An update of medical care in Marfan syndrome

Hsin-Hui Chiu*

Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan

INTRODUCTION

Marfan syndrome (MFS) is one of the most common inherited connective tissue disorders caused by fibrillin-1 (FBN1) gene mutation. It exhibits complete penetrance but with highly variable expressions [1,2]. The clinical manifestations involve the cardiovascular, ocular, and musculoskeletal systems with highly variable severity. Cardiovascular collapse is the main cause of death due to aortic dissection or rupture [2-5]. Over the past 3 decades, the life expectancy of MFS patients has increased significantly because of advanced applications of genetic screening, medical and surgical management [6-8].

Fibrillin-1, a major component of elastin-associated microfibrils, is a glycoprotein that is found throughout the extracellular matrix. Fibrillin-1 has been shown to regulate transforming growth factor β (TGF-β) activation by sequestering it in association with specific latent TGF-β binding proteins [9,10]. Loss of fibrillin-1 may then lead to over-release of TGF-β, which contributes to matrix metalloproteinases (MMP) activation and extracellular matrix degeneration leading to aortic dissection or even rupture [11,12].

The clinical presentations of MFS become more apparent with increasing age; it is really a challenge to make an accurate diagnosis especially in children. The current diagnosis of MFS relies on the 2010 revised Ghent criteria [Table 1], which put more weight on aortic root aneurysm and ectopia lentis as well as FBN1 mutation and family history of MFS [13]. A new scoring system with a maximum score of 20 has been designed for other system’s features and a score ≥7 is considered positive systemic involvement [Table 2]. To make a diagnosis of MFS, patients should meet the following conditions: (1) In the absence of family history of MFS, patients with aortic root dilatation/dissection combined with ectopia lentis, or a causative FBN1 mutation, or a systemic score ≥7. For those without aortic root dilatation/dissection, MFS will be diagnosed when they have both ectopia lentis and a causative FBN1 mutation. (2) In the presence of family history of MFS, patients with ectopia lentis, or aortic root dilatation/dissection, or a systemic score ≥7, could be diagnosed as MFS [Table 1].

Three alternative diagnoses were defined to differentiate from MFS. (1) Ectopia lentis syndrome (ELS) indicated patients with ectopia lentis and an FBN1 mutation not known to cause aortic disease or without FBN1 mutation, regardless of systemic score ≥7. (2) MASS phenotype (myopia, mitral valve prolapse, borderline aortic root diameter, skeletal findings, and striae) indicated those without ectopia lentis but mild cardiac (aortic root Z score <2) and systemic features (systemic...
score ≥5 with at least one skeletal feature). (3) mitral valve prolapse syndrome indicated patient without ectopia lentis but mitral valve prolapse, borderline aortic root diameter (Z score <2), and systemic score <5 [Table 1].

Several connective tissue disorders having marfanoid phenotype and the risk of aortic dissection result from other genes mutation [13,14]. Loeys-Dietz syndrome, also known as MFS type 2 (MFS2), caused by TGFB1, TGFB2, TGFB3, or SMAD3 genes mutation. Sphrintzen-Goldberg syndrome caused by SKI or rarely FBN1 genes mutation. Ehlers-Danlos syndrome (vEDS) caused by COL3A1 gene mutation in vascular type, TNXB gene mutation in hypermobility type, PLOD1 gene mutation in kyphoscoliotic type, and COL5A1/COL5A2 gene mutation in classic type.

Familiar thoracic aortic aneurysm and dissection caused by ACA2, MYLK, PRKG1, MYH11, MFAP5, and MAT2A genes mutation. At present, the medical care for those connective tissue disorders follows the treatment principles of MFS.

Treatment for Cardiovascular Manifestations

Clinical care for patients with MFS needs a multidisciplinary team for comprehensive management, including cardiologist, geneticist, orthopedist, ophthalmologist, cardiothoracic surgeon, and obstetrician. The classical standards imply: (1) diagnosis confirmation and medical treatment for aortic protection; (2) prophylactic aortic root surgery; (3) serial imaging follow-up of the aorta; (4)
endocarditis prophylaxis; (5) lifestyle modification and avoid moderate intensity of exercise; and (6) counseling on pregnancy [15,16].

The most life-threatening complication of MFS is aortic dissection or rupture, especially in those without treatment. The medical and surgical strategies for MFS patients are aimed to prevent cardiovascular events.

Pharmacological treatment

Beta-blockers

Many studies reported that β-blockers had the effect in slower aortic root growth rate and fewer cardiovascular complications from its negative chronotropic and inotropic effects, which can reduce hemodynamic stress on the aortic wall [17-19]. It was first proposed by Halpern *et al.* in 1971 [20] and is regarded as the first-line prophylaxis for MFS. However, several studies showed heterogeneous results and even suggested that the β-blockers might worsen aortic elasticity, especially in those with aortic root diameter >40 mm in end-diastolic phase or increased body weight [21-23]. Salim *et al.* reported that during a lifetime, the aortic root growth rate reached its peak at 6 to 14 years of age [19]. Hence, β-blockers are generally initiated once MFS is diagnosed, especially those before puberty, and suggest lifelong treatment, even in patients who received aortic surgery [24,25]. The resting heart rate was suggested to keep around 60-70 bpm in adult, and less than 100 bpm during submaximal exercise in adult or teenage, and less than 110 bpm in children [15,24]. Currently, propranolol or atenolol are the most widely used β-blockers for pediatric MFS with well tolerance [24,25].

Angiotensin II type I receptor blockers

In mouse models of MFS studies suggest that FBN1 gene mutations might activate TGF-β signaling and resulted in fragmentation and disarray of elastic fiber in aortic media, which would lead to the formation of aortic aneurysms [26,27]. Losartan, an Angiotensin II type I (AT1) receptor blocker, has been proved to effectively reduce aortic root dilatation and lung tissue degradation in an MFS mouse model by blocking the AT1 receptor and inhibiting the subsequent TGF-β signaling [28,29]. Followed studies showed that losartan was safe and effective in MFS patients [30-33]. Losartan treatment reduced aortic root and arch dilatation rates in operated or unoperated adult MFS [32]. The efficacy was related to longer treatment duration and earlier treatment age, but not related to the type of FBN1 mutation or clinical presentation [33].

However, several randomized trials comparing losartan and atenolol treatment over 3 years for children and adults MFS with aortic root dilatation reported that there was no significant difference in aortic root growth rate [34-36]. Even so, the aortic root Z score of each group decreased significantly over time, especially in younger patients [34]. Several clinical trials reported that losartan add-on β-blockers therapy provides better protection against aortic root dilatation than β-blockers alone in adults and children MFS [30-32]. Except losartan, another AT1 receptor blocker, irbesartan was reported to reduce the rate of aortic dilatation in both children and young adults MFS [37]. Therefore, losartan or other AT1 receptor blockers seem to have an equivalent effect to β-blockers and could be a safe alternative in the management of MFS. Currently, a meta-analysis reported that only-AT1 receptor blocker therapy is not inferior to only-β-blocker therapy for cardiovascular protection in MFS. Besides, the outcomes of AT1 receptor blocker-plus-β-blocker therapy seemed to be favorable than only-β-blocker therapy [38].

Angiotensin-converting enzyme inhibitor

Angiotensin II plays an important role in aortic aneurysms formation which is upregulated through activation of ACE and chymase-dependent pathways [39]. ACE inhibitors are reported to improve aortic distensibility and slow the progression of aortic aneurysm in atherosclerosis studies [39,40]. The effects of ACE inhibitors are through blood pressure control and may reduce apoptosis of aortic wall by blocking the angiotensin II type II receptor [24]. Some small clinical studies indicated that ACE inhibitors could reduce both aortic stiffness and aortic root diameter more than β-blockers therapy in patients with MFS [41,42]. However, other studies showed a limited effect of ACE inhibitors on aortic growth [43,44]. Large prospective trials are recommended for further evaluation.

Calcium channel antagonists

Calcium channel antagonists have been proven to promote vascular remodeling and improve endothelial function, and are considered an alternative if β-blockers are intolerable. However, the clinical evidence of safety and efficacy in MFS are limited [18,44]. In a study of MFS mice, it was even noticed that calcium channel antagonists would accelerate aortic aneurysm growth, dissection, and early mortality [45]. The mechanism may be through increase TGF-β signaling cascades via activation of AT1 receptors mediated - ERK1/2 pathway. Therefore, calcium channel antagonists should be used with caution in patients with syndromic inherited thoracic aortopathy or congenital heart disease [45].

Statins

Statins, one HMG-CoA reductase inhibitor, are a class of cholesterol-lowering agent and primary used in treatment or prevention of atherosclerosis. In clinical studies of abdominal aortic aneurism, statins are reported to prevent progressive aortic root dilatation and decreased long-term mortality by inhibition of Ras-dependent ERK (Extracellular Signal-Regulated Kinase) pathway, leading to decrease the matrix MMP -9 production [46,47]. Similar findings were also reported in Marfan mouse models as well as preserved elastin volume in the aortic wall [48,49]. Although statins are generally safe, some important adverse effects such as an increased risk of diabetes mellitus, liver dysfunction, myalgia, and rarely rhabdomyolysis should be cautioned and monitored. Further clinical trials with large scale are warranted for efficacy and safety evaluation.

Tetracyclines

Doxycycline, a tetracycline, is reported to delay aortic aneurysm rupture by suppressing the expression of MMP-2,9 in mice models of MFS [50,51]. In a small human study, doxycycline was implicated to decrease the growth rate of
abdominal aortic aneurysm [52]. Nevertheless, the clinical evidence in patients with thoracic aortic aneurysm are still quite limited.

Endocarditis prophylaxis

The dental problems are common to MFS patients due to high-arched palate with crowded teeth. Hence, regular intraoral monitoring and subacute bacterial endocarditis prophylaxis are advised for MFS patients with valvular insufficiency [24].

Conclusion

Patients with MFS require multidisciplinary care including closely monitor the aortic dimension and heart function, strictly control cardiovascular risk factors, timely medication, and prophylactic surgery. Summarizing currently available evidences, β-blockers are recommended in patients with MFS-associated aortopathy. AT1 receptor blockers, especially losartan, could be alternative choices. However, combination therapy with β-blockers and losartan may provide more cardiovascular protection in patients with MFS.

With the advances in pathogenesis of aortopathies and genomic medicines, treatment has entered the era of personalized and precision medicine. We wait for the results from many ongoing trials in near future and anticipate the treatment strategies might shift from current phenotype/syndrome considerations to genotype/pathogenesis considerations.

Financial support and sponsorship

This study was partially supported by the Ministry of Science and Technology (MOST 108-2314-B-303-020-MY3).

Conflicts of interest

There are no conflicts of interest.

References

1. Dietz HC, Cutting GR, Pyeritz RE, Maslen CL, Sakai LY, Corson GM, et al. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature 1991;352:337-9.
2. De Backer J, Loeys B, Leroy B, Coucke P, Dietz HC, De Paepe A. Diagnostic criteria and phenotype of Marfan syndrome: A meta-analysis. Int J Cardiol 2007;114:65-9.
3. Juvonen M, Jylha M, Kivimäki M, Raitanen J, Kauhanen J, Pere C, et al. 15-year incidence and predictors of atrial fibrillation in men with Marfan syndrome: A population-based nested case-control study. Circulation 2011;124:194-200.
4. Pearson GD, Devereux RB, Loeys B, Dietz HC, Pyeritz RE, Maslen CL, Sakai LY, Corson GM, et al. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature 1991;352:337-9.
5. Loeys B, Dietz HC, Braverman AC, Callewaert BL, De Backer J, Natastadj M J, West M. Overexpression of transforming growth factor-beta is associated with increased hyaluronan content and impairment of repair in Marfan syndrome aortic aneurysm. Circulation 2006;114:1371-7.
6. Dietz HC, Cutting GR, Pyeritz RE, Maslen CL, Sakai LY, Corson GM, et al. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature 1991;352:337-9.
7. Pyeritz RE. Marfan syndrome: 30 years of research equals 30 years of additional life expectancy. Heart 2009;95:173-5.
8. Pearson GD, Devereux RB, Loeys B, Maslen C, Milewicz D, Pyeritz RE, et al. Report of the National Heart, Lung, and Blood Institute and National Marfan Foundation Working Group on research in Marfan syndrome and related disorders. Circulation 2008;118:785-91.
9. Pyeritz RE. Marfan syndrome: 30 years of research equals 30 years of additional life expectancy. Heart 2009;95:173-5.
10. Pearson GD, Devereux RB, Loeys B, Maslen C, Milewicz D, Pyeritz RE, et al. Report of the National Heart, Lung, and Blood Institute and National Marfan Foundation Working Group on research in Marfan syndrome and related disorders. Circulation 2008;118:785-91.
11. Pyeritz RE. Marfan syndrome: 30 years of research equals 30 years of additional life expectancy. Heart 2009;95:173-5.
12. Silverman DI, Burton KJ, Gray J, Bosner MS, Kououchouko NT, Roman MJ, et al. Life expectancy in the Marfan syndrome. Am J Cardiol 1995;75:157-60.
13. Silverman DI, Burton KJ, Gray J, Bosner MS, Kououchouko NT, Roman MJ, et al. Life expectancy in the Marfan syndrome. Am J Cardiol 1995;75:157-60.
14. Murdoch JL, Walker BA, Halpern BL, Kuzma JW, McKusick VA. Life expectancy and causes of death in the Marfan syndrome. N Engl J Med 1972;286:804-8.
15. Ten Dijke P, Arthur HM. Extracellular control of TGFbeta signalling in vascular development and disease. Nat Rev Mol Cell Biol 2007;8:857-69.
16. Novak MM, De Filippis C, Voci P, Giambiasi M, Colombo A, Marzullo V, et al. Expression of matrix metalloproteinases and endogenous inhibitors within ascending aortic aneurysms of patients with Marfan syndrome. Circulation 2006;114:1365-70.
17. Natastadj M J, West M. Overexpression of transforming growth factor-beta is associated with increased hyaluronan content and impairment of repair in Marfan syndrome aortic aneurysm. Circulation 2006;114:1371-7.
18. Pyeritz RE. Marfan syndrome: 30 years of research equals 30 years of additional life expectancy. Heart 2009;95:173-5.
19. Pyeritz RE. Marfan syndrome: 30 years of research equals 30 years of additional life expectancy. Heart 2009;95:173-5.
31. Chiu HH, Wu MH, Wang JK, Lu CW, Chiu SN, Chen CA, et al. Losartan added to \(\beta \)-blockade therapy for aortic root dilation in Marfan syndrome: A randomized, open-label pilot study. Mayo Clin Proc 2013;88:271-6.

32. Groenink M, den Hartog AW, Franken R, Radonic T, de Waard V, Timmermans J, et al. Losartan reduces aortic dilatation rate in adults with Marfan syndrome: A randomized controlled trial. Eur Heart J 2013;34:3491-500.

33. Pees C, Laccone F, Hagl M, Debrauwer V, Moser E, Michel-Behnke I. Usefulness of losartan on the size of the ascending aorta in an unselected cohort of children, adolescents, and young adults with Marfan syndrome. Am J Cardiol 2013;112:1477-83.

34. Lacro RV, Dietz HC, Sleeper LA, Yetman AT, Bradley TJ, Colan SD, et al. Pediatric Heart Network Investigators. Atenolol versus losartan in children and young adults with Marfan’s syndrome. N Engl J Med 2014;371:2061-71.

35. Muiño-Mosquera L, De Nobele S, Devos D, Campens L, De Paepe A, De Backer J. Efficacy of losartan as add-on therapy to prevent aortic growth and ventricular dysfunction in patients with Marfan syndrome: A randomized, double-blind clinical trial. Acta Cardiol 2017;72:616-24.

36. Teixido-Tura G, Forteza A, Rodríguez-Palomares J, González Mirelis J, Gutiérrez L, Sánchez V, et al. Losartan versus atenolol for prevention of aortic dilation in patients with Marfan syndrome. J Am Coll Cardiol 2018;72:1613-8.

37. Mullen M, Jin XY, Child A, Stuart AG, Dodd M, Aragon-Martin JA, et al. Irbesartan in Marfan syndrome (AIMS): A double-blind, placebo-controlled randomised trial. Lancet 2019;394:2263-70.

38. Kang YN, Chi SC, Wu MH, Chiu HH. The effects of losartan versus propranolol or atenolol for prevention of aortic dilation in patients with Marfan syndrome. Acta Cardiol 2017;72:616-24.

39. Huang W, Alhenc GF, Osborne-Pellegrin MJ. Protection of the arterial internal elastic lamina by inhibition of the renin-angiotensin system in the rat. Circulation Res 1998;82:879-90.

40. Hackam DG, Thiruchelvam D, Redelmeier DA. Angiotensin-converting enzyme inhibitors and aortic rupture: A population-based case-control study. Lancet 2006;368:659-65.

41. Yetman AT, Bornemeier RA, McCrindle BW. Usefulness of enalapril versus propranolol or atenolol for prevention of aortic dilation in patients with the Marfan syndrome. Am J Cardiol 2005;95:1125-7.

42. Ahimastos AA, Aggarwal A, D’Orsa KM, Formosa MF, White AJ, Savariarayan R, et al. Effect of perindopril on large artery stiffness and aortic root diameter in patients with Marfan syndrome: A randomized controlled trial. JAMA 2007;298:1539-47.

43. Phomakay V, Huett WG, Gossett JM, Tang X, Bornemeier RA, Collins RT 2nd. \(\beta \)-Blockers and angiotensin converting enzyme inhibitors: Comparison of effects on aortic growth in pediatric patients with Marfan syndrome. J Pediatr 2014;165:951-5.

44. Williams A, Kenny D, Wilson D, Fagenello G, Nelson M, Dunstan F, et al. Effects of atenolol, perindopril and verapamil on haemodynamic and vascular function in Marfan syndrome – A randomised, double-blind, crossover trial. Eur J Clin Invest 2012;42:891-9.

45. Doyle JJ, Doyle AJ, Wilson NK, Habashi JP, Bedja D, Whitworth RE, et al. A deleterious gene-by-environment interaction imposed by calcium channel blockers in Marfan syndrome. Elife 2015;4:e08648.

46. Nagashima H, Aoka Y, Sakomura Y, Sakuta A, Aomi S, Ishizuka N, et al. A 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, cerivastatin, suppresses production of matrix metalloproteinase-9 in human abdominal aortic aneurysm wall. J Vasc Surg 2002;36:158-63.

47. Schouten O, van Laanen JH, Boersma E, Vidakovic R, Feringa HH, Dunkelgrün M, et al. Statins are associated with a reduced infrarenal abdominal aortic aneurysm growth. Eur J Vasc Endovasc Surg 2006;32:21-6.

48. McLoughlin D, McGuinness J, Byrne J, Terzo E, Huuskonen V, McAllister H, et al. Pravastatin reduces Marfan aortic dilation. Circulation 2011;124:S168-73.

49. Sato T, Arakawa M, Tashima Y, Tsboei E, Burdon G, Trojan J, et al. Statins reduce thoracic aortic aneurysm growth in Marfan syndrome mice via inhibition of the ras-induced ERK (Extracellular Signal-Regulated Kinase) signaling pathway. J Am Heart Assoc 2018;7:e008543.

50. Xiong W, Knispel RA, Dietz HC, Ramirez F, Baxter BT. Doxycycline delays aneurysm rupture in a mouse model of Marfan syndrome. J Vase Surg 2008;47:166-72.

51. Chung AW, Yang HH, Radomski MW, van Bremen C. Long-term doxycycline is more effective than atenolol to prevent thoracic aortic aneurysm in marfan syndrome through the inhibition of matrix metalloproteinase-2 and -9. Circ Res 2008;102:e73-85.

52. Mosorin M, Juvonen J, Biancari F, Satta J, Surcel HM, Leinonen M, et al. Use of doxycycline to decrease the growth rate of abdominal aortic aneurysms: A randomized, double-blind, placebo-controlled pilot study. J Vase Surg 2001;34:606-10.