Illsley-Kemp, F., Bull, J. M., Keir, D., Gerya, T., Pagli, C., Gernon, T., Ayele, A., Goitom, B., Hammond, J., & Kendall, J. M. (2018). Initiation of a Proto-transform Fault Prior to Seafloor Spreading. Geochemistry, Geophysics, Geosystems, 19(12), 4744-4756. https://doi.org/10.1029/2018GC007947
Supporting Information For Initiation of a Proto-Transform Fault Prior to Seafloor Spreading

F. Illsley-Kemp¹,², J. M. Bull¹, D. Keir¹,³, T. Gerya⁴, C. Pagli⁵, T. Gernon¹, A. Ayele⁶, B. Goitom⁷, J. O. S. Hammond⁸, and J. M. Kendall⁷.

¹National Oceanography Centre Southampton, University of Southampton, Southampton, United Kingdom
²School of Geography, Environment and Earth Sciences, Victoria University of Wellington, Wellington, New Zealand
³Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Florence, Italy
⁴Institute of Geophysics, ETH Zürich, Zürich, Switzerland
⁵Dipartimento di Scienze della Terra, Università di Pisa, Pisa, Italy
⁶Institute of Geophysics Space Science and Astronomy, Addis Ababa University, Addis Ababa, Ethiopia
⁷School of Earth Sciences, University of Bristol, Bristol, United Kingdom
⁸Institute of Geophysics Space Science and Astronomy, Addis Ababa University, Addis Ababa, Ethiopia

Corresponding Author: Finnigan Illsley-Kemp, finnigan.illsleykemp@vuw.ac.nz

Contents of this file

1. Figures S1 to S2
2. Tables S1

Additional Supporting Information (Files uploaded separately)

1. Captions for Dataset S1: This spreadsheet contains details of the mapped faults in the Giulietti Plain region.

November 28, 2018, 9:34pm
Introduction

The supporting information contains further figures detailing the data used in the 3-D velocity field inversion, the principal axes of horizontal shear strain, and the initial setup for the thermomechanical numerical model. In addition, it contains Table S1 which details the results of the numerical modelling under different starting conditions.
Figure S1. Data set and mesh used in the 3-D velocity field inversion for Afar. Taken from Pagli et al. (2014). Black rectangles delineate the InSAR tracks, black triangles are GPS sites (Kogan et al., 2012; McClusky et al., 2010; Saria et al., 2014; Vigny et al., 2007, 2006).
Table S1. Table of results from numerical modelling. Nu is the Nusselt number which controls hydrothermal circulation (Gerya, 2013), γ_0 is the upper strain limit for fracture-related weakening, max viscosity is the upper limit of the viscosity of the lithosphere. **Abbreviations:** SC = spreading centre, PTF = proto-transform fault, TF = transform fault (spreading-parallel), ORTP = orthogonal ridge-transform pattern, IRTP = inclined ridge-transform pattern, ZOT = zero offset transform (zero offset fracture zone).

Run	Continental Crust Density (kg/m³)	Mantle T (°C)	Nu	Max. Viscosity (Pa s)	Final Water Depth (km)	Offset (km)	Perturbations Length (km)	Initial Rifting Pattern	Young Spreading Pattern (2–5 Myr)	Mature Spreading Pattern (5–20 Myr)
afaa	3000	1300	2	1	10²¹	0	20	40	SCs facing each other	ORTP with two TF with intra-transform spreading centre
afab	3000	1300	2	1	10²¹	0	40	40	SCs linked by oblique PTF	ORTP with intra-transform spreading centre
afaba	3000	1300	1	1	10²¹	0	40	40	SCs linked by oblique PTF	ORTP
afabb	3000	11300	2	1	10²¹	0	40	40	SCs linked by oblique PTF	ORTP
afabc	3000	1300	2	mantle 1 crust 0.5	10²¹	0	40	40	SCs linked by oblique PTF	ORTP
afabx	3000	1350	2	1	10²¹	0	40	40	SCs linked by oblique PTF	ORTP with decreasing offset between SCs, ORTP
afaby	3000	1400	2	1	10²¹	0	40	40	SCs linked by oblique PTF	ORTP with decreasing offset between SCs, ORTP
afabz	3000	1450	2	1	10²¹	0	40	40	SCs linked by oblique PTF	ORTP with decreasing offset between SCs, ORTP
afac	3000	1300	2	1	10²¹	0	40	40	SCs linked by oblique PTF	ORTP with decreasing offset between SCs, ORTP
afad	3000	1300	2	1	10²¹	0	40	40	SCs linked by oblique PTF	ORTP with decreasing offset between SCs, ORTP
afae	3000	1300	2	1	10²¹	0	40	40	SCs linked by oblique PTF	ORTP with decreasing offset between SCs, ORTP
afaei	2800	1300	2	mantle 1 crust 10	10²¹	3	40	40	SCs linked by oblique PTF	ORTP with intra-transform spreading centre
afaej	2800	1300	2	mantle 1 crust 3	10²¹	3	40	40	SCs linked by oblique PTF	ORTP with intra-transform spreading centre
afe	2800	1300	2	mantle 1 crust 2	10²¹	3	40	40	SCs linked by oblique PTF	ORTP with intra-transform spreading centre
Figure S2. Initial model setup and boundary conditions for 3D thermomechanical numerical experiments simulating rifting in Northern Afar. Boundary conditions are constant spreading rate in x-direction ($v_{\text{spreading}} = v_{\text{left}} + v_{\text{right}}$, where $v_{\text{left}} = v_{\text{right}}$) and compensating vertical influx velocities through the upper and lower boundaries (v_{top} and v_{bottom}) are chosen to ensure conservation of volume of the model domain and constant average 5 km thickness of the air layer $[(v_{\text{top}} + v_{\text{bottom}})/50 = (v_{\text{left}} + v_{\text{right}})/98]$, where $v_{\text{top}}/5 = v_{\text{bottom}}/45$; front and back boundaries in the x-y plane are free slip. The weak 5 km thick air/water layer has a low density (1 kg/m3 above 5 km and 1000 kg/m3 below 5 km, where 5 km is the assumed water level) and a viscosity of 10^{18} Pa s to ensure small stresses (<105 Pa) along the upper plate interface. The symmetric initial thermal structure is perturbed in two places where offset linear thermal anomalies (weak seeds) A and B are prescribed by an elevated geotherm. Thermal boundary conditions are insulating (zero heat flux) on all boundaries with except of the upper and lower boundaries, over which a constant temperature of 273 K and 1600 K is prescribed, respectively.