Analysis of the percentages of monocyte subsets and ILC2s, their relationships with metabolic variables and response to hypocaloric restriction in obesity

Nicté Figueroa-Vega *, Carolina I. Marín-Aragón, Itzel López-Aguilar, Lorena Ibarra-Reynoso, Elva Pérez-Luque, Juan Manuel Malacara *

Department of Medical Sciences, University of Guanajuato, León Campus, León, Gto., México

* jmmalacara@hotmail.com (JMM); ng.figueroa@ugto.mx (NFV)

Abstract

Purpose

Obesity results from excess energy intake over expenditure and is characterized by chronic low-grade inflammation involving circulating monocytes (Mo) and group 2 innate lymphoid cells (ILC2s) imbalance. We analyzed circulating Mo subsets and ILC2s percentages and β2-adrenergic receptor (β2AR) expression in lean and obese subjects, and the possible effect of hypocaloric restriction on these innate immune cells.

Methods

In 139 individuals aged 45 to 57 years, classified in 74 lean individuals (>18.9 kg/m² BMI <24.9 kg/m²) and 65 with obesity (n = 65), we collected fasting blood samples to detect Mo subsets, ILC2s number, and β2AR expression by flow cytometry. Lipids, insulin, leptin, and acylated-ghrelin concentrations were quantified. Resting energy expenditure (REE) was estimated by indirect calorimetry. These measurements were repeated in obese subjects after 7-weeks of hypocaloric restriction.

Results

Non-classical monocytes (NCM) and β2AR expression on intermediate Mo (IM) were increased in obese individuals (p<0.001, in both cases), whereas the percent of ILC2s was decreased (p<0.0001). Stepwise regression analysis showed significantly negative associations of ILC2s with caloric intake, β2AR expression on IM with REE, but a positive relationship between NCM and HOMA-IR. Caloric restriction allowed a significant diminution of NCM and the β2AR expression on IM, as well as, an increase in the percent of classical Mo (CM), and ILC2s. ΔREE was related to ΔCD16+/CD16− ratio.
Conclusions
These findings show that in obesity occur changes in NCM, ILC2s and β2AR expression, which contribute to the low-grade inflammation linked to obesity and might revert with caloric restriction.

Introduction
In obesity, the imbalance of energy intake/expenditure favors the accumulation of fat [1], usually with chronic low-grade inflammation [2], which has effects on energy metabolism at central and peripheral levels. Inflammation induces fat mobilization and oxidation [2]. Obese individuals are supposed to have lower energy expenditure (REE), however, longitudinal studies show REE increase with obesity [1].

Several immune cell types are key regulators of metabolic homeostasis [3–7]. In white adipose tissue (WAT) from obese subjects change immune cell composition and function with an effect on energy expenditure. Immune cells in the adipose tissue (AT) of lean subjects include T regulatory (Treg) cells, iNKT cells, group 2 innate lymphoid cells (ILC2s), and M2 macrophages; these cell types have distinct roles in the maintenance of AT homeostasis [2]. In obesity, excessive visceral fat accumulation causes adipose tissue dysfunction that leads to chronic-low grade inflammation with adipocyte hypertrophy and hyperplasia, shift from a type 2 to type 1 cytokine-associated inflammatory environment, altered secretion of adipokines (leptin, adiponectin, and other), and changes in proportions and kind of immune cells toward pro-inflammatory monocytes and Th17 lymphocytes, which strongly contributes to obesity-related comorbidities [3–5].

Adipokines are peptide mediators produced by fat cells in AT that exert a powerful influence over immune system [8]. Leptin and adiponectin have effect over functions of dendritic cells, monocytes, neutrophils, and innate lymphoid cells. Leptin, induces satiety, and with other metabolic functions such as regulation of energy expenditure. It also increases phagocytic activity, pro-inflammatory cytokines secretion, and polarization of immune cells toward pro-inflammatory phenotypes [9]. Appetite regulation has a counterregulatory peripheral function in ghrelin, an acylated peptide product of the stomach that induces appetite, and it is also an anti-inflammatory cytokine that suppresses inflammation in obesity [10].

Circulating monocytes (Mo) include three distinct subtypes according to their surface expression of lipopolysaccharide receptor CD14 and FcγIII receptor CD16 [11,12], as follows: classical monocytes (CM; CD14++CD16−) account for 80–90% of total monocytes with an anti-inflammatory phenotype. The minor CD16+ Mo subpopulation comprises the remaining 10–15% and is subdivided further into intermediate monocytes (IM; CD14+CD16+) and non-classical monocytes (NCM; CD14 CD16++), both with a pro-inflammatory phenotype and are elevated in chronic inflammatory and metabolic diseases [12–18]. Changes in monocytes subsets CD14++CD16+, CD14+CD16+ and CD14++CD16− have been described after dietary interventions in obese individuals [19–22]. Monocytes can migrate toward AT and endothelium, where they become converted into macrophages. Therefore, it is important to detect these subpopulations in peripheral blood for the evaluation the chronic low-grade inflammation and regulation of energy in obesity.

Innate lymphoid cells (ILCs) comprise three subpopulations: ILC1, ILC2 and ILC3. Recent evidences indicate that ILCs are involved in the progression of several metabolic diseases. These cells promote obesity, and are involved in adipose tissue inflammation [23,24].
Nevertheless, group 2 innate lymphoid cells (ILC2s), anti-obese immune regulators in AT, secrete anti-inflammatory cytokines, promote polarization into M2 macrophages, eosinophil regulating adaptive immunity, limiting obesity and promoting the browning of WAT [25]. ILC2s synthesize IL-5 and IL-13, cytokines implicated in browning of WAT (thermogenesis) [26]. However, the mechanisms by which ILC2s regulate AT homeostasis are incompletely defined. ILCs has been characterized in AT but information about their presence in circulation is not available. Therefore, it is needed a new approach for their study and establish their connections with energy metabolism. Due to the complexity for the isolation of ILC2 cells from human AT, peripheral bloods specimens should be used to monitor ILC2s.

Sympathetic and parasympathetic systems converge in the activation of β2-adrenoceptors on immune cells to control systemic inflammation allowing the crosstalk between nervous, endocrine and immune systems [27]. β2AR are found in inflammatory cells such as mast cells, monocytes, eosinophils, T-lymphocytes, and neutrophils. β2AR expression on Mo and their activation has usually anti-inflammatory effect [28].

The aims of this work were to determine circulating Mo subsets and ILC2s and β2AR expression in obese and lean subjects, and to evaluate the effect of moderate diet restriction on these cells, and the interaction of resting energy expenditure (REE), and metabolic variables in subjects with obesity.

Materials and methods

Participants

We recruited 139 participants of 20 to 50 years old from León, Mexico, classified in two groups, 65 with obesity (BMI \(\geq 30 \) kg/m\(^2\)), and 74 lean subjects (BMI >18.9 kg/m\(^2\) to \(\leq 24.9 \) kg/m\(^2\)).

Participants did not have clinical evidence of chronic or infectious diseases and were not taking anxiolytics, antidepressants, β-blockers, Ca\(^{++}\) channel blockers, antibiotics, or hypnotic drugs. Women did not receive hormone therapy in the previous six months, and were not pregnant, or lactating. No volunteer with smoking habit or habitual alcohol consumption was included.

Data collection

We collected age, weight measured with a roman type scale, and height with a Stadiometer (SECA 216). BMI and percentage weight loss (%WL) were calculated. Blood pressure was measured in sitting position after 5 min rest. Physical activity was evaluated using the International Physical Activity Questionnaire (IPAQ) [the short, last seven days self-administered version of IPAQ from the 2000/01 Reliability and Validity Study]. Collection of all measurements was performed in basal state and at the end of the diet period in individuals with obesity (Fig 1).

Resting energy expenditure (REE)

REE was estimated by indirect calorimetry (IC) with a Fitmate device (Wellness Technology, Cosmed, USA), calibrated before each assessment, following the manufacturer’s specifications. For evaluation, subjects abstained from physical exercise, drinks with coffee or black tea the previous 24 h. The assessment was carried out after 8–10 h fasting in a controlled environment with room temperature 21–24°C, with low light and no noise. During the 15 minutes of measurement, subjects were awake and in supine position, measurements on the first 10 min were discarded to improve stability.
Samples
Peripheral blood samples were obtained after 8–10 h overnight fasting. Serum was separated and stored at -80˚C until use. Peripheral mononuclear cells were isolated from heparinized blood. The samples were obtained before and after intervention for measurement of all variables.

Dietary intervention
Personalized caloric restriction was prescribed for 7-weeks, reducing 580 kcal of current intake of each individual with obesity. Dietary intake was designed in kilocalories/day with the following percentage of macronutrients: 55%–60% carbohydrates, 15% proteins and 30% lipids, as recommended for obese individuals, by the North American Association for the Study of Obesity (NAASO) and the National Heart, Lung, and Blood Institute (NHLBI) 2000.

Dietary intake was evaluated with 24-hour recollection (two weekdays and one weekend), at baseline and on each of the three weeks of the intervention. We analyzed 24-hours recollections with the Food Processor SQL-Nutrition Software, to quantify energy intake (Kcal) and
type of macronutrients. Adherence to diet was considered satisfactory when energy consumption was ±80% of the amount prescribed. Normal weight subjects continued with their customary diet.

Metabolic and hormonal measurements

Serum glucose and lipid profile were measured using enzymatic methods with a chemical analyzer (MicroLab 300, ELITECH group, Vital Scientific, Netherlands). LDL-cholesterol was calculated by the Friedewald’s formula [29]. Non-HDL cholesterol was also calculated. Circulating acylated-ghrelin (MyBiosource, CA, USA), insulin (ALPCO, Salem, NH), and leptin (ALPCO) concentrations were measured by ELISA. All analyses were carried out by duplicate.

Cell isolation

Peripheral blood mononuclear cells (PBMC) were isolated by Ficoll-Hypaque (1.077 g/ml; Sigma-Aldrich) gradient. Viability was examined using trypan blue exclusion.

Identification of monocytes subsets

PBMC were stained with anti-CD14 mAb conjugated to Fluorescein isothiocyanate (FITC) and–CD16 mAb conjugated to Allophycocyanin (APC) (both purchased from BD Biosciences, San Jose, CA, USA). To set the gates, control isotype antibodies were employed, an anti-mouse Ig kappa chain-FITC (BD Pharmingen), and an anti-mouse IgG1-APC (BioLegend). Moreover, monocytes were gated on the basis of their size (forward scatter) and complexity (side scatter), and the monocyte subsets were identified by the levels of expression of CD14 and CD16. Fifty thousand events were acquired for each sample on a FACSCanto II (two-laser, six-color configuration) with the FACSDiva 6.1.3 software (BD Biosciences). The results are shown as percentage of each subpopulation. Nomenclature of monocyte subsets followed the recommendations of the Nomenclature Committee of the International Union of Immunological Societies. We carried out daily routine quality control tests with Cytometer Setup & Tracking Beads (BD Biosciences) in accordance with the manufacturer’s instructions.

Evaluation of β2AR expression

The level of expression of β2AR was analyzed by a three-color flow cytometry assay. Briefly, cells were incubated with an anti-β2AR (IgG1, clone 6H8; Abcam) mAb, followed by a goat anti-mouse IgG polyclonal Ab labeled with PE (Abcam). Then, cells were stained for CD14 and CD16, as stated above. Finally, cells (at least 50,000, and gated according to their FS and SS characteristics) were analyzed in a FACSCanto II (two-laser, six-color configuration) flow cytometer with the FACSDiva 6.1.3 software (BD Biosciences). Results were shown as the median intensity of fluorescence (MFI) of positive cells.

Phenotypic characterization of ILC2s

PBMC were stained with the following antibody mix: FITC-conjugated anti-human CD2, CD3, CD14, CD16, CD19, CD56, and CD235a (negative lineage cocktail), Phycoeryrin-(PE)-conjugated anti-CRTH2 (chemoattractant receptor-homologous molecule expressed on Th2 cells), Peridinin-Chlorophyll Protein Complex-(PerCP–)-Cyanin-5-conjugated anti-human CD127 (IL-7R) and Allophycocyanin-(APC–)-conjugated anti-human IL-5 (all purchased from BD) in presence or not of PMA/Io (Sigma-Aldrich, USA) and a Golgi inhibitor (Brefeldin A; BD Biosciences). Then, lymphocytes were gated according to their FSC/SSC.
characteristics, and lineage-negative (Lin⁻) were selected and analyzed for the expression of CD127 and CRTH2. Finally, These Lin⁻CD127⁻CRTH2⁺ were analyzed for the intracellular expression of IL-5. According to this analysis, Lin⁻CD127⁺CRTH2⁺IL-5⁺ events were considered as ILC2 cells and cells were gated by running fluorescence minus one (FMO) control tubes. Cells were analyzed in a FACSCanto II (two-laser, six-color configuration) flow cytometer with FACSDiva 6.1.3 software (BD Biosciences).

Statistical analysis
Descriptive statistics was used to show the characteristics of subjects, normality was assessed with the Kolmogorov-Smirnov test. Data are shown as the means ± SD. We compared groups of lean vs obese subjects using the Student’s T test for independent variables. Changes in variables before and after diet were examined with paired Student’s T test.

We examined factors associated with monocyte subsets percent, ILC2s percent, and β2AR expression using multiple forward stepwise regression analysis testing as candidate regressors: REE, BMI, mean arterial tension, HDL-C, non-HDL-C, triglycerides, acylated-ghrelin, leptin, HOMA-IR, and caloric intake values; and as confounding factors: gender and age.

For analyses we used the Statistica 5.0 (Stat Soft Inc., Tulsa, OK), and Prism 7.0v (GraphPad) softwares. \(p < 0.05 \) was considered statistically significant.

Ethical approval
All individuals gave written informed consent to participate in the study. The study was carried out according to the ethical standards of the Declaration of Helsinki in 1983 and in agreement with the Good Clinical Practice guidelines. The Institutional Ethics Committee of the University of Guanajuato approved the study with number CIBIUG No. 017/2015.

Results
We studied 65 unrelated obese subjects (34 women and 31 men) of 35.4±8.0 years old, and 74 lean subjects (51 women and 23 men) aged 30.1±7.0 years. No gender differences were observed between groups of subjects with and without obesity.

The comparison of characteristics among lean and obese subjects is shown in Table 1. REE was significantly higher in obese than lean subjects, but glucose and acylated ghrelin concentrations were not different between both groups. As expected, individuals with obesity had higher blood pressure and insulin resistance.

We identified and quantified the three populations of circulating monocytes to estimate systemic inflammation (Fig 2). Both non-classical monocytes (NCM) percentage and CD16⁺/CD16⁻ ratio were increased in obese subjects suggesting a deregulation between pro-inflammatory and anti-inflammatory subsets (Table 1).

Increased β2AR expression on intermediate monocytes
The β2AR expression on NCM (CD14⁺CD16⁺) and CM (CD14⁺CD16⁻) was not different within the groups of obese and non-obese subjects. Yet, in obese subjects, the IM (CD14⁺CD16⁺) expressed significantly more β2AR \((p<0.001)\) than in non-obese subjects (Table 1 and Fig 3).
Quantification of circulating group 2 innate lymphoid cells (ILC2s)

We defined ILC2s subset as Lin^−CD127^+CRTH2^+IL-5^+ cells (Fig 4A). Flow cytometric analysis revealed the presence of ILC2s in peripheral blood, which are significantly diminished in obese subjects in comparison with lean subjects (p < 0.0001) (Table 1 and Fig 4B).

Relationship between monocytes subsets, ILC2s percentages and β2AR expression with anthropometric and metabolic characteristics at baseline

We examined the association of ILC2s, monocyte subsets, and β2AR expression on Mo, with anthropometric and metabolic factors in the whole group of study, using a multiple regression model (Table 2).

Non-classical monocytes (CD14^−CD16^+) correlated positively with HOMA-IR, but negatively with acylated-ghrelin levels. Intermediate monocytes (CD14^+CD16^+) were related to caloric intake. CD16^+ /CD16^− ratio correlated positively with BMI, and inversely with leptin levels. ILC2s percentage was associated positively with HDL-C levels but inversely with caloric intake.

Table 1. Comparison of basal characteristics among individuals.

	Lean subjects Mean±S.D. (n = 74)	Obese subjects Mean±S.D. (n = 65)	t	p-value
Age (yr)	30.1 ± 7	35.4 ± 8	-4.0	<0.001
Weight (kg)	63.5 ± 9.3	89.5 ± 15.3	13.4	<0.0001
BMI (kg/m²)	22.8 ± 1.9	34.1 ± 4.7	19.1	<0.0001
Mean arterial tension (mmHg)	84 ± 7	90 ± 6.5	-5.6	<0.000001
Resting energy expenditure (kcal/day)	1530 ± 286	1818 ± 380	-5.09	<0.0001
Glucose (mg/dl)	89 ± 12	92 ± 13	-1.4	0.17
HDL-cholesterol (mg/dl)	62±11	52±12	5.1	<0.00001
Non-HDL-cholesterol (mg/dl)	112±32	140±40	-4.5	<0.000016
Triglycerides (mg/dl)	112±60	178±196	-2.8	<0.0067
Creatinine (mg/dl)	0.9±0.2	0.9±0.2	-0.6	0.52
HOMA-IR	1.9±0.8	3.6±2.2	-6.2	<0.0000001
Acylated-ghrelin (µg/ml)	125.3±100.4	104.0±47.6	1.4	0.16
Leptin (pg/ml)	21.7±18.2	43.4±24.5	-5.9	<0.0000002
Insulin (µUI/ml)	8.6±3.4	15.4±8.8	-6.2	<0.0000001

Monocyte subsets

	Lean subjects Mean±S.D. (%)	Obese subjects Mean±S.D. (%)	t	p-value
Non-classical monocytes (NCM; CD14^−CD16^+) (%)	4.0±2.5	7.2±5.7	-4.4	<0.000022
Intermediate monocytes (IM; CD14^+CD16^+) (%)	6.50±4.3	7.4±5.0	-1.1	0.26
Classical Monocytes (CM; CD14^+CD16^−) (%)	65.0±11.7	62.7±15.1	1.0	0.31
CD16^+ /CD16^− ratio	0.2±0.1	0.3±0.2	-3.1	<0.0024

Innate lymphoid cells

	Lean subjects (%)	Obese subjects (%)	t	p-value
ILC2s (%)	11.3±6.7	2.9±2.5	4.65	<0.0001

β2AR expression within monocyte subsets

	Lean subjects MFI	Obese subjects MFI	t	p-value
β2AR expression on NCM (MFI)	10191±4738	11912±9718	-1.0	0.33
β2AR expression on IM (MFI)	25966±15911	28370±17169	-0.7	<0.001
β2AR expression on CM (MFI)	13363±5846	15877±12429	-1.1	0.50

Data are shown as the means ± SD. Differences between groups were evaluated with Student’s T test. p < 0.05 was considered statistically significant.

BMI, body mass index; HOMA-IR, homeostatic model assessment- insulin resistance; β2AR, beta-2 adrenergic receptor; NCM, non-classical monocytes (CD14^−CD16^+); IM, intermediate monocytes (CD14^+CD16^+); CM, classical monocytes (CD14^+CD16^−); ILC2s, group 2 innate lymphoid cells; MFI, mean fluorescence intensity.

https://doi.org/10.1371/journal.pone.0228637.t001
On the other hand, \(\beta_2 \)AR expression on NCM was associated with HDL-C, leptin levels, and mean arterial tension. There were positive relationships between \(\beta_2 \)AR expression on IM with HDL-C, and BMI, but negatively with REE. \(\beta_2 \)AR expression on CM was associated with HDL-C levels, BMI, and age.

Fig 2. Number of Mo subsets in lean and obesity state. PBMC were isolated and then surface-stained with mAbs against CD14 labeled with FITC and CD16 labeled with APC. A) Gating strategy to identify the three monocyte subsets based on relative CD14 and CD16 expression. Flow cytometry dot plot showing the gating of the classical (CM; CD14\(^{++}\)CD16\(^{-}\)), intermediate (IM; CD14\(^{+}\)CD16\(^{+}\)) and non-classical monocyte (NCM; CD14 \(\leq\) CD16\(^{++}\)) subsets. B) Scatter plots represent the percentage of each Mo subset in both groups. Normal-weight individuals (circles) and subjects with obesity (squares). *\(p<0.05 \), **\(p<0.01 \), ***\(p<0.001 \).

https://doi.org/10.1371/journal.pone.0228637.g002
After testing for confounding factors, the models did not change.

Effects of hypocaloric diet over monocyte subsets, circulating ILC2s and β2AR expression

To determine the effect of the hypocaloric diet on the monocyte subsets, ILC2s, and β2AR expression, we compared values before and 7-weeks after diet. Thirteen individuals with
obesity were excluded for unsatisfactory adherence to diet, resulting in a sample size of 52 subjects. At the end of intervention, subjects showed a mean weight loss of 4.0 kg, corresponding to a 4.5%. REE did not change, but triglycerides and insulin resistance decreased significantly (Table 3).

We also evaluated possible modification of the abundance of Mo subsets and ILC2s and β2AR expression on monocytes after diet (Table 3 and Fig 5). We found that NCM (CD14+CD16++) decreased and CM (CD14+CD16-) increased significantly (Fig 5A and 5B). Yet, IM had a non-significant decrease (Fig 5C). There was also a significant diminution in the CD16+/CD16- ratio (Fig 5D). Furthermore, circulating ILC2s increased (Fig 5F), and β2AR expression on IM significantly decreased (Fig 5E).

Associations of changes in monocyte subsets, ILC2s percentage and β2AR expression after dietary intervention

Table 4 shows the changes in NCM (CD14+CD16++), IM (CD14+CD16+), and CD16+/CD16- ratio after diet, negatively associated with ΔHDL-C and Δleptin levels. The change in CM (CD14+CD16-) was positively associated with ΔHDL-C concentrations. Interestingly CD16+/CD16- ratio showed associations positive with ΔREE but negative with ΔBMI. The ΔCM (CD14+CD16-) was positively associated only with ΔHDL-C. The changes in ILC2s were negatively correlated with ΔHOMA-IR. The changes in the β2AR expression on NCM and CM

Fig 4. Isolation and characterization of circulating ILC2s in peripheral blood. PBMC were stimulated for intracellular cytokine production with PMA/Io and Golgi inhibitors (Brefeldin A) for 5 h at 37°C/5% CO2, washed and next the cell were surface stained with conjugated antibodies against lineage-FITC, CD127-PerCPCy5.5, and CRTH2-PE. Then fixed, permeabilized and labeled with IL-5 conjugated to APC mAb. Gating strategy to isolate ILC2s population was as follow: we used a lineage cocktail of antibodies to CD2, CD3, CD14, CD16, CD19, CD56, and CD235a to identify T cells, monocytes, neutrophils, B cells, NK cells, mast cells and basophils. Then, we gated Lin- cells, which are negative for these lineage markers, and were further subdivided based on CD127 and CRTH2 expression (third dot plot). Finally, synthesis of IL-5 on Lin+CD127+CRTH2+IL-5+ cells, called ILC2s from a representative individual with obesity. A) Representative FACS plots of strategy for selection of Lin−CD127+CRTH2+IL-5+ population was gated, and we identified this subpopulation such as ILC2. B) Percentages (mean±S.D.) of ILC2 from normal-weight subjects (open bars) and individuals with obesity (solid bars) are shown. **p<0.01. PMA, phorbol 12-myristate 13-acetate; Io, ionomycin; CD127, interleukin-7 receptor; CRTH2, chemoattractant receptor-homologous molecule expressed on Th2 cells; mAb, monoclonal antibody.

https://doi.org/10.1371/journal.pone.0228637.g004
were associated negatively with ΔBMI and positively with Δleptin in both cases. Also the Δβ2AR expression on IM was associated negatively with ΔBMI. The Δβ2AR expression on NCM was positively related with ΔHDL-C, but negatively with ΔHOMA-IR.

Discussion

In this work we studied the three types of circulating monocytes and ILC2s, and the elevation of β2AR expression on intermediate monocytes as estimators of chronic low-grade inflammation in individuals with obesity. We analysed its associations with energy expenditure, anthropometry, hormonal and metabolic variables before and after of dietary restriction. The importance of chronic low-grade inflammation in obesity is well described, implicating

Table 2. Relationships of monocytes subsets with anthropometric, and metabolic features in basal state.

Dependent variable	Regressors	β±S.E.	T	p-level
Non-classical monocytes (NCM; CD14−CD16++) Adjusted R² = 0.135	Intercept	4.97	<0.000002	
	HOMA-IR	0.33±0.08	4.26	<0.000037
	Acylated-ghrelin	-0.16±0.08	1.98	<0.04
Intermediate monocytes (IM; CD14+CD16−) Adjusted R² = 0.127	Intercept	2.62	<0.0098	
	Caloric intake	0.17±0.08	2.00	<0.047
CD16+/CD16− ratio Adjusted R² = 0.080	Intercept	0.27	0.78	
	BMI	0.35±0.09	3.73	<0.00028
	Leptin	-0.19±0.09	-2.06	<0.041
ILC2s Adjusted R² = 0.098	Intercept	4.06	<0.000082	
	Caloric intake	-0.24±0.08	-2.87	<0.0046
	HDL-C	0.16±0.08	1.97	<0.05
β2AR expression on NCM Adjusted R² = 0.119	Intercept	-2.37	<0.019	
	Mean arterial tension	0.28±0.08	3.35	<0.001
	Leptin	0.22±0.08	2.54	<0.012
	HDL-C	0.21±0.08	2.50	<0.013
	HOMA-IR	-0.18±0.09	-2.01	<0.045
β2AR expression on IM Adjusted R² = 0.322	Intercept	-0.70	0.48	
	HDL-C	0.42±0.08	5.13	<0.000001
	BMI	0.41±0.09	4.52	<0.00001
	REE	-0.25±0.08	-2.92	<0.004
β2AR expression on CM Adjusted R² = 0.360	Intercept	-1.38	<0.016	
	HDL-C	0.30±0.08	3.45	<0.0007
	BMI	0.24±0.09	2.63	<0.009
	Age	0.21±0.08	2.45	<0.015
	Non-HDL-C	-0.17±0.08	-2.08	<0.039

The associations were evaluated by multiple regression. p<0.05 was considered statistically significant.

BMI, body mass index; EE, energy expenditure; β2AR, beta-2 adrenergic receptor; NCM, non-classical monocytes (CD14−CD16++); IM, intermediate monocytes (CD14+CD16−); CM, classical monocytes (CD14+CD16+); ILC2s, group 2 innate lymphoid cells.
Table 3. Changes in anthropometric, biochemical, and hormonal measures, monocyte subsets, ILC2 and β2AR expression after caloric restriction.

Variable	Before CR Mean±S.D.	After CR Mean±S.D.	Δ	t	p-value
Weight (kg)	90.1±14.5	86.0±14.8	-4.05	16.7	<0.0001
BMI (kg/m²)	33.9±4.7	32.3±4.7	-1.5	17.8	<0.000000001
Mean arterial tension (mmHg)	90.1±6.4	86.2±5.4	-3.8	3.9	<0.00022
REE (kcal/day)	1768±377	1722±329	-46	1.24	0.22
Glucose (mg/dl)	90±13	88±13	-2.4	1.2	0.23
HDL-cholesterol (mg/dl)	51±12	46±13	-12	3.1	<0.0033
Non-HDL-cholesterol (mg/dl)	142±41	134±29	-7.8	1.8	0.07
Triglycerides (mg/dl)	186±218	138±83	-48	2.1	<0.039
Insulin (μU/ml)	15.2±9.1	13.1±9.0	-2.1	2.6	<0.011
HOMA-IR	3.5±2.2	2.9±2.1	-0.6	3.2	<0.0024
Ghrelin (μg/ml)	84.8±43.3	81.7±45.8	-3.1	0.9	0.38
Leptin (pg/ml)	43.5±24.9	41.1±24.2	-2.4	0.9	0.35
Group 2 Innate lymphoid cells (ILC2) (%)	2.7±2.5	5.8±4.5	2.8	2.9	<0.008
Non-classical monocytes (CD14+CD16−) (%)	7.2±6.1	5.3±3.7	-1.8	2.4	<0.02
Intermediate monocytes (CD14+CD16−) (%)	8.0±4.7	7.5±5.5	-0.5	0.5	0.61
Classical Monocytes (CD14+CD16−) (%)	62.9±15.3	71.0±10.6	6.7	3.3	<0.0015
CD16−/CD16+ ratio	0.3±0.2	0.2±0.1	-0.08	2.5	<0.015
β2AR expression on NCM (MFI)	10778±5489	10501±6180	-1743	0.25	0.80
β2AR expression on IM (MFI)	27069±15070	23350±13916	-6480	1.7	<0.05
β2AR expression on CM (MFI)	14343±8117	13626±8496	-2785	0.5	0.60

n = 52 obese subjects. Differences between groups were evaluated with Student’s T test. p<0.05 was considered statistically significant. REE, resting energy expenditure; CR, caloric restriction; BMI, body mass index; HOMA-IR, homeostatic model assessment- insulin resistance; EE, energy expenditure; β2AR, beta-2 adrenergic receptor; NCM, non-classical monocytes (CD14+CD16−); IM, intermediate monocytes (CD14+CD16−); CM, classical monocytes (CD14+CD16⁺); MFI, mean fluorescence intensity.

https://doi.org/10.1371/journal.pone.0228637.t003

Perturbations of immune system and dysregulated adipose tissue (AT) homeostasis [30]. Our findings, using a comprehensive multiparameter cytometry analysis of Mo and ILC2s in peripheral blood, provide further support to their role in metabolic homeostasis and the physiopathology of AT.

We found circulating NCMs increased in the obese group, but CMs and IMs did not change. Previous studies on the abundance of circulating CM (CD14+CD16⁺) in obesity are inconsistent, with reports showing decrease or no change [15]. Ours results support the concept of increased circulating CD16⁺ monocyte subpopulations (IM and NCM) in obesity associated with cardio-metabolic risk factors [15–20]. The intermediate subtype (CD14⁺CD16−) is a small percentage of transitional monocytes with phagocytic and more pro-inflammatory capacity than the NCM [15,31,32]. Zawada et al [33] proposed a pro-angiogenic behaviour for IM, suggesting that the increase in peripheral blood has an important role for inflammation and progression into atherosclerosis [32]. In contrast to Krinninger et al [32], who found increase the percentage of CD14⁺CD16− monocytes, we only found that IM count had a non-significant trend to increase. Despite these results, it is possible that in obesity occurs a shift of monocytes toward a pro-inflammatory phenotype.

Innate lymphoid type 2 cells (ILC2s) are key regulators of the immune and metabolic homeostasis of visceral adipose tissue (VAT) and may be determinants of weight, considering their involvement in beige fat development, through IL-5 [34–37]. Altered ILC2s amounts and function have been found in VAT but not in circulation in humans and other species with...
metabolic disorders such as obesity. In the present work, we developed an assay to assess circulating ILC2 by four-color flow cytometry following directions of previous scientific works in allergy [38–40]. We demonstrated that obese subjects have decreased circulating ILC2s. To our knowledge, this is the first report using this procedure; therefore we cannot compare our results with other investigations. Multiparameter flow cytometry of freshly drawn peripheral blood offers the promise of a highly sensitive and reproducible approach, which allows the identification and quantification of complex cell subpopulations, such as ILCs.

Obesity is also linked to altered hypothalamic–pituitary–adrenal axis (HPA) and sympathetic nervous system (SNS) function, triggering inflammation which increases β2AR expression in peripheral blood mononuclear cells [41]. In our study, intermediate monocytes (CD14+CD16–) from obese individuals expressed more β2AR. Our results agree with those of Gálvez et al. [42] who described β2AR induction of a shift towards an anti-inflammatory phenotype profile. In addition, Hong et al. [43] demonstrated higher amounts of β2AR on monocytes with reduced responsiveness. Due to the role of sympathetic activation in hypertension and cardiovascular pathology is well studied, and the IM are involved in cardiovascular events, the overexpression of β2AR is in agreement with the increased frequency of hypertension and cardiovascular damage in obese patients. Therefore, sympatho-adrenal regulation in monocytes is an important aspect of vascular inflammation. In addition, β2AR may act as a molecular rheostat to fine-tune anti-inflammatory responses preventing inflammation [44].

Inflammation modifies energy metabolism, enhancing energy expenditure, and reducing energy intake, and induces AT remodelling [2]. The associations of caloric intake, positive with IM subset, and negative with ILC2s, support the pro-inflammatory environment of the metabolic imbalance and loss of AT browning observed in obesity.

Ghrelin and leptin are important components of the neuroendocrine control of energy homeostasis and immune system regulation [9,10,45,46]. In our work, acylated-ghrelin was associated negatively with NCM, which we explain by the ghrelin action as an anti-

Fig 5. Changes in Mo subsets, circulating ILC2s and β2AR expression after diet. Graphs of symbols & lines from obese subjects are shown before and after intervention for a-d) Percentage of Mo subsets, e) β2AR expression on IM, and f) percentage of ILC2s. *p<0.05, **p<0.01, ***p<0.001. [Link](https://doi.org/10.1371/journal.pone.0228637.g005)
Inflammatory cytokine in homeostasis with potent orexigenic effect. Total ghrelin levels are reduced in obese patients. In addition, a lack of ghrelin signalling or increase conversion to the desacyl form may exacerbate the inflammatory response [10,46]. In contrast, leptin, a pro-inflammatory cytokine, has an important role in the control of energy metabolism and the metabolism-immune interplay [47]. Leptin promotes the proliferation and activation of NCM and IM favouring metabolic diseases, such as obesity [45,48], thereby leptin action induces higher BMI and REE as an effect of the chronic low-grade inflammation per se, which could explain the increase of β2AR expression on monocytes and its association with BMI.

Table 4. Associations of changes in monocytes subsets, ILC2s, and β2AR expression within Mo subsets with anthropometric and metabolic features after dietary restriction.

Dependent variable	Regressors	β±S.E.	T	p-level
ΔNon-Classical monocytes (NCM; CD14 CD16++) Adjusted R² = 0.94	Intercept	-4.07	<0.00013	
	ΔLeptin levels	-0.27±0.12	-2.22	<0.03
	ΔHDL-C	-0.24±0.12	-1.96	<0.046
ΔIntermediate monocytes (IM; CD14'CD16+) Adjusted R² = 0.134	Intercept	2.25	<0.04	
	ΔLeptin levels	-0.34±0.12	-2.91	<0.01
	ΔHDL-C	-0.24±0.12	-2.02	<0.047
ΔClassical monocytes (CM; CD14'CD16+) Adjusted R² = 0.157	Intercept	3.79	<0.0001	
	ΔHDL-cholesterol	0.37±0.11	3.20	<0.002
ΔCD16'/CD16+ ratio Adjusted R² = 0.316	Intercept	-4.49	<0.0003	
	ΔHDL-Cholesterol	-0.34±0.10	-3.29	<0.0017
	ΔLeptin	-0.31±0.11	-2.82	<0.0065
	ΔBMI	-0.32±0.11	-2.82	<0.0065
	ΔREE	0.23±0.11	2.08	<0.04
ΔGroup 2 innate lymphoid cells (ILC2s) Adjusted R² = 0.143	Intercept	7.37	<0.0000001	
	ΔHOMA-IR	-0.40±0.12	-3.42	<0.0011
Δβ2AR expression on NCM Adjusted R² = 0.401	Intercept	-5.04	<0.0000005	
	ΔBMI	-0.53±0.10	-5.12	<0.000003
	ΔLeptin	0.49±0.11	4.66	<0.000018
	ΔHDL-C	0.25±0.10	2.63	<0.011
	ΔHOMA-IR	-0.24±0.10	-2.37	<0.021
Δβ2AR expression on IM Adjusted R² = 0.058	Intercept	-3.09	<0.0030	
	ΔBMI	-0.27±0.12	-2.22	<0.029
Δβ2AR expression on CM Adjusted R² = 0.258	Intercept	-4.54	<0.000026	
	ΔBMI	-0.53±0.11	-4.65	<0.000018
	ΔLeptin	0.25±0.11	2.19	<0.032

The associations were evaluate by multiple regression (n = 52). p<0.05 was considered statistically significant.

Δ, delta; BMI, body mass index; REE, energy expenditure; β2AR, beta-2 adrenergic receptor; NCM, non-classical monocytes (CD14'CD16++); IM, intermediate monocytes (CD14'+CD16+); CM, classical monocytes (CD14'+CD16+).
We found a positive relationship between insulin-resistance and NCMs, suggesting that obesity-induced insulin resistance aggravates the chronic low-grade inflammation favoring the shift to increase the CD14$^{+}$CD16$^{++}$ subset (NCM) [21,49]. We also confirmed the relations of NCMs and ILC2s with plasma lipids. Increased CD14$^{+}$CD16$^{++}$ monocytes and low HDL-C levels are reported in inflammatory disorders [22]. HDL-C and Apo A-1 may prevent monocytes activation and their attachment to the endothelium surface [50]. Furthermore, HDL-cholesterol levels are positively associated with ILC2s. This suggests that HDL-C are involved in cardiovascular protection due to its anti-inflammatory, antioxidant, and antithrombotic properties [35,51]. Furthermore, dietary intervention reverses HDL-C levels and ILC2s.

Since dietary habits influence energy and immune homeostasis, weight loss in obesity has a beneficial effect in the immune system, mediated by secretion of hormones and cytokines [52]. In this work, the inflammatory status decreased under caloric restriction mediated probably by the increase of CM and ILC2s. Few studies explore the impact of different types of diets on weight loss, the immune response [53] and immune cells [54,55]. We found that short-term caloric restriction induced a 4.5% weight loss diminishing CD14$^{+}$CD16$^{++}$ (NCM) and CD14$^{+}$CD16$^{+}$ (IM) monocyte numbers, pointing to a decrease of chronic low-grade inflammation. In contrast, Manco et al [56] reported that a 5% weight loss do not induce an effect on systemic or subcutaneous adipose tissue markers of inflammation. However, our findings agree with other works e.g. Nieman et al [57] mentioned that a moderate weight loss, decrease certain aspects of immune system (percentage of immune cells and functions); and Kim et al demonstrated that caloric restriction with a high protein diet, also decreases NCM subset [22]. Considering that we administered a diet with moderate caloric restriction we concluded that this diet might offer the benefit of reduction of inflammatory damage, even with moderate weight loss.

In our work, circulating ILC2s augmented after dietary intervention, which led a decrease of REE by the mediation of IL-5 secretion [26,51], therefore, ILC2s might balance visceral metabolic homeostasis and promote beige cells expansion, which regulates REE. The findings of Brestoff et al. [26] also support the idea that ILC2s may be a key immune component of the thermogenic circuit and a determinant of adipose tissue metabolic status. The decreased β2AR expression on IM after caloric restriction may contribute to mitigate inflammation. We found that after caloric restriction the changes of β2AR expression on three subpopulations of monocytes correlated with diminution of BMI, in agreement with previous reports [42,57].

Conclusions

This study shows several novel findings: the increase of NCM, decreases of circulating ILC2s, and higher β2AR expression on IM in obese subjects, the positive associations between caloric intake and IM, and negative with ILC2s, gives further support to the concept of the participation of inflammation in energy expenditure. We observed after intervention a decrease of circulating NCM, and an increase of CM, and ILC2s. In conclusion, our work underscores the link between obesity and pro-inflammatory environmental that influences impairments of immune system and metabolism, responses that may be modified after dietary intervention.

Supporting information

S1 Table.
(XLSX)
Author Contributions

Conceptualization: Nicte´ Figueroa-Vega, Juan Manuel Malacara.

Formal analysis: Nicte´ Figueroa-Vega.

Funding acquisition: Juan Manuel Malacara.

Investigation: Nicte´ Figueroa-Vega.

Methodology: Nicte´ Figueroa-Vega, Carolina I. Marín-Aragón, Itzel López-Aguilar, Lorena Ibarra-Reynoso, Elva Pérez-Luque.

Resources: Juan Manuel Malacara.

Validation: Nicte´ Figueroa-Vega.

Writing – original draft: Nicte´ Figueroa-Vega, Elva Pérez-Luque, Juan Manuel Malacara.

Writing – review & editing: Nicte´ Figueroa-Vega, Elva Pérez-Luque, Juan Manuel Malacara.

References

1. Carneiro IP, Elliott SA, Siervo M, Padwal R, Bertoli S, Battezzati A, Prado CM. Is Obesity Associated with Altered Energy Expenditure? Adv Nutri. 2016; 7:476–87.

2. Wang H, Ye J. Regulation of energy balance by inflammation: common theme in physiology and pathology. Rev Endocr Metab Dis. 2015; 15:47–54.

3. Jin C, Henao-Mejía J, Flavell RA. Innate immune receptors: key regulators of metabolic disease progression. Cell Metab 2013; 17:873–82. https://doi.org/10.1016/j.cmet.2013.05.011 PMID: 23747246

4. Lumeng CN, Saltiel AR. Inflammatory links between obesity and metabolic disease. J Clin Invest. 2011; 121:2111–7. https://doi.org/10.1172/JCI57132 PMID: 21633179

5. Odegaard JI, Chawla A. The immune system as a sensor of the metabolic state. Immunity. 2013; 38:644–54. https://doi.org/10.1016/j.immuni.2013.04.001 PMID: 23601683

6. Lee MW, Odegaard JI, Mukundan L, Qiu Y, Molofsky AB, Nussbaum JC, Yun K, Locksley RM, Chawla A. Activated type 2 innate lymphoid cells regulate beige fat biogenesis. Cell. 2015; 160:74–87. https://doi.org/10.1016/j.cell.2014.12.011 PMID: 25543153

7. Osborn O, Olefsky JM. The cellular and signaling networks linking the immune system and metabolism in disease. Nat Med. 2012; 18:363–74. https://doi.org/10.1038/nm.2627 PMID: 22395709

8. Milling S. Adipokines and the control of mast cell functions: from obesity to inflammation? Immunology. 2019; 158:1–2 https://doi.org/10.1111/imm.13104 PMID: 31429086

9. Monteiro L; Pereira JADS; Palhinha L; Moraes-Vieira PMM. Leptin in the regulation of the immunometabolism of adipose tissue-macrophages. J Leukoc Biol. 2019; 106:703–16. https://doi.org/10.1002/JLB.MR1218-478R PMID: 31087711

10. Pereira JADS, da Silva FC, de Moraes-Vieira PMM. The Impact of Ghrelin in Metabolic Diseases: An Immune Perspective. J Diabetes Res. 2017; 2017:4527980. https://doi.org/10.1155/2017/4527980 PMID: 29082258

11. Yona S, Jung S. Monocytes: subsets, origins, fates and functions. Curr Opin Hematol. 2010; 17:53–9. https://doi.org/10.1097/01.MOH.0b013e3283324f60 PMID: 19770654

12. Aguilar-Ruiz SR, Torres-Aguilar H, González-Domínguez É, Narváez J, González-Pérez G, Vargas-Ayala G, Meraz-Ríos MA, García-Zepeda EA, Sánchez-Torres C. Human CD16+ and CD16- monocyte subsets display unique effector properties in inflammatory conditions in vivo. J Leuk Biol. 2010: 90:1119–31.

13. Berg KE, Ljungcrantz I, Andersson L, Bryngelesson C, Hedblad B, Fredrikson GN, Nilsson J, Björkbacka H. Elevated CD14++CD16- monocytes predict cardiovascular events. Cir Cardiovasc Gene. 2012; 5:122–31.

14. Abeles RD, McPhail MJ, Sowter D, Antoniades CG, Vergis N, Vijay GK, Xystrakis E, Khamri W, Shawcross DL, Ma Y, Wendon JA, Vergani D. CD14, CD16 and HLA-DR reliably identifies human monocytes and their subsets in the context of pathologically reduced HLA-DR expression by CD14(hi)/CD16(neg) monocytes: Expansion of CD14(hi)/CD16(pos) and contraction of CD14(lo)/CD16(pos) monocytes in acute liver failure. Cytometry A. 2012; 81:823–34. https://doi.org/10.1002/cyto.a.22104 PMID: 22837127
15. Devêrê EF, Renovato-Martins M, Clément K, Sautès-Fridman C, Cremer I, Poitou C. Profiling of the three circulating monocyte subpopulations in human obesity. J Immunol. 2015; 194: 3917–23. https://doi.org/10.4049/jimmunol.1402655 PMID: 25786686

16. Krychtíuk KA, Kasl SP, Hofbauer SL, Wonneth A, Goliasch G, Oszvar-Kozma M, Katsaros KM, Maurer G, Huber K, Dostal E, Binder CJ, Pfaffenberger S, Oravec S, Wojta J, Spieldl WS. Monocyte subset distribution in patients with stable atherosclerosis and elevated levels of lipoprotein(a). J Clin Lipidol. 2015; 9:533–41. https://doi.org/10.1016/j.jclil.2015.04.005 PMID: 26228671

17. Idzkowska E, Eljaszewicz A, Miklasz P, Musial WJ, Moniuszko M. The Role of Different Monocyte Subsets in the Pathogenesis of Atherosclerosis and Acute Coronary Syndromes. Scand J Immunol 2015; 82:163–73. https://doi.org/10.1111/sji.12314 PMID: 25997925

18. Pecht T, Haim Y, Bashan N, Shapiro H, Harman-Boehm I, Kirshtein C, Shai I, Rudich A. Circulating Blood Monocyte Subclasses and Lipid-Laden Adipose Tissue Macrophages in Human Obesity. PLoS One. 2016; 11:e0159350. https://doi.org/10.1371/journal.pone.0159350 PMID: 27442250

19. Poitou C, Dalmas E, Renovato M, Benhamo V, Hajduch F, Abdenour M, Kuhn JF, Veyrie N, Rizzalda S, Fridman WH, Sautès-Fridman C, Clément K, Cremer I. CD14dimCD16+ and CD14+CD16+ monocytes in obesity and during weight loss: relationships with fat mass and subclinical atherosclerosis. Arterioscler Thromb Vasc Biol. 2011; 31:2322–30. https://doi.org/10.1161/ATVBAHA.111.230979 PMID: 21799175

20. Pivovarova O, Homemann S, Weimer S, Lu Y, Murahovschi V, Zhuk S, Seltmann AC, Malashicheva A, Kostareva A, Kruse M, Busjahn A, Rudovich N, Pfeiffer AF. Regulation of nutrition-associated receptors in blood monocytes of normal weight and obese humans. Peptides. 2015; 65:12–9. https://doi.org/10.1016/j.peptides.2014.11.009 PMID: 25620618

21. de Matos MA, Duarte TC, Ottone V de o, Sampaio PF, Costa KB, de Oliveira MF, Moseley PL, Schneider SM, Coimbra CC, Brito-Melo GE, Maralhães F de C, Amortim FT, Rocha-Vieira E. The effect of insulin resistance and exercise on the percentage of CD16(+) monocyte subset in obese individuals. Cell Biochem Func. 2016; 34:209–16.

22. Kim JE, Lin G, Zhou J, Mund JA, Case J, Campbell WW. Weight loss achieved using an energy restriction diet with normal or higher dietary protein decreased the number of CD14++ / CD16+/ proinflammatory monocytes and plasma lipids and lipoproteins in middle-aged, overweight, and obese adults. Nutr Res. 2017; 40:75–84. https://doi.org/10.1016/j.nutres.2017.02.007 PMID: 28473063

23. Saetang J, Sangkhathat S. Role of innate lymphoid cells in obesity and metabolic disease. Mol Med Rep. 2018; 17:1403–12. https://doi.org/10.3892/mmr.2017.8038 PMID: 29138853

24. Bolus WR, Hasty AH. Contributions of Innate Type 2 Inflammation to Adipose Function. J Lipid Res. 2018; pii: jlr.R085993.

25. Flach M, Diefenbach A. Adipose tissue: ILC2 crank up the heat. Cell Metab. 2015; 21:152–3. https://doi.org/10.1016/j.cmet.2015.01.015 PMID: 25651167

26. Brestoff JR, Kim BS, Saenz SA, Stine RR, Monticelli LA, Sonnenberg GF, Thome JJ, Farber DL, Lutfy KR, Mond BJ, Zwaginga JJ, van der Giessen WJ, Zijlstra F, van Rossum AC, Voermans C, van der Schoot CE, Piek JJ. A proinflammatory monocyte response is associated with myocardial injury and impaired functional outcome in patients with ST-segment elevation myocardial infarction monocytes and myocardial infarction. Am Heart J. 2012; 163:57–65. https://doi.org/10.1016/j.ahj.2011.09.002 PMID: 22172437

27. Krippinger P, Ensennauer R, Ehlers K. Peripheral monocytes of obese women display increased chemokine receptor expression and migration capacity. J Clin Endocrinol Metab. 2014; 99:2500–9. https://doi.org/10.1210/jc.2013-2611 PMID: 24606068

28. Zawada AM, Rogacev KS, Schirmer SH, Sester M, Böh M, Fliser D. Monocyte heterogeneity in human cardiovascular disease. Immunobiol. 2012; 217:1273–84.
34. Bordon Y. Immunometabolism. ILC2s skew the fat. Nat Rev Immunol 2012; 15:67.
35. Chalubinski M, Luczak E, Wojdan K, Gorzelak-Pabis P, Broncel M. Innate lymphoid cells type 2—emerging immune regulators of obesity and atherosclerosis. Immunol Letters. 2016; 179:43–6.
36. Moro K, Yamada T, Tanabe M, Takeuchi T, Ikawa T, Kawamoto H, Furusawa J, Ohtani M, Fuji H, Koyasu S. Innate production of Th2 cytokines by adipose tissue-associated c-kit(+)Sca-1(+) lymphoid cells. Nature. 2010; 463:540–4. https://doi.org/10.1038/nature08636 PMID: 20023630
37. Takatsu K, Nakajima H. IL-5 and eosinophilia. Curr Opin Immunol 2008; 20:288–94. https://doi.org/10.1016/j.coi.2008.04.001 PMID: 18511250
38. Mjosberg J, Mazzurana L. ILC-poiesis: Making Tissue ILCs from Blood. Immunity. 2017; 46:344–6. https://doi.org/10.1016/j.immuni.2017.03.002 PMID: 28329700
39. Bartemes KR, Kephart GM, Fox SJ, Kita H. Enhanced innate type 2 immune response in peripheral blood from patients with asthma. J Allergy Clin Immunol. 2014; 134:671–8.e4. https://doi.org/10.1016/j.jaci.2014.06.024 PMID: 25171868
40. Villanova F, Flutter B, Tosi I, Grys K, Sreeneebusu H, Perera GK, Chapman A, Smith CH, Di Meglio P, Nestle FO. Characterization of innate lymphoid cells in human skin and blood demonstrates increase of NKp44+-ILC3 in psoriasis. J Invest Dermatol. 2014; 134:984–91. https://doi.org/10.1038/jid.2013.477 PMID: 24352038
41. Brodde OE, Daul A, O’Hara N, Bock KD. Increased density and responsiveness of alpha 2 and beta-adrenoceptors in circulating blood cells of essential hypertensive patients. J Hypert 1984; 2:S111–4.
42. Galvez I, Martin-Cordero L, Hinchado MD, Alvarez-Barrionuevo A, Ortega E. Obesity Affects β2 Adrenergic Regulation of the Inflammatory Profile and Phenotype of Circulating Monocytes from Exercised Animals. Nutrients. 2019; 11:E2630. https://doi.org/10.3390/nu11112630 PMID: 31684076
43. Hong S, Mills PJ. Preferential demargination of CD16+ monocytes and cell adhesion molecule expression in response to exercise in hypertensive individuals. Brain Behav Immun. 2008; 22:590–9.
44. Moriyama S, Brestoff JR, Flamar AG, Moeller JB, Rankin LC, Yudanin NA, Monticelli LA, Putzel GG, Rodewald HR, Artis D. β2-adrenergic receptor-mediated negative regulation of group 2 innate lymphoid cell responses. Science. 2018; 359:1056–61. https://doi.org/10.1126/science.aan4829 PMID: 29496881
45. Sanchez-Margalet V, Martin-Romero C, Santos-Alvarez J, Gobena R, Najib S, Gonzalez-Yanes C. Role of leptin as an immunomodulator of blood mononuclear cells: mechanisms of action. Cytokine Growth Factor Rev. 2003; 13:11–9. https://doi.org/10.1016/S1359-6101(03)00030-0 PMID: 12823272
46. Pereira JADS, da Silva FC, de Moraes-Vieira PM. The Impact of Ghrelin in Metabolic Diseases: An Immune Perspective. J Diab Res. 2017;4527980.
47. Perez-Perez A, Vilarino-Garcia T, Fernandez-Riejos P, Martin-Gonzalez J, Segura-Egea JJ, Sanchez-Margalet V. Role of leptin as a link between metabolism and the immune system. Cytokine Growth Factor Rev. 2017; 16:30163–0, S1359-6101.
48. Fernandez-Riejos P, Najib S, Santos-Alvarez J, Martin-Romero C, Perez-Perez A, Gonzalez-Yanes C, Sanchez-Margalet V. Role of leptin in the activation of immune cells. Mediators Inflam. 2010:568343.
49. Shimobayashi M, Albert V, Woelnerhanssen B, Frei IC, Weissenberger D, Meyer-Gersbach AC, Clement N, Moes S, Colombi M, Meier JA, Swierzynska MM, Jeron P, Beglinger C, Peterli R, Hall MN. Insulin resistance causes inflammation in adipose tissue. J Clin Invest. 2018; 128:1538–50. https://doi.org/10.1172/JCI96139 PMID: 29528335
50. Canpolat U, Cetin EH, Cetin S. Association of monocyte-to-HDL cholesterol ratio with slow coronary flow is linked to systemic inflammation. Clin Appl Thromb/Hemost. 2016; 22:476–82.
51. Halim TY. Group 2 innate lymphoid cells in disease. Int Immunol. 2016; 28:13–22. https://doi.org/10.1093/intimm/dxv050 PMID: 26306498
52. De Rosa V, Galgani M, Santopalo M, Colomatteo A, Laccetti R, Matarrese G. Nutritional control of immunity: Balancing the metabolic requirements with an appropriate immune function. Sem Immunol. 2015; 27:300–9.
53. Nieman DC, Nehlsen-Cannarella SI, Henson DA, Butterworth DE, Fagoaga OR, Warren BJ, Rainwater MK. Immune response to obesity and moderate weight loss. Int J Obes Relat Metab Disord. 1996; 20:353–60. PMID: 8860463
54. Dixit VD, Schaffer EM, Pyle RS, Collins GD, Sakthivel SK, Palaniappan R, Lillard JW Jr, Taub DD. Ghrelin inhibits leptin- and activation-induced proinflammatory cytokine expression by human monocytes and T cells. J Clin Invest. 2004; 114:57–66. https://doi.org/10.1172/JCI21134 PMID: 15232612
55. Hotamisligil GS. Inflammation and metabolic disorders. Nature 2006; 444:860–7. https://doi.org/10.1038/nature05485 PMID: 17167474
56. Manco M, Fernandez-Real JM, Equitani F, Vendrell J, Valera-Mora ME, Nanni G, Tondolo V, Calvani M, Ricart W, Castagneto M, Mingrone G. Effect of massive weight loss on inflammatory adipocytokines and the innate immune system in morbidly obese women. J Clin Endocrinol Metab. 2007; 92:483–90. https://doi.org/10.1210/jc.2006-0960 PMID: 17105839

57. Leite F, Lima M, Marino F, Cosentino M, Ribeiro L. β2 Adrenoceptors are underexpressed in peripheral blood mononuclear cells and associated with a better metabolic profile in central obesity. Int J Med Sci. 2017; 14:853–61. https://doi.org/10.7150/ijms.19638 PMID: 28824322