Patterns of clinicopathological features and outcome in epithelial ovarian cancer patients: 35 years of prospectively collected data

A Irodi, T Rye, K Herbert, M Churchman, C Bartos, M Mackean, F Nussey, CS Herrington, C Gourley, RL Hollis

Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK

Oxford Cancer Centre, Churchill Hospital, Oxford, UK

Edinburgh Cancer Centre, Western General Hospital, Edinburgh, UK

Correspondence: Dr RL Hollis, Nicola Murray Centre for Ovarian Cancer Research, Level 3 Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK. Email: robb.hollis@ed.ac.uk

Accepted 3 April 2020. Published Online 7 May 2020.

Objective Investigate the clinical landscape of ovarian carcinoma (OC) over time.

Design Register-based prospectively collected data.

Setting South East Scotland.

Sample A total of 2805 OC patients diagnosed in 1981–2015.

Methods Survival times were visualised using the Kaplan–Meier method; median survival, 5-year survival probabilities and associated restricted mean survival time analyses were used to quantify survival differences.

Main outcome measures Disease-specific survival.

Results A significant increase in disease-specific survival (DSS) from 1981–1985 to 2011–2015 was observed (median 1.73 versus 4.23 years, \(P < 0.0001 \)). Corresponding increase in progression-free survival (PFS) was not statistically significant (median 1.22 versus 1.58 years, \(P = 0.2568 \)). An increase in the proportion of cases with low residual disease volume (RD) (<2 cm RD) following debulking was observed (54.0% versus 87.7%, \(P < 0.0001 \)). The proportion of high grade serous (HGS) cases increased \((P < 0.0001) \), whereas endometrioid and mucinous cases decreased \((P = 0.0005 \) and \(P = 0.0002 \)). Increases in stage IV HGS OC incidence \((P = 0.0009) \) and stage IV HGS OC DSS \((P = 0.0122) \) were observed. Increasing median age at diagnosis correlated with increasing Eastern Cooperative Oncology Group Performance Status (ECOG PS) over time \((r = 0.86) \).

Conclusions OC DSS has improved over the last 35 years. PFS has not significantly increased, highlighting that improvement in outcome has been limited to extending post-relapse survival. Distribution of stage at diagnosis, histological subtype and RD following debulking has changed over time, reflecting evolution in tumour classification, staging and optimal debulking definitions (from low RD to minimal or zero RD). Histology, stage, RD and ECOG PS remain reliable outcome predictors. Increasing median age at diagnosis and ECOG PS indicates demographic shifts in the clinical population.

Keywords Diagnosis, ovarian cancer, prognosis, survival.

Tweetable abstract Significant improvement in ovarian carcinoma survival has been seen over time. Most of this improvement is due to an extension of survival following disease relapse.

Linked article This article is commented on by CW Helm, p. 1421 in this issue. To view this mini commentary visit https://doi.org/10.1111/1471-0528.16286

Please cite this paper as: Irodi A, Rye T, Herbert K, Churchman M, Bartos C, Mackean M, Nussey F, Herrington CS, Gourley C, Hollis RL. Patterns of clinicopathological features and outcome in epithelial ovarian cancer patients: 35 years of prospectively collected data. BJOG 2020;127:1409–1420.

Introduction

With over 290 000 new diagnoses and 180 000 deaths per year worldwide, ovarian cancer is the most lethal of all gynaecological malignancies.\(^1\) This is attributed, in part, to the high frequency at which these malignancies are diagnosed at an advanced stage, which represents a major clinical challenge. For these advanced stage cases, the 5-year survival rate remains poor at under 30%.\(^2\)

It is now recognised that ovarian carcinoma (OC)—which represents around 90% of ovarian cancer cases—is a collection of discrete diseases, the five main histotypes of
which are high grade serous (HGS), endometrioid, clear cell, mucinous and low grade serous (LGS) OC. These histotypes display distinct clinical characteristics, with differing intrinsic chemosensitivity, typical stage at diagnosis and overall survival outcome. Moreover, these histotypes are now known to arise from distinct gynaecological sites.

Despite intensive research efforts to find further therapeutic options, the standard-of-care for OC has largely remained static in recent decades, comprising maximal cytoreductive debulking surgery followed by platinum-based chemotherapy, frequently in combination with taxanes. In recent years, the use of anti-angiogenic treatments and PARP inhibitors has been integrated into routine practice, with several trials demonstrating prolonged progression-free survival (PFS), largely in the relapse disease setting. Recognition of the biologically distinct histotypes within OC has highlighted the need for identifying new histotype-specific therapeutic treatments and has led to rationally designed histotype-specific trials of biological agents.

It is well established that disease stage at diagnosis, patient age and Eastern Cooperative Oncology Group Performance Status (ECOG PS) are associated with differential survival outcomes in OC patients; moreover, optimal surgical cytoreduction has emerged as one of the most important determinants of outcome. The definition of optimal cytoreduction has evolved alongside our understanding of OC as a disease entity, with the goal of surgery evolving from <2 cm maximal dimension of the largest residual disease (RD) lesion to minimal RD (<0.5 cm), and now to the current objective of achieving no visible RD.

Here, we investigate the changing clinical landscape of ovarian carcinoma patients from South East Scotland (population 1.4 million) over the last 35 years (1981–2015) using data retrieved from The Edinburgh Ovarian Cancer Database.

Methods

Cases

Cases were identified using the Edinburgh Ovarian Cancer Database; patient demographics and survival data, prospectively collected as part of routine clinical care, were retrieved from the database. No independent ethical approval for this study was required, as determined by the South East Scotland Research Ethics Service.

All pathologically confirmed epithelial OC diagnoses of serous, mucinous, endometrioid or clear cell histological type between 1981 and 2015 were included (Figure S1), including cases recorded as primary fallopian tube or primary peritoneal carcinoma, representing the vast majority of OC cases in the region (for example, cases treated solely within private practice will not have attended at the Edinburgh Cancer Centre). All other histotypes were excluded.

Historically diagnosed grade II serous carcinomas (n = 189) were included with documented grade III serous carcinomas (n = 1010) and HGSOCs (n = 554). Well-differentiated (grade I) serous (n = 107) OCs were included alongside contemporary diagnoses of LGSOC (n = 10). Serous carcinomas with unknown grade or variable differentiation were excluded (n = 96). Of the cases, 51.0% represented either contemporary diagnoses (2010 onwards) or cases where histotype has been confirmed by contemporary pathology review by an expert gynaecological pathologist (CSH).

Demographics

Patients were classified into 5-year cohorts using date of pathologically confirmed OC diagnosis (1981–1985, 1986–1990, 1991–1995, 1996–2000, 2001–2005, 2006–2010, 2011–2015). Staging information was based on the International Federation of Obstetrics and Gynaecology (FIGO) staging system. Debulking status was classified as <2 and ≥2 cm residual disease (RD). Debulking status could not be resolved beyond <2 cm for all cases due to the retrospective nature of these data and historical classification of <2 cm RD as optimal debulking prior to 2008. ECOG performance status (PS) was categorised discretely from 0 (PS 0) to 4 (PS 4). Due to the low number of cases with PS 4 (n = 6), these cases were excluded from ECOG PS analysis. Five distinct cases were excluded from survival analysis (four from disease-specific survival [DSS] and four from PFS analysis) due to missing outcome data.

Statistical analysis

DSS was evaluated as time from date of diagnosis to disease-specific death. Deaths from other causes were censored. PFS was evaluated as time from date of diagnosis to date of OC progression, where progression was established by radiologically confirmed progressive disease (PD), CA125 PD or clinical deterioration as determined by the treating physician. Statistical analyses were performed using R 3.6.1 (R Foundation for Statistical Computing, Vienna, Austria). Survival analyses were visualised using the Kaplan–Meier method. Survival statistics are presented as median survival with corresponding 95% CI, alongside 5- and 10-year survival rates and statistical comparison by restricted mean survival time analysis. Multivariable analyses were performed using Cox proportional hazards regression models, stratified by RD, histotype and age or PS. Differences in frequency were analysed using the Chi-square test. P < 0.05 was considered statistically significant.

Results

In all, 2805 patients met the inclusion criteria (Figure S1, Table 1). Of these, 51.0% represented contemporary diagnoses (2010 onwards) or had their histotype confirmed by
patterns review: 56.5% HGS; 52.2% LGs; 42.1% endometrioid; 53.2% clear cell; 27.7% mucinous (Table S1).

Outcome of OC across all time periods

Across the whole OC cohort, the median DSS was 3.13 years (95% CI 2.87–3.42) and the median PFS was 1.45 years (95% CI 1.36–1.54). The overall 5- and 10-year DSS rates were 38.5% (95% CI 36.6–40.5) and 27.6% (95% CI 25.8–29.6), respectively.

Table 1. Characteristics of cohort according to year of diagnosis

Time period (year of diagnosis), N (%)	1981–1985	1986–1990	1991–1995	1996–2000	2001–2005	2006–2010	2011–2015	P-value
Total no. of cases	223	275	374	470	471	448	544	
Histotype								
High grade serous	129 (57.8)	153 (55.6)	203 (54.3)	295 (62.8)	315 (66.9)	285 (63.6)	373 (68.6)	<0.001a
Clear cell	15 (6.7)	27 (9.8)	41 (11)	27 (5.7)	39 (8.3)	47 (10.5)	54 (9.9)	
Low grade serous	18 (8.1)	14 (5.1)	10 (2.7)	18 (3.8)	17 (3.6)	17 (3.8)	23 (4.2)	
Mucinous	38 (17.0)	35 (12.7)	52 (13.9)	51 (10.9)	33 (7.0)	43 (9.6)	44 (8.1)	
Endometrioid	23 (10.2)	46 (16.7)	68 (18.2)	79 (16.8)	67 (14.2)	56 (12.5)	50 (9.2)	
FIGO stage at diagnosis								
I	49 (22.0)	77 (28.0)	83 (22.2)	97 (20.6)	72 (15.3)	87 (19.4)	92 (16.9)	0.009b
II	20 (9.0)	30 (10.9)	41 (11.0)	52 (11.1)	58 (12.3)	54 (12.1)	61 (11.2)	
III	119 (53.4)	131 (47.6)	188 (50.3)	231 (49.1)	246 (52.2)	188 (42.0)	232 (42.6)	
IV	24 (10.8)	31 (11.3)	47 (12.6)	77 (16.4)	73 (15.5)	77 (17.2)	95 (17.5)	
NA	11 (4.9)	6 (2.2)	15 (4.0)	13 (2.8)	22 (4.7)	42 (9.4)	64 (11.8)	
RD following debulk								
<2 cm	116 (52.0)	165 (60.0)	199 (53.2)	236 (50.2)	229 (48.6)	213 (47.5)	342 (62.9)	<0.001c
≥2 cm	99 (44.4)	103 (37.5)	134 (35.8)	176 (37.4)	205 (43.5)	142 (31.7)	48 (8.8)	
NA	8 (3.6)	7 (2.5)	41 (11.0)	58 (12.3)	37 (7.9)	93 (20.7)	154 (28.3)	
ECOG performance status								
0	73 (32.7)	112 (40.7)	83 (22.2)	102 (21.7)	79 (16.8)	52 (11.6)	98 (18)	<0.001d
1	73 (32.7)	52 (18.9)	66 (17.6)	86 (18.3)	54 (11.5)	96 (21.4)	218 (40.1)	
2	17 (7.6)	27 (9.8)	24 (6.4)	41 (8.7)	40 (8.5)	53 (11.8)	95 (17.5)	
3	10 (4.5)	6 (2.2)	8 (2.1)	19 (4.0)	20 (4.2)	20 (4.5)	38 (7.0)	
4	0 (0.0)	1 (0.4)	0 (0.0)	0 (0.0)	2 (0.4)	1 (0.2)	2 (0.4)	
NA	50 (22.4)	77 (28.0)	193 (51.6)	222 (47.2)	276 (58.6)	226 (50.4)	93 (17.1)	
First-line chemotherapy								
Single agent platinum	15 (6.7)	59 (21.5)	210 (56.1)	272 (57.9)	193 (41.0)	163 (36.4)	146 (26.8)	<0.001e
Platinum/taxane	0 (0.0)	0 (0.0)	0 (0.0)	99 (21.1)	200 (42.5)	196 (43.8)	292 (53.7)	
Other platinum combination	64 (28.7)	76 (27.6)	33 (8.8)	5 (1.1)	8 (1.7)	28 (6.3)	6 (1.1)	
Other	65 (29.1)	63 (22.9)	47 (12.6)	1 (0.2)	2 (0.4)	0 (0.0)	1 (0.2)	
None	79 (35.4)	77 (28.0)	84 (22.5)	93 (19.8)	68 (14.4)	61 (13.6)	99 (18.2)	
Neoadjuvant chemotherapy								
No	223 (100.0)	275 (100.0)	374 (100.0)	470 (100.0)	471 (100.0)	368 (82.1)	333 (61.2)	<0.001f
Yes	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	80 (17.9)	211 (38.8)		

ECOG, Eastern Cooperative Oncology Group; FIGO, International Federation of Obstetrics and Gynaecology; NA, not available; RD, residual disease.

*Chi-square test across all histotypes, 1981–1985 versus 2011–2015.

*Chi-square test for stage IV versus stage III/IV, 1981–1985 versus 2011–2015.

*Chi-square test, <2 cm versus ≥2 cm, 1981–1985 versus 2011–2015.

*Chi-square test, PS 0 versus 1 versus 2 versus 3/4, 1981–1985 versus 2011–2015.

*Chi-square test across all regimen classes, 1981–1985 versus 2011–2015.

*Chi-square test for neoadjuvant status, 1981–1985 versus 2011–2015.
Patterns in clinicopathological features over time

Histotype
An increase in the proportion of HGSOC cases was seen (129 of 223 cases, 57.8% in 1981–1985 versus 373 of 544 cases, 68.6% in 2011–2015, \(P < 0.0001 \) across diagnosis periods), whereas the proportion of mucinous cases decreased significantly (38 of 223 cases, 17.0% in 1981–1985 versus 44 of 544 cases, 8.1% in 2011–2015, \(P = 0.0002 \) across diagnosis periods). The proportion of endometrioid cases also decreased over time (23 of 223 cases, 10.3% in 1981–1985 versus 50 of 544 cases, 9.2% in 2011–2015, \(P = 0.0005 \) across diagnosis periods).

Stage at diagnosis and RD following debulking
An overall increase in the proportion of stage IV HGSOC patients was seen over the year ranges (14 of 122 cases, 11.5% in 1981–1985 versus 85 of 317 cases, 26.8% in 2011–2015, \(P = 0.0009 \)). A corresponding decrease in HGSO patients presenting with stage I was seen (14 of 122 cases, 11.4% in 1981–1985 versus 16 of 317 cases, 5.0% in 2011–2015, \(P = 0.0293 \)). The proportion of cases with \(<2\,\text{cm} \, \text{RD} \) increased greatly in 2011–2015 to 87.7% (versus 54.0% in 1981–1985, \(P < 0.0001 \)).

ECOG performance status and age at diagnosis
The proportion of PS 0 cases decreased over time (73 of 173 cases, 42.2% in 1981–1985 versus 98 of 451 cases, 21.7% in 2011–2015, \(P < 0.0001 \)), whereas the proportion of PS 2 cases increased (17 of 173 cases, 9.8% in 1981–1985 versus 95 of 451 cases, 21.1% in 2011–2015, \(P = 0.0016 \)) (Table 1). The median age at diagnosis significantly increased across time (57 years in 1981–1985 versus 66 years in 2011–2015, \(P < 0.0001 \)) (Figure 3A). When plotted against the mean PS for each 5-year cohort, a strong correlation can be observed against mean patient age (\(r = 0.86 \)) (Figure 3B), consistent with the overall correlation between age and PS across the cohort (Figure 3S).

Associations between histological subtype and outcome
HGSOC demonstrated the lowest 5-year DSS (25.0%, 95% CI 22.9–27.2) of the histotypes (Figure 2A), whereas mucinous carcinomas showed the most favourable DSS (5-year survival: 75.0%, 95% CI 69.9–80.4, \(P < 0.0001 \) versus HGSOC), followed by LGSO (5-year survival: 63.8%, 95% CI 55.2–73.8, \(P < 0.0001 \) versus HGSOC) and endometrioid OC (5-year survival: 60.0%, 95% CI 55.1–65.4, \(P < 0.0001 \) versus HGSOC). Stage-specific analysis revealed markedly poor outcome in mucinous and clear cell OC diagnoses at advanced stage (FIGO III/IV) (mucinous median DSS: 0.88 years, 95% CI 0.55–1.75, clear cell median DSS: 0.85 years, 95% CI 0.65–1.34), whereas LGSO showed the highest median survival of 6.76 years in this analysis (Figure 2E). Corresponding early stage (stage I and II) DSS analysis mirrored the results of the overall DSS analysis (Figure 2A).

Associations between other clinicopathological features and outcome
Low RD volume following surgical debulking, lower PS and earlier stage were all associated with significantly prolonged DSS (Figure 2B–D). Patients with \(<2\,\text{cm} \, \text{RD} \) demonstrated significantly higher median DSS (7.33 years, 95% CI 6.46–8.80, \(P < 0.0001 \)) than did those with \(\geq2\,\text{cm} \, \text{RD} \). Each increase in performance status (reduction in ECOG PS score) saw a significantly increased median survival (Figure 2D, Table S2). PS 3 was associated with a median DSS of 0.67 years (95% CI 0.43–1.01), whereas PS 0 was associated with a median DSS of 5.52 years (95% CI 4.81–6.80, \(P < 0.0001 \), PS 3 versus PS 0). Similarly, stages I, II and III showed higher DSS compared with stage IV (\(P < 0.0001 \) for all) (Figure 2B, Table S2).

Multivariable analysis of disease stage at diagnosis, histotype, time period of diagnosis, RD volume, ECOG PS and age at diagnosis reflected the univariable analyses (Tables S4 and S5). Notably, these data highlight an independent association of both age and PS with DSS, despite the observed correlation between these two factors (Figure S3).

Associations between clinicopathological features and outcome over time
Changes in DSS and PFS over the 5-year time periods were investigated in the context of specific clinicopathological features (Tables S6 and S7). HGSO patients demonstrated an increase in median DSS (1.56 years, 95% CI 1.36–1.92 in 1981–1985 versus 3.07 years, 95% CI 2.70–3.73 in 2011–2015, \(P < 0.0001 \)). Stage III and IV patients showed significantly prolonged median DSS from 1981–1985 to 2011–
Figure 1. Survival rate by year of diagnosis. (A) Disease-specific survival (DSS). (B) Progression-free survival (PFS).
Figure 2. Survival trends by (A) histotype DSS, (B) stage DSS, (C) debulk DSS, (D) ECOG performance value DSS, (E) advanced stage (FIGO III/IV) histotype DSS, (F) advanced stage (FIGO III/IV) histotype PFS.
2015: 1.30 years versus 3.44 years ($P < 0.0001$) and 1.03 years versus 2.29 years ($P < 0.0001$), respectively. Increase in median PFS was not significant in stage III HGSOC patients (0.98 years versus 1.26 years, $P = 0.1049$), but was statistically significant in stage IV HGSOC patients (0.45 years versus 1.17 years, $P = 0.0003$). ECOG PS 1 and PS 2 patients also showed significantly prolonged median DSS from 1981–1985 to 2011–2015: 1.05 years versus 4.45 years ($P < 0.0001$) and 0.66 years versus 2.79 years ($P < 0.0001$), respectively. Patients with <2 cm RD displayed apparent fluctuations in PFS over time, with recent years showing shorter median PFS (Table S7).

Specifically in stage III and IV HGSOC, median DSS improved from 1981–1985 to 2011–2015: 1.36 years versus 3.13 years ($P < 0.0001$) and 1.32–2.27 years ($P = 0.0122$), respectively (Table S8). Increase in median PFS across the same period was not significant in stage III HGSOC (0.95 years versus 1.25 years, $P = 0.0601$) but was statistically significant in stage IV HGSOC (0.69 years versus 1.14 years, $P = 0.0003$) (Table S9). These data mirror the results from the pan-histotype DSS and PFS analysis for stage across the cohort (Tables S6 and S7).

Discussion

Main findings

We have demonstrated and quantified the improvement in the DSS of women with epithelial OC across time at the Edinburgh Cancer Centre. A similar improvement in PFS was not seen. Differences in survival based on histotype,
RD volume following debulking, ECOG PS and stage were consistent with previous research. An increase in advanced stage HGSOC incidence and survival was seen. A strong correlation was found between increasing age at diagnosis and ECOG PS across time, indicating a shift in the clinical demographic towards an older patient population with more frequent co-morbidities.

Strengths and limitations
Strengths of the study include the large number of cases and the high granularity of the prospectively collected clinical and treatment data; few similarly extensive longitudinal analyses of real-world OC data have been reported to date. Data were collected as part of routine care, almost exclusively by a single individual, optimising consistency.

We recognise several limitations of this study. First, criteria for defining progression have changed over time and were heterogeneous across the periods defined in our study. Our samples are therefore subject to varying definitions of progression over time—including CA125 and radiological evidence as well as more subjective clinical assessment. Second, contemporary pathology review was not carried out for all cases; lack of review for all LGSOC and high grade endometrioid cases, which have historically been poorly differentiated from HGSOCs, is a particular weakness. Moreover, the mucinous OC group had a lower rate of pathology review or contemporary diagnosis, likely a reflection of the increasing rarity of true primary mucinous OC by modern pathological criteria. However, across the whole of our OC cohort, over half of cases were confirmed by pathology review in previous studies or represented contemporary diagnoses, in contrast to previous investigations performing no such review, representing a major strength of this study over previous work. Differences in practice between treating physicians and the impact of ascertainment bias also represent potential limitations.

Interpretation
The 5-year DSS rate observed in this study for the 2011–2015 period was 46% (95% CI 41–51); this is consistent with data reported by Siegel et al.2 A significant improvement was seen from 1981 to 1985 where the 5-year survival rate was 31%. The median DSS improved significantly from 1.73 to 4.23 years. This improvement represents the culmination of changes in management over time, including the movement toward centralised care in centres with specialist expertise, more robust histopathological classification, improvements in disease monitoring such as imaging technology, and the introduction of additional therapeutic options. Most notably, platinum-taxane combination chemotherapy was introduced as standard of care within the study time period, and there has been a paradigm shift toward extensive cytoreductive surgery to maximise the chances of complete first-line macroscopic resection of disease, aided by neoadjuvant chemotherapy in some patients.

Despite the significantly prolonged DSS observed over time, observed improvement in PFS time failed to meet statistical significance (Table S3, Figure S2). This suggests that while treatment has improved for recurrent disease, there has been little improvement in preventing or significantly prolonging relapse. This is consistent with the largely static standard of care for first-line OC treatment in the study period. Recent studies of first-line olaparib treatment for BRCA1 or BRCA2 mutant HGSOC patients13 and hormone maintenance for LGSOC patients15 indicate that the coming years may see an improvement in OC PFS with the routine use of these agents. Notably, however, these regimens will be limited to subsets of patients.

A change in proportions of different histotypes was observed over the last 35 years with significant increases in HGSOC cases and decreases in mucinous and endometrioid cases. It is now recognised that many previously diagnosed high grade endometrioid carcinomas in fact represent variants of HGSOC; this may explain the relative depletion of endometrioid diagnoses over time. Moreover, historical misclassification of metastatic malignancies of the gastrointestinal tract as primary mucinous OC may explain the decline in mucinous cases over time.47,48 It is therefore likely that the change in proportions of histotypes observed in this study is, at least in part, a result of a refinement in classification of tumour types.

A significant increase in the proportion of HGSOC patients presenting with stage IV disease was also observed, alongside a corresponding decrease in stage I patients. This indicates that despite efforts to increase awareness of OC symptoms, these efforts have thus far failed to increase the proportion of early stage diagnoses. However, median DSS for these cases has increased significantly overall, and for HGSOC patients specifically (Tables S4 and S9), indicating post-relapse management has improved. It is also feasible that the observed increased incidence and survival in advanced stage cases is a consequence of the Will Rogers phenomenon, whereby advances in diagnostic techniques (such as more sensitive imaging) leads to up-staging of cases that would otherwise have been earlier stage. Certainly, increased ability of contemporary imaging to detect features such as epicardial nodes could account for a significant amount of stage shift over the time cohorts analysed. The improved outcome observed in advanced stage cases within our study is consistent with recent SEER analysis demonstrating improved outcome in this patient group.50

The proportion of cases with <2 cm of RD remained within the 50–60% range for 1981–2010, showing a large increase to 88% in the 2011–2015 year range. It is likely that the emphasis on optimal debulking surgery for OC
patients in recent years, driven by the recognition that complete macroscopic cytoreduction is associated with markedly favourable outcome,31 has led to this increase. Moreover, this may account for decreases in median DSS and PFS seen in the <2 cm RD cohort at later diagnosis periods, as modern efforts to achieve complete macroscopic tumour resection—including radical debulking surgery and introduction of neoadjuvant chemotherapy—has enriched this cohort for poor prognosis cases over time.

Difference in survival between histotypes observed in this study was generally consistent with results of previous studies42,46,51; the LGS and endometrioid histotypes displayed better survival compared with HGSOC. Peres et al.51 found that mucinous OC displayed favourable survival at early stage, but dismal prognosis when diagnosed at advanced stage. As the majority of mucinous cases were stage I (196/282 = 70%), the overall trend for favourable survival seen in this study, across time and within each 5-year cohort, is consistent with data previously reported.51 Our data show that early-stage mucinous cases show a favourable outcome, whereas advanced-stage cases perform poorly. Clear cell OC cases demonstrated poor survival at early and advanced stages, consistent with previous reports of intrinsic chemoresistance in clear cell and mucinous OCs,4,52,53 highlighting the need for targeted therapies aimed at the underlying biology of these malignancies.

Previous studies have uncovered and emphasised the importance of FIGO stage4,55 and extent of RD following debulking54,56–58 as prognostic factors in OC. This study confirms the importance of these two factors in OC survival, as well as ECOG PS. Although there have been recent reports that ECOG PS is of limited importance,20 we observed a clear delineation in survival based on ECOG PS. Moreover, an adjusted multivariable model indicated an association with survival independent of other clinical-pathological factors.

We observed a significant increase in median patient age across time (57 years in 1981–1985 versus 66 years in 2011–2015, \(P < 0.0001\)), reflective of the UK’s ageing population. A similar increase was seen on comparing the mean PS of cases across time. We show a correlation between increased age and PS (\(r = 0.86\)) across time. Multivariable analysis indicated the independent adverse associations of both of these factors on survival (Tables S4 and S5). This is indicative of the shift towards an older and frailer clinical demographic, representing a clinically challenging population characterised by co-morbidities, chemotherapy delays and poorer survival outcome.59

Collectively, these data shed new light on the shifting clinical landscape of OC management, demonstrating survival improvement across time as management of OC patients has evolved. They also highlight the current areas of greatest unmet clinical need, where new therapeutic options are urgently required to improve outcome.

Conclusion

OC patient survival in South East Scotland has improved markedly over the last 35 years. Histology, stage, extent of RD and ECOG PS are strongly associated with survival outcome. Advanced stage disease has seen an increase in incidence and survival, both within HGSOC cases specifically and across all histotypes. Despite this, PFS has not seen a corresponding increase. Recent trials of first-line agents for specific subgroups of OC13,45 indicate that PFS improvement may be seen over the coming years in these groups. However, to see a large PFS increase in the overall OC population there is an urgent need for further improvements in first-line management. Advanced stage clear cell and mucinous OCs represent those patients with greatest unmet need. Moreover, the changing clinical demographic towards an older population with more comorbidities highlights a growing patient group that represents a more complex clinical challenge.

Future work should aim to investigate the impact of recently introduced therapeutic options, such as anti-angiogenic therapies and PARP inhibitors, on outcome in OC. In particular, whether the use of these agents in the first-line setting leads to an improvement in the currently stagnant PFS of OC patients should be investigated.

Disclosure of interests

MM: honoraria from Tesaro, BristolMyersSquibb and Roche. FN: Non-personal interests in AstraZeneca and Tesaro. CG: research funding from AstraZeneca, Aprea, Nucana, Tesaro and Novartis; honoraria/consultancy fees from Roche, AstraZeneca, Tesaro, Nucana, MSD, Clovis, Foundation One, Sierra Oncology and Cor2Ed; named on issued/pending patents relating to predicting treatment response in ovarian cancer beyond the scope of this work. AI, RLH, KH, TR, MC and CSH declare no conflicts of interest. Completed disclosure of interests forms are available to view online as supporting information.

Contribution to authorship

Conceptualisation: KH, CG, RLH. Data curation: TR, CB. Formal analysis: AI, KH, RLH. Methodology: AI, CG, RLH. Resources: FN, MM, CSH, CG. Supervision: CG, RLH. Visualisation: AI. Writing—original draft: AI, RLH. Writing—review & editing: AI, KH, MC, MM, FN, CSH, CG, RLH.

Details of ethics approval

We have been informed by South East Scotland Research Ethics Service that studies in ovarian cancer patients using
data obtained as part of routine care do not require NHS ethical review. As such, no independent ethical approval for this study was required.

Funding

RLH is supported by an MRC-funded research fellowship. This study was supported by charitable donation from the Nicola Murray Foundation.

Acknowledgements

We would like to extend our thanks to Professor John Smyth and to the Edinburgh Ovarian Cancer Database, from which the clinical data used in this project were extracted. We would also like to thank the Nicola Murray Foundation for their generous support of our laboratory, and the NHS Lothian Department of Pathology.

Supporting Information

Additional supporting information may be found online in the Supporting Information section at the end of the article.

Figure S1. Flow diagram for case inclusion.

Figure S2. Scatterplot of median DSS and PFS increase over time.

Figure S3. Boxplot of median age at diagnosis for discrete levels of ECOG performance status.

Table S1. Cases by histotype confirmed by contemporary pathology review.

Table S2. Median disease-specific survival (DSS) times by year of diagnosis, histotype, RD following debulk, ECOG performance value and stage.

Table S3. Median progression-free survival (PFS) times by year of diagnosis, histotype, RD following debulk, ECOG performance value and stage.

Table S4. Hazard ratios for multivariable model including stage, year of diagnosis, age at diagnosis and stratified for histotype, RD following debulk, ECOG PS.

Table S5. Hazard ratios for multivariable model including stage, year of diagnosis, ECOG PS and stratified for histotype, RD following debulk, age at diagnosis.

Table S6. Median disease-specific survival (DSS) times by histotype, stage, RD following debulk, ECOG performance value across time.

Table S7. Median progression-free survival (PFS) times by histotype, stage, RD following debulk, ECOG performance value across time.

Table S8. Median disease-specific survival (DSS) times by stage of HGSOC disease across time.

Table S9. Median progression-free survival (PFS) times by stage of HGSOC disease across time.

References

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA Cancer J Clin* 2018;68:394-424.

2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. *CA Cancer J Clin* 2018;68:7–30.

3. Prat J. Ovarian carcinomas: five distinct diseases with different origins, genetic alterations, and clinicopathological features. *Virchows Arch* 2012;460:237–49.

4. Hollis RL, Gourley C. Genetic and molecular changes in ovarian cancer. *Cancer Biol Med* 2016;13:236–47.

5. Kuhn E, Kurman RJ, Vang R, Sehdev AS, Han G, Soslow R, et al. TP53 mutations in serous tubal intraepithelial carcinoma and concurrent pelvic high-grade serous carcinoma—evidence supporting the clonal relationship of the two lesions. *J Pathol* 2012;226:421–6.

6. Kurman RJ, Shih IM. The origin and pathogenesis of epithelial ovarian cancer: a proposed unifying theory. *Am J Surg Pathol* 2010;34:433–43.

7. Marquez RT, Baggerly KA, Patterson AP, Liu J, Broadrus D, Frumovitz M, et al. Patterns of gene expression in different histotypes of epithelial ovarian carcinoma correlate with those in normal fallopian tube, endometrium, and colon. *Clin Cancer Res* 2005;11:616–26.

8. Perets R, Wyant GA, Muto KW, Bijron JG, Poole BB, Chin KT, et al. Transformation of the fallopian tube secretory epithelium leads to high-grade serous ovarian cancer in Brca2;TP53;Pten models. *Cancer Cell* 2013;24:751–65.

9. Somigliana E, Vigno P, Parazzini F, Stoppelli S, Giambattista E, Vercellini P. Association between endometriosis and cancer: a comprehensive review and a critical analysis of clinical and epidemiological evidence. *Gynecol Oncol* 2006;101:331–41.

10. Ledermann JA, Raja FA, Fotopoulou C, Gonzalez-Martin A, Colombo N, Sessa C. Newly diagnosed and relapsed epithelial ovarian carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. *Ann Oncol* 2013;24 (Suppl 6):v24–32.

11. Burger RA, Brady MF, Bookman MA, Fleming GF, Monk BJ, Huang H, et al. Incorporation of bevacizumab in the primary treatment of ovarian cancer. *N Engl J Med* 2011;365:2473–83.

12. Ledermann J, Harter P, Gourley C, Friedlander M, Vergote I, Rustin G, et al. Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer. *N Engl J Med* 2012;366:1382–92.

13. Moore K, Colombo N, Scambia G, Kim BG, Oaknin A, Friedlander M, et al. Maintenance olaparib in patients with newly diagnosed advanced ovarian cancer. *N Engl J Med* 2018;379:2495–505.

14. Oza AM, Cook AD, Pfisterer J, Emberton A, Ledermann JA, Pujade-Lauraine E, et al. Standard chemotherapy with or without bevacizumab for women with newly diagnosed ovarian cancer (ICON7): overall survival results of a phase 3 randomised trial. *Lancet Oncol* 2015;16:928–36.

15. Perren TJ, Swart AM, Pfisterer J, Ledermann JA, Pujade-Lauraine E, Kristensen G, et al. A phase 3 trial of bevacizumab in ovarian cancer. *N Engl J Med* 2011;365:2484–96.

16. Tevvari KS, Java JJ, Eskander RN, Monk BJ, Burger RA. Early initiation of chemotherapy following complete resection of advanced ovarian cancer associated with improved survival: NRG Oncology/ Gynecologic Oncology Group study. *Ann Oncol* 2016;27:114–21.

17. Rojas V, Hirshfield KM, Ganesan S, Rodriguez-Rodriguez I. Molecular characterization of epithelial ovarian cancer: implications for diagnosis and treatment. *Int J Mol Sci* 2016;17:2113. https://www.ncbi.nlm.nih.gov/pubmed/27983698
Patterns in ovarian cancer outcome over time

18 Farley J, Brady WE, Vathipadiekal V, Lankes HA, Coleman R, Morgan MA, et al. Selumetinib in women with recurrent low-grade serous carcinoma of the ovary or peritoneum: an open-label, single-arm, phase 2 study. Lancet Oncol 2013;14:134–40.

19 McAlpine JW, Wiegand KC, Yang R, Ronnett BM, Adamiaik A, Köbel M, et al. HER2 overexpression and amplification is present in a subset of ovarian mucinous carcinomas and can be targeted with trastuzumab therapy. BMC Cancer 2009;9:433.

20 Chan JK, Tian C, Monk BJ, Herzog T, Kapp DS, Bell J, et al. Prognostic factors for high-risk early-stage epithelial ovarian cancer: a Gynecologic Oncology Group Study. Cancer 2008;112:2202–10.

21 Seifert H, Georgiou A, Alexander H, McLachlan J, Bodla S, Kaye S, et al. Poor performance status (PS) is an indication for an aggressive approach to neoadjuvant chemotherapy in patients with advanced epithelial ovarian cancer (EOC). Gynecol Oncol 2015;139:216–20.

22 Swenerton KD, Hislop TG, Spinelli J, Leffrice JC, Yang N, Boyes DA. Ovarian carcinoma: a multivariate analysis of prognostic factors. Obstet Gynecol 1985;65:264–70.

23 Winter WE III, Maxwell GL, Tian C, Carlson JW, Ozols RF, Rose PG, et al. Prognostic factors for stage III epithelial ovarian cancer: a Gynecologic Oncology Group Study. J Clin Oncol 2007;25:3621–7.

24 Bristow RE, Tomacruz RS, Armstrong DK, Trimble EL, Montz FJ. Survival effect of maximal cytoreductive surgery for advanced ovarian carcinoma during the platinum era: a meta-analysis. J Clin Oncol 2002;20:1248–59.

25 du Bois A, Reuss A, Pujade-Lauraine E, Knottnerus TO, et al. Aggressive surgical effort and improved survival in ovarian cancer. Gynecol Oncol 2015;139:216–23.

26 Hamilton CA, Miller A, Casablanca Y, Horowitz NS, Runguang B, Krivak TC, et al. Clinicopathologic characteristics associated with long-term survival in advanced epithelial ovarian cancer: an NRG Oncology/Gynecologic Oncology Group ancillary data study. Gynecol Oncol 2018;148:275–80.

27 Al Rawahi T, Lopes AD, Bristow RE, Bryant A, Elattar A, Chattopadhyay S, et al. Surgical cytoreduction for recurrent epithelial ovarian cancer. Cochrane Database Syst Rev 2013;(2):CD008765.

28 Aletti GD, Dowdy SC, Gostout BS, Jones MB, Stanhope CR, Wilson TO, et al. Aggressive surgical effort and improved survival in advanced-stage ovarian cancer. Obstet Gynecol 2006;107:77–85.

29 Chi DS, Eisenhauer EL, Lang J, Huh J, Haddad L, Abu-Rustum NR, et al. What is the optimal goal of primary cytoreductive surgery for bulky stage IIIC epithelial ovarian carcinoma (EOC)? Gynecol Oncol 2006;103:559–64.

30 Eisenkop SM, Spirots NM. What are the current surgical objectives, strategies, and technical capabilities of gynecologic oncologists treating advanced epithelial ovarian cancer? Gynecol Oncol 2001;82:489–97.

31 Peiretti M, Zanagnolo V, Aletti GD, Bocciolone L, Colombo N, Landoni F, et al. Role of maximal primary cytoreductive surgery in patients with advanced epithelial ovarian and tubal cancer: surgical and oncological outcomes. Single institution experience. Gynecol Oncol 2010;119:259–64.

32 Griffiths CT. Surgical resection of tumor bulk in the primary treatment of ovarian carcinoma. Nat Cancer Inst Monogr 1975;42:101–4.

33 Cheasley D, Wakefield MJ, Ryland GL, Allan PE, Alsop K, Amarasighe KC, et al. The molecular origin and taxonomy of mucinous ovarian carcinoma. Nat Commun 2019;10:3935.

34 Hollis RL, Carmichael J, Meynert AM, Churchman M, Hallas-Potts A, Rye T, et al. Clinical and molecular characterization of ovarian carcinoma displaying isolated lymph node relapse. Am J Obstet Gynecol 2019;221:245.e1–15.

35 Hollis RL, Churchman M, Michie CO, Rye T, Knight L, McCavigan A, et al. High EMSY expression defines a BRCA1-like subgroup of high-grade serous ovarian carcinoma with prolonged survival and hypersensitivity to platinum. Cancer 2019;125:2772–81.

36 Hollis RL, Meynert AM, Churchman M, Rye T, Mackean M, Nussey F, et al. Enhanced response rate to pegylated liposomal doxorubicin in high grade serous ovarian carcinomas harbouring BRCA1 and BRCA2 aberrations. BMC Cancer 2018;18:16.

37 Hollis RL, Meynert AM, Churchman M, Rye T, Roxburgh P, Stetson D, et al. Abstract 749: Multi-layer molecular characterization of high grade serous ovarian carcinomas. Cancer Res 2019;79 (13 Suppl):749.

38 Hollis RL, Stanley B, Iida Y, Thomson J, Churchman M, Rye T, et al. Hormone receptor expression patterns define clinically meaningful subgroups of endometrioid ovarian carcinoma. Gynecol Oncol 2019;155:318–23.

39 Stanley B, Hollis RL, Nunes H, Towler JD, Yan X, Rye T, et al. Endocrine treatment of high grade serous ovarian carcinoma; quantification of efficacy and identification of response predictors. Gynecol Oncol 2019;152:278–85.

40 Rustin GJ, Vergote I, Eisenhauer E, Pujade-Lauraine E, Quinn M, Thigpen T, et al. Definitions for response and progression in ovarian cancer clinical trials incorporating RECIST 1.1 and CA 125 agreed by the Gynecological Cancer Intergroup (GCIG). Int J Gynecol Cancer 2011;21:419–23.

41 Baldwin LA, Huang B, Miller RW, Tucker T, Goodrich ST, Podzielinski I, et al. Ten-year relative survival for epithelial ovarian cancer. Obstet Gynecol 2012;120:612–4.

42 Barnholtz-Sloan JS, Schwartz AG, Qureshi F, Jacques S, Malone J, Munkarah AR. Ovarian cancer: changes in patterns at diagnosis and relative survival over the last three decades. Am J Obstet Gynecol 2003;189:1120–7.

43 Wright JD, Chen L, Tergas AI, Patankar S, Burke WM, Hou JY, et al. Trends in relative survival for ovarian cancer from 1975 to 2011. Obstet Gynecol 2015;125:1345–52.

44 Chi DS, Eisenhauer EL, Zivovic O, Sonoda Y, Abu-Rustum NR, Levine DA, et al. Improved progression-free and overall survival in advanced ovarian cancer as a result of a change in surgical paradigm. Gynecol Oncol 2009;114:26–31.

45 Gershenson DM, Bodurka DC, Coleman RL, Lu KH, Malpica A, Sun CC. Hormonal maintenance therapy for women with low-grade serous cancer of the ovary or peritoneum. J Clin Oncol 2017;35:1103–11.

46 Gilks CB, Ionescu DN, Kalloger SE, Churchman M, Rye T, et al. Patterns in ovarian cancer outcome over time and oncological outcomes. Single institution experience. Mod Pathol 1995;8:573–6.

47 McCluggage WG. My approach to and thoughts on the typing of ovarian carcinomas. J Clin Pathol 2008;61:152–63.

48 Sormani MP. The Will Rogers phenomenon: the effect of different diagnostic criteria. J Neurol Sci 2009;287 (Suppl 1):S46–9.

49 Wu SG, Wang J, Sun JY, He ZY, Zhang WW, Zhou J. Real-world impact of survival by period of diagnosis in epithelial ovarian cancer between 1990 and 2014. Front Oncol 2019:9:639.

50 Peres LC, Cushing-Haagen KL, Köbel M, Harris HR, Berchuck A, Rossing MA, et al. Invasive epithelial ovarian cancer survival by histotype and disease stage. J Natl Cancer Inst 2018;111:60–8.
52 Hess V, A’Hern R, Nasiri N, King DM, Blake PR, Barton DP, et al. Mucinous epithelial ovarian cancer: a separate entity requiring specific treatment. J Clin Oncol 2004;22:1040–4.

53 Sugiyama T, Kamura T, Kigawa J, Terakawa N, Kikuchi Y, Kita T, et al. Clinical characteristics of clear cell carcinoma of the ovary: a distinct histologic type with poor prognosis and resistance to platinum-based chemotherapy. Cancer 2000;88:2584–9.

54 Engel J, Eckel R, Schubert-Fritschle G, Kerr J, Kuhn W, Diebold J, et al. Moderate progress for ovarian cancer in the last 20 years: prolongation of survival, but no improvement in the cure rate. Eur J Cancer 2002;38:2435–45.

55 Kosary CL. FIGO stage, histology, histologic grade, age and race as prognostic factors in determining survival for cancers of the female gynecological system: an analysis of 1973–87 SEER cases of cancers of the endometrium, cervix, ovary, vulva, and vagina. Semin Surg Oncol 1994;10:31–46.

56 Bertelsen K. Tumor reduction surgery and long-term survival in advanced ovarian cancer: a DACOVA study. Gynecol Oncol 1990;38:203–9.

57 Hoskins WJ, Bundy BN, Thigpen JT, Omura GA. The influence of cytoreductive surgery on recurrence-free interval and survival in small-volume stage III epithelial ovarian cancer: a Gynecologic Oncology Group study. Gynecol Oncol 1992;47:159–66.

58 Hoskins WJ, McGuire WP, Brady MF, Homesley HD, Creasman WT, Berman M, et al. The effect of diameter of largest residual disease on survival after primary cytoreductive surgery in patients with suboptimal residual epithelial ovarian carcinoma. Am J Obstet Gynecol 1994;170:974–80.

59 Tew WP. Ovarian cancer in the older woman. J Geriatr Oncol 2016;7:354–61.