A convenient expression of the time-derivative $z_n^{(t)}(t)$, of arbitrary order k, of the zero $z_n(t)$ of a time-dependent polynomial $p_N(z;t)$ of arbitrary degree N in z, and solvable dynamical systems

Mario Bruschi, Francesco Calogero

To cite this article: Mario Bruschi, Francesco Calogero (2016) A convenient expression of the time-derivative $z_n^{(t)}(t)$, of arbitrary order k, of the zero $z_n(t)$ of a time-dependent polynomial $p_N(z;t)$ of arbitrary degree N in z, and solvable dynamical systems, Journal of Nonlinear Mathematical Physics 23:4, 474–485, DOI: https://doi.org/10.1080/14029251.2016.1237197

To link to this article: https://doi.org/10.1080/14029251.2016.1237197

Published online: 04 January 2021
A convenient expression of the time-derivative $z_n^{(t)}(t)$, of arbitrary order k, of the zero $z_n(t)$ of a time-dependent polynomial $p_N(z;t)$ of arbitrary degree N in z, and solvable dynamical systems

Mario Bruschi, Francesco Calogero

To cite this article: Mario Bruschi, Francesco Calogero (2016) A convenient expression of the time-derivative $z_n^{(t)}(t)$, of arbitrary order k, of the zero $z_n(t)$ of a time-dependent polynomial $p_N(z;t)$ of arbitrary degree N in z, and solvable dynamical systems, Journal of Nonlinear Mathematical Physics 23:4, 474–485, DOI: https://doi.org/10.1080/14029251.2016.1237197

To link to this article: https://doi.org/10.1080/14029251.2016.1237197

Published online: 04 January 2021
A convenient expression of the time-derivative $z_n^{(k)}(t)$, of arbitrary order k, of the zero $z_n(t)$ of a time-dependent polynomial $p_N(z; t)$ of arbitrary degree N in z, and solvable dynamical systems

Mario Bruschi and Francesco Calogero
Physics Department, University of Rome “La Sapienza”, Italy
Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Italy
mario.bruschi@roma1.infn.it and francesco.calogero@roma1.infn.it, francesco.calogero@uniroma1.it

Received 22 February 2016
Accepted 3 July 2016

Let $p_N(z; t)$ be a (monic) time-dependent polynomial of arbitrary degree N in z, and let $z_n \equiv z_n(t)$ be its N zeros: $p_N(z; t) = \prod_{n=1}^{N} [z - z_n(t)]$. In this paper we report a convenient expression of the k-th time-derivative $z_n^{(k)}(t)$ of the zero $z_n(t)$. This formula plays a key role in the identification of classes of solvable dynamical systems describing the motion of point-particles moving in the complex z-plane while nonlinearly interacting among themselves; one such example, featuring many arbitrary parameters, is reported, including its variation describing the motion of many particles moving in the real Cartesian xy-plane and interacting among themselves via rotation-invariant Newtonian equations of motion (“accelerations equal forces”).

Keywords: time-derivatives of time-dependent polynomials, time-derivatives of the zeros of time-dependent polynomials, solvable dynamical systems, solvable many-body problems, isochronous many-body problems

1. Introduction

Let $p_N(z; t) \equiv p_N(z; \tilde{c}(t); \tilde{z}(t))$ be a (monic) time-dependent (t = time) polynomial of degree N in z, where $\tilde{c} \equiv \dot{\tilde{c}}(t)$ is the N-vector of its coefficients $c_m \equiv c_m(t)$ and $\tilde{z} \equiv \dot{\tilde{z}}(t)$ is the unordered set of its N zeros $z_n \equiv z_n(t)$:

$$p_N(z; \tilde{c}(t); \tilde{z}(t)) \equiv p_N(z; t) = z^N + \sum_{m=1}^{N} \left[c_m(t) \cdot z^{N-m} \right] = \prod_{n=1}^{N} [z - z_n(t)]. \quad (1.1a)$$

Note that the notation $p_N(z; \tilde{c}(t); \tilde{z}(t))$ is somewhat redundant, because clearly this time-dependent monic polynomial is uniquely identified by assigning either its N coefficients $c_m(t)$ or its N zeros $z_n(t)$. Indeed the N coefficients $c_m(t)$ can themselves be explicitly expressed in terms of the N zeros $z_n(t)$ as follows:

$$c_m(t) = \frac{(-1)^m}{m!} \sum_{n_1, n_2, \ldots, n_m=1}^{N} \left[\prod_{j=1}^{m} [z_{n_j}(t)] \right], \quad m = 1, 2, \ldots, N. \quad (1.1b)$$

Notation 1.1. Above and hereafter N is an arbitrary positive integer ($N \geq 2$), indices such as n, n_j, m, ℓ run over the integers from 1 to N (unless otherwise indicated) and the "*"-modified" summation symbol $\sum_{n_1, n_2, \ldots, n_m=1}^{N} *$ indicates that this "*"-modified" sum runs over each of the N integers n_1, n_2, \ldots, n_m from 1 to N with the restriction that these m indices be all different among themselves; while the "*n*"-modified" summation symbol $\sum_{n_1, n_2, \ldots, n_m=1}^{N} *n*$ (see below) indicates that the sum

"n": The number of different indices among those running over the indices from 1 to N. For example, $\sum_{n_1, n_2, \ldots, n_m=1}^{N} *n*$ means that n_1, n_2, \ldots, n_m are all different among themselves among those running over the indices from 1 to N.
The first goal of this paper is to report a formula which instead expresses the time-derivative by the following formula:

\[k \text{ is expressed in terms of the } i \text{ see above). And we denote below by complex ally considered to be below). Let us emphasize that all variables and parameters—except of course indices—are generally considered to be complex numbers (unless otherwise indicated: for instance the time } t \text{ is real, see above). And we denote below by } i \text{ the imaginary unit, so that } i^2 = -1. \]

Clearly the time-derivative of arbitrary order } k \text{ of this polynomial, } p_N^{(k)}(z; t) \equiv (d/dt)^k p_N(z; t), \text{ is expressed in terms of the } k\text{-th time-derivative } c_m^{(k)}(t) \equiv (d/dt)^k c_m(t) \text{ of its } N \text{ coefficients } c_m(t) \text{ by the following formula:}

\[
p_N^{(k)}(z; t) \equiv (d/dt)^k p_N(z; t) = \sum_{m=1}^{N} \left[c_m^{(k)}(t) z^{N-m} \right], \quad k = 1, 2, 3, \ldots \tag{1.2}
\]

The first goal of this paper is to report a formula which instead expresses the time-derivative } p_N^{(k)}(z; t) \text{ in terms of the time-derivatives (of order from } 1 \text{ to } k \text{) of the } N \text{ zeros } z_n(t) \text{ of the polynomial } p_N(z; t). \text{ A version of this formula is rather directly obtained by inserting the } k\text{-th time-derivative } c_m^{(k)}(t) \text{ of the right-hand side of (1.1b),}

\[
c_m^{(k)}(t) = \frac{(-1)^m}{m!} \left(\frac{d}{dt} \right)^k \left\{ \sum_{n_1, n_2, \ldots, n_m=1}^{N} \pi_{n_1}^{m} \prod_{\ell=1}^{m} [z_{n_{\ell}}(t)] \right\}, \quad m = 1, 2, \ldots, N, \tag{1.3}
\]

in the right-hand side of (1.2). But this version is not convenient for our main goal, see below. Indeed the motivation for obtaining another version of this formula, (1.2), is to evince from it an expression of the } k\text{-th time-derivative of any one of the zeros } z_n(t) \text{ in terms of the } k\text{-th time-derivative } c_m^{(k)}(t) \text{ of the } N \text{ coefficients } c_m(t) \text{ and of the } N \text{ zeros } z_n(t) \text{ and their time-derivatives of order less than } k, \text{ because such a formula plays a key role in the identification of classes of solvable dynamical systems describing the motion of } N \text{ point-particles moving in the complex } z\text{-plane while nonlinearly interacting among themselves. Indeed a version of this formula—but only for } k = 1, 2—\text{was already obtained in [1] and used for this purpose in [1–4], and—but only for } k = 3, 4—\text{in [5].}

These formulas are reported in the following Section 2. In Section 3 we indicate how solvable dynamical systems—more general than those treated in the papers quoted above—are identified by using, for arbitrary (positive integer) values of } k, \text{ the key formula reported in Section 2; and we describe such an example featuring many arbitrary parameters, including its variation describing the motion of many particles moving in the real Cartesian } xy\text{-plane and interacting among themselves via rotation-invariant Newtonian equations of motion ("accelerations equal forces"). Explicit versions of the key formula expressing } z_n^{(k)}(t) \text{ are displayed in the Appendix for } k \text{ from 1 to 6 and } N \text{ arbitrary } (N \geq k), \text{ and for } N = 2 \text{ and } k \text{ arbitrary } (k \geq 2).
2. A convenient formula

A compact way to express the k-th time-derivative $p_N^{(k)}(z;t)$ of the polynomial $p_N(z;t)$, see (1.1a), reads

$$\frac{d^k p_N(z;t)}{dt^k} = p_N^{(k)}(z;t) = p_N(z;t) b_{N,k}(z;t), \quad (2.1a)$$

with the following definition of the function $b_{N,k}(z;t)$: let

$$q_{N,k}(x) = \left[\sum_{j=1}^{N} (x_j) \right]^k, \quad (2.1b)$$

where of course the N quantities x_j are the N components of the unordered set \bar{x}; then expand this expression of $q_{N,k}(\bar{x})$ in powers of x_j and perform, for every positive value of the exponent r of $(x_j)^r$, the replacement

$$(x_j)^r \Rightarrow - [z - z_j(t)]^{-1} \frac{z_j^{(r)}(t)}{r!}, \quad r = 1, 2, \ldots, k, \quad (2.1c)$$

where of course, above and hereafter, $z_j^{(r)}(t) \equiv \frac{d^r z_j(t)}{dt^r}$, $r = 1, 2, 3, \ldots$.

This yields $b_{N,k}(z;t)$.

In a previous version of this paper a proof of this result was provided, because we had been unable to find this formula in the literature; but a competent referee convinced us that this result is not sufficiently new to justify a report of its proof.

To apply this rule it is convenient for our purposes to reformulate the standard multinomial theorem according to which (see, for instance, [6])

$$\left[\sum_{j=1}^{N} (x_j) \right]^k = \sum_{k_1, k_2, \ldots, k_N = 0; \atop k_1 + k_2 + \ldots + k_N = k} \left(\frac{k!}{k_1! k_2! \cdots k_N!} \right) \prod_{j=1}^{N} (x_j)^{k_j}, \quad (2.2)$$

by treating separately the terms with vanishing exponents k_j, so that

$$\left[\sum_{j=1}^{N} (x_j) \right]^k = \sum_{s=1}^{\min(N,k)} \left[b_{N,k,s}(\bar{x}) \right], \quad (2.3a)$$

with (see Notation 1.1)

$$b_{N,k,s}(\bar{x}) = \left(\frac{k!}{s!} \right) \sum_{n_1, n_2, \ldots, n_s = 1}^{N} \left\{ \sum_{k_1, k_2, \ldots, k_N = 1; \atop k_1 + k_2 + \ldots + k_N = k} \left[\prod_{r=1}^{s} \frac{(x_{n_r})^{k_r}}{k_r!} \right] \right\}. \quad (2.3b)$$

In these formulas, (2.3), s identifies of course the number of terms in the right hand side of (2.2) with a nonvanishing exponent k_j.
with which, via (2.1a) and the last of the formulas (1.1a), yields the identity

\[\dot{z}_n(t) = \sum_{s=1}^{\min(N,k)} \left[\frac{(-)^s}{s!} \sum_{n_1, n_2, \ldots, n_s} N \right] \prod_{r=1}^{s} \left(\frac{\dot{z}_{n_r}(t)}{k_r!} \right) \right] . \]

(2.4)

which, via (1.1a) and the last of the formulas (1.1a), yields the identity

\[p_N^{(k)}(z; t) = k! \sum_{s=1}^{\min(N,k)} \left[\frac{(-)^s}{s!} \sum_{n_1, n_2, \ldots, n_s} N \right] \prod_{r=1}^{s} \left(\frac{\dot{z}_{n_r}(t)}{k_r!} \right) \right] . \]

(2.5)

It is now convenient to rewrite this formula by separating out the term with \(s = 1 \), which is the only term containing in its right-hand side the highest derivative (of order \(k \)) of the zeros:

\[p_N^{(k)}(z; t) = - \sum_{n_1}^{N} \left[\prod_{\ell=1; \ell \neq n}^{N} \left(z - z_\ell(t) \right) \right] \dot{z}_n(t) \]

+k! \sum_{s=2}^{\min(N,k)} \left[\frac{(-)^s}{s!} \sum_{n_1, n_2, \ldots, n_s} N \right] \prod_{\ell=1; \ell \neq n_1, n_2, \ldots, n_s}^{N} \left(z - z_\ell(t) \right) \right] . \]

(2.6)

Setting \(z = z_n(t) \) in this identity one then clearly gets (see again Notation 1.1)

\[p_N^{(k)}(z_n(t); t) = - \left(\prod_{\ell=1; \ell \neq n}^{N} \left(z_n - z_\ell(t) \right) \right) \dot{z}_n(t) + \sum_{s=2}^{\min(N,k)} \tilde{b}_{N,k,n,s}(t) \]

(2.7a)

with

\[\tilde{b}_{N,k,n,s}(t) = \frac{(-)^s}{s!} \sum_{n_1, n_2, \ldots, n_s} N \left[\prod_{\ell=1; \ell \neq n_1, n_2, \ldots, n_s}^{N} \left(z_n - z_\ell(t) \right) \right] . \]

(2.7b)

It is on the other hand plain (see (1.2)) that

\[p_N^{(k)}(z_n(t); t) = \sum_{m=1}^{N} \left\{ c_m^{(k)}(t) \left[z_n(t) \right]^{N-m} \right\} , \quad k = 1, 2, 3, \ldots . \]

(2.8)
Hence a comparison of this last formula with (2.7a) yields, for \(k = 1, 2, 3, \ldots \), the formula

\[
\frac{dz_k^N(t)}{dt} = \left\{ \prod_{\ell=1, \ell \neq n}^{N} (z_n(t) - z_\ell(t)) \right\}^{-1} \cdot \left(\sum_{s=2}^{\min(N,k)} \overline{b}_{N,k,n,s}(t) - \sum_{m=1}^{N} \{ z_{\ell}^N(t) \}^{N-\ell} \right), \tag{2.9}
\]

This formula, with (2.7b), provides a convenient starting point for the identification of solvable dynamical systems, as explained in the following section; hence we display it more explicitly in the Appendix for \(k \) from 1 to 6 (with \(N \geq k \)) and for \(N = 2 \) with \(k \geq 2 \).

3. Solvable dynamical systems

Let us recall the standard definition of solvable dynamical systems: they are systems of an arbitrary number \(N \) of Ordinary Differential Equations (ODEs) involving \(N \) time-dependent variables \(z_n(t) \), the general solution of which—and as well the solution of their initial-values problem—can be achieved by algebraic operations, essentially by finding the \(N \) roots of a known time-dependent polynomial \(p_N(\mathbf{z};t) \), see (1.1a). These dynamical systems—in contrast to a generic autonomous nonlinear dynamical system with \(N \geq 3 \)—generally do not yield a chaotic time evolution, indeed in some cases their general behavior can be remarkably neat, for instance isochronous or multiply periodic—i.e., all their solutions are completely periodic with a fixed period independent of the initial data or feature a, possibly nonlinear, superposition of a finite number of different fixed periods—or can display such behaviors asymptotically, in the remote future—i.e. be asymptotically isochronous or asymptotically multiply periodic [7,8]. Note, however, that when the solution of the initial-values problem is provided by the \(N \) roots \(z_n(t) \) of a known time-dependent polynomial \(p_N(\mathbf{z};t) \), this solution identifies the overall configuration of the system at any time \(t \), but generally it does not allow to identify one by one the particles, namely to recognize which one of the \(N \) coordinates \(z_n(t) \) corresponds to the specific initial data characterizing that specific coordinate; although such an identification can be obtained by evaluating—possibly even with lower accuracy—a sequence of solutions over sufficiently short time subintervals by an argument of contiguity applied to the positions of the particles at the beginning and the end of each such time subinterval. Alternatively, one can follow the time evolution of each zero on the Riemann surface associated to the polynomial \(p_N(\mathbf{z};t) \), but this is generally a nontrivial task, see for instance [9–13].

The manufacture/identification of solvable dynamical systems has been an important sector of mathematical physics research in the last few decades. A natural approach in this context is to consider a (monic) time-dependent polynomial \(p_N(\mathbf{z};t) \), see (1.1a), and to assume that the time-evolution of its \(N \) coefficients \(c_m(t) \) is characterized by a solvable dynamical system; it is then clear that the time evolution of its \(N \) zeros \(z_n(t) \) is—as it were, by definition—also solvable. This procedure allows to infer from trivially solvable systems—including those characterized by linear equations of motion—other dynamical systems which are still solvable while featuring less trivial, generally highly nonlinear, equations of motion. Moreover, this procedure can be repeated, by letting the time-dependent solutions—yielded by the zeros of a known time-dependent polynomial—play the role of coefficients of new polynomials, and by then considering the zeros of the new polynomials as the coordinates of new dynamical systems, which of course shall also be—again, as it were, by definition—solvable. Note that this procedure yields, from any polynomial \(p_N(\mathbf{z};t) \)—in
the generic case with its \(N\) zeros all different among themselves—\(N!\) new polynomials, since \(N!\) different assignments of the ordered set of \(N\) coefficients of the new polynomials are obtained by identifying them with the \(N!\) different elements of the unordered set of the \(N\) zeros \(z_n(t)\) of \(p_N(z; t)\). And an iteration of this procedure—leading to the notion of generations of polynomials [4]—allows the identification of endless sequences of solvable dynamical systems.

In order to exhibit the equations of motion of these solvable dynamical systems, one must be able to relate explicitly the time evolution of the zeros of a time-dependent polynomial to the time evolution of its coefficients. A convenient way to do so is provided by the key formula (2.9) with (2.7b). We now illustrate this notion by outlining a simple example. The analogous derivation of vast classes of novel solvable dynamical systems, and the detailed investigation of their time evolutions—going beyond the results already reported in [1–5, 14–16]—is a task for the future, to be pursued by ourselves and/or by others.

So, let us assume that the coefficients \(c_m(t)\) evolve in time according to the following system of \(N\) decoupled autonomous and linear ODEs:

\[
c_m^{(k)}(t) = \sum_{s=1}^{k} \left[a_{ms} c_m^{(s-1)}(t) \right], \quad m = 1, 2, \ldots, N, \tag{3.1a}
\]

where of course \(c_m^{(r)}(t)\) is, for all nonnegative integer values of \(r\), the \(r\)-th time-derivative of \(c_m(t)\). This system, featuring \(kN\) arbitrary constants \(a_{ms}\), is of course solvable, indeed its general solution reads

\[
c_m(t) = \sum_{s=1}^{k} \left[\gamma_{ms} \exp(\lambda_{ms} t) \right], \tag{3.1b}
\]

where, for every value of \(m\), the \(k\) numbers \(\lambda_{ms}\) with \(s = 1, 2, \ldots, k\) are the \(k\) roots of the following polynomial equations of degree \(k\) in the variable \(\lambda_m\),

\[
(\lambda_m)^k = \sum_{s=1}^{k} \left[a_{ms} (\lambda_m)^{s-1} \right], \quad m = 1, 2, \ldots, N; \tag{3.1c}
\]

while the \(kN\) constants \(\gamma_{ms}\) can be arbitrarily assigned, or determined as the solutions of the system of \(kN\) linear equations

\[
c_m^{(s-1)}(0) = \sum_{s=1}^{k} \left[\gamma_{ms} (\lambda_m)^{s-1} \right], \quad s = 1, \ldots, k, \quad m = 1, \ldots, N \tag{3.1d}
\]

in order to solve the initial-values problem, with the \(kN\) initial values \(c_m^{(s-1)}(0)\) assigned.

Remark 3.1. Note that here, for simplicity, we restricted consideration to the solvable dynamical system (3.1a), and we moreover assumed that, for every value of \(m\), the \(k\) roots of the algebraic equation (3.1c) are all different among themselves. While of course the treatment—above and below—could be easily generalized to the more general solvable dynamical system characterized
by the (now coupled but still linear) equations of motion

\[c_m^{(k)}(t) = \sum_{s=1}^{N} \sum_{n=1}^{k} a_{ms} c_n^{(s-1)}(t) , \quad m = 1, 2, \ldots, N , \]

(3.2)

featuring the \(kN^2 \) arbitrary constants \(a_{ms} \).

Remark 3.2. It is plain that the time evolution of the dynamical system (3.1) is essentially characterized by the values of the \(kN \) exponents \(\lambda_{ms} \). For instance clearly if these exponents are all purely imaginary (and all different among themselves), then all solutions of the dynamical system (3.1) will, for all time, remain confined to a finite region of the complex \(c \)-plane, and if moreover all the \(kN \) exponents \(\lambda_{ms} \) are (different) rational multiples of the same imaginary number \(i\omega \), \(\lambda_m = \frac{q_m}{p_m} \omega \) with \(q_m \) and \(p_m \) coprime real integers and \(p_m > 0 \), then the system (3.1) is isochronous, all its solutions being periodic with period \(T = 2\pi p/\omega \),

\[c_m(t+T) = c_m(t) , \]

(3.3)

where of course the integer \(p \) is the Minimum Common Multiple of the \(N \) integers \(p_m \). Likewise, if some of the exponents \(\lambda_{ms} \) have the features we just described and the remaining ones are complex numbers all featuring a negative real part, then the corresponding dynamical system is clearly asymptotically isochronous.

It is then plain that also solvable is the, also autonomous but nonlinearly coupled, dynamical system the solutions of which are identified as the \(N \) zeros of the polynomial \(p_N(z;\tau) \), see (1.1a), with the coefficients \(c_m(t) \) satisfying the system (3.1). And—on the basis of the above treatment—it is clear that the equations of motions of this dynamical system can be explicitly written as follows:

\[c_n^{(k)}(t) = \left\{ \prod_{\ell=1}^{N} \left[z_n(t) - z_\ell(t) \right] \right\}^{-1} \cdot \left(\sum_{s=2}^{\min(N,k)} \hat{b}_{N,k,n,s}(t) - \sum_{m=1}^{N} \left\{ \left[z_n(t) \right]^{N-m} \sum_{s=1}^{k} a_{ms} c_m^{(s-1)}(t) \right\} \right) , \]

(3.4a)

with the quantities \(\hat{b}_{N,k,n,s}(t) \) expressed in terms of the \(N \) quantities \(z_\ell(t) \) and their time-derivatives of order less than \(k \) by (2.7b), and with the quantities \(c_m^{(s-1)}(t) \) also expressed in terms of the \(N \) quantities \(z_\ell(t) \) and their time-derivatives of order less than \(k \) by (1.1b) and by the time-derivatives of this formula of order less than \(k \),

\[c_m^{(s-1)}(t) = \left(\frac{-1}{m!} \right)^{s-1} \sum_{n_1,n_2,\ldots,n_m=1}^{N} \left[\prod_{\ell=1}^{m} [z_{n_\ell}(t)] \right] , \quad m = 1, 2, \ldots, N , \quad s = 1, 2, \ldots, k . \]

(3.4b)

And it is moreover plain that this nonlinear dynamical system, featuring the \(kN \) arbitrary constants \(a_{ms} \)—the solvable character of which we believe to be a novel finding—also inherits properties of the system (3.1), for instance those described in Remark 3.2; except for the fact that, in the isochronous cases—and likewise in the asymptotically isochronous cases—the period might turn
out to be an integer multiple of T, due to the fact that the N zeros $z_n(t)$ of a time-dependent polynomial $p_N(z; t)$ which is periodic with period T are certainly also all periodic, but possibly with a larger period νT, with ν a positive integer, $\nu \leq N!$ (for a discussion in an analogous context of the relevance of this phenomenon see [17]).

To illustrate this finding—and to display a remarkable isochronous system featuring many arbitrary (but rational) parameters—let us report the following:

Remark 3.3. The dynamical system (3.4) with (2.7b) is isochronous provided the Nk constants a_{ms} are given by the following formulas:

$$a_{ms} = -\left(\frac{-i \omega}{s!}\right)^s \sum_{k_1, k_2, \ldots, k_s = 1}^k r_{mk_1} r_{mk_2} \cdots r_{mk_s},$$

(3.5a)

in terms of the arbitrary (nonvanishing) real parameter ω and of the Nk real rational numbers r_{ms}—which are also arbitrary, except for the restriction to be all different among themselves,

$$r_{ms} = \frac{q_{ms}}{p_{ms}}, \quad m = 1, 2, \ldots, N, \quad s = 1, 2, \ldots, k; \quad r_{ms} \neq r_{m's'} \text{ unless } m = m', s = s',$$

(3.5b)

with q_{ms} and p_{ms} arbitrary coprime real integers and, for definiteness, $p_{ms} > 0$. Indeed then all its generic solutions—except for a set of nongeneric solutions which are singular due to "particle collisions"—are then periodic, $z_n(t + T) = z_n(t)$, with the overall period

$$T = (N!)^p \left(\frac{2\pi}{\omega}\right), \quad p = \text{MinCommMult} [p_{ms}];$$

(3.5c)

but of course there also are sets of generic initial data yielding solutions with periods which are integer submultiples of T.

The formulation of the analogous but more general result encompassing asymptotically isochronous systems is left to the interested reader.

Let us conclude this paper with the following two rather elementary remarks, which underscore the interest of the solvable dynamical system described above.

Remark 3.4. For any even integer $k = 2S$ with S any positive integer, the solvable dynamical system (3.4) can be rephrased as a system of equations of motion of Newtonian type ("accelerations equal forces") describing the evolution of SN unit-mass particles the coordinates of which can be denoted as $w_{ns} = w_{ns}(t)$, by rephrasing the equations of motion (3.4)—which themselves read (in self-evident notation: identify the right-hand side of the following equation with the right-hand side of (3.4))

$$\ddot{z}^{(k)}_{ns} = f_{nk} \left(\ddot{z}, z^{(2)}, \ldots, z^{(2S-2)}; \dddot{z}, \dddot{z} (2), \ldots, \dddot{z} (2S-2)\right)$$

(3.6a)

—by setting

$$z^{(2S-2)}_{ns} = w_{ns}, \quad s = 1, 2, \ldots, S;$$

(3.6b)
so that the equations of motion in terms of the new dependent variables \(w_{ns} \equiv w_{ns}(t) \) then read as follows:

\[
\ddot{w}_{n,s} = w_{n,s-1}, \quad s = 1, 2, \ldots, S - 1, \\
\ddot{w}_{n,S} = f_{nk} \left(\ddot{w}_1, \ddot{w}_2, \ldots, \ddot{w}_S; \ \dddot{w}_1, \ \dddot{w}_2, \ \dddot{w}_S \right).
\]

(3.6c)

Here of course the superimposed arrows denote \(S \)-vectors.

Remark 3.5. The equations of motion (3.4), as well as the Newtonian equations of motion presented in the preceding **Remark 3.4**, are clearly *invariant* under a constant rescaling of the dependent variables, \(z_n \Rightarrow Cz_n \) and likewise \(w_{ns} \Rightarrow Cw_{ns} \) with \(C \) an *arbitrary nonvanishing complex* constant, \(\dot{C} = 0 \); hence in particular they are *invariant under rotations* around the origin of the complex \(z \)-plane, i.e. under the transformations \(z_n \Rightarrow \exp(i \theta) z_n \) and likewise \(w_{ns} \Rightarrow \exp(i \theta) w_{ns} \) with \(\theta \) an *arbitrary constant* angle. This indicates the possible interest of an additional reformulation of these *solvable* many-body problems in terms of unit-mass particles moving in the *real* Cartesian \(xy \)-plane—their positions being identified by the *real* 2-vectors \(\vec{r}_n = (x_n, y_n) \) where \(z_n = x_n + iy_n \) or \(\vec{r}_{ns} = (x_{ns}, y_{ns}) \) where \(w_{ns} = x_{ns} + iy_{ns} \).

Appendix: explicit display of the formula (2.9) in special cases

In this Appendix we display the formula (2.9) for \(k = 1, 2, 3, 4, 5, 6 \) and \(N \geq k \); and for \(N = 2 \) and \(k \geq N \). The diligent reader will verify that, for \(k = 1, 2, 3, 4 \), the formulas (3.7a)-(3.7d) displayed below are consistent with the findings obtained previously [1, 5].

Notation A. As above, \(z^{(k)} \equiv z^{(k)}(t) \equiv \frac{d^k}{dt^k} z(t) \) and \(c^{(k)} \equiv c^{(k)}(t) \equiv \frac{d^k}{dt^k} c(t) \); and recall **Notation 1.1** for the significance of the symbol \(\sum_{*ns} \).

\[
\begin{align*}
\zeta_n^{(1)} &= - \left[\prod_{\ell=1, \ell \neq n}^N (z_n - z_\ell) \right]^{-1} \sum_{m=1}^N \left[c_m^{(1)} (z_n)^{N-m} \right],
\quad \text{(3.7a)} \\
\zeta_n^{(2)} &= \sum_{\ell=1, \ell \neq n}^N \left(\frac{2 \zeta_n^{(1)} \zeta_\ell^{(1)}}{z_n - z_\ell} \right) \\
&- \left[\prod_{\ell=1, \ell \neq n}^N (z_n - z_\ell) \right]^{-1} \sum_{m=1}^N \left[c_m^{(2)} (z_n)^{N-m} \right],
\quad \text{(3.7b)}
\end{align*}
\]
\[\begin{align*}
z_n^{(3)} &= 3 \sum_{\ell=1}^N \sum_{\ell \neq n}^{N} \left(\frac{z_n^{(2)} z_{\ell}^{(1)} + z_n^{(2)} z_{\ell}^{(1)}}{z_n - z_{\ell}} \right) \\
-3 \sum_{\ell_1, \ell_2 = 1}^{N} \sum_{s, n} \left[\frac{z_n^{(1)} z_{\ell_1}^{(1)} z_{\ell_2}^{(1)}}{(z_n - z_{\ell_1})(z_n - z_{\ell_2})} \right] \\
- \left[\prod_{\ell = 1, \ell \neq n} \frac{1}{z_n - z_{\ell}} \right]^{-1} \sum_{m = 1}^{N} \left[c_m^{(3)} (z_n)^{N-m} \right], \quad (3.7c) \\
\end{align*} \]

\[\begin{align*}
z_n^{(4)} &= \sum_{\ell = 1, \ell \neq n}^{N} \left(\frac{4 z_n^{(3)} z_{\ell}^{(1)} + 4 z_n^{(3)} z_{\ell}^{(1)} + 6 z_n^{(2)} z_{\ell}^{(2)}}{z_n - z_{\ell}} \right) \\
-6 \sum_{\ell_1, \ell_2 = 1}^{N} \sum_{s, n} \left[\frac{z_n^{(2)} z_{\ell_1}^{(1)} z_{\ell_2}^{(1)} + 2 z_n^{(2)} z_{\ell_1}^{(1)} z_{\ell_2}^{(1)}}{(z_n - z_{\ell_1})(z_n - z_{\ell_2})} \right] \\
+4 \sum_{\ell_1, \ell_2, \ell_3 = 1}^{N} \sum_{s, n} \left[\frac{z_n^{(1)} z_{\ell_1}^{(1)} z_{\ell_2}^{(1)} z_{\ell_3}^{(1)}}{(z_n - z_{\ell_1})(z_n - z_{\ell_2})(z_n - z_{\ell_3})} \right] \\
- \left[\prod_{\ell = 1, \ell \neq n} \frac{1}{z_n - z_{\ell}} \right]^{-1} \sum_{m = 1}^{N} \left[c_m^{(4)} (z_n)^{N-m} \right], \quad (3.7d) \\
\end{align*} \]

\[\begin{align*}
z_n^{(5)} &= 5 \sum_{\ell = 1, \ell \neq n}^{N} \left(\frac{z_n^{(4)} z_{\ell}^{(1)} + z_n^{(4)} z_{\ell}^{(1)} + 2 (z_n^{(3)} z_{\ell}^{(2)} + z_n^{(3)} z_{\ell}^{(2)})}{z_n - z_{\ell}} \right) \\
-5 \sum_{\ell_1, \ell_2 = 1}^{N} \sum_{s, n} \left[\frac{2 z_n^{(3)} z_{\ell_1}^{(1)} z_{\ell_2}^{(1)} + 4 z_n^{(3)} z_{\ell_1}^{(1)} z_{\ell_2}^{(1)}}{(z_n - z_{\ell_1})(z_n - z_{\ell_2})} \right] \\
+10 \sum_{\ell_1, \ell_2, \ell_3 = 1}^{N} \sum_{s, n} \left[\frac{z_n^{(2)} z_{\ell_1}^{(1)} z_{\ell_2}^{(1)} z_{\ell_3}^{(1)} + 3 z_n^{(2)} z_{\ell_1}^{(1)} z_{\ell_2}^{(1)} z_{\ell_3}^{(1)}}{(z_n - z_{\ell_1})(z_n - z_{\ell_2})(z_n - z_{\ell_3})} \right] \\
-5 \sum_{\ell_1, \ell_2, \ell_3, \ell_4 = 1}^{N} \sum_{s, n} \left[\frac{z_n^{(2)} z_{\ell_1}^{(1)} z_{\ell_2}^{(1)} z_{\ell_3}^{(1)} z_{\ell_4}^{(1)}}{(z_n - z_{\ell_1})(z_n - z_{\ell_2})(z_n - z_{\ell_3})(z_n - z_{\ell_4})} \right] \\
- \left[\prod_{\ell = 1, \ell \neq n} \frac{1}{z_n - z_{\ell}} \right]^{-1} \sum_{m = 1}^{N} \left[c_m^{(5)} (z_n)^{N-m} \right], \quad (3.7e) \\
\end{align*} \]
$M. ~ Bruschi ~ and ~ F. ~ Calogero / A ~ convenient ~ expression ~ of ~ the ~ time-derivative ~ $ $z_n^{(k)} (t)$

$$z_n^{(6)} = \sum_{\ell=1; \ell \neq n}^{N} 6 \left(z_n^{(5)} z_\ell^{(1)} + z_n^{(5)} z_\ell^{(1)} \right) + 15 \left(z_n^{(4)} z_\ell^{(2)} + z_n^{(4)} z_\ell^{(2)} \right) + 20 \left(z_n^{(3)} z_\ell^{(3)} \right)$$

$$- \sum_{\ell_1, \ell_2=1}^{N} \left[\begin{array}{c} 15 \left(z_n^{(4)} z_{\ell_1}^{(1)} z_{\ell_2}^{(1)} + 30 z_n^{(1)} z_{\ell_1}^{(4)} z_{\ell_2}^{(1)} + 60 z_n^{(1)} z_{\ell_1}^{(2)} z_{\ell_2}^{(2)} \right) \\ + 60 \left(z_n^{(2)} z_{\ell_1}^{(3)} z_{\ell_2}^{(1)} + 60 z_n^{(3)} z_{\ell_1}^{(3)} z_{\ell_2}^{(2)} + 45 z_n^{(2)} z_{\ell_1}^{(2)} z_{\ell_2}^{(2)} \right) \\ (z_n - z_\ell) (z_n - z_{\ell_2}) \end{array} \right]$$

$$+ 10 \sum_{\ell_1, \ell_2, \ell_3=1}^{N} \left[\begin{array}{c} 2 \left(z_n^{(3)} z_{\ell_1}^{(1)} z_{\ell_2}^{(1)} z_{\ell_3}^{(1)} + 6 z_n^{(1)} z_{\ell_1}^{(3)} z_{\ell_2}^{(1)} z_{\ell_3}^{(1)} \right) \\ + 9 z_n^{(2)} z_{\ell_1}^{(2)} z_{\ell_2}^{(1)} z_{\ell_3}^{(1)} + 9 z_n^{(1)} z_{\ell_1}^{(2)} z_{\ell_2}^{(2)} z_{\ell_3}^{(1)} \right) \\ (z_n - z_\ell) (z_n - z_{\ell_2}) (z_n - z_{\ell_3}) \end{array} \right]$$

$$- \left[\prod_{\ell=1, \ell \neq n}^{N} \left(z_n - z_\ell \right) \right]^{-1} \sum_{m=1}^{N} \left[c_m^{(6)} \left(z_n \right)^{N-m} \right]. \quad (3.7f)$$

For $N = 2$ and $k \geq 2$,

$$z_n^{(k)} = \left(z_n - z_{\bar{n}(n)} \right)^{-1} \left\{ \sum_{k_1=1}^{k-1} \left[\begin{array}{c} k \\ k_1 \end{array} \right] \frac{k!}{(k-k_1)! k_1!} z_n^{(k-k_1)} z_n^{(k_1)} \right\} \left[c_m^{(k)} \left(z_n \right)^{2-m} \right], \quad n = 1, 2, \quad \bar{n}(1) = 2, \quad \bar{n}(2) = 1. \quad (3.8)$$

References

[1] F. Calogero, “New solvable variants of the goldfish many-body problem”, Studies Appl. Math. (in press, available online). DOI: 10.1111/sapm.12096.

[2] O. Bihun and F. Calogero, “A new solvable many-body problem of goldfish type”, J. Nonlinear Math. Phys. 23, 28-46 (2016). DOI: 10.1080/14029251.2016.1135638. arXiv:1507.03959 [math-ph].

[3] F. Calogero, “A solvable N-body problem of goldfish type featuring N^2 arbitrary coupling constants”, J. Nonlinear Math. Phys. 23, 300-305 (2016). DOI: 10.1080/14029251.2016.1175823.

[4] O. Bihun and F. Calogero, “A new solvable many-body problem of goldfish type”, J. Nonlinear Math. Phys. 23, 28-46 (2016). arXiv:1507.03959 [math-ph]. DOI: 10.1080/14029251.2016.1135638.

[5] O. Bihun and F. Calogero, “Novel solvable many-body problems”, J. Nonlinear Math. Phys. 23, 190-212 (2016). DOI: 10.1080/14029251.2016.1161260.

[6] https://en.wikipedia.org/wiki/Multinomial_theorem

[7] F. Calogero and D. Gómez-Ullate, "Asymptotically isochronous systems", J. Nonlinear Math. Phys. 15, 410-426 (2008).

[8] F. Calogero, Isochronous systems, Oxford University Press, Oxford, 2008 (264 pages); marginally updated paperback edition, 2012.
[9] F. Calogero, D. Gómez-Ullate, P. M. Santini and M. Sommacal, “The transition from regular to irregular motions, explained as travel on Riemann surfaces”, J. Phys. A: Math. Gen. 38, 8873-8896 (2005), arXiv:nlin.SI/0507024 v1 13 Jul 2005.

[10] M. Sommacal, The transition from regular to irregular motion, explained as travel on Riemann surfaces, PhD thesis, SISSA, Trieste, 2005.

[11] P. G. Grinevich and P. M. Santini, ”Newtonian dynamics in the plane corresponding to straight and cyclic motions on the hyperelliptic curve $\mu^2 = \nu^n - 1$, $n \in \mathbb{Z}$: Ergodicity, isochrony and fractals”, Physica D 232, 22-32 (2007).

[12] F. Calogero, D. Gómez-Ullate, P. M. Santini and M. Sommacal, “Towards a theory of chaos explained as travel on Riemann surfaces”, J. Phys. A.: Math. Theor. 42 015205 (26 pages) (2009) doi: 10.1088/1751-8113/42/1/015205.

[13] D. Gómez-Ullate, P. M. Santini, M. Sommacal and F. Calogero, “Understanding complex dynamics by means of an associated Riemann surface”, Physica D 241, 1291-1305 (2012).

[14] F. Calogero, “Novel isochronous N-body problems featuring N arbitrary rational coupling constants”, J. Math. Phys. 57, 072901 (2016); http://dx.doi.org/10.1063/1.4954851.

[15] F. Calogero, “New classes of solvable N-body problems of goldfish type with many arbitrary coupling constants”, Symmetry 8, 53 (16 pages) (2016). DOI:10.3390/sym8070053.

[16] F. Calogero, “Yet another class of new solvable N-body problem of goldfish type”, Qualit. Theory Dyn. Syst. (in press).

[17] D. Gómez-Ullate and M. Sommacal, ”Periods of the goldfish many-body problem”, J. Nonlinear Math. Phys. 12, Suppl. 1, 351-362 (2005).