2-Aminoethyl diphenylborinate (2-APB) analogues: part 2. regulators of Ca2+ release and consequent cellular processes

Shoichiro Ozaki

Correspondence: ozaki-0991@m.jcnnet.jp

Laboratory for Developmental Neurobiology, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.

Abstract
In order to obtain compounds with modified 2-APB activities, we synthesized number of bis-boron 2-APB analogues and analyzed their inhibitory activities for SOCE and IICR. Adducts of amino acids with bis-borinic acid showed the highest activity. The IC50 of 2-APB for SOCE inhibition was 3 µM, while the IC50 of 2051 bis(4,4'(phenyllysineboryl)benzyl) ether was 0.2 µM. By using these compounds, we may be able to regulate Ca2+ release and consequent cellular processes more efficiently than with 2-APB.

Keywords: 2-APB, 2-APB analogue, regulator of Ca2+ release, regulator of cellular processes

Introduction
Extracellular signal molecules attach to the plasma membrane where they are recognized by cell surface receptors. Upon binding of the ligand to the appropriate receptor, activation of a G protein in turn activate an enzyme such as phospholipase C involved in second messenger system. Active phospholipase C hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2) to give rise to two products: 1,2-diacylglycerol and inositol 1,4,5-triphosphate (IP3). IP3 stimulates the release of Ca2+ from the intracellular stores in the endoplasmic reticulum through IP3 receptors thus regulating a wide range of cellular processes [1-20].

In 1997, we identified 2-aminoethyl diphenylborinate (2-APB) as being an IP3 receptor inhibitor which regulates IP3-induced calcium release [21-22]. This discovery led to substantial interest as it led to more than 600 citations and more than 1000 studies on 2-APB have been published so far (examples are references 23-37). This was supported by increasing sales of 2-APB by Ronderstvent et al., [46] from triphenylboranes and ethanol amine. Later, hydroxy diphenyl boran and ethanol amine methods for 2-APB synthesis were reported by Weidman and Zimmermann [47], Letsinger and Skoog [48], Povlock and Lippincott [49].

We have synthesized 493 2-APB analogues [38-44] using methods described by us [38-44] and others [46-56]. The structures, names and synthetic methods of the 493 compounds are in example 1-493 of Ref. 44. Detail of synthetic methods to get bis boron compounds of this paper are described in Ref. 39. We will show one example to prepare best sample 1024. Other compounds can be obtained by similar methods.

Preparation of bis-(4,4’-(hydroxyphenylboryl)phenyl) ether 1012
To a solution of bromobenzene (1055 µL, 10.00 mmol) in diethyl ether (40 mL), we added 0.99 M sec-BuLi (10.6 mL, 10.5 mmol) at -98°C, gradually warmed to -78°C to complete lithiation, and then added triisopropoxyborane (2.4 mL, 10.00 mmol). The reaction mixture was stirred for 80 min at -78°C. At the same time, bis[p-bromophenyl]ether (1640 mg, 5. mmol) was dissolved in diethyl ether (50 mL), then reacted with 0.99M sec-BuLi (10.5 mL, 10.6 mmol) and stirred for 1 h at -78°C. The reaction mixture was

© 2014 Ozaki et al; licensee Herbert Publications Ltd. This is an Open Access article distributed under the terms of Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0). This permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
added to the mixture of diisopropoxyphenylborane, gradually warmed to room temperature, and then stirred overnight. The reaction was quenched with 1N HCl, the diethyl ether layer was collected, and the water layer then extracted twice with diethyl ether. The combined diethyl ether layers were dried over MgSO₄ and concentrated. The crude residue was purified by flash column chromatography on a silica gel (n-hexane/EtOAc = 3:1) to give bis-(4,4’-(hydroxyphenylboryl) phenyl) ether 1012 (1122 mg, 3.15 mmol, 58.8%) as an oil.

Preparation of bis(4,4’-(phenylglutamineboryl)phenyl) ether 1024

4,4’-(hydroxyphenylboryl)diphenyl ether 1012 (22 mg, 0.0583 mmol) was dissolved in 0.2 mL ethanol and 2 mL water. Glutamine 19 mg, 0.017 mmol was then added. The reaction mixture was heated for 17 hrs at 80°C. 10 mL ether was added to get compound 1024 (17 mg, 46%) as a white precipitate.

Methods

We have assayed the inhibitory activity of the 2-APB analogues for SOCE and IICR using our improved assays described previously [45].

Results and discussion

We measured inhibitory activities of the 2-APB analogues for SOCE and IICR. The results are shown in (Supplement Table S1).

Amino acid adduct on bis(4,4’-(hydroxyphenyl boryl)phenyl) ether

This combination gave high activity compounds. Bis((4,4’-phenylglutamineboryl)phenyl) ether obtained by the reaction of bis((4,4’-hydroxyphenylboryl)phenyl) ether and glutamine was best sample showing IC₅₀ 0.2 µM. 1023 bis((4,4’-(phenylasparagineboryl)phenyl) ether obtained by the reaction of bis((4,4’-(hydroxyphenylboryl)phenyl) ether and asparagine was also good sample showing IC₅₀ 0.3 µM.

We can verify the efficiency of these sample by comparing with IC₅₀ of 2-APB for SOCE inhibition 3 µM, and IC₅₀ of 919 :best sample of our previous paper (45) 0.2 µM.

2-Aminoethanol adduct on bis borinic acid

Many compounds were prepared. best three compounds are picked up

IC₅₀ of 1022 bis-(4,4’(phenyl aminoethoxy boryl)phenyl) ether is 0.2. IC₅₀ of 4020 bis-(4,4’(phenyl aminoethoxy boryl)benzyl) ether is 0.2. IC₅₀ of 162AE bis-(3,3’(phenyl aminoethoxy boryl)benzyl) ether is 0.5.
Comparison of 2APB, mono-boron compounds and bis-boron compounds

The IC_{50} of 2-APB for SOCE inhibition is 3 µM. The IC_{50} of best mono-boron compound (example 919) at previous paper (45) is 0.2 µM. The IC_{50} of best bis-boron compound reporting at this paper (example 1024) is 0.2µM. That is, the bis-boron compound reporting at this paper and mono-boron compound reported at previous paper (45) showed almost same activity and about 10 times stronger activity than 2APB. Mono-boron compounds are easy to prepare. But bis-boron compounds are somewhat difficult to prepare.

Comparison of bis–phenyl ether and bis-benzyl ether

When we compare compounds mentioned at 3.1 and at 3.2 and when we compare 1022, 4020, 162AE, we can tell that there is not so much difference between bis-phenyl ether type compound (1022) and bis-benzyl ether type compounds (4020,162AE).

Comparison of amino acids and ethanol amine

As a reagent to add on to the dihydroxy boron compound, we used amino acid 3.1 and ethanol amine (3.3). Activities of both compounds were quite similar, but the stabilities of the compound obtained are different. Amino acid adducts are much more stable and easy to purify. We recommend amino acids derivatives over ethanol amine derivatives as regulators of Ca^{2+} and cellular process. Also among amino acid, basic amino acid having extra amino group or amide group like lysine, ornithine, asparagine, glutamine gave compounds with strong activity.

We have synthesized many bis-boron compounds. These compounds showed as active as mono-boron compounds on molar basis. But when we consider on a weight basis, bis-boron compounds are half as active as mono-boron compounds, because the molecular weight of bis boron compound is about twice that of mono-boron compound.

We listed the chemical structures of the best 9 compounds

Top three of these were 2051 bis(4,4'(phenyllysineboryl)benzyl) ether, 1024 bis-((4,4'-phenylglutamineboryl)phenyl) ether, 1023 bis-((4,4'-phenylasparagineboryl)phenyl) ether.

These compounds can thus regulates the Ca^{2+} release and consequent cellular response more efficiently than 2-APB at pharmacological concentrations.

Some of these compounds were shown to inhibit the calcium dependent enzyme transglutaminase [44]. Transglutaminase inhibitors block the abnormal cross-link of protein [43,44] and therefore they might slow down or even stop the progression of diseases caused by misfolded proteins, such as Huntington’s disease.

The 2-APB analogues presented in this study could be proven to be excellent lead compounds for many human diseases including heart disorders [59], Alzheimer’s [60,61] and Huntington’s disease [62,63].

We have shown different kinds of active compounds with IC_{50} ranging 0.1 to 5 µM. By choosing the compound we would be able to control the release of Ca^{2+} and regulate many cellular processes such as secretion, cardiac contraction, fertilization, proliferation, synaptic plasticity, atrial arrhythmias [31], inhibition of calcium entry channel [25], excitation-contraction coupling in the heart [32], arrhythmogenic action of endothelin-1 on ventricular cardiac myocytes [34], dysregulation of neural calcium signaling in Alzheimer disease [61], Huntington aggregation [62,63] and protein cross-link by transglutaminase [43].

We believe that many investigators will find these reagents regulating Ca^{2+} release and related cellular processes very useful.

Conclusion

We synthesized bis-boron 2-APB analogues of differing inhibitory activities. Some of which displayed as much as 10 times higher activity for SOCE inhibition than 2-APB. Among them, adducts of amino acids with bis-borinic acid showed the highest activity. 2051 bis(4,4'(phenyllysineboryl)benzyl) ether, 1024 bis-((4,4'-phenylglutamineboryl)phenyl) ether, 1023 bis-((4,4'-phenylasparagineboryl)phenyl) ether are best 3 candidates for regulation of Ca^{2+} release and consequent cellular processes.

Additional files

Supplement Table S1

Competing interests

The author declares that he has no competing interests.

Acknowledgement

We would like to thank Dr. M. J. Berridge and Dr. K. Mikoshiba for valuable suggestions and advices and Dr. A. Suzuki and Mrs. E. Ebisui for their technical assistances.

Publication history

Editors: Paul H. Goldspink, Medical College of Wisconsin, USA. Jianbo Yue, University of Hong Kong, China.
Received: 26-Nov-2013 Revised: 11-Jan-2014 Re-Reviewed: 25-Jan-2014 Accepted: 12-Feb-2014 Published: 27-Feb-2014

References

1. Berridge MJ, Dawson RM, Downes CP, Heslop JP and Irvine RF. Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoinositides. Biochem J. 1983; 212:473-82. | Pdf | PubMed Abstract | PubMed Full Text
2. Berridge MJ. Rapid accumulation of inositol trisphosphate reveals that agonists hydrolyse polyphosphoinositides instead of phosphatidylinositol. Biochem J. 1983; 212:849-58. | Pdf | PubMed Abstract | PubMed Full Text
3. Streb H, Irvine RF, Berridge MJ and Schulz I. Release of Ca^{2+} from a nonmitochondrial intracelllular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature. 1983; 306:67-9. | Pdf | PubMed
4. Berridge MJ, Heslop JP, Irvine RF and Brown KD. Inositol trisphosphate formation and calcium mobilization in Swiss 3T3 cells in response to
platelet-derived growth factor. Biochem J. 1984; 222:195-201. | PubMed | Full Text

5. Fein A, Payne R and Conson D W et al. Phosphoreceptor excitation and adaptor by inositol 1,4,5-trisphosphate. Nature. 1984; 311:157-160. | Article

6. Brown JE, L.J. Rubin and A.J. Ghalayini et al. A biochemical and electrophysiological examination of myo-inositol polyphosphates as a putative messenger for excitation in Limulus ventral photoreceptor cells. Nature. 1984; 311:160-163.

7. Burgess GM, Godfrey PP, McKinney JS, Berridge MJ, Irvine RF and Putney JW, Jr. The second messenger linking receptor activation to internal Ca release in liver. Nature. 1984; 309:63-6. | Article

8. Pretinki M, Biden TJ, Janicj D, Irvine RF, Berridge MJ and Wollheim CB. Rapid mobilization of Ca2+ from rat insulinoma microsomes by inositol-1,4,5-trisphosphate. Nature. 1984; 309:562-4. | Article

9. Irvine RF, Brown KD and Berridge MJ. Specificity of inositol trisphosphate-induced calcium release from permeabilized Swiss-mouse 3T3 cells. Biochem J. 1984; 222:269-72. | PubMed | Full Text

10. Irvine RF, Letcher AJ, Heslop JP and Berridge MJ. The inositol tris/ tetrakisphosphate pathway—demonstration of Ins(1,4,5)P3-3-kinase activity in animal tissues. Nature. 1986; 320:631-4. | Article

11. Rapp PE and Berridge SMJ. The control of transepithelial potential oscillations in the salivary gland of Calliphora erythrocephala. Exp. Bioi.1. 1981; 93:119-132. | Article

12. Missiaen L, Taylor CW and Berridge MJ. Spontaneous calcium release from inositol triphosphate-sensitive calcium stores. Nature. 1991; 352:241-4. | Article

13. Berridge MJ and Irvine RF. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature. 1984; 312:315-21. | Article

14. Berridge MJ. Inositol trisphosphate and diacylglycerol: two interacting second messengers. Annu Rev Biochem. 1987; 56:159-93. | Article

15. Berridge MJ and Irvine RF. Inositol phosphates and cell signalling. Nature. 1989; 341:197-205. | Article

16. Berridge MJ, Downes CP and Hanley MR. Neural and developmental actions of lithium: a unifying hypothesis. Cell. 1989; 59:411-9. | Article

17. Berridge MJ. Inositol trisphosphate and calcium signalling. Nature. 1993; 361:315-25. | Article

18. Bootman MD and Berridge MJ. The elemental principles of calcium signalling. Cell. 1995; 83:675-8. | Article

19. Berridge MJ. Cell signalling. A tale of two messengers. Nature. 1993; 365:388-9. | Article

20. Decrock E, De Bock M, Wang N, Gadicherla AK, Bol M, Delvaeye T, Vandenaenele P, Vinken M, Bluydt NGOs, Krysko OV and Leybaert L IP3, a small molecule with a powerful message. Biochem Biophys Acta. 2013; 1833:1772-86. | Article

21. Maruyama T, Kenji Y, Nakade S, Kanno T and Mikoshika K. 2APB, a 2-aminoethoxydiphenyl borate, a membrane-permeable modulator of Ins(1,4,5)P3-induced Ca2+ release. J Biochem. 1997; 122:498-505. | Article

22. Iwaski H, Moris Y, Hara Y, Uchida K, Zhou H and Mikoshika K. 2-Aminoethoxydiphenyl borate (2-APB) inhibits capacitative calcium entry independently of the function of inositol 1,4,5-trisphosphate receptors. J Pharmacol. 2001; 7:429-39. | Article

23. Bilmen L, Taylor CW and Berridge MJ. Spontaneous calcium release from inositol triphosphate-sensitive calcium stores. Nature. 1991; 352:241-4. | Article

24. Missiaen L, Callewaert G, De Smedt H and Parys JB. The role of Ins(1,4,5)P3-induced Ca2+ release, inhibits calcium pumps and has a use-dependent and slowly reversible action on store-operated calcium entry channels. Cell Calcium. 2003; 34:97-108. | Article

25. Luo D, Broad LM, Bird GS and Putney JW, Jr. Signaling pathways underlying muscarinic receptor-induced [Ca2+]i oscillations in HEK293 cells. J Biol Chem. 1971; 256:5611-21. | Article

26. Bootman MD, Young KW, Young JM, Moreton RB and Berridge MJ. Extracellular calcium concentration controls the frequency of intracellular calcium spiking independently of inositol 1,4,5-trisphosphate production in Hela cells. Biochem J. 1996; 314 (Pt 1):347-54. | Article

27. Mackenzie L, Bootman MD, Berridge MJ and Lipp P. Determined recruitment of calcium release sites underlies excitation-contraction coupling in rat atrial myocytes. J Physiol. 2001; 530:417-29. | Article

28. Lipp P, Laine M, Toyev SC, Burrell KM, Berridge MJ, Li W and Bootman MD. Functional InsP3 receptors that may modulate excitation-contraction coupling in the heart. Cardiovasc Res. 2000; 47:399-412. | Article

29. Missiaen L, Bootman MD, Laine M, Thuring J, Holmes A, Li WH and Lipp P. The role of insositol 1,4,5-trisphosphate receptors in Ca2+ signalling and the generation of arrhythmias in rat atrial myocytes. J Physiol. 2002; 541:395-409. | Article

30. Proven A, Roderick HL, Conway SJ, Berridge MJ, Horton JK, Capper SJ and Bootman MD. Inositol 1,4,5-trisphosphate supports the arrhythmogenic action of endothelin-1 on ventricular cardiac myocytes. J Cell Sci. 2006; 119:3363-73. | Article

31. Berridge MJ, Bootman MD and Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol. 2003; 4:517-29. | Article

32. Berridge MJ. Remodelling Ca2+ signalling systems and cardiac hypertrophy. Biochem Soc Trans. 2006; 34:228-31. | Article

33. Berridge MJ. Calcium microdomains: organization and function. Cell Calcium. 2006; 40:405-12. | Article

34. Zhou H, Iwasaki H, Nakamura T, Nakamura K, Maruyama T, Hamano S, Ozaki S, Mizutani A and Mikoshika K. 2-Aminoethoxydiphenylborate analogues: selective inhibition for store-operated Ca2+ entry. Biochem Biophys Acta. 2013; 1833:1772-86. | Article

35. Suzuki AZ, Ozaki S, Goto J and Mikoshika K. Synthesis of bisboron compounds and their strong inhibitory activity on store-operated calcium entry. Bioorg Med Chem Lett. 2010; 20:1395-8. | Article

36. Suzuki AZ, Ozaki S, Goto J and Mikoshika K. Synthesis of bisboron compounds and their strong inhibitory activity on store-operated calcium entry. Bioorg Med Chem Lett. 2010; 20:1395-8. | Article

37. Suzuki AZ, Ozaki S, Goto J and Mikoshika K. Synthesis of bisboron compounds and their strong inhibitory activity on store-operated calcium entry. Bioorg Med Chem Lett. 2010; 20:1395-8. | Article

38. Suzuki AZ, Ozaki S, Goto J and Mikoshika K. Synthesis of bisboron compounds and their strong inhibitory activity on store-operated calcium entry. Bioorg Med Chem Lett. 2010; 20:1395-8. | Article

39. Suzuki AZ, Ozaki S, Goto J and Mikoshika K. Synthesis of bisboron compounds and their strong inhibitory activity on store-operated calcium entry. Bioorg Med Chem Lett. 2010; 20:1395-8. | Article

40. Suzuki AZ, Ozaki S, Goto J and Mikoshika K. Synthesis of bisboron compounds and their strong inhibitory activity on store-operated calcium entry. Bioorg Med Chem Lett. 2010; 20:1395-8. | Article

41. Suzuki AZ, Ozaki S, Goto J and Mikoshika K. Synthesis of bisboron compounds and their strong inhibitory activity on store-operated calcium entry. Bioorg Med Chem Lett. 2010; 20:1395-8. | Article
47. Weidmann H and Zimmerman HK.

48. Letsinger RL and Skoog IJ. Organoboron Compounds. IV. Aminoethyl Diarylborinates. J. Am. Chem. Soc. 1955; 77:2491-2494. | Article

49. Povlock TP and Lippincott WT. The Reaction of Trimethoxyboroxine with Aromatic Grignard Reagents. J. Am. Chem. Soc. 1958; 80:5409-5411. | Article

50. Brown HC and Colet TE. Organoboranes. 31. A simple preparation of boronic esters from organolithium reagents and selected trialkyboranes. Organometallics. 1983; 2:1316-1319. | Article

51. Mori Y, Kobayashi J, Manabe K and Kobayashi S. Use of boron enolates in water. The first boron enolate-mediated diastereoselective aldol reactions using catalytic boron sources. Tetrahedron. 2002; 58:8263-8268.

52. Farfan N, Silva D and Santillan R. NMR studies of 1,1-diphenylboroxalidone derivatives of α-aminoacids. Heteroatom Chem. 1993; 4:533-536.

53. Tomlinson RV and Tener GM. The reaction of alkyl borinates with α-amino acids. J. Org. Chem. 1964; 29:492-493.

54. Nefkens GHL. and Zwanenburg B. Boroxazolidones as simultaneous protection of the amino and carboxyl group in α-amino acids. Tetrahedron. 1983; 39:2995-2998. | Article

55. Strang CJ, Henson E, Okamoto Y, Paz MA and Gallop PM. Separation and determination of alpha-amino acids by boroxazolidone formation. Anal Biochem. 1980; 178:276-86. | PubMed

56. Rettig SJ and Trotter J. Crystal and molecular structure of L-prolinatodiphenylboron. Can. J. Chem. 1977; 55:958-965.

57. Nakade S, Maeda N and Mikoshiba K. Involvement of the C-terminus of the inositol 1,4,5-trisphosphate receptor in Ca2+ release analysed using region-specific monoclonal antibodies. Biochem J. 1991; 277 (Pt 1):125-31. | PDF | PubMed Abstract | PubMed Full Text

58. Parekh AB and Putney JW Jr. Store-operated calcium channels. Physiol Rev. 2005; 85:757-810. | Article | PubMed

59. Berridge MJ. Neuronal calcium signaling. Neuron. 1998; 21:13-26. | Article | PubMed

60. Berridge MJ. Calcium hypothesis of Alzheimer’s disease. Pflugers Arch. 2010; 459:441-9. | Article | PubMed

61. Berridge MJ. Dysregulation of neural calcium signaling in Alzheimer disease, bipolar disorder and schizophrenia. Prion. 2013; 7:2-13. | Article | PubMed Abstract | PubMed Full Text

62. Bauer PO, Hudec R, Ozaki S, Okuno M, Ebisui E, Mikoshiba K and Nukina N. Genetic ablation and chemical inhibition of IP3R1 reduce mutant huntingtin aggregation. Biochem Biophys Res Commun. 2011; 416:13-7. | Article | PubMed

63. Bauer PO, Hudec R, Goswami A, Kurosawa M, Matsumoto G, Mikoshiba K and Nukina N. ROCK-phosphorylated vimentin modifies mutant huntingtin aggregation via sequestration of IRBIT. Mol Neurodegener. 2012; 7:43. | Article | PubMed Abstract | PubMed Full Text

Citation:
Ozaki S. 2-Aminoethyl diphenylborinate (2-APB) analogues: part 2. regulators of Ca2+ release and consequent cellular processes. Arch Physiol. 2014; 1:1. http://dx.doi.org/10.7243/2055-0898-1-1