Applications of open-source software ROAST in clinical studies: A review

Mohigul Nasimova a, Yu Huang a, b, *

a Department of Biomedical Engineering, City College of the City University of New York, New York, NY, 10031, USA
b Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA

A R T I C L E I N F O
Article history:
Received 30 April 2022
Received in revised form 9 July 2022
Accepted 10 July 2022
Available online 16 July 2022

A B S T R A C T
Background: Transcranial electrical stimulation (TES) is broadly investigated as a therapeutic technique for a wide range of neurological disorders. The electric fields induced by TES in the brain can be estimated by computational models. A realistic and volumetric approach to simulate TES (ROAST) has been recently released as an open-source software package and has been widely used in TES research and its clinical applications. Rigor and reproducibility of TES studies have recently become a concern, especially in the context of computational modeling.

Methods: Here we reviewed 94 clinical TES studies that leveraged ROAST for computational modeling. When reviewing each study, we pay attention to details related to the rigor and reproducibility as defined by the locations of stimulation electrodes and the dose of stimulating current. Specifically, we compared across studies the electrode montages, stimulated brain areas, achieved electric field strength, and the relations between modeled electric field and clinical outcomes.

Results: We found that over 1800 individual heads have been modeled by ROAST for more than 30 different clinical applications. Similar electric field intensities were found to be reproducible by ROAST across different studies at the same brain area under same or similar stimulation montages.

Conclusion: This article reviews the use cases of ROAST and provides an overview of how ROAST has been leveraged to enhance the rigor and reproducibility of TES research and its applications.

© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Transcranial electrical stimulation (TES) has been broadly investigated as a therapeutic technique for a wide range of neurological disorders such as major depression [1], epilepsy [2–5], Parkinson’s disease [6], chronic pain [7,8], and stroke [9]. For more systematic reviews, see Refs. [10,11]. The location of stimulation electrodes on the scalp and the exact dose of stimulating current contribute to the rigor and reproducibility of TES studies, as these factors directly determine the stimulation intensity and focality at the desired targets in the brain [12]. Computational models have been heavily used for estimating electric field distribution in each individual head [13–15]. However, these models are not readily accessible to medical doctors. Since the introduction of MRI-derived (i.e., individualized) models [13] and model validation [16], the use of current-flow models has greatly expanded to increase the study rigor (Fig. 1). However, proprietary engineering modeling tools (e.g., COMSOL, Abaqus) are technically sophisticated and difficult to implement for most medical doctors [13–15,17]. Open-source software usually have a steep learning curve for researchers without a solid background in computer science (e.g., SciRun, [18]). We recently released a realistic and volumetric approach to simulate TES (ROAST) which succeeds in terms of automation, ease-of-use, speed, and experimental validation [19]. Compared to the other major open-source software in the field, SimNIBS [15,20], ROAST advocates volumetric and realistic modeling of the anatomy in the head tissues and performed on par with SimNIBS when tested out-of-box on validation data [19,21].

As a new software in the field of TES research, ROAST has gained hundreds of users in a short period of time (Fig. 2). It has been used to model over 1800 individual heads spanning across 12 applications (Table 1). By ensuring the accuracy and replicability throughout the entire modeling process including head segmentation, electrode location and placement, and dose of the stimulation, ROAST helped enhance the rigor and reproducibility of TES
studies. Various montages were modeled and electric field magnitudes at the same brain areas under similar montages were reproducible across different studies (Table 2). This paper reviews the adoptions of this software and the use cases in detail, in the hope that future TES research and applications can have a reference on how to leverage readily available computational models to enhance rigor and reproducibility.

2. Methods

2.1. Literature search

To find out the trend in the literature that utilized modeling for TES research, keywords “computational models transcranial electrical stimulation” were used to search the literature on PubMed. Number of publications by year was returned and plotted.

2.2. Adoptions of ROAST

Shortly after the release of ROAST, we have been tracking user downloads on the website that hosts ROAST (https://www.parralab.org/roast/) by Google Analytics. Daily downloads and geographic locations were stored and plotted.

3. Results

3.1. Computational models of TES tend to be widely adopted

It is obvious that more and more TES studies start to use computational models (Fig. 1), especially since the introduction of individualized modeling from MRIs [13]. SimNIBS, SciRun, and ROAST all helped push the adoption of current-flow models in the literature. Specifically, ROAST has been downloaded 1598 times (1414 unique downloads; see Fig. 2) by April 2022.

3.2. ROAST has been heavily used for individualized TES modeling

According to Google Scholar, the papers in which ROAST was published [19,58] had been cited 225 times by April 2022. Among these, 15 are dissertations and 24 are reviews and book chapters. We reviewed the remaining 186 papers, and found 94 clinical TES studies that used ROAST for computational modeling. Table 1 summarizes all the results for each specific clinical application. As a reference, note that SimNIBS [15,20] has been cited over 800 times, and SciRun for TES simulation [18] has been cited 57 times. One of the studies in Table 1 also used SimNIBS to model the 32
heads but did not find any significant difference in predicted electric field compared to ROAST [45].

It is clear from Table 1 that ROAST has been applied in clinical studies spanning across 12 applications and modeled 1858 individual heads, thanks to its scripting feature that allows easy batch processing. Most of these studies used ROAST to visualize the stimulation electrodes and the electric field distribution at the region of interests (ROI), and to correlate the simulated electric field intensities at the ROIs with clinical outcomes. Some of these studies used ROAST to calculate the dosing of stimulation, optimize the stimulation montage, or perform voxel-based morphometry using the generated tissue segmentation. The study that modeled the most subjects was [22]; where N = 587 healthy older adults under TES were modeled. The results showed that the amount of stimulation current that reaches the brain decreases with increasing atrophy, suggesting that adjusting current dose in older adults based on degree of atrophy may be necessary to achieve desired stimulation benefits. It was not possible to perform TES modeling studies with rigor and reproducibility for over 500 subjects before ROAST was created, as one had to run head segmentation, electrode placement, and electric field computation by hand in various software [13,17,59], where uncertainties may be introduced by manual operations of these software in the modeling process. Other representative studies include: Ref. [26] simulated N = 60 dementia patients to correlate the model-predicted electric field at ROIs with clinical data to evaluate the therapeutic efficacy of a multi-day TES regime on language impairment in patients with semantic dementia. Ref. [29] used ROAST to model N = 8 glioma patients in their study of TES feasibility on these patients. They showed that patient-specific modeling of electric field in the presence of tumor may contribute to understanding the dose-response relationship of this intervention. Ref. [32] modeled N = 18 subjects at different ages for cerebellar transcranial direct current stimulation and found that cerebellar shrinkage and increasing thickness of the highly conductive CSF during healthy aging can lead to the dispersion of the current away from the lobules underlying the active electrode. Ref. [36] built individualized models for N = 16 subjects to help determine the best montage for selective modulation of dorsal and ventral pathways of reading in bilinguals. Ref. [37] used ROAST to calculate the electric field intensities in N = 151 patients with severe depression undergoing electroconvulsive therapy (ECT) and found that the electric fields predicted by ROAST positively correlate with the volumetric changes of the brain due to ECT. Ref. [39] compared in vivo measured electric fields during TES on N = 12 epilepsy patients with their individual models generated by ROAST to validate the models. Ref. [40] built N = 10 individualized models using ROAST to study if electric field intensities at the ROIs positively correlate with functional connectivity. Another relatively large study [48] leveraged ROAST to model N = 240 individuals to study the effects of cortical anatomical parameters such as volumes, dimension, and torque on simulated TES current density in healthy young, middle-aged, and older males and females. Ref. [53] modeled N = 21 individual heads to assess the target engagement in their study of TES

Table 1

Clinical studies that used ROAST to model individual heads under different research contexts. Use purposes include: (I) ROI analysis of E-field against clinical outcomes; (II) Visualization of the E-field at ROI; (III) Voxel-based morphometry; (IV) Optimization of the stimulation; (V) Dose control; (VI) Visualization of electrode placement.

Applications	Number of Subjects Modeled (References)	Use Purposes
Aging effects	N = 587 [22]	(I), (III)
Alzheimer/Dementia	N = 130 [23]	(I), (II), (V)
Brain tumor/lesion	N = 54 [24]	(I), (II), (III)
Cerebellar stimulation	N = 2 [25]	(II), (III), (VI)
	N = 60 [26]	(II), (III), (VI)
Cognitive functional connectivity	N = 2 [27]	(I), (II)
Depression	N = 2 [28]	(II), (VI)
Epilepsy	N = 8 [29]	(I), (II), (VI)
Inter-individual variability	N = 4 [30]	(I), (II), (VI)
	N = 12 [31]	(I), (II), (VI)
	N = 18 [32]	(I), (II), (VI)
	N = 10 [33]	(I), (III), (IV)
	N = 12 [34]	(I), (II), (IV)
	N = 25 [35]	(I), (II), (IV)
Schizophrenia	N = 16 [36]	(I), (II), (VI)
Substance use disorder	N = 151 [37]	(I)
Working memory and attention	N = 2 [38]	(I)
	N = 12 [39]	(I), (II), (VI)
	N = 10 [40]	(I), (II)
	N = 57 [41]	(I), (II), (IV)
	N = 50 [42]	(I), (II), (VI)
	N = 14 [43]	(I), (II), (VI)
	N = 2 [44]	(I), (II)
	N = 32 [45]	(I)
	N = 47 [46]	(I)
	N = 60 [47]	(I)
	N = 240 [48]	(I), (II), (III), (VI)
	N = 29 [49]	(I), (I), (V)
	N = 47 [50]	(I), (V)
	N = 15 [51]	(I), (II)
	N = 90 [52]	(I), (II), (VI)
	N = 17 [53]	(I)
	N = 5 [54,56]	(I), (II), (VI)
Total	N = 1858	(I), (II)

Table 2
Details in the studies reported in Table 1. Electrode names follow international 10/20 convention unless otherwise specified. N/A: data not reported in the paper. EEG: electroencephalography; CSF: cerebrospinal fluid; tDCS: transcranial direct/alternating current stimulation; RO: region of interest; DLPFC/VLPC: dorso/ventral lateral prefrontal cortex; M1: primary motor cortex; TPOJ: temporo-parietal-occipital junction.

Number of Subjects Modeled (References)	Electrode montage (high-definition (H) or conventional(C))	Which brain area is specifically studied?	E-field or current density output by ROAST at studied brain area (normalized to 1 mA stimulation)	E-field correlates with the clinical outcome? Patients or healthy subjects?	
N = 587 [22]	F3–F4 & C3-Fp2 (C)	Entire brain	Average median were 0.007 A/m² and 0.009 A/m² for F3–F4, and 0.011 A/m² and 0.012 A/m² for C3-Fp2 montage in the older and young adult cohort, respectively.	Healthy old and young adults	
N = 130 [23]	F3–F4 (C)	White matter hyperintensities (WMH)	WMH regions had a maximum of 1.77 V/m.	Changes in E-field positively correlated with the total lesion volume. Healthy old adults	
N = 54 [24]	F3 (C)	Left M1 and DLPFC	N/A	E-field decreased with scalp-to-cortex distance in mild cognitive impairment converters Normal aging and mild cognitive impairment converters	
N = 2 [25]	F3–F4 (C)	Frontal cortex	Peak E-field of 0.3 V/m.	N/A	Patients with early stage Alzheimer’s disease Patients with dementia
N = 60 [26]	FT7-AF8 (C)	Left anterior/middle temporal lobe	Peak E-field of 0.16 V/m.	N/A	Healthy and patient with multiple sclerosis Patients with left-sided glioma
N = 2 [27]	Anterior-posterior and left-right array (H)	Brain tumor	Average E-field at tumor is 0.17 V/m.	Presence of peritumoral edema resulted in decreased E-field magnitude within the tumor. N/A	Patients with brain tumor
N = 2 [28]	F3–F4, P3–P4 (C&H)	Cortical surface	Average E-field of 0.16 V/m.	E-field magnitude applied to the left M1 correlated with changes in global connectivity of the right M1.	Healthy subjects
N = 8 [29]	C3-Fp1 (C)	Left M1	Average E-field is 0.12 ± 0.03 V/m (range 0.08 – 0.17 V/m)	Amplitude and orientation of E-field is related to bursting and complex spiking in Purkinje cells in the cerebellum. Healthy subjects	
N = 4 [30]	E133-E18 in EGI HCGSN-256 system (C), anode Iz - cathodes O2, P2, PO8 (H)	Cerebellum	0.2 V/m – 0.25 V/m under montage E133-E18; Average 0.1 V/m under montage anode Iz - cathodes O2, P2, PO8 (H)	Mean E-field strength was a good predictor of the latent variables of oxy-hemoglobin (O2Hb) concentrations and log10-transformed EEG bandpower. Patients with hemiparetic chronic stroke	
N = 12 [31]	PO9h – PO10h Exx7–Exx8 (H)	Cerebellum	Peak E-field of 0.15 V/m.	E-Field increased significantly at the targeted cerebellar hemisphere at an old age. E-Field increased significantly at the targeted cerebellar hemisphere at an old age. Healthy subjects	
N = 8 [32]	Celnik montage (C)	Cerebellum	Peak E-field of 0.15 V/m.	A linear relationship between successful functional reach in post-stroke balance rehabilitation and E-field strength was found. Patients with chronic stroke	
N = 10 [33]	PO9h–PO10h Exx7–Exx8 (H)	Cerebellum	Average –0.04 V/m.	The changes in the quantitative gait parameters were found to be correlated to the mean E-field strength in the cerebellar lobules. Patients with chronic stroke	
N = 12 [34]	PO9h-PO10h Exx7-Exx8 (H)	Cerebellum	Average –0.05 V/m.	tDCS-related metabolite changes may be related to the strength of the E-field induced at the region of interest. Healthy subjects	
N = 25 [35]	I1-Exx25 (C)	Cerebellum	N/A		
N = 16 [36]	CP5-CZ TP7-TP8 (C)	Lexical (ventral) and sublexical (dorsal) pathways for language	Average –0.04 A/m².	Sub-lexical proficiency is associated with greater effects of tDCS stimulation. Healthy subjects	
N = 151 [57]	C2–FT8 (H)	Left amygdala and left hippocampus	Average –0.11 V/m.	High electrical fields are strongly associated with robust volume changes in a dose-dependent fashion. Patients with depression	
N = 2 [38]	Left and right earlobes and infra-auricular (H)	Deep brain sampled by sEEG electrodes	Maximum of 0.4 V/m.	E-fields measured in vivo are highly correlated with the predicted ones. Patients with epilepsy	
N = 12 [39]	Various montages such as TR, O2 – T7 (H)	Deep brain sampled by sEEG electrodes	Maximum of 0.5 V/m.	E-fields measured in vivo are highly correlated with the predicted ones. Patients with epilepsy	
N = 10 [40]	PO7, PO3 - Cz (H)	Motion area	Functional connectivity (between motion area and any other region of interest)	Healthy subjects	

(continued on next page)
on antipsychotic-resistant auditory verbal hallucinations in schizophrenia. Refs. [55,56] built individualized head models for N = 5 subjects to compute the optimal electrode montage to target the cortico-cerebello-thalamo-cortical loop for improving substance use disorder. Ref. [57] modeled N = 15 subjects to predict significant changes of functional connectivity observed in the working memory network from an acute TES application.

In addition, many studies run the models on the example head included with ROAST or an individual sample from the investigators. These work cover various clinical applications including: attention-deficit hyperactivity disorder [61,62], aging [63], associative memory [64,65], attention [66–68], body awareness [69], cognitive control and function [70]; Fusco et al. [125]; [71,72], connectivity [73], decision making [74–77]; Schulreich and Schwabe [126], declarative learning [78], depressive disorder [79], electroencephalography (EEG) research [80–83], imitation [84], memory retrieval [85–87], mind wandering [88,89], motor learning [90–95], motor skills [96–98], neurorehabilitation [60], neurovascular coupling [99], obsessive-compulsive disorder [100], phantom limb pain [101], post-anoxic leukoencephalopathy [102], reading speed [103], schizophrenia [104], social anxiety disorder [105], stroke [106], visual perception [107,108], and working memory [109–115].

Note that for those studies that involved subjects with pathological head anatomy (e.g., tumor or lesion), customized segmentation was performed and integrated into the ROAST pipeline.
to account for these anatomies [25,29]. This is because the segmentation function in ROAST [116] was developed for normal head anatomy only.

3.3. ROAST helps to enhance the rigor and reproducibility

From Table 2, we can see that ROAST has been used to model various electrode montages to stimulate different brain areas. 29 out of the 35 studies in Table 2 used bipolar montages, and 21 of these bipolar montages are conventional pad electrodes. Most of the studies in Table 2 were interested in stimulating the primary motor cortex (M1), frontal cortex and cerebellum. For the primary motor cortex, Ref. [29] used bipolar montage C3–Fp1 with conventional electrodes and achieved an average electric field of 0.12 V/m at the left M1 with 1 mA stimulating current. Ref. [42] obtained an average of 0.19 V/m under montage CP5–FC1 with high-definition electrodes, and 0.18 V/m under montage C3–FP2. Ref. [44] achieved 0.16 V/m averaged electric field with high-definition electrodes Fp2–CP3. For the frontal cortex, Ref. [25] obtained a peak electric field of 0.3 V/m with montage F3–F4 using conventional electrodes. With the same montage, Ref. [46] achieved a median electric field of 0.047 V/m at inferior frontal gyrus. Also with the same montage but high-definition electrodes, Ref. [47] showed an electric field in the range of 0.06–0.10 V/m in the frontal cortex. With montage F3 and the right supraorbital, Ref. [52] outputs an average current density of 0.12 mA/m² at the frontal cortex. With montage F3 and the right supraorbital, Ref. [52] obtained an average of 0.19 V/m under montage CP5–FC1 with high-definition electrodes, and 0.18 V/m under montage C3–FP2. Ref. [44] achieved 0.16 V/m averaged electric field with high-definition electrodes Fp2–CP3. For the frontal cortex, Ref. [25] obtained a peak electric field of 0.3 V/m with montage F3–F4 using conventional electrodes. With the same montage, Ref. [46] achieved a median electric field of 0.047 V/m at inferior frontal gyrus. Also with the same montage but high-definition electrodes, Ref. [47] showed an electric field in the range of 0.06–0.10 V/m in the frontal cortex. With montage F3 and the right supraorbital, Ref. [52] outputs an average current density of 0.12 mA/m² at the left middle frontal gyrus. For the cerebellum, both [33,34] report an electric field intensity of 0.047 V/m at inferior frontal gyrus. Also with the same montage but high-definition electrodes, Ref. [47] showed an electric field in the range of 0.06–0.10 V/m in the frontal cortex. With montage F3 and the right supraorbital, Ref. [52] outputs an average current density of 0.12 mA/m² at the left middle frontal gyrus. For the cerebellum, both [33,34] report an average of about 0.05 V/m under the same montage of PO9h–PO10h using high-definition electrodes. These results suggest that ROAST may help to enhance the rigor of TES models as similar electric field intensities were reproducible across different studies at the same brain area under same or similar stimulation montages.

In Table 2, 21 out of the 35 studies focus on healthy subjects including old and young adults. The other 14 studies in Table 2 build models for patients with the corresponding clinical applications in Table 1. For all the studies in Table 1 with Use Purpose (I), i.e., ROI analysis of E-field against clinical outcomes, we noted in Table 2 the detailed correlation between the predicted electric field and the studied clinical outcome/metric. Except one study [46], all the other studies in Table 2 report significant correlations between the electric field intensity and the outcome of stimulation or the inter-individual variability.

4. Discussions and conclusions

It is clear that computational models are becoming more and more intensively used in the research and clinical applications of TES to enhance rigor and reproducibility. As a new modeling tool in the TES community, ROAST can be improved in several ways to further strengthen study rigor and reproducibility: (1) ROI analysis: a function that allows users to automatically read out electric fields at the ROIs either in the individual head or the standard head space [117]. (2) Interface with other open-source software. For example, researchers in source imaging using electroencephalography/magnetoencephalography (EEG/MEG) rely on the same forward model. (3) Integration of modern deep-learning engine for segmentation of pathological head anatomies mostly presented in clinical populations [121]. This will significantly expand the clinical applications of this software, as the conventional segmentation algorithm used by ROAST [116] is not capable of handling pathological heads. (4) Development of a platform that allows calibration of tissue conductivities for more accurate and personalized modeling. TES models overestimate the electric field compared to intracranial electrical recordings [16], but underestimate the magnetic field induced by the stimulation current compared to actual measurements [122]. Future work will leverage state-of-the-art recording techniques such as in-vivo stereotactic EEG electrodes inserted into the deep brain [123], or in-vivo imaging of magnetic fields in the head induced by the stimulation current [124] to calibrate the models and derive individualized tissue conductivities. This will facilitate more precise dosing and spatial targeting for the stimulation.

In conclusion, the era of precise medicine has come including clinical applications of TES where highly individualized and accurate computational models are becoming more readily accessible with constantly improved software and computational power.

Declaration of competing interest

We report no relevant conflicts of interest or industry support.

Declaration of competing interest

We report no relevant conflicts of interest or industry support.

Acknowledgements

This work was supported by the National Institutes of Health through grants P30CA008748 and R01CA247910. Support was also provided by the Memorial Sloan Kettering Cancer Center Department of Radiology.

References

[1] Bikson M, Bulow P, Stiller J, Datta A, Bartaglia F, Karnup S, Postolache T. Transcranial direct current stimulation for major depression: a general system for quantifying transcranial electrotherapy dosage. Curr Treat Options Neurol 2008;10:377–85. https://doi.org/10.1007/s11940-008-0040-y.

[2] Auvichayapat N, Rotenberg A, Gersner R, Ngoksdin S, Tiamkao S, Tassaneeyakul W, Auvichayapat P. Transcranial direct current stimulation for treatment of refractory childhood focal epilepsy. Brain Stimul 2013;6:696–700. https://doi.org/10.1016/j.brs.2013.01.009.

[3] Fregni F, Thome-Souza S, Nitsche MA, Freedman SD, Valente KD, Pascual-Leone A. A controlled clinical trial of cathodal DC polarization in patients with refractory epilepsy. Epilepsia 2009;50:335–42. https://doi.org/10.1111/j.1528-1167.2008.00426.x.

[4] Regner GG, Pereira F, Leffa DT, de Oliveira C, Vercelino R, Fregni F, Torres ILS. Preclinical to clinical translation of studies of transcranial direct-current stimulation in the treatment of epilepsy: a systematic review. Front Neurosci 2018;12:189. https://doi.org/10.3389/fnins.2018.00189.

[5] San-Juan D, Morales-Quezada L, Orozco Garduño AJ, Alonso-Vanegas M, González-Aragón MF, Espinoza López DA, Vázquez Gregorio R, Anschel DJ, Fregni F. Transcranial direct current stimulation in epilepsy. Brain Stimul 2015;8:455–64. https://doi.org/10.1016/j.brs.2015.01.001.

[6] Fregni F, Boggio PS, Santos MC, Lima M, Vieira AL, Rigonatti SP, Silva MTA, Barbosa ER, Nitsche MA, Pascual-Leone A. Noninvasive cortical stimulation with transcranial direct current stimulation in Parkinson’s disease. Mov Disord 2006a;21:1693–702. https://doi.org/10.1002/mds.21012.

[7] Fregni F, Freedman S, Pascual-Leone A. Recent advances in the treatment of chronic pain with non-invasive brain stimulation techniques. Lancet Neurol 2007;6:188–91. https://doi.org/10.1016/S1474-4422(07)70032-7.

[8] Lefaucheur J-P. Cortical neurostimulation for neuropathic pain: state of the art and perspectives. Pain 2016;157(1). https://doi.org/10.1097/00005399-201510000-00001.

[9] Meintzer M, Darrow R, Lindenberg R, Floel A. Electrical stimulation of the motor cortex enhances treatment outcome in post-stroke aphasia. Brain 2016;139:1152–63. https://doi.org/10.1093/brain/aws002.

[10] Fregni F, El-Hagrasy MM, Pacheco-Barrios K, Carvalho S, Leite J, Simis M, Brunelin J, Nakamura-Palacios EM, Marangolo P, Venkatasubramanian G, San-Juan D, Caumo W, Bikson M, Brunoni AR. Neuromodulation Center Working Group. Evidence-based guidelines and secondary meta-analysis for the use of transcranial direct current stimulation in neurological and psychiatric conditions. Curr Opin Neurol 2008;21:515–23. https://doi.org/10.1097/WCO.0b013e32830d9d0b.
psychiatric disorders. Int J Neuropsychopharmacol 2021;24:256–313. https://doi.org/10.1017/ijn.2021.170.

11. Lefebvre JP, Delcroix D, Mache SS, Benninger DH, Brunel J, Cogniannan F, Cotelli M, De Riddler D, Ferrucci R, Langhuth B, Marangolo P, Mylius V, Nitsche MA, Padberg F, Palm U, Poulet E, Priori A, Rossi S, Scheckmann M, Vanneste S, Ziemann U, Garcia-Larrea L, Paulus W. Evidence-based guide- lines in the therapeutic use of transcranial direct current stimulation (tDCS) in medicine and biology society (EMBC). Presented at the 2015 37th annual international conference of the IEEE engineering in medicine and biology society. EMBC; 2015. p. 5486–9. https://doi.org/10.1109/EMBC.2015.7318340.

12. Windhoff M, Opitz A, Thielscher A. Electric field modeling and neuroimaging to explain inter-individual variability in electric field intensity variability at a cortical target site. J NeuroEng Rehabil 2021;18:18. https://doi.org/10.1186/s12984-021-01249-4.

13. Argyelan M, Oltedal L, Deng Z-D, Wade B, Bikson M, Datta A, Joanlanne A, Sanghani S, Weckesser J, Liu AA, Lafon B, Friedman D, Dayan M, Wang X, Bikson M, Datta A, Bikson M, Parra LC. Realistic volumetric-approach to modeling based on individualized modeling of current flow in the human head. J Neural Eng 2013;10:066004. https://doi.org/10.1088/1741-2560/10/6/066004.

14. Dannhauer M, Brooks D, Tucker D, MacLeod R. A pipeline for the simulation of transcranial direct current stimulation for realistic human head models. J Neural Eng 2020;17:046003. https://doi.org/10.1088/1741-2560/ab9b6c.

15. Huang Y, Dmochowski JP, Su Y, Datta A, Bikson M, Parra LC. Measurements and models of electric fields in the in vivo human brain during transcranial electrical stimulation. eLife 2017;6:e18834. https://doi.org/10.7554/elife.18834.

16. Huang Y, Dmochowski JP, Su Y, Datta A, Rorden C, Parra LC. Automated MRI segmentation for individualized modeling of current distribution in the human head. J NeuroEng 2019;16:056006. https://doi.org/10.1088/1741-2560/16/5/056006.

17. Huang Y, Dmochowski JP, Su Y, Datta A, Rorden C, Parra LC. Automated MRI segmentation for individualized modeling of current flow in the human head. J NeuroEng 2013;10:066004. https://doi.org/10.1088/1741-2560/10/6/066004.

18. Indahlastari A, Albizu A, O’Shea A, Forbes MA, Nissim NR, Kraft JN, Evangelista ND, Hausman HK, Woods AJ. Modeling transcranial electrical stimulation in the aging brain. Brain Stimul 2020;13:1753–64. https://doi.org/10.1016/j.brs.2020.08.005.0.

19. Indahlastari A, Albizu A, O’Shea A, Forbes MA, Nissim NR, Kraft JN, Evangelista ND, Hausman HK, Woods AJ. Modeling transcranial electrical stimulation in the aging brain. Brain Stimul 2020;13:1753–64. https://doi.org/10.1016/j.brs.2020.08.005.0.

20. Kraft JN, Nissim NR, Woods AJ. Machine learning and individual variability in transcranial direct current stimulation. J NeuroEng Rehabil 2021;18:18. https://doi.org/10.1186/s12984-021-01249-4.

21. Johnstone A, Zich C, Evans C, Lee J, Ward N, Bestmann S. The impact of brain lesions on tDCS-induced electric field magnitude in chronic stroke survivors—a pilot study. Brain Sci 2020;10:125–38. https://doi.org/10.3390/brainsci10020125.

22. Rezae Z, Kaura S, Solanki D, Dash A, Svivadatta MVP, Lahiri U, Datta A. Deep cerebellar transcranial direct current stimulation of the dentate nucleus to facilitate standing balance in chronic stroke survivors—a pilot study. Brain Sci 2020;10:125–38. https://doi.org/10.3390/brainsci10020125.

23. Rezae Z, Kaura S, Solanki D, Dash A, Svivadatta MVP, Lahiri U, Datta A. Deep cerebellar transcranial direct current stimulation of the dentate nucleus to facilitate standing balance in chronic stroke survivors—a pilot study. Brain Sci 2020;10:125–38. https://doi.org/10.3390/brainsci10020125.

24. Rezae Z, Kaura S, Solanki D, Dash A, Svivadatta MVP, Lahiri U, Datta A. Deep cerebellar transcranial direct current stimulation of the dentate nucleus to facilitate standing balance in chronic stroke survivors—a pilot study. Brain Sci 2020;10:125–38. https://doi.org/10.3390/brainsci10020125.

25. Rezae Z, Datta A. Lobule-specific dosage considerations for cerebellar transcranial direct current stimulation during healthy aging: a computational modeling study using age-specific magnetic resonance imaging templates. Neuro modulation: Technology at the Neural Interface 2020;23:341–65. https://doi.org/10.1038/s41398-020-0209.

26. Rezae Z, Datta A. Lobule-specific dosage considerations for cerebellar transcranial direct current stimulation during healthy aging: a computational modeling study using age-specific magnetic resonance imaging templates. Neuro modulation: Technology at the Neural Interface 2020;23:341–65. https://doi.org/10.1038/s41398-020-0209.

27. Rezae Z, Kaura S, Solanki D, Dash A, Svivadatta MVP, Lahiri U, Datta A. Deep cerebellar transcranial direct current stimulation of the dentate nucleus to facilitate standing balance in chronic stroke survivors—a pilot study. Brain Sci 2020;10:125–38. https://doi.org/10.3390/brainsci10020125.

28. Rezae Z, Datta A. Lobule-specific dosage considerations for cerebellar transcranial direct current stimulation during healthy aging: a computational modeling study using age-specific magnetic resonance imaging templates. Neuro modulation: Technology at the Neural Interface 2020;23:341–65. https://doi.org/10.1038/s41398-020-0209.
Bjeki Tan SJ, Filmer HL, Dux PE. Age-related differences in the role of the prefrontal cortex on face-word associative memory. Behav Brain Res 2019;366:88–95.

Kashyap R, Bhattacharjee S, Kashyap R, Rapp B, Oishi K, Desmond JE, Chen SHA. Simultaneous analyses of tDCS intensity on decision-making transfer and outcomes. J Neurophysiol 2019;122:104379–93.

Manuel AI, Murray NWG, Piguet D. Transcranial direct current stimulation (tDCS) over vmPFC modulates interactions between reward and emotion in delay discounting. Sci Rep 2019;9:18735. doi:10.1038/s41598-019-51517-2.

Ewing J, Koel ED, Debha G, Pastoret B, Verguts T. Failure to modulate reward prediction errors in declarative learning with theta (6 Hz) frequency transcranial alternating current stimulation. PLoS One 2020;15:e0237829. doi:10.1371/journal.pone.0237829.

Riddle J, Alexander ML, Schiller CE, Rubinov DR, Frohlich F. Reduction in left frontal alpha oscillations by transcranial alternating current stimulation in major depressive disorder is context dependent in a randomized clinical trial. Biol Psychiater 2021. https://doi.org/10.1016/j.biopsych.2021.07.001.

Geboes N, Emaeplou Z, Datta A, Bikson M. Dataset of concurrent EEG, ECG, and behavior with multiple doses of transcranial electrical stimulation. Sci Data 2021;8:274. doi:10.1038/s41597-021-00958-7.

Joe RE, Johnson E, Pausa ZS, Rojas DC. Modulation of auditory gamma-band responses using transcranial electrical stimulation. J Neurophysiol 2020b;123:2504–14. doi:10.1152/jn.00802.2019.

Lazarev VV, Gebodh N, Tamborino T, Bikson M, Caparros-Daquer EM. Experimental-design-dependent changes in spontaneous EEG and during intermittent photic stimulation by high definition transcranial direct current stimulation. Neuroscience 2020;426:50–8. doi:10.1016/j.neuroscience.2019.11.016.

Popp F, Dellmer-Zerbe I, Popp F, Lam AP, Philipsen A, Herrmann CS. Transcranial alternating current stimulation (tACS) as a tool to modulate P300 amplitude in attention deficit hyperactivity disorder (ADHD): preliminary findings. Brain Topogr 2020;33:191–207. doi:10.1007/s10548-020-0339-4.

Kloimjai W, Siripornpant V, Anekas B, Vimolrata O, Permpoonputtana K, Retritluxana J, Thichanpiang P. Effects of cathodal transcranial direct current stimulation on inhibitory and attention control in children and adolescents with attention-deficit hyperactivity disorder: a pilot randomized sham-controlled crossover study. J Psychiatr Res 2022. https://doi.org/10.1016/j.jpsychires.2022.02.032.

Tan SJ, Filmer HL, Dux PE. Age-related differences in the role of the prefrontal cortex in sensory-motor training gains: a tDCS study. Neuropsychologia 2021;158:107891. doi:10.1016/j.neuropsychologia.2021.107891.

Bjeki J, Vulic K, Zivanović M, Vujićić J, Ljubisavljević M, Filipović SR. The immediate and delayed effects of single tDCS sessions over posterior parietal cortex on face–nonface associative memory. Behav Brain Res 2019;366:88–95. doi:10.1016/j.bbr.2019.03.023.

Luckey AM, McLeod SL, Mohan A, Vanneste S. Polarity-specific high-definition transcranial direct current stimulation of the anterior and posterior default mode network improves remote memory retrieval. Brain Stimul 2021;14:1005–14. doi:10.1016/j.brs.2021.06.007.

Koolschijn RS, Ems U, Panteleics AD, Nili H, Behrens TEJ, Barros HC. The Hippocampus and neocortical inhibitory engrams protect against memory interference. Neuron 2019;101:528–41. doi:10.1016/j.neuron.2019.08.015.

Patel SK, Vostanis A, Saladi A. Electrical brain stimulation during a retrieval-based learning task can impair long-term memory. J Cogn Enhanc 2021;5:218–32. doi:10.1016/j.cognenh.2021.07.001.

Filmer HL, Griffin A, Dux PE. For a minute there, I lost myself — dopamine depot increases during visuo-spatial working memory. J Neurophysiol 2019;120:379–84. doi:10.1152/jn.00493.2018.

Filmer HL, Marcus LH, Dux PE. Stimulation task unrelated thoughts: tDCS of prefrontal and parietal cortices leads to polystyric specific increases in mind engagement. Brain Stimul 2021;15:1002–1010.
wandering. Neuropsychologia 2021;151:107723. https://doi.org/10.1016/j.neuropsychologia.2020.107723.

[90] Ashcroft J, Patel R, Woods AJ, Darzi A, Singh H, Leff DR. Prefrontal transcranial direct-current stimulation improves early technical skills in surgery. Brain Stimul 2020;13:1834–41. https://doi.org/10.1016/j.brs.2020.10.013.

[91] Caesley H, Sewell I, Gogineni N, Javadi A-H. Transcranial direct current stimulation does not improve performance in a whole-body task. https://doi.org/10.1101/2021.01.25.428100; 2021.

[92] Greeley B, Barnhoorn JS, Verwey WB, Seidler RD. Multi-session transcranial direct current stimulation over primary motor cortex facilitates sequence learning, chunking, and one year retention. Front Hum Neurosci 2020;14. https://doi.org/10.3389/fnhum.2020.00075.

[93] Greeley B, Seidler RD. Differential effects of left and right prefrontal cortex anodal transcranial direct current stimulation during probabilistic sequence learning. J Neurophysiol 2019;121:1906–16. https://doi.org/10.1152/jn.00759.2018.

[94] King BR, Rumpf J-J, Heise K-F, Veldman MP, Peeters R, Doyon J, Classen J, Alouby G, Swinnen SF. Lateralized effects of post-learning transcranial direct current stimulation on motor memory consolidation in older adults: an fMRI investigation. NeuroImage 2020;117323. https://doi.org/10.1016/j.neuroimage.2020.117323.

[95] Sehatpour P, Donde C, Hogtman MJ, Kreitner J, Adair D, Dias E, Vail B, Rohrig S, Slipo G, Lopez-Calderon J, Martinez A, Javitt DC. Network-level mechanisms underlying effects of transcranial direct current stimulation (tDCS) on visuomotor learning. Neuroimage 2020;117311. https://doi.org/10.1016/j.neuroimage.2020.117311.

[96] Boukarras S,emetery AM, Ekaera V, Moreau Q, Tieri G, Candidi M. Midfrontal theta tACS facilitates motor coordination in dyadic human-avat interaction. J Cognit Neurosci 2022;1. https://doi.org/10.1162/jocn_a_01834.

[97] Patel R, Suwa Y, Kinross J, von Roon A, Woods AJ, Darzi A, Singh H, Leff DR. Neuroenhancement of surgeons during robotic suturing. Surg Endosc 2021. https://doi.org/10.1007/s00464-021-08823-1.

[98] Patel R, Suwa Y, Kinross J, von Roon A, Woods AJ, Darzi A, Singh H, Leff DR. Prefrontal transcranial direct current stimulation for the treatment of obsessive-compulsive disorder? Brain Stimul: Basic, Translational, and Clinical Research in Neuromodulation 2021;14:810101. https://doi.org/10.1016/j.brs.2021.07.001.

[99] Nikolin S, Lauf S, Loo CK, Martin D. Effects of high-definition transcranial direct current stimulation (HD-tDCS) of the intraparietal sulcus and dorso-lateral prefrontal cortex on working memory and divided attention. Front Integ Neurosci 2019;12:54. https://doi.org/10.3389/fnint.2018.00064.

[100] Nikosian NR, O'Shea A, Indahlastari A, Kraft JN, von Mering O, Aksu S, Porges E, Cohen R, Woods AJ. Effects of transcranial direct current stimulation paired with cognitive training on functional connectivity of the working memory network in older adults. Front Aging Neurosci 2019;11:340. https://doi.org/10.3389/fnagi.2019.00340.

[101] Thompson L, Khuc J, Saccani MS, Zokaei N, Cappelletti M. Gamma oscillations modulate working memory recall precision. Exp Brain Res 2021;239:271–24. https://doi.org/10.1007/s00221-021-06051-6.

[102] Ashburner J, Friston KJ. Unified segmentation. Neuroimage 2005;26:839–51. https://doi.org/10.1016/j.neuroimage.2005.02.018.

[103] Evans AC, Collins DL, Mills SR, Brown ED, Kelly RI, Peters TM. 3D statistical neuroanatomical models from 305 MRI volumes. In: Nuclear science symposium and medical imaging conference. 1993, 1993 IEEE conference record. Presented at the nuclear science symposium and medical imaging conference, 1993. 3. IEEE Conference record.; 1993. p. 1813–7. https://doi.org/10.1109/NSSMIC.1993.373602.

[104] Rush S, Driscoll DA. EEG electrode sensitivity—an application of reciprocity. IEEE Trans Biomed Eng 1969;16:15–22.

[105] Tutorials/Plugins. Brainstorm [WWW Document], n.d. URL, https://neuroimage.usc.edu/brainstorm/Tutorials/Plugins. 5.12.21.

[106] Talal F, Billeut S, Mosher JC, Pantazis D, Leahy RM. Brainstorm: a user-friendly application for MEG/EEG analysis. Comput Intell Neurosci 2011. https://doi.org/10.1155/2011/879716. 2011.

[107] Hirsch L, Huang Y, Parra LC. Segmentation of MRI head anatomy using deep volumetric networks and multiple spatial priors. JMI 2021;8:034001. https://doi.org/10.1016/j.jmri.2021.03.0401.

[108] Job M, Jann K, Yan L, Huang Y, Parra L, Natt K, Bikson M, Wang DJ. Concurrent imaging of markers of current flow and neurophysiological changes during tDCS. Front Neurosci 2020;14. https://doi.org/10.3389/fnins.2020.00374.

[109] Louvot S, Thyasert L, Maillard LG, Colinnet-Gouilhe S, Dmochowski J, Koeslter L. Transcranial Electrical Stimulation generates electric fields in deep human brain structures. Brain Stimull 2022;15:1–12. https://doi.org/10.1016/j.brs.2021.10.012.

[110] Eroglu HH, Puonti O, Aksu C, Gregersen F, Siebner HR, Hanson LG, Thielischer A. Human in-vivo magnetic resonance current density imaging of the brain by optimizing head tissue conductivities. Brain Stimul: Basic, Translational, and Clinical Research in Neuromodulation 2021;14:1591–2. https://doi.org/10.1016/j.brs.2021.10.012.

[111] Fusco, G., Fusaro, M., 5. (2022). Midfrontal-occipital tACS modulates cognitive conflicts related to bodily stimuli. Social cognitive and affective neuroscience, 17(1), 91-100. https://doi.org/10.1093/scan/nsaa125.

[112] Schulleich, S., Schwabe, L., n.d. Causal role of the dorsolateral prefrontal cortex in belief updating under uncertainty. Cerebr Cortex. https://doi.org/10.1093/cercor/bhaa219.