Preparation of iron oxide nanopowders by the radiation-chemical method

To cite this article: M E Balezin et al 2021 J. Phys.: Conf. Ser. 2064 012086

You may also like

- Magnetic properties of bulk nanocrystalline cobalt ferrite obtained by high-pressure field assisted sintering
 Angelica Baldini, Michele Petrecca, Claudio Sangregorio et al.

- Structural, optical, and luminescence properties of CaO–doped Ca–Li hydroxyapatite nanopowders prepared by mechanochemical synthesis
 Ravindranadh Koutavarapu, Ch Venkata Reddy, M C Rao et al.

- Nanopowders M₂O₃ (M = Y, La, Yb, Nd) with spherical particles and laser ceramics based on them
 S N Bagayev, A A Kaminskii, Yu L, Kopylov et al.
Preparation of iron oxide nanopowders by the radiation-chemical method

M E Balezin¹, S Y Sokovnin¹,² and M A Uimin¹,³

¹Institute of Electrophysics, 106 Amundsena St., Yekaterinburg, 620016, Russia
²Ural Federal University, 19 Mira St., Yekaterinburg, 620002, Russia
³M N Mikheev Institute of Metal Physics, 18 S. Kovalevskaya St., Yekaterinburg, 620108, Russia

E-mail: mk@iep.uran.ru

Abstract. Various magnetic nanopowders of iron oxide were obtained using the radiation-chemical method when irradiated with a nanosecond electron beam. The main physical and chemical characteristics of the prepared nanopowders were studied, such as structure, porosity, thermal resistance and magnetic properties. It was found that, by selecting precursors and the composition of the solution, it is possible to control not only the textural properties and yield of the obtained nanopowders (by changing the dose and dose rate intensity of the electron beam), but also to obtain crystalline or amorphous nanopowders, on which their magnetic properties depend.

1. Introduction

Magnetic iron oxide nanoparticles are of particular interest for research in biology and medicine [1-3]. The main requirements determining the effectiveness of nanoparticles for use in the medical and pharmaceutical sphere are biocompatibility and non-toxicity. Various products are being developed based on iron oxide nanoparticles. Including: contrast agents for magnetic resonance imaging; magnetically controlled drugs of chemotherapeutic, diagnostic and hyperthermic effect for directed drug delivery; magnetic sorbents for isolation of cell populations, subcellular cultures, proteins and DNA. Due to chemical activity it is possible to use oxide nanoparticles to suppress the growth of pathogenic bacteria. Including antibiotic-resistant ones highly pure weakly agglomerated nanopowders (NP) of complex iron oxide composition are widely used. For example, the use of NP based on iron oxide is shown for the producing of fuel cells on solid solutions, the synthesis of highly transparent laser ceramics, in medicine, etc.

There are many different methods of producing NP one of which is radiation-chemical [4]. The essence of the radiation-chemical method of producing NP is the initiation by a nanosecond electron beam of a chemical reaction in solutions of precursors, leading to the formation of an insoluble compound falling out as NP. The purpose of this work was to obtain and study the properties of NP iron oxide by the radiation-chemical method.

2. Materials and methods
Iron copperas (FeSO$_4$·7H$_2$O) and iron nitrate (Fe(NO$_3$)$_3$) were used as precursors, 0.6 g of which were dissolved in 100 ml of water and isopropyl alcohol, respectively. Irradiation was carried out on a repetitive nanosecond electron accelerator URT-0.5 [5] (electron energy 0.5 MeV, pulse duration 50 ns, electron beam current about 300 A). Irradiation was carried out at different repetition rates of the accelerator (3, 10 and 30 pps). This allowed to enter different values of the absorbed dose at different dose rates and therefore to independently control both the rate and the yield of the chemical reaction.

The X-ray diffractograms were taken on the D8 DISCOVER diffractometer on copper radiation (Cu K$_\alpha$ $\lambda=1.542$ Å) with a graphite monochromator on a diffracted beam. Processing was performed using TOPAS 3. While estimating the average size of crystallites (CSR) was used the correction factor K (in the Scherer formula) = 0.89. Nitrogen adsorption and desorption isotherms at 77 K were obtained using Micromeritics TriStar 3000 V6.03 A. Magnetic measurements were carried out using a Faraday balance at a temperature of 300 K.

3. Results and discussions

The results of the measurement of the specific surface area (S_{ss}) of the NP obtained by irradiation of the iron copperas and nitrate solutions are shown in tables 1 and 2 respectively.

No.	Sample	Repetition rate (pps)	Pulse number	Dose (kGy)	S_{ss} (m²/g)	Yield (µg)
1	51	3	51	41.5	12.57	14.06
2	150/10	10	150	122	10.9	19.90
3	450/10	10	450	366	7.37	40.83
4	900/10	10	900	772	5.67	67.89
5	2700/10	10	2700	2317	12.09	116.57
6	450/30	30	450	366	9.57	34.75
7	900/30	30	900	772	7.71	64.8
8	2700/30	30	2700	2317	8.91	119.97

Table 2. Results of the irradiation of solution Fe(NO$_3$)$_3$.

No.	Sample	Repetition rate (pps)	Pulse number	Dose (kGy)	S_{ss} (m²/g)	Pore volume (cm2/g)	Pore size (nm)
1	FeO, 450/10	10	450	366	181	0.059	15.6
2	FeO, 900/10	10	900	772	186	0.051	20.4
3	FeO, 2700/10	10	2700	2317	45.72	0.071	10.5

Table 3. X-ray phase analysis results.

Sample	Maghemite C	Interval (Å)
Fe 2700/10	≈ 2.4	a ≈ 8.43 (± 0.60)
Fe 2700/30	≈ 2.2	a ≈ 8.32 (± 0.51)
Fe 51	≈ 1.9	a ≈ 8.32 (± 0.86)
FeO, 2700/10	Material is amorphous	

From these, it can be seen that when the iron copperas was irradiated, the largest S_{ss} reached 12.57 m²/g (pore volume was 0.06 cm²/g. and their average size was 16.5 nm) at a minimum dose and
dose rate. At the same time the yield of NP increased by 8.5 times with a dose increase of 55 times - from 14.06 to 119.97 μg of NP (table 1). Nonlinear connection of specific surface of obtained NP and its output in radiation-chemical reaction was previously established by us during production of NP silver [6].

Figure 1. X-ray phase analysis results for different NP samples, produced by copperas irradiation, for reference the card γ – Fe (PDF no. 01-083-0112).

According to X-ray phase analysis when irradiating copperas, the resulting NP is single-phase: Maghemite C, γ-Fe_{21.33}O_{32}, the lattice is cubic (a ≈ 8.40±0.57 Å), CSR ≈ 2.3 nm (table 3, figure 1) wherein the resulting material is amorphous upon irradiation of the nitrate.

The magnetic susceptibility of the NP also depends on the composition of the solution to be irradiated. When the copperas is irradiated, powders with the usual type of curve are obtained. While the NP produced by irradiation of iron nitrate in isopropyl alcohol has a reverse slope. Figure 2 shows the results of measurement of magnetic susceptibility of iron oxide NP in various production modes.

Figure 2. Magnetic susceptibility of iron oxide NP in various production modes (curves with "ak IS" index are for NPs when irradiating iron nitrate in isopropyl alcohol).
4. Conclusion
It has thus been found that various NPs of iron oxide can be obtained using the radiation-chemical method when irradiated with a nanosecond electron beam. By selecting precursors and the composition of the solution, it is possible to control not only the textural properties and yield of the obtained NPs (changing the dose and dose rate intensity of the electron beam), but also to obtain crystalline or amorphous NPs, on which their magnetic properties depend.

Acknowledgments
The reported study was funded by RFBR and GACR, project number 20-58-26002.

References
[1] Gubin S P, Koksharov Yu A, Homutov G B and Yurkov G Yu 2005 Russ. Chem. Rev. 74 489–520
[2] Lu A H, Salabas E L and Schuth F 2007 Angew. Chem. Int. Edit. 46 1222–44
[3] Laurent S, Forge D, Port M, Roch A, Robic C, Elst L V and Muller R N 2008 Chem. Rev. 108 2064–110
[4] Sokovnin S Yu and Balezin M E 2012 Ferroelectrics 436 108–11
[5] Kotov Yu A, Sokovnin S Yu and Balezin M E 2000 Instrum. Exp. Tech. 43 102–5
[6] Sokovnin S Yu, Balezin M E and Kiseleva M A 2021 Radiat. Phys. Chem. 179 109218