Intermittent delta waves mimics inferior myocardial infarction in young athlete

Massimo Bolognesi*
Centre for Sports Cardiology - Internal General Medicine, Ausl della Romagna - Cesena Italy

Abstract
WPW syndrome is recognized by the existence of delta waves and a short PR interval on the electrocardiogram. Delta waves may appear as a positive or negative deviation on ECG tracing corresponding to the localization of accessory pathway. Wolff-Parkinson-White (WPW) syndrome may exist in healthy athletes. Electrocardiograms (ECGs) are the most powerful tool to detect anomalies in athletes, even if they’re considered healthy people [1]. ECGs of patients with Wolff-Parkinson-White (WPW) syndrome may exist in healthy athletes [2]. WPW syndrome is recognized by the existence of delta waves and a short PR interval on the electrocardiogram. Delta waves may appear as a positive or negative deviation on the ECG corresponding to the localization of accessory pathways. Sometimes the WPW-ECG pattern may simulate other pathologic states such as myocardial infarction, ventricular bigeminy, accelerated idioventricular rhythm, or electrical alternates [3]. Sports pre-participation screening in a young athlete is going to become a challenge for sport cardiology doctors who practice every day with the knowledge of the benefits and harms of their intervention because no one knows if pre-participation screening of athletes is effective in reducing the risk of sudden death [4].

Introduction
Electrocardiograms (ECGs) are the most powerful tool to detect anomalies in athletes, even if they’re considered healthy people [1]. ECGs of patients with Wolff-Parkinson-White (WPW) syndrome may exist in healthy athletes [2]. WPW syndrome is recognized by the existence of delta waves and a short PR interval on the electrocardiogram. Delta waves may appear as a positive or negative deviation on ECG tracing corresponding to the localization of accessory pathway. Sometimes the WPW-ECG pattern may simulate other pathologic states such as myocardial infarction, ventricular bigeminy, accelerated idioventricular rhythm, or electrical alternates [3]. Sports pre-participation screening in a young athlete is going to become a challenge for sport cardiology doctors who practice every day with the knowledge of the benefits and harms of their intervention because no one knows if pre-participation screening of athletes is effective in reducing the risk of sudden death [4].

Case report
A 19-year old male athlete came to our center for sports cardiology to undergo pre-participation screening for volleyball. His family history was unremarkable and physical examination resulted within normal limits. No cardiovascular risk factors were present and he was asymptomatic for chest pain, syncope, and palpitations. Spirometry and urinalysis were normal. He was asymptomatic. Twelve-lead ECG at rest showed a sinus rhythm with frequency variation (respiratory sinus arrhythmia) with a heart rate of 92 bpm; PR 118 ms (short), QRS of 116 ms (nonspecific enlargement); normal axis and the presence of abnormal Q waves in the inferolateral leads (like pseudo necrosis). Electrocardiographic pattern was suggestive of ventricular pre-excitation due to left posterior-septal pathway, which simulates inferior myocardial features (Figure 1). An exercise OF stress testing was normal with stable pre-excitation ECG pattern. Subsequently, a Trans-Thoracic Echocardiography showed normal morphological and functional heart findings. Consultation with EP Cardiology confirmed the suspicion that this ECG represents a Pseudo-Infarction Pattern in a patient with WPW. Electrophysiological study was not performed in this asymptomatic athlete.

Discussion
The ECGs of WPW syndrome may mimic myocardial infarction patterns. If the delta wave is oriented superiorly, it may register as an abnormal Q wave in the inferior leads, and the tracing can be mistaken for an inferior myocardial infarct. Literature reported that among 44 patients with WPW syndrome referred to their institution, 31 (70%) had negative delta waves in one or more leads simulating infarct pattern [5]. In the setting of sports pre-participation screening there are many questions to ask: a) How should a sports physician interpret this tracing? b) What clinical entities should be considered in the differential diagnosis? c) How might one proceed in that evaluation? The evidence of an abnormal 12-lead ECG for this young adult should raise several considerations (i.e., previously undetected congenital heart disease; some type of cardiomyopathy; a prior episode of myocarditis that spontaneously resolved; etc.). Anyhow, an echocardiogram was obtained, looking for underlying structural heart disease. To make this case more difficult, everyone must know that the appearance of WPW on the ECG may be varied and subtle. In fact, the inferior pseudo-infarction pattern seen here is due to negative delta waves in leads II and III. Therefore, delta waves are otherwise not readily recognizable on this tracing. In this case, the ECG is markedly abnormal for a 19-year old man. The long lead II rhythm strip at the bottom shows aphasic arrhythmia, with upright P waves with a fixed PR interval preceding each QRS complex. This is most likely marked sinus arrhythmia, but the rhythm is benign in a 19-year old man. It is the remainder of the ECG that is most exciting. All intervals (PR, QRS, and QT) appear to be normal. The mean THE QRS axis is indeterminate (predominantly negative in both leads I and aVF). What
Conclusion

There are pros and cons to pre-participation ECG evaluation of otherwise healthy young adult athletes. The obvious goal of such evaluation is to detect occult cardiac conditions that might prove hazardous if unrestricted physical exertion is allowed. Careful investigation of surface ECG is necessary for sports physicians to avoid incorrect diagnosis.

Conflict of interest

None

References

1. Lawless CE, Best TM (2008) Electrocardiograms in athletes: interpretation and diagnostic accuracy. Med Sci Sports Exerc 40: 787-798. [Crossref]
2. Rao AL, Salerno JC, Asif IM, Drezner JA (2014) Evaluation and management of wolff-Parkinson-white in athletes. Sports Health 6: 326-332. [Crossref]
3. Wang K, Asinger R, Hodges M. Electrocardiograms of wolff-Parkinson-White syndrome simulating other conditions American Heart Journal Volume 132, Issue 1, Part 1, July 1996
4. Semsarian C, Ingles J (2016) Preventing sudden cardiac death in athletes. BMJ 353: i1270. [Crossref]
5. Ruskin JN, Akhtar M, Damato AN, Tiezoon AR, Lau SH, et al. (1976) Abnormal Q waves in wolff-Parkinson-White syndrome. Incidence and clinical significance. JAMA 235: 2727-2730. [Crossref]