Извод: Приликом изградње регулације неког водотока може доћи до појаве великог броја неочекиваних догађаја који су ризични по исход пројекта. Ризични догађаји за последицу могу имати пробијање временских рокова, повећање трошкова, смањење квалитета и др. У раду је извршена анализа ризика у реализацији пројекта регулације Медаљ потока при чему је у свакој фази анализе коришћена одговарајућа метода која за ту фазу даје најбоље резултате. За идентификацију ризичних догађаја коришћена је HAZOP метода, за њихову оцену матрица ризика, за предлог акција у смањењу могућности њиховог појављивања FMEA метода, за одређивање узрока њихове појаве Метода стабла отказа и за одређивање могућих исхода ризичних догађаја Метода стабла догађаја. Добијени резултати показали су да је кључни ризични догађај „Ископан је само део планиране земље“, тако да ће у раду бити приказан резултати који се тичу земљаних радова иако се анализа односила на целокупан појекат регулације.

Кључне речи: ризик, управљање пројектима, регулација река, HAZOP, FMEA, анализа стабла отказа и стабла догађаја

Увод

Планирање је најзначајнији елемент управљања реализацијом пројекта, сваком његовим фазом и подфазом, као и појединим функционалним областима. Основни циљ планирања јесте смањење ризика у реализацији било ког пројекта.

Према стандарду ISO 31000 из 2009. године, ризик се дефинише као утицај неизвесности на циљеве. Из наведене дефиниције може се видети да сваки ризик носи и неизвесност која се квантитативно или квалитативно изражава, и из које произистиче значај планирања и процене ризика у реализацији пројекта. Сваки потенцијални ризик у блиској или даљој будућности може изазвати велике последице за пословање предузећа и због тога управљање ризицима треба да постане обавезан део управљања његовим радом. Према наведеном, може се речи да ризик обухвата две компоненте: нежељену последицу и неизвесност у одигравању могуће последице (Čupić i Suknović, 2010).

Управљање ризиком обухвата скуп управљачких метода и техника које се користе да би се смањила могућност остварења нежељених и штетних догађаја и последица и тиме повећале могућности остварења планираних резултата.
Управљање ризиком, представља скуп метода које омогућавају минимизирање губитака и до- воде у склад смањење вероватноће остварења губитака, са трошковима које захтева ово сма- њивање (Jovanović, 2008).

Управљање ризиком се спроводи кроз не- колико фаза: идентификација ризика; анали- за и процена ризика; планирање реакција на ризик и контрола примене реакције на ризик (Jovanović, 2008).

При држању на одговарајући начин, могу да укажу на све рањивости и грешке које постоје у пројекту који се посматра.

МАТЕРИЈАЛ И МЕТОД РАДА

Истраживано подручје

Медаљ поток је десна притока Дрине са по- вршином слива од 2,3 km², дужине тока 2 km и просечним падом од 18 - 22%. Медаљ поток преосеца главни пут Љубовија – Зворник где долази до забрањерабатыва услед надоласка бујичних вода. За уређење Медаљ потока про- јектовани су технички објекти у виду регулаци- је са уливним објектом од камена у цементном малтеру и три депонијске преграде (преграда од габiona, преграда од камена у цементном малтеру и преграда од камена у сувом). Поред техничких радова пројект је обухватио и био- лошке радове.

Методе за процену ризика

Кључна фаза управљања ризиком односи се на анализу и процену ризика која се врши применом различитих техника, метода и ал- та. Методе које се користе за процену ризика се деле на: квантитативне, полуквантитативне (комбиноване) и квалитативне (Grozdanović, Stojiljković, 2013). Квантитативне методе дају квантитативну меру ризика на основу познавања вероватноће настанка нежелених догађаја и очекиваних последица реализације нежеленог догађаја. Код комбинованих метода се величине (вероватноћа и последица) за процену ризика процењују и рангирају од стране експерта. Квалитативне методе користе квалитативне податке за процену ризика без потребног познавања предшествених штетних догађаја и код њих се ризик описује описно (на пр. „слаб“, „средњи“, „висок“, „врло висок“). Избор методе за процену ризика зависи од више фактора као што су доступност ресурса и време потребно за анализу, расположивост и релевантност података, сложености пројекта, циљ анализе и др. (Merna, Al-Thani, 2008).

Сви алати и технике који се могу користи- ти за процену ризика, уколико се примењују систематски на одговарајући начин, могу да укажу на све рањивости и грешке које постоје у пројекту који се посматра.
АНАЛИЗА РИЗИКА У РЕАЛИЗАЦИЈИ ПРОЈЕКТА РЕГУЛАЦИЈЕ МЕДАЉ ПОТОКА

Процена ризика је сложен процес који подразумева неколико корака (Vujošević, 2008):
1. Идентификација ризичних догађаја;
2. Оцена потенцијалних ризичних догађаја на основу вероватноће и последица;
3. Дефинисање узрока отказа и акција за њихово спречавање;
4. Анализи утицаја на компоненте система на појављивање ризичног догађаја у систему;
5. Идентификација могућих последица ризичног догађаја.

Применом ових корака се анализирају и превазилазе пропусти у извршњеном пројекту, као и људске грешке које настају у раду. У овом раду биће извршена процена ризика за пројект регулације Медаљ потока спровођењем горе наведених корака. За реализацију сваког корака биће примењена метода која даје најбоље резултате за корак који се спроводи.

HAZOP метода

Студија хазарда и операбилности (енг. Hazard and operability - HAZOP) се убраја у технике анализе хазарда које се користе за идентификацију ризика.

Ова метода припада квалитативним методама чији је основни циљ да осигурају да се избегне катастрофалан догађај током животног века система кроз анализу његових процеса (Nolan, 2008).

Основни кораци HAZOP методе су следећи (Nolan, 2008):
1. Дефинисање елемената система, избор водећих речи и дефинисање корака за њихово спречавање;
2. Креирање и испитивање потребе за понајвљењем овог поступка.

У раду ће HAZOP метода бити коришћена само за идентификацију елемената система, избор водећих речи и дефинисање одговарајућих девијација.

Матрица ризика

Матрица ризика је двумензионална представа вероватноће и последица ризичног догађаја, која се примењује у случају да ове две вредности не могу бити процењене са тачношћу и прецизношћу (Bilal 2003). Матрица ризика се графички илуструје помоћу две категорије: вероватноће односно учесталости и последица (величине штете). У матрици ризика, комбиновањем вероватноће и последица добија се одређени број категорија које се могу визуално приказати различитим бојама (на пр. зелена, жута и црвена) и које представљају ниво ризика (на пр. „слаб”, „средњи”, „висок”). Пример матрице типа 5x5 је приказан у табели 1.

За сваки ризични догађај идентификован применом HAZOP методе, множењем процене вероватноће и последица, добија се ниво ризика.

Табела 1. Матрица ризика са нивоима ризика приказаним различитим бојама

Вероватноћа	1	2	3	4	5
Последице					
1	1	2	3	4	5
2	1	2	3	4	5
3	1	2	3	4	5
4	1	2	3	4	5
5	1	2	3	4	5
FMEA метода

Аналiza начина и ефеката отказа (енг. Failure Mode and Effects Analysis – FMEA) је метода која се користи за идентифицију свих могућих узрока препознатих ризичних догађаја, на основу чега се могу дефинисати ације и контроле чије спровођење би умањило или у потпуности еленимисало ризик (Ostrom, Wilhelmsen, 2012).

Уколико је идентификован ризични догађај, FMEA метода се може даље применити за дефинисање узрока отказа и акција за њихово спречавање, при чему су потребни следећи кораци: (Ostrom, Wilhelmsen, 2012):
1. Идентификација елемената или активности на којима ће да се врши анализи, одлука о примени структурне или функционалне FMEA у зависности од посматраног процеса;
2. Идентификација начина отказа, његових ефеката, затим узрока због којих се тај отказ десио и акција којима ће да се делује на сваки елемент или активност, креирање FMEA листе;
3. Оцењивање ризика компоненте, одређивање елемената ризично - број приоритета ризика (енг. Risk Priority Number - RPN), а то су озбиљност, појављивање и детекција ризика;
4. Одређивање приоритета акција за смањење или потпуно елиминисање ризика.

Резултат примене ове методе је отказ са највећом вредности RPN и он има приоритет за дефинисање акција чија ће реализација смањити озбиљност отказа или дешавање последица (Nolan, 2008).

Анализа стабла неисправности

Анализа стабла неисправности (отказа) или скраћено FTA (енг. Fault Tree Analysis) метода је развијена 1960-их година од стране Националне ваздухопловне и свемирске администрације (енг. National Aeronautics and Space Administration - NASA) и Министраства одбране Сједињених Америчких држава. FTA метода представља графички модел креiran дедуктивним закључивањем које доводи до неколико комбинација догађаја који резултирају отказом, односно нележањем догађајем (Bilal, 2003). Конструкција стабла неисправности врши се само за оне догађаје који су препознати као значајни. Уколико се као полазна тачка ове анализе узима резултат претходно коришћене FMEA методе, стабло неисправности може да се креира само за онај ризичан догађај који је идентификован као најзначајнији - онај који има највећи RPN. Након креирања спроводи се квалитативна и квантитативна анализа стабла неисправности.

Догађај са највећим RPN вредностима, који је у самом центру анализе, назива се врши догађај и он заправо представља нележање догађај система који се посматра. Поред вршног догађаја, битно је дефинисати и посредне и примарне догађаје који су део стабла неисправности и односно се на могуће узroke вршног догађаја процеса. Посредни догађај представља неисправност која се десила као последица покретања логичког кола од стране једног или више догађаја. Примарни догађај, са друге стране, представља догађај који је на самом почетку кола и он се даље не дели (Ostrom, Wilhelmsen, 2012). Приликом креирања стабла користе се две врсте симбола: догађаји и логичка кола. Догађаји се користе за приказивање вршног, посредних и примарних догађаја, док логичка кола приказују везе између њих.

Анализа стабла догађаја

Анализа стабла догађаја (енг. Event Tree Analysis - ETA) је метода која се користи за идентификацију свих могућих исхода догађаја који је резултат неког иницијалног догађаја (Crawley, 2020). Нежелени догађаји добијени методом стабла неисправности даље се разматрају према методе Анализа стабла догађаја. Ова метода користи се за одређивање и оцењивање скупа догађаја који подстакнути неким иницијалним догађајем могу представљати сценарио нежеленог догађаја.

Након дефинисаних улаза, кораци у реализацији анализе су следећи (Ostrom, Wilhelmsen, 2012):
АНАЛИЗА РИЗИКА У РЕАЛИЗАЦИЈИ ПРОЈЕКТА РЕГУЛАЦИЈЕ МЕДАЉ ПОТОКА

1. Одређивање свих могућих сценарија;
2. Одређивање посредних догађаја;
3. Креирање стабла догађаја;
4. Утврђивање ризика добијених исхода.

Реализацијом ових корака и спровођењем анализе, као резултат добија се нежелени исходи у оквиру система који се посматра, вероватноће последица и захтеви који ће довести до повећања сигурности процеса. Када је реч о посредним догађајима, тј. чворовима стабла, они представљају догађаје који имају два могућа излаза: успех и неуспех, односно позитиван и негативан исход, а ови догађаји су међу собом повезани гранама стабла.

За стабло догађаја такође се спроводи и квантитативна анализа која подразумева израчунавање вероватноће сваког од идентификованих исхода. Ове вероватноће могу се одредити уколико су познате вероватноће позитивног и негативног исхода сваког од догађаја. Укупна вероватноћа позитивног исхода система рачуна се као збир вероватноћа свих позитивних исхода посматраног стабла, док укупна вероватноћа негативног успеха добија се као збир вероватноћа свих негативних исхода, односно сценарија у том стаблу (Ferdous et al., 2011).

РЕЗУЛТАТИ И ДИСКУСИЈА

Прва фаза процене ризика у реализацији пројекта регулације Медаљ потока је идентификовање ризичних догађаја која је извршена применом HAZOP методе. Први корак у идентификацији је одређивање главних елемената система или процеса и додавање одговарајућих водећих речи. Под елементима система се подразумевају све групе радова и припадајућих радних операција које је потребно извршити. У пројекту регулације Медаљ потока изабрано је 10 активности – претходни радови, израда регулације, ископ земље за попречне објекте, израда регулације, израда преграде од камена у цементном малтеру, израда регулације, израда преграде од камена у свом, израда преграде од габиона, израда уливног објекта од камена у цементном малтеру и биолошки радови. За сваку активност идентификована су одступања система од пројекта (ризични догађаји) примемо водећих речи (на пр. „не“, „више“, „део“, „друго“). Ризични догађаји на које указују одређене водеће речи су следећи: „пре“ и „после“ указују на нетачног извршења појединих радова (активности); „део“ означава да је само део радова реализован; „не“ указује да активност није реализована; реч „рано“ или „касно“ указују на одступање извршења радова у односу на време предвиђено пројектом; реч „више“ се повезује са извршењем већег обима посла од предвиђеног процеса и др. У раду су због обимности приказани само добијени резултати за активност - ископ земље за регулацију јер су се земљани радови показали као кључни у анализи ризика овог пројекта (Табела 2).

Табела 2. Идентификовани ризични догађаји за ископ земље за регулацију Медаљ потока

Активност	Водећа реч	Ризични догађај
Ископ земље за регулацију	Не	Ископ земље није изведен
	Више	Ископано је више земље него што је планирано
	Део	Ископан је само део планиране земље
	Друго	Климатско-метеоролошки услови за ископ земље нису били повољни
	Касно	Ископ земље је каснио са почетком
	Спорије	Ископ земље је трајао дуже него што је планирано
Петар Нешковић, Нада Драговић, Тијана Вулевић, Јелена Панић

Према резултатима, најмању вредност нивоа ризика има догађај – Ископано је више земље него што је планирано (оценка ризика 6), а највећу вредност нивоа ризика (16) има ризични догађај - Ископан је само део планиране земље.

Након што су ризични догађаји оцена и распоређени по зонама ризика којима припадају, примењена је FMEA метода којом се дефинише догађај са број приоритета ризика- RPN. Најпре је применом FMEA методе дефинисан отказ који означава све потенцијалне грешке које имају своје узроке који се могу, односно, не могу детектовати у процесу извођења радова. У овом пројекту су детектована три узроката отказа: грешка радника, проблем са механизацијом и грешка у предмеру радова. Потом су дефинисани догађаји на нижем нивоу, при чему су релације између од 1 до 1000. Проблем са механизацијом, који се може односити на престанак рада механизације је ризични догађај за који је прорачуната вредност броја приоритета ризика која износи 70. Највећа вредност RPN од 294 је прорачуната за отказ узрокован грешком радника и за тај ризични догађај се планирају акције, односно интервенције које доприносе уклањању узрока грешке. Бољи стучни надзор над извођењем је превентивна акција која је предложена за редукцију односно елиминацију овог ризика.

Резултати добијени за ископ земље за регулацију применом FMEA методе приказан су у Табела 4.

Применом Методе анализе стабла отказа приказан је ризични догађај са највећом вредности RPN као вршни догађај. Дефинисани су и догађаји који представљају могуће узроке вршног, нежељеног догађаја система, и то: грешка радника, проблем у механизацији и грешка у предмеру радова. Потом су дефинисани догађаји на нижем нивоу, при чему су релације између

Према резултатима, најмању вредност нивоа ризика има догађај – Ископано је више земље него што је планирано (оценка ризика 6), а највећу вредност нивоа ризика (16) има ризични догађај - Ископан је само део планиране земље.

Након што су ризични догађаји оцена и распоређени по зонама ризика којима припадају, примењена је FMEA метода којом се дефинише догађај са број приоритета ризика- RPN. Најпре је применом FMEA методе дефинисан отказ који означава све потенцијалне грешке које имају своје узроке који се могу, односно, не могу детектовати у процесу извођења радова. У овом пројекту су детектована три узроката отказа: грешка радника, проблем са механизацијом и грешка у предмеру радова. За утврђене узроке отказа, одређене су вредности параметара: оцена озбиљности отказа, вероватното појаве грешке и вероватното детектоване грешке. Множењем ових параметара који се могу вредновати на скали од 1 до 10, добија се број приоритета ризика- RPN, чије се вредност крећу

Табела 3. Оцена ризичних догађаја при ископу земље за регулацију Медаљ потока

Ризични догађај	Оцена вероватното појављивања	Оцена последице	Оцена ризика
Ископ земље није изведен	2	5	10
Ископано је више земље него што је планирано	2	3	6
Ископан је само део планиране земље	4	4	16
Климатски услови за ископ земље нису били задовољавајући	3	4	12
Ископ земље је касније са почетком	2	4	8
Ископ земље је трајао дуже него што је планирано	4	3	12

Табела 4. Резултати примене FMEA методе

Ризични догађај	Узрок отказа	Оцена озбиљности	Оцена вероватното појављивања	Оцена детекције	RPN
Ископан је само део планиране земље	Грешка радника	7	7	6	294
	Проблем са механизацијом	7	5	2	70
	Грешка у предмеру радова	6	4	3	72
АНАЛИЗА РИЗИКА У РЕАЛИЗАЦИЈИ ПРОЈЕКТА РЕГУЛАЦИЈЕ МЕДАЉ ПОТОКА

них приказане логичким операцијама. На пример, грешка радника је узрокована недовољном стручношћу радника која је уследила због неадекватне обуке (због незаинтересованости радника или инструктора) или је резултат умора радника и његових личних проблема. Утврђен је укупно десет потенцијалних узрока ризичног догађаја и сви су приказан на Слици 1.

Након одређеног узрока ризичног догађаја извршена је анализа његових исхода применом Методе анализе стабла догађаја (Слика 2).

Из конструисаног стабла догађаја може се видети да постоји пет могућих исхода вршног ризичног догађаја и њихове вероватноће. Квантитативном анализом стабла догађаја прорачунате су вероватноће свих могућих исхода. Вероватноћа могућег исхода износи 82,5% (50% + 25% + 7,5%), док вероватноћа неповољног исхода износи 17,5% (14% + 3,5%).

Из приказаних резултата процене ризика код одвијања радова на реализацији пројекта регулације Медаљ потока може се видети да је догађај са највећом вероватноћом ризика догађај „Ископан је само део планиране земље”, са десет могућих узрока и пет могућих исхода, од којих је вероватноћа могућег исхода (ископ је извршен по пројекту) 82,5% а неповољног исхода (ископ није извршен) 17,5%.

Слика 1. Стабло отказа за вршни догађај „Ископан је само део планиране земље"
ЗАКЉУЧАК

Процена ризика код реализације пројекта за изградњу регулације Медаљ потока вршена је применом квантитативних метода: HAZOP, матрица ризика, FMEA, анализа стабла отказа и анализа стабла догађаја. Методе су примењене у одговарајућим фазама процене ризика у току реализације пројекта, од начина његовог настанка до исхода са вероватноћама њиховог појављивања. Истраживањем су обухваћени сви радови на изградњу регулације, а у раду су приказани само земљани радови јер је вероватноћа појаве ризичних догађаја код њиховог одвијања највећа. Применом усвојених метода утврђен је критичан догађај са највећом вероватноћом ризика, као и његови повољни и не повољни исходи. Поступак процене ризика на овај начин омогућава дефинисање превентивних мер и акција за смањење и спречавање потенцијалних ризика, чиме обезбеђује одличну основу за планирање управљања ризиком у посматраном пројекту.

Напомена: Резултати рада су део пројекта који је финансиран од стране Министарства за науку и технолошку развој.
INTRODUCTION

Planning is one of the most significant elements of project management, with each of its phases and subphases, as well as some of its functional domains. The main object of planning is the reduction of risk and uncertainty during the implementation of any project.

According to standard ISO 31000 from 2009, risk is defined as the uncertainty effect on goals. From this definition, every risk has an uncertainty that can be quantitatively and qualitatively expressed, which results in the importance of planning and risk assessment in project implementation. Each potential risk in the near of further future can cause huge consequences for company business, and that is why it should be a mandatory part of business management. According to the above mentioned, it can be said that risk includes two components: an unwanted consequence and uncertainty about a possible consequence (Cupic and Suknovic, 2010).

Risk management includes a set of management methods and techniques which are used to reduce the possibility of adverse and harmful events that could occur during project realization. It leads to the loss minimization and makes a balance between the reduction of loss probability and expenses that are required for this reduction (Jovanovic, 2008).

Risk management is conducted through several phases: risk identification, risk analysis and assessment, risk response planning, and control of the risk response (Jovanovic, 2008).

One of the most challenging phases of this procedure is risk assessment, because it requires excellent knowledge of the system and plenty of time to be implemented in the best way. An important aspect of risk assessment is the choice of the methods by which this procedure will be implemented (Vujosevic, 2008).

The primary causes of risk are long project duration, unpredictability, and today’s market dynamism (Sudjic, 2008). Soil and water resources protection projects are confronted with various risks, which are very difficult to manage. This group of projects also includes river regulation projects, which belong to investment projects.

Summary: During the construction of the regulation of a watercourse, a large number of unexpected events can occur and increase the risk associated with the project hindering its successful realization. Risk events can result in breaking deadlines, increasing costs, reducing quality, etc. This paper analyzes the risk in the implementation of the Medalj stream regulation project, using the appropriate method that gives the best results for each phase of the risk analysis. Thus, the HAZOP method was used to identify risk events, the risk matrix to define the level of risk, the FMEA method to propose actions to reduce the possibility of risk event occurrence, the Fault tree method to determine the cause of risk event occurrence and the Event tree method to determine possible outcomes of risk events. The obtained results showed that the key risk event was “Only a part of the planned soil excavated”, so the paper will present the results related to earthworks, although the analysis referred to the entire project.

Keywords: risk, project management, river regulation, HAZOP, FMEA, event and fault tree analysis
where a large number of risk events may occur. These events that lead to project failure could occur in all phases of the project lifecycle, especially in the building phase during the execution of earthwork as the most extensive work concerning the quantity of works executed.

In the current project implementation practice from this domain, risk management has been considered only from the impact of change point of view, i.e. cost increase and a qualitative method was applied – Monte Carlo simulation (Baumgertel et al. 2016, Baumgertel et al. 2019).

This paper identifies and analyzes the risk on the example of performing works on the regulation of the Medalj stream. For the realization of each step, the appropriate method was applied. The HAZOP method was used to identify risk events, the Risk matrix to define a level of risk, the FMEA method to propose actions to reduce the possibility of risk event occurrence, the Fault tree method to determine the cause of risk event occurrence and the Event tree method to determine possible outcomes of risk events.

MATERIALS AND METHODS

Study area

The Medalj stream is a right tributary of the Drina river in the Municipality of Ljubovija (Western Serbia), with a watershed area of 2.3 km², a flow length of 2 km and an average slope of 18-22%. The Medalj stream intersects the main Ljubovija - Zvornik road, where traffic is stopped due to the oncoming torrential water.

In the aim of the Medalj stream regulation, technical objects have been designed in the form of a regulation with inflow made of stone in cement mortar and three sediment traps (gabion check dam, check dam constructed with stone in cement mortar and dry stone masonry check dam). In addition to technical works, the project also included biological works.

Risk assessment methods

The key phase of risk management relates to risk analysis and risk assessment performed by applying a variety of techniques, methods and tools. The methods used for risk assessment could be divided into quantitative, semi-quantitative (combined) and qualitative methods (Grozdanović and Stojiljković, 2013). Quantitative methods provide a quantitative measure of risk based on knowledge of the probability of occurrence of an adverse event and the expected consequences of the realization of the adverse event. In combined methods, the magnitudes (probabilities and consequences) for risk assessment are assessed and ranked by experts. Qualitative methods use qualitative data to assess risk without the necessary knowledge of previous adverse events and describe the risk descriptively (e.g. “weak”, “medium”, “high”, “very high”). The choice of the risk assessment method depends on several factors such as the availability of resources and the time required for analysis, the availability and relevance of data, the complexity of the project, the goal of the analysis, etc. (Merna and Al-Thani, 2008).

All tools and techniques that can be used for risk assessment, if applied systematically in an appropriate manner, can indicate all the vulnerabilities and errors that exist in the project.

Risk assessment is a very complex process involving several steps (Vujosevic, 2008):
1. Risk events identification;
2. Evaluation of potential risk events based on probability and consequences;
3. Defining the causes of failure and actions for its prevention;
4. Analysis of the system behavior influence on the occurrence of the risk event in the system;
5. Identification of the potential risk event consequences.

By applying these steps, weaknesses in the project implementation are analyzed and overcome, as well as human errors that occurred in the work. In this paper, a risk assessment for the Medalj Potok regulation project will be performed by implementing the above steps. An appropriate method is applied for the realization of each step.

The HAZOP method

The Hazard and Operability (HAZOP) methodology is a process hazard analysis technique used for risk identification. This method is a qualitative method whose main objective is to ensure that a catastrophic event is avoided during the life cycle
of the system through the analysis of its processes (Nolan, 2008).

The basic steps of the HAZOP method are as follows (Nolan, 2008):
1. Defining structure and goals of the procedure, risk assessment team experts responsibilities, and choices;
2. Identification of the system or process elements, selection of the guide words and definition of the deviations;
3. Identification of the risk events potential causes and consequences, protective measures and actions that should be taken to prevent risk events;
4. Creating reports, monitoring the implemented actions, and examining the need for iteration.

In this paper, the HAZOP method is used for the identification of the system or process elements, the selection of the guide words and definition of the deviations, i.e risk events.

The Risk matrix

The Risk matrix is a two-dimensional representation of the likelihood and consequences of the risk event used when these two metrics cannot be estimated with accuracy and precision (Bilal 2003). The Risk matrix is created as a chart where one axis indicates categories of likelihood (expressed as a probability or frequency) and the other axis indicates the categories of consequences (level of the harm). In the risk matrices, the combination of probability and consequences are compiled in a certain number of categories visualized with different colors (e.g. green, yellow and red) represent the level of risk (e.g. low, medium, high). The example of a 5x5 risk matrix that has five levels of probability and five levels of severity (consequences) is presented in Table. 1.

For each risk event identified using the HAZOP method the level of risk is obtained by multiplying the estimated probability and consequences.

The FMEA method

Failure Mode and Effects Analysis (FMEA) is a method used for the identification of all potential causes of identified risk events, supporting the identification of actions and controls whose implementation could reduce or eliminate the risk (Ostrom and Wilhelmsen, 2012).

If a risk event is identified, the FMEA method could be further used for the identification of the causes of failure, and actions for its prevention applying the following steps (Ostrom and Wilhelmsen, 2012):
1. Identification of elements or activities for the analysis, a decision on the application of structural or functional FMEA, depending on the observed process;
2. Identification of the failure mode, its effects, causes, and actions that will affect each element or activity by creating a FMEA list.
3. Component risk assessment, determination of the risk-priority number (RPN) elements, which are severity, occurrence, and detection of the risk;
4. Prioritizing actions for reduction or elimination of the risk.

The result of this method is a failure with the highest RPN number and it gets the priority for defining and realizing action that will reduce the severity of occurrence (Nolan, 2008).

Table 1. Risk matrix with risk levels

Consequences	Probability				
	1	2	3	4	5
1	1	2	3	4	5
2	2	4	6	8	10
3	3	6	9	12	15
4	4	8	12	16	20
5	5	10	15	20	25
Fault Tree Analysis

Fault Tree Analysis (FTA) is a method developed in the 1960s by NASA and the US Department of Defence. It is a graphical model created by deductive reasoning that leads to several combinations of events that cause failure, i.e. adverse events (Bilal, 2003). The construction of the fault tree is performed only for events that are recognized as significant. If the starting point of the analysis is a result of the previously used FMEA method, the Fault tree could be created only for the risk event that is identified as the most important – the event with the highest RPN number. After the creation of the fault tree, its qualitative and quantitative analyses have to be performed.

The event with the highest RPN number, the very center of the analysis, is called the top event and it represents an adverse event of the observed system. Besides the top event, it is also important to define the basic and indirect events that are part of the fault tree and they relate to the potential causes of the process top event. An indirect event is a failure that happened as a consequence of the logic gate started by one or more events. The basic event, on the other hand, is an event which on the very end of the branch and it can not be further divided (Ostrom and Wilhelmsen, 2012). When creating the fault tree, two types of symbols are used: event and logical gates. Events are used to display top, indirect, and basic events, while logical gates display the connection between them.

Event Tree Analysis

Event Tree Analysis (ETA) is a method used to identify all possible outcomes of an incident that result from a selected initiating event (Crawley, 2020).

Adverse events obtained by the fault tree method are further considered applying the Event tree method. This method is used to determine and evaluate the set of events, triggered by an initial event, which may represent an adverse event scenario.

After the inputs are defined, steps in the realization of the analysis are as follows (Ostrom and Wilhelmsen, 2012):

1. Identifying all potential scenarios;
2. Identifying the indirect events;
3. Creating an event tree;
4. Determining the risk of the obtained outcomes.

By implementing these steps and performing the analysis, as a result, adverse outcomes within the observed system are obtained, the probabilities of consequences, and the requirements that will lead to increased system safety. When it comes to indirect events, i.e. tree nodes, they represent events that have two possible outcomes: success or failure, i.e. positive or negative outcomes and these events are connected by tree branches.

For the event tree, a quantitative analysis is also performed, which involves probability calculation for each of the identified outcomes. These probabilities can be determined if the probabilities of positive and negative outcomes of each event are known. The total probability of the positive outcome is calculated as the sum of probabilities of all positive outcomes of the tree, while the total probability of the negative outcome is calculated as the sum of all negative outcomes, i.e. scenarios in that tree (Ferdous et al., 2011).

RESULTS AND DISCUSSION

The first phase of risk assessment in the implementation of the Medalj stream regulation project is the identification of risk events using the HAZOP method. This step starts with the identification of the main elements of the system or process and appropriate guide words. The elements of the system include all groups of works and operations that need to be performed.

In the Medalj stream regulation project, 10 activities were selected - previous works, the excavation of soil for regulation, the transport of excavated soil, the construction of regulation, the excavation of soil for transverse objects, the construction of check dam in cement mortar, the construction of dry stone check dam, the construction of gabion check dam, the construction of the inflowing structure and biological works.

For each activity, the deviations of the system from the project (risk events) are identified using
the guide words (such as “not”, “more”, “part”, “other”). Guide words “before” and “after” indicate that the order of execution of activities has not been followed, “part” means that only part of the work has been completed; “no” indicates that activity is not realized; the words “early” or “late” indicate the timing is different from the intention; The word “more” means that the volume of performed work was greater than planned, etc.

The analysis is performed for all activities, but the results are presented only for the activity - excavation of soil for regulation because groundworks have proven to be crucial in the risk analysis of this project (Table 2).

After identifying all possible risk events in the Medalj stream regulation project a risk matrix was formed. The risk matrix compares several risk events and by assessing their probability and consequences, the level of risks is defined and could serve to decide on the risk preventive measures and actions. Table 3 presents the risk events related to the project activity – soil excavation as well as the level of risk.

According to the results, the risk event with the lowest value is (6) is More soil was excavated than planned, while the risk event “Only a part of the planned soil was excavated” received the highest level of risk assessment (16).

After the risk events had been assessed and distributed according to the risk zones to which they belong, the FMEA method was applied to define the event with the highest risk priority number (RPN). Previously, the FMEA method was used to define a failure that indicates all potential errors that have their causes that can or cannot be detected in the process of performing works. In this project, the three causes are detected: the worker error, the problems with mechanization and project error. For causes of failure, the values of the following parameters are determined: the severity of potential effects of failure, the probability of occurrence of failure and the probability of failure detection. By multiplying these parameters that can be evaluated on a scale from 1 to 10, i.e. the risk priority number, whose value ranges from 1 to 1000 is calculated. The problem with mechani-

Table 2. Identified risk events related to the activity – Excavation of soil for the regulation of the Medalj stream

Activity	Guide word	Risk events
Excavation of soil for regulation	No	Excavation has not been done
	More	More soil was excavated than planned
	Part	Only part of the planned soil has been excavated
	Other	Meteorological conditions for excavation were not satisfactory
	Late	Soil excavation was delayed
	Slower	The excavation took longer than planned

Table 3. Assessment of risk events during the excavation of soil for regulation within the Medalj stream regulation project

Risk events	Probability score	Consequence score	Risk score
No soil excavation implemented	2	5	10
More soil excavated than planned	2	3	6
Only part of soil planned for excavation removed	4	4	16
Unsatisfactory climate conditions for soil excavation	3	4	12
Belated onset of soil excavation	2	4	8
Soil excavation lasted longer than planned	4	3	12
zation is a risk event with the value of the number of risk priorities estimated to be 70. The highest RPN value of 294 is calculated for failure caused by worker error and actions (interventions that should eliminate the cause of failure) should be planned for that risk event. As a preventive action, better construction supervision is proposed for reduction i.e. elimination of this risk event.

Table 4. Results of the FMEA method application

Risk event	Cause of failure	Severity of the failures effects	Probability of occurrence	Probability of failure detection	RPN
Only part of the planned soil has been excavated	Worker error	7	7	6	294
	Problems with mechanization	7	5	2	70
	Project error	6	4	3	72

The results obtained for soil excavation for stream regulation using the FMEA method are presented in Table 4.

Using the Fault Tree Analysis Method, the risk event with the highest RPN value is shown as the top event. Events that represent possible causes of the top, unwanted events of the system are also defined, namely: error of workers, the problem in

![Fault tree analysis for a top event “Only a part of the planned soil was excavated”](image)

Figure 1. Fault tree analysis for a top event “Only a part of the planned soil was excavated”
mechanization and project error (error in the bill of quantities). Then, lower-level events are defined, and the relations between them are shown by logical operations. For example, worker error is caused by insufficient worker expertise due to inadequate training (due to the disinterest of the worker or instructor) or is the result of worker fatigue and his problems. Ten potential causes of the risk event are identified (Figure 2).

After a certain cause of a critical event is determined, its outcomes are analyzed using the Event tree analysis method.

From the constructed event tree, it can be seen that there are five possible outcomes of the top risk event and their probabilities. The probabilities of all favorable and all unfavorable outcomes were calculated using the Event tree analysis method. The probability of a favorable outcome is estimated as 82.5% (50% + 25% + 7.5%), while the probability of an unfavorable outcome is 17.5% (14% + 3.5%).

From the presented results of risk assessment during the implementation of the Medalj stream regulation project, it can be seen that the event with the highest risk is the event “Only part of the planned soil was excavated”, with ten identified possible causes and five possible outcomes. The probability of a favorable outcome (excavation was performed according to the project) is 82.5% and an unfavorable one (excavation was subsequently performed and excavation was not performed) is 17.5%.

CONCLUSIONS

Risk assessment in the implementation of the project for the construction of the Medalj stream regulation was performed using quantitative methods: HAZOP, Risk matrix, FMEA, Fault tree analysis, and Event tree analysis. The methods were applied in the appropriate phases of risk assessment during the project implementation, from the manner of its occurrence to the outcome with the probabilities of their occurrence. The research covers all works on the construction of the regula-
tion facility, and only earthworks are presented in the paper because the probability of occurrence of risky events during their development is the highest. By applying the adopted methods, the critical event with the highest probability of risk was determined, as well as its favorable and unfavorable outcomes. In this way, the risk assessment procedure enables the definition of preventive measures and actions to reduce and prevent potential risks, thus providing an excellent basis for risk management planning in the observed project.

Note: The study is a result of the project funded by the Ministry of Science and Technological Development of Serbia.

ЛИТЕРАТУРА / REFERENCES

Baumgertel, A., Dragovic, N., Vulevic T. (2016): Risk management of a torrential flood construction project using the Monte Carlo simulation, Bulletin of the faculty of Forestry 114 (29-44)

Baumgertel, A., Dragovic, N., Vulevic, T., Lukic, S. (2019). Cost management as a part of integrated management of torrential watershed in Serbia: a case study of Topciderska River, Wasserwirtschaft 109 (4) (33-38)

Bilal A. (2003): Risk Analysis in Engineering and Economics; University of Maryland at College Park, A CRC Press Company, Boca Raton, Florida.

Crawley, F. (2020): Event tree analysis. In: A Guide to Hazard Identification Methods, Elsevier, Netherlands (125-130)

Čupić, M., Suknović, M. (2010): Decision making. Faculty of organizational science, Belgrade (In Serbian).

Ferdous R., Khan F., Sadiq R., Amyotte P., Veitch B. (2011): Fault and Event tree Analysis for Process Systems Risk Analysis: Uncertainty Handling Fromulations, Risk Analysis 31 (1) (86-107)

Grozdanović, M., Stojiljković, E. (2013): Risk assessment methods. The University of Niš, Faculty of occupational safety in Niš (In Serbian).

Jovanović, P. (2008): Project management, High school for project management, Belgrade (In Serbian).

Merna, T. Al-Thani, F. (2018): Corporate risk management. John Wiley & Sons, Ltd.

Nolan P. D. (2008): Safety and Security Review for the Process Industries: Application of HAZOP, PHA and What-If Review, William Andrew Inc., New York, USA.

Ostrom T. L., Wilhelmsen A. C., (2012): Risk Assessment: Tools, Techniques and their Application, John Wiley & Sons, Inc., Hoboken, New Jersey.

Sudjić S. (2008). Risk management in construction, High construction-geodetic school, Belgrade (In Serbian).

Vujošević, M. (2008): Risk Management As a Part Of The Integrated Management System, International Journal “Total Quality Management & Excellence”, Vol. 36, No. 4. http://laboi2.fon.bg.ac.rs/wp-content/uploads/data/OI/Rizik.pdf