A Mechanism of Unidirectional Transformation, Leading to Antibiotic Resistance, Occurs within Nasopharyngeal Pneumococcal Biofilm Consortia

Santiago M. Lattar,a Xueqing Wu,a Jennifer Brophy,a* Fuminori Sakai,a Keith P. Klugman,a Jorge E. Vidala,b

aHubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
bAntibiotic Resistance Center, School of Medicine, Emory University, Atlanta, Georgia, USA

ABSTRACT Streptococcus pneumoniae acquires genes for resistance to antibiotics such as streptomycin (Str) or trimethoprim (Tmp) by recombination via transformation of DNA released by other pneumococci and closely related species. Using naturally transformable pneumococci, including strain D39 serotype 2 (S2) and TIGR4 (S4), we studied whether pneumococcal nasopharyngeal transformation was symmetrical, asymmetrical, or unidirectional. Incubation of S2Ter and S4Str in a bioreactor simulating the human nasopharynx led to the generation of SpnTer/Str recombinants. Double-resistant pneumococci emerged soon after 4 h postinoculation at a recombination frequency (rF) of 2.5×10^{-4} while peaking after 8 h at a rF of 1.1×10^{-3}. Acquisition of antibiotic resistance genes by transformation was confirmed by treatment with DNase I. A high-throughput serotyping method demonstrated that all double-resistant pneumococci belonged to one serotype lineage (S2Ter/Str) and therefore that unidirectional transformation had occurred. Neither heterolysis nor availability of DNA for transformation was a factor for unidirectional transformation given that the density of each strain and extracellular DNA (eDNA) released from both strains were similar. Unidirectional transformation occurred regardless of the antibiotic-resistant gene carried by donors or acquired by recipients and regardless of whether competence-stimulating peptide-receptor cross talk was allowed. Moreover, unidirectional transformation occurred when two donor strains (e.g., S4Str and S19FTmp) were incubated together, leading to S19FStr/Tmp but at a rF 3 orders of magnitude lower (4.9×10^{-6}). We finally demonstrated that the mechanism leading to unidirectional transformation was due to inhibition of transformation of the donor by the recipient.

IMPORTANCE Pneumococcal transformation in the human nasopharynx may lead to the acquisition of antibiotic resistance genes or genes encoding new capsular variants. Antibiotics and vaccines are currently putting pressure on a number of strains, leading to an increase in antibiotic resistance and serotype replacement. These pneumococcal strains are also acquiring virulence traits from vaccine types via transformation. In this study, we recapitulated multiple-strain colonization with strains carrying a resistance marker and selected for those acquiring resistance to two or three antibiotics, such as would occur in the human nasopharynx. Strains acquiring dual and triple resistance originated from one progenitor, demonstrating that transformation was unidirectional. Unidirectional transformation was the result of inhibition of transformation of donor strains. Unidirectional transformation has implications for the understanding of acquisition patterns of resistance determinants or capsule-switching events.

KEYWORDS Streptococcus pneumoniae, antibiotic resistance, consortial biofilms, unidirectional transformation
Streptococcus pneumoniae (the pneumococcus) causes ~15 million cases of severe pneumonia annually worldwide (1–5). Besides being a pathogen, the pneumococcus resides in the upper respiratory tract (i.e., oropharynx and nasopharynx) of most children under 5 years of age, without causing disease (6). While naturally residing in the human nasopharynx, pneumococcal resistance clones emerge through the acquisition of antibiotic resistance genes or through adaptation to antibiotic pressure (i.e., mutations) (7). Horizontal gene transfer (HGT) of antibiotic resistance genes occurs via mobile genetic elements (MGEs) or transformation. Mobile elements usually transfer genes conferring resistance to tetracycline (Tet), macrolides, including erythromycin (Ery), and/or efflux pumps, whereas recombination events via transformation lead to the acquisition of resistance mediated by mutations in the target site, such as resistance to β-lactams, streptomycin (Str), or trimethoprim (Tmp) (8, 9). Therefore, nasopharyngeal recombination via transformation has driven the recent spread of nonsusceptibility to β-lactam antibiotics, and resistance to trimethoprim (Tmp), within pneumococcal strains (10). The emergence of resistance of pneumococci to a new generation of antibiotics is expected to be driven by transformation. For example, mutations leading to resistance to linezolid and carbapenems have been recently described and may be spread by transformation (7, 11).

Genetic transformation was first observed by Griffith in 1928 while inoculating noncapsular, avirulent, pneumococci along with lysates from capsulated (i.e., virulent) colonies into mice, in order to recover—from dead mice—virulent capsule-expressing pneumococci (12). Recombination via transformation occurs through a genetically programmed and differentiated state called competence (13, 14). Competence can be induced in vitro (15) or “spontaneously” developed in vivo (12, 16). The mechanism is activated by a small peptide pheromone, called competence-stimulating peptide (CSP), which sequentially activates a cognate membrane receptor (ComD) and a response regulator (ComE). Genes encoding these proteins are located in an operon, including comCDE, where comC encodes CSP. S. pneumoniae strains produce different CSP pheromones, with the most common being CSP1 and CSP2. The membrane receptor, ComE, is specific for the CSP that the strain produces. In its natural environment, communication between pneumococci is restricted by the specificity of their CSPs, whereby cross talk only occurs between pneumococci secreting the same pherotype (13).

More than 100 genes are regulated via CSP during competence for transformation, including genes of the comG operon encoding type IV pilus (T4P) (17, 18). The T4P was recently demonstrated to be responsible for the uptake of naked DNA during transformation by strain R6, a D39 derivative, and TiGR4, although most genome-sequenced pneumococci carry the comG operon (19, 20). Within the comG operon, the first gene, comGA, encodes an ATPase required to produce pili, while the main pilin subunit is encoded by a downstream gene, comGC. A mutant lacking the ATPase or the main pilin subunit is unable to take up DNA by transformation (19).

While pneumococcal transformation occurs in the upper respiratory tract, it has traditionally been studied by incubating in vitro-generated competent pneumococci with purified DNA and synthetic CSP, perhaps because of the difficulties of recreating the nasopharyngeal microenvironment in the laboratory (13). Recently (2012), an in vitro model published by Marks et al. reproduced pneumococcal recombination between two transformable pneumococci, each carrying an antibiotic gene, and demonstrated that it occurred more efficiently in nasopharyngeal biofilms (21). The recombination frequency (rF) in this biofilm model ranged from 10^{-3} to 10^{-4} at 72 h postinoculation of human pharyngeal cells with two transformable pneumococcal strains (21).

Recent studies have demonstrated that children can be colonized by up to six pneumococcal strains at the same time, with ~50% of colonized children carrying at least two strains (22–24). With this high rate of multiple strain colonization, horizontal transference of genes among pneumococci is likely occurring frequently.
It is therefore expected, although to the best of our knowledge not experimentally demonstrated, that homologous recombination of genes occurs symmetrically between naturally competent pneumococcal strains. In this study, we demonstrated that recombination between two transformable pneumococcal strains was unidirectional. The other strain, besides being competent for DNA uptake, acted as the donor.

RESULTS

Pneumococcal strains D39 (S2) and TIGR4 (S4) cohabit within biofilm consortia on human pharyngeal cells. Recombination events leading to antibiotic resistance and capsule switching occur during pneumococcal nasopharyngeal carriage (22, 25, 26). We first investigated whether pneumococcal strains D39 (serotype 2 [for simplicity referred to as S2]) and TIGR4 (S4) can colonize in a nasopharyngeal biofilm consortium, and its ultrastructure was then imaged by confocal microscopy. To achieve this, we simulated a nasopharyngeal environment in a bioreactor where human pharyngeal cells were incubated for 8 h with a mixture of the two strains. After 8 h of incubation, the relative densities of S2 and S4 within the biofilm consortium were similar (Fig. 1A).

FIG 1 Rapid recombination of antibiotic resistance genes within pneumococcal biofilm consortia. Strains SPJV17 (S2Tet) and SPJV23 (S4Str) were inoculated into a bioreactor and incubated at ~35°C. After 8 h of incubation, (A) the density (CFU per milliliter) of each strain was obtained by culture in BAPs with the appropriate antibiotic, or (B) consortial biofilms were fixed with 2% PFA, stained with antiserotype-specific Alexa 555-labeled (S2) or Alexa 488-labeled (S4) antibodies, and the DNA was stained with DAPI. Preparations were analyzed by confocal microscopy. The top panels show xy optical middle sections of the indicated channel, or the merge, whereas bottom panels show representative xy 1-μm optical sections of a total of ~10 μm sectioned from top through bottom. (C) The recombination frequency (rF) of double-resistant pneumococci was obtained at each time point. (D) Bioreactor chambers were incubated for 8 h in the presence of 20 U/ml of DNase I (+) or left untreated (−), after which bacteria were counted and the rF was calculated. (E) Extracellular DNA (eDNA) was purified from supernatants collected from bioreactor chambers at the indicated time. The DNA was used as a template in serotype-specific qPCRs amplifying eDNA from either S2Tet or S4Str. In panels A and C to E, error bars represent the standard errors of the means calculated using data from at least three independent experiments.
To further visualize the localization of strains within the biofilm consortium, we conducted confocal studies, staining both strains with fluorescently labeled, serotype-specific, anti-S2 and anti-S4 antibodies, while the DNA was stained with DAPI (4',6-diamidino-2-phenylindole). Figure 1B clearly shows S2 and S4 bacteria, both expressing their own capsule and forming aggregates of pneumococci, consistent with a biofilm consortium (Fig. 1B, top panels). Optical sections taken from the top of colonized pharyngeal cells, going down through the bottom, further revealed that the biofilm consortium was made of both strains integrated into a single structure with points of physical contact across the consortial biofilm (Fig. 1B, bottom panel). We hypothesize that the observed close proximity allows exchange of genetic material via transformation.

Recombination of antibiotic resistance genes occurs early during the formation of biofilm consortia. Given that antibiotics can be used to select for recombinant pneumococci, a time course study was conducted to investigate the timing of pneumococcal expression of resistance to two antibiotics within nasopharyngeal biofilm consortia. For these experiments, strains S2 and S4 were engineered to encode, in the chromosome, resistance to tetracycline (S2Tet), or streptomycin (S4Str). We also selected these strains because they produce different competence pheromones, CSP1 (27) or CSP2 (28), respectively, thus avoiding CSP-ComD (i.e., receptor) cross talk. Figure 1C shows that recombinant bacteria (SpnTet/Str), i.e., resistant to both tetracycline and streptomycin, appeared soon after 4 h of incubation, reaching a maximum recombination frequency (rF) of 1.1×10^{-3} at 8 h postinoculation, after which the rF remained similar for up to 24 h (median rF, 2.0×10^{-3}). Confirming that recombinant pneumococci emerged from transformation, Spn Tet/Str bacteria were not obtained in bioreactor chambers incubated with DNase I (Fig. 1D). Moreover, double-resistant bacteria arose from recombination events, rather than from spontaneous mutations, since we did not obtain double-resistant Spn Tet/Str pneumococci in bioreactor control chambers containing only S2Tet or S4Str (rF, $<4.3 \times 10^{-7}$ or $<3.6 \times 10^{-8}$, respectively). Sequencing confirmed the transference of streptomycin resistance-associated mutations (29) within the rpsL gene encoding ribosomal protein S12 in SpnTet/Str recombinants (not shown).

Transformation leading to unidirectional acquisition of resistance occurs within pneumococcal biofilm consortia. Both strains S2 (D39) and S4 (TIGR4) are transformable under standard transformation conditions, (27, 28). Accordingly, we obtained a similar transformation frequency (tF) when they were transformed with ~2.5 µg/ml of their own DNA (see Table S1 in the supplemental material) or each other’s DNA (i.e., S2 plus DNA from S4 [3.1×10^{-7}] and S4 plus DNA from S2 [3.1×10^{-4}]). We therefore hypothesized that recombinant Spn Tet/Str bacteria would have arisen from both parents, whereby double-antibiotic-resistant pneumococci should belong to both serotype lineages S2Tet/Str and S4Tet/Str. To test this hypothesis, 50 Spn Tet/Str colonies were serotyped by conventional PCR (30) and Quellung reactions. All 50 recombinant bacteria, however, belonged to serotype 2 (i.e., S2Tet/Str). To screen for a larger number of recombinants, we designed a high-throughput assay utilizing serotype-specific quantitative PCRs (qPCRs). These reactions have a calculated limit of detection (LOD) of ~2 genome equivalents (22). To this end, we pooled all isolated colonies obtained in blood agar plates containing Tet and Str (~500 Spn Tet/Str colonies from each plate), and DNA was extracted and utilized as the template in serotype-specific reactions. Using DNA template obtained from recombinant pneumococci, harvested from three independent experiments, serotype 2-specific reactions yielded a threshold cycle of detection (C_T) value corresponding to ~7.8 $\times 10^9$ genome equivalents, whereas in serotype 4-specific reactions a C_T value was undetectable, confirming that recombinants were all S2Tet/Str (see Table S2 in the supplemental material). S2Tet/Str recombinants originated whether recombination took place on living cultures of human pharyngeal cells, immobilized human pharyngeal cells, or abiotic surfaces (Table S2). Altogether, this evidence suggested that unidirectional recombination occurred within pneumococcal biofilm consortia.
The above results prompted us to test additional strains, including a genome-sequenced strain, GA13499 (serotype 19F), which, like D39, produces CSP1, thus allowing for cross talk between CSP1 pheromones and ComD receptors. GA13499 is naturally resistant to trimethoprim (Tmp) because of mutations within the \textit{folA} gene, encoding dehydrofolate reductase, with a key mutation leading to an amino acid substitution at position 100: isoleucine to leucine (I→L) (31). Sequencing revealed that GA13499 contains mutations within \textit{folA}, including the Tmp-resistant isoleucine substitution, whereas Tmp-susceptible (Tmp+) D39\textsubscript{Tet} has an isoleucine (Fig. 2A). Strain S2\textsubscript{Tet} was then incubated in the nasopharyngeal environment along with S19F\textsubscript{Tmp} for 24 h, at which point Spn\textsubscript{Tet/Tmp} recombinants were obtained at an rF of 1.5 × 10^-4. Recombinants from three different experiments (~500 Spn\textsubscript{Tet/Tmp} colonies from each) belonged to serotype 2 (i.e., S2\textsubscript{Tet/Tmp}), indicating that S2 strain acquired resistance to Tmp. We sequenced the \textit{folA} gene in five of those S2\textsubscript{Tet/Tmp} recombinant bacteria and confirmed that recombinants had acquired most mutations within the \textit{folA} gene from S19F\textsubscript{Tmp} (Fig. 2A).

Given that both S4\textsubscript{Str} and S19F\textsubscript{Tmp} acted as donors when incubated along with S2, we incubated in the bioreactor both donor strains and scored for resistance to Str and
Astonishingly, unidirectional transformation occurred leading to $S_{19F}^{\text{Tmp/Str}}$ again, although at a lower rF (4.9×10^{-6}) compared to S_2 derivative recipient strains.

We then incubated the three strains together (i.e., S_{2}^{Tet}, S_{4}^{Str}, and S_{19F}^{Tmp}). The density of each strain was similar at 8 h postinoculation (Fig. 3A), and extracellular DNA (eDNA) from all three strains was detected in the supernatant (Fig. 3B). Recombinants belonged to S_2. The rF of S_2 that had acquired Str or Tmp resistance from S_{4}^{Str} or S_{19F}^{Tmp}, respectively, was similar to that when only two strains were incubated together ($\sim 10^{-3}$) (Fig. 3B). The rF, however, significantly decreased (1.4×10^5) when we scored for the acquisition of the two markers acquired from donors, Str and Tmp (Fig. 3B). Together these data confirmed a mechanism of unidirectional transformation within pneumococcal nasopharyngeal biofilm consortia leading to acquisition, via recombination, of antibiotic resistance.

Both strains, the donor and the recipient, secrete eDNA into the supernatant. A possible explanation for the unidirectional transformation observed within nasopharyngeal consortial biofilms could simply be the absence of spontaneous release of extracellular DNA (eDNA) by the recipient strain or increased release of eDNA by the donor. Therefore, we quantified eDNA, using serotype-specific qPCRs, in the supernatant of the bioreactor chambers inoculated with S_{2}^{Tet} and S_{4}^{Str}. To minimize the presence of DNA at inoculation, inocula were prepared under conditions that were not permissive for competence, as described by Moscoso and Claverys (32). Before inoculation, pneumococci were washed three times with sterile culture medium. Even after these procedures, eDNA was still detectable in the supernatant of inocula from either S_{2}^{Tet} or S_{4}^{Str}, although this residual DNA was detected at a very low concentration (~ 100 pg/ml [Fig. 1E]). Our experiments demonstrated, however, a marked increase in eDNA released from both strains after 1 h of incubation (Fig. 1E; see Table S3 in the supplemental material). At this time point, eDNA from S_{2}^{Tet} (mean, 7.90×10^4 pg/ml) was significantly higher ($P = 0.023$) than that from S_4 (mean, 3.91×10^4 pg/ml). This eDNA was able to transform competent pneumococci (either S_{2}^{Tet} or S_4^{Str}); thereby it was permissive for transformation (not shown). The amounts of eDNA from both strains were then similar ($P > 0.12$) at 2, 4, 6 and 8 h postinoculation (Fig. 1E; Table S3). Overall, eDNA in the supernatant increased after 1 h postinoculation, and then its presence decreased—perhaps by degradation—with only 2.80×10^2 pg/ml (median) from S_{2}^{Tet} and 9.06×10^2 pg/ml (median) from S_{4}^{Str} detected in the supernatant at 8 h postinoculation (Fig. 1E; Table S3). Quantification of eDNA was also performed in supernatants of bioreactor chambers inoculated with S_{2}^{Tet} and S_{19F}^{Tmp}, S_4^{Str} and S_{19F}^{Tmp}, or
S2Ter, S4Str, and S19Ftmp, with a similar peak of eDNA released by strains at 2 h postinoculation (Fig. 2B and C and Fig. 3C). This similar release of eDNA by strains in the biofilm consortium within 2 h of incubation, permissible for transformation (not shown), ruled out the possibility that unidirectional recombination was related to the availability of eDNA and indicated that spontaneous competence occurred.

Human pharyngeal cells trigger spontaneous competence within pneumococcal biofilm consortia. Given that we did not add synthetic CSP to trigger competence, but recombination occurred within hours, we hypothesized that spontaneous competence occurred in the bioreactor. To investigate if pneumococcal, the culture medium, or the mammalian serum used would trigger spontaneous competence, we inoculated strains S2Ter and S4Str into bioreactor chambers containing (i) living cultures of human pharyngeal cells, (ii) pharyngeal cells that had been immobilized with paraformaldehyde, and (iii) abiotic surfaces, all incubated with cell culture medium containing serum or (iv) living cultures of pharyngeal cells incubated with cell culture medium lacking serum. Our experiments demonstrated a similar rF when S2Ter and S4Str were incubated in the bioreactor with living cultures of pharyngeal cells (rF, 4.3 × 10⁻⁴), in pharyngeal cells that had been immobilized (rF, 1.2 × 10⁻⁴), and in cultures of pharyngeal cells incubated with medium without serum (rF, 6.2 × 10⁻⁴) (Table 1). In contrast, the rF was 3 orders of magnitude lower (rF, 3.3 × 10⁻⁷) when pneumococci were incubated on an abiotic surface (Table 1). Together these experiments demonstrated that spontaneous competence within pneumococcal biofilm consortia, leading to recombination of antibiotic resistance genes, is triggered upon contact between pneumococci and the host cell.

Transformation of the donor is inhibited by the recipient strain by a mechanism different from Com. Strains S2, S4, and S19F are transformable in vitro (Table S1); however, in consortial biofilms only S2 acquired resistant determinants (19, 20). A possible explanation for the observed unidirectional transformation is that the recipient may have an increased transformation phenotype, or transformation of the donor is inhibited. If the first hypothesis is true, then removing CSP signaling in the recipient, and therefore competence for transformation, would now allow transformation of S4. To test this hypothesis, we incubated an S2Ery ΔcomC mutant, which is not transformable under standard transformation conditions, with S4Str in the bioreactor. S2EryStr recombinants were obtained when the S2Ery wild type and S4Str were incubated together for 8 h (Fig. 4A). In contrast, recombinants with resistance to both erythromycin and streptomycin were not harvested from bioreactor chambers incubated with S2Ery ΔcomC and S4Str (Fig. 4A). This experiment revealed, as opposed to our original hypothesis, that reducing transformation of the recipient was not enough to allow transformation of a strain acting as a DNA donor.

Since we did not obtain recombinants, but we demonstrated that a similar amount of eDNA permissive for transformation from both strains was available during incubation in the bioreactor (Fig. 4B), we hypothesized that S2 inhibits transformation of S4. To investigate this hypothesis, we first asked whether S4 would become competent for DNA uptake in the simulated nasopharyngeal microenvironment by incubating strain S4tmp in the bioreactor along with 10 ng/ml of S2Str DNA. Our experiments demonstrated a tF of 4.4 × 10⁻³ (Fig. 4C), which was 3 orders of magnitude different from the tF obtained in the conventional transformation assay done in a test tube, where

TABLE 1 Spontaneous competence occurs on human pharyngeal cells

Strainsa	Substrate	Recombination frequencyb
S2Ter + S4Str	Pharyngeal cells	4.3 × 10⁻⁴ ± 2.1 × 10⁻⁴
S2Ter + S4Str	Immobilized cells	1.2 × 10⁻⁴ ± 7.0 × 10⁻⁵
S2Ter + S4Str	Abiotic	3.3 × 10⁻⁷ ± 4.1 × 10⁻⁷
S2Ter + S4Str	Pharyngeal cells without serum	6.2 × 10⁻⁴ ± 3.8 × 10⁻⁴
S2Ter + S19Ftmp	Pharyngeal cells	1.5 × 10⁻⁴ ± 9.2 × 10⁻⁶

aStr, streptomycin; Tet, tetracycline; Tmp, trimethoprim.
bMean ± standard deviation from three independent experiments.

synthetic CSP and pure DNA were added (Fig. 4C; Table S1). Therefore, S4Tmp became naturally competent in the bioreactor. S4 was then incubated in the presence of S2Str DNA (10 ng/ml), but this time we also inoculated the nontransformable S2Ery ΔcomC strain. Surprisingly, S4 transformants were not obtained, indicating that the recipient, S2, inhibited transformation of the donor. Several attempts were made to conclude that the supernatant did not inhibit transformation of the donor (not shown). Therefore, the potential mechanism appears to be independent of CSP production and contact mediated.

DISCUSSION

In this study, we recreated nasopharyngeal recombination of antibiotic resistance genes between pneumococcal strains and we demonstrated that it occurs very rapidly—within 4 h postcontact of pneumococci with human pharyngeal cells. Our experiments also found, as revealed by antibiotic selection, that unidirectional transformation occurred within pneumococcal biofilm consortia, leading to the rise of a single lineage of highly transformable pneumococci. Antibiotic selection was used as a surrogate for the pressure that, in the pneumococcal vaccine age, is challenging pneumococcal strains.

Evidence presented in this study, and elsewhere (26), indicates that phenotype cross talk is not involved in unidirectional transformation. For example, we demonstrated here that regardless of whether CSP-ComD receptor cross talk was allowed, unidirectional transformation occurred. This evidence correlated with the absence of transformation of the donor even when it was incubated with a CPS knockout recipient. Moreover, observations from whole-genome sequence studies conducted on prevaccine pneumococcal isolates demonstrated that phenotypes CSP1 and CSP2 or their variants do not account for recombination differences among strains, suggesting that the mechanism leading to unidirectional transformation occurs irrespective of CSP cross talk (26).

Genomic studies have demonstrated that resistance to antibiotics among pneumococcal strains is driven by expansion of clones that have acquired resistance phenotypes by HGT, more than by de novo mutations (10). The mechanism is very efficient given the high resistance rates, and except for transposon-mediated resistance that will
be discussed below, it includes resistance to \(\beta \)-lactams, trimethoprim, and some of the last resort antibiotics, such as linezolid and carbapenems (7). The DNA taken by transformation is in general small since it appears to be cleaved into \(\sim 6.6 \) kb fragments (33). These fragments undergo homologous recombination to integrate, into the genome, DNA pieces of \(\sim 4.4 \) kb, calculated using data from species-wide multilocus sequence typing studies (34), or \(\sim 6.3 \) kb, as demonstrated by sequencing (35). A more recent study demonstrated heterogeneity in pneumococcal recombination with micro-recombination fragments of \(\sim 0.03 \) to \(0.6 \) kb and macrorecombination fragments ranging from 9 to 10 kb (36). Secondary, nonselective, recombination events via unidirectional transformation were not investigated in our study but have been calculated by Croucher et al. to be \(\sim 2.3 \) kb (37).

It has been well documented that mobile genetic elements (MGEs [e.g., transposons]) carry genes for resistance to tetracyclines and macrolides. These MGEs are usually \(\sim 20 \) kb or larger and are therefore not simply transferred by transformation (38). More recently, capsular switch events were linked to mobilization of the whole capsule locus from a nonvaccine type donor, 35B/ST558, to a vaccine type recipient, 9V/ST156, leading to a new lineage of capsule switch variants belonging to serotype 3SB/ST156 (39). Evidence of in vitro transference of Tn-encoded resistance, or capsule genes, in pneumococcal strains is not available yet, but such transference is currently being investigated in our laboratories.

Another important contribution in this article refers to the development of spontaneous competence. Our experiments demonstrated a burst of eDNA released into the supernatant as soon as 1 h postinoculation of human pharyngeal cells, in all different mixtures of pneumococcal strains tested. Release of eDNA has been linked to the development of competence, in studies conducted by Moscoso and Claverys (32), and also to production of bacteriocins and other fratricide factors, whose secretion causes heterolysis and therefore the release of DNA (40–42). Release of abundant eDNA in the bioreactor was also observed when strains were inoculated alone (data not shown); thereby, it is unlikely that such amounts of DNA were generated by heterolysis but rather by a mechanism coupled to spontaneous competence. Release of DNA early during colonization may also help pneumococci to attach to host cells and/or form bacterial aggregates leading to nasopharyngeal biofilms.

We, and others, have clearly demonstrated that under static culture conditions irreversible autolysis occurs in monostrain pneumococcal biofilms (40, 43). Heterolysis also happened in consortial biofilms inoculated with two different strains incubated under static conditions (42, 44). All of this evidence correlates with the finding that release of DNA in the supernatants is highest in stationary cultures because it comes from lysis of pneumococci (32). This, however, did not occur in our bioreactor model, where the sharpest peak of eDNA in the supernatants was detected during the log phase, within 2 h postinoculation. Studies by Wholey et al. demonstrated that heterolysis in consortial biofilms is linked to production of the BlpC bacteriocin, whose synthesis and release are controlled by the competence system (42). In the above-mentioned study, inoculation of strains at a 1:1 ratio was enough to completely eradicate susceptible pneumococci by a BlpC-producing strain (42). A decrease in density, but by no means eradication of a pneumococcal strain, was observed in recent studies in which two strains were inoculated at a similar density and cultured under static conditions (44). Moreover, when inoculated at similar densities in the bioreactor the density of strains was similar throughout the incubation period. Therefore, unidirectional transformation leading to a rapid acquisition of genes by recombination does not appear to be simply the eradication of one of the strains in the consortial biofilms.

We cannot rule out the possibility that killing of a fraction of the population of the recipient or the donor took place before the burst of released eDNA and the appearance of recombinants.

Remarkably, rapid development of spontaneous competence caused nearly 1 in 1,000 pneumococci to acquire antibiotic resistance within 4 h. High rF (e.g., \(\sim 10^{-3} \)) was consistently obtained in experiments where the resistance determinant included spe-
cific mutations (i.e., \textit{folA} and \textit{rpsL}), whereas the transference of whole resistance genes, such as \textit{tetM} or \textit{ermB} was observed at a lower \textit{Rf} (usually $>10^{-4}$). These observations were similar to those described in a mouse model of colonization (45). In this mouse model, recombinants were harvested 48 h postinoculation at an \textit{Rf} similar to that obtained in the bioreactor (45). Together this evidence suggests that acquisition of DNA among pneumococci and the development of competence occur soon after pneumococci colonize the host.

What stimulated the rapid development of competence? To the best of our knowledge, the only molecule from the host that has been identified as a trigger for recombination is chitin, an oligosaccharide found in the exoskeletons of crustaceans, the natural habitat of \textit{Vibrio cholerae} strains (46). Chitin induced an upregulated production of the \textit{V. cholerae} T4P (47), used for DNA uptake, and proteins of the transformation machinery (48). More recent studies showed that chitin induces production of a type 6 secretion system (T6SS), which is utilized by \textit{V. cholerae} to kill its neighbors and thus allow release of DNA, which is then taken by the transformation machinery, for recombination (49). While pneumococcus utilizes a T4P to take up DNA, a T6SS has not yet been reported, and a source for chitin in the bioreactor, the mouse model, or the human host, is unlikely.

Attempts were made in this study to begin to understand the development of such early “spontaneous” competence leading to nasopharyngeal recombination. The outcome of our extensive experimentation was that recombination of antibiotic resistance determinants, whose mechanism included release of eDNA and uptake (e.g., spontaneous competence), only required contact with host cells. Experiments by Marks et al. also demonstrated recombination in a biofilm model utilizing paraformaldehyde (PFA)-fixed pharyngeal cells in comparison to abiotic surfaces (45). We ruled out the possibility that a secreted product from human cells ignited pneumococcal recombination, given that the \textit{Rf} obtained in experiments using immobilized cells was similar to that obtained in living cultures of pharyngeal cells. Neither the cell culture medium nor the mammal serum utilized had an effect on the rapid pneumococcal recombination observed. As such, pneumococcal strains inoculated in the bloodstream of mice were not able to acquire DNA that was concomitantly inoculated in the seminal experiments published by Griffith in 1928 (12). Likewise, a high recombination frequency was not observed when two pneumococcal strains were inoculated in a mouse model of sepsis in more modern studies of pneumococcal recombination by the group of A. Hakansson (21)."
TABLE 2 Strains used in this study

S. pneumoniae strain	Description, relevant genotype, or phenotypea	Reference or source
D39	Avery strain, serotype 2, CSP1	56
SPJV01	D39 carrying pMV158GFP, Tet'	51
SPJV10	D39 ΔcomC	43
SPJV17	D39 carrying tetM gene in chromosome, Tet'	This study
SPJV22	D39 Str'	This study
TIGR4	Invasive isolate, serotype 4, CSP2	28
SPJV23	TIGR4 Str'	This study
SPJV27	TIGR4 Tmp'	This study
SPJV28	TIGR4 carrying tetM gene in chromosome, Tet'	This study
SPJV29	D39 Tmp'	This study
GA13499	Serotype 19F, Tmp' CSP1	57

*aStr', streptomycin resistant; Tet', tetracycline resistant; Tmp', trimethoprim resistant.

plasmid pPP2, which targeted tetM to the nonessential bgaA gene (50). SPJV22 and SPJV23 were transformed with DNA from strain R6Am9 encoding resistance to streptomycin (44). Strains SPJV27 and SPJV29 were prepared by transformation of TIGR4 or D39, respectively, with DNA from GA13499 encoding resistance to trimethoprim. Chromosomal integration of the tetM gene was confirmed by PCR with primers JSV101L and JSV102R. Mutations within folA or rpsL, conferring resistance to Tmp or Str, respectively, were confirmed by sequencing with primer JSV99L or JSV100R for Tmp and with primer JSV103L or JSV104R for Str. Transformation was done following standard methods (51, 52).

Cell cultures. Human pharyngeal Detroit 562 cells (ATCC CCL-138) were cultured in Eagle’s minimum essential medium (EMEM; Lonza, Walkersville, MD) supplemented with non-heat-inactivated 10% fetal bovine serum (FBS; Atlanta Biologicals, Flowery Branch, GA), 1% nonessential amino acids (Millipore-Sigma, Saint Louis, MO), 1% glutamine (Millipore-Sigma, Saint Louis, MO), penicillin (100 U/ml), and streptomycin (100 μg/ml), and the pH was buffered with HEPES (10 mM; Gibco, Thermo Fisher Scientific, Grand Island, NY). Cells were harvested with 0.25% trypsin (Gibco, Thermo Fisher Scientific, Grand Island, NY), resuspended in the cell culture medium, and incubated at 37°C in a 5% CO2 humidified atmosphere.

Inoculation of the bioreactor with pneumococcal strains. Detroit 562 cells (ATCC CCL-138) were grown on Snapwell filters (Corning, Corning, NY); these filters have a polyester membrane (0.4 μm). Stained preparations were finally washed two times with PBS and were mounted with ProLong Diamond antifade mountant with DAPI (Molecular Probes, Thermo Fisher Scientific, Grand Island, NY) (44). Stained preparations were finally washed two times with PBS and were mounted with ProLong Diamond antifade mountant with DAPI.
Table 3: Primers and qPCR assays used in this study

Primer or assay	Sequence (5′→3′)	Reference(s)
Primers		
2 f	TATCCCAATTTTCTCCACTACCC	30
2 r	ACAAATAATAGGCAGAGAGACTACCT	
4 f	CTGTTACCTTGTCTGGACACTCGATAATTGG	30
4 r	GCCCACTCTTGTAATAATATTACCTACCCGATGG	
JSV999L	TGCCGAGCAGATTGGACGA	This study
JSV100R	AAATAGGTATCTCCTTCCACC	This study
JSV101L	CTTGCTGGGCTACTAAGGGG	This study
JSV102R	CGGACCTCGAGGTGAAATGGT	This study
JSV103L	ATCTTGGAACGACAGGGAAAT	This study
JSV104R	TCTCTATGCTTTTGGACGGT	This study
PCR assays		
Serotype 2 Fwd	TTATGGACTGGCTATGTTCCTC	22, 58
Serotype 2 Rev	AAATCTGACCAATAATAGCTT	
Serotype 2 probe	AGGTCAACAGTTGAACACTTAGAAATGGAAA	
Serotype 4 Fwd	TGGGATGACATTTCTACGCACTA	22, 58
Serotype 4 Rev	CGTCCGCTGATGGTTATTACCA	
Serotype 4 probe	TCTATGGAGATGGTAGTGGTAGA	
Serotype 19F Fwd	GGCTATCGGACATAGCAGACAGAA	22, 58
Serotype 19F Rev	TCTCTATCAGTCCCCACCAATT	
Serotype 19F probe	ACCTGAAAGGATCTGCGGGAGCTT	

Probes are labeled 5′ with 6-carboxyfluorescein (FAM) and 3′ with black hole quencher 1 (BHQ1).

(Molecular Probes, Thermo Fisher Scientific, Grand Island, NY). Confocal images were obtained using an Olympus FV1000 confocal microscope and were analyzed with ImageJ version 1.49k (National Institutes of Health) or Imaris software (Bitplane, South Windsor, CT).

High-throughput assay for pneumococcal serotyping. Recombinant pneumococci obtained in BAPs containing two or three antibiotics were pooled in 200 μl of sterile PBS, and DNA from this population was purified as detailed below. This DNA was utilized as the template for serotype-specific quantitative PCRs with primers and probes listed in Table 3. Reactions targeted serotype-specific sequences within the capsule polysaccharide (cps) locus of each serotype (22, 53) and were run along with serially diluted DNA standards corresponding to 4.29 × 10^1, 4.29 × 10^2, 4.29 × 10^3, 4.29 × 10^4, 4.29 × 10^5, and 2.14 × 10^6 genome equivalents per reaction (54). Reactions were carried out using a Bio-Rad CFX96 Touch real-time PCR detection system (Bio-Rad, Hercules, CA) with the following cycling parameters: 50°C for 2 min, 95°C for 2 min, and 40 cycles of 95°C for 15 s and 60°C for 1 min. The standard curve and regression equation obtained were then used to calculate final genome equivalents per milliliter using the CFX software (Bio-Rad, Hercules, CA).

DNA extraction. DNA was extracted from 200 μl of a fresh suspension of pneumococcal strains with the QiAamp DNA minikit (Qiagen, Valencia CA) according to the manufacturer’s instructions. Final elution was done with 100 μl of elution buffer. DNA preps were quantified using a NanoDrop spectrophotometer and stored at −80°C until used.

Quantification of eDNA. Supernatants were collected from the outlet of bioreactor chambers, centrifuged for 15 min at 14,000 × g in a refrigerated centrifuge (Eppendorf, Hauppauge, NY), and then sterilized with a 0.45-μm-pore syringe filter. This bacterium-free supernatant was DNA extracted using the QiAamp DNA minikit following the manufacturer’s instructions. Purified DNA was used as the template in serotype-specific quantitative PCRs (qPCRs) using the primer and probe sets shown in Table 3. Reactions were performed essentially as described above and in our previous studies (22, 55). For eDNA quantification purposes, standards containing 1 × 10^1, 1 × 10^2, 1 × 10^3, 1 × 10^4, 1 × 10^5, 5 × 10^-2, or 1 × 10^-3 pg of chromosomal DNA from the appropriate serotype were run in parallel to generate a standard curve. This standard curve was then used to calculate the eDNA concentration using the Bio-Rad CFX Manager software.

Serotype-specific conventional PCRs. Serotype-specific PCRs were performed in 25-μl volumes containing ~100 ng DNA or 3 μl of bacterial lysate, 1 μM serotype-specific forward or reverse primer listed in Table 3, and 1× the PCR master mix from the Qiagen Multiplex PCR kit (Qiagen, Valencia CA). Reactions were run using the following cycling parameters: 1 cycle at 95°C for 15 min, followed by 35 cycles of 94°C for 30 s, 54°C for 1 min, and 72°C for 1 min, with a final extension of 72°C for 10 min. Products were run on 2% agarose gels, stained with SYBR Safe DNA gel stain (Life Technologies, Grand Island, NY), and visualized under a UV transilluminator (Bio-Rad, Hercules, CA).

Transformation reactions. S. pneumoniae strains were made competent using standard procedures and then transformed with 500 ng of pure DNA containing 100 ng of competence-stimulating peptide 1 (CSP1) or CSP2 in a reaction volume of 200 μl (15). CSP1 and CSP2 were synthesized at Millipore-Sigma (St. Louis, MO).

Sequencing reactions. Purified DNA from wild-type strains or recombinant derivatives was used as the template to PCR amplify the 16S rRNA gene using primers JSV999L and JSV101R listed in Table 3. PCR products were purified using the QIAquick PCR purification kit (Qiagen, Valencia, CA). Both DNA strands were sequenced using primers JVS100R and JVS102L listed in Table 3. Sequencing reactions were run using the BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, Carlsbad, CA) with cycle sequencing primers listed in Table 3. Sequences were analyzed and aligned using the BioEdit software (Ibis Biosciences, San Diego, CA).
Unidirectional Pneumococcal Transformation

Whitney U May/June 2018 Volume 9 Issue 3 e00561-18

REFERENCES

1. O’Brien KL, Wolfson LJ, Watt JP, Henkle E, Deloria-Knoll M, McCall N, Lee E, Mulholland K, Levine OS, Cherian T, Hib and Pneumococcal Global Burden of Disease Study Team. 2009. Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: global estimates. Lancet 374:893–902. https://doi.org/10.1016/S0140-6736(09)61204-6.

2. Levine OS, Klugman KP. 2009. Breathing new life into pneumonia epidemiology. Am J Epidemiol 170:1067–1068. https://doi.org/10.1093/aje/kwp316.

3. Tomasz A. 2000. Streptococcus pneumoniae: molecular biology and mechanisms of disease. Mary Ann Liebert, Inc, Larchmont, NY.

4. Kadioglu A, Weiser JN, Paton JC, Andrew PW. 2008. The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. Nat Rev Microbiol 6:288–301.

5. van der Poll T, Opal SM. 2009. Pathogenesis, treatment, and prevention of pneumococcal pneumonia. Lancet 374:1543–1556. https://doi.org/10.1016/S0140-6736(09)61114-4.

6. Shak JR, Vidal JE, Klugman KP. 2013. Influence of bacterial interactions on pneumococcal colonization of the nasopharynx. Trends Microbiol 21:129–135. https://doi.org/10.1016/j.tim.2012.11.005.

7. Kim L, McGee L, Tomczyk S, Beall B. 2016. Biological and epidemiological features of antibiotic-resistant Streptococcus pneumoniae in pre- and post-conjugate vaccine eras: a United States perspective. Clin Microbiol Rev 29:525–552. https://doi.org/10.1128/CMR.00058-15.

8. Andam CP, Hanage WP. 2015. Mechanisms of genome evolution of Streptococcus. Infect Genet Evol 33:334–342. https://doi.org/10.1016/j.meegid.2014.11.007.

9. Schroeder MR, Stephens DS. 2016. Macrolide resistance in Streptococcus pneumoniae. Front Cell Infect Microbiol 6:98. https://doi.org/10.3389/fcimb.2016.00098.

10. Chiewpaerecha C, Harris SR, Croucher NJ, Turner C, Marttinen P, Cheng L, Pessia A, Aanensen DM, Mather AE, Page AJ, Salter SJ, Harris D, Nosten F, Goldblatt D, Corander J, Parkhill J, Turner P, Bentley SD. 2014. Dense genomic sampling identifies highways of pneumococcal recombination. Nat Genet 46:305–309. https://doi.org/10.1038/ng.2895.

11. Dong W, Chochua S, McGee L, Jackson D, Klugman KP, Vidal JE. 2014. Mutations within the rplD gene of linezolid-nonsusceptible Streptococcus pneumoniae strains isolated in the United States. Antimicrob Agents Chemother 58:2459–2462. https://doi.org/10.1128/AAC.02630-13.

12. Griffith F. 1928. The significance of pneumococcal types. J Hyg 27:113–159. https://doi.org/10.1017/S002227600031879.

13. Straume D, Stamsás GA, Hävarstein LS. 2015. Natural transformation and genome evolution in Streptococcus pneumoniae. Infect Genet Evol 33:371–380. https://doi.org/10.1016/j.meegid.2014.10.020.

14. Claverys JP, Martin B, Polard P. 2009. The genetic transformation machinery: composition, localization, and mechanism. FEMS Microbiol Rev 33:643–656. https://doi.org/10.1111/j.1574-6976.2009.00164.x.

15. Hävarstein LS, Coomaraswamy G, Morrison DA. 1995. An unmodified heptadecapeptide pheromone induces competence for genetic transformation in Streptococcus pneumoniae. Proc Natl Acad Sci U S A 92:11140–11144. https://doi.org/10.1073/pnas.92.24.11140.

16. Ottolenghi E, Hotchkiss RD. 1960. Appearance of genetic transforming activity in pneumococcal cultures. Science 132:1257–1258.

17. Peterson SN, Sung CK, Cline R, Desai BV, Snesrud EC, Luo P, Walling J, Li H, Mintz M, Tsegay G, Burr PC, Do Y, Ahn S, Gilibert J, Fleischmann RD, Morrison DA. 2004. Identification of competence pheromone responsive genes in Streptococcus pneumoniae by use of DNA microarrays. Mol Microbiol 51:1051–1070. https://doi.org/10.1046/j.1365-2958.2003.03907.x.

18. Rimini R, Jansson B, Feger G, Roberts TC, de Francesco M, Gozzi A, Faggioni F, Domenici E, Wallace DM, Frandsen N, Polissi A. 2000. Global analysis of transcription kinetics during competence development in Streptococcus pneumoniae using high density DNA arrays. Mol Microbiol 36:1279–1292. https://doi.org/10.1046/j.1365-2958.2000.01931.x.

19. Laurencette R, Péhau-Arnaudet G, Bacconais S, Gault J, Malosse C, Dujacourt A, Campo N, Chamot-Rooke J, Le Cam E, Claverys JP, Fronzes R. 2013. A type IV pilus mediates DNA binding during natural transformation in Streptococcus pneumoniae. PLoS Pathog 9:e1003473. https://doi.org/10.1371/journal.ppat.1003473.

20. Balaban M, Bättig P, Muschiol S, Trier SM, Wartha F, Normark S, Henriques-Normark B. 2014. Secretion of a pneumococcal type II secretion system pilus correlates with DNA uptake during transformation.
29. Salles C, Créancier L, Claverys JP, Méjean V. 1992. The high level strep-
25. Valente C, Hinds J, Gould KA, Pinto FR, de Lencastre H, Sá-Leão R. 2016.
22. Sakai F, Chochua S, Satzke C, Dunne EM, Mulholland K, Klugman KP,
35. Croucher NJ, Harris SR, Bentley SD, van der Linden M,
28. Tettelin H, Nelson KE, Paulsen IT, Eisen JA, Read TD, Peterson S, Heidel-
24. Turner P, Hinds J, Turner C, Jankhot A, Gould K, Bentley SD, Nosten F,
30. Pai R, Gertz RE, Beall B. 2006. Sequential multiplex PCR approach for
11. Improved detection of nasopharyngeal coccolization
by multiple fimbrial serotypes by use of latex agglutination
or molecular serotyping by microarray. J Clin Microbiol 49:1784–1789.
https://doi.org/10.1128/JCM.00157-11.

20. Valente C, Hinds J, Gould KA, Pinto FR, de Lencastre H, Sá-Leão R. 2016.

18. J Clin Microbiol 44:124–131.

15. Science 293:498–506.

9. Proc Natl Acad Sci USA 111:E758–E765. https://doi.org/10.1073/pnas.1313860111.

8. The Vibrio cholerae chitin utilization program. Proc Natl Acad Sci USA 111:E758–E765. https://doi.org/10.1073/pnas.1313860111.

7. mBio 7:e0153-16.

6. Streptococcus pneumoniae lineages increase with carriage duration and size of the

5. Invasive serotype 35B pneumococci including an expanding serotype

4. The Vibrio cholerae chitin utilization program. Proc Natl Acad Sci USA 111:E758–E765. https://doi.org/10.1073/pnas.1313860111.

3. Nat Med 178:700–706.

2. The Vibrio cholerae chitin utilization program. Proc Natl Acad Sci USA 111:E758–E765. https://doi.org/10.1073/pnas.1313860111.

1. Bacterial 189:38–51. https://doi.org/10.1128/IBJ.01148-06.

0. 18. J Clin Microbiol 44:124–131.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.

-13.
56. Avery OT, Macleod CM, McCarty M. 1944. Studies on the chemical nature of the substance inducing transformation of pneumococcal types: induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. J Exp Med 79:137–158. https://doi.org/10.1084/jem.79.2.137.

57. Chancey ST, Agrawal S, Schroeder MR, Farley MM, Tettelin H, Stephens DS. 2015. Composite mobile genetic elements disseminating macrolide resistance in Streptococcus pneumoniae. Front Microbiol 6:26. https://doi.org/10.3389/fmicb.2015.00026.

58. Azzari C, Moriondo M, Indolfi G, Cortimiglia M, Canessa C, Becciolini L, Lippi F, de Martino M, Resti M. 2010. Realtime PCR is more sensitive than multiplex PCR for diagnosis and serotyping in children with culture negative pneumococcal invasive disease. PLoS One 5:e9282. https://doi.org/10.1371/journal.pone.0009282.