The Effects of Three Traditional Smoking Methods on the Concentrations of Polycyclic Aromatic Hydrocarbons (PAHS) in Smoked Fishes

Aderinola Oluwatoyin Joseph a*, A. A. Adu b, O. O. Babalola a, V. Kusemiju a and G. O. Mekuleyi c

a Department of Zoology and Environmental Biology, Faculty of Science, Lagos State University, Nigeria.
b Department of Botany, Faculty of Science, Lagos State University, Nigeria.
c Department of Fisheries, Faculty of Science, Lagos State University, Nigeria.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

ABSTRACT

The effects of three traditional smoking methods on the concentrations of Polycyclic Aromatic Hydrocarbons (PAHs) in smoked fishes were studied to determine the concentration of PAHs in locally available and commonly consumed smoked fish species. Samples of two highly traded species of fish, Scomber scombrus and Horse markerel, among the low income people for immediate consumption were purchased from the market and processed using sawdust smoke, firewood smoke and charcoal smoke respectively. Some of the fresh fishes were also analyzed as control. The PAHs content were extracted with standard dichloromethane using solid-liquid extraction, and analyzed using Gas chromatography – Mass spectrophotometer (GC-MS) method. The results showed that fish samples processed with sawdust smoke recorded the highest concentrations of total PAHs, having 1.295 mg/kg in Horse markerel and 2.020 mg/kg in Scomber scombrus, followed by firewood smoked samples with total PAHs content of 0.910mg/kg in Horse markerel and 1.175 g/kg in Scomber scombrus while charcoal smoked samples recorded the least
total PAHs levels of 0.590 mg/kg in Horse mackerel and 0.960 mg/kg in Scomber scombrus. Benzo(a)pyrene concentrations which is usually used to estimate the carcinogenicity of other PAHs was below detection level in both species of fish. PAH4 was proposed by European food safety authority, recommendation level of 30 mg/kg was concluded by the EU regulation. Any PAHs have been associated with intense carcinogenicity in humans, and thus have implication for the quality and safety of these fish products. Therefore, it is imperative that regulatory bodies conduct awareness campaigns to educate the smoked fish processors, traders and consumers on the need to discourage the use of sawdust in smoking fish and adopt safer and improved methods of smoking fishes.

Keywords: PAH; Scomber scombrus; Horse mackerel; sawdust smoke; firewood smoke and charcoal smoke; carcinogenicity.

1. INTRODUCTION

Polycyclic aromatic hydrocarbons (PAHs) are an important group of compounds of major environmental concern. There are several possible sources of PAHs in the environment, anthropogenic activities are, however, considered major sources of PAHs in the environment. Among the anthropogenic sources, petrogenic and pyrolytic sources are considered to be the most important.

PAHs typically disperse from urban and sub-urban-noun-point sources through road run-off, sewage, and atmospheric circulation and subsequent deposition of particulate air pollution [1]. Soil and river sediment near industrial sites such as creosote manufacturing facilities can be highly contaminated with PAHs. Oil spills, creosote, coal mining dust, and other fossil fuel sources can also distribute PAHs in the environment.

More than 100 PAHs have been characterized, 16 of which were classified by United States Environmental Protection Agency (USEPA) as priority pollutants because of their toxicity [2]. They include: Naphthalene, Acenaphthylene, Benzo[B]Fluoranthene, Phenanthrene, Dibenzo[A,H]Anthracene, Chrysene, Benzo [A] Pyrene, Acenaphthene, Benzo[K]Fluoranthene, Fluorene, Pyrene, Benzo[A]Anthracene, Anthracene, Fluoranthene, Indeno[1,2,3-Cd]Pyrene, And Benzo[G,H,I]Perylene [3,2].

PAHs have been reported to be highly mutagenic and carcinogenic in humans [4]. Dietary exposures are the major source of human exposure to PAHs. PAHs are found in food as a result of food processing techniques like curing, drying, smoking, roasting, grilling, barbecuing and refining. These food pis smoked fish [5]. In developing countries, smoked fish is a common source of protein in most diets, smoke not only gives the fish special taste and aroma, it also improves preservation due to its dehydrating and bactericidal properties [6]. However, smoke especially wood smoke contains PAHs, many of which are carcinogenic [7]. In developing countries, smoking is the most common method employed in preserving fish. In Nigeria, smoked fish products constitute about 61% of the total 194,000 mT of dry fish produced. Smoked fish products are the most available form of fish product for consumption, which could be attributed to the fact that most of the fishing communities have limited access to electricity to preserve their fish products. This has however increased the risk of PAHs contamination through consumption. Food Safety is of growing concern globally and PAHs residues if present in smoked fish above recommended levels could pose serious public health concerns [8]. Previous studies have shown the presence of PAHs in smoked fishes; however, studies on human health risk associated with consuming smoked fish are rather scanty [9]. Especially for reported studies from Nigeria. Processing steps are known to generate and increase the level of PAHs in the food [10]. One significant food source of PAHs

1.1 Objectives

The objective of this study is to determine the concentration of PAHs in locally available and commonly consumed smoked fish species (Horse mackerel and Scomber scombrus) from markets in South western Nigeria, in order to assess possible human health risks associated with consumption

2. MATERIALS AND METHODS

2.1 Sample Collection

The fishes are collected from a cold room at Iyana Iba market, Lagos located at the south
Transportation of refrigerator at 4°C prior to transportation. Fractions were stored in a refrigerator. A 2 ml portion of the homogenate was saponified with 200 ml methanol/KOH (12% KOH) solution in an ultrasonic bath at 60°C, for 30 min. The sample was cooled and filtered through glass cool into separating funnel. The filtrate was extracted twice with 100 ml hexane. The extract was washed with methanol/water (4:1) mixture, and then concentrated to 1 ml with a rotary evaporator. The concentrate was fractionated through a silica gel column, first eluted with 10 ml hexane to collect the aliphatic hydrocarbon fraction, and then with 15 ml methylene chloride to collect the aromatic hydrocarbon fraction. Both fractions were concentrated to 1 ml and stored capped in GC vials.

2.2 Collection and Transportation of Experimental Fish

The table size fishes of Scomber Scombus and Horse markerel popularly known as Titus and Kote respectively were obtained from a cold room in Lagos metropolis. The fishes were transported using a cooler with ice (Close transportation system) to the fish hatchery of Department of Fisheries where the smoking was carried out.

Experimental site The Fishes were smoked in the Fish Hatchery of the Department of Fisheries, Lagos State University (LASU) Lagos Nigeria (latitude 074°28′1.20" N 3°10′58.80" East) (with annual mean temperature at 30°C) and was sent to Nigeria Institute for Oceanography and Marine Research (NIOMR) Lagos, Nigeria for PAHs Analysis.

2.3 Fish Preparation and Smoking

Fish preparation and smoking Scomber Scombus and Horse Markerel used in this study were weighed. Their length was taken using a ruler. The fish were properly washed with brine solution degutted and placed on metal meshed trays. Traditional method of smoking was adopted in this study by using smoking klin. Wind whisler, sawdust and charcoal were used for smoking at interval. Fire was obtained by striking matches on the materials to be used as fuel. Time interval of 20 minutes was allowed for the fire to stabilize before the meshed trays were placed on the drums. And then fire was reduced to increase quantity of smoke. The smoking drum was locked to trap the smokes inside and have maximum effect. It took 2 hour 30 minutes for the fish to get dried, and then the smoked fishes were stored in a refrigerator at 4°C prior extraction and analysis.

2.4 Extraction and Fractionation of Fish Samples

The fish sample was homogenized with a blender. A 2 g portion of the homogenate saponified with 200 ml methanol/KOH (12% KOH) solution degutted and placed on metal meshed trays. Traditional method of smoking was adopted in this study by us.

The extract was passed through silica gel column (DB 5 MS (30 m x0.25 mm x 0.5 μm) which had been pre-conditioned with hexane. The extract was eluted with 20 cm³ of hexane for aliphatic fractions. To some column, 20 cm³ dichloromethane was added for the elution of PAHs and the eluent was concentrated to 1 cm³ and solvent exchanged with 1 cm³ of actonitrile. 1 μL of the extract was injected into a pre-programmed GC vials (HP 6890A). The concentration of the PAHs was calculated from the peak area of the calibration standards. 1 μL of each of the fractions was injected into the GC, set-up for the quantification of PAHs and the petroleum hydrocarbons [11,12].

2.5 GC Operating Conditions for PAHs

Initial oven temp-400°C; Initial hold time-2 min; Ramp – 12o C/min 40 to 3000C at 12oC/min to 300°C for 10 min; Final oven temp- 300°C; Detector temp- FID 3500 C; Injector temp- 350o C Carrier gas- Hydrogen, 4 ml/min; constant flow; Injection volume-1μL, splitless, (hold 2 min) All the data were log transformed to get normal distribution. One Way Analysis of Variance (ANOVA) was performed to assess the variation among species. Means were compared using the Bonferroni multiple comparison test. All the calculations were done using statistical software, IBM, SPSS version 23.
3. RESULTS

3.1 Concentrations of Individual PAHs in *Scomber scombrus*

Table 3 shows the mean concentrations of the individual PAHs in *Scomber scombrus* processed by the different smoking methods. The results revealed that most of the individual PAHs were recorded in the samples processed using saw dust smoke. However, the samples processed with sawdust smoke recorded the highest mean level of almost all the PAHs, the level recorded for anthracene (0.260±0.000) and Benzo (a) anthracene (0.395±0.148). This suggests that smoke is the major contributor of the PAHs contamination in the processed fishes.

3.2 Concentrations of Individual PAHs in *Horse markerel*

Table 3 shows the concentration of the individual PAHs recorded in *Horse markerel*. The trend of the PAHs contamination also revealed that most of the PAHs were recorded in the samples processed using saw dust and firewood with the highest PAH found in anthracene (0.175±0.92) and benzo(a)anthracene (0.235±0.092) respectively. Samples smoked using charcoal and firewood has no record of acenaphtylene (0.000±0.0000). The results also showed that benzo(a)pyrene was not detected in any of the processed using all the smoking methods except firewood with mean concentration of 0.005±0.007.

3.3 Concentrations of Total PAHs in the Fishes

The results in Table show that the concentrations of total PAHs in samples all the samples were 3.315 mg/kg, 2.085mg/kg, and 1.550 mg/kg respectively for the saw dust, firewood and charcoal Smoked samples.

In the *Scomber scombrus* samples, the concentrations of total PAHs were: 2.020 mg/kg sawdust smoked, 1.175 mg/kg firewood smoked, and 0.960mg/kg charcoal smoked.

The *Horse markerel* recorded total PAHs levels of 1.295 mg/kg in the saw dust smoked sample, 0.910 mg/kg inthe firewood smoked, and 0.590 g/kg in the charcoal smoked samples.

3.4 Concentration of Individual PAH in the Smoked Fishes

With regards to the various method of smoking, Naphtalene is found to be highest in *Scomber scombrus* smoked with sawdust 0.155 mg/kg , then 0.045mg/kg found in horse markerel smoked in firewood and lowest in *Scomber scombrus* smoked with charcoal 0.025mg/kg (Table 3).

Acsnapthene was found to be highest in *Scomber scombrus* smoked with sawdust 0.215mg/kg, followed by *Scomber scombrus* smoked with charcoal 0.130 mg/kg and lowest in horse markerel as it was fairly below detection limit across all the biofuels used. (Table 3). Flourene recorded highest in *Scomber scombrus* 0.230 mg/kg smoked with sawdust, 0.155 mg/kg was found in *Scomber scombrus* smoked with firewood and the lowest in *Horse markerel* 0.045 mg/kg smoked with charcoal (Table 3).

Acsnapthene was highest in *Horse markerel* smoked with sawdust 0.170mg/kg followed by firewood smoked horse markerel 0.125mg/kg, *Scomber scombrus* was smoked with charcoal have no trace of acenapthene but were found in sawdust 0.140 mg/kg and firewood 0.075 mg/kg. (Table 3) Phenethrene recorded highest in sawdust smokes *Scomber scombrus* 0.210 mg/kg, then 0.140 mg/kg in *scomber scombrus* smoked with charcoal, the least was found in charcoal smoked *Horse markerel* with value of 0.035 mg/kg. (Table 3) Anthracene has highest in sawdust smoked *Scomber scombrus* with value as high as 0.260 mg/kg, then closely by firewood smoked *Scomber scombrus*, with 0.245 mg/kg and found least in charcoal smoked *Horse markerel* 0.090 mg/kg. (Table 3) Anthracene was untraceable in the control. (Table 3) Flourathene has 0.150 mg/kg in sawdust smoked sawdust, 0.140 in sawdust smoked *Horse markerel* and untraceable in *Scomber scombrus* charcoal smoked. (Table 3) Pyrene found in sawdust smoked scomber scombrus recorded the highest level of pyrene, 0.195 mg/kg , followed by 0.170 mg/kg in sawdust smoked *Scomber scombrus* and least in charcoal smoked *Scomber scombrus* as shown in Table 3) Benzo (a) anthracene as outlined by Table 3, shows 0.395 mg/kg in sawdust smoked Scomber scombrus, this is also the highest single PAH level for all the parameters considered, 0.235 mg/kg was found in sawdust smoked *Horse markerel* and least value was found in (0.065 mg/kg) charcoaled smoked *Horse markerel*. Chyresene, highest
Table 1. Total concentration of PAHs in *Scomber scombrus*

	Raw	Charcoal smoked	Sawdust smoked	Firewood smoked
Total PAHs conc. mg/kg	0.230±0.183	0.960±0.396	2.020±0.946	1.175±0.445

Table 2. Total concentration of PAHs in *Horse mackerel*

	Raw	Charcoal smoked	Sawdust smoked	Firewood smoked
Total PAHs conc. mg/kg	0.185±0.218	0.590±0.337	1.295±0.785	0.910±0.495
Parameters (mg/kg)	Raw Fish Fish Species	Charcoal Smoked Fish Species	Sawdust Smoked Fish Species	Firewood Smoked Fish Species
-------------------	-----------------------	------------------------------	------------------------------	----------------------------
	Scomber Scombrus	Horse Markerel	Scomber Scombrus	Horse Markerel
Naphthalene	0.000±0.000	0.030±0.042	0.025±0.035	0.030±0.042
Acenaphinylene	0.040±0.057	0.000±0.000	0.130±0.071	0.000±0.000
Fluorene	0.050±0.000	0.020±0.028	0.135±0.035	0.045±0.007
Acenaph'tene	0.040±0.028	0.065±0.064	0.000±0.000	0.085±0.021
Phenan	0.000±0.000	0.000±0.000	0.140±0.071	0.035±0.035
Anthracene	0.000±0.000	0.000±0.000	0.200±0.000	0.028±0.090
Fluoranth	0.000±0.000	0.000±0.000	0.000±0.000	0.055±0.049
Pyrene	0.035±0.035	0.040±0.042	0.055±0.035	0.105±0.021
Benzo(a)anthracene	0.000±0.000	0.000±0.000	0.160±0.057	0.065±0.035
Chrysene	0.050±0.042	0.000±0.000	0.105±0.078	0.000±0.000
Benzo(a)pyrene	0.000±0.000	0.000±0.000	0.000±0.000	0.000±0.000
Indeno(1,2,3-cd)pyrene	0.005±0.007	0.005±0.007	0.000±0.000	0.000±0.000
Dibeno()anthracer	0.005±0.007	0.010±0.014	0.000±0.000	0.030±0.028
Benz(g,h,i)parylene	0.005±0.007	0.015±0.021	0.010±0.014	0.050±0.071
Total mean conc. (mg/kg)	0.23±0.183	0.185±0.218	0.960±0.396	0.390±0.337
singular value was found in charcoal smoked *Scomber scombrus*, 0.105 mg/kg, followed by 0.080mg/kg in sawdust smoked *Scomber scombrus*, and below untraceable limit in *Horse markerel* irrespective of the biofuel used, shown in Table 3) Benzo (a) pyrene is absent from both species of fishes used. Table 3) Indeno(1,2,3-cd) pyrene was found only in firewood smoked *Horse markerel*, 0.005 mg/kg. (Table 3) Dibenzo anthracene, highest was found in sawdust smoked *Horse markerel* (0.080 mg/kg), followed by 0.030 mg/kg in charcoal smoked *Horse markerel*. It is below traceable limit in scomber scombrus. (Table 3) Benz (g,h,i) parylene in Table 3) shows that, sawdust smoked *Horse markerel* has the highest level (0.100 mg/kg), followed by 0.050 mg/kg in charcoal smoked *Horse markerel*. The lowest value is found in both charcoal smoked *Scomber scombrus* and *Horse markerel*, firewood smoked, with the same similar value of 0.010 mg/kg.

4. DISCUSSION AND CONCLUSION

4.1 Concentrations of Individual PAHs in the Dried Fishes

Most of the individual PAHs were recorded in the smoke-dried fishes processed using saw dust and firewood smoke respectively. This may be attributed to the longer drying times as a result of the less heat and high smoke produced by saw dust and firewood leading to prolonged fish contact with the smoke, being the major source of the PAHs contamination.

Generally, all the fish samples processed using charcoal smoke recorded less PAHs. This may be due to the short drying time as a result of the high heat and less smoke produced by the charcoal. In a similar study, [13] Silva et al. (2011) also observed that at high temperatures, less smoke was produced and at lower temperatures, more smoke was produced during the smoking process.

This suggests that smoke is actually the major source of PAHs contamination in the smoked fishes.

4.2 Concentrations of Total PAHs in the Smoked Fishes

The results of concentrations of total PAHs in the smoked fishes presented in Table 1 revealed that all the samples dried using saw dust smoke recorded the highest levels varying between 1.295mg/kg to 2.020mg/kg followed by the samples dried using firewood with total PAHs content varying between 0.910 mg/kg to 1.175 mg/kg. The samples dried using charcoal smoke recorded the lowest total PAHs ranging from 0.590 g/kg to 0.965 g/kg. The raw samples (control) only recorded 0.230 mg/kg in the *Scomber scombrus* and 0.185mg/kg in *Horse markerel*. The concentrations of PAHs in the fish varied with the smoke source. Similarly to the work of Ubwa et al. [14]. The trend of the concentrations of the total PAHs of the fishes based on the processing methods revealed the following order: saw dust smoking > firewood smoking> charcoal smoking > control. The levels of the PAHs recorded may be attributed to the intensities of the smoke and heat generated by the smoking material which determine the drying duration of the fishes and hence, their contact time with the smoke. This finding also corroborates the report of similar study by Silva et al. [6] that smoked fishes processed by charcoal gave the lowest level of total PAHs, followed by firewood method, while the saw dust method gave the highest level of total PAHs in the smoked fishes. The concentration of total PAHs detected in the raw samples of both *Scomber scombrus* may be attributed to contamination by PAHs from other sources such as oil spills into the fishes’ water habitat, preservation, air deposition of smoke particles due to transportation and burning sources since the fish is sold in a market out in the open.

The total PAH level of smoked *Horse markerel* (mg/g) was lower than that of smoked *Scomber*
scombrus (mg/g). This could be ascribed to the high fat content of the fish compared to that of beef. Akpan et al. [15] reported that strong correlation exists between fish lipids and PAH compounds; since PAH compounds are stored in fatty fish tissue.

Based on the law of EU regulatory commission when an expert opinion from European Food Safety Authority questions the statement previously made by Scientific Committee on Food, on benzo (a) pyrene as a sole indicator of occurrence of PAH in food, they proposed another way of indicating PAH with the use of —the sum of PAH4 (the sum of 4 PAH, benzo (a) pyrene, benzo (a) anthracene, benzo (b) fluorathane and Chrysene)‖ as a more suitable indicator for the occurrence of PAHs in food.

The Regulation committee, EU, reviewed the proposal and amends the regulation NO. 835/2011 which have a maximum value for benzo (a) pyrene, 0.005 mg/kg, and in the amending regulation EU, No. 1881/2006, published 0.030 mg/kg as the maximum levels of PAH in food to be declared carcinogenic or genotoxic.

4.3 Conclusion

Polycyclic aromatic hydrocarbons (PAHs) were detected in two species of smoked fish obtained from a market in Southwestern part of Nigeria. Varying levels of PAH were observed in the smoked fish species with the highest total concentration of PAH in Scomber scombrus. This is due to its high oil content which is higher than that of Horse markerel, and the high lipophilicity level of PAHs in general.

The results also revealed that fish samples smoked using saw-dust had the highest concentrations of PAHs followed by firewood, and charcoal. The investigation of the aromatic compound distributions in all of the fish samples has underlined that there is a heterogeneous PAHs background pollution. All of degradative activities and their effects left an environmental footprint and needs attention. For a sustainable drying method, charcoal smoking produced the healthiest smoked fish product in terms of PAHs contamination. Thus, the use of sawdust should be discouraged, and increase in awareness on the toxicity and risk of PAHs. That will encourage better processing methods of foods by individuals in order to reduce the health risk.

DISCLAIMER

The products used for this research are commonly and predominantly use products in our area of research and country. There is absolutely no conflict of interest between the authors and producers of the products because we do not intend to use these products as an avenue for any litigation but for the advancement of knowledge. Also, the research was not funded by the producing company rather it was funded by personal efforts of the authors.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Hylland K. Polycyclic aromatic hydrocarbon (PAH) ecotoxicology in marine ecosystems. Journal of Toxicology and Environmental Health, Part A. 2006; 69:109–123.
2. EPA, Environmental Protection Agency. Provisional guidance for the quantitative risk assessment of polycyclic aromatic hydrocarbons. US environmental protection agency report (No. EPA/600/R-93/089); 1993.
3. Chen B, Chen C. Formation of Polycyclic Aromatic Hydrocarbons in the Smoke from Heated Model Lipids and Food Lipids. Journal on Agricultural Food and Chemicals. 2001;49:5238–5243.
4. Simko P. Determination of polycyclic aromatic hydrocarbons in smoked meat products and smoke flavouring food additives. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences. 2002;770:3-18.
5. Palm L, Carboo D, Yeboah P, Quasie W, Gorleku M, Darko A. Characterization of polycyclic aromatic hydrocarbons (PAHs) present in smoked fish from Ghana, Advanced Journal on Food Science and Technology. 2011;3:332–338.
6. Silva B, Adetunde O, Oluseyi T, Olayinka K, Alo B. Effects of the methods of smoking on the levels of polycyclic aromatic hydrocarbons (PAHs) in some locally consumed fishes in Nigeria, African Journal on Food Science. 2011;5:384–391.
7. David H. Polycyclic aromatic hydrocarbons in the diet, Mutation, Genetic Toxicology Environment. Mutagenesis. 1999;443:139–147.
8. Muyela B, Shhitandi A, Ngure R. Determination of benzo[a]pyrene in smoked and oil fried Latesniloticus. Int. Food Res. 2012;4:1595–1600.

9. Yoon E, Park K, Lee H, Yang J, Lee C. Estimation of excess cancer risk on time-weighted Lifetime Average Daily Intake of PAHs from food ingestion, Human and Ecological Risk Assessment. 2007;13: 669–680.

10. SCF. Opinion of the Scientific Committee on Food on the risks to human health of Polycyclic Aromatic Hydrocarbons in food; 2002. Accessed on 19 June 2005
Available: http://ec.europa.eu/food/fs/sc/scf/out153_en.pdf.

11. World Health Organization, Polynuclear aromatic hydrocarbons in Drinking-water. Background document for development of WHO Guidelines for Drinking-water Quality, World Health Organization., Geneva; 2003.

12. APHA (American Public Health Association). Standard Methods for the Examination of Water and Wastewater, 21st edition American Public Health Association. Washington DC. 2005;1368.

13. Scientific Committee on Foods, (SCF). The opinion of the Scientific Committee on Food on the Risk to Human Health of PAHs in Food. SCF/CS/CNTM/PAH/29 Final, European Commission, Health, and Consumer Protection Directorate-General., Brussels; 2002.

14. Ubwa S, Abah J, Tarzaa L, Tyohemba R, Ahile U. Effect of Traditional smoking methods on the concentration of PAHs in some species of smoked fishes traded in benue state, Nigeria. Journal of food Research. 2015;4

15. Akpan V, Lodovici M, Dolara P. Polycyclic aromatic hydrocarbons in fresh and smoked fish samples from the three Nigerian cities. Bull. Environmental Contamination. Toxicology. 1994;53:246-253.

© 2021 Joseph et al.: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here: https://www.sdiarticle5.com review-history/76250