Need for simulation in laparoscopic colorectal surgery training

Valerio Celentano

Valerio Celentano, Colorectal Unit, Federico II University, 80131 Naples, Italy

Author contributions: Celentano V solely contributed to this manuscript.

Conflict-of-interest statement: As a corresponding author I declare that there is no conflict of interest.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Correspondence to: Dr. Valerio Celentano, Colorectal Unit, Federico II University, Via Pansini, 5, 80131 Naples, Italy. valeriocelentano@yahoo.it
Telephone: +39-33-95023785

Received: May 9, 2015
Peer-review started: May 11, 2015
First decision: June 2, 2015
Revised: June 30, 2015
Accepted: July 8, 2015
Article in press: July 8, 2015
Published online: September 27, 2015

Abstract

The dissemination of laparoscopic colorectal surgery (LCS) has been slow despite increasing evidence for the clinical benefits, with a prolonged learning curve being one of the main restrictions for a prompt uptake. Performing advanced laparoscopic procedures requires dedicated surgical skills and new simulation methods designed precisely for LCS have been established: These include virtual reality simulators, box trainers, animal and human tissue and synthetic materials. Studies have even demonstrated an improvement in trainees’ laparoscopic skills in the actual operating room and a staged approach to surgical simulation with a combination of various training methods should be mandatory in every colorectal training program. The learning curve for LCS could be reduced through practice and skills development in a riskfree setting.

Key words: Surgical simulation; Laparoscopic surgery; Surgical training; Colorectal surgery

© The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Performing advanced laparoscopic procedures requires dedicated surgical skills and new simulation methods tailored precisely for laparoscopic colorectal surgery (LCS) have been established. This review focuses on a very actual topic in gastrointestinal surgery: The learning curve in minimally invasive surgery and the need for mechanisms to shorten the time needed for a trainee surgeon to safely move towards independent practice. This review article critically analyses the current role of simulation for LCS training.

INTRODUCTION

Laparoscopic colorectal surgery (LCS) has been increasingly applied because of its many advantages over conventional surgery, including reduced postoperative pain, earlier recovery of bowel function and shorter hospital stay[1].

Despite the evidence for the clinical benefits of LCS
and its oncologic safety[2,3], the dissemination of this technique has been hesitant, one of the main constraints for a swift uptake being an extended learning curve[4].

The high level of technical complexity associated with laparoscopic colectomies was held partially responsible for its relatively low adoption rate when compared with other laparoscopic operations[5,6] and learning curves have been estimated as being between 30 and 60 cases[7,8] with the need to acquire specific skills dissimilar to those used during conventional surgery[9].

LCS is a technically challenging procedure, frequently being self-taught by senior surgeons[10], despite there is available evidence that the absence of appropriate training may lead to patient safety compromise[11].

Nowadays, trainee surgeons are required to gather more technical skills in less time[12]: Research has demonstrated a deficiency of successful performance of enough critical laparoscopic colorectal cases by trainees[13,14].

The proportion of operations undertaken by surgical trainees has reduced in the past decade[15] as they spend less time in theatre and more time covering nights and acute admissions[16,17].

This gap between expected level and actual practice[18] has promoted the use of advanced training in laparoscopic colorectal surgery, with the evident need to improve the training opportunities available to trainees out-of-hours. Aim of this review is to summarize the different simulation strategies currently available for LCS training and the evidence demonstrating their advantages for colorectal trainees.

NEW CHALLENGE FOR SURGICAL TRAINING

Surgical training has traditionally been one of apprenticeship, based on a Halsted’s “see one, do one, teach one” classic scheme[19] where the surgical trainee learns to perform surgery under the supervision of an experienced surgeon.

Performing laparoscopic procedures requires special surgical skills to overcome the technical difficulties that it presents (Table 1), which include two-dimensional vision with loss of depth perception, less range of motion of the instruments when compared with open surgery, impaired tactile sensation, and the disparity between visual and proprioceptive feedback known as the fulcrum effect[21,22]. Laparoscopic surgery is difficult to learn by observation and practice alone[23] and competency requires dedicated training and mentoring[24].

Moreover, augmented rates of adverse clinical outcomes at the beginning of the learning curve introduce ethical questions and emphasize the demand for mechanisms to decrease complications and unnecessary conversions to open surgery during the early stage of independent practice. As it is no longer accepted that surgeons acquire experience at the expense of patient safety, patients should not be exposed to the opportunity of harm when other training approaches are available for skill acquisition.

Features	Challenges
Two dimensional vision	Reduced perception of depth
A disturbed eye-hand-target axis	Decreased dexterity
Long and inflexible instruments	Natural hand tremor magnified
Rigid instruments with five degrees of freedom	Decreased dexterity and range of motion
Fixed abdominal entry points	Limited freedom of motion and movement of the instrument:
Camera instability	The fulcrum effect
Limited tactile feedback	Increased fatigue

It has also been demonstrated that the surgical theatre can be a suboptimal place for beginner learning as high stress leads to deleterious effects on performance[25] and surgical training in the operating room implicates additional cost, estimated in approximately United States $47979 per year per trainee[26].

Concerns regarding cost, time, schedule restriction and safety have arisen and this forced surgeons to innovate and develop new methods of surgical training[27,28] and it became obvious that the learning curve must be abbreviated by learning outside of the surgical theatre[29].

Committed practice on simulators corresponds with improved operative times and efficiency of movement for minimally invasive cholecystectomy. These results indicate that the learning curve for LCS may be reduced with this approach[30]. However, colonic and rectal resections performed laparoscopically are retained to be more difficult than a cholecystectomy as they involve added challenges like the need to operate within multiple quadrants in the abdominal cavity, the dissection of inflamed or obliterated tissue planes, and the safe mobilization of the bowel from confined spaces. LCS training is obviously less adaptable to simple box trainers because of the necessity to work in multiple quadrants, transect and extract often large bulky specimens, and perform bowel anastomosis: Advanced surgery needs advanced simulation training.

Laparoscopic training not only has changed the traditional perspective challenging the Halsted’s one century old apprenticeship model[31], but has also induced a prompt development of simulation techniques given the versatility of the video environment and the capability to monitor the motions of the trainees. Adequate training clearly is the desirable way to prevent and diminish potential laparoscopic surgical errors[32].

SIMULATION PRACTICE IN LCS

New simulation methods designed peculiarly for LCS have been established (Table 2). These embrace a combination of virtual reality simulators and box trainers, animal and human tissue, and synthetic materials[33-36].

Traditionally, animal and human cadaver training models have been utilized to improve spatial perception
amelioration in trainees’ laparoscopic skills in the actual surgical theatre\cite{41,42} and it is now largely accepted that laparoscopic simulation training should be mandatory\cite{43} to facilitate trainees acquire basic laparoscopic skills, and a growing consensus by regulation training bodies is desirable.

Proficiency-based simulator curricula have proven effective in improving the performance of trainees. An assessment of baseline skills level on laparoscopic colectomy for trainee surgeons may be used to fashion a tailored program dedicated to improve specific competences and to meet the needs of novice surgeons according to their specific pre-training skills.

Skills of different complexity can be achieved using a phased approach and a mixture of distinct simulation training techniques. Basic surgical competences such instrument handling and suturing should be developed in box trainers and virtual reality simulators, while advanced key steps in complex procedure mastered using torso-shaped mannequin with synthetic materials. Finally, as LCS requires cooperation among the surgeon, the assistants and the operating team personnel, advanced laparoscopy team training should be done in animal/cadaver/hybrid labs with a minimal number of required animals or cadavers.

CONCLUSION
Training in LCS requires specific psychomotor skills that trainee surgeons are required to gather in less time. Simulation may offer a safe, reproducible environment for development of technical skills and procedural knowledge. The learning curve for LCS could be reduced through practice and skills development in a risk-free setting and a staged approach to simulation training should be mandatory in every colorectal training program.

REFERENCES
1. Guillou PJ, Quirke P, Thorpe H, Walker J, Jayne DG, Smith AM, Heath RM, Brown JM. Short-term endpoints of conventional versus laparoscopic-assisted surgery in patients with colorectal cancer (MRC CLASICC trial): multicentre, randomised controlled trial. Lancet 2005; 365: 1718-1726. [PMID: 15894098 DOI: 10.1016/s0140-6736(05)66545-2]
2. Faiz O, Wurasavitame J, Bottle A, Tekkis PP, Darzi AW, Kennedy RH. Laparoscopically assisted vs. open elective colonic and rectal resection: a comparison of outcomes in English National Health Service Trusts between 1996 and 2006. Dis Colon Rectum 2009; 52: 1695-1704. [PMID: 19966600 DOI: 10.1007/dcr.0b013e3181185254]
3. Hewett PJ, Allardyce RA, Bagshaw PF, Frampton CM, Frizelle FA, Rieger NA, Smith JS, Solomon MJ, Stephens JH, Stevenson AR. Short-term outcomes of the Australasian randomized clinical study comparing laparoscopic and conventional open surgical treatments for colon cancer: the ALCCASt trial. Ann Surg 2008; 248: 728-738. [PMID: 18948799 DOI: 10.1097/sla.0b013e31818b7595]
4. Miskovic D, Ni M, Wyles SM, Tekkis P, Hanna GB. Learning curve and ease selection in laparoscopic colorectal surgery: systematic review and international multicenter analysis of 4852 cases. Dis Colon Rectum 2012; 55: 1300-1310. [PMID: 23135590 DOI: 10.1097/dcr.0b013e31826a64dd]

Table 2 Characteristics of the different types of simulators

Type of simulator	Main features
Box trainers	Low-cost, portable, can be used repeatedly by multiple users. Used to teach basic laparoscopic skills: hand-eye coordination, cutting, suturing, bimanual dexterity. Provide sensory feedback. Requires direct observation and supervision by a trainer. Record several procedure metrics providing feedback to trainees. Recording of training performance for objective evidence of skill performance. Minor degree of sensory feedback and higher initial are the main disadvantages.
Virtual reality simulators	Record several procedure metrics providing feedback to trainees. Recording of training performance for objective evidence of skill performance.
Hybrid models	Reduced costs compared to cadaveric models. Questionable value of a training model with an alternative structure.
Animal and human cadaveric models	Best anatomic and clinical-like model. Availability is limited and their use is expensive. Require operative facilities and a funeral service.

FUTURE PERSPECTIVES
Several studies have demonstrated that training in laparoscopic techniques in a simulated setting, including on virtual-reality simulators, has enhanced the capabilities of the surgical trainees during and beyond the course of their training\cite{39,40}. Some studies have even shown an
Celentano V. Simulation in colorectal surgery

5 Bardakcioglu O, Khan A, Aldridge C, Chen J. Growth of laparoscopic colectomy in the United States: analysis of regional and socioeconomic factors over time. Ann Surg 2013; 258: 270-274

6 Kemp JA, Finlayson SR. Nationwide trends in laparoscopic colectomy from 2000 to 2004. Surg Endosc 2008; 22: 1181-1187

7 Tekkis PP, Senagore AJ, Delaney CP, Fazio VW. Evaluation of the learning curve in laparoscopic colorectal surgery: comparison of right-sided and left-sided resections. Ann Surg 2005; 242: 83-91

8 Choi DH, Jeong WK, Lim SW, Chung TS, Park JJ, Lim SB, Choi HS, Nam BH, Chang HJ, Jeong SY. Learning curves for laparoscopic sigmoidectomy used to manage curable sigmoid colon cancer: single-institute, three-surgeon experience. Surg Endosc 2009; 23: 622-628

9 Kim J, Edwards E, Bowne W, Castro A, Moon V, Gadangi P, Ferkel G. Medial-to-lateral laparoscopic colon resection: a view beyond the learning curve. Surg Endosc 2007; 21: 1503-1507

10 Miskovic D, Wyles SM, Ni M, Darzi AW, Hanna GB. Systematic review on mentoring and simulation in laparoscopic colorectal surgery. Ann Surg 2010; 252: 943-951

11 A prospective analysis of 1518 laparoscopic cholecystectomies. The Southern Surgeons Club. N Engl J Med 1991; 324: 1073-1078

12 Stein S, Strulberg J, Champagne B. Learning laparoscopic colectomy during colorectal residency: what does it take and how are we doing? Surg Endosc 2012; 26: 488-492

13 Bass BL. Matching training to practice: the next step. Ann Surg 2006; 243: 436-438

14 Pugh CM, Darosa DA, Bell RH. Residents’ self-reported learning needs for intraoperative knowledge: are we missing the bar? Am J Surg 2010; 199: 562-565

15 Blencowe NS, Parsons BA, Hollowood AD. Effects of changing work patterns on general surgical training over the last decade. Bmj Med Educ 2006; 20: 435-48

16 Varley I, Keir J, Fagg P. Changes in caseload and the potential impact on surgical training: a retrospective review of one hospital’s experience. Med Educ 2006; 40: 562-565

17 Taylor IA, Alexander F. Preface to the ISCP report. ISCP Evaluation Task Group, 2006. Available from: URL: http://www.mee.nhs.uk/pdf/FinalReportISCP-MichaelEraft.pdf

18 Bell RH, Biester TW, Tabucena A, Rhodes RS, Cofer JB, Britt LD, Lewis FR. Operative experience of residents in US general surgery programs: a gap between expectation and experience. Ann Surg 2009; 249: 719-724

19 Kerr B, O’Leary JP. The training of the surgeon: Dr. Halsted’s greatest legacy. Ann Surg 1999; 65: 1101-1102

20 Heemskerk J, Zandbergen R, Maessen JG, Greve JW, Bouvy ND. Advantages of advanced laparoscopic systems. Surg Endosc 2006; 20: 730-733

21 Scott DJ, Young WN, Tesfay ST, Frawley WH, Rege RV, Jones DB. Laparoscopic skills training. Am J Surg 2001; 182: 137-142

22 Smith CD, Farrell TM, McNatt NS, Metreveli RE. Assessing laparoscopic manipulative skills. Am J Surg 2001; 181: 547-550

23 Dutta S, Gaba D, Krummel TM. To simulate or not to simulate: what is the question? Ann Surg 2006; 243: 301-303

24 Celentano V, Finch D, Forster L, Robinson JM, Griffith JP. Safety of supervised trainee-performed laparoscopic surgery for inflammatory bowel disease. Int J Colorectal Dis 2015; 30: 639-644

25 Park J, MacRae H, Musselman LJ, Rosson P, Hansdri SJ, Wolman S, Reznick RK. Randomized controlled trial of virtual reality simulator training: transfer to live patients. Am J Surg 2007; 194: 205-211

26 Bridges M, Diamond DL. The financial impact of teaching surgical residents in the operating room. Am J Surg 1999; 177: 28-32

27 Gurusamy KS, Aggarwal R, Palanivelu L, Davidson BR. Virtual reality training for surgical trainees in laparoscopic surgery. Cochrane Database Syst Rev 2009; 21: CD006575

28 Scott DJ, Bergen PC, Rege RV, Laycock R, Tesfay ST, Valentine RJ, Euhus DM, Jeyarajah DR, Thompson WM, Jones DB. Laparoscopic training on bench models: better and more cost effective than operating room experience? J Am Coll Surg 2000; 191: 272-283

29 Samia H, Khan S, Lawrence J, Delaney CP. Simulation and its role in training. Clin Colon Rectal Surg 2013; 26: 47-55

30 Bashankaev B, Baido S, Wexner SD. Review of available methods of simulation training to facilitate surgical education. Surg Endosc 2011; 25: 28-35

31 Moore MJ, Bennett CL. The learning curve for laparoscopic cholecystectomy. The Southern Surgeons Club. Am J Surg 1995; 170: 55-59

32 Bhandarkar A, Inaki N, Mailaender L, Buech G. An innovative trainer for surgical procedures using animal organs. Minim Invasive Ther Allied Technol 2005; 14: 262-266

33 Ramshaw BJ, Young D, Garcha I, Shuler F, Wilson R, White JG, Duncan T, Mason E. The role of multimedia interactive programs in training for laparoscopic procedures. Surg Endos 2001; 15: 21-27

34 Ross HM, Simmang CL, Fleshman JW, Marcolino VW. Adoption of laparoscopic colorectomy: results and implications of ASCRS hands-on course participation. Surg Innov 2008; 15: 179-183

35 Katz R, Hoznek A, Antiphan P, Van Velthoven R, Delmaes V, Abbo CC. Cadaveric versus porcine models in urolaparoscopic training. Urol Int 2003; 71: 310-315

36 Grantcharov TP, Kristiansen VB, Bendix J, Bardram L, Rosenberg J, Funch-Jensen P. Randomized clinical trial of virtual reality simulation for laparoscopic skills training. Br J Surg 2004; 91: 146-150

37 Gallagher AG, Ritter EM, Champion H, Higgins G, Fried MP, Moses G, Smith CD, Satava RM. Virtual reality simulation for the operating room: proficiency-based training as a paradigm shift in surgical skills training. Ann Surg 2005; 241: 364-372

38 Hyltander A, Liljegren E, Rhodin PH, Lönroth H. The transfer of basic skills learned in a laparoscopic simulator to the operating room. Surg Endosc 2002; 16: 1324-1328

39 Seymour NE, Gallagher AG, Roman SA, O’Brien MK, Bansal VK, Andersen DK, Satava RM. Virtual reality training improves operating room performance: results of a randomized, double-blind study. Ann Surg 2002; 236: 458-463, discussion 463-464
Zimmerman H, Latifi R, Dehdashti B, Ong E, Jie T, Galvani C, Waer A, Wynne J, Biffar D, Gruessner R. Intensive laparoscopic training course for surgical residents: program description, initial results, and requirements. Surg Endosc 2011; 25: 3636-3641 [PMID: 21643881 DOI: 10.1007/s00464-011-1770-6]
