RESULTS AND DISCUSSION
The variable clinical phenotype and reduced penetrance of the I383V variant
All 13 FTD patients with the I383V variant in TARDBP presented with a combination of behavioural changes and semantic deficits. The diagnoses of semantic variant of primary progressive aphasia (svPPA) are intriguing since this is usually considered a sporadic disorder. One patient (4M) showed additional motor symptoms, but not fulfilling ALS criteria. Of the 4 ALS patients with the I383V variant, 3 had a relatively slow progression with the longest disease duration of 9 years. None of the ALS patients exhibited cognitive or behavioural symptoms. Clinical details are presented in online supplemental tables 1,2.

Six FTD patients and one ALS patient were found to be related (family 1). Additionally, two FTD patients and two ALS patients (families 2 and 3) could be linked to family 1 through a distant common ancestor (figure 1). The variable phenotype of the I383V variant is exemplified by family 1, in which different family members were affected by svPPA, behavioural variant of FTD, unspecified dementia, ALS or progressive spinal muscular atrophy, with a wide range in age at onset (44–69 years) and disease duration (7–23 years). Interestingly, several obligate carriers were unaffected, suggesting incomplete penetrance even at an advanced age (>80 years). Larger prospective studies are required to estimate age-related penetrance.

Four remaining families (online supplemental figure 1) did not show a clear pattern of autosomal dominant inheritance (Goldman 2–5). In one of these families, an affected relative with the I383V variant was clinically diagnosed with Alzheimer’s disease (AD), but AD biomarker changes were not evaluated in cerebrospinal fluid. A possible explanation is that the dementia in this patient is coincidental and unrelated to the I383V variant. Alternatively, increased susceptibility for AD caused by the I383V variant may be considered. Another interesting hypothesis is that TARDBP variants might be associated with limbic-predominant age-related TDP-43 encephalopathy, a common age-related disorder with TDP-43 proteinopathy that clinically mimics AD.

Several other relatives, including obligate carriers, were affected by psychiatric disorders such as psychosis and schizophrenia with onset around 40–50 years. Unfortunately, detailed clinical information or DNA were not available for these subjects. Whether psychiatric disorders are part of the I383V–TARDBP spectrum remains to be investigated in future studies. Altogether, our observations illustrate large phenotypic variability of the I383V variant and incomplete penetrance.

Isolated bitemporal atrophy in FTD patients with the I383V variant
The most discriminating feature of the I383V variant is the predominant and severe atrophy of the temporal lobes in all FTD patients, with relative sparing of the other lobes (figure 1 and online supplemental figure 2). This is in line with previous observations in I383V FTD patients and the frequent occurrence of semantic deficits and prosopagnosia in our patients (online supplemental table 1). Other pathogenic TARDBP variants (eg, K263E) are associated with a more variable pattern of lobar atrophy.1 However, the predominant temporal involvement has also been reported for other TARDBP variants located nearby the I383V variant (eg, A382T),3 suggesting a specific effect of missense variants in this part of the C-terminal domain of TDP-43. Further functional studies are needed to elucidate these possible genotype–phenotype correlations.

Heterogeneous pathological features in TARDBP patients
A remarkable observation is the scarcity of TDP-43 reactivity in the cortical areas of two FTD patients (patient 1F and the previously reported patient 4M1), despite the underlying pathogenic TARDBP variant. Only several TDP-43 cytoplasmic inclusions of various morphologies were found in the frontal cortex, dentate gyrus and caudate nucleus (figure 1). A possible explanation for the scarce temporal pathology might be the severe neurodegeneration, especially considering the long disease duration of patient 1F (23 years). Interestingly, we also detected tau positive inclusions in the hippocampus and tufted astrocytes in the putamen and caudate nucleus (figure 1). A single other neuropathological study of a I383V carrier reported similar low amounts of TDP-43 inclusions, and the presence of α-synuclein deposits and tauopathy, including tufted astrocytes in the amygdala.5 It appears that the neuropathological changes in FTD caused by variants in TARDBP are not readily classifiable. Whether the detected co-pathologies occurred by chance needs to be determined in additional cases with TDP-43 variants.
Our findings indicate a pathogenic effect of the I383V variant, which was previously debated due to the more conservative amino acid substitution and the benign in silico predictions by SIFT and PolyPhen. The current families, especially family 1, clearly show segregation of the variant with the disease, although penetrance appears incomplete. In addition to the patients described here, the I383V variant has been previously reported in 16 FTD and 8 ALS patients (online supplemental table 3), with frequencies ranging from 0% to 0.9% in ALS cohorts and from 0% to 2.5% in clinical FTD cohorts, while the variant is consistently absent in large groups of healthy controls from different populations. These data additionally support its pathogenicity. This conclusion has clinical implications for genetic counselling of patients and unaffected family members, to whom presymptomatic testing and counselling can now be offered.

CONCLUSION
Our study provides sufficient evidence for the pathogenicity of the I383V variant.
and contributes to the characterisation of TARDBP-related FTD. We demonstrate the large phenotypic variability and incomplete penetrance of the 1383V variant. Marked isolated bitemporal volume loss in all FTD patients should prompt clinicians to genetically test for causal variants in TARDBP.

Merel O. Mol,1 Sebastiaan W.R. Nijmeijer,2 Jeroen G. J. van Rooij,3 Resie M. L. van Spaendonk,2 Yolande A. L. Pijnenburg,3 Sven J. van der Lee,4 Rick van Minkelen,4 Laura Donker Kaat,4,5 Annemieke J. M. Rozemuller,5 Meike Vernooij,6 Frederic A. M. Hennekam,7 Jan H. Veldink8,9 John C. van Swieten10

1Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
2Department of Clinical Genetics, Amsterdam UMC, Location VU University Medical Center, Amsterdam, The Netherlands
3Department of Neurology, Alzheimer Center, Amsterdam UMC, Location VU University Medical Center, Amsterdam, The Netherlands
4Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
5Department of Pathology, Amsterdam UMC, Location VU University Medical Center, Amsterdam, The Netherlands
6Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
7Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
8Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
9Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
10Correspondence to Merel O. Mol, Department of Neurology, Erasmus Medical Center, 3015GD Rotterdam, Netherlands; m.o.mol@erasmusmc.nl

Correction notice This article has been corrected since it first published. The provenance and peer review statement has been included.

Twitter Harro Seelaar @HarroSeelaar

Acknowledgements We are indebted to all the patients who made this study possible. We also thank R. van’t Klooster from Quantib for assistance with the quantified volumetric data.

Contributors MOM and SWRN designed and conceptualised the study, analysed and interpreted all data, and drafted and submitted the manuscript. YALP, SJL, LDK, MRUM, WR, MAE and JHV played a major role in the acquisition of data and revised the manuscript. JGJR, RM and RMLS analysed and interpreted the genetic data, and revised the manuscript. MV analysed and interpreted the neuroimaging data, and revised the manuscript. AJMR analysed and interpreted the pathological data. EAMH conducted genealogical research. JCVS, PCH, HS and EGPD designed and conceptualised the study, revised the manuscript and are responsible for the overall content as guarantors.

Funding This project has received funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 772376 – ESCORIAL).

Competing interests Several authors of this publication are members of the European Reference Network for Rare Neurological Diseases: Project ID No. 739510. JHV reports to have sponsored research and been permitted under CC BY. Published by BMJ.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/licenses/by/4.0/.

© Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY. Published by BMJ.

Additional material is published online only. To view please visit the journal online (http://dx.doi.org/10.1136/jnnp-2020-325150).

MOM and SWRN contributed equally.

To cite Mol MO, Nijmeijer SWR, van Rooij JGJ, et al. J Neurol Neurosurg Psychiatry 2021;92:787–789.

Received 18 September 2020
Revised 30 November 2020
Accepted 6 December 2020

Published Online First 15 January 2021

J Neurol Neurosurg Psychiatry 2021;92:787–789.

doi:10.1136/jnnp-2020-325150

ORCID iDs

Merel O. Mol http://orcid.org/0000-0003-2533-2530
Yolande A. L. Pijnenburg http://orcid.org/0000-0003-2464-1905
Jan H. Veldink http://orcid.org/0000-0001-5572-9657
Meike Vernooij http://orcid.org/0000-0003-4658-2176
John C. van Swieten http://orcid.org/0000-0001-6278-6844

Harro Seelaar http://orcid.org/0000-0003-1989-7527

REFERENCES

1 Caroppo P, Camuzat A, Guillot-Noel L, et al. Defining the spectrum of frontotemporal dementias associated with TARDBP mutations. Neurol Genet 2016;2:e80.
2 Mol MO, van Rooij JGJ, Wong TH, et al. Underlying genetic variation in familial frontotemporal dementia: sequencing of 198 patients. Neurobiol Aging 2021;97:148.e9
3 Nelson PT, Dickson DW, Trojanowski JQ, et al. Limbic-predominant age-related TDP-43 encephalopathy (late): consensus Working Group report. Brain 2019;142:1503–27.
4 Floris G, Borghero G, Cannas A, et al. Clinical phenotypes and radiological findings in frontotemporal dementia related to TARDBP mutations. J Neurol 2015;262:375–84.
5 Gelpi E, van der Zee J, Turon Estrada A, et al. TARDBP mutation p.Ile383Val associated with semantic dementia and complex proteinopathy. Neuropathol Appl Neurobiol 2014;40:225–30.
SUPPLEMENTARY METHODS

Patient selection

We ascertained FTD patients (n=13) with the variant I383V (NM_007375.3: c.1147A>G, p.Ile383Val) in the TARDBP gene, from a large combined cohort of dementia patients who underwent clinical and genetic evaluation in two medical centers in the Netherlands (Amsterdam UMC, Vrije Universiteit Amsterdam, and Erasmus Medical Center, Rotterdam). All but one patient were included in either the Amsterdam Dementia Cohort\(^1\) or an ongoing genetic-epidemiologic study of frontotemporal dementia.\(^2\)

Subsequently, ALS patients (n=4) with the I383V variant in TARDBP were selected from the largest ALS cohort in the Netherlands (ALS Center, University Medical Center Utrecht), comprising over 4000 ALS patients included in Project MinE.\(^3\) Cognitive status was evaluated in ALS patients on indication only.

Neurological examination and neuroimaging

All FTD patients included in this study underwent neurological and cognitive assessment, and routine neuroimaging (MRI or CT) as part of standard clinical practice. Clinical diagnoses were made according to international consensus criteria.\(^4,6\) No neurophysiological assessment was performed. All imaging data were evaluated by experienced neuroradiologists. Additionally, volume loss across all lobar brain regions was quantitatively assessed in patients when 3D-acquired T1-weighted MRI scans with sufficient quality were available (n=5). Quantib\(^\text{®}\) ND 1.6 software (Quantib, Rotterdam, The Netherlands), was used to generate automated segmentation and quantification of brain tissue. Volumes were compared to a gender-/age-matched reference population.
Genetic analyses – FTD patients

In all FTD patients, whole-exome sequencing (WES) or whole-genome sequencing (WGS) was performed in either clinical or research setting. Besides the I383V variant, concurrent pathogenic variants in 20 other genes associated with ALS, FTD or other forms of dementia were excluded (Table 1). The presence of a C9orf72 repeat expansion was tested either using repeat-primed PCR (research setting) or a commercial kit (Asuragen® AmplideX PCR/CE; diagnostic setting) with repeat length ≥30 considered pathogenic. The variant I383V in TARDBP was confirmed by Sanger sequencing.

In 11 out of 13 FTD patients, whole-exome sequencing was performed. DNA was enriched using Agilent SureSelect Clinical Research Exome V2 capture, fragmented to 150 to 200 base pairs, end paired, adenylated, and ligated to adapters. The SeqCap capturing kit for Illumina Paired-End Sequencing library (version 2.0.1; NimbleGen) was used. The captured fragments were purified, and sequenced on either an Illumina Hiseq2000 (Erasmus Medical Center) or Hiseq4000 platform (Amsterdam University Medical Center) using 100 bp paired-end reads. The aim was to obtain 8.1 Giga base pairs per exome with a mapped fraction of 0.99. The average coverage of the exome is ~50x with a minimum depth of >30 reads. Duplicate reads were excluded. Data were demultiplexed with bcl2fastq Conversion Software from Illumina. All sequence reads were mapped to GRCh37/hg19 reference genome using Burrows-Wheeler Aligner (BWA) Tool. GATK was used for variant calling and quality control according to best practice (McKenna, et al., 2010). Population database frequencies (gnomAD v2.1.1), functional and impact-score annotations were assigned to variants using ANNOVAR.

In 2 out of 13 FTD patients, whole-genome sequencing was performed as part of another study, at the Mayo Clinic Genome Analysis Core. Paired end libraries were prepared using 500ng of genomic DNA according to the manufacturer’s instructions for the Nextera DNA Flex Library Prep
Kit (Illumina). Libraries were sequenced at an average coverage of ~30X (24 samples/S4 Flow cell) following Illumina’s standard protocol using the Illumina NovaSeq™ 6000 and S4 flow cell. The flow cells were sequenced as 150X 2 paired end reads using NovaSeq S4 sequencing kit and NovaSeq Control Software v1.6.0. Base-calling is performed using Illumina’s RTA version 3.4.4. Fastq files were processed through the Mayo Genome GPS v4.0 pipeline in a single batch of 48 samples. Briefly, reads were mapped to the human reference sequence (GRCh38 build) using the Burrows–Wheeler Aligner, and local realignment around indels was performed using the Genome Analysis Toolkit (GATK). Variant calling was performed using GATK HaplotypeCaller followed by variant recalibration (VQSR) according to the GATK best practice recommendations. Joint genotyping including all samples was performed using GATK GenotypeGVCF. Quality control (QC) analysis of the data was conducted using a Mayo Clinic in house developed next generation sequencing (NGS) QC pipeline.

Genetic analyses – ALS patients

The four ALS patients described in this study were included in project MinE, a large-scale whole-genome sequencing study in ALS. For methodological details, we refer to previously published papers on the project MinE ALS sequencing consortium. A C9orf72 repeat expansion was excluded in these patients by repeat-primed PCR or using the WGS data and the software tool ExpansionHunter.

Genealogical analysis

Family histories for FTLD spectrum disorders (bvFTD, PPA, ALS, CBS or PSP) were classified into one of the following Goldman categories, which were adjusted and described in more detail previously:

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance placed on this supplemental material which has been supplied by the author(s).
1) Autosomal dominant pattern; 2) Familial aggregation; 3) Possible familial with onset <65 years; 4) Possible familial with onset >65 years; 5) Negative family history for a FTLD spectrum disorder, any other type of dementia, or Parkinson's disease (PD).
Psychiatric family history was assessed separately.

We performed genealogical research to trace a common link between the FTD patients and the ALS patients. The used sources included Dutch civil registries of births, marriages and deaths (1811-2020) and church archives with baptism, marriage, and death registers (before 1811).

Pathological examination

Brain autopsy was performed in two FTD patients by the Netherlands Brain Bank (NBB) within four hours after death. Routine immunohistochemistry was also carried out by the NBB and FTLD diagnosis was confirmed by a neuropathologist based on the criteria by Cairns et al.\(^{17}\) We performed additional immunohistochemistry on multiple brain regions including all cortical areas, hippocampus and caudate/putamen as previously described.\(^2\) One patient (4M) was reported previously as M008015-001.\(^{18}\)
Table 1

A total of 21 genes associated with FTD, ALS, FTD-ALS, and Alzheimer’s disease were screened for variants using whole-exome or whole-genome sequencing, which was performed in all patients.

Symbol	Name	Reference
ANG	Angiogenin	Greenway et al., 2006
APP	Amyloid beta precursor protein	Goate et al., 1991
CHCHD10	Coiled-coil-helix-coiled-coil-helix domain containing 10	Claussenot et al., 2014
CHMP2B	Charged multivesicular body protein 2B	Skibinski et al., 2005
FUS	FUS RNA binding protein	Vance et al., 2009, Huey et al., 2012
GRN	Granulin Precursor	Cruts et al., 2006
HNRNPA1	Heterogeneous Nuclear Ribonucleoprotein A1	Kim et al., 2013
HNRNPA2B1	Heterogeneous nuclear ribonucleoprotein A2/B1	Kim et al., 2013
MAPT	Microtubule associated protein tau	Hutton et al., 1998
OPTN	Optineurin	Belzil et al., 2011; Pottier et al., 2018
PRKAR1B	Protein kinase cAMP-dependent type I regulatory subunit beta	Wong et al., 2014
PSEN1	Presenilin 1	Sherrington et al., 1995
PSEN2	Presenilin 2	Levy-Lahad et al., 1995
SIGMAR1	Sigma Non-Opioid Intracellular Receptor 1	Luty et al., 2010, Belzil et al., 2013
SOD1	Superoxide Dismutase 1	Rosen et al., 1993
SQSTM1	Sequestosome 1	Le Ber et al., 2013, Thelen et al., 2014
TARDBP	TAR DNA Binding Protein	Caroppo et al., 2016
TBK1	TANK binding kinase 1	Van der Zee et al., 2017
TREM2	Triggering Receptor Expressed On Myeloid Cells 2	Borroni et al., 2014
UBQLN2	Ubiquilin 2	Dillen et al., 2013
VCP	Valosin Containing Protein	Watts et al., 2004; Wong et al., 2018
References

1. van der Flier WM, Pijnenburg YA, Prins N, et al. Optimizing patient care and research: the Amsterdam Dementia Cohort. J Alzheimers Dis 2014;41:313-327.
2. Seelaar H, Kamphorst W, Rosso SM, et al. Distinct genetic forms of frontotemporal dementia. Neurology 2008;71:1220-1226.
3. Project Min EALSSC. Project MinE: study design and pilot analyses of a large-scale whole-genome sequencing study in amyotrophic lateral sclerosis. Eur J Hum Genet 2018;26:1537-1546.
4. Brooks BR, Miller RG, Swash M, Munsat TL, World Federation of Neurology Research Group on Motor Neuron D. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 2000;1:293-299.
5. Gorno-Tempini ML, Dronkers NF, Rankin KP, et al. Cognition and anatomy in three variants of primary progressive aphasia. Ann Neurol 2004;55:335-346.
6. Rascovsky K, Hodges JR, Knopman D, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 2011;134:2456-2477.
7. Renton AE, Majounie E, Waite A, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 2011;72:257-268.
8. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. bioinformatics 2009;25:1754-1760.
9. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Research 2010;38:e164-e164.
10. Mol MO, van Rooij JGJ, Wong TH, et al. Underlying genetic variation in familial frontotemporal dementia: sequencing of 198 patients. Neurobiology of Aging 2020.
11. McKenna A, Hanna M, Banks E, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010;20:1297-1303.
12. DePristo MA, Banks E, Poplin R, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 2011;43:491-498.
13. Van der Auwera GA, Carneiro MO, Hartl C, et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics 2013;43:10 11-11 10 33.
14. van der Spek RAA, van Rheezen W, Pulit SL, et al. The project MinE databrowser: bringing large-scale whole-genome sequencing in ALS to researchers and the public. Amyotroph Lateral Scler Frontotemporal Degener 2019;20:432-440.
15. van Rheezen W, van Blitterswijk M, Huismann MH, et al. Hexanucleotide repeat expansions in C9ORF72 in the spectrum of motor neuron diseases. Neurology 2012;79:878-882.
16. Dolzenko E, van Vught J, Shaw RJ, et al. Detection of long repeat expansions from PCR-free whole-genome sequence data. Genome Res 2017;27:1895-1903.
17. Cairns NJ, Bigio EH, Mackenzie IR, et al. Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal Lobar Degeneration. Acta Neuropathol 2007;114:5-22.
18. Caroppo P, Camuzat A, Guillot-Noël L, et al. Defining the spectrum of frontotemporal dementias associated with TARDBP mutations. Neurol Genet 2016;2:e80.
Supplementary Table 1. Clinical characteristics of 13 FTD patients carrying I383V TARDBP variant.

Patients are numbered according to their ID in the pedigrees (Figure 1 / Supplementary Figure 1). Four out of 13 patients have died (disease duration marked with asterisk), whereas current disease duration is presented for the nine living patients. **Clinical diagnoses:** bvFTD = behavioral variant of FTD; svPPA = semantic variant of primary progressive aphasia. **Clinical symptoms:** - = absent; ± = mild; + = moderate; ++ = severe. **Neuroimaging:** R = right; L = left; S = symmetric. The numbers in brackets indicate the number of years after symptom onset when neuroimaging was performed.

Gender	Age at onset	Disease duration (years)	Clinical diagnosis	Clinical symptoms	Neuroimaging	
					Temporal atrophy at first scan	Temporal atrophy at follow-up
1A	F	55	bvFTD	++	R>L (3)	S (7)
1C	F	69	bvFTD	++	R>L (5)	S (5)
1D	F	55	bvFTD	+	L>R (2)	S (6)
1E	M	44	bvFTD	+	L>R (5)	S (6)
1F*	M	42	svPPA	±	S (6)	S (6)
1G	F	47	bvFTD	+	R>L (8)	S (6)
2H	M	54	bvFTD	++	R>L (8)	S (5)
3K	M	65	bvFTD	±	R>L (11)	S (10)
4L	M	49	bvFTD	-	R>L (4)	S (5)
4M	M	60	bvFTD	+	R>L (5)	S (6)
5O	M	49	bvFTD	+	R>L (11)	S (5)
6P	M	60	bvFTD	+	R>L (11)	S (10)
7Q	M	49	bvFTD	-	R>L (4)	S (5)

Supplementary Table 1. Clinical characteristics of 13 FTD patients carrying I383V TARDBP variant.

Patients are numbered according to their ID in the pedigrees (Figure 1 / Supplementary Figure 1). Four out of 13 patients have died (disease duration marked with asterisk), whereas current disease duration is presented for the nine living patients. **Clinical diagnoses:** bvFTD = behavioral variant of FTD; svPPA = semantic variant of primary progressive aphasia. **Clinical symptoms:** - = absent; ± = mild; + = moderate; ++ = severe. **Neuroimaging:** R = right; L = left; S = symmetric. The numbers in brackets indicate the number of years after symptom onset when neuroimaging was performed.

- Neuropathologic examination.
- Goldman score based on family history (up till 2nd degree).
- Computed tomography (CT) was performed instead of Magnetic Resonance Imaging (MRI).
Supplementary Table 2. Clinical characteristics of four ALS patients carrying I383V *TARDBP* variant.

Patients are numbered according to their ID in the pedigrees (Figure 1 / Supplementary Figure 1). Three patients have died (disease duration marked with asterisk), whereas current disease duration is presented for patient 3I. Neuroimaging was not performed in these patients. *Clinical diagnoses:* ALS = amyotrophic lateral sclerosis; PSMA = progressive spinal muscular atrophy.

	1B	3I	3J	5N
Gender	M	F	F	M
Age at onset	39	53	59	62
Disease duration (years)	6*	6	9*	1*
Clinical diagnosis	ALS	PSMA	ALS	ALS
Clinical symptoms	Spinal	Spinal	Spinal	Spinal
EMG affected regions (N)a	1	0d	2	3
Diagnostic delay (months)b	12	64	24	8
Cognitive impairment	-	-	-	-
Family historyc	-	-	-	-
Goldman score	1	5	5	5
Psychiatric Family history	-	-	-	-

Supplementary Table 2. Clinical characteristics of four ALS patients carrying I383V *TARDBP* variant.

a Number of regions with features consistent with ALS according to the revised El Escorial criteria.1

b The diagnostic delay is presented to indicate the relative slow progression in patients 3I and 3J.

c Goldman score based on family history (up till 2nd degree).

d Denervation and reinnervation changes were present, though not fulfilling El Escorial criteria.
Supplementary Table 3. Clinical characteristics of previously reported patients carrying the I383V \textit{TARDBP} variant.

A total of 24 patients with the I383V variant from 17 different families have been reported in the literature. Eight of these patients were diagnosed with isolated ALS, whereas the majority was diagnosed with FTD or FTD-ALS. Neuroimaging of most FTD patients described the presence of temporal atrophy, in some cases combined with volume loss in other areas. \textit{Clinical diagnoses:} ALS = amyotrophic lateral sclerosis; svPPA = semantic variant of primary progressive aphasia; bvFTD = behavioral variant of FTD. ND = not described.

Authors	Number of patients (families)	Age at onset	Clinical Diagnosis	Predominant atrophy distribution	Family history
Ramos et al., 20202	4 (2)	ND	FTD	ND	Positive
Ramos et al., 20193	3 (3)	60	bvFTD	Temporal (left>right)	Negative
		58	svPPA	Temporal (bilateral) + Frontal	Positive
		66	svPPA	Temporal (left>right) + Frontal	Positive
Gelpi et al., 20144	1 (1)	60	svPPA	Temporal (left, bilateral at autopsy)	Dementia
Caroppo et al., 20165	4 (3)	65	bvFTD-ALS	Temporal (bilateral) + Parietal (mild)	ALS
		63	bvFTD	Temporal (bilateral) + Frontal	bvFTD
		51	bvFTD	Temporal (right>left) + Frontal + Hippocampal	bvFTD
		51	svPPA	Temporal (left>right)	Negative
Cheng et al., 20166	3 (1)	38	ALS	No atrophy	FTD, ALS
		64	svPPA	Temporal (left>right)	FTD, ALS
		62	bvFTD-ALS	Temporal (bilateral) + Frontal	FTD, ALS
Coyle-Gilchrist et al., 20167	1 (1)	49	svPPA	Temporal (bilateral)	Unknown
Gonzalez-Sanchez et al., 20188	2 (1)	51	svPPA	Temporal (left>right)	dementia, ALS
Rutherford et al., 20089	1 (1)	59	ALS	ND	dementia, svPPA
Ticozzi et al., 201110	3 (1)	66	ALS	ND	ALS
		25	ALS	ND	ALS
		57	ALS	ND	ALS
Ozoguz et al., 201511	2 (1)	42	ALS	ND	ALS
		47	ALS	ND	ALS

Supplementary Table 3. Clinical characteristics of previously reported patients carrying the I383V \textit{TARDBP} variant.
References

1. Brooks BR, Miller RG, Swash M, Munsat TL. World Federation of Neurology Research Group on Motor Neuron D. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 2000;1:293-299.
2. Ramos EM, Dokuru DR, Van Berlo V, et al. Genetic screening of a large series of North American sporadic and familial frontotemporal dementia cases. Alzheimers Dement 2020;16:118-130.
3. Ramos EM, Koros C, Dokuru DR, et al. Frontotemporal dementia spectrum: first genetic screen in a Greek cohort. Neurobiol Aging 2019;75:224 e221-224 e228.
4. Gelpi E, van der Zee J, Turon Estrada A, Van Broeckhoven C, Sanchez-Valle R. TARDBP mutation p.Ile383Val associated with semantic dementia and complex proteinopathy. Neuropathol Appl Neurobiol 2014;40:225-230.
5. Caroppo P, Camuzat A, Guillot-Noel L, et al. Defining the spectrum of frontotemporal dementias associated with TARDBP mutations. Neurol Genet 2016;2:e80.
6. Cheng YW, Lee MJ, Chen TF, et al. A single nucleotide TDP-43 mutation within a Taiwanese family: A multifaceted demon. Amyotroph Lateral Scler Frontotemporal Degener 2016;17:292-294.
7. Coyle-Gilchrist IT, Dick KM, Patterson K, et al. Prevalence, characteristics, and survival of frontotemporal lobar degeneration syndromes. Neurology 2016;86:1736-1743.
8. Gonzalez-Sanchez M, Puertas-Martin V, Esteban-Perez J, et al. TARDBP mutation associated with semantic variant primary progressive aphasia, case report and review of the literature. Neurocase 2018;24:301-305.
9. Rutherford NJ, Zhang YJ, Baker M, et al. Novel mutations in TARDBP (TDP-43) in patients with familial amyotrophic lateral sclerosis. PLoS Genet 2008;4:e1000193.
10. Ticozzi N, LeClerc AL, van Blitterswijk M, et al. Mutational analysis of TARDBP in neurodegenerative diseases. Neurobiol Aging 2011;32:2096-2099.
11. Ozoguz A, Uyan O, Birdal G, et al. The distinct genetic pattern of ALS in Turkey and novel mutations. Neurobiol Aging 2015;36:1764 e1769-1764 e1718.
Supplementary Figure 1. Pedigrees of the families 4-7.

Four out of seven pedigrees are presented here, including five FTD patients and one ALS patient with a confirmed I383V variant in TARDPB (numbered L-Q). Fully colored symbols represent confirmed carriers of the I383V variant in TARDBP (n=7), including one relative clinically diagnosed with late-onset AD (family 6). Half colored symbols represent patients with a clinical diagnosis without genetic testing. Red = clinical diagnosis of FTD or PPA. Black = clinical diagnosis of ALS or PSMA. Grey = relatives of index patients affected by other forms of dementia or psychiatric disorder. Numbers inside symbols represent additional family members without further clinical information. Numbers below the symbols indicate age at death or current age.

Clinical diagnoses: bvFTD = behavioral variant of frontotemporal dementia; svPPA = semantic variant of primary progressive aphasia; ALS = amyotrophic lateral sclerosis; AD = Alzheimer’s disease; PD = Parkinson’s disease; UD = unspecified dementia; Psych. = psychiatric disorder; NA = not affected based on family history; unk = disease status unknown.

* Neuropathologic examination (patient 4M).
Supplementary Figure 2. Brain volumetric quantification of 5 FTD patients carrying the I383V TARDBP variant.

Patients are numbered according to their ID in the pedigrees (Figure 1 / Supplementary Figure 1). Volume loss across different brain regions was assessed in five patients using Quantib® ND 1.6 software and compared to a gender and age matched reference population, using so-called reference percentile curves. On the y-axis, age-specific and gender-specific percentile values are shown for left and right temporal, frontal, and parietal lobes. In general, percentile values <5% are considered abnormal.

Clearly visible is the marked bitemporal volume loss in all five patients. More subtle atrophy of the frontal lobes is present in three patients (1A, 2H, 4L). Asymmetry between the left and right temporal lobe, as visually observed, was not found with this method likely due to a floor effect. MRI scans were obtained 3 years (1A), 7 years (1C), 6 years (1E), 9 years (2H) and 4 years (4L) after symptom onset.