The TreeBanker: a Tool for Supervised Training of Parsed Corpora

David Carter
SRI International
23 Millers Yard, Mill Lane
Cambridge CB2 1RQ
United Kingdom
dmc©cam.sri.com

Abstract

I describe the TreeBanker, a graphical tool for the supervised training involved in domain customization of the disambiguation component of a speech- or language-understanding system. The TreeBanker presents a user, who need not be a system expert, with a range of properties that distinguish competing analyses for an utterance and that are relatively easy to judge. This allows training on a corpus to be completed in far less time, and with far less expertise, than would be needed if analyses were inspected directly: it becomes possible for a corpus of about 20,000 sentences of the complexity of those in the ATIS corpus to be judged in around three weeks of work by a linguistically aware non-expert.

1 Introduction

In a language understanding system where full, linguistically-motivated analyses of utterances are desired, the linguistic analyser needs to generate possible semantic representations and then choose the one most likely to be correct. If the analyser is a component of a pipelined speech understanding system, the problem is magnified, as the speech recognizer will typically deliver not a word string but an N-best list or a lattice; the problem then becomes one of choosing between multiple analyses of several competing word sequences.

In practice, we can only come near to satisfactory disambiguation performance if the analyser is trained on a corpus of utterances from the same source (domain and task) as those it is intended to process. Since this needs to be done afresh for each new source, and since a corpus of several thousand sentences will normally be needed, economic considerations mean it is highly desirable to do it as automatically as possible. Furthermore, those aspects that cannot be automated should as far as possible not depend on the attention of experts in the system and in the representations it uses.

The Spoken Language Translator (SLT; Becket et al, forthcoming; Rayner and Carter, 1996 and 1997) is a pipelined speech understanding system of the type assumed here. It is constructed from general-purpose speech recognition, language processing and speech synthesis components in order to allow relatively straightforward adaptation to new domains. Linguistic processing in the SLT system is carried out by the Core Language Engine (CLE; Alshawi, 1992). Given an input string, N-best list or lattice, the CLE applies unification-based syntactic rules and their corresponding semantic rules to create zero or more quasi-logical form (QLF, described below; Alshawi, 1992; Alshawi and Crouch, 1992) analyses of it; disambiguation is then a matter of selecting the correct (or at least, the best available) QLF.

This paper describes the TreeBanker, a program that facilitates supervised training by interacting with a non-expert user and that organizes the results of this training to provide the CLE with data in an appropriate format. The CLE uses this data to analyse speech recognizer output efficiently and to choose accurately among the interpretations it creates. I assume here that the coverage problem has been solved to the extent that the system’s grammar and lexicon license the correct analyses of utterances often enough for practical usefulness (Rayner, Bouillon and Carter, 1995).

The examples given in this paper are taken from the ATIS (Air Travel Inquiry System; Hemphill et al, 1990) domain. However, wider domains, such as that represented in the North American Business News (NAB) corpus, would present no particular problem to the TreeBanker as long as the (highly non-trivial) coverage problems for those do-
mains were close enough to solution. The examples given here are in fact all for English, but the TreeBanker has also successfully been used for Swedish and French customizations of the CLE (Gambèck and Rayner, 1992; Rayner, Carter and Bouillon, 1996).

2 Representational Issues

In the version of QLF output by the CLE’s analyser, content word senses are represented as predicates and predicate-argument relations are shown, so that selecting a single QLF during disambiguation entails resolving content word senses and many structural ambiguities. However, many function words, particularly prepositions, are not resolved to senses, and quantifier scope and anaphoric references are also left unresolved. Some syntactic information, such as number and tense, is represented. Thus QLF encodes quite a wide range of the syntactic and semantic information that can be useful both in supervised training and in run-time disambiguation.

QLFs are designed to be appropriate for the inference or other processing that follows utterance analysis in whatever application (translation, database query, etc.) the CLE is being used for. However, they are not easy for humans to work with directly in supervised training. Even for an expert, inspecting all the analyses produced for a sentence is a tedious and time-consuming task. There may be dozens of analyses that are variations on a small number of largely independent themes: choices of word sense, modifier attachment, conjunction scope and so on. Further, if the representation language is designed with semantic and computational considerations in mind, there is no reason why it should be easy to read even for someone who fully understands it. And indeed, as already argued, it is preferable that selection of the correct analysis should as far as possible not require the intervention of experts at all. The TreeBanker (and, in fact, the CLE’s preference mechanism, omitted here for space reasons but discussed in detail by Becket et al, forthcoming) therefore treats a QLF as completely characterized by its properties: smaller pieces of information, extracted from the QLF or the syntax tree associated with it, that are likely to be easy for humans to work with.

The TreeBanker presents instances of many kinds of property to the user during training. However, its functionality in no way depends on the specific nature of QLF, and in fact its first action in the training process is to extract properties from QLFs and their associated parse trees, and then never again to process the QLFs directly. The database of analysed sentences that it maintains contains only these properties and not the analyses themselves. It would therefore be straightforward to adapt the TreeBanker to any system or formalism from which properties could be derived that both distinguished competing analyses and could be presented to a non-expert user in a comprehensible way. Many mainstream systems and formalisms would satisfy these criteria, including ones such as the University of Pennsylvania Treebank (Marcus et al, 1993) which are purely syntactic (though of course, only syntactic properties could then be extracted). Thus although I will ground the discussion of the TreeBanker in its use in adapting the CLE system to the ATIS domain, the work described is of much more general application.

3 Discriminant-Based Training

Many of the properties extracted from QLFs can be presented to non-expert users in a form they can easily understand. Those properties that hold for some analyses of a particular utterance but not for others I will refer to as discriminants (Dagan and Itai, 1994; Yarowsky, 1994). Discriminants that fairly consistently hold for correct but not (some) incorrect analyses, or vice versa, are likely to be useful in distinguishing correct from incorrect analyses at run time. Thus for training on an utterance to be effective, we need to provide enough “user-friendly” discriminants to allow the user to select the correct analyses, and as many as possible “system-friendly” discriminants that, over the corpus as a whole, distinguish reliably between correct and incorrect analyses. Ideally, a discriminant will be both user-friendly and system-friendly, but this is not essential. In the rest of this paper we will only encounter user-friendly properties and discriminants.

The TreeBanker presents properties to the user in a convenient graphical form, exemplified in Figure 1 for the sentence “Show me the flights to Boston serving a meal”. Initially, all discriminants are displayed in inverse video to show they are viewed as undecided. Through the disambiguation process, discriminants and the analyses they apply to can be undecided, correct (“good”, shown in normal video), or incorrect (“bad”, normal video but preceded a negation symbol “-“). The user may click on any discriminant with the left mouse button to select it as correct, or with the right button to select it as incorrect. The types of property currently extracted, ordered approximately from most to least user-friendly, are as follows; examples are taken from the six QLFs for the sentence used in figure 1.

- Constituents: ADVP for “serving a meal" (a
discriminant, holding only for readings that could be paraphrased “show me the flights to Boston while you’re serving a meal”); VP for “serving a meal” (holds for all readings, so not a discriminant and not shown in figure 1).

- **Semantic triples**: relations between word senses mediated usually by an argument position, preposition or conjunction (Alshawi and Carter, 1994). Examples here (abstracting from senses to root word forms, which is how they are presented to the user) are “flight to Boston” and “show –to Boston” (the “-” indicates that the attachment is not a low one; this distinction is useful at run time as it significantly affects the likelihood of such discriminants being correct). Argument-position relations are less user-friendly and so are not displayed.

When used at run time, semantic triples undergo abstraction to a set of semantic classes defined on word senses. For example, the obvious senses of “Boston”, “New York” and so on all map onto the class name co_city. These classes are currently defined manually by experts; however, only one level of abstraction, rather than a full semantic hierarchy, seems to be required, so the task is not too arduous.

- **Word senses**: “serve” in the sense of “fly to” (“does United serve Dallas?”) or “provide” (“does that flight serve meals?”).

- **Sentence type**: imperative sentence in this case (other moods are possible; fragmentary sentences are displayed as “elliptical NP”, etc).

- **Grammar rules used**: the rule name is given. This can be useful for experts in the minority of cases where their intervention is required.

In all, 27 discriminants are created for this sentence, of which 15 are user-friendly enough to display, and a further 28 non-discriminant properties may be inspected if desired. This is far more than the three distinct differences between the analyses (“serve” as “fly to” or “provide”; “to Boston” attaching to “show” or “flights”; and, if “to Boston” does attach to “flights”, a choice between “serving a meal” as relative or adverbial). The effect of this is that the user can give attention to whatever discriminants he finds it easiest to judge; other, harder ones will typically be resolved automatically by the TreeBanker as it reasons about what combinations of discriminants apply to which analyses. The first rule the TreeBanker uses in this reasoning process to propagate decisions is:

R1 If an analysis (represented as a set of discriminants) has a discriminant that the user has marked as bad, then the analysis must be bad.

This rule is true by definition. The other rules used depend on the assumption that there is exactly one

1I make the customary apologies for this use of pronouns, and offer the excuse that most use of the TreeBanker to date has been by men.
good analysis among those that have been found, which is of course not true for all sentences; see Section 4 below for the ramifications of this.

R2 If a discriminant is marked as good, then only analyses of which it is true can be good (since there is at most one good analysis).

R3 If a discriminant is true only of bad analyses, then it is bad (since there is at least one good analysis).

R4 If a discriminant is true of all the undecided analyses, then it is good (since it must be true of the correct one, whichever it is).

Thus if the user selects "the flights to Boston serving a meal" as a correct NP, the TreeBanker applies rule R2 to narrow down the set of possible good analyses to just two of the six (hence the item "2 good QLFs" at the top of the control menu in the figure; this is really a shorthand for "2 possibly good QLFs"). It then applies R1-R4 to resolve all the other discriminants except the two for the sense of "serve"; and only those two remain highlighted in inverse video in the display, as shown in Figure 2. So, for example, there is no need for the user explicitly to make the trickier decision about whether or not "serving a meal" is an adverbial phrase. The user simply clicks on "serve = provide", at which point R2 is used to rule out the other remaining analysis and then R3 to decide that "serve = fly to" is bad.

The TreeBanker's propagation rules often act like this to simplify the judging of sentences whose discriminants combine to produce an otherwise unmanageably large number of QLFs. As a further example, the sentence "What is the earliest flight that has no stops from Washington to San Francisco on Friday?" yields 154 QLFs and 318 discriminants, yet the correct analysis may be obtained with only two selections. Selecting "the earliest flight ... on Friday" as an NP eliminates all but twenty of the analyses produced, and approving "that has no stops" as a relative clause eliminates eighteen of these, leaving two analyses which are both correct for the purposes of translation. 152 incorrect analyses may thus be dismissed in less than fifteen seconds.

4 Additional Functionality

Although primarily intended for the disambiguation of corpus sentences that are within coverage, the TreeBanker also supports the diagnosis and categorization of coverage failures. Sometimes, the user may suspect that none of the provided analyses for a sentence is correct. This situation often becomes apparent when the TreeBanker (mis-)applies rules R2-R4 above and insists on automatically assigning incorrect values to some discriminants when the user makes decisions on others; the coverage failure may be confirmed, if the user is relatively accomplished, by inspecting the non-discriminant properties as well (thus turning the constituent window into a display of the entire parse forest) and verifying that the correct parse tree is not among those offered. Then the user may mark the sentence as "Not OK" and classify it under one of a number of failure types, optionally typing a comment as well. At a later stage, a system expert may ask the TreeBanker to print out all the coverage failures of a given type as an aid to organizing work on grammar and lexicon development.

For some long sentences with many different readings, more discriminants may be displayed than will fit onto the screen at one time. In this case, the user may judge one or two discriminants (scrolling if necessary to find likely candidates), and ask the TreeBanker thereafter to display only undecided discriminants; these will rapidly reduce in number as decisions are made, and can quite soon all be viewed at once.

If the user changes his mind about a discriminant, he can click on it again, and the TreeBanker will take later judgments as superceding earlier ones, inferring other changes on that basis. Alternatively, the "Reset" button may be pressed to undo all judgments for the current sentence.

It has proved most convenient to organize the corpus into files that each contain data for a few dozen sentences; this is enough to represent a good-sized
Figure 2: TreeBanker display after approving topmost “np” discriminant

Figure 3: Initial TreeBanker display for “Show me the flights serving meals on Wednesday”
corpus in a few hundred files, but not so big that the user is likely to want to finish his session in the middle of a file.

Once part of the corpus has been judged and the information extracted for run-time use (not discussed here), the TreeBanker may be told to resolve discriminants automatically when their values can safely be inferred. In the ATIS domain, “show -to (city)” is a triple that is practically never correct, since it only arises from incorrect PP attachments in sentences like “Show me flights to New York”. The user can then be presented with an initial screen in which that choice, and others resulting from it, are already made. This speeds up his work, and may in fact mean that some sentences do not need to be presented at all.

In practice, coverage development tends to overlap somewhat with the judging of a corpus. In view of this, the TreeBanker includes a “merge” option which allows existing judgments applying to an old set of analyses of a sentence to be transferred to a new set that reflects a coverage change. Properties tend to be preserved much better than whole analyses as coverage changes; and since only properties, and not analyses, are kept in the corpus database, the vast bulk of the judgments made by the user can be preserved.

The TreeBanker can also interact directly with the CLE’s analysis component to allow a user or developer to type sentences to the system, see what discriminants they produce, and select one analysis for further processing. This configuration can be used in a number of ways. Newcomers can use it to familiarize themselves with the system’s grammar. More generally, beginning students of grammar can use it to develop some understanding of what grammatical analysis involves. It is also possible to use this mode during grammar development as an aid to visualizing the effect of particular changes to the grammar on particular sentences.

5 Evaluation and Conclusions

Using the TreeBanker, it is possible for a linguistically aware non-expert to judge around 40 sentences per hour after a few days practice. When the user becomes still more practised, as will be the case if he judges a corpus of thousands of sentences, this figure rises to around 170 sentences per hour in the case of our most experienced user. Thus it is reasonable to expect a corpus of 20,000 sentences to be judged in around three person weeks. A much smaller amount of time needs to be spent by experts in making judgments he felt unable to make (perhaps for one per cent of sentences once the user has got used to the system) and in checking the user’s work (the TreeBanker includes a facility for picking out sentences where errors are mostly likely to have been made, by searching for discriminants with unusual values). From these figures it would seem that the TreeBanker provides a much quicker and less skill-intensive way to arrive at a disambiguated set of analyses for a corpus than the manual annotation scheme involved in creating the Penn Treebank; however, the TreeBanker method depends on the prior existence of a grammar for the domain in question, which is of course a non-trivial requirement.

Engelson and Dagan (1996) present a scheme for selecting corpus sentences whose judging is likely to provide useful new information, rather than those that merely repeat old patterns. The TreeBanker offers a related facility whereby judgments on one sentence may be propagated to others having the same sequence of parts of speech. This can be combined with the use of representative corpora in the CLE (Rayner, Bouillon and Carter, 1995) to allow only one representative of a particular pattern, out of perhaps dozens in the corpus as a whole, to be inspected. This already significantly reduces the number of sentences needing to be judged, and hence the time required, and we expect further reductions as Engelson’s and Dagan’s ideas are applied at a finer level.

In the current implementation, the TreeBanker only makes use of context-independent properties: those derived from analyses of an utterance that are constructed without any reference to the context of use. But utterance disambiguation in general requires the use of information from the context. The context can influence choices of word sense, syntactic structure and, most obviously, anaphoric reference (see e.g. Carter, 1987, for an overview), so it might seem that a disambiguation component trained only on context-independent properties cannot give adequate performance.

However, for QLFs for the ATIS domain, and presumably for others of similar complexity, this is not in practice a problem. As explained earlier, anaphors are left unresolved at the stage of analysis and disambiguation we are discussing here; and contextual factors for sense and structural ambiguity resolution are virtually always “frozen” by the constraints imposed by the domain. For example, although there are certainly contexts in which “Tell me flights to Atlanta on Wednesday” could mean “Wait until Wednesday, and then tell me flights to Atlanta”, in the ATIS domain this reading is impossible and so “on Wednesday” must attach to
"flights". For a wider domain such as NAB, one could perhaps attack the context problem either by an initial phase of topic-spotting (using a different set of discriminant scores for each topic category), or by including some discriminants for features of the context itself among these to which training was applied.

Acknowledgements

I am very grateful to Martin Keegan for feedback on his hard work of judging 16,000 sentences using the TreeBanker, and to Manny Rayner, David Milward and anonymous referees for useful comments on earlier versions of this paper.

The work reported here was begun under funding from by the Defence Research Agency, Malvern, UK, under Strategic Research Project AS04BP44, and continued with funding from Telia Research AB under the SLT-2 project.

References

Becket, Ralph, and 19 others (forthcoming). Spoken Language Translator: Phase Two Report. Joint report by SRI International and Telia Research.

Alshawi, Hiyan, editor (1992). The Core Language Engine. The MIT Press, Cambridge, Massachusetts.

Alshawi, Hiyan, and David Carter (1994). "Training and Scaling Preference Functions for Disambiguation". Computational Linguistics, 20:4.*

Alshawi, Hiyan, and Richard Crouch (1992). "Monotonic Semantic Interpretation". In Proceedings of 30th Annual Meeting of the Association for Computational Linguistics, pp. 32-39, Newark, Delaware.*

Carter, David (1987). "Interpreting Anaphors in Natural Language Texts". Chichester: Ellis Horwood.

Dagan, Ido, and Alon Itai (1994). "Word Sense Disambiguation Using a Second Language Monolingual Corpus", Computational Linguistics 20:4, pp. 563-596.

Engelson, Sean, and Ido Dagan (1996). "Minimizing Manual Annotation Cost in Supervised Training from Corpora". In Proceedings of 34th Annual Meeting of the Association for Computational Linguistics, pp. 319-326, Santa Cruz, CA.

Gambäck, Björn, and Manny Rayner (1992). "The Swedish Core Language Engine". In Proceedings of NOTEX-92.*

Hemphill, C.T., J.J. Godfrey and G.R. Doddington (1990). "The ATIS Spoken Language Systems pilot corpus." Proceedings of DARPA Speech and Natural Language Workshop, Hidden Valley, Pa., pp. 96-101.

Marcus, Mitchell, Beatrice Santorini, and Mary Ann Marcinkiewicz (1993). “Building a Large Annotated Corpus of English: the Penn Treebank”. Computational Linguistics, 19:2, pp. 313-330.

Murveit, Hy, John Butzberger, Vassilios Digalakis and Mitchell Weintraub (1993). “Large Vocabulary Dictation using SRI's DECIPHER(TM) Speech Recognition System: Progressive Search Techniques”. In Proceedings of ICASSP-93.

Rayner, Manny, Pierrette Bouillon, and David Carter (1995). “Using Corpora to Develop Limited-Domain Speech Translation Systems”. In Proceedings of Translating and the Computer 17, ASLIB, London.*

Rayner, Manny, David Carter, and Pierrette Bouillon (1996). "Adapting the Core Language Engine to French and Spanish". In Proceedings of NLP-IA, Moncton, New Brunswick.*

Rayner, Manny, and David Carter (1996). “Fast Parsing using Pruning and Grammar Specialization”. In Proceedings of 34th Annual Meeting of the Association for Computational Linguistics, pp. 223–230, Santa Cruz, CA.*

Rayner, Manny, and David Carter (1997). “Hybrid language processing in the Spoken Language Translator”. In Proceedings of ICASSP-97.*

Yarowsky, David (1994). “Decision Lists for Lexical Ambiguity Resolution”. In Proceedings of 32nd Annual Meeting of the Association for Computational Linguistics, pp. 88-95, Las Cruces, NM.