Multifarious global flora fabricated phytosynthesis of silver nanoparticles: a green nanoweapon for antiviral approach including SARS-CoV-2

C. Karthik · K. A. Punnaivalavan · S. Pandi Prabha · D. G. Caroline

Received: 17 June 2021 / Accepted: 24 January 2022 / Published online: 12 February 2022
© The Author(s), under exclusive licence to Islamic Azad University 2022

Abstract
The progressive research into the nanoscale level upgrades the higher end modernized evolution with every field of science, engineering, and technology. Silver nanoparticles and their broader range of application from nanoelectronics to nano-drug delivery systems drive the futuristic direction of nanoengineering and technology in contemporary days. In this review, the green synthesis of silver nanoparticles is the cornerstone of interest over physical and chemical methods owing to its remarkable biocompatibility and idiosyncratic property engineering. The abundant primary and secondary plant metabolites collectively as multifarious phytochemicals which are more peculiar in the composition from root hair to aerial apex through various interspecies and intraspecies, capable of reduction, and capping with the synthesis of silver nanoparticles. Furthermore, the process by which intracellular, extracellular biological macromolecules of the microbiota reduce with the synthesis of silver nanoparticles from the precursor molecule is also discussed. Viruses are one of the predominant infectious agents that gets faster resistance to the antiviral therapies of traditional generations of medicine. We discuss the various stages of virus targeting of cells and viral target through drugs. Antiviral potential of silver nanoparticles against different classes and families of the past and their considerable candidate for up-to-the-minute need of complete addressing of the fulminant and opportunistic global pandemic of this millennium SARS-CoV2, illustrated through recent silver-based formulations under development and approval for countering the pandemic situation.

Graphical abstract

Keywords Phytochemicals · Green synthesis · Nanosilver · Viral spectra · COVID

C. Karthik and K. A. Punnaivalavan are equal contributors.

C. Karthik karthikc@stjosephs.ac.in

Extended author information available on the last page of the article
Introduction

‘Nano’ scale that refers to the one-billionth of a meter. Nanotechnology is a multi-disciplinary stream that emphasizes the purposeful design of manipulation of matter at the scale of atomic level utilizing the existing approaches, techniques, and types of equipment available with conventional and modern science and engineering. Nanoparticles do focus on particles that exist in the range of 1–100 nm [1]. Enhancement or acquisition of new characteristics at the nanoscale level compared to the bulk properties gained more interest with research on this avenue within the past 2 decades. Higher ratio of surface area to volume at the nanoscale level and the shift in the laws of physics at the nanometric level are the two important attributes that contribute to effective catalytic activity to various multi-disciplinary applications [2].

Approaches of nanoparticle synthesis include a top–down (TD) approach that encompasses the disintegrative breakdown of bulk materials into finer grain sizes of nanoscale. Synthesis methods such as mechanical milling, laser ablation, and sputtering follow the TD approach. The alternative approach of synthesis encloses gradual consecutive integration of atoms/molecules at various smaller scales that leads to the ‘nucleation’ site formation followed by agglomeration around the nucleation site engenders nanoparticle formation. Spray pyrolysis, sol–gel method & green synthesis methods, etc. are some of the BU route-based nanoparticle synthesis approaches [3].

Various methods for the synthesis of nanoparticles include physical, chemical, and biological methods with their own pros and cons for each. Physical methods utilize higher mechanical energy, high radiation, high temperature, and greater sized apparatus for the synthesis. Grain size control and less manual power are remarkable advantages, whereas parameter optimization and toxicity are notable demerits. Chemical methods involve the usage of chemical reducing and capping agents of organic and inorganic species; sometimes, the same reagents being both. Simple to process and control over scale-up are highlightable merits, whereas environmental unfriendly, lesser biocompatibility are notable demerits. To address the backlogs of physical and chemical methods, shift to biological methods of synthesis enters the research avenue. Environment-friendly, no application of higher temperature, pressure, heat, energy, most supporting biocompatibility, devoid of toxic chemicals, easier handling, and scale-up are all that makes biological synthesis more fascinating than any other [3–5]. Preference of water over any other organic solvents as the major solvent and thereby the greater colloidal stability attainment of the nanoparticle product is the unique property on green synthesis and the fact that water is the most biocompatible solvent is found to be reflected with the application part [6].

Silver nanoparticles: ‘the unique’

Among the widely explored metallic nanoparticles, silver nanoparticles (AgNPs) have the continuity of being used for centuries in human civilizational history due to their very unique and specific physical, biological, electronic, catalytic, surface, and chemical properties. The strongest biocidal properties against biota of microbial range from bacteria, viruses, fungi, algae to higher nematodes, and helminths. It also possesses non-toxicity toward animal cells and compatibility to human cell lines provides numerous biological product applications. Colloidal stability of AgNPs makes them suitable as preservatives in cosmetics and medicated products, optical plasma-resonance scattering property makes a bio-labeling candidate and sensor, imaging applications, anti-inflammation property-driven wound-healing engineering, surface coating property enhanced paints, reusable catalytic property over the degradation of different classes of dyes, anti-thrombogenic and hemodynamic properties utilized cardiac valves and stents, implants with anti-platelet property and stimulation of vascular endothelial growth factor (VEGF) that promotes angiogenesis, the process of new blood vessel formation and endothelial vasodilation property-driven anti-hypertensive implant, peculiar AgNPs mechanical properties such as elastic modulus and flexural strength improving of acrylic resin-based removable dental dentures against opportunistic oral pathogens, anti-adhesion and anti-infective property-driven orthodontic brackets against dental caries, metabolomics intervention and perturbation property with nucleotides, photosynthesis and photorespiration processes, anti-microbial properties, anti-static properties, electrically conducting, and most importantly self-cleaning property. Electro-conductive fibers help to protect from radiation emitted by electronics. Self-cleaning property resists the deepening of stains and dirt from the point of incidence. Nano-functional fibers are used to produce odor-free undergarments, socks and stockings and research over the face masks coated with silver nanoparticles used during the COVID-19 pandemic is contemporary anti-microbial property example [7–20].

Green synthesis of silver nanoparticles

These AgNPs shall be synthesized through various routes out of which biological routes again gain importance due to aforesaid attributes of the produced nanoparticles. The biological route shall be further taken as phyto-mediated, microbe-mediated, and other molecular templates of broader category—inorganic, organic, metals, polysaccharides, proteins & miscellaneous chemical reagents, etc. [21].

Phyto-mediated synthesis of nanoparticles has its own spectrum of source that includes extracts of leaves [22, 23],
bark [24, 25], stem [26, 27], latex [28, 29], fruit [23, 30, 31], flower [32–35], root [36–38], seed [39, 40], and tuber [41, 42]. Different parts of the different plants have their own varying concentration of reductase enzyme that reduces the metal nitrate solution into the nanosized metal particles. Plenty of systems with single reducing agents, dual-reducing agents exist, whereas also a single source of an enzyme that also catalyzes hybrid formation and directs to nanocomposite hybrid system exists [43].

Leave-mediated synthesis

Leaves are rich source of a larger number of phytochemicals that includes tannins, flavonoids, saponins, alkaloids [44], phlobatannins, carbohydrates, glycosides, terpenoids, anthraquinones [45, 46], coumarines, proteins, emodins [47], anthocyanins [48], xanthoproteins, triterpenoidal sapogenins [49] steroids, phenol, and essential oils. Minerals such as sodium, calcium, iron, phosphorous, magnesium, potassium, and zinc are found in traceable quantity that does serves as the inorganic cofactors for enzymes present in the plants. Essential oils of the leaves can be general and species-specific constituents between which volatile compounds are of greater considerable proportion. citrus plant leaves possess citreol, burneo1, t-Muurolo1, humulene, viridiflorol, gernial, Myrcenol, nerol, valencene, dextro-carvone, linalool, etc., [50] whereas cinnamon species have alcohol [2-nitroethanol, glycérin, cinnamyl alcohol, 1-methoxy-2-propanol], aldehyde [1-cinnamaldehyde, o-methoxy-cinnamaldehyde, benzylide nemalonaldehyde], alkene [dodecane], carboxylic acid [acetic acid], ester [isopropyl acetate, ethyl formate], ether [1,1-diethoxy-ethane], and ketonic [coumarine] compounds in the essential oils [51]. All the components shall have a significant to least contributions in the process of phyto (leaf)-mediated nanoparticle synthesis. Table 1 is the list with representative examples of leaves used for the synthesis of silver nanoparticles.

Stem, bark, and latex-mediated synthesis

Stem, bark, and latex of the plants are also utilized as the source of nanoparticle synthesis and its composition ranges with a wide number of constituents alkaloids, flavonoids, tannins, saponins, cardiac glycosides, glycosides, proteins, carbohydrates, steroids, reducing sugars, anthracene glycosides, resins, triterpenes, procyanadines, anthraquinone [161–165], fraxidin, fraxetin, scoparone, 3-acetylaureritic acid, beta-sitosterol, and sitosterone [166], etc. were the actual secondary metabolites of various biochemical cycles and some are growth steroids that assist in the regulation of growth and development of the plant assists phyto (stem, bark, and latex)-mediated nanoparticle synthesis. Gums and resins from bark, stem, and latex are also used for NP synthesis. Table 2 is the list with representative examples of stem, bark, and latex used for the synthesis of silver nanoparticles.

Fruit-mediated synthesis

Fruits are another phyto-source of nanoparticle synthesis. Peels, pulps, and complete fruit can be used for reduction. Usually, they have polyphenols, minerals, vitamins—tocopherols and organic acids (linoleic acid, ascorbic acid, citric acid, etc.), triterpenoids, tannins, carotenoids, phenolics, and flavonoids (rutin, myricetin, luteolin, quercetin, apigenin, and kaempferol). Constituents include moisture, sugars (sucrose, fructose, and glucose), protein, fatty acid [total saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), and polyunsaturated fatty acids (PUFA)], ash contents, and energy contents [186–188]. The same constituents which are metabolic precursors and building blocks of the fruit cell wall that correspond to the texture of the fruit are found to a huge extent in seeds extracts of the fruits in addition to steroids [189]. Table 3 is the list with representative examples of fruits used for synthesis of silver nanoparticles.

Flower-mediated synthesis

Phyto-constituents of flower extracts are found to contain flavonoids, tannins, phlobatannins, cardiac glycosides, alkaloids and triterpenes, saponins, anthraquinone, phenol, protein and amino acids, carbohydrates, oil, fats & resins, coumarine, phytosterol, gums, and mucilages [219–223]. Table 4 is the list with representative examples of flowers used for synthesis of silver nanoparticles.

Root-mediated synthesis

Root system constantly serves as the transport hub for water and dissolved minerals to all the aerial parts of the plants and exploitation of these roots as phyto-source for metallic nanoparticle synthesis includes products of tubers in the list. Steroids, saponins, alkaloids, glycosides, flavonoids, tannins, traces of myricetin, cholesterol and beta sitosterol, carbohydrates, phenol, anthraquinone, ellagic acid, coumarine, and phytosterol [240–243]. Table 5 is the list with representative examples of roots and tubers used for synthesis of silver nanoparticles.

Seed-mediated synthesis

Seeds serve as the germination hub for any plantlet at favorable conditions for growth and development. They have constituents such as moisture, fat, protein, carbohydrate, fiber, minerals like calcium, phosphorus, magnesium, sodium, potassium, zinc, and many other minerals with varying
Table 1 Representative examples of leaves used for synthesis of silver nanoparticles

Name of the plant	Nanoparticle size (nm)	Nanoparticle shape	References
A. indica (neem)	20	Triangular	[52]
Actaea racemosa (Black bugbane)	3–9	Spherical	[53]
Aegle marmelos (Vilvam)	14–28	Spherical	[54]
Aloe sp.,	5	Spherical	[53]
Aloe vera	70–192	Spherical	[55]
Aloe vera	10–30	Spherical	[56]
Alternanthera dentata (Purple Joyweed)	10–80	Spherical	[57]
Amaranthus gangeticus (Elephant head)	11–15	Spherical	[58]
Anisomeles indica—Indian Catmint	18–35	Spherical	[59]
Annona squamosa (Sugar apple)	200–500	Irregularly spherical	[60]
Anthemis atropatana (plant) extract	10–80	Spherical	[61]
Arbutus Unedo (Strawberry)	20–30	Spherical	[62]
Argemone mexicana	10–50	Cubic, hexagonal	[63]
Artemisia turcomanica (Wormwood)	4–42	Spherical	[64]
Banana leaves	50	Spherical	[52]
Berberis vulgaris (Barberry)	40	Spherical	[65]
black pepper leaf	5–50	Spherical	[66]
Boerhaavia diffusa (Mookarati saarai)	24–25	Spherical	[67]
Buddleja globosa	2–5	Spherical	[68]
Butea monosperma—(Palash teak)	10–100	Spherical, triangular, hexagonal	[69]
Cadaba indica lam (Viluthi leaf)	30–60	Spherical	[70]
Carica papaya	10–50	Cubical	[71]
Carica papaya	50–250	Spherical	[72]
Carob leaf extract	5–40	Spherical	[73]
Cassia Roxburghii (Ceylon senna)	57–95	Spherical, triangular, truncated triangular, decahedral	[74]
Chamomile (a tea plant)	20–70	Spherical	[75]
Chrysanthemum indicum(Saamanthi)	38–72	Spherical	[76]
Citrullus colocynthis (Kumatti)	1–60	Spherical	[77]
Coleus aromaticus	25–27	Spherical	[78]
Coleus aromaticus—Mexican Mint	20–30	Spherical	[79]
Commelina benghalensis	13–51	Spherical	[80]
Crocus Haussknechtii Bois	16	Spherical	[81]
Cycas circinalis,	13–51	Spherical	[80]
Cycas Leaf (Panai Peyarani)	2–6	Spherical	[82]
Cynodon dactylon (Arugampul)	25–60	Spherical	[56]
Datura metel (Oomatthai)	16–40	Spherical	[83]
Diopyros kaki	32	Spherical	[84]
Eclipta leaf	2–6	Spherical	[82]
Eucalyptus	4–60	Spherical	[85]
Eucalyptus angophoroides	3–15	Spherical	[53]
Eucalyptus chapmaniana	60	–	[86]
Eucalyptus globulus	1.9–25	Spherical, oval	[87]
Eucalyptus leucoxyphon	50	Spherical	[88]
Eucalyptus oleosa	14–26	Spherical	[89]
Ferocactus Echidne (Mexican Cactus)	20–60	Elliptical	[90]
Ficus amplissima	13–51	Spherical	[80]
Ficus benghalensis (Banyan)	16	Spherical	[91]
Fraxinus excelsior	25–40	Spherical	[92]
Name of the plant	Nanoparticle size (nm)	Nanoparticle shape	References
---	------------------------	-----------------------------	------------
Galega officinalis (Professor weed)	23–220	Spherical	[93]
Ginkgo biloba	32	Spherical	[84]
Glaucium corniculatum	45–53	Spherical	[94]
Green and Black tea leaves	10–20	Spherical	[95]
Green tea	6–8.5	Spherical	[96]
Green tea leaves	25–75	Spherical	[97]
Hamamelis virginiana Leaf (American Witch hazel)	8–35	Spherical	[98]
Heritiera fomes	20–100	–	[99]
Hydrilla verticillata	–	Spherical	[100]
Iresine herbstii (Chicken Gizzard)	44–64	Spherical	[101]
Isora cocinea leaves (Jungle Geranium)	13–57	Spherical	[102]
Justicia glauca (thavasi murungai)	10–20	Spherical	[103]
Lantana camara (Unni Chedi)	20–34	Spherical	[104]
Leptadenia reticulata (Palaikkodi)	50–70	Spherical	[105]
Lippia nodiflora	13–51	Spherical	[80]
Lonerica japonica	20–60	Spherical, hexagonal	[106]
Lysiloma acapulcensis (Legume Plant)	1.2–62	Spherical	[107]
M. pudica—Thottal sinungi (Mimosaceae)	20–60	Spherical	[108]
Magnolia grandiflora	32	Spherical	[84]
Mangosteen leaf	6–57	Spherical	[109]
Mentha piperita (Peppermint)	20–50	Spherical	[110]
Mimosa elengi Leaf (Spanish Cherry)	55–83	Spherical	[111]
Moringa oleifera—Drumstick tree	9–11	Spherical	[112]
Mulberry Leaves	20–40	Spherical	[113]
Murraya koenigii (Kari Vembu)	20–35	Spherical	[114]
Murraya Koenigii Leaf (Kari vembu)	10–20	Spherical	[115]
Mussaenda glabrate	11–51	Spherical	[116]
Myrica esculenta (Box berry)	45–80	Spherical	[117]
Nelumbo nucifera (Yellow Lotus)	25–80	Spherical, triangle, decahedral	[118]
Nicotiana tobaccum	7–9	Irregularly spherical	[119]
O. sanctum (tulsi)	50	Cuboidal	[52]
O. tenuiflorum (black tulsi)	20	Hexagonal, pentagonal	[52]
Ocimum sanctum	40–50	Spherical	[120]
Ocimum gratissimum	17	Cuboidal	[121]
Ocimum sanctum	6–110	Triangular	[122]
Ocimum Sanctum (Tulsi)	11–17	Spherical	[123]
ocimum sp.	3–20	Spherical	[124]
Olive leaf	20–25	Spherical	[125]
Origansum heracleoticum	30–40	Spherical	[126]
Osmanthus Fragrans (Olive Variety)	2–30	Spherical	[127]
Padina tetrasdromatica	10–100	Spherical	[128]
Paederia foetida (Gandha Prasarini)	4–15	Spherical	[129]
Parkia speciose (Bitter bean/Avara Paruppu)	26–39	Spherical	[130]
Parthenium leaf	30–80	Irregular	[131]
Pedalium murex (Yanai Nernjil)	20–50	Spherical	[132]
Pine roxburghii	32	Spherical	[84]
Pineapple leaf	7080	Spherical	[133]
Piper nigrum	7–50	Spherical	[134]
Piper nigrum	5–50	Spherical	[68]
concentrations corresponding to the needs of that particular species. Saponins, tannins, triterpenoids glycosides, and alkaloids are also present in the seeds [261]. Table 6 shows the list with representative examples of seeds used for synthesis of silver nanoparticles.

Microbe-mediated synthesis

Microbes and metal interaction were greatly explored already in the discipline of environmental biotechnology through bioremediation, biomineralization, and bioleaching. Microbe-mediated synthesis of metallic nanoparticles (MNPs) includes prokaryotic bacteria, eukaryotic fungi, and some viral particles that in turn takes place either intracellular or extracellular. Interaction of positive metal ions in the solution with the negatively charged cell wall facilitates the transportation of ions to intracellular space and further reduction by the cellular enzyme system produces metallic nanoparticles which shall further diffuse out of the cell is the mechanism of intracellular microbe-mediated green synthesis of MNPs. Experiments that tend to chemical treatment of cell wall charge alteration show more favorable NP synthesis that proves the interaction of cell wall charge and cellular transportation in this process. The alternate synthesis mechanism includes nitrate-reductase enzymes of the microbes that reduce the metal ions extracellularly [276]. Tables 7, 8, and 9 show the list with representative examples of bacteria, fungi, and algae used for synthesis of silver nanoparticles.

Miscellaneous agent-mediated synthesis

Apart from the phyto-mediated and microbe-mediated routes, the macromolecules such as carbohydrates, organic
acids, proteins, and other miscellaneous chemicals are also used in the reduction and capping of silver nanoparticles. Table 10 gives the list with representative examples of macromolecules that have been employed as reducing agents for silver nanoparticle synthesis.

Antimicrobial activity of silver nanoparticles and nanocomposites

Antibacterial activity

Silver has always been widely preferred to treat various diseases; it is used as an antiseptic and anti-microbial against Gram-positive and Gram-negative bacteria. Although the highly antibacterial effect of AgNPs has been widely described, silver-based nanocomposites also have gained more attention in many different areas, including antibacterial applications. Generally, the nanocomposite material supports the extended release of silver nanoparticles by adhering to either large-sized or small-sized surface of support materials and thereby increases the anti-microbial activity [364]. The interaction of NPs with polymers not only makes the nanoparticles more compatible with polymer matrix, but also change their properties. The use of polymers in functionalization provides a large surface area and mechanical strength of nanoparticles, which transfers into increased durability and extended use. Moreover, it limits unintended release of nanoparticles into the environment and thereby preventing its loss and aggregation. Among the support materials investigated (Table 11), small-sized SiO₂ NPs are cheap and release high quantity of AgNPs per unit volume [365].

Antiviral activity

Viruses: infection and targeting

Viruses are the minuscule obligate microbes that infect all form of lives ranging from bacterial pathogens to humans where generation of energy, synthesis and assembly of replication, and other factors for central dogma take place within the host making avail of the host cell machineries for the above process. The gene core material shall be either single or double stranded, ribonucleic acid (RNA), or deoxy-ribo nucleic acid (DNA) encapsulated with proteins made the layer of capsomeric subunits assembly to form either helical or spherical sphere [381].

Infection of viruses has unique stages in the process of viral replication into the host cell starting with attachment to host cell, accumulation of viral load and penetration, the release of viral nucleic acid, processing of nucleic acid as replicative template form and its entry into the host cell nucleus, viral genome replication, transcription and translation of the replicated viral nucleic acid, assembly and release of virions, attachment to the closer proximal cells, and repetition of the cycle [382].
Therapeutic targeting shall be with any one of the above steps and sometimes combinatorial drug targeting two or more steps of the viral load increase. Targeting component shall be fusion inhibitors, channel blocking compounds, transcription blocking compounds, nucleotide polymerase inhibitor, reverse transcriptase and helicase inhibitors, protease and virion assembly inhibitors, neuraminidase inhibitors, and combination from any of the above [383].

Nanosilver: the most unique antiviral

Silver nanoparticles have efficacious anti-microbial properties, which have been taken advantage of for addressing the evolving hyper virulence spikes of different families of viruses during different times. Silver nanoparticles with its exceptional surface area and binding properties exhibit antiviral attributes through interaction either at the binding stage of virus with the host cell (viral entry inhibition) or interference with the viral genome expression cycle inside the cell (virucidal). The out of the ordinary porosity property of silver nanoparticles facilitates the movement and interaction of different other smaller molecules and particles with the viral factor and cellular factors of the viral genome [384, 385].

Silver nanoparticles have a different mechanism of action and activity against viruses such as the affinity of binding to glycoprotein-120, strong competitive binding of cell attachment with the viral strain, interference and inhibitory blocking of viral binding and penetration, viral DNA

Name of the plant	Nanoparticle size (nm)	Nanoparticle shape	References
Apple extract	24–36	Spherical	[190]
Averrhoa bilimbi Fruit (Cucumber)	50–150	Hexagonal, rhomboidal	[191]
Banana peel	21–25	Spherical	[192]
Bitter apple (citrullus colocynthis)	20–80	Spherical	[193]
Brucea javanica (Ayurvedic plant)	24–58	Spherical	[194]
Capuli cherry	40–100	Spherical	[195]
Carica papaya	25–50	Cubical	[71]
Citrullus lanatus (Watermelon)	17–20	Spherical	[196]
Cocinina grandis (kowai guard)	–	Spherical	[197]
Coconut	7080	Cubical	[198]
Cordia dichotoma (Naru valli)	2–60	Spherical	[199]
Crataegus douglasii (hawthorn)	40–60	Spherical	[200]
Dillenia Indica (Uvaa thaekku)	40–100	–	[201]
Emblica Officinalis fruit (Nelliakai)	10–70	Spherical	[202]
European black elderberry	20–80	Spherical	[203]
Feronia elephantum (Vilaam palam)	20–60	Triangular, pentagonal, hexagonal	[204]
Gmelina arborea (Kumil)	8–32	Spherical	[205]
Green carambola (star fruit)	8–19	Spherical	[206]
Kigelia africana fruit (Mara suraikkai)	10	Spherical	[207]
Locust bean gum (LBG)	16–28	Irregularly spherical	[208]
M. balbisiana (Banana)	20	Spherical, pentagonal	[52]
Malus domestica fruit (Apple)	20	Spherical	[209]
Oak fruit hull (Jaft)	40	Spherical	[210]
Orange peel	1–15	Spherical	[211]
Peels of Punica Granatum (Pomegranate)	4–7	Spherical	[212]
Phyllanthus emblica (Nelli- gooseberry)	–	Spherical	[197]
Pine cone	20–100	Triangular, hexagonal	[213]
Solanum xanthocarpum	4–18	Spherical	[214]
Tamarind fruit	6–8	Spherical	[215]
Terminalia chebula (kadukkai)	25	Spherical	[184]
Terminalia chebula fruit (Kadukkai)	20–50	Spherical, triangular	[216]
Ananas comosus	10–300	Sharp corners	[217]
Citrus sinensis	10–300	Spherical	[217]
Trachyspermum ammi (Omam)	60–87	Spherical	[218]
interaction and inactivation of the viral strain before entry into the host cell, etc. The mechanism for antiviral property of silver metallic nanoparticles with respect to virus entry inhibition includes interaction of metal ions with the host cell-binding surface glycoproteins of the virus and inhibition of the host–virus physical attachment. The denaturation of the protein coat of the virus by irreversible modification of the disulfide bonds and hence diminish the infectivity of the viral residues. The silver nanoparticles are capable of targeting the genetic material of the virus irrespective of the nature of genetic material (DNA, RNA) and their type of strand (single, double). Due to their natural affinity with the phosphate groups of the nucleic acid interacts with the disassembled viral nucleic acid and cellular replication factors thereby preventing the viral replication and or propagation.

Name of the plant	Nanoparticle size (nm)	Nanoparticle shape References
Table 4 Representative examples of flowers used for synthesis of silver nanoparticles		
Achillea biebersteinii (Yarrow)	5–35	Spherical [224]
Calotropis gigantea	50	Spherical [225]
Calendula officinalis	5–10	Spherical [226]
Cassia auriculata Flower (Pea family)	10–35	Spherical [227]
Chrysanthemum morifolium (Saamanthi)	20–50	Spherical [228]
Cinnamomum zeylanicum (Lavangam pattai)	31–40	Spherical [229]
Crocus sativus	10–25	Spherical [81]
Crocus sativus L (Kunguma Poo)	12–20	Spherical [230]
Fritillaria flower	5–10	Spherical [231]
Hibiscus rosa-sinensis	5–14	Spherical [232]
Inflorescence of *Cocos nucifera* (Coconut)	22	Spherical [233]
Marigold flower	10–90	Spherical, Hexagonal [234]
Nycanthanes arbor-tristis (Night flowering Jasmine)	5–20	Spherical, oval [235]
Piper nigrum (Black Pepper)	1–29	Spherical [236]
Rosa damascena petals (Damask rose)	74–94	Spherical [237]
Syzygium aromaticum (Clove)	20–149	Spherical [238]
Tithonia diversifolia (Mexican Sunflower)	10–26	Spherical [239]

Name of the plant	Nanoparticle size (nm)	Nanoparticle shape References
Table 5 Representative examples of roots and tubers used for synthesis of silver nanoparticles		
Berberis vulgaris (Barberry)	30–70	Spherical [244]
Beetroot extract	10–15	Spherical [245]
Cassia toral (Senna tora)	20–100	Spherical [246]
Cibotium barometz root (Turmeric)	6–23	Spherical [247]
Curcuma longa tuber (Turmeric)	4–9	Spherical [248]
Delphinium denudatum (Ayurvedic—Nirbasi)	2–85	Spherical [249]
Diospyros Paniculata—karunthuvarai	8–10	Spherical [250]
Diospyros Sylvatica (Forest Ebony)	10–40	Spherical [251]
Garlic	3–12	Spherical [252]
Garlic and turmeric extracts	6–8.5	Spherical [96]
Garlic extract	4–20	Spherical [253]
Nepeta leucophylla (White leaved catmint)	40–100	Spherical [254]
Parthenium hysterophorus root	-	Spherical [255]
Phytolacca Decandra (PokeWeed)	91	Spherical [256]
Rheum palmatum (Rhubarb plant)	11–210	Spherical, hexagonal [257]
Root of Zingiber officinale	10–20	Spherical [258]
Thalictrum foliolosum	15–30	Spherical [259]
Zingiber officinale	10–20	Spherical [260]
taking place within the host cell and hence block further progeny or virion expression [384–390].

Antiviral spectra of silver nanoparticles

Silver nanoparticles possess a diverse extent of interactive mechanism with every family and classes of virus. Human immunodeficiency virus (HIV), herpes virus, influenza virus, coxsackie, and dengue virus including a range of enveloped, non-enveloped viruses to RNA- and DNA-based virus titer against varying concentrations of silver nanoparticles were studied, and with fold reduction virucidal activity against all the viral classes, the enveloped and positive sense RNA viruses have greater reduction than non-enveloped and negative sense RNA viruses [391, 392].

Lara et al. substantiated the activity of silver nanoparticles against HIV in both the cell-free and cell-associated forms, and found to reduce many fold of the viral gp-120 interaction, accumulative fusion, and virulent factor infectivity with the CD-4 cell receptor of the host cell. With the interaction hypothesis, the AgNPs also tends to denature and weaken the disulfide regions of CD-4-binding domain present in the gp-120 of the viral cell-surface receptor which was reflected with the multi-fold reduced fusion and infectivity making it a suitable candidate for early stage and post-entry target [385].

The novel SARS-CoV2, a member of the family of corona-viridae being the enveloped, single-stranded RNA virus shall be tackled and targeted using silver nanoparticle on the basis of previous works done against epidemic and pandemic of the long past to later past that includes H5N1,
H1N1 influenza A to foot and mouth disease of cattle and potato virus Y, and tomato mosaic virus of plants. Reduction in disease severity and viral infection with inhibitory action on localized effects on the host cell was promising to justify the selection of AgNPs as potential candidate for SARS-CoV. AgNPs have a greater enhanced virucidal effect against lettuce infecting tomato bushy stunt virus [TBSV] and also graphene-based silver nanocomposite contributes for absolute suppression of the disease against sun hemp rosetta virus [SHRV] in the plant culture system as potted plants exposed to the viral load sprayed [287, 393, 394].

Feline coronavirus (FCoV) and infectious bursal disease virus (IBDV) were systematically targeted using graphene oxide—silver nanocomposite and the inhibition route were found to be hydrophobic and electrostatic interaction between the aromatic GO plane and lipids. Dipolar bonds between thiol residues and Ag⁺ ions were another assisting inhibitory route. For non-enveloped viruses, there will be the absence of the hydrophobic interaction, thereby the stronger dipolar (coordinate covalent) bond directs the extent of inhibition [395]. Other composites of silver nanoparticles includes tannic acid, poly vinyl chloride, chitosan as second constituent along with silver that were acted against herpes simplex virus type 2 (HSV-2), human immunodeficiency virus, and H1N1 influenza virus, respectively, follows interference with attachment, membrane receptor channel binding and interaction with the genetic material of the virus upon uncoating [396].

Different results show that the AgNPs' interaction with gp-120 was found to be size dependent and nanoparticles of

Name of the fungi	Nanoparticle size (nm)	Nanoparticle shape	References
Aspergillus niger (Fungus)	5–26	Spherical	[289]
Aspergillus terreus	1–20	Spherical	[290]
Candida albicans (Fungus)	5–10	Spherical	[291]
Fusarium oxysporum	15–84	Spherical	[292]
Fusarium solani (Fungus)	5–35	Spherical	[293]
Macrophomina Phaseolina (Fungus)	5–40	Spherical	[294]
Metarhizium Anisopliae (Fungus)	28–38	Rod shaped	[295]
Mushroom Fungus Schizophyllum	51–99	Spherical	[296]
Penicillium citrinum	90–120	Spherical	[297]
Penicillium duclauxii	3–32	Spherical	[298]
Penicillium purpureogenum	8–10	Spherical	[299]
Phoma glomerata (Fungus)	19–65	Spherical	[300]
Sclerotinia sclerotiorum (Fungus)	25–30	Spherical	[301]
Trichoderma harzianum	51.10	Irregularly Spherical	[302]
Trichoderma viride	1–50	Spherical	[303]

Name of the algae	Nanoparticle size (nm)	Nanoparticle shape	References
Boiled Algae (Desmosus sp.,)	3–6	Spherical	[304]
Caulerpa racemosa	5–25	Spherical	[305]
Chaetomorpha linum (Macroalga)	3–44	Cubical	[306]
Chlorella vulgaris	15–47	Spherical	[307]
Colpomenia sinuosa	16	Spherical	[308]
Jania rubins	7	Spherical	[309]
Nostoc linckia (Algae)	5–60	Spherical	[310]
Pterocladia capillacea	7	Spherical	[309]
Raw algae (Desmosus sp.,)	4–8	Spherical	[304]
Sargassum Wightii Grevill (Marine Alga)	8–27	Spherical	[311]
Spyridia fusiformis (Marine red alga)	5–50	Spherical	[312]
Turbinaria conoides (Marine brown seaweed)	96	Spherical	[313]
Ulvan Algae	3–36	Spherical	[314]
Table 10. Representative examples of other miscellaneous used for synthesis of silver nanoparticles

Name of the sources	Nanoparticle size (nm)	Nanoparticle shape	References
2,4-pentanedionate Ag (I)	15–36	Spherical	[315]
Arabic gum	10–30	Irregular shaped	[316]
Ascorbic acid	29–82	Spherical	[317]
Ascorbic acid and starch	17–30	Truncated triangle	[318]
Bacterial cellulose	50–70	Spherical	[319]
B-cyclodextrin grafted with poly acrylic acid [BCD-g-PAA]	3–22	Spherical	[320]
Casein hydrolytic peptides	5–15	Spherical	[321]
Chitosan	5–15	Spherical	[322]
Chitosan	20–75	Spherical	[323]
Chitosan/PEG	5–19	Spherical	[324]
Chondroitin 4-sulfate sodium salt	50–77	Spherical	[325]
Cocos nucifera extract (Coconut tree)	21–25	Spherical	[326]
Citrate	7	Spherical	[327]
Dextrose	4–23	Spherical	[328]
Gallic acid	12–21	Spherical	[329]
Ganoderma applanatum mushroom	133	Spherical	[330]
Gelatin	3–14	Spherical	[331]
Gelatin nanoshells	4.1–6.9	Spherical	[332]
Geraniol	1–10	Spherical	[333]
Glucose	30–80	Irregularly spherical	[334]
Glucose	10–20	Spherical	[335]
Glucose, gelatin	5–20	Spherical	[336]
Glutathione	5–10	Spherical	[337]
Graphene	14–17	Spherical	[338]
Honey	4–6	Spherical	[339]
Hyaluronan	5–20	Spherical	[340]
Hydroxypropyl-β-cyclodextrin	2–5	Spherical	[341]
Lentinus edodes (Edible mushroom)	50–100	Walnut	[342]
Local honey	16–25	Spherical	[343]
Maltose	53–72	Spherical	[344]
Malva parviflora (Cheeseweed)	19–25	Spherical	[345]
Mushroom Pleurotus florida	1–3	Spherical	[346]
Mushroom Extract of Pleurotus giganteus	2–20	Spherical	[347]
Mussel-inspired dopamine (GO-Dopa)	5–8	Irregularly spherical	[348]
Panicum virgatum (Switchgrass)	20–40	Spherical, rod-like, triangular, pentagonal, hexagonal	[349]
Pine honey	21–31	Spherical	[350]
Poly(acrylamide)	2–5	Cubical	[351]
rGO, MWCNT	30–50	Spherical	[352]
Ribose sugars, SDS	7–17	Spherical	[353]
Salvia malabarica gum	5–9	Spherical	[354]
Seaweed Urospora sp.	20–30	Spherical	[355]
Sodium alginate	12–18	Spherical	[356]
Sodium citrate	20–25	Rhombical, hexagonal	[357]
Sodium tricitrate	15–24	Spherical	[358]
Spider cobweb	3–50	Spherical	[359]
Starch	20–50	Spherical	[360]
Sucrose	1–11	Spherical	[344]
Tannic acid	28–47	Spherical	[361]
Table 10 (continued)

Name of the sources	Nanoparticle size (nm)	Nanoparticle shape	References
Tannic acid	3.3–22.1	Spherical	[362]
Tannic acid	7	Spherical	[327]
Thyme honey	21–31	Spherical	[350]
Trisodium citrate	32–53	Spherical	[363]

Table 11 Details of silver nanocomposites support material and their antibacterial activity

Name of the support material	Antimicrobial activity	MIC (µg/ml)	References
Graphene oxide	Multidrug-resistant *E. coli* strains	4	[367]
Chitosan	*Botrytis cinerea*	125	[368]
Silica	*Escherichia coli* ATCC 2732	62.5	[369]
Silica	*Klebsiella pneumoniae ATCC 4352*	62.5	[369]
Silica	*Pseudomonas fluorescens LME 2333*	62.5	[369]
Silica	*Salmonella enterica serovar Enteritidis D1*	62.5	[369]
Silica	*Salmonella enterica serovar Typhimurium DB 7153*	62.5	[369]
Silica	*Enterococcus faecalis ATCC 19433*	62.5	[369]
Silica	*Bacillus cereus ATCC 14579*	250	[369]
Silica	*Listeria monocytogenes Scott A*	500	[369]
Silica	*Staphylococcus aureus ATCC 29213*	250	[369]
Silica	*Candida albicans ATCC 10259*	125	[369]
Silica	*Aspergillus niger ATCC 9642*	2000	[369]
Silica	*Escherichia coli* ATCC25922	7.8	[370]
Silica	*Escherichia coli*	100	[371]
Silica	*Staphylococcus aureus*	150	[371]
Magnetic silica	*Escherichia coli*	15.625	[372]
Magnetic silica	*Staphylococcus aureus*	3125	[372]
Mesoporous silica particles	*Escherichia coli*	12.5	[373]
Mesoporous silica particles	*Staphylococcus aureus*	25	[373]
Mesoporous silica particles	*Escherichia coli*	75	[374]
Mesoporous silica particles	*Staphylococcus aureus*	75	[374]
TiO2	*Escherichia coli*	200–250	[375]
Chitosan	*Staphylococcus aureus*	50–100	[376]
Chitosan	*Escherichia coli* (CICC 21524)	32	[376]
Chitosan	*Salmonella choleraesuis* (CICC 21493)	64	[376]
Chitosan	*Staphylococcus aureus* (CICC 10384)	64	[376]
Chitosan	*Vegetative cells of Bacillus subtilis* (CGMCC 1.1377)	32	[376]
Carboxymethyl-cellulose	*Enterococcus faecalis*	60	[377]
Diatomite	*Staphylococcus aureus*	11.6	[378]
Diatomite	*Klebsiella pneumoniae*	232	[378]
SiO2	*Escherichia coli*	195	[379]
SiO2	*Staphylococcus aureus*	390	[379]
SiO2	*Escherichia coli*	10	[380]
SiO2	*Staphylococcus aureus*	4	[380]
SiO2	*Aspergillus niger*	0.13	[381]
SiO2 (irradiation)	*Aspergillus niger*	0.06	[381]
1–10 nm size were able to bind with extra-ordinary activity of inhibition and also involved with reduction of reverse transcription inhibition, so that the transformation of the viral RNA into cDNA gets inhibited and thus the viral load replicative steps and infectivity [397].

Respiratory syncytial infections of viral origin are a peril to humankind by making the infected individuals vulnerable to other range of infections, i.e., serving as a comorbidity to different other diseases. Silver nanoparticles and also its composite exploration as an antiviral agent to such respiratory infections are promising with past to recent present. Silver nanoparticles reduced using ascorbic acid with different weight percentages, capping of graphene oxide (GO) over the silver nanospheres, and silver nanoparticles bound to thiol-group functionalized GO were tested in vivo against coronavirus OC43 and Influenza A virus resulted with mild infectivity inhibition under certain conditions in ascorbic acid reduced AgNP and inhibition only at undiluted level in thiolated samples. Rapid viability and infectivity reduction in intact GO-capped Ag nanospheres observed were promoted by stabilization of bonds with steric hindrance of the composite. Interestingly, the plaque forming ability inhibition of the viruses was found with undiluted (100% concentrated) to diluted to 1% concentration of GO-capped Ag-nanospheres as there is a synergistic effect between GO-AgNP against enveloped viruses that is independent of carrier solvent in the experiment. Five minute treatment to the viral load in prior infecting to the cell lines rapidly reduces the infectivity. Similar synergistic effect was also observed with the AgNPs–chitosan composites which is higher than the individual activities of them against the infection. Various assays that are useful to find the antiviral activity of the silver nanoparticles include proliferation assay, plaque forming unit assay, cell viability assay, real-time quantification polymerase chain reaction, western blot, cytotoxicity assays and pseudo virus entry assay, indirect immuno fluorescent assay, etc. [398–401].

Silver nanoparticles with their incredible antiviral attributes on monosystem also possess the property of agglomeration due to their tremendous surface energy when present as a single entity in the colloidal solution. Once after the agglomeration the increased grain size diminishes the properties of silver nanoparticles, i.e., reduced stability and activity. Various methodologies have been developed to address the agglomeration of colloidal AgNPs through the process of capping from green components to different inert molecules. The capping agent usually interacts with the external surface of the mono-nanoparticles and thereby reduces the aggregation. Polymers, inert macromolecules, resins and gums, plant extracts, and other capping agents influence the steric and electrostatic stabilization and enhance the activity. The following table (Table 12) comprises representative examples of capping agents with silver nanoparticles and their mode of action against various families of virus [402–405].

Silver nanoparticles in SARS-CoV-2 therapy

Silver nanoparticles have their application in a very broader spectrum among which the latest utilization is against the destructive core global pandemic of this millennium, novel coronavirus, severe acute respiratory syndrome-coronavirus 2 (SARS-CoV2), the seventh coronavirus till date from the first virus identified in 1960, which is the one with highest infectivity rate and the fatality rate among the others from the same class [401]. Coronavirus the subfamily of coronaviridae viral family which is been composed of four genera of viruses such as α-genera, β-genera, γ-genera, and δ-genera among which the alpha and beta genera are so far reported to be infectious to highly infectious against humans, whereas the gamma and delta are targeted to avian species. Around 79% of the similarity with gene sequence of SARS-CoV2 are conserved with SARS-CoV reported earlier and 50% identical sequence with middle-east respiratory syndrome related coronavirus (MERS-CoV). The MERS and SARS-CoV2 binding to cell surface is a remarkable feature of difference among which earlier one binds to dipeptidyl peptidase receptor-4 and the later one to angiotensin-converting enzyme-2 receptor. Such unique non-conserved region and properties make the novel SARS-CoV2 more infectious than any other coronaviridae viruses and thus given the name ‘novel’ coronavirus [414–417].

One among the promising candidates for the preventive recommendations, treatment has unique position for AgNPs. As AgNPs have been previously reported counter activity against wide spectrum of pneumonia-like zoonotic, acute respiratory viruses, they shall be utilized along the drugs or therapy in combination as well as the single bioactive compound with the therapeutic compound.

The exact sequential mechanism of virus and AgNP interaction have different conceptual hypothesis (Fig. 1) from mimicking as cell-surface receptor to innate immunity activation. Intervention with cell-surface receptor binding and thereby inhibiting the attachment of the virus to the ACE receptor cells. By the attachment of AgNPs to the viral genome inhibits the viral replication inside the host like paramyxoviridae viruses, influenza viruses, retroviridae viruses, and hepatitis B virus. The pH of airway epithelium might become more acidic due the decrease in pH by the release of silver ions, which makes the environment more difficult for the virus to sustain. Ag⁺ ions have the ability to interact and inhibit the respiratory enzymes of the virus and their potential interference with the viral nucleic acid was already demonstrated against wider spectrum of viruses in the past [394, 396, 418]. The In vitro study on Vero E6 cells infected with a fixed amount of SARS-CoV-2 virus revealed that the
Table 12 Representative example of different capping agents and spectra of virus treated with silver nanoparticles:

S.No	Type of virus	Family	Capping agent	Size (nm)	Concentration of AgNP	Time of study	Mode of action	References
1	Human immunodeficiency virus—1	Retroviridae	Polyvinyl pyrrolidone	30–50	0.44 mg/ml (± 0.3)	48 h	Inhibition through impeding with gp120-CD4 interaction	[385]
2	Human Immunodeficiency Virus—1	Retroviridae	Polyurethane	30–60	Ag-NPs-coated PUC (1 cm²)	72 h	Direct transfer of silver ions from oxidized NPs to viral membrane proteins gp120 and gp41	[406]
3	Herpes simplex virus—1 (HSV-1 and HSV-2)	Herpesviridae		4–23	10 mg/ml	72 h	Irreversible inactivation of virions	[407]
4	Herpes simplex virus—1 (HSV-1 and HSV-2)	Herpesviridae		48 h				
5	Human parainfluenza virus	Paramyxoviridae		48 h				
6	H1N1 Influenza A virus	Orthomyxoviridae	Chitosan	3.5–12.9	100 µg /mg of chitosan	7 days	Spatial restriction of binding between virions and AgNP/Ch Matrix	[408]
7	Transmissible gastroenteritis coronavirus	Coronaviridae	Polyoxyethylene Glycerol Trioleate	10–20	3.125–12.5 (µg/ml)	48 h	Depolarization of host cell’s mitochondrial membrane protein and induction of apoptosis cascade	[409]
8	Tomato Bushy Stunt Virus	Tombusviridae	Graphene oxide	30–50	–	–	Spatial distribution of the interacting ligand/receptor molecules between coat proteins of the virus and infected cell receptors	[393]
9	Respiratory Syncytial Virus	Pneumovirinae	Curcumin	11–12	0.008, 0.015, 0.03, 0.06, 0.12 nM	–	Reduction of cytopathic effects and inactivation of RSV before its entry into the host cell	[410]
10	Feline coronavirus	Coronaviridae	Graphene oxide	1–25	0.1 mg/ml	96 h	Negatively charged GO adsorbs to the positively charged lipid membrane and disrupts its integrity	[411]
11	Infectious bursal disease virus	Birnaviridae	Graphene oxide	1–0.125 mg/ml	–	96 h	Conjugation between the sulfur group of viral protein and silver nanoparticle on GO surface	
12	Severe acquired respiratory syndrome—Coronavirus 2	Coronaviridae	Silicon dioxide	65	Approximately 50 ppm	2–10 min	High oxidizing ROS production led damage to the virus	[412]
13	Feline calicivirus	Coronaviridae	Poly(tannic acid)	10.61 ± 1.54	20 mm × 20 mm	72 h	Direct binding of the silver nanoparticles to viral envelope glycoproteins, thereby inhibiting viral penetration into the host cell	[413]
14	Influenza virus	Orthomyxoviridae						
concentration of AgNPs between 1 and 10 ppm inhibited the SARS-CoV-2 viral infection by inhibiting the viral entry by disrupting viral integrity [400]. In another In vitro study on SARS-CoV-2 infection in cultured cells showed that a reduction of about 80% cells at a concentration of 0.03% [419]. Nanoparticle composite hybrids of silver, zinc, and copper exhibited vast antiviral property against HIV and other similar enveloped viruses. Capped silver nanoparticles are found to inhibit the negative riboxy nucleic acid strand synthesis of PEDV, another member of the corona virus family. Moreover, the innate immune response induction by the nanocomposites focuses on elimination of the probability of viral progeny development [420].

Formulations on the way to store

A provisional patent filed formulation of Quickgun Lifesciences, India has cepharanthine (CEP), a potent inhibitor drug against the virus in screening, loaded in combinational with biosilver. This CEP-biosilver oral spray formulation is about to direct a double-targeting of glycoproteins present in the pathogenic virus among which the phyto-derived inhibitor CEP inhibits the replication through targeting the corona virus glycoprotein and AgNPs usually targets the glycoprotein knobs of viruses. In PEGylated form as dry powder, the silver nanoparticles are formulated to deliver in either single dose or multiple dose inhalers. With further research, this drug therapy shall be proven and considered as a potentially safe drug, as AgNPs are with extra-ordinary biocompatible characteristics, but are cytotoxic and apoptotic to cancer and other abnormal cells [421].

Imbed biosciences Inc., a Madison, Wisconsin-based pain killer and wound-healing formulation firm, is working on the integration of the pre-approved microlyte matrix wound-healing complex with the antiviral silver nanoparticles. They are bound with the viral particles and found to interact and freeze the mechanism through which viral particles and human cells interact. In a preliminary research carried out by the Virology Research Institute, London, the AgNPs synthesized by the company, is found to be either -cidic (kill) or -static (inactivate) with 99.9% of the SARS-CoV2. These controlled lab results are really hopeful to take on into the preliminary clinical trials and follow-of-human trials. The product is planned to be delivered in a nasal spray formulation once it clears the levels of pharmaceutical trials [422].

A consortium of companies that include ApIfilm, Braskem, Nanox, and the UFSCar (Brazil) and Jaume I of Castellón (Spain) universities developed and licensed technology of PVC polymer films used in food packaging, coated with silver and silica nanoparticles, is successfully found to inactivate the novel coronavirus. Different time bound direct exposure of novel SARS-CoV2 virus upon the film was carried out and after which the viral particles were made to infect African monkey kidney cell lines, called as vero cells. The infection, virulence and replication rate before and after exposure to films and films without silver and silica coatings were carried out and comparison studies were done. The amplification of viral materials by PCR shows about 99.84% and almost 100% reduction in the viral genetic materials, after exposure time of 2 and 15 min, respectively. A highly satisfactory performance of stretch-wrap wrapping material for perishable food and other grocery items is more about to explore and the exact mechanism studies shall open up more avenues of improvised strategies to tackle the novel SARS-CoV2 [423].

Recent research includes incorporative application of the AgNPs’ coating and dispersion in train cargos, air filters, handles of subways, handrails of elevators and to surgical face masks, medical devices like personal protection equipment kits, and the list of consumables extends.

Pros and cons of faster human trials of silver nanoparticles

Several advantages of utilizing AgNPs as candidature to SARS-CoV2 newer virus variants with faster clinical trials than usual include greater probability of effective virucidal
properties to similar respiratory syncytial disease causing viruses, rapid activation of the host’s innate immunity response and cascade system, greater stability, biocompatibility and easy to control over coating process, diverse choice of conjugation and hybrid therapy as they are encapsulated nanocarrier themselves, synergistic property with improved efficacy and reduced level of resistance, and availability of valid, standard, optimized, controlled, and commendable property engineering technologies [424–426].

Concerns range from availability of nanoparticle precursor, activity variation with respect to the source of nanoparticle synthesized, non-optimized and unstandardized procedure of surface coatings, pharmacodynamics and pharmacokinetic studies of the antiviral candidatures, and no application restrictions framework—MRI exposure to metallic nanoparticle-coated mask leads to face burn that WHO advised lately. Lack of a proper standard disposal protocol of silver incorporated products shall be an eco-system pressure created on the natural microbiota of the environment [400]. The selection of the capping agent that provides prolonged stability to the silver nanoparticles coating from a wide range of such preceding successful components should be appropriately chosen with the trials. However, eventual addressing of all such cons and standardizing the protocols for prolonged activity retainment on the coated surfaces shall take the integrated research to tackle SARS-CoV2 for the very next level.

Conclusion

Silver nanoparticles, the prominent aspiring and promising candidate against the multitude of applications, have been narrowed toward its antiviral spectra attributes with the review. Green synthesis of silver nanoparticles through phyto-mediated route is found to be more promising due to its simplicity of conduction and presence of versatile natural plant-based compounds such as polyphenols to alkaloids, etc., provides the combined arena for synthesis that covers nanoparticles of varying sizes and morphologies as the outcome. Tailoring and scale-up of the plant-mediated route has a higher edge and ease of convenience compared to the microbe-mediated and other macromolecule-mediated methods of synthesis.

Silver nanoparticles’ activity against the virus is dependent on various factors such as the size and concentration of the nanoparticles, enveloped and non-enveloped coat of virus, nature of genetic material (DNA/RNA), sensing of strand (positive/negative sense strands), agglomeration, etc. Binding with the glycoproteins to formation of affinity interactions and denaturation of the bonds of viral surface, there are conglomerated routes through which the inactivation and the disintegration of viral strain takes place at different targeting points such as during entry and post-entry.

Several SARS-CoV2 formulations utilize silver as a core targeting compound or with combinatorial drugs as hybrids. The proven antiviral property strongly suggests the usage of silver nanoparticles with appropriate capping agent coatings and also with composites in surface sterilization to therapeutic targeting. A newer avenue of being a composite component of targeted drug delivery system emulsions to being the core component of drug composite, multiple actions of silver nanoparticles against existing and still evolving viruses would be a more fascinating research and development area of the near to far future.

Funding This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Declarations

Conflict of interest The authors declare no conflict of interest in preparing this article.

References

1. Mousavi, S.M., Hashemi, S.A., Ghasemi, Y., Atapour, A., Amani, A.M., Savar Dashtaki, A., Arjmand, O.: Green synthesis of silver nanoparticles toward bio and medical applications: review study. Artif. Cells. Nanomed. Biotechnol. (2018). https://doi.org/10.1080/21691401.2018.1517769
2. Roy, A., Bulut, O., Some, S., Mandal, A.K., Yilmaz, M.D.: Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv. (2019). https://doi.org/10.1039/c8ra08982e
3. Ahmed, S., Ahmad, M., Swami, B.L., Ikram, S.: A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J. Adv. Res. (2016). https://doi.org/10.1016/j.jare.2015.02.007
4. Jamkhande, P.G., Ghule, N.W., Bamer, A.H., Kalaskar, M.G.: Metal nanoparticles synthesis: an overview on methods of preparation, advantages and disadvantages, and applications. J. Drug Deliv. Sci. Technol. (2019). https://doi.org/10.1016/j.jddst.2019.101174
5. Kaabipour, S., Hemmati, S.: A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures. Beilstein J. Nanotechnol. (2021). https://doi.org/10.3762/bjnano.12.9
6. Park, Y.: New paradigm shift for the green synthesis of antibacterial silver nanoparticles utilizing plant extracts. Toxicol. Res. (2014). https://doi.org/10.5487/TR.2014.30.3.169
7. Roy, S., Das, T.K.: Plant mediated green synthesis of silver nanoparticles—a review. Int J Plant Biol Res. 3(3), 1044 (2015)
8. Rauwel, P., Küünal, S., Ferdov, S., Rauwel, E.: A review on the green synthesis of silver nanoparticles and their morphologies studied via TEM. Adv. Mater. Sci. Eng. (2015). https://doi.org/10.1155/2015/68274
9. El-Aassar, M.R., Ibrahim, O.M., Fouda, M.M., El-Beheri, N.G., Agwa, M.M.: Wound healing of nanofiber comprising polygalacturonic/hyaluronic acid embedded silver nanoparticles: in-vitro and in-vivo studies. Carbohydr. Polym (2020). https://doi.org/10.1016/j.carbpol.2020.116175
10. Ghareeb, R.Y., Alfy, H., Fahmy, A.A., Ali, H.M., Abdelsalam, N.R.: Utilization of cladophora glomerata extract nanoparticles as eco-nematicide and enhancing the defense responses of tomato plants infected by Meloidogyne javanica. Sci. Rep. (2020). https://doi.org/10.1038/s41598-020-77005-1

11. Goel, V., Kaur, P., Singla, L.D., Choudhury, D.: Biomedical evaluation of lansium parasiticum extract-protected silver nanoparticles against haemonchus contortus, a parasitic worm. Front. Mol. Biosci. (2020). https://doi.org/10.3389/fmolb.2020.595646

12. Kokura, S., Handa, O., Takagi, T., Ishikawa, T., Naito, Y., Yoshikawa, T.: Silver nanoparticles as a safe preservative for use in cosmetics. Nanomedicine (2010). https://doi.org/10.1016/j.nano.2009.12.002

13. Schrand, A.M., Rahman, M.F., Hussain, S.M., Schlager, J.J., Schipper, S., Kaur, P., Singla, L.D., Choudhury, D.: Biomedical applications of chasmanthera dependens stem extract mediated silver nanoparticles as antimicrobial, antioxidant, anticoagulant, thrombolytic, and larvicidal agents. Karbala Int J. Mod. Sci 5(2), 2 (2019)

14. Wilkinson, L.J., White, R.J., Chipman, J.K.: Silver and nano-particles of silver in wound dressings: a review of efficacy and safety. J. Wound. Care. (2011). https://doi.org/10.12968/jowc.2011.20.11.543

15. Bogireddy, N.K.R., Kumar, H.A.K., Mandal, B.K.: Biofabricated silver nanoparticles as green catalyst in the degradation of different textile dyes. J. Environ. Chem. Eng. (2016). https://doi.org/10.1016/j.jece.2015.11.004

16. Talapko, J., Matijević, T., Žujić, M., Antolović-Požgain, A., Škrelc, I.: Antibacterial activity of silver and its application in dentistry. Cardiology and dermatology. Microorganisms (2020). https://doi.org/10.3390/microorganisms8091400

17. Bacali, C., Baldea, I., Moldovan, M., Carpa, R., Olteanu, D.E., Filip, G.A., Badea, F.: Flexural strength, biocompatibility, and antimicrobial activity of a polymethyl methacrylate denture resin enhanced with graphene and silver nanoparticles. Clin. Oral. Invest. (2019). https://doi.org/10.1007/s00784-019-01313-2

18. Dong, Y., Ye, H., Liu, Y., Xu, L., Wu, Z., Hu, X., Wu, G.: pH dependent silver nanoparticles releasing titanium implant: a novel therapeutic approach to control peri-implant infection. Colloids Surf. B. (2017). https://doi.org/10.1016/j.colsurfb.2017.06.034

19. Mahmud, N., Nabi, F.: Application of nanotechnology in the field of textile. IOSR J. Polymer. Text. Eng. (2017). https://doi.org/10.9790/19X-0401106

20. Liu, W., Majumdar, S., Li, W., Keller, A.A., Slaveykova, V.I.: Metabolomics for early detection of stress in freshwater algae poterioochromonas malhamensis exposed to silver nanoparticles. Sci. Rep. (2020). https://doi.org/10.1038/s41598-020-77521-0

21. Chung, I.M., Park, I., Seung-Hyun, K., Thiruvengadam, M., Rajakumar, G.: Plant-mediated synthesis of silver nanoparticles: their characteristic properties and therapeutic applications. Nanoscale Res. Lett. (2016). https://doi.org/10.1186/s11671-016-1257-4

22. Chaudhuri, S.K., Chandela, S., Malodia, L.: Plant mediated green synthesis of silver nanoparticles using tecomaella undulata leaf extract and their characterization. Nano Biomed. Eng. (2016). https://doi.org/10.5101/nbe.v8i1.pl-8

23. Chahardooli, M., Khodadadi, E., Khodadadi, E.: Green synthesis of silver nanoparticles using oak leaf and fruit extracts (Quercus) and its antibacterial activity against pathogenic bacteria. Int. J. Biosci. (2014). https://doi.org/10.12692/ijb/4.3.97-103

24. Shetty, P., Suprana, N., Garud, M., Prasad, T.N.V.K.V.: Synthesis, characterization and antimicrobial activity of Alstonia scholaris bark-extract-mediated silver nanoparticles. J. Nanostruct. Chem. (2014). https://doi.org/10.1016/j.sntn.2014.01.012

25. Ankanna, S.T.N.V.K.V.P., Prasad, T.N.V.K.V., Elumalai, E.K., Sivathramma, N.: Production of biogenic silver nanoparticles using Boswellia ovalifoliolata stem bark. Digest. J. Nanomater. Biostuct. 5(2), 369–372 (2010)

26. Aina, D.A., Owolo, O., Lateef, A., Aina, F.O., Haleem, A.S., Adeoye-Isijola, M., Okon, V., Asafa, T.B., Elegbede, J.A., Olukanni, O.D., Adediji, I.: Biomedical applications of chasmanthera dependens stem extract mediated silver nanoparticles as antimicrobial, antioxidant, anticoagulant, thrombolytic, and larvicidal agents. Karbala Int J. Mod. Sci 5(2), 2 (2019)

27. Balachandar, R., Gurumooorthy, P., Karmegam, N., Barabadi, H., Subbaiya, R., Anand, K., Boomi, P., Saravanam, M.: Plant-mediated synthesis, characterization and bactericidal potential of emerging silver nanoparticles using stem extract of phyllanthus niruri: a recent advance in phytonanotechnology. J. Clust. Sci. 30(6), 1481–1488 (2019)

28. Borase, H.P., Patil, C.D., Suryawanshi, R.K., Patil, S.V.: Ficus carica latex-mediated synthesis of silver nanoparticles and its application as a chemophotoprotective agent. Appl. Biochem. Biotechn. (2013). https://doi.org/10.1007/s12010-013-0385-x

29. Thakore, S.I., Nagar, P.S., Jadeja, R.N., Thounaojam, M., Devkar, R.V., Rathore, P.S.: Sapota fruit latex mediated synthesis of Ag, Cu mono and bimetallic nanoparticles and their in vitro toxicity studies. Arab. J. Chem. (2019). https://doi.org/10.1016/j.arabjc.2014.12.042

30. Ojeyaye, M.O., Okoh, S.O., Okoh, A.I.: Silver nanoparticles (AgNPs) facilitated by plant parts of Crataegus ambiguag Becker AK extracts and their antibacterial, antioxidant and antimarial activities. Green. Chem. Lett. Rev. (2020). https://doi.org/10.1080/17512853.2020.1861344

31. Nithya Deva Krupa, A., Raghabavan, V.: Biosynthesis of silver nanoparticles using Aegle marmelos (Bael) fruit extract and its application to prevent adhesion of bacteria: a strategy to control microfouling. Bioinorg. Chem. Appl. (2014). https://doi.org/10.1080/19430110.2014.949538

32. Mittal, A.K., Kaler, A., Banerjee, U.C.: Free radical scavenging and antioxidant activity of silver nanoparticles synthesized from flower extract of rhododendron dauricum. Nano Biomed. Eng. (2012). https://doi.org/10.5101/nb.v4i3.p118-124

33. Saygi, K.O., Cacan, E.: Antioxidant and cytotoxic activities of silver nanoparticles synthesized using Tilia cordata flowers extract. Mat. Today. Comm. (2021). https://doi.org/10.1016/j.mtcomm.2021.102316

34. Ingarsal, N., Vinothkanna, A., Ananth, S.: Woodfordia fruticosa flower extract mediated silver nanoparticles and its prodigious potential as antioxidant, antibacterial and photocatalyst. Ann. Rom. Soc. Cell Biol. 25, 3022–3037 (2021)

35. Jeyasundari, J., Praba, P.S., Jacob, Y.B.A., Rajendran, S., Kaleeswari, K.: Green synthesis and characterization of silver nanoparticles using mimusops elengi flower extract and its synergistic antimicrobial potential. Am. Chem. Sci. J. (2016). https://doi.org/10.9734/ACSJ/2016/23161

36. Rashmi, V., Sanjay, K.R.: Green synthesis, characterisation and bioactivity of plant-mediated silver nanoparticles using decapels hamiltonii root extract. IET Nanobiotechnol. (2017). https://doi.org/10.1049/iet-nbt.2016.0018

37. Mukunthan, K.S., Balaji, S.: Silver nanoparticles shoot up from the root of Daucus carota (L.). Int. J. Green Nanotech. (2012). https://doi.org/10.1080/194030892.2012.654745

38. Scherer, M.D., Sposito, J.C., Falco, W.F., Grisolia, A.B., Andrade, L.H., Lima, S.M., Machado, G., Nascimento, V.A., Gonçalves, D.A., Wender, H., Oliveira, S.L.: Cytotoxic and genotoxic effects of silver nanoparticles on meristematic cells of allium cepa roots: a close analysis of particle size dependence. Sci. Tot. Env. 660, 459–467 (2019)

39. Teerasong, S., Jinnarak, A., Chaneam, S., Wilairat, P., Nacapricha, D.: Poly (vinyl alcohol) capped silver nanoparticles for
antioxidant assay based on seed-mediated nanoparticle growth. Talanta (2017). https://doi.org/10.1016/j.talanta.2017.04.009
40. Ma, J., Guo, X., Ge, H., Tian, G., Zhang, Q.: Seed-mediated photodeposition route to Ag-decorated SiO2@ TiO2 microspheres with ideal core-shell structure and enhanced photocatalytic activity. Appl. Surf. Sci. (2018). https://doi.org/10.1016/j.apsusc.2017.11.020
41. Aravinthan, A., Govarthanan, M., Selvam, K., Praburaman, L., Selvankumar, T., Balamurugan, R., Kamala-Kannan, S., Kim, J.H.: Sunroot mediated synthesis and characterization of silver nanoparticles and evaluation of its antibacterial and rat splenocyte cytotoxic effects. Int. J. Nanomed. (2015). https://doi.org/10.2147/IJN.S79106
42. Shameli, K., Ahmad, M.B., Zamanian, A., Sangpour, P., Shabanzadeh, P., Abdollahi, Y., Zargar, M.: Green biosynthesis of silver nanoparticles using curcuma longa tuber powder. Int. J. Nanomed. (2012). https://doi.org/10.2147/IJN.S36786
43. Mohammadalinejhad, S., Almasi, H., Esmaiili, M.: Simultaneous green synthesis and in-situ impregnation of silver nanoparticles into organic nanofibers by Lythrum salicaria extract: morphological, thermal, antimicrobial and release properties. Mater. Sci. Eng. C. (2019). https://doi.org/10.1016/j.msec.2019.110115
44. Wintola, O.A., Afolayan, A.: P hydroxychemical constituents and antioxidant activities of the whole leaf extract of aloe ferox mill. J. Pharmcogn. Mag. (2011). https://doi.org/10.4103/0973-1296.90414
45. Njoku, O.V., Obi, C.: Phytochemical constituents of some selected medicinal plants. Afr. J. Pure Appl. Chem. 3, 228–233 (2009)
46. Wadood, A., Ghufran, M., Jamal, S.B., Naeem, M., Khan, A., Sawant, R.S., Godghate, A.G.: Preliminary phytochemical analy- 47. Marimuthu, J., Aparna, J.S., Jeeva, S., Sukumaran, S., Anantham, B.: Preliminary phytochemical studies on the methanolic flower extract mediated green synthesis of silver nanoparticles using Anisomeles indica: mosquitoicidal potential against malaria, dengue and Japanese encephalitis vectors. Exp. Parasitol. (2016). https://doi.org/10.1016/j.exppara.2015.12.011
48. Arjunan, N.K., Murugan, K., Rejeeth, C., Madhiyazhagan, P., Bar- 49. Kumar, D.A., Pandalichamy, V., Roopan, S.M.: Green synthesis of silver nanoparticles using Alternanthera dentata leaf extract at room temperature and their antimicrobial activity. Spectro- chim. Acta A Mol. Biomol. Spectrosc. (2014). https://doi.org/10.1016/j.saa.2014.02.058
50. Kolya, H., Maiti, P., Pandey, A., Tripathy, T.: Green synthesis of silver nanoparticles with antimicrobial and azo dye (Congo red) degradation properties using Amaranthus gangeticus Linn leaf extract. J. Anal. Sci. Technol. (2015). https://doi.org/10.1186/s40453-015-0074-1
51. Govindarajan, M., Rajeswary, M., Veerakumar, K., Muthukuma- 52. Augustine, R., Kalirakkal, N., Thomas, S.: A facile and rapid method for the black pepper leaf mediated green synthesis of silver nanoparticles and the study of anti-cancer effect and apoptosis induction on human breast cancer cell line (MCF-7). J. Environ. Sci. Health, Part C. (2012). https://doi.org/10.1080/17518401.2017.1340402
53. Kouvaris, P., Delimitis, A., Zaspalis, V., Papadopoulos, D., Tsi- pas, S.A., Michailidis, N.: Green synthesis and characterization of silver nanoparticles produced using arbutus unedo leaf extract. Mater. Lett. (2012). https://doi.org/10.1016/j.matlet.2012.02.025
54. Singh, A., Jain, D., Upadhyay, M.K., Khandelwal, N., Verma, H.N.: Green synthesis of silver nanoparticles using argemone mexicana leaf extract and evaluation of their antimicrobial activities. Dig. J. Nanomater. Bios. 5, 483–489 (2010)
55. Mousavi, B., Tavvizi, F., Zaker Bostanabad, S.: Green synthesis of silver nanoparticles using artemisia turcomanica leaf extract and the study of anti-cancer effect and apoptosis induction on gastric cancer cell line (AGS). Artif. Cells Nanomed. Biotechnol. (2018). https://doi.org/10.1080/20160941.2018.1430697
56. Saffiour Afshar, A., Saeid, N.F.: Evaluation of the cytotoxic activity of biosynthesized silver nanoparticles using berberis vulgaris leaf extract. Jentashapir J. Cell. Mol. Biol. (2021). https://doi.org/10.5812/jjcbmb.112437
57. Augustine, R., Karakikul, N., Thomas, S.: A facile and rapid method for the black pepper leaf mediated green synthesis of silver nanoparticles and the antimicrobial study. Appl. Nanosci. (2014). https://doi.org/10.1007/s13204-013-0260-7
58. Kumar, P.V., Pammi, S.V.N., Kollu, P., Satyanarayana, K.V.V., Shameem, U.: Green synthesis and characterization of silver nanoparticles using Boerhaavia diffusa plant extract and their anti bacterial activity. Ind. Crops Prod. (2014). https://doi.org/10.1016/j.indcrop.2013.10.0
59. Carmona, E.R., Benito, N., Plaza, T., Recio-Sánchez, G.: Green synthesis of silver nanoparticles by using leaf extracts from the endemic Buddleja globosa hope. Green Chem. Lett. Rev. (2017). https://doi.org/10.1016/j.ijcrbm.2017.1360400
60. Patra, S., Mukherjee, S., Barui, A.K., Ganguly, A., Reddrehar, B., Patra, C.R.: Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics. Mater. Sci. Eng. C. (2015). https://doi.org/10.1016/j.msec.2015.04.048
61. International Nano Letters (2022) 12:313–344
70. Kalimuthu, K., Panneerselvam, C., Murugan, K., Huang, J.S.: Green synthesis of silver nanoparticles using Cadaba indica lam leaf extract and its larvicidal and pupicidal activity against anopheles stephensi and Culex quinquefasciatus. J. Entomol. Acarol. Res. (2013). https://doi.org/10.4081/jear.2013.e11
71. Jain, D., Daima, H.K., Kachhwaha, S., Kothari, S.L.: Synthesis of plant-mediated silver nanoparticles using papaya fruit extract and evaluation of their anti microbial activities. Dig. J. Nanomater. Biostruct. 4, 557–563 (2009)
72. Banala, R.R., Nagati, V.B., Karnati, P.R.: Green synthesis and characterization of Carica papaya leaf extract coated silver nanoparticles through X-ray diffraction, electron microscopy and evaluation of bactericidal properties. Saudi J. Biol. Sci. (2015). https://doi.org/10.1016/j.sjsb.2015.01.007
73. Awad, A.M., Salem, N.M., Abdeen, A.O.: Green synthesis of silver nanoparticles using carob leaf extract and its antibacterial activity. Int. J. Ind. Chem. (2013). https://doi.org/10.1186/2228-5547-4-29
74. Muthukumaran, U., Govindarajan, M., Rajeswary, M.: Green synthesis of silver nanoparticles from Cassia roxburghii—a most potent power for mosquito control. Parasitol. Res. (2015). https://doi.org/10.1007/s00436-015-4677-7
75. Parlinska-Wojtan, M., Kus-Liskiewicz, M., Depciuch, J., Sadik, O.: Green synthesis and antibacterial effects of aqueous colloidal solutions of silver nanoparticles using camomile terpenoids as a combined reducing and capping agent. Bioproc. Biosyst. Eng. (2016). https://doi.org/10.1007/s00449-016-1599-4
76. Arokiyaraj, S., Arasu, M.V., Vincent, S., Prakash, N.U., Choi, S.H., Oh, Y.K., Kim, K.H.: Rapid green synthesis of silver nanoparticles from chrysanthemum indicum L. and its antibacterial and cytotoxic effects: an in vitro study. Int. J. Nanomed. (2014). https://doi.org/10.2147/INJ.S53546
77. Satyavani, K., Gurudeeban, S., Ramanathan, T., Balasubramanian, T.: Biomedical potential of silver nanoparticles synthesized from calli cells of Citrullus colocynthis (L.) Schrad. J. Nanobiotechnol. (2011). https://doi.org/10.1186/1477-3155-9-43
78. Narayanan, K.B., Sakhthivel, N.: Extracellular synthesis of silver nanoparticles using the leaf extract of Coleus amboinicus Lour. Mater. Res. Bull. (2011). https://doi.org/10.1016/j.materresbull.2011.05.041
79. Vanaja, M., Annadurai, G.: Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity. Appl. Nanosci. (2013). https://doi.org/10.1007/s13204-012-0121-9
80. Johnson, L., Prabu, H.: Green synthesis and characterization of silver nanoparticles by leaf extracts of cypsia cirsicalis, ficus amplissima, commelina benghalensis and lippia nodiflora. J. Int. Nano. Lett. (2015). https://doi.org/10.1186/s40089-014-0136-1
81. Mosaviniya, M., Kikhabani, T., Tazfr, M.: Facile green synthesis of silver nanoparticles using crocus haussknechtii bois bulb extract: catalytic activity and antibacterial properties. Colloids Interface Sci. Commun. (2019). https://doi.org/10.1016/j.jolcom.2019.100211
82. Jha, A.K., Prasad, K., Kumar, V., Prasad, K.: Biosynthesis of silver nanoparticles using eclipta leaf. Biotechnol. Prog. (2009). https://doi.org/10.1021/bp900233k
83. Kesharwani, J., Yoon, K.Y., Hwang, J., Rai, M.: Phytofabrication of silver nanoparticles by leaf extract of datura metel: hypothetical mechanism involved in synthesis. J. Bionanosci. (2009). https://doi.org/10.1166/jbns.2009.1008
84. Song, J.Y., Kim, B.S.: Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst. Eng. (2009). https://doi.org/10.1007/s00449-008-0224-6
85. Mo, Y.Y., Tang, Y.K., Wang, S.Y., Lin, J.M., Zhang, H.B., Luo, D.Y.: Green synthesis of silver nanoparticles using eucalyptus leaf extract. Mater. Lett. (2015). https://doi.org/10.1016/j.matlet.2015.01.004
86. Sulaiman, G.M., Mohammed, W.H., Marzoog, T.R., Al-Amiery, A.A.A., Kadhum, A.A.H., Mohamad, A.B.: Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles using eucalyptus chapmaniana leaves extract. Asian Pac. J. Trop. Biomed. 3, 58–63 (2013)
87. Ali, K., Ahmed, B., Dwivedi, S., Saquib, Q., Al-Khedhairy, A.A., Musarrat, J.: Microwave accelerated green synthesis of stable silver nanoparticles with Eucalyptus globulus leaf extract and their antibacterial and antibiofilm activity on clinical isolates. PLoS ONE (2015). https://doi.org/10.1371/journal.pone.0131178
88. Rahimi-Nasrabadi, M., Pourmortazavi, S.M., Shandiz, S.A.S., Ahmadi, F., Batooli, H.: Green synthesis of silver nanoparticles using Eucalyptus leucocalyx leaves extract and evaluating the antioxidant activities of extract. Nat. Prod. Res. (2014). https://doi.org/10.1080/14786419.2014.918124
89. Pourmortazavi, S.M., Taghidiri, M., Makari, V., Rahimi-Nasrabadi, M.: Procedure optimization for green synthesis of silver nanoparticles by aqueous extract of eucalyptus oleosa. Spectrochim. Acta A Mol. Biomol. Spectrosc. (2015). https://doi.org/10.1016/j.saa.2014.01.004
90. Shah, A.T., Din, M.I., Bashir, S., Qadir, M.A., Rashid, F.: Green synthesis and characterization of silver nanoparticles using fercactus echidne extract as a reducing agent. Anal. Lett. (2015). https://doi.org/10.1080/00032719.2014.974057
91. Ulug, B., Turkdemir, M.H., Cicek, A., Mete, A.: Green synthesis of silver nanoparticles using aqueous solution of ficus benghalensis leaf extract and characterization of their antibacterial activity. Spectrochim. Acta A Mol. Biomol. (2015). https://doi.org/10.1016/j.saa.2014.06.142
92. Parveen, M., Ahmad, F., Malla, A.M., Azaz, S.: Microwave-assisted green synthesis of silver nanoparticles from fraxinus excelsior leaf extract and its antioxidant assay. Appl. Nanosci. (2016). https://doi.org/10.1007/s13204-015-0433-7
93. Manosalva, N., Tortella, G., Diez, M.C., Schalchli, H., Seabra, A.B., Durán, N., Rubilar, O.: Green synthesis of silver nanoparticles: effect of synthesis reaction parameters on antimicrobial activity. World J. Microbiol. Biotechnol. (2019). https://doi.org/10.1007/s11274-019-2664-3
94. Allalchian, A.R., Jalali, S.A.H., Aghaei, F., Farhang, H.R.: Green synthesis of silver nanoparticles using glaucium corniculatum (L.) curits extract and evaluation of its antibacterial activity. JET Nanobiotechnol. (2018). https://doi.org/10.1009/iet-nbt.2017.0265
95. Asghar, M.A., Zahir, E., Shahid, S.M., Khan, M.N., Asghar, M.A., Iqbal, J., Walker, G.: Iron, copper and silver nanoparticles: Green synthesis using green and black tea leaves extracts and evaluation of antibacterial, antifungal and aflatoxin B1 adsorption activity. LWT (2018). https://doi.org/10.1016/j.lwt.2017.12.009
96. Selvan, D.A., Mahendiran, D., Kumar, R.S., Rahiman, A.K.: Garlic, green tea and turmeric extracts-mediated green synthesis of silver nanoparticles: phytochemical, antioxidant and in vitro cytotoxicity studies. J. Photochem. Photobiol. B. (2018). https://doi.org/10.1016/j.jphotobiol.2018.02.014
97. Nakhjavani, M., Nikkhah, V., Sarafraz, M.M., Shoja, S., Sarafraz, M.: Green synthesis of silver nanoparticles using green tea leaves: experimental study on the morphological, rheological and antibacterial behaviour. Heat Mass Transf. (2017). https://doi.org/10.1007/s00231-017-2065-9
98. Rostami-Vartooni, A., Narsollahzadeh, M., Alizadeh, M.: Green synthesis of perlite supported silver nanoparticles using Hama melis virginiana leaf extract and investigation of its catalytic activity for the reduction of 4-nitrophenol and congo red. J. Alloys Compd. (2016). https://doi.org/10.1016/j.jallcom.2016.04.008
99. Thatoi, P., Perry, R.G., Gouda, S., Das, G., Pramanik, K., Thatoi, H., Patra, J.K.: Photo-mediated green synthesis of silver and zinc oxide nanoparticles using aqueous extracts of two mangrove plant species, heritiera fomes and sonneratia apetala and investigation of their biomedical applications. J. Photochem. Photobiol. B. (2016). https://doi.org/10.1016/j.jphotobiol.2016.07.029

100. Karthik, C., Caroline, D.G., Dhanam Priya, M., Pandi Prabha, S.: Synthesis, characterization of Ag-SiO2 nanocomposite and its application in food packaging. J Inorg Organomet Polym. (2021). https://doi.org/10.1007/s10904-020-01853-7

101. Dipankar, C., Murugan, S.: The green synthesis, characterization and evaluation of the biological activities of silver nanoparticles synthesized from iresine herbstii leaf aqueous extracts. Colloids Surf. B. (2012). https://doi.org/10.1016/j.colsurfb.2012.04.006

102. Karuppiah, M., Rajmohan, R.: Green synthesis of silver nanoparticles using ixora coccinea leaves extract. Mater. Lett. (2013). https://doi.org/10.1016/j.matlet.2013.01.087

103. Emmanuel, R., Palanisamy, S., Chen, S.M., Chelladurai, K., Padmavathy, S., Saravanan, M., Al-Hemaid, F.M.: Antimicrobial efficacy of green synthesized drug blended silver nanoparticles against dental caries and periodontal disease causing microorganisms. Mater. Sci. Eng. C. (2015). https://doi.org/10.1016/j.msec.2015.06.033

104. Ajitha, B., Reddy, Y.A.K., Reddy, P.S.: Green synthesis and characterization of silver nanoparticles using lantana camara leaf extract. Mater. Sci. Eng. C. (2015). https://doi.org/10.1016/j.msec.2015.01.035

105. Swamy, M.K., Sudipta, K.M., Juyanta, K., Balasubramanya, S.: The green synthesis, characterization, and evaluation of the biological activities of silver nanoparticles synthesized from leptadenia reticula leaf extract. Appl. Nanosci. (2015). https://doi.org/10.1007/s13204-014-0293-6

106. Balan, K., Qing, W., Wang, Y., Liu, X., Palvannan, T., Wang, Y., Zhang, Y.: Antidiabetic activity of silver nanoparticles from green synthesis using ionicica japonica leaf extract. RSC Adv. (2016). https://doi.org/10.1039/c5ra24391b

107. Garibo, D., Borbón-Nuñez, H.A., de León, J.N.D., Mendoza, E.G., Estrada, I., Toledano-Magaña, Y., Susarrey-Arce, A.: Green synthesis of silver nanoparticles using lysiloma acapulcensis exhibit high-antimicrobial activity. Sci. Rep. (2020). https://doi.org/10.1038/s41598-020-69606-7

108. Marimuthu, S., Rahuman, A.A., Rajakumar, G., Santhoshkumar, T., Kirithi, A.V., Jayaseelan, C., Kamaraj, C.: Evaluation of green synthesized silver nanoparticles against parasites. Parasitol. Res. (2011). https://doi.org/10.1007/s00436-010-2115-4

109. Prasad, K.S., Pathak, D., Patel, A., Dalwadi, P., Prasad, R., Patel, P., Selvaraj, K.: Biogenic synthesis of silver nanoparticles using Nicotiana tabacum leaf extract and study of their antibacterial effect. Afr. J. Biotechnol. (2011). https://doi.org/10.5897/AJB11.394

110. Rout, Y.Y., Behera, S., Ojha, A.K., Nayak, P.L.: Green synthesis of silver nanoparticles using Ocimum sanctum (Tulashi) and study of their antibacterial and antifungal activities. J. Microbiol. Antimicrob. (2012). https://doi.org/10.1007/s11356-012-3269-z

111. Ajitha, B., Reddy, Y.A.K., Reddy, P.S.: Green synthesis and characterization of silver nanoparticles using lantana camara leaf extract. Mater. Sci. Eng. C. (2015). https://doi.org/10.1016/j.msec.2015.01.035

112. Moodley, J.S., Krishna, S.B.N., Pillay, K., Govender, P.: Green synthesis of silver nanoparticles from Moringa oleifera leaf extracts and its antimicrobial potential. Adv. Nat. Sci.-Nanosci. (2018). https://doi.org/10.1088/2043-6254/aabb2
128. Jegadeeswaran, P., Shivaraj, R., Venkatesh, R.: Green synthesis of silver nanoparticles from extract of Padina tetrastromatica leaf. Dig. J. Nanomater. Biostruct. 7, 991–998 (2012)

129. Mollick, M.M.R., Bhowmick, B., Maity, D., Mondal, D., Bain, M.K., Bankura, K., Chattopadhyay, D.: Green synthesis of silver nanoparticles using Paederia foetida L. leaf extract and assessment of their antimicrobial activities. Int. J. Green Nanotechnol. (2012). https://doi.org/10.1080/19430892.2012.706103

130. Ravichandran, V., Vasanthi, S., Shalini, S., Shah, S.A.A., Tripathy, M., Paliwal, N.: Green synthesis, characterization, antibacterial, antioxidant and photocatalytic activity of Parkia speciosa leaves extract mediated silver nanoparticles. Results. Phys. (2019). https://doi.org/10.1016/j.rinp.2019.102565

131. Parashar, V., Parashar, R., Sharma, B., Pandey, A.C.: Parthenium leaf extract mediated synthesis of silver nanoparticles: a novel approach towards weed utilization. Dig. J. Nanomater. Biostruct. 4, 45–50 (2009)

132. Anandalakshmi, K., Venugobal, J., Ramasamy, V.: Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Appl. Nanosci. (2016). https://doi.org/10.1007/s13204-015-0449-z

133. Emeka, E.E., Ojiefoh, O.C., Aleruchi, C., Hassan, L.A., Christianna, O.M., Rebecca, M., Temitope, A.E.: Evaluation of antibacterial activities of silver nanoparticles green-synthesized using pineapple leaf (Ananas comosus). Micron (2014). https://doi.org/10.1016/j.micron.2013.09.003

134. Paulkumar, K., Gnajajobitha, G., Vanaja, M., Rajeshkumar, S., Malar Kodi, C., Pandian, K., Annadurai, G.: Piper nigrum leaf and stem assisted green synthesis of silver nanoparticles and evaluation of its antibacterial activity against agricultural plant pathogens. Sci. World. J. (2014). https://doi.org/10.1155/2014/829894

135. Kumar, B., Smita, K., Cumbal, L., Debut, A.: Synthesis of silver nanoparticles using Sacha inchi (Placenienia volabilis L.) leaf extracts. Saudi J. Biol. Sci. (2014). https://doi.org/10.1016/j.sjbs.2014.07.004

136. Habibi, B., Hadilou, H., Mollaie, S., Yazdinezhad, A.: Green synthesis of silver nanoparticles using the aqueous extract of Prangos ferdalacea leaves. Int. J. Nano Dimens. (2017). https://doi.org/10.22034/ijn.2017.24954

137. Saravanakumar, A., Peng, M.M., Ganesh, M., Jayaprakash, J., Mohankumar, M., Jang, H.T.: Low-cost and eco-friendly green synthesis of silver nanoparticles using Prunus japonica (Rosaceae) leaf extract and their antibacterial, antioxidant properties. Artif. Cells. Nanomed. Biotechnol. (2017). https://doi.org/10.1080/19430892.2016.1203795

138. Kumar, R., Ghoshal, G., Jain, A., Goyal, M.: Rapid green synthesis of silver nanoparticles (AgNPs) using Prunus persica plants extract: exploring its antimicrobial and catalytic activities. J Nanomol Nanotechnol. (2017). https://doi.org/10.4172/2157-7439.1000452

139. Umashankari, J., Inbakandan, D., Ajithkumar, T.T., Balasubramanian, T.: Mangrove protein, Rhizophora mucronata (Lamk, 1804) mediated one pot green synthesis of silver nanoparticles and its antibacterial activity against aquatic pathogens. Aquat. Biosyst. (2012). https://doi.org/10.1186/2046-9063-8-11

140. Dubey, S.P., Lathineni, M., Sillanpää, M.: Green synthesis and characterizations of silver and gold nanoparticles using leaf extract of Rosa rugosa. Colloids Surf. A Physicochem. Eng. Asp. (2010). https://doi.org/10.1016/j.colsurfa.2010.04.023

141. Ghaedi, M., Yousefnejad, M., Safarpoor, M., Khafri, H.Z., Purkait, M.K.: Rosmarinus officinalis leaf extract mediated green synthesis of silver nanoparticles and investigation of its antimicrobial properties. J Ind Eng Chem. (2015). https://doi.org/10.1016/j.jiec.2015.06.020

142. Pirtiraghat, S., Ghannadnia, M., Baghshahi, S.: Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. J Nanomaterials. Chem. (2019). https://doi.org/10.1007/s40097-018-0291-4

143. Verma, D.K., Hasan, S.H., Banik, R.M.: Photo-catalyzed and phyto-mediated rapid green synthesis of silver nanoparticles using herbal extract of Salvinia molesta and its antimicrobial efficacy. J. Photochem. Photobiol. B. (2016). https://doi.org/10.1016/j.jphotobiol.2015.12.008

144. Perugu, S., Nagati, V., Bhamoori, M.: Green synthesis of silver nanoparticles using leaf extract of medicinally potent plant Saraca indica; a novel study. Appl. Nanosci. (2016). https://doi.org/10.1007/s13204-015-0456-7

145. Donda, M.R., Kudle, K.R., Alwala, J., Miryala, A., Sreedhar, B., Rudra, M.P.: Synthesis of silver nanoparticles using extracts of Securinega leucopryrus and evaluation of its antibacterial activity. Int. J. Curr. Sci. 7, 1–8 (2013)

146. Das, J., Das, M.P., Velusamy, P.: Seshania grandiflora leaf extract mediated green synthesis of antibacterial silver nanoparticles against selected human pathogens. Spectrochim. Acta A Mol. Biomol. (2013). https://doi.org/10.1016/j.saa.2012.11.075

147. Veerakumar, K., Govindarajan, M., Rajeswary, M.: Green synthesis of silver nanoparticles using Sida acuta (Malvaceae) leaf extract against Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti (Diptera: Culicidae). Parasitol. Res. (2013). https://doi.org/10.1007/s00436-013-3598-6

148. Ahmed, M.J., Murtaza, G., Mehmood, A., Bhatti, T.M.: Green synthesis of silver nanoparticles using leaves extract of Skimmia laurina: characterization and antibacterial activity. Mater. Lett. (2015). https://doi.org/10.1016/j.matlet.2015.03.143

149. Kagithoju, S., Godishala, V., Nanna, R.S.: Eco-friendly and green synthesis of silver nanoparticles using leaf extract of Styrchnos potatorum Linn. F. and their bactericidal activities. 3 Biotech (2015). https://doi.org/10.1007/s13205-014-0272-3

150. Kajani, A.A., Bordbar, A.K., Esfahani, S.H.Z., Khosropour, A.R., Razmjou, A.: Green synthesis of anisotropic silver nanoparticles with potant anticancer activity using Taxus baccata extract. RSC Adv. (2014). https://doi.org/10.1039/c4ra08758e

151. Sun, Q., Cai, X., Li, J., Zheng, M., Chen, Z., Yu, C.P.: Green synthesis of silver nanoparticles using tea leaf extract and evaluation of their stability and antibacterial activity. Colloids Surf. A Physicochem. Eng. Asp. (2014). https://doi.org/10.1016/j.colsurf.a.2013.12.065

152. Raj, S., Singh, H., Trivedi, R., Soni, V.: Biogenic synthesis of AgNPs employing Terminalia arjuna leaf extract and its efficacy towards catalytic degradation of organic dyes. Sci. Rep. (2020). https://doi.org/10.1038/s41598-020-66851-8

153. Ahmed, S., Ikrum, S.: Silver nanoparticles: one pot green synthesis using Terminalia arjuna extract for biological application. J. Nanomol. Nanotechnol. (2015). https://doi.org/10.4172/2157-7439.1000309

154. Espenti, C.S., Rao, K.K., Rao, K.M.: Bio-synthesis and characterization of silver nanoparticles using Terminalia chebula leaf extract and evaluation of its antimicrobial potential. Mater. Lett. (2016). https://doi.org/10.1016/j.matlet.2016.03.106

155. Femi-Adepoju, A.G., Dada, A.O., Otun, K.O., Adepoju, A.O., Fatoba, O.P.: Green synthesis of silver nanoparticles using terrestrial fern (Gleichenia Pectinata (Willd.)). C. Presl.: characterization and antimicrobial studies. Heliyon (2019). https://doi.org/10.1016/j.heliyon.2019.e01543

156. Veisi, H., Azizi, S., Mohammadi, P.: Green synthesis of the silver nanoparticles mediated by Thymbra spicata extract and its application as a heterogeneous and recyclable nanocatalyst for catalytic reduction of a variety of dyes in water. J. Clean. Prod. (2018). https://doi.org/10.1016/j.jclepro.2017.09.265
157. Zargar, M., Hamid, A.A., Bakar, F.A., Shamsudin, M.N., Shamel, K., Jahanshiri, F., Farahani, F.: Green synthesis of the silver nanoparticles mediated by Thymbra spectabilis extract and its application as a heterogeneous and recyclable nanocatalyst for catalytic reduction of a variety of dyes in water. Molecules (2011). https://doi.org/10.3390/molecules16086667

158. Mochochoke, T., Oluwafemi, O.S., Jumbam, D.N., Songca, P.: Antioxidant, antibacterial and cytotoxic potential of silver nanoparticles synthesized using terpenes rich extract of Lantana camara L leaves. Carbohydr. Polym. (2013). https://doi.org/10.1016/j.carbpol.2013.05.038

159. Kouhbanani, M.A.J., Beheshtkhoo, N., Fotoohiardakani, G., Hosseini-Nave, H., Taghzadeh, S., Amani, A.M.: A biogenic approach for green synthesis of silver nanoparticles using extract of Foeniculum vulgare and its activity against Staphylococcus aureus and Escherichia coli. J. Environ. Treat. 7(1), 142–149 (2019)

160. Sadeghi, B., Gholamhosseinpoor, F.: A study on the stability and green synthesis of silver nanoparticles using Ziziphus tenuior (Zt) extract at room temperature. Spectrochim. Acta A Mol. Biol. Mol. Spectrosc. (2015). https://doi.org/10.1016/j.saa.2014.06.046

161. Tarh, J.E., Iroegbu, C.U.: In-vitro anti-bacterial activity of extracts of euphorbia abyssinica (desert candle) stem bark and latex. J. Adv Microbiol. (2017). https://doi.org/10.9734/JAMB/2017/32277

162. Kawo, A., Mustapha, A., Abdullahi, B., Rogo, L., Gaiya, Z., Kumurya, A.: Phytochemical properties and antibacterial activities of the leaf and latex extracts of calotrops procerac. Bayero J. Pure Appl. Sci. 3, 34–40 (2009)

163. Aliba, M.O., Ndukwe, I.G., Ibrahim, H.: Isolation and characterization of Bi-sitosterol from methanol extracts of the stem bark of large-leaved rock fig (Ficus abutilifolia Miq). J. Appl. Sci. Environ. Manag. (2018). https://doi.org/10.4314/jasem.v22i10.19

164. Atawodi, S.E., Atawodi, J.C., Idakwo, G.A., Pfundstein, B., Haubner, R., Wurtele, G., Owen, R.W.: Evaluation of the polyphenol content and antioxidant properties of methanol extracts of the leaves, stem, and root barks of morigina oleifera lam. J. Med. Food (2010). https://doi.org/10.1089/jmf.2009.0057

165. Itoandon, E.E., Olatope, S.O.A., Shobowale, O.O.: Phytochemical and antimicrobial evaluation of aqueous and organic extracts of calotrops procerac ait leaf and latex. Niger. J. Food 30(2), 51–56 (2012)

166. Minh, T.N., Xuan, T.D., Tran, H.D., Van, T.M., Andriana, Y., Khanh, T.D., Ahmad, A.: Isolation and purification of bioactive compounds from the stem bark of jatropha podagrica. Molecules (2019). https://doi.org/10.3390/molecules24050889

167. Mooy, M., Gomba, M., Nharingo, T.: Afzelia quanzensis bark extract for green synthesis of silver nanoparticles and study of their antibacterial activity. Int. J. Ind. Chem. (2015). https://doi.org/10.1007/s40090-015-0055-7

168. Pattanayak, S., Mollick, M.M.R., Maity, D., Chakraborty, S., Dash, S.K., Chattopadhyay, S., Chakraborty, M.: Butea monosperma bark extract mediated green synthesis of silver nanoparticles: characterization and biomedical applications. J. Saudi Chem. Soc. (2017). https://doi.org/10.1016/j.jsc.2015.11.004

169. Kora, A.J., Sashidhar, R.B., Arunachalam, J.: Gum kondagogu (Cochlospermum gossypium): a template for the green synthesis and stabilization of silver nanoparticles with antibacterial application. Carbohydr. Polym. (2010). https://doi.org/10.1016/j.carbpol.2010.05.034

170. De Matos, R.A., da Silva Cordeiro, T., Samad, R.E., Vieira, N.D.J., Jr., Courrol, L.C.: Green synthesis of stable silver nanoparticles using Euphorbia milii latex. Colloids Surf. A Physicochem. Eng. Asp. (2011). https://doi.org/10.1016/j.colsurfa.2011.08.040

171. Kalaiselvi, D., Mohankumar, A., Shamugam, G., Nivitha, S., Sundararaj, P.: Green synthesis of silver nanoparticles using latex extract of Euphorbia tirucalli: a novel approach for the management of root knot nematode Meloidogyne incognita. Crop Prot. (2019). https://doi.org/10.1016/j.cropro.2018.11.020

172. Nayak, D., Ashe, S., Rauta, P.R., Kumari, M., Nayak, B.: Bark extract mediated green synthesis of silver nanoparticles: evaluation of antimicrobial activity and antiinflammatory response against osteosarcoma. Mater. Sci. Eng. (2016). https://doi.org/10.1016/j.msec.2015.08.022

173. Alamed, M., Khan, M.M., Siddiqui, M.K.J., AlSalhi, M.S., Alroayan, S.A.: Green synthesis, characterization and evaluation of biocompatibility of silver nanoparticles. Phys. E Low Dimens. Syst. Nanostruct. (2011). https://doi.org/10.1016/j.physel.2011.02.014

174. Medina-Ramirez, I., Bashir, S., Luo, Z., Liu, J.L.: Green synthesis and characterization of polymer-stabilized silver nanoparticles. Colloids Surf. B. (2009). https://doi.org/10.1016/j.colsurfb.2009.05.015

175. Kora, A.J., Beedu, S.R., Jayaraman, A.: Size-controlled green synthesis of silver nanoparticles mediated by gum ghatti (Anogeissus latifolia) and its biological activity. Org. Med. Chem. Lett. (2012). https://doi.org/10.1016/j.orgchemlett.2011.2191-2858-2-17

176. Guidelli, E.J., Ramos, A.P., Zaniquelli, M.E.D., Baffa, O.: Green synthesis of colloidal silver nanoparticles using natural rubber latex extracted from Hevea brasiliensis. Spectrochim. Acta A Mol. Biol. Mol. Spectrosc. (2011). https://doi.org/10.1016/j.saa.2011.07.024

177. Bar, H., Bhui, D.K., Sahoo, G.P., Sarkar, P., De, S.P., Misra, A.: Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids Surf. A Physicochem. Eng. Asp. (2009). https://doi.org/10.1016/j.colsurfa.2009.02.008

178. Sreekanth, T.V.M., Jung, M.J., Eom, I.Y.: Green synthesis of silver nanoparticles, decorated on graphene oxide nanosheets and their catalytic activity. Appl. Surf. Sci. (2016). https://doi.org/10.1016/j.apsusc.2015.11.146

179. Iravani, S., Zolfaghari, B.: Green synthesis of silver nanoparticles using Pinus eldarica bark extract. BioMed. Res. Int. (2013). https://doi.org/10.1155/2013/639725

180. Arya, G., Kumar, R.M., Gupta, N., Kumar, A., Chandra, R., Nimesh, S.: Green synthesis of silver nanoparticles using Prosopis juliflora bark extract: reaction optimization, antimicrobial and catalytic activities. Artif. Cells Nanomed. Biotechnol. (2018). https://doi.org/10.1080/21691401.2017.1354302

181. Jadhav, K., Dhamache, D., Dalvi, B., Patil, M.: Green synthesis of silver nanoparticles using Salacia chinensis: characterization and its antibacterial activity. Part. Sci. Technol. (2015). https://doi.org/10.1007/s11228-014-003628

182. Miri, A., Dorani, N., Darroudi, M., Sarani, M.: Green synthesis of silver nanoparticles using Salvadora persica L. and its antibacterial activity. Cell. Mol. Biol. (2016). https://doi.org/10.1017/cmb.2016.62.9.8

183. Aladpoosh, R., Montazer, M., Samadi, N.: In situ green synthesis of silver nanoparticles on cotton fabric using Seilditzia rosmarinus ashes. Cellulose (2014). https://doi.org/10.1007/s10570-014-0369-1

184. Edison, T.N.J.I., Lee, Y.R., Sethuraman, M.G.: Green synthesis of silver nanoparticles using Terminalia cuneata and its catalytic action in reduction of direct yellow-12 dye. Spectrochim. Acta A Mol. Biol. Mol. Spectrosc. (2016). https://doi.org/10.1016/j.saa.2016.02.044

185. Rupiasih, N.N., Aher, A., Gosavi, S., Vidyasagar, P.B.: Green synthesis of silver nanoparticles using latex extract of Thevetia peruviana: a novel approach towards poisonous plant utilization. J. Phys. Conf. Ser. 423, 12–032 (2013). https://doi.org/10.1088/1742-6596/423/1/012032
186. Barlos, L., Carvalho, A.M., Morais, J.S., Ferreira, I.C.: Straw-
berries, blackthorn and rose fruits: detailed characterisation in nu-
trients and phytochemicals with antioxidant properties. Food
Chem. (2010). https://doi.org/10.1016/j.foodchem.2009.10.016

187. Fiorentino, A., D’Abrosca, B., Pacifico, S., Mastellone, C.,
Scognamiglio, M., Monaco, P.: Identification and assessment of an-
antioxidant capacity of phytochemicals from kiwi fruits. J. Agric.
Food Chem. (2009). https://doi.org/10.1021/jf900210z

188. Kubola, J., Siriamornpun, S.: Phytochemicals and antioxidant ac-
divity of different fruit fractions (peel, pulp, aril and seed) of Thai
gac (Momordica cochinchinesis Spreng). Food Chem. (2011).
https://doi.org/10.1016/j.foodchem.2011.01.115

189. Bhandary, S.K., Kumari, S., Bhat, V.S., Sharmila, K.P., Bekal,
Ali, Z.A., Yahya, R., Sekaran, S.D., Puteh, R.: Green synthesis
of Thai gac (Momordica cochinchinesis Spreng). Food Chem.
(2012). https://doi.org/10.1016/j.foodchem.2011.01.115

190. Nayagam, V., Gabriel, M., Palanisamy, K.: Green synthesis
of silver nanoparticles by using stem derived callus extract of
Euphorbia polyacantha. Biomater. Sci. (2013). https://doi.org/10.1039/C2BM27108A

191. David, L., Moldovan, J., Stergianides, A., Per/&iu, R., Stergianides,
Parna, M.: preliminary phytochemical screening of various extracts
of punica granatum peel: whole fruit and seeds. J Health Sci. 2,
35–38 (2012)

192. Li, Z.A., Yahya, R., Sekaran, S.D., Puthe, R.: Green synthesis
of silver nanoparticles using apple extract and its antibacterial
properties. Adv. Mater. Sci. Eng. (2016). https://doi.org/10.1155/
2016/4102916

193. Thal świad, G., Murthy, C.H.: Green synthesis of gold
and silver nanoparticles using Averrhoa bilimbi fruit extract. J.
Nanotechnol. (2015). https://doi.org/10.1155/2015/3906592

194. Ibrahim, H.M.: Green synthesis and characterization of silver
nanoparticles using banana peel extract and their antimicrobial ac-
tivity against representative microorganisms. J. Radiat. Res.
Appl. Sci. (2015). https://doi.org/10.1016/j.jrras.2015.01.007

195. Sathyajavani, K., Ramanathan, T., Gurudeeban, S.: Green synthesis
of silver nanoparticles by using stem derived callus extract of
bitter apple (Citrus colocynthis). Dig. J. Nanomater. Biostuct.
63, 1019–1024 (2011)

196. Nottriawan, D., Angasa, E., Suharto, T.E., Hendri, J., Nishina,
Y.: Green synthesis of silver nanoparticles using aqueous rinds
extract of Brucia javanica (L.): Murr at ambient temperature.
Mater. Lett. (2013). https://doi.org/10.1016/j.matlet.2011.01.114

197. Kumar, B., Rarkov, Y., Czarkowski, L., Debut, A.: Capuli
berry-tree, blackthorn and rose fruits: detailed characterisation in
antioxidant capacity of phytochemicals from kiwi fruits. J. Agric.
Food Chem. (2013). https://doi.org/10.1021/jf303168w

198. Veerakumar, K., Govindarajan, M., Rajeswary, M., Muthuku-
maran, U.: Low-cost and eco-friendly green synthesis of silver
nanoparticles using Feronia elephantum (Rutaceae) against
Culex quinquefasciatus. Anopheles stephensi, and Aedes aegypti
(Diptera: Culicidae). J Parasitol Res. (2014). https://doi.org/10.
1007/s00436-014-3823-3

199. Saha, J., Begum, A., Mukherjee, A., Kumar, S.: A novel green
synthesis of silver nanoparticles and their catalytic action in
reduction of Methylene Blue dye. Sustain. Environ. Res. (2017).
https://doi.org/10.1016/j.sserj.2017.04.003

200. Chowdhury, I.H., Ghosh, S., Roy, N., Naskar, M.K.: Green
synthesis of water-dispersible silver nanoparticles at room tem-
perture using green carambola (star fruit) extract. J. Solgel.
Sci Technol. (2015). https://doi.org/10.1007/s10971-014-3515-1

201. Ashishie, P.B., Anyama, C.A., Ayi, A.A., Oseghale, C.O., Ades-
tuji, E.T., Labulo, A.H.: Green synthesis of silver monometallic
and copper-silver bimetallic nanoparticles using Kigelia africana
fruit extract and evaluation of their antimicrobial activities. Int.
J. Phys. Sci. (2018). https://doi.org/10.5897/IJPS2017.4689

202. Tagag, C.K., Dugasani, S.R., Aiyer, R., Park, S., Kulkarni, A.,
Sabhawal, S.: Green synthesis of silver nanoparticles and their
application for the development of optical fiber based hydrogen
peroxide sensor. Sens. Actuators B Chem. (2013). https://doi.
org/10.1016/j.snb.2013.03.106

203. Roy, K., Sarkar, C.K., Ghosh, C.K.: Green synthesis of silver
nanoparticles using fruit extract of Malus domestica and study of
its antimicrobial activity. Dig. J. Nanomater. Biostuct. 93,
1137–1147 (2014)

204. Heydari, R., Rashidipour, M.: Green synthesis of silver nanopar-
ticles using extract of oak fruit hull (Jaft): synthesis and in vitro
cytotoxic effect on MCF-7 cells. Int. J. Breast Cancer (2015).
https://doi.org/10.1155/2015/846743

205. Kahrilas, G.A., Wally, L.M., Fredrick, S.J., Hiskey, M., Prieto,
A.L., Owens, J.E.: Microwave-assisted green synthesis of silver
nanoparticles using orange peel extract. ACS Sustain. Chem.
Eng. 2 (2014). https://doi.org/10.1021/sc4003664

206. Ahmad, N., Sharma, S., Rai, R.: Rapid green synthesis of silver
and gold nanoparticles using peels of Punica granatum. Adv.
Mater. Lett. (2012). https://doi.org/10.5185/amlett.2012.5357

207. Velumurugan, P., Lee, S.M., Iydrose, M., Lee, K.J., Oh, B.T.:
Pine cone-mediated green synthesis of silver nanoparticles and
their antibacterial activity against agricultural pathogens.
Appl. Microbiol. Biotechnol. (2013). https://doi.org/10.
1007/s00253-012-3892-8

208. Amin, M., Anwar, F., Janjua, M.R.S.A., Iqbal, M.A., Rashid, U.:
Green synthesis of silver nanoparticles through reduction with
solanum xanthocarpum l berry extract: characterization, antimic-
robial and urease inhibitory activities against helicobacter pylori.
Int. J. Mol. Sci. (2012). https://doi.org/10.3390/ijms13089923

209. Jayaprakash, N., Vijaya, J.J., Kaviyarasu, K., Kombaiah, K., Ken-
th, R.S., Reddy, P.S.: Green synthesis of silver nanoparticles using
Terminalia chebula (L.) Merr at ambient temperature. J. Photochem.
Photobiol. (2014). https://doi.org/10.1016/j.jiec.2013.09.005

210. Singh, S., Saikia, J.P., Buragohain, A.K.: A novel ‘green’ synthesis
of colloidal silver nanoparticles (SNP) using Dillenia indica fruit
extract. Colloids Surf. B. (2013). https://doi.org/10.1016/j.colsu
rb.2012.08.012

211. Ramesh, P.S., Kokila, T., Geetha, D.: Plant mediated green syn-
thesis and antibacterial activity of silver nanoparticles using
Emblica officinalis fruit extract. Spectrochim. Acta A Mol.
Biomol. Spectrosc. (2015). https://doi.org/10.1016/j.saa.2015.
01.062

212. David, L., Moldovan, B., Vulcu, A., Olenic, L., Perde-Schrepler,
M., Fischer-Fodor, E., Filip, G.A.: Green synthesis, characteriza-
tion and anti-inflammatory activity of silver nanoparticles using
European black elderberry fruits extract. Colloids Surf. B (2014).
https://doi.org/10.1016/j.colsurfb.2014.08.018

213. Veerakumar, K., Govindarajan, M., Rajeswary, M., Muthuku-
maran, U.: Low-cost and eco-friendly green synthesis of silver
nanoparticles using Feronia elephantum (Rutaceae) against
Culex quinquefasciatus. Anopheles stephensi, and Aedes aegypti
(Diptera: Culicidae). J Parasitol Res. (2014). https://doi.org/10.
1007/s00436-014-3823-3

214. Kumar, K.M., Sinha, M., Mandal, B.K., Ghosh, A.R., Kumar,
K.S., Reddy, P.S.: Green synthesis of silver nanoparticles using
Terminalia chebula extract at room temperature and their anti-
microbial studies. Spectrochim. Acta A Mol. Biomol. Spectrosc.
(2012). https://doi.org/10.1016/j.saa.2012.02.001
246. Shaikh, R., Zainuddin Syed, I., Bhende, P.: Green synthesis of silver nanoparticles using root extracts of *Cassia tora* L. and its antimicrobial activities. Asian J. Green Chem. (2019). https://doi.org/10.22034/ajgc.2018.132083.1073

247. Wang, D., Markus, J., Wang, C., Kim, Y.J., Mathiyalagan, R., Aceituno, V.C., Yang, D.C.: Green synthesis of gold and silver nanoparticles using aqueous extract of *Cibotium barometz* root. Artif. Cells Nanomed. Biotechnol. (2017). https://doi.org/10.1080/21691401.2016.1260580

248. Shameli, K., Bin Ahmad, M., Jaffar Al-Mulla, E.A., Ibrahim, N.A., Shabanazdeh, P., Rustaiyai, A., Zidan, M.: Green biosynthesis of silver nanoparticles using callicarpa maingayi stem bark extraction. Molecules (2012). https://doi.org/10.3390/molecules17078506

249. Suresh, G., Gunasekar, P.H., Kokila, D., Prabhuh, D., Dinesh, D., Ravichandran, N., Siva, G.V.: Green synthesis of silver nanoparticles using *Delphinium denudatum* root extract exhibits its antibacterial and mosquito larvicidal activities. Spectrochim. Acta A Mol. Biomol. Spectrosc. 127, 61–66 (2014). https://doi.org/10.1016/j.saa.2014.02.030

250. Rao, N.H., Lakshmidevi, N., Pammi, S.V.N., Kollu, P., Ganapathy, S., Lakshmi, P.: Green synthesis of silver nanoparticles using methanolic root extracts of * Diospyros paniculata* and their antimicrobial activities. Mater. Sci. Eng. C (2016). https://doi.org/10.1016/j.msec.2016.01.072

251. Pethakamsetty, L., Kotlhapenta, K., Nammi, H.R., Rastogi, L., Arunachalam, J.: Sunlight based irradiation strategy for rapid green synthesis of highly stable silver nanoparticles using aqueous extract and its antibacterial activity. J. Mater. Chem. Phys. (2011). https://doi.org/10.1016/j.matchemphys.2011.04.068

252. Von White, G., Kerscher, P., Brown, R.M., Morella, J.D., McAllister, W., Dean, D., Kitchens, C.L.: Green synthesis of robust, biocompatible silver nanoparticles using garlic extract. J. Nanomater. (2012). https://doi.org/10.1155/2012/730746

253. Singh, J., Dhalwai, A.S.: Novel green synthesis and characterization of the antioxidant activity of silver nanoparticles prepared from neptea leucophylla root extract. Anal. Lett. (2014). https://doi.org/10.1080/00032719.2018.1454936

254. Mondal, N.K., Chowdhury, A., Dey, U., Mukhopadhy, P., Chatterjee, S., Das, K., Datta, J.K.: Green synthesis of silver nanoparticles and its application for mosquito control. Asian Pac. J. Trop. Dis. (2014). https://doi.org/10.1016/S2222-1808/1460440-0

255. Bhattacharyya, S.S., Das, J., Das, S., Samadder, A., Das, D., De, A., Khuda-Bhuksh, A.R.: Rapid green synthesis of silver nanoparticles from silver nitrate by a homeopathic mother tincture phytolacca decandra. Chin. J. Int. Med. (2012). https://doi.org/10.7376/cjim20120510

256. Arkiyaraj, S., Vincent, S., Saravanan, M., Lee, Y., Oh, Y.K., Kim, K.H.: Green synthesis of silver nanoparticles using *Rheum palmatum* root extract and their antibacterial activity against *Staphylococcus aureus* and *Pseudomonas aeruginosa*. Artif. Cells Nanomed. Biotechnol. (2017). https://doi.org/10.3109/21691401.2016.1160403

257. Vijaya, I.J., Jayaprakash, N., Kombiaha, K., Kaviyarasu, K., Kennedy, L.J., Ramalingam, R.J., Maaza, M.: Bioreduction potentials of dried root of *Zingiber officinale* for a simple green synthesis of silver nanoparticles: antibacterial studies. J. Photochem. Photobiol. B. (2017). https://doi.org/10.1016/j.jphotobiol.2017.10.007

258. Hazarika, S.N., Gupta, K., Shamin, K.N.A.M., Bhardwaj, P., Boruah, R., Yadav, K.K., Namsa, N.D.: One-pot facile green synthesis of biocidal silver nanoparticles. Mater. Res. Express. (2016). https://doi.org/10.1088/2053-5073/3/7/075401

259. Velmurugan, P., Anbalagan, K., Manosathiyadevan, M., Lee, K.J., Cho, M., Lee, S.M., Oh, B.T.: Green synthesis of silver and gold nanoparticles using *Zingiber officinale* root extract and antibacterial activity of silver nanoparticles against food pathogens. Bioprocess. Biosyst. Eng. (2014). https://doi.org/10.1007/s00449-014-1169-6

260. Tabiri, B., Agbenohevi, J.K., Wireko-Manu, F.D., Ompouma, E.I.: Watermelon seeds as food: Nutrient composition, phytochemicals and antioxidant activity. Int. J. Nutr. Food Sci. (2016). https://doi.org/10.11648/j.ijnfs.20160502.18

261. Jagtap, U.B., Bapat, V.A.: Green synthesis of silver nanoparticles using *Artocarpus heterophyllus* Lam seed extract and its antibacterial activity. Ind. Crops. Prod. (2013). https://doi.org/10.1016/j.indcrop.2013.01.019

262. Pandit, R.: Green synthesis of silver nanoparticles from seed extract of *Brassica nigra* and its antibacterial activity. Nusantara Biosci. (2015). https://doi.org/10.13057/nusbiosci/n070103

263. Dhand, V., Soumya, L., Bharadwaj, S., Chakra, S., Bhatt, D., Sreedhar, B.L.: Green synthesis of silver nanoparticles using *Coffea arabica* seed extract and its antibacterial activity. Mater. Sci. Eng. C (2016). https://doi.org/10.1016/j.msec.2015.08.018

264. Kouhbani, M.A.J., Beheshkti, S., Nasirmoghadas, P., Yazdanpanah, S., Zomorodian, B., Changizadeh, S., Amani, A.M.: Green synthesis of spherical silver nanoparticles using *Drosophila anethifolia* aqueous extract and its antibacterial activity. J. Environ. Treat. Tech., 73, 61–466 (2019)

265. Dhayalan, M., Denison, M.I.J., Krishnan, K.: In vitro antioxidant, antimicrobial, cytotoxic potential of gold and silver nanoparticles prepared using *Embelia ribes*. Nat. Prod. Res. (2017). https://doi.org/10.1080/14786419.2016.1166499

266. Ping, Y., Zhang, J., Xing, T., Chen, G., Tao, R., Choo, K.H.: Green synthesis of silver nanoparticles using grape seed extract and their application for reductive catalysis of direct orange 26. J Ind Eng Chem. (2018). https://doi.org/10.1016/j.jiec.2017.09.009

267. Bar, H., Bhui, D.K., Sahoo, G.P., Sarkar, P., Pyne, S., Misra, A.: Green synthesis of silver nanoparticles using seed extract of *Jatropha curcas*. Colloids Surf. A Physicochem. Eng. Asp. (2009). https://doi.org/https://doi.org/10.1016/j.colsurfa.2009.07.021

268. Vidhu, V.K., Aromal, S.A., Philip, D.: Green synthesis of silver nanoparticles using *Macrotyloma uniflorum*. Spectrochim. Acta A Mol. Biomol. Spectrosc. (2011). https://doi.org/10.1016/j.saa.2011.08.051

269. Basu, S., Maji, P., Ganguly, J.: Rapid green synthesis of silver nanoparticles by aqueous extract of seeds of nycanthes arbor-tristis. J. Appl. Nanosci. (2016). https://doi.org/10.1007/s13204-015-0407-9

270. Sadeghi, B., Rostami, A., Momeni, S.S.: Facile green synthesis of silver nanoparticles using seed aqueous extract of *Pistacia atlantica* and its antibacterial activity. Spectrochim. Acta A Mol. Biomol. Spectrosc. (2015). https://doi.org/10.1016/j.saa.2014.04.078

271. Vijayaraj, R., Kumar, K.N., Mani, P., Senthil, J., Kumar, G.D., Jayaseelan, T.: Green synthesis of silver nanoparticles from ethanolic seed extract of *Acuranthes aspera* (Linn) and its anti-inflammatory activities. Int J Pharm Ther. 7, 42–48 (2016)

272. Khattami, M., Nejad, M.S., Salari, S., Almani, P.G.N.: Plant-mediated green synthesis of silver nanoparticles using *Trifolium resupinatum* seed exudate and their antifungal efficacy on *Neosporococcum parvum* and *Rhizoctonia solani*. IET Nanobiotechnol. (2016). https://doi.org/10.1049/iet-nbt.2015.0078
274. Rautela, A., Rani, J., Das, M.D.: Green synthesis of silver nanoparticles from Tectona grandis seeds extract: characterization and mechanism of antimicrobial action on different microorganisms. J. Anal. Sci. Technol. (2019). https://doi.org/10.1186/s40543-018-0163-z

275. Khatami, M., Poursaeed, S., Khatami, M., Hamidi, H., Zaeifi, M., Soltani, L.: Synthesis of silver nanoparticles using seed exudates of Sinapis arvensis as a novel bioresource, and evaluation of their antifungal activity bioassay. Bioprocess. (2015). https://doi.org/10.1186/s40463-015-0043-y

276. Das, R.K., Pachapur, V.L., Lonappan, L., Naghdi, M., Pulicharla, R., Maiti, S., Brar, S.K.: Biological synthesis of metal nanoparticles: plants, animals and microbial aspects. Nanotechn. Environ. Eng. (2017). https://doi.org/10.1007/s41204-017-0029-4

277. Li, Z., Wang, L., Chen, S., Feng, C., Chen, S., Yin, N., Xu, Y.: Facilely green synthesis of silver nanoparticles into bacterial cellulose. Cellulose (2015). https://doi.org/10.1007/s10570-014-0487-9

278. Otari, S.V., Patil, R.M., Nadaf, N.H., Ghosh, S.J., Pawar, S.H.: Green biosynthesis of silver nanoparticles from an actinobacteria Rhodococcus sp. Mater. Lett. (2012). https://doi.org/10.1016/j.matlet.2011.12.109

279. Singh, G., Babel, P.K., Shahi, S.K., Sinha, R.P., Tyagi, M.B., Kumar, A.: Green synthesis of silver nanoparticles using cell extracts of Anabaena dolium and screening of its antibacterial and antitumor activity. J. Microbiol. Biotechnon. (2014). https://doi.org/10.4014/jmb.1405.05003

280. Wei, X., Luo, M., Li, W., Yang, L., Liang, X., Xu, L., Liu, H.: Synthesis of silver nanoparticles by solar irradiation of cell-free Bacillus amyloliquefaeiciens extracts and AgNO3. Biorean. Technol. (2012). https://doi.org/10.1016/j.fibiotec.2011.09.118

281. Wang, C., Kim, Y.J., Singh, P., Mathiyalagan, R., Jin, Y., Yang, D.C.: Green synthesis of silver nanoparticles by Bacillus methylothrophicus, and their antimicrobial activity. Artif. Cells Nanomed. Biotechnol. (2016). https://doi.org/10.3109/21691401.2015.1018580

282. Lateef, A., Adelere, I.A., Gueguim-Kana, E.B., Asafa, T.B., Beukses, L.S.: Green synthesis of silver nanoparticles using keratinase obtained from a strain of Bacillus safensis LAU 13. Int. Nano Lett. (2015). https://doi.org/10.1007/s40089-014-0133-4

283. Kokilavani, R., Karthik, C.: Comparative study on the biosynthesis and characterization of silver nanoparticles by E. coli using LB and M9 media and their antimicrobial application. Int. J. Curr. Res. Life Sci. 7, 2745–2749 (2018)

284. Gurunathan, S., Han, J.W., Dayem, A.A., Eppakayala, V., Park, J.H., Cho, S.G., Kim, J.H.: Green synthesis of anisotropic silver nanoparticles and their potential cytotoxicity in human breast cancer cells (MCF-7). J Ind Eng Chem. (2013). https://doi.org/10.1016/j.jiec.2013.01.029

285. Momin, B., Rahman, S., Jha, N., Annapure, U.S.: Valorization of mutant Bacillus licheniformis M09 supernatant for green synthesis of silver nanoparticles: photocatalytic dye degradation, antibacterial activity, and cytotoxicity. Bioprocess Biosyst. Eng. (2019). https://doi.org/10.1007/s00449-018-2057-2

286. Samadi, N., Golkar, D., Eslamifar, A., Jamalifar, H., Fazeli, M.R., Mohseni, F.A.: Intracellular biosynthesis of silver nanoparticles by an autochthonous strain of proteins mirabilis isolated from photographic waste. J. Biomed. Nanotechnol. (2009). https://doi.org/10.1166/jbn.2009.1029

287. Jain, D., Kothari, S.L.: Green synthesis of silver nanoparticles and their application in plant virus inhibition. J. Mycol. Plant. Pathol. 441, 21–24 (2014)

288. Otari, S.V., Patil, R.M., Nadaf, N.H., Ghosh, S.J., Pawar, S.H.: Green synthesis of silver nanoparticles by microorganism using organic pollutant: its antimicrobial and catalytic application. Environ. Sci. Pollut. Res. (2014). https://doi.org/10.3109/2169401.2015.1064937

289. Vala, A.K., Chudasama, B., Patel, R.J.: Green synthesis of silver nanoparticles using marine-derived fungus Aspergillus niger. Micro. Nano. Letters. (2012). https://doi.org/10.1007/mnl.2012.0403

290. Li, G., He, D., Qian, Y., Guan, B., Gao, S., Cui, Y., Wang, L.: Fungus-mediated green synthesis of silver nanoparticles using Aspergillus terreus. Int. J. Mol. Sci. (2012). https://doi.org/10.3390/ijms13010466

291. Banasiuk, R., Krychowiak, M., Tomaszewicz, W., Michalak, A., Chylewska, A., Krollicka, A.: Carnivorous plants used for green synthesis of silver nanoparticles with broad-spectrum antimicrobial activity. Arab. J. Chem. (2020). https://doi.org/10.1016/j.arabjc.2017.11.013

292. Ghaseminezhad, S.M., Hamedi, S., Shojaosadati, S.A.: Green synthesis of silver nanoparticles by a novel method: comparative study of their properties. Carbohydr. Polym. (2012). https://doi.org/10.1016/j.carbpol.2012.03.030

293. Ingle, A., Rai, M., Gade, A., Bawaskar, M.: Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles. J. Nanoparticle Res. (2009). https://doi.org/10.1007/s11051-008-9573-y

294. Chowdhury, S., Basu, A., Kundu, S.: Green synthesis of protein capped silver nanoparticles from phytopathogenic fungus macrophomina phaseolina (Tassi) Goid with antimicrobial properties against multidrug-resistant bacteria. Nanoscale Res. Lett. (2014). https://doi.org/10.1186/1556-276X-9-365

295. Amerasian, D., Nataraj, T., Murugan, K., Panneerselvam, C., Madhyazhagan, P., Nicoletti, M., Benelli, G.J.: Myco-synthesis of silver nanoparticles using Metarhizium anisoplaiae against the rural malaria vector Anopheles culicifacies giles (diptera: culicidae). Pest. Sci. (2016). https://doi.org/10.1002/ps.3140-015-0675-x

296. Arun, G., Eyiini, M., Gunasekaran, P.: Green synthesis of silver nanoparticles using the mushroom fungus schizopyllum commune and its biomedical applications. Biotechnol. Bioprocess Eng. (2014). https://doi.org/10.1007/s12257-014-0071-z

297. Honary, S., Barabadi, H., Gharehi-Fathabad, E., Naghibi, F.: Green synthesis of silver nanoparticles induced by the fungus penicillium citrinum. Trop J Pharm Res. (2013). https://doi.org/10.4014/jmb.1405.05003

298. El Orabi, N.F., Elgorban, A.M.: Complete green synthesis of silver nanoparticles using marine-derived fungus Mycostrophomina phaseolina (Tassi) Goid with antimicrobial properties against multidrug-resistant bacteria. Saudi J. Biol. Sci. (2020). https://doi.org/10.1016/j.sjbs.2019.12.022

299. Nayak, R.R., Pradhan, N., Behera, D., Pradhan, K.M., Mishra, S., Sukla, L.B., Mishra, B.K.: Green synthesis of silver nanoparticle by penicillium purpurogenum NPMF: the process and optimization. J. Nanoparticle Res. (2011). https://doi.org/10.1007/s11051-010-0208-8

300. Gade, A., Gaikwad, S., Duran, N., Rai, M.: Green synthesis of silver nanoparticles by phoma glomerata. Micron (2014). https://doi.org/10.1016/j.micron.2013.12.005

301. Saxena, J., Sharma, P.K., Sharma, M.M., Singh, A.L.: Process optimization for green synthesis of silver nanoparticles by sclerotinia sclerotiorum MTC785 and evaluation of its antibacterial properties. Springerplus (2016). https://doi.org/10.1186/s40064-016-2558-x

302. Ahuwalia, V., Kumar, J., Sisodia, R., Shakil, N.A., Walia, S.: Green synthesis of silver nanoparticles by Trichoderma harzianum and their bio-efficacy evaluation against Staphylococcus aureus and klebsiella pneumonia. Ind. Crops Prod. (2014). https://doi.org/10.1016/j.indcrop.2014.01.026
332. Pourjavadi, A., Soleymen, R.: Novel silver nano-wedges for killing microorganisms. J. Nanopart. Res. (2011). https://doi.org/10.1007/s11051-011-0428-6

333. Safaepour, M., Shahverdi, A.R., Shahverdi, H.R., Khorramizadeh, M.R., Gohari, A.R.: Green synthesis of small silver nanoparticles using geraniol and its cytotoxicity against fibrosarcoma-210 cells. Avicenna J. Med. Biotechnol. 1(2), 111 (2009)

334. Li, J., Kuang, D., Feng, Y., Zhang, F., Xu, Z., Liu, M., Wang, D.: Green synthesis of silver nanoparticles–graphene oxide nanocomposite and its application in electrochemical sensing of tryptophan. Biosens. Bioelectron. (2013). https://doi.org/10.1016/j.bios.2012.10.029

335. Darroudi, M., Ahmad, M.B., Abdullah, A.H., Ibrahim, N.A., Shameli, K.: Effect of accelerator in green synthesis of silver nanoparticles. Int. J. Mol. Sci. (2010). https://doi.org/10.3390/ijms11103898

336. Darroudi, M., Ahmad, M.B., Zamiri, R., Zak, A.K., Abdullah, A.H., Ibrahim, N.A.: Time-dependent effect in green synthesis of silver nanoparticles. Int. J. Nanomed. (2011). https://doi.org/10.2147/IJN.S17669

337. Baruwati, B., Polshettiwar, V., Varma, R.S.: Glutathione promoted expeditious green synthesis of silver nanoparticles in water using microwaves. Green Chem. (2009). https://doi.org/10.1039/b902184a

338. Tian, Y., Wang, F., Liu, Y., Pang, F., Zhang, X.: Green synthesis of silver nanoparticles on nitrogen-doped graphene for hydrogen peroxide detection. Electrochim. Acta. (2014). https://doi.org/10.1016/j.electacta.2014.08.133

339. Philip, D.: Honey mediated green synthesis of silver nanoparticles. Spectrochim. Acta. Part A. (2010). https://doi.org/10.1016/j.saa.2009.12.058

340. Xia, N., Cai, Y., Jiang, T., Yao, J.: Green synthesis of silver nanoparticles by chemical reduction with hyaluronan. Carbohydr. Polym. (2011). https://doi.org/10.1016/j.carbpol.2011.05.053

341. Celebioglu, A., Topuz, F., Yildiz, Z.I., Uyar, T.: One-step green synthesis of antibacterial silver nanoparticles embedded in electrospun cyclodextrin nanofibers. Carbohydr. Polym. (2019). https://doi.org/10.1016/j.carbpol.2018.12.008

342. Lateef, A., Adeeyo, A.O.: Green synthesis and antibacterial activities of silver nanoparticles using extracellular laccase of lentinus edodes. Not. Sci. Biol. (2015). https://doi.org/10.15835/nb.7.4.9643

343. Haiza, H., Nazian, A., Mohdin, A.H., Halin, D.S.C.: Green synthesis of silver nanoparticles using local honey. Nano Hybrids. (2013). https://doi.org/10.4028/www.scientific.net/NH.4.87

344. Filippo, E., Serra, A., Buccolieri, A., Manno, D.J.: Green synthesis of silver nanoparticles with sucrose and maltose: morphological and structural characterization. Non-Cryst. Solids. (2010). https://doi.org/10.1016/j.jnoncrysol.2009.11.021

345. Zayed, M.F., Eisaa, W.H., Shabaka, A.A.: Malva parviflora extract assisted green synthesis of silver nanoparticles. Spectrochim. Acta. Part A. (2012). https://doi.org/10.1016/j.saa.2012.08.072

346. Sen, I.K., Mandal, A.K., Chakraborti, S., Dey, B., Chakraborty, R., Islam, S.S.: Green synthesis of silver nanoparticles using glucan from mushroom and study of antibacterial activity. Int. J. Biol. Macromol. (2013). https://doi.org/10.1016/j.ijbiomac.2013.09.019

347. Debath, G., Das, P., Saha, A.K.: Green synthesis of silver nanoparticles using mushroom extract of pleurutsus giganteus: characterization antimicrobial, and α-amylase inhibitory activity. BioNanoScience. (2019). https://doi.org/10.1007/s12668-019-00650-y

348. Jeon, E.K., Seo, E., Lee, E., Lee, W., Um, M.K., Kim, B.S.: Mussel-inspired green synthesis of silver nanoparticles on graphene oxide nanosheets for enhanced catalytic applications. Chem. Commun. (2013). https://doi.org/10.1039/c3cc00115f

349. Mason, C., Vivekanandhan, S., Misra, M., Mohanty, A.K.: Switchgrass (Panicum virgatum) extract mediated green synthesis of silver nanoparticles. World J. Nano Sci. Eng. (2012). https://doi.org/10.4236/wjse.2012.22008

350. Siddiqui, M.N., Redhwi, H.H., Achilias, D.S., Kosmidou, E., Vakalopoulou, E., Ioannidou, M.D.: Green synthesis of silver nanoparticles and study of their antimicrobial properties. J. Polym. Environ. (2018). https://doi.org/10.1007/s10924-017-0962-0

351. Vimala, K., Sivudu, K.S., Mohan, Y.M., Sreedhar, B., Raju, K.M.: Controlled silver nanoparticles synthesis in semi-hydrogel networks of poly (acrylamide) and carbobhydrates: a rational methodology for antibacterial application. Carbohydr. Polym. (2009). https://doi.org/10.1016/j.carbpol.2008.08.009

352. Lorestanti, F., Shahnazav, Z., Mn, P., Alias, Y., Manan, N.S.: One-step hydrothermal green synthesis of silver nanoparticle-carbon nanotube reduced-graphene oxide composite and its application as hydrogen peroxide sensor. Sens. Actuators. B (2015). https://doi.org/10.1016/j.snb.2014.11.074

353. Mallmann, E.J.J., Cunha, F.A., Castro, B.N., Maciel, A.M., Menizes, E.A., Fechine, P.B.: Antifungal activity of silver nanoparticles obtained by green synthesis. Rev. Inst. Med. Trop. Sao Paulo. (2015). https://doi.org/10.1590/S0036-46522015000200011

354. Krishna, I.M., Reddy, G.B., Veerabhadraram, G., Madhusudhan, A.: Eco-friendly green synthesis of silver nanoparticles using Salmalia malabarica: synthesis, characterization, antimicrobial, and catalytic activity studies. Appl. Nanosci. (2016). https://doi.org/10.1007/s13204-015-0479-6

355. Suriya, J., Raja, S.B., Sekar, V., Rajasekaran, R.: Biosynthesis of silver nanoparticles and its antibacterial activity using seaweed Urospora sp. Afr. J. Biotecnol. (2012). https://doi.org/10.5897/AJB12.452

356. Balavandy, S.K., Shameli, K., Abidin, Z.Z.: Stirring time effect of silver nanoparticles prepared in glutathione mediated by green method. Int. J. of Elechem. Sci 10(1), 486–497 (2015)

357. Yuan, W., Gu, Y., Li, L.: Green synthesis of graphene/Ag nanopowders. Appl. Surf. Sci. (2012). https://doi.org/10.1016/j.apsusc.2012.08.094

358. Thuc, D.T., Huy, T.Q., Hoang, L.H., Tien, B.C., Van Chung, P., Thuy, N.T., Le, A.T.: Antibacterial activity. Mater. Lett. (2016). https://doi.org/10.1016/j.matlet.2016.06.008

359. Lateef, A., Ojo, S.A., Azeez, M.A., Asafa, T.B., Yekeen, T.A., Akinboro, A., Oladipo, I.C., Gueguim-Kana, E.B., Beukes, L.S.: Cobweb as novel biomaterial for the green and eco-friendly synthesis of silver nanoparticles. Appl. Nanosci. (2016). https://doi.org/10.1007/s13204-015-0492-9

360. Cheviron, P., Gounavé, F., Espuche, E.: Green synthesis of colloid silver nanoparticles and resulting biodegradable starch/silver nanocomposites. Carbohydr. Polym. (2014). https://doi.org/10.1016/j.carbpol.2014.02.059

361. Kim, T.Y., Cha, S.H., Cho, S., Park, Y.: Tannic acid-mediated green synthesis of antibacterial silver nanoparticles. Arch. Pharm. Res. (2016). https://doi.org/10.1007/s12272-016-0718-8

362. Sivaraman, S.K., Elango, I., Kumar, S., Santhanam, V.: A green protocol room temperature synthesis of silver nanoparticles in seconds. Curr. Sci. 97, 105–1059 (2009)

363. Saxena, A., Tripathi, R.M., Zafar, F., Singh, P.: Green synthesis of silver nanoparticles using aqueous solution of Ficus benghalensis leaf extract and characterization of their antibacterial activity. Mater. Lett. (2012). https://doi.org/10.1016/j.matlet.2011.09.038

364. Tang, J., Chen, Q., Xu, L., Zhang, S., Feng, L., Cheng, L., Xu, H., Liu, Z., Peng, R.: Graphene oxide–silver nanocomposite as a highly effective antibacterial agent with species-specific mechanisms. ACS Appl. Mater. Interfaces (2013). https://doi.org/10.1021/am4005495
365. Franci, G., Falanga, A., Galdiero, S., Palomba, L., Rai, M., Morelli, G., Galdiero, M.: Silver nanoparticles as potential antibacterial agents. Molecules (2015). https://doi.org/10.3390/molecules20058856

366. Chen, Y., Wu, W., Xu, Z., Jiang, C., Han, S., Ruan, J., Wang, Y.: Photothermal-assisted antibacterial application of graphene oxide-Ag nanocomposites against clinically isolated multi-drug resistant Escherichia coli. R. Soc. Open Sci. (2020). https://doi.org/10.1098/rsos.190219

367. Moussa, S.H., Tayel, A.A., Alsohimi, A.S., Abdallah, R.R.: Botrytisical activity of nanosized silver-chitosan composite and its application for the control of gray mold in strawberry. J. food. Sci. (2013). https://doi.org/10.1111/1750-3841.12247

368. Egger, S., Lehmann, R.P., Height, M.J., Loessner, M.J., Schuppel, M.: Antimicrobial properties of a novel silver-silica nanocomposite material. Appl. Environ. Microbiol. (2009). https://doi.org/10.1128/AEM.01658-08

369. Devi, P., Patil, S.D., Jeevanandam, P., Navani, N.K., Singla, M.L.: Synthesis, characterization and bactericidal activity of silica/silver core—shell nanoparticles. J Mater Sci Mater Med. (2014). https://doi.org/10.1007/s10856-014-5165-9

370. Adak, D., Sarkar, M., Maiti, M., Tamang, A., Mandal, S., Chatopadhyay, B.: Anti-microbial efficiency of nano silver—silica modified geopolymer mortar for eco-friendly green construction technology. RSC Adv (2015). https://doi.org/10.1039/C5RA12776A

371. Zhang, X., Niu, H., Yan, J., Cai, Y.: Immobilizing silver nanoparticles onto the surface of magnetic silica composite to prepare magnetic disinfectant with enhanced stability and antibacterial activity. Colloids Surf. A Physicochem. Eng. (2011). https://doi.org/10.1016/j.colsurfa.2010.12.009

372. Lu, M.M., Wang, Q.J., Chang, Z.M., Wang, Z., Zheng, X., Shao, D., Dong, W.F., Zhou, Y.M.: Synergistic bactericidal activity of chlorhexidine-loaded, silver-decorated mesoporous silica. J. Nanomed. (2017). https://doi.org/10.2147/IJN.S133846

373. Wang, Y., Ding, X., Chen, Y., Guo, M., Zhang, Y., Guo, X., Gu, H.: Antibiotic-loaded, silver core-embedded mesoporous silica nanovehicles as a synergistic antibacterial agent for the treatment of drug-resistant infections. Biomaterials (2016). https://doi.org/10.1016/j.biomaterials.2016.06.004

374. Ye, J., Cheng, H., Li, H., Yang, Y., Zhang, S., Rauf, A., Zhao, Q., Ning, G.: Highly synergistic antimicrobial activity of spherical and flower-like hierarchical titanium dioxide/silver composites. J. Colloid Interface Sci. (2017). https://doi.org/10.1016/j.jcis.2017.05.111

375. Chen, Q., Jiang, H., Ye, H., Li, J., Huang, J.: Preparation, antibacterial, and antioxidative activities of silver/chitosan composites. J. Carbohydr. Chem. (2014). https://doi.org/10.1080/07328303.2014.931962

376. Martínez-Rodriguez, M.D.L.A., Madla-Cruz, E., Urrutia-Baca, V.H., de la Garza-Ramos, M.A., González-González, V.A., Garza-Narváez, M.A.: Influence of polyacarbossylic molecular structure on the antibacterial activity and cytotoxicity of green synthesized composites based on silver nanoparticles and carboxymethyl-cellulose. Nanomaterials (2020). https://doi.org/10.3390/nano10061164

377. Kubasheva, Z., Sprensky, M., Railean-Plugaru, V., Pomastowski, P., Ospanova, A., Buszewski, B.: Synthesis and antibacterial activity of (AgCl, Ag) NPs/diatomite hybrid composite. Materials (2020). https://doi.org/10.3390/ma13153409

378. Xu, K., Wang, J.X., Kang, X.L., Chen, J.F.: Fabrication of antibacterial monodispersed Ag–SiO2 core—shell nanoparticles with high concentration. Mater. Lett. (2009). https://doi.org/10.1016/j.matlet.2008.08.039

379. Suktha, P., Lekpet, K., Siwayaprahm, S., Savangphruk, M.: Enhanced mechanical properties and bactericidal activity of polypropylene nanocomposite with dual-function silica—silver core-shell nanoparticles. J. Appl. Polym. Sci. (2013). https://doi.org/10.1002/app.38649

380. Quaglia, G., Ambrogii, V., Pietrellii, D., Nocchettii, M., Latterini, L.: Solid state photoreduction of silver on mesoporous silica to enhance antifungal activity. Nanomaterials (2021). https://doi.org/10.3390/nano11092340

381. Milovanovic, M., Arsenjievic, A., Milovanovic, J., Kanjevac, T., Arsenjievic, N.: Antimicrobial Nanoarchitecton. Elsevier. (2017). https://doi.org/10.1016/B978-0-323-52733-0.00014-8

382. Gonçalves, B.C., Lopes Barbosa, M.G., Silva Olak, A.P., Belbecha Terezo, N., Nishi, L., Watanabe, M.A., Faccin-Gallhardi, L.C.: Antiviral therapies: advances and perspectives. Fundam. Clin. Pharmacol. (2020). https://doi.org/10.1111/fcp.12609

383. Dutta, R., Roy, S., Datta, C.: Silver nanoparticle as antiviral agent and its uses. Nano Trends 22, 28–34 (2020)

384. Rai, M., Deshmukh, S.D., Ingle, A.P., Gupta, I.R., Galdiero, M., Galdiero, S.: Plant—fungal interactions: what triggers the fungi to switch among lifestyles? Crit. Rev. Microbiol. (2016). https://doi.org/10.101048/1.2013.879849

385. Lara, H.H., Ayala-Nuñez, N.V., Ixtepan-Turrent, L., Rodriguez-Padilla, C.J.: Mode of antiviral action of silver nanoparticles against HIV-1. NanoBiotechnology 8, 1–10 (2010)

386. Gurunathan, S., Qasim, M., Choi, Y., Do, J.T., Park, C., Hong, K., Song, H.: Antiviral potential of nanoparticles—can nanoparticles fight against coronaviruses? Nanomaterials (2020). https://doi.org/10.3390/nano100901645

387. Hashim, A.I., Al Falahy, J.A., Hussain, S.S., Nihad, A.P.D., Tektook, K.: Efficiency of silver nanoparticle against virus coronaviruses. Ann. Trop. Med. PH. (2020). https://doi.org/10.36295/ASRO.2020.23938

388. Galdiero, S., Falanga, A., Vitiello, M., Cantisani, M., Marra, V., Galdiero, M.: Silver nanoparticles inhibit hepatitis B virus replication. Molecules (2011). https://doi.org/10.3390/molecules16108894

389. Lu, L., Sun, R.W.Y., Chen, R., Hui, C.K., Ho, C.M., Luk, J.M., Che, C.M.: Silver nanoparticles inhibit hepatitis B virus replication. Antivir. Ther. (2008). https://doi.org/10.1177/135965350801300210

390. Naik, K., Kowshik, M.: The silver lining: towards the responsible and limited usage of silver. J. Appl. Microbiol. (2017). https://doi.org/10.1111/jam.13525

391. Imani, S.M., Ladouceur, L., Marshall, T., Maclachlan, R., Soleymani, L., Didar, T.F.: Antimicrobial nanomaterials and coatings: current mechanisms and future perspectives to control the spread of viruses including SARS-CoV-2. ACS Nano (2020). https://doi.org/10.1021/acsnano.0c05937

392. Hodek, J., Zajcová, V., Lovětinská-Šlamborová, I., Stibor, I., Müllerová, J., Weber, J.: Protective hybrid coating containing silver, copper and zinc cations effective against human immunodeficiency virus and other enveloped viruses. BMC Microbiol. (2016). https://doi.org/10.1186/s12866-016-0675-x

393. Elalzayz, A.M., Elbeshey, E.K., Betih, M.A.: In vitro assessment of activity of graphene silver composite sheets against multidrug-resistant bacteria and tomato bushy stunt virus. Trop. J. Pharm. Res. (2017). https://doi.org/10.4314/tjpr.v16i1.19

394. Vargas-Hernandez, M., Macias-Bobadilla, I., Guevara-Gonzalez, R.G., Rico-Garcia, E., Ocampo-Velazquez, R.V., Avila-Juarez, L., Torres-Pacheco, I.: Nanoparticles as potential antivirals in agriculture. Agriculture (2020). https://doi.org/10.3390/agriculture1000444

395. Palestino, G., García-Silva, I., González-Ortega, O., Rosales-Men doza, S.: Can nanotechnology help in the fight against COVID-19? Expert. Rev. Anti. Infect. Ther. (2020). https://doi.org/10.1080/14787210.2020.1776115
396. Salleh, A., Naomi, R., Utami, N.D., Mohammad, A.W., Mahmoudi, E., Mustafa, N., Fauzi, M.B.: The potential of silver nanoparticles for antiviral and antibacterial applications: a mechanism of action. Nanomaterials (2020). https://doi.org/10.3390/nnano10081566

397. Chakravarty, M., Vora, A.: Nanotechnology-based antiviral therapeutics. Drug Deliv. Transl. Res. (2020). https://doi.org/10.1007/s13346-020-00818-0

398. Crane, M.J., Devine, S., Jamieson, A.M.: Graphene oxide/silver nanoparticle ink formulations rapidly inhibit influenza A virus and OC43 coronavirus infection in vitro. bioRxiv (2021). https://doi.org/10.1101/2021.02.25.432893

399. Das, C., Paul, S.S., Saha, A., Singh, T., Saha, A., Im, J., Biswas, G.: Silver-based nanomaterials as therapeutic agents against coronaviruses: a review. Int. J. Nanomed. (2020). https://doi.org/10.2147/IJNN.S280976

400. Jeremiah, S.S., Miyakawa, K., Morita, T., Yamaoka, Y., Ryo, A.: Potent antiviral effect of silver nanoparticles on SARS-CoV-2. Biochem. Biophys. Res. Commun. (2020). https://doi.org/10.1016/j.bbr.2020.09.018

401. Kaye, M., Druce, J., Tran, T., Kostecki, R., Chib, D., Morris, J., Birch, C.: SARS-associated coronavirus replication in cell lines. Emerg. Infect. Dis. (2006). https://doi.org/10.3201/eid1201.050496

402. Restrepo, C.V., Villa, C.C.: Synthesis of silver nanoparticles, a review of capping agents, and dependence on size and shape: a review. Nanotechnol. (2021). https://doi.org/10.1038/s41465-021-10428-4

403. Hebeish, A., Shaheen, T.I., El-Naggar, M.E.: Solid state synthesis of starch-capped silver nanoparticles. Int. J. Biol. Macromol. (2016). https://doi.org/10.1016/j.ijbiomac.2016.02.046

404. Tanner, E.E., Thschulik, K., Tahany, R., Jurkschat, K., Batchelor-McAuley, C., Compton, R.G.: Nanoparticle capping agent dynamics and electron transfer: polymer-gated oxidation of silver nanoparticles. J. Phys. Chem. C. (2015). https://doi.org/10.1021/acs.jpc.5b05789

405. Li, C.C., Chang, S.J., Su, F.J., Lin, S.W., Chou, Y.C.: Effects of capping agents on the dispersion of silver nanoparticles. Colloids Surf. A Physicochem. Eng. (2013). https://doi.org/10.1016/j.colsurfa.2012.11.077

406. Fayaz, A.M., Ao, Z., Girilal, M., Chen, L., Xiao, X., Kalaichelvan, P.T., Yao, X.: Inactivation of microbial infectiousness by silver nanoparticles-coated condom: a new approach to inhibit HIV-and HSV-transmitted infection. Int. J. Nanomed. (2012). https://doi.org/10.2147/IJNN.S39737

407. Gaikwad, S., Ingle, A., Gade, A., Rai, M., Falanga, A., Incoronato, G., Girilal, M., Chen, L., Xiao, X., Kalaichelvan, P.T., Yao, X.: Inactivation of microbial infectiousness by silver nanoparticles-coated condom: a new approach to inhibit HIV-and HSV-transmitted infection. Int. J. Nanomed. (2012). https://doi.org/10.2147/IJNN.S39737

408. Mori, Y., Ono, T., Miyahara, Y., Nguyen, V.Q., Matsui, T., & Ishihara, M. Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza A virus. (2013). Nanoscale Res. Lett. http://www.nanoscalereslett.com/content/8/1/93 (Accessed 29 Nov 2021)

409. Lv, X., Wang, P., Bai, R., Cong, Y., Suo, S., Ren, X., Chen, C.: Inhibitory effect of silver nanomaterials on transmissible virus-induced host cell infections. Biomaterials (2014). https://doi.org/10.1016/j.biomaterials.2014.01.064

410. Yang, X.X., Li, C.M., Huang, C.Z.: Curcumin modified silver nanoparticles for highly efficient inhibition of respiratory syncytial virus infection. Nanoscale (2016). https://doi.org/10.1039/C5NR07918G

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Authors and Affiliations

C. Karthik¹ · K. A. Punnaivalavan¹ · S. Pandi Prabha² · D. G. Caroline¹

¹ Department of Biotechnology, St. Joseph’s College of Engineering, Old Mamallapuram Road, Chennai 600119, Tamil Nadu, India

² Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur Taluk, Chennai 602117, Tamil Nadu, India