ON MULTIPLE AND POLYNOMIAL RECURRENT EXTENSIONS
OF INFINITE MEASURE PRESERVING TRANSFORMATIONS

TOM MEYEROVITCH

Abstract. We prove that multiple-recurrence and polynomial-recurrence of
invertible infinite measure preserving transformations are both properties which
pass to extensions.

1. Introduction and statement of result

A non-singular transformation $T : X \to X$ of a measure space (X, \mathcal{B}, μ) is called
d-recurrent $(d \in \mathbb{N})$ if for any $A \in \mathcal{B}$ of positive measure, there exists an integer
$k \geq 1$ such that

\begin{equation}
\mu(\bigcap_{i=0}^{d} T^{-ik} A) > 0
\end{equation}

T is multiply recurrent if it is d-recurrent for all $d \geq 1$.

T is called polynomially-recurrent if for any $d \geq 1$ and any polynomials $p_1, \ldots, p_d \in \mathbb{Z}[x]$ such that $p_i(0) = 0$ for all $1 \leq i \leq d$, and any $A \in \mathcal{B}$ of positive measure, there
exists an integer $k \neq 0$ such that

\begin{equation}
\mu(\bigcap_{i=0}^{d} T^{-p_i(k)} A) > 0
\end{equation}

We say that $T : X \to X$ is an extension of a measure preserving transformation
$S : Y \to Y$ (of the measure space (Y, \mathcal{C}, ν)) if there is a measurable $\pi : X \to Y$ such
that $\pi \circ T = S \circ \pi$ and $\mu \circ \pi^{-1} = \nu$.

Furstenburg [5] gave an ergodic-theoretical proof that any finite-measure pre-
serving system is multiply recurrent, giving an alternative proof of Szemerédi’s
theorem [8]. Bergelson and Leibman proved that any finite-measure preserving sys-
tem is multiply recurrent [2], and deduced a theorem about existence of polynomial
configurations in subsets of positive density.

Combinatorial results about arithmetical progressions and polynomial configu-
rations in zero density sets (for example, the primes) are generally more difficult to
obtain using methods of classical ergodic theory. There are old speculations about
the relevance of infinite-measure ergodic theory for such problems. In this direction,
Aaronson and Nakada [1] formulated a conjecture on infinite-measure preserving
transformations which holds assuming a positive solutions to a long standing con-
juncture of Erdős.

Several authors have studied multiple and polynomial properties of infinite-
measure preserving transformations: Eigen-Hajian-Halverson [4] constructed for
each $d > 0$ an ergodic infinite measure-preserving transformation is that is d-
recurrent but not $(d + 1)$-recurrent. Aaronson and Nakada [1] give necessary and
sufficient conditions for \(d\)-recurrence of Markov-Shifts. Danilenko and Silva \cite{3} constructed measure preserving group actions with various multiple and polynomial recurrence properties. In particular, there exist infinite-measure preserving transformations which are polynomially recurrent, and also measure preserving transformations which are multiply-recurrent and not polynomially recurrent.

We prove the following results:

Theorem 1.1. If an invertible measure preserving transformation \(S\) is multiply recurrent, so is any measure preserving extension \(T\) of \(S\).

Theorem 1.2. If an invertible measure preserving transformation \(S\) is polynomially recurrent, so is any measure preserving extension \(T\) of \(S\).

Theorem 1.1 answers a question raised by Aaronson and Nakada \cite{1}. A partial result was previously obtained by Inoue \cite{7} for isometric extensions. It is worth noting that Inoue’s result on multiple-recurrence for isometric extensions does not require that transformations involved be invertible.

It unknown if for some \(k \geq 2\) there exist \(n_k\) such that any extension of any \(n_k\)-recurrent transformation is \(k\)-recurrent.

We remark that these results generalize essentially without modification to measure preserving \(\mathbb{Z}^d\) actions, using the multidimensional Szemerédi theorem and the Bergelson-Leibman multidimensional polynomial-recurrence theorem.

Using an argument similar to the proof of our theorem \cite{1} Furstenberg and Glasner obtained a Szemerédi-type theorem for ‘\(SL(2, \mathbb{R})\) ‘\(m\)-stationary systems’. This result is described in \cite{6}, and is based on a certain structure theory of ‘\(m\)-systems’, plus a specific “multiple-recurrence property” related to \(SL(2, \mathbb{R})\). The results of this chapter were obtained independently of \cite{6}.

This work is a part of the Author’s PhD. written under the supervision of Professor Jon Aaronson at Tel Aviv University.

2. **Proof of theorem 1.1**

Recall the following formulation of Szemerédi’s theorem:

Theorem. (Szemerédi’s theorem - finitary version) Let \(l \in \mathbb{N}\) and \(\delta > 0\). For any sufficiently large \(L \in \mathbb{N}\), any \(E \subset \{1, \ldots, L\}\) with \(|E| > \delta L\) contains a non-trivial \(l\)-term arithmetic progression.

Suppose \(S : Y \to Y\) is an invertible multiply recurrent measure preserving transformation, and \(T\) is an extension. We need to show that any set \(A \in \mathcal{B}\) with \(0 < \mu(A) < \infty\) is multiply recurrent.

Denote by \(\mu_y\) the conditional measure of \(\mu\) given \(y \in Y\). This is \(\nu\)-almost everywhere defined by requiring that \(y \to \mu_y\) be \(\mathcal{C}\)-measurable and

\[
\int_B \mu_y(A) d\nu(y) = \mu(A \cap \pi^{-1} B) \quad \forall B \in \mathcal{C}, A \in \mathcal{B}
\]

Since \(\mu(T^{-1} A \cap T^{-1} B) = \mu(A \cap B)\) and \(T^{-1} \mathcal{C} = \mathcal{C}\), it follows that \(\mu_{S_y}(A) = \mu_y(T^{-1} A)\) for almost any \(y \in Y\).

Let \(A \in \mathcal{B}\) with \(0 < \mu(A)\), and let

\[
B = B_\epsilon = \{y \in Y : \mu_y(A) > \epsilon\}
\]

We set some \(\epsilon > 0\), so that \(\mu(B_\epsilon) > 0\). Note that \(B \in \mathcal{C}\), since \(y \to \mu(A)\) is \(\mathcal{C}\)-measurable.

2
By multiple recurrence of S, for any $M \in \mathbb{N}$ there exist $n \in \mathbb{N}$ such that
$$\nu(\bigcap_{j=0}^{M} S^{-jn} B) > 0.$$
For $y \in \bigcap_{j=0}^{M} S^{-jn} B$ and $0 \leq j \leq M$, we have
$$\mu_y(T^{-j} A) = \mu_{S^{jn} y}(A) > \epsilon.$$
Thus, for $y \in \bigcap_{j=0}^{M} S^{-jn} B$,
$$\int X \sum_{j=0}^{M} 1_{T^{-jn} A} d\mu_y(x) > \epsilon M,$$
and so
$$\int \bigcap_{j=0}^{M} S^{-jn} B \sum_{j=0}^{M} 1_{T^{-jn} A}(x) d\nu(y) > \epsilon M \nu(\bigcap_{j=0}^{M} S^{-jn} B)$$
It follows that there is a set $E \subset \{1, \ldots, M\}$ with $|E| \geq \epsilon M$ with
$$\mu(\bigcap_{j \in E} T^{-jn} A) > 0.$$
Choose M above large enough so that by Szemerédi’s theorem E contains an arithmetic progression $(a + R, a + 2R, \ldots, a + lR)$ of length l. It follows that
$$\mu(\bigcap_{j=0}^{l-1} T^{-jR} A) > 0,$$
and so T is multiply recurrent.

3. Proof of theorem 1.2

Our proof is based on the following theorem of V. Bergelson and A. Leibman [2], of which we state a finitary version:

Theorem. (Bergelson-Leibman theorem, finitary version) Let $\{P_{i,j}(x)\}_{1 \leq i \leq k, 1 \leq j \leq d}$ be any polynomials with rational coefficients taking on integer values in the integers and satisfying $P_{i,j}(0) = 0$, and $\epsilon > 0$. For any sufficiently large N, and any set $E \subset \{1, \ldots, N\}^d$ with $|E| \geq \epsilon N^d$, there exists an integer n and a vector $\vec{a} \in \mathbb{Z}^d$ such that $\vec{a} + \sum_{j=1}^{k} P_{i,j}(x)e_d \in S$ for all $1 \leq i \leq k$, where $\{e_1, \ldots, e_d\}$ are the standard basis of \mathbb{Z}^d.

Suppose S is an invertible polynomially-recurrent measure preserving transformation, and (X, B, μ, T) is an extension. We need to prove that for any $A \in B$ with $\mu(A) > 0$ and any polynomials $p_1, \ldots, p_d \in \mathbb{Z}[x]$ with $p_i(0) = 0$, there exists $k \in \mathbb{Z} \setminus \{0\}$ such that equation (2) holds.

Write $p_i(x) = \sum_{j=1}^{l} a_{i,j} x^j$. For $\vec{k} = (k_1, \ldots, k_l)$, let $q_{\vec{k}}(x) = \sum_{j=1}^{l} k_j x^j$.

Find $B \in C$ with $0 < \nu(B) < +\infty$ and $\mu_y(A) > \epsilon$ for all $y \in B$.

By polynomial-recurrence of S, there exists $n \in \mathbb{Z}$ such that
$$\nu(\bigcap_{k \in [N]^l} S^{\vec{k}n} B) > 0,$$
with N large enough so that the conclusion of the Bergelson-Leibman theorem applies. Repeating the argument of the previous proof, there exists a set $E \subset [N]^l$ of density at least ϵ and a set $A' \subset A$ of positive measure such that:

$$\mu\left(\bigcap_{\tau \in E} T^{\pi(n)} A'\right) > 0$$

By the Bergelson-Leibman theorem, if N is sufficiently large, there exist $\pi \in [N]^l$ and $r \in \mathbb{Z}$ such that $\pi + \sum_{j=1}^l a_{i,j} r^j e_j \in E$ for every $1 \leq i \leq d$. It follows that

$$\mu\left(\bigcap_{i=1}^d T^{-p_i(rn)+U(n)} A\right) > 0,$$

where $U(x) = \sum_{i=1}^d u_i x^i$, and so:

$$\mu\left(\bigcap_{i=1}^d T^{-p_i(rn)} A\right) > 0$$

References

[1] J. Aaronson and H. Nakada. Multiple recurrence of Markov shifts and other infinite measure preserving transformations. *Israel J. Math.*, 117:285–310, 2000.

[2] V. Bergelson and A. Leibman. Polynomial extensions of van der Waerden’s and Szemerédi’s theorems. *J. Amer. Math. Soc.*, 9(3):725–753, 1996.

[3] A. I. Danilenko and C. E. Silva. Multiple and polynomial recurrence for abelian actions in infinite measure. *J. London Math. Soc. (2)*, 69(1):183–200, 2004.

[4] S. Eigen, A. Hajian, and K. Halverson. Multiple recurrence and infinite measure preserving odometers. *Israel J. Math.*, 108:37–44, 1998.

[5] H. Furstenberg. Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions. *J. Analyse Math.*, 31:204–256, 1977.

[6] H. Furstenberg and E. Glasner. m-stationary dynamical systems. *preprint*.

[7] K. Inoue. Isometric extensions and multiple recurrence of infinite measure preserving systems. *Israel J. Math.*, 140:245–252, 2004.

[8] E. Szemerédi. On sets of integers containing no k elements in arithmetic progression. In *Proceedings of the International Congress of Mathematicians (Vancouver, B. C., 1974)*, Vol. 2, pages 503–505. Canad. Math. Congress, Montreal, Que., 1975.