Tumor Necrosis Factor Alpha-308G/A Polymorphism and the Risk of Multiple Myeloma: A Meta-Analysis of Pooled Data from Twelve Case-Control Studies

Tümör Nekroz Faktör Alfa-308G/A Polimorfizmi ve Multipl Myelom Riski: On İki Olgu Kontrol Çalışması Havuz Datasının Meta Analizi

Yingchao Li¹, Yong Lin²,³

¹Xiamen University Zhongshan Hospital, Department of Orthopedics, Xiamen, China
²Xiamen University Zhongshan Hospital Clinical Laboratory, Xiamen, China
³Medical College of Xiamen University, Institute of Infectious Disease, Xiamen, China

Abstract

Objective: Tumor necrosis factor alpha (TNF-α) is an important cytokine involved in inflammation, immune response, and other biological processes. The association between polymorphism -308G/A in its promoter and the risk of multiple myeloma (MM) is not clear. Thus, we conducted a meta-analysis to clarify this question.

Materials and Methods: Twelve eligible studies, which included 2204 MM cases and 3478 controls, were enrolled in our meta-analysis by searching the PubMed, China National Knowledge Infrastructure, Scopus, Web of Science, and Google Scholar databases up to December 2018. The effect of polymorphism -308G/A on MM risk was evaluated by calculating the pooled odds ratio (OR) and the 95% confidence interval (CI). Furthermore, the Q-test and I² statistical analyses were used to estimate the degree of heterogeneity. Sensitivity analysis was conducted to test the robustness of the meta-analysis results. Publication bias was assessed by Egger's test and visual inspection of a funnel plot.

Results: In the dominant model, -308G/A polymorphism was associated with reduced MM risk (OR=0.80, 95% CI: 0.65–0.97), and it also demonstrated a significant protective effect with a pooled OR of 0.82 (95% CI: 0.68–0.99) in the Caucasian subgroup. Because of the limited number of individual studies with AA genotype carriers, only eight studies were included in the recessive model, and no significant difference was observed. Moreover, the meta-analysis of the allele frequency demonstrated that the A allele has a protective effect against MM risk with a pooled OR of 0.83 (95% CI: 0.69–0.99). Sensitivity analysis suggested that the synthesized effect size was not influenced by any individual study. Moreover, the Egger's test statistical analysis suggested that publication bias was not obvious in the present analysis.

Bulgular: Basın modelinde, -308G/A polimorfizmin azalması MM riski ile ilişkili bulundu (OR=0.80, 95% CI: 0.65–0.97), ve bu polimorfizm varlığının anlamlı körükücü etkisi beyaz irkta 0.82 (%95 CI: 0.68–0.99) birleştirilmiş OR ile de gösterildi. AA genotip taşıyanların bireysel çalışmalarında daha az sayıda bulunması nedeniyle çekinik modele sadece 8 çalışma dahil edildi ve anlamlı bir farklılık gözlemendi. Dahası, allele freksansının meta analizinde A alelinin MM için körükücü etkisi 0.83 (%95 CI: 0.69–0.99) birleştirilmiş OR ile gösterildi. Hassasiyet analizi sentezlenen etki büyüklüğünde hiçbir değişimin tek başına belirleyici etkisinin olmadığını gösterdi. Ayrıca, Egger test istatistiksel analizi ile bu çalışmada yayın yanılışlarının olmadığını ortaya koydu.

©Copyright 2019 by Turkish Society of Hematology

Address for Correspondence/Yazışma Adresi: Yong LIN, M.D., Xiamen University Zhongshan Hospital Clinical Laboratory, Xiamen, China
Phone : +86 592 2993322
E-mail : mikhail929@163.com ORCID-ID: orcid.org/0000-0001-5120-8221

Received/Geliş tarihi: July 09, 2018
Accepted/Kabul tarihi: January 02, 2019
Introduction

Multiple myeloma (MM) is a bone marrow-based disseminated neoplasm commonly preceded by premalignant monoclonal gammopathy of undetermined significance [1]. Among the hematologic malignancy types, MM accounts for approximately 10% of diagnosed cases, maintaining the second position after non–Hodgkin’s lymphoma [2]. According to the latest statistics, there are 30,330 new MM cases and 12,650 deaths attributed to MM in the United States annually [3]. With the rapid progress made in pharmaceutical research, novel proteasome inhibitors and immune modulatory drugs have been applied in the treatment of MM [4], and the prognosis of MM has significantly improved among all MM patients. Despite the improvement in both treatment and survival, MM is currently regarded as an incurable disease, and the major goal of treatment is to achieve partial or complete remission. Therefore, it is of critical importance to investigate the risk factors of MM and to identify high-risk populations at the early stage of the disease.

Previous studies have revealed that genetic abnormalities contribute to the risk of developing MM, especially genes related to the immune response. For example, the rs2285803 polymorphism located in the human leukocyte antigen (HLA) region was found to be associated with an elevated MM risk in the European population [5] but not in Chinese individuals [6]. Moreover, a study identified several polymorphisms in HLA by applying a novel statistical model, suggesting the important role of HLA in MM [7]. Previous studies have also suggested that mutations in germline lysine-specific demethylase 1 and elongation factor for RNA polymerase II 2 (ELL2) are associated with an elevated risk of MM [8,9]. Tumor necrosis factor alpha (TNF-α) is an important cytokine, and cytotoxin triggers have been implicated in tumor regression, septic shock, and cachexia [10]. Mutations in the promoter region of TNF-α may affect the binding of transcription factors and consequently result in alterations in mRNA expression. The -308G/A polymorphism of TNF-α has been widely investigated in relation to various diseases, including infectious diseases and cancers. The A allele of the -308G/A polymorphism is associated with stronger transcription activity compared with the wild type and increased TNF-α expression in vivo [11]. Moreover, most HLA variations associated with MM can be explained by rs2285803, and we found that the -308G/A polymorphism and rs2285803 are in linkage disequilibrium with a D’ value of 0.7308 and an R² value of 0.0197. Considering the findings that we observed, in the present study, we conducted a meta-analysis on the -308G/A polymorphism and MM risk in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidance, which would provide information on the association between polymorphisms in both TNF-α and HLA and MM.

Materials and Methods

Search Strategy and Study Eligibility

A literature search was independently conducted by two investigators for genetic studies on TNF-α in PubMed, the China National Knowledge Infrastructure (CNKI), Scopus, Web of Science, and Google Scholar databases without any restriction of publication language. All relevant studies reported up to 10 December 2018 and the following key words were searched: "multiple myeloma", "plasma cell", "plasmacell", "plasmacytoma", "myelomatosis", "Kahler’s disease", "TNF-α", "tumor necrosis factor alpha", and "-308G/A".

Studies that fulfilled all the following criteria were included in the meta-analysis: (1) studies used case-control study design; (2) studies evaluated the association between TNF-α polymorphisms and the risk of developing MM; and (3) studies included genotype distribution of TNF-α polymorphisms in both cases and controls and other essential information required to estimate the odds ratio (OR) and 95% confidence interval (CI). Studies that met any one of the following criteria were excluded: (1) data were not relevant to the association between TNF-α polymorphisms and MM risk; (2) reviews, cases reports, editorial comments, and communications were included; or (3) there were insufficient data to estimate OR and 95% CI.

Quality Assessment and Data Extraction

The Newcastle-Ottawa Scale was used to evaluate the quality of the enrolled studies independently by two investigators. Disagreements between the two investigators were settled by discussions to reevaluate the methodological quality of original studies.
The extraction of data from individual studies included the following: the surname of the first author, the year of publication, the location of the study, the ethnicity and the source of controls, the genotyping method, the Hardy-Weinberg equilibrium (HWE) in controls, and the count of each TNF-α genotype in MM cases and controls.

Statistical Analysis

The strength of the association between TNF-α polymorphism and MM risk was evaluated by OR and 95% CI. We applied the following models to calculate different ORs: the dominant genetic model (GA+AA vs. GG), the recessive genetic model (AA vs. GA+GG), and the allele model (A vs. G). Z-tests were used to determine the statistical significance of pooled ORs. The heterogeneity between enrolled studies was assessed by the Q-test, and we applied a random-effects model to calculate pooled effect size. Subgroup analysis by ethnicity was performed to estimate and demonstrate the pooled MM risk caused by TNF-α polymorphism in different races. Each study was removed in turn for sensitivity analyses, and the remaining studies were reanalyzed to assess the stability of the results. Moreover, publication bias among enrolled studies was examined using Egger’s test, where a p-value of less than 0.10 was considered statistically significant. Meta-regression was used to identify the source of heterogeneity among covariates in the presence of heterogeneity. If the intercept was significantly different from zero, the estimate of the effect was considered biased. All statistical analyses were performed with STATA Version 12.0 software (Stata Corp, College Station, TX, USA). All p-values in the present study were two-sided, and p<0.05 was considered statistically significant unless otherwise specified.

Results

Study Identification and Main Characteristics

In total, we identified 167 records from the PubMed and CNKI databases in a primary literature search, and after removing duplicates, 135 records were subjected to title and abstract screening. Sixteen of them were reviewed in full; two were removed because of the absence of genotype distribution data, and two were excluded due to possible overlapping subjects (Figure 1). Finally, 12 studies met the inclusion criteria for our meta-analysis for evaluating the relationship between the -308G/A polymorphism and MM risk [12,13,14,15,16,17,18,19,20,21,22,23]. Among these studies, eight were based on Caucasian populations, and the remaining four were conducted with Asian subjects. The quality score average was 7.3, which combined all the enrolled studies together; a score greater than 5 was considered appropriate for inclusion in the meta-analysis. Based on the chi-square test results, the genotype distribution in the control group was consistent with the HWE among all 12 enrolled studies. The name of the first author, year of publication, country, ethnicity, source of controls, genotyping method, and HWE in the control group are listed in Table 1. The quality score of each individual study is shown in Table 2 and the detailed genotype distribution is demonstrated in Table 3.

Quantitative Synthesis

The genotype distribution of the -308G/A polymorphism in the cases and controls of all enrolled studies was extracted, and based on that, we performed a meta-analysis; the main outcome is demonstrated in Figure 2 and Table 4. In the dominant model, the -308G/A polymorphism was associated with a reduced MM risk (OR=0.80, 95% CI: 0.65-0.97). The

Table 1. Main characteristics of enrolled studies in meta-analysis.

First author	Year	Country	Ethnicity	Control population#	Genotyping method	HWE for controls	Quality score
Zheng et al. [15]	2000	Sweden	Caucasian	HB	PCR-RFLP	0.515	6
Neben et al. [21]	2002	Germany	Caucasian	HB	PCR-RFLP	0.060	7
Yakupova et al. [22]	2003	Russia	Caucasian	HB	PCR-RFLP	0.665	7
Jin et al. [14]	2004	China	Asian	HB	TaqMan	0.279	7
Morgan et al. [12]	2005	UK	Caucasian	PB	IHG	0.182	7
Au et al. [23]	2006	China	Asian	PB	PCR-RFLP	0.317	8
Brown et al. [17]	2007	US	Caucasian	PB	TaqMan	0.176	8
Kádár et al. [13]	2008	Hungary	Caucasian	HB	PCR-RFLP	0.157	7
Du et al. [19]	2010	China	Asian	HB	PCR-RFLP	0.068	8
Liu et al. [20]	2012	China	Asian	HB	PCR-LDR	0.443	7
Martino et al. [16]	2014	IMMEnSE*	Caucasian	HB	TaqMan	0.150	8
Nielsen et al. [18]	2017	Denmark	Caucasian	PB	TaqMan	0.281	8

*International Multiple Myeloma Research (IMMEnSE) Consortium includes 7 European countries: Italy, Poland, Spain, France, Portugal, Hungary, and Denmark.

#HB: Hospital-based, PB: population-based, PCR-RFLP: polymerase chain reaction-restriction fragment length polymorphism, HWE: Hardy-weinberg equilibrium.
subgroup analysis showed a similar association between the -308G/A polymorphism and MM risk in the Caucasian (OR=0.82, 95% CI: 0.68-0.99) but not the Asian subgroups (OR=0.70, 95% CI: 0.35-1.39). Due to the very limited number of AA homozygous carriers, only one Asian study was included in the recessive model, and the overall effect size based on eight studies was 0.84 (95% CI: 0.42-1.71). For the allele model, according to our estimation, the A allele of TNF-α-308G/A polymorphism confers a protective effect against MM risk with a pooled OR of 0.83 (95% CI: 0.69-0.99) in the overall population, and significance was observed. However, no significant association was observed in the Caucasian (OR=0.84, 95% CI: 0.70-1.02) and Asian (OR=0.75, 95% CI: 0.41-1.38) populations in the estimation of subgroup analysis.

Heterogeneity Analysis

As seen in the quantitative synthesis, heterogeneity was observed in the overall population and in both subgroups in the dominant model; the p-values of the Q-test were all less than 0.05. Similar to the dominant model, intermediate heterogeneity was detected in the allele model. However, no significant heterogeneity was found in the recessive model according to the Q-test results.

Sensitivity Analysis

To evaluate the robustness of the present meta-analysis, we performed sensitivity analysis by sequentially removing each eligible study and observing the changes in the overall effect size. As shown in Figure 3, the significance of the overall effect size was not influenced by any single study in both the dominant and allele models, indicating that our results were statistically robust.

Table 2. The quality score of included studies by using Newcastle–Ottawa Scale.

First author	Year	Selection	Comparability	Exposure	No. of stars
Zheng et al. [15]	2000	★ ★	★ ★	★ ★	6
Neben et al. [21]	2002	★ ★ ★ ★	★ ★ ★	★ ★	7
Yakupova et al. [22]	2003	★ ★ ★ ★	★ ★ ★	★ ★	7
Jin et al. [14]	2004	★ ★ ★ ★	★ ★ ★	★ ★	7
Morgan et al. [12]	2005	★ ★ ★ ★	★ ★ ★	★ ★	7
Au et al. [23]	2006	★ ★ ★ ★	★ ★ ★	★ ★	8
Brown et al. [17]	2007	★ ★ ★ ★	★ ★ ★	★ ★	8
Kádár et al. [13]	2008	★ ★ ★ ★	★ ★ ★	★ ★	7
Du et al. [19]	2010	★ ★ ★ ★	★ ★ ★	★ ★	8
Liu et al. [20]	2012	★ ★ ★ ★	★ ★ ★	★ ★	7
Martino et al. [16]	2014	★ ★ ★ ★	★ ★ ★	★ ★	8
Nielsen et al. [18]	2017	★ ★ ★ ★	★ ★ ★	★ ★	8

Selection: S1, is the case definition adequate?; S2, representativeness of the cases; S3, selection of controls; S4, definition of controls. Comparability: C1, comparability of cases; C2, controls of the basis of the design or analysis. Exposure: E1, ascertainment of exposure; E2, same method of ascertainment for cases and controls; E3, non-response rate.
Publication Bias

We applied Begg’s funnel plot and Egger’s test to assess publication bias in the present meta-analysis of the -308G/A polymorphism and MM risk. The funnel plots’ shapes of the dominant and allele models (Table 5; Figure 4) did not provide obvious evidence of asymmetry, and all the p-values of Egger’s test were greater than 0.05, providing statistical evidence for the funnel plots’ symmetry. Thus, the above results suggest that publication bias was not evident in this meta-analysis.

Meta-regression

As demonstrated in the previous section, heterogeneity was observed in both the dominant and allele model analyses but not in the recessive model. Therefore, meta-regression was conducted to identify the possible source of heterogeneity by testing the year of publication, sample size, ethnicity, study quality, control source, and genotyping method. As can be seen in Table 6, the p-values of all the tested covariates were greater than 0.05, indicating no contribution to heterogeneity.

Discussion

TNF-α is a proinflammatory cytokine that is mainly secreted by multinuclear giant cells, with a wide range of biological activities, including the regulation of host immune functions and the inflammatory reaction process [24]. Moreover, TNF-α is capable of inducing cell apoptosis, and in contrast, it can accelerate tumor growth. Growing evidence has demonstrated

![Figure 2](image_url)

Figure 2 The association of tumor necrosis factor alpha -308G/A polymorphism with multiple myeloma risk in (A) dominant model, (B) recessive model, and (C) allele model.

OR: Odds ratio, CI: confidence interval.
that TNF-α participates in several key processes of tumor progression, including oncogene activation, DNA damage, and tumor metastasis [25]. For instance, it has been reported that TNF-α has elevated expression in colorectal cancer tissue compared with normal colorectal tissue, and that cancer tissues in advanced stages have higher TNF-α expression compared with cancer tissues in earlier stages [26]. As mentioned before, the -308G/A polymorphism is associated with elevated expression of TNF-α mRNA through its effect on transcription. Our meta-analysis comprehensively reviewed published findings and demonstrated that it has a protective effect against MM risk in the dominant model and allele analysis.

Substantial studies have shown that the -308G/A polymorphism is associated with elevated constitutive and inducible protein levels compared with wild-type carriers [27]. A low concentration of TNF-α was observed in subjects carrying the GG genotype, and intermediate and high levels were associated with the GA and AA genotypes, respectively. Therefore, it was reasonable to assume that the -308G/A polymorphism increases the risk of developing MM through its effect on the TNF-α expression level. It has been acknowledged that the inflammation and immune responses triggered by TNF-α lead to the progression of cancer and often predict a worse outcome. A previous study conducted on 44 MM cases demonstrated that MM patients with advanced progression had significantly elevated serum TNF-α levels compared with normal controls [28]. Consistent with this result, Jurisić and Colović [29] examined the TNF-α levels in MM patients and found that serum level positively correlated with clinical stage and osteolysis, which is a severe complication of MM. Moreover, a cell assay revealed that TNF-α was capable of inducing IL-6 expression via the JAK/STAT pathway in U266 MM cells [30]. Thus, both epidemiological observations and laboratory studies support the unfavorable effects of TNF-α on MM. However, our results were inconsistent with the previous findings.

Figure 3. Sensitivity analysis for tumor necrosis factor alpha -308G/A polymorphism in (A) dominant model and (B) allele model.

CI: Confidence interval.

Figure 4. Begg’s funnel plot for the evaluation of publication bias of tumor necrosis factor alpha -α -308G/A polymorphism in (A) dominant model and (B) allele model.

OR: Odds ratio.
The pooled OR in the dominant and allele model showed a protective effect of the -308G/A polymorphism. A possible explanation is that inflammation caused by elevated TNF-α would definitely promote the progression and development of MM, which is confirmed by comparing MM cases in different stages. TNF-α has also been proven to possess anti-tumor effects through various mechanisms. For instance, TNF-α has been shown to have cytotoxic activity in tumor cells in paraformaldehyde-fixed activated monocytes [31]. Moreover, it has been revealed that TNF-α is associated with B-cell proliferation and immunoglobulin production by interacting with TNF-R2 in healthy individuals [32]. Based on these findings, we assume that elevated TNF-α levels can reduce the MM risk by improving immune surveillance and eliminating tumor

First author	Year	MM cases	Controls						
		GG	GA	AA	Total	GG	GA	AA	Total
Zheng et al. [15]	2000	52	21	0	73	92	35	2	129
Neben et al. [21]	2002	184	57	14	255	142	57	1	200
Yakupova et al. [22]	2003	49	19	1	69	72	20	2	94
Jin et al. [14]	2004	54	2	0	56	93	21	0	114
Morgan et al. [12]	2005	141	36	3	180	158	64	11	233
Au et al. [23]	2006	67	15	0	82	80	18	0	98
Brown et al. [17]	2007	99	23	3	125	388	137	18	543
Kádár et al. [13]	2008	85	9	0	94	111	30	0	141
Du et al. [19]	2010	182	26	2	210	170	48	0	218
Liu et al. [20]	2012	73	13	0	86	153	19	0	172
Martino et al. [16]	2014	478	143	9	630	859	289	33	1181
Nielsen et al. [18]	2017	244	94	6	344	250	99	6	355

Table 3. Tumor necrosis factor alpha -308G/A polymorphism genotype distribution in cases and controls.

Genetic model	Subgroup	No. of studies	OR	95% CI	p	Test of association	Test of heterogeneity	
Dominant	Overall	12	0.80	0.66-0.97	0.042*	Random	43.8%	0.046*
	Caucasian	8	0.82	0.68-0.99	0.038*	Random	31.4%	0.021*
	Asian	4	0.70	0.36-1.39	0.312	Random	66.4%	0.030*
Recessive	Overall	8	0.84	0.42-1.71	0.638	Random	41.7%	0.100
	Caucasian	7	0.77	0.38-1.55	0.460	Random	41.7%	0.113
	Asian	1	5.24	0.25-109.79	0.286	Random	N/A	N/A
Allele	Overall	12	0.83	0.69-0.99	0.042*	Random	46.8%	0.043*
	Caucasian	8	0.84	0.70-1.02	0.072	Random	45.2%	0.030*
	Asian	4	0.75	0.41-1.38	0.357	Random	61.2%	0.052

*p<0.05.
CI: Confidence interval, OR: odds ratio.

Table 4. Summary of odds ratios and 95% confidence intervals of tumor necrosis factor alpha -308G/A polymorphism with multiple myeloma risk.

Genetic model	Subgroup	No. of studies	OR	95% CI	p	Test of association	Test of heterogeneity	
Dominant	Overall	12	0.80	0.66-0.97	0.042*	Random	43.8%	0.046*
	Caucasian	8	0.82	0.68-0.99	0.038*	Random	31.4%	0.021*
	Asian	4	0.70	0.36-1.39	0.312	Random	66.4%	0.030*
Recessive	Overall	8	0.84	0.42-1.71	0.638	Random	41.7%	0.100
	Caucasian	7	0.77	0.38-1.55	0.460	Random	41.7%	0.113
	Asian	1	5.24	0.25-109.79	0.286	Random	N/A	N/A
Allele	Overall	12	0.83	0.69-0.99	0.042*	Random	46.8%	0.043*
	Caucasian	8	0.84	0.70-1.02	0.072	Random	45.2%	0.030*
	Asian	4	0.75	0.41-1.38	0.357	Random	61.2%	0.052

*p<0.05.
CI: Confidence interval.
cells, but in individuals who have already developed MM, the elevated TNF-α level may have unfavorable effects associated with shorter survival time.

In subgroup analysis by ethnicity, we observed contradictory results in the dominant model but not allele frequency. As observed, the -308G/A polymorphism has a protective effect in the Caucasian population but not in the Asian population; we assume that this can be attributed to the limited number of Asian population studies when compared with Caucasian populations. Therefore, it is possible that the subgroup analysis showed a null association in the Asian population. In addition, we also analyzed the difference between genotyping methods employed by included studies. Due to the limited number of included studies, we categorized the genotyping methods as polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), which is a classic genotyping method, and others, as one subgroup. PCR-RFLP is a technique that detects DNA sequence mutations by the lengths of fragments after digestion with specific restriction endonucleases [33]. However, it requires a larger amount of DNA and often involves multiple manual processes. In addition, techniques such as TaqMan offer rapid processing and a more sensitive way to determine SNPs with distinct fluorescent dye-based technology [34]. The subgroup analysis showed a similar trend between subgroups in both the dominant model and allele analysis. Based on the results, we assume that the genotyping methods did not interfere with the overall effect size.

Study Limitations

Some limitations of our study must be mentioned. First, the rare frequency of the AA genotype in some of the included studies led to the unavailability of these studies in the recessive model. Second, the present study failed to identify the source of heterogeneity using meta-regression, although heterogeneity was rather intermediate.

Nonetheless, we provided novel insight into the association investigated in this study, suggesting that elevated TNF-α levels may reduce MM risk, which deserves investigation of its underlying mechanism.

Conclusion

In summary, only intermediate heterogeneity was detected in two genetic models with no sign of publication bias. We attempted to identify the source of heterogeneity by conducting meta-regression; however, no contribution to the heterogeneity was found. The sensitivity analysis indicated that the pooled effect size was not influenced by any single study, indicating satisfactory robustness of the present study. Therefore, we concluded that the synthesized effects and conclusions about TNF-α polymorphism were solid.

Ethics

Ethics Committee Approval: No applicable, since this is a meta-analysis.

Informed Consent: Meta-analysis study.

Authorship Contributions

Concept: Y. Lin; Design: Y. Lin; Data Collection or Processing: Y. Li; Analysis or Interpretation: Y. Li, Y. Lin; Literature Search: Y. Li, Y. Lin; Writing: Y. Li, Y. Lin.

Conflict of Interest: The authors of this paper have no conflicts of interest, including specific financial interests, relationships, and/or affiliations relevant to the subject matter or materials included.

References

1. Kyle RA, Therneau TM, Rajkumar SV, Offord JR, Larson DR, Plevak MF, Melton LJ 3rd. A long-term study of prognosis in monoclonal gammopathy of undetermined significance. N Engl J Med 2002;346:564-569.
2. Morabito F, Recchia AG, Mazzone C, Gentile M. Targeted therapy of multiple myeloma: the changing paradigm at the beginning of the new millennium. Curr Cancer Drug Targets 2012;12:743-756.

3. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin 2016;66:7-30.

4. Palumbo A, Anderson K. Multiple myeloma. N Engl J Med 2011;364:1046-1060.

5. Chubb D, Weinhold N, Broderick P, Chen B, Johnson DC, Försti A, Holm G, Yi Q. Interleukin 6, tumour necrosis factor region and myeloma. Br J Haematol 2005;129:358-365.

6. Wei X, Calvo-Vidal MN, Chen S, Wu G, Revuelta MV, Sun J, Zhang J, Walsh M, Li Y and Lin Y: Extensive replication of the associations from the candidate gene era. Curr Cancer Drug Targets 2009;9:293-306.

7. Bek sac M, Gragert L, Fingerson S, Maier M, Zhang MJ, Albrecht M, Zhong X, Cozen W, Dispenzieri A, Lonalis S, Hari P. HLA polymorphism and risk of multiple myeloma. Leukemia 2016;30:2260-2264.

8. Wei X, Calvo-Vidal MN, Chen S, Wu G, Revuelta MV, Sun J, Zhang J, Walsh M, Nichols KE, Joseph V, Snyder C, Vachon CM, McKay JD, Wang SP, Jayabalai DS, Jacobs LM, Becirovic D, Waller RG, Artomov M, Viale A, Patel J, Phillip J, Chen-Kiang S, Curtin K, Salama M, Atanackovic D, Niewizky R, Landgren O, Slager SL, Godley LA, Churpek J, Barber JE, Anderson KC, Daly MJ, Roeder RG, Dumontet C, Lynch HT, Mullighan CG, Camp NJ, Offit K, Klein RY, Yu H, Cerchietti L, Lipkin SM, Germline lysine-specific demethylase 1 (LSD1/KDM1A) mutations confer susceptibility to multiple myeloma. Cancer Res 2018;78:2747-2759.

9. Li N, Johnson DC, Weinhold N, Kimber S, Dobbins SE, Mitchell JS, Kinnersley B, Sud A, Law PJ, Clarkson G, Scales M, Wardell CP, Forst J, Hou J, Liang R. Tumor necrosis factor alpha polymorphism in the promoter region with TNF receptor 2 (TNFR2) in susceptibility to pulmonary tuberculosis; a meta-analysis. Methods Mol Biol 2009;578:293-306.

10. Kriegler M, Perez C, Defay K, Albert I, Lu SD. A novel form of TNF/cachectin is a cell surface cytotoxic transmembrane protein: ramifications for the complex physiology of TNF. Cell 1988;53:45-53.

11. Wilson AG, Symons JA, McDowell TI, McDevitt HO, Duff GW. Effects of a polymorphism in the human tumor necrosis factor alpha promoter on transcriptional activation. Proc Natl Acad Sci U S A 1997;94:3195-3199.

12. Morgan GJ, Adamson PJ, Mensah FK, Spink CF, Law GR, Keen LJ, Roman JA, Symons JA, McDowell TL, McDevitt HO, Duff GW. Effects of a polymorphism in the human tumor necrosis factor alpha promoter on transcriptional activation. Proc Natl Acad Sci U S A 1997;94:3195-3199.