Clinical and Biochemical Characteristics of Dengue Infections in Children From Sri Lanka

Umesh Jayarajah, MBBS¹,²,⁴, Manohari Madarasinghe, MD³, Damayanthi Hapugoda, MD³, Upul Dissanayake, MD¹, Lakshika Perera, MBBS²,⁴, Vibhavee Kannangara, MBBS²,⁴, Champika Udayangani, MBBS²,⁴, Ranga Peiris, MBBS²,⁴, Pamodh Yasawardene, MBBS²,⁴, Ishan De Zoysa, FRCS²,⁴, and Suranjith L. Seneviratne, MD, PhD²,⁴

Abstract

Introduction: Analyzing dengue disease patterns from different parts of the world should help us formulate more evidence based treatment guidelines and appropriately allocate limited healthcare resources. Therefore, we described the disease characteristics of hospitalised pediatric patients with dengue infections from Sri Lanka during the 2017 dengue epidemic.

Methods: Clinical and biochemical characteristics of pediatric dengue patients treated at a secondary care hospital in Sri Lanka from 1 June 2017 to 31 August 2017 were analyzed. Our findings were compared with previous pediatric dengue studies in Asia.

Results: A total of 305 patients (number of males = 184(60%); mean age = 8.6 years) were analyzed. DF (Dengue Fever)—245 (80.3%), DHF (Dengue Hemorrhagic fever)—I:52 (17%), DHF—II:7 (2.3%), and DHF—III:1 (0.3%). Significant associations were found between DHF and abdominal symptoms/signs and overt bleeding manifestations (P < .001). Time of onset of the critical phase was variable (Day 3: 12%, Day 4-5: 78%, Day 6: 5%, and Day 7: 5%). Platelet and white-cell counts (WBC) were significantly lower in DHF than DF; liver enzyme derangement was mild and was similar in the DHF and DF subgroups. None had cardiac, renal, or neurological manifestations and all recovered uneventfully.

Conclusion: In Sri Lankan pediatric dengue patients, we found abdominal symptoms and signs, decreased WBC and platelet counts and bleeding manifestations were to be significantly associated with DHF. Liver enzyme derangement did not predict DHF. The time of onset of the critical phase was difficult to predict due to the considerable variations noted.

Keywords
dengue virus infections, children, Sri Lanka, dengue epidemic, dengue fever

Received July 13, 2020. Received revised October 8, 2020. Accepted for publication October 26, 2020.

Introduction

Dengue viral infections are common in children and cause high morbidity and increased financial burden to the health system.¹ Around 500,000 people with Dengue Hemorrhagic Fever (DHF) need hospitalization each year, the majority being children aged less than 5 years.¹ Reports from different parts of the world suggest a changing pattern in the incidence of dengue infections and associated organ involvement such as respiratory, cardiac, gastrointestinal, hepatic, renal and neurological.²⁹

¹Dengue Unit, National Hospital of Sri Lanka, Colombo, Sri Lanka
²Dengue Research Group, Colombo, Sri Lanka
³Base Hospital, Panadura, Sri Lanka
⁴Department of Surgery, Faculty of Medicine, University of Colombo, Sri Lanka

Corresponding Authors:
Umesh Jayarajah, Department of Surgery, Faculty of Medicine, University of Colombo, Colombo 8, Sri Lanka.
Email: umeshe.jaya@gmail.com
Suranjith L. Seneviratne, Department of Surgery, Faculty of Medicine, University of Colombo, Colombo 8, Sri Lanka.
Email: suran200@yahoo.co.uk

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
In Sri Lanka, dengue epidemics occur regularly and cause considerable financial burden to the health care sector and economy of the country.10,11 Although children are commonly affected by dengue, published data on dengue infections in children living in Sri Lanka are limited.12-14 Following the study by Malavige et al, no study in Sri Lanka has described the patterns of dengue infections specifically in the pediatric population.12 In 2017, Sri Lanka faced its largest dengue epidemic, requiring reallocation of resources and specialized dengue treatment units to combat the large epidemic.15-17 Systematically collected demographic and clinical data during such dengue epidemics is essential for evidence based practice. Lack of such information will lead health policy makers and clinicians to rely on personal experience and knowledge as opposed to tangible evidence when basing their decisions related to allocation of resources and individual patient management. Therefore, we conducted a follow up study to identify patterns of clinical, demographic and biochemical findings of hospitalized pediatric dengue patients during the Sri Lankan dengue epidemic in 2017 and compared our findings with similar pediatric dengue data in Sri Lanka and other regional Asian countries.

Materials and Methods

All children with fever who were admitted to the 2 pediatric wards at a secondary care hospital in Sri Lanka (Base Hospital Panadura) from 1 June 2017 to 31 August 2017 and who fulfilled a locally revised criteria based on the 1997-WHO dengue case classifications were recruited (see Supplementary File). Ethical clearance was received from the National Hospital of Sri Lanka-ethical review committee (No: AAJ/ETH/COM/2017-21) and institutional approval was obtained from the director of the hospital. Informed written consents were obtained before inclusion to the study. Categorization of patients into DF or DHF was based on the 1997 and 2009 WHO case definitions.18,19 The clinical, demographic and biochemical findings were collected from the clinical records using a standardized questionnaire. In those with severe infections, hematological parameters such as white blood cell (WBC), hematocrit and platelet counts were recorded 8 hourly. Biochemical parameters such as serum creatinine, liver enzymes and serum electrolytes were performed till discharge on a daily basis. In stable patients with mild infections, we collected hematological parameters daily and biochemical parameters every other day. Ultrasonographic assessments were initiated from day 3 onwards, or if the platelets were less than 100,000 × 103/µL. Ultrasonographic assessment was routinely performed twice daily until a clinical improvement was detected with a concomitant rise in platelet counts. If patients had any features of fluid leakage with or without shock, they were classified as having DHF irrespective of bleeding manifestations. DHF was sub-classified into 4 grades (grade I, grade II, grade III, and grade IV) as described in the 2007 WHO dengue case definitions. The critical phase was defined as the period of fluid leakage in DHF associated with defervescence and rise in hematocrit.

Data were analyzed using SPSS (version 17) and data were described as frequency and percentages. Possible predictive or associated factors in relation to DHF were described using the Pearson Chi square test and Student’s \textit{T} \textit{t} test. A p value less than 0.05 was deemed statistically significant. Furthermore, subgroup analyses were performed between DF and DHF patients and also DHF-I and DHF-II/DHF-III.

Results

A total of 305 children who were diagnosed with dengue viral infections were studied. The majority were male—184(60.3%). The mean age was 8.6 (Standard deviation [SD] = 3.3) years and 154 (50.5%) got admitted on the 3rd and 4th days of their illnesses. The mean duration of symptoms at presentation was 3.9 (SD: 1.4) days and the mean duration of hospitalization was 3.8 (SD: 1.3) days (for DF: 3.5 (SD: 1.2) and DHF: 4.9 (SD: 1.3), \textit{P} < .001). Fever was present in all patients during the onset of the infection (mean duration of fever: 4.0 days, SD: 1.4). Symptoms, such as headache 55% (n = 168), body aches 52.5% (n = 160), vomiting 43.1% (n = 131), abdominal pain 21.6% (n = 66), nausea 21.3% (n = 65), and diarrhea 15.4% (n = 47) were commonly associated with dengue.

Bleeding manifestations were present in 2.6% (n = 8) and was more prevalent in DHF patients (5.1% vs 2%, \textit{P} = .18) but the difference noted was not statistically significant. Around 38% (n = 116) and 6.9% (n = 21) had tenderness over the right hypochondrium and epigastrium, respectively. Around 80% of patients had DF (DF-245 (80.3%), DHF grade I-52 (17%), DHF grade II-7 (2.3%), and DHF grade III–1 (0.3%)). Clinically detectable ascites and pleural effusion were present among 71.6% (n = 43) and 26.7% (n = 16) of the DHF patients. Table 1 shows the comparison between the clinical features of DF and DHF. Compared with DF patients, a significantly greater proportion of DHF patients had abdominal symptoms (vomiting 64.4% vs 38%, diarrhea 27.1% vs 12.6%, and abdominal pain 32.2% vs 19.1%, \textit{P} < .001). Furthermore, right hypochondrial tenderness was significantly higher in the DHF group compared to DF (84.7% vs 26.8%, \textit{P} < .001). According to the 2009 dengue case classifications, 245
children had warning signs and 3 patients had severe dengue. The comparison between the 1997 and 2009 dengue case classifications is given in Table 2.

Among the DHF patients, the onset of the critical phase was noted following a mean duration of illness of 4.6 days (SD 0.9). The majority of children went into the critical phase on day 4 and day 5 (Day 4 - 28.3%, n = 17 and Day 5 - 50.0%, n = 30). However, 7 patients (11.9%) went into the critical phase on day 3. Furthermore, three patients each went into critical phase on day 6 and day 7 of the illness. Around 52% (n = 159) required crystalloids and 5.2% (n = 16) required colloids (boluses of dextran). Only two patients (0.7%) required blood transfusion.

Among DHF patients, a significantly lower WBC and platelet counts were noted as expected (Table 3). The lowest platelet count was less than 25,000 $\times 10^3/\mu L$ among 45% of DHF patients, compared to 2.0% of DF patients. The lowest platelet count of less than 50,000 $\times 10^3/\mu L$ was seen among 76.7% of DHF patients. The mean platelet count at the beginning of critical phase was 94 $\times 10^3/\mu L$. The mean white cell count at the

Table 1. Clinical Characteristics of DF and DHF.

Characteristic	DF/DHF	DF	DHF	Odds ratio (95% CI)	P value			
Gender								
Male	184	60.3%	146	59.6%	63.3%	1.1 (0.7-1.8)	0.60	
Female	121	39.7%	99	40.4%	22	36.7%		
Age								
8.6 ± SD3.2	185	75.5%	60	100.0%	0	0.0%		
Headache								
Yes	168	55.1%	127	51.8%	41	68.3%	1.8 (1.1-2.9)	0.02
No	137	44.9%	128	48.2%	19	31.7%		
Body aches								
Yes	160	52.5%	122	49.8%	38	63.3%	1.6 (0.9-2.5)	0.60
No	145	47.5%	123	50.2%	22	36.7%		
Vomiting								
Yes	131	43.0%	93	38.1%	38	63.3%	2.3 (1.4-3.7)	<0.001
No	174	57.0%	152	61.9%	22	36.7%		
Right hypochondrial tenderness								
Yes	116	38.0%	65	26.5%	51	85.0%	9.2 (4.7-18.0)	<0.001
No	189	62.0%	120	73.5%	9	15.0%		
Abdominal pain								
Yes	66	21.6%	47	19.2%	19	31.7%	1.7 (1.1-2.7)	0.035
No	239	78.4%	198	80.8%	41	68.3%		
Nausea								
Yes	65	21.3%	53	21.6%	12	20.0%	0.9 (0.5-1.6)	0.78
No	240	78.7%	192	78.4%	48	80.0%		
Diarrhea								
Yes	47	15.4%	31	12.7%	16	26.7%	2.0 (1.2-3.2)	0.007
No	258	84.6%	214	87.3%	44	73.3%		
Epigastric tenderness								
Yes	21	6.9%	17	6.9%	4	6.7%	0.9 (0.4-2.4)	0.94
No	284	93.1%	228	93.1%	56	93.3%		
Bleeding manifestations								
Yes	8	2.6%	5	2.0%	3	5.0%	1.9 (0.8-5.0)	0.2
No	297	97.4%	240	98.0%	57	95.0%		
Retro orbital pain								
Yes	7	2.3%	4	1.6%	3	5.0%	2.2 (0.9-5.4)	0.12
No	298	97.7%	241	98.4%	57	95.0%		

Table 2. WHO Classification 1997 vs 2009.

Dengue	With warning signs	Without warning signs	Severe dengue					
	N	%	N	%	N	%	N	%
DF/DHF								
DF	185	75.5%	60	100.0%	0	0.0%	245	81.1%
DHF-I	52	21.2%	0	0.0%	0	0.0%	52	17.2%
DHF-II	7	2.9%	0	0.0%	2	66.7%	5	1.7%
DHF-III	1	0.4%	0	0.0%	1	33.3%	0	0.0%
DF/DHF overall								
DF	185	75.5%	60	100.0%	0	0.0%	245	81.1%
DHF	60	24.5%	0	0.0%	3	100.0%	57	18.9%
beginning of critical phase was 4.7×10^9/L. More importantly, the onset of critical phase was detected while the platelet count was more than 100,000/µL in around 32% of patients.

Liver enzyme derangements were subclassified as mild, moderate and marked. Mild (less than 5-fold rise), moderate (5-10 fold rise) and marked (greater than 10-fold rise) derangement of aspartate transaminase (AST) were noted in 62.6% (n = 191), 3.0% (n = 9), and none, respectively. Whereas mild, moderate and marked derangement of alanine transaminase (ALT) were present in 43.6% (n = 133), 3.3% (n = 10), and none, respectively. There was no significant different in the proportion of patients with liver enzyme derangement among the DHF and DF subgroups (Table 3). None of the patients developed renal or cardiac involvement and there were no neurological complications. None required intensive care unit (ICU) treatment and all patients had an uncomplicated recovery.

Table 3. Laboratory Findings of DF and DHF.

	DF		DHF		P value
Lowest platelet count (Mean ± SD)/µL	104 ± SD46	39 ± SD28	<.001		
<25000	5	2.0	27	45.0%	<.001
25 000–50 000	14	5.7%	19	31.7%	
50 000–75 000	39	15.9%	6	10.0%	
75 000–100 000	62	25.3%	6	10.0%	
>100 000	125	51.0%	2	3.3%	
Lowest WBC (Mean ± SD) × 10^9/L	3.5 ± SD1.6	3.7 ± SD1.7	.68		
<2	31	12.7%	10	16.7%	.003
2–4	143	58.4%	34	56.7%	
>4	71	29.0%	16	26.7%	
Highest AST (Mean ± SD) IU/L	85.4 ± SD51.4	93.5 ± SD45.3	.33		
mild	149	60.9%	42	69.5%	.96
moderate	7	2.8%	2	3.4%	
Severe	0	0	0	0	
Highest ALT (Mean ± SD) IU/L	53.1 ± SD42.1	52.3 ± SD43.3	.91		
mild	108	44.3%	25	40.7%	.87
moderate	8	3.3%	2	3.4%	
severe	0	0	0	0	
Serum creatinine (Mean ± SD) mmol/L	41.3 ± SD16.5	40.7 ± SD15.1	.90		
Serum sodium (Mean ± SD) mEq/L	135 ± SD2.5	133.5 ± SD3.3	.001		
Serum potassium (Mean ± SD) mEq/L	4.0 ± SD.44	3.9 ± SD.5			

Although, most patients went into critical phase on the 4th and 5th days of the illness, approximately 12% went into critical phase on day 3. Thus, patients should be monitored to detect features of fluid leakage from the third day of illness irrespective of the platelet count.

Around 10% (n = 6) of children went into critical phases on the 6th day or later, which usually corresponds to the time of discharge after recovering from uncomplicated dengue infections. Thus, the treating physicians should take careful decision when discharging patients with suspected dengue infections and there should be acceptable evidence to suggest clinical recovery.

In certain instances, the abdominal complaints were one of the predominant symptoms during admission. Therefore, the clinical presentation may mimic an acute abdomen which is usually treated in a surgical unit. Furthermore, inadequate resuscitation or over resuscitation in this context and delay in detecting fluid leakage may result in detrimental outcomes. Similar studies have also shown dengue patients with significant

Discussion

In 2017, Sri Lanka experienced its largest dengue epidemic, with an overwhelming number of dengue patients being managed in secondary and tertiary care hospitals. We found that the onset of the critical phase was unpredictable due to the considerable variations noted.
Table 4. Comparison With Similar Studies in Sri Lanka.

Author (year)	Present study (2017)	Sirisena (2014)	Murugananthan (2014)	Messer (2012)	Malavige (2006)	Lucas (2000)
Country	Sri Lanka	Sri Lanka	Sri Lanka	Sri Lanka	Sri Lanka	Sri Lanka
Study design	Retrospective	Cross sectional pilot study	Retrospective study	N/A	Prospective study	Retrospective study
Sample size	305 children	147 (254 with adult cases)	288 (1,085 with adult cases)	65 (357 with adult cases)	104 children	177 children
Male %	60.3%	62.6%	49.3%	57.7%	41.3%	N/A
Female %	39.7%	37.4%	50.7%	42.3%	58.7%	N/A
Mean duration of fever (days)	3.9	N/A	4.5	N/A	N/A	N/A
DF	80.70%	68.9%	55.4%	79.8%	17.3%	19.2%
DHF	19.30%	30.3%	12.2%	31.4%	82.7%	80.8%
Cardiac	None	N/A	N/A	N/A	2.9%	N/A
Neurological	None	N/A	N/A	N/A	6.7%	6.2%
Renal	None	N/A	N/A	N/A	N/A	N/A
Hepatic	Mild=62.6%, moderate=3%	1.2%	26.2%	7.7%	N/A	78.0%
Headache	55.10%	90.2%	54.0%	50.8%	71.2%	16.4%
Bodyache	52.50%	79.1%	26.4%	53.8%	N/A	15.3%
Nausea	21.30%	N/A	N/A	N/A	N/A	N/A
Vomiting	43.10%	N/A	50.1%	42.5%	74.0%	82.5%
Diarrhea	15.40%	N/A	N/A	17.3%	N/A	N/A
Abdominal pain	21.60%	N/A	N/A	29.8%	N/A	43.5%
Bleeding manifestations	2.60%	18.9%	24.7%	N/A	38.5%	42.9%
Right hypochondrial tenderness	38.00%	N/A	N/A	N/A	N/A	N/A
Epigastric tenderness	6.90%	N/A	N/A	N/A	N/A	N/A
Platelet count	Count $< 25 \times 10^9/L = 10.5\%$;	Count $< 100 \times 10^9/L = 65.4\%$;	N/A	Count $< 100 \times 10^9/L = 53.6\%$;	Count $< 100 \times 10^9/L = 70.2\%$,	Count $< 100 \times 10^9/L = 39.0\%$;
WBC count	Count $< 4 \times 10^9/L = 71.5\%$;	Count $< 4 \times 10^9/L = 76.0\%$;	N/A	N/A	N/A	N/A
Mortality	None	1	Percentage = 0.9% (absolute count N/A)	N/A	N/A	N/A

Note. N/A: not available.
Author (Year)	Present study (2017)	Banerjee (2018)	Ramachandran (2016)	Pai Jaiyabunto (2015)	Kumar (2015)	Rangan (2003)	Shal (2004)	Narayan (2002)	Sajil (2012)	Ahmad (2008)	Alen (2010)	Parvin (2006)	Alen (2011)
Country	Sri Lanka Retrospective	India Prospective	India Prospective	India Retrospective									
Sample size	305	200	69	69	359 adults (<15) and 107 pediatric (<15) cases	23	39	35	35	54	97	72	
Males%	60.30%	58.00%	62.3%	69.57%	64.6%	50.46%	48%	N/A	N/A	52.94%	57.14%	54.29%	50.00%
Females%	39.70%	42.00%	37.7%	30.43%	35.4%	49.54%	52%	N/A	N/A	47.6%	42.86%	45.71%	50.00%
Mean duration of fever (days)	3	N/A	N/A	6-10 days	N/A	N/A	7.7	4.9	N/A	N/A	N/A	4.16%	N/A
D/C	80.70%	80.00%	83.9%	83.9%	83.9%	83.9%	72.88%	N/A	N/A	31.43%	40%	36.11%	N/A
Cardiac	None	N/A	N/A	N/A	N/A	N/A	17%	2.6%	N/A	N/A	N/A	5.71%	N/A
Neurological	None	N/A	N/A	Altered	N/A	N/A	Bradycardia = 10.17%	N/A	N/A	N/A	N/A	N/A	
Renal	None	N/A	39.1%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Hepatitis	M + M + = 26.6%	50.7%	4.35%	53.2%	36.70%	87%	97.4%	52.54%	54.29%	37.14%	31.48%	13.40%	50.00%
Headache	55.10%	55.50%	N/A	52.17%	47.6%	47.6%	67.2%	N/A	N/A	40.00%	31.48%	82.47%	77.78%
Bodyache	52.50%	63.00%	N/A	100.00%	64.6%	47.6%	66.1%	N/A	N/A	34.29%	46.30%	84.54%	76.39%
Nausea	21.41%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Vomiting	43.10%	N/A	6.38%	42.03%	47.6%	47.6%	66.1%	N/A	N/A	N/A	N/A	N/A	N/A
Diarrhea	15.40%	N/A	N/A	8.69%	42.03%	47.6%	42.03%	N/A	N/A	N/A	N/A	N/A	N/A
Abdominal pain	21.60%	N/A	71.0%	11.59%	37.5%	N/A	23.73%	N/A	N/A	N/A	N/A	6.11%	N/A
Bleeding manifestations	24.00%	13.00%	39.1%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Right hypochondral tenderness	38.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Epigastric tenderness	6.90%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Malaria count	Count <= 10	Count <= 10	Count <= 10	Count <= 10	Count <= 10	Count <= 10	Count <= 10	Count <= 10	Count <= 10	Count <= 10	Count <= 10	Count <= 10	Count <= 10
WBC count	Count <= 4	Count <= 10	Count <= 10	Count <= 10	Count <= 10	Count <= 10	Count <= 10	Count <= 10	Count <= 10	Count <= 10	Count <= 10	Count <= 10	Count <= 10
Leukopenia	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Mortality	None	N=3	N=4	N=2	N=11	N=9	N=0	N=3	N=2	N=0	N=1	6%	N=15

Note. N/A: not available.
Table 6. Comparison with Similar Studies in Southeast Asia.

Author (Year)	Present study (2017)	Hanafusa (2008)	Wichmann (2004)	Sawasdivorn (2001)	Kalayanarooj (1997)	Lam (2017)	Thu (2012)	Phuong (2004)	Chairulfatah (1995)
Country	Study design	Sri Lanka	Thailand	Thailand	Thailand	Vietnam	Vietnam	Vietnam	Indonesia
		Retrospective	Retrospective	Retrospective	Retrospective	Retrospective, observation study	Retrospective	Retrospective	Retrospective, Prospective
Sample size	305	147	60 adults and 287 pediatric cases	45	60	2301 pediatric cases (5-15 years)	647 adults and 881 pediatric cases	712	128 DHF cases
Male%	60.3%	51.7%	50.7%	58.33%	53.33%	59.0%	55.4%	52.53%	N/A
Female%	39.7%	48.3%	49.3%	41.67%	46.67%	41.0%	44.6%	47.47%	N/A
Mean duration of fever (days)	3.9	N/A	5.4	N/A	100.00%	53.33%	N/A	61.1%	43.82%
DF	80.70%	53.74%	36.9%	0.00%	46.67%	N/A	38.9%	44.80%	100%
DHF	19.30%	46.26%	63.1%	0.00%	46.67%	N/A	N/A	N/A	N/A
Cardiac	None	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Neurological	None	10.8%	0.9%	N/A	N/A	0.7%	N/A	3%	N/A
Renal	None	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Hepatic	Mild = 62.6%, moderate = 3%	82.05%	40.3%	N/A	N/A	10.0%	38.2%	36.52%	47%
Headache	55.10%	51.02%	15.0%	N/A	80.48%	77.19%	N/A	63.2%	37.68%
Bodyache	52.50%	122.4%	8.4%	41.46%	N/A	N/A	N/A	9.90%	N/A
Nausea	21.30%	N/A	57.0%	N/A	67.80%	N/A	N/A	N/A	N/A
Vomiting	43.10%	72.79%	59.0%	N/A	70.00%	36.0%	52.1%	64.33%	56%
Diarrhea	15.40%	N/A	N/A	N/A	N/A	N/A	N/A	9.70%	4%
Abdominal pain	21.60%	68.03%	N/A	N/A	33.90%	20.0%	36.9%	62.31%	N/A
Bleeding manifestations	2.60%	N/A	35.7%	N/A	100.00%	13.33%	42.0%	69.7%	15.31%
right hypochondral tenderness	38.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Epigastric tenderness	6.90%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Platelet count	Count < 25 × 10^9/L = 10.5%; Count < 100 × 10^9/L = 58.4%	N/A	N/A	N/A	N/A	N/A	N/A	Count < 100 × 10^9/L = 80.59%	Count < 100 × 10^9/L = 15.3%
WBC count	Count < 4 × 10^9/L = 71.5%	N/A							
Mortality	None	N=0	N=1	N/A	N/A	N/A	N=8	N=0	3%

Note. N/A: not available.
gastro-intestinal manifestations. Therefore, a patient with predominant gastrointestinal symptoms in a dengue endemic area, especially during an epidemic should alert the healthcare personnel to consider the possibility of dengue.

The bleeding manifestation observed in our study was considerably low compared to previous studies. In our study, only 2.6% of patients had overt bleeding manifestations. However, analyzing the changes in the hematocrit levels (comparing the hematocrit level following clinical recovery and another stable recording during the course of the illness) revealed that 8% (n=24) of the dengue patients showed a drop in the hematocrit level of more than 5%. Though, this analysis is a crude assessment, the possibility of concealed bleeding is a possibility.

Several studies have described a considerable rise in liver enzymes such as AST and ALT in DHF cases than DF, with higher rise in AST more than ALT. Moreover, a surge in aminotransferases, predominantly AST has been described in association with the severity of the illness. In the present study, we did not detect any significant difference in the AST/ALT in the DHF cohort compared to DF group (Table 3).

Table 4 summarizes the data presented in similar pediatric dengue publications from Sri Lanka. The distribution of gender was comparable. The prevalence of DHF was comparatively lower in our study. Proportion of patients with abdominal symptoms such as abdominal pain and vomiting was similar. High percentage had liver impairment but the majority were mild. Moderate liver impairment was only seen in 3%. Lower WBC and platelet cell counts were described in our study. However, the bleeding manifestations described in the present study were considerably lower compared to previous Sri Lankan studies. Table 5 compared the findings of our study with similar studies from South Asia. The distribution of gender was comparable. The proportion of DHF to DF was seen to vary between studies where some studies had lower proportion of DHF similar to our study. The proportion of patients with lower platelet count was higher in other studies. Table 6 shows the comparison of our data with previous pediatric dengue publications from Southeast Asia. The proportion of DHF to DF, and liver involvement were variable. Compared to South Asian and South East Asian studies, the gastrointestinal symptoms including abdominal pain and vomiting were lower in our study and furthermore, the prevalence of bleeding manifestations was considerably lower.

We did a parallel study on adult dengue patients and during comparison with this adult cohort (n=1167), we noted several differences. The proportion of DHF was significantly lower among the children (19.3% vs 33.6%, P < .001). A Sri Lankan study by Malavige et al in 2006 noted that children had a higher tendency for fluid leakage than the adults. However, the pattern observed in the current epidemic was different. Children had more gastrointestinal symptoms and signs such as vomiting (43.1% vs 19.7%, P < .001), tenderness in the right hypochondrium (38.0% vs 26.0%, P < .001) and abdominal pain (21.6% vs 15.0%, P = .005), compared to adults.

Conclusion

We have comprehensively analyzed the clinical and biochemical characteristics among a group of hospitalized pediatric dengue patients during a large Sri Lankan dengue epidemic. We found that abdominal symptoms and signs, low WBC and low platelet counts to be significantly associated with DHF. Liver enzyme derangement did not predict DHF. Considerable variations were noted in relation to the onset of the critical phase. Furthermore, we noted several differences in the pattern of dengue infections in children compared with previous publications from Sri Lanka. Moreover, considerable differences in the clinical and biochemical measurements were seen when compared with hospitalized adult dengue patients during the same epidemic.

Appendix

List of Abbreviations

DF dengue fever
DHF dengue hemorrhagic fever
WHO World health Organization
SD standard deviation
WBC white blood cell
AST aspartate transaminase
ALT alanine transaminase

Authors’ Contributions

UI: contributed to conception and design; contributed to acquisition, analysis, and interpretation; drafted manuscript; critically revised manuscript; gave final approval; agrees to be accountable for all aspects of work ensuring integrity and accuracy.

MM: contributed to conception and design; contributed to acquisition; drafted manuscript; gave final approval; agrees to be accountable for all aspects of work ensuring integrity and accuracy.

DH: contributed to conception and design; contributed to acquisition; drafted manuscript; gave final approval; agrees to be accountable for all aspects of work ensuring integrity and accuracy.
UD: contributed to conception and design; contributed to acquisition; drafted manuscript; critically revised manuscript; gave final approval; agrees to be accountable for all aspects of work ensuring integrity and accuracy.

L.P: contributed to conception and design; contributed to acquisition, analysis, and interpretation; drafted manuscript; gave final approval; agrees to be accountable for all aspects of work ensuring integrity and accuracy.

VK: contributed to conception and design; contributed to acquisition, analysis, and interpretation; drafted manuscript; gave final approval; agrees to be accountable for all aspects of work ensuring integrity and accuracy.

CU: contributed to conception and design; contributed to acquisition, analysis, and interpretation; drafted manuscript; gave final approval; agrees to be accountable for all aspects of work ensuring integrity and accuracy.

RP: contributed to conception and design; contributed to acquisition, analysis, and interpretation; drafted manuscript; critically revised manuscript; gave final approval; agrees to be accountable for all aspects of work ensuring integrity and accuracy.

PY: contributed to conception and design; contributed to acquisition, analysis, and interpretation; drafted manuscript; critically revised manuscript; gave final approval; agrees to be accountable for all aspects of work ensuring integrity and accuracy.

IDZ: contributed to conception and design; contributed to acquisition, analysis, and interpretation; drafted manuscript; critically revised manuscript; gave final approval; agrees to be accountable for all aspects of work ensuring integrity and accuracy.

SLS: contributed to conception and design; contributed to acquisition, analysis, and interpretation; drafted manuscript; critically revised manuscript; gave final approval; agrees to be accountable for all aspects of work ensuring integrity and accuracy.

Declaration of Conflicting Interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) received no financial support for the research, authorship, and/or publication of this article.

Ethics Approval and Informed Consent
Ethical approval was obtained from Ethical Review Committee of National of Sri Lanka to conduct the study (No: AAJ/ETH/COM/2017-21). Informed written consent was obtained from parents/guardians and assent from children where appropriate before including in the study.

ORCID iDs
Umesh Jayarajah https://orcid.org/0000-0002-0398-5197
Pamodh Yasawardene https://orcid.org/0000-0002-5210-5141

Availability of Data and Materials
The datasets and materials generated and analyzed during the current study are available from the corresponding author on reasonable request.

Supplemental Material
Supplemental material for this article is available online.

References
1. World Health Organization. Dengue and dengue hemorrhagic fever 2017. http://www.who.int/mediacentre/factsheets/fs117/en/
2. Seneviratne S, Malavige G, De Silva H. Pathogenesis of liver involvement during dengue viral infections. Trans R Soc Trop Med Hyg. 2006;100:608-614.
3. Kabra S, Juneja R, Jain Y, et al. Myocardial dysfunction in children with dengue hemorrhagic fever. Natl Med J India. 1998;11:59-61.
4. Malavige G, Ranatunga P, Jayarajah S, Wijesiriwardana B, Seneviratne S, Karunatilaka D. Dengue viral infections as a cause of encephalopathy. Indian J Med Microbiol. 2007;25:143.
5. Jayarajah U, Seneviratne SL, Gurugama P, Wanigasuriya KP. Microalbuminuria and dengue viral infections. Southeast Asian J Trop Med Public Health. 2017;48:938.
6. Gurugama P, Jayarajah U, Wanigasuriya K, Wijewickrema A, Perera J, Seneviratne SL. Renal manifestations of dengue virus infections. J Clin Virol. 2018;101C:1-6.
7. Jayarajah U, Basnayake O, Nagodavithane K, Jayasinghe J, Samarasekera DN. Atypical presentation of severe dengue in a patient following a major abdominal surgery. Case Rep Infect Dis. 2020;2020:2916107. doi:10.1155/2020/2916107
8. Perera L, De Zoysa N, Jayarajah U, Senanayake N, De Zoysa I, Seneviratne SL. Transfusion-transmissible dengue infections. Trans R Soc Trop Med Hyg 2020;114:traa075. doi:10.1093/trstmh/traa075
9. Jayarajah U, Lahiru M, De Zoysa I, Seneviratne SL. Dengue infections and the surgical patient. Am J Trop Med Hyg. 2020. doi:10.4269/ajtmh.20-0983
10. Malavige GN, Fernando S, Fernando DJ, Seneviratne SL. Dengue viral infections. Postgrad Med J 2004;80:588-601.
11. Jayarajah U, Dissanayake U, Abeyssuriya V, et al. Comparing the 2009 and 1997 World Health Organization dengue case classifications in a large cohort of South Asian patients. J Infect Dev Ctries. 2020;14:781-787
12. Malavige GN, Ranatunga PK, Velathanthiri VGNS, et al. Patterns of disease in Sri Lankan dengue patients. Arch Dis Child. 2006;91:396-400.
13. Sirisena P, Noordeen F, Fernando L. A preliminary study on clinical profiles of dengue and dengue haemorrhagic fever suspected patients from two hospitals in the Western Province of Sri Lanka. Sri Lankan J Infect Dis 2014;4:99-107.
14. Lucas GN, Amerasinghe A, Srinaganathan S. Dengue haemorrhagic fever in Sri Lanka. Indian J Pediatr 2000; 67:503-504.
15. Epidemiology Unit, Ministry of Health Sri Lanka. Dengue. http://www.epid.gov.lk
16. Jayarajah U, Faizer S, de Zoysa I, Seneviratne SL. A large dengue epidemic affects Sri Lanka in 2017. Int J Prog Sci Technol. 2017;6:84-85.
17. de Silva P, Jayawardena P, Jayarajah U, et al. Improving clinical outcomes through setting up of a specialised dengue treatment unit. Int J Adv Res. 2015;7:1152-1153.
18. Hadinegoro SRS. The revised WHO dengue case classification: does the system need to be modified? Paediatr Int Child Health. 2012;32:33-38.
19. Jayarajah U, Dissanayake U, Edirisinghe K, Seneviratne SL. The World Health Organization dengue case classifications. Galle Med J. 2020;25:74-79.
20. Giammini EG, Testa R, Savarino V. Liver enzyme alteration: a guide for clinicians. CMAJ. 2005;172:367-379.
21. Malavige GN, Velathanthiri VGNS, Wijewickrama ES, et al. Patterns of disease among adults hospitalized with dengue infections. QJM 2006;99:299-305.
22. Seet RC, Ooi EE, Wong HB, Paton NI. An outbreak of dengue haemorrhagic fever in Sri Lanka. Indian J Pediatr. 2000;67:503-504.
23. Wichmann O, Hongsiriwon S, Bowonwatanuwong C, et al. Correlation of clinical profile and outcome with dengue fever in adults and children during the 2001 epidemic in Chonburi, Thailand. Trop Med Int Health. 2004;9:1022-1029.
24. Mahmuduzzaman M, Chowdhury AS, Ghosh DK, Kabir IM, Rahman MA, Ali MS. Serum transaminase level as clinical indicators of dengue severity. Mymsingh Med J. 2011;20:349-355.
25. Chhina RS, Goyal O, Chhina DK, Goyal P, Kumar R, Puri S. Liver function tests in patients with dengue viral infection. J Clin Virol. 2005;33:336-340.
26. Chotivanich K, Sukthana Y, Pukrittayakamee S. Risk factors and clinical features associated with severe dengue infection in adults and children during the 2001 epidemic in Chonburi, Thailand. Trop Med Int Health. 2004;9:1022-1029.
27. Messer W, Kanakaratne N, Thevanesam V, Ranawaka G, Shahani A, De Silva A. Clinical features of hospitalized dengue patients in Sri Lanka from 2004 to 2006. Sri Lankan J Infect Dis. 2012;2:9–18.
28. Lucas GN, Amerasinghe A, Srinaganathan S. Dengue haemorrhagic fever in Sri Lanka. Indian J Pediatr. 2000; 67:503-504.
29. Banerjee A, Barik KL, Bandypadhyay A, Paul UK. A study on the clinical features of dengue virus infected pediatric patients. Int J Contemp Pediatrics. 2018;5:368-371.
30. Ramachandran S, Gera A, Kamal M, Gera R, Roy MP. Changing trends in clinicopathological parameters in dengue with evaluation of predictors of poor outcome in children. Int J Contemp Pediatrics. 2016;3:1411-1415.
31. Kumar A, Rao CR, Pandit V, Shetty S, Bammigatti C, Samarasinghe CM. Clinical manifestations and trend of dengue cases admitted in a Tertiary Care Hospital, Uduguru District, Karnataka. Indian J Community Med. 2010;35:386-390.
32. Kamath SR, Ranjit S. Clinical features, complications and atypical manifestations of children with severe forms of dengue hemorrhagic fever in South India. Indian J Pediatr. 2006;73:889-895.
33. Ratageri VH, Shepur T, Wari P, Chavan S, Mujahid I, Yergolkar P. Clinical profile and outcome of dengue fever cases. Indian J Pediatr. 2005;72:705-706.
34. Shah I, Deshpande G, Tardeja P. Outbreak of dengue in Mumbai and predictive markers for dengue shock syndrome. J Trop Pediatr. 2004;50:301-305.
35. Narayanan M, Aravind M, Thilothammal N, Prema R, Sargunam CR, Ramamurty N. Dengue fever epidemic in Chennai-a study of clinical profile and outcome. Indian Pediatr. 2002;39:1027-1033.
36. Pai Jakribettu R, Boloor R, Thaliath A, Yesudasan George S, George T, Ponadka Rai M, et al. Correlation of clinicohaematological parameters in paediatric dengue: a retrospective study. J Trop Med. 2015;2015:647162. doi:10.1155/2015/647162.
37. Sajid A, Ikram A, Ahmed M. Dengue fever outbreak 2011: clinical profile of children presenting at Madina teaching hospital Faisalabad. J Univ Med Dent Coll. 2012;3:42-47.
38. Ahmed S, Arif F, Yahya Y, Rehman A, Abbas K, Ashraf S, et al. Dengue fever outbreak in Karachi 2006–a study of profile and outcome of children under 15 years of age. J Pak Med Assoc. 2008;58:4.
39. Alam AS, Sadat SA, Swapan Z, Ahmed AU, Karim MN, Paul H, et al. Clinical profile of dengue fever in children. Bangladesh J Child Health. 2009;33:55-58.
40. Pervin M, Tabassum S, Ali M, Mamun KZ, Islam M. Clinical and laboratory observations associated with the 2000 dengue outbreak in Dhaka, Bangladesh. Dengue Bull. 2004;28:96-106.
41. Ahmed FU, Mahmood CB, Sharma JD, Hoque SM, Zaman R, Hasan MS. Dengue and dengue haemorrhagic fever in children during the 2000 outbreak in Chittagong, Bangladesh. Dengue Bull. 2001;25:33-39.
42. Hanafusa S, Chanyasanha C, Sujirarat D, Khuankhunsathid I, Yaguchi A, Suzuki T. Clinical features and differences between child and adult dengue infections in Rayong Province, southeast Thailand. Southeast Asian J Trop Med Public Health. 2008;39:252.
43. Sawasdivorn S, Vibulvattanakit S, Sasavatpakdee M, Iamsirithavorn S. Efficacy of clinical diagnosis of dengue fever in paediatric age groups as determined by WHO case definition 1997 in Thailand. Dengue Bull. 2001;25:56-64.
44. Kalayanarooj S, Vaughn DW, Nimmannitya S, et al. Early clinical and laboratory indicators of acute dengue illness. *J Infect Dis*. 1997;176:313-321.
45. Lam PK, Van Ngoc T, Thuy TTT, et al. The value of daily platelet counts for predicting dengue shock syndrome: results from a prospective observational study of 2301 Vietnamese children with dengue. *PLoS Negl Trop Dis*. 2017;11:e0005498.
46. Thu TLT, Minh DN, Van NT, et al. Clinical features of dengue in a large Vietnamese cohort: intrinsically lower platelet counts and greater risk for bleeding in adults than children. *PLoS Negl Trop Dis*. 2012;6:e1679.
47. Phuong CXT, Nhan NT, Kneen R, et al. Clinical diagnosis and assessment of severity of confirmed dengue infections in Vietnamese children: is the World Health Organization classification system helpful? *Am J Trop Med Hyg*. 2004;70:172-179.
48. Chairulfatah A, Setiabudi D, Ridad A, Colebunders R. Clinical manifestations of dengue haemorrhagic fever in children in Bandung, Indonesia. *Ann Soc Belg Med Trop*. 1995;75:291-295.
49. Jayarajah U, de Silva PK, Jayawardena P, et al. Pattern of dengue virus infections in adult patients from Sri Lanka. *Trans R Soc Trop Med Hyg*. 2018;112:144-153.