Grothendieck categories
and support conditions

We give examples of pairs \((G_1, G_2)\) where \(G_1\) is a Grothendieck category and \(G_2\) a full Grothendieck subcategory of \(G_1\), the inclusion \(G_2 \hookrightarrow G_1\) being denoted \(i\), for which \(R^+i : D^+G_2 \to D^+G_1\) (or even \(R_i : DG_2 \to DG_1\)) is a full embedding\(^1\). This yields generalizations of some results of Bernstein and Lunts, and of Cline, Parshall and Scott. To wit, Theorem 4 (resp. Theorem 6, resp. Theorem 7 and Corollary 8) below strengthen Theorem 17.1 in Bernstein and Lunts \([4]\) (resp. Example 3.3.c and Theorem 3.9.a of Cline, Parshall and Scott \([10]\), resp. Theorem 3.1 and Proposition 3.6 of Cline, Parshall and Scott \([9]\)).

We work in the axiomatic system defined by Bourbaki in \([6]\). We postulate in addition the existence of an uncountable universe \(U\) in the sense of Bourbaki \([7]\). All categories are \(U\)-categories.

By Alonso Tarrío, Jeremías López and Souto Salorio \([1]\), Theorem 5.4, or by Serpé \([19]\) Theorem 3.13, (or more simply by Spaltenstein \([20]\), proof of Theorem 4.5), the functor\(^2\) \(R\text{Hom}_{G_i}\) is defined on the whole of \(DG_i^{\text{op}} \times DG_i\). — Consider the following conditions.

\((R)\) : For all \(V, W \in DG_2\) the complexes \(R\text{Hom}_{G_1}(V, W)\) and \(R\text{Hom}_{G_2}(V, W)\) are canonically isomorphic in \(DZ\).

\((R+)\) : For all \(V, W \in D^+G_2\) the complexes \(R\text{Hom}_{G_1}(V, W)\) and \(R\text{Hom}_{G_2}(V, W)\) are canonically isomorphic in \(DZ\).

Let \(A\) be a commutative ring, let \(Y\) be a set of prime ideals of \(A\), let \(G_1\) (resp. \(G_2\)) be the category of \(A\)-modules (resp. of \(A\)-modules supported on \(Y\)). Do \((R)\) or \((R+)\) hold? (See Theorem 5 below for a partial answer.)

By the proof of Weibel \([22]\), Theorem A3, \((R)\) implies \((R+)\) \(^3\). Moreover, if \((R)\) (resp. \((R+)\)) holds, then \(R_i\) (resp. \(R^+_i\)) is a full embedding. Indeed we have \(\text{Hom}_{DG_i} = H^0 R\text{Hom}_{G_i}\) (resp. \(\text{Hom}_{D^+G_i} = H^0 R\text{Hom}_{G_i}\)) by Lipman \([18]\), I.2.4.2.

Let \(\text{Mod} A\) denote the category of left \(A\)-modules (whenever this makes sense), and let \(DA\) (resp. \(D^+A\), resp. \(KA\), resp. \(K^+A\)) be an abbreviation for

\(^1\)The categories \(G_1\) and \(G_2\) will come under various names, but the inclusion will always be denoted by \(i\).

\(^2\)An example of category for which \(R\text{Hom}\) can be explicitly described is given in Appendix 1.

\(^3\)I know no cases where \((R+)\) holds but \((R)\) doesn’t.
D Mod A (resp. $D^+ Mod A$, resp. $K Mod A$, resp. $K^+ Mod A$), where K means “homotopy category”. (Even if G_1 or G_2 is not Grothendieck, it may still happen that $(R+)$ or (R) makes sense and holds. In such a situation the phrase “$(R+)$ (resp. (R)) holds” shall mean “$(R+)$ (resp. (R)) makes sense and holds”.

Let A be a sheaf of rings over a topological space X, let Y be a locally closed subspace of X, let B be the restriction of A to Y, and identify, thanks to Section 3.5 of Grothendieck [12], $Mod B$ to the full subcategory of A-modules supported on Y.

Theorem 1 The pair $(Mod A, Mod B)$ satisfies (R).

Proof. Let $r : Mod A \rightarrow Mod B$ be the restriction functor.

Case 1. Y is closed. — We have for $V \in KB$

\[\mathbb{H}om^\bullet_B(V, ?) = \mathbb{H}om^\bullet_A(V, ?) \circ K : KB \rightarrow KZ. \]

Since ι is right adjoint to the exact functor r, it preserves K-injectivity in the sense of Spaltenstein [20]. By Lipman [13], Corollaries I.2.2.7 and I.2.3.2.3, we get

\[\mathbb{R}hom_B(V, ?) \simeq \mathbb{R}hom_A(V, ?) \circ R \iota : DB \rightarrow DZ. \]

Case 2. Y is open. — We have for $V \in KB$

\[\mathbb{H}om^\bullet_A(V, ?) = \mathbb{H}om^\bullet_B(V, ?) \circ K : KA \rightarrow KZ. \]

As r is right adjoint to the exact functor ι, it preserves K-injectivity, and Lipman [13], Corollaries I.2.2.7 and I.2.3.2.3, yields $R r \circ R \iota = \text{Id}_{DB}$.

\[\mathbb{R}hom_A(V, ?) = \mathbb{R}hom_B(V, ?) \circ R : DA \rightarrow DZ, \]

and thus

\[\mathbb{R}hom_A(V, ?) \circ R \iota = \mathbb{R}hom_B(V, ?) : DB \rightarrow DZ. \]

□

Proposition 2 Let X and A be as above, let Y be a union of closed subspaces of X, and let $Mod(A, Y)$ be the category of A-modules supported on Y. Then the pair $(Mod A, Mod(A, Y))$ satisfies $(R+)$.

Proof. See Grothendieck [12], Proposition 3.1.2, and Hartshorne [14], Proposition I.5.4. □
Let \((X, \mathcal{O}_X)\) be a noetherian scheme, \(A\) a sheaf of rings over \(X\) and \(\mathcal{O}_X \rightarrow A\) a morphism, assume \(A\) is \(\mathcal{O}_X\)-coherent, let \(Y\) be a subspace of \(X\), and denote by \(\text{QC}(\mathcal{A})\) (resp. \(\text{QC}(\mathcal{A}, Y)\)) the category of \(\mathcal{O}_X\)-quasi-coherent \(\mathcal{A}\)-modules (resp. \(\mathcal{O}_X\)-quasi-coherent \(\mathcal{A}\)-modules supported on \(Y\)).

Theorem 3 The pair \((\text{QC}(\mathcal{A}), \text{QC}(\mathcal{A}, Y))\) satisfies \((R+)\). If in addition \(\text{Ext}^n_{\text{QC}(\mathcal{A})} = 0\) for \(n \gg 0\), then \((R)\) holds.\(^4\)

Let \(A\) be a left noetherian ring, let \(B\) be a ring, let \(A \rightarrow B\) be a morphism, let \(\mathcal{G}\) be a Grothendieck subcategory of \(\text{Mod} B\), let \((U_j)_{j \in J}\) be a family of generators of \(\mathcal{G}\) which are finitely generated over \(A\), and let \(I\) be an Artin-Rees left ideal of \(A\). For each \(V\) in \(\text{Mod} A\) set
\[
V_I := \{v \in V \mid I^n(v)v = 0 \text{ for some } n(v) \in \mathbb{N}\}.
\]
Assume that \(IV\) and \(V_I\) belong to \(\mathcal{G}\) whenever \(V\) does. Let \(\mathcal{G}_I\) be the full subcategory of \(\mathcal{G}\) whose objects satisfy \(V = V_I\).

Example: \(\mathcal{G}\) is the category of \((g, K)\)-modules defined in Section 1.1.2 of Bernstein and Lunts [4], \(A\) is \(Ug\), \(B\) is \(Ug \times \mathbb{C}K\), \(I\) is a left ideal of \(A\) generated by \(K\)-invariant central elements.

Theorem 4 The pair \((\mathcal{G}, \mathcal{G}_I)\) satisfies \((R+)\). If in addition \(\text{Ext}^n_{\mathcal{G}} = 0\) for \(n \gg 0\), then \((R)\) holds. In particular if \((\mathcal{G}, \mathcal{G}_I)\) is as in the above Example and if \(K\) is reductive, then \((R)\) is fulfilled.

Lemma 5 If \(E\) is an injective object of \(\mathcal{G}\), then so is \(E_I\).

Lemma 5 implies **Theorem 4** By Theorem 1.10.1 of Grothendieck in [12], \(\mathcal{G}\) and \(\mathcal{G}_I\) have enough injectives. We have for \(V \in K^+\mathcal{G}_I\)
\[
\left[\text{Hom}^\bullet_{\mathcal{G}_I}(V, ?) = \text{Hom}^\bullet_{\mathcal{G}}(V, ?) \circ K^+I\right] : K^+\mathcal{G}_I \rightarrow K\mathbb{Z}
\]
and thus, by Lemma 5 and Hartshorne [14], Proposition I.5.4.b,
\[
\left[\text{RHom}_{\mathcal{G}_I}(V, ?) \Rightarrow \text{RHom}_{\mathcal{G}}(V, ?) \circ R^+I\right] : D^+\mathcal{G}_I \rightarrow D\mathbb{Z}.
\]
This proves the first sentence of the theorem. For the second one the argument is the same except for the fact we use Hartshorne [14], proof of Corollary I.5.3.γ.b.\(^\square\)

\(^4\)We regard \(\text{Ext}^n_{\mathcal{G}}\) as a functor defined on \(\mathcal{G}^{\text{op}} \times \mathcal{G}\) (and of course not on \(D\mathcal{G}^{\text{op}} \times D\mathcal{G}\)).
Proof of Lemma 5. Let \(W \subset V \) be objects of \(G \) and \(f : W \to E_I \) a morphism. We must extend \(f \) to \(g : V \to E_I \). We can assume, by the proof of Grothendieck [12] Section 1.10 Lemma 1, (or by Stenström [21], Proposition V.2.9), that \(V \) is finitely generated over \(A \). Since \(W \) is also finitely generated over \(A \), there is an \(n \) such that \(I^n f(W) = 0 \), and thus \(f(I^n W) = 0 \). Choose a \(k \) such that \(W \cap I^k V \subset I^n W \subset \ker f \) and set

\[
\nabla := \frac{V}{I^k V}, \quad \mathcal{W} := \frac{W}{W \cap I^k V}.
\]

Then \(f \) induces a morphism \(\nabla \to E_I \), which, by injectivity of \(E \), extends to a morphism \(\nabla \to E_I \), that in turn induces a morphism \(V \to \nabla \to E_I \), enabling us to define \(g \) as the obvious composition \(V \to \nabla \to E_I \). □

Let \(\mathfrak{g} \) be a complex semisimple Lie algebra, let \(\mathfrak{h} \subset \mathfrak{b} \) be respectively Cartan and Borel subalgebras of \(\mathfrak{g} \), put \(n := [\mathfrak{b}, \mathfrak{b}] \), say that the roots of \(\mathfrak{h} \) in \(n \) are positive, let \(\mathcal{W} \) be the Weyl group equipped with the Bruhat ordering, let \(O_0 \) be the category of those \(\text{BGG-modules} \) which have the generalized infinitesimal character of the trivial module. The simple objects of \(O_0 \) are parametrized by \(\mathcal{W} \). Say that \(Y \subset \mathcal{W} \) is an initial segment if \(x \leq y \) and \(y \in Y \) imply \(x \in Y \), and that \(w \in \mathcal{W} \) lies in the support of \(V \in O_0 \) if the simple object attached to \(w \) is a subquotient of \(V \). For such an initial segment \(Y \) let \(O_Y \) be the subcategory of \(O_0 \) consisting of objects supported on \(Y \subset \mathcal{W} \).

Theorem 6 The pair \((O_0, O_Y)\) satisfies (R).

Proof. In view of BGG [3] this will follow from Theorem 9. □

Let \(A \) be a ring, \(I \) an ideal, and \(B := A/I \) the quotient ring.

Theorem 7 Assume that \(\text{Ext}^n_A(B, B) \) vanishes for \(n > 0 \), and that there is a \(p \) such that \(\text{Ext}^n_A(B, W) = 0 \) for all \(n > p \) and all \(B \)-modules \(W \). Then the pair \((\text{Mod} A, \text{Mod} B)\) satisfies (R).

Proof. Step 1 : \(\text{Ext}^n_A(B, W) = 0 \) for all \(B \)-modules \(W \) and all \(n > 0 \). — By Theorem V.9.4 in Cartan-Eilenberg [3] we have \(\text{Ext}^n_A(B, F) = 0 \) for all free \(B \)-modules \(F \) and all \(n > 0 \). Suppose by contradiction there is an \(n > 0 \) such that \(\text{Ext}^n_A(B, W) \) does not vanish on all \(B \)-modules; let \(n \) be maximum for this property; choose a \(B \)-module \(V \) such that \(\text{Ext}^n_A(B, V) \neq 0 \); consider an exact sequence \(W \hookrightarrow F \twoheadrightarrow V \) with \(F \) free; and observe the contradiction \(0 \neq \text{Ext}^n_A(B, V) \hookrightarrow \text{Ext}^{n+1}_A(B, W) = 0. \)
Step 2: Putting \(r := \text{Hom}_A(B, ?) \) we have \(Rr \circ Rr = \text{Id}_{DB} \). — The functor \(r \), being a right adjoint, commutes with products, and, having an exact left adjoint, preserves injectives. Let \(V \) be in \(DB \) and \(I \) a Cartan-Eilenberg injective resolution (CEIR) of \(V \) in \(\text{Mod} A \). By the previous step \(rI \) is a CEIR of \(rV = V \) in \(\text{Mod} B \). Weibel [22], Theorem A3, implies

(a) the complex \(\text{Tot}^I \in \text{DA} \), characterized by

\[
(\text{Tot}^I)^n = \prod_{p+q=n} P^{pq},
\]

is a K-injective resolution (see Spaltenstein [20]) of \(V \) in \(\text{Mod} A \),

(b) \(\text{Tot}^I rI = r\text{Tot}^I \) is a K-injective resolution of \(V = rV \) in \(\text{Mod} B \).

Statement (a) yields: (c) \(r\text{Tot}^I = RrV \). Then (b) and (c) imply that the natural morphism \(V \to RrV \) is a quasi-isomorphism.

Step 3: (R) holds. — See proof of Theorem 1, Case 2. □

Corollary 8 If there is a projective resolution \(P = (P_n \to \cdots \to P_1 \to P_0) \) of \(B \) by \(A \)-modules satisfying \(\text{Hom}_A(P_j, V) = 0 \) for all \(B \)-modules \(V \) and all \(j > 0 \), then pair \((\text{Mod} A, \text{Mod} B) \) satisfies (R).

Let \(A \) be a ring, \(X \) a finite set and \(e_\bullet = (e_x)_{x \in X} \) a family of idempotents of \(A \) satisfying \(\sum_{x \in X} e_x = 1 \) and \(e_x e_y = \delta_{xy} e_x \) (Kronecker delta) for all \(x, y \in X \).

The support of an \(A \)-module \(V \) is the set \(\{x \in X \mid e_x V \neq 0\} \). Let \(\leq \) be a partial ordering on \(X \), and for any initial segment \(Y \) put

\[
A_Y := A \left/ \sum_{x \notin Y} Ae_x A \right.,
\]

so that \(\text{Mod} A_Y \) is the full subcategory of \(\text{Mod} A \) whose objects are supported on \(Y \). (Here and in the sequel, for any ring \(B \), we denote by \(BbB \) the ideal generated by \(b \in B \).) The image of \(e_y \) in \(A_Y \) will be still denoted by \(e_y \).

Assume that, for any pair \((Y, y) \) where \(Y \) is an initial segment and \(y \) a maximal element of \(Y \), the module \(M_y := A_Y e_y \) does not depend on \(Y \), but only on \(y \). This is equivalent to the requirement that \(A_Y e_y \) be supported on \(\{x \in X \mid x \leq y\} \).
If \((V_\gamma)_{\gamma \in \Gamma}\) a family of \(A\)-modules, let \(\langle V_\gamma \rangle_{\gamma \in \Gamma}\) denote the class of those \(A\)-modules which admit a finite filtration whose associated graded object is isomorphic to a product of members of the family.

Assume that, for any \(x \in X\), the module \(Ae_x\) belongs to \(\langle M_z \rangle_{z < x}\).

Theorem 9 The pair \((\text{Mod } A, \text{Mod } A_Y)\) satisfies \((R)\).

This statement applies to the categories satisfying Conditions (1) to (6) in Section 3.2 of Beilinson, Ginzburg and Soergel \cite{2}, like the categories of BGG modules \(O_\lambda\) and \(O^n\) defined in Section 1.1 of \cite{2}, or more generally the category \(\mathcal{P}(X, \mathcal{W})\) of perverse sheaves considered in Section 3.3 of \cite{2}. — Because of the projectivity of \(M_x = Ae_x\) we have

Lemma 10 For any \(x, y \in X\) with \(x\) maximal there is a nonnegative integer \(n\) and an exact sequence \((Ae_x)^n \to Ae_y \to V\) such that \(V \in \langle M_z \rangle_{z < x}\). In particular \(e_x V = 0\). □

Proof of Theorem Assume \(Y = X \setminus \{x\}\) where \(x\) is maximal. Put \(e := e_x, I := AeA\) and \(B := A_Y = A/I\). By the previous Lemma there is a nonnegative integer \(n\) and an exact sequence \((Ae)^n \to A \to V\) with \(IV = 0\). Letting \(J \subset A\) be the image of \((Ae)^n \to A\), we have \(J = IA \subset J \subset I\), and thus \(I = J\). In particular \(I\) is \(A\)-projective and we have \(\text{Hom}_A(I, B) \simeq (eB)^n = 0\). Corollary \ref{cor:projectivity} applies, proving Theorem \ref{thm:projectivity} for the particular initial segment \(Y\). Lemma \ref{lem:exactness} shows that \((B, Y, (e_y)_{y \in Y})\) satisfies the assumptions of Theorem \ref{thm:projectivity} and an obvious induction completes the proof. □

For any complex Lie algebra \(g\) let \(I_g\) be the annihilator of the trivial module in the center of the enveloping algebra. Using the notation and definitions of Knapp and Vogan \cite{17}, let \((g, K)\) be a reductive pair, let \((g', K')\) be a reductive subpair attached to \(\theta\)-stable subalgebra, let \(R^S : C(g', K') \to C(g, K)\) be the cohomological induction functor defined in \cite{17}, (5.3.b), and let \(\mathcal{G}\) (resp. \(\mathcal{G}'\)) be the category of \((g, K)\)-modules on which \(I_g\) (resp. \(I_g')\) acts locally nilpotently. By \cite{17}, Theorem 11.225, the functor \(R^S\) maps \(\mathcal{G}'\) to \(\mathcal{G}\). Let \(F : \mathcal{G}' \to \mathcal{G}\) be the induced functor. By \cite{17}, Theorem 3.35.b, \(F\) is exact. It would be interesting to know if \(F\) satisfies Condition \((R)\).

Thank you to Anton Deitmar, Bernhard Keller and Wolfgang Soergel for their interest, and to Martin Olbrich for having pointed out some mistakes in a previous version.
Proof of Theorem 3

Put $\mathcal{O} := \mathcal{O}_X$ and consider the following statements:

(a) Every object of $\text{QC}(\mathcal{O}, Y)$ is contained into an object of $\text{QC}(\mathcal{O}, Y)$ which is injective in $\text{QC}(\mathcal{O})$.

(b) Every object of $\text{QC}(\mathcal{A}, Y)$ is contained into an object of $\text{QC}(\mathcal{A}, Y)$ which is injective in $\text{QC}(\mathcal{A})$.

We claim (a) \Rightarrow (b) \Rightarrow Theorem 3.

(a) \Rightarrow (b) : The functor $\text{Hom}_{\mathcal{O}}(\mathcal{A}, ?)$ preserves the following properties:

- quasi-coherence (by EGA I [13], Corollary 2.2.2.vi),
- the fact of being supported on Y (by Grothendieck [12], Proposition 4.1.1),
- injectivity (by having an exact left adjoint). \square

(b) \Rightarrow Theorem 3: See proof of Theorem 4 \square

Proof of (a). Let M be in $\text{QC}(\mathcal{O}, Y)$ and let us show that M is contained into an object of $\text{QC}(\mathcal{O}, Y)$ which is injective in $\text{QC}(\mathcal{O})$. We may, and will, assume that Y is precisely the support of M.

Case 1. M is coherent, (X, \mathcal{O}) is affine. — Write A for $\Gamma \mathcal{O}$, where Γ is the global section functor. Use the equivalence $\text{QC}(\mathcal{O}) \cong \text{Mod} A$ set up by Γ to work in the latter category. Then M “is” a finitely generated A-module, and Y is closed by Proposition II.4.4.17 in Bourbaki [5]. Let $I \subset A$ be the ideal of those f in A which vanish on Y, and $\text{Mod}(A, Y)$ the full subcategory of $\text{Mod} A$ whose objects are the A-modules V satisfying $V = V_I$ in the sense of Notation [11]. Corollary 2 to Proposition II.4.4.17 in Bourbaki [5] implies that Γ induces a subequivalence $\text{QC}(\mathcal{O}, Y) \cong \text{Mod}(B, Y)$. The claim now follows from Theorem 4.

Case 2. M is coherent. — Argue as in the proof of Corollary III.3.6 in Hartshorne [15], using Proposition 6.7.1 of EGA I [13].

Case 3. General case. — By Gabriel [11] Corollary 1 §II.4 (p. 358), Theorem 2 §II.6 (p. 362), and Theorem 1 §VI.2 (p. 443) we know that every object of $\text{QC} \mathcal{O}$ has an injective hull and that any colimit of injective objects of $\text{QC} \mathcal{O}$ is injective. The expression $M \preceq M'$, shall mean “M' is an injective hull of M and $M \subset M'$”. Let M' be such a hull and Z the set of pairs (N, N') with $N \subset M$, $N' \subset M'$, $N \preceq N'$, $\text{Supp}(N') = \text{Supp}(N)$.
Then Z, equipped with its natural ordering, is inductive. Let (N, N') is a maximal element of Z and suppose by contradiction $N \neq M$. By Corollary 6.9.9 of EGA I [13] there is a P such that $N \subset P \subset M$, $N \neq P$, and $C := P/N$ is coherent. Let $\pi : P \to C$ be the canonical projection and choose P', C' such that $P \prec P'$, $C \prec C'$. By injectivity of N' there is a map $f : P \to N'$ such that $[N \hookrightarrow P \xrightarrow{f} N'] = [N \hookrightarrow N']$ (obvious notation). Consider the commuting diagram

$$
\begin{array}{c}
N' \xrightarrow{N' \times C'} C' \\
\downarrow \quad \downarrow \pi \\
N \xrightarrow{P} C.
\end{array}
$$

We have $\text{Ker}(f \times \pi) = \text{Ker}(f) \cap \text{Ker}(\pi) = \text{Ker}(f) \cap N = 0$, i.e. $g := f \times \pi$ is monic. By injectivity of $N' \times C'$ there is a map $P' \to N' \times C'$ such that $[P \hookrightarrow P' \to N' \times C'] = [P \hookrightarrow g \to N' \times C']$, this map being monic by essentiality of $P \subset P'$; in particular

$$\text{Supp}(P') \subset \text{Supp}(N') \cup \text{Supp}(C').$$

A similar argument shows the existence of a monomorphism $P' \to M'$ such that $[P \hookrightarrow P' \to M'] = [P \to M \hookrightarrow M']$, meaning that we can assume $P' \subset M'$. Since $(P, P') \notin Z$, this implies $\text{Supp}(P') \neq \text{Supp}(P')$, and the equalities

$$\text{Supp}(N') = \text{Supp}(N) \quad (\text{because } (N, N') \in Z),$$

$$\text{Supp}(C') = \text{Supp}(C) \quad (\text{by Case 2}),$$

yield the contradiction

$$\text{Supp}(P') \subset \text{Supp}(N) \cup \text{Supp}(C) = \text{Supp}(P) \subset \text{Supp}(P'). \quad \square$$

Appendix 1

Let k be a field and \mathfrak{g} a Lie k-algebra. For $X, Y \in Dk$ put

$$\langle X, Y \rangle := \text{Hom}_k^\bullet(X, Y).$$

Let $C := U\mathfrak{g} \otimes \bigwedge \mathfrak{g}$ be the Koszul complex viewed as a differential graded coalgebra (here and in the sequel tensor products are taken over k).

In view of Weibel [22], Theorem A3, we can define $\text{RHom}_\mathfrak{g}$ by setting

$$\text{RHom}_\mathfrak{g}(X, Y) := \langle\langle C, X\rangle, \langle C, Y\rangle\rangle^\mathfrak{g}.$$
(As usual the superscript g means “g-invariants”.) Recall that the Chevalley-Eilenberg complex, used to compute the cohomology of g with values in $\langle X, Y \rangle$, is defined by $\text{CE}(X, Y) := \langle C, \langle X, Y \rangle \rangle^0$, and that there is a canonical isomorphism $F : \text{CE} \sim \text{RHom}_g$. Let

$$\text{ext}_{X,Y,Z} : \text{CE}(Y, Z) \otimes \text{CE}(X, Y) \to \text{CE}(X, Z)$$

be the exterior product and

$$\text{comp}_{X,Y,Z} : \text{RHom}_g(Y, Z) \otimes \text{RHom}_g(X, Y) \to \text{RHom}_g(X, Z)$$

the composition. Then the expected formula

$$\text{comp}_{X,Y,Z} \circ (F_{Y,Z} \otimes F_{X,Y}) = F_{X,Z} \circ \text{ext}_{X,Y,Z}$$

is easy to check.

Appendix 2

The following fact is used in various places (see for instance the proofs of Theorem I.3.3 in Cartan-Eilenberg [8], Theorem 1.10.1 in Grothendieck [12] and Lemma 4.3 in Spaltenstein [20]). We use the notation and definitions of Jech [16].

Lemma 11 Let P be a poset, α a cardinal $\geq |P|$, and β the least cardinal $> \alpha$. Then every poset morphism $f : \beta \to P$ is stationary.

Proof. We can assume P is infinite and f is epic. The morphism $g : P \to \beta$ defined by $gp := \min f^{-1}p$ satisfies $fg = \text{Id}_p$. Put $\sigma := \sup gP$. For all $p \in P$ we have $|gp| \leq gp < \beta$, implying $|gp| \leq \alpha$ for all p, and $\sigma \leq \beta$. Statement (2.4) and Theorem 8 in Jech [16] entail respectively $\sigma = \bigcup_{p \in P} gp$ and $|P| \alpha = \alpha$, from which we conclude $|\sigma| \leq \alpha$; this forces $\sigma < \beta$, that is $\sigma \in \beta$. For any $\gamma \in \beta$, $\gamma > \sigma$ we have $f\gamma = fgf\gamma \leq f\sigma \leq f\gamma$. \[\Box\]

References

[1] Alonso Tarrío L., Jeremías López A., Souto Salorio M. J.; Localization in categories of complexes and unbounded resolutions, *Canad. J. Math.* 52 (2000), no. 2, 225–247, http://web.usc.es/~lalonso/paginas-en/publi-en.html
[2] Beilinson A., Ginzburg V., Soergel W.; Koszul duality patterns in representation theory, *J. Am. Math. Soc.* 9 (1996) No.2, 473-527,
http://home.mathematik.uni-freiburg.de/soergel/#Preprints
http://www.ams.org/journal-getitem?pii=S0894-0347-96-00192-0

[3] Bernstein I.N., Gelfand I.M., Gelfand S.I.; Category of g-modules, *Funct. Anal. Appl.* 10 (1976) 87-92.

[4] Bernstein J., Lunts V.; Localization for derived categories of (g, K)-modules, *J. Amer. Math. Soc.* 8 (1995), no. 4, 819-856.

[5] Bourbaki N.; *Algèbre commutative*, Chapitres 1 à 4, Hermann, Paris, 1961.

[6] Bourbaki N.; *Théorie des ensembles*, Paris, Hermann 1970.

[7] Bourbaki N.; Univers, Appendix to Exposé I, SGA 4, tome 1, Lect. Notes in Math. 269, Springer 1972, 185-217,
http://modular.fas.harvard.edu/sga/

[8] Cartan H., Eilenberg S.; *Homological algebra*, Princeton University Press, 1956.

[9] Cline E., Parshall B., Scott L.; Algebraic stratification in representation categories, *J. Algebra* 117 (1988), no. 2, 504-521.

[10] Cline E., Parshall B., Scott L.; Finite dimensional algebras and highest weight categories, *J. Reine Angew. Math.* 391 (1988) 85-99.

[11] Gabriel P.; Des catégories abéliennes, *Bull. Soc. Math. France* 90 (1962) 323-448,
http://www.numdam.org/item?id=BSMF_1962__90__323_0

[12] Grothendieck A.; Sur quelques points d’algèbre homologique, *Tôhoku Math. J.* (2) 9 (1957) 119-221.

[13] Grothendieck A., Dieudonné J.; *Éléments de géométrie algébrique*, Springer, 1971.

[14] Hartshorne R.; *Residues and duality*, Lect. Notes in Math. 20, Springer, 1966.

[15] Hartshorne R.; *Algebraic geometry*, Springer, 1977.

[16] Jech T.; *Set theory*, Academic Press, 1978.
[17] Knapp A., Vogan D., Cohomological induction and unitary representations, Princeton University Press (1995).

[18] Lipman J.; Notes on Derived Categories and Derived Functors, http://www.math.purdue.edu/~lipman/

[19] Serpé C.; Resolution of unbounded complexes in Grothendieck categories. J. Pure Appl. Algebra 177, No.1, (2003), 103-112.
http://www.sciencedirect.com/
http://wwwmath.uni-muenster.de/math/inst/sfb/about/publ/serpe02.html

[20] Spaltenstein N.; Resolutions of unbounded complexes, Compositio Math. 65 (1988), no. 2, 121-154.

[21] Stenström B.; Rings of quotients, Springer, 1975.

[22] Weibel Ch.; Cyclic homology for schemes, Proc. AMS 124 (1996) 1655-1662,
http://www.math.uiuc.edu/K-theory/0043/
http://www.ams.org/journal-getitem?pii=S0002-9939-96-02913-9

March 7, 2004

Pierre-Yves Gaillard, Département de Mathématiques, Université Nancy 1, France
http://www.iecn.u-nancy.fr/~gaillard/