miR-146a regulates TLR1/2 and 4 induced inflammation and links it with proliferation in human SZ95 sebocytes

Katalin Dull
Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen

Dávid Deák
Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen

Fruzsina Fazekas
Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen

Dóra Kovács
Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen

Szilárd Póliska
Department of Biochemistry and Molecular Biology, Genomic Medicine and Bioinformatics Core Facility, Faculty of Medicine, University of Debrecen, Debrecen

Andrea Szegedi
Division of Dermatological Allergology, Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen

Christos Zouboulis
Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, Dessau

Dániel Töröcsik (dtorocsik@gmail.com)
Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen

Research Article

Keywords: Toll-like Receptors, Acne, mRNA expression, Sebaceous Glands, Chemoattractant Potential

DOI: https://doi.org/10.21203/rs.3.rs-125647/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Activation of Toll-like receptors (TLR) 1/2 and 4 are central in inducing inflammation in sebocytes and in the pathogenesis of acne by regulating the expression of protein coding mRNAs, however the microRNA (miRNA) profile in response to TLR activation and thus the possible role of miRNAs in regulating sebocyte functions has not been elucidated. In this work therefore, we aimed to identify the miRNA with the most abundant induction and to reveal its role in TLR1/2- and 4-activated SZ95 sebocytes. We found that miR-146a, detected with increased expression also in sebaceous glands of acne samples, showed the highest induction levels in the activated sebocytes. When exploring its role, we found that the increased levels of miR-146a led to the down-regulation of IL-8 secretion, decreased the chemoattractant potential and stimulated the proliferation of sebocytes, whereas the latter may be affected by GNG7 down-regulation. According to our results miR-146a may be a potential player in acne pathogenesis by regulating inflammation and by providing a link between inflammation and sebocyte proliferation.

Introduction

Toll-like receptors (TLRs) belong to the family of pattern-recognition receptors and are key players in the innate immune system to selectively sense the presence of various microorganisms. Importantly, elevated expression of TLR2 and TLR4 were reported in acne-involved skin, suggesting that these pathways may also be involved in acne pathogenesis. While TLR2 recognizes peptidoglycans, lipoproteins, lipoarabinomannans and short-chain fatty acids from Gram-positive bacteria, TLR4 is activated by the Gram-negative bacterial component lipopolysaccharide (LPS). Interestingly lipids, such as saturated fatty acids, are also able to activate both TLR2 and TLR4. Indeed, products of Propionibacterium acnes (P. acnes), a Gram-positive, anaerobic bacterium, which behaves both as commensal and pathogen in acne skin, and several sebaceous lipids, among them palmitic acid, whose altered ratios were detected in acne patients, are possible TLR activators in acne lesions.

Sebaceous glands are known for their primary role to secrete and metabolize lipids leading to the production of sebum to moisturize the hair and the skin, which feature is regulated by a wide repertoire of stimuli such as hormones, lipids and pathogens both in physiological as well as in disease settings. However, with a great number of proteins and lipids that exert inflammatory properties, sebocytes are also actively involved in shaping the inflammatory environment, in which their activation through TLRs might play a central role. Supporting this postulate, our previous genome wide gene expression study has shown that sebocytes are able to rapidly gain and prioritize an immune-competent status in response to TLR1/2 and/or TLR4 activation at the level of mRNA expression.

MicroRNAs (miRNA) are small non-coding RNAs also selectively transcribed from the genome under various conditions. In contrast to mRNAs they do not encode proteins but control gene expression by binding and destabilizing their target mRNA. Therefore, they can regulate transcriptional and post-
transcriptional gene expression. In human sebocytes, miRNA presence was confirmed and was proven essential for lipogenesis, but without providing any disease-specific conclusions on their possible role.

In the present study, we aimed to extend our knowledge on the gene expression regulation and profile of TLR-activated sebocytes and investigated the role of miRNAs in it. We found that in TLR1/2- and 4-activated sebocytes, miRNAs had altered expression levels, with miR-146a showing the most prominent upregulation. Confirming that sebaceous glands of acne samples also exhibited high expression levels of miR-146a, we aimed to define a possible pathophysiological role for miR-146a in sebocytes. Our results suggest that miR-146a may not only regulate TLR-induced inflammation in sebocytes but could be a missing link in connecting it with hyperproliferation, which may have both pathological and therapeutic implications in sebaceous gland-associated diseases, such as acne.

Results

miR-146a shows the most prominent induction in TLR1/2 and 4-stimulated SZ95 sebocytes

Sebocytes are able to sense and respond to different TLR stimuli, making them an active player in a pathogen-associated inflammatory environment. To investigate the change in their miRNA profile in such a response, we applied two different TLR activators, PAM3CSK4 (TLR1/2 activator) and LPS (TLR4 activator), to treat human SZ95 sebocytes. Performing genome wide expression studies in samples treated for 24 h, 23 microRNA responded to PAM3CSK treatment, while 54 miRNA were significantly upregulated after LPS treatment (Supplementary Table 1). Both TLR activators induced common significant elevation of 14 miRNA expression levels (Fig. 1a), of which miR-146a showed the most abundant values (Fig. 1b). This significant increase in the levels of miR-146a could also be detected by in situ hybridization in TLR1/2- and 4-activated SZ95 sebocytes (Fig. 1c).

miR-146a is elevated in sebaceous glands of human acne tissue samples

To provide a biological relevance for our finding, we performed in situ hybridization against miR-146a in 5 acne vulgaris and 5 normal skin samples from the back of young male adults. While in normal skin, miR-146a was detectable with low-intensity homogeneous staining, a more intense, mainly granular staining was observed in sebaceous glands of acne tissue samples (Figure 2.).

miR-146a decreases IL-8 secretion and negatively regulates the chemoattractant potential of SZ95 sebocytes

To assess the possible role of miR-146a, we focused on the functional analysis of SZ95 sebocytes transfected with the hsa-miR-146a inhibitor, hsa-miR-146a mimic, or negative controls for 72 h.
First, we measured the secreted interleukin 8 (IL-8) levels from supernatants, which are known to be negatively regulated by miR-146a \(^{26}\), 72 h after transfection by ELISA. Cells transfected with mimic sequence secreted significantly lower amount of IL-8 (481.3±32.7 versus control 1178.4±57.2 pg/ml, p-value: 0.002), while the inhibition of the microRNA resulted in elevated IL-8 secretion (1056.1±36 versus 813.5±55.5 pg/ml) (Fig. 3a), confirming its negative regulatory role in the inflammatory response also of sebocytes.

As IL-8 is an important chemokine in immune cell migration, we examined the migratory capacity of peripheral blood monocytes towards supernatants of transfected SZ95 sebocytes. We observed a lower migration to mimic-transfected and an increased migration towards miR-146a inhibitor treated SZ95 sebocyte supernatants, showing that miR-146a may have a negative regulatory role on monocyte chemoattraction under inflammatory conditions (Fig. 3b).

miR-146a regulates cell proliferation but not lipid production of SZ95 sebocytes

To examine the role of miR-146a in sebocyte proliferation and lipid production of cells treated with hsa-miR-146a inhibitor, hsa-miR-146a mimic, or negative controls for 72 h, we analyzed the cell numbers in different cell cycle phases using DNA content histograms and applied Oil Red O staining to detect lipids.

When incubated with miR-146a mimic sequence, the proportion of cells in G2 and M phases increased with a significant decrease in S phase (P<0.05) and a slight decrease in G0 and G1 phases in comparison with control (Fig. 3c), showing that cell proliferation is stimulated by higher miR-146a levels. Transfecting SZ95 sebocytes with miR-146a inhibitor, the cell proportion in the S phase increased and the G0/G1 population decreased, suggesting that the mitotic machinery itself was activated but might be blocked in S phase. According to the DNA histogram, a peak of apoptotic cells was also observed following miRNA inhibitor treatment.

Lipid measurements found a slight, but statistically not significant decrease in the lipid content of miRNA inhibitor-treated cells and no change in cells treated with the mimic sequence (Fig. 3d).

Whole transcriptome analysis with clustering revealed changes in genes related to inflammation and cell proliferation in miR-146a inhibitor-treated SZ95 sebocytes

To detect how levels of miR-146a could impact changes at the level of gene expression in sebocytes, we performed whole transcriptome analysis of inhibitor-treated cells at 72 h and found that 330 genes were upregulated, while 311 genes were downregulated. Functional gene clustering confirmed that the altered levels of miR-146a in sebocytes may lead to changes in immune response, in apoptosis and cell proliferation-related pathways. Importantly, genes could not be clustered into lipid production, which was in line with our lipid detection studies (Fig. 4).
miR-146a levels in sebocytes lead to changes in the expression of GNG7

According to the transcriptome analysis, G protein gamma 7 (GNG7), found also to contribute to a great number of the functional clusters, had one of the most robust upregulation following miR-146a inhibition (Fig. 5a). The miR-146a mediated expression changes of GNG7 could be further confirmed by qPCR and in situ hybridization in SZ95 sebocyte cultures transfected with mimic, inhibitor and control sequences (Fig. 5b-c), suggesting a central role for GNG7 in miR-146a-induced signaling.

To assess if GNG7 mRNA could be also detected in vivo, in situ hybridization was performed on human acne and normal skin samples. The presence of GNG7 mRNA could be visualized in sebaceous glands of normal skin, while in acne samples, in which elevated miR-146a levels were shown, it could not be detected (Fig. 5d).

Discussion

The application of a system-based approach of whole genome sequencing of SZ95 sebocytes, treated with specific and selective TLR1/2 and TLR4 activators, provided evidence that miRNAs are selectively induced in sebocytes upon TLR activation. Moreover, identifying miR-146a as the miRNA with the most abundant induction with an increased expression also in the sebaceous glands of acne samples, our work is the first to identify a miRNA, which is increased in sebaceous glands in a disease setting. Characterizing sebocytes with altered levels of miR-146a, we showed that miR-146a is not only a marker for activation, but could have a regulatory role on basic cellular functions as well.

In line with our previous results, showing that TLR1/2 and TLR4 pathways induced a similar change in the mRNA profile of sebocytes, miRNAs also changed similarly in response to the used activating agents. This finding further supports our previously raised hypothesis that these pathways and the related changes are not stimulus-/pathogen-specific in sebocytes as these receptors can be activated with a wide range of stimuli both of pathogenic and of non-pathogenic origin. In other words, sebocytes use these receptors to sense changes in their environment, such as an altered microbiome or the presence of lipids, which activation needs to be further modulated to gain its disease specific role. Based on our results miR-146a could represent a negative regulator, just as it is observed in various cell types of lymphoid, myeloid and of non-immune origin, where miR-146a decreases the production of inflammatory cytokines.

Regarding dermatological diseases, increased levels of miR-146a was already confirmed in keratinocytes of atopic dermatitis and psoriasis samples, with a suggested role to regulate inflammation. In psoriasis, its genetic alterations even showed an association with disease severity. Importantly, higher levels of miR-146a was also detected in keratinocytes of acne samples, where it may down-regulate P. acnes-induced production of IL-6, -8, and TNF-α by inhibiting the TLR2/IRAK1/TRAF6/NF-κB and MAPK pathways. Our findings that miR-146a was also highly expressed in sebaceous glands of acne samples, confirms that miR-146a may be involved in acne also at the level of sebocytes and adds further
important details on the immune-competence of this cell type. Therefore, the most interesting finding of the induction of the TLR-miR-146a axis in sebocytes may result in a decreased production of IL-8, a cytokine characteristic in acne-related inflammation, and a decreased chemoattractant potential of sebocytes, a feature that was recently reported by our group19. Speculating on the \textit{in vivo} relevance of this finding, it is reasonable to put forward that the increased levels of miR-146a in sebocytes could serve as a negative regulator of inflammation in acne lesions with an impact on the production of inflammatory cytokines and the number of infiltrating immune cells.

Further important result of our studies was the role of miR-146a to regulate the proliferation of sebocytes. By showing that the proliferation and apoptosis of sebocytes were dependent on the levels of miR-146a, the increased levels led to an increased proliferation while decreased ones to apoptosis, may bring us closer to understand the morphological and functional changes of sebaceous glands observed under inflammation. Although there was no evidence for an altered lipid metabolism in our results, a recent publication32 reported that the pathogenetic basis of acne is the alteration in sebocyte differentiation. The less differentiated and with that the more proliferating the sebocytes are the more they are responding to regulatory stimuli. It is intriguing to put forward that the promoted cell proliferation due to the increased levels of miR-146a may sensitize sebocytes to regulatory stimuli both of pathogenic and of therapeutic relevance that need further characterization.

Our unbiased strategy of whole transcriptome analysis performed on sebocytes treated with a specific miR-146a inhibitor, revealed that miR-146a may also influence the gene expression profile of sebocytes. Although the exact mechanisms remain to be elucidated, in inhibitor-treated sebocytes, pathways with pivotal roles in sebocyte functions, such as Wnt, EGF or insulin signalling, might be altered at the level of transcription33. These results showed that the complex changes induced by miR-146a may go beyond altering the inflammatory properties of sebocytes. Based on the fold change values, the functional clustering of the differentially expressed genes and the \textit{in situ} hybridization studies, GNG7 came into the focus showing an opposite regulation with miR-146a both in sebocytes and in sebaceous glands of acne samples, in which the expression of miR-146a increased while GNG7 had a lower expression. GNG7, predominantly expressed in nervous tissue34, inhibits cell proliferation, promotes cell differentiation and induces cell death by inhibiting mTOR signalling35,36, with so far little data on its involvement in skin. Considering that the activation of mTOR pathway is also central in the regulation of sebocyte proliferation and maturation, and its induction by various agents is central in the development of acne37–40, further studies are needed to identify in more details the contribution of GNG7 to sebocyte biology and how its decreased levels may be involved in disease pathogenesis (Fig 6).

In summary, our findings deliver novel data, that in the active role of sebocytes to shape the inflammatory environment, miRNAs are also utilized. Moreover, our results also point on the therapeutic relevance which the modulation of miR-146a levels may deliver to acne therapy by targeting inflammation and cell proliferation at the same time.
Methods

Cells, transfection and treatment

Immortalized human SZ95 sebocytes were maintained as adherent culture at 37°C in a humidified chamber containing 5% (v/v) CO₂ in Sebomed basal medium (Sigma-Aldrich, St. Louis, MO, USA) as previously described 41.

For microRNA profiling, SZ95 cells were treated with 1 μg/ml PAM3CSK4 (TLR1/2 activator; dissolved in sterile water; Cat. no.: TLRL PMS, InvivoGen, San Diego, CA, USA) and 1 μg/ml LPS (TLR4 activator; derived from Escherichia coli; dissolved in sterile water; Cat. no.: L4391, Sigma-Aldrich) for 24 h.

For studies on transfected cells, SZ95 sebocytes were transfected with 25 nM hsa-miR-146a-5p power inhibitor or negative control (Qiagen, Hilden, Germany), and 1 nM hsa-miR-146a-5p mimic (Ambion, Austin, TX, USA) or negative control using Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA) at 50000 cells/well seeding density on 24 well plates. All experiments were carried out in triplicates. Cells and supernatant were harvested at 72 h post-transfection for further analysis.

Histological samples

Formalin-fixed and paraffin-embedded (FFPE) human skin tissue samples from the Department of Dermatology, University of Debrecen were used after approval of the Regional and Institutional Ethics Committee, Clinical Center, University of Debrecen (Approval ID: UD REC/IEC No. 4103-2014). The study was conducted according to the guidelines of the Declaration of Helsinki. Normal control skin samples were selected from the archive of the Department of Dermatology. Specimens from subjects with papulopustular acne were surgically resected from the back area, fixed in 10% buffered formaldehyde for 24 h, and processed routinely into paraffin blocks. Informed consent was obtained from all subjects involved in the study. Five normal and five acne vulgaris skin samples were evaluated.

ELISA

Secreted IL-8 protein levels were quantified with IL-8 DuoSet ELISA Kit (R&D Systems, Minneapolis, MS, USA) according to the manufacturer’s instructions. Supernatants were collected after 72 h of transfection, centrifuged and stored at -20°C until use. 3,3’,5,5’-Tetramethylbenzidine (TMB, Sigma-Aldrich) was used as visualizing reagent, substrate reaction was stopped with 1M H₂SO₄. Optical density was measured with Epoch microplate spectrophotometer (BioTek, Winooski, VT, USA) at the wavelength of 450 nm.

RT-qPCR and RNA sequencing

Total RNA was extracted using TriReagent (Molecular Research Center, Cincinnati, OH, USA) according to the provided protocol. RNA concentration and purity were measured with Nanodrop 2000 (Thermo

Page 7/14
Before reverse transcription (RT)-quantitative polymerase chain reaction (qPCR), total RNA was reverse transcribed using High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA, USA) with random primers. Gene expression levels were analyzed using QuantStudio 12K Flex Real-Time PCR System (Applied Biosystems) using SYBR Green master mix (Roche, Basel, Switzerland) for GNG7 (forward primer 5'-3': GACAATGTCAGCCACTAACAACA; reverse primer 5'-3': CAGTAGCTCATGAGGTCAGACG). Expression levels were normalized against PPIA (forward primer 5'-3': CAGTGCTCAGAGCTCGAAAGT; reverse primer 5'-3': GTGTTCTTCGACATCACGGC) using the comparative Ct method.

RNA-Seq method

Small RNA-Seq sequencing libraries were generated from 1µg total RNA using NEBNext Multiplex Small RNA Prep Set for Illumina (1-48) 96 rxn kit (New England BioLabs, Ipswich, MA, USA), according to the manufacturer’s protocol. Fragment size distribution and molarity of libraries were checked on Agilent BioAnalyzer DNA1000 chip (Santa Clara, CA, USA). Then single read 50bp sequencing run was performed on Illumina NextSeq 500 instrument (San Diego, CA, USA).

To obtain global transcriptome data high throughput mRNA sequencing analysis was performed on Illumina sequencing platform as described previously. Total RNA sample quality was checked on Agilent BioAnalyzer using Eukaryotic Total RNA Nano Kit according to the manufacturer’s protocol. Samples with RNA integrity number value >7 were accepted for library preparation process. RNA-Seq libraries were prepared from total RNA using Ultra II RNA Sample Prep kit (New England BioLabs) according to the manufacturer’s protocol. Briefly, poly-A RNAs were captured by oligo-dT conjugated magnetic beads then the mRNAs were eluted and fragmented at 94°C for 15 minutes. First strand cDNA was generated by random priming reverse transcription and after second strand synthesis step double-stranded cDNA was generated. After repairing ends and adapter ligation steps, adapter-ligated fragments were amplified in enrichment polymerase chain reaction and finally, sequencing libraries were generated. The sequencing run was executed on Illumina NextSeq500 instrument using single-end 75 cycle sequencing.

RNA-Seq data analysis

Raw sequencing data was aligned to human reference genome version GRCh37 using HISAT2 algorithm and BAM files were generated. Downstream analysis was performed using StrandNGS software (version 2.8, build 230243; Strand Life Sciences, Bangalore, India). BAM files were imported into the software, DESeq1 algorithm was used for normalization. Sequencing data have been deposited into the GEO database (PRJNA673828). mRNA levels with 1.3/-1.3 fold-change or higher/less were stated as
significantly changed. Pathway analysis was performed with the PANTHER Classification System (version 15.0)\(^{44,45}\).

Cell proliferation assay

SZ95 cells were collected at 72 h post-transfection by trypsinization, washed in 1x phosphate buffered saline (PBS), permeabilized, and fixed with 70% cold ethanol for 30 min at 4°C. Cells were treated with 200 ng/µl RNase (Invitrogen) for 45 minutes at 37°C and stained with 5 ng/ml propidium iodide (Invitrogen). Cell cycle phases were assessed with FACSARia flow cytometer (BD Biosciences, San Jose, CA, USA) and FlowJo software (version X.0.7 BD Biosciences) based on the DNA histogram.

Lipid content analysis

Intracellular lipid content was measured by Oil Red O staining 72 h after transfection on 96-well plates. Cells were fixed in 10% buffered formaldehyde for 15 min, washed twice with PBS, and stained with Oil Red O (Sigma-Aldrich, 3:2 parts of 0.6% Oil Red O dye dissolved in isopropanol and distilled water) for 15 min. After washed three times with distilled water, Oil red O was washed out with isopropanol, and absorbance was measured with Epoch microplate spectrophotometer (BioTek) at the wavelength of 510 nm.

Chemotaxis cell migration assay

Monocytes were isolated from whole blood of healthy donors by density centrifugation (Ficoll, Paque Plus, GE Healthcare, Chicago, IL, USA), CD14 microbeads (Miltenyi Biotech, Bisley, UK), resuspended in RPMI 1640 medium (Invitrogen) supplemented with 1 v/v% L-glutamine (Sigma-Aldrich) and 0.5 v/v% Antibiotic-Antimycotic (penicillin, amphotericin-B, streptomycin, BioSera, Nuaille, France). \(1\times10^5\) isolated monocytes were added to the top of a 5 µm pore cell migration chamber plate (Chemicon QCM 96-well chemotaxis cell migration assay, Temecula, CA, USA). Feeder trays were loaded with supernatants of SZ95 cells transfected with miR-146a-5p mimic, inhibitor or control sequences in triplicates. After 24 h at 37°C with 5% CO\(_2\) migrated cells were harvested, lysed and stained with CyQuant GR (Chemicon). Fluorescence was measured with Epoch microplate reader (BioTek) at the wavelength of 520 nm.

Chromogenic in situ hybridization (CISH)

CISH was performed on 5 µm thick FFPE sections from acne, normal skin specimens and air dried, Carnoy’s-fixed (methanol:acetic acid 3:1, -20°C for 5 min) SZ95 sebocyte preparations with 120 nM
double-digoxigenin labeled hsa-miR-146a-5p, GNG7 mRNA and scramble negative control locked nucleic acid (LNA, Qiagen) detection probes according to the manufacturer's instructions. Sections were treated with 2xproteinase K solution (miRNA ISH Buffer Set, Qiagen) for 15 min, then 120 nM of previously linearized (90ºC for 4 min) probe mix diluted in 1xISH buffer (miRNA ISH Buffer Set, Qiagen) was applied. Hybridization was performed at 54ºC with hsa-miR-146a-5p, 54ºC with GNG7 and 57ºC with scramble negative control LNA probe for 60 min in a hybridization chamber (StatSpin ThermoBrite, Abbott Molecular, Chicago, IL, USA). For visualization alkaline phosphatase conjugated anti-DIG antibody (Roche) and 4-nitro-blue tetrazolium/5-bromo-4-chloro-indolylphosphate (NBT/BCIP, Roche) AP chromogen substrate was applied for 2 h at 30ºC. Slides were counterstained with liquid-stable nuclear fast red (VWR, Radnor, PA, USA), covered with Eukitt mounting medium (Sigma-Aldrich), coverglossed, and imaged using a Leica DM200LED (Leica, Wetzlar, Germany) microscope.

Statistical evaluation

Values are presented as mean ± SEM. All experiments have been performed in triplicate. P values were calculated using Mann-Whitney test, *P < 0.05; **P < 0.01; ***P < 0.001 considered as statistically significant.

Data availability

RNA sequencing data have been deposited into the GEO database under accession number PRJNA673828. Authors can confirm that all relevant data are included in the article and/or its supplementary information files.

Declarations

Acknowledgements

This research was supported by the Hungarian National Research, Development and Innovation Office FK-132296 (D.T) and K-128250 (A.Sz.), the New National Excellence Program of the Ministry of Human Capacities (D.T.), the Bolyai János Research Scholarship of the Hungarian Academy of Sciences (D.T.), the GINOP-2.3.2-15-2016-00005 (K.D, D.K. and D.T.) project, EFOP-3.6.1-16-2016-00022 project (A.Sz.) which were cofinanced by the European Union and the European Regional Development Fund and the European Social Fund, and the Doctoral School of Health Sciences, University of Debrecen (D.D., F.F.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author contributions statement
K.D. and D.T. conceived the experiments, K.D., D.D., F.F., D.K. and Sz.P. performed the experiments, K.D., D.T., A.Sz. and C.C.Z. analysed the results. All authors reviewed the manuscript.

Additional information

Accession codes

RNA sequencing data have been deposited into the GEO database under accession number PRJNA673828.

Competing interests statement

The authors declare no competing interests.

References

1. Medzhitov, R., Preston-Hurlburt, P. & Janeway, C. A. A human homologue of the Drosophila toll protein signals activation of adaptive immunity. Nature 388, 394–397 (1997).

2. Barton, G. M. & Medzhitov, R. Toll-like receptors and their ligands. Current Topics in Microbiology and Immunology vol. 270 81–92 (2002).

3. Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell vol. 124 783–801 (2006).

4. Kim, J. et al. Activation of Toll-Like Receptor 2 in Acne Triggers Inflammatory Cytokine Responses. J. Immunol. 169, 1535–1541 (2002).

5. Jugeau, S. et al. Induction of toll-like receptors by Propionibacterium acnes. Br. J. Dermatol. 153, 1105–1113 (2005).

6. Takeda, K. & Akira, S. Microbial recognition by Toll-like receptors. Journal of Dermatological Science vol. 34 73–82 (2004).

7. Huang, S. et al. Saturated fatty acids activate TLR-mediated proinflammatory signaling pathways. J. Lipid Res. 53, 2002–2013 (2012).

8. Snodgrass, R. G., Huang, S., Choi, I.-W., Rutledge, J. C. & Hwang, D. H. Inflammasome-Mediated Secretion of IL-1β in Human Monocytes through TLR2 Activation; Modulation by Dietary Fatty Acids. J. Immunol. 191, 4337–4347 (2013).

9. Choi, C. W. et al. Enhancement of lipid content and inflammatory cytokine secretion in SZ95 sebocytes by palmitic acid suggests a potential link between free fatty acids and acne aggravation. Exp. Dermatol. 28, 207–210 (2019).

10. Pappas, A., Johnsen, S., Liu, J.-C. & Eisinger, M. Sebum analysis of individuals with and without acne. Dermatoendocrinol. 1, 157–161 (2009).

11. Downing, D. T., Stewart, M. E., Wertz, P. W. & Strauss, J. S. Essential fatty acids and acne. J. Am. Acad. Dermatol. 14, 221–225 (1986).
12. Ottaviani, M., Camera, E. & Picardo, M. Lipid Mediators in Acne. *Mediators Inflamm.* **2010**, (2010).

13. Zouboulis, C. C., Jourdan, E. & Picardo, M. Acne is an inflammatory disease and alterations of sebum composition initiate acne lesions. *J. Eur. Acad. Dermatology Venereol.* **28**, 527–532 (2014).

14. Kovács, D. *et al.* Sebocytes differentially express and secrete adipokines. *Exp. Dermatol.* **25**, 194–199 (2016).

15. Lov, M., Szegedi, A., Zouboulis, C. C., T€, D. A. & Csik, O. Sebaceous-immunobiology is orchestrated by sebum lipids. *Dermatoendocrinol.* **9**, (2018).

16. Nagy, I. *et al.* Distinct strains of *Propionibacterium acnes* induce selective human β-defensin-2 and interleukin-8 expression in human keratinocytes through toll-like receptors. *J. Invest. Dermatol.* **124**, 931–938 (2005).

17. Nagy, I. *et al.* *Propionibacterium acnes* and lipopolysaccharide induce the expression of antimicrobial peptides and proinflammatory cytokines/chemokines in human sebocytes. *Microbes Infect.* **8**, 2195–2205 (2006).

18. Zouboulis, C. C. *et al.* Beyond acne: Current aspects of sebaceous gland biology and function. *Reviews in Endocrine and Metabolic Disorders* vol. 17 319–334 (2016).

19. Lovászi, M. *et al.* Sebum lipids influence macrophage polarization and activation. *Br. J. Dermatol.* **177**, 1671–1682 (2017).

20. Alestas, T., Ganceviciene, R., Fimmel, S., Müller-Decker, K. & Zouboulis, C. C. Enzymes involved in the biosynthesis of leukotriene B 4 and prostaglandin E 2 are active in sebaceous glands. *J. Mol. Med.* **84**, 75–87 (2006).

21. Mattii, M. *et al.* Sebocytes contribute to skin inflammation by promoting the differentiation of T helper 17 cells. *Br. J. Dermatol.* **178**, 722–730 (2018).

22. Töröcsik, D. *et al.* Genome wide analysis of TLR1/2- and TLR4-activated SZ95 sebocytes reveals a complex immune-competence and identifies serum amyloid A as a marker for activated sebaceous glands. *PLoS One* **13**, (2018).

23. Iinuma, K., Sato, T., Akimoto, N., Kurihara, H. & Ito, A. Induction of inflammatory reactions by lipopolysaccharide in hamster sebaceous glands and pilosebaceous units in vivo and in vitro. *Experimental Dermatology* vol. 19 1107–1109 (2010).

24. Bartel, D. P. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. *Cell* **116**, 281–297 (2004).

25. Schneider, M. R., Samborski, A., Bauersachs, S. & Zouboulis, C. C. Differentially regulated microRNAs during human sebaceous lipogenesis. *J. Dermatol. Sci.* **70**, 88–93 (2013).

26. Bhaumik, D. *et al.* MicroRNAs miR-146a/b negatively modulate the senescence-associated inflammatory mediators IL-6 and IL-8. *Aging (Albany. NY).* **1**, 402–411 (2009).

27. Taganov, K. D., Boldin, M. P., Chang, K. J. & Baltimore, D. NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. *Proc. Natl. Acad. Sci. U. S. A.* **103**, 12481–12486 (2006).
28. Zhang, W. et al. A single-nucleotide polymorphism of miR-146a and psoriasis: An association and functional study. *J. Cell. Mol. Med.* **18**, 2225–2234 (2014).

29. Meisgen, F. et al. MiR-146a negatively regulates TLR2-induced inflammatory responses in keratinocytes. *J. Invest. Dermatol.* **134**, 1931–1940 (2014).

30. Rebane, A. et al. MicroRNA-146a alleviates chronic skin inflammation in atopic dermatitis through suppression of innate immune responses in keratinocytes. *J. Allergy Clin. Immunol.* (2014) doi:10.1016/j.jaci.2014.05.022.

31. Zeng, R. et al. *miR-146a Inhibits Biofilm-Derived Cutibacterium acnes–Induced Inflammatory Reactions in Human Keratinocytes*. Journal of Investigative Dermatology (Society for Investigative Dermatology, 2019). doi:10.1016/j.jid.2019.03.1161.

32. Ottaviani, M. et al. Sebocyte differentiation as a new target for acne therapy: an in vivo experience. *J. Eur. Acad. Dermatology Venereol.* **34**, 1803–1814 (2020).

33. Bharti, S. & Vadlamudi, H. C. A strategic review on the involvement of receptors, transcription factors and hormones in acne pathogenesis. *Journal of Receptors and Signal Transduction* (2020) doi:10.1080/10799893.2020.1805626.

34. Uhlen, M. et al. Tissue-based map of the human proteome. *Science* (80-.) **347**, 1260419–1260419 (2015).

35. Liu, J. et al. G protein γ subunit 7 induces autophagy and inhibits cell division. *Oncotarget* **7**, 24832–24847 (2016).

36. Lai, W. S. & Ding, Y. L. GNG7 silencing promotes the proliferation and differentiation of placental cytotrophoblasts in preeclampsia rats through activation of the mTOR signaling pathway. *Int. J. Mol. Med.* **43**, 1939–1950 (2019).

37. Melnik, B. C. Dietary intervention in acne: Attenuation of increased mTORC1 signaling promoted by Western diet. *Dermato-Endocrinology* vol. 4 20–32 (2012).

38. Briganti, S., Flori, E., Mastrofrancesco, A. & Ottaviani, M. Acne as an altered dermato-endocrine response problem. *Exp. Dermatol.* (2020) doi:10.1111/exd.14168.

39. Monfrecola, G. et al. Mechanistic target of rapamycin (mTOR) expression is increased in acne patients’ skin. *Exp. Dermatol.* **25**, 153–155 (2016).

40. Melnik, B. C. & Zouboulis, C. C. Potential role of FoxO1 and mTORC1 in the pathogenesis of Western diet-induced acne. *Experimental Dermatology* vol. 22 311–315 (2013).

41. Zouboulis, C. C., Seltmann, H., Neitzel, H. & Orfanos, C. E. Establishment and characterization of an immortalized human sebaceous gland cell line (SZ95). *J. Invest. Dermatol.* (1999) doi:10.1046/j.1523-1747.1999.00771.x.

42. Kovács, D. et al. Sebocytes differentially express and secrete adipokines. *Exp. Dermatol.* **25**, 194–199 (2016).

43. Tóth, B. B. et al. FTO Intronic SNP Strongly Influences Human Neck Adipocyte Browning Determined by Tissue and PPARγ Specific Regulation: A Transcriptome Analysis. *Cells* **9**, 987 (2020).
44. Thomas, P. D. et al. PANTHER: A library of protein families and subfamilies indexed by function. *Genome Res.* **13**, 2129–2141 (2003).

45. Nikolsky, Y. & Bryant, J. Protein networks and pathway analysis. Preface. *Methods Mol. Biol.* **563**, (2009).