Abstract

Hepatic cirrhosis is a common disease that poses a serious threat to public health, and is characterized by chronic, progressive and diffuse hepatic lesions preceded by hepatic fibrosis regardless of the exact etiologies. In recent years, considerable achievements have been made in China in research of the etiopathogenesis, diagnosis and especially the treatment of hepatic fibrosis, resulting in much improved prognosis of hepatic fibrosis and cirrhosis. In this paper, the authors review the current status of research in hepatic fibrosis, cirrhosis and their major complications.

Key words: Hepatic cirrhosis; China

Etiology of hepatic cirrhosis

In China, virus hepatitis B and C remain the primary etiological factors for hepatic cirrhosis, and a recent increase in alcoholic cirrhosis has also been noted[2]. But in the past years, approximately 25% to 40% of HBsAg-, antiHBc and antiHBe-positive cases failed to receive due attention for the potential risk of hepatic cirrhosis, and carcinoma in relatively rare cases. With the development of public hygiene, schistosomal liver diseases become a widespread concern of researchers. Recently, significant results have been obtained in research of the etiopathogenesis, diagnosis and especially the treatment of hepatic fibrosis, resulting in much improved prognosis of hepatic fibrosis and cirrhosis. In this paper, the authors review the current status of research in hepatic fibrosis, cirrhosis and their major complications.

STUDY ON HEPATIC FIBROSIS

Hepatic fibrosis is a reversible pathological process[14] and chronic hepatic disease has become a widespread concern of researchers. Recently, significant results have been obtained in research of the pathogenesis of hepatic fibrosis in view of the role of hepatic stellate cells (HSCs)[5-7], formation of extracellular matrix (ECM), hyperoxidation, cytokine network, Na+/H+ exchange pump and calcium channel.

Pathogenic mechanism of hepatic fibrosis

HSCs, the main source of ECM[8-9], play important roles in the formation of hepatic fibrosis[2-3,12-14]. Pathogenic research of hepatic fibrosis is now focused on the following respects:

- Peroxidation mechanism, cytokine network, signal transduction pathways, and cell apoptosis, as examined briefly in the following.
- Cytokine network: Kupffer cells can initiate the progress of hepatic fibrosis[8]. After being activated, Kupffer cells release a variety of cytokines closely related to hepatic fibrosis such as transforming growth factors (TGFs) α and β, tumor necrosis factor (TNF)-α, interleukin-1 (IL-1) and platelet-derived growth factor (PDGF). In addition, Kupffer cells, which can be regarded as important “coefficient”, help maintain the kinetic equilibrium of hepatic fibrosis, and mediate the feedback mechanism of some biological messages during the progression of hepatic fibrosis. HSCs have both paracrine and autocrine functions, the activation of which can be triggered via a reaction cascade of cytokines and biochemical factors[8-9]. Two major changes occur after the activation of HSCs: that is, proliferation and phenotypic transition[9]. PDGF and TGF-β1 play an important role in the proliferation and transformation of HSCs[10]. The key role of PDGF, a most effective mitogen during the synthesis of HSC DNA[11], is to convert HSC from G0 to G1 and S phases, whereas TGF-β1 promotes the synthesis of collagen and inhibitors of tissue metalloproteinases (TIMPs) in activated HSCs[12]. Moreover, PDGF and TGF-β1 can interact with each other. PDGF is capable of inducing HSCs to express and secrete PDGF receptors. PDGF and TGF-β1 can also interact with IL-1 and TNFα[13], leading to the formation of cytokine network with HSCs at the crucial center.

- Nα/H+ exchange pump and calcium/calmodulin: Messages in cytokines could pass to HSC nuclei through the membrane or intracellular pathways. Svegliati Baroni et al[14] found that the HSCs exposed for 24 h to the culture medium of hepatocytes subjected to oxidative stress could increase the proliferation of HSCs and accumulation of collagen I. The mechanism is related to the increased intracellular pH of HSCs and enhanced activation of Na+/H+ exchanger. Actually, Na+ influx is the key element that initiates the proliferative reaction[15]. PDGF can activate Na+/H+ exchanger by activating IP3-calcium/calmodulin and protein kinase C[16]. Synthesis of ECM promoted by TGF-β1 may be modulated by the activity of calcium channel[17]. Therefore, activation of IP3-calcium/calmodulin-Na+/H+ exchanger in succession induces proliferation of HSCs and synthesis of ECM, which serves as the theoretical basis for therapy of hepatic fibrosis.

- HSC apoptosis: Concerning the apoptosis of HSCs, consensus has been reached over the occurrence of HSC apoptosis, which takes place in α-SMA-positive but not static HSCs, in parallel with phenotypic transition[18]. CD95 (APO-1/Fas) receptor and...
its ligand have been recognized for their important role in inducing HSC apoptosis\(^{30}\), and the therapeutic strategy against hepatic fibrosis is maneuvered to target at promoting the apoptosis of HSCs. Realization that activation is the premise of apoptosis of HSCs is not meant to confirm the seemingly natural cause-effect relationship between mononuclear HSC activation and apoptosis, and the reversibility of phenotype transformation of HSCs is still worthy of further exploration.

Diagnosis of hepatic fibrosis

Currently, the diagnosis of hepatic cirrhosis depends mainly on needle biopsy of the liver, and ultrasonic examination can hardly define the degree of hepatic fibrosis. Through consistent effort, researchers have made encouraging progress in serological diagnosis of hepatic cirrhosis\(^{11,34}\).

Pathological diagnosis

In May 1995, the Prevention and Treatment of Virus Hepatitis was revised at the 5th Congress of Parasite and Infectious Diseases, and chronic hepatitis was then classified into mild, moderate and severe degrees and pathologically graded into G0-G4 degrees and S0-S4 stages. Wang et al.\(^{35}\), after observing 1000 hepatic biopsy specimens, proposed a classification protocol of the inflammatory activity and fibrosis, which was an improved version of the criteria given by Knodell et al.\(^{36}\) and Chevallier et al.\(^{37}\). This protocol has now been accepted in clinical practice.

Serological diagnosis

Needle biopsy of the liver has its inherent limitations in diagnosis and curative effect assessment\(^{38}\). Currently, great progress has been made in the serological diagnosis of hepatic fibrosis\(^{39,40}\). Many useful indices have been set up to reflect the metabolism of ECM, including PCIII/PIIP, CIV, PIIP, and LN\(^{41-42}\), of which HA is the most sensitive. CIV, the main ingredient of basal membrane, was found to elevate during capillarization of the hepatic sinusoid. After comprehensive analysis, HA and CIV were established as the most significant indices during S3 and S4 stages\(^{43}\). Our hospital developed a “quadruple detection” protocol combining CIV, PIIP, LN and HA, which proved to be highly specific and sensitive. However, its value should not be overemphasized while comprehensive judgment is still needed including that derived from biochemical examinations.

Treatment of hepatic fibrosis

So far, no satisfactory treatment protocol with western drugs is available for hepatic fibrosis because of their severe side effects. Meanwhile, we have obtained promising results with traditional Chinese medicines, and a number of drugs have been found to reverse the progression of hepatic fibrosis. Antifibrotic therapy targets at the inhibition of HSC proliferation\(^{44-46}\), cytokine activity\(^{47-49}\), and ECM degradation. Calmodulin antagonists belong to HSC proliferation inhibitors, working to inhibit the pathway of IP3-calcium/calmodulin-Na"/H" exchangers, but relevant studies\(^{50-52}\) conducted in China have so far achieved no significant breakthrough in this aspect. The apoptosis of HSC was another interest of study in recent years\(^{53-55}\).

Gene therapies using antisense oligonucleotides, nucleases and gene carriers promise optimistic results of treatment, but the problems of gene targeting and expression modulation have yet to be solved. Studies have shown that traditional Chinese medicines can inhibit the deposition of collagen fibers\(^{56-63}\) and promote the reversion of fibrosis, which was also confirmed by experimental evidence that Radix Salviae Miltiorrhizae, Radix Angelicae Sinensis, Radix Astragali seu Hedysari, Radix Paeoniae Rrhra, Semen Persicae, Hirudo, Flos Carthami, Radix Notoginseng, Rhizoma Sparganii, Rhizoma Zedoariae, etc could obviously inhibit the formation of collagen fibers. The agent 861\(^{61,69}\), Qianggan capsule, Fizhenghuayu 319\(^{60}\), Dahuangzhechong pill\(^{60}\), Yigan infusion\(^{60}\), and the traditional Chinese medicinal formula Xiaochaihu decoction etc., could eliminate clinical symptoms, improve liver function, decrease liver collagen content and improve the histologic picture of the liver without obvious side effects, all of which seem to suggest a bright future of traditional Chinese medicine in treating hepatic fibrosis. Problems, however, do exist in traditional Chinese medicines, in the standardization and purification methodology. Currently no standardized criteria are available to compensate for the geographical variation in the content of effective components of drugs, and the methods of harvest and refinement are also controversial. The methodology employed for animal experiments needs standardization, and strict double-blind, multi-center studies have yet to be performed.

STUDY OF LIVER CIRRHOSIS

In China, histological diagnosis of liver cirrhosis is not a universal practice and liver puncture is performed in a very small portion of patients suspected of the disease. The clinical diagnosis of liver cirrhosis still depends on the presence of enlarged and hardened liver and spleen, and manifestations of portal hypertension. Non-invasive B type ultrasound provides a convenient means for the diagnosis of liver cirrhosis, the typical manifestations of which include sharp or wave-like margins of the liver and disproportional right and left lobes of the liver with uneven echoes from the hepatic parenchyma. The indirect signs include enlarged spleen, dilated portal (≥1.4 cm) or splenic veins (≥0.9 cm) and ascites. The treatment of cirrhotic patients is directed against the complications including ascites, gastrointestinal bleeding, spontaneous bacterial peritonitis (SBP), hepatoportal syndrome, hepatic encephalopathy, cirrhosis-induced carcinoma and thrombosis, etc. Current interests of research are devoted predominantly to bleeding gastrointestinal varices, early diagnosis of SBP, recognition and treatment of subclinical hepatorenal syndrome, treatment of ascites especially refractory ascites, diagnosis of subclinical hepatomegaly, early detection of liver cancer, and hypertensive gastrointestinal diseases.

Esophageal variceal bleeding (EVB)

Critical factors and prediction of EVB

Degree of liver damage, size of varices, endoscopic red color signs and elevated portal vein pressure (PVP) or hepatic vein pressure gradient (HVPG) are the major risk factors for bleeding\(^{66}\). In China, patients with PV ≥ 1.70 cm, SPV ≥ 1.20 cm and EV ≥ 6.0 mm especially those with red color signs are at high risk for bleeding\(^{66}\). Impaired liver function is the dominant factor threatening bleeding, as the blood flow rate in cases of extrahepatic hypertension with normal liver function, in spite of the presence of severe varices and higher PVPs, is decidedly lower than that in liver cirrhosis patients with portal hypertension\(^{66}\). The more relevant factors are the red color signs on the varices seen on endoscopy and hemodynamic changes with portal pressure\(^{67}\). Recently, much attention has been paid to bacterial infection for its potential to cause bleeding\(^{68-70}\), possibly because in patients with severe varices and a high esophageal wall tension, the release of endotoxin into the systemic circulation during the episodes of bacterial infection resulted in a further increase in the portal pressure induced by endotoxin and possibly vasoconstrictive cyclo-oxygenase products. The subsequent contraction of HSC caused a rise in intrahepatic vascular resistance. Furthermore, endotoxin-induced nitric oxide and prostacyclin, and prostacyclin induced by endotoxin could inhibit platelet aggregation, which may result in further deterioration of the already existent bleeding\(^{69}\).
Strategies of management Correct use of Sengstaken-Blakemore tube, knot and sclerosis of esophageal varices, and uses of new hemostatics such as somatostatin and thrombin, have improved the prognosis of EVB. The rebleeding and mortality rates have been greatly reduced by use of β-receptor blockers as the first-line drugs; the combination of β-receptor blockers, calmodulin antagonists, and nitroesters can enhance the efficacy; vasopressin should be used with nitroglycerin or to reduce the side effects, somatostatin and octreotide are better options than vasopressin and have no obvious side effects. Traditional Chinese herbal drugs such as Radix Salviae Miltiorrhizae, Radix Angelicae Sinensis, may promote the blood flow and remove blood stasis, and are effective for lowering the PVP and HVPG. The slow but relatively long-lasting effects of the herbal drugs help prevent bleeding. Sclerosis and knot of the varices also effectively prevent the primary bleeding and decrease the rate of rebleeding. Portal-systemic shunt, however, is not recommended for the prevention of the primary bleeding. TIPSS could prevent the primary bleeding, but the rebleeding rate and long-term effect need further assessment.

Refractory ascites and hepatorenal syndrome

The ascites in cirrhotic patients usually indicates the progression of the disease into the decompensatory stage. Patients with a small amount of ascites should receive active and adequate treatment when they respond favorably to diuretics and have sufficient renal function without electrolyte disturbance. Rest, restricted salt intake, protein-rich food or application of herbal drugs that promote blood flow, removing stasis, invigorating the spleen and refreshing Qi (such as Rhizoma Alismatis, Polypons Umbellatus, Semen Plantaginis and the preparation of Weiling decoction), could help eliminate the ascites. For patients with a large amount of ascites that failed to be resolved by exclusive use of traditional Chinese drugs, spirilactone should be given with short-term use of dihydrochlorothiazide. Diuretic abuse should be avoided for potential drastic reduction in systemic blood volume and development of hepatorenal syndrome. Close relationship has been identified between ascites and renal function. Patients with refractory ascites are often characterized by increased resistance index (RI) of the portal pressure and increased heart output. This low RI and hyperdynamics, along with the high CI and low blood flow velocity at the portal system, are further deteriorated by SBP, resulting in varical bleeding for more elevated PVP and heat shock or hepatorenal syndrome. Close relationship was found among the four episodes: SBP, portal hypertension with splanchnic hyperdynamics, esophageal venous bleeding and hepatorenal syndrome. For those who were not responsive to diuretics, diagnostic abdominocentesis and bacterial culture should be performed even in the absence of abdominal signs of SBP. The treatment of SBP include (1) strengthening the trophotherapy, (2) using antibiotics according to the bacterial culture, (3) treatment with intravenous antibiotics for more than 7 d or continuous use for 3–6 d after the abdominocentesis becomes negative, and (4) intravenous antibiotics combined with ascites discharge and intraperitoneal injection of drugs, which may produce better effect than exclusive use of intravenous antibiotics.

Hepatic encephalopathy

Severe liver diseases may lead to functional disturbance of the central nervous system with a high mortality rate, which can be relieved by early detection of the condition. In recent years, the diagnosis of subclinical hepatic encephalopathy has witnessed great improvement in China. The examination of nerve-evoked potentials offers a means of objective and sensitive diagnosis of the disease. Several factors may contribute to the occurrence of encephalopathy, including (1) blood accumulation in the intestines after bleeding or intake of substances containing nitrogen, (2) water and electrolyte disturbance for iatrogenic reasons, (3) endotoxemia and infections, (4) Helicobacter pylori (H pylori) infection, (5) use of anesthetics or sedatives, and (6) decompression of the portal vein such as by TIPSS or porto-systemic shunt. Elimination of these factors may reduce or even prevent the occurrence of encephalopathy. When the disease occurs, treatments with defecation and intestinal acidification, use of arginine or glutamate, branch-chain amino acids, and levodopa are often effective. Antibiotics for H pylori can be used to reduce the absorption of ammonia from the intestine for treatment of hepatic encephalopathy.

Others

Ultrasound examination and AFP dynamic methods are reliable for early diagnosis of primary liver cancer. Hepatic arterial angiography, CT and needle biopsy should be used in suspected cases to raise the diagnostic accuracy. Gastrointestinal disease with portal hypertension is no longer a concept of simple pathology, but a disease with specific clinical and endoscopic presentations secondary to liver cirrhosis. Low blood oxygen capacity in liver cirrhosis, or hepatopulmonary syndrome, is closely related to the portopulmonary shunt, inflammation of the lungs, hydrothorax and atelectasis at the base of the lung. Hepatic hydrothorax is most often found on the right side of the pleural cavity, but so far its causes have not been fully understood. Hypoalbuminemia
could accelerate the formation of hydrothorax in cirrhotic cases. Budd-Chiari syndrome, which is found much more frequently than ever, is likely to be confused with liver cirrhosis. Color Doppler ultrasound or infraveneacavography, if necessary, could identify most of the causes of the disease. It is worth noting that splenomegaly hyperdynamics and hypoalbuminemia may lead to hepatic myocardopathy and heart insufficiency[3].

We believe that the incidence of liver cirrhosis can be lowered with its prognosis improved, when more effort is made in research of the complex mechanism of fibrosis and cirrhosis and their molecular biology, serological diagnosis, complications in relation to liver cirrhosis, application of integrated Chinese and western medicine, and especially the study of the curative mechanism of Chinese herbs, their serological pharmacology and the extraction of effective components.

REFERENCES

1 Friedman SL. Seminars in medicine of the Beth Israel Hospital, Boston. The cellular basis of hepatic fibrosis. Mechanisms and treatment strategies. N Engl J Med 1993; 328: 1828-1835

2 Zhang Y, Pu XX, Zhao JY, Ren SZ. The differences in cirrhosis and primary cancer of liver caused by ethanol, HCV and HBV. Shijie Huaren Xibua Zazhi 1999; 7: 572

3 Yao SK, Ying F. The diagnosis and treatment of liver cirrhosis. Shiji Huaren Xibua Zazhi 2000; 8: 681-683

4 Friedman SL. Molecular mechanisms of hepatic fibrosis and principles of therapy. J Gastroenterol 1997; 32: 424-430

5 Pinzani M. Novel insights into the biology and physiology of the Ito cell. Pharmacol Ther 1995; 66: 387-412

6 Hautekeete ML, Geerts A. The hepatic stellate (Ito) cell: its role in human liver disease. Virchows Arch 1997; 430: 195-207

7 Moshage H, Casini A, Lieber CS. Acetaldehyde selectively stimulates collagen production in cultured rat liver fat-storing cells but not in hepatocytes. Hepatology 1990; 12: 511-518

8 Friedman SL. Cellular sources of collagen and regulation of collagen production in liver. Semin Liver Dis 1990; 10: 20-29

9 Gressner AM, Bachem MG. Molecular mechanisms of liver fibrogenesis--a homage to the role of activated fat-storing cells. Digestion 1995; 56: 335-346

10 Gualdi R, Casalgrandi G, Montosi G, Ventura E, Pietrangelo B, Halsted CH. Sequential acetaldehyde production, lipid mRNA expression into fat-storing cells in a rodent model of alcoholic liver fibrosis. Hepatology 1994; 19: 714-721

11 Niemela O, Parkkila S, Yla-Herttuala S, Villanueva J, Ruenber B, Halsted CH. Sequential acetaldehyde production, lipid peroxidation, and fibrogenesis in microgip model of alcohol-induced liver disease. Hepatology 1995; 22: 1208-1214

12 Bedossa P, Hougkum K, Trautwein C, Holstege A, Chojkier M. Stimulation of collagen alpha 1 (I) gene expression is associated with lipid peroxidation in hepatocellular injury: a link to tissue fibrosis? Hepatology 1994; 19: 1262-1271

13 Svegliati Baroni G, D’Ambrosio L, Ferretti G, Casini A, Di Sario A, Salzano R, Ridolfi F, Saccomanno S, Jezequel AM, Benedetti A. Fibrogenic effect of oxidative stress on rat hepatic stellate cells. Hepatology 1994; 27: 720-726

14 Nordmann R. Alcohol and antioxidant systems. Alcohol Alcohol 1994; 29: 513-522

15 Casini A, Ceni E, Salzano R, Biondi P, Parola M, Galli A, Foschi M, Caligiuri A, Pinzani M, Surrenti C. Neutrophil-derived superoxide anion induces lipid peroxidation and stimulates collagen synthesis in human hepatic stellate cells: role of nitric oxide. Hepatology 1997; 25: 361-367

16 Yang YK, Kang JY. The mechanism and serum diagnosis of liver cirrhosis. Xin Xiaohuangxue Zazhi 1997; 5: 119-120

17 Pinzani M. Novel insights into the biology and physiology of the Ito cell. Pharmacol Ther 1995; 66: 387-412

18 Gressner AM, Bachem MG. Molecular mechanisms of liver fibrogenesis--a homage to the role of activated fat-storing cells. Digestion 1995; 56: 335-346

19 Wu YX. Cytokine and liver. Zhonghua Xibua Zazhi 1998; 18: 166-170

20 Baroni GS, D’Ambrosio L, Curto P, Casini A, Mancini R, Jezequel AM, Benedetti A. Interferon gamma decreases hepatic stellate cell activation and extracellular matrix deposition in rat liver fibrosis. Hepatology 1996; 23: 1189-1199

21 Matsuzaka M, Tsukamoto H. Stimulation of hepatic lipocyte collagen production by Kupffer cell-derived transforming growth factor beta: implication for a pathogenetic role in alcoholic liver fibrogenesis. Hepatology 1990; 11: 599-605

22 Di Sario A, Baroni GS, Bendia E, D’Ambrosio L, Ridolfi F, Marileo JR, Jezequel AM, Benedetti A. Characterization of ion transport mechanisms regulating intracellular pH in hepatic stellate cells. Am J Physiol 1997; 273: G39-G48

23 Knittel T, Mehde M, Koldob D, Salle B, Dinter C, Ramadori G. Expression patterns of matrix metalloproteinases and their inhibitors in parenchymal and non-parenchymal cells of rat liver: regulation by TNF-alpha and TGF-beta1. J Hepatol 1999; 30: 48-60

24 Mauviel A, Heino J, Kahari VM, Hartmann DJ, Loyau G, Pujol JP, Vuorio E. Comparative effects of interleukin-1 and tumor necrosis factor-alpha on collagen production and corresponding procollagen mRNA levels in human dermal fibroblasts. J Invest Dermatol 1991; 96: 243-249

25 Vairo G, Argyriou S, Bordun AM, Gonda TJ, Cragoje EJ, Hamilton JA. Na+/H+ exchange involvement in colony-stimulating factor-1-stimulated macrophage proliferation. Evidence for a requirement during late G1 of the cell cycle but not for early growth factor responses. J Biol Chem 1990; 265: 16929-16939

26 Di Sario A, Bendia E, Svegliati Baroni G, Ridolfi F, Bolognini L, Feliciangeli G, Jezequel AM, Orlandi F, Benedetti A. Intracellular pathways mediating Na+/H+ exchange activation by platelet-derived growth factor in rat hepatic stellate cells. Gastroenterology 1999; 116: 1155-1166

27 Roth-Eichhorn S, Eberheim A, Bode HP, Gressner AM. Transformation-dependent calcium influx by voltage-operated calcium channels in stellate cells of rat liver. J Hepatol 1999; 30: 612-620

28 Gong W, Pecci A, Roth S, Lahme B, Beato M, Gressner AM. Transformation-dependent susceptibility of rat hepatic stellate cells to apoptosis induced by soluble Fas ligand. Hepatology 1998; 28: 492-502

29 Muschen M, Warskulat U, Douillard P, Gilbert E, Haussinger D. Regulation of CD95(APO-1/Fas) receptor and ligand expression by lipopolysaccharide and dexamethasone in parenchymal and nonparenchymal rat liver cells. Hepatology 1998; 27: 200-208

30 Sakaida I, Uchida K, Hironaka K, Okita K. Prolyl 4-hydroxylase inhibitor (HOE 077) prevents TIMP-1 gene expression in rat liver fibrosis. J Gastroenterol 1999, 34: 376-377

31 Murawaki Y, Yamada S, Ikuta Y, Kawasaki H. Clinical usefulness of serum matrix metalloproteinase-2 concentration in patients with chronic viral liver disease. J Hepatol 1999; 30: 1090-1096

32 Ueno T, Sujaku K, Tamaki S, Ogata R, Kin M, Nakamura T, Sakamoto M, Torimura T, Mitsuayama K, Sakisaka S, Sata M, Tanikawa K. OK-432 treatment increases matrix metalloproteinase-9 production and improves dimethylnitrosamine-induced liver cirrhosis in rats. Int J Mol Med 1999; 3: 497-503

33 Liu YL, Li DG, Lu HM, Jiang ZM, Xu QF. The subcellular study of chemical antagonists in treatment of hepatofibrosis. Xin Xiaohuangxue Zazhi 1996; 4: 3-5

34 Wang TL, Liu X, Zhou HP, He JW, Zhang J, Li NZ, Duan ZP, Wang BE. A semiquantitative scoring system for assessment of hepatic inflammation and fibrosis in chronic viral hepatitis. Zhonghua Ganzangbing Zazhi 1998; 6: 195-197

35 Knodell RG, Ishak KG, Black WC, Chen TS, Craig R, Kaplowitz N, Kiernan TW, Wollman J. Formulation and application of a
numerical scoring system for assessing histological activity in asymptomatic chronic active hepatitis. *Hepatology* 1981; 1: 431-435

37 Chevallier M, Guerret S, Chossegros P, Gerard F, Grimaud J.A. A histological semiquantitative scoring system for evaluation of hepatic fibrosis in needle liver biopsy specimens: comparison with morphometric studies. *Hepatology* 1994; 20: 349-355

38 Wang BE. The diagnosis and severity assessment of liver fibrosis. *Zhonghua Ganzangbing Zazhi* 1996; 6: 193-194

39 Wang Q, Ren XD, Qi Z, Li ML, Song X. The values of the serum variables in patients with alcoholic cirrhosis. *Huaen Xiaohua Zazhi* 1998; 6: 364

40 Gu SW, Zhang L, Hou JL, Feng XG, Luo KX, Weng JY. The clinical value of serum HA and hP II III in liver cirrhosis and fibrosis. *Shijie Huaen Xiaohua Zazhi* 1999; 7: 1011-1012

41 Luo JQ, Chen SQ, Wang F, Ren Y. The clinical significance of serum HA, PCIII, LN in the diagnosis of liver cirrhosis. *Huaen Xiaohua Zazhi* 1998; 6: 35-41

42 Nyberg A, Engstrom-Laurent A, Loof L. Serum hyaluronate in primary biliary cirrhosis-a biochemical marker for progressive liver damage. *Hepatology* 1998; 8: 142-146

43 Iwamoto H, Nakamuta M, Tada S, Sugimoto R, Enjoji M, Nawata H. A p160ROCK-specific inhibitor, Y-27632, attenuates rat hepatic stellate cell growth. *J Hepatol* 2000; 32: 762-770

44 Marra F, Arrighi MC, Fazi M, Caligiuri A, Pinzini M, Romanelli RG, Efen S, Laffi G, Gentili F. Extracellular signal-regulated kinase activation differentially regulates platelet-derived growth factor’s actions in hepatic stellate cells, and is induced by *in vivo* liver injury in the rat. *Hepatology* 1999; 30: 951-958

45 Tao J, Mallat A, Gallois C, Belmansadi S, Mery PF, Nieuw JT, Pavoine C, Lotersztajn S. Biological effects of C-type natriuretic peptide in human myofibroblastic hepatic stellate cells. *J Biol Chem* 1999; 274: 23761-23769

46 Svegliati-Baroni G, Ridolfi F, Di Sario A, Casini A, Marucci L, Gaggiotto G, Orlandoni P, Macarri C, Perez L, Benedetti A, Folli F. Insulin and insulin-like growth factor-1 stimulate proliferation and type I collagen accumulation by human hepatic stellate cells: differential effects on signal transduction pathways. *Hepatology* 1999; 29: 1743-1751

47 Carloni V, Pinzini M, Giusti S, Romanelli RG, Parola M, Bellomo G, Failli P, Hamilton AD, Sebti SM, Laffi G, Gentili F, Tyrosine phosphorylation of focal adhesion kinase by PDGF D is dependent on ras in human hepatic stellate cells. *Hepatology* 2000; 31: 131-140

48 Li D, Friedman SL. Liver fibrogenesis and the role of hepatic stellate cells: new insights and prospects for therapy. *J Gastroenterol Hepatol* 1999; 14: 618-633

49 Qi Z, Atsushi N, Ooshima A, Takeshita A, Ueno H. Blockade of type beta transforming growth factor signals preventing liver fibrosis and dysfunction in the rat. *Proc Natl Acad Sci USA* 1999, 96: 2345-2349

50 Diamantis I, Luthi M, Hosli M, Reichen J. Cloning of the rat ADAMTS-1 gene and its down regulation in endothelial cells in cirrhotic rats. *Liver* 2000; 20: 165-172

51 Cho JJ, Hocher B, Herbst H, Jia JD, Ruehl M, Hahn EG, Riecken EO, Schuppan D. An oral endothelin-A receptor antagonist blocks collagen synthesis and deposition in advanced rat liver fibrosis. *Gastroenterology* 2000; 118: 1169-1178

52 Lichtinghagen R, Huegel O, Seifert T, Haberkorn CI, Michels D, Fleming P, Bahr M, Boeker KH. Expression of matrix metalloproteinase-2 and -9 and their inhibitors in peripheral blood cells of patients with chronic hepatitis C. *Clin Chem* 2000; 46: 183-192

53 Jiang XL, Quan QZ, Sun ZZ, Wang JG. The development of study of calmodulin antagonist in treating liver fibrosis. *Xin Xiaohuabingxue Zazhi* 1995; 3: 161-162

54 Liu XS, Li DX, Lu HM, Xu QF. Effects of tetradebrine and verapamil on fibroblastic growth and proliferation. *Xin Xiaohuabingxue Zazhi* 1997; 5: 82-83

55 Jiang SL, Yao XX, Sun YF. Treatment of liver cirrhosis. *Huaen Xiaohua Zazhi* 2000; 8: 684-686

56 Xu SY, Ling YB, Wang ZL, Qiu WC, Yang HZ. Gan-xian-fang treats post-hepatitis cirrhosis. *Shijie Huaen Xiaohua Zazhi* 1999; 7: 866

57 Li BS, Wang J, Zhen YJ, Wang XG, Sun YH, Wang SQ, Wu ZQ. Blocking effect of Chinese herbs Yiganxian and PHGF on immunomodulated hepatic fibrosis in rats. *Huaen Xiaohua Zazhi* 1998; 6: 786-788

58 Hu YY, Liu C, Liu P, Gu HT, Ji G, Wang XL. Anti-fibrosis and anti-peroxidation of lipid effects of Fuzhenghuayu decoction on rat liver induced by CCI. *Xin Xiaohuabingxue Zazhi* 1997; 5: 485-486

59 Sun KW, Chu YY, Chen X, Xie FY, Liu WS. Experimental Study of Dahuang Zhechong Pill (DHZC) in Treatment of Liver Fibrosis. *Zhongyi Jiehe Gaobing Zazhi* 1997; 7: 90-92

60 Yao XX, Fu YL, Li XL. A multi-central study of the effect of yigan-chong-ji in treating chronic hepatitis of 324 cases. *Hebei Yixueyuan Xichao* 1989; 10: 231-233

61 Cheng ML, Ding YS, Leng XG, Yang J, Luo TY, Luo YF, Tian M, Lu YY, Liu Q, Wu J, Radix Stephaniae Tetrandiae and Radix Salviae Miltiorrhiza. *Zhongyi Zazhi* 1997; 38: 361-362

62 Zhang GL, Gao FA, Li M, Yi XY. The effect of Ruan Gan Yin on erythrocyte superoxide dismutase, plasma lipoeroxide, serum hyaluronic acid and serum laminin in patients with hepatocirrhosis. *Zhongyi Jiehe Gaobing Zazhi* 1996; 6: 8-11

63 Goujis J, Path D, Burroughs AK. Bacterial infection in the pathogenesis of variceal bleeding. *Lancet* 1999; 353: 139-142

64 Jing CC, Fu B, Cheng WF. The forecast and prognosis of 42 cases of patients with liver cirrhosis and esophageal varice bleeding. *Xin Xiaohuabingxue Zazhi* 1995; 3: 243

65 Okuda K, Kono K, Ohnishi K, Kimura K, Omata M, Koen H, Nakajima Y, Musha H, Hirashima T, Takashi M. Clinical study of eighty-six cases of idiopathic portal hypertension and comparison with cirrhosis with splenomegaly. *Gastroenterology* 1984; 86: 600-610

66 D’Amico G, Pagliaro L, Bosch. The treatment of portal hypertension: a meta-analytic review. *Hepatology* 1995; 22: 332-354

67 Bernard B, Grange JD, Khac EN, Amiot X, Opolon P, Peyrou T. Antibiotic prophylaxis for the prevention of bacterial infections in cirrhotic patients with gastrointestinal bleeding: a meta-analysis. *Hepatology* 1999; 26: 1655-1661

68 Goulis J, Armonis A, Patch D, Sabin C, Greenslade L, Burroughs AK. Bacterial infection is independently associated with failure to control bleeding in cirrhotic patients with gastrointestinal hemorrhage. *Hepatology* 1998; 27: 1207-1212

69 Bernard B, Cadranel JF, Valla D, Escalona S, Jarlier V, Opolon P. Prognostic significance of bacterial infection in bleeding cirrhotic patients: a prospective study. *Gastroenterology* 1995; 108: 1828-1834

70 Yao XX. The situation and development of study of liver diseases and upper gastrointestinal bleeding. *Huaen Xiaohua Zazhi* 1998; 6(Suppl 7): 36-38

71 Su L, Pan HZ, Hong MY. The comparison study of knot and sclerosis in treating esophageal varices. *Huaen Xiaohua Zazhi* 1998; 6(Suppl 7): 356

72 Zhou QL, Kou XB, Shen GX, Fu YQ. Ocroticide treating esophageal varice bleeding in patients with liver cirrhosis. *Huaen Xiaohua Zazhi* 1998; 6(Suppl 7): 354

73 Cao F, Li RM. Thrombin treating digestive tract bleeding under endoscopy. *Huaen Xiaohua Zazhi* 1998; 6(Suppl 7): 344

74 Yao XX, Li XT, Li YW, Zhang XY. Clinical and experimental study of radix salviae miltiorrhiza and other Chinese herbs of blood-activating and stasis-eliminating effects on hemodynamics of portal hypertension. *Zhonghua Xiaohua Zazhi* 1998; 18: 24-27

75 Yao XX, Cui DL, Sun YF, Li XT. Clinical and experimental study of effect of Radix Salviae Miltiorrhiza and other blood-activating and stasis-eliminating Chinese herbs on hemodynamics of portal hypertension. *World J Gastroenterol* 1998; 4: 439-442

76 Rivolta R, Maggi A, Cazzaniga M, Castagnone D, Panzeri A, Solenghi D, Lorenzano E, di Palo FQ, Salerno F. Reduction of renal cortical blood flow assessed by Doppler in cir-
rhotic patients with refractory ascites. *Hepatology* 1998; 28: 1235-1240

77 Gong QT, Liu F, Xia KW, Jiang HQ, Yao XX. The effect of paracentesis and intravenous albumin infusion on plasma ANF and RAA system in cirrhotics with ascites. *Xin Xiaohuabingxue Zazhi* 1997; 5: 305-307

78 Han QX, Huang ZM, Lin XY. Treating refractory ascites in patients with liver cirrhosis by emitting ascites and intravenous dextran. *Xin Xiaohuabingxue Zazhi* 1997; 5: 186

79 Bruno S, Borzio M, Romagnoni M, Battezzati PM, Rossi S, Chiesa A, Podda M. Comparison of spontaneous ascites filtration and reinfusion with total paracentesis with intravenous albumin infusion in cirrhotic patients with tense ascites. *BMJ* 1992; 304: 1655-1658

80 Yang H, Li SJ, Zhao JH, Zhang W, Zhang CG. Radionuclide renal dynamic imaging in the diagnosis of subclinical hepatorenal syndrome. *Xin Xiaohuabingxue Zazhi* 1997; 5: 86-87

81 Hua J, Li JQ, Zeng MD, Zhang DR, Dong XX. A study of intestinal flora in patients with cirrhosis. *Zhonghua Ganzangbing Zazhi* 1998; 6: 79-81

82 Perez-Ruiz M, Ros J, Morales-Ruiz M, Navasa M, Colmenero J, Ruiz-del-Arbo L, Cezudo P, Claría J, Rivera F, Arroyo V, Rodes J, Jimenez W. Vascular endothelial growth factor production in peritoneal macrophages of cirrhotic patients: regulation by cytokines and bacterial lipopolysaccharide. *Hepatology* 1999; 29: 1057-1063

83 Sun ZQ, Wang YJ, Quan QZ, Liu XF, Zhang ZJ. The significance of nervous evoked potentials in the diagnosis of subclinical hepatic encephalopathy in patients with liver cirrhosis. *Xin Xiaohuabingxue Zazhi* 1994; 2: 217-218

84 An ZY, Xu DY, Wu HQ. Special complications in liver cirrhosis. *Xin Xiaohuabingxue Zazhi* 1996; 4: 42-43

85 Yang HQ, Huang CY. Forty-eight cases of peptic ulcers in liver cirrhosis and portal hypertension. *Xin Xiaohuabingxue Zazhi* 1994; 2: 119-120

86 Wang Y, Wang HT, Guo XN, Fan N. The endoscopic observations of colonic mucosa in liver cirrhosis and portal hypertension. *Xin Xiaohuabingxue Zazhi* 1994; 2: 48

87 Qiao ZN, Miao JY. Forty cases of hepatopulmonary syndrome. *Xin Xiaohuabingxue Zazhi* 1996; 4: 410

88 Wang AY, Hou PZ, Gao J. The heart damages caused by liver cirrhosis. *Zhonghua Xiaohua Zazhi* 1998; 18: 184

Edited by Chen WW and Wang XL