Experimental Observation of High-Energy E_8 Particles in the Ising Chain Ferromagnet CoNb$_2$O$_6$

Kirill Amelin, Johannes Engelmayr, Johan Viirk, Urmas Nagel, Toomas Rõõm, Thomas Lorenz, and Zhe Wang

1National Institute of Chemical Physics and Biophysics, 12618 Tallinn, Estonia
2Institute of Physics II, University of Cologne, 50937 Cologne, Germany

(Dated: June 24, 2020)

Close to the quantum critical point of the transverse-field Ising spin-chain model, an exotic dynamic spectrum was predicted to emerge upon a perturbative longitudinal field. The dynamic spectrum consists of eight particles and is governed by the symmetry of the E_8 Lie algebra. Here we report on high-resolution terahertz spectroscopy of quantum spin dynamics in the ferromagnetic Ising-chain material CoNb$_2$O$_6$. At 0.25 K in the magnetically ordered phase we identify characteristics of the first six E_8 particles, m_1 to m_6, and the two-particle (m_1+m_2) continuum in an applied transverse magnetic field of $B_{1D}^{\perp} = 4.75$ T, before the three-dimensional magnetic order is suppressed above $B_{3D}^{\perp} \approx 5.3$ T. The observation of the higher-energy particles (m_3 to m_6) above the low-energy two-particle continua features quantum many-body effects in the exotic dynamic spectrum.

Since its invention in 1920 the Ising spin-chain model [1–3] has been demonstrated to be extremely useful to rigorously illustrate basic concepts, thus the study of the Ising spin chains is still a very lively research field [4–36]. For example, a quantum phase transition occurs in the transverse-field Ising-chain model

$$H = -J \sum_i S_i^x S_{i+1}^x - B \sum_i S_i^z$$

(1)

when the spin gap is closed at the critical field $B_c = J/2$ with J being the exchange interaction between the nearest-neighbor spin-1/2 magnetic moments S_i on a chain (see Fig. 1). Three decades ago, an exotic dynamic spectrum consisting of eight particles with specific mass ratios was predicted to emerge around B_c, when the transverse-field Ising model is perturbed by a small longitudinal field B_c via the Zeeman interaction $-B_c \sum_i S_i^z$ [9]. The existence of the eight particles is uniquely described by a quantum integrable field theory with the symmetry of the E_8 Lie algebra [9, 10], but has rarely been explored experimentally.

Until 2010 the first piece of experimental evidence for the E_8 dynamic spectrum was reported based on inelastic neutron scattering measurements of the ferromagnetic Ising chains in CoNb$_2$O$_6$ [15]. Constituted by edge-shared CoO$_6$ octahedra, the effective spin-1/2 chains in CoNb$_2$O$_6$ run along the crystallographic c axis in a zig-zag manner (see inset of Fig. 1), with the Ising easy axes lying in the crystallographic ac plane [12, 13, 23]. Due to small but finite inter-chain couplings, a three-dimensional (3D) magnetic order develops below $T_C = 2.85$ K, which can be suppressed by an applied transverse field of $B_{3D}^{\perp} \approx 5.3$ T along the b axis (see Fig. 1 for an illustration) [12, 13, 23]. By following the low-lying spin excitations in the transverse field ($B \parallel b$), two modes were found with an energy ratio being the Golden ratio $1 + \sqrt{5}/2 \approx 1.618$ at 5 T [15], which corresponds to the predicted mass ratio m_2/m_1 of the first two E_8 particles [9]. The two excitations were therefore interpreted as the low-lying E_8 particles, since the required effective longitudinal field is provided by interchain interactions in the ordered phase, and the corresponding 1D quantum critical point at $B_{1D}^{\perp} \approx 5$ T [15] is located below the 3D quantum phase transition at $B_{C}^{3D} \approx 5.3$ T (see Fig. 1) [19, 23].

The absence of the higher-energy particles m_3 to m_8 in the inelastic neutron scattering spectrum was intuitively ascribed to an overwhelming featureless two-particle continuum of (m_1+m_1) [15], since the energies of m_3 to m_8 are comparable or higher than the onset of the (m_1+m_1) continuum (i.e., $m_3 \lesssim 2m_1 < m_4, m_5, \ldots, m_8$). However, this intuitive understanding applicable to a picture of non-interacting particles is challenged by a numerical study. Using the time evolving block decimation, the numerical study of a realistic microscopic model for CoNb$_2$O$_6$ [17] showed that the higher-energy E_8 particles up to m_8 should stand out as sharp peaks in the dynamic spectrum, whereas the (m_1+m_1) continuum contributes a relatively small background. Moreover, the two-particle continuum (m_1+m_2) was found to be characterized by a peak-like maximum at the onset energy, and thus potentially resolvable on top of the (m_1+m_1) continuum. These numerical results are supported by a rigorous quantum field-

Figure 1. Illustration of phase diagram for a quasi-1D ferromagnetic Ising-chain system in an applied transverse field. For a 1D ferromagnet, a long-range order is formed only at zero temperature, whereas a 3D order can be stabilized at a finite temperature T_C in presence of interchain couplings. The 1D and 3D long-range orders can be suppressed by an applied transverse field at B_{1D}^{\perp} and B_{3D}^{\perp} respectively. When $B_{1D}^{\perp} < B_{3D}^{\perp}$ the E_8 dynamic spectrum could be realized around B_{1D}^{\perp} as illustrated by the dashed area. Inset shows the zig-zag spin chain constituted by edge-shared CoO$_6$ octahedra in CoNb$_2$O$_6$.

theory analysis of the dynamic spectra of the two-particle continua [35, 36], which revealed that the spectral weight of the \((m_1+m_1)\) continuum decreases considerably with increasing energy, becoming relatively weak particularly at the energies where the higher-energy particles are predicted to appear. Moreover, it showed that the two-particle continua, such as \((m_1+m_2)\) and \((m_1+m_2)\), are not featureless but characterized by a peak-like maximum at the onset energies which is followed by an extended tail towards higher energies [35, 36].

Motivated by these theoretical results, we experimentally revisited the spin dynamic spectrum in \(\text{CoNb}_3\text{O}_6\) by performing high-resolution terahertz spectroscopy in an applied transverse magnetic field. We identify not only the two lowest \(E_8\) particles but also the higher-energy ones up to \(m_6\), as well as the peak-like maximum of the two-particle continuum \((m_1+m_2)\), confirming the theoretical predictions [17, 35, 36]. In contrast to the conventional understanding that the higher-energy particles are energetically unfavorable and hidden in the two-particle continua, our observation of the higher-energy \(E_8\) particles demonstrates a peculiar feature of this quantum many-body system.

Single crystals of \(\text{CoNb}_3\text{O}_6\) were grown by the floating-zone technique, following the procedure reported in Ref. [37], with few modifications. We used polycrystalline powders of \(\text{Co}_3\text{O}_4\) (chemical purity 99.9985\%) and \(\text{Nb}_2\text{O}_5\) (99.9985\%) as starting materials. Two powder reactions were performed in air at 1200\(^\circ\)C and 1250\(^\circ\)C, respectively, each for 12 h. The powder was pressed to a cylindrical rod at 50 MPa, then sintered at 1275\(^\circ\)C. A centimeter-sized single crystal was grown in an atmosphere of 80\% \(\text{O}_2/20\%\) \(\text{Ar}\) and small over-pressure with a growth speed of 3 mm/h and a relative rotation of the rods of 30 rpm. X-ray powder diffraction measurements verified phase purity. Laue images confirmed single crystallinity, and were used for cutting \(b\)-axis oriented plate-like samples of about 3 mm in diameter and a thickness of 0.5 mm for the optical measurements. On smaller samples magnetic susceptibility measurements were performed in a 100 mT field \(B \parallel b\) down to 1.8 K confirming the magnetic transitions at 2.9 K and 1.9 K [13, 23].

Using a Scientech SPS200 Martin-Puplett type spectrometer, field dependent THz transmission measurements were carried out at 4 K (above \(T_C\)) and 0.25 K (below \(T_C\)) with a liquid-helium bath cryostat and a \(^3\text{He}-^4\text{He}\) dilution fridge [35, 38]. For the 0.25 K measurements the sample cell was attached to the cold finger of the dilution fridge (Oxford Instruments) which was equipped with a superconducting solenoid for applying a magnetic field. The sample cell was filled with \(^4\text{He}\) gas at room temperature to provide cooling of the sample. The radiation was filtered with a 0.6 THz low pass filter at 4 K before the radiation entered the vacuum can of the dilution unit. For the optical experiments, the THz radiation propagated along the external magnetic field which was applied parallel to the \(b\)-axis of the \(\text{CoNb}_3\text{O}_6\) single crystals.

Zero-field absorption spectra are displayed in Fig. 2 for 0.25 K with unpolarized THz radiation, and for 4 K with the THz polarizations \((e^\omega \parallel c, h^\omega \parallel a)\) and \((e^\omega \parallel a, h^\omega \parallel c)\). At 4 K, the spectrum of \((e^\omega \parallel c, h^\omega \parallel a)\) exhibits two peaks at 0.22 and 0.48 THz, respectively, which are denoted by \(M_2\) and \(2M\). The nomenclature hereafter for the zero-field excitations is discriminated from that of the \(E_8\) particles. Around the \(2M\) peak one can observe a broad continuum-like feature which extends towards higher frequency. These features are similar to those reported for a different polarization \((e^\omega \parallel a, h^\omega \parallel b)\) in Ref. [18], where the \(M\) and \(2M\) peaks were assigned as the one- and two-pair spinon excitations, respectively. In contrast, these features are absent for the polarization \((e^\omega \parallel a, h^\omega \parallel c)\) (see Fig. 2).

Compared with the 4 K spectrum the 0.25 K one below \(T_C\) exhibits more peaks, which are labelled by \(M_i\) \((i = 1, 2, 3, \ldots, 7)\) with increasing frequency. The eigenenergies of \(M_i\) are shown in the inset of Fig. 2 as a function of \(\zeta\), the negative zeros of the Airy function \(Ai(-\zeta) = 0\). The linear dependence on \(\zeta\) is due to the inter-chain couplings in the magnetically ordered phase [15, 18, 24, 27–29, 35].
Above M_T one can see a broader peak around 0.49 THz (labelled $2M_1$) and a broad continuum at higher energy (labelled $M_1 + M_1$), consistent with the observation in Ref. [18]. The $2M_1$ peak corresponds to a kinetic bound state of two pairs of spinons in neighbouring chains, which is located below the excitation continuum of two-independent pairs of spinons ($M_1 + M_1$) [15, 18]. This bound state was found at the Brillouin zone boundary $q = \pi$ by inelastic neutron scattering [15]. Due to the zig-zag configuration of the chains (see inset of Fig. 1) [34], this mode is folded to the zone center ($q = 0$) thus detected by the THz spectroscopy.

An ideal way to study the E_8 dynamic spectrum would be to first drive an Ising-chain system with an applied transverse field to the quantum critical point, and then monitor the evaluation of the spin dynamics by switching on and tuning a perturbative longitudinal field. However, such tuning can hardly be realized in a solid-state material, where an effective longitudinal field is an internal field determined by the inter-chain couplings. Since the transverse field will compete with the inter-chain couplings, to realize the E_8 spectrum the 1D quantum critical point should be reached before the 3D order is suppressed (as illustrated in Fig. 1). This is fulfilled in the Ising-chain ferromagnet CoNb$_2$O$_6$ [15, 19] and in the Ising-chain antiferromagnet BaCo$_2$V$_2$O$_8$ [28, 35, 36]. Otherwise, the required collective longitudinal field will be absent in the 1D quantum critical regime such as in SrCo$_2$V$_2$O$_8$ [24, 32]. This also indicates that the observation of a spinon confinement in zero field does not necessarily imply a realization of the E_8 dynamic spectrum around the quantum critical field. Therefore, it is necessary to carry out field-dependent measurements below T_c.

The evolution of the absorption spectra of CoNb$_2$O$_6$ in an applied transverse field along the b axis is presented in Fig. 3 and in the Supplemental Material [39]. Displayed in Fig. 3 are the spectra for fields just below 5 T, at which the inelastic neutron scattering experiment [15] revealed the lowest two E_8 particles m_1 and m_2. With far more than two peaks, the absorption spectra exhibit very rich features. At 4.75 T one observes several well-defined sharp peaks at 0.16, 0.26, 0.32, 0.40, 0.47, and 0.51 THz, which are labelled m_1, m_2, ..., m_6, respectively, as indicated by the arrows. A relatively broad peak is observed at 0.43 THz as marked by the asterisk. The frequencies of m_1 and m_2 are slightly greater than the reported values of 0.12 and 0.18 THz, respectively, for the finite q-vector of E_8 particles in the inelastic neutron scattering experiment [15]. This difference may result from a weak dispersion perpendicular to the chain direction.

The field dependence of these modes can be clearly tracked, as indicated by the arrows in Fig. 3(a)(b). Normalized to the m_1 energy in each field, the eigenenergies of these modes are presented as a function of the applied field in Fig. 4. The energy ratios of these modes increase monotonically with increasing field. At 4.75 T, the predicted ratios (dashed lines, see Refs. [9, 10]) for the E_8 particles up to m_6 and for the onset energies of the two-particle continua (m_1+m_1) and (m_1+m_2) are simultaneously reached. The onset of the (m_1+m_1) continuum is very close to the m_1 peak (≈ 0.389 m_1) [9], so they cannot be distinguished from each other in the experimental spectrum. The observed features are consistent with the previous predictions from the numerical simulations [17] and the quantum field-theory analysis [35, 36]. Especially, the field-theory analysis [35, 36] showed that the two-particle continua are not featureless but characterized by a peak-like maximum at the onset energies followed by a decrease towards higher energy, which allows the identification of the continua by their peak-like maxima. Therefore, these experimental results provide unambiguous evidence for the observation of the high-energy
E_8 particles, which also points to a 1D quantum critical point at $B^{1D}_{c} = 4.75$ T confirming the scenario illustrated in Fig. 1 and discussed above. The value of B^{1D}_{c} is close to the reported 5 T in Ref. [15]. We shall emphasize that the E_8 spectrum and the spinon dynamics are about very different physics. The former emerges around the field-induced quantum critical point, whereas the latter is about the spin dynamics of the gapped phase at zero field.

Previous theoretical analysis predicted also that the intensity of the E_8 particles decreases monotonically with increasing energy [10, 11, 17, 35, 36]. Indeed, this trend is obeyed by the first four particles (m_1 to m_4), as shown in the 4.75 T spectrum in Fig. 3(a). However, the m_5 and m_6 peaks appear to be slightly stronger. This cannot be simply attributed to the underlying continua ($m_1 + m_1$) or ($m_2 + m_2$) whose spectral weight is even smaller than the high-energy tails of the ($m_1 + m_1$) and ($m_2 + m_2$) continua [17, 35, 36]. The apparent enhancement of the m_5 and m_6 peaks is contributed by the low-lying spin excitation at the Brillouin-zone boundary ($q = \pi$) [21, 22]. This relatively broad band is detected also in the disordered phase above T_c, as indicated by the arrow in the 4 K spectrum in Fig. 3(b) [39], which is observed due to the zone-folding effects [34]. It is a coincidence that this band is located in the energy range around the m_5 and m_6 peaks. The substantially reduced intensity of the high-energy E_8 particles could be below the resolution limit of the previous inelastic neutron scattering experiment [15], which thus were not resolved at that time. For the same reason the m_7 and m_8 modes are neither resolved here.

The field dependence of the relatively small satellite peaks, marked by the circles in Fig. 3(a), can be clearly followed as well. With decreasing field from 4.75 T one can see a reduction of the satellite-peak intensity and a concomitant merging of these peaks into the corresponding main ones [39]. Above T_c in the disordered phase [Fig. 3(b)], these satellite peaks disappear, thus they reflect dynamic properties of the 3D ordered phase in the transverse field. In addition, as marked by the triangles in Fig. 3(b), one can observe a peak at 0.2 THz both in the ordered and in the disordered phases. Thus, this mode should result from the 1D spin fluctuations possibly due to sub-leading interactions within the zig-zag chain [34].

To conclude, by performing high-resolution THz spectroscopy of the Ising-chain compound CoNb$_2$O$_6$ below and above the magnetic ordering temperature in an applied transverse field, we have revealed the dynamic features that were predicted to emerge around the transverse field-induced quantum critical point governed by the E_8 symmetry. In particular, the high-energy E_8 particles, which would be unresolvable according the picture of non-interaction particles, have been identified above the low-energy two-particle continua, featuring the quantum many-body effects.

We thank Jianda Wu and Zhao Zhang for insightful discussions, and Thomas Timusk for the help in constructing the bolometer unit for the dilution fridge. The work in Tallinn was supported by personal research funding grant PRG736 of the Estonian Ministry of Education and Research, and by European Regional Development Fund Project No. TK134. The work in Cologne was partially supported by the DFG (German Research Foundation) via the project No. 277146847—Collaborative Research Center 1238: Control and Dynamics of Quantitative Materials (Subprojects No. A02, B01, and B05).

zhewang@ph2.uni-koeln.de

[1] W. Lenz, Physik. Zeitschr. 21, 613 (1920).
[2] E. Ising, Z. Phys. 31, 253 (1925).
[3] S. G. Brush, Rev. Mod. Phys. 39, 883 (1967).
[4] S. Sachdev, Quantum Phase Transitions, 2nd ed. (Cambridge University Press, New York, 2011).
[5] A. Dutta, G. Aeppli, S. Ishikawa, and K. Kohn, Journal of the Physical Society of Japan 63, 2706 (1994).
[10] G. Delfino and G. Mussardo, Nucl. Phys. B 455, 724 (1995).
[11] G. Delfino and P. Simonetti, Phys. Lett. B 383, 450 (1996).
[12] E. Husson, Y. Repelin, N. Q. Dao, and H. Brusset, Materials Research Bulletin 12, 1199 (1977).
[13] T. Hanawa, K. Shinkawa, M. Ishikawa, K. Miyatani, K. Saito, and K. Kohn, Journal of the Physical Society of Japan 63, 2706 (1994).
[14] T. Kunimoto, K. Nagasaka, H. Nojiri, S. Luther, M. Motokawa, H. Ohta, T. Goto, S. Okubo, and K. Kohn,
[15] R. Coldea, D. A. Tennant, E. M. Wheeler, E. Wawrzynska, D. D. Prabhakaran, M. Telling, K. Habicht, P. Smeibidl, and K. Kiefer, Science 327, 177 (2010).

[16] S. Lee, R. K. Kaul, and L. Balents, Nature Physics 6, 702 (2010).

[17] J. A. Kjäll, F. Pollmann, and J. E. Moore, Phys. Rev. B 83, 020407 (2011).

[18] C. M. Morris, R. Valdés Aguilar, A. Ghosh, S. M. Koohpayeh, J. Krizan, R. J. Cava, O. Tchernyshyov, T. M. McQueen, and N. P. Armitage, Phys. Rev. Lett. 112, 137403 (2014).

[19] A. W. Kinross, M. Fu, T. J. Munsie, H. A. Dabkowska, G. M. Luke, S. Sachdev, and T. Imai, Phys. Rev. X 4, 031008 (2014).

[20] J. Wu, M. Kormos, and Q. Si, Phys. Rev. Lett. 113, 247201 (2014).

[21] I. Cabrera, J. D. Thompson, R. Coldea, D. Prabhakaran, R. I. Bewley, T. Guidi, J. A. Rodriguez-Rivera, and C. Stock, Phys. Rev. B 90, 014418 (2014).

[22] N. J. Robinson, F. H. L. Essler, I. Cabrera, and R. Coldea, Phys. Rev. B 90, 174406 (2014).

[23] T. Liang, S. M. Koohpayeh, J. W. Krizan, T. M. McQueen, R. J. Cava, and N. P. Ong, Nat. Commun. 6, 7611 (2015).

[24] Z. Wang, M. Schmidt, A. K. Bera, A. T. M. N. Islam, B. Lake, A. Loidl, and J. Deisenhofer, Phys. Rev. B 91, 140404 (2015).

[25] Z. Wang, J. Wu, S. Xu, W. Yang, C. Wu, A. K. Bera, A. T. M. N. Islam, B. Lake, D. Kamenskyi, P. Gogoi, H. Engelkamp, N. Wang, J. Deisenhofer, and A. Loidl, Phys. Rev. B 94, 125130 (2016).

[26] Z. Wang, T. Lorenz, D. I. Gorbunov, P. T. Cong, Y. Kohama, S. Niesen, O. Breunig, J. Engelmaier, A. Herman, J. Wu, K. Kindo, J. Wosnitza, S. Zherlitsyn, and A. Loidl, Phys. Rev. Lett. 120, 207205 (2018).

[27] Z. Wang, J. Wu, W. Yang, A. K. Bera, D. Kamenskyi, A. N. Islam, S. Xu, J. M. Law, B. Lake, C. Wu, and A. Loidl, Nature 554, 219 (2018).

[28] Q. Faure, S. Takayoshi, S. Petit, V. Simonet, S. Raymond, L.-P. Regnault, M. Boehm, J. S. White, M. M. C. Ruegg, P. Lejay, B. Canals, T. Lorenz, S. C. Furuy, T. Giamarchi, and B. Grenier, Nat. Phys. 14, 716 (2018).

[29] Z. Wang, M. Schmidt, A. Loidl, J. Wu, H. Zou, W. Yang, C. Dong, Y. Kohama, K. Kindo, D. I. Gorbunov, S. Niesen, O. Breunig, J. Engelmaier, and T. Lorenz, Phys. Rev. Lett. 123, 067202 (2019).

[30] W. Yang, J. Wu, S. Xu, Z. Wang, and C. Wu, Phys. Rev. B 100, 184406 (2019).

[31] A. J. A. James, R. M. Konik, and N. J. Robinson, Phys. Rev. Lett. 122, 130603 (2019).

[32] Y. Cui, H. Zou, N. Xi, Z. He, Y. X. Yang, L. Shu, G. H. Zhang, Z. Hu, T. Chen, R. Yu, J. Wu, and W. Yu, Phys. Rev. Lett. 123, 067203 (2019).

[33] A. K. Bera, J. Wu, W. Yang, R. Bewley, M. Boehm, J. Xu, M. Bartkowiak, O. Prokhnenko, B. Klemke, A. T. M. N. Islam, J. M. Law, Z. Wang, and B. Lake, Nature Physics 16, 625 (2020).

[34] M. Fava, R. Coldea, and S. A. Parameswaran, “Glide symmetry breaking and Ising criticality in the quasi-1d magnet CoNb2O6,” arxiv:2004.04169 (2020), arXiv:2004.04169.

[35] Z. Zhang et al, “Observation of E8 particles in an Ising chain antiferromagnet, arXiv: 2005.13772,” (2020), arXiv:2005.13772.

[36] H. Y. Zou et al, “Exceptional E8 symmetry in spin dynamics of quasi-one-dimensional antiferromagnet BaCO2V2O8, arXiv: 2005.13302,” (2020), arXiv:2005.13302.

[37] D. Prabhakaran, F. Wondre, and A. Boothroyd, Journal of Crystal Growth 250, 72 (2003).

[38] Z. Wang, S. Reschke, D. Hühonen, S.-H. Do, K.-Y. Choi, M. Gensch, U. Nagel, T. Rööm, and A. Loidl, Phys. Rev. Lett. 119, 227202 (2017).

[39] See Supplemental Material for more absorption spectra in fields.