VOLUMES OF DOUBLE TWIST KNOT CONE-MANIFOLDS

ANH T. TRAN

Abstract. We give explicit formulae for the volumes of hyperbolic cone-manifolds of double twist knots, a class of two-bridge knots which includes twist knots and two-bridge knots with Conway notation $C(2n, 3)$. We also study the Riley polynomial of a class of one-relator groups which includes two-bridge knot groups.

1. Introduction

Let K be a hyperbolic knot and X_K the complement of K in S^3. Let ρ_{hol} be a holonomy representation of $\pi_1(X_K)$ into $\text{PSL}_2(\mathbb{C})$. Thurston [Th] showed that ρ_{hol} can be deformed into a one-parameter family $\{\rho_\alpha\}$ of representations to give a corresponding one-parameter family $\{C_\alpha\}$ of singular complete hyperbolic manifolds. These α’s and C_α’s are called the cone-angles and hyperbolic cone-manifolds of K, respectively.

We consider the complete hyperbolic structure on a knot complement as the cone-manifold structure of cone-angle zero. It is known that for a two-bridge knot K there exists an angle $\alpha_K \in [\frac{2\pi}{3}, \pi)$ such that C_α is hyperbolic for $\alpha \in (0, \alpha_K)$, Euclidean for $\alpha = \alpha_K$, and spherical for $\alpha \in (\alpha_K, \pi)$ [HLM, Ko1, Po, PW]. In [HLM] a method for calculating the volumes of two-bridge knot cone-manifolds were introduced but without explicit formulae. Explicit volume formulae for hyperbolic cone-manifolds of knots are known for the following knots: 4_1 [HLM, Ko1, Ko2, MR], 5_2 [Me], twist knots [HMP] and two-bridge knots with Conway notation $C(2n, 3)$ [HL]. In this paper we will calculate the volumes of cone-manifolds of double twist knots, a class of two-bridge knots which includes twist knots and two-bridge knots with Conway notation $C(2n, 3)$.

Let $J(k, l)$ be the knot/link as in Figure 1, where k, l denote the numbers of half twists in the boxes. Positive (resp. negative) numbers correspond to right-handed (resp. left-handed) twists. Note that $J(k, l)$ is a knot if and only if kl is even, and is the trivial knot if $kl = 0$. Furthermore, $J(k, l) \cong J(l, k)$ and $J(-k, -l)$ is the mirror image of $J(k, l)$. Hence, without loss of generality, we will only consider $J(k, 2n)$ for $k > 0$ and $|n| > 0$. The knot $J(2, 2n)$ is known as a twist knot, and $J(3, 2n)$ is the two-bridge knot with Conway notation $C(-2n, 3)$. In general, the knot $J(k, 2n)$ is called a double twist knot. It is a hyperbolic knot if and only if $|k|, |2n| \geq 2$ and $J(k, 2n)$ is not the trefoil knot. We will now exclusively consider the hyperbolic $J(k, 2n)$ knots.

To state our main results we introduce the Chebychev polynomials of the second kind $S_j(\omega)$. They are recursively defined by $S_0(\omega) = 1, S_1(\omega) = \omega$ and $S_j(\omega) = \omega S_{j-1}(\omega) - S_{j-2}(\omega)$ for all integers j.

Let $X_K(\alpha)$ be the hyperbolic cone-manifold with underlying space S^3 and with singular set K of cone-angle α. The volume of $X_{J(k, 2n)}(\alpha)$ is given as follows.
Theorem 1. We have

\[\text{Vol}(X_{J(2m+1,2n)}(\alpha)) = \int_{\alpha}^{\pi} \log \left| \frac{S_m(z) - M^2 S_{m-1}(z)}{M^2 S_m(z) - S_{m-1}(z)} \right| d\omega. \]

Here \(M = e^{i\phi} \) and \(z, \) with \(\text{Im} \left(\frac{S_m(z) S_{m-1}(z)}{S_m(z) - S_{m-1}(z)} \right) \leq 0, \) is a zero of the Riley polynomial

\[\Phi_{J(2m+1,2n)}(M, z) = S_n(t_m) - d_m S_{n-1}(t_m), \]

where

\[t_m = M^2 + M^{-2} + 2 - z - (z - 2)(z - M^2 - M^{-2}) S_m(z) S_{m-1}(z), \]
\[d_m = 1 - (z - M^2 - M^{-2}) S_m(z) (S_m(z) - S_{m-1}(z)). \]

Theorem 2. We have

\[\text{Vol}(X_{J(2m,2n)}(\alpha)) = \int_{\alpha}^{\pi} \log \left| \frac{(S_m(z) - S_{m-1}(z)) - M^2 (S_{m-1}(z) - S_{m-2}(z))}{M^2 (S_m(z) - S_{m-1}(z)) - (S_{m-1}(z) - S_{m-2}(z))} \right| d\omega. \]

Here \(M = e^{i\phi} \) and \(z, \) with \(\text{Im} \left(\frac{(S_m(z) - S_{m-1}(z)) S_{m-1}(z) - S_{m-2}(z)}{S_m(z) - S_{m-1}(z)} \right) \leq 0, \) is a zero of the Riley polynomial

\[\Phi_{J(2m,2n)}(M, z) = S_n(\tilde{t}_m) - \tilde{d}_m S_{n-1}(\tilde{t}_m) = 0, \]

where

\[\tilde{t}_m = 2 + (z - 2)(z - M^2 - M^{-2}) S_{m-1}^2(z), \]
\[\tilde{d}_m = 1 + (z - M^2 - M^{-2}) S_{m-1}(z) (S_m(z) - S_{m-1}(z)). \]

Remark 1.1. For a fixed integer \(m, \) the Riley polynomial \(P_n := \Phi_{J(2m+1,2n)}(M, z) \) can be defined recursively by

\[P_n = \left(M^2 + M^{-2} + 2 - z - (z - 2)(z - M^2 - M^{-2}) S_m(z) S_{m-1}(z) \right) P_{n-1} - P_{n-2} \]

for all integers \(n, \) with initial conditions \(P_0 = 1 \) and

\[P_1 = 1 + (z - M^2 - M^{-2}) S_{m-1}(z) (S_m(z) - S_{m-1}(z)). \]

Similarly, the Riley polynomial \(Q_n := \Phi_{J(2m,2n)}(M, z) \) can be defined recursively by

\[Q_n = \left(2 + (z - 2)(z - M^2 - M^{-2}) S_{m-1}^2(z) \right) Q_{n-1} - Q_{n-2} \]

for all integers \(n, \) with initial conditions \(Q_0 = 1 \) and

\[Q_1 = 1 - (z - M^2 - M^{-2}) S_{m-1}(z) (S_{m-1}(z) - S_{m-2}(z)). \]
With appropriate changes of variables, we obtain the volume formulae for cone-manifolds of two-bridge knots with Conway notation $C(2n, 3)$ in [HL] and for cone-manifolds of twist knots in [HMP] by setting $m = 1$ in Theorems 1 and 2 respectively.

The paper is organized as follows. In Section 2 we study the Riley polynomial of a class of one-relator groups which includes two-bridge knot groups. In Section 3 we apply the result in Section 2 to calculate the Riley polynomial of the double twist knot $J(k, 2n)$ and then we prove Theorems 1 and 2.

1.1. Acknowledgement. This work was partially supported by a grant from the Simons Foundation (#354595 to Anh Tran).

2. Nonabelian representations

In this section we will study nonabelian $SL_2(\mathbb{C})$-representations of a class of one-relator groups which includes two-bridge knot groups. Like the case of two-bridge knot groups, the set of nonabelian $SL_2(\mathbb{C})$-representations of each group in this class is described by a single polynomial in two variables which we call the Riley polynomial of the group. We will present three different approaches to the Riley polynomial.

Let $F_{a,b} = \langle a, b \rangle$ be the free group on two letters a and b. For a word $u \in F_{a,b}$ let \tilde{u} be the word obtained from u by replacing a and b by b^{-1} and a^{-1} respectively.

We consider the group

$$G = \langle a, b \mid wa = bw \rangle,$$

where w is a word in $F_{a,b}$ with $w \neq 1$ and $\tilde{w} = w^{-1}$.

The knot group of a two-bridge knot always has a presentation of the form (2.1). Indeed, two-bridge knots are those knots admitting a projection with only two maxima and two minima. The double branched cover of S^3 along a two-bridge knot is a lens space $L(p, q)$, which is obtained by doing a p/q surgery on the unknot. Such a two-bridge knot is denoted by $b(p, q)$. Here p and q are relatively prime odd integers, and we can always assume that $p > |q| \geq 1$. It is known that $b(p', q')$ is ambient isotopic to $b(p, q)$ if and only if $p' = p$ and $q' \equiv q \pm 1 \pmod{p}$, see e.g. [BZ]. The knot group of the two-bridge knot $b(p, q)$ has a presentation of the form $\langle a, b \mid wa = bw \rangle$ where a, b are meridians, $w = a^{\varepsilon_1}b^{\varepsilon_2}c^{\varepsilon_3} \cdots a^{\varepsilon_{2p-2}}b^{\varepsilon_{2p-1}}$ and $\varepsilon_i = (-1)^{(i+1)p/q}$ for $1 \leq i \leq p - 1$. Since $\varepsilon_i = \varepsilon_{p-i}$, we have

$$\tilde{w} = b^{-\varepsilon_1}a^{-\varepsilon_2}b^{-\varepsilon_3}a^{-\varepsilon_4} \cdots b^{-\varepsilon_{p-2}}a^{-\varepsilon_{p-1}} = b^{-\varepsilon_{p-1}}a^{-\varepsilon_{p-2}} \cdots b^{-\varepsilon_2}a^{-\varepsilon_1} = w^{-1}.$$

We now consider representations of G into $SL_2(\mathbb{C})$. Two representations $\rho, \rho' : G \to SL_2(\mathbb{C})$ are called conjugate if there exists a matrix $C \in SL_2(\mathbb{C})$ such that $\rho'(g) = C \rho(g) C^{-1}$ for all $g \in G$. In this paper we study nonabelian representations up to conjugation. A representation $\rho : G \to SL_2(\mathbb{C})$ is called nonabelian if the image $\rho(G)$ is a nonabelian subgroup of $SL_2(\mathbb{C})$. Suppose ρ is nonabelian. Since a and $b = waw^{-1}$ are conjugate, up to conjugation we can assume that

$$\rho(a) = \begin{bmatrix} M & 1 \\ 0 & M^{-1} \end{bmatrix} \quad \text{and} \quad \rho(b) = \begin{bmatrix} M & 0 \\ r & M^{-1} \end{bmatrix},$$

where $(M, r) \in \mathbb{C}^* \times \mathbb{C}^*$ satisfies the matrix equation $\rho(w)\rho(a) = \rho(b)\rho(w)$.

We will show that this matrix equation is equivalent to a single equation in M and y, which we call the Riley polynomial of the group G.

For a word u in $F_{a,b}$, we write $\rho(u) = \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix}$ where $u_{ij} \in \mathbb{C}$.
2.1. The Riley polynomial. To solve the matrix equation $\rho(w)\rho(a) = \rho(b)\rho(w)$, we follow Riley’s approach in [Ri].

Lemma 2.1. Suppose u is a word in $F_{a,b}$ with $u \neq 1$ and $\tilde{u} = u^{-1}$. Then we have

\begin{equation}
 u_{21} = ru_{12}.
\end{equation}

Proof. We use induction on the length $\ell(u)$ of u. Note that $\ell(u) \geq 2$. If $\ell(u) = 2$ then it is easy to see that $u = g_1g_2$, where $\{g_1, g_2\} = \{a, b\}$ and $\varepsilon = \pm 1$. Equality (2.3) holds true by a direct calculation.

Suppose $\ell(u) > 2$. Write $u = gvh$, where $g, h \in \{a^\pm 1, b^\pm 1\}$ and $v \in F_{a,b}$ with $\ell(v) = \ell(r) - 2$. Since $\tilde{u} = u^{-1} = h^{-1}v^{-1}g^{-1}$, we have $h^{-1} = \tilde{g}$, $g^{-1} = \tilde{h}$ and $v^{-1} = \tilde{v}$. It follows that $\{g, h\} = \{a, b\}$ or $\{g, h\} = \{a^{-1}, b^{-1}\}$.

We consider the case $(g, h) = (a, b)$. Then $u = avb$. By induction hypothesis we have

$$
 \rho(v) = \begin{bmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{bmatrix}
$$

with $v_{21} = rv_{12}$. Hence

$$
 \rho(u) = \rho(a)\rho(v)\rho(b) = \begin{bmatrix} M & 1 \\ 0 & M^{-1} \end{bmatrix} \begin{bmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{bmatrix} \begin{bmatrix} M & 0 \\ r & M^{-1} \end{bmatrix} = \begin{bmatrix} M^2v_{11} + Mrv_{12} + Mv_{21} + rv_{22} & u_{12} + M^{-1}v_{22} \\ v_{21} + M^{-1}rv_{22} & M^{-2}v_{22} \end{bmatrix}.
$$

It follows that $u_{21} = v_{21} + rM^{-1}v_{22} = r(u_{12} + M^{-1}v_{22}) = ru_{12}$.

The cases $(g, h) = (b, a)$, (a^{-1}, b^{-1}) and (b^{-1}, a^{-1}) can be proved similarly. \qed

By Lemma 2.1 we have $\rho(w) = \begin{bmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{bmatrix}$ with $w_{21} = rw_{12}$. Then

$$
 \rho(w)\rho(a) - \rho(b)\rho(w) = \begin{bmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{bmatrix} \begin{bmatrix} M & 1 \\ 0 & M^{-1} \end{bmatrix} - \begin{bmatrix} M & 0 \\ r & M^{-1} \end{bmatrix} \begin{bmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{bmatrix} = \begin{bmatrix} 0 & w_{11} - (M - M^{-1})w_{12} \\ -rw_{11} + (M - M^{-1})w_{21} & w_{21} - rw_{12} + w_{21} \\ 0 & w_{11} - (M - M^{-1})w_{12} \end{bmatrix}.
$$

Hence $\rho(w)\rho(a) = \rho(b)\rho(w)$ if and only if

$$
 w_{11} - (M - M^{-1})w_{12} = 0.
$$

We call $w_{11} - (M - M^{-1})w_{12}$ the Riley polynomial of the group G. It describes the set of nonabelian representations of G into $SL_2(\mathbb{C})$.

2.2. Lê’s approach. In this subsection we determine the universal $SL_2(\mathbb{C})$-character ring of the group G defined in (2.1). As a consequence, we obtain another description of the set of nonabelian $SL_2(\mathbb{C})$-representations of G. We will follow Lê’s approach in [Le].

We first recall the definitions of the character variety and universal character ring of a group. The set of representations of a finitely generated group H into $SL_2(\mathbb{C})$ is an algebraic set defined over \mathbb{C}, on which $SL_2(\mathbb{C})$ acts by conjugation. The set-theoretic quotient of the representation space by that action does not have good topological properties, because two representations with the same character may belong to different orbits
of that action. A better quotient, the algebro-geometric quotient denoted by $\chi(H)$ (see [CS, LM]), has the structure of an algebraic set. There is a bijection between $\chi(H)$ and the set of all characters of representations of H into $SL_2(\mathbb{C})$, hence $\chi(H)$ is usually called the character variety of H.

The character variety of H is determined by the traces of some fixed elements h_1, \ldots, h_k in H. More precisely, we can find h_1, \ldots, h_k in H such that for every element h in H there exists a polynomial P_h in k variables such that for any representation $\rho : H \to SL_2(\mathbb{C})$ we have $\text{tr} \rho(h) = P_h(x_1, \ldots, x_k)$ where $x_i := \text{tr} \rho(h_i)$. The universal character ring of H is defined to be the quotient of the polynomial ring $\mathbb{C}[x_1, \ldots, x_k]$ by the ideal generated by all expressions of the form $\text{tr} \rho(u) - \text{tr} \rho(v)$, where u and v are any two words in the letters g_1, \ldots, g_k which are equal in H, see e.g. [BH]. The universal character ring of H is actually independent of the choice of h_1, \ldots, h_k. The quotient of the universal character ring of H by its nilradical is equal to the character ring of H, which is the ring of regular functions on the character variety $X(H)$.

Recall that $F_{a,b}$ is the free group on two letters a and b. The character variety of $F_{a,b}$ is isomorphic to \mathbb{C}^3 by the Fricke-Klein-Vogt theorem, see [Fr, Vo]. It follows that for every word $u \in F_{a,b}$ there is a unique polynomial P_u in 3 variables such that for any representation $\rho : F_{a,b} \to SL_2(\mathbb{C})$ we have $\text{tr} \rho(u) = P_u(x, x', y)$ where $x := \text{tr} \rho(a)$, $x' := \text{tr} \rho(b)$ and $y := \text{tr} \rho(ab)$.

Lemma 2.2. For $u \in F_{a,b}$ we have that $x - x'$ divides $\text{tr} \rho(u) - \text{tr} \rho(\tilde{u})$ in $\mathbb{C}[x, x', y]$.

Proof. Since \tilde{u} is the word obtained from u by replacing a by b^{-1} and b by a^{-1}, we have

$$\text{tr} \rho(\tilde{u}) = P_u(tr \rho(b^{-1}), tr \rho(a^{-1}), tr \rho(b^{-1}a^{-1})) = P_u(x', x, y).$$

Hence $\text{tr} \rho(u) - \text{tr} \rho(\tilde{u}) = P_u(x, x', y) - P_u(x', x, y)$ is divisible by $x - x'$ in $\mathbb{C}[x, x', y]$. □

Proposition 2.3. [TR] Prop.2.1 Let $H = \langle a, b | u = v \rangle$, where $u, v \in F_{a,b}$. Then the universal character ring of H is the quotient of the polynomial ring $\mathbb{C}[x, y, z]$ by the ideal generated by the four polynomials $\text{tr} \rho(u) - \text{tr} \rho(v)$, $\text{tr} \rho(ua^{-1}) - \text{tr} \rho(va^{-1})$, $\text{tr} \rho(ub^{-1}) - \text{tr} \rho(vb^{-1})$ and $\text{tr} \rho(uab^{-1}) - \text{tr} \rho(va^{-1}b^{-1})$.

Recall that $G = \langle a, b | wa = bw \rangle$ where $\tilde{w} = w^{-1}$. We now describe the universal character ring of G. In this case, since a and $b = waw^{-4}$ are conjugate, we have $\text{tr} \rho(a) = \text{tr} \rho(b)$. This means that $x = x'$.

Theorem 3. The universal character ring of G is the quotient of the polynomial ring $\mathbb{C}[x, y]$ by the principal ideal generated by the polynomial $\text{tr} \rho(bwa^{-1}) - \text{tr} \rho(w)$.

Proof. By Proposition 2.3 the universal character ring of G is the quotient of the polynomial ring $\mathbb{C}[x, z]$ by the ideal generated by the four polynomials

$$\text{tr} \rho(wa) - \text{tr} \rho(bw),$$
$$\text{tr} \rho((wa)a^{-1}) - \text{tr} \rho((bw)a^{-1}) = \text{tr} \rho(w) - \text{tr} \rho(bwa^{-1}),$$
$$\text{tr} \rho((wa)b^{-1}) - \text{tr} \rho((bw)b^{-1}) = \text{tr} \rho(wab^{-1}) - \text{tr} \rho(w),$$
$$\text{tr} \rho((wa)a^{-1}b^{-1}) - \text{tr} \rho((bw)a^{-1}b^{-1}) = \text{tr} \rho(wb^{-1}) - \text{tr} \rho(wa^{-1}).$$
Since $x = x'$, by Lemma 2.2 we have $\text{tr } \rho(u) = \text{tr } \rho(\tilde{u})$ for all $u \in F_{a,b}$. Hence

$$\text{tr } \rho(wa) - \text{tr } \rho(bw) = \text{tr } \rho(\tilde{w}\tilde{a}) - \text{tr } \rho(bw) = \text{tr } \rho(\tilde{w}\tilde{a}) - \text{tr } \rho(bw) = \text{tr } (w^{-1}b^{-1}) - \text{tr } \rho(bw) = 0,$$

$$\text{tr } \rho(wab^{-1}) - \text{tr } \rho(w) = \text{tr } \rho(\tilde{w}ab^{-1}) - \text{tr } \rho(w) = \text{tr } \rho(\tilde{w}ab^{-1}) - \text{tr } \rho(w) = \text{tr } (w^{-1}b^{-1}a) - \text{tr } \rho(w) = \text{tr } (w^{-1}b^{-1}a) - \text{tr } \rho(w),$$

$$\text{tr } \rho(wb^{-1}) - \text{tr } \rho(wa^{-1}) = \text{tr } \rho(\tilde{w}b^{-1}) - \text{tr } \rho(\tilde{w}a) - \text{tr } \rho(wa^{-1}) = \text{tr } (\tilde{w}b^{-1}) - \text{tr } \rho(\tilde{w}a) - \text{tr } \rho(wa^{-1}) = \text{tr } (w^{-1}a) - \text{tr } \rho(wa^{-1}) = 0.$$

The theorem then follows. \hfill \Box

Now suppose $\rho : G \to \text{SL}_2(\mathbb{C})$ is a nonabelian representation of the form (2.2). Then

$$\text{tr } \rho(bwa^{-1}) - \text{tr } \rho(w) = (w_{11} + w_{22} - rw_{11} - M^{-1}w_{21} + rMw_{12}) - (w_{11} + w_{22}) = -r(w_{11} - Mw_{12} + M^{-1}r^{-1}w_{21}).$$

Hence, by Theorem 3 we have $\rho(wa) = \rho(bw)$ if and only if

$$w_{11} - (Mw_{12} - M^{-1}r^{-1}w_{21}) = 0.$$

We call $w_{11} - (Mw_{12} - M^{-1}r^{-1}w_{21})$ the Lê polynomial of G.

Remark 2.4. Since $w_{21} = rw_{12}$ (by Lemma 2.1), it is easy to see that the Lê equation is equal to the Riley equation.

2.3. Mednykh’s approach.

In this subsection we study the set of nonabelian $\text{SL}_2(\mathbb{C})$-representations of the group G defined in (2.1), following Mednykh’s approach in [HMP].

Lemma 2.5. Suppose $C \in \text{SL}_2(\mathbb{C})$. Then $C^2 = -I$ if and only if $\text{tr } C = 0$.

Proof. By the Cayley-Hamilton theorem we have $C^2 - (\text{tr } C)C + I = 0$. It follows that $C^2 + I = 0$ if and only if $\text{tr } C = 0$. \hfill \Box

Proposition 2.6. Suppose $C \in \text{SL}_2(\mathbb{C})$ such that $C\rho(b) = \rho(a^{-1})C$ and $C^2 = -I$. Then for any word $u \in F_{a,b}$ we have

$$(2.4) \quad C\rho(u) = \rho(\tilde{u})C.$$

Proof. By taking the inverse of $C\rho(b) = \rho(a^{-1})C$ we get $C\rho(b^{-1}) = \rho(a)C$.

Since $C = -C^{-1}$ we have

$$C\rho(a) = -C^{-1}\rho(a) = -\rho(a^{-1}C)^{-1} = -(C\rho(b))^{-1} = -\rho(b)^{-1}C^{-1} = \rho(b^{-1})C.$$

By taking the inverse of $C\rho(a) = \rho(b^{-1})C$ we get $C\rho(a^{-1}) = \rho(b)C$. Hence

$$C\rho(u) = \rho(\tilde{u})C.$$

for $u \in \{a^\pm 1, b^\pm 1\}$.

We now prove (2.4) by induction on the length $\ell(u)$ of $u \in F_{a,b}$. If $\ell(u) = 1$, then $u \in \{a^\pm 1, b^\pm 1\}$. By the above arguments we have $C\rho(u) = \rho(\tilde{u})C$.

Suppose $\ell(u) > 1$. Then we can write $u = gv$ where $g \in \{a^\pm 1, b^\pm 1\}$ and $v \in F_{a,b}$ with $\ell(v) = \ell(u) - 1$. By induction hypothesis $C\rho(v) = \rho(\tilde{v})C$. We have

$$\rho(\tilde{u})C = \rho(\tilde{g})\rho(\tilde{v})C = \rho(\tilde{g})C\rho(v) = C\rho(g)\rho(v) = C\rho(u).$$

The proposition follows. \hfill \Box
Now consider \(G = \langle a, b \mid wa = bw \rangle \) where \(w \in F_{a,b} \) with \(\tilde{w} = w^{-1} \). Suppose \(\rho : F_{a,b} \to SL_2(\mathbb{C}) \) is a nonabelian representation of the form (2.2).

Let \(C = \begin{bmatrix} 0 & -1/\sqrt{r} \\ \sqrt{r} & 0 \end{bmatrix} \). Then it is easy to check that \(C \rho(b) = \rho(a^{-1})C \) and \(C^2 = -I \).

By Proposition 2.6 we have

\[
0 = C \rho(w) = \rho(w) C.
\]

Hence \(\rho(bwa^{-1}w^{-1}) = \rho(bwa^{-1}\tilde{w})C = -\rho(bwa^{-1})C \rho(w)C = -\rho(bw)C \rho(bw)C \).

We call \(w_{11} = (Mw_{12} - M^{-1}r^{-1}w_{21}) \) the Mednykh polynomial of \(G \). Note that it is exactly the Lê equation, which is equal to the Riley polynomial (by Lemma 2.1).

3. Proofs of Theorems 1 and 2

In this section we apply the result in Section 2 to calculate the Riley polynomial of the double twist knot \(J(k, 2n) \) and then we prove Theorems 1 and 2.

3.1. The Riley polynomial

By [HS] the knot group of \(K = J(k, 2n) \) has a presentation \(\pi_1(X_K) = \langle a, b \mid w^n a = bw^n \rangle \), where \(a, b \) are meridians and

\[
w = \begin{cases}
(ba^{-1})^m ba(b^{-1}a)^m, & \text{if } k = 2m + 1, \\
(ba^{-1})^m (b^{-1}a)^m, & \text{if } k = 2m.
\end{cases}
\]

Suppose \(\rho : \pi_1(X_K) \to SL_2(\mathbb{C}) \) is a nonabelian representation. Taking conjugation if necessary, we can assume that \(\rho \) has the form

\[
(3.1) \quad \rho(a) = \begin{bmatrix} M & 1 \\ 0 & M^{-1} \end{bmatrix} \quad \text{and} \quad \rho(b) = \begin{bmatrix} M & 0 \\ 2 - z & M^{-1} \end{bmatrix}
\]

where \((M, z) \in \mathbb{C}^* \times \mathbb{C}\) satisfies the matrix equation \(\rho(w^n a) = \rho(bw^n) \). Note that \(z = \text{tr } \rho(ab^{-1}) = M^2 + M^{-2} + 2 - \text{tr } \rho(ab) \).

The following lemmas are elementary, see e.g. [Tr2].

Lemma 3.1. We have

\[
S_j^2(\omega) - \omega S_j(\omega) S_{j-1}(\omega) + S_{j-1}^2(\omega) = 1.
\]

Lemma 3.2. Suppose \(V = \begin{bmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{bmatrix} \in SL_2(\mathbb{C}). \) Then

\[
V^j = \begin{bmatrix} S_j(v) - v_{22} S_{j-1}(v) & v_{12} S_{j-1}(v) \\ v_{21} S_{j-1}(v) & S_j(v) - v_{11} S_{j-1}(v) \end{bmatrix},
\]

where \(v := \text{tr } V = v_{11} + v_{22} \).
3.1.1. The case $k = 2m + 1$. In this case we have $w = (ba^{-1})^mba(b^{-1}a)^m$.

Proposition 3.3. We have $\rho(w) = \begin{bmatrix} w_{11} & w_{12} \\ (2-z)w_{12} & w_{22} \end{bmatrix}$ where
\[
w_{11} = M^2 S_m^2(z) - 2M^2 S_m(z)S_{m-1}(z) + (2 + M^2 - z)S_{m-1}^2(z),
\]
\[
w_{12} = (S_m(z) - S_{m-1}(z))(MS_m(z) - M^{-1}S_{m-1}(z)),
\]
\[
w_{22} = (M^{-2} + 2 - z)S_m^2(z) - 2M^{-2}S_m(z)S_{m-1}(z) + M^{-2}S_{m-1}^2(z).
\]

Proof. Since $\rho(ba^{-1}) = \begin{bmatrix} 1 \\ M^{-1}(2-z) \end{bmatrix}$, by Lemma 3.2 we have
\[
\rho((ba^{-1})^m) = \begin{bmatrix} S_m(z) - (z-1)S_{m-1}(z) & -MS_{m-1}(z) \\ M^{-1}(2-z)S_{m-1}(z) & S_m(z) - S_{m-1}(z) \end{bmatrix}.
\]
Similarly,
\[
\rho((b^{-1}a)^m) = \begin{bmatrix} S_m(z) - (z-1)S_{m-1}(z) & M^{-1}S_{m-1}(z) \\ M(z-2)S_{m-1}(z) & S_m(z) - S_{m-1}(z) \end{bmatrix}.
\]
Since $\rho(w) = \rho((ba^{-1})^mba(b^{-1}a)^m)$, the lemma follows by a direct calculation.

Proposition 3.4. The Riley polynomial of $J(2m + 1, 2n)$ is
\[
\Phi_{J(2m+1,2n)}(M, z) = S_n(t_m) - (1 - (z - M^2 - M^{-2})S_m(z)(S_m(z) - S_{m-1}(z)))S_{n-1}(t_m)
\]
where $t_m := \text{tr} \rho(w) = (M^2 + M^{-2} + 2 - z) - (z - 2)(z - M^2 - M^{-2})S_m(z)S_{m-1}(z)$.

Proof. By Proposition 3.3 we have
\[
t_m = w_{11} + w_{22} = (M^2 + M^{-2} + 2 - z)(S_m^2(z) + S_{m-1}^2(z)) - 2(M^2 + M^{-2})S_m(z)S_{m-1}(z).
\]
Since $S_m^2(z) + S_{m-1}^2(z) = 1 + zS_m(z)S_{m-1}(z)$ (by Lemma 3.1), we have
\[
t_m = (M^2 + M^{-2} + 2 - z)(1 + zS_m(z)S_{m-1}(z)) - 2(M^2 + M^{-2})S_m(z)S_{m-1}(z)
\]
\[
= (M^2 + M^{-2} + 2 - z) - (z - 2)(z - M^2 - M^{-2})S_m(z)S_{m-1}(z).
\]
Since $\rho(w) = \begin{bmatrix} w_{11} & w_{12} \\ (2-z)w_{12} & w_{22} \end{bmatrix}$, by Lemma 3.2 we have
\[
\rho(w^n) = \begin{bmatrix} S_n(t_m) - w_{22} S_{n-1}(t_m) & w_{12} S_{n-1}(t_m) \\ (2-z)w_{12} S_{n-1}(t_m) & S_n(t_m) - w_{11} S_{n-1}(t_m) \end{bmatrix}.
\]
Hence the Riley polynomial is
\[
\Phi_K(M, z) = S_n(t_m) - w_{22} S_{n-1}(t_m) - (M - M^{-1})w_{12} S_{n-1}(t_m)
\]
\[
= S_n(t_m) - (w_{22} - (M - M^{-1})w_{12}) S_{n-1}(t_m).
\]
Since $S_m^2(z) + S_{m-1}^2(z) - zS_m(z)S_{m-1}(z) = 1$ we have
\[
w_{22} + (M - M^{-1})w_{12}
\]
\[
= (1 + M^2 + M^{-2} - z)S_m^2(z) - (M^2 + M^{-2})S_m(z)S_{m-1}(z) + S_{m-1}^2(z)
\]
\[
= 1 - (z - M^2 - M^{-2})S_m(z)(S_m(z) - S_{m-1}(z)).
\]
The formula for $\Phi_K(M, z)$ then follows. \qed
3.1.2. The case $k = 2m$. In this case we have $w = (ba^{-1})^m(b^{-1}a)^m$.

Proposition 3.5. We have $\rho(w) = \begin{bmatrix} w_{11} & w_{12} \\ (2 - z)w_{12} & w_{22} \end{bmatrix}$ where

$$
\begin{align*}
w_{11} &= S_m^2(z) + (2 - 2z)S_m(z)S_{m-1}(z) + (1 + 2M^2 - 2z - M^2z + z^2)S_{m-1}^2(z), \\
w_{12} &= (M^{-1} - M)S_m(z)S_{m-1}(z) + (M^{-1} + M - M^{-1}z)S_{m-1}^2(z), \\
w_{22} &= S_m^2(z) - 2S_m(z)S_{m-1}(z) + (1 + 2M^{-2} - M^{-2}z)S_{m-1}^2(z).
\end{align*}
$$

Proposition 3.6. The Riley polynomial of $J(2m, 2n)$ is

$$
\Phi_{J(2m, 2n)}(M, z) = S_n(\bar{t}_m) - \left(1 + (z - M^2 - M^{-2})S_{m-1}(z)\left(S_m(z) - S_{m-1}(z)\right)\right)S_{n-1}(\bar{t}_m)
$$

where $\bar{t}_m := \text{tr} \rho(w) = 2 + (z - 2)(z - M^2 - M^{-2})S_{m-1}^2(z)$.

Remark 3.7. Similar formulae for the Riley polynomial of $J(2m + 1, 2n)$ and $J(2m, 2n)$ have already been obtained in [MPL, MT].

3.2. The canonical longitude. Recall that X_K is the complement of the knot K. The boundary of X_K is a torus \mathbb{T}^2. There is a standard choice of a meridian μ and a longitude λ on \mathbb{T}^2 such that the linking number between the longitude and the knot is zero. We call λ the canonical longitude of K corresponding to the meridian μ.

Let $\mu = a$ be the meridian of $K = J(k, 2n)$ and λ the canonical longitude corresponding to μ. Then we have

$$
\lambda = \begin{cases}
\bar{w}^nw^n\mu^{-4n}, & \text{if } k = 2m + 1, \\
\bar{w}^nw^n, & \text{if } k = 2m,
\end{cases}
$$

where \bar{w} is the word in the letters a, b obtained by writing w in the reversed order. With the representation ρ in (3.1), by [HS] we have $\rho(\lambda) = \begin{bmatrix} L & * \\ 0 & L^{-1} \end{bmatrix}$, where $L = -\bar{w}_{12}/w_{12}$.

Here \bar{w}_{ij} is obtained from w_{ij} by replacing M by M^{-1}.

From Propositions 3.3 and 3.5 we have the following.

Proposition 3.8. (i) If $k = 2m + 1$ then

$$
L = -M^{-4n} \frac{M^{-1}S_m(z) - MS_{m-1}(z)}{MS_m(z) - M^{-1}S_{m-1}(z)}.
$$

(ii) If $k = 2m$ then

$$
L = -\frac{M^{-1}(S_m(z) - S_{m-1}(z)) - M(S_m(z) - S_{m-2}(z))}{M(S_m(z) - S_{m-1}(z)) - M^{-1}(S_{m-1}(z) - S_{m-2}(z))}.
$$

3.3. Proof of Theorems 1 and 2. We begin with a simple lemma.

Lemma 3.9. Suppose $z_1, z_2 \in \mathbb{C}$ and $\omega \in \mathbb{R}$. Then

$$
|z_1 - e^{i\omega}z_2|^2 = |z_1|^2 + |z_2|^2 - 2 \text{Re}(z_1\overline{z_2}) \cos \omega - 2 \text{Re}(z_1\overline{z_2}) \sin \omega.
$$

Hence $|z_1 - e^{i\omega}z_2| \geq |z_1 - e^{-i\omega}z_2|$ if and only if $\text{Im}(z_1\overline{z_2}) \sin \omega \leq 0$. Moreover, $|z_1 - e^{i\omega}z_2| = |z_1 - e^{-i\omega}z_2|$ if and only if $\text{Im}(z_1\overline{z_2}) \sin \omega = 0$.
For a hyperbolic two-bridge knot K, by [HLM] [Kol] [Po] [PW] there exists an angle $\alpha_K \in \left(\frac{2\pi}{3}, \pi\right)$ such that $X_K(\alpha)$ is hyperbolic for $\alpha \in (0, \alpha_K)$, Euclidean for $\alpha = \alpha_K$, and spherical for $\alpha \in (\alpha_K, \pi)$.

We first consider the case $K = J(2m+1, 2n)$. For $\alpha \in (0, \alpha_K)$, by the Schlafli formula the volume of a hyperbolic cone-manifold $X_K(\alpha)$ is given by

$$\text{Vol}(X_K(\alpha)) = \int_{\alpha}^{\alpha_K} \frac{\ell_\omega}{2} d\omega,$$

where ℓ_ω is the real length of the longitude of the cone-manifold $X_K(\omega)$. See e.g. [HMP].

For each $\alpha \leq \omega \leq \alpha_K$, ℓ_ω is calculated as follows. Suppose $\rho : \pi_1(X_K) \to SL_2(\mathbb{C})$ is a nonabelian representation of the form (3.1), where $M = e^{i\omega/2}$ and z is a zero of the Riley polynomial $\Phi_K(M, z)$. The complex length of a canonical longitude λ of K is the complex number γ_λ module $2\pi \mathbb{Z}$ satisfying

$$\text{tr} \rho(\lambda) = 2 \cosh \frac{\gamma_\lambda}{2}.$$

Then $\ell_\omega = |\text{Re}(\gamma_\lambda)|$. By Proposition 3.8 we have $\rho(\lambda) = \begin{bmatrix} L & * \\ 0 & L^{-1} \end{bmatrix}$ where

$$L = -M^{-4n} \frac{M^{-1}S_m(z) - MS_{m-1}(z)}{MS_m(z) - M^{-1}S_{m-1}(z)}.$$

For the volume, we can either choose $|L| \geq 1$ or $|L| \leq 1$. We choose L with $|L| \geq 1$. Since $M = e^{i\omega/2}$, by Lemma 3.9 we have $\text{Im}(S_m(z)S_{m-1}(z)) \leq 0$. Moreover $|L| = 1$ if and only if $\text{Im}(S_m(z)S_{m-1}(z)) = 0$.

Since $\ell_\omega = |\text{Re}(\gamma_\lambda)| = 2 \log |L|$ we have

$$\text{Vol}(X_{J(2m+1, 2n)}(\alpha)) = \int_{\alpha}^{\alpha_K} \frac{\ell_\omega}{2} d\omega = \int_{\alpha}^{\alpha_K} \log |L| d\omega.$$

For $\alpha_K < \alpha \leq \pi$, by [PW] Prop.6.4 all the characters are real. In particular $z = \text{tr} (ab^{-1}) \in \mathbb{R}$, and hence $|L| = 1$, for $\alpha_K < \alpha \leq \pi$. Hence

$$\text{Vol}(X_{J(2m+1, 2n)}(\alpha)) = \int_{\alpha}^{\pi} \log |L| d\omega = \int_{\alpha}^{\pi} \log \left| \frac{S_m(z) - M^2S_{m-1}(z)}{M^2S_m(z) - S_{m-1}(z)} \right| d\omega.$$

This completes the proof of Theorem 1. The proof of Theorem 2 is similar. In that case we apply Propositions 3.5, 3.6 and the fact that

$$|L| = \left| \frac{(S_m(z) - S_{m-1}(z)) - M^2(S_{m-1}(z) - S_{m-2}(z))}{M^2(S_m(z) - S_{m-1}(z)) - (S_{m-1}(z) - S_{m-2}(z))} \right| \geq 1$$

if and only if $\text{Im} \left(\frac{S_m(z) - S_{m-1}(z)}{S_{m-1}(z) - S_{m-2}(z)} \right) \leq 0$.

References

[BH] G. Brumfiel and H. Hilden, *$SL(2)$ representations of finitely presented groups*, Contemp. Math. **187** (1995).

[BZ] G. Burde and H. Zieschang, *Knots*, de Gruyter Stud. Math., vol. 5, de Gruyter, Berlin, 2003.

[CS] M. Culler and P. Shalen, *Varieties of group representations and splittings of 3-manifolds*, Ann. of Math. (2) **117** (1983), no. 1, 109–146.

[Fr] R. Fricke, *Über die theorie der automorphen modulgruppen*, Kgl. Ges. d. W. Nachrichten, Math-Phys. Klasse, (1896), 91–101.
[HL] J.-Y. Ham and J. Lee, *The volume of hyperbolic cone-manifolds of the knot with Conway’s notation C*(2n,3)*, preprint 2015, [arXiv:1512.05481].

[HLM] H. Hilden, M. Lozano, and J. Montesinos-Amilibia, *Volumes and Chern-Simons invariants of cyclic coverings over rational knots*, in Topology and Teichmüller spaces (Katinkulta, 1995), pages 31–55. World Sci. Publ., River Edge, NJ, 1996.

[HMP] J.-Y. Ham, A. Mednykh, and V. Petrov, *identities and volumes of the hyperbolic twist knot cone-manifolds*, J. Knot Theory Ramifications 23(2014) 1450064.

[HS] J. Hoste and P. Shanahan, *A formula for the A-polynomial of twist knots*, J. Knot Theory Ramifications 13 (2004), no. 2, 193–209.

[Ko1] S. Kojima, *Deformations of hyperbolic 3-cone-manifolds*, J. Differential Geom. 49 (1998) 469–516.

[Ko2] S. Kojima, *Hyperbolic 3-manifolds singular along knots*, Chaos Solitons Fractals 9 (1998) 765–777.

[Le] T. Le, *Varieties of representations and their subvarieties of cohomology jumps for certain knot groups*, Russian Acad. Sci. Sb. Math. 78 (1994) 187–209.

[LM] A. Lubotzky and A. Magid, *Varieties of representations of finitely generated groups*, Memoirs of the AMS 336 (1985).

[MPL] M. Macasieb, K. Petersen and R. van Luijk, *On character varieties of two-bridge knot groups* Proc. Lond. Math. Soc. (3) 103 (2011), no. 3, 473–507.

[Me] A. Mednykh, *The volumes of cone-manifolds and polyhedra* http://mathlab.snu.ac.kr/top/workshop01.pdf, 2007. Lecture Notes, Seoul National University.

[MR] A. Mednykh and A. Rasskazov, *Volumes and degeneration of cone-structures on the figure-eight knot*, Tokyo J. Math. 29 (2006) 445–464.

[MT] T. Morifuji and A. Tran, *Twisted Alexander polynomials of two-bridge knots for parabolic representations*, Pacific J. Math. 269 (2014), no. 2, 433–451.

[Po] J. Porti, *Spherical cone structures on 2-bridge knots and links*, Kobe J. Math. 21 (2004) 61–70.

[PW] J. Porti and H. Weiss, *Deforming Euclidean cone 3-manifolds*, Geom. Topol. 11 (2007) 1507–1538.

[Ri] R. Riley, *Nonabelian representations of 2-bridge knot groups*, Quart. J. Math. Oxford Ser. (2) 35 (1984), 191–208.

[Th] W. Thurston, *The geometry and topology of 3-manifolds*, http://library.msri.org/books/gt3m, 1977/78. Lecture Notes, Princeton University.

[Tr1] A. Tran, *The universal character ring of some families of one-relator groups*, Algebr. Geom. Topol. 13 (2013), no. 4, 2317–2333.

[Tr2] A. Tran, *Twisted Alexander polynomials of genus one two-bridge knots*, preprint 2015, [arXiv:1506.05039].

[Vo] M. Vogt, *Sur les invariants fondamentaux des equations differentielles lineaires du second ordre*, Ann. Sci. Écol. Norm. Supér. Troi. 6 (1889) 3–71.

Department of Mathematical Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA

E-mail address: att140830@utdallas.edu