Inferred cosmic-ray spectrum from Fermi-LAT γ-ray observations of the Earth’s limb

M. Ackermann,1 M. Ajello,2 A. Albert,3 A. Allafort,3 L. Baldini,4 G. Barbiellini,5,6 D. Bastieri,3,7 K. Bechtol,3 R. Bellazzini,4 R. D. Blandford,3 E. D. Bloom,3 E. Bonamente,9,10 E. Bottacini,3 A. Bouvier,11 T. J. Brandt,12 M. Brigida,13,14 P. Bruehl,15 R. Buehler,1 S. Buson,7,8 G. A. Caliandro,5,16 R. A. Cameron,3 P. A. Caraveo,17 C. Cecchi,9,10 E. Charles,3 R.C.G. Chaves,18 A. Chekhtman,19 J. Chiang,3 G. Chiaro,9 S. Ciprini,20,21 R. Claus,3 J. Cohen-Tanugi,22 J. Conrad,23,24,25,26 S. Cutini,20,21 M. Dalton,27 F. D’Ammando,28 A. de Angelis,29 F. de Palma,13,14 C. D. Dermer,30 S. W. Digel,3 L. Di Venere,13 E. do Couto e Silva,3 P. S. Drell,3 A. Delcata-Wagner,31 C. Favuzzi,13,14 S. J. Fegan,15 E. C. Ferrara,12 W. B. Focke,3 A. Franckowiak,3 Y. Fukazawa,32 S. Funk,3,8 P. Fusco,13,14 F. Gargano,14 D. Gasparetti,20,21 S. Germani,5,10 N. Ghiotti,13,14 F. Giordano,13,14 M. Giroletti,28 T. Glanzman,3 G. Godfrey,3 G. A. Gomez-Vargas,33,34,35 I. A. Grenier,18 J. E. Grove,30 S. Guiriec,12,36 M. Gustafsson,37 D. Hadasch,38 Y. Hanabata,39 A. K. Harding,12 M. Hayashida,39 K. Hayashi,40 J.W. Hewitt,12 D. Horan,15 X. Hou,27 R. E. Hughes,41 Y. Inoue,3 M. S. Jackson,42,24 T. Jogler,3 G. Jóhannesson,43 A. S. Johnson,3 T. Kamae,3 T. Kawano,32 J. Knödlseder,44,45 M. Kuss,4 J. Lande,3 S. Larsson,23,24,26 L. Latronico,47 F. Longo,5,6 F. Loparco,13,14 M. N. Lovellette,30 P. Lubrano,9,10 M. Mayer,1 M. N. Mazziotta,14 J. E. McEnery,12,48 J. Mehlaut,27 P. F. Michelson,3 W. Mitthumsiri,3,49,1 T. Mizuno,50 A. A. Moiseev,51,48 C. Monte,13,14 M. E. Monzani,3 A. Morselli,33 I. V. Moskalenko,3,4 S. Murgia,52 R. Nemmen12,53,54 E. Nuss,22 T. Ohsumi,50 A. Okumura,3,54 M. Orienti,28 E. Orlando,3 J. F. Ormes,55 D. Paneque,56,3 J. H. Panetta,3 J. S. Perkins,12 M. Pesce-Rollins,4 F. Piron,22 G. Pivato,8 T. A. Porter,3 S. Rainò,13,14 R. Rando,7,8 M. Razzano,4,45 S. Razzaque,58 A. Reimer,38,39 O. Reimer,38 S. Ritz,11 M. Roth,59 M. Schaal,60 A. Schulz,1 C. Sgrò,4 E. J. Siskind,61 G. Spandre,4 P. Spinelli,13,14 A. W. Strong,62 H. Takahashi,32 Y. Takeuchi,63 J. G. Thayer,3 J. B. Thayer,3 D. J. Thompson,12 L. Tibaldo,3 M. Tinivella,4 D. F. Torres,64,65 G. Tosti,9,10 E. Troja,12,48 V. Tronconi,8 T. L. Usher,3 J. Vandenbroucke,3 V. Vasileiou,22 G. Vianello,3 V. Vitale,33,66 M. Werner,38 B. L. Winer,41 K. S. Wood,30 M. Wood,3 and Z. Yang,23,24 (Fermi-LAT Collaboration)

1Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany
2Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450, USA
3W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305, USA
4Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa, Italy
5Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste, Italy
6Dipartimento di Fisica, Università di Trieste, I-34127 Trieste, Italy
7Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova, Italy
8Dipartimento di Fisica e Astronomia “G. Galilei”, Università di Padova, I-35131 Padova, Italy
9Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia, Italy
10Dipartimento di Fisica, Università degli Studi di Perugia, I-06123 Perugia, Italy
11Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
12NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
13Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari, Italy
14Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70126 Bari, Italy
15Laboratoire Leprince-Ringuet, École polytechnique, CNRS/IN2P3, Palaiseau, France
16Consorzio Interuniversitario per la Fisica Spaziale (CIFS), I-10133 Torino, Italy
17INFN-Istituto di Astrofisica Spaziale e Fisica Cosmica, I-20133 Milano, Italy
18Laboratoire AIM, CEA-IRFU/CNRS/Université Paris Diderot, Service d’Astrophysique, CEA Saclay, 91191 Gif sur Yvette, France
19Center for Earth Observing and Space Research, College of Science, George Mason University, Fairfax, VA 22030, resident at Naval Research Laboratory, Washington, DC 20375, USA
20Agenzia Spaziale Italiana (ASI) Science Data Center, I-00044 Frascati (Roma), Italy
21Istituto Nazionale di Astrofisica - Osservatorio Astronomico di Roma, I-00040 Monte Porzio Catone (Roma), Italy
22Laboratoire Univers et Particules de Montpellier, Université Montpellier 2, CNRS/IN2P3, Montpellier, France
23Department of Physics, Stockholm University, AlbaNova, SE-106 91 Stockholm, Sweden
24The Oskar Klein Centre for Cosmoparticle Physics, AlbaNova, SE-106 91 Stockholm, Sweden
25Royal Swedish Academy of Sciences Research Fellow, funded by a grant from the K. A. Wallenberg Foundation
Recent accurate measurements of cosmic-ray (CR) species by ATIC-2, CREAM, and PAMELA reveal an unexpected hardening in the proton and He spectra above a few hundred GeV, a gradual softening of the spectra just below a few hundred GeV, and a harder spectrum of He compared to that of protons. These newly-discovered features may offer a clue to the origin of high-energy CRs. We use the Fermi Large Area Telescope observations of the γ-ray emission from the Earth’s limb for an indirect measurement of the local spectrum of CR protons in the energy range ~ 90 GeV–6 TeV.
Introduction. The spectrum of CRs has offered few clues to its origin so far. The generally accepted features are at very-high and ultra-high energies (see, e.g., Figure 1 in [1]): the so-called “knee” at a few thousand TeV [2, 3], the second “knee” at \(\sim 10^8 \) TeV, the “ankle” at higher energies [4], and a spectral steepening above \(10^8 \) TeV [5, 6]. It is believed that CRs below the second knee are Galactic, while extragalactic CRs dominate at higher energies [7, 8].

The data recently collected by three experiments, ATIC-2 [9, 10], CREAM [11, 12], and PAMELA [13], indicate a new feature at relatively low energy: a break (or hardening) of CR proton and He spectra at \(\sim 240 \) GV in rigidity. PAMELA claims to detect the break at 95% confidence level for both species. Below the break, PAMELA data agree very well with the earlier data from AMS-01 [14] and BESS [15]. Above the break, ATIC-2 results agree well with those of CREAM, smoothly connecting to highest energy points from PAMELA. The change in the spectral indices for both protons and He is \(\sim 0.2 \).

However, the break itself is observed only by PAMELA near its high-energy limit. Much evidence of this newly discovered break or flattening comes from a combination of data by several different experiments, which may be subject to cross-calibration errors. A verification of this new feature requires an independent confirmation, preferably with a single instrument. Meanwhile, recent preliminary AMS-02 results do not show any feature in the proton and He spectra up to \(\sim 2 \) TeV and also seem to contradict ATIC-2 and CREAM results. In this paper, we demonstrate that such a measurement can also be done indirectly through observation of the CR-induced \(\gamma \)-ray emission from the Earth’s atmosphere.

Atmospheric \(\gamma \)-ray emission is mainly the result of hadronic CR cascades: CRs entering the atmosphere near grazing incidence produce showers that develop in the forward direction, resulting in a very bright \(\gamma \)-ray signal from the Earth’s limb as seen from orbit. The \(\gamma \)-ray spectrum from CR interactions at the very top of the atmosphere depends only on the inclusive \(\gamma \)-ray production cross section and the spectrum of CR particles. If the cross section is known, the shape of the local CR spectrum can be recovered from the \(\gamma \)-ray spectrum. However, this method can only measure the total spectrum of CRs. To deduce the spectrum of protons, the most abundant component of CRs, one has to assume a spectrum of He, the second most abundant component. The contribution of the latter to the total \(\gamma \)-ray emission is \(\sim 10-20\% \), depending on the energy. Therefore, accurate modeling of the contribution from He interactions is not very critical, and heavier nuclei can be neglected.

Observations of Galactic diffuse \(\gamma \)-ray emission (GDE) have provided valuable information about CR spectra in distant locations [16–20] and in the local interstellar medium [21, 22]. Similarly, observations of the Earth’s limb \(\gamma \)-ray emission can be used to deduce the CR spectrum near the Earth. In contrast with the GDE, the contribution from the inverse Compton scattering of CR electrons to the Earth’s limb emission is negligible. Furthermore, viewed from low-Earth orbit, the limb is orders of magnitude brighter than the GDE. Using the Earth’s emission is, therefore, a simpler way to derive the spectrum of CR nucleons than using the GDE.

The \(\gamma \)-ray emission from the Earth’s limb was first observed by the SAS-2 [23] and EGRET [24] instruments, but these observations were limited in statistics and angular resolution. Fermi-LAT made the first measurement of the Earth’s limb \(\gamma \)-ray emission above 10 GeV [25] and was able to resolve the limb profile to discriminate between the thin and thick target regimes, demonstrating its capability for indirect measurements of the CR spectrum. In this paper we report on the analysis of 5 years of Earth’s limb observations with the Fermi-LAT.

Data and Analysis Method. Fermi was launched in June 2008 and spent the first few weeks calibrating the instruments during the Launch and Early Operations (L&EO) period, during which the LAT was tracking a few well-known bright sources, allowing the Earth’s limb to frequently enter the field of view (FoV). In September 2008, three hours of limb-stare observations were performed. This is the data set used in [25] and part of the data set in the analysis presented here. The additional part of the data set is described as follows.

The spacecraft operates mainly in survey mode, keeping the Earth’s limb far from its boresight as it is a background for other analyses. However, for a small fraction of the operating time, the LAT performs pointed observations by following a celestial target while it is not occulted by the Earth, including while it is near the limb. We select this pointed data set by accepting events when the magnitude of the rocking angle is \(> 52^\circ \), 2\(^\circ\) greater
than that for the normal survey mode, up to August 8, 2013. This rocking angle selection rejects the survey mode data, for which the Earth’s limb photons have large (> 62°) incidence angle.

We avoid the geomagnetic and solar modulation of local CRs near the Earth by considering only γ rays above 15 GeV because they must be produced by CR protons with energies of at least (but mostly much greater than) 15 GeV. The resulting number of Earth’s limb photons above 15 GeV (N ≈ 15 GeV) and the average incidence angles measured from the LAT’s boresight (⟨Θ_{\text{LAT}}⟩) for these datasets are in Table I.

The data are analyzed here in the local nadir coordinates, in which Θ_{\text{Nadir}} is the angle measured from the nadir direction at the location of the LAT. At the LAT’s altitude of ∼ 565 km, the physical limb of the Earth is at Θ_{\text{Nadir}} ≈ 66.7°. However, the peak of the γ-ray emission above 15 GeV is at Θ_{\text{Nadir}} ≈ 68.1°, due to the height of the atmosphere and the effects of γ-ray absorption as discussed in detail in [25]. At Θ_{\text{Nadir}} = 68.4°, the integrated column density for grazing-incidence particles is ∼ 3 g cm⁻² (see Figure 5 in [25]). From this angle outwards, the atmosphere is in the thin-target regime with photons produced from a single interaction, the absorption effects are negligible, and the resulting γ-ray spectrum is determined by the local spectrum of CRs. Thus, Θ_{\text{Nadir}} = 68.4° is the inner edge for the studies presented here. The outer edge of the Earth’s limb is chosen as Θ_{\text{Nadir}} = 70.0° because the emission from celestial sources starts to dominate for larger Θ_{\text{Nadir}} angles.

We use the P7REP reprocessed data (see [26] and FSSC page³ for details) with the P7REP_SOURCE event selection and the associated P7REP_SOURCE_V15 instrument response functions. We apply two additional cuts: Θ_{\text{LAT}} < 70° (reduced incidence angle) to avoid the edge of the FoV, which is prone to systematic uncertainties, and 68.4° < Θ_{\text{Nadir}} < 70° (thin-target regime) to select photons from the Earth’s limb.

The background is estimated from a ring surrounding the Earth’s limb (80° < Θ_{\text{Nadir}} < 90°). The ring immediately surrounding the limb was not used in order to avoid spill-over photons from the limb due to the LAT’s point-spread function (PSF). The background level shown in Figure 1 is small, ranging from ∼ 3% at 15 GeV to ∼ 5% at 500 GeV of the bright limb emission.

For the P7REP data used here, dedicated simulations and flight data comparisons have been performed to validate the LAT responses up to 1 TeV by the LAT Collaboration. Based on these studies, we adopt an effective area (A_{\text{eff}}) uncertainty of 5% at 10 GeV, increasing linearly with the logarithm of energy to 15% at 1 TeV⁴.

We simulate many realizations of the energy dependence of the A_{\text{eff}} which obey the above estimated uncertainty to observe the effect of instrumental systematic error. Specifically, to obtain one realization, we generate 3 random numbers at 10, 100, and 1000 GeV from Gaussian distributions for which the mean is 0 and σ is the value of the uncertainty estimation at the three energy points. Cubic spline interpolation between these points describes the deviation of A_{\text{eff}} from the central value, which would then distort the measured Earth’s limb spectrum in a way consistent with the systematic uncertainties, allowing us to evaluate the propagated uncertainties of the final results. This algorithm to simulate A_{\text{eff}} uncertainties assumes uncorrelated errors for two energy bins that are sufficiently far apart (larger than half a decade in energy), but the interpolation results in highly correlated errors between nearby energy bins (see Section 5.6.2 in [27]).

We also correct for the angular resolution effects on the limb spectrum itself. The dominant effect is contamination by limb photons from Θ_{\text{Nadir}} < 68.4°, where the emission is brighter. The other is the leakage of photons from the limb to each side of the defined boundary. Above 15 GeV, where the LAT’s PSF is narrow (68% containment at ∼ 0.2°) and not strongly energy dependent (see Figure 57 in [27]), these corrections combined decrease the measured intensities by ∼ 35%, depending on energy. The effect on the spectral index is relatively small compared to that from A_{\text{eff}}.

We determined that +2%/-5% uncertainty of the absolute energy scale (described in Section 7.3.4 in [27]) translates into < 10% effects on the absolute normalization of the spectrum, which does not alter the results presented here.

To infer the CR proton spectrum from the γ-ray measurement, we use two pp → γ interaction models, one by Kamae et al. [28] (Kamae model) and the other by Kachelrieß and Ostapchenko [29] (K&O model). For each model, we calculate the γ-ray spectrum by integrating a model of the proton spectrum from ∼ 0.5 GeV to ∼ 500 TeV in kinetic energy.

In our study, we assume that the atmosphere consists of 100% Nitrogen. This does not affect our results because studies of proton-nucleus interactions at high energies (e.g., [30, 31]) show that the pA cross section can be scaled from the pp cross section by applying an energy-independent scaling factor α_A^{0.7}, where A is the atomic number of the nucleus. The precise scaling factor for the atmospheric composition is not important for this analysis because it changes only the normalization of the fitted proton spectrum.

³ http://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Pass7REPusage.html
⁴ http://fermi.gsfc.nasa.gov/ssc/data/analysis/LAT_caveats.html
Observations of the γ-ray emission from the Earth’s limb cannot discriminate between contributions of CR protons and heavier nuclei. Thus, we must rely on the direct measurements of the CR composition. The He fraction in CRs is about 6–10% by number, depending on energy, in our energy range of interest, so its contribution has to be taken into account, while the contribution of the heavier nuclei can be safely neglected. There are a number of empirical parameterizations for nucleus-nucleus meson multiplicity (e.g., Appendix A in [30] and Eq. (3b) in [31]). These formulas give similar values for the ratio of αN to pN cross sections, $\sigma_{\alpha N}/\sigma_{pN} \sim 1.6$. We use this number to scale the pp-interaction models and to calculate the relative contribution of He nuclei to the limb γ-ray emission. Since the contribution of γ rays produced by He is $\sim 10–20\%$ depending on energy, and most of the emission is produced by protons, the αN scaling uncertainty has little influence on the final fit results.

To determine the He spectrum, we fit the combined PAMELA ([13]), CREAM ([12]), and ATIC-2 ([10]) He data above 50 GeV/n (102 GV) with spectral forms described below Equation 1. According to PAMELA measurements [13], the He/p ratio at ~ 90 GeV is 6.2%. We use this value together with the cross section scaling to fix the contribution of He to photon production at 15 GeV to 9.5%. We then forward-fold by varying the parameters of the input proton spectrum so that the resulting γ-ray spectrum calculated from the pp-interaction models provides the best fit to the Earth’s limb measurement. In the fitting procedure, the normal Poisson likelihood function is maximized:

$$L = \prod_{i=1}^{N} P_{\text{Poisson}}(n_i^{\text{obs}}, n_i^{\text{mod}}),$$

where N is the number of energy bins. P_{Poisson} is the Poisson probability of observing n_i^{obs} counts given that the model predicts n_i^{mod} counts (γ-ray model flux \times exposure) for the i^{th} energy bin. We use two models for the local CR proton and He spectra in the fitting procedure:

- SPL: Single power law in rigidity. This model assumes a single power law for CR protons and He. For He, the index 2.73 ± 0.01 is our best-fit value of the combined PAMELA, CREAM, and ATIC-2 data. For protons, we fit both the normalization and index to our measurement of the γ-ray spectrum from the Earth’s limb.

- BPL: Broken power law in rigidity. This model assumes a broken power law for both proton and He spectra. As before, the He spectrum is fixed to the best fit of the combined direct measurements, for which the spectral index changes from 2.82 ± 0.07 to 2.55 ± 0.02 at 247 \pm 44 GV. We then fit the indices, break energy (E_{break}), and normalization for the proton spectrum.

We evaluate the statistical uncertainties of the fit results by fitting a large number of simulated realizations of photon counts generated with a Poisson distribution for which the expected value is the measured count in each energy bin. Likewise, simultaneous simulations of photon counts and ranges of A_{eff}, as previously described, give the total (combined systematic and statistical) errors. We also add in quadrature the 5% absolute energy scale uncertainty to the errors of the fitted energy parameter.

Results. The measured γ-ray thin-target limb spectrum, the background-sky flux (which has already been subtracted from the limb spectrum), and the best-fit γ-ray models are shown in Figure 1. The γ-ray emission from the local H0 is scaled to approximately match that from the Earth’s limb and shown for comparison. As expected, the two agree well above ~ 10 GeV, since they are produced from hadronic interactions by the same local population of CRs in the thin-target regime. Below ~ 10 GeV, the spectra differ due to the geomagnetic and solar modulations of CRs in the vicinity of the Earth, reducing the number of CRs interacting with the Earth’s atmosphere. For this reason we limited our study to limb γ rays above 15 GeV. The approximate proton-to-γ-ray energy conversion factor for the power-law spectrum of protons is 0.17 [32]. The energy range of the inferred proton spectrum is thus ~ 90 GeV–6 TeV.

Using the KE/γ and $Kamae$ models, we obtain the results shown in Table II. The log likelihood for the best-fit BPL is ~ 0.9 better than that for the best-fit SPL. To account for A_{eff} systematic uncertainties, we apply Monte Carlo simulations to translate this likelihood ratio into a significance. By assuming that the best-fit SPL is the

Observation type	Start date	End date	Livetime (days)	Θ_{LAT}	$N_{>15\text{ GeV}}$
L&EO	Jul 15, 2008	Jul 30, 2008	9	44°	967
Limb-stare	Sep 29, 2008	Sep 29, 2008	0.125	31°	18
Pointed (multiple)	Aug 21, 2008	Aug 8, 2013	90	45°	6762

TABLE I. Observation types and durations for this analysis.

5 Work in preparation by the LAT Collaboration.
shows the resulting best-fit SPL and BPL emission from the limb spectrum (circles). The scaled local HI emission\(^5\) (crosses) is shown for comparison. Best-fit results from two CR models based on the K\&O model\([29]\) are also plotted as dotted and dashed lines. Statistical and total (quadrature sum of statistical and systematic) errors are shown as bars and bands, respectively.

![Graph showing γ-ray energy spectra](image)

FIG. 1. The γ-ray energy spectra multiplied by \(E^2 \cdot \gamma\). The background-sky spectrum (triangles) has been subtracted from the limb spectrum (circles). The scaled local HI emission\(^5\) (crosses) is shown for comparison. Best-fit γ-ray results from two CR models based on the K\&O model\([29]\) are also plotted as dotted and dashed lines. Statistical and total (quadrature sum of statistical and systematic) errors are shown as bars and bands, respectively.

TABLE II. Fits from Kamae\([28]\) and K\&O\([29]\) models, shown as value ± total error (statistical error).

Kamae	K\&O	
SPL index	2.67 ± 0.05 (0.03)	2.68 ± 0.04 (0.03)
BPL index 1	2.81 ± 0.10 (0.03)	2.81 ± 0.11 (0.04)
BPL index 2	2.60 ± 0.08 (0.05)	2.61 ± 0.08 (0.06)
BPL \(E_{\text{break}}\)	276 ± 64 (55) GeV	302 ± 96 (62) GeV
BPL vs SPL	1.0 σ	1.0 σ

true underlying flux model, we produce ~ 2000 simulations of \(A_{\text{eff}}\) from the estimated errors as previously discussed, for each of which we generate ~ 1000 simulations of SPL realizations. We then fit the distribution of the log likelihood differences between SPL and BPL for these ~ 2M total simulations with a Gaussian function and evaluate how likely it is that the best-fit BPL we obtain from the actual measurement would give a log likelihood difference of 0.9 or above as compared to the SPL. We find that it corresponds to a significance of 1.0 σ.

We performed several cross checks to test the stability and consistency of the results. We studied the effects of using the event selection with more stringent rejection of residual CRs (\texttt{P7REP_CLEAN}), tighter incidence angle (\(\Theta_{\text{LAT}}\)) cuts, and reasonable variations of the fitted energy ranges (up to 20 GeV lower bound and down to 120 GeV upper bound in γ-ray energy). All of these cases yield consistent results.

Figure 2 shows the resulting best-fit SPL and BPL derived from the K\&O model in comparison with direct measurements, assuming an effective atmospheric column density of \(~1.0\) g cm\(^{-2}\), as described below.

In order to determine the absolute normalization of the inferred proton spectrum, we use the NRLMSISE-00 atmospheric model\([33]\) to calculate the average line-of-sight column density, weighted by γ-ray intensity, in the range studied here (\(\Theta_{\text{Nadir}} = 68.40°–70.00°\)) to be \(1.2\) g cm\(^{-2}\). Due to the exponential change of the atmospheric density with \(\Theta_{\text{Nadir}}\), the evaluated density is extremely sensitive to the lower bound of the \(\Theta_{\text{Nadir}}\) range. We thus empirically adjust the absolute normalization of our inferred proton spectrum to approximately match that of direct measurements as shown in Figure 2 by changing the atmospheric column density from \(1.2\) g cm\(^{-2}\) to \(1.0\) g cm\(^{-2}\). This is equivalent to increasing the lower bound of \(\Theta_{\text{Nadir}}\) from 68.40° to 68.42° when we calculate the atmospheric column density. The small change in the effective lower bound of \(\Theta_{\text{Nadir}}\) by \(\sim 0.02°\) has many potential justifications, such as the LAT altitude variations which smear the precise calculation of the target density, the atmospheric model uncertainties, and other absolute normalization uncertainties as previously discussed. Since our primary interest is in the spectral indices, the difference in normalization is of no importance.

Discussion and Conclusion. Our LAT analysis, which employs a different technique from direct measurements, shows that the CR proton spectrum between \(~90\) GeV–6 TeV can be described equally well (~1 σ) with the SPL and BPL models. The best-fit spectral indices (2.68±0.04 for SPL and 2.61±0.08 above ~ 200 GeV for BPL) are consistent with each other.

We note that our best-fit SPL index is \(~3\) σ from the value (2.801±0.007) reported by PAMELA for a lower energy range (29–79 GeV). However, our best-fit SPL index for \(~90\) GeV–6 TeV is in good agreement with the fitted index for \(~230\) GeV–1 TeV reported by PAMELA\([13]\) and with the measurements at higher energies by ATIC-2\([10]\) and CREAM\([12]\). While Fermi-LAT results cannot confirm or disprove the existence of the spectral break itself yet, they do indicate a flatter proton spectrum at high energies, consistent with direct measurements by ATIC-2 and CREAM.

This result is the first indirect measurement of the proton spectrum in the energy range \(~90\) GeV–6 TeV using observations of the γ-ray emission of the Earth’s limb. Continuing observations with Fermi-LAT will allow us to improve the precision of the measurement of the CR spectrum and extend the energy range.

The Fermi-LAT Collaboration acknowledges support from a number of agencies and institutes for both development and the operation of the LAT as well as scientific data analysis. These include NASA and DOE in the United States, CEA/Irfu and IN2P3/CNRS in France, ASI and INFN in Italy, MEXT, KEK, and JAXA in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the National Space Board in Sweden. Additional support from INAF in Italy and CNES in France for science analysis during the operations phase is gratefully acknowledged. I.V.M. acknowledges support from a number of agencies and institutes for both development and the operation of the LAT as well as scientific data analysis. These include NASA and DOE in the United States, CEA/Irfu and IN2P3/CNRS in France, ASI and INFN in Italy, MEXT, KEK, and JAXA in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the National Space Board in Sweden. Additional support from INAF in Italy and CNES in France for science analysis during the operations phase is gratefully acknowledged. I.V.M. acknowledges support from a number of agencies and institutes for both development and the operation of the LAT as well as scientific data analysis. These include NASA and DOE in the United States, CEA/Irfu and IN2P3/CNRS in France, ASI and INFN in Italy, MEXT, KEK, and JAXA in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the National Space Board in Sweden. Additional support from INAF in Italy and CNES in France for science analysis during the operations phase is gratefully acknowledged. I.V.M. acknowledges support from a number of agencies and institutes for both development and the operation of the LAT as well as scientific data analysis. These include NASA and DOE in the United States, CEA/Irfu and IN2P3/CNRS in France, ASI and INFN in Italy, MEXT, KEK, and JAXA in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the National Space Board in Sweden. Additional support from INAF in Italy and CNES in France for science analysis during the operations phase is gratefully acknowledged. I.V.M. acknowledges support from a number of agencies and institutes for both development and the operation of the LAT as well as scientific data analysis. These include NASA and DOE in the United States, CEA/Irfu and IN2P3/CNRS in France, ASI and INFN in Italy, MEXT, KEK, and JAXA in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the National Space Board in Sweden. Additional support from INAF in Italy and CNES in France for science analysis during the operations phase is gratefully acknowledged. I.V.M. acknowledges support from a number of agencies and institutes for both development and the operation of the LAT as well as scientific data analysis. These include NASA and DOE in the United States, CEA/Irfu and IN2P3/CNRS in France, ASI and INFN in Italy, MEXT, KEK, and JAXA in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the National Space Board in Sweden. Additional support from INAF in Italy and CNES in France for science analysis during the operations phase is gratefully acknowledged. I.V.M. acknowledges support from a number of agencies and institutes for both development and the operation of the LAT as well as scientific data analysis. These include NASA and DOE in the United States, CEA/Irfu and IN2P3/CNRS in France, ASI and INFN in Italy, MEXT, KEK, and JAXA in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the National Space Board in Sweden. Additional support from INAF in Italy and CNES in France for science analysis during the operations phase is gratefully acknowledged. I.V.M. acknowledges support from a number of agencies and institutes for both development and the operation of the LAT as well as scientific data analysis. These include NASA and DOE in the United States, CEA/Irfu and IN2P3/CNRS in France, ASI and INFN in Italy, MEXT, KEK, and JAXA in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the National Space Board in Sweden. Additional support from INAF in Italy and CNES in France for science analysis during the operations phase is gratefully acknowledged. I.V.M.
FIG. 2. Best-fit single power law or SPL (top), and best-fit broken power law or BPL (bottom) spectrum for the local CR proton spectrum (solid red lines) as derived from the Earth’s limb γ-ray data using the K&O model [29] for pp-interactions. The total (combined statistical and systematic, neglecting errors in absolute normalization) uncertainties are the dashed red lines. Other direct measurements ([10],[12],[13],[14],[15]) are shown for comparison. The gray band is PAMELA’s total uncertainty.

edges support from NASA grants NNX11AQ06G and NNX13AC47G.

[1] S. P. Swordy, Space Science Reviews 99, 85 (2001).
[2] G. V. Kulikov and G. B. Khristiansen, Soviet Physics JETP 35, 635 (1958).
[3] A. Haungs, H. Rebel, and M. Roth, Reports on Progress in Physics 66, 1145 (2003).
[4] R. U. Abbasi et al., Physics Letters B 619, 271 (2005), arXiv:astro-ph/0501317.
[5] R. U. Abbasi et al., Astroparticle Physics 32, 53 (2009), arXiv:0904.4500.
[6] J. Abraham et al., Physics Letters B 685, 239 (2010), arXiv:1002.1975.
[7] C. V. Meister, Astronomische Nachrichten 312, 413 (1991), ISSN 1521-3994.
[8] A. W. Strong, I. V. Moskalenko, and V. S. Ptuskin, Annual Review of Nuclear and Particle Science 57, 285 (2007), arXiv:astro-ph/0701517.
[9] J. P. Wefel et al., in International Cosmic Ray Conference (2008), vol. 2 of International Cosmic Ray Conference, pp. 31–34.
[10] A. D. Panov et al., Bulletin of the Russian Academy of Science, Phys. 73, 564 (2009), arXiv:1101.3246.
[11] H. S. Ahn et al., Astrophys. J. 714, L89 (2010), arXiv:1004.1123.
[12] Y. S. Yoon et al., Astrophys. J. 728, 122 (2011), arXiv:1102.2575.
[13] O. Adriani et al., Science 332, 69 (2011), arXiv:1103.4055.
[14] J. Alcaraz et al., Physics Letters B 490, 27 (2000).
[15] S. Haino et al., Physics Letters B 594, 35 (2004), arXiv:astro-ph/0403704.
[16] A. W. Strong, I. V. Moskalenko, and O. Reimer, Astrophys. J. 537, 763 (2000), arXiv:astro-ph/9811296.
[17] A. W. Strong, I. V. Moskalenko, and O. Reimer, Astrophys. J. 613, 962 (2004), arXiv:astro-ph/0406254.
[18] T. A. Porter, I. V. Moskalenko, A. W. Strong, E. Orlando, and L. Bouchet, Astrophys. J. 682, 400 (2008), arXiv:0804.1774.
[19] A. A. Abdo et al., Physical Review Letters 103, 251101 (2009), arXiv:0912.0973.
[20] M. Ackermann et al., Astrophys. J. 750, 3 (2012).
[21] A. A. Abdo et al., Astrophys. J. 703, 1249 (2009), arXiv:0908.1171.
[22] A. A. Abdo et al., Astrophys. J. 710, 133 (2010), arXiv:0912.3618.
[23] D. J. Thompson, G. A. Simpson, and M. E. Ozel, J. Geophys. Res. 86, 1265 (1981).
[24] D. Petry, in High Energy Gamma-Ray Astronomy, edited by F. A. Aharonian, H. J. Völk, and D. Horns (2005), vol.
[25] A. A. Abdo et al., Phys. Rev. D 80, 122004 (2009), arXiv:0912.1868.
[26] J. Bregeon, E. Charles, and M. Wood for the Fermi-LAT Collaboration, ArXiv e-prints (2013), arXiv:1304.5456.
[27] M. Ackermann et al., Astrophys. J.Supplement Series 203, 4 (2012), arXiv:1206.1896.
[28] T. Kamae, N. Karlsson, T. Mizuno, T. Abe, and T. Koi, Astrophys. J. 647, 692 (2006), arXiv:astro-ph/0605581.
[29] M. Kachelrieß and S. Ostapchenko, Phys. Rev. D 86, 043004 (2012), arXiv:1206.4705.
[30] C. D. Orth and A. Buffington, Astrophys. J. 206, 312 (1976).
[31] T. W. Atwater and P. S. Freier, Physical Review Letters 56, 1350 (1986).
[32] S. R. Kelner, F. A. Aharonian, and V. V. Bugayov, Phys. Rev. D 74, 034018 (2006), arXiv:astro-ph/0606058.
[33] J. M. Picone, A. E. Hedin, D. P. Drob, and A. C. Aikin, Journal of Geophysical Research (Space Physics) 107, 1468 (2002).