The in vitro Evaluation of the Activity of COVID-19 Antiviral Drugs Against Adenovirus

Eric G Romanowski
Kathleen A Yates
John E Romanowski
Robert MQ Shanks
Regis P Kowalski

The Charles T. Campbell Ophthalmic Microbiology Laboratory, UPMC Eye Center, Ophthalmology and Visual Sciences Research Center, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA

Purpose: Presently, there is no approved antiviral therapy for adenovirus (HAdV) ocular infections. During the COVID-19 pandemic, increased attention has been focused on antiviral treatments. Remdesivir, hydroxychloroquine, ivermectin, and umifenovir (Arbidol) have been touted as potential antiviral treatments for COVID-19. The goal of the current study was to determine whether these potential COVID-19 antivirals produce in vitro antiviral activity against a panel of ocular adenovirus types.

Methods: The 50% effective concentrations (EC$_{50}$) of remdesivir (REM), hydroxychloroquine (HCQ), ivermectin (IVM), umifenovir (UMF) and cidofovir (CDV) (positive antiviral control) were determined for the human HAdV types HAdV3, HAdV4, HAdV5, HAdV7a, HAdV8, HAdV19/64 and HAdV37 using standard plaque-reduction assays in A549 cells.

Results: The range of mean in vitro EC$_{50}$ concentrations for each antiviral across the range of HAdV types is as follows: The positive antiviral control, CDV, ranged from 0.47 to 9.62 µM; REM ranged from 0.21 to 11.27 µM; UMF ranged from 3.72 to 64.8 µM; IVM ranged from 2.60 to 201.3 µM; and HCQ was >10 µM for all Ad types because of toxicity to the A549 cells. REM produced lower EC$_{50}$ concentrations than CDV for 6 of 7 HAdV types. Potency increases with lower EC$_{50}$ concentrations.

Conclusion: REM demonstrated anti-adenovirus activity in a range similar to that demonstrated by cidofovir. UMF and IVM demonstrated larger ranges of antiviral activity than CDV and REM across the panel of HAdV types. The anti-adenovirus activity of HCQ could not be determined due to cytotoxicity. Further investigation of REM, UMF, and IVM as antivirals for adenovirus is indicated.

Keywords: adenovirus, remdesivir, ivermectin, umifenovir, in vitro, antiviral

Introduction

Human adenovirus (HAdV) eye infections are manifested in three major forms, epidemic keratoconjunctivitis [EKC], follicular conjunctivitis, and pharyngeal conjunctival fever. These eye infections are the most seen viral eye infections around the world.1,2 Currently, no antiviral agents have received regulatory approval to treat these infections.3

During the COVID-19 pandemic, there has been a great deal of attention paid by the lay media and in the scientific literature to several possible antiviral agents for the treatment of SARS-CoV-2 infections. Remdesivir, hydroxychloroquine, ivermectin, and umifenovir (Arbidol) have been publicized as potential COVID-19 therapies.

Remdesivir (REM) (Figure 1A) is an antiviral agent that has demonstrated in vitro antiviral activity against several RNA viruses including SARS-CoV-2.4 It
is a monophosphoramidate nucleoside prodrug that undergoes intracellular metabolic conversion to its active metabolite nucleoside triphosphate form. Remdesivir triphosphate subsequently interacts with the viral RNA polymerase resulting in chain termination during RNA synthesis. Its antiviral effect on DNA viruses is unknown.

Hydroxychloroquine (HCQ) (Figure 1B) is a synthetic antimalarial drug that was approved for use in 1955. It has been shown to have in vitro antiviral activity against SARS-CoV by an unknown mechanism of action.

Ivermectin (IVM) (Figure 1C) was approved as a treatment for parasitic infections in animals in 1981, and subsequently to treat onchocerciasis (river blindness) in humans in 1987. Antiviral activity of IVM has been shown for the RNA viruses HIV-1, influenza, flaviviruses, and SARS-CoV-2, as well the DNA viruses pseudorabies, polyomavirus, and adenovirus. King et al demonstrated that IVM inhibits HAdV-5 early gene transcription, early and late protein expression and genome replication by disrupting the binding of the viral E1A protein to Imp-α without affecting the interaction between Imp-α and Imp-β1. This study also concluded that IVM also possesses antiviral activity against HAdV-3.

Umifenovir (UMF; Arbidol) (Figure 1D) is an antiviral agent that has activity against both enveloped and non-enveloped viruses. UMF is used in Russia and China for the treatment of influenza but not in North America. UMF has been shown to prevent contact and penetration of viruses to host cells by inhibiting fusion of the virus to the cell membrane and it inhibits the release of SARS-CoV-2 from intracellular vesicles. UMF has demonstrated in vitro antiviral activity against HAdV7 when added after infection.

With all the attention paid to these potential antivirals for SARS-CoV-2 and the fact that there were limited or no antiviral data for HAdV, we speculated whether these antivirals possessed antiviral activity against HAdV. This led us to the current study for which the goal was to determine whether remdesivir, hydroxychloroquine, ivermectin, and/or umifenovir possessed in vitro antiviral activity against a panel of common HAdV types that infect the eye and thus could be potential antivirals to treat HAdV eye infections. These agents are available as

Figure 1 The chemical structures of the COVID-19 antivirals: (A) remdesivir; (B) hydroxychloroquine; (C) ivermectin; (D) umifenovir. Structures are courtesy of Wikipedia.
systemic medications and are not available as topical ocular formulations.

**Materials and Methods**

**Experimental Drugs**
Remdesivir was purchased from APExBIO, Houston, TX (Cat. No. B8398). Hydroxychloroquine sulfate was purchased from Sigma-Aldrich, St. Louis, MO (Cat. No. 90527). Ivermectin was also purchased from Sigma-Aldrich (Cat. No. PHR1380). Umifenovir hydrochloride was purchased from Biogems International, Inc., Westlake Village, CA (Cat. No. 131647). Powdered REM, IVR, and UMF were dissolved in DMSO to 20 mM and stored at −20°C prior to use. HCQ was dissolved in sterile water to 20 mM and was stored at −20°C until use. Cidofovir (CDV) was used as a positive control for antiviral in vitro activity against HAdV. A 20 mM stock solution CDV was prepared in saline from the 7.5% injectable form of cidofovir (Cidofovir Injection, Heritage Pharmaceuticals Inc., East Brunswick, NJ) and was stored at room temperature. All test drug concentrations were prepared in tissue culture media from their 20 mM stocks.

**HAdV Isolates and Host Cells**
HAdV isolates from a clinical repository of human HAdV types and species that were de-identified were used in this study. HAdV types HAdV3 (Species B), HAdV4 (Species E), HAdV5 (Species C), HAdV7a (Species B), HAdV8 (Species D), and HAdV19/64 (Species D) were isolated at the Charles T. Campbell Ophthalmic Microbiology Laboratory from patients presenting with HAdV eye disease. The isolate types were determined using serum neutralization. HAdV19/64 was found to be HAdV19 by serum neutralization. Recently, sequencing studies have determined that HAdV19 is actually HAdV64.10 For the purpose of this study, this isolate was designated HAdV19/64. No strains of HAdV37 (Species D) were isolated, therefore the ATCC (American Type Culture Collection, Manassas, VA) refer- ence isolate of HAdV37 was used. A549 human lung carcinoma cells were purchased from ATCC and were used to prepare the virus stocks and for the in vitro Plaque Reduction Assays. It was determined that Institutional Review Board (IRB) approval was not necessary for this study.

**In vitro Plaque Reduction Assay**
These assays were done in 24-well multilpates containing A549 cell monolayers. One multiplate per virus isolate per antiviral was used. All wells of the 24-well multilpates were infected with approximately 100 PFU/well of the HAdV isolates. After 3 hours of adsorption, the virus inocula were removed from the wells. One mL of overlay media containing 0.001 μM, 0.01 μM, 0.1 μM, 1.0 μM, 10 μM, and 100 μM of antiviral was added to 3 wells each. To the remaining 6 wells, 1 mL of overlay media without antiviral was added. The plates were incubated at 37°C in 5% CO₂ until plaque formation was visible in the negative control wells. At that time, the cells were fixed and stained with 0.5% gentian violet in formalin. The cells were dried and the number of plaques per well counted under a dissecting microscope. Two or three trials were performed for each antiviral. The Effective Concentration 50 (EC₅₀; the concentration that inhibits plaque formation by 50%) for each virus isolate, antiviral, and trial was determined using the Fitted Line Plot regression analysis (Minitab, State College, PA). The mean ± standard deviation (SD) EC₅₀ concentrations for each test drug and HAdV type were determined.

**Results**
The results from the Plaque Reduction Assays are displayed in Table 1 as the mean and standard deviations of the EC₅₀ (µM) from duplicate or triplicate assays. The mean EC₅₀ concentrations for the positive antiviral control, CDV ranged from 0.47 to 9.62 µM among the 7 HAdV types tested in our panel. Cidofovir was used as an experimental positive control as it has previously demonstrated antiviral activity against adenovirus in vitro and in vivo. In vitro antiviral activity that is similar to CDV provides an indication that the comparator antiviral could demonstrate anti-adenoviral activity in vivo.

Among the COVID-19 antivirals, REM demonstrated the lowest mean EC₅₀ and tightest range of EC₅₀ values from 0.21 to 11.27 µM across the panel of 7 HAdV types. This range of mean EC₅₀ concentrations is similar to that produced by CDV. In fact, REM produced lower mean EC₅₀ concentrations than CDV for 6 of 7 HAdV types. The mean EC₅₀ concentrations for UMF ranged from a low concentration of 3.72 µM to a much higher EC₅₀ than that of REM at 64.8 µM. IVR produced a lower concentration to the mean EC₅₀ range than UMF at 2.60 µM, but its high mean concentration among the HAdV types was more than 3X greater than UMF and 17.8X greater than REM at 201.3 µM. We could not determine any EC₅₀ concentrations for HCQ because of toxicity to the A549 cells demonstrated at the 100 μM concentration.
and plaque numbers at 10 µM were not less than 50% of the negative control for all HAdV types. Therefore, the EC$_{50}$ for HCQ was considered as >10 µM for all 7 HAdV types tested.

### Discussion

An antiviral treatment for adeno virus ocular infections would fulfill an unmet medical need in ophthalmology. Many antivirals have been evaluated for activity against adenovirus both in vitro and in vivo, but to date, none have received regulatory approval for use. Therefore, the search continues for a safe and effective topical treatment for these infections.

Recently, there has been a suggestion of using a repurposing approach for components of and/or the ophthalmic medications themselves as potential antiviral agents for treatments of viral infections with no available treatments. Among those agents suggested in that article, povidone-iodine, benzalkonium chloride (BAK), and polyhexamethylene biguanide (PHMB) have been formally evaluated against adenovirus in vitro or in patients. In fact, povidone-iodine has been evaluated in several formal clinical trials for the treatment of adenoviral conjunctivitis (ClinicalTrials.gov Identifier: NCT03055065, NCT01481519, NCT01179412, NCT03749317, NCT02998541, NCT02472223, NCT02998554, NCT04169919). The results of the current study demonstrated that REM produced the lowest mean EC$_{50}$ among the COVID-19 antivirals (0.21–9.62 µM) across the panel of HAdV types. This range compares favorably to that produced by CDV, the positive antiviral control (0.47–9.62 µM). Among the HAdV types tested, REM produced mean EC$_{50}$ concentrations lower than CDV for 6 of the 7 types tested. The only HAdV type for which REM produced a higher mean EC$_{50}$ concentration than CDV was for HAdV8. REM produced its highest

| HAdV/Antiviral | CDV | REM | HCQ | IVM | UMF |
|----------------|-----|-----|-----|-----|-----|
| HAdV3          | 4.81 ± 4.07 | 1.40 ± 0.82 | >10* | 39.8 ± 28.6 | 38.4 ± 30.7 |
| HAdV4          | 9.62 ± 11.9 | 0.34 ± 0.20 | >10* | 3.52 ± 2.67 | 18.8 ± 32.2 |
| HAdV5          | 6.59 ± 2.33 | 1.16 ± 0.93 | >10* | 3.57 ± 1.88 | 34.9 ± 49.1 |
| HAdV7a         | 3.54 ± 0.90 | 0.21 ± 0.11 | >10* | 201 ± 132 | 44.9 ± 48.1 |
| HAdV8          | 0.48 ± 0.06 | 11.3 ± 1.83 | >10* | 0.46 ± 0.13 | 3.72 ± 1.57 |
| HAdV19/64      | 0.87 ± 1.22 | 0.76 ± 1.03 | >10* | 2.60 ± 3.38 | 64.8 ± 84.8 |
| HAdV37         | 8.14 ± 10.8 | 1.77 ± 1.70 | >10* | 70.1 ± 46.9 | 11.5 ± 12.9 |

Notes: *Indicates that the EC$_{50}$ values could not be determined due to toxicity at the higher test drug concentration and no antiviral activity at the indicated concentration.
mean $EC_{50}$ against HAdV8, whereas CDV produced its lowest against HAdV8. This could be an important finding since HAdV8 is the most commonly occurring HAdV type in the USA.\textsuperscript{34} The potential clinical relevance of this finding must be determined. Nevertheless, REM demonstrated broad-spectrum activity across the HAdV species and types tested, which is paramount when treating HAdV eye infections that can be caused by numerous HAdV types. Further, in vitro studies should be conducted with REM to determine whether the $EC_{50}$ concentration produced for HAdV8 was isolate dependent. This is the first report of remdesivir demonstrating antiviral activity against a DNA virus and adenovirus in particular.

UMF demonstrated a range of mean $EC_{50}$ concentrations of 3.72–64.8 $\mu$M. The range is larger than those produced by CDV and REM with the highest mean $EC_{50}$ concentration being 6.74X greater than CDV and 5.73X greater than REM. UMF did not produce any mean $EC_{50}$ concentrations that were lower than CDV and only 1 vs REM (HAdV8). Overall, there was antiviral activity demonstrated across the HAdV panel, but UMF does not appear to be as active as CDV and REM.

IVR produced the highest mean $EC_{50}$ concentration demonstrated in our study against HAdV7a, which was 56.8X greater than that produced by CDV and 957X greater than that produced by REM. However, IVR demonstrated mean $EC_{50}$ concentrations lower than CDV for 3/7 isolates, whereas only 1/7 $EC_{50}$ concentrations were lower than REM (HAdV8). In contrast to the other test antivirals, $EC_{50}$ concentrations could not be determined for HCQ due to cytotoxicity to the A549 cells and therefore does not appear to be a candidate for further investigation.

Overall, the COVID-19 touted antivirals remdesivir, umifenovir (Arbidol), and ivermectin demonstrated antiviral activity against a panel of ocular HAdV species and types. Remdesivir appears to be the most active of the three, followed by umifenovir and ivermectin. Remdesivir compared favorably to the positive antiviral control, cidofovir. While some of the antivirals demonstrated higher mean $EC_{50}$ concentrations than others, and among the HAdV types, this does not preclude them from further investigation. Higher effective antiviral concentrations can be achieved in ocular tissue with topical dosing by high drug concentrations in the bottle, more frequent dosing, and/or vehicle manipulations. Our group has demonstrated the proof of concept that achieving high antibiotic corneal concentrations can overcome bacterial resistance to antibiotics with topical antibiotic dosing.\textsuperscript{35–38} Pharmacokinetic and pharmacodynamic studies are necessary to determine what safe and effective ocular tissue concentrations of the antivirals can be achieved after topical dosing.

In conclusion, remdesivir demonstrated in vitro anti-adenovirus activity in a range similar to that demonstrated by cidofovir, the positive antiviral control. Umifenovir and ivermectin also demonstrated anti-adenovirus activity across the range of HAdV types and species, but the antiviral activity for some HAdV types was less than what was demonstrated by cidofovir and remdesivir. The anti-adenovirus activity of hydroxychloroquine could not be accurately determined due to drug cytotoxicity.

To our knowledge, this is the first study to demonstrate that remdesivir possesses antiviral activity against adenovirus, a DNA virus, as well as a panel of adenovirus types that commonly infect the eyes. We have also demonstrated that both ivermectin and umifenovir possess antiviral activity against that same panel of ocular adenovirus types. Further investigation of remdesivir, umifenovir, and ivermectin as antivirals for adenovirus ocular infections is indicated.

**Acknowledgments**

The study was supported by The Charles T. Campbell Ophthalmic Microbiology Laboratory, Pittsburgh, PA; NIH CORE Grant for Vision Research EY08098; The Eye & Ear Foundation of Pittsburgh, Pittsburgh, PA; and an unrestricted grant to the University of Pittsburgh Department of Ophthalmology from Research to Prevent Blindness, New York, NY. The Charles T. Campbell Laboratory participated in the design of the study, the conduct of the study, data collection, data management, data analysis, interpretation of the data, preparation, review, and approval of the manuscript. This study was presented at the ARVO 2021 virtual conference as a poster presentation. The abstract was published in Investigative Ophthalmology & Visual Science 2021;62:411.

**Disclosure**

The authors report no financial interests or conflicts of interest in this work.

**References**

1. King D, Johnson B, Miller D, et al. Adenovirus-associated epidemic keratoconjunctivitis outbreaks—Four States 2008–2010. Morb Mortal Wkly Rep. 2013;62:637–641.
Monnerat N, Bossart W, Thiel MA. Povidone-iodine for treatment... 14. Gordon YJ, Romanowski EG, Araullo-Cruz T, De Clercq E. Pre... 12. Romanowski EG, Yates KA, Gordon YJ. The efficacy of topical ... 15. Gordon YJ, Romanowski EG, Araullo-Cruz T, et al. Inhibitory effect... 10. Zhou X, Robinson CM, Rajaiya J, et al. Analysis of human adenovirus 5... 18. Nwanegbo EC, Romanowski EG, Gordon YJ, Gambotto A. Efficacy of topical immunoglobulins (IG) against experimental adenoviral ocular infection. Invest Ophthalmol Vis Sci. 2007;48:4171–4176. doi:10.1167/iovs.07-0491

20. Napoli PE, Mangoni L, Gentile P, Braghiroli M, Fossarello M. A panel of broad-spectrum antivirals in topical ophthalmic medications from the drug repurposing approach during and after the coronavirus disease 2019 era. J Clin Med. 2020;9:2441. doi:10.3390/jcm9082441

21. Isenberg SJ, Apt L, Valenton M, et al. A Controlled Trial of Povidone-Iodine to Treat Infectious Conjunctivitis in Children. Am J Ophthalmol. 2002;134:681–688. doi:10.1016/S0002-9394(02)01701-4

22. Sauerbrei A, Sehr K, Brandstädt A, et al. Sensitivity of human adenoviruses to different groups of chemical biocides. J Hosp Infect. 2004;57:59–66. doi:10.1016/j.jhin.2004.01.022

23. Monnerat N, Bossart W, Thiæ MA. Povidone-iodine for treatment of adenoviral conjunctivitis: an in vitro study. Klin Monatsbl Augenheilkd. 2006;223:349–352. doi:10.1055/s-2006-926633

24. Rutala WA, Peacock JE, Gergen MF, Sobsey MD, Weber DJ. Efficacy of hospital germicides against adenovirus 8, a common cause of epidemic keratoconjunctivitis in health care facilities. Antimicrob Agents Chemother. 2006;50:1419–1424. doi:10.1128/AAC.50.4.1419-1424.2006

25. Pelletier JS, Stewart K, Trattler W, et al. A combination povidone-iodine 0.4%/dexamethasone 0.1% ophthalmic suspension in the treatment of adenoviral conjunctivitis. Adv Ther. 2009;26:776–783. doi:10.1007/s12325-009-0062-1

26. Clement C, Capriotti JA, Kumar M, et al. Clinical and antiviral efficacy of an ophthalmic formulation of dexamethasone povidone-iodine in a rabbit model of adenoviral keratoconjunctivitis. Invest Ophthalmol Vis Sci. 2011;52:339–344. doi:10.1167/iovs.10-5944

27. Trinavarat A, Atchaneeyakul L. Treatment of epidemic keratoconjunctivitis with 2% povidone-iodine: a pilot study. J Ocul Pharmacol Ther. 2012;28:53–58. doi:10.1089/jop.2011.0082

28. Yates KA, Shanks RMQ, Kowalski RP, Romanowski EG. The in vitro evaluation of povidone-iodine against multiple adenoviral ocular viral types. J Ocul Pharmac Ther. 2019;35:132–136. doi:10.1089/jop.2018.0122

29. Wood A, Payne D. The action of three antisepsics/disinfectants against enveloped and non-enveloped viruses. J Hosp Infect. 1998;38:283–295. doi:10.1016/S0195-6701(98)90077-9

30. Béleca L, Tevi-Benissana C, Bianchic A, et al. In vitro inactivation of Chlamydia trachomatis and of a panel of DNA (HSV-2, CMV, adenovirus, BK virus) and RNA (RSV, enterovirus) viruses by the spermicide benzalkonium chloride. J Antimicrob Chemother. 2000;46:685–693. doi:10.1093/jac/46.5.685

31. Romanowski EG, Yates KA, Shanks RMQ, Kowalski RP. Benzalkonium chloride demonstrates concentration dependent antiviral activity against adenovirus in vitro. J Ocul Pharmac Ther. 2019;35:311–314. doi:10.1089/jop.2018.0145

32. Romanowski EG, Yates KA, O’Connor KE, Mah FS, Shanks RMQ, Kowalski RP. The evaluation of polyhexamethylene biguanide (PHMB) as a disinfectant for adenovirus. JAMA Ophthalmol. 2013;131:495–498. doi:10.1001/jamaophthalmol.2013.2498

33. Morfin F, Dupuis-Girod S, Mundweiler S, et al. In vitro susceptibility of adenovirus to antiviral drugs is species-dependent. Antivir Ther. 2005;10:225–229.

34. Lee CS, Lee AY, Akiyunesaran L, et al. BAYnovation Study Group. Determinants of outcomes of adenoviral keratoconjunctivitis. Ophthalmology. 2018;125(9):1344–1353. doi:10.1016/j.jmlophtha.2018.02.016

35. Romanowski EG, Mah FS, Yates KA, Kowalski RP, Gordon YJ. The successful treatment of gatifloxacin-resistant Staphylococcus aureus keratitis with Zymar® (Gatifloxacin 0.3%) in a NZW Rabbit Model. Am J Ophthalmol. 2005;139:867–877. doi:10.1016/j.ajo.2005.01.021
36. Kowalski RP, Romanowski EG, Mah FS, Shanks RMQ, Gordon YJ. Topical levofloxacin 1.5% overcomes in vitro resistance in rabbit keratitis models. Acta Ophthalmol. 2010;88:e120–125. doi:10.1111/j.1755-3768.2010.01897.x

37. Kowalski RP, Romanowski EG, Yates KA, Romanowski JE, Grewal A, Bilonick RA. Is there a role for topical penicillin treatment of Staphylococcus aureus keratitis based on elevated corneal concentrations? J Clin Ophthalmol Optom. 2018;2:103.

38. Romanowski JE, Romanowski EG, Yates KA, Kowalski RP. The successful treatment of experimental methicillin-resistant Staphylococcus aureus (MRSA) keratitis with topical penicillin. Ophthalmol Res Rep. 2018;3:ORRT–128.