Quality of vitamin K antagonist control and outcomes in atrial fibrillation patients: a meta-analysis and meta-regression

Elizabeth S Mearns¹,², C Michael White¹,², Christine G Kohn¹,², Jessica Hawthorne¹, Ju-Sung Song¹, Joy Meng¹, Jeff R Schein³, Monika K Raut³ and Craig I Coleman¹,²*

Abstract

Background: Atrial fibrillation (AF) patients frequently require anticoagulation with vitamin K antagonists (VKAs) to prevent thromboembolic events, but their use increases the risk of hemorrhage. We evaluated time spent in therapeutic range (TTR), proportion of international normalized ratio (INR) measurements in range (PINRR), adverse events in relation to INR, and predictors of INR control in AF patients using VKAs.

Methods: We searched MEDLINE, CENTRAL and EMBASE (1990-June 2013) for studies of AF patients receiving adjusted-dose VKAs that reported INR control measures (TTR and PINRR) and/or reported an INR measurement coinciding with thromboembolic or hemorrhagic events. Random-effects meta-analyses and meta-regression were performed.

Results: Ninety-five articles were included. Sixty-eight VKA-treated study groups reported measures of INR control, while 43 studies reported an INR around the time of the adverse event. Patients spent 61% (95% CI, 59–62%), 25% (95% CI, 23–27%) and 14% (95% CI, 13–15%) of their time within, below or above the therapeutic range. PINRR assessments were within, below, and above range 56% (95% CI, 53–59%), 26% (95% CI, 23–29%) and 13% (95% CI, 11–17%) of the time. Patients receiving VKA management in the community spent less TTR than those managed by anticoagulation clinics or in randomized trials. Patients newly receiving VKAs spent less TTR than those with prior VKA use. Patients in Europe/United Kingdom spent more TTR than patients in North America. Fifty-seven percent (95% CI, 50-64%) of thromboembolic events and 42% (95% CI, 35 – 51%) of hemorrhagic events occurred at an INR <2.0 and >3.0, respectively; while 56% (95% CI, 48-64%) of ischemic strokes and 45% of intracranial hemorrhages (95% CI, 29-63%) occurred at INRs <2.0 and >3.0, respectively.

Conclusions: Patients on VKAs for AF frequently have INRs outside the therapeutic range. While, thromboembolic and hemorrhagic events do occur patients with a therapeutic INR; patients with an INR <2.0 make up many of the cases of thromboembolism, while those >3.0 make up many of the cases of hemorrhage. Managing anticoagulation outside of a clinical trial or anticoagulation clinic is associated with poorer INR control, as is, the initiation of therapy in the VKA-naïve. Patients in Europe/UK have better INR control than those in North America.

Keywords: Vitamin K antagonists, Atrial fibrillation, International normalized ratio, Anticoagulation
Background

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia worldwide and increases the risk of ischemic stroke by nearly 5-fold [1,2]. Studies have demonstrated that adjusted-dose vitamin K antagonists (VKAs) significantly decrease the risk of stroke in AF patients versus placebo or aspirin therapy [3,4]. However, VKA use can be challenging given the narrow therapeutic international normalized ratio (INR) range, requirement for periodic INR monitoring, high inter-patient variability in response, numerous drug and food interactions and risks related to non-adherence [5].

In previous meta-analyses [6-9] the quality of anticoagulation control with VKAs has proven to be poor; with an estimated time spent in the therapeutic INR range (TTR) between 55% and 64%. Numerous study-level factors (e.g., VKA dosing setting) have been shown to be an important determinant of the quality of INR control. Thromboembolic events may occur more frequently at an INR <2.0 and major hemorrhagic events at an INR >3.0 [10]. No previous meta-analyses have examined INR control in VKA-experienced as compared to naïve patients as a study-level factor, not all analyses have looked at AF alone, and few have assessed the percentage of INRs in therapeutic range (PINRR) as a quality measure of INR control. Moreover, there has been a substantive increase in the number of studies assessing INRs in patients with AF receiving VKAs in the past few years, lending more power and validity to a systematic assessment of INR control being conducted now.

The primary objective of this systematic review with meta-analyses and meta-regression analyses was to assess VKA INR control in AF patients and the effect of selected study-level factors (including prior VKA treatment experience) on TTR and the PINRR, and to evaluate the relationship between the proportion of VKA-associated hemorrhagic and thromboembolic events that occurred when the INR was above or below the therapeutic range.

Methods

Study selection

A systematic review of MEDLINE, CENTRAL and EMBASE (from 1990 through June 2013) was performed. Our search strategy for Medline is provided in the Additional file 1. Two investigators reviewed all potentially relevant articles independently, with disagreement resolved by a third investigator. Studies were selected for inclusion on the basis of the following criteria: English full-text randomized controlled trials (RCT), prospective cohort studies or retrospective analyses; contained ≥50 patients in each treatment group; conducted in adult patients (≥18 years of age) receiving dose-adjusted VKA with AF as their primary reason for anticoagulation; and INR control reported as TTR, PINRR or report an INR measurement at (within 48 hours of the event) or near (more than 48 hours from the event) the time of a hemorrhagic or thromboembolic event. Studies were excluded if the duration of study was <3 months, the target INR range was other than 2.0 to 3.0, or patient population overlapped with another study. Manual backward citation tracking of references from identified studies and review articles was also performed to identify additional relevant studies.

Data abstraction

Two investigators used a common data abstraction tool, but independently abstracted all data. If a disagreement arose it was resolved by a third investigator. The following study-level information was obtained: author identification, year of publication (1990–2000, 2001–2007 or 2008–2013), whether patients were VKA-naïve (<30% of the population receiving a VKA prior to entering the study) or experienced (>70% of the population receiving a VKA prior to entering the study), geographic location of the study (Europe/United Kingdom (UK), Asia, North America, multinational or other), duration of VKA treatment, specific VKA used, interpolation method, whether patients were utilizing VKA self-management to monitor INR control and the study setting (anticoagulation clinic, RCT, or community/standard practice). The setting was designated using the following definitions: an anticoagulation clinic, if the study took place in an anticoagulation clinic or if the stated role of the study clinicians in patient care was limited to managing anticoagulation; a randomized trial if random allocation was employed to assign subjects to receive warfarin or another non-warfarin therapy; and all others were classified as community practice.

Measures of INR control and outcomes were abstracted from each study including TTR, time spent above range, time spent below range, PINRR, proportion of INR measurements above and below therapeutic range and clinical outcomes of major hemorrhage and thromboembolic events. Major hemorrhages included intracranial hemorrhage (ICH) and extracranial bleeding (bleeding requiring hospitalization, blood transfusion or surgical treatment or occurring at a critical anatomical location). All thromboembolic events were abstracted including ischemic stroke, systemic emboli, venous thromboembolism and myocardial infarction. INR measurements at or near each thromboembolic and hemorrhagic event were abstracted when reported.

Statistical analysis

TTR and PINRR for each study group, as well as the time/proportions below and above range for these measures were expressed as an incidence density using a person-time approach. The numerator was calculated as the proportion of time that the group spent within, below or above the
INR range or proportion of INR measurements in, below, or above range multiplied by person-years of follow-up. The denominator was the total person-years of observation for each study group (or the mean/median observation time multiplied by the number of patients in each study group, if person-years of follow-up for the VKA arm(s) in a study was not reported). Ninety-five percent confidence intervals (CIs) were calculated for each incidence density using the Wilson score method without continuity correction. For the purposes of these analyses, all studies were pooled using a random-effects model.

In order to determine how study-level factors influenced TTR or PINRR, both subgroup and meta-regression analyses were conducted. Meta-regression analysis allows evaluating the effect of any given influencing factor independent of the effect of other aspects. A multiple linear mixed method model using both random- and fixed-effects was utilized for meta-regression, which was weighted by the inverse of the variance of TTR or PINRR. Fixed-effects were assumed for study-level factors, including the following covariates: prior experience with VKAs (naïve, experienced, mixed/not reported), study design (community, anticoagulation clinic, RCT), study year (from 1990–2000 and 2001–7, 2008–2013), use of self-management or not, interpolation method (linear or other), geographic region (North America [United States and Canada], Europe/UK, Asia, multinational, other) and duration of VKA treatment (<1 year, ≥1 year). No hierarchy was used in the model for these covariates.

The weighted proportion of thromboembolic and hemorrhagic events occurring outside of the INR range for each study group was also calculated. For this analysis, the numerator was the number of thromboembolic events occurring below an INR of 2.0 or the number of hemorrhagic events above an INR of 3.0. The denominators were the total number of thrombotic or hemorrhagic events for each study group. Ninety-five percent CIs were calculated for each proportion using the Wilson score method without continuity correction. Again, all studies were pooled using a random-effects model. Since not all studies measured INR values at the exact time of adverse outcomes, we conducted two separate analyses, one pooling studies regardless of the elapsed time between the INR measurement and the adverse event; and a second (sensitivity analysis) including only those studies specifically stating an INR was measured within 48 hours of the event.

For all meta-analyses, statistical heterogeneity was determined using the I² statistic (with an I² > 50% signifying an important degree of statistical heterogeneity) and publication bias was assessed using the Egger’s weighted regression statistic (with a p < 0.05 suggesting a higher likelihood of publication bias) and through review of funnel plots (scatterplots of effect size against standard error, where the each dot represents a study effect estimate and the vertical line represents the pooled effect). Statistical analyses were performed using StatsDirect version 2.7.6 (StatsDirect Ltd., Cheshire, England), SAS, version 9.2 (SAS Institute Inc., Cary, NC), and SPSS 15.0 for Windows (SPSS, Inc, Chicago, IL).

Results

We identified 5,326 citations, of which 5,231 were excluded (Figure 1). Ninety-five articles met our inclusion and exclusion criteria [11-103]. Sixty-eight studies reported measures of INR control representing 87 VKA study arms, and 43 studies reported an INR at or near the time of the adverse event (16 studies reported both and were included in both analyses).

Of the 87 VKA study groups that reported a measure of INR control, 17 reported data on patients with no prior VKA exposure whereas 47 enrolled patients who were VKA-experienced and 23 did not report prior VKA exposure data or had mixed enrollment. Twenty-eight VKA groups were from RCTs, 27 were conducted in an anticoagulation clinic setting, and 32 were in a community practice setting (Table 1). Thirty-nine VKA study groups were recruited in Europe/UK, 5 from Asia, 13 were multinational, 1 from Israel and 29 from North America. The mean age ranged from 62 to 92 years (median, 72 years), the number of VKA-treated patients ranged from 55 to 11,770 (median, 249), and the person-years of VKA therapy ranged from 17 to 30,188 (median, 399). Of the 43 identified studies that reported an INR with an adverse event, 16 were RCTs, 14 were conducted in an anticoagulation clinic, and 13 were from community practice with the number of VKA-treated patients ranged from 55 to 9,217 (median, 288) (Table 1).

For the first meta-analysis, 78 out of 87 (90%) study groups reported a TTR and 55 (63%) reported the time spent below and above range; 22 of 87 (25%) study groups reported a PINRR and 21 (24%) reported the percent of INR measures below and above range (Table 2). Thirteen study groups (15%) reported both TTR and PINRR. Overall, patients spent 61% of their TTR (95% CI, 59–62%), 25% (95% CI, 23–27%) below, and 14% (95% CI, 13–15%) above range. Similarly for PINRR, 56% of INR measures were in the therapeutic range (95% CI, 53–59%), 26% (95% CI, 23–29%) below and 13% (95% CI, 11–17%) above range. Statistical heterogeneity was observed to be high between the groups included in these analyses (I² ≥ 97%). The likelihood of publication bias appeared low for TTR, time above range, PINRR, and proportion of INR measurements below and above range. However, publication bias was deemed more likely for the time below range analysis (Egger's p = 0.03) (Additional file 1).

Upon meta-regression to determine how study-level factors influenced TTR, community VKA management was associated with less time in range than therapy
managed in an anticoagulation clinic or RCT setting, European/UK study patients spent more time in range than North American study patients, and the VKA-naïve (and mixed/not reported) spent less time in range than VKA-experienced patients (Table 3). For PINRR, no study-level factor was found to be significantly different than the referent upon meta-regression (p > 0.05) (Table 4).

In the second meta-analysis, 30 of 43 studies (70%) reported an INR measure with thromboembolic events, 21 (49%) reported an INR with ischemic stroke, 32 (74%) reported INRs with major hemorrhage, and 16 (37%) reported an INR with ICH. INR data was incomplete in 58% of the studies that reported adverse events; not all events were reported with an INR measure. Thirty percent of the studies used previously reported INRs, allowing INR measures from 3 days up to 12 days prior to be considered temporally related to the adverse event.

Overall, 57% of the thromboembolic events occurred at an INR <2.0 (95% CI, 50-64%) and 42% of hemorrhagic events occurred at an INR >3.0 (95% CI, 35 – 51%) (Figures 2 and 3). A high degree of heterogeneity was present for studies that reported thromboembolic and hemorrhagic events (I² = 80% and 77% respectively); however, the presence of publication bias was deemed low (Egger’s p = 0.31 and p = 0.69, respectively) (Additional file 1). When ischemic stroke and ICH were evaluated separately from other events, we found that 56% of ischemic strokes (95% CI, 48 – 64%) and 45% of ICHs (95% CI,
Study, Year	Study design/setting	VKA-treated N	Mean age	VKA experience, %	Geographic region	Interpolation method	Self-management	Duration of therapy, months (Patient-years)	VKA studied
Abdelhafiz 2004 [11]	PD/AC clinic	402	72	0%	Europe	Linear	N	19 (637)	W
Abdelhafiz (<75) 2008 [12]	PD/AC clinic	203	64	0%	Europe	Linear	N	19 (321)	W
Abdelhafiz (≥75) 2008 [12]	PD/AC clinic	199	80	0%	Europe	Linear	N	19 (315)	W
Akdeniz 2005 [13]	PD/Community	208	66	NR	Turkey	-	-	-	-
Albers 2005 [14]	RCT	1962	72	85%	N. America	Linear	N	20 (3270)	W
Anderson 2004 [15]	RD/AC clinic	87	NR	100%	N. America	NR	N	12 (87)	W
Arness (Italy) 2007 [16]	RD/AC clinic	177	72						W
Arness (Spain) 2007 [16]	RD/AC clinic	218	72						W
Arness (US) 2007 [16]	RD/Community	686	75	100%	Multinational	Linear	N	12 (686)	W
Arness (Canada) 2007 [16]	RD/Community	152	74						W
Arness (France) 2007 [16]	RD/Community	278	73						F
Arness 1999 [17]	PD/Community	125	83	NR	N. America	NR	N	34 (354)	W
Boulanger 2006 [18]	RD/Community	6454	68	65%	N. America	Linear	N	12 (6454)	W
Burton (<75) 2006 [19]	RD/Community	260	NR	Mixed	Europe	Linear	N	25 (539)	W
Burton (≥75) 2006 [19]	RD/Community	341							W
Cafolla (Manual) 2011 [20]	RD/Community	576	NR	100%	N. America	Linear	N	8 (384)	A,W
Cafolla 2012 [21]	PD/AC clinic	57	85	100%	Europe	Linear	N	18 (86)	W
Cheung 2005 [22]	RD/Community	555	70	100%	Asia	-	N	19 (893)	W
Chung 2011 [23]	RCT	75	65	55%	Asia	Linear	N	3 (19)	W
Connolly 1991 [24]	RCT	187	68	0%	N. America	Linear	N	15 (234)	W
Connolly 2006 [25]	RCT	3371	70	78%	N. America	Other	N	15 (4214)	NR
Copland 2001 [26]	RD/AC Clinic	328	70	100%	UK	-	N	21 (458)	W
Currie (stable) 2005 [27]	RD/Community	787	74	100%	Europe	Linear	N	35 (2282)	W
Currie (unstable) 2005 [27]	RD/Community	726	78	100%	Europe	Linear	N	35 (2105)	W
Dentali 2012 [28]	PD/AC Clinic	221	75	100%	Europe	-	N	3 (663)	W
DiMarco 2005 [29]	RCT	NR	70	NR	N. America	-	N	42 (--)	W
Dimberg (control SP) 2012 [30]	RD/Community	84	69	100%	Europe	Linear	N	12 (2064)	W
Dimberg (control ACC) 2012 [30]	RD/AC clinic	271	72	100%	Europe	Linear	N	12 (271)	W
EAAFT 1995 [31]	RCT	214	71	0%	Europe	-	N	24 (377)	W,A,F
Ellis 2009 [32]	RCT	66	68	97%	N. America	Linear	N	3 (17)	T
Evans 2000 [33]	PD/AC clinic	288	76	0%	Europe	NR	N	24 (576)	W
Evans 2001 [34]	PD/AC clinic	214	78	NR	Europe	NR	N	24 (448)	W
Table 1 Demographics of included studies (Continued)

Study	Design	N	Age %	Region	Recruitment	N	Linear	N	W
Ezekowitz 2007 [35]	RCT	70	69	100%	Multinational	3	(18)	W	
Fang 2004 [36]	RD/AC Clinic	170	78	100%	N. America	N	-	-	W
Gallagher 2011 [37]	RD/Community	18113	73	72%	Europe	Linear	N	20 (30188)	W
Garcia (naïve) 2013 [38]	RCT	3888	70	0%	Multinational	Linear	N	22 (7128)	W
Gladstone 2009 [39]	RD/Community	423	78	100%	N. America	N	-	-	W
Go 2003 [40]	RD/AC clinic	7445	71	Mixed	N. America	Linear	N	21 (12958)	W
Gullov 1998 [41]	RCT	170	73	0%	Europe	Linear	N	25 (355)	W
Gullov 1999 [42]	RCT	170	73	0%	Europe	Linear	N	25 (355)	W
Gurwitz 1997 [43]	RD/Community	117	83	32%	N. America	Linear	N	12 (117)	W
Hannon 2011 [44]	PD/Community	43	77	100%	Europe	-	N	-	W
Hart 2011 [45]	RCT	523	NR	0%	N. America	N	13 (575)	W	
Heidinger 2000 [46]	RD/Community	753	62	100%	Europe	NR	Y	12 (769)	NR
Hellemons 1999 [47]	RCT	131	70	0%	Europe	N	32 (354)	P,A	
Ho (hypertension) 2011 [48]	RD/Community	278	70	NR	Multinational	Linear	N	48 (1112)	W
Ho (no HTN) 2011 [48]	RD/Community	198	69	NR	Multinational	Linear	N	48 (792)	W
Holmes 2009 [49]	RCT	244	73	100%	Multinational	NR	N	18 (366)	W
Hori 2012 [50]	RCT	250	71	90%	Asia	Linear	N	30 (625)	W
Hylek 2003 [51]	RD/Community	188	76	100%	N. America	N	-	-	W
Hylek 2007 [52]	PD/AC clinic	472	77	0%	N. America	Linear	N	12 (360)	W
Jacobs 2009 [53]	RD/Community	90	NR	85%	N. America	Linear	N	12 (90)	W
Jones 2005 [54]	RD/Community	2223	72	100%	Europe	Linear	N	31 (5743)	W
Kalra 2000 [55]	PD/AC clinic	167	77	0%	Europe	Linear	N	24 (296)	W
Kim 2009 [56]	RD/AC clinic	129	64	100%	Asia	Other	N	24 (258)	W
Kim 2010 [57]	PD/AC clinic	499	73	100%	N. America	Linear	N	5 (208)	W
Kulo (warfarin) 2009 [58]	PD/Community	60	66	100%	Europe	NR	N	12 (60)	W
Kulo (acenocoumarol) 2009 [58]	PD/Community	57	68	100%	Europe	NR	N	12 (57)	A
Lee 2012 [59]	RD/Community	200	67	NR	Asia	Linear	N	42 (700)	W
Malik 2000 [60]	RD/AC clinic	247	68	100%	N. America	Other	N	13 (268)	W
Mant 2007 [61]	RCT	488	82	40%	Europe	Linear	N	32 (1301)	W
Matchar (control) 2002 [62]	RCT	317	76	NR	N. America	Linear	N	9 (238)	W
Matchar (prior to ACC) 2002 [62]	PD/AC clinic	363	75	90%	Europe	Linear	N	9 (272)	W
McBride 2007 [63]	PD/Community	361	71	90%	Europe	Linear	N	9 (271)	W
Study	Type	N	Country	Design	Treatment	N	W		
------------------------------	----------------------	----	------------------	--------	-----------	----	----		
McCormick 2001 [64]	RD/Community	174	N. America	Linear	N	12(174)	W		
Melamed 2011 [65]	RD/Community	906	Israel	Linear	N	10(769)	W		
Menzin 2005 [66]	RD/AC clinic	600	N. America	Linear	N	11(525)	W		
Morocutti 1997 [67]	RCT	454	Europe	Linear	N	4(132)	P,A,W		
Neree 2006 [68]	RD/Community	395	Europe	Linear	N	31(920)	W		
Nichol (ACC) 2008 [69]	RD/AC clinic	351	Europe	Linear	N	18(1165)	W		
Nichol (UC) 2008 [69]	RD/Community	756	Europe	Linear	N	14(475)	W		
Njaastad 2006 [70]	RD/AC clinic	421	Asia	Linear	N	22(286)	W		
Nozawa 2001 [71]	RD/Community	156	Asia	Linear	N	3(210)	W		
Ogawa 2011 [72]	RCT	75	Asia	Linear	N	23(399)	W		
Okumura (<70) 2011 [73]	PD/Community	208	Asia	Linear	N	16(2271)	W		
Olsson 2003 [74]	RCT	1703	Europe	Linear	N	20(11888)	W		
Ono 2005 [75]	PD/Community	63	Asia	Linear	N	28(145)	W		
Patel 2011 [76]	RCT	7133	Europe	Linear	N	14(179)	W		
Pengo 1998 [77]	RCT	153	Europe	Linear	N	17(615)	W		
Pengo 2001 [78]	PD/AC Clinic	433	Europe	Linear	N	64(704)	W		
Pengo 2010 [79]	RCT	132	Europe	Linear	N	33(556)	A		
Perez-Gomez 2004 [80]	RCT	237	Europe	Linear	N	3(286)	W		
Poli 2007 [81]	PD/AC clinic	290	Europe	Linear	N	34(814)	NR		
Poli 2009 [82]	PD/AC clinic	783	Europe	Linear	N	39(2567)	W		
Poli 2009 [83]	PD/AC clinic	578	Europe	Linear	N	38(1854)	NR		
Poli 2009 [84]	PD/AC clinic	780	Europe	Linear	N	36(2406)	W		
Poller (Manual) 2008 [85]	RCT	2967	Europe	Linear	N	17(4203)	W		
Sadanaga 2010 [86]	PD/Community	259	Asia	Linear	N	25(544)	W		
Samsa (ACC) 2000 [87]	RD/AC Clinic	43	Asia	Linear	N	9(32)	W		
Samsa (Rochester) 2000 [87]	RD/Community	61	N. America	Linear	N	9(46)	W		
Samsa (R. Triangle) 2000 [87]	RD/Community	125	Asia	Linear	N	9(94)	W		
Schwannenthal 2010 [88]	PD/Community	111	Israel	Linear	N	6(18)	W		
Sconce (vitamin K) 2007 [89]	RCT	35	Asia	Linear	N	10(2179)	W		
Sconce (placebo) 2007 [89]	RCT	35	Asia	Linear	N	72(33497)	W		
Shen 2007 [90]	RD/Community	72	N. America	Linear	N	40(2179)	W		
Singer 2009 [91]	RD/Community	9217	N. America	Linear	N	72(33497)	W		
SPAF III 1996 [92]	RCT	523	N. America	Linear	N	13(567)	W		
Study	Design	N	F	%	Region	Treatment	N. of Study	N. of Treatment	
---	-----------------	-----	----	-----	---------	------------	--------------	-----------------	
Sullivan (women) 2012 [93]	RCT	1594	71	87%	Multinational	Linear	N	42 (5579)	
Sullivan (men) 2012 [93]		2466	68	86%	Multinational	Linear	N	42 (8631)	
Tincani 2009 [94]	PD/AC Clinic	90	92	100%	Europe	Linear	N	12 (90)	
Van Spall 2012 [95]	RCT	6022	72	47%	Multinational	Linear	N	24 (12044)	
Voller (self-mgmt) 2005 [96]	RCT	101	65	0%	Europe	NR	Y	8 (68)	
Voller (UC) 2005 [96]		101	64		Europe	NR	N	NR	
Walker (MHC) 2011 [97]	RD/AC Clinic	22		100%	N. America	Linear	N	12 (22)	
Walker (no MHC) 2011 [97]		62			N. America	Linear	N	12 (62)	
Wieloch (AF) 2011 [98]	RD/Community	11770	73	100%	Europe	Linear	N	12 (11770)	
Weitz 2010 [99]	RCT	250	66	35%	N. America	Linear	N	3 (63)	
Wyse 2002 [100]	RCT	NR	70		N. America	-	N	42	
Yamaguchi 2000 [101]	RCT	55	66		Asia	NR	N	22 (101)	
Yasaka 2001 [102]	PD/Community	88		100%	Asia	-	N	22 (161)	
Yousef 2004 [103]	RD/Community	739	73	100%	Europe	NR	N	24 (1484)	

VKA = vitamin K antagonist; RCT = randomized controlled trial; RD = retrospective design; PD = prospective design; AC clinic = anticoagulation clinic; AF = atrial fibrillation; NR = not reported; N = North; VKA = Vitamin K Antagonist; W = warfarin; A = acenocoumarol; T = tecarfarin; P = phenprocoumon; F = fenprocoumon.
Table 2 Time in range and percentage of INR values in range and major adverse event rates

Study, year	N	TTR, %	PINRR, %	Event rate, % per patient-year						
		In range	Below range	Above range	In range	Below range	Above range	Bleeding	ICH	Ischemic stroke
Abdelhafiz 2004 [11]	402	66	19.7	14.3	-	-	-	1.7	-	-
Abdelhafiz (<75) 2008 [12]	203	58	16	26	-	-	-	1.6	0	-
Abdelhafiz (≥75) 2008 [12]	199	58	16	26	-	-	-	1.9	0	-
Albers 2005 [14]	1962	68	20	12	-	-	-	2.8	0.2	1.1
Anderson 2004 [15]	87	-	-	-	60.4	25.2	14.3	-	-	-
Ansell (Italy) 2007 [16]	177	68.9	21	10.1	60	26.3	13.6	-	-	-
Ansell (Spain) 2007 [16]	218	64.4	18.6	17	59	23.3	17.7	-	-	-
Ansell (US) 2007 [16]	686	57	29.1	13.9	50.8	32	17.3	-	-	-
Ansell (Canada) 2007 [16]	152	61	25.9	13.1	58.4	27.6	14	-	-	-
Ansell (France) 2007 [16]	278	58.1	15.4	26.5	51.3	19.7	29	-	-	-
Aronow 1999 [17]	125	-	-	-	68	26	6	-	-	11.3
Boulanger 2006 [18]	6454	48	38	14	-	-	-	2.8	-	-
Burton (<75) 2006 [19]	260	68	17	15	-	-	-	2.8	-	-
Burton (≥75) 2006 [19]	341	68	19	13	-	-	-	2.4	-	-
Cafolla (Manual) 2011 [20]	576	60.4	-	-	-	-	-	-	-	-
Cafolla 2012 [21]	57	64.4	-	-	-	-	-	0	-	-
Chung 2011 [23]	75	45.1	43.9	10.9	-	-	-	10.5	0	0
Connolly 1991 [24]	187	43.7	39.6	16.6	-	-	-	2.1	0.4	2.1
Connolly 2006 [25]	3371	63.8	20.8	15.4	-	-	-	2.2	1.0	-
Currie (stable) 2005 [27]	787	74.9	-	-	-	-	-	0.4	-	-
Currie (unstable) 2005 [27]	726	55.7	-	-	-	-	-	1.2	-	-
Dimberg (UC) 2012 [30]	84	64.3	-	-	-	-	-	-	-	-
Dimberg (ACC) 2012 [30]	271	73.6	-	-	-	-	-	-	-	-
Ellis 2009 [32]	66	71.4	-	-	70.7	16.0	13.3	5.8	-	-
Evans 2000 [33]	288	55	26	19	-	-	-	3.1	0.5	5.5
Evans 2001 [34]	214	66	-	-	-	-	-	3.1	0.7	4.2
Ezekowitz 2007 [35]	70	57.2	-	-	-	-	-	0	-	-
Gallagher 2011 [37]	18113	63.1	20.7	16.2	-	-	-	-	-	-
Garcia (naïve) 2013 [38]	3888	61.4	-	-	-	-	-	3.0	0.8	-
Garcia (exp) 2013 [38]	5193	69.1	-	-	-	-	-	3.2	0.8	-
Go 2003 [40]	7445	62.5	26.8	10.7	-	-	-	1.5	0.4	1.1
Gullov 1998 [41]	170	73	18	9	-	-	-	1.1	0.6	0.8
Table 2 Time in range and percentage of INR values in range and major adverse event rates (Continued)

Study Description	n	Mean INR	% INR	% Above 3	% Below 2	% Above 4	% Below 2	% Above 3	% Below 2	% Above 4	% Below 2	% Above 3
Gurwitz 1997 [43]	117	39.6	44.8	15.6	-	-	-	-	-	-	-	-
Heidinger 2000 [46]	753	-	-	-	69.5	23.5	7.0	1.7	-	-	-	-
Ho (HTN) 2011 [48]	278	49.7	45.4	4.9	-	-	-	-	-	-	1.7	0.5
Ho (no HTN) 2011 [48]	198	49.8	44.2	6.0	-	-	-	-	-	-	-	-
Holmes 2009 [49]	244	66	-	-	-	-	-	2.7	-	1.6	-	-
Hori 2012 [50]	250	-	-	-	51.8	43.8	4.2	-	0.8	-	0.3	-
Hylek 2007 [52]	472	58	29	11	-	-	-	-	-	-	7.2	2.5
Jacobs 2009 [53]	90	49	35	15	-	-	-	-	-	-	-	5.6
Jones 2005 [54]	2223	68.9	16.7	15.4	53.4	-	-	-	-	-	-	-
Kalra 2000 [55]	167	61	26	13	-	-	-	-	-	-	1.4	0.3
Kim 2009 [56]	129	-	-	-	60.9	31.2	9.1	0	-	-	-	-
Kim 2010 [57]	499	73.4	-	-	-	-	-	-	-	-	-	-
Kulo (warfarin) 2009 [58]	60	-	-	-	51.8	42.8	5.4	-	-	-	-	-
Kulo (acenocoum) 2009 [58]	57	-	-	-	53.6	35.9	10.5	-	-	-	-	-
Lee 2012 [59]	200	48.5	-	-	-	-	-	-	-	-	-	-
Malik (AF) 2000 [60]	247	58.9	27.4	14.1	-	-	-	-	-	-	-	-
Mant 2007 [61]	488	67	19	14	-	-	-	-	-	-	1.9	0.8
Matchar (control) 2002 [62]	317	52.3	31.8	15.9	-	-	-	-	-	-	2.1	-
Matchar (ACC) 2002 [62]	363	55.6	31.2	13.1	-	-	-	-	-	-	2.2	-
McBride 2007 [63]	361	56	16	28	-	-	-	-	-	-	-	-
McCormick 2001 [64]	174	51	36	13	-	-	-	-	-	-	-	-
Melamed 2011 [65]	906	48.6	32.0	19.3	-	-	-	-	-	-	-	-
Menzin 2005 [66]	600	62	25	13	-	-	-	-	-	-	3.6	1.0
Neree 2006 [68]	395	53	-	-	52.8	8.7	38.5	4.4	-	-	-	-
Nichol (ACC) 2008 [69]	351	68	21	11	-	-	-	-	-	-	2.3	-
Nichol (UC) 2008 [69]	756	42	49	9	-	-	-	-	-	-	6.3	-
Njaastad 2006 [70]	421	71.5	-	-	-	-	-	-	-	-	0.8	-
Okumura (<70) 2011 [73]	208	46	51	2	-	-	-	-	-	-	-	-
Olsson 2003 [74]	1703	66	-	-	-	-	-	-	-	-	2.2	1.9
Patel 2011 [76]	7133	55	-	-	-	-	-	-	-	-	3.4	0.7
Pengo 1998 [77]	153	70	18	12	-	-	-	-	-	-	2.8	0.6
Pengo 2010 [79]	132	65	25	9	-	-	-	-	-	-	3.0	-
Perez-Gomez 2004 [80]	237	65	19	16	-	-	-	-	-	-	1.8	-

Mearns et al. Thrombosis Journal 2014, 12(1):14
Study	N	INR	TTR	MAER					
Poli 2007 [81]	290	69	15	16	-	-	2.1	1.4	-
Poli 2009 [82]	783	71	14	15	-	-	1.4	0.7	0.9
Poli 2009 [83]	578	68	16	16	-	-	-	-	-
Poller (Manual) 2008 [85]	2967	66.2	-	-	-	-	-	-	-
Samsa (ACC) 2000 [87]	43	60.3	25.9	13.8	54.9	26.7	18.3	-	-
Samsa (Rochester) 2000 [87]	61	46.9	33.9	19.3	43.6	33.5	22.9	-	-
Samsa (R. Triangle) 2000 [87]	125	35.6	52.1	12.2	34.2	51.0	14.8	-	-
Sconce (vitamin K) 2007 [89]	35	87	-	-	-	-	-	-	-
Sconce (placebo) 2007 [89]	35	78	-	-	-	-	-	-	-
Shen 2007 [90]	NR	54.5	36.3	9.2	-	-	-	0.5	-
SPAF III 1996 [92]	523	-	-	61	25	14	-	-	-
Sullivan (women) 2012 [93]	1594	60	29	11	-	-	-	-	0.8
Sullivan (men) 2012 [93]	2466	63	26	14	-	-	-	-	-
Tincani 2009 [94]	90	66	19	14	-	-	5.5	3.3	2.2
Van Spall 2012 [95]	6022	64	22	13	-	-	-	-	-
Voller (self-mgmt) 2005 [96]	101	72.4	13.6	14	67.8	15.2	17.0	2.9	-
Voller (UC) 2005 [96]	101	63.6	19.5	16.9	58.5	22.1	19.4	0	-
Walker (MHC) 2011 [97]	22	56.8	34.2	9.0	-	-	-	-	-
Walker (no MHC) 2011 [97]	62	65.9	30.7	3.4	-	-	-	-	-
Wieloch (AF) 2011 [98]	11770	76.5	-	-	-	-	2.6	-	-
Wetz 2010 [99]	250	49.7	-	-	-	-	-	1.6	-
Yousef 2004 [103]	739	-	-	62.8	22.9	14.3	1.9	-	-

AC = Anticoagulation; AF = atrial fibrillation; ICH = Intracranial Hemorrhage; HTN = Hypertension; INR = international normalized ratio; MGMT = Management; N = Number; SP = Standard Practice; TTR = time in the therapeutic range; PINRR = proportion of INR Measurements in range.
29-63%) occurred at INRs <2.0 and >3.0, respectively, but a high degree of heterogeneity was still present ($I^2 = 76\%$ and 85%, respectively) (Figures 4 and 5). Furthermore, when studies that allowed previously reported INRs (more than 48 hours prior to an event) were excluded, we found a higher proportion of events that occurred outside the therapeutic range for 59% of thromboembolic events (95% CI, 51 – 66%) and 47% of hemorrhagic events (95% CI, 37 – 58%).

Discussion

In a pooled analysis of AF studies performed worldwide between 1990 and June 2013, we found patients spent only 61% of their TTR and only 56% of their measured INRs were in range. Moreover, when patients were out of range, they were more likely to be below range and at an increased risk of thrombosis, as compared to being above range with an increased risk of bleeding. While, thromboembolic and hemorrhagic events did occur in patients with a therapeutic INR; we demonstrated more than half of all thromboembolic events occurred when the INR was less than 2.0 and more than 40% of all hemorrhagic events happened at an INR > 3.0. As such, the efficacy and safety of VKAs appear strongly tethered to the quality of INR control achieved.

Our meta-regression analyses showed three important findings. First, patients having their VKAs managed in the community setting spent significantly less TTR when

Table 3 Results of traditional meta-analysis and meta-regression analyses of time in the therapeutic range

Study-level factors	No. (%)	Unadjusted pooled mean upon subgroup analysis, % (95% CI)	Adjusted difference, % (95% CI)	p-value
All study groups	78 (100)	61 (59 to 62)	NA	NA
Study setting				
AC Clinic	25 (32.1)	64 (62 to 66)	7.2 (3.2 to 11.2)	<0.001
RCT	26 (33.3)	63 (61 to 65)	9.1 (4.3 to 13.9)	<0.001
Community	27 (34.6)	55 (52 to 59)		
Study year				
1990-2000	10 (12.8)	53 (46 to 61)	−4.3 (−10.2 to 1.6)	0.16
2001-2007	34 (43.6)	64 (62 to 65)	2.2 (−1.7 to 6.1)	0.28
2008-2013	34 (43.6)	60 (57 to 63)	Referent	
Interpolation method				
NR/Other	11 (14.1)	63 (60 to 65)	−2.1 (−6.8 to 2.6)	0.38
Linear	67 (85.9)	60 (59 to 62)		
Self-management				
No	77 (98.7)	60 (58 to 62)	−6.8 (−23.7 to 10.1)	0.43
Yes	1 (1.3)	72 (68 to 77)		Referent
Geographic region				
Europe/UK	35 (44.9)	67 (64 to 69)	9.7 (6.0 to 13.4)	<0.001
Asia	3 (3.8)	47 (44 to 49)	−5.5 (−14.7 to 3.7)	0.24
Other	1 (1.3)	49 (46 to 52)	−3.0 (−16.1 to 10.1)	0.65
Multinational	13 (16.7)	61 (57 to 65)	1.8 (−4.1 to 7.7)	0.55
North America	26 (33.3)	55 (50 to 60)		Referent
VKA experience				
NR/Mixed	21 (26.9)	54 (49 to 60)	−4.6 (−8.3 to −0.9)	0.02
No	17 (21.8)	63 (60 to 66)	−5.3 (−9.6 to −1.0)	0.02
Yes	40 (51.3)	63 (60 to 66)		Referent
Duration of VKA treatment				
≥1 year	59 (75.6)	62 (60 to 63)	2.7 (−1.7 to 7.1)	0.23
<1 year	19 (24.4)	58 (52 to 65)		Referent

AC = anticoagulation; CI = confidence interval; NA = not applicable; No. = number of study arms; NR = Not Reported; RCT = randomized controlled trial; UK = United Kingdom, VKA = Vitamin K Antagonists.

Mearns et al. Thrombosis Journal 2014, 12:14 http://www.thrombosisjournal.com/content/12/1/14
compared to patients managed in an anticoagulation clinic or in a RCT setting. This data supports the growing body of literature demonstrating that patients whose care is managed in an anticoagulation clinic have better outcomes (improved TTR, lower rates of major bleeding and thrombosis, and decreased health care costs) than those managed in community practice [104-106]. The improved INR control in RCTs and anticoagulation clinics may be the result of increasing the frequency of monitoring, providing more organized care and focusing more on improving poor VKA-drug persistence (as low as 68% at 6-months) [107,108] than typically done in community settings. Unfortunately, not all patients receiving a VKA have access to anticoagulation clinics [109]. In fact, it is estimated that only about one-third of patients receiving a VKA in the US have access to an anticoagulation clinic due to time, distance, economic or other access-to-care issues. Second, patients who were VKA-naive spent significantly less time in the therapeutic range than VKA-experienced patients. This is likely a result of poorer INR control early on in treatment, as clinicians attempt to control the INR within the narrow therapeutic window without any prior knowledge of the patient’s-specific dosing requirements. It may also suggest that patients learn to manage their VKA better over time. This observation may warrant researchers to stratify analyses according to whether patients are newly initiated to warfarin or experienced warfarin patients. Finally, people in North America spent significantly less time in the therapeutic range than those in Europe or the UK. This may be a result of North America’s near exclusive use of warfarin, which has been shown in previous analyses to result in as much as a 9% lower TTR compared to other VKAs [6], as well as, North America’s less wide-spread use of proven strategies to increase

Study-level factors	No. (%)	Unadjusted pooled mean upon subgroup analysis, % (95% CI)	Adjusted difference, % (95% CI)	p-value
All study groups	24 (100)	56 (53 to 59)	NA	NA
Study setting				
AC Clinic	5 (20.8)	60 (58 to 62)	6.9 (−0.02 to 15.2)	0.13
RCT	5 (20.8)	61 (54 to 68)	5.6 (−0.06 to 17.0)	0.36
Community	14 (58.3)	54 (50 to 57)	Referent	
Study year				
1990-2000	6 (25.0)	54 (46 to 64)	3.3 (−25.3 to 31.9)	0.82
2001-2007	13 (54.2)	56 (54 to 59)	−2.8 (−14.8 to 9.2)	0.65
2008-2013	5 (20.8)	56 (51 to 62)	Referent	
Self-management				
No	22 (91.7)	55 (43 to 57)	−9.3 (−32.4 to 13.8)	0.45
Yes	2 (8.3)	69 (67 to 72)	Referent	
Geographic region				
Europe/UK	13 (54.2)	57 (54 to 60)	−1.7 (−10.7 to 7.3)	0.71
Asia	2 (8.3)	56 (48 to 66)	−8.8 (−26.4 to 8.8)	0.32
Other	0 (0)	NA	NA	NA
Multinational	0 (0)	NA	NA	NA
North America	9 (37.5)	54 (48 to 62)	Referent	
VKA experience				
NR/Mixed	5 (20.8)	51 (41 to 63)	−5.7 (−34.7 to 23.3)	0.83
No	3 (12.5)	63 (55 to 73)	7.9 (−15.2 to 31.0)	0.65
Yes	17 (70.8)	56 (54 to 59)	Referent	
Duration of VKA treatment				
≥1 year	17 (70.8)	57 (54 to 60)	9.1 (−0.5 to 18.7)	0.09
<1 year	7 (29.2)	53 (44 to 65)	Referent	

AC = anticoagulation; CI = confidence interval; NA = not applicable; No. = number of study arms; NR = not reported; RCT = randomized controlled trial; UK = United Kingdom; VKA = Vitamin K Antagonists.
TTR such as and anticoagulation clinics as noted above [6,8,9,109] and patient self-monitoring [6].

Our systematic review and meta-analysis supports and extends the knowledge of VKA use in contemporary practice. Our TTR or PINRR results are in general agreement with the systematic reviews by van Walraven et al. [6] and Cios et al. [9], but these analyses included all therapeutic indications for VKAs, which lowers their applicability for an AF-specific population. The meta-analyses by Baker et al. [8] and Wan et al. [7] focused on AF only populations, but each had some limitations. The Baker meta-analysis was limited to a United States population, and therefore, contained only 8 studies. Despite this, they did find that care within an anticoagulation clinic yielded a higher TTR than usual care in the community, a finding we extend into the worldwide AF population as well. The Wan meta-analysis was published in 2008, evaluated a worldwide AF population and found similar TTR and PINRR results to our own. However, they only included 47 VKA groups from 38 published studies. They found that TTR was significantly correlated with PINRR in retrospective studies and TTR was significantly negatively correlated to both major hemorrhage and thromboembolic events. Given the intense focus on thromboembolism in contemporary practice, our literature search was able to almost double the number of articles included in the Wan et al. by updating the search to 2013. Over the 5 years since the publication of Wan et al.’s meta-analysis, we found the TTR and PINRR to be only slightly increased (overall TTR increased from 57% to 61% and PINRR from 51 to 56%) [7]. This suggests that we still have a long way to go to enhance the quality of INR control. Our findings that the majority of thromboembolic events happen in AF patients when the INR is less than 2.0 and more than 40% of hemorrhages occur when an INR is greater than 3.0 confirms the findings from the systematic review of Oake et al. [10]. Their systematic review did not limit the studies to an AF population and was published in 2009, so our findings through June 2013 in the target AF population extend knowledge in this area as well.

There are several limitations of our meta-analysis worth discussion. First, the potential for publication bias and possibility of missed eligible articles could exist. However, we consider this risk to be minimized due to our systematic search strategy and manual backwards citation tracking. In addition, having such a large cadre of studies, as we do in our meta-analysis, minimizes the impact that a
Figure 3 Results of random-effects meta-analysis of the proportion of major hemorrhagic events that occurred when INRs were above 3.0. The squares represent individual studies, and the size of the square represents the weight given to each study in the meta-analysis. Error bars represent 95% confidence intervals. The diamond represents the combined results. List of studies shows name of first author and year of publication. CI = Confidence Interval.

Figure 4 Results of random-effects meta-analysis of the proportion of ischemic strokes that occurred when INRs were below 2.0. The squares represent individual studies, and the size of the square represents the weight given to each study in the meta-analysis. Error bars represent 95% confidence intervals. The diamond represents the combined results. List of studies shows name of first author and year of publication. CI = Confidence Interval.
missed individual study might have on our pooled result. Another limitation of our analysis includes the fact that very few identified studies evaluated PINRR. As a result, our meta-regression analysis was likely underpowered; although similar trends could be seen to TTR. Future evaluation of PINRR should be conducted when there is a sufficient literature base to make firmer conclusions. Another limitation of our analysis is the possibility of a language bias; as we only included English language studies which may not represent all of the published evidence. Finally, there was a high degree of statistical heterogeneity observed in our analyses, suggesting that the included studies varied clinically and/or methodologically. However, this was one of our rationales for conducting meta-regression. In our meta-regression analyses, we found some potential explanations for the identified heterogeneity; although there may still be additional factors that we could not think to evaluate or for which there is insufficient data to allow evaluation.

Conclusions
Patients on VKAs for thromboembolism prevention in AF are frequently outside the normal INR range and tend to be under-anticoagulated rather than over-anticoagulated. While, thromboembolic and hemorrhagic events do occur patients with a therapeutic INR; patients with an INR < 2.0 make up many of the cases of thromboembolism, while those with an INR > 3.0 make up many of the cases of major hemorrhage. Managing anticoagulation outside of a clinical trial or anticoagulation clinic is associated with poorer INR control as is initiation of therapy in patients who are VKA-naïve. Patients in Europe/UK have better INR control than those in North America.

Additional file

Additional file 1: Medline search strategy and forest plots for time and percent of INRs in, below and above range.

Abbreviations
AF: Atrial fibrillation; VKA: Vitamin K antagonist; TTR: Time in therapeutic range; PINRR: Proportion of INR measurements in range; INR: International normalized ratio; CI: Confidence interval; UK: United Kingdom; RCT: Randomized controlled trial; ICH: Intracranial hemorrhage.

Competing interests
Dr. Coleman has received honoraria for participation on advisory boards and Speaker’s bureaus and has received research funding from Janssen Scientific Affairs. Drs Raut and Schein are paid employees of Janssen Pharmaceuticals. Drs. Mearns, White and Kohn and Ms/Ms. Hawthorne, Song and Meng have no conflicts to report.

Authors’ contributions
Study concept and design: ESM, MKR, JRS, CIC. Acquisition of data: ESM, CGK, JH, JSS, JM. Analysis and interpretation of data: ESM, CMW, CGK, JH, JSS, JM, MKR, JRS, CIC. Drafting of the manuscript: ESM, CMW, CGK, CIC. Critical revision of the manuscript for important intellectual content: ESM, CMW, MKR, JRS, CIC. Administrative, technical, or material support: ESM, MKR, JRS, CIC. Study supervision: ESM, CMW, CIC. ESM and CIC had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. All authors read and approved the final manuscript.

Acknowledgements
This study was funded by Janssen Scientific Affairs, LLC. The authors maintained full control over the design and conduct of the study; collection, management, analysis, and interpretation of the data; and preparation and review of the manuscript. Janssen reviewed the final manuscript prior to submission.

Author details
1Department of Pharmacy Practice, University of Connecticut School of Pharmacy, 69 N Eagleville Road, Storrs, CT 06269-3092, USA. 2Hartford Hospital Division of Cardiology, 80 Seymour Street, Hartford, CT 06102-5037, USA. 3Janssen Scientific Affairs, LLC, Raritan, NJ, USA.
References

1. Wolf PA, Abbott RD, Kannel WB: Atrial fibrillation: a major contributor to stroke in the elderly: the Framingham Heart Study. Arch Intern Med 1987, 147(9):1561–1564.

2. Atrial Fibrillation Investigators: Risk factors for stroke and efficacy of antithrombotic therapy in atrial fibrillation. Analysis of pooled data from five randomized controlled trials. Arch Intern Med 1994, 154(13):1440–1457.

3. Fuster V, Rydén LE, Cannom DS, Crijns HJG, Curtis AB, Ellenbogen KA, Fang MC, Granger C, Hart RGW, Hohnloser SH, Hsieh JT, Ho SYC, Jones RH, Kamakura TS, Kirchhof C, Lip GYH, Parslow TG, Marchlinski FE, Pisters PH, Priori SG, Savelieva I, Schotten U, Siavelis P, Towfighi A, Van Gelder IC, Voors AA, White MF, Zannad F, Zaske S, Zvezdin A, for the ESC Task Force: Management of atrial fibrillation: the Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology. Eur Heart J 2010, 31(19):2369–2429.

4. Mearns J: Patterns of anticoagulant use in atrial fibrillation patients. Thromb Haemost 2011, 105(2):114–119.

5. Chung NW, Koon HC, Lien LM, Lam WT, Tse HF, Chung WS, Lee TH, Chen SA: Safety of edoxaban, an oral factor Xa inhibitor, in Asian patients with non-valvular atrial fibrillation. Thromb Haemost 2011, 105(3):553–544.

6. Connolly SJ, Laxapaci A, Gent M, Roberts RS, Cairns JA, Joyner C: Canadian atrial fibrillation anticoagulation (CAFCA) study. J Am Coll Cardiol 1991, 18:349–355.

7. ACT II Writing Group of the ACT II Investigators, Connolly SJ, Pogue J, Hart R, Pfeffer M, Hohnloser SH, Chrolavicius S, Pfeuffer M, Hohnloser SH, Yusuf S: Clopidogrel plus aspirin versus oral anticoagulation for atrial fibrillation in the Atrial Fibrillation Clopidogrel Trial with Ibuprofen for Prevention of Vascular Events (ACTIVE W): a randomised controlled trial. Lancet 2006, 367(9526):1903–1912.

8. Copland M, Walker ID, Tait RC: Oral anticoagulation and hemorrhagic complications in an elderly population with atrial fibrillation. Arch Intern Med 2001, 161(17):2125–2128.

9. Currie C, McEvoy P, Emmas C, Morgan CL, Peters C: Oral anticoagulation for patients with atrial fibrillation. Arch Intern Med 2008, 168(18):2115–2116.

10. Oake N, Fergusson DA, Forster AJ, van Walraven C: Evaluating the impact of study-level factors on warfarin control in U.S.-based primary care studies: a meta-analysis. Am J Health Syst Pharm 2012, 69(8):838–847.

11. Abdelfattah AH, Wheelon NM: Results of an open-labeled, prospective study of anticoagulant therapy for atrial fibrillation in an outpatient anticoagulation clinic. Clin Ther 2004, 26(9):1740–1748.

12. Baker WL, Cos DA, Sander SD, Coleman CL: Meta-analysis to assess the quality of warfarin control in atrial fibrillation patients in the United States. J Manag Care Pharm 2009, 15(3):244–252.

13. Cios DA, Baker WL, Sander SD, Phung OJ, Coleman CL: Evaluating the impact of study-level factors on warfarin control in U.S.-based primary care studies: a meta-analysis. Am J Health Syst Pharm 2009, 66(10):916–925.

14. Oake N, Fergusson DA, Forster AJ, van Walraven C: Frequency of adverse events in patients with poor warfarin control: a meta-analysis. CMAJ 2007, 176(11):1599–1604.

15. Abdelatif AH, Wheelon NM: Risk factors for bleeding during anticoagulation of atrial fibrillation in older and younger patients in clinical practice. Am J Geriatr Pharmacother 2008, 6(1):11–11.

16. Akedeen B, Türker S, Oztürk V, Badak O, Okan T, Aslan O, Kozan O, Kirimli O, Aytekin D, Barış N, Güneri M: Cardioversion under the guidance of transeosophageal echocardiography in persistent atrial fibrillation: results with low molecular weight heparin. Int J Cardiol 2005, 98(1):49–55.

17. Albers GW, Dickerson L, Friston L, Grind M, Nevinsan M, Partridge S, Halperin JL, Horrout J, Olsén SB, Petersen P, Vahanian A, AFFIRM Executive Steering Committee for the AFFIRM Investigators: Ximelagatran vs warfarin for stroke prevention in patients with nonvalvular atrial fibrillation: a randomized trial. JAMA 2005, 293(6):690–698.

18. Anderson RJ: Cost analysis of a managed care decentralized outpatient pharmacy anticoagulation service. J Manag Care Pharm 2004, 10(2):159–160.

19. Ansell J, Hollowell J, Pinto V, Martinez-Botanos F, Caro J, Drouet T: Descriptive analysis of the process and quality of oral anticoagulation management in real-life practice in patients with chronic non-valvular atrial fibrillation: the international study of anticoagulation management (ISAM). J Thromb Thrombolysis 2007, 23(3):85–91.

20. Aronow WS, Ahn C, Konzon I, Gustein H: Incidence of new thromboembolic stroke in persons 62 years and older with chronic atrial fibrillation treated with warfarin versus aspirin. J Am Geriatr Soc 1990, 48(3):366–368.

21. Boulanger L, Kim J, Friedman M, Hauch O, Foster T, Mendis J: Patterns of use of antithrombotic therapy and quality of anticoagulation among patients with non-valvular atrial fibrillation in clinical practice. Int J Clin Pract 2006, 60(3):258–264.

22. Burton C, Isles C, Norris J, Hanson R, Grubb E: The safety and adequacy of antithrombotic therapy for atrial fibrillation: a regional cohort study. Br J Gen Pract 2006, 56(530):697–702.

23. Caffola A, Melzio R, Baldacci E, Pigottini P, Dragoni F, Campanelli M, Caraceni R, Foà R: “Zeus”: a new oral anticoagulant therapy dosing algorithm: a cohort study. Thromb Res 2011, 128(4):325–330.

24. Caffola A, Campanelli M, Baldacci E, Potolo L, Bochicchio R, Dragoni F, Foà R: Oral anticoagulant therapy in Italian patients 80 yr of age or older with atrial fibrillation: a pilot study of low vs. standard PT/INR targets. Eur J Haematol 2012, 89(1):81–86.

25. Chen YM, Tao TH, Huang CY: The lowest effective intensity of prophylactic anticoagulation for patients with atrial fibrillation. Cerebrovasc Dis 2005, 20(2):114–119.
40. Go AS, Hylek EM, Chang Y, Phillips KA, Henault LE, Capra AM, Jensvold NG, http://www.thrombosisjournal.com/content/12/1/14
41. Gulløv AL, Koefoed BG, Petersen P, Pedersen TS, Andersen ED, Godtfredsen J, 46. Heidinger KS, Bernardo A, Taborski U, Müller-Berghaus G:
47. Hellemons BS, Langenberg M, Lodder J, Vermeer F, Schouten HJ, Lemmens T, 44. Hannon N, Callaly E, Moore A, Ní Chróinín D, Sheehan O, Marnane M,
48. Hol Y, Siu CW, Yue WS, Lau CP, LipGY, Ts KF: Major 52. Hylek EM, Evans-Molina C, Shea C, Henault LE, Regan S:
53. Jacobs LG, Billett HH, Freeman K, Dinglas C, Jumaquio L:
59. Lee SJ, Shin DH, Hwang HJ, Kim JY, Pak HK, Lee MH, Joung B: Bleeding risk 65. Melamed OC, Horowitz G, Elhayany A, Vinker S:
64. McCormick D, Gurwitz JH, Goldberg RJ, Becker R, Tate JP, Elwell A, Radford MJ:
56. Malik AK, Taylor AJ: Can warfarin randomized trials be reproduced in 'real life' 66. Menzin J, Boulanger L, Hauch O, Friedman M, Marple CB, Wygant G, Hurley JS,
58. Kulo A, Mulabegović N, Kusturčić J, Hadžić H, Burnažović-Ristić L, 68. Njaastad AM, Abildgaard U, Lassen JF:
57. Kulo A, Mulabegović N, Kusturčić J, Hadžić H, Burnažović-Ristić L, 69. Nichol MB, Knight TK, Dow T, Wygant G, Borok G, Hauch O, Olejnik A:
61. Kuroda T, Asano H, Inoue H, TOWARD Investigators, Toyama Warfarin 70. Njaastad AM, Abildgaard U, Lassen JF:
60. Malik AK, Taylor AJ: Anticoagulation therapy for stroke prevention in 73. Okumura K, Komatsu T, Yamashita T, Okuyama Y, Harada M, Korty A, 71. Nozawa T, Asanoi H, Inoue H, TOWARD Investigators, Toyama Warfarin
warfarin therapy in Japanese patients with non-valvular atrial fibrillation. - A multicenter study of its status and influential factors.- Circ J 2011, 75(9):2087–2094.

74. Olsson SB, Executive Steering Committee of the SPORTIF III Investigators: Stroke prevention with the oral direct thrombin inhibitor ximelagatran compared with warfarin in patients with non-valvular atrial fibrillation (SPORTIF III): randomised controlled trial. Lancet 2005, 362(9375):1691–1698.

75. Ono A, Fujita T: Low-intensity anticoagulation for stroke prevention in elderly patients with atrial fibrillation: efficacy and safety in actual clinical practice. J Clin Neurosci 2005, 12(8):891–894.

76. Patel MR, Mahaffey KW, Garg J, Pan G, Singer DE, Hacke W, Breithardt G, Halperin J, Hankey GJ, Piccini JP, Becker RC, Nessel CC, Paolini JP, Berkowitz SD, Fox KA, Califf RM, ROCKET AF Investigators: Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med 2011, 365(10):883–891.

77. Pengo V, Zasso A, Barbero F, Banzato A, Nante G, Parissenti L, John N, Novventa F, Dalla Volta S: Effectiveness of fixed minidose warfarin in the prevention of thromboembolism and vascular death in nonhaemorrhagic atrial fibrillation. Am J Cardiol 1998, 82(4):433–437.

78. Pengo V, Legnani C, Novventa F, Palareti G, ISCOAT Study Group: Italian Study on Complications of Oral Anticoagulant Therapy: Oral anticoagulant therapy in patients with nonhaemorrhagic atrial fibrillation and risk of bleeding. A Multicenter Inception Cohort Study. Thromb Haemost 2001, 83(3):418–422.

79. Pengo V, Cucchin i U, D enas G, Davi son B, Marzott F, Jose SP, Iliceto S: Lower versus standard intensity oral anticoagulant therapy (OAT) in elderly warfarin-experienced patients with non-valvular atrial fibrillation. Thromb Haemost 2010, 103(3):442–449.

80. Pérez-Gómez F, Alegre E, Berjón L, Iriarte JA, Zumalde J, Salvador A, Matea L, NASPEAF Investigators: Comparative effects of antiplatelet, anticoagulant, or combined therapy in patients with valvular and nonvalvular atrial fibrillation: a randomized multicenter study. J Am Coll Cardiol 2004, 43:1557–1566.

81. Poli D, Antonucci E, Marcucci R, Patini C, Alterini B, Mannini L, Falciani M, Abbate R, Gensini GF, Prisco D: Risk of bleeding in very old atrial fibrillation patients on warfarin: relationship with ageing and CHADS2 score. Thromb Res 2007, 121(3):347–352.

82. Poli D, Antonucci E, Grifoni E, Abbate R, Gensini GF, Prisco D: Bleeding risk during oral anticoagulation in atrial fibrillation patients older than 80 years. J Am Coll Cardiol 2009, 54(1):999–1002.

83. Poli D, Antonucci E, Marcucci R, Mannini L, Falciani M, Abbate R, Gensini GF, Prisco D: The quality of anticoagulation on functional outcome and mortality for TIA/stroke in atrial fibrillation patients. Int J Cardiol 2009, 132(1):109–113.

84. Poli D, Antonucci E, Grifoni E, Abbate R, Gensini GF, Prisco D: Gender differences in stroke risk of atrial fibrillation patients on oral anticoagulant treatment. Thromb Haemost 2009, 101(1):938–942.

85. Poller L, Keowo M, Ibrahim S, Lowe G, Moia M, Turpie AG, Roberts C, van den Besselaar AM, van der Meer FJ, Tripodi A, Palareti G, Shiach C, Bryan S, Samama M, Burgess-Willson M, Heagerty A, Maccallum P, Wright D, Jespersen J: An international multicenter randomized study of computer-assisted oral anticoagulant dosage vs. medical staff dosage. J Thromb Haemost 2008, 6(6):935–943.

86. Sadanaga T, Sadanaga M, Ogawa S: Evidence that D-dimer levels predict subsequent thromboembolic and cardiovascular events in patients with atrial fibrillation during oral anticoagulant therapy. J Am Coll Cardiol 2010, 55(20):2223–2231.

87. Samsa GP, Matchar DB, Goldstein LB, Bonito AJ, Lux LJ, Witter DM, Bian J: Quality of anticoagulation management among patients with atrial fibrillation: results of a review of medical records from 2 communities. Arch Intern Med 2000, 160(7):967–973.

88. Schwammenthal Y, Borstein N, Schwammenthal E, Schwartz R, Goldbourt U, Tsabari R, Koton S, Grossman E, Tanne D: Relation of effective anticoagulation in patients with atrial fibrillation to stroke severity and survival (from the National Acute Stroke Israeli Survey (NASIS)). Am J Cardiol 2010, 105(3):411–417.

89. Sconce E, Avery P, Wynne H, Kamall F, Vitamin K supplementation can improve stability of anticoagulation for patients with unexplained variability in response to warfarin. Blood 2007, 109(6):2419–2423.

90. Shen SY, Yao JP, Ibar SS, Jorgensen MB, Chen W: Racial/ethnic differences in the risk of intracranial hemorrhage among patients with atrial fibrillation. J Am Coll Cardiol 2007, 50(4):309–315.

91. Singer DE, Chang Y, Fang MC, Borovsky LH, Pomeracki NK, Udaltsova N, Go AS: Should patient characteristics influence target anticoagulation intensity for stroke prevention in nonvalvular atrial fibrillation? the ATRIA study. Circ Cardiovasc Qual Outcomes 2009, 2(4):297–304.

92. Stroke Prevention in Atrial Fibrillation Investigators: Adjusted-dose warfarin versus low-intensity, fixed-dose warfarin plus aspirin for high-risk patients with atrial fibrillation: stroke prevention in atrial fibrillation III randomised clinical trial. Lancet 1996, 348(9028):633–638.

93. Sullivan RM, Zhang J, Zamba G, Lip GY, Olshansky B: Relation of gender-specific risk of ischemic stroke in patients with atrial fibrillation to differences in warfarin anticoagulation control (from AFFIRM). Am J Cardiol 2012, 110(12):1799–1802.

94. Tincani E, Baldini P, Crowther MA, Zanini A, Ferrari P, Cenci AM, Roili G: Bleeding rates in patients older than 90 years of age on vitamin K antagonist therapy for nonvalvular atrial fibrillation. Blood Coagul Fibrinolysis 2009, 20(1):47–51.

95. Van Spall HG, Wallentin L, Yusuf S, Elkjøbsen JW, Nieuwlaat R, Yang S, Kaball C, Reilly PA, Ezekowitz MD, Connolly SJ: Variation in warfarin dose adjustment practice is responsible for differences in the quality of anticoagulation control between centers and countries: an analysis of patients receiving warfarin in the randomized evaluation of long-term anticoagulation therapy (RE-LY) trial. Circulation 2012, 126(19):2309–2316.

96. Voller H, Glätz J, Taborski U, Bernardo A, Doavíć C, Heidinger K: Self-management of oral anticoagulation in nonvalvular atrial fibrillation (SMAAF2) study. J Cardiovasc Nurs 2005, 19(3):180–186.

97. Walker GA, Heidenreich PA, Pihlps CS, Go AS, Chiu VY, Schmitt SK, Ananth S, Frayne SM: Mental illness and warfarin use in atrial fibrillation. Am J Manag Care 2011, 17(9):617–624.

98. Weetch M, Själander A, Frykman V, Rosenqvist M, Eriksson N, Svensson PJ: Anticoagulation control in Sweden: reports of time in therapeutic range, major bleeding, and thrombo-embolic complications from the national registry Auricula. Eur Heart J 2011, 32(18):2282–2289.

99. Weitz JI, Connolly SJ, Patel I, Salazar D, Rohatagi S, Mendell J, Kastrissios H, Vollert H, Glätz J, Taborski U, Bernardo A, Dović C, Heidinger K: Self-management of oral anticoagulation in nonvalvular atrial fibrillation (SMAAF2) study. J Cardiovasc Nurs 2005, 19(3):180–186.

100. Weitz JI, Connolly SJ, Patel I, Salazar D, Rohatagi S, Mendell J, Kastrissios H, Vollert H, Glätz J, Taborski U, Bernardo A, Dović C, Heidinger K: Self-management of oral anticoagulation in nonvalvular atrial fibrillation (SMAAF2) study. J Cardiovasc Nurs 2005, 19(3):180–186.

101. Weitz JI, Connolly SJ, Patel I, Salazar D, Rohatagi S, Mendell J, Kastrissios H, Vollert H, Glätz J, Taborski U, Bernardo A, Dović C, Heidinger K: Self-management of oral anticoagulation in nonvalvular atrial fibrillation (SMAAF2) study. J Cardiovasc Nurs 2005, 19(3):180–186.

102. Weitz JI, Connolly SJ, Patel I, Salazar D, Rohatagi S, Mendell J, Kastrissios H, Vollert H, Glätz J, Taborski U, Bernardo A, Dović C, Heidinger K: Self-management of oral anticoagulation in nonvalvular atrial fibrillation (SMAAF2) study. J Cardiovasc Nurs 2005, 19(3):180–186.
109. Nutescu EA, Bathija S, Sharp LK, Gerber BS, Schumock GT, Fitzgibbon ML: Anticoagulation patient self-monitoring in the United States: considerations for clinical practice adoption. *Pharmacotherapy* 2011, 31(12):1161–1174.

doi:10.1186/1477-9560-12-14

Cite this article as: Mearns et al: Quality of vitamin K antagonist control and outcomes in atrial fibrillation patients: a meta-analysis and meta-regression. *Thrombosis Journal* 2014 12:14.