Some simple biset functors

Serge Bouc

Abstract: Let p be a prime number, let H be a finite p-group, and let F be a field of characteristic 0, considered as a trivial $F\text{Out}(H)$-module. The main result of this paper gives the dimension of the evaluation $S_{H,F}(G)$ of the simple biset functor $S_{H,F}$ at an arbitrary finite group G. A closely related result is proved in the last section: for each prime number p, a Green biset functor E_p is introduced, as a specific quotient of the Burnside functor, and it is shown that the evaluation $E_p(G)$ is a free abelian group of rank equal to the number of conjugacy classes of p-elementary subgroups of G.

AMS subject classification: 18B99, 19A22, 20J15

Keywords: simple biset functors, Green biset functor, p-elementary

1. Introduction

Let R be a commutative ring. The biset category RC over R has finite groups as objects, with morphisms $\text{Hom}_{RC}(G, H) = R \otimes_{\mathbb{Z}} B(H, G)$, where $B(H, G)$ is the Burnside group of (H, G)-bisets. The composition of morphisms is induced by the usual tensor product of bisets. A biset functor over R is an R-linear functor from RC to the category $R\text{-Mod}$ of R-modules. Biset functors over R form an abelian category, where morphisms are natural transformations of functors. They have proved a useful tool in various aspects of the representation theory of finite groups (see [12], [7], [8], [9]), and they are still the object of active research ([15], [11], [10], [16], [13], [14], [5], [3], [2], ...).

The simple biset functors over R are parametrized ([6], Proposition 2) by equivalence classes of pairs (H, W), where H is a finite group, and W is a simple $R\text{Out}(H)$-module - the simple functor parametrized by (H, W) being denoted $S_{H,W}$. However for a finite group G, the computation of the evaluation $S_{H,W}(G)$ is generally quite hard: in Theorem 4.3.20 of [9], this evaluation is shown to be equal to the image of a complicated linear map. Assuming that R is a field - which is always possible when dealing with simple functors - the dimension of $S_{H,W}(G)$ is given by Theorem 7.1 of [11], as the rank of a yet complicated bilinear form with values in R.

Let F be a field of characteristic 0, let p be a prime number, and H be a finite p-group. The present paper is mainly devoted to the computation of the dimension of the evaluation $S_{H,F}(G)$, where G is an arbitrary finite group, and F is the trivial $F\text{Out}(H)$-module. The result is as follows:
Theorem: Let \mathbb{F} be a field of characteristic 0, let p be a prime number, and H be a finite p-group. Let moreover G be a finite group.

1. If $H = 1$, the dimension of $S_{H,\mathbb{F}}(G)$ is equal to the number of conjugacy classes of cyclic subgroups of G.

2. If $H \cong C_p \times C_p$, the dimension of $S_{H,\mathbb{F}}(G)$ is equal to the number of conjugacy classes of non-cyclic p-elementary subgroups of G.

3. If H is any other finite p-group, the dimension of $S_{H,\mathbb{F}}(G)$ is equal to the number of conjugacy classes of sections (T, S) of G such that $T/S \cong H$ and T is p-elementary.

In the last section of this paper, for each prime number p, we introduce a Green biset functor E_p, closely related to the two first assertions of the above theorem. Green biset functors have been defined in [9], Section 8.5. They are ring objects in the category of biset functors. For a finite group G, we denote by $F_p(G)$ the set of elements of the Burnside group $B(G)$ which vanish when restricted to all p-elementary subgroups of G, and we show that this actually defines a biset subfunctor F_p of B. The functor E_p is defined as the quotient B/F_p, and it then inherits from B a Green biset functor structure (over \mathbb{Z}). We show moreover that its evaluation $E_p(G)$ at a finite group G is a free abelian group of rank equal to the number of conjugacy classes of p-elementary subgroups of G. We also show that the biset functor $\mathbb{F}E_p = \mathbb{F} \otimes \mathbb{Z} E_p$ fits in a non split short exact sequence

$$0 \to S_{(C_p)^2,\mathbb{F}} \to \mathbb{F}E_p \to S_{1,\mathbb{F}} \to 0$$

of biset functors over \mathbb{F}. In the case $\mathbb{F} = \mathbb{Q}$, the restriction of this sequence to p-groups is the short exact sequence of Theorem D of [12], involving the Dade functor $\mathbb{Q}D$, the Burnside functor $\mathbb{Q}B$, and the functor of rational representation $\mathbb{Q}RQ$.

2. Preliminary results

Recall (Sections 5.3 and 5.4 of [9]) that for a normal subgroup N of a finite group G, the rational number $m_{G,N}$ is defined by

$$m_{G,N} = \frac{1}{|G|} \sum_{X \leq G, XN = G} |X| \mu(X, G),$$

where μ is the M"{o}bius function of the poset of subgroups of G. The group G is called a B-group if $m_{G,N} = 0$ for any non-trivial normal subgroup N.
of G. Any finite group G has a largest quotient B-group $\beta(G)$, unique up to isomorphism. If $N \trianglelefteq G$, then $m_{G,N} = 0$ if and only if $\beta(G) \cong \beta(G/N)$.

2.1. Lemma: [M. Baumann [3] - See also [6], p 713] Let L be a finite group, let p be a prime, and let E be an elementary abelian p-group on which L acts irreducibly, faithfully, and such that $H^1(L, E) = \{0\}$. Then the group $G = E \rtimes L$ is a B-group.

Proof: First as E is L-simple, it follows that E is a minimal normal subgroup of G. Let N be any normal subgroup of G. Then $N \cap E$ is equal to E or 1. So if $N \not\trianglelefteq E$, then $N \cap E = 1$, and N centralizes E. But L acts faithfully on E. Thus $N \leq E$, hence $N = 1$.

It follows that E is the unique minimal normal subgroup of G. By Proposition 5.6.4 of [9], since E is abelian,

$$m_{G,E} = 1 - \frac{|K_G(E)|}{|E|},$$

where $K_G(E)$ is the set of complements of E in G. The group E acts by conjugation on $K_G(E)$, and the normalizer in E of $K \in K_G(N)$ is equal to the group E^K of fixed points of K on E. Since E is K-simple, and K-faithful, this is equal to 1. Thus E acts freely on $K_G(E)$. Since $H^1(L, E) = \{0\}$, the set $K_G(E)$ is a single conjugacy class, i.e. a single E-orbit. Thus $|K_G(E)| = |E|$, and $m_{G,E} = 0$. It follows that G is a B-group.

2.3. Recall that a finite group G is called cyclic modulo a prime number p if $G/O_p(G)$ is cyclic, and that G is called p-elementary if $G \cong P \times C$, where P is a p-group and C is a cyclic group.

2.4. Lemma: Let p be a prime number, and G be a finite group.

1. [M. Baumann [3]] The group $\beta(G)$ is cyclic modulo p if and only if G is cyclic modulo p.

2. The group $\beta(G)$ is a p-group if and only if G is p-elementary.

Proof: For Assertion 1, use the fact that by a theorem of Conlon, the subspace $NC_p(G)$ of $\mathbb{Q}B(G)$ generated by the idempotents e^G_H, where H is not cyclic modulo p, is equal to the kernel of the morphism $\mathbb{Q}B(G) \to \mathbb{Q}pp_k(G)$. In particular, the correspondence $G \mapsto NC_p(G)$ is a biset subfunctor of $\mathbb{Q}B$. It follows that there exists a family \mathcal{B} of B-groups such that for any group G, the space $NC_p(G)$ is the \mathbb{Q}-vector subspace of $\mathbb{Q}B(G)$ generated by the idempotents e^G_H, where $\beta(H) \in \mathcal{B}$. The family \mathcal{B} consists of those
B-groups H for which $e_H^p \in NC_p(H)$, i.e. the B-groups which are not cyclic modulo p. Now for any group G, and any subgroup H of G, the idempotent e_H^p is in $NC_p(G)$ if and only if $\beta(G) \in B$, on the one hand, but also if and only if H is not cyclic modulo p. Hence $\beta(H)$ is not cyclic modulo p if and only if H is not cyclic modulo p. This proves Assertion 1.

For Assertion 2, clearly, if G-is p-elementary, one can assume $G \cong P \times C$, where P is a p-group, and C is a cyclic p'-group. By Proposition 5.6.6 of [9], this implies $\beta(G) \cong \beta(P) \times \beta(C) \cong \beta(P)$, since $\beta(C) = 1$. Hence $\beta(G)$ is a p-group.

Conversely, suppose that $\beta(G)$ is a p-group. In particular, it is cyclic modulo p, hence G is cyclic modulo p, by Lemma 2.1. The Frattini subgroup $\Phi(P)$ of P is a normal subgroup of G, and $G/\Phi(P) \cong \overline{P} \rtimes C$, where \overline{P} is the elementary abelian group $P/\Phi(P)$. Suppose that the \mathbb{F}_pC-module \overline{P} admits a simple quotient E with non-trivial C-action (that is, not isomorphic to \mathbb{F}_p).

Then the action of C on E has a kernel $D < C$, and the group $E \rtimes (C/D)$ is a quotient of $\overline{P} \rtimes C$, hence a quotient of G. But $E \rtimes (C/D)$ is a B-group by Lemma 2.1. Indeed E is (C/D)-simple and faithful by construction, and $H^1(C/D, E) = \{0\}$, since C/D is a p'-group.

Now $E \rtimes (C/D)$ is a B-group, which is not a p-group, since $D \neq C$, and it is a quotient of G, hence of $\beta(G)$, which is a p-group. This is a contradiction.

Hence C acts trivially on \overline{P}. But for any p-group P, the kernel of the morphism $\text{Aut}(P) \rightarrow \text{Aut}(P/\Phi(P))$ is a p-group. As C is a p'-group, and acts trivially on \overline{P}, it acts trivially on P. Thus $G \cong P \times C$, as was to be shown.

\[\Box \]

2.5. Lemma: Let p be a prime number, and P be a finite p-group.

1. Let Q be a normal subgroup of P. Then $Q \cap \Phi(P) = 1$ if and only if Q is elementary abelian and central in P, and admits a complement in P.

2. Let Q and R be normal subgroups of P, such that $|Q| = |R|$. Then $Q \cap \Phi(P) = 1 = R \cap \Phi(P)$ if and only if Q and R are elementary abelian and central in P, and admit a common complement in P.

In this case, set $H = P/R \cong P/Q$, and denote by γ the rank of the group $H/\Phi(H)$. If Q and R have rank m, and if $Q \cap R \Phi(P)$ has rank $m - s$, the number of common complements of Q and R in P is equal to

\[(p^s - 1)(p^{s+1} - 1) \cdots (p - 1)p^{s(m-s)+\gamma-s}. \]

Proof: For Assertion 1, if Q is elementary abelian and central in P, and
admits a complement L, then $P = Q \times L$. Thus $\Phi(P) = 1 \times \Phi(L)$, hence $Q \cap \Phi(P) = 1$. Conversely, if $Q \cap \Phi(P) = 1$, then Q maps injectively into $P/\Phi(P)$, so Q is elementary abelian. Let $L \geq \Phi(P)$ be a subgroup of P such that $L/\Phi(P)$ is a complement of $Q\Phi(P)/\Phi(P)$ in the \mathbb{F}_p-vector space $P/\Phi(P)$. Then $Q\Phi(P)L = P$, thus $QL = P$, and $Q\Phi(P) \cap L = \Phi(P)$, i.e. $Q \cap L \leq Q \cap \Phi(P) = 1$. Since $L \geq \Phi(P)$, it follows that $L \leq P$, thus $[L, Q] \leq L \cap Q = 1$, and Q is central in P.

For Assertion 2, let Q and R be normal subgroups of P with $|Q| = |R|$. If Q and R are elementary abelian central subgroups of P with a common complement in P, then $Q \cap \Phi(P) = R \cap \Phi(P) = 1$ by Assertion 1. Conversely, if $Q \cap \Phi(P) = 1$ and $R \cap \Phi(P) = 1$, then Q and R are elementary abelian and central in P by Assertion 1. If L is a complement of Q in P, then $P = Q \times L$ for Q is central in P, thus $L \leq P$, and $P/L \cong Q$ is elementary abelian. Thus $L \geq \Phi(P)$, and $L/\Phi(P)$ is a complement of $Q\Phi(P)/\Phi(P)$ in $P/\Phi(P)$. Conversely if $L/\Phi(P)$ is a complement of $Q\Phi(P)/\Phi(P)$ in $P/\Phi(P)$, then L is a complement of Q in P, by the argument used in the proof of Assertion 1.

So finding a common complement to Q and R in P amounts to finding a common complement of $\tilde{Q} = Q\Phi(P)/\Phi(P)$ and $\tilde{R} = R\Phi(P)/\Phi(P)$ in $\tilde{P} = P/\Phi(P)$. Moreover $|\tilde{Q}| = |Q| = |R| = |\tilde{R}|$. The \mathbb{F}_p-vector space \tilde{P} can be split as $\tilde{P} = I \oplus E \oplus F \oplus V$, where $I = \tilde{Q} \cap \tilde{R}$, where E is a complement of I in \tilde{Q} and F is a complement of I in \tilde{R}, and V is a complement of $\tilde{Q} + \tilde{R}$ in \tilde{P}. Then $L = F \oplus V$ is a complement of \tilde{Q} in \tilde{P}, and all the other complements of \tilde{Q} are of the form $\{(\varphi(x), x) \mid x \in L\}$, where $\varphi : L \to \tilde{Q}$ is a group homomorphism. In other words, any complement L' of \tilde{Q} is of the form

$$L' = \{(a(f) + b(v), c(f) + d(v), f, v) \mid f \in F, v \in V\},$$

where $a : F \to I$, $b : V \to I$, $c : F \to E$ and $d : V \to E$ are group homomorphisms. The group L' is a complement of \tilde{R} if and only if its intersection with \tilde{R} is trivial, or equivalently if c is injective, hence an isomorphism, since $|E| = |F|$.

It follows that the number of common complements of \tilde{Q} and \tilde{R} in \tilde{P} is equal to the number of 4-tuples (a, b, c, d), where c is an isomorphism. Hence

$$|K_P(Q) \cap K_P(R)| = |\text{Aut}(E)||\text{Hom}(F, I)||\text{Hom}(V, I)||\text{Hom}(V, E)|$$

$$= |\text{Aut}(E)||\text{Hom}(F, I)||\text{Hom}(V, \tilde{Q})|.$$

Moreover

$$I = (Q\Phi(P) \cap R\Phi(P))/\Phi(P) = (Q \cap R\Phi(P))\Phi(P)/\Phi(P) \cong Q \cap R\Phi(P)$$

has rank $m - s$, and $F \cong E \cong \tilde{Q}/I$ has rank s. Finally

$$V \cong \tilde{P}/(\tilde{Q}\tilde{R}) \cong (P/R\Phi(P))/(Q\Phi(P)/R\Phi(P)).$$
has rank $\gamma - s$, since $P/R\Phi(P) \cong H/\Phi(H)$, as $\Phi(P/R) = R\Phi(P)/R$, and since $QR\Phi(P)/R\Phi(P) \cong Q/(Q \cap R\Phi(P))$. This completes the proof.

2.6. Corollary: Let P be a finite p-group, and M be a normal subgroup of P. Then

$$P/(M \cap \Phi(P)) \cong E \times (P/M) ,$$

where $E = M/(M \cap \Phi(P))$ is elementary abelian.

Proof: The normal subgroup $M = M/(M \cap \Phi(P))$ of $P = P/(M \cap \Phi(P))$ intersect the Frattini subgroup $\Phi(P) = \Phi(P)/(M \cap \Phi(P))$ trivially, hence there exists a subgroup L of P such that $P = M \times L$. Moreover $L \cong P/M \cong P/M$.

3. Simple biset functors and bilinear forms

Let F be any field. Recall (see [11]) that, given a finite group H, we defined, for any finite group G

$$\mathbb{F}\mathcal{B}(G, H) = \mathbb{F}B(G, H)/ \sum_{|K| < |H|} \mathbb{F}B(G, K) \circ \mathbb{F}B(K, H) ,$$

and that the correspondence $G \mapsto \mathbb{F}\mathcal{B}(G, H)$ is a quotient biset functor of the Yoneda functor $G \mapsto \mathbb{F}B(G, H)$ at the group H.

When V is a $\mathbb{F}\text{Out}(H)$-module, we defined an F-valued bilinear form $\langle , \rangle_{V,G}$ on $\mathbb{F}\mathcal{B}(G, H)$ by

$$\forall \alpha, \beta \in \mathbb{F}\mathcal{B}(G, H), \langle \alpha, \beta \rangle_{V,G} = \chi_V(\pi_H(\hat{\alpha}^{\text{op}} \circ \hat{\beta})) ,$$

where $\hat{\alpha}, \hat{\beta}$ are elements of $\mathbb{F}B(G, H)$ lifting $\alpha, \beta \in \mathbb{F}\mathcal{B}(G, H)$, respectively, where $\pi_H : \mathbb{F}B(H, H) \to \mathbb{F}\mathcal{B}(H, H) \cong \mathbb{F}\text{Out}(H)$ is the projection map, and χ_V is the character of V, i.e. the trace function $\text{End}_F(V) \to F$. The main property of these constructions is that

$$\mathbb{F}\mathcal{B}(G, H)/\text{Rad}\langle , \rangle_{V,G} \cong S_{H,V}(G)^{\text{dim}_F V} .$$

Moreover, if L is a finite group, then for any $\gamma \in B(L, G)$, any $\alpha \in \mathcal{B}(G, H)$, and any $\beta \in \mathcal{B}(L, H)$,

$$\langle \gamma(\alpha), \beta \rangle_{V,L} = \langle \alpha, \gamma^{\text{op}}(\beta) \rangle_{V,G} .$$
3.2. Suppose from now on that \(\mathbb{F} \) is a field of characteristic 0. Observe that \(\tilde{e}_K^G = (e_K^G)^{op} \) for any subgroup \(K \) of a finite group \(G \). By \([3.1]\), this implies that the decomposition

\[
\mathbb{F} \overline{B}(G, H) = \bigoplus_{K \in [s_G]} \tilde{e}_K^G \mathbb{F} \overline{B}(G, H),
\]

where \([s_G]\) is a set of representatives of conjugacy classes of subgroups of \(G \), is an orthogonal decomposition with respect to the form \(\langle \, , \rangle_{V,G} \). Moreover

\[
e_G^H S_{H,V}(G)^{dimr V} \cong \tilde{e}_G^G \mathbb{F} \overline{B}(G, H)/\text{Rad}\langle \, , \rangle_{V,G},
\]

and the isomorphism

\[
\mathbb{F} \overline{B}(G, H) \cong \bigoplus_{K \in [s_G]} \left(\tilde{e}_K^K \mathbb{F} \overline{B}(K, H) \right)^{N_G(K)}
\]

given by Proposition 6.5.5 of \([9]\) induces an isomorphism

\[
(3.3) \quad S_{H,V}(G)^{dimr V} \cong \bigoplus_{K \in [s_G]} \left(\tilde{e}_K^K \mathbb{F} \overline{B}(K, H)/\text{Rad}\langle \, , \rangle_{V,K} \right)^{N_G(K)}.
\]

Now \(\overline{B}(K, H) \) is generated by the images of the elements \((K \times H)/L \), where \(L \) is a subgroup of \(K \times H \). If this image is non-zero, then \(L \) is of the form \(L = \{(x, s(x)) \mid x \in X\} \), where \(X \) is a subgroup of \(K \) and \(s : X \to H \) is a surjective group homomorphism.

The \((K, G)\)-biset \(U = (K \times H)/L \) factors as \(U = \text{Ind}_X^K \circ V \), for a suitable \((X, H)\)-biset \(V \) \([9] \), Lemma 2.3.26), and by \([9]\), Corollary 2.5.12

\[
\tilde{e}_K^K \circ \text{Ind}_X^K = \text{Ind}_X^K \circ \text{Res}_X^K \tilde{e}_K^K.
\]

Now \(\text{Res}_X^K \tilde{e}_K^K = 0 \) if \(X \) is a proper subgroup of \(K \). It follows that \(\tilde{e}_K^K \mathbb{F} \overline{B}(K, H) \) is generated by the images \(\pi_s \) of the elements

\[
u_s = \tilde{e}_K^K \times_K (K \times H)/\Delta_s^X(K),
\]

where \(\Delta_s^X(K) = \{(x, s(x)) \mid x \in K\} \), for a surjective group homomorphism \(s : K \to H \).

Let \(\varpi_H : \text{Aut}(H) \to \text{Out}(H) \) denote the projection map. Then:
3.4. Proposition: Let \(s, t : K \to H \) be two surjective group homomorphisms. Let \(M = \ker s \) and \(N = \ker t \). Then

\[
\langle \overline{u}_s, \overline{u}_t \rangle_{V,K} = m_{K,M \cap N} \sum_{Y \in \mathcal{K}(K,M,N)} \chi_V \left(\varpi_H([s,Y,t]) \right)
\]

where \(\mu_{\leq K} \) is the Möbius function of the poset of normal subgroups of \(K \), and

\[
\mathcal{K}(K,M,N) = \{ Y \leq K \mid YN = YM = K, \ Y \cap N = Y \cap M = M \cap N \}
\]

is the set of subgroups \(Y \) of \(K \), containing \(M \cap N \), such that \(Y/(M \cap N) \) is a common complement of \(M/(M \cap N) \) and \(N/(M \cap N) \) in \(K/(M \cap N) \). Moreover for \(Y \in \mathcal{K}(K,M,N) \), the symbol \([s,Y,t]\) denotes the automorphism of \(H \) defined by \([s,Y,t](t(y)) = s(y), \forall y \in Y\).

Proof: By definition, and since \(\tilde{e}_K^K \) is an idempotent

\[
\langle \overline{u}_s, \overline{u}_t \rangle_{V,K} = \chi_V \left(\pi_H(u_{s}^{op} \circ u_t) \right)
\]

\[
= \chi_V \left(\pi_H \left((H \times K)/\Delta_s(K) \times_K \tilde{e}_K^K \times_K (K \times H)/\Delta_t^K(K) \right) \right),
\]

where \(\Delta_s(K) = \{(s(x),x) \mid x \in K \} \). Set

\[
a_{s,t} = (H \times K)/\Delta_s(K) \times_K \tilde{e}_K^K \times_K (K \times H)/\Delta_t^K(K).
\]

Then

\[
a_{s,t} = \frac{1}{|K|} \sum_{L \leq K} |L| \mu(L,K)(H \times H)/\Delta_{s,t}(L),
\]

where \(\Delta_{s,t}(L) = \{(s(l),t(l)) \mid l \in L \} \).

This subgroup of \(H \times H \) is equal to \(\Delta_{\theta}(H) \), for some automorphism \(\theta \) of \(H \), if and only if

(3.5) \[L \cap M = L \cap N \quad \text{and} \quad LM = K = LN, \]

where \(M = \ker s \) and \(N = \ker t \). In this case the automorphism \(\theta \) is defined by \(\theta(t(l)) = s(l) \), for any \(l \in L \). The two conditions \(3.5 \) and the automorphism \(\theta \) remain unchanged when \(L \) is replaced by \(L(M \cap N) \). Moreover
the conditions 3.5 are equivalent to saying that the group \(Y = L(M \cap N) \) is in \(\mathcal{K}(K, M, N) \), and in this case \(\theta = [s, Y, t] \). Conversely, fix some \(Y \in \mathcal{K}(K, M, N) \), and consider all the subgroups \(L \) of \(K \) such that \(L(M \cap N) = Y \).

Recall that
\[
\sum_{L \leq Y, L(M \cap N) = Y} |L| \mu(L, K) = m_{K, M \cap N} |Y| \mu(Y, K) .
\]

This gives:
\[
\pi_H(a_s,t) = m_{K, M \cap N} \sum_{Y \in \mathcal{K}(K, M, N)} \frac{|Y|}{|K|} \mu(Y, K) \varpi([s, Y, t]) .
\]

Now if \(Y/(M \cap N) \) is a complement of \(M/(M \cap N) \) in \(K/(M \cap N) \), and if \(K/M \cong H \), it follows that \(|Y| = |M \cap N||H| \). Moreover the poset \(|Y, K| \) is isomorphic to the poset \(|M \cap N, M| \). But since \(M \) and \(N \) are normal subgroups of \(K \), the commutator group \([M, N] \) is contained in \(M \cap N \). It follows that \(|M \cap N, M| = |M \cap N, M|^Y = |M \cap N, M|^Y N = |M \cap N, M|^K \), and that \(\mu(Y, K) = \mu_{\leq K}(M \cap N, M) \). This completes the proof of the first equality of the proposition. The second one follows from the observation that the correspondences
\[
Y \mapsto [s, Y, t] \quad \text{and} \quad \theta \mapsto \{ k \in K \mid \theta(t(k)) = s(k) \}
\]
are mutual inverse bijections between \(\mathcal{K}(K, M, N) \) and the set of automorphisms \(\theta \) of \(H \) such that \(\Delta(\theta(H)) \leq (s \times t)(K) \) (see Section 8.3 of [6]).

\[
3.6. \text{Corollary:}
\]
1. If \(e^K_{S_{H,V}}(K) \neq \{0\} \), the group \(\beta(K) \) is isomorphic to \(\beta(L) \), where \(L \) is a subgroup of \(H \times H \) with the following properties:
 (a) \(p_1(L) = p_2(L) = H \).
 (b) \(k_1(L) \) and \(k_2(L) \) are direct products of minimal normal subgroups of \(H \).
 (c) There exist an automorphism \(\theta \) of \(H \) such that \(\theta(k_2(L)) = k_1(L) \).

2. In particular, if \(H \) is a \(p \)-group for some prime \(p \), then \(K \) is \(p \)-elementary. If \(K = P \times C \), where \(P \) is a \(p \)-group and \(C \) is a cyclic \(p' \)-group, then
\[
e^K_{S_{H,V}}(K) \cong e^p_P S_{H,V}(P) ,
\]
and this isomorphism is compatible with the action of \(\text{Aut}(K) \).
Proof: Indeed, if \(\check{K}_K S_{H, V}(K) \neq \{0\} \), then the bilinear form \(\langle , \rangle_{V,K} \) is not identically zero on \(\check{K}_K \overline{F}(K, H) \). It follows that there exist surjective group homomorphisms \(s, t : K \to H \) such that \(\langle \overline{s}, \overline{t} \rangle_{V,K} \neq 0 \).

Then \(m_{K,M \cap N} \neq 0 \), \(\mu_{\leq K}(M \cap N, M) \neq 0 \), and \(\overline{K}(K, M, N) \neq \emptyset \), where \(M = \ker s \) and \(N = \ker t \). Hence \(\beta(K) \cong \beta(K/(M \cap N)) \). Now \(K/(M \cap N) \) is isomorphic to \(L = (s \times t)(K) \), which is a subgroup of \(H \times H \) such that \(p_1(L) = p_2(L) = H \). Moreover \(k_1(L) = s(\ker t) \cong N/(M \cap N) \) and \(k_2(L) = t(\ker s) \cong M/(M \cap N) \). Then \(\mu_{\leq K}(M \cap N, M) = \mu_{\leq H}(1, t(\ker s)) \), and this is non zero if and only if the lattice \([1, t(\ker s)]^H \) of normal subgroups of \(H \) contained in \(t(\ker s) \) is complemented, i.e. if \(t(\ker s) \) is a direct product of minimal normal subgroups of \(H \). Finally, let \(Y \in \overline{K}(K, M, N) \) and \(\theta = [s, Y, t] \). If \(u \in k_2(L) = t(\ker s) \), then there exist \(v \in \ker s \) and \(y \in Y \) such that \(u = t(v) = t(y) \). Then \(v^{-1}y \in \ker t \), and \(\theta(u) = s(y) = s(v^{-1}y) \in s(\ker t) = k_1(L) \). In other words \(\theta(k_2(L)) = k_1(L) \), which completes the proof of Assertion 1.

The first part of Assertion 2 follows from Assertion 2 of Lemma [2.4. Now if \(H \) is a \(p \)-group, if \(K = P \times C \), where \(P \) is a \(p \)-group and \(C \) is a \(p' \)-group, and if \(s : K \to H \) is a surjective group homomorphism, then \(C \leq \ker s \). In other words, there is a surjective homomorphism \(\overline{s} : P \to H \) such that \(s = \overline{s} \circ \pi \), where \(\pi : K \to P \) is the projection map. Moreover \(\ker s = \ker \overline{s} \times C \).

So with the notation of Proposition [3.4, \(M = \overline{M} \times C \), where \(\overline{M} = \ker \overline{s} \). Similarly \(N = \overline{N} \times C \), where \(\overline{N} = \ker \overline{t} \), and \(\overline{t} : P \to H \) is such that \(t = \overline{t} \circ \pi \). Clearly \(|M : M \cap N| = |\overline{M} : \overline{M} \cap \overline{N}| \). Moreover, one checks easily that

\[
m_{K,M \cap N} = m_{P \times C, (\overline{M} \cap \overline{N}) \cap C} = m_{P, \overline{M} \cap \overline{N}} m_{C, C} = m_{P, \overline{M} \cap \overline{N}} \frac{\phi(|C|)}{|C|},
\]

since \(P \) and \(C \) have coprime orders, and \(C \) is cyclic.

Also

\[
\mu_{\leq K}(M \cap N, M) = \mu_{\leq P}(\overline{M} \cap \overline{N}, \overline{M}) .
\]

Finally, the maps \(Q \mapsto Q \times 1 \) and \(Y \mapsto (Y \cap P) \) induce inverse bijections from \(\overline{K}(P, \overline{M}, \overline{N}) \) to \(\overline{K}(K, M, N) \), and for any \(Y \in \overline{K}(K, M, N) \),

\[
[s, Y, t] = [\overline{s}, Y \cap P, \overline{t}] .
\]

It follows that the matrix of the form \(\langle , \rangle_{V,K} \) on \(\check{K}_K \overline{F}(K, H) \) is equal to the matrix of the form \(\langle , \rangle_{V,P} \) on \(\check{K}_P \overline{F}(P, H) \), multiplied by the non-zero scalar \(\frac{\phi(|C|)}{|C|} \). Hence the two forms define isomorphic quadratic spaces. As all the above bijections are obviously compatible with the action of \(\text{Aut}(K) \).
and the canonical group homomorphism \(\text{Aut}(K) \to \text{Aut}(P) \), the induced isomorphism
\[
\tilde{e}_K^{S_{H,V}}(K) \cong \tilde{e}_P^{S_{H,V}}(P)
\]
is compatible with the action of \(\text{Aut}(K) \).

3.7. Notation: Let \(H \) and \(P \) be finite \(p \)-groups.

1. Let \(Q_{H}(P) \) denote the \(\mathbb{F} \)-vector space with basis the set
\[
\Sigma_{H}(P) = \{ s \mid s : P \to H \}
\]
of surjective group homomorphisms from \(P \) to \(H \), endowed with the \(\mathbb{F} \)-valued bilinear form \(\langle \cdot, \cdot \rangle_{V,P} \) defined as follows: For \(s, t \in \Sigma_{H}(P) \), set \(M = \text{Ker} s \) and \(N = \text{Ker} t \). If \(M \cap \Phi(P) \neq N \cap \Phi(P) \), set \(\langle s, t \rangle_{V,P} = 0 \). And if \(M \cap \Phi(P) = N \cap \Phi(P) \), then the groups \(M/(M \cap N) \) and \(N/(M \cap N) \) are central elementary abelian subgroups of the same rank of \(P/M \cap N \). In this case, set
\[
\langle s, t \rangle_{V,P} = m_{P,M \cap N}^{\mu(M \cap N,M)} [M : M \cap N] \chi_{V,H} \left(\sum_{Y \in \mathcal{K}(P,M,N)} \omega_H([s,Y,t]) \right).
\]

2. Let \(Q_{H}^{\sharp}(P) \) be the subspace of \(Q_{H}(P) \) with basis the subset
\[
\Sigma_{H}^{\sharp}(P) = \{ s \mid s : P \to H, \text{ Ker} s \cap \Phi(P) = 1 \}
\]
of \(\Sigma_{H}(P) \).

3. Set
\[
\mathcal{N}_{H}(P) = \{ N \mid N \leq P, N \cap \Phi(P) = 1 \}.
\]

4. Denote by \(\mathcal{E}_{H}(P) \) the set of normal subgroups \(R \) of \(P \), contained in \(\Phi(P) \), and such that \(P/R \cong E \times H \), for some elementary abelian \(p \)-group \(E \).

3.8. Proposition: Let \(H \) be a \(p \)-group, and \(K \) be a \(p \)-elementary group. Set \(P = O_{p}(K) \). Then:

1. There is an isomorphism of \(\mathbb{F}\text{Aut}(K) \)-modules
\[
\tilde{e}_K^{S_{H,V}}(K) \cong Q_{H}(P)/\text{Rad}\langle \cdot, \cdot \rangle_{V,P}.
\]
2. Let Γ be a finite group acting on the group K. Then Γ acts on the set $\mathcal{E}_H(P)$, and there is an isomorphism of $\mathbb{F}T$-modules

$$\hat{e}_K^{\mathcal{E}_H(V)}(K) \cong \bigoplus_{R \in [\Gamma \mathcal{E}_H(P)]} \text{Ind}_R^\Gamma (Q^\mathcal{E}_H(P/R)/\text{Rad}(\langle \cdot \rangle_{V,P/R})),$$

where $[\Gamma \mathcal{E}_H(P)]$ is a set of representatives of Γ-orbits on $\mathcal{E}_H(P)$, and Γ_R denotes the stabilizer of R in Γ.

Proof: The map $s \in \Sigma_H(P) \mapsto \bar{s} \in \hat{e}_P \mathcal{E}_H(P,H)$ induces a surjective linear map $Q_H(P) \to \hat{e}_P \mathcal{E}_H(P,H)$. Let $s, t \in \Sigma_H(P)$, and set $M = \text{Ker } s$ and $N = \text{Ker } t$. Then $|M| = |N|$. It follows from Lemma 2.5 that $\mathbf{K}(P, M, N) \neq \emptyset$ if and only if $M/(M \cap N)$ and $N/(M \cap N)$ are central elementary abelian subgroups of $P/(M \cap N)$, which intersect trivially the Frattini subgroup of $P/(M \cap N)$. But

$$\Phi(P/(M \cap N)) = \Phi(P)(M \cap N)/(M \cap N).$$

Hence $M/(M \cap N) \cap \Phi(P/(M \cap N)) = (M \cap \Phi(P))(M \cap N)/(M \cap N)$. This group is trivial if and only if $M \cap \Phi(P) \leq M \cap N$, i.e. if $M \cap \Phi(P) \leq N \cap \Phi(P)$. Hence $\mathbf{K}(P, M, N) \neq \emptyset$ if and only if $M \cap \Phi(P) = N \cap \Phi(P)$.

This holds in particular if $\langle \bar{s}, \bar{t} \rangle \neq 0$. In this case, by Proposition 3.4

$$\langle \bar{s}, \bar{t} \rangle_{V,P} = m_{P,M \cap N} \mu_{s,M,M \cap N} \chi_V \left(\sum_{Y \in \mathbf{K}(P,M,N)} \varphi_H([s,Y,t]) \right).$$

But $\mu_{s,P}(M \cap N, M) = \mu(M \cap N, M)$, since $P/(M \cap N)$ centralizes both $M/(M \cap N)$ and $N/(M \cap N)$. Hence

$$\langle \bar{s}, \bar{t} \rangle_{V,P} = \langle s, t \rangle_{V,P}$$

in this case, and Assertion 1 follows.

Since $\langle s, t \rangle_{V,P} = 0$ if $M \cap \Phi(P) \neq N \cap \Phi(P)$, the quadratic space $Q = \langle Q_H(P), \langle \cdot \rangle_{V,P} \rangle$ splits as the orthogonal sum of the subspaces Q_R generated by the elements $s \in \Sigma_H(P)$ such that $\text{Ker } s \cap \Phi(P) = R$. These subspaces are permuted by the action of $\text{Aut}(K)$, and the space Q_R is invariant by $\text{Aut}(K)_R$.

Let $\pi_R : P \to P/R$ be the canonical projection. The map

$$\theta_R : s \in \Sigma_H^2(P/R) \mapsto s \circ \pi_R$$

is a bijection from $\Sigma_H^2(P/R)$ to the set $\{s \in \Sigma_H(P) \mid \text{Ker } s \cap \Phi(P) = R\}$, and the map $Y \mapsto Y/R$ is a bijection from $\mathbf{K}(P, M, N)$ to $\mathbf{K}(P/R, M/R, N/R)$, such that

$$[s, Y/R, \bar{t}] = [\theta_R(s), Y, \theta_R(\bar{t})].$$

12
for any $\bar{s}, \bar{t} \in \Sigma^2_H(P/R).
Moreover, if $M \cap \Phi(P) = N \cap \Phi(P) = R$, then

$$m_{P, M \cap N} = m_{P, R}m_{P/R, (M \cap N)/R} = m_{P/R, (M \cap N)/R},$$
as $R \leq \Phi(P)$. Also

$$M/(M \cap N) \cong (M/R)/(M \cap (N/R)),$$
It follows that

$$\forall \bar{s}, \bar{t} \in \Sigma^2_H(P/R), \quad \langle \theta_R(\bar{s}), \theta_R(\bar{t}) \rangle_{V, P} = \langle \bar{s}, \bar{t} \rangle_{V, P/R}.$$
Hence there is an isomorphism

$$Q_{R}/\text{Rad}\langle , \rangle_{V, P} \cong Q^2_H(P/R)/\text{Rad}\langle , \rangle_{V, P/R},$$
of $\mathbb{F}\Gamma_{R}$-modules.

To complete the proof of Assertion 2, it remains to observe that if Q is a
p-group, the set $\Sigma^2_H(Q)$ is non-empty if and only if the group Q is isomorphic
to $E \times H$, for some elementary abelian p-group E: Indeed, if $Q = E \times H$, where E is elementary abelian, then $\Phi(Q) = 1 \times \Phi(H)$, and the projection
map $s : Q \to H = Q/E$ is an element of $\Sigma^2_H(Q)$. Conversely, if $s \in \Sigma^2_H(Q)$, then $E = \text{Ker} \ s$ is an elementary abelian central subgroup of
Q, which admits a complement L in Q, by Lemma 2.5. Thus $Q = E \times L$, and $L \cong Q/E \cong H$. Hence $Q \cong E \times H$.

3.9. Theorem: Let G be a finite group, let H be a finite p-group, and let
V be a simple $\mathbb{F}\text{Out}(H)$-module. Then

$$S_{H, V}(G)^{\dim V} \cong \bigoplus_{(K, R)} \left(Q^2_H(K_p/R)/\text{Rad}\langle , \rangle_{V, K_p/R} \right)^{N_G(K, R)}.$$
where (K, R) runs through a set of G-conjugacy classes of pairs consisting
of a p-elementary subgroup K of G, and a p-subgroup R in $\mathcal{E}_H(K_p)$, where
$K_p = O_p(K)$, and $N_G(K, R) = N_G(K) \cap N_G(R)$.

Proof: This follows from Equation 3.3, Corollary 3.6 and Proposition 3.8.

4. Proof of the theorem

This section is devoted to the proof of the following theorem, announced in
the introduction:
4.1. Theorem: Let \(\mathbb{F} \) be a field of characteristic 0, let \(p \) be a prime number, and \(H \) be a finite \(p \)-group. Let moreover \(G \) be a finite group.

1. If \(H = 1 \), the dimension of \(S_{H,\mathbb{F}}(G) \) is equal to the number of conjugacy classes of cyclic subgroups of \(G \).

2. If \(H \cong C_p \times C_p \), the dimension of \(S_{H,\mathbb{F}}(G) \) is equal to the number of conjugacy classes of non-cyclic \(p \)-elementary subgroups of \(G \).

3. If \(H \) is any other finite \(p \)-group, the dimension of \(S_{H,\mathbb{F}}(G) \) is equal to the number of conjugacy classes of sections \((T,S)\) of \(G \) such that \(T/S \cong H \) and \(T \) is \(p \)-elementary.

Proof: Step 1: Let \(K \) be a subgroup of \(G \). Then \(e^K_{\mathbb{F}}S_{H,\mathbb{F}}(K) = \{0\} \), by Corollary 3.6, unless \(K \cong P \times C \), where \(P \) is a \(p \)-group and \(C \) is a cyclic \(p' \)-group, and in this case \(e^K_{\mathbb{F}}S_{H,\mathbb{F}}(K) \cong e^P_{\mathbb{F}}S_{H,\mathbb{F}}(P) \) as \(\mathbb{F} \text{Aut}(K) \)-modules.

By Proposition 3.8 there is an isomorphism of \(\mathbb{F} \text{Aut}(P) \)-modules

\[
e^P_{\mathbb{F}}S_{H,\mathbb{F}}(P) \cong \oplus \text{Ind}_{\text{Aut}(P)R}^{\text{Aut}(P)}(Q^t_H(P/R)/\text{Rad}, ,)_{\mathbb{F}},
\]

where \(R \) runs through a set of representatives of \(\text{Aut}(P) \)-orbits of normal subgroups of \(P \) contained in \(\Phi(P) \), such that \(P/R \cong E \times H \), for some elementary abelian \(p \)-group \(E \). So the computation of \(e^P_{\mathbb{F}}S_{H,\mathbb{F}}(P) \) comes down to the computation of the \(\mathbb{F} \text{Aut}(Q) \)-module

\[
\mathbb{V}_H(Q) = Q^t_H(Q)/\text{Rad}(,)_{\mathbb{F}},
\]

for a \(p \)-group \(Q = P/R \) of the form \(E \times H \), where \(R \) is some normal subgroup of \(P \) contained in \(\Phi(P) \). Recall that \(Q^t_H(Q) \) is the \(\mathbb{F} \)-vector space with basis

\[
\Sigma_H^t(Q) = \{ s \mid s : Q \rightarrow H, \ \text{Ker } s \cap \Phi(Q) = 1 \},
\]

and that the bilinear form \((,)_{\mathbb{F},Q} \) is defined for \(s, t \in \Sigma_H^t(Q) \) by

\[
(s, t)_{\mathbb{F},Q} = m_{Q,M\cap N} \frac{\mu(M\cap N, M)}{|M: M\cap N|} |K(Q, M, N)|,
\]

where \(M = \text{Ker } s \) and \(N = \text{Ker } t \).

This shows that \((s, t)_{\mathbb{F},Q} \) depends only on \(M \) and \(N \). It follows that \(Q^t_H(Q)/\text{Rad}(,)_{\mathbb{F},Q} \) is also isomorphic to the quotient of the \(\mathbb{F} \)-vector space with basis the set \(\mathcal{N}_H(Q) = \{ N \subseteq Q \mid P/N \cong H, \ N \cap \Phi(Q) = 1 \} \) introduced in Notation 3.7, by the radical of the bilinear form \((,)_{\mathbb{F},Q} \) defined by

\[
(M, N)_{\mathbb{F},Q} = m_{Q,M\cap N} \frac{\mu(M\cap N, M)}{|M: M\cap N|} |K(Q, M, N)|,
\]

14
for $M, N \in \mathcal{N}_H(Q)$.

Step 2: Now Assertion 1 is well known (see e.g. Proposition 4.4.8 [9]), but it can also be recovered from the argument of Step 1: Indeed, if $H = 1$, there is a unique normal subgroup N of Q such that $Q/N \cong H$, namely Q itself. If moreover $N \cap \Phi(Q) = 1$, then $\Phi(Q) = 1$, and Q is elementary abelian. But as $Q = P/R$, for some $R \leq \Phi(P)$, it follows that $R = \Phi(P)$, and $Q = P/\Phi(P)$.

Moreover $\mathcal{N}_H(Q) = \{Q\}$, and

$$\langle Q, Q \rangle_{\mathbb{F}, Q} = m_{Q,Q},$$

which is equal to 0 if Q is non-cyclic, and to $1 - 1/p$ otherwise. Hence $V_H(Q) = \{0\}$ if Q is non-cyclic, and $V_H(Q)$ is one dimensional if $Q = P/\Phi(P)$ is cyclic, i.e. if P is cyclic. But $P = O_p(K)$ for some p-elementary subgroup K of G. Hence P is cyclic if and only if K itself is cyclic, and this leads to Assertion 1.

We can now assume that H is a non-trivial p-group, of order p^h, and make a series of observations:

- Let P be a p-group, and Q be a normal subgroup of P. Example 5.2.3 of [9] shows that $m_{P,Q} = m_{P,\Phi(P)Q}$. By Proposition 5.3.1 of [9], it follows that

$$m_{P,Q} = m_{P,\Phi(P)m_{P/\Phi(P),Q\Phi(P)/\Phi(P)}} = m_{E,F},$$

where E is the elementary abelian p-group $P/\Phi(P)$, and F its subgroup $Q\Phi(P)/\Phi(P)$. If E has rank $n \geq 2$ and F has rank k, then

$$m_{E,F} = (1 - p^{n-2})(1 - p^{n-3})\cdots(1 - p^{n-k-1}),$$

(which is equal to 0 if $k \geq n - 1$, and non-zero otherwise). This follows from an easy induction argument on k, using Proposition 5.3.1 of [9], and starting with the case $k = 1$, which is a special case of Equation 2.2.

If E has rank 1 and $F = 1$, then $m_{E,F} = 1$. In this case $m_{E,E} = 1 - 1/p$. This is the only case where $m_{E,F}$ is not an integer.

- Let $M, N \in \mathcal{N}_H(Q)$. Then in particular M and N have the same order. Recall that $m_{Q,M\cap N}$ is non-zero if and only if $\beta(Q) \cong \beta(Q/(M \cap N))$. So either Q and $Q/(M \cap N)$ are both cyclic, or they are both non-cyclic. Equivalently, either Q is cyclic, or $Q/(M \cap N)$ is non-cyclic. If H is non-cyclic, then $Q/(M \cap N)$ is non-cyclic, as it maps surjectively on $Q/M \cong H$.

15
So if $m_{Q,M\cap N} = 0$, then H is cyclic, Q is non-cyclic, and $Q/(M \cap N)$ is cyclic. But then $M/(M \cap N) = N/(M \cap N)$, since the cyclic group $Q/(M \cap N)$ admits a unique subgroup of a given order. Thus $M = N$. Conversely, if H is cyclic, if Q is non-cyclic, and if $M = N$, then $m_{Q,M\cap N} = 0$ since $Q/(M \cap N) \cong H$ is cyclic.

- If $M, N \in \mathcal{N}_H(Q)$, then the subgroups $\overline{M} = M/(M \cap N)$ and $\overline{N} = N/(M \cap N)$ are central elementary abelian subgroups of the same order of $\overline{Q} = Q/(M \cap N)$. If \overline{M} has rank m, then

$$\mu(M \cap N, M) = (-1)^m p\binom{m}{s}.$$

Now by Lemma 2.5 the product

$$(4.4) \quad \alpha_{M,N} = \mu(M \cap N, M)|K(Q, M, N)|$$

is equal to

$$\alpha_{M,N} = (-1)^m (p^s - 1)(p^{s-1} - 1) \cdots (p - 1)p^m \bigg(\frac{2}{s} \bigg) + (\gamma) + s(m-s) + m(\gamma-s)$$

$$= (-1)^m (1-p)(1-p^{s-1}) \cdots (1-p)p^m \bigg(\frac{2}{s} \bigg) + (\gamma) + s(m-s) + m(\gamma-s),$$

where γ is the rank of $H/\Phi(H)$, and s is the rank of $\overline{M}/(\overline{M} \cap \overline{N}\Phi(\overline{Q})) \cong M/(M \cap N\Phi(Q))$.

Step 3: Finally $\langle M, N \rangle_{F,Q}^2 = 0$ if and only if $m_{Q,M\cap N} = 0$, i.e. H is cyclic, $M = N$, and Q is not cyclic. In all other cases, the groups $\overline{M} = M/(M \cap N)$ and $\overline{N} = N/(M \cap N)$ are elementary abelian, and central in $\overline{Q} = Q/(M \cap N)$. Moreover $\overline{M} \cap \overline{N} = 1$. Let m be the rank of \overline{M}, let s denote the rank of $\overline{M}/(\overline{M} \cap \overline{N}\Phi(\overline{Q}))$, and let γ denote the rank of $H/\Phi(H)$. Then

$$\langle M, N \rangle_{F,Q}^2 = m_{Q,M\cap N} \frac{\alpha_{M,N}}{|M:M\cap N|}$$

$$= m_{Q,M\cap N} \frac{\alpha_{M,N}}{|M|}$$

$$= (-1)^m m_{Q,M\cap N}(p^s - 1)(p^{s-1} - 1) \cdots (p - 1)p^m \bigg(\frac{2}{s} \bigg) + (\gamma) + s(m-s) + m(\gamma-s),$$

i.e. finally

$$(4.5) \quad \langle M, N \rangle_{F,Q}^2 = (-1)^m m_{Q,M\cap N}(p^s - 1)(p^{s-1} - 1) \cdots (p - 1)p^m \bigg(\frac{2}{s} \bigg) + (\gamma) + s(m-s) + m(\gamma-2).$$

Let n denote the rank of $Q/\Phi(Q)$. By Equation 4.3

$$m_{Q,M\cap N} = (1 - p^{n-2})(1 - p^{n-3}) \cdots (1 - p^{n-k-1})$$

16
where \(k \) is the rank of \((M \cap N)\Phi(Q)/\Phi(Q) \cong M \cap N\). Since \(Q/M\Phi(Q) \cong H/\Phi(H) \) has rank \(\gamma \), it follows that \(M\Phi(Q)/\Phi(Q) \cong M \) has rank \(n - \gamma \). Since \(M/(M \cap N) \) has rank \(m \), it follows that \(k = n - m - \gamma \). Thus
\[
m_{Q,M \cap N} = (1 - p^{n-2})(1 - p^{n-3}) \cdots (1 - p^{m+\gamma-1}) .
\]

It follows that
\[
(4.6) \quad (M, N)_{\mathbb{F}, Q}^\sharp = A_{M,N}(-1)^{m+s}p^{\frac{1}{2}(m-s)(m+s+1)+m(\gamma-2)} ,
\]
where
\[
A_{M,N} = (1 - p^{n-2})(1 - p^{n-3}) \cdots (1 - p^{m+\gamma-1})(1 - p^{s})(1 - p^{s-1}) \cdots (1 - p)
\]
is an integer congruent to 1 modulo \(p \).

Step 4: Assume first that \(H \) is non-cyclic, i.e. that \(\gamma \geq 2 \). In this case \((M, N)_{\mathbb{F}, Q}^\sharp \) is non-zero. If \(M = N \), then \(m = s = 0 \), and \((M, N)_{\mathbb{F}, P}^\sharp = A_{M,M} \) is congruent to 1 modulo \(p \). And if \(M \neq N \), then \(m \geq 1 \). As \(\gamma \geq 2 \) and \(m \geq s \), the exponent
\[
\frac{1}{2}(m-s)(m+s+1) + m(\gamma-2)
\]
of \(p \) in the right hand side of (4.6) is non-negative. It is equal to 0 if and only if \(m = s \) and \(\gamma = 2 \). In this case \(\overline{M} \cap \overline{N}\Phi(\overline{Q}) = 1 \), so \(\overline{M} \) maps into \(\overline{Q}/\overline{N}\Phi(\overline{Q}) \cong H/\Phi(H) \), which has rank \(\gamma = 2 \). It follows that \(m \leq 2 \).

If \(m = 2 \), then \(\overline{M}\overline{N}\Phi(\overline{Q}) = \overline{Q} \), thus \(\overline{M}\overline{N} = \overline{Q} \), and \(H \cong \overline{Q}/\overline{N} \cong \overline{M} \) (since \(\overline{M} \cap \overline{N} = 1 \)), so \(H \) is elementary abelian of rank 2.

If \(m = 1 \), then \(\overline{M} \cong C_p \) maps into \(\overline{Q}/\overline{N}\Phi(\overline{Q}) \cong C_p \times C_p \), the group \(\overline{Q}/(\overline{M}\overline{N}\Phi(\overline{Q})) \) is cyclic, so \(\overline{Q}/\overline{M}\overline{N} \) is cyclic. But \(\overline{M}\overline{N} \) is a central subgroup of \(\overline{Q} \). It follows that \(\overline{Q} \) is abelian, so \(H \cong \overline{Q}/\overline{M} \) is abelian. Hence \(\overline{Q}/\overline{M} \) is non-cyclic, and it has a subgroup \(\overline{M}\overline{N}/\overline{M} \) of order \(p \) such that the corresponding quotient \(\overline{Q}/\overline{M}\overline{N} \) is cyclic. It follows that \(\overline{Q}/\overline{M} \cong H \cong C_p \times C_{p^{h-1}} \), for some \(h \geq 2 \).

Step 5: Assume that \(H \) is neither cyclic nor isomorphic to \(C_p \times C_{p^{h-1}} \), for some \(h \geq 2 \). Then the matrix of the bilinear form \(\langle \ , \ \rangle_{\mathbb{F}, Q}^\sharp \) is congruent to the identity matrix modulo \(p \). In particular, it is non-singular, and the \(\mathbb{F}\text{Aut}(Q) \)-module \(\mathcal{V}_H(Q) = Q_{\mathbb{F}, H}^\sharp(Q) \) is isomorphic to the permutation module on the set \(\mathcal{N}_H(Q) \).

It follows that the \(\text{Aut}(P) \)-module \(\mathcal{E}_P \mathcal{S}_{H,\mathbb{F}}(P) \) is isomorphic to the permutation module on the set of normal subgroups \(M \) of \(P \) such that \(P/M \cong H \).
Going back to Step 1 and to the p-elementary subgroup $K = P \times C$ of G, it follows that the space $\tilde{e}_K^*S_{H,F}(K)^{N_C(K)}$ has a basis in one to one correspondence with the $N_G(K)$-orbits of normal subgroups M of K such that $K/M \cong H$. Now the isomorphism (4.3) shows that $S_{H,F}(G)$ has a basis in one to one correspondence with the G-conjugacy classes of sections (K,M) of G such that K is p-elementary and $K/M \cong H$. This proves the theorem, in the case where H is neither cyclic nor isomorphic to $C_p \times C_{p^{h-1}}$, for some $h \geq 2$.

Step 6: Suppose now that H is cyclic, of order $p^h > 1$. Assume first that Q is cyclic. Then since $Q \cong E \times H$ for some elementary abelian p-group E, it follows that $E = 1$, i.e. $Q \cong H$. In this case $\mathcal{N}_H(Q) = \{1\}$, and $\langle 1,1 \rangle_{H,F} = 1$. Hence $\mathcal{V}_H(Q)$ is isomorphic to the trivial $\mathbb{F}\text{Aut}(Q)$-module in this case.

If Q is non-cyclic, let $M,N \in \mathcal{N}_H(Q)$. Recall that

$$\langle M,N \rangle_{F,Q}^Z = m_{Q,M\cap N} \frac{\alpha_{M,N}}{|M:M\cap N|},$$

where $\alpha_{M,N}$ is defined in (4.4).

The groups $\overline{M} = M/(M \cap N)$ and $\overline{N} = N/(M \cap N)$ are non-trivial elementary abelian central subgroups of $\overline{Q} = Q/(M \cap N)$, and have a common complement in \overline{Q}. As \overline{M} is isomorphic to the subgroup MN/N of the cyclic group $Q/N \cong H$, it follows that $\overline{M} \cong C_p$. Moreover \overline{M} has a complement in \overline{Q}, so $\overline{Q} \cong C_p \times C_{p^h}$. Hence if $Q/\Phi(Q)$ has rank n, then $\Phi(Q)(M\cap N)/\Phi(Q)$ has rank $n-2$ since

$$Q/(\Phi(Q)(M\cap N)) \cong \overline{Q}/\Phi(\overline{Q}) \cong C_p \times C_p .$$

By Equations 4.3 and 4.2 it follows that

$$m_{Q,M\cap N} = (1 - p^{n-2})(1 - p^{n-3}) \cdots (1 - p) .$$

Moreover since $m = 1$ and $\gamma = 1$, Equation 4.5 gives

$$\langle M,N \rangle_{F,Q}^z = -m_{Q,M\cap N}(p^s-1)(p^{s-1}-1) \cdots (p-1)p^{\frac{1}{2}(1-s)(2+s)-1} .$$

Since $0 \leq s \leq m = 1$, there are two cases:

- If $s = 1$, then \overline{M} maps into $\overline{Q}/\Phi(\overline{Q}) \cong H/\Phi(H) \cong C_p$, hence $MN = Q$ as above, and $Q/N \cong C_{p^h} \cong \overline{M} \cong C_p$, so $h = 1$. In this case

$$\langle M,N \rangle_{F,Q}^z = -(1 - p^{n-2})(1 - p^{n-3}) \cdots (1 - p)(p-1)/p = (1 - p^{n-2})(1 - p^{n-3}) \cdots (1 - p^2)(1 - p)^2/p .$$
If $s = 0$. Then $\overline{M} \leq \overline{N}\Phi(\overline{Q})$, so $\overline{M}\Phi(\overline{Q}) = \overline{N}\Phi(\overline{Q})$. If $h = 1$, then $\overline{Q}/\overline{M} \cong C_p$, so $\overline{M} \geq \Phi(\overline{Q})$, and it follows that $\overline{M} = \overline{N}$, a contradiction. Thus $h > 1$ in this case. Moreover

$$\langle M, N \rangle_{\mathbb{F}, Q} = - (1 - p^{n-2})(1 - p^{n-3}) \cdots (1 - p).$$

So in any case, there is a non-zero rational number ρ, depending only on Q (and H), such that $\langle M, N \rangle_{\mathbb{F}, Q}^2 = \rho$ when $\langle M, N \rangle_{\mathbb{F}, Q} \neq 0$. Moreover $\langle M, N \rangle_{\mathbb{F}, Q}^2 \neq 0$ if and only if $M \neq N$.

So the matrix of the form $\langle , \rangle_{\mathbb{F}, Q}^2$ is equal to ρJ, where J is a matrix of size $|N_H(Q)|$, with zero diagonal, and non-diagonal coefficients equal to 1. Hence this matrix is non-singular if and only if $|N_H(Q)| > 1$.

But $Q = E \times L$, where $L \cong H$ and E is a non-trivial elementary abelian p-group. The elements of $N_H(Q)$ are exactly the groups

$$E_{\varphi} = \{ (e, \varphi(e)) \mid e \in E \},$$

where φ is a group homomorphism from E to L. There are $|E|$ such homomorphisms, hence $|N_H(Q)| = |E| > 1$.

It follows that the matrix of the form $\langle , \rangle_{\mathbb{F}, Q}^2$ is non-singular, hence the form $\langle , \rangle_{\mathbb{F}, Q}^2$ is non-degenerate.

So either when Q is cyclic, or when it is not, the form $\langle , \rangle_{\mathbb{F}, Q}^2$ is non-degenerate. By the same argument as at the end of Step 4, this proves that $S_{H, \mathbb{F}}(G)$ has a basis in one to one correspondence with the G-conjugacy classes of sections (K, M) of G for which K is p-elementary and $K/M \cong H$. This proves the theorem in the case where H is cyclic.

Step 7: Suppose now that $H \cong C_p \times C_p^{h-1}$, for some $h \geq 2$. Note that if $h = 2$, then H is elementary abelian, so $Q = P/R \cong E \times H$ is elementary abelian. Since $R \leq \Phi(P)$, this forces $R = \Phi(P)$.

Now if $M, N \in N_H(Q)$, since $\gamma = 2$ in this case,

$$\langle M, N \rangle_{\mathbb{F}, Q}^2 = (-1)^m m_{Q,M \cap N}(p^s-1)(p^{s-1}-1) \cdots (p-1)p^{\frac{1}{2}(m-s)(m+s+1)},$$

and moreover

$$m_{Q,M \cap N} = (1 - p^{n-2})(1 - p^{n-3}) \cdots (1 - p^{m+1}),$$

where n is the rank of $Q/\Phi(Q)$, where m is the rank of the elementary abelian groups $\overline{M} = M/(M \cap N)$ and $\overline{N} = N/(M \cap N)$ of $\overline{Q} = Q/(M \cap N)$, and s is the rank of $M/(M \cap N\Phi(Q)) \cong \overline{M}/(\overline{M} \cap \overline{N}\Phi(Q))$. Since the exponent
\(\frac{1}{2}(m-s)(m+s+1) \) of \(p \) is non-negative, it follows that \(\langle M, N \rangle_{F, Q} \) is an integer. Moreover, if \(m > s \), this integer is a multiple of \(p \). On the other hand \(m = s \) if and only if \(M \cap N \cap \Phi(Q) = 1 \), or equivalently if \(M \cap N \cap \Phi(Q) = M \cap N \). Since \(M \cap \Phi(Q) = N \cap \Phi(Q) = 1 \), this is equivalent to \(MN \cap \Phi(Q) = 1 \). In this case

\[
\langle M, N \rangle_{F, Q} = (1 - p^{n-2})(1 - p^{n-3}) \cdots (1 - p)
\]

is congruent to 1 modulo \(p \). It follows that the matrix of the form \(\langle \cdot, \cdot \rangle_{F, Q} \) is congruent modulo \(p \) to the incidence matrix of the relation \(\sim \) on \(N \). There are now two cases:

- **Case 1:** Assume first that \(h \geq 3 \), i.e. that \(H \) is not elementary abelian of rank 2.

4.8. **Lemma:** Let \(H = C_p \times C_p^{h-1} \), for \(h \geq 3 \), and \(Q = E \times H \), where \(E \) is an elementary abelian \(p \)-group of rank \(e \). Let \(S \) denote the incidence matrix of the relation \(\sim \) on \(N_H(Q) \) defined by

\[
M \sim N \Leftrightarrow MN \cap \Phi(Q) = 1.
\]

Then:

1. if \(e = 0 \), the matrix \(S \) is the matrix (1).
2. if \(e \geq 1 \), the eigenvalues of \(S \) are \(p^{e+1} - p + 1, \ p^e - p + 1, \) and \(1 - p, \) with respective multiplicities \(1, \ p^{e+1} - p, \) and \(p^2 - p^{e+1} + p - 1. \)

In both cases \(M \) is invertible modulo \(p \).

Proof: If \(e = 0 \), then \(E = 1 \) and \(Q \cong H \), so \(N_H(Q) \) consists of the trivial subgroup \(E \) of \(Q \). Since \(E \sim E \), Assertion 1 follows.

If \(e \geq 1 \), then \(N_H(Q) \) consists of the subgroups

\[
E_\varphi = \{(x, \varphi(x)) \mid x \in E\},
\]

where \(\varphi : E \to H \) is a group homomorphism. Since \(E \) is elementary abelian, the image of \(\varphi \) is contained in the subgroup \(C_p \times C_p \) of \(H = C_p \times C_p^{h-1} \). So there are group homomorphisms \(a, b : E \to C_p \) such that \(\varphi = (a, b) \), i.e. \(\varphi(x) = (a(x), b(x)) \) for any \(x \in E \).

Let \(\varphi = (a, b) \) and \(\varphi' = (a', b') \) be two group homomorphisms from \(E \) to \(H \). Then, with an additive notation

\[
E_\varphi E_{\varphi'} = \{(x - x', a(x) - a(x'), b(x) - b(x')) \mid x, x' \in E\} \leq E \times C_p \times C_p.
\]
The element \((x - x', a(x) - a'(x'), b(x) - b'(x'))\) is in \(\Phi(Q) = 1 \times 1 \times C_p \times 2\) if and only if \(x = x'\) and \(a(x) = a'(x')\). Thus

\[
E_x \sim E_{x'} \iff \text{Ker}(a - a') \leq \text{Ker}(b - b') .
\]

Identifying \(E\) with the vector space \((\mathbb{F}_p)^c\), and \(C_p\) with \(\mathbb{F}_p\), the homomorphisms \(a, b, a', b'\) become elements of the dual vector space \(E^*\), and the condition \(\text{Ker}(a - a') \leq \text{Ker}(b - b')\) means that there is a scalar \(\lambda \in \mathbb{F}_p\) such that \(b - b' = \lambda(a - a')\). Hence the incidence matrix \(S\) is the matrix indexed by pairs \(((a, b), (a', b'))\) of pairs of elements of \(E^*\), defined by

\[
S(((a, b), (a', b'))) = \begin{cases} 1 & \text{if } \exists \lambda \in \mathbb{F}_p, \ b - b' = \lambda(a - a') \\ 0 & \text{otherwise} \end{cases} .
\]

Let \(T\) be the rectangular matrix indexed by the set of pairs \(((a, b), (c, \lambda))\), where \(a, b, c \in E^*\), and \(\lambda \in \mathbb{F}_p\), defined by

\[
T(((a, b), (c, \lambda))) = \begin{cases} 1 & \text{if } c = b - \lambda a \\ 0 & \text{otherwise} \end{cases} .
\]

Then for \(a, b, a', b' \in E^*\), consider the sum

\[
s = \sum_{\substack{c \in E^* \\
\lambda \in \mathbb{F}_p}} T(((a, b), (c, \lambda)))T(((a', b'), (c, \lambda))) .
\]

The non-zero terms in this summation correspond to pairs \((c, \lambda)\) such that \(c = b - \lambda a = b' - \lambda a'\). Hence \(s\) is equal to the number of \(\lambda \in \mathbb{F}_p\) such that \(b - \lambda a = b' - \lambda a'\). This is equal to \(1\) if \(a' \neq a\) and if \(b' - b\) is a scalar multiple of \(a' - a\), to \(p\) if \(a = a'\) and \(b = b'\), and to \(0\) if \(a = a'\) and \(b \neq b'\). In other words

\[
T \cdot \dagger T = S + (p - 1)\text{Id} .
\]

Since \(T \cdot \dagger T\) is symmetric, it is diagonalizable over \(\mathbb{C}\), with real eigenvalues. Let \(\mu\) be an eigenvalue of \(T \cdot \dagger T\), and \(u\) be a corresponding eigenvector. Then \(T \cdot \dagger Tu = \mu u\), thus \(\dagger T \cdot T \cdot \dagger Tu = \mu \dagger Tu\). So either \(\dagger Tu = 0\), and then \(\mu = 0\).

And if \(\mu \neq 0\), then \(\dagger Tu\) is an eigenvector of \(\dagger T \cdot T\) for the eigenvalue \(\mu\).

Moreover, the map \(u \mapsto \dagger Tu\) is an injection of the \(\mu\)-eigenspace of \(T \cdot \dagger T\) into the \(\mu\)-eigenspace of \(\dagger T \cdot T\). The same argument applied to \(\dagger T \cdot T\) instead of \(T \cdot \dagger T\) shows that these two matrices have the same non-zero eigenvalues, and the same multiplicities.

Now for \(c, c' \in E^*\) and \(\lambda, \lambda' \in \mathbb{F}_p\)

\[
\dagger T \cdot T(((c, \lambda), (c', \lambda'))) = \sum_{a, b \in E^*} T(((a, b), (c, \lambda)))T(((a, b), (c', \lambda'))) .
\]
The right hand side is the number of pairs \((a, b)\) of elements of \(E^*\) such that
\[c = b - \lambda a\] and
\[c' = b - \lambda' a,\] i.e. the number of elements \(a \in E^*\) such that
\[c + \lambda a = c' + \lambda' a,\] or \(c - c' = (\lambda - \lambda') a.\) This is equal to 1 if \(\lambda \neq \lambda',\) to \(|E|\) if \(\lambda = \lambda'\) and \(c = c',\) and to 0 if \(\lambda = \lambda'\) and \(c \neq c'.\) Hence the matrix \(t' T \cdot T\) is a block matrix of the following form

\[
t' T \cdot T = \begin{pmatrix}
|E| Id & \Omega & \cdots & \Omega \\
\Omega & |E| Id & \cdots & \Omega \\
\vdots & \vdots & \ddots & \vdots \\
\Omega & \Omega & \cdots & |E| Id
\end{pmatrix},
\]

where all the \(p^2\)-blocks are square matrices of size \(|E|\), and \(\Omega\) is a matrix with all entries equal to 1. Let \(\mu\) be an eigenvalue of this matrix, and

\[
v = \begin{pmatrix}
X_1 \\
X_2 \\
\vdots \\
X_p
\end{pmatrix}
\]

be a corresponding eigenvector, where \(X_1, \ldots, X_p\) are column vectors of size \(|E|\). Equivalently, for each \(i \in \{1,\ldots, p\}\)

\[
|E| X_i + \sum_{j \neq i} \Omega X_j = \mu X_i.
\]

But \(\Omega X = s(X) \omega\) for any column vector \(X\) of size \(|E|\), where \(s(X)\) denotes the sum of the entries of \(X\), and \(\omega\) is a column vector of size \(|E|\) with all entries equal to 1. Setting \(\sigma = \sum_{j=1}^p s(X_j)\), this gives, since \(|E| = p^\epsilon\)

\[
p^\epsilon X_i + (\sigma - s(X_i)) \omega = \mu X_i.
\]

Hence if \(\mu \neq p^\epsilon\), the vector \(X_i\) is a multiple of \(\omega\), i.e. \(X_i = \alpha_i \omega\) for some scalar \(\alpha_i\). Then \(s(X_i) = \alpha_i p^\epsilon\), thus \(\sigma = \tau p^\epsilon\), where \(\tau = \sum_{j=1}^p \alpha_j\). Finally

\[
p^\epsilon \alpha_i + (\tau - \alpha_i) p^\epsilon = \tau p^\epsilon = \mu \alpha_i.
\]

Thus if \(\mu \neq 0\), all the \(\alpha_i\)'s are equal to \(\alpha\), say, and then \(\tau = p \alpha\), thus \(\mu = p^{\epsilon+1}\). Conversely, if \(X_i = \omega\) for all \(i\), then \(v\) is an eigenvector of \(t' T \cdot T\) with eigenvalue \(p^{\epsilon+1}\). So \(p^{\epsilon+1}\) is an eigenvalue of \(t' T \cdot T\), with multiplicity 1.

If \(\mu = 0\), then the vector \(v\) corresponding to \(X_i = \alpha_i \omega\) for \(i \in \{1, \ldots, p\}\) is in the kernel of \(t' T \cdot T\) if and only if \(\sum_{j=1}^p \alpha_i = 0\). Hence 0 is an eigenvalue of \(t' T \cdot T\) with multiplicity \(p - 1\).
Finally, if \(\mu = p^e \), then \(s(X_i) = \sigma \) for \(i \in \{1, \ldots, p\} \), hence \(\sigma = p\sigma = 0 \).

The vector \(v \) is in the \(p^e \)-eigenspace of \(T \cdot T \) if and only if \(s(X_i) = 0 \) for all \(i \).

Thus \(p^e \) is an eigenvalue of \(T \cdot T \), with multiplicity \(p(p^e - 1) \).

It follows that \(T \cdot T \) has eigenvalues \(p^{e+1} \), \(p^e \), and 0, with respective multiplicities \(1 \), \(p^{e+1} - p \), and \(p^{2e} - p^{e+1} + p - 1 \). This completes the proof, since \(S = T \cdot T - (p - 1)\text{Id} \).

Lemma 4.8 shows that the form \(\langle \cdot, \cdot \rangle \) is non-degenerate whenever \(H \) is a quotient of \(Q \). By the argument of the end of Step 4, or the end of Step 6, this shows that \(S_{H,F}(G) \) has a basis in bijection with the \(G \)-conjugacy classes of sections \((T,S)\) of \(G \) such that \(T \) is \(p \)-elementary and \(T/S \approx H \).

Case 2: Suppose finally that \(H = C_p \times C_p \). As observed earlier, in this case, if \(R \) is a normal subgroup of \(P \) contained in \(\Phi(P) \) such that \(P/R \approx E \times H \) for some elementary abelian \(p \)-group \(E \), then in fact \(R = \Phi(P) \).

The group \(Q = P/R \) is elementary abelian, and decomposes as \(Q = E \times L \), where \(L \approx H \) is elementary abelian of rank 2. The set \(\mathcal{N}_H(Q) \) is the set of complements \(M \) of \(L \) in \(Q \), and \(MN \cap \Phi(Q) = 1 \) for any \(M, N \in \mathcal{N}_H(Q) \). Equation 4.7 shows that
\[
\langle M, N \rangle_{F,Q}^2 = (1 - p^{n-2})(1 - p^{n-3}) \cdots (1 - p),
\]
where \(n \) is the rank of \(P/\Phi(P) \). This is non-zero, and does not depend on \(M, N \in \mathcal{N}_H(Q) \). Hence the form \(\langle \cdot, \cdot \rangle_{F,Q}^2 \) has rank 1 in this case. Thus \(\tilde{e}_p^P S_{H,F}(P) \) is one dimensional if \(P \) is non-cyclic, and it is zero otherwise.

Saying that \(P \) is non-cyclic is equivalent to saying that the \(p \)-elementary group \(K = P \times C \) of Step 1 is non-cyclic. Hence \(S_{H,F}(G) \) has a basis in bijection with the conjugacy classes of non-cyclic \(p \)-elementary subgroups of \(G \). This completes the proof of Theorem 4.1. \(\square \)

4.9. **Remark:** As \(C_p \times C_p \) is a \(B \)-group, Case 2 above also follows from Proposition 11 of [3]: for a \(B \)-group \(H \) and a finite group \(G \), the dimension of \(S_{H,F}(G) \) is equal to the number of conjugacy classes of subgroups \(K \) of \(G \) such that \(\beta(K) \approx H \). Now by Lemma 2.3, if \(\beta(K) \approx C_p \times C_p \), then \(K \) is \(p \)-elementary, and non cyclic (for otherwise \(\beta(K) = 1 \)). Conversely, if \(K \) is \(p \)-elementary and non cyclic, then \(\beta(K) \) is a non trivial \(p \)-group, and also a \(B \)-group, hence \(\beta(K) \approx C_p \times C_p \).

5. A Green biset functor for \(p \)-elementary groups

The following theorem is closely related to Theorem 4.1. In particular, it yields an alternative proof of its Assertions 1 and 2. We refer to Section 8.5 of [9] for the basic definitions on Green biset functors.
5.1. **Theorem:** Let \(p \) be a prime number.

1. For a finite group \(G \), let \(\mathcal{E}_p(G) \) denote the set of \(p \)-elementary subgroups of \(G \). Set

\[
F_p(G) = \{ u \in B(G) \mid \forall H \in \mathcal{E}_p(G), \ Res^G_H u = 0 \} .
\]

Then the assignment \(G \mapsto F_p(G) \) is a biset subfunctor of the Burnside functor \(B \), and the quotient functor

\[
E_p = B/F_p
\]

is a Green biset functor (over \(\mathbb{Z} \)).

2. For a finite group \(G \), the evaluation \(E_p(G) \) is a free abelian group of rank equal to the number of conjugacy classes of \(p \)-elementary subgroups of \(G \).

3. Let \(\mathbb{F} \) be a field of characteristic 0. Then the biset functor \(\mathbb{F}E_p = \mathbb{F} \otimes_{\mathbb{Z}} E_p \) has a unique non zero proper subfunctor \(I \), isomorphic to \(S_{(C_p)^2, \mathbb{F}} \), and the quotient \(\mathbb{F}E_p/I \) is isomorphic to \(S_{1, \mathbb{F}} \cong \mathbb{F}R_Q \). In other words there is a non split short exact sequence

\[
(5.2) \quad 0 \to S_{(C_p)^2, \mathbb{F}} \to \mathbb{F}E_p \to S_{1, \mathbb{F}} \to 0
\]

of biset functors over \(\mathbb{F} \).

Proof: Let \(\mathbb{F}B = \mathbb{F} \otimes_{\mathbb{Z}} B \) be the Burnside functor over \(\mathbb{F} \). If we forget the \(\mathbb{F} \)-structure on \(\mathbb{F}B \), we get an inclusion \(B \to \mathbb{F}B \) of biset functors over \(\mathbb{Z} \). In particular, for each finite group \(G \), we get an inclusion

\[
f_p : F_p(G) \to \mathbb{F}B(G) .
\]

Now saying that \(u \in B(G) \) lies in \(F_p(G) \) amounts to saying that the restriction of \(f_p(u) \) to any \(p \)-elementary subgroup of \(G \) is equal to 0. Since any subgroup of a \(p \)-elementary group is again \(p \)-elementary, this amounts to saying that \(|f_p(u)^H| = 0 \) for any \(H \in \mathcal{E}_p(G) \). In other words \(f_p(u) \) is a linear combination of idempotents \(e_K^G \) of \(\mathbb{F}B(G) \), where \(K \) is a subgroup of \(G \) which is not \(p \)-elementary. By Lemma 2.4, we get that \(u \in F_p(G) \) if and only if \(f_p(u) \) is a linear combination of idempotents \(e_K^G \), for subgroups \(K \) such that \(\beta(K) \) is not a \(p \)-group, that is \(\beta(K) \) is non trivial and not isomorphic to \((C_p)^2 \).

Let \(\mathcal{G}_p \) be the class of \(B \)-groups which are non trivial, and not isomorphic to \((C_p)^2 \). Then \(\mathcal{G}_p \) is a closed class of \(B \)-groups ([9], Definition 5.4.13), that is,
if a B-group L admits a quotient in \mathcal{G}_p, then actually $L \in \mathcal{G}_p$ (this is because the only quotient B-groups of $(C_p)^2$ are the trivial group and $(C_p)^2$, up to isomorphism). By Theorem 5.4.14 of [9], this closed class \mathcal{G}_p is associated to a subfunctor N_p of the Burnside functor FB, defined for a finite group G by

$$N_p(G) = \sum_{K \leq G \beta(K) \in \mathcal{G}_p} FE_K^G.$$

This shows that $f_p(F_p(G)) = f_p(B(G)) \cap N_p(G)$, and since N_p is a biset subfunctor of FB, it follows that F_p is a biset subfunctor of B. As biset subfunctors of B are also ideals of the Green biset functor B (see Lemma 2.5.8, Assertion 4 in [9]), we get that F_p is an ideal of B. It follows that the quotient $E_p = B/F_p$ is a Green biset functor. This completes the proof of Assertion 1.

Moreover, the ghost map

$$\Phi : B(G) \to \prod_{K \leq G \text{ mod } G} \mathbb{Z}$$

sending $u \in B(G)$ to the sequence $|u^K|$, is injective by Burnside’s theorem. The above discussion shows that Φ induces an injective map

$$E_p(G) = B(G)/F_p(G) \to \prod_{K \in \mathcal{E}_p(G) \text{ mod } G} \mathbb{Z},$$

which becomes an isomorphism after tensoring with \mathbb{F}. Assertion 2 follows.

Finally, it follows from Theorem 5.4.14 of [9] that the lattice $[0, FE_p]$ of biset subfunctors of FE_p is isomorphic to the set of closed classes of B-groups which contain \mathcal{G}_p. There are exactly three such classes: the class \mathcal{G}_p, the class of non-trivial B-groups, and the class of all B-groups. So $[0, FE_p]$ is a totally ordered set of cardinality 3. Hence FE_p admits a unique non zero proper subfunctor I. The quotient FE_p/I is the unique simple quotient of FB, hence it is isomorphic to $S_{1, \mathbb{F}} \cong \mathbb{F} R_Q$. Now I is a simple biset functor, which is a subquotient of FB. By Proposition 5.5.1 of [9], it follows that $I \cong S_{H, \mathbb{F}}$ for some B-group H. Since the group $K = (C_p)^2$ has a unique non cyclic subgroup, it follows that $I(K)$ is one dimensional, and a trivial $\mathbb{F}Out(K)$-module. Moreover K is a group of minimal order such that $I(K) \neq \{0\}$. Hence $H \cong K$, and $I \cong S_{(C_p)^2, \mathbb{F}}$. This completes the proof of Assertion 3, and the proof of Theorem 5.1.

5.3. Remark: One can show that the exact sequence (5.2) is essentially unique as a non split exact sequence in the category \mathcal{F} of biset functors over \mathbb{F}: more precisely, one can show that $\text{Ext}^1_{\mathcal{F}}(S_{1, \mathbb{F}}, S_{(C_p)^2, \mathbb{F}}) \cong \mathbb{F}$. 25
5.4. Remark: If G is a p-group (or even if G is p-elementary), then $F_p(G) = \{0\}$, so $E_p(G) \cong B(G)$. So if we restrict the exact sequence (5.2) to finite p-groups, we get an exact sequence

$$0 \to S_{(C_p)^2,F} \to FB \to FRQ \to 0$$

of p-biset functors over F. This (restricted) exact sequence was introduced in [12], where it was shown that for a finite p-group P, the evaluation $S_{(C_p)^2,F}(P)$ is isomorphic to $FD(P)$, where $D(P)$ is the Dade group of endomutation modules. It was also shown that the dimension of $S_{(C_p)^2,F}(P)$ is equal to the number of conjugacy classes of non-cyclic subgroups of P, which is also the number of conjugacy classes of non-cyclic p-elementary subgroups of P. So this agrees with Assertion 2 of Theorem 4.1.

5.5. Remark: For a finite group G, let $M_p(G)$ be the \mathbb{Z}-submodule of $B(G)$ generated by the classes of the transitive G-sets G/H, where H is a p-elementary subgroup of G. One can check easily that $M_p(G) \cap F_p(G) = \{0\}$, so comparing ranks, one might hope that $B(G) = M_p(G) \oplus F_p(G)$. This is false in general: for $p = 2$, when G is the symmetric group S_3, there are three p-elementary subgroups in G, up to conjugation, namely the proper subgroups of G (that is the trivial group, the alternating subgroup $A = A_3$, and the subgroup C of order 2). Hence if $B(G) = M_p(G) \oplus F_p(G)$, then in particular $G/G \in M_p(G) \oplus F_p(G)$ so there exist integers a, b, c such that the element $u = G/G - (b G/1 + a G/A + c G/C)$ is in $F_p(G)$. Taking fixed points by A then gives $|u^A| = 0 = 1 - 2a$, a contradiction. One can show more precisely that $M_p(G) \oplus F_p(G)$ has index 2 in $B(G)$ in this case.

References

[1] L. Barker and I. A. Öğüt. Some deformations of the fibred biset category. *Turkish J. Math.*, 44(6):2062–2072, 2020.

[2] J. Barsotti. On the unit group of the Burnside ring as a biset functor for some solvable groups. *J. Algebra*, 508, 05 2018.

[3] M. Baumann. The composition factors of the functor of permutation modules. *J. Algebra*, 344:284–295, 2011.

[4] R. Boltje and O. Coşkun. Fibered biset functors. *Adv. Math.*, 339:540–598, 2018.

[5] R. Boltje, G. Raggi-Cárdenas, and L. Valero-Elizondo. The $-$ and $+$ constructions for biset functors. *J. Algebra*, 523:241–273, 2019.
[6] S. Bouc. Foncteurs d’ensembles munis d’une double action. *J. Algebra*, 183(0238):664–736, 1996.

[7] S. Bouc. The Dade group of a p-group. *Invent. Math.*, 164:189–231, 2006.

[8] S. Bouc. The functor of units of Burnside rings for p-groups. *Comment. Math. Helv.*, 82:583–615, 2007.

[9] S. Bouc. *Biset functors for finite groups*, volume 1990 of *Lecture Notes in Mathematics*. Springer-Verlag, Berlin, 2010.

[10] S. Bouc and N. Romero. The center of a Green biset functor. *Pacific Journal of Mathematics*, 303:459–490, 2019.

[11] S. Bouc, R. Stancu, and J. Thévenaz. Simple biset functors and double Burnside ring. *Journal of Pure and Applied Algebra*, 217:546–566, 2013.

[12] S. Bouc and J. Thévenaz. The group of endo-permutation modules. *Invent. Math.*, 139:275–349, 2000.

[13] O. Coşkun and E. Yakın. Obstructions for gluing biset functors. *J. Algebra*, 532:268–310, 2019.

[14] O. Coşkun and D. Yılmaz. Fibered p-biset functor structure of the fibered Burnside rings. *Algebr. Represent. Theory*, 22(1):21–41, 2019.

[15] B. García. Essential support of Green biset functors via morphisms. *Arch. Math. (Basel)*, 116(1):23–32, 2021.

[16] B. Rognerud. Around evaluations of biset functors. *Ann. Inst. Fourier (Grenoble)*, 69(2):805–843, 2019.

Serge Bouc
LAMFA-CNRS UMR 7352
Université de Picardie-Jules Verne
33, rue St Leu, 80039 Amiens Cedex 01
France
serge.bouc@u-picardie.fr
http://www.lamfa.u-picardie.fr/bouc/