12-11-2017

Structural and Functional Insights Into the Role of BamD and BamE Within the \(\beta\)-Barrel Assembly Machinery in \textit{Neisseria gonorrhoeae}

Aleksandra E. Sikora
Oregon State University

Igor H. Wierzbicki
Oregon State University

Ryszard A. Zielke
Oregon State University

Rachael F. Ryner
Oregon State University

Konstantin V. Korotkov
University of Kentucky, kkorotkov@uky.edu

See next page for additional authors

Follow this and additional works at: https://uknowledge.uky.edu/biochem_facpub

Part of the Amino Acids, Peptides, and Proteins Commons, and the Biochemistry, Biophysics, and Structural Biology Commons

Repository Citation
Sikora, Aleksandra E.; Wierzbicki, Igor H.; Zielke, Ryszard A.; Ryner, Rachael F.; Korotkov, Konstantin V.; Buchanan, Susan K.; and Noimaj, Nicholas, "Structural and Functional Insights Into the Role of BamD and BamE Within the \(\beta\)-Barrel Assembly Machinery in \textit{Neisseria gonorrhoeae}" (2017). Molecular and Cellular Biochemistry Faculty Publications. 132.
https://uknowledge.uky.edu/biochem_facpub/132

This Article is brought to you for free and open access by the Molecular and Cellular Biochemistry at UKnowledge. It has been accepted for inclusion in Molecular and Cellular Biochemistry Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
Authors
Aleksandra E. Sikora, Igor H. Wierzbicki, Ryszard A. Zielke, Rachael F. Ryner, Konstantin V. Korotkov, Susan K. Buchanan, and Nicholas Noinaj

Structural and Functional Insights Into the Role of BamD and BamE Within the β-Barrel Assembly Machinery in Neisseria gonorrhoeae

Notes/Citation Information
Published in The Journal of Biological Chemistry, v. 293, no. 4, p. 1106-1119.

This research was originally published in The Journal of Biological Chemistry. Aleksandra E. Sikora, Igor H. Wierzbicki, Ryszard A. Zielke, Rachael F. Ryner, Konstantin V. Korotkov, Susan K. Buchanan, and Nicholas Noinaj. Structural and Functional Insights Into the Role of BamD and BamE Within the β-Barrel Assembly Machinery in Neisseria gonorrhoeae. J. Biol. Chem. 2018; 292:1106-1119. © the American Society for Biochemistry and Molecular Biology

The copyright holder has granted the permission for posting the article here.

Digital Object Identifier (DOI)
https://doi.org/10.1074/jbc.RA117.000437

This article is available at UKnowledge: https://uknowledge.uky.edu/biochem_facpub/132
The β-barrel assembly machinery (BAM) is a conserved multicomponent protein complex responsible for the biogenesis of β-barrel outer membrane proteins (OMPs) in Gram-negative bacteria. Given its role in the production of OMPs for survival and pathogenesis, BAM represents an attractive target for the development of therapeutic interventions, including drugs and vaccines against multidrug-resistant bacteria such as Neisseria gonorrhoeae. The first structure of BamA, the central component of BAM, was from N. gonorrhoeae, the etiological agent of the sexually transmitted disease gonorrhea. To aid in pharmaceutical targeting of BAM, we expanded our studies to BamD and BamE within BAM of this clinically relevant human pathogen. We found that the presence of BamD, but not BamE, is essential for gonococcal viability. However, BamE, but not BamD, was cell-surface–displayed under native conditions; however, in the absence of BamE, BamD indeed becomes surface-exposed. Loss of BamE altered cell envelope composition, leading to slower growth and an increase in both antibiotic susceptibility and formation of membrane vesicles containing greater amounts of vaccine antigens. Both BamD and BamE are expressed in diverse gonococcal isolates, under host-relevant conditions, and throughout different phases of growth. The solved structures of Neisseria BamD and BamE share overall folds with Escherichia coli proteins but contain differences that may be important for function. Together, these studies highlight that, although BAM is conserved across Gram-negative bacteria, structural and functional differences do exist across species, which may be leveraged in the development of species-specific therapeutics in the effort to combat multidrug resistance.

Gram-negative bacteria, mitochondria, and plastids, such as chloroplasts, contain integral β-barrel outer membrane proteins (OMPs) that play a myriad of pivotal physiological and structural functions, including nutrient acquisition, secretion, signal transduction, outer membrane biogenesis, and motility (1, 2). In pathogenic bacteria, OMPs additionally assist in virulence by facilitating host colonization and exploiting immune responses as well as drug extrusion (3–5). Therefore, understanding the mechanisms that direct targeting and folding of OMPs is critical for development of pharmaceutical interventions to combat clinically important pathogens, including the recent emergence of multidrug-resistant Neisseria gonorrhoeae, the etiological agent of gonorrhea. This sexually transmitted infection remains a major public health problem globally, and 78 million cases were estimated in 2012 (6). Recent quantitative proteomic investigations of OMPs in N. gonorrhoeae yielded new insights into cell envelope composition and identified new vaccine/drug protein targets that include LptD, TamA, TamB, and the BAM complex as well as a plethora of uncharacterized lipoproteins (7, 8).

OMPs are first synthesized in the cytoplasm with an N-terminal leader sequence that routes them across the inner membrane into the periplasm by the Sec system (4, 9, 10). Periplasmic chaperones, such as SurA, FkpA, and/or Skp, then bind the nascent OMPs and escort them to the outer membrane where the β-barrel assembly machinery (BAM) then folds and/or inserts them into the outer membrane (3–5, 9, 10). BAM has been primarily investigated in Escherichia coli and Neisseria meningitidis (3, 4, 11, 12). In E. coli, BAM is a five-protein com-

The authors declare that they have no conflicts of interest with the contents of this article. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

This article contains Figs. S1–S3 and Table S1.

The atomic coordinates and structure factors (codes SWAQ and SWAM) have been deposited in the Protein Data Bank (http://wwpdb.org/).

1 Supported by NIAID, National Institutes of Health Grant R01-AI117235. To whom correspondence may be addressed. E-mail: aleskaendra.sikora@oregonstate.edu.

2 Supported by the Intramural Research Program of the NIDDK, National Institutes of Health.

3 Supported by the Department of Biological Sciences at Purdue University, a Showalter Trust Award, and NIAID, National Institutes of Health Grant 1K22AI113078-01. To whom correspondence may be addressed. E-mail: nnoinaj@purdue.edu.

4 The abbreviations used are: OMP, outer membrane protein; BAM, β-barrel assembly machinery; IPTG, isopropyl β-D-1-thiogalactopyranoside; MIC, minimal inhibitory concentration; TPR, tetratricopeptide repeat; r.m.s.d., root mean square deviation; GCB, gonococcal base liquid medium; NHS, normal human serum; GCBL, gonococcal base liquid medium; LBA, Luria-Bertani agar; rBamE, recombinant BamE; TEV, tobacco etch virus; rSurA, recombinant SurA; Ng-MIP, Neisseria gonorrhoeae Macrophage infectivity potentiator.
plex consisting of BamA, an OMP itself, and four accessory lipoproteins, BamB, BamC, BamD, and BamE (3, 5, 11). In contrast, no BamB ortholog is present in Neisseria genomes, whereas RmpM has been identified as an additional accessory protein (11). BamA is the central component of BAM, and its removal results in loss of viability. Similarly, a bamD deletion causes lethality in E. coli and N. meningitidis, whereas lack of other accessory Bam lipoproteins results in various degrees of growth phenotypes and more subtle effects on cell envelope composition and integrity (3, 11–16). In vitro, all lipoproteins are required for fully efficient folding of OmpT, a model OMP substrate of BAM (17, 18). BamB–E are found within the periplasm anchored to the periplasmic leaflet of the outer membrane via a lipid moiety at their N terminus. Albeit still controversial, particularly with the recently reported structures of BAM (19–22), the helix-grip domains of BamC have also been shown to be surface-exposed (23).

Over the past decade, the individual structures of all the Bam proteins have been reported from E. coli, and more recently, several groups reported the structure of fully assembled E. coli BAM (20–22, 24–39). These structures have provided molecular details about how the individual Bam proteins interact with one another and revealed that the barrel domain of BamA undergoes a large conformational change within the membrane not previously observed in OMPs (19–22, 30, 38–40). BamB and BamD were found to interact directly with BamA with BamD also interacting with the barrel domain. BamE was found to not only interact with BamD as shown previously (14) but also with BamA, bridging an additional interaction of BamA with BamD. These structures have contributed significantly toward our understanding of the architecture and dynamics of BAM; however, exactly how BAM functions in E. coli remains unknown. In Neisseria, only the structure of full-length BamA (N. gonorrhoeae) has been reported for BAM (30) along with the structure of RmpM (N. meningitidis) (41).

Growing lines of evidence build an appreciation for the existence of significant differences in homologous protein function, structure, and localization, often despite a close relatedness of the organisms. For instance, factor H–binding protein, which is incorporated into the BEXSERO meningococcal B vaccine, is a surface-localized protein in N. meningitidis but not in N. gonorrhoeae (42). Furthermore, the protein responsible for transporting lipopolysaccharide in E. coli and lipooligosaccharide in Neisseria to the cell surface, LptD, is non-essential in N. meningitidis but essential in E. coli and N. gonorrhoeae (7, 43, 44).

To gain additional insight into the role of BamD and BamE within BAM in Neisseria and to aid in future therapeutic development, here we have performed mutagenesis and knockout studies to assay the effects on Neisseria growth and OMP assembly. Our work shows that BamD, but not BamE, is essential for viability and that BamE, but not BamD, is surface-exposed, similar to what has been observed for BamC in E. coli. However, in the absence of BamE, BamD did become surface-exposed with a concomitant increase in antibiotic susceptibility and production of membrane vesicles with altered OMP composition, providing further evidence that BamE may be a new vaccine target against N. gonorrhoeae. Furthermore, to better guide future investigations on Neisseria BAM and to assist in structure-based therapeutic methods, we have determined the X-ray crystal structures of both BamD and BamE from N. gonorrhoeae. These studies show that Neisseria BamD and BamE share overall folds with their E. coli orthologs, but there are differences that may be functionally important.

Results

The sequences of bamE and bamD loci in N. gonorrhoeae

BLAST searches for the gonococcal homolog of BamE protein, BamEGC, using the genome sequence of N. gonorrhoeae strain FA1090 and sequence comparisons with Clustal Omega (1.2.; http://www.clustal.org/omega3; Ref. 76) resulted in identification of locus NGO01780 with 28.7 and 92.7% sequence identity to the E. coli and N. meningitidis MC58 counterparts, respectively (Fig. S1). The homolog of BamD, NGO0277 (hereafter BamDGC), was previously identified in N. gonorrhoeae and named ComL (45). The deduced amino acid sequence of the N. gonorrhoeae FA1090 BamDGC shares 33.7% sequence identity with its E. coli counterpart and 96.3% sequence identity with the meningococcal homolog (Fig. S1). Conservation of BamE (locus NEIP0196) and BamD (locus NEIP0653) was analyzed by comparing DNA sequences between 42,412 Neisseria isolates deposited to the PubMLST database (https://pubmlst.org/neisseria3; Ref. 77) as of April 18, 2017 and demonstrated the presence of 179 alleles with 89 single nucleotide polymorphisms (SNPs) for BamE and 269 alleles with 186 SNPs for BamD (Fig. S2).

BamDGC is an essential BAM component in N. gonorrhoeae

In E. coli and N. meningitidis, both BamA and BamD are essential proteins, and their depletion results in OMP folding, stability, and assembly defects (11, 46–48). Recently, we demonstrated the essential nature of BamA (N. gonorrhoeae) (8), but bamDGC was designated dispensable due to the successful generation of a transposon mutant (45). This mutant, however, showed pleiotropic phenotypes, including smaller cell size, crinkled colony morphology, and reduced transformation competence.

Based on studies in E. coli and N. meningitidis (11, 46), we reasoned that BamDGC is also essential for N. gonorrhoeae viability. To test this hypothesis, we first constructed a strain in the N. gonorrhoeae FA1090 background that carried an additional copy of bamDGC placed under an isopropyl ß-D-1-thiogalactopyranoside (IPTG)–inducible promoter in a different site on the chromosome. We next insertionally inactivated the bamDGC gene in its chromosomal locus using the kanamycin resistance cassette. The resulting strain, ΔbamDGC/P(lac):bamDGC, formed robust colonies in the presence of the inducer but failed to grow when subcultured on solid medium lacking IPTG (Fig. 1A). To deplete BamD during growth in liquid medium, we applied an experimental strategy utilized previously to diminish levels of the N. gonorrhoeae essential proteins BamA, Obg, and GmhA (8, 49, 50). After harvesting from solid medium supplemented with IPTG, bamD::kan/P(lac):bamD was transferred to broth with or without IPTG. Following 3-h incubation, both

5 Please note that the JBC is not responsible for the long-term archiving and maintenance of this site or any other third party-hosted site.
culture was adjusted to the same optical density (shown as 0.1 on the graph in Fig. 1B) and cultured under permissive and non-permissive conditions for another 6 h. Omitting IPTG in the liquid medium prevented bacterial growth (Fig. 1B), which was concomitant with BamDGC depletion as shown by immunoblotting with anti-BamDGC antiserum (Fig. 1C). Together, these studies confirmed the essential nature of BamD in N. gonorrhoeae.

N. gonorrhoeae lacking BamEGC displays a slower growth rate in liquid medium under standard conditions

To characterize the role of BamEGC, we cloned and purified a construct lacking the predicted lipoprotein signal peptide and tagged with a C-terminal His6 tag and used the purified protein to raise polyclonal rabbit antiserum. The purified protein migrated in SDS-PAGE according to a predicted molecular mass of ~12 kDa, corresponding to the recombinant protein. Subsequently, we created a null bamEGC mutant, ∆bamEGC, and a complemented strain ∆bamEGC/Plac::bamEGC in N. gonorrhoeae FA1090. The anti-BamEGC antiserum cross-reacted with wildtype whole-cell lysates. As expected, no signal was detected in the bamEGC knockout strain, whereas the complemented strain expressed BamEGC at levels proportional to the concentrations of IPTG added (Fig. 2A). The use of 20 μM IPTG resulted in amounts of BamEGC closely resembling the native

Figure 1. Depletion of BamDGC is lethal for N. gonorrhoeae. A, the N. gonorrhoeae FA1090 bamDGC::kan strain was streaked from frozen stock on solid medium supplemented with kanamycin and IPTG. Following incubation at standard conditions, bacteria were passaged onto solid medium with (+) or without (−) IPTG, and the colonies were examined after 22 h. Representative photographs are shown. B and C, non-piliated colonies of N. gonorrhoeae bamDGC::kan were obtained after permissive growth in the presence of IPTG were suspended in liquid medium to an A600 of 0.1, washed, divided, and cultured in the presence or absence of IPTG. After 3 h (shown as time 0 h on the graph), cultures were back-diluted in fresh medium to the same turbidity (shown as time 0 h on the graph in Fig. 1B). Experiments were performed in three biological replicates, and means with corresponding S.D. (error bars) are presented. cfu values were enumerated after 22 h of aerobic and 48 h of anaerobic growth.

Figure 2. Fitness assessment of the N. gonorrhoeae null bamEGC mutant. A, cells of N. gonorrhoeae FA1090 wildtype, isogenic ∆bamEGC and ∆bamEGC/Plac::bamEGC were harvested from solid medium supplemented with IPTG (as indicated) and subjected to SDS-PAGE followed by immunoblotting with anti-BamEGC antisemur. Migration of a molecular mass marker (kDa) is indicated on the left. Bacterial growth was examined by measuring A600 (shown as ± error bars) are presented. cfu values were enumerated after 22 h of aerobic and 48 h of anaerobic growth.

To characterize the role of BamEGC, we cloned and purified a construct lacking the predicted lipoprotein signal peptide and tagged with a C-terminal His6 tag and used the purified protein to raise polyclonal rabbit antiserum. The purified protein migrated in SDS-PAGE according to a predicted molecular mass of ~12 kDa, corresponding to the recombinant protein. Subsequently, we created a null bamEGC mutant, ∆bamEGC, and a complemented strain ∆bamEGC/Plac::bamEGC in N. gonorrhoeae FA1090. The anti-BamEGC antiserum cross-reacted with wildtype whole-cell lysates. As expected, no signal was detected in the bamEGC knockout strain, whereas the complemented strain expressed BamEGC at levels proportional to the concentrations of IPTG added (Fig. 2A). The use of 20 μM IPTG resulted in amounts of BamEGC closely resembling the native
protein pool in the wildtype strain and consequently was chosen in further complementation experiments.

The colony size of bamEGC was similar to that in a parental strain, but a slower proliferation rate was observed during mid-logarithmic growth in liquid medium. At the end of the experiment, however, the mutant culture reached the same density as the wildtype, and the apparent lag in growth was fully rescued in $\Delta \text{bamEGC}/P_{\text{lac}}::\text{bamEGC}$ (Fig. 2B). Culture supernatants derived from ΔbamEGC contained increased amounts of cytoplasmic protein markers such as Zwf, Obg, and GmhA, suggesting increased cell lysis (51). Interestingly, culturing the mutant in chemically defined Graver-Wade medium significantly reduced this phenotype. Slower growth in liquid medium was also observed in the Caulobacter crescentus ΔbamE but not in E. coli, N. meningitidis, Pseudomonas aeruginosa, or Salmonella enterica serovar Typhimurium (14, 52–54). In contrast, no significant fitness differences, as measured by counts of colony-forming units (cfu), were noted when the wildtype, ΔbamEGC, and $\Delta \text{bamEGC}/P_{\text{lac}}::\text{bamEGC}$ were maintained on solid medium under standard aerobic conditions as well as conditions mimicking different microecological niches in the human host, including iron deprivation, presence of normal human serum, and anaerobiosis (Fig. 2C).

Expression of BamEGC and BamDGC

Limited information is available regarding expression of BAM components as most research efforts have focused on understanding the architecture and protein interactions of this protein complex. Therefore, to further characterize the accessory lipoproteins BamDGC and BamEGC, we examined their expression patterns in the wildtype FA1090 throughout growth in liquid medium, during exposure to environmental stimuli relevant to different infections sites in the human host, and in a panel of 36 different gonococcal isolates.

Both BamDGC and BamEGC were continuously expressed throughout all stages of N. gonorrhoeae growth (Figs. 1A and 3A). A similar expression pattern was reported for BamAGC (8). Moreover, although levels of BamDGC remained unchanged upon exposure of N. gonorrhoeae to aerobic and anaerobic conditions, upon iron limitation and in the presence of normal human serum, expression of BamEGC was noticeably induced during anaerobiosis (Fig. 3B). This could suggest an additional requirement for BamEGC during anaoxia, but this potential role seems not to be sufficiently significant as fitness of N. gonorrhoeae lacking bamEGC was not affected under these conditions (Fig. 2C).

Analysis of SNPs showed high conservation of both BamEGC and BamDGC among different N. gonorrhoeae isolates (Fig. S2). Corroborating this observation, the anti-BamEGC and anti-BamDGC antiserum cross-reacted with whole-cell lysates derived from common laboratory strains (FA1090, F62, MS11, FA19, and 1291) and temporally and geographically diversified clinical isolates, including the 2016 World Health Organization (WHO) reference strains (Fig. 3C). In addition, these experiments demonstrated that, similarly to BamAGC (8), the accessory lipoproteins BamEGC and BamDGC are ubiquitously expressed in a highly diverse pool of gonococcal isolates, further underscoring the potential of BAM as a target for new therapeutic interventions.

Subcellular localization studies of BamDGC and BamEGC

Using a quantitative proteomic approach, we have previously identified BamAGC, BamDGC, and BamEGC in both cell envelopes and naturally released membrane vesicles derived from four different N. gonorrhoeae strains (7, 55). Intriguingly, differences in homologous proteins’ subcellular localization between even closely related organisms such as N. meningitidis and N. gonorrhoeae have been reported (42). Furthermore, recent findings showed that E. coli BamC is exposed on the surface and accessible to antibodies and proteases, which challenges the dogma for the architecture of BAM (3, 23). Therefore, we first confirmed the outer membrane localization and surface exposure of BamAGC (8). Subsequently, we sought to examine the subcellular location of BamDGC and BamEGC. Subproteome fractions isolated from wildtype N. gonorrhoeae FA1090 were separated by SDS-PAGE and probed with antisera against BAM

\begin{figure}
\centering
\includegraphics{Figure3.png}
\caption{Expression studies of the accessory lipoproteins BamDGC and BamEGC in N. gonorrhoeae. A, wildtype N. gonorrhoeae FA1090 was cultured in liquid medium, and at the indicated time points, samples were withdrawn and processed for SDS-PAGE and immunoblotting analysis. B, quantities of BamDGC and BamEGC in wildtype FA1090 during in vitro conditions relevant to different infection sites (standard growth under aerobic conditions on solid medium (GCB), in the presence of normal human serum (+NHS), during iron deprivation (-Iron), and under anaerobiosis (-O2) were assessed by probing the whole-cell lysates with respective antibodies. C, 37 strains of N. gonorrhoeae, as indicated above the immunoblots, were grown concurrently on solid medium for 20 h in 5% CO2 at 37 °C, and bacteria were collected, lysed, and processed for immunoblotting. In all experiments, samples containing the whole-cell lysates were matched by equivalent A$_{600}$ units, resolved in a 4–20% Tris-glycine gel, and transferred onto nitrocellulose. Immunoblot analysis was performed using polyclonal rabbit antisera against BamDGC and BamEGC. Migration of a molecular mass marker (kDa) is indicated on the left.}
\end{figure}
Structure and function of BamE and BamD

A.

	C	CE	MV	SS
75				
15				
25				
50				

B.

	Intact cells	Lysed cells
wt	BamA	P_{lac}:bamE
ΔbamE	BamA	P_{lac}:bamE

C.

	Trypsin (μg/ml)
0	0
40	0
80	0
75	BamA
15	BamE
25	BamD
50	Obg

Figure 4. Assessment of subcellular localization of BamD_{GC} and BamE_{GC}.

A, wildtype N. gonorrhoeae FA1090 harvested during the mid-logarithmic phase was subjected to proteome extraction to separate cytoplasmic proteins (C), cell envelopes (CE), naturally released membrane vesicles (MV), and soluble proteins in culture supernatants (SS). Subproteome fractions, normalized based on the total amount of protein, were resolved by SDS-PAGE and probed with polyclonal antiserum against the indicated proteins. B, N. gonorrhoeae strains, as shown above the graphs, were cultured in liquid medium, harvested, and suspended to the same absorbance of 2.0. Intact as well as lysed cells were spotted onto nitrocellulose membranes and probed with polyclonal antiserum against BamE_{GC}, BamA_{GC}, BamD_{GC}, and Obg_{GC}. C, N. gonorrhoeae FA1090 wildtype and isogenic ΔbamE_{GC} cultures at an A₆₀₀ of ~1.0 were harvested, suspended in sterile PBS, and incubated at 37 °C for 1 h with or without increasing concentrations of trypsin as indicated above the immunoblot. The reaction was stopped with the addition of PMSF, cells were washed, and individual protein profiles were analyzed by immunoblotting with specific antiserum against BamE_{GC}, BamA_{GC}, BamD_{GC}, SurA_{GC}, and Obg_{GC}. Migration of a molecular mass marker (kDa) is indicated on the left.

proteins as well as a cytoplasmic protein marker, Obg_{GC}. As expected, BamA_{GC} and both lipoproteins, BamE_{GC} and BamD_{GC}, were detected in the cell envelope and membrane vesicle fractions but not in the cytoplasm or culture supernatants, whereas Obg_{GC} was primarily localized to the cytoplasmic compartment (Fig. 4A).

Furthermore, to assess the surface exposure of BamE_{GC} and BamD_{GC}, dot blotting and protease treatment experiments using whole cells were performed according to optimized protocols for N. gonorrhoeae that ensure intactness of the cells (8). Anti-BamE_{GC} antiserum cross-reacted with intact wildtype and ΔbamE_{GC}/P_{lac}::bamE_{GC} cells but not with cells of the ΔbamE_{GC}-mutant. In contrast, BamD_{GC} was not recognized on wildtype cells by anti-BamD_{GC} antiserum unless the cells were lysed (Fig. 4B). Corroborating these findings, exposing intact gonococci to increasing concentrations of trypsin resulted in detection of decreased amounts of BamE_{GC}, similar to the surface-exposed BamA_{GC}, whereas levels of BamD_{GC}, a periplasmic marker, SurA_{GC}, and Obg_{GC} remained unchanged (Fig. 4C).

These studies suggested that at least part of the cellular pool of BamE_{GC} is localized on the outside of the cell, whereas BamD_{GC} faces the periplasmic side of the outer membrane. In addition, in the absence of BamE_{GC}, BamD_{GC} became accessible to antibodies and susceptible to protease treatment. The levels of SurA_{GC} remained unchanged in ΔbamE_{GC} in comparison with wildtype cells, excluding the possibility that surface localization of BamD_{GC} in the ΔbamE_{GC} mutant is solely attributable to altered outer membrane integrity (Fig. 4C). It has been suggested that both BamC and BamE stabilize the BamA-BamD interaction. In E. coli, upon BamE depletion, BamA becomes dramatically susceptible to exogenously added protease, whereas periplasmic proteins, including SurA and BamD, are completely unaffected (56).

In contrast, our studies suggest that loss of BamE_{GC} weakens the BamA_{GC}-BamD_{GC} interaction, causing a surface exposure of BamD_{GC} with no significant increase in the protease sensitivity of BamA_{GC}. Furthermore, although the absence of BamE_{GC} had no significant impact on the steady-state-levels of any other BAM components in the cell envelopes of E. coli (56) and N. gonorrhoeae (Fig. 5C), depletion of BamD_{GC} resulted in an increase in the cellular pool of both BamA_{GC} and BamE_{GC} (Fig. 5C).

Lack of BamE_{GC} affects the proteome of cell envelopes and membrane vesicles

In E. coli, loss of BamB, but not BamC or BamE, results in significant alterations in the barrier function of the outer membrane, manifested by elevated sensitivity to several antibiotics (56). In contrast, BamE-depleted cells of N. meningitidis, C. crescentus, and S. enterica are deficient in both outer membrane assembly and integrity (11, 52, 53). To examine the impact of BamE_{GC} on membrane permeability, we used several different methods and growth media, including disc diffusion, E-tests, and phenotypic microarrays (51) (Tables 1 and 2). In disc diffusion assays, 14 different conditions were tested with a total of 10 compounds, including detergents and antibiotics (vancomycin, carbencillin, and polymyxin B), significantly impacting the ΔbamE_{GC}-strain in comparison with the wildtype (Table 1). Furthermore, E-tests demonstrated significantly lowered minimal inhibitory concentrations (MICs) for cefuroxime, azithromycin, ciprofloxacin, and polymyxin B (Table 2). Previously applied phenotypic microarrays with 1,056 conditions and performed in defined liquid medium showed three and six conditions uniquely beneficial and detrimental, respectively, to the ΔbamE_{GC} mutant in comparison with six null mutants in novel gonorrhea vaccine candidates (51). The three beneficial compounds were osmolytes, whereas sodium benzoate and chromium chloride attenuated the growth of ΔbamE_{GC}. The mutant was also negatively affected by nalidixic acid, rifampicin, doxycycline, and cefsulodin, which all exert different mechanisms to kill bacteria. Similarly, loss of BamE
caused increased sensitivity to nalidixic acid, rifampicin, and carbenicillin in *C. crescentus* (52).

The sensitivity phenotype of ΔbamE_{GC} suggested defects in membrane permeability, but examination of the general cell envelope protein profile did not show apparent alterations (Fig. 5A). We therefore analyzed naturally released membrane vesicles from wildtype and ΔbamE_{GC}. There was an increase in the abundance of several protein species as revealed by SDS-PAGE and Coomassie staining (Fig. 5A) and a 3-fold higher shedding of membrane vesicles from ΔbamE_{GC} in comparison with the wildtype (Fig. 5B). Outer membrane vesiculation is a well-recognized indicator of cell envelope stress (57). To gain further insights into the scale of OMP defects associated with loss of BamE_{GC}, immunoblotting with antisera specific to 10 OMPs was performed on cell envelopes and membrane vesicles derived from the wildtype and ΔbamE_{GC}. These studies demonstrated elevated levels of seven OMPs within the cell envelope fraction with the most significant alterations observed for AniA, Laz, and Ng-MIP (Fig. 5C). This effect was exacerbated in the membrane vesicles where the amounts of AniA and Laz increased over 7-fold, NGO2139 (MetQ) increased 5-fold, and LptD increased almost 3-fold (Fig. 5D). In contrast, the other Bam components and MtrE remained unaltered, whereas TamA was about 2-fold depleted. These results suggest a specific contribution of BamE_{GC} to cell envelope biogenesis.

The structures of *N. gonorrhoeae* BamD and BamE

To gain insights into the structure and function of BamD_{GC} and BamE_{GC} and to facilitate the future targeting of BAM with small molecule inhibitors, we obtained recombinant BamD_{GC} and BamE_{GC} for structural studies as described under “Experimental procedures.” The structure of BamD_{GC} was solved by molecular replacement to 2.5-Å resolution with final R/R_{free} values of 0.24/0.29 and contained one molecule per asymmetric unit. The BamD_{GC} structure closely resembles that from *E. coli*, consisting of five tetratricopeptide repeat (TPR) domains and having an overall root mean square deviation (r.m.s.d.) of 2.05 Å (residues 30–257) (35, 36, 58) (Fig. 6A). The shape of BamD_{GC} is slightly more bent than the *E. coli* ortholog, which is best observed when aligning both structures along TPR1 only (Fig. 6B). Upon closer inspection, the individual TPR domains are more conserved than the overall r.m.s.d. suggests with r.m.s.d. values for TPR1 alone of BamD_{GC} calculated to be 1.07 Å (residues 30–66), for TPR2 0.704 Å (residues 67–104), for TPR3 0.280 Å (residues 105–159), for TPR4 0.675 Å (residues 160–210), and for TPR5 0.471 Å (residues 211–245) (Fig. 6C). Additionally, the conserved arginine residue of BamD_{GC} (Arg-200), important for forming a salt bridge interaction with a conserved glutamate residue of BamA (Glu-373) (19, 21, 22, 31, 59), was also found to be well-conserved and perfectly positioned to serve the same role in *Neisseria* (Fig. 6D).

The BamE_{GC} structure was solved by selenium single-wavelength anomalous diffraction to 2.45-Å resolution with final R/R_{free} values of 0.20/0.24 and contained two molecules per asymmetric unit with each monomer interacting with the other through a β-β interaction along residues 30–36 (Fig. 7A). Each monomer contained the core ααβββ fold found in other reported BamE structures with a calculated r.m.s.d. between chain A and chain B of 0.61 Å (Fig. 7B). Our structure of *Neisseria* BamE_{GC} reported here aligned reasonably well with the core (residues 39–106) of the other reported BamE structures, particularly with BamE found in the *E. coli* BAM crystal structure (Protein Data Bank code 5EK0), having an r.m.s.d. of 1.14 Å. r.m.s.d. values were lower for the *E. coli* structures solved by NMR with calculated values of 2.00 (Protein Data Bank code 2KXX) and 2.92 Å (Protein Data Bank code 2KM7) (Fig. 7, C and D). Interestingly, BamE_{GC} contains an additional C-terminal helix not observed in the other reported BamE structures.

Discussion

BAM is an essential multicomponent complex that resides in the outer membranes of Gram-negative bacteria, making it an attractive target for engineering a novel class of antibiotics that

Figure 5. Loss of BamE_{GC} has significant effect on the *N. gonorrhoeae* cell envelope. Wildtype *N. gonorrhoeae* FA1090 (wt) and ΔbamE<sub>strains were harvested during midlogarithmic phase and subjected to proteome extraction to separate cell envelopes (CE) and naturally released membrane vesicles (MV). A, C, and D, samples containing purified cell envelopes and membrane vesicles were normalized by total protein concentration, separated by SDS-PAGE and either visualized by Coomassie Brilliant Blue G-250 staining (A) or transferred onto nitrocellulose membrane and probed with the indicated antibodies, and the tested protein’s abundance was quantified by densitometry. (C and D), quantification of membrane vesicles (MV) was achieved by calculating the protein content in the membrane vesicles to 1.0 liter original culture volume/OD unit (mg liter⁻¹ OD unit⁻¹). Experiments were performed in three biological replicates. Mean values and corresponding S.D. (error bars) are presented. Migration of a molecular mass marker (kDa) is indicated on the left. * denotes TamA (8).

Structure and function of BamE and BamD

J. Biol. Chem. (2018) 293(4) 1106–1119

1111
Structure and function of BamE and BamD

Table 1

Compound	Wildtype \(\Delta \text{bamE} \text{GC} \)	\(\Delta \text{bamE} \text{GC}/\text{P}_{\text{tot}}=\text{bamE} \text{GC} \)	
Tween (10%)	10.31 ± 1.1, 8	12.94 ± 0.98, 8	10.94 ± 1.74, 8
Triton X-100 (10%)	10.00 ± 1.5, 8	14.75 ± 3.2, 8	13.50 ± 3.6, 8
SDS (5%)	27.50 ± 1.91, 4	28.50 ± 1.00, 4	27.50 ± 1.91, 4
Bile salts (10%)	11.50 ± 1.29, 4	11.75 ± 0.95, 4	11.00 ± 1.41, 4
EDTA (0.5 mM)	16.67 ± 0.57, 3	17.33 ± 0.57, 3	15.67 ± 1.52, 3
Oxysterilacid (1 mg/ml)	30.75 ± 1.70, 4	33.25 ± 1.25, 4	29.25 ± 1.70, 4
Oxysterilacid (2 mg/ml)	33.80 ± 2.58, 5	35.60 ± 1.94, 5	33.60 ± 3.84, 5
Chloramphenicol (0.5 mg/ml)	31.00 ± 1.68, 4	32.75 ± 0.48, 4	26.25 ± 1.03, 4
Chloramphenicol (1 mg/ml)	35.33 ± 2.88, 3	37.33 ± 1.15, 3	30.00 ± 3.46, 3
Polymyxin B (100,000 units)	10.17 ± 1.83, 6	13.17* ± 2.22, 6	10.67 ± 2.22, 6
Vancomycin (30 mg/ml)	23.50 ± 1.73, 4	27.40* ± 2.80, 5	25.40 ± 1.67, 5
Carbenicillin (1 mg/ml)	31.00 ± 2.64, 3	34.00 ± 2.00, 3	30.00 ± 1.00, 3
Carbenicillin (2.5 mg/ml)	33.00 ± 2.64, 3	35.67 ± 2.08, 3	34.00 ± 0.00, 3
Carbenicillin (5 mg/ml)	36.29 ± 1.89, 7	38.86* ± 0.94, 7	34.86 ± 1.12, 7

* N. gonorrhoeae FA1090 wildtype, isogenic \(\Delta \text{bamE} \text{GC} \), and complemented strain \(\Delta \text{bamE} \text{GC}/\text{P}_{\text{tot}}=\text{bamE} \text{GC} \) were collected from solid medium and suspended in GBPBL to an A\text{opt} of 0.2, and 100 \(\mu \)l of cell suspensions was plated on GCB supplemented with IPTG. Subsequently, sterile paper discs immersed in 10 \(\mu \)l of various chemicals, as indicated, were placed on the surface of the agar. Inhibition zone was recorded (mm) after 22 h of incubation. The data are presented as mean values with corresponding S.D. values and the number of biological replicates (\(n \)). * indicates statistically significant differences with \(p < 0.05 \).

Table 2

Antibiotic	Wildtype \(\Delta \text{bamE} \text{GC} \)
Cefuroxime	0.016 <0.016
Cefotaxime	0.004
Azithromycin	0.064 0.032
Tetracycline	0.125 0.125
Ciprofloxacin	0.004 0.002
Polymyxin B	128 64
Ampicillin	0.125 0.125
Benzylpenicillin	0.125 0.125

* The N. gonorrhoeae wildtype and \(\Delta \text{bamE} \text{GC} \) cells were suspended to McFarland standard of 0.5, spread on solid medium, and allowed to dry. E-test strips with different antibiotics were placed on the top of the agar, and bacteria were incubated for 22 h. The following day, the MICs of tested antibiotics were determined based on the zone of bacterial growth inhibition.

The lack of \(\Delta \text{bamE} \text{GC} \) was also accompanied by an increase in antibiotic susceptibility (Tables 1 and 2 and Ref. 51) and a significantly greater release of membrane vesicles containing altered levels of new vaccine antigens (Fig. 8B). Cumulatively, our experiments confirmed that \(\Delta \text{bamE} \text{GC} \) and \(\Delta \text{bamE} \text{GC}/\text{P}_{\text{tot}}=\text{bamE} \text{GC} \) localized to the cell envelope and membrane vesicles; showed the ubiquitous expression of \(\text{BamA}_{\text{GC}} \) (8), \(\Delta \text{bamD} \text{GC} \) and \(\Delta \text{bamE} \text{GC} \) in a diverse pool of gonococcal isolates, further underscoring the potential of BAM as a target for novel antibiotics and vaccines against Neisseria; and, importantly, revealed additional interspecies differences existing within BAM, illuminating the need for parallel studies in different organisms to enhance our understanding of cell envelope biogenesis. Together, these studies indicate that, although BAM is conserved across all Gram-negative bacteria, structural and functional differences do exist across bacterial species and may be utilized in the development of species-specific antibiotics and vaccines in the effort to combat multidrug resistance.

Experimental procedures

Bacterial strains and growth conditions

N. gonorrhoeae utilized in this study include strain FA1090 (61) and 35 temporally and geographically diverse clinical isolates (8, 62). E. coli strains MC1061 (63), BL21(DE3) (New England Biolabs), and B834(DE3) (Millipore Sigma) were used for molecular cloning and production of recombinant proteins,
N. gonorrhoeae strains were maintained on either gonococcal base solid medium (GCB; Difco), GCB without Kellogg’s Supplement II and with deferoxamine mesylate salt (Desferal, Sigma) at 5 μM final concentration (iron-limited conditions), GCB with the addition of 7.5% normal human serum (NHS), or GCB with 1.2 μM nitrite as a terminal electron acceptor (anaerobic conditions) (8) or were cultured under standard growth conditions in gonococcal base liquid medium (GCBL) supplemented with sodium bicarbonate at a final concentration of 0.042% and Kellogg’s Supplements I (1:100) and II (1:1000) (64). Gonococci were streaked from glycerol stocks maintained at -80 °C onto GCB and incubated for 22 h at 37 °C with 5% atmospheric CO₂. Piliated or non-piliated colonies were passed onto fresh GCB for an additional 22-h incubation. Pili-
ated colonies were used for transformation, whereas non-piliated variants were used in all other experiments. *E. coli* strains were grown either on Luria-Bertani agar (LBA; Difco) or cultured in Luria-Bertani broth (LB; Difco) at 37 °C. Antibiotics were used in the following concentrations: for *N. gonorrhoeae*, kanamycin, 40 μg/ml; and erythromycin, 0.5 μg/ml; for *E. coli*, kanamycin, 50 μg/ml; erythromycin, 250 μg/ml; and carbenicillin, 50 or 100 μg/ml as specified in the text.

Genetic manipulations

Oligonucleotides used in this study (Table S1) were designed using SnapGene software version 2.8 (GSL Biotech LLC) based on the genomic sequence of *N. gonorrhoeae* FA1090 (NC_002946). Primers were synthesized by Integrated DNA Technologies. Genomic DNA of *N. gonorrhoeae* FA1090 was purified with the Wizard Genomic DNA Purification kit (Promega) or purchased directly from ATCC and used as template in PCRs with applicable oligonucleotides and Q5 high-fidelity DNA polymerase (New England Biolabs). PCR products and plasmid DNA were purified using a QIAprep Spin Miniprep kit (Qiagen). Obtained genetic constructs were verified by Sanger sequencing at the Center for Genomic Research and Biocomputing at Oregon State University and USA Macrogen. Transformation of *N. gonorrhoeae* was performed as described previously (55).

The *N. gonorrhoeae* FA1090 conditional *bamD* knockout, *bamD*:kan/*lac::bamD*, was constructed according to the following steps. First, an additional copy of the *bamD* gene (NGO0277) under lac regulatory sequences, *Plac::bamD* (8), was placed at an unlinked chromosomal locus between the *lctP* and *aspC* genes using the *Neisseria* Insertional Complementation System, pGCC4 (65), to yield the FA1090 *Plac::bamD* strain. Subsequently, a 536-bp DNA fragment containing the N-terminal part of the *bamD* gene and upstream DNA region was amplified with primers BamD-Up-F and BamD-Up-R, digested with EcoRI/KpnI, and introduced into similarly treated pUC18K (66), yielding pUC18K-BamD-Up. Next, the downstream DNA fragment for allelic replacement (562 bp) was amplified with primers BamD-Down-F/BamD-Down-R, digested with BamHI/HindIII, and ligated into BamHI/HindIII–cleaved pUC18K-BamD-Up. The pUC18K-*ΔbamD::kan* was linearized with HindIII and introduced into FA1090 *Plac::bamD*. Transformants were selected on GCB supplemented with kanamycin and 0.05 mM IPTG and verified for disruption of the *bamD* gene with the kanamycin resistance cassette by PCR with primers BamD-Ver-F/BamD-Ver-R and immunoblotting analysis using BamD antiserum (8).

To generate a clean deletion of *bamE* in *N. gonorrhoeae* FA1090, the upstream region of NGO1780 was amplified with...
primers BamE-Up-F/BamE-Up-R. The 757-bp product was cleaved with ScaI/KpnI and cloned into similarly treated pUC18K, yielding pUC18K-BamE-Up. Subsequently, the downstream region from the gene encoding BamE was amplified with primers BamE-Down-F/BamE-Down-R, and the obtained 724-bp product was cloned into BamHI/HindIII–treated pUC18K-BamE-Up. The final product, pUC18K-ΔbamE, was used for an allelic exchange of bamE with the kanamycin resistance cassette as described above. Deletion of bamE was confirmed by PCR with primers BamE-Ver-F/BamE-Ver-R using chromosomal DNA isolated from wildtype FA1090 as controls and by probing the whole-cell lysates of wildtype and ΔbamE with antisera against BamE.

To complement the N. gonorrhoeae FA1090 ΔbamE mutant, first the P_{plc}::bamE construct was generated by amplification of bamE with native ribosome-binding site using primers cBamE-F/cBamE-R. The 41-bp PCR product was digested with FseI and inserted into ScaI/FseI–cleaved pGCCC4, yielding pGCCC4-BamE. Next, pGCCC4-BamE was introduced into the ΔbamE mutant by transformation, and clones were selected on GCB containing erythromycin and validated by PCR with primers pGCCC4-Ver-F/pGCCC4-Rev-R as well as immunoblotting with anti-BamE antisera.

To obtain pET28-rBamE used for production of recombinant BamE (rBamE), which lacked the native signal peptide and contained a C-terminal His_{6} tag, the ngo1780 gene was amplified with primers BamE-Down-F/rBamE-Down-R and cloned into NcoI/HindIII–digested pET28a.

The gene encoding SurA (ngo1714) lacking the DNA encoding signal peptide was amplified using primers SurA-F/SurA-R. The subsequent PCR product was digested with Ncol/HindIII and ligated into similarly cut pRSF-NT to create a TEV protease–cleavable C-terminal His_{6} tagged fusion. For structural studies, the BamD and BamE coding regions, starting after the N-terminal cysteine, were amplified from strain FA1090 genomic DNA (ATCC) and subcloned into the pHIS-parallel2 vector using NcoI and XhoI restriction sites. All plasmids were confirmed by sequencing analysis (primers available upon request).

Growth assays

Depletion of BamD was achieved by applying an experimental strategy utilized previously to diminish levels of N. gonorrhoeae BamA, Obg, and GmhA (8, 49, 50). N. gonorrhoeae FA1090 bamD::kan/P_{lac}::bamD was harvested from GCB with 0.05 mM IPTG (permissive conditions), and the A_{600} was adjusted to 0.1. Bacteria were washed twice and cultured in GCBL with or without IPTG at a final concentration of 0.05 mM. After 3 h, both cultures were diluted to an A_{600} of 0.1 and cultured in fresh GCBL with or without IPTG for another 6 h. At every hour, A_{600} measurements were taken, and samples were withdrawn for immunoblotting analysis. Three biological replicates of the experiment were performed. Mean values and corresponding S.D. are reported.

The growth kinetics of FA1090 wildtype, ΔbamE, and ΔbamE/P_{lac}::bamE were performed in GCBL under standard growth conditions. Bacteria were collected from GCB and suspended in GCBL to an A_{600} of 0.1. Media for growing ΔbamE/P_{lac}::bamE were supplemented with 0.02 mM IPTG. Following 3 h of incubation at 37 °C with aeration (220 rpm), bacterial cultures were back-diluted to an A_{600} of 0.1 in fresh GCBL and cultured for an additional 6 h. Samples were withdrawn for A_{600} measurements every hour (n = 3; mean ± S.D.).

To assess the viability of N. gonorrhoeae lacking bamE during host-relevant in vitro growth conditions, colonies of FA1090 wildtype, ΔbamE, and ΔbamE/P_{lac}::bamE were collected from GCB, suspended in GCBL to an A_{600} of 0.1, and cultured for 3 h at 37 °C with aeration. Subsequently, the cultures were normalized to an A_{600} of 0.2, serially diluted, and plated on solid medium for standard growth conditions (GCBL), iron-limiting conditions, NHS, and anaerobic conditions as described above. All media were additionally supplemented with 0.02 mM IPTG. The cfu values were scored after 22 and 48 h for aerobic and anaerobic conditions, respectively. Experiments were performed on three separate occasions, and mean cfu values with corresponding S.D. are reported.

Antimicrobial susceptibility testing

Antimicrobial susceptibility was tested using a slightly modified Kirby-Bauer (disk diffusion) method (67) and E-test. In disc diffusion experiments, FA1090 wildtype, isogenic ΔbamE, and ΔbamE/P_{lac}::bamE strains were collected from GCB, and the suspensions were adjusted in GCBL to match an A_{600} of 0.2. Cell suspensions (100 μl) were immediately plated on GCB, and 6-mm filter paper disks (Whatman) impregnated with 10 μl of tested compounds, as indicated below, were placed on the surface of the agar. The zones of inhibition in mm were measured after 22 h. Experiments were performed in biological triplicates, and mean values with S.D. are presented.

MICs for cefuroxime, cefotaxime, azithromycin, tetracycline, ciprofloxacin, polymyxin B, ampicillin, and benzylpenicillin were determined using an E-test (Biomérieux) according to the manufacturer’s recommendations. Each determination was performed on three separate occasions using fresh bacterial cultures, and the consensus MIC obtained in at least two trials was reported.

Protein localization assays

Subcellular fractionations, immunodotting, and trypsin accessibility studies were performed following procedures described previously (8). Briefly, N. gonorrhoeae FA1090 wildtype and ΔbamE at the midlogarithmic phase of growth were used to extract proteins from the cytosolic, cell envelope, membrane vesicle, and soluble supernatant fractions. Cell envelopes were separated from cytoplasmic proteins by a sodium carbonate extraction method and differential centrifugation, whereas culture supernatants were subjected to filtration and ultracentrifugation to separate naturally released membrane vesicles from soluble proteins. Quantification of membrane vesicles was achieved by calculating the protein content in the membrane vesicles to 1.0 liter of original culture volume/OD unit (mg liter⁻¹ OD unit⁻¹) as described (68).

In immunodotting and protease susceptibility studies, intact bacterial cells were used (8). For immunodotting, bacteria were suspended in GCBL to an A_{600} of 0.1, cultured with aeration for 3 h, harvested, and spotted as 5-μl suspensions onto a nitrocel-
lulose membrane after adjusting the A_{600} to 2.0. The samples were dried at room temperature for 15 min and subjected to immunoblotting.

In trypsin shaving assays, gonococci were subcultured in GCBL for 3 h after collecting from solid medium, diluted to an A_{600} of 0.1, and cultured until an A_{600} of ~1.0 was reached. Bacteria were gently harvested and suspended in sterile PBS, pH 8.0, to an A_{600} of 2.5, and 500-μl suspensions were incubated for 1 h at 37 °C with trypsin at final concentrations of 0, 40, or 80 μg/ml. To deactivate trypsin, 10 μl of 50 mM phenylmethylsulfonyl fluoride (PMSF) was added, bacteria were washed with GCBL and subjected to SDS-PAGE, and trypsin accessibility of selected proteins was detected by immunoblotting with polyclonal antiserum.

Purification of rBamE and rSurA and preparation of polyclonal antisera

An overnight culture of *E. coli* BL21(DE3) carrying either pET28a-rBamE or pET28a-rSurA was back-diluted into 3.0 or 1.0 liter of LB broth, respectively, supplemented with kanamycin and incubated with aeration at 37 °C. The production of rBamE and rSurA was induced with 0.1 and 1 mM IPTG, respectively, during midlogarithmic growth. Bacterial cells were collected by centrifugation 3 h after induction, suspended in lysis buffer (500 mM NaCl, 10 mM imidazole, 20 mM Tris-HCl, pH 8.0, and Complete EDTA-free protease inhibitor tablet (Roche Applied Science)), and lysed by passing through a French pressure cell at 12,000 p.s.i. Unbroken cells and cell debris were removed by centrifugation at 16,000 × g for 30 min at 4 °C. The cell-free lysate was passed through a 0.22-μm filter unit (VWR International) and applied onto Bio-Scale Mini Profinity immobilized metal affinity chromatography cartridges (Bio-Rad). Loosely bound proteins were removed with 10 column volumes of wash buffer (20 mM Tris, pH 8.0, 500 mM NaCl, 40 mM imidazole), and proteins were eluted with a 40–250 mM imidazole gradient using an NGC Purification System (Bio-Rad). Fractions containing rBamE were pooled and dialyzed against 20 mM Tris, pH 8.0, 10% glycerol, whereas fractions containing eluted rSurA were incubated overnight at 4 °C with TEV protease in a 1:20 ratio to remove the His_{6} tag. After concentrating the sample to 5 ml using Vivaspin 20 centrifuge concentrators (GE Healthcare), proteins were subjected to size exclusion chromatography using a HiLoad 16/600 Superdex 75 prep grade column (GE HealthCare) with phosphate-buffered saline (PBS) as running buffer. Finally, fractions containing rSurA were concentrated using a Vivaspin 20 centrifuge concentrator.

Polyclonal antiserum against purified rSurA and rBamE were prepared by Pacific Immunology Corp. using a 13-week antibody production protocol and two New Zealand White rabbits under Animal Protocol 1 approved by the Institutional Animal Care and Use Committee and the National Institutes of Health Animal Welfare Assurance Program (A4182-01) in a certified animal facility (United States Department of Agriculture 93-R-283). The rabbit polyclonal anti-BamD antiserum were obtained and evaluated previously (8).

Expression and purification of recombinant N. gonorrhoeae BamD and BamE

For expression of BamD_{GC} and BamE_{GC} for structural studies, each construct was introduced into *E. coli* BL21(DE3) chemically competent cells, then plated onto LBA supplemented with carbenicillin (100 μg/ml), and incubated overnight at 37 °C. For native expression, a single colony was used to inoculate a 5-ml LB with carbenicillin (50 μg/ml) starter culture, which was cultured to an A_{600} of ~1.0. The cells were then washed with fresh LB and inoculated into 2 liters of 2× YT (16 g/liter Tryptone, 10 g/liter yeast extract, 5.0 g/liter NaCl) medium supplemented with carbenicillin (50 μg/ml). Bacteria were cultured at 37 °C until an A_{600} of ~0.8 was reached, expression was induced with 0.2 mM IPTG, and bacteria were grown an additional 8 h at 25 °C before harvesting.

For selenomethionine-substituted BamE_{GC}, *E. coli* B834(DE3) cells were transformed and plated onto LBA overnight. A single colony was used to inoculate a 25-ml LB with carbenicillin (50 μg/ml) culture and allowed to grow at 37 °C to an A_{600} of 0.8–1.0. The cells were then centrifuged, washed three times with minimal medium lacking methionine, and resuspended in 6 ml of wash medium, and then 1 ml was added to six flasks containing 1 liter each of minimal medium supplemented with selenomethionine (40 mg/liter) and carbenicillin (50 μg/ml). These cultures were grown at 37 °C until the A_{600} was between 0.6 and 0.8, then induced with 0.5 mM IPTG, and allowed to grow an additional 24 h before harvesting.

For protein purification, cells were resuspended in PBS (12 mM phosphate buffer, pH 7.4, 137 mM NaCl, 2.7 mM KCl) at 5 ml/g of cell paste and supplemented with DNase I (10 μg/ml) and PMSF (0.2 mM). The cells were then lysed by two passages through an Avestin C3 Emulsiflex, and the lysates were centrifuged at 39,000 × g for 45 min. The supernatants were then applied to a pre-equilibrated 5-ml nickel-nitrilotriacetic acid resin column. The column was washed with at least 5 column volumes of PBS, a pre-elution was performed using PBS with 25 mM imidazole, and a final elution was done with PBS containing 250 mM imidazole. To remove the N-terminal His tag, TEV protease was added to the final protein sample along with 1 mM DTT and 0.5 mM EDTA and dialyzed overnight at 4 °C in PBS. The dialyzed samples were then again applied to a 2-ml pre-equilibrated nickel-nitrilotriacetic acid resin column. The filtrate was collected, concentrated, and then applied to a HiPrep Sephacryl S-100 HR gel filtration column (GE Healthcare) in PBS as a final purification step. Peak fractions were confirmed by SDS-PAGE analysis, pooled, and concentrated to 10 mg/ml.

Crystallization and structure determination of BamD and BamE from N. gonorrhoeae

For crystallization, the samples were screened using commercial sparse-matrix crystallization screens on a TTP LabTech Mosquito Crystal crystallization robot using the hanging-drop vapor-diffusion method with a drop ratio of 1:1 (protein:well solution), and lead conditions were further optimized. BamD_{GC} was crystallized in final conditions of 1.0 M LiCl, 100 mM HEPES, pH 7.0, 10% PEG 6000. Native and selenomethionine-substituted BamE_{GC} crystals were grown in

1116 J. Biol. Chem. (2018) 293(4) 1106–1119

ASBMB
Table 3

Data collection and refinement statistics

	BamD_{GC}	BamE_{GC}
r.m.s. root mean square.		
Wavelength (Å)	1.0322	0.9794
Space group	P₄2₂	P₂2₂
Cell dimensions		
a, b, c (Å)	64.42, 64.42, 166.39	62.80, 86.08, 49.92
α, β, γ (°)	90.90, 90.90	90.90, 90.90
Resolution (Å)	45.55–2.50	43.18–2.45
R_{sym}	0.104 (2.30)	0.160 (0.795)
R_{Free}	0.040 (0.813)	0.088 (0.439)
CC_{1/2}	0.500 (0.491)	
I/σI	17.5 (1.12)	7.2 (1.48)
Completeness (%)	99.9 (100)	98.1 (99.5)
Multiplicity	8.1 (8.4)	4.2 (4.3)

Refinement

	BamD_{GC}	BamE_{GC}
Resolution (Å)	43.93–2.50	43.04–2.45
No. reflections (total/free)	12,772/1,277	10,276/521
R_{work}/R_{Free}	0.236/0.285	0.198/0.240
Number of atoms		
Protein	1,733	1,589
Ligand/ion	1	
Water	13	89
B-factors		
Protein	91.6	41.8
Ligand/ion	1	
Water	69.3	37.8
All atoms	91.5	41.6
Wilson B	74.7	31.9
r.m.s. deviations		
Bond lengths (Å)	0.002	0.002
Bond angles (°)	0.39	0.45
Ramachandran distribution (%)		
Favored	96.6	97.5
Allowed	3.4	2.5
Outliers	0	0
Protein Data Bank code	5WAQ	5WAM

Values in parentheses are for the highest-resolution shell.

A: Calculated using MolProbity.

Structure and function of BamE and BamD

PyMOL (Schrodinger). Data collection and refinement statistics are summarized in Table 3. Minimization of the partial BAM model was performed using Chiron (74). All figures were made using PyMOL (Schrodinger) and annotated and finalized in Adobe Photoshop/Illustrator.

SDS-PAGE and immunoblotting

Samples of whole-cell lysates, protein fractions, intact cells, or purified proteins were normalized based on either A₆₀₀ or protein concentration as specified. Protein concentration was measured using the DC Protein Assay (Bio-Rad). Proteins were visualized by staining with Coomassie Brilliant Blue G-250 or transferred onto nitrocellulose membrane using a Trans-blot Turbo (Bio-Rad) and detected by immunoblotting as described previously (8) using the following dilutions of primary polyclonal rabbit antisera: anti-Bam_{EGC}, 1:20,000; anti-Bam_{AGC}, 1:20,000 (8); anti-Bam_{DGC}, 1:10,000 (8); anti-Obg_{AGC}, 1:10,000 (49); anti-SurA_{GC}, 1:10,000; anti-LptD, 1:5,000; anti-TamA, 1:5,000; anti-AniA, 1:10,000; anti-Laz, 1:20,000; anti-Ng-MIP, 1:10,000; anti-MtrE, 1:10,000; anti-NGO2054, 1:10,000; and anti-NGO2139, 1:20,000 (8).

Densitometry analysis

Protein abundance was quantified by densitometry using the Image Lab 5.0 software (Bio-Rad) volume tool (rectangle), local background subtraction, and linear regression method as described previously (49, 75). Experiments were performed in biological triplicates and are shown in Fig. S3. The relative protein levels are presented as mean values and S.D.

Statistical analysis

GraphPad Prism’s built-in t test was utilized to determine statistically significant differences between experimental results. A confidence level of 95% was used for all analyses.

Author contributions—A. E. S., I. H. W., S. K. B., and N. N. conceptualization; A. E. S., and N. N. resources; A. E. S., I. H. W., R. A. Z., R. F. R., K. V. K., S. K. B., and N. N. data curation; A. E. S., I. H. W., R. A. Z., R. F. R., K. V. K., and N. N. formal analysis; A. E. S., S. K. B., and N. N. supervision; A. E. S., S. K. B., and N. N. funding acquisition; A. E. S. and N. N. validation; A. E. S., I. H. W., R. A. Z., R. F. R., K. V. K., S. K. B., and N. N. investigation; A. E. S. and N. N. visualization; A. E. S., I. H. W., R. A. Z., R. F. R., K. V. K., S. K. B., and N. N. writing-original draft; A. E. S. and N. N. project administration; A. E. S., I. H. W., R. A. Z., R. F. R., K. V. K., S. K. B., and N. N. writing-review and editing.

Acknowledgments—We thank the respective staffs at the National Institute of General Medical Sciences and National Cancer Institute Structural Biology Facility (GM/CA) beamline at the Advanced Photon Source (APS), Argonne National Laboratory, and at the X25 beamline at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, for assistance. Use of the APS was supported by the United States Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract W-31-109-Eng-38, and use of the NSLS was supported by the United States Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-98CH10886.
Supporting Information

Supplementary Table S1. Oligonucleotides used in this study.

Oligonucleotide	Sequence\(^1\) (5'-3')
BamD-Up-F	GACTGATAGAATTCGCAAGCTCGAGCGGAAC
BamD-Up-R	ATCGATGGTACCCTTGCAGGAGGAGTTTTG
BamD-Down-F	GGATTTACAGATCCTGGTGACCCGACGAC
BamD-Down-R	ACTCGGTCAAGCTTGGCGTAAGGGCTCAACGTTCG
BamD-Ver-F	GACGTGGGTTACCGCA
BamD-Ver-R	CGTGCCGAGTTTGAAATGC
rSurA-F	GATCCCATGGCAACGGCAAAAGGCAAAAC
rSurA-R	GACTAAGCTTGCTTAGCGGATGTCGAC
rBamE-F	GAATTCATGGTGACCCGAGTTTTGTCG
rBamE-R	GGATCCAAAGCTTGGGTTTTGTCTGCTGTTTGTCG
BamE-Up-F	AGGCCTGAGCTCGCGAGTTCTCAGAAAACACAGA
BamE-Up-R	CCGCGGTACCAGGGAGAACCCTTGTCTG
BamE-Down-F	CGATCGGGATCCCGGAAAAAACGCAGACAA
BamE-Down-R	GTTACAAAGCTTGAAAGAGGCGGTGTTG
BamE-Ver-F	AAAGCATTAGGAGGATCGGG
BamE-Ver-R	CCTGCATATCGTACAAAAACCG
cBamE-F	GATTTGCACAGAAAGGTTCTCC
cBamE-R	AAGCTTGCGCCGGCCTCTTTATTGTTTGTCG

\(^1\)Sequences recognized by restriction enzymes are underlined. Other primers not listed available upon request.
Supplemental Figure S1. Sequence alignments of BamD and BamE for *N. gonorrhoeae*, *N. meningitidis*, and *E. coli*. The left panel shows the sequence alignment of BamD orthologs, while the panel on the right shows the sequence alignment for BamE orthologs.
Supplemental Figure S2. Analysis of single nucleotide polymorphisms of BamE and BamD in Neisseria. Analysis of BamE (locus NEIP0196) and BamD (locus NEIP0653) was analyzed by comparing DNA sequences between 42,412 Neisseriae isolates deposited to the PubMLST (https://pubmlst.org/neisseria/), as of April 18, 2017, and demonstrated presence of 179 alleles with 89 single nucleotide polymorphisms (SNPs) for BamE and 269 alleles with 186 SNPs for BamD.

BamD (Locus information - NEIP0653)

269 alleles included in analysis. 186 polymorphic sites found.

BamE (Locus information - NEIP0196)

179 alleles included in analysis. 89 polymorphic sites found.
Supplemental Figure S3. Changes in the protein profiles of cell envelopes and membrane vesicles in the absence of BamE_{GC}. Cell envelope (CE) and membrane vesicles (MV) proteins isolated from wt and Δbam_E strains grown to mid-logarithmic phase of growth were normalized by total protein concentration, separated by SDS-PAGE, transferred onto nitrocellulose membrane, and probed with indicated antibodies. Migration of a molecular mass marker (kDa) is indicated on the left. *Denotes TamA (8).