Introduction

Statin use is a family of drugs that directly inhibit the catalytic active site of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, the rate-limiting enzyme that catalyzes the conversion of HMG-CoA into mevalonate within the cholesterol biosynthesis pathway.\(^1\) Used by an estimated 24 million adults alone in the United States,\(^2\) statins are widely prescribed in the primary treatment of hypercholesterolemia and cardiovascular disease.\(^3\) Accumulating clinical and preclinical evidence suggests that statins may also prevent prostate carcinogenesis by (i) lowering serum and tissue cholesterol levels, which can disrupt cellular lipid rafts leading to reduced raft-dependent signaling and reduced prostate cancer cell proliferation and survival;\(^4\) (ii) inhibiting isoprenoid synthesis, preventing anchorage to the plasma membrane and activation of small GTPase proteins, which play a pivotal role in cellular proliferation, differentiation, apoptosis, and migration;\(^5\) and (iii) reducing the secretion of pro-inflammatory cytokines.\(^6\)

Clinical Studies on Statins and Prostate Cancer

The majority of clinical data evaluating the use of statins on the inhibition of prostate cancer development and progression stem from observational (case–control or cohort) studies utilizing large databases or meta-analyses of statin randomized clinical trials (RCTs). Results from these observational studies and meta-analyses have been mixed, likely due to the limitations of these types of studies. Meta-analyses of randomized, controlled cardiovascular disease clinical trials on statins are not well suited to address potential effects of long-term use on prostate cancer incidence. The primary endpoint of these RCTs was to evaluate the effect of statin treatment on primary or secondary prevention of cardiovascular disease; the effect of statin treatment on overall cancer or prostate cancer risks was evaluated as secondary endpoints. The number of these RCTs evaluating statins is a limiting factor, and the clinical trials were underpowered to detect any significant effect on prostate cancer risk. Additionally, the duration of statin administration and follow-up periods may have been too short to suffice any clinically significant effect on prostate cancer prevention and any relationship between statin use and different prostate cancer stage or Gleason grade has not been evaluated. Not surprisingly, all but one of these meta-analyses detected no significant effect of statin use on prostate cancer risk.\(^7\)–\(^11\) The meta-analysis performed by Bonovas et al\(^12\) was the only study...
to ascertain a significantly reduced incidence of advanced prostate cancer in subjects prescribed with statins; however, no relationship between statin use and overall prostate cancer risk was demonstrated in these earlier studies. Because of their significant disadvantages, meta-analyses of the statin RCTs should not be considered confirmatory evidence of an insignificant role of statins in the prevention of prostate carcinogenesis.

A longitudinal study design and mixed model analysis was conducted by Algortar et al., and the results were inconclusive; neither a positive nor a negative correlation was found between prostate cancer risk and statin use. This study was conducted only for 3.5 years, and it did not address other medicines taken, comorbidities, or examine and standardize dosages of statin. However, a population-based retrospective cohort study that looked more specifically at the usage of statins after prostate cancer diagnosis did find a statistically significant reduction in prostate cancer mortality. Comorbidities were taken into account, and a dose- and time-dependent relationship was observed, with a greater risk reduction found in patients who used statins before diagnosis as well as throughout their treatment. This study did not examine serum prostate-specific antigen (PSA) concentration or grade of cancer; rather, it focused on prostate cancer mortality in relationship to post-diagnosis statin use. Longer and higher dosages led to a lower incidence in mortality, as well as distant site metastasis, with a 23% decreased risk with lipophilic statins and a 35% decreased risk with hydrophilic statins. Another retrospective cohort study by Nordström et al. found a significantly increased risk of finding prostate cancer and high-grade tumor when compared to men who did not take statin. The PSA levels measured after diagnosis was, on average, 8% lower in men who used statins when compared to nonusers. This study did not account for comorbidities, although it did acknowledge them. A regression model adjusted for coexisting medication, but did not account for preexisting conditions, such as obesity, hypertension, and diabetes, which are conditions that can often increase the risk for prostate cancer. A 10-year retrospective cohort study by Farwell et al. compared statin use in veteran population taking antihypertensive medications and found that, on average, statin users had a 31% lower risk of prostate cancer incidence. More specifically, men were 14% less likely to be diagnosed with low-grade prostate cancer and 60% less likely to be diagnosed with high-grade prostate cancer. The study by Platz et al. indicated no statistically significant difference in prostate cancer risk between statin users and non-statin users, whereas another study by Moon et al. adjusted for serum PSA levels noted an association between statin use and reduced risk of diagnosis of prostate cancer, as well as a reduced risk of aggressive and fatal prostate cancer. Observational studies have the advantages of large sample size and minimal information bias; however, the number of prostate cancer cases is small compared to total sample size and the study can be biased if not statistically adjusted for PSA testing and serum PSA levels. PSA, a protease produced and secreted by the prostate gland, is used as a serum biomarker for the early detection of prostate cancer and other prostatic disorders.

In clinical studies, statin use is associated with an increase in PSA testing, lower PSA levels, and fewer prostate biopsies. Therefore, statistical adjustment for PSA testing and serum PSA levels is critical for the credibility of results from observational studies evaluating the effect of statins on prostate cancer incidence. Studies not controlled for PSA testing did not detect a significant reduction in prostate cancer risk, or they even reported an increased risk, whereas the vast majority of observational studies with statistical adjustment for PSA testing reported an inverse association between statin use and either overall prostate cancer incidence or advanced prostate cancer risk (only a handful of PSA-adjusted observational studies demonstrated no effect between statin use and prostate cancer incidence) (Table 1). In an effort to eliminate bias caused by opportunistic PSA testing and fluctuations in PSA level, an observational study by Murtopa et al. used patients from the Finnish Prostate Cancer Screening Trial, a population of men frequently and systematically screened for prostate cancer, eliminating any detection bias between statin users and nonusers. This study reported a dose-dependent, significant inverse association between overall prostate cancer incidence and statin use, with the strongest inverse association for early-stage prostate cancer.

Results obtained from observational studies suggest that patients using statins may have a different risk profile for prostate cancer compared to nonusers. Statin users may have different access to health care, leading to more frequent PSA testing. This creates the potential for increased detection of localized disease at the expense of advanced prostate cancer, potentially lending the appearance of an increased risk of localized disease or a protective effect against advanced-stage prostate cancer. As demonstrated by a recent simulation study by Mondul et al., detection bias due to medical practices may explain the positive association between statin use and total prostate cancer incidence, especially in populations with low prevalence of PSA screening, such as in many European countries; however, this bias is unlikely the cause of the inverse association between statin use and advanced-stage disease observed in several cohort and case-control studies. Statin users are more likely to be overweight and obese compared to nonusers; therefore, the association between statin use and reduced serum PSA may be due to hemodilution. Lower PSA levels may delay referral for prostate biopsy, leaving statin users underdiagnosed with prostate cancer and creating the appearance of reduced prostate cancer risk. Patients prescribed statins usually have elevated serum cholesterol levels. Increased levels of serum cholesterol are associated with higher risk of total and high-grade prostate cancer (Table 1); therefore, increased serum and tissue cholesterol levels may be promoting prostate carcinogenesis in patients taking statins, leading some observational
REFERENCE	DATA SOURCE	FOLLOW UP (YEARS)	AGE	SUBJECTS N	STATIN DOSAGE	PSA LEVELS	TUMOR STAGE/ GLEASON SCORE	RESULTS	
Bonovas et al.	Meta-analysis of epidemiological studies; 19 studies; 6 RCT, 6 cohort, 7 case-control							Negative	
Algotar et al.	Negative biopsy trial-randomized double blind, placebo-controlled phase 3 trial	3.5	1.66 (6.7)	1.171	1.6.9 (6.2)	1.6.9 (6.2)	Mean (sd)	Inconclusive	
Yu et al.	United Kingdom National Cancer Registry - Clinical Practice Research Datalink - Hospital Episode Statistics Database - Office for National Statistics Database - Population based retrospective cohort study	4.4 (2.9)	1.71.9 (7.5)	2.71.1 (9.3)	1.3407	1.>10: 54.6%	2.>10: 57.0%	Negative	
Nordström et al.	Retrospective cohort - All PSA tested men in Stockholm, Sweden	4	1.64.1 (10.7)	2.54.0 (12)	1.26432	1.1.2 (1.91) (ng/mL)	2. .98 (1.2) median (IQR)	Negative	
Farwell et al.	Veterans affairs New England Healthcare System - Retrospective Cohort	5.6	1.66.3 (10.4)	1.41078	Mean = 26.2 mg (22.2)	1. >7: 29%	2. >7: 23%	Negative	
Platz et al.	Cohort - Prostate Cancer Prevention Trial	7	1.63.3	2.63.3	1.2249	1.1.19 (ng/mL)	2. 1.24	Inconclusive	
Moon et al.	Analysis of epidemiological studies	N/A	N/A	N/A	N/A	N/A	N/A	Negative	
Fowke et al.	Nashville Mens Health Study		65.1 years	1.783	1.6.1 ng/mL	2.6.8 ng/mL	1. >7: 19%	2. >7: 18.7%	Inconclusive
Blais et al.	Régie de l’Assurance-Maladie du Québec	2.7		6721				Inconclusive	
Graaf et al.	PHARMO record linkage system	7.2		3789				Negative	
Friis et al.	Pharmacoepidemiological Prescription Database of North Jutland	3.3	1.60.7	2.53.9	12251			Negative	
Coogan et al.	Patients admitted to participating hospitals in New York, Philadelphia, and Baltimore							Inconclusive	
Kaye et al.	General Practice Research Database			1.62				Positive	
Murtola et al.	Finnish Cancer Registry	7 years	69 years	25.029				Positive	

(Continued)
Table 1. (Continued)

REFERENCE	DATA SOURCE	FOLLOW UP (YEARS)	AGE	SUBJECTS	STATIN DOSAGE	PSA LEVELS	TUMOR STAGE/ GLEASON SCORE	RESULTS
Haukka et al, 26	Taiwan National Health Insurance Program	Prostate cancer cases-71.98 Controls-71.95	84,170	Positive				
Shannon et al, 28	Northern and Southern California Kaiser Permanente (KP) members	2.3 years	58 years	Negative				
Flick et al, 29	Veterans affairs New England Healthcare System	5 years	84,170	Negative				
Breau et al, 31	Olmsted County, Minnesota	1.15 7 years						
2. 15.2 years | 1.38 6%—40—49 years
33.4%—50—59 years
22.1% 60—69 years
5.8% 70+
2.49 5% 40—49 years;
21.4% 50—59 years;
17% 60—69 years;
12.1% 70+ years | 1. 4.0 ng/mL = 12.8%
2. >4.0 ng/mL = 25.5% | Negative |
| Murtola et al, 32 | The finnish prostate cancer screening trial | 1. 6.92 years
2. 6.92 years | 55–67 years | Baseline PSA:
1. 1.05
2. 1.10 | Negative |
| Fanwell et al, 33 | Veterans Affairs (VA) New England Healthcare System | 5.6 years | 66.0 years | Mean equiv simvas-tatin dose = 26.2 mg (SD = 22.2 mg) | Negative |
| Platz et al, 34 | Health professionals follow-up study | 5 years | 1. 63.2 years
2. 60.9 years | 1. 4.1078
2. 1.4797 | Negative |
| Tan et al, 36 | Cleveland Clinic | 1. 65.7
2. 63.5 | 1. 1.022
2. 3.182 | 1. .88 (.82–.94)
2. .95 (.92–.99) | Negative |
| Friedman et al, 37 | N/A | N/A | N/A | N/A | N/A | N/A | Inconclusive |
| Mondul et al, 38 | N/A | N/A | N/A | N/A | N/A | N/A | Positive |
| Mener et al, 39 | N/A | N/A | N/A | N/A | N/A | N/A | Negative |
| Morote et al, 40 | N/A | N/A | N/A | N/A | N/A | N/A | Negative |
| Mondul et al, 41 | NHANES | 1. 60.0
2. 53.5 | 1. 1.483
2. 2.091 | 1. .88 (.82–.94)
2. .95 (.92–.99) | Positive |
| Mondul et al, 42 | N/A | N/A | N/A | N/A | N/A | N/A | Positive |
| Study | Institution | Median Age | Follow-up | Statin Users | Non-Statin Users | Statin Use in Prostate Cancer | Non-Statin Use in Prostate Cancer | Conclusion |
|---------------|---|------------|-----------|--------------|------------------|-----------------------------|----------------------------------|-------------|
| Loeb et al | Northwestern University | 1.61 years | 1.504 | 1.4.8 ng/mL | 2.50 ng/mL | 1. >7 = 31.5% | 2. >7 = 31.4% | Inconclusive |
| Mondul et al | Johns Hopkins Hospital | 1.577 years| 1.386 | 1.6.3 ng/mL | 2.71 ng/mL | 1. >7 = 9.0% | 2. >7 = 10.3% | Positive |
| Chao et al | Kaiser Permanente Southern California Cancer Registry | 1.61 years | 1.446 | 1.6.7 ng/mL | 2.71 ng/mL | 1. >7 = 48% | 2. >7 = 44% | Inconclusive |
| Ishak-Howard et al | University of Michigan prostate Cancer Genetic Project | 1.66.5 years | 1.258 | 1.1.37 (SD = 13.4) | 2.2.28 (SD = 23) | 1. >7 = 50.4% | 2. >7 = 51.3% | Inconclusive |
| Allot et al | Shared Equal Access Regional Cancer Hospital Database | 1.1.60.7 years | 1.400 | 1.5.9 ng/mL | 2.7.1 ng/mL | 1. >7 = 29% | 2. >7 = 40% | Negative |
| Moyad et al | Kaiser Permanente Southern California Cancer Registry | 1.6.16.4 years | 1.191 | 1.7.9 (SD = 4.6) | 2.8.6 (SD = 6.1) | 1. >7 = 44% | 2. >7 = 37% | Negative |
| Gutt et al | University of Chicago Pritzker School of Medicine | 1.6.16.9 years | 1.189 | 1.7.2 ng/mL | 2.8.78 ng/mL | 1. >7 = 44% | 2. >7 = 37% | Negative |
| Hamilton et al| Shared Equal Access Regional Cancer Hospital Database (SEARCH) | 1.6.16.2 years | 1.236 | 1.6.2 | 2.6.9 | 1. >7 = 50% | 2. >7 = 38% | Negative |
| Kolmeier et al| Memorial Sloan-Kettering Cancer Center | 1.6.16.6 (SD = 5.6) years | 1.382 | 1. >10 = 27% | 2. >10 = 39% | 1. >7 = 52% | 2. >7 = 55% | Negative |
| Soto et al | University of Michigan Cancer Center | 1.6.16.8 (7.2) years | 1.220 | 1.6.5 ng/mL | 2.8.2 ng/mL | 1. >7 = 15.5% | 2. >7 = 13.7% | Inconclusive |
| Bansal et al | N/A | N/A | N/A | N/A | N/A | N/A | N/A | Negative |
| Melvin et al | N/A | N/A | N/A | N/A | N/A | N/A | N/A | Inconclusive |
| Brown et al | N/A | N/A | N/A | N/A | N/A | N/A | N/A | Negative |

Notes: 1. statin users, 2. non-statin users.
studies to report a positive association between statin use and prostate cancer incidence. Statin users often have other comorbidities, such as diabetes and metabolic syndrome, known to promote prostate cancer development and progression.5 Patients receiving statins may also be advised to implement changes to diet and exercise habits to prevent CVD that may also affect prostate cancer incidence.6 Additionally, statin users more frequently take nonsteroidal anti-inflammatory drugs (NSAIDs) for the prevention of cardiovascular disease;43 NSAIDs have been found to significantly reduce prostate cancer risk59 and may act synergistically with statins to prevent prostate cancer. These biases may result in statin users appearing to have decreased risk for prostate cancer, where in fact adjustments in lifestyle factor(s) associated with cardiovascular disease prevention may be responsible for the decreased risk of prostate cancer.

Limited clinical studies have directly addressed the relationship between statin use and prostate cancer. Two studies analyzed preoperative statin use in a population of patients who underwent radical prostatectomy to determine the influence of statin use on the pathological characteristics of the prostate tumor in prostatectomy specimens.43,44 Statin users in the study by Mondul et al44 were statistically significantly more likely to have organ-confined disease than nonusers, whereas no association between preoperative statin use and organ-confined disease was reported. In the study by Loeb et al,43 statin users were shown to have significantly fewer positive surgical margins and a smaller tumor volume than nonusers;43 however, it was acknowledged that this could be due to increased access to health care and surveillance of statin users, leading to earlier diagnosis. Both studies demonstrated a trend of inverse association between statin use and incidence of Gleason grade ≥ 7 (4 + 3) prostate cancer in radical prostatectomy specimens;43,44 yet, this trend was only statistically significant in the Mondul et al44 study for men with serum PSA concentrations ≥ 10 ng/mL. One study showed no association between statin use and freedom from biochemical recurrence (BCR).57 Another study also examined the probability of BCR after radical prostatectomy and postoperative statin use. There was no dose–response relationship found for statins and prostate cancer BCR,55 but the follow-up time was only after five years, and the authors suggested a longer follow-up time to better determine distant metastatic effect of statins. This was supported by another study conducted by Ishak-Howard et al,46 who also found no association between statin use and BCR when compared to nonusers. The authors did acknowledge that BMI could mediate the relationship between prostate cancer and statin use, which could be a source of confounding and explain the lack of association found between duration of statin use and BCR. Allott et al45 compiled results from the SEARCH database to determine BCR and postoperative statin use and found a significant 36% decreased risk. However, the dose was not recorded, so there is likely a significant amount of variability in type and dosages used after surgery. Additionally, seven studies have investigated the effect of statin use on incidence of prostate cancer recurrence after curative radiation therapy.44-48,53 Five of these clinical studies demonstrated that statin use was associated with significant improvement in freedom from biochemical failure, based upon serum PSA levels (Table 1).44-48,53 Soto et al52 demonstrated that statin use significantly increased progression-free survival time versus nonusers overall; however, when the clinical analysis was limited to the years 1996–2006, when statins were more readily available and prescribed, this association disappeared. Bansal et al53 conducted an analysis of 27 observational studies conducted from 1993 through 2011 and found a 7% reduction in total prostate cancer risk when compared to nonusers, but this was a nonsignificant decreased risk, which they attributed to varying patterns of statin use and major confounding variables, such as PSA levels, BMI, and lifestyle factors.

Melvin et al44 examined the use of population-based data to establish a relationship between statins and cancer, and they determined that there was sizable confounding, and attempts to reduce variability only increased this. The authors determined that there was a need for clinical trials, and causal inference methods cannot make clear associations between statins and the risk of prostate cancer from population-based data. This explains much of the variability seen among population studies done throughout the years and why there cannot be a clear-cut answer regarding the chemopreventative and treatment potential of statins.

Preclinical Studies on Statins and Prostate Cancer

Studies conducted in cell culture have provided information on the potential mechanisms of action by which statins can impart protective effect in prostate cancer. Brown et al55 treated PC-3 cells with lipophilic and hydrophilic statins to determine the relationship between statin use and invasion toward bone marrow stroma. Lipophilic statins significantly reduced the number of colonies in clonogenic assays and bone marrow stroma (BMS) coculture and changed the morphology of cells by inhibiting formation of lamellipodia and distorting trailing edges. Although similar results were not observed with hydrophilic statins, such as pravastatin, this is likely due to its need for active transport in order to cross the cell membrane. This study suggests that the reduction in cholesterol synthesis is not the reason why statins have shown preventative and treatment potential for prostate cancer.55 In vitro studies have further confirmed that statins were active in prostate cancer cells, inducing cell apoptosis, G1 cell cycle arrest, autophagy, and the degradation of androgen receptors. Costa et al56 found that PC-3 cell necrosis could be induced by simvastatin at 10 μM concentrations; however, simvastatin is toxic to humans at that pharmacological dose level. Because simvastatin is lipophilic in nature, it can accumulate into cells as a function of time, supporting the fact that long-term use of statins is warranted in order to determine its chemopreventive effects.
Statins have effects on pathways that regulate apoptosis, angiogenesis, and tumor invasions in vivo.57–60 For example, dysregulation of the mevalonate pathway, involved in p53 expression and tumor promotion in many types of cancer, has been shown in mouse models to stimulate tumor proliferation. Other proposed mechanism(s) for the anticancer properties of statins is through the inhibition of Akt phosphorylation and prenylation of oncogenic proteins such as Ras, Rac, and Rho. These proteins play a role as mediators of tumor growth, mobility, and metastasis, and inhibition of the mevalonate pathway also limits their production. In murine models, statins have been shown to reduce cancer cell proliferation in breast, colon, liver, pancreatic, and ovarian cancers.57–60 Particularly, in breast cancer, a review of prospective, case–control and randomized control trials involving 83,919 patients found significant negative associations between both pre-diagnosis statin use and breast cancer mortality, as well as post-diagnosis statin use and survival.61 Similar large cohort studies are warranted in other types of human cancers as well.

Conclusions

Clinical evidence on the protective effect of statins against prostate cancer is still weak and inconsistent. Several limitations should be taken into consideration when interpreting the results of this review. Data were taken from observational studies and through meta-analyses of major statin randomized control trials, which, upon analysis, have proven to have various disadvantages. The lack of statistical adjustment for PSA testing, serum PSA levels, and concomitant use of NSAIDs in observational studies, and the short duration of statin use and small number of prostate cancer cases leading to low statistical power in meta-analyses of statin RCTs impair results. Furthermore, limited data made it difficult to evaluate the effects of both pre-diagnostic and post-diagnostic statin use in prostate cancer. The strict population selection criteria of statin RCTs also render generalization of the results of meta-analyses implausible. Meta-analyses conducted examining statin use and prostate cancer risk and mortality have conflicting results, and until a way to reduce variability without increasing confounding can be found, conclusive directives cannot be made. More preclinical studies must be performed examining treatment of various prostate cancer cell lines with differing concentrations of statins to establish a dose- and time-dependent relationship. Despite a lack of conclusive evidence, there is a possibility that men receiving prescription statins may have a reduced risk for prostate cancer development. However, physicians should be aware of the potentially harmful effects of statins on prostate carcinogenesis suggested by some experimental studies; low doses of statins may promote angiogenesis, enhancing tumor growth,6 and statins may increase the number of CD4+ CD25+ regulatory T-cells, suppressing tumor-specific T-cell immune responses.6

Recommendations and Future Directions

Statins are a potentially promising class of agents with cholesterol-lowering properties, which could be a significant mechanism by which these drugs might inhibit the carcinogenic process. Statins have pleiotropic effects on other cancer-related processes such as angiogenesis and inflammation, and also on a number of novel molecular targets and complex signaling pathways. The use of statins is increasing, and there is a need to pinpoint the mechanism(s) that underlies the putative anticancer properties of statins, which will be a key in providing the rationale for prospective clinical trials of these drugs in prostate cancer. Although initial effort is needed to determine the class and optimal dose of statins that are sufficient to elicit chemopreventive effects, studies providing evidence that statins target premalignant lesions could be taken to the next level. Relatively small Phase I and II studies could be sufficient to provide information on the biological plausibility of statins in prostate cancer, and continued follow-up will be beneficial for the assessment of the effects of long-term statin use. In summary, statins may inhibit prostate carcinogenesis by suppressing cell growth, angiogenesis/invasion, and induction of apoptosis of prostate tumor cells. The focus now must be placed on preclinical trials to determine the direct relationship between prostate cancer and statin use. Additionally, the optimal timing of statin use is unclear; it can be used pre-diagnosis, post-diagnosis, or posttreatment. There also appears to be a difference between lipophilic and hydrophilic statin use in terms of prostate cancer chemoprevention. Further testing is needed to determine which is more effective. Hopefully, the role of statins in prostate cancer might be elucidated in future randomized, placebo-controlled clinical trials.
30. Farwell WR, Scranton RE, Lawler EV, et al. The association between statins and cancer risk: a meta-analysis. *JAMA*. 2006;295:74–80.

29. Browning DR, Martin RM. Statins and risk of cancer: a systematic review and meta-analysis. *JAMA*. 2008;299:27–36.

28. Knoppa J, Lamminpää A, Pukkala E. Statins and cancer: a systematic review and meta-analysis. *JAMA*. 2008;299:2196–2198.

27. Taylor ML, Wells BJ, Smolak MJ. Statins and cancer: a meta-analysis of case-control studies. *Ann Intern Med*. 2007;146:259–268.

26. Bonovas S, Filioussi K, Sitaras NM. Statin use and the risk of prostate cancer: a meta-analysis of randomized clinical trials and 13 observational studies. *Int J Cancer*. 2008;123:899–904.

25. Algotar AM, Behnejad R, Stratton MS, Stratton SP. Chronic use of NSAIDs and/or statins does not impact longitudinal PSA or PSA velocity in men at high risk for prostate cancer recurrence after surgery. *Cancer Epidemiol Biomarkers Prev*. 2014;23:2196–2198.

24. Yu O, Eberg M, Benayoun S, et al. Use of statins and the risk of death in patients with prostate cancer. *J Clin Oncol*. 2014;32:5–11.

23. Nordström T, Clements M, Karlsson R, Adolfsson J, Grönberg H. The risk of prostate cancer for men on aspirin, statin or antibiotic medications. *Eur J Cancer*. 2015;51:445–451.

22. Farwell WR, D’Avolio LW, Scrafford RE, Lawler EV, Gaziano JM. Statins and prostate cancer diagnosis and grade in a veterans population. *J Natl Cancer Inst*. 2011;103:885–892.

21. Platz EA, Tungas CM, Goodman PJ, et al. Statin use is not associated with prostate cancer risk in men who are regularly screened. *J Urol*. 2014;192:379–384.

20. Moon H, Hill MM, Roberts JM, Gardner RA, Brown AJ. Statins: protectors or pretenders in prostate cancer? *Trends Endocrinol Metab*. 2014;25:188–196.

19. Fowke JH, Motley SS, Barocas DA, et al. The associations between statin use and prostate cancer screening, prostate size, and prostate intraepithelial neoplasia (PIN), and prostate cancer. *Cancer Causes Control*. 2011;22:437–426.

18. Blais L, Desgagné A, LeLorier J. 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors and the risk of a cancer: a case-control study. *Arch Intern Med*. 2000;160:2363–2368.

17. Graaf MR, Eijsackers AE, Eghsht AC, Richel DJ, Guchelaar HJ. The risk of cancer in users of statins. *J Clin Oncol*. 2004;22:2388–2394.

16. Friis S, Poulsen AH, Johnsen SP, et al. Cancer risk among statin users with prostate cancer: a population-based cohort study. *Prostate*. 2011;71:1818–1824.

15. Shannon J, Towedson M, Gazzotto M, et al. Statins and prostate cancer risk: a case-control study. *Am J Epidemiol*. 2005;162:318–325.

14. Boyd BS, Briefbach AB, Eghsht AC, Richel DJ, Guchelaar HJ. The risk of cancer in users of statins. *J Clin Oncol*. 2004;22:2388–2394.

13. Algotar AM, Behnejad R, Stratton MS, Stratton SP. Chronic use of NSAIDs and/or statins does not impact longitudinal PSA or PSA velocity in men at high risk for prostate cancer recurrence after surgery. *Cancer Epidemiol Biomarkers Prev*. 2014;23:2196–2198.

12. Bonovas S, Filioussi K, Sitaras NM. Statin use and the risk of prostate cancer: a meta-analysis of observational studies. *PLoS One*. 2012;7(10):e46691.

11. Taylor ML, Wells BJ, Smolak MJ. Statins and cancer: a meta-analysis of case-control studies. *Ann Intern Med*. 2007;146:318–325.

10. Kuoppala J, Lamminpää A, Pukkala E. Statins and cancer: a systematic review. *Cancer Causes Control*. 2011;22:417–426.

9. Browning DR, Martin RM. Statins and risk of cancer: a systematic review and meta-analysis. *Ann Intern Med*. 2008;149:494–499.

8. Dale KM, Coleman CI, Henyan NN, Kluger J, White CM. Statins and cancer risk: a meta-analysis of data from 90,056 participants in 14 randomized trials of statins. *Cancer Epidemiol Biomarkers Prev*. 2010;19:3178–3186.

7. Baigent C, Keech A, Kearney PM, et al; Cholesterol Treatment Trialists’ (CTT) Collaborators. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomized trials and 162,008 anticipated. *Lancet*. 2005;366:1267–1278.

6. Dale KM, Coleman CI, Henyan NN, Kluger J, White CM. Statins and cancer: a systematic review and meta-analysis. *Ann Intern Med*. 2008;149:494–499.

5. Matsuura M, Suzuki T, Suzuki M, Tanaka R, Ito E, Saito T. Statin-medicated lipid lowering drugs and advanced prostate cancer incidence in a large U.S. cohort. *Urology*. 2008;71:318–325.

4. Li YC, Puck MJ, Ye SK, Kim CW, Kim YN. Elevated levels of cholesterol-rich lipid rafts in cancer cells are correlated with apoptosis sensitivity induced by cholesterol-depleting agents. *Am J Pathol*. 2006;168:1107–1118.

3. Wang CY, Liu PY, Liao JK. Pleiotropic effects of statin therapy: molecular mechanisms and clinical results. *Trends Mol Med*. 2008;14:137–44.

2. Papadopoulos G, Delakas D, Nakopoulos L, Kassimatis T. Statins and prostate cancer: molecular and clinical aspects. *Eur J Cancer*. 2011;47:819–830.

1. Baigent C, Keech A, Keaney JF, et al. Cholesterol treatment in high-risk primary prevention: a collaborative meta-analysis of 17 statin randomized controlled trials involving 18,645 participants. *Cancer Causes Control*. 2011;35(4):e6–e11.