Image Captioning with Context-Aware Auxiliary Guidance

Zeliang Song,1,2 Xiaofei Zhou,1,2* Zhendong Mao,3 Jianlong Tan1,2

1Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
2School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China
3University of Science and Technology of China, Hefei, China

{songzeliang, zhouxiaofei}@iie.ac.cn, zdmao@ustc.edu.cn

Abstract

Image captioning is a challenging computer vision task, which aims to generate a natural language description of an image. Most recent researches follow the encoder-decoder framework which depends heavily on the previous generated words for the current prediction. Such methods can not effectively take advantage of the future predicted information to learn complete semantics. In this paper, we propose Context-Aware Auxiliary Guidance (CAAG) mechanism that can guide the captioning model to perceive global contexts. Upon the captioning model, CAAG performs semantic attention that selectively concentrates on useful information of the global predictions to reproduce the current generation. To validate the adaptability of the method, we apply CAAG to three popular captioners and our proposal achieves competitive performance on the challenging Microsoft COCO image captioning benchmark, e.g. 132.2 CIDEr-D score on Karpathy split and 130.7 CIDEr-D (c40) score on official online evaluation server.

Introduction

Image captioning is to automatically generate natural language descriptions of an input image, which is a challenging task and also draws increasing attention in both computer vision and natural language processing fields. The ability of describing like humans for machine is important since it can be widely applied to cross-modal retrieval (Karpathy, Joulin, and Li 2014; Vo et al. 2019; Wang et al. 2019) and human-robot interactions (Wu et al. 2018; Erden and Tomyama 2010; Schmidt, Mael, and Wurtz 2006).

Most recent image captioning approaches follow the encoder-decoder framework (Vinyals et al. 2015) which employs convolutional neural network (CNN) to encode images to visual features and utilizes recurrent neural network (RNN) decoder to generate captions. Inspired by the recent success of employing attention in machine translation (Bahdanau, Cho, and Bengio 2015), the spatial attention mechanism is proposed in (Xu et al. 2015) to attend to the salient regions of an image while generating captions. These methods are typically trained by “Teacher-Forcing” algorithm (Williams and Zipser 1989) to maximize the log-likelihood of the next ground-truth word. This training approach creates a mismatch between training and inference called “exposure bias” (Ranzato et al. 2015). During the training phase, the model takes the ground-truth word as the current input, while in the inference phase, the input can be only sampled from the last time step. Recently, it has shown that REINFORCE algorithm (Williams 1992) can avoid exposure bias through directly optimizing non-differentiable sequence-level metrics, and has become a common component in the field of image captioning.

However, the existing image captioning methods depend solely on the previous generated words when conducting the current prediction, which will lead to the model learning incomplete semantics. As illustrated in Figure 1, the traditional captioner predicts the current word based on the partial generated sentence “A boy is” during training. With the incomplete information, the caption decoder tends to learn by remembering experiences rather than by understanding the scenes, and will easily generate incorrect word (e.g. “standing”) when encountering similar situations in the inference stage. Therefore, the future predictions “baseball game” may contain more critical information for current word, and should be considered to improve the scene understanding ability of captioning model.

In order to better understand the scenes, we propose
Context-Aware Auxiliary Guidance (CAAG) mechanism that guides the captioning model to perceive the complete semantics through reproducing the current generation based on the global predictions. We first use the captioning model (called primary network) to generate a complete sentence which is served as global contexts. Based on the global contexts and hidden state, CAAG masks and then reproduces the target word through semantic attention at every time step. The semantic attention can help CAAG to selectively look backward or look into future. During the inference phase, we first utilize primary network to generate a sentence for CAAG by greedy decoding. Then we jointly employ primary network and CAAG to generate the final caption by beam search.

We conduct extensive experiments and analyses on the challenging Microsoft COCO image captioning benchmark to evaluate our proposed method. To validate the adaptability of our method, we apply CAAG to three popular image captioners (Att2all (2017), Up-Down (2018) and AoANet (2019)), and our model achieves consistent improvements over all metrics.

The major contributions of our paper can be summarized as follows:

- We propose Context-Aware Auxiliary Guidance (CAAG) mechanism that guides the captioning model to perceive more complete semantics through taking advantage of the future predicted information to enhance the ability of model learning for image captioning.
- Our proposed method is generic so that it can enhance existing reinforcement learning based image captioning models and we show consistent improvements over three typical attention based LSTM decoders by experiments.
- Our model outperforms many state-of-the-art methods on the challenging Microsoft COCO dataset. More remarkably, CAAG improves CIDEr-D performance of a top-down attention based LSTM decoder from 123.4% to 128.8% on Karpathy test split.

Related Work

In recent years, the literatures on image captioning have grown rapidly, which can be divided into two categories: bottom-up methods (Elliott and Keller 2013; Fang et al. 2015; Kuznetsova et al. 2012; Li et al. 2011; Mitchell et al. 2012) and top-down methods (Vinyals et al. 2015; You et al. 2016; Lu et al. 2018; Wang, Schwing, and Lazebnik 2017; Yang et al. 2016). Top-down methods achieve state-of-the-art performance, and they follow the encoder-decoder framework (Vinyals et al. 2015) which employs a pre-trained CNN to encode the input image into feature vectors and utilizes a RNN to decode these vectors into captions. In this section, we mainly introduce recent methods of this branch. Attention mechanism (Chen et al. 2017; Lu et al. 2017) and reinforcement learning algorithm have been proved to have significant improvements on caption generation and have been widely applied to top-down methods.

Attention Mechanism

Inspired by recent work in machine translation and object detection, Kelvin Xu et al. (2015) first introduce soft and hard attention mechanisms to focus on different salient regions of an image at different time steps. Soft attention takes the weighted average of value vectors as attention result, while hard attention samples a value vector according to the relevance weights. Anderson et al. (2018) take pre-trained Faster R-CNN on Visual Genome dataset (Krishna et al. 2017) as a feature extractor to improve attentive models by replacing the attention over a grid of features with attention over image regions. Guo et al. (2019) design ruminant decoder to polish the raw caption generated by the base decoder to obtain a more comprehensive caption. Yao et al. (2018) novelly integrate both semantic and spatial object relationships into image encoder. Yu et al. (2019) present Predict Forward (PF) model that predicts the next two words in one time step to embed more precise information into hidden states. Herdade et al. (2019) introduce the object relation transformer for image captioning. Li et al. (2019) propose EnTangled Attention (ETA) that enables the transformer to exploit semantic and visual information simultaneously. Yao et al. (2019) integrate hierarchical structure into image encoder. Huang et al. (2019) extend the traditional attention mechanism by determining the relevance of attention results.

Reinforcement Learning

Recently, it has shown that reinforcement learning algorithm can avoid the exposure bias (Ranzato et al. 2015) problem and can directly optimize non-differentiable evaluation metrics, such as BLEU (Papineni et al. 2002), ROUGE (Lin 2004), METEOR (Banerjee and Lavie 2005), CIDEr (Vedantam, Lawrence Zitnick, and Parikh 2015) and SPICE (Anderson et al. 2016). Siqi Liu et al. (2017) directly optimize SPIDER (a linear combination of SPICE and CIDEr) and use different Monte Carlo rollouts to get a better estimate of the value function. In (Chen et al. 2018), they propose temporal difference method for image captioning where each action at different time step has different impacts on the model. Junlong Gao et al. (2019) extend to n-step reformulated advantage function and use different kinds of rollouts to estimate the state-action value function. In (Renjie et al. 2017), they present self-critical sequence training (SCST) algorithm that utilizes the output of greedy decoding to normalize the reward it experiences rather than estimating the reward signal. SCST has become the most popular training method, because it only needs one additional forward propagation.

Architecture

Like most existing methods (Anderson et al. 2018; Liu et al. 2018; Qin et al. 2019), we utilize a pre-trained Faster R-CNN on Visual Genome dataset to extract a variably-sized set of k spatial features $V = \{v_1, v_2, \cdots, v_k\}$ for an input image I, where $v_i \in \mathbb{R}^{d_I}$, and $d_I = 2048$. The primary network firstly generates a sentence $Y_{1:T} = \{y_1, y_2, \cdots, y_T\}$ as the global contexts. CAAG performs semantic attention based on the global contexts to guide the primary network.
Based on the output function over the dictionary is given by:

\[v = \sum_{t=1}^{T} \alpha_{v,t} v_t \]

where the normalized weight \(\alpha_{v,t} = f_{att}(v_t, h_t^v) \) for each spatial feature \(v_t \) is given by:

\[u_{v,t} = w_{v}^T \tanh(W_{vu} v_t + W_{hu} h_t^v) \]

\[\alpha_v = \text{softmax}(u_v) \]

and \(W_{vu}, W_{hu}, \text{ and } w_v \) are learned parameters of \(f_{att}, \alpha_v = \{\alpha_{1,v}, \alpha_{2,v}, \ldots, \alpha_{k,v}\} \).

The input vector to LSTM2 consists of the attended spatial feature \(\hat{v}_t \), concatenated with the output \(h_t^v \) of LSTM1. Based on the output \(h_t^v \) of LSTM2, the conditional distribution over the dictionary is given by:

\[p^1_t(y_{t+1}|Y_{1:t}) = \text{softmax}(\text{Linear}(h_t^v)) \]

where \(p^1_t \) denotes the output probability distribution of primary network and \(Y_{1:t} \) denotes the partially generated sentence.

Context-Aware Auxiliary Guidance

Given the global contexts \(Y_{1:T} \) generated by primary network. At time step \(t \), based on the word embedding \(Y_{emb} = \{x_1, x_2, \ldots, x_T\} \) of \(Y_{1:T} \) and the hidden state \(h_t^y \), CAAG performs following semantic attention to generate a contextual vector \(c_t \):

\[\beta_{i,t} = f_{att}(x_t, h_t^y) \]

\[c_t = \sum_{t=1}^{T} \beta_{i,t} x_t \]

where \(f_{att} \) is the attention function and \(\beta_{i,t} \) is the normalized attention weight. Note that the target word \(y_{t+1} \) is masked inside the semantic attention mechanism to be “self-unknown” during the training stage.

The input vector to LSTM3 consists of the contextual vector \(c_t \), concatenated with the output \(h_t^v \) of LSTM2. Based on the output \(h_t^3 \) of LSTM3, the conditional distribution is given by:

\[p_t^2(y_{t+1}|Y_{1:T}) = \text{softmax}(\text{Linear}(h_t^3)) \]

where \(p_t^2 \) denotes the output probability distribution of auxiliary network. In the inference phase, we jointly apply the output probability distributions \(p_t^1 \) and \(p_t^2 \) to generate the captions. The final probability distribution is given by:

\[p_t = p_t^1 + \lambda p_t^2 \]

where \(\lambda \) is a trade-off coefficient.

Objectives

In this section, we will introduce the objective functions of primary network and CAAG respectively.
Objective of Primary Network

Given the ground truth sentence $Y_{1:T}$ and the parameters θ_p of primary network, we pre-train the model by minimizing the following cross entropy loss:

$$L_C(\theta_p) = -\sum_{t=0}^{T-1} \log(p_t^1(y_{t+1}|Y_{1:t}))$$ \hspace{1cm} (9)

To address the exposure bias problem of the cross entropy loss, we consider image captioning as a sequential decision making problem. Specifically, the primary network can be viewed as an “agent” which interacts with external “environment” (input tokens, spatial features). The “action” is the prediction of the next word through “policy” p_t^1. The “state” can be simply viewed as the current hidden state h_t^2 of LSTM2. After generating the whole sentence $Y_{1:T} = \{y_1, y_2, ..., y_T\}$, the “agent” observes a “reward” r, i.e., a language evaluation metric score (CIDEr, BLEU, SPICE, etc.) computed between $Y_{1:T}$ and corresponding ground truth captions. The “goal” of the agent is to maximize the following expected reward:

$$L_R(\theta_p) = \mathbb{E}_{Y_{1:T} \sim p_1} [r(Y_{1:T})]$$ \hspace{1cm} (10)

Following the REINFORCE algorithm \cite{Williams:1992}, the expected gradient can be approximated using a single Monte-Carlo sample $Y_{1:T} \sim p_1$:

$$\frac{\partial L_R(\theta_p)}{\partial \theta_p} \approx \sum_{t=0}^{T-1} A_t \frac{\partial \log p_t^1(y_{t+1}|Y_{1:t})}{\partial \theta_p}$$ \hspace{1cm} (11)

where $A_t = r(Y_{1:t}) - b$ is called advantage function and b denotes the baseline function that can reduce the variance of the gradient estimate without changing its expectation.

Objective of CAAG

Given the sentence $Y_{1:T}$ generated by primary network and the parameters θ_a of CAAG, we maximize the following objective function:

$$L_S(\theta_a) = \sum_{t=0}^{T-1} \log(p_t^2(y_{t+1}|Y_{1:T})).A_t$$ \hspace{1cm} (12)

where A_t increases the probability of the samples with higher reward than greedy decoding and suppresses samples with lower reward.

During the training phase, the parameters of the primary network and CAAG are trained simultaneously, i.e. we maximize the following objective function:

$$L(\theta_p, \theta_a) = L_R(\theta_p) + \gamma L_S(\theta_a)$$ \hspace{1cm} (13)

Experiments

In this section, we first describe the datasets and settings of our experiments. Then, we go through the quantitative analysis and ablation studies. Finally, we introduce the qualitative analysis and human evaluation.

Datasets and Settings

Visual Genome Dataset Visual Genome dataset \cite{Krishna:2017} contains 108,077 images, 3.8 million object instances, 2.8 million attributes, and 2.3 million pairwise relationships between objects. Every image includes an average of 42 regions with a bounding box and a descriptive phrase. In this paper, we employ Faster R-CNN pre-trained \cite{Anderson:2018} on Visual Genome dataset, which is split with 98K / 5K / 5K images for training/validation/testing, to extract spatial features. Notice that only the object and attribute data are used during pre-training.

Microsoft COCO Dataset We evaluate our proposed method on the Microsoft COCO (MSCOCO) 2014 captions dataset \cite{Lin:2014}. MSCOCO contains totally 164,062 images and is split with 2:1:1 for training, validation and testing. Each image in MSCOCO is given at least 5 ground truth captions by different AMT workers. For hyperparameters selection and offline evaluation, we use the publicly available Karpathy split\cite{Karpathy:2014} which contains 113,287 training images, and 5K images respectively for validation and testing. For online evaluation on the MSCOCO test server, we add the 5K testing set into the training set to form a larger training set (118,287 images). We truncate all the sentences in training set to ensure that any sentence does not exceed 16 characters. We follow standard practice and perform only minimal text pre-processing \cite{Anderson:2018}, tokenizing on white space, converting all sentences to lower case, and filtering words that occurs less than five times, resulting in a vocabulary of 10,096 words.

Evaluation Metrics To evaluate the quality of the generated captions, we use MSCOCO caption evaluation tool\cite{COCO-eval} to calculate standard evaluation metrics, including BLEU \cite{Papineni:2002}, METEOR \cite{Banerjee:2005}, ROUGE \cite{Lin:2004}, CIDEr \cite{Vedantam:2015}, and SPICE \cite{Anderson:2016}.

Implementation Details We employ Up-Down captioner as our primary network, so we use the same hyperparameters proposed in \cite{Anderson:2018} for fair comparison. The Faster R-CNN implementation uses an IoU threshold of 0.7 for region proposal suppression, 0.3 for object class suppression, and a class detection confidence threshold of 0.2 for selecting salient image regions. For captioning model, we set the dimension of hidden states in both LSTMs to 1000, the number of hidden units in all attention layers to 512, and the dimension of input word embedding to 1000. The trade-off coefficient in Eq. [8] is set to 0.5 and the batch size is 64. We use beam search with a beam size of 3 to generate captions when validating and testing. We employ ADAM optimizer with an initial learning rate of $5e^{-4}$, and momentum of 0.9 and 0.999. We evaluate the model on the validation set at every epoch and select the model with highest CIDEr score as the initialization for reinforcement learning. For self-critical learning, we select CIDEr score as our reward function. The learning rate starts from $5e^{-5}$ and decays by rate 0.1 every 50 epochs.

References

Anderson, T.A., et al. 2018. Neuraltalk2: Generating images with rich textual descriptions. arXiv preprint arXiv:1803.09937.

https://github.com/karpathy/neuraltalk

https://github.com/tylin/coco-caption
![Image](https://example.com/image.png)

Table 1: Leaderboard of the published state-of-the-art image captioning models on the official online MSCOCO evaluation server. Notice that CIDEr-D is the most important metric which shows high agreement with consensus as assessed by humans. All results are reported in percentage (%), with the highest score of each entry marked in boldface.

Models	BLEU-1	BLEU-2	BLEU-3	BLEU-4	METEOR	ROUGE-L	CIDEr-D
Google NIC (2015)	71.3	89.5	54.2	80.2	40.7	69.4	
SCST (2017)	78.1	93.7	61.9	86.0	47.0	75.9	35.2
Up-Down (2018)	80.2	95.2	64.2	88.8	49.1	79.4	36.9
CAVP (2018)	80.1	94.9	64.7	88.8	50.0	79.7	37.9
GCN-LSTM (2018)	80.8	95.9	65.5	89.5	50.7	80.4	38.9
ETA (2019)	81.2	95.0	65.5	89.0	50.9	80.4	38.9
SGAE (2019)	81.0	95.3	65.6	89.5	50.7	80.4	38.5
AoANet (2019)	81.1	95.0	65.8	89.6	51.4	81.3	39.4
GCN+HIP (2019)	81.6	95.9	66.2	90.4	51.5	81.6	39.3
Ours	81.1	95.7	66.4	90.5	51.7	82.3	39.6

Table 2: Performance comparisons of various methods on MSCOCO Karpathy split. The best results for each metric are marked in boldface separately. The metrics: B-4, M, R, C, and S denote BLEU-4, METEOR, ROUGE-L, CIDEr-D, SPICE respectively.

Models	B-4	M	R	C	S
SCST(Att2all) (2017)	34.2	26.7	55.7	114.0	–
Up-Down (2018)	36.3	27.7	56.9	120.1	21.4
CAVP (2018)	38.6	28.3	58.5	126.3	21.6
GCN-LSTM (2018)	38.3	28.6	58.5	128.7	22.1
LBPF (2019)	38.3	28.5	58.4	127.6	22.0
SGAE (2019)	38.4	28.4	58.6	127.8	22.1
GCN+HIP (2019)	39.1	28.9	59.2	130.6	22.3
ETA (2019)	39.3	28.8	58.9	126.6	22.7
AoANet (2019)	39.1	29.2	58.8	129.8	22.4
Att2all+CAAG	36.7	27.9	57.1	121.7	21.4
Up-Down+CAAG	38.4	28.6	58.6	128.8	22.1
AoANet+CAAG	39.4	29.5	59.2	132.2	22.8

Table 3: Settings and results of ablation studies on MSCOCO Karpathy split.

Models	B-4	M	R	C	S
Base	36.9	28.0	57.5	123.4	21.5
+RD (2019)	37.8	28.2	57.9	125.3	21.7
+CAAG-P	38.1	28.4	58.4	126.7	21.7
+CAAG-C	38.2	28.5	58.4	127.2	21.8
+CAAG-H	38.3	28.5	58.5	127.5	22.0
+CAAG	**38.4**	**28.6**	**58.6**	**128.8**	**22.1**

Compared Methods Although there are various image captioning approaches in recent years, for fair comparison, we only compare our method with some reinforcement learning based methods. To be specific, we compare our method with the following state-of-the-arts: SCST(Att2all) (Rennie et al. 2017), Up-Down (Anderson et al. 2018), CAVP (Liu et al. 2018), GCN-LSTM (Yao et al. 2018), LBPF (Qin et al. 2019), SGAE (Yang et al. 2019), GCN+HIP (Yao et al. 2019), ETA (Li et al. 2019) and AoANet (Huang et al. 2019). SCST and Up-Down are two baselines where the self-critical reward and the fine-grained spatial features are used. CAVP allows the previous visual features to serve as visual context for current decision. GCN-LSTM novelty integrates both semantic and spatial object relationships into image encoder. LBPF proposes Look-Back (LB) part to embed visual information from the past and Predict Forward (PF) part to look into future. SGAE uses the scene graph to represent the complex structural layout of both image and sentence. GCN+HIP integrates hierarchical structure into image encoder to enhance the instance-level, region-level and image-level features. ETA introduces EnTangled Attention to exploit semantic and visual information simultaneously and Gated Bilateral Controller to guide the interactions between the multimodal information. AoANet extends the conventional attention mechanisms to determine the relevance between attention results and queries.

Quantitative Analysis

Offline Evaluation The performance comparisons on Microsoft COCO Karpathy split are shown in Table 2. To validate the generality and adaptability of our method, we implement CAAG over three popular image captioning models: Att2all (2017), Up-Down (2018) and AoANet (2019). As is shown in Table 2, the results indicate that our proposed method has a wide range of applicability to different image captioners. To be detailed, CAAG respectively makes the absolute improvement over the baselines by 7.7%, 8.7% and 2.4% in terms of CIDEr-D. Compared with the models (CAVP, GCN-LSTM, LBPF and SGAE) that directly extend Up-Down captioner, our Up-Down with CAAG achieves highest CIDEr-D score, which demonstrates the superiority of our method. Notice that LBPF proposes PF module to look ahead one step, and our method outperforms it over all metrics because CAAG can capture more powerful global contexts. When applying CAAG to AoANet, we outperform all the state-of-the-art methods (including transformer based ETA) across all evaluation metrics, and we obtain BLEU-4 / METEOR / ROUGE-L / CIDEr-D / SPICE scores of 39.4 / 29.5 / 59.2 / 132.2 / 22.8.
Table 4: This table shows some examples generated by our methods respectively. The wrong phrases and fine-grained information are highlighted in red and blue separately.

Online Evaluation We also submit the run of AoANet+CAAG optimized with CIDEr-D reward to the official online testing server. The performance leaderboard on official testing dataset with 5 reference captions (c5) and 40 reference captions (c40) is shown in Table 1. Our results are evaluated by an ensemble of 4 models trained on the Karpathy split for fair comparison. From the results shown in the table, GCN+HIP achieves better performance on BLEU-1 which is of little interest in recent years. Except for BLEU-1, our method outperforms all the state-of-the-art methods. For example, we achieve the highest score of 130.7 on the most important CIDEr-D (c40) metric which shows high agreement with consensus as assessed by humans.

Ablation Studies

Ablative Models We extensively explored different structures and settings of our method to gain insights about how and why it works. We selected Up-Down (Anderson et al. 2018) captioner as the base model for ablation studies. Based on Up-Down, we devised the following variant models of CAAG: (1) CAAG-P only uses the enhanced primary network for inferencing. (2) CAAG-C replaces the objective function of CAAG with cross entropy, i.e., A_i in Eq. (12) is a constant. (3) CAAG-H replaces soft attention of CAAG with hard attention (Xu et al. 2015). We also compare our models with Ruminant Decoding (Guo et al. 2019) that also considers a two-stage decoding mechanism.

Analysis Table 3 shows the ablative results under our experimental settings. In general, all variant models of CAAG can significantly improve the base model, and can also outperform Base+RD model. From the table, we also find the following observations:

• Without using CAAG in the inference phase, the base model still be improved by 3.3 percent on CIDEr-D metric, which further verifies the effectiveness of our method.
• CAAG and CAAG-H have better performance than CAAG-C because the advantage function can encourage correct generation and suppress bad samples.
• CAAG is better than CAAG-H, which demonstrates that soft attention is able to capture more useful information from the global contexts compared with hard attention.

Qualitative Analysis

Qualitative Examples To validate the benefits of our proposed method, we conduct qualitative analysis over the image / caption pairs generated by Up-Down, Up-Down+CAAG-P and Up-Down+CAAG respectively. Table 4 provides some representative examples for comparisons. In general, the captions generated by ours are better than base model. The two cases appearing above the table indicate that captions generated by Up-Down captioner are...
A group of children standing on a tennis racket.

(a) Up-Down: A group of children standing on a tennis racket.
(b) Ours: A group of children standing on a tennis court.

Figure 5: Visualization of visual attention weights when generating image captions by Up-Down and our Up-Down+CAAG.

less descriptive or incorrect to some degree, e.g. “with a table” and “refrigerator”, while our methods can generate captions with more precise information such as “fork” and “microwave”. The left case appearing below suggests that the combination of primary network and CAAG can generate captions with more fine-grained information in the image, e.g. “food” and “vegetables”. The last one shows a failure case, in which we predict a wrong action “jumping” for the “man”. This indicates that more precise understanding of the image could alleviate such problem in the future.

Human Evaluation
As the automatic evaluation metrics (e.g. BLEU and CIDEr-D) do not necessarily consistent with human judgment, we additionally conduct a user study to evaluate our methods against three baselines, i.e. Att2all, Up-Down and AoANet. We randomly sampled 500 images from Karpathy test split and invited 10 different workers who have prior experience with image captioning for human evaluation. We showed them two captions generated by base and base+CAAG models and asked them which one is more descriptive. The results of the comparisons on three different baselines are shown in Figure 4. From these pie charts, we can observe that when CAAG is used, the proportion of generated captions that are more descriptive is much higher than that of the baseline model.

Attention Visualization
Figure 3 provides an example to gain insights about how our CAAG takes advantage of global contexts. As shown in the figure, we visualize the semantic attention weights $\beta_{i,t}$ from Eq. (5) to see which token in the global predictions (y-axis) is attended when reproducing the target word (x-axis) at every time step. Each column of the matrix in the plot indicates the weights associated with the annotations. The white pixel means the weight of target token is zero. From the figure we can see that the future generated token “bike” which has highest probability is focused on when predicting the token “riding”. In this way, CAAG can take advantage of future predictions to guide the captioning model to learn more complete semantics during training. Figure 5 gives an example of visualizing the visual attention weights for Up-Down and Up-Down+CAAG. From this figure we can find that our method with context-aware auxiliary guidance can attend to correct image regions when generating captions. In the example, the region of “racket” is attended by Up-Down model when generating the caption fragment “A group of children standing on a tennis”, which is inconsistent with image content. On the contrary, our method can attend to correct regions and generate more precise caption.

Conclusion
In this paper, we propose Context-Aware Auxiliary Guidance (CAAG) mechanism to guide the captioning model (primary network) to learn complete semantics through reproducing the current generation based on the global contexts. As far as we know, CAAG is the first to take advantage of the global predictions in the process of caption generation. To validate the generality and adaptability of our proposed method, we employ CAAG to improve three popular attention based LSTM image captioners. Our model achieves competitive performance on the challenging Microsoft COCO image captioning benchmark.
Acknowledgments

This work is supported by National Key R&D Program No.2017YFB0803003, and the National Natural Science Foundation of China (No.61202226). We thank all anonymous reviewers for their constructive comments.

References

Anderson, P.; Fernando, B.; Johnson, M.; and Gould, S. 2016. Spice: Semantic propositional image caption evaluation. In European conference on computer vision, 382–398. Springer.

Anderson, P.; He, X.; Buehler, C.; Teney, D.; Johnson, M.; Gould, S.; and Zhang, L. 2018. Bottom-up and top-down attention for image captioning and visual question answering. In Proceedings of the IEEE conference on computer vision and pattern recognition, 6077–6086.

Bahdanau, D.; Cho, K.; and Bengio, Y. 2015. Neural Machine Translation by Jointly Learning to Align and Translate. In International Conference on Learning Representations.

Banerjee, S.; and Lavie, A. 2005. METEOR: An automatic metric for MT evaluation with improved correlation with human judgments. In Proceedings of the acl workshop on intrinsic and extrinsic evaluation measures for machine translation and/or summarization, 65–72.

Chen, H.; Ding, G.; Zhao, S.; and Han, J. 2018. Temporal-difference learning with sampling baseline for image captioning. In Thirty-Second AAAI Conference on Artificial Intelligence.

Chen, L.; Zhang, H.; Xiao, J.; Nie, L.; Shao, J.; Liu, W.; and Chua, T.-S. 2017. Sca-cnn: Spatial and channel-wise attention in convolutional networks for image captioning. In Proceedings of the IEEE conference on computer vision and pattern recognition, 6298–6306. IEEE.

Elliott, D.; and Keller, F. 2013. Image description using visual dependency representations. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, 1292–1302.

Erden, M. S.; and Tomiyama, T. 2010. Human-Intent Detection and Physically Interactive Control of a Robot Without Force Sensors. IEEE Transactions on Robotics 26(2): 370–382.

Fang, H.; Gupta, S.; Iandola, F.; Srivastava, R. K.; Deng, L.; Dollár, P.; Gao, J.; He, X.; Mitchell, M.; Platt, J. C.; et al. 2015. From captions to visual concepts and back. In Proceedings of the IEEE conference on computer vision and pattern recognition, 1473–1482.

Gao, J.; Wang, S.; Wang, S.; Ma, S.; and Gao, W. 2019. Self-critical n-step Training for Image Captioning. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

Guo, L.; Liu, J.; Lu, S.; and Lu, H. 2019. Show, tell and polish: Ruminant decoding for image captioning. IEEE Transactions on Multimedia.

Herdade, S.; Kappeler, A.; Boake, K.; and Soares, J. 2019. Image captioning: Transforming objects into words. In Advances in Neural Information Processing Systems, 11137–11147.

Huang, L.; Wang, W.; Chen, J.; and Wei, X.-Y. 2019. Attention on attention for image captioning. In Proceedings of the IEEE International Conference on Computer Vision, 4634–4643.

Karpathy, A.; Joulin, A.; and Li, F. F. 2014. Deep Fragment Embeddings for Bidirectional Image Sentence Mapping. Advances in neural information processing systems 3.

Krishna, R.; Zhu, Y.; Groth, O.; Johnson, J.; Hata, K.; Kravitz, J.; Chen, S.; Kalantidis, Y.; Li, L.-J.; Shamma, D. A.; et al. 2017. Visual genome: Connecting language and vision using crowdsourced dense image annotations. International Journal of Computer Vision 123(1): 32–73.

Kuznetsova, P.; Ordonez, V.; Berg, A. C.; Berg, T. L.; and Choi, Y. 2012. Collective generation of natural image descriptions. In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Long Papers-Volume 1, 359–368. Association for Computational Linguistics.

Li, G.; Zhu, L.; Liu, P.; and Yang, Y. 2019. Entangled transformer for image captioning. In Proceedings of the IEEE International Conference on Computer Vision, 8928–8937.

Li, S.; Kulkarni, G.; Berg, T. L.; Berg, A. C.; and Choi, Y. 2011. Composing simple image descriptions using web-scale n-grams. In Proceedings of the Fifteenth Conference on Computational Natural Language Learning, 220–228. Association for Computational Linguistics.

Lin, C.-Y. 2004. Rouge: A package for automatic evaluation of summaries. In Text summarization branches out, 74–81.

Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; and Zitnick, C. L. 2014. Microsoft coco: Common objects in context. In European conference on computer vision, 740–755. Springer.

Liu, D.; Zha, Z.-J.; Zhang, H.; Zhang, Y.; and Wu, F. 2018. Context-aware visual policy network for sequence-level image captioning. Proceedings of the 26th ACM international conference on Multimedia.

Liu, S.; Zhu, Z.; Ye, N.; Guadarrama, S.; and Murphy, K. 2017. Improved image captioning via policy gradient optimization of spider. In Proceedings of the IEEE international conference on computer vision, 873–881.

Lu, J.; Xiong, C.; Parikh, D.; and Socher, R. 2017. Knowing when to look: Adaptive attention via a visual sentinel for image captioning. In Proceedings of the IEEE conference on computer vision and pattern recognition, 375–383.

Lu, J.; Yang, J.; Batra, D.; and Parikh, D. 2018. Neural Baby Talk. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Mitchell, M.; Han, X.; Dodge, J.; Mensch, A.; Goyal, A.; Berg, A.; Yamaguchi, K.; Berg, T.; Stratos, K.; and
Daumé III, H. 2012. Midge: Generating image descriptions from computer vision detections. In Proceedings of the 13th Conference of the European Chapter of the Association for Computational Linguistics, 747–756. Association for Computational Linguistics.

Papineni, K.; Roukos, S.; Ward, T.; and Zhu, W.-J. 2002. BLEU: a method for automatic evaluation of machine translation. In Proceedings of the 40th annual meeting on association for computational linguistics, 311–318.

Qin, Y.; Du, J.; Zhang, Y.; and Lu, H. 2019. Look Back and Predict Forward in Image Captioning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 8367–8375.

Ranzato, M.; Chopra, S.; Auli, M.; and Zaremba, W. 2015. Sequence Level Training with Recurrent Neural Networks. International Conference on Learning Representations.

Rennie, S. J.; Marcheret, E.; Mroueh, Y.; Ross, J.; and Goel, V. 2017. Self-critical sequence training for image captioning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 7008–7024.

Schmidt, P.; Mael, E.; and Wurtz, R. P. 2006. A sensor for dynamic tactile information with applications in human-robot interaction and object exploration. Robotics and Autonomous Systems 54(12): 1005–1014.

Vedantam, R.; Lawrence Zitnick, C.; and Parikh, D. 2015. Cider: Consensus-based image description evaluation. In Proceedings of the IEEE conference on computer vision and pattern recognition, 4566–4575.

Vinyals, O.; Toshev, A.; Bengio, S.; and Erhan, D. 2015. Show and tell: A neural image caption generator. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 3156–3164.

Vo, N.; Jiang, L.; Sun, C.; Murphy, K.; Li, L.; Feifei, L.; and Hays, J. 2019. Composing Text and Image for Image Retrieval - an Empirical Odyssey 6439–6448.

Wang, L.; Li, Y.; Huang, J.; and Lazebnik, S. 2019. Learning Two-Branch Neural Networks for Image-Text Matching Tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence 41(2): 394–407.

Wang, L.; Schwing, A.; and Lazebnik, S. 2017. Diverse and Accurate Image Description Using a Variational Auto-Encoder with an Additive Gaussian Encoding Space. In Advances in Neural Information Processing Systems 30, 5756–5766.

Williams, R. J. 1992. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine learning 8(3-4): 229–256.

Williams, R. J.; and Zipser, D. 1989. A learning algorithm for continually running fully recurrent networks. Neural computation 1(2): 270–280.

Wu, Q.; Wang, P.; Shen, C.; Reid, I.; and Hengel, A. 2018. Are You Talking to Me? Reasoned Visual Dialog Generation Through Adversarial Learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 6106–6115.

You, Q.; Jin, H.; Wang, Z.; Fang, C.; and Luo, J. 2016. Image Captioning With Semantic Attention. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).