Genomic Insights into the Demographic History of Southern Chinese

Xiufeng Huang1,#, Zi-Yang Xia2,3,4,#*, Xiaoyun Bin1,#, Guanglin He2, Jianxin Guo2, Chaowen Lin1, Lianfei Yin1, Jing Zhao2, Zhuofei Ma1, Fuwei Ma1, Yingxiang Li2, Rong Hu2, Lan-Hai Wei2, Chuan-Chao Wang2,*

1. College of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
2. Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, and National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, Xiamen 361005, China
3. Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
4. Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China

These authors contributed equally to this work.
* Corresponding author: Professor Chuan-Chao Wang (wang@xmu.edu.cn) and Zi-Yang Xia (ziyang.xia.20@ucl.ac.uk).

ABSTRACT

Southern China is the birthplace of rice-cultivating agriculture, different language families, and human migrations that facilitated these cultural diffusions. The fine-scale demographic history in situ, however, remains unclear. To comprehensively cover the genetic diversity in East and Southeast Asia, we generated genome-wide SNP data from 211 present-day Southern Chinese and co-analyzed them with more than 1,200 ancient and modern genomes. We discover that the previously described ‘Southern East Asian’ or ‘Yangtze River Farmer’ lineage is monophyletic but not homogeneous, comprising four regionally differentiated sub-ancestries. These ancestries are respectively responsible for the transmission of Austronesian, Kra-Dai, Hmong-Mien, and Austroasiatic languages and their original homelands successively distributed from East to West in Southern China. Multiple phylogenetic analyses support that the earliest living branching among East Asian-related populations is First Americans (~27,700 BP), followed by the pre-LGM differentiation between Northern and Southern East Asians (~23,400 BP) and the pre-Neolithic split between Coastal and Inland Southern East Asians (~16,400 BP). In North China, distinct coastal and inland routes of south-to-north gene flow had established by the Holocene, and further migration and admixture formed the genetic profile of Sinitic speakers by ~4,000 BP. Four subsequent massive migrations finalized the complete genetic structure of present-day Southern Chinese. First, a southward
Sinitic migration and the admixture with Kra-Dai speakers formed the ‘Sinitic Cline’. Second, a bi-directional admixture between Hmong-Mien and Kra-Dai speakers gave rise to the ‘Hmong-Mien Cline’ in the interior of South China between ~2,000 and ~1,000 BP. Third, a southwestward migration of Kra-Dai speakers in recent ~2,000 years impacted the genetic profile for the majority of Mainland Southeast Asians. Finally, an admixture between Tibeto-Burman incomers and indigenous Austroasiatic speakers formed the Tibeto-Burman speakers in Southeast Asia by ~2,000 BP.

INTRODUCTION

Dated to ~9,000 years before present (BP), Southern China is one of the two earliest agricultural centers in East Asia\(^1\),\(^2\). The First Farmers in Southern China domesticated a series of plants and animals indispensable for present-day people\(^3\), among which the most famous one is wet rice (\(Oryza japonica\))\(^4\). It has long been hypothesized that the farming dispersal from Southern China involves human migration and in term the language families spoken by the farmers\(^5\). Recent studies have shown that the First Farmers in Southeast Asia\(^6\),\(^7\) and Pacific Islands\(^8\)-\(^10\) derived most of their ancestry from a lineage shared with modern Southern Chinese, which has further been confirmed by ancient genomes from Fujian in coastal Southern China\(^11\) and adjacent Taiwan Island\(^12\). These finding supports the involvement of massive migration in the diffusion of Austronesian and Austroasiatic languages. However, our knowledge is still limited about the deep origin and early prehistory of such a ‘Southern East Asian’ or ‘Yangtze River Farmer’ lineage and its role in the genomic formation of modern Southern Chinese, especially the speakers of the other two indigenous language families in Southern East Asia, Hmong-Mien and Kra-Dai.

Here we generated new genome-wide data of 211 present-day Southern Chinese individuals, who belong to 30 geographic subgroups that have not yet been represented in genomic studies and cover the three main language families in this region, i.e., Hmong-Mien, Kra-Dai, and Sino-Tibetan. To thoroughly reconstruct the demographic history of Southern Chinese in relation to other East Asians, we co-analyzed them with ~1,200 modern and high-coverage ancient samples from East and Southeast Asia, which cover the main ethnolinguistic and archaeological diversity in East Asia that is accessible till now with a high resolution.

Our study mainly addressed on three primary questions regarding the genomic history in East Asia. (1) How many ancestries substantially contributed to the gene pool of present-day East Asians and to what extent did they participate in the diffusion of different language families? Especially, if there are any sub-structure with the Southern East Asians? (2) What is the deep history regarding the origin of these ancestries and where did they originally inhabit? (3) What migrations and admixtures did these ancestries involve in the formation of present-day Southern Chinese?
In response to questions above, we first gained an overview of genetic structure by principal component analysis (PCA)13 (Fig. 1A and B) and model-based clustering14 (Fig. 1C). To quantify the genetic affinity, we measured the degree of shared genetic drift15 (Fig. 2A) and shared haplotypes16 (Fig. 2B and C) among pairwise populations. We performed admixture graph modelling (Fig. 3A), admixture proportion estimation (Fig. 3B), and coalescent analysis based on site frequency spectrum (SFS) (Fig. 3C) to investigate the deep phylogenetic relationship and infer the geographic distribution of these ancestries. We then applied multiple methods, including the formal test of genetic homogeneity (Fig. 4), to further explore the admixtures in Southern China. Demographic history in East Asia and recent migrations and admixtures in Southern China has been summarized into map illustrations (Fig. 5). All the analyses above allow us to better decipher both the long-term prehistory and recent two millennia’s documented history along with Sinicization in Southern China from a genomic perspective.

RESULTS

A. Genetic structure in East Asia highly corresponds to linguistic affiliations

PCA of all the ancient and modern East Asians in our dataset (Fig. 1A) replicates the pattern of genetic differentiation between Northern and Southern East Asians11,12 and variations between two geographically structured clusters within Northern East Asia12,17. The ‘Inland Yellow River Cluster’ is best represented by Neolithic Farmers from Inland Yellow River Basin (Yangshao_MN and Qijia_LN17) and later and modern Tibetan Plateau inhabitants. In ADMIXTURE plot (Fig. 1C), the ancestry maximizing in this cluster is also ubiquitous in modern Sino-Tibetan speakers (Fig. 1C), consistent with previous linguistic studies that suggested a plausible origin of Proto-Sino-Tibetan in Yangshao Culture18,19. The ‘Northeast Asian Cluster’ is typified by the Neolithic hunter-gatherers in Amur River Basin (DevilsCave_N18,19 and Boisman_MN12), Mongolian Plateau, and Cis-Baikal (Shamanka_EN and Lokomotiv_EN19), as well as modern populations from Amur River region (Fig. 1A), and these surrogates also harbor the highest proportion of the ancestry prevalent in modern Tungusic speakers and other Northeast Asians. We observe consistent clustering manners in pairwise outgroup-\(f_3\) (Fig. 2A) and haplotype sharing degree measured by identity-by-descent (IBD) chunks (Fig. 2B and C).

Confirming the highly shared genetic history among the Southern East Asians, we find that Kra-Dai and Hmong-Mien populations in Southern China, Southern Han Chinese, and Austronesian Taiwanese cluster together with a high sharing degree (\(f_3 > 0.320\) in outgroup-\(f_3\) matrix (Fig. 2A). We further identify a previously unknown genetic structure within the Southern East Asians that has a strong connection with linguistic classification. That is, each of the speakers of all the four indigenous
language families in Southern China and Southeast Asia has their own cluster in PCA for Southern East Asians (Fig. 1B) and their own ancestral component in ADMIXTURE plot (Fig. 1C). Austronesian-related ancestry maximizes in ancient and modern Austronesian Taiwanese with a high proportion in earlier Fujian Neolithic individuals. Austroasiatic-related ancestry maximizes in Neolithic farmers in Mekong River Basin (collectively referred as ‘Mekong_N’ afterwards) and is also extensively distributed in Mainland Southeast Asia. Hmong-Mien-related ancestry maximizes in the Western Hmong populations (Miao_Longlin and Miao_Xilin) newly reported in this study and is absent in all the ancient individuals, indicating that the original homeland of this ancestry has not yet been sampled in ancient genomic studies to date. Kra-Dai-related ancestry maximizes in modern Kra-Dai speakers resident in Mainland Southern China (Zhuang, Maonan, Mulam) and neighboring Hainan Island (Hlai). Especially in Austronesian- and Hmong-Mien-speaking populations, we observe a high degree of IBD sharing between the surrogate populations with other populations of the same language affiliation [number > 11.5, length > 18.5 cM for Atayal; number > 12.4, length > 32.0 cM for Miao_Longlin], which indicates strong genetic drift or founder effect in both ancestries. We use the terms ‘Core Austronesians/ Kra-Dais/ Hmong-Miens/ Austroasiatics’ to address modern surrogates of each of the ancestries.

We implemented point-biserial correlation to formally examine if the proportion of ancestries in ADMIXTURE is significantly associated with corresponding language families (Extended Data Table 2), which shows a strong correlation to linguistic affiliation for all the six major ancestries in East Asia ($r_{pb} > 0.500, p < 0.0001$). The gene-language correlation indicates that present-day speakers of the major language families in East Asia usually receive a strong genomic legacy from the speakers of corresponding proto-languages, which enables us to trace the history of these language families through the history of human populations.

B. Reconstruction of ancestral homelands in Southern China

One of the crucial historical aspects for a language family is its original homeland, or *Urheimat*. In historical linguistics, two main strategies have been applied for the reconstruction of linguistic homeland. One of the strategies leverages the reconstructed vocabulary of the proto-language to inform us about the environment and lifestyle of the original speakers, which is in turn a clue for geographic origin. The other strategy assumes that the linguistic homeland tends to be located in where there is a higher linguistic diversity.

However, both linguistic strategies cannot work well in case of the four major language families that are indigenous in Southern East Asia and are supposed to originate from Southern China. First, all of the four language families share some words reflecting either a common origin or extensive language contact among all of them, especially the ones related to farming and domestication, which prevents us to infer the homeland distribution within Southern China in a higher resolution. Second,
massive cultural transition happened in Southern China in recent millennia, especially Sinicization23, may have largely decreased language diversity in this region. Given the language-associated genomic structure in Southern East Asia, here we adapted another genomics-based strategy — modelling the phylogenetic relationship among the ancestries to infer their relative geographic distribution, hence the homelands for the language families they spread.

We implemented \textit{qpGraph}24 to model the phylogenetic relationship of the main ancestries in East Asia, using populations in which the corresponding ancestries maximize in PCA (Fig. 1A and B) and ADMIXTURE (Fig. 1C) as surrogates. Our optimal model (Fig. 3A) shows that Northern East Asians (Mongolia\textsubscript{N}, Boisman\textsubscript{MN}, and Sherpa) and Southern East Asians (Hanben\textsubscript{IA}, Hlai\textsubscript{Qiongzhong}, Miao\textsubscript{Longlin}, and MSEA\textsubscript{N}) each form a monophyletic lineage, with additional admixture from an Andamanese-related deep ancestry in the common ancestor of Southern East Asians (31%). As Core Kra-Dais, Core Hmong-Miens, and the earliest Austronesian-related ancient group (Qihe\textsubscript{EN} and Liangdao\textsubscript{EN}) are located in Southern China, we can reasonably deduct that the common ancestor of Southern East Asian lineage and its initial diversification also took place in Southern China. Sub-topology within the Southern East Asian lineage suggests that Austronesian ancestry split with the others first, then followed by Kra-Dai ancestry, with Hmong-Mien and Austroasiatic ancestries sharing the most genetic drift with each other. Given the easternmost and westernmost geographic position respectively for the earliest Austronesian- (Qihe\textsubscript{EN} and Liangdao\textsubscript{EN}) and Austroasiatic-related (Mekong\textsubscript{N}) individuals, such a topology can be explain as a result of the isolation-by-distance pattern from east to west in ancient Southern China sequentially for Austronesian, Kra-Dai, Hmong-Mien, and Austroasiatic ancestries (Fig. 5A).

To test if the pattern observed above is more extensively applicable in East Asian populations, we then used \textit{qpAdm}25 to parse the contribution of Northern, Coastal Southern, and Inland Southern East Asian lineages, respective represented by Mongolia\textsubscript{N} (as they have minimal Southern East Asian ancestry in admixture graph), Fujian\textsubscript{LN}, and Mekong\textsubscript{N} (Fig. 3B). Core Austronesians and Core Austroasiatics respective derive most of their ancestry related to Fujian\textsubscript{LN} (66.9\%–74.3\%) and Mekong\textsubscript{N} (58.0\%–75.2\%), suggesting that the Neolithic genomic structure in Southern East Asians has largely preserved in these modern isolated populations. In present-day Southern China, Core Kra-Dais harbors more of their ancestry related to Fujian\textsubscript{LN} (39.0\%–53.9\%) than Mekong\textsubscript{N} (24.9\%–32.3\%) and we also observe a similar pattern in Southeast Han Chinese (28.9\%–40.3\% for Fujian\textsubscript{LN} and 21.8\%–25.2\% for Mekong\textsubscript{N}), suggesting that the Kra-Dai ancestry itself primarily derives from an Austronesian-related lineage with additional Austroasiatic-related gene flow. On the contrary, Core Hmong-Mien derives more of their ancestry related to Mekong\textsubscript{N} (32.3\%–35.3\%) than Fujian\textsubscript{LN} (23.7\%–26.4\%), consistent with the closest phylogenetic relationship of Austroasiatic and Hmong-Mien ancestries in admixture graph (Fig. 3A). Regardless different topology between Kra-Dai and
Austronesian ancestries suggested by *qpGraph* and *qpAdm*, both analyses indicate a consistent pattern for original geographical distribution of these four ancestries (Fig. 5A).

We used admixture-\(f_3\) statistics\(^\text{24}\) to examine two alternative explanations for phylogenetic relationship between Kra-Dai and Austronesian ancestries. Due to small effective population size (\(N_E\)) and strong genetic drift in many East Asian populations (Extended Table Fig. 1), we are usually unable to obtain significant negative \(f_3\). Therefore, we focused on the lowest \(f_3\) value given by different pairs of source populations and exhausted all the potential pairs. The results might not be statistically significant, but it can provide a consistent pattern if the same pair of source populations minimizes \(f_3\) of a series of different target populations. For most of the Kra-Dai-speaking populations and Vietic speakers who have a genetic profile resembling their Kra-Dai neighbors (Extended Table 3C), the lowest \(f_3\) achieves when one of the source population surrogates Austroasiatic ancestry (Mekong_N, Malaysia_LN, and Mlabri) and the other surrogates Austronesian ancestry (Fujian_LN and Austronesian Taiwanese), with the strongest negative signal in Kra-Dai and Vietic speakers in Mainland Southeast Asia (Muong, Nung, Lao). Since all of these populations live in the northern interior of Mainland Southeast Asia, a direct and recent gene flow from Austronesian speakers does not seem to be a feasible scenario. A more possible scenario is that the Kra-Dai ancestry itself, at least partially, is closely related to Austronesian ancestry and this favors the model suggested by *qpAdm*. The partial Austronesian-related origin for Kra-Dai ancestry is compatible with the ‘Austro-Tai’ hypothesis in historical linguistic\(^\text{26-28}\) that suggests a common origin of Austronesian and Kra-Dai language families, and the motif Y-chromosomal haplogroup O1a-M119 that is dominant in Neolithic Fujian individuals\(^\text{11}\) and shared by Austronesians, Kra-Dais, and Southern Han Chinese\(^\text{29}\).

The impact of distinct Southern East Asian ancestries is not limited within Southern China and further south. In the earliest samples from Yellow River Basin, coastal individuals from Early Neolithic Shandong derive all of the southern ancestry from a Fujian_LN related lineage (32.0 ± 6.6%, Fig. 3B), consistent with their Austronesian-related ancestral component in ADMIXTURE (Fig. 1C) that largely disappears in later Northern East Asians. In contrast, inland individuals from Middle Neolithic Yangshao Culture derive all of the southern ancestry from a Mekong_N related lineage (32.2 ± 5.9%, Fig. 3B). These genomes document that the initial isolation and genomic differentiation among geographically structured populations in Southern China is no late than Early Neolithic and demographic contact between Northern and Southern China in this period is via distinct coastal and inland routes (Fig. 5A).

Instead of a direct contribution from contemporary Neolithic Fujian population, a more plausible scenario for the Austronesian-related ancestry in Shandong Neolithic individuals they received a gene flow from a currently unsampled ancient population
from neighboring regions like Jiangsu or Zhejiang, who in turn harbored a Fujian_LN-related lineage (Fig. 5A). This scenario is also consistent with the strong connection between Neolithic cultures in Lower Yangtze Basin, like Hemudu Culture, and contemporary Fujian, like Tanshishan Culture, to which the Fujian_LN individuals belong11. Taking genomic, linguistic, and archaeological evidence together into account, Kra-Dai ancestry likely originates from the local Austronesian-related lineage in continental Southeast China approximately ranging from Zhejiang to Guangdong with additional gene flow from an Austroasiatic-related lineage (Fig. 5A), whereas the migrants from continental Southeast China to Taiwan largely preserve the original Austronesian/Austro-Tai-related genetic profile and are responsible for the massive Austronesian expansion. However, the coexistence of Kra-Dai and Austronesian ancestry once in the continent still cannot be fully excluded in light of our analysis.

With nearly absolute southern affinity to Austroasiatic-related lineage (Fig. 3B), the genetic profile of Yangshao individuals largely persists in Late Neolithic individuals from Qijia Culture (16.0 ± 8.3% for Mekong_N, 1.3 ± 10.6% for Fujian_LN) –whose expansion is supposed to parallel with the diffusion of at least some of the Tibeto-Burman languages30–and modern Tibeto-Burman speakers in Tibetan Plateau (18.9–24.2% for Mekong_N, 0.0% for Fujian_LN) and Tibetan-Yi Corridor like Naxi and Yi (33.7–34.1% for Mekong_N, 0.0–1.3% for Fujian_LN). In admixture-f3 (Extended Data Table 3A), Tibeto-Burman populations in Tibetan-Yi Corridor and further south show a consistent pattern of two-way admixture by Sino-Tibetan and Austroasiatic ancestries. Multiple evidences suggest that populations with Austroasiatic ancestry likely distributed further north in Southwest China previously. Given the close relationship between Austroasiatic and Hmong-Mien ancestries, it is reasonable to deduct that the place of origin for both ancestries is in Southwest China (Fig. 5A) and both of them are possibly related to the Neolithic farming cultures in Middle Yangtze, e.g., Daxi Culture3, which is also consistent with that modern populations with significant Hmong-Mien-related ancestry (Fig. 1C) are distributed in Guangxi, Guizhou, and Hunan of Southwest China.

C. Deep history of East Asian populations

Genetic drift-based admixture graph analysis by qpGraph is informative and robust for phylogenetic reconstruction with admixture events, but it cannot estimate the time of splits and admixtures since genetic drift is not proportional to time24. Therefore, we obtained coalescent time estimation using SFS-based framework Rarecoal31 and whole genome sequences from Europeans, First Americans (Mixe, Piapoco, and Pima), Northern East Asians (Ulchi, Hezhen, and Oroqen), Coastal Southern East Asians (Ami, Atayal, and Igorot), and Inland Southern East Asians (Cambodian and Thai). We estimated that the divergence between East and West Eurasians is ~44,700 BP (95% confidence interval (CI) 44,600–44,800 BP, Fig. 3C), consistent with the time estimation in previous studies19,32 and the equal genomic relationship to East and West
Eurasians for the ~45,000-year-old Ust’-Ishim individual.33

Earlier works have discovered that the First Americans primarily derive from an East Asian-related lineage with additional admixture with West Eurasian-related Ancient North Siberians.15,19 However, it is still unclear how the East Asian-related ancestry of First Americans relates to other East Asians. Both qpGraph model (Fig. 3A) and Rarecoal model (Fig. 3C) suggest that the East Asian ancestor of First Americans represents the deepest East Asian-related lineage in all the living population who split with the common ancestor of both Northern and Southern East Asian lineages ~27,700 BP (95% CI 27,400–27,900 BP, Fig. 3C). After that, the ancestor of Northern and Southern East Asians split with each other ~23,400 BP (95% CI 23,100–23,700 BP), which is prior to the Last Glacial Maximum (LGM) in East Asia (~21,000–15,000 BP). This implies that the differentiation between Northern and Southern East Asian lineages plausibly results from the isolation of geographically structured populations in different refugia during LGM. Within Southern East Asian lineage, the separation between Coastal and Inland Southern East Asian lineages took place ~16,400 BP (95% CI 16,200–16,900 BP), which is contemporary with LGM and significantly earlier than the earliest farming practice in Southern China (~9,000 BP). Such a result indicates that the Neolithic transition for different Southern East Asian ancestries might result from either independent acquisition or the spread of idea without massive population replacement.

The genomic origin of Jomon hunter-gatherers in Japanese Archipelago is mysterious due to their basal East Eurasian ancestry compared with other East Asians and their additional genetic affinity to Amur Basin populations and Austronesian Taiwanese.6,12,34 In our admixture graph model (Fig. 3A), there are two different layers contributing to the genetic profile of Jomon hunter-gatherers. The first layer is distantly related to Andamanese hunter-gatherers, which is likely introduced by an earlier peopling of Japanese Archipelago. The second layer is a sister lineage of Southern East Asian, which explains the genetic affinity of Jomon to other coastal East Asian populations. Compared with the large proportion of Andaman-related ancestry in Jomon hunter-gatherers (56.5 ± 4.8%), the small amount of Andamanese-related ancestry in ancient (6.4–11.7%) and modern (1.0–2.1%) populations in Amur Basin also suggests that their affinity to Jomon hunter-gatherers is more feasible to be explained by an East Asian-related ancestry than an Andamanese related ancestry. Taking both qpGraph (Fig. 3A) and Rarecoal (Fig. 3C) into account, the formation of this sister lineage to Southern East Asian is between ~23,400 BP and ~16,400 BP, which mostly falls in the range of LGM. Therefore, a plausible geographic distribution for this lineage is in the continental coastal East Asia, which is largely below the sea level at present (Fig. 5A).

D. Migrations and admixtures shaping present-day Southern Chinese

East Asia in recent millennia has witnessed a series of massive demographic events
that contribute to the formation of modern East Asians. Here we particularly focus on Southern China and characterize the most crucial migrations and admixtures revealed in light of our results (Fig. 5B).

(D.1) Formation of Han Chinese

Han Chinese comprise around one fifth of the world’s population. Previous studies suggest that Han Chinese is primarily formed by Yellow River Farmers (i.e., Sino-Tibetan ancestry in this study) with additional gene flow from Southern East Asian lineage. However, it is still not fully known which specific ancestry mostly contribute to the southern ancestry of Han Chinese. In ADMIXTURE plot (Fig. 1C), both Northern and Southern Han Chinese have a similar genetic profile comprising both Sino-Tibetan and Kra-Dai ancestries, with an increase of Kra-Dai ancestry from North to South. The earliest individuals with such a genetic profile in Yellow River Basin are from Longshan Culture (~4,000 BP) and the genetic profile in individuals resembling the genetic profile of Northern Han Chinese is found in Dacaozi_IA and Omnogovi_IA (previously assigned as Xiongnu individuals) during Han Dynasty (~4,000 BP). Formal test for pairwise genetic homogeneity conducted by qpWave (Fig. 4B) confirms that the genetic homogeneity between Han Dynasty individuals and any of Neolithic Shandong individuals and Inland Yellow River individuals (Yangshao_MN and Qijia_LN) is higher than the one between the latter two, consistent with a closer position for Han Dynasty individuals than Neolithic Yellow River individuals in PCA (Fig. 1A) and qpAdm (Fig. 3B). This indicates that the admixture between Inland and Coastal Yellow River plays an important role in the formation of Northern Han Chinese. Regarding the formation of Sinitic Cline and Southern Han Chinese, admixture-f_3 results (Extended Table 3B) suggest that the strongest signal of admixture come from the pair of surrogates for Sino-Tibetan ancestry (Qijia_LN) and Kra-Dai (Hlai) or Austronesian ancestry (Ami, Atayal, and Kankanaey). Therefore, we conclude that the Sinitic Cline is primarily formed by massive southward migration of Northern Han Chinese and subsequent admixture with indigenous Kra-Dai speakers in Southern Chinese.

(D.2) Admixture between Hmong-Mien and Kra-Dai populations

Another major genetic cline in South China is the Hmong-Mien Cline, which comprises most of the Hmong-Mien speakers as well as neighboring Kra-Dai populations in the interior of Southern China (Fig. 5B). In ADMIXTURE plot (Fig. 1C), Hmong-Mien populations from west to east show a decrease of Hmong-Mien ancestry and an increase of Kra-Dai ancestry, suggesting that the migration of Kra-Dai speakers came from the east and constantly admixed with local Hmong-Mien populations. Meanwhile, adjacent Kra-Dai speakers of Kra (Gelao) and Kam-Sui (Dong) branches also receive significant Hmong-Mien ancestry, indicating a bidirectional gene flow. Admixture time estimation performed by ALDER (Extended Data Table 4) shows that the admixture of Hmong-Mien Cline happened ~24–46
generations ago overlapping Tang Dynasty to Yuan Dynasty.

(D.3) Spread of Kra-Dai ancestry in Mainland Southeast Asia

Besides the contribution to Han Chinese and Hmong-Mien populations, Kra-Dai ancestry also has a strong impact to Mainland Southeast Asia in recent two millennia. The earliest genomic document for the arrival of Kra-Dai ancestry in Mainland Southeast Asia is Bronze Age individuals from northern Vietnam (~2,000 BP, Fig. 1C). Further extensive admixture between populations with more Kra-Dai ancestry and more Austroasiatic ancestry that arrived earlier largely explain the more obvious discrepancy between gene and language in Mainland Southeast Asians than other Southern East Asians. Especially, it is evident in PCA (Fig. 1A and B), ADMIXTURE (Fig. 1C), and outgroup-f_3 (Fig. 2A) that Austroasiatic-speaking Kinh and Muong of the Vietic branch have a more similar genetic profile with Kra-Dai speakers in South China than other Austroasiatic speakers with a more typical ‘Austroasiatic’ genetic profile, suggesting a language shift from incoming Kra-Dai language to local Austroasiatic language as a possible mechanism.

(D.4) Genomic origin of Tibeto-Burman-speaking Mainland Southeast Asians

The special Y-chromosomal haplogroup F2-M427 in Lahu and many other Tibeto-Burman populations in Mainland Southeast Asia raise further question for their genomic origin. In ADMIXTURE plot (Fig. 1C), we find that Tibeto-Burman speakers in Mainland Southeast Asia (Lahu from China and Vietnam, Sila, HaNhi (Hani), and Cong) majorly have a genetic profile comprising Sino-Tibetan and Austroasiatic ancestries, with a consistent pattern in $qpAdm$ (36.7–50.1 % for Mekong_N, 7.9–19.1% for Fujian_LN, Fig. 3B). Both results suggest that the Tibeto-Burman-speaking migrants from the north and their admixture with local Austroasiatic speakers form the genetic profile of present-day Lahu and neighboring Tibeto-Burman speakers. We also observe that such a genetic profile had occurred in the Iron Age Thailand individuals ~1,700 BP, with their genetic homogeneity with present-day Tibeto-Burman speakers in Mainland Southeast Asia confirmed by $qpWave$ (Fig. 4A).

DISCUSSION

In this study, we provide a comprehensive and detailed landscape for the genomic history of East Asians, especially Southern Chinese. We retrieve the deep origin and structure for the main ancestral groups in East Asia (Fig. 5A) and we document human migrations and admixtures that form the genomic and linguistic scenario in present-day Southern China (Fig. 5B). We predict that future ancient genomes from the interior of Southern China will further improve and examine the demographic framework of Southern East Asians established in our study.
METHODS

Sampling and genotyping
We collected blood and saliva samples from 211 unrelated individuals affiliated to Miao, Zhuang, and Han ethnicities from 30 subgroups in Guangxi and Yunnan of Southern China. Further linguistic and geographic information of these subgroups was described in Extended Data Table 1. The study was approved by Ethical Committee of Youjiang Medical University for Nationalities and all the processes involved were consistent with the corresponding ethical principles. All the participants read and signed the informed content. Then, we achieved the genotyped data of these samples using the Affymetrix WeGene V1 Array, which includes 492,683 genome-wide SNPs and is referred to as ‘500K dataset’ elsewhere in this paper. Other experimental and bioinformatic procedures for genotyping were consistent with the protocol documented in previous studies38,39.

Dataset arrangement
We merged our 500K dataset with published present-day and ancient genomic data6-9,11,12,17,18,24,32,33,39-56, resulting in two types of panel: (1) merged panel of 500K dataset and 1240K-capture dataset (1,233,013 SNPs, including all the ancient samples and shotgun-sequenced modern samples) with 372,929 SNPs, which is for the purpose of maximizing the number of informative SNPs; (2) merged panel of the panel above and 600K Human Origin Array dataset (597,573 SNPs, including other modern samples) with 110,931 SNPs, which is for the purpose of maximizing the number and size of populations. For Rarecoal analysis, we used whole genome sequences from Simons Genome Diversity Project (SGDP)47.

Abbreviations
We used the following abbreviations throughout our article: LP, Late Pleistocene; M, Mesolithic; N, Neolithic; EN, Early Neolithic; MN, Middle Neolithic; LN, Late Neolithic; BA, Bronze Age; IA, Iron Age; o, outlier; HG, hunter-gatherer; MSEA, Mainland Southeast Asia; ISEA, Island Southeast Asia; AN, Austronesian; AA, Austroasiatic; HM, Hmong-Mien; KD, Kra-Dai; HO, Human Origin Array. Particularly, Mongolia_N refers to Mongolia_N_East unless otherwise specified.

Principal component analysis (PCA)
We performed PCA by smartpca program of EIGENSOFT13 with parameters lsqproject: YES, shrinkmode: YES, numoutlieriter: 0, killr2: YES, r2thresh: 0.4, r2genlim: 0.1. We only used modern samples to construct PCs with ancient samples projected.

ADMIXTURE analysis
We first used PLINK37 to prune the linkage disequilibrium by parameters --indep-pairwise 200 20 0.4. Then, we ran ADMIXTURE14 with default parameters from K = 2 to 20. We reported the result when K = 10 as it reaches the lowest cross
error (Extended Data Fig. 2).

\textbf{f-statistics}

We used ADMIXTOOLS24 to compute \(f_3\)-statistics and D-statistics (Supplementary Information Table 2) with the estimation of standard error by jackknife. We used Mbuti as outgroup for Eurasian populations in outgroup-\(f_3\).

\textbf{Admixture graph modelling by qpGraph}

We used \textit{qpGraph} program of ADMIXTOOLS24 to reconstruct the phylogeny with admixture by default parameters. We exhausted different feasible graph models and select the optimal model based on maximum \(|Z|\)-score and likelihood.

\textbf{Admixture coefficient modelling by qpAdm}

We used \textit{qpAdm}25 to compute the ancestral coefficient based on \(f\)-statistics to different outgroups. We chose the optimal model for a given target population based on the following criteria, sorted by priority. (1) The model is feasible if and only if all the ancestral coefficients fall within the range \([0, 1]\). (2) The full model is chosen if both full and nested models are feasible. (3) If the full model is infeasible and more than one nested models are feasible, then the nested model with the highest \(p\)-value is chosen. We applied ‘proximal model’ and ‘distal model’50 to model the ancestry contribution in different time period.

\textit{Proximal model}. We used Mongolia_N_East, Mekong_N (pooled population of Vietnam_N, Laos_LN_BA.SG, and Laos_BA.WGC), and Fujian_LN as proxies for Northern East Asian, Inland Southern East Asian, and Coastal Southern East Asian ancestries. The initial outgroups that we used are: South_Africa_2000BP.SG, Ust_Ishim.DG, Yana_UP.SG, Alaska_LP, Kolyma_M, Andaman_HG, Jomon_HG, Liangdao2_EN, Malaysia_LN.SG. We also used the ‘rotating’ strategy41 to further verify the nested models, in which we moved one of the proxies into the set of outgroups by turn. Since there is no high-coverage ancient sample that is sufficiently older than Mekong_N in Austroasiatic-related lineage, we expediently used Malaysia_LN.SG who closely related to Mekong_N as outgroup but we caution that it tends to underestimate \(p\)-values. Therefore, we also calculated relative likelihood ratios to test if a full model is better than its nested models and we find the ratios are usually higher than 100. Original results of proximal model are presented in Supplementary Information Table 1.

\textit{Distal model}. We used Mongolia_N_East and Andaman_HG as proxies for East Asian and Andamanese-related ancestries. We used the following outgroups in distal model: South_Africa_2000BP.SG, Ust_Ishim.DG, Georgia_Kotias.SG, Loschbour.DG, Yana_UP.SG, Botai_EN, Russia_BA_Okunevo.SG, Russia_EHG_Karelia, Tianyuan, Papuan.DG, Mala.DG, Australian.DG, Hoabinhian.
Genetic homogeneity testing by \textit{qpWave}
We used \textit{qpWave}58 to formally test if pairwise populations are homogeneous in relation to a series of outgroups. We used following outgroups for Southern East Asian populations: South_Africa_2000BP.SG, Ust_Ishim.DG, Loschbour.DG, Yana_UP.SG, Alaska_LP, Kolyma_M, Andaman_HG, Liangdao2_EN, Jomon_HG, Malaysia_LN.SG, Nepal_LN_BA_IA, DevilsCave_N, Shamanka_EN. We used following outgroups for Northern East Asian populations: South_Africa_2000BP.SG, Ust_Ishim.DG, Loschbour.DG, Yana_UP.SG, Alaska_LP, Kolyma_M, Andaman_HG, Liangdao2_EN, Jomon_HG, Malaysia_LN.SG, Nepal_LN_BA_IA, DevilsCave_N, Shamanka_EN.

Demographic modelling implemented by Rarecoal
We used Rarecoal program31,54 to obtain a SFS-based phylogeny with time estimates using default parameters. We used mutation rate in every generation59 of 1.25×10^{-8} and 29 years per generation60 to scale the time.

Admixture time estimation by ALDER
We used linkage disequilibrium-based ALDER61 to estimate admixture time of Hmong-Mien Cline using default parameters and checkmap: YES, mindis: 0.005, binsize: 0.0001.

Identity-by-descent (IBD) analysis
We first used SHAPEIT62 to phase the modern individuals in our dataset. Then we used Refine IBD software16 to obtain pairwise sharing of IBD segments among individuals. We normalized the results in population level by dividing it by the product of the sample size of pairwise populations.

Correlation between N_E and F_{ST} to Ust’-Ishim
We used the formula in Palamara et al.63 to estimate N_E from shared IBD within a population. We computed F_{ST} by \textit{smartpca}13 with default parameters and fstonly: YES.

LGM coastline in East Asia
The coastline during LGM period in East Asia shown in Fig. 5A is adopted from Ray et al..64
REFERENCES

1 Barnes, G. L. *Archaeology of East Asia: the rise of civilization in China, Korea and Japan.* (Oxbow Books, 2015).
2 Stevens, C. J. & Fuller, D. Q. The spread of agriculture in Eastern Asia: Archaeological bases for hypothetical farmer/language dispersals. *Language Dynamics and Change* 7, 152-186 (2017).
3 Liu, L. & Chen, X. *The archaeology of China: from the late Paleolithic to the early Bronze Age.* (Cambridge University Press, 2012).
4 Gutaker, R. M. *et al.* Genomic history and ecology of the geographic spread of rice. *Nature Plants* 6, 492-502 (2020).
5 Diamond, J. & Bellwood, P. Farmers and their languages: The first expansions. *Science* 300, 597-603, doi:10.1126/science.1078208 (2003).
6 McColl, H. *et al.* The prehistoric peopling of Southeast Asia. *Science* 361, 88-92 (2018).
7 Lipson, M. *et al.* Ancient genomes document multiple waves of migration in Southeast Asian prehistory. *Science* 361, 92-95 (2018).
8 Skoglund, P. *et al.* Genomic insights into the peopling of the Southwest Pacific. *Nature* 538, 510 (2016).
9 Lipson, M. *et al.* Population turnover in Remote Oceania shortly after initial settlement. *Current Biology* 28, 1157-1165. e1157 (2018).
10 Lipson, M. *et al.* Three Phases of Ancient Migration Shaped the Ancestry of Human Populations in Vanuatu. *Current Biology* (2020).
11 Yang, M. A. *et al.* Ancient DNA indicates human population shifts and admixture in northern and southern China. *Science* (2020).
12 Wang, C.-C. *et al.* The Genomic Formation of Human Populations in East Asia. *bioRxiv* (2020).
13 Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. *PLoS genetics* 2, e190 (2006).
14 Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. *Genome research* 19, 1655-1664 (2009).
15 Raghavan, M. *et al.* Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans. *Nature* 505, 87 (2014).
16 Browning, B. L. & Browning, S. R. Improving the accuracy and efficiency of identity-by-descent detection in population data. *Genetics* 194, 459-471 (2013).
17 Ning, C. *et al.* Ancient genomes from northern China suggest links between subsistence changes and human migration. *Nature communications* 11, 1-9 (2020).
18 Siska, V. *et al.* Genome-wide data from two early Neolithic East Asian individuals dating to 7700 years ago. *Science advances* 3, e1601877 (2017).
19 Sikora, M. *et al.* The population history of northeastern Siberia since the Pleistocene. *Nature*, doi:10.1038/s41586-019-1279-z (2019).
20 Campbell, L. *Historical linguistics.* (Edinburgh University Press, 2013).
Bouckaert, R. et al. Mapping the origins and expansion of the Indo-European language family. *Science* **337**, 957-960 (2012).

Ratliff, M. S. *Hmong-Mien language history*. (Research School of Pacific and Asian Studies, The Australian National University, 2010).

Luo, Y. in *The Tai-Kadai Languages* 25-44 (Routledge, 2004).

Patterson, N. J. et al. Ancient admixture in human history. *Genetics*, genetics. 112,145037 (2012).

Haak, W. et al. Massive migration from the steppe was a source for Indo-European languages in Europe. *Nature* **522**, 207 (2015).

Blench, R. M. in *Unearthing Southeast Asia’s past: Selected papers from the 12th international conference of the European Association of Southeast Asian Archaeologists*. 3-15.

Ostapirat, W. in *23rd Annual Meeting of the Southeast Asian Linguistic Society, Chulalongkorn University*.

Sagart, L. The higher phylogeny of Austronesian and the position of Tai-Kadai. *Oceanic Linguistics* **43**, 411-444 (2004).

Sun, J. et al. Paternal gene pool of Malays in Southeast Asia and its applications for the early expansion of Austronesians. *American Journal of Human Biology*, e23486 (2020).

Zhang, M., Yan, S., Pan, W. & Jin, L. Phylogenetic evidence for Sino-Tibetan origin in northern China in the Late Neolithic. *Nature*, doi:10.1038/s41586-019-1153-z (2019).

Schiffels, S. et al. Iron age and Anglo-Saxon genomes from East England reveal British migration history. *Nature communications* **7**, 1-9 (2016).

de Barros Damgaard, P. et al. The first horse herders and the impact of early Bronze Age steppe expansions into Asia. *Science* **360**, eaar7711 (2018).

Fu, Q. et al. Genome sequence of a 45,000-year-old modern human from western Siberia. *Nature* **514**, 445 (2014).

Gakuhari, T. et al. Ancient Jomon genome sequence analysis sheds light on migration patterns of early East Asian populations. *Communications biology* **3**, 1-10 (2020).

Minahan, J. B. *Ethnic Groups of North, East, and Central Asia: An Encyclopedia*. (ABC-CLIO, 2014).

de Barros Damgaard, P. et al. 137 ancient human genomes from across the Eurasian steppes. *Nature* **557**, 369 (2018).

Black, M. L., Wise, C. A., Wang, W. & Bittles, A. H. Combining genetics and population history in the study of ethnic diversity in the People's Republic of China. *Human Biology* **78**, 277-293 (2006).

Huang, X. et al. The genetic assimilation in language borrowing inferred from Jing People. *American journal of physical anthropology* **166**, 638-648 (2018).

He, G. et al. Inferring the population history of Tai-Kadai-speaking people and southernmost Han Chinese on Hainan Island by genome-wide array genotyping. *European Journal of Human Genetics*, 1-13 (2020).

Schlebusch, C. M. et al. Southern African ancient genomes estimate modern
human divergence to 350,000 to 260,000 years ago. *Science* **358**, 652-655 (2017).

41 Skoglund, P. *et al.* Reconstructing prehistoric African population structure. *Cell* **171**, 59-71. e21 (2017).

42 Sikora, M. *et al.* The population history of northeastern Siberia since the Pleistocene. *bioRxiv*, 448829 (2018).

43 Moreno-Mayar, J. V. *et al.* Terminal Pleistocene Alaskan genome reveals first founding population of Native Americans. *Nature* **553**, 203 (2018).

44 Moreno-Mayar, J. V. *et al.* Early human dispersals within the Americas. *Science* **362**, eaav2621 (2018).

45 Lazaridis, I. *et al.* Ancient human genomes suggest three ancestral populations for present-day Europeans. *Nature* **513**, 409 (2014).

46 Lazaridis, I. *et al.* Genomic insights into the origin of farming in the ancient Near East. *Nature* **536**, 419 (2016).

47 Mallick, S. *et al.* The Simons genome diversity project: 300 genomes from 142 diverse populations. *Nature* **538**, 201 (2016).

48 Jeong, C. *et al.* The genetic history of admixture across inner Eurasia. *Nature Ecology & Evolution*, doi:10.1038/s41559-019-0878-2 (2019).

49 Jeong, C. *et al.* Long-term genetic stability and a high-altitude East Asian origin for the peoples of the high valleys of the Himalayan arc. *Proceedings of the National Academy of Sciences* **113**, 7485-7490 (2016).

50 Narasimhan, V. M. *et al.* The formation of human populations in South and Central Asia. *Science* **365**, eaat7487 (2019).

51 Yang, M. A. *et al.* 40,000-year-old individual from Asia provides insight into early population structure in Eurasia. *Current Biology* **27**, 3202-3208. e3209 (2017).

52 Liu, D. *et al.* Extensive ethnolinguistic diversity in Vietnam reflects multiple sources of genetic diversity. *Molecular biology and evolution* **37**, 2503-2519 (2020).

53 Jones, E. R. *et al.* Upper Palaeolithic genomes reveal deep roots of modern Eurasians. *Nature communications* **6**, 1-8 (2015).

54 Flegontov, P. *et al.* Palaeo-Eskimo genetic ancestry and the peopling of Chukotka and North America. *Nature*, 1 (2019).

55 Skoglund, P. *et al.* Genetic evidence for two founding populations of the Americas. *Nature* **525**, 104-108 (2015).

56 Consortium, G. P. A global reference for human genetic variation. *Nature* **526**, 68 (2015).

57 Purcell, S. *et al.* PLINK: a tool set for whole-genome association and population-based linkage analyses. *The American journal of human genetics* **81**, 559-575 (2007).

58 Reich, D. *et al.* Reconstructing Native American population history. *Nature* **488**, 370-+, doi:10.1038/nature11258 (2012).

59 Scally, A. & Durbin, R. Revising the human mutation rate: implications for understanding human evolution. *Nature Reviews Genetics* **13**, 745-753 (2012).
Fenner, J. N. Cross-cultural estimation of the human generation interval for use in genetics-based population divergence studies. *American Journal of Physical Anthropology: The Official Publication of the American Association of Physical Anthropologists* **128**, 415-423 (2005).

Loh, P.-R. *et al.* Inferring admixture histories of human populations using linkage disequilibrium. *Genetics* **193**, 1233-1254 (2013).

O’Connell, J. *et al.* A general approach for haplotype phasing across the full spectrum of relatedness. *PLoS Genet* **10**, e1004234 (2014).

Palamara, P. F., Lencz, T., Darvasi, A. & Pe’er, I. Length distributions of identity by descent reveal fine-scale demographic history. *The American Journal of Human Genetics* **91**, 809-822 (2012).

Ray, N. & Adams, J. M. A GIS-based vegetation map of the world at the last glacial maximum (25,000-15,000 BP). *Internet Archaeology* (2001).
Figure 1. Genetic structure of East Asians. (A to B) PCA for (A) all the East Asians and (B) Southern East Asians. We projected ancient samples to principal components constructed by modern samples. (C) Unsupervised ADMIXTURE plot at $K = 10$, identifying six major ancestries in East Asia: orange, Northeast Asia/ Tungusic-related; red, Sino-Tibetan-related; blue, Austronesian-related; green, Kra-Dai-related; yellow, Hmong-Mien-related; purple, Austroasiatic-related.
Figure 2. Quantitative measurement for pairwise genetic affinity. (A) Outgroup-f_3 in the form f_3(Mbuti; X, Y) measuring shared genetic drift between pairwise ancient and modern East Asian populations. (B to C) Normalized haplotype sharing based on (B) the number and (C) the total length (unit: cM) of shared IBD chunks for pairwise modern East Asian populations.
Figure 3. Demographic modelling for deep history of East Asians. (A) Optimal \textit{qpGraph} admixture model for the phylogenetic relationship among the surrogates for major ancestries in East Asia. Alaska_LP, Mongolia_N/Boisman_MN, Sherpa, Hanben_IA, Hlai_Qiongzhong, Miao_Longlin, and MSEA_N respectively surrogate First Americans, Northeast Asian, Sino-Tibetan, Austronesian, Kra-Dai, Hmong-Mien, and Austroasiatic ancestries. Drift along each edge are multiplied by 1,000. (B) Three-source \textit{qpAdm} models the contribution of Northern East Asian (represented by Mongolia_N), Coastal Southern East Asian (represented by FujianLN), and Inland Southern East Asian (represented by Mekong_N) lineages in ancient and present-day East Asians. (C) Coalescent analysis using SFS of rare alleles to calibrate the time of the major splits in East Asians (implemented by Rarecoal). We used whole genome sequences from 56 individuals in this analysis. kya, thousand years ago.
44.7 kya [44.6, 44.8]
27.7 kya [27.4, 27.9]
23.4 kya [23.1, 23.7]
16.4 kya [16.2, 16.9]
15.4% [15.0, 15.7]
12.7 kya [12.6, 12.7]
3.6% [3.5, 3.8]
0.58 kya
log-likelihood = -69,930,413
Figure 4. Genetic homogeneity of pairwise populations. Heatmaps show negative logarithms for p-values of pairwise $qpWave$ in (A) Southern East Asians and (B) Northern East Asians.
Figure 5. Illustrations for demographic history in East Asia. (A) The formation of geographically and linguistically structured ancestries in East Asia. (B) Massive migrations and admixtures forming the current genomic landscape in Southern China and neighboring regions.
Extended Data Figure 1. Correlation between effective population size (N_E) and genetic drift away from common Eurasian ancestor. Given ~45,000 years old Ust’-Ishim is genomically equally related to most of the Eurasians, we used F_{ST} away from him [$F_{ST}(X, \text{Ust’-Ishim})$] to represent the genetic drift from the common Eurasian ancestor to modern East Asian populations. Negative correlation between logarithm of N_E and $F_{ST}(X, \text{Ust’-Ishim})$ suggests that recent genetic drift due to a small population size comprise a large proportion of the total genetic drift from common Eurasian ancestor in many modern East Asian populations.

\[
r^2 = -0.595
\]
Extended Data Figure 2. Cross error for ADMIXTURE analysis when K = 2 to 20.
Extended Data Table 1. Sample information for newly reported individuals in this study.

Population	Language Affiliation	Locality	Region	Latitude	Longitude	Grouped label	Sample size
Miao_Longlin	HM, Hmongic, Hmong	Longlin, Baise, Guangxi	China (Southwest)	24.7714	105.3456	Miao_Longlin	10
Miao_Xilin	HM, Hmongic, Hmong	Xilin, Baise, Guangxi	China (Southwest)	24.4924	105.0029	Miao_Xilin	10
Miao_Haishang	HM, Hmongic, Hmu, Southern Dialect	Haishang, Hechi, Guangxi	China (Southwest)	24.8363	106.2530	Miao_Haishang	8
Miao_Rongshui	HM, Hmongic, Hmu, Southern Dialect	Rongshui, Liuzhou, Guangxi	China (Southwest)	25.0748	109.2537	Miao_Rongshui	10
Miao_Sanjiang	HM, Hmongic, Hmu, Southern Dialect	Sanjiang, Liuzhou, Guangxi	China (Southwest)	25.7816	109.8564	Miao_Sanjiang	9
Miao_Xiyuan	HM, Hmongic, Hmu, Eastern Dialect	Xiyuan, Guilin, Guangxi	China (Southwest)	26.0365	110.6397	Miao_Xiyuan	10
Miao_Longying	HM, Hmongic, Hmu, Eastern Dialect	Longying, Guilin, Guangxi	China (Southwest)	25.7992	110.0981	Miao_Longying	10
Zhuang_Qiubei	KD, Tai, Northern Tai	Qiubei, Wenshan, Yunnan	China (Southwest)	24.0428	104.1887	Zhuang_Yunnan	9
Zhuang_Wenshan	KD, Tai, Central Tai	Wenshan, Wenshan, Yunnan	China (Southwest)	23.3864	104.2318	Zhuang_Yunnan	10
Zhuang_Tianlin	KD, Tai, Northern Tai	Tianlin, Baise, Guangxi	China (Southwest)	24.2346	106.2306	Zhuang_Guangxi	10
Zhuang_Tianyang	KD, Tai, Northern Tai	Tianyang, Baise, Guangxi	China (Southwest)	23.7377	106.9180	Zhuang_Guangxi	6
Zhuang_Jingxi	KD, Tai, Central Tai	Jingxi, Baise, Guangxi	China (Southwest)	23.1395	106.4171	Zhuang_Guangxi	9
Zhuang_Chengdu	KD, Tai, Central Tai	Chengdu, Guiliu, Guangxi	China (Southwest)	22.4071	107.3546	Zhuang_Guangxi	10
Zhuang_Fuzhou	KD, Tai, Central Tai	Fuzhou, Guiliu, Guangxi	China (Southwest)	22.6350	107.8941	Zhuang_Guangxi	6
Zhuang_Wuming	KD, Tai, Central Tai	Wuming, Nanning, Guangxi	China (Southwest)	23.1560	106.2401	Zhuang_Guangxi	1
Zhuang_Hechi	KD, Tai, Northern Tai	Hechi, Guangxi	China (Southwest)	23.6944	106.8486	Zhuang_Guangxi	9
Zhuang_Guangxi	KD, Tai, Northern Tai	Guangxi, Guangxi	China (Southwest)	23.1107	109.5978	Zhuang_Guangxi	10
Han_Qiubei	ST, Sinitic, SW Mandarin	Qiubei, Wenshan, Yunnan	China (Southwest)	24.0428	104.1887	Han_Yunnan	6
Han_Guangxi	ST, Sinitic, SW Mandarin	Guangxi, Guangxi	China (Southwest)	24.0428	105.0535	Han_Yunnan	3
Han_Wenshan	ST, Sinitic, SW Mandarin	Wenshan, Wenshan, Yunnan	China (Southwest)	23.3864	104.2318	Han_Yunnan	7
Han_Tianlin	ST, Sinitic, Pinghua	Tianlin, Baise, Guangxi	China (Southwest)	24.2346	106.2306	Han_Guangxi	5
Han_Tianyang	ST, Sinitic, Pinghua	Tianyang, Baise, Guangxi	China (Southwest)	23.7377	106.9180	Han_Guangxi	5
Han_Jingxi	ST, Sinitic, SW Mandarin	Jingxi, Baise, Guangxi	China (Southwest)	23.1395	106.4171	Han_Guangxi	5
Han_Chengdu	ST, Sinitic, Pinghua	Chengdu, Guiliu, Guangxi	China (Southwest)	22.4071	107.3546	Han_Guangxi	5
Han_Fuzhou	ST, Sinitic, Pinghua	Fuzhou, Guiliu, Guangxi	China (Southwest)	22.6350	107.8941	Han_Guangxi	1
Han_Hechi	ST, Sinitic, SW Mandarin	Hechi, Guangxi	China (Southwest)	23.6944	106.8486	Han_Guangxi	6
Han_Guangxi	ST, Sinitic, Pinghua	Guangxi, Guangxi	China (Southwest)	23.1107	109.5978	Han_Guangxi	6
Han_Labrin	ST, Sinitic, SW Mandarin	Labrin, Guangxi	China (Southwest)	23.7402	109.1982	Han_Guangxi	4
Extended Data Table 2. Correlation between the proportion of ancestries and corresponding language families. We used point-biserial correlation to quantify if an individual affiliated to a certain language family tends to have more proportion of the ancestry corresponding to this language family. We further used the \(p \)-value of student’s t-test to quantify if the correlation is significant. \(r_{pb} \), point-biserial correlation coefficient.

Language Families	\(r_{pb} \)	\(p \)-value
Hmong-Mien	0.762	\(2.13 \times 10^{-31} \)
Kra-Dai	0.644	\(9.77 \times 10^{-189} \)
Austroasiatic	0.536	\(6.73 \times 10^{-12} \)
Austronesian	0.921	\(7.23 \times 10^{-32} \)
Sino-Tibetan	0.630	\(4.81 \times 10^{-33} \)
Tungusic/ Amuric	0.806	\(7.34 \times 10^{-31} \)
Extended Data Table 3. Admixture-f_3 results. (A) Tibeto-Burman populations. (B) Southeast Han Chinese. (C) Kra-Dai and Vietic populations. We report the five lowest f_3 results for each of the populations. std.err, standard error.

A

Source_1	Source_2	Target	f_3	std.err	Z	SNPs	
Mekong_N	Yumin_EN	Naxi	-0.001575	0.002227	-0.708	69321	
Mlabri	Tibetan_Chamdo	Naxi	-0.001207	0.000555	-2.177	105215	
Mekong_N	Sherpa.DG	Naxi	-0.001042	0.001291	-0.807	83146	
Mekong_N	Tibetan_Chamdo	Naxi	-0.001036	0.000668	-1.523	87697	
Mekong_N	Tibetan_Nagqu	Naxi	-0.000908	0.000777	-1.17	87061	
Mlabri	Tibetan_Chamdo	Yi	-0.003735	0.000573	-6.644	105393	
Malaysia_LN.G	Yumin_EN	Yi	-0.003742	0.002493	-1.501	67896	
Mekong_N	Yumin_EN	Yi	-0.003681	0.002139	-1.721	70135	
Ami	Tibetan_Chamdo	Yi	-0.00366	0.003063	-10.085	106865	
Malaysia_LN.G	Tibetan_Chamdo	Yi	-0.003537	0.000795	-4.451	84607	
Mekong_N	Yumin_EN	Sila	0.029056	0.002478	11.724	67679	
Mekong_N	Qijia_LN	Sila	0.030261	0.001622	18.661	81896	
Malaysia_LN.G	Qijia_LN	Sila	0.03054	0.001782	17.139	78608	
Mlabri	Tibetan_Chamdo	Sila	0.03056	0.000988	30.924	104727	
Mekong_N	Tibetan_Chamdo	Sila	0.030608	0.001149	26.649	87209	
Mekong_N	Yumin_EN	HaNhi	0.00217	0.002201	0.986	69776	
Mlabri	Tibetan_Chamdo	HaNhi	0.003446	0.000648	5.317	105256	
Mekong_N	Tibetan_Nagqu	HaNhi	0.003451	0.000859	4.018	87152	
Mlabri	Lokomotiv_EN	HaNhi	0.003579	0.001226	2.919	89625	
Mekong_N	Qijia_LN	HaNhi	0.00363	0.001297	2.799	83933	
Mekong_N	Yumin_EN	Cong	0.003042	0.002203	1.381	69905	
Malaysia_LN.G	Qijia_LN	Cong	0.00389	0.001518	2.563	90814	
Mekong_N	Sherpa.DG	Cong	0.004221	0.00135	3.127	83654	
Mekong_N	Qijia_LN	Cong	0.004291	0.001311	2.374	84076	
Malaysia_LN.G	Yumin_EN	Cong	0.004553	0.002551	1.785	67698	
Mekong_N	Yumin_EN	Lahu_China	0.009174	0.002329	3.94	67477	
Malaysia_LN.G	Yumin_EN	Lahu_China	0.010163	0.002762	3.68	65140	
Malaysia_LN.G	Qijia_LN	Lahu_China	0.010199	0.001622	6.286	78604	
Malaysia_LN.G	Tibetan_Chamdo	Lahu_China	0.010683	0.001132	9.437	84250	
Mekong_N	Sherpa.DG	Lahu_China	0.010862	0.001495	7.267	81702	
Mekong_N	Yumin_EN	Lahu_Vietnam	0.008825	0.00227	3.889	68785	
Malaysia_LN.G	Yumin_EN	Lahu_Vietnam	0.010852	0.002663	4.074	66561	
Mekong_N	Qijia_LN	Lahu_Vietnam	0.012234	0.001375	8.895	82996	
Mlabri	Yumin_EN	Lahu_Vietnam	0.012279	0.001718	7.146	84001	
Malaysia_LN.G	Qijia_LN	Lahu_Vietnam	0.012334	0.001543	7.994	79719	
Source_1	Source_2	Target	f_3	std.err	Z	SNPs	
---------------	--------------	--------------	----------	---------	-------	--------	
Atayal	Qijia_LN	Han_Fujian	-0.005661	0.000819	-6.912	100135	
Kankanaey	Qijia_LN	Han_Fujian	-0.004939	0.000759	-6.506	100676	
Atayal	Yumin_EN	Han_Fujian	-0.004855	0.00132	-3.68	83301	
Hlai_Qionzhong	Qijia_LN	Han_Fujian	-0.004405	0.000645	-6.828	105279	
Kankanaey	Yangshao_MN	Han_Fujian	-0.004354	0.000834	-5.222	100270	
Atayal	Yumin_EN	Han_Guangdong	-0.005255	0.001198	-4.385	84603	
Hlai_Qionzhong	Yumin_EN	Han_Guangdong	-0.004742	0.000835	-5.677	88521	
Atayal	Qijia_LN	Han_Guangdong	-0.004456	0.000746	-3.68	83301	
Ami	Yumin_EN	Han_Guangdong	-0.004278	0.001073	-4.385	84603	
Maonan	Yumin_EN	Han_Guangdong	-0.004173	0.000876	-4.72	87806	
Atayal	Qijia_LN	Han_Taiwan	-0.004181	0.000711	-5.88	101169	
Atayal	Yumin_EN	Han_Taiwan	-0.004013	0.001229	-3.26	84541	
Hlai_Qionzhong	Yumin_EN	Han_Taiwan	-0.003404	0.000833	-4.084	88057	
Kankanaey	Qijia_LN	Han_Taiwan	-0.00315	0.000651	-4.836	101443	
Hlai_Qionzhong	Qijia_LN	Han_Taiwan	-0.003081	0.000511	-6.034	104904	
Qijia_LN	Atayal	Han_Hakka	-0.005343	0.000696	-7.67	101131	
Qijia_LN	Kankanaey	Han_Hakka	-0.004676	0.000635	-7.36	101487	
Sherpa.DG	Kankanaey	Han_Hakka	-0.004664	0.000734	-6.35	100941	
Tibetan_Chamdo	Ami	Han_Hakka	-0.004617	0.000436	-10.58	105655	
Sherpa.DG	Ami	Han_Hakka	-0.004606	0.00068	-6.774	101421	
Mongolia_N_North	Hlai_HO	Han_Guangxi	-0.004074	0.000537	-7.58	103164	
Qijia_LN	Atayal	Han_Guangxi	-0.004072	0.00054	-7.54	107035	
Yumin_EN	Atayal	Han_Guangxi	-0.003639	0.000981	-3.71	89909	
Qijia_LN	Hlai_HO	Han_Guangxi	-0.003628	0.000494	-7.34	106925	
Qijia_LN	Hlai_Qionzhong	Han_Guangxi	-0.003512	0.00029	-12.119	107881	
Atayal	Qijia_LN	Han_Zhejiang	-0.005071	0.000843	-6.015	100136	
Kankanaey	Qijia_LN	Han_Zhejiang	-0.004388	0.0008	-5.486	100775	
Ami	Qijia_LN	Han_Zhejiang	-0.004223	0.000729	-5.797	101373	
Hlai_HO	Qijia_LN	Han_Zhejiang	-0.004132	0.000812	-5.089	99336	
Hlai_HO	Boisman_MN	Han_Zhejiang	-0.003947	0.000837	-4.717	93280	
Atayal	Qijia_LN	CHS.SG	-0.0021	0.000535	-3.927	107824	
Kankanaey	Qijia_LN	CHS.SG	-0.0013	0.000469	-2.774	107480	
Ami	Qijia_LN	CHS.SG	-0.000939	0.000421	-2.23	107882	
Hlai_Qionzhong	Qijia_LN	CHS.SG	-0.00088	0.0003	-2.936	108513	
Hlai_HO	Qijia_LN	CHS.SG	-0.000867	0.000481	-1.802	107768	
Source_1	Source_2	Target	1	3	std.err	Z	SNPs
------------	----------	----------------	-----	----	---------	-----	------
Mlabri	Fujian_LN	Hlai_Qiongzhong	0.001787	0.001192	1.499	69995	
Melong_N	Ami	Hlai_Qiongzhong	0.002454	0.000704	3.485	87834	
Melong_N	Atayal	Hlai_Qiongzhong	0.003009	0.000893	3.370	87595	
MalaysiaLN.SG	Ami	Hlai_Qiongzhong	0.003202	0.000876	3.445	84545	
Melong_N	Kankanaey	Hlai_Qiongzhong	0.003176	0.000893	3.370	87595	
Mlabri	Fujian_LN	Zhaung_Guangxi	-0.002579	0.001118	-2.306	72220	
Hlai_HO	Mitsubishi_North	Zhaung_Guangxi	-0.002157	0.000548	-3.934	104529	
Melong_N	Ami	Zhaung_Guangxi	0.002070	0.000626	3.390	90401	
Hlai_HO	Kolyma_M	Zhaung_Guangxi	-0.001675	0.000867	-1.932	108675	
Melong_N	Atayal	Zhaung_Yunnan	-0.001246	0.000609	-2.045	105224	
Melong_N	Ami	Zhaung_Yunnan	-0.001212	0.000609	-1.365	88055	
Mlabri	Fujian_LN	Zhuang_Guangxi	-0.002579	0.001118	-2.478	72015	
Hlai_HO	Mongolia_N_North	Zhuang_Guangxi	-0.002157	0.000548	-3.934	104529	
Melong_N	Ami	Zhuang_Guangxi	0.002070	0.000626	3.390	90401	
Hlai_HO	Kolyma_M	Zhuang_Guangxi	-0.001675	0.000867	-1.932	108675	
Mlabri	Ginger	Zhuang_Guangxi	-0.002579	0.001118	-2.478	72015	
Melong_N	Ami	Zhuang_Guangxi	0.002070	0.000626	3.390	90401	
Mlabri	Fujian_LN	Zhuang_Yunnan	-0.001246	0.000609	-2.045	105224	
Melong_N	Ami	Zhuang_Yunnan	-0.001212	0.000609	-1.365	88055	

C

34
Extended Data Table 4. Admixture time estimates for Hmong-Mien Cline inferred by ALDER.

p-value	target	reference A	reference B	Z-score	admixture time estimate
1.5E-10	Miao_Rongshui	Hmong_Core	CHB.SG	6.40	24.43 ± 3.82
1.6E-07	Miao_Sanjiang	Hmong_Core	Austronesian_Core	5.25	25.80 ± 4.92
6.8E-09	Miao_Rongshui	Hmong_Core	KHV.SG	5.80	25.92 ± 4.47
1.8E-13	Miao_Rongshui	Hmong_Core	CDX.SG	7.36	26.76 ± 3.64
4.4E-10	Miao_Sanjiang	Hmong_Core	Tibetan_Core	6.24	26.86 ± 4.30
4.8E-07	Dong_Hunan	Hmong_Core	Hlai_all	5.03	26.97 ± 5.36
5.4E-09	Miao_Rongshui	Hmong_Core	Amur_Core	5.83	27.02 ± 4.63
2.9E-09	Miao_Sanjiang	Hmong_Core	CHS.SG	5.93	27.08 ± 4.56
2.9E-09	Miao_Sanjiang	Hmong_Core	CHS.SG	5.93	27.08 ± 4.56
2.8E-06	Dong_Hunan	Hmong_Core	CHB.SG	4.69	28.36 ± 6.05
1.0E-06	Dong_Hunan	Hmong_Core	Tibetan_Core	4.89	29.32 ± 6.00
4.9E-08	Miao_Sanjiang	Hmong_Core	CDX.SG	5.46	29.33 ± 5.38
1.8E-06	Dong_Hunan	Hmong_Core	KHV.SG	4.78	29.38 ± 6.15
1.3E-07	Dong_Hunan	Hmong_Core	CHS.SG	5.28	29.91 ± 5.67
1.3E-07	Dong_Hunan	Hmong_Core	CHS.SG	5.28	29.91 ± 5.67
7.5E-18	Miao_Huanjiang	Hmong_Core	Hlai_all	8.61	31.09 ± 3.61
2.3E-12	Dong_Guizhou	Hmong_Core	KHV.SG	7.01	31.97 ± 4.56
5.7E-19	Miao_Huanjiang	Hmong_Core	KHV.SG	8.90	32.09 ± 3.61
2.5E-18	Miao_Huanjiang	Hmong_Core	CHB.SG	8.73	33.91 ± 3.88
2.1E-07	Dong_Guizhou	Hmong_Core	CDX.SG	5.19	34.58 ± 6.67
1.6E-18	Miao_Huanjiang	Hmong_Core	Zhuang_Guangxi	8.79	35.01 ± 3.98
1.3E-09	PaThen	Hmong_Core	Zhuang_Guangxi	6.07	37.30 ± 6.14
1.9E-09	Dong_Guizhou	Hmong_Core	CHB.SG	6.01	38.26 ± 6.37
1.4E-15	Dong_Guizhou	Hmong_Core	CHS.SG	7.98	38.91 ± 4.87
1.4E-15	Dong_Guizhou	Hmong_Core	CHS.SG	7.98	38.91 ± 4.87
3.0E-10	PaThen	Hmong_Core	CHS.SG	6.30	39.73 ± 6.31
3.0E-10	PaThen	Hmong_Core	CHS.SG	6.30	39.73 ± 6.31
3.8E-09	PaThen	Hmong_Core	CHB.SG	5.89	40.25 ± 6.83
1.5E-09	Dong_Guizhou	Hmong_Core	JPT.SG	6.04	40.27 ± 6.67
7.2E-19	Miao_Huanjiang	Hmong_Core	Tibetan_Core	8.87	40.86 ± 4.61
1.2E-08	Dong_Guizhou	Hmong_Core	Tibetan_Core	5.70	41.91 ± 7.09
1.7E-05	Miao_Longsheng	Hmong_Core	KHV.SG	4.30	41.91 ± 9.74
4.1E-05	Miao_Longsheng	Hmong_Core	CHS.SG	4.10	45.62 ± 11.13
4.1E-05	Miao_Longsheng	Hmong_Core	CHS.SG	4.10	45.62 ± 11.13
4.6E-05	Miao_Longsheng	Hmong_Core	CDX.SG	4.08	46.40 ± 11.38
Extended Data Table 5.

Pop	P-value	Ancestry Coefficient	Standard Error
		Mongolia_N	Andaman_HG
Haminmangha_MN	2.139E-01	0.852	0.148
Jalainur_EN	9.769E-01	0.992	0.008
Xianbei_IA	4.856E-02	0.956	0.044
Heishui_Mohe_Medieval	4.749E-01	0.707	0.293
Yankovsky_IA	2.113E-01	0.969	0.031
Boisman_MN	5.588E-01	0.936	0.064
DevilsCave_N	3.318E-01	0.883	0.117
U_Xiajiadian_BA_o	7.984E-02	1.046	-0.046
Yumin_EN	4.060E-02	0.978	0.022
Mongolia_N_North	6.086E-02	1.025	-0.025
Hongshan_MN	7.480E-01	0.869	0.131
L_Xiajiadian_LN	6.424E-01	0.837	0.163
U_Xiajiadian_BA	4.833E-01	0.900	0.100
Jomon_HG	9.088E-01	0.435	0.565
Sakhalin_HG	1.574E-01	0.552	0.448
Shandong_EN	3.289E-01	0.861	0.139
Yangshao_MN	9.339E-01	0.787	0.213
Longshan_LN	6.039E-01	0.826	0.174
Miaozigou_MN	8.369E-01	0.922	0.078
Shimao_LN	1.909E-01	0.853	0.147
Henan_LBIA	3.191E-01	0.797	0.203
Omnogovi_WestHan_IA	5.448E-01	0.786	0.214
Qijia_LN	4.798E-01	0.780	0.220
Dacaozi_IA	2.658E-01	0.820	0.180
Nepal_LN_BA_IA	9.297E-02	0.702	0.298
Laos_N	6.922E-01	0.442	0.558
Malaysia_LN.SG	3.746E-01	0.483	0.517
Vietnam_N	8.132E-01	0.426	0.574
Vietnam_LN_BA	3.047E-01	0.481	0.519
Vietnam_BA	6.560E-01	0.663	0.337
Thailand_IA	3.194E-01	0.635	0.365
Qihe_EN	5.139E-01	0.583	0.417
Liangdao1_EN	7.219E-01	0.527	0.473
Liangdao2_EN	3.856E-01	0.570	0.430
Fujian_LN	1.814E-02	0.608	0.392
Hanben_IA	8.145E-01	0.688	0.312
Gongguan_IA	5.574E-01	0.672	0.328

36
Region	CA	TB	TH	OR	BN		
Vanuatu_2900BP_all	5.854E-01	0.638	0.362	0.061	0.061		
Daur	5.628E-01	0.883	0.117	0.032	0.032		
Xibo	2.916E-02	0.840	0.160	0.034	0.034		
Hezhen	1.081E-01	0.905	0.095	0.033	0.033		
Nanai	2.966E-01	0.966	0.034	0.034	0.034		
Negidal	1.523E-01	1.017	-0.017	0.041	0.041		
Nivh	1.268E-01	0.979	0.021	0.036	0.036		
Oroqen	9.378E-02	0.936	0.064	0.034	0.034		
Ulchi	7.103E-02	0.990	0.010	0.034	0.034		
Korean	4.766E-01	0.822	0.178	0.032	0.032		
Japanese	1.255E-01	0.787	0.213	0.029	0.029		
JPT.SG	9.384E-02	0.795	0.205	0.030	0.030		
CHB.SG	1.701E-01	0.789	0.211	0.030	0.030		
CHS.SG	3.262E-01	0.746	0.254	0.029	0.029		
Han_NChina	3.269E-01	0.782	0.218	0.030	0.030		
Han_Shaxi	7.612E-01	0.780	0.220	0.030	0.030		
Han_Shandong	3.585E-01	0.777	0.223	0.030	0.030		
Han_Henan	3.620E-01	0.797	0.203	0.034	0.034		
Han_Jiangsu	6.479E-01	0.790	0.210	0.031	0.031		
Han_Shanghai	3.596E-01	0.771	0.229	0.035	0.035		
Han_Hubei	3.524E-01	0.751	0.249	0.033	0.033		
Tuji	2.355E-01	0.761	0.239	0.030	0.030		
Han_Chongqing	3.799E-01	0.755	0.245	0.035	0.035		
Han_Sichuan	3.907E-01	0.747	0.253	0.030	0.030		
Han_Zhejiang	2.320E-01	0.757	0.243	0.032	0.032		
Han_Fujian	3.615E-01	0.724	0.276	0.032	0.032		
Han_Taiwan	6.705E-01	0.742	0.258	0.031	0.031		
Han_Hakka	4.255E-01	0.735	0.265	0.030	0.030		
Han_Yunnan	3.207E-01	0.749	0.251	0.029	0.029		
Han_Guangdong	3.999E-01	0.712	0.288	0.031	0.031		
Han_Guangxi	4.243E-01	0.704	0.296	0.029	0.029		
Han_Haikou	4.678E-01	0.721	0.279	0.028	0.028		
Monguor	4.567E-02	0.770	0.230	0.031	0.031		
Yugur	1.634E-01	0.772	0.228	0.030	0.030		
Qiang_Daofu	1.641E-01	0.760	0.240	0.030	0.030		
Qiang_Danba	1.713E-01	0.782	0.218	0.030	0.030		
Tibetan_Xinlong	2.645E-01	0.759	0.241	0.031	0.031		
Tibetan_Gangcha	1.053E-01	0.774	0.226	0.030	0.030		
Tibetan_Xunhua	3.318E-02	0.723	0.277	0.034	0.034		
Tibetan_Chamdo	2.783E-01	0.770	0.230	0.030	0.030		
Tibetan_Lhasa	3.319E-01	0.754	0.246	0.031	0.031		
Tibetan_Nagqu	5.123E-01	0.759	0.241	0.030	0.030		
Tibetan_Shirzate	3.908E-01	0.724	0.276	0.031	0.031		
Tibetan_Shannan	3.233E-01	0.722	0.278	0.031	0.031		
Region	Value 1	Value 2	Value 3	Value 4	Value 5		
-----------------	---------------	---------------	---------------	---------------	---------------		
Sherpa.DG	2.050E-02	0.713	0.287	0.039	0.039		
Naxi	3.315E-01	0.728	0.272	0.030	0.030		
Yi	5.347E-01	0.756	0.244	0.030	0.030		
Lahu_China	7.062E-01	0.652	0.348	0.029	0.029		
Lahu_Vietnam	7.231E-01	0.682	0.318	0.030	0.030		
Cong	6.635E-01	0.634	0.366	0.030	0.030		
HaNhi	3.238E-01	0.695	0.305	0.029	0.029		
Sila	5.416E-01	0.696	0.304	0.031	0.031		
She	3.514E-01	0.730	0.270	0.031	0.031		
Miao_Hunan	4.511E-01	0.727	0.273	0.030	0.030		
Miao_Longlin	6.374E-01	0.687	0.313	0.033	0.033		
Miao_Xilin	3.733E-01	0.681	0.319	0.033	0.033		
Miao_Rongshui	1.874E-01	0.703	0.297	0.032	0.032		
Miao_Sanjiang	2.764E-01	0.681	0.319	0.033	0.033		
Miao_Huanjiang	5.102E-01	0.703	0.297	0.031	0.031		
Miao_Longsheng	7.503E-01	0.699	0.301	0.031	0.031		
Miao_Ziyuan	1.504E-01	0.709	0.291	0.032	0.032		
Hmong	3.666E-01	0.692	0.308	0.031	0.031		
PaThen	4.965E-02	0.729	0.271	0.032	0.032		
Dao	3.200E-01	0.689	0.311	0.031	0.031		
Gelaos	2.265E-01	0.673	0.327	0.030	0.030		
LaChi	3.818E-01	0.666	0.334	0.033	0.033		
CoLao	3.944E-01	0.695	0.305	0.032	0.032		
Maonan	3.220E-01	0.676	0.324	0.031	0.031		
Mulam	1.359E-01	0.691	0.309	0.031	0.031		
Dong_Guizhou	4.464E-01	0.704	0.296	0.031	0.031		
Dong_Hunan	3.626E-01	0.700	0.300	0.031	0.031		
Hlai_Qiongzong	5.390E-01	0.656	0.344	0.029	0.029		
Hlai_HO	2.707E-01	0.651	0.349	0.034	0.034		
Zhuang_HO	4.818E-01	0.688	0.312	0.029	0.029		
Zhuang_Guangxi	4.656E-01	0.689	0.311	0.028	0.028		
Zhuang_Yunnan	2.399E-01	0.681	0.319	0.030	0.030		
Nung	4.955E-01	0.680	0.320	0.029	0.029		
Tay	3.502E-01	0.680	0.320	0.030	0.030		
BoY	9.470E-02	0.685	0.315	0.033	0.033		
Dai	2.867E-01	0.670	0.330	0.031	0.031		
CDX.SG	4.419E-01	0.663	0.337	0.029	0.029		
Muong	6.631E-01	0.671	0.329	0.030	0.030		
Kinh	7.350E-01	0.663	0.337	0.030	0.030		
Vietnamese	3.438E-01	0.678	0.322	0.030	0.030		
KHV.SG	5.111E-01	0.664	0.336	0.028	0.028		
Dusun	3.060E-01	0.586	0.414	0.031	0.031		
Murut	5.699E-01	0.597	0.403	0.032	0.032		
Malay	2.518E-01	0.482	0.518	0.031	0.031		
Language	Value	Precision	Recall	F1-Score	Precision	Recall	F1-Score
----------------	-------	-----------	--------	----------	-----------	--------	----------
Lao	8.070E-01	0.592	0.408	0.030	0.030		
Thai	4.131E-02	0.538	0.462	0.032	0.032		
Cambodian	1.697E-01	0.515	0.485	0.031	0.031		
Mang	6.467E-01	0.615	0.385	0.030	0.030		
Htin_Mal	6.216E-01	0.545	0.455	0.033	0.033		
Miabri	5.319E-01	0.498	0.502	0.039	0.039		
Ami	5.141E-01	0.642	0.358	0.032	0.032		
Atayal	6.564E-01	0.676	0.324	0.034	0.034		
Kankanaey	7.745E-01	0.668	0.332	0.032	0.032		
Tagalog	5.997E-01	0.592	0.408	0.031	0.031		
Malaysia_Jehai.SG	9.572E-01	0.177	0.823	0.049	0.049		
Onge.DG	7.643E-01	-0.036	1.036	0.046	0.046		
max $|Z| = 2.497$ likelihood = 26.727

- SouthAfrica_HG
- Loschbour_M
- Andaman_HG
- Alaska_LP
- Mongolia_N
- Boisman_MN
- Jomon_HG
- MSEA_N
- Hanben_IA
- Sherpa
- Miao_Longlin
- Hlai_Qiongzhong

kya bp

- 11.4
- 7.8
- 7.2
- 5.3
- 3.0
- 1.6
- 0.0

Regions:
- Non-East Eurasian
- Early East Eurasian
- Early East Asian
- Northern East Asian
- Tibeto-Burman/ Northwest China
- Southern East Asian
- Eastern Coastal East Asian
European First Americans Northern East Asian Inland Southern East Asian Coastal Southern East Asian

44.7 kya [44.6, 44.8]
27.7 kya [27.4, 27.9]
23.4 kya [23.1, 23.7]
16.4 kya [16.2, 16.9]

15.4% [15.0, 15.7]
12.7 kya [12.6, 12.7]

3.6% [3.5, 3.8]
0.58 kya

log-likelihood = -69,930,413
