A Genetic Risk Score for Atrial Fibrillation Predicts the Response to Catheter Ablation

Won-Seok Choe, Jun Hyuk Kang, Eue-Keun Choi, Seung Yong Shin, So-Ryoung Lee, Woo-Hyun Lim, Myung-Jin Cha, Youngjin Cho, Il-Young Oh, Seil Oh, Hong Euy Lim

Department of Internal Medicine, Seoul National University Hospital
Department of Internal Medicine, Korea University Guro Hospital
Division of Cardiology, Chung-Ang University Hospital
Atrial fibrillation – heritable disorder

✓ Genetic variation is an important determinant of susceptibility to AF
✓ Many genetic variations reported to be associated with AF
 - influences several biological pathway
 - modifies the patient’s susceptibility to AF in a complex trait

Cardiogenesis

Cell architecture and coupling

Ion channels

Primitve ventricle

GATA4
GATA5
GATA6
GREM2
NKX2-5
NKX2-6
PTX2
ZFHx3
PRRX1
NEURAL
TBX5
CAND2

GJA1
GJA5
LMNA
NUP155
MYOC1
SYNE2
CAV1

SCN1B
SCN2B
SCN5B
SCN4B
SCN5A
SCN10A
HCN4

KCNJ5
KCNJ3
KCNJ1
KCNJ2
KCNJ8
KCNJ9
KCNB1
KCNB2
KCNN2
KCNN4
Ryr2
Abcc6

Sinus rhythm

Atrial fibrillation
Clinical application of AF-associated genetic variations

Genetic screening to identify the individuals at risk for AF

→ **Limited implication in clinical practice**

 ✓ lack of robust prediction model applicable to general populations
 ✓ lack of effective interventions that can prevent AF or diminish the AF burden

Prediction model of clinical response to AF treatment

 ✓ may help appropriate selection of candidates to invasive procedures
 ✓ individualizing the treatment strategies
 ✓ enhance our understanding of the mechanism of disease progression
Objectives of the study

- To perform a comprehensive analysis on the relationship between **AF-associated common genetic variants** and long-term **clinical outcome of AF ablation**

- To construct a predictive **Genetic Risk Score**, based on AF-associated common genetic variants
Study design

Enrollment

Consecutive enrollment of paroxysmal / persistent AF undergoing RFCA

Clinical assessment

Genotyping for 20 AF-susceptibility SNPs

Catheter ablation

Regular follow-up 1/3/6M and every 3-6M

SNP selection and Genetic Risk Score (GRS) construction

Genotyping and RFCA

Clinical follow-up

Analysis of clinical outcomes according to GRS

Analysis
Methods

Patient inclusion
• From 2 centers with AF ablation cohort
• Consecutive enrollment of patients who underwent RFCA
 ✓ June 2008 ~ March 2015
 ✓ de novo or repeat procedure for paroxysmal and persistent AF

Ablation procedure
• EGM recording by Prucka CardioLab EP Recording System
• Ablation was guided by 3D electro-anatomical mapping
• Specific ablation procedure was left to the discretion of the clinician

Genotyping
• Performed for top 20 AF-susceptibility SNPs
• Genomic DNA : whole blood sample
• SNP genotyping : TaqMan® assay, Applied Biosystems™
SNP	Loci	Nearest Gene	AF Associated Risk / Other Allele	Risk Allele Frequency	Risk Estimates from the Literature
rs6666258	1q21	KCNN3	C/G	0.980	1.18
rs13376333	1q21	KCNN3	T/C	0.019	1.56
rs3903239	1q24	PRRX1	G/A	0.609	1.14
rs4642101	3p25	CAND2	G/T	0.237	1.10
rs1448818	4q25	PITX2	C/A	0.376	1.14
rs6817105	4q25	PITX2	C/T	0.696	1.64
rs2200733	4q25	PITX2	T/C	0.693	1.72
rs4400058	4q25	PITX2	A/G	0.157	1.18
rs6843082	4q25	PITX2	G/A	0.863	2.03
rs6838973	4q25	PITX2	C/T	0.536	1.21
rs13216675	6q22	GJA1	T/C	0.653	1.10
rs3807989	7q31	CAV1	G/A	0.712	1.14
rs10821415	9q22	C9orf3	A/C	0.293	1.13
rs10824026	10q22	SYNPO2L	A/G	0.556	1.17
rs12415501	10q24	NEURL	T/C	0.169	1.18
rs6490029	12q24	CUX2	A/G	0.725	1.12
rs10507248	12q24	TBX5	T/G	0.485	1.11
rs1152591	14q23	SYNE2	A/G	0.337	1.13
rs7164883	15q24	HCN4	G/A	0.111	1.16
rs2106261	16q22	ZFHX3	T/C	0.452	1.24
Methods

Genetic Risk Score (GRS) construction

• Selection of candidate SNP:
 SNPs showing at least borderline significant association ($P < 0.10$) with AF recurrence in cross-sectional analysis

• Unknown effect size → additive, unweighted model:
 \[
 \text{Genetic Risk Score} = \text{total number of risk alleles of selected candidate SNPs}
 \]

Primary outcome

• Recurrence of atrial tachyarrhythmia after catheter ablation
 - Any documented episode of AF, atrial flutter or atrial tachycardia lasting >30 sec after a 3-month blanking period
Baseline characteristics of study population

	Total Cohort (N = 746)
Age, y	59.4±10.6
Male sex, %	73.5%
BMI, kg/m²	24.8±2.8
Paroxysmal AF, %	56.3%
Hypertension, %	48.1%
Diabetes mellitus, %	15.4%
Heart failure, %	12.2%
History of stroke, %	5.2%

Echocardiography

LA dimension, mm	42.5±6.4
LA volume index, mL/m²	42.5±15.9
LVEDD, mm	49.3±6.2
IVSd, mm	9.4±1.9
LVEF, %	62.6±8.0
Clinical outcomes

Outcomes	Total Cohort (N = 746)
Median follow-up, days	684 (324-1205)
Recurrence	
within blanking period, %	21.4%
within 6-month, %	8.2%
within 12-month, %	14.7%
Type of recurrence	
Atrial fibrillation, %	57.1%
Atrial flutter or atrial tachycardia, %	42.9%

Definition of recurrence

Any documented episode of **AF, atrial flutter or atrial tachycardia** lasting >30 sec after a **3-month blanking period**
SNP	Loci	Nearest Gene	Risk Allele	Recurrent AF†	OR	P value	
rs6666258	1q21	KCNN3	C		2.579	(0.786-8.465)	0.118
rs13376333	1q21	KCNN3	T		0.385	(0.115-1.289)	0.122
rs3903239	1q24	PRRX1	G		1.077	(0.841-1.380)	0.555
rs4642101	3p25	CAND2	G		0.747	(0.554-1.009)	0.057
rs1448818	4q25	PITX2	C		1.240	(0.971-1.583)	0.085
rs6817105	4q25	PITX2	C		1.405	(1.075-1.837)	0.013
rs2200733	4q25	PITX2	T		1.430	(1.093-1.871)	0.009
rs4400058	4q25	PITX2	A		0.816	(0.576-1.155)	0.251
rs6843082	4q25	PITX2	G		1.438	(0.988-2.092)	0.058
rs6838973	4q25	PITX2	C		1.269	(0.978-1.648)	0.073
rs1321675	6q22	GJA1	T		1.010	(0.782-1.305)	0.939
rs3807989	7q31	CAV1	G		1.010	(0.773-1.318)	0.944
rs10821415	9q22	C9orf3	A		0.946	(0.720-1.244)	0.691
rs10824026	10q22	SYNPO2L	A		0.917	(0.723-1.164)	0.477
rs12415501	10q24	NEURL	T		1.173	(0.859-1.602)	0.314
rs6490029	12q24	CUX2	A		0.818	(0.626-1.070)	0.142
rs10507248	12q24	TBX5	T		0.956	(0.754-1.213)	0.713
rs1152591	14q23	SYNE2	A		0.934	(0.726-1.200)	0.593
rs7164883	15q24	HCN4	G		1.231	(0.856-1.772)	0.263
rs2106261	16q22	ZFHX3	T		1.289	(1.007-1.652)	0.044

† Association was tested with unadjusted logistic regression model.
SNP	Loci	Nearest Gene	Risk Allele	Recurrent AF†	Inclusion in GRS
rs6666258	1q21	KCNN3	C	2.579 (0.786-8.465)	0.118
rs13376333	1q21	KCNN3	T	0.385 (0.115-1.289)	0.122
rs3903239	1q24	PRRX1	G	1.077 (0.841-1.380)	0.555
rs4642101	3p25	CAND2	G	0.747 (0.554-1.009)	0.057
rs1448818	4q25	PITX2	C	1.240 (0.971-1.583)	0.085
rs6817105	4q25	PITX2	C	1.405 (1.075-1.837)	0.013
rs2200733	4q25	PITX2	T	1.430 (1.093-1.871)	0.009
rs4400058	4q25	PITX2	A	0.816 (0.576-1.155)	0.251
rs6843082	4q25	PITX2	G	1.438 (0.988-2.092)	0.058
rs6838973	4q25	PITX2	C	1.269 (0.978-1.648)	0.073
rs13216675	6q22	GJA1	T	1.010 (0.782-1.305)	0.939
rs3807989	7q31	CAV1	G	1.010 (0.773-1.318)	0.944
rs10821415	9q22	C9orf3	A	0.946 (0.720-1.244)	0.691
rs10824026	10q22	SYNPO2L	A	0.917 (0.723-1.164)	0.477
rs12415501	10q24	NEURL	T	1.173 (0.859-1.602)	0.314
rs6490029	12q24	CUX2	A	0.818 (0.626-1.070)	0.142
rs10507248	12q24	TBX5	T	0.956 (0.754-1.213)	0.713
rs1152591	14q23	SYNE2	A	0.934 (0.726-1.200)	0.593
rs7164883	15q24	HCN4	G	1.231 (0.856-1.772)	0.263
rs2106261	16q22	ZFHX3	T	1.289 (1.007-1.652)	0.044

† Association was tested with unadjusted logistic regression model.
Construction of Genetic Risk Score (GRS)

- **Unweighted, additive model**

 \[\text{Genetic Risk Score} = \text{the sum of the number of risk alleles} \ (5 \text{ selected SNPs}) \]

- **Distribution of Genetic Risk Score**

Total cohort	Grouped according to recurrence
	

GRS (mean±SD)	
Without Recurrence	5.7 ± 1.8
With Recurrence	6.3 ± 1.7

\(P < 0.001 \)
Association of GRS and AF recurrence

✓ **Genetic risk score** was significantly associated with recurrent AF

HR^*^ 1.14 (95% CI 1.04-1.24, *P* = 0.006)

Variables	Recurrent AF†	
	Hazard ratio	P value
Genetic Risk Score	1.135 (1.036-1.244)	0.006
Age	0.997 (0.981-1.013)	0.677
Male	1.201 (0.811-1.779)	0.361
Persistent AF (opposed to paroxysmal AF)	1.209 (0.875-1.670)	0.249
LA size	1.060 (1.036-1.085)	<0.001
Hypertension	0.757 (0.550-1.042)	0.088

† Association was tested with Cox proportional hazards model, adjusted for age, sex, hypertension, persistent as opposed to paroxysmal AF, and LA size.
Association of GRS and AF recurrence

Grouped analysis

Association was tested with Cox proportional hazards model, adjusted for age, sex, hypertension, persistent as opposed to paroxysmal AF, and LA size.

Hazard ratio was compared with the low risk group.
Subgroup analysis with subjects underwent \textit{de-novo} ablation

![Graph showing survival rates with different risk levels (Low Risk (GRS 0\textendash}3), Intermediate Risk (GRS 4\textendash}6), High Risk (GRS 7\textendash}10)). The Log Rank test yields a p-value of 0.002.]

Number at Risk	Low risk	65	42	35	17	2
	Intermediate risk	248	156	108	56	23
	High risk	197	129	85	40	9
Limitations

• Validation of the current genetic risk score model in an independent population is required.

• The panel of genetic variants may be incomplete.

• Cost-effectiveness analysis should be conducted to rationalize genetic-information guided approach in AF management.
Conclusions

• Genetic Risk Score could predict the recurrence after AF catheter ablation
 ✓ Addition of 1 risk allele increased the risk by 14%
 ✓ High-risk group (GRS 7~10) showed 2.6 times increased risk of AF recurrence, compared with low-risk group (GRS 0~3)

• Improving the prediction of clinical response to catheter ablation may help identification of proper candidates of AF catheter ablation.
Thank you for your attention