The old and new therapeutic approaches to the treatment of giardiasis: Where are we?

Haendel GNO Busatti1
Joseph FG Santos2
Maria A Gomes1

1Departamento de Parasitologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil; 2Hospital Santa Casa de Misericórdia de Belo Horizonte, Minas Gerais, Brasil

Abstract: Giardia lamblia is the causative agent of giardiasis, one of the most common parasitic infections of the human intestinal tract. This disease most frequently affects children causing abdominal pain, nausea, vomiting, acute or chronic diarrhea, and malabsorption syndrome. In undernourished children, giardiasis is a determining factor in retarded physical and mental development. Antigiardial chemotherapy focuses on the trophozoite stage. Metronidazole and other nitroimidazoles have been used for decades as the therapy of choice against giardiasis. In recent years many other drugs have been proposed for the treatment of giardiasis. Therefore, several synthetic and natural substances have been tested in search of new giardicidal compounds. This study is a review of drugs used in in vitro and in vivo tests, and also drugs tested in clinical trials (nonrandomized and randomized).

Keywords: Giardia lamblia; treatment; new drugs

Introduction

Giardia lamblia (syn. Giardia intestinalis, Giardia duodenalis) is a flagellate protozoan which may be found infecting the human small intestine, causing a disease called giardiasis. The symptomatology of human giardiasis is extremely variable, many individuals have the asymptomatic form while some have abdominal pain, nausea, acute or chronic diarrhea – which may last several months, malabsorption and weight loss.1-3 The clinical impact seems to be stronger in the first three years of life and in undernourished or immunodeficient individuals.4 G. lamblia has often been pointed out as the cause of growth disorders among children,5 also with the presence and frequency of diarrhea, for as long as the infection lasts, and the opportunity of reinfection, all constituting essential factors behind children’s physical and mental debilitation.5

G. lamblia is found in mammals, including human beings, cats, dogs, beavers, and cattle. Giardiasis is transmitted by the ingestion of cysts present in food and water; water dissemination being easier due to cysts resistance to chlorination.6,7 Cysts are highly infectious to men. Human volunteers have been experimentally infected with as few as 10 cysts.8 These cysts may remain viable in the environment for up to three months under favorable conditions of temperature and humidity. Three aspects are important in the epidemiological context of the disease: the cysts’ resistance to the environment, the amount of cysts eliminated by the patients, and the zoonotic aspect of the disease.9

Epidemics, in developed countries, have been attributed to an inappropriate water treatment, to its contamination with human or animal feces, particularly in surface
water collections and lakes. Direct transmission from person to person is another infection mechanism, particularly important in collective institutions, such as daycare centers and orphanages, among members of the same family, and between male homosexual partners. In these populations, giardiasis reaches epidemic levels. *G. lamblia* has a cosmopolitan distribution with an estimated number of 2.8×10^6 cases of infections per year and is thus the most common intestinal parasite in humans in developed countries. In Asia, Africa, and Latin America, about 200 million people have symptomatic giardiasis with some 500,000 new cases reported each year. In those countries this disease should be observed carefully, for it contributes substantially to generating mentally and physically impaired adults.

Thompson and colleagues reviewed publications by several authors who reported genetic variations among *Giardia* samples isolated from human beings. Such differences are believed to significantly influence giardiasis epidemiology and control, particularly for host susceptibility, virulence, drug sensitivity, antigenicity, and *in vivo* and *in vitro* development. Although some advances have been observed in isolating and characterizing *Giardia* samples, there are few studies regarding this parasite’s chemotherapy. Resistance to different drugs used in the treatment of this disease has been reported and the number of cases is likely to increase.

A variety of chemotherapeutic agents such as 5-nitroimidazole compounds, quinacrine, furazolidone, paromomycin, benzimidazole compounds, nitazoxanide have been used in the therapy for giardiasis. Nevertheless, therapeutic regimens and therapy reviews are little explored. Most drugs used have considerable adverse effects and, most of the time, they are contraindicated. Furthermore, *Giardia* seems to have a great ability to resist these agents.

In this context, the study of new chemotherapeutic agents plays a fundamental role – along with the reviews of the actually used drugs – in the rationale for treatment of giardiasis on the basis of more consistent data.

Many compounds have shown giardicidal activity in *in vivo* models or in animal models. In the present review, we have systematically addressed the main *in vitro* and *in vivo* studies and prospective trials in human population concerning the treatment of giardiasis.

Methodology

This is a review of giardiasis treatment in which we analyze the quality of the studies published in the Medline, PubMed, and EMBASE databases from 1966 to September, 2008.

Concentrating only on studies published in English, for each class of study (see below), we looked up the following key words in various combinations: giardia, giardiasis, treatment, therapeutic, therapy, drug, medication, phytotherapy, and chemotherapy. In those studies performed in humans, we did not have an age limit and searched for children and adult patients.

The studies were divided into four classes. Group I: *in vitro* studies; group II: *in vivo* studies; group III: clinical trials, nonrandomized, controlled or not; group IV: randomized control trials (RCT), blinded or not.

Inclusion criteria

We included the following studies: *In vitro* studies consisting of studies that tested the sensitivity and efficacy of the drugs against *Giardia*; *In vivo* studies consisting of studies that tested the efficacy of drugs against *Giardia* in experimental animals; Nonrandomized clinical trials consisting of studies that tested the efficacy of drugs against *Giardia* in humans; Randomized controlled clinical trials (RCT) consisting of studies designed to compare the efficacy between different drugs, between drugs and placebo, or to compare different schemes of the same drug in humans. These studies were necessarily randomized and controlled, but not necessarily blinded.

This review was made using two independent reviewers following the same inclusion criteria for searching the articles simultaneously. After they were finished, the reviews were analyzed. Those articles showing up in two reviews were automatically included in the final analysis. The remaining nonconsensual studies were analyzed by a third reviewer for a final decision as to include or exclude an article after the discussion between the first two reviewers was exhausted.

Statistical analysis

Data are presented as mean ± standard deviation (confidence interval [CI]), absolute numbers, or percentages. Comparisons between rates of cure of drugs were made using the chi-squared or the Student *t*-test methods. Only variables with *p* < 0.05 were considered significant.

Main results

In the initial search, 116 *in vitro* studies, 48 *in vivo* studies, 87 nonrandomized clinical trials, and 47 RCT were found. After selection for the inclusion criteria, 39 *in vitro* studies, nine *in vivo* studies, 23 nonrandomized clinical trials, and 34 RCTs remained (Tables 1–4).
Table 1 In vitro studies

Year	Drugs/Substances	Activity	Reference
1975	2,2-biimidazolo	Yes	23
1983	Human milk	Yes	24
1984	Metronidazole	Yes	61
	Tinidazole	Yes (+ effective)	
	Furazolidone	Yes	
	Quinacrin	Yes (- effective)	
1985	Bithionol	Yes	25
	Dichlorophene	Yes	
	Hexachlorophene	Yes	
1985	Clomipramine	Yes	26
1986	Furazolidone	Yes	27
1986	Nitroimidazolo	Yes	
1990	Azitromicin/Furazolidone	Yes	28
	Doxicilin/Mefloquin	Yes	
	Doxicilin/Tinidazole	Yes	
	Mefloquin/Tinidazole	Yes	
1991	Metronidazole	Yes	29
	Ornizadole	Yes	
1991	Azitromicin	Yes	30
1994	Serum immune specific	Yes	31
1994	Agglutinin of wheat germ	Yes	32
1994	Derivatives of allicin (diallyl trisulfide)	Yes	60
1995	Phytotherapics popular in Africa	Yes (+ effective)	33
	Mechanolic extracts cathartics	Yes (- effective)	
	Mechanolic extracts noncathartics	Yes (- effective)	
1995	Albendazole	Yes (- effective)	34
	Metronidazole	Yes (+ effective)	
1999	Derivatives of flavonoid Helianthenum glomeratum	Yes	59
2001	Pyrantel pamoate	Yes	35
2001	Powder of Yucca schidigera	Yes	36
2001	Ciprofloxacinc	Yes	37
2002	Nitrazoxanide	Yes (+ effective)	38
	Albendazole	Yes (+ effective)	
	Metronidazole	Yes (- effective)	
2002	Mucin	Yes	39
2002	Derivatives of isoflavone	Yes	40
2003	Derivative esthphenylcarbamate	Yes (- effective)	41
	Albendazole	Yes (+ effective)	
2004	Gangliosides	Yes	42
2004	Derivate phenyl-carbamate	Yes (- effective)	43
	Albendazole	Yes (+ effective)	
2004	S-substituted 4,6-dibromo-mercaptopbenzimidazole	Yes	58
	S-substituted 4,6-dichloro-2-mercaptopbenzimidazole	Yes	
2005	Dodecanonic acid	Yes	44
	Metronidazole	Yes	
2005	Arsenic sodium	No	45
2005	Derivatives of Artemisia ludoviciana	Yes	57
2005	Derivatives of flavonoid glycosides	Yes	56
2006	Derivatives benzimidazoles	Yes (+ effective)	46
	Albendazole	Yes (++ effective)	
	Metronidazole	Yes (- effective)	

(Continued)
In the 39 in vitro studies selected, 55 drugs were tested, 53 (96.4%) showed activity against Giardia. Eighteen studies (46.2%) did not have comparative design with other drugs. Twenty-one studies (53.8%) compared activity between drugs: 11 (52.4%) compared activity between two drugs, and 10 (47.6%) compared activity between three or more drugs.

The most frequently tested drugs in in vitro studies were: metronidazole (nine studies, 16.4%), albendazole (five studies, 9.1%), furazolidone (four studies, 7.3%), azitromycin, nitazoxanide, phenyl-carbamate derivatives, tinidazole, and kaempferol (two studies each, 3.6%). The other drugs had one study each (Table 5).

In the nine in vivo studies selected in which nine drugs were tested, eight (88.9%) showed activity against Giardia. One of them compared the efficacy between two drugs (11.1%), and the remaining study tested just one drug (Table 2).

Out of the 23 nonrandomized clinical trials, six studies (26.1%) had design to compare efficacy between drugs, three (13%) compared different schemes of the same drug, and three (13%) compared efficacy between one drug and placebo (nonrandomized). Eleven studies evaluated the effect of one drug without comparing either dosages or efficacy between drugs (see Table 3).

Table 1 (Continued)
Year
2006
2006
2006
2006
2006
2006
2006
2006
2007
2007
2007
2007
2007
2007
2007
2007
2007
2007
2007
2007
2007
2007
2007

Twelve drugs have been tested in the 23 nonrandomized clinical trials, with an average sample size of 83.3 ± 53.3 patients per study (confidence interval [CI] = 57.2 to 109.4). The mean general rate of cure (RC) per drug was 85.5% ± 16.7 (CI = 80.0 to 91.0). The most frequently tested drugs were: metronidazole (nine studies, 39.1%), tinidazole (seven studies, 30.4%), ornidazole, and quinacrine (three studies each, 13%), secnidazole, furazolidone, and berberine (two studies each, 8.7%) (Table 7). In evaluating drug effectiveness, the following mean rates of cure were found: secnidazole (RC = 96% ± 2.8), ornidazole (RC = 93.6% ± 1.2), tinidazole (RC = 89.1% ± 8.8).
Year	Drugs/Substances	Activity	Reference
1972	Berberine	Yes	71
1975	Berberine	Yes	72
1977	Metronidazole	Yes	73
	Tinidazole	Yes	
	Nimorazol	Yes	
	Furazolidone	Yes (– effective)	
1978	Tiberal 1 g BID – G1	Yes	74
	Tiberal 50 mg/Kg/single dose – G2	Yes	SE > group G2
1978	Metronidazole in four dosage schedules	Yes (+ effective in extended systems)	75
1978	Metronidazole	Yes (– effective)	76
	Tinidazole	Yes (+ effective)	SE > with metronidazole
1978	Tinidazole	Yes (+ effective)	77
	Placebo	Yes (+ effective)	78
1978	Tinidazole single dose highest	Yes (+ effective)	79
	Tinidazole seven days dose lower	Yes (– effective)	81
1979	Metronidazole	Yes (+ effective)	80
	Quinacrine	Yes (– effective)	
1979	Ornidazole	Yes	
1980	Metronidazole seven days	Yes (– effective)	81
	Meronidazole single dose	Yes (– effective)	
	Quinacrine	Yes (– effective)	
	Tinidazole	Yes (+ effective)	
	Ornidazole	Yes (+ effective)	
		Yes (+ effective)	SE > with ornidazole
1981	Furazolidone	Yes (+ effective)	82
	Quinacrine	Yes (– effective)	SE > with quinacrine
1987	Metronidazole	Yes	83
	Tinidazole	Yes	Similar
	Ornidazole	Yes	
1987	Tinidazole	efficiencies	84
1995	Metronidazole	Yes	85
1997	Metronidazole + diloxanide	Yes	86
1997	Pippali Rasayana	Yes	87
	Placebo	Yes	
1998	Albendazole	Yes	88
1999	Secnidazole	Yes	89
2000	Secnidazole	Yes	90
2008	Metronidazole	Yes	91

Abbreviations: BID, twice a day; SE, side effects.
Table 4 Randomized controlled clinical trials

Year	Drugs	Activity	Reference
1970	Mepacrine		
Metronidazole			
Furazolidone	–	92	
1977	Tinidazole		
Metronidazole	Yes (+ effective and < SE)		
Yes (– effective and > SE)	93		
1978	Tinidazole		
Metronidazole	–	94	
1978	Tinidazole		
Placebo	Yes (+ effective)	95	
1981	Tinidazole		
Metronidazole	Yes – Similar efficacy	96	
1985	Tinidazole		
Metronidazole	Yes – Similar efficacy with appropriate doses	97	
1989	Furazolidone		
Placebo	Yes	98	
1989	Metronidazole		
Furazolidone			
Placebo	Yes	99	
1989	Menbendazole	No	100
1990	Metronidazole		
Menbendazole	Yes	101	
1991	Metronidazole		
Ornidazole	Yes – Similar efficacy	102	
1992	Metronidazole		
Menbendazole	Yes	103	
1994	Metronidazole		
Albendazole	Effectiveness of cure similar SE > with metronidazole	104	
1995	Metronidazole		
Albendazole	Yes	105	
1995	Bacitracin zinc		
Bacitracin			
Neomycin			
Neomycin + Bacitracin zinc	Yes	106	
1995	Metronidazole single dose		
Metronidazole for five days			
Albendazole for five days	Yes	107	
1995	Metronidazole		
Ornidazole			
Mebendazole	Yes (effective)		
Yes (+ effective)			
Yes (– effective)	108		
1999	Albendazole		
Tinidazole	Yes (+ effective)		
Yes (– effective)	109		
2001	Metronidazole		
Mebendazole			
Nitazoxanide			
Placebo	Yes		
Yes (+ effective)	110		
111			
2001	Metronidazole		
Nitazoxanide			
Nitazoxanide + Metronidazole + wheat germ			
Nitazoxanide + Placebo	Yes – Similar efficacy	112	
113			
114			
2002	Albendazole		
Albendazole + Praziquantel
Tinidazole | Yes (+ effective)
Yes (+ effective)
Albendazole and Tinidazole with similar effectiveness | 114 |
quinacrine (RC = 85% ± 21.6), furazolidone (RC = 82% ± 14), and metronidazole (RC = 76.6% ± 20.6) (Table 8). The metronidazole was the most studied and tested drug for the giardiasis treatment. This drug had greater efficacy in larger doses and in more prolonged regimes (5 to 10 days), and achieved a cure rate of 87% to 100% in these schemes (Table 9).

Out of the 34 RCTs selected for analysis, 23 studies (67.6%) had design to compare efficacy between drugs, five (14.7%) compared different schemes of the same drug, and five (14.7%) compared efficacy between one drug and placebo (randomized). One study tested a drug without comparing it with any other drug or placebo. Eight studies (23.5%) were double-blind studies, five (62.5%) compared one drug with placebo, while three (37.5%) compared the efficacy between drugs.

Eighteen drugs were tested on the 34 RCTs. The average sample size was 98.9 ± 38.0 patients per study (CI = 83.7 to 114.1). The mean general rate of cure per drug was 83.0% ± 16.1 (CI = 78.4 to 87.6). Interestingly, the mean rate of cure of the placebo was 25%.

There was no significant difference either in the sample size/patient relationship or in the rate of cure observed between nonrandomized and RCTs studies (83.3 × 98.9 patients/study and 85.5% × 83.0%; p > 0.05).

The most frequently tested drugs in RCTs were: metronidazole (21 studies, 61.8%), tinidazole (10 studies, 29.4%), albendazole (nine studies, 26.5%), mebendazole (eight studies, 23.5%), ornidazole, furazolidone, and nitazoxanide (three studies each, 8.8%) (Table 10).

Among drugs showing greater effectiveness, the following mean rates of cure were found: ornidazole (RC = 97.6% ± 2.5), tinidazole (RC = 91.1% ± 6.3), metronidazole (RC = 81.5% ± 18.6), nitazoxanide (RC = 79.7% ± 1.8), and albendazole (RC = 73.4% ± 19.8) (Table 11). According to the nonrandomized clinical trials, metronidazole was the drug most frequently studied and

Table 4 (Continued)

Year	Drugs	Activity	Reference
2002	Metronidazole	Yes (+ effective)	115
	Ornidazole single dose	Yes (+ effective)	
	Ornidazole five days	Yes (+ effective)	
2003	Mebendazole	Yes (+ effective)	116
	Secnidazole	Yes (+ effective)	
2003	Albendazole	Yes (+ effective)	117
	Tinidazole	Yes (+ effective)	
	Cloroquine	Tinidazole and Cloroquine with similar effectiveness and greater than Albendazole	
2004	Metronidazole	Yes (+ effective)	118
	Albendazole	Yes (+ effective)	
2004	Metronidazole	Yes (+ effective)	119
	Albendazole	Yes (+ effective)	
2006	Metronidazole	Yes (+ effective)	120
	Saccharomyces boulardii	Yes (+ effective)	
	Metronidazole + placebo	Yes (+ effective)	
2006	Mebendazole	Yes (+ effective)	121
	Quinacrine	Yes (+ effective)	
2006	Mebendazole	Yes (+ effective)	122
	Tinidazole	Yes (+ effective)	
2006	Metronidazole	Yes (+ effective)	123
	Albendazole	Yes (+ effective)	
2007	Vitamin A	Yes (+ effective)	124
	Zinc	Yes (+ effective)	
	Vitamin + zinc	Yes (+ effective)	
	Placebo	No	
2008	Tinidazole	Yes (+ effective)	125
	Nitazoxanide	Yes (+ effective)	

Abbreviation: SE, side effects.
Table 5 *In vitro* studies: drugs more frequently tested

Drugs/Substances tested	Number of studies	Observation
1. 2,2-biimidazole	1	–
2. Human milk	1	–
3. Bithionol	1	–
4. Dichlorophene	1	–
5. Hexachlorophene	1	–
6. Clomipramine	1	–
7. Furazolidone	1	*
8. Nitroimidazole	1	–
9. Azitromicin	2	*
10. Doxiciclin	1	–
11. Mefloquin	1	–
12. Tinidazole	2	*
13. Metronidazole	9	*
14. Ornidazole	1	–
15. Serum immune specific	1	–
16. Agglutinin of wheat germ	1	–
17. Methanolic extracts cathartics	1	#
18. Methanolic extracts noncathartics	1	#
19. Albendazole	5	*
20. Pyrantel pamoate	1	–
21. Powder of *Yucca schidigera*	1	–
22. Ciprofloxacin	1	–
23. Nitazoxanide (Nitrotiazol)	2	*
24. Mucin	1	–
25. Derivatives of isoflavone	1	–
26. Derivative ethylphenylcarbamate	2	*
27. Gangliosides	1	–
28. Dodecanoic acid	1	–
29. Arsenic sodium	1	–
30. Derivatives benzimidazoles	1	–
31. Venom *Crotalus durissus terrificus*	1	–
32. Venom *Bothrops jararaca*	1	–
33. Propolis	1	–
34. Curcumin	1	–
35. Analogous MTZ-Ms	1	–
36. Analogous MTZ-I	1	–
37. Analogous MTZ-Br	1	–
38. Analogous MTZ-N_{3}	1	–
39. Analogous MTZ-NH$_{4}$Cl	1	–
40. Extracts of blueberry	1	–
41. Tiliroside	1	–
42. Kaempferol-glucopyranoside	2	*
43. Astragalin	1	–
44. Quercetin	1	–
45. Isoquercetin	1	–
46. Dorstenia contrajervia	1	–
47. Senna villosa	1	–
48. Ruta chalepensis	1	–

(Continued)
Table 5 (Continued)

Drugs/Substances tested	Number of studies	Observation
49 Derivatives of flavonoid glycosides	1	–
50 Derivatives of Artemisia ludoviciana	1	–
51 S-substituted 4,6-dibromo mercaptobenzimidazole	1	–
52 S-substituted 4,6-dichloro-2-mercaptobenzimidazole	1	–
53 Derivatives of flavonoid Helianthenum glomeratum	1	–
54 Derivatives of allicin (diallyl trisulfide)	1	–
55 Quinacrin	1	–

Notes: *phytotherapies are popular in Africa; **Drugs more frequently tested.

tested on the RCTs. Likewise, this drug had greater efficacy with larger doses and with more prolonged regimes (5 to 10 days), reaching cure rates of 89% to 97% with these schemes (Table 12).

On the RCTs, tinidazole and ornidazole were the drugs which showed good efficacy using a single-dose scheme. Albendazole shown great variability in efficacy, not only in a single dose (RC = 50% to 97%), but also in prolonged regimes (RC = 62% to 90%).

The side effects were poorly described in the majority of studies in the nonrandomized control trials, and they ranged from none to 59%, although they were mild and transient. As in nonrandomized clinical trials, the prevalence of side effects were poorly described in the majority of RCTs studies, ranging from few or absent to 70%, and were also mild and transient.

Discussion

In 1957, the Rhone-Poulenc laboratories synthesized 1-(β-hydroxyethyl)-2-methyl-5-nitroimidazole (metronidazole) by manipulating the chemical structure of 2-nitroimidazole and this proved to be a highly effective agent against Trichomonas vaginalis infections. In 1962, Darbon and colleagues reported that this could also be used in treatments against giardiasis. Thus, since it was discovered, metronidazole and other 5-nitroimidazoles – such as secnidazole, ornidazole, and tinidazole – are used by physicians to treat G. lamblia infections in addition to infections by other microorganisms. Nowadays, metronidazole is the most used drug to treat giardiasis worldwide; including in the USA. However, the number of new drugs is increasing.

Doing this review, we found out that there were a high number of studies regarding the giardiasis treatment, even with the methodology used in the present study. However, the quality of them was very poor, mainly regarding their primary goal, their design, and sample size; in addition to a great heterogeneity detected between studies.

In all categories of studies, 298 were initially included (in vitro, in vivo, nonrandomized clinical trials, and RCTs), which, after selection, comprised 105 studies – representing 35.2% – that constituted the sample for the analysis. It is important to point out that we used relatively liberal criteria to select the articles, and the search was done only in the most important databases, comprising journals with more restricted and rigorous publication criteria.

One hundred and sixteen references to in vitro studies were found, which comprised 39 (33.6%) studies that constituted the data bank for analysis. Based on this, 50 drugs were evaluated, 48 (96%) of which showing activity against Giardia. Most of these studies had design to compare drugs among themselves (53%): 52.4% to compare two drugs, and 47.6% to compare three or more drugs.

Many of the studies with two or more drugs did not necessarily compare the efficacy between drugs, but just analyzed and described the activity of the drugs without comparing their efficacy.

Although the number of known drugs tested was larger, we found out that the most widely tested drugs were metronidazole, albendazole, and furazolidone, and that the new drugs were larger in number, each with few studies (Table 5). In this context, several in vitro studies have been carried out in order to search for new substances with antiGiardial activity. This way, many methods have been described aiming at determining the antiGiardial activity of drugs in vitro. However, some of these are laborious and require long and hard work; furthermore, they are very difficult to reproduce for they lack standardization.

In the initial search for new drugs with antiGiardial activity, 48 in vivo studies were found but only nine (18.8%) constituted the data bank for analysis, according to the inclusion criteria. Ten drugs were tested in these studies, and eight (80%) were active against Giardia. The majority of studies did not compare drugs, but just tested the activity of one drug against Giardia (Tables 2 and 6).
Again, the various models used and the absence of standardized design, besides the heterogeneity of these studies, make the comparative analysis difficult. In this context, several in vivo experimental models have been proposed. They are often beavers, young and adult rats,134–137 rabbits,138 dogs,139 cats,140 mice,141,142 and gerbils.143,144 However, the best results have only been obtained in gerbil experimental models. Gerbil (\textit{Meriones unguiculatus}) is considered by several researchers the most appropriate experimental model for giardiasis due to its size, facility to handle, high susceptibility to infections, and large shedding of cysts in their feces.143–148 Thus, we consider that the absence of standardized methods between studies limited the comparative analysis.

When we analyze the studies in human beings (nonrandomized trials and randomized control trials), we find great heterogeneity among them, besides the poor quality of their methodology.

Table 6	In vivo studies: drugs more frequently tested	
Drugs tested	Number of studies	Observation
Albendazole	1	–
New oxadiazoles	1	–
Metronidazole	1	–
Ivermectin	2	*
Disulfiram (Antabuse)	1	–
Oxifendazole	1	–
Immunglobulin (IgA)	1	–
Vaccine against Giardia	1	–
Antioxidant (Antox)	1	–

Note: *Drugs more frequently tested.

Table 7	Drugs more frequently tested in nonrandomized clinical trials	
Drugs tested	Number of studies	Observation
Berberine	2	*
Metronidazole	9	*
Tinidazole	7	*
Nimorazole	1	–
Furazolidone	2	*
Tiberal	1	–
Quinacrin	3	*
Ornidazole	3	*
Dioxanide	1	–
Pippali Rasayana	1	–
Albendazole	1	–
Secnidazole	2	*

Note: *Drugs more frequently tested.

Table 8	Mean rate of cure of drugs more tested in nonrandomized clinical trials	
Drugs tested	Number of studies	Mean rate of cure % ± SD (CI)
Metronidazole	9	76.6 ± 20.6 (64.9–88.3)
Tinidazole	7	89.1 ± 8.8 (83–92.5)
Ornidazole	3	93.6 ± 1.2 (92.2–95)
Quinacrin	3	85 ± 21.6 (63.8–100)
Secnidazole	2	96 ± 2.8 (92.0–99.9)
Furazolidone	2	82 ± 14.0 (62.5–100)

Note: *Drugs more frequently tested.

Abbreviations: CI, confidence interval; SD, standard deviation.

Table 9	More effective doses of drugs tested in nonrandomized clinical trials	
Drugs	Unit	Recommended doses
Metronidazole	mg/Kg/day	15–25 TID – 5 to 10 days
	mg	200–500 TID – 5 to 10 days
Tinidazole	mg	1–2 MID – One day
Ornidazole	mg	2 MID – One day
Quinacrine	mg	100 TID – 5 days
Secnidazole	mg/Kg	30 MID – One day

Abbreviations: TID, three times a day; MID, once a day.
Giardiasis treatment

Regarding the sample size, in human studies, we found a comparatively small sample size in both nonrandomized and RCTs studies. We found a higher sample size in the RCTs as compared to the nonrandomized studies, though not statistically significant (98.9 × 83.3 patients/study; p < 0.05).

These findings show a great number of studies in which the external validation, and, consequently, the generalizability of the results is jeopardized. Numerous confounding factors make the analysis of these studies difficult, mainly due to problems in controlling some variables in the population studied.

The most frequently tested drugs in the present review are listed in Tables 5, 6, 7, and 10. We find that the most used drugs in human studies were all tested in in vitro studies, but not all drugs tested in in vivo studies were tested in human studies, although the number of drugs in the in vivo studies was as low as 10 drugs. Metronidazole was the most frequently tested drug. They were tested in 16.4% of in vitro studies, in 11.1% of in vivo studies, in 39.1% of nonrandomized studies, and in 61.8% of RCTs. Thus, this drug was the main drug in the available arsenal for giardiasis treatment, constituting a reference in relation to other drugs. This finding corroborates other reviews.149,150

When only the nonrandomized and RCTs studies were analyzed, the two most tested drugs were metronidazole and tinidazole. However, mebendazole and albendazole were among the most tested in RCTs, and they were barely tested in nonrandomized studies.

We also noticed that the “new drugs” for giardiasis treatment were barely tested in all categories of studies reviewed in this work, either in in vitro studies or in RCTs. This demonstrates the difficulty in adequately testing one drug for giardiasis in order to have alternatives in case of resistance to one of the therapeutic schemes.

In spite of the large amount of drugs used in antigiardial therapy, some resistance has been reported regarding different therapeutic regimens, and this resistance has been mentioned by clinicians.18,20,151 This characteristic makes Giardia a fearful microorganism, mainly among undernourished people, in whom the malabsorption syndrome is more common. In this scenario, developing and screening new antigiardial drugs seems to be a priority.

Table 10 Drugs more frequently tested in randomized control clinical trials

Drugs tested	Number of studies	Observation
1 Mepacrine	1	–
2 Metronidazole	21	*
3 Furazolidone	3	*
4 Tinidazole	10	*
5 Mebendazole	8	*
6 Ornidazole	3	*
7 Albendazole	9	*
8 Bacitracin zinc	1	–
9 Neomycin	1	–
10 Nitazoxanide	3	*
11 Wheat germ	1	–
12 Praziquantel	1	–
13 Cloroquine	1	–
14 Sercnidazole	1	–
15 Saccharomyces boulardii	1	–
16 Quinacrin	1	–
17 Vitamin A	1	–
18 Zinc	2	–

Note: *Drugs more frequently tested.

Table 11 Mean rate of cure of drugs in randomized control clinical trials

Drugs tested	Number of studies	Mean rate of cure % ± SD (CI)
1 Metronidazole	21	81.5 ± 18.6 (71.0–92.0)
2 Tinidazole	10	91.1 ± 6.3 (87.2–95.0)
3 Albendazole	9	73.4 ± 19.8 (58.7–88.1)
4 Mebendazole	8	65.6 ± 17.3 (50.4–80.8)
5 Ornidazole	3	97.6 ± 2.5 (95.4–99.8)
6 Nitazoxanide	3	79.7 ± 1.8 (77.2–82.2)

Note: *Drugs more frequently tested.

Abbreviations: CI, confidence interval; SD, standard deviation.

Table 12 More effective doses of drugs tested in randomized clinical trials

Drugs tested	Unit	Recommended doses
Metronidazole	mg/Kg/day	15–50 TID – 5 to 10 days
	mg	500–750 TID – 5 to 10 days
Tinidazole	mg/Kg/day	2 MID – One dose
	mg	50 MID – One dose
Albendazole	mg/Kg/day	400 MID – One day
	mg	400 MID – 5 days
	mg	10 MID – 5 days
Mebendazole	mg	200 TID – 5 days
Ornidazole	mg/Kg/day	20–40 MID – 1 to 5 days
Nitazoxanide	mg	500 MID – 3 days

Abbreviations: TID, three times a day; MID, once a day.
In order to analyze the optimal dosages for the most tested drugs, we evaluated the mean rate of cure for all (Tables 8 and 11). We found out that the most tested drugs and those with more efficacy in studies with human beings were tinidazole and metronidazole; though ornidazole had a great efficacy not only in nonrandomized but also in RCTs. However, ornidazole was tested in only six studies in the present review (three nonrandomized and three RCTs).

The optimal dosages found in this review for most drugs were those that achieved the best rate of cure for each drug separately. Tables 8, 9, 11, and 12 show the most widely used drugs and their mean rate of cure, along with the optimal dosages for each. Comparing the mean rate of cure between the most tested drugs, we detected a similar efficacy among them, none being better than the others, except for mebendazole in the RCTs.

The analyses of the side effects have been poorly appraised and documented in most studies. Apparently, they have been similar in all studies, and no drug was reported to be unsafe, causing only mild to moderate and transient side effects.

However, regarding the new drugs, only those tested in human beings had their side effects described, but we have few data about it at the moment.

In summary, in this review we found many studies on the giardiasis treatment; however, most of them presented various problems concerning the sample size, methodology, design, among others.

Moreover, the number of drugs tested was large, with a relative higher number of new drugs listed, mainly in the in vitro studies, and a lower number in the studies with humans. However, these new drugs were barely tested as compared to the old drugs, mainly in humans, increasing the need for new studies to provide standardization for the evaluation of antigiardial drugs. This can provide more accuracy and quickness for approval, as well as an adequate use not only for the new drugs but also the old ones.

Conclusion

In conclusion, this review raises some problems regarding the evidence for using old and new antigiardial drugs, in relation to the quality of previous and future studies. Yet, one must point out that the drugs in use nowadays are the most widely tested and that they are safe, although we must rethink and further study the problem of their increasing resistance.

Acknowledgments

We are grateful for the financial support of FAPEMIG. The authors report no conflicts of interest in this work.

References

1. Meyer EA, Radulescu S. Giardia and Giardiasis. Adv Parasitol. 1979;17:1–47.
2. Ungar BLP, Volken RH, Nash TE, et al. Enzyme-linked immunosorbent assay for the detection of Giardia lamblia in fecal specimens. J Infect Dis. 1984;149(1):90–97.
3. Goldin AJ, Werner APT, Aguilara X, et al. Efficient diagnosis of giardiasis among nursery and primary school children in Santiago, Chile by capture ELISA for the detection of fecal Giardia antigens. Am J Trop Med Hyg. 1990;42(6):538–545.
4. Farthing MJG. Host parasite interactions in human Giardiasis. Quart J Med. 1989;70(263):191–204.
5. Thompson RCA, Reynoldson JA, Mendis AHW. Giardia and Giardiasis. Adv Parasitol. 1993;32:71–160.
6. Fayer R. Cryptosporidium: a water-borne zoonotic parasite. Vet Parasitol. 2004;126(1–2):37–56.
7. Thompson RC. The zoonotic significance and molecular epidemiology of Giardia and giardiasis. Vet Parasitol. 2004;126(1–2):15–35.
8. Rendtorff RC. The experimental transmission of human intestinal protozoan parasites II. Giardia lamblia cysts given in capsules. Am J Hyg. 1954;59(2):209–220.
9. Hunter PR, Thompson RC. The zoonotic transmission of Giardia and Cryptosporidium. Int J Parasitol. 2005;35(11–12):1181–1190.
10. Ungar BLP, Volken RH, Nash TE, et al. Enzyme-linked immunosorbent assay for the detection of Giardia lamblia in fecal specimens. J Infect Dis. 1984;149(1):90–97.
11. Lane S, Lloyd D. Current trends in research into the waterborne parasite Giardia. Crit Rev Microbiol. 2002;28(2):123–147.
12. World Health Organization. The World Health Report 1996. Fighting Disease Fostering Development. Geneva, Switzerland: World Health Organization; 1996.
13. Thompson RCA, Lymbery AJ, Meloni BP. Genetic variation in Giardia Kunstler, 1882: taxonomic and epidemiological significance. Protozool Abstracts. 1990;14:1–28.
14. Wright JM, Dunn LA, Upcroft P, et al. Efficacy of antigiardial drugs. Expert Opin Drug Saf. 2003;2:529–541.
15. Johnson PJ. Metronidazole and drug resistance. Parasitol Today. 1993;9(5):183–186.
16. Upcroft JA, Dunn LA, Wright JM, et al. 5-Nitroimidazoles drugs effective against metronidazole-resistant Trichomonas vaginalis and Giardia duodenalis. Antimicrob Agents Chemother. 2006;50(1):344–347.
17. Long KZ, Rosado JL, Montoya Y, et al. Effect of vitamin A and zinc supplementation on gastrointestinal parasitic infections among Mexican children. Pediatrics. 2007;120(4):846–855.
18. Ellis JE, Wingfield JM, Cole D, et al. Oxygen affinities of metronidazole-resistant and -sensitive stocks of Giardia intestinalis. Int J Parasitol. 1993;23(1):35–39.
19. Upcroft JA, Campbell RW, Benakli K, et al. Efficacy of new 5-nitroimidazoles against metronidazole-susceptible and resistant Giardia, Trichomonas, and Entamoeba spp. Antimicrob Agents Chemother. 1999;43(1):73–76.
20. Petri W. Therapy of intestinal protozoa. Trends Parasitol. 2003;19(11):523–526.
21. Boreham PFL, Phillips RE, Shepherd RW. Altered uptake of metronidazole in vitro by stocks of Giardia intestinalis with different drug sensitivities. Trans R Soc Trop Med Hyg. 1988;82(1):104–106.
22. Upcroft JA, Upcroft P, Boreham PFL. Drug resistance in Giardia intestinalis. Int J Parasitol. 1990;20(4):489–496.
23. Melloni P, Metelli R, Bassini DF, et al. Synthesis and antiprotozoal activity of nitro derivatives of 2, 2’-biimidazole. Arzneimittelorsch. 1975;25(1):9–14.
24. Gillin FD, Reiner DS, Wang CS. Human milk kills parasitic intestinal protozoa. Science. 1983;221(4617):1290–1292.
25. Takeuchi T, Kobayashi S, Tanabe M, et al. In vitro inhibition of Giardia lamblia and Trichomonas vaginalis growth by bithionol, dichlorophene, and hexachlorophene. Antimicrob Agents Chemother. 1985;27(1):65–70.
26. Weinbach EC, Costa JL, Wiedcr SC. Antidepresant drugs suppress growth of the human pathogenic protozoan Giardia lamblia. Res Commun Chem Pathol Pharmacol. 1985;47(1):145–148.

27. McIntyre P, Boreham PF, Phillips RE, et al. Chemotherapy in giardiasis: clinical responses and in vitro drug sensitivity of human isolates in axenic culture. J Pediatr. 1986;108(6):1005–1010.

28. Crouch AA, Sow WK, Whitman LM, et al. Sensitivity in vitro of Giardia intestinalis to dyadic combinations of azithromycin, doxycycline, melflufen, tinidazole and furazolidone. Trans R Soc Trop Med Hyg. 1990;84(2):246–248.

29. Majewska AC, Kasprzak W, De Joneckheere JF, et al. Heterogeneity in the sensitivity of stocks and clones of Giardia to metronidazole and ornidazole. Trans R Soc Trop Med Hyg. 1991;85(1):67–69.

30. Boreham PFL, Upcroft JA. The activity of azithromycin against stocks of Giardia intestinalis in vitro and in vivo. Trans R Soc Trop Med Hyg. 1991;85(5):620–621.

31. Belosevic M, Faubert GM, Dharmapaul S. Antimicrobial action of antibodies against Giardia muris trophozoites. Clin Exp Immunol. 1994;95(3):485–489.

32. Ortega-Barría E, Ward HD, Keusch GT, et al. Growth inhibition of the intestinal parasite Giardia lamblia by a dietary lectin is associated with arrest of the cell cycle. J Clin Invest. 1994;94(6):2283–2288.

33. Johns T, Faubert GM, Kokwaro JO, et al. Anti-giardial activity of gastrointestinal remedies of the Luo of east Africa. J Ethnopharmacol. 1995;46(1):17–23.

34. Farbey MD, Reynolds JA, Thompson RC. In vitro drug susceptibility of 29 isolates of Giardia intestinalis from humans as assessed by anadhesion assay. Int J Parasitol. 1995;25(5):593–599.

35. Campanati L, Gadelha AP, Monteiro-Leal LH. Electron and videolight microscopy analysis of the in vitro effects of pyrantel pamoate on Giardia lamblia. Exp Parasitol. 2001;97(1):9–14.

36. McAllister TA, Annett CB, Cockwill CL, et al. Studies on the use of Yucca schidigera on Giardia duodenalis. J Ethnopharmacol. 2000;72(2):35–59.

37. Sousa MC, Poiares-da-Silva J. The cytotoxic effects of ciprofloxacin in trophozoites. Parasitol Res. 2004;97(3):191–200.

38. Cedillo-Rivera R, Chávez B, González-Robles A, et al. In vitro effect of nitazoxanide against Giardia lamblia. Acta Trop. 2006;98(2):152–161.

39. Busatti HGN, Vieira AED, Viana JC, et al. Effect of metronidazole analogues on Giardia lamblia cultures. Parasitol Res. 2007;102(1):145–149.

40. Anthony JP, Fyfe L, Stewart D, McDougall GJ, Smith HV. The effect of blueberry extracts on Giardia duodenalis viability and spontaneous excystation of Cryptosporidium parvum oocysts, in vitro. Methods. 2007;42(4):339–348.

41. Calzada F, Alanis AD. Additional antiprotozoal flavonoid glycosides of the aerial parts of Helianthemum glomeratum. Phyther Res. 2007;21(1):78–80.

42. Calzada F, Yépez-Mulia L, Aguilar A. In vitro susceptibility of Entamoeba histolytica and Giardia lamblia to plants used in Mexican traditional medicine for the treatment of gastrointestinal disorders. J Ethnopharmacol. 2006;108(3):367–370.

43. Haussen MA, Freitas JC Jr, Monteiro-Leal LH. The effects of metronidazole and furazolidone during Giardia differentiation into cysts. Exp Parasitol. 2006;113(3):135–141.

44. Calzada F. Additional antiprotozoal constituents from Cuphea pinetorum, a plant used in Mayan traditional medicine to treat diarrhoea. Phyther Res. 2005;19(8):725–727.

45. Said Fernández S, Ramos Guerra MC, Mata Cárdenas BD, et al. In vitro antiprotozoal activity of the leaves of Artemisia ludoviciana. Fitoterapia. 2005;76(5):466–468.

46. Andrzejewska M, Yépez-Mulia L, Tapia A, et al. Synthesis, and antiprotozoal and antibacterial activities of S-substituted 4,6-dibromo- and 4,6-dichloro-2-mercaptobenzimidazoles. Eur J Pharm Sci. 2004;21(2–3):323–329.

47. Meckes M, Calzada F, Tapia-Contreras A, et al. Antiprotozoal properties of Helianthemum glomeratum. Phyther Res. 1999;13(2):102–105.

48. Lun ZR, Burri C, Menzinger M, et al. Antiparasitic activity of diallyl trisulfide (Dasuansu) on human and animal pathogenic protozoa (Trypanosoma sp., Entamoeba histolytica and Giardia lamblia) in vitro. Ann Soc Belg Med Trop. 1994;74(1):51–59.

49. Boreham PFL, Phillips RE, Shepherd RW. The sensitivity of Giardia intestinalis to drugs in vitro. J Antimicrob Chemother. 1984;14(5):449–461.

50. Reynolds JA, Thompson RC, Meloni BP. In vivo efficacy of albendazole against Giardia duodenalis in mice. Parasitol Res. 1991;77(4):325–328.

51. Bhopale KK, Pradhan KS, Phaltanka PG, et al. Activity of a new oxadiazole compound, against experimental infections with Entamoeba histolytica and Giardia lamblia in animal models. Ann Trop Med Parasitol. 1993;87(2):169–178.

52. Wahl SM, Gilman RH, O’Hare J, et al. A new miniculture technique for determining in vitro antimicrobial agent sensitivity of axenically cultivated strains of Giardia lamblia. In: Hammond BR, Wallis PM, editors. Advances in Giardia Research. Calgary, Canada: University of Calgary Press; 1988. p. 21–24.

53. Nash T, Rice WG. Efficacies of zinc-finger-active drugs against Giardia duodenalis in vitro. Adv Parasitol. 1993;31(2):170–175.

54. Langford TD, Housley MP, Boes M, et al. Central importance of immunoglobulin A in host defense against Giardia spp. Infect Immun. 2002;70(1):11–18.
69. Stein JE, Radecki SV, Lappin MR. Efficacy of Giardia vaccination in the treatment of giardiasis in cats. J Am Vet Med Assoc. 2003;222(11):1548–1551.

70. El-Taweel HA, El-Zawawy LA, Said DE, et al. Influence of the antioxidant drug (Antox) on experimental giardiasis and microsporidiosis. J Egypt Soc Parasitol. 2007;37(1):189–204.

71. Choudhry VP, Sahir M, Bhide VN. Beriberine in giardiasis. Indian Pediatr. 1972;9(3):143–146.

72. Gupte S. Use of berberine in treatment of giardiasis. Am J Dis Child. 1975;129(7):866.

73. Levi GC, Avila CA, Neto VA. Efficacy of various drugs for treatment of giardiasis. A comparative study. Am J Trop Med Hyg. 1977;26(3):564–565.

74. Iyngkaran N, Lee IL, Robinson MJ. Single dose treatment with Tiberal of Giardia lamblia infection in children. Scand J Infect Dis. 1978;10(3):243–246.

75. Jokipii L, Jokipii AM. Comparison of four dosage schedules in the treatment of giardiasis with metronidazole. Infection. 1978;6(2):92–94.

76. Gazder AJ, Banerjee M. Single dose therapy of giardiasis with tinidazole and metronidazole. Drugs. 1978;15 suppl 1:30–32.

77. Farahmandian I, Sheiban F, Sanati A. Evaluation of the effect of a single dose of tinidazole (Fasigyn) in giardiasis. J Trop Med Hyg. 1987;81(7):139–140.

78. Jokipii AM, Jokipii L. Comparative evaluation of two dosages of tinidazole in the treatment of giardiasis. Am J Trop Med Hyg. 1978;27(4):758–761.

79. Kavossi S. Giardiasis in infancy and childhood: a prospective study of 160 cases with comparison of quinacrine (Atabrine) and metronidazole (Flagyl). Am J Trop Med Hyg. 1979;28(1):19–23.

80. Werkman HP, Mewissen JH. Single-dose treatment of giardiasis with ornidazole in children. Lancet. 1979;2(8156–8157):1373.

81. Sabchareon A, Chongsuphajaisiddhi T, Attanath P. Treatment of giardia infection with mepacrine, metronidazole and furazolidone. J Trop Med Hyg. 1991;64(5):199–200.

82. Farahmandian I, Sheiban F, Sanati A. Evaluation of the effect of a single dose of tinidazole (Fasigyn) in giardiasis. J Trop Med Hyg. 1987;81(7):139–140.

83. Bassily S, Farid Z, el-Masry NA, et al. Treatment of intestinal parasite infections in Serbia. J Infect Dis. 1995;172(2):164–168.

84. Gazder AJ, Banerjee M. Single-dose treatment of giardiasis with tinidazole and metronidazole. J Trop Med Hyg. 1977;56(3):233–236.

85. Masry NA, Farid Z, Miner WF. Treatment of giardiasis with tinidazole. Am J Trop Med Hyg. 1978;27(1 Pt 1):201–202.

86. Qureshi H, Ali A, Baqai R, et al. Efficacy of a combined diloxanide and furazolidone in the treatment of acute infantile diarrhea. Scand J Gastroenterol Suppl. 1989;169:39–46.

87. Quiros-Buelna E. Furazolidone and metronidazole for treatment of giardiasis in children. Scand J Gastroenterol Suppl. 1989;169:65–69.

88. Gazcon J, Moreno A, Valls ME, et al. Failure of mebendazole treatment in Giardia lamblia infection. Trans R Soc Trop Med Hyg. 1989;83(5):647.

89. Gascon J, Abós R, Valls ME, et al. Mebendazole and metronidazole in giardial infections. Trans R Soc Trop Med Hyg. 1990;84(5):694.

90. Oren B, Schgrensesky E, Epheos M, et al. Single-dose ornidazole versus seven-day metronidazole therapy of giardiasis in Kibbutzim children in Israel. Eur J Clin Microbiol Infect Dis. 1991;10(11):963–965.

91. al-Waili NS, Hasan NU. Mebendazole in giardial infection: a comparative study with metronidazole. J Infect Dis. 1992;165(6):1170–1171.

92. Dutta AK, Phadke MA, Bagade AC, et al. A randomised multicentre study to compare the safety and efficacy of albendazole and metronidazole in the treatment of giardiasis in children. Indian J Pediatr. 1994;61(6):689–693.

93. Misra PK, Kumar A, Agarwal V, et al. A comparative clinical trial of albendazole versus metronidazole in giardiasis. Indian Pediatr. 1995;32(3):291–294.

94. Andrews BJ, Panietescu D, Jipa GH, et al. Chemotherapy for giardiasis: randomized clinical trial of bacitracin, bacitracin zinc, and a combination of bacitracin zinc with neomycin. Am J Trop Med Hyg. 1995;52(4):318–321.

95. Misra PK, Kumar A, Agarwal V, et al. A comparative clinical trial of albendazole versus metronidazole in children with giardiasis. Indian Pediatr. 1995;32(7):779–782.

96. Bulut BU, Gülnar SB, Aysev D. Alternative treatment protocols in giardiasis: a pilot study. Scand J Infect Dis. 1996;28(5):493–495.

97. Pengsaa K, Sirivichayakul C, Pojaroano-anant C, et al. Albendazole treatment for Giardia intestinalis infections in school children. Southeast Asian J Trop Med Public Health. 1999;30(1):78–83.

98. Sadjadni SM, Alborzi AW, Mostofii H. Comparative clinical trial of albendazole and metronidazole in giardiasis of children. J Trop Pediatr. 2001;47(3):176–178.

99. Rossignol JF, Ayoub A, Ayers MS. Treatment of diarrhea caused by Giardia intestinalis and Entamoeba histolytica or E. dispar: a randomized, double-blind, placebo-controlled study of nitazoxanide. J Infect Dis. 2001;184(3):381–384.

100. Ortiz JJ, Ayoub A, Gargala G, et al. Randomized clinical study of nitazoxanide compared to metronidazole in the treatment of symptomatic giardiasis in children from Northern Peru. Aliment Pharmacol Ther. 2001;15(9):1409–1415.

101. Grant J, Mahanty S, Khadir A. Wheat germ supplement reduces cyst and trophozoite passage in people with giardiasis. Am J Trop Med Hyg. 2001;65(6):705–710.

102. Pengsaa K, Limkittrikul K, Pojaroano-anant C. Single-dose therapy for giardiasis in school-age children. Southeast Asian J Trop Med Public Health. 2002;33(4):711–717.

103. Ozbulgin A, Ertan P, Yereli K, et al. Giardiasis treatment in Turkish children with a single dose of ornidazole. Scand J Infect Dis. 2002;34(12):918–920.
116. Escobedo AA, Cañete R, Gonzalez ME, et al. A randomized trial comparing mebendazole and secnidazole for the treatment of giardiasis. *Ann Trop Med Parasitol.* 2003;97(5):499–504.
117. Escobedo AA, Núñez FA, Moreira I, et al. Comparison of chloroquine, albendazole and tinidazole in the treatment of children with giardiasis. *Ann Trop Med Parasitol.* 2003;97(4):367–371.
118. Karabay O, Tamer A, Gunduz H et al. Albendazole versus metronidazole treatment of adult giardiasis: An open randomized clinical study. *World J Gastroenterol.* 2004;10(8):1215–1217.
119. Yereli K, Balcioğlu IC, Ertan P, et al. Albendazole as an alternative therapeutic agent for childhood giardiasis in Turkey. *Clin Microbiol Infect.* 2004;10(6):527–529.
120. Besirbellioglu BA, Ulcay A, Can M, et al. *Saccharomyces boulardii* and infection due to *Giardia lamblia*. *Scand J Infect Dis.* 2006;38(6–7):479–481.
121. Cañete R, Escobedo AA, Gonzalez ME, et al. Randomized clinical study of five days apostrophe therapy with mebendazole compared to quinacrine in the treatment of symptomatic giardiasis in children. *World J Gastroenterol.* 2006;12(39):6366–6370.
122. Cañete R, Escobedo AA, Gonzalez ME, et al. A randomized, controlled, open-label trial of a single day of mebendazole versus a single dose of tinidazole in the treatment of giardiasis in children. *Curr Med Res Opin.* 2006;22(11):2131–2136.
123. Alizadeh A, Ranjbar M, Kashani KM, et al. Albendazole versus metronidazole in the treatment of patients with giardiasis in the Islamic Republic of Iran. *East Mediterr Health J.* 2006;12(5):548–554.
124. Lindquist HD. Induction of albendazole resistance in *Giardia lamblia*. *Microb Drug Resist.* 1996;2(4):433–434.
125. El-Taweel HA, El-Zawawy LA, Said DE, et al. Influence of the antioxidant drug (Antox) on experimental giardiasis and microsporidiosis. *J Egypt Soc Parasitol.* 2007;37(1):189–204.
126. Maeda K, Osato T, Umeza H. A new antibiotic: Azomycin. *J Antibiot.* 1953;6A:182.
127. Cosar C, Julou L. Activité de l’(hydroxy-2-ethyl)-1-methyl-2-nitro-5-imidazole (8,823 RP) vis-à-vis des infections experimentales *Trichomonas vaginalis*. *Ann Inst Pasteur.* 1959;96:238–241.
128. Darbon A, Portal A, Girier L, et al. Treatment of giardiasis (lambliasis) with metronidazole. *Presse Med.* 1962;70:15–16.
129. Gardner TB, Hill DR. Treatment of Giardiasis. *Clin Microbiol Rev.* 2001;14(1):114–128.
130. Boreham PFL, Phillips RE, Shepherd RW. The sensitivity of *Giardia intestinalis* to drugs in vitro. *J Antimicrob Chemother.* 1984;14(5):449–461.
131. Wright CW, Melwani SI, Philipson JD, et al. Determination of anti-giardial activity in vitro by mean of soluble formazan production. *Trans R Soc Trop Med Hyg.* 1992;86(5):517–519.
132. Kang EW, Clinch K, Furneaux RH, et al. A novel and simple colorimetric method for screening *Giardia intestinalis* and anti-giardial activity in vitro. *Parasitol. 1998;117(Pr 3):229–234.
133. Busatti HGNO, Gomes MA. A simple colourimetric method to determine anti-giardial activity of drugs. *Parasitol Res.* 2007;101(3):819–821.
134. Sehgal AK, Grewal MS, Chakravarti RN, et al. Experimental giardiasis in albino rats. *Indian J Med Res.* 1976;64(7):1015–1018.
135. Vinayak VK, Sharma GL, Naik SR. Experimental *Giardia lamblia* infection in Swiss mice – a preliminary report. *Indian J Med Res.* 1979;70:195–198.
136. Craft JC, Nelson JD. Diagnosis of giardiasis by counterimmunoelectro- phoresis of feces. *J Infect Dis.* 1982;145(4):499–504.
137. Hill DR, Guerrant RL, Pearson RD, et al. *Giardia lamblia* infection of sucking mice. *J Infect Dis.* 1983;147(2):217–221.
138. Schleinitz P, Justus P, Stenzel P, et al. A successful introduction of culture adapted *Giardia intestinalis* in rabbit model: ultrastructural features. *Gastroenterology.* 1983;84:1301.
139. Hewlett EL, Andrews JS, Ruffier Jr, et al. Experimental infection of mongrel dogs with *Giardia lamblia* cysts and cultures trophozoites. *J Infect Dis.* 1982;145(1):89–93.
140. Kirkpatrick CE, Grein GA. Susceptibility of domestic cats to infections with *Giardia lamblia* cysts and trophozoites from human sources. *J Clin Microbiol.* 1985;21(5):678–680.
141. Barbosa E, Calzada F, Campos R. Antigiardial activity of methanolic extracts from *Helianthemum glomeratum* Lag and *Rubus coriifolius* Focke in sucking mice CD-1. *J Ethnopharmacol.* 2006;108(3):395–397.
142. Barbosa E, Calzada F, Campos R. In vivo antigiardial activity of three flavonoids isolated of some medicinal plants used in Mexican traditional medicine for the treatment of diarrhea. *J Ethnopharmacol.* 2007;109(3):552–554.
143. Belosevic M, Faubert GM, Maclean JD, et al. *Giardia lamblia* infections in Mongolian Gerbils: an animal model. *J Infect Dis.* 1983;147(2):222–226.
144. Araújo NS, Mundim MJS, Gomes MA, et al. *Giardia duodenalis*: Pathological alterations in gerbils, *Meriones unguiculatus* infected with different dosages of trophozoites. *Exp Parasitol.* 2008;118(4):449–457.
145. Faubert GM, Belosevic M, Walker TS, et al. Comparative studies on the pattern of infection with *Giardia* spp. In Mongolian gerbils. *J Parasitol.* 1983;69(5):802–805.
146. Vivesvara GS, Smith PD, Healy GR, et al. An immunofluorescence test to detect serum antibodies to *Giardia lamblia*. *Ann Intern Med.* 1988;99(6):802–805.
147. Buret A, Galli DG, Olson ME. Growth, activities of enzymes in the small intestines and ultrastructure of microvillous border in gerbils infected with *Giardia duodenalis*. *Parasitol Res.* 1991;77(2):109–114.
148. Mohamed SR, Faubert GM. Dissacharidase deficiencies in Mongolian Gerbils: an animal model. *J Infect Dis.* 1991;163(5):1568–1571.
149. Upcroft P, Upcroft JA. Drug targets and mechanisms of resistance in Giardia. *Clin Microbiol Rev.* 2001;14(1):150–164.