On Chow Rings of Fine Moduli Spaces of Modules

A. D. King
Dept. of Pure Mathematics
University of Liverpool
P. O. Box 147
Liverpool L69 3BX
UNITED KINGDOM
e-mail: aking@liverpool.ac.uk

Charles H. Walter
URA 168
Mathématiques
Université de Nice
F-06108 Nice Cedex 02
FRANCE
e-mail: walter@math.unice.fr

Abstract

Let \(\mathcal{M} \) be a complete nonsingular fine moduli space of modules over an algebra \(S \). A set of conditions is given for the Chow ring of \(\mathcal{M} \) to be generated by the Chern classes of certain universal bundles occurring in a projective resolution of the universal \(S \)-module on \(\mathcal{M} \). This result is then applied to the varieties \(G_T \) parametrizing homogeneous ideals of \(k[x, y] \) of Hilbert function \(T \), to moduli spaces of representations of quivers, and finally to moduli spaces of sheaves on \(\mathbb{P}^2 \), reinterpreting a result of Ellingsrud and Strømme.

In a recent paper [ES] Ellingsrud and Strømme identified a set of generators of the Chow ring of the moduli space of stable sheaves of given rank and Chern classes on \(\mathbb{P}^2 \) (in the case where the moduli space is smooth and projective). In this paper we formulate a part of their argument as a general theorem about fine moduli spaces of modules over an associative algebra. This provides a more widely applicable method for showing that the Chow ring of a fine moduli space is generated by the Chern classes of appropriate universal sheaves. In particular we apply the method to verify a conjecture of Iarrobino and Yaméogo concerning the Chow rings of the varieties \(G_T \) parametrizing homogeneous ideals in \(k[x, y] \) with a given Hilbert function. We also verify a conjecture of the first author concerning Chow rings of moduli spaces of representations of quivers.

Let \(S \) be an associative algebra over an algebraically closed field \(k \). By convention we will consider only left \(S \)-modules in this paper. A flat family of \(S \)-modules over a \(k \)-scheme \(X \) is a sheaf \(\mathcal{F} \) of \(S \otimes O_X \)-modules on \(X \), quasi-coherent and flat over \(O_X \). At a (closed) point \(x \in X \) the fiber \(\mathcal{F}(x) \) is an \(S \)-module. If \(\mathcal{C} \) is a class of \(S \)-modules, then a fine moduli space for \(\mathcal{C} \) is a scheme \(\mathcal{M} \) equipped with a flat family \(U \) all of whose fibers are in \(\mathcal{C} \) and with the usual universal property. Our general theorem is the following:

Theorem 1. Let \(\mathcal{C} \) be a class of \(S \)-modules, and \(\mathcal{M} \) a fine moduli space for \(\mathcal{C} \) which is a complete nonsingular variety. Suppose further that

(i) If \(E \in \mathcal{C} \), then \(\text{Hom}_S(E, E) \equiv k \), \(\text{Ext}^1_S(E, E) \equiv T[E]M \), and \(\text{Ext}^p_S(E, E) = 0 \) for \(p \geq 2 \);

*Supported by a research grant from the SERC.
†Supported in part by NSA research grant MDA904-92-H-3009.
(ii) If \(E \not\cong F \) are in \(\mathcal{C} \), then \(\text{Hom}_S(E, F) = 0 \) and \(\text{Ext}^p_S(E, F) = 0 \) for \(p \geq 2 \).

(iii) If \(\mathcal{U} \) is the universal \(S \otimes \mathcal{O}_M \)-module on \(M \), then \(\mathcal{U} \) has a universal projective resolution of finite length:

\[
0 \to \bigoplus_j P_{rj} \otimes \mathcal{E}_{rj} \to \cdots \to \bigoplus_j P_{ij} \otimes \mathcal{E}_{ij} \to \bigoplus_j P_{0j} \otimes \mathcal{E}_{0j} \to \mathcal{U} \to 0
\]

with the \(P_{ij} \) projective \(S \)-modules such that \(\text{dim}_k \text{Hom}_S(P_{ij}, P_{ij'}) \) is always finite, and the \(\mathcal{E}_{ij} \) are all locally free \(\mathcal{O}_M \)-modules of finite rank.

Then

(a) The Chern classes of the \(\mathcal{E}_{ij} \) generate the Chow ring \(A^*(M) \) as a \(\mathbb{Z} \)-algebra.

(b) Numerical and rational equivalence coincide on \(M \). In particular, \(A^*(M) \) is a free \(\mathbb{Z} \)-module.

(c) If \(k = \mathbb{C} \), then the cycle map \(A^*(M) \to H^*(M, \mathbb{Z}) \) is an isomorphism. In particular, there is no odd-dimensional cohomology.

If \(S \) is a graded algebra, then one may formulate a graded version of the theorem by replacing “module” by “graded module” throughout and using the degree-zero parts of Hom and Ext. More generally, one should be able to formulate a version of Theorem 1 for moduli spaces of objects in an abelian category of \(k \)-vector spaces in any situation where one has a suitable notion of a family of objects of the category.

Our first application of Theorem 1 is to the Iarrobino varieties \(G_T \) which parametrize homogeneous ideals \(I \subset k[x, y] \) of Hilbert function \(T \). Here \(T = (t_0, t_1, \ldots) \) is a sequence of nonnegative integers such that \(t_n = 0 \) for \(n \gg 0 \), and the points of \(G_T \) correspond to those \(I \) such that \(\text{dim}_k(k[x, y]/I)_n = t_n \) for all \(n \). These smooth projective varieties were originally constructed in [I] in order to study the Hilbert-Samuel function stratification of the punctual Hilbert scheme of a surface. They have since been studied in several papers including [G], [IY], and [Y]. The fact that these \(G_T \) are fine moduli spaces was addressed formally in [Go] Kap. 2, Lemma 4.

Having fixed the Hilbert function \(T \), the degree-\(n \) graded pieces of the quotient rings form a family of quotients of dimension \(t_n \) of the space of binary forms of degree \(n \). This induces a natural morphism from \(G_T \) to the Grassmannian of quotient spaces \(\text{Gr}(t_n, n+1) \). Let \(\mathcal{A}_n \) denote the pullback to \(G_T \) of the universal quotient bundle on \(\text{Gr}(t_n, n+1) \). Our result is

Theorem 2. Let \(G_T \) be the Iarrobino variety parametrizing homogeneous ideals \(I \subset k[x, y] \) of Hilbert function \(T \), and let the \(\mathcal{A}_n \) be the universal bundles defined above. Then

(a) The Chern classes of the \(\mathcal{A}_n \) generate the Chow ring \(A^*(G_T) \) as a \(\mathbb{Z} \)-algebra.

(b) Numerical and rational equivalence coincide on \(G_T \). In particular, \(A^*(G_T) \) is a free \(\mathbb{Z} \)-module.

(c) If \(k = \mathbb{C} \), then the cycle map \(A^*(G_T) \to H^*(G_T, \mathbb{Z}) \) is an isomorphism. In particular, there is no odd-dimensional cohomology.

Parts (b) and (c) were already known because \(G_T \) has a cell decomposition corresponding to the initial ideals with Hilbert function \(T \) (cf. [G] or [IY]). Nevertheless, our methods give a new proof.

Our second application is to fine moduli spaces of representations of a quiver without oriented cycles. These moduli spaces were constructed in [K].
To fix notation, we recall that a quiver Q is a directed graph, specified by a finite set of vertices Q_0 and a finite set of arrows Q_1 between the vertices together with two maps $h, t: Q_1 \rightarrow Q_0$ specifying the head and tail of each arrow. A representation of Q consists of vector spaces W_i for each $i \in Q_0$ and k-linear maps $\phi_a : W_{ta} \rightarrow W_{ha}$ for each $a \in Q_1$. A subrepresentation is a collection of subspaces $W'_i \subset W_i$ such that $\phi_a(W'_{ta}) \subset W'_{ha}$ for all a. The dimension vector $\alpha \in \mathbb{N}^{Q_0}$ of a representation (W_i, ϕ_a) is given by $\alpha_i = \dim_k(W_i)$.

To obtain a moduli space of representations of Q of dimension vector α one needs to introduce a notion of stability. Having chosen $\theta = (\theta_i) \in \mathbb{R}^{Q_0}$ such that $\sum_i \theta_i \alpha_i = 0$, we say that a representation (W_i, ϕ_a) is θ-stable if all (proper) subrepresentations (W'_i) satisfy $\sum_i \theta_i \dim(W'_i) > 0$. When α is an indivisible dimension vector and θ is generic, there is a smooth fine moduli space $M_Q(\alpha, \theta)$ of θ-stable representations of Q of dimension vector α ([K] Proposition 5.3). If the quiver Q has no oriented cycles, then this fine moduli space is projective ([K] Proposition 4.3). Note that this moduli space may actually be empty. The conditions on α and θ which make it non-empty are more subtle (cf. [K] Remark 4.5).

The universal representation over $M_Q(\alpha, \theta)$ consists of vector bundles U_i of rank α_i together with the universal morphisms. We use Theorem 1 to prove the following, confirming the conjecture made in Remark 5.4 of [K].

Theorem 3. Let Q be a quiver without oriented cycles, and $M = M_Q(\alpha, \theta)$ be a smooth projective fine moduli space of θ-stable representations of Q of dimension vector α. Let U_i be the universal bundles on M described above. Then

(a) The Chern classes of the U_i generate the Chow ring $A^*(M)$ as a \mathbb{Z}-algebra.

(b) Numerical and rational equivalence coincide on M. In particular, $A^*(M)$ is a free \mathbb{Z}-module.

(c) If $k = \mathbb{C}$, then the cycle map $A^*(M) \rightarrow H^*(M, \mathbb{Z})$ is an isomorphism. In particular, there is no odd-dimensional cohomology.

The outline of the paper is as follows. In the first section we prove Theorem 1 by adapting the method of Ellingsrud and Strømme. In the second and third sections we apply Theorem 1 to prove Theorems 2 and 3. In the fourth section we explain how Theorem 1 may be used to prove Ellingsrud and Strømme’s original result for sheaves on \mathbb{P}^2.

1 Proof of the Main Theorem

In this section we prove Theorem 1 by adapting a method of Ellingsrud and Strømme.

Let δ be the class of the diagonal in $A^*(M \times M)$, and let p_1 and p_2 denote the projections from $M \times M$ onto its two factors. We will adapt the methods of [ES] §2 to show that δ can be written as a polynomial in the Chern classes of the $p_1^*(E_{ij})$ and the $p_2^*(E_{ij})$. The theorem will then follow from the following result, which Ellingsrud and Strømme describe as “a well-known observation on varieties with decomposable diagonal class”:

Theorem 4. ([ES] Theorem 2.1) Let X be a nonsingular complete variety. Assume that the rational equivalence class δ of the diagonal $\Delta \subset X \times X$ decomposes in the form

$$\delta = \sum_{i \in J} p_1^* \alpha_i \, p_2^* \beta_i$$

(1)
where \(p_1 \) and \(p_2 \) are the projection of \(X \times X \) onto its factors, and \(\alpha_i, \beta_i \in A^*(X) \). Then

(a) The \(\alpha_i \) generate \(A^*(X) \) as a \(\mathbb{Z} \)-module.

(b) Numerical and rational equivalence coincide on \(X \). In particular, \(A^*(X) \) is a free \(\mathbb{Z} \)-module.

(c) If \(k = \mathbb{C} \), then the cycle map \(A^*(X) \to H^*(X,\mathbb{Z}) \) is an isomorphism. In particular, there is no odd-dimensional cohomology.

(d) Suppose the set \(\{\alpha_i\} \) in (\(\mathbb{I} \)) is minimal. Then \(\{\alpha_i\} \) and \(\{\beta_i\} \) are dual bases with respect to the intersection form on \(A^*(X) \).

So we show how to write \(\delta \) as a polynomial in the Chern classes of the \(p_1^*(\mathcal{E}_{ij}) \) and the \(p_2^*(\mathcal{E}_{ij}) \) using a method similar to [ES] \(\S 2 \). First we write \(\mathcal{P} \) for the projective resolution of the universal family of modules \(\mathcal{U} \) in unaugmented form

\[
0 \to \bigoplus_j P_{rj} \otimes \mathcal{E}_{rj} \to \cdots \to \bigoplus_j P_{0j} \otimes \mathcal{E}_{0j} \to 0.
\]

Then let \(\mathcal{L}^\bullet = \mathcal{H}om_{\mathcal{O}}(p_1^*\mathcal{P}, p_2^*\mathcal{P}) \). Since

\[
\mathcal{L}^p = \bigoplus_{i' = p} \left(\bigoplus_{j,j'} \text{Hom}_{\mathcal{O}}(P_{ij}, P_{i'j'}) \otimes p_1^*\mathcal{E}_{ij} \otimes p_2^*\mathcal{E}_{i'j'} \right),
\]

\(\mathcal{L}^\bullet \) is a finite complex of locally free modules of finite rank with the universal property that for any morphism of \(k \)-schemes of the form \(\phi: X \to M \times M \), we have \(H^p(\phi^*\mathcal{L}^\bullet) = \mathcal{E}xt^p_{\mathcal{O}}(\phi^*\mathcal{P}, \phi^*\mathcal{P}) \) for all \(p \). In particular \(\mathcal{L}^\bullet \) is exact except in degrees 0 and 1. Indeed, if \(d^0: \mathcal{L}^p \to \mathcal{L}^{p+1} \) is the differential of \(\mathcal{L}^\bullet \), then \(\mathcal{L}^\bullet \) is quasi-isomorphic to the short complex

\[
0 \to \text{cok}(d^{-1}) \xrightarrow{\phi} \text{ker}(d^1) \to 0
\]

where \(\phi \) is a map between locally free sheaves whose degeneracy locus is exactly the diagonal. Our complex \(\mathcal{L}^\bullet \) now has all the essential properties of the complex \(\mathcal{C}^\bullet \) of [ES] Lemma 2.4. Hence by the same argument we have

\[
\delta = c_{\dim M}(\text{ker}(d^1)) - \text{cok}(d^{-1})) = c_{\dim M}(\sum (-1)^{p+1}[\mathcal{L}^p]).
\]

The formula [\(\mathbb{I} \)] and standard formulas for Chern classes now permit us to write \(\delta \) as a polynomial in the Chern classes of the \(p_1^*\mathcal{E}_{ij} \) and the \(p_2^*\mathcal{E}_{i'j'} \). This completes the proof of Theorem [\(\mathbb{I} \)]. \(\square \)

2 Iarrobino Varieties

In this section we apply the main theorem to the study of the Iarrobino varieties \(G_T \) which parametrize homogeneous ideals in \(k[x,y] \) with Hilbert function \(T \). We prove Theorem [\(\mathbb{II} \)].

Proof of Theorem [\(\mathbb{II} \)]. Let \(S = k[x,y] \) and \(\mathcal{S} = S \otimes_k \mathcal{O}_{G_T} \). The fact that \(G_T \) is a fine moduli space means that there is a universal sheaf of homogeneous \(\mathcal{S} \)-ideals \(\mathcal{I} \) and a universal quotient sheaf of graded \(\mathcal{S} \)-modules \(\mathcal{A} = \mathcal{S}/\mathcal{I} \). According to our construction, we have \(\mathcal{A} = \bigoplus_n \mathcal{A}_n \).

We now wish to apply Theorem [\(\mathbb{I} \)] using \(\mathcal{A} \) as the universal module. To do so we need to verify the various hypotheses.
First the cohomological ones. Because we are working with graded modules, we must examine the degree 0 graded pieces of the internal Hom and Ext. If $A = S/I$ and $B = S/J$ are two graded quotients of S with the same Hilbert function, then there are no nonzero morphisms of degree 0 between A and B unless $A = B$, in which case $\text{Hom}_S(A, A)_0 \cong k$, the homotheties. Some standard exact sequences show that $\text{Ext}^1_S(A, A)_0 \cong \text{Hom}_S(I, A)_0$ which is the tangent space to G_T at $[I]$ by the graded analog of Grothendieck’s formula for the tangent space of the Hilbert scheme (cf. [PS] §4). Since S is of global dimension 2, the functor Ext^2_S is right exact, so the surjection $S \to B$ induces a surjection $\text{Ext}^2_S(A, S)_0 \to \text{Ext}^2_S(A, B)_0$.

But by local duality ([S] n° 72, Théorème 1) we have $\text{Ext}^2_S(A, S)_0 \cong H^0_m(A)_{-2} = A_{-2}$, which vanishes. So $\text{Ext}^2_S(A, B)_0 = 0$. Finally $\text{Ext}^2_S(A, B) = 0$ for all $p \geq 3$ because S has global dimension 2. Thus the cohomological hypotheses of Theorem 1 are fulfilled.

Now we exhibit a universal projective resolution of A. Since $A = \bigoplus A_n$ is a $k[x, y] \otimes \mathcal{O}_{G_T}$-module, multiplication by x and y define morphisms $\xi, \eta: A_n \to A_{n+1}$. Then the universal projective resolution is

$$0 \to \bigoplus_n S(-n - 2) \otimes_k A_n \xrightarrow{\alpha} \bigoplus_n S(-n - 1)^3 \otimes_k A_n \xrightarrow{\beta} \bigoplus_n S(-n) \otimes_k A_n \to A \to 0$$

where the morphisms are the standard ones

$$\alpha = \begin{bmatrix} -y \otimes 1 + 1 \otimes \eta \\ x \otimes 1 - 1 \otimes \xi \end{bmatrix}, \quad \beta = \begin{bmatrix} x \otimes 1 - 1 \otimes \xi \\ y \otimes 1 - 1 \otimes \eta \end{bmatrix}.$$

Note that the sums are finite because each A_n is of rank t_n which vanishes for $n \gg 0$. Finally the $\text{Hom}_S(S(-i), S(-j))_0$ are all finite-dimensional. So the remaining hypotheses of Theorem 1 are fulfilled.

The theorem now follows directly from Theorem 1.

\section{Representations of Quivers}

In this section we prove Theorem 3 by applying the main theorem to fine moduli spaces of representations of quivers without oriented cycles. To do this, we start with the well-established observation (cf. for example [B]) that representations of a quiver Q are the same as modules for the path algebra kQ. This algebra is generated over k by a set of orthogonal idempotents $\{e_i \mid i \in Q_0\}$ and a further set of generators $\{x_a \mid a \in Q_1\}$ such that $x_a = e_{ha} x_a e_{ta}$. A left kQ-module E corresponds to the representation of Q consisting of the vector spaces $W_i = e_i E$ for each $i \in Q_0$, and the k-linear maps $\phi_a : W_{ta} \to W_{ha}$ giving multiplication by x_a for each $a \in Q_1$.

The algebra kQ is always hereditary, i.e. of global dimension ≤ 1, and is finite-dimensional if and only if the quiver Q has no oriented cycles.

\textbf{Proof of Theorem 3.} Let $S = kQ$. Then the indecomposable projective S-modules are Se_i for $i \in Q_0$, and S has the following minimal projective resolution as an S, S-bimodule (or $S \otimes S^{\text{op}}$-module)

$$0 \to \bigoplus_{a \in Q_1} Se_{ha} \otimes e_{ta} S \xrightarrow{d} \bigoplus_{i \in Q_0} Se_i \otimes e_i S \xrightarrow{\mu} S \to 0$$
where \(\mu \) is multiplication and \(d(e_{ha} \otimes e_{ta}) = x_a \otimes e_{ta} - e_{ha} \otimes x_a \). We can use this resolution to calculate the derived functors of \(\text{Hom}_S \), because \(\text{Hom}_S(E, F) = \text{Hom}_S(S, \text{Hom}_k(E, F)) \) for any \(E \) and \(F \). We see immediately see that \(\text{Ext}^i_S(E, F) = 0 \), for \(i \geq 2 \).

To check the other cohomological conditions, we first note that, by a standard Schur’s Lemma style argument, the stability condition implies that for any two \(\theta \)-stable modules \(E \) and \(F \)

\[
\text{Hom}_S(E, F) = \begin{cases}
 k & \text{if } E \cong F, \\
 0 & \text{otherwise.}
\end{cases}
\]

Now \(M \) is constructed as a GIT quotient of the representation space

\[
\mathcal{R}(Q, \alpha) = \bigoplus_{a \in Q_1} \text{Hom}(W_{ta}, W_{ha})
\]

by the reductive group \(GL(\alpha) = \prod_{i \in Q_0} GL(W_i) \), where \(W_i \) is a fixed vector space of dimension \(\alpha_i \). If \(E = (W_i, \phi_a) \), then the tangent space \(T_E(M) \) is isomorphic to normal space at \(\phi \in \mathcal{R}(Q, \alpha) \) to the \(GL(\alpha) \)-orbit. This is the cokernel of

\[
d_\phi : \bigoplus_{i \in Q_0} \text{Hom}(W_i, W_i) \longrightarrow \bigoplus_{a \in Q_1} \text{Hom}(W_{ta}, W_{ha})
\]

where \((d_\phi \gamma)_a = \phi_a \gamma_{ta} - \gamma_{ha} \phi_a \). But this is exactly the complex which calculates \(\text{Ext}^*_S(E, E) \), using the projective resolution of \(S \) above. Thus \(T_E(M) \cong \text{Ext}^1_S(E, E) \).

Finally, we obtain the necessary universal projective resolution by tensoring \(U \) with the projective bimodule resolution of \(S \), giving

\[
0 \rightarrow \bigoplus_{a \in Q_1} S e_{ha} \otimes U_{ta} \rightarrow \bigoplus_{i \in Q_0} S e_i \otimes U_i \rightarrow U \rightarrow 0
\]

This completes the verification of the hypotheses for Theorem \(\text{l} \) and hence the proof of Theorem \(\text{l} \).

\[
\end{proof}
\]

4 Sheaves on \(\mathbb{P}^2 \)

In [ES] Ellingsrud and Strømme proved that the Chow ring of a moduli space \(M \) of stable sheaves on \(\mathbb{P}^2 \) of fixed rank and Chern classes is generated by the Chern classes of three bundles on \(M \) in those cases where \(M \) is smooth and projective. We show how their result can be viewed as an application of our Theorem \(\text{l} \).

We use notation derived from a recent paper of Le Potier [L]. Let \(r, c_1, \chi, \) and \(m \) be integers such that \(-r < c_1 \leq 0, \chi \leq 0, \chi \leq r + 2c_1, \) and \(m \gg 0 \). Write \(n = -\chi + r + c_1 \). We consider representations of the quiver with triple edges labeled \(x_1, y_1, z_1 \) and \(x_2, y_2, z_2 \)

\[
\begin{align*}
\alpha : & \quad n + c_1 \\
\theta : & \quad -(r + c_1)m + n \quad (r + 2c_1)m - 2n + r \quad -c_1m + n
\end{align*}
\]

with dimension vector \(\alpha \) as marked. Those representations satisfying the symmetric relations \(x_1y_2 = y_1x_2, \ x_1z_2 = z_1x_2, \) and \(y_1z_2 = z_1x_2 \) form a closed subvariety \(\mathcal{R}^{\text{sym}}(Q, \alpha) \) of the representation space \(\mathcal{R}(Q, \alpha) \). Let \(I \) be the two-sided ideal of \(kQ \) generated by the symmetric
relations above, and let $S = kQ/I$. For any α (resp. θ) we say that an S-module is of dimension vector α (resp. is θ-stable) if it is so as a kQ-module. Then for any θ the image of $\mathcal{R}^{sym}(Q, \alpha)$ in the moduli space $M_Q(\alpha, \theta)$ is a fine moduli space $M_S(\alpha, \theta)$ of θ-stable S-modules of dimension vector α.

Le Potier has established a result (¶ Théorème 3.1) which may be interpreted in this language as saying that for α and θ as marked in the diagram above, $M_S(\alpha, \theta)$ is isomorphic to the moduli space $M_{\mathbb{P}^2}(r, c_1, \chi)$ of Gieseker-Maruyama stable sheaves on \mathbb{P}^2 of rank r, determinant c_1 and Euler characteristic χ. The restrictions to $M_S(\alpha, \theta)$ of the universal bundles U_i on $M_Q(\alpha, \theta)$ may be identified with the universal bundles $R^1\pi_*(\mathcal{E}(-i))$ on $M_{\mathbb{P}^2}(r, c_1, \chi)$. (Note that with these conventions, the vertices of the quiver are labeled $2, 1, 0$ from left to right.) Lemma 2.2 of [ES] may be interpreted as saying that the Ext groups for θ-stable S-modules are isomorphic to the Ext groups for the corresponding stable sheaves on \mathbb{P}^2. Hence the cohomological hypotheses in our Theorem 1 can be verified for θ-stable S-modules by using properties of stable sheaves on \mathbb{P}^2.

Let τ_i be the images in S of the idempotents e_i of kQ corresponding to the three vertices $2, 1, 0 \in Q_0$ (cf. [ES]). Then the indecomposable projective S-modules are $S\tau_i$. As in [ES] the minimal projective resolution of S as an S, S-bimodule yields a projective resolution of the universal S-module U on $M_S(\alpha, \theta)$ which is now of the form

$$0 \to \bigoplus_{3 \text{ relations}} S\tau_0 \otimes U_2 \to \bigoplus_{a \in Q_1} S\tau_a \otimes U_a \to \bigoplus_{i \in Q_0} S\tau_i \otimes U_i \to U \to 0.$$

We could therefore apply Theorem 1 to retrieve [ES] Theorem 1.1.

Remark. It is also possible to prove Theorem 2 by regarding the Iarrobino varieties G_T as moduli spaces for representations of a quiver “with relations” and thus as moduli spaces for modules over a finite-dimensional non-commutative algebra. If $T = (t_0, t_1, \ldots, t_q, 0, 0, \ldots)$, then the algebra will be of the form $R = kQ/I$ where Q is the quiver

$$\alpha: \quad \bullet \rightarrow t_0 \rightarrow t_1 \rightarrow t_2 \rightarrow \cdots \rightarrow t_{q-1} \rightarrow t_q$$

$$\theta: \quad - \rightarrow + \rightarrow + \rightarrow +$$

with $2q$ edges $x_1, y_1, x_2, y_2, \ldots, x_q, y_q$, and I is generated by the relations $x_iy_{i+1} - y_ix_{i+1}$. There is a clear correspondence between R-modules of dimension vector α (as marked) and graded $k[x, y]$-modules of Hilbert function T. When $t_0 = 1$ and the coefficients of θ have the signs indicated above, then the θ-stable R-modules correspond exactly to $k[x, y]$-modules which are generated in degree 0, i.e. to modules isomorphic to $k[x, y]/J$ for some homogeneous ideal J of $k[x, y]$. Hence $M_R(\alpha, \theta) \cong G_T$. The universal bundles U_i on $M_R(\alpha, \theta)$ are exactly the universal bundles A_i on G_T.

References

[B] D. J. Benson, Representations and Cohomology I: Basic Representation Theory of Finite Groups and Associative Algebras, Cambridge Studies in Advanced Mathematics, vol. 30, Cambridge University Press, Cambridge, 1991.
[ES] G. Ellingsrud and S. A. Strømme, Towards the Chow ring of the Hilbert scheme of \mathbb{P}^2, J. reine angew. Math. 441 (1993), 33–44.

[G] L. Göttscbe, Betti numbers for the Hilbert function strata of the punctual Hilbert scheme in two variables, Manuscripta Math. 66 (1990), 253–259.

[Go] G. Gotzmann, Topologische Eigenschaften von Hilbertfunktion-Strata, Habilitationschrift, Münster, 1993.

[I] A. Iarrobino, Punctual Hilbert Schemes, Mem. Amer. Math. Soc. 188 (1977).

[IY] A. Iarrobino and J. Yaméogo, Graded Ideals in $k[x,y]$ and Partitions: I & II, preprints, Nice 1992.

[K] A. D. King, Moduli of Representations of Finite Dimensional Algebras, Quart. J. Math. Oxford, to appear.

[L] J. Le Potier, A propos de la construction de l’espace de modules des faisceaux semi-stables sur le plan projectif, Bull. Soc. Math. France, to appear.

[PS] R. Piene and M. Schlessinger, On the Hilbert Scheme Compactification of the Space of Twisted Cubics, Amer. J. Math. 107 (1985), 761–774.

[S] J.-P. Serre, Faisceaux algébriques cohérants, Ann. of Math. 61 (1955), 197–278.

[Y] J. Yaméogo, Fibré canonique de la variété G_T paramétrant les idéaux homogènes de $\mathbb{C}[[x,y]]$ ayant pour fonction de Hilbert T. Preprint, Nice 1993.