Identity and Personhood in Digital Democracy: Evaluating Inclusion, Equality, Security, and Privacy in Pseudonym Parties and Other Proofs of Personhood

Bryan Ford
Swiss Federal Institute of Technology in Lausanne (EPFL)

November 5, 2020

Abstract

Digital identity seems at first like a prerequisite for digital democracy: how can we ensure “one person, one vote” online without identifying voters? But the full gamut of digital identity solutions – e.g., online ID checking, biometrics, self-sovereign identity, and social/trust networks – all present severe flaws in security, privacy, and transparency, leaving users vulnerable to exclusion, identity loss or theft, and coercion. These flaws may be insurmountable because digital identity is a cart pulling the horse. We cannot achieve digital identity secure enough to support the weight of digital democracy, until we can build it on a solid foundation of digital personhood meeting key requirements. While identity is about distinguishing one person from another through attributes or affiliations, personhood is about giving all real people inalienable digital participation rights independent of identity, including protection against erosion of their democratic rights through identity loss, theft, coercion, or fakery.

We explore and analyze alternative approaches to proof of personhood that might provide this missing foundation. Pseudonym parties marry the transparency of periodic physical-world roll-call events with the convenience of digital tokens between events. These tokens represent limited-term but renewable digital personhood claims, usable for purposes such as online voting or liquid democracy, sampled juries or deliberative polls, abuse-resistant social communication, or minting universal basic income in a permissionless cryptocurrency. Enhancing pseudonym parties to provide participants a moment of enforced physical security and privacy can address the coercion and vote-buying risks that plague today’s E-voting and postal voting systems alike. We also examine other recently-proposed approaches to proof of personhood, some of which offer conveniences such as all-online participation. These alternatives currently fall short of satisfying all the key digital personhood goals, unfortunately, but offer valuable insights into the challenges we face.

Contents

1 Introduction 2
2 Goals for Digital Personhood 4
3 Pseudonym Parties 5
 3.1 The basic idea 5
 3.2 Protecting security and equality 5
 3.2.1 Small events 5
 3.2.2 Medium-size events 5
 3.2.3 Large events 6
 3.2.4 Federated pseudonym parties 6
 3.3 Privacy in pseudonym parties 7
 3.3.1 Privacy in the use of PoP tokens 7
 3.3.2 Coercion resistance 7
 3.4 Inclusion 8
 3.5 Pseudonym parties in pandemic times 9
 3.6 Use cases for PoP tokens 10
 3.6.1 An alternative to CAPTCHAs 10
 3.6.2 Verified likes and follower counts 10
1 Introduction

Who governs our digital world, and on what foundations? Who decides what is allowed speech in online forums, what is real or fake news, who is a legitimate expert on a topic and who is a charlatan, and ultimately how our online world will evolve? We are presently faced with only fundamentally flawed, undemocratic answers. Most governments do not wish to take on governance of the digital ecosystem, rightly perceiving this to be outside their expertise and at high risk of stifling innovation if they tried. Even democratic governments in any case represent the wrong constituency; a government’s jurisdiction is defined by a geographic border, while online communities are geographically borderless. But the alternative answers are just as bad. Governments and public demands alike are rapidly delegating most online governance power to unelected and unaccountable tech companies, forcing on them a vague mandate to “deal with” hate speech and fake news and so on, without providing even a hint of a plan for how this opaque governance by algorithmic and employee decisions might be made accountable to, let alone transparent to, the online communities being governed. Finally, the largely self-selected volunteers moderating and governing popular sites like wikipedia and reddit may be largely well-intentioned and competent within their interest areas, but remain unrepresentative of and unaccountable to the larger online public they govern, often dominated by first-comers and loudmouths, and prone to splinter into polarized in-groups and factions, many of these contributing to the ongoing rise of violent extremism worldwide. In short, what is the foundation we are clearly missing for digital democracy and accountable, transparent governance in the online world?

The most basic element of this conundrum is the question: who even is a legitimate member of an online democratic constituency, who should wield a vote in governing an online community – and how do we ensure that each such constituent wields only one vote, given how easy it is to create many fake account with stolen or algorithmically synthesized online identities? It is widely presumed that digital identity is a – perhaps “the” – key to placing digital democracy on a secure footing. This paper begs to differ, proposing instead that digital identity is neither necessary nor sufficient for digital democracy, but is rather a corrosive distraction. Digital identity focuses on digitizing and verifying attributes that distinguish between – and effectively divide – people: name, gender, origin, nationality, race, education, certificates, wealth, connections, achievements. The basic principle of equality implies that such attributes should be irrelevant to participation in democratic processes. Using attributes to identify people digitally only compromises the inclusion, equality, security, and privacy goals of our presently-faltering attempts at founding any real digital democracy.

Instead, the central missing foundation that digital democracy needs is digital personhood: an enforceable assurance that every real, natural human person may participate freely in digital democracy, expressing their true and uncoerced preferences in online governance, while exercising one and only one vote in online agenda-setting, deliberation, and decision-making. Any attribute-focused identity – including any digital identity – may be lost,
stolen, purchased, or misused coercively. Digital personhood, in contrast, is inalienable in the way our bodies are, and in the way we take fundamental human rights to be. The only way digital personhood can be lost is by death or permanent incapacitation, no matter what a person’s identity attributes might be or how their ability to prove them might change. Recognizing that digital personhood rather than digital identity is the most essential missing foundation for digital democracy, then, we need some mechanism or process – a proof-of-personhood [Borge et al., 2017] – to validate and protect the digital personhood of every real, human participant in an online community.

What fundamental characteristics of digital personhood must a proof-of-personhood mechanism take into consideration, in order to satisfy the needs of digital democracy? We explore four: proof-of-personhood must be inclusive, equal, secure, and private. Proof-of-personhood must be inclusive of nearly every living, able-bodied person wishing to participate, independent of factors such as nationality, wealth, race, gender, connections, education, or expertise. Proof-of-personhood must further ensure that each participant obtains an equal fundamental basis for participation in digital democracy: “one person, one vote.” Proof-of-personhood must protect individuals from misuse of their digital devices and credentials, and must protect the democratic collective against subversion through digital identity forgery, astroturfing, social bots [Shao et al., 2018], and other Sybil attacks [Douceur, 2002]. Finally, proof-of-personhood must protect individuals’ privacy to ensure that they can freely exchange information and express their true preferences in digital deliberation and voting, free from corrupt and undemocratic influence through surveillance, coercion, or bribery.

This paper explores potential proof-of-personhood mechanisms, starting by expanding on the original proposal of pseudonym parties [Ford and Strauss, 2008]. Pseudonym parties are periodic real-world events where people wishing to wield a vote online gather to demonstrate their genuine personhood publicly, each obtaining one-per-person digital tokens usable for voting and other purposes during the next time period. Pseudonym parties rely for security on the fact that real people still (at present) have only one physical body each that can be in only one place at a time. As such, pseudonym parties embody no requirement that people be identified in any way, or have any wealth, status, or connections, in order to participate. This paper builds on prior explorations of pseudonym parties as a proof-of-personhood foundation by addressing further challenges such as securely scaling to large (even global) federations of pseudonym parties without falling prey to digital fakery attacks by malicious organizers, inclusion of people who wish to participate but cannot due to timing, and the challenge of minting coercion-resistant voting tokens in pseudonym parties.

We then turn to other alternative approaches to proof-of-personhood that have been proposed more recently [Siddarth et al., 2020], analyzing some of their strengths and weaknesses briefly and informally, while deferring a detailed and rigorous analysis to future work. Biometrics, for example, represents an approach whose usability and scalability has been amply proven by its deployment to over a billion users in India [Abraham et al., 2018]. Closer inspection and practical experience, however, reveals tremendous security and privacy risks as well as inclusion failures. Government-based identity and self-sovereign identity [Allen, 2016] similarly focus mistakenly on identity rather than personhood, yielding privacy-invasive mechanisms that still cannot adequately protect online democracy against large-scale digital fakery. Investment-based foundations for decentralized permissionless cryptocurrencies, such as Proof-of-Work [Dwork and Naor, 1992, Jakobsson and Juels, 1999, Nakamoto, 2008] and Proof-of-Stake [Kiayias et al., 2016, Gilad et al., 2017], are prone to “rich get richer” effects progressively concentrating power, and in any case fail to satisfy the equality principle of democracy. Proof-of-personhood based on social trust networks [Shahaf et al., 2020] presume that people “know” and “vouch for” each other, and in some cases even verify each other’s humanness online or in-person. But such verification mechanisms are necessarily privacy-invasive and exclusionary if they are strong enough to work at all. Even when working, they fail to protect against gradual accumulations of false identities through interactions with disjoint subsets of real people.

In conclusion we find that, at present anyway, federated pseudonym parties appear to be the only plausible means to satisfy and strongly protect all four critical properties of digital personhood – inclusion, equality, security, and privacy – and to lay a borderless, permissionless foundation for genuine, truly representative digital democracy. Nevertheless, there are remain many challenges and open
questions about how to make proof of personhood mechanisms both secure and usable.

2 Goals for Digital Personhood

If digital personhood represents the foundation of a comprehensive architecture for digital democracy [Ford, 2020c], what requirements would this base layer need to fulfill? In brief, digital personhood should be:

- **Inclusive**: Any real human person should be able to participate, regardless of nationality, wealth, race, gender, connections, education, or expertise.

- **Equal**: All participants must be treated equally for democratic deliberation and decision-making purposes: *i.e.*, “one person, one vote.”

- **Secure**: Digital personhood must protect both individuals and the democratic collective from compromise in the digital and physical domains.

- **Private**: Digital personhood must guarantee each participant’s freedom to communicate, associate, and express their true intent in democratic processes.

We next develop and unpack these goals below.

Inclusive: Participation must not depend on race, gender, or other personal attributes. Participation must not depend on nationality or citizenship, which excludes the stateless and many refugees and others who find themselves unable to prove their citizenship. Participation must not depend on wealth or related privileges such as social connections or education, or even on having one’s own digital device. Participants must not have to be technology-savvy, to understand and follow complex rituals, or to solve puzzles like CAPTCHAs or online Turing tests. Most importantly, digital personhood must be truly *inalienable*, in all the ways that (digital) identity is not, in that digital tokens and devices may be lost, stolen, sold, or forged in the same ways that paper identity documents are. Only death or permanent incapacitation should be able to deprive a person of digital personhood or participation in digital democracy. A person who is *not* permanently incapacitated (and hence unable to contribute to society) should always have a straightforward and accessible way to recover and rebuild their digital personhood “from scratch” after any mishap in the real or digital world, including complete loss of documented identity, assets, and even memory (*e.g.*, amnesia).

Equal: All participants should have equal foundational power and influence in democratic decision-making. It must not be realistically feasible for any individual or organization to buy more (effective) voting power with more wealth, connections, or other resources. This requirement excludes many common digital identity proxies that are convenient and commonly-used but readily purchasable, such as phone numbers, IP addresses, or credit card numbers. It also excludes investment-based foundations for decentralized systems such as proof of work or proof of stake.

Secure: Digital personhood must protect individuals and the democratic collective alike from abuse and subversion in the digital and physical domains. Individuals must have strong protections against their digital devices and credentials being misused or misappropriated by others. The approach must securely ensure that only real, natural persons participate, each wielding only one vote, and must thereby securely exclude non-human digital entities such as fake digital identities, corporate astroturfing, social bots, and other forms of Sybil attacks [Douceur, 2002]. The security of digital personhood must be *resilient*, surviving any single or threshold number of failures or compromises in all security-critical architecture roles, human and digital alike. Individuals must have inclusive paths to recover or rebuild their digital lives even after the most extreme physical or digital compromises.

Private: Digital personhood must protect each individual’s privacy, including each person’s ability to communicate and associate freely and express their true intent in democratic processes. This includes protection from the use of digital devices or tokens under duress, coercion, or bribery of any kind. Almost all current approaches to E-voting fail to satisfy this *coercion-resistance* requirement, which is one key reason most voting security/privacy experts still recommend in-person paper-based voting and
against any form of E-voting. But it is a challenge we must confront and solve, and not just give up on as “too hard.”

We next explore proposed ways to implement digital personhood through a proof-of-personhood mechanism in some form, starting with pseudonym parties.

3 Pseudonym Parties

This section first outlines pseudonym parties as originally proposed [Ford and Strauss, 2008], then informally analyzes this approach against the goals outlined above.

3.1 The basic idea

In brief, a pseudonym party gives each attendee at an in-person event exactly one anonymous digital proof-of-personhood token or PoP token. The process is organized so as to leverage physical security, and the fact that real people have only one body each, to ensure that each person gets only one token. Pseudonym parties are intended to be held periodically, such as once a week, month, quarter, or year, with the tokens minted at each party having a limited valid lifetime only until the next periodic event.

After each event, the organizers publish a list of the anonymous tokens they handed out. Anyone can subsequently verify that the length of the published list matches the number of actual attendees – according to the direct observations of attendees themselves, indirect reports from eyewitness observers, and/or other evidence such as photos and videos taken at the event and published.

A pseudonym party thus allows attendees to prove their personhood transparently in a public ceremony, demonstrating their existence as a human and obtaining a limited-term digital proof of their unique personhood, without having to be identified at all, by anyone.

3.2 Protecting security and equality

The main operational security objective in a pseudonym party is ensuring: (a) that each attendee obtains one digital token that only they control, such as by holding a cryptographic private key for it; (b) that each attendee obtains only one such token, to guard equality; and (c) that the total number of people who were verifiably in attendance closely if not exactly matches the length of the list published after the event, to ensure that corrupt organizers cannot manufacture fake virtual attendees and reap the corresponding benefits for themselves.

Objectives (b) and (c) are most critical to collective security: an attendee or organizer who can improperly obtain many tokens may gain the power of all manner of Sybil attacks against the community, including ballot stuffing, sockpuppetry and astroturfing via many false identities, obtaining many shares of community benefits such as basic income, etc. To achieve these collective security goals, therefore, a pseudonym party needs to be publicly transparent enough, and documented through enough independent sources of evidence both human and digital, that this body of evidence and testimony can leave no reasonable doubt in either the fact that the event occurred or the number of people who attended. Adequate measures to ensure such security and transparency will naturally vary depend on conditions and an event’s size.

3.2.1 Small events

At small events involving at most a few tens of attendees, a simple and informal process may suffice for security, because all attendees can simply watch and verify the process for themselves. For example, each attendee might use a PoP wallet app to create a single-use token and display it as a QR code. One designated organizer simply scans all of these QR codes and broadcasts a list of them locally to all attendees. The attendees check that the length of the broadcast list matches their direct observation of the number of attendees, and if so, witness cosigns the list as an eyewitness attesting that fact [Syta et al., 2016]. Any attendee who sees that the organizer’s list is longer than the number of people physically present, or sees the organizer scanning some attendee more than once, or finds her own token missing from the final list, can publicly complain, refuse to cosign, and ultimately attend a different pseudonym party next time if the problem is not rectified.

3.2.2 Medium-size events

If a pseudonym party graduates from a few tens to hundreds of attendees, it becomes difficult for all attendees watching an organizer either to count reliably, or to remember which other attendees the organizer has and has not yet counted. This scale thus calls for a more struc-
tured process. All attendees are asked to gather in an enclosed or demarked space, such as a designated room or a cordoned-off outdoor area, before a designated deadline. This space might serve as a lobby in which to gather and socialize before a “main event” commences, such as a keynote speech or concert for example. At the critical deadline – when the main event is about to start – all entrances to the lobby are closed so no one else may enter. Those already in the lobby then move one at a time from the lobby area to the main event area, each attendee presenting a token QR code for scanning as they exit the lobby. The organizer scans only one QR code per person, publicly displaying the list and running count throughout the process. Anyone present can watch and film both the scanning process and the lobby as a whole, both to convince themselves and provide eyewitness testimony if needed that each attendee was scanned only once, that no one was allowed to enter or re-enter the lobby after the deadline, and that the number of attendees scanned matches the length of the list subsequently published.

3.2.3 Large events

If a pseudonym party reaches thousands or more attendees – as might happen in an event doubling as a political rally or protest, for example – then the basis for security remains the same but just needs to scale. Standard crowd control measures of the kinds commonly used in theme parks or to manage large protests – such as portable barriers and officials watching them – may apply in this case. Instead of one organizer, several or many organizers might scan attendees leaving the enclosed area via multiple lines in parallel, in order to accommodate large numbers of people without causing inordinate wait times. Many witnesses, both officially-designated and unofficial volunteers, might film and publish video documentation of the event from all perspectives, both broad and focused especially on the token scanning lines and “do-not-cross” boundaries. A sufficient number of guards must monitor the boundaries and exits, and must have authority to catch and eject anyone attempting to (re-)enter the critical enclosed space after the deadline until the event has closed.

3.2.4 Federated pseudonym parties

Scaling beyond one geographic location securely requires multiple groups to federate to organize simultaneous events at multiple different locations. The most basic security requirement in this case is that all such federated events have synchronized entry deadlines. That is, all events must close the entrances to their lobby areas at the same time, before starting to scan tokens, so that it is impossible for any single person (with only one body) to be present at and get tokens scanned at more than one such federated event, even if they had instantaneous travel.

The timezone challenge There is in principle no barrier against such a federation scaling to support regular simultaneous events at every city, town, and village in the world. The synchronization requirement does present a convenience problem due to timezones, however: a pleasant high-noon entry deadline in one place is inevitably a 3AM deadline somewhere else on the globe.

If the globally-synchronized deadline varies from one event to the next, however, we can ensure that everyone will have the opportunity to attend some events at a time convenient to them, even if we expect most people to attend only a subset of events. An alternative approach would be to divide the globe into, say, three large federations encompassing about eight timezones each, and accepting that a few determined people close to federation borders will readily be able to obtain tokens (and corresponding benefits) from the two adjacent federations.

The deep fake challenge The main remaining security challenge is keeping the group of organizers at each location accountable and transparent to all the organizing groups at other locations. A key threat is that a corrupt group of organizers might attempt to fabricate an event that did not occur at all, or inflate their event’s attendance, using today’s advanced graphics and in particular deep fake [Chesney and Citron, 2018] technologies to forge a body of digital audio/video “evidence” convincingly.

Probably the strongest measure to mitigate such threats is to ensure constant interaction and cross-witnessing between locations. The organizers at any location should, in effect, be dead-certain that their event is being observed, recorded, and publicly reported on by multiple official and unofficial (volunteer) witnesses who normally
attend events at other locations, and that any discrepancy between their claims and those witnesses’ and testimony will quickly be noticed and investigated.

Some such cross-witnessing can be expected to happen opportunistically as a result of normal travel: e.g., a person looking up and dropping in on a local event during a business trip or vacation. To ensure proactively that all locations can anticipate some cross-witnessing at each event, however, and hence a high assurance of fabrication by any group being caught, the federation might run a secret cross-witness travel lottery. Anyone normally attending some location can sign up, and a subset of such volunteers are randomly selected and secretly asked to travel to and serve to cross-witness another randomly-assigned pseudonym party location in the near future. Volunteers are offered modest compensation for accepting their random cross-witnessing assignments, depending on required travel distance. Assigned cross-witnesses are required to keep their status secret until after the assigned event. At this point they can reveal (and prove) their official cross-witness status after-the-fact, together with the body of video and other evidence they recorded, and their personal testimony on whether they thought the event was run properly and any irregularities they might have observed. A corrupt group of organizers would thus not only have to produce a considerable body of convincingly-fake evidence from many (fake) perspectives, but also successfully bribe or coerce nearly every attendee they don’t recognize who shows up and could be a secret cross-witness.

3.3 Privacy in pseudonym parties

Pseudonym parties guard attendees’ privacy by not requiring them to show any form of ID or submit to biometric tests. The digital tokens scanned and published at each event are merely cryptographic random numbers that contain no personal information or traceable link to their owners. Attendees might even wear masks and costumes at the pseudonym party, as in a Venetian carnival, to conceal even the fact of their attendance from anyone who might recognize them.

3.3.1 Privacy in the use of PoP tokens

With appropriate design, each attendee’s subsequent uses of their tokens can also be cryptographically unlinkable from each other and from the attendee’s position on the published list, ensuring strong privacy even for attendees who did not wear a mask and might be known to have received a particular token on the published list.

Pseudonym parties thus satisfy our main privacy goal for proof of personhood by not collecting personally identifiable information (PII) in the first place, and by cryptographically de-linking all subsequent uses of the tokens from the tokens themselves.

3.3.2 Coercion resistance

A far more technically difficult privacy challenge that is crucial to digital democracy is coercion resistance: ensuring that a PoP token is used only by the intended person under their free will and genuine consent. One important use-case for PoP tokens is for online voting and deliberation, and hence the well-known and extremely difficult coercion-resistance challenges that E-voting systems face translate into corresponding challenges for pseudonym parties as well. For example, how can we prevent a person or organization with means from secretly hiring or bribing many real people to attend a pseudonym party, obtain one (legitimate) PoP token each, and then use their respective tokens to vote in the interests of the coercer?

In today’s digital ecosystem it is difficult to imagine a way to detect or prevent such transactions from occurring without precisely the kind constant privacy-invasive surveillance we seek to avoid. It is doubtful even that we can plausibly detect, track down, and halt such attempts at coercion or vote-buying, especially given that they can potentially be launched from anywhere in the world, such as in a country from which the perpetrator is unlikely to be extradited even if caught. The perpetrator might even launch the attack anonymously via smart contract mechanisms such as dark DAOs [Daian et al., 2018], leaving effectively no trace or link back to the perpetrator once funded anonymously with cryptocurrency and launched.

Fortunately there is an alternative to the unrealistic prospect of tracking down and deterring attempts at coercion. Instead, we can protect the free will of pseudonym party attendees by ensuring that even if they are bribed or otherwise coerced, they need not “stay bought.” In particular, we can adapt to pseudonym parties an approach to coercion resistance developed for E-voting, in which each voter can obtain both real and fake tokens [Juels et al.,
The attendee inserts the ticket into Ford, 2020a]. The coercee then discards the real privacy booth, for example. The requirement to check electronic devices cannot be successfully bribed or otherwise coerced to compromise their own privacy by recording or live-streaming their activities in the privacy booths. Attendees must then attain real and fake PoP tokens, and to learn which is which of voting itself, but instead to allow each attendee to observe. In this case, the moment of privacy is not for the act of voting itself, but instead to allow each attendee to obtain real and fake PoP tokens, and to learn which during that moment of privacy. Attendees must then know but be unable to prove this fact after the moment of privacy ends, once the attendee may again be subject to coercion. The coercer thus has no way to verify whether the attendee complied and hence “stayed bought.”

One way we might implement coercion resistance at pseudonym parties is as follows. As each attendee exits the lobby, instead of getting a token scanned immediately, the attendee instead receives a single-use ticket from the organizer managing that exit line. The attendee then deposits any recording-capable electronic devices temporarily at a check-in desk, then enters one of several curtained privacy booths. The attendee inserts the ticket into a kiosk in the privacy both, which prints one real token and several fake tokens on paper. The attendee knows that the first token printed is the real token, and may mark the printed tokens as an aid to remembering which is which. Upon leaving the privacy booth, however, only the attendee knows which is the real token, and cannot subsequently prove which is which to anyone else.

In the example of a coercer who hires people to attend a pseudonym party and vote in the coercer’s interest, the attendees can safely give the coercer their fake tokens – claiming unfalsifiably that they are real – while in fact double-crossing the coercer by using their real tokens to vote in their own interests and not the coercer’s. The design of this coercion-resistant token-printing process and kiosk presents technical and security/privacy challenges, of course, which is currently a work-in-progress. The bottom line, however, is that these challenges appear solvable without attendees having to trust the kiosk for anything other than coercion resistance. Even a fully-compromised kiosk cannot undetectably forge Sybil tokens or steal the tokens of uncompromised, uncoerced attendees.

In extreme cases such as domestic coercion, an abusive partner or relative might lurk nearby at the pseudonym party itself, monitoring the victim at every moment in line and as they enter the privacy booth, then again after they emerge from it. In this case the victim may have no safe means of leaving with their real token and using it elsewhere secretly. One way of addressing this extreme coercion case is to enable the attendee to use their real token in the privacy booth to delegate their subsequent normally-online votes to a party of their choice, as is already common in party-list proportional-representation elections, or even to delegate to an arbitrary friend they trust to represent them as in liquid-democracy systems [Blum and Zuber, 2016, Ford, 2020a]. The coercer then discards the real token in the booth and leaves holding only a fake token, which they can then present to their coercer or use under the coercer’s surveillance. While this approach unfortunately eliminates the victim’s opportunity to participate online in more fine-grained deliberation and voting between pseudonym party cycles, it at least preserves their ability to express their free will in relative safety.

With appropriate design, therefore, pseudonym parties can potentially not only ensure a secure “one person, one vote” distribution of tokens to real people, but can also ensure that the people receiving those tokens have the opportunity to use them under their own genuine free will, even in the presence of resourceful coercers, either nearby or remote, who may be unlikely to be caught or deterred.

3.4 Inclusion

The fact that pseudonym parties need not collect or verify any identity or biometric information also addresses many inclusion challenges, though not all. The proof-of-personhood (PoP) tokens handed out at a ceremony are anonymous random numbers that clearly encode no information about an attendee’s gender, race, wealth, nationality, or other characteristics. If many attendees wear...
masked costumes and some regularly cross-dress, these practices can head off risks of discrimination or exclusion at the event on the basis physical characteristics such as race, age, or gender.

The main exclusion risk that pseudonym parties potentially have trouble with concerns people who wish to attend but cannot due to lack of mobility or freedom at the event’s designated time. Prisoners and residents of authoritarian surveillance states, for example, may clearly be prevented from organizing or attending a pseudonym party. It is hard to envision any approach successfully guaranteeing that a person can obtain and use a proof-of-personhood token freely and privately without duress or coercion, if that person is under constant surveillance and hence by definition has no effective privacy or freedom.

Less-extreme scenarios are thus actually more worrisome in practice, such as exclusion of those whose jobs require them to be on-duty elsewhere at a pseudonym party’s designated time and place. Holding successive pseudonym parties at varying times and dates may help ensure that even those with restrictive schedules can participate in some events, if only a subset. If pseudonym party attendance translate into economic benefits such as a crypto-UBI or universal basic income in cryptocurrency form [Ford, 2020b, Zhang et al., 2020], then employees might argue for employers to reimburse them for attendance benefits missed due to their work schedulers.

Another possibility may to allow some attendees in exceptional cases to register before an event for “absentee participation,” and consent to verifiable location tracking during the event, publicly proving via multiple independently-verifiable forms of evidence – such as via location tracking devices together with eyewitness attestations – showing that they were at work and not attending any pseudonym party. This approach could thus allow people otherwise excluded by responsibilities to participate “remotely” at the cost of a brief, opt-in compromise of their location privacy at the critical time.

3.5 Pseudonym parties in pandemic times

It is ironic to be writing a proposal for large in-person gatherings during a global pandemic, in which most large in-person gatherings are forbidden for public health reasons across much of the globe. We hope that the current situation is not permanent, of course. But what if it is, and a “new normal” persists indefinitely in which people must avoid dense gatherings especially indoors, remain widely distanced even when outdoors, and so on?

There is nothing preventing us from organizing pseudonym parties primarily outside, to ensure ventilation and adequate distancing between attendees throughout. The main challenge is reserving and cordoning off enough space for the number of people expected to gather in the “lobby” area before the deadline. Large public parks might be used and painted with distancing circles for attendees relaxing or socializing in the enclosed area, as has already been done at parks in New York [Harrouk, 2020], San Francisco [Tyska, 2020], and other cities. Clearly-marked areas might be reserved for those waiting in line to obtain a token and leave the lobby area, with the distance markers that have become standard for such lines.

One challenge is urban or suburban neighborhoods without sufficiently-large parks nearby to accommodate safely the number of people wishing to attend. Those with cars might travel to more distant, larger spaces, but expecting everyone in a dense area to do so would be either unsafe or exclusionary to those who would have to use shared public transportation for that travel. Temporarily closing local neighborhood streets to vehicle traffic, and using those in addition to or instead of park areas, may be a less-comfortable but workable solution.

Weather is another important consideration, of course, which will certainly affect peoples’ willingness to participate in pseudonym parties, just as it already can affect voter turnout in traditional elections [Gomez et al., 2007]. Scheduling yearly events in summertime may help – but if such an event is synchronized globally as discussed above in Section 3.2.4, we face the problem that one hemisphere’s summer is the other hemisphere’s winter. Scheduling yearly or semiannual events in the spring or fall may be a better compromise in this regard, at least avoiding the coldest periods anywhere.

But we might desire more frequent quarterly, monthly, or even weekly events, to reduce the time newcomers must wait to obtain their first PoP token, and to reduce the impact to regular attendees having to miss one cycle. There will then be no escape from the chance of bad weather in most parts of the world. Appropriate architectural measures, such as large temporary or permanent shelter structures with high ceilings but open walls, may
help attendees maintain reasonable comfort while gathering in a space with safe distancing and ventilation.

3.6 Use cases for PoP tokens

Although this paper’s focus is primarily on ways to create proofs of personhood securely rather than on applications for them, we briefly summarize a few promising use cases and how they might function.

3.6.1 An alternative to CAPTCHAs

Web sites often use automated Turing tests or CAPTCHAs [von Ahn et al., 2003] to rate-limit automated abuse attempts, such as miscreants attempting to create many fake accounts. As machine-learning techniques have improved, however, web sites have had to increase the difficulty of these CAPTCHAs progressively, until real humans often have as much difficulty solving them as machines do [Dzieza, 2019]. CAPTCHAs are often exclusionary to those with disabilities or language barriers, and are annoying and time-consuming even to those who can usually solve them.

Web sites and online services of all kinds could allow users to bypass CAPTCHAs automatically using a PoP token. The online service can tell whether or not a particular PoP token has already been used for a particular operation on that service, such as signing up for a new account, although this use of the PoP token reveals nothing else about its holder. Because one real human user receives only one PoP token each time he attends a pseudonym party, PoP tokens offer online services much stronger rate-limiting protection against automated abuse of their services than CAPTCHAs do. An abuser can expect to get a new PoP token only once a week, month, quarter, or year, whereas either a human abuser or CAPTCHA-solving bot can successfully solve a CAPTCHA in a matter of seconds. And PoP tokens offer the user requesting the service the greater convenience of immediate access without having to solve increasingly-difficult puzzles.

The PoP token itself need not be revealed to the online service when used in lieu of CAPTCHA solving. Instead, the service receives only a cryptographically-unlinkable tag that it knows has a 1-to-1 relationship to some valid PoP token, even though no one but the token’s owner knows which one. One way to implement such a mechanism cryptographically is using compact linkable ring signatures, for example [Au et al., 2006, Tsang and Wei, 2005]. When the user uses the same PoP token to access different online services, those services obtain distinct and cryptographically-unlinkable tags, which are therefore unusable to track users across different services.

3.6.2 Verified likes and follower counts

As soon as social media became a primary communication channel and competitive field for information sharing and advertising, unscrupulous fraudsters soon started synthesizing fake identities or social bots to promote particular viewpoints or content, or to increase the apparent reputation and influence of a real account by inflating its follower count [Ferrara et al., 2016, Bessi and Ferrara, 2016]. One way social media platforms could use PoP tokens from pseudonym parties is to neutralize Sybil attacks from social bots, by displaying and using only counts of unique real people when computing and display “follower” or “like” counts or selecting items for a user’s feed.

With such a measure properly implemented, social media platforms need not forbid users from creating multiple accounts for different purposes or representing different sides to their personality – e.g., a professional feed, a personal feed, one for a favorite hobby, etc. The policy Twitter exemplifies of even allowing well-behaved bot accounts on the platform may be embraced, since interacting with bots can sometimes be useful or entertaining.

But whenever any of a user’s online accounts “likes” or upvotes a post, that upvote gets counted in displayed statistics, newsfeed selection, and other algorithms only if the account has a PoP token valid at the time of the upvoted post. Accounts whose users currently have no valid PoP token at that time – e.g., because the owner missed the last pseudonym party cycle, or is a bot – can still upvote items, but these upvotes have no impact on aggregate statistics or content selection. Similarly, if a user upvotes the same post through multiple accounts he controls, all of these upvotes count only once because they are linked to the same PoP token. Thus, each PoP token valid at the time a given post appears serves as a single right for its holder’s upvotes to be counted once and only once.

Follower counts might similarly be computed in “one-per-real-person” fashion. Since (real) accounts generally
have extended lifetimes rather than being of interest only at a particular moment in time, platforms might simply use the currently-valid PoP tokens at any given time in calculating follower counts to display on social media accounts. Each follower of a given account is actually counted only if that follower currently has a valid PoP token, and is counted only once even if multiple follower accounts use the same PoP token. Thus, one’s follower count might change not only as a result of other accounts following or un-following them, but also as a result of a follower obtaining and linking a PoP token, or of a follower’s PoP token expiring without being renewed.

3.6.3 Online voting and deliberation

It almost goes without saying that PoP tokens may be used in online voting and deliberative processes, ensuring that each real person wields only one vote, even if they have multiple online accounts representing different personas. As soon as higher-stakes democratic processes move online, ensuring coercion resistance becomes more critical, as discussed earlier in Section 3.3.2.

One practical issue we may rightfully worry about is the effective disenfranchisement of anyone who had to miss the last cycle of pseudonym parties, at least until the next cycle that they manage to attend. While this temporary loss of voting power is an important concern, it is not fundamentally different or worse than the effective disenfranchisement we have today of voters who cannot readily make it to a conventional election that normally requires in-person voting. If pseudonym parties were to become a widely-used mechanism, businesses and governments might hopefully establish policies that help enable most people the freedom to be off-duty if desired around the most important pseudonym party cycles. For the cases in which this is impossible, exception-case mechanisms of the kind discussed earlier in Section 3.4 may apply.

Other innovations in digital democracy might also “soften the blow” of temporary disenfranchisement due to missing pseudonym party cycle. In liquid democracy, for example, eligible voters who do not wish to – or have no time to – follow all the details of an online discussion or deliberative process can delegate their vote temporarily to a chosen representative [Blum and Zuber, 2016; Ford, 2020a]. A person who does have the time and interest in participating in the deliberation closely, and acquires a reputation for being knowledgeable and trustworthy on the topic of discussion, may thus build up and wield a significant amount of delegated proxy voting power. If this respected authority must miss one pseudonym party cycle, she temporarily loses only her single individual vote, and not the ability to wield the delegated voting power of others who did obtain a PoP token in the most recent cycle. Thus, her voting weight merely drops by one vote until the next cycle, rather than falling to zero.

3.6.4 Sortition-based juries and deliberative polls

Another important potential online governance structure that PoP tokens could support is sortition-based selection of juries, members of deliberative polls [Fishkin and Luskin, 2005], or other open democracy processes that might need to be diverse and representative but manageable in size [Landemore, 2020, Landemore, 2013].

A government, organization, or online association might use a recently-published list of PoP tokens to “call” a randomly-selected sample of people to participate in a deliberative poll or jury. Even though these sampled PoP tokens are anonymous to everyone else, their holders can tell which published PoP tokens are theirs. The token holder’s PoP wallet might notify the owner if a call arrives for sortition-based participation in a process of potential interest, for example. The organizer can guarantee that the selection of called PoP tokens is fair by relying on the output of a decentralized random beacon [Syta et al., 2017] such as drand.2 Because each PoP token represents exactly one human user who attended some pseudonym party in the last cycle, each real person gets an equal chance of selection regardless of how many online accounts or identities they might have.

3.7 Pseudonym parties wrap-up

In conclusion, while organizing and scaling pseudonym parties securely presents numerous technical and logistical challenges, this approach appears to present a clear path to achieving the key goals of proof of personhood in a strong form: inclusion, equality, security, and privacy.

2https://drand.love
4 Alternative Approaches

We now turn to examining and informally analyzing a number of other approaches to proof of personhood that have been proposed recently and even prototyped [Siddarth et al., 2020]. A more detailed and rigorous analysis is left for future work. We commence by briefly classifying proof-of-personhood approaches by key features, then analyze these classes one-by-one, examining unique features of individual approaches only as needed.

4.1 Classifying alternative approaches

To provide a broad comparison of alternatives, we examine not only approaches that explicitly set out to solve the “unique human” or proof of personhood problem, but also other Sybil-resistance mechanisms that are widely-known and commonly-used to achieve overlapping if not identical goals. Table 1 concisely summarizes this classification. For each broad approach and each of the four key proof-of-personhood goals, the table also summarizes whether our informal analysis finds the goal to be satisfiable with strong confidence (√), only questionably satisfiable (?), or definitely unsatisfied (-), for reasons elaborated further below.

Analyzing approaches to proof of personhood and closely-related Sybil-resistance schemes this broadly presents numerous challenges, of course. Many proposed approaches have limited (and usually not peer reviewed) documentation on how the approach actually works, and often lack a well-defined threat model or statement of goals and assumptions. Our analysis will therefore be subjective in many ways, and necessarily but admittedly unfair in that we will analyze proposed approaches ultimately against our threat model and assumptions – particularly the four proof of personhood goals set out in Section 2 – and not the (usually-implicit) goals and assumptions the authors may have intended.

In hopes of compensating at least partially for this unavoidable unfairness in comparing proposed approaches to what might be viewed as our ideal standard, we attempt to give each approach the benefit of the doubt by evaluating the properties that each broad class of approaches appears likely capable of satisfying with appropriate design. For this reason, some cells in Table 1 are marked satisfiable (√) even in cases where it is unclear and perhaps doubtful that current specific approaches do satisfy those properties, when there appears to be a clear path toward filling those gaps. Table 1 therefore marks a property unsatisfied (-) only where there appears to be a fundamental reason that class of approaches cannot satisfy the given property, without modifying basic premises and hence becoming a different approach entirely.

Several of the approaches we explore below make no pretense at achieving the goals of proof of personhood per se, but we nevertheless examine them for broad comparison purposes. Readers interested only in schemes that specifically attempt to address the “unique human” problem central to proof of personhood may wish to skip ahead to Section 4.6.

4.2 Government-issued identity

As a natural comparison baseline, we first briefly consider the approach most governments today use to verify an individual’s personhood and eligibility to receive the benefits of government services: that is, identity documents, either paper-based or increasingly digital, that attest to a person’s origin (e.g., birthdate and birthplace), status such as citizenship or residency, and identifying personal characteristics such as photo or other biometrics. Based on historical experience, it seems questionable at best whether government-issued identity can robustly satisfy any of the four goals of digital personhood.

When a person uses an identity document (e.g., a drivers license or passport) to prove their eligibility for
some benefit (e.g., entering a country or receiving unemployment or social security benefits), verification is based entirely on matching the person’s physical characteristics and/or knowledge against existing documents or databases. For example, an ID checker – either human or increasingly machine – typically compares the person’s face and sometimes other biometrics like fingerprints against those on a photo ID or in an electronic database, and sometimes asks the person questions about their past such as mother’s maiden name, birthplace, a recent bank transaction, favorite pet, etc. Even when signing up for or renewing an identity document such as a passport, the process generally relies for security on similar verification of other earlier identity documents the person already had: e.g., a birth certificate, social security card, earlier expired passport or other ID, etc.

All of these documents tend to be forgeable in practice at varying costs, and the security of their issuance generally has numerous single points of compromise. For example, to start building a false identity around a name from a gravestone or a stolen profile, a determined identity fraudster often need only find a single human office worker who can be confused through social engineering, or successfully bribed or extorted, to accept weak, synthesized or tampered-with evidence of the person’s past such as forged birth certificates and other papers. The fact that identity documents may be and often are lost or stolen, for many legitimate reasons, forces governments to have processes essentially relying on a person’s say-so to re-establish documented status, and these processes similarly present opportunities for fraudsters to exploit.

Further, there is essentially nothing about one documented history of a person guaranteeing that another documented history of the same physical person – or perhaps many such histories – cannot exist or is likely to be discovered if they do exist, unless the multiple-identity fraudster simply makes an egregious mistake. Criminal organizations and spy agencies alike rely on this fact routinely, and when their members are caught using false identities, it is often due in part to mistakes made in using those false identities while keeping them separate.

Thus, it is questionable at best whether the government identity approach can guarantee either security with no single point of failure, or equality in ensuring that each person obtains only one identity, without subjecting people to far-more-invasive scrutiny and verification processes than liberal democracies tolerate at present. For example, to ensure true threshold security with no single points of compromise, everyone applying for or renewing a drivers license or passport might ultimately need not only to interact with one government office worker, but rather to convince a multi-member “identity inquisition committee” that the applicant’s existing documentation and claimed history is legitimate.

These issues ultimately highlight the fundamental limitations of documentation-based government identity approaches. First, they cannot achieve security or equality to any degree without privacy-invasive tests and comparisons with documented records, and hence necessarily fail to be privacy-preserving even if might consider them plausibly securable. Second, because identifying documents in either paper or digital form are fundamentally just identity proxies separate from a person that can be lost, stolen, destroyed in a natural disaster or war, or misappropriated through coercion, they also fundamentally cannot enforce security or equality without violating our goal of inclusion. The myriad forms of people today who are excluded in practice due substantially to the lack of (the right) documentation – including undocumented migrants or homeless, refugees from disasters or wars, those rendered stateless from lack of any provable citizenship, etc. – illustrate the innumerable ways in which privacy-invasive identity approaches exclude millions of real people whose only crime may have been to be unlucky.

4.3 Biometric identity

Even though government identity approaches usually include biometrics as elements to varying degrees – a person’s photo on a passport or ID card being the standard baseline – approaches that rely on biometrics primarily or even exclusively for identification are worth examining in their own right. The quintessential example of this approach is India’s Aadhaar program, which has biometrically registered over a billion people using iris and fingerprints [Chaudhuri and König, 2017, Abraham et al., 2018].

The key attraction of this approach is that a person’s biometrics are essential characteristics of human physiology that nearly everyone has and are quite unique to each individual. Biometrics thus cannot readily be lost like identity documents or mobile devices, and cannot be forgotten like passwords or answers to personal history
questions. Biometric technologies can also demonstrably be made quite usable, efficient, and scalable: just stand there and look here, place your fingers here, etc.

4.3.1 Broad issues with biometric identity

Biometric identity approaches face numerous technical, security, and privacy challenges, however. Even if people can’t accidentally lose or forget biometrics, they can be intentionally or unintentionally destroyed. Fingerprints wear off from hard manual work. People lose hands, arms, or eyes in accidents or violent conflicts. Most biometrics also evolve gradually over time as a person ages. Hackers have created wearable fake fingerprints, contact lenses with iris patterns, and even fake hands with embedded vein patterns, regularly fooling even state-of-the-art biometric recognizers with liveness detection. These factors and others likely contribute to the increasing body of experiential evidence that biometric identity systems are neither as robust nor as inclusive as they might at first seem [Venkatanarayanan, 2017, Khera, 2019].

Further, each electronic device used for biometric identity registration or subsequent authentication – and each official trusted with operating these devices in registration and authentication processes – represents a single point of failure or compromise. These critical points may be be exploitable either for identity theft, improperly misappropriating the identities of a legitimate victim [Pritam, 2018], or for Sybil attacks, by synthesizing and registering multiple false identities whose biometrics need not (and for the attacker preferably do not) detectably match any existing user registered in the system including their own real identity. Large biometric identity databases have even been exploited apparently for banal reasons of unscrupulous business competition [Venkatanarayanan and Lakshmanan, 2017].

No matter how security-hardened these biometric devices might be, there is unlikely to be a single trusted hardware technology available today or in the foreseeable future secure enough to withstand a sustained attack by a determined and resourceful adversary focused on a particular device the adversary physically controls, such as a biometric registration system that is stolen or under the control of a compromised system administrator. Thus, while biometric identity systems may well be secure enough to detect or deter casual identity theft or fake-identity attacks, their security against undetected attacks by corrupt officials, resourceful criminal organizations, or government spy agencies is far more doubtful.

4.3.2 Biometric error rates and their implications

Even when uncompromised, all biometric tests have nonzero false-accept rates (FAR) and false-reject rates (FRR). In state-of-the-art biometric technologies of the type approved for use in Aadhaar for example, these error rates tend to be in the 1-in-10,000 to 1-in-100,000 range, which is usually more than adequate for biometric authentication alone but far more questionable as a basis for biometric identity. When a person unlocks their own mobile device with a fingerprint or face recognition, for example, this biometric authentication needs to compare the user present only with one (or at most a few) templates stored on the device representing the authorized user(s).

To implement biometric identity, however – including the deduplication test needed to detect and prevent Sybil attacks via duplicate registrations – at registration time the user’s biometric templates must be tested for inequality with all of the other (potentially billions of) users already registered. In this context, even a state-of-the-art 1-in-100,000 false accept rate for iris recognition implies that a legitimate new registrant’s iris pattern may be expected to match falsely against 10,000 other irises in Aadhaar’s billion-user database. Thus, a large-scale biometric identity scheme like Aadhaar cannot rely on only one biometric but must rely on multiple biometrics – like the two irises and ten fingerprints that Aadhaar uses – and flag a potential duplicate only if some threshold of templates in a new registration match those in an existing record.

This potentially billion-fold increase in sensitivity to false positives that biometric identity systems inevitably experience, with respect to simple “1-to-1” biometric authentication, correspondingly increases both the opportunities for fraudsters and the exclusion threats to legitimate users. Identity thieves may need to find a near-match in only one biometric sample to find and exploit a false accept against an existing real user’s biometric identity. Just as importantly for equality protection and Sybil resistance, identity fraudsters might register false identities using plausible but randomly-synthesized biometric templates of the kind regularly created for testing biometric technologies. Only one or two of the biometrics might
match those of the real fraudster – enough to pass subsequent simple authentication tests of one particular fingerprint or iris, for example – but few enough to remain under the duplicate alarm threshold and to be plausibly deniable even if duplication becomes suspected for some other independent reason. (“Of course there are other identities matching my left thumbprint in your billion-user database. Your false-accept rate of 1-in-10,000 predicts that there should be 100,000 such matches!”)

4.3.3 Biometrics and privacy

The dimension in which biometric identity definitively fails our goals, of course, is privacy. In contrast with 1-on-1 biometric authentication against a template stored only within a mobile device to be unlocked, for example, the need for biometric identity registration to perform an inequality comparison between a new registrant’s biometrics and all the previously-registered users fundamentally requires that a centrally-queryable database of all users’ biometrics be built and maintained somehow, somewhere. However it is created and managed, this database becomes an extremely sensitive, prime target for hacking and theft by all manner of foreign governments and criminal organizations wishing to track and identify people.

Furthermore, biometrics are, as they say, passwords you can’t change (Schneier, 2009). Once a biometric database is compromised in any way for any reason, everyone whose templates were stored in it are permanently more vulnerable to surveillance or identity theft attacks for life. Precisely because our they are the characteristics most inextricably tied to our identities as physical beings, biometrics are among the most sensitive and privacy-invasive if overused or misused, as amply illustrated in dystopian science fiction films like Gattaca or Minority Report. Despite the demonstrated appeal of biometrics in terms of usability and scalability, therefore, they definitely cannot meet our privacy goals for digital personhood.

4.4 Self-sovereign identity

The key premise of self-sovereign identity [Allen, 2016, Mühle et al., 2018] is enabling users to collect government and third-party digital attestations of identity attributes such as name, age, citizenship, degrees, and so on, and selectively reveal and prove those attributes to other parties on demand. The ambition is to place people in charge of how their identities are used and which aspects of their identity to reveal in a given interaction.

Self-sovereign identity can certainly be useful for certain purposes that focus on distinguishing between people: e.g., digitally verifying whether a job applicant indeed has a claimed professional degree or certificate. In some situations, self-sovereign identity may be privacy-preserving, especially where the sole attribute to be revealed is a one-bit yes/no or member/non-member test. The quintessential example is proving one is old enough to drink legally when entering a bar, without revealing anything else.

In scenarios calling for stronger verification beyond boolean set-membership tests, however – as generally required to prove an identity is “official” or “unique”, for example – self-sovereign identity generally falls back on the traditional approaches of requiring users to reveal the same kinds of rich, privacy-invasive attributes that define government-issued and biometric identities. If every business or organization that accepts a self-sovereign identity for moderate- to high-trust purposes such as banking or online voting must effectively demand a set of uniquely-identifying attributes such as name, birthdate, birthplace, government-issued ID number, etc., then at least for these purposes self-sovereign identity is equivalent to, and cannot fundamentally offer more privacy protection than, conventional approaches to digital identity.

For digital democracy purposes, the basic problem with self-sovereign identity is that it still focuses on proving identity, in terms of attributes that distinguish between and divide people, rather than personhood, in terms of empowering and protecting each real human being regardless of identity attributes. Because digital democracy use-cases would require users to reveal the same privacy-invasive, uniquely-identifying attributes that government and biometric identities employ, self-sovereign identity alone cannot offer the privacy protections we seek. Since self-sovereign identity wallets on mobile devices may be lost or stolen, users must be able to fall back on traditional processes and identity documents to restore access, leaving the fundamental exclusion challenges of identity approaches unsolved. Finally, since any self-sovereign identity wallet and its attributes may be used under coercion or bribery, even with strong identity verification it is not ultimately suitable for online voting or deliberation, unless
it is somehow enhanced with coercion-resistance mechanisms of the kind discussed above in Section 3.3.2.

4.5 Proof of investment: work, stake, etc.

As with the identity approaches above, for broad comparison purposes it is worth examining Sybil-resistance mechanisms used in popular permissionless cryptocurrencies, even though these schemes generally make no attempt to achieve the same goals as proof of personhood. Nearly all of these schemes we can broadly classify as proof of investment: anyone may participate, but voting power and rewards are conferred in proportion to each participant’s amount of investment in some activity or resource.

4.5.1 Proof of work

Bitcoin [Nakamoto, 2008] was groundbreaking in that it created the first successful permissionless cryptocurrency, allowing anyone in principle to join the network freely and participate in consensus and community rewards without prior identification or authorization. The consensus algorithms driving Bitcoin and most other deployed cryptocurrencies are based on proof of work, which had been previously proposed as a way to fight E-mail spam and denial-of-service attacks [Dwork and Naor, 1992, Jakobsson and Juels, 1999].

Proof of work is a cryptographic zero-knowledge proof technique in which one party (the prover) convinces another party (the verifier) that the prover expended a certain amount of computational effort finding the proof, generally by solving cryptographic puzzles. The verifier can check this proof quickly with minimal effort, and in particular need not repeat all the prover’s effort finding the puzzle solution. Bitcoin and many other permissionless cryptocurrencies use proof of work as a Sybil-resistance mechanism by establishing a constant competition between all first-class participants, or miners, to solve proofs of work. Each miner earns the right to participate in consensus, extend the blockchain, and earn rewards, in proportion to relative amount of work provably expended.

Proof of work’s key strength and attraction as a Sybil-resistance mechanism is privacy: it does not require or demand any identity information from either miners or end-users. While Bitcoin’s blockchain structure offers users only weak pseudonymity because all transactions are publicly visible on the blockchain [Androulaki et al., 2013, Conti et al., 2018], subsequent permissionless cryptocurrencies offer even stronger anonymity and transaction privacy [Sasson et al., 2014]. Further, despite many subtle security issues being found in Bitcoin and other cryptocurrencies based on proof of work [Eyal and Sirer, 2014, Apostolaki et al., 2017], the overall security of permissionless consensus based on proof of work still generally appears to have held up.

Given that Bitcoin’s permissionless consensus was designed specifically so that “anyone” could join and participate at any time by mining, we might expect permissionless cryptocurrencies to satisfy our inclusion goal as well. While it may still be true in a narrow sense that anyone can join and mine Bitcoin, the development of specialized mining hardware and the competitive landscape of mining economics has led to the effective re-centralization of most mining power into the hands of a few entrenched specialists with access to cheap power and the latest mining hardware [Vorick, 2018]. For nearly anyone else, first-class participation as a miner may still be possible but is not economically feasible: one will pay far more in hardware and electricity than one can hope to reap in rewards from participation. Thus, proof of work’s claim to inclusiveness has become questionable at best.

Finally, our goal that proof of work fundamentally cannot (and does not attempt to) satisfy is, of course, equality. Because each proof-of-work miner receives voting power and participation rewards in proportion to invested computational effort, and this computational effort costs real money, proof of work clearly distributes influence and rewards to participants with a rule much closer to a “one dollar, one vote” than a “one person, one vote” principle.

4.5.2 Proof of stake

The high energy costs of the mining “arms race” that proof-of-work cryptocurrencies set up has motivated intense interest in more energy-efficient alternatives, one of the most popular being proof of stake. In this approach, participants must first obtain some existing cryptocurrency in the proof-of-stake system – either by being a founding member or buying some from an existing member – and lock up or stake these funds for some time period. All stake-holders subsequently obtain voting power in permissionless consensus, and participation re-
wards such as newly-minted cryptocurrency, in proportion to their amount of stake. Participants need not waste energy or any other physical resource, but merely pay the opportunity cost of not using their cryptocurrency for something else while it is staked.

Proof of stake protocols are certainly valuable alternatives to proof of work for their energy savings alone. They are also technically interesting and challenging to secure, though these challenges generally appear solvable [Kiyias et al., 2016, Gilad et al., 2017, Badertscher et al., 2019]. The main disadvantage from a perspective of our digital personhood goals is again equality: proof of stake is still a proof of investment – only a different form of investment than in proof of work – and thus still operates in the “one dollar, one vote” paradigm.

Many other Sybil resistance schemes for permissionless cryptocurrencies have been proposed, such as proof of space [Park et al., 2018] or even proof of human work [Blocki and Zhou, 2016]. These schemes generally retain the same fundamentally-unequal proof of investment character as proof of work or proof of space, however, giving proportionally more rewards and voting power to anyone willing and able to invest more in the appropriate resource or activity.

4.6 Social trust networks

We now explore a broad class of approaches to proof of personhood that build on social networks and social trust principles. We start with the PGP “Web of Trust” model that first launched interest in this approach to digital identity, then examine how direct social trust relationships translate (or fail to translate) into plausible Sybil resistance properties. Finally, explore the potentials and weaknesses of Sybil resistance algorithms based on social graph analysis and threshold identity verification tests.

4.6.1 PGP’s web-of-trust model

Real human communities often rely on social trust in many ways: e.g., social gossip as a source of information and a means of judging its reliability, and word-of-mouth recommendations of (or warnings about) people to hire for service tasks such as babysitting or repair. Building on this basic aspect of human society, PGP’s web-of-trust model [Stallings, 1995] first popularized the idea of building digital identity on social trust.

PGP’s immediate goal was not to verify unique personhood or resist Sybil attacks, but instead merely to established social trust in mappings between human-readable names and cryptographic public keys. If Alice knows and already trusts Bob, for example, and Bob introduces her online to someone named “Charlie”, Alice needs to know Charlie’s correct public key in order to authenticate and communicate with him securely. Instead of just trusting any PGP public key labeled “Charlie” that she finds on the Internet – which might well be an imposter trying to impersonate the real Charlie – Alice can gain confidence that she has found the right Charlie’s public key if Bob (or another trusted contact) has signed and attested to it.

Even when this “web of trust” is actually used – which has been rare even among privacy activists – this model establishes only that Alice and Bob have a shared understanding of what the correct public key is for their mutual contact “Charlie.” It does not establish, for example, that “Charlie” is that key-holder’s real government-recognized name; it might be merely a pseudonym that Charlie used at the particular key-signing party at which Bob signed Charlie’s key. The web of trust similarly does not establish that “Charlie” is the key-holder’s only pseudonym: he or she might well hold many PGP keys under different pseudonyms (“Dave,” “Eve,” etc.). He may even have obtained social trust signatures on them at many PGP key-signing parties involving disjoint sets of participants.

This is merely the starting point for the issues we face applying social trust to the goal of Sybil resistance for digital personhood: social trust solves the wrong problem.

4.6.2 Social identity as a basis for Sybil resistance

Many approaches to proof of personhood based on social trust ask participants to verify their connections and attest to their genuineness and uniqueness [Shahaf et al., 2020]. Some approaches ask users to vote on whether they think an online identity is genuine, as in HumanityDAO [Rich, 2019]. Some require users to stake some form of currency as a “bet” that those identities are not Sybils: e.g., real money in Upala. The expectation is generally that users

3https://upala-docs.readthedocs.io/
should “know” their connections well enough to be certain that they are not Sybil attackers.

When social trust works in practice, it works by people acquiring a reputation for reliably having some particular attribute or ability. One acquires a social reputation as a dependable electrician, sharp software developer, or talented musician by doing those things, being observed doing them by friends or colleagues, and being mentioned in others’ social conversations as one who does them well. One acquires a social reputation for kindness, or biting wit, or an explosive temper, by showing those personality traits, and by those traits being discussed when one is absent. Social trust works by propagating knowledge of the presence of certain abilities or character traits.

But the property of not being a Sybil attacker – i.e., of not having any online personas other than the ones a particular group of contacts knows about – is an absence rather than a presence. This simple fact places social trust schemes for Sybil resistance in far more dubious territory. How does one verifiably prove – and earn a reputation among one’s colleagues or even one’s closest friends – of not having any online alter egos unknown to them? Almost everyone has alter egos: different sides of their personalities or abilities that they reveal only to certain (perhaps disjoint) subsets of their friends and acquaintances.

Does the fact that none of your work colleagues have witnessed you playing the piano imply that they can, or should, vouch that you can’t play the piano, i.e., that you have no alter ego as a pianist? Obviously not: they may not have observed you playing the piano simply because there is no piano at your workplace, or you have no time to play it there. Does the fact that none of your work colleagues have observed you expressing interest in any sexual fetish imply that you have no sexual fetish? Obviously not: you’re probably just (hopefully) well aware that your workplace is not the appropriate environment in which to reveal or express that side of your personality.

It is hard to build and maintain a false social reputation as a talented pianist if no one in your social network has ever seen you play piano. It is fundamentally much easier to lie to a group of friends about not being a talented pianist when you are one: just don’t play in their presence. It is easy to prove convincingly that you have an intimate relationship with someone: just allow yourself to be seen kissing or holding hands with them. It is fundamentally much harder to prove convincingly that you don’t have an intimate relationship with anyone else: just don’t meet your secret lover in the presence of your social friends or regular partner. People manage this all the time.

In short, social trust works to verify the presence of personal attributes because their presence is usually actually verifiable in some way. Social trust does not work to verify the absence of attributes, including entire alter egos, because they are easily and routinely hidden for many ordinary reasons. The absence of attributes or alter egos is simply not socially verifiable, other than by relying on a person’s say-so and “hoping” they’re not lying.

But this begs the question: should we even be asking our friends to attest or “prove” – and perhaps lie about – the absence of alternate identities unknown to us?

4.6.3 Alter egos as a basic privacy right

In practice, a basic element of privacy is the freedom to have alter egos: the latitude to express aspects of your interests, personality, or beliefs in one social context that you’re well aware may not be welcome in another context. People take on multiple personas and present different facets of themselves in different contexts all the time: e.g., at work with colleagues, versus at home with family, versus with a group of friends sharing a particular common interest, versus with a secret lover. The fact that affairs or flings are so common – which one might not disclose even to one’s most trusted primary life partner for a year, if ever – makes it obvious how unrealistic and absurd the presumption is that we can be certain about the absence of another side to a close friend or lover based only on our absence of knowledge of their having such a side. And freedom-loving societies have come to recognize that even if having an affair may break your fidelity vows, that is none of the state’s business – and neither is the business of your work colleagues or nosy neighbors either, except for those you choose to confide in.

If having one or more secret alternate personas represented by online identities actually carried a strong negative social stigma, then we might arguably hope that social attestation might work to confirm the absence of Sybils for “most” people – at least those with a strong moral compass who are uncomfortable lying or just bad at it. Even if having an online alter ego was strongly stigmatized, as is having a known predilection to go on a violent rampage, social trust would still not detect everyone
hiding that property – as we can amply see in the regular news reports of mass murderers, each of whose family and friends are “shocked” because the perpetrator always seemed like such a nice, normal, upstanding person. But in contrast with a strongly-stigmatized property like being a mass murderer, having secret (online) personas in fact carries little to no social stigma, because it is common and accepted for many ordinary reasons.

Who are people with multiple identities hurting, anyway? The answer is no one, at least individually – only the social collective as a whole, if each of those Sybil identities gets its own vote and share in other benefits of society. Sybil attack vulnerabilities create a tragedy of the commons scenario that becomes readily apparent only when attacks become severe enough to undermine the equality, security, or legitimacy of a democracy in obvious ways.

Alternate personas not only carry little negative social stigma, but in some cases even a strong positive association. The freedom to have multiple personas or alter egos is almost defied in the cultural tradition of comic superheroes, nearly all of whom are secret alter egos. Must Clark Kent willfully lie to his friends and colleagues about having no other identities, in order to serve society in his role as Superman? It is almost taken for granted in democratic culture that there are perfectly legitimate reasons for one person to maintain multiple identities – as long as the person, whether Clark Kent or Superman, casts only one vote. Asking people to vouch that their friends have no online alter ego(s) is privacy-invasive and disempowering in the basic presumption that it is abnormal or unacceptable for a person to have another identity representing an alter ego. The very expectation that a person should have only one online identity, in short, is actually a violation of the freedoms we demand of digital personhood.

It is therefore essentially immaterial whether any of the proposed social trust schemes, in which users are asked to verify and vouch that their contacts are not Sybil identities, could actually work securely. Even if they did, they would fundamentally work against privacy, effectively forbidding the normal human practice of expressing multiple alter egos in different contexts in our lives, some of which we may rightfully want or need to keep pseudonymous and unlinked from others for legitimate privacy reasons. Asking people to vouch or “bet” that their social contacts have no other identities effectively demands that friends, colleagues, and neighbors to monitor each other constantly and snitch on them at the slightest sign of having some previously-unknown personality facet, just as in the worst historical surveillance states.

4.6.4 Graph analysis for Sybil region detection

Peer-to-peer networking research has produced a significant body of algorithms that attempt to resist Sybil attacks through structural analysis of a social graph. SybilGuard [Yu et al., 2006], SybilLimit [Yu et al., 2008], SumUp [Tran et al., 2009], Whånau [Lesniewski-Laas and Kaashoek, 2010], Gatekeeper [Tran et al., 2011], and SybilRank [Cao et al., 2012] are just some examples.

Although these algorithms are technically interesting, none of them satisfy our goals for digital personhood for three fundamental reasons. First, they are privacy-invasive by virtue of expecting everyone to disclose all their social ties or trust relationships for analysis. Second, they do not detect Sybil identities in general but only Sybil regions of a sufficient size – only one narrow class of Sybil attack – leaving other forms of attack wide-open to exploitation. Third, social graph analysis cannot be effective without also risking exclusion of legitimate users or groups who might in fact be poorly-connected, or for whatever reason “look like” part of a Sybil region to the algorithm.

Even if only the structure of the social graph is disclosed and available for analysis, with no names or other identifying labels, social graphs themselves tend to be unique enough for effective re-identification using public reference data [Narayanan and Shmatikov, 2009]. We might hope to protect user privacy by running the graph analysis algorithm under homomorphic encryption [Gentry, 2009] or trusted hardware enclaves like Intel SGX. But homomorphic encryption still incurs many orders of magnitude higher computational costs than direct computation, making its scalability and practicality for large social graphs doubtful, and trusted hardware has regularly been found to have vulnerabilities that allow supposedly-protected secrets to be extracted [Van Bulck et al., 2018].

Further, hiding the social graph would also make it inaccessible for manual analysis to test, debug, or improve the analysis algorithms, making it challenging for humans to investigate the algorithm’s results for false positives, false negatives, and newly-emerging forms of attack for example. The graph analysis algorithm would in effect become another potentially-oppressive opaque governance-
by-algorithm scheme, offering little accountability or recourse to users wrongly accused of being Sybils.

The Sybil-region movie plot: Just as a serious a limitation, however, is that graph structure analysis algorithms cannot actually detect individual Sybil identities but only, at best, Sybil regions of sufficient size that satisfy certain assumptions about the attacker’s strategy. These attack assumptions constitute what Bruce Schneier might term a *movie-plot threat* [Schneier, 2005]: one that “captures the imagination” – in this case inspiring a whole sub-field of academic literature – but which real-world attackers readily avoid simply by adopting a different strategy.

In brief, graph-based Sybil-resistance algorithms assume that Sybil attackers produce regions of the social graph that look something like Fig. 1. A Sybil region consists of a large number of Sybil identities that are densely connected internally, but with a much smaller of attack edges, or connections between the Sybil region and “honest” identities of real users. The intuition is that synthesizing any number of internal nodes and edges within the Sybil region is essentially “free” to the attacker, while creating attack edges incurs some cost to the attacker. For each attack edge, the attacker must convince some real user to accept a “friend request” to a fake Sybil identity.

The Sybil-region scenario, and graph-based defenses against it, embody at least three dubious assumptions about the attacker’s strategy: (a) that the cost to the attacker of creating attack edges is significant, (b) that the attacker is unable or unwilling to pay this cost, and (c) that the attacker wants to create one large Sybil region. If any single one of these assumptions fails to hold in reality, the protection these algorithms offer collapses completely. In practice, all of these assumptions probably fail to hold or are easily circumvented by an attacker who simply chooses not to follow the Sybil-region movie plot.

While attack edges do cost more to create than purely-synthetic relationships among nodes within a Sybil region, the presumption that this cost is significant contradicts practical experience with actual online social networks. Real users and social bots alike frequently “follow” or “friend” many other accounts indiscriminately – and often automatically “follow back” any other account that follows them – in order to build their follower counts and “influencer” status [Ferrara et al., 2016]. In effect, the widespread use of friend or follower counts as a reputation or influence metric incentivizes behaviors that drive the effective cost of social connections – and the real social trust they represent – down towards zero.

Projects like Upala try to counter this social edge devaluation problem by requiring identities to invest something of value in connections, such as cryptocurrency costing real money. Imposing such a financial barrier, however, simply makes attack edges another form of “proof of investment” like proof of work or proof of stake, as discussed above in Section 4.5. Any social connection cost high enough to deter even casual Sybil attackers is exclusionary to people who can’t afford the accepted price of “enough” stake in even a few such connections. And any social connection cost low enough for most people to afford will be merely a modest “cost of doing business” for a wealthy Sybil attacker motivated to invest in many attack edges. Thus, even if attack edges do incur significant costs – either in direct financial stake as in Upala, or via indirect investments such as creating sophisticated AI algorithms for social bot farming or simply hiring real people to create plausible but fake online profiles – these costs simply exclude genuine but financially-constrained users while only modestly rate-limiting the capabilities of wealthy attackers. The dominant paradigm remains “one dollar, one vote” rather than “one person, one vote.”

The Sybil-region movie plot also implicitly presumes that there is just one attacker, whose goal is to create just one large Sybil region. This is the online social net-
work equivalent of a James Bond villain, the quintessential movie-plot threat. In practice, however, if each Sybil identity a person successfully obtains confers proportionally more benefits, such as votes in an election or universal basic income, then all participants have an incentive to obtain as many Sybil identities as they can – even if many poorer participants can “afford” only one or two Sybils. Many participants might remain honest nevertheless purely for moral reasons, but absent any significant barriers or deterrents, many other participants may well succumb to the temptation to cheat “just a little” while attempting to remain under the graph-analysis radar.

Further, if large, internally-dense “Bond villain” Sybil regions are readily detectable, then smart attackers will instead simply create Sybils that have few or no connections to each other, mainly or exclusively relying on “attack edge” connections to other real users. An attacker adopting this strategy gives up the appealing prospect of synthesizing a whole alternate universe of nearly-free Sybil nodes and internal connections, of course, and must now invest in a certain number of attack edges for each Sybil identity. But this may again be simply a cost of doing business, which rich attackers may be perfectly willing and able to pay, to achieve non-financial objectives such as sowing misinformation or ballot stuffing for example.

In summary, Figure 2 illustrates an alternative attack scenario that may not capture the imagination and inspire clever graph analysis algorithms like the Sybil-region movie plot, but is equally realistic in practice. Instead of one Bond villain creating one large alternate Sybil universe, many smaller attackers simply give in to their natural economic greed by investing the effort and expense necessary to create a few Sybil identities each, connecting those identities mainly or exclusively to other “honest” users rather than to their other Sybils. Especially if these many small-scale Sybil attackers take care to connect their Sybil identities to disjoint subsets of honest users, they can also make it difficult for the detection of one Sybil identity to lead to exposure of their other Sybil Sybil identities, violating a key detectability assumption in some Sybil-resistance schemes [Shahaf et al., 2020].

4.7 Threshold verification

Many proposed proof of personhood schemes subject an online identity to some threshold test of apparent “genuineness” in terms of representing a real human. HumanityDAO [Rich, 2019], for example, requires newly-proposed identities to receive a sufficient threshold of “yes” votes from existing users inspecting the identity. BrightID asks users to build social connections in regular online verification parties, and achieve a threshold SybilRank score to be verified [brightID, 2020]. Duniter requires users to have a threshold number of social certifications and to be within a maximum social distance from a distinguished referent member [Duniter, 2018].

Fakeability of profiles and verifications: Most of these schemes appear to have two significant weaknesses. First, there is no obvious reason to believe that automated virtual synthetic-identity attacks, especially using deep fake techniques [Chesney and Citron, 2018], cannot soon (or already) create convincing enough identities in bulk to pass such “genuineness” threshold tests. Automated techniques might soon be able to create fake profiles, and even synthesized talking heads in online verifications, that are just as convincing as real participants - if not more so, just as CAPTCHA-solving bots are al-
ready competitive with or surpassing real humans’ ability to solve CAPTCHAs [Dzieza, 2019].

In contrast, our grounds for optimism that pseudonym parties can remain secure against digital fakery at least for some time – until convincing humanoid robots or biosynthetic clones become readily available, for example – is because pseudonym party transparency and security relies not only on digital evidence but also the direct observations or indirect attestations of (ideally many) in-person eyewitnesses, as discussed earlier in Section 3.

The cumulability of asynchronous verifications: The second key weakness is that most threshold verification schemes for proof of personhood require participants to go through the verification process either once or periodically, at a time of the participant’s choosing. This property makes verifications for multiple Sybil identities readily cumulable over time. For example, a Sybil attacker might create one BrightID profile, establish a threshold of social connections and get it verified at one verification party; then create another BrightID profile under a different pseudonym, establish a new set of social connections for the new pseudonym with a disjoint set of other participants at a different verification party later, and so on. Even when verifications have an expiration, as in Duniter, an attacker with some motivation can still maintain many Sybil identities while renewing each Sybil’s certifications often enough to to maintain its “verified” status.

There appears to be nothing these threshold verification protocols ask of users that prevents one determined human from completing exactly the same verification tasks for two Sybil identities in succession, if two different real humans could have performed the same verification tasks at the same respective times on two otherwise-equivalent non-Sybil identities. Without requiring some form of synchronized task that would require a Sybil attacker to be in two places at once, as pseudonym parties rely on, it is not clear these threshold verification tests have any way to distinguish between two humans verifying real identities and one time-shifting human verifying Sybil identities.

Weaknesses to the elasticity of Sybil attackers: There are a few approaches to proof of personhood that retain the idea of assigning participants periodic mutual-verification tasks at synchronized times, and hence resist straightforward time-shifting attacks. Encointer [Brenzikofe, 2019] retains even the in-person element of pseudonym parties, assigning small groups of participants to meet and verify each other at randomly-assigned physical locations but at synchronized times, so that a real person at one verification site cannot also be at another. Idena moves these synchronized events online, asking participants to challenge each other to CAPTCHA-inspired “FLIP tests” to verify their humanness. Pseudonym Pairs similarly assigns users to verify each other online in pairs by interacting casually in video chat sessions.

Besides the risks of real-time digital fakery becoming sophisticated enough to solve FLIP tests or otherwise trick real humans in online interactions, as discussed above, there is another significant potential weakness that all of these approaches appear to have, derived from their assignment of users to interact in small groups (e.g., four per site in Encointer, or pairs in Idena or Pseudonym Pairs). These protocols appear to assume that a Sybil attacker is working alone and thus has only one real human body to work with (their own). This is not the case, unfortunately. An attacker with motivation and funds might readily use “gig economy” services like Amazon Mechanical Turk to hire an elastic supply of real humans to perform tasks online – such as participating in Idena or Pseudonym Pairs verifications – under the attacker’s central coordination. Similarly, an attacker might use flexible “in-person help” services like TaskRabbit to obtain an elastic supply of participants to attend Encointer meetings under the attacker’s direction. In either case, we must keep in mind that these hired helpers are not only elastic resources for the attacker but also serve as replaceable parts, or minions. The attacker might send a different minion to represent, and be “verified,” in each successive event that one of his Sybil identities is asked to attend in each cycle.

If such an attacker was always forced to hire as many minions in each cycle as the number of Sybil identities the attacker wishes to maintain, we would not consider this a successful Sybil attack: the number of participating humans would be equal to the number of identities in...
each cycle, independent of why each human participated.\footnote{This scenario would constitute a successful coercion attack, of course – relevant if the minions are hired to vote in support of the attacker, as discussed in Section 3.3.2.} But unfortunately the attacker probably needs to hire significantly fewer minions than attacker-maintained Sybil identities in each cycle, for at least two reasons.

First, these protocols cannot realistically expect genuine participants to attend every assigned meeting reliably, whether it occurs in-person or online. Instead, they can only reasonably expect an identity’s human owner to participate some threshold percentage of the time in order to maintain “verified” status. Further, these group verification protocols only know about, and thus can only assign, \textit{identities} – not the real humans purportedly behind them – to verification groups, without introducing privacy-invasive biometric tests and the like. If a Sybil attacker knows that the system requires the holder of an identity to show up to assigned meetings only 50\% of the time, therefore, the attacker need only hire one replaceable verification minion in each cycle for every two Sybil identities the attacker wishes to maintain. The attacker thus already has a 2× Sybil advantage over honest users.

Pseudonym parties, in contrast, do not even know about, let alone verify, \textit{identities}. In particular, they never need to assign an identity to do anything. Instead, real people choose for themselves with their real bodies which synchronized event to attend in each cycle, if any. Attendees need not show up to any particular threshold number of cycles in order to maintain “verified status”: there is no threshold verification. The PoP tokens an attendee gets in each subsequent cycle are completely independent and unlinkable. Each person gets a token in each cycle they attend, and does not get a token in each cycle they miss.

The second key advantage a Sybil attacker can obtain, in threshold protocols that rely on assigning identities to verification groups, is more insidious because it may represent a small advantage initially but allows the attacker to \textit{gain advantage} progressively over time and eventually flood the system with Sybils. Each time the protocol assigns identities to small verification groups, there is some probability a given group will randomly contain only the attacker’s Sybil identities. Whenever the attacker “gets lucky” in such a meetup assignment, the attacker need not hire or assign any unique human minions to that particular meetup time and place. Since they are all virtual and attacker-controlled, the two or a few Sybil identities can simply confirm that they all attended, without actually doing anything. If the protocol requires that the group record and publish evidence (\textit{e.g.}, a video record) that the meetup occurred, then the attacker can either digitally forge that evidence at his leisure, or employ only a few real minions to record many time-shifted “meetups” in succession.

Suppose the attacker initially invests in enough minions to control 10\% of the total identities in the system, for example. For each of the attacker’s Sybil identities in each cycle, the attacker experiences a roughly 10\% chance of that Sybil “getting lucky” and being paired with another Sybil in Idena or Pseudonym Pairs.\footnote{This probability is much lower with four-member Encointer groups (roughly 10\%\(^3 = .01\%\)) but still may be non-negligible.} If one of the participation benefits each Sybil identity receives is a universal basic income in cryptocurrency [\textit{Ford, 2020b, Zhang et al., 2020}], for example, and each identity needs to show up only 50\% of the time to assigned meetups to remain verified as discussed above, then the coordinated Sybil attacker gets both a 50\% “discount” on the number of minions he must hire due to the threshold requirement, plus a further 10\% discount approximately from attacker-dominated pairs. The attacker can thus afford to pay each of his minions slightly more than one identity’s basic income is worth, while still making over 2× profit.

The attacker can now reinvest this profit towards creating and maintaining more Sybil identities in subsequent cycles. As the attacker’s percentage of Sybil identities increases, so does the percentage of assigned groups that the attacker fully dominates, and hence need not assign any minions to. The attacker’s advantage over honest users thus increases, along with his effective hiring discount since he needs to hire an even smaller number of minions each cycle, leaving him with even more profit to invest in new Sybils, and so on. Once the attacker’s ability to maintain Sybils grows to control one-third of the total identities in the system in this scenario, the attacker’s minion hiring costs plateau at a constant. He needs at most one real minion to pair with every two honest identities in each cycle, again because of the 50\% threshold requirement, regardless of the number of Sybils the attacker creates. The attacker now effectively controls the system completely, and can claim any desired percentage of the system’s ben-
efts simply by creating more Sybils, without further increasing the attacker’s costs in real minions.

Increasing the size of the assigned groups (e.g., from pairs to four members in Encointer) exponentially decreases the attacker’s initial advantage from completely-controlled groups for a given percentage of Sybil identities. The use of larger groups does not affect the fact that the attacker has such a Sybil advantage, however, which he can gradually increase over time by reinvesting claimed benefits as described above. Thus, unless the number of honest users constantly grows faster than any attacker’s Sybil identities, it appears that any proof-of-personhood scheme of this form that assigns identities to small groups for mutual verification may eventually succumb to Sybil-attack takeovers, sooner or later.

5 Conclusion

Digital democracy cannot and will not exist securely unless it has a secure and usable proof of personhood foundation to build on. This foundation must robustly guarantee “one person, one vote” participation while ensuring inclusion, equality, security, and privacy. We have explored ways in which the previously-proposed idea of pseudonym parties might be secured for small, medium, or large events, and how they might be scaled geographically across many sites, while ensuring that all organizing groups remain accountable to all others through both digital evidence and direct cross-witnessing observations. We have also explored some of the alternate approaches commonly proposed as foundations for digital democracy, and their weaknesses. Government-issued, biometric, or self-sovereign identity approaches can be Sybil-resistant only by being highly privacy-invasive. Proof-of-investment methods, like proof of work and proof of stake, offer privacy but not equality. Proof of personhood approaches based on social networks, or threshold verification mechanisms, can potentially slow but cannot halt the creeping takeover of Sybil attackers. Because the basic idea of proof-of-personhood and all existing schemes are still new and immature, however, much remains to be learned and new approaches no doubt await invention.

Acknowledgments

The author wishes to thank Jeff Allen, Lucy Bernholz, Linus Gasser, Philipp Jovanovic, Hélène Landemore, Louis-Henri Merino, Frederic Pont, Rob Reich, and Haoqian Zhang for numerous valuable discussions contributing to the formation of ideas in this paper.

References

[Abraham et al., 2018] Abraham, R., Bennett, E. S., Bhusal, R., Dubey, S., Li, Q. S., Pattanayak, A., and Shah, N. B. (2018). State of Aadhaar Report 2017-18. Technical report, IDinsight.

[Allen, 2016] Allen, C. (2016). The path to self-sovereign identity.

[Androulaki et al., 2013] Androulaki, E., Karame, G. O., Roeschlin, M., Scherer, T., and Capkun, S. (2013). Evaluating user privacy in bitcoin. In Financial Cryptography and Data Security (FC).

[Apostolaki et al., 2017] Apostolaki, M., Zohar, A., and Vanbever, L. (2017). Hijacking Bitcoin: Large-scale Network Attacks on Cryptocurrencies. 38th IEEE Symposium on Security and Privacy.

[Au et al., 2006] Au, M. H., Chow, S. S., Susilo, W., and Tsang, P. P. (2006). Short linkable ring signatures revisited. In European Public Key Infrastructure Workshop (EuroPKI).

[Badertscher et al., 2019] Badertscher, C., Gaži, P., Kiyayias, A., Russell, A., and Zikas, V. (2019). Ouroboros Chronos: Permissionless Clock Synchronization via Proof-of-Stake. Cryptology ePrint Archive, Report 2019/838.

[Bessi and Ferrara, 2016] Bessi, A. and Ferrara, E. (2016). Social bots distort the 2016 U.S. Presidential election online discussion. First Monday, 21(11).

[Blocki and Zhou, 2016] Blocki, J. and Zhou, H.-S. (2016). Designing proof of human-work puzzles for cryptocurrency and beyond. In Theory of Cryptography Conference (TCC).
[Blum and Zuber, 2016] Blum, C. and Zuber, C. I. (2016). Liquid democracy: Potentials, problems, and perspectives. *The Journal of Political Philosophy*, 24(2):162–182.

[Borge et al., 2017] Borge, M., Kokoris-Kogias, E., Jovanovic, P., Gailly, N., Gasser, L., and Ford, B. (2017). Proof-of-Personhood: Redemocratizing Permissionless Cryptocurrencies. In *1st IEEE Security and Privacy on the Blockchain*.

[Brenzikofer, 2019] Brenzikofer, A. (2019). encointer—an ecological, egalitarian and private cryptocurrency and self-sovereign identity system.

[brightID, 2020] brightID (2020). Universal proof of uniqueness.

[Cao et al., 2012] Cao, Q., Sirivianos, M., Yang, X., and Pregueiro, T. (2012). Aiding the detection of fake accounts in large scale social online services. In *9th USENIX Symposium on Networked Systems Design and Implementation (NSDI)*.

[Chaudhuri and König, 2017] Chaudhuri, B. and König, L. (2017). The Aadhaar scheme: a cornerstone of a new citizenship regime in India? *Contemporary South Asia*, 26(2):127–142.

[Chesney and Citron, 2018] Chesney, R. and Citron, D. K. (2018). Deep Fakes: A Looming Challenge for Privacy, Democracy, and National Security. *California Law Review*.

[Conti et al., 2018] Conti, M., Kumar, S., Lal, C., and Ruj, S. (2018). A survey on security and privacy issues of bitcoin. *IEEE Communications Surveys & Tutorials*, 20(4).

[Daian et al., 2018] Daian, P., Kell, T., Miers, I., and Juels, A. (2018). On-Chain Vote Buying and the Rise of Dark DAOs. Hacking, Distributed.

[Douceur, 2002] Douceur, J. R. (2002). The Sybil Attack. In *1st International Workshop on Peer-to-Peer Systems (IPTPS)*.

[Duniter, 2018] Duniter (2018). Deep-dive into the web of trust.

[Dwork and Naor, 1992] Dwork, C. and Naor, M. (1992). Pricing via Processing or Combatting Junk Mail. In *12th Advances in Cryptology (CRYPTO)*.

[Dzieza, 2019] Dzieza, J. (2019). Why captchas have gotten so difficult. *The Verge*.

[Eyal and Sirer, 2014] Eyal, I. and Sirer, E. G. (2014). Majority is not enough: Bitcoin mining is vulnerable. In *Financial Cryptography and Data Security*, pages 436–454. Springer.

[Ferrara et al., 2016] Ferrara, E., Varol, O., Davis, C., Menczer, F., and Flammini, A. (2016). The Rise of Social Bots. *Communications of the ACM*, 59(7).

[Fishkin and Luskin, 2005] Fishkin, J. S. and Luskin, R. C. (2005). Experimenting with a Democratic Ideal: Deliberative Polling and Public Opinion. *Acta Politica*, 40(3):284–298.

[Ford, 2020a] Ford, B. (2020a). A Liquid Perspective on Democratic Choice.

[Ford, 2020b] Ford, B. (2020b). Democratic Value and Money for Decentralized Digital Society. Draft (forthcoming).

[Ford, 2020c] Ford, B. (2020c). Technologizing Democracy or Democratizing Technology? A Layered-Architecture Perspective on Potentials and Challenges. In *Digital Technology and Democratic Theory* (forthcoming). University of Chicago Press. Preprint: https://bford.info/pub/soc/dt2-chapter-abs.

[Ford and Strauss, 2008] Ford, B. and Strauss, J. (2008). An offline foundation for online accountable pseudonyms. In *1st International Workshop on Social Network Systems (SocialNets)*.

[Gentry, 2009] Gentry, C. (2009). Fully Homomorphic Encryption Using Ideal Lattices. In *ACM Symposium on Theory of Computing (STOC)*.

[Gilad et al., 2017] Gilad, Y., Hemo, R., Micali, S., Vlachos, G., and Zeldovich, N. (2017). Algorand: Scaling Byzantine Agreements for Cryptocurrencies.
[Gomez et al., 2007] Gomez, B. T., Hansford, T. G., and Krause, G. A. (2007). The Republicans should pray for rain: Weather, turnout, and voting in U.S. presidential elections. The Journal of Politics, 69(3).

[Harrouk, 2020] Harrouk, C. (2020). Domino park introduces social distancing circles to adapt to the COVID-19 crisis. ArchDaily.

[Jakobsson and Juels, 1999] Jakobsson, M. and Juels, A. (1999). Proofs of work and bread pudding protocols (extended abstract). Secure Information Networks, 23.

[Juels et al., 2010] Juels, A., Catalano, D., and Jakobsson, M. (2010). Coercion-resistant electronic elections. In Chaum, D., Jakobsson, M., Rivest, R., Ryan, P. Y. A., Benaloh, J., Kutykowski, M., and Adida, B., editors, Towards Trustworthy Elections: New Directions in Electronic Voting, LNCS 6000, pages 37–63. Springer.

[Khera, 2019] Khera, R. (2019). Aadhaar failures: A tragedy of errors. Economic & Political Weekly, 54(14).

[Kiayias et al., 2016] Kiayias, A., Russell, A., David, B., and Oliynykov, R. (2016). Ouroboros: A Provably Secure Proof-of-Stake Blockchain Protocol. Cryptology ePrint Archive, Report 2016/889.

[Landemore, 2013] Landemore, H. (2013). Open Democracy: Reinventing Popular Rule for the Twenty-First Century. Princeton University Press.

[Landemore, 2020] Landemore, H. (2020). Open democracy and digital technologies. In Digital Technology and Democratic Theory. University of Chicago Press.

[Lesniewski-Laas and Kaashoek, 2010] Lesniewski-Laas, C. and Kaashoek, M. F. (2010). Whānau: A sybil-proof distributed hash table. In 7th USENIX Symposium on Networked Systems Design and Implementation (NSDI).

[Mühle et al., 2018] Mühle, A., Grüner, A., Gayvoronskaya, T., and Meinel, C. (2018). A survey on essential components of a self-sovereign identity. Computer Science Review, 30:80–86.

[Nakamoto, 2008] Nakamoto, S. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System.

[Narayanan and Shmatikov, 2009] Narayanan, A. and Shmatikov, V. (2009). De-anonymizing social networks. In 30th IEEE Symposium on Security and Privacy.

[Park et al., 2018] Park, S., Kwon, A., Fuchsbauer, G., Gaži, P., Alwen, J., and Pietrzak, K. (2018). SpaceMint: A Cryptocurrency Based on Proofs of Space.

[Pritam, 2018] Pritam, P. (2018). Uttar pradesh’s 2 lakh tonne ration scam.

[Rich, 2019] Rich (2019). Introducing humanity dao. Medium.

[Sasson et al., 2014] Sasson, E. B., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., and Virza, M. (2014). Zerocash: Decentralized anonymous payments from Bitcoin. In Security and Privacy (SP), 2014 IEEE Symposium on, pages 459–474. IEEE.

[Schneier, 2005] Schneier, B. (2005). Terrorists don’t do movie plots. Wired.

[Schneier, 2009] Schneier, B. (2009). Tigers use scent, birds use calls – biometrics are just animal instinct. The Guardian.

[Shahaf et al., 2020] Shahaf, G., Shapiro, E., and Talmon, N. (2020). Genuine personal identifiers and mutual sureties for sybil-resilient community growth. In International Conference on Social Informatics (SocInfo), pages 320–332.

[Shao et al., 2018] Shao, C., Ciampaglia, G. L., Varol, O., Yang, K.-C., Flammini, A., and Menczer, F. (2018). The spread of low-credibility content by social bots. Nature Communications, 9.

[Siddarth et al., 2020] Siddarth, D., Ivliev, S., Siri, S., and Berman, P. (2020). Who watches the watchmen? a review of subjective approaches for sybil-resistance in proof of personhood protocols.

[Stallings, 1995] Stallings, W. (1995). The PGP Web of Trust. BYTE Magazine, 20(2):161–164.
[Syta et al., 2017] Syta, E., Jovanovic, P., Kokoris-Kogias, E., Gailly, N., Gasser, L., Khoffi, I., Fischer, M. J., and Ford, B. (2017). Scalable Bias-Resistant Distributed Randomness. In 38th IEEE Symposium on Security and Privacy.

[Syta et al., 2016] Syta, E., Tamas, I., Visser, D., Wolinsky, D. I., Jovanovic, P., Gasser, L., Gailly, N., Khoffi, I., and Ford, B. (2016). Keeping Authorities “Honest or Bust” with Decentralized Witness Cosigning. In 37th IEEE Symposium on Security and Privacy.

[Tran et al., 2011] Tran, N., Li, J., Subramanian, L., and Chow, S. S. (2011). Optimal Sybil-resistant node admission control. In IEEE INFOCOM.

[Tran et al., 2009] Tran, N., Min, B., Li, J., and Subramanian, L. (2009). Sybil-resistant online content voting. In 6th Symposium on Networked System Design and Implementation (NSDI), pages 15–28.

[Tsang and Wei, 2005] Tsang, P. P. and Wei, V. K. (2005). Short linkable ring signatures for e-voting, e-cash and attestation. In Information Security Practice and Experience (ISPEC).

[Tyska, 2020] Tyska, J. (2020). Photos: Aerial views of social-distancing circles painted on dolores park lawn in san francisco. The Mercury News.

[Van Bulck et al., 2018] Van Bulck, J., Minkin, M., Weisse, O., Genkin, D., Kasikci, B., Piessens, F., Silverstein, M., Wenisch, T. F., Yarom, Y., and Strackx, R. (2018). Foreshadow: Extracting the keys to the intel {SGX} kingdom with transient out-of-order execution. In 27th {USENIX} Security Symposium ({USENIX} Security 18), pages 991–1008.

[Venkatanarayanan, 2017] Venkatanarayanan, A. (2017). Enrolment rejections are accelerating. Medium.

[Venkatanarayanan and Lakshmanan, 2017] Venkatanarayanan, A. and Lakshmanan, S. (2017). Aadhaar mess: How airtel pulled off its rs 190 crore magic trick. The Wire.

[von Ahn et al., 2003] von Ahn, L., Blum, M., Hopper, N. J., and Langford, J. (2003). CAPTCHA: using hard AI problems for security. In Eurocrypt