AI-DECISION SUPPORT SYSTEM INTERFACE USING CANCER RELATED DATA FOR LUNG CANCER PROGNOSIS

Asim Leblebici1, Omer Gesoglu2, Yasemin Basbinar3

1Dokuz Eylul University, Institute of Health Sciences, Department of Translational Oncology, Izmir, Turkey
2Uskudar American Academy, Istanbul; Dokuz Eylul University, Institute of Oncology, Department of Translational Oncology, Pre-graduated Research Group, Izmir, Turkey.
3Dokuz Eylul University, Institute of Oncology, Department of Translational Oncology, Izmir, Turkey

ABSTRACT

Until the beginning of 2021, lung cancer is known to be the most common cancer in the world. The disease is common due to factors such as occupational exposure, smoking and environmental pollution. The early diagnosis and treatment of the disease is of great importance as well as the prevention of the causes that cause the disease. The study was planned to create a web interface that works with machine learning algorithms to predict prognosis using lung cancer clinical and gene expression in the GDC data portal.

INTRODUCTION

Lung cancer, of which smoking is one of the leading factors, ranks first in cancer-related deaths. However, when it is detected at an initial stage, the chance of treatment of the disease increases. Lung cancer starts when cells from structurally normal lung tissue proliferate out of need and control, forming a mass (tumor) in the lung. The mass formed here primarily grows in its environment, and in more advanced stages, it causes damage by spreading to surrounding tissues or to distant organs (liver, bone, etc.) through circulation. It accounts for 12-16 percent of all cancers and 17-28 percent of cancer-related deaths. Moreover, it ranks first in cancer-related deaths in both women and men.

MATERIAL-METHOD

In the study, known as TCGA, with its new name GDC data portal was used. GDC data portal is a big data environment that contains different types of data on 33 cancer types [1].

Data collection tool

Tcga3biolinks package provides access to GDC data portal data in R environment, provides functions related to analysis and visualization. Clinical and gene expression data were downloaded from the colon adenocarcinoma-TCGA-COAD project using the Tcga3biolinks package [2].

Analysis of clinical data

Clinical data were evaluated by Kaplan-Meier survival analysis.

Analysis of Gene Expression data

In gene expression data, primary solid tumor subtype was selected and samples containing more than one data were eliminated. Gene expression analysis was performed to show gene expression changes between groups based on right and left column information. In this analysis, fold change was calculated and student t-test analysis was applied to calculate p-values. The p-values were corrected
using the "FDR-False positive rate" method. For each pair of groups, statistically significant gene lists were created by taking genes with a folding ratio of >1.0 and FDR <0.05.

Gene Enrichment Analysis

The pathways that were statistically significant in the KEGG[3] and Cancer Hallmark [4] databases were selected in the gene enrichment analysis results with the EnrichR package [5]. PathfindR package was used for gene-pathway visualization [6].

Machine Learning Algorithms

Genes in the selected pathways were evaluated using machine algorithm methods. Confusion matrix table were created from test sets created by 10-fold cross validation method.

Decision support tool - Shiny Web Interface

The clinical and transcriptomic data obtained were transformed into a decision support web interface using the R-Shiny package [7].

RESULTS

Clinical parameters

TCGA-LUAD clinical data were analyzed by Kaplan-Meier survival analysis. In the stage information, survival shows a statistically significant decrease as the stage progresses. Higher survival is also seen in the initial stages in T, N, M staging types.

Table 1: TCGA-LUAD clinical parameters with Kaplan-Meier survival analysis results

Parameters	Total N	N of Events	Median Est.	Std. Error	95% LCL	95% UCL	p
Stage							
Stage i	270	65	87.33	25.101	38.133	136.527	<0.001
Stage ii	119	54	40.3	7.007	26.566	54.034	
Stage iii	81	46	26.9	4.720	17.649	36.151	
Stage iv	26	16	27.53	7.091	13.631	41.429	
ajcc_pathologic_t							
T1	168	43	77.27	17.628	42.719	111.821	0.003
Other	333	138	42.93	3.415	36.236	49.624	
ajcc_pathologic_n							
N0	325	86	77.27	14.519	48.812	105.728	<0.001
Other	167	93	31.73	3.012	25.827	37.633	
ajcc_pathologic_m							
M0	335	129	50.03	3.944	42.299	57.761	0.005
M1	25	15	32.53	7.393	18.040	47.020	
Dimension							
<0.7	136	42	77.27	18.351	41.302	113.238	0.050
>=0.7	249	95	41.17	4.688	31.981	50.359	
Morphology							
8140/3	303	129	40.3	2.954	34.509	46.091	0.001
Others	201	54	89.37	25.659	39.078	139.662	
Malignancy							
No	424	154	50.03	4.873	40.478	59.582	0.085
Yes	80	29	35.77	7.311	21.440	50.100	
Primary diagnosis							
Adeno	303	129	40.3	2.954	34.509	46.091	0.001
Other	201	54	89.37	25.659	39.078	139.662	
Cigarette per day							
<2.2	169	54	57.5	9.619	38.646	76.354	0.833
>=2.2	176	66	48.47	6.801	35.141	61.799	
Years smoked							
<32	90	23	59.27	9.933	39.801	78.739	0.035
>=32	99	41	33.17	4.465	24.419	41.921	
Differential expression gene set (DEGs) enrichment results

Gene expressions of the groups were compared using the survival information on the TCGA-LUAD database. Significant genes were queried in KEGG pathway and Cancer Hallmark databases. In the Kegg pathway results, it was found that the expression of "CACNA1A", "GABRA2" genes decreased and "GRIA2", "GRIA1" genes increased in “Nicotine addiction” term. In the Hallmark pathway results, it was found that the expression of "COL2A1", "SLC12A32", "EPHA5" genes decreased and "TENM2", "SERPINA10", "KRT13", "KCNQ2", "CDH16", "KRT5", "WNT16", "SCGB1A1" genes increased in “Kras signaling” term.

Figure 1a: Up/down differential expression gene set in KEGG pathway results
Figure 1b: Up/down differential expression gene set in Cancer Hallmark pathway results

Machine learning algorithm results

Machine learning algorithm results were created with 4 different sets of attributes. The results are shown in table 2. The feature set formed by clinical data with "Nicotine addiction" parameters was the cluster with the highest accuracy rate 70.2% with decision tree algorithm. The highest sensitivity result (88.7%) was obtained with the decision tree algorithm in three different feature sets.

Table 2: Various selected parameters scenario for cancer risk classification
Using the obtained results, R Shiny package, https://gesogluomer.shinyapps.io/luad/ link was created. The interface of the web page is shown in figures 2 and 3. The visual interface is user-friendly with a click-to-run form. Shiny interface has an infrastructure that provides decision support by selecting the clinical characteristics and expression of genes. Includes decision result, algorithm detail, complexity table and figure on the screen.

Prediction Tool for TCGA-LUAD Cancer Data

Parameters	Algorithms	Sensitivity	Specificity	AUC	Accuracy
	Decision Tree	87,7%	63,6%	61,0%	69,0%
	Random Forest	84,4%	58,8%	66,3%	68,6%
	Naive Bayes	78,8%	47,6%	69,2%	69,2%
	SVM	77,3%	59,4%	59,0%	63,9%
Clinical Parameters	Decision Tree	88,7%	62,0%	59,6%	70,2%
	Random Forest	82,8%	56,1%	66,3%	68,6%
	Naive Bayes	77,3%	45,5%	69,6%	69,0%
	SVM	78,2%	61,5%	58,4%	63,7%
Clinical & Nicotine addiction	Decision Tree	88,7%	65,8%	60,4%	68,8%
genes	Random Forest	81,3%	59,9%	65,2%	66,3%
	Naive Bayes	77,6%	48,1%	69,8%	68,2%
	SVM	79,8%	59,4%	60,2%	65,5%
Clinical & KRAS signaling	Decision Tree	88,7%	65,2%	59,1%	69,0%
genes	Random Forest	78,5%	56,7%	64,3%	65,7%
	Naive Bayes	77,9%	53,5%	69,0%	66,5%
	SVM	81,0%	58,3%	61,3%	66,7%

Shiny Web UI

Figure 2: Web interface running machine learning algorithms in the background using expression and clinical data
DISCUSSION

As a result of the study, the targeted web interface was created. Results were obtained using both statistical methods and bioinformatics analysis. The lack of some clinical data and the availability of accessibility constitute the limitation of the study. In order to increase the performance of algorithm results, it is planned to continue with targets such as increasing data, different approaches in feature selection, filling the missing data with appropriate methods, algorithm optimization.
REFERENCES

[1] F. S. Collins, “The Cancer Genome Atlas (TCGA),” Online. 2007, doi: 10.1038/nature07943.

[2] A. Colaprico et al., “TCGAbiolinks: An R/Bioconductor package for integrative analysis of TCGA data,” Nucleic Acids Res., 2016, doi: 10.1093/nar/gkv1507.

[3] M. Kanehisa, Y. Sato, M. Kawashima, M. Furumichi, and M. Tanabe, “KEGG as a reference resource for gene and protein annotation,” Nucleic Acids Res., 2016, doi: 10.1093/nar/gkv1070.

[4] A. Liberzon, C. Birger, H. Thorvaldsdóttir, M. Ghandi, J. P. Mesirov, and P. Tamayo, “The Molecular Signatures Database Hallmark Gene Set Collection,” Cell Syst., 2015, doi: 10.1016/j.cels.2015.12.004.

[5] M. V. Kuleshov et al., “Enrichr: a comprehensive gene set enrichment analysis web server 2016 update,” Nucleic Acids Res., 2016, doi: 10.1093/nar/gkw377.

[6] E. Ulgen, O. Ozisik, and O. U. Sezerman, “PathfindR: An R package for comprehensive identification of enriched pathways in omics data through active subnetworks,” Front. Genet., 2019, doi: 10.3389/fgene.2019.00858.

[7] W. Chang, J. Cheng, J. Allaire, Y. Xie, and J. McPherson, “Package ‘shiny’: Web Application Framework for R,” 2020.