Transitive Lie algebroids - categorical point of view

A.S. Mishchenko
Moscow State University

Introduction

Transitive Lie algebroids have specific properties that allow to look at the transitive Lie algebroid as an element of the object of a homotopy functor. Roughly speaking each transitive Lie algebroids can be described as a vector bundle over the tangent bundle of the manifold which is endowed with additional structures. Therefore transitive Lie algebroids admits a construction of inverse image generated by a smooth mapping of smooth manifolds. The construction can be managed as a homotopy functor from the category of smooth manifolds to the transitive Lie algebroids. The intention of this article is to make a classification of transitive Lie algebroids and on this basis to construct a classifying space. The realization of the intention allows to describe characteristic classes of transitive Lie algebroids form the point of view a natural transformation of functors similar to the classical abstract characteristic classes for vector bundles.

1 Definitions and formulation of the problem

Given smooth manifold M let

$$E \xrightarrow{a} TM \xrightarrow{p_T} M$$

be a vector bundle over TM with fiber g, $p_E = p_T \cdot a$. So we have a commutative diagram of two vector bundles

![Diagram](image-url)

*2000 Mathematics Subject Classification: 57R20, 57R22

†Key words: Lie algebroid, flat bundle, transition function, characteristic classes, classifying space
The diagram is endowed with additional structure (commutator braces) and then is called ([1], definition 3.3.1, [2], definition 1.1.1) transitive Lie algebroid

\[A = \left\{ \begin{array}{c}
E \xrightarrow{\alpha} TM \\
p_E \\
M \xrightarrow{p_T} \{\bullet, \bullet\}
\end{array} \right\}. \]

Let \(f : M' \to M \) be a smooth map. Then one can define an inverse image (pullback) of the Lie algebroid ([1], page 156, [2], definition 1.1.4), \(\mathcal{A}^f \). This means that given the finite dimensional Lie algebra \(g \) there is the functor \(\mathcal{A} \) such that with any manifold \(M \) it assigns the family \(\mathcal{A}(M) \) of all transitive Lie algebroids with fixed Lie algebra \(g \).

In the dissertation [3] the following statement was proved: Each transitive Lie algebroid is trivial, that is there is a trivialization of vector bundles \(E, TM, \ker \alpha = \bar{g} \) such that

\[E \approx TM \oplus \bar{g}, \]

and the Lie bracket is defined by the formula:

\[[(X, u), (Y, v)] = ([X, Y], [u, v] + X(v) - Y(u)). \]

Then using the construction of pullback and the idea by Allen Hatcher [4] one can prove that the functor \(\mathcal{A} \) is homotopic functor. More exactly for two homotopic smooth maps \(f_0, f_1 : M_1 \to M_2 \) and for the transitive Lie algebroid

\((E \xrightarrow{\alpha} TM \xrightarrow{p_T} M, \{\bullet, \bullet\}) \)

two inverse images \(\mathcal{A}^f_0(E) \) and \(\mathcal{A}^f_1(A) \) are isomorphic.

Hence there is a final classifying space \(B_g \) such that the family of all transitive Lie algebroids with fixed Lie algebra \(g \) over the manifold \(M \) has one-to-one correspondence with the family of homotopy classes of continuous maps \([M, B_g] \):

\[\mathcal{A}(M) \approx [M, B_g]. \]

Using this observation one can describe the family of all characteristic classes of a transitive Lie algebroids in terms of cohomologies of the classifying space \(B_g \). Really, from the point of view of category theory a characteristic class \(\alpha \) is a natural transformation from the functor \(\mathcal{A} \) to the cohomology functor \(H^* \).

This means that for the transitive Lie algebroid \(E = (E \xrightarrow{\alpha} TM \xrightarrow{p_T} M, \{\bullet, \bullet\}) \) the value of the characteristic class \(\alpha(E) \) is a cohomology class

\[\alpha(E) \in H^*(M), \]

such that for smooth map \(f : M_1 \to M \) we have

\[\alpha(f_*^!(E)) = f^*(\alpha(E)) \in H^*(M_1). \]

Hence the family of all characteristic classes \(\{\alpha\} \) for transitive Lie algebroids with fixed Lie algebra \(g \) has a one-to-one correspondence with the cohomology group \(H^*(B_g) \).
On the base of these abstract considerations a natural problem can be formulated.

Problem. Given finite dimensional Lie algebra \(g \) describe the classifying space \(B_g \) for transitive Lie algebroids in more or less understandable terms.

Below we suggest a way of solution the problem and consider some trivial examples.

2 Description of transitive Lie algebroids using transition functions

Consider the trivial transitive Lie algebroids

\[E \cong TM \oplus \bar{g}, \quad \bar{g} \cong M \times g, \]

and the Lie bracket is defined by the formula:

\[
[(X, u), (Y, v)] = ([X, Y], [u, v] + X(v) - Y(u)),
\]

where \(X, Y \in \Gamma^\infty(TM) \) are smooth vector fields, \(u, v \in \Gamma^\infty\bar{g} \) are smooth sections which are represented as smooth vector functions with values in the Lie algebra \(g \).

Consider a fiberwise isomorphism \(A : E \rightarrow E \) that is identical on the second summands and generates the Lie algebra homomorphism \(A : \Gamma^\infty(E) \rightarrow \Gamma^\infty(E) \). The isomorphism \(A \) can be written by formula:

\[
(v, Y) = A(u, X);
(v, X) = (\varphi(x)(u(x)) + \omega(X), X),
\]

where \(\varphi(x) : g \rightarrow g \) is a fiberwise map of the bundle \(\bar{g} \), and \(\omega \) is a differential form with values in \(g \). The isomorphism \(A \) can be expressed as a matrix

\[
\begin{pmatrix}
 v(x) \\
 Y \\
\end{pmatrix} =
\begin{pmatrix}
 \varphi(x) & \omega \\
 0 & 1 \\
\end{pmatrix}
\begin{pmatrix}
 u(x) \\
 X \\
\end{pmatrix}
\]

From the property of that \(A \) is a Lie algebra homomorphism:

\[A([(X, u), (Y, v)]) = [A(X, u), A(Y, v)] \]

one has that

\[\varphi(x)([u_1(x), u_2(x)]) = [\varphi(x)(u_1(x)), \varphi(x)(u_2(x))], \]

\[d\omega(X_1, X_2) + [\omega(X_1), \omega(X_2)] = 0, \]

\[d\varphi(X)(u) = [\varphi(u), \omega(X)]. \quad (1) \]

Consider an atlas of charts on the manifold \(M \), \(\{U_\alpha\}, \bigcup U_\alpha = M \), and the trivializations \(E_\alpha \cong TU_\alpha \otimes (U_\alpha \times g) \) of the Lie algebroid \(E \) over each chart \(U_\alpha \) with the Lie brackets defined by the formula

\[
[(X, u), (Y, v)] = ([X, Y], [u, v] + X(v) - Y(u)),
\]
for \(X, Y \in \Gamma^\infty(TU_\alpha), u, v \in \Gamma^\infty(U_\alpha \times g) \).

On the intersection of two charts \(U_{\alpha\beta} = U_\alpha \cap U_\beta \) we have the transition function

\[
\Phi_{\beta\alpha} = \Phi_{\beta} \Phi^{-1}_{\alpha} : T U_{\alpha\beta} \otimes (U_{\alpha\beta} \times g) \rightarrow T U_{\alpha\beta} \otimes (U_{\alpha\beta} \times g)
\]

which have the matrix form

\[
\begin{pmatrix}
 v(x) \\ Y
\end{pmatrix} = \Phi_{\beta\alpha}
\begin{pmatrix}
 u(x) \\ X
\end{pmatrix} = \begin{pmatrix}
 \varphi_{\beta\alpha}(x) & \omega_{\beta\alpha} \\
 0 & 1
\end{pmatrix}
\begin{pmatrix}
 u(x) \\ X
\end{pmatrix}.
\]

For another choice of trivializations \(\Phi'_\alpha \) the correspondent transition functions \(\Phi'_{\beta\alpha} \) satisfy the homology condition:

\[
\Phi'_{\beta\alpha} = H_{\beta} \cdot \Phi_{\beta\alpha} \cdot H^{-1}_{\alpha}
\]

\[
\begin{pmatrix}
 \varphi'_{\beta\alpha}(x) & \omega'_{\beta\alpha} \\
 0 & 1
\end{pmatrix} = \begin{pmatrix}
 \eta_{\beta}(x) & \mu_{\beta} \\
 0 & 1
\end{pmatrix}
\begin{pmatrix}
 \varphi_{\beta\alpha}(x) & \omega_{\beta\alpha} \\
 0 & 1
\end{pmatrix}
\begin{pmatrix}
 \eta^{-1}_{\alpha}(x) & -\eta^{-1}_{\alpha}\mu_{\alpha} \\
 0 & 1
\end{pmatrix}
\]

or

\[
\begin{pmatrix}
 \varphi'_{\beta\alpha}(x) & \omega'_{\beta\alpha} \\
 0 & 1
\end{pmatrix} = \begin{pmatrix}
 \eta_{\beta}(x)\varphi_{\beta\alpha}(x)\eta^{-1}_{\alpha}(x) & -\eta_{\beta}(x)\varphi_{\beta\alpha}(x)\eta^{-1}_{\alpha}(x)\mu_{\alpha} + \eta_{\beta}(x)\omega_{\beta\alpha} + \mu_{\beta} \\
 0 & 1
\end{pmatrix},
\]

or

\[
\varphi'_{\beta\alpha}(x) = \eta_{\beta}(x)\varphi_{\beta\alpha}(x)\eta^{-1}_{\alpha}(x),
\]

\[
\omega'_{\beta\alpha} = -\eta_{\beta}(x)\varphi_{\beta\alpha}(x)\eta^{-1}_{\alpha}(x)\mu_{\alpha} + \eta_{\beta}(x)\omega_{\beta\alpha} + \mu_{\beta}.
\]

The elements \(\eta_{\beta} \) and \(\mu_{\beta} \) satisfy similar conditions:

\[
\eta_{\beta}(x)([u_1(x), u_2(x)]) = [\eta_{\beta}(x)(u_1(x)), \eta_{\beta}(x)(u_2(x))],
\]

\[
d\mu_{\beta}(X_1, X_2) + [\mu_{\beta}(X_1), \mu_{\beta}(X_2)] = 0,
\]

\[
d\eta_{\beta}(X)(u) = [\eta_{\beta}(u), \mu_{\beta}(X)].
\]

3 Case of commutative Lie algebra \(g \)

In commutative case the conditions have for simple form:

\[
\varphi_{\beta\alpha}(x)([u_1(x), u_2(x)]) = [\varphi_{\beta\alpha}(x)(u_1(x)), \varphi_{\beta\alpha}(x)(u_2(x))],
\]

\[
d\omega_{\beta\alpha}(X_1, X_2) = 0,
\]

\[
d\varphi_{\beta\alpha}(X)(u) = 0.
\]

(2)
Hence

$$\varphi_{\beta\alpha}(x) = \text{const}.$$

This means that the vector bundle \bar{g} is flat and the family $\omega = \{\omega_{\beta\alpha}\}$ defines a Čech cochain

$$\omega \in C^1(U, \Omega^1(\bar{g}))$$

in the bigraded Čech complex

$$C^{*,*} = \left\{ \bigoplus C^i(U, \Omega^j(\bar{g}); d = d' + d'') \right\}$$

where $U = \{U_\alpha\}$ is the atlas of charts.

One has

$$d'(\omega) = 0; \quad d''(\omega) = 0.$$

Hence ω defines cohomology class

$$[\omega] \in H^2(M; \bar{g}).$$

Therefore we have the following

Theorem 1 The classification of all transitive Lie algebroids with fixed commutative Lie algebra g over the manifold M is determined by a flat Lie algebra bundle \bar{g} over M and a 2-dimensional cohomology class $[\omega] \in H^2(M; \bar{g})$.

4 Some general properties

In common case we can say that a little bit about the transition functions on the level of homology groups $H_*(g)$ of the Lie algebra g. Since each transition function $\varphi_{\beta\alpha}(x)$ is the homomorphism of the Lie algebra g, that is $\varphi_{\beta\alpha}(x) \in \text{Aut}(g)$, the cocycle $\{\varphi_{\beta\alpha}(x)\}$ generate associated bundles with fibers $H_*(g)$, say, $H_*(g)$, and bundles with fibers $H^*(g)$, $\overline{H^*(g)}$. The properties (1) imply that all bundles $H_*(g)$ and $\overline{H^*(g)}$ are flat. In particular the differential forms $\omega_{\beta\alpha} \in \Omega^1(U_{\alpha\beta}; \bar{g})$ generates the cocycle

$$\overline{\varpi} = \{\overline{\omega}_{\beta\alpha}\} \in C^1(U, \overline{H_1(g)}) = \bigoplus_{\alpha\beta} \Omega^1(U_{\alpha\beta}; \overline{H_1(g)}),$$

that is

$$d'(\overline{\varpi}) = 0, \quad d''(\overline{\varpi}) = 0.$$

This means that the cocycle $\overline{\varpi}$ induces a cohomology class

$$[\overline{\varpi}] \in H^2\left(M; \overline{H_1(g)}\right).$$

The foregoing consideration creates a conjecture that classification of the transitive Lie algebroid E induces by two things: the Lie algebra bundle with
structural group \(\tilde{\text{Aut}}(g) \) with special topology and the cohomology class \([\varpi] \in H^2(M; \mathbb{H}_1(g))\). The special topology in the group \(\text{Aut}(g) \) is defined as a minimal topology, which is more fine topology than the classical topology in \(\text{Aut}(g) \) and such that all homomorphisms

\[
\text{Aut}(g) \to \text{Aut}(H_k(g))_{\text{discrete}}
\]

are continuous.

This paper is partly supported by grants RBRF No 05-01-00923-a, 07-01-91555-NNIO-a, 10-01-92601-KO-a and project No. RNP.2.1.1.5055

\section*{Список литературы}

[1] Mackenzie, K.C.H., \textit{General Theory of Lie Groupoids and Lie Algebroids}, Cambridge University Press, (2005)

[2] Kubarski, J., \textit{The Chern-Weil homomorphism of regular Lie algebroids}, Publications du Department de Mathematiques, Universite Claude Bernard - Lyon-1, (1991) pp.4–63

[3] W.Walas Algebry Liego-Rineharta i pierwsze klasy charakterystyczne. \textit{PhD manuscript}, Lodz, Poland, 2007.

[4] Allen Hatcher, Vector bundles and K-theory, \textit{Available at} \url{http://www.math.cornell.edu/~hatcher/VBKT/VBpage.html}, page 7, 2003.