Investigation of mutations in the HBB gene using the 1,000 genomes database

Tânia Carlice-dos-Reis¹, Jaime Viana¹,², Fabiano Cordeiro Moreira¹,³, Greice de Lemos Cardoso¹, João Guerreiro¹, Sidney Santos¹,³, Andrea Ribeiro-dos-Santos¹,³*

¹ Laboratory of Human and Medical Genetics, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil, ² Federal Rural University of the Amazon, Capanema Campus, PA, Brazil, ³ Research Center of Oncology, Federal University of Pará, Belém, PA, Brazil

☯ These authors contributed equally to this work.

* akelyufpa@gmail.com

Abstract

Mutations in the HBB gene are responsible for several serious hemoglobinopathies, such as sickle cell anemia and β-thalassemia. Sickle cell anemia is one of the most common monogenic diseases worldwide. Due to its prevalence, diverse strategies have been developed for a better understanding of its molecular mechanisms. In silico analysis has been increasingly used to investigate the genotype-phenotype relationship of many diseases, and the sequences of healthy individuals deposited in the 1,000 Genomes database appear to be an excellent tool for such analysis. The objective of this study is to analyze the variations in the HBB gene in the 1,000 Genomes database, to describe the mutation frequencies in the different population groups, and to investigate the pattern of pathogenicity. The computational tool SNPEFF was used to align the data from 2,504 samples of the 1,000 Genomes database with the HG19 genome reference. The pathogenicity of each amino acid change was investigated using the databases CLINVAR, dbSNP and HbVar and five different predictors. Twenty different mutations were found in 209 healthy individuals. The African group had the highest number of individuals with mutations, and the European group had the lowest number. Thus, it is concluded that approximately 8.3% of phenotypically healthy individuals from the 1,000 Genomes database have some mutation in the HBB gene. The frequency of mutated genes was estimated at 0.042, so that the expected frequency of being homozygous or compound heterozygous for these variants in the next generation is approximately 0.002. In total, 193 subjects had a non-synonymous mutation, which 186 (7.4%) have a deleterious mutation. Considering that the 1,000 Genomes database is representative of the world’s population, it can be estimated that fourteen out of every 10,000 individuals in the world will have a hemoglobinopathy in the next generation.

1. Introduction

Understanding the relationship between phenotype and genotype in the clinical setting is one of the main objectives of traditional research [1]. However, studies on a large number of mutations are problematic, primarily due to the experimental analyses. In contrast, in silico analysis
is faster and easier to execute, yields more results, and costs less, thus making it more efficient. This type of analysis is based on alterations in the sequences of nucleotides and/or amino acids and their comparison with the native sequence to correlate the effect of these alterations on the phenotype of the individual [1,2,3,4].

Mutations in the HBB gene, which is located on chromosome 11 p15.5 [5], are responsible for several serious hemoglobinopathies, such as sickle cell anemia and β-thalassemia. Hemoglobinopathies are a set of hereditary diseases caused by the abnormal structure or insufficient production of hemoglobin. Sickle cell anemia and β-thalassemia can lead to serious anemia and other life threatening conditions [6]. Sickle cell anemia is one of the most common monogenic diseases worldwide. It is estimated that 312,000 people are born with sickle cell anemia every year, and the majority of these individuals are native to Sub-Saharan Africa [7]. Thus, it is important for the public healthcare system to detect heterozygous carriers of hemoglobinopathies, as they can produce homozygous and double heterozygous individuals with serious clinical conditions [8].

The 1,000 Genomes Project is an international consortium organized with the objective of sequencing a large number of individual genomes representative of the world’s population. The consortium has the objective of better characterizing the sequence variation of the human genome and enabling the investigation of the relationship between genotype and phenotype. Thus, the 1,000 Genomes Project enables a more precise study of variants in genome-wide association studies (GWAS) and the best localization of variants associated with diseases in different population groups [9].

The objective of this study is to track variations in the β-globin gene (HBB); to describe the frequencies of mutations in different population groups using the 1,000 Genomes databank, which provides a comprehensive resource of human genetic variation [9] relative to the HG19 reference genome [10]; and to investigate the pattern of resulting pathogenicity.

2. Methodology

To perform this study, data from 2,504 samples deposited in the 1,000 Genomes database were used; these open-access sequences were aligned with the HG19 reference genome using the SNPEFF tool [11]. This program provides and records the effects both of genetic variations as well as amino acid alterations. The resulting data were visualized in the Integrative Genomics Viewer (IGV) [12], a high-performance visualization tool for the interactive exploration of genomic datasets. The mutations were tracked at the nucleotide and amino acid levels, and the population frequencies with which these mutations occur, the type of mutation, and the respective positions were recorded.

To investigate pathogenicity these mutations, five different prediction tools, including POLYPHEN [13], SIFT [14], PROVEAN [15], PANTHER [16], and E MUTPRED [17], and three databanks, including CLINVAR [18], dbSNP [19] and HbVar [20], were used, as shown in Fig 1.

Each predictor uses distinct characteristics to determine the effect of the mutations in relation to the information obtained regarding the structure and function of the protein. It is important to highlight that the results of all predictors provide additional evidence of pathogenicity; thus, five predictors were analyzed to improve accuracy. The determination of the pathogenicity of each mutation is based on four pieces of evidence: (i) CLINVAR, (ii) dbSNP, (iii) HbVar, and (iv) predictors.

Tables 1, 2 and 3 present the following results of the alignment of sequences from 2,504 samples: (1) the positions in the genome; (2) the identification of the single nucleotide polymorphism (SNP) of each mutation; (3) the types of mutations; (4) the mutations observed at the nucleotide level; (5) the respective consequences at the amino acid level; (6) the population frequency of each mutation; and (7) the pathogenicity investigated for each mutation.
3. Results

A total of 20 different mutations were identified in 209 individuals (8.34%) in the coding region of the \textit{HBB} gene. The variants observed were classified as follows: (i) four synonymous mutations; (ii) seven missense mutations; (iii) four stop-gain mutations; (iv) one frameshift mutation; (v) one splice region and missense variant; (vi) one splice region and synonymous variant; (vii) one splice acceptor and intron variant; and (viii) one splice donor and intron variant. Missense mutations were the most frequently encountered, affecting 174 (83.2%) individuals, as shown in Table 1. All observed mutations were heterozygous and already had SNP IDs.

The mutations with the highest allelic frequencies were as follows: (i) rs334 had total frequency of 0.0274 (African and American populations); (ii) rs33930165 had a frequency of 0.0034 (only in the African population); and (iii) rs33950507 had a frequency of 0.0028 (Eastern and Southern Asian populations), as shown in Table 2.

Synonymous mutations were encountered in 16 (7.6%) samples and were excluded from the investigation of pathogenicity performed by the database predictors because they do not alter the amino acid sequence.

Thus, the pathogenicity of missense, stop-gain, frameshift, splice region (both acceptor and donors), synonymous and intron mutations were tracked using the dbSNP, CLINVAR and...
HbVar databases, as well as five in silico predictors (POLYPHEN, SIFT, PROVEAN, PAN- THER and MUTPRED). The results showed 11 pathogenic mutations of HBB (Table 3). In addition, five mutations—(1) rs111645889, (2) rs33946267, (3) rs33958637 (4) rs35578002 and (5) rs33912272—presented conflicting results between predictors and databases.

4. Discussion

Mutations in the HBB gene are distributed unevenly among the different population groups. The African population was the most affected, with 73.2% of individuals having mutations in this gene, while the European population was least affected, with 4.3% of individuals having such mutations.

The three mutations with the greatest frequency were (1) rs334 (AFR and AMR); (2) rs33930165 (AFR); and (3) rs33950507 (EAS and SAS). The rs334 mutation is responsible for hemoglobin S, known as HbS, which causes sickle cell anemia. The rs33930165 mutation is responsible for hemoglobin C, or HbC [41], which is more frequent in the African population [42,43]. In addition, the rs3395057 mutation is responsible for hemoglobin E, or HbE [41], which is involved in β-thalassemia described in Asian populations [44].

The available data show that variants rs33986703, rs63750783, and rs281864900 are responsible for β-thalassemia and are described in Asian populations [45,46,39]. Variants rs11549407 and rs33971440 are also β-thalassemia mutations but are common in European populations [47,24]; rs33971440 and rs35578002 are commonly found in populations of the Mediterranean region [48,49,34].

Although the HBB gene is well studied, there are some mutations in this gene that are not well known and poorly described in the literature. This is the case of the variants rs111645889,
rs33958637, rs1135071, rs33943001 and rs33912272, for which no scientific papers were found discussing their epidemiology.

CLINVAR [18] is one of the most widely used databases in clinical and pathological analyses related to mutations. However, not all mutations of the \(HBB \) gene (rs35578002) are registered in this database, and conflicting results have been observed when comparing predictors with the CLINVAR, dbSNP and HbVar databases to estimate the pathogenicity of each mutation, or more specifically, the clinical significance of mutations rs111645889, rs33946267, rs33958637, rs35578002 and rs33912272.

It is important to emphasize that all samples deposited in the 1,000 Genomes Project, an international consortium aimed at producing a public catalog of human genetic variability, belong to individuals without clinical manifestations of any disease.

The SNP rs35578002 is not available in CLINVAR and has no information on clinical significance in the dbSNP database. Predictors consider this variant as benign, but the HbVar database classifies it as a damaging mutation. This variant is the \(\beta \)-thalassemia mutation Cd29 (C>T), which in homozygosis causes hemolytic anemia and ineffective erythropoiesis [34]. This mutation was described in Mediterranean populations. One possible explanation for the inconsistent information about the clinical significance of this variant is that it is a synonymous mutation in the splice region that is critical for RNA processing, causing thalassemia as described in HbVar. Also noteworthy is the mutation rs33946267. According to the literature, this mutation leads to the formation of Hb D-Punjab. This mutation is generally asymptomatic but may occasionally cause moderate hemolytic anemia, similar to the manifestations of sickle

Table 2. SNP ID, nucleotide and Amino Acid changes, number of individuals and population frequency of each mutation.

SNP ID	Nucleotide change	Amino Acid change	Total individuals	N’/Freq AFR	N’/Freq AMR	N’/Freq EAS	N’/Freq EUR	N’/Freq SAS	Total Allele Frequency
rs36020563	G/A	His144His	1	1 (0.0008)	0	0	0	0	0.00019
rs113082294	C/G	Val134Val	9	0	2 (0.0029)	0	7 (0.007)	0	0.00179
rs111645889	G/A	Ala130Val	1	1 (0.0008)	0	0	0	0	0.00019
rs33971634	G/A	Gln128	1	0	1 (0.0014)	0	0	0	0.00019
rs33946267	C/G	Glu122Gln	3	0	0	0	0	3 (0.0031)	0.00059
rs33958637	T/G	Asn109His	1	0	0	1 (0.001)	0	0	0.00019
rs193922562	G/A	Gly108Gly	1	1 (0.0008)	0	0	0	0	0.00019
rs145669504	G/T	Leu82Leu	5	0	0	5 (0.005)	0	0	0.00099
rs281864900	CAAAG/C	Phe42fs	5	0	0	5 (0.005)	0	0	0.00099
rs11549407	G/A	Gln40	1	0	1 (0.0014)	0	0	0	0.00019
rs1135071	C/A	Arg31Ser	1	0	0	0	1 (0.001)	0	0.00019
rs33943001	C/G	#	1	0	0	0	0	1 (0.001)	0.00019
rs33971440	C/T	#	1	0	1 (0.0014)	0	0	0	0.00019
rs35578002	G/T	Glu30Gly	1	1 (0.0008)	0	0	0	0	0.00019
rs33950507	C/T	Glu27Lys	14	0	8 (0.0079)	0	6 (0.0061)	0	0.00279
rs33986703	T/A	Lys18	6	0	0	6 (0.006)	0	0	0.00119
rs63750783	C/T	Trp16	2	0	0	0	2 (0.002)	0	0.00039
rs334	T/A	Glu7Val	137	132 (0.0072)	5 (0.0098)	0	0	0	0.02735
rs33930165	C/T	Glu7Lys	17	17 (0.0129)	0	0	0	0	0.00339
rs33912272	G/A	Pro6Ser	1	0	0	0	1 (0.001)	0	0.00019

AFR: African.; AMR: American; EAS: Eastern Asian; EUR: European; SAS: Southern Asian.

https://doi.org/10.1371/journal.pone.0174637.t002
cell anemia when associated with other hemoglobin variants, such as HbS or β-thalassemia mutations. Its initial distribution suggests that it is more prevalent in the central region of Asia, but due to migration, it can be found in several other regions [50].

According to the results, 8.3% of the phenotypically healthy individuals of the 1,000 Genomes database have a mutation in the \textit{HBB} gene in heterozygosis. This means that eighty out of 1,000 individuals have a mutant allele in the gene. The frequency of mutated genes was estimated at 0.042, so that the expected frequency of being homozygous or compound heterozygous for these variants in the next generation is approximately 0.002. In total, 193 subjects had a non-synonymous mutation, meaning that approximately 7.7% had a change that affects the sequence of amino acids. Of these, 186 (7.4%) have a deleterious mutation based on available data on the clinical significance of these mutations (Table 3). Considering that the 1,000 Genomes database is representative of the world’s population, it can be estimated that fourteen out of every 10,000 individuals in the world will have a hemoglobinopathy in the next generation.

Independently, new studies are needed to validate the clinical consequences of the mutations with undefined pathogenicity. Considering the absence of physiopathological knowledge relative to the newly identified mutations, the use of \textit{in silico} predictors (in an orderly and criteria-based manner) emerges as a possible tool to aid in decision-making with respect to diagnostic, preventative, and treatment measures.

\textbf{Acknowledgments}

This study was supported by Rede de Pesquisa em Genômica Populacional Humana (RPGPH) - 3381/2013 CAPES-BioComputacional, FADESP/PROPESP/UFPA (Universidade Federal do Pará), FAPESPA (Fundação Amazonia Paraense de Amparo à Pesquisa) ICAAF 083/2013, and CNpq (Conselho Nacional de Desenvolvimento Científico e Tecnológico). ANDREA RIBEIRO-DOS-SANTOS supported by CNPq/Produtividade (CNPQ 304413/2015-1); SIDNEY SANTOS

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline
\textbf{SNP ID} & \textbf{Nucleotide change} & \textbf{Amino acid change} & \textbf{Total individuals} & \textbf{CLINVAR} & \textbf{dbSNP (NCBI)} & \textbf{HbVar} & \textbf{POLYPHEN} & \textbf{PROVEAN} & \textbf{SIFT} & \textbf{PANTHER} & \textbf{MUTPRED} & \textbf{Conclusion} \\
\hline
rs11164588 & G/A & Ala130Val & 1 & Other & Other & Benign & Benign & Damaging & Damaging & Damaging & Damaging & Conflict \\
rs33971634 & G/A & Gln128 & 1 & Damaging & Other & Damaging & * & Damaging & * & * & * & Damaging \\
rs33946267 & C/G & Glu122Gln & 3 & Damaging & Benign & Benign & Benign & Benign & Damaging & Benign & Damage & Conflict \\
rs33958637 & T/G & Asn109His & 1 & Other & * & Benign & Probably damaging & Damaging & Benign & Benign & Damaging & Conflict \\
rs281864900 & CAAACG/C & Phen42fs & 5 & Damaging & Damaging & Damaging & * & Damaging & * & * & * & Damaging \\
rs11549407 & G/A & Gln40 & 1 & Damaging & Damaging & Damaging & * & * & * & * & * & Damaging \\
rs1135071 & C/A & Arg31Ser & 1 & Damaging & Damaging & Benign & Probably damaging & Damaging & Damaging & Damaging & Damaging & Damaging \\
rs33843001 & C/G & # & 1 & Damaging & Damaging & Damaging & * & * & * & * & * & Damaging \\
rs33971440 & C/T & # & 1 & Damaging & Damaging & Damaging & * & * & * & * & * & Damaging \\
rs35578002 & G/T & Glu30Gly & 1 & * & * & Damaging & Benign & Benign & Benign & Benign & Benign & Conflict \\
rs33950507 & C/T & Glu27Lys & 14 & Damaging & Damaging & Damaging & Benign & Damaging & Damaging & Damaging & Damaging & Damaging \\
rs33986703 & T/A & Lys18 & 6 & Damaging & Damaging & Damaging & * & Damaging & * & * & * & Damaging \\
r63750783 & C/T & Trp16 & 2 & Damaging & Damaging & Damaging & * & Damaging & * & * & * & Damaging \\
r6334 & T/A & Gln15 & 2 & Damaging & Damaging & Damaging & Benign & Damaging & * & Damaging & Damaging & Damaging \\
r633930165 & C/T & Glu7Lys & 17 & Damaging & Damaging & Damaging & Benign & Damaging & * & Damaging & Damaging & Damaging \\
r633912272 & G/A & Pro6Ser & 1 & Other & Other & Benign & Benign & Benign & Benign & * & Damaging & Conflict \\
\hline
\end{tabular}
\caption{SNP ID; nucleotide alteration; amino acid alteration; total number of individuals; list of the results from \textit{CLINVAR}, \textit{dbSNP}, \textit{HbVar}, \textit{POLYPHEN}, \textit{PROVEAN}, \textit{SIFT}, \textit{PANTHER}, and \textit{MUTPRED}; and final analysis of pathogenicity.}
\end{table}

* Could not be evaluated
Intronic variant mutations

https://doi.org/10.1371/journal.pone.0174637.t003
supported by CNPq/Produtividade (CNPq 305258/2013-3). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author Contributions

Conceptualization: TCR JV SS ARS.

Data curation: TCR JV SS ARS.

Formal analysis: TCR ARS.

Funding acquisition: ARS.

Investigation: TCR.

Methodology: TCR JV.

Project administration: ARS.

Resources: ARS FMC JV SS.

Software: TCR JV.

Supervision: ARS.

Validation: TCR JV GLC ARS.

Visualization: TCR ARS.

Writing – original draft: TCR JM FMC GLC JG SS ARS.

Writing – review & editing: TCR GLC JG ARS.

References

1. Singh PK, Mistry KN. A computational approach to determine susceptibility to cancer by evaluating the deleterious effect of nsSNP in XRCC1 gene on binding interaction of XRCC1 protein with ligase III. Gene. 2016; 576: 141–149. [https://doi.org/10.1016/j.gene.2015.09.084 PMID: 26449312](https://doi.org/10.1016/j.gene.2015.09.084)

2. Lettre G. The search for genetic modifiers of disease severity in the β-hemoglobinopathies. Cold Spring Harb. Perspect. Med. 2012, 2(10):1–12.

3. Steinberg MH, Sebastianni P. Genetic modifiers of sickle cell disease. Am. J. Hematol. 2012; 87(8): 795–803. [https://doi.org/10.1002/ajh.23232 PMID: 22641398](https://doi.org/10.1002/ajh.23232)

4. Steinberg MH. Genetic etiologies for phenotypic diversity in sickle cell anemia. Sci World J 2009; 9:46–67.

5. Onda M, Akaishi J, Asaka S, Okamoto J, Miyamoto S, Mizutani K, et al. Decreased expression of hemoglobin beta (HBB) gene in anaplastic thyroid cancer and recovery of its expression inhibits cell growth. British Journal of Cancer. 2005; 92: 2216–2224. [https://doi.org/10.1038/sj.bjc.6602634 PMID: 15956966](https://doi.org/10.1038/sj.bjc.6602634)

6. Li M, Suzuki K, Qu J, Saini P, Dubova I, Yi F, et al. Efficient correction of hemoglobinopathy-causing mutations by homologous recombination in integration-free patient iPSCs. Cell Research. 2011; 21: 1740–1744. [https://doi.org/10.1101/gr.159624.113 PMID: 22105484](https://doi.org/10.1101/gr.159624.113)

7. Saraf SL, Molokie RE, Nouraire M, Sable CA, Jones LL, Ensing GJ, et al. Differences in the clinical and genotypic presentation of sickle cell disease around the world. Paediatr Respir Rev 2014; 15: 4–12. [https://doi.org/10.1016/j.prrv.2013.11.003 PMID: 24361300](https://doi.org/10.1016/j.prrv.2013.11.003)

8. Orlando GM, Naoum PC, Siqueira FAM, Bonini-Domingos CR. [Laboratory diagnosis of hemoglobinopathies in distinct populations]. Bras. Hematol. Hemoter. 2000; 22:111–121.

9. The 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature.2010; 467:1061–1073. [https://doi.org/10.1038/nature09534 PMID: 20981092](https://doi.org/10.1038/nature09534)

10. Miga KH, Newton Y, Jain M, Altemose N, Willard HF, Kent WJ. Centromere reference models for human chromosomes X and Y satellite arrays. Genome Res.2014; 24: 697–707. [https://doi.org/10.1101/gr.159624.113 PMID: 24501022](https://doi.org/10.1101/gr.159624.113)
11. Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. SNPs in the genome of Drosophila melanogaster strain w 1118; iso-2; iso-3. Landes Bioscience. 2012; 2: 1–13.

12. Robinson JT, Thorvaldsdottir H, Wincker W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nature biotechnology. 2011; 29: 24–26. https://doi.org/10.1038/nbt.1754 PMID: 21221095

13. Adzhubei VA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nature methods. 2010; 7: 248–249. https://doi.org/10.1038/nmeth0410-248 PMID: 20354512

14. Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nature protocols. 2009; 4: 1073–1082. https://doi.org/10.1038/nprot.2009.86 PMID: 19561590

15. Choi Y, Sims GE, Murphy S, Miller JR, Chan AP. Predicting the Functional Effect of Amino Acid Substitutions and Indels. Plos One. 2012; 7: 1–13.

16. Mi H, Muruganujan A, Thomas PD. PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Research. 2013; 41: 377–386.

17. Li B, Krishman VG, Mort ME, Xin F, Kamati KK, Cooper DN, et al. Automated inference of molecular mechanisms of disease from amino acid substitutions. Bioinformatics. 2009; 25: 2074–2750.

18. Landrum MJ, Lee JM, Riley GR, Jang W, Rubinstein WS, Church MD, et al. ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Research.2014; 42: 980–985.

19. Kitts A, Sherry S. Chapter 5 The Single Nucleotide Polymorphism Database (dbSNP) of Nucleotide Sequence Variation. The NCBI Handbook [Internet].2002. Disponível em <http://www.ncbi.nlm.nih.gov/books/NBK21088/>.

20. Hardison RC, Chiu DHK, Giardine B, Riemer C, Patrinos GP, Anagnostou N, Miller W, Wajcman H. Hb Var. A Relationarial Database of Human Hemoglobin Variants and Thalassemia Mutation at the globin Gene Server. 2002; 19: 225–233.

21. CLINVAR Database, https://www.ncbi.nlm.nih.gov/clinvar/variation/36329/; Last evaluated: Aug 18, 2011 [accessed 18.01.17].

22. Pianezze G, Toniolo M, Masieri MT, Dolcini B, Ravani A, Hb Belluno [β111(G13)Val —Gly; β133(H11) Val—Val (HBB: c.335T > G;402G > C)]: Incidental Detection of a New Clinically Silent β Chain Variant During Hb A1c Determination by High Performance Liquid. Hemoglobin. 2016; 40: 143–149. https://doi.org/10.3109/03630269.2016.1150292 PMID: 27032675

23. Merault G, Keclar L, Garin J, Poyart C, Blouquit Y, Arous N, Galacteros F, Feingold J, Rosa J. Hemoglobin La Desirade alpha A2 beta 2 129 (H7) Ala—Val: a new unstable hemoglobin. Hemoglobin. 1986; 10: 593–605. PMID: 3557994

24. Hall GW, Franklin IM, Thein SL. A novel mutation(nonsense beta 127) in exon 3 of beta globin gene produces a variable thalassaemic phenotype. British journal of Haematology. 1991; 79: 342–344. PMID: 1956498

25. Schneider RG, Ueda S, Alperin JB, Levin WC, Jones RT, Brimhall B. Hemoglobin D Los Angeles in two Caucasian families: hemoglobin SD disease and hemoglobin D thalassemia. Blood. 1968; 32: 250–259. PMID: 5672850

26. Imamura T, Fujita S, Ohta Y, Hanada M, Yanase T. Hemoglobin Yoshizuka (G10(108)beta asparagine —aspartic acid): a new variant with a reduced oxygen affinity from a Japanese family. The Journal of Clinical Investigation. 1969; 48: 2341–2348. https://doi.org/10.1172/JCI106200 PMID: 5355345

27. CLINVAR Database, https://www.ncbi.nlm.nih.gov/clinvar/variation/36322/; Last evaluated: Aug 18, 2011 [accessed 18.01.17].
33. Orkin SH, Kazazian HH Jr, Antonarakis SE, Goff SC, Boehm CD, Sexton JP, Weber PG, Giardina PJ. Linkage of beta-thalassaemia mutations and beta-globin gene polymorphisms with DNA polymorphisms in human beta-globin gene cluster. Nature. 1982; 296: 627–631. PMID: 6280057

34. Chehab FF, Der Kaloustian V, Khouri FP, Deeb SS, Kan YW. The molecular basis of beta-thalassemia in Lebanon: application to prenatal diagnosis. Blood. 1987; 69: 1141–1145. PMID: 3828533

35. Kazazian HH Jr, Waber PG, Boehm CD, Lee JI, Antonarakis SE, Fairbanks VF. Hemoglobin E in Europeans: further evidence for multiple origins of the beta E-globin gene. Am J Hum Genet. 1984; 36: 212–217. PMID: 6198908

36. Chang JC, Kan YW. Beta 0 thalassemia, a nonsense mutation in man. Proc. Natl. Acad. Sci. 1979; 76: 2886–2889. PMID: 88735

37. Aulehla-Scholz C, Basaran S, Agaoglu L, Arcasoy A, Holzgreve W, Miny P, Ridolfi F, Horst J. Molecular basis of beta-thalassemia in Turkey: detection of rare mutations by direct sequencing. Human Genet. 1990; 84: 195–197.

38. Blackwell RQ, Oemijati S, Pribadi W, Weng MI, Liu CS. Hemoglobin G Makassar: beta-6 Glu leads to Ala. Biochimica et Biophysica Acta. 1970; 214: 396–401. PMID: 5509617

39. Harano T, Harano K, Ueda S, Shibata S, Imai K, Seki M. Hemoglobin Machida [beta 6 (A3) Glu replaced by Gln], a new abnormal hemoglobin discovered in a Japanese family: structure, function and biosynthesis. Hemoglobin. 1982; 6: 531–535. PMID: 6129204

40. Langdown JV, Williamson D, Beresford CH, Gibb I, Taylor R, Deacon-Smith R. A new beta chain variant, Hb Tyne [beta 5(A2)Pro—>Ser. Hemoglobin. 1994; 18: 333–336. PMID: 7852088

41. Lelliott PM, McMorran BJ, Foote SJ, Burgio G. The influence of host genetics on erythrocytes and malaria infection: is there therapeutic potential? Malaria Journal.2015; 14: 1–15.

42. Carter TE, Fricken MV, Romain JR, Memmon G, Victor YS, Shick L, Okech BA, Mulligan CJ. Detection of Sickle Cell Hemoglobin in Haiti by Genotyping and Hemoglobin Solubility Tests. Am J. Trop. Med. Hyg. 2014; 91: 206–211. https://doi.org/10.4269/ajtmh.2013-0607 PMID: 24957539

43. Kulkarni GD, Kulkarni SS, Kadakol GS, Kulkarni BB, Kyamangoudar PH, Lakkakula BVKS, Thangaraj K, Shepur TA, Kulkarni ML, Gai PB. Molecular basis of β-thalassemia in Karnataka, India. Genetic Testing and Molecular Biomarkers. 2012; 16: 138–141. https://doi.org/10.1089/gtmb.2011.0035 PMID: 21978377

44. Danjou F, Zoledziewska M, Sidore C, Steri M, Busonero F, Maschio A, Mulas A, Milligan P, Rogers WO, Kulkarni ML, Kulkarni GD, Thangaraj K. Haplotype analyses of hemoglobin C and hemoglobin S and the dynamics of evolution response to malaria in Kassaena-Nankana district of Ghana. PLoS ONE. 2012; 7: e34565. https://doi.org/10.1371/journal.pone.0034565 PMID: 22506028

45. Sultana GNN, Begum R, Akhter H, Shamim Z, Rahim MA, Chaubey G. The complete Spectrum of beta (β) thalassemia mutations in Bangladeshi population. 2016; 3 (1): 1–6

46. Sirdah MM, Sievertsen J, Al-Yazji MS, Tarazi IS, Al-Haddad RM, Horstmann RD, Timmann C. The spectrum of β-thalassemia in Gaza strip, Palestine. Blood Cells, Molecules and Diseases. 2013; 50: 247–251. https://doi.org/10.1016/j.bcmd.2012.12.004 PMID: 23231370

47. Chassanidis C, Boutou E, Voskaridou E, Balassopoulou A. Development of a high-resolution melting approach for scanning beta globin gene point mutations in the Greek and other Mediterranean populations.PLoS ONE. 2016; 11: e0157393. https://doi.org/10.1371/journal.pone.0157393 PMID: 27351925

48. Torres LS, Okamura JV, Silva DG, Bonini-Domingos CR. Hemoglobin D-Punjab: origin, distribution and laboratory diagnosis. Rev Bras Hematol Hemoter. 2015; 37: 120–126. https://doi.org/10.1016/j.bjhh.2015.02.007 PMID: 25818823