ASSESSMENT OF GIS APPLICATIONS IN GEOGRAPHY AND SOCIAL STUDIES COURSES (THE SINOP CASE)¹

Coğrafya ve Sosyal Bilgiler Derslerinde CBS Uygulamalarının Değerlendirilmesi (Sinop İli Örneği)

Bekir TAŞTAN²

Abstract

Nowadays, many innovations, and trends have emerged in the education and training environment. As a result of these innovations, the views towards students and teachers has changed. Now it is aimed at educating individuals who are thinking, researching and investigating. Spatial technologies have effective tools in the development of students’ cognitive processes and due to this feature, they can be widely used in the education and training environment. Spatial technologies have different components such as Geographical Information Systems (GIS), GPS, internet based maps. GIS, one of these components, supports the development of individual and group learning techniques in many applications in the educational environment, also provides training-oriented personal feedback.

This study aimed to test the use of Google Earth, open source GIS software and internet-based GIS in the Social Studies and Geography education. With this study, which was carried out at Sinop University Children’s University within a Scientific Research Project (BAP), an on-site theoretical and practical teacher training given to the teachers of Geography and Social Studies as well as their opinions were sought for training programs and about GIS. According to the research results, GIS provides great benefits for in-class applications. Lack of technical infrastructure in schools, the school management’s inadequate support for GIS applications, lack of software and technical documents are seen by teachers as obstacles for the use of GIS applications.

Keywords: Social Studies Education, Geography Education, Geographic Information Systems (GIS), Open-Source GIS Software, Google Earth

¹ The first version of this study was presented as an oral representation at the II. International Dynamic, Explorative and Active Learning (IDEAL) Conference, Amasya University, Amasya: The use Geographic Information Systems in teaching Geography and Social Studies courses; and Opinions of Geography and Social Studies Teachers about the use of Geographic Information Systems (The Sinop Case).

² Lecturer., Kastamonu University, Faculty of Education, Kastamonu, TURKEY., https://orcid.org/0000-0002-3957-7371., bekirtastan@kastamonu.edu.tr
INTERNATIONAL JOURNAL OF GEOGRAPHY AND GEOGRAPHY EDUCATION (IGGE)

GİRİŞ

İnternet ve bilgisayar teknolojilerindeki ortaya çıkan değişim ve yenilikler eğitim ve öğretim aktivitelerinde yeni alımların ve uygulamaların ortaya çıkmasına neden olmuştur. Öğretmen ve öğrencilerin beklentilerin değişmesine neden olan bu süreçte öğretmenden beklenen roller de değişmiştir. Mekânsal teknolojiler öğretmenlerin yaşadığı bu yenilene.textColor Sürecde büyük rol oynamaktır. Bu teknolojiler öğretmenler için sınıf içerisinde yapılandırıcı, öğrenci merkezi aktif öğretim yöntemlerinin kullanılmasını sağlamaktayken; öğrenci açısından yaşadığı yeni tanışmaların, çok yönlü bilgi ve beceri kazanmasına yardımcı olan etkin bir öğrenme aracıdır (Demirci ve Karaburun, 2011). Coğrafi çalışmalarda çokça kullanılan mekânsal teknoloji bileşenleri arasında; CBS, uzaktan algılama ve küresel konumlardırma (GPS) gibi sistemler sayılabilir (Karatepe, 2010). Bu teknolojiler Coğrafya eğitiminde en popüler yeniliklerden birisidir. Bu teknolojilerin Sosyal Bilimler ve Coğrafya eğitiminde kullanımı artmaktadır, Fen Bilimleri alanında da kullanıldığı görülmektedir (Ünlü ve Yıldırım, 2016).

CBS mekânsal verilerin toplanması, depolanması, analiz ve sunununun yapılması ile ilgili işlemleri yapabilen bilgi sistemidir (Yomralıoğlu, 2009; Fazal, 2008). CBS ile herhangi bir birey kendi projesi veya iş ile ilgili haratıyı okuyabilir, bilgisayar ekranında istendiği gibi haratıyı hayranlık serializebilir, harita üzerindeki bilgileri kaldırdıg gibi bilgiler eklebilir. Bazi CBS programları derelerde nesnel olarak kullanılan haritaları, CBS, insanların daha üreteken ve bilinçli olmalarına yardımcı olmaktadır (ESRI, 2011). Orman problemlere çözüm bulabilmek amacıyla mekânsal verinin etkin kullanımı, CBS yazılılarının üst niteliklerine baglidir. CBS yazılımlarındaki gelişiymi ve devamlı bir inovasyonu sağlamak, CBS yazılım geliştirilmesi için farklı yaklaşımların ele alınması önemlidir. Açık kaynak kodlu CBS yazılımları, hazziyre koşulların kullanmak isteyenler için yeni deneyimsel yaklaşımlar geliştirecek CBS teknolojilerini farklı uygulamalara adapt etmekte önemli rol oynamaktadır (Neteler ve Mitasova, 2004). Google Earth internet tabanlı CBS uygulamalarından biridir. İnternetten ücretsiz indirilebilir, büyük ölçekli veri tabanları ile oluşturulabilen haritalar. CBS yazılımların kullanım kural ve sınırlarına baglidir. Kullanıcılar kendi istekleri doğrultusunda harita üretmektedir, koordinat serilerini harita çıktısı olarak alabilirler. Kullanıcılar kendi istekleri doğrultusunda internet üzerinden harita üretmektedir, mekânsal analizleri yapabılır, harita çiftlikleri alabilirler (Tecim, 2008). Google Earth teknolojisi sahip olduğu özelliklerle konumsal dönüşünün gelişimine destek vermektedir. Yeryüzünün gerçekle baglidir olarak gösteren Google Earth‘ün amacı ise öğrencilere dünyayı etkileşimli olarak anlayabilmeleridir (Patterson, 2007). Coğrafi öğrenciler Google Earth ile öğrencilere daha kolay öğretilebilmektedir (Karakuş ve Oğuz, 2013).

Milli Eğitim Bakanılığın ilk ve orta öğretim öğrencilerinin kurumlarında CBS’nin kullanılamasını önermesine rağmen okullarda CBS kullanımı sınırlı düzeyde kalmaktadır (Kapluhan, 2014). Demirci ve arkadaşlarına göre (2007); okul yöneticilerinin CBS’yi anlamlamaması, CBS yazılımlarının pahalı olması, öğretmenlerin CBS’yi öğrenmek için zaman bulamaları; öğretmenlerin derslerinde, nasil, nerede ve ne olduğu CBS’yi kullanacakları bilememeleri; öğretmen kaynaklı sınırlar arasında sayılabilir. Yazi kullanımında, CBS yazılımlarının pahalı olması, CBS yazılımlarının kullanım kural ve sınırlarına baglidir. Kullanıcılar kendi istekleri doğrultusunda internet üzerinden harita üretmektedir, mekânsal analizleri yapabılır, harita çiftlikleri alabilirler (Tecim, 2008). Google Earth teknolojisi sahip olduğu özelliklerle konumsal dönüşünün gelişimine destek vermektedir. Yeryüzünün gerçekle baglidir olarak gösteren Google Earth‘ün amacı ise öğrencilere dünyayı etkileşimli olarak anlayabilmeleridir (Beyhan ve ark., 2010).

Türkiye’de CBS’nin okullarında kullanılmasına yönelik birçok çalışma yapılmaktadır. CBS kullanımı sınırlı düzeyde kalmaktadır. Öğrencilerin CBS’yi tanıyabilmeleri ve etkili bir şekilde kullanabilmeleri için öğretmenlerin bunu konuda belirli bir bilgi birikimine sahip olması gereklidir. Bu şekilde yapılan çalışmalar daha yaygın etki yaratabilabilir. CBS uygulamalarına yönelik öğretmenlerin farklı türlerindeki arıtırmaları amacıyla; bu çalışma Sinop Üniversitesi, Çocuk Eğitim Araştırma ve Uygulama Merkezi’nde (Çocuk Üniversitesi) Sinop İl Milli Eğitim Müdürlüğü’ne bağlı bir laboratuvarında gerçekleştirmiştir. Sinop ilindeki ilköğretim ve lisesi öğrencileri CBS‘yi derslerinde ne derece kullanıdıklarını belirlemek amacıyla bir çok etkili etkinlik yapılmaktır. CBS, Google Earth, Açık Kaynak Kodlu CBS yazılımları, GPS, CBS’nin Coğrafya derslerinde kullanımı gibi çeşitli temalara yönelik olarak önce teorik dersler verilmiş, daha sonra ise bilgisayar laboratuvarında uygulamalı dersler yapılmıştır.

COĞRAFİ BİLGİ SİSTEMLERİ

CBS; yazılım, dosyanın, insan, veri ve metotlar gibi çeşitli unsurlardan oluşan bir bilgi sistemidir. CBS İlk olarak 1960’lı yıllarda Roger Tomlinson ve arkadaşları tarafından Kanada’nın ulusal arazi özelliklerinin belirlenmesine yönelik Kanada CBS projesini ortaya çıkarılmıştır (Yomralıoğlu, 2009). 1980’lerde GPS (Küresel Konumlama Sistemi) uygulanmaya başlanmıştır. 1993’ten itibaren internet üzerinden haritalarla ulaşılama başlanmıştır. 1996’da internet CBS kullanıcıları piyasaya sürümüştür (Goodchild ve ark., 2005). 2000’li yıllarda itibaren uzaktan algılama uydularının yönlüğeye yerleştirilmesi ile uzaktan algılama verileri temin edilmeye başlanmıştır. Uzaktan algılama verileri atmosferik, iklimsel ve yersel amaçlı.repeat CBS’de yaygın olarak kullanılan kullanılması. Uzaktan algılama verilerinin veya çeşitli
Kaynaklardan temin edilen veri çeşitlerini analiz ve yorumlanmasında CBS yazılımlarının performansı çok önemlidir. Yazılımlar verilerin bilgisayara aktarılıp işlenmesinde; analizi, yorumlanması ve sunumunda etkili işlemle araçlar sahiptir. CBS’de yazılımlar türleri açık ve kapalı kaynak kodlu olmak üzere iki yolla geliştirilmiştir. Kapalı kaynak kodlu yazılımların geliştirilmesinde ve kullanımlarında çeşitli kısıtlamalar söz konusudur. Bu yazılımlar belirli bir ücretle kullanıcılık ulaştırılmaktadır. Açık kaynak kodlu CBS yazılımlarının geliştirilmesinde kullanılar, üniversiteler ve çeşitli platformlar etkili olmaktadır. Bu yazılımların kodlarına erişilebilirliği için farklı kişiler tarafından geliştirilmesi mümkündür.

Açık Kaynak Kodlu CBS Yazılımları

Yazılım dünyasındaki değişikler açık kaynak kodlu CBS yazılımlarının geliştirmesi etkilemiştir. Bu tür yazılımların açık kaynak kodlarını kullanarak geliştirilmiş ve kod kullanarak yazılım geliştirme kabiliyetiyle etkileşimidir. Bu yazılımların kodları açık kaynak kodlu yazılımların geliştirilmesinde kullanılar, üniversiteler ve çeşitli platformlar etkili olmaktadır. Bu yazılımların kodlarına erişilebilirliği için farklı kişiler tarafından geliştirilmesi mümkündür.

İnternet Tabanlı Harita ve İnternet Tabanlı CBS

İnteraktif haberleşme teknolojisi ile birlikte mekânsal bilgi servislerinin kullanılması mekânsal ağ mimarisi adı verilen CBS mimarisi ortaya çıkmıştır. Daha fazla kişinin kullanımını hizmet ve eğitim ve eğitim internet tabanlı CBS (WEB GIS) adı verilmştir. CBS ve internet teknolojilerinin beraber kullanımı haritalama tekniklerinin de gelişimi ortaya çıkmıştır. Google Earth, MapQuest gibi uygulamalarla đağınıck mekânsal bilgileri artık herkes funcionários tarafından kullanılmaktadır ve kullanıcılar kendini doğrultusunda internette çeşitli mekânsal analizleri yapabilirler ve haritalar üretbilmektedir. (Tecim, 2008). İnternet tabanlı haritalar internetten yazılmış yazılmış haritalardır. Dinamik sorgulanabilir bir alt yazı sunan bu mimari ile araştırma yapabilecek olan kolaylık gelmiştir. Bazı internet haritaları dinamik, bazıları ise statik (Uluğtekin ve Bildirici, 2002). Statik haritalar aynı zamanda interaktif olabilir. Bunlar “kliklenen haritalar” olarak da bilinir. Harita diğer verilerle etkileşim fonksiyonunu yine getirir (Jan-Kraak, 2003). İnternet tabanlı harita uygulamalarının birçoğu CBS alt yapısını kullanmaktadır (Aydinhoğlu ve Yomralioğlu, 2003).

Google Earth

Google Earth internetten ücretsiz indirilip kurulabilen internet tabanlı görsel kütüphane. Google Earth uygulamasında çeşitli CBS uygulamaları koluca yapılabılır. Bu uygulamalar arasında öğe, yer belirleme, görüntü tanıma gibi işlemler bulunmaktadır (Schaaf, ve ark., 2013). Google Earth teknolojisi mekânsal düşünme için kolaylıklar sağlamaktadır ve kritik mekânsal düşünme becerilerini geliştirmektedir. Yeryüzünü tanıma için önemli firsatlar sunan Google Earth ile öğrenciler dinamik ve interaktif olarak öğrenme sürecini gerçekleştirebilerek ve (Patterson, 2007). Google Earth, mekânsal çeşitli kavramların somut olarak anıştırlabilmeyesine yardımcı olmaktadır. Çeşitli coğrafi şekillerde de Google Earth sayesinde uygulamalı olarak öğretilebilir (Karakuş ve Öğuz, 2013).

YÖNTEM

Bu çalışma Sinop Üniversitesi Çocuk Üniversitesi ve Sinop İll Milli Eğitim Müdürlüğü ile ortaklaşa düzenlenen “Coğrafya Öğretiminde Coğrafı Bilgi Sistemleri kullanı” konulu bilimsel araştırma projesi (BAP) kapsamında yürütülmür. Projeye Sinop İl Merkezindeki ilköğretim ve liselerde görev yapan 37 Coğrafya ve Sosyal Bilgiler öğretmeni katılmıştır. Projenin temalari arasında; CBS’nin ana yapısı, CBS’nin veri kaynakları, CBS’de sorgulama ve analizler, Google Earth uygulamasının Coğrafya derslerinde kullanması, internetteki CBS uygulamaları, açık kaynak kodlu CBS yazılımlarının Coğrafya derslerinde kullanımı, GPS sistem ve özellikleri gibi araştırmalar konuları bulunmaktadır.
Çalışmada bilimsel araştırma yöntemlerinden genel tarama yöntemi kullanılmıştır. Tarama modelleri varlığını sürdüren veya geçmişte var olan bir durumu olduğu biçimde betimleme hedef edilen araştırmalara uygundur (Karasar, 1999). Çalışmaya katılan 37 kişiden koyu ulaşılabilir örneklem olarak 30 kişi ankete cevap vermiştir. Ayrıca çalışma öncesinde öğretmenlerin gerek demografik özelliklerinin, gerekse CBS hakındaki mevcut bilgilerinin ölçülmesi için ön test çalışması yapılmıştır. Çalışma sonucunda Kerski (2000)’nin geliştirdiği ve Artinli (2009)’ının uyarladığı CBS’yi öğrenme ve kullanılan sınırları yaşayan insanların sınırlarını ile CBS’nin sinif-ıç etkinlikleri yapmada sağladığı avantajları ölçen tutum anketi uygulanmıştır. Anket sonuçları SPSS programında analiz edildikten sonra ise verilmiştir. Öğretmenlere yönelik olarak teorik eğitim ve daha sonra laboratuvarda uygulamalı eğitim verilmiştir (Fotoğraf 1 ve Fotoğraf 2).

BULGULAR

Öğretmenlere; cinsiyet, mesleki kıdem yılı, mezun olunan fakülte türü, öğretmenlerin kadrolarının bulunduğu alan, görev yapılan okul türü, Google Earth, CBS, GPS gibi konulardan oluşan 12 maddelik bir anketten oluşan ön dörtlü bir ankete oluşan ön test uygulanmıştır.

Katılımcı Profilleri

Anketteki bulgularдан elde edilen sonuçlara göre; katılımcılar on beş erkek ve on beş kadındandır. Katılımcıların yüzde on dördü 1-5 yıl arası mesleki deneyim sahibi, yüzde on üç 6-10 yıl, yüzde bir yirmi 16-20 yıl, yüzde kırkı 21-26 yıl arası mesleki deneyim sahibidir. CBS ve GPS teknolojilerinin eğitim amaçlı kullanımının yeni olması, katılımcıların yüzde altmışının mesleki kademelerinin on altı yıl üzerinde olması nedeniyle CBS’yi daha az tanıklar derslendiktedir.

Katılımcılardan üç kişi Eğitim Fakültesi’nden mezun, beş kişi Fen-Edebiyat Fakültesi mezunudur. Katılımcılardan on üç kişi Coğrafya alanından, on yedi ise Sosyal Bilgiler alanında çalışmaktadır. Katılımcılardan on üç kişi liselerde görev yaparken, on yedi kişi ise ortaokullarda görev yapmaktadır.

Fotoğraf 1: Öğretmenler Laboratuvarında CBS Uygulaması Yaparken

Fotoğraf 2: Öğretmenlerle Beraber Bahçede CBS Etkinliği Yaparken
Çalışmaya katılan öğretmenlerin demografik özellikleri Tablo: 1'de verilmiştir.

Cinsiyet	1	2	3	4	5	Toplam	
Erkek	15	15	4	6-10	11-15	16-20	21-26
Kadın	50	50	4	4	13,33	20	40

Kidemi	1-5	6-10	11-15	16-20	21-26	Toplam
Coğrafya	13	17	25	5	30	100
Sosyal Bilgiler	43	57	83	17	100	

Mezun olduğu fakülte türü	1	2	3	4	5	Toplam
Eğitim Fakültesi	13	17	25	5	30	100
Fen-Edebiyat Fakültesi	43	57	83	17	100	

Görev yaptığı okul türü	1	2	3	4	5	Toplam
Lise	13	17	25	5	30	100
Ortaokul	43	57	83	17	100	

Ön Test Sonuçları

Yapılan anket sonuçlarına göre; CBS hakkında bilgisi olmayan katılımcı sayısıın yüzde yirmi olduğu, CBS hakkında bilgisi olanların ise on kişi olduğu belirlenmiştir. Katılcıların biri CBS'yi şu şekilde tanımlamıştır: “Coğrafi bilgilerin bilgisayar yardımı ile görüntülenmesi, yazılım ve donanım gibi kavramları kapsayan bir sistem”, bir diğer kişi ise “Kontrolü cihazlar ve yerçekimde dağılım ilkelerein ana temeli oluşturduğu ve bunlara bağlı olarak analiz ve sentezin yapılğını ve değerlendirmesini bilgi sistem” şeklinde tanımlamıştır. Katılcıların ifadeleriyle CBS hakkında bilgilerin sınırlı düzeyde olduğu sonucuna varılmıştır. Katılcıların yirmi sekizi CBS'yi derslerinde hiç kullanmamıştı, iki kişi kullanmıştır. CBS'yi kullanılanlar ise harita bilgisi ve ölçül konusunda kullandıklarını ifade etmiştir.

Sadece üç kişi açık açık kodlu CBS yazılımlını duymuş, iki kişi ise duymamıştır. Şimdidey kadar GPS cihazına sahip olan kişi sayısıdır. Öğrencilerin bu konudaki becerileri arasında büyük farklılıklar olduğunu, iki kişi Google Earth’ı hiç kullanmamıştı, iki kişi ise GPS’yi askerde kullandığı belirtmiştir. Üç kişi Google Earth’ı hiç kullanmamıştı, iki kişi ise GPS’yi askerde kullandığı belirtmiştir.

Öğretmenlerin CBS Kullanımına Yönelik (Sınırlılıklar-Avantajlar) Görüşleri

Çalışma sonunda katılımcılar CBS’yi öğrenme ve okullarda CBS’yi kullanmadıkları sınırlıkları ile ilgili toplam on bir anketi yapmıştır. Gerçekleştirilen anket uygulamasının maddeleri Tablo: 2’de verilmiştir.

Tablo 2: Araştırmaçının Katılımı Öğretmenlerin CBS’yi Öğrenme ve Kullanmadığı “Sınırlılıklar-Avantajlar” Boyutuna İlişkin Görüşlerinin Dağılımı (Artvinli, 2009)

Anket Maddeleri	Frekans	Yüzdelik
CBS eğitiminin ve uygulamasının zor ve karmaşık olması	43	43’
CBS’ye ilişkin yazılım ve donanımın çok pahalı olması	50	50’
Öğrencilerin bilgisayar kullanma imkanlarının olmadığını	50	50’
Okulumdaki bilgisayarların ilgili CBS yazılımlarını sahip olması	100	100’
CBS uygulaması içeren dersler geliştirmeye yeterli vaktinin olması	70	70’
CBS uygulaması için okul yönetiminden yeterli desteği almadığını zor olması	70	70’
Ders saatlerinin CBS tabanlı projeler yapmak için çok kısa olması	93	93’
CBS uygulaması için gereklilikleri verilmesi zor olması	50	50’
CBS uygulaması için öğrencilere yeten coğrafi ve teknik becerilere sahip olması	90	90’
Öğrencilerin bu konudaki becerileri arasında büyük farklılıklar olması	76	76’
Okulda CBS uygulaması yapacak bilgisayar laboratuvarı olması	77	77’

Tablo 2’ye göre öğretmenlerin tamamı okullardaki bilgisayarların ilgili CBS yazılımlarını sahip olmadığını belirtmişlerdir. Öğretmenlerin yüzde doksan üç CBS tabanlı projeler yapmadan için ders saatlerinin yetersiz olduğuunu vurgulamışlardır. Ayrıca şekilde öğretmenlerin yüzde doksan üç CBS uygulaması için öğrencilerin yeterli kadar coğrafi bilgi ve beceriye sahip olmadığını düşündüktedir. Öğretmenlerin yüzde yetmiş yedişini CBS uygulaması için bilgisayar laboratuvarının olmadığı, yüzde yetmiş üç öğrencinin CBS becerileri arasında büyük farklılıklar olduğunu, yüzde yetmiş iki okul yönetiminden CBS
uygulamaları için gerekli destek alamadıklarını ifade etmişlerdir. Araştırmaya katılan öğretmenlere çalışma sonunda, derslerdeki CBS uygulamaları ve sınıf içi etkinliklerde CBS’nin avantajlarına dair toplam dokuz maddeden oluşan bir anket yapılmıştır. Gerçekleştirdiklerin anket uygulamasının maddeleri ve frekans yüzdelikleri Tablo 3’te verilmiştir.

Anket Maddeleri	Frekans Yüzdeliği
Coğrafi öğrenmeyi kolaylaştırır ve öğrencilerin coğrafi becerilerini geliştirir	90
CBS, öğrencilerin derslerde aktif olmasını sağlar	83
Coğrafi derslerinde verileri daha iyi analiz etmek için CBS yenilikçi bir yöntemdir	97
CBS, daha kolay iş bulabilmek için gerekli bir beceridir	60
CBS, konuoyu geçer dönüle ile ilişkilendirmeyi kolaylaştırır	97
CBS, coğrafya derslerinde grup çalışması yapıpaya uygundur	87
CBS, dersle farklı konuların daha kolay sentezlenmesini sağlar	90
CBS, öğrencilerin ilgisini ve motivasyonu daha çok artırır	83
Coğrafya derslerinde CBS etkinlikleri yapmak öğrenci başarısını kesindir	73

Tablo 3’e göre araştırmaya katılan öğretmenlerin CBS’yi kullanmanın büyük avantaj sağladığını düşünmektedir. Örneğin, öğretmenlerin yüzde doksan yedisi coğrafya derslerinde CBS’nin verileri analiz etmek için yenilikçi bir yöntem olduğunu ve CBS’nin ders konularını gerçek dünya ile ilişkilendirmeyi kolaylaştırdığını belirtmişlerdir. Öğretmenlerin yüzde doksanı CBS’nin coğrafi öğrenmeyi kolaylaştırdığını ve coğrafi becerileri geliştirdiğini düşünmektedir. Aynı zamanda öğretmenlerin yüzde doksanı derslerde CBS’nin farklı konuların daha kolay sentezlenmesinde yardımcı olduğunu ifade etmiştir.

SONUÇ VE ÖNERİLER

Bu çalışma Sinop Çocuk Üniversitesi ve İl Milli Eğitim Müdürlüğü ile ortaklaşa yürütülen Bilimsel Araştırma Projesi kapsamında gerçekleştirilmiştir. Proje kapsamında Coğrafi Bilgi Sistemleri’nin Coğrafya ve Sosyal Bilgiler dersleri bünyesinde kullanımının geliştirilmesi amacıyla teorik ve uygulamalı eğitimler yapılmıştır. Eğitimler öğretmenlerin seminer döneminde yapılan olup, palpalarına Sinop İl merkezinde görev yapan 37 Coğrafya ve Sosyal Bilgiler dersleri katılmıştır. Araştırmada öğretmenlerin okullarında CBS’yi kullanmasına yönelik sınırlılıkları ve avantajları belirlemek için anket uygulanmıştır.

Anket sonuçlarına göre; CBS’nin okullarda kullanımının yönelik başlık sınırlılıkların şu şekilde belirlenmiştir:

- Okullarda CBS yazılımına sahip bilgisayar bulunmamaktadır.
- CBS tabanlı projeler için ders saatleri çok kısıdır.
- CBS uygulamaları için öğrencilerin sahip olduğu donanım yeterli değildir.

BCS’nin okullarda kullanımına yönelik başlık avantajlar şu şekilde sıralanmıştır:

- CBS Coğrafı anlamda öğrenmeyi kolaylaştıran coğrafi becerileri geliştirir.
- Verilerin daha iyi analiz etmek için CBS yenilikçi bir metottur.
- CBS coğrafya derslerinde kullanılan ilgili becerileri geliştirir.
- CBS derslerde farklı içerikleri konuların sentezlenmesini kolaylaştırır.

Ayrıca proje eğitimlerine katılan öğretmenlerin uygulanan programla ilgili görüşlerini belirlemek amacıyla program değerlendirmeye anketi yapılmıştır. Anketin elde edilen sonuçlara göre öğretmenler:

- Yapılan etkinliklerin rahatça takip edilebileceğini düşünmektedir.
- Etkinlikleri oldukça eğlenceli bulmuştur.
- Programda yapılan etkinliklerde benzer şekilde yapılacak etkinliklerin öğrencilere farklı beceriler sağlayabileceğini düşünmektedir.
- Etkinlikleri mesleki yönendir faydaları olarak kabul etmektedir.
- CBS, GPS ve Google Earth gibi uygulamaların derslerde yapılması durumunda öğrencilere dikkatini çekebileceğini düşünmektedir.
- Benzer etkinlikler için okullardaki olanıkların yeterli olmadığını düşünmektedir.
- CBS uygulamalarının Coğrafya derslerinde yapılması durumunda başarıyı kesindir. deskolike artıracagina düşünmektedir.

Ayrıca öğretmenlerle birbiri yapılan görüşmelerde öğretmenler, okullarda internet tabanlı harita ve internet tabanlı CBS uygulamalarının kullanılmasını öne deki en büyük engelin internet blanco hızlarındaki düşüşkü bulunduğunu ifade etmişlerdir. Bilgisayar laboratuarının kullanılması veya bilgisayar kullanımının sınırlı olduğu okullarda internet bağlantısının düşük olması, sınıflarda akıllı tahta ile internet tabanlı CBS ve harita uygulamalarının yapılması zorlaştırmaktadır.
EXTENDED ABSTRACT

ASSESSMENT OF GIS APPLICATIONS IN GEOGRAPHY AND SOCIAL STUDIES COURSES (THE SINOP CASE)

INTRODUCTION

Changes and innovations in the internet and computer technologies have led to the emergence of new perceptions and applications in education and training activities. In this process, the qualifications expected from the teacher and student, the roles expected from the teacher also changed. Spatial technologies played a major role in this renewal process experienced by teachers. These technologies enable the use of constructivist, student-centered active teaching methods in the classroom for teachers (Demirci and Karaburun, 2011). Spatial technologies are one of the most popular innovations in Geography teaching (Ünlü and Yıldırım, 2016). GIS, remote sensing, and global positioning are used widely in Geographic studies. (Karatepe, 2010). Although the use of GIS in secondary and high school lessons is recommended in the National Education curriculum, there are various limitations regarding its use in lessons (Kapluhan, 2014). These limitations: There are administrative problems in schools, lack of software and hardware, and no instructions on how to teach GIS (Demirci and Karaburun, 2011). There are two types of approaches in GIS software, closed source, and open source. The biggest advantage of open source software is that there is no license fee, and there is no limit on the number of installations. (Beyhan et al., 2010). According to Uğurlu (2008), GIS software is expensive, and open-source software causes difficulty for inexperienced users due to add-ons.

Free software was introduced by Richard M. Stallman in 1985 with the GNU project (https://www.gnu.org/) to develop the free software concept (Neteler and Mitasova, 2004). The free software term used by Steiniger and Hunter (2003) instead of open source software. Free expression is used to explain that this software is freely accessible. GRASS (Geographic Resources Analysis Support System) software (Ciolfi and Zatelli, 2003) is the leader of open source GIS software. Quantum GIS (QGIS) software, which works in integration with GRASS and is easier to use, has a more practical structure for beginner users and has many GIS features and functions (Yılmaz, 2008).

GIS can perform operations such as collecting, storing, analysing, and presenting data obtained through spatial operations; It is an information system consisting of hardware, software, data, people, and methods. (Yomralioğlu, 2009). GPS (Global Positioning System) started to be implemented in the 1980s. Internet GIS products were launched in 1996. Since 1993, maps have been available on the internet. Many benefits have been gained from the application of the GIS Internet paradigm (Goodchild et al., 2005). With the development of the Internet, different spatial analyses can be made on the Internet (Tecim, 2008). With the dynamic structure of the maps, many spatial applications have become easier on the internet (Uluğtekin and Bildirici, 2002). Static maps can also be interactive. These are also known as click maps. The map performs the function of interaction with other data (Jan-Kraak, 2003). Many internet-based map applications use GIS architecture. Internet GIS has four components: Web, application, map, and data server (Aydinoğlu and Yomralioğlu, 2003). The Google Earth application can perform GIS operations such as measurement, stratification, image interpretation, and location quite easily (SchAAF et al., 2013). Google Earth technology supports spatial thinking and improves thinking skills by enhancing critical technology. The structure of Google Earth, which is very natural, enables the student to understand the world dynamically and interactively and helps in spatially targeted learning (Patterson, 2007). Many Geographic shapes of the Earth can be easily taught with Google Earth (Karakuş and Oğuz, 2013).

METHOD

This study was carried out within the scope of the scientific research project (BAP): “The Use of Geographic Information Systems in Geography Education.” The project was jointly organized by Sinop University Children’s University and Sinop Provincial Directorate of National Education. A total of 37 Geography and Social Studies teachers working in primary, high
school, and similar educational institutions in the city center of Sinop participated in the project. The project has different topics such as; the basic structure of GIS, data sources in GIS, queries, and analysis in GIS, the use of Google Earth images in Geography and Social Studies, internet-based GIS applications, the use of open source GIS software in Geography lessons and the GPS.

The general survey method was used in the study. Survey models are suitable for studies that aim to define an ancient or existing condition as it occurs (Karasar, 1999). As an easily accessible sample of 37 people participating in the study, 30 volunteer teachers answered the questionnaire. Before the study, a pre-test was conducted to measure both the demographic characteristics of teachers and current knowledge about GIS. At the end of the study, an attitude questionnaire which was developed by Kerski (2000) and adapted by Artvinli (2009) was applied to measure the limitations experienced in learning and using GIS. The survey results were analysed in the SPSS program. Theoretical and practical lessons were given to teachers in the computer lab.

FINDINGS

Participant Profiles

According to the results of the questionnaire; the participants are fifteen men and fifteen women. Fourteen percent of the participants have a professional experience of 1-5 years. Thirteen percent of the participants have a professional experience of 6-10 years. Participants are considered to be unfamiliar with GIS because the use of GIS and GPS technologies for educational purposes is new and the professional seniority of sixty percent of the participants is over sixteen years. Twenty-five of the participants graduated from the faculty of education, while five of them graduated from the Faculty of Arts and Sciences. Thirteen of the participants are currently working in the field of Geography and seventeen in the field of Social Studies. While 13 people work in high schools, seventeen people work in secondary schools.

Pre-test Results

According to the results of the survey; it was determined that the number of participants who did not know about GIS was twenty, and those who had GIS information was ten. One of the participants defined GIS as follows, “A system that includes concepts such as displaying geographic information with the help of computers, and software, and hardware,” while another person defined it as “The main basis of the principles of positioning and distribution on the earth.” According to the statements of the participants, it is seen that their GIS knowledge is very limited. Twenty-eight of the participants have never used GIS in their lessons, while two of them have used it. Those who used GIS stated that they used it in terms of map information and scale.

Only three people have heard of open source GIS software, and twenty-seven have not. While the number of people who have had a GPS device is fourteen, those who do not have a GPS device were sixteen. Fourteen people stated that they had GPS mobile phones and vehicle tracking devices. Thirteen people stated that they used the GPS device while seventeen did not. Thirteen people who used the GPS device used for navigation. One of the participants stated that he used the GPS device in the military. Three people stated that they never used Google Earth, while twenty-seven stated that they did.

Teachers’ Views on the Use of GIS (Limitations-Advantages)

At the end of the study, a questionnaire consisting of eleven items was applied to the participants about the limitations of teaching and using GIS in schools. According to the findings obtained from the survey study, all the teachers said that the computers in the schools do not have the relevant GIS software. Ninety-three percent of the teachers emphasized that lesson hours are insufficient to make GIS-based projects. Likewise, ninety percent of teachers think that students do not have sufficient Geographical and technical skills for GIS implementation. Seventy-seven percent of teachers stated that they did not have a computer laboratory for GIS applications. Seventy-six percent of them stated that there are big differences between the GIS skills of the students, and seventy percent of them cannot get the necessary support for GIS applications from school administration.

At the end of the study, a questionnaire consisting of nine items about GIS applications in lessons and the advantages of GIS in classroom activities was conducted with the teachers. The teachers think that using GIS in classroom activities provides a great advantage. For example, ninety-seven percent of teachers stated that GIS is an innovative method for analyzing data in Geography lessons and GIS makes it easy to associate the subjects with the real world. Ninety percent
of teachers think that GIS facilitates Geographic learning, and improves Geographic skills. Ninety percent of them stated that GIS enabled the easier synthesis of different subjects in the lessons.

RESULTS

This study was conducted within the Scientific Research Project jointly conducted with Sinop Children’s University and the Provincial Directorate of National Education. Within the scope of the project, theoretical and applied training was carried out to improve the use of GIS within Geography and Social Studies courses. The training was held during the teachers’ seminar period and 37 Geography and Social Studies teachers working in the city center of Sinop participated. In the study, a questionnaire was used to determine the limitations and advantages of teachers in using GIS in their schools. According to the survey results, the major limitations for the use of GIS in schools were determined as follows:

- Computers in schools do not have GIS software.
- Lecture hours are too short for doing GIS-based projects.
- Students do not have sufficient Geographic and technical skills for GIS application.
- There are no GIS laboratories in schools.

The chief advantages of using GIS in schools are listed below:

- GIS facilitates Geographic learning and improves students’ Geographic skills.
- GIS is an innovative method to analyze data better in Geography lessons.
- GIS connects to the real world more easily.
- GIS synthesizes different topics better in lessons.

The opinions of the teachers about the program were determined using a program evaluation questionnaire. According to the results, the teachers could easily follow the activities. They found that the activities were funny and beneficial to professional development. They think that GIS, GPS, and Google Earth applications will attract students’ attention, and the facilities in schools are not sufficient for similar activities. In one-on-one interviews with the teachers, teachers stated that the biggest obstacle of the internet connection speeds. The low internet connection in schools makes it difficult to implement internet-based GIS and map applications on smart boards in classrooms.

Kaynakça / References

Artvinli, E. (2009). Coğrafya öğretmenlerinin coğrafi bilgi sistemleri (CBS)’ne ilişkin yaklaşımları. Balıkesir Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 12(22), 40-57, Balıkesir.

Aydınoğlu, A.Ç. & Yomraloğlu, T. (2003). E-Belediyeler için internet tabanlı harita hizmetleri, e-belediyeçilik ve e-mühendisilik 2. ulusal kongresi bildiriler kitabı, Milli Kütüphane Sal., Ankara.

Aydoğan, A. & Yomraloğlu, T. (2014). GIS and Open Source GIS and Mapping Programs: A Comparative Approach on 245 Teachers’ Perspectives. Geographical Information Systems and Science. (2nd ed.). London: John Wiley Sons Ltd.

Beyhan, B., Belge, B. & Zorlu, F. (2010). Özgür ve açık kaynak kodlu masaüstü CBS yazılımları üzerine: Karşılıştırmalı ve sistemli bir Değerlendirme (Free and open source desktop GIS software programs: A comparative and systematic Evaluation). Harita Dergisi, 143, 45-61.

Ciolfi, M. & Zatelli, P. (2003) GRASS applications: an overview. <http://www.ing.unitn.it / ~grass /docs / GRASS_applications_an_overview.pdf> 11.09.2020, erişim tarihi.

Demirci, A. & Karaburun, A. (2011) CBS, GPS ve Google Earth teknolojilerinin coğrafiya derslerinde kullanımı. Marmara Coğrafya Dergisi, 24, 99-123.

Demirci, A., Taş, H. A. & Özel, A. (2007). Türkiye’de ortaöğretim coğrafiya derslerinde teknoloji kullanımı. Marmara Coğrafya Dergisi, 15, 37-54.

ESRI (2011). GIS Best Practices. Essays on Geography and GIS: Volume: 3. USA: ESRI press. <https://www.esri.com/library/bestpractices/essays-on-geography-gis-vol3.pdf>, 10.09.2020, erişim tarihi.

Fazal, S. (2008). GIS Basics. New Delhi: New Age International (P) Ltd., Publishers.

Goodchild, M., Longley, A. P., Maguire, J. D. & Rhind, W. D. (2005). Geographical Information Systems and Science. (2nd ed.). London: John Wiley Sons Ltd.

Karaburun, A. & Oğuz, S. (2013). Sosyal bilgiler dersi Coğrafya konularında Google Earth kullanımı ve öğretmen görüşleri, Uluslararası Avrasya Sosyal Bilimler Dergisi, 4, 12, 110-125.

Karakus, U. & Oğuz, S. (2013). Coğrafi Bilgi Sistemleri’nin (CBS) Coğrafiya öğretiminde kullanımının önemi ve gerekililiği. Marmara Coğrafya Dergisi, 29, S. 34-59.

Karasar, N. (1999). Bilimsel Araştırma Yöntemi. Ankara: Nobel Yayın.
Karatepe, A. (2010). Coğrafya öğretiminde mekânsal teknolojiler. Özey, R. & Demirci, A. (Ed.), Coğrafya öğretiminde yöntem ve yaklaşımlar içinde (s.209-222). İstanbul: Aktif Yayınevi.

Kerski, J. (2000). The implementation and effectiveness of GIS, technology and methods in secondary education. Ph.D. dissertation, University of Colorado, USA.

Jan-Kraak, M. (2003). Setting and needs for web cartography. In Jan-Kraak, M. & Brown, A. (Eds.), Web cartography developments and prospects (pp. 1-9). London: Taylor & Francis Group.

Neteler, M. & Mitasova, H. (2004). Open Source GIS: A GRASS GIS Approach (Vol. 2). Boston: Kluwer Academic Publishers.

Patterson, T.C. (2007). Google Earth as a (not just) geography education tool. Journal of Geography 106, 145-152.

Schaff, R., Skellern, A., Haslett, S. K. & Norcliffe, D. (2012). Google Earth and sustainable development education: Examples from human and physical geography. Planet, (26), 8-14.

Steiniger, S. & Hunter, A. J. (2013). The 2012 free and open source GIS Software map—a guide to facilitate research, development, and adoption. Computers, Environment and Urban Systems, 39, 136-150.

Tecim, V. (2008). Coğrafi Bilgi Sistemleri Harita Tabanlı Bilgi Yönetimi. Ankara: Renk Form Ofset Matbaacılık.

Uğurlu, N. B. (2008). A new example for the use of information technologies in education: Geographic Information Systems. Ankara University, Journal of Faculty of Educational Sciences, 41(2), 81-95.

Uluğtekin, N. & Bildirici, İ. Ö. (2002). Web kartografiya. Selçuk Üniversitesi Jeodezi ve Fotogrametri Mühendisliğinde 30. Yıl Sempozyumu, s: 351-363, Konya, 16-18 Ekim 2002.

Ünlü, M., & Yıldırım, S. (2016). CBS ile oluşturulan tematik haritaların kullanımının öğrencilere başarıları üzerinde etkisinin değerlendirilmesi. Marmara Coğrafya Dergisi, 33, 77-95. DOI: 10.14781/mcd.55530.

Yılmaz, (2008). Akademik faaliyetlerde özgür coğrafi bilgi sistemi. Akademik Bilşim konferansı. Çanakkale On sezik Mart Üniversitesi, Çanakkale, S. 91-97 30 Ocak-01 Şubat 2008.

Yomralıoğlu, T. (2009). Coğrafi Bilgi Sistemleri Temel Kavramlar Ve Uygulamalar. (5. Baskı). İstanbul: Seçil Ofset.