On the connectivity of Milnor fiber for mixed functions

Mutsuo Oka

Dedicated to Professor Lê Dũng Tráng for his 70’s birthday

Abstract. In this note, we prove the connectivity of the Milnor fiber for a mixed polynomial \(f(z, \bar{z}) \), assuming the existence of a sequence of smooth points of \(f^{-1}(0) \) converging to the origin. This result gives also another proof for the connectivity of the Milnor fiber of a non-reduced complex analytic function which is proved by A. Dimca

1. Introduction

Let \(f(z, \bar{z}) = \sum_{\nu, \mu} c_{\nu, \mu} z^\nu \bar{z}^\mu \) be a mixed polynomial of \(n \)-variables \(z = (z_1, \ldots, z_n) \in \mathbb{C}^n \) which has a singularity at the origin. We say that \(f \) satisfies Hamm-Lê condition at the origin if there exists a positive number \(r_0 \) such that for any \(0 < r_1 \leq r_0 \), there exists a positive number \(\delta(r_1) \) such that the hypersurface \(f^{-1}(\eta) \cap B_r^{2n} \) is non-empty, non-singular and it intersects transversely with the sphere \(S_{r}^{2n-1} \) for any \(r, \eta \) with \(r_1 \leq r \leq r_0 \) and \(0 \neq |\eta| \leq \delta(r_1) \). Here \(B_r^{2n} \) is the ball \(\{ z \in \mathbb{C}^n \mid ||z|| \leq r \} \) of radius \(r \) and \(S_{r}^{2n-1} \) is the boundary sphere of \(B_r^{2n} \). We call such a positive number \(r_0 \) a stable Milnor radius. If \(f \) is a holomorphic function, Hamm-Lê condition is always satisfied (Hamm-Lê [H-L]). For a strongly non-degenerate mixed function, this condition is also satisfied provided \(f(z, \bar{z}) \) is either convenient ([O2]) or locally uniformly tame along vanishing coordinate sub-spaces ([O3]). The following assertion is immediate from Hamm-Lê condition and Ehresman’s fibration theorem ([W]).

Lemma 1.1 ([H-L, O3]). Assume that \(f(z, \bar{z}) \) be a mixed function of \(n \)-variables with \(n \geq 2 \) which satisfies the Hamm-Lê condition. Choose \(r_0 > 0 \) as above and take arbitrary positive numbers \(r, r_1 \), with \(0 < r_1 \leq r \leq r_0 \) and take a positive number \(\delta \) with \(\delta \leq \delta(r_1) \). Consider the following tubular set and its boundary

\[
E(r, \delta) := \{ z \in B_r^{2n} \mid |f(z)| \leq \delta \}
\]

\[
\partial E(r, \delta) := \{ z \in B_r^{2n} \mid |f(z, \bar{z})| = \delta \}.
\]
Then the mappings
\[f : E(r, \delta) \setminus f^{-1}(0) \to D_\delta \setminus \{0\} \text{ and} \]
\[f : \partial E(r, \delta) \to S^1_\delta \]
are locally trivial fibrations where \(D_\delta := \{ \zeta \mid |\zeta| \leq \delta \} \) and \(S^1_\delta = \partial D_\delta \) (the boundary circle). They are homotopically equivalent and their isomorphism classes do not depend on the choice of \(r \) and \(\delta \).

This is called the tubular Milnor fibration of \(f \) at the origin and the fiber \(f^{-1}(\delta) \cap B_r \) is called the Milnor fiber at the origin. It is known that the tubular Milnor fibration is equivalent to the spherical Milnor fibration (see [M, O2])
\[\varphi : S_r \setminus K \to S^1, \quad \varphi(z) = f(z, \bar{z})/|f(z, \bar{z})| \]

2. Statement of the result

2.1. Connectivity of Milnor fibers of holomorphic functions. We first recall basic facts about the connectivity of the Milnor fibers of holomorphic functions. Assume that \(f : (U, 0) \to (\mathbb{C}, 0) \) be a holomorphic function with a singularity at the origin where \(U \) is an open neighborhood of the origin. A fundamental result for the connectivity is

Theorem 2.1 (Milnor [M]). The Milnor fiber \(F \) has a homotopy type of an \((n - 1)\)-dimensional CW-complex. If further the origin is an isolated singularity, \(F \) is \((n - 2)\)-connected.

Let \(\varphi : S_r^{2n-1} \setminus K \to S^1 \) be the spherical Milnor fibration. The proof depends on Morse theory. Milnor proved that the fiber has a homotopy type of an \(n - 1 \) dimensional CW-complex, by showing that the index of a suitable Morse function is less than or equal to \(n - 1 \). Secondly, if the origin is an isolated singularity at the origin, \(F \) is a manifold with boundary and the inclusion \(F \subset \bar{F} \) is a homotopy equivalence in the sphere \(S_r^{2n-1} \) and the vanishing \(H_j(F) = 0 \) for \(0 < j < n - 1 \) follows from the Alexander duality and the homotopy equivalence \(F_s \subset S_r^{2n-1} \setminus \bar{F} \) where \(F_s = \varphi^{-1}(-1) \). The simply connectedness of \(F \) for \(n \geq 3 \) follows from handle body argument.

Kato and Matsumoto further generalized this assertion as follows.

Theorem 2.2 (Kato and Matsumoto [K-M]). Assume that \(s \) is the dimension of the critical points locus at the origin. Then \(F \) is \((n - s - 2)\)-connected.

Their proof depends on the above result of Milnor and an inductive argument using Whitney stratification.

2.2. Mixed functions. For mixed functions, no similar connectivity statement is known. A main reason is that the tangent space of a mixed hypersurface has no complex structure and Morse function argument does not help so much as in the holomorphic case.

The following is our result which is a first step for the connectivity of the Milnor fiber of a mixed function. For the proof, we use an elementary but completely different viewpoint which is nothing to do with Morse functions. We use a one-parameter group of diffeomorphisms which contains the monodromy map.
2.3. Proof of Theorem 2.3 Let r_0 be a positive number which satisfies the Hamm-Lê condition. Take a mixed smooth point $w \in f^{-1}(0)$ with $\|w\| < r_0$. Put $r := \|w\|$. Fix positive numbers r_1 with $r_1 < r$ and $\delta \leq \delta(r_1)$ and we consider the Milnor fibration

\[(*) \quad f : \partial E(r_0, \delta) \to S^1_\delta. \]

Let $F_\theta := f^{-1}(\delta e^{i\theta}) \cap B_{r_1}$ for $\theta \in \mathbb{R}$ be the Milnor fiber over $\delta e^{i\theta}$. We assume also the sphere with radius r, $S^2_{r_1}$ intersects transversely with the hypersurface $f^{-1}(0)$ at the smooth point w. For the proof, we use a certain one-parameter family of diffeomorphisms associated with the tubular Milnor fibration (\ast). Recall that a one-parameter family of the characteristic diffeomorphisms h_{θ}, $\theta \in \mathbb{R}$ are constructed by integrating a given horizontal vector field V. Here a vector field V is called a horizontal vector field on $\partial E(r_0, \delta)$ if it satisfies the following property:

\[T f_p(V(p)) = \frac{\partial}{\partial \theta} (f(p)), \quad p \in \partial E(r_0, \delta) \]

where $T f_p : T_p \partial E(r_0, \delta) \to T f_p(S^1_\delta)$ is the tangential map and furthermore V is tangent to $S^2_{r_1} \cap \partial E(r_0, \delta)$ on the boundary and $\frac{\partial}{\partial \theta}$ is the unit angular vector field along S^1_δ. In other word, $\frac{\partial}{\partial \theta}$ is the tangent vector of the curve $t \mapsto \delta e^{it}$. As $\partial E(r_0, \delta)$ is a compact manifold with boundary, there is an integral $\varphi : \partial E(r_0, \delta) \times \mathbb{R} \to \partial E(r_0, \delta)$ such that $\varphi(p, 0) = p$ and $\varphi(p, t) = \varphi(p, 0) + \delta e^{it}$ for $-\infty < t < \infty$ is the integral of V starting at p for $t = 0$. Let $h_\theta : \partial E(r_0, \delta) \to \partial E(r_0, \delta)$, $\theta \in \mathbb{R}$ be the corresponding one parameter family of characteristic diffeomorphisms, which are defined by $h_\theta (p) = \varphi(p, \theta)$. Note that $\{h_\theta\}$ satisfy the property

\[h_\theta(F_\eta) = F_{\eta + \theta}, \quad \eta, \theta \in \mathbb{R}. \]

They also satisfy the equalities

\[h_0 = \text{id}, \quad h_\theta \circ h_\xi = h_{\theta + \xi}, \quad \theta, \xi \in \mathbb{R}. \]

Using one-parameter family $\{h_\theta, \theta \in \mathbb{R}\}$, the monodromy map $h : F \to F$ is given by the restriction $h_{2\pi} : F$ with $F = F_0$.

Now we construct \mathcal{V} more carefully. We take a local real-analytic chart U with local coordinates $(x_1, y_1, \ldots, x_n, y_n)$ centered at the given smooth point $w \in f^{-1}(0)$ such that $f(x_1, y_1, \ldots, x_n, y_n) = x_n + iy_n$. We take δ sufficiently small and we take a normal disc D of $f^{-1}(0)$ centered at w so that $|f(z)| = \delta$ for any $z \in \partial D$ and thus $\partial D \subset \partial E(r_0, \delta)$. In the above coordinates, we can assume $D = \{(0, \ldots, 0, x_n, y_n) | x_n^2 + y_n^2 \leq \delta^2\}$. By the transversality assumption, we may assume that V is tangent to ∂D which implies that $h_{2\pi}(z) = z$ for $z \in \partial D$. Note that the family of tubular neighborhoods $\{E(r, \delta) \mid \delta < \delta(r)\}$ and the family of disk neighborhoods $\{B^2_{s}, s > 0\}$ are cofinal neighborhood systems of the origin. Thus $E(r, \delta)$ is contractible and $E \setminus f^{-1}(0)$ is connected by the assumption
coding $f^{-1}(0) = 2$, $\partial E(r, \delta)$ is also connected, as $E(r_0, \delta) \setminus f^{-1}(0)$ and $\partial E(r_0, \delta)$ are homotopy equivalent.

Now we are ready to prove the connectivity of the Milnor fiber F_0. Fix a point $p \in \partial D \cap F_0$ and take an arbitrary point $q \in F_0$. As $\partial E(r, \delta)$ is connected, we can find a path $\sigma : [0, 1] \to \partial E(r_0, \delta)$ such that $\sigma(0) = q$ and $\sigma(1) = p$. We will show that $q \in F_0$ can be joined to p by a path in the fiber F_0, modifying the path σ. Consider first the closed loop $f \circ \sigma : (I, \{0, 1\}) \to (S^1, \delta)$ and let m be the rotation number, that is

$$m = \frac{1}{2\pi} \int_0^1 d\arg f(\sigma(\theta)).$$

Let $\omega : I \to \partial D$ be the clockwise rotation m-times along the boundary of D starting at p. Consider the path σ' which is given as the composition of paths $\sigma' := \sigma \cdot \omega : I \to \partial E(r, \delta)$ and define a function $\psi : [0, 1] \to \mathbb{R}$ by

$$\psi(t) = \int_0^t d\arg f(\sigma'(t))dt.$$

Note that $\psi(t) \equiv \arg f(\sigma'(t))$ modulo 2π and $\psi(0) = \psi(1) = 0$. This follows from the observation that the rotation number of $f \circ \sigma'$ is zero by the definition of ω.

Now we can deform σ' using characteristic diffeomorphisms h_t, $t \in \mathbb{R}$ into a path in the fiber F_0 as follows. Define a modified path

$$\hat{\sigma}(t) := h_{-\psi(t)}(\sigma'(t)), \quad 0 \leq t \leq 1.$$

Then we have the equality

$$\arg f(\hat{\sigma}(t)) = -\psi(t) + \arg f(\sigma'(t)) \equiv 0, \quad 0 \leq t \leq 1.$$

Thus the deformed path $\hat{\sigma}$ is entirely included in F_0. By the construction, $\hat{\sigma}(0) = q$ and $\hat{\sigma}(1) = p$ and $\hat{\sigma}$ is the path which connect q and p in F_0.

\begin{theorem}
2.4. Generalization of Main Theorem for holomorphic functions.\end{theorem}

The following is known by A. Dimca [11]. We give another direct proof of this assertion, using a similar argument as in the proof of Theorem 2.3.

THEOREM 2.5. (Proposition 2.3, [11]) Assume that f is a germ of holomorphic function at the origin of \mathbb{C}^n, $n \geq 2$ with $f(0) = 0$ and assume that f is factored as $f_1^{n_1} \cdots f_r^{n_r}$ where f_1, \ldots, f_r are irreducible in \mathcal{O}_n and mutually coprime. Put $n_0 = \gcd(n_1, \ldots, n_r)$. Then Milnor fiber of f at the origin is connected if and only if $n_0 = 1$.

Here \mathcal{O}_n is the ring of germs of holomorphic functions at the origin.

PROOF. Let F be the Milnor fiber of f. We can write $f = g^{n_0}$ with $g = f_1^{n_1/n_0} \cdots f_r^{n_r/n_0}$ and F is diffeomorphic to disjoint sum of n_0 copies of the Milnor fibers of g. Thus F is not connected if $n_0 \geq 2$. Assume $n_0 = 1$. Take a stable radius r_0 which satisfies Harn-Lê condition. For each $1 \leq i \leq r$, we consider the reduced irreducible component $V_i = \{f_i = 0\}$ and take a non-singular point $p_i \in V_i \setminus \bigcup_{j \neq i} V_j$ with $\|p_i\| < r_0$. Choose a positive number $r < r_0$ with $r \leq \|p_i\|$, $i = 1, \ldots, r$ and we consider Milnor fibration

$$f : \partial E(r_0, \delta) \to S^1, \quad \delta \leq \delta(r)$$

We assume that in a sufficiently small neighborhood U_i of p_i, any analytic branch of f^{1/n_i} is a well-defined single-valued function. Taking a one branch \bar{f}_i and we
take \(\tilde{f}_i \) as the last coordinate function of a complex analytic coordinate system \(z_i = (z_{i1}, \ldots, z_{in}) \) in \(U_i \), i.e., \(\tilde{f}_i(z_i) = z_{in} \). Consider a normal disk at \(p_i \) which is defined by \(D \delta = \{(0, \ldots, 0, z_{in}) | |z_{in}| \leq \delta^{1/n_i}\} \) where we assume that \(\delta \) is sufficiently small so that \(D \delta \subset U_i \). Note that \(\tilde{f}_i \) is locally written as \(\tilde{f}_i = f_i \cdot u_i \) where \(u_i \) is a unit in \(U_i \) and \(f(\partial D \delta) = S_{\delta}^i \) and \(\partial D \delta \subset \partial E(r, \delta) \). Construct a one parameter family of characteristic diffeomorphisms \(h_t, t \in \mathbb{R} \) as before such that \(\partial D \delta \) is stable by \(h_t \) and \(h_t|\partial D \delta \) is the rotation of angle \(t/n_i \), under the identification \(f_t : \partial D \delta \rightarrow S_{\delta}^i/n_i \). (Note that \(f : \partial D \delta \rightarrow S_{\delta}^i/n_i \) is the \(n_i \)-th rotation.) \(F \cap \partial D \delta \) can be identified with \(n_i \)-th roots of \(\delta \) and we put them as \(F \cap \partial D \delta = \{p_{i,0}, \ldots, p_{i,n_i-1}\} \) so that the monodromy \(h := h_{2\pi} \) acts simply as a cyclic permutation \(p_{i,j} \mapsto p_{i,j+1} \). Using a similar discussion as in the proof of Theorem 2.3 for a given \(q \in F \), we can connect \(q \) to some point in \(F \cap D_j \) for any \(j \). To see this, we first take a path \(\sigma \) so that \(\sigma(0) = q \) and \(\sigma(1) = p_{j,0} \), then in the argument of the proof of Theorem 2.3 we simply replace \(\omega \) by \(m/n_j \) rotation in the clockwise direction along \(\partial D_j \) and do the same argument, where \(m \) is the rotation number of \(f \circ \sigma \). Note that \(\omega \) need not be a closed loop but the image of \(\omega \) by \(f \) is a closed loop and it gives \(-m \) rotation.

Thus the proof is reduced to show that the points \(p_{1,0}, \ldots, p_{1,n_1-1} \) are in the same connected component of \(F \).

In particular taking \(q = p_{1,0} \), we can find a path \(\ell_j \) in \(F \) which connects \(p_{1,0} \) to some \(p_{j,a} \) for any \(j, a = 2, \ldots, r \). Let \(\ell_j^a = h^a(\ell_j) \) the image of \(\ell_j \) by \(h^a \). Then it connects \(p_{1,a} \) to \(p_{j,a} \) in \(F \). Now we consider the image of \(\ell_j^a \), \(a = 0, \ldots, n_1 - 1 \) under \(h^{n_j} \) which fixes \(p_{j,a} \), but the other end \(p_{1,a} \) of \(\ell_j^a \) goes to \(p_{1,n_1+a} \). As \(F \) is stable by the monodromy map \(h = h_{2\pi} \), this image is also a path in \(F \). Thus \(p_{1,a} \) and \(p_{1,n_1+a} = h^{n_j}(p_{1,a}) \) are connected by the path \(\ell_j^a \cdot (h^{n_j} \circ (\ell_j^a)^{-1}) \) in \(F \) for any \(a \). See Figure 1 for \(a = 0 \). As we have assumed \(\gcd(n_1, \ldots, n_r) = 1 \), there exist integers \(a_1, \ldots, a_r \) so that we can write \(1 = \sum a_i n_i \). Then

\[
p_{1,1} = h(p_{1,0}) = h^{\sum a_i n_i}(p_{1,0}) = h^{a_1 n_1}(\cdots (h^{a_r n_r}(p_{1,0}) \cdots)).
\]

Put \(p_{1,a_1} := h^{a_1 n_1}(p_{1,0}) \) and \(p_{1,a_{j+1}} := h^{a_j n_1 + a_{j+1}}(p_{1,a_j}) \) for \(j = 2, \ldots, r - 1 \). Then points \(p_{1,a_1}, \ldots, p_{1,a_r} = p_{1,1} \) are in the same connected component of \(p_{1,0} \) in \(F \). Thus \(p_{1,1} \) and \(p_{1,0} \) are in the same component. Repeating the same argument, we conclude that \(p_{1,0}, \ldots, p_{1,n_1-1} \) are all in the same connected component of \(F \). Combining the above observation, this proves that \(F \) is connected.

\[\square\]

Remark 2.6. The special case \(f = z_1^{a_1} \cdots z_k^{a_k} \) has been considered in Example (3.7), [O1]. For mixed function case, the above argument does not work. There does not exist any correspondence between irreducible components of \(f^{-1}(0) \) as real algebraic sets and the irreducible factors of \(f(z, \bar{z}) \) as a polynomial in \(\mathbb{C}[z, \bar{z}] \) or a germ of an analytic function of \(2n \) variables. For example, let \(f(z, w, \bar{z}, \bar{w}) \) be the strongly homogeneous mixed polynomial of two variables which come from the Rhie’s Lens equation \(\varphi_n = 0 \),

\[
\varphi_n(z) := \bar{z} - \frac{z^{n-2}}{z^{n-1} - a^{n-1}} - \frac{\varepsilon}{z}, \quad n \geq 2
\]

where \(\varepsilon, a \) are sufficiently small positive numbers \(0 < \varepsilon < a < 1 \). \(f \) is obtained as the homogenization of the numerator of \(\varphi_n \). Then \(f \) is irreducible but \(f^{-1}(0) \) has \(5n - 5 \) line components in \(\mathbb{C}^2(\mathbb{O}4, \mathbb{R}) \).
3. Application

3.1. Convenient strongly non-degenerate mixed functions. Let \(f(z, \bar{z}) \) be a strongly non-degenerate convenient mixed polynomial. Then the Hamm-Lê condition is satisfied (Lemma 28, [O2]). Furthermore the mixed hypersurface \(V = f^{-1}(0) \) has an isolated singularity at the origin (Corollary 20, [O2]). Thus the assumption of Theorem 2.3 is satisfied and we have

Theorem 3.1. Let \(f(z, \bar{z}) \) be a strongly non-degenerate convenient mixed function and \(n \geq 2 \). Then the Milnor fiber is connected.

3.2. Non-convenient mixed polynomials. Let \(f(z, \bar{z}) \) be a strongly non-degenerate mixed polynomial which is not convenient. In general, such a mixed hypersurface defined by \(f \) has a non-isolated singular locus. Let \(I \) be a non-empty subset of \(\{1, \ldots, n\} \). We use the following notations.

\[
\mathbb{C}^I = \{ z | z_j = 0, \forall j \notin I \},
\]

\[
\mathbb{C}^{*I} = \{ z | z_j = 0 \iff j \notin I \}.
\]

We say \(\mathbb{C}^I \) is a vanishing coordinate subspace for \(f \) if the restriction of \(f \) to the coordinate subspace \(\mathbb{C}^I \), denoted by \(f^I \), is identically zero. Otherwise, we say \(\mathbb{C}^I \) a non-vanishing coordinate subspace. Put \(V^I \) be the union of \(V \cap \mathbb{C}^{*I} \) for all \(I \) such that \(\mathbb{C}^I \) is a non-vanishing coordinate subspace. We know that \(V^I \) is mixed non-singular as a germ at the origin (Theorem 19, [O2]). We say that \(f \) is uniformly locally tame on the vanishing coordinate subspace \(\mathbb{C}^I \) if there exists a positive number \(\varepsilon > 0 \) and for any non-negative weight vector \(P = (p_1, \ldots, p_n) \in \mathbb{Z}^n_{\geq 0} \) with \(I(P) = I \) where \(I(P) := \{ i | p_i = 0 \} \), the face function \(f_P \) is strongly non-degenerate as a function of \(\{ z_j | j \notin I \} \) for any fixed \(z_I = (z_i)_{i \in I} \in \mathbb{C}^{*I} \) with \(\sum_{i \in I} |z_i|^2 \leq \varepsilon \). A strongly non-degenerate mixed function which is uniformly locally tame along any vanishing
coordinate subspaces satisfies Hamm-Lê condition (Proposition 11, [O3]). Thus we have

Theorem 3.2. Assume that \(f(z, \bar{z}) \) is a strongly non-degenerate mixed function which is uniformly locally tame along vanishing coordinate subspaces and \(n \geq 2 \). We assume also that \(V^\sharp \) is a non-empty germ of mixed variety. Then the Milnor fiber is connected.

A similar but weaker result is proved for a strongly mixed homogeneous polynomial ([O5]). As a next working problem, we also propose a conjecture about the fundamental groups of the Milnor fiber.

References

[1] A. Dimca. *Singularities and topology of hypersurfaces*. Universitext, Springer-Verlag, New York, 1992.

[H-L] H. A. Hamm and D.T. Lê. *Un théorème de Zariski du type de Lefschetz*. Ann. Sci. École Norm. Sup. (4), 6:317-355, 1973.

[K-M] M. Kato and Y. Matsumoto. *On the connectivity of the Milnor fiber of a holomorphic function at a critical point*. ManifoldsTokyo 1973 (Proc. Internat. Conf., Tokyo, 1973), pp. 131136. Univ. Tokyo Press, Tokyo, 1975.

[M] J. Milnor. *Singular points of complex hypersurfaces*. Annals of Mathematics Studies, No. 61. Princeton University Press, Princeton, N.J., 1968.

[O1] M. Oka. *Non-degenerate complete intersection singularity*. Hermann, Paris, 1997.

[O2] M. Oka. *Non-degenerate mixed functions*. Kodai Math. J., 33(1):1-62, 2010.

[O3] M. Oka. *On Milnor fibrations of mixed functions, \(a_f \)-condition and boundary stability*. Kodai Math. J., 38, 2015, NO. 3, 581–603.

[O4] M. Oka. *On the root of an extended Lens equation and an application*. in Singularities and Foliations. Geometry, Topology and Applications, Salvador, Brazil, 2015,489-511, Springer Proceedings in Mathematics & Statistics Vol. 222

[O5] M. Oka. *Smooth mixed projective curves and a conjecture*. Math. ArXiv 1711.09537.v2

[R] S.H. Rhie. *\(n \)-point Gravitational Lenses with \(5(n-1) \) Images*. arXiv:astro-ph/0305166, May 2003.

[W] J. A. Wolf, *Differentiable fibre spaces and mappings compatible with Riemannian metrics*. Michigan Math. J. 11 (1964), 65–70.

Department of Mathematics, Tokyo University of Science Kagurazaka 1-3, Shinjuku-ku, Tokyo 162-8601

E-mail address: oka@rs.kagu.tus.ac.jp