REVIEW

Re-highlighting the action of PPARγ in treating metabolic diseases [version 1; referees: 2 approved]

Sung Hee Choi¹,², Sung Soo Chung¹,³, Kyong Soo Park⁴

¹Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
²Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
³Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
⁴Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea

Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a member of the nuclear receptor family and plays an important role in adipocyte differentiation, glucose homeostasis, and insulin sensitivity. Thiazolidinediones (TZDs), synthetic ligands of PPARγ, have been used for the treatment of diabetes mellitus for two decades. TZDs were expected to be amazing drugs not only for type 2 diabetes but also for metabolic syndrome and atherosclerotic vascular disease because they can reduce both insulin resistance and inflammation in experimental studies. However, serious unwanted effects pushed TZDs back to an optional second-tier drug for type 2 diabetes. Nevertheless, PPARγ is still one of the most important targets for the treatment of insulin resistance and diabetes mellitus, and novel strategies to modulate PPARγ activity to enhance its beneficial effects and reduce unwanted adverse effects are anticipated. Recent studies showed that post-translational modification (PTM) of PPARγ regulates PPARγ activity or stability and may be a novel way to optimize PPARγ activity with reduced adverse effects. In this review, we will focus on recent advances in PTM of PPARγ and the mechanisms regulating PPARγ function as well as in the development of PPARγ modulators or agonists.

Keywords
PPARgamma, post-translational modification, metabolic disease
Corresponding author: Kyong Soo Park (kspark@snu.ac.kr)

Author roles: Choi SH: Conceptualization, Data Curation, Resources, Writing – Original Draft Preparation, Writing – Review & Editing; Chung SS: Conceptualization, Data Curation, Resources, Supervision, Writing – Original Draft Preparation; Park KS: Conceptualization, Data Curation, Resources, Supervision, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: This work was supported by National Research Foundation Grant by Ministry of Science and ICT, Republic of Korea (NRF-2016R1A2B3010373). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2018 Choi SH et al. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Choi SH, Chung SS and Park KS. Re-highlighting the action of PPARγ in treating metabolic diseases [version 1; referees: 2 approved] F1000Research 2018, 7(F1000 Faculty Rev):1127 (doi: 10.12688/f1000research.14136.1)

First published: 24 Jul 2018, 7(F1000 Faculty Rev):1127 (doi: 10.12688/f1000research.14136.1)
Introduction
Insulin resistance is the key pathophysiologic abnormality of many metabolic diseases such as type 2 diabetes mellitus, obesity, dyslipidemia, and cardiovascular diseases. Therefore, reducing insulin resistance is the most important strategy for improving metabolic deterioration. Thiazolidinediones (TZDs), peroxisome proliferator-activated receptor γ (PPARγ) agonists, have shown many beneficial effects not only by enhancing insulin sensitivity but also by demonstrating anti-inflammatory and antioxidant properties, whose actions are related to anti-atherosclerosis. Thus, TZDs were considered a magic bullet for the treatment of type 2 diabetes and atherosclerosis. Indeed, TZDs demonstrated a preventive role for recurrent ischemic stroke in several clinical trials and for restenosis after percutaneous coronary intervention (PCI). However, TZDs increased the risk of peripheral edema, bone loss, and congestive heart failure. A meta-analysis of clinical trials showed that rosiglitazone significantly increased the risk of myocardial infarction. Although later studies revealed that rosiglitazone did not increase the risk of heart attack and the US Food and Drug Administration (FDA) removed the warning labels from rosiglitazone-containing drugs regarding the issue of increasing heart attack in 2013, rosiglitazone’s cardiovascular safety issue alongside the above-mentioned adverse effects still lead to many physicians hesitating to prescribe TZDs in their clinical practice. Nevertheless, PPARγ is still one of the most important targets for the treatment of insulin resistance and type 2 diabetes, and novel strategies to modulate PPARγ activity to enhance its beneficial effects and reduce unwanted adverse effects are strongly anticipated. Recent studies showed that post-translational modification (PTM) of PPARγ regulates PPARγ activity or stability and may be a novel way to optimize PPARγ activity with reduced adverse effects. In addition, selective PPARγ modulators (sPPARγMs), dual or pan PPAR agonists, have been developed and tested for their metabolic effects in animal studies and in some clinical trials.

PPARγ, a therapeutic target for insulin resistance (Figure 1)
PPARγ is a master regulator of adipocyte differentiation. It is also involved in glucose homeostasis and insulin sensitivity. The expression of PPARγ is most abundant in adipose tissue. Evidence has shown that the primary target of TZDs is adipose tissue, where it increases the expression of Glut4 and CAP, and an animal model lacking PPARγ in adipose tissue had a significantly lower response to TZDs. TZDs inhibit the expression of TNF-α, IL-6, and resistin in adipose tissue, which promote insulin resistance and chronic inflammation. TZDs increased the production of adiponectin and fibroblast growth factor 21 (FGF21), which enhance fatty acid oxidation and insulin sensitivity. TZDs increase lipogenesis by aP2, LPL, CD36, fatty acid transport protein, PEPCK, and the glycerol transporter aquaporin 7 and make adipose tissue store more lipid, while TZDs remove lipid accumulation in other tissues such as muscle and liver.

From these studies, it seems that improvement of insulin sensitivity in liver and muscle might be secondary to the effects of TZDs in adipose tissue. However, there is also evidence showing that TZDs have an insulin-sensitizing effect on other peripheral organs. It has been demonstrated that ablation of liver PPARγ in mice reduced hepatic steatosis but worsened hyperlipidemia, triglyceride clearance, and muscle insulin resistance. The expression of PPARγ in skeletal muscle is relatively low compared to adipose tissue, and the physiological significance of PPARγ in skeletal muscle has been shown to work indirectly in previous studies. However, selective activation of PPARγ in skeletal muscle showed significant protection from high-fat diet-induced insulin resistance and associated changes in muscle phenotype, such as decreasing the quantity of lipid in myocytes and increasing the number of oxidative muscle fiber types. It suggests that the activation of PPARγ can act directly on muscle tissue to improve insulin sensitivity. Macrophage PPARγ is also implicated in anti-inflammation and lipid metabolism, and mice lacking macrophage PPARγ are more prone to whole-body insulin resistance.

PPARγ agonists and their effects on the vascular system: friend or foe?
PPARγ is expressed in the endothelium and vascular smooth muscle in the blood vessel wall. Despite controversial cardiovascular effects of TZDs in humans, most experimental studies showed beneficial effects on vascular systems. TZDs inhibit the proliferation and migration of vascular smooth muscle cells (VSMCs), with potential favorable effects on atherosclerosis. Smooth muscle-specific dominant-negative PPARγ transgenic mice showed a loss of nitric oxide responsiveness and high contractility, which resulted in systolic hypertension. In humans, dominant-negative mutations of PPARγ are associated with early hypertension and insulin resistance. Activation of PPARγ inhibits CCAAT/enhancer-binding protein-δ (C/EBPδ), which is a well-known mediator of the proinflammatory response in vascular cells.

TZDs also reduce activation and inflammation in endothelial cells by suppressing the expression of inflammation-associated genes. On the other hand, TZDs induce vascular endothelial growth factor (VEGF) in endothelial cells and increase endothelial cell proliferation and migration by the Akt-dependent pathway. Recent data, rosiglitazone significantly increased endothelial cell migration and vascular leakage in an animal study with increased VEGF expression and suppressed tight junction proteins, which caused instability of the endothelial membrane. This result could be related to vascular permeability, peripheral edema, and congestive heart failure associated with the use of TZDs, contrary to their beneficial effect on vascular cells. We still need more concrete evidence to understand the role of TZDs in the whole vascular system under various conditions.

Regulation of PPARγ by PTMs to reduce the side effects of TZDs
The PTM of PPARγ involves several pathways, including phosphorylation, SUMOylation, ubiquitination, β-O-linked N-acetylglucosamine modification (O-GlcNAcylation), and acetylation. These PTMs are known to regulate both PPARγ expression and its transcriptional activity and have been recently suggested as a good modality for reducing the side effects of PPARγ activation by TZDs.
Phosphorylation at serine 112 (S112) in the N-terminal AF-1 domain was first identified, and various studies revealed that net results of PPARγ phosphorylation may inhibit or stimulate its transcriptional activity depending on the cellular contexts and kinases involved. Phosphorylation at S273 in the ligand-binding domain is mediated by cyclin-dependent kinase 5 (Cdk5), which is activated by pro-inflammatory stimuli and free fatty acids. S273 phosphorylation affects the expression of insulin-sensitizing adipokines such as adiponectin and adipisin but not those affecting adipogenesis. PPARγ partial agonist MRL24 specifically blocks the phosphorylation of PPARγ at S273 and has higher anti-diabetic activity and fewer side effects than does rosiglitazone. SR1664 and similar non-agonist PPARγ ligands were also developed for blocking cdk5-mediated phosphorylation and showed improved insulin sensitivity in high-fat diet-fed mice without causing side effects such as fluid retention and weight gain. More recently, it has been reported that phosphorylation at S273 is also facilitated by MEK/ERK, and inhibition of MEK and ERK improves insulin resistance, suggesting that MEK and ERK inhibitors can be therapeutic targets for diabetes through the modulation of PPARγ function.

SUMOylation
Small ubiquitin-like modifier (SUMO) modification is a reversible process and may affect protein stability, transcriptional activity, and protein–protein interaction. PPARγ is known...
as a target of SUMOylation. Lysine 107 (K107) of PPARγ2 is the major SUMOylation site, and deSUMOylation of this site increases the transcriptional activity of PPARγ52. The K107R mutant form of PPARγ stimulates adipogenesis and suppresses neointimal formation after balloon injury more effectively than does the PPARγ wild-type form53,54. SUMOylation at K107 of PPARγ may be linked to S112 phosphorylation53. SUMOylation of PPARγ at K107 is markedly increased in FGF21-knockout mice, suggesting that FGF21 regulates PPARγ SUMOylation by an unknown mechanism19. SUMOylation of PPARγ at K395 (K365 of PPARγ1) is stimulated by PPARγ agonists, and this modification inhibits the transcription of inflammatory response genes, such as iNOS, through recruiting transcriptional repressors to the NFkB complex in macrophages55. SUMO-specific protease 2 (SENP2) is the major deSUMOylation enzyme of PPARγ56. Overexpression of SENP2 in C2C12 cells effectively induces PPARγ target genes such as Fabp3 and Cd36 but not Adrp; thus, SENP2 can induce the expression of PPARγ target genes in a selective manner56. SENP2 deSUMOylates PPARγ and PPARδ and activates genes involved in fatty acid oxidation such as Cpt1b and Acsl1, which results in an increase of fatty acid oxidation in muscle. Interestingly, palmitate increases SENP2 expression via the TLR4-MyD88-NFkB pathway. These results suggest that SENP2 is an important regulator of fatty acid metabolism in skeletal muscle57.

Ubiquitination

Ubiquitination is the covalent attachment of ubiquitin, a 76-amino-acid peptide, to lysine residues in the substrate protein. PPARγ has a short half-life and is degraded by the polyubiquitin-proteasome pathway58. Inhibition of proteasome activity by proteasome inhibitors increases PPARγ stability, suggesting ubiquitin modification of PPARγ is an important determinant of PPARγ activity58. Several ubiquitin ligases, such as FBOX9 and Cul4B, and an ubiquitin-specific protease (HAUSP) targeting PPARγ have been identified, and an increase in PPARγ stability generally promotes PPARγ activity and adipogenesis59-61. Interestingly, PPARγ agonists, TZDs, stimulate the ubiquitination of PPARγ, which can be mediated by an ubiquitin ligase, Siah158,62. Therefore, PPARγ ubiquitination may be differently regulated by several ubiquitin E3 ligases or proteases upon various conditions.

O-GlcNAcylation

O-GlcNAcylation is the post-translational cycling of a single β-O-linked N-acetylglucosamine (O-GlcNAc) on the hydroxyl groups of serine or threonine residues of target proteins. A major
O-GlcNAc site in PPARγ is T84 in the AF-1 domain in PPARγ2, and increased O-GlcNAcylation reduces its transcriptional activity and adipocyte differentiation.

Acetylation

Deacetylation at K268 and K293 by the NAD-dependent deacetylase sirtuin 1 (SIRT1) is necessary for the interaction of PPARγ with PRDM16, a transcriptional co-activator for the browning of WAT. Therefore, SIRT1-dependent PPARγ deacetylation selectively regulates PPARγ activity.

Other PPARγ modulators and agonists

Considering that patients with insulin resistance show many conjugated metabolic problems such as atherosclerosis, obesity, fatty liver, etc., there have been many efforts to develop sPPARγMs, dual or pan PPAR agonists, with potent efficacy but less-deleterious side effects.

sPPARγMs bind to the ligand-binding domain of PPARγ in many ways, which leads to different receptor conformations and cofactor functions. INT131, a potent non-TZD sPPARγM now in clinical trials, showed excellent glucose lowering with significantly less weight gain, edema with fluid retention, and cardiomegaly than do current TZDs. Balaglitazone also showed positive effects in the treatment of patients with type 2 diabetes compared to placebo and pioglitazone (phase III clinical study, n = 409), better glycemic control, and less edema compared to pioglitazone 45 mg. CMHX008 was also tested for its effects in *in vitro* and *in vivo* models, showing excellent results by far.

PPARα/γ dual activation has been the focus of new targets from many pharmaceutical companies, and several clinical trials have been performed in potential treatments such as muraglitazar, tesaglitazar, and aleglitazar. However, owing to unpredictable side effects, the studies were all stopped for further development. Unfortunately, muraglitazar increased cardiovascular events, tesaglitazar increased renal toxicity, and aleglitazar showed bone fractures, heart failure, and gastrointestinal side effects. Recently, (E)-N-(4-(3-(5-bromo-4-hydroxy-2-methoxyphenyl)acryloyl)phenyl)-4-tert-butylbenzam ide (SN158) showed anti-diabetic effects through PPARα/γ dual activation. SN158 increased adipogenic differentiation of 3T3-L1 preadipocytes, enhanced fatty acid oxidation in hepatocytes, and increased glucose uptake in myotubes. It lowered plasma glucose and lipid levels in ob/ob mice without severe weight gain. Thus, it represents another candidate PPARα/γ agonist to enhance many metabolic profiles in obesity-related diseases.

There are some natural products which activate PPARγ and PPARα simultaneously or activate the PPARγ dimer partner retinoid X receptor. Compared to full TZDs, these natural products usually show fewer side effects and comparable anti-diabetic effects. Honokiol, amorfrutin 1, amorfrutin B, amorphastilbol, genistein, biochanin A, sargauquinic acid, sargahydroquinoic acid, retavertol, etc. were tested for their efficacy in *in vitro* and *in vivo* studies.

The development of PPARα/β/δ pan agonists as anti-diabetic, anti-obesity, or hypolipidemic drugs is still actively ongoing. For example, IVA 337 is a potent and well-balanced pan PPAR agonist which showed promising results in *in vitro* and in *in vivo* and is expected to be used to treat patients with metabolic syndrome and non-alcoholic steatohepatitis.

Conclusion

PPARγ is still one of the most important targets for the treatment of insulin resistance and diabetes mellitus, even though current use of TZDs in clinical practice is limited because of undesirable adverse effects. Thus, novel strategies to modulate PPARγ activity to enhance its beneficial effects and reduce unwanted side effects have been strongly anticipated. Recent advances in understanding how PTM of PPARγ modulates PPARγ activity provide novel ways to optimize PPARγ activity with reduced adverse effects. In addition, selective PPARγ modulators, dual or pan PPAR agonists, have been developed and tested for their metabolic effects in animal studies and in some clinical trials.

We hope safer PPARγ agonists or modulators with excellent efficacy and fewer adverse effects will be available for treating metabolic diseases and insulin resistance in the near future.

Competing interests

The authors declare that they have no competing interests.

Grant information

This work was supported by National Research Foundation Grant by Ministry of Science and ICT, Republic of Korea (NRF-2016R1A2B3010373). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

1. Laakso M, Kuusisto J: Insulin resistance and hyperglycaemia in cardiovascular disease development. Nat Rev Endocrinol. 2014; 10(6): 293-302. Published Abstract | Publisher Full Text
2. Tontonoz P, Spiegelman BM: Fat and beyond: the diverse biology of PPARγ. Annu Rev Biochem. 2008; 77: 289-312. Published Abstract | Publisher Full Text
3. Coriello A: Thiazolidinediones as anti-inflammatory and anti-atherogenic agents. Diabetes Metab Res Rev. 2008; 24(1): 14–26. Published Abstract | Publisher Full Text
4. Lee M, Saver JL, Liao HW, et al.: Pioglitazone for Secondary Stroke Prevention: A Systematic Review and Meta-Analysis. Stroke. 2017; 48(2): 388–93. Published Abstract | Publisher Full Text | F1000 Recommendation
5. Patel D, Walitt B, Lindsay J, et al.: Role of pioglitazone in the prevention of
restenosis and need for revascularization after bare-metal stent implantation: a meta-analysis. JACC Cardiovasc Interv. 2011; 4(3): 353–60. PubMed Abstract | Publisher Full Text

6. Wang Z, Zhang T, Sun L, et al.: Pioglitazone Attenuates Drug-Eluting Stent-Induced Proinflammatory State in Patients by Blocking Ubiquitination of PPARs. PPAR Res. 2016; 2016: 7407153. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

7. Choi D, Kim SK, Choi SH, et al.: Prevention effects of rosiglitazone on restenosis after coronary stent implantation in patients with type 2 diabetes. Diabetes Care. 2004; 27(11): 2664–60. PubMed Abstract | Publisher Full Text

8. Berrie HD, Kalkus JS, Jaber LA: Thiazolidinediones and the risk of edema: a meta-analysis. Diabetes Res Clin Pract. 2007; 76(2): 279–89. PubMed Abstract | Publisher Full Text

9. Lage RM, Singh PP, Nesto RW: Congestive heart failure and cardiovascular death in patients with prediabetes and type 2 diabetes given thiazolidinediones: a meta-analysis of randomised clinical trials. Lancet. 2007; 369(9563): 2238–46. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

10. Billington EO, Grey A, Bolland MJ: The effect of thiazolidinediones on bone mineral density and bone turnover: systematic review and meta-analysis. Diabetologia. 2015; 58(10): 2228–36. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

11. Nissen SE, Wolski K: Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007; 356(24): 2457–71. PubMed Abstract | Publisher Full Text | F1000 Recommendation

12. Fajas L, Aubeuf D, Raspe E, et al.: The organization, promoter analysis, and expression of the human PPARgamma gene. J Biol Chem. 1997; 272(30): 18773–89. PubMed Abstract | Publisher Full Text

13. Ribon V, Johnson JH, Camp HS, et al.: Thiazolidinediones and insulin resistance: peroxisome proliferatoractivated receptor gamma activation stimulates expression of the CAP gene. Proc Natl Acad Sci U S A. 1998; 95(25): 14751–6. PubMed Abstract | Publisher Full Text | Free Full Text

14. He W, Barak Y, Hovener A, et al.: Adipose-specific peroxisome proliferator-activated receptor gamma knockout causes insulin resistance in fat and liver but not in muscle. Proc Natl Acad Sci U S A. 2003; 100(26): 15712–7. PubMed Abstract | Publisher Full Text | Free Full Text

15. Pelosi P, Xu M, Spiegelman BM: Thiazolidinediones block tumor necrosis factor-alpha-induced inhibition of insulin signaling. J Clin Invest. 1997; 100(7): 1863–9. PubMed Abstract | Publisher Full Text | Free Full Text

16. Berg AH, Combs TP, Du X, et al.: Akt takes center stage in angiogenesis signaling. Circ Res. 2003; 92(1): 1–8. PubMed Abstract | Publisher Full Text

17. Odegard JJ, Riosco-Gonzalez RR, Gorofh MH, et al.: Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature. 2007; 447(7148): 1116–20. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

18. Max N, Schröck E, Lazar MA, et al.: Peroxisome proliferator-activated receptor gamma activators inhibit gene expression and migration in human vascular smooth muscle cells. Circ Res. 1998; 83(11): 1097–103. PubMed Abstract | Publisher Full Text | Free Full Text

19. Xin X, Yang S, Kowalski J, et al.: Peroxisome proliferator-activated receptor gamma ligands are potent inhibitors of angiogenesis in vitro and in vivo. J Biol Chem. 1999; 274(13): 9116–21. PubMed Abstract | Publisher Full Text

20. Li AC, Brown KK, Silvestre MJ, et al.: Interference with PPAR gamma function in smooth muscle causes vascular dysfunction and hypertension. Cell Metab. 2008; 7(3): 215–26. PubMed Abstract | Publisher Full Text | Free Full Text |

21. Bovet P, Mechielli E, Fritsche A, et al.: Thiazolidinediones and insulin resistance: a meta-analysis of randomized clinical trials. Invest. Sci. 2004; 274(2): 1062–75. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

22. Amin RH, Mathews ST, Camp HS, et al.: Selective activation of PPARgamma in skeletal muscle induces endogenous production of adiponectin and protects mice from diet-induced insulin resistance. Am J Physiol Endocrinol Metab. 2010; 298(1): E28–37. PubMed Abstract | Publisher Full Text | Free Full Text

23. Fievez V, Wu HD, Willerson JT, et al.: Activation of hepatic PPARgamma mediates inhibition of plasminogen activator inhibitor type 1 production and proliferation of human umbilical vein endothelial cells. Diabetes Res Clin Pract. 2003; 62(1): 1–8. PubMed Abstract | Publisher Full Text

24. Adams M, Regnato MJ, Shao D, et al.: Transcriptional activation by peroxisome proliferator-activated receptor gamma is inhibited by phosphorylation at a
consensus mitogen-activated protein kinase site. J Biol Chem. 1997; 272(8): 5129–32.
PubMed Abstract | Publisher Full Text
46. Shao D, Rangwala SM, Bailey ST, et al.: Interdomain communication regulating ligand binding by PPAR-gamma. Nature. 1998; 396(6709): 377–80.
PubMed Abstract | Publisher Full Text
47. Rangwala SM, Rhodes B, Shapiro JS, et al.: Genetic modulation of PPARgamma phosphorylation regulates insulin sensitivity. Dev Cell. 2003; 3(4): 697–703.
PubMed Abstract | Publisher Full Text
48. Compe E, Drané P, Laurent C, et al.: A splice variant of the ubiquitin ligase RNF2 promotes SUMOylation and PPARgamma degradation. Cell. 2015; 163(2): 275–87.
PubMed Abstract | Publisher Full Text
49. Choi JH, Banks AS, Estall JL, et al.: Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARgamma by Cdk5. Mol Cell Biol. 2005; 25(14): 6065–76.
PubMed Abstract | Publisher Full Text | Free Full Text
50. Choi JH, Banks AS, Kamenecza TM, et al.: Antidiabetic actions of a non-agonist PPARgamma ligand blocking Cdk5-mediated phosphorylation. Nature. 2011; 466(7305): 451–6.
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
51. Choi JH, Banks AS, Kamenecka TM, et al.: Antidiabetic actions of a non-agonist PPARgamma ligand blocking Cdk5-mediated phosphorylation. Nature. 2011; 466(7305): 451–6.
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
52. Banks AS, McAllister FE, Camporez JP, et al.: An ERK/Cdk5 axis controls the diabeticogenic actions of PPARgamma. Nature. 2015; 517(7534): 391–5.
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
53. Oshima T, Koga H, Shinozato K: Transcriptional activity of peroxisome proliferator-activated receptor gamma is modulated by SUMO-1 modification. J Biol Chem. 2004; 279(28): 29551–7.
PubMed Abstract | Publisher Full Text | Free Full Text
54. Yamashita D, Yamaguchi T, Shimizu M, et al.: The transactivating function of peroxisome proliferator-activated receptor gamma is negatively regulated by SUMO conjugation in the amino-terminal domain. Genes Cells. 2004; 9(11): 1017–29.
PubMed Abstract | Publisher Full Text
55. Lim S, Ahn BY, Chung SS, et al.: Effect of a peroxisome proliferator-activated receptor gamma sumoylation mutant on neointimal formation after balloon injury in rats. Atherosclerosis. 2009; 206(2): 411–7.
PubMed Abstract | Publisher Full Text
56. Pascual G, Fong AL, Ogawa S, et al.: A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-gamma. Nature. 2005; 437(7059): 759–63.
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
57. Chung SS, Ahn BY, Kim M, et al.: SUMO modification selectively regulates transcriptional activity of peroxisome proliferator-activated receptor gamma in C2C12 myotubes. Biochem J. 2011; 433(1): 155–61.
PubMed Abstract | Publisher Full Text
58. Koo YD, Choi JW, Kim M, et al.: SUMO- Specific Protease 2 (SEN2P) Is an Important Regulator of Fatty Acid Metabolism in Skeletal Muscle. Diabetes. 2015; 64(7): 2420–31.
PubMed Abstract | Publisher Full Text | Free Full Text
59. Hauser S, Adelmarti G, Sarrà P, et al.: Degradation of the peroxisome proliferator-activated receptor gamma is linked to ligand-dependent activation. J Biol Chem. 2006; 281(24): 18527–33.
PubMed Abstract | Publisher Full Text | Free Full Text
60. Lee KW, Kwek SH, Koo YD, et al.: F-box only protein 9 is an E3 ubiquitin ligase of PPARgamma. Exp Mol Med. 2016; 48: e234.
PubMed Abstract | Publisher Full Text | Free Full Text
61. Li P, Song Y, Zan W, et al.: Lack of CUL4B in Adipocytes Promotes PPARgamma-Mediated Adipose Tissue Expansion and Insulin Sensitivity. Diabetes. 2017; 66: 300–13.
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
62. Lee KW, Cho JS, Kim CM, et al.: Herpesvirus-associated ubiquitin-specific protease (HAUSP) modulates peroxisome proliferator-activated receptor gamma (PPARgamma) stability through its deubiquitinating activity. J Biol Chem. 2013; 288(46): 32886–96.
PubMed Abstract | Publisher Full Text | Free Full Text
63. Kilroy G, Kirk-Ballard H, Carter LE, et al.: The ubiquitin ligase Siah2 regulates PPARalpha activity in adipocytes. Endocrinology. 2012; 153(3): 1266–1268.
PubMed Abstract | Publisher Full Text | Free Full Text
64. Ji S, Park SY, Roth J, et al.: O-GlcNAc modification of PPARalpha reduces its transcriptional activity. Biochem Biophys Res Commun. 2012; 417(4): 1158–63.
PubMed Abstract | Publisher Full Text
65. Jiang L, Wang L, Ken N, et al.: Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Ppary. Cell. 2012; 150(3): 620–32.
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
66. Higgins LS, Depaoli AM: Selective peroxisome proliferator-activated receptor gamma (PPARgamma) modulation as a strategy to modulate the diabetogenic actions of PPARgamma. Am J Clin Nutr. 2010; 91(1): 267S–72.
PubMed Abstract | Publisher Full Text
67. Depaoli AM, Higgins LS, Henry RR, et al.: Can a selective PPARgamma modulator improve glycemic control in patients with type 2 diabetes with fewer side effects compared with pioglitazone? Diabetes Care. 2014; 37(7): 1918–23.
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
68. Henriksen K, Birjaisen I, Osvit P, et al.: Efficacy and safety of the PPARgamma partial agonist balaglitazone compared with pioglitazone and placebo: a phase III, randomized, parallel-group study in patients with type 2 diabetes on stable insulin therapy. Diabetes Metab Res Rev. 2011; 27(4): 392–401.
PubMed Abstract | Publisher Full Text
69. Ming Y, Hu X, Song Y, et al.: CMX001, a novel peroxisome proliferator-activated receptor gamma partial agonist, enhances insulin sensitivity in vivo and in vitro. PLoS One. 2014; 9(7): e102102.
PubMed Abstract | Publisher Full Text | Free Full Text
70. Nissen SE, Wolski K, Topol EJ: Effect of muraglitazar on death and major adverse cardiovascular events in patients with type 2 diabetes mellitus. JAMA. 2005; 294(20): 2581–6.
PubMed Abstract | Publisher Full Text
71. Goldstein BJ, Rosenstock J, Anzalone D, et al.: Effect of tesaglitazar, a dual PPARalpha/gamma agonist, on glucose and lipid abnormalities in patients with type 2 diabetes: a 12-week dose-ranging trial. Curr Med Res Opin. 2006; 22(12): 2575–80.
PubMed Abstract | Publisher Full Text
72. Lincoff AM, Tardif JC, Schwartz GG, et al.: Effect of aleglitazar on cardiovascular outcomes after acute coronary syndromes patients with type 2 diabetes mellitus: the AleCAsio randomized clinical trial. JAMA. 2014; 311(5): 1515–25.
PubMed Abstract | Publisher Full Text
73. Jung Y, Cao Y, Paudel S, et al.: Antidiabetic effect of SN158 through PPARdelta dual activation in ob/ob mice. Chem Biol Interact. 2017; 268: 24–30.
PubMed Abstract | Publisher Full Text | Free Full Text
74. Wang L, Wallenberger B, Perschy-Wenzig EM, et al.: Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARgamma): a review. Biochem Pharmacol. 2014; 92(1): 73–89.
PubMed Abstract | Publisher Full Text | Free Full Text
75. An HJ, Lee B, Kim SM, et al.: A PPAR Pan Agonist, MYH2013 Alleviates Age-Related Hepatic Lipid Accumulation by Promoting Fatty Acid Oxidation and Suppressing Inflammation. Biochim Biophys Acta. 2018; 18(1): 29–35.
PubMed Abstract | Publisher Full Text | F1000 Recommendation
76. Huang Y, Powers C, Moore V, et al.: The PPAR pan-agonist bezafibrate ameliorates cardiomyopathy in a mouse model of Barth syndrome. Orphanet J Rare Dis. 2017; 12(1): 49.
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
77. Bougou B, Poupardin O, Barth M, et al.: Design, Synthesis, and Evaluation of a Novel Series of Indole Sulfonamide Peroxisome Proliferator Activated Receptor (PPAR) δ/γ Triple Activators: Discovery of Lanifibranor, a New Antibiotic Clinical Candidate. J Med Chem. 2018; 61(6): 2246–65.
PubMed Abstract | Publisher Full Text | F1000 Recommendation
Open Peer Review

Current Referee Status: ✔ ✔

Editorial Note on the Review Process

F1000 Faculty Reviews are commissioned from members of the prestigious F1000 Faculty and are edited as a service to readers. In order to make these reviews as comprehensive and accessible as possible, the referees provide input before publication and only the final, revised version is published. The referees who approved the final version are listed with their names and affiliations but without their reports on earlier versions (any comments will already have been addressed in the published version).

The referees who approved this article are:

Version 1

1 Alexander Orekhov Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russian Federation

Competing Interests: No competing interests were disclosed.

1 Laszlo Nagy 1,2, Attila Pap 2 1 SBP Medical Discovery Institute, Florida, USA

2 Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary

Competing Interests: No competing interests were disclosed.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com