On the Energy Minima of the SK Model

Barbara Coluzzia, Enzo Marinaria, Giorgio Parisia and Heiko Riegerb

November 20, 2018

a) Dipartimento di Fisica and Sezione INFN, Università di Roma “La Sapienza”, Piazzale Aldo Moro 2, I-00185 Rome (Italy)
b) FB 10.1 Theoretische Physik Universität des Saarlandes, 66041 Saarbrücken (Germany)

Abstract

We study properties of the energy minima obtained by quenching equilibrium configurations of the Sherrington-Kirkpatrick (SK) mean field spin glass. We measure the probability distribution of the overlap among quenched configurations and the quenched energy, looking at the dependence on the starting equilibrium temperature, and performing a systematic analysis of finite size effects.
1 Introduction.

The local energy minima properties are analyzed in several works on glass-forming liquids and they are allowing a better understanding of the behavior of these systems. The importance of potential energy landscape in the physics of super-cooled liquids was already pointed out by Goldstein [1]. More recently Stillinger and Weber [2] formalized the idea that the multi-dimensional energy surface can be partitioned in a large number of local minima, so called Inherent Structures (IS), each one surrounded by its attraction basin. It is now clear [3] that the low-temperature dynamics (i.e. for temperatures below the Mode Coupling critical temperature T_{MCT} [4]) can be subdivided into intra-basin motion and crossing of energy barriers by activated processes, taking place on a significantly longer time-scale.

The system at equilibrium below T_{MCT} is ‘almost always’ trapped in one of the basins accessible at this temperature. The huge number $N \propto \exp(N\Sigma)$ of these ‘valleys’, exponentially diverging with the system size N, suggested the scenario of an underlying thermodynamic transition due to an ‘entropy crisis’ at the Kauzmann temperature $T_K < T_{MCT}$ where the configurational entropy Σ goes to zero [5], which was supported by recent analytical work [6]-[8]. By looking at IS one can evaluate Σ numerically [8]-[10]. Moreover, the IS energy turns out to be an interesting quantity for studying both the static and the dynamical behavior [9]-[13]. Differences between fragile and strong glasses were recently proposed to be explainable within an energy landscape description, too [14].

The outlined picture of glass-forming liquids is reminiscent of that characterizing generalized mean field spin glass models like those involving p-spin interactions [15], which display a dynamical ergodicity breaking at the temperature $T_D \equiv T_{MCT}$ [16] (in this case the barriers between basins are infinite in the thermodynamic limit also for $T_K < T < T_{MCT}$ because of the mean field approximation), and a thermodynamic entropy driven transition at a lower temperature T_K, corresponding to a one step replica symmetry breaking (1RSB) scenario. For $T < T_K$ one finds a non trivial probability distribution of the overlap between states $P(q) = m\delta(q) + (1 - m)\delta(q - q_{EA})$. Here q_{EA} is the self-overlap of a state with itself, whereas different states are orthogonal and have mutual overlap zero.

Several years ago, Kirkpatrick, Thirumalai and Wolynes [17] suggested that 1RSB spin glass models could be a paradigm of vitreous systems. The numerical study of out-of-equilibrium dynamics in glass-forming liquids gives intriguing results [18]-[21]. The measurement of $P(q)$ among ‘glassy states’ is a subtle task [22, 23, 24], since one faces both the problem of thermalizing the system down to very low temperatures and that of avoiding possible crystalline minima whose basin of attraction could be non-negligible for small systems. As recently proposed by Bhattacharya, Broderix, Kree and Zippelius [23], to look at the Inherent Structures is helpful also from this point of view, since it allows a more precise
definition of the overlap and make easier to distinguish between glassy minima and crystalline or quasi-crystalline configurations.

On the other hand, it is not completely clear a priori which kind of behavior one should expect for the $P_{\text{quen}}(q)$ measured among energy minima obtained by quenching equilibrium configurations instead of among equilibrium configurations themselves. To our knowledge, such a quantity was never previously studied in a spin glass model (which is not surprising, since in this case equilibration is still feasible without difficulties for moderate system sizes). More generally, little is known about properties of ‘Inherent Structures’ in spin glasses, which (apart from analogies with glass-forming liquids) have their own interest even in the well understood Sherrington Kirkpatrick (SK) mean field model. In a previous work [25] one of the authors studied the energy minima of the SK model obtained starting from random initial configurations (i.e. by quenching from infinite initial temperature) whereas recently Crisanti and Ritort [26, 27] have performed both for a 1RSB spin glass and for the SK model a numerical analysis of the static and dynamical properties within the energy landscape description similar to the one proposed in [9, 13] for a glass-forming liquid, by looking in particular at the IS energy and at the configurational entropy. Their results confirm the close similarities between 1RSB spin glass and structural glass energy landscapes and the usefulness of this kind of approach, further suggesting a systematic analysis.

In the present work, we perform an extensive numerical study of energy minima properties in the SK model, considering initial equilibrium configurations both in the high-temperature (paramagnetic) region and deep in the glassy phase. We look first of all at the behavior of the appropriately defined $P_{\text{quen}}(q)$ which is compared with the corresponding (usual) equilibrium one. Then we extend the analysis to the overlap of the IS with the configurations from which they are obtained, which measure the (quite strong) correlations between them, and we study systematically finite size effects on the behavior of the IS energy.

2 Model, Observables and Simulations.

The Sherrington Kirkpatrick spin glass model [28] is described by the Hamiltonian

$$\mathcal{H}_J = \sum_{i<j=1}^N J_{ij} \sigma_i \sigma_j ,$$

where $\sigma_i = \pm 1$ are Ising spins, the sum runs over all pairs of spins and J_{ij} are random independent variables with mean value $\overline{J}_{ij} = 0$ and variance $1/N$. We take $J_{ij} = \pm N^{-1/2}$.

This model is exactly solvable (since interactions have infinite range) and has a glassy phase with full replica symmetry breaking (FRSB). In case of zero magnetic field (the one
we consider here), taking into account the symmetry under inversion of the spins, the $P(q)$ changes at the critical temperature $T_C = 1$ from a δ-function at $q = 0$ (characteristic of the paramagnetic phase) to the FRSB two δ-functions in $q = \pm q_{EA}$ with a non-zero plateau joining them. The transition is continuous also in the order parameter (at variance with 1RSB models), i.e. $\lim_{T \to T_C} q_{EA}(T) = 0$, and there is no distinction between the dynamical and the static transition [29], i.e. $T_D = T_C$.

The SK model is particularly suitable for the kind of study we are interested in, since its behavior is well understood and, on the other hand, by using optimized Monte Carlo methods [30] one is able to thermalize large system sizes down to low temperatures, which allows to study finite size effects systematically. We simulated $N = 64, 128, 256, 512$ and 1024, averaging over 2048, 1024, 512, 384 and 192 different disorder realizations respectively. The program was multi-spin coded on different sites of the system (we store 64 spins in the same word) and we used Parallel Tempering (PT) [30, 31], running simultaneously two independent sets of copies (replica) of the system for each sample. Up to 50 (for the two largest sizes) different temperatures between $T_{min} = 0.65$ and $T_{max} = 3$ were used, and we performed from 100,000 PT steps for the smallest value of $N = 64$ to 300,000 for the largest value of $N = 1024$.

The PT acceptance for the exchange of nearest neighbor temperatures was never smaller than 0.6. In the second half of the run we computed the specific heat both as the derivative of the energy density with respect to temperature $c \equiv d\langle e \rangle /dT$, and from fluctuations $c \equiv N(\langle e^2 \rangle - \langle e \rangle^2)/T^2$, looking for compatibility of results. This means to compare one-time and two-time quantities respectively, which is an effective way for checking thermalization particularly when using PT (note that in this case fluctuations involve different replicas evolving at the same temperature at different times during the run). Nevertheless we also divided the second half of the run in (four) equal intervals, checking that there were no evident differences in the values of the considered observables, $P(q)$ and $P_{quen}(q)$ in particular. A further confirm for the system being well thermalized comes from the perfectly symmetric with respect to the exchange $q \to -q$ probability distributions that we obtained.

For each disorder realization and for each temperature, in the second half of the run, we saved 1500+1500 equilibrium configurations from the two independent sets of replica which were subsequently quenched by a zero-temperature dynamics. The observables were computed from these configurations and the corresponding energy minima, errors being evaluated from sample-to-sample fluctuations. One should note that both $P(q)$ and $P_{quen}(q)$ are strongly not self-averaging in the glassy phase, wherefore it was necessary to average over a large number of samples even for large system sizes. The whole simulations would have taken about two years of CPU on a usual alpha-station, i.e. a few days when using 128 processors simultaneously.
on Cray T3E (the code is easily parallelized with efficiency close to 1 by running a different disorder realization on each processor).

A subtle point concerns the quenching procedure. We are considering even values for \(N \), which means that the local field acting on each spin because of the other ones can never be zero. Moreover, it is known [25], from the analysis of properties of quenched configurations obtained starting from infinite temperature (i.e. random initial configuration), that different zero temperature dynamics give qualitatively identical results. The ‘Greedy algorithm’, where the spin corresponding to the largest energy decreasing is flipped at each step, seems to stop more frequently in local high energy minima than the ‘Reluctant algorithm’, where one flips the spin which gives the smallest energy decreasing (i.e., the contrary of the previous case). We choose to use an ‘intermediate’ zero-temperature dynamics, which is easy to implement too. At each step, a randomly chosen spin is suggested to flip and at least \(20N \) steps are performed after the last successful one before stopping. The probability that the final configuration is not a local energy minimum (under single spin flip) is therefore \(\sim e^{-20} \), practically negligible. As a last remark, it should be stressed that such a quenching procedure could possibly give energy minima which are not the ‘nearest’ IS to the starting equilibrium configurations, i.e. which are less correlated but not more correlated than in the analog glass-forming liquid case, where one generates ISs by following the path of steepest descent.

Labeling by \(\{\sigma_i\}, \{\tau_i\} \) the spins belonging to two configurations, the overlap is defined as

\[
Q = \frac{1}{N} \sum_{i=1}^{N} \sigma_i \tau_i. \tag{2}
\]

The spin glass order parameter, i.e. the equilibrium probability distribution of overlap among states \(P(q, T) \), is usually evaluated numerically as the histogram of the instantaneous overlap \(Q \) between two replica (with the same disorder configurations) which evolve simultaneously and independently at temperature \(T \)

\[
P(q, T) = \overline{P_J(q)} = \overline{\langle \delta(q - Q) \rangle}, \tag{3}
\]

where the thermal average \(\langle \cdot \rangle \) corresponds to average over time in the simulation whereas \(\overline{\cdot} \) stands for the average over \(J_{ij} \) realizations. \(P_J(q, T) \) can be equivalently measured from two given sets of equilibrium configurations belonging to the two replica, by considering the overlap of each configuration of one set with all the configurations of the other. In this work we evaluated \(P_J(q, T) \) both during the simulation and from the saved configurations, obtaining perfectly compatible results, which confirm that these configurations sample accurately enough the phase space.
We define the quenched probability distribution of the overlap as

$$P_{\text{quen}}(q, T) = \frac{1}{N_{IS}^2} \sum_{i_{a,b} = 1}^{N_{IS}} \delta(q - Q_{IS}) ,$$ \hspace{1cm} (4)$$

where the sum runs over the $N_{IS} = 1500$ energy minima obtained starting from the equilibrium configurations at temperature T for each of the two replica sets. This definition, analogous to the one introduced in [23] for a Lennard-Jones glass-forming binary mixture, implies that we are weighting each IS with the Boltzmann factor of the corresponding basin at temperature T, as usual in numerical studies on super-cooled liquids.

3 Results.

3.1 The behavior of $P_{\text{quen}}(q)$.

We present in [Fig. 1] data for the equilibrium overlap distribution $P(q)$ (on the left) and for the quenched overlap distribution $P_{\text{quen}}(q)$ (on the right) at a temperature very close to the critical temperature $T = 1.05 = 1.05 T_C$, but still in the paramagnetic phase, for different system sizes. It was shown in [25] that the $P_{\text{quen}}(q)$ obtained from infinite temperature configurations becomes more and more concentrated in $q = 0$ for increasing N and it goes to a δ-function in the thermodynamic limit. We find the same qualitative behavior in the whole high-temperature region $T > T_C = 1$. It is crystal clear from [Fig. 1] that there is no evidence for replica symmetry breaking in the probability distribution of overlap between IS reachable from equilibrium configurations at $T \sim T_C$ and weighted with the Boltzmann factor of the corresponding basin at this temperature.

In other words, we know that for $T < T_C$ there is RSB, but we cannot detect it by looking at the probability distribution of the overlap obtained with a fast quench starting from $T \sim T_C$. This result implies that also in the case of glass-forming liquid the analogously defined $P_{\text{quen}}(q, T)$ will be trivial when quenching from the paramagnetic (liquid) phase, even when quenching down to a T value where RSB occurs (if it does). This is in agreement with the behavior reported in [23] for a Lennard-Jones binary mixture starting from $T \sim T_{MCT}$.

In glass-forming liquids the overlap among IS is easier to define than the equilibrium overlap: its use releases one from the careful consideration of possible crystalline or quasi-crystalline configurations. Nevertheless, the quantity $P_{\text{quen}}(q, T)$ does not provide any evidence for the existence or absence of RSB when avoiding the hard task of thermalizing super-cooled liquid down to low temperatures. One should also note that in 1RSB models both...
Figure 1: The equilibrium $P(q)$ (on the left) and the quenched one (on the right) at $T = 1.05$, a value of the temperature slightly higher than $T_{C} = 1$, for different values of the system size.

$P(q, T)$ and $P_{\text{quen}}(q, T)$ are expected to be trivial also in the region $T_{MCT} > T > T_{K}$ (apart from finite size effects), just because of the very large number $\sim e^{N}\Sigma$ of ‘valleys’ (and corresponding IS) which are almost all orthogonal [32], with zero overlap in the thermodynamic limit.

After clarifying this point, we note that a more careful analysis of the data shown in [Fig. 1 (right)] suggests the presence of a weak RSB, as already observed in $P_{\text{quen}}(q, T = \infty)$ [25]. In the whole paramagnetic phase, the ‘quenched’ probability distribution of the overlap approaches its delta function limit $\delta(q)$ for $N \to \infty$ much slower than the equilibrium one. To quantify the N-dependence, we introduce the function

$$f(q) \equiv - \lim_{N \to \infty} \frac{1}{N} \ln [P_{N,\text{quen}}(q)].$$

(5)

The replica symmetry is broken in a weak sense if $f(q)$ is zero in an extended region I though $P_{\text{quen}}(q)$ is a δ-function in the thermodynamic limit. This implies that $P_{N,\text{quen}}(q)$ is going to zero slower than exponentially in this region and that therefore, by adding to the Hamiltonian a quantity of order N (for instance by using appropriate boundary conditions), one could obtain any given value of the ‘quenched’ overlap $q \in I$. Our best numerical evidence for such a behavior comes from the study of

$$r_{N}(q, T) \equiv \frac{1}{N^{\nu}} \ln \left(\int_{q}^{1} d q' P_{N,\text{quen}}(q', T) \right).$$

(6)
Figure 2: $r_N(q)$ for the different system sizes at the highest considered temperature $T = 3$ (left), at $T = 1.8$ (center) and at $T = 1.2$ close to T_C (right). The data plotted by using our best numerical estimate $\nu = 0.68 \pm 0.05$ display a small dependence on N in all the paramagnetic phase.

We get a practically T-independent estimate of the exponent for $T > T_C$, $\nu = 0.68 \pm 0.05$. This value is compatible with $\nu \approx 2/3$ obtained from $T = \infty$ data in [25]. Though one observes some deviations at large q, the weak N-dependence of r_N shown in [Fig. 2] and the value of ν that is significantly smaller than 1, strongly suggest that $f(q)$ is zero on a finite interval I, where possibly $I = [0, 1]$, i.e. $P_{\text{quen}}(q)$ displays a weak breaking of replica symmetry.

On the other hand, at temperatures lower than T_C, $P_{\text{quen}}(q, T)$ clearly shows the characteristic behavior corresponding to a full replica symmetry breaking. This is what one would expect since RSB was already evident in the $P(q)$ of the configurations we were starting from. The qualitative similarities between $P(q)$ and $P_{\text{quen}}(q)$ are remarkable (see [Fig. 3]). They are present for each disordered configurations: for instance the number of peaks found in a one-sample equilibrium $P_J(q, T)$ at a given T is preserved in the corresponding $P_{J, \text{quen}}(q, T)$ too. FRSB features are even more evident when looking at $P_{\text{quen}}(q)$: in particular the presence of a continuous plateau between the two self-overlap peaks is clearer in [Fig. 3] on the right than in [Fig. 3] on the left, since the ‘quenched’ self overlap takes larger values, though it goes to one only for $T \to 0$.

Finite size effects play a similar role in the equilibrium and quenched cases: for instance, it is clear from [Fig. 3] that also the ‘quenched’ zero overlap probability $P_{\text{quen}}(0, T)$ does not depend on N in the glassy phase, this being a well known test when looking for FRSB [33]. To further investigate this point, we plot in [Fig. 4] the ratio of cumulants,

$$B(T) = \frac{1}{2} \left(3 - \frac{\langle q^4 \rangle}{\langle q^2 \rangle^2} \right),$$

(7)
Figure 3: The equilibrium $P(q)$ (left) and the quenched one (right) at $T = 0.65 = 0.65 \, T_C$ (the lowest T-value we have considered) for different system sizes.

Figure 4: The Binder parameter from the equilibrium $P(q)$ (left) and from the quenched one (right) as a function of temperature for different system sizes.
Figure 5: The intersection temperature of the quenched $B_{\text{quen}}(T)$ for the different pairs N_1, N_2 of considered sizes as a function of $N_1 + N_2$.

as a function of T. We recall that this is the usual quantity one calculates in order to locate the critical temperature, since finite size scaling predicts that curves for different sizes intersect at T_C: this is the behavior observed in [Fig. 4 (left)] (apart from corrections to scaling when considering the smaller system sizes). Surprisingly enough, we find that the same kind of finite size analysis can be performed on cumulants obtained from probability distribution among IS [Fig. 4 (right)]. Though corrections to scaling are slightly more important in this case, we see from [Fig. 5], where the intersection points $T_C(N_1, N_2)$ for the different pairs N_1, N_2 of considered system sizes as a function of $N_1 + N_2$ are plotted, that one gets the correct $T_C = 1$ for $N_1, N_2 \to \infty$.

We conclude that $P_{\text{quen}}(q)$ is an interesting quantity to study. The results we have shown could be particularly relevant when looking at glass-forming liquids, but the observed behavior suggests that this quantity could also help in further clarifying the glassy phase properties of finite dimensional realistic spin glasses (this is a very long-standing subject, see for instance [33, 34]).
3.2 Correlations between equilibrium configurations and IS

After noting the similarities between $P(q)$ and $P_{\text{quen}}(q)$ one expects the presence of strong correlations between equilibrium configurations and corresponding IS, particularly in the low-temperature phase. To quantify them, we measure the probability distribution of the overlaps q_{qt} between each energy minimum and the configuration from which it is obtained, $P_{qt}(q, T)$.

![Graph](image)

Figure 6: The probability distribution of the overlap between equilibrium configuration and corresponding IS $P_{qt}(q, T)$ for different sizes in the high temperature region at $T = 3$ (left), at $T = T_C = 1$ (center) and in the glassy phase at $T = 0.65$ (right).

As it is shown in [Fig. 6], we find a Gaussian shaped distribution which goes toward a δ-function in the thermodynamic limit both in the paramagnetic and in the glassy phase. We observe that below T_C, at variance with $P(q)$ and $P_{\text{quen}}(q)$, this probability distribution is a self-averaging quantity, which is easily understandable since we are substantially looking at overlaps between configurations related to the same state.

It is intriguing to note that there is no clear evidence for the underlying phase transition when looking at this quantity. The mean value $q_{qt}(T)$ (see [Fig. 7]) is increasing when decreasing the temperature, and $\lim_{T \to 0} q_{qt}(T) = 1$. The N-dependence appears more pronounced in the high temperature region, where data are well fitted by the power law

$$q_{N,qt} = q_{\infty,qt} + \frac{C}{N^\alpha}. \quad (8)$$

We show in [Fig. 8] our estimates for $q_{\infty,qt}(T)$ (left), which gives in particular $q_{\infty,qt}(T_C) \sim 0.4$, and our best fit using data for the overlap between random initial conditions and corresponding minima (right), i.e. $\lim_{T \to \infty} q_{qt}(T)$. Also in this case, we get a non-zero value (~ 0.1) in the thermodynamic limit. Nevertheless, it should be stressed that we are confined to a relatively small range of system sizes, which makes a reliable estimation of the error of $q_{\infty,qt}$ very hard.
Figure 7: $q_{qt}(T)$ for different sizes as a function of temperature.

Figure 8: $q_{\infty,qt}(T)$ as obtained by fitting data for different system sizes (left) and our best fit by using data on the overlap between random initial conditions and corresponding found minima (right), which give $\lim_{T \to \infty} q_{\infty,qt}(T) \approx 0.1$.

12
It would be interesting to understand how much these correlations vary when looking at different models. In agreement with our results, in [26], for the considered volumes it was quoted $q_{qt} \sim 0.4$ for the SK slightly above T_C, to be compared with the higher value $q_{qt} \sim 0.94$ found for the 1RSB model (ROM) at a temperature higher than the Mode Coupling T_{MCT}, which suggests the presence of stronger correlations between equilibrium configurations and corresponding IS in the glass-forming liquid case, and therefore a $P_{\text{quen}}(q, T)$ with a behavior even closer to the one at the equilibrium.

3.3 The IS energy

In [Fig. 9] we show the equilibrium energy $e(T)$, as a function of the temperature T (only weakly depending on the system size). In [Fig. 10 (left)] we present data on the IS energy $e_{\text{quen}}(T)$, i.e. the mean energy of the minima accessible from equilibrium configurations at a given temperature and weighted with the Boltzmann factor of the corresponding basin. The behavior of this quantity changes abruptly from a nearly T-independent value (in the high T regime) to the approximately $\propto T$ decreasing of the low temperature region, where the IS energy continuously goes towards the ground-state value (which is analytically known, $e_0 = -0.7633$). Correspondingly the derivative $de_{\text{quen}}(T)/dT$, which is plotted in [Fig. 10 (right)], displays a maximum and takes very small high-T values (note the logarithmic scale).

Data on the position $T_{\text{max}}(N)$ of the maximum of $de_{\text{quen}}(T)/dT$ as a function of N are shown in the insert and give evidence for $\lim_{N \to \infty} T_{\text{max}}(N) = 1 = T_C$. Our finite size analysis therefore confirms [26] that in the $N \to \infty$ limit $e_{\text{quen}}(T)$ takes the constant threshold value e_{th} for $T > T_C$. The behavior in this region agrees well with the power law

$$e_N = e_{\text{th}} + C/N^\alpha,$$

(9)
giving a constant $e_{\text{th}} = -0.7145 \pm 0.004$, which is our best numerical estimates for the threshold energy, down to $T \sim 1.1$ near to the critical temperature (and still compatible with this value also at T_C). We note that this estimates is in perfect agreement with the $e_{\text{th}} \simeq -0.715$ quoted in [23] that was obtained by fitting data on IS reached from random initial conditions by a sequential quenching procedure (this value could depend on the considered zero-temperature dynamics). The exponent α is slightly increasing when going to lower temperatures and varies between $\alpha = 0.34 \pm 0.04$ at $T = 3$ and $\alpha = 0.43 \pm 0.06$ at $T = T_C$.

It is interesting to stress that finite size corrections to the asymptotic behavior look very important, as shown by the small α value we have found. Correspondingly for all the considered sizes (up to the quite large volume $N = 1024$) the IS energy becomes roughly constant only at temperatures definitely higher than T_C. A similar behavior with strong finite size corrections is found in [26] for the considered 1RSB model at $T > T_{MCT}$ too.
Figure 9: The equilibrium energy as a function of T for the different system sizes.

Figure 10: The quenched energy (left) and its derivative respect to the temperature (right) as a function of T for the different system sizes N. In the insert on the right, the temperature corresponding to the maximum of $d e_{\text{quen}}/dT$ is plotted as a function of $1/N$.
Conclusions

We have presented numerical results about the properties of energy minima in the SK model. The probability distribution of the overlap between IS weighted with the Boltzmann factor of the corresponding basin at temperature T, $P_{\text{quen}}(q, T)$, turns out to be qualitatively similar to the equilibrium overlap distribution $P(q, T)$ at the same temperature T. We found a trivially-shaped $P_{\text{quen}}(q, T)$ in the whole paramagnetic ($T > T_C = 1$) phase, whereas the FRSB behavior characteristic of the glassy phase is evident from data on $P_{\text{quen}}(q, T)$ only when looking at energy minima obtained from equilibrium configurations at temperature definitely lower than T_C. A finite size analysis of the Binder parameter for $P_{\text{quen}}(q, T)$ gives the same estimate of the critical temperature as the usual (equilibrium) one.

These results can be particularly relevant for glass-forming liquids, where the overlap is more precisely definable between IS [23], but they also imply that numerical evidence for replica symmetry breaking can not be extracted from data on $P_{\text{quen}}(q, T)$, which have been obtained from configurations at equilibrium at temperatures above the possible glass transition temperature (in that case $T_K < T_{MCT}$).

The analysis of finite size corrections to the IS energy confirms [26] that it is approaching the expected thermodynamic limit behavior $\epsilon_{1s} = \text{const} = \epsilon_{th}$ for $T > T_C$, whereas it appears continuously decreasing for $T < T_C$.

Acknowledgments

B.C. acknowledges Uwe Müssel and Holger Wahlen for useful suggestions, and would like to thank the John-von-Neumann Institut für Computing (Forschungszentrum Jülich), where this work was partially developed. Simulations were ran on the Forschungszentrum Jülich Cray T3E.

References

[1] M. Goldstein, J. Chem. Phys. 51, 3728 (1969).

[2] F. H. Stillinger and T. A. Weber, Phys. Rev. A 25, 2408 (1982); F. H. Stillinger, Science 267, 1935 (1995), and references therein.

[3] T. B. Schröder, S. Sastry, J. C. Dyre and S. C. Glotzer, Crossover to Potential Energy Landscape Dominated Dynamics in a Model Glass-forming Liquid, cond-mat/9901271.
[4] For a review see W. Götze and L. Sjögren, Rep. Prog. Phys. 55, 241 (1992).

[5] A. W. Kauzmann, Chem. Rev. 43, 219 (1948). G. Adam and J. H. Gibbs, J. Chem. Phys. 43, 139 (1965).

[6] M. Mézard and G. Parisi, Phys. Rev. Lett. 82, 747 (1998); J. Chem. Phys. 111, 1076 (1999).

[7] M. Cardenas, S. Franz and G. Parisi, J. Chem. Phys. 110, 1726 (1999).

[8] B. Coluzzi, M. Mézard, G. Parisi and P. Verrocchio, J. Chem. Phys. 111, 9039 (1999); B. Coluzzi, G. Parisi and P. Verrocchio, Lennard-Jones binary mixture: a thermodynamical approach to glass transition, cond-mat/9904124. J. Chem. Phys. (to appear); Phys. Rev. Lett. 84, 306 (2000).

[9] F. Sciortino, W. Kob and P. Tartaglia, Phys. Rev. Lett. 83, 3214 (1999).

[10] S. Buechner and A. Heuer, The potential energy landscape of a model glass former: thermodynamics, anharmonicities, and finite size effects, cond-mat/9906280.

[11] S. Sastry, P. G. Debenedetti and F. H. Stillinger, Nature 393, 554 (1998).

[12] L. Angelani, G. Parisi, G. Ruocco and G. Viliani, Phys. Rev. Lett. 81, 4648 (1998).

[13] W. Kob, F. Sciortino and P. Tartaglia, Aging as dynamics in configuration space, cond-mat/9905090.

[14] A. Cavagna, Fragile vs strong liquids: a saddles ruled scenario, cond-mat/9910244.

[15] A. Crisanti and H.-J. Sommers, J. Phys. I (France) 5, 805 (1995); A. Crisanti, H. Horner and H.-J. Sommers, Z. Phys. B 92, 257 (1993).

[16] L. F. Cugliandolo and J. Kurchan, Phys. Rev. Lett. 71, 173 (1993).

[17] T. R. Kirkpatrick and P. G. Wolynes, Phys. Rev. A 34, 1045 (1986). For a review see also T. R. Kirkpatrick and D. Thirumalai, Transp. Theor. Stat. Phys. 24, 927 (1995).

[18] G. Parisi, Phys. Rev. Lett. 79, 3660 (1997).

[19] W. Kob and J.-L. Barrat, Phys. Rev. Lett. 78, 4581 (1997); Phys. Rev. Lett. 81, 931 (1998); Physica A 263, 234 (1999); Fluctuations, response and aging dynamics in a simple glass-forming liquid out of equilibrium cond-mat/9905248; J.-L. Barrat and W. Kob, Europhys. Lett. 46, 637 (1999);
[20] U. Müßel and H. Rieger, Phys. Rev. Lett. 81, 930 (1998).

[21] H. Wahlen and H. Rieger, Molecular dynamics simulation of aging in amorphous silica, cond-mat/9912095, in the proceedings of the workshop Frontiers in Magnetism, Kyoto, October 1999.

[22] B. Coluzzi and G. Parisi, J. Phys. A 31, 4349 (1998).

[23] K. K. Bhattacharya, K. Broderix, R. Kree, A. Zippelius, Europhys. Lett. 47, 449 (1999).

[24] C. Dasgupta and O. T. Valls, Free Energy Landscape Of Simple Liquids Near The Glass Transition, cond-mat/0002081.

[25] S. Cabasino, E. Marinari, G. Parisi and D. Paolucci, J. Phys. A 21, 4201 (1988); G. Parisi On the Statistical Properties of the Large Time Zero Temperature Dynamics of the SK Model, cond-mat/9501045.

[26] A. Crisanti and F. Ritort, Potential energy landscape of simple p-spin models for glasses, cond-mat/9907499.

[27] A. Crisanti and F. Ritort, Activated processes and Inherent Structure dynamics of finite-size mean-field models for glasses cond-mat/9911226.

[28] M. Mézard, G. Parisi and M.A. Virasoro, Spin Glass Theory and Beyond (World Scientific, Singapore 1987).

[29] L.F. Cugliandolo and J. Kurchan, J. Phys. A 27, 5749 (1994).

[30] See for instance E. Marinari in Advances in Computer Simulations, edited by J. Kerstész and I. Kondor (Springer, Berlin 1998), cond-mat/9612010.

[31] M. C. Tesi, E. Janse van Rensburg, E. Orlandini and S. G. Whittington, J. Stat. Phys. 82, 155 (1996); K. Hukushima and K. Nemoto, J. Phys. Soc. Japan 65, 1604 (1996).

[32] See A. Cavagna, I. Giardina and G. Parisi J. Phys A 30, 7021 (1997) and references therein.

[33] E. Marinari, G. Parisi, F. Ricci-Tersenghi, J.J. Ruiz-Lorenzo and F. Zuliani, Replica Symmetry Breaking in Short Range Spin Glasses: A Review of the Theoretical Foundations and of the Numerical Evidence, cond-mat/9906076, and references therein.

[34] M. Palassini and A. P. Young, Phys. Rev. Lett. 83, 5126 (1999).