The Stützfunktion and the Cut Function*

Paul Tod

Abstract

I review some standard theory of convex bodies in \mathbb{R}^3 and rephrase it in a formalism of Ted Newman to show the relation between the Stützfunktion of the former theory and the cut function introduced by Ted. This leads to a conjectured inequality for space-like two-spheres in Minkowski space that generalises Minkowski’s inequality and is implied by Penrose’s cosmic censorship hypothesis.

1 Introduction

The work described in this paper arises from a problem posed to me by Ted Newman during my first visit to the University of Pittsburgh in the mid-1970s. It turns out that this problem can be solved by Newman-style methods and that it leads on to making interesting connections with other areas of Ted’s work.

The problem is as follows: given a cut Σ of the future-null infinity I^+ of Minkowski space M, how do you reconstruct a space-like 2-surface S inside M such that Σ is the intersection with I^+ of $\dot{J}(S)$, the boundary of the future of S? This is related to a version of the “fuzzy point” idea which was current at that time: if Σ is a cut of the I^+ of a non-flat but asymptotically-flat space-time M arising from a point p in M (known then as a light-cone cut) then, when transferred to the I^+ of \tilde{M}, Σ will determine a null hypersurface N which does not converge to a point; however N may nearly converge to a point and may determine small 2-surfaces S which are nearly points, or are fuzzy points. If so, then by taking all possible Σ for all possible p in M, one might obtain a representation of the curved space-time M as fuzzy points in the flat space-time \tilde{M}.

The plan of this paper is as follows:

In section 2 I discuss convex bodies in \mathbb{R}^3. The theory of convex bodies centres on the Stützfunktion or support-function, which I’ll anglicise as stutzfunction, and I review some of this theory.

In section 3, I turn to Minkowski space and identify the relation between the stutzfunction of a convex body and the cut-function which the boundary of the future of the body defines at I^+. This effectively solves the problem posed above, and it also illuminates some of the theory in section 2.

In section 4, I sketch some further developments of the theory of convexity for 2-surfaces in Minkowski space. These include an approach to an inequality found by Gibbons and Penrose [3], as a prediction of the cosmic censorship hypothesis.

It gives me great pleasure to dedicate this paper to Ted Newman in his 60th year, to acknowledge his long-standing and beneficial influence and to record my debt and gratitude to him.

*This is a corrected, revised and updated version of a paper which originally appeared in Recent Advances in General Relativity eds. A I Janis and J R Porter, Einstein Studies vol. 4, Birkhaüser 1992

1Note the previous footnote.
2 Convex bodies in \mathbb{R}^3

In this section, I develop some standard theory of convex bodies in \mathbb{R}^3 following [1] and [3], but with the kind of formalism that I learned from Ted Newman.

We may define a convex body B in \mathbb{R}^3 to be a closed body such that, if p, q are two points of B then the line segment $tp + (1 - t)q$ for $0 \leq t \leq 1$ lies entirely in B. Then a convex surface S is the surface of a convex body.

We define the Gauss map in the familiar way: choose an orthonormal triad and parametrise a unit vector ℓ by spherical polars as

$$\ell = \ell(\theta, \phi) = (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta),$$

(1)

in the triad. Thus ℓ corresponds to a point on the unit sphere S^2. Given a choice of ℓ, that is a choice of (θ, ϕ), take the plane with normal ℓ that is tangent to the convex surface S, with ℓ the outward normal. If this happens at $p \in S$ then the Gauss map from S to S^2 takes p to the point labelled (θ, ϕ) on the unit sphere. For a smooth, strictly convex body, the Gauss map is one-one as we shall see. In that case we have introduced coordinates (θ, ϕ) on S. The tangent plane to S at p has the equation

$$x \cdot \ell(\theta, \phi) = H(\theta, \phi),$$

(2)

where $H(\theta, \phi)$ is the perpendicular distance from the origin (which we’ll assume to be inside S) to the tangent plane. A knowledge of $H(\theta, \phi)$ determines S as an envelope of tangent planes and H is the Stützfunktion [1] or support function, which we’ll call the stutzfunction.

To obtain a parametric expression for the surface S we can solve (2) and its derivatives for (x, y, z). To this end, we introduce the Newman-Penrose operator ‘eth’ [12] defined on a spin-weight s function η by

$$\partial \eta := \frac{1}{\sqrt{2}}(\sin \theta)^s \left(\frac{\partial}{\partial \theta} + i \frac{\partial}{\sin \theta \partial \phi} \right) (\sin \theta)^{-s} \eta,$$

and define

$$m = \partial \ell = \frac{1}{\sqrt{2}}(\cos \theta \cos \phi - i \sin \phi, \cos \theta \sin \phi + i \cos \phi, - \sin \theta)$$

$$\overline{m} = \overline{\partial \ell} = \frac{1}{\sqrt{2}}(\cos \theta \cos \phi + i \sin \phi, \cos \theta \sin \phi - i \cos \phi, - \sin \theta).$$

These have $s = 1, -1$ respectively and, by differentiating again,

$$\partial m = 0 = \overline{\partial m}, \quad \overline{\partial m} = \partial \overline{m} = -\ell.$$

The positive-definite metric of \mathbb{R}^3 can be written

$$\delta = \ell \ell + mm + \overline{m} \overline{m}.$$

(3)

Note also, as usual, that

$$(\partial \overline{\partial} - \overline{\partial} \partial) \eta = -s \eta,$$

(4)

when η has spin-weight s.

To obtain the convex surface parametrically we must solve (2) simultaneously with

$$x \cdot m = \partial H, \quad x \cdot \overline{m} = \overline{\partial H},$$

which with the aid of (3) can be solved to give

$$x = x(\theta, \phi) = H \ell + \overline{\partial H} m + \partial H \overline{m}.$$
This gives an explicit parametrisation of S. Using the standard theory of surfaces in \mathbb{R}^3 (see e.g. [2]) we find the area element of S to be

$$dA = \left((H + \partial^2 H)^2 - \partial^2 H \partial^2 H \right) \sin \theta d\theta d\phi.$$ \hspace{1cm} (6)

By general theory, the Jacobian of the Gauss map is the Gauss curvature k so that

$$k^{-1} = R_1 R_2 = (H + \partial^2 H)^2 - \partial^2 H \partial^2 H$$ \hspace{1cm} (7)

in terms of principal radii of curvature R_1, R_2. A similar calculation gives the mean curvature h:

$$h = \frac{1}{2}(R_1^{-1} + R_2^{-1}) = (H + \partial^2 H)k,$$

so that

$$hdA = (H + \partial^2 H) \sin \theta d\theta d\phi.$$ \hspace{1cm} (8)

For use below note that then

$$\int_S hdA = \int_{S^2} H \sin \theta d\theta d\phi,$$

since $\partial^2 \partial$ is a constant multiple of the 2-sphere Laplacian, so the second term integrates to zero.

For strict convexity we require $R_1, R_2 > 0$ which is equivalent to $h, k > 0$. Since necessarily $h^2 \geq k$ it is sufficient to require $k > 0$ (h will be positive somewhere on S since we are using the outward normal). Finally, since this is the Jacobian of the Gauss map, the Gauss map is one-one and onto precisely for smooth, strictly convex surfaces. This imposes restrictions on H which we shall discuss. First we note how simple the Gauss-Bonnet theorem is in this context:

Proposition 2.1 The Gauss-Bonnet Theorem

For a strictly convex surface S

$$\int_S kdA = 4\pi.$$ \hspace{1cm} (9)

Proof

From (6) and (7), $kdA = \sin \theta d\theta d\phi$.

Now what conditions do we require H to satisfy for it to be the stutzfunction of a smooth, strictly convex surface? We need H positive and in (7) we want the right-hand-side to be positive. If it fails to be positive then the surface enveloped by H will have cusps. However if k from (7) is not positive then it can be made positive by adding a positive constant to H.

The process of adding a positive constant to H is an interesting transformation that changes a convex surface S into another, S', which is parallel to it in the sense of [15]. In that reference, the idea is motivated by imagining rolling a sphere K of constant radius s over the surface S. The locus of the centre of K defines S'. Equivalently one moves the centre of K over S and takes S' to be envelope swept out by K. In this second form, one sees a connection with the idea of Huyghens’ secondary wavelets which will reappear in section 3.

Given a convex surface S, one can consider a sequence of surfaces parallel to S with larger and larger separations s. In this way one arrives at the following string of theorems.

Proposition 2.2 Steiner’s Theorem

Along such a sequence, the area is given by

$$A(s) = A + 2sM + 4\pi s^2,$$ \hspace{1cm} (9)

while the volume contained is

$$V(s) = V + sA + s^2 M + \frac{4}{3} \pi s^3.$$ \hspace{1cm} (10)
Here A and V are the area and volume of S and M is the integral of mean curvature:

$$M = \int_S h dA.$$ \hfill (11)

Proof

Clearly the surface parallel to S at distance s has stutzfunction $H + s$. Substitute into (6) and expand in powers of s to obtain (9) (using (8) along the way). Integrate (9) to obtain (10).

Along a sequence of parallel surfaces, the surfaces should become “rounder”. This intuitive feeling is made precise in the following (which I won’t prove):

Proposition 2.3 The Brunn-Minkowski Theorem

Define $R(s) = (V(s))^{1/3}$ then R is convex in s, in that $\frac{d^2 R}{ds^2} \leq 0$.

Take this to be true and calculate the derivative, then for positive s:

$$(6MV - 2A^2) + 2s(12\pi V - AM) + 2s^2(4\pi A - M^2) \leq 0.$$ \hfill (12)

From this we may deduce Minkowski’s inequality

$$M^2 \geq 4\pi A,$$ \hfill (13)

as well as the isoperimetric inequality

$$36\pi V^2 \leq A^3.$$ \hfill (14)

Although (13) follows from (12) there is a straightforward direct proof due to Blaschke and using the stutzfunction (see (1)):

Blaschke’s proof of Minkowski’s Inequality

From (6), (11) and integration by parts

$$A = \int (H^2 - \partial H \bar{\partial} H) \sin \theta d\theta d\phi$$

while from (8)

$$M = \int H \sin \theta d\theta d\phi.$$

Set $H = H_0 + H_1$ where $\int H_1 \sin \theta d\theta d\phi = 0$ and H_0 is constant then

$$M = 4\pi H_0, \quad A = 4\pi H_0^2 + \int (H_1^2 - \partial H_1 \bar{\partial} H_1) \sin \theta d\theta d\phi.$$

It follows by expanding H_1 in spherical harmonics that the integral contribution to A is strictly negative unless H_1 is a combination of $\ell = 1$ spherical harmonics. This case corresponds to a sphere with a translated origin, so that (13) is proved, with equality only for a round sphere.

To conclude this section, I shall record another way of obtaining the surface S from the stutzfunction H. Define

$$\hat{H}(r, \theta, \phi) = rH(\theta, \phi) = F(\hat{x}, \hat{y}, \hat{z}),$$

where $\hat{x}, \hat{y}, \hat{z}$ are expressed in terms of spherical polar coordinates r, θ, ϕ in the usual way. Then (5) is equivalent to the parametrisation given by

$$x = \frac{\partial F}{\partial \hat{x}}, \quad y = \frac{\partial F}{\partial \hat{y}}, \quad z = \frac{\partial F}{\partial \hat{z}},$$

where, after the differentiation, $\hat{x}, \hat{y}, \hat{z}$ are again eliminated.
3 Stutzfunction and cut function

In Minkowski space \mathbb{M} we introduce the null tetrad

$$\ell^a = (1, \ell), \quad m^a = \partial \ell^a = (0, m), \quad m^a = (0, \overline{m}), \quad n^a = \frac{1}{2}(1, -\ell),$$

with ℓ, m, ∂ as in section 2. The Minkowski metric can then be written

$$\eta^{ab} = 2\ell^a\ell^b - 2m^a\overline{m}^b.$$

Note that

$$\overline{m}^a = (0, -\ell) = -\frac{1}{2}\ell^a + n^a.$$

Define the unit time-like vector

$$t^a = (1, 0)$$

so that also $\eta_{ab}t^at^b = 1$, and introduce advanced null polar coordinates (u, r, θ, ϕ) by

$$x^a = ut^a + r\ell^a(\theta, \phi)$$

(see e.g. [7]). Then (u, θ, ϕ) are coordinates on \mathcal{I}^+ which is located at $r = \infty$.

A cut of \mathcal{I}^+ is defined by a function $u = V(\theta, \phi)$ where V can conveniently be called the cut function for the cut. If we choose an arbitrary point p with coordinates x_0^a and a null-vector $\ell^a(\theta_0, \phi_0)$ at p then the null geodesic from p in the direction of $\ell^a(\theta_0, \phi_0)$ meets \mathcal{I}^+ at

$$u = x_0^a\ell_a(\theta_0, \phi_0), \quad \theta = \theta_0, \quad \phi = \phi_0.$$

(16)

Now suppose we are given a convex surface S in the form

$$x^a = (0, x(\theta, \phi))$$

with $x(\theta, \phi)$ determined by a stutzfunction H according to (5). The boundary of the future of S, $\mathcal{J}(S)$, is ruled by null geodesics that meet S orthogonally. From the definitions so far made, the outward null normal at the point p of S labelled by (θ_0, ϕ_0) is $\ell^a(\theta_0, \phi_0)$ and the null geodesic from p in this direction meets \mathcal{I}^+ at u given by (16). As p runs over S, the cut $\Sigma = \mathcal{J}(S) \cap \mathcal{I}^+$ is generated with the cut function

$$u = x^a\ell_a(\theta, \phi) = -x \cdot \ell(\theta, \phi).$$

(17)

Comparing (17) with (2) we conclude that the cut function is minus the stutzfunction.

Conversely, if we are given the cut Σ and its cut function V then (17) determines a null hypersurface \mathcal{N}

$$x^a\ell_a(\theta, \phi) = V(\theta, \phi),$$

which, with its angular derivatives, we can solve for \mathcal{N} parametrically as

$$x^a = x^a(\lambda, \theta, \phi) = -Hn^a + \partial Hm^a + \overline{\partial Hm}^a + \lambda \ell^a$$

for arbitrary real λ. Now intersecting \mathcal{N} with hypersurfaces of constant t, i.e. hypersurfaces orthogonal to t^a in (15), gives a sequence of parallel surfaces in the sense of section 2. This shows how the parallel-surface idea is related to Huyghen’s secondary wavelets: if a convex surface is
momentarily lit up then the resulting expanding (out-going) wave-front traces out a sequence of surfaces parallel to the first.

Of course this converse is incomplete in the following sense: if what we are given is just the cut function then we can define the null surface N but we cannot fix a unique value of λ to represent the 2-surface S without some extra input. If we are trying to make precise the fuzzy-point idea then we might want to pick out an instant of minimum volume or of best focus. This could also involve boosting the cut function or considering a different set of constant-time hypersurfaces.

4 Further developments

In this last section I describe some attempts to carry over other parts of the theory of convex 2-surfaces into Minkowski space. I shall work with the GHP formalism \[4\] and omit proofs.

A space-like 2-surface S in \mathbb{M} defines a pair of future-pointing null normals ℓ^a, n^a (where we shall take ℓ^a to be the outward normal and n^a the inward normal) or equivalently a normalised spinor dyad (α^A, β^A). The second fundamental form of S is coded by the GHP formalism into weighted scalars $(\rho, \rho', \sigma, \sigma')$ (see e.g. \[16\] for an account of this). In terms of these, I shall say that S is

- future convex iff $\rho < 0$, $\rho^2 - \sigma \sigma' > 0$
- past convex iff $\rho' > 0$, $\rho'^2 - \sigma' \sigma' > 0$.

We recall that the Gauss curvature of S is twice the real part of the complex curvature $Q = -\rho \rho' + \sigma \sigma' \[14\].

Proposition 4.1 If S is future and past convex then the Gauss curvature of S is everywhere positive.

Proof: This is elementary since

$$k = -2\rho \rho' + \sigma \sigma' + \overline{\sigma} \overline{\sigma'} \geq -2\rho \rho' - 2|\sigma \sigma'|$$

and

$$(-\rho \rho' - |\sigma \sigma'|)^2 = (\rho^2 - \overline{\sigma} \sigma)(\rho'^2 - \sigma' \overline{\sigma'}) + (\rho |\sigma'| + \rho' |\sigma|)^2.$$

The quantities occurring in the above definitions of convexity arise in the various Gauss maps that can be defined for S. If we choose and fix a constant normalised spinor dyad (α^A, β^A) then we can define a future Gauss map by

$$f : S \to \mathbb{CP}^1; \quad p \mapsto \zeta = \frac{o_A \alpha^A}{o_A \beta^A}$$

and a past Gauss map by

$$f : S \to \mathbb{CP}^1; \quad p \mapsto \eta = \frac{\nu_A \alpha^A}{\nu_A \beta^A}.$$

Equivalently, these express o^A and ν^A in terms of (α^A, β^A) as

$$o^A = \lambda \frac{(\alpha^A + \zeta \beta^A)}{(1 + \zeta \overline{\zeta})^{1/2}}, \quad \nu^A = \mu \frac{(\alpha^A + \eta \beta^A)}{(1 + \eta \overline{\eta})^{1/2}},$$

where λ, μ are not fixed by the Gauss maps, but note that

$$t^a \ell_a = \frac{1}{\sqrt{2}} \lambda \overline{\lambda}, \quad t^a n_a = \frac{1}{\sqrt{2}} \mu \overline{\mu},$$
where \(t^{AA'} = \frac{1}{\sqrt{2}} (\alpha^A \alpha^{A'} + \beta^A \beta^{A'}) \), so that \(t^a \) is a unit time-like vector determined by the chosen tetrad. (These Gauss maps are similar to but different from those defined by Kossowski [8].)

There is a third Gauss map, conveniently called the complex Gauss map which can be defined by

\[
2o^{(A, B)} = \zeta \alpha^A \alpha^B + 2\eta \alpha^A \beta^B + \xi \beta^A \beta^B
\]

where this \(\zeta, \eta \) are to be distinguished from the previous. This maps \(S \) to the complex quadric \(Q \) defined by

\[
\zeta \xi - \eta^2 = 1
\]
in \(\mathbb{C}^3 \) (this Gauss map has also been considered by Roger Penrose).

The images of the future and past Gauss maps carry volume forms \(4d\zeta d\zeta (1 + \zeta \zeta)^{-2} \) and \(4d\eta d\eta (1 + \eta \eta)^{-2} \) while \(Q \) admits the holomorphic 2-form

\[
\frac{d\zeta \wedge d\xi}{\eta} = 2 \frac{d\zeta \wedge d\eta}{\zeta} = 2 \frac{d\eta \wedge d\xi}{\xi},
\]

so that we can calculate the Jacobians for the Gauss maps as in section 2.

Proposition 4.2 For the future Gauss map we find

\[
\frac{4d\zeta d\zeta}{(1 + \zeta \zeta)^2} = \frac{1}{(t^a \ell_a)^2} (\rho^2 - \sigma \sigma) dA,
\]

for the past Gauss map

\[
\frac{4d\eta d\eta}{(1 + \eta \eta)^2} = \frac{1}{(t^a n_a)^2} (\rho'\rho' - \sigma' \sigma') dA,
\]

and for the complex Gauss map

\[
\frac{d\zeta \wedge d\xi}{\eta} = (-\rho \rho' + \sigma \sigma') dA.
\]

As in section 2, we integrate these expressions over \(S \):

Proposition 4.3 Generalised Gauss-Bonnet Theorem

For the three cases treated above integration gives:

\[
\int_S \frac{1}{(t^a \ell_a)^2} (\rho^2 - \sigma \sigma) dA = \int_S \frac{1}{(t^a n_a)^2} (\rho'\rho' - \sigma' \sigma') dA = \frac{4\pi}{t^a t_a}
\]

\[
\int_S (-\rho \rho' + \sigma \sigma') dA = 2\pi.
\]

In (18) I have included the term \(t^a t_a \) explicitly both to give a slightly more general formula (valid when \(t^a \) is any constant time-like vector) and to point up the resemblance to Newman’s expression for the \(H \)-space metric [10].

Next we turn to consideration of possible generalisations of the notion of parallel bodies and Propositions 2.2-2.4. For this we need to write down and solve the Sachs equations which are the NP spin-coefficient equations for the evolution of \(\rho, \sigma \) and \(\rho', \sigma' \) [11]. Given \(S \) we consider the null hypersurface \(\mathcal{N} \) generated by the outgoing null normals to \(S \). We scale \(\ell^a \) to be affinely parametrised:

\[
D\ell^a \equiv \ell^b \nabla_b \ell^a = 0,
\]

and choose an affine parameter \(s \) with

\[
Ds = 1, \quad s = 0 \text{ at } S.
\]
Then the Sachs equations are

\[D\rho = \rho^2 + \sigma\sigma, \quad D\sigma = 2\rho\sigma, \]

while the area element is carried along \(\ell^a \) according to

\[D(dA) = -2\rho dA. \]

Then the Sachs equations can be solved explicitly as

\[\rho(s) = \Delta^{-1}(\rho_0 - s(\rho_0^2 - \sigma_0\sigma_0)), \quad \sigma(s) = \Delta^{-1}\sigma_0 \]

with

\[\Delta = 1 - 2s\rho_0 + s^2(\rho_0^2 - \sigma_0\sigma_0) \]

and \(\rho_0, \sigma_0 \) are the values at \(S \). For the area element we similarly find

\[dA(s) = \Delta dA_0. \]

We deduce at once the following proposition:

Proposition 4.4 For a future convex surface, the outgoing null hypersurface encounters no caustics to the future.

Proof: Caustics to the future are signalled by singularities in \(\rho(s) \), or equivalently zeroes in \(\Delta \), for positive \(s \) but from the definition of future convex \(\Delta \) is positive definite in this range.

There is a corresponding statement for past convex.

For the analogue of Proposition 2.2, Steiner’s Theorem, we need to integrate \(dA(s) \). However there is a problem of weights in the GHP sense: at this point we have the freedom to rescale \(\ell^a \) at \(S \) by

\[\ell^a \rightarrow \Omega(\theta, \phi)\ell^a, \]

and under this transformation

\[s \rightarrow \Omega^{-1}s, \quad \rho_0 \rightarrow \Omega\rho_0, \quad \sigma_0 \rightarrow \Omega\sigma_0, \]

so that we would not get a formula like \([9] \) by simply integrating \(dA(s) \). The simplest way to resolve this difficulty is to choose a constant unit time-like vector \(t^a \) and define

\[\hat{s} = st^a\ell_a, \]

as \(\hat{s} \) is unchanged by \([20] \) and now we can integrate \(dA(s) \):

Proposition 4.5 Generalised Steiner Theorem

\[A(\hat{s}) = A_0 + 2\hat{s}\hat{M} + 4\pi\hat{s}^2, \]

where

\[\hat{M} = -\int_S \frac{\rho_0}{t^a\ell_a} dA \]

and we have used Proposition 4.3.
Now we might hope to prove a counterpart of the Brunn-Minkowski Theorem, Proposition 2.3, or of Minkowski’s Inequality, Proposition 2.4. However this is impossible since with \hat{M} as in (21) examples can be found to show that it is not the case that $\hat{M}^2 \geq 4\pi A$. In fact the Isoperimetric Inequality (14) can also be violated in Minkowski space in the following sense: given a space-like 2-surface S one may be able to find space-like 3-surfaces spanning S on which the volume V enclosed by S and the area A of S have

$$36\pi V^2 > A^3.$$

The correct inequality to generalise (13) would seem to be one proposed by Gibbons and Penrose in an investigation of Cosmic Censorship, [13, 5]. This may be phrased as follows: consider the vector

$$P^a = \frac{1}{2} \int_S (\rho' \ell^a - \rho n^a) dA = \int_S p^a dA,$$

(22)

with $p^a = \frac{1}{2}(\rho' \ell^a - \rho n^a)$. If S is future convex with $\rho' > 0$ as well, or past convex with $\rho < 0$ as well, then one conjectures the inequality:

$$P_a P^a \geq 2\pi A,$$

(23)

where A is the area of S. (This is not the form in which the inequality is stated by Gibbons and Penrose but I believe it to be equivalent.)

Note that the mean curvature vector H_a of S, equivalently the trace of the second fundamental form, is

$$H_a = \frac{1}{2}(\rho' \ell_a + \rho n_a).$$

(24)

The significance of H_a is that, given a vector field X^a on S, the rate of change of the area of S under displacement along X^a is

$$\dot{A} = \int_S H_a X^a dA.$$

We see that the vector p^a in (22) lies in the normal 2-plane to S and is orthogonal to H_a so it defines the direction in which dA does not change (to first order). Also, by taking X^a to be a constant translation, under which the area will not change, it is clear that

$$\int_S H_a dA = 0$$

and so

$$\int_S \rho' \ell^a dA = - \int_S \rho n^a dA.$$

Thus we can write P^a as

$$P^a = \int_S (-\rho)n^a dA = \int_S \rho' \ell^a dA.$$

In this form it is clear that P^a is time-like and future pointing for past or future convex S.

As partial confirmation of (23) we note that if S lies in a flat space-like 3-surface with unit time-like normal t^a then

$$P^a = \frac{1}{\sqrt{2}} M t^a,$$

with M as in (11). Thus in this case (23) is Minkowski’s inequality. Further, if S lies in an in- or out-going null cone then (23) can be established directly, as it reduces to an inequality for functions on the unit sphere, [13, 5], which can be proved [16, 17]. Finally one can verify (23) for surfaces infinitesimally close to a round sphere in a flat hyperplane. What is still lacking is a proof of (23) in full generality, subject only to the conditions of convexity.

\footnote{The claimed proof in [6] is defective: see e.g. [9].}
References

[1] Blaschke W (1916) *Kreis und Kugel*, Leipzig: von Veit and Company

[2] do Carmo M (1976) *Differential Geometry of Curves and Surfaces* Inglewood Cliffs, New Jersey: Prentice Hall

[3] Eggleston H (1963) *Convexity* London and New York: Cambridge University Press

[4] Geroch R P, Held A and Penrose R (1973) *A space-time calculus based on pairs of null directions* J.Math.Phys. **14**, 874–881

[5] Gibbons G W (1984) *The isoperimetric and Bogomolny inequalities for Black Holes* in *Global Riemannian Geometry* eds T Willmore and N J Hitchin, New York: Ellis Horwood

[6] Gibbons G W (1997) *Collapsing shells and the isoperimetric inequality for black holes* Class.Quant.Grav. **14** 2905–2915

[7] Ko M, Newman E T and Tod K P (1976) *H*-space: a new approach in *Asymptotic Structure of Space-time* eds F P Esposito and L Witten, New York and London: Plenum

[8] Kossowski M (1989) *The S^2-valued Gauss maps and split total curvature of a space-like codimension-2 surface in Minkowski space* J.L.M.S. **40** 179–192

[9] Mars M (2009) *Present status of the Penrose inequality* Class.Quant.Grav. **26** 193001, arXiv 0906.5566

[10] Newman E T (1976) *Heaven and its properties* G.R.G. **7** 107–111

[11] Newman E T and Penrose R (1962) *An approach to gravitational radiation by a method of spin coefficients* J.Math.Phys. **3** 566–578

[12] Newman E T and Penrose R (1966) *A note on the Bondi-Metzner-Sachs group* J.Math.Phys. **7** 863–879

[13] Penrose R (1973) *Naked singularities* Ann.N.Y.Acad.Sci. **244** 125–134

[14] Penrose R and Rindler W (1984) *Spinors and space-time vol 1* London and New York: Cambridge University Press

[15] Steiner J (1840) *Ueber parallele Flächen* in *Gesammelte Werke* Berlin, Reiner pp173–176

[16] Tod K P (1985) *Penrose’s quasi-local-mass and the isoperimetric inequality for black holes* Class.Quant.Grav. **2** L65–L68

[17] Tod K P (1986) *More on Penrose’s quasi-local mass* Class.Quant.Grav. **3** 1169–1189