New pathogenic insights from large animal models of neurodegenerative diseases

Peng Yin, Shihua Li, Xiao-Jiang Li, Weili Yang

Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China

Correspondence: weiliyang12@jnu.edu.cn (W. Yang)

Received January 7, 2022 Accepted February 23, 2022

ABSTRACT

Animal models are essential for investigating the pathogenesis and developing the treatment of human diseases. Identification of genetic mutations responsible for neurodegenerative diseases has enabled the creation of a large number of small animal models that mimic genetic defects found in the affected individuals. Of the current animal models, rodents with genetic modifications are the most commonly used animal models and provided important insights into pathogenesis. However, most of genetically modified rodent models lack overt neurodegeneration, imposing challenges and obstacles in utilizing them to rigorously test the therapeutic effects on neurodegeneration. Recent studies that used CRISPR/Cas9-targeted large animal (pigs and monkeys) have uncovered important pathological events that resemble neurodegeneration in the patient's brain but could not be produced in small animal models. Here we highlight the unique nature of large animals to model neurodegenerative diseases as well as the limitations and challenges in establishing large animal models of neurodegenerative diseases, with focus on Huntington disease, Amyotrophic lateral sclerosis, and Parkinson diseases. We also discuss how to use the important pathogenic insights from large animal models to make rodent models more capable of recapitulating important pathological features of neurodegenerative diseases.

KEYWORDS large animal models, neurodegenerative diseases, CRISPR/Cas9

INTRODUCTION

The prevalence of age-dependent neurodegenerative diseases (NDs), such as Alzheimer’s disease (AD), Parkinson’s diseases (PD), Amyotrophic lateral sclerosis (ALS), and Huntington’s disease (HD), has increased worldwide in parallel with the rise in life expectancy. The common features of these diseases include selective neurodegeneration of specific populations of neurons that occurs in an age-dependent manner in the human brain (Wyss-Coray, 2016). The selective neurodegeneration in NDs is closely associated with the accumulation of misfolded proteins in the affected brain regions, which is largely due to the impairment of cellular machinery to clear unwanted and toxic proteins or peptides in aged neurons (Rubinsztein, 2006). Thus, identification of a treatment of any of these NDs would have broad implications for developing therapeutics for a large number of patients with NDs.

So far, there has been no effective treatment of NDs despite great efforts and progress being made over the course of several decades. The failure to find effective cues for NDs is largely owing to our incomplete understanding of the pathological mechanism underlying selective neurodegeneration. Most of NDs cases are sporadic with unknown causes, making it difficult to investigate the pathogenesis of these diseases. However, some NDs are caused by genetic mutations, which have facilitated research on investigation of how the mutations cause the disease proteins to become misfolded and toxic to initiate selective neurodegeneration. AD, which is characterized by dementia resulting from extensive yet selective neuron death in the neocortex and hippocampus, is the most common NDs with more than 90%
of patients being sporadic and less than 10% of AD cases caused by a single genetic mutation in the APP genes (Presenilin 1, Presenilin 2, and Amyloid precursor protein APP) (Lanoiselée et al., 2017). PD is the second most common NDs that affects more than 1% people over age 60. The pathologic hallmarks of PD are the preferential loss of dopamine (DA) neurons and formation of Lewy body inclusions in the substantia nigra pars compacta (Damier et al., 2006; Turner et al., 2013). Of many important NDs, HD is a mono-genetic disorder and represents a family of NDs that are caused by a CAG repeat expansion, which is translated to an expanded polyglutamine (polyQ) repeat in the disease proteins (Orr and Zoghbi, 2007; Tabrizi et al., 2020). In HD, the polyQ expansion encoded by an expanded CAG repeat (>36 CAGs) in exon 1 of the HD gene causes huntingtin (HTT) to misfold and aggregate in the patient brain, resulting in the preferential loss of the medium spiny neurons in the striatum and extended neurodegeneration in various brain regions as HD progresses (Bates et al., 2015). The genetic mutations identified in NDs have enabled the generation of various animal models harboring the disease mutations, which have greatly advanced our understanding of the pathogenesis of NDs.

Animal models that can recapitulate key pathological changes in the patient brains would be important for developing effective therapeutic strategies. Various species of animal models for NDs have been investigated, including fruit flies, rodents, dogs, sheep, pigs and non-human primates (Dawson et al., 2018). Among those species, rodents are the most widely used animal model for generating disease models due to their relatively short life span, easier and rapid breeding, lower costs, and available genetic editing techniques. Particularly, there are versatile genetic tools to establish loss- or gain-of-function mouse models, and genetically modified rodent models have provided important insights into the pathogenesis and therapeutics for neurodegenerative diseases. However, most of these rodent models fail to recapitulate the overt andotypic neurodegeneration seen in the patients (Deng and Siddique, 2000; Crook and Housman, 2011; Dawson et al., 2018). This drawback apparently prevents the rigorous evaluation of the therapeutic effects on neurodegeneration. Recently, several large animal models carrying human genetic mutations are found to more faithfully mimic the important nature of selective neurodegeneration (Yang et al., 2021a). Because large animal models of HD, PD, and ALS have been successfully established and published, we will focus on the animal models of these diseases and discuss the important pathogenic insights from the large animal models.

LACK OF OVERT NEURONAL LOSS IN RODENT MODELS OF NEURODEGENERATIVE DISEASES

It would be worth discussing some important rodent models of NDs prior to describing large animal models, as these rodent models have been widely studied in the field and shed light on the pathogenesis of NDs. Various genetically modified mouse models of HD have been established and revealed that N-terminal fragments of mutant Htt with expanded polyQ repeats can accumulate in the brain to affect movement and neuronal function (Crook and Housman, 2011; Farshim and Bates, 2018). This idea is supported by the more severe phenotypes of transgenic mice expressing truncated N-terminal Htt fragments than those caused by full-length mutant Htt (Farshim and Bates, 2018). Because overexpressing N-terminal mutant Htt could cause phenotypes that may not occur in humans when full-length mutant Htt is expressed at the endogenous level, several HD knock-in mouse models were generated to express an expanded CAG/glutamine repeat in the endogenous mouse HD gene. However, there is no overt and selective medium spiny neuronal loss in HD knock in mouse models (Levine et al., 2004; Crook and Housman, 2011).

Mutations in the human PINK1 and PRKN gene were found to result in autosomal recessive Parkinson’s disease (PD) that is featured by neurodegeneration in association with mitochrondia dysfunction (Valente et al., 2004; Mcinerney-Leo et al., 2005; Corti et al., 2011; Pickrell and Youle, 2015). However, the PINK1 or PRKN KO mouse models are unable to recapitulate selective and overt neurodegeneration seen in PD (Kitada et al., 2007; Xiong et al., 2009; Gispert et al., 2009; Akundi et al., 2011) or validate the important in vitro findings for the function of PINK1/Parkin in mitophagy (Whithworth and Pallanck, 2017; Cummins and Gotz, 2018). Moreover, triple knockout of three PD related genes of PINK1/DJ-1 at the same time in mouse models have not shown any obvious neuronal degeneration even in very old age (Kitada et al., 2009).

Since mutations in the nuclear TDP-43 gene cause ALS, rodent models carrying TDP-43 mutations were widely used to investigate ALS pathogenesis. TDP-43 is a nuclear protein that is involved in a variety of cellular functions including gene transcription, RNA processing, and protein homeostasis (Lagier-Tourenne and Cleveland, 2009; Polymenidou et al., 2011; Weishaupt et al., 2016). In patients with TDP-43 mutations or some pathological conditions such as frontotemporal lobar degeneration (FTLD), however, the nuclear TDP-43 is redistributed in the cytoplasm and forms cytoplasmic inclusions (Neumann et al., 2006; Arai et al., 2006; Chen-Plotkin et al., 2010). This cytoplasmic redistribution of...
TDP-43 protein in human brains can lead to a loss of function in the nucleus and a gain of toxicity in the cytoplasm (Huang et al., 2012; Philips and Rothstein, 2015). Although some mouse models can have the minimal level of cytoplasmic TDP-43 (Wegorzewska et al., 2009; Wils et al., 2010; Mitchell et al., 2015), most of TDP-43 mutant mice show the predominantly nuclear localization of TDP-43 and do not reproduce the key pathological hallmark of cytoplasmic mislocalization of TDP-43 (Wegorzewska et al., 2009; Shan et al., 2010; Huang et al., 2012; Yan et al., 2014; Philips and Rothstein, 2015).

Thus, although the mouse models can remarkably recapitulate protein misfolding and aggregation seen in the patient brains (Zoghbi and Botas, 2002; Dugger et al., 2017; Soto and Pritzkow, 2018), most of the mouse models cannot fully mimic the symptoms and pathologies of these neurodegenerative diseases. This phenomenon could be due to species differences determined by genomic, molecular, and anatomical differences between rodents and humans.

PRONOUNCED DIFFERENCES IN THE BRAINS OF DIFFERENT SPECIES

There are considerable differences in brain development, anatomical structure, cognitive and behavioral complexity between small and large animals, which explain why many human neurological and neuropsychiatric diseases are inadequately modeled in rodents (Izpisua Belmonte et al., 2015). For example, a larger cortical progenitor pool in the outer subventricular zone (SVZ), which is not present in rodents (Smart et al., 2002), is required for cortical gyration (Rash et al., 2019). Otani et al. described that cortical progenitor cells expand their population for an extended period during the neurogenesis in primates (Otani et al., 2016), but such expansion is not prominent in rodents (Gao et al., 2014). Consequently, the cerebral cortex differs 1000-fold in size between mouse and large animals (Defelipe, 2011; Herculano-Houzel, 2012). As a result, rodent brains are much smaller and lack the folding of the cortical surface whereas pig, monkey, and human share this important feature in their brains (Fig. 1). The increased neuronal number and cerebral cortex size lead to more complex neural architectures that determine cognitive abilities (Herculano-Houzel, 2012; Geschwind and Rakic, 2013) and can also impact pathological and behavioral phenotypes of animal models of NDs.

Aging processes also differ significantly among different types of animals. Rodents normally live for less than 3 years, a short life span that may not be sufficient for the occurrence of neurodegeneration that usually takes decades to happen in humans. The rapid development and accelerated aging in small animals could render their brains or neuronal cells less vulnerable to insults or toxic proteins such that they lack robust neurodegeneration despite the presence of impaired brain function.

At the molecular level, the brains of large animals and humans share more similar patterns of gene expression than does the mouse brain (Bernard et al., 2012; Zeng et al., 2012; Hawrylycz et al., 2015; Bakken et al., 2016; Sousa et al., 2017; Zhu et al., 2018). Especially, transcriptional profiling in adult mice and humans demonstrated robust differences between neuronal and non-neuronal cell types and large-scale changes over the course of development (Darmanis et al., 2015; Molyneaux et al., 2015; Zeisel et al., 2015). In rat and human, there are 22% of genes showing different developmental trajectories, whereas only 9% of genes have different trajectories between rhesus monkey and human (Bakken et al., 2016). Thus, the brains of large

Animal	Time for development	Size	Weight	Ratio of neuron to glia	Gyration
Human	20 years	15 cm	1,500 g	86 billion : 85 billion	Yes
Monkey	5 years	7.5 cm	100 g	6 billion : 7.2 billion	Yes
Pig	6 months	8 cm	200 g	2.2 billion : 5 billion	Yes
Rodents	2 months	1.5 cm	0.5 g	70 million : 270 million	No

Figure 1. Major differences in brain size and structures between rodents and large animals.
animals may express the same molecules that are important for neuronal survival or death in humans but may not be essential in rodents or small animals.

Although pig is less similar to human than monkey, especially in cognition and emotion, the global structure of the pig brain is approximately equal to that of humans. In addition, the body size and physiology of pigs resemble those of humans, allowing for safe dosage ranges to be defined in drug development studies and toxicological testing. Pigs have an early sexual maturity (5–8 months) as well as a relatively short gestation period (about 114 days) and are able to produce multiple offspring (about 10–12 piglets per liter). In addition, the pig endogenous genes can be edited via somatic cell nuclear transfer (SCNT) to produce knock-in or knockout models. All these advantages make pigs a promising and alternative large animal model for investigating human diseases (Lunney et al., 2021).

STRATEGIES FOR GENERATING LARGE ANIMAL MODELS OF NEURODEGENERATIVE DISEASES

Identification of genetic mutations responsible for NDs opened up an avenue to genetically express the same mutant genes in animals to model NDs. Unlike mouse models that can be generated using their embryonic stem cells after *in vitro* genome editing, large animal models were often generated by transgenic approach that introduces exogenous mutant genes in the fertilized eggs. However, the phenotypes of transgenic animals are influenced by the copy numbers of the transgene and its location in the host genome. The recently developed new genome-editing technologies, such as the CRISPR/Cas9 system, makes revolutionary changes in modifying endogenous genomes in large animals. For example, germline genome editing in non-human primates can be achieved by injection of the CRISPR/Cas9 system into the fertilized eggs (Zhao et al., 2017; Zhang et al., 2018; Yang et al., 2019b; Zhou et al., 2019). Since most genetic diseases result from point mutations, the development of base editor system is particularly useful to introduce or correct a point mutation in the endogenous genes (Xie et al., 2019; Chen et al., 2020; Wang et al., 2020).

However, the long-life cycle and high costs of non-human primates prevent the widespread use of genetically modified monkey models. Since CRISPR/Cas9 can also target genes in adult neuronal cells (Incontro et al., 2014; Swiech et al., 2015; Yang et al., 2021b), it can be directly applied to the brains of adult monkeys via stereotaxic injection of viral expression vectors. Such studies would allow one to explore the function of mutant genes in adult monkey and also to more rapidly generate monkey models that can mimic brain region-specific or age-dependent neurodegeneration. For example, because of the gain of toxicity of α-synuclein, stereotaxic injection of lentiviral vectors expressing mutant α-synuclein (A53T) into the substantia nigra of monkeys at different ages was performed (Yang et al., 2015). Li et al. also used AAV9-delivered CRISPR/Cas9 system to directly co-edit PINK1 and DJ-1 genes in the substantia nigras (SNs) of monkeys at different ages (Li et al., 2021). Our group recently depleted the monkey brain PINK1 gene via AAV-mediated CRISPR/Cas9 in adult monkey brain (Yang et al., 2021b). Furthermore, genome editing could be used to modify genes in different cell types (such as neurons or glia) with specific promoters for investigating gene functions in different brain cell types.

Pig models of NDs can be established using SCNT to introduce genetic mutations in the endogenous pig genes to generate knock-in and knockout models (Hauschild et al., 2011; Zhou et al., 2015; Ryu et al., 2018; Yan et al., 2018). Wang et al. established a pROSA26-Cas9 pig line with Cre-inducible Cas9 expression to facilitate genome editing in pigs (Wang et al., 2017). Expression of the mutant genes at
Large animal models of neurodegenerative diseases

the endogenous level would avoid artificial effects of over-expressed transgene. Furthermore, SCNT in combination with CRISPR/Cas9 allowed for selecting embryos expressing a single mutation, leading to the expression of the same mutant gene ubiquitously in each cell and eliminating the concern of mosaicism of gene targeting caused by CRISPR/Cas9. The development of genome editing technology has accelerated the use of pigs, non-human primates, and other large animals to model human diseases (Fig. 2).

GENETICALLY MODIFIED LARGE ANIMAL MODELS OF NEURODEGENERATIVE DISEASES

Huntington’s disease (HD)

Genetically modified large animal models are summarized in Table 1. Of these animal models, HD transgenic monkeys were the first transgenic monkey model of human diseases, which was established by injecting lentiviruses into fertilized rhesus monkey oocytes to express exon 1 (1–67) mutant HTT containing 84Q (Yang et al., 2008). The HD monkeys showed abundant HTT aggregates in the neuronal nuclei and processes as seen in the brains of HD mouse models and patients, but died postnatally with severe neurodegeneration (Yang et al., 2008), in contrast to the transgenic HD mice that expressed the same transgenic HTT but could survive after birth without overt neurodegeneration (Davies et al., 1997).

Different transgenic pigs were also generated to model HD. Transgenic pigs expressing N-terminal mutant HTT 105Q (N208-105Q) were generated via SCNT, but most of the transgenic HD piglets died postnatally (Yang et al., 2010). Another group generated transgenic HD pigs via lentiviral infection of porcine embryos that expressed a large fragment of mutant HTT (1–548) containing 124Q. However, these transgenic HD pigs showed much milder phenotypes and did not die after birth (Baxa et al. 2013; Schuldenzucker et al., 2017). Transgenic sheep that expressed full-length mutant HTT with 73Q and were also generated via microinjection into pronuclei of single-celled zygotes show very mild phenotypes (Jacobsen et al., 2010). Because viral infection or microinjection of fertilized oocytes can lead to various degrees of transgene expression in different types of cells, the distinct phenotypes in transgenic HD animals are clearly dependent on the transgene expression.

To express the mutant HTT gene in the endogenous genome of pigs, a HD knock-in pig model was generated via CRISPR/Cas9 and SCNT. This HD KI pig model expressed an expanded polyCAG (150 CAG) in the endogenous HTT gene (Yan et al., 2018). Importantly, when full-length mutant HTT with 150Q was endogenously expressed in this HD pig model, it caused striking and selective neurodegeneration as well as movement disorders, effectively recapitulating the typical pathological and clinic features in HD patients. Furthermore, the expanded CAG repeats and neurological phenotypes of these HD KI pigs can be transmitted to next generations by germline (Yan et al., 2018), providing a valuable model for investigating the pathogenesis and therapeutics of HD.

Parkinson’s disease (PD)

Transgenic monkey models that overexpress mutant α-synuclein have been generated for investigating PD pathology and validated the neurotoxicity of mutant proteins (Giasson et al., 2002; Lee et al., 2002; Yang et al., 2015; Ip et al., 2017). However, the various expression levels of exogenous mutant proteins could compromise the phenotype outcomes such that it is difficult to compare the merits of each transgenic PD animal model. Based on the fact that genetic mutations in the PINK1, PRKN and DJ-1 genes caused PD via a loss-of-function mechanism, CRISPR/Cas9-targeting of these genes in the pigs and monkeys was performed. Interestingly, disrupting the PINK1 and PRKN genes in pigs via CRISPR/Cas9 did not produce any neurodegeneration and severe phenotypes (Zhou et al., 2015; Wang et al., 2016), like Pink1 KO mouse models that show no neurodegeneration or severe phenotypes (Zhou et al., 2007; Gautier et al., 2008; Kitada et al., 2009). Chen et al. utilized the paired gRNA/Cas9-D10A nickases to disrupt the monkey PINK1 in the fertilized monkey oocytes but did not observe PD phenotypes in the live mutant monkeys (Chen et al., 2021). It remains unknown whether the PINK1 protein is reduced in the brain of their monkey model, as only PINK1 mRNA from the targeted fibroblasts was reported to be decreased. Because the mosaicism of CRISPR/Cas9-mediated mutations can induce different extents of PINK1 loss and varying degrees of phenotypes and because the deficiency of PINK1 protein is correlated with the loss of neuronal cells in different tissues in the same monkey (Yang et al., 2019b), it is important to examine the protein level of the targeted gene in different brain regions. On the other hand, injection of AAV into the monkey substantia nigra to co-edit the PINK1 and DJ-1 genes could mediate severe nigra dopaminergic cell loss and motor function deficits (Li et al., 2021).

It seems likely that the phenotypes of PINK1 targeted monkeys rely on the extent to which PINK1 is depleted. To ensure that PINK1 expression and function are completely lost, we used two gRNAs to disrupt the monkey PINK1 exon 2 and exon 4, resulting in a large PINK1 DNA fragment deletion in the monkey embryos. The newborn monkeys showed severe neurodegeneration or died postnataly (Yang et al., 2019b), demonstrating for the first time that PINK1 is essential for neuronal survive in the primate brain.

The phenotypes of PINK1 targeted monkeys are clearly different from the rodent models with deletion of the mouse Pink1 gene. None of Pink1 knockout mouse models showed the typical degeneration of dopaminergic neurons seen in the brains of PD patients (Perez and Palmiter, 2005; Zhou et al., 2007; Kitada et al., 2007, 2009). Similarly, deletion of the gene for Parkin, which works together with Pink1 in
Table 1. Large animal models of neurodegenerative diseases.

Disease	Genetic anomaly	Species	Modifications Approach	Pathology and phenotypes	Reference
Huntington’s	HTT	Pig	Embryonic expression of transgenic N-terminal mutant HTT (N548)	No neurodegeneration and gross motor deficits.	(Baxa et al., 2013)
	HTT	Pig	Embryonic knock-in of mutant HTT	Age-dependent neurological symptoms and neurodegeneration	(Yan et al., 2018)
	HTT	Monkey	Embryonic expression of transgenic exon 1 mutant HTT	Neurodegeneration and postnatal death	(Yang et al., 2008)
	HTT	Monkey	Brain specific expression of transgenic mutant HTT	Postnatal death, and clinical HD symptoms	(Weiss et al., 2020)
	HTT	Sheep	Embryonic expression of transgenic HTT	No report on obvious neurodegeneration, mild behavioral phenotypes	(Jacobsen et al., 2010; Reid et al., 2013)
Parkinson’s	SNCA	Monkey	Embryonic expression of transgenic: α-synuclein	Age-dependent non-motor symptoms and Lewy neurites	(Niu et al., 2015)
PINK1/PRKN/DJ-1	Pig	Embryonic knockout of PINK1, PRKN, and DJ-1	No obvious neuronal loss, normal behavior	(Wang et al., 2016; Zhao et al., 2019)	
PINK1/PRKN	Pig	Embryonic knockout of PINK1 and PRKN	No obvious neuronal loss, normal behavior	(Zhou et al., 2015)	
PINK1	Monkey	Embryonic targeting PINK1 by CRISPR/Cas9	Severe neuronal loss, Motor function deficits	(Yang et al., 2019b, a)	
PINK1/DJ-1	Monkey	Brain regional targeting PINK1 and DJ-1 by CRISPR/Cas9	Classic PD symptoms, severe nigral dopaminergic neuron loss	(Li et al., 2021)	
PINK1	Monkey	Brain regional targeting PINK1 by CRISPR/Cas9	Severe neuronal loss, Motor function deficits	(Yang et al., 2021b)	
PINK1	Monkey	Embryonic targeting PINK1 by CRISPR/Cas9	No obvious neurodegeneration and phenotypes	(Chen et al., 2021)	
protecting against mitochondrial damage, did not produce any obvious degeneration either in the mouse brain (Goldberg et al., 2003; Perez and Palmiter, 2005; Kitada et al., 2009). The remarkable differences between rodents and monkeys in PINK1 deletion-mediated phenotypes underscore the value of using the non-human models to investigate the function of PINK1.

Amyotrophic lateral sclerosis (ALS)

The absence of predominant distribution of mutant TDP-43 in the cytoplasm, a pathological hallmark of ALS, in the rodent models motivated us to use non-human primates for investigation. We previously created the TDP-43 transgenic pig model that exhibited the cytoplasmic distribution of TDP-43 as seen in patient brains (Wang et al., 2015). To investigate the subcellular distribution of mutant TDP-43 in the monkey brain, we directly injected viral vector expressing mutant TDP-43 into the rhesus monkey brain cortex and substantia nigra (Yin et al., 2019). The majority of mutant TDP-43 was distributed in the cytoplasm of the monkey brain, contrary to the nuclear accumulation of TDP-43 in the mouse brain (Yin et al., 2019) but consistent with the cytoplasmic distribution of mutant TDP-43 in the monkey spinal cord (Uchida et al., 2012).

The human SOD1 mutations could cause familial ALS. Although SOD aggregates are mainly found in the cytoplasm, intranuclear SOD1 aggregates were also seen in some postmortem brains of ALS patients with SOD1 mutations (Kakita et al., 1997; Seilhean et al., 2004; Forsberg et al., 2011). Mutant SOD1 transgenic mice are most widely used animal models of ALS and have given us important insights into the pathogenesis of ALS (Ferraiuolo et al., 2011; Philips and Rothstein, 2015). However, most of the transgenic SOD1 mouse models did not show intranuclear aggregates and lack substantial cortical motor neuronal degeneration, which is a fundamental feature of ALS patients (Philips and Rothstein, 2015). Yang et al. generated the SOD1 (G93A) transgenic pigs via the SCNT method (Yang et al., 2014). The transgenic SOD1 pigs showed hind limb motor defects and neuronal degeneration in dose- and age-dependent manners. Also, in the early disease stage, mutant hSOD1 did not form cytoplasmic inclusions, but showed nuclear accumulation and ubiquitinated nuclear aggregates, as seen in some ALS patient brains (Yang et al., 2014). The differences between transgenic SOD1 mice and pigs further support the idea that large animal models can more faithfully mimic the age-dependent and progressive pathological changes seen in the patient brains.

NEW INSIGHTS FROM LARGE ANIMAL MODELS INTO DISEASE MECHANISMS

A successfully established animal model of neurodegenerative disease should adequately recapitulate the important pathological features and important clinical phenotypes of patients. The current large animal models reviewed above have demonstrated important species-dependent differences in neuropathology. They would serve as important tools to investigate the pathogenesis and pathological events that may uniquely occur in humans and can therefore be new therapeutic targets.
HD KI pigs can be used to rigorously evaluate the involvement of mutant HTT in a number of important pathological events found in small animal models. One of the well-documented events in HD mice is the somatic CAG repeat instability in the striatum, a brain region that is preferentially affected in HD (Swami et al., 2009). Further investigation of CAG repeat lengths in various brain regions of HD KI pigs showed that the CAG repeats are fairly stable in the striatum (Bai et al., 2021). These findings point to the potential regulation of the somatic instability of CAG repeats by species-dependent factors and stress the role of polyglutamine toxicity rather than CAG instability in large animals. The therapeutic implication of these findings is that removing mutant HTT protein would be more important than correcting CAG instability at the DNA level.

Comparison of PINK1 KO models of mouse and monkey uncovered the unique expression and function of PINK1 in the primate brains, because PINK1 is undetectable in the mouse brain but abundantly expressed in the primate brain at the protein level (Yang et al., 2021b). This striking difference may explain why Pink1 knock out mouse models do not have overt neurodegeneration because Pink1 is not essential in rodents. PINK1 seems to have mitochondria-independent function and can phosphorylate a series of neuronal function-related proteins that are vital to neuronal survival in the primate brains (Yang et al., 2019a; Sun et al., 2021). Thus, genetic mutations such as a point mutation or a mutation in the non-kinase domain of PINK1 created in other monkey models may not be able to significantly affect PINK1 kinase function to elicit obvious neurodegeneration (Chen et al., 2021). Characterization of PINK1 targeted monkeys leads to a new theory that the primate PINK1 mainly functions as a kinase to maintain neuronal survival, which is different from the prevailing theory of mitophagy that is largely based on in vitro studies of stressed or damaged mitochondria (Fig. 3). The findings also implicate that improvement of dysfunction of PINK1 kinase, which is a druggable target, may be more effective than repair of damaged mitochondria in treating PINK1 mutation-mediated pathology in PD.

The distribution of mutant TDP-43 (M337V) in the cytoplasm in the brains of rhesus monkeys and pigs (Uchida et al., 2012; Wang et al., 2015; Yin et al., 2019) highlights the values of large animal models for investigating the cytoplasmic toxicity of TDP-43. Subsequent investigation identified that the primate-specific caspase-4, which is not expressed in the mouse brain, was able to cleave TDP-43 and remove its NLS-containing N-terminal domain, resulting in the cytoplasmic accumulation of TDP-43 (Yin et al., 2019). The cytoplasmic mutant TDP43 could selectively reduce

Figure 3. New pathogenic insight of monkey models with PINK1 mutation. The prevalent theory for the function of PINK1 in mitophagy is largely based on in vitro studies (left). The in vivo studies of the primate brains suggest that PINK1 is a kinase to phosphorylate many neuronal proteins to maintain neuronal survival (right).
SQSTM1 expression in the monkey brain by reducing SQSTM1 mRNA stability via its binding to the unique 3′UTR sequence (GU/UG) of the primate SQSTM1 transcript (Fig. 4) (Yin et al., 2021). Thus, selective expression of modifiers or targets of the disease proteins in large animal models apparently contributes to the specific neuropathological events that may not occur in small animal models.

CHALLENGES OF USING LARGE ANIMAL MODELS AND RESOLUTIONS

Although recently established large animal models of NDs offer fresh and important insights into the pathogenesis of NDs, there are notable limitations for generating large animal models. The high animal cost, the current low efficiency in gene targeting, especially for knock-in and conditional knockout or gene expression, in large animals and extensive time required for studies of large animals are obvious concerns for widely using such animal models for research. For example, pigs have a sexual maturity of 5–8 months and the gestation period of about 114 days. For monkeys, the sexual maturity takes much longer time (4–5 years), the gestation period lasts for about 165 days, and each female animal often produces a single offspring each year. In addition, generation of embryonic genome edited non-human primate models is technically challenging and labor intensive, as multiple processes including hormonal superovulation, embryo transfer with surgical implantation, and experienced animal care, would require the well-equipped animal facility, enough animal resources, and a highly trained team.

Additionally, CRISPR/Cas9 system creates the mosaic mutations that may result in various types of mutations and different cellular phenotypes. The mosaicism in offspring can be reduced by outcrossing the mosaic founders with wild type animals. However, it will take years to eliminate mosaicism in large animal models, especially for the non-human primates that require 4–5 years of sexual maturity to produce next generation. In pig models, however, the gene editing tools combined with SCNT have been successfully to establish the pig models that carry the same single genetic mutation as in human patients. SCNT was also applied to the non-human primate, and the results demonstrate the feasibility to generate knock-in non-human primate models (Liu et al., 2018), but the efficiency is much lower.

Several other technical hurdles also need to be resolved. Although the mosaic mutations in different animals may not yield the same phenotypes, one can analyze the correlation of genetic mutations and phenotypes at the cellular level, which can be achieved by imaging and RNAseq analysis at single cell resolution (Zhang et al., 2021). Designing specific gRNAs and controlling Cas9 expression should minimize the off-targets and increase the specificity of CRISPR/Cas9-mediated gene targeting. The heterogeneity in genetic backgrounds of large animals may lead to more variability in behaviors such that sufficient numbers of large animals are required to make a sound conclusion. For example, cognitive impairment is a common non-motor symptom in patients of NDs. Most of the NDs exhibit different extents of impaired cognitive functions that can be measured using Wisconsin general test apparatus (WGTA) (Zhou et al., 2019). Anxiety-associated behaviors or motor deficits can be examined and monitored by the locomotion activity assay (Liu et al., 2016). To assess sleep disturbance in large animal models, daily home-cage videos should be recorded at specific time points. Thus, the robust and automated systems for tracking and analyzing behavior will be important for accurately assessing species-specific normal behavior, disease phenotypes, and data reproducibility.

Alternatively, genetic modification can be performed in somatic cells to mirror neuropathology in the specific brain regions in large animals. The direct administration of AAV expressing gRNA/Cas9 or transgenes into specific brain regions of large animals at multiple developmental stages or different ages could more rapidly recapitulate brain region-dependent or age-related neuropathology. Treatment of gene-targeted animals with environmental stress or

Figure 4. New pathogenic insight of monkey models expressing mutant TDP-43. TDP-43 remains in the nucleus of rodent neurons to elicit nuclear toxicity. In the primate neurons, however, the primate-specific caspase-4 cleaves TDP-43 to cause truncated TDP-43 to redistribute in the cytoplasm, resulting in the cytoplasmic toxicity.
chemicals that induce oxidative stress could also facilitate disease progression, as oxidative stress has been implicated in the progression of a number of NDs. Moreover, the continued improvement of viral vectors that can readily penetrate the blood–brain barrier may greatly facilitate the delivery of the gRNA/Cas9 system or transgenes in the brains of large animals (Chan et al., 2017; Goertsen et al., 2021).

CONCLUSIONS AND PERSPECTIVES
This review updates the large animal models of neurodegenerative diseases, including HD, PD and ALS. Although investigation of large animal models led to new discoveries of important pathological events or mechanism that have not been found in small animals, there are challenges and limitations that are largely stemmed from the costly and time-consuming investigation. However, the important information gained from the large animal models would be highly valuable for understanding the pathogenic mechanisms and identifying new therapeutic targets. Given the lack of obvious neurodegeneration phenotypes in most of genetically modified rodent models, the demand for establishing large animal models to study neurodegenerative diseases is well-appreciated, and the publications of large animal models with gene editing are steadily increased recently. It is expected that more of large animal models would be embraced as the preferred model for human diseases and translational medicine research. Moreover, the important information gained from large animal models would be highly valuable for generating more humanized mouse models. Specifically, important differences in pathological phenotypes between small and large animals would guide us to create humanized mouse models that can more closely emulate the important pathological features seen in large animal models and patients.

DECLARATIONS
This work was supported by The National Natural Science Foundation of China (81830032, 32070534, 31872779, 82071421); Key Field Research and Development Program of Guangdong province (2018B030337001), Department of Science and Technology of Guangdong Province (2021ZT09Y007; 2020B121201006), Guangzhou Key Research Program on Brain Science (202007030008), The National Key Research and Development Program of China Stem Cell and Translational Research (2017YFA0105102).

The authors declare that they have no competing interests. Informed consent was obtained from all individual participants included in the study. Authors are responsible for correctness of the statements provided in the manuscript. All authors give their consent for the publication of this study.

WY and PY wrote the manuscript. X-J L and SL edited the manuscript. All discussed and approved the overall structure of the review.

ABBREVIATIONS
AAV, adeno-associated viruses; AD, Alzheimer’s disease; ALS, amyotrophic lateral sclerosis; CMV, cytomegalovirus; CRISPR, clustered regularly interspaced short palindromic repeats; FTLD, fronto-temporal lobar degeneration; FUS, fused in sarcoma; HD, Huntington’s disease; HTT, huntingtin; NDs, neurodegenerative diseases; PD, Parkinson’s disease; polyQ, polyglutamine; PRKN, parkin RBR E3 ubiquitin protein ligase ; SCNT, somatic cell nuclear transfer; sgRNA, single guide RNA; SNs, substantia nigras; SNCA, α-synuclein; SOD1, superoxide dismutase 1; SQSTM1, Sequestosome-1; SVZ, subventricular zone; TDP-43, TAR DNA-binding protein 43.

OPEN ACCESS
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

REFERENCES
Akundi RS, Huang Z, Eason J, Pandya JD, Zhi L, Cass WA, Sullivan PG, Buehler H (2011) Increased mitochondrial calcium sensitivity and abnormal expression of innate immunity genes precede dopaminergic defects in Pink1-deficient mice. PLoS ONE 6: e16038
Arai T, Hasegawa M, Akiyama H, Ikeda K, Nonaka T, Mori H, Mann D, Tsuchiya K, Yoshida M, Hashizume Y et al (2006) TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 351:602–611
Bai D, Yin P, Zhang Y, Sun F, Chen L, Lin L, Yan S, Li S, Li X-J (2021) Lack of association of somatic CAG repeat expansion with striatal neurodegeneration in HD knock-in animal models. Hum Mol Genet 30:1497–1508
Bakken TE, Miller JA, Ding S-L, Sunkin SM, Smith KA, Ng L, Szafer A, Dalley RA, Royall JJ, Lemon T et al (2016) A comprehensive transcriptional map of primate brain development. Nature 535:367–375
Bates GP, Dorsey R, Gusella JF, Hayden MR, Kay C, Leavitt BR, Nance M, Ross CA, Scähill RI, Wetzel R et al (2015) Huntington disease. Nat Rev Dis Prim 1:15005
Baxa M, Hruska-Plochán M, Juhas S, Vodicka P, Pavlok A, Juhasova J, Miyahara A, Nejime T, Klima J, Macakova M et al (2013) A transgenic minipig model of Huntington’s disease. J Huntingtons Dis 2:47–68
of A53T-α-synuclein in the substantia nigra results in degeneration of the nigrostriatal system with Lewy-like pathology and motor impairment: a new mouse model for Parkinson’s disease. Acta Neuropathol Commun 5:11
Izpisua Belmonte JC, Callaway EM, Caddick SJ, Churchland P, Peng G, Homanics GE, Lee K-F, Leopold DA, Miller CT, Mitchell JF et al (2015) Brains, genes, and primes. Neuron 86:617–631
Jacobsen JC, Bawden CS, Rudiger SR, McLaughlan CJ, Reid SJ, Waldvogel HJ, MacDonald ME, Gusella JF, Walker SK, Kelly JM et al (2010) An ovine transgenic Huntington’s disease model. Hum Mol Genet 19:1873–1882
Kakita A, Oyanagi K, Nagai H, Takahashi H (1997) Eosinophilic intranuclear inclusions in the hippocampal pyramidal neurons of a patient with amyotrophic lateral sclerosis. Acta Neuropathol 93:532–536
Kitada T, Pisani A, Porter DR, Yamaguchi H, Tcherter A, Martella G, Bonsi P, Zhang C, Pothen EN, Shen J (2007) Impaired dopamine release and synaptic plasticity in the striatum of PINK1-deficient mice. Proc Natl Acad Sci USA 104:11441–11446
Kitada T, Tong Y, Gautier CA, Shen J (2009) Absence of nigral degeneration in aged parkin/DJ-1/PINK1 triple knockout mice. J Neurochem 111:696–702
Lagier-Tourenne C, Cleveland DW (2009) Rethinking ALS: the FUS of A53T–
Liu Z, Li X, Zhang JT, Cai YJ, Cheng TL, Cheng C, Wang Y, Zhang CC, Nie YH, Chen ZF et al (2016) Autism-like behaviours and germine transmission in transgenic monkeys overexpressing MeCP2. Nature 530(7588):98–102
Liu Z, Cai Y, Wang Y, Nie Y, Zhang C, Xu Y, Zhang X, Lu Y, Wang Z, Poo M et al (2018) Cloning of macaque monkeys by somatic cell nuclear transfer. Cell 174:245
Lunney JK, Van Goor A, Walker KE, Hailstock T, Franklin J, Dai C (2011) Importance of the pig as a human biomedical model. Sci Transl Med 13:eaab5578
Mclnerney-Leo A, Hadley DW, Gwinn-Hardy K, Hardy J (2005) Genetic testing in Parkinson’s disease. Mov Disord 20:1–10
Mitchell JC, Constable R, So E, Vance C, Scotter E, Glover L, Hortaogyi T, Arnold ES, Ling S-C, McAlonis M et al (2015) Wild type human TDP-43 potentiates ALS-linked mutant TDP-43 driven progressive motor and cortical neuron degeneration with pathological features of ALS. Acta Neuropathol Commun 3:36
Molyneaux BJ, Goff LA, Brettler AC, Chen H-H, Hvitran S, Rinn JL, Arlotta P (2015) DeCoN: genome-wide analysis of in vivo transcriptional dynamics during pyramidal neuron fate selection in neocortex. Neuron 85:275–288
Neumann M, Sambath DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, Bruce J, Schuck T, Grossman M, Clark CM et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133
Niu Y, Guo X, Chen Y, Wang C-E, Gao J, Yang W, Kang Y, Si W, Wang H, Yang S-H et al (2015) Early Parkinson’s disease symptoms in alpha-synuclein transgenic monkeys. Hum Mol Genet 24:2308–2317
Orr HT, Zoghbi HY (2007) Trinucleotide repeat disorders. Annu Rev Neurosci 30:575–621
Otani T, Marchetto MC, Gage FH, Simons BD, Livesey FJ (2016) 2D and 3D stem cell models of primate cortical development identify species-specific differences in progenitor behavior contributing to brain size. Cell Stem Cell 18:467–480
Perez FA, Palmeter RD (2005) Parkin-deficient mice are not a robust model of parkinsonism. Proc Natl Acad Sci USA 102:2174–2179
Philips T, Rothstein JD (2015) Rodent models of amyotrophic lateral sclerosis. Curr Protoc Pharmacol 69:5.67.1–5.67.21
Pickrell AM, Youle RJ (2015) The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron 85:257–273
Polymenidou M, Lagier-Tourenne C, Hutt KR, Huelga SC, Moran J, Liang TY, Ling S-C, Sun E, Wanczewicz E, Mazur C et al (2011) Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat Neurosci 14:459–468
Rash BG, Duque A, Morozov YM, Arellano JI, Micali N, Rakic P (2019) Gliogenesis in the outer subventricular zone promotes enlargement and gyration of the primate cerebrum. Proc Natl Acad Sci USA 116:7089–7094
Reid SJ, Patassini S, Handley RR, Rudiger SR, McLaughlan CJ, Osmand A, Jacobsen JC, Morton AJ, Weiss A, Waldvogel HJ et al (2013) Further molecular characterisation of the OVT73 transgenic sheep model of Huntington’s disease identifies cortical aggregates. J Huntington Dis 2:279–295
Rubinstein DC (2006) The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443:780–786
Ryu J, Prather RS, Lee K (2018) Use of gene-editing technology to introduce targeted modifications in pigs. J Anim Sci Biotechnol 9:5
Schuldenzucker V, Schubert R, Muratori LM, Freisfeld F, Rieke L, Mathies T, Schramke S, Mottik J, Kemper N, Radespiel U et al (2017) Behavioral testing of minipigs transgenic for the Huntington gene-A three-year observational study. PloS one 12: e0185970
Seilhan D, Takahashi J, El Hachimi KH, Fujigasaki H, Lebre A-S, Biancalana V, Dürr A, Salachas F, Hogenhuis J, de Thé H et al (2004) Amyotrophic lateral sclerosis with neuronal intranuclear protein inclusions. Acta Neuropathol 108:81–87
Shan X, Chiang P-M, Price DL, Wong PC (2010) Altered distributions of Gemini of coiled bodies and mitochondria in motor neurons of TDP-43 transgenic mice. Proc Natl Acad Sci USA 107:16325–16330

Smart IHM, Dehay C, Giroud P, Berland M, Kennedy H (2002) Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb Cortex 12:37–53

Soto C, Pritzkow S (2018) Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases. Nat Revsci 21:1332–1340

Sousa AMM, Zhu Y, Raghanti MA, Kitchen RR, Onorati M, Tebbenkamp ATN, Stutz B, Meyer KA, Li M, Kawasawa YI et al (2017) Molecular and cellular reorganization of neural circuits in the human lineage. Science 358:1027–1032

Sun Z, Ye J, Yuan J (2021) PINK1 mediates neuronal survival in monkey. Protein Cell. https://doi.org/10.1007/s13238-021-00889-w

Swami M, Hendricks AE, Gillis T, Massood T, Myrokes J, Myers RH, Wheeler VC (2009) Somatic expansion of the Huntington’s disease CAG repeat in the brain is associated with an earlier age of disease onset. Hum Mol Genet 18:3039–3047

Swiech L, Heidenreich M, Banerjee A, Habib N, Li Y, Trombetta J, Sur M, Zhang F (2015) In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat Biotechnol 33:102–106

Tabrizi SJ, Flower MD, Ross CA, Wild EJ (2020) Huntington disease: new insights into molecular pathogenesis and therapeutic opportunities. Nat Rev Neurol 16:529–546

Turner MR, Hardiman O, Benatar M, Brooks BR, Chio A, de Carvalho M, Ince PG, Lin C, Miller RG, Mitsumoto H et al (2013) Controversies and priorities in amyotrophic lateral sclerosis. Lancet Neurol 12:310–322

Uchida A, Sasaguri H, Kimura N, Tajiri M, Ohkubo T, Ono F, Sakaue F, Kanai K, Hirai T, Sano T et al (2012) Non-human primate model of amyotrophic lateral sclerosis with cytoplasmic mislocalization of TDP-43. Brain 135:833–846

Valente EM, Abou-Sleiman PM, Caputo V, Muqit MAK, Dubois D, Gispert S, Ali Z, Del Turco D, Bentivoglio AR, Healy DG et al (2004) Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304:1158–1160

Wang G, Yang H, Yan S, Wang C-E, Guo X, Yin P, Liu Z, Zhao Y et al (2015) Cytoplasmic mislocalization of RNA splicing factors and aberrant neuronal gene splicing in TDP-43 transgenic pig brain. Mol Neurodegener 10:42

Wang X, Cao C, Huang J, Yao J, Hai T, Zheng Q, Wang X, Zhang H, Qin G, Cheng J et al (2016) One-step generation of triple gene-targeted pigs using CRISPR-Cas9 system. Sci Rep 6:20620

Wang K, Jin Q, Ruan D, Yang Y, Liu Q, Wu H, Zhou Z, Ouyang Z, Liu Z, Zhao Y et al (2017) Cre-dependent Cas9-expressing pigs enable efficient in vivo genome editing. Genome Res 27:2061–2071

Wang F, Zhang W, Yang Q, Kang Y, Fan Y, Wei J, Liu Z, Dai S, Li H, Li Z et al (2020) Generation of a Hutchinson-Gilford progeria syndrome monkey model by base editing. Protein Cell 11:809–824

Wegorzewska I, Bell S, Cairns NJ, Miller TM, Baloh RH (2009) TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci USA 106:18809–18814

Weishaupt JH, Hyman T, Dikic I (2016) Common molecular pathways in amyotrophic lateral sclerosis and frontotemporal dementia. Trends Mol Med 22:769–783

Weiss AR, Liguore WA, Domire JS, Button D, McBride JL (2020) Intra-striatal AAV2. retro administration leads to extensive retrograde transfer in the rhesus macaque brain: implications for disease modeling and therapeutic development. Sci Rep 10:6970

Whitworth AJ, Pallanck LJ (2017) PINK1/Parkin mitophagy and neurodegeneration—what do we really know in vivo? Curr Opin Genet Dev 44:47–53

Wils H, Kleinberger G, Janssens J, Pereson S, Joris J, Cuijt I, Mrabts V, Cesterick-de Groote C, Van Broeckhoven C, Kumar-Singh S (2010) TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci U S A 107:3858–3863

Wyss-Coray T (2016) Ageing, neurodegeneration and brain rejuvenation. Nature 539:180–186

Xie J, Ge W, Li N, Liu Q, Chen F, Yang X, Huang X, Ouyang Z, Zhang Q, Zhao Y et al (2019) Efficient base editing for multiple genes and loci in pigs using base editors. Nat Commun 10:2852

Xiong H, Wang D, Chen L, Choo YS, Ma H, Tang C, Xia K, Jiang W, Ronai Z, Zhuang X et al (2009) Parkin, PINK1, and DJ-1 form a ubiquitin E3 ligase complex promoting unfolded protein degradation. J Clin Invest 119:650–660

Yan S, Wang C-E, Wei W, Gaertig MA, Lai L, Li S, Li X-J (2014) TDP-43 causes differential pathology in neuronal versus glial cells in the mouse brain. Hum Mol Genet 23:2678–2693

Yan S, Tu Z, Liu Z, Fan N, Yang H, Yang S, Yang W, Zhao Y, Ouyang Z, Lai C et al (2018) A Huntington knockin pig model recapitulates features of selective neurodegeneration in Huntington’s disease. Cell 173:989–1002

Yang S-H, Cheng P-H, Banta H, Piotrowska-Nitsche K, Yang J-J, Cheng ECH, Snyder B, Larkin K, Liu J, Orkin J et al (2008) Towards a transgenic model of Huntington’s disease in a non-human primate. Nature 453:921–924

Yang D, Wang C-E, Zhao B, Li W, Ouyang Z, Liu Z, Yang H, Fan P, O’Neill A, Gu W et al (2010) Expression of Huntington’s disease protein results in apoptotic neurons in the brains of cloned transgenic pigs. Hum Mol Genet 19:3983–3994

Yang H, Wang G, Sun H, Shu R, Liu T, Wang C-E, Liu Z, Zhao Y, Zhao B, Ouyang Z et al (2014) Species-dependent neuropathology in transgenic SOD1 pigs. Cell Res 24:464–481

Yang W, Wang G, Wang C-E, Guo X, Yin P, Gao J, Tu Z, Wang Z, Wu J, Hu X et al (2015) Mutant alpha-synuclein causes age-dependent neuropahtology in monkey brain. J Neurosci 35:8345–8358

Yang W, Li S, Li X-J (2019a) A CRISPR monkey model unravels a unique function of PINK1 in primate brains. Mol Neurodegener 14:17

Yang W, Liu Y, Tu Z, Xiao C, Yan S, Ma X, Guo X, Chen X, Yin P, Yang Z et al (2019b) CRISPR/Cas9-mediated PINK1 deletion leads to neurodegeneration in rhesus monkeys. Cell Res 29 (4):334–336
Yang W, Chen X, Li S, Li X-J (2021a) Genetically modified large animal models for investigating neurodegenerative diseases. Cell Biosci 11:218
Yang W, Guo X, Tu Z, Chen X, Han R, Liu Y, Yan S, Wang Q, Wang Z, Zhao X et al (2021b) PINK1 kinase dysfunction triggers neurodegeneration in the primate brain without impairing mitochondrial homeostasis. Protein Cell. https://doi.org/10.1007/s13238-021-00888-x
Yin P, Guo X, Yang W, Yan S, Yang S, Zhao T, Sun Q, Liu Y, Li S, Li X-J (2019) Caspase-4 mediates cytoplasmic accumulation of TDP-43 in the primate brains. Acta Neuropathol 137(6):919–937
Yin P, Bai D, Deng F, Zhang C, Jia Q, Zhu L, Chen L, Li B, Guo X, Ye J et al (2021) SQSTM1-mediated clearance of cytoplasmic mutant TARDBP/TDP-43 in the monkey brain. Autophagy. https://doi.org/10.1080/15548627.2021.2013653
Zeisel A, Muñoz-Manchado AB, Codeluppi S, Lönnerberg P, La Manno G, Juréus A, Marques S, Munguba H, He L, Betsholtz C et al (2015) Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347:1138–1142
Zeng H, Shen EH, Hohmann JG, Oh SW, Bernard A, Royall JJ, Glattfelder KJ, Sunkin SM, Morris JA, Guillozet-Bongaarts AL et al (2012) Large-scale cellular-resolution gene profiling in human neocortex reveals species-specific molecular signatures. Cell 149:483–496
Zhang W, Wan H, Feng G, Qu J, Wang J, Jing Y, Ren R, Liu Z, Zhang L, Chen Z et al (2018) SIRT6 deficiency results in developmental retardation in cynomolgus monkeys. Nature 560:661–665
Zhang H, Li J, Ren J, Sun S, Ma S, Zhang W, Yu Y, Cai Y, Yan K, Li W et al (2021) Single-nucleus transcriptomic landscape of primate hippocampal aging. Protein Cell 12:695–716
Zhao H, Tu Z, Xu H, Yan S, Yan H, Zheng Y, Yang W, Zheng J, Li Z, Tian R et al (2017) Altered neurogenesis and disrupted expression of synaptic proteins in prefrontal cortex of SHANK3-deficient non-human primate. Cell Res 27:1293–1297
Zhao J, Lai L, Ji W, Zhou Q (2019) Genome editing in large animals: current status and future prospects. Natl Sci Rev 6:402–420
Zhou H, Falkenburger BH, Schulz JB, Tieu K, Xu Z, Xia XG (2007) Silencing of the Pink1 gene expression by conditional RNAi does not induce dopaminergic neuron death in mice. Int J Biol Sci 3:242–250
Zhou X, Xin J, Fan N, Zou Q, Huang J, Ouyang Z, Zhao Y, Zhao B, Liu Z, Lai S et al (2015) Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer. Cell Mol Life Sci 72:1175–1184
Zhou Y, Sharma J, Ke Q, Landman R, Yuan J, Chen H, Hayden DS, Fisher JW 3rd, Jiang M, Menegas W et al (2019) Atypical behaviour and connectivity in SHANK3-mutant macaques. Nature 570:326–331
Zhu Y, Sousa AMM, Gao T, Skarica M, Li M, Santpere G, Esteller-Cucala P, Juan D, Ferrández-Peral L, Gulden FO et al (2018) Spatiotemporal transcriptomic divergence across human and macaque brain development. Science 362:eaat8077
Zoghbi HY, Botas J (2002) Mouse and fly models of neurodegeneration. Trends Genet 18:463–471