1. Introduction

Suppose that R is a commutative ring with unit. Denote by $Sp_n(R)$ the group of automorphisms of R^{2n} that preserve the unimodular alternating form given by the matrix

\[
\begin{pmatrix}
0 & I_n \\
-I_n & 0
\end{pmatrix}
\]

In this note we compute the rational cohomology ring of $Sp_3(\mathbb{Z})$, or equivalently, of A_3, the moduli space of principally polarized abelian 3-folds.

Denote the \mathbb{Q}-Hodge structure of dimension 1 and weight $-2n$ by $\mathbb{Q}(n)$. (For those not interested in Hodge theory, just interpret this as one copy of \mathbb{Q}.) Denote by λ the first Chern class in $H^1(A_3; \mathbb{Q})$ of the Hodge bundle $\det \pi^* \Omega^1$ associated to the projection π of the universal abelian 3-fold to A_3.

Theorem 1. The cohomology groups of A_3 are given by

\[
H^j(A_3; \mathbb{Q}) \cong H^j(Sp_3(\mathbb{Z}); \mathbb{Q}) \cong \begin{cases}
\mathbb{Q} & j = 0; \\
\mathbb{Q}(-1) & j = 2; \\
\mathbb{Q}(-2) & j = 4; \\
E & j = 6; \\
0 & \text{otherwise},
\end{cases}
\]

where E is a two-dimensional mixed Hodge structure which is an extension

\[0 \to \mathbb{Q}(-3) \to E \to \mathbb{Q}(-6) \to 0.\]

The ring structure is determined by the condition that $\lambda^3 \neq 0$.

I do not know whether the mixed Hodge structure (MHS) E on H^6 is split. Since A_3 is a smooth stack over $\text{Spec} \, \mathbb{Z}$, I expect it to be a multiple (possibly trivial) of the class

\[\zeta(3) \in \mathbb{C}/i\pi^3 \mathbb{Q} \cong \text{Ext}^1_{\mathcal{H}}(\mathbb{Q}, \mathbb{Q}(3))\]

given by the value of the Riemann zeta function at 3. Determining this class would be interesting.

As a corollary, we deduce the rational cohomology of $\overline{A_3}$, the Satake compactification of A_3.

Supported in part by grants from the National Science Foundation.
Theorem 2. The rational cohomology ring of \(\mathcal{A}_3 \) is given by
\[
H^j(\mathcal{A}_3; \mathbb{Q}) \cong \begin{cases}
\mathbb{Q}(-n) & j = 2n, n \in \{0, 1, 2, 4, 5, 6\}; \\
B & j = 6; \\
0 & \text{otherwise,}
\end{cases}
\]
where \(B \) is a 3-dimensional mixed Hodge structure which is an extension
\[
0 \to \mathbb{Q}(0) \to B \to \mathbb{Q}(-3)^2 \to 0.
\]
The ring structure is determined by the condition that the cohomology ring contain the graded ring \(\mathbb{Q}[\lambda]/(\lambda^7) \), where \(\lambda \) has degree 2 and type \((1, 1)\).

Along the way, we compute the rational cohomology of \(\mathcal{A}_2 \), the Satake compactification of \(\mathcal{A}_2 \) as well.

Proposition 3. The rational cohomology ring of \(\mathcal{A}_2 \) is given by
\[
H^\ast(\mathcal{A}_2; \mathbb{Q}) \cong \mathbb{Q}[\lambda]/(\lambda^4).
\]
where \(\lambda \) is the first Chern class of the Hodge bundle.

Denote the moduli space of smooth projective curves over the complex numbers by \(\mathcal{M}_g \). Another consequence of the proof is the surjectivity of the homomorphism
\[
H^\ast(\mathcal{A}_3; \mathbb{Q}) \to H^\ast(\mathcal{M}_3; \mathbb{Q})
\]
induced by the period mapping \(\mathcal{M}_3 \to \mathcal{A}_3 \).

The computation of the rational cohomology of \(\mathcal{A}_1 \) is classical\(^1\) and follows from the fact that the quotient of the upper half plane by \(Sp_1(\mathbb{Z}) = SL_2(\mathbb{Z}) \) is a copy of the affine line. The computation of the rational cohomology of \(\mathcal{A}_2 \) is (essentially) due to Igusa\(^2\). Brownstein and Lee\(^3\) have computed the integral cohomology of \(Sp_2(\mathbb{Z}) \).

Suppose that \(g \geq 2 \). Recall that that the mapping class group \(\Gamma_g \) in genus \(g \) is the group of isotopy classes of orientation preserving diffeomorphisms of a closed, oriented surface \(S \) of genus \(g \). Its rational cohomology is isomorphic to that of \(\mathcal{M}_g \). The Torelli group \(T_g \) is defined to be the kernel of the natural homomorphism
\[
\Gamma_g \to Sp(H_1(S; \mathbb{Z}))
\]
where \(Sp \) denotes the symplectic group, and where \(H_1(S; \mathbb{Z}) \) is regarded as a symplectic module via its intersection form. Choosing a symplectic basis of \(H_1(S; \mathbb{Z}) \) gives an isomorphism \(Sp_g(\mathbb{Z}) \cong Sp(H_1(S; \mathbb{Z})) \). One then obtains the well known extension
\[
1 \to T_g \to \Gamma_g \to Sp_g(\mathbb{Z}) \to 1.
\]
The extended Torelli group \(\hat{T}_g \) is the preimage of the center \(\{\pm I\} \) of \(Sp(H_1(S; \mathbb{Z})) \) under \((\text{I}) \). Equivalently, it is the group of isotopy classes of diffeomorphisms of \(S \) that act as \(\pm I \) on \(H_1(S) \). One has the extensions
\[
1 \to T_g \to \hat{T}_g \to \{\pm I\} \to 1
\]
and
\[
1 \to \hat{T}_g \to \Gamma_g \to PSp_g(\mathbb{Z}) \to 1
\]
\(^1\)It is trivial except in degree 0.
\(^2\)It is 1-dimensional in degrees 0 and 2, and trivial elsewhere.
where \(PSp_3(\mathbb{Z}) \) denotes the integral projective symplectic group \(Sp_3(\mathbb{Z})/\{\pm I\} \).

Our approach to computing the cohomology of \(Sp_3(\mathbb{Z}) \) is to analyse the spectral sequence of the extension (3). This entails knowing the cohomology of \(\Gamma_3 \) (or equivalently, \(\mathcal{M}_3 \)) and of \(\tilde{T}_3 \). Looijenga [12] computed the cohomology of \(\mathcal{M}_3 \) using the theory of Del-Pezzo surfaces:

\[
H^j(\mathcal{M}_3; \mathbb{Q}) \cong \begin{cases}
\mathbb{Q} & j = 0; \\
\mathbb{Q}(-1) & j = 1; \\
\mathbb{Q}(-6) & j = 6; \\
0 & \text{otherwise.}
\end{cases}
\]

The cohomology of \(\tilde{T}_3 \) is computed in Section 3 using the stratified Morse Theory of Goresky and MacPherson [7]. We use their theory of non-proper Morse functions (see their Part II, Chapter 10) applied to the square of the distance to a point function restricted to the jacobian locus. This is an elaboration of a trick of Geoff Mess [13] which he used to show that the Torelli group in genus 2 is free of countable rank, and which was also used by Johnson and Millson (cf. [13]) to show that Torelli space in genus 3 does not have the homotopy type of a finite complex. Our use of Morse theory is analogous to Goresky and MacPherson’s treatment [7, Part III] of complements of affine subspaces of euclidean spaces. [Look at Mess’s paper.]

It seems to be a curious fact that in low genus (\(g = 2,3 \) so far), it is easier to compute the rational cohomology groups of \(\mathcal{M}_g \) than of \(\mathcal{A}_g \). This is perhaps a reflection of the richness of curve theory — it is a more powerful tool for understanding the geometry of \(\mathcal{M}_g \) than the theory of abelian varieties is as a tool for understanding the geometry of \(\mathcal{A}_g \). It will be interesting to know if this trend persists when \(g \geq 4 \), when \(\mathcal{M}_g \) is no longer dense in \(\mathcal{A}_g \). The cohomology of \(\mathcal{M}_4 \) is not yet known, nor does it seem tractable to compute the cohomology of the extended Torelli group in genus 4.

2. Preliminaries

General references for this section are [8, Chapt. 3] and [9].

A polarized abelian variety is a compact complex torus \(A \) together with a cohomology class

\[
\theta \in H^{1,1}(A) \cap H^2(A; \mathbb{Z})
\]

whose translation invariant representative is positive. The corresponding complex line bundle is ample. The polarization \(\theta \) can be regarded as a skew symmetric bilinear form on \(H_1(A; \mathbb{Z}) \). The polarization is principal if this form is unimodular.

Jacobians of curves are polarized by the intersection pairing on \(H_1(C; \mathbb{Z}) \cong H_1(\text{Jac} C; \mathbb{Z}) \). This form is unimodular, and so jacobians are canonically principally polarized abelian varieties.

A framed principally polarized abelian variety is a principally polarized abelian variety \(A \) together with a symplectic basis of \(H_1(A; \mathbb{Z}) \) with respect to the polarization \(\theta \).

Suppose that \(g \geq 1 \). The maximal compact subgroup of \(Sp_g(\mathbb{R}) \) is \(U(g) \). The symmetric space \(Sp_g(\mathbb{R})/U(g) \) is isomorphic to the rank \(g \) Siegel upper half space

\[
\mathfrak{h}_g = \left\{ \text{symmetric } g \times g \text{ complex matrices} \right\} \\
\text{with positive definite imaginary part}
\]
It has dimension \(g(g + 1)/2\). Taking a framed principally polarized abelian variety \((A; a_1, \ldots, a_g, b_1, \ldots, b_g)\) to the corresponding period matrix gives a bijection

\[
\mathfrak{h}_g \cong \left\{ \text{isomorphism classes of framed principally polarized abelian varieties} \right\}
\]

We will regard \(\mathfrak{h}_g\) as the (fine) moduli space of framed principally polarized abelian varieties of dimension \(g\).

Changing symplectic bases gives a natural left action of \(Sp_g(\mathbb{Z})\) on the moduli space of framed principally polarized abelian varieties. There is clearly a natural left \(Sp_g(\mathbb{Z})\) action on \(\mathfrak{h}_g = Sp_g(\mathbb{Z})/U(g)\). The bijection (4) is equivariant with respect to these actions.

The moduli space \(A_g\) of principally polarized abelian varieties of dimension \(g\) is the quotient \(Sp_g(\mathbb{Z})/\mathfrak{h}_g\). Since \(\mathfrak{h}_g\) is contractible and since \(Sp_g(\mathbb{Z})\) acts discontinuously and virtually freely on \(\mathfrak{h}_g\), it follows that there is a natural isomorphism

\[
H^*(Sp_g(\mathbb{Z}); \mathbb{Q}) \cong H^*(A_g; \mathbb{Q}).
\]

Taking a curve \(C\) to its jacobian \(\text{Jac}\) defines a morphism \(M_g \to A_g\) which is called the period mapping.

Now suppose that \(g \geq 2\). Denote Teichmüller space in genus \(g\) by \(X_g\). The mapping class group \(\Gamma_g\) acts properly discontinuously and virtually freely on \(X_g\) with quotient \(M_g\). It follows that there is a natural isomorphism

\[
H^*(\Gamma_g; \mathbb{Q}) \cong H^*(M_g; \mathbb{Q}).
\]

We shall need several moduli spaces that sit between \(X_g\) and \(M_g\). Denote the quotient of \(X_g\) by \(T_g\) by \(\mathcal{T}_g\). This space is known as Torelli space. Since \(X_g\) is contractible and \(T_g\) is torsion free, \(T_g\) acts freely on \(X_g\) and Torelli space is an Eilenberg-MacLane space with fundamental group \(T_g\). Consequently,

\[
H^*(T_g; \mathbb{Z}) \cong H^*(\mathcal{T}_g; \mathbb{Z}).
\]

By a framed Riemann surface of genus \(g\) we shall mean a compact Riemann surface \(C\) together with a symplectic basis \(a_1, \ldots, a_g, b_1, \ldots, b_g\) of \(H_1(C; \mathbb{Z})\) with respect to the intersection form. Torelli space \(\mathcal{T}_g\) is the moduli space of framed Riemann surfaces of genus \(g\); its points correspond to isomorphism classes of framed, genus \(g\) Riemann surfaces. The symplectic group \(Sp_g(\mathbb{Z})\) acts on the framings in the natural way; the quotient \(Sp_g(\mathbb{Z})/\mathcal{T}_g\) is \(M_g\).

Denote the locus in \(\mathfrak{h}_g\) consisting of jacobians of smooth curves by \(\mathcal{J}_g\). (Note that this is not closed in \(A_g\).) The period mapping \(\mathcal{T}_g \to \mathcal{J}_g\) is surjective by definition. Since minus the identity is an automorphism of every polarized abelian variety \(A\),

\[
(A; a_1, \ldots, b_g) \cong (A; -a_1, \ldots, -b_g).
\]

But if \(C\) is a genus \(g\) curve, then

\[
(C; a_1, \ldots, b_g) \cong (C; -a_1, \ldots, -b_g)
\]

if and only if \(C\) is hyperelliptic. It follows that, when \(g \geq 3\), the period mapping \(\mathcal{T}_g \to \mathcal{J}_g\) that takes a framed curve to its jacobian with the same framing is surjective and 2:1 except along the hyperelliptic locus, where it is 1:1. It follows that, when \(g \geq 3\),

\[
\mathcal{J}_g = \mathcal{T}_g/\mathcal{X}_g \text{ and } M_g = PSp_g(\mathbb{Z})/\mathcal{J}_g.
\]
The following diagram shows the coverings and their Galois group when \(g \geq 3 \):

\[
\begin{align*}
\xymatrix{ & X_g \ar[rr]^{T_g} \ar[dr]^{\hat{T}_g} & & \tilde{T}_g \ar[rr]^{S_p(Z)} & & \mathcal{M}_g \ar[dl]_{PSp(Z)} \ar[rr]^{pSp(Z)} & & h_g \ar[r] & A_g } \\
T_g & & & \mathbb{Z}/2\mathbb{Z} & & \mathcal{T}_g & & \mathcal{J}_g & & \mathcal{P} \ar[r] & \mathcal{M}_g \ar[r] & A_g }
\end{align*}
\]

\[\text{(5)} \]

Lemma 4. If \(1 \to \mathbb{Z}/2\mathbb{Z} \to E \to G \to 1 \) is a group extension, then the projection \(E \to G \) induces an isomorphism on homology and cohomology with 2-divisible coefficients. In particular

\[
H^\bullet (PSp_g(Z); \mathbb{Z}[1/2]) \to H^\bullet (Sp_g(Z); \mathbb{Z}[1/2])
\]

is an isomorphism.

Proof. This follows from the fact that

\[
H^j(\mathbb{Z}/2; \mathbb{Z}[1/2]) = 0 \quad j > 0
\]

using the Hochschild-Serre spectral sequence of the group extension. \(\square \)

Proposition 5. For all \(g \geq 2 \), there is a natural isomorphism

\[
H_\bullet (\mathcal{J}_g; \mathbb{Z}[1/2]) \cong H_\bullet (\tilde{T}_g; \mathbb{Z}[1/2]) \cong H_\bullet (T_g; \mathbb{Z}[1/2])^{\mathbb{Z}/2\mathbb{Z}}.
\]

There are similar isomorphisms for cohomology.

Proof. Since \(T_g \) is torsion free, \(T_g \) acts fixed point freely on Teichmüller space, and \(T_g \) is a model of the classifying space of \(T_g \). Recall that if \(X \) is a simplicial complex on which \(\mathbb{Z}/2 \) acts simplicially (but not necessarily fixed point freely), then the map

\[
p_* : H_\bullet (X/(\mathbb{Z}/2); \mathbb{Z}[1/2]) \to H_\bullet (X; \mathbb{Z}[1/2])^{\mathbb{Z}/2}
\]

induced by the projection \(p \) is an isomorphism, whose inverse is half the pullback map \(p^* \). Applying this twice gives isomorphisms

\[
H^\bullet (\mathcal{J}_g; \mathbb{Z}[1/2]) \cong H^\bullet (\tilde{T}_g; \mathbb{Z}[1/2])^{\mathbb{Z}/2} \cong H^\bullet (T_g; \mathbb{Z}[1/2])^{\mathbb{Z}/2} \cong H^\bullet (\tilde{T}_g; \mathbb{Z}[1/2]).
\]

\(\square \)

A theta divisor of a principally polarized abelian variety \(A \) is a divisor \(\Theta \) whose Poincaré dual is the polarization and which satisfies \(i^* \Theta = \Theta \), where \(i : x \mapsto -x \). Any two such divisors differ by translation by a point of order 2, and can be given as the zero locus of a theta function associated to a period matrix of \(A \). A principally polarized abelian variety \(A \) is reducible if it is isomorphic (as a polarized variety) to the product of two proper abelian subvarieties. If \(A = A_1 \times A_2 \), then any theta divisor of \(A \) is reducible:

\[
\Theta_A = (\Theta_{A_1} \times A_2) \cup (A_1 \times \Theta_{A_2}).
\]
Denote the locus of reducible abelian varieties in \(\mathcal{A}_g \) by \(\mathcal{A}^\text{red}_g \) and in \(\mathfrak{h}_g \) by \(\mathfrak{h}^\text{red}_g \). Elements of \(\mathfrak{h}^\text{red}_g \) are precisely those period matrices \(\Omega \) that can be written as a direct sum of two smaller period matrices.

Proposition 6. Denote the closure of \(\mathcal{J}_g \) in \(\mathfrak{h}_g \) by \(\overline{\mathcal{J}}_g \). If \(g \geq 2 \), then \(\mathcal{J}_g = \overline{\mathcal{J}}_g - (\overline{\mathcal{J}}_g \cap \mathfrak{h}^\text{red}_g) \).

Proof. The period mapping \(\mathcal{M}_g \to \mathcal{A}_g \) extends to a morphism \(\overline{\mathcal{M}}_g \to \overline{\mathcal{A}}_g \) from the Deligne-Mumford compactification of \(\mathcal{M}_g \) to the Satake compactification of \(\mathcal{A}_g \).

The inverse image of the boundary \(\overline{\mathcal{A}}_g - \mathcal{A}_g \) of \(\overline{\mathcal{A}}_g \) is the boundary divisor \(\Delta_0 \) of \(\overline{\mathcal{M}}_g \), whose generic point is an irreducible stable curve of genus \(g \) with one node. Denote the moduli space of curves of compact type \(\overline{\mathcal{M}}_g - \Delta_0 \) by \(\tilde{\mathcal{M}}_g \). Since \(\tilde{\mathcal{M}}_g \) is complete, it follows that the period mapping \(\tilde{\mathcal{M}}_g \to \mathcal{A}_g \) is proper and therefore has closed image in \(\mathcal{A}_g \). Since \(\mathcal{M}_g \) is dense in \(\tilde{\mathcal{M}}_g \) and has image \(\text{Sp}_g(\mathbb{Z}) \setminus \overline{\mathcal{J}}_g \) under the period mapping, it follows that the image of \(\mathcal{M}_g \) in \(\mathcal{A}_g \) is \(\text{Sp}_g(\mathbb{Z}) \setminus \overline{\mathcal{J}}_g \).

Recall that the theta divisor \(\Theta_C \subset \text{Jac} C \) of a smooth genus \(g \) curve \(C \) is (up to a translate by a point of order 2) the image of mapping

\[
C^{g-1} \to \text{Pic}^{g-1} C \to \text{Jac} C
\]

that takes \((x_1, \ldots, x_{g-1})\) to \(x_1 + \cdots + x_{g-1} - \alpha \), where \(\alpha \) is a square root of the canonical bundle of \(C \). (See, for example, [8, p. 338].) It follows that \(\Theta_C \) is irreducible. On the other hand, if \(C \) is a reducible, stable, curve of compact type, its jacobian is the product of the components of its irreducible components, and is therefore reducible. The result follows. \(\Box \)

Corollary 7. We have \(\mathcal{J}_3 = \mathfrak{h}_3 - \mathfrak{h}^\text{red}_3 \).

Proof. Both \(\mathcal{M}_3 \) and \(\mathcal{A}_3 \) have dimension 6. Since the period mapping \(\mathcal{M}_3 \to \mathcal{A}_3 \) is generically of maximal rank, \(\mathcal{M}_3 \to \mathcal{A}_3 \) is surjective. This implies that \(\overline{\mathcal{J}}_3 = \mathfrak{h}_3 \), from which the result follows. \(\Box \)

3. The Homology of \(\mathcal{J}_3 \) and \(\tilde{\mathcal{J}}_3 \)

Denote the singular locus of an analytic variety \(Z \) by \(Z^{\text{sing}} \). We shall compute the homology of \(\mathcal{J}_3 \) by applying stratified Morse theory to the stratification

\[
\mathfrak{h}_3 \supseteq \mathfrak{h}^\text{red}_3 \supseteq \mathfrak{h}^\text{red,sing}_3
\]

of \(\mathfrak{h}_3 \). The top stratum is, by Corollary 7, \(\overline{\mathcal{J}}_3 \). Note that there are natural inclusions

\[
\mathfrak{h}_1 \times \mathfrak{h}_2 \hookrightarrow \mathfrak{h}^\text{red}_3 \quad \text{and} \quad \mathfrak{h}_1 \times \mathfrak{h}_1 \times \mathfrak{h}_1 \hookrightarrow \mathfrak{h}^\text{red,sing}_3
\]

defined by

\[
(\tau, \Omega) \mapsto \begin{pmatrix} \tau & 0 \\ 0 & \Omega \end{pmatrix} \quad \text{and} \quad (\tau_1, \tau_2, \tau_3) \mapsto \begin{pmatrix} \tau_1 & 0 & 0 \\ 0 & \tau_2 & 0 \\ 0 & 0 & \tau_3 \end{pmatrix}
\]

respectively. Note that the image of \(\mathfrak{h}_1 \times \mathfrak{h}_2 \) is stabilized in \(\text{Sp}_3(\mathbb{R}) \times \text{SL}_2(\mathbb{R}) \), and the image of \((\mathfrak{h}_1)^3 \) by \(\Sigma_3 \ltimes \text{SL}_2(\mathbb{R})^3 \), where \(\Sigma_3 \) is identified with the subgroup

\[
\{ a_j \mapsto a_{\sigma(j)} \text{ and } b_j \mapsto b_{\sigma(j)} : \sigma \text{ is a permutation of } \{1, 2, 3\} \}
\]

of \(\text{Sp}_3(\mathbb{R}) \). Here \(a_1, \ldots, b_6 \) is the distinguished framing of the first homology of the corresponding abelian variety.
Proposition 8. The stratification (4) satisfies Whitney’s conditions (A) and (B) (cf. [7, p. 37]). Moreover
\[h_3^{\text{red}} = \bigcup_{g \in Sp_3(Z)} g(h_1 \times h_2) = \bigcup_{g \in Sp_3(Z)/(SL_2(Z) \times Sp_2(Z))} g(h_1 \times h_2) \]
and
\[h_3^{\text{red,sing}} = \bigcup_{g \in Sp_3(Z)} g(h_1 \times h_1 \times h_1) \]
In particular, h_3^{red} is a locally finite union of totally geodesic complex submanifolds of h_3 of complex codimension 2 and $h_3^{\text{sing,red}}$ is a countable disjoint union of totally geodesic complex submanifolds of h_3 of complex codimension 3.

Proof. Since every reducible abelian variety is the product (as polarized varieties) of an elliptic curve and an abelian surface, $A_1 \times A_2 \rightarrow A_3^{\text{red}}$ is surjective. Lifting to h_3, this implies that the $Sp_3(Z)$ acts transitively on the components of h_3^{red}, and that h_3^{red} is the $Sp_3(Z)$-orbit of $h_1 \times h_2$ in h_3. Since $SL_2(\mathbb{R}) \times Sp_2(\mathbb{R})$ acts transitively on $h_1 \times h_2$, the stabilizer in $Sp_3(Z)$ of $h_1 \times h_2$ is $SL_2(Z) \times Sp_2(Z)$. Assertion (8) follows.

The components of h_3^{red} are smooth, so the $h_3^{\text{red,sing}}$ is the locus where two or more components of h_3^{red} intersect. This is precisely the preimage of the locus in A_3 of products of 3 elliptic curves. Since this locus is irreducible (it is the image of $(A_1)^3 \rightarrow A_3$), $h_3^{\text{red,sing}}$ is the $Sp_3(Z)$-orbit of $(h_1)^3$. By the semi-simplicity of polarized abelian varieties, there is a unique way to decompose an element of $h_3^{\text{red,sing}}$ as a product of three elliptic curves. This, and the fact that $SL_2(\mathbb{R})^3$ acts transitively on $(h_1)^3$, imply the stabilizer in $Sp_3(Z)$ of $(h_1)^3$ is $\Sigma_3 \times SL_2(Z)^3$ and that each component of $h_3^{\text{red,sing}}$ is smooth. This proves (9).

Whitney’s condition (A) is automatic as each component of $h_3^{\text{red,sing}}$ is a homogeneous submanifold of the closure of each component of h_3^{red}. Condition (B) is well known to be a consequence of condition (A). \[\square \]

Integrating the Riemannian metric along geodesics gives an $Sp_p(\mathbb{R})$-invariant distance function d on X. For a point $p \in X$, let $D_p : X \rightarrow \mathbb{R}$ be the square of the distance to p:
\[D_p(x) = d(x, p)^2. \]

The following result can be proved, either by appealing to [7, I.2.2.3] or by an elementary and direct argument.

Proposition 9. There is an open dense subset U of X such that for all $p \in U$, $D_p : X \rightarrow \mathbb{R}$ is a Morse function in the sense of Goresky and MacPherson [7, p. 52], all of whose critical points are “nondepraved.” \[\square \]

Since each stratum is a union of totally geodesic subspaces, and since the symmetric space metric is complete with non-positive curvature it follows that there is a unique critical point on each component of each stratum. Since the Morse data for each critical point is a product of the normal and tangential Morse data [7, p. 61], we only need compute the normal Morse data at each critical point. There are two types of these: those that lie on a translate of $h_1 \times h_2$ and those that lie on a translate of $(h_1)^3$. The Morse data at each depends only on its type.
Proposition 10. If \(x \in \mathfrak{h}_3^{\text{red}} - \mathfrak{h}_3^{\text{red, sing}} \) is a critical point of \(D_p \), then the normal Morse data at \(x \) is homotopy equivalent to \((S^3, *)\). In particular, \(D_p \) is perfect at such critical points.

Proof. Since the normal slice at a smooth point of \(\mathfrak{h}_3^{\text{red}} \) is a complex 2-ball, the normal Morse data at \(x \) is \((S^3, *)\). Since \(H_\ast(S^3) \to H_\ast(S^3, *) \) is surjective, \(D_p \) is perfect at \(x \).

Lemma 11. At each point of \(\mathfrak{h}_3^{\text{red, sing}} \), there is a normal slice with coordinates \((z_1, z_2, z_3)\) such that \(\mathfrak{h}_3^{\text{red}} \) has three components with equations

\[
z_2 = z_3 = 0, \quad z_1 = z_3 = 0, \quad z_1 = z_2 = 0.
\]

Proof. There are three obvious ways to deform the product \(A = E \times E' \times E'' \) of three elliptic curves, preserving the polarization, into \(\mathfrak{h}_3^{\text{red}} \). Namely, one can deform one of the elliptic curves in \(\mathfrak{h}_1 \), and deform the product of the other two into \(\mathfrak{h}_2 - \mathfrak{h}_2^{\text{red}} \). The semi-simplicity of abelian varieties implies that each component of \(\mathfrak{h}_3^{\text{red, sing}} \) is smooth and there are no other ways to deform \(A \) into \(\mathfrak{h}_3^{\text{red}} \). It follows that 3 components of \(\mathfrak{h}_3^{\text{red}} \) intersect at each point of \(\mathfrak{h}_3^{\text{red, sing}} \).

Since each component of \(\mathfrak{h}_3^{\text{red, sing}} \) is locally homogeneous, and since all are conjugate under the action of \(Sp_3(Z) \), to determine the local structure of \(\mathfrak{h}_3^{\text{red}} \) near \(\mathfrak{h}_3^{\text{red, sing}} \), it suffices to write down local equations along the component \((\mathfrak{h}_1)^3\) of \(\mathfrak{h}_3^{\text{red}} \). Here we can use the coordinates

\[
\begin{pmatrix}
\tau_1 & z_3 & z_2 \\
z_3 & \tau_2 & z_1 \\
z_2 & z_1 & \tau_3
\end{pmatrix}
\]
where each $\tau_j \in h_1$, and (z_1, z_2, z_3) lies in a neighbourhood of the origin in \mathbb{C}^3 small enough to guarantee that this matrix has positive definite imaginary part. In these coordinates, the three components of h_3^{red} have equations:

$$z_2 = z_3 = 0, \quad z_1 = z_3 = 0, \quad z_1 = z_2 = 0.$$

View S^5 as the unit sphere in \mathbb{C}^3. The intersection of each coordinate axis with S^5 is a linearly imbedded S^1. Together these give an imbedding

$$k : S^1 \amalg S^1 \amalg S^1 \hookrightarrow S^5$$

where \amalg denotes disjoint union. The boundary of a small tubular neighbourhood of each S^1 is a trivial S^3 bundle over S^1. Taking one fiber of each and connecting them to an arbitrary point of $S^5 - (S^1 \cup S^1 \cup S^1)$ gives an imbedding

$$i : S^3 \vee S^3 \vee S^3 \hookrightarrow S^5.$$

Proposition 12. If $x \in h_3^{\text{red,sing}}$ is a critical point of D_p, then the normal Morse data at x is homotopy equivalent to

$$\left(S^5 - k(S^1 \amalg S^1 \amalg S^1), i(S^3 \vee S^3 \vee S^3) \right).$$

Proof. By the previous Lemma, the normal Morse data is the same as that for the distance squared to a point function for

$$\mathbb{C}^3 - \text{the union of the 3 coordinate axes}.$$

This is computed using [7, I.3.11.2] as explained in [7, III.3.3].

To compute the homology of J_3, we need to compute the homology of each kind of Morse data. Denote the quotient of Z_3 by the diagonal subgroup by V. It is isomorphic to \mathbb{Z}^2.

Proposition 13. The homology of the Morse data at a critical point of $h_3^{\text{red,sing}}$ is

$$H_j(S^5 - k(S^1 \amalg S^1 \amalg S^1), i(S^3 \vee S^3 \vee S^3); \mathbb{Z}) = \begin{cases} V & j = 4; \\ 0 & \text{otherwise.} \end{cases}$$

The homology is generated by the boundaries of tubular neighbourhoods of the three imbedded S^1's, which are subject to the relation that their sum is zero. In particular, D_p is perfect at such critical points.

Proof. The computation is elementary. The Morse function is perfect at such critical points because the relative homology is generated by absolute cycles.

The natural action of the symmetric group Σ_3 on \mathbb{Z}^3 (by permuting the coordinates) preserves the diagonal subgroup and therefore descends to an action on V. We view V as a $\Sigma_3 \ltimes SL_2(\mathbb{Z})^3$-module via the projection $\Sigma_3 \ltimes SL_2(\mathbb{Z})^3 \rightarrow \Sigma_3$.

Recall that if R is a commutative ring, K a subgroup of G, and M a RK module, then the G-module induced from M is defined by

$$\text{Ind}_K^G M := RG \otimes_{RK} M.$$
Theorem 14. We have,

$$H_j(\mathcal{F}_3; \mathbb{Z}) \cong \begin{cases}
\mathbb{Z} & j = 0; \\
\text{Ind}_{\Sigma^3 \ltimes SL_2(\mathbb{Z})^3}^{Sp_3(\mathbb{Z})} \mathbb{Z} & j = 3; \\
\text{Ind}_{\Sigma_3 \ltimes SL_2(\mathbb{Z})^3}^{Sp_3(\mathbb{Z})} V & j = 4; \\
0 & \text{otherwise.}
\end{cases}$$

Proof. Each critical point has trivial tangential Morse data, as the critical points are minima on each stratum. It follows from [1, 3.7] that the Morse data at each critical point is homotopy equivalent to its normal Morse data. Since the Morse function is perfect, the homology of \(\mathcal{F}_3 \) is the sum of the relative homologies of the normal Morse data at each critical point. The action of \(Sp_3(\mathbb{Z}) \) follows from the description of the \(Sp_3(\mathbb{Z}) \) action on the strata in Proposition 8.

For a subgroup \(G \) of \(Sp_3(\mathbb{Z}) \) that contains \(-I\), define \(PG \) to be the subgroup \(G/(\pm I) \) of \(PSp_3(\mathbb{Z}) \).

Corollary 15. For all \(j \geq 0 \),

$$H_j(\hat{T}_3; \mathbb{Z}[1/2]) \cong H_k(T_3; \mathbb{Z}[1/2])^{\mathbb{Z}/2\mathbb{Z}} \cong \begin{cases}
\mathbb{Z}[1/2] & j = 0; \\
\text{Ind}_{\Sigma^3 \ltimes SL_2(\mathbb{Z})^3}^{Sp_3(\mathbb{Z})} \mathbb{Z}[1/2] & j = 3; \\
\text{Ind}_{\Sigma_3 \ltimes SL_2(\mathbb{Z})^3}^{Sp_3(\mathbb{Z})} V \otimes \mathbb{Z}[1/2] & j = 4; \\
0 & \text{otherwise.}
\end{cases}$$

4. THE SPECTRAL SEQUENCE

We shall compute the homology spectral sequence

$$H_i(PSp_3(\mathbb{Z}); H_j(\hat{T}_3; \mathbb{Q})) \Rightarrow H_{i+j}(\Gamma_3; \mathbb{Q}).$$

Thanks to Shapiro’s Lemma (see, for example, [1]) the \(E^2 \) term of the spectral sequence can be computed.

Lemma 16. We have

$$H_i(PSp_3(\mathbb{Z}); H_j(\hat{T}_3; \mathbb{Q})) \cong \begin{cases}
\mathbb{Q} & i = 0, 2 \text{ and } j = 3; \\
0 & j > 0 \text{ and } j \neq 3.
\end{cases}$$

Proof. Applying Shapiro’s Lemma, Lemma 8, the Kunneth Theorem, and the fact that the rational homology of \(SL_2(\mathbb{Z}) \) is that of a point, we have:

$$H_i(PSp_3(\mathbb{Z}); \text{Ind}_{P(SL_2(\mathbb{Z}) \times Sp_2(\mathbb{Z}))}^{PSp_3(\mathbb{Z})} \mathbb{Q}) \cong H_i(P(SL_2(\mathbb{Z}) \times Sp_2(\mathbb{Z})); \mathbb{Q})
\cong H_i(SL_2(\mathbb{Z}) \times Sp_2(\mathbb{Z}); \mathbb{Q})
\cong H_i(Sp_2(\mathbb{Z}); \mathbb{Q}).$$

This is \(\mathbb{Q} \) in when \(i = 0, 2 \) and 0 otherwise by Igusa’s computation.
Let $V_Q = V \otimes \mathbb{Q}$. This is the unique 2-dimensional irreducible representation of Σ_3. Since V_Q is divisible and has no coinvariants, $H_\bullet(\Sigma_3; V_Q)$ vanishes in all degrees. Arguing as above, we have

$$H_4(PSp_3(\mathbb{Z}) \backslash \text{Ind}_{P(\Sigma_3 \ltimes SL_2(\mathbb{Z}))}^{PSp_3(\mathbb{Z})} V_Q) \cong H_4(P(\Sigma_3 \ltimes SL_2(\mathbb{Z})) \backslash V_Q) \cong H_4(\Sigma_3 \ltimes SL_2(\mathbb{Z})^3; V_Q) \cong H_4(\Sigma_3; V_Q) \cong 0.$$

\[\square\]

Proposition 17. For $2 \leq r \leq 4$, the E^r-term of the spectral sequence \([3]\) is

deg	0	1	2	3	4	5	6	7
4	0	0	0	0	0	0	0	0
3	\mathbb{Q}	0	\mathbb{Q}	0	0	0	0	0
2	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0
0	\mathbb{Q}	0	\mathbb{Q}	0	\mathbb{Q}	0	\mathbb{Q}^2	0

(All terms not shown are zero.) In addition, the differentials

$$d^4 : E^4_{1,0} \to E^4_{0,3} \text{ and } d^4 : E^4_{6,0} \to E^4_{2,3}$$

are both surjective, and $E^5 = E^\infty$.

Proof. The computation of $E^2_{s,t}$ for $t > 0$ follows from the previous lemma. It implies that $d^r = 0$ when $2 \leq r < 4$ and $E^5 = E^\infty$. By Looijenga’s computation of the rational homology of Γ_3 we know that $H_3(\Gamma_3; \mathbb{Q})$ and $H_5(\Gamma_3; \mathbb{Q})$ both vanish. This implies that the differentials

$$d^4 : E^4_{1,0} \to E^4_{0,3} \text{ and } d^4 : E^4_{6,0} \to E^4_{2,3}$$

must be surjective. Since $H_4(\Gamma_3; \mathbb{Q}) = 0$, and since $H_6(\Gamma_3; \mathbb{Q})$ is one dimensional, the first of these is an isomorphism and the second has one dimensional kernel. The result follows. \[\square\]

Proof of Theorem 1. The computation of the rational homology (and therefore the rational cohomology) of A_3 follows from Proposition 17.

Denote the first Chern class in $H^2(A_3; \mathbb{Q})$ of the Hodge bundle by λ. It is the class of an ample line bundle. A standard argument, that uses the fact that the Satake compactification of A_3 has boundary of codimension 3, shows that there is a complete surface in A_3. This implies that $\lambda^3 \neq 0$ in $H^4(A_3; \mathbb{Q})$.

The proof that λ^3 does not vanish in $H^6(A_3; \mathbb{Q})$ is more subtle, and is due to van der Geer \([3]\). We will give a topological proof of this fact in the next section. The key point in van der Geer’s argument is that there is a complete subvariety of the characteristic p version $A_{3, p}$ of A_3. This implies that λ^3 is not zero in $H^6_{\text{et}}(A_{3, p}; \mathbb{Q}_p)$, where p is a prime where A_3 has good reduction and ℓ is a prime distinct from p. Standard comparison theorems imply that this last group is isomorphic to $H^6(A_3; \mathbb{Q}_p)$, which gives the desired non-vanishing of λ^3.

The statement about weights follows as λ is of type $(1, 1)$. Since $\lambda^3 \neq 0$, this implies that $H^4(A_3; \mathbb{Q})$ is generated by λ^2 and has type $(2, 2)$, and that $H^6(A_3; \mathbb{Q})$
contains a copy of $\mathbb{Q}(-3)$ spanned by λ^3. On the other hand, the spectral sequence in Proposition 17 implies that the restriction mapping

$$H^6(A_3; \mathbb{Q}) \to H^6(M_3; \mathbb{Q}) \cong \mathbb{Q}(-6)$$

is surjective, which completes the proof. □

5. Cycles

In this section, we give a topological proof that λ^3 is non-zero in $H^6(A_3; \mathbb{Q})$. The approach is to construct a topological 6-cycle in A_3 and then show that the value of λ^3 on it is non-zero.

Fix an imbedding of the Satake compactification \overline{A}_3 of A_3 in some projective space. Take a generic codimension 3 linear section of \overline{A}_3 that avoids the boundary $\overline{A}_3 - A_3$, is transverse to A_3, and intersects A_3 transversally. This section is a complete curve X in A_3, smooth (in the orbifold sense) away from its intersection with A_3. At each point x where it intersects A_3, it has three branches. Set $X' = X - (X \cap \overline{A}_3)$.

![Figure 2](image_url)

The next step is to construct a 5-cycle in M_3 which is an S^3 bundle over X away from the triple points, and where the three branches of this bundle at each triple point x are plumbed together using the normal Morse data at x.

Denote the moduli space of principally polarized abelian 3-folds with a level ℓ structure by $A_3[\ell]$. This is the quotient of h_3 by the level ℓ subgroup $Sp_3(\mathbb{Z})[\ell]$ of $Sp_3(\mathbb{Z})$, and is smooth when $\ell \geq 3$. Fix an $\ell \geq 3$. The symmetric space metric on h_3 descends to $A_3[\ell]$. With the help of the metric, the normal bundle of any stratum can be viewed as a subbundle of the tangent bundle of $A_3[\ell]$. Using the exponential mapping, we can identify a neighbourhood of the zero section of the normal bundle as being imbedded in $A_3[\ell]$. Let Y and Y' be the inverse images of X and X' in $A_3[\ell]$.

Choose a positive real number ϵ such that the exponential mapping is an imbedding on the $\epsilon/4$-ball B of the normal bundle of $A_3[\ell]$ restricted to Y', and also on the ϵ-ball B' of the normal bundle of $A_3[\ell]$ at each point of $Y - Y'$. Set $\tilde{D} = B \cup B'$ and $\tilde{W} = \partial \tilde{D}$. Denote their pushforwards to A_3 by D and W. Then W is a 5-cycle in M_3 which is generically an S^3 bundle over X'. Note that D is a 6-chain in A_3 with $\partial D = W$.

On the other hand, Looijenga’s computation of the rational homology of M_3, implies that W bounds a rational 6-chain E in M_3. Set $Z = D - E$. This is a rational 6-cycle in A_3. By construction, we have:

...
Proposition 18. The cycle Z intersects $\mathcal{A}_3^{\text{red,sing}}$ transversally (in the orbifold sense), and the intersection number of Z with $\mathcal{A}_3^{\text{red,sing}}$ is non-zero.

Corollary 19. The class of Z is non-trivial in $H_6(\mathcal{A}_3; \mathbb{Q})$ and the class of $\mathcal{A}_3^{\text{red,sing}}$ is non-trivial in $H^4(\mathcal{A}_3; \mathbb{Q})$.

The proof of the non-triviality of λ^3 is completed by the following result.

Proposition 20. The class of $\mathcal{A}_3^{\text{red,sing}}$ in $H^6(\mathcal{A}_3; \mathbb{Q})$ is a non-zero multiple of λ^3.

Proof. Denote the closure in $\overline{\mathcal{A}}_3$ of a subvariety X of \mathcal{A}_3 by \overline{X}. Set $\partial X = \overline{X} - X$. Since \mathcal{A}_3 is a rational homology manifold, the sequence

$$H_8(\overline{\mathcal{A}}_3^\text{red}, \partial \overline{\mathcal{A}}_3^\text{red}; \mathbb{Q}) \to H^4(\mathcal{A}_3; \mathbb{Q}) \to H^4(\mathcal{M}_3; \mathbb{Q})$$

is exact. Since $\mathcal{A}_3^{\text{red}}$ is irreducible of dimension 4, the left hand group is one-dimensional and spanned by the fundamental class of $\overline{\mathcal{A}}_3^\text{red}$. Since the middle group is one-dimensional and the right hand group trivial, we see that the class of $\mathcal{A}_3^{\text{red}}$ spans $H^4(\mathcal{A}_3; \mathbb{Q})$. On the other hand, since λ is ample, and \mathcal{A}_3 contains a complete surface, λ^2 also spans $H^4(\mathcal{A}_3; \mathbb{Q})$. It follows that there is a non-zero rational number c such that $\lambda^2 = c[\mathcal{A}_3^{\text{red}}]$ in $H^4(\mathcal{A}_3; \mathbb{Q})$.

Denote the determinant of the Hodge bundle by L. The class λ^3 is represented by the divisor of a section of the restriction of L to $\mathcal{A}_3^{\text{red}}$. This can be computed by pulling back along the mapping $A_1 \times A_2 \to \mathcal{A}_3^{\text{red}}$. Since the Picard group of A_1 is torsion, we see that the pullback of L is represented mod-torsion by $A_1 \times D$, where D is a cycle representing λ on A_2. But the cusp form χ_{10} of weight 10 on A_2 is a section of L^{10}, and has divisor supported on A_2^{red}, we see that λ is represented by a non-zero rational multiple of the cycle $A_1 \times A_2^{\text{red}}$ on $A_1 \times A_2$, and by a non-zero multiple of $\mathcal{A}_3^{\text{red,sing}}$ in $H^4(\mathcal{A}_3^{\text{red}}; \mathbb{Q})$. This implies that λ^3 is represented by a non-zero rational multiple of $\mathcal{A}_3^{\text{red,sing}}$ in $H^4(\mathcal{A}_3; \mathbb{Q})$.

6. THE RATIONAL COHOMOLOGY OF $\overline{\mathcal{A}}_2$ AND $\overline{\mathcal{A}}_3$.

Note that $\overline{\mathcal{A}}_0$ is just a point. Suppose now that $g > 0$. Then

$$\overline{\mathcal{A}}_g = A_g \amalg \overline{\mathcal{A}}_{g-1}.$$
Choose a triangulation of \mathcal{A}_g such that \mathcal{A}_{g-1} is a subcomplex. Let U_g be a regular PL neighbourhood of \mathcal{A}_{g-1} in \mathcal{A}_g. Set $U^*_g = U_g - \mathcal{A}_{g-1}$. This has the homotopy type of ∂U_g, which is a rational homology manifold (as $\mathcal{A}_g[3]$ is smooth) of dimension $2d_g - 1$, where $d_g = g(g + 1)/2$ is the dimension of \mathcal{A}_g. The cohomology of U^*_g has a mixed Hodge structure and the cup product

$$H^{k-1}(U^*_g; \mathbb{Q}) \otimes H^{2d_g-k}(U^*_g; \mathbb{Q}) \to H^{2d_g-1}(U^*_g; \mathbb{Q}) \cong \mathbb{Q}(-d_g)$$

is a perfect pairing of mixed Hodge structures (MHSs) (see [3], for example).

Since \mathcal{A}_g is a rational homology manifold, Lefschetz duality gives an isomorphism

$$H^k_c(\mathcal{A}_g, \mathbb{Q}) \cong \text{Hom}(H^{2d_g-k}(\mathcal{A}_g), \mathbb{Q}(-d_g)).$$

The standard long exact sequence

$$\cdots \to H^{k-1}(U^*_g) \to H^k_c(\mathcal{A}_g; \mathbb{Q}) \to H^k(A_g; \mathbb{Q}) \to H^k(U^*_g; \mathbb{Q}) \to \cdots$$

is exact in the category of MHSs. These facts will allow us to compute the cohomology of U^*_g and U^*_3.

The second step in the computation will be to use the Mayer-Vietoris sequence associated to the covering $\mathcal{A}_g = \mathcal{A}_g \cup U_g$

$$\cdots \to H^k(\mathcal{A}_g) \to H^k(\mathcal{A}_g) \oplus H^k(\mathcal{A}_g) \to H^k(U^*_g) \to H^{k+1}(\mathcal{A}_g) \to \cdots$$

associated to the covering $\mathcal{A}_g = \mathcal{A}_g \cup U_g$, which is exact in the category of MHS, to compute the cohomology of \mathcal{A}_g and \mathcal{A}_3.

For determining the ring structure and also for seeing that some maps in these long exact sequences are non-trivial, it is useful to note that since λ is the class of an ample line bundle on \mathcal{A}_g, the rational cohomology ring of \mathcal{A}_g contains the ring $\mathbb{Q}[\lambda]/(\lambda^{d+1})$.

6.1. **Proof of Proposition 3.** Since $H^*(\mathcal{A}_2; \mathbb{Q})$ is \mathbb{Q} in degree 0, $\mathbb{Q}(-1)$ in degree 2, and 0 otherwise, $H^*(\mathcal{A}_2; \mathbb{Q})$ is $\mathbb{Q}(-2)$ in degree 4, $\mathbb{Q}(-3)$ in degree 6, and 0 otherwise. Using the sequence (10) and the fact that the cohomology of U^*_2 satisfies Poincaré duality, we have

$$H^j(U^*_2; \mathbb{Q}) \cong \begin{cases} \mathbb{Q} & j = 0; \\
\mathbb{Q}(-1) & j = 2; \\
\mathbb{Q}(-2) & j = 3; \\
\mathbb{Q}(-3) & j = 5. \end{cases}$$

Putting this into the Mayer-Vietoris sequence (11), and using the fact that \mathcal{A}_1 is \mathbb{P}^1, we obtain the result.

6.2. **Proof of Proposition 4.** By duality, $H^*(\mathcal{A}_3; \mathbb{Q})$ is an extension of $\mathbb{Q}(-3)$ by $\mathbb{Q}(0)$ in degree 6, $\mathbb{Q}(-4)$ in degree 8, $\mathbb{Q}(-5)$ in degree 10, and $\mathbb{Q}(-6)$ in degree 12. Using the sequence (10) and the facts that $H^j(\mathcal{A}_3; \mathbb{Q})$ vanishes when $j \geq 7$ and $H^j_c(\mathcal{A}_3; \mathbb{Q})$ vanishes when $j \leq 5$, we have

$$H^j(U^*_3; \mathbb{Q}) \cong \begin{cases} H^j(\mathcal{A}_3; \mathbb{Q}) & j < 5; \\
H^{j+1}(\mathcal{A}_3; \mathbb{Q}) & j \geq 7. \end{cases}$$

In degrees 5 and 6 we have the exact sequence

$$0 \to H^5(U^*_3; \mathbb{Q}) \to H^6_c(\mathcal{A}_3; \mathbb{Q}) \to H^6(\mathcal{A}_3; \mathbb{Q}) \to H^6(U^*_3; \mathbb{Q}) \to 0.$$
It follows from [4, 8.2.2] that the image of α is all of $W_6 H^6(A_3; \mathbb{Q})$, so that α is non-zero. Since the sequence is exact in the category of MHSs, it follows that $H^5(U_3^*; \mathbb{Q})$ is $\mathbb{Q}(0)$ and $H^6(U_3^*; \mathbb{Q})$ is $\mathbb{Q}(-6)$.

Since \mathcal{A}_3 is projective and λ is the class of a projective imbedding, the restriction of λ_j to U_3 is non-zero when $j = 1, 2, 3$. It follows from this and the computations above that λ and λ^2 restrict to non-trivial classes in the rational cohomology of U_3^*.

Putting all of this into the Mayer-Vietoris sequence (11), easily gives the computation of $H^j(A_3; \mathbb{Q})$ when $j \neq 6$. The computation of $H^6(A_3; \mathbb{Q})$ follows as the sequence

$$0 \rightarrow H^5(U_3^*; \mathbb{Q}) \rightarrow H^6(\mathcal{A}_3; \mathbb{Q}) \rightarrow H^6(A_3; \mathbb{Q}) \oplus H^6(\mathcal{A}_2; \mathbb{Q}) \rightarrow H^6(U_3^*; \mathbb{Q}) \rightarrow 0$$

is exact in the category of MHSs.

REFERENCES

[1] K. Brown: Cohomology of groups, Graduate Texts in Mathematics, 87, Springer-Verlag, New York, 1982.
[2] A. Brownstein, R. Lee: Cohomology of the symplectic group $\text{Sp}_4(\mathbb{Z})$. I. The odd torsion case, Trans. Amer. Math. Soc. 334 (1992), 575–596;
[3] A. Brownstein, R. Lee: Cohomology of the symplectic group $\text{Sp}(4, \mathbb{Z})$. II. Computations at the prime 2, Michigan Math. J. 41 (1994), 181–208.
[4] P. Deligne: Théorie de Hodge, III, Inst. Hautes Études Sci. Publ. Math. No. 44 (1974), 5–77.
[5] A. Durfee, R. Hain: Mixed Hodge structures on the homotopy of links, Math. Ann. 280 (1988), 69–83.
[6] G. van der Geer: The Chow ring of the moduli space of abelian threefolds, J. Algebraic Geom. 7 (1998), 753–770.
[7] M. Goresky, R. MacPherson: Stratified Morse Theory, Springer-Verlag, 1988.
[8] P. Griffiths, J. Harris: Principles of Algebraic Geometry, Wiley-Interscience, 1978.
[9] R. Hain, E. Looijenga: Mapping class groups and moduli spaces of curves, in Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., 62, Part 2 (1997), 97–142.
[10] S. Helgason: Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, 80. Academic Press, 1978.
[11] J. Igusa: On Siegel modular forms of genus two, Amer. J. Math. 84 (1962), 175–200.
[12] E. Looijenga: Cohomology of M_3 and M_3^1, Mapping class groups and moduli spaces of Riemann surfaces (Göttingen, 1991/Seattle, WA, 1991), Contemp. Math., 150, 1993, 205–228.
[13] G. Mess: The Torelli groups for genus 2 and 3 surfaces, Topology 31 (1992), 775–790.

Department of Mathematics, Duke University, Durham, NC 27708-0320
E-mail address: hain@math.duke.edu