Electrochemical Oxidative Clean Halogenation Using HX/NaX with Hydrogen Evolution

Csp²-H chlorination (20 examples)

\[
\begin{align*}
\text{Ar/Het} \quad &\quad \text{H} \quad + \quad \text{NaCl} \quad \rightarrow \\
\text{Ar/Het} \quad &\quad \text{Cl}
\end{align*}
\]

Csp²-H bromination (26 examples)

\[
\begin{align*}
\text{Ar/Het} \quad &\quad \text{H} \quad + \quad \text{NaBr} \quad \rightarrow \\
\text{Ar/Het} \quad &\quad \text{Br}
\end{align*}
\]

Csp³-H bromination (3 examples)

\[
\begin{align*}
\text{R}^1 \quad &\quad \text{R}^2 \quad + \quad \text{NaBr} \quad \rightarrow \\
\text{R}^1 \quad &\quad \text{Br} \quad \text{R}^2
\end{align*}
\]

Alkenes dibromination (24 examples)

\[
\begin{align*}
\text{H} \quad &\quad \text{R}^3 \quad \text{H} \quad + \quad \text{HBr} \quad \rightarrow \\
\text{R}^3 \quad &\quad \text{Br} \quad \text{Br}
\end{align*}
\]

Alkynes dibromination (2 examples)

\[
\begin{align*}
\text{Ar} \quad &\quad \text{R}^5 \quad + \quad \text{NaBr} \quad \rightarrow \\
\text{Ar} \quad &\quad \text{Br} \quad \text{Br}
\end{align*}
\]
Electrochemical Oxidative Clean Halogenation Using HX/NaX with Hydrogen Evolution

Yong Yuan,1,2,3 Anjin Yao,1,3 Yongfu Zheng,1,3 Meng Gao,1 Zhilin Zhou,1 Jin Qiao,1 Jiajia Hu,1 Baoqin Ye,1 Jing Zhao,1 Huilai Wen,1 and Aiwen Lei1,2,4,*

SUMMARY
Organic halides (R-X) are prevalent structural motifs in pharmaceutical molecules and key building blocks for the synthesis of fine chemicals. Although a number of routes are available in the literature for the synthesis of organic halides, these methods often require stoichiometric additives or oxidants, metal catalysts, leaving or directing groups, or toxic halogenating agents. In addition, the necessity of employing different, often tailor-made, catalytic systems for each type of substrate also limits the applicability of these methods. Herein, we report a clean halogenation by electrochemical oxidation with NaX/HX. A series of organic halides were prepared under metal catalyst- and exogenous-oxidant-free reaction conditions. It is worth noting that this reaction has a broad substrate scope; various heteroarenes, arenes, alkenes, alkynes, and even aliphatic hydrocarbons could be applied. Most importantly, the reaction could also be performed on a 200-mmol scale with the same efficiency (86%, 50.9 g pure product).

INTRODUCTION
Organic halides (R-X) are compounds of high practical utility, which are not only important structural motifs in many pharmaceutical molecules and natural products (Hernandez et al., 2010; Jeschke, 2010; Butler and Sandy, 2009) but also key building blocks for the synthesis of fine chemicals via transition-metal-catalyzed oxidative/reductive cross-coupling reactions (Yue et al., 2018; Fairlamb, 2007; Nicolou et al., 2005; Mejerje and Diederich, 2004; Liu et al., 2017a). Consequently, practical and efficient methods to access this class of compounds are highly valuable. Extensive efforts have been made, and great achievement has been reached (Ye et al., 2018; Mo et al., 2010; Petrone et al., 2016; Rafiee et al., 2018; Li et al., 2017b; Fu et al., 2017a; Wang et al., 2012; Wallentien et al., 2012; Liu and Groves, 2010; Murphy et al., 2007; Smith et al., 2002), such as the electrophilic aromatic substitutions (Barluenga et al., 2007; Prakash et al., 2004; David, 1976) and the directed C-H halogenations (Teskey et al., 2015; Schröder et al., 2015; Schröder et al., 2012; Bedford et al., 2011; Kakuchi et al., 2009; Mei et al., 2008; Whitfield and Sanford, 2007; Wan, 2006). Although these methods have been widely used for the synthesis of organic halides (R-X), they still have one or more of the following limitations: (1) the use of hazardous and toxic X2 (X = Br, Cl) as halogenating agents; (2) the need of stoichiometric amount of additives/exogenous oxidants; (3) the need of a metal salt as the catalyst; (4) the need of custom-built substrate bearing leaving or directing groups; (5) the necessity of employing different, often tailor-made, catalytic systems for each types of substrate; and (6) the harsh reaction conditions. Therefore, exploring an efficient and versatile method for the synthesis of various organic halides (R-X) with non-toxic and green halogenating agents under environmentally benign metal-catalyst-free and exogenous-oxidant-free reaction conditions would be highly desirable.

Electrochemical anodic oxidation presents the prospect of the efficient and environmentally benign synthesis of complex molecules and has attracted considerable interest (Tang et al., 2018a; Yoshida et al., 2018; Jiang et al., 2018; Yan et al., 2017; Pletcher et al., 2018; Francke and Little, 2014; Jutand, 2008; Sperry and Wright, 2006; Qiu et al., 2018; Xiong et al., 2017; Gieshoff et al., 2017; Fu et al., 2017b; Yang et al., 2017; Horn et al., 2016; Badalany and Stahl, 2016; Kärkäs, 2018; Liu et al., 2018; Lyalin and Petrosyan, 2013; Raju et al., 2006; Kulangappar et al., 2016; Tan et al., 2017). As part of our continuing studies in the area of electrochemical oxidative C-C and C-heteroatom bonds formation (Yuan et al., 2019; Tang et al., 2018b; Gao et al., 2018; Yuan et al., 2018a, 2018b, 2018c), we herein report a clean halogenation by exogenous-oxidant-free electrochemical oxidation. A series of significant organic halides (R-X) were prepared under...
metal-catalyst-free and exogenous-oxidant-free reaction conditions with commercially available, nontoxic, and atom-efficient NaX/HX (aq.). It is worth noting that this electrochemical oxidative synthetic protocol has a broad substrate scope. Various heteroarenes, arenes, alkenes, alkynes, and even aliphatic hydrocarbons were suitable for this transformation.

RESULTS AND DISCUSSION

Imidazopyridines (Dymsinska, 2015; Enguehard-Gueiffier and Gueiffier, 2007), especially C-3-substituted imidazopyridines, are often used as commercially available drugs including alpidem (Okubo et al., 2004), zolpidem (Langer et al., 1990), necopidem (Depoortere and George, 1991), and saripidem (Sanger, 1995). The introduction of a halogen moiety into the C-3 position of imidazopyridines has been considered to be important because the generated C-3 halogenated imidazopyridines are key intermediates for the synthesis of these drugs. Our investigation included 2-phenylimidazo[1,2-a]pyridine (1a) and sodium chloride (2a) as the starting materials for the synthesis of this class of significant C-3 halogenated imidazopyridines. As shown in Table 1, by employing a two-electrode system with carbon rod as the anode and platinum plate as the cathode, the desired C-H chlorination product 3a was produced in 81% yield with a 12 mA constant current in an undivided cell (entry 1). A range of other chlorides were investigated, but all displayed lower effectiveness than sodium chloride (entries 2–6). Both decreasing the operating current to 6 mA and increasing the operating current to 18 mA led to slightly decreased reaction yields (entries 7–8). Then different electrode materials were surveyed, employing either carbon cloth as cathode or platinum plate as anode led to decreased reaction efficiency (entries 9–10). The effect of solvent was explored as

Entry	Variation from the Standard Conditions	Yield (%)
1	None	81
2	HCl (aq.) instead of NaCl	49
3	LiCl instead of NaCl	34
4	KCl instead of NaCl	75
5	MgCl₂ instead of NaCl	44
6	CaCl₂ instead of NaCl	51
7	6 mA, 7 h	75
8	18 mA, 2.3 h	70
9	Carbon cloth cathode	61
10	Platinum plate anode	53
11	Without H₂O	69
12	MeCN instead of DMF	48
13	No electric current	ND

Table 1. Optimization of Electrochemical Oxidative C-H Chlorination

Reaction conditions: carbon rod anode, platinum plate cathode, constant current = 12 mA, 1a (0.3 mmol), 2a (2.0 equiv.), DMF (10.5 mL), H₂O (0.5 mL), 80°C, N₂, 3.5 h (5.2 F/mol).

ND, not detected.

*aIsolated yields.
A Substrate scope of C-H chlorination

\[
\begin{array}{c}
\text{Ar}^\text{Het} - \text{H} + \text{NaCl} \xrightarrow{\text{C, Pt}} \text{Ar}^\text{Het} - \text{Cl} \\
1 & 2a & 3 \\
\end{array}
\]

- \(3a, 61\%\)
- \(3b, 76\%\)
- \(3c, 73\%\)
- \(3d, 70\%\)
- \(3e, 75\%\)
- \(3f, 73\%\)
- \(3g, 73\%\)
- \(3h, 62\%\)
- \(3i, 30\%\)
- \(3j, 68\%\)
- \(3k, 73\%\)
- \(3l, 37\%\)
- \(3m, 67\%\)
- \(3n, 76\%\)
- \(3o, 78\%\)
- \(3p, 83\%\)
- \(3q, 90\%^a\)
- \(3r, 68\%\)
- \(3s, 62\%\)
- \(3t, 77\%^{a,b}\)

B Substrate scope of C-H bromination

\[
\begin{array}{c}
\text{Ar}^\text{Het} - \text{H} + \text{NaBr} \xrightarrow{\text{C, Pt}} \text{Ar}^\text{Het} - \text{Br} \\
1 & 2b & 4 \\
\end{array}
\]

- \(4a, 87\%\)
- \(4b, 66\%\)
- \(4c, 91\%\)
- \(4d, 76\%\)
- \(4e, 69\%\)
- \(4f, 74\%\)
- \(4g, 58\%\)
- \(4h, 67\%\)
- \(4i, 56\%\)
- \(4j, 74\%\)
- \(4k, 83\%\)
- \(4l, 93\%\)
- \(4m, 83\%\)
- \(4n, 61\%\)
- \(4o, 90\%\)
- \(4p, 44\%\)
- \(4q, 80\%^{a,c}\)
- \(4r, 68\%^b\)
- \(4s, 80\%^a\)
- \(4t, 60\%^a\)
- \(4u, 49\%^a\)
- \(4v, 60\%^a\)
- \(4w, 59\%^{a,b}\)
- \(4x, 57\%^{a,b}\)
- \(4y, 85\%^{a,b}\)
- \(4z, 83\%^{a,b}\)

C Gram-scale synthesis

\[
\begin{array}{c}
\text{Ar}^\text{Het} \text{Ph} + \text{NaBr} \xrightarrow{\text{C, Pt}} \text{Ar}^\text{Het} \text{Ph} \\
15 \text{ mmol} & 3.3 \text{ g, 81}\% \\
\end{array}
\]

\[
\begin{array}{c}
\text{Ar}^\text{Het} \text{Ph} + \text{NaBr} \xrightarrow{\text{C, Pt}} \text{Ar}^\text{Het} \text{Ph} \\
50 \text{ mmol} & 9.6 \text{ g, 70}\% \\
\end{array}
\]
well. When N,N-dimethylformamide was used as the sole solvent, 69% yield of 3a could still be obtained (entry 11). However, when the reaction was performed using acetonitrile instead of N,N-dimethylformamide, an obvious loss of the yield was observed (entry 12). As was expected, no reaction could be observed in the absence of electric current (entry 13).

With the optimized reaction conditions in hand, the scope and generality of this clean halogenation was explored (Figure 1). With respect to the C-H chlorination (Figure 1A), diverse heteroarenes/arenes served as effective reaction partners with 2a to form C-Cl bond. The phenyl- and naphthyl-substituted imidazo[1,2-α]-pyridines showed good reactivity and gave the corresponding products in 81% and 76% yields (Figure 1A, 3a-b), respectively. 2-Arylimidazo[1,2-α]-pyridines bearing halogen substituents on the phenyl ring delivered the C-H chlorination products in good to high yields (Figure 1A, 3d-f). Delightfully, strong electron-withdrawing groups such as trifluoromethyl and cyano at the para position of the phenyl ring of 2-phenylimidazo[1,2-α]-pyridines nearly did not affect the reaction efficiency (Figure 1A, 3g-h). By contrast, 2-phenylimidazo[1,2-α]-pyridines bearing electron-rich group showed decreased reaction efficiency (Figures 1A, 3i). It is worth noting that the substrates bearing tert-butyl, trifluoromethyl, and -H groups at the C-2 position of imidazo[1,2-α]-pyridines also reacted smoothly and delivered the desired products in moderate to good yields (Figure 1A, 3j-l). Moreover, imidazo[1,2-α]-pyridines bearing various substituents such as methyl, chlorine, and trifluoromethyl groups at different positions of the pyridine ring all furnished the C-H chlorination products in high yields (Figure 1A, 3m-p). Besides various imidazo[1,2-α]-pyridines, 1-phenylpyrazole, benzof[d]-imidazo[2,1-b]thiazole derivatives, and very-electron-rich 1,3,5-trimethoxybenzene were also suitable substrates for this transformation, affording the desired products in 62%-90% yields (Figure 1A, 3q-t).

We subsequently turned our attention to the C-H bromination (Figure 1B). To our delight, imidazo[1,2-a]-pyridines bearing various substituents such as alkyl, alkoxy, halogen, cyano, and trifluoromethyl groups at different positions of the phenyl ring or pyridine ring all underwent clean transformations to generate the C-H bromination products in good to excellent yields (Figure 1B, 4a-o). Notably, besides various imidazo[1,2-α]-pyridines, other kinds of heteroarenes and arenes were also suitable for this transformation. For example, 2-aminopyridine, benzof[d]-imidazo[2,1-b]thiazole derivative, 1-phenylpyrazole, 3-phenylpyrazole, 8-aminoquinoline, and 2-aminopyridine derivatives all delivered the corresponding C-H bromination products in moderate to high yields (Figure 1B, 4p-v). It is worth noting that for 3-phenylpyrazole and 8-aminoquinoline, the double C-H bromination products were the major products (Figure 1B, 4r-s). In the case of electron-rich arenes, p-chloroaniline and p-bromoaniline afforded the corresponding C-H bromination products in good yields (Figure 1B, 4w-x). The very-electron-rich arenes, such as 1,3,5-trimethoxybenzene and 3,5-dimethoxytoluene, gave the C-Br bond formation products in 85% and 83% yields (Figure 1B, 4y-z), respectively. To examine the scalability of the exogenous-oxidant-free electrochemical oxidative C-H halogenation, reactions on the 15- and 50-mmol scale were performed (Figure 1C). The corresponding C-H halogenation products were afforded in 81% and 70% isolated yield, respectively (see Supplemental Information for details).

To shed light on the reaction mechanism for this electrochemical oxidative C-H halogenation, a series of control experiments were conducted. First, voltammograms of the substrates were recorded (see Figure S160 of the Supplemental Information for details). The oxidation peak of 1a was observed in N,N-dimethylformamide (DMF)/H2O at 1.59 V, whereas the oxidation peak of NaCl and NaBr were observed at 1.55 V and 1.40 V, respectively, which indicated that NaCl or NaBr was likely to be first oxidized under the electrolytic conditions. Moreover, under the standard optimized conditions, no homo-coupling product of 1a was observed in either C-H chlorination or bromination (Figures 2A and 2B). These results further indicated that NaCl and NaBr are readily oxidized than 1a in this electrochemical oxidative C-H halogenation. The reaction of 1a with molecular Cl2 and Br2 in the absence of electricity was also investigated.

Figure 1. Substrate Scope for Electrochemical Oxidative C-H Halogenation
(A) Substrate scope of C-H chlorination.
(B) Substrate scope of C-H bromination.
(C) Gram-scale synthesis.
Reactions conditions: carbon rod anode, platinum plate cathode, constant current = 12 mA, 1 (0.3 mmol), 2a (2.0 equiv.) or 2b (4.0 equiv.), DMF (10.5 mL), H2O (0.5 mL), 80°C, N2, 3.5 h (5.2 F/mol), isolated yields.
*CH3CN (10.5 mL), H2O (0.5 mL), 75°C.
†1 (2.0 equiv.), 2 (0.3 mmol).
‡7.0 h.
When 1.0 equiv. of molecular Br₂ was added into the reaction system, the desired C-H bromination product could be obtained in high yield and H₂O did not affect the efficiency of this reaction, whereas no chlorination product was detected when molecular Cl₂ was used as the chlorinating agent. These results suggest that molecular Cl₂ might not be involved as the intermediate in C-H chlorination, whereas molecular Br₂ ought to be a key intermediate in C-H bromination. Meanwhile, the pathway in which molecular Br₂ reacted with H₂O yielding the Br⁺ (HOBr), then attacked by heteroarenes (1) to form the desired product, could be completely ruled out. Last but not least, the reaction of 1a with MeOH in the absence of sodium halides was carried out (Figure 2F); 9% homo-coupling product of 1a was isolated from the reaction system, but the product of radical cation intermediate captured by MeOH was not detected. These results suggest that the pathway in which 1a is oxidized to the corresponding radical cation intermediate and then captured by nucleophile could be ruled out.

(Figures 2C–2E). When 1.0 equiv. of molecular Br₂ was added into the reaction system, the desired C-H bromination product could be obtained in high yield and H₂O did not affect the efficiency of this reaction, whereas no chlorination product was detected when molecular Cl₂ was used as the chlorinating agent. These results suggest that molecular Cl₂ might not be involved as the intermediate in C-H chlorination, whereas molecular Br₂ ought to be a key intermediate in C-H bromination. Meanwhile, the pathway in which molecular Br₂ reacted with H₂O yielding the Br⁺ (HOBr), then attacked by heteroarenes (1) to form the desired product, could be completely ruled out. Last but not least, the reaction of 1a with MeOH in the absence of sodium halides was carried out (Figure 2F); 9% homo-coupling product of 1a was isolated from the reaction system, but the product of radical cation intermediate captured by MeOH was not detected. These results suggest that the pathway in which 1a is oxidized to the corresponding radical cation intermediate and then captured by nucleophile could be ruled out.
Based on the above-mentioned experimental results, a plausible reaction mechanism for C-H halogenation is depicted in Figure 3. For the C-H chlorination, the reaction begins with the anodic oxidation of chlorine ion to generate the chlorine radical. The radical intermediate A could then be formed through a radical addition of chlorine radical to $1a$. Finally, further single-electron oxidation and the following deprotonation led to product $3a$. Concomitant cathodic reduction of water leads to hydrogen evolution.

Different from the C-H chlorination, in C-H bromination, bromide ion is directly oxidized to molecular Br$_2$, which then is attacked by $1a$ to access the intermediate C. Finally, the following deprotonation led to the product $4a$.

Having successfully demonstrated electrochemical oxidative halogenation of heterocycles/arenes, we subsequently turned our attention to the other type substrates. Indeed, this versatile electrochemical oxidative synthetic protocol was not limited to the heterocycles/arenes; alkenes (5) were identified as amenable substrates as well. As shown in Figure 4A, when the ratio of alkenes to HBr (aq.) was 1:2, various styrenes and aliphatic alkenes were compatible with the reaction conditions, providing the desired C-Br double bond forming products in moderate to high yields (Figures 4A, 6a-6x). Moreover, besides terminal alkenes, internal alkenes were also tolerated in this electrochemical system, and the trans-1,2-dibromides were isolated as the sole diastereomeric products (Figures 4A, 6k, 6r, 6s, 6u). This result suggests that molecular Br$_2$ might be the key intermediate for this transformation. To evaluate the practicability of this method, we conducted the exogenous-oxidant-free electrochemical oxidative dibromination of 1-decene on a 200-mmol scale and finally obtained 50.9 g pure product (Figure 4B; see Supplemental Information for details), which is hard to access traditionally. This indicates that our protocol could be conveniently scaled up in industry.

To develop a more general method, we also turned our attention to investigate the dibromination of alkynes (Figure 5). Delightfully, when 4-methoxyphenylacetylene ($7a$) and 1-phenyl-1-propyne ($7b$) were employed as the surrogates of alkynes, the desired dibromination products were isolated in 65% and 33% yields (Figure 5), respectively, and E-isomers were isolated as the sole diastereomeric products. This result suggests that molecular Br$_2$ might also be the key intermediate in this dibrominating reaction.

To further affirm that the alkene and alkyn dibromination involved a molecular Br$_2$ intermediate, the reaction of molecular Br$_2$ with styrene ($5a$) and 4-methoxyphenylacetylene ($7a$) in the absence of electricity was investigated (Figure 6), respectively. The reaction results indicate that these two transformations indeed involve a molecular Br$_2$ intermediate.

The success of the heteroarenes, arenes, alkenes, and alkynes led us to extend this method to aliphatic hydrocarbons because alkyl halides are also powerful substrates. To our delight, when ethyl 2-pyridylacetate (9) and a-menthylstyrene (12) were employed as the surrogates of aliphatic hydrocarbons, the desired alkyl halides 10 and 13 were isolated in 54% and 32% yields (Figure 7), respectively. Moreover, for
Figure 4. Substrate Scope for Electrochemical Oxidative Dibromination of Alkenes

(A) Substrate scope of alkenes.

Alkene	Yield
6a	73%
6b	50%
6c	74%
6d	77%
6e	80%
6f	58%
6g	57%
6h	70%
6i	40%
6j	41%
6k	86%
6l	43%
6m	86%
6n	38%
6o	70%
6p	77%
6q	85%
6r	80%
6s	71%
6t	89%
6u	73%
6v	83%

(B) Gram-scale synthesis

- Reaction conditions: carbon rod anode, platinum plate cathode, constant current = 12 mA, 5 (0.5 mmol), 2c (2.0 equiv.), MeCN (10.8 mL), H₂O (0.2 mL), Bu₄NBF₄ (0.1 mmol), RT, N₂, 3.0 h (2.7 F/mol), isolated yields.
- **2c** (4.0 equiv.), 6.0 h.

\[
\text{200 mmol} + \text{HBr} \xrightarrow{C, Pt} \text{50.9 g, 86%}
\]
2-pyridylacetate (9), when the amount of sodium bromide (2b) was increased to 4.0 equiv. and the reaction time was extended to 3.5 h, the double C-H halogenated product 11 could be isolated in 40% yield.

Limitations of Study
Substrate scope of alkyne dibromination is limited to the electron-rich alkynes.

Conclusion
We have successfully employed constant current for clean halogenation. A series of significant organic halides (R-X) were prepared under a metal-catalyst-free and exogenous-oxidant-free reaction conditions with commercially available, nontoxic, and atom-efficient NaX/HX (aq.). Remarkably, this electrochemical oxidative synthetic protocol has a broad substrate scope. Besides, various heteroarenes/arenes, alkenes, alkyynes, and aliphatic hydrocarbons were also suitable. Most importantly, the reaction could also be performed on a 200-mmol scale with the same efficiency (86%, 50.9 g pure product), which further highlighted the synthetic practicability of this electrochemical oxidative strategy.
METHODS
All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION
Supplemental Information includes Transparent Methods and 160 figures and can be found with this article online at https://doi.org/10.1016/j.isci.2019.01.017.

ACKNOWLEDGMENTS
This work was supported by the National Natural Science Foundation of China (21390402, 21520102003, 21702081, 21702150), the Hubei Province Natural Science Foundation of China (2017CFA010), and the Jiangxi Provincial Education Department Foundation (GJJ160325). The Program of Introducing Talents of Discipline to Universities of China (111 Program) is also appreciated.

AUTHOR CONTRIBUTIONS
A.L. and Y.Y. conceived the project and designed the experiments. Y.Y., A.Y., Y.Z., Z.Z., J.Q., J.H., B.Y., J.Z., and H.W. performed and analyzed the experiments. Y.Y., A.L., and M.G. wrote the manuscript. Y.Y., A.Y., and Y.Z. wrote the Supplemental Information and contributed other related materials. All the authors discussed the results and commented on the manuscript.

DECLARATION OF INTERESTS
The authors declare no competing interests.

Received: October 9, 2018
Revised: December 3, 2018
Accepted: January 9, 2019
Published: February 22, 2019

REFERENCES
Badalyan, A., and Stahl, S.S. (2016). Cooperative electrocatalytic alcohol oxidation with electron-proton-transfer mediators. Nature 535, 406–410.

Barluenga, J., Alvarez-Gutierrez, J.M., and Ballesteros, A. (2007). Direct ortho iodination of ß- and γ-aryl alkylamine derivatives. Angew. Chem. Int. Ed. 46, 1281–1283.

Bedford, R.B., Haddow, M.F., Mitchell, C.J., and Webster, R.L. (2011). Mild C-H halogenation of anilides and the isolation of an unusual palladium(I)-palladium(II) species. Angew. Chem. Int. Ed. 50, 5524–5527.

Butler, A., and Sandy, M. (2009). Mechanistic considerations of halogenating enzymes. Nature 460, 848–854.

Figure 7. Electrochemical Oxidative C-H Bromination of Aliphatic Hydrocarbons
Chem. Soc. 12, 293–303, February 22, 2019

David, D.L.M. P.B. (1976). Electrophilic Halogenation Cambridge (University Press).

Dجووره, H., and George, P. (1991). Imidazopyridine for use as an anesthetic. US 5064836.

Dyminska, L. (2015). Imidazopyridines as a source of biological activity and their pharmacological potentials-Infrared and Raman spectroscopic evidence of their content in pharmaceuticals and plant materials. Bioorg. Med. Chem. 23, 6887–6909.

Enguehard-Gueiffier, C., and Gueiffier, A. (2007). Recent progress in the pharmacology of imidazo[1,2-alpyridines. Mini Rev. Med. Chem. 7, 888–899.

Fairlamb, I.J.S. (2007). Regioselective (site-selective) functionalisation of unsaturated halogenated nitrogen-oxynitrogen and sulfur heterocycles by Pd-catalysed cross-couplings and direct arylation processes. Chem. Soc. Rev. 36, 1036–1045.

Francke, R., and Little, R.D. (2014). Redox catalysis in organic electrochemistry: basic principles and recent developments. Chem. Soc. Rev. 43, 2492–2521.

Fu, N., Sauer, G.S., and Lin, S. (2017a). Electrocatalytic radical dichlorination of alkenes with nucleophilic chlorine sources. J. Am. Chem. Soc. 139, 15348–15553.

Fu, N., Sauer, G.S., Saha, A., Loo, A., and Lin, S. (2017b). Metal-catalyzed electrochemical chlorination of alkenes. Science 357, 575–579.

Gao, X., Wang, P., Zeng, L., Tang, S., and Lei, A. (2017a). Cobalt(II)-catalyzed electrooxidative C-H amination of amines with alkylamines. J. Am. Chem. Soc. 139, 13616–13619.

Gieshoff, T., Kehl, A., Schollmeyer, D., Moeller, C., and Scattolin, B. (1990). Zolpidem and alpidem: two imidazopyridines with selectivity for omega 1- and omega 3-receptor subtypes. Adv. Biochem. Psychopharmacol. 46, 61–72.

Liu, L., and Groves, G.T. (2010). Manganese porphyrins catalyze selective C-H bond functionalizations. J. Am. Chem. Soc. 132, 12847–12849.

Liu, B., Lim, C.-H., and Miyake, G.M. (2017a). Visible-light-promoted C-S cross-coupling via intermolecular charge transfer. J. Am. Chem. Soc. 139, 13621–13627.

Liu, W., Yang, X., Gao, Y., and Li, C.-J. (2017b). Simple and efficient generation of aryl radicals from aryl triflates: synthesis of aryl boronates and aryl iodosides at room temperature. J. Am. Chem. Soc. 139, 8621–8627.

Liu, Q., Sun, B., Liu, Z., Kao, Y., Dong, B.-W., Jiang, S.-D., Li, F., Liu, G., Yang, Y., and Mo, F. (2018). A general electrochemical strategy for the Sandmeyer reaction chemistry. Chem. Sci. 9, 8731–8737.

Lyalin, B.V., and Petroysan, V.A. (2013). Electrochemical halogenation of organic compounds. Russ. J. Electrochem. 49, 497–529.

Mei, T.-S., Giri, R., Maugel, N., and Yu, J.-Q. (2008). Pd-catalyzed monoselective ortho halogenation of c-h bonds assisted by counter cations: a complementary method to directed ortho lithiation. Angew. Chem. Int. Ed. 47, 5215–5219.

Meijere, A.D., and Diederich, F. (2004). Metal-Catalyzed Cross-Coupling Reactions (Wiley-VCH Verlag GmbH & Co. KGaA).

Mo, F., Yan, M.J., Qiu, D., Li, F., Zhang, Y., and Wang, J. (2010). Gold-catalyzed halogenation of aromatics by N-Halosuccinimides. Angew. Chem. Int. Ed. 49, 2028–2032.

Murphy, J.M., Liao, X., and Hartwig, J.F. (2007). Meta halogenation of 1,3-disubstituted arenes via iridium-catalyzed arene borylation. J. Am. Chem. Soc. 129, 15434–15435.

Nicolaou, K.C., Bulger, P.G., and Sarlah, D. (2005). Palladium-catalyzed cross-coupling reactions in total synthesis. Angew. Chem. Int. Ed. 44, 4442–4449.

Okubo, T., Yoshikawa, R., Chaki, S., Okuyama, S., and Nakazato, A. (2004). Design, synthesis, and structure-affinity relationships of arylxoyanilide derivatives as novel peripheral benzodiazepine receptor ligands. Bioorg. Med. Chem. 12, 423–438.

Petroni, D.A., Ye, J., and Lautens, M. (2016). Modern transition-metal-catalyzed carbon–h bond formation. Chem. Rev. 116, 8003–8104.

Kirkkii, M.D. (2018). Electrochemical strategies for C-H functionalization and C-N bond formation. Chem. Soc. Rev. 47, 5786–5865.

Kulangappar, K., Ramprakash, M., Vasudev, D., and Raju, T. (2016). Electrochemical bromination of cyclic and acyclic enes using bifilar electrolysis. Synth. Commun. 46, 145–153.

Langer, S.Z., Arbilla, S., Benavides, J., and Scattolin, B. (1990). Zolpidem and alpidem: two imidazopyridines with selectivity for omega 1- and omega 3-receptor subtypes. Adv. Biochem. Psychopharmacol. 46, 61–72.

Pletcher, D., Green, R.A., and Brown, R.C.D. (2018). Flow electrolysis cells for the synthetic organic chemistry laboratory. Chem. Rev. 118, 4573–4591.

Prakash, G.K., Mathew, T., Hooie, D., Esteves, P.M., Wang, Q., Rasul, G., and Olah, G.A. (2004). N-halosuccinimide/Br2/H2O, efficient electrochemical halogenation systems for aromatics. J. Am. Chem. Soc. 126, 15770–15776.

Qiu, Y., Kong, W.-J., Stroeve, J., Sauermann, N., Rogge, T., Scheremetjew, A., and Ackermann, L. (2018). Electrooxidative rhodium-catalyzed C-H/C-H activation: electricity as oxidant for cross-dehydrogenative alkenylation. Angew. Chem. Int. Ed. 57, 5828–5832.

Rafiee, M., Wang, F., Hruszczewy, D.P., and Stahl, S.S. (2018). N-Hydroxypthalimide-mediated electrochemical iodination of methylene derivatives and comparison to electron-transfer-initiated C-H functionalization. J. Am. Chem. Soc. 140, 22–25.

Raju, T., Kulangappar, K., Kulandaimanath, M.A., Uma, U., Malini, R., and Muthukumarman, A. (2006). Site directed nuclear bromination of aromatic compounds by an electrochemical method. Tetrahedron Lett. 47, 4581–4584.

Sanger, D.J. (1995). Behavioural effects of novel benzodiazepine (a) receptor antagonists and partial agonists: increases in punished responding and antagonism of the pentylenetetrazole cue. Behav. Pharmacol. 6, 116–125.

Schroeder, N., Wencel-Delord, J., and Giorius, F. (2012). High-Yielding, versatile, and practical [Rh(I)Cl(Carboxylate)] catalyzed ortho bromination and iodination of arenes. J. Am. Chem. Soc. 134, 8299–8301.

Schroeder, N., Lied, F., and Giorius, F. (2015). Dual role of Rh(II) catalyst enables regioselective halogenation of (electron-rich) heterocycles. J. Am. Chem. Soc. 137, 1448–1451.

Smith, M.B., Guo, L., Okeyo, S., Stenzel, J., Yanella, J., and LaChapelle, E. (2002). Regioselective one-pot bromination of aromatic amines. Org. Lett. 4, 2321–2323.

Sperry, J.B., and Wright, D.L. (2006). The application of cathodic reductions and anodic oxidations in the synthesis of complex molecules. Chem. Soc. Rev. 35, 605–621.

Tan, Z., Liu, Y., Heimy, R., Rivera, N.R., Hesk, D., Tyagarajan, S., Yang, L., and Su, J. (2017). Electrochemical bromination of late stage intermediates and drug molecules. Tetrahedron Lett. 58, 3014–3018.

Tang, S., Liu, Y., and Lei, A. (2018a). Electrochemical oxidative cross-coupling with hydrogen evolution: a green and sustainable way for bond formation. Chem. 4, 27–45.

Tang, S., Wang, S., Liu, Y., Cong, H., and Lei, A. (2018b). Electrochemical oxidative C-H amination of phenols: access to triarylamidine derivatives. Angew. Chem. Int. Ed. 57, 4737–4741.

Teskey, C.J., Lui, A.Y.W., and Greeneay, M.F. (2015). Ruthenium-catalyzed meta-selective C-H bromination. Angew. Chem. Int. Ed. 54, 11677–11680.
Wallentin, C.-J., Nguyen, J.D., Finkbeiner, P., and Stephenson, C.R.J. (2012). Visible light-mediated atom transfer radical addition via oxidative and reductive quenching of photocatalysts. J. Am. Chem. Soc. 134, 8875–8884.

Wan, X.-B. (2006). Highly selective C-H functionalization/halogenation of acetanilide. J. Am. Chem. Soc. 128, 7416–7417.

Wang, Z., Zhu, L., Yin, F., Su, Z., Li, Z., and Li, C. (2012). Silver-catalyzed decarboxylative chlorination of aliphatic carboxylic acids. J. Am. Chem. Soc. 134, 4258–4263.

Whitfield, S.R., and Sanford, M.S. (2007). Reactivity of Pd(II) complexes with electrophilic chlorinating reagents: isolation of Pd(IV) products and observation of C-Cl bond-forming reductive elimination. J. Am. Chem. Soc. 129, 15142–15143.

Xiong, P., Xu, H.-H., and Xu, H.-C. (2017). Metal- and reagent-free intramolecular oxidative amination of tri- and tetrasubstituted alkenes. J. Am. Chem. Soc. 139, 2956–2959.

Yan, M., Kawamata, Y., and Baran, P.S. (2017). Synthetic organic electrochemical methods since 2000: on the verge of a renaissance. Chem. Rev. 117, 13230–13319.

Yang, Q.-L., Li, Y.-Q., Ma, C., Fang, P., Zhang, X.-J., and Mei, T.-S. (2017). Palladium-catalyzed C(sp3)-H oxygenation via electrochemical oxidation. J. Am. Chem. Soc. 139, 3293–3298.

Ye, K.-Y., Pombar, G., Fu, N., Sauer, G.S., Keresztes, I., and Lin, S. (2018). Anodically coupled electrolysis for the hetero(difunctionalization of alkenes. J. Am. Chem. Soc. 140, 2438–2441.

Yoshida, J.-I., Shimizu, A., and Hayashi, R. (2018). Electrogenerated cationic reactive intermediates: the pool method and further advances. Chem. Rev. 118, 4702–4730.

Yuan, Y., Chen, Y., Tang, S., Huang, Z., and Lei, A. (2018a). Electrochemical oxidative oxysulfenylation and aminosulfenylation of alkenes with hydrogen evolution. Sci. Adv. 4, eaat5312.

Yuan, Y., Cao, Y., Lin, Y., Li, Y., Huang, Z., and Lei, A. (2018b). Electrochemical oxidative alkoxysulfenylation of alkenes using sulfanyl hydrazines and alcohols with hydrogen evolution. ACS Catal. 8, 10871–10875.

Yuan, Y., Yu, Y., Qiao, J., Liu, P., Yu, B., Zhang, W., Liu, H., He, M., Huang, Z., and Lei, A. (2018c). Exogenous-oxidant-free electrochemical oxidative C-H sulfonylation of arenes/ heteroarenes with hydrogen evolution. Chem. Commun. (Camb). 54, 11471–11474.

Yuan, Y., Cao, Y., Qiao, J., Lin, Y., Jiang, X., Weng, Y., Tang, S., and Lei, A. (2019). Electrochemical oxidative C-H sulfonylation of imidazopyridines with hydrogen evolution. Chin. J. Chem. 37, 49–52.

Yue, H.F., Zhu, C., and Rueping, M. (2018). Cross-coupling of sodium sulfinates with aryl, heteroaryl, and vinyl halides by nickel/photoredox dual catalysis. Angew. Chem. Int. Ed. 57, 1371–1375.
Supplemental Information

Electrochemical Oxidative Clean Halogenation Using HX/NaX with Hydrogen Evolution

Yong Yuan, Anjin Yao, Yongfu Zheng, Meng Gao, Zhilin Zhou, Jin Qiao, Jiajia Hu, Baoqin Ye, Jing Zhao, Huilai Wen, and Aiwen Lei
Supplemental Information

Electrochemical Oxidative Clean Halogenation Using HX/NaX with Hydrogen Evolution

Yong Yuan,1,2,3 Anjin Yao,1,3 Yongfu Zheng,1,3 Meng Gao,1 Zhilin Zhou,1 Jin Qiao,1 Jiajia Hu,1 Baoqin Ye,1 Jing Zhao,1 Huilai Wen,1 and Aiwen Lei1,2,4,*

1National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China.
2College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, P. R. China.
3These authors contributed equally to this work
4Lead Contact
*Correspondence: aiwenlei@whu.edu.cn
Copies of product NMR spectra

Figure S1. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound 3a, related to Figure 1.

Figure S2. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 3a, related to Figure 1.
Figure S3. 1H NMR (400 MHz, DMSO-d_6) spectrum of compound 3b, related to Figure 1

Figure S4. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 3b, related to Figure 1
Figure S5. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound 3c, related to Figure 1

![H NMR spectrum of compound 3c](image)

Figure S6. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 3c, related to Figure 1

![C NMR spectrum of compound 3c](image)
Figure S7. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound 3d, related to Figure 1

Figure S8. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 3d, related to Figure 1
Figure S9. ^{19}F NMR (376 MHz, CDCl$_3$) spectrum of compound 3d, related to Figure 1
Figure S10. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound 3e, related to Figure 1

![H NMR spectrum of compound 3e](image1)

Figure S11. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 3e, related to Figure 1

![C NMR spectrum of compound 3e](image2)
Figure S12. 1H NMR (400 MHz, DMSO-d_6) spectrum of compound 3f, related to Figure 1

Figure S13. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 3f, related to Figure 1
Figure S14. 1H NMR (400 MHz, DMSO-d_6) spectrum of compound 3g, related to Figure 1

Figure S15. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 3g, related to Figure 1
Figure S16. 19F NMR (376 MHz, CDCl$_3$) spectrum of compound 3g, related to Figure 1
Figure S17. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound 3h, related to Figure 1

Figure S18. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 3h, related to Figure 1
Figure S19. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound 3i, related to Figure 1

Figure S20. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 3i, related to Figure 1
Figure S21. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound 3j, related to Figure 1

Figure S22. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 3j, related to Figure 1
Figure S23. 1H NMR (400 MHz, DMSO-d_6) spectrum of compound 3k, related to Figure 1

Figure S24. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 3k, related to Figure 1
Figure S25. 19F NMR (376 MHz, CDCl$_3$) spectrum of compound 3k, related to Figure 1
Figure S26. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound 3l, related to Figure 1

Figure S27. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 3l, related to Figure 1
Figure S28. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound 3m, related to Figure 1

Figure S29. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 3m, related to Figure 1
Figure S30. ^1H NMR (400 MHz, DMSO-d_6) spectrum of compound 3n, related to Figure 1

Figure S31. ^{13}C NMR (100 MHz, CDCl$_3$) spectrum of compound 3n, related to Figure 1
Figure S32. 1H NMR (400 MHz, DMSO-d_6) spectrum of compound 3o, related to Figure 1

![H NMR spectrum of compound 3o](image)

Figure S33. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 3o, related to Figure 1

![C NMR spectrum of compound 3o](image)
Figure S34. 19F NMR (376 MHz, CDCl$_3$) spectrum of compound 3o, related to Figure 1.
Figure S35. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound 3p, related to Figure 1.

Figure S36. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 3p, related to Figure 1.
Figure S37. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound 3q, related to Figure 1

Figure S38. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 3q, related to Figure 1
Figure S39. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound 3r, related to Figure 1

Figure S40. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 3r, related to Figure 1
Figure S41. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound 3s, related to Figure 1

Figure S42. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 3s, related to Figure 1
Figure S43. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound 3t, related to Figure 1

Figure S44. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 3t, related to Figure 1
Figure S45. 1H NMR (400 MHz, DMSO-d_6) spectrum of compound 4a, related to Figure 1

Figure S46. 13C NMR (100 MHz, DMSO-d_6) spectrum of compound 4a, related to Figure 1
Figure S47. 1H NMR (400 MHz, DMSO-d_6) spectrum of compound 4b, related to Figure 1

Figure S48. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 4b, related to Figure 1
Figure S49. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound 4c, related to Figure 1

Figure S50. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 4c, related to Figure 1
Figure S51. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound 4d, related to Figure 1

Figure S52. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 4d, related to Figure 1
Figure S53. 19F NMR (376 MHz, CDCl$_3$) spectrum of compound 4d, related to Figure 1.
Figure S54. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound 4e, related to Figure 1

Figure S55. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 4e, related to Figure 1
Figure S56. 1H NMR (400 MHz, DMSO-d_6) spectrum of compound 4f, related to Figure 1

Figure S57. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 4f, related to Figure 1
Figure S58. 1H NMR (400 MHz, DMSO-d_6) spectrum of compound 4g, related to Figure 1

Figure S59. 13C NMR (100 MHz, DMSO-d_6) spectrum of compound 4g, related to Figure 1
Figure S60. 1H NMR (400 MHz, DMSO-d_6) spectrum of compound 4h, related to Figure 1

Figure S61. 13C NMR (100 MHz, DMSO-d_6) spectrum of compound 4h, related to Figure 1
Figure S62. 19F NMR (376 MHz, CDCl$_3$) spectrum of compound 4h, related to Figure 1.
Figure S63. 1H NMR (400 MHz, DMSO-d_6) spectrum of compound 4i, related to Figure 1

Figure S64. 13C NMR (100 MHz, DMSO-d_6) spectrum of compound 4i, related to Figure 1
Figure S65. 1H NMR (400 MHz, DMSO-d_6) spectrum of compound 4j, related to Figure 1

Figure S66. 13C NMR (100 MHz, DMSO-d_6) spectrum of compound 4j, related to Figure 1
Figure S67. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound 4k, related to Figure 1

Figure S68. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 4k, related to Figure 1
Figure S69. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound 4l, related to Figure 1.

Figure S70. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 4l, related to Figure 1.
Figure S71. 1H NMR (400 MHz, DMSO-d_6) spectrum of compound 4m, related to Figure 1

Figure S72. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 4m, related to Figure 1
Figure S73. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound 4n, related to Figure 1

Figure S74. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 4n, related to Figure 1
Figure S75. 1H NMR (400 MHz, DMSO-d_6) spectrum of compound 4o, related to Figure 1

Figure S76. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 4o, related to Figure 1
Figure S77. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound 4p, related to Figure 1

Figure S78. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 4p, related to Figure 1
Figure S79. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound 4q, related to Figure 1.

Figure S80. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 4q, related to Figure 1.
Figure S81. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound 4r, related to Figure 1

Figure S82. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 4r, related to Figure 1
Figure S8. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound 4s, related to Figure 1

Figure S84. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 4s, related to Figure 1
Figure S8. 1H NMR (400 MHz, DMSO-d_6) spectrum of compound 4t, related to Figure 1

Figure S86. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 4t, related to Figure 1
Figure S87. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound 4u, related to Figure 1

Figure S88. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 4u, related to Figure 1
Figure S89. 1H NMR (400 MHz, DMSO-d_6) spectrum of compound 4v, related to Figure 1

Figure S90. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 4v, related to Figure 1
Figure S9. 19F NMR (376 MHz, CDCl₃) spectrum of compound 4v, related to Figure 1
Figure S92. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound 4w, related to Figure 1.

Figure S93. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 4w, related to Figure 1.
Figure S94. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound 4x, related to Figure 1

Figure S95. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 4x, related to Figure 1
Figure S96. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound 4y, related to Figure 1

Figure S97. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 4y, related to Figure 1
Figure S98. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound 4z, related to Figure 1

![H NMR spectrum of compound 4z](image)

Figure S99. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 4z, related to Figure 1

![C NMR spectrum of compound 4z](image)
Figure S100. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound 6a, related to Figure 4

![H NMR spectrum](image)

Figure S101. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 6a, related to Figure 4

![C NMR spectrum](image)
Figure S102. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound 6b, related to Figure 4

Figure S103. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 6b, related to Figure 4
Figure S104. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound 6c, related to Figure 4

Figure S105. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 6c, related to Figure 4
Figure S106. 19F NMR (376 MHz, CDCl$_3$) spectrum of compound 6c, related to Figure 4
Figure S107. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound 6d, related to Figure 4

Figure S108. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 6d, related to Figure 4
Figure S109. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound 6e, related to Figure 4

Figure S110. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 6e, related to Figure 4
Figure S11. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound 6f, related to Figure 4

Figure S112. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 6f, related to Figure 4
Figure S113. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound 6g, related to Figure 4

Figure S114. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 6g, related to Figure 4
Figure S115. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound 6h, related to Figure 4

Figure S116. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 6h, related to Figure 4
Figure S117. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound 6i, related to Figure 4

Figure S118. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 6i, related to Figure 4
Figure S119. 19F NMR (376 MHz, CDCl$_3$) spectrum of compound 6i, related to Figure 4
Figure S120. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound 6j, related to Figure 4

Figure S121. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 6j, related to Figure 4
Figure S122. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound 6k, related to Figure 4

Figure S123. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 6k, related to Figure 4
Figure S124. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound 6l, related to Figure 4

Figure S125. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 6l, related to Figure 4
Figure S126. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound 6m, related to Figure 4

Figure S127. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 6m, related to Figure 4
Figure S128. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound 6n, related to Figure 4

Figure S129. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 6n, related to Figure 4
Figure S130. 1H NMR (400 MHz, DMSO-d_6) spectrum of compound 60, related to Figure 4

Figure S131. 13C NMR (100 MHz, DMSO-d_6) spectrum of compound 60, related to Figure 4
Figure S132. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound 6p, related to Figure 4

Figure S133. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 6p, related to Figure 4
Figure S134. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound 6q, related to Figure 4

Figure S135. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 6q, related to Figure 4
Figure S136. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound 6r, related to Figure 4

Figure S137. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 6r, related to Figure 4
Figure S138. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound 6s, related to Figure 4

Figure S139. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 6s, related to Figure 4
Figure S140. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound 6t, related to Figure 4

Figure S141. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 6t, related to Figure 4
Figure S142. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound 6u, related to Figure 4

Figure S143. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 6u, related to Figure 4
Figure S144. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound 6v, related to Figure 4

Figure S145. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 6v, related to Figure 4
Figure S146. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound 6w, related to Figure 4.

Figure S147. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 6w, related to Figure 4.
Figure S148. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound 6x, related to Figure 4

Figure S149. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 6x, related to Figure 4
Figure S150. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound 8a, related to Figure 5

Figure S151. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 8a, related to Figure 5
Figure S152. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound 8b, related to Figure 5

Figure S153. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 8b, related to Figure 5
Figure S154. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound 10, related to Figure 7

Figure S155. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 10, related to Figure 7
Figure S156. 13C NMR (400 MHz, CDCl$_3$) spectrum of compound 11, related to Figure 7

Figure S157. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 11, related to Figure 7
Figure S158. 1H NMR (400 MHz, CDCl$_3$) spectrum of compound 13, related to Figure 7

Figure S159. 13C NMR (100 MHz, CDCl$_3$) spectrum of compound 13, related to Figure 7
Transparent Methods

The instrument for electrolysis is dual display potentiostat (DJS-292B) (made in China). The anodic electrode was graphite rod (ϕ 6 mm) and cathodic electrode was platinum plate (15 mm × 15 mm × 0.3 mm). Thin layer chromatography (TLC) employed glass 0.25 mm silica gel plates. Flash chromatography columns were packed with 200-300 mesh silica gel in petroleum (boiling point, 60 to 90 °C). NMR spectra were recorded on a Bruker spectrometer at 400 MHz (1H NMR), 100 MHz (13C NMR), 376 MHz (19F NMR), respectively. All chemical shifts are reported relative to tetramethyldisilane and solvent peaks. 1H, 13C and 19F NMR data spectra were reported in delta (δ) units, parts per million (ppm) downfield from the internal standard. Coupling constants are reported in Hertz (Hz).

General procedure for electrochemical oxidative C–H chlorination: In an undivided three-necked bottle (25 mL) equipped with a stir bar, 1 (0.3 mmol), 2a (0.6 mmol, 35.1 mg), were combined and added. The bottle was equipped with graphite rod (ϕ 6 mm, about 18 mm immersion depth in solution) as the anode and platinum plate (15 mm × 15 mm × 0.3 mm) as the cathode and then charged with nitrogen. Under the protection of N2, H2O (0.5 mL) and DMF (10.5 mL) were injected respectively into the bottle via syringes. The reaction mixture was stirred and electrolyzed with a constant current of 12 mA at 80 °C for 3.5 h. When the reaction was finished, the solution was extracted with EtOAc (3×10mL) and H2O (3×30mL). The combined organic layer was dried with Na2SO4, filtered. The solvent was removed with a rotary evaporator. The pure product was obtained by flash column chromatography on silica gel using petroleum ether and ethyl acetate as the eluent.

General procedure for electrochemical oxidative C–H bromination: In an undivided three-necked bottle (25 mL) equipped with a stir bar, 1 (0.3 mmol), 2b (1.2 mmol, 123.5 mg.), were combined and added. The bottle was equipped with graphite rod (ϕ 6 mm, about 18 mm immersion depth in solution) as the anode and platinum plate (15 mm × 15 mm × 0.3 mm) as the cathode and then charged with nitrogen. Under the protection of N2, H2O (0.5 mL) and DMF (10.5 mL) were injected respectively into the bottle via syringes. The reaction mixture was stirred and electrolyzed with a constant current of 12 mA at 80 °C for 3.5 h. When the reaction was finished,
the solution was extracted with EtOAc (3×10mL) and H$_2$O (3×30mL). The combined organic layer was dried with Na$_2$SO$_4$, filtered. The solvent was removed with a rotary evaporator. The pure product was obtained by flash column chromatography on silica gel using petroleum ether and ethyl acetate as the eluent.

General procedure for electrochemical oxidative dibromination of alkenes: In an undivided three-necked bottle (25 mL) equipped with a stir bar, 4Bu$_4$NBF$_4$ (0.1 mmol, 33 mg) was added. The bottle was equipped with graphite rod (ϕ 6 mm, about 18 mm immersion depth in solution) as the anode and platinum plate (15 mm × 15 mm × 0.3 mm) as the cathode and then charged with nitrogen. Under the protection of N$_2$, 5 (0.5 mmol), 2c (1.0 mmol, 113 uL, 48%), H$_2$O (0.2 mL) and CH$_3$CN (10.8 mL) were injected respectively into the bottle via syringes. The reaction mixture was stirred and electrolyzed with a constant current of 12 mA at room temperature for 3 h. The pure product was obtained by flash column chromatography on silica gel using petroleum ether as the eluent.

Procedure for gram scale synthesis of electrochemical oxidative C–H bromination (15 mmol scale): In an undivided three-necked bottle equipped with a stir bar, 1a (15 mmol), 2b (4 equiv.) were combined and added. The bottle was equipped with graphite rod (ϕ 6 mm) as the anode and platinum plate (15 mm × 15 mm × 0.3 mm) as the cathode. Under the air, H$_2$O (5 mL) and DMF (105 mL) were injected respectively into the bottle via syringes. The reaction mixture was stirred and electrolyzed with a constant current of 60 mA at 80 °C for 35 h. When the reaction was finished, the solution was extracted with EtOAc (3×50 mL) and H$_2$O (3×150 mL). The combined organic layer was dried with Na$_2$SO$_4$, filtered. The solvent was removed with a rotary evaporator. The pure product was obtained by flash column chromatography on silica gel using petroleum ether and ethyl acetate as the eluent.

Procedure for gram scale synthesis of electrochemical oxidative C–H bromination (50 mmol scale): In an undivided three-necked bottle equipped with a stir bar, 1a (50 mmol), 2b (4 equiv.) were combined and added. The bottle was equipped with graphite rod (ϕ 6 mm) as the anode and platinum plate (15 mm × 15 mm × 0.3 mm) as the cathode. Under the air, H$_2$O (5 mL) and DMF (105 mL) were injected respectively into the bottle via syringes. The reaction mixture was stirred
and electrolyzed with a constant current of 120 mA at 80 °C for 58.4 h. When the reaction was finished, the solution was extracted with EtOAc (3×100 mL) and H₂O (3×300 mL). The combined organic layer was dried with Na₂SO₄, filtered. The solvent was removed with a rotary evaporator. The pure product was obtained by flash column chromatography on silica gel using petroleum ether and ethyl acetate as the eluent.

Procedure for gram scale synthesis of electrochemical oxidative dibromination of alkenes: In an undivided three-necked bottle equipped with a stir bar. The bottle was equipped with graphite rod (φ 6 mm) as the anode and platinum plate (15 mm × 15 mm × 0.3 mm) as the cathode and then charged with nitrogen. Under the N₂, 5t (200 mmol), 2c (400 mmol, 48%), H₂O (4 mL) and CH₃CN (210 mL) were injected respectively into the bottle via syringes. The reaction mixture was stirred and electrolyzed with a constant current of 120 mA at room temperature for 120 h. The pure product was obtained by flash column chromatography on silica gel using petroleum ether as the eluent.

Procedure for cyclic voltammetry (CV)

Cyclic voltammetry was performed in a three-electrode cell connected to a schlenk line under nitrogen at room temperature. The working electrode was a steady glassy carbon disk electrode, the counter electrode was a platinum wire. The reference was an Ag/AgCl electrode submerged in saturated aqueous KCl solution. 11 mL mix-solvent (DMF/H₂O = 10.5/0.5) containing 0.01 M nBu₄NBF₄ were poured into the electrochemical cell in all experiments. The scan rate is 0.1 V/s, ranging from 0 V to 1.8 V.
Characterization of all compounds

3-Chloro-2-phenylimidazo[1,2-a]pyridine (3a) (Xiao et al., 2015).
White solid was obtained in 81% isolated yield. 1H NMR (400 MHz, CDCl$_3$) δ 8.13 (d, $J = 8.1$ Hz, 2H), 7.98 – 7.96 (m, 1H), 7.58 (d, $J = 9.1$ Hz, 1H), 7.46 (t, $J = 7.7$ Hz, 2H), 7.37 – 7.35 (m, 1H), 7.16 – 7.12 (m, 1H), 6.79 (t, $J = 6.8$ Hz, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 143.60, 139.66, 132.42, 128.49, 128.20, 127.41, 124.81, 122.61, 117.56, 112.85, 105.62.

3-Chloro-2-(naphthalen-2-yl)imidazo[1,2-a]pyridine (3b).
White solid was obtained in 76% isolated yield. 1H NMR (400 MHz, DMSO-d_6) δ 8.63 (s, 1H), 8.36 (d, $J = 6.8$ Hz, 1H), 8.27 – 8.25 (m, 1H), 8.02 (d, $J = 8.5$ Hz, 2H), 7.95 – 7.92 (m, 1H), 7.70 (d, $J = 9.1$ Hz, 1H), 7.57 – 7.52 (m, 2H), 7.41 – 7.37 (m, 1H), 7.10 (t, $J = 6.6$ Hz, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 143.72, 139.62, 133.36, 133.06, 133.06, 129.85, 128.44, 128.08, 127.61, 126.69, 126.27, 126.17, 125.02, 124.92, 122.61, 117.53, 112.91, 105.94. HRMS (ESI): m/z calcd for C$_{17}$H$_{13}$ClN$_2$ [M+H]$^+$: 279.00684, found: 279.0688.
3-Chloro-2-(p-toly)imidazo[1,2-a]pyridine (3c) (Xiao et al., 2015).
White solid was obtained in 73% isolated yield. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.04 – 8.02 (m, 3H), 7.60 (d, \(J = 9.1\) Hz, 1H), 7.28 – 7.266 (m, 2H), 7.19 – 7.15 (m, 1H), 6.86 – 6.82 (m, 1H), 2.39 (s, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 143.50, 139.77, 138.00, 129.57, 129.14, 127.25, 124.55, 122.45, 117.37, 112.63, 105.17, 21.22.

3-Chloro-2-(4-fluorophenyl)imidazo[1,2-a]pyridine (3d).
White solid was obtained in 70% isolated yield. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.14 – 8.06 (m, 3H), 7.61 (d, \(J = 9.1\) Hz, 1H), 7.26 (m, 1H), 7.19 – 7.13 (m, 2H), 6.93 – 6.90 (m, 1H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 163.91, 161.44, 143.59, 138.83, 129.21 (d, \(J = 8.2\) Hz), 128.58 (d, \(J = 3.2\) Hz), 124.98, 122.64, 117.51, 115.49 (d, \(J = 21.6\) Hz), 112.96, 105.33; \(^{19}\)F NMR (376 MHz, CDCl\(_3\)) \(\delta\) –113.20. HRMS (ESI): m/z calcd for C\(_{13}\)H\(_{9}\)ClFN\(_2\) [M+H]\(^+\): 247.0433, found: 247.0436.

3-Chloro-2-(4-chlorophenyl)imidazo[1,2-a]pyridine (3e) (Xiao et al., 2015).
White solid was obtained in 75% isolated yield. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.06 – 8.01 (m, 3H), 7.59 (d, \(J = 9.1\) Hz, 1H), 7.41 (d, \(J = 8.5\) Hz, 2H), 7.23 – 7.19 (m, 1H), 6.88 (t, \(J = 6.8\) Hz, 1H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 143.50, 138.40, 133.93, 130.88, 128.58, 128.46, 124.96, 122.52, 117.46, 112.91, 105.59.
3-Chloro-2-(3,4-dichlorophenyl)imidazo[1,2-a]pyridine (3f).
White solid was obtained in 73% isolated yield. 1H NMR (400 MHz, DMSO-d_6) δ 8.36 (d, $J = 6.8$ Hz, 1H), 8.21 (d, $J = 1.8$ Hz, 1H), 8.05 – 8.02 (m, 1H), 7.74 (d, $J = 8.5$ Hz, 1H), 7.66 (d, $J = 9.1$ Hz, 1H), 7.43 – 7.39 (m, 1H), 7.12 (t, $J = 6.8$ Hz, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 143.65, 137.25, 132.72, 132.50, 132.06, 130.39, 128.97, 126.31, 125.35, 122.66, 117.65, 113.22, 106.09.
HRMS (ESI): m/z calcd for C$_{13}$H$_8$Cl$_3$N$_2$ [M+H]$^+$: 296.9748, found: 296.9740.

![3-Chloro-2-(3,4-dichlorophenyl)imidazo[1,2-a]pyridine (3f).](image)

3-Chloro-2-(4-(trifluoromethyl)phenyl)imidazo[1,2-a]pyridine (3g).
White solid was obtained in 73% isolated yield. 1H NMR (400 MHz, DMSO-d_6) δ 8.34 (d, $J = 6.9$ Hz, 1H), 8.24 (d, $J = 8.1$ Hz, 1H), 7.80 (d, $J = 8.3$ Hz, 1H), 7.66 (d, $J = 9.1$ Hz, 1H), 7.40 – 7.36 (m, 1H), 7.11 – 7.07 (m, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 143.77, 138.10, 135.97, 129.83 (q, $J = 32.4$ Hz), 127.45, 125.36 (q, $J = 4.0$ Hz), 125.37, 124.15 (q, $J = 270.0$ Hz), 122.69, 117.75, 113.21, 106.49; 19F NMR (376 MHz, CDCl$_3$) δ -62.53. HRMS (ESI): m/z calcd for C$_{14}$H$_9$ClF$_3$N$_2$ [M+H]$^+$: 297.0401, found: 297.0405.

![3-Chloro-2-(4-(trifluoromethyl)phenyl)imidazo[1,2-a]pyridine (3g).](image)

4-(3-Chloroimidazo[1,2-a]pyridin-2-yl)benzonitrile (3h).
White solid was obtained in 62% isolated yield. 1H NMR (400 MHz, CDCl$_3$) δ 8.28 – 8.26 (m, 2H), 8.13 – 8.11 (m, 1H), 7.75 – 7.73 (m, 2H), 7.64 (d, $J = 9.1$ Hz, 1H), 7.33 – 7.28 (m, 1H), 6.01 – 6.97 (m, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 143.80, 137.41 (d, $J = 2$ Hz), 136.89, 132.18, 127.53, 125.62, 122.73, 118.81, 117.79, 113.44, 111.27, 106.93. HRMS (ESI): m/z calcd for C$_{14}$H$_9$ClN$_3$ [M+H]$^+$: 254.0480, found: 254.0485.

![4-(3-Chloroimidazo[1,2-a]pyridin-2-yl)benzonitrile (3h).](image)
3-Chloro-2-(4-methoxyphenyl)imidazolo[1,2-a]pyridine (3i) (Xiao et al., 2015).
White solid was obtained in 30% isolated yield. 1H NMR (400 MHz, CDCl$_3$) δ 8.09 – 8.07 (m, 3H), 7.62 (d, $J = 9.1$ Hz, 1H), 7.24 – 7.20 (m, 1H), 7.02 (d, $J = 8.7$ Hz, 2H), 6.90 (t, $J = 6.8$ Hz, 1H), 3.86 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 159.62, 143.54, 139.62, 128.74, 125.03, 124.65, 122.52, 117.33, 113.93, 112.70, 104.76, 55.25.

![Chemical Structure](image)

2-(Tert-butyl)-3-chloroimidazo[1,2-a]pyridine (3j) (Li et al., 2018).
Light yellow liquid was obtained in 68% isolated yield. 1H NMR (400 MHz, CDCl$_3$) δ 8.03 (d, $J = 6.9$ Hz, 1H), 7.59 (d, $J = 9.1$ Hz, 1H), 7.19 – 7.15 (m, 1H), 6.86 (t, $J = 6.8$ Hz, 1H), 1.51 (s, 9H); 13C NMR (100 MHz, CDCl$_3$) δ 149.42, 142.16, 123.69, 122.00, 117.22, 112.35, 104.33, 32.87, 29.49.

![Chemical Structure](image)

3-Chloro-2-(trifluoromethyl)imidazo[1,2-a]pyridine (3k).
White solid was obtained in 73% isolated yield. 1H NMR (400 MHz, DMSO-d_6) δ 8.47 – 7.45 (m, 1H), 7.77 – 7.74 (m, 1H), 7.56 – 7.51 (m, 1H), 7.26 – 7.23 (m, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 143.40, 130.8 (q, $J = 38.5$ Hz), 126.57, 123.13, 121.09 (q, $J = 267.0$ Hz), 118.89, 114.51, 108.92; 19F NMR (376 MHz, CDCl$_3$) δ -61.77. HRMS (ESI): m/z calcd for C$_8$H$_5$ClF$_3$N$_2$ [M+H]$^+$: 221.0088, found: 221.0091.

![Chemical Structure](image)

3-Chloroimidazo[1,2-a]pyridine (3l) (Li et al., 2018).
Light yellow oil was obtained in 37% isolated yield. 1H NMR (400 MHz, CDCl$_3$) δ 8.05 (d, $J = 6.9$ Hz, 1H), 7.61 – 7.56 (m, 2H), 7.22 – 7.18 (m, 1H), 6.91 (t, $J = 6.8$ Hz, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 144.29, 130.00, 124.06, 122.37, 117.88, 112.76, 109.40.

![Image](image_url)

3-Chloro-6-methyl-2-phenylimidazo[1,2-a]pyridine (3m) (Xiao et al., 2015).

Light yellow liquid was obtained in 87% isolated yield. 1H NMR (400 MHz, CDCl$_3$) δ 8.14 – 8.11 (m, 2H), 7.83 (s, 1H), 7.52 – 7.45 (m, 3H), 7.38 – 7.33 (m, 1H), 7.06 – 7.33 (m, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 142.66, 139.37, 132.63, 128.40, 127.96, 127.91, 127.24, 122.62, 120.21, 116.81, 105.11, 18.25.

![Image](image_url)

3,6-Dichloro-2-phenylimidazo[1,2-a]pyridine (3n) (Xiao et al., 2015).

White solid was obtained in 76% isolated yield. 1H NMR (400 MHz, DMSO-d_6) δ 8.49 – 8.48 (m, 1H), 8.70 – 8.05 (m, 2H), 7.67 (d, $J = 9.6$ Hz, 1H), 7.52 – 7.48 (m, 2H), 7.42 – 7.36 (m, 2H); 13C NMR (100 MHz, CDCl$_3$) δ 141.93, 140.71, 131.96, 128.53, 128.47, 127.36, 126.26, 121.41, 120.55, 117.93, 106.08.

![Image](image_url)

3-Chloro-2-phenyl-6-(trifluoromethyl)imidazo[1,2-a]pyridine (3o).

White solid was obtained in 78% isolated yield. 1H NMR (400 MHz, DMSO-d_6) δ 8.75 (s, 1H), 8.10 – 8.07 (m, 2H), 7.85 (d, $J = 9.5$ Hz, 1H), 7.61 – 7.58 (m, 1H), 7.53 – 7.50 (m, 2H), 7.45 – 7.40 (m, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 143.32, 141.61, 131.67, 128.79, 128.63, 127.48, 123.35 (q, $J = 270.0$ Hz), 121.8 (q, $J = 5.7$ Hz), 120.72 (q, $J = 2.6$ Hz), 118.32, 117.4 (q, $J = 34.4$ Hz).
Hz), 107.21; 19F NMR (376 MHz, CDCl$_3$) δ –62.14. HRMS (ESI): m/z calcd for C$_{14}$H$_9$ClF$_3$N$_2$ [M+H]$^+$: 297.0400, found: 297.0361.

3-Chloro-5-methyl-2-phenylimidazo[1,2-a]pyridine (3p).

Light yellow oil was obtained in 83% isolated yield. 1H NMR (400 MHz, CDCl$_3$) δ 8.04 – 8.02 (m, 2H), 7.79 (d, J = 6.8 Hz, 1H), 7.36 (t, J = 7.6 Hz, 2H), 7.25 (t, J = 7.4 Hz, 1H), 6.86 (d, J = 6.9 Hz, 1H), 6.65 (t, J = 6.9 Hz, 1H), 2.53 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 143.99, 139.25, 132.75, 128.44, 128.00, 127.64, 127.58, 123.52, 120.45, 112.84, 105.86, 16.47. HRMS (ESI): m/z calcd for C$_{14}$H$_{12}$ClN$_2$ [M+H]$^+$: 243.0684, found: 243.0690.

4-Chloro-1-phenyl-1H-pyrazole (3q) (Wang et al., 2016).

White solid was obtained in 90% isolated yield.1H NMR (400 MHz, CDCl$_3$) δ 7.81 (s, 1H), 7.55 (s, 1H), 7.55 – 7.51 (m, 2H), 7.39 – 7.32 (m, 2H), 7.25 – 7.19 (m, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 139.70, 139.46, 129.55, 127.01, 124.84, 118.96, 112.39.

3-Chloro-2-phenylbenzo[d]imidazo[2,1-b]thiazole (3r).

Yellow solid was obtained in 68% isolated yield.1H NMR (400 MHz, CDCl$_3$) δ 8.01 (d, J = 8.2 Hz, 1H), 7.90 (d, J = 7.0 Hz, 2H), 7.49 (d, J = 8.0 Hz, 1H), 7.33 (t, J = 7.7 Hz, 2H), 7.26 – 7.13 (m, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 145.90, 140.77, 132.24, 132.18, 129.78, 128.37, 128.37, 127.65, 126.47, 125.90, 124.99, 123.95, 113.23, 108.27. HRMS (ESI): m/z calcd for C$_{15}$H$_{10}$ClN$_2$S[M+H]$^+$: 285.0248, found: 285.0258.
3-Chloro-2-(thiophen-2-yl)benzo[d]imidazo[2,1-b]thiazole (3s).

Yellow solid was obtained in 62% isolated yield. 1H NMR (400 MHz, CDCl$_3$) δ 8.19 (d, $J = 8.5$ Hz, 1H), 7.62 (d, $J = 3.7$ Hz, 1H), 7.53 (d, $J = 8.0$ Hz, 1H), 7.31 – 7.27 (m, 1H), 7.25 – 7.18 (m, 2H), 7.02 – 7.00 (m, 1H). 13C NMR (100 MHz, CDCl$_3$) δ 147.93, 139.79, 135.43, 132.54, 129.88, 127.45, 125.81, 125.13, 125.08, 124.29, 124.03, 113.26, 90.78. HRMS (ESI): m/z calcd for C$_{13}$H$_8$ClN$_2$S$_2$ [M+H]$^+$: 290.9812, found: 290.9816.

2-Bromo-1,3,5-trimethoxybenzene (3t) (Tang et al., 2018).

White solid was obtained in 77% isolated yield. 1H NMR (400 MHz, CDCl$_3$) δ 6.18 (s, 2H), 3.88 (s, 6H), 3.81 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 159.37, 156.49, 102.61, 91.55, 56.24, 55.48.

3-Bromo-2-phenylimidazo[1,2-a]pyridine (4a) (Zhou et al., 2016).

White solid was obtained in 87% isolated yield. 1H NMR (400 MHz, DMSO-d_6) δ 8.35 (d, $J = 6.9$ Hz, 1H), 8.10 – 8.08 (m, 2H), 7.66 (d, $J = 9.1$ Hz, 1H), 7.51 – 7.47 (m, 2H), 7.42 – 7.35 (m, 2H), 7.09 – 7.05 (m, 1H); 13C NMR (100 MHz, DMSO-d_6) δ 144.87, 141.39, 132.81, 128.58, 128.27, 127.36, 125.87, 124.58, 117.09, 113.64, 91.65.

3-Bromo-2-(naphthalen-2-yl)imidazo[1,2-a]pyridine (4b) (Zhou et al., 2016).
White solid was obtained in 66% isolated yield. 1H NMR (400 MHz, DMSO-d_6) δ 8.64 (s, 1H), 8.40 (d, $J = 6.8$ Hz, 1H), 8.27 – 7.25 (m, 1H), 8.03 – 8.00 (m, 2H), 7.95 – 7.93 (m, 1H), 7.70 (d, $J = 9.0$ Hz, 1H), 7.57 – 7.52 (m, 2H), 7.42 – 7.38 (m, 1H), 7.10 (t, $J = 6.8$ Hz, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 145.37, 142.37, 133.22, 133.00, 130.17, 128.37, 127.93, 127.55, 127.01, 126.21, 126.10, 125.37, 125.06, 123.78, 117.41, 112.94, 91.91.

3-Bromo-2-(p-tolyl)imidazo[1,2-a]pyridine (4c) (Zhou et al., 2016).

White solid was obtained in 91% isolated yield. 1H NMR (400 MHz, CDCl$_3$) δ 8.01 (d, $J = 6.9$ Hz, 1H), 7.92 (d, $J = 8.2$ Hz, 2H), 7.51 (d, $J = 9.1$ Hz, 1H), 7.19 – 7.15 (m, 2H), 6.79 – 6.75 (m, 1H), 2.29 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 145.32, 141.69, 129.55 (d, $J = 8.2$ Hz), 128.95 (d, $J = 3.2$ Hz), 125.12, 123.85, 117.45, 115.36 (d, $J = 21.5$ Hz), 113.01, 91.32; 19F NMR (376 MHz, CDCl$_3$) δ –13.19.

3-Bromo-2-(4-fluorophenyl)imidazo[1,2-a]pyridine (4d) (Zhou et al., 2016).

White solid was obtained in 76% isolated yield. 1H NMR (400 MHz, CDCl$_3$) δ 8.14 – 8.09 (m, 3H), 7.61 (d, $J = 9.1$ Hz, 1H), 7.26 – 7.22 (m, 1H), 7.19 – 7.13 (m, 2H), 6.92 – 6.89 (m, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 162.68 (d, $J = 248.0$ Hz), 145.31, 141.69, 129.55 (d, $J = 8.2$ Hz), 128.95 (d, $J = 3.2$ Hz), 125.12, 123.85, 117.45, 115.36 (d, $J = 21.5$ Hz), 113.01, 91.32; 19F NMR (376 MHz, CDCl$_3$) δ –13.19.

3-Bromo-2-(4-chlorophenyl)imidazo[1,2-a]pyridine (4e) (Zhou et al., 2016).

White solid was obtained in 59% isolated yield. 1H NMR (400 MHz, CDCl$_3$) δ 8.12 (d, $J = 6.9$ Hz, 1H), 8.09 – 8.05 (m, 2H), 7.61 (d, $J = 9.1$ Hz, 1H), 7.45 – 7.41 (m, 2H), 7.26 – 7.22 (m, 1H), 6.93
- 6.89 (m, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 145.32, 141.34, 134.15, 131.22, 128.98, 128.61, 125.37, 123.91, 117.51, 113.20, 91.74.

![Chemical structure of 3-Bromo-2-(3,4-dichlorophenyl)imidazo[1,2-a]pyridine](image)

3-Bromo-2-(3,4-dichlorophenyl)imidazo[1,2-a]pyridine (4f) (Zhou et al., 2016).

White solid was obtained in 74% isolated yield. 1H NMR (400 MHz, DMSO-d_6) δ 8.36 (d, $J = 6.9$ Hz, 1H), 8.25 (d, $J = 2.0$ Hz, 1H), 8.08 – 8.06 (m, 1H), 7.73 (d, $J = 8.4$ Hz, 1H), 7.65 (d, $J = 9.1$ Hz, 1H), 7.43 – 7.39 (m, 1H), 7.13 – 7.10 (m, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 145.40, 140.10, 132.80, 132.70, 132.25, 130.39, 129.44, 126.78, 125.71, 124.01, 117.65, 113.47, 92.14.

![Chemical structure of 3-Bromo-2-(4-bromophenyl)imidazo[1,2-a]pyridine](image)

3-Bromo-2-(4-bromophenyl)imidazo[1,2-a]pyridine (4g) (Salgado-Zamora et al., 2008).

White solid was obtained in 58% isolated yield. 1H NMR (400 MHz, DMSO-d_6) δ 8.33 (d, $J = 6.9$ Hz, 1H), 8.04 – 8.02 (m, 2H), 7.68 – 7.63 (m, 3H), 7.40 – 7.36 (m, 1H), 7.08 (t, $J = 6.8$ Hz, 1H); 13C NMR (100 MHz, DMSO-d_6) δ 144.78, 140.15, 131.89, 131.34, 129.00, 125.86, 124.39, 121.40, 116.96, 113.57, 91.59.

![Chemical structure of 3-Bromo-2-(4-(trifluoromethyl)phenyl)imidazo[1,2-a]pyridine](image)

3-Bromo-2-(4-(trifluoromethyl)phenyl)imidazo[1,2-a]pyridine (4h) (Zhou et al., 2016).

White solid was obtained in 67% isolated yield. 1H NMR (400 MHz, DMSO-d_6) δ 8.36 – 8.34 (m, 1H), 8.27 (d, $J = 8.1$ Hz, 2H), 7.82 (d, $J = 8.2$ Hz, 2H), 7.68 – 7.65 (m, 1H), 7.41 – 7.37 (m, 1H), 7.11 – 7.07 (m, 1H); 13C NMR (100 MHz, DMSO-d_6) δ 145.03, 139.70, 136.79, 136.79, 128.33 (q, $J = 32$ Hz), 127.73, 126.36, 125.48 (q, $J = 3.7$ Hz), 124.76, 124.35 (q, $J = 271$ Hz), 117.29, 113.99, 92.85; 19F NMR (376 MHz, CDCl$_3$) δ –62.54.
4-(3-Bromoimidazo[1,2-a]pyridin-2-yl)benzonitrile (4i).

White solid was obtained in 56% isolated yield. 1H NMR (400 MHz, DMSO-$_d$$_6$) δ 8.44 (d, J = 5.6 Hz, 1H), 8.30 (d, J = 7.1 Hz, 2H), 7.98 (d, J = 7.2 Hz, 2H), 7.71 (d, J = 8.8 Hz, 1H), 7.45 (t, J = 7.5 Hz, 1H), 7.15 (s, 1H); 13C NMR (100 MHz, DMSO-$_d$$_6$) δ 144.98, 139.33, 137.15, 132.28, 127.55, 126.28, 124.56, 118.49, 117.15, 113.88, 110.42, 92.90. HRMS (ESI): m/z calcd for C$_{14}$H$_9$BrN$_3$ [M+H]$^+$: 297.9974, found: 297.9967.

3-Bromo-2-(4-methoxyphenyl)imidazo[1,2-a]pyridine (4j) (Zhou et al., 2016).

White solid was obtained in 74% isolated yield. 1H NMR (400 MHz, DMSO-$_d$$_6$) δ 8.35 – 8.33 (m, 1H), 8.05 – 8.01 (m, 2H), 7.65 – 7.62 (m, 1H), 7.38 – 7.34 (m, 1H), 7.08 – 7.04 (m, 3H), 3.81 (s, 3H); 13C NMR (100 MHz, DMSO-$_d$$_6$) δ 159.37, 144.76, 141.38, 128.70, 125.71, 125.19, 124.48, 116.85, 114.06, 113.48, 90.68, 55.25 (d, J = 7.3 Hz).

3-Bromo-2-(tert-butyl)imidazo[1,2-a]pyridine (4k) (Li et al., 2018).

Light yellow oil was obtained in 83% isolated yield. 1H NMR (400 MHz, CDCl$_3$) δ 8.12 (d, J = 6.9 Hz, 1H), 7.60 (d, J = 9.0 Hz, 1H), 7.21 – 7.17 (m, 1H), 6.89 – 7.86 (m, 1H), 1.53 (s, 9H); 13C NMR (100 MHz, CDCl$_3$) δ 151.84, 143.75, 124.08, 123.22, 117.19, 112.59, 90.06, 33.06, 29.67.

3-Bromo-8-methyl-2-phenylimidazo[1,2-a]pyridine (4l) (Zhou et al., 2016).
Light yellow oil was obtained in 93% isolated yield. 1H NMR (400 MHz, CDCl$_3$) δ 8.04 – 8.01 (m, 2H), 7.87 (d, $J = 6.8$ Hz, 1H), 7.37 (t, $J = 7.6$ Hz, 2H), 7.27 (t, $J = 7.4$ Hz, 1H), 6.89 – 6.87 (m, 1H), 6.66 (t, $J = 6.9$ Hz, 1H), 2.54 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 145.58, 142.00, 133.01, 128.32, 128.01, 127.92, 127.46, 123.70, 121.65, 112.86, 91.88, 16.47.

![Image](image)

3-Bromo-6-methyl-2-phenylimidazo[1,2-a]pyridine (4m) (Zhou et al., 2016).

Light yellow oil was obtained in 83% isolated yield. 1H NMR (400 MHz, DMSO-d_6) δ 8.16 (s, 1H), 8.09 – 8.07 (m, 2H), 7.56 (d, $J = 9.2$ Hz, 1H), 7.49 (t, $J = 7.6$ Hz, 2H), 7.39 (t, $J = 7.4$ Hz, 1H), 7.24 – 7.21 (m, 1H), 2.35 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 144.31, 142.11, 132.85, 128.32, 128.19, 128.04, 127.65, 122.79, 121.50, 116.73, 91.14, 18.24.

![Image](image)

3-Bromoimidazo[1,2-a]pyridine (4n) (Pelleter et al., 2009).

Light yellow oil was obtained in 61% isolated yield. 1H NMR (400 MHz, CDCl$_3$) δ 8.07 – 8.05 (m, 1H), 7.60 (d, $J = 9.1$ Hz, 1H), 7.56 (s, 1H), 7.21 – 7.17 (m, 1H), 6.90 – 6.86 (m, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 145.55, 133.36, 124.19, 123.42, 117.68, 112.82, 94.46.

![Image](image)

3-Bromo-6-chloro-2-phenylimidazo[1,2-a]pyridine (4o).

White solid was obtained in 90% isolated yield. 1H NMR (400 MHz, DMSO-d_6) δ 8.48 (d, $J = 1.1$ Hz, 1H), 8.07 (d, $J = 7.6$ Hz, 2H), 7.69 (d, $J = 9.5$ Hz, 1H), 7.50 (t, $J = 7.5$ Hz, 2H), 7.43 – 7.39 (m, 2H); 13C NMR (100 MHz, CDCl$_3$) δ 143.65, 143.48, 132.24, 128.51, 128.46, 127.73, 126.50, 121.84, 121.49, 117.86, 92.11. HRMS (ESI): m/z calcd for C$_{13}$H$_9$BrClN$_2$ [M+H]$^+$: 306.9632, found: 306.9621.
3-Bromo-2-phenylbenzo[d]imidazo[2,1-b]thiazole (4p).

White solid was obtained in 44% isolated yield. 1H NMR (400 MHz, CDCl$_3$) δ 8.24 (d, J = 8.2 Hz, 1H), 7.92 (d, J = 7.0 Hz, 2H), 7.53 (d, J = 7.9 Hz, 1H), 7.35 (t, J = 7.6 Hz, 2H), 7.29 – 7.17 (m, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 147.89, 143.89, 132.82, 132.53, 129.98, 128.33, 127.83, 127.07, 125.73, 125.09, 124.03, 113.51, 91.81. HRMS (ESI): m/z calcd for C$_{15}$H$_{10}$BrN$_2$S [M+H]$^+$: 328.9743, found: 328.9757.

4-Bromo-1-phenyl-1H-pyrazole (4q) (Song et al., 2015).

White solid was obtained in 80% isolated yield. 1H NMR (400 MHz, CDCl$_3$) δ 7.93 (s, 1H), 7.68 (s, 1H), 7.66 – 7.61 (m, 2H), 7.49 – 7.42 (m, 2H), 7.35 – 7.28 (m, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 141.43, 139.52, 129.48, 126.98, 126.95, 118.93, 95.56.

4,5-Dibromo-3-phenyl-1H-pyrazole (4r) (Trofimenko et al., 2007).

White solid was obtained in 68% isolated yield. 1H NMR (400 MHz, CDCl$_3$) δ 10.84 (s, 1H), 7.75 – 7.64 (m, 2H), 7.54 – 7.37 (m, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 142.78, 129.65, 129.36, 128.94, 127.40, 127.25, 95.22.

5,7-Dibromoquinolin-8-amine (4s) (da Silva et al., 2007).
Yellow solid was obtained in 80% isolated yield. 1H NMR (400 MHz, CDCl$_3$) δ 8.73 – 8.72 (m, 1H), 8.36 – 8.33 (m, 1H), 7.76 (s, 1H), 7.48–7.45 (m, 1H), 5.35 (s, 2H); 13C NMR (100 MHz, CDCl$_3$) δ 148.22, 141.93, 138.09, 135.66, 133.10, 126.61, 122.37, 106.75, 103.17.

\[
\begin{array}{c}
\text{Br} \\
\text{N} \\
\text{NH}_2
\end{array}
\]

5-Bromopyridin-2-amine (4t) (Li et al., 2013).

White solid was obtained in 60% isolated yield. 1H NMR (400 MHz, DMSO-d_6) δ 7.98 – 7.90 (m, 1H), 7.50 – 7.47 (m, 1H), 6.47 – 6.37 (m, 1H), 6.14 (s, 2H); 13C NMR (100 MHz, CDCl$_3$) δ 156.96, 148.43, 140.15, 110.09, 108.16.

\[
\begin{array}{c}
\text{Cl} \\
\text{Br} \\
\text{N} \\
\text{NH}_2
\end{array}
\]

3-Bromo-5-chloropyridin-2-amine (4u).

Yellow solid was obtained in 49% isolated yield. 1H NMR (400 MHz, CDCl$_3$) δ 7.95 (d, $J = 2.2$ Hz, 1H), 7.63 (d, $J = 2.2$ Hz, 1H), 5.19 (s, 2H); 13C NMR (100 MHz, CDCl$_3$) δ 154.16, 145.06, 139.42, 119.94, 103.95. HRMS (ESI): m/z calcd for C$_5$H$_5$BrClN$_2$ [M+H]$^+$: 206.9319, found: 206.9330.

\[
\begin{array}{c}
\text{F}_3\text{C} \\
\text{Br} \\
\text{N} \\
\text{NH}_2
\end{array}
\]

3-Bromo-5-(trifluoromethyl)pyridin-2-amine (4v).

White solid was obtained in 60% isolated yield. 1H NMR (400 MHz, DMSO-d_6) δ 8.25 (d, $J = 1.1$ Hz, 1H), 8.00 (d, $J = 2.0$ Hz, 1H), 7.04 (s, 2H); 13C NMR (100 MHz, CDCl$_3$) δ 157.77, 144.58 (q, $J = 4.0$ Hz), 144.56, 123.29 (q, $J = 271.1$ Hz), 117.71 (q, $J = 33.6$ Hz), 103.44; 19F NMR (376 MHz, CDCl$_3$) δ -61.18. HRMS (ESI): m/z calcd for C$_6$H$_5$BrF$_3$N$_2$ [M+H]$^+$: 240.9583, found: 240.9584.
2-Bromo-4-chloroaniline (**4w**) (Li et al., 2013).

White solid was obtained in 59% isolated yield. 1H NMR (400 MHz, CDCl$_3$) δ 7.36 (d, $J = 2.3$ Hz, 1H), 7.04 – 7.01 (m, 1H), 6.61 (d, $J = 8.6$ Hz, 1H), 4.01 (s, 2H); 13C NMR (100 MHz, CDCl$_3$) δ 142.73, 131.62, 128.18, 122.75, 116.09, 108.98.

![2-Bromo-4-chloroaniline](image)

2,4-Dibromoaniline (**4x**) (Li et al., 2013).

White solid was obtained in 57% isolated yield. 1H NMR (400 MHz, CDCl$_3$) δ 7.49 (d, $J = 2.1$ Hz, 1H), 7.16 – 7.13 (m, 1H), 6.57 (d, $J = 8.5$ Hz, 1H), 3.99 (s, 2H); 13C NMR (100 MHz, CDCl$_3$) δ 143.11, 134.22, 130.98, 116.56, 109.40, 109.36.

![2,4-Dibromoaniline](image)

2-Bromo-1,3,5-trimethoxybenzene (**4y**) (Tang et al., 2018).

White solid was obtained in 85% isolated yield. 1H NMR (400 MHz, CDCl$_3$) δ 6.14 (s, 2H), 3.85 (s, 6H), 3.79 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 160.30, 157.24, 91.70, 91.44, 56.12, 55.31.

![2-Bromo-1,3,5-trimethoxybenzene](image)

2-Bromo-1,5-dimethoxy-3-methylbenzene (**4z**) (Davis et al., 2000).

White solid was obtained in 83% isolated yield. 1H NMR (400 MHz, CDCl$_3$) δ 6.41 (d, $J = 2.7$ Hz, 1H), 6.33 (d, $J = 2.7$ Hz, 1H), 3.84 (s, 3H), 3.77 (s, 3H), 2.38 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 159.24, 156.56, 139.68, 107.19, 105.03, 97.16, 56.14, 55.33, 23.43.
(1,2-Dibromoethyl)benzene (6a) (Martins et al., 2018).

White solid was obtained in 73% isolated yield. 1H NMR (400 MHz, CDCl$_3$) δ 7.42 – 7.30 (m, 5H), 5.15 – 5.11 (m, 1H), 4.08 – 3.98 (m, 2H); 13C NMR (100 MHz, CDCl$_3$) δ 138.53, 129.10, 128.78, 127.59, 50.86, 35.00.

1-(Tert-butyl)-4-(1,2-dibromoethyl)benzene (6b) (Martins et al., 2018).

Colorless oil was obtained in 50% isolated yield. 1H NMR (400 MHz, CDCl$_3$) δ 7.43 – 7.37 (m, 2H), 7.36 – 7.32 (m, 2H), 5.19 – 5.15 (m, 1H), 4.13 – 3.99 (m, 2H), 1.33 (s, 9H); 13C NMR (100 MHz, CDCl$_3$) δ 152.26, 135.51, 127.26, 125.78, 51.23, 35.14, 34.69, 31.22.

1-(1,2-Dibromoethyl)-4-fluorobenzene (6c) (Wilson et al., 2018).

White solid was obtained in 74% isolated yield. 1H NMR (400 MHz, CDCl$_3$) δ 7.48 – 7.31 (m, 2H), 7.15 – 7.02 (m, 2H), 5.16 – 5.12 (m, 1H), 4.10 – 4.05 (m, 1H), 4.01 – 3.95 (m, 1H); 13C NMR (100 MHz, CDCl$_3$) δ162.77 (d, J = 249.1 Hz), 134.52 (d, J = 4Hz), 129.48 (d, J = 9 Hz), 115.85 (d, J = 22 Hz) 49.79, 34.97; 19F NMR (376 MHz, CDCl$_3$) δ -111.64.

1-Chloro-4-(1,2-dibromoethyl)benzene (6d) (Martins et al., 2018).
Yellow oil was obtained in 77% isolated yield. 1H NMR (400 MHz, CDCl$_3$) δ 7.38 – 7.33 (m, 4H), 5.13 – 5.09 (m, 1H), 4.09 – 4.05 (m, 1H), 4.00 – 3.94 (m, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 137.10, 134.89, 129.03, 128.98, 49.53, 34.65.

1-Bromo-4-(1,2-dibromoethyl)benzene (6e) (Karki et al., 2015).

Yellow oil was obtained in 80% isolated yield. 1H NMR (400 MHz, CDCl$_3$) δ 7.57 – 7.48 (m, 2H), 7.35 – 7.23 (m, 2H), 5.12 – 5.08 (m, 1H), 4.08 – 4.04 (m, 1H), 3.97 (t, $J = 10.6$ Hz, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 137.60, 132.00, 129.25, 123.10, 49.54, 34.57.

1-Bromo-3-(1,2-dibromoethyl)benzene (6f).

Yellow oil was obtained in 58% isolated yield. 1H NMR (400 MHz, CDCl$_3$) δ 7.55 (t, $J = 1.9$ Hz, 1H), 7.48 – 7.46 (m, 1H), 7.34 – 7.31 (m, 1H), 7.25 – 7.22 (m, 1H), 5.07 – 5.03 (m, 1H), 4.06 – 4.02 (m, 1H), 3.95 (t, $J = 10.6$ Hz, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 140.71, 132.18, 130.72, 130.28, 126.29, 122.65, 49.21, 34.55. HRMS (EI): m/z calcd for C$_8$H$_7$Br$_3$ [M]$^+$: 339.8098, found: 339.8105.

1-Bromo-2-(1,2-dibromoethyl)benzene (6g).

Yellow oil was obtained in 57% isolated yield. 1H NMR (400 MHz, CDCl$_3$) δ 7.61 – 7.59 (m, 1H), 7.56 – 7.53 (m, 1H), 7.41 – 7.37 (m, 1H), 7.22 – 7.18 (m, 1H), 5.74 – 5.70 (m, 1H), 4.10 – 4.07 (m, 2H); 13C NMR (100 MHz, CDCl$_3$) δ 137.53, 133.24, 130.29, 128.28, 128.13, 124.32, 48.32, 33.70. HRMS (EI): m/z calcd for C$_8$H$_7$Br$_3$ [M]$^+$: 339.8098, found: 339.8094.
4-(1,2-Dibromoethyl)phenyl acetate (6h) (Rej et al., 2017).

White solid was obtained in 70% isolated yield. 1H NMR (400 MHz, CDCl$_3$) δ 7.47 – 7.37 (m, 2H), 7.18 – 7.08 (m, 2H), 5.16 – 5.12 (m, 1H), 4.08 – 4.04 (m, 1H), 3.98 (t, J = 10.5 Hz, 1H), 2.29 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 168.97, 150.89, 135.99, 128.76, 121.87, 50.03, 34.95, 21.07.

1-(1,2-Dibromoethyl)-4-(trifluoromethyl)benzene (6i).

Yellow oil was obtained in 40% isolated yield. 1H NMR (400 MHz, CDCl$_3$) δ 7.64 (d, J = 8.2 Hz, 2H), 7.51 (d, J = 8.1 Hz, 2H), 5.16 – 5.12 (m, 1H), 4.09 – 4.05 (m, 1H), 3.98 (t, J = 10.7 Hz, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 142.45, 131.11 (q, J = 32.7 Hz), 128.13, 125.83 (q, J = 3.8 Hz), 123.73 (q, J = 270.6 Hz), 48.88, 34.28; 19F NMR (376 MHz, CDCl$_3$) δ –62.71. HRMS (EI): m/z calcd for C$_9$H$_7$Br$_2$F$_3$ [M]$^+$: 329.8867, found: 329.8869.

1-(1,2-Dibromoethyl)-4-nitrobenzene (6j).

Colorless oil was obtained in 41% isolated yield. 1H NMR (400 MHz, CDCl$_3$) δ 8.35 – 8.13 (m, 2H), 7.78 – 7.47 (m, 2H), 5.19 – 5.15 (m, 1H), 4.11 – 4.07 (m, 1H), 3.98 (t, J = 10.8 Hz, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 148.01, 145.45, 128.76, 124.04, 47.77, 33.86. HRMS (ESI): m/z calcd for C$_8$H$_7$Br$_2$N NaO$_2$ [M+Na]$^+$: 329.8736, found: 329.8732.
(1,2-Dibromopropyl)benzene (6k) (Kulangiappar et al., 2016).

White solid was obtained in 86% isolated yield. 1H NMR (400 MHz, CDCl$_3$) δ 7.41 – 7.27 (m, 5H), 5.03 (d, $J = 10.2$ Hz, 1H), 4.63 – 4.55 (m, 1H), 2.03 (d, $J = 6.5$ Hz, 3H); 13C NMR (100MHz, CDCl$_3$) δ 140.46, 128.70, 128.55, 127.65, 59.11, 51.10, 25.75.

![1,2-Dibromopropyl]benzene

2-(1,2-Dibromoethyl)naphthalene (6l) (Song et al., 2015).

White solid was obtained in 43% isolated yield. 1H NMR (400 MHz, CDCl$_3$) δ 7.98 – 7.81 (m, 4H), 7.55 – 7.51 (m, 3H), 5.37 – 5.33 (m, 1H), 4.19 – 4.14 (m, 2H); 13C NMR (100 MHz, CDCl$_3$) δ 135.68, 133.48, 132.88, 129.05, 128.16, 127.74, 127.39, 126.87, 126.65, 124.34, 51.34, 34.78.

![2-(1,2-Dibromoethyl)naphthalene]

Yellow oil was obtained in 86% isolated yield. 1H NMR (400 MHz, CDCl$_3$) δ 7.40 – 7.27 (m, 5H), 4.41 – 7.35 (m, 1H), 3.86 – 3.82 (m, 1H), 3.67 – 3.62 (m, 1H), 3.55 – 3.50 (m, 1H), 3.18 – 3.12 (m, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 136.81, 129.46, 128.46, 127.16, 52.38, 41.97, 36.02.

Yellow oil was obtained in 38% isolated yield. 1H NMR (400 MHz, CDCl$_3$) δ 7.43 – 7.28 (m, 2H), 7.07 – 7.00 (m, 1H), 7.00 – 6.93 (m, 2H), 4.48 – 4.42 (m, 1H), 4.40 – 4.35 (m, 2H), 4.02 – 3.87 (m, 2H); 13C NMR (100 MHz, CDCl$_3$) δ 157.90, 129.55, 121.62, 114.82, 69.03, 47.72, 32.74.
2-(3,4-Dibromobutyl)isoindoline-1,3-dione (6o).

Colorless oil was obtained in 70% isolated yield. 1H NMR (400 MHz, DMSO-d_6) δ 7.84 – 7.79 (m, 4H), 4.94 – 4.43 (m, 1H), 4.00 – 3.96 (m, 1H), 3.92 – 3.88 (m, 1H), 3.80 – 3.71 (m, 2H), 2.42 – 4.34 (m, 1H), 2.20 – 2.01 (m, 1H). 13C NMR (100 MHz, DMSO-d_6) δ 167.83, 134.33, 131.67, 123.00, 51.56, 38.45, 35.61, 34.99. HRMS (ESI): m/z calcd for C$_{12}$H$_{11}$Br$_2$NNaO$_2$ [M+Na]$^+$: 381.9049, found: 381.9048.

(2,3-Dibromopropyl)cyclopentane (6p).

Colorless oil was obtained in 77% isolated yield. 1H NMR (400 MHz, CDCl$_3$) δ 4.18 – 4.11 (m, 1H), 3.92 – 3.80 (m, 1H), 3.64 – 3.59 (m, 1H), 2.20 – 1.96 (m, 2H), 1.95 – 1.73 (m, 3H), 1.73 – 1.46 (m, 4H), 1.31 – 1.12 (m, 1H), 1.10 – 1.01 (m, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 52.70, 42.68, 38.00, 37.10, 32.80, 31.44, 25.03, 24.97. HRMS (EI): m/z calcd for C$_8$H$_{14}$Br$_2$ [M]$^+$: 267.9462, found: 267.9452.

(2,3-Dibromopropyl)cyclohexane (6q).

Colorless oil was obtained in 85% isolated yield. 1H NMR (400 MHz, CDCl$_3$) δ 4.31 – 4.13 (m, 1H), 3.8 – 3.84 (m, 1H), 3.70 – 3.49 (m, 1H), 2.01 – 1.94 (m, 1H), 1.85 – 1.49 (m, 7H), 1.31 – 1.15 (m, 3H), 1.09 – 0.95 (m, 1H), 0.93 – 0.77 (m, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 50.99, 43.95, 37.21, 35.52, 33.77, 31.48, 26.40, 26.12, 25.83. HRMS (EI): m/z calcd for C$_9$H$_{16}$Br$_2$ [M]$^+$: 281.9619, found: 281.9622.
2,3-Dibromooctane (6r) (Badetti et al., 2016).

Colorless oil was obtained in 80% isolated yield. 1H NMR (400 MHz, CDCl$_3$) δ 4.47 – 4.41 (m, 1H), 4.25 – 4.18 (m, 1H), 2.08 – 2.01 (m, 1H), 1.77 (d, J = 6.7 Hz, 3H), 1.66 – 1.58 (m, 1H), 1.43 – 1.28 (m, 5H), 0.98 – 0.82 (m, 4H); 13C NMR (100 MHz, CDCl$_3$) δ 60.11, 52.37, 33.89, 30.95, 27.44, 22.42, 21.52, 13.95.

3,4-Dibromooctane (6s) (Conte et al., 1994).

Colorless oil was obtained in 71% isolated yield. 1H NMR (400 MHz, CDCl$_3$) δ 4.19 – 4.10 (m, 2H), 2.22 – 2.09 (m, 2H), 2.04 – 1.90 (m, 2H), 1.65 – 1.54 (m, 1H), 1.49 – 1.26 (m, 3H), 1.08 (t, J = 7.2 Hz, 3H), 0.93 (t, J = 7.2 Hz, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 61.53, 59.40, 36.69, 30.23, 29.00, 22.01, 13.89, 11.35.

1,2-Dibromodecane (6t) (Song et al., 2015).

Colorless oil was obtained in 89% isolated yield. 1H NMR (400 MHz, CDCl$_3$) δ 4.22 – 4.12 (m, 1H), 3.87 – 3.83 (m, 1H), 3.63 (t, J = 10.0 Hz, 1H), 2.20 – 2.05 (m, 1H), 1.83 – 1.73 (m, 1H), 1.60 – 1.53 (m, 1H), 1.49 – 1.24 (m, 11H), 0.92 – 0.83 (m, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 53.12, 36.33, 36.02, 31.81, 29.33, 29.17, 28.80, 26.73, 22.63, 14.08.

1,2-Dibromocyclododecane (6u).
Light yellow oil was obtained in 73% isolated yield. 1H NMR (400 MHz, CDCl$_3$) δ 4.37 – 4.30 (m, 2H), 2.22 – 2.14 (m, 2H), 2.08 – 1.93 (m, 2H), 1.45 – 1.27 (m, 16H); 13C NMR (100 MHz, CDCl$_3$) δ 55.95, 36.10, 24.63, 23.29, 23.08, 22.53. HRMS (EI): m/z calcd for C$_{12}$H$_{22}$Br$_2$ [M]$^+$: 324.0088, found: 324.0093.

1,2-Dibromooctane (6v) (Martins et al., 2018).
Colorless oil was obtained in 83% isolated yield; 1H NMR (400 MHz, CDCl$_3$) δ 4.24 – 4.10 (m, 1H), 3.87 – 3.82 (m, 1H), 3.63 (t, J = 10.0 Hz, 1H), 2.18 – 2.09 (m, 1H), 1.88 – 1.69 (m, 1H), 1.64 – 1.47 (m, 1H), 1.48 – 1.27 (m, 7H), 0.95 – 0.82 (m, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 53.13, 36.34, 36.03, 31.56, 28.46, 26.70, 22.53, 14.02.

1,2,8,9-Tetrabromononane (6w).
Colorless oil was obtained in 89% isolated yield. 1H NMR (400 MHz, CDCl$_3$) δ 4.23 – 4.08 (m, 2H), 3.86 – 3.81 (m, 2H), 3.62 (t, J = 10.0 Hz, 2H), 2.21 – 2.05 (m, 2H), 1.88 – 1.69 (m, 2H), 1.69 – 1.52 (m, 2H), 1.51 – 1.28 (m, 4H); 13C NMR (100 MHz, CDCl$_3$) δ 52.75, 52.73, 36.19, 35.74, 35.70, 27.93, 27.85, 26.41, 26.37. HRMS (ESI): m/z calcd for C$_9$H$_{16}$Br$_3$ [M-Br]$^+$: 360.8802, found: 360.8803.

(2-Bromoethene-1,1-diyl)dibenzene (6x) (Bi et al., 2017).
Light yellow oil was obtained in 95% isolated yield. 1H NMR (400 MHz, CDCl$_3$) δ 7.41 – 7.32 (m, 3H), 7.31 – 7.23 (m, 5H), 7.22 – 7.16 (m, 2H), 6.74 (s, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 146.78, 140.65, 139.02, 129.61, 128.37, 128.17, 128.05, 127.91, 127.56, 105.16.
(E)-1-(1,2-dibromovinyl)-4-methoxybenzene (8a) (Song and Li et al., 2015).

Colorless oil was obtained in 65% isolated yield. 1H NMR (400 MHz, CDCl$_3$) δ 7.41 (d, $J = 8.9$ Hz, 2H), 6.82 (d, $J = 8.9$ Hz, 2H), 6.66 (s, 1H), 3.75 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 160.11, 130.76, 129.09, 121.44, 113.51, 101.92, 55.30.

(E)-(1,2-dibromoprop-1-en-1-yl)benzene (8b). (Kikushima et al., 2010).

Colorless oil was obtained in 33% isolated yield. 1H NMR (400 MHz, CDCl$_3$) δ 7.40 – 7.30 (m, 5H), 2.62 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 140.75, 129.07, 128.58, 128.21, 117.22, 116.77, 29.31.

Ethyl 2-bromo-2-(pyridin-2-yl)acetate (10).

Light yellow oil was obtained in 54% isolated yield. 1H NMR (400 MHz, CDCl$_3$) δ 8.64 – 8.45 (m, 1H), 7.82 – 7.56 (m, 2H), 7.24 – 7.21 (m, 1H), 5.49 (s, 1H), 4.30 – 4.17 (m, 2H), 1.25 (t, $J = 7.1$ Hz, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 167.44, 155.16, 148.93, 137.12, 123.46, 123.41, 62.50, 47.43, 13.74. HRMS (ESI): m/z calcd for C$_9$H$_{10}$BrNNaO$_2$ [M+Na]$^+$: 265.9787, found: 265.9788.

Ethyl 2,2-dibromo-2-(pyridin-2-yl)acetate (11).

Light yellow oil was obtained in 40% isolated yield. 1H NMR (400 MHz, CDCl$_3$) δ 8.57 – 8.43 (m, 1H), 8.02 – 7.99 (m, 1H), 7.81 – 7.76 (m, 1H), 7.24 – 7.20 (m, 1H), 4.44 – 4.29 (m, 2H), 1.30 – 1.25 (m, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 165.41, 158.39, 148.05, 137.44, 123.66, 121.80,
64.24, 58.61, 13.67. HRMS (ESI): m/z calcd for C₉H₉Br₂NNaO₂ [M+Na]+: 343.8892, found: 343.8889.

1-(3-Bromoprop-1-en-2-yl)-4-chlorobenzene (13) (Gonzalez-de-Castro et al., 2015).
Colorless oil was obtained in 32% isolated yield. ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, J = 8.6 Hz, 2H), 7.35 (d, J = 8.7 Hz, 2H), 5.54 (s, 1H), 5.50 (s, 1H), 4.35 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 143.17, 135.96, 134.13, 128.67, 127.42, 117.60, 33.84.

Supplemental References
Xiao, X., Xie, Y., Bai, S., Deng, Y., Jiang, H., and Zeng, W. (2015). Transition-Metal-Free Tandem Chlorocyclization of Amines with Carboxylic Acids: Access to Chloroimidazo[1,2-a]pyridines. Org. Lett. 17, 3998-4001.
Li, J., Tang, J., Wu, Y., He, Q., and Yu, Y. (2018). Transition-metal-free regioselective C–H halogenation of imidazo[1,2-a]pyridines: sodium chlorite/bromite as the halogen source. RSC Adv. 8, 5058-5062.
Tang, R.-J., Milcent, T., and Crousse, B. (2018). Regioselective Halogenation of Arenes and Heterocycles in Hexafluoroisopropanol. J. Org. Chem. 83, 930-938.
Zhou, X., Yan, H., Ma, C., He, Y., Li, Y., Cao, J., Yan, R., and Huang, G. (2016). Copper-Mediated Aerobic Oxidative Synthesis of 3-Bromoimidazo[1,2-a]pyridines with Pyridines and Enamides. J. Org. Chem. 81, 25-31.
Salgado-Zamora, H., Velazquez, M., Mejía, D., Campos-Aldrete, M. E., Jimenez, R., Cervantes, H. (2008). Influence of the 2-aryl group on the ipso electrophilic substitution process of 2-arylimidazo[1,2-A] pyridines. Heterocycl. Commun. 14, 27-32.
Pelleter, J., and Facile, F.R. (2009). Fast and Safe Process Development of Nitration and Bromination Reactions Using Continuous Flow Reactors. Org. Process Res. Dev. 13, 698-705.
Li, X.-L., Wu, W., Fan, X.-H., and Yang, L.-M. (2013). A facile, regioselective and controllable bromination of aromatic amines using a CuBr₂/Oxone system. RSC Adv. 3, 12091-12095.
Davis, F.A., Mohanty, P.K., Burns, D.M., and Andemichael, Y.W. (2000). Sulfinimine-Mediated Asymmetric Synthesis of 1,3-Disubstituted Tetrahydroisoquinolines: A Stereoselective Synthesis of cis- and trans-6,8-Dimethoxy-1,3-dimethyl-1,2,3,4-tetrahydroisoquinoline. Org. Lett. 2, 3901-3903.

Martins, N.S., and Alberto, E.E. (2018). Dibromination of alkenes with LiBr and H₂O₂ under mild conditions. New J. Chem. 42, 161-167.

Wilson, K.L., Murray, J., Jamieson, C., and Watson, A.J.B. (2018). Cyrene as a Bio-Based Solvent for the Suzuki-Miyaura Cross-Coupling. Synlett 29, 650-654.

Karki, M., and Magolan, J. (2015). Bromination of Olefins with HBr and DMSO. J. Org. Chem. 80, 3701-3707.

Rej, S., Pramanik, S., Tsurugi, H., and Mashima, K. (2017). Dehalogenation of vicinal dihalo compounds by 1,1’-bis(trimethylsilyl)-1H,1’ H-4,4’-bipyridinylidene for giving alkenes and alkynes in a salt-free manner. Chem. Commun. 53, 13157-13160.

Kulangiappar, K., Ramaprakash, M., Vasudevan, D., and Raju, T. (2016). Electrochemical bromination of cyclic and acyclic enes using biphasic electrolysis. Synth. Commun. 46, 145-153.

Song, S., Li, X., Sun, X., Yuana, Y., and Jiao, N. (2015). Efficient bromination of olefins, alkynes, and ketones with dimethyl sulfoxide and hydrobromic acid. Green Chem. 17, 3285-3289.

Badetti, E., Romano, F., Marchiò, L., Taşkesenlioğlu, S., Daştan, A., Zonta, C., and Licini, G. (2016). Effective Bromo and Chloro Peroxidation Catalysed by Tungsten (VI) Amino Triphenolate Complexes. Dalton Trans. 45, 14603-14608.

Conte, V., Furia, F.D., and Moro, S. (1994). Mimicking the Vanadium Bromoperoxidases Reactions: Mild and Selective Bromination of Arenes and Alkenes in a Two-Phase System. Tetrahedron Lett. 35, 7429-1432.

Bi, M.-X., Qian, P., Wang, Y.-K., Zha, Z.-G., and Wang, Z.-Y. (2017). Decarboxylative bromination of α,β-unsaturated carboxylic acids via an anodic oxidation. Chin. Chem. Lett. 28, 1159-1162.

Wang, M., Zhang, Y., Wang, T., Wang, C., Xue, D., and Xiao, J. (2016). Story of an Age-Old Reagent: An Electrophilic Chlorination of Arenes and Heterocycles by 1-Chloro-1,2-benziodoxol-3-one. Org. Lett. 18, 1976-1979.
Song, S., Sun, X., Li, X., Yuan, Y., and Jiao, N. (2015). Efficient and Practical Oxidative Bromination and Iodination of Arenes and Heteroarenes with DMSO and Hydrogen Halide: A Mild Protocol for Late-Stage Functionalization. Org. Lett. 17, 2886-2889.

Trofimenko, S., Yap, G. P. A., Jove, F. A., Claramunt, R. M. Garca, M. A., Dolores Santa Maria, M. Alkorta, I., and Elguero, J. (2007). Structure and tautomerism of 4-bromo substituted 1H-pyrazoles. Tetrahedron 63, 8104-8111.

da Silva, L. E., Joussef, A. C., Pacheco, L. K., and da Silva, D. G., Steindel, M., Rebolo, R. A., and Schmidt, B. (2007). Synthesis and in vitro evaluation of leishmanicidal and trypanocidal activities of N-quinolin-8-yl-arylsulfonamides. Bioorg Med Chem 15, 7553-7560.

Song, S., Li, X., Sun, X., Yuan, Y., and Jiao, N. (2015). Efficient bromination of olefins, alkynes, and ketones with dimethyl sulfoxide and hydrobromic acid. Green Chem. 17, 3285-3289.

Kikushima, K., Moriuchi, T., and Hirao, T. (2010). Oxidative bromination reaction using vanadium catalyst and aluminum halide under molecular oxygen. Tetrahedron Lett. 51, 340-342.

Gonzalez-de-Castro, A., and Xiao, J. (2015). Green and Efficient: Iron-Catalyzed Selective Oxidation of Olefins to Carbonyls with O₂. J. Am. Chem. Soc. 137, 8206-8218.