EXENDED REPORT

Deregulation of microRNA expression in purified T and B lymphocytes from patients with primary Sjögren’s syndrome

Shu-Fang Wang-Renault,1,2,3 Saida Boudaoud,2,3 Gaétane Nocturne,2,3 Elodie Roche,1 Nelly Sigrist,1 Christian Daviaud,1 Andreas Bugge Tinggaard,1,4 Victor Renault,5 Jean-François Deleuze,1,5 Xavier Mariette,2,3 Jörg Tost1

ABSTRACT

Objective MicroRNAs (miRNAs) play an important role in the pathogenesis of autoimmune diseases such as primary Sjögren’s syndrome (pSS). This study is the first to investigate miRNA expression patterns in purified T and B lymphocytes from patients with pSS using a high-throughput quantitative PCR (qPCR) approach.

Methods Two independent cohorts of both patients with pSS and controls, one for discovery and one for replication, were included in this study. CD4+ T cells and CD19+ B cells were isolated from peripheral blood mononuclear cells by magnetic microbeads and expression of miRNAs was profiled using the Exiqon Human miRNAome panel 1 analysing 372 miRNAs. A selection of differentially expressed miRNAs was replicated in the second cohort using specific qPCR assays.

Results A major difference in miRNA expression patterns was observed between the lymphocyte populations from patients with pSS and controls. In CD4 T lymphocytes, hsa-let-7d-3p, hsa-miR-155-5p, hsa-miR-222–2p, hsa-miR-30c-5p, hsa-miR-146a-5p, hsa-miR-378a-3p and hsa-miR-28–5p were significantly differentially expressed in both the discovery and the replication cohort. In B lymphocytes, hsa-miR-378a-3p, hsa-miR-222–2p, hsa-miR-26a-5p, hsa-miR-30b-5p and hsa-miR-19b-3p were significantly differentially expressed. Potential target mRNAs were enriched in disease relevant pathways. Expression of B-cell activating factor (BAFF) mRNA was inversely correlated with the expression of hsa-miR-30b-5p in B lymphocytes from patients with pSS and functional experiments showed increased expression of BAFF after inhibiting hsa-miR-30b-5p.

Conclusions This study demonstrates major miRNAs deregulation in T and B cells from patients with pSS in two independent cohorts, which might target genes known to be involved in the pathogenesis of pSS.

INTRODUCTION

Primary Sjögren’s syndrome (pSS), also referred to as autoimmune epithelitis, is a complex systemic autoimmune disease affecting 0.1% to 0.3% of the general population.1 2 Lymphoid infiltration of lacrimal and salivary glands leading to xerophthalmia and xerostomia, as well as enhanced activation of polyclonal B lymphocytes, represent the hallmarks of the disease. In spite of progress in the past 10 years, the pathogenesis of the disease remains largely to be elucidated.3

Genome-wide association studies (GWAS) have identified genetic variation in and outside the major histocompatibility complex/human leukocyte antigen (MHC/HLA) region associated with pSS.4-6 Recent studies also demonstrated the key role of epigenetic regulation in the pathogenesis.7-9 Interestingly, a number of the differentially methylated regions overlapped with the loci identified in the GWAS. Furthermore, many differentially methylated genes were found in CD19+ B lymphocytes, while only few changes were present in CD4+ T lymphocytes from patients with pSS,7 emphasising the importance of using purified cell population for epigenetic studies.

MicroRNAs (miRNAs) are evolutionarily conserved key players for cellular and developmental processes in eukaryotic organisms and regulate gene expression mainly at the post-transcriptional level.10 The effect of miRNAs on gene regulation may occur either through direct mRNA degradation or preventing mRNA from being translated, depending on the presence of a complete or incomplete match between the miRNA and the 3’ untranslated region (UTR) of the target mRNA sequence. MiRNAs play important roles in immune tolerance and prevention of autoimmune.11 Differential miRNA expression patterns have been demonstrated in different autoimmune diseases including pSS,11-12 analysing either salivary glands13 or peripheral blood mononuclear cells (PBMCs).14-16 However, these results may be flawed by the analysis of a heterogeneous population of cells that might differ in their composition between patients with pSS and controls. So far, only one study has been performed investigating miRNA expression patterns in purified peripheral blood cell population from patients with pSS, which has focused on CD14+ monocytes.17

Due to the previously reported large differences of DNA methylation patterns in T and B cells from patients with pSS,18 we investigated miRNA expression profiles in sorted T and B cells using a quantitative PCR (qPCR)-based profiling method, which has recently been identified as the most accurate and sensitive qPCR-based method for the analysis of miRNAs19 and validated differentially expressed miRNAs in a second independent cohort in each cell population.
PATIENTS AND METHODS

Patients

Two independent cohorts of female patients with pSS and controls were included in this study. Patients with pSS and age and ethnicity-matched controls recruited in a tertiary national reference centre for pSS in France were included in this study. The discovery cohort comprised 17 Caucasian patients with pSS (sufficient material available for 17 patients for T cells and 16 for B cells) and 15 age and ethnicity-matched controls (sufficient material available for 15 patients for T cells and 12 for B cells). The replication cohort comprised 27 Caucasian patients with pSS (sufficient material available for 27 patients for T cells and 25 for B cells) and 15 age and ethnicity-matched controls (sufficient material available for 12 patients for T cells and 12 for B cells). The characteristics and clinical features of the patients are shown in table 1. Anti-SSA and SSB autoantibody status was negative for these autoantibodies.

Table 1 Characteristics of the analysed cohorts with primary Sjögren’s syndrome (pSS) and healthy controls

	Discovery cohort 1	Replication cohort 2
Age, mean±SD years	Patients with pSS (n=17) Controls (n=15)	Patients with pSS (n=27) Controls (n=12)
Female sex (%)	56.4±16 60.8±16.5	64.2±13.4 65.6±16.9
Negative anti-SSA and anti-SSB (%)	7 (41.2%) 100	6 (22.2%) 100
Positive anti-SSA (%)	10 (58.8%) 100	21 (77.8%) 100
Positive anti-SSA and anti-SSB (%)	5 (29.4%) 100	14 (51.9%) 100
ESSDAI, mean±SD (range)	3.8±8.2 (0–19)	6.4±7.2 (0–29)
Treatments	Methotrexate (15 mg/week) (%)	Methotrexate (15 mg/week) (%)
	2 (11.7%) 3 (11.1%)	3 (11.1%) 3 (11.1%)
Hydroxychloroquine (400 mg/day) (%)	5 (29.4%) 9 (33.3%)	9 (33.3%) 9 (33.3%)

EULAR Sjögren’s Syndrome Disease Activity Index.

RESULTS

In this study, we analysed the expression level of 372 miRNAs in purified blood cell population from patients with Sjögren’s syndrome and controls and validated our findings in an independent replication cohort. In T cells from the discovery cohort, 203±9 miRNAs could be reliably detected, while in B cells 200±13 miRNAs were detectable.

Following normalisation using the global mean expression of all valid miRNAs, hierarchical clustering and principal component analysis of the miRNA expression patterns in T and B lymphocytes of all patients and control samples were performed (figure 1). There was a major difference in miRNA expression patterns between the two lymphocyte populations from both patients with pSS and controls separating the samples into major clusters. Inside each cell population, no clustering of patients with pSS and controls was observed. Similar results were also observed using the normalisation approach based on reference miRNAs (data not shown).

Differentially expressed miRNAs in T and B lymphocytes from patients with pSS compared with controls

In total, 21 miRNAs including 9 upregulated and 12 downregulated miRNAs were found significantly differentially expressed in T cells from patients with pSS compared with controls by both normalisation methods (table 2). In B lymphocytes, 24 differentially expressed miRNAs were identified reproducibly by the two different normalisation methods, of which 11 miRNAs were upregulated and 13 miRNAs were downregulated (table 3). Differentially expressed miRNAs did not seem to be regulated through DNA methylation at the promoters of the miRNAs (online supplementary material). To avoid potential confounding through medication, we reanalysed the data excluding patients under methotrexate or hydroxychloroquine treatment. Results confirmed the overall fold changes and significantly expressed miRNAs with the exception of miR-22–3p and let-7i-5p in T cells and miR-142–5p, miR-151a–5p, miR-502–5p and miR-484 in B cells, which were no longer significant.

Expression of BAFF by real-time qPCR

Amplification primers for BAFF were BAFF, 5’-TGAAACACCAA CTATACAAAAAG-3’ and 5’-TCATTTCATCCCCAAAGACT-3’. ATP5B, CYC1 and EIF4A2 were used for normalisation. The relative expression of hsa-miR-30b-5p and BAFF was calculated using the ∆∆Cq method compared with the expression of the reference miRNAs or genes, respectively.21 Functional impact of hsa-miR30b-5p on BAFF expression was evaluated transfecting TEP1 cells (American Type Culture Collection (ATCC)) with a 3’-fluorescein labelled miRCURY LNA Power microRNA inhibitor (Exiqon) or a fluorescent miRNA inhibitor control (scrambled sequence), isolation of transected cells by fluorescence-activated cell sorting (FACS) followed by RNA isolation and expression analysis of BAFF.

More details on experimental procedures and data analysis are given in online supplementary material material.
Pathway analysis
Analysing the differentially expressed miRNAs in T cells from patients with pSS identified by both normalisation methods, pathway in cancers \((p=8.27 \times 10^{-31}) \), Phosphatidylinositol-3-kinase - Protein Kinase B (PI3K-Akt) signalling pathway \((p=1.11 \times 10^{-16}) \) and transforming growth factor (TGF)-beta signalling pathway \((p=1.68 \times 10^{-38}) \) were found as the top canonical pathways. In B lymphocytes, the Wnt signalling pathway \((p=3.24 \times 10^{-15}) \) was confirmed to be differentially expressed among the 17 patients with pSS included in the discovery cohort of this study, only 3 patients with pSS had a moderate or high ESSDAI score \((\geq 5)\), we could not reliably investigate in this cohort any association between miRNA expression and disease activity. Similarly only four patients were positive for anti-SSB+ antibodies precluding a statistical analysis on the influence of SSB autoantibodies on miRNA expression profiles.

Expression of miRNAs depending on the presence of anti-SSA autoantibodies
As the presence of autoantibodies is a major factor for the presence of altered DNA methylation profiles in B cells from patients with pSS,\(^7\) we investigated whether there was a correlation of deregulated miRNA expression with the presence of autoantibodies using the global mean normalised data. Patients were divided based on the production of anti-SSA autoantibodies into two subgroups: anti-SSA- patients, anti-SSA+ patients. In T cells, 22 miRNAs were found differentially expressed in patients with anti-SSA+ pSS compared with controls, including 14 downregulated and eight upregulated miRNAs; 16 miRNAs were found differentially expressed in anti-SSA- patients, among which six miRNAs (hsa-let-7d-3p, hsa-miR-378a-3p, hsa-miR-28–5p, hsa-miR-425–3p, hsa-miR-486–5p and hsa-miR-31–3p) were also found in anti-SSA+ patients with pSS (online supplementary table S3). However, in B cells 3.5 times more deregulated miRNAs were found in seropositive patients with pSS (41 miRNAs) compared with controls than those in seronegative patients with pSS (12 miRNAs), including hsa-miR-30b-3p, hsa-miR-222–3p, hsa-miR-155–5p, hsa-miR-19a-3p, hsa-miR-151–3p, hsa-miR-19b-3p, hsa-miR-20a-3p and hsa-miR-183-3p that were found in both anti-SSA- and anti-SSA+ patients (online supplementary figure S1). When performing a combined analysis on both cohorts, all miRNAs except one for B and one for T cells showed significant expression differences when compared with controls \((table 4)\). When focusing only on differences between anti-SSA-positive patients and controls, the statistical significance of the six validated miRNAs in B cells increased by at least on order of magnitude for all six miRNAs, but none of the other miRNAs included in the validation step reached statistical significance (data not shown).

Replication of differentially expressed miRNAs
Eleven and nine differentially expressed miRNAs in T cells and B cells, respectively (online supplementary table S6) identified by the screen using the human panel I in the discovery cohort were tested in a new independent replication cohort of 27 patients and 12 controls as well as in the samples of the discovery cohort using a custom-designed Pick-&-Mix microRNA PCR Panel. We added in the replication hsa-miR-146a-5p, which was close to statistical significance in the discovery cohort \((p=0.07)\), since it has been reported as deregulated in other pSS studies analysing mainly PBMCs.\(^4\) As shown in table 4, hsa-miR-222–3p, hsa-miR-155–5p, hsa-miR-378a-3p, hsa-miR-28–5p, hsa-miR-425–3p, hsa-miR-486–5p and hsa-miR-31–3p were confirmed to be significantly deregulated in the B cells in both cohorts (online supplementary figure S2). When performing a combined analysis on both cohorts, all miRNAs except one for B and one for T cells showed significant expression differences when compared with controls \((table 4)\). When focusing only on differences between anti-SSA-positive patients and controls, the statistical significance of the six validated miRNAs in B cells increased by at least on order of magnitude for all six miRNAs, but none of the other miRNAs included in the validation step reached statistical significance (data not shown).

Restricting the analyses to anti-SSA-positive patients had little impact on the results in T cells.
Expression of BAFF is inversely correlated with the expression of hsa-miR-30b-5p in B cells from patients with pSS

The BAFF has been reported upregulated in B lymphocytes infiltrating the salivary glands of patients with pSS and has-miR-30b-5p, another member of the has-miR-30 family, has been reported to negatively regulate BAFF expression in systemic sclerosis and fibroblasts from patients with rheumatoid arthritis. As we identified has-miR-30b-5p to be significantly downregulated in our study and a potential binding site for has-miR-30b-5p in the 3′UTR of BAFF was identified (online supplementary figure S3), we further investigated the expression of BAFF and a possible correlation between the expression of has-miR-30b-5p and BAFF in B cells from patients with pSS. The expression of BAFF was increased in peripheral B cells from patients with pSS compared with controls (figure 2A). In contrast to controls, in which no correlation between the expression of has-miR-30b-5p and BAFF was observed, there was a significant inverse correlation between the expression of has-miR-30b-5p and BAFF in B cells from patients with pSS (figure 2B). Transfection of THP-1 cells with an antagonir (miRNA inhibitor) for has-miR-30b-5p led to a strong increase in BAFF expression compared with a fluorescent miRNA inhibitor control (scrambled sequence) (figure 2C), providing further evidence that the loss of has-miR-30b-5p could contribute to the increased expression of BAFF in patients with pSS.

DISCUSSION

In this study, large-scale profiling of miRNAs by qPCR showed highly divergent miRNAs expression patterns between T and B lymphocytes from both patients with pSS and controls. These results are in concordance with our previous study of genome-wide DNA methylation patterns. In contrast to the DNA methylation data, however, deregulation of miRNAs was not restricted to B cells, but was also present to a similar extent in CD4+ T cells. Several of the miRNAs found in our study overexpressed in salivary glands of patients with pSS such as has-miR-16,
hsa-miR-150, hsa-miR-222, hsa-miR-30b and hsa-miR-324–3p where the expression level correlated positively with a high focus score and hsa-miR-181a and hsa-miR-155 overexpressed in T cells and associated with reduced salivary flow in the glands. Of note, there was little overlap of the differentially expressed miRNAs in the salivary glands and B cells.

Among validated differentially expressed miRNAs, we identified hsa-miR-146a-5p, an important negative regulator of inflammatory responses and whose loss has been shown to cause spontaneous autoimmunity as well as oncogenic transformation. Validated targets of this miRNA include IRF5, STAT1 and IRAK1, which have also been found associated with genetic variation or DNA methylation changes in pSS. Previous reports have shown upregulation of hsa-miR-146a-5p in PBMCs from patients with pSS, suggesting a confounding effect of cellular composition in the T-cell compartment. Lineage-specific modifications of the expression level of miR-146a-5p are required to fully understand the effect of this miR on inflammation and the pathogenic interferon response.

Hsa-miR-155–5p was previously shown to be upregulated in synovial tissue, macrophages, PBMCs and sera from patients with rheumatoid arthritis and in CD4+ cells of mouse models for experimental autoimmune encephalomyelitis, which we also confirmed in our study. In contrast, miR-155 was previously found downregulated in PBMCs from patients with pSS, suggesting a confounding effect of cellular composition in the PBMC data. Taken together, the results on these two extremely well studied miRNAs and our findings of highly divergent patterns of miRNAs expression in T and B cells emphasise the importance of using purified cells for epigenetics studies. It will be desirable in the future to analyse even more specific subpopulation of the B and T cells, which might show a more pronounced

miRNAs	Fold change	p Value	miRNAs	Fold change	p Value	Common miRNAs/ global mean and reference miRNAs
hsa-miR-30b-5p	−1.52	4.08E-04	hsa-miR-30b-5p	−1.56	5.01E-03	hsa-miR-30b-5p

Table 3 Differentially expressed miRNAs (p value<0.05) in B cells from patients with pSS compared with the controls in the discovery cohort (two different normalisation ways were used: global mean and reference miRNAs)
Table 4 Validation of the differentially expressed miRNAs in T and B cells by quantitative PCR

Discovery cohort	Replication cohort	Combined analysis		
	miRNAs	p Value	miRNAs	p Value
T cells			**miRNAs**	
hsa-let-7d-3p	−2.36	5.58×10^{−3}	hsa-let-7d-3p	0.008
hsa-mir-28-5p	1.14	0.014	hsa-mir-28-5p	0.030
hsa-mir-378a-3p	−1.50	9.33×10^{−1}	hsa-mir-378a-3p	0.029
hsa-mir-26a-5p	−1.15	0.075	hsa-mir-26a-5p	0.046
hsa-mir-30b-5p	−1.19	0.036	hsa-mir-30b-5p	0.378
hsa-mir-140-3p	1.13	0.018	hsa-mir-140-3p	0.389
hsa-mir-30c-5p	−1.10	0.019	hsa-mir-30c-5p	0.019
hsa-mir-155-5p	1.31	0.004	hsa-mir-155-5p	0.009
hsa-mir-31-3p	−1.44	0.043	hsa-mir-31-3p	0.312
hsa-mir-222-3p	1.22	0.025	hsa-mir-222-3p	0.009
hsa-mir-16-5p	1.18	7.26×10^{−4}	hsa-mir-16-5p	0.829
hsa-mir-146a-5p	1.30	0.017	hsa-mir-146a-5p	0.021
B cells			**miRNAs**	
hsa-mir-30b-5p	−1.59	0.003	hsa-mir-30b-5p	0.012
hsa-mir-222-3p	1.32	0.002	hsa-mir-222-3p	0.005
hsa-mir-18a-3p	1.28	0.027	hsa-mir-18a-3p	0.137
hsa-mir-19b-3p	−1.38	0.012	hsa-mir-19b-3p	0.028
hsa-mir-26a-5p	−1.37	0.013	hsa-mir-26a-5p	0.006
hsa-mir-20a-5p	−1.14	0.082	hsa-mir-20a-5p	0.019
hsa-mir-32-5p	−1.75	0.014	hsa-mir-32-5p	0.416
hsa-let-7d-3p	−2.03	2.12×10^{−4}	hsa-let-7d-3p	0.452
hsa-mir-378a-3p	−1.29	0.062	hsa-mir-378a-3p	3.11×10^{−4}
hsa-mir-146a-5p	−1.35	0.024	hsa-mir-146a-5p	0.157

Differentially expressed miRNAs found in the discovery cohort and in the replication cohort are shown. MiRNAs in black depict those with a p value<0.05 and miRNAs in grey depict those with p value>0.05. Nominal p values without correction for multiple comparisons are shown.

among the differentially expressed miRNAs, hsa-miR-30b-5p draw our attention as it has been previously reported as among the most significantly differentially expressed miRNAs in minor salivary glands from patients with pSS. Furthermore, hsa-miR-30a-3p, an miR of the same family, negatively regulates the expression of BAFF in systemic sclerosis and rheumatoid arthritis fibroblasts. BAFF, produced by monocytes, activated T lymphocytes, dendritic cells and epithelial cells in patients with pSS promotes B-cell maturation, proliferation and survival.13 43 44 BAFF levels have been found to be increased in the serum and salivary gland B, T and epithelial cells of patients with pSS compared with controls and correlate with autoimmune production.44 45 In the presence of excess levels of BAFF, mice develop manifestations of autoimmune disease with features of SLE and Sjögren’s syndrome and have an increased risk to develop lymphoma at later age.46 On the other hand, blocking of both BAFF and C-X-C motif chemokine ligand (CXCL13) improves salivary gland function.47 The 3′UTR of BAFF is targeted by several miRNAs and genetic variation in the 3′UTR plays a major role in the potential of miRNAs to regulate BAFF expression.48 49 We confirmed the overexpression of BAFF in the B cells of our cohorts correlating inversely with the expression of hsa-miR-30b-5p. This might be caused by the binding of hsa-miR-30b-5p to the 3′-UTR of BAFF mRNA. This hypothesis was substantiated by our transfection experiments with an inhibitor of hsa-miR-30b-5p leading to a greatly increased BAFF expression. Further studies will be required to confirm the specific binding sites of hsa-miR-30b on the BAFF mRNA as well as to determine the relative importance of hsa-miR-30b compared with the other miRNAs binding to BAFF, as hsa-miR-30b was not tested in a
recent study having shown the importance of miRNAs for regulating BAFF expression.48

In summary, we have performed a large-scale analysis of miRNAs in patients with pSS in sorted blood-derived T and B cells and demonstrated cell-type specific miRNA expression patterns, potentially related to the pathophysiology of the disease. Being one of the key molecular changes that initiate pSS development, BAFF was induced by one of the identified miRNAs, hsa-miR-30b-5p.

Acknowledgements The authors thank Frederic Auvre (IRCM, CEA) and the platform OCCigén (Organization of Cytometry and Cellular Imaging of GENopole) for help with the cell sorting of transfected cells and Florence Busato (LEE, CHU Gh, CEA) for help with graphical representation of the data.

Contributors JT and XM conceived the study, GN and XM provided clinical data and patient material, SFWR, SB, ER, NS, CD, ABT performed experiments and analysed data, VR performed bioinformatic analyses, SFWR wrote the first draft of the manuscript, JFD, JT and XM critically revised the manuscript. All authors approved the final version of the manuscript.

Funding The research described in this manuscript was funded by a grant from the French National Research Agency (ANR-2010-BLAN-1133 01), the Fondation pour la Recherche Medicale (DEQ20150331730 - Sjögren’s syndrome and Autoimmunity associated Lymphomas) and the institutional budget of the CNG.

Competing interests None declared.

Patient consent No personalised medical records were used, all data were anonymised. Informed and written consent was obtained from all study participants according to the French law.

Ethics approval The presented study was approved by the local ethics committee CPP Ile de France VII No. CO-10-003.

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement Raw data (CT values or processed log-2 fold ratios of miRNA expression data) are available from the corresponding authors upon request.

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

© Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

REFERENCES

1. Bowman SJ, Ibrahim GH, Holmes G, et al. Estimating the prevalence among Caucasian women of primary Sjögren’s syndrome in two general practices in Birmingham, UK. Scand J Rheumatol. 2004;33:39–43.

2. Qin B, Wang J, Yang Z, et al. Epidemiology of primary Sjögren’s syndrome: a systematic review and meta-analysis. Ann Rheum Dis. 2015;74:1983–9.

3. Nocturne G, Mariette X. Advances in understanding the pathogenesis of primary Sjögren’s syndrome. Nat Rev Rheumatol. 2013;9:544–56.

4. Lessard CI, Li H, Adrionto I, et al. Variants at multiple loci implicated in both innate and adaptive immune responses are associated with Sjögren’s syndrome. Nat Genet. 2013;45:1284–92.

5. Li Y, Zhang K, Chen H, et al. A genome-wide association study in Han Chinese identifies a susceptibility locus for primary Sjögren’s syndrome at 7q11.23. Nat Genet. 2013;45:1361–5.

6. Taylor KE, Wong Q, Levine DM, et al. Genome-wide association analysis reveals genetic heterogeneity of Sjögren’s syndrome according to ancestry. Arthritis Rheumatol. 2017;69:1294–305.

7. Miceli-Richard C, Wang-Renault SF, Boudaoud S, et al. Overlap between differentially methylated DNA regions in blood lymphocytes and genetic at-risk loci in primary Sjögren’s syndrome. Ann Rheum Dis. 2016;75:933–40.
A methylation patterns in naive
Basic and translational research

25
24
21
20
19
17
14
11
10
9
8
7
6
5
4
3
2
1

A methylation patterns in naive

Circ Res 2011;108:219–34.

van Rooij E. The art of microRNA research. Circ Res 2011;108:219–34.

Garo LP, Murugaiyan G. Contribution of MicroRNAs to autoimmune diseases. Cell Mol Life Sci 2016;73:2041–51.

Chen IQ, Papp G, Szodoray P, et al. The role of microRNAs in the pathogenesis of autoimmune diseases. Autoimmun Rev 2016;15:1171–80.

Seror R, Theander E, Brun JL, et al. Validation of EUlAR primary Sjögren’s syndrome disease activity (ESSDAI) and patient indexes (ESSPRI). Ann Rheum Dis 2015;74:859–66.

Pafiﬁ MW. Quantiﬁcation strategies in real-time PCR. In: Bustin SA, ed. A-Z of quantitative PCR La Jolla, CA, USA: International University Line, 2004:87–112.

Mestdagh P, Hartmann N, Baeriswyl L, et al. Evaluation of quantitative microRNA expression platforms in the microRNA quality control (miRQCo) study. Nat Methods 2011;8:809–15.

Vitai C, Bombardieri S, Jonsson R, et al. Classiﬁcation criteria for Sjögren’s syndrome: a revised version of the European criteria proposed by the American-European Consensus Group. Ann Rheum Dis 2002;61:554–8.

Seror R, Theander E, Brun JL, et al. Validation of EUlAR primary Sjögren’s syndrome disease activity (ESSDAI) and patient indexes (ESSPRI). Ann Rheum Dis 2015;74:859–66.

Pafiﬁ MW. Quantiﬁcation strategies in real-time PCR. In: Bustin SA, ed. A-Z of quantitative PCR La Jolla, CA, USA: International University Line, 2004:87–112.

Mestdagh P, Van Vlierberghen P, De Weer A, et al. A novel and universal method for microRNA RT-qPCR data normalization. Genome Biol 2009;10:R64.

Zilahi E, Tarr E, Tapp P, Gagg G, et al. Increased microRNA-146a, TRAF6 gene and decreased IRAK1 gene expressions in the peripheral mononuclear cells of patients with Sjögren’s syndrome. Immunol Lett 2012;141:165–8.

Daridon C, Devacheulle V, Hutin P, et al. Aberrant expression of BAFF by B lymphocytes inﬁltrating the salivary glands of patients with primary Sjögren’s syndrome. Arthritis Rheum 2007;56:1134–44.

Alsaghe G, François A, Philippe L, et al. MicroRNA-30a-3p negatively regulates BAFF synthesis in systemic sclerosis and rheumatoid arthritis ﬁbroblasts. PLoS One 2014;9:e111266.

Boldin MP, Taganov KD, Rao DS, et al. miR-146a is a signiﬁcant brake on autoimmune, myeloproliferation, and cancer in mice. J Exp Med 2011;210:1189–201.

Tang Y, Luo X, Cui H, et al. MicroRNA-146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis Rheum 2009;60:1065–75.

Li J, Wan Y, Guo Q, et al. Altered microRNA expression proﬁle with miR-146a upregulation in CD4+ T cells from patients with rheumatoid arthritis. Arthritis Res Ther 2010;12:R81.

Murugaiyan G, Beynon V, Mittal A, et al. Silencing microRNA-155 ameliorates experimental autoimmune encephalomyelitis. J Immunol 2011;187:2213–21.

Kuroswka-Stolarska M, Alivieri S, Ballantine LE, et al. MicroRNA-155 as a proinﬂammatory regulator in clinical and experimental arthritis. Proc Natl Acad Sci U S A 2011;108:11193–8.

Filková M, Aradi B, Senolt L, et al. Association of circulating miR-223 and miR-16 with disease activity in patients with early rheumatoid arthritis. Ann Rheum Dis 2014;73:1898–904.

Long L, Yu P, Liu Y, et al. Upregulated microRNA-155 expression in peripheral blood mononuclear cells and ﬁbroblast-like synoviocytes in rheumatoid arthritis. Clin Dev Immunol 2013;2013:1–10.

Szabi K, Papp G, Szántó A, et al. A comprehensive investigation on the distribution of circulating follicular T helper cells and B cell subsets in primary Sjögren’s syndrome and systemic lupus erythematosus. Clin Exp Immunol 2016;183:76–89.

Verstappen GM, Meimers PM, Cornelth OBI, et al. Abatacept attenuates T follicular-helper-cell-dependent B-cell hyperactivity in primary Sjögren’s syndrome. Arthritis & Rheumatology 2017. [Epub ahead of print].

Tasaki S, Suzuki K, Nishikawa A, et al. Multidiscipline disease signatures converge to cytotoxic CD8 T cells in primary Sjögren’s syndrome. Ann Rheum Dis 2017;76:1458–66.

Chafin CB, Regna NL, Hammond SE, et al. Cellular and urinary microRNA alterations in NZB/W mice with hydroxochloroquine or prednisone treatment. Int Immunopharmacol 2013;13:894–906.

García-Rodriguez S, Arias-Santiago S, Blasco-Morente G, et al. Increased expression of microRNA-155 in peripheral blood mononuclear cells from psoriasis patients is related to disease activity. J Eur Acad Dermatol Venereol 2017;31:312–22.

Levendof B, Zibert JR, Gyldenlake M, et al. MicroRNA-223 and miR-143 are important systemic biomarkers for disease activity in psoriasis. J Dermatol Sci 2014;73:133–9.

Simpson LJ, Ansell KM. MicroRNA regulation of lymphocyte tolerance and autoimmunity. J Clin Invest 2015;125:2242–9.

Xiao C, Srinivasan L, Calado DP, et al. Lymphopoietic disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat Immunol 2008;9:405–14.

Alevaros I, Ilie GG. MicroRNAs in Sjögren’s syndrome as a prototypic autoimmune disease. Autoimmun Rev 2010;9:618–21.

Zhu G, Chai J, Ma L, et al. Downregulated microRNA-32 expression induced by high glucose inhibits cell cycle progression via PTEN upregulation and Akt inactivation in bone marrow-derived mesenchymal stem cells. Biochem Biophys Res Commun 2013;433:526–31.

Lavie F, Miele-Richard C, Quillard J, et al. Expression of BAFF (BLYS) in T cells inﬁltrating the salivary glands from patients with Sjögren’s syndrome. J Pathol 2004;202:496–502.

Lavie F, Miele-Richard C, Itah M, et al. B-cell activating factor of the tumour necrosis factor family factor expression in blood monocytes and T cells from patients with primary Sjögren’s syndrome. Scand J Immunol 2008;67:185–92.

Mareux T, Roux S, Zhang L, et al. The level of BLYS (BAFF) correlates with the titre of antinuclear antibodies in human Sjögren’s syndrome. Ann Rheum Dis 2003;62:168–71.

MacKay E, Woodcock SA, Lawton P, et al. Mouse transgenic for BAFF develop lymphopoietic disorders along with autoimmune manifestations. J Exp Med 1999;190:1697–710.

Sharma A, Kiripolsky J, Klimatcheva E, et al. Early BAFF receptor blockade mitigates murine Sjögren’s syndrome: Concomitant targeting of CXCL13 and the BAFF receptor prevents salivary hypofunction. Clin Immunol 2016;164:85–94.

Steir M, Orni V, Idai ML, et al. Overexpression of the Cytokine BAFF and Autoimmunity Risk. N Engl J Med 2017;376:1616–26.