ON PARK’S EXOTIC SMOOTH FOUR-MANIFOLDS

PETER OZSVÁTH AND ZOLTÁN SZABÓ

Abstract. In a recent paper, Park constructs certain exotic simply-connected four-manifolds with small Euler characteristics. Our aim here is to prove that the four-manifolds in his constructions are minimal.

1. Introduction

Since the seminal works of Donaldson [1] and Freedman [6], it has been known that closed, simply-connected four-manifolds can support exotic smooth structures. In fact, for many homeomorphism classes, gauge theory tools (Donaldson invariants and Seiberg-Witten invariants) have been very successful at proving the existence of infinitely many smooth structures, see for example [2], [8], [7], [5]. However, exotic examples with small Euler characteristics are much more difficult to find. For a long time, the smallest known example was the Barlow surface [10], which has Euler characteristic 11 and which is homeomorphic, but not diffeomorphic, to \(\mathbb{CP}^2 \# 8\mathbb{CP}^2\). Recently, in a remarkable paper, Park [14] constructs a symplectic manifold \(P\) with Euler characteristic 10 using the rational blow-down operation of Fintushel and Stern [4], and proves that it is homeomorphic, but not diffeomorphic to \(\mathbb{CP}^2 \# 7\mathbb{CP}^2\).

In this note, we compute the Seiberg-Witten invariants of \(P\) and prove the following:

Theorem 1.1. Park’s example \(P\) does not contain any smoothly embedded two-spheres with self-intersection number \(-1\); equivalently, it is not the blow-up of another smooth four-manifold.

In a similar manner, Park also constructs a symplectic four-manifold \(Q\) which is homeomorphic, but not diffeomorphic, to \(\mathbb{CP}^2 \# 8\mathbb{CP}^2\). We prove here the following:

Theorem 1.2. The manifold \(Q\) contains no smoothly embedded two-sphere with self-intersection number \(-1\), and in particular \(Q\) is not diffeomorphic to \(P \# 7\mathbb{CP}^2\).

Note that \(Q\) and the Barlow surface have the same Seiberg-Witten invariants, and we do not know whether or not they are diffeomorphic.

Acknowledgements The authors wish to thank Jongil Park, Jacob Rasmussen, and András Stipsicz for interesting conversations during the course of this work.

PSEO was supported by NSF grant number DMS 0234311.
ZSz was supported by NSF grant number DMS 0107792.
2. Seiberg-Witten theory

We will deal in this paper with Seiberg-Witten theory for four-manifolds X with $b_2^+(X) = 1$ (and $b_1(X) = 0$). For the reader’s convenience, we recall the basic aspects of this theory, and refer the reader to [11], [13] for more in-depth discussions.

The Seiberg-Witten equations can be written down on any four-manifold equipped with a Spinc structure and a Riemannian metric. We identify here Spinc structures over X with characteristic classes for the intersection form of X, by taking the first Chern class of the Spinc structure. This induces a one-to-one correspondence in the case where $H^2(X; \mathbb{Z})$ has no two-torsion. Taking a suitable signed count of solutions, one obtains a smooth invariant of X when $b_2^+(X) > 1$. In the case where $b_2^+(X) = 1$, the invariant depends on the choice of the Riemannian metric through the cohomology class of its induced self-dual two-form (compare also [1]).

Formally, then, for a fixed two two-dimensional cohomology class $H \in H^2(X; \mathbb{R})$ with $H^2 > 0$ and characteristic vector $K \in H^2(X; \mathbb{Z})$ with $K.H \neq 0$, the Seiberg-Witten invariant $SW_{X,H}(K)$ is an integer which is well-defined provided that $H.K \neq 0$. This integer vanishes whenever

$$K^2 < 2\chi(X) + 3\sigma(X).$$

For fixed H, then, the H-basic classes are those characteristic cohomology classes K for which $SW_{X,H}(K) \neq 0$. The quantity $K^2 - 2\chi(X) - 3\sigma(X)$ is four times the formal dimension of the moduli space of solutions to the Seiberg-Witten equations over X in the Spinc structure whose first Chern class is K. The Seiberg-Witten invariant vanishes when this formal dimension is negative; when it is positive, one cuts down the moduli space by a suitable two-dimensional cohomology class to obtain an integer-valued invariant.

More precisely, a Riemannian metric on X induces a Seiberg-Witten moduli space. The signed count of the solutions in this moduli space depends only on the cohomology class of the induced self-dual two-form ω_g, which in the above case was denoted by H. The dependence on H is captured by the wall-crossing formula [11], [12]: if X is a four-manifold with $b_1(X) = 0$, and H and H' are two cohomology classes with positive square and $H.H' > 0$, then

$$SW_{X,H}(K) = SW_{X,H'}(K) + \begin{cases} 0 & \text{if } K.H \text{ and } K.H' \text{ have the same sign} \\ \pm 1 & \text{otherwise.} \end{cases}$$

It follows readily from the compactness result for the moduli space of solutions to the Seiberg-Witten equations that for any H, there are only finitely many H-basic classes.

It is interesting to note that the wall-crossing formula together with the dimension formula (which states that $SW_{X,H}(K) = 0$ when $K^2 - 2\chi(X) - 3\sigma(X) < 0$), ensures that if X is a four-manifold with $b_2^+(X) = 1$ but $b_2(X) \leq 9$, there is only one chamber.

2.1. Rational blow-downs. In [4], Fintushel and Stern introduce a useful operation on smooth four-manifolds, and calculate how the Seiberg-Witten invariants transform
under this operation. Specifically, let C_p be the four-manifold which is a regular neighborhood of a chain of two-spheres $\{S_0, ..., S_p\}$ where S_0 has self-intersection number $-4-p$, and S_i has self-intersection number -2 for all $i > 0$. The boundary of this chain (the lens space $L((p + 1)^2, p)$) also bounds a four-manifold B with $H^2(B; \mathbb{Q}) = 0$. If X is a smooth, oriented four-manifold with $b_+^2(X) > 1$ which contains C_p, then we can trade C_p for the rational ball B to obtain a new four-manifold X'. Clearly, $H^2(X')$ is identified with the orthogonal complement to $[S_i]_{i=0}^p$ in $H^2(X)$.

For each Spinc structure over $L((p + 1)^2, p + 1)$ which extends over B, there is an extension (as a characteristic vector K_0) over C_p with the property that $K_0^2 - p - 1 = 0$.

Fintushel and Stern show that for any characteristic vector K for the intersection form of X',

$$SW_{X'}(K) = SW_X(\tilde{K}),$$

where \tilde{K} is obtained from K, by extending over the boundary by the corresponding characteristic vector K_0 as above.

In the case where $b_+^2(X) = 1$, the relation is expressed by choosing a chamber for X (and induced chamber for X') whose metric form H is orthogonal to each sphere in the configuration C_p.

3. The Four-Manifold P

We review Park’s construction of P briefly. Start with a rational elliptic surface with an \tilde{E}_6 singularity (a configuration of -2 spheres arranged in a star-like pattern, with a central node and three legs of length two). There is a model of the rational elliptic surface with the property that there are four nodal curves in a complement of this singularity. Blowing up the nodal curves, one obtains four spheres of square -4. A section of the rational elliptic surface meets all four of these spheres, and also one of the leaves in the \tilde{E}_6 singularity. Adding the section and the four -4-spheres, one obtains a sphere R_0 with self-intersection number -9 and then inside the \tilde{E}_6 singularity, this can be extended to a chain of embedded spheres with self-intersection $-2 \{R_i\}_{i=1}^5$. Park’s example P is obtained by performing a rational blow-down, in the sense of Fintushel and Stern [4], on the chain of spheres $\{R_i\}_{i=0}^5$. Since the spheres are all symplectic, a result of Symington [15] guarantees that P is symplectic.

Theorem 3.1 follows from the following refinement:

Theorem 3.1. Let K denote the canonical class of P. Then, the Seiberg-Witten basic classes of P are $\{\pm K\}$.

It follows at once that X is minimal. Specifically, if one could write $X \cong Y \# \mathbb{CP}^2$, then according to the blow-up formula [3], the basic classes of X come in pairs of the form $K_0 \pm E$ where K_0 runs over the basic classes of Y, and E denotes the exceptional curve in \mathbb{CP}^2. But this is impossible since $K^2 = 2$.
We find it convenient to describe the manifold P in a concrete model. Specifically, consider the four-manifold $X = S^2 \times S^2 \# 12\mathbb{CP}^2$, with the basis of two-spheres $A, B, \{E_i\}_{i=1}^{12}$. Here, A and B are supported in the $S^2 \times S^2$ factor, so that $A = \{a\} \times S^2$ and $B = S^2 \times \{b\}$, while E_i is the “exceptional sphere” (sphere of square -1) in the ith \mathbb{CP}^2 summand. Alternatively, this manifold can be thought of as the blowup of rational elliptic surface with an \tilde{E}_6 singularity, and a complementary singularity consisting of three -1-spheres arranged in a triangular pattern, which is then blown up four times, to give a tree-like configuration of spheres with a central sphere of of square -4, and three legs consisting of a chain of a -1 sphere and another -4 sphere. See Figure 1 for an illustration.

More precisely, consider the elliptic surface singularity which can be described by three -1-framed unknots, each of which links the other two in one point apiece. Denote the corresponding two-dimensional homology classes by A, B, and C. It is well-known, c.f. [9] that this singularity can be perturbed into four nodal curves. By blowing up the four double-points, we obtain four disjoint -1-spheres. In fact, the homology class of the fiber is represented by the homology class of the fiber $A + B + C$. Thus, the four -4 spheres can written in the basis of homology as

$$\{A + B + C - 2E_i\}_{i=1}^{4},$$

where E_i are the newly-introduced exceptional spheres.

Figure 1. We have illustrated here a basis of two-spheres for $\mathbb{CP}^2 \# 12\mathbb{CP}^2$.
Armed with this principle, the chain of spheres in X which are to be rationally blown down can be written homologically as:

\[
R_0 = 10A + 8B - 6E_1 - 4E_2 - 4E_3 - 4E_4 - 4E_5 - 4E_6 - 3E_7 - 4E_8 - 4E_9 - 2E_{10} - 2E_{11} - 2E_{12}
\]

\[
R_1 = B - E_1 - E_4
\]

\[
R_2 = A - E_2 - E_3
\]

\[
R_3 = E_3 - E_6
\]

\[
R_4 = E_6 - E_9
\]

\[
R_5 = E_4 - E_7
\]

Note that we are using here E_7 as our section, which is to be added to the four -4-spheres coming from the complement of the \tilde{E}_6 singularity. The four exceptional spheres in the complementary singularity are represented by the spheres $A - E_1, E_{10}, E_{11}, E_{12}$.

Let P denote the Park manifold obtained by rationally blowing down the configuration $R_0, ..., R_5$ in X. Spin\(^c\) structures over P (labelled by characteristic vectors K) correspond to characteristic vectors (labelled by characteristic vectors \tilde{K}) over X whose evaluations on the configuration $\{R_i\}$ take one of the following seven forms:

\[
\begin{align*}
(7, & 0, 0, 0, 0, 0) \\
(-1, & 0, -2, 0, 0, 0) \\
(5, & 0, 0, 0, 0, -2) \\
(-3, & -2, 0, 0, 0, 0) \\
(3, & 0, 0, 0, -2, 0) \\
(-7, & 0, 0, 0, 0, 0) \\
(1, & 0, 0, -2, 0, 0)
\end{align*}
\]

(1)

According to the rational blow-down formula \[4\],

\[SW_P(K) = SW_{X,H}(\tilde{K}),\]

where here $H \in H^2(X; \mathbb{R})$ is any real two-dimensional cohomology class with $H^2 > 0$ and $H.H' > 0$ and which is orthogonal to all the $\{R_i\}$. Moreover, according to the wall-crossing formula, combined with the fact that $S^2 \times S^2$ has positive scalar curvature and hence trivial invariants in a suitable chamber (c.f. \[16\]), it follows that

\[
SW_{X,H}(\tilde{K}) = \begin{cases}
0 & \text{if } \tilde{K}^2 + 4 < 0 \text{ or } \tilde{K}.H \text{ and } \tilde{K}.H' \text{ have the same sign} \\
\pm 1 & \text{otherwise},
\end{cases}
\]

where here $H' = \text{PD}(A + B)$. (The first condition for vanishing is the dimension formula for the moduli space, while the second condition comes from the wall-crossing formula.)

Explicitly, then, we see that the basic classes \tilde{K} for P are precisely those for which the extension \tilde{K} (by one of the vectors from the list in Equation (1)) satisfies: $\tilde{K}^2 + 4 \geq 0$ and also $\text{sgn}(\tilde{K}.H) \neq \text{sgn}(\tilde{K}.H')$, where here H is any (real) cohomology class with
\(H^2 > 0\) and \(H \cdot H' > 0\) and which is orthogonal to all the \(\{R_i\}_{i=0}^5\). For example, we could use the vector

\[
H = (105, 92, -67, -51, -41, -38, -36, -41, -36, -41, -18, -18)
\]

(written here with respect to the basis Poincaré dual to \(\{A, B, E_1, ..., E_{12}\}\)). In order to make this a finite computation, we proceed as follows.

Suppose that \(Z\) is a smooth four-manifold with \(b^+ (Z) > 1\), and we have homology classes \(C = \{C_i\}_{i=1}^n\) with negative self-intersection number \(C_i \cdot C_i = -p_i \leq 0\). A cohomology class \(K \in H^2 (X; \mathbb{Q})\) is called \(C\)-adjunctive if for each \(i \langle K, [C_i] \rangle\) is integral, and indeed the following two conditions are satisfied:

\[
\begin{align*}
|\langle K, [C_i] \rangle| & \leq p_i \\
\langle K, [C_i] \rangle & \equiv p_i \pmod{2}.
\end{align*}
\]

Clearly, the set of \(C\)-adjunctive cohomology classes has size \(\prod_{i=1}^n (p_i + 1)\).

Lemma 3.2. Let \(S = \{S_i\}_{i=1}^n\) be a collection of embedded spheres in \(X\) whose homology classes are orthogonal to the the \(\{R_i\}_{i=0}^5\). Let \(C = \{C_i\}_{i=1}^8\) denote their induced homology classes in \(H_2 (P)\). If every \(C\)-adjunctive basic class for \(P\) is zero-dimensional, then in fact every basic class for \(P\) is \(C\)-adjunctive.

Proof. If \(P\) has a basic class \(L_0\) which is not \(C\)-adjunctive, then by the rational blow-down formula, \(X\) has a basic class \(L_1\) and a smoothly embedded sphere \(S_i\) for which \(|\langle L_1, [S_i] \rangle| > -S_i \cdot S_i\), where we can use any metric whose period point \(H'\) is perpendicular to the configuration \(\{R_i\}_{i=0}^5\). By fixing \(H'\) to be also perpendicular to \(S_i\), and using the adjunction formula for spheres of negative square \[\text{we get another basic class } L_2 = L \pm 2\text{PD}[S_i] \text{ of } X.\] Applying the blowdown formula once more we get a basic class \(L_3\) of \(P\) where the dimension of \(L_3\) is bigger then the dimension of \(L_0\). Since \(P\) has only finitely many basic classes this process has to stop, which means that the final \(L_{3k}\) class is \(C\)-adjunctive. However it is also positive dimensional, thus proving the lemma. \(\square\)
Our next goal, then is to find a collection of embedded spheres \(\{S_i\}_{i=1}^8 \) in \(X \) which, together with the \(\{R_i\}_{i=0}^5 \) form a basis for \(H^2(X; \mathbb{Q}) \). To this end, we use the spheres:

\[
\begin{align*}
S_1 &= E_5 - E_8 \\
S_2 &= E_{12} - E_{10} \\
S_3 &= E_{11} - E_{12} \\
S_4 &= A - E_1 - E_{11} \\
S_5 &= A + B - E_1 - E_2 - E_5 - E_8 \\
S_6 &= -E_5 + E_{10} + E_{11} \\
S_7 &= 2E_7 + 2E_4 - 2A + E_{11} \\
S_8 &= E_6 + E_9 + E_3 - E_2 - 2E_5.
\end{align*}
\]

The spheres \(\{S_i\}_{i=1}^5 \) have square \(-2\), while \(S_6, S_7, \) and \(S_8 \) have squares \(-3\), \(-9\), and \(-8\) respectively. It is easy to see that these classes are all orthogonal to the homology classes generated by the spheres \(\{R_i\}_{i=0}^5 \).

It is easy to see, now, that there are 612360 \(\{S_i\} \)-adjunctive vectors in \(H^2(X; \mathbb{Q}) \) with integral evaluations on each of the \(S_i \), and whose extension over the blow-down configuration is one of the seven choices enumerated in Equation (1). Of these, 12498 correspond to characteristic cohomology classes in \(H^2(X; \mathbb{Z}) \). Of these, 8960 have length \(\geq -4 \) (i.e. satisfying \(K^2 - (2\chi + 3\sigma) \geq 0 \)). Finally, only two of these have the property that evaluation of \(H \) and \(H' \) have opposite sign. Indeed, these classes are the canonical class \(K \) and also \(-K\). Since these classes have dimension zero, it follows from Lemma 3.2 that these are the only two basic classes for \(P \).

4. THE FOUR-MANIFOLD \(Q \)

The manifold \(Q \) is constructed as follows. Start with a rational surface with an \(\tilde{E}_6 \) singularity as before, except now blow up only three of the nodes. In a manner similar to the previous construction, one finds now a sphere of self-intersection number \(-7\) (gotten by resolving a section and the three \(-4\) spheres). This is then completed by a chain of three \(-2\) spheres in the \(\tilde{E}_6 \) singularity. Forming the rational blow-down, one obtains a second manifold \(Q \) which is homeomorphic to \(\mathbb{CP}^2 \# 8\overline{\mathbb{CP}^2} \).

For \(Q \), we prove the following:

Theorem 4.1. Let \(K \) denote the canonical class of \(Q \). Then, the Seiberg-Witten basic classes of \(Q \) are \(\{\pm K\} \).

The second construction starts again with a rational surface. For this surface, we can take the previous one, only blow down the curve \(E_{12} \).

Again, we use the section \(E_7 \); now the three \(-4\) spheres which are to be added are represented by \(E_1 - E_4 - E_7 - E_{10}, B - E_2 - E_5 - E_8 - E_{11}, \) and \(A - E_1 - E_{10} - E_{11} \).
Thus, our configuration which is to be rationally blown down consists of:

\[R_0 = 7A + 6B - 4E_1 - 3E_2 - 3E_3 - 3E_4 - 3E_5 - 3E_6 - 2E_7 - 3E_8 - 3E_9 - 2E_{10} - 2E_{11} \]
\[R_1 = E_4 - E_7 \]
\[R_2 = B - E_1 - E_4 \]
\[R_3 = A - E_2 - E_3. \]

The vector \(H = (229, 226, -143, -113, -113, -86, -87, -87, -86, -87, -58, -58) \) has positive square, and is orthogonal to all the \(\{R_i\}_{i=0}^3 \).

A rational basis the cohomology of \((S^2 \times S^2)\#11\mathbb{CP}^2 \) is gotten by completing \(R_0, R_1, R_2, \) and \(R_3 \) with the following set of spheres with negative square:

\[S_1 = E_{10} - E_{11} \]
\[S_2 = E_5 - E_6 \]
\[S_3 = E_8 - E_9 \]
\[S_4 = E_5 - E_8 \]
\[S_5 = E_2 - E_3 \]
\[S_6 = A - E_1 - E_{10} \]
\[S_7 = A + B - E_1 - E_2 - E_5 - E_8 \]
\[S_8 = 2A - 2E_4 - 2E_7 - E_{11} \]
\[S_9 = 2A + 2B - E_1 - E_2 - E_3 - E_4 - E_7 - 2E_5 - E_6 - E_{10}. \]

For this case, the Spin\(^c\) structures over \(L(25, 4) \) which extend over the rational ball can be uniquely extended over the configuration of spheres in one of the five possible ways:

\[
\begin{align*}
& \quad (5, \quad 0, \quad 0, \quad 0) \\
& \quad (-1, \quad -2, \quad 0, \quad 0) \\
& \quad (3, \quad 0, \quad 0, \quad -2) \\
& \quad (-5, \quad 0, \quad 0, \quad 0) \\
& \quad (1, \quad 0, \quad -2, \quad 0).
\end{align*}
\]

Again, there are 437400 \(\{S_i\}\)-adjunctive vectors in \(H^2 \) with rational coefficients, which have integral evaluations on each sphere and which extend over the configuration of spheres \(\{R_i\}_{i=0}^3 \) as above. Of these, 17496 correspond to (integral) characteristic cohomology classes. Of these, 3754 have square \(\geq -3 \). Finally, of these, exactly two \((K' \) and \(-K') \) have the evaluations with opposite sign against \(H \) and \(H' \), hence correspond to basic classes for \(Q \). Arguing as in Lemma 3.2, we see that these are the only two basic classes for \(Q \).
References

[1] S. K. Donaldson. Irrationality and the h-cobordism conjecture. *J. Differential Geom.*, 26(1):141–168, 1987.
[2] S. K. Donaldson. Polynomial invariants for smooth four-manifolds. *Topology*, 29(3):257–315, 1990.
[3] R. Fintushel and R. J. Stern. Immersed spheres in 4-manifolds and the immersed Thom conjecture. *Turkish J. Math.*, 19(2):145–157, 1995.
[4] R. Fintushel and R. J. Stern. Rational blowdowns of smooth 4-manifolds. *J. Differential Geom.*, 46(2):181–235, 1997.
[5] R. Fintushel and R. J. Stern. Knots, links, and 4-manifolds. *Invent. Math.*, 134(2):363–400, 1998.
[6] M. H. Freedman. The topology of four-dimensional manifolds. *J. Differential Geom.*, 17(3):357–453, 1982.
[7] R. Friedman and J. W. Morgan. On the diffeomorphism types of certain algebraic surfaces. I. *J. Differential Geom.*, 27(2):297–369, 1988.
[8] R. E. Gompf and T. S. Mrowka. Irreducible 4-manifolds need not be complex. *Ann. of Math. (2)*, 138(1):61–111, 1993.
[9] J. Harer, A. Kas, and R. Kirby. Handlebody decompositions of complex surfaces. *Mem. Amer. Math. Soc.*, 62(350):iv+102, 1986.
[10] D. Kotschick. $SO(3)$-invariants for 4-manifolds with $b_2^+ = 1$. *Proc. London Math. Soc. (3)*, 63(2):426–448, 1991.
[11] P. B. Kronheimer and T. S. Mrowka. The genus of embedded surfaces in the projective plane. *Math. Research Letters*, 1:797–808, 1994.
[12] T. J. Li and A. Liu. Symplectic structure on ruled surfaces and a generalized adjunction formula. *Math. Research Letters*, 2(4):453–471, 1995.
[13] J. W. Morgan. *The Seiberg-Witten Equations and Applications to the Topology of Smooth Four-Manifold*. Number 44 in Mathematical Notes. Princeton University Press, 1996.
[14] J. Park. Simply connected symplectic 4-manifolds with $b_2^+ = 1$ and $c_1^2 = 2$. math.GT/0311395.
[15] M. Symington. Symplectic rational blowdowns. *J. Differential Geom.*, 50(3):505–518, 1998.
[16] E. Witten. Monopoles and four-manifolds. *Math. Research Letters*, 1:769–796, 1994.

Department of Mathematics, Columbia University, New York 10027

petero@math.columbia.edu

Department of Mathematics, Princeton University, New Jersey 08544

szabo@math.princeton.edu