Phylogenetic relationships of the supercontig of sodium channel subunit I (NaV) in 17 species of *Anopheles* (Diptera: Culicidae)

Valéria Silva Santos[1], Leticia Cegatti Bridi[1] and Míriam Silva Rafael[2]

[1]. Instituto Nacional de Pesquisas da Amazônia, Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Manaus, AM, Brasil.
[2]. Instituto Nacional de Pesquisas da Amazônia, Laboratório de Vetores da Malária e Dengue, Manaus, AM, Brasil.

ABSTRACT

Background: Malaria is a global health problem and is transmitted by the *Anopheles* species. Due to the epidemiological importance of the genus, studies on biological, phylogenetic, and evolutionary aspects have contributed to the understanding of adaptation, vector capacity, and resistance to insecticides. The latter may result from different causes such as mutations in the gene that encodes the sodium channel (*NaV*).

Methods: In this study, the NaV subunit I scaffold of 17 anopheline species was used to infer phylogenetic relationships of the genus *Anopheles* using Bayesian inference. The evolutionary phylogenetic tree of the *NaV* gene was aligned in the AliView program and analyzed utilizing Bayesian inference, using the software MrBayes.

Results: The anophelines were grouped into five well-supported clusters: 1 – *Anopheles darlingi* and *Anopheles albimanus*; 2 – *Anopheles sinensis* and *Anopheles atroparvus*; 3 – *Anopheles dirus*; 4 – *Anopheles minimus*, *Anopheles culicifacies*, *Anopheles funestus*, *Anopheles maculatus*, and *Anopheles stephensi*; and 5 – *Anopheles christyi*, *Anopheles epiroticus*, *Anopheles merus*, *Anopheles melas*, *Anopheles gambiae*, *Anopheles coluzzii*, and *Anopheles arabiensis*.

Conclusions: The topology confirms the phylogenetic relationships proposed in studies based on the genome of some anophelines and reflects the current taxonomy of the genus, which suggests that *NaV* undergoes selection pressure during the evolution of the species. These data are useful tools for inferring their ability to resist insecticides and also help in better understanding the evolutionary processes of the genus *Anopheles*.

Keywords: *Anopheles*. Phylogenetic analysis. Bayesian inference.
This disease is transmitted by mosquitoes of the genus *Anopheles*, which belongs to the Culicidae family. The subfamilies Anophelinae and Culicinae present evolutionary divergence over 100 million years, which occurred simultaneously, and are thus sister groups phylogenetically speaking.5,6 Mosquitoes of the genera *Aedes* and *Culex* are grouped in the subfamily Culicinae, while those of the genus *Anopheles* belong to the subfamily Anophelinae. The genera *Bironella* and *Chagasia* also belong to this subfamily.8

In Africa, the main vectors of human malaria parasites are *Anopheles gambiae*, *Anopheles arabiensis*, and *Anopheles funestus*; the corresponding main vectors are *Anopheles albimanus* and *Anopheles pseudopunctipennis* in Mexico and Central America and *Anopheles stephensi* and *Anopheles culicifacies* in Asia. In South America, the vectors involved with malaria transmission belong to the subgenus *Nyssorhynchus* (*Anopheles darlingi*, *Anopheles aquasalis*, *Anopheles nuneztovari*, *Anopheles oswaldoi*, *Anopheles triannulatus*, *Anopheles tadei*, *Anopheles konderi* complex, and *Anopheles albitarbis*)9–11 and *Kerstezia* (*Anopheles cruzii* and *Anopheles bellator*)12. *Anopheles darlingi* is the main vector of disease-causing parasites in South America, with geographical distribution covering the eastern Andes, Colombia, Venezuela, Bolivia, Peru, Paraguay, Argentina, Guianas, and Brazil; however, it is absent in the extreme northeastern parts of Brazil10,11.

Population studies of *An. darlingi* in relation to its role as the main transmitter of human malaria in Brazil have demonstrated that geographical differences apparently do not interfere with its vector capacity14,16, even if one considers that *An. darlingi* may comprise a complex of 3 well-structured species17. Strategies for combating malaria have two main focuses: prevention, through the control of mosquito vectors, and case management14,18. The development of insecticides with long residual effects was one of the most important advances for their application in public health. Dichloro-diphenyl-trichloroethane (DDT) was the first insecticide with a prolonged residual effect and is an organochloride that was developed during the Second World War19, but which has had its use suspended due to its persistence in the environment. Pyrethroids have been used in the control of malaria vectors due to their rapid action against the insect’s nervous system and low toxicity in mammals20. These insecticides are mainly used in indoor residual spraying and to control agricultural pests14,18.

Pyrethroids and DDT and its analogs are neurotoxic, act in axonic transmission, and share a similar mechanism of action as voltage-dependent sodium channel (NaV) modulators21. They interact with the sodium channels distributed along the axon, prolonging or preventing their normal closure after the transmission of the nerve impulse and allowing an excessive flow of Na+ ions into the interior of the nerve cell, leading to paralysis of the central and peripheral nervous systems21.

Mosquito resistance to pyrethroid insecticides potentially represents the greatest threat to the implementation of malaria prevention programs22. This category of resistance is called knockdown resistance (kdr) and results from specific mutations in the gene that encodes the sodium channel as it changes its affinity to insecticides, and is observed in several insects such as *Musca domestica*22.

The decreased sensitivity of the target site of action of pyrethroids and also DDT in *An. gambiae* has been described in association with two alternative substitutions to a single codon of the sodium channel gene. The first results in the replacement of a residue (L1014F) of leucine (TTA), which is present in the wild allele, by phenylalanine (TTT) in the amino acid position of the gene encoding the trans-membrane subunit (S6 of domain II) of the sodium channel. This mutation in *An. gambiae* is widely dispersed in West Africa22,24. The second involves a replacement (L1014S) of the leucine residue (TTA) by serine (TCA) in the same amino acid position, and is found in East Africa2.24

In addition to *An. gambiae*, two more mutations (L1014C and L1014W) have been reported in two Asian populations of *Anopheles sinensis*, which change the amino acid leucine to cysteine and tryptophan, respectively. In addition, at the site immediately preceding the classical kdr mutation, N1013S substitution occurs, which changes the amino acid asparagine to serine23. In populations of *An. culicifacies* from India, in addition to the L1014F/L1014S substitutions, a new mutation was described at site 1010, involving a replacement of valine with leucine (V1010I)26. A comparison of the NaV gene sequence in different insect species showed that this sequence is highly conserved. However, different numbers of exons are observed among different species28.

To date, NaV mutations have been described in at least 13 different species of anophelines. *An. gambiae*, which is the most studied mosquito, presents three mutational variants (L1014F, L1014S, and N1013S) in 20 of the 54 African countries, in addition to *An. arabiensis*, which presents two variants (L1014F and L1014S), present in seven countries of the African continent28.

Due to its importance as a vector, the genus *Anopheles* has been subjected to many studies to determine its biological characteristics; however, its molecular and evolutionary characteristics need to be studied further. Sequencing the genome of some species, such as *An. darlingi*, fills some gaps in the knowledge about their genes and has opened up several possibilities, including a contemplation of the evolutionary history of anophelines. It also provides valuable information that can lead to new strategies for reducing malaria transmission29.

The literature contains few studies on the molecular phylogeny of *Anopheles* mosquitoes, though one can cite that of Neafsey et al29, which generated a phylogenetic tree of 16 *Anopheles* mosquitoes and other Diptera, as outgroups, using the maximum-likelihood method. In addition to this study, Harbach & Kitching9, using cladistics, reviewed the phylogenetic relationships among anopheline species.

Although there are studies of phylogenetic trees of *Anopheles*, there are no records about the evolutionary behavior of a single gene or contigs with gaps (scaffolds) in these mosquitoes. Therefore, we conducted a phylogenetic study using the scaffold sequence (subunit I gene) of *Nav* to contribute to a greater understanding of the biological and molecular characteristics such as adaptation, resistance to insecticides, and vector capacity.

METHODS

The scaffold sequence (subunit I) of the sodium channel of *An. darlingi*, fosmid clone, inserted in the pCMV SPORT6 cloning vector (Invitrogen, Waltham, MA, USA) was obtained from the genome of this mosquito29. The sequence has been deposited in the Vector Base under the accession number ADAC000755 (5,066 bp). From this sequence, 37 orthologs for the supercontig (scaffold) gene *Nav* were recorded. These 37 sequences were analyzed according to the following criteria: in the first, sequences that did not belong to mosquitoes of the family Culicidae were excluded; in the second, the number of copies of the gene, the query, and the target of 16 anophelines were recorded, excluding sequences that had values lower than 60% in relation to *An. darlingi*. For this analysis, two *Aedes* species were used as the outgroup (Table 1). Then, the program AliView30 was used, which uses the software MUSCLE (Multiple Sequence Comparison by Log-Expectation)31 to align the sequences.

www.scielo.br/rsbmt I *www.rsbmt.org.br*
TABLE 1: Orthologous sequences to the supercontig sodium channel for Anopheles darlingi (ADAC000755) compared to the 16 species of Anopheles, Aedes aegypti, and Aedes albopictus (outgroup), according to Gene Ontology (GO).

Mosquito species	Accession number	Target ID%	Query ID%	Ontology	Biological process	Molecular function	Cellular component
Anopheles albinanus	AALB008211	91.42%	97.53%				
Anopheles arabiensis	AARA004284	84.70%	99.04%				
Anopheles atroparvus	AATE017690	88.73%	95.84%				
Anopheles christyi	ACHR003796	87.40%	98.19%				
Anopheles coluzzii	ACOM036769	88.51%	79.22%				
Anopheles culicifacies	ACUA006175	87.72%	96.39%				
Anopheles dirus	ADIR0100287	89.60%	99.10%				
Anopheles epiroticus	AEP000310	86.83%	96.51%				
Anopheles funestus	AFUN020364	88.68%	98.61%				
Anopheles gambiae	AGAP002577	88.82%	99.04%				
Anopheles maculatus	AMAM018441	99.55%	26.93%				
Anopheles melas	AMEC011109	97.97%	92.83%				
Anopheles merus	AMEM015017	97.50%	63.43%				
Anopheles minimus	AMIN004000	87.51%	89.94%				
Anopheles sinensis	ASIS008573	95.75%	97.77%				
Anopheles stephensi	ASTE000510	90.31%	94.88%				
Aedes aegypti	AAEI027127	85.30%	95.06%				
Aedes albopictus	AALF005277	92.29%	63.43%				
Anopheles darlingi	ADAC000755	-	-				

Source: www.vectorbase.org, accessed: 09/11/2021.

RESULTS

The 17 anophelines were grouped into five well-supported clusters (Figure 1). The species of the subgenus Cellia, which formed the most diverse clade, were grouped into three clusters: 1 – Anopheles dirus (Neomyzomyia series); 2 – Anopheles minimus, Anopheles culicifacies, An. funestus, Anopheles maculatus, and An. stephensi (Myzomyia series); and 3 – Anopheles christyi, Anopheles epiroticus, Anopheles merus, Anopheles melas, An. gambiae, Anopheles coluzzii, and An. arabiensis (Pyretophorus series). In the latter, the species of the An. gambiae complex is present, representing the most efficient vectors of malaria in Africa. In the other cluster, which is monophyletic and contains the subgenus Anopheles, An. sinensis and An. atroparvus were grouped. Finally, in the most basal and also monophyletic cluster (subgenus Nyssorhynchus), An. darlingi and An. albinanus were grouped.

The bootstrap values in each branch indicate that the NaV phylogeny was generated with high reliability since values below 0.7 suggest that the sequences have a high degree of similarity. In general, the topology results obtained confirm the same phylogenetic relationships that were proposed in studies based on genomes of some anophelines and also reflect the current taxonomy of the genus Anopheles, which suggests that NaV undergoes selection pressure during species evolution.

DISCUSSION

From the supercontig sequences of the subunit I of the sodium channel gene, the generated phylogenetic and evolutionary trees of the NaV gene showed a topology with some coincidences in relation to the phylogenetic trees for some species of anophelines. In the topologies presented by these authors, as well as in the evolutionary trees of the NaV gene, An. darlingi and An. albinanus appeared as sister groups. Coincidence was also recorded in the grouping of sequences of the NaV gene of some species of the An. gambiae complex (An. merus, An. melas, An. coluzzii, and An. gambiae). The sequence of the NaV gene of An. christyi was grouped with the sequences belonging to the complex An. gambiae (An. merus, An. melas, An. gambiae, An. coluzzii, and An. arabiensis); this grouping also occurred in the topologies of the phylogenetic trees.

The NaV tree generated in this study also provides a good representation of the trees of species found in the literature for the Anopheles species in Asia and Oceania.

The NaV sequences of An. sinensis and An. atroparvus are closely related in evolutionary terms to the NaV sequence of An. dirus, An. stephensi, An. funestus, An. culicifacies, An. maculatus, and An. minimus. The latter are evolutionarily grouped into a clade since they are sister groups.
FIGURE 1: Topology of the NaV gene phylogenetic tree, with 17 species of anophelines and two species of Aedes (outgroup).

The values in each branch refer to the statistical bootstrap resampling test, which infers the reliability of the branches based on generations. The NaV phylogenetic tree was generated with high reliability, and it was acknowledged that bootstrap values below 70% are too low to consider a true branch and, above 90%, the branch is considered to have a high degree of support. The overall reliability of the tree is 99% according to the data generated in the BEAST software program information file.

In the clade where An. melas, An. gambiae, An. coluzzii, and An. arabiensis (Pyretophorus series) are found, there are bootstrap values close to and below 70%. It is suggested that this occurs due to the high degree of similarity between the sequences. To reduce doubts about the topology of the NaV tree, these data were also subjected to maximum-likelihood analysis. The topology found was the same (data not shown), which corroborates the findings of this work for the NaV gene tree. Differences were found in the positions of An. christyi and An. epiroticus in comparison to the result obtained by Neafsey et al., who found An. christyi to be more related to the species in the An. gambiae complex. Instead, in the tree of the NaV gene, we found that An. epiroticus was related to the species that occur in Africa (An. gambiae complex).

It is important to bear in mind that the evolution of the sodium channel gene can occur in a different process of species evolution. This may justify the differences found between the clades of the evolutionary phylogenetic tree of the NaV gene in the 17 species of anophelines in this study. Although the tree of a single gene, such as the NaV gene, cannot represent the evolutionary history of species of a genus, the genome evolves conservatively, and this demonstrates that species may be closely related, when the gene trees and their coincidences in the evolutionary history of considered species are analyzed. It is suggested that the sodium channel gene has undergone selection pressure during the evolution of the species, since these mosquitoes may present susceptibility or resistance to neurotoxic insecticides.

Biological factors, such as habitat and ecological niche, can influence the differentiation of a gene throughout its evolutionary history, justifying possible disparities when studied in isolation.

Studies of gene trees within Anopheles have contributed to the understanding of parts of these processes that act independently in each gene, and some works present similar topologies when compared to species tree topologies. Most trees generated from genes also have disparities in the study of the GNBP domain species of the complex An. gambiae which are not grouped in the same clade; however, An. arabiensis and An. quadriannulatus appear as sister groups, which corroborates this study. Further research is needed to understand characteristics such as adaptation to environmental pressures that have led to the evolutionary success of genes and the Anopheles species.

In general, the topology results generated in this study confirm the phylogenetic relationships proposed in studies based on the genome of some anophelines, reflects the current taxonomy of the genus, and indicates that the NaV gene undergoes selection pressure during the evolution of the species. These findings may help infer the ability to develop resistance to insecticides and, also, gain a better understanding of the evolutionary processes within Anopheles.

ACKNOWLEDGMENTS
We are grateful to Dr. Wanderli Pedro Tadei (†), at the INPA Laboratory of Malaria and Dengue Vectors, Dr. Adalberto Luis Val, Laboratory of Ecophysiology and Molecular Evolution, and Dr. Jacqueline da Silva Batista of the Graduate Program in Genetics, Conservation, and Evolutionary Biology at the National Institute of Amazonian Research, for institutional support.

REFERENCES
1. Barber BE, Rajahram GS, Grigg MJ, William T, Anstey NM. World Malaria Report: time to acknowledge Plasmodium knowlesi malaria. Malaria J. 2017;16(1):135. Available from: https://doi.org/10.1186/s12936-017-1787-y.
2. Farinas MLRN, Aschar M, Costa-Nascimento MJ, Di Santi SM. An algorithm based on molecular protocols to improve the detection of Plasmodium in autochthonous malarial areas in the Atlantic Forest biome. Rev Inst Med Trop São Paulo. 2022;64:e18. Available from: https://doi.org/10.1590/S1678-9946202264018.
3. World Health Organization (WHO). World Malaria Report: 20 years of global progress and challenges. Geneva: WHO; 2020. 299 p.

4. Neafsey DE, Waterhouse RM, Abai MR, Aganezov SS, Alekseyev MA, Allen JE, et al. Mosquito genomics. Highly evolvable malaria vectors: The genomes of 16 Anopheles mosquitoes. Science. 2015;347(6217):43-53. Available from: https://doi.org/10.1126/science.1258522.

5. Ghassemi-Khademi T, Oshaghi MA, Vatandoost H, Madjdzadeh SM, Gorouhi MA. Utility of Complete Mitochondrial Genomes in Phylogenetic Classification of the Species of Anopheles (Culicidae: Anophelinae). J Arthropod-Borne Dis. 2021;15(1):1-20. Available from: https://doi.org/10.18502/jad.v15i1.6483.

6. Paredes-Esquível C, Harbach RE, Townsend H. Molecular taxonomy of members of the Anopheles hyrcanus group from Thailand and Indonesia. Med Vet Entomol. 2011;25(3):348-52. Available from: https://doi.org/10.1111/j.1365-2915.2010.00937x.

7. Foster PG, Berto ES, Bourke BP, Oliveira TMP, Nagaki SS, Sant’Ana DC, et al. Phylogenetic Analysis and DNA-based Species Confirmation in Anopheles (Nyssorhynchus). PLoS One. 2013;8(2):e54063. Available from: https://doi.org/10.1371/journal.pone.0054063.

8. Harbach RE, Kitching IJ. The phylogeny of Anophelineae revisited: inferences about the origin and classification of Anophelines (Diptera: Culicidae). Zool Scr. 2016;45(1):34-47. Available from: https://doi.org/10.1011/i/zsc.12137.

9. Sinka ME, Bangs MJ, Manguin S, Rubio-Palis Y, Chareonviryiyaphap T, Coetzee M, et al. A global map of dominant malaria vectors. Parasit Vectors. 2012;5:69. Available from: https://doi.org/10.1186/1756-3305-5-69.

10. Tadei WP, Dutry-Thatcher B. Malaria vectors in the Brazilian Amazon: Anopheles of the subgenus Nyssorhynchus. Rev Inst Med Trop Sao Paulo. 2000;42(2):87-94. Available from: https://doi.org/10.1590/S0036-46622000002600005.

11. Saraiva JF, Scarpassa VM. Anopheles (Nyssorhynchus) tadem: A new species of the Oswaldo-konder complex (Diptera: Anophelinae) and its morphological and molecular distinctions from An. konderi sensu stricto. Acta Trop. 2021;221:106004. Available from: https://doi.org/10.1016/j.actatropica.2021.106004.

12. Ramirez CCL, Dessen EMB. The polytene chromosomes of the mosquito Anopheles bellator compared with those of Anopheles cruzii. Rev Bras Genet. 1996;19(4):555-8.

13. Tadei WP, Dutry-Thatcher B, Santos JMM, Scarpassa VM, Rodrigues IB, Rafael MS. Ecologic observations on anopheles vectors of malaria in the Brazilian Amazon. Am J Trop Med Hyg. 1998;59(2):325-35. Available from: https://doi.org/10.4269/ajtmh.1998.59.325.

14. Consoli RAGB, de Lourenço-de-Oliveira RL. Principais Mosquitos de Importância Sanitária no Brasil. Rio de Janeiro: Editora Fiocruz; 1994. 228 p.

15. Conn LE, Mirabello L. The biogeography and population genetics of neotropical vector species. Heredity. 2007;99:245-56. Available from: https://doi.org/10.1038/sj.hdy.6801002.

16. Scarpassa VM, Conn JE. Population genetic structure of the major malaria vector Anopheles darlingi (Diptera: Culicidae) from the Brazilian Amazon, using microsatellite markers. Mem Inst Oswaldo Cruz. 2007;102(3):319-27. Available from: https://doi.org/10.1590/S0074-02622007000500045.

17. Emerson KJ, Conn JE, Sallum AM, Bergo ES, Randel MAM. Brazilian Anopheles darlingi Root (Diptera:Culicidae) Clusters by Major Biogeographical Region. PLoS One. 2015;10(7):e0130773. Available from: https://doi.org/10.1371/journal.pone.0130773.

18. Rose RL. Pesticides and public health: integrated methods of mosquito management. Emerg Infect Dis. 2001;7(1):17-23. Available from: https://doi.org/10.3201/eid0701.010103.

19. Rozendaal JA. Vector control methods for use by individuals and communities [Internet]. Geneva: World Health Organization; 1997, [cited 2011 Oct 3]. Available from: http://www.who.int/whopes/resources/vector_rozendaal/en/.

20. Hemingway J, Ranson H. Insecticide resistance in insect vectors of human disease. Annu Rev Entomol. 2000;45:371-91. Available from: https://doi.org/10.1146/annurev.ento.45.1.371.

21. Phillips-Howard PA, Nahlen BL, Kolczack MS, Hightower AW, Kuile FO, Alai JA, et al. Efficacy of permethrin treated bed nets in the prevention of mortality in young children in an area of high perennial malaria transmission in western Kenya. Am J Trop Med Hyg. 2003;68(4):23-9.

22. Fanello C, Petrarca V, della Torre A, Santolamazza F, Dolo G, Coulibaly M, et al. The pyrethroid knockdown resistance gene in the Anopheles gambiae complex in Mali and further indication of incipient speciation within An. gambiae s.s. Infect Mol Biol. 2003;12(3):241-5. Available from: https://doi.org/10.1046/j.1365-2583.2003.00407.x.

23. Soderlund DM. Molecular mechanisms of insecticide resistance. In: Sjut V, editor. Molecular Mechanisms of Resistance to Agrochemicals. 13 Vol. Berlin: Springer; 1997. p. 21-56.

24. Yawson AE, McCall PJ, Wilson MD, Donnelly MJ. Species abundance and insecticide resistance of Anopheles gambiae in selected areas of Ghana and Burkina Faso. Med Vet Entomol. 2004;18(4):372-7. Available from: https://doi.org/10.1111/j.0950-6293.2004.00519.x.

25. Ranson H, Jensen B, Wang X, Prapanthada L, Hemingway J, Collins FH. Genetic mapping of two loci affecting DDRI resistance in the malaria vector Anopheles gambiae. Infect Mol Biol. 2000;9(5):499-507. Available from: https://doi.org/10.1046/j.1365-2583.2000.00214.x.

26. Silva APB, Santos JMM, Martins AJ. Mutations in the voltage-gated sodium channel gene of anophelines and their association with resistance to pyrethroids. Parasit Vectors. 2014;7:450. Available from: https://doi.org/10.1186/1756-3305-7-450.

27. Tan WL, Wang ZM, Li CX, Chu H-L, Xu Y, Dong YD, et al. First report on co-occurrence knockdown resistance mutations and susceptibility to beta-cypermethrin in Anopheles sinensis from Jiangsu Province China. PLoS One. 2012;7(1):e29242. Available from: https://doi.org/10.1371/journal.pone.0029242.

28. Davies TGE, Field LM, Usherwood PN, Williamson MS. A comparative study of voltage-gated sodium channels in the Insecta: implications for pyrethroid resistance in Anophele and other Neopteran species. Infect Mol Biol. 2007;16(3):361-507. Available from: https://doi.org/10.1016/j.aims.2006.12.001.

29. Mariniotti O, Aerqueira GC, De Almeida GGP, Ferro MIT, Loreto ELDS, Zaha A, et al. The Genome of Anopheles darlingi, the main neotropical malaria vector. Nucleic Acids Res. 2013;41(15):7387-400. Available from: http://dx.doi.org/10.1093/nar/gkt1484.

30. Larsson A. AllView: a fast and lightweight alignment viewer and editor for large data sets. Bioinformatics. 2014;30(22):3276-8. Available from: http://dx.doi.org/10.1093/bioinformatics/btu531.

31. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792-7. Available from: https://doi.org/10.1093/nar/gkh340.

32. Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 2018;4(1):vey016. Available from: https://doi.org/10.1093/vey/vey016.

33. Posada D, Crandall KA. Modeltest: testing the model of DNA substitution. Bioinformatics. 1998;14(9):817-8. Available from: https://doi.org/10.1093/ve/vey016.

34. Maddison DR, Swoford DJ. Maddison WP. NEXUS: an extensible file format for systematic information. Syst Biol. 1997;46(4):590-620. Available from: https://doi.org/10.1093/sysbio/46.4.590.
35. Rambaut A. Figtree, a graphical viewer of phylogenetic trees. 1.4.2 ed., Edinburgh: Institute of Evolutionary Biology, University of Edinburgh, 2014.

36. Bradley E. Bootstrap Methods: Another Look at the Jackknife. Ann Stat. 1979;7(1):1-26. Available from: https://doi.org/10.1214/aos/1176344552.

37. Foley DH, Bryan JH, Yeates D, Saul A. Evolution and systematic of Anopheles: insights from a molecular phylogeny of Australasian mosquitoes. Mol Phylogenet Evol. 1998;9(2): 262-75. Available from: https://doi.org/10.1006/mpev.1997.0457.

38. Bridi LC, Rafael MS. GNBP domain of Anopheles darlingi: are polymorphic inversions and gene variation related to adaptive evolution? Genetica. 2016;144(1):99-106. Available from: https://doi.org/10.1007/s10709-016-9881-6.

39. Santos EA, dos Santos ACF, Silva da Silva F, da Costa Pires LL, Moraes Casseb SM, Holanda GM, et al. Phylogeny of Anopheles darlingi (Diptera:Culicidae) based on the antimicrobial peptide genes cecropin and defensin. Acta Trop. 2022;227:106285. Available from: https://doi.org/10.1016/j.actatropica.2021.106285.

40. Azevedo-Júnior GM, Guimarães-Marques GM, Bridi LC, Ohse KC, Vicentini R, Tadei W. Phylogenetic analysis of the GST family in Anopheles (Nyssorhynchus) darlingi. Acta Trop. 2014;136:27-31. Available from: https://doi.org/10.1016/j.actatropica.2014.03.027.