Immediate weight loss before ovarian stimulation with intrauterine insemination is associated with a lower risk of preeclampsia in women with obesity and unexplained infertility

Robert A. Wild, M.D., M.P.H., Ph.D., Rodney K. Edwards, M.D., Daniel Zhao, Ph.D., Ashley S. Kim, M.D., and Karl R. Hansen, M.D., Ph.D.

Objective: To determine whether successful weight loss before ovarian stimulation with intrauterine insemination (OS-IUI) affects the risk of future pregnancy complications among women with obesity and unexplained infertility after fertility treatment.

Design: Secondary analysis of the randomized controlled clinical trial Improving Reproductive Fitness Through Pretreatment With Lifestyle Modification in Obese Women With Unexplained Infertility (FIT-PLESE).

Setting: Multiple academic health centers in the United States.

Patient(s): Three hundred seventy-nine women with obesity and unexplained infertility who underwent standard infertility treatment after a lifestyle intervention.

Intervention(s): The FIT-PLESE trial evaluated whether prepregnancy lifestyle interventions (diet with weight loss medication and exercise vs. exercise alone) before OS-IUI improved the live birth rate among women with obesity and unexplained infertility. Although the primary outcome of FIT-PLESE was live birth rate, we compared the demographics and subsequent pregnancy complications of women who successfully lost some weight with those of women who did not lose any during the interventions.

Main Outcome Measure(s): Obstetric complications by groups were compared using χ² and Fisher’s exact tests, and continuous variables were compared using Student’s t-tests. Logistic regression was used to assess the odds of preeclampsia after adjustment for the randomized treatment arm in FIT-PLESE.

Result(s): There was a nonsignificant trend toward a lower risk of intrauterine growth restriction (4% vs. 16%, P = .124) and preterm delivery (6% vs. 15%, P = .343) among patients who lost at least some weight. The risk of preeclampsia was significantly lower (6% vs. 35%, P = .002) in the weight loss group (odds ratio, 0.09; 95% confidence interval, 0.016–0.505; P = .006) after adjustment for treatment assignment.

Conclusion(s): Among women with obesity and unexplained infertility who had live births after fertility treatment, prepregnancy weight loss due to lifestyle interventions before OS-IUI was associated with a lower risk of preeclampsia.
In addition to the immediate implications of pregnancy complications, increasing evidence has implicated maternal obesity as a significant determinant of offspring health during childhood and later adulthood (1). Its prevalence in the United States approaches 47.8% in some counties (2). Approximately two thirds of women of reproductive age in the United States are currently overweight or obese (3). Approximately 25% of women who become pregnant in the United States are obese (4). Obesity during pregnancy is particularly challenging and leads to significantly increased maternal and fetal risks, including gestational hypertension and preeclampsia, gestational diabetes, congenital structural defects, operative delivery, shoulder dystocia, postdelivery infection, and venous thromboembolism (5, 6).

Studies to examine the effectiveness of lifestyle interventions during pregnancy to avoid excessive weight gain have demonstrated limited success in reducing pregnancy complications (7–9). Cost and noncompliance are the potential limitations of the implementation of dietary and exercise interventions during pregnancy (7), when patients are already feeling the significant burden of healthcare demands. Indeed, most physicians do not recommend initiating weight loss plans in already-pregnant women because weight loss during pregnancy might increase the risk of intrauterine growth restriction (IUGR) or preterm birth. Additionally, many weight loss medications are contraindicated during pregnancy.

Weight loss intervention trials have not observed improved live birth rates among patients pursuing fertility treatments (10–12). However, preconception weight loss among women who are overweight (body mass index [BMI], 25–29.9 kg/m²) or obese (BMI ≥ 30 kg/m²) has the potential to reduce the risk of pregnancy complications (13–15). Preconception weight loss to reduce hypertensive disorders during pregnancy has biological plausibility. Remodeling the spiral arteries on the maternal side of the placenta is an essential early step in the pathogenesis of hypertensive disorders during pregnancy (14). Obesity is a chronic state of oxidative stress that predisposes the patient to impaired early placentation, endothelial dysfunction, and reduced vascular dilation. These processes are already occurring during the first trimester in pregnant women with obesity, reducing the benefit of during-pregnancy weight loss in the prevention of hypertensive disorders.

A secondary analysis of the Improving Reproductive Fitness Through Pretreatment With Lifestyle Modification in Obese Women With Unexplained Infertility (FIT-PLESE) trial was performed to determine the effect of preconception weight loss on the risk of pregnancy complications in women with infertility and obesity. The FIT-PLESE trial (16) was a multicenter, randomized controlled trial sponsored by the Reproductive Medicine Network, National Institute of Child Health and Human Development. Three hundred seventy-nine women with unexplained infertility were randomized in a 1:1 ratio to 2 preconception lifestyle modification groups for 16 weeks before ovarian stimulation with intrauterine insemination (OS-IUI). The primary outcome of FIT-PLESE was the incidence of live birth. In addition to the primary outcome, the trial also tracked the pregnancy outcomes among women with live births. Our objective was to determine whether a difference exists in pregnancy complications among those who achieved weight loss vs. those who did not, regardless of the assigned treatment arm.

MATERIALS AND METHODS

Institutional review board approval for the study was obtained from the University of Oklahoma Health Sciences Center. In the FIT-PLESE trial, the patients were randomized to 1 of 2 lifestyle intervention treatment arms. Those assigned to the intensive lifestyle intervention group targeted a weight loss goal of 7% through meal replacements, medication (60 mg of orlistat at lunch and dinner), and physical activity. In contrast, the standard lifestyle intervention group increased physical activity alone. The intensive lifestyle intervention group received nutritional counseling, which recommended the consumption of 2 servings of fruits, 3 servings of vegetables, 2 servings of low-fat dairy per day, and meal replacement products (3 Nutrisystem meals/d) to reach a total of 1,100 kcal/d. The macronutrient profile of this diet was 30% protein, 45% carbohydrate, and 25% fat. The last 100 calories could be consumed outside of the planned meals to reach a total of 1,200 kcal/d. The participants were given a multivitamin supplement daily. The physical activity interventions for the standard and intensive lifestyle intervention groups were the same. The baseline physical activity, defined as the number of steps over 7 days, was first determined for each patient using a FitBit (FitBit, San Francisco, CA) physical activity tracker; each patient was then instructed to increase their steps by 500 steps/d each week until 10,000 steps/d was achieved. They were then instructed to maintain this 10,000 steps/d for the duration of the interventions. After 16 weeks of lifestyle interventions, both the treatment groups were then administered standardized empiric infertility treatment consisting of 3 cycles of OS-IUI with clomiphene if unassisted pregnancy had not yet occurred during the lifestyle intervention period. The primary outcome of FIT-PLESE was the incidence of healthy live births (defined as the live birth of a term infant of normal weight without major anomalies). Forty participants dropped out of the study before conception in the exercise-only group, and 31 dropped out of the study in the diet + exercise + orlistat group. There were no significant
baseline differences according to the randomized treatment arm for those who continued or dropped out of the study. The intensive lifestyle intervention group lost more weight than the standard lifestyle intervention group (−6.6% ± 5.4% vs. −0.3% ± 3.2%, respectively). There were no significant differences in the rate of multiple pregnancies, pregnancy loss, or the time to live birth according to the treatment arms. The duration of pregnancy and the delivery weight were also similar between the treatment arms. The hyperemesis cases occurred only in patients who lost at least some weight. Although not statistically significant, IUGR and preterm delivery were less frequent in those who lost at least some weight. Although not statistically significant, IUGR and preterm delivery were less frequent in those who lost at least some weight. Regardless of whether there was any weight loss, the live birth rate was the same (20%).

RESULTS
Across both the treatment arms, 73% (266) of the participants lost weight, 26% (96) gained weight, and 1% (2 participants) weighed the same as when they entered the trial. Furthermore, 91% of the patients randomized to the intensive lifestyle treatment arm lost at least some weight, as did 55% of the patients in the exercise-alone arm. The demographic variables of each weight loss group are shown in Table 1. The baseline characteristics of the patients in each group did not differ, except for the amount of weight lost after the interventions. The mean age of the participants was 32 years, and the average baseline BMI before any intervention was 39 kg/m². Age, ethnicity, baseline BMI, smoking history, alcohol history, and the highest level of education were similar between the treatment arms. On average, the weight lost was 5.9 ± 5.3 kg in the weight loss group and the weight gained was 2.5 ± 2.5 kg in the weight gain group. Regardless of whether there was any weight loss, the live birth rate was the same (20%).

The obstetrical complications according to the weight loss group are shown in Table 2. Overall, 49% had at least 1 major pregnancy complication. The 2 persons who weighed the same did not have live births. Complications were frequent. The hyperemesis cases occurred only in patients who lost at least some weight. Although not statistically significant, IUGR and preterm delivery were less frequent in those who lost weight. The risk of preeclampsia was lower in the weight loss group (6% vs. 35%, \(P = .002 \)). The odds ratio for

Table 1

Demographic variables in FIT-PLESE by weight loss status.

Patient characteristics	Weight loss	Weight gain	No change	\(P \) value
Total (N = 364)	266	96	2	.8407
Age (y)	32	31	31	<.001
Weight change (kg)	−2.5 (5.3)	+2.5 (2.5)		
Baseline BMI (kg/m²)	39.4 (7.0)	38.7 (7.0)	50 (6.5)	.067
Ethnicity				
Non-Hispanic/Latino	44/266 (17%)	21/96 (22%)	1/2 (50%)	.256
Hispanic	8/266 (3%)	4/96 (4%)	0/2 (0%)	.832
White	186/266 (70%)	64/96 (67%)	1/2 (50%)	.709
Black	59/266 (22%)	22/96 (23%)	1/2 (50%)	.640
Asian	5/266 (2%)	2/96 (2%)	0/2 (0%)	.972
Other	16/266 (6%)	8/96 (8%)	0/0 (0%)	.856
Ever smoking history				
Current	85/266 (32%)	38/96 (40%)	0/2 (0%)	.707
Former	18/266 (7%)	13/96 (14%)	0/2 (0%)	.114
Never	180/266 (68%)	59/96 (60%)	2/2 (100%)	.323
Alcohol history				
Current	237/266 (89%)	81/96 (84%)	0/2 (0%)	.415
Former	18/266 (7%)	12/96 (13%)	0/2 (100%)	.197
Never	11/266 (4%)	3/96 (3%)	0/2 (0%)	.871
Education level				
High school	25/266 (9%)	14/96 (15%)	0/2 (0%)	.329
Some college	197/266 (74%)	61/96 (64%)	1/2 (50%)	.120
Graduate school	44/266 (17%)	21/96 (22%)	1/2 (50%)	.306

Note: Data are mean (standard deviation) or n (proportion of n). Bolded values are statistically significant at \(P < .05 \) level. BMI = body mass index; FIT-PLESE = Improving Reproductive Fitness Through Pretreatment With Lifestyle Modification in Obese Women With Unexplained Infertility.

Wild: Weight loss and lower preeclampsia risk. Fertil Steril Rep 2022.
preeclampsia was 0.09 (95% confidence interval [CI], 0.016–0.505; \(P = .006 \)) for the weight loss group after the randomized treatment arm adjustment. For those who lost at least 5% of their weight during the 16-week lifestyle intervention phase before fertility treatment, the odds ratio for the development of gestational diabetes was 0.89 (95% CI, 0.2–3.74; \(P = .882 \)) and that for preeclampsia was 0.544 (95% CI, 0.09–3.28; \(P = .507 \)).

DISCUSSION

Although losing at least some weight immediately before fertility treatment was not associated with more live births in FIT-PLESE, the subsequent risk of preeclampsia was lower among those who lost at least some weight. After OS-IUI, perinatal complications were common in this high-risk group. We found a nonsignificant trend toward a lower risk of IUGR and preterm delivery among those who lost weight. The risk of the development of gestational diabetes or preeclampsia was lower for those who could lose at least 5% of their body weight; however, this was nonsignificant, likely because of lack of power. The primary outcome of weight loss intervention trials for fertility usually focuses on improving the live birth rate. Our study had more power because we included those who lost some weight in either arm of the trial. We compared persons who adhered to either arm of the study. The original randomized controlled trial found a nonsignificant trend toward fewer pregnancy complications with weight loss using an intention-to-treat analysis that compared intensive weight loss with exercise alone. Our secondary analysis had more power because we included those who lost some weight in either arm of the trial. We compared persons who adhered to either arm of the study. Cointerventions beyond the interventions described in the trial to affect weight loss cannot be ruled out. Although 379 patients were randomized in FIT-PLESE, only 14% developed preeclampsia. Our study was likely underpowered to detect differences according to successful weight loss for each complication analyzed.

Furthermore, one ethnicity (White, 69%) was predominant in FIT-PLESE. There are known racial differences in the incidence of preeclampsia (20). Well-established clinical risk factors for preeclampsia, such as obesity, diabetes, and chronic hypertension disproportionately, affect non-Hispanic Black, American Indian or Alaskan Native, and Hispanic populations. Despite comparable clinical risk factors for preeclampsia, addressing modifiable risk factors has not had the same protective effect for all women. Outside of this predominantly White study population, other high-risk groups might benefit even more from preconception weight loss.

REFERENCES

1. Godfrey KM, Reynolds RM, Prescott SL, Nyirenda M, Jaddoe VW, Eriksson JG, et al. Influence of maternal obesity on the long-term health of offspring. Lancet Diabetes Endocrinol 2017;5:53–64.
2. Scheinker D, Valencia A, Rodriguez F. Identification of factors associated with variation in US county-level obesity prevalence rates using epidemiologic vs machine learning models. JAMA Network Open 2019;2, e192884-e.
3. Hillemeier MM, Weisman CS, Chuang C, Downs DS, McCall-Hosenfeld J, Camacho F. Transition to overweight or obesity among women of reproductive age. J Womens Health (Larchmt) 2011;20:703–10.
4. Ogunwole SM, Zera CA, Stanford FC. Obesity management in women of reproductive age. JAMA 2021;325:432–4.
5. Cedergren M. Effects of gestational weight gain and body mass index on obstetric outcome in Sweden. Int J Gynaecol Obstet 2006;93:269–74.
6. Ma RC, Schmidt Ml, Tam WH, McIntyre HD, Catalano PM. Clinical management of pregnancy in the obese mother: before conception, during pregnancy, and post partum. Lancet Diabetes Endocrinol 2016;4:1037–49.
7. Dodd JM, Turnbull D, McPhee AJ, Deussen AR, Grivell RM, Yelland LN, et al. Antenatal lifestyle advice for women who are overweight or obese: LIMIT randomised trial. Br Med J 2014;348:g1285.
8. Muktabhant B, Lawrie TA, Lumbiganon P, Laopaiboon M. Diet or exercise, or both, for preventing excessive weight gain in pregnancy. Cochrane Database Syst Rev 2015;C.d007145.
9. Muktabhant B, Lumbiganon P, Ngamjarus C, Dowswell T. Interventions for preventing excessive weight gain during pregnancy. Cochrane Database Syst Rev 2012;4:C.d007145.
10. Practice Committee of the American Society for Reproductive Medicine. Obesity and reproduction: a committee opinion. Fertil Steril 2021;116:1266–85.
11. Einarsson S, Bergh C, Friberg B, Pinborg A, Klaanjard A, Karlstrom PO, et al. Weight reduction intervention for obese infertile women prior to IVF: a randomized controlled trial. Hum Reprod 2017;32:1621–30.
12. Mutsaerts MA, Van Oers AM, Groen H, Burggraaff JM, Kuchenbecker WK, Perquin DA, et al. Randomized trial of a lifestyle program in obese infertile women. N Engl J Med 2016;374:1942–53.
13. Brown MA, Magee LA, Kenny LC, Karumanchi SA, McCarthy FP, Saito S, et al. Hypertensive disorders of pregnancy: ISSHP classification, diagnosis, and management recommendations for international practice. Hypertension 2018;72:24–43.
14. Legro RS, Dodson WC, Kris-Etherton PM, Kunselman AR, Stetter CM, Williams NI, et al. Randomized controlled trial of preconception interventions in infertile women with polycystic ovary syndrome. J Clin Endocrinol Metab 2015;100:4048–58.
15. Schenkelaars N, Rousian M, Hoek J, Schoenmakers S, Willemsen S, Steegers-Theunissen R. Preconceptional maternal weight loss and hypertensive disorders in pregnancy: a systematic review and meta-analysis. Eur J Clin Nutr 2021;75:1684–97.
16. Legro RS, Hansen KR, Diamond MP, Steiner AZ, Coutifaris C, Cedars MI, et al. Effects of preconception lifestyle intervention in infertile women with obesity: the FIT-PLESE randomized controlled trial. PLoS Med 2022;19:e1003883.
17. Cirillo PM, Cohn BA. Pregnancy complications and cardiovascular disease death: 50-year follow-up of the Child Health and Development Studies pregnancy cohort. Circulation 2015;132:1234–42.
18. Charlton F, Tooher J, Rye KA, Hennessy A. Cardiovascular risk, lipids and pregnancy: preeclampsia and the risk of later life cardiovascular disease. Heart Lung Circ 2014;23:203–12.
19. Steegers-Theunissen RP. Periconception mHealth platform for prevention of placental-related outcomes and non-communicable diseases. Placenta 2017;60:115–8.
20. Johnson JD, Louis JM. Does race or ethnicity play a role in the origin, pathophysiology, and outcomes of preeclampsia? An expert review of the literature. Am J Obstet Gynecol 2022;226:5876–85.