Genetic structure of three
Croatian horse breeds:
implications for their conservation strategy

Ante Ivanković, Jelena Ramljak, Peter Dovč, Nikolina Kelava, Miljenko Konjačić

1Department of Animal Production and Technology. University of Zagreb, Croatia
2Department of Animal Science. University of Ljubljana, Slovenia

Corresponding author: Prof. Ante Ivanković. Department of Animal Production and Technology. Agricultural Faculty, University of Zagreb. Svetošimunska 25, 10000 Zagreb, Croatia - Tel. + 385 01 2393991 - Fax: +385 01 2393901 - Email: aivankovic@agr.hr

Received January 23, 2009; accepted May 9, 2009

ABSTRACT

The genetic variability for a sample of 107 animals from three autochthonous Croatian horse breeds was estimated using 20 microsatellites. The average number of alleles per locus (6.3) and proportion of heterozygosity (0.732) indicated a moderate variability. The expected heterozygosity was similar among all breeds and ranged between 0.724 in the Posavina horse, and 0.737 in the Croatian Coldblood and Murinsulaner horse. The inbreeding coefficient F_{IS} was low and non-significant over the three populations. The genetic differentiation among the three populations was low ($F_{ST}=0.026$), suggesting that only 2.6% of the total genetic variability was due to differences between the breeds, and 97% to individual differences. The results of pairwise genetic differentiation suggest that the Posavina horse and the Croatian Coldblood were the most closely related populations ($F_{ST}=0.016$). These results are confirmed by Nei's genetic distances with the highest value observed between the Posavina horse and the Murinsulaner (0.082) and the lowest between the Posavina horse and the Croatian Coldblood (0.044). An assignment test correctly assigned 82% of individuals to the correct breed. Strategies for preserving the original native genes in the Croatian native horse breeds should be considered in order to prevent these breeds from becoming extinct and include them in the future breeding programmes.

Key words: Genetic diversity, Horse breed, Microsatellite, Conservation.

RIASSUNTO

STRUTTURA GENETICA DI RAZZE EQUINE CROATE:
IMPLICAZIONI E STRATEGIE DI CONSERVAZIONE

Nel presente studio è stata stimata la variabilità genetica di tre razze autoctone croate attraverso lo studio di 20 loci microsatellitli in un campione rappresentato da 107 animali. Il numero medio di alleli per locus (6.3) e la proporzione di eterozigosi (0,732) hanno indicato una variabilità moderata. L'eterozigosi attesa è stata simile tra le tre razze: da 0,724 (Posavina) a 0,737 (Croatian Coldblood e Murinsulaner). Il Coefficiente di consanguineità F_{IS} è risultato basso e non significativo nelle tre popolazioni. La bassa

 Ital.J.Anim.Sci. vol. 8, 677-689, 2009
differenziazione genetica fra le tre popolazioni (F_{ST}=0,026) suggerisce che solo il 2,6% della variabilità genetica totale è risultata imputabile a differenze tra le razze, e il 97% a differenze individuali. I risultati della differenziazione genetica tra coppie suggeriscono che la razza Posavina e la razza Croatian Coldblood siano le popolazioni geneticamente più vicine (F_{ST}=0,016). Questi risultati sono stati confermati dalle distanze genetiche di Nei, con il valore più alto tra la razza Posavina e la razza Murinsulaner (0,082) e il valore più basso tra la razza Posavina e la razza Croatian Coldblood (0,044). Un test di attribuzione ha assegnato correttamente l'82% di individui alla razza giusta. Si conclude che dovrebbero essere messe in atto strategie atte a preservare il patrimonio genetico delle popolazioni equine autoctone della Croazia al fine di prevenire l’estinzione e con l’obiettivo di includerle, nel futuro, in programmi di miglioramento genetico.

Parole chiave: Variabilità genetica, Razze equine, Microsatelliti, Conservazione.

Introduction

The conservation of biodiversity still remains an important concern. Despite worldwide efforts, about one third of all livestock breeds are threatened by extinction (FAO, 2007). A total of 181 horse breeds in the world (23.03%) are classified as being ‘at risk’ and 11.07% horse breeds became extinct (FAO, 2007). Having lost their primary aspect of utilization (work), the autochthonous coldblood horse breeds in Europe became endangered. In Croatia, three autochthonous horse breeds have survived (Posavina horse, Croatian Coldblood and Murinsulaner horse). Until now, they have been characterized for morphological traits, biochemical markers (Ivanković and Caput, 2004a, 2004b) and microsatellites (Druml et al., 2007). They originated in geographically close areas (Figure 1), although by different breeding and selection strategies. The Posavina horse was formed by earlier steady infusion of the Arab horse genome; the Croatian Coldblood was under a significant influence of the English Thoroughbred and the Belgian Coldblood, while the Murinsulaner horse was influenced by the Noric and Percheron coldblood breeds (Romić, 1975; Ivanković and Caput, 2004a). The majority of the Posavina horse population is located in the territory of Croatia, while a minor part may be found in Slovenia, Bosnia and Herzegovina. The Croatian Coldblood is bred in central and north-western Croatia. Until the mid-twentieth century, the Murinsulaner population had been distributed in the territories of Croatia, Slovenia, Hungary and Austria, but the present population is found exclusively in the area of Medimurje.

Since the number of animals has decreased drastically in the last fifteen years, the government introduced subsidies in order to prevent the extinction of these breeds. An annual report (CLC, 2007) shows the Posavina horse population size at approximately 3500 individuals, the Croatian Coldblood at 4900, and the Murinsulaner horse at 36 individuals. According to the population size and the characteristics of the populations, and as indicated by FAO standards, a constant genetic loss in each generation can be expected in all populations. So far, the breeding strategy of autochthonous horse breeds has been based on phenotypic merit and poor pedigree reports, without genetic diversity knowledge within and between the breeds. Molecular characterization is an essential prerequisite for the development of an effective and meaningful conservation programme. Among the array of molecular markers, microsatellites are considered especially suitable for biodiversity evaluation, owing to their codominant inheritance, high heterozygosity, ease and reliability of scoring, ubiquitous presence throughout the ge-
nome, and a high degree of polymorphism (Takezaki and Nei, 1996). Microsatellite analysis is now a widespread technique for the designated genetic variability (Bjørnstad and Røed, 2001; Bjørnstad et al., 2003; Juras et al., 2003; Aberle et al., 2004; Krüger et al., 2005; Solis et al., 2005; Drumal et al., 2007; Luis et al., 2007b). In this study, we analyzed three autochthonous coldblood horse breeds with the aim to ascertain the levels of genetic variability and estimate genetic distances between them. Furthermore, the results will provide information that can be useful as a basis for an effective conservation program, especially for the critically endangered Murinsulaner horse.

Material and methods

Blood samples were taken from 45 individuals Posavina horses (PH), 40 Croatian Coldblood individuals (CC), and 22 individual Murinsulan horses (MH). The animals were chosen from wide, boundless geographical areas, sampling four to five individuals per herd (10 to 12 herds overall) at several locations. Twenty microsatellite markers were used HMS1, HMS2, HMS3, HMS6, HMS7 (Guérin et al., 1994), HTG4, HTG6 (Ellegren et al., 1992), HTG7, HTG10, HTG15 (Marklund et al., 1994), UCDEQ405 (Eggleston-Stott et al., 1997), VHL20 (Van Haeringen et al., 1994), AHT21 (Swinburne et al., 1997), AHT4, AHT5 (Binns et al., 1995), ASB2 (Breen et al., 1997), LEX003 (Coogle et al., 1996a), LEX033 (Coogle et al., 1996b), TKY19 (Kakoi et al., 1999) and TKY321 (Tozaki et al., 2000). Thirteen of them are recommended by the International Society for Animal Genetics (ISAG) for analysis of the genetic diversity in horses. An appropriate amount of PCR products (0.5-1.6 µl) was mixed with 12 µl formamide and 1µl of Ge- nescan-350 ROX standard and analyzed on ABI PRISMTM 310 Genetic Analyzer (PE Applied Biosystems, MA).

Allelic frequencies and number of alleles per locus were estimated by direct counting. The expected (\(H_e\)) and observed (\(H_o\)) heterozygosities were calculated according to Saito and Nei (1987) and deviations from Hardy–Weinberg equilibrium (HWE) were tested using Fisher’s exact test, using the null hypothesis \(H_0=\)no heterozygote deficiency,
with the level of significance determined by a Markov-chain randomization by Genepop v3.4 (Raymond and Rousset, 1995).

The value for the fixation index (\(F_{ST}\)) and migration rate (\(Nm\)) was calculated according to Nei (1973) and Slatkin and Barton (1989), and allelic richness (AR), \(F_{IT}\) and \(F_{IS}\) index using FSTAT v2.9.3 computer program (Goudet, 1995).

Nei's unbiased \(D_A\)-distance (Nei et al., 1983) and the proportion of shared alleles \(D_{PS}=-\ln(PS)\) were calculated (Bowcock et al., 1994). The neighbour-joining trees of the \(D_A\)-distance and the individual \(D_{PS}\)-distances were calculated by the program Neighbor from the Phylip program package (Felsenstein, 1993) and plotted by the program Treeview (Page, 1996). To test the stability of the \(D_A\)-distance tree, 1000 distance-matrices were produced by bootstrapping over loci (Felsenstein, 1985). The resulting consensus tree was generated using the program Consensus from the Phylip program package (Felsenstein, 1993).

An assignment test was carried out with the program Doh (Brzustowski, 2002). The program Doh implements the multilocus genotype from several populations and determines from which population each individual is most likely to have come, by using the assignment index procedure, the highest probability of an individual’s genotype in any of the populations. Calculations are described by Paetkau et al. (1995).

The bottleneck hypothesis was investigated using Bottleneck 1.2.02. (Cornuet and Luikart, 1996). Three different tests were performed using allele frequency data, Standardized differences test, Wilcoxon sign test and a qualitative test of mode shift, to find out whether the population was in mutation drift equilibrium. All three proposed models of microsatellite mutation, Stepwise (SMM), Infinite Allele (IAM) and Two-Phased Model (TPM), were used.

Results

All amplified loci were polymorphic in the analyzed breeds, with a total of 126 different alleles detected across loci. The measures of variability of twenty microsatellite markers in PH, CC, and MH are given in Table 1. The PIC values found in 20 loci ranged from 0.3409 in HMS1 to 0.6517 in ASB2 with a mean value of 0.512. According to Botstein et al. (1980), thirteen loci are highly informative (PIC>0.5), whereas seven are reasonably informative (0.5>PIC>0.25). The average \(F_{IT}\) across loci was positive and significant (0.025, \(P<0.01\)). Markers ASB2 (\(F_{IT}=0.118, P<0.01\)), HTG10 and LEX033 (both \(F_{IT}=0.093, P<0.01\)) contribute the most to the observed deficit of heterozygotes (Table 1).

The lowest mean number of alleles (MNA) was found in MH (5.55) and equal values in PH and CC (5.9). The number of private alleles in each breed was two (VHL20 and ASB2 in PH, UCDQ405 and ATH5 in CC, LEX033 and HMS2 in MH). Most of the private alleles were in very low frequencies and below 5%, except the allele at locus ASB2 in PH, which had a higher frequency (17%). Regarding the microsatellite loci tested across populations, the lowest observed and expected heterozygosity was found in PH (Ho=0.71; He=0.724), the highest observed heterozygosity in MH (0.741), while MH and CC have the same value for the expected heterozygosity (He=0.737) (Table 2). The exact test for the presence of HWE showed deviations in PH at three loci (HMS2, LEX003, \(P<0.01\); HTG10, \(P<0.05\)), in CC at two loci (HTG6, LEX033, \(P<0.01\)) and in MH at three loci (HTG10, TKY321 and VHL20, \(P<0.05\)), respectively. In addition, HW disequilibrium was statistically significant over all the breeds and loci (\(P<0.05\)).

The mean value of within-population in-
breeding estimates ($F_{IS}=0.004$) indicated a low level of inbreeding in the population (Table 1) and was not significant in any of the studied horse populations. Table 2 shows a comparison of within-population inbreeding.

To investigate the population subdivision and the average number of migrants per generation, we estimated the F_{ST} and Nm values, respectively (Table 1). The F_{ST} values indicate that 2.6% of the total genetic variations are explained by differences between the breeds, with the remaining 97% corresponding to differences among individuals. The average number of migrants per generation (Nm), with the mean value over loci 9.25, pointed out that a large number of gametes are exchanged per generation. The contribution of the microsatellite markers for breed differentiation was estimated.
Table 2. Number of alleles (nA), allelic richness (AR), observed and expected heterozygosity (Ho and He), inbreeding estimates within population (FIS) in Posavina horse (PH), Croatian Coldblood (CC) and Murinsulaner Horse (MH).

Locus	nA	AR	Ho	He	FIS													
	PH	CC	MH	PH	CC	MH	PH	CC	MH	PH	CC	MH	PH	CC	MH	PH	CC	MH
AHT21	6	6	6	3.49	3.80	3.69	0.67	0.83	0.73	0.71	-0.018	-0.13	-0.009					
AHT4	6	6	5	8.75	7.70	8.21	0.69	0.75	0.73	0.71	0.74	0.055	-0.01	0.018				
AHT5	5	7	5	4.87	5.10	5.16	0.67	0.80	0.77	0.74	0.83	0.78	0.102	0.037	0.11			
ASB2	8	7	6	5.72	6.35	6.21	0.69	0.75	0.82	0.83	0.79	0.80	0.175*	0.047	-0.026			
HMS1	5	4	5	4.81	5.00	4.96	0.71	0.65	0.59	0.60	0.62	0.66	-0.198	-0.05	0.112			
HMS2	8	9	7	4.99	5.91	6.07	0.67	0.73	0.73	0.71	0.71	0.72	0.058	-0.02	-0.006			
HMS3	6	6	6	5.93	6.81	6.56	0.67	0.73	0.77	0.71	0.78	0.77	0.063	0.071	-0.001			
HMS6	6	6	5	4.00	3.98	3.99	0.69	0.70	0.73	0.71	0.69	0.61	0.031	-0.01	-0.206			
HMS7	6	5	6	3.99	3.00	3.91	0.69	0.78	0.64	0.72	0.67	0.77	0.037	-0.01	0.056			
HTG10	8	7	7	4.68	4.91	4.77	0.73	0.70	0.86	0.84	0.77	0.81	0.126*	0.092	-0.067			
HTG15	4	4	4	5.71	5.74	5.73	0.69	0.70	0.68	0.61	0.66	0.71	-0.124	-0.06	0.037			
HTG4	5	5	5	7.79	6.86	7.51	0.71	0.73	0.73	0.66	0.68	0.62	-0.079	-0.07	-0.175			
HTG6	4	3	4	5.71	5.00	5.48	0.67	0.65	0.86	0.68	0.65	0.71	0.017	-0.01	-0.228			
HTG7	4	4	4	5.80	5.68	5.57	0.73	0.63	0.73	0.71	0.69	0.019	0.122	-0.062				
LEX003	6	7	6	5.55	5.79	5.59	0.78	0.73	0.82	0.77	0.77	0.73	-0.007	0.057	-0.125			
LEX033	5	6	7	7.34	7.40	7.37	0.71	0.78	0.68	0.77	0.78	0.81	0.081	0.012	0.162*			
TKY19	5	5	5	3.97	3.96	4.60	0.78	0.78	0.77	0.70	0.79	0.76	-0.106	0.015	-0.011			
TKY321	7	7	5	7.75	6.71	7.66	0.69	0.85	0.68	0.76	0.79	0.80	0.09	-0.08	0.145			
UCDQ405	5	6	5	4.49	6.53	5.94	0.78	0.73	0.64	0.71	0.70	0.76	-0.094	-0.04	0.171			
VHL20	9	8	8	5.89	5.90	5.76	0.80	0.78	0.77	0.82	0.78	0.78	0.004	0.01	0.01			
Mean	5.9	5.9	5.5	5.56	5.61	5.74	0.71	0.74	0.74	0.72	0.74	0.74	0.018	0.001	-0.005			

Statistical significance: *P<0.05.
by the significance of the \(F_{ST} \) statistics. Loci HMS6, HTG15, HTG4, HTG7 and VHL20 did not contribute to breed differentiation. All others loci contributed to breed differentiation as presented in Table 1 (12 loci, \(P<0.01 \) and 3 loci \(P<0.05 \)), with the highest significant \(F_{ST} \) value at 0.0423 for ATH4. The pairwise \(F_{ST} \) coefficients ranged from 0.016 between CC and PH, to 0.035 between the MH and PH breeds, and were significant (\(P<0.05 \)) among all three breeds (Table 3). The result obtained with Nei’s distance comparing the three breeds showed low values with a minimum distance (0.044) between PH and CC (Table 3).

The neighbour-joining tree for individual DPS-distances estimated by the proportion of shared alleles (Figure 2), shows that Croatian horses do not form defined clusters.

In 68 to 87% of cases, individuals could be assigned to a pre-defined population (Table 4). From a total of 20 individuals incorrectly assigned, eleven are allocated in the CC populations (10.28%), 5 to PH (4.67%) and 3 (2.8%) to MH.

To determine the significant number of loci with heterozygosity excess, two tests were performed under three different mutation models: Infinite Allele Model (IAM), Stepwise Mutation Model (SMM) and Two Phase Model (TPM). Using both tests under IAM, probability values were significantly different from zero (\(P<0.001 \)) for all the breeds, while only the Wilcoxon test resulted significant under TPM for CC only (\(P=0.018, P<0.005 \)), meaning that the three populations have undergone a recent genetic bottleneck (Table 5). The presence of the L-shaped distribution of the allele frequencies does not indicate a recent bottleneck in any of the three populations, as the alleles with the lowest frequency (0.001-0.1) were found to be abundant.

Discussion

The twenty microsatellite loci typed in this study showed a moderate mean number of alleles per locus (6.3). This value is high-

Table 3. \(F_{ST} \) values, above diagonal, and Nei’s genetic distance (DS), below diagonal, estimated between three Croatian autochthonous horse breeds with 20 microsatellite markers.

Breed	PH	CC	MH
PH	-	0.016*	0.035*
CC	0.044	-	0.021*
MH	0.082	0.059	-

Statistical significance: *\(P<0.05 \).

Figure 2. The neighbour-joining tree of individual allele sharing distance (PH Posavina horse, CC Croatian Coldblood, MH Murinsulaner horse).
er than those observed in Norwegian horse breeds (Bjørnstad et al., 2000), German draught horse breeds (Aberle et al., 2004) and the Sorraya (Louis et al., 2007a), but lower than in Franches-Montagnes breeds (Glowatzki-Mullis et al., 2006), Polish heavy horse (Iwańczyk, 2006), the Hispano-Breton (Perez-Gutierrez, 2008), and Italian breeds (Zuccaro et al., 2008). Higher values for MNA for CC (7.1) and PH (6.9) were reported by Druml et al. (2007). As expected, the degree of polymorphism exhibited by microsatellite markers was much greater than that concerning protein loci (nA=3.55; He=0.557-0.581) (Ivanković and Caput, 2004b). The low number of private alleles at all three breeds is not surprising, because at the end of the 19th century, systematic outbreeding was practiced, which led to the creation of a wide genetic base and heterogeneity (Druml et al., 2007). The time since the formation of the breeds as “closed populations” is still too short for a genetic drift to have had an effect. The level of AR in the native Croatian horses was similar to those previously found in western Mediterranean horse breeds (Marletta et al., 2006) and Danish horse breeds (Thirstrup et al., 2008). Among Croatian autochthonous breeds, genetic diversity (He) was never below 0.72 and was higher than the values reported for German draught horses (He=0.64-0.75, Aberle et al., 2004), Franches-Montagnes breeds (He=0.69, Glowatzki-Mullis et al., 2006), the Polish heavy and Belgian draft horse (He=0.39 and He=0.42, Iwańczyk, 2006), draught horses from Austria, Germany and Croatia reported by Druml et al.

Breed	Standardized differences test	Wilcoxon test				
	IAM	SMM	TPM	IAM	SMM	TPM
PH	0.001**	0.312	0.122	0.001**	0.43	0.057
CC	0.001**	0.224	0.087	0.001**	0.062	0.018*
MH	0.001**	0.206	0.105	0.001**	0.571	0.202

Statistical significance: *P<0.05; **P<0.01.

Table 4. Assignment test results for Posavina horse (PH), Croatian Coldblood (CC) and Murinsulaner horse (MH). Abbreviation as follows, number of tested animals (N), number of animals correctly assigned to their breed (in boldface) and percentage of correct assignment (N%).

Breed	N	PH	CC	MH	N %
PH	45	39	5	1	86.7
CC	40	4	34	2	85.0
MH	22	1	6	15	68.2

Table 5. Bottleneck analysis tested in three Croatian autochthonous horse breeds under Infinite Allele Model (IAM), Stepwise Mutation Model (SMM) and Two-Phased Model (TPM). Two different statistical procedures have been used, Standardized difference test and Wilcoxon test.
(2007), and the Sorraya (He=0.47, Louis et al., 2007b). The high level of genetic variation suggests that the genome of the investigated horse breeds has diverse origins, a consequence of upgrading by different horse breeds during the previous two centuries. Also, the high levels of heterozygosity in PH, CC and MH breeds could be mainly due to the existence of a gene flow among these populations because they are geographically closely located. The F_{IT} statistics for the whole population indicates an overall decrease of 2.5% (P<0.01) in heterozygote phenotypes compared to homozygotes. The mean estimates of F_{IS} were not significant in all horse populations, indicating that they are not affected by a reduction of variation. The significant deficit (P<0.05) of heterozygotes on three loci (ASB2, HTG10 and LEX033) is possibly the result of presence of null-alleles or a greater degree of relatedness in the sampled material. Similar results concerning the ASB2 and HTG10 loci for Bílgoraj horses were obtained by Ząbek et al. (2005) and for Danish breeds by Thirstup et al. (2008). Establishment of male lineages in MH, because of the breeding system (“similar with similar mate”; Ogónzek, 1941) cannot be ruled out.

The genetic differentiation among Croatian horse breeds is small, and 75% of loci contribute to this differentiation with F_{ST} values being low but significant (P<0.01). Most of the total genetic variation, more than 97%, corresponds to differences among individuals, whereas about 3% is due to differences among the breeds. These values of the total genetic differentiation (F_{ST}) among the breeds are noticeably lower in comparison to those found in other horse breeds: 8% in Bardigiano Horse (Di Stasio et al., 2008) and in western Mediterranean breeds (Marletta et al., 2006), 9% in the Spanish Trotter (Azor et al., 2007) and Sorraya Horse (Luis et al., 2007a). These results are in accordance with those from Druml et al. (2007), suggesting that CC and PH are two separate, but closely related populations with a hidden admixture.

Gene flow between the three breeds was high ($Nm=9.25$), supported by the fact that these horses are bred in the same area (Figure 1) in the conditions of a moderate population size, no usage of artificial insemination, absence of breed improvement programs and non-defined objectives of selection. Trewler (1988) showed that if $Nm>1$, gene flow is enough to reduce the genetic differentiation between populations. In Figure 2, the neighbour-joining tree of the individual allele sharing distance from 107 individuals demonstrates an admixed structure as a result of a high migration rate.

In the present study, assignment test revealed a low accuracy (82%) of the overall individual assignments, demonstrating a lower average interpopulation differentiation $F_{IT}=2.5%$. Although the number of incorrect assigned individuals was almost the same in all three populations, a small percentage of correctly assigned individuals in MH (68.2%) can be explained with a small number of sampled individuals (n=22), i.e. the smaller size of the whole population.

Nei’s genetic distance (D_S) reveals a close relationship between the two breeds, PH horse and CC (0.044), while the distance between PH and MH horse was the greatest (0.082). It is explained with a closer geographical positioning of the Posavina and Moslavina areas, than that of Posavina and Medimurje. This result is in accordance with the results of the lowest interbreed differentiation found between PH and CC ($F_{ST}=0.016$), consistent to the value ($F_{ST}=0.018$) reported by Druml et al. (2007).

The results of bottleneck analysis showed that all three coldblood breeds deviate from the mutation-drift equilibrium under IAM,
but since microsatellite loci have been shown to conform better to the stepwise mutation model (Shriver et al., 1993) than to the infinite allele model, the detection method based on the infinite allele model was considered to be invalid (Spong and Hellborg, 2002). The Wilcoxon test appears to be suitable for this analysis because it provides a relatively high power and it can be used with as few as four polymorphic loci and any number of individuals (Cornuet and Luikart, 1996). To test for a recent bottleneck effect, the normal L-shaped distribution of a plot of allelic frequency class versus proportion of alleles reinforces the results that Croatian native horse population has not experienced any recent bottleneck. On the contrary, Wilcoxon test (TPM) for CC suggests the appearance of a bottleneck, although according to the annual report (CLC, 2007), the total number of CC is near 5000 individuals, while in the smaller population of MH (N=36), there are no such indices. Luikart et al. (1988) pointed out that the appearance of a genetic bottleneck in the absence of a demographic bottleneck is not unusual, and that bottleneck populations do not have model-shifted distribution. The recent war in Croatia caused a loss of pedigree records, as well as of a substantial number of individuals. The re-establishment of breeds was based on a few stallions that fecundated mares. There exists a possibility that the effective population size is small in comparison to the census size (N_e<N-census) and that sampled animals were not representative (although, sampled animals are chosen at random, with owner reference of non-relatedness). Luikart et al. (1988) and Pérez-Gutiérrez et al. (2008) show that, despite low census, the endangered breed does not seem to be in immediate risk. Although the population of MH is rather small (CLC, 2007), useful planned breeding schemes and appropriate conservation strategies might be decisive to increase the population.

Conclusions

Our results show that Croatian autochthonous horse breeds have preserved a relatively high genotypic diversity which is comparable to other European horse breeds. If the purpose is to use them in crossbreeding or introgression plans, the diversity between the populations should be prioritized. The conclusions based on the examination of genetic diversity support the opinion, based on the phenotypical features, that the Posavina horse should be bred separately from the Croatian Coldblood and Murinsulaner horse, while a moderate introduction of the Croatian Coldblood genome into the population of the Murinsulaner horse would present a good opportunity to increase genetic variability and stabilize the population size. Also, as a strategy of further conservation, we would support diversity among individuals within a breed, which contributes to diversity of the present genetic pool.

This study was performed with financial support of the Ministry of Science and Technology of the Republic of Croatia (Project No. 178-026).

REFERENCES

Aberle, K.S., Hamann, H., Drögemüller, C., Distl, O., 2004. Genetic diversity in German draught horse breeds compared with a group of primitive riding and wild horses by means of microsatellite DNA markers. Anim. Genet. 35:270-277.
Azor, P.J., Valera, M., Gomez, M.D., Goyache, F., Molina, A., 2007. Genetic characterization of the Spanish Trotter horse using microsatellite markers. Genet. Mol. Biol. 30:37-42.
Binns, M.M., Holmes, N.G., Holliman, A., Scott, A.M.,
1995. The identification of polymorphic microsatellite loci in the horse and their use in Thoroughbred parentage testing. Brit. Vet. J. 151:9-15.
Bjørnstad, G., Gunby, E., Røed, K.H., 2000. Genetic structure of Norwegian horse breeds. J. Anim. Breed. Genet. 117:307-317.
Bjørnstad, G., Nilsen, N.O., Røed, K.H., 2003. Genetic relationship between Mongolian and Norwegian horses. Anim. Genet. 34:55-58.
Bjørnstad, G., Røed, K.H., 2001. Breed demarcation and potential for breed allocation of horses assessed by microsatellite markers. Anim. Genet. 32:59-65.
Botstein, D., White, R.L., Skolnick, M., Davis, R.W., 1980. Construction of a genetic linkage map in human using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32:314-331.
Bowel, A.M., Ruiz-Linares, A., Tomfohrde, J., Minch, E., Kidd, J.R., Cavalli-Sforza, L.L., 1994. High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368:455-457.
Breen, M., Lindgren, G., Binns, M.M., Norman, J., Irvin, Z., Bell, K., Sandberg, K., Elle-Gren, H., 1997. Genetical and physical assignment of equine microsatellites - first integration of anchored markers in horse genome mapping. Mamm. Genome 8:267-273.
Brzustowski, J., 2002. Doh assignment test calculator. Home page address: www2.biology.ualberta.ca/jbrzusto/Doh.php
Coogle, I., Bailey, E., Reid, R., Russ, M., 1996a. Equine dinucleotide repeat polymorphisms at loci LEX002, -003, -004, -005, -007, -008, -009, -010, -011, -013 and -014. Anim. Genet. 27:121-131.
Coogle, I., Reid, R., Bailey, E., 1996b. Equine dinucleotide repeat loci from LEX025 to LEX033. Anim. Genet. 27:289-290.
Cornuet, J.M., Luikart, G., 1996. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001-2014.
Croatian Livestock Centre, 2007. Annual report. CLC ed., Zagreb, Croatia.
Di Stasio, L., Perrotta, G., Blasi, M., Lisa, C., 2008. Genetic characterization of the Bardigiano horse using microsatellite markers. Ital. J. Anim. Sci. 7:243-250.
Druml, T., Curik, I., Baumung, R., Aberle, K., Distl, O., Sölkner, J., 2007. Individual-based assessment of population structure and admixture in Austrian, Croatian and German draught horses. Heredity 98:114-122.
Eggleston-Stott, M.L., DelValle, A., Bautista, M., Dileanis, S., Wictum, E., Bowling, A.T., 1997. Nine equine dinucleotide repeats at microsatellite loci UCDEQ136, UCDEQ405, UCDEQ412, UCDEQ425, UCDEQ437, UCDEQ467, UCDEQ487, UCDEQ502 and UCDEQ505. Anim. Genet. 26:370-371.
Ellegren, H., Johansson, M., Sandberg, K., Anderson, L., 1992. Cloning of highly polymorphic microsatellites in the horse. Anim. Genet. 23:133-142.
FAO, 2007. The State of the World’s Animal Genetic Resources for Food and Agriculture. Commission on Genetic Resources for Food and Agriculture ed., Roma, Italy.
Felsenstein, J., 1985. Confidence limits on phylogenies. An approach using the bootstrap. Evolution 35:783-791.
Felsenstein, J., 1993. PHYLIP - Phylogeny Inference Package, version 3.5. Department of Genetics ed., Washington University, Seattle, WA, USA.
Glowatzki-Mullis, M.L., Muntwyler, J., Pfister, W., Marti, E., Rieder, S., Pocent, P.A., Gaillard, C., 2006. Genetic diversity among horse populations with a special focus on the Franches-Montagnes breed. Anim. Genet. 37:33-39.
Goudet, J., 1995. FSTAT, Version 1.2, a computer program to calculate F-Statistics. J. Hered. 86:485-486.
Guérin, G., Bertaud, M., Amigues, Y., 1994. Characterization of seven new horse microsatellites: HMS1, HMS2, HMS3, HMS5, HMS6, HMS7 and HMS8. Anim. Genet. 25:62.
Ivanković, A., Caput, P., 2004a. Exterior features of Croatian autochthonous horse breeds. Stocarstvo 58:15-36.
Ivanković, A., Caput, P., 2004b. Genetic polymorphisms blood proteins of the autochthonous horse breeds in Croatia. Stočarstvo 58:403-412.

Iwańczyk, E., Rytis, J., Cholewiński, K., Cothran, E.G., 2006. Genetic structure and phylogenetic relationships of the Polish Heavy Horse. J. Appl. Genet. 47:353-359.

Juras, R., Cothran, E.G., Klima, R., 2003. Genetic analysis of three Lithuanian horse breeds. Acta Agr. Scand. 53:180-185.

Kakoi, H., Tozaki, T., Hirota, K., Mashima, S., 1999. Genetic polymorphisms of equine microsatellite loci: TKY16, TKY19 and TKY21. Anim. Genet. 30:68-69.

Krüger, K., Gaillard, C., Stranzinger, G., Rieder, S., 2005. Phylogenetic analysis and species allocation of individual equids using microsatellite data. J. Anim. Breed. Genet. 122:78-86.

Page, R.D., 1996. TreeView: an application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12:357-358.

Paetkau, D., Calvert, W., Sterling, I., Strobeck, C., 1995. Microsatellite analysis of population structure in Canadian polar bears. Mol. Ecol. 4:347-354.

Nei, M., Tajima, F., Tateno, Y., 1983. Accuracy of estimated phylogenetic trees from molecular data. J. Mol. Evol. 19:153-170.

Ivanković et al.

Raymond, M., Rousset, F., 1995. GENEPOP, Version 1.2, Population genetics software for exact tests and ecumenicism. J. Hered. 86:248-249.
Takezaki, T., Nei, M., 1996. Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genetics 144:389-399.

Thirstrup, J.P., Pertoldi, C., Loeschcke, V., 2008. Genetic analysis, breed assignment and conservation priorities of the three native Danish horse breeds. Anim. Genet. 39:496-505.

Tozaki, T., Kakoi, H., Mashima, S., Hirota, K., Hasegawa, T., Ishida, N., Miura, N., Tomita, M., 2000. The isolation and characterization of 34 equine microsatellite loci. TKY290-TKY323. Anim. Genet. 31:234-236.

Trexler, J.C., 1988. Hierarchical organization of genetic variation in the sailfin molly, *Poecilia latipinna* (Pisces: Poeciliidae). Evolution 42:1006-1017.

Van Haeringen, H., Bowling, A.T., Stott, M.L., Lenstra, J.A., Zwaagstra, K.A., 1994. A highly polymorphic horse microsatellite locus: VHL20. Anim. Genet. 25:207.

Ząbek, T., Nogaj, A., Radko, A., Nogaj, J., Slota, E., 2005. Genetic variation of Polish endangered Biłgoraj horses and two common horse breeds in microsatellite loci. J. Appl. Genet. 46:299-305.

Zuccaro, A., Bordonaro, S., Criscione, A., Guastella, A.M., Perrotta, G., Blasi, M., D’Urso, G., Marletta, D., 2008. Genetic diversity and admixture analysis of Sanfratellano and three other Italian horse breeds assessed by microsatellite marker. Animal 2:991-998.