FERMI LARGE AREA TELESCOPE GAMMA-RAY DETECTION OF THE RADIO GALAXY M87

A. A. Abdo1,2,3, M. Ackermann4, M. Ajello4, W. B. Atwood5, M. Axelsson6,7, L. Baldini8, J. Ballet9, G. Barbiellini10,11, D. Bastieri12,13,14, K. Bechtol15, R. Bellazzini10, B. Berenji16, R. D. Blandford17, E. D. Bloom18, E. Bonamente19, A. W. Borgland20, J. Bregeon21, A. Brez22, M. Brigida23,6,15, P. Bruel24, T. H. Burnett25, G. A. Caliandro26,17, R. A. Cameron27, A. Cannon28,29, P. A. Caraveo30, J. M. Casandjian31, E. Cazzoli32, C. Cenki33, Ö. Çelik34,24,25, E. Charles35, C. C. Cheung36,12,3, J. Chiang37, S. Ciprini38,15, R. Claus39, J. Cohen-Tanugi40, S. Colafrancesco41,3, J. Conrad42,7,28, L. Costamante37, S. Cutini43, D. S. Davis25,28, C. Dermer44, A. de Angelis45, F. de Palma46,17, S. W. Digel30, D. Donato30, E. do Couto e Silva3, P. S. Drell4, R. Dubois4, D. Dumora30,31, Y. Edmonds46, C. Farinier3, C. Favuzzi36,37, S. J. Fegan18, J. Finke3, W. B. Focke4, P. Fortin30, M. Frailis31, Y. Fukazawa32, S. Funk4, P. Fusco16,17, F. Gargano47, D. Gasparini23, N. Gehrels20,33, M. Georgakopoulous48, S. Germain14,15, B. Giebels18, N. Giglietto16,17, P. Giommi39, F. Giordano16,17, M. Giroletti4, T. Glanzman49, G. Godfrey50, I. A. Grenier51, M. H. Grondin30,31, J. E. Grove52, L. Guillemot30,31, S. Guiriec53, Y. Hanabata2, A. K. Harding20, M. Hayashida34, E. Hays35, D. Horan54, G. Johansson55, A. S. Johnson56, R. P. Johnson3, T. J. Johnson20,33, W. N. Johnson4, T. Kamae57, H. Katagiri58, J. Kataoka36,37, N. Kawai36,38, M. Kerr39, J. Knodlseder36, M. L. Kocian40, M. Kuss41, J. Lande42, L. Latronico43, M. Lemoine-Goumard44,35,36, F. Longo40,11, F. Loparco41,12, B. Lott40,31, M. N. Lovellette59, P. Lubrano60, G. M. Madejski61, A. Makeev62,63, M. N. Mazzotta64, W. McConville65,30,31, J. E. McCenery66, C. Meurer67,68, P. F. Michelson69, W. Mitthumsiri70,71, T. Mizuno72, A. A. Moiseev73,34, C. Monte16,17, M. E. Monzani4, A. Morselli74, T. V. Moskalenko75, S. Murgia76, P. L. Nolan77, J. P. Norris12, E. Nuss78, T. Ohsugi79, N. Omodei80, E. Orlando81, J. F. Ormes82, M. Ozaki83, D. Paneque4, J. H. Panetta4, D. Parent30,31, V. Pelassa26, M. Pepe14,15, M. Pesce-Rollins84, F. Piron26, T. A. Porter3, S. Raino16,17, R. Rando12,13, M. Razzano30, A. Reimer45,46, O. Reimer54,5, T. Reposeur30,31, S. Ritz85, L. S. Rochester86, A. Y. Rodriguez47, R. W. Romani48, M. Roth49, F. Ryde50,7, H. F.-W. Sadrozinski51, R. Sambunaris86, D. Sanchez87, A. Sandner88, P. M. Sanz Parkinson89, J. D. Scargle90, C. Sgrò91, M. S. Shaw92, D. A. Smith30,31, P. D. Smith93, G. Spandre94, P. Spinelli16,17, M. S. Strickman95, D. J. Suson96, H. Tajima97, H. Takahashi98, T. Tanaka99, G. B. Taylor100, J. B. Thayer101, D. J. Thompson102,13,14, L. Tibaldo12,13,14, D. F. Torres103,52,56, G. Tosti104, A. Tramacere105, Y. Uchiyama106, T. L. Usher107, V. Vasileiou108,23,24,25, N. Vilchez109, A. P. Waite110, W. Wang111, B. L. Winet112, K. S. Wood113, T. Ylinen114,15, M. Ziegler116, D. E. Harris117, F. Massaro118, L. Stawarz119,114,17

ABSTRACT

We report the Fermi-LAT detection of high-energy (MeV/GeV) γ-ray emission positionally consistent with the center of the radio galaxy M87, at a source significance of over 10σ in ten-months of all-sky survey data. Following the detections of Cen A and Per A, this makes M87 the third radio galaxy seen with the LAT. The faint point-like γ-ray source has a >100 MeV flux of 2.45 ± 0.63 × 10−9 ph cm−2 s−1 (photon index = 2.26 ± 0.13) with no significant variability detected within the LAT observation. This flux is comparable with the previous EGRET upper limit (< 2.18 × 10−8 ph cm−2 s−1, 2σ), thus there is no evidence for a significant MeV/GeV flare on decade timescales. Contemporaneous Chandra and VLBA data indicate low activity in the unresolved X-ray and radio core relative to previous observations, suggesting M87 is in a quiescent overall level over the first year of Fermi-LAT observations. The LAT γ-ray spectrum is modeled as synchrotron-self-Compton (SSC) emission from the electron population producing the radio-to-X-ray emission in the core. The resultant SSC spectrum extrapolates smoothly from the LAT band to the historical-minimum TeV emission. Alternative models for the core and possible contributions from the kiloparsec-scale jet in M87 are considered, and cannot be excluded.

Subject headings: galaxies: active — galaxies: individual (M87) — galaxies: jets — gamma rays: observations — radiation mechanisms: non-thermal

1 Corresponding authors: C. C. Cheung, cccheung@milkyway.gsfc.nasa.gov; W. McConville, wmcconni@umd.edu.
2 Space Science Division, Naval Research Laboratory, Washington, DC 20375, USA.
3 National Research Council Research Associate, National Academy of Sciences, Washington, DC 20001, USA.
4 W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305, USA.
5 Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064, USA.
6 Department of Astronomy, Stockholm University, SE-106 91 Stockholm, Sweden.
7 The Oskar Klein Centre for Cosmoparticle Physics, AlbaNova, SE-106 91 Stockholm, Sweden.
8 Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa, Italy.
9 Laboratoire AIM, CEA-IRFU/ CNRS/Université Paris Diderot, Service d’Astrophysique, CEA Saclay, 91191 Gif sur Yvette, France.
10 Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste, Italy.
11 Dipartimento di Fisica, Università di Trieste, I-34127 Trieste, Italy.
12 Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova, Italy.
13 Dipartimento di Fisica “G. Galilei”, Università di Padova, I-35131 Padova, Italy.
14 Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia, Italy.
15 Dipartimento di Fisica, Università degli Studi di Perugia, I-06123 Perugia, Italy.
16 Dipartimento di Fisica “M. Merli” dell’Università e del Politecnico di Bari, I-70126 Bari, Italy.
17 Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70126 Bari, Italy.

Work supported in part by US Department of Energy contract DE-AC02-76SF00515.

SLAC National Accelerator Laboratory, Menlo Park, CA 94025.
I. INTRODUCTION

As one of the nearest radio galaxies to us ($D = 16$ Mpc is adopted; [Tonry 1991]), M87 is amongst the best-studied of its source class. It is perhaps best known for its exceptionally bright arcsecond-scale jet (Curtis 1918), well-imaged at radio through X-ray frequencies at increasingly improved sensitivity and resolution over the decades (e.g., Biretta et al. 1991; Sparks et al. 1994; Marshall et al. 2002; Perlman & Wilson 2005). Near its central $\sim (3 - 6) \times 10^9$ solar mass supermassive black hole (Macchetto et al. 1997; Gebhardt & Thomas 2009), the jet base has been imaged down to ~ 0.01 pc resolution ($\sim 15 - 30 \times$ the Schwarzschild radius; Junor et al. 1999; Ly et al. 2007; Acciari et al. 2009).

At the highest energies, M87 is regularly detected by HESS, MAGIC, and VERITAS with variable TeV emission on timescales of years and flaring in a few days (Aharonian et al. 2006; Albert et al. 2008; Acciari et al. 2008; 2009). The sensitivity of these Cherenkov telescopes has also enabled the detection of another well-known nearby radio galaxy Cen A (Aharonian et al. 2009). Without comparable imaging resolution to the lower energy studies however, variability and spectral modeling are necessary to infer the production site of the TeV γ-rays and to deduce the source physical parameters.

At high energy γ-rays (~ 20 MeV – 100 GeV), we are similarly poised for new radio galaxy discoveries with the Large Area Telescope (LAT) aboard the recently launched Fermi Gamma-ray Space Telescope (Atwood et al. 2009). Indeed, we report here the detection of a faint, point-like γ-ray source positionally coincident with M87 using the Fermi-LAT. After the confirmation of the EGRET discovery of Cen A (Sreekumar et al. 1999; Abdo et al. 2009) and in preparation), and the recent detection of Per A/NGC 1275 (Abdo et al. 2009b), this is the third radio galaxy successfully detected by Fermi. Unlike the known variable TeV source, there is so far no evidence for variability of the MeV/GeV emission in M87. An origin of the LAT emission from the unresolved parsec scale jet (hereafter, denoted as the ‘nucleus’ or ‘core’) observed contemporaneously with Chandra and the VLBA is discussed. Potential contributions from the larger-scale ($\gtrsim 0.1 - 1$ kpc) jet to the unresolved γ-ray source are also briefly considered. Section 2 contains the details of the LAT observations, including a description of the Chandra and VLBA data utilized, with the discussion of these results in section 3.

2. OBSERVATIONS

The Fermi-LAT is a pair creation telescope which covers the energy range from ~ 20 MeV to > 300 GeV (Atwood et al. 2009). It operates primarily in an ‘all-sky survey’ mode, scanning the entire sky approximately every three hours. The initial LAT detection of M87 resulted from nominal processing of 6-months of all-sky survey data, as was applied to the initial 3-month dataset described in [Abdo et al. 2009a], with a test statistic (Mattox et al. 1996), $TS \sim 60$. Including here an additional 4-months of data, the TS increased to 108.5, which is equivalent to a source significance $\sim \sqrt{TS} = 10.4\sigma$. The resultant 10-month dataset (Aug. 4, 2008 - May 31, 2009) corresponds to mission elapsed times (MET) 239557418 to 265420800. Our analysis followed standard selections of “Diffuse” class events (Atwood et al. 2009) with energies
$E > 200$ MeV, a zenith angle cut of $< 105^\circ$, and a rocking angle cut of 43° applied in order to avoid Earth albedo γ-rays. Fermi Science tools58 version v9r10 and instrumental response functions (IRFs) version P6_V3_DIFFUSE were used for the analysis.

A localization analysis with GTFINDSRC resulted in a best-fit position, RA = 187.722, Dec. = $12^\circ.404$ (J2000.0 equinox), with a 95% confidence error radius, $r_{95\%}$ = 0.978 (statistical only; $r_{68\%}$ = $3.2'$). To account for possible contamination from nearby sources, the model included all point sources detected at $> 5 \sigma$ in an internal LAT 9-month source list within a region of interest (ROI) of $r = 15'$ centered on the γ-ray position. Galactic diffuse emission was modeled using GALPROP (Strong et al. 2004), updated to include recent gas maps and a more accurate decomposition into Galacticcentric rings (galdef ID 54 _59vaxv7). An additional isotropic diffuse component modeled as a power-law was included. Figure 1 shows the resultant γ-ray source localization on a VLA radio image from Owen et al. (2000). The γ-ray source is positionally coincident with the known radio position of the M87 core (RA = 187.706, Dec. = 12.350; Owen et al., 2000), with an offset ($0.020 = 1.2'$) that is a small fraction of the localization circle. Currently, the best estimate of the systematic uncertainty in $r_{68\%}$ is $2.4'$ (Abdo et al. 2009a), which should be added in quadrature to the determined statistical one.

Spectral analysis was performed utilizing an unbinned likelihood fit of the > 200 MeV data with a power-law ($dN/dE \propto E^{-\Gamma}$) implemented in the GTLIKE tool. This resulted in $F(>100$ MeV) = 2.45 (± 0.63) $\times 10^{-8}$ ph cm$^{-2}$ s$^{-1}$ with a photon index, $\Gamma = 2.26 \pm 0.13$; errors are statistical only. The flux was extrapolated down to 100 MeV to facilitate comparison with the previous EGRET non-detection of $< 2.18 \times 10^{-7}$ ph cm$^{-2}$ s$^{-1}$ (2σ) from observations spanning the 1990's (Reimer et al. 2003). Thus, there is no apparent changes in the flux (i.e., a rise) in the decade since the EGRET observations. Systematic errors of $(+0.17/-0.15) \times 10^{-8}$ ph cm$^{-2}$

58 http://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicerone/
To gauge the X-ray activity of M87 over the duration of the LAT observations, we analyzed five new 5 ksec Chandra ACIS-S images obtained in ~6 week intervals between Nov. 2008 and May 2009 (PI: D. E. Harris). The X-ray core fluxes (0.5–7 keV) in these monitoring observations, \((1.2 - 1.6) \times 10^{-12} \text{ erg cm}^{-2} \text{ s}^{-1} \) (\(\sim 0.4 - 0.6 \text{ keV s}^{-1}\)) in the units of Fig. 9 of Harris et al. (2009), are at the low end of the observed range over the last ~7 years. Additionally, the fractional variability is small \((\sigma/\text{<flux}} \sim 0.1\), indicating low X-ray activity in the core over the LAT observing period.

At milli-arcsecond (mas) resolution in the radio band, M87 has been monitored with the VLBA at 15 GHz since 1995 as part of the 2cm survey (Kellermann et al. 2004) and MOJAVE (Lister et al. 2009) programs59. These data were re-imaged uniformly at 0.6 mas \(\times 1.3\) mas (position angle \(\sim 11^\circ\)) resolution to match the additional map presented in Kovalev et al. (2007) resulting in 23 total measurements of the unresolved core flux up to the latest observation on Jan. 7, 2009 (one of the Chandra exposures described above was obtained on the same day). This observation is the only one overlapping with the LAT dataset and the peak flux of 1.05 Jy/beam is consistent with the average over all the measurements (1.11 \(\pm 0.16\) Jy/beam). An indication of the sensitivity of these data to detecting flaring core emission is that the high flux state observed in the detailed 43 GHz VLBA monitoring at the time of TeV flaring in 2008 (Acciari et al. 2009) see \$3\) is visible in the 15 GHz data as a single high point on May 1, 2008 (1.45 Jy/beam)60. This only suggests a period of low activity in the radio core (as reflected in the X-ray data), as the single

radio flux may not be representative of the entire 10-month LAT viewing period.

3. DISCUSSION

In blazars, it is commonly believed that \(\gamma\)-rays are produced in compact emission regions moving with relativistic bulk velocities in or near the parsec scale core in order to explain the observed rapid variability and to avoid catastrophic pair-production (e.g., Dondi & Ghisellini 1995). Consequently, it is natural to extend this supposition to radio galaxies (Chiaberge et al. 2001) which are believed to have jets oriented at systematically larger angles to our line of sight, thus constituting the parent population of blazars. Indeed, in the case of M87, a significant months timescale rise in the flux of the sub-pc scale radio core was discovered with the VLBA (at 43 GHz) during a period in early 2008 when few day timescale TeV flaring was detected (Acciari et al. 2009). During this period of increased activity, a Chandra measurement of the sub-arcscale X-ray nucleus also indicated a relatively higher flux than seen in past observations (Harris et al. 2009), thus signaling a common origin for the flaring emissions in the M87 nucleus. Therefore, during periods of lower \(\gamma\)-ray activity, the radio/X-ray core can also be considered a dominant source of the unresolved higher-energy emission, and we discuss this in the context of the LAT MeV/GeV detection.

In Figure 2, the LAT spectrum of M87 is plotted along with representative integrated TeV spectra from HESS (Aharonian et al. 2006). The TeV measurements cover periods when M87 was in its historical-minimum (in 2004), and during a high state (in 2005 – cf., Fig. 3 in Acciari et al. 2008). Although the formal difference in the fitted photon indices of the TeV data at high and low states is not statistically significant (\(\Gamma = 2.22 \pm 0.15\) and 2.62 \(\pm 0.35\), respectively), the LAT MeV/GeV spectrum (\(\Gamma = 2.3\)) connects smoothly with the low-state TeV spectrum. Taken together with the X-ray and radio measurements obtained during the LAT observation (§2), we view this as an indication that M87 is in an overall low \(\gamma\)-ray activity state during the considered period. In fact, no significant TeV flaring was detected in a preliminary analysis of 18 hrs of contemporaneous VERITAS observations from Jan. - Apr. 2009 (Hui 2009).

M87 is the faintest \(\gamma\)-ray radio galaxy detected so far by the LAT with a >100 MeV flux \(\sim 2.5 \times 10^{-8} \text{ ph cm}^{-2} \text{ s}^{-1}\) about an order of magnitude lower than in Cen A (Abdo et al. 2009c) and Per A (Abdo et al. 2009b), the corresponding >100 MeV luminosity, \(4.9 \times 10^{41} \text{ erg s}^{-1}\), is \(4\times\) greater than that of Cen A, but >200\(\times\) smaller than in Per A. There is no evidence of intra-year or decade-timescale MeV/GeV variability in M87 (§2), in contrast to the \(\sim 7\times\) larger observed LAT fluxes than the previous EGRET ones in the cases of Per A (Abdo et al. 2009b) and Cen A (Abdo et al. 2009c), respectively. The \(\gamma\)-ray photon index of M87 in the LAT band is similar to that of Per A (\(\Gamma = 2.3\) and 2.2, respectively), while being smaller than observed in Cen A (\(\Gamma = 2.9\); Abdo et al. 2009c). These sources are low-power (FRI) radio galaxies, and have broad low-energy synchrotron and high-energy inverse Compton (IC) components in their spectral energy distributions (SEDs) peaking roughly in the infrared and \(\gamma\)-ray bands, respectively. Low-energy peaked BL Lac objects have similar shaped SEDs, with approximately equal apparent luminosities (e.g., Kubo et al. 1998). As FRI radio galaxies are believed to constitute the parent population of BL Lacs in unified schemes (Urry & Padovani 1995), the overall similar-

\[\text{4 Fermi-LAT Collaboration}\]
Figure 4.— SED of M87 with the LAT spectrum and the Jan. 7, 2009 MOJAVE VLBA 15 GHz and Chandra X-ray measurements of the core indicated in red. The non-simultaneous 2004 TeV spectrum described in Figure 5 and Swift data shown in light brown. Historical measurements of the core from VLA1.5, 5, 15 GHz (Biretta et al. 1991), IRAM 89 GHz (Despaigne et al. 1996), SMA 230 GHz (Tian et al. 2008), Spitzer 70, 24 μm (Spitzer et al. 2007), Gemini 10.8 μm (Perman et al. 2003), HST optical/UV (Sparks et al. 1999), and Chandra 1 keV from Marshall et al. (2002), hidden behind the new measurements) are plotted as black circles. The VLBA 15 GHz flux is systematically lower than the historical arcsec-resolution radio to infrared measurements due to the presence of intermediate scale emission (see e.g., Kovalev et al. 2007). The blue line shows the one-zone SSC model fit for the core described in § 3.

...spectrum is fit with a homogeneous one-zone SSC model fitting, Ajello et al. 2008) based on the integrated 3σ limits in the optical and X-ray bands (Perlman et al. 2003; Harris et al. 2004) and the overlapping Jan. 7, 2009 Chandra and VLBA measurements of the core. Also plotted are historical radio to X-ray fluxes of the core (see Sparks et al. 1996; Tan et al. 2006) measured at the highest resolutions at the respective frequencies. The core is known to be variable, with factors of ~2 changes on months timescales common in the optical and X-ray bands (Perlman et al. 2003; Harris et al. 2009).

To help constrain the overall SED at frequencies between the X-ray and LAT measurements, we determined integrated 3σ upper limits in three hard X-ray bands (following, Ajello et al. 2008) based on the Swift/BAT dataset in Ajello et al. 2009, including about another additional year of exposure (i.e., ~4 years total from Mar. 2005 - Jan. 2009).

The broad-band SED is fit with a homogeneous one-zone synchrotron self-Compton (SSC) jet model (Finke et al. 2008) assuming an angle to the line of sight, θ = 10°, and bulk Lorentz factor, Γ_b = 2.3 (Doppler factor, δ = 3.9), consistent with observations of apparent motions of ~0.4c (Γ_b > 1.1) in the parsec-scale radio jet (Ly et al. 2007). A broken power-law electron energy distribution N(γ) ∝ γ_p is assumed, and the indices, p_1 = 1.6 for γ = [1, 4 × 10^3] and p_2 = 3.6 for γ = [4 × 10^3, 10^7] are best guesses based on the available core measurements. The normalization at low energies is constrained by the single contemporaneous VLBA 15 GHz flux which is measured with ~10^-2 - 10^-3 times better resolution than the adjacent points. The source radius, r = 1.4 × 10^{16} cm = 4.5 mpc is chosen to be consistent with the best VLBA 43 GHz map resolution (r < 7.8 mpc = 0.1 mas). Junor et al. 1999; Ly et al. 2007 and is of order the size implied by the few day timescale TeV variability (Acciari et al. 2009). For the source size adopted, internal γ - γ absorption is avoided so that the LAT spectrum extends relatively smoothly into the TeV band, consistent with the historical-minimum flux detected by HESS (Aharonian et al. 2006) and the preliminary upper limit of < 1.9% Crab from VERITAS observations (Hui 2009) contemporaneous with the LAT ones.

In the SSC model, the magnetic field is B = 55 mG and assuming the proton energy density is 10^-3 times greater than the electron energy density, the total jet power is P_j ≈ 7.0 × 10^{43} erg s^-1. The jet power is particle dominated, with only a small contribution from the magnetic field component (P_B ∼ 2 × 10^{40} erg s^-1). In comparison, the total kinetic power in the jet is ~few × 10^{44} erg s^-1 as determined from the energetics of the kpc-scale jet and lobes (Bicknell & Begelman 1996), and is consistent with the jet power available from accretion, P_j ≲ 10^{45} erg s^-1 (Reynolds et al. 1996; Di Matteo et al. 2003). These power estimates are similar to those derived for BL Lacs from similarly modeling their broad-band SEDs (e.g., Celotti & Ghisellini 2008).

As applied to M87, such single-zone SSC emission models also reproduce well the broad-band SEDs up to MeV/GeV energies in the radio galaxies Per A (Abdo et al. 2009), 3C 273 (Liang et al. 2007), and Cen A (CibnavbarSupportedContent. 2001). In this context, the observed MeV/GeV γ-ray fluxes of blazars appear to be correlated with their compact radio cores (Abdo et al. 2009; Kovalev et al. 2009), suggesting a common origin in the Doppler boosted emission in the sub-parsec scale jets. The fact that the 3 radio galaxies detected by the LAT so far have amongst the brightest (≥ 1 Jy) unresolved radio cores, in line with these expectations (Ghisellini et al. 2005), lend evidence for a common connection between the γ-ray and radio emitting zones in such jets.

It should be emphasized that these observations are not simultaneous and particularly, the TeV emission is known to be variable on year timescales, so other emission components may contribute to the variable emission. Therefore, although not strictly required, more sophisticated models over the single-zone one presented can reproduce or contribute to the observed emission. In particular, the beaming requirements in the one-zone SSC modeling of the three known γ-ray radio galaxies are systematically lower than required in BL Lacs, suggesting velocity profiles in the flow (Cibakespeare et al. 2001). Such models (Georganopoulos et al. 2005; Tavecchio & Ghisellini 2008) have in fact been used to fit the SED of M87 in addition to models based on additional spatial structure (e.g., Lenain et al. 2007). Protons, being inevitably accelerated if they co-exist with electrons in the emission regions, probably dominate energetically and dynamically the jets of powerful AGN (e.g., Celotti & Ghisellini 2008). Applying the synchrotron-proton blazar model (Mücke et al. 2003; Reimer et al. 2004) to the quiescent M87 data set yields reasonable agreement model fits that support a highly magnetized compact emission region with approximate equipartition between fields and particles and a total jet power comparable with the above estimates, where protons are accelerated up to ~10^9 GeV.

Outside of the pc-scale core, the well-known arcsecond-scale jet (e.g., Biretta et al. 1991; Marshall et al. 2002; Perlman & Wilson 2005) is also a possible source of IC emission. As both the LAT and TeV telescopes are unable to spatially resolve emission on such small scales, the expected spectral and temporal properties of the predicted emission must be examined. On the observed scales, the dominant seed photon source is the host galaxy starlight, and such an IC/starlight model applied to one of the brightest resolved knots in the jet ~ knot A, ~1 kpc projected distance...
from the core – results in a spectrum peaking at TeV energies (Stawarz et al. 2005), thus producing a harder MeV/GeV spectrum than observed by the LAT. Even closer to the core (∼60 pc, projected), the superluminal knot HST-1 (> 4c–6c; Biretta et al. 1999; Cheung et al. 2007) is a more complex case. This knot is more prominent than knot A, and its IC emission is expected to be further enhanced by the increased energy densities of the surrounding circumnuclear and galactic photon fields, as well as of the comoving synchrotron radiation (Stawarz et al. 2006). The radio/optical/X-ray fluxes of HST-1 have been declining since its giant flare peaked in 2005 (Harris et al. 2009), with current X-ray fluxes comparable to its pre-flare levels in 2002. Considering the variable and compact nature of the source (with observed months doubling timescales implying r ∼ 220 mpc; cf., footnote 60), the predicted IC spectrum has a complex temporal and spectral behavior. In the absence of detailed contemporaneous measurements, its possible role in the production of the LAT observed MeV/GeV emission is unclear.

Continued LAT monitoring of M87 coordinated with multiwavelength observations can extend the current study of ‘quiescent’ emission to possible flaring, in order to further address the physics of the radiation zone. While the extragalactic γ-ray sky is dominated by blazars (Hartman et al. 1999; Abdo et al. 2009a), this optimistically indicates an emerging population of γ-ray radio galaxies. Other examples, including the few possible associations with EGRET detections like, NGC 6251 (Mukherjee et al. 2002) and 3C 111 (Sguera et al. 2005; Hartman et al. 2008) await confirmation with the LAT, and more radio galaxies are expected to be detected at lower fluxes. This holds great promise for systematic studies of relativistic jets with a range of viewing geometries in the high energy γ-ray window opened up by the Fermi-LAT.

The Fermi-LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat à l’Energie Atomique and the Centre National de la Recherche Scientifique / Institut National de Physique Nucléaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the Swedish National Space Board in Sweden.

Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy.

C.C.C. was supported by an appointment to the NASA Postdoctoral Program at Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. Support from NASA grants GO8-9116X and GO9-0108X (D.E.H., F.M.) and the Foundation BLANCEFLOR Boncompagni-Ludovisi, n’e Bildt (F.M.) are acknowledged. This research has made use of data from the MOJAVE database that is maintained by the MOJAVE team (Lister et al. 2009). We thank F. Owen for providing the VLA 90cm image.

REFERENCES

Abdo, A., et al. (Fermi-LAT collaboration) 2009a, ApJS, 183, 46
Abdo, A., et al. (Fermi-LAT collaboration) 2009b, ApJ, 699, 31
Abdo, A., et al. (Fermi-LAT collaboration) 2009c, ApJ, 700, 597
Acciari, V. A., et al. 2008, ApJ, 679, 397
Acciari, V. A., et al. 2009, Science, 325, 444
Aharonyan, F., et al. 2006, Science, 314, 1424
Aharonyan, F., et al. 2009, ApJ, 695, L40
Ajello, M., et al. 2008, ApJ, 673, 96
Ajello, M., et al. 2009, ApJ, 699, 603
Albert, J., et al. 2008, ApJ, 685, L23
Atwood, W. B., et al. 2009, ApJ, 697, 1071
Bicknell, G. V., & Begelman, M. C. 1996, ApJ, 467, 597
Biretta, J. A., Stern, C. P., & Harris, D. E. 1991, AJ, 101, 1632
Biretta, J. A., Sparks, W. B., & Macchetto, F. 1999, ApJ, 520, 621
Bicknell, G. V., & Begelman, M. C. 1996, ApJ, 467, 597
Cheung, C. C., Harris, D. E., & Stawarz, Ł. 2007, ApJ, 663, L65
Di Matteo, T., Allen, S. W., Fabian, A. C., Wilson, A. S., & Young, A. J. 2002, ApJ, 574, 315
Dondi, L., & Ghisellini, G. 1995, A&AS, 113, 31
Desyntong, V., Vaith, B., & D., Davoust, E., 1996, A&A, 309, 375
Dondi, L., & Ghisellini, G. 1995, A&AS, 113, 31
Fey, A. L., et al. 2004, AJ, 127, 3587
Finke, J. D., Dermer, C. D., & Böttcher, M. 2008, ApJ, 686, 181
Gehrels, K., & Thomas, J. 2009, ApJ, 700, 1690
Georganopoulos, M., Perlman, E. S., & Kazanas, D. 2005, ApJ, 634, L33
Ghisellini, G., Tavecchio, F., & Chiaberge, M. 2005, A&A, 432, 401
Harris, D. E., Di Matteo, T., Stawarz, L., Biretta, J. A., & Perlman, E. S. 2009, ApJ, 699, 305
Hartman, R. C., et al. 1999, ApJS, 123, 79
Hartman, R. C., Kadler, M., & Tueller, J. 2008, ApJ, 688, 852
Hui, C. M. (for the VERITAS collaboration) 2009, Proc. 31st ICRC, in press: arXiv:0907.4792
Hui, C. M. (for the VERITAS collaboration) 2009, Proc. 31st ICRC, in press: arXiv:0907.4792
Kellermann, K. I., et al. 2004, ApJ, 609, 539
Kovalev, Y. Y., Lister, M. L., Homan, D. C., & Kellermann, K. I. 2007, ApJ, 668, L27
Kovalev, Y. Y., et al. 2009, ApJ, 696, L17
Kubo, H., Takahashi, T., Madejski, G., Tashiro, M., Makino, F., Inoue, S., & Takahara, F. 1998, ApJ, 504, 693
Lenain, J.-P., Desgingre, V., & Fraix-Burnet, D., Davoust, E. 1996, A&A, 309, 375
Lister, M. L., et al. 2009, AJ, 137, 3718
Ly, C., Walker, R. C., & Junor, W. 2007, ApJ, 660, 200
Macchetto, F., et al. 1997, ApJ, 489, 579
Marshall, H. L., Miller, B. P., Davis, D. S., Perlman, E. S., Wise, M., Canizarres, C. R., & Harris, D. E. 2002, ApJ, 564, 683
Müller, R., Halpern, J., Mirabal, N., & Gotthelf, E. V. 2002, ApJ, 574, 693
Owen, F. N., Eilek, J. A., & Kassim, N. E. 2000, ApJ, 543, 611
Perlman, E. S., Sparks, W. B., Radomski, J., Packham, C., Fisher, R. S., Püxa, R., & Biretta, J. A. 2001, ApJ, 561, L51
Perlman, E. S., Harris, D. E., Biretta, J. A., Sparks, W. B., & Macchetto, F. D. 2003, ApJ, 599, L65
Perlman, E. S., & Wilson, A. S. 2005, ApJ, 627, 140
Reimer, A., Protheroe, R. J., & Donea, A.-C. 2004, A&A, 419, 89
Reimer, O., Pohl, M., Sreekumar, P., & Mattox, J. R. 2003, ApJ, 588, 155
Reynolds, C. S., Di Matteo, T., Fabian, A. C., Hwang, U., & Canizares, C. R. 1996, MNRAS, 283, L111
Sguera, V., Bassani, L., Malizia, A., Dean, A. J., Landi, R., & Stephen, J. B. 2005, A&A, 430, 107
Shi, Y., Rieke, G. H., Hines, D. C., Gordon, K. D., & Egami, E. 2007, ApJ, 655, 781
Sparks, W. B., Biretta, J. A., & Macchetto, F. 1996, ApJ, 473, 254
Sreekumar, P., Bertsch, D. L., Hartman, R. C., Nolan, P. L., & Thompson, D. J. 1999, Astropart. Phys., 11, 221
Stawarz, Ł., Siemiginowska, A., Ostrowski, M., & Sikora, M. 2005, ApJ, 626, 120
Stawarz, Ł., Aharonian, F., Kataoka, J., Ostrowski, M., Siemiginowska, A., & Sikora, M. 2006, MNRAS, 370, 981
Strong, A. W., Moskalenko, I. V., & Reimer, O. 2004, ApJ, 613, 962
Tan, J. C., Beuther, H., Walter, F., & Blackman, E. G. 2008, ApJ, 689, 775
Tavecchio, F., & Ghisellini, G. 2008, MNRAS, 285, L98

Tonry, J. L. 1991 ApJ, 373, L1
Urry, C. M., & Padovani, P. 1995, PASP, 107, 803