AN ESTIMATION METHOD FOR GAME COMPLEXITY

ALEXANDER YONG AND DAVID YONG

We looked at a method for estimating the complexity measure of game tree size. It seems effective for a number of children’s games such as Tic-Tac-Toe, Connect Four, and Othello.

G. H. Hardy [4, pg. 17] estimated the game tree size (number of legal games) of Chess to be $10^{10^{50}}$ or “in any case a second order exponential”, but gave no reasoning. Claude Shannon wrote a seminal paper [9] on computer Chess. Based on master games collected by the psychologist Adriaan de Groot, he estimated $\approx 10^3$ options per (white, black) move pair, and that an average game is ≈ 80 plies (half-moves). Thus, he surmised that the game tree size (and game tree complexity) is at least $\approx 10^{120}$. This Shannon number is often compared to the number of atoms in the observable universe $\approx 10^{80}$.

We take another avenue. Given a game G of two players P_1 and P_2, generate a game g by uniformly at random selecting each move from legal possibilities. If $c_j = c_j(g)$ is the number of options at ply j, and g has N plies, let $X(g) = \prod_{j=1}^{N} c_j$. Independently repeat this process, producing random games g_1, g_2, \ldots, g_n. The proposed estimate for the game tree size is

\[gts(G) \approx \frac{1}{n} \sum_{i=1}^{n} X(g_i). \] (1)

As justified below, (1) is an equality in the $n \to \infty$ limit. Our thesis is that it gives fairly precise estimates for many games of pure strategy. This estimation method is straightforward to implement, parallelizable, and space efficient. It requires no sophistication, such as use of databases (e.g., of human play, nor of endgame positions).

To illustrate, if $G =$Tic-Tac-Toe, $gts(G) = 255168$ (www.se16.info/hgb/tictactoe.htm is our resource). One random game we generated is

\[
\begin{array}{|c|c|} \hline X & X \rightarrow O \\ \hline X & X \rightarrow O \\ \hline O & O \rightarrow X \\ \hline X & X \rightarrow O \\ \hline O & O \rightarrow X \\ \hline X & X \rightarrow O \\ \hline O & O \rightarrow X \\ \hline O & O \rightarrow X \\ \hline \end{array}
\]

Here, $N = 9$ and $(c_1, c_2, c_3, c_4, c_5, c_6, c_7, c_8, c_9) = (9, 8, 7, 6, 5, 4, 3, 2, 1)$ and $X = 9! = 362880$. Estimating, using $n = 2000$ and repeating for a total of 10 trials, gives

255051, 260562, 252352, 256586, 250916, 256457, 257380, 251800, 257448, 248988.

We “guess” that $gts($Tic-Tac-Toe$) \approx 2.55(\pm0.04) \times 10^5$. The “$(\pm0.04)$” refers to the usual standard error of the mean. It is comforting that this agrees with the known value.

The technique is an instance of sequential importance sampling. This Monte Carlo method can be traced back to Herman Kahn and Theodore Harris’ article [5], who credit John von

\[Date: \text{January 29, 2019.} \]
Neumann. Let S be a finite set. Assign $s \in S$ probability $p_s \in (0, 1]$. Define a random variable $X : S \to \mathbb{R}$ by $X(s) = 1/p_s$. From the definition of expectation,

$$
\mathbb{E}[X] = \sum_{s \in S} p_s X(s) = \sum_{s \in S} p_s \times (1/p_s) = \sum_{s \in S} 1 = \#S.
$$

By the law of large numbers, $\frac{1}{n}\sum_{i=1}^{n} X(s_i) \to \#S$. The application to enumeration of S was popularized by the article [2] of Donald Knuth. He used it to estimate the number of self-avoiding walks in a grid. It has been applied, e.g., by Lars Rasmussen [8] to estimate permanents, and by Joseph Blitzstein and Persi Diaconis [2] to estimate the number of self-avoiding walks in a grid. It has been applied, e.g., by Lars Rasmussen [8] to estimate the number of self-avoiding walks in a grid. It has been applied, e.g., by Lars Rasmussen [8] to estimate the number of self-avoiding walks in a grid. It has been applied, e.g., by Lars Rasmussen [8] to estimate the number of self-avoiding walks in a grid. It has been applied, e.g., by Lars Rasmussen [8] to estimate the number of self-avoiding walks in a grid. It has been applied, e.g., by Lars Rasmussen [8] to estimate the number of self-avoiding walks in a grid.

Consider $\mathcal{G} = \text{Connect 4}$. Though commercialized by Milton Bradley (now Hasbro) in 1974, it has a longer history. Among its alternate names is Captain’s Mistress, stemming from folklore that the game absorbed Captain James Cook (1728–1779) during his historic travels. The game is played on a vertical board with seven columns of height six. P_1 uses \circ while P_2 uses \bullet. P_1 moves first and chooses a column to drop their first disk into. The players alternate. At each ply, any non-full column may be chosen. The game terminates when there are four consecutive disks of the same color in a row, column or diagonal.

We encode an entire game with a tableau by recording the ply at which a disk was placed. A randomly sampled game g is below; it has $X(g) = 5.59 \times 10^{17}$:

\[
\begin{array}{cccccccc}
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \circ & \\
\bullet & \\
\bullet & \\
\bullet & \\
\bullet & \\
\bullet & \\
\bullet & \\
\bullet & \\
\end{array}
\begin{array}{cccccccc}
20 & 21 & 15 & 17 & 16 & \\
19 & 10 & 6 & 1 & 4 & \\
11 & 8 & 2 & 13 & 18 & \\
3 & 9 & 4 & 1 & 5 & 7 & 12 & \\
\end{array}
\]

Thus, \circ and \bullet correspond to odd and even labels, respectively. Since each column is increasing from bottom to top, every game of N plies can be viewed as a distribution

\[1\text{See [6]. Also, a different Monte Carlo technique was applied in [1] to estimate the number of legal positions in games. There one uses the idea of enumerating a superset U of S and sampling from U uniformly at random to estimate the probability a point is in S. In contrast, the probability distribution we use is far from uniform. Finally, AlphaGo and AlphaZero use Monte Carlo methods in Go and Chess move selection [10]. Indeed what is described partly forms the rudiments of an AI: simulating many games for each choice of move and pick the one that produces the highest estimated winning percentage.}

\[2\text{Code available at https://github.com/ICLUE/Gametreesize} \]
of 1, 2, . . . , N into 7 distinguishable rooms, where each room can have at most 6 occupants. For a fixed choice of occupancy $\langle o_1, \ldots, o_7 \rangle$, the number of such arrangements is the multinomial coefficient \(\binom{N}{o_1, o_2, \ldots, o_7} \). Thus if T_N is the total of such arrangements, then rephrasing in terms of exponential generating series,

\[
T_N = \text{coefficient of } x^N \text{ in } N! \left(1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \frac{x^6}{6!} \right)^7.
\]

Thus, \(\#\text{gts}(G) \leq \sum_{N=7}^{42} T_N = 40645234186579304685384521259174 \approx 4.06 \times 10^{31} \), as may be determined quickly using a computer algebra system.

Shannon’s number is an estimated lower bound for Chess’ game tree complexity (gtc). This is the number of leaves of the smallest full width (all nodes of each depth) decision tree determining the game-theoretic value of the initial position. Similarly, in [1, Section 6.3.2], the average game length of Connect Four in practice is estimated to be 36 ply with an average of 4 legal moves/ply, whence gtc(Connect 4) \(\approx 4^{36} \approx 4.72 \times 10^{21} \). We applied (1) with 12 trials of the method using $n = 10^8$. Based on this, the game tree size appears not so far from the upper bound:

\(\text{gts}(\text{Connect 4}) \approx 8.34(\pm 0.05) \times 10^{28} \).

Also, \(\text{agl}(\text{Connect 4}) \approx 41.03(\pm 0.01) \) plies. While P_1 wins with perfect play (see [1] and tromp.github.io/c4/c4.html), there is a caution: it is likely that P_1 wins less overall, at \(\approx 27.71(\pm 0.21)\% \) than P_2 at \(\approx 32.13(\pm 0.20)\% \) (with draws at \(\approx 40.16(\pm 0.30)\% \)).

Finally, let $G = \text{Othello}$ (introduced into the United States in 1975 by Gabriel Industries, it is the modern version of Reversi). This game is played on an 8×8 board with disks \bullet and \bigcirc, played by P_1 and P_2, respectively. The rule is that P_1 places \bullet in a square if and only if there is another \bullet in the same row, column or diagonal and \bigcirc’s are contiguously between them. If the placement is valid, each of these \bigcirc’s flip to \bullet’s. The same rule applies to placing \bigcirc (except with the colors switched). A player may pass only if they do not have a move. The game ends when neither player has a legal move. The winner is the one with the most disks. Finally, in Othello, the central squares start as \[
\begin{array}{c|c|c}
\bigcirc & \bigcirc & \\
\bigcirc & \bullet \bigcirc & \\
\bullet & \bigcirc & \bullet
\end{array}
\]

Naïvely, \(\text{gts}(\text{Othello}) \leq 60! \approx 8.32 \times 10^{81} \) (by filling all 60 initially open squares in all possible ways). The gtc estimate of [1] is 10^{58}, based on an “in practice” average game length of 58 ply and an average of 10 options/ply. Elsewhere, 10^{54} is estimated for gts, but without explanation/citation (see en.wikipedia.org/wiki/Computer_Othello).

One randomly generated Othello game g ended with \bigcirc winning:

\[
\begin{array}{c|c|c|c|c|c|c|c}
\bullet & \\
\bullet & \\
\bullet & \\
\bullet & \\
\bullet & \\
\bullet & \\
\bullet & \\
\bullet & \\
\end{array}
\]

\[3\text{A priori, this is in contradiction with Allis’ estimate, since by definition, gtc}(G) \leq gts(G).\) However, this can be reconciled as it looks like [1] does not start with the four center squares filled.
This gives $X(g) = 2.49 \times 10^{54}$. With $n = 2 \times 10^6$ (24 trials), (1) gives $\text{gts}(\text{Othello}) \approx 6.47(\pm 0.19) \times 10^{54}$.

Also $\text{agl}(\text{Othello}) \approx 60.00(\pm 0.0004) \text{ply}$, the draw rate is $\approx 4.95(\pm 0.30)\%$, P_1’s win rate is $\approx 43.36(\pm 1.56)\%$, and P_2 has $\approx 51.69(\pm 1.51)\%$ of wins. (Othello is currently unsolved, but the 4×4 and 6×6 versions have a forced win for P_2; see www.tothello.com)

Estimates for statistics of other games can be similarly attempted. Candidates include Checkers, Dots and Boxes, Go, and Hex. The second named author has studied a simplified version of Chess, towards the understanding the difficulty of applying (1) to the full game. In addition, choosing each move uniformly at random is inessential; one might wish to modify the probabilities, with the aim of reducing variance of the estimates. Finally, while antithetical to the crude approach espoused, if one does add evaluation and database information, (1) may be reinterpreted to estimate game tree complexity and the number of “sensible games”. Treatment of these topics will appear elsewhere.

ACKNOWLEDGEMENTS

We thank Yunguo Chen, Gidon Orelowitz and Anh Yong for helpful discussion. AY was partially funded by a NSF grant and a Simons Collaboration Grant. This is a report for ICLUE, the Illinois Combinatorics Lab for Undergraduate Experience.

REFERENCES

[1] Victor Allis, Searching for Solutions in Games and Artificial Intelligence, Ph.D. Thesis, University of Limburg, Maastricht, The Netherlands, 1994.
[2] Joseph Blitzstein and Persi Diaconis, A sequential importance sampling algorithm for generating random graphs with prescribed degrees, Internet Math. 6 (2010), no. 4, 489–522.
[3] Sourav Chatterjee and Persi Diaconis, The sample size required in importance sampling, Ann. Appl. Probab. 28 (2018), no. 2, 1099–1135.
[4] G. H. Hardy, Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, 1999.
[5] Hermann Kahn and Theodore E. Harris, Estimation of particle transmission by random sampling, National Bureau of Standards applied mathematics series, 12 (1951):27–30.
[6] Donald E. Knuth, Estimating the efficiency of backtrack programs. Collection of articles dedicated to Derrick Henry Lehmer on the occasion of his seventieth birthday. Math. Comp. 29 (1975), 122–136.
[7] ______, Mathematics and Computer Science: Coping with Finiteness, Science 17 Dec 1976: Vol. 194, Issue 4271, pp. 1235–1242.
[8] Lars E. Rasmussen, Approximating the permanent: a simple approach, Random Structures Algorithms 5 (1994), no. 2, 349–361.
[9] Claude Shannon, Programming a Computer for Playing Chess, Philosophical Magazine (1950) 41 (314).
[10] David Silver, Thomas Hubert, Ioannis Antonoglou, Matthew Lau, Arthus Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen Simonyan, and Demis Hassabis, A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play, Science 07 Dec 2018: Vol. 362, Issue 6419, pp. 1140-1144

DEPT. OF MATHEMATICS, UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN, URBANA IL, 61801
E-mail address: ayong@illinois.edu

NEXT GENERATION SCHOOL, CHAMPAIGN IL, 61821
E-mail address: david.yong124@gmail.com