Synchronous dissection of chloroplast and mitochondrial genomes remolds the intra- and inter-genus phylogeny for the agriculturally important genus *Brassica*

CURRENT STATUS: UNDER REVISION

DOI: 10.21203/rs.2.17554/v1

SUBJECT AREAS
KEYWORDS
Brassica, rapeseed, cytoplasmic DNA, maternal origin, evolutionary relationship, cytoplasmic male sterility
Abstract
Background: The genus Brassica mainly comprises three diploid and three recently derived allotetraploid species, most of which are highly important vegetable, oil or ornamental crops cultivated worldwide. Despite being extensively studied, the origination of the allotetraploid crops and the overall phylogeny of Brassica genus are still far from completely resolved, which has greatly hindered the development of novel Brassica crops. Here, we target and integrate the chloroplast DNA and mitochondrial DNA to investigate the genetic diversity and relationships in large plant populations centering on Brassica genus.

Results: The phylogenetic analyses based on a data set including 72 de novo assembled whole chloroplast genomes, delineated a comprehensive evolutionary atlas inside and around Brassica genus. The maternal origin of both B. juncea and B. carinata are monophyletic from cam-type B. rapa and B. nigra, respectively. Nonetheless, the current B. napus contains three major cytoplasmic haplotypes: the cam-type which directly inherited from B. rapa, polima-type which is close to cam-type as a sister, and the predominant nap-type. Intriguingly, nap-type seems phylogenetically integrated with certain sparse C-genome wild species, thus implying that which may have primarily contributed the cytoplasm and the corresponding C subgenome to B. napus. Human breeding creation of the B. napus cytoplasmic male sterile lines (e.g., mori and nsa) dramatically disturbed the concurrent inheritance between mtDNA and cpDNA. Strong parallel evolution among genera Raphanus, Sinapis, Eruca, Moricandia with Brassica indicates their uncomplete divergence from each other.

Conclusions: The overall variation data and elaborated phylogenetic relationships obtained herein can substantially facilitate the development of novel Brassica crops, e.g. the allotetraploid rapeseed with new cytonuclear integrations and the allohexaploid rapeseed.

Background
The genus Brassica in Brassicaceae family is one of the most agriculturally important plant genera worldwide, which mainly comprises three diploid and three allotetraploid species, as described in the well-established genetic model of U’s Triangle [1]. Brassica napus (AACC, 2n = 38), B. juncea (AABB, 2n = 36) and B. carinata (BBCC, 2n = 34) are thought to be generated by interspecific hybridizations.
between each two of the three basic diploid progenitors: *B. rapa* (AA, 2n = 20), *B. oleracea* (CC, 2n = 18) and *B. nigra* (BB, 2n = 16). The abundant genomic and phenotypic diversifications have given rise to highly diverse crops of vegetable, oil, ornamental, fodder and fertilizer use. For example, cabbage (*B. oleracea* var. *capitata*), broccoli (*B. oleracea* var. *italica*), cauliflower (*B. oleracea* var. *botrytis*) and turnip (*B. rapa* ssp. *rapa*) are of vegetable use; *B. rapa* (ssp. *oleifera*), *B. juncea*, *B. napus* and *B. carinata* are of seed oil use. To date, *B. napus* (rapeseed) has become the second largest vegetable oil crop worldwide [2]. Recently, the release of several reference genome sequences have brought *Brassica* as a new ideal model genus for studying polyploidy genomes [3–7].

B. napus is supposed to originate from certain kind of hybridization between *B. rapa* and *B. oleracea*, which co-existed in European Mediterranean coastwise regions, at approximately 10,000 years ago [4]. Then it has diffused worldwide (mainly to Asia, America and Australia), and eventually formed several ecological and morphological types, which mainly include winter, spring and semi-winter ecotypes or oil-use, root-tuberous and leafy morphotypes. Recently, extensive resequencing studies concerning the mechanisms for the progenitors, evolution and improvement of this versatile crop have been performed. Phylogenomic analyses combining diverse *B. napus* and its potential progenitors revealed that winter type rapeseed might be the original form of *B. napus*, European turnip ancestor might donate the A subgenome, the C subgenome may evolve from the common ancestor of kohlrabi, cauliflower, broccoli, and Chinese kale [8]. The A and C subgenomes evolved asymmetrically and higher genetic diversity was identified in A subgenome [9]. Nonetheless, frequent post-formation introgression events occurred during human breeding and generally confused the recovery of the origination trajectory of *B. napus*. To date, how *B. napus* originated and then stabilized at genomic level remain largely unresolved, the A-C subgenome interacting mechanisms are fascinating and need to be finely elucidated.

Cytoplasmic DNA in plant cell, especial for chloroplast DNA (cpDNA), are structurally simple with a small genome size (100 - 300 kb) and stably inherited mostly in a uniparental pattern with much less recombinant variation [10]. Thus, it has been extensively employed in phylogenetic studies, especially for exploring the maternal origin [11–14]. Genotyping by using six chloroplast SSR primer
pairs or TILLING analysis, one most prevalent cpDNA haplotype was identified in *B. napus* [15, 16]. While, the *B. napus* of this same cpDNA haplotype generally formed an ambiguous clade, which did not group with the investigated *B. rapa* or *B. oleracea* accessions [17]. A few *B. napus* accessions were grouped with the majority of *B. rapa* accessions suggested another independent cytoplasmic origin from *B. rapa* [9, 18]. Both the cpDNA and mtDNA phylogenetic studies revealed that the cytoplasm of *B. juncea* (AABB genome) and *B. carinata* (BBCC genome) originated from *B. rapa* (AA genome) and *B. nigra* (BB genome), respectively [17–20]. The mitochondrial DNA (mtDNA) of *B. napus* has drawn much more attention for the extensive application of its cytoplasmic male sterility (CMS) lines in hybrid breeding, mainly containing polima (*pol*), cam and nap mitotypes in the natural resources. *Pol* mitotype was inferred to be derived from *B. rapa cam* mitotype with certain evolutionary modifications. *Nap* mitotype is predominant, while it remains unsolved and were supposed also from an unidentified or lost mitotype of *B. rapa* [19]. However, the *nap* mitotype was further judged to be derived from *B. oleracea*, since it was phylogenetically grouped with botrytis-type and capitata-type *B. oleracea* [20].

Apparently, the current above conclusions regarding the maternal origin of *nap*-type *B. napus* are still ambiguous and controversial. Previous cpDNA and mtDNA-based studies were separated and need to be corresponded and integrated to finely dissect the multiply origin of *B. napus* cytoplasm. Cytoplasmic DNA and its corresponding cytonuclear interactions, are highly valuable for crop breeding not only due to its cause of cytoplasmic male sterility [21], but also in regulating certain agricultural traits, e.g., seed oil content in rapeseed [22] and plant resistance to adverse living conditions. Here in this study, a well-chosen set of both the chloroplast and mitochondrial DNA from the materials centering on *Brassica* genus were sequenced to dissect their genetic diversity, a detailed phylogenetic pedigree at a lower taxonomic level has been constructed to try to recover the originating and evolving trajectories of *Brassica* crops.

Results

Genotyping, sequencing and assembly of diverse cytoplasmic DNA haplotypes centering on *Brassica* genus

To distinguish the cytoplasmic DNA (cpDNA and mtDNA) haplotypes within *Brassica* genus,
genotyping analysis through High Resolution Melting (HRM) method were performed within our germplasm collection of Brassica crops (Figure S1). Primers were designed being targeted on a set of intra/inter-specific cpDNA polymorphic sites that are identified previously [16] (Table S2). Three major haplotypes were identified in approximately 480 worldwide B. napus accessions (Table S1). Two major cpDNA haplotypes were identified in 180 B. rapa accessions, while 180 B. juncea accessions seem to contain one major cpDNA haplotype. B. oleracea, B. carinata, B. nigra, B. maurorum (MM, 2n = 16), certain wild C-genome relatives and three B. napus cytoplasmic male sterility (CMS) lines were directly treated as each with a distinct haplotype for subsequent genome sequencing. B. cretica, B. incana, B. insularis and B. villosa represent the wild C-genome relatives. The CMS lines are polima [23, 24], nsa [25] and mori [26, 27]. Certain relative materials, i.e. Raphanus sativus, Sinapis arvensis and Moricandia arvensis, were also included to enrich this study.

Cytoplasmic DNA was synchronously isolated from those accessions that represent for the major cytoplasmic haplotypes and morphological varieties (Table 1), using an optimized organelle isolation procedure (Materials and Methods), which can substantially remove nuclei and balance the proportion of cpDNA and mtDNA content. Reads mapping analysis demonstrated that the isolated total DNA contains an average ratio of 37.2% chloroplast DNA and 3.4% mitochondrial DNA, respectively, approximately 5–10 times higher than the ratio of cytoplasmic DNA in the total leaf DNA [28]. The cytoplasmic DNA mixture was then subjected to high-throughput sequencing with high depth (> 500x, Table 1). The obtained paired-end reads (150 bp) were directly mapped to a tandem sequence gather, which consists of 10 published chloroplast genome sequences all over Brassicaceae family. The mapped reads were extracted and de novo assembled by SOAPdenovo software package [29]. Generally, two or three large contigs were eventually generated for chloroplast genomes. Gaps were directly filled through manual jointing of the overlapping ends between each two contiguous contigs, and then verified by Sanger sequencing of the gap-spanning PCR fragments. All the obtained chloroplast genome sequences are provided in Additional file 3.

General information of the genome-wide cpDNA and mtDNA variants in Brassica

The chloroplast and mitochondrial genome sequences of a B. napus strain 51218 [22] (GenBank:
KP161617.1), which is an intermediate breeding material of nap mitotype, were respectively used as references to call the overall cpDNA and mtDNA basic variants for all the sequenced materials. The calling was conducted by standard BWA/Genome Analysis Toolkit (GATK) pipeline with manual inspection [30], and further randomly verified by Kompetitive Allele Specific PCR (KASP) analysis. A total of approximately 4700 reliable basic polymorphic sites, including 3880 SNP and 820 InDels, were identified for all the sequenced chloroplast haplotypes in Brassica genus. While, approximately 3400 polymorphic sites (2700 SNP and 700 InDels) were identified for the mitochondrial haplotypes (Table S3). The average SNP density in the whole chloroplast and mitochondrial genomes was 25 and 12 SNPs per kilo base (kb), respectively. The chloroplast variants were uniformly distributed along the reference genome, except the two 26-kb large inverted repeat regions, IRa and IRb (Figure 1). The mitochondrial variants showed a comparatively even distribution pattern along the reference genome; however, the variation frequencies are obviously much higher at the regions containing the open reading frame (ORF) genes (Figure 2).

Among the overall variants, 13.9 % and 18.1 % of them were identified as nonsynonymous for 47 cpDNA coding genes and 61 mtDNA coding genes, respectively. The materials of two B. napus mitochondrial haplotypes, below known as cam- and polima-types, possess approximately 300 basic variants when referring to the typical nap-type B. napus strain 51218 mitochondrial genome. Polima-type is close to cam-type with a difference of only about 50 conserved cpDNA variants (Table S3). Consistent difference patterns were also found for cpDNA variants as for the three cytoplasmic types. KASP analysis using the primers targeted to the mitochondrial and chloroplast haplotype-specific polymorphic sites showed that nap, cam and polima cytoplasms accounted for 87.1%, 7.2% and 5.7% in a germplasm collection containing 480 worldwide B. napus accessions (Figure S2), basically corresponding to the above mentioned cpDNA genotyping results by HRM method. Undoubtedly, nap-type is the predominant cytoplasmic DNA haplotype, which ought to be the predominant haplotype identified in previous studies [15, 16]. Most of the B. rapa materials are of the same cam-type in B. napus, KASP analysis showed that another major haplotype accounted for a frequency of approximately 5.8% in the investigated B. rapa population. This haplotype was named as sarson-type
hereinafter, since here we found that it mainly exists in *B. rapa var. sarson* accessions.

Intra-genus phylogeny within *Brassica* genus based on whole chloroplast genomes

Analyses based on whole chloroplast genomes or genome-wide variations instead of partial cpDNA fragments can infer a phylogeny that is much closer to the natural truth and with high resolution and reliability, even at lower taxonomic levels [14]. To forecast the evolutionary trajectories for *Brassica* crops, all the above-obtained whole chloroplast genomes were subjected to phylogenetic analysis. The phylogenetic trees tentatively conducted using the Maximum Likelihood method, neighbor-joining method and Bayesian method were almost identical. The trees comprising materials throughout each intra-species, *Brassica* genus and *Brassicaceae* family, respectively, were conducted stepwise by Maximum Likelihood method [31].

Chloroplast genome sequences of *Raphanus sativus, Isatis tinctoria, Matthiola incana* and *Arabidopsis thaliana* in *Brassicaceae* family (Data from NCBI, Additional file 3) served as outgroup to root the intra-specific trees. The results indicated that 13 *B. rapa* accessions, 14 *B. juncea* accessions, 24 *B. napus* accessions and 13 C-genome species each clustered well and were separately integrated into a species-specific group. The *B. rapa* separated a little branch containing only two accessions, which were classified as *sarson*-type cytoplasm (Figure S3). The *B. juncea* accessions did not diverge any secondary branches, indicating a lack of cytoplasmic genetic diversity (Figure S4). The *B. napus* cluster were split into two large branches, one branch containing the *nap*-type lines (e.g., the nuclear-genome sequenced cultivars Darmor and ZS11), another branch further split into two little branches, containing *cam*-type (e.g., Shengli Rape/AC32) and *polima*-type (e.g., Jianyang Rape/AC399) lines, respectively (Figure S5). All the investigated cultivated *B. oleracea* (e.g., Cauliflower, Broccoli, Cabbage, Kohlrabi) and part of the wild *B. oleracea* were shown with one nearly identical chloroplast genome sequence. However, the C-genome wild relatives (*B. villosa, B. insularis, B. cretica* and *B. incana*) each contains a distinct haplotype and seem to possess abundant genetic diversity. All the C-genome species demonstrated a hierarchically clear pedigree from *B. villosa* stepwise to the cultivated *B. oleracea* (Figure S6).
A part of the above intra-specific materials were selected capable of maximumly representing each their intraspecific genetic diversities, and then together with *Brassica nigra*, *B. carinata* and *B. maurorum*, were combined to construct a larger tree comprising of materials all over *Brassica* genus. The cpDNA sequence data for materials Root mustard-1 (*B. juncea*), Sarsons-1 (*B. rapa*), Broccoletto-3 (*B. rapa*), Black mustard (*B. juncea*) and Ethiopian mustard (*B. carinata*) were added from Li et al., [18] to enrich the whole phylogenetic tree. The results indicated that *Brassica* genus was mainly divided into three clades, from which the maternal origin of the three natural allotetraploid species can be clearly inferred (Figure 3). All the *B. rapa*, *B. juncea* and quite a few *B. napus* accessions of both *cam-* and *polima*-type constitute Clade I, which further diverged two little branches containing *B. rapa* ssp. *trilocularis* (Sarsons) and *polima*-type *B. napus*, respectively. Three *B. juncea* accessions clustered only in Clade I without any further divergence from their co-clustered *B. rapa* accessions, thus indicating that *B. juncea* likely has a monophyletic maternal origin from *cam*-type *B. rapa*. Clade II comprises all the *B. oleracea* lines and other wild C-genome species, parallelly branched with Clade I. The branch, which comprises only the *B. napus* accessions with a same *nap* cytoplasmic type, is inserted in the middle of Clade II and separated certain C-genome wild relatives (*B. insularis* and *B. villosa*) from the remaining part, which contains all *B. cretica*, *B. incana* and the cultivated *B. oleracea*. Clade III comprises mainly *B. nigra*, *B. carinata* and *B. maurorum* accessions, indicating that *B. carinata* likely has a monophyletic maternal origin from *B. nigra*. The major cytoplasmic haplotype of *B. nigra* was designated as *nigra*-type cytoplasm. The wild species *B. maurorum* had been reported to be close to the B-genome species [32] and seems evolved earlier than all the remaining part in Clade III. The topological branches in this tree displayed a clear hierarchical pedigree from Clade III to Clade I (Figure 3). Taken together, Unlike *B. juncea* and *B. caritana*, the allotetraploid species *B. napus* were dispersedly distributed in the *B. rapa* and *B. oleracea* clusters, suggesting its diverse maternal origin from A-genome *B. rapa* and certain C-genome *Brassica* species (2n = 18), respectively.

Evolutionary relationships among Brassica and its relative genera

Unexpectedly, *Raphanus sativus* was inserted between Clade II and Clade III and bidirectionally close
to *B. villosa* and *B. maurorum* in the *Brassica* phylogenetic tree (Figure 3), suggesting that *Raphanus* genus was associated with *Brassica* phylogeny, at least at cytoplasmic DNA level. To explore whether any more other genus (or species) also mingle with *Brassica* genus, a phylogenetic tree containing 54 (Thirteen in and 41 beyond *Brassica* genus) chloroplast genome sequences in *Brassicaceae* family was constructed (Figure 4). The tree displays an evolutionary pedigree of clear hierarchical architecture. The *Brassicaceae* family was divided into at least two large lineages, containing *Arabidopsis*/*Matthiola* and *Draba/Brassica* genera, respectively, which is congruent with previous studies [33, 34]. The results identified another three materials, *Eruca sativa*, *Moricandia arvensis* and *Sinapis arvensis*, which were also tightly integrated with the evolution of *Brassica* genus. *Eruca sativa* and *Moricandia arvensis* were located at the same position as *Raphanus sativus*, while three our sequenced and one public *Sinapis arvensis* (*Sinapis*-4) accessions displayed a scattered distribution fully merged together with the B-genome containing species in Clade III. These findings imply a tight evolutionary association among *Brassica* and these relatives. *Cakile arabica*, *Orychophragmus diffusus*, *Alliaria grandifolia*, *Isatis tinctona* and *Scherenkiella parvula* in Clade IV were shown to be close to *Brassica* cluster at cytoplasmic DNA level. Successful germplasm development through inter-specific sexual or somatic hybridization between *Brassica* species with *Orychophragmus violaceus* or *Isatis tinctona* [35, 36] could illustrate that the species in Clade IV are fairly close to *Brassica*.

Uncoupled evolution of mtDNA with cpDNA in *B. napus* CMS lines

Mitochondrial genome represents another half set of cytoplasmic DNA. To ascertain how about the *Brassica* phylogeny if being inferred based on mtDNA, the segmented sequences containing the mitochondrial allelic variants from each corresponding material inside and around *Brassica* genus were extracted and concatenated as each separate intact sequence. All the assembled sequences were subjected to phylogenetic analysis according to the above procedure used for chloroplast genomes. The obtained mitochondrial tree (Figure 5) displayed a pedigree largely resembling the tree derived based on cpDNA (Figure 3). Likewise, it also diverged into three clades, each of the natural *Brassica* materials possesses nearly identical evolutionary positions in both the cpDNA and mtDNA deriving trees, the same maternal origin relationships of the three *Brassica* allotetraploid crops were
inferred. The location of four genera (Raphanus sativus, Eruca stivus, Moricandia arvensis and Sinapis arvensis) in the mtDNA derived tree were also integrated into Brassica genus, demonstrating that mtDNA evolved parallely linked with cpDNA in Brassica genus. Nevertheless, differences happened for a few B. napus cytoplasmic male sterile lines, i.e., mori [26, 27] and nsa [25] CMS lines, which have been successfully utilized in hybrid breeding. Mori and nsa lines located in the cam-type and nap-type B. napus clusters, respectively, in the cpDNA deriving tree (Figure S5), and possess the identical natural cam-type and nap-type chloroplast sequences, respectively. However, they are clustered close to their mtDNA donor species in the mtDNA deriving tree (Figure 5), i.e., the B. napus mori and nsa sterile line each clustered together with Moricandia arvensis and Sinapis arvensis, respectively. The evolution of mtDNA in the B. napus CMS lines was uncoupled with cpDNA were identified.

Estimation of divergence times of Brassica crops

The phylogenetic tree containing 54 chloroplast genome sequences in Brassicaceae family (Figure 4) was subjected to estimate the divergence time for these investigated Brassica species, the timetree was conducted by Reltime [37]. Eucalyptus verrucata was set as outgroup. The timetree was calibrated referring to two previously estimated divergence times: 30–35 million years ago (Mya) which dated the speciation of genus Aethionema and 25–30 Mya which dated the separation of two large Brassicaceae clades including Arabidopsis and B. napus, respectively [33, 38]. The obtained timetree (Figure S7) indicated that Aethionema might be an ancient cruciferous genus and there were two major periods for species radiation in Brassicaceae family. During 25–18 Mya, certain genus emerged and separated from each other; and then during the second radiation period (15–6 Mya), most of the genus speciated and formed several large clades. Brassica genus emerged approximately at 4.85 Mya, begin maybe as a kind of B. nigra or B. rapa. Moricandia arvensis, Eruca stivus, Brassica maurorum, Raphanus sativus and Sinapis arvensis speciated at 3.15 Mya, 2.85 Mya, 2.17 Mya, 2.05 Mya and 1.42 Mya, respectively. The Brassica C-genome species (e.g., B. villosa and B. oleracea) separated from A-genome species (B. rapa) since 1.12 Mya. Three allotetraploid species (B. juncea, B. carinata and B. napus) speciated during the period 0.17–0.01 Mya or much later, which are consistent
with the estimated originating time of \(\sim 7,500 \) years ago for *B. napus* [4] and the cultivation beginning time of \(\sim 7,000 \) years ago for *B. juncea* [7]. *Brassica* tetraploid species are much younger than other polyploidy crops, e.g., emerge of cotton (*Gossypium hirsutum*) at 1–2 Mya [39, 40] and emerge of soybean (*Glycine max*) at 0.8 Mya [41].

Discussion

The cytoplasmic phylogeny clarifies the multiple maternal origin of *B. napus*

As indicated by our reconstructed phylogenetic model of *Brassica* genus, *B. rapa* mainly contains a predominant haplotype (*cam*-type) and *sarson*-type cytoplasm, which presents merely approximately 50 cpDNA and 20 mtDNA basic variations (Table S3). Fourteen *B. juncea* aceesions including different vegetable and oil varieties possess only one chloroplast and nearly one mitochondrial DNA haplotype almost identical to the corresponding *B. rapa cam*-type haplotype. *B. carinata* (BC2) clustered next to *B. nigra*. None BB-genome and CC-genome cytoplasmic DNA types has ever been detected in the germplasm collections of the natural *B. juncea* or *B. carinata*, respectively. These results ascertain that *B. juncea* and *B. carinata* each has a monophyletic maternal origin from *B. rapa* and *B. nigra*, respectively.

Three major haplotypes were identified in our natural *B. napus* collection. Of the 24 sequenced *B. napus* accessions, 7 lines tightly clustered with the majority of *B. rapa* in Clade I (Figure 3) and thus are recognized as *cam*-type. They contain nearly none cpDNA SNP differences from their co-clustering *B. rapa* and *B. juncea* materials (Table S3), indicating a direct maternal origin of these *B. napus* accessions from the *cam*-type *B. rapa*. Two previously known *polima*-type lines (Xiang5A and 20A) also clustered in Clade I but adjacent to *sarson*-type *B. rapa* (Sarson–1) with minor variation, suggesting that the *polima* haplotype may inherit from certain *sarson*-type like *B. rapa*. *Nap*-type cytoplasm, which occupies numerous elite cultivars worldwide (e.g., Darmor and ZS11), is predominant with a population frequency of 87.1% in our *B. napus* collection. The cluster of *nap*-type *B. napus* seems to be inserted in the middle of C-genome Clade II, appears like a separate haplotype parallel to *B. cretica*, *B. incana*, *B. insularis*, *B. villosa* and *B. oleracea*. This was also supported by both our mtDNA-based phylogeny (Figure 5) and the recent cpDNA-based phylogenetic studies [9],
which included other three more C-genome species, *B. rupestris, B. montana* and *B. macrocarpa*. Since nap-type is highly divergent from the existing C-genome cytoplasm types, there is a great possibility that one certain C-genome wild species rather than *B. oleracea* may have donated the nap-type cytoplasm to *B. napus*, and also the corresponding nuclear C subgenome. Judging from the cytoplasmic inheritance, the current natural *B. napus* may have three maternal parents, two of A genome *B. rapa* and one of C genome species, possess higher cytonuclear diversity than *B. juncea* and *B. carinata*. A refined model of U’s Triangle illustrating the diffusion of cytoplasmic haplotypes in *Brassica* genus is proposed in Figure 6. Surprisingly, the *B. rapa* variety broccoletto had been identified possessing identical cpDNA haplotype as the nap-type *B. napus* [15, 18]. Whether broccoletto is the original female parent of nap-type *B. napus* yet need further investigation. The investigated broccoletto accession collected from Italy were generally cultivated alongside multifarious wild *Brassica* species [18]. Whereupon, the presence of nap-type haplotype in these *B. rapa* accessions may result from as yet unidentified introgression events, i.e., the stepwise transfer of nap-type cytoplasm from *B. napus* into *B. rapa* through natural hybridization and consecutive backcrosses.

Strong parallel evolution among *Brassica* and several relative genera

As clearly demonstrated in both the cpDNA and mtDNA based phylogenetic trees (Figure 4 and Figure 5), *Raphanus sativus, Eruca sativa* and *Moricandia arvensis* located between *B. villosa* and *B. maurorum*, namely between the *B. oleracea* wild relatives and B-genome species. *Sinapis arvensis* converged with the B-genome containing species in Clade IV (Figure 3). These results suggest a potential co-originating (and co-evolving) relationships among *Brassica* and these relative genera. Comparative analysis of genomic framework using 22 genomic blocks (GB) demonstrated that most GB associations in *Brassica* species could be detected in *Raphanus sativus* [42], suggesting that *Raphanus* and *Brassica* species potentially shared a common hexaploid ancestor after whole genome triplication (WGT). Common translocation Proto-Calepineae Karyotype (tPCK)-like ancestors were deduced to be the likely common ancestor of all current *Brassiceae* species that had undergone WGT and repetitive chromosomal rearrangements. Phylogenetic analysis based on 32 mitochondrial
protein-coding genes suggested that *Eruca sativa* is closer to the *Brassica* species and *Raphanus sativus* than to *Arabidopsis thaliana* [43]. The U’s Triangle theory has been accordingly revisited and extended into a multi-vertex model [42], which should include not only *Raphanus*, but also *Eruca*, *Moricandia* and *Sinapis* species as basic diploid species as suggested herein by our studies (Figure 6). Future determination of nuclear genomes of certain *Eruca*, *Moricandia* and *Sinapis* species and subsequent comparative analysis would provide detailed information on the genomic and evolutionary association among these genera.

Human breeding dramatically disturbed the coupled evolution between chloroplast and mitochondrial genomes

Generally, mitochondrial and chloroplast genomes demonstrate consistent evolutionary relationships in higher plants, because of their coupled uniparental inheritance. The inconsistent locations of two *B. napus* accessions, *mori* and *nsa* sterile lines, in the mtDNA and cpDNA based phylogenetic tree (Figure 5 and S5) revealed their uncoupled evolution of mitochondrial and chloroplast genomes. *Mori* sterile line (AC490) was primarily obtained by protoplast fusion between *Moricandia arvensis* (MM, 2n = 28) and *B. juncea* [26, 44], and then the CMS phenotype was transferred into *B. napus* through several rounds of sexual hybridization. *Nsa* sterile line (AC500) was developed primarily also from protoplast fusion between *B. napus* and *Sinapis arvensis* [25]. Sequencing analysis of Ogura sterile line, which was also developed through somatic hybridization of *Raphanus sativus* and *B. napus* [45, 46], revealed that rearrangement happened extensively in its mitochondrial genome [47]. Nine regions were identified to be unique to the all the published *Brassica* mitochondrial genome sequences belonging to U’s Triangle. Therefore, Both the *mori* and *nsa* lines should contain plenty of mitochondrial genome regions from their incipient donor parents, thus clustered close to *Moricandia arvensis* and *Sinapis arvensis*, respectively, in the mtDNA based phylogenetic tree. It seems that somatic hybridization through protoplast fusion is an effective means to induce the recombination of mitochondrial genomes. Intergenomic recombinations and DNA rearrangements had been frequently identified within mitochondrial genomes [48, 49], suggesting that there may be a stronger variation dynamics in mtNDA than in cpDNA.
While, it is notable that none recombination happened with the chloroplast genomes, since both the nsa and mori lines possess the identical nap- and cam-type chloroplast genomes from each of their recipient B. napus and B. juncea lines (Figure S5), respectively. This may result from lower interspecific recombination frequencies for cpDNA or strong artificial selection during the breeding process. Similarly, recombination of parental mitochondrial genomes rather than chloroplast DNA has been identified in a cybrid (cytoplasmic hybrids) obtained by protoplast fusion of Nicotiana tabacum and Hyoscyamus niger [50]. Thus, this phenomenon also would be potentially existent in other B. napus cybrid materials, e.g., the recent inap [51] CMS lines containing mtDNA components from Isatis indigotica. Collectively, these results indicated that recent human interference have drastically disturbed the evolutionary accordance between cpDNA and mtDNA in a mass of cybrid lines.

Potential application of the Brassica cytoplasmic variant and genetic information

Sustainable development of Brassica crops requires further improvement on resistance to phytopathogens (e.g., biotrophic Plasmodiophora brassicae and necrotrophic Sclerotinia sclerotiorum), seed yields, oil quality and mechanization level for field planting pattern. The diversified Brassica relatives stated above have been identified possessing desirable elite traits. For example, Eruca sativa (2n = 22) is a diploid edible plant and its medicinal properties have various health promoting effects [52]. Moricandia arvensis (2n = 28) is reported to be a C3-C4 intermediate species, transferring this feather of higher photosynthetic efficiency into Brassica crops have been tried by means of hybridization with the purpose of increasing yields and drought resistance [53, 54]. Sinapis arvensis is a wild weedy plant of the genus Sinapis, both Sinapis arvensis and Sinapis alba (2n = 24) possess high resistances to drought, leanness, multiple diseases, herbicides and pod shattering [55–57]. Certain Raphanus species were identified to be immune to clubroot and their resistance genes need to be rapidly diverted into Brassica crops [58]. The inter-specific evolutionary relationships (Figure 6) of Brassica present a potential guidance for creating extensive novel allotetraploid species by intercrossing the corresponding diploid species.

Cytonuclear interactions perform a major role in the evolutionary dynamics and contribute to the
early stages of speciation [59]. Roux et al., [60] investigated the effects of intraspecific cytonuclear interactions on the fitness-related traits in *Arabidopsis thaliana*, by using a unique series of 56 cytolines derived from cytoplasmic substitutions among eight cytoplasmically diversified natural accessions. These results demonstrated that the natural cytoplasmic variations could interact with nuclear genomes to shape a large proportion of phenotypic traits that contributed to adaptation. The cytoplasm in most of the current Brassica populations (e.g., *B. juncea*, *B. carinata* and cultivated *B. oleracea*) are rather lack of genetic diversity, which may be a key limiting factor for improving Brassica crops. To create extensive germplasms with various novel cytonuclear combinations ought to be of great values for supporting both the fundamental and breeding studies in the future. The cytoplasmic genes associated with elite agronomic traits need to be determined and corresponding DNA markers should be exploited for breeding.

Chloroplast genome engineering is a powerful means to help to improve crop resistance to adverse abiotic and biotic stresses [61]. Moreover, the large tissue-specific biomass of Brassica crops also makes them as potential plant factories for producing exogenous valuable commercial proteins and metabolites. As guided by Daniell et al., [14], these genome-wide inter-species variant information would benefit for the design of universal chloroplast genome engineering strategies, which are applicable for most of Brassica crops.

Conclusions

Compared with the huge nuclear genomes, chloroplast DNA is a primary and easy means to evaluate the evolutionary relationships in phylogenetic studies. Meanwhile, it is also highly effective to clarify the maternal origins and the related hybridization events at the beginning. Herein, the intra- and inter-genus phylogeny for Brassica were dissected by synchronous analysis of both the cpDNA and mtDNA, the disputable origin of the predominant nap-type *B. napus* are further clarified, the whole Brassica phylogeny were refined and enriched. Human interference has remodeled the cytoplasmic inheritance in *B. napus*. The overall variation data and elaborated phylogenetic relationships obtained herein can substantially facilitate the development of novel Brassica crops, e.g. the allohexaploid rapeseed with improved biomass and yield. Further studies regarding the chromosome-level and
genomic mechanisms underlying *Brassica* phylogeny ought to be elucidated.

Methods

Plant materials

A set of 480 worldwide *B. napus* accessions were collected from the National Mid-term Genebank for Oil Crops of China, it has been repeatedly used as a core rapeseed collection in our previous studies [62]. The *B. rapa* and *B. juncea* populations contain primarily landraces, which were collected across China. The cultivated *B. oleracea* inbred lines were obtained commercially from market, the wild *B. oleracea* and other C-genomewild species which are native to coastal southern and western Europe were collected from rocky Atlantic coasts of Spain (Bay of Biscay) and the Centre for Genetic Resources, The Netherlands (CGN). Detailed information in regard to all the above materials and other materials in *Brassica* genus and its relative genera are given in Table S1. Plant materials were planted in the experimental fields or greenhouses of Oil Crops Research Institute of CAAS in Wuhan (114.31 °E, 30.52 °N), from October 2015 to May 2017. The collection, identification, reproduction and conservation were conducted by the Rapeseed Germplasm Team in our institute, under the long-term support of Chinese national projects regarding species conservation and germplasm development. All the plant materials investigated here were deposited as seed in the National Mid-term Genebank for Oil Crops of China.

Genotyping analysis

Leaf total DNA of the corresponding accessions were directly extracted using the cetyltrimethylammonium bromide (CTAB) method described by Lutz et al., [63] and then subjected to genotyping analysis. High Resolution Melting (HRM) experiments were performed in 98/384-well plates using the Roche LightCycler 480® High Resolution Melting PCR Master Mix and analyzed by the LightCycler 480® Gene Scanning Software. Kompetitive Allele Specific PCR (KASP) analysis used for variant validation and haplotype dissection were performed using KASP Master mix according to the company’s protocols (LGC Genomics, Teddington, Middlesex, UK) on the Roche LightCycler 480® System.

Isolation of the cytoplasmic DNA

Isolation of the cytoplasmic DNA was performed according to Hao et al., [64] with minor
modifications. The newly developed young leaves were picked from 5 to 10 representative plants of each accession to be sequenced, and then homogenized thoroughly by Dounce homogenizer in isolation buffer [25 mM MOPS-KOH, 0.4 M mannitol, 1 mM EDTA, 10 mM tricine, 8 mM cysteine, 0.1% BSA (w/v) and 0.1% PVP–40 (w/v), pH 7.8]. One centrifugation step (300 g, 5 min) was performed to remove the unwanted whole plant cells and cell debris that mainly contain nuclear DNA contaminant. Another following centrifugation step (1500 g, 10 min) was added to remove a large proportion of chloroplasts to keep a proportionable ratio between cpDNA and mtDNA content. Then, the mixture of chloroplasts and mitochondria were collected by a further centrifugation step (20,000 g, 20 min) and then subjected to DNA isolation, using CTAB method.

Sequencing, genome assembly, variant calling and validation
High-throughput sequencing of the cytoplasmic DNA was performed according to our previous study [16]. The DNA was randomly ultrasonically sheared and prepared into paired-end (PE) libraries with insert sizes ranging from 300 to 400 bp, and then subjected to an Illumina Hiseq2500 (Illumina, San Diego, CA, USA) sequencing platform for sequencing at both single ends. Clean reads were directly mapped to a tandem sequence gather consisting of representative public cruciferous chloroplast genomes using Burrows-Wheeler Aligner (BWA) MEM program [65] under default parameters. The mapped paired-end reads were extracted and de novo assembled using the SOAPdenovo software package [29]. The obtained contigs were located on the yet published *Brassica* chloroplast genomes through BLAST alignments, and then sutured by manually jointing the overlapping ends between each two contiguous contigs. Basic variants (SNP and short InDels) were called using standard BWA/Genome Analysis Toolkit (GATK) pipeline [30], the chloroplast and mitochondrion genomes of *B. napus* line 51218 (GenBank: KP161617.1 and KP161618.1) were used as the cpDNA and mtDNA reference genomes, respectively.

Phylogenetic and molecular clock analysis
Chloroplast genome sequences were trimmed with aligned beginning sequences, and then subjected to alignment, which was conducted by ClustalW [66]. Maximum Likelihood trees were conducted by MEGA7 [67] based on Tamura-Nei substitution model. Timetree analysis was conducted using the
RelTime method [37] based on original Newick formatted phylogenetic tree files, according to the guided procedure implanted in MEGA7.

Additional Files
Additional file 1:

Figure S1. Representative genotyping results by HRM analysis. (A) The normalized and temperature-shifted difference plot indicated that three site-specific haplotypes were identified in a plate of 96 plant DNA samples using HRM407 primers. (B) The normalized and temperature-shifted difference plot showed that two site-specific haplotypes were identified in a plate of 96 plant DNA samples using HRM727 primers.

Figure S2. Representative genotyping results in a plate of 384 plant DNA samples by KASP analysis for primers mP1858 (A) and cP1225 (B).

Figure S3. Phylogenetic tree of *Brassica rapa*. This tree structure was inferred using Maximum Likelihood method based on the entire chloroplast genomes from representative *B. rapa* materials. The sequence data for materials Zicaitai-1, Turnip-3 and Sarsons-1 from Li et al. (2017) were added.

Figure S4. Phylogenetic tree of *Brassica juncea*. This tree structure was inferred using Maximum Likelihood method based on the entire chloroplast genomes from representative *B. juncea* materials.

Figure S5. Phylogenetic tree of *Brassica napus*. This tree structure was inferred using Maximum Likelihood method based on the entire chloroplast genomes from representative *B. napus* materials.

Figure S6. Phylogenetic tree of *Brassica* C-genome species. This tree structure was inferred using Maximum Likelihood method based on the entire chloroplast genomes from representative *B. oleracea* materials.

Figure S7. Timetree analysis using the RelTime method. The timetree was computed based on the phylogenetic tree of *Brassicaceae* family in Figure 4 using two calibration constraints labeled with blue stars and displayed only with topology. *Eucalyptus verrucata* labeled with lightgray was set as outgroup.

Additional file 2:

Table S1 Primers used for HRM and KASP genotyping analysis.

Table S2 List of plant materials investigated in this study.
Table S3 Total cpDNA and mtDNA variant data.

Additional file 3:

Appendix A The dataset for chloroplast genome sequences of 72 Brassica accessions.

Appendix B Accessions of the public sequence data.

Abbreviations
cpDNA, chloroplast DNA; mtDNA, Mitochondrial DNA; pol, polima; cytoplasmic male sterility, CMS;
Kompetitive Allele Specific PCR, KASP.

Declarations

Acknowledgements
We thank Donglian Wang and Hao Li for their skilled assistance with the field work.

Author’ contributions
JQ conceived and designed the experiments. XZ and BC planted the materials, XZ, QH2 and JQ performed the genotyping analyses and extracted the cytoplasmic DNA. BC, KX and XW contributed to the phenotyping identification. QH1 provided the B. napus Nsa sterile materials. JQ and FH conducted the bioinformatic analyses. JQ analyzed the data, JQ and XZ wrote the manuscript, YH contributed to data interpretation and revised the manuscript. All the authors discussed the results and contributed to this manuscript.

Funding
This work was mainly supported by the National Natural Science Foundation of China (Grant Number: 31600179), the Natural Science Foundation of Hubei Province of China (Grant Number: 2017CFB230) and Chinese Fundamental Research Funds for Central Non-profit Scientific Institution. It was also partially funded by the National Key Program for Research and Development of China (Grant Number: 2016YFD0100202) and the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences (CAAS). The funding agencies did not contribute to the conception of this study, collection of materials or generation, analysis, interpretation of the data or writing the manuscript.
Availability of data and materials

The chloroplast and mitochondrial genome sequences of *Brassica napus* strain 51218 can be found in GenBank under KP161617.1 and KP161618.1, respectively. Information for the cruciferous cpDNA sequence gather and chloroplast genome sequences used in phylogenetic analysis can be found in Additional file 3. The obtained chloroplast genomes were provided in Additional file 3 and also deposited at Mendeley Data (DOI: 10.17632/skfwfrwgjs.1).

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

1 Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs; Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China

2 Genosys Inc., Shenzhen, China

References

1. Nagaharu U. Genome-analysis in *Brassica* with special reference to the experimental formation of *napus* and peculiar mode of fertilization. Japan J Bot. 1935;7:389-452.

2. Liu J, Hua W, Hu Z, Yang H, Zhang L, Li R, et al. Natural variation in ARF18 gene simultaneously affects seed weight and silique length in polyploid rapeseed. Proc
3. Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, et al. The genome of the mesopolyploid crop species *Brassica rapa*. Nat Genet. 2011;43:1035-9.

4. Chalhoub B, Denoeud F, Liu S, Parkin IA, Tang H, Wang X, et al. Early allopolyploid evolution in the post-Neolithic *Brassica napus* oilseed genome. Science. 2014;345:950-3.

5. Liu S, Liu Y, Yang X, Tong C, Edwards D, Parkin IA, et al. The *Brassica oleracea* genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun. 2014;5:3930.

6. Parkin IA, Koh C, Tang H, Robinson SJ, Kagale S, Clarke WE, et al. Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid *Brassica oleracea*. Genome Biol. 2014;15:R77.

7. Yang J, Liu D, Wang X, Ji C, Cheng F, Liu B, et al. The genome sequence of allopolyploid *Brassica juncea* and analysis of differential homoeolog gene expression influencing selection. Nat Genet. 2016;48:1225-32.

8. Lu K, Wei L, Li X, Wang Y, Wu J, Liu M, et al. Whole-genome resequencing reveals *Brassica napus* origin and genetic loci involved in its improvement. Nat Commun. 2019;10:1154.

9. An H, Qi X, Gaynor ML, Hao Y, Gebken SC, Mabry ME, et al. Transcriptome and organellar sequencing highlights the complex origin and diversification of allotetraploid *Brassica napus*. Nat Commun. 2019;10:2878.

10. Birky CW. The inheritance of genes in mitochondria and chloroplasts: Laws, mechanisms, and models. Annu Rev Genet. 2001;35:125-48.

11. Nikiforova SV, Cavalieri D, Velasco R, Goremykin V. Phylogenetic Analysis of 47 Chloroplast Genomes Clarifies the Contribution of Wild Species to the Domesticated
12. Gornicki P, Zhu H, Wang J, Challa GS, Zhang Z, Gill BS, et al. The chloroplast view of the evolution of polyploid wheat, New Phytol. 2014;204:704-14.

13. Carbonell-Caballero J, Alonso R, Ibañez V, Terol J, Talon M, Dopazo J. A Phylogenetic Analysis of 34 Chloroplast Genomes Elucidates the Relationships between Wild and Domestic Species within the Genus Citrus. Mol Biol Evol. 2015;32:2015-35.

14. Daniell H, Lin CS, Yu M, Chang WJ. Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol. 2016;17:134.

15. Allender CJ, King GJ. Origins of the amphiploid species *Brassica napus* investigated by chloroplast and nuclear molecular markers. BMC Plant Biol. 2010;10:54.

16. Qiao J, Cai M, Yan G, Wang N, Li F, Chen B, et al. High-throughput multiplex cpDNA resequencing clarifies the genetic diversity and genetic relationships among *Brassica napus, Brassica rapa* and *Brassica oleracea*. Plant Biotechnol J. 2016;14:409-18.

17. Kim CK, Seol YJ, Perumal S, Lee J, Waminal NE, Jayakodi M, et al. Re-exploration of U's Triangle *Brassica* Species Based on Chloroplast Genomes and 45S nrDNA Sequences. Sci Rep. 2018;8:7353.

18. Li P, Zhang S, Li F, Zhang S, Zhang H, Wang X, et al. A Phylogenetic Analysis of Chloroplast Genomes Elucidates the Relationships of the Six Economically Important *Brassica* Species Comprising the Triangle of U. Front Plant Sci. 2017;8:111.

19. Chang S, Yang T, Du T, Huang Y, Chen J, Yan J, et al. Mitochondrial genome sequencing helps show the evolutionary mechanism of mitochondrial genome formation in *Brassica*. BMC Genomics. 2011;12:497.

20. Yang J, Liu G, Zhao N, Chen S, Liu D, Ma W, et al. Comparative mitochondrial genome analysis reveals the evolutionary rearrangement mechanism in Plant Biol. 2016;18:527-36.
21. Yamagishi H, Bhat SR. Cytoplasmic male sterility in *Brassicaceae* Breed Sci. 2014;64:38-47.

22. Liu J, Hao W, Liu J, Fan S, Zhao W, Deng L, et al. A novel chimeric mitochondrial gene confers cytoplasmic effects on seed oil content in polyploid rapeseed (*Brassica napus*). Mol Plant. 2019;12:582-96.

23. Fu TD. Production and research of rapeseed in the People’s Republic of China. Eucarpia Cruciferae News. 1981;6:6-7.

24. Handa H, Gualberto JM, Grienenberger JM. Characterization of the mitochondrial orfB gene and its derivative, orf224, a chimeric open reading frame specific to one mitochondrial genome of the "Polima" male-sterile cytoplasm in rapeseed (*Brassica napus*). Curr Genet. 1995;28:546-52.

25. Wei W, Li Y, Wang L, Liu S, Yan X, Mei D, et al. Development of a novel *Sinapis arvensis* disomic addition line in *Brassica napus* containing the restorer gene for Nsa CMS and improved resistance to *Sclerotinia sclerotiorum* and pod shattering. Theor Appl Genet. 2010;120:1089-97.

26. Prakash S, Kirti PB, Bhat SR, Gaikwad K, Kumar VD, Chopra VL. A *Moricandia arvensis* - based cytoplasmic male sterility and fertility restoration system in *Brassica juncea*. Theoretical and Appl. Genet. 1998;97:488-92.

27. Ashutosh, Kumar P, Dinesh Kumar V, Sharma PC, Prakash S, Bhat SR, A novel orf108 co-transcribed with the atpA gene is associated with cytoplasmic male sterility in *Brassica juncea carrying Moricandia arvensis* Plant Cell Physiol. 2008;49:284-9.

28. Shi C, Hu N, Huang H, Gao J, Zhao YJ, Gao LZ, An Improved Chloroplast DNA Extraction Procedure for Whole Plastid Genome Sequencing. PLoS One. 2012;7:e31468.

29. Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, et al. SOAPdenovo2: an empirically
improved memory-efficient short-read de novo assembler. Gigascience 2012;1:18.

30. Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics. 2013;43:11.10.1-33.

31. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol. 1993;10:512-26.

32. Yao XC, Du XZ, Ge XH, Chen JP, Li ZY. Intra- and intergenomic chromosome pairings revealed by dual-color GISH in trigenomic hybrids of Brassica juncea and carinata with B. maurorum. Genome. 2010;53:14-22.

33. Hohmann N, Wolf EM, Lysak MA, Koch MA. A Time-Calibrated Road Map of Brassicaceae Species Radiation and Evolutionary History. Plant Cell. 2015;27:2770-84.

34. Kagale S, Robinson SJ, Nixon J, Xiao R, Huebert T, Condie J, et al. Polyploid Evolution of the Brassicaceae during the Cenozoic Era. Plant Cell. 2014;26:2777-91.

35. Zhao ZG, Hu TT, Ge XH, Du XZ, Ding L, Li ZY. Production and characterization of intergeneric somatic hybrids between Brassica napus and Orychophragmus violaceus and their backcrossing progenies. Plant Cell Rep. 2018;27:1611-21.

36. Du XZ, Ge XH, Yao XC, Zhao ZG, Li ZY. Production and cytogenetic characterization of intertribal somatic hybrids between Brassica napus and Isatis indigotica and backcross progenies. Plant Cell Rep. 2009;28:1105-13.

37. Tamura K, Battistuzzi FU, Billing-Ross P, Murillo O, Filipski A, Kumar S. Estimating divergence times in large molecular phylogenies. Proc Natl Acad Sci USA. 2012;109:19333-8.

38. Huang CH, Sun R, Hu Y, Zeng L, Zhang N, Cai L, et al. Resolution of Brassicaceae
Phylogeny Using Nuclear Genes Uncovers Nested Radiations and Supports Convergent Morphological Evolution. Mol Biol Evol. 2016;33:394-412.

39. Li F, Fan G, Lu C, Xiao G, Zou C, Kohel RJ, et al. Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol. 2015;33:524-30.

40. Zhang T, Hu Y, Jiang W, Fang L, Guan X, Chen J, et al. Sequencing of allotetraploid cotton (Gossypium hirsutum acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol. 2015;33:531-7.

41. Li YH, Zhou G, Ma J, Jiang W, Jin LG, Zhang Z, et al. De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nat Biotechnol. 2014;32:1045-52.

42. Cheng F, Liang J, Cai C, Cai X, Wu J, Wang X. Genome sequencing supports a multi-vertex model for Brassiceae species. Curr Opin Plant Biol. 2017;36:79-87.

43. Wang Y, Chu P, Yang Q, Chang S, Chen J, Hu M, et al. Complete Mitochondrial Genome of Eruca sativa (Garden Rocket). PLoS One. 2014;9:e105748.

44. Kirti PB, Narasimhulu SB, Prakash S, Chopra VL. Somatic hybridization between Brassica juncea and Moricandia arvensis by protoplast fusion. Plant Cell Rep. 1992;11:318-21.

45. Jourdan PS, Earle ED, Mutschler MA. Synthesis of male sterile, triazine-resistant Brassica napus by somatic hybridization between cytoplasmic male sterile oleracea and atrazine-resistant B. campestris. Theor Appl Genet. 1989;78:445-55.

46. Sakai T, Imamura J. Intergeneric transfer of cytoplasmic male sterility between Raphanus sativus (CMS line) and Brassica napus through cytoplasm-protoplast fusion. Theor Appl Genet. 1990;80:421-7.

47. Wang J, Jiang J, Li X, Li A, Zhang Y, Guan R, et al. Complete sequence of
heterogenous-composition mitochondrial genome (*Brassica napus*) and its exogenous source. BMC Genomics. 2012;13:675.

48. Goremykin VV, Salamini F, Velasco R, Viola R. Mitochondrial DNA of *Vitis vinifera* and the Issue of Rampant Horizontal Gene Transfer. Mol Biol Evol. 2009;26:99-110.

49. Alverson AJ, Rice DW, Dickinson S, Barry K, Palmer JD. Origins and Recombination of the Bacterial-Sized Multichromosomal Mitochondrial Genome of Cucumber. Plant Cell. 2011;23:2499-513.

50. Sanchez-Puerta MV, Zubko MK, Palmer JD. Homologous recombination and retention of a single form of most genes shape the highly chimeric mitochondrial genome of a cybrid plant. New Phytol. 2015;206:381-96.

51. Kang L, Li P, Wang A, Ge X, Li Z. A Novel Cytoplasmic Male Sterility in *Brassica napus* (*inap CMS*) with Carpelloid Stamens via Protoplast Fusion with Chinese Woad. Front Plant Sci. 2017;8:529.

52. Katsarou D, Omirou M, Liadaki K, Tsikou D, Delis C, Garagounis C, et al. Glucosinolate biosynthesis in *Eruca sativa*. Plant Physiol Biochem. 2016;109:452-66.

53. Tsutsui K, Jeong BH, Ito Y, Bang SW, Kaneko Y. Production and characterization of an alloplasmic and monosomic addition line of *Brassica rapa* carrying the cytoplasm and one chromosome of *Moricandia arvensis*. Breed Sci. 2011;61:373-9.

54. Perfectti F, Gómez JM, González-Megías A, Abdelaziz M, Lorite J. Molecular phylogeny and evolutionary history of *Moricandia* DC (*Brassicaceae*). PeerJ. 2017;5:e3964.

55. Liu J, Mei D, Li Y, Huang S, Hu Q. Deep RNA-Seq to Unlock the Gene Bank of Floral Development in *Sinapis arvensis*. PLoS One. 2014;9:e105775.

56. Tian E, Zeng F, MacKay K, Roslinsky V, Cheng B. Detection and Molecular Characterization of Two FAD3 Genes Controlling Linolenic Acid Content and Development of Allele-Specific Markers in Yellow Mustard (*Sinapis alba*). PLoS One.
57. Jugulam M, Ziauddin A, So KK, Chen S, Hall JC. Transfer of Dicamba Tolerance from *Sinapis arvensis* to *Brassica napus* via Embryo Rescue and Recurrent Backcross Breeding. PLoS One. 2015;10:e0141418.

58. Kamei A, Tsuro M, Kubo N, Hayashi T, Wang N, Fujimura T, et al. QTL mapping of clubroot resistance in radish (*Raphanus sativus*). Theor Appl Genet. 2010;120:1021-7.

59. Barnard-Kubow KB, So N, Galloway LF. Cytonuclear incompatibility contributes to the early stages of speciation. Evolution. 2016;70:2752-66.

60. Roux F, Mary-Huard T, Barillot E, Wenes E, Botran L, Durand S, et al. Cytonuclear interactions affect adaptive traits of the annual plant *Arabidopsis thaliana* in the field. Proc Natl Acad Sci USA. 2016;113:3687-92.

61. Zhang J, Khan SA, Hasse C, Ruf S, Heckel DG, Bock R. Full crop protection from an insect pest by expression of long double-stranded RNAs in plastids. Science. 2015;347:991-4.

62. Li F, Chen B, Xu K, Wu J, Song W, Bancroft I, et al. Genome-Wide Association Study Dissects the Genetic Architecture of Seed Weight and Seed Quality in Rapeseed (*Brassica napus*). DNA Res. 2014;21:355-67.

63. Lutz KA, Wang W, Zdepski A, Michael TP. Isolation and analysis of high quality nuclear DNA with reduced organelar DNA for plant genome sequencing and resequencing. BMC Biotechnol. 2011;11:54.

64. Hao W, Fan S, Hua W, Wang H. Effective Extraction and Assembly Methods for Simultaneously Obtaining Plastid and Mitochondrial Genomes. PLoS One. 2014;9:e108291.

65. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler
Tables
Table 1. Sequencing information of the cytoplasmic DNA of representative materials centering on *Brassica* genus.

Species (names)	Entry Number	Description	Total Data (G)	Data of chloroplast genomes Data (G)	Rations	Average depth	Data of mitochondria genomes Data (G)	Rations
B. rapa ssp. *oleifera*	A22	oilseed use	3.20	1.74	54.44%	11387	0.22	6.7
B. rapa ssp. *oleifera*	A173	oilseed use	3.34	1.91	57.11%	12467	0.17	5.1
B. juncea	AB81	oilseed use	5.69	1.21	21.18%	7877	0.12	2.0
B. juncea var. *tumida*	AB180	vegetable use (Zha-cal)	3.47	0.82	23.78%	5386	0.06	1.6
B. napus	AC32	Cam-type cytoplasm	6.90	1.90	27.54%	12418	0.22	3.2
B. napus	AC399	Polima-type cytoplasm	4.53	2.65	58.59%	17347	0.12	2.0
B. napus (Zhongshuang11)	AC457	Nap-type cytoplasm	9.37	3.90	41.60%	25480	0.96	10.0
B. napus (Darmor)	AC489	Nap-type cytoplasm	8.14	3.31	40.70%	21647	0.59	7.2
B. napus (Mori sterile line)	AC490	Recombinant cytoplasm	5.37	2.24	41.70%	14637	0.41	7.1
B. napus (Nsa sterile line)	AC497	Recombinant cytoplasm	5.87	0.91	15.51%	5948	0.06	0.6
Brassica insularis	C1	wild species	7.23	3.08	42.59%	20111	0.21	2.0
Brassica oleracea var. *oleracea*	C3	wild species	4.19	1.79	42.76%	11710	0.14	3.2
Brassica cretica	C5	wild species	4.36	1.67	38.41%	10947	0.18	4.2
Brassica villosa	C11	wild species	8.73	2.00	22.94%	13090	0.19	2.1
Brassica oleracea var. *italica*	C16	cultivar (Broccoli)	3.35	1.29	38.43%	8402	0.08	2.0
Brassica nigra	B2	wild species	6.29	0.54	8.66%	3561	0.05	0.6
B. maurorum	B1	wild species	2.63	0.97	36.73%	6314	0.05	2.0
Brassica carinata	BC2	cultivar	3.94	1.72	43.70%	11254	0.23	5.1
Sinapis arvensis	Sinapis1	wild species	6.67	2.24	33.60%	14649	0.32	4.1
Sinapis arvensis	Sinapis3	wild species	7.76	2.43	31.28%	15866	0.12	1.6
Raphanus sativus	Raphanus-1	cultivar	7.55	2.44	32.32%	15951	0.34	4.4
Moricandia arvensis	Moricandia-1	wild species	7.23	2.95	40.83%	19295	0.22	3.0
Eruca sativa	Eruca-1	cultivar	6.55	1.78	27.14%	11619	0.30	4.6
Figure 1

Genomic distribution of basic cpDNA variants in our sequenced materials centering on Brassica genus. The map was drawn using Circos (http://circos.ca/). The innermost circle represents for the chloroplast genome map of B. napus strain 51218. The inner bottle-green bars and outer laurel-green bars correspond to the distribution of SNPs and InDels within nonoverlapping 500-bp bins across the entire genome, respectively. The length of each bar denotes the total number of basic variants in a 500-bp region, take the value as 30 if it
exceeds 30. None variants appeared in two inverted repeat regions, IRa (83-109 kb) and IRb (126-153 kb).

Figure 2

Genomic distribution of basic mtDNA variants in our sequenced materials centering on Brassica genus. The map was drawn using the same procedure as for Figure 1. The innermost circle represents for the mitochondrial genome map of B. napus strain 51218. The inner bottle-green bars and outer laurel-green bars correspond to the distribution of SNPs and InDels, respectively.
Molecular phylogeny of Brassica genus. This tree was inferred using Maximum Likelihood method based on 42 entire chloroplast genomes from representative materials centering on Brassica genus. The front letters A, AC, AB, C, BC and B of the entry name stand for the AA-, AACC-, AABB-, CC-, BBCC- and BB- genome species B. rapa, B. napus, B. juncea, B. oleracea (and other C-genome species), B. carinata and B. nigra, respectively. The numbers displayed in the corresponding branching nodes are the bootstrap values (%) calculated from 500 trials, supporting the reliability of the obtained tree structure. The length of branches indicates the evolutionary divergence according to the scale bar (relative units) at the bottom. The input materials with diverse cytoplasmic haplotypes were labeled with cycles of corresponding colors, the separated clades constitute the whole evolutionary pedigree are marked on the right.
Molecular phylogeny of Brassicaceae family. This tree was inferred using Maximum Likelihood method based on the entire chloroplast genomes from representative materials based on 54 chloroplast genomes. This tree was conducted and handled the same as it in Fig. 3. Sequence information for the chloroplast genomes of other cruciferous species are provided in Materials and Methods. Accessions representing the genera integrated into the phylogeny of Brassica genus are labeled with blue cycles, Accessions representing the genera close to Brassica genus are labeled with green cycles.
Figure 5

Molecular phylogeny of Brassica genus inferred using Maximum Likelihood method based on mitochondrial variants. The B. napus mori and nsa CMS lines were labeled with blue cycles.
A refined model of U’s Triangle. Ellipses of single and double lines represent three basic diploid and three tetraploid species in Brassica genus. Diffusion of the corresponding cytoplasmic haplotypes were indicated by the arrows. Ellipse of dashed lines represents the close (diploid) species in other genera which can be used to create extensive germplasms with novel allotetraploid genomes and various cytonuclear combinations.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

Additional file 3 Appendix A The dataset.docx
Supplementary Table S3 Total cpDNA variants.xlsx
Supplementary Table S3 Total mtDNA variants.xlsx
Supplementary figures and sequence accession information 3.docx
Supplementary table S1 and S2.xlsx