Study on the bio-efficacy of micro-nutrients on lac production

Chhaya Pasi, Moni Thomas and Shampa Jain

DOI: https://doi.org/10.22271/j.ento.2022.v10.i5b.9055

Abstract
Pigeon pea (Cajanhus cajan) is widely grown in Madhya Pradesh with acreage of 3.63 m ha. C. cajan is generally grown in undulating land with little care. C. cajan is one among the 114 host plants of the insect (Kerria lacca). However, C. cajan is not exploited commercially for lac production in India. Presently, lac production in MP is carried on Butea monosperma, Ziziphus mauritiana and Speciechera oleosa, where farm women find it difficult to climb and perform operational procedures of lac production. In such a condition C. cajan is a good option for lac production, if grown in backward with limited irrigation and resources. Lac consists of resin, wax and dye, thus has a wide range of applications in food, pharmaceuticals, cosmetics, perfumes, varnishes, paints, polishes, adhesives, jewellery and textile dye, since ancient times. It is an important intervention/ cultivation to increase the household income of small and marginal farmers with efficient utilization of available resources. Lac insect belongs to order Hemiptera, and family Tachardiidae (Kerriidae) its host range more than 150 host plants. The experiment was carried out during 2016-2017 on Pigeon pea (Cajanhus cajan) at Madhya Pradesh on aspects of survival rate, lac production and also production of Pigeon pea yield by using micronutrients and plant growth regulators. Results revealed that there was an increase in the mean Dry pod weight/plant highest (4.396g) in T5 (Micronutrients + Auskelp + Arbuscular Mycorrhiza + Aspergillus niger) followed by 4.135g in T1 (Micronutrients + Auskelp) over control (1.139g). Similarly, the mean dry seed weight/plant was also highest (2.87g) Ts followed by 2.80g T5 (Micronutrients + Plant Growth Regulators + Arbuscular Mycorrhiza) and 2.58g T5 (Arbuscular Mycorrhiza) over control (0.51g).

Keywords: Cajanus cajan, bio –efficacy, micro –nutrients, lac production

Introduction
Pigeon pea (Cajanhus cajan) is widely grown in Madhya Pradesh [1] with an acreage of 3.63 m ha [2]. C. cajan is generally grown in undulating land with little care. C. cajan is one among the 114 host plants of the insect (Kerria lacca). However, C. cajan is not exploited commercially for lac production in India. Presently, lac production in MP is carried on B. monosperma, Z. mauritiana and S. oleosa, where farm women find it difficult to climb and perform operational procedures of lac production. In such a condition C. cajan is a good option for lac production, if grown in backward with limited irrigation and resources. Lac is one of the most valuable gifts of nature to man, the only resin of animal origin secreted by a tiny scale insect, belonging to the family Tachardiidae (Kerriidae), superfamily Coccoidea of the order. Family Kerriidae consists of nine genera, while the number of species reported varies from 90 to 100 species [3].

Two genera found in India, while genus important as it has 19 species [4, 5]. K. lacca, the most important and widely exploited insect for lac cultivation in India is represented by two strains or infra subspecific forms, the Rangeeni and Kusmi strain, which differ by host preference, life cycle pattern, the quality and amount of lac produced [6]. The Kusmi strain is grown on Kusum (Schleichera oleosa) while Rangeeni strain thrives on hosts other than Kusum [4, 7, 8].

In India lac is mainly produced by two strains of lac insect viz., “Rangeeni and Kusmi”. Rangeeni lac is produced on the tree of B. monosperma and Z. mauritiana. Kusmi lac is mainly produced on S. oleosa and to some extend on Ber tree [9].

The total Lac production was 21,008 tons in India and 2,497 tons in M.P during 2013-14. During the year 2013-2014, Jharkhand (12207 tons) was the highest lac producer in the country followed by Chhattisgarh, Madhya Pradesh, Maharashtra and West Odisha [10].
Lac can be successfully produced on pigeon pea without comprising the yield of *C. cajan*. Lac production of pigeon pea can help farm women to double income. Lac production on pigeon pea in the backyard can help to rural household to overcome protein mal-nourishment also. The objective of the present study was to analyze the effect of micro-nutrients and plant growth regulators on lac production.

Materials and Methods

Pigeon pea, *C. cajan* (L.) Millsp variety TJT -501 was evaluated for lac production. The field research work was conducted during the year 2016-17 in the farmer’s field in Jhiria, Jabalpur, Madhya Pradesh. The experiment was laid in Randomized Block Design (RBD), with nine treatments and three replications (Table 1). Each treatment had nine plants. The plant to plant spacing was 6x6 feet within the replication. The spaces between the replications were 6 feet.

No. of treatment	Treatment details
T1	PSB + *Trichoderma viride* + Rhizobium + DAP + MoP + micro + macro nutrient + (Auskelp)
T2	PSB, *Trichoderma viride* + Rhizobium + DAP + MoP + micronutrients (Multiplex)
T3	PSB + *Trichoderma viride* + Rhizobium + DAP + MoP + PGR (Plant Growth Regulators)
T4	T1 + AM (Arbuscular Mycorrhiza)
T5	T2 + AM
T6	T3 + AM
T7	T4 + AM
T8	T4 + *Aspergillus niger*
T9	Control

PSB (Phosphorusb Solubilizing Bacteria) DAP- Diammonium phosphate, MoP - Murate of potash, Rhizobium and *Trichoderma viride* were be used as seed treatment. *T. viride*, AM and *Aspergillus Niger* were mixed in FYM separately and also to grow under moist condition. Chemical fertilizers (DAP and MoP) were mixed in the soil before planting.

Agro climate of Jabalpur

The climate of Jabalpur district is typically Sub humid, featured by hot dry summer and cool dry winter. Jabalpur is geographically situated between 23° 09' North latitude and 790 58' East longitudes at an altitude of 411.78 metres above sea level. Jabalpur district lies in the Agro-climatic zone VII i.e. Kymore Plateau and Satpura Hills and Agro-ecological region number 10 [Central Highlands (Malwa and Bundelkhand)], Sub region number 10.1, [hot sub-humid eco-region (Malwa Plateau, Vindhyanch scarp land and Narmada Valley)]. Weather conditions were almost favourable for the growth and development of pigeon pea. The monsoon commences in the first week of July and terminates in the first week of October. Minimum and maximum mean temperature ranged from 4.80°C to 24.90°C and 28.50 to 41.80°C, respectively.

Statistical analysis

The data recorded for efficacy of different treatments were statistically analyzed using standard procedure for analysis of variance (ANOVA) of RBD. The survival percentage of lac insect was worked out using the formula given below.

\[
\text{Survival percentage} = \frac{\text{No. of live cells/cm}^2 \text{ (before harvesting)} \times 100}{\text{Total no. of cells/cm}^2 \text{ (30 days)}}
\]

Result and Discussion

The mean number of live lac insects per 2.5 cm² of branch (MNL) was recorded at 30, 45, 75, 90, 105, 120 and 140 days after BLI. The MNL declined continuously from 30 days after BLI till the harvest of the plants for lac crop in all the treatments. On 30th day after BLI, the MNL varied from 91.77 (T3) control to 98.39 (T2). The latter was significantly higher than T4 control, T3 and T2 but was at par with T1 (97.45), T3 (95.19), T5 (98.21), T4 + AM (96.87), T6 (97.74) and T7 (AM) (97.03).

In some of the related studies, the MNL at 30 days after BLI varied from 60 to 95.80 [13], 28.13 to 40.53 [12], 51.35 to 64.08 [8], 37.95 to 58.24 [13], 38.31 to 43.37 [14], 37.05 to 39.34 [15] and 57.48 to 64.08 [16].

On 45th day after BLI, the MNL varied from 73.43 (T3) control to 83.14 (T5). The latter was significantly higher than treatments T2 (73.88), T6 (77.06) and T7 (77.4) which were at par with each other. However, T5 was at par with T8 (83.03), T9 (80.20), T4 (80.15) and T1 (80.29).

Recently, Khichi et al. [17] reported MNL at 45 days to vary from 147.67 to 168.72 on different local genotypes of *C. cajan*. The mean population density (MPD) of lac insects on different host at 45 days after BLI was reported to vary from 33.00 to 67.33 [12], 60.00 to 95.80 [11], 73.80 to 96.00 [18], 64.27 to 73.58 [13], 39.75 to 43.90 [15] and 56.00 to 65.05 [16], 42.99 to 48.72 by Ghugal et al. [19].

On the 75th day after BLI, the MNL varied from 44.98 (T1) control to 57.78 (T4). The latter was significantly higher than T3, T5, T6 and T2 but at par with T6, T3, T4, T5 and T1. MNL at 75 days after BLI to varied from 52.40 to 63.00 [20], 130.44 to 179.54 [21], 61.40 to 102.60 [11], 37.95 to 58.24 [13], 79.32 to 90.02 [18], 42.88 to 46.44 [14], 49.95 to 51.11 [19], 44.95 to 50.28 [15] and 84.01 to 88.54 [16].

On 90th day after BLI, the MNL varied from 42.11 (T1) control to 49.49 (T5). The latter was significantly higher than T7, T5, T4, T6, T2 and T1 at par in rest of the treatments. There are earlier reports on the mean population density of K. lacca at 90 days BLI on different host trees. It varied from 22.88 to 27.88 in different nutrient managed *Z. mauritiana* [8], 25.07 to 28.65 [16], 34.00 to 42.60 [11] while on *B. monosperma* it was 19.87 to 30.00 [12] while in pigeon pea 118.39 to 149.39 [17].

On 105th day after BLI, the MNL varied from 38.58 (T6) to 43.44 (T5) but there was no significant among the treatments. At 105 days after BLI the MNL according to [19] varied from 19.08 to 30.09 while it was 33.53 to 41.77 [13]. Namdev [8] and Janghel [12] reported MNL at 110 days after BLI varied from 15.57 to 18.43 and 19.87 to 29.87 respectively.

On 120th day after BLI, the MNL varied from 24.86 (T1) to 36.67 (T7). The latter was significantly higher than 24.86 (T5), but at par in rest of the treatments. The earlier data on MNL at...
120 days of BLI is lacking. However, a few workers have recorded MNL at 125 days after BLI. It varied from 60.00 to 95.80 [11], 28.13 to 40.53 [12], 51.35 to 64.08 [8], 38.31 to 43.37 [22], 37.05 to 39.34 [15] and 57.48 to 64.08 [10]. However all these were of MNL from host trees of lac insect.

On 140th day after BLI, the MNL varied from 29.33 (T3) to 35.70 (T5). Treatment T3 and T7 were significantly higher than rest of the treatments which were at par with each other. Significantly highest MNL was dynamic in respect to the treatment and period of plant and lac insect age. This indicated the impact of nutrient of plant and insect in response to the treatment and age. The earlier data on MNL at 140 days of BLI is lacking. However, MNL at 130 days after BLI has been recorded by Namdev [8] on Z. mauritiana and it varied from 16.50 to 20.33 and 20.73 to 23.26 Shah et. al., [16] in different treatments.

The MNL at before harvesting varied from 20.06 (T3) to 28.07 (T8). The latter was significantly higher than all the treatments. However, T1, T2, T3, T4, T5 and T6 were at par with each other but significantly higher than T9. The percent survival of lac insects from 30 day after BLI to the harvest was highest (28.53) in T8, followed by T3 (26.88), T5 (25.97), T7 (25.96), T4 (25.70), T1 (25.55), T2 (25.49), T9 (28.53) and T9 (21.86). Namdev [8] found higher MPD in nutrient managed host trees at harvest/maturity and it varied from 15.57 to 18.43. At 185 days after BLI the MNL in different treatment is reported to vary from 60.00 to 95.80 [11], 28.13 to 40.53 [12], 51.35 to 64.08 [8], 38.31 to 43.37 [22], 37.05 to 39.34 [15] and 57.48 to 64.08 [10].

The pooled data on the survival percent of lac insects from BLI to the harvest of lac crop was highest (28.61) in T8 followed by T3 (26.70), T5 (26.17), T7 (26.03), T4 (25.96), T2 (25.67), T6 (25.66), T1 (25.03) and T9 (22.33). The survival percent of lac on C. cajan reported by earlier workers varied from 24.91 to 38.13 [17], 48.00 to 61.54 [23], 33.53 to 41.77 [15], 33.78 to 79.11 [24], 34.08 to 51.53 [22], 20.86 to 26.05 [19] at harvest. Namdev et al., [8] and [16] reported it to varied from 18.53 to 39.16 percent and 20.47 to 23.52, 37.93 to 58.95 [19], 22.00 to 27.06 [11], 27 to 32 [12], 21 to 25 [25] percent respectively. But, according to the finding of Mohanta et al., [20], it was as low as 5.25% to 12.45% from BLI to maturity of lac crop.

Treatments	Mean no. of live lac insects/cm² on days after BLI
T7-PSB	97.45 (9.90)
T8-PSB	92.26 (9.63)
T9-PSB	95.19 (9.78)
T10-PSB	96.87 (9.87)
T11-PSB	98.2 (9.93)
T12-PSB	97.74 (9.91)
T13-PSB	97.03 (9.88)
T14-PSB	98.39 (9.94)
T15-PSB	91.77 (9.61)

Figure in parenthesis are transformed values is \(\pm 0.5 \) PSB (Phosphorous Solubilizing Bacteria) DAP- Diannomium phosphate, MoP- Murate of Potash, Rhizobium and Trichoderma viride. were applied in the seed. T. viride, AM and Aspergillus niger.

Treatments	Mean of Dry Lac weight (g/plant)	Mean live lac insect/cm²	% Survival from BLI to harvest	Mean
T7-PSB	24.90 (5.04)	25.55	318.67	
T8-PSB	23.52 (4.90)	25.49	223.00	
T9-PSB	25.59 (5.12)	26.88	335.35	
T10-PSB	25.14 (5.06)	25.95	218.00	
T11-PSB	25.51 (5.10)	25.97	254.67	
T12-PSB	25.11 (5.06)	25.70	316.00	
T13-PSB	25.19 (5.07)	25.96	265.67	
T14-PSB	28.07 (5.34)	28.53	531.00	
T15-PSB	20.06 (4.53)	21.86	151.33	
SEm	0.094	-	10.388	
CD 5%	0.282	-	31.143	

Figure in parenthesis are transformed values is \(\pm 0.5 \); PSB (Phosphorous Solubilizing Bacteria) DAP- Diannomium phosphate, MoP- Murate of Potash, Rhizobium and Trichoderma viride. were applied in the seed. T. viride, AM and Aspergillus niger.

Survival of insect on the host plant depends on various factors, including nutrition. Treatments which promote growth and nutrients shatter of the host may also support lac insect.

Mean of dry Lac weight (g/plant) The mean weight of raw lac per plant varied from 151.33g
(T9) control to 531.00g (T8). It was highest in T8 (531.00g), followed by T3 (335.33g), T1 (318.67g), T6 (316g), T7 (265.67g), T5 (254.67g), T2 (223g), T4 (218g) and T9 (151.33g) over the control T9 (151.33g). The mean weight of lac in T1, T3 and T6 were at par, T4 and T5 were at par, T2 and T7 were at par with each other.

The percent survival percent of lac insects from BLI to harvest of C. cajan lac crop was highest (28.53) in T8, so was the lac yield was highest in T8 per plant. These two data reveals that the Treatment T8 may have provided better nutrients to the lac insects feeding on its sap. This may have played an important role in the higher survival of lac insects. Thus all lac insects with access to nutrient rich food may have been a reason for in more resin secretion.

Conclusion
Lac can be successfully produced on pigeon pea without comprising the yield of C. cajan. The best treatment was (T8) [(T4 + Aspergillus niger) PSB + Trichoderma viridae + Rhizobium + DAP + MoP + macro nutrient + (Auskelp) + AM (Arbuscular Mycorrhiza) + Aspergillus niger]. Lac production of pigeon pea can help farm women to double income. Lac production on pigeon pea in the backyard can help to rural household to overcome protein mal-nourishment also.

References
1. Reddy et al. Weed control efficiency of pre and post emergence herbicides in pigeon pea (C. cajan L.). 2013:26(1-2):44-45.
2. Anon. Strategic Development of lac in Madhya Pradesh, 2006, 11-61.
3. Varshney RK. Revised synoptic catalogue of the lac insects of the world (Hemiptera, Coccoidea, Tachardiidae). Bionotes. 2009:11(1):6-10.
4. Sharma KK, Jaiswal AK, Kumar KK. Role of lac culture in biodiversity conservation: Issues at stake and conservation strategy. Current Science. 2006;91(7):894-898.
5. Pal G. Impact of scientific cultivation training on lac economy- A study in Jharkhand. Agricultural Economics Research Review. 2009;22(347-2016-16732):139-143.
6. Sharma KK, Ramani R, Mishra YD. An additional list of the host plants of lac insects, Kerria spp. (Tachardiidae: Homoptera). J. Non-Timber For. Prod. 1997:4:151-155.
7. Mohanta J, Dey DG, Mohanty N. Lac cultivation as a rural employment for women residing around similipal biosphere reserve, Odisha, India. 99th Indian Science Congress (3-7 Jan.), KIITs, Bhubaneswar, Odisha. Sect. - Animal, Veterinary and Fishery Sciences, 2012a, 221.
8. Namdev BK. Study on the performance of Aghaphi crop of Kusmi lac on nutrient managed Zizyphus mauritiana under heavy rainfall condition. M. Sc. (Ag.) Thesis submitted in JNKVV, Jabalpur, 2014.
9. Jaiswal AK, Singh JP. Schleicheria oleosa and lac cultivation. Indian Institute of Natural Resins and Gums, Ranchi (Jharkhand). Extension Bulletin. 2014:6:1-38.
10. Yogi RK, Bhattacharyya A, Jaiswal AK, Kumar A. Lac, Plant Resins and Gums Statistics 2014: At a Glance, ICAR-Institute of Natural Resins and Gums, Ranchi (Jharkhand), India, 2014. Bulletin (Technical) No.07/2015; 01-68.
11. Patel B. Comparative performance of Kusmi and Rangeeni lac on Ber. M.Sc. Thesis. Jawaharlal Nehru Krishi Vishwavidyalaya, Jabalpur, M.P. 2018. Survival of kusmi lac insect (Kerria lacca Kerr.) on nutrient managed Zizyphus mauritiana. Indian Journal of Entomology. 2013:80(1):56-63.
12. Janghel S. Study on comparative efficacy of insecticides in Katki crop for predator management on Rangeeni lac crop on Zizyphus mauritiana in Malara village, Seoni District. M.Sc. Thesis. Jawaharlal Nehru Krishi Vishwavidyalaya, Jabalpur, M.P. 2013.
13. Sharma H, Ghugal SG, Gurjar R, Thomas M, Rajawat BS. Performance of Kerria lacca (kerr) in response to foliar application of nutrients on Butea monosperma. An International Quarterly Journal of Environmental Sciences. 2015:8:355-359.
14. Sharma H, Ghugal SG, Thomas M, Pachori R. Impact of Nutrient Management in Butea Monosperma (Lam.) Taub. on the Survivability of Kerria Lacca (Kerr). Trends in Biosciences. 2015(8(23)):6682-6687.
15. Gurjar R. Study on the Effect of Foliar Application of Nitrogen and PGR on Butea monosperma on Katki Crop Production. M.Sc. Thesis. Jawaharlal Nehru Krishi Vishwavidyalaya, Jabalpur, M.P. Sharma KK, Jaiswal AK and Kumar KK. 2006. Role of lac culture in biodiversity conservation: Issues at stake and conservation strategy. Curr. Sci. 2016;91:894-898.
16. Kumar S, Thomas M, Lal N, Virendra, Markam VK. Effect of nutrition in Palas (Butea monosperma Lam.) on the survivability of lac insect. The Pharma Innovation Journal. 2017;6(8):320-324.
17. Shah TH, Mushtaq R, Thomas M. Impact of nutrient management in Zizyphus mauritiana (Lamb.) on the weight of lac cells. International journal of Advance Research in science and Engineering. March 2018;7(special Issue No. 4).
18. Ankit Khichi, Moni Thomas, Sumit Kakade, Dhanshwar Patil B, Vishal Raut, Niraj Tripathi, et al. On Survival of Lac Insects on Pigeon pea Genotypes Int. J.Curr .Microbiol .App. Sci. 2021;10(02):1465-1475, ISSN: 2319-7706 Volume 10 Number 02 (2021).
19. Kunal Srivastava, Anamika Arora, Aditi Kataria, Joseph Cappelleri C, Alesia Sadosky, Andrew Peterson M. On Impact of reducing dosing frequency on adherence to oral therapies: a literature review and meta-analysis. 2013:7;419-434.
20. Ghugal SG, Thomas M, Upadhyay A, Sharma HL. Foliar Application of Nutrients and PGR on Butea monosperma and Survival of Kerria lacca Kerr. Advances in Life Sciences. 2016;5(1):159-163. Print: ISSN 2278-3849:159-163.
21. Khobragade D. Studies on the Incidence on major predators of Kerria lacca Kerr. and their management in Baishakhi lac crop in Anuppur district, Madhya Pradesh. M.Sc. (Ag.) Thesis submitted in JNKVV, Jabalpur, 2010.
22. Gurjar R. Study on the Effect of Foliar Application of Nitrogen and PGR on Butea monosperma on Katki Crop Production. M.Sc. Thesis. Jawaharlal Nehru Krishi Vishwavidyalaya, Jabalpur, M.P. Sharma KK, Jaiswal AK and Kumar KK. 2006. Role of lac culture in biodiversity conservation: Issues at stake and conservation strategy. Curr. Sci. 2016;91:894-898.
23. Lekha BM, Goutham S, Shankar AUR. Evaluation of Lateritic Soil Stabilized with Arecaanut Coir for Low Volume Pavements, 2014. doi: http://dx.doi.org/10.1016/j.trgeo.2014.09.001.
24. Kunal Srivastava, Anamika Arora, Aditi Kataria, Joseph Cappelleri C, Alesia Sadosky, Andrew Peterson M. Impact of reducing dosing frequency on adherence to oral therapies: a literature review and meta-analysis. 2013;7:419-434.

25. Shivam Vajpayee, Rahul Patidar, Sumit Kakade, Moni Thomas, Niraj Tripathi AK, Bhowmick Gontia AS, et al. Effect of Population Density of Kerria lacca Kerr. On its Growth and Survival Int. J. Curr. Microbiol. App. Sci. 2019;8(12):912-924. ISSN: 2319-7706 Volume 8 Number 12 (2019)

26. Bhalerao KR. Study on Predator surveillance and its management on Rangeeni lac in Barghat block district Seoni Madhya Pradesh. M.Sc.(Ag.) Thesis submitted in JNKVV, Jabalpur, 2013.

27. Kunal Srivastava, Anamika Arora, Aditi Kataria, Joseph Cappelleri C, Alesia Sadosky, Andrew Peterson M. On Impact of reducing dosing frequency on adherence to oral therapies: a literature review and meta-analysis. 2013;7:419-434.