Hydrophobins from Aspergillus species cannot be clearly divided into two classes

Jensen, Britt Guillaume; Andersen, Mikael Rørdam; Pedersen, Mona Højgaard; Frisvad, Jens Christian; Søndergaard, Ib
Published in:
BMC Research Notes

Link to article, DOI:
10.1186/1756-0500-3-344

Publication date:
2010

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Jensen, B. G., Andersen, M. R., Pedersen, M. H., Frisvad, J. C., & Søndergaard, I. (2010). Hydrophobins from Aspergillus species cannot be clearly divided into two classes. BMC Research Notes, 3, [344]. https://doi.org/10.1186/1756-0500-3-344
Hydrophobins from Aspergillus species cannot be clearly divided into two classes

Britt G Jensen*, Mikael R Andersen, Mona H Pedersen, Jens C Frisvad, Ib Søndergaard

Abstract

Background: Hydrophobins are a family of small secreted proteins with a characteristic pattern of eight cysteine residues found exclusively in filamentous fungi. They have originally been divided into two classes based on their physical properties and hydropathy patterns, and are involved in the attachment of hyphae to hydrophobic structures, the formation of aerial structures and appear to be involved in pathogenicity.

Findings: Analysis of nine genome sequences from seven Aspergilli revealed fifty hydrophobins, where each species displayed between two to eight hydrophobins. Twenty of the identified hydrophobins have not previously been described from these species. Apart from the cysteines, very little amino acid sequence homology was observed. Twenty-three of the identified hydrophobins could be classified as class I hydrophobins based on their conserved cysteine spacing pattern and hydropathy pattern. However twenty-six of the identified hydrophobins were intermediate forms. Notably, a single hydrophobin, ATEG_04730, from Aspergillus terreus displayed class II cysteine spacing and had a class II hydropathy pattern.

Conclusion: Fifty hydrophobins were identified in Aspergillus, all containing the characteristic eight cysteine pattern. Aspergillus terreus exhibited both class I and class II hydrophobins. This is the first report of an Aspergillus species with the potential to express both class I and class II hydrophobins. Many of the identified hydrophobins could not directly be allocated to either class I or class II.

Background

Hydrophobins are a family of small proteins found uniquely in filamentous fungi [1]. The currently characterised hydrophobins are approximately 100 AA in size and have little amino acid sequence homology except from eight conserved cysteines in a characteristic pattern [2,3]. The eight cysteines form four disulfide bonds in the pattern Cys1-Cys6, Cys2-Cys5, Cys3-Cys4, Cys7-Cys8 and especially the Cys3-Cys4 loop can vary considerably in length [4]. Based on their distinct hydropathy patterns and physical properties, hydrophobins are traditionally divided into two classes [3]. Class I hydrophobins form highly insoluble membranes in water, organic solvents and 2% SDS, while the membranes formed by class II hydrophobins easily can be dissolved in aqueous ethanol (60%) or 2% SDS [2]. Class I hydrophobins have been identified in Ascomycetes and Basidiomycetes, while class II hydrophobins have only been identified in Ascomycetes [1]. Typically, a single fungal species only expresses either class I or class II hydrophobins, however previous studies have shown that few species have the ability to express both class I and class II hydrophobins [5,6]. In class I hydrophobins the cysteine doublets are followed by hydrophilic amino acids, while hydrophobic amino acids are observed after the cysteine doublets in class II hydrophobins [2]. Furthermore, considerable variation is seen in the cysteine spacing of class I hydrophobins, while less variation is seen for class II hydrophobins [7]. In this study, we examine nine full genome sequenced Aspergilli for new hydrophobins.

Results and Discussion

Identification of hydrophobins
Nine full genome sequenced Aspergillus species were used to search for new hydrophobins. A total of 50 potential hydrophobins were identified (Table 1) based on the criteria of minimum eight cysteines, two cysteine...
Species	Gene	Size (Da)	n(AA)	n(cys)	Eight cysteine pattern	Theoretical class	Common name
A. oryzae	RIB40	14304	145	8	CN{8}CN{38}CN{10}CN{3}CN{21}C	I	RodA*
		15231	151	8	CN{7}CN{39}CN{17}CN{5}CN{17}C	I	New
A. niger	CBS 513.88	12486	122	8	CN{6}CN{32}CN{25}CN{9}CN{4}C	I	New
		13063	131	8	CN{6}CN{31}CN{23}CN{5}CN{6}C	Intermediate	
		14397	146	8	CN{7}CN{39}CN{20}CN{5}CN{17}C	I	Intermediate
		13225	130	8	CN{5}CN{32}CN{6}CN{5}CN{13}C	Intermediate	
		10693	100	8	CN{14}CN{17}CN{11}CN{7}CN{8}C	Intermediate	
	ATCC 1015	12072	162	8	CN{7}CN{39}CN{21}CN{5}CN{17}C	I	New
		20465	202	9	CN{8}CN{33}CN{11}CN{5}CN{16}C	Intermediate	
		9169	91	9	CN{7}CN{16}CN{6}CN{5}CN{10}C	Intermediate	
E. nidulans	FGSC A4	AN7539.2	10798	109	CN{5}CN{32}CN{6}CN{5}CN{13}C	Intermediate	
		15625	157	8	CN{7}CN{39}CN{18}CN{5}CN{17}C	I	RodA³
		16131	162	8	CN{6}CN{38}CN{22}CN{5}CN{35}C	Intermediate	
		13183	135	8	CN{6}CN{31}CN{23}CN{5}CN{6}C	I	DewA²
		13397	135	8	CN{7}CN{39}CN{18}CN{5}CN{17}C	I	Intermediate
		14397	146	8	CN{7}CN{39}CN{20}CN{5}CN{17}C	I	Intermediate
A. fumigatus	AF293	AFUA_807060	15996	155	CN{7}CN{39}CN{21}CN{5}CN{17}C	I	Rodc²
		16153	159	8	CN{7}CN{39}CN{21}CN{5}CN{17}C	I	RodA²/q
		12928	125	8	CN{5}CN{32}CN{6}CN{5}CN{13}C	Intermediate	New
		14299	140	8	CN{7}CN{36}CN{18}CN{5}CN{18}C	I	RodB²/h
		19825	190	9	CN{7}CN{33}CN{11}CN{5}CN{14}C	I	Rod²
A. fumigatus	A1163	AFUB_016640	14300	140	CN{7}CN{36}CN{18}CN{5}CN{18}C	I	RodB²/new
		16153	155	8	CN{7}CN{39}CN{21}CN{5}CN{17}C	I	RodA²/new
		15996	155	8	CN{7}CN{39}CN{21}CN{5}CN{17}C	I	RodC²/new
A. terreus	NIH 2624	ATEG_10285	13978	129	CN{5}CN{28}CN{14}CN{8}CN{13}C	Intermediate	New
		18936	177	8	CN{8}CN{33}CN{11}CN{5}CN{14}C	Intermediate	New
		11677	115	8	CN{5}CN{32}CN{6}CN{5}CN{13}C	Intermediate	New
		17374	175	8	CN{7}CN{40}CN{16}CN{5}CN{17}C	I	New
		11797	121	8	CN{10}CN{11}CN{16}CN{8}CN{10}C	II	New
A. flavus	NRRL 3357	AFLA_094600	8377	83	CN{7}CN{16}CN{8}CN{5}CN{9}C	Intermediate	New
		10867	106	8	CN{5}CN{32}CN{6}CN{5}CN{13}C	Intermediate	New
		27807	251	8	CN{6}CN{30}CN{23}CN{5}CN{4}C	I	New
		14304	145	8	CN{8}CN{38}CN{10}CN{5}CN{21}C	I	New
		9362	87	9	CN{6}CN{17}CN{7}CN{7}CN{12}C	Intermediate	New
		23415	217	10	CN{7}CN{39}CN{17}CN{5}CN{44}C	I	New
A. clavatus	NRRL 1	ACLA_007980	14558	144	CN{7}CN{36}CN{18}CN{5}CN{17}C	I	New

* described by [9], ** mentioned by [10], * mentioned by [11], * described by [12], * described by [8], † described by [13], RodA described by [14,15], RodB described by [16]
pairs, a size of app. 100 AA and the cysteine pattern. On
species level twenty of the identified hydrophobins have
not previously been mentioned in other studies, while
the number increases to thirty-one on strain level. The
number of identified hydrophobins within the species
varied from two to eight between the nine species. All
identified hydrophobins had theoretical signal sequences
and therefore have the possibility of being secreted.
They contain approximately 100 - 200 amino acids and
are 8 - 30 kDa in size. Furthermore, they contain eight
to ten cysteines, where excess cysteines (above eight)
are located before or after the conserved cysteine spac-
ing pattern. Beauvais et al. (2007) have classified
AFUA_8G05890 and AFUA_5G01490 as hydrophobins.
As AFUA_8G05890 has 11 cysteines, no signal sequence
and both proteins lack the conserved cysteine pattern,
we disregard these proteins as hydrophobins as they do
not fulfil our criteria. Other Aspergillus hydrophobins
previously identified fulfilled the criteria [8-16] and have
likewise been found and included in this study.

Forty-five of the identified proteins contained domains
classifying them as hydrophobins by Pfam. The remain-
ing five hydrophobins could not be classified. Four of
these (An01g10940, JGI35683, AN0940.2, AFLA_063080)
can be differentiated from the rest in displaying a distinc-
tive cysteine pattern. They have a similar cysteine pattern
of CN{5-13}CCN{17}CN{7-12}CN{7}CCN{8-12}C (where
N signifies any other amino acid than cysteine) and
group together in the phylogenetic tree (Additional file
1), but still with other hydrophobins. They also have
hydropathy patterns that differ from both class I and
class II hydrophobins and can therefore theoretically not
be placed in either class. Furthermore, their hydropathy
patterns differ from each other, so they do not form a
new class either. The fifth hydrophobin (ATEG_10285)
differs in having a different cysteine spacing compared to
all other identified hydrophobins, but still clusters with
other hydrophobins in the phylogenetic tree (Additional
file 1). Forty-four of the identified hydrophobins dis-
played class I cysteine spacing pattern, but only twenty-
four had a characteristic class I hydropathy plot resulting
in only twenty-three identified class I hydrophobins (see
Additional file 2 and Table 1). Only one identified hydro-
phobin displayed a characteristic class II cysteine spacing
pattern and had a class II hydropathy pattern, while the
rest (twenty-six) were intermediate forms. However, as
the majority of the identified hydrophobins have not phy-
sically been isolated and characterised, a differentiation
into type of class is only provisional. As many of the
identified hydrophobins displayed intermediate forms, they
may also exhibit solubility characteristics between
the two known classes. As these intermediate forms blur
the original classification, it could be speculated, whether
an extension of the classical two class system would be in
place as more fungal genomes become available.

An examination of the multiple alignment (Additional
file 3) of the putative hydrophobins revealed very low simi-
larity between the hydrophobins. Apart from the eight
cysteines a proline was observed in the majority of the
sequences (82%) situated in close proximity to the theore-
tical signal sequence cleavage site. This proline may be
involved in the correct cleavage of the signal sequence and
thereby influence the eventual secretion of the hydropho-
bins. Tryptophan is rarely seen in hydrophobins [2], and
only twelve of the identified hydrophobins from Aspergilli
contained between 1-5 tryptophan residues.

Several groups are revealed in the phylogenetic tree
(Additional file 1) and it seems that hydrophobins cluster
according to their cysteine spacing pattern. A common
feature in 44 of the 50 hydrophobins is a conserved spa-
cing of five amino acids between the fifth and sixth
cysteines, while the remaining six hydrophobins contain
either seven or eight amino acids. This spacing of five
cysteines is also observed in other known class I hydro-
phobins (eg. SC3, EAS and MPG1) [7] and may be a
common feature in class I hydrophobins.

Previously Yang et al. (2006) [17] used primary struc-
ture analysis to identify new members of the hydropho-
bin family. By searching the Uniprot Knowledgebase
using the key word hydrophobin followed by a BLAST
against the NCBI database, Yang et al. retrieved several
sequences. However, by using the above mentioned
method putative hydrophobin sequences may be missed
as hydrophobins have high sequence diversity, and may
not resemble known hydrophobins sufficiently to be
picked up by a BLAST. In our search we found five
hydrophobins (An01g10940, JGI35683, AN0940.2,
AFLA_063080, ATEG_10285), which do not resemble
the other identified hydrophobins. If these hydrophobins
are used to conduct a BLAST, no known hydrophobins
appear in the results. So if the method described by
Yang et al. was used, these putative hydrophobins
would likely have been missed. Furthermore, Yang et al.
uses their identified sequences to create motifs, and
thereby identify nine new hydrophobins including five
E. nidulans (A. nidulans) hydrophobins. In our approach
we only sort our putative hydrophobins by the criteria
of size, number of cysteines and the eight cysteine pat-
tern, thereby not eliminating any hydrophobins even if
they do not contain any common motifs.

Class I and class II hydrophobins of Aspergillus terreus
In Aspergillus terreus five different hydrophobins were
identified. ATEG_06492 displayed a characteristic class I
hydrophobin cysteine spacing pattern (CN(7)CCN[40]
CN[16]CN[5]CCN[17]C), whereas a class II hydrophobin
spacing pattern was observed for ATEG_04730 (CN{10}CCN{11}CN{16}CN{8}CCN{10}C). Comparison of ATEG_06492 and ATEG_04730 to hydropathy patterns of known class I and class II hydrophobins indicates that *A. terreus* has genes for both class I and class II hydrophobins (Figure 1). The hydrophobins SC3 (*Schizophyllum commune*), EAS (*Neurospora crassa*) and RodA (*Aspergillus fumigatus*) are known class I hydrophobins, where the cysteine doublets are followed by a stretch of hydrophilic amino acids. Likewise, the cysteine doublets in ATEG_06492 are followed by a stretch of hydrophilic amino acids contrasting ATEG_04730, where hydrophobic

![Hydropathy patterns](image)

Figure 1 Hydropathy patterns Hydropathy patterns of SC3 from *S. commune*, EAS from *N. crassa*, RodA from *A. fumigatus*, HFBI and HFBII from *T. reesei* and proteins ATEG_06492 and ATEG_04730 from *A. terreus*. The amino acids of the hydrophobins are shown along the x-axis, where cysteines are indicated by vertical lines. Hydrophobic amino acids are shown above the x-axis, while hydrophilic amino acids are shown below. Only the part of the sequence from the first to the eighth cysteine was used to create the hydropathy pattern.
amino acids follow the cysteine doublets. Similarly, the cysteine doublets are followed by hydrophobic amino acids in the known class II hydrophobins HFBI and HFBII from *Trichoderma reesei*. Therefore ATEG_06492 displays a characteristic class I hydropathy pattern, while ATEG_04730 displays a class II hydropathy pattern. Comparison of ATEG_04730 to class II hydrophobins HFBI and HFBII showed 37% and 35% sequence identity, while comparison to class I hydrophobins RodA, SC3 and EAS showed 21%, 16% and 20% sequence identity. In contrast ATEG_06492 showed 20% and 29% sequence identity to class II hydrophobins HFBI and HFBII, but 51%, 21% and 24% to class I hydrophobins RodA, SC3 and EAS. Furthermore, a phylogenetic analysis (Figure 2) revealed that ATEG_06492 clusters with RodA, SC3 and EAS. ATEG_06492 has physically been isolated or characterised, these can obviously only tentatively be classified as a class I and a class II hydrophobin respectively. This is the first report of an *Aspergillus* species with the potential to express both class I and class II hydrophobins.

Conclusion

Analysis of nine genome sequences from seven *Aspergillus* species revealed fifty hydrophobins, where each species displayed between two and eight hydrophobins. Twenty of the identified hydrophobins have not previously been described from these species. All identified hydrophobins contained two cysteine pairs, were approximately 100-200 AA in size, and displayed the common eight cysteine pattern. Besides the cysteines, very little amino acid sequence homology was observed. Twenty-three of the identified hydrophobins could be classified as class I hydrophobins based on their conserved cysteine spacing pattern and hydropathy pattern, but the majority seem to be intermediate forms. A single hydrophobin, ATEG_04730, from *Aspergillus terreus* displayed a clear class II cysteine spacing and had a class II hydropathy pattern. Furthermore, this hydrophobin grouped together with other known class II hydrophobins in a phylogenetic analysis, showing a close phylogenetic relationship to these. As *Aspergillus terreus* also has the potential to express a class I hydrophobin, this is the first reported case of an *Aspergillus* species with the potential to express both class I and class II hydrophobins.

Methods

Availability of genomic data

The sequences of *Aspergillus oryzae* RIB40, *Aspergillus niger* CBS 513.88, *Emericella nidulans* FGSC A4, *Aspergillus fumigatus* AF293, *Aspergillus fumigatus* A1163, *Aspergillus terreus* NII 2624, *Aspergillus flavus* NRRRL 3357 and *Aspergillus clavatus* NRRL 1 were obtained from the Central Aspergillus Data Repository (CADRE) [18], while the sequence of *Aspergillus niger* ATCC 1015 was obtained from DOE Joint Genome Institute.

Identification of putative hydrophobins

A Perl program was constructed to search the nine *Aspergillus* genomes for putative hydrophobins by identification of the common C..CC..C..C..CC..C cysteine motif [2,3]. The identified putative hydrophobins were further sorted for size and number of cysteine residues resulting in fifty putative hydrophobins. The identified putative hydrophobin sequences were used to conduct a BLAST search against the NCBI (National Center for Biotechnology Information) non-redundant (nr) database to differentiate between known and newly identified hydrophobins. The sequences were examined for domains using Pfam to verify their function as hydrophobins [19] and the presence of and location of signal peptide cleavage sites using SignalP 3.0 to examine their theoretical ability to be secreted [20].

![Figure 2 Phylogenetic tree of class I and class II hydrophobins](image-url)

Figure 2 Phylogenetic tree of class I and class II hydrophobins. Sequences of SC3 (*S. commune*), EAS (*N. crassa*), RodA (*A. fumigatus*), HFBI and HFBII (*T. reesei*) were obtained from the National Center for Biotechnology Information (NCBI). The phylogenetic tree was constructed based on a multiple alignment of identified hydrophobins using Phylogeny.fr [22]. Branches with support values less than 50% were collapsed.
Protein sequence analysis
A multiple sequence alignment of the identified hydrophobin sequences was conducted using MUSCLE [21] and based on this alignment a phylogenetic tree was constructed [22-25].

Generation of hydropathy plots
Hydropathy patterns were determined using the hydropathy scale set by Kyte and Doolittle [26]. A nine amino acid window was used and data was extracted using ProtScale on the ExPASy Proteomics Server [27]. The hydropathy patterns were aligned around the cysteine pairs placing gaps in the sequences where the hydrophobic and hydrophilic regions alternate. Only the part of the sequence from the first cysteine to the eight was used for examining the hydropathy pattern.

Additional material

Acknowledgements
We acknowledge The Danish Research Council for Technology and Production Sciences for support (project 09-064225).

Authors’ contributions
BGJ carried out the sequence analysis, blast searches, domain searches, phylogenetic analysis, created hydropathy patterns and drafted the manuscript. MRA wrote the Perl program used for searching the Aspergillus sequences and participated in data analysis. MHP, JCF and IS gave general direction and manuscript revisions. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 16 August 2010 Accepted: 23 December 2010 Published: 23 December 2010

References
1. Wosten HA: Hydrophobins: multipurpose proteins. Annu Rev Microbiol 2001, 55:625-646.
2. Wessels JGH: Hydrophobins: Proteins that change the nature of the fungal surface LONDON: ACADEMIC PRESS LTD, 1997.
3. Wessels JGH Developmental Regulation of Fungal Cell-Wall Formation. Annual Review of Phytopathology 1994, 32:413-437.
4. Kwon-Chung KJ: Conidial hydrophobins of Aspergillus fumigatus. Appl Environ Microbiol 2004, 70(Suppl 1):572-581.
5. Pei HJ, de Winde JH, Archer DB, Dyer PS, Hofmann G, Schapa PJ, et al: Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat Biotechnol 2007, 25:221-231.
6. Takahashi T, Maeda H, Yoneda S: The fungal hydrophobin RolA recruits polyesterase and laterally moves on hydrophobic surfaces. Molecular Microbiology 2005, 57:1780.
7. Paris S, Debeauquis JP, Crameri R, Carey M, Charles F, Prevost MC, et al: Rodletless mutants of Aspergillus fumigatus. Infect Immun 1994, 62:4389-4395.
8. Finn RD, Mistry J, Tate J, Coggill P, Heger A, Ponton NW, et al: CADRE: the Central Aspergillus Data Repository. Nucleic Acids Res 2003, 31:W465-W469.
9. Takahashi T, Maeda H, Yoneda S: Hydrophobins: the protein-amyphiles of filamentous fungi. FEMS Microbiol Rev 2005, 29:877-896.