Pax6 influences expression patterns of genes involved in neurodegeneration

Suman Mishra, Shashank Kumar Maurya, Khushboo Srivastava, Sachin Shukla, Rajnikant Mishra

Biochemistry and Molecular Biology Lab, Department of Zoology, Banaras Hindu University, Varanasi-221005, INDIA

KEY WORDS

Pax6, Human glioblastoma, LDH, SOD, BDNF

ABSTRACT

Background: Pax6, a highly conserved multifunctional transcription factor, has been critical for neurogenesis and neuronal plasticity. It is presumed that if level of Pax6 approaches either low or null, critical genes responsible for maintenance of functional status of neurons or glia would be modulated.

Purpose: Therefore, it has been intended to explore possibility of either direct or indirect influence of Pax6 in neurodegeneration.

Methods: The cell lines having origin of murine embryonic fibroblast (Pax6-non expressing, NIH3T3-cell line), murine neuroblastoma (Pax6-expressing brain-derived, Neuro-2a-cell line), and human glioblastoma-astrocytoma (U87MG) were cultured and maintained in a CO₂ incubator at 37°C and 5% CO₂ in DMEM containing 10% fetal bovine serum. The knockdown of endogenous Pax6 in Neuro-2a cells was achieved through siRNA based gene knock-down approach. The efficiency and validation of knock-down was done by real time PCR. The knock-down of Pax6 was successfully achieved.

Results: The levels of expression of transcripts of some of the proposed putative markers of neurodegeneration like Pax6, S100β, GFaP, BDNF, NGN2, p73δ, p73α, p73β, LDH, SOD, and Catalase were analyzed in Pax6 knockdown condition for analysis of role of Pax6 in neurodegeneration. Since the Pax6 has been proposed to bind to promoter sequences of catalase, and catalase suppresses TGFβ mediated pathways and indirectly with redox-sensitive pathway regulation. The neurodegenerative markers S100β, GFaP, NGN2, p73α, p73β, observed downregulated in Pax6 knockdown condition suggest Pax6-mediated regulation of these markers. Observations enlighten Pax6-mediated influences on cascades of genes involved in growth, differentiation and maturation of neurons and glia.

Conclusion: Presence of BDNF and TGFβ indicates association between them in glioblastoma-astrocytoma. Therefore, Pax6 seems to be involved directly with p53 and TGFβ mediated pathways and indirectly with p73δα, p73δβ, observed isofoms forms may be survival factor for neuronal stem cell. p73δα is essential for neuronal differentiation and maintenance of neural stem cells. p73δβ plays a major role in neuronal survival. The Ng2 is a neuronal basic helix-loop-helix transcription factor which contributes to many distinct neuronal types during CNS development. It is known that ectopic expression of Ng2 is sufficient to induce and promote neuronal differentiation of embryonic stem cells towards the appearance of mature and functional neurons. In the absence of Ng2, both cell cycle progression and neuronal output are significantly affected, leading to an overall reduction of the mature cerebellar volume. In the case of Alzhiemer’s and Parkinson’s diseases, transcription factor Ng2 expressions were significantly decreased. The GFAP constitute intermediate filaments as a part of cytoskeleton in astrocytes. Reactive gliosis is a response of astrocytes to a variety of brain insults that are characterized by hypertrophy of the cell bodies and processes, altered gene expression, increased...
expression of GFAP in some neurodegenerative diseases. GFAP null mice have been demonstrated to be sensitive to spinal cord injury to cerebral ischemia and to neurotoxicity indicating a protective role of GFAP.26,27 The S100β is a low molecular weight Ca2+ binding protein composed of two isomeric subunits found predominantly in astrocytes and Schwann cells. It plays important role in normal CNS development and recovery after injury. At nanomolar concentration, S100β stimulates neuronal outgrowth in cerebral cortex neuron and enhance survival of neurons in various systems during development but at micromolar concentration, S100β may have deleterious effects i.e., it stimulates the expression of pro-inflammatory cytokines and induces apoptosis. In Alzheimer’s, S100β protein levels are significantly increased when β-amyloid interact with S100β and stimulate synthesis of both S100β mRNA and S100β protein in astrocytes cultures. Significant immune response to S100β suggests that it may reflect neurodegenerative brain damage occurring in Parkinson’s disease.28,29 PCNA plays an essential role in nucleic acid metabolism as a component of the replication and repair machinery. It is a 36kDa polypeptide whose expression and synthesis is linked with cell proliferation. In neurodegenerative diseases, presence of cell cycle markers has raised the possibility that aberrant activation of the cell cycle machinery in postmitotic neuron could be lethal and contributes to neurodegeneration. The PCNA has a triple function in life and death of the cells. When not engaged in DNA replication, PCNA under p53 control commits cells to cell cycle arrest and repair of DNA damage, or when repair is not possible, absence or low levels of functional PCNA may drive cells into apoptosis.

It is presumed that Pax6 regulates the neurodegeneration either through regulation of its own transcription or through the regulation of a large no. of targets involved in the maintenance of the neuronal functions. Since Pax6 is the master regulator and regulates the transcription of the genes involved in the neurogenesis and plasticity, we intended here to explore that does Pax6 involve directly or indirectly in neurodegeneration.

Methods

Maintenance of cell-lines

The cell lines having origin of murine embryonic fibroblast (Pax6-non expressing, NIH3T3-cell line), murine neuroblastoma (Pax6-expressing brain-derived, Neuro-2a-cell line), and human glioblastoma-astrocytoma (U87MG) were cultured and maintained in a CO2 incubator at 37°C and 5% CO2 in DMEM containing 10% fetal bovine serum. The knockdown of endogenous Pax6 in Neuro-2a cells was achieved through siRNA based gene knockdown approach. The study was ethically approved by IBSC.

Knockdown of Pax6 by siRNA and analysis of neurodegeneration-associated markers

The siRNA based gene-silencing approach was used to knock down the endogenous transcripts of Pax6 (Pax6-2, Pax6-4, Pax6-5, and Pax6-7). The siRNAs targeting transcripts of Pax6 were procured from Flexi tube Gene Solution (Qiagen Inc., GmbH, Germany), and suspended to yield 10μM stock solution. The Neuro-2a was transfected with Pax6 specific siRNAs and control siRNAs using Human/mouse RNAi starter kit (Qiagen Inc., GmbH, Germany) and Lipofectamine RNAi MAX (Invitrogen, Life Technologies, USA) as per the manufacturer’s instructions. The 5 nM of each of siRNAs/well of the 12-well plate and/or 250 ng per well/6-well plate were observed effective. After 72-hours of Post-transfection or After transfection total RNA was isolated from different sets of siRNA transfected-cells using Pure Link RNA mini kit (Ambion, Life Technologies, USA). One microgram of the total RNA was reverse transcribed into first strand cDNA using first strand cdNA synthesis kit (High capacity cdNA synthesis kit, Applied Biosystems, Life technologies, USA). The levels of putative markers Pax6, PCNA, S100β, GFAP, Ngn2, p73alpha, p73gamma, BDNF, p53, TGF-β, LDH, SOD, and Catalase, under Pax6-knockdown background, were assessed using Maxima SYBR Green qPCR Master Mix (Fermentas, USA) on ABI 7500 Real Time thermal cycler manufacturer details. Following gene specific primer sets were used:

Pax6P dF: 5’GCA GTACGACAACTCAGCAGCCGGAG3’, **Pax6P dR:** 5’CGATGGGCATCTTCTTGG3’, **BDNF dF:** 5’CCAGGTTCGGGC TCACACGG3’, **BDNF dR:** 5’GCCCTGCAAGCTTCCTTG3’, **P53F:** 5’AGA GACCGCGCTACAGGAAGA3’, **P53R:** 5’GATCGGAGCATCTTATCACT3’, **ACTC3:** 5’TACAAACAGACCCG3’, **Tg13F:** 5’TGCTTCACTTTGG3’, **LHDBAMF:** 5’CGGCTCAACTGGTG3’, **LHDBARM:** 5’TAGGC ACTGTCACCACAC3’, **SODF:** 5’TGGGAAAATCAACAAAGGCTCT3’, **SODR:** 5’TITCACCCTTTGGCAAGTAC3’, **CatF:** 5’CCCTCCTGTCCTAG GATGGTTGG3’, **CatR:** 5’CGAGGTTGACCACTTGTGCA3’, **BacTnF:** 5’TGACGGGTTCCACCACACTGTGCCACTCT3’, **BacTnR:** 5’CTA GAAGACATTCGGTGCAAGCMGCCGG3’, **GFAPF:** 5’ACATCGAG ATCGGCCACTTAC3’, **GFAPR:** 5’TCACTACATCGACTCCTTG3’, **PCNF:** 5’GCCAGTATGCCCAGACCTT3’, **PCNR:** 5’CAAGTTGAGGCC TTTTGCGGC3’, **p73αF:** 5’TACAAATGTCCTCACACAC3’, **p73αR:** 5’CATACGGCCAACACCACACT3’, **p73βF:** 5’CAGAGTTGGCTCCCAACA CC3’, **p73βR:** 5’CATACGGGACAACCCACACT3’, **GNN2F:** 5’GTCC CCATACGCTGCAC3’, **GNN2R:** 5’CAGTACACCTGGCCTCGTC3’, **S100βF:** 5’GAGGACGACACGACCACTCTA3’, **S100βR:** 5’CATCC CCTGCTTGTCCT3’.

Results

The observations are important and interesting because they reveal several valuable aspects of understanding neuro-degeneration under Pax6 background. The Pax6, as expected was detected in Pax6 expressing cell-lines, the Neuro-2a and U-87MG cells, but not in NIH3T3 cells (Non-Pax6 expressing cell-line) (Fig. 1A). The levels of expression of putative markers of neurodegeneration S100β, GFAP, BDNF, Ngn2, p73α, p73β, and LDH, SOD, Catalase were detectable in these cell lines (Fig 1B). The siRNA mediated knockdown of Pax6 validated through semi quantitative RT-PCR (Fig. 2A) and real-time-PCR (Fig. 2 B-C) show effective knock-down of Pax6 and modulation in Pax6 and Pax6 (5α) transcript (Fig. 2A-C). The expression pattern and modulation (Table 1) of neuronal-glial degeneration markers in Pax6-knockdown background suggest association of the Pax6 and these neurodegenerative markers.

Expression of Brain-derived neurotrophic factor (BDNF) was observed lower in Pax6-knockdown background. It seems critical because the BDNF has been important for the survival, maintenance and regeneration of specific neuronal population in the adult brain. Its replacement strategies are considered as potential therapeutic strategies for neurodegenerative diseases such as Parkinson’s, Alzheimer’s and Huntington’s diseases.31–33 Lower levels of Pcnα after Pax6- knock-down clearly indicate important association with the Pax6. Being Pcnα being, a nuclear matrix protein, essential for multiple cell cycle pathways, has been associated as triple function in life and death of the cells. When not engaged in DNA replication, Pcnα commits cells to cell cycle arrest and repair of DNA damage, or when repair is
not possible, absence or low levels of functional Ptna may drive
cells into apoptosis.34

Lower levels of Ngn2 indicate deregulation of neuronal growth
and differentiation. The Ngn 2 is necessary for the proper differen-
tiation of excitatory glutamatergic projection neurons in
the cerebral cortex. Proneural transcription factors are thus
critical regulators for both the initiation of neuronal differen-
tiation and the specification of neurons into distinct regional
subtypes.35 The S100β is a β homodimeric protein, expressed
in astrocytes and oligodendrocytes were also observed lower.
Since the S100β is a potent marker of neuro-degeneration and
its down-regulation in the Pax6-null background seems equally
important in association with Pax6 in neuro-degeneration.
Pax6 inhibits the growth and proliferation of astrocytes and
help in the maturation of astrocytes.35 The S100β also plays
neurotrophic role in both development and repair by inhibition
of cell growth either by cooperating with p53 directly or is able
to inhibit its synthesis, resulting in decrease in the rate of cell
proliferation.38 Thus Pax6 seems to regulate the expression of
S100β, and S100β-mediated pathways. Findings are in line of
some reports the loss of TGFβ results in increased microgliosis
and neuro-degeneration. However, its up-regulation influences
silencing of neuro-inflammation.39 The Pax6 regulates cell pro-
liferation, whereas p53 is critical for cell cycle regulation and
cell death. Since, the interaction of Pax6 with p53 indicates
Smad3 dependent auto-regulation,40 this observation indicates
critical Pax6-p53 associated regulation.
Fig. 3: Schematic diagram of Pax6 regulation of different neurodegenerative markers
PCNA = Proliferating Cell Nuclear Antigen
GFAP = Glial Fibrillary Acidic Protein
NGN2 = Neurogenin 2
BDNF = Brain Derived Neurotrophic Factor
TGFβ = Transforming Growth Factor β
SPARC = Secreted Protein Acidic and Rich in Cysteine
SOD = Superoxide Dismutase
LDH = Lactate Dehydrogenase
Pax6 = Paired Box 6

The other two members of the p53 family were also showed lower expression in the Pax6-null background. From the expression analysis of the p53 family genes suggested that Pax6 seems to be involved directly with p53- and TGF-β-mediated pathways and indirectly with redox-sensitive pathway regulation. The other markers like SOD, LDH and Catalase were also found down regulated in Pax6-knockdown background. The levels of expression of SOD, Catalase, and TGF-β were higher in Neuro-2a than in NIH/3T3, whereas Pax6 was exclusive to Neuro-2a cells. The increased levels of SOD and Catalase have been reported in cases of neurodegenerative disorders.41 Down-regulation of Catalase in Pax6-expressing cell-lines shows association between them. Since the catalase suppresses TGF-β, lower level of TGF-β was observed in Neuro-2a and U-87MG. Similarly, there was a progressive lower expression of catalase in Neuro-2a and U-87MG as compared to NIH-3T3. Since the Pax6 has been proposed to bind to promoter sequences of catalase, progressive lower expression of catalase in Neuro-2a and U-87MG as compared to NIH-3T3 indicates a possible progressive dominant negative impact of Pax6. However, presence of SOD

Table 1: Summary of gene expression in Mock and SiRNA mediated Pax6 knockdown background

Gene	Mock	Pax6_2sir	Pax6_4sir	Pax6_5sir	Pax6_7sir
Pax6	+++	-	-	-	-
LDH	++	+	+	+	+
SOD	++	+	+	+	+
CATALASE	+	+	+	+	+
PCNA	+	+	+	+	+
S100β	+++	-	-	-	-
GFAP	+	-	-	-	-
BDNF	++	-	-	-	-
Ngn2	+	-	-	-	-
p73α	++	+	+	+	+
p73β	++	+	+	+	+
β-actin	+++	+++	+++	+++	+++
and LDH indicates alternative protective mechanism. Almost similar expression patterns of BDNF and TGFβ indicate similar associated expression in glioblastoma-astrocytoma.

Discussion

As neurodegenerative markers show altered expression with knockdown of different isoforms of Pax6, it clearly indicates that Pax6 critically regulates expression of neurodegenerative gene-expression (Fig. 3). Observations indicate that Pax6 influences process of neuro-degeneration through all cascades of genes involved in growth, differentiation and maturation of neurons and glia. The functional analysis of Pax6 and its isoforms could be useful for exploring cascades and mechanisms of functions of Pax6-associated neuro-degenerative markers in differential diagnosis and managements of neuro-logical problems. The neurodegenerative markers S100β, GFAP, BDNF, Ngn2, p73α, p73β, were observed down-regulated in Pax6 knockdown condition. The Pax6 seems influencing process of neuro-degeneration through cascades of genes involved in growth, differentiation and maturation of neurons and glia. It may be associated directly with p53 and TGFβ-mediated pathways and indirectly with redox-sensitive pathway regulation. The functional analysis of Pax6-associated neuro-degenerative markers would be helpful in differential diagnosis and managements of neurological problems. It could be investigated that which isoform of Pax6 is responsible for normal functioning/expression of particular neurodegenerative marker that will help in the diagnosis of neurological problems.

Authorship Contribution

Rajnikant Mishra: Planned experiments and mentored the progress of experiments, from initiation to completion of manuscript, Sachin Shukla: Initiated the work and did qPCR experiments following transfection, Khushboo Srivastava: Repeated transfection experiments and isolated RNA and prepared cDNA, Shashank Kumar Maurya and Shuman Mishra: Equally contributed for RT-PCR based experiments, compiled data and wrote their part of explanations

Acknowledgement

Financial support from the DBT (BT/PR4547/10/1037/2012) is gratefully acknowledged. We are thankful to DBT-ISLS-BHU andUGC-UPE for providing real-time PCR facilities.

This article complies with International Committee of Medical Journal editor’s uniform requirements for manuscript.

Conflict of interest: None; Funding: None.

Received Date: 13 January 2015; Revised Date: 6 February 2015; Accepted Date: 10 March 2015

References

1. Uttara B, Singh AV, Zamboni P et al. Oxidative Stress and Neurodegenerative Diseases: A Review of Upstream and Downstream Antioxidant Therapeutic Options. Curr.Neuropharmacol.2009; 7(1): 65–74.
2. Duncan MK, Haynes J, Cveklova K et al. Dual roles for Pax-6: A transcriptional repressor of lens fiber cell-specific beta-crystallin genes. Mol. Cell.Biol.1998; 18: 5579–5586.
3. Yang Y, Chauhan BK, Cveklova K et al. Transcriptional regulation of mouse alphaB- and gamma-crystallin genes in lens: opposite promoter-specific interactions between Pax6 and large Maf transcription factors. J. Mol. Biol. 2004; 344: 351–368.
4. Oron-KarniV, Farhy C, Elgart M et al. Dual requirement for Pax6 in retinal progenitor cells. Development 2008;135: 4037–4047.
5. Glaser T, Jepeal L, Edwards JG et al. Pax6 gene dosage effect in a family with congenital cataracts, aniridia, anophthalmia and central nervous system defects. Nat.Genet.1994; 7:463–471.
6. Mitchell TN, Free SL, Williamson KA et al. Polymicrogyria and absence of pinal gland due to Pax6 mutation. Ann. Neurol. 2003; 53:658–663.
7. Heyman I, Frampton I, vanHv et al. Psychiatric disorder and cognitive function in a family with an inherited novel mutation of the developmental control gene Pax6. Psychiatr.Genet. 1999; 9:85–90.
8. Sisodiya SM, Free SL, Williamson KA et al. Pax6 haploinsufficiency causes cerebral malformation and olfactory dysfunction in humans. Nat. Genet.2001; 28: 214–216.
9. Nfonsam LE, Cano C, Mudge J et al. Analysis of the Transcriptomes Downstream of Eyeless and the Hedgehog, Decapentaplegic and Notch Signaling Pathways in Drosophila melanogaster. PLoS One. 2012; 7: e44535.
10. Hooker L, Smoczer C, Khosrowshahian F et al. Microarray-based identification of Ptx3 targets during Xenopus embryogenesis. Dev. Dyn. 2012; 241: 1487–1505.
11. Jiang X, Norman M, Li X. Use of an array technology for profiling and comparing transcription factors activated by TNFalpha and PMA in HeLa cells. Biochim. Biophys. Acta 2003;1642: 1–8.
12. Chauhan BK, Zhang W, Cveklova K et al. Identification of differentially expressed genes in mouse heterozygous lenses. Invest Ophthalmol. Vis. Sci. 2002; 43: 1884–1890.
13. Van H, V, Williamson KA. Pax6 in sensory development. Hum. Mol. Genet.2002; 11: 1161–1167.
14. Ahlstqvist E, Turrini F, Lang ST et al. A common variant upstream of the Pax6 gene influences islet function in man. Diabetologia 2012; 55: 94–104.
15. Gao J, Wang J, Wang Y et al. Regulation of Pax6 by CTCF during induction of mouse ES cell differentiation. PLoS One. 2011; 6: e20954.
16. Liu RZ, Monckton EA, Godbout R. Regulation of the FABP7 gene by Pax6 in malignant glioma cells. Biochem. Biophys. Res. Commun. 2012; 422: 482–487.
17. Li T, Lu Z, Lu L. Pax6 regulation in retinal cells by CCCTC binding factor. Invest Ophthalmol. Vis. Sci. 2006; 47, 5218–5226.
18. Mazur MA, Winkler M, Ganic E et al. Microphthalmia transcription factor (MifT) regulates pancreatic beta cell function. Diabetes 2013;62(8):2834–42.
19. ShahamO. Gueta K, Mor E et al. Pax6 regulates gene expression in the vertebral plate through miR-204. PLoS Genet. 2013; 9: e1003357.
20. Theonen H. Neurotrophins and neuronal plasticity. Science 1995; 270:593–8.
21. Enciu AM, Nicoliscu MI, Manole CG, et al. (2011) Neuroregeneration in neurodegenerative disorders BMC Neurology 2011;11:273–277.
22. Killick R, Niklison-Chirou M, Tomasini R et al. p73α: a multifunctional protein in neurobiology. Mol Neurobiol.2011; 43(2):139–46.
23. Thoma EC, Wismeyer E, Offen N, et al. Ectopic Expression of Neurogenin 2 Alone is Sufficient to Induce Differentiation of Embryonic Stem Cells into Mature Neurons. Plos One 2012; 7(6): 0038651.
24. Florio M, Muzio LK, Badaloni TA et al. Neurogenin 2 regulates progenitor cell-cycle progression and Purkinje cell dendritogenesis in cerebellar development 2012; 13:2308–20.
25. Berti L and Khan MA. (2009) Alzheimer’s disease Affects Progenitor Cells through Aberrant -Catenin Signaling. The Journal of Neuroscience 2009; 29(40):12369 –12371.
26. Kamphuis W, Mambet C, Moeten M et al. (2012) GFAP Isoforms in Adult Mouse Brain with a Focus on Neurogenic Astrocytes and Reactive Astroglisis in Mouse Models of Alzheimer Disease PLOS ONE 2012;7(8): e208223.
27. Petzold A. Glial fibrillary acidic protein is a body fluid biomarker for glial pathology in human disease, Brain Research 2015; 1600:17–31.
28. Yardan T, Erenler AK, Baydin A. Usefulness of S100B Protein in Neurological Disorders. J. Pak. Med. Assoc. 2011;61(3):276–81.
29. Casola C, Schiwek EJ, Reinehr S et al. S100 Alone Has the Same Destructive Effect on Retinal Ganglion Cells as in Combination with HSP 27 in an Autoimmune Glaucoma Model, Journal of Molecular Neuroscience 2015; 10.1007/s12031-014-0485-2

ANNALS OF NEUROSCIENCES VOLUME 22 NUMBER 4 OCTOBER 2015 www.annalsofneurosciences.org
30. Santagata D, Fulga TA, Duttaroy A et al. Oxidative stress mediates tau-induced neurodegeneration in Drosophila. J Clin Invest. 2007; 117(1):236–245.
31. Allen SJ, Watson JJ, Shoemark DK et al. GDNF, NGF and BDNF as therapeutic options for neurodegeneration, PharmacolTher. 2013; 138(2):155–75.
32. Han JC, Thurm A, Golden Williams C et al. Association of brain-derived neurotrophic factor (BDNF) haploinsufficiency with lower adaptive behaviour and reduced cognitive functioning in WAGR/11p13 deletion syndrome. Cortex 2013; doi:pii: S0010-9452(13)00047-6. 10.1016/j.cortex.2013.02.009.
33. Rodríguez-López R, Pérez JM, Balsera AM et al. The modifier effect of the BDNF gene in the phenotype of the WAGRO syndrome. Gene. 2013; 10;516(2): 285–90.
34. Gehring WJ. The master control gene for morphogenesis and evolution of the eye. Genes Cells 1996; 1:11–15.4.
35. Ericson J, Rashbass P, Schedl A, et al. Pax6 controls progenitor cell identity and neuronal fate in response to graded Shh signaling. Cell: 1997; 90,169–180.
36. Steiner J, Bogerts B, Schroeter ML et al. S100β protein in neurodegenerative disorders, ClinChem Lab Med: 2011; 49(3): 409–424.
37. Sakurai Kand Osumi N. The Neurogenesis-Controlling Factor, Pax6, Inhibits Proliferation and Promotes Maturation in Murine Astrocytes-The Journal of Neuroscience 2008; 28(18):4604–4612.
38. Aktas S, Comelekoglu U, Yilmaz SN, et al. Electrophysiological, biochemical and ultrastructural effects of radiotherapy on normal rat sciatic nerve. Int J Radiat Biol. 2013; 89(3):155–61.
39. Spittau B, Wulkopf L, Zhou X, et al. Endogenous transforming growth factor-beta promotes quiescence of primary microglia in vitro. Glia. 2013; 61(2):287–300.
40. Tripathi R, Mishra R. Interaction of Pax6 with SPARC and p53 in brain of mice indicates Smad3 dependent auto-regulation. J MolNeurosci. 2010; 41(3):397–403.
41. Iglesias-González J, Sánchez-Iglesias S, Méndez-Álvarez E, et al. Differential toxicity of 6-hydroxydopamine in SH-SYSY human neuroblastoma cells and rat brain mitochondria: protective role of catalase and superoxide dismutase, Neurochem Res. 2012; 37(10):2150–60.