Research Article

Low thermal conductivity and anisotropic thermal expansion of ferroelastic $(\text{Gd}_{1-x}\text{Y}_x)\text{TaO}_4$ ceramics

Chenkai QUa, Lin CHENa, Liang LVb, Yuncheng WANGb, Xiaolan JIb, Haitao YUNb, Chaoqun SUb, Jing FENGa*

aFaculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
bAECC South Industry Co., Ltd., Zhuzhou 412000, China

Received: June 24, 2022; Revised: July 24, 2022; Accepted: August 10, 2022
© The Author(s) 2022.

Abstract: In this paper, $(\text{Gd}_{1-x}\text{Y}_x)\text{TaO}_4$ ceramics have been fabricated by solid-phase synthesis reaction. Each sample was found to crystallize in a monoclinic phase by X-ray diffraction (XRD). The properties of $(\text{Gd}_{1-x}\text{Y}_x)\text{TaO}_4$ were optimized by adjusting the ratio of Gd/Y. $(\text{Gd}_{1-x}\text{Y}_x)\text{TaO}_4$ had a low high-temperature thermal conductivity (1.37–2.05 W·m$^{-1}$·K$^{-1}$), which was regulated by lattice imperfections. The phase transition temperature of the $(\text{Gd}_{1-x}\text{Y}_x)\text{TaO}_4$ ceramics was higher than 1500 °C. Moreover, the linear thermal expansion coefficients (TECs) were 10.5×10$^{-6}$ K$^{-1}$ (1200 °C), which was not inferior to yttria-stabilized zirconia (YSZ) (11×10$^{-6}$ K$^{-1}$, 1200 °C). $(\text{Gd}_{1-x}\text{Y}_x)\text{TaO}_4$ had anisotropic thermal expansion. Therefore, controlling preferred orientation could minimize the TEC mismatch when $(\text{Gd}_{1-x}\text{Y}_x)\text{TaO}_4$ coatings were deposited on different substrates as thermal barrier coatings (TBCs). Based on their excellent properties, it is believed that the $(\text{Gd}_{1-x}\text{Y}_x)\text{TaO}_4$ ceramics will become the next generation of high-temperature thermal protective coatings.

Keywords: thermal barrier coatings (TBCs); thermal conductivity; high-temperature phase stability; high-temperature X-ray diffraction (XRD); anisotropic thermal expansion

1 Introduction

Thermal barrier coatings (TBCs) are regarded as components of diesel generators, aero-engines, and high-speed aircraft for improved efficiency and power [1,2]. At present, the most widely used TBC material is 6–8 wt% yttria-stabilized zirconia (YSZ). High thermal expansion coefficients (TECs) (11×10$^{-6}$ K$^{-1}$, 1200 °C) and ferroelastic toughening effect of YSZ are the main reasons for its wide application [3–5].

Nevertheless, if the use temperature is higher than 1200 °C, YSZ will undergo a phase transition. The t’ (metal-stable tetragonal)-phase YSZ will become the tetragonal (t) phase and the monoclinic (m) phase, such that the phase transition can be accompanied by a small bulk expansion and lead to material failure [3]. Therefore, much effort has been devoted to exploring novel TBCs, such as rare-earth (RE) zirconates, cerium oxides, phosphates, and silicates [6–11]. The above materials have lower fracture toughness compared to YSZ, which is important for TBCs operating in high-temperature environments. Consequently, we need to look for a new material similar to YSZ with ferroelastic...
toughening mechanism and high fracture toughness.

Our previous research [12–16] found that tantalate ceramics had good properties and can be further optimized and used as TBCs. The investigation of thermal conductivity of YSZ found that the difference of valence between doping ions Y\(^{3+}\) and Zr\(^{4+}\) would produce high concentrations of lattice defects, resulting in enhanced phonon scattering and reduced thermal conductivity [17–20]. Feng et al. [21] and Shian et al. [22] reported that the ferroelastic toughening mechanism of yttrium tantalate was similar to that of YSZ. Wang et al. [23] reported that the thermal conductivity of YTaO\(_4\) ceramics was 1.4 W·m\(^{-1}\)·K\(^{-1}\) (800 °C). Yang and Ye [24] reported that the TECs of GdTaO\(_4\) exceed 14×10\(^{-6}\) K\(^{-1}\) (1350 °C). Wu et al. [25] obtained the lowest thermal conductivity (1.7 W·m\(^{-1}\)·K\(^{-1}\) at 900 °C) of (Y\(_{1-x}\)Dy\(_x\))TaO\(_4\) by doping. The YTaO\(_4\) and GdTaO\(_4\) ceramics with the m phase possess ferroelastic transformation and excellent performance. The structure of the materials determines their properties, and various defects have a leading role in the thermal conductivity. Y and Gd have large misfits in atomic mass and ionic size, which will contribute to large strain field fluctuations and effective phonon scattering [26]. Gd\(^{3+}\) can partially replace Y\(^{3+}\) to enhance phonon scattering and slightly increase TECs [27].

From the above statement, RETaO\(_4\) (RE = rare-earth elements) are candidates for TBCs, based on their excellent thermal insulation, high TECs, relatively low modulus, and high toughness. Further, Lu et al. [28] studied the linear expansion coefficient and anisotropic thermal expansion of Yb\(_2\)SiO\(_5\) ceramics by high-temperature X-ray diffraction (XRD). The average linear TECs are 6.3×10\(^{-6}\) K\(^{-1}\) (473–1673 K), and the anisotropic TECs are \(\alpha_a = (2.98 \pm 0.16) \times 10^{-6} \text{ K}^{-1}\), \(\alpha_b = (6.51 \pm 0.19) \times 10^{-6} \text{ K}^{-1}\), and \(\alpha_c = (9.08 \pm 0.16) \times 10^{-6} \text{ K}^{-1}\). Ridley et al. [29] found five silicate RE\(_2\)SiO\(_5\) (RE = Sc, Y, Dy, Er, and Yb) with the average linear TECs of (6–9)×10\(^{-6}\) K\(^{-1}\) through the in-situ XRD studies, of which Sc\(_2\)SiO\(_5\) has the lowest TECs and anisotropic TECs. The anisotropic TECs are vital for the applications of RETaO\(_4\) as TBCs. Herein, we investigate the anisotropic TECs of (Gd\(_{1-x}\)Y\(_x\))TaO\(_4\) solid solution via the powder high-temperature XRD. The changes of the lattice parameters, unit cell volumes, TECs of different axis, and linear TECs are key points of this work. It is found that, the phase transition temperature of the prepared (Gd\(_{1-x}\)Y\(_x\))TaO\(_4\) solid solution is higher than 1450 °C, which is similar to that of YTaO\(_4\). Moreover, (Gd\(_{1-x}\)Y\(_x\))TaO\(_4\) has low thermal conductivity, suitable modulus, and high hardness. This work further advances the research and application of ferroelastic RETaO\(_4\) as high-temperature protecting coatings.

2 Experimental and calculated details

2.1 Specimen preparation

The (Gd\(_{1-x}\)Y\(_x\))TaO\(_4\) ceramics were obtained via sintering at 1700 °C for 10 h by the solid-phase reaction method. The raw materials used in this work were Y\(_2\)O\(_3\), Gd\(_2\)O\(_3\), Ta\(_2\)O\(_5\), and absolute ethanol. All the raw materials were sourced from Aladdin, China, the powder purity is 99.99%, and the particle sizes were less than 10 μm. First, we weighed the raw materials in the required molar ratio, put them into the cleaned ball mill tank, and added absolute ethanol to two-thirds of the volume of the ball mill tank. Then we used a planetary ball mill (Nanjing NanDa Instrument Co. Ltd., QM-3SP2, China) to mix for 24 h, and then put it into an oven at 70 °C to obtain a dry mixed powder. We sieved the dried powder until its particle size was less than 48 μm, and then put it into a tablet machine to obtain a block of (Gd\(_{1-x}\)Y\(_x\))TaO\(_4\). Finally, the columns were placed at 1700 °C for 10 h to synthesize circular specimens.

2.2 Characterization of high-temperature phase stability

The crystal structures of (Gd\(_{1-x}\)Y\(_x\))TaO\(_4\) were identified by the X-ray diffractometer (Rigaku, MiniFlex600, Japan). To gather more information about the unit cell parameters, the XRD refinement was performed by GSAS software.

The microscopic morphologies of the specimen were observed by the scanning electron microscope (SEM; ZEISS, SIGMA-300, Germany). The measurements of the grain size of the samples were conducted within ImageJ software.

To analyze the high-temperature phase stability of the materials, the thermogravimetric (TG) and differential scanning calorimetry (DSC) analyses were performed on (Gd\(_{1-x}\)Y\(_x\))TaO\(_4\) by a simultaneous thermal analyzer (NETZSCH, STA 449 F3, Germany). The sample had a mass of 10 mg, which was ultrasonically cleaned before measuring, and then kept in a bake-out furnace at 70 °C for 1440 min.

The high-temperature phase transition of the sample
was measured by the powder high-temperature X-ray diffractometer (Panalytical, Empyrean, the Netherlands), whose measurement accuracy was ±0.0001°, and the measurement range was 10–70 °C. During the measurement, the scanning speed was 6 (°)/min, the measurement temperature was from 25 to 1500 °C, and the sample was held at each temperature for 30 min before the measurement.

2.3 Thermal property measurement

The thermal diffusivity (\(d\)) of (Gd\(_{1-x}\)Y\(_x\))TaO\(_4\) was measured by a laser scintillation apparatus (NETZSCH, LFA 457, Germany). The sample needed to be made into a cylinder with a diameter of 6 mm and a height of 1 mm. A layer of carbon was sprayed on both sides of the sample, and then the thermal conductivity (\(k\)) was obtained by Eq. (1):

\[
k = d \times c_p \times \rho
\]

where \(c_p\) is the heat capacity, and \(\rho\) is the actual density of the sample.

The (Gd\(_{1-x}\)Y\(_x\))TaO\(_4\) ceramic bulk is difficult to achieve complete densification, considering that voids will have a certain impact on the thermal conductivity results, so the theoretical thermal conductivity \(k_0\) can be obtained by Eq. (2):

\[
\frac{k}{k_0} = 1 - \frac{4}{3\phi}
\]

where \(\phi\) is the porosity.

The thermal expansion characteristics of the (Gd\(_{1-x}\)Y\(_x\))TaO\(_4\) samples were measured by a thermal mechanical analyzer (NETZSCH, TMA 402 F3, Germany). The TECs were calculated by Eq. (3):

\[
\text{TEC} = \frac{\Delta L}{L} \times \frac{1}{\Delta T}
\]

where \(L\), \(\Delta L\), and \(\Delta T\) represent the room-temperature length of the sample, the change in length, and the change in temperature, respectively. To obtain the TECs of the high-temperature XRD data, the refinement of XRD was conducted by UnitCell. UnitCell was a least-square refinement software that can obtain the lattice parameters from the XRD results.

2.4 Modulus and hardness

The Young’s modulus (\(E\)) of (Gd\(_{1-x}\)Y\(_x\))TaO\(_4\) was measured within an ultrasound reflection equipment (Teclab, UMS-100, France). The NanoBlitz 3D (Nanomechanisc, Inc iMicro, USA) was further used to measure the moduli and hardness of the (Gd\(_{1-x}\)Y\(_x\))TaO\(_4\) ceramics. During the test, with a load of 50 mN and no holding time, there are 30 × 30 = 900 points evenly distributed in a square area of 300 μm × 300 μm.

3 Results and discussion

3.1 Structure characterizations

Figure 1(a) reveals the XRD patterns of the (Gd\(_{1-x}\)Y\(_x\))TaO\(_4\) ceramics, compared with the ICDD PDF No. 24-0441 of m-GdTaO\(_4\) and ICDD PDF No. 24-1415 of m-YTaO\(_4\). The prepared (Gd\(_{1-x}\)Y\(_x\))TaO\(_4\) have identical crystal structures, and there is no second phase, suggesting that the phase structure of each sample is the m phase. As shown in Fig. 1(b), the main XRD peak of (Gd\(_{1-x}\)Y\(_x\))TaO\(_4\) shifts to higher angles with \(x\) increasing. The ionic radius of Gd\(^{3+}\) (1.053 Å) is larger than...
that of Y^{3+} (1.019 Å) [30], and the reduced unit cell volume causes the XRD peaks to shift to higher angles.

The Rietveld refinement results are plotted in Figs. 2(a)–2(g). The accuracy of the Rietveld refinement can be assessed by the weighted graph variance factor (R_{wp}) and graph variance factor (R_p). R_{wp} is less than 9%, and R_p is less than 7% for each sample, indicating the refinement results with high confidence. The unit cell volumes and lattice parameters are listed in Table 1. The lattice parameters and theoretical densities are found to shrink by the increase in the x value. The lattice constant decreases with the decrease in RE $^{3+}$ ionic radii. The unit cell volume varies with x of the (Gd$_{1-x}$Y$_x$)TaO$_4$ ceramics, as shown in Fig. 2(h). Figure 2(i) demonstrates the crystal structure of (Gd$_{1-x}$Y$_x$)TaO$_4$; the unit cell of YTaO$_4$ is composed of tetrahedra [TaO$_4$] and dodecahedron [YO$_8$], and the coordination number of Y atom can be obtained [31].

Figures 3(a)–3(g) display the in-situ XRD results. The XRD patterns of the (Gd$_{1-x}$Y$_x$)TaO$_4$ ceramics correspond to that of the m-phase PDF cards at temperatures up to 1450 °C. As the temperature increases to 1500 °C, the m phase peaks disappear, while the t phase peaks become more expressed and sharper. We can see that each (Gd$_{1-x}$Y$_x$)TaO$_4$ sample crystallizes in the m phase when the temperature is reduced to 25 °C. This proves that the high-temperature phase transition of (Gd$_{1-x}$Y$_x$)TaO$_4$ is reversible. The XRD peaks of the t phase are derived from the gradual merging of the m phase without sudden changes, and the XRD peaks reflect the changes of the unit cell parameters. It is believed that the transformation of the (Gd$_{1-x}$Y$_x$)TaO$_4$ ceramics from the m phase to the t phase does not produce large volume differences, and the phase change has seldom intention on the TECs of the materials [32]. Interestingly, when $x = 4/6$, the sample does not undergo a phase transition at 1500 °C and maintains the m phase, which may be caused by the

![Figure 2 XRD Rietveld refinement results of (Gd$_{1-x}$Y$_x$)TaO$_4$ ($x = 0/6, 1/6, 2/6, 3/6, 4/6, 5/6, and 6/6$): (a) $x = 0/6$; (b) $x = 1/6$; (c) $x = 2/6$; (d) $x = 3/6$; (e) $x = 4/6$; (f) $x = 5/6$; and (g) $x = 6/6$. (h) Unit cell volume is plotted as a function of x. (i) Characteristic crystal structure of YTaO$_4$ ceramics with $I2(5)$ space group.](www.springer.com/journal/40145)
Table 1 Lattice parameters (a, b, and c), unit cell volumes (V), and theoretical densities (ρ) of (Gd$_{1-x}$Y$_x$)TaO$_4$ (x = 0/6, 1/6, 2/6, 3/6, 4/6, 5/6, and 6/6) ceramics

x	a (Å)	b (Å)	c (Å)	V (Å3)	ρ (g·cm$^{-3}$)
0/6	5.407	11.073	5.082	302.877	8.82
1/6	5.391	11.047	5.077	301.042	8.63
2/6	5.381	11.028	5.074	299.704	8.41
3/6	5.356	10.987	5.065	296.733	8.24
4/6	5.354	10.980	5.056	295.908	8.01
5/6	5.339	10.956	5.059	294.556	7.79
6/6	5.328	10.936	5.055	293.241	7.56

measurement error. (Gd$_{2/6}$Y$_{4/6}$)TaO$_4$ and the other components are similar and should have similar high-temperature phase change points, so the phenomenon is considered to be a measurement error. For the high-temperature XRD measurement, the powder to be measured is placed on the platinum carrier table, and the thermocouple measures the temperature of the carrier table instead of the temperature of the powder directly tested; so the measurement error is generated, and the size of the error is mainly determined by the thickness of the powder.

Fig. 3 Original and three-dimensional (3D) in-situ XRD patterns for (Gd$_{1-x}$Y$_x$)TaO$_4$ (x = 0/6, 1/6, 2/6, 3/6, 4/6, 5/6, and 6/6) ceramics: (a) x = 0/6; (b) x = 1/6; (c) x = 2/6; (d) x = 3/6; (e) x = 4/6; (f) x = 5/6; and (g) x = 6/6.
To further understand the thermal stability of the (Gd\(_{1-x}\)Y\(_x\))TaO\(_4\) ceramics from 50 to 1450 °C, the DSC and TG curves are plotted in Figs. 4(a)–4(g). The mass loss and heat flow of the (Gd\(_{1-x}\)Y\(_x\))TaO\(_4\) samples are revealed by the blue and red curves, respectively. The mass loss of the (Gd\(_{1-x}\)Y\(_x\))TaO\(_4\) ceramics is less than 1%. No endothermic or exothermic peak (50–1450 °C) is observed in the DSC and the first derivative of the DSC (DDSC) curves of the (Gd\(_{1-x}\)Y\(_x\))TaO\(_4\) ceramics, which show that (Gd\(_{1-x}\)Y\(_x\))TaO\(_4\) has admirable thermal stability [33]. Therefore, the m–t phase transition of the (Gd\(_{1-x}\)Y\(_x\))TaO\(_4\) ceramics occur between 1450 and 1500 °C as discussed in conjunction with the high-temperature XRD results.

Fig. 4 DDSC, DSC, and TG curves as a function of temperature for (Gd\(_{1-x}\)Y\(_x\))TaO\(_4\) (\(x = 0/6, 1/6, 2/6, 3/6, 4/6, 5/6, \) and \(6/6\)) ceramics: (a) \(x = 0/6\); (b) \(x = 1/6\); (c) \(x = 2/6\); (d) \(x = 3/6\); (e) \(x = 4/6\); (f) \(x = 5/6\); and (g) \(x = 6/6\).
3.2 Microstructure

The microstructures of the \((\text{Gd}_{1-x}\text{Y}_x)\text{TaO}_4\) ceramics are shown in Fig. 5. Each grain of the sample is uniform in size, separated by clear grain boundaries. The average grain size and area of \((\text{Gd}_{1-x}\text{Y}_x)\text{TaO}_4\) are 12–15 μm and 117–167 μm², respectively. In \((\text{Gd}_{1-x}\text{Y}_x)\text{TaO}_4\), a little quantity of pore and crack is observed. Figure 5(d) shows the local magnification of the \((\text{Gd}_{1-x}\text{Y}_x)\text{TaO}_4\) ceramic grains. There are some stripe-like structures pointing in different directions. Combined with Refs. [25,34] on tantalate, it can be concluded that the structure is a ferroelastic structure. The ferroelastic structure is derived from the phase transition process and can enhance fracture toughness by absorbing stress.

3.3 Thermal conductivity

Based on the Neumann–Kopp law, Fig. 6(a) displays that the specific heat capacity of \((\text{Gd}_{1-x}\text{Y}_x)\text{TaO}_4\) increases slightly with the increasing temperatures.

![Figure 5](image1.jpg)

Fig. 5 Microstructures of \((\text{Gd}_{1-x}\text{Y}_x)\text{TaO}_4\) \((x = 0/6, 1/6, 2/6, 3/6, 4/6, 5/6, \text{and} 6/6)\) ceramics: (a) \(x = 0/6\); (b) \(x = 1/6\); (c) \(x = 2/6\); (e) \(x = 3/6\); (f) \(x = 4/6\); (g) \(x = 5/6\); and (h) \(x = 6/6\). (d) Local magnification of the \((\text{Gd}_{1-x}\text{Y}_x)\text{TaO}_4\) ceramic grains.

![Figure 6](image2.jpg)

Fig. 6 Temperature-dependent thermal properties of \((\text{Gd}_{1-x}\text{Y}_x)\text{TaO}_4\) \((x = 0/6, 1/6, 2/6, 3/6, 4/6, 5/6, \text{and} 6/6)\) ceramics: (a) specific heat capacity; (b) thermal diffusivity; (c) thermal conductivity; and (d) thermal conductivity as a function of composition parameter \((x)\) at different temperatures.
As expressed in Fig. 6(b), the thermal diffusivities of high-temperature (Gd₁₋ₓYₓ)TaO₄ are significantly lower than those of low-temperature (Gd₁₋ₓYₓ)TaO₄, tending to an extreme value at 900 °C. As depicted in Fig. 6(c), with the temperature increasing, the thermal conductivity gradually decreases. Obviously, the thermal properties of the material are significantly changed after Y and Gd doping. When x = 3/6, the thermal conductivity of the prepared sample was significantly reduced (1.37 W·m⁻¹·K⁻¹, 900 °C) compared with 8YSZ (2.5 W·m⁻¹·K⁻¹, 1000 °C) [31]. (Gd₁₋ₓYₓ)TaO₄ dropped by nearly half [35]. The composition-dependent thermal conductivity of (Gd₁₋ₓYₓ)TaO₄ is plotted in Fig. 6(d). Since the phonon scattering coefficients of (Gd₁₋ₓYₓ)TaO₄ with different compositions are different, the variation of conductivity with x at different temperatures exhibits a concave parabolic law. Y and Gd have a large gap in volume and mass, which will generate mass and volume fluctuations and produce phonon scattering [36]. The main phonon scattering is controlled mainly by Umklapp scattering and point defect scattering processes in (Gd₁₋ₓYₓ)TaO₄. For an ideal crystal, most of the thermal resistance is created by Umklapp scattering. Slack [40] calculated the theoretical thermal conductivity (k_{Stack}) by Eq. (11):

\[k_{Stack} = \frac{A \bar{M} \theta_0^3 \Omega}{\gamma^2 n^3 T} \]

where \(A = 3.04 \times 10^7 \text{W} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot \text{m}^{-2} \cdot \text{K}^{-3} \), \(\bar{M} \), \(\theta_0 \), \(\Omega \), \(n \), and \(T \) are the average atomic mass, the Debye temperature, the average atomic volume, the number of atoms in the original unit cell, and the absolute temperature, respectively. \(\theta_0 \) and \(\gamma \) can be obtained by Eqs. (12) and (13), respectively [41]:

| Table 2 Phonon scattering coefficients (Γ), average masses of (Gd, Y) sites (\(M_{(Gd,Y)} \)), average radii of (Gd, Y) sites (\(\bar{\Delta}_{(Gd,Y)} \)), average masses of (Gd₁₋ₓYₓ)TaO₄ ceramics (\(\bar{M} \)), and strain fields factors (ε) of (Gd₁₋ₓYₓ)TaO₄ (x = 0/6, 1/6, 2/6, 3/6, 4/6, 5/6, and 6/6) ceramics |
|---|---|---|---|---|
| x | \(M_{(Gd,Y)} \) | \(\bar{M} \) | \(\Delta_{(Gd,Y)} \) | ε | Γ |
| 0/6 | 157.3 | 67.03 | 105.3 | 175.27 | 0.000 |
| 1/6 | 145.9 | 67.03 | 104.7 | 165.13 | 0.048 |
| 2/6 | 134.5 | 67.03 | 104.2 | 161.33 | 0.070 |
| 3/6 | 123.1 | 67.03 | 103.6 | 184.87 | 0.078 |
| 4/6 | 111.7 | 67.03 | 103.0 | 164.27 | 0.061 |
| 5/6 | 100.3 | 67.03 | 102.5 | 181.27 | 0.037 |
| 6/6 | 88.9 | 67.03 | 101.9 | 160.62 | 0.000 |

www.springer.com/journal/40145
Fig. 7 Experimental, theoretical, and ultimate thermal conductivities of (Gd$_{1-x}$Y$_x$)TaO$_4$ ($x = 0/6, 1/6, 2/6, 3/6, 4/6, 5/6, \text{and} 6/6$) ceramics: (a) $x = 0/6$; (b) $x = 1/6$; (c) $x = 2/6$; (d) $x = 3/6$; (e) $x = 4/6$; (f) $x = 5/6$; and (g) $x = 6/6$. (h) Phonon scattering coefficient and thermal conductivity as a function of x.

$$\theta_D = \frac{h}{k_B} \left(\frac{3N}{4\pi V} \right)^{1/3} \times v_m$$

(12)

$$\gamma = \frac{3}{2} \left(1 + \sigma\right) \left(2 - 3\sigma\right)$$

(13)

where h, k_B, N, and V are the Plank’s constant, the Boltzmann constant, the number of atoms in a unit cell, and the volume of a unit cell, respectively [41]. The k_{Slack} of the (Gd$_{1-x}$Y$_x$)TaO$_4$ ceramics are compared with the experimental thermal conductivities, as plotted in Figs. 7(a)–7(g). Obviously, the experimental and theoretical thermal conductivities have an identical trend with the increasing temperatures. However, there are still some differences between the experimental and theoretical values. One is that the theoretical data of (Gd$_{1-x}$Y$_x$)TaO$_4$ in the high-temperature stage are smaller than the experimental thermal conductivity. The reasons are as follows: Firstly, the Slack model ignores the contribution of thermal radiation at high temperatures, and secondly, the Slack model ignores the energy of the optical branch phonons [42]. The relaxation time of the optical branch phonon is much shorter than that of the acoustic branch phonon. However, it carries relatively large energy, which can also increase the thermal conductivity of the material to a certain extent [40,43].

Another difference is that the experimental thermal conductivity at a low temperature is lower than the theoretical thermal conductivity. The large difference in mass number and volume of impurity atoms and matrix atoms in this study causes structural disorder and reduced lattice energy, resulting in increased non-resonant parameters and increased phonon scattering. Thus, the experimental thermal conductivity is lower than the calculated thermal conductivity at low temperatures [44].

The dominant role is played by the strong scattering among phonons due to the increase in temperature. With the further increase in temperature, the average free range of phonons reaches the minimum value, which is close to the atomic spacing, and the thermal conductivity reaches the limit value. The main models for describing the limited thermal conductivity of solids are the Clarke model [45] and Cahill model [44]. The expressions for the Clark model (k_{min1}) and Cahill model (k_{min2}) are

\begin{table}
\centering
\begin{tabular}{ccccc}
\hline
\textbf{x} & \textbf{σ} & \textbf{v_t (m s$^{-1}$)} & \textbf{v_l (m s$^{-1}$)} & \textbf{ρ_0 (g cm$^{-3}$)} \\
\hline
0/6 & 0.34 & 2500 & 5185 & 2810 & 8.57 \\
1/6 & 0.34 & 2470 & 5062 & 2775 & 8.51 \\
2/6 & 0.35 & 2521 & 5205 & 2833 & 8.31 \\
3/6 & 0.35 & 2517 & 5280 & 2831 & 8.17 \\
4/6 & 0.34 & 2574 & 5270 & 2892 & 7.83 \\
5/6 & 0.35 & 2715 & 5670 & 3053 & 7.65 \\
6/6 & 0.34 & 2782 & 5670 & 3124 & 7.48 \\
\hline
\end{tabular}
\caption{Poisson’s ratios (σ), transverse acoustic velocities (v_t), longitudinal acoustic velocities (v_l), average acoustic velocities (v_m), and measured densities (ρ_0) of (Gd$_{1-x}$Y$_x$)TaO$_4$ ($x = 0/6, 1/6, 2/6, 3/6, 4/6, 5/6, \text{and} 6/6$) ceramics at room temperature}
\end{table}
\[k_{\text{min}1} = 0.87k_BN_A^{2/3}m^{2/3} \rho^{1/6}E^{3/2}/M^{2/3} \]
\[k_{\text{min}2} = k_B \cdot \frac{2.48}{\pi} \rho^{2/3} \left(2v_1 + v_1\right) \]

where \(N_A\) and \(m\) are the Avogadro’s number and the number of atoms in a single cell, respectively. Figures 7(a)–7(g) show \(k_{\text{min}1}\) and \(k_{\text{min}2}\) of \((\text{Gd}_{1-x} \cdot \text{Y}_x)\text{TaO}_4\). The \((\text{Gd}_{3/6} \cdot \text{Y}_{3/6})\text{TaO}_4\) ceramics have a thermal conductivity similar to the limited thermal conductivity.

3.4 Thermal expansion

The TECs are one of the key influencing factors for TBC service. TBCs consist of a ceramic layer, an adhesive layer, and a metal substrate. It is well known that metals have larger TECs than ceramics, and the bonding layer is the thermal expansion moderating layer of the two materials. The TBCs operate under the condition of cooling and heating cycles. To avoid thermal stress caused by different TECs, it is necessary to find ceramic layers with high TECs.

It is widely accepted that micro-cracks are induced in the ceramics owing to the large anisotropy of TECs [46]. The cell parameters for each sample are calculated from the X-ray data for the corresponding temperature of the sample. The error between the measured values of the room-temperature unit cell parameters and the values of the ICDD database is less than 0.3%, and the specific values are listed in Table 4. More detailed cell parameters for each sample calculated by the high-temperature XRD data are shown in Tables 5–11. The normalized lattice parameters of \((\text{Gd}_{1-x} \cdot \text{Y}_x)\text{TaO}_4\) are shown in Figs. 8(a)–8(g). The lattice constants \((b\) and \(c)\) and unit cell volumes \((V)\) are positively related to temperature, while the lattice constant \((a)\) increases slightly, and then decreases slowly when the temperature is higher than 1000 K. The angle between the \(a\)-axis and the \(c\)-axis \((\beta)\) gradually decreases with the increasing temperature until it is 90° after the \(m\)-\(t\) phase transition. The crystal transformation process of \(\text{GdTaO}_4\) is shown in Fig. 8(h), where the transformation process of the \(\beta\) angle is consistent with the data obtained via the high-temperature XRD.

The anisotropic TECs of \((\text{Gd}_{1-x} \cdot \text{Y}_x)\text{TaO}_4\) are calculated via the lattice constants at different temperatures. When the temperature is higher than 600 K, the volumetric TECs are defined by Eq. (16) [47]:

\[\ln(V/V_0) = \alpha_V(T - T_0) \]

where \(V_0\) is the volume at 25 °C, \(T_0\) is the room temperature, and \(\alpha_V\) is the temperature-dependent volumetric TECs.

Table 4 Difference between measured values of room-temperature unit cell parameters and ICDD database values of \(\text{YTaO}_4\)

Method	\(a\) (Å)	\(b\) (Å)	\(c\) (Å)	\(V\) (Å³)
ICDD	5.326	10.931	5.050	292.600
Unit cell	5.320	10.922	5.047	291.903
Error (%)	0.11	0.08	0.06	0.24

Table 5 Unit cell parameters of \(\text{GdTaO}_4\) ceramics at various temperatures

Temperature (°C)	\(a\) (Å)	\(b\) (Å)	\(c\) (Å)	\(V\) (Å³)	
25	5.396	11.051	5.075	95.614	301.119
200	5.400	11.070	5.082	95.414	302.434
400	5.403	11.094	5.092	95.136	303.996
600	5.404	11.121	5.105	94.889	305.677
800	5.402	11.150	5.119	94.479	307.397
1000	5.397	11.179	5.139	93.914	309.318
1200	5.381	11.215	5.168	93.111	311.390
1300	5.366	11.233	5.192	92.521	312.648
1400	5.342	11.255	5.228	91.482	314.236
1500	5.288	11.291	5.288	90.000	315.742

Table 6 Unit cell parameters of \((\text{Gd}_{3/6} \cdot \text{Y}_{3/6})\text{TaO}_4\) ceramics at various temperatures

Temperature (°C)	\(a\) (Å)	\(b\) (Å)	\(c\) (Å)	\(V\) (Å³)	
25	5.382	11.035	5.072	95.550	299.853
200	5.388	11.053	5.079	95.405	301.137
400	5.393	11.077	5.088	95.135	302.757
600	5.395	11.103	5.102	94.848	304.506
800	5.394	11.129	5.119	94.488	306.334
1000	5.389	11.160	5.141	94.039	308.424
1200	5.380	11.197	5.169	93.252	310.893
1300	5.370	11.218	5.188	92.680	312.225
1400	5.355	11.243	5.217	92.003	313.886
1500	5.286	11.288	5.286	90.000	315.446

Table 7 Unit cell parameters of \((\text{Gd}_{4/6} \cdot \text{Y}_{2/6})\text{TaO}_4\) ceramics at various temperatures

Temperature (°C)	\(a\) (Å)	\(b\) (Å)	\(c\) (Å)	\(V\) (Å³)	
25	5.381	11.023	5.076	95.615	299.674
200	5.386	11.042	5.084	95.409	300.992
400	5.390	11.066	5.094	95.193	302.559
600	5.392	11.091	5.106	94.855	304.286
800	5.392	11.118	5.124	94.489	306.205
1000	5.389	11.151	5.141	93.978	308.169
1200	5.375	11.186	5.170	93.120	310.397
1300	5.362	11.211	5.191	92.595	311.716
1400	5.344	11.235	5.223	91.784	313.439
1500	5.280	11.302	5.277	90.000	314.905

www.springer.com/journal/40145
The volumetric TECs of (27.9–33.3)×10^{-6} K^{-1} (1400 °C) of the (Gd_{1/6}Y_{5/6})TaO_{4} ceramics are obtained by Eq. (16), and the results are shown in Fig. 9(d). The calculated TECs of three axes at 1400 °C are \(a_{\alpha} = (-7.3–(-2.1)) \times 10^{-6} \text{ K}^{-1} \), \(a_{\beta} = (11.1–13.9) \times 10^{-6} \text{ K}^{-1} \), and \(a_{\gamma} = (16.2–21.6) \times 10^{-6} \text{ K}^{-1} \), and the results are plotted in Figs. 9(a)–9(c). Due to this high anisotropic thermal expansion, the thermal mismatch can be minimized by controlling the preferred orientation, making (Gd_{1/6}Y_{5/6})TaO_{4} more widely used in the technical field of TBCs. The axial TECs of (Gd_{1/6}Y_{5/6})TaO_{4} ceramics gradually increase along the \(a\)-axis at first, and then gradually decrease when the temperature exceeds 600 °C, and the prepared samples finally show a negative TECs. The TECs along the \(b\)-axis and \(c\)-axis gradually increase with the increasing temperatures, while their values are quite different. The anisotropic TECs may generate internal stress during thermal cycling, and lead to micro-cracks in the coatings. The TECs of the (Gd_{1/6}Y_{5/6})TaO_{4} ceramics increase linearly before 600 °C, but the TECs increase slowly above 600 °C, which may be related to the negative value of the \(a\)-axis TECs after 600 °C.

Figures 10(a) and 10(b) show the thermal expansion rates (\(dL/L_{0}\)) and TECs of (Gd_{1/6}Y_{5/6})TaO_{4} measured via the TMA analyzer, respectively. Apparently, \(dL/L_{0}\) is linearly related to temperature, indicating that (Gd_{1/6}Y_{5/6})TaO_{4} has excellent phase stability. When \(x = 1/6\), the TECs of (Gd_{1/6}Y_{5/6})TaO_{4} reach 10.5×10^{-6} \text{ K}^{-1} (1200 °C), which is comparable with YSZ (11×10^{-6} \text{ K}^{-1}). Dopant creates point defects that further induce lattice distortion, which results in the enhanced lattice stress fields and increased off-resonance of lattice vibrations, and it ultimately leads to high TECs. The linear TECs were calculated by dividing the volumetric TECs by 3, as shown in Fig. 10(c) [29,48]. When \(x = 1/6\), the TECs are up to 10.3×10^{-6} \text{ K}^{-1} (1200 °C), which is similar to the TECs measured via the TMA analyzer. When the temperature rises to 1500 °C, the TECs increase slightly compared with those before the phase transition, and the value is 11.5×10^{-6} \text{ K}^{-1}.

![Image](www.springer.com/journal/40145)
Fig. 8 Normalized unit cell parameters of (Gd$_{1-x}$Y$_x$)TaO$_4$ ($x = 0/6, 1/6, 2/6, 3/6, 4/6, 5/6,$ and $6/6$) as a function of temperature: (a) $x = 0/6$; (b) $x = 1/6$; (c) $x = 2/6$; (d) $x = 3/6$; (e) $x = 4/6$; (f) $x = 5/6$; and (g) $x = 6/6$. (h) Schematic diagram of the crystal transformation process of GdTaO$_4$ from the m phase to the t phase, where the purple ball is the Gd atom, the yellow ball is the Y atom, and the red ball is the O atom.

Fig. 9 Axial TECs for (Gd$_{1-x}$Y$_x$)TaO$_4$ ($x = 0/6, 1/6, 2/6, 3/6, 4/6, 5/6,$ and $6/6$): (a) a-axis; (b) b-axis; and (c) c-axis. (d) Volumetric TECs of (Gd$_{1-x}$Y$_x$)TaO$_4$.

www.springer.com/journal/40145
3.5 Mechanical properties

E is a physical quantity related to the resistance of the material to deformation, and can also characterize the bonding strength of the material [49,50]. During the operation of the turbine engine, it will be hit by some foreign objects, which will cause cracks in the coating and eventually damage [51]. Consequently, as a TBC material, E needs to be considered. The nanoscale E of (Gd$_{1-x}$Y$_x$)TaO$_4$ were measured by the nanoindentation method, and the results are plotted in Figs. 11(a)–11(g).

Fig. 10 Temperature dependence of thermal expansion properties of (Gd$_{1-x}$Y$_x$)TaO$_4$ ($x = 0/6, 1/6, 2/6, 3/6, 4/6, 5/6,$ and $6/6$) ceramics via the TMA analyzer: (a) dL/L_0; (b) TECs. (c) Linear TECs of (Gd$_{1-x}$Y$_x$)TaO$_4$ from 200 to 1500 °C by the high-temperature XRD.

Fig. 11 3D distributions of E for (Gd$_{1-x}$Y$_x$)TaO$_4$ ($x = 0/6, 1/6, 2/6, 3/6, 4/6, 5/6,$ and $6/6$) ceramics: (a) $x = 0/6$; (b) $x = 1/6$; (c) $x = 2/6$; (d) $x = 3/6$; (e) $x = 4/6$; (f) $x = 5/6$; and (g) $x = 6/6$. (h) E as a function of x.
The 3D topography shows a small wave motion with the change of position. We speculate that this might be because the sample contains some microscopic voids and cracks, which will affect the accuracy of the measurement, but this error can be eliminated to a certain extent through multiple measurements [52]. Figure 11(h) shows the mean values of E obtained by nanoindentation. To verify the accuracy of the data measured by the nanoindentation method, we use the ultrasonic pulse method to further measure E, and the results are shown in Table 12. The mean E of the (Gd$_{1-x}$Y$_x$)TaO$_4$ ceramics are 137.5–150.9 GPa measured by the NanoBlitz 3D method, which is almost the same as the ultrasonic pulse method and far below that of YSZ (240 GPa) [53]. Figures 12(a)–12(g) show the mean values of hardness obtained by the nanoindentation, and the hardness and E have a linear relationship. Figure 12(h) shows the mean values of the hardness,

x	Method	E	B	G	H
0/6	Ultrasonic pulse	144.4	158.9	53.5	—
0/6	NanoBlitz 3D	146.4	—	—	9.54
1/6	Ultrasonic pulse	139.6	148.8	51.9	—
1/6	NanoBlitz 3D	150.8	—	—	9.51
2/6	Ultrasonic pulse	142.2	154.7	52.8	—
2/6	NanoBlitz 3D	148.2	—	—	9.64
3/6	Ultrasonic pulse	140.1	158.7	51.8	—
3/6	NanoBlitz 3D	150.9	—	—	9.61
4/6	Ultrasonic pulse	139.4	148.2	51.9	—
4/6	NanoBlitz 3D	139.9	—	—	9.36
5/6	Ultrasonic pulse	152.5	170.9	56.4	—
5/6	NanoBlitz 3D	137.5	—	—	9.42
6/6	Ultrasonic pulse	155.4	163.4	40.5	—
6/6	NanoBlitz 3D	137.5	—	—	9.39

Fig. 12 3D distributions of H for (Gd$_{1-x}$Y$_x$)TaO$_4$ ($x = 0/6, 1/6, 2/6, 3/6, 4/6, 5/6, and 6/6$) ceramics: (a) $x = 0/6$; (b) $x = 1/6$; (c) $x = 2/6$; (d) $x = 3/6$; (e) $x = 4/6$; (f) $x = 5/6$; and (g) $x = 6/6$. (h) H as a function of x.

www.springer.com/journal/40145
and the mean hardness of the (Gd$_{1-x}$Y$_x$)TaO$_4$ ceramics is 9.4–9.6 GPa, which is close to that of YSZ (10 GPa). The high H and relatively low E help the (Gd$_{1-x}$Y$_x$)TaO$_4$ ceramics to resist thermal shock during service and improve their service life [54].

4 Conclusions

In this work, structural characterization, high-temperature phase stability, thermal conductivity, and anisotropic TECs of (Gd$_{1-x}$Y$_x$)TaO$_4$ are investigated as potential TBCs. The results of the research are as follows:

1) The SEM results show that the (Gd$_{1-x}$Y$_x$)TaO$_4$ ceramics have ferroelastic domains similar to YSZ. The (Gd$_{1-x}$Y$_x$)TaO$_4$ ceramics have excellent high-temperature phase stability, and the m–t phase transition temperature is higher than 1450 °C.

2) (Gd$_{1-x}$Y$_x$)TaO$_4$ has extremely low thermal conductivity (1.37–2.05 W·m$^{-1}$·K$^{-1}$, 900 °C) compared with 8YSZ (2.5 W·m$^{-1}$·K$^{-1}$, 1000 °C), which dropped by nearly half. The linear TECs reach 11.5×10^{-6} K$^{-1}$ (1500 °C), and the anisotropic TECs are $a_o = (-7.3$–$(-2.1))\times10^{-6}$ K$^{-1}$, $a_l = (11.1$–$13.9)\times10^{-6}$ K$^{-1}$, and $a_c = (16.2$–$21.6)\times10^{-6}$ K$^{-1}$.

3) The mean E of (Gd$_{1-x}$Y$_x$)TaO$_4$ ranges from 137.5 to 150.9 GPa, and they are far less than that of YSZ (240 GPa), when the mean hardness of the (Gd$_{1-x}$Y$_x$)TaO$_4$ ceramics is 9.4–9.6 GPa.

4) Considering that the TBC materials should possess low thermal conductivity and suitable TECs, (Gd$_{3/6}$Y$_{3/6}$)TaO$_4$ is the best TBC material among all the components.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 91960103), the Yunnan Province Science Fund for Distinguished Young Scholars (No. 2019FJ006), and Rare and Precious Metals Material Genetic Engineering Project of Yunnan Province (No. 202102AB080019-1).

References

[1] Clarke DR, Oechsner M, Padture NP. Thermal-barrier coatings for more efficient gas-turbine engines. *MRS Bull* 2012, 37: 891–898.

[2] Padture NP, Gell M, Jordan EH. Thermal barrier coatings for gas-turbine engine applications. *Science* 2002, 296: 280–284.

[3] Schlichting KW, Padture NP, Klemens PG. Thermal conductivity of dense and porous yttria-stabilized zirconia. *J Mater Sci* 2001, 36: 3003–3010.

[4] Vaßen R, Jarligo MO, Steinke T, et al. Overview on advanced thermal barrier coatings. *Surf Coat Technol* 2010, 205: 938–942.

[5] Chen L, Feng J. Influence of HfO$_2$ alloying effect on microstructure and thermal conductivity of HoTaO$_4$ ceramics. *J Adv Ceram* 2019, 8: 537–544.

[6] Mikuśkiewicz M, Migas D, Moskal G. Synthesis and thermal properties of zirconate, hafnate and cerate of samarium. *Surf Coat Technol* 2018, 354: 66–75.

[7] Wang YH, Jin YJ, Ding ZY, et al. Microstructure and electrical properties of new high-entropy rare-earth zirconates. *J Alloys Compd* 2022, 906: 164331.

[8] Cao X, Vassen R, Fischer W, et al. Lanthanum–cerium oxide as a thermal barrier-coating material for high-temperature applications. *Adv Mater* 2003, 15: 1438–1442.

[9] Guo L, Li BW, Cheng YX, et al. Composition optimization, high-temperature stability, and thermal cycling performance of Sc-doped Gd$_2$Zr$_2$O$_7$ thermal barrier coatings: Theoretical and experimental studies. *J Adv Ceram* 2022, 11: 454–469.

[10] Wang YH, Jin YJ, Ding ZY, et al. Anisotropy in elasticity and thermal conductivity of monazite-type REPO$_4$ (RE = La, Ce, Nd, Sm, Eu and Gd) from first-principles calculations. *Acta Mater* 2013, 61: 7364–7383.

[11] Tian ZL, Zheng LY, Wang JM, et al. Theoretical and experimental determination of the major thermo-mechanical properties of RE$_2$SiO$_5$ (RE = Tb, Dy, Ho, Er, Tb, Yb, Lu, and Y) for environmental and thermal barrier coating applications. *J Eur Ceram Soc* 2016, 36: 189–202.

[12] Wu P, Chong XY, Feng J. Effect of Al$^{3+}$ doping on mechanical and thermal properties of DyTaO$_4$ as promising thermal barrier coating application. *J Am Ceram Soc* 2018, 101: 1818–1823.

[13] Chen L, Li BH, Guo J, et al. High-entropy pervoskite RETa$_4$O$_9$ ceramics for high-temperature environmental/thermal barrier coatings. *J Adv Ceram* 2022, 11: 556–569.

[14] Lepple M, Ushakov SV, Lilova K, et al. Thermochromy and phase stability of the polymorphs of yttrium tantalate, YTaO$_4$. *J Eur Ceram Soc* 2021, 41: 1629–1638.

[15] Wang J, Chong XY, Zhou R, et al. Microstructure and thermal properties of RETaO$_4$ (RE = Nd, Eu, Gd, Dy, Er, Yb, Lu) as promising thermal barrier coating materials. *Scripta Mater* 2017, 126: 24–28.

[16] Chen L, Hu MY, Wu P, et al. Thermal expansion performance and intrinsic lattice thermal conductivity of ferroelastic RETaO$_4$ ceramics. *J Am Ceram Soc* 2019, 102: 4809–4821.

[17] Jiang K, Liu SB, Wang X, Low-thermal-conductivity and high-toughness CeO$_2$–Gd$_2$O$_3$ co-stabilized zirconia ceramic for potential thermal barrier coating applications. *J Eur Ceram Soc* 2018, 38: 3986–3993.

[18] Khan M, Zeng Y, Lan ZH, et al. Reduced thermal conductivity
of solid solution of 20% CeO$_2$+ZrO$_2$ and 8% Y$_2$O$_3$+ZrO$_2$ prepared by atmospheric plasma spray technique. *Ceram Int* 2019, **45**: 839–842.

[19] Tabatabaeian MR, Rahmanifard R, Jalili YS. The study of phase stability and thermal shock resistance of a Scandia–Ceria stabilized zirconia as a new TBC material. *Surf Coat Technol* 2019, **374**: 752–762.

[20] Chen L, Yang GJ. Epitaxial growth and cracking of highly tough 7YSZ splats by thermal spray technology. *J Adv Ceram* 2018, **7**: 17–29.

[21] Feng J, Shian S, Xiao B, et al. First-principles calculations of the high-temperature phase transformation in yttrium tantalate. *Phys Rev B* 2014, **90**: 094102.

[22] Shian S, Sarin P, Gurak M, et al. The tetragonal–monoclinic, ferroelastic transformation in yttrium tantalate and effect of zirconia alloying. *Acta Mater* 2014, **69**: 196–202.

[23] Wang J, Zhou Y, Chong XY, et al. Microstructure and thermal properties of a promising thermal barrier coating: YTaO$_4$. *Ceram Int* 2016, **42**: 13876–13881.

[24] Yang WQ, Ye FX. The mechanical and thermal properties, CMAS corrosion resistance, and the wettability of novel thermal barrier material GdTaO$_4$. *Ceram Int* 2021, **47**: 28685–28697.

[25] Wu P, Hu MY, Chen L, et al. Investigation on microstructures and thermo-physical properties of ferroelastic (Y$_{1−x}$Dy)$_2$TaO$_5$ ceramics. *Materials* 2018, **4**: 478–486.

[26] Weng YK, Nobakht AY, Shin S, et al. Effects of mass and interaction mismatches on in-plane and cross-plane thermal transport of Si-doped graphene. *Int J Heat Mass Transf* 2021, **169**: 120979.

[27] Xue ZL, Ma Y, Guo HB. The influence of Gd doping on thermophysical properties, elasticity modulus and phase stability of garnet-type (Y$_{1−x}$Gd)$_3$Al$_2$O$_{12}$ ceramics. *J Eur Ceram Soc* 2017, **37**: 4171–4177.

[28] Lu MH, Xiang HM, Feng ZH, et al. Mechanical and thermal properties of Yb$_2$SiO$_4$: A promising material for T/EBCs applications. *J Am Ceram Soc* 2016, **99**: 1404–1411.

[29] Ridley M, Gaskins J, Hopkins P, et al. Tailoring thermal properties of multi-component rare earth monosilicates. *Acta Mater* 2020, **195**: 698–707.

[30] Gebhardt J, Rappe AM. Big data approach for effective ionic radii. *Comput Phys Commun* 2019, **237**: 238–243.

[31] Chen L, Guo JZ, Yu XK, et al. Features of crystal structures and thermo-mechanical properties of weberites RE$_2$NbO$_5$- (RE = La, Nd, Sm, Eu, Gd) ceramics. *J Am Ceram Soc* 2021, **104**: 404–412.

[32] Torres-Rodriguez J, Kalmár J, Menelaou M, et al. Heat treatment induced phase transformations in zirconia and yttria-stabilized zirconia monolithic aerogels. *J Supercrit Fluids* 2019, **149**: 54–63.

[33] Chen L, Jiang YH, Chong XY, et al. Synthesis and thermophysical properties of RETa$_3$O$_9$ (RE = Ce, Nd, Sm, Eu, Gd, Dy, Er) as promising thermal barrier coatings. *J Am Ceram Soc* 2018, **101**: 1266–1278.

[34] Gunuraj K, Saha M, Mauya SK, et al. On the correlative microscopy analyses of nano-twinned domains in 2 mol% zirconia alloyed yttrium tantalate thermal barrier material. *Scripta Mater* 2022, **212**: 114584.

[35] Zhao M, Ren XR, Yang J, et al. Thermo-mechanical properties of ThO$_2$-doped Y$_2$O$_3$ stabilized ZrO$_2$ for thermal barrier coatings. *Ceram Int* 2016, **42**: 501–508.

[36] Chong XY, Palma JPS, Wang Y, et al. Thermodynamic properties of the Yb–Sb system predicted from first-principles calculations. *Acta Mater* 2021, **217**: 117169.

[37] Wan CL, Pan W, Xu Q, et al. Effect of point defects on the thermal transport properties of (La$_{x}$Gd$_{1−x}$)$_2$Zr$_2$O$_7$: Experiment and theoretical model. *Phys Rev B* 2006, **74**: 144109.

[38] Zhou ZH, Uher C, Jewell A, et al. Influence of point-defect scattering on the lattice thermal conductivity of solid solution Co(Sb$_{1−x}$As$_x$)$_3$. *Phys Rev B* 2005, **71**: 235209.

[39] Eshelby JD. The continuum theory of lattice defects. *Solid State Phys* 1956, **3**: 79–144.

[40] Slack GA. Nonmetallic crystals with high thermal conductivity. *J Phys Chem Solids* 1973, **34**: 321–335.

[41] Wu P, Chong XY, Wu FS, et al. Investigation of the thermophysical properties of (Y$_{1−x}$Yb)$_2$TaO$_4$ ceramics. *J Eur Ceram Soc* 2020, **40**: 3111–3121.

[42] Bruls RJ, Hintzen HT, Metselaar R. A new estimation method for the intrinsic thermal conductivity of nonmetallic compounds. *J Eur Ceram Soc* 2005, **25**: 767–779.

[43] Lo SH, He JQ, Biswas K, et al. Phonon scattering and thermal conductivity in p-type nanostructured PbTe–BaTe bulk thermoelectric materials. *Adv Funct Mater* 2012, **22**: 5175–5184.

[44] Cahill DG, Watson SK, Pohl RO. Lower limit to the thermal conductivity of disordered crystals. *Phys Rev B Condens Matter* 1992, **46**: 6131–6140.

[45] Clarke DR,Phillpot SR. Thermal barrier coating materials. *Mater Today* 2005, **8**: 22–29.

[46] Tvergaard V, Hutchinson JW. Microcracking in ceramics induced by thermal expansion or elastic anisotropy. *J Am Ceram Soc* 1988, **71**: 157–166.

[47] Sun QZ, Zhou YC, Wang JY, et al. Thermal properties and thermal shock resistance of γ-Y$_2$SiO$_3$: *J Am Ceram Soc* 2008, **91**: 2623–2629.

[48] Fernández-Carrión AJ, Allix M, Becerro AI. Thermal expansion of rare-earth pyrosilicates. *J Am Ceram Soc* 2013, **96**: 2298–2305.

[49] Nie GL, Bao YW, Wan DT, et al. Features of crystal structures and thermo-mechanical properties of weberites RE$_2$NbO$_5$- (RE = La, Nd, Sm, Eu, Gd) ceramics. *J Am Ceram Soc* 2021, **104**: 404–412.

[50] Torres-Rodriguez J, Kalmár J, Menelaou M, et al. Heat treatment induced phase transformations in zirconia and yttria-stabilized zirconia monolithic aerogels. *J Supercrit Fluids* 2019, **149**: 54–63.

[51] Chen L, Jiang YH, Chong XY, et al. Synthesis and thermophysical properties of RETa$_3$O$_9$ (RE = Ce, Nd, Sm, Eu, Gd, Dy, Er) as promising thermal barrier coatings. *J Am Ceram Soc* 2018, **101**: 1266–1278.
2021, 218: 117230.

[52] Wu P, Zhou YX, Wu FS, et al. Theoretical and experimental investigations of mechanical properties for polymorphous YTaO₄ ceramics. *J Am Ceram Soc* 2019, 102: 7656–7664.

[53] Wang YT, Chen L, Feng J. Impact of ZrO₂ alloying on thermo-mechanical properties of Gd₃NbO₇. *Ceram Int* 2020, 46: 6174–6181.

[54] Zhao ZF, Chen H, Xiang HM, et al. High entropy defective fluorite structured rare-earth niobates and tantalates for thermal barrier applications. *J Adv Ceram* 2020, 9: 303–311.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.