On Duality Rotations in Light-Like Noncommutative Electromagnetism

Paolo Aschieri
Sektion Physik der Ludwig-Maximilians-Universität
Theresienstr. 37, D-80333 München, Germany
e-mail address: aschieri@theorie.physik.uni-muenchen.de

ABSTRACT: We study electric-magnetic duality rotations for noncommutative electromagnetism (NCEM). We express NCEM as a nonlinear commutative $U(1)$ gauge theory and show that it is self-dual when the noncommutativity parameter θ is light-like (e.g. $\theta^{0i} = \theta^{1i}$). This implies, in the slowly varying field approximation, self-duality of NCEM to all orders in θ.

Keywords: Duality; Born-Infeld; Noncommutative Gauge Theory

Introduction

Field theories on noncommutative spaces have received renewed interest since their relevance in describing Dp-branes effective actions (see [1] and references therein). Noncommutativity in this context is due to a nonvanishing NS background two-form on the Dp-brane. Initially space-like (magnetic) backgrounds ($B^{ij} \neq 0$) were considered, then NCYM theories also with time noncommutativity ($B^{0i} \neq 0$) have been studied [2]. It turns out that unitarity of NCYM holds only if B is space-like or light-like (e.g. $B_{0i} = -B_{1i}$) and that these are precisely the NCYM theories that can be obtained from open strings in the decoupling limit $\alpha' \to 0$ [4]. Following [1], gauge theory on a Dp-brane with constant two-form B can be described via a commutative Lagrangian and field strength $\mathcal{L}(F + B)$ or via a noncommutative one $\hat{\mathcal{L}}(\hat{F})$, where $\hat{F}_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu - i[A_\mu \star A_\nu]$. (Here \star is the star product, on coordinates $[x^\mu \star x^\nu] = x^\mu x^\nu - x^\nu x^\mu = i\theta^{\mu\nu}$, where θ depends on B and the metric on the Dp-brane). These two descriptions are complementary and are

* Talk presented at the Euroconference: Brane New World and Noncommutative Geometry, Villa Gualino (Torino), October 2000
related by Seiberg-Witten map (SW map). In the $\alpha' \to 0$ limit \[1\] the exact effective electromagnetic theory on a Dp-brane is NCEM, this is equivalent, via SW map, to a nonlinear commutative $U(1)$ gauge theory. For a D3-brane, in the slowly varying field approximation, we give an explicit expression of this nonlinear $U(1)$ theory and we show that it is self-dual when B (or θ) is light-like. Via SW map solutions of $U(1)$ nonlinear electromagnetism are mapped into solutions of NCEM, so that duality rotations are also a symmetry of NCEM, i.e. NCEM is self-dual. When θ is space-like we do not have self-duality and the S-dual of space-like NCYM is a noncommutative open string theory decoupled from closed strings \[5\]. Related work appeared in \[6\]. Self-duality of NCEM was initially studied in \[3\] to first order in θ.

We show self-duality of NCEM using Gaillard-Zumino approach \[7\] to study duality rotations in nonlinear electromagnetism, we thus provide [see (29)] a new example of Lagrangian satisfying Gaillard-Zumino self-duality condition. We present here the case where the axion and the dilaton are zero. It is also possible to include arbitrary constant axion and dilaton as well as a kinetic and interaction term for Higgs fields. Higgs fields in the noncommutative description result minimaly coupled to the gauge field. Formally (covariant derivatives, minimal couplings) NCEM resembles commutative $U(N)$ YM, and on tori with rational θ the two theories are T-dual \[8\]. Self-duality of NCEM then hints to a possible duality symmetry of the equations of motion of $U(N)$ YM.

This paper is organized as follows. We first review Gaillard-Zumino self-duality condition and see that the D3-brane Lagrangian is self-dual \[3\]. We then present a simple argument showing why we need B and θ light-like in the zero slope limit. Finally we discuss self-duality of noncommutative Born-Infeld theory and NCEM.

Duality Rotations

Consider in four dimension and with metric g_E the Lagrangian density (Lagrangian for short)

$$\mathcal{L}(F_{\mu\nu}, g_E\mu\nu, \chi^i) = \sqrt{-g_E} L(F_{\mu\nu}, g_E\mu\nu, \chi^i)$$

where χ^i are some constant parameters that can possibly have space-time indices. If we define\[4\]

\[\Omega_{\mu\nu} = \frac{1}{2} \sqrt{-g_E} \epsilon_{\mu\nu\rho\sigma} \Omega^{\rho\sigma}, \quad \epsilon^{0123} = -\epsilon_{0123} = 1; \quad g_E \text{ has signature } (-, +, +, +).\]

We have $\Omega^{*\mu\nu} = -\Omega_{\mu\nu}$, $\Omega^{*\mu\nu} = \frac{1}{2} \sqrt{-g_E} \epsilon^{\mu\nu\rho\sigma} \Omega_{\rho\sigma}$.
\[K^{*\mu\nu} = \frac{\partial L}{\partial F_{\mu\nu}} \quad \left(\frac{\partial F^\rho_{\sigma}}{\partial F_{\mu\nu}} = \delta^\rho_\mu \delta^\nu_\sigma - \delta^\nu_\rho \delta^\mu_\sigma \right) \]

then the Bianchi identity and the equations of motion (EOM) for \(\mathcal{L} \) read

\[\partial_\mu (\sqrt{-g} F^{*\mu\nu}) = \partial_\mu \tilde{F}^{\mu\nu} = 0 , \]

\[\partial_\mu (\sqrt{-g} K^{*\mu\nu}) = \partial_\mu \tilde{K}^{\mu\nu} = 0 , \]

where \(\tilde{F}^{\mu\nu} \equiv \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} F_{\rho\sigma} \) and \(\tilde{K}^{\mu\nu} \equiv \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} K_{\rho\sigma} \). Under the infinitesimal transformations

\[\delta \begin{pmatrix} K \\ F \end{pmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} K \\ F \end{pmatrix} \]

the system of EOM (3) is mapped into itself. We can also allow the parameters \(\chi \) to vary

\[\delta \chi^i = \xi^i(\chi) , \]

then under (4),(5) the \(\mathcal{L}_\chi \) EOM (3) are mapped into the \(\mathcal{L}_{\chi+\delta\chi} \) EOM. Consistency of (4),(3) with the definition of \(K \), i.e. \(K + \delta K = \frac{\partial}{\partial (F+\delta F)} \mathcal{L}(F+\delta F, g, \chi+\delta \chi) \) holds in particular if \(\begin{pmatrix} A \\ B \\ C \\ D \end{pmatrix} \) belongs to the Lie algebra of \(SL(2,R) \), and the variation of the Lagrangian under (4),(5) can be written as

\[\delta \mathcal{L} \equiv (\delta F + \delta \chi) \mathcal{L} = \frac{1}{4} (BF\tilde{F} + CK\tilde{K}) . \]

When (8) holds, under a finite \(SL(2,R) \) rotation a solution \(F \) of \(\mathcal{L}_\chi \) is mapped into a solution \(F' \) of \(\mathcal{L}_{\chi'} \) and we say that \(\mathcal{L}_\chi \) is self-dual. A self-duality condition equivalent to (8) is obtained using (4) to evaluate the \(\delta_F \mathcal{L} \) term in (3)

\[\delta_\chi \mathcal{L} = \frac{1}{4} BF\tilde{F} - \frac{1}{4} CK\tilde{K} - \frac{1}{2} DF\tilde{K} . \]

If the \(\chi \) parameters are held fixed (strict self-duality) the maximal duality group is \(U(1) \) [7], see also the nice review [11]. Viceversa we can always extend a \(U(1) \) self-dual Lagrangian to a \(SL(2,R) \) self-dual one introducing two real valued scalars \(S = S_1 + iS_2 \) (axion and dilaton). If the Lagrangian \(\mathcal{L}(F) \) is self dual under \(U(1) \), then the new Lagrangian

\[\tilde{\mathcal{L}}(F,S) \equiv \mathcal{L}(S_2^2 F) + \frac{1}{4} S_1 F\tilde{F} , \]
where $\tilde{F} \equiv F_{\mu\nu} \tilde{F}^{\mu\nu}$, is self-dual under $SL(2, R)$ provided that $S = S_1 + iS_2$ transforms as

$$S' = \frac{aS + b}{cS + d} \quad \text{where} \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, R) . \quad (9)$$

The term in (8) proportional to S_1 is a total derivative if S_1 is constant; this term does not affect the EOM but enters the definition of K. To recover the original Lagrangian just set $S_1 = 0$ and $S_2 = 1$; the duality group is then $U(1)$, the $SL(2, R)$ subgroup that leaves $S_1 = 0$ and $S_2 = 1$ invariant.

We now discuss self-duality of the D3-brane effective action in a IIB supergravity background with constant axion, dilaton NS and RR two-forms. The background two-forms can be gauged away in the bulk and we are left with the field strength $\mathcal{F} = F + B$ on the D3-brane. Here B is defined as the constant part of \mathcal{F}, or $B = \mathcal{F}|_{\text{spatial } \infty}$ since F vanish at spatial infinity. For slowly varying fields the Lagrangian, in string and in Einstein frames, respectively reads

$$\mathcal{L} = -\frac{1}{\alpha' g_s} \sqrt{-\det(g + \alpha' \mathcal{F})} + \frac{1}{4} C \mathcal{F} \tilde{\mathcal{F}}$$

$$= -\frac{1}{\alpha'} \sqrt{-\det(g_E + \alpha' S_2^{1/2} \mathcal{F})} + \frac{1}{4} S_1 \mathcal{F} \tilde{\mathcal{F}}$$

$$= -\frac{1}{\alpha'} g_E \sqrt{1 + \frac{\alpha'^2}{2} S_2 \mathcal{F}^2 - \frac{\alpha'^4}{16} S_2^2 (\mathcal{F} \mathcal{F}^*)^2} + \frac{1}{4} S_1 \mathcal{F} \tilde{\mathcal{F}} \quad (10)$$

in the second line $S = S_1 + iS_2 = C + i g_s$ while, in the last line, we have simply expanded the 4x4 determinant and $\mathcal{F}^2 \equiv \mathcal{F}_{\mu\nu} \mathcal{F}^{\mu\nu}, \mathcal{F} \mathcal{F}^* \equiv \mathcal{F}_{\mu\nu} \mathcal{F}^{*\mu\nu}$.

Under the $SL(2, R)$ rotation

$$\begin{pmatrix} \mathcal{K}' \\ \mathcal{F}' \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \mathcal{K} \\ \mathcal{F} \end{pmatrix}, \quad \begin{pmatrix} aS + b \\ cS + d \end{pmatrix} \quad (\alpha')' = \alpha' \quad (11)$$

where $\tilde{\mathcal{K}} = \frac{\partial}{\partial \mathcal{F}} \mathcal{L}$, it is not difficult to directly check that the Lagrangian \mathcal{L} satisfies the self-duality condition (9) (with F, K replaced by \mathcal{F}, \mathcal{K}). For simplicity, we will later set $S_1 = 0$ and $S_2 = g_s = 1$. Then the duality group reduces to $U(1)$, moreover

\footnote{we omit the RR four-form C_4 because it is invariant under $SL(2, R)$ duality rotations. If \mathcal{L} is self-dual then also $\mathcal{L}_{D3} = \mathcal{L} + \tilde{\mathcal{C}}_4$ is self-dual (here $\tilde{\mathcal{C}}_4 = \frac{1}{24} \epsilon^{\mu\nu\rho\sigma} C_{\mu\nu\rho\sigma}$).}
string and Einstein frames coincide. The Lagrangian reduces to the Born-Infeld Lagrangian

$$\mathcal{L}_{BI} = -\frac{1}{\alpha'^2} \sqrt{- \det (g + \alpha' \mathcal{F})}.$$ (12)

Using (8) we can always recover the more general situation (10). The explicit expression of \mathcal{K} is

$$\mathcal{K}_{\mu\nu} = \frac{\mathcal{F}^*_{\mu\nu} + \frac{\alpha'^2}{4} \mathcal{F} \mathcal{F}^* \mathcal{F}_{\mu\nu}}{\sqrt{1 + \frac{\alpha'^2}{2} \mathcal{F}^2 - \frac{\alpha'^4}{16} (\mathcal{F} \mathcal{F}^*)^2}}.$$ (13)

From (11) and (13), one can extract how B (the constant part of \mathcal{F}) transforms

$$B'_{\mu\nu} = \cos \gamma B_{\mu\nu} - \sin \gamma \frac{B^*_{\mu\nu} + \frac{\alpha'^2}{4} BB^* B_{\mu\nu}}{\sqrt{1 + \frac{\alpha'^2}{2} B^2 - \frac{\alpha'^4}{16} (BB^*)^2}};$$ (14)

this transformation is independent from the slowly varying fields approximation.

Open/closed strings and light-like noncommutativity

The open and closed string parameters are related by (see [1], the expressions for G and θ first appeared in [10])

$$\frac{1}{g + \alpha' B} = G^{-1} + \frac{\theta}{\alpha'}$$

$$g^{-1} = (G^{-1} - \theta/\alpha') G (G^{-1} + \theta/\alpha') = G^{-1} - \alpha'^{-2} \theta G \theta$$

$$\alpha' B = -(G^{-1} - \theta/\alpha') \theta/\alpha' (G^{-1} + \theta/\alpha')$$

$$G_s = g_s \sqrt{\frac{\det G}{\det (g + \alpha' B)}} = g_s \sqrt{\det G \det (G^{-1} + \theta/\alpha')} = g_s \sqrt{\det g^{-1} \det (g + \alpha' B)}$$ (15)

The decoupling limit $\alpha' \to 0$ with G_s, G, θ nonzero and finite [1] leads to a well defined field theory only if B is space-like or light-like [3]. Looking at the closed and open string coupling constants it is easy to see why one needs this space-like or light-like condition on B. Consider the coupling constants ratio G_s/g_s, that expanding the 4x4 determinant reads (here $B^2 = B_{\mu\nu} B_{\rho\sigma} g^{\mu\rho} g^{\nu\sigma}, \theta^2 = \theta^{\mu\nu} \theta^{\rho\sigma} G_{\mu\rho} G_{\nu\sigma}$ and so on)

$$\frac{G_s}{g_s} = \sqrt{1 + \frac{\alpha'^{-2}}{2} \theta^2 - \frac{\alpha'^{-4}}{16} (\theta \theta^*)^2} = \sqrt{1 + \frac{\alpha'^2}{2} B^2 - \frac{\alpha'^4}{16} (BB^*)^2}.$$ (16)
Both G_s and g_s must be positive; since G and θ are by definition finite for $\alpha' \to 0$ this implies $\theta \theta^* = 0$ and $\theta^2 \geq 0$. Now $\theta \theta^* = 0 \Leftrightarrow \det \theta = 0 \Leftrightarrow \det B = 0 \Leftrightarrow BB^* = 0$. In this case from (16) we also have $\theta^2 = \alpha'^4 B^2$. In conclusion the $\alpha' \to 0$ limit defined by keeping G_s, G, θ nonzero and finite [1], is well defined iff

$$B^2 \geq 0, \quad BB^* = 0 \quad \text{i.e.} \quad \theta^2 \geq 0, \quad \theta \theta^* = 0 \quad (17)$$

This is the condition for B (and θ) to be space-like or light-like. Indeed with Minkowski metric (17) reads $\vec{B}^2 - \vec{E}^2 \geq 0$ and $\vec{E} \perp \vec{B}$.

If we now require the $\alpha' \to 0$ limit to be compatible with duality rotations, we immediately see that we have to consider only the light-like case $B^2 = BB^* = 0$. Indeed under $U(1)$ rotations the electric and magnetic fields mix up, in particular under a $\pi/2$ rotation (14) a space-like B becomes time-like.

In the light-like case, relations (15) simplify considerably. The open and closed string coupling constants coincide: $G_s = g_s = S_2^{-1} = 1$. Use of the relations

$$\Omega_{\mu\rho}^* \Omega^{*\rho\nu} - \Omega_{\mu\rho} \Omega^{\rho\nu} = \frac{1}{2} \Omega^2 \delta^\nu_\mu, \quad \Omega_{\mu\rho} \Omega^{*\rho\nu} = \Omega^*_{\mu\rho} \Omega^{\rho\nu} = -\frac{1}{4} \Omega \Omega^* \delta^\nu_\mu \quad (18)$$

valid for any antisymmetric tensor Ω, shows that any two-tensor at least cubic in θ (or B) vanishes. It follows that $g^{-1} G \theta = \theta$ and that the raising or lowering of the θ and B indices is independent from the metric used. We also have

$$B_{\mu\nu} = -\alpha'^{-2} \theta_{\mu\nu} \quad . \quad (19)$$

Self-duality of NCBI and NCEM

We now study duality rotations for noncommutative Born-Infeld (NCBI) theory and its zero slope limit that is NCEM. The relation between the NCBI and the BI Lagrangians is [1]

$$\hat{L}_{\text{BI}}(\hat{F}, G, \theta, G_s) = L_{\text{BI}}(F + B, g) + O(\partial F) + \text{tot. der.} \quad (20)$$

where $O(\partial F)$ stands for higher order derivative corrections, \hat{F} is the noncommutative $U(1)$ field strength and we have set $g_s = 1$. The NCBI Lagrangian is

$$\hat{L}_{\text{BI}}(\hat{F}, G, \theta, G_s) = \frac{-1}{\alpha'^2 G_s} \sqrt{-\det(G + \alpha' \hat{F})} + O(\partial \hat{F}) \quad . \quad (21)$$

In the slowly varying field approximation the action of duality rotations on \hat{L}_{BI} is derived from self-duality of L_{BI}. If \hat{F} is a solution of the $\hat{L}_{\text{BI}}^{G_s, G, \theta}$ EOM then \hat{F}^ν
obtained via $\hat{F} \overset{\text{SW map}}{\leftrightarrow} F \overset{\text{duality rot.}}{\leftrightarrow} F' \overset{\text{SW map}}{\leftrightarrow} \hat{F}'$ is a solution of the $\hat{\mathcal{L}}_{\text{BI}}^{G',G',\theta'}$ EOM where G', G', θ' are obtained using (15) from g', B' and $g' = g_s = 1$.

In the light-like case we have $G_s = g_s = 1$, the B rotation (14) simplifies to

$$B'_{\mu\nu} = \cos\gamma B_{\mu\nu} - \sin\gamma B^*_{\mu\nu} ,$$

using (11) and (22) the $U(1)$ duality action on the open string variables is

$$G' = G , \quad \theta'^{\mu\nu} = \cos\gamma \theta^{\mu\nu} - \sin\gamma \theta^*^{\mu\nu} .$$

For θ light-like, solutions \hat{F} of $\hat{\mathcal{L}}^{G,\theta}$ are mapped into solutions \hat{F}' of $\hat{\mathcal{L}}^{G',\theta'}$ and therefore $\hat{\mathcal{L}}^{G,\theta}$ is self-dual. Moreover, by a rotation in three dimensional space we can map θ' into θ. In order to show self-duality of NCEM we consider the zero slope limit of (20) and verify that the resulting lagrangian on the r.h.s. of (20) is self-dual. We rewrite \mathcal{L}_{BI} in terms of the open string parameters G, θ

$$\mathcal{L}_{\text{BI}} = -\frac{1}{\alpha'^2} \sqrt{-\det(g + \alpha' F)} = -\frac{1}{\alpha'^2} \sqrt{\frac{\det(g + \alpha' B + \alpha' F)}{\det(g + \alpha' B)}}$$

$$= -\frac{1}{\alpha'^2} \sqrt{-\det(G + \alpha' F + G\theta F)} .$$

(24)

The determinant in the last line can be evaluated as sum of products of traces (Newton-Leverrier formula). Each trace can then be rewritten in terms of the six basic Lorentz invariants $F^2, FF^*, F\theta, F\theta^*, \theta^2 = \theta\theta^* = 0$, explicitly

$$\det G^{-1} \det (G + \alpha' F + G\theta F) = (1 - \frac{1}{2} \theta F)^2 + \alpha'^2 \left[\frac{1}{2} F^2 + \frac{1}{4} \theta F^* FF^* \right] - \alpha'^4 \left(\frac{1}{4} FF^* \right)^2$$

Finally we take the $\alpha' \to 0$ limit of (24), drop the infinite constant and total derivatives and denote by $\mathcal{L}_\theta^{\alpha' \to 0}$ the resulting Lagrangian

$$\mathcal{L}_\theta^{\alpha' \to 0} = -\frac{1}{4} F^2 - \frac{1}{2} \theta F^* FF^* .$$

(25)

We thus have an expression for NCEM in terms of G, θ and F

$$\hat{\mathcal{L}}_{\text{EM}} \equiv -\frac{1}{4} \hat{F}^2 = \mathcal{L}_\theta^{\alpha' \to 0} + O(\partial F) + \text{tot. der.}$$

(26)

The Lagrangian (25) satisfies the self-duality condition (7) with $\chi = \theta$ and $A=D=0, \ C= -B$ and therefore NCEM is self-dual under the $U(1)$ duality rotations (23) and $\hat{F}' = \cos\gamma F - \sin\gamma K$.
Acknowledgements

I am indebted with Sergei M. Kuzenko and Stefan Theisen for many enlighten-
ing discussions. I wish to thank Branislav Jurčo, John Madore, Peter Schupp
and Harold Steinacker for fruitful discussions, and the organizers of the conference
for the stimulating atmosphere. This work has been supported by Alexander von
Humboldt-Stiftung.

References

[1] N. Seiberg and E. Witten, JHEP 9909 (1999) 032 [hep-th/9908142].

[2] N. Seiberg, L. Susskind and N. Toumbas, JHEP 0006 (2000) 044 [hep-
th/0005017].
 J. L. Barbon and E. Rabinovici, Phys. Lett. B 486 (2000) 202 [hep-th/0005073].
 J. Gomis and T. Mehen, Nucl. Phys. B 591 (2000) 265 [hep-th/0005123].

[3] O. J. Ganor, G. Rajesh and S. Sethi, Phys. Rev. D 62 (2000) 125008 [hep-
th/0005046].

[4] O. Aharony, J. Gomis and T. Mehen, JHEP 0009 (2000) 023 [hep-th/0006236].

[5] R. Gopakumar, J. Maldacena, S. Minwalla and A. Strominger, JHEP 0006
 (2000) 036 [hep-th/0005048].

[6] S. Rey and R. von Unge, Phys. Lett. B 499 (2001) 215 [hep-th/0007089].
 J. X. Lu, S. Roy and H. Singh, Nucl. Phys. B 595 (2001) 298 [hep-th/0007168].

[7] M. K. Gaillard and B. Zumino, Nucl. Phys. B 193 (1981) 221.

[8] A. Schwarz, Nucl. Phys. B 534 (1998) 720 [hep-th/9805034].
 D. Brace, B. Morariu and B. Zumino, Nucl. Phys. B 545 (1999) 192 [hep-
th/9810099].

[9] A. A. Tseytlin, Nucl. Phys. B 469 (1996) 51 [hep-th/9602064].
 T. Kimura and I. Oda, Duality of super D-brane actions in general type II
 supergravity background, [hep-th/9904019].

[10] C. Chu and P. Ho, Nucl. Phys. B 550 (1999) 151 [hep-th/9812213].

[11] S. M. Kuzenko and S. Theisen, Fortsch. Phys. 49 (2001) 273 [hep-th/0007231].