negatives. We fit a statistical decision tree taking as inputs serial serology measurements and outputting a predicted disease category. Funded in part by the NCI Contract No. HHSN261200800001E. Funded in part by the Mexican Ministry of Health.

Results. As of March 2018, we have 32 subjects in the Zika PCR+ group, 32 in the Dengue PCR+ group, and 68 in the household group. Our decision tree (Figure 1) achieved PPV of at least 90% on all three disease categories, while maintaining sensitivity above 50%. The highest PPV achieved by the kit manufacturer recommended cutoffs while maintaining a sensitivity of at least 10% on Zika PCR+ subjects is 30/114 (26%), and for Dengue PCR+ subjects is 21/30 (70%).

Conclusion. Using serology data in a statistical decision tree improves the PPV exhibited by the kit manufacturer recommendations while still maintaining respectable sensitivity. Physicians in regions with co-circulating flaviviruses should be aware of the pitfalls of using only RT-PCR or using pre-established commercial cutoffs in the serology kits for diagnosis.

Disclosures. All authors: No reported disclosures.

2082. Using a Commercially Available Assay Measuring Cytomegalovirus (CMV)-Specific CD4+ and CD8+ T-Cell Immunity by Intracellular Cytokine Staining to Predict Clinically Significant CMV Events
Ralph Rogers, MD; Zoe Weiss, MD; Dimitrios Farmakiotis, MD, FACP; 1Division of Infectious Diseases, Warren Alpert Medical School of Brown University, Providence, Rhode Island; 2Department of Internal Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island

Session: 233. Diagnostics: Virology Saturday, October 6, 2018: 12:30 PM

Background. Cytomegalovirus (CMV) infection is a common opportunistic infection associated with significant morbidity, mortality, and risk of allograft loss. Early detection of viremia and initiation of treatment prior to disease progression is paramount. Alternatively, in the absence of treatment, many patients also control CMV infection, including low-level viremia, without progressing to disease. Thus, many treatment decisions (e.g., viremia thresholds to initiate treatment) are not currently well-defined. Given the excessive toxicities and costs of antiviral therapy, there is growing interest in assays that measure CMV-specific T-cell immunity (TCI), which may predict protection against infection. The Viracor® CMV T-cell Immunity Panel (CMV-TCIP) uses flow cytometry and intracellular cytokine staining (ICS) to measure % of CMV-specific CD4+ and CD8+ T-cells. Other currently available TCI commercial assays measure only aggregate (CD4+ and CD8+) or CD8+ immune responses only.

Methods. We included patients who had CMV-TCIP results at Rhode Island Hospital (January 2016–February 2018) and who subsequently had at least one additional assessment for CMV viremia. CMV events were defined as rising viremia prompting initiation of treatment and were captured after the most recent CMV-TCIP result. We built CMV-protection relative operating curves (ROC) for % of CD4+ and CD8+ CMV-specific T-cells.

Results. We analyzed 17 samples from 13 patients: 10 were SOT (eight kidney, two heart) recipients (seven CMV+R, three D+R/–); two had hematologic malignancies; one was immunosuppressed (prednisone, infliximab) for autoimmune colitis. Four additional samples were excluded because of CD4+ or CD8+ ICS background positivity. The CMV-protection ROC AUC was significant for % of CMV-specific CD4+ but not CD8+ T-cells (Figure 1). At a cut-off of 0.26% CMV-specific CD4+ T-cells, PPV was 90% (95% CI 71–100%), and NPV was 86% (95% CI 60–100%). In 14 of 17 cases (82%), the CMV-TCIP result was useful in guiding management.

Conclusion. In this small, single-center, heterogeneous series, the % of CMV-specific CD4+ T-cells measured by ICS was predictive of protection against CMV. The CMV-TCIP can be a useful, cost-effective test, and merits further validation in larger prospective studies.

Disclosures. All authors: No reported disclosures.

2083. Rapid Diagnosis and Differentiation of Dengue During Peri-monsoon Season in Tropical Resource Limited Settings
Inam Danish Khan, MBBS, MD, DNB, DHCM, MISCD, MIPHA; Clinical Microbiology and Infectious Diseases, Army College of Medical Sciences and Base Hospital, New Delhi 110010, India, New Delhi, India

Session: 233. Diagnostics: Virology Saturday, October 6, 2018: 12:30 PM

Background. Dengue is a re-emerging public health problem threatening the tropical developing world, mandating rapid diagnosis and supportive management in the absence of licensed vaccines or anti-dengue therapy. Regions endemic for dengue and related viruses are overwhelmed by the sudden surge of cases during outbreaks. It is difficult to justify confirmatory diagnosis of every case using WHO criteria or differentiate it from other concurrent viral illnesses. The study evaluated a rapid, sensitive and specific diagnostic methodology suitable for dengue outbreaks in resource limited facilities.

Methods. One hundred dengue patients as per WHO Criteria as well as 100 healthy controls from New Delhi, India were included. Samples collected on fifth day on onset of fever were tested by lateral flow immunochromatography (LF-ICT), IgM ELISA and reverse transcriptase polymerase chain reaction (RT-PCR), and results were compared. Diagnostic accuracy indices and Kappa analysis were calculated.

Results. The sensitivity, specificity, positive and negative predictive values (PPV and NPV) of NS1 against RT-PCR was 98.31, 100, 100, and 99.3% and strength of agreement was perfect.

Conclusion. Antigen-based and molecular tests are a better tool for early diagnosis of dengue. The combined LF-ICT kits are highly sensitive, specific, user-friendly, compact, frugal and thus recommended for use in dengue outbreaks, fields conditions and as bedside diagnostic tests, for confirmatory dengue diagnosis. Further studies are required to assess their utility in prognosis, surveillance and establishment of guidelines for dengue outbreaks.

Disclosures. All authors: No reported disclosures.

2084. Prospective, Multi-Center Analysis of a BioFire FilmArray Childhood Systemic Infection (CSI) Panel for Detection of Viral Bloodstream Infections in a Pediatric Emergency Department Setting
Neena Kanwar, PhD; Jennifer Dierd Bard, PhD; Amy Leber, PhD; James Dunn, PhD, D(ABMM); Kimberle C. Chapin, MD; Christina A. Rostad, MD; Anne J. Blaschke, MD, PhD, FIDSA, FFIDS; Judy a. Daly, PhD; Leslie A. Hueschen, MD; Matthew Jones, MS; Elizabeth Ott, PhD; Jeffrey Bastar, PhD; and Rangaraj Sevarengan, PhD; Children’s Mercy Hospital, Kansas City, Missouri; 3Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, California; 4Department of Laboratory Medicine, Nationwide Children’s Hospital, Columbus, Ohio, 5Pathology, Texas Children’s Hospital, Houston, Texas

Poster Abstracts • OFID 2018:5 (Suppl 1) • S609
and Laboratory Medicine, Rhode Island Hospital, Providence, Rhode Island, 6Children's Healthcare of Atlanta, Atlanta, Georgia, 7Department of Pediatrics, Division of Pediatric Infectious Diseases, University of Utah School of Medicine, Salt Lake City, Utah, 8Clinical Microbiology, Primary Children's Hospital, Salt Lake City, Utah, 9Children's Mercy Hospital and Clinics, Kansas City, Missouri, BioFire Diagnostics, LLC, Salt Lake City, Utah, 9BioFire Diagnostics, LLC: I have intellectual property licensed

S610 • Poster Abstracts

2086. Perils of CMV PCR Primer/Probe Design: Emergence of Mutations in Clinical Samples from Two Pediatric Patients

Amy Leber, PhD1,2, Douglas Salaman, MB BS1,2; Monica I. Ardura, DO, M Sc3, and Huanyu Wang, PhD2; The Ohio State University, Columbus, Ohio, 3Department of Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio, 4Pedicatries, Infectious Diseases and Immunology, Host Defense Program, The Ohio State University and Nationwide Children's Hospital, Columbus, Ohio

Session: 233. Diagnostics: Virology
Saturday, October 6, 2018: 12:30 PM

Background. Detection of CMV by PCR is the preferred method for both diagnosing infection and monitoring therapy. The design of CMV PCR depends on analysis of all available nucleic acid sequences to maximize performance. We describe two patients in whom our in-house CMV PCR was falsely negative (FN) due to two recently emerged mutations in the DNA polymerase gene.

Methods. In-house CMV PCR targeting a specific 61 bp fragment of the polymerase gene (UL54) has been in use in our lab since 2003. Confirmatory CMV PCR was sent to a reference lab which uses PCR targeting US9 gene.

Results. Case 1: 4 months F with familial hemophagocytic lymphohistiocytosis (FHL) underwent umbilical cord blood transplantation. Plasma CMV was not detected on admission and monitoring was performed weekly. She developed respiratory failure, intubated on D+13 with hemorrhagic respiratory secretions. Repeat PCR of tracheal secretions and plasma detected CMV on D+33, prompting ganciclovir and cytoxan. She developed refractory hypoxemia and asystolic cardiac arrest on D+51 (Figure 1a). Case 2. Thirty-two week F born via C-section for fetal distress noted to have SGA, microcephaly, thrombocytopenia and hyperbilirubinemia at birth, concerning for congenital CMV; urine CMV + (Ct 43.18). Repeat urine and blood PCRs on Day of life were indeterminate. Given initial CMV detection and clinical stigmata, ganciclovir was started. Close analysis in Case 1 of the amplification curve (Figure 1b1) on the 21st sample submitted lead us to question the amplion region and to discover two mutations (C-T) in the probe binding site affecting the sensitivity of UL54 PCR (Figure 1b2). These previous FNs delayed CMV diagnosis and the start of antivirals. For Case 2, the distinct curve was noted on the first sample and was sent for confirmation, resulting in no adverse clinical implications. We subsequently developed a CMV PCR targeting US9 which can detect these mutations.

Conclusion. Periodic assessment of all available CMV sequences and close review of amplification curves are essential to prevent FN PCR. With conflicting laboratory and clinical data, clinicians with a high suspicion for CMV should question negatives and if appropriate, ask for PCR using an alternate target.

Disclosures. All authors: No reported disclosures.

2085. Evaluation of Panther Fusion Flu A/B/RSV, Adv/KMPV/RV and Parafflu Assays for the Detection of Respiratory Viruses in Children

Ferdaus Hassan, PhD; Jordan Crawford, BS; Dithi Banerjee, PhD and Rangaraj Selvarangan, PhD; Children's Mercy, Kansas City, Missouri

Session: 233. Diagnostics: Virology
Saturday, October 6, 2018: 12:30 PM

Background. There are many FDA cleared multiplexed respiratory assays available in the United States, ranging from 3 to 20 targets per assay. FilmArray Respiratory Panel (RP) is one of the mega-multiplexed assay, includes 20 targets and results are available in 1 hour. Recently Holocig has received FDA-clearance for several smaller respiratory "Panther Fusion assays" (3–4 targets/assay) and results are available in <3 hours. The aim of this study was to evaluate the performance of three Panther fusion multiplexed assays: (i) Flu A/B/RSV assay, (ii) adenovirus/human metapneumovirus/rhinovirus assay, and (iii) parafflu (parainfluenza virus 1–4) assay in comparison to RP assay.

Methods. A total of 194 frozen nasopharyngeal swab samples (from 2016 to 2018) obtained from children aged ≤18 years and previously tested by RP as a routine diagnostic test were included in this study. These samples were tested by all three fusion assays. Positive percent agreement (PPA) and negative percent agreement (NPA) of Fusion assays were calculated against RP assay.

Results. Among 194 samples, 38.0% were from male. Median age was 36 months (IQR 13–72 months). Overall agreement between two assays was 82.5% (95% CI 77.6–88.1). PPA and NPA of Fusion assays for each target was: Flu A 100.0% and 100.0%, Flu B 95.0% and 100.0%, RSV 90.1% and 94.0%, adenovirus 80.0% and 98.2%, hMPV 95.2% and 99.4%, Rhino-79.1% and 95.8%, Parainfluenza virus 100.0% and 100.0%. There were total 34 discrepant samples. And if appropriate, ask for PCR using an alternate target.

Disclosures. A. Leber, Nationwide Children's Hospital: Research Contractor, Research support.