ABSTRACT

We present the spectral and temporal analysis of the 2004/2005 outburst of the transient X-ray pulsar V0332+53 as observed with INTEGRAL. After the discovery of the third cyclotron line in phase averaged spectra (Kreykenbohm et al., 2005; Pottschmidt et al., 2005), detailed pulse phase spectroscopy revealed remarkably little variability of the cyclotron lines through the 4.4 s X-ray pulse (Pottschmidt et al., 2005). During the decline of the outburst, the flux was observed to decay exponentially until 2005 Feb 10 and linearly thereafter. The spectrum was found to become harder with time, while the folding energy remained constant. The energy of the fundamental cyclotron line increased with time from 26.5 keV in the RXTE observation up to 29.5 keV in the last INTEGRAL one indicating that the emission region is moving closer to the surface of the neutron star. For a detailed analysis, see Mowlavi et al. (2005).

Key words: Pulsars: V0332+53 - stars: magnetic fields.

1. INTRODUCTION: V0332+53

The recurring transient X-ray pulsar V0332+53 was discovered in 1983 in Tenma data (Tanaka, 1983). Subsequently, a larger outburst was found to have occurred in the summer of 1973 when analyzing Vela SB data (Terrell & Priedhorsky, 1984). The analysis revealed a 4.4 s pulse period and an indication for a 34.25 d orbital period (Stella et al., 1985). The optical counterpart is the O8–9 star BQ Cam (Negueruela et al., 1999).

Analysis of the Tenma data revealed a spectral shape similar to that seen in other accreting X-ray pulsars with a flat power law, an exponential cutoff, and a cyclotron resonant scattering feature (CRSF) at an energy of ~28 keV.

In 1989 September the source experienced another outburst, this time observed by Ginga (Makino, 1989). With the energy range of the Large Area Counters adjusted to cover the 2–60 keV range, CRSFs were detected at 28.5 and 53 keV.

Most recently, V0332+53 went into outburst in 2004 November and was seen by the RXTE/All Sky Monitor (ASM) to reach an intensity of ~1 Crab in the 1.5–12 keV band (Remillard, 2004). A long series of observations with RXTE and INTEGRAL were made throughout the outburst.

2. FLUX EVOLUTION

During the decline phase, the observed fluxes first decay exponentially up to MJD 53412, followed by a linear decrease (see Fig. 1). The decay timescales are different at lower and higher energies: while a decay time of 30 d is observed above 20 keV, it is only 20 d below 15 keV. Such behavior is typically observed in systems where an irradiated disk is present which, however, is not the case for V0332+53. Since \(L_X \propto \dot{M} \), this picture suggests that \(\dot{M} \propto M_{\text{disk}} \). The transition to the linear phase would then be triggered by a yet unknown change in the disk.

3. SPECTRAL EVOLUTION

To study the evolution of the spectrum over the outburst, we used the simple cutoffpl model, modified by two Gaussian absorption lines to model the CRSFs at ~27 keV and ~51 keV for all observations. While the folding energy remains constant at ~7.5 keV, the power law index \(\Gamma \) decreases from ~0.18 in the first observation to ~0.4 in the last observations – the spectrum of V0332+53 hardens over the outburst. The fundamental...
4. DISCUSSION

The exponential decay of the flux and the transition to a linear phase later is frequently observed in SXTs and dwarf novae [King & Ritter 1998]. While the emission mechanism is entirely different for V 0332+53, the similarity is striking and a yet unidentified change in the disk can be assumed to trigger the transition to the linear phase. The luminosity dependence of the energy of CRSFs had already been observed previously [Mihara, 1995] and was assumed to be due a change in height of the CRSF formation region in the accretion column. Based on our data, we derive a change in height of \(\sim 300 \) m; however, a slightly different picture is also possible: the CRSF emission region can be assumed to be extended along the accretion column. The observed broad CRSFs would then be superposition of many narrower lines, each from a different height in the column. As the accretion rate drops, the extent of the emission region and its height both decrease and hence the energy of the CRSF increases while it gets narrower as is observed for V 0332+53 (see Fig. 2).

REFERENCES

King A.R., Ritter H., 1998, Mon. Not. R. Astron. Soc. 293, L42
Kreykenbohm I., Mowlavi N., Produit N., et al., 2005, Astron. Astrophys. 433, L45
Makino F., 1989, IAU Circ. 4858, 1
Mihara T., 1995, Ph.D. thesis, RIKEN, Tokio
Mowlavi N., Kreykenbohm I., Shaw S.E., et al., 2005, Astron. Astrophys. submitted Sept. 2005
Negueruela I., Roche P., Fabregat J., Coe M.J., 1999, Mon. Not. R. Astron. Soc. 307, 695
Pottschmidt K., Kreykenbohm I., Wilms J., et al., 2005, Astrophys. J. in press
Remillard R., 2004, ATel 371, 1
Stella L., White N.E., Davelaar J., et al., 1985, Astrophys. J. 288, L45
Tanaka Y., 1983, IAU Circ. 3891, 2
Terrell J., Priedhorsky W.C., 1984, Astrophys. J. 285, L15