Toll-like receptor-4 modulation for cancer immunotherapy

Shanjana Awasthi *

Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA

*Correspondence: shanjana-awasthi@ouhsc.edu

Edited by:
Anton G. Kutikhin, Russian Academy of Medical Sciences, Russia

Reviewed by:
Justin Lathia, Cleveland Clinic Lerner Research Institute, USA

Keywords: toll-like receptor 4, inflammation, immune response, cancer, immunomodulation

INTRODUCTION
Toll-like receptors (TLRs) are evolutionarily conserved pattern recognition molecules. Since the discovery of the Toll pathway cascade (1, 2), our knowledge about the structure, function, and mechanics of TLRs in infectious and inflammatory conditions has increased remarkably. The role of TLR4 as a pathogen-pattern recognition receptor has been studied extensively. We now know that TLR4 recognizes pathogen-associated molecular patterns (PAMPs), such as Gram-negative bacterial lipopolysaccharide (LPS) and endogenous damage-associated molecular patterns (DAMPS) like fibronectin and hyaluronan, which are released during infectious and non-infectious inflammatory conditions. Some chronic infections and inflammatory conditions are known to promote carcinogenesis. For example, Helicobacter pylori (3) and viral hepatitis (4) infections lead to gastric and liver cancers, respectively. Also, in inflammatory bowel disease, non-infectious inflammation promotes the development of colorectal cancer (5). Evidence from recent reports suggests that increased expression and activity of TLR4 in chronic infectious and inflammatory conditions is associated with cancer progression (6–8). At the same time, additional studies suggest the protective role of TLR4 in cancer (9–14). The role of TLR4 in cancer has only recently been studied. This review article provides a brief summary of the current understanding of TLR4-signaling, its pro- and anti-inflammatory roles, and its involvement in cancer progression. TLR4-signaling can eventually lead to a multitude of cellular effects (17). It is well-established that during the innate phase of immune response, TLR4 recognizes its ligands (pathogens, PAMPs, or DAMPs), and facilitates their uptake, intracellular processing, and the inflammatory response (18–21). After the TLR4 ligands are internalized and processed, the antigens are presented onto the major histocompatibility complex (MHC) molecules for presentation to naive lymphocytes. Published reports support the role of TLR4 in antigen-presentation and activation of cellular and humoral immune responses (22–25). Figure 1B summarizes the recognition of ligands by TLR4, TLR4-signaling through MYD88 and TRIF, and its role in inflammation and antigen-presentation. Thus, it is apparent that TLR4 is involved directly or indirectly with different arms of the host defense system (21, 26).

TLR4 and Cancer
TLR4 is associated with cancer in several ways. Diverse cell lines and tissue samples derived from patients with head and neck, esophageal, gastric, colorectal, liver, pancreatic, skin, breast, ovarian, cervical, and breast cancer have been shown to express increased amounts of TLR4 (27).
Constitutive expression of some TLR4 genetic variants has also been linked to cancer (28–32). These characteristics are therefore being considered for their prognostic value in cancer treatment (32–34). In these scenarios of established cancer, TLR4 facilitates an environment that is suitable for continued cancer cell proliferation. Pro-cancer mechanisms could include the evasion of cancer cells from immune surveillance (35–38).

Persistent activation of TLR4-induced inflammatory signaling in chronic inflammatory conditions can also contribute to carcinogenesis (39). Experimental evidence suggests that cancer cell migration and invasion are induced by triggering of TLR4-NF-κB under inflammatory conditions (40–42). LPS-induced TLR4-signaling also promotes cancer cell survival and proliferation in hepatocellular carcinoma (43, 44). Moreover, the blockade of TLR4 by siRNA and NF-κB inhibitors decreases the invasive ability of cancer cells. Correspondingly, TLR4 silencing has been shown to decrease tumor burden in a murine model of colorectal metastasis and hepatic steatosis (45).

At the same time, published data suggest that TLR4 is required for protective immune response and killing of cancer cells. For example, TLR4-deficient mice developed more tumors after oral gavage with polyaromatic hydrocarbon 7,12-dimethylbenz(a)anthracene than did wild-type mice (46). Similarly, silencing of TLR4 increased breast cancer metastasis (47). Although mechanism is not fully understood, TLR4 can induce an efficient cancer antigen-specific cytotoxic T cell immune response (48). The cytotoxic T cells will eventually kill the cancer cells. The dynamics of the TLR4-induced immune parameters in the tumor microenvironment could be complex, and is not well studied. It is possible that TLR4 exerts pro- or anti-cancer effects, depending on the prevailing conditions in the tissue microenvironment during different phases of cancer development or metastasis.

CURRENTLY AVAILABLE TLR4 IMMUNOMODULATORY AGENTS

A number of immunomodulators, which target TLR4 have been developed. These modulators (agonists or antagonists) have been grouped based on their binding and sequestration of LPS, antagonizing LBP and CD14/LPS interactions, and targeting of MD2, TLR4–MD2, or TLR4.

Monophosphoryl lipid A (MPLA), a chemically modified derivative of LPS, is less toxic, and retains most of the immunostimulatory activity of LPS. MPLA serves as a TLR4 agonist. It has been approved in Europe as a vaccine adjuvant, and is a component of Hepatitis B and Human Papillomavirus vaccines (49). Another lipid-based agonist, E6020 (Eisai/Sanoﬁ Pasteur), has also been developed as a vaccine adjuvant (50, 51). Other lipid molecules are being investigated for their potential to target the CD14–LPS interaction and antagonistic activity (52). Eritoran (ES564), developed by Eisai (Tokyo, Japan), directly binds to the hydrophobic pocket of MD2, competitively inhibits LPS from binding to MD2, and prevents the dimerization of TLR4, as well as TLR4-signaling (53). TAK-242, a cyclohexene derivative, was later developed by Takeda Pharmaceuticals (Tokyo, Japan) to target the TLR4 on the cellular membrane. Both TAK-242 and Eritoran (ES564) have been investigated in clinical trials as possible treatments for sepsis (54). Ibu-dilast (AVH4I), a TLR4 antagonist, has been shown to suppress pro-inflammatory cytokines, such as TNF-α and IL-6, in neuroinflammation (55). Antibodies that target TLR4, NI-0101, and IA6 (NovImmune, Geneva, Switzerland), are being investigated for the treatment of acute and chronic inflammation. Glucopyranosyl lipid adjuvant-stable emulsion (GLA-SE; Immune design, Seattle, WA, USA), is also being studied (http://www.clinicaltrials.gov). Although Eritoran and TAK-242 did not show efficacy for treatment of sepsis, a complicated clinical problem, studies with these modulators have clearly improved our understanding of the structural aspects of TLR4-complex formation and signaling.
Vacchelli et al. recently published a detailed AS15, exhibit anti-cancer effects (67–70). Agents with TLR4-antagonistic activity Awasthi Role of TLR4 in cancer studies look promising. It is reasonable initial results from pre-clinical and clinical immunomodulation for cancer immuno-development of novel TLR4 immunomodulators, including TLR4 agonists. A number of synthetic curcuminoids, such as EF24, have also been found to have anti-inflammatory activity (57–60). Our lab recently developed TLR4-interacting surfactant protein-A (SP-A) peptide, called SPA4, which binds to TLR4 protein in complex with MD2, and is effective therapeutically in cell culture systems and in a mouse model (61, 62). In the initial studies, our results showed that the TLR4-interacting SPA4 peptide suppresses LPS–TLR4-induced migration and invasion of colon cancer cells (63). More studies are warranted to understand the mechanism of SPA4 peptide activity. Other agents, including resveratrol (64), N1-0101 antibody (65), and paoniflorin (66), have also shown suppression of inflammation-induced carcinogenesis.

While TLR4 antagonists could help reduce progression of inflammation-induced carcinogenesis or metastasis, TLR4 agonists have been shown to induce anti-tumor immunity in patients and models of established cancer. Lipid A-based TLR4 agonists, known as OM-174 and AS15, exhibit anti-cancer effects (67–70). Incorporation of the LPS and E6020 to Paclitaxel, whole cell tumor cell vaccine, and Trastuzumab improved the anti-tumor immunity in mouse models (71–73). Picibanil (OK-432) targets both TLR2 and TLR4 and suppresses cancer (74). Vacchelli et al. recently published a detailed review of the ongoing clinical trials on TLR4 modulators, including TLR4 agonists. While the results from the ongoing clinical trials are pending, there is currently a significant emphasis on the design and development of novel TLR4 immunomodulators.

Although the potential of TLR4 immunomodulation for cancer immunotherapy has not been explored extensively, initial results from pre-clinical and clinical studies look promising. It is reasonable to imagine a TLR4 immunomodulatory agent that reduces inflammatory response, but promotes anti-tumor immunity. This could be beneficial in controlling multiple stages of cancer. Comprehensive studies are therefore needed to understand the mechanism of action of TLR4 immunomodulators in appropriate in vitro and in vivo models of cancer.

INFORMATION ABOUT PATIENT APPLICATIONS PERTAINING TO TLR4 IMMUNOMODULATION BY SURfactant PROTEIN-A (SP-A) DERIVED PEPTIDES

Patent applications have been filed on the concept of TLR4-interacting SP-A peptides for immunomodulation with United States Patent and Trademark Office (USPTO), World Intellectual Property Organization, European, Canadian, and Australian Patent agencies. A patent was recently issued by the USPTO (US 8,623,832; Inventor: Shanmugam Rajagopal). The absence of TLR4-induced NF-κB activation in Dnosophila Toll. Proc Natl Acad Sci U S A (1998) 95(2):588–93. doi:10.1073/pnas.95.2.588

Poltorak A, He X, Smirnova I, Liu MY, Van Hufel C, Du X, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in TLR4 gene. Science (1998) 282(5396):2085–8. doi:10.1126/science.282.5396.2085

Wang F, Meng W, Wang B, Qiao L. Helicobac ter pylori-induced gastric inflammation and gas- tric cancer. Cancer Lett (2014) 345(2):196–202. doi:10.1016/j.canlet.2013.08.016

Xu JH, Fu JJ, Wang XL, Zhu JY, Ye XH, Chen SD. Hepatitis B or C viral infection and risk of pancreatic cancer: a meta-analysis of observational studies. World J Gastroenterol (2013) 19(26):4234–41. doi:10.3748/wjg.v19.i26.4234

Rogler G. Chronic ulcerative colitis and colorectal cancer. Cancer Lett (2014) 345(2):235–41. doi:10.1016/j.canlet.2013.07.032

Obukh A, Jeralia R. Toll-like receptor 4 activation in cancer progression and therapy. Clin Dev Immunol (2011) 2011:690579. doi:10.1155/2011/690579

Pradere JP, Dapito DH, Schwabe RF. The Yin and Yang of Toll-like receptor in cancer. Oncogene (2013) 32(27):3485–95. doi:10.1038/onc.2013.302

Wolska A, Lech-Maraneda E, Robak T. Toll-like receptors and their role in carcinogenesis and anti-tumor treatment. Cell Mol Biol Lett (2009) 14(2):248–72. doi:10.2478/v11658-008-0048-y

Higgins SC, Iarnack AG, Lavelle EG, Mills KH. TLR4 mediates vaccine-induced protective cellular immunity to Bordetella pertussis: role of IL-17-producing T cells. J Immunol (2006) 177(11):7980–9. doi:10.4049/jimmunol.177.11.7980

Kerepesi LA, Hess IA, Leon O, Nolan TJ, Schad GA, Abraham D. Toll-like receptor 4 (TLR4) is required for protective immunity to larval Strongyloides ster coralis in mice. Microbes Infect (2007) 9(1):28–34. doi:10.1016/j.micinf.2006.10.003

Imado T, Isawski T, Kitano S, Satake A, Kuroiwa T, Tsunemi S, et al. The protective role of host Toll-like receptor-4 in acute graft-versus-host dis ease. Transplantation (2010) 90(10):1063–70. doi:10.1097/TP.0b013e3181b604f7

Jordan JM, Woods ME, Olano I, Walker DH. The absence of Toll-like receptor 4 signaling in C3H/HeJ mice predisposes them to overwhelming rickettsial infection and decreased protective Th1 responses. Infect Immun (2008) 76(8):3171–24. doi:10.1128/IAI.00311-08

Supajatura V, Ushe H, Nakao A, Okumura K, Ra C, Ogawa H. Protective roles of mast cells against enterobacterial infection are mediated by Toll-like receptor 4. J Immunol (2001) 167(4):2250–6. doi:10.4049/jimmunol.167.4.2250

Nunez NG, Andreani V, Crespo MI, Nocera DA, Bresser ML, Moron G, et al. IFNbeta production by TLR4-activated tumor cells is involved in improving the antimicrobial immune response. Cancer Res (2012) 72(3):592–603. doi:10.1158/0008-5472.CAN-11-0534

Park BS, Lee JO. Recognition of lipopolysaccharide pattern by TLR4 complexes. Exp Mol Med (2013) 45:666. doi:10.1038/emm.2013.97

Le Bon T, Tough DF. Links between innate and adaptive immunity via type I interferon. Curr Opin Immunol (2002) 14(4):432–6. doi:10.1016/S0952-7915(02)00354-0

Lau WC, Yeh WC, Ohashi PS. LPS/TLR4 signal transduction pathway. Cytokine (2008) 42(2):145–51. doi:10.1016/j.cyto.2008.01.006

Chen YJ, Hsieh MY, Chang MY, Chen HC, Jan MS, Maa MC, et al. Ep8 protein facilitates phagocytosis by increasing TLR4/MyD88 protein interaction in lipopolysaccharide-stimulated macrophages. J Biol Chem (2012) 287(22):18806–19. doi:10.1074/jbc.M112.430493

Jain V, Halle A, Halmen KA, Lien E, Charrel-Dennis M, Ram S, et al. Phagocytosis and intracellular killing of MD-2 opsonized gram-negative bacteria depend on TLR4 signaling. Blood (2008) 111(9):4637–45. doi:10.1182/blood-2007-11-126662

Neal MD, Leaphart C, Levy R, Prince J, Bil lar TR, Watkins S, et al. Enterocyte TLR4 mediates phagocytosis and translocation of bacteria across the intestinal barrier. J Immunol (2006) 176(5):3070–9. doi:10.4049/jimmunol.176.5.3070

Underhill DM, Goodridge HS. Information processing during phagocytosis. Nat Rev Immunol (2012) 12(7):492–502. doi:10.1038/nri3244

Gabbain J, Spence S, Wynne C, Smith S, Byrne JC, Coffey B, et al. Defects in acute responses to Bordetella pertussis across the intestinal barrier. J Immunol (2006) 176(5):3070–9. doi:10.4049/jimmunol.176.5.3070

Wagner CL, Cresswell P. TLR and nucleotide-binding oligomerization domain-like receptor sig nals differentially regulate exogenous antigen
Pufnock JS, Cigal M, Rolczynski LS, Andersen-Nissen E, Wolf M, McElrath MJ, et al. Priming CD8+ T cells with dendritic cells matured using TLR4 and TLR7/8 ligands together enhances generation of CD8+ T cells retaining CD28. Blood (2011) 117(24):6542–51. doi:10.1182/blood-2010-11-317966

Park HJ, Qin H, Cha SC, Sharma R, Chung Y, Schluns KS, et al. Induction of TLR4-dependent CD8+ T cell immunity by murine beta-defensin2 fusion protein vaccines. Vaccine (2011) 29(18):4376–82. doi:10.1016/j.vaccine.2011.02.061

Siegemund S, Sauer K. Balancing pro- and anti-inflammatory TLR4 signaling. Nat Immunol (2013) 13(11):1031–3. doi:10.1038/ni.2452

Huang B, Zhao J, Li H, He KL, Chen Y, Chen Z, et al. TLR4 signaling promotes immune escape of human colon cancer cells by inducing immunosuppressive cytokines and apoptotic resis-
tance. Oncol Res (2012) 20(1):15–24. doi:10.3727/096540112X647014969092

Fukata M, Shang L, Sotolongo J, Pastorini C, Espana C, et al. Constitutive activation of epithelial TLR4 augments inflammatory responses to mucosal injury and drives colitis-associated tumorigenesis. Inflamm Bowel Dis (2011) 17(1):1464–73. doi:10.1002/ibd.21527

Ikebe M, Kitaura Y, Nakamura M, Tanaka H, Yamasaki A, Nagai S, et al. Lipopolysaccharide (LPS) increases the invasive ability of pancre-atatic cancer cells through the TLR4/MyD88 signal-
ing pathway. J Surg Oncol (2009) 100(8):725–31. doi:10.1002/jso.21392

Liao SJ, Zhou YH, Yuan Y, Li D, Wu FH, Wang Q, et al. Triggering of Toll-like receptor 4 on metastas-tic breast cancer cells promotes alphavbeta3-mediated adhesion and invasive migration. Breast Cancer Res Treat (2012) 133(3):853–63. doi:10.1007/s10549-011-1844-0

Kelsh RM, McKeown-Longo P. Topographical changes in extracellular matrix: activation of TLR4 signaling and solid tumor progression. Trends Cancer Res (2013) 91–13.

Wang L, Zhu R, Huang Z, Li H, Zhu H. Lipopolysaccharide-induced toll-like receptor 4 signaling in cancer cells promotes cell survival and proliferation in hepatocellular carcinoma. Dig Dis Sci (2013) 58(8):2223–36. doi:10.1007/s10620-013-2745-3

Yuan X, Zhou Y, Wang W, Li J, Xie G, Zhao Y, et al. Activation of TLR4 signaling promotes gastric cancer progression by inducing mitochondr-ial ROS production. Cell Death Dis (2013) 4:e274. doi:10.1038/cddis.2013.334

Earl TM, Nixdorf IB, Pierce JM, Wright JP, Majoras RK. Toll-like receptor genes and their association with colon and rectal cancer development and prognosis. Int J Cancer (2012) 130:2974–80. doi:10.1002/ijc.26314

Ehsan N, Murad S, Ashiq T, Mansoor MU, Gul S, Khalid S, et al. Significant correlation of TLR4 expression with the clinicopathological features of invasive ductal carcinoma of the breast. Tumour Biol (2013) 34(4):2441–50. doi:10.1007/s13277-013-0795-y

Huang L, Yuan K, Liu J, Ren X, Dong X, Tian W, et al. Polymorphisms of the TLR4 gene and risk of gastric cancer. Gene (2014) 537(1):46–50. doi:10.1016/j.gene.2013.12.030

Yang CX, Li CY, Feng W. Toll-like receptor 4 genetic variants and prognosis of breast cancer. Tissue Antigens (2013) 81(4):221–6. doi:10.1111/tan.12096

Slattery ML, Herrick JS, Bondurant KL, Wolf KK. Toll-like receptor genes and their association with colon and rectal cancer development and prognosis. Int J Cancer (2012) 130:2974–80. doi:10.1002/ijc.26314

Anand P, Sundaram C, Susheela R, Srinivasan S, Kumanamurthy AB, Agarwal RR. Curcumin and cancer: an “old-age” disease with an “age-old” solution. Cancer Lett (2007) 267(1):133–64. doi:10.1016/j.canlet.2008.03.025

Ishizaka ST, Hawkins LD. E6020: a synthetic Toll-like receptor-4 agonist to attenuate tumor growth and immune tolerance. Expert Opin Investig Drugs (2013) 22(4):555–62. doi:10.1517/13543784.12.13121

Ramani V, Madhusoodhanan R, Kosanke S, Awasthi S. A TLR4-interacting SPA4 peptide suppresses tumor growth and immune evasion. Cancer Res (2005) 65(12):5009–14. doi:10.1158/0008-5472.CAN-05-0784

Fu HY, Li C, Yang W, Gai XD, Jia T, Lei YM, et al. FoxP3 and TLR4 protein expression are corre-
lated in non-small cell lung cancer: implications for tumor progression and escape. Acta Histochem (2013) 115(2):151–7. doi:10.1016/j.acthis.2012.06.002

Tang X, Zhu Y. TLR4 signaling increases tumor progression and lung metastasis by DAMPs released from chemically stressed cancer cells. Cell Mol Immunol (2014) 11(2):150–9. doi:10.1038/cmi.2013.59

Krieg AM. Toll-free vaccines? Nat Biotechnol. (2007) 25(3):303–5. doi:10.1038/nbt0307-303

Ishizaka ST, Hawkins LD. E6020 as a synthetic Toll-
lke receptor 4 agonist as a vaccine adjuvant. Expert Rev Vaccines (2007) 6(5):773–84. doi:10.1586/17467658.6.5.773

Dumontelle E, Bottazzi ME, Zhan B, Heffernan MJ, Jones K, Valenzuela JG, et al. Accelerating the development of a therapeutic vaccine for human Chagas disease: rationale and prospects. Expert Rev Vaccines (2012) 11(9):1044–55. doi:10.1586/er.12.85

Piazza M, Rossini C, Della Fiorenza S, Pozzi C, Comelli F, Bettoni I, et al. Glycolipids and benzanilammonium lipids as novel antiseptic agents: synthesis and biological characterization. J Med Chem (2009) 52(4):1209–13. doi:10.1021/ mj801333m

Awasthi S. A TLR4-interacting SPA4 pep-
tide suppresses tumor growth and immune tolerance. Expert Opin Investig Drugs (2013) 22(4):555–62. doi:10.1517/13543784.12.13121

Fang H, Ang B, Xu X, Huang X, Wu Y, Sun Y, et al. Silencing of TLR4 decreases interleukin-1 do not appear to mediate persistent allodynia induced by intramuscular acetic saline in rats. J Pain (2006) 7(10):757–67. doi:10.1016/j. jpain.2006.04.001

Gradisar H, Keber MM, Pristovsek P, Jerala R. MD-2 as the target of curcumin in the inhibition of response to LPS. J Leukoc Biol (2007) 82(4):968–74. doi:10.1189/jlb.1206727

Hossain DM, Bhattacharyya S, Das T, Sa G, Curcumin: the multi-targeted therapy for cancer regression. Front Biosci (Schol Ed) (2012) 4:535–55. doi:10.2741/s272

Anand P, Sundaram C, Jhurani S, Kunnunakkara AB, Aggarwal BB. Curcumin and cancer: an “old-
age” disease with an “age-old” solution. Cancer Lett (2008) 267(1):133–64. doi:10.1016/j.canlet.2008.03.025

Zhu HT, Bian C, Yuan JC, Chu WH, Xiang X, Chen F, et al. Curcumin attenuates acute inflammatory injury by inhibiting the TLR4/MyD88/NF-kappaB signaling pathway in experimental traumatic brain injury. J Neuroimmunol (2014) 11:59. doi:10.1016/j.jneuroim.2014.11.042

Vilekar P, Awasthi S, Natarajan A, Anant S, Awasthi V. EF24 suppresses maturation and inflammatory response in dendritic cells. Int Immunol (2012) 24(7):555–64. doi:10.1093/intimm/dxs131

Ramani V, Madhusoodanan R, Kosanke S, Awasthi S. A TLR4-interacting SPA4 pep-
tide inhibits LPS-induced lung inflammation. Inmate Immun (2013) 19(6):596–610. doi:10.1177/153245911347851

Awasthi S, Brown K, King C, Awasthi V, Bondugula R. A toll-like receptor-4-interacting surfac-
tant protein-A-derived peptide suppresses tumor necrosis factor-alpha release from mouse JAWS II dendritic cells. J Pharmacol Exp Ther (2011) 336(6):672–81. doi:10.1121/jpet.110.173765
63. Madhusoodhanan R, Moriasi C, Ramani V, Anant S, Awasthi S. A TLR4-interacting peptide inhibits lipopolysaccharide-stimulated inflammatory responses, migration and invasion of colon cancer SW480 cells. *Oncoimmunology* (2012) 1(9):1495–506. doi:10.4161/onci.22089

64. Panaro MA, Carofiglia V, Acquafredda A, Cavallo P, Cianciulli A. Anti-inflammatory effects of resveratrol occur via inhibition of lipopolysaccharide-induced NF-kappaB activation in Caco-2 and SW480 human colon cancer cells. *Br J Nutr* (2012) 108(9):1623–32. doi:10.1017/S0007114511007227

65. Hodgkinson L. Digestive disease week 2010. Turning science into medicine – part 2. *IDrugs* (2010) 13(7):424–6.

66. Zhang J, Dou W, Zhang E, Sun A, Ding L, Wei X, et al. Paeoniflorin abrogates DSS-induced colitis via a TLR4-dependent pathway. *Am J Physiol Gastrointest Liver Physiol* (2014) 306(1):G27–36. doi:10.1152/ajpgi.00465.2012

67. Osner N, Hilpert S, Arnould L, Saint-Giorgio V, Davies FG, Jeannin JF, et al. Cure of colon cancer metastasis in rats with the new lipid A OM174. *Apoptosis of tumor cells and immunization of rats*. *Clin Exp Metastasis* (1999) 17(2):299–306. doi:10.1023/A:1006663017149

68. Garay RP, Viens P, Bauer J, Normier G, Bardou M, Jeannin JF, et al. Cancer relapse under chemotherapy: why TLR2/4 receptor agonists can help. *Eur J Pharmacol* (2007) 563(1–3):1–17. doi:10.1016/j.ejphar.2007.02.018

69. Cluff CW. Monophosphoryl lipid A (MPL) as an adjuvant for anti-cancer vaccines: clinical results. *Adv Exp Med Biol* (2010) 667:111–23. doi:10.1007/978-1-4419-1603-7_10

70. Gerard C, Baudson N, Ory T, Louahed J. Tumor mouse model confirms MAGE-A3 cancer immunotherapeutic as an efficient inducer of long-lasting anti-tumoral responses. *PloS One* (2014) 9(5):e94883. doi:10.1371/journal.pone.0094883

71. Wang S, Asstaturuw IA, Bingham CA, McCarthy KM, von Mehren M, Xu W, et al. Effective antibody therapy induces host-protective antitumor immunity that is augmented by TLR4 agonist treatment. *Cancer Immunol Immunother* (2012) 61(1):49–61. doi:10.1007/s00262-011-1090-7

72. Davis MB, Vasquez-Dunddel D, Fu J, Albesiano E, Pardoll D, Kim YJ. Intratumoral administration of TLR4 agonist absorbed into a cellular vector improves antitumor responses. *Clin Cancer Res* (2011) 17(12):3984–92. doi:10.1158/1078-0432.CCR-10-3262

73. Roy A, Singh MS, Upadhyay P, Bhaskar S. Nanoparticle mediated co-delivery of paclitaxel and a TLR-4 agonist results in tumor regression and enhanced immune response in the tumor microenvironment of a mouse model. *Int J Pharm* (2013) 445(1–2):171–80. doi:10.1016/j.ijpharm.2013.01.045

74. Akeda T, Yamamaka K, Kitagawa H, Kawabata E, Tsuda K, Kakeda M, et al. Intratumoral injection of OK-432 suppresses metastatic squamous cell carcinoma lesion inducing interferon-gamma and tumour necrosis factor-alpha. *Clin Exp Dermatol* (2012) 37(2):193–4. doi:10.1111/j.1365-2230.2011.04151.x

Conflict of Interest Statement: The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 01 May 2014; accepted: 27 June 2014; published online: 25 July 2014.

Citation: Awasthi S (2014) Toll-like receptor-4 modulation for cancer immunotherapy. *Front. Immunol.* 5:328. doi: 10.3389/fimmu.2014.00328

This article was submitted to Tumor Immunity, a section of the journal Frontiers in Immunology.

Copyright © 2014 Awasthi. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.