ON A POINCARÉ POLYNOMIAL FROM KHOVANOV HOMOLOGY AND VASSILIEV INVARIANTS

NOBORU ITO AND MASAYA KAMEYAMA

Abstract. We introduce a Poincaré polynomial with two-variable \(t \) and \(x \) for knots, derived from Khovanov homology, where the specialization \((t, x) = (1, -1)\) is a Vassiliev invariant of order \(n \). Since for every \(n \), there exist non-trivial knots with the same value of the Vassiliev invariant of order \(n \) as that of the unknot, there has been no explicit formulation of a perturbative knot invariant which is a coefficient of \(y^n \) by the replacement \(q = e^y \) for the quantum parameter \(q \) of a quantum knot invariant, and which distinguishes the above knots together with the unknot. The first formulation is our polynomial.

1. Introduction

Vassiliev [6] introduces his ordered invariants by using singularity theory. For the space \(\mathcal{M} \) of all smooth maps from \(S^1 \) to \(\mathbb{R}^3 \), let \(\Sigma \) be the set of maps which are not embeddings. Then, a filtration of subgroups \(\{G_n\}_{n=1}^\infty \) of the reduced cohomology \(\tilde{H}^0(\mathcal{M} \setminus \Gamma) \) is introduced. An element in \(G_n \setminus G_{n-1} \) corresponds to an oriented knot \(K \) gives us a knot invariant, which is so-called a Vassiliev invariant of order \(n \). Birman and Lin [2] give a relation between the Jones polynomial and the Vassiliev invariant, i.e., for a one-variable polynomial \(U_x(K) \) obtained from the Jones polynomial by replacing the variable with \(e^x \), they show that for a power series \(U_x(K) = \sum_{n=0}^{\infty} u_n(K)x^n \), each \(u_n \) is a Vassiliev invariant of order \(n \) (Fact 1).

In this paper, we consider an analogue of this Birman-Lin argument using Khovanov homology as follows. For an oriented link \(L \), Khovanov [4] defines groups that are knot invariants and are so-called Khovanov homology \(H_{i,j}(L) \) such that \(J(L)(q) = \sum_{i,j} (-1)^i q^j \text{ rank } H_{i,j}(L) \), where \(J(L)(q) \) is a version of the Jones polynomial of \(L \). It implies the Khovanov polynomial \(\sum_{i,j} t^i q^j \text{ rank } H_{i,j}(L) = Kh(L)(t,q) \).

Using each coefficient \(v_n(K)(t, x) \) of \(y^n \) in \(Kh(L)(t,q)|_{q=xe^y} \), we have:

Theorem 1. Let \(l, m, \) and \(n \) be integers where \(2 \leq l < m < n \). Let \(v_n(K)(t, x) \) be a function as in Definition 4. Then, \(v_n(K)(-1,1) \) is a Vassiliev invariant of order \(n \) and there exists a set \(\{K_\mu\}_{\mu \geq 2} \) consisting of oriented knots such that for a given tuple \((l, m, n)\), \(v_n(K_l)(-1,1) = v_n(K_m)(-1,1) = v_n(\text{unknot})(-1,1) \) but \(v_n(K_l)(t, x) \neq v_n(K_m)(t, x), \) \(v_n(K_l)(t, x) \neq v_n(\text{unknot})(t, x), \) and \(v_n(K_m)(t, x) \neq v_n(\text{unknot})(t, x). \)

Date: May 16, 2019.

Key words and phrases. Jones polynomial; Vassiliev invariant; Khovanov polynomial.
Remark 1. If $n = 3$, $l = 2$, there exists an oriented knot K_2 such that $v_3(K_2)(-1, 1) = v_3(\text{unknot})(-1, 1)$ where $v_3(K_2)(t, x) \neq v_3(\text{unknot})(t, x)$. The proof is placed on the end of Section 3.

Remark 2. This $v_n(K)(t, x)$ equals $\sum_{i,j} \frac{j^n}{n!} t^i \text{rank } H^{i,j}(K) x^j$ (Lemma 1), which implies a triply graded homology $H^{i,j}(K)$ by assigning n to $H^{i,j}(K)$ that belongs to the coefficient of y^n, i.e., a formula

$$Kh(L)(t, xe^y) = \sum_{n=0}^{\infty} \sum_{i,j} \frac{j^n}{n!} t^i \text{rank } H^{i,j}(L) x^j y^n,$$

satisfying $Kh(L)(-1, e^y) = J_L(q)$ holds (cf. 11 of the proof of Lemma 1).

To the best our knowledge, there has been no explicit formulation of a perturbative knot invariant which is a coefficient of y^n obtained from the replacement $q = e^y$ of the quantum parameter q of a quantum knot invariant, and which distinguishes K_m ($m \leq n - 1$) of Theorem 1 (Figure 2) together with the unknot where the Vassiliev invariant cannot. The first formulation is our two-variable Poincaré polynomial $v_n(K_n)(t, x)$ which is introduced in this paper, and which is the coefficient of y^n and satisfies that the specialization $v_n(K_n)(-1, 1)$ is a Vassiliev invariant of order n. Further, it is interesting that though this polynomial invariant $v_n(K)(t, x)$ can detect the difference between K_m ($m \leq n - 1$) and the unknot, essentially, there exists a fixed number j_0 such that the coefficient $x^{j_0}y^n$ detect them (here, j_0 is actually the lowest degree of x in $v_n(K)(t, x)$). It implies that an information of the j-grade of $v_n(K)(t, x)$ is useful (for the detail, see Section 3). In the literature, this usefulness of the grade implicitly appeared in a work of Kanenobu-Miyazawa [3], they showed that $V^{(n)}_K(1)$ is a Vassiliev invariant by using the nth derivative of the Jones polynomial $V_K(q)$.

The plan of the paper is as follows. We will prove Theorem 1 (Section 3) after we obtain definitions and notations (Section 2). In Section 4 we give a table of our function $v_{n,j}(K)(t, x)$ and its sum $v_n(K)(t, x)$.

2. Preliminaries

2.1. The Jones polynomial and the Vassiliev invariant.

Definition 1 (normalized Jones polynomial). Let L be an oriented link. The Jones polynomial $V_L(r)$ is well-known, which is a polynomial in $\mathbb{Z}[r^{1/2}, r^{-1/2}]$ that is determined by an isotopy class of L. The Jones polynomial $V_L(r)$ is defined by

$$V_{\text{unknot}}(r) = 1,$$

$$r^{-1}V_{L_+}(r) - rV_{L_-}(r) = (r^{1/2} - r^{-1/2})V_{L_0}(r),$$

where links L_+, L_-, and L_0 are defined by Figure 4 and where Figure 4 corresponds to local figures are included on a neighborhood and the exteriors of the three neighborhoods are the same.
Definition 2 (unnormalized Jones polynomial). Letting $q = -r^{1/2}$, we define an unnormalized Jones polynomial $J_L(q)$ by

$$J_L(q)|_{q=-r^{1/2}} = (-r^{1/2} - r^{-1/2})V_L(r).$$

By definition, $J_L(q)$ is a polynomial in $\mathbb{Z}[q, q^{-1}]$ that is determined by an isotopy class of L. Let L_+, L_-, and L_0 be as in Definition 1. Then, the polynomial $J_L(q)$ satisfies

$$J_{\text{unknot}}(q) = q + q^{-1},$$

$$q^{-2}J_{L_+}(q) - q^{2}J_{L_-}(q) = (q^{-1} - q)J_{L_0}(q).$$

Fact 1 (Birman-Lin, Theorem of [2]). Let K be a knot and let $V_K(r)$ be its Jones polynomial as in Definition 1. Let $U_x(K)$ be obtained from $V_K(r)$ by replacing the variable r by e^x. Express $U_x(K)$ as a power series in x:

$$U_x(K) = \sum_{i=0}^{\infty} u_i(K)x^i.$$

Then, $u_0(K) = 1$ and each $u_i(K)$, $i \geq 1$ is a Vassiliev invariant of order i.

2.2. A polynomial invariant from Khovanov polynomial.

Definition 3. Let L be a link and $H_{i,j}(L)$ the Khovanov homology group of L. The Khovanov polynomial is defined by

$$Kh(L)(t, q) = \sum_{i,j} t^i q^j \text{rank } H_{i,j}(L).$$

Definition 4 (two-variable polynomials). Let $Kh(K)(t, q)|_{q=xe^y}$ be a polynomial obtained from the Khovanov polynomial $Kh(K)(t, q)$ by replacing the variable q with xe^y. Then, let $v_n(K)(t, x)$ the coefficient of y^n and let $v_{n,j}(K)(t, x)$ be (the coefficient of $x^j y^n$) · x^j.

By definition, $v_n(K)(t, x) = \sum_{j} v_{n,j}(K)(t, x)$. It is clear that every $v_{n,j}(K)(t, x)$ is a link invariant, which implies that $v_n(K)(t, x)$ is also a link invariant. Definition 3 and Definition 4 imply Lemma 1.

Lemma 1.

$$v_{n,j}(K)(t, x) = \frac{j^n}{n!} \sum_i t^i \text{rank } H_{i,j}(K) x^i.$$

As a corollary,

$$v_n(K)(t, x) = \sum_{i,j} \frac{j^n}{n!} t^i \text{rank } H_{i,j}(K) x^j.$$
Proof:

\[Kh(L)(t, xe^y) = \sum_j (e^y)^j x^j \sum_i t^i \text{rank } \mathcal{H}^{i,j}(L) \]

\[= \sum_j \sum_{n=0}^{\infty} \frac{(jy)^n}{n!} x^j \sum_i t^i \text{rank } \mathcal{H}^{i,j}(L) \]

\[= \sum_j \sum_{n=0}^{\infty} \frac{j^n}{n!} \sum_i t^i \text{rank } \mathcal{H}^{i,j}(L) x^j y^n. \]

Then, the coefficient of \(x^j y^n \) is \(\sum_{n=0}^{\infty} \frac{j^n}{n!} \sum_i t^i \text{rank } \mathcal{H}^{i,j}(L) \). This fact together with Definition 3 of \(v_{n,j}(K)(t, x) \), we have

\[v_{n,j}(K)(t, x) = \frac{j^n}{n!} \sum_i t^i \text{rank } \mathcal{H}^{i,j}(L) x^j. \]

As a corollary,

\[v_n(K)(t, x) = \sum_j v_{n,j}(K)(t, x) = \sum_{i,j} \frac{j^n}{n!} t^i \text{rank } \mathcal{H}^{i,j}(K) x^j. \]

\[\square \]

Lemma 2. The integer \(v_n(K)(-1, 1) \) is a Vassiliev invariant of order \(n \).

As a corollary, every Vassiliev invariant of order \(n \) has a presentation

\[v_n(K)(-1, 1) = \sum_j v_{n,j}(K)(-1, 1). \]

Proof. Using the above proof of Lemma 3 setting \(x = 1 \) and \(t = -1 \), we have

\[J(L)(q)|_{q=e^y} = Kh(L)(-1, e^y) = \sum_j \sum_{n=0}^{\infty} \frac{j^n}{n!} \sum_i (-1)^i \text{rank } \mathcal{H}^{i,j}(L) y^n. \]

The coefficient of \(y^n \) is \(\sum_j \sum_{n=0}^{\infty} \frac{j^n}{n!} \sum_i (-1)^i \text{rank } \mathcal{H}^{i,j}(L) \), which is \(v_n(K)(-1, 1) \). Then, by the same argument as [2, Proof of Theorem 4.1] of Birman-Lin, it is elementary to prove that the coefficient of \(y^n \) of \(J(L)(q)|_{q=e^y} \) is a Vassiliev invariant of order \(n \). This fact and Lemma 3 imply the formula of the claim. \(\square \)

3. A proof of Theorem 3

Since Lemma 2 holds, we should the latter part of the claim. For this proof, we use notations and definitions of Khovanov homology as in [7]. Although it is sufficient to use \(\mathbb{Z}/2\mathbb{Z} \)-homology, here we use \(\mathbb{Z} \)-homology to avoid adding notations of symbols. We recall that a chain group \(C^{i,j}(D) \) of an oriented link diagram \(D \). In particular, for each enhanced state of \(C^{i,j}(D) \), \(i(S) = \frac{w(D) - \sigma(s)}{2} \) and \(j(S) = w(D) + i(S) + \tau(S) \) (for definition of a state \(s \), an enhanced state \(S \), the writhe number \(w(D) \), a sum \(\sigma(s) \) of signs, and a sum \(\tau(S) \) of signs, see [7]).

Let \(m \) be a positive integer \((m \geq 2) \) and \(K_n \) a knot with a fixed \(m \) that is defined by Figure 2. It is well-known that for every Vassiliev invariant \(v_n \) of order \(n \), \(v_n(\text{unknot}) = 0 \) and \(v_n(K_m) = 0 \) \((m \leq n - 1) \) [5], which implies that \(v_n(K_1)(-1, 1) = v_n(K_0)(-1, 1) = v_n(\text{unknot})(-1, 1) \) (\(\therefore \) Lemma 2).

Let \(D_m \) be a knot diagram defined by Figure 2, \(s_n \) a state defined by Figure 3(a), and \(S_n \) a state defined by Figure 3(b).

Figure 2. A diagram of a knot K_m.

Figure 3. (a) the state s of K_m (each short edge indicates the direction of smoothing of a crossing) and (b) the enhanced state S of K_m (each sign indicates a sign of a circle).

Note that by the definition of this \mathbb{Z}-homology, S_m obtains the minimum number of degree i is $-2m$ and the minimum number of degree j is $-4m - 1$ as follows:

$$w(D_m) = 0,$$

$$i(S_m) = \frac{0 - 4m}{2} = -2m, \text{ and}$$

$$j(S_m) = 0 + (-2m) + (-1 - 2m) = -4m - 1.$$

Note also that by the definition of the differential $d : C^{i,j}(D) \to C^{i+1,j}(D)$, $d^{-2m}(S_m) = 0$ and $\text{Im} d^{-2m-1} = 0$. Then, for each $m \geq 2$,

$$(2) \quad \mathcal{H}^{-2m,-4m-1}(K_m) = \mathbb{Z}.$$

By Lemma 1,

$$v_{n,j}(K)(t, x) = \sum_i t^i \text{ rank } \mathcal{H}^{i,j}(K) x^i.$$

We focus on the minimum number of i that is $-2m$, and the minimum number of j that is $-4m - 1$. Setting $i = -2m$ and $j = -4m - 1$, the coefficient of $t^{-2m}x^{-4m-1}$
in $v_{n,-4m-1}(K)(t,x)$ is

\[
\frac{(-4m-1)^n}{n!} \text{rank } \mathcal{H}^{-2m,-4m-1}(K).
\]

Then, (2) implies

\[
\frac{(-4m-1)^n}{n!} \text{rank } \mathcal{H}^{-2m,-4m-1}(K_m) = \frac{(-4m-1)^n}{n!}.
\]

Thus, for every pair l, m ($2 \leq l < m$), $v_{n,-4l-1}(K_l)(t,x) = \frac{(-4l-1)^n}{n!} \neq \frac{(-4m-1)^n}{n!} = v_{n,-4m-1}(K_m)(t,x)$. Here, recall that for the unknot, it is well-known that $Kh(\text{unknot})(t,q) = q^{-1} + q$, which implies that there is no non-trivial coefficient of t^k ($k \neq 0$), i.e., any non-trivial part corresponds to the coefficient $q + q^{-1}$, which belongs to the coefficient of t^0. It implies $v_{n,-4l-1}(K_l)(t,x) \neq v_{n,-4l-1}(\text{unknot})(t,x)$ and $v_{n,-4m-1}(K_m)(t,x) \neq v_{n,-4m-1}(\text{unknot})(t,x)$.

Note that for every knot K_j ($2 \leq l$), the minimum number of j is $-4l - 1$, by always focusing on the lowest degree of x in $v_n(K)(t,x) = \sum_j v_{n,j}(K)(t,x)$, the above argument works since the coefficient of the lowest degree of x exactly equals $v_{n,-4l-1}(K)(t,x)$. Therefore, by focusing the case $j = -4l - 1$ or the case $j = -4m - 1$, for every pair l, m ($2 \leq l < m$), $v_{n}(K_l)(t,x) \neq v_{n}(K_m)(t,x)$, $v_{n}(K_l)(t,x) \neq v_{n}(\text{unknot})(t,x)$ and $v_{n}(K_m)(t,x) \neq v_{n}(\text{unknot})(t,x)$ since for each case, two lowest degrees are different. It completes the proof of Theorem 1.

Proof of Remark 1 Note that the coefficient of $t^{-2}2x^{-4}2^{-1}$ in $v_{3,-9}(K_2)(t,x)$ is $\frac{(-4-2)^{3}}{3!}$. Thus, $v_{3,-9}(K_2)(t,x) \neq v_{3,-9}(\text{unknot})(t,x)$. By focusing on the lowest degree of x in $v_{3}(K)(t,x) = \sum_j v_{3,j}(K)(t,x)$, we have the statement of Remark 1.

4. Table

We give some examples of the Khovanov polynomial and the two-variables polynomials for a few prime knots. We use the data of the Khovanov polynomial in the Mathematica package KnotTheory [1] and attach a Mathematica file to arXiv page.

Knot	3_1
Kh	$q^3t^3 + q^4t^4 + q^4 + q$
v_0	$t^3x^3 + t^4x^4 + x^3 + x$
v_1	$9t^2x^5 + 5t^2x^6 + 3x^5 + x$
v_2	$81t^2x^7 + 25t^2x^8 + 9x^7 + \frac{x}{6}$
v_3	$216t^2x^8 + 129t^2x^9 + 9x^8 + \frac{x}{2}$
v_4	$2187t^2x^9 + 6225t^2x^{10} + 27x^9 + \frac{x}{2}$
v_5	$19683t^2x^{10} + 6225t^2x^{11} + 81x^{10} + \frac{x}{10}$
Knot 4_1

Kh	$q^4t^2 + \frac{1}{q}t^2 + qt + \frac{1}{q}t + q + \frac{q}{t}$
v_0	$t^4x^3 + \frac{2}{2}tx + tx + \frac{1}{2}x + \frac{1}{2}$
v_1	$5t^2x^5 - \frac{9}{2}tx^2 + tx - \frac{1}{2}x - \frac{1}{2}$
v_2	$\frac{25t^2x^5}{2} + 25tx^2 + tx + \frac{1}{2}x + \frac{1}{2}$
v_3	$\frac{125t^2x^5}{4} - \frac{25}{2}tx^2 + \frac{1}{2}x + \frac{1}{2}$
v_4	$\frac{625t^2x^5}{8} + 625t^2tx^2 + tx + \frac{1}{2}x + \frac{1}{2}$
v_5	$\frac{625t^2x^5}{24} + 625t^2tx^2 + tx + \frac{1}{2}x + \frac{1}{2}$

Knot 5_1

Kh	$q^4t^4 + q^3t^3 + q^2t^2 + q^2t^2 + q^2t + q^3 + q$
v_0	$t^4x^{15} + t^3x^{11} + t^2x^{11} + t^2x^3 + x^3 + x^2$
v_1	$15t^5x^{15} + 11t^4x^{11} + 11t^3x^{11} + 7t^2x^3 + 5tx^3 + 3x^3$
v_2	$25t^5x^5 - 121t^4x^{11} + 121t^3x^{11} + 49t^2x^3 + 25x^3 + 9x^2$
v_3	$1125t^5x^5 + 1331t^3x^{11} + 1331t^3x^{11} + 54t^2x^3 + 125x^3 + 9x^2$
v_4	$16875t^5x^{11} + 14641t^3x^{11} + 14641t^3x^{11} + 240t^2x^3 + 625x^3 + 27x^2$
v_5	$50625t^5x^{11} + 161051t^3x^{11} + 161051t^3x^{11} + 16807t^2x^3 + 625t^2x^3 + 81t^2x^3$

Knot 5_2

Kh	$q^4t^5 + q^5t^4 + q^2t^3 + q^2t^2 + q^2t + q^3 + q$
v_0	$t^5x^3 + t^4x^3 + t^3x^3 + t^4x^3 + t^2x^3 + x^3 + x^2$
v_1	$13t^5x^3 + 9t^4x^3 + 9t^3x^3 + 7t^2x^3 + 5t^2x^3 + 3tx^3 + 3x^3 + x$
v_2	$169t^5x^3 + 81t^4x^3 + 81t^3x^3 + 49t^2x^3 + 25t^2x^3 + 9x^3 + 3x^2 + \frac{x^2}{2}$
v_3	$1297tx^{11} + 243tx^{11} + 243tx^{11} + 343tx^{11} + 125tx^{11} + 9tx^{11} + 9x^2 + 3x^2 + \frac{x^2}{2}$
v_4	$1297tx^{11} + 243tx^{11} + 243tx^{11} + 343tx^{11} + 125tx^{11} + 9tx^{11} + 9x^2 + 3x^2 + \frac{x^2}{2}$
v_5	$51293t^5x^{11} + 19683t^5x^{11} + 19683t^5x^{11} + 16807t^2x^3 + 625t^2x^3 + 31t^2x^3 + \frac{x^2}{2}$

Knot 6_1

Kh	$q^6t^4 + q^5t^4 + q^3t^4 + q^3t^4 + q^3t + q + \frac{q}{t}$
v_0	$t^4x^3 + t^3x^3 + t^3x^3 + t^3x^3 + t^3x^3 + 0 + x^3 + \frac{x^3}{2}$
v_1	$9t^5x^3 + 5t^5x^3 + 5t^5x^3 - \frac{15}{2}tx^3 + 3tx^3 + tx - \frac{1}{2}x + \frac{1}{2}$
v_2	$81t^2x^3 + 25tx^3 + 25tx^3 + \frac{25}{2}tx^3 + 9tx^3 + \frac{tx}{2} + \frac{x}{2} + \frac{1}{2} + \frac{1}{2}$
v_3	$243t^2x^3 + 129tx^3 + 129tx^3 - 125 \frac{9tx}{2} + tl + \frac{1}{2} + \frac{1}{2}$
v_4	$2187tx^{11} + 625tx^{11} + 625tx^{11} + 625tx^{11} + 27tx^3 + \frac{tx}{2} + \frac{x}{2} + \frac{1}{2}$
v_5	$1683t^5x^{11} + 625tx^{11} + 625tx^{11} + 625tx^{11} + 27tx^3 + \frac{tx}{2} + \frac{x}{2} + \frac{1}{2}$
T. Kanenobu and Y. Miyazawa, HOMFLY polynomials as Vassiliev invariants, Bull. Polish Acad. Sci. Inst. Math., Warsaw, 40, 1992, 240–242.

3. T. Kanenobu and Y. Miyazawa, HOMFLY polynomials as Vassiliev invariants, Knot theory (Warsaw, 1995), 165–185, Banach Center Publ., 42, Polish Acad. Sci. Inst. Math., Warsaw, 1998.

4. M. Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000), 359–426.

5. Y. Ohyama, Vassiliev invariants and similarity of knots, Proc. Amer. Math. Soc. 123 (1995), 287–291.

6. V. A. Vassiliev, Cohomology of knot spaces, Theory of singularities and its applications, 23–69, Adv. Soviet Math., 1, Amer. Math. Soc., Providence, RI, 1990.

7. O. Viro, Khovanov homology, its definitions and ramifications, Fund. Math. 184 (2004), 317–342.

8. M. Aganagic and S. Shakirov. Knot homology and refined Chern-Simons index. Commun. Math. Phys. 333(1) (2015): 187–228.