015) Irbesartan ameliorates diabetic cardiomyopathy by regulating protein kinase D and ER stress activation in a type 2 diabetes rat model. Pharmacol Res 93:43–51. https://doi.org/10.1016/j.phrs.2015.01.001

124. Liu ZW, Zhu HT, Chen KL, Dong X, Wei J, Qiu C, Xue JH (2013) Protein kinase RNA-like endoplasmic reticulum kinase (PERK) signaling pathway plays a major role in reactive oxygen species (ROS)-mediated endoplasmic reticulum stress-induced apoptosis in diabetic cardiomyopathy. Cardiovasc Diabetol 12:158. https://doi.org/10.1186/1475-2840-12-158

125. Lourenco AP, Leite-Moreira AF, Balligand JL, Bauersachs J, Dawson D, de Boer RA, de Windt LJ, Falcao-Pires I, Fontes-Caravelho R, Franz S, Giaccu M, Hifliker-Kleiner D, Hirsch E, Maack C, Mayr M, Pieske B, Thum T, Tocchetti CG, Brutsaert DL, Heymans S (2018) An integrative translational approach to study heart failure with preserved ejection fraction: a position paper from the Working Group on Myocardial Function of the European Society of Cardiology. Eur Heart J 20:216–227. https://doi.org/10.1002/ejhf.1059

126. Lu H, Buchanan RJ, Cook SA (2010) MicroRNA-223 regulates Glut4 expression and cardiomyocyte glucose metabolism. Cardiovasc Res 86:410–420. https://doi.org/10.1093/cvr/cvp010

127. Ma C, Luo H, Liu B, Li F, Tschope C, Fu X (2018) Long non-coding RNAs: a new player in the prevention and treatment of diabetic cardiomyopathy? Diabetes Metab Res Rev. https://doi.org/10.1002/dmrr.3056

128. Maack C, Lehrke M, Backs J, Heinzel FR, Hulot JS, Marx N, Maack C, Mayr M, Pieske B, Thum T, Tocchetti CG, Brutsaert DL, Heymans S (2018) Heart failure and diabetes: metabolic alterations and therapeutic interventions: a state-of-the-art review from the Translational Research Committee of the Heart Failure Association-European Society of Cardiology. Eur Heart J. https://doi.org/10.1093/eurheartj/ehy596

129. Maack C, Lehrke M, Backs J, Heinzel FR, Hulot JS, Marx N, Paulus WJ, Rossignol P, Taegtmeyer H, Bauersachs J, Bayes-Genis A, Brutsaert D, Bugher H, Clarke K, Cosentino F, De Keulenaer G, Dei Cas A, Gonzalez A, Huelsmann M, Iaccarino G, Lunde IG, Lyon AR, Pollesello P, Renga R, Riksen NP, Rosano G, Staels B, van Laake LW, Wanner C, Farmakis D, Filippatos G, Ruschitzka F, Seferovic P, de Boer RA, Heymans S (2018) Heart failure and diabetes: metabolic alterations and therapeutic interventions: a state-of-the-art review from the Translational Research Committee of the Heart Failure Association-European Society of Cardiology. Eur Heart J. https://doi.org/10.1093/eurheartj/ehy596
in mice fed a high-fat diet and injected with low-dose streptozotocin. Exp Biol Med (Maywood) 239:610–618. https://doi.org/10.1177/1535702113520109

133. Marwick TH, Ritchie R, Shaw JE, Kaye D (2018) Implications of underlying mechanisms for the recognition and management of diabetic cardiomyopathy. J Am Coll Cardiol 71:339–351. https://doi.org/10.1016/j.jacc.2017.11.019

134. Mazumder PK, O'Neill BT, Roberts MW, Buchanan J, Yun UJ, Cooksey RC, Boudina S, Abel ED (2004) Impaired cardiac efficiency and increased fatty acid oxidation in insulin-resistant ob/ob mouse hearts. Diabetes 53:2366–2374. https://doi.org/10.2337/diabetes.53.9.2366

135. McGavock JM, Lingvay I, Zib I, Tillery T, Salas N, Unger R, Levine BD, Raskin P, Victor RG, Szczepaniak LS (2007) Cardiac steatosis in diabetes mellitus: a 1H-magnetic resonance spectroscopy study. Circulation 116:1170–1175. https://doi.org/10.1161/CIRCULATIONAHA.106.645614

136. Mellor KM, Bell JR, Young MJ, Ritchie RH, Delbridge LM (2011) Myocardial autophagy activation and suppressed survival signaling is associated with insulin resistance in fructose-fed mice. J Mol Cell Cardiol 50:1035–1043. https://doi.org/10.1016/j.yjmcc.2011.03.002

137. Miettinen H, Lehto S, Salomaa V, Salomaa B, Tuomilehto J (1998) Impact of diabetes on mortality after the first myocardial infarction. The FINMONICA Myocardial Infarction Register Study Group. Diabetes Care 21:69–75. https://doi.org/10.2337/diacare.21.1.69

138. Mizushige K, Yao L, Noma T, Kiyomoto H, Yu Y, Hosomi N, Ohmori K, Matsuo H (2000) Alteration in left ventricular diastolic filling and accumulation of myocardial collagen at insulin-resistant prediabetic stage of a type II diabetic rat model. Circulation 101:899–907. https://doi.org/10.1161/01.CIR.101.8.899

139. Monji A, Mitsui T, Bando YK, Aoyama M, Shigeta T, Murohara T (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562. https://doi.org/10.1038/nature01262

140. Ng AC, Delgado V, Bertini M, van der Meer RW, Rijzewijk LJ, Hooi Ewe S,Siebelink HM, Smit JW, Diamant M, Romijn JA, de Roos A, Leung DY, Lamb HJ, Bax JJ (2010) Myocardial steatosis and biventricular strain and strain rate imaging in patients with type 2 diabetes mellitus. Circulation 122:2538–2544. https://doi.org/10.1161/CIRCULATIONAHA.110.955542

141. Montaigne D, Marechal X, Coisne A, Debry N, Modine T, Fayad JZ (2016) Aminoguanidine prevents the decreased myocardial compliance produced by streptozotocin-induced diabetes mellitus in rats. Circulation 93:1905–1912. https://doi.org/10.1161/CIRCULATIONAHA.110.951005

142. Morales-Lapuente JL, Schild HH, Golubnitschaja O (2002) Normalization of cardiac steatosis and oxidative stress by the receptor for advanced glycation end products prevents development of cardiac dysfunction in db/db type 2 diabetic mice. Eur J Heart Fail 4:638–647. https://doi.org/10.1093/eurheartj/hfp070

143. Norton GR, Candy G, Woodiwiss AJ (1996) Aminoguanidine prevents the decreased myocardial compliance produced by streptozotocin-induced diabetes mellitus in rats. Circulation 93:1905–1912. https://doi.org/10.1161/CIRCULATIONAHA.110.951005

144. Pacher P, Liaudet L, Soriano FG, Mabley JG, Szabo E, Szabo G, Carlson LS, Galvin IF, Bunton RW, Lequeux S, Jones G, Lamberts RR, Emanuele C, Madeddu P, Kataré R (2016) Type-2 diabetes increases autophagy in the human heart through promotion of Beclin-1 mediated pathway. Int J Cardiol 202:13–20. https://doi.org/10.1016/j.ijcard.2015.08.111

145. Ogawa M, Ishikawa T, Takahara M, Ohashi H, Hamada H, Minami M, Kishimoto T, Takeda K, Nakata K, Funayama H, Ohmori Y, Ito A, Nakamura H, Fushimi T, Akiyama F, Inoue K, Yamanaka S, Nakamura T, Nakashima N, Oka M, Shiono H, Shimizu H, Watanabe N, Watanabe M (2018) Leptin resistance and insulin resistance in diabetic cardiomyopathy: a 1H-magnetic resonance spectroscopy study. Circulation 116:1170–1175. https://doi.org/10.1161/CIRCULATIONAHA.106.645614

146. Ohmori K, Matsuo H (2000) Alteration in left ventricular diastolic filling and accumulation of myocardial collagen at insulin-resistant prediabetic stage of a type II diabetic rat model. Circulation 101:899–907. https://doi.org/10.1161/01.CIR.101.8.899

147. Palumbo A, Cappelletti M, Vellone M, Peverelli S, Minardi M, Capuano F, Ciardullo G, Portincasa P (2016) Type-2 diabetes mellitus and multiple low doses of streptozotocin treatment mimics the metabolic characteristics of type 2 diabetes mellitus in humans. J Pharmacol Toxicol Methods 84:20–29. https://doi.org/10.1016/j.jptm.2016.10.007

148. Pachet P, Liaudet L, Soriano FG, Mabley JG, Szabo E, Szabo G, Carlson LS, Galvin IF, Bunton RW, Lequeux S, Jones G, Lamberts RR, Emanuele C, Madeddu P, Kataré R (2016) Type-2 diabetes increases autophagy in the human heart through promotion of Beclin-1 mediated pathway. Int J Cardiol 202:13–20. https://doi.org/10.1016/j.ijcard.2015.08.111

149. Persson CR, Mirtallo JM, Sjolund KE, Flyvholm A, Botker HE (2009) Blockage of receptor for advanced glycation end products prevents development of cardiac dysfunction in db/db type 2 diabetic mice. Eur J Heart Fail 11:638–647. https://doi.org/10.1093/eurheartj/hfp070

150. Philips MS, Liu Q, Hamond HA, Dungan V, Hey PJ, Caskey CJ, Hess JF (1996) Leptin receptor missense mutation in the fatty
Zucker rat. Nat Genet 13:18–19. https://doi.org/10.1038/ng059
16-18
155. Pugliese A (2017) Autoreactive T cells in type 1 diabetes. J Clin Invest 127:2881–2891. https://doi.org/10.1172/JCI94549
156. Pulinilkunnil T, Kienesberger PC, Nagendran J, Waller TJ, Young ME, Kershaw EE, Korbutt G, Haemmerle G, Zechner R, Dyck JR (2013) Myocardial adipose triglyceride lipase overexpression protects diabetic mice from the development of lipotoxic cardiomyopathy. Diabetes 62:1464–1477. https://doi.org/10.2337/db12-0927
157. Qi Y, Zhu Q, Zhang K, Thomas C, Wu Y, Kumar R, Baker KM, Xu Z, Chen S, Guo S (2015) Activation of Foxo1 by insulin resistance promotes cardiac dysfunction and beta-myosin heavy chain gene expression. Circ Heart Fail 8:198–208. https://doi.org/10.1161/CIRCHEARTFAILURE.114.001457
158. Qin F, Siwik DA, Luptak I, Hou X, Wang L, Higuchi A, Weisbrod RM, Ouchi N, Tu VH, Calamatas TD, Miller EJ, Verbeuren TJ, Walsh K, Cohen RA, Colucci WS (2012) The polyphenols resveratrol and S17834 prevent the structural and functional sequelae of diet-induced metabolic heart disease in mice. Circulation 125(1757–1764):S1751–1756. https://doi.org/10.1161/CIRCULATIONAHA.111.067801
159. Randle PJ, Newsholme EA, Garland PB (1964) Regulation of glucose uptake by muscle. 8. Effects of fatty acids, ketone bodies and pyruvate, and of alloxa-diabetes and starvation, on the uptake and metabolic fate of glucose in rat heart and diaphragm muscles. Biochem J 93:652–665. https://doi.org/10.1042/bj093_0652
160. Reed MJ, Meszaros K, Entes LJ, Claypool MD, Pinkett JG, Gadbois TM, Reaven GM (2000) A new rat model of type 2 diabetes: the fat-fed, streptozotocin-treated rat. Metabolism 49:1390–1394. https://doi.org/10.1053/meta.2000.17721
161. Regan TJ, Lyons MM, Ahmed SS, Levinson GE, Oldewurtel HA, Ahmad MR, Haider B (1977) Evidence for cardiomyopathy in familial diabetes mellitus. J Clin Invest 60:884–899. https://doi.org/10.1172/JCI108843
162. Rerkpattanapipat P, D’Agostino RB Jr, Link KM, Shangkumar S, Caporali A, Emanueli C (2012) Role of microRNAs in diabetes and its cardiovascular complications. Cardiovasc Res 93:583–593. https://doi.org/10.1093/cvr/cvr300
163. Richl C, Abel ED (2016) Insulin signaling and heart failure. Circ Res 118:1151–1169. https://doi.org/10.1161/CIRCRESAHA.116.306206
164. Richl C, Abel ED (2016) PGC-1 proteins and heart failure. Trends Cardiovasc Med 22:98–105. https://doi.org/10.1016/j.tcm.2012.07.003
165. Richl C, Wende AR, Sena S, Pires KM, Pereira RO, Zhu Y, Bugger H, Frank D, Bevins J, Chen D, Perry CN, Dong XC, Valdez S, Rech M, Sheng X, Weimer OH, Gottlieb RA, White MF, Abel ED (2013) Insulin receptor substrate signaling suppresses neonatal autophagy in the heart. J Clin Invest 123:5319–5333. https://doi.org/10.1172/JCI71711
166. Rijzewijk LJ, van der Meer RW, Smit JW, Diamant M, Bax JJ, Hammer S, Romijn JA, de Roos A, Lamb HJ (2008) Myocardial steatosis is an independent predictor of diabetic dysfunction in type 2 diabetes mellitus. J Am Coll Cardiol 52:1793–1799. https://doi.org/10.1016/j.jacc.2008.07.062
167. Romanens M, Fankhauser S, Saner B, Michaud L, Saner H (1999) No evidence for systolic or diastolic left ventricular dysfunction at rest in selected patients with long-term type I diabetes mellitus. Eur J Heart Fail 1:169–175. https://doi.org/10.1016/S1388-9842(99)00012-4
168. Rubler S, Dlugash J, Yuceoglu YZ, Kumrul T, Branwood AW, Grishman A (1972) New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol 30:595–602. https://doi.org/10.1016/0002-9149(72)90595-4
169. Russo I, Frangogiannis NG (2016) Diabetes-associated cardiac fibrosis: cellular effectors, molecular mechanisms and therapeutic opportunities. J Mol Cell Cardiol 90:84–93. https://doi.org/10.1016/j.yjmcc.2015.12.011
170. Sakabe K, Wang Z, Hart GW (2010) Beta-N-acetylgalactosamine (O-GlcNAc) is part of the histone code. Proc Natl Acad Sci USA 107:19915–19920. https://doi.org/10.1073/pnas.1009023107
171. Santos DL, Palmaira CM, Seica R, Dias J, Mesquita J, Moreno AJ, Santos MS (2003) Diabetes and mitochondrial oxidative stress: a study using heart mitochondria from the diabetic Goto-Kakizaki rat. Mol Cell Biochem 246:163–170. https://doi.org/10.1023/A:1023475022025
172. Sari FR, Watanabe K, Thandavaranay RA, Harima M, Zhang S, Mustin AJ, Kodama M, Aizawa Y (2010) 14–3–3 protein protects against cardiac endoplasmic reticulum stress (ERS) and ERS-initiated apoptosis in experimental diabetes. J Pharmacol Sci 113:325–334. https://doi.org/10.1254/jphs.10047FP
173. Schannwell CM, Schneppenheim M, Perings S, Plehn G, Strauer BE (2002) Left ventricular diastolic dysfunction as an early manifestation of diabetic cardiomyopathy. Cardiology 98:33–39. https://doi.org/10.1159/000064682
174. Schannwell CM, Schneppenheim M, Perings S, Plehn G, Strauer BE (2002) Left ventricular diastolic dysfunction as an early manifestation of diabetic cardiomyopathy. Cardiology 98:33–39. https://doi.org/10.1159/000064682
175. Shangkumar S, Caporali A, Emanueli C (2012) Role of microRNAs in diabetes and its cardiovascular complications. Cardiovasc Res 93:583–593. https://doi.org/10.1093/cvr/cvr300
176. Sharma S, Adrogue JV, Goldman I, Uray I, Lennm J, Youker K, Noon GP, Frazier OH, Taegtmeyer H (2004) Intramyocardial lipid accumulation in the failing human heart resembles the lipotoxic rat heart. FASEB J 18:1692–1700. https://doi.org/10.1096/fj.04-2263com
177. Shen E, Diao X, Wang X, Chen R, Hu B (2011) MicroRNAs involved in the mitogen-activated protein kinase cascades pathway during glucose-induced cardiomyocyte hypertrophy. Am J Pathol 179:639–650. https://doi.org/10.1016/j.ajpath.2011.04.034
178. Shen X, Zheng S, Metreveli NS, Epstein PN (2006) Protection of cardiac mitochondria by overexpression of MnSOD reduces diabetic cardiomyopathy. Diabetes 55:798–805. https://doi.org/10.2337/diabetes.55.03.06.db05-1039
179. Shen X, Zheng S, Thongboonkerd V, Xu M, Pierce WM Jr, Klein JB, Epstein PN (2004) Cardiac mitochondrial damage and bio genesis in a chronic model of type 1 diabetes. Am J Physiol Endocrinol Metab 287:E986–905. https://doi.org/10.1152/ajpendo.00047.2004
180. Shimizu I, Minamino T, Toko H, Okada S, Ikeda H, Yasuda N, Tateno K, Moriya J, Yokoyama M, Nojima A, Koh KY, Awazawa H, Shiojima I, Kahn CR, Abel ED, Komuro I (2010) Excessive cardiac insulin signaling exacerbates systolic dysfunction induced by pressure overload in rodents. J Clin Invest 120:1506–1514. https://doi.org/10.1172/JCI40096
182. Shimizu M, Umeda K, Sugihara N, Yoshio H, Ino H, Takeda R, Okada Y, Nakaniishi I (1993) Collagen remodelling in myocardia of patients with diabetes. J Clin Pathol 46:32–36. https://doi.org/10.1136/jcp.46.1.32

183. Shimomura I, Hammer RE, Richardson JA, Ikemoto S, Bashmakov Y, Goldstein JL, Brown MS (1998) Insulin resistance and diabetes mellitus in transgenic mice expressing nuclear SREBP-1c in adipose tissue: model for congenital generalized lipodystrophy. Genes Dev 12:3182–3194. https://doi.org/10.1101/gad.12.20.3182

184. Shivalkar B, Bhondt D, Goovaerts I, Van Gaal L, Bartunek J, Van Crombrugge P, Vrints C (2006) Flow mediated dilatation and cardiac function in type 1 diabetes mellitus. Am J Cardiol 97:77–82. https://doi.org/10.1016/j.amjcard.2005.07.111

185. Singh VP, Bali A, Singh N, Jaggi AS (2014) Advanced glyca -

186. Singh VP, Le B, Bhat VB, Baker KM, Kumar R (2007) High-

187. Singh VP, Le B, Khode R, Baker KM, Kumar R (2008) Intracel-

188. Song X, Zheng X, Malbon CC, Wang H (2001) Galpha i2

189. Sorop O, Heinonen I, Van Kranenburg M, van de Wouw J, de

190. Suarez J, Scott B, Dillmann WH (2008) Conditional increase in

191. Suizrez J, Scott B, Dillmann WH (2008) Conditional increase in

192. Thum T, Gross C, Feidler J, Fischer T, Koteliansky V, Rosenwald A, Licht JD, Galuppo P, Just S, Rottbauer W, Frantz SJ, Mager-Stocker M, Heim MH, Stoffel M (2011) MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 474:649–653. https://doi.org/10.1038/nature10112

193. Tikellis C, Thomas MC, Harcourt BE, Coughlan MT, Pete J, Foster JL, Bialkowski K, Tan A, Bierhaus A, Cooper ME, Forbes JM (2008) Cardiac inflammation associated with a Western diet is mediated via activation of RAGE by AGEs. Am J Physiol Endocrinol Metab 295:E323–330. https://doi.org/10.1152/ajpendo.00024.2008

194. Trajkovski M, Hauser S, Soutschek J, Bhat B, Akin A, Zavolan M, Heim MH, Stoffel M (2011) MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 474:649–653. https://doi.org/10.1038/nature10112

195. Trost SU, Belke DD, Bluhm WF, Meyer M, Swanson E, Dillmann WH (2002) Overexpression of the sarcoplasmic reticulum Ca(2+)-ATPase improves mycardiac contractility in diabetic cardiomyopathy. Diabetes 51:1166–1171. https://doi.org/10.2337/diabetes.51.4.1166

196. Tschope C, Walther T, Escher F, Spillmann F, Du J, Altmann C, Schimke I, Bader M, Sanchez-Ferrer CF, Schulteiss HP, Noutsias M (2005) Transgenic activation of the kalikrein-kinin system inhibits intramyocardial inflammation, endothelial dysfunction and oxidative stress in experimental diabetic cardio-

197. Tsushima K, Bugger H, Wende AR, Soto J, Jenson GA, Tor AR, McGlaunlin R, Kenny HC, Zhang Y, Souvenir R, Hu XX, Sloan CL, Pereira RO, Lira VA, Spitzer KW, Sharp TL, Shoghi KI, Sparagana GC, Rog-Zielinska EA, Kohl P, Khalimonchuk O, Schaffer JE, Abel ED (2018) Mitochondrial reactive oxygen species in lipotoxic hearts induce post-translational modifications of AKAP121, DRP1, and OPA1 that promote mitochondrial fission. Circ Res 122:58–73. https://doi.org/10.1161/CIRCRESAHA.117.311307

198. Turdi S, Kandadi MR, Zhao J, Huff AF, Du M, Ren J (2011) Deficiency in AMP-activated protein kinase exaggerates high fat diet-induced cardiac hypertrophy and contractile dysfunction. J Mol Cell Cardiol 50:712–722. https://doi.org/10.1016/j.yjmcc.2010.12.007

199. Turko IV, Li L, Aulak KS, Stuehr DJ, Chang JY, Murad F (2003) Protein tyrosine nitration in the mitochondria from diabetic mouse heart. Implications to dysfunctional mitochondria in diabetes. J Biol Chem 278:33972–33977. https://doi.org/10.1074/jbc.M303734200

200. Turko IV, Murad F (2003) Quantitative protein profiling in heart mitochondria from diabetic rats. J Biol Chem 278:35844–35849. https://doi.org/10.1074/jbc.M303139200

201. Usui I, Imamura T, Satoh H, Huang J, Babendure JL, Hufeld CJ, Olefsky JM (2004) GRK2 is an endogenous protein inhibitor of the insulin signaling pathway for glucose transport stimulation. EMBO J 23:2821–2829. https://doi.org/10.1038/sj.emboj.7600297

202. Van der Bergh A, Vanderper A, Vangheluwe P, Desjardins F, Nevelsteen I, Vereeth W, Wuytack F, Holvoet P, Flameng W, Balligand JL, Herijgers P (2008) Dyslipidaemia in type II diabetic mice does not aggravate contractile impairment but increases ventricular stiffness. Cardiovasc Res 77:371–379. https://doi.org/10.1093/cvr/cvm001

203. Van Linthout S, Seeland U, Riad A, Eckhardt O, Hohl M, Dhayat AR, McGlauflin R, Kenny HC, Zhang Y, Souvenir R, Hu XX, Sloan CL, Pereira RO, Lira VA, Spitzer KW, Sharp TL, Shoghi KI, Sparagana GC, Rog-Zielinska EA, Kohl P, Khalimonchuk O, Schaffer JE, Abel ED (2018) Mitochondrial reactive oxygen species in lipotoxic hearts induce post-translational modifications of AKAP121, DRP1, and OPA1 that promote mitochondrial fission. Circ Res 122:58–73. https://doi.org/10.1161/CIRCRESAHA.117.311307

204. Vieoreck J, Thum T (2017) Long noncoding RNAs in pathological cardiac remodeling. Circ Res 120:262–264. https://doi.org/10.1161/CIRCRESAHA.116.310174

205. Vincent HK, Powers SK, Dirks AJ, Scarpace PJ (2001) Mechanism for obesity-induced increase in myocardial lipid peroxidation. Int J Obes Relat Metab Disord 25:378–385. https://doi.org/10.1038/sj.ijo.0801536

206. Wallace DC (1992) Mitochondrial genetics: a paradigm for aging and degenerative diseases? Science 256:628–632. https://doi.org/10.1126/science.1539535

207. Wang B, Yang Q, Sun YY, Xing YF, Wang YB, Lu XT, Bai WW, Liu XQ, Zhao YX (2014) Resveratrol-enhanced autophagic flux ameliorates myocardial oxidative stress injury in diabetic mice. J Cell Mol Med 18:1599–1611. https://doi.org/10.1111/jcmm.12312
208. Wang P, Lloyd SG, Zeng H, Bonen A, Chatham JC (2005) Impact of altered substrate utilization on cardiac function in isolated hearts from Zucker diabetic fatty rats. Am J Physiol Heart Circ Physiol 288:H2102–2110. https://doi.org/10.1152/ajpheart.00935.2004

209. Wang Q, Liu Y, Fu Q, Xu B, Zhang Y, Kim S, Tan R, Barbagallo F, West T, Anderson E, Wei W, Abel ED, Xiang YK (2017) Inhibiting insulin-mediated beta2-adrenergic receptor activation prevents diabetes-associated cardiac dysfunction. Circulation 135:73–88. https://doi.org/10.1161/CIRCULATIONAHA.116.022281

210. Wang Y, Sun W, Du B, Miao X, Bai Y, Xin Y, Tan Y, Cui W, Liu B, Cui T, Epstein PN, Fu Y, Cai L (2013) Therapeutic effect of MG-132 on diabetic cardiomyopathy is associated with its suppression of proteasomal activities: roles of Nrf2 and NF-kappaB. Am J Physiol Heart Circ Physiol 304:H567–578. https://doi.org/10.1152/ajpheart.00650.2012

211. Warden CH, Fisler JS (2008) Comparisons of diets used in animal models of high-fat feeding. Cell Metab 7:277. https://doi.org/10.1016/j.cmet.2008.03.014

212. Wende AR (2016) Post-translational modifications of the cardiac proteome in diabetes and heart failure. Proteomics Clin Appl 10:25–38. https://doi.org/10.1002/prca.201500052

213. Wende AR, Symons JD, Abel ED (2012) Mechanisms of lipotoxicity in the cardiovascular system. Curr Hypertens Rep 14:517–531. https://doi.org/10.1007/s11906-012-0307-2

214. Westermann D, Rutschow S, Van Linthout S, Linderer A, Schmid HP, Tschop C (2007) Contributions of inflammation and cardiac matrix metalloproteinase activity to cardiac failure in diabetic cardiomyopathy: the role of angiotensin type 1 receptor antagonism. Diabetes 56:641–646. https://doi.org/10.2337/db06-1163

215. Westermann D, Rutschow S, Van Lintthout S, Linderer A, Bucker-Gartner C, Sobirey M, Riad A, Pauschinger M, Schulteiss HP, Tschop C (2006) Inhibition of p38 mitogen-activated protein kinase attenuates left ventricular dysfunction by mediating pro-inflammatory cardiac cytokine levels in a mouse model of diabetes mellitus. Diabetologia 49:2507–2513. https://doi.org/10.1007/s00125-006-0385-2

216. Westermann D, Van Lintthout S, Dhatay S, Dhatay N, Escher F, Bucker-Gartner C, Spellmann F, Noutsias M, Riad A, Schulteiss HP, Tschop C (2007) Cardioprotective and anti-inflammatory effects of interleukin converting enzyme inhibition in experimental diabetic cardiomyopathy. Diabetes 56:1834–1841. https://doi.org/10.2337/db06-1662

217. Westermann D, Van Lintthout S, Dhatay S, Dhatay N, Schmidt M, Noutsias M, Song XY, Spellmann F, Riad A, Schulteiss HP, Tschop C (2007) Tumor necrosis factor-alpha antagonism protects from myocardial inflammation and fibrosis in experimental diabetic cardiomyopathy. Basic Res Cardiol 102:500–507. https://doi.org/10.1007/s00395-007-0673-0

218. Wilson RD, Islam MS (2012) Fructose-fed streptozotocin-injected rat: an alternative model for type 2 diabetes. Pharmacol Rep 64:129–139. https://doi.org/10.1016/S1734-1140(12)70739-9

219. Wright JJ, Kim J, Buchanan J, Boudina S, Sena S, Bakirtzi K, Ilkou O, Theobald HA, Cooksey RK, Kandror KV, Abel ED (2009) Mechanisms for increased myocardial fatty acid utilization following short-term high-fat feeding. Cardiovasc Res 82:351–360. https://doi.org/10.1093/cvr/cvp017

220. Xiang Y, Koblika BK (2003) Myocyte adrenoceptor signaling pathways. Science 300:1530–1532. https://doi.org/10.1126/science.1079206

221. Xie Z, Lau K, Eby B, Lozano P, He C, Pennington B, Li H, Rathi S, Dong Y, Tian R, Kend D, Zou MH (2011) Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice. Diabetes 60:1770–1778. https://doi.org/10.2337/db10-0351

222. Xu J, Wang G, Wang Y, Liu Q, Xu W, Tan Y, Cai L (2009) Diabetes- and angiotensin II-induced cardiac endoplasmic reticulum stress and cell death: metallothionein protection. J Cell Mol Med 13:1499–1512. https://doi.org/10.1111/j.1582-4934.2009.00833.x

223. Xu Z, Tong Q, Zhang Z, Wang S, Zheng Y, Liu Q, Qian LB, Chen SY, Sun J, Cai L (2017) Inhibition of HDAC3 prevents diabetic cardiomyopathy in OVE26 mice via epigenetic regulation of DUSP5-ERK1/2 pathway. Clin Sci (Lond) 131:1841–1857. https://doi.org/10.1042/CS20170064

224. Yagyu H, Chen G, Yokoyama M, Hirata K, Augustus A, Kako Y, Seo T, Hu Y, Lutz EP, Merkel M, Bensadoun A, Homma S, Goldberg JJ (2003) Lipoprotein lipase (LpL) on the surface of cardiomyocytes increases lipid uptake and produces a cardio-myopathy. J Clin Invest 111:419–426. https://doi.org/10.1172/JCI16751

225. Yang Q, Gao H, Dong R, Wu YQ (2016) Sequential changes of endoplasmic reticulum stress and apoptosis in myocardial fibrosis of diabetes mellitus-induced rats. Mol Med Rep 13:5037–5044. https://doi.org/10.3892/mmr.2016.5180

226. Ye G, Metreveli NS, Donthi RV, Xia S, Xu M, Carlson EC, Epstein PN (2004) Catalase protects cardiomyocyte function in models of type 1 and type 2 diabetes. Diabetes 53:1336–1343. https://doi.org/10.2337/diabetes.53.5.1336

227. Yoshioka M, Kayo T, Ikeda T, Koizumi A (1997) A novel locus, Mod4, distal to D7Mit189 on chromosome 7 determines early-onset NIDDM in nonobese C57BL/6 (Akita) mutant mice. Diabetes 46:887–894. https://doi.org/10.2337/db46.5.887

228. Young ME, Guthrie PH, Razeghi P, Leighton B, Abbasi S, Patil S, Youker KA, Taegtmeyer H (2002) Impaired long-chain fatty acid oxidation and contractile dysfunction in the obese Zucker rat heart. Diabetes 51:2587–2595. https://doi.org/10.2337/diabetes.51.8.2587

229. Zarich SW, Arbuckle BE, Cohen LR, Roberts M, Nesto RW (1988) Diastolic abnormalities in young asymptomatic diabetic patients assessed by pulsed Doppler echocardiography. J Am Coll Cardiol 12:114–120. https://doi.org/10.1016/0735-1097(88)90364-6

230. Zhao XY, Hu SJ, Li J, Mou Y, Chen BP, Xia Q (2006) Decreased cardiac sarcoplasmic reticulum Ca2+-ATPase activity contributes to cardiac dysfunction in streptozotocin-induced diabetic rats. J Physiol Biochem 62:1–8. https://doi.org/10.1007/BF03056800

231. Zhao Y, Zhang L, Qiao Y, Zhou X, Wu G, Wang L, Peng Y, Dong X, Huang H, Si L, Zhang X, Zhang L, Li J, Wang W, Zhou L, Gao X (2013) Heme oxygenase-1 prevents cardiac dysfunction in streptozotocin-diabetic mice by reducing inflammation, oxidative stress, apoptosis and enhancing autophagy. PLoS One 8:e75927. https://doi.org/10.1371/journal.pone.0075927

232. Zhou YT, Grayburn P, Karim A, Shimabukuro M, Higa M, Baetens D, Orsi L, Unger RH (2000) Lipotoxic heart disease in obese rats: implications for human obesity. Proc Natl Acad Sci USA 97:1784–1789. https://doi.org/10.1073/pnas.97.4.1784

233. Zhu-Mauldin X, Marsh SA, Zou L, Marchase RB, Chatham JC (2012) Modification of STIM1 by O-linked N-acetylgalactosamine (O-GlcNAc) attenuates store-operated calcium entry in neonatal cardiomyocytes. J Biol Chem 287:39094–39106. https://doi.org/10.1074/jbc.M112.383778