Разработка структуры и состава классификатора строительной информации для применения BIM-технологий

В.А. Волкодав, И.А. Волкодав
Научно-инженерный центр цифровизации и проектирования в строительстве (НИЦ ЦПС); г. Санкт-Петербург, Россия

АННОТАЦИЯ
Введение. Необходимость внедрения BIM-технологий в процессы управления жизненным циклом (ЖЦ) объектов капитального строительства отмечена в поручении Президента Российской Федерации ПР-1235 от 19.07.2018 г. Определения информационной модели объекта капитального строительства и классификатора строительной информации (КСИ) законодательно закреплены в 2019 г. в Градостроительном кодексе РФ Федеральным законом от 27.06.2019 г. №151-ФЗ. Мировая практика свидетельствует о применении различных систем КСИ, критический анализ которых позволяет выделить основные требования к российскому КСИ, обосновать его структуру и состав.

Материалы и методы. Рассмотрены международные системы классификации строительной информации, нашедшие широкое практическое применение в области строительства: OmniClass (США), Uniclass 2015 (Великобритания), CCS (Дания) и CoClass (Швеция). Произведен анализ структур, состава, методологических основ рассмотренных классификационных систем. Проанализированы существующие российские классификаторы и международные классификационные системы в области строительства.

Результаты. Принимая во внимание анализ и обобщение мировой практики классификации строительной информации, разработана структура КСИ, адаптированная для задач применения технологий информационного моделирования объектов капитального строительства с учетом особенностей национальной базы нормативно-технической документации в строительстве. В качестве основы КСИ принята структура, рекомендуемая стандартом ISO 12006-2:2015. При разработке классификатора учтены требования по объединению и унификации существующих национальных классификаторов и опыт разработки и эксплуатации существующих в строительной отрасли классификационных систем. Предложена структура КСИ, состоящая из четырех базовых категорий и 21 базового класса.

Выводы. Классификатор строительной информации в предлагенной структуре и составе обеспечивает формирование единого и универсального языка представления строительной информации в рамках единого информационного пространства строительной отрасли и единого стандартизированного формата представления содержания данных информационных моделей для задач управления ЖЦ объектов капитального строительства.

КЛЮЧЕВЫЕ СЛОВА: классификатор строительной информации, информационное моделирование, информационная модель объекта капитального строительства, структура классификатора строительной информации, состав классификатора строительной информации, BIM

ДЛЯ ЦИТИРОВАНИЯ: Волкодав В.А., Волкодав И.А. Разработка структуры и состава классификатора строительной информации для применения BIM-технологий // Вестник МГСУ. 2020. Т. 15. Вып. 6. С. 867–906. DOI: 10.22227/1997-0935.2020.6.867-906

Development of the structure and composition of a building information classifier towards the application of BIM technologies

Vladimir A. Volkodav, Ivan A. Volkodav
Scientific and Engineering Center for Digitalization and Design in Construction; St. Petersburg, Russian Federation

ABSTRACT
Introduction. Various building information classification systems are used internationally; their critical analysis makes it possible to highlight basic requirements applicable to the Russian classifier and substantiate its structure and composition.

Materials and methods. Modern international building information classification systems, such as OmniClass (USA), Uniclass 2015 (UK), CCS (Denmark), and CoClass (Sweden), are considered in the article. Their structure, composition, methodological fundamentals are analyzed. In addition to international classification systems, Russian construction information classification systems are analyzed.

Results. The structure of a building information classifier has been developed and tailored to the needs of BIM (building information modeling) and national regulatory and technical requirements. The classifier’s structure complies with the one recommended by ISO 12006-2:2015. Its composition has regard to the requirements that apply to the aggregation and uni-
ВВЕДЕНИЕ

Информационные технологии, как область научных исследований и практической деятельности человека, в настоящее время — один из основных движущих факторов развития экономики и общества. Основная доля инновационных разработок и нововведений в области строительного проектирования за последние 20–30 лет связана с совершенствованием методов формирования, хранения и представления данных об объектах капитального строительства (ОКС), согласно концепции информационного моделирования зданий и сооружений (BIM) рассматриваемых как единый структурированный объект, получивший наименование «информационная модель» (ИМ) [1].

В России, наряду с зарубежными странами (такими как США, Великобритания, Дания, Германия, Финляндия и пр.), технологии информационного моделирования относятся к приоритетным направлениям инновационного развития строительной отрасли.

Реализация каждого инвестиционно-строительного проекта сопровождается большим количеством ассоциированных данных, генерируемых на протяжении всего жизненного цикла (ЖЦ) объекта [2]. Процесс управления проектом (также, как и управление материальными активами) во многом является процессом управления данными проекта, что подразумевает хранение, извлечение, передачу и использование этих сведений всеми лицами, участвующими в реализации проекта. Возросшая роль ассоциированных проектных данных привела к тому, что они сами по себе стали активом, имеющим новую форму представления — цифровую.

Для полноценного взаимодействия всех участников процесса информационного обмена в строительной отрасли (изыскателей, проектировщиков, строителей, инвесторов и представителей эксплуатирующих организаций) необходим общий язык представления строительной информации, обеспечивший который должна единая система строительной классификации. Создание системы классификации строительной информации наряду с созданием общих терминологических основ BIM в России важно для формирования новых подходов к управлению ЖЦ ОКС [3]. Применение систем классификации в строительстве России важно для формирования новых подходов к управлению ЖЦ ОКС [3]. Применение систем классификации строительной информации наряду с созданием общих терминологических основ BIM в России важно для формирования новых подходов к управлению ЖЦ ОКС [3]. Применение систем классификации строительной информации важность процессов контроля реализации и управления рисками ИСП на различных этапах его ЖЦ [4].

Согласно работе [5], главной тенденцией развития инвестиционно-строительного процесса в условиях цифровой среды, формирующейся на технологической платформе BIM, является формирование механизмов углубленного сотрудничества участников ИСП на всех этапах ЖЦ объекта, что невозможно без использования единого и понятного языка передачи ассоциированной с проектом информации. Низкий уровень разработки правил классификации объектов, работ и ресурсов в строительстве и, как следствие, низкая совместимость форматов данных ограничивает использование BIM-технологий применительно к полному ЖЦ ОКС [6, 7].

Разработка национального классификатора строительной информации (КСИ) — первоочередной и базовый этап эффективного внедрения технологий информационного моделирования в строительстве на государственном уровне, обеспечивающий возможность государственного регулирования цифровых процессов в ходе реализации ИСП. Создание структуры КСИ и ее дальнейшее информационное наполнение — один из основных мероприятий государственной стандартизации строительной отрасли.

Разработка и применение КСИ даст возможность формирования, распознавания и обработки кодов классификатора при помощи специализированных программных продуктов, что позволяет обеспечить высокую эффективность работы в области информационного обеспечения проектов и улучшить качество информационного обеспечения проектов.

1 Паспорт национального проекта «Национальная программа „Цифровая экономика Российской Федерации.“» URL: https://digital.ac.gov.ru/upload/iblock/219/NP_Cifrovaya_ekonomika.docx

2 Профессиональное сообщество поддержало инициативу по созданию единой национальной системы классификации строительной информации. URL: https://www.faufcc.ru/technical-regulation-in-construction/news-35667/
ранных программных решений. Реализация машинно-считаемого КСИ обеспечит строительную отрасль универсальным средством представления и передачи данных между всеми участниками ИСП, способствуя повышению эффективности и экономичности существующих бизнес-процессов на всех этапах ЖЦ ОКС.

Создание и применение строительных классификаторов — один из первоочередных вопросов подготовки к применению BIM-технологий, но в настоящий момент в отечественной практике отсутствуют всеобъемлющие (kompleksные) классификаторы строительной информации, имеются лишь отдельные классификаторы ресурсов, машин, продукции, классификатор работ существует только в сметных расценках и нормах времени [8].

Очевидна также необходимость гармонизации разрабатываемого классификатора строительной информации с лучшими практиками международных классификационных систем и существующих стандартов.

В рамках разработки структуры и состава КСИ для создания и ведения информационных моделей ОКС Научно-инженерным центром цифровизации и проектирования в строительстве (НИЦ ЦПС) исследована история возникновения и развития классификаторов строительной информации и рассмотрены современные классификационные системы и международные стандарты. Мировая практика классификации строительной информации основана на применении ряда систем классификации, используемых в строительных отраслях различных стран мира. Наиболее эффективными являются следующие классификационные системы: OmniClass, Construction Classification System (OCCS, США), Uniclass 2015 (Великобритания), CCS (Дания), CoClass (Швеция), MasterFormat (США), UniFormat (США), Talo 2000 (Финляндия), NS 3451&TFM (Норвегия). Развитие классификационных систем и BIM-технологий в указанных странах сопровождалось проведением активной государственной политики в части стандартизации и регламентирования применения BIM в строительстве [10].

Американская система классификации для строительной отрасли OCCS закреплена на уровне национальных стандартов в области технологий информационного моделирования в строительстве на территории Соединенных Штатов Америки.

Основная цель разработки OmniClass — объединение и унификация существующих национальных классификационных систем, таких как MasterFormat (OmniClass, табл. 22 «Виды работ»), UniFormat (OmniClass, табл. 21 «Элементы»), разработанных объединением североамериканских некоммерческих ассоциаций Construction Specification Institute (CSI, США) и Construction Specifications Canada (CSC, Канада), а также EPIC (табл. 23 «Виды продукции»), в единую унифицированную систему классификации, построенную на методологических принципах стандарта ISO 12006-2.

Согласно официальным данным разработчиков OmniClass, при разработке данной классификационной системы авторы руководствовались следующими базовыми принципами:

- OmniClass является открытym стандартом с возможностью дальнейшего расширения (масштабирования), стандарт доступен для всех участников строительной отрасли;
- все участники разработки OmniClass обладают полным объемом необходимой информации, их взаимодействие строится на принципах прозрачности всех процессов разработки и полной доступности информации;
- разработка и совершенствование системы OmniClass осуществляется при условии вовлечения широкого круга представителей строительной отрасли;
- участие в процессе разработки и развития OmniClass — добровольное и свободное для всех лиц, действительно заинтересованных в развитии и совершенствовании классификационной системы (КС);
- процесс разработки и дальнейшего внедрения OmniClass должен управляться строительной отраслью в целом, а не каким-либо единственным участником или организацией;
- система OmniClass ориентирована на терминологию и практику применения в Северной Америке;
- OmniClass базируется на международных стандартах по классификации (ISO 12006-2:2001 и ISO 12006-3);
- при развитии OmniClass учитывается практика разработки и применения существующих КС и любых иных исследований, возможных к применению для совершенствования системы OmniClass.

Согласно принципам, заложенным в ISO 12006-2:2001, любая единица строительной информации;

1 Владимир Якушев: «Россия ведет работу по гармонизации строительных стандартов». URL: https://www.faufcc.ru/about-us/news-55421/?sphrase_id=19005/

2 National BIM Standard — United States Version 3. National Institute of Building Sciences buildingSMART alliance, 2015. URL: https://nationalbimstandard.org/buildingSMART-alliance-Releases-NBIMS-US-Version-3/

3 ISO 12006-2. Building construction — Organization of information about construction works — Part 2: Framework for classification.

4 OmniClass. A strategy for Classifying the Built Environment. Introduction and User's Guide. Edition: 2.1. The Construction Specifications Institute, Inc. (CSI), 2019. URL: https://www/csiresources.org/standards/omniclass/
маши может быть отнесена к одной из трех базовых категорий: строительные ресурсы, строительные процессы или результаты процесса строительства. В свою очередь, базовые категории подразделяются на подкатегории, образуя систему уникальных классификационных таблиц (каждой подкатегории строительной информации соответствуют одна или несколько уникальных классификационных таблиц).

Классификационная система OmniClass практически полностью повторяет структуру и принципы классификации строительной информации, предлагаемые стандартом ISO 12006-2:2001, каждая из пятнадцати классификационных таблиц (КТ), представляющих отдельные уникальные категории строительной информации, может быть отнесена к одной из трех базовых категорий строительной информации:

1. табл. 23, 33, 34, 35 и, в меньшей степени табл. 36 и 41, относятся к категории строительных ресурсов;
2. табл. 31 и 32 классифицируют строительные процессы, включая стадии ЖЦ объектов строительства;
3. табл. 11–22 относятся к результатам строительного процесса.

Унифицированная классификационная система Uniclass 20157 предназначена для всех секторов строительной отрасли Великобритании. Uniclass 2015 состоит из согласованных друг с другом классификационных таблиц, содержащих классы объектов строительной отрасли — от глобальных промышленных, гражданских и инфраструктурных строительных объектов до анкерных болтов и светодиодных ламп. Система Uniclass 2015 также применима для структурирования проектной информации и используется в CAD-системах. Информация о проекте может использоваться на протяжении всего ЖЦ ОКС. Первоначальная работа по классификации велась над семью классификационными таблицами, которые описывали основные виды активов, необходимых для осуществления процесса строительства. Со временем были дополнительно разработаны классификационные таблицы по видам информации, управлению проектами и средствам выполнения строительно-монтажных работ.

Uniclass 2015 состоит из однадцати классификационных таблиц, каждая из которых представляет собой отдельную категорию строительной информации. Данные таблицы могут использоваться для выполнения различных задач, таких как составление сметной документации, получение объемов работ и прочих количественных и качественных показателей объекта классификации на всем протяжении его ЖЦ.

При выделении категорий строительной информации (наименования классификационных таблиц) учитывались типы отношений между элементами классификации8. Благодаря этой особенности применение КС Uniclass 2015 возможно, начиная с самых ранних этапов реализации инвестиционно-строительных проектов.

Методология классификации, заложенная в основе системы Uniclass 2015, аналогична OmniClass, базируется на принципах международного стандарта ISO 12006-2:2015, во многом повторяя структуру КСИ, предлагаемую стандартом ISO 12006-2:2015. Для классификации элементов применяется фасетный метод.

По результатам анализа классификационных таблиц систем OmniClass и Uniclass 2015 применительно к информационному моделированию автомобильных дорог в труде [11] сделан вывод о трех возможных путях выбора системы классификации для информационного моделирования дорог в России: использовать существующие классификаторы и «не изобретать велосипед»; разрабатывать свою систему классификации или разрабатывать общеевропейскую систему классификации для всех строительных секторов в международной кооперации (в таком случае придется привести к единообразию и соответствующие методики строительства, используемые материалы и строительные нормативы в целом). С учетом курса на гармонизацию российских стандартов с лучшими международными практиками третий путь также является реалистичным.

Классификационная система CoClass, разрабатываемая на территории Швеции, относится к классу систем, базирующихся на принципах классификации и управления информацией, заложенных в серии международных стандартов ISO/IEC 81346 [12].

Главная цель разработки CoClass — альтернатива для действующего, но устаревшего шведского КСИ BSAB-96, устранение ограничений в части охвата стадий ЖЦ (BSAB-96 применим для стадий проектирования и частично для строительства) и проблем совместимости с технологиями информационного моделирования и цифрового представления данных9.

Разработка CoClass является, прежде всего, инициативой государства, реализуемой в качестве первоочередных мер по сокращению затрат в строительном секторе. Согласно исследованиям Шведского строительного центра (AB Svensk Byggtjänst), отсутствие бесшовной технологии передачи данных (информация накапливается и передается во всей

7 Delany S. What is Uniclass 2015? 2017. URL: https://www.thenbs.com/knowledge/what-is-uniclass-2015
8 CoClass — Nya generationen BSAB Klassifikation och tillämpning, Projekt BSAB 2.0, 2017. URL: https://static.byggtjanst.se/coclass/pdf/Slutdokumentation-CoClass-v1.2-20161026.pdf (шведск.)
свой полноте) на всех этапах ЖЦ объекта строительства приносит годовой убыток в размере 60 млрд шведских крон (до 400 млрд руб. в масштабах всей строительной отрасли Швеции)9.

По данным официального сайта4 проекта CoClass, авторы КС при его разработке руководствовались следующими главными принципами:

• цифровой формат представления данных — КС должна разрабатываться и иметь применение исключительно в цифровом (электронном) виде для удобства в применении BIM-технологий;
• универсальность представления данных — КС должна охватывать все аспекты строительной информации (наименование системы CoClass, разработанное посредством приставки «Co», как раз отражает принцип объединения, совместного использования и универсального подхода при представлении информации);
• использование на протяжении всего ЖЦ объекта строительства — КС должна иметь возможность равно эффективного применения на всех этапах (стадиях) ЖЦ объекта классификации;
• международный статус — КС должна базироваться на методологических принципах международных стандартов;
• простота модификации — КС должна быть гибкой и удобной с точки зрения возможностей будущего изменения и совершенствования.

Принципиальное отличие КС CoClass от многих существующих распространенных систем заключается в том, что система CoClass изначально разрабатывалась как универсальный язык цифрового общения между различными информационными системами. Система CoClass не имеет классической формы представления в бумажном или электронном виде (например, в форме электронных таблиц). Доступ к КС CoClass возможен либо посредством специализированного web-сервиса, который реализует функционал личного кабинета пользователя, либо на уровне программного взаимодействия (CoClass API).

Внутренняя структура КС представлена тремя категориями информации: OBJECTS (Объекты), PROPERTIES (Свойства) и ACTIVITIES (Деятельность). Информация по каждой категории группирована в отдельные уникальные классификационные таблицы: семь таблиц для категории OBJECTS, одна таблица для PROPERTIES и одна таблица для ACTIVITIES.

Организацией, ответственной за внесение последних изменений и актуализацию нововведений, связанных с содержанием и структурой КС, является Шведский центр строительства (Swedish Building Centre).

Система CoClass базируется на принципах ISO 12006-2:2015 и реализует практическую методологию классификации, сформированную в серии стандартов ISO/IEC 81346 [13]. Метод классификации элементов описываемой (строительной) системы фасетный, с фиксированным основанием классификации.

Система CCS (Cuneco Classification System) — датская КС, пришедшая на смену устаревшему DBK [14]. Разработкой данной системы классификации занимается специально созданный правительством Дании в 2011 г. Центр компетенций Cuneco. Результат практического внедрения и использования КС имели большую практическую ценность и учитывались при пересмотре международного стандарта ISO 12006-2.

Цель КС CCS — стандартизация следующих предметных областей в строительстве [15]:

• классификация и идентификация элементов строительной системы;
• определение необходимых и достаточных уровней информации (LOI) классифицируемых объектов для различных стадий ЖЦ;
• формирование единых правил количественных оценок элементов строительной системы;
• определение необходимых атрибутов для элементов строительной системы.

Классификационная система CCS во многом схожа со шведской классификационной системой CoClass, включая форму представления. Содержание и структура CCS также не имеют классического представления посредством бумажного носителя или электронных таблиц, доступ к содержанию классификатора возможен через специализированный web-сервис или API.

Внутренняя структура КС формируется посредством шести основных категорий информации (Use of Construction Entities, Elements, Construction Aids, Construction Agents, Construction Product и Use of Spaces), каждая из которых представлена соответствующими КТ (одной и более).

При разработке КС организация CCS Cuneco руководствовалась положениями международного стандарта ISO 12006-2:2015.

Методология кодирования и классификации отдельных категорий строительной информации (KT) хотя и базируется на принципах серии стандартов ISO/IEC 81346, но все же имеет ряд некоторых незначительных отличий [16]. Cuneco планирует в ближайшее время гармонизировать CCS с последней версией стандарта.

Примером отечественного классификатора в сфере строительства является Московская строительная система классификаторов (MCSS)10. Ос-

9 CoClass — ett nytt digitalt språk som kan spara miljarder! Svensk Byggtjänst, 2018. URL: https://youtu.be/WeOKJhsfTdI (swc.).

10 Классификаторы для информационного моделирования. Описание системы. Редакция 4.0. М., 2019. URL: https://www.mos.ru/upload/documents/files/1115/00_Opisanie_MSSK_40.pdf
новая цель МССК — обеспечение выполнения нормативных требований к цифровым моделям ОКС на этапе прохождения экспертизы проектной документации. Состав МССК в редакции 4.0 представлен тринадцатью КТ, разделенными на четыре категории (раздела): классификаторы цифровой модели местности, классификаторы цифровой модели объекта, классификаторы ресурсов, служебные классификаторы.

Московская система строительных классификаторов отличается детальностью и системным подходом при разработке системы классификации, однако ориентирована прежде всего на обеспечение процедуры прохождения экспертизы. Следствием данной специфики на данный момент является слабая возможность применения МССК на других стадиях ЖЦ строительных объектов. Тем не менее МССК может быть отнесена к референтным системам классификации, обладающим высоким потенциалом для последующей частичной имплементации данных в состав КСИ.

В содержательном обзоре международной нормативной базы в сфере ВИМ [17] отмечено, что внедрению ВИМ препятствует действующая нормативная база, не регламентирующая применение ВИМ-технологий во взаимодействии участников ИСП. Инициативное внедрение ВИМ-систем отдельными организациями не приводит к ощутимому синергетическому эффекту, достижение которого возможно только при вовлечении всех участников ИСП, включая государство.

В связи с этим и в контексте новой государственной политики по внедрению ВИМ в 2019 г. во исполнение поручения Президента Российской Федерации ПР-1235 от 19.07.2018, установленного ряда приоритетных задач, направленных на модернизацию строительной отрасли и повышение качества строительства, Федеральным законом № 151-ФЗ от 27.06.2019 в Градостроительный Кодекс РФ был внесен ряд важных поправок, направленных на регламентирование применения технологий информационного моделирования в России. В частности, законом введены понятия информационной модели объекта капитального строительства и классификатора строительной информации — информационного ресурса, распределяющего информацию об ОКС и ассоциированную с ним информацию в соответствии с ее классификацией (категориями, группами, видами и другими признаками).

МATERIALЫ И МЕТОДЫ

Рассмотрены международные системы классификации строительной информационной OmniClass (США), Uniclass 2015 (Великобритания), CCS (Дания) и CoClass (Швеция), нашедшие широкое практическое применение в области строительства. Кроме международных КС изучены отечественные классификаторы: классификатор строительных ресурсов, классификатор ОКС по их назначению и функционально-технологическим процессам и МССК. Для разработки требований к структуре и составу общероссийского КС произведен сравнительный анализ структур, составов и методологических основ рассмотренных КС.

В статье использованы актуальные материалы ведущих отечественных и зарубежных научных экспертов, министерств и ведомств по данной тематике. Произведен анализ отечественной нормативно-технической базы и законодательства в области информационного моделирования в строительстве.

Представленное исследование выполнено методами системного подхода, сравнительного анализа и обобщения. Применены эмпирические (описание, сравнение) и теоретические (формализация — построение абстрактно-математических моделей, раскрывающих сущность изучаемых процессов) научно-исследовательские методы.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

В рамках исследования для формирования требований к структуре и составу КСИ проведен сравнительный анализ рассмотренных наиболее применимых за рубежом КС по критериям, представленным в табл. 1.

Все рассмотренные национальные КС, широко применяемые в настоящее время, базируются на принципах классификации международного стандарта ISO 12006-2. Системы CoClass и CCS также базируются на серии стандартов ISO/IEC 81346.

В стандартах ISO/IEC 81346 (и в базирующихся на них КС) фактически предложена методика перехода от искусственной классификации к естественной, основанной на применении постоянно (внутренние) присущих объектам общих неизменных и неотъемлемых признаков, определяющих
Табл. 1. Сравнительная таблица национальных классификационных систем

Критерий сравнения (КС)	OmniClass	Uniclass 2015	CoClass	CCS
Государство-разработчик	США, Канада	Великобритания	Швеция	Дания
Дата публикации первой версии стандарта	2006	2015	2016	2012
Область применения КС	Вся строительная область, полный ЖЦ объекта строительства			
Предшествующие КС	MasterFormat, UniFormat, EPIC	SfB (1950) Uniclass (1997) Uniclass 2 (2013)	SfB (1950) BSAB 96	BC/SfB (1950) DBK (2006)
Возможность вертикального расширения КС	+	+	–	–
Возможность горизонтального расширения КС	+	+	+	+
Возможность интеграции других КС	–	–	В качестве свойства объекта классификации	В качестве свойства объекта классификации
Интегрированные КС	MasterFormat, UniFormat, EPIC	–	–	–
Нормативная база классификации	ISO 12006-2:2001 ISO 12006-3	ISO 12006-2:2015 (частично)	ISO 12006-2:2015 ISO 12006-3 ISO/IEC 81346-2 ISO 81346-12	ISO 12006-2:2015 ISO 12006-3 ISO/IEC 81346-2 ISO 81346-12
Метод классификации	Фасетный	Фасетный	Фасетный, с фиксированным основанием классификации	Фасетный, с фиксированным основанием классификации
Количество категорий классификации (КТ)	15	11	9	9
Максимальный уровень иерархической вложенности классификационных таблиц	7	4	3 + 1	3
Стандарт формирования кода классификатора	–	–	ISO 81346-1, ISO 81346-12	ISO 81346-1, ISO 81346-12
Пример кода классификатора	32-49 51 13 11 Pr_15_31_04_86	UAA	QQC	
Аспекты классификации в идентифицирующем коде	–	–	Function-ID Product-ID Location-ID Type-ID	Function-ID Product-ID Multi-lvl product-ID Location-ID Type-ID Multi-level type-ID
Формат представления	Электронные таблицы	Web-сервис	Web-сервис	Web-сервис
API	–	NBS BIM Toolkit API	CoClass API	Cuneco CCS service web API
множество других сходных свойств этих объектов. Согласно работе [18], естественная классификация отражает происхождение вещей и является «генетической». Все остальные признаки классификации выносятся за рамки классифицируемых объектов и являются атрибутами (или параметрами), присущими объекту, но не участвующими в классификации. Данные атрибуты способны меняться на протяжении всего ЖЦ объекта классификации, однако их изменение не затрагивает основание классификации, следовательно, объект способен иметь неизменный идентификатор кода классификации на протяжении всего ЖЦ.

Рассмотрим сравнение подходов к классификации в различных системах на примере архитектурного объекта «Дверь».

В классификационной таблице Products системы OmniClass (Table 23) объект «Дверь» может быть классифицирован одним из 120 возможных вариантов. В табл. 2 представлены подклассы 1-го уровня классификации для объекта «Door» (23-17 11 00).

Таким образом, все 120 подклассов объекта «Door» в рамках одного уровня иерархического представления (23-17 11 00) классифицируются по одному из трех различных признаков: материал исполнения двери, функциональное назначение и принцип устройства двери. Это означает, что, например, для объекта «Металлическая противопожарная управляемая дверь» одновременно могут существовать три различных кода классификатора: 23-17 11 13 (Metal Doors), 23-17 11 31 (Fire Doors) и 23-17 11 37 (Controlled Environment Doors). Подобные случаи неоднозначности при назначении идентификационного кода классификатора являются серьезным препятствием использования подобных КС на уровне программного взаимодействия информационных систем, применяемых на протяжении ЖЦ строительного объекта.

С точки зрения процессов управления информацией подобные принципы классификации приводят еще к одному нежелательному следствию — код классификатора (выступающий в роли идентификатора) в случае изменения признаков (характеристик) объекта классификации (например, в процессе эксплуатации) является переменной характеристикой, что идет в разрез с требованием неизменности идентифицирующих кодов объектов классификации на всех стадиях ЖЦ объекта строительства.

В датской системе CCS объект «Дверь» (KT Components) теперь может быть классифицирован одним единственным (а не 120 возможными, как в примере с КС OmniClass) способом — QQC (табл. 3). Объект «Дверь» относится к технической системе Wall construction (AD) и функциональной системе Wall System (B).

Для объекта «Металлическая противопожарная управляемая дверь» идентифицирующий код согласно функциональному аспекту (символ «=» в коде) равно как и для объекта «Стеклянная дверь маятникового типа» может быть записан

Табл. 2. Подклассы первого уровня объекта «Дверь» системы OmniClass

Код	Наименование класса	Перевод	Признак классификации
23-17 11 13	Metal Doors	Металлические двери	Материал исполнения двери
23-17 11 15	Wood Doors	Деревянные двери	
23-17 11 17	Plastic Doors	Пластиковые двери	
23-17 11 19	Composite Doors	Двери из композитного материала	
23-17 11 21	Glassed Doors	Стеклянные двери	
23-17 11 27	Access Doors	Служебные двери / двери люка	Функциональное назначение двери
23-17 11 31	Fire Doors	Противопожарные двери	
23-17 11 37	Controlled Environment Doors	Двери для регулируемых условий среды	Функциональное назначение двери
23-17 11 39	Detention Doors	Двери для тюрем	Функциональное назначение двери
23-17 11 41	Hanger Doors	Подвесные двери	Принцип устройства двери
23-17 11 43	Lightproof Doors	Светонепроницаемые двери	
23-17 11 45	Traffic Doors	Маятниковая дверь	
23-17 11 47	Pressure Resistance Doors	Двери, устойчивые к давлению	Функциональное назначение двери
23-17 11 49	Security Rated Doors	Защитные двери	
Разработка структуры и состава классификатора строительной информации для применения BIM-технологий

в виде \[E=V_{AD}.QQC\] и оставаться неизменным на всем протяжении ЖЦ рассматриваемого объекта «Дверь», поскольку он базируется на основании, отражающем суть объекта.

Табл. 3. Классификация объекта «Door» согласно классификационной таблице Components

Код	Наименование класса
Q_	Opening and closing component
QQ	Access granting component
QQC	Door

При этом другие свойства объекта «Дверь» (материал, конструктивное исполнение, специальное назначение) отнесены к его характеристикам и могут быть определены по отдельным КТ (например, Properties в CoClass). Подобная система классификации имеет все основания называться естественной классификацией, базирующейся на неизменных признаках объектов, составляющих суть объекта классификации и отражающих его назначение. Согласно работе [18], чем ближе вещи друг к другу «генетически», тем большим числом одинаковых свойств они обладают и тем меньше они различаются между собой. Вследствие этого структура и состав КТ систем CCS и CoClass кардинально отличаются от структуры и состава таблиц OmniClass и Uniclass 2015.

Табл. 4. Сравнение таксономий КТ для различных КС

Наименование КС	Классификационная таблица	Количество классов	Максимальный уровень поэлементной зависимости
OmniClass	Table 23 Products	6887	7
Uniclass 2015	Pr - Products	7210	4
CCS, CoClass	Components	750	3

С учетом табл. 4, можно сделать вывод о том, что главная цель методологии классификации, сформулированной в серии стандартов ISO/IEC 81346, — формирование простых и удобных в использовании структур классификации, базирующихся на принципах универсальности представления информации, минимизации и постоянстве классификационных признаков, основанных на неотъемлемых признаках объектов классификации (естественные основания классификации). Данные принципы всецело способствуют созданию естественных КС.

По результатам сравнения КС в рамках настоящего и проведенных ранее исследований15 предложено разделение всех КС в строительстве (в за

15 Формирование общих подходов к организации информации для обеспечения управления ЖЦ зданий и сооружений с использованием ИМ и разработка методики классификации строительной информации. URL: https://www.faufcc.ru/cifrovoe-razvitie/bim/klassifikator/Презентация_НИЦ_ЦПС_v3_005.pdf

Рис. 1. Три поколения классификационных систем в строительстве
в зависимости от особенностей их организации) на три базовые категории — поколения (рис. 1):

- классификационные системы — родоначальники, первое поколение;
- классификационные системы на базе ISO 12006-2:2001 и ISO 12006-2:2015 — второе поколение;
- классификационные системы на базе ISO 12006-2:2015 и серии стандартов ISO/IEC 81346 — третье поколение ("цифровые" классификационные системы на принципах естественной классификации).

Принципы классификации и формирования внутренней структуры разрабатываемого КСИ должны основываться на передовом опыте разработки и применения существующих КС. В рамках разработки структуры и состава КСИ сформулированы следующие базовые требования:

- неизменность кодовых обозначений всех элементов строительной информации на всем протяжении ЖЦ ОКС;
- уникальность кодового обозначения (каждый элемент должен обладать своим уникальным кодом в рамках проекта);
- однозначность критериев классификации (классификация не должна содержать таких классов, как "другие", "не вошедшие в перечень" или "разнообразные", т.е. классов, которые не могут быть четко определены);
- обеспечение полноты информации о компоненте модели (код должен указывать принадлежность компонента к определенной системе, классу оборудования, месту размещения, иерархии расположения и т.д.);
- возможность расширения (без перекодировок) информационного представления существующих объектов классификации, в случае возникновения новых материалов, работ, ролей, технологий и пр.;
- независимость языка кодирования от национального языка с целью обеспечения возможности международного применения классификатора;
- возможность обеспечения обмена данными между КСИ и другими КС, имеющими широкое применение за рубежом.

В рамках исследования также проведен анализ ряда основных действующих нормативно-правовых актов в сфере градостроительной деятельности в части требований по учету стадий ЖЦ ОКС, направленности на процессы информационного моделирования ОКС, учету систем классификации и классификаторов строительной информации разного рода.

В соответствии со ст. 5 Федерального закона от 27.06.2019 № 151-ФЗ в Градостроительный кодекс введены важные для информационного моделирования в строительстве определения и положения, фактически обеспечивающие интеграцию понятий (терминов) ИМ и КСИ в градостроительную деятельность РФ:

- часть требований и положений ГрК РФ в части ИМ и КСИ вступают в силу в 2020 и 2022 гг., что обусловлено необходимостью реализации этапов Концепции внедрения системы управления жизненным циклом объектов капитального строительства с использованием технологий информационного моделирования в Российской Федерации в части разработки КСИ и требований к ИМ ОКС;
- информационная модель ОКС сможет выступать как дополнением, так и эквивалентом проектной документации;
- согласно определению (ч. 1 ст. 57°) и устанавливаемому порядку использования (ч. 2 ст. 57°), КСИ является неотъемлемым (обязательным к применению) ресурсом при формировании и ведении ИМ ОКС;
- с учетом охвата требованиями ГрК РФ всех этапов ЖЦ ОКС, структура и состав КСИ должны обеспечивать возможность формирования и ведения ИМ ОКС на всех этапах их ЖЦ;
- в ч. 1 ст. 57° ГрК РФ впервые определено лицо, ответственное за обеспечение формирования и ведения ИМ ОКС, — застройщик, технический заказчик, лицо, обеспечивающее или осуществляющее подготовку ОБИН, и (или) лицо, ответственное за эксплуатацию ОКС, что вносит определенность в части разделения ответственности и организации соответствующих работ между участниками ИСП.

Анализ Постановлений Правительства РФ от 19.01.2006 № 20, от 16.02.2008 № 87 и от 05.03.2007 № 145 показал следующее.

В тексте Постановлений Правительства РФ от 19.01.2006 № 20 отсутствуют требования или положения в части ИМ ОКС или КСИ. В ч. 6 Положения упоминается требование к форме приложений к отчетной документации о выполнении инженерных изысканий — "текстовая, графическая, цифровая и иная форма". Очевидно, ч. 6 Положения о выполнении инженерных изысканий по Постановлению Правительства РФ от 19.01.2006 № 20 должна быть актуализирована в соответствии с ч. 42

16 Об инженерных изысканиях для подготовки проектной документации, строительства, реконструкции объектов капитального строительства: Постановление Правительства РФ от 19.01.2006 № 20 (в редакции, актуальной с 2 июля 2019 г.).
17 О составе разделов проектной документации и требованиях к их содержанию: Постановление Правительства РФ от 16.02.2008 № 87 (в редакции, актуальной с 17 июля 2019 г.).
18 О порядке организации и проведения государственной экспертизы проектной документации и результатов инженерных изысканий: Постановление Правительства РФ от 05.03.2007 № 145 (в редакции, актуальной с 2 ноября 2018 г.).
ст. 47 ГрК РФ в части дополнения о подготовке результатов инженерных изысканий в форме, позволяющей осуществлять их использование при формировании и ведении информационной модели.

В тексте рассматриваемого Положения по Постановлению № 87 также пока отсутствуют требования или положения в части применения ИМ ОКС или КСИ. В части формы предоставления проектной документации указываются только текстовая и графическая форма.

В связи с изменениями в части п. 12 ст. 48 ГрК РФ, внесенными Федеральным законом от 03.08.2018 № 342-ФЗ и вступившими в силу с 01.07.2019, состав разделов проектной документации по Постановлению № 87 требует актуализации для приведения в соответствие с ГрК РФ. С другой стороны, в основе Положения № 87 в текущем виде заложен документ-центричный подход, в то время как применение BIM-технологий предполагает применение дата-центричного подхода. Иначе говоря, разработка и экспертиза подлежат прежде всего проектные решения (формализованные методами информационного моделирования), а не проектные документы.

Очевидно, что в ходе реализации Концепции внедрения системы управления жизненным циклом объектов капитального строительства с использованием технологий информационного моделирования структура и состав требований Положения по Постановлению № 87 должны быть коренным образом переработаны.

В тексте рассматриваемого Положения по Постановлению № 145 требования или положения в части применения ИМ ОКС или КСИ также пока отсутствуют. В части формы предоставления проектной документации и (или) результатов инженерных изысканий в п. (л) ч. 2 Положения с 1.01.2017 допускается только электронная форма за исключением случаев, когда проектная документация и (или) результаты инженерных изысканий содержат сведения, составляющие государственную тайну.

Хотя, в отличие от Положения о составе разделов проектной документации и требований к их содержанию, в требованиях Положения по Постановлению № 145 реализован переход к электронному документообороту, следует отметить, что речь по-прежнему идет о наборе привычных документов, но уже в электронном формате (например, pdf).

С учетом новой государственной политики в области внедрения BIM в перспективе в рамках цифровой экспертизы должна рассматриваться неотъемлемо ИМ ОКС (а не проектная документация) с доработкой по замечаниям экспертов, для чего необходимо разработка набора требований к представляемым на экспертизу ИМ, их атрибутивному наполнению и степени детализации.

Для перехода к цифровой экспертизе проектной документации ОКС необходимы не только переход проектных организаций к проектированию на основе BIM-технологий, но и изменение соответственно нормативной базы (корректировка Постановления № 87, разработка новых НТД), разработка процедур автоматизированного учета изменений в ИД экспертов, внедрение систем управления требованиями и конфигурациями.

На основании проведенного анализа зарубежных систем классификации, международных стандартов в области КСИ, анализа действующего российского законодательства в сфере градостроительной деятельности, анализа существующих российских классификаторов и КС в области строительства сформирован сводный перечень требований к структуре и составу разрабатываемого КСИ (табл. 5).

На основании сформулированных требований НИЦ ЦПС разработаны структура и состав КСИ.

Структура КСИ представлена посредством отдельных классов строительной информации, разработанных в области строительной информации и объединяющих другие с помощью моделируемых отношений (или связей). Все классы строительной информации и соответствующие им КС, согласно ISO 12006-2:2015, относятся к одной из четырех базовых категорий строительной информации (ресурс, процесс, результат и характеристика).

Базовые категории строительной информации позволяют моделировать основной процесс, характерный для строительного сектора и заключающийся в том, что получение некоторого определенного результата (строительного) является прямым следствием ряда процессов взаимодействия с некоторыми ресурсами (строительными). Ресурс, процесс и результат обладают (характеризуются) рядом универсальных или специфических характеристик (рис. 2). Данная конфигурация отношений между базовыми категориями строительной информации является универсальной и сохраняется на всем протяжении жизненного цикла ОКС.

Рис. 2. Отношения между базовыми категориями строительной информации

С. 867–906

Разработка структуры и состава классификатора строительной информации для применения BIM-технологий
№ требования	Формулировка требования
1	КСИ должен быть ориентирован на объединение и унификацию существующих классификаторов и КС
2	КСИ должен быть открытым стандартом с возможностью дальнейшего расширения (масштабирования) своего содержания
3	Информационное насыщение КСИ должно осуществляться при условии вовлечения широкого круга представителей профессионального сообщества строительной отрасли
4	Разработка, ведение и дальнейшее совершенствование классификатора строительной отрасли должны находиться в зоне ответственности специализированного исполнительного органа — государственной организации
5	КСИ должен базироваться на международных стандартах
6	При разработке КСИ должен быть учтен опыт разработки и эксплуатации существующих в строительной отрасли классификаторов и КС
7	КТ КСИ должны иметь систему статусов состояния таблиц («в разработке», «проект», «выпущен» и т.п.)
8	КСИ должен носить универсальный характер применения: он должен применяться для объектов гражданского строительства, объектов промышленности, линейных объектов и прочих объектов капитального строительства
9	КСИ должен быть применим на всех стадиях ЖЦ ОКС
10	КСИ должен иметь высокую степень совместимости с технологиями информационного моделирования в строительстве
11	КСИ должен иметь гибкую структуру представления, адаптированную для задач возможного масштабирования и внесения изменений как в структуру, так и в состав классификатора
12	Разрабатываемая структура КСИ должна быть основана на нормативных положениях международного стандарта ISO 12006-2:2015
13	Разрабатываемая структура КСИ должна быть отображена с применением графической нотации представления ИМ EXPRESS-G
14	КТ (предметным областям строительства) КСИ должны быть присвоены уникальные коды-идентификаторы, позволяющие однозначно интерпретировать принадлежность классов информации к определенной предметной области строительства (КТ)
15	Структура КСИ должна базироваться на принципах международного стандарта ISO 12006-2:2015
16	Внутритабличное представление КСИ (методология классификации и группировки) должно базироваться на принципах серии международных стандартов ISO/IEC 81346
17	Структура КСИ должна быть универсальной и содержать классификационные таблицы и классы, используемые на всех стадиях ЖЦ ОКС
18	Принципы структурного построения КСИ должны позволять интегрировать в состав КСИ существующие классификаторы (государственные и корпоративные)
19	Принципы кодирования КСИ должны поддерживать возможность формирования универсальных кодов классифицируемых объектов, неизменных на протяжении их ЖЦ
20	КСИ должен быть интегрирован в состав информационных систем, ориентированных на технологии информационного моделирования и задействованных в процессе реализации ИСП
21	КСИ должен содержать информацию о строительных элементах, строительных характеристиках, ОКС, стадиях ЖЦ ОКС и строительной продукции
Каждая из базовых категорий (процесс, ресурс, результат, характеристика) декомпозируется на ряд отдельных классов строительной информации, при
надлежащих к своей категории. Каждому классу строительной информации соответствует своя КТ. Одна КТ может соответствовать нескольким базо-
вым классам строительной информации. Предлага-
емый состав КСИ представлен в табл. 6.

Для однозначной идентификации классов строительной информации каждой КТ назначен уникальный трехсимвольный буквенный код, пред-
ставляющий собой аббревиатуру из первых букв слов, входящих в наименование соответствующей КТ (например, СтИ — строительные изделия, или СЖЦ — стадии жизненного цикла ОКС). Кодовые обозначения КТ также имеют альтернативные коды, сформированные из букв латинского алфавита.

Таблица 6. Состав классификатора строительной информации

Базовая категория строительной информации	Базовый класс строительной информации	Номер КТ	Код КТ	Наименование КТ
Результат	Зона	1	ПЗо/РЗо	Помещения и зоны
	Помещение			
	Комплекс объектов капитального строительства	2	КОС/ССо	Комплексы объектов капитального строительства
	Объект капитального строительства	3	ОКС/СЕн	Объекты капитального строительства
	Функциональная система	4	ФнС/ФнС	Функциональные системы
	Техническая система	5	ТсС/ТсС	Технические системы
	Компонент	6	Ком/Ком	Компоненты
Процесс	Управление	7	УПр/Мнг	Управление процессами
	Стадии ЖЦ ОКС	8	СЖЦ/ЛС	Стадии ЖЦ ОКС
	Процесс инженерных изысканий	9	ПИИ/ПЕР	Процессы инженерных изысканий
	Процесс проектирования	10	ППр/ПДе	Процессы проектирования
	Процесс строительства	11	ПСр/ПСо	Процессы строительства
	Процесс эксплуатации	12	ПЭк/ПМн	Процессы эксплуатации
	Процесс реконструкции	13	ПРр/ПРе	Процессы реконструкции
	Процесс капитального ремонта	14	ПКР/ПРт	Процессы капитального ремонта
	Процесс сноса здания или сооружения	15	ПСЗ/ПУ	Процессы сноса зданий или сооружений
Ресурс	Строительное изделие	16	СтИ/СтПр	Строительные изделия
	Строительный материал	17	СтМ/СМа	Строительные материалы
	Вспомогательный ресурс	18	ВсР/ВРе	Вспомогательные ресурсы
	Трудовой ресурс	19	ТрР/Тре	Трудовые ресурсы
	Информация	20	Инф/Инф	Информация
Характеристика	Характеристика	21	Хрк/Прп	Характеристики
Базовый класс (категория) строительной информации (субъект)	Тип связи	Базовый класс (категория) строительной информации (объект)		
---	------------	---		
Помещение	Может быть частью	Зона		
	Является типом	Искусственно созданное пространство		
Зона	Является типом	Искусственно созданное пространство		
Искусственно созданное пространство (абстрактный класс)	Является типом	Результат		
	Определяется через	Результат		
Результат	Представлен в виде	Информация		
Комплекс объектов капитального строительства	Является типом	Результат		
	Совокупность	Объект капитального строительства		
Объект капитального строительства	Является типом	Результат		
Строительный элемент (абстрактный класс)	Является типом	Результат		
	Является частью	Объект капитального строительства		
Компонент	Является типом	Строительный элемент		
	Является частью	Техническая система		
	Может быть частью	Компонент		
Техническая система	Является частью	Функциональная система		
	Является типом	Строительный элемент		
	Может быть частью	Техническая система		
Функциональная система	Является типом	Строительный элемент		
Процесс	Приводит к	Результат		
	Использует	Ресурс		
	Происходит в течение	Стадия ЖЦ ОКС		
Управление процессом	Является частью	Процесс		
	Осуществляет контроль	Процесс		
Процесс инженерных изысканий	Является типом	Процесс		
Процесс проектирования	Является типом	Процесс		
Процесс строительства	Является типом	Процесс		
Процесс эксплуатации	Является типом	Процесс		
Процесс реконструкции	Является типом	Процесс		
Процесс капитального ремонта	Является типом	Процесс		
Процесс сноса здания или сооружения	Является типом	Процесс		
Характеристика	Описывает	Результат		
	Описывает	Процесс		
	Описывает	Ресурс		
Строительное изделие	Является типом	Ресурс		
	Выполнено из	Строительный материал		
Строительный материал	Является типом	Ресурс		
Вспомогательный ресурс	Является типом	Ресурс		
Трудовой ресурс	Является типом	Ресурс		
Информация	Является типом	Ресурс		
На основании определения базовых категорий строительной информации (рис. 2), соответствующих им базовых классов (табл. 6) и возможных отношений между ними (табл. 7) разработана модель представления структуры КСИ в нотации EXPRESS-G (рис. 3).

Рис. 3. Схема базовых категорий, классов строительной информации и их отношений в нотации EXPRESS-G

19 Прямоугольники с текстовым полем внутри обозначают отдельные категории или классы строительной информации. Прямоугольники без цветового заполнения (например, «Искусственно созданное пространство», «Строительный элемент») означают абстрактные классы, т.е. классы строительной информации, введенные для обобщения классов — наследников, но не имеющие собственной реализации (отсутствие соответствующих им КТ). Прямоугольники с цветовым обозначением и толстой линией рамки обозначают базовые категории строительной информации («Результат», «Процесс», «Ресурс», «Характеристика»). Прямоугольники с цветовым обозначением и тонкой линией рамки обозначают базовые классы строительной информации («Функциональная система», «Компонент» и проч.), реализованные посредством соответствующих классификационных таблиц строительной информации («Функциональные системы», «Компоненты» и проч.).
На основе предложенной структуры и состава КСИ и с учетом существующей базы для классификации произведено распределение существующих информационных источников классификационной базы по соответствующим КТ КСИ для задач дальнейшего формирования содержания КТ (табл. 8).

Номер КТ	Код КТ	Наименование КТ	Информационные источники для анализа в целях включения в содержание КТ/Референтные КТ существующих систем классификации
1	ПЗо	Помещения и зоны	**Информационные источники:**
• Нормативно-техническая база в строительстве			
• IEC 81346-2:2019 Industrial systems, installations and equipment and industrial products — Structuring principles and reference designations — Part 2: Classification of objects and codes for classes			
Структура КТ:			
• IEC 81346-2:2019, Table 4			
Референтные КТ:			
• Uniclass 2015 — Spaces / locations			
• OmniClass — Table 13 Spaces by functions			
• OmniClass — Table 14 Spaces by form			
• CoClass — UT Built space			
• CCS — Use of spaces			
• МССК — Помещения и зоны			
2	КОС	Комплексы ОКС	**Информационные источники:**
• Классификатор ОКС по их назначению и функционально-технологическим процессам (ФГУ «Главгосэкспертиза России»)			
• ОКОФ 2 — Общероссийский классификатор основных фондов			
Референтные КТ:			
• CoClass — BX Construction complex			
• CCS — Use of Construction Entities			
• Uniclass 2015 — Co Complexes			
• Uniclass 2015 — En Entities			
• Uniclass 2015 — Ac Activities			
• OmniClass — Table 11 Construction entities by function			
• OmniClass — Table 12 Construction entities by form			
• МССК — Виды и назначение ОКС			
3	ОКС	ОКС	**Информационные источники:**
• Нормативно-техническая база в строительстве (в части Постановления Правительства № 1521)			
• ISO/IEC 81346-12:2018, A.1, A.2			
Структура КТ:			
• ISO/IEC 81346-12:2018 Industrials systems, installations and equipment and industrial products — Structuring principles and reference designations — Part 12: Construction works			
Референтные КТ:			
• CCS / CoClass — Technical Systems			
• CCS / CoClass — Functional Systems			
• МССК — Системы			
• IEC 81346-2:2019, Table 3			
4	ФнС	Функциональные системы	**Информационные источники:**
• Нормативно-техническая база в строительстве (в части Постановления Правительства № 1521)			
• ISO/IEC 81346-12:2018, A.1, A.2			
Структура КТ:			
• ISO/IEC 81346-12:2018 Industrials systems, installations and equipment and industrial products — Structuring principles and reference designations — Part 12: Construction works			
Референтные КТ:			
• CCS / CoClass — Technical Systems			
• CCS / CoClass — Functional Systems			
• МССК — Системы			
• IEC 81346-2:2019, Table 3			
5	ТхС	Технические системы	**Информационные источники:**
• Нормативно-техническая база в строительстве (в части Постановления Правительства № 1521)			
• IEC 81346-2:2019, Table 3			
Структура КТ:			
• IEC 81346-2:2019, Table 3			
Номер КТ	Код КТ	Наименование КТ	Информационные источники для анализа в целях включения в содержание КТ/Референтные КТ существующих систем классификации
----------	--------	----------------	--
7	УПр	Управление процессами	Референтные КТ:
OmniClass — Table 23 Products			
OmniClass — Table 21 Elements			
Uniclass 2015 — Pr Products			
Uniclass 2015 — EF Elements / functions			
CoClass — KO Components			
CCS — Components			
МССК — Элементы			
Информационные источники:			
ГОСТ Р ИСО 21500-2014. Руководство по проектному менеджменту			
ГОСТ Р ИСО 10006-2005. Системы менеджмента качества. Руководство по менеджменту качества при проектировании			
РМВОК (Project management Body of Knowledge)			
ICB (IPMA Competence Baseline)			
8	СЖЦ	Стадии ЖЦ ОКС	Референтные КТ:
OmniClass — Table 32 Services			
Uniclass 2015 — PM Project Management			
МССК — Управление информацией			
Информационные источники:			
ФЗ «Технический регламент о безопасности зданий и сооружений» от 30.12.2009 № 384-ФЗ			
9	ПИИ	Процессы инженерных изысканий	Референтные КТ:
OmniClass — Table 31 Phases			
Информационные источники:			
действующее российское законодательство в сфере градостроительной деятельности			
нормативно-техническая база в строительстве (в части процессов на всем протяжении ЖЦ ОКС)			
ОКВЭД 2 — Раздел F. Строительство			
ОКПД 2 — Общероссийский классификатор продукции по видам деятельности (Раздел F — Сооружения и строительные работы)			
ГЭСН-2001 — Общестроительные работы			
ГЭСНр-2001 — Ремонтные работы			
ГЭСНм-2001 — Монтажные работы			
ГЭСНмр-20014 — Капитальный ремонт оборудования			
ГЭСНн-2001 — Пусконаладочные работы			
10	ППр	Процессы проектирования	
11	ПСт	Процессы строительства	
12	ПЭк	Процессы эксплуатации	
13	ПРк	Процессы реконструкции	
14	ПКР	Процессы капитального ремонта	
15	ПСЗ	Процессы сноса зданий или сооружений	
16	СтИ	Строительные изделия	Референтные КТ:
OmniClass — Table 22 Work results			
CoClass — PR Work result			
CoClass — FA Maintenance activities			
Информационные источники:			
ОК КСР — Классификатор строительных ресурсов, в части:			
Книга 05 — Изделия из бетона, цемента, гипса			
Книга 06 — Изделия керамические строительные			
Книга 07 — Металлоконструкции строительные и их части из черных металлов			
Книга 08 — Изделия металлические, металлопрокат, канаты			
Книга 09 — Металлоконструкции строительные и их части из алюминия и алюминиевых сплавов			
Номер КТ	Код КТ	Наименование КТ	Информационные источники для анализа в целях включения в содержание КТ/Референтные КТ существующих систем классификации
----------	-------	----------------	--
17	СтМ	Строительные материалы	• Книга 10 — Изделия, прокатно-тянутые из цветных металлов и цветные металлы
• Книга 11 — Изделия и конструкции из дерева и пластмассовых профилей
• Книга 13 — Изделия из природного камня
• Книга 15 — Малые архитектурные формы
• Книга 21 — Продукция кабельная
• Книга 23 — Трубы и трубопроводы, фасонные и соединительные части, фитинги металлические
• Книга 24 — Трубы и трубопроводы, фасонные и соединительные части, фитинги из других материалов, кроме бетонных
• Книга 61 — Оборудование и устройства электронные связи, радиовещания, телевидения, охранно-пожарная сигнализация
• Книга 62 — Оборудование, устройства и аппаратура электрические
• Книга 63 — Оборудование, устройства и аппаратура для систем теплоснабжения
• Книга 64 — Оборудование, устройства и аппаратура для систем вентиляции и кондиционирования воздуха
• Книга 65 — Оборудование, устройства и аппаратура для водоснабжения и канализации
• Книга 66 — Оборудование, устройства и аппаратура для системы газоснабжения
• Книга 67 — Лифты
• Книга 68 — Насосы и станции для перекачек и поднятия жидкостей
• Книга 69 — Арматура трубопроводная и воздуховодная с электроприводом
• Книга 77 — Оборудование для строительства железных дорог
• Книга 79 — Оборудование атомных станций для объектов атомного строительства

Материалы ФСНБ-2001:
• Часть 2. Строительные конструкции и изделия
• Часть 4. Бетонные, железобетонные и керамические изделия.
Нерудные материалы. Товарные бетоны и растворы
• ОК ЕСКД — Общероссийский классификатор изделий и конструкторских документов

Референтные КТ:
• OmniClass — Table 23 Products
• Uniclass 2015 — Pr Products
• МССК — Строительные изделия и материалы

Информационные источники:
• ОК КСР — Классификатор строительных ресурсов, в части:
• Книга 12 — Материалы и изделия кровельные рулонные, гидроизоляционные и теплоизоляционные, звукоизоляционные, черепица
• Книга 14 — Материалы лакокрасочные антикоррозийные, защитные и аналогичные покрытия, клей
• Книга 16 — Материалы для садово-паркового и зеленого строительства
• Книга 17 — Материалы и изделия огнеупорные
• Книга 18 — Материалы и изделия для систем водоснабжения, канализации, теплоснабжения, газоснабжения
• Книга 19 — Материалы и изделия для систем вентиляции и кондиционирования воздуха
Номер КТ	Код КТ	Наименование КТ	Информационные источники для анализа в целях включения в содержание КТ/Референтные КТ существующих систем классификации
18	ВсР	Вспомогательные ресурсы	• Книга 20 — Материалы монтажные и электроустановочные, изделия и конструкции
• Книга 22 — Материалы для систем и сооружений связи, радиовещания и телевидения			
• Книга 25 — Материалы для строительства железных дорог			
• Книга 26 — Материалы и изделия для метрополитенов и тоннелей			
• Книга 27 — Материалы и изделия для сетей экологически чистого транспорта			
Материалы ФСНБ-2001:			
• Часть 1. Материалы для общестроительных работ			
• Часть 3. Материалы и изделия для санитарно-технических работ			
• Часть 5. Материалы, изделия и конструкции для монтажных и специальных строительных работ			
Референтные КТ:			
• OmniClass — Table 41 Materials			
• МССК — Строительные изделия и материалы			
19	ТрР	Трудовые ресурсы	• ОКПДТР — Общероссийский классификатор профессий рабочих, должностей служащих и тарифных разрядов
• ЕТКС — Единый тарифно-квалификационный справочник работ и профессий рабочих			
Референтные источники:			
• OmniClass — Table 35 Tools			
• Uniclass 2015 — TE Tools and Equipment			
• CCS — Constructions aids components			
• CCS — Construction aids functional systems			
• МССК — строительная техника и оборудование			
20	Инф	Информация	• ОКУД — Общероссийский классификатор управленческой документации
Референтные источники:			
• OmniClass — Table 36 Information			
• Uniclass 2015 — Fi Forms of information			
• Uniclass 2015 — Zz CAD			
• МССК — Управление информацией			
21	Хрк	Характеристики	• действующее российское законодательство в сфере градостроительной деятельности
• нормативно-техническая база в строительстве
Референтные источники:
• OmniClass — Table 49 Properties
• CoClass — Property
• CCS — Classes of properties
• МССК — Параметры |
ЗАКЛЮЧЕНИЕ И ОБСУЖДЕНИЕ

Полноценное внедрение технологий информационного моделирования на всех этапах ЖЦ ОКС подразумевает эффективное и «бесшовное» управление информацией ОКС. Эффективное управление информацией обуславливается, прежде всего, ее структурированностью, связанностью и однозначностью интерпретации и обеспечивается применением классификационных систем строительной информации.

Разработка национального КСИ — первоочередной этап на пути к внедрению и применению технологий информационного моделирования в рамках строительной отрасли. Полноценное внедрение КСИ положит начало применению единого универсального «языка общения», используемого всеми участниками реализации ИСП и отвечающего условиям его однозначной интерпретации (одно из условий обеспечения «машиночитаемости»).

Согласно проведенному анализу мировой практики КСИ на примере существующих широко применяемых зарубежных систем строительной классификации (OmniClass, Uniclass 2015, CCS, CoClass) наиболее развитыми с технологической и методологической точек зрения являются КС «третьего поколения», которые также можно назвать «цифровыми» классификационными системами. Представителями данной категории КС являются датская CCS и шведская классификационная система CoClass.

Стандарт ISO 12006-2:2015 и серия стандартов ISO/IEC 81346 образуют гармоничную методологическую базу по классификации в строительной отрасли и рекомендуются к применению при разработке национальной классификационной системы.

По результатам анализа действующего российского законодательства в сфере градостроительной деятельности в контексте направленности на пропаганду информационного моделирования ОКС, учета систем классификации и классификаторов разного рода строительной информации очевидно, что основные НПА требуют актуализации для приведения в соответствие с новой редакцией ГрК РФ.

Разработана структура КСИ, отвечающая требованиям формирования и ведения ИМ ОКС на всех стадиях ЖЦ. Сформированная структура КСИ соответствует требованиям международного стандарта ISO 12006-2:2015 и отвечает требованиям масштабируемости (далнейшего расширения) за счет добавления дополнительных КТ строительной информации при необходимости.

Определен рекомендуемый состав исходных данных (база классификации), подлежащих включению в КСИ для целей создания и ведения ИМ ОКС на всех стадиях ЖЦ ОКС. Все информационные источники соотнесены с КТ строительной информации. Часть источников (например, общероссийский классификатор строительных ресурсов ОК КСР) может быть рекомендована для прямой имплементации в состав КСИ.

Установлен состав КСИ: базовые категории строительной информации, базовые классы и связи между ними, а также соответствующие им КТ. При разработке состава КСИ были учтены национальные особенности базы нормативно-технической документации и действующего законодательства в сфере градостроительной деятельности.

Разработанная структура КСИ является универсальной и применимой на всех стадиях ЖЦ ОКС, с учетом применения технологий информационного моделирования в строительстве.

Предлагаемый состав КСИ обеспечивает охват всех видов и типов строительной информации, вне зависимости от отраслевой ориентированности. В то же время принципы организации КСИ дают возможность использовать дополнительные КТ «расширения» на уровне отдельных организаций и корпораций.

Зарубежный опыт разработки аналогичных классификаторов строительной информации систем (OmniClass, Uniclass 2015, CCS и CoClass) показал необходимость вовлечения широкого круга профессионалов строительного сектора для проработки содержания КСИ. Данный подход позволит в минимальные сроки обеспечить качественное наполнение внутреннего содержания КТ.

Разработанная структура и состав КСИ позволяют:
• обеспечить единую методологию и принципы классификации для всех строительных сущностей, используемых в рамках управления ЖЦ ОКС;
• применять единые правила идентификации и кодирования элементов строительного комплекса и соответствующих им атрибутивных наборов, обеспечивающих совместимость КСИ с любыми из существующих систем классификации (обмена, ведомственными и корпоративными);
• реализовать индексацию и структурирование всего массива данных строительных систем, связанных с управлением ЖЦ ОКС, для однозначной идентификации используемых данных на соответствующих информационных ресурсах;
• обеспечить качественно новый уровень формирования, обработки и достоверности данных, на основании которых принимаются решения.

Дальнейшая разработка КСИ в части формирования и детализации КТ должна носить последовательный характер и базироваться прежде всего на принципах существующих международных стандартов в области КСИ с учетом практики внедрения BIM-технологий, нормативно-правовой и нормативно-технической баз строительной отрасли России.
Разработка структуры и состава классификатора строительной информации для применения BIM-технологий

С. 867–906

ЛИТЕРАТУРА

1. Sacks R., Eastman C., Lee G., Teicholz P. BIM handbook. New Jersey: John Wiley & Sons, Inc, 2018. DOI: 10.1002/9781119287568
2. Гнезбург А.В. BIM-технологии на протяжении жизненного цикла строительного объекта // Информационные ресурсы России. 2016. № 5 (153). С. 28–31.
3. Беляев А.В., Антипин С.С. Жизненный цикл объектов строительства при информационном моделировании зданий и сооружений // Промышленное и гражданское строительство. 2019. № 1. С. 65–72.
4. Шарманов В.В., Симанкина Т.Л., Мамаев А.Е. Контроль рисков строительства на основе BIM-технологий // Строительство уникальных зданий и сооружений. 2017. № 12 (63). С.113–124. DOI: 10.18720/CUBS.63.6
5. Чурбанов А.Е., Шамара Ю.А. Влияние технологии информационного моделирования на развитие инвестиционно-строительного процесса // Вестник МГСУ. 2018. Т. 13. Вып. 7 (118). С. 824–835. DOI: 10.22227/1997-0935.2018.7.824-835
6. Volkov A., Chelyshkov P., Lysenko D. Information management in the application of bim in construction. stages of construction // Procedia Engineering. 2016. Vol. 153. Pp. 833–837. DOI: 10.1016/j.proeng.2016.08.251
7. Гусакова Е.А. Информационное моделирование жизненного цикла проектов высотного строительства // Вестник МГСУ. 2018. Т. 13. № 1 (112). С. 14–22. DOI: 10.22227/1997-0935.2018.1.14-22
8. Каракозова И.В., Малыша Г.Г., Павлов А.С., Панин А.С., Теслер Н.Д. Исследование подготовительных работ для использования BIM-технологий на примере проектирования медицинских организаций // Вестник МГСУ. 2020. Т. 15. № 1. С. 100–111. DOI: 10.22227/1997-0935.2020.1.100-111
9. Титова И.Д., Волкодав В.А. История возникновения и развития классификаторов строительной информации // Строительство уникальных зданий и сооружений. 2020. № 1 (86). С. 20–29. DOI: 10.18720/CUBS.86.2
10. Edirisinghe R., London K. Comparative analysis of international and national level BIM standardization efforts and BIM adoption // Proceeding of the 32nd CIB W78 Conference. Eindhoven, The Netherlands, 2015. Pp. 149–158. URL: https://www.researchgate.net/publication/286496233_Comparative_Analysis_of_International_and_National_Level_BIM_Standardization_Efforts_and_BIM_adoption/
11. Кизюков Е.М., Мираз Н.С. Применение строительных классификаторов при информационном моделировании автомобильных дорог // САПР и ГИС автомобильных дорог. 2017. № 1 (8). С. 13–19. DOI: 10.17273/CADGIS.2017.1.3
12. Zayton H., Safdari H. The role of interoperability in construction projects. communication and the implementation of CoClass. Master’s Thesis in the Master’s Programme Design and Construction project management. ACEX30-2018-94. Chalmers University Of Technology, Göteborg, Sweden, 2018. URL: http://publications.lib.chalmers.se/records/fulltext/256323/256323.pdf
13. Ekholm A. A critical analysis of international standards for construction classification — results from the development of a new Swedish construction classification system // In Proc. of the 33rd CIB W78 Conference. Brisbane, Australia [5.2Bl], 2016. URL: https://portal.research.lu.se/portal/files/16339424/2016_10_31_Ekholm_CIB_W78_paper.pdf
14. Koch K., Chan P. Projecting an Information Infrastructure — Shaping a Community // Engineering Project Organization Conference. Colorado, 2013. URL: http://publications.lib.chalmers.se/records/fulltext/182975/local_182975.pdf
15. Balslev H. Implementing Model Semantics and a (MB)SE Ontology in Civil Engineering & Construction Sector // INCOSE International Symposium. 2015. Vol. 25. Issue 1. Pp. 687–696. DOI: 10.1002/j.2334-5837.2015.00090.x
16. Balslev H. The Reference Designation System (RDS) a common naming convention for systems and their elements // INCOSE International Symposium. 2016. Vol. 26. Issue 1. Pp. 1639–1656. DOI: 10.1002/j.2334-5837.2016.00251.x
17. Скворцов А.В. Обзор международной нормативной базы в сфере BIM // САПР и ГИС автомобильных дорог. 2016. № 2 (7). С. 4–48. DOI: 10.17273/CADGIS.2016.2.1
18. Кожаре В.Л. Феномен естественной классификации. Новые идеи в научной классификации: коллектив. монография / отв. ред. Ю.И. Миришников, М.П. Покровский. Екатеринбург : УрО РАН, 2010. Вып. 5. С. 161–189.

Поступила в редакцию 22 марта 2020 г.
Принята в доработанном виде 20 апреля 2020 г.
Одобрена для публикации 28 мая 2020 г.

О Б А В Т О Р А Х:

Владимир Алексеевич Волкодав — генеральный директор; Научно-инженерный центр цифровизации и проектирования в строительстве (НИЦ ЦПС); 190020, г. Санкт-Петербург; Рижский пр-т, д. 58, корп. 2, литер А, офис 4.24; РИНЦ ID: 574245; via@niccps.ru;

Иван Алексеевич Волкодав — кандидат технических наук, директор по наук; Научно-инженерный центр цифровизации и проектирования в строительстве (НИЦ ЦПС); 190020, г. Санкт-Петербург; Рижский пр-т, д. 58, корп. 2, литер А, офис 4.24; РИНЦ ID: 574245; via@niccps.ru.
INTRODUCTION

Information technologies, viewed as an area of scientific research and a focus of practical human activities, represent one of the main drivers of economic and societal development. Over the last 20–30 years, a major share of innovations in structural design was closely related to construction data generation, storage, and presentation pursuant to the concept of building information modeling (BIM), whereby a building or a structure is analyzed as a single structured object, or an information model [1].

Russia, along with other countries (such as the United States, Denmark, Germany, Finland, etc.) has identified information modeling technologies as a top-priority innovative development area for the construction industry.

The implementation of each construction project is accompanied by an extensive amount of associated data generated throughout the entire life cycle of a construction object [2]. The project management process (as well as the management of tangible assets) is largely a data management process, which involves its storage, retrieval, transfer, and use by all persons involved in project implementation. The growing role of associated project data has caused their conversion into a digital asset.

To ensure smooth interaction between construction industry players (surveyors, designers, builders, investors, and representatives of building operators), there arises a need for a common method of presenting building information originating from a unified system of classification. In Russia, development of a building information classification system together with common BIM terminology databases is important for new approaches to the construction object’s life cycle management [3]. Classification systems are used to index and structure information about construction and investment projects (CIPs); they provide convenient data access and ensure unique identification of an information model and its composition at each stage of the life cycle of a construction facility. This feature is particularly important in the context of the project progress monitoring and risk management at various stages of its life cycle [4].

According to [5], development of in-depth mechanisms of cooperation between process participants, which is unfeasible without a unified and easy-to-comprehend project data transmission tool, represents the main development trend in the digitized construction process that employs BIM technology platforms. Poor quality classification criteria applicable to construction objects, works, and resources causes data formats to be incompatible and limits the use of BIM during the whole life cycle of a construction object [6, 7].

Development of a nation-wide building information classifier (BIC) is the first primary step towards the effective implementation of an information modeling technology in the construction industry. It ensures state-induced control over digital processes in the course of implementing construction projects. BIC structuring and subsequent data filling are the basic functions of government-induced standardization of the construction industry [2].

BIC development and application will ensure generation, recognition, and processing of classifier codes with the help of specialized software solutions. The implementation of a machine-readable BIC will provide the construction industry with a universal data sharing tool available to all construction project stakeholders? It will boost the efficiency of business processes throughout the lifecycle of a construction object.

The development and use of building classifiers are the top priority actions aimed at the efficient preparation for the application of BIM technologies. However, at the moment, there are no comprehensive (integrated) building information classifiers available in Russia. There are individual classifiers of resources, machines, and products. A classifier of construction works represents a set of estimated costs and time standards [8].

There is also a need to harmonize the building information classifier which is being developed, with best international classification practices and existing standards [1].

As part of an effort to develop the structure and composition of a building information classifier, engineer and maintain information models of construction objects, the Scientific and Engineering Centre for Digitalization and Design in the Construction Industry (NIC CPS) has analyzed the history of building information classifiers [9], contemporary classification systems and international standards. Several classification systems are in use worldwide. The following systems are most effective: OmniClass Construction Classification System (OCCS, USA), Uniclass 2015 (UK), CCS (Denmark), CoClass (Sweden), MasterFormat (USA), UniFormat (USA), Talo 2000 (Finland), and NS 3451&TFM (Norway). In these countries, classification systems and BIM were developed within the framework of state-induced standardization and regulation efforts [10].

The use of the US OmniClass Construction Classification System (abbreviated as OmniClass or OCCS)
in the construction industry is regulated at the level of national US standards6.

The mission of OmniClass is to consolidate the existing national classification systems, such as MasterFormat (OmniClass, Table 22 — “Types of work”), UniFormat (OmniClass, Table 21 — “Elements”), developed by the Construction Specification Institute (CSI, Canada), and EPIC (Table 23 — “Types of products”), into a single classification system using methodological principles stipulated in ISO 12006-2.

According to the official data made publicly available by OmniClass developers, the classification system is based on the following principles:

- OmniClass is an open scalable standard which is available to all construction industry players;
- each OmniClass co-developer has access to any information that he needs, their interaction is based on the principles of transparency of all development processes and unrestricted access to information;
- any development and improvement of the OmniClass system is subject to the involvement of a wide range of construction industry players;
- any contribution into OmniClass is voluntary and free for all parties interested in its development and improvement;
- development and further implementation of OmniClass should be managed by the construction industry as a whole, and not by any participant or organization;
- the OmniClass system is focused on terminology and practice implemented in North America;
- OmniClass is based on International Classification Standards (ISO 12006-2:2001 and ISO 12006-3);
- OmniClass takes account of existing classification systems and any other research projects that can be used to improve it.

According to the principles set forth in ISO 12006-2:2001, any item of building information can be assigned to one of three basic categories: construction resources, construction processes and construction process results. In turn, basic categories are split into subcategories organized into a system of unique classification tables (each subcategory of building information corresponds to one or more unique classification tables).

OmniClass reproduces the structure and principles of building information classification proposed in ISO 12006-2:2001, including its fifteen classification tables (CT) representing unique categories of building information assignable to one of three basic categories of building information:

- tables 23, 33, 34, 35 and, to a smaller extent, 36 and 41 belong to the category of construction resources;
- tables 31 and 32 classify construction processes, including the building life cycle and its stages;
- tables 11 to 22 classify construction process results.

Uniclass 2015 Unified Classification System7 is designated for all sectors of the UK construction industry. Uniclass 2015 has harmonized classification tables filled with classes of construction objects, from global industrial, civil, and infrastructural ones to anchor bolts and LED lamps. Uniclass 2015 is also used to structure design information applicable in CAD systems. Any item of project information can be used throughout the entire life cycle of a construction object. Seven classification tables were used for initial classification and description of principal construction process assets. As the time progressed, new classification tables were developed to add new types of information and to list project management, construction and installation assignments.

Uniclass 2015 has eleven classification tables, one for a specific category of building information. Table data can be used to perform various tasks, i.e. to develop the project budget and to write a scope of work. Tables also contain other quantitative and qualitative characteristics of a classified object throughout its life cycle.

The nature of relations between classified elements was taken into account7 when categories of building information (titles of classification tables) were identified. Therefore, Uniclass 2015 is applicable starting from the earliest stages of construction project implementation.

Same as in the case of OmniClass, the classification methodology underlying Uniclass 2015 is based on the principles of ISO 12006-2:2015; it largely reproduces the classification framework proposed by this standard. The facet method is used to classify the elements.

Classification tables of OmniClass and Uniclass 2015 systems, analyzed for road modeling in [11], have proven the availability of three possible methods of selecting a classification system, designated for road modeling in Russia: method one means using existing classifiers without “reinventing the wheel”; method two means development of a new classification system, and method three means a global building classification system be developed in international cooperation (in this case, construction methodologies, materials and regulations will need to be harmonized). Given the course towards harmonization of Russian standards with the best international practices, method three is also feasible.

6 National BIM Standard — United States Version 3. National Institute of Building Sciences buildingSMART alliance, 2015. URL: https://nationalbimstandard.org/buildingSMART-alliance-Releases-NBIMS-US-Version-3/

5 ISO 12006-2 Building construction — Organization of information about construction works — Part 2: Framework for classification

6 OmniClass. A strategy for Classifying the Built Environment. Introduction and User's Guide. Edition: 2.1. The Construction Specifications Institute, Inc. (CSI), 2019. URL: https://www.csiresources.org/standards/omniclass/

7 Delany S. What is Uniclass 2015? 2017. URL: https://www.thenbs.com/knowledge/what-is-uniclass-2015
The CoClass classification system, developed in Sweden, belongs to the class of systems based on the principles of classification and information management specified in ISO/IEC 81346 international standards [12].

CoClass’s mission is to develop into an alternative to the currently used through outdated Swedish building information classifier BSAB-96, to eliminate restrictions that prevent the coverage of all life cycle stages (BSAB-96 is applicable only for searching and, to some extent, to construction works) and to solve problems of compatibility with technologies of information modeling and digital data representation.

CoClass is primarily a government-induced initiative implemented as a top-priority measure to reduce construction industry costs. According to the research performed by the Swedish Building Center (AB Svensk Bygg tjänst), the unavailability of a seamless data transfer technology (whereby information is accumulated and transmitted in its entirety at each stage of a construction project) causes an annual loss of SEK 60 billion (up to 400 billion rubles for Sweden’s entire construction industry).

According to the official website of the CoClass project, developers of this classification system follow the main principles in the course of their work:

- digital data representation format: the classification system should be developed and applied exclusively in the digital (electronic) format to simplify BIM application;
- data representation universality: the classification system should encompass all aspects of the building information (the name CoClass is composed of the prefix “co” that stands for unification, sharing, and a universal approach to data representation);
- usability throughout the entire life cycle of a construction object: the classification system should be effectively applicable throughout the lifecycle of a classification object;
- international status: the classification system should be based on the methodological principles underlying international standards;
- ease of modification: the classification system should be flexible and convenient in terms of its potential modification and improvement.

The fundamental difference between CoClass and many other existing classification systems is that CoClass was originally developed as a universal language designated for digital communication between various classification systems. CoClass is not available as a hard copy or an electronic document (e.g. a spreadsheet). Access to CoClass is provided either through a specialized web service that functions as a user profile or at the program interaction level (CoClass API).

The internal structure of the classification system is represented by three categories of information: OBJECTS, PROPERTIES, and ACTIVITIES. Information designated for each category is grouped into unique classification tables: seven tables for the OBJECTS category, one table for the PROPERTIES category, and one table for the ACTIVITIES category.

Swedish Building Centre is the organization, responsible for introducing most recent changes and innovations related to the content and structure of the classification system.

CoClass is based on the principles of ISO 12006-2:2015; it implements a practical classification methodology set out in ISO/IEC 81346 [14]. The classification method applied to the construction system described here is faceted; its classification criteria are permanent.

CCS (Cuneco Classification System) is a Danish classification system that has replaced outdated DBK [15]. This system is developed by the Cuneco Competence Centre, established by the Danish government in 2011. The results of the practical implementation and use of the classification system had a substantial practical value; they were contributed into ISO 12006-2 in the course of its revision.

The CCS classification system aims to standardize the following subject areas of the construction industry [16]:

- classification and identification of building system elements;
- identification of necessary and sufficient levels of information (LOI) about classified objects at various stages of a life cycle;
- development of uniform rules for quantitative assessments of building system elements;
- identification of necessary attributes of building system elements.

The CCS classification system is similar to the Swedish CoClass classification system, including the data presentation format. The content and structure of CCS are available neither as a hard copy, nor as a spreadsheet. Its content is accessible through a specialized web service or API.

As for the internal structure of the classification system, it has six main information categories (Use of construction entities, Elements, Construction aids, Construction agents, Construction product, and Use of spaces), each is represented by classification tables (one or more).

In the process of developing the classification system CCS Cuneco was guided by the provisions of ISO 12006-2:2015.

Although the coding and classification methodology applying to certain building information categories (classification tables) is based on the principles of ISO/IEC 81346, it still has minor discrepancies [17]. Soon
Cuneco plans to assure the compliance of CCS with the latest version of the standard.

The Moscow Building Classification System (MBCS) is a classifier made in Russia. Its mission is to ensure the compliance of digital models of construction objects with the regulatory requirements at the stage of design documentation review by the expert community. MBCS has thirteen classification tables divided into four categories (sections): classifiers of a digital terrain model, classifiers of a digital object model, classifiers of resources, and auxiliary classifiers.

The Moscow Building Classification System is notable for a detailed systems approach to the classification framework, which is primarily focused on the expert review process. As a result, MBCS is not fully applicable to other stages of the life cycle of a construction object. However, MBCS can be considered as a reference classification system having a high potential for subsequent partial incorporation of data into a building information classifier.

A comprehensive review of the international legislation that governs the use of BIM [19] has proven that BIM and its implementation is hindered by the effective legal framework that does not regulate the use of BIM in terms of interaction between CIP participants. Proactive implementation of BIM systems by individual organizations does not bring any tangible synergistic effect, which is only possible through the involvement of all CIP participants, including the state.

In the context of the new BIM implementation policy pursued by the state since 2019, pursuant to Instruction PR-1235 of 07.19.2018[12] issued by the President of the Russian Federation, which establishes several top priority tasks aimed at modernizing the construction industry and improving the quality of construction, a number of important amendments were made to the Urban Planning Code of the Russian Federation by Federal Law No. 151-FZ of June 27[13], 2019[14]. These amendments deal with the use of information modeling technologies in Russia. In particular, the law introduced the concepts of an information model of a capital construction object and a building information classifier, or an information resource that distributes information about capital construction objects and any other data associated with them in accordance with its classification (classes, groups, types, and other features).

MATERIALS AND METHODS

When preparing the article, we analyzed the following international building information classification systems: OmniClass (USA), Uniclass 2015 (Great Britain), CCS (Denmark), and CoClass (Sweden), that are widely used by the construction industry. In addition to international classification systems, we also examined domestic classifiers, including a classifier of building resources, a classifier of capital construction objects subject to their function, functional and technological processes, and the Moscow Building Classification System (MBCS). A comparative analysis of structures, compositions, and fundamental methodologies associated with classification systems in question has been performed to develop the requirements applicable to the structure and composition of a Russian building information classifier.

The co-authors have taken advantage of the relevant materials provided by the leading Russian and foreign industry experts, ministries, and departments. The analysis of the Russian regulatory and technical framework of information modeling in the construction industry has been performed.

The co-authors used the systems approach, the comparative analysis, and generalization. Empirical (description, comparison) and theoretical (formalization, or construction of abstract mathematical models that can identify the essence of the processes in question) research methods were applied to draft the article.

RESULTS

The criteria, listed in Table 1, were used to analyze the most popular foreign classification systems and to develop the structure and composition of a building information classifier.

Each national classification system, which is currently in use, is based on the classification principles specified in ISO 12006-2. CoClass and CCS are also governed by ISO/IEC 81346.

ISO/IEC 81346 standards (and classification systems developed on their basis) propose a method for transition from the artificial classification to the natural one. This method originates from the application of permanently (internally) inherent common and permanent attributes that define many other similar properties of these objects. According to [20], natural classification depicts the origin of things, and it is considered to be
Table 1. National classification systems

Criterion	OmniClass	Uniclass 2015	CoClass	CCS
Developer state	USA, Canada	UK	Sweden	Denmark
Year of initial standard revision	2006	2015	2016	2012
Classification system coverage	All construction operations, overall life cycle of a construction object	All construction operations, overall life cycle of a construction object	All construction operations, overall life cycle of a construction object	All construction operations, overall life cycle of a construction object
Preceding classification systems	MasterFormat, UniFormat, EPIC	SfB (1950) Uniclass (1997) Uniclass 2 (2013)	SfB (1950) BSAB 96	BC/SfB (1950) DBK (2006)
Vertically expandable classification system	+	+	–	–
Horizontally expandable classification system	+	+	+	+
Feasibility of integration of other classification systems	–	–	As a property of a classification object	As a property of a classification object
Integrated classification systems	MasterFormat, UniFormat, EPIC	–	–	–
Classification legislation	ISO 12006-2:2001 ISO 12006-3	ISO 12006-2:2015 (partially)	ISO 12006-2:2015 ISO 12006-3 ISO/IEC 81346-2 ISO 81346-12	ISO 12006-2:2015 ISO 12006-3 ISO/IEC 81346-2 ISO 81346-12
Classification method	Faceted	Faceted	Faceted with a permanent classification basis	Faceted with a permanent classification basis
Number of classification categories (classification tables)	15	11	9	9
Maximal level of hierarchical nesting of classification tables	7	4	3 + 1	3
Classifier code generation standard	–	–	ISO 81346-1, ISO 81346-12	ISO 81346-1, ISO 81346-12
Classifier code example	32-49 51 13 11 Pr_15_31_04_86 UAA			QQ
Classification aspects of the identification code	–	–	Function-ID Product-ID Location-ID Type-ID	Function-ID Product-ID Multi-level product-ID Location-ID Type-ID Multi-level type-ID
Presentation format	Spreadsheets	Web service	Web service	Web service
API	–	NBS BIM Toolkit API	CoClass API	Cuneco CCS service web API
“genetic”. All other classification criteria are disregarded in respect of classified objects; they represent attributes (or properties) inherent in these objects but not involved in the classification. These attributes can change throughout the life cycle of a classified object. However, their change does not affect the classification basis; therefore, the object can have an unchanged identifier of the classification code throughout the entire life cycle.

Let us compare classification approaches implemented by various systems using the “door” as an example.

In the Products classification table of OmniClass (Table 23), the object “Door” can be classified using one of 120 options. Table 2 shows subclasses of the 1st classification level for the object “Door” (23-17 11 00).

Thus, all 120 subclasses of the object “Door” within the same hierarchical level (23-17 11 00) are classified according to one of three different attributes: door material, door function, door construction principle. This means that, for example, the object “Metal Fire Control Door” can have three different classification codes: 23-17 11 13 (Metal Doors), 23-17 11 31 (Fire Doors) and 23-17 11 37 (Controlled Environment Doors). Such cases of ambiguity in the assignment of the identifier code within a classifier are a serious obstacle to the use of such classification systems at the level of program interaction of information systems throughout the life cycle of a construction object.

In terms of information management processes, such classification principles cause another undesirable effect: the classifier code (acting as an identifier) converts into a variable property if the characteristics (properties) of a classification object change (e.g. in the course of object operation), which is contrary to the invariability requirement applicable to identification codes of classification objects at all stages of the life cycle of a construction object.

In the Danish CCS system, the object “Door” (classification table “Components”) can be classified in one way (QQC) as opposed to 120 possible ways demonstrated by the OmniClass classification system (Table 3). The object “Door” refers to the technical system “Wall Construction” (AD) and the functional system “Wall System” (B).

The identification code of the object “Metal Fire Control Door” (as well as the object “Glass Traffic Door”) can be written in the form \([E]=B.AD.QQC001\), with regard for the functional aspect (the “=” symbol in the code), and it remains unchanged throughout the life cycle of the object “Door”, since this code demonstrates the essence of the object.

Table 3. Classification of the object “Door” according to the Components classification table

Code	Class name	Classification criterion
Q_	Opening and closing component	
QQ_	Access granting component	
QQC	Door	

Other properties of the object “Door” (material, design, special designation) are added to its characteristics and can be determined by separate classification tables (e.g. Properties in CoClass). Such a classification system has every reason to be called a natural classification system based on permanent features of objects.
that make up the essence of the classified object and represent its designation. According to [20], the closer these objects are to each other “genetically”, the more similar their properties are and the less they differ from one another. As a result, the structure and composition of classification tables in CCS and CoClass classification systems are radically different from the structure and composition of tables in OmniClass and Uniclass 2015. Table 4 shows quantitative parameters of taxonomies for OmniClass, Uniclass 2015, CCS, and CoClass.

Table 4. Taxonomies of classification tables in different classification systems

Classification system name	Classification table	Number of classes	Maximal level of hierarchical nesting
OmniClass	Table 23 Products	6887	7
Uniclass 2015	Pr — Products	7210	4
CCS, CoClass	Components	750	3

Following the comparison of classification systems performed within the framework of the present and earlier studies\(^\text{15}\), the co-authors suggest dividing all classification systems designed for the construction industry (depending on features of their organization) into three basic categories, or generations (Fig. 1):

- classification systems-ancestors, or the first generation;
- classification systems based on ISO 12006-2:2001 and ISO 12006-2:2015, or the second generation;
- classification systems based on ISO 12006-2:2015 and ISO/IEC 81346, or the third generation (digital classification systems based on natural classification principles).

Principles of classification and internal structura-
tion of a future building information classifier should be based on the best practice in the development and application of existing classification systems. The following basic requirements were set up in the course of developing the structure and composition of a building information classifier:

- permanence of codes attributed to all elements of construction information throughout the life cycle of a construction object;
- uniqueness of codes (each element must have its own unique code within the project);

\(^{15}\) Common approaches to organizing information to ensure the life cycle management of buildings and structures using information modeling and development of a methodology for classifying building information. URL: https://www.fauffe.ru/cifrovoe-razvitie/bim/klassifikator/Презентация_НИЦ_ЦПС_v3_005.pdf

Fig. 1. Three generations of classification systems in the construction industry
Development of the structure and composition of a building information classifier towards the application of BIM technologies

The development and examination of the classifier should not contain such classes as “others”, “not included” or “various”, i.e., classes that cannot be clearly defined;

• completeness of information about model components (the code should indicate that the component belongs to a particular system, equipment class, location, location hierarchy, etc.);

• expandable data entries (without re-encoding), representing classified objects in case of emergence of new materials, works, roles, technologies, etc.;

• independence of the coding language from the national language to ensure international usability of the classifier;

• data exchangeability between the building information classifier and other classification systems widely used worldwide.

Within the framework of the study, the co-authors also analyzed several principal effective regulatory acts governing urban development in terms of the analysis of the life cycle of a construction object, their focus on information modeling methods, and regard for classification systems and classifiers of various types of construction information.

Definitions and provisions important for information modeling in the construction industry were introduced into the Urban Planning Code by virtue of Article 5, Federal Law No. 151-FZ of June 27, 2019. New definitions and provisions ensure the integration of concepts (terms) of information modeling and building information classifiers into urban planning activities in the Russian Federation:

• some requirements and provisions of the Civil Code of the Russian Federation dealing with information modeling and building information classifiers come into force in 2020 and 2022, as part of an effort to implement the Concept for the management of life cycles of construction objects using information modeling in the Russian Federation, namely, development of information models and requirements for information modeling of construction objects;

• the information model of a construction object will serve as an annex to or even as an equivalent of the project documentation;

• a building information classifier is an integral (mandatory) resource used to generate and maintain information models of construction objects according to its definition (Article 57th Part 1) and arrangements for use (Article 57th Part 2);

• given that the provisions of Civil Code of the Russian Federation apply to the whole life cycle of a construction object, the structure and composition of a building information classifier must ensure the generation and maintenance of an information model of a construction object throughout its life cycle;

• Part 1 of Article 57th of the Civil Code of the Russian Federation introduces the definition of a person responsible for the generation and maintenance of information models of construction objects, including the developer, the technical customer, the person providing or preparing the due diligence, and (or) the person responsible for the operation of construction objects. This provision ensures responsibility sharing and work distribution among parties to the construction project.

The analysis of Decrees No. 20 dated January 19th, 200616, No. 87, dated February 16th, 2008, and No. 145, dated March 5, 2007, issued by the Government of the Russian Federation, has substantiated the following statements.

Decree No. 20 issued by the Government of the Russian Federation on January 19, 2006 has no requirements or provisions concerning information modeling of construction objects or building information classifiers. Obviously, Part 6 of Provisions on the implementation of engineering surveys pursuant to Decree No. 20 issued by the Government of the Russian Federation on January 19, 2006, should be updated to comply with Part 42 Article 47 of the Urban Planning Code of the Russian Federation in respect of the supplement focused on the preparation of results of engineering surveys in the form that makes them usable for the generation and maintenance of an information model;

Decree No. 87 does not have any requirements concerning the application of information models of construction objects or construction information classifiers. As for the project documentation format, only textual and graphic forms are specified there.

Following the amendments to paragraph 12 of Article 48 of the Civil Code of the Russian Federation introduced by Federal Law No. 342-FZ of August 3, 2018, that came into effect on July 1, 2019, project documentation sections of Decree No. 87 need updating to ensure their compliance with the Urban Planning Code of the Russian Federation. On the opposite, Decree No. 87 in its current form is based on the documentation approach while the use of BIM is based on the data approach. In other words, design decisions (formalized by information modeling methods), rather than project documentation, are primarily subject to further development and examination.

16 Decree of the Government of the Russian Federation of January 19, 2006, No. 20 “On engineering surveys for the preparation of design documentation, construction, reconstruction of capital construction facilities” (as amended on July 2, 2019), 2006.

17 Decree of the Government of the Russian Federation of March 5, 2007, No. 145 “On the procedure for organizing and conducting a state examination of project documentation and engineering survey results” (as amended on November 2, 2018), 2007.

18 Decree of the Government of the Russian Federation of February 16, 2008, No. 87 “On the composition of sections of project documentation and requirements for their maintenance” (as amended on July 17, 2019), 2008.
Obviously, the structure and composition of the requirements comprising Provisions based on Decree No. 87 should be radically revised in the course of enacting the Concept for the management of life cycles of construction objects using information modeling in the Russian Federation.

Provisions developed in furtherance of Decree No. 145 have no obligatory application of information modeling of construction objects or building information classifiers. As for the format of the project documentation and/or engineering survey results specified in paragraph (L), Part 2 of Provisions, starting from January 1, 2017, only electronic format is authorized, except when project documentation and/or engineering survey results contain a state secret.

Although Provisions developed in furtherance of Decree No. 145 ensure transition to electronic document management unlike Provisions concerning the composition and content of the project documentation, they refer to the same set of documents to be prepared in the electronic format (e.g. pdf).

If the government changes its policy in respect of BIM, an information model of a construction object (rather than project documentation) will be analyzed and revised in furtherance of expert opinions, and this workflow pattern will be feasible if the set of requirements, applicable to information models, attributes and detailing, is available.

Any transition to the digital examination of construction project documentation requires BIM based design to be accompanied by revisions in the regulatory framework (including the revision of Decree No. 87 and new technical specifications), automated recording of project documentation changes made by experts, and implementation of management systems applicable to requirements and configurations.

A consolidated list of requirements applicable to the structure and composition of a future classifier of building information is compiled on the basis of the analysis of foreign classification systems, international standards in the field of classification of building information, analysis of effective Russian urban planning laws and regulations, existing Russian classifiers and construction classification systems (Table 5).

Requirement No.	Text of the requirement
1	The classifier must be focused on combining and unifying existing classifiers and classification systems
2	The classifier must represent an open standard, its content must be expandable (scalable)
3	Representatives of the civil engineering community must make contributions into the content of the building information classifier
4	A government entity shall be responsible for the development, maintenance, and further improvement of the building information classifier
5	The building information classifier should be based on international standards
6	Any classifier to be developed shall take account of the development and operation of existing construction classification standards
7	Classification tables of the building information classifier must have a system of statuses (“under development”, “project”, “issued”, etc.)
8	The building information classifier shall be universal, it shall apply to civil engineering, industrial and infrastructural objects, etc.
9	The building information classifier must be applicable throughout the entire life cycle of construction objects
10	The building information classifier must be compatible with information modeling technologies in civil engineering
11	The building information classifier must have a flexible and scalable structure, its structure and composition shall be changeable
12	The structure of the building information classifier to be developed shall be based on the regulatory provisions of ISO 12006-2:2015
13	The developed structure of the building information classifier must be displayed in graphic form using information models EXPRESS-G
14	Classification tables (construction subject areas) of the building information classifier must have unique identifier codes to ensure the unambiguous attribution of information classes to specific construction areas (classification tables)
Development of the structure and composition of a building information classifier towards the application of BIM technologies

C. 867–906

Based on the above requirements, the Scientific and Engineering Center for Digitalization and Design in Construction has designed the structure and composition of the building information classifier.

The building information classifier has separate classes of building information, distributed among basic categories of information, and combined through simulated relations (or links). According to ISO 12006-2:2015, all building information classes and classification tables belong to one of four basic categories of building information (resource, process, result, and property).

Basic categories of building information serve to simulate the basic process characteristic of the construction sector: obtaining a certain specific result is a direct consequence of several interactions with some construction resources. Resource, processes, and results have a number of universal or specific properties (Fig. 2). This configuration of relations between basic categories of building information is universal and it is maintained throughout the life cycles of construction objects.

Each basic category (construction process, construction resource, construction result, construction property) is split into several separate classes of building information that belong to it. Each class of building information has its own classification table. One classification table can correspond to several basic classes of building information. The proposed composition of the building information classifier is presented in Table 6.

To unambiguously identify classes of building information, each classification table is assigned a unique three-letter code, which is an abbreviation of the words that appear in the name of the corresponding classification table (e.g. CPR stands for “Construction Products” and LCS stands for “Life cycle stages of construction objects”). Classification table codes also have alternative variants compiled of Latin letters.

Basic classes of building information are interrelated. These relations enable us to model interrelations between different classes by adding supplementary fields to the classification table body.

For example, classification table No. 21 “Construction properties” contains classes demonstrating properties of classes of Table No. 6 “Components”. Accordingly, the addition of the “Component Code” field in the “Construction properties” classification table will make it possible to establish a one-on-one correspondence between a component and its properties. Variations of relations between basic categories and classes are provided in Table 7.

A model structure of the building information classifier in EXPRESS-G notation (Fig. 3) was developed with account for the basic categories of building information (Fig. 2), basic classes (Table 6), and potential relations between them (Table 7).

Sources of information were distributed among classification tables of building information classifiers in an effort to compile the content of the classification

Table 5

Requirement No.	Text of the requirement
15	The structure of the building information classifier must be based on the principles of ISO 12006-2:2015
16	The tabular style of the building information classifier (classification and grouping methodology) must be based on the principles of ISO/IEC 81346
17	The structure of the building information classifier must be universal and it must contain classification tables and classes used throughout the life cycles of construction objects
18	Structural principles of the building information classifier must ensure integration of existing classifiers (state-owned and private ones) into BIC
19	BIC coding principles should enable generation of universal codes for classified objects that remain unchanged throughout their life cycle
20	The building information classifier must be integrated into information systems focused on information modeling and involved in the implementation of construction projects
21	The building information classifier must contain information on building elements, building characteristics, construction objects, stages of their life cycle, and construction products

Fig. 2. Relations between basic categories of building information

Fig. 3. Model structure of the building information classifier in EXPRESS-G notation
Table 6. Building information classifier. Composition

Basic category of building information	Basic class of building information	CT number	CT code	CT name
Construction result	Zone	1	RZo	Rooms and zones
	Room			
	Complex of construction objects	2	CCo	Complexes of construction objects
	Construction object	3	CEn	Construction objects
	Functional system	4	FnS	Functional systems
	Technical system	5	TeS	Technical systems
	Component	6	Com	Components

Construction process	Management	7	Mng	Process management
	CCO life cycle stage	8	LCS	Life cycle of construction objects
	Engineering investigation process	9	PER	Engineering investigation processes
	Design process	10	PDe	Design processes
	Building process	11	PCo	Building processes
	Maintenance process	12	PMn	Maintenance processes
	Reconstruction process	13	PRe	Reconstruction processes
	Major repairs process	14	PRf	Major repairs processes
	Building or structure demolition process	15	PUT	Building or structure demolition processes

Construction resource	Construction product	16	CPr	Construction products
	Construction material	17	CMa	Construction materials
	Construction aid	18	ARe	Construction aids
	Construction agent	19	Hre	Construction agents
	Construction information	20	Inf	Construction information

| Construction property | Construction property | 21 | Prp | Construction properties |

Table 7. Relations between basic classes of building information

Basic class (category) of building information (subject)	Type of relation	Basic class (category) of building information (object)
Room	May be part of	Zone
	Type of	Built space
Zone	Type of	Built space
Built space (abstract class)	Type of	Construction result
	Defined by	Construction result
Construction result	Presented as	Construction information
Complex of construction objects	Type of	Construction result
	Aggregate of	Construction object
Construction object	Type of	Construction result
Construction element (abstract class)	Type of	Construction result
	Part of	Construction object
Development of the structure and composition of a building information classifier towards the application of BIM technologies

Basic class (category) of building information (subject)	Type of relation	Basic class (category) of building information (object)
Component	Type of	Construction element
	Part of	Technical system
	May be part of	Component
Technical system	Part of	Functional system
	Type of	Construction element
	May be part of	Technical system
Functional system	Type of	Construction element
Construction process	Results in	Construction result
	Uses	Construction resource
	Occurs during	CCO life cycle stage
Process management	Part of	Construction process
	Controls	Construction process
Engineering process	Type of	Construction process
Design process	Type of	Construction process
Construction process	Type of	Construction process
Operation process	Type of	Construction process
Reconstruction process	Type of	Construction process
Refurbishment process	Type of	Construction process
Process of demolishing a building or structure	Type of	Construction process
Construction property	Describes	Construction result
	Describes	Construction process
	Describes	Construction resource
Construction product	Type of	Construction resource
	Made of	Construction material
Construction material	Type of	Construction resource
Construction aid	Type of	Construction resource
Human resource	Type of	Construction resource
Construction information	Type of	Construction resource

table (Table 8) on the basis of the proposed structure and composition of building information classifiers and with regard for the information designated for classification.

CONCLUSIONS

Full-scale implementation of information modeling technologies at all stages of life cycles of capital construction objects implies effective and seamless management of information about construction objects. Effective information management is determined, first of all, by its structuredness, coherence, unambiguity of interpretation, and employment of building information classification systems.

Development of a national classifier of building information is the first step towards introduction and application of information modeling technologies in the construction industry. Full-scale implementation of classification systems launches the application of a universal and unambiguously interpreted communication language used by all parties to construction projects (a condition of “machine-readability”).
Fig. 3. Basic categories, classes of building information and their relations in EXPRESS-G notation 19

19 Text boxes indicate individual categories of building information. Non-coloured boxes (for example, “Built space”, “Construction element”) mean abstract classes, i.e. classes of building information introduced to generalize classes, or heirs, that have no individual implementation (lack of classification tables corresponding to them). Coloured boxes having a thick line frame indicate basic categories of building information (“Construction result”, “Construction process”, “Construction resource”, “Construction properties”). Coloured boxes having a thin line frame indicate classes of building information (“Functional system”, “Component”, etc.) implemented in classification tables of building information (“Functional systems”, “Components”, etc.). Connecting lines represent relations between classes and categories. A thick line with a circle at the end stands for a “type-of” relation, thin lines with circles at the end stand for other types of relations, types of relation are determined by notations next to connection lines.
Table 8. Distribution of classified information among classification tables

CT number	CT code	CT name	Information sources analyzed with the purpose of integration into CT / Reference CT of existing classification systems
1	RZo	Rooms and zones	**Sources of information:**
			• Regulatory and technical base of the construction industry
			• IEC 81346-2:2019 Industrial systems, installations and equipment and industrial products — Structuring principles and reference designations — Part 2: Classification of objects and codes for classes
			CT structure:
			• IEC 81346-2:2019, Table 4
			Reference CT:
			• Uniclass 2015 — Spaces / locations
			• OmniClass — Table 13 Spaces by functions
			• OmniClass — Table 14 Spaces by form
			• CoClass — UT Built space
			• CCS — Use of spaces
			• MBCS — Rooms and zones
2	CCo	Complexes of capital construction objects	**Sources of information:**
			• Classifier of capital construction objects according to their purpose, functional and technological processes (Federal Autonomous Institution “Federal Department of State Expertise”)
			• OKOF 2 — All-Russian Classifier of Fixed Assets
3	CEn	Capital construction objects	**Reference CT:**
			• CoClass — BX Construction complex
			• CCS — Use of Construction Entities
			• Uniclass 2015 — Co Complexes
			• Uniclass 2015 — En Entities
			• Uniclass 2015 — Ac Activities
			• OmniClass — Table 11 Construction entities by function
			• OmniClass — Table 12 Construction entities by form
			• MBCS — Types and purpose of CCO
4	FtS	Functional systems	**Sources of information:**
			• Regulatory and technical base of the construction industry (Government Decree No. 1521)
			• ISO/IEC 81346-12:2018, A.1, A.2
5	TeS	Technical systems	**CT structure:**
			• ISO/IEC 81346-12:2018 Industrials systems, installations and equipment and industrial products — Structuring principles and reference designations — Part 12: Construction works
			Reference CT:
			• CCS : CoClass — Technical Systems
			• CCS : CoClass — Functional Systems
			• MBCS-Systems
			• Uniclass 2015 — Ss Systems 07
6	Com	Components	**Sources of information:**
			• Regulatory and technical base of the construction industry (Government Decree No. 1521)
			• IEC 81346-2:2019, Table 3
			CT structure:
			• IEC 81346-2:2019, Table 3
			Reference CT:
			• OmniClass — Table 23 Products
			• OmniClass — Table 21 Elements
			• Uniclass 2015 — Pr Products
			• Uniclass 2015 — EF Elements / functions
			• CoClass — KO Components
			• CCS — Components
			• MBCS — Elements
Sources of information:
- GOST R ISO 21500-2014 Project Management Guide
- GOST R ISO 10006-2005 Quality Management Systems. Design Quality Management Guide
- PMBOK (Project management Body of Knowledge)
- ICB (IPMA Competence Baseline)

Reference CT:
- OmniClass — Table 32 Services
- Uniclass 2015 — PM Project Management
- MBCS — Information management

Sources of information:
- Federal Law No. 384-FZ “Technical Regulations of Safety of Buildings and Structures” dated December 30, 2009.

Reference CT:
- OmniClass — Table 31 Phases

Sources of information:
- effective Russian legislation in the area of urban development
- regulatory and technical base in the construction industry (in terms of processes underway throughout the life cycles of capital construction objects)

Reference CT:
- OKVED 2 — Section F. Construction
- OKPD 2 — All-Russian classification of products by types of activity (Section F — Structures and construction works)
- GESN-2001 — General Construction Work
- GESNrk-2001 — Repair Work
- GESNm-2001 — Installation work
- GESNmr-20014 — Overhaul of equipment
- GESNp-2001 — Commissioning

Reference CT:
- OmniClass — Table 22 Work results
- CoClass — PR Work result
- CoClass — FA Maintenance activities

Sources of information:
- OK KSR — Classifier of construction resources, namely:
 - Book 05 — Concrete, cement, gypsum products
 - Book 06 — Ceramic construction products
 - Book 07 — Steel structures and their parts made of ferrous metals
 - Book 08 — Metal products, rolled metal products, metal wire ropes
 - Book 09 — Steel structures and their parts made of aluminum and aluminum alloys
 - Book 10 — Rolled and drawn non-ferrous metal products and non-ferrous metals
 - Book 11 — Products and structures made of wood and plastic extrusions
 - Book 13 — Natural stone products
 - Book 15 — Landscape architecture products
 - Book 21 — Cable products
 - Book 23 — Pipes and pipelines, fittings, adapting pipes, metal fittings
 - Book 24 — Pipes and pipelines, fittings, adapting pipes, fittings made of materials other than concrete
 - Book 61 — Electronic equipment and communication devices for broadcasting, television, fire and security alarms
 - Book 62 — Electrical equipment and devices
 - Book 63 — Equipment and devices for heat supply systems
 - Book 64 — Equipment and devices for ventilation and air conditioning systems
| CT number | CT code | CT name | Information sources analyzed with the purpose of integration into CT / Reference CT of existing classification systems |
|-----------|---------|----------------------|--|
| | | | • Book 65 — Equipment and devices for water supply and sewage systems |
| | | | • Book 66 — Equipment and devices for gas supply systems |
| | | | • Book 67 — Lifts |
| | | | • Book 68 — Pumps and pumping stations for pumping liquids |
| | | | • Book 69 — Power-driven pipe fittings and valves |
| | | | • Book 77 — Railway construction equipment |
| | | | • Book 79 — Nuclear power plant equipment for construction of nuclear facilities |
| | | | **FSNB-2001 materials:** |
| | | | • Part 2. Engineering constructions and products |
| | | | • Part 4. Concrete, reinforced concrete and ceramic products. Non-metallic materials. Ready-mixed concrete and mortar |
| | | | • OK ESKD — All-Russian Classifier of Products and Design Documents |
| | | | **Reference CT:** |
| | | | • OmniClass — Table 23 Products |
| | | | • Uniclass 2015 — Pr Products |
| | | | • MBCS — Construction products and materials |
| | | | **Sources of information:** |
| | | | • OK KSR — Classifier of construction resources, namely: |
| | | | • Book 12 — Roll roofing, waterproofing, heat insulating, sound-proofing, tiling materials and products |
| | | | • Book 14 — Paint-and-lacquer anticorrosive materials, protective and similar coatings, glues |
| | | | • Book 16 — Materials for landscape gardening and green building |
| | | | • Book 17 — Refractory materials and products |
| | | | • Book 18 — Materials and products for water supply, sewage, heat supply, gas supply systems |
| | | | • Book 19 — Materials and products for ventilation and air conditioning systems |
| | | | • Book 20 — Installation and wiring materials, products and constructions |
| | | | • Book 22 — Materials for communication, broadcasting and television systems and structures |
| | | | • Book 25 — Railway construction materials |
| | | | • Book 26 — Materials and products for subways and tunnels |
| | | | • Book 27 — Materials and products for environmentally friendly transport networks |
| | | | **FSNB-2001 materials:** |
| | | | • Part 1. Materials for general construction works |
| | | | • Part 3. Plumbing materials and products |
| | | | • Part 5. Materials, products and structures for installation and specialized construction works |
| | | | **Reference CT:** |
| | | | • OmniClass — Table 41 Materials |
| | | | • MBCS — Construction products and materials |
| 17 | CMa | Construction materials | **Sources of information:** |
| | | | • OK KSR — Classifier of construction resources, namely: |
| | | | • Book 12 — Roll roofing, waterproofing, heat insulating, sound-proofing, tiling materials and products |
| | | | • Book 14 — Paint-and-lacquer anticorrosive materials, protective and similar coatings, glues |
| | | | **Reference sources:** |
| | | | • OmniClass — Table 35 Tools |
| 18 | ARe | Supplementary resources| **Sources of information:** |
| | | | • OK KSR — Classifier of construction resources, namely: |
| | | | • Book 91 — Machinery and mechanisms |
| | | | • Machinery and mechanisms FSNB-2001 |
| | | | **Reference sources:** |
| | | | • OmniClass — Table 35 Tools |
| | | | • Uniclass 2015 — TE Tools and Equipment |
| | | | • CCS — Constructions aids components |
| | | | • CCS — Construction aids functional systems |
| | | | • MBCS — Construction machinery and equipment |
The analysis of international classifiers of building information (OmniClass, Uniclass 2015, CCS, CoClass) has proven that third generation classification systems, which can also be called “digital”, are the most technologically and methodologically advanced ones. Danish CCS and Swedish CoClass systems are best-in-class.

ISO 12006-2:2015 and ISO/IEC 81346 serve as the harmonious methodological framework for information classification in the construction industry; they are recommended as the framework of a national classification system.

Obviously, principal legal acts need to be revised to ensure compliance with the new version of the Urban Planning Code of the Russian Federation. This conclusion has been substantiated by the analysis of the effective legislation governing urban development and information modeling of construction objects with regard for versatile classification systems and building information classifiers.

The structure of the building information classifier has been developed; it complies with the requirements applicable to the generation and maintenance of information models of construction objects at each stage of their life cycle. The structure of the newly developed classifier complies with ISO 12006-2:2015. The proposed building information classifier complies with scalability requirements, as supplementary classification tables can be added to it if necessary.

The composition of the inflow data to be entered into BIC for the purpose of generating and maintaining information models of construction objects at each stage of their life cycle has been determined. All sources of information are correlated with building information classification tables. Some sources (for example, the All-Russian classifier of construction resources, OK KSR) can be recommended for immediate integration into the classifier of building information.

The composition of the classifier has been determined: it has several basic categories of building information, basic classes and relations between them, as well as classification tables. Effective urban planning legislation, national regulatory and technical specifications govern the development of the building information classifier.

The structure of the building information classifier is universal; it is applicable at each stage of the life cycle of a construction object and it takes advantage of information modeling technologies designated for the construction industry.

The building information classifier encompasses all types of construction information, regardless of the industry focus. At the same time, its organizational principles support new classification tables contributed by independent organizations and corporations.

The history of international building information classifiers (OmniClass, Uniclass 2015, CCS, and CoClass) has proven the need to have a wide range...
of professionals involved in the elaboration of the BIC content. This approach will ensure high quality content of classification tables in the short term.

The structure and composition of the building information classifier will ensure:

- unified methodological and classification principles applicable to all construction entities used to manage the life cycle of construction objects;
- uniform rules used to identify and code elements of construction complexes and sets of their attributes for BIC to be compatible with any of the existing classification systems (at national, industry-wide and corporate levels);
- indexing and structuring of the entire data array related to the management of CCO life cycles aimed at the unambiguous identification of data contributed into information resources;
- a qualitatively higher standard of generation, processing, and reliability of the data that will serve as the basis for decision making.

Any further development of construction information classifiers in terms of generation and refinement of classification tables must be consistently performed in accordance with the principles of international standards of building information classification, BIM practice, regulatory and technical frameworks governing the Russian construction industry.

REFERENCES

1. Sacks R., Eastman C., Lee G., Teicholz P. BIM handbook. New Jersey, John Wiley & Sons, Inc, 2018. DOI: 10.1002/9781119287568.
2. Ginsburg A.V. BIM-technologies in the process of life cycle of construction projects. Information Resources of Russia. 2016; 5:28-31. (rus.).
3. Belyaev A.V., Antipov S.S. Life cycle of construction objects at information simulation of buildings and structures. Industrial and Civil Engineering. 2019; 1:65-72. (rus.).
4. Sharmanov V.V., Simankina T.L., Maaev A.E. Risk control construction through BIM. Construction of Unique Buildings and Structures. 2017; 12(63):113-124. DOI: 10.18720/CUBS.63.6 (rus.).
5. Churbanov A.E., Shamara Yu.A. The impact of information modelling technology on the development of investment-construction process. Vestnik MGSU [Proceedings of the Moscow State University of Civil Engineering]. 2018; 13:7(118):824-835. DOI: 10.22227/1997-0935.2018.7.824-835 (rus.).
6. Volkov A., Chelyshkov P., Lysenko D. Information management in the application of bim in construction. stages of construction. Procedia Engineering, 2016; 153:833-837. DOI: 10.1016/j.proeng.2016.08.251
7. Gusakova E.A. Information modeling of life cycle of high-rise construction projects. Vestnik MGSU [Proceedings of the Moscow State University of Civil Engineering]. 2018; 13:1(112):14-22. DOI: 10.22227/1997-0935.2018.1.14-22 (rus.).
8. Karakozova I.V., Malykha G.G., Pavlov A.S., Panin A.S., Tesler N.D. Study of preparatory activities on using BIM-technologies in the medical enterprise design. Vestnik MGSU [Monthly Journal on Construction and Architecture]. 2020; 15(1):100-111. DOI: 10.22227/1997-0935.2020.1.100-111 (rus.).
9. Titova, l., Volkodav, V. The history and development of the classification system for the construction industry. Construction of Unique Buildings and Structures. 2020; 1(86):20-29. DOI: 10.18720/CUBS.86.2 (rus.)
10. Edirisinghe R., London K. Comparative analysis of international and national level BIM standardization efforts and BIM adoption. Proceeding of the 32nd CIB W78 Conference. Eindhoven, The Netherlands, 2015; 149-158. URL: https://www.researchgate.net/publication/286496233_Comparative_Analysis_of_International_and_National_Level_BIM_Standardization_Efforts_and_BIM_adoption/
11. Knjazuk E.M., Mirza N.S. The use of building classifications for information modeling of roads. CAD & GIS of Highways. 2017; 1(8):13-19. DOI: 10.17273/CADGIS.2017.1.3 (rus.).
12. Zayton H., Safdari H. The role of interoperability in construction projects. communication and the implementation of CoClass. Master’s Thesis in the Master’s Programme Design and Construction project management. ACEX30-2018-94. Chalmers University Of Technology, Göteborg, Sweden, 2018. URL: http://publications.lib.chalmers.se/records/fulltext/256323/256323.pdf
13. Ekholm A. A critical analysis of international standards for construction classification — results from the development of a new Swedish construction classification system. In Proc. of the 33rd CIB W78 Conference. Brisbane, Australia [5.2B], 2016. URL: https://portal.research.lu.se/portal/files/16339424/2016_10_31_Ekholm_CIB_W78_paper.pdf
14. Koch K., Chan P. Projecting an Information Infrastructure — Shaping a Community. Engineering Project Organization Conference. Colorado, 2013. URL: http://publications.lib.chalmers.se/records/fulltext/182975/182975.pdf
15. Balslev H. Implementing model semantics and a (MB)SE ontology in civil engineering & construction sector. INCOSE International Sympo...
sium. 2015; 25(1):687-696. DOI: 10.1002/j.2334-5837.2015.00090.x

16. Balslev H. The Reference Designation System (RDS) a common naming convention for systems and their elements. INCOSE International Symposium. 2016; 26(1):1639-1656. DOI: 10.1002/j.2334-5837.2016.00251.x

Received March 22, 2020.
Adopted in a revised form on April 20, 2020.
Approved for publication May 28, 2020.

BIO NOTES: Vladimir A. Volkodav — General Director; Scientific and Engineering Center for Digitalization and Design in Construction, office 4.24, 2A, 58 Riga Avenue, St. Petersburg, 190020, Russian Federation; ID RISC: 1068607; vva@niccps.ru;

Ivan A. Volkodav — Candidate of Technical Sciences, Director of science; Scientific and Engineering Center for Digitalization and Design in Construction, office 4.24, 2A, 58 Riga Avenue, St. Petersburg, 190020, Russian Federation; ID RISC: 574245; via@niccps.ru.

17. Skvortsov A.V. The review of international regulation in BIM sphere. CAD & GIS for roads. 2016; 2(7):4-48. DOI: 10.17273/CADGIS.2016.2.1 (rus.).

18. Kozhara V.L. New ideas for scientific classification : collective monography / executive ed. Yu.I. Miroshnikov, M.P. Pokrovskiy. Ekaterinburg, UB RAS, 2010; 5:161-189. (rus.).