An exact algorithm for the weighed mutually exclusive maximum set cover problem

Songjian Lu and Xinghua Lu

Department of Biomedical Informatics,
University of Pittsburgh, Pittsburgh, PA 15219, USA
Email: songjian@pitt.edu, xinghua@pitt.edu

Abstract. In this paper, we introduce an exact algorithm with a time complexity of $O^*(1.325^m)$† for the weighted mutually exclusive maximum set cover problem, where m is the number of subsets in the problem. This is an NP-hard motivated and abstracted from a bioinformatics problem of identifying signaling pathways based gene mutations. Currently, this problem is addressed using heuristic algorithms, which cannot guarantee the performance of the solution. By providing a relatively efficient exact algorithm, our approach will like increase the capability of finding better solutions in the application of cancer research.

1 Introduction

Cancers are genomic diseases in that genomic perturbations, such as mutation of genes, lead to perturbed cellular signal pathways, which in turn lead to uncontrolled cell growth. An important cancer research area is to discover perturbed signal transduction pathways in cancers, in order to gain insights in disease mechanisms and guide patient treatment. It has observed that mutation events among the genes constitute a signaling pathway tend to be occur in a mutually exclusive fashion [14,15]. This is because often one mutation in such a pathway may be usually sufficient to disrupt the signal carried by a pathway leading to cancers. Contemporary biotechnologies can easily detect what genes have mutated in tumor cells, providing an unprecedented opportunity to study cancer signaling pathways. However, as each tumor usually has up to hundreds of mutations, some dispersed in different pathways driving tumor genesis while others mutations not related to cancers, it is a challenge to find mutations across different patients that affect a common cancer signaling pathway. The property of mutual exclusivity of mutations in a common pathway can help us to recognize driver mutations within a common pathway [11,12,14].

The problem of finding mutations within a common pathway across tumors, i.e., finding the members of the pathway, can be cast as follows: finding a set of mutually exclusive mutations that cover a maximum number of tumors. This is an NP-hard (this problem is abstracted to the mutually exclusive maximum

†Note: Following the recent convention, we use a star * to represent that the polynomial part of the time complexity is neglected.
set cover problem), and previous studies \[4,12,16\] used heuristic algorithms to solve the problem, which could not guarantee the optimal solutions. Another shortcoming of the previous studies is that they do not consider the weight of the mutations. Since the signal carried by a signaling pathway is often reflected as a phenotype, statistical methods can be used to assign a weight to a type of gene mutation by assessing the strength of association of the mutation event and appearance of a phenotype of interest. Therefore, it is more biologically interesting to find a set of mutually exclusive mutations that carries as much weight as possible and covers as many tumors as possible—thus a weighted mutually exclusive maximum set cover problem.

The research on the mutually exclusive maximum set cover and the weighted mutually exclusive maximum set cover problems is limited. To our best knowledge, only Bjöklund et al. \[2\] gave an algorithm of $O^*(2^n)$ for the problem of finding k subsets in \mathcal{F} with maximum weight sum that cover all elements in X (the solution may not exists). The mutually exclusive maximum set cover problem is obtained by adding constrains to the set cover problem, which is a well-known NP-hard problem in Karp’s 21 NP-complete problems \[8\]. Much research about the set cover problem has been focused on the approximation algorithms, such as papers \[1,5,9,11\] gave polynomial time approximation algorithms that find solutions whose sizes are at most $c \log n$ times the size of the optimal solution, where c is a constant. There is also plenty research about the hitting set problem, which is equivalent to the set cover problem. In this direction, people mainly designed fixed-parameter tractable (FPT) algorithms that used the solution sizes k as parameter for the hitting set problem under the constrain that sizes of all subsets in the problem are bounded by d. For example, Niedermeier et al. \[13\] gave a $O^*(2.270^k)$ algorithm for the 3-hitting set problem, and Fernau et al. \[6\] gave a $O^*(2.179^k)$ algorithm respectively. Very recently, people also studied the extension version of the set cover problem that find a sub-set \mathcal{F}' of \mathcal{F} such that each element in X is covered by at least t subsets in \mathcal{F}'. For example, Hau et al. \[7\] designed an algorithm with time complexities of $O^*((t + 1)^n)$ for the problem; Lu et al. \[10\] further improved the algorithm under the constrain that there are certain elements in X are included in at most d subsets in \mathcal{F}. These two algorithms can be easily modified to solved the weighted mutually exclusive maximum set cover problem. However, as in application, n, the number of tumor samples, is large (can be several hundreds). Above two algorithms are not practical. On the
other hand, by excluding somatic mutations that are less possible to be related to a pathway in the study, the number of mutations is usually less than the number of tumors. Hence, there is a need to design better algorithms solving the weighted mutually exclusive maximum set cover problem and using \(m \) the number of subsets (mutations) in \(F \) as parameter.

In this paper, first, we will prove that the weighted mutually exclusive maximum set cover problem is NP-hard. Then, we will give an algorithm of running time bounded by \(O^*(1.325^m) \) for the problem. This running time complexity is only the worst case upper bound. In our test, this algorithm could solve the problem practically when it was applied to the TCGA data [15] for searching the diver mutations.

2 The weighted mutually exclusive maximum set cover problem is NP-hard

The formal definition of the weighted mutually exclusive maximum set cover problem is: given a ground set \(X \) of \(n \) elements, a collection \(F \) of \(m \) subsets of \(X \), and a weight function \(w : F \rightarrow [0, \infty) \), if \(F' = \{S_1, S_2, \ldots, S_h\} \subset F \) such that \(|(\bigcup_{i=1}^{h} S_i)| \) is maximized, and \(S_i \cap S_j = \emptyset \) for any \(i \neq j \), then we say \(F' \) is a mutually exclusive maximum set cover of \(X \) and \(\sum_{i=1}^{h} w(S_i) \) is the weight of \(F' \); the goal of the problem is to find a mutually exclusive maximum set cover of \(X \) with the minimum weight.

In this section, we will prove that the mutually exclusive maximum set cover problem, i.e. all subsets in \(F \) have equal weight, is NP-hard, which would in turn prove that the weighted mutually exclusive maximum set cover problem is NP-hard.

We will prove the NP-hardness of the mutually exclusive maximum set cover problem by reducing another NP-hard problem, the maximum 3-set packing problem, to it. Recall that the maximum 3-set packing problem is: given a collection \(F \) of subsets, where the size of each subset in \(F \) is 3, try to find an \(S \subset F \) such that subsets in \(S \) are pairwise disjoint and \(|S| \) is maximized.

Theorem 1. The mutually exclusive maximum set cover problem is NP-hard.

Proof. Let \(S = \{S_1, S_2, \ldots, S_m\} \) be an instance of the maximum 3-set packing problem. We create an instance of the mutually exclusive maximum set cover problem such that \(X = \bigcup_{i=1}^{m} S_i \) and \(F = S \).

It is obvious that \(P = \{P_1, P_2, \ldots, P_k\} \) is a solution of the mutually exclusive maximum set cover problem if and only if \(P = \{P_1, P_2, \ldots, P_k\} \) is a solution of the maximum 3-set packing problem. Thus, the mutually exclusive maximum set cover problem is NP-hard. \(\square \)
3 The main Algorithm

In this section, we will introduce our main algorithm. The basic idea of our method is branch and bound. The algorithm first finds a subset in F and then branches on it. By the mutual exclusivity, if any two subsets in F are overlapped, then at most one of them can be chosen into the solution. Hence, suppose that the subset S intersects with other d subsets in F, then if S is included into the solution, S and other d subsets intersected with S will be removed from the problem, and if S is excluded from the solution, S will be removed from the problem. We continue this process until the resulting sub-problems can be solved in constant or polynomial time.

The execution process of the algorithm is going through a search tree and the running of the algorithm is proportional to the number of leaves in the search tree. If letting $T(m)$ be the number of leaves of search tree when call the algorithm with m subsets in F, then we can obtain the recurrence relation $T(m) \leq T(m - (d + 1)) + T(m - 1)$. As if $d = 0$, the problem can be solved in polynomial time (all subsets in F will be included into the solution), $d \geq 1$. Therefore, we can obtain $T(m) \leq 1.619^m$, which means the problem can be solved in $O^*(1.619^m)$ time\(^1\). In this paper, we will improve the running time to solve the problem by carefully selecting subsets in F for branching.

Before present our major result, we prove three lemmas. Given an instance (X, F, w) of the weighted mutually exclusive maximum set cover problem, we make a graph G called the set interaction graph such that each subset in F makes a node in G and if any two subsets are interacted, an edge is added between them.

For the convenience, in the rest of paper, we will use a node in the intersection graph and a subset in F in a mixed way. Suppose $C = (V_c, E_c)$ is a connected component of G, we denote $(X, F, w)_C$ the sub-instance induced by component C, i.e. $(X, F, w)_C = (\cup_{S \in V_c} S, V_c, w)$. In the algorithm, when we say Solution_1 is better than Solution_2 if 1) Solution_1 covers more elements in X than Solution_2 covers, or 2) Solution_1 and Solution_2 cover the same number of element in x, however the weight of Solution_1 is less than the weight of Solution_2. In the intersection graph, neighbor(S) includes S and all nodes that are connected to S.

The first lemma will show that we can find the solution of the problem by finding the solutions of all sub-instances induced by connected components of the intersection graph G.

Lemma 1. Given an instance (X, F, w) of the weighted mutually exclusive maximum set cover problem, if the intersection graph obtained from the instance consists of several connected components, then the solution of the

\(^1\)Note: Given a recurrence relation $T(k) \leq \sum_{i=0}^{k-1} c_i T(i)$ such that all c_i are nonnegative real numbers, $\sum_{i=0}^{k-1} c_i > 0$, and $T(0)$ represents the leaves, then $T(k) \leq r^k$, where r is the unique positive root of the characteristic equation $t^k - \sum_{i=0}^{k-1} c_i t^i = 0$ deduced from the recurrence relation \([3]\).
problem is the union of solutions of all sub-instances induced by connected components.

Proof. As the subset(s) in each sub-instance has(have) no element(s) in other sub-instance(s), we can solve each sub-instance independently. It obvious that the optimal solutions of all sub-instances will make the optimal solution of the original instance.

In next lemma, we will show that if the maximum degree of the intersection graph obtained from the given instances is bounded by 2, i.e. each subset in the instance is overlapped with at most other 2 subsets, then the problem can be solved in polynomial time.

WMEM-Cover-2((X, F, w))
Input: An instance of the weighted mutually exclusive maximum set cover problem such that the degree of the interaction graph is bounded by 2.
Output: A mutually exclusive maximum set cover with minimum weight.
1. if X = ∅ or F = ∅ then
2. return ∅;
3. Find all connected components in the intersection graph and save them in Comp;
4. if the number of components is larger than 2 then
3.1 return $\bigcup_{C \in \text{Comp}}$ WMEM-Cover-2((X, F, w)C);
// (X, F, w)C represents the sub-instance induced by component C.
else
3.2 find the node x such that x is the middle node if the intersection graph is a path or x is any node if the intersection graph is a ring;
3.3 Solution$_1$ = {x} \cup WMEM-Cover-2((X \setminus x, F \setminus neighbor(x), w));
// The neighbor(x) includes x and all nodes that are connected to x.
3.4 Solution$_2$ = WMEM-Cover-2((X, F \setminus x, w));
3.5 return the best solution among Solution$_1$ and Solution$_2$;
// The best solution either covers more elements in X than other solutions cover or has minimum weight if all solutions cover the same number of elements in X.

Fig. 1. Algorithm for the weighted mutually exclusive maximum set cover problem with overlapped degrees bounded by 2.

Lemma 2. Given an instance (X, F, w) of the weighted mutually exclusive maximum set cover problem, if the degree of its intersection graph is bounded by 2, then the problem can be solved in $O(m^2)$ time.

Proof. We first prove that if the intersection graph has only one connected component, the running time of the algorithm WMEM-Cover-2 is polynomial.

As the degree of the intersection graph is bounded by 2, the connected component can only be a simple path or a simple ring.
Case 1: Suppose that the intersection graph is a simple path. The algorithm first finds the middle node (subset) x of the path; then branches on x such that branch one includes the node into the solution (three subsets will be removed from the problem) and branch two excludes the node from the solution (one subset will be removed from the problem). Hence, if $T(m)$ represents the number of leaves in the search tree, we will have

$$T(m) \leq T(m - 3) + T(m - 1).$$

Furthermore, considering that after the branching, the resulting intersection graphs will be split into two connected components with almost equal sizes, we have

$$T(m) \leq (T(\lceil (m-3)/2 \rceil) + T(\lfloor (m-3)/2 \rfloor)) + T(\lceil (m-2)/2 \rceil) + T(\lfloor (m-2)/2 \rfloor) < 4T(m/2).$$

From this recurrence relation, we will have

$$T(m) \leq 4^{\log m} = m^2.$$

Case 2: Suppose that the intersection graph is a simple ring. The algorithm chooses any node and branches on it. Similar to case 1, one branch will remove three subsets from the problem while other branch will remove one subset from the problem. Hence, we will have the recurrence relation

$$T(m) \leq T(m - 3) + T(m - 1).$$

Furthermore, after this operation, the resulting intersection graphs in both branches are simple pathes. So with the analysis of case 1, we can obtain

$$T(m) \leq (m - 3)^2 + (m - 1)^2 < 2m^2.$$

If the intersection graph of the instance has multiple connected components, then by Lemma 1, we can solve sub-instances induced by connected components independently. As each sub-instance induced by a connected component can be solved in polynomial time, the original instance can be solved in polynomial time. It is easy to obtain that the running time is bounded by $O(m^2)$.

The correctness of the algorithm is straightforward. The algorithm WMEM-Cover-2 first chooses a node in the intersection graph, then branches on it. One branch includes the node into the solution while the other branch excludes the node from the solution. Hence, all possible combinations of mutually exclusive covers are considered and the algorithm will returns the best solution, i.e. the solution that covers maximum number of elements in X and has the minimum weight.

In next lemma, we will present how to improve the running time of algorithm when the degrees of nodes in the intersection graph is bounded by 3.

Lemma 3. Given an instance (X, \mathcal{F}, w) of the weighted mutually exclusive maximum set cover problem, if the degree of its intersection graph is bounded by 3, then the problem can be solved in $O^*(1.325^m)$ time.
WMEM-Cover-3(\((X, F, w)\))

Input: An instance of the weighted mutually exclusive maximum set cover problem such that the degree of the interaction graph is bounded by 3.

Output: A mutually exclusive maximum set cover with minimum weight.

1. if \(X = \emptyset\) or \(F = \emptyset\) then
 1.1 return \(\emptyset\);
2. Find all connected components in the intersection graph and save them in \(\text{Comp}\);
3. if the number of components is larger than 2 then
 3.1 return \(\bigcup_{C \in \text{Comp}} \text{WMEM-Cover-3}(\((X, F, w)\)_C)\);
 else
 3.2 find subset \(x\) with maximum degree in the intersection graph;
3.3 if the degree of \(x\) is at most 2 then
 3.3.1 return WMEM-Cover-2(\((X, F, w)\));
 else
 3.3.2 find the node \(x\) such that \(x\) is the first node with degree 3 that is connected to a node with minimum degree in the intersection graph or \(x\) is any node if degrees of all nodes in the intersection graph are 3;
3.3.3 \(\text{Solution}_1 = \{x\} \cup \text{WMEM-Cover-3}(\((X - x, F - \text{neighbor}(x), w)\))\);
3.3.4 \(\text{Solution}_2 = \text{WMEM-Cover-3}(\((X, F - x, w)\))\);
3.3.5 return the best solution among \(\text{Solution}_1\) and \(\text{Solution}_2\);

Fig. 2. The main algorithm for the weighted mutually exclusive maximum set cover problem with overlapped degrees bounded by 3.

Proof. We suppose that the intersection graph always has a node whose degree is less than 3. At the beginning, if the degrees of all nodes in the intersection graph are 3, then after the first branching, both subgraphs will have at least 3 nodes whose degrees are at most 2. After that, when the algorithm makes new branchings, it is obvious that there are always new nodes whose degrees will be reduced. Hence, after the first branching, the intersection graph will always keeps at least one node of degree bounded by 2.

The algorithm WMEM-Cover-3 always first finds a node \(x\) of degree 3, which is the first node that is connected to a node with minimum degree (less than 3) in the intersection graph, then branches at \(x\). We analyze the running time of the algorithm WMEM-Cover-3 by considering the following cases.

Case 1. The node \(x\) is connected by a simple path \(P\) that one end is not connected to any other node (refer to Figure 5(A)). In the branch of including \(x\) into the solution, \(x\) and 3 neighbors of \(x\) will be removed. In the branch that excludes \(x\) from the solution, \(x\) is removed; the simple path \(P\) becomes an isolated component and the sub-instance induced by \(P\) can be solved in polynomial time; thus at least 2 nodes will be removed in this branch. We obtain the recurrence relation

\[
T(m) \leq T(m - 4) + T(m - 2),
\]

which leads to \(T(m) \leq 1.273^m\).
Case 2. Both ends of the simple path P are connected to x (refer to Figure 3 (B)), where in this case, the length of the simple path P is at least 2. Then in the branch of including x into the solution, as the case 1, at least 4 nodes will be removed and in the branch of excluding x from the solution, the path P also becomes an isolated component. Hence, we will have

$$T(m) \leq T(m - 4) + T(m - 3),$$

which leads to $T(m) \leq 1.221^m$.

Case 3. One end of the simple path P is connected to x while the other end of P is connected to node y that is not x, where x and y can be or is not connected by an edge (refer to Figure 4 (C)(D)). In the branch that includes x into the solution, as the above cases, at least 4 nodes will be removed. In the other branch, after x is removed, a node of degree one will be generated. If no node(s) of degree one is in the connected component with nodes of degree 3, then node(s) of degree one is/are in connected component(s) bounded 2. Hence, we will have

$$T(m) \leq T(m - 4) + T(m - 2),$$

which leads to $T(m) \leq 1.273^m$. If there is at least one node of degree one is in the connected component with nodes of degree 3, then next branching is as the Case 1. Therefore, even in the worst case, we will have the recurrence relation

$$T(m) \leq T(m - 4) + T(m - 1) \leq T(m - 4) + (T(m - 5) + T(m - 3)),$$

which leads to $T(m) \leq 1.325^m$.

Above analysis has included all possible situations that a node of degree at most 2 is connected to a node of degree 3. Hence, we can obtain that the time complexity of the algorithm is $O^*(1.325^m)$.

As Lemma 2, the correctness of the algorithm WMEM-Cover-3 is obvious.

Next, we will present the main result.
WMEM-Cover-main((X, F, w))

Input: An instance of the WEIGHTED MUTUALLY EXCLUSIVE MAXIMUM SET COVER problem.

Output: A mutually exclusive maximum set cover with minimum weight.

1. if X = ∅ or F = ∅ then
 return ∅;
2. Find all connected components in the intersection graph and save them to Comp;
3. if the number of components is larger than 2 then
 return \(\bigcup_{C \in \text{Comp}} \text{WMEM-Cover-main}((X, F, w)_C) \);
 else
 3.1 find subset S with maximum degree in the intersection graph;
 3.2 if the degree of S is at most 3 then
 3.3.1 return WMEM-Cover-3((X, F, w));
 else
 3.3.2 find node x that has the maximum degree in the intersection graph;
 3.3.3 Solution 1 = \{x\} \cup \text{WMEM-Cover-main}((X - x, F - \text{neighbor}(x), w));
 3.3.4 Solution 2 = \text{WMEM-Cover-main}((X, F - x, w));
 3.3.5 return the best solution among Solution 1 and Solution 2;

Fig. 4. The main algorithm for the WEIGHTED MUTUALLY EXCLUSIVE MAXIMUM SET COVER problem.

Theorem 2. The WEIGHTED MUTUALLY EXCLUSIVE MAXIMUM SET COVER problem can be solved in \(O^*(1.325^m) \) time.

Proof. As above lemmas, the correctness of the algorithm WMEM-Cover-main is trivial. We only prove the running time of the algorithm.

The algorithm WMEM-Cover-main always keeps searching the node x with maximum degree in the intersection graph. Then branches on it. If the degree of x is d, then we will obtain the recurrence relation

\[
T(m) \leq T(m - (d + 1)) + T(m - 1).
\]

Furthermore, if \(d \leq 3 \), the algorithm WMEM-Cover-main will call the algorithm WMEM-Cover-3. Hence \(d \geq 4 \) for the branching in the algorithm of WMEM-Cover-main, which lead to \(T(m) \leq 1.325^m \). From Lemma 3 if \(d \leq 3 \), we also have \(T(m) \leq 1.325^m \). Therefore, the overall running time of the algorithm WMEM-Cover-main is \(O^*(1.325^m) \). \(\square \)

4 Conclusion and future works

In this paper, first we proved that the WEIGHTED MUTUALLY EXCLUSIVE MAXIMUM SET COVER problem is NP-hard. Then we designed the first non-trivial algorithm that uses \(m \), the number of subsets in F as parameter, for the problem. In our algorithm, we created an intersection graph that can easily help us to find branching subsets that can greatly reduce the time complexity of the algorithm. The running time of our algorithm is \(O^*(1.325^m) \), which can easily
finish the computation in the application of finding driver mutations if m is less than 100.

By choosing the branching subsets more carefully, we believe that the running time of the algorithm can be further improved. While reducing the running time to solve the WEIGHTED MUTUALLY EXCLUSIVE MAXIMUM SET COVER problem, which has important applications in cancer study, is appreciated, another variant of the problem should be particularly paid attention to. Strict mutual exclusivity is the extreme case, some tumors may have more than one perturbation to the pathway. Hence, we need to relax the strict mutual exclusivity and modify the problem to the WEIGHTED SMALL OVERLAPPED MAXIMUM SET COVER PROBLEM, which allow each tumor to be covered by a small number (such as 2 or 3) of mutations. This is another important problem, which is abstracted from the cancer study, need to be solved.

References

1. N. Alon, D. Moshkovitz, and S. Safra, Algorithmic Construction of Sets for k-Restrictions, ACM Transaction on Algorithms, 2(2), pp. 153-177, 2006.
2. A. Bjöland, T. Husfeldt, M. Koivisto, Set partitioning via Inclusion-Exclusion. SIAM Journal on Computing, Special Issue for FOCS 2006.
3. J. Chen, I, Kanj, and W. Jia, Vertex Cover: Further Observations and Further Improvements, Journal of Algorithm, 41, pp. 280-301, 2001.
4. G. Ciriello, E. Cerami, C. Sander, N. Schultz, Mutual exclusivity analysis identifies oncogenic network modules, Genome research, 22(2), pp. 398-406, 2012.
5. U. Feige, A Threshold of $\ln n$ for Approximation Set Cover, J. of the ACM, 45(4), pp. 634-652, 1998.
6. H. Fernau, a top-down approach to search-trees: Improved algorithmics for 3-Hitting Set, Algorithmica, 57, pp. 97-118, 2010.
7. Q. Hua, Y. Wang, D. Yu, F. Lau, Dynamic programming based algorithms for set multicover and multiset multicover problem. Theoretical Computer Science V411, pp. 2467-2474, 2010.
8. R. Karp, Reducibility Among Combinatorial Problems, In R. E. Miller and J. W. Thatcher (editors). Complexity of Computer Computations. New York: Plenum, pp. 85-103, 1972.
9. S. Kolliopoulos, N. Young, Approximation algorithms for covering/packing integer programs. J. Comput. Syst. Sci. 71(4), pp.495-505, 2005.
10. S. Lu, X. Lu, A graph model and an exact algorithm for finding transcription factor modules, 2nd ACM Conference on Bioinformatics, Computational Biology and Biomedicine, pp. 355-359, 2011.
11. C. Lund, and M. Yannakakis, On the Hardness of Approximating Minimization Problem, J. of the Association for Computing Machinery, 45(5), pp. 960-981, 1994.
12. C. Miller, S. Settle, E. Sulman, K. Aldape, A. Milosavljevic, Discovering functional modules by identifying recurrent and mutually exclusive mutational patterns in tumors, BMC medical genomics, 4, pp. 34, 2011.
13. R. Niedermeier, and P. Rossmanith, An Efficient Fixed-parameter Algorithm for 3-Hitting Set, J. of Discrete Algorithms, 1(1), pp. 89-102, 2003.
14. A. Sparks, P. Morin, B. Vogelstein, K. Kinzler, Mutational analysis of the APC/β-catenin/Tcf pathway in colorectal cancer, Cancer Research, 58, pp. 1130-1134, 1998.
15. The Cancer Genome Atlas Research Network, Comprehensive genomic characterization defines human glioblastoma genes and core pathways, Nature, 455, pp. 1061-615, 2008.

16. F. Vandin, E. Upfal, Ban Raphael, De novo discovery of mutated driver pathways in cancer, Genome Research 22, pp. 375-385, 2012.