Asymmetry Observables and the Origin of $R_D(\ast)$ Anomalies

Pouya Asadi

Rutgers University

asadi@physics.rutgers.com

Based on: 1810.06597, 1905.03311, 1905.XXXXX
In collaboration with: Matthew Buckley, Yuichiro Nakai, David Shih

Talk Presented @ SUSY 2019

May 22, 2019
Outline

- \(R_{D(*)} \) Solutions
- Discerning Different Models
- More On \(F_{D*}^L \) - And A New Solution
New Physics in the Flavor Experiments

- There are various hints of new physics (NP) in the flavor experiments.
New Physics in the Flavor Experiments

- There are various hints of new physics (NP) in the flavor experiments.

E.g. $\geq 3\sigma$ discrepancy with the SM in
New Physics in the Flavor Experiments

- There are various hints of new physics (NP) in the flavor experiments.

E.g. $\geq 3\sigma$ discrepancy with the SM in

$$R_{D(\ast)} = \frac{\Gamma(B \to D(\ast)\tau\nu)}{\Gamma(B \to D(\ast) l\nu)}, \quad l = e, \mu$$
There are various hints of new physics (NP) in the flavor experiments. E.g. $\geq 3\sigma$ discrepancy with the SM in

$$R_{D(*)} \equiv \frac{\Gamma(B \to D^{(*)}\tau\nu)}{\Gamma(B \to D^{(*)}l\nu)}, \quad l = e, \mu$$

$R_{D(*)}$

$R_{D}^{obs} = 0.407 \pm 0.046, \quad R_{D}^{SM} = 0.299 \pm 0.003, \quad R_{D}^{obs} = 0.304 \pm 0.015, \quad R_{D}^{SM} = 0.258 \pm 0.005.$
The Most General EFT

- SM contribution:

\[\langle D^{(*)} | \bar{c} \gamma^{\mu} P_L b | \bar{B} \rangle \]

\[\langle \tau \bar{\nu} | \bar{\tau} \gamma^{\nu} P_L \nu | 0 \rangle \]

\[\langle D^{(*)} \tau \nu | (\bar{c} \gamma^{\mu} P_L b) (\bar{\tau} \gamma^{\nu} P_L \nu) | \bar{B} \rangle \]
The Most General EFT

- **SM contribution:**

\[
\langle D^{(*)} | \bar{c} \gamma^{\mu} P_L b | \bar{B} \rangle
\]

\[
\frac{g_{\mu\nu}}{m_W^2} \langle \bar{\tau} \gamma^\nu P_L \nu | 0 \rangle
\]

\[
\langle D^{(*)} \tau \nu | (\bar{c} \gamma^{\mu} P_L b) (\bar{\tau} \gamma^\nu P_L \nu) | \bar{B} \rangle
\]

- **The most general dim-6 effective Hamiltonian:**

\[
\mathcal{H}_{\text{eff}} = \frac{4G_F V_{cb}}{\sqrt{2}} \sum_{X=S, V, T} \sum_{M, N=L, R} C_{MN}^X O_{MN}^X,
\]

\[
O_{MN}^S \equiv (\bar{c} P_M b)(\bar{\tau} P_N \nu),
\]

\[
O_{MN}^V \equiv (\bar{c} \gamma^{\mu} P_M b)(\bar{\tau} \gamma^\mu P_N \nu),
\]

\[
O_{MN}^T \equiv (\bar{c} \sigma^{\mu\nu} P_M b)(\bar{\tau} \sigma_{\mu\nu} P_N \nu),
\]

for \(M, N = R \) or \(L \) (SM : \(C_{LL}^V = 1 \)).
Minimal Models

Mediator	Operator Combination	Viability
Colorless Scalars	\mathcal{O}^S_{XL}	\times ($Br (B_c \rightarrow \tau \nu)$)
W' (LH fermions)	\mathcal{O}^V_{LL}	\times (collider bounds)
S_1 LQ (3, 1, 1/3) (LH fermions)	$\mathcal{O}^S_{LL} - x\mathcal{O}^T_{LL}$, \mathcal{O}^V_{LL}	\checkmark
U_1' LQ (3, 1, 2/3) (LH fermions)	\mathcal{O}^S_{RL}, \mathcal{O}^V_{LL}	\checkmark
R_2 LQ (3, 2, 7/6)	$\mathcal{O}^S_{LL} + x\mathcal{O}^T_{LL}$	\checkmark
S_3 LQ (3, 3, 1/3)	\mathcal{O}^V_{LL}	\times ($b \rightarrow s\nu\nu$)
U_3' LQ (3, 3, 2/3)	\mathcal{O}^V_{LL}	\times ($b \rightarrow s\nu\nu$)
V_2' LQ (3, 2, 5/6)	\mathcal{O}^S_{RL}	\times ($R_{D(\ast)}$ value)
Colorless Scalars	\mathcal{O}^S_{XR}	\times ($Br (B_c \rightarrow \tau \nu)$)
W' (RH fermions)	\mathcal{O}^V_{RR}	\checkmark
\tilde{R}_2 LQ (3, 2, 1/6)	$\mathcal{O}^S_{RR} + x\mathcal{O}^T_{RR}$	\times ($b \rightarrow s\nu\nu$)
S_1 LQ (3, 1, 1/3) (RH fermions)	\mathcal{O}^V_{RR}, $\mathcal{O}^S_{RR} - x\mathcal{O}^T_{RR}$	\checkmark
U_1' LQ (3, 1, 2/3) (RH fermions)	\mathcal{O}^S_{LR}, \mathcal{O}^V_{RR}	\checkmark
Discerning Different Solutions

Different models generate effective operators with different Lorentz structures. Hence, some asymmetry observables can help.

\[
\begin{align*}
\vec{p}_B &\rightarrow \vec{p}_D(\ast) \\
\vec{p}_\tau &\rightarrow \vec{p}_\nu \\
\vec{p}_d &\rightarrow \vec{p}_\nu' \\
\theta &\rightarrow \theta_{\tau d} \\
\hat{e}_\tau &\rightarrow \hat{e}_{\perp} \\
\hat{e}_T &\rightarrow \hat{e}_{T} \\
\end{align*}
\]

\[
P_{\ast} = \Gamma_{\ast} + \hat{e} - \Gamma_{\ast} - \hat{e} + \Gamma_{\ast} + \hat{e} \Gamma_{\ast} - \hat{e}
\]

Observable

\[
A_{FB} = \frac{1}{\Gamma_{\ast}} \left(- \int_{\theta = 0}^{\theta = \pi} d\theta + \int_{\theta = \pi/2}^{\theta = \pi} d\theta \right)
\]

SM value

-0.360
-0.063
0.325
-0.497
-0.842
-0.499
0
Discerning Different Solutions

Different models generate effective operators with different Lorentz structures.
Discerning Different Solutions

Different models generate effective operators with different Lorentz structures. Hence, some asymmetry observables can help.
Discerning Different Solutions

Different models generate effective operators with different Lorentz structures. Hence, some asymmetry observables can help.
Discerning Different Solutions

Different models generate effective operators with different Lorentz structures. Hence, some asymmetry observables can help.

\[\mathcal{P}^{(\ast)}(\hat{e}) = \frac{\Gamma^{(\ast)} + \hat{e} - \Gamma^{(\ast)} - \hat{e}}{\Gamma^{(\ast)} + \Gamma^{(\ast)}}, \quad \mathcal{A}_{FB}^{(\ast)} = \frac{1}{\Gamma^{(\ast)}} \left(-\int_{\theta=0}^{\theta=\pi/2} + \int_{\theta=\pi/2}^{\theta=\pi} \right) d\theta \frac{d\Gamma^{(\ast)}}{d\theta}. \]
Discerning Different Solutions

Different models generate effective operators with different Lorentz structures. Hence, some asymmetry observables can help.

\[
\mathcal{P}^{(*)} = \frac{\Gamma^{(*)} - \Gamma^{(*)}}{\Gamma^{(*)} + \Gamma^{(*)}}, \quad \mathcal{A}_{FB}^{(*)} = \frac{1}{\Gamma^{(*)}} \left(-\int_{\theta=0}^{\theta=\pi/2} + \int_{\theta=\pi} \right) d\theta \frac{d\Gamma^{(*)}}{d\theta}.
\]

Observable	\(A_{FB} \)	\(A_{FB}^{*} \)	\(\mathcal{P}_{\tau} \)	\(\mathcal{P}_{\tau}^{*} \)	\(\mathcal{P}_{\perp} \)	\(\mathcal{P}_{\perp}^{*} \)	\(\mathcal{P}_{T} \)	\(\mathcal{P}_{T}^{*} \)
SM value	−0.360	0.063	0.325	−0.497	−0.842	−0.499	0	0
Discerning Different Solutions at Belle II

• Let us assume we measure $R_{D(*)}$ in Belle II and discover NP.
LY Let us assume we measure $R_{D(*)}$ in Belle II and discover NP.

- In each model, the range of the Wilson coefficients explaining $R_{D(*)}$ has a different imprint on other observables. Can we leverage that to distinguish models from one another?
Discerning Different Solutions at Belle II

- Let us assume we measure $R_{D(*)}$ in Belle II and discover NP.
- In each model, the range of the Wilson coefficients explaining $R_{D(*)}$ has a different imprint on other observables. Can we leverage that to distinguish models from one another?
- It highly depends on the measured $R_{D(*)}$ value.
Discerning Different Solutions: Two Extreme Outcomes

\[R_D = 0.407 \quad R_{D^*} = 0.304 \quad R_D = 0.340 \quad R_{D^*} = 0.275 \]
• We develop a simple χ^2 test to see how well each pair of models can be distinguished.
Discerning Different Solutions: Two Extreme Outcomes

- We develop a simple χ^2 test to see how well each pair of models can be distinguished.

- Can tell almost all the models apart; we may need to resort to the CP-odd observables $\mathcal{P}_T^{(\ast)}$, for which there are currently no measurement proposals, in the second scenario.
\(F_{D^*}^L : \) Another Asymmetry Observable

\[
F_{D^*}^L = \frac{\Gamma(\bar{B} \rightarrow D^*_L \tau \nu)}{\Gamma(\bar{B} \rightarrow D^*_L \tau \nu) + \Gamma(\bar{B} \rightarrow D^*_T \tau \nu)}.
\]
$F_{D^*}^L : \text{Another Asymmetry Observable}$

$$F_{D^*}^L = \frac{\Gamma(\bar{B} \rightarrow D^*_L \tau \nu)}{\Gamma(\bar{B} \rightarrow D^*_L \tau \nu) + \Gamma(\bar{B} \rightarrow D^*_T \tau \nu)}.$$

$(F_{D^*}^L)_{SM} = 0.457 \pm 0.01, \quad (F_{D^*}^L)_{obs} = 0.60 \pm 0.08 \pm 0.04.$

- None of the existing minimal models can accommodate this new observation.
$F_{D^*}^L$: Another Asymmetry Observable

\[
F_{D^*}^L = \frac{\Gamma(\bar{B} \rightarrow D_L^{*}\tau\nu)}{\Gamma(\bar{B} \rightarrow D_L^{*}\tau\nu) + \Gamma(\bar{B} \rightarrow D_T^{*}\tau\nu)}.
\]

\[
(F_{D^*}^L)_{SM} = 0.457 \pm 0.01, \quad (F_{D^*}^L)_{obs} = 0.60 \pm 0.08 \pm 0.04.
\]

- None of the existing minimal models can accommodate this new observation.

- Is there any combination of the dim-6 operators that can explain the observed value?
Explaining the Observed $F_{D^*}^L$

- We look for the maximum of $F_{D^*}^L$. We show it can be achieved with all real WCs and only Left-Handed νs.
Explaining the Observed $F_{D^*}^L$

- We look for the maximum of $F_{D^*}^L$. We show it can be achieved with all real WCs and only Left-Handed νs.
- We use some observables/constraints (R_D, R_{D^*}, and $Br(B_c \rightarrow \tau\nu)$) to fix three of these parameters; then maximize $F_{D^*}^L$ over the remaining two.
Explaining the Observed $F_{D^*}^L$

- We look for the maximum of $F_{D^*}^L$. We show it can be achieved with all real WCs and only Left-Handed νs.
- We use some observables/constraints (R_D, R_{D^*}, and $\text{Br}(B_c \to \tau\nu)$) to fix three of these parameters; then maximize $F_{D^*}^L$ over the remaining two.
Explaining the Observed $F_{D^*}^L$

- We look for the maximum of $F_{D^*}^L$. We show it can be achieved with all real WCs and only Left-Handed νs.
- We use some observables/constraints (R_D, R_{D^*}, and $Br(B_c \to \tau\nu)$) to fix three of these parameters; then maximize $F_{D^*}^L$ over the remaining two.
Explaining the Observed $F_{D^*}^L$

- We look for the maximum of $F_{D^*}^L$. We show it can be achieved with all real WCs and only Left-Handed νs.
- We use some observables/constraints (R_D, R_{D^*}, and $Br(B_c \rightarrow \tau\nu)$) to fix three of these parameters; then maximize $F_{D^*}^L$ over the remaining two.

![Graphs showing the maximum of $F_{D^*}^L$ over different parameters with different BR(B_c → τν) values.]
Explaining the Observed $F_{D^*}^L$

- We look for the maximum of $F_{D^*}^L$. We show it can be achieved with all real WCs and only Left-Handed νs.
- We use some observables/constraints (R_D, R_{D^*}, and $Br(B_c \rightarrow \tau\nu)$) to fix three of these parameters; then maximize $F_{D^*}^L$ over the remaining two.

- Relatively large C_{RL}^V, C_{LL}^T, and C_{LL}^V are required to explain the observed $F_{D^*}^L$.

![Graphs showing the variation of $F_{D^*}^L$ with $|C_{RL}|$, $|C_{LL}^T|$, and $|C_{LL}^V|$ for different branching ratios.](image-url)
More on C_{RL}^V

$$O_{RL}^V = (\bar{c}_R \gamma^\mu b_R)(\bar{\tau}_L \gamma_\mu \nu_L),$$
More on C_{RL}^V

\[O_{RL}^V = (\bar{c}_R \gamma^\mu b_R)(\bar{\tau}_L \gamma_\mu \nu_L), \]

- Given their role in explaining $F_{D^*_L}$, can we devise a model generating them?
More on C^V_{RL}

$$O^V_{RL} = (\bar{c}_R \gamma^\mu b_R)(\bar{\tau}_L \gamma^\mu \nu_L),$$

- Given their role in explaining $F^L_{D^*}$, can we devise a model generating them?
- The main obstacle: they violate the SM gauge invariance. Need two Higgs insertions.
More on C_{RL}^V

\[O_{RL}^V = (\bar{c}_R \gamma^\mu b_R)(\bar{\tau}_L \gamma_\mu \nu_L), \]

- Given their role in explaining F_{D*}^L, can we devise a model generating them?
- The main obstacle: they violate the SM gauge invariance. Need two Higgs insertions.
- So what if new particles are introduced and mixed after EWSB?
A New Leptoquark Solution

Merging two existing minimal models will do the job:

\[
R_2 = \left(\begin{array}{c} R_2^{5/3} \\ R_2^{2/3} \end{array} \right) = (3, 2, 7/6), \quad \tilde{R}_2 = \left(\begin{array}{c} \tilde{R}_2^{2/3} \\ \tilde{R}_2^{-1/3} \end{array} \right) = (3, 2, 1/6),
\]
A New Leptoquark Solution

Merging two existing minimal models will do the job:

\[R_2 = \left(\frac{R_2^{5/3}}{R_2^{2/3}} \right) = (3, 2, 7/6), \quad \tilde{R}_2 = \left(\frac{\tilde{R}_2^{2/3}}{\tilde{R}_2^{-1/3}} \right) = (3, 2, 1/6), \]

\[\mathcal{L}_R \supset |\partial R_2|^2 + |\partial \tilde{R}_2|^2 - M_{R_2}^2 |R_2|^2 - M_{\tilde{R}_2}^2 |\tilde{R}_2|^2, \]

\[+ \lambda_R \left\{ |R_2^\dagger H|^2 + |\tilde{R}_2^\dagger \tilde{H}|^2 + (\tilde{R}_2^\dagger \tilde{H} H^\dagger R_2 + \text{h.c.}) \right\}, \]

\[+ g_1^{ij} \bar{u}_R^i R_2 \epsilon L^j + \tilde{g}_1^{ij} \bar{L}^j \epsilon \tilde{R}_2^\dagger d_R^i + \text{h.c.}, \]

\[+ g_2^{ij} \bar{e}_R^i Q_L R_2^\dagger + \tilde{g}_2^i \tilde{R}_2 \tilde{Q}_L \nu_R + \text{h.c.}, \]
A New Solution

We can safely generate C_{RL} or C_{LR} without any constraining bounds from flavor physics. We can evade the EWP bounds and the collider bounds (after introducing a new decay channel) as well.
A New Solution

We can safely generate $C_{V_{RL}}$ or $C_{V_{LR}}$ without any constraining bounds from flavor physics. We can evade the EWP bounds and the collider bounds (after introducing a new decay channel) as well.
A New Solution

- We can safely generate C_{VV} or C_{LL} without any constraining bounds from flavor physics.
- We can evade the EWP bounds and the collider bounds (after introducing a new decay channel) as well.
A New Solution

- We can safely generate C_{RL}^V or C_{LR}^V without any constraining bounds from flavor physics.
• We can safely generate C^V_{RL} or C^V_{LR} without any constraining bounds from flavor physics.

• We can evade the EWP bounds and the collider bounds (after introducing a new decay channel) as well.
Summary

• There are many viable minimal models with a heavy mediator that can explain the $R_D(\ast)$ anomalies.

• We can resort to some asymmetry observables ($P(\ast)\tau, A(\ast)FB, P(\ast)\perp$) to distinguish various models from one another.

• F_LD^\ast measurement sees $\sim 1.5 - 2\sigma$ discrepancy with the SM.

• None of the existing models can explain the observed F_LD^\ast.

• NP with Wilson coefficients $C_{VLRL}, C_{CTLL},$ and C_{VLLL} (or their counterparts with right-handed neutrinos) are required to explain F_LD^\ast.

• We proposed the first model generating C_{VLRL} using two LQs. Our model evades various flavor and collider bounds.
Summary

- There are many viable minimal models with a heavy mediator that can explain the $R_{D(*)}$ anomalies.
Summary

- There are many viable minimal models with a heavy mediator that can explain the $R_{D(*)}$ anomalies.
- We can resort to some asymmetry observables ($P_{\tau}^{(*)}$, $A_{FB}^{(*)}$, $P_{\bot}^{(*)}$) to distinguish various models from one another.
• There are many viable minimal models with a heavy mediator that can explain the $R_{D(*)}$ anomalies.

• We can resort to some asymmetry observables ($\mathcal{P}_\tau^{(*)}$, $A_{FB}^{(*)}$, $\mathcal{P}_\perp^{(*)}$) to distinguish various models from one another.

• F_D^{L*} measurement sees $\sim 1.5 - 2\sigma$ discrepancy with the SM.
Summary

- There are many viable minimal models with a heavy mediator that can explain the $R_{D(*)}$ anomalies.
- We can resort to some asymmetry observables ($\mathcal{P}_{\tau}^{(*)}$, $\mathcal{A}_{FB}^{(*)}$, $\mathcal{P}_{\perp}^{(*)}$) to distinguish various models from one another.
- F_{D*}^L measurement sees $\sim 1.5 - 2\sigma$ discrepancy with the SM. None of the existing models can explain the observed F_{D*}^L.
Summary

- There are many viable minimal models with a heavy mediator that can explain the $R_{D(*)}$ anomalies.

- We can resort to some asymmetry observables ($\mathcal{P}_T^{(*)}$, $\mathcal{A}_{FB}^{(*)}$, $\mathcal{P}_\perp^{(*)}$) to distinguish various models from one another.

- F_{D*}^L measurement sees $\sim 1.5 - 2\sigma$ discrepancy with the SM. None of the existing models can explain the observed F_{D*}^L.

- NP with Wilson coefficients C_{RL}^V, C_{LL}^T, and C_{LL}^V (or their counterparts with right-handed neutrinos) are required to explain F_{D*}^L.
Summary

- There are many viable minimal models with a heavy mediator that can explain the $R_D(*)$ anomalies.
- We can resort to some asymmetry observables ($\mathcal{P}_T^{(*)}$, $A_{FB}^{(*)}$, $\mathcal{P}_{\perp}^{(*)}$) to distinguish various models from one another.
- $F_{D^*}^L$ measurement sees $\sim 1.5 - 2\sigma$ discrepancy with the SM. None of the existing models can explain the observed $F_{D^*}^L$.
- NP with Wilson coefficients C_{RL}^V, C_{LL}^T, and C_{LL}^V (or their counterparts with right-handed neutrinos) are required to explain $F_{D^*}^L$.
- We proposed the first model generating C_{RL}^V using two LQs. Our model evades various flavor and collider bounds.
BACK UP SLIDES
Other Anomalies

- $h \rightarrow \tau \mu$
- $B \rightarrow K e^+ e^- / B \rightarrow K \mu^+ \mu^-$
- $D0 \mu \mu$ CP asym
- $B \rightarrow D^{(*)} \tau \nu$
- $B \rightarrow K^* \mu^+ \mu^-$ angular
- $|V_{ub}|$ incl/excl
- $|V_{cb}|$ incl/excl
- $B_s \rightarrow \phi \mu^+ \mu^-$
- ϵ'/ϵ
- $g-2$
Uncertainties

BaBar@Hadronic(τ→l)

Source of uncertainty	%	R(D)	R(D*)
Additive uncertainties			
PDFs			
MC statistics	4.4	2.0	
B → D*(2010) → l(μ)π+π− FFs	0.2	0.2	
D* → D∗(π+π−)	0.7	0.5	
B(→ D∗+μ−ν)	0.8	0.3	
B(→ D∗τ−ν)	1.8	1.7	
D* → D(π+π−)	2.1	2.6	
Cross-feed constraints			
MC statistics	2.4	1.5	
Feed-up/feed-down	1.3	0.4	
Isospin constraints	1.2	0.3	
Fixed backgrounds			
MC statistics	3.1	1.5	
Efficiency corrections	3.9	2.3	
Multiplicative uncertainties			
MC statistics	1.8	1.2	
B → D(π+)τ−ν	1.6	0.4	
Lepton PID	0.6	0.6	
π+/π− from D* → Dπ	0.1	0.1	
Detection/Reconstruction	0.7	0.7	
B(τ→ l−νl)	0.2	0.2	
Total syst. uncertainty	9.6	5.5	
Total stat. uncertainty	13.1	7.1	
Total uncertainty	16.2	9.0	

Belle@Semileptonic(τ→l)

Sources	R(D*)	[%]
MC size for each PDF shape	2.2	
PDF shape of the normalization in cosθB,D∗+	+0.1	
PDF shape of B → D∗+τν	+1.0	
PDF shape and yields of fake D(∗)	1.4	
PDF shape and yields of B → X,D∗	1.1	
Reconstruction efficiency ratio εnorm/εsig	1.2	
Modeling of semileptonic decay	0.2	
Total systematic uncertainty	+3.4	

Belle@Hadronic(τ→h)

Source	R(D*)	[%]	Pτ
Hadronic B composition	+7.8%	+0.14	
MC statistics for each PDF shape	+3.5%	+0.13	
Fake D* PDF shape	3.6%	0.010	
Fake D* yield	1.7%	0.016	
B → D∗+τν	2.1%	0.051	
B → D∗τ−ν	1.1%	0.003	
B → D*τ−ν	2.4%	0.008	
τ daughter and τ− efficiency	2.1%	0.018	
MC statistics for efficiency calculation	1.0%	0.018	
EvtGen decay model	+0.8%	+0.016	
Fit bias	−0.6%	−0.006	
B(τ→ π+ντ) and B(τ→ ρ−ντ)	0.3%	0.002	
Pτ correction function	0.1%	0.018	

Scales with MC statistics

Scales with DATA statistics

Theory/External

Irreducible

Requires additional studies
Individual Operator Effects

\[\mathcal{H}_{\text{eff}} = \frac{4G_F V_{cb}}{\sqrt{2}} \sum_{X=S,V,T} \sum_{M,N=L,R} C_{MN}^X O_{MN}^X, \]

\[O_{MN}^S \equiv (\bar{c}P_M b)(\bar{\tau}P_N \nu), \]

\[O_{MN}^V \equiv (\bar{c}\gamma^\mu P_M b)(\bar{\tau}\gamma^\mu P_N \nu), \]

\[O_{MN}^T \equiv (\bar{c}\sigma^{\mu\nu} P_M b)(\bar{\tau}\sigma_{\mu\nu} P_N \nu), \]
Individual Operator Effects

\[\mathcal{H}_{\text{eff}} = \frac{4G_F V_{cb}}{\sqrt{2}} \sum_{\substack{X=S,V,T \\ M,N=L,R}} C^X_{MN} O^X_{MN}, \]

\[O^S_{MN} \equiv (\bar{c} P_M b)(\bar{\tau} P_N \nu), \]
\[O^V_{MN} \equiv (\bar{c} \gamma^\mu P_M b)(\bar{\tau} \gamma^\mu P_N \nu), \]
\[O^T_{MN} \equiv (\bar{c} \sigma^{\mu\nu} P_M b)(\bar{\tau} \sigma^{\mu\nu} P_N \nu), \]
All Operators

Operator	Fierz identity	Allowed Current	δL_{int}	
\mathcal{O}_{VL}	$(\bar{c}\gamma_\mu P_L b) (\bar{\tau}\gamma^\mu P_L \nu)$		$(1, 3)_0 \left(g_{q_L q_L} T^\mu q_L + g_{\ell_L \ell_L} T^\mu \ell_L \right) W^\mu_\nu$	
\mathcal{O}_{VR}	$(\bar{c}\gamma_\mu P_R b) (\bar{\tau}\gamma^\mu P_L \nu)$	$(1, 2)_{1/2}$	$(\lambda_d \bar{q}_L d_R \phi + \lambda_u \bar{q}_L u_R i\tau_2 \phi^\dagger + \lambda_e \bar{\ell}_L e_R \phi)$	
\mathcal{O}_{SR}	$(\bar{c} P_R b) (\bar{\tau} P_L \nu)$			
\mathcal{O}_{SL}	$(\bar{c} P_L b) (\bar{\tau} P_L \nu)$			
\mathcal{O}_{T}	$(\bar{c}\sigma^{\mu\nu} P_L b) (\bar{\tau}\sigma_{\mu\nu} P_L \nu)$			
\mathcal{O}'_{VL}	$(\bar{\tau}\gamma_\mu P_L b) (\bar{c}\gamma^\mu P_L \nu)$	\leftrightarrow \mathcal{O}_{VL}	$(3, 3)_{2/3}$	$\lambda \bar{q}_L \gamma_\mu \ell_L U^\mu$
\mathcal{O}'_{VR}	$(\bar{\tau}\gamma_\mu P_R b) (\bar{c}\gamma^\mu P_L \nu)$	\leftrightarrow \mathcal{O}_{SR}	$(3, 1)_{2/3}$	$(\lambda \bar{q}_L \gamma_\mu \ell_L + \bar{\lambda} d_R \gamma_\mu \ell_R) U^\mu$
\mathcal{O}'_{SR}	$(\bar{\tau} P_R b) (\bar{c} P_L \nu)$	\leftrightarrow \mathcal{O}_{VR}	$(3, 2)_{7/6}$	$(\lambda \bar{u}_R \ell_L + \bar{\lambda} \bar{q}_L i\tau_2 e_R) R$
\mathcal{O}'_{SL}	$(\bar{\tau} P_L b) (\bar{c} P_L \nu)$	\leftrightarrow $-\frac{1}{2} \mathcal{O}_{SL} - \frac{1}{8} \mathcal{O}_{T}$		
\mathcal{O}'_{T}	$(\bar{\tau}\sigma^{\mu\nu} P_L b) (\bar{c}\sigma_{\mu\nu} P_L \nu)$	\leftrightarrow $-6 \mathcal{O}_{SL} + \frac{1}{2} \mathcal{O}_{T}$		
\mathcal{O}''_{VL}	$(\bar{\tau}\gamma_\mu P_L c) (\bar{b}\gamma^\mu P_L \nu)$	\leftrightarrow $-\mathcal{O}_{VR}$	$(3, 2)_{5/3}$	$(\lambda \bar{d}_R \gamma_\mu \ell_L + \bar{\lambda} \bar{q}_L^c \gamma_\mu \ell_R) V^\mu$
\mathcal{O}''_{VR}	$(\bar{\tau}\gamma_\mu P_R c) (\bar{b}\gamma^\mu P_L \nu)$	\leftrightarrow $-2 \mathcal{O}_{SR}$	$(3, 3)_{1/3}$	$\lambda \bar{q}_L^c i\tau_2 \ell_R S$
\mathcal{O}''_{SR}	$(\bar{\tau} P_R c) (\bar{b} \nu)$	\leftrightarrow $\frac{1}{2} \mathcal{O}_{VL}$		
\mathcal{O}''_{SL}	$(\bar{\tau} P_L c) (\bar{b} \nu)$	\leftrightarrow $-\frac{1}{2} \mathcal{O}_{SL} + \frac{1}{8} \mathcal{O}_{T}$	$(\bar{3}, 1)_{1/3}$	$(\lambda \bar{q}_L^c i\tau_2 \ell_L + \bar{\lambda} \bar{u}_R^c e_R) S$
\mathcal{O}''_{T}	$(\bar{\tau}\sigma^{\mu\nu} P_L c) (\bar{b}\sigma_{\mu\nu} P_L \nu)$	\leftrightarrow $-6 \mathcal{O}_{SL} - \frac{1}{2} \mathcal{O}_{T}$		

Figure: [1506.08896]
Constrain 1: \(Br(B_c \rightarrow \tau \nu) \)

- Other processes can limit these large coefficients; in particular \(Br(B_c \rightarrow \tau \nu) \). In SM: \(Br(B_c \rightarrow \tau \nu) \approx 2.3\% \)
Constrain 1: $Br(B_c \rightarrow \tau \nu)$

- Other processes can limit these large coefficients; in particular $Br(B_c \rightarrow \tau \nu)$. In SM: $Br(B_c \rightarrow \tau \nu) \approx 2.3\%$

$$\frac{Br(B_c \rightarrow \tau \nu)}{Br(B_c \rightarrow \tau \nu)|_{SM}} = \left| 1 + (C^V_{LL} - C^V_{RL}) + \frac{m^2_{B_c}}{m_\tau (m_b + m_c)} (C^S_{RL} - C^S_{LL}) \right|^2$$

$$+ \left| (C^V_{RR} - C^V_{LR}) + \frac{m^2_{B_c}}{m_\tau (m_b + m_c)} (C^S_{LR} - C^S_{RR}) \right|^2.$$

Enhanced contribution from the scalar operators (same combination appearing in R_D^*).

$Br(B_c \rightarrow \tau \nu) \leq 10\%$ from the $B_u \rightarrow \tau \nu$ at Z peak at LEP.
Constrain 1: \(Br(B_c \rightarrow \tau \nu) \)

- Other processes can limit these large coefficients; in particular \(Br(B_c \rightarrow \tau \nu) \). In SM: \(Br(B_c \rightarrow \tau \nu) \approx 2.3\% \)

\[
\frac{Br(B_c \rightarrow \tau \nu)}{Br(B_c \rightarrow \tau \nu)|_{SM}} = \left| 1 + (C_{LL}^V - C_{RL}^V) + \frac{m_{B_c}^2}{m_\tau (m_b + m_c)} (C_{RL}^S - C_{LL}^S) \right|^2 \\
+ \left| (C_{RR}^V - C_{LR}^V) + \frac{m_{B_c}^2}{m_\tau (m_b + m_c)} (C_{LR}^S - C_{RR}^S) \right|^2 .
\]

- Enhanced contribution from the scalar operators (same combination appearing in \(R_{D^*} \)).
Constrain I: $Br(B_c \rightarrow \tau \nu)$

- Other processes can limit these large coefficients; in particular $Br(B_c \rightarrow \tau \nu)$. In SM: $Br(B_c \rightarrow \tau \nu) \approx 2.3\%$

$$\frac{Br(B_c \rightarrow \tau \nu)}{Br(B_c \rightarrow \tau \nu)|_{SM}} = \left| 1 + (C_{LL}^V - C_{RL}^V) + \frac{m_{B_c}^2}{m_\tau (m_b + m_c)} (C_{RL}^S - C_{LL}^S) \right|^2 + \left| (C_{RR}^V - C_{LR}^V) + \frac{m_{B_c}^2}{m_\tau (m_b + m_c)} (C_{LR}^S - C_{RR}^S) \right|^2.$$

- Enhanced contribution from the scalar operators (same combination appearing in R_{D^*}).

- $Br(B_c \rightarrow \tau \nu) \leq 10\%$ from the $B_u \rightarrow \tau \nu$ at Z peak at LEP.
Constrain II: $b \rightarrow s\nu\nu$

Some of the mediators generating the $C_{\nu\nu}$ or the $C_{\nu\nu}^T$ can generate $b \rightarrow s\nu\nu$ with the same couplings.

These are neutral current constraints so will put severe bounds on the affected models.
Constrain II: $b \rightarrow s\nu\nu$

Some of the mediators generating the C_{LL}^V or the $C_{RR}^S + xC_{RR}^T$ can generate $b \rightarrow s\nu\nu$ with the same couplings.
Some of the mediators generating the C_{LL}^V or the $C_{RR}^S + x C_{RR}^T$ can generate $b \to s\nu\nu$ with the same couplings.

\[
O_{LL}^V = (\bar{c}_L \gamma^\mu b_L)(\bar{\tau}_L \gamma^\mu \nu_L),
\]

\[
O_{RR}^S = (\bar{c}_L b_R)(\bar{\tau}_L \nu_R),
\]
Constrain II : $b \rightarrow s\nu\nu$

Some of the mediators generating the C_{LL}^V or the $C_{RR}^S + xC_{RR}^T$ can generate $b \rightarrow s\nu\nu$ with the same couplings.

\[
\begin{align*}
O_{LL}^V & = (\bar{c}_L \gamma^{\mu} b_L)(\bar{\tau}_L \gamma^{\mu} \nu_L), \\
O_{RR}^S & = (\bar{c}_L b_R)(\bar{\tau}_L \nu_R),
\end{align*}
\]

These are neutral current constraints so will put severe bounds on the affected models.
Constrain II: \(b \to s\nu\nu \)

\[
\begin{align*}
BR (B \to X_s\nu\nu) & \leq 6.4 \times 10^{-4}, \\
BR (B \to K\nu\nu) & \leq 1.6 \times 10^{-5}, \\
BR (B \to K^*\nu\nu) & \leq 2.7 \times 10^{-5}.
\end{align*}
\]
Constrain II: $b \to s\nu\nu$

$$BR (B \to X_s \nu\nu) \leq 6.4 \times 10^{-4},$$
$$BR (B \to K \nu\nu) \leq 1.6 \times 10^{-5},$$
$$BR (B \to K^* \nu\nu) \leq 2.7 \times 10^{-5}.$$

$$\mathcal{H}_{\text{eff}} = -2\sqrt{2} G_F V_{tb} V_{ts}^* \frac{\alpha}{4\pi} \left[C_L^\nu \left(\bar{s} \gamma^\mu (1 - \gamma^5) b \right) \left(\bar{\nu} \gamma_\mu (1 - \gamma^5) \nu \right)
ight. + C_R^\nu \left(\bar{s} \gamma^\mu (1 + \gamma^5) b \right) \left(\bar{\nu} \gamma_\mu (1 - \gamma^5) \nu \right),$$

$$\epsilon \equiv \frac{\sqrt{|C_L^\nu|^2 + |C_R^\nu|^2}}{|(C_L^\nu)^{SM}|}, \quad \eta \equiv -\frac{\text{Re} (C_L^\nu C_R^{\nu*})}{|C_L^\nu|^2 + |C_R^\nu|^2}.$$
Constrain II : $b \to s\nu\nu$

$$BR(B \to X_s\nu\nu) \leq 6.4 \times 10^{-4},$$

$$BR(B \to K\nu\nu) \leq 1.6 \times 10^{-5},$$

$$BR(B \to K^*\nu\nu) \leq 2.7 \times 10^{-5}.$$

$$\mathcal{H}_{\text{eff}} = -2\sqrt{2}G_F V_{tb} V_{ts}^* \frac{\alpha}{4\pi} \left[C_L^\nu \left(\bar{s}\gamma^\mu (1 - \gamma^5)b \right) \left(\bar{\nu}\gamma_\mu (1 - \gamma^5)\nu \right)
ight. \right.$$ \left. + C_R^\nu \left(\bar{s}\gamma^\mu (1 + \gamma^5)b \right) \left(\bar{\nu}\gamma_\mu (1 - \gamma^5)\nu \right) \right],$$

$$\epsilon \equiv \frac{\sqrt{|C_L^\nu|^2 + |C_R^\nu|^2}}{|(C_L^\nu)^{SM}|}, \quad \eta \equiv -\frac{\text{Re}(C_L^\nu C_R^{\nu*})}{|C_L^\nu|^2 + |C_R^\nu|^2}.$$

$$BR(B \to K\nu\nu) = 4.5 \times 10^{-6} (1 - 2\eta)\epsilon^2,$$

$$BR(B \to K^*\nu\nu) = 6.8 \times 10^{-6} (1 + 1.31\eta)\epsilon^2,$$

$$BR(B \to X_s\nu\nu) = 2.7 \times 10^{-5} (1 + 0.09\eta)\epsilon^2.$$
Constrain II: $b \to s\nu\nu$

$$BR(B \to X_s\nu\nu) \leq 6.4 \times 10^{-4},$$
$$BR(B \to K\nu\nu) \leq 1.6 \times 10^{-5},$$
$$BR(B \to K^*\nu\nu) \leq 2.7 \times 10^{-5}.$$

$$\mathcal{H}_{\text{eff}} = -2\sqrt{2}G_F V_{tb} V_{ts} \frac{\alpha}{4\pi} \left[C_L^{\nu} \left(\bar{s}\gamma^\mu (1 - \gamma^5)b \right) \left(\bar{\nu}\gamma_\mu (1 - \gamma^5)\nu \right)
+ \ C_R^{\nu} \left(\bar{s}\gamma^\mu (1 + \gamma^5)b \right) \left(\bar{\nu}\gamma_\mu (1 - \gamma^5)\nu \right) \right],$$

$$\epsilon \equiv \frac{\sqrt{|C_L^{\nu}|^2 + |C_R^{\nu}|^2}}{|(C_L^{\nu})^{SM}|}, \quad \eta \equiv -\Re \left(C_L^{\nu} C_R^{\nu\ast} \right) \frac{|C_L^{\nu}|^2 + |C_R^{\nu}|^2}{|C_L^{\nu}|^2 + |C_R^{\nu}|^2}.$$

$$BR(B \to K\nu\nu) = 4.5 \times 10^{-6}(1 - 2\eta)\epsilon^2,$$
$$BR(B \to K^*\nu\nu) = 6.8 \times 10^{-6}(1 + 1.31\eta)\epsilon^2,$$
$$BR(B \to X_s\nu\nu) = 2.7 \times 10^{-5}(1 + 0.09\eta)\epsilon^2.$$

$$C_L^{\nu \nu} \leq 0.006, \quad C_R^{S \nu \nu} \leq 0.01.$$
Constrain III: Collider Bounds

On a W' coupled to the LH particles: The accompanying Z' is severely constrained. Ruled out unless Z' is a wide resonance.
Constrain III: Collider Bounds

On a W' coupled to the LH particles: The accompanying Z' is severely constrained. Ruled out unless Z' is a wide resonance.

Figure: [1609.07138]
Constrain III: Collider Bounds

On a W' coupled to the LH particles: The accompanying Z' is severely constrained. Ruled out unless Z' is a wide resonance.

Figure: [1609.07138]

Things are better with RH neutrinos. But still severely constrained from the LHC direct searches.
Constrain III : Collider Bounds

- For the LQs, the pair production, single production, high pT tails and interference with DY, and the monojet searches are relevant.
Constrain III: Collider Bounds

- For the LQs, the pair production, single production, high pT tails and interference with DY, and the monojet searches are relevant.

Figure: [1810.10017]
Constrain III : Collider Bounds

- Not quite strong enough to kill any LQ yet.
- Can always introduce a new decay channel that the direct searches are blind too. LHC is trying to close that gap.
Constrain III: Collider Bounds

- Not quite strong enough to kill any LQ yet.
- Can always introduce a new decay channel that the direct searches are blind too. LHC is trying to close that gap.
Constrain III: Collider Bounds

- Not quite strong enough to kill any LQ yet.
- Can always introduce a new decay channel that the direct searches are blind to. LHC is trying to close that gap.
Constrain III: Collider Bounds

Figure: [1810.10017]

- Not quite strong enough to kill any LQ yet.
Constrain III: Collider Bounds

- Not quite strong enough to kill any LQ yet.
- Can always introduce a new decay channel that the direct searches are blind too. LHC is trying to close that gap.

Figure: [1810.10017]
Constraining Hidden Channels

Figure: Talk by Abhijith Gandrakota
• Calculate the leptonic side matrix element.
• Use the available results (e.g. HQET or Lattice) for the Hadronic side.
• Integrate over various final state labels to get the numerical results.
\[\begin{align*}
 h_T &\rightarrow -h_T, & C_{LL}^{S,T} &\leftrightarrow (C_{RR}^{S,T})^*, & C_{RL}^{X} &\leftrightarrow (C_{LR}^{X})^*, \\
 1 + C_{LL}^{V} &\leftrightarrow (C_{RR}^{V})^*, \\
 R_{D(*)} &\rightarrow R_{D(*)}, & \mathcal{P}_x &\rightarrow -\mathcal{P}_x, & \mathcal{A}_{FB} &\rightarrow \mathcal{A}_{FB}.
\end{align*} \]
Numerical Equations

\[A_{FB} \approx \frac{1}{R_D} \left\{ -0.11 \left(|1 + C_{LL}^V + C_{RL}^V|^2 + |C_{RR}^V + C_{LR}^V|^2 \right) \right. \]

\[+ 0.35 \Re \left[(C_{LL}^S + C_{RL}^S)(C_{LL}^T)^* + (C_{RR}^S + C_{LR}^S)^*(C_{RR}^T) \right] \]

\[- 0.24 \Re \left[(1 + C_{LL}^V + C_{RL}^V)(C_{LL}^T)^* + (C_{RR}^V + C_{LR}^V)^*(C_{RR}^T) \right] \]

\[- 0.15 \Re \left[(1 + C_{LL}^V + C_{RL}^V)(C_{LL}^S + C_{RL}^S)^* + (C_{RR}^V + C_{LR}^V)^*(C_{RR}^S + C_{LR}^S) \right] \]

\[A_{FB}^* \approx \frac{1}{R_D^*} \left\{ -0.813 \left(|C_{LL}^T|^2 + |C_{RR}^T|^2 \right) \right. \]

\[+ 0.016 \left(|1 + C_{LL}^V|^2 + |C_{RR}^V|^2 \right) - 0.082 \left(|C_{RL}^V|^2 + |C_{LR}^V|^2 \right) \]

\[+ 0.066 \Re \left[C_{RL}^V(1 + C_{LL}^V)^* + (C_{LR}^V)^*C_{RR}^V \right] \]

\[+ 0.095 \Re \left[(C_{RL}^S - C_{LL}^S)(C_{LL}^T)^* + (C_{LR}^S - C_{RR}^S)^*(C_{RR}^T) \right] \]

\[+ 0.395 \Re \left[(1 + C_{LL}^V - C_{RL}^V)(C_{LL}^T)^* + (C_{RR}^V - C_{LR}^V)^*(C_{RR}^T) \right] \]

\[+ 0.023 \Re \left[(C_{LL}^S - C_{RL}^S)(1 + C_{LL}^V - C_{RL}^V)^* + (C_{RR}^S - C_{LR}^S)^*(C_{RR}^V - C_{LR}^V) \right] \]

\[- 0.142 \Re \left[(C_{LL}^T)(1 + C_{LL}^V + C_{RL}^V)^* + (C_{RR}^T)^*(C_{RR}^V + C_{LR}^V) \right] \}

\]
Numerical Equations

\[P_\tau \approx \frac{1}{R_D} \left\{ 0.402 \left(|C_{LL}^S + C_{RL}^S|^2 - |C_{RR}^S + C_{LR}^S|^2 \right) \right. \\
\left. + 0.013 \left[|C_{LL}^T|^2 - |C_{RR}^T|^2 \right] + 0.097 \left[|1 + C_{LL}^V + C_{RL}^V|^2 - |C_{RR}^V + C_{LR}^V|^2 \right] \right. \\
\left. + 0.512 \Re \left[(1 + C_{LL}^V + C_{RL}^V)(C_{LL}^S + C_{RL}^S)^* - (C_{RR}^V + C_{LR}^V)^*(C_{RR}^S + C_{LR}^S) \right] \right. \\
\left. - 0.099 \Re \left[(1 + C_{LL}^V + C_{RL}^V)(C_{LL}^T)^* - (C_{RR}^V + C_{LR}^V)^*(C_{RR}^T) \right] \right\} \\

\[P_{\tau}^* \approx \frac{1}{R_D^*} \left\{ -0.127 \left(|1 + C_{LL}^V|^2 + |C_{RL}^V|^2 - |C_{RR}^V|^2 - |C_{LR}^V|^2 \right) \right. \\
\left. + 0.011 \left(|C_{LL}^S - C_{RL}^S|^2 - |C_{RR}^S - C_{LR}^S|^2 \right) + 0.172 \left(|C_{LL}^T|^2 - |C_{RR}^T|^2 \right) \right. \\
\left. + 0.031 \Re \left[(1 + C_{LL}^V - C_{RL}^V)(C_{RL}^S - C_{LL}^S)^* - (C_{RR}^V - C_{LR}^V)^*(C_{LR}^S - C_{RR}^S) \right] \right. \\
\left. + 0.350 \Re \left[(1 + C_{LL}^V)(C_{LL}^T)^* - (C_{RR}^V)^*(C_{RR}^T) \right] \right. \\
\left. - 0.481 \Re \left[(C_{RL}^V)(C_{LL}^T)^* - (C_{LR}^V)^*(C_{RR}^T) \right] \right. \\
\left. + 0.216 \Re \left[(1 + C_{LL}^V)(C_{RL}^V)^* - (C_{RR}^V)^*(C_{LR}^V) \right] \right\}. \]
Numerical Equations

\[\mathcal{P}_\perp \approx \frac{1}{R_D} \text{Re} \left\{ -0.350 \left[(C_{LL})^*(C_{LL} + C_{RL})^* - (C_{RR})^* (C_{RR} + C_{LR}) \right] \right. \\
- 0.357 \left[(1 + C_{LL}^V + C_{RL}^V) (C_{LL}^S + C_{RL}^S)^* - (C_{RR}^V + C_{LR}^V)^* (C_{RR}^S + C_{LR}^S) \right] \right. \\
- 0.247 \left[(1 + C_{LL}^V + C_{RL}^V)^*(C_{LL}^T) - (C_{RR}^V + C_{LR}^V)(C_{RR}^T)^* \right] \right. \\
- 0.250 \left[\left| 1 + C_{LL}^V + C_{RL}^V \right|^2 - \left| C_{RR}^V + C_{LR}^V \right|^2 \right] \right\} \\
\mathcal{P}_\perp^* \approx \frac{1}{R_D^*} \text{Re} \left\{ (C_{RR}^S - C_{LR}^S)^* \left[0.099C_{RR}^T - 0.054 (C_{RR}^V - C_{LR}^V) \right] \right. \\
- (C_{LL}^S - C_{RL}^S)^* \left[0.099C_{LL}^T - 0.054 (1 + C_{LL}^V - C_{RL}^V) \right] \right. \\
+ (C_{RR}^T) \left[0.146C_{RR}^V - 0.478C_{LR}^V - 1.855C_{RR}^T \right] \right. \\
- (C_{LL}^T)^* \left[0.146(1 + C_{LL}^V) - 0.478C_{RL}^V - 1.855C_{LL}^T \right] \right. \\
+ (C_{LR}^V) \left[-0.081C_{RR}^T + 0.025C_{LR}^V - 0.075C_{RR}^V \right] \right. \\
- (C_{RL}^V)^* \left[-0.081C_{LL}^T + 0.025C_{RL}^V - 0.075(1 + C_{LL}^V) \right] \right. \\
+ (C_{RR}^V) \left[-0.071C_{RR}^T - 0.075C_{LR}^V + 0.126C_{RR}^V \right] \right\} \]
Numerical Equations

\[\mathcal{P}_T \approx \frac{1}{R_D} \text{Im} \left\{ -0.350 \left[(C_{LL}^T) (C_{LL}^S + C_{RL}^S)^* - (C_{RR}^T)^* (C_{RR}^S + C_{LR}^S) \right] \\
- 0.357 \left[(1 + C_{LL}^V + C_{RL}^V) (C_{LL}^S + C_{RL}^S)^* - (C_{RR}^V + C_{LR}^V)^* (C_{RR}^S + C_{LR}^S) \right] \\
- 0.247 \left[(1 + C_{LL}^V + C_{RL}^V) (C_{LL}^T) - (C_{RR}^V + C_{LR}^V) (C_{RR}^T) \right] \right\} \]

\[\mathcal{P}_T^* \approx \frac{1}{R_{D^*}} \text{Im} \left\{ (C_{RR}^S - C_{LR}^S) [0.099 C_{RR}^T - 0.054 (C_{RR}^V - C_{LR}^V)]^* \\
- (C_{LL}^S - C_{RL}^S)^* [0.099 C_{LL}^T - 0.054 (1 + C_{LL}^V - C_{RL}^V)] \\
+ (C_{RR}^V) [0.146 C_{RR}^V - 0.478 C_{LR}^V]^* - (C_{LL}^V)^* [0.146(1 + C_{LL}^V) - 0.478 C_{RL}^V] \\
- (C_{LR}^V) [0.081 C_{RR}^T]^* + (C_{RL}^V)^* [0.081 C_{LL}^T] \\
- (C_{RR}^V) [0.071 C_{RR}^T]^* + (1 + C_{LL}^V)^* [0.071 C_{LL}^T] \right\} \]
$R_D = 0.407$ and $R_{D^*} = 0.304$
$R_D = 0.340$ and $R_{D^*} = 0.275$
$P_T^{(*)}$

![Graphs showing different models]

- S_1^L LQ
- U_1^L LQ
- S_2^L LQ
- R_2 LQ
\(\mathcal{P}_\tau \) Measurement

\[
\frac{1}{\Gamma} \frac{d\Gamma}{d\theta_{\text{hel}}} = \frac{1}{2} \left(1 + \alpha_d \mathcal{P}_\tau^* \cos \theta_{\text{hel}} \right)
\]

\[
\cos \theta_{\tau d} = \frac{2E_\tau E_d - m_\tau^2 - m_d^2}{2|\vec{p}_\tau||\vec{p}_d|} \quad q^2 - \text{frame}
\]

\[
|\vec{p}_\tau| = \frac{q^2 - m_\tau^2}{2\sqrt{q^2}} \quad q^2 - \text{frame}
\]

\[
|\vec{p}_d^\tau| \cos \theta_{\text{hel}} = -\gamma \frac{|\vec{p}_\tau|}{E_\tau} E_d + \gamma |\vec{p}_d| \cos \theta_{\tau d} \quad \tau - \text{frame}
\]
$F_{D^{*}}^L$ Measurement

\[
\frac{1}{R} \frac{dR}{d \cos \theta_{\text{hel}}(D^{*})} = \frac{3}{4} \left[2 F_{L}^{D^{*}} \cos^2(\theta_{\text{hel}}(D^{*})) + (1 - F_{L}^{D^{*}}) \sin^2(\theta_{\text{hel}}(D^{*})) \right]
\]

\[
\begin{array}{|c|c|}
\hline
h & \text{Number of events in:} \\
\hline
& \text{I bin: } 151 \pm 21 \\
& \text{II bin: } 125 \pm 19 \\
& \text{III bin: } 55 \pm 15 \\
\hline
\end{array}
\]

- signal yields corrected for acceptance variations

Dominant systematics:
- MC statistics (AR shape and peaking background)
 \[= \pm 0.03 \]

Figure: Talk by Karol Adamczyk @ CKM 2018
Other Constraints

Numerous other bounds including:

- Meson Mixings
- $D_s \to \tau \nu$
- $b \to s \gamma$
- $B_s \to \tau \tau$: very loose experimental bounds
- Electroweak precision bounds: When introducing new gauge bosons or fermion mixings.
Other Constraints

Numerous other bounds including:

- Meson Mixings
Other Constraints

Numerous other bounds including:

- Meson Mixings
- $D_s \rightarrow \tau \nu$
Other Constraints

Numerous other bounds including:

- Meson Mixings
- $D_s \rightarrow \tau \nu$
- $b \rightarrow s \gamma$
Other Constraints

Numerous other bounds including:

- Meson Mixings
- $D_s \to \tau \nu$
- $b \to s \gamma$
- $B_s \to \tau \tau$: very loose experimental bounds
Other Constraints

Numerous other bounds including:

- Meson Mixings
- $D_s \rightarrow \tau \nu$
- $b \rightarrow s \gamma$
- $B_s \rightarrow \tau \tau$: very loose experimental bounds
- Electroweak precision bounds: When introducing new gauge bosons or fermion mixings.
Flavor Constraints on the New Model

\[b \rightarrow \tilde{g}^{33} \tilde{g}_2^{1/3} \tilde{g}_1^{33} \nu_{\tau} \]

\[s \rightarrow \tilde{g}^{2*} \tilde{R}_{\alpha}^{-1/3} \tilde{g}_1^{33*} \nu_L \]

\[\bar{c} \rightarrow \tilde{g}_2 \tilde{g}_1 \tilde{g}_2 \nu_R \]

\[\bar{s} \rightarrow \tilde{g}_2^{1/3} \tilde{g}_1 \tilde{g}_2 \nu \]

\[\bar{b} \rightarrow \tilde{g}_2^{1/3} \tilde{g}_1 \tilde{g}_2 \nu \]

\[\gamma / Z \]

All the constraints only affect the C_S operator. Cannot generate C_V simultaneously.
Flavor Constraints on the New Model

All the constraints only affect $C_{RR}^S = 4C_{RR}^T$ operator. Can not generate C_{RL}^V and C_{LR}^V simultaneously either.
Collider Constraints on the New Model

- These are the main constraints on the model.
Collider Constraints on the New Model

- These are the main constraints on the model.
- The C_{RL}^V is secretly a dim-8 operator so suppressed by ν^2/M_{NP}^2. Hence, the NP scale should be lower.
Collider Constraints on the New Model

- These are the main constraints on the model.
- The C^V_{RL} is secretly a dim-8 operator so suppressed by v^2/M^2_{NP}. Hence, the NP scale should be lower.
- The LQ signature appears in direct pair production, direct single production, monojet searches, some SUSY searches too, and as interference with the SM DY processes.
Collider Constraints on the New Model

- These are the main constraints on the model.
- The C_{RL}^V is secretly a dim-8 operator so suppressed by ν^2/M_{NP}^2. Hence, the NP scale should be lower.
- The LQ signature appears in direct pair production, direct single production, monojet searches, some SUSY searches too, and as interference with the SM DY processes.
- The former four are reducible and can be avoided by new decay channels.
Collider Constraints on the New Model

- These are the main constraints on the model.
- The C_{RL}^V is secretly a dim-8 operator so suppressed by ν^2/M_{NP}^2. Hence, the NP scale should be lower.
- The LQ signature appears in direct pair production, direct single production, monojet searches, some SUSY searches too, and as interference with the SM DY processes.
- The former four are reducible and can be avoided by new decay channels. The latter puts irreducible bounds on the model.
Collider Constraints on the New Model

- These are the main constraints on the model.
- The C_{RL}^V is secretly a dim-8 operator so suppressed by ν^2/M_{NP}^2. Hence, the NP scale should be lower.
- The LQ signature appears in direct pair production, direct single production, monojet searches, some SUSY searches too, and as interference with the SM DY processes.
- The former four are *reducible* and can be avoided by new decay channels. The latter puts *irreducible* bounds on the model.
Collider Constraints on the New Model

- **Reducible** collider bounds: Direct LQ searches, SUSY searches, Monojet searches.
- **Irreducible** collider bounds: Interference with the SM DY process.
- EWP bounds.
Collider Constraints on the New Model

- **Reducible** collider bounds: Direct LQ searches, SUSY searches, Monojet searches.
- **Irreducible** collider bounds: Interference with the SM DY process.
- EWP bounds.
Collider Constraints on the New Model

- **Reducible** collider bounds: Direct LQ searches, SUSY searches, Monojet searches.
- **Irreducible** collider bounds: Interference with the SM DY process.
- EWP bounds.
Collider Constraints on the New Model

- **Reducible** collider bounds: Direct LQ searches, SUSY searches, Monojet searches.
- **Irreducible** collider bounds: Interference with the SM DY process.
- EWP bounds.
Explaining the Observed $R_{J/\psi}$

- The observed $R_{J/\psi}$ can not be explained by any combination of dim-6 operators!
The observed $R_{J/\psi}$ can not be explained by any combination of dim-6 operators!