New observational constraints on $f(R)$ gravity from cosmic chronometers

Rafael C. Nunesa Supriya Panb Emmanuel N. Saridakisc,d Everton M. C. Abreuc,a

aDepartamento de Física, Universidade Federal de Juiz de Fora, 36036-330, Juiz de Fora, MG, Brazil
bDepartment of Physical Sciences, Indian Institute of Science Education and Research – Kolkata, Mohanpur – 741246, West Bengal, India
cPhysics Division, National Technical University of Athens, 15780 Zografou Campus, Athens, Greece
dCASPER, Physics Department, Baylor University, Waco, TX 76798-7310, USA
eGrupo de Física Teórica e Matemática Física, Universidade Federal Rural do Rio de Janeiro, 23890-971, Seropédica, RJ, Brazil

E-mail: rcnunes@fisica.ufjf.br, span@iiserkol.ac.in, Emmanuel_Saridakis@baylor.edu, evertonabreu@ufrrj.br

ABSTRACT: We use the recently released cosmic chronometer data and the latest measured value of the local Hubble parameter, combined with the latest joint light curves of Supernovae Type Ia, and Baryon Acoustic Oscillation distance measurements, in order to impose constraints on the viable and most used $f(R)$ gravity models. We consider four $f(R)$ models, namely the Hu-Sawicki, the Starobinsky, the Tsujikawa, and the exponential one, and we parametrize them introducing a distortion parameter b that quantifies the deviation from ΛCDM cosmology. Our analysis reveals that a small but non-zero deviation from ΛCDM cosmology is slightly favored, with the corresponding fittings exhibiting very efficient AIC and BIC Information Criteria values. Clearly, $f(R)$ gravity is consistent with observations, and it can serve as a candidate for modified gravity.

KEYWORDS: Modified gravity, $f(R)$ gravity, Dark energy, Observational constraints, Cosmic chronometers, Information Criteria
1 Introduction

According to the concordance model of cosmology the universe must have experienced two accelerated expansion phases, at early and late times respectively. This behavior cannot be reproduced within the standard framework of general relativity and Standard Model of particles, and thus extra degrees of freedom should be introduced. Firstly, one can attribute these extra degrees of freedom to new, exotic forms of matter, such as the inflaton field at early times (for reviews see [1, 2]) and/or the dark energy concept at late times (for reviews see [3, 4]). Alternatively, one can consider the extra degrees of freedom to have gravitational origin, i.e. to arise from a gravitational modification that possesses general relativity as a particular limit (see [5, 6] and references therein). Note that the latter approach has the additional advantage that it might improve renormalizability and thus alleviate the difficulties towards quantization [7, 8].

In the usual approach to gravitational modification one adds higher-order corrections to the Einstein-Hilbert action. The simplest such modification arises from extending the Ricci scalar R to an arbitrary function $f(R)$, which can lead to interesting behavior at early times [9], as well as explain the late-time acceleration [10-21], or describe both phases in a unified...
way [22–24], and can explain the large scale structure distribution in the universe [25, 26]. However, one can construct many other classes of curvature-based modified gravities, such as \(f(G) \) gravity [27, 28], Lovelock gravity [29, 30], Weyl gravity [31, 32], Galileon theory [33–36], or even extend to torsion-based modifications, such as \(f(T) \) gravity [37–42], \(f(T, T_G) \) gravity [43–45], etc.

An important and probably the most justified question in all gravitational modifications is what is the choice of the involved arbitrary function. A first constraining of the possible forms comes from theoretical arguments, such that the requirement for a ghost-free theory that possesses stable perturbations [10], or the desire for the theory to possess Noether symmetries [46, 47]. However, in order to further constrain the remaining huge class of theories the main tool is the use of observational data and the requirement for a successful reproduction of the universe history, as well as of the local/solar system behavior. In the case of \(f(R) \) gravity such a confrontation with cosmological data was performed in [48] (using data from cosmic microwave background (CMB) probes), in [49, 50] (using Large Scale Structure (LSS) data), in [51] (using neutron stars mass-radius data), in [52] (using Supernovae type Ia (SNe Ia) and Hubble Parameter data), in [53] (using SNe Ia and CMB data), in [54, 55] (using SNe Ia, CMB and data from baryonic acoustic oscillations (BAO) probes), in [56] (using Hubble Parameter and BAO data), in [57] (using CMB, BAO, Hubble Parameter data), in [58–61] (using SNe Ia, CMB, and growth rate data), in [62] (using SNe Ia, CMB, BAO, Hubble Parameter and cluster abundance constraints), and in [63] (using SNe Ia, CMB, BAO, Hubble Parameter, gravitational lenses and growth rate data). Additionally, the comparison with solar system data was performed in [64–70]. Hence, constructions that pass all the above constraints are called viable models.

In the present work we intend to provide updated observational constraints on \(f(R) \) gravity models, using the latest released cosmic chronometer data set and the latest released local value of the Hubble parameter with 2.4% precision, along with the standard cosmological probes for dark energy analysis, such as Supernovae type Ia and baryonic acoustic oscillations data. In particular, we will consider four viable \(f(R) \) models, namely (i) Hu-Sawicki model, (ii) Starobinsky model, (iii) Tsujikawa model and finally (iv) exponential \(f(R) \) model, and we will provide the updated constraints and contour plots for the involved parameters. The plan of the manuscript is the following: In section 2 we briefly review \(f(R) \) gravity and its cosmological application, focusing on four viable \(f(R) \) models. In section 3 we describe the data sets used for the observational confrontation, while in section 4 we provide the results of our analysis, namely the updated observational constraints on the various model parameters and observational quantities. Finally, we close our work in section 5, with a summary and discussion.

2 \(f(R) \) gravity and cosmology

In this section we briefly review \(f(R) \) gravity and we proceed to its cosmological application. Then we examine four specific \(f(R) \) models, which, amongst the variety of \(f(R) \) scenarios, pass the basic theoretical and observational tests and thus they are considered as viable ones.
2.1 $f(R)$ gravity

In $f(R)$ gravitational theories one extends the Einstein-Hilbert action to

$$S = \int d^4x \sqrt{-g} \frac{f(R)}{16\pi G} + S_m + S_r,$$

(2.1)

with R the Ricci scalar and G the gravitational constant, and where we have also considered the actions for the matter and radiation sectors, S_m and S_r respectively. Following the metric formulation, variation of the action (2.1) with respect to the metric $g_{\mu\nu}$ leads to the field equations

$$FG_{\mu\nu} = -\frac{1}{2}g_{\mu\nu}(FR - f) + \nabla_{\mu}\nabla_{\nu}F - g_{\mu\nu}\Box F + 8\pi G \left[T_{\mu\nu}^{(m)} + T_{\mu\nu}^{(r)}\right],$$

(2.2)

with $G_{\mu\nu} = R_{\mu\nu} - (1/2)g_{\mu\nu}R$ the Einstein tensor, ∇_{μ} the covariant derivative, $\Box \equiv g^{\mu\nu}\nabla_{\mu}\nabla_{\nu}$, and where we have defined $F(R) \equiv f_{,R} = df(R)/dR$. Additionally, $T_{\mu\nu}^{(m)}$ and $T_{\mu\nu}^{(r)}$ are respectively the energy-momentum tensors for the matter and radiation sectors, corresponding to S_m and S_r.

Before proceeding, and for completeness, we mention that apart from the above metric (or second order) formulation of $f(R)$ gravity, in which the field equations are derived through variation of the action with respect to the metric tensor, and where the affine connection depends only on the metric, one could have the Palatini (or first order) formulation, where the metric and the connection are treated as independent variables in the action variation, under the assumption that the matter part of the action does not depend on the connection [10]. For a general $f(R)$ form these two approaches lead to different field equations, and only in the General Relativity case, i.e for $f(R) = R$, the two formulations coincide. Finally, one could also have the metric-affine formulation, in which the Palatini variation is used but without the additional assumption that the matter action is connection-independent (the metric-affine formulation reduces to metric or Palatini formulations if extra considerations are made). In the present work we focus on the standard metric formulation, since Palatini formalism might exhibit difficulties in being compatible with observations and experiments, as well as it faces problems with the formulation of the Cauchy problem due to the presence of matter fields higher-derivatives in the field equations (see [10] and the references therein).

2.2 $f(R)$ cosmology

We now proceed to the cosmological application of $f(R)$ gravity. Hence, we consider the usual homogeneous and isotropic geometry, characterized by the Friedmann-Robertson-Walker (FRW) background metric

$$ds^2 = -dt^2 + a(t)^2 \left[\frac{dr^2}{(1 - kr^2)} + r^2 (d\theta^2 + \sin^2 \theta d\phi^2)\right],$$

(2.3)

with $a(t)$ the scale factor and k the spatial curvature (with $k = 0, -1, +1$ for flat, open and closed universe respectively). Focusing for simplicity to the flat case, and inserting the
FRW metric into the field equations (2.2), we obtain the modified Friedmann equations

\[3FH^2 = 8\pi G (\rho_m + \rho_r) + \frac{1}{2} (FR - f) - 3H \dot{F}, \tag{2.4} \]

\[-2F \ddot{H} = 8\pi G (\rho_m + P_m + \rho_r + P_r) + \ddot{F} - H \dot{F}, \tag{2.5} \]

where \(H \equiv \dot{a}/a \) is the Hubble parameter, with dot denoting derivatives with respect to the cosmic time \(t \). Furthermore, we have considered that the matter and radiation sectors correspond to perfect fluids with energy densities \(\rho_m, \rho_r \) and pressures \(P_m, P_r \) respectively. Finally, note that in flat FRW geometry one obtains the useful relation

\[R = 6 \left(2H^2 + \dot{H} \right). \tag{2.6} \]

Observing the form of the Friedmann equations (2.4), (2.5), and comparing to the usual ones, namely

\[3H^2 = 8\pi G (\rho_m + \rho_r + \rho_{DE}) \]

as well as

\[-2\dot{H} = 8\pi G (\rho_m + P_m + \rho_r + P_r + \rho_{DE} + P_{DE}), \]

we deduce that in the scenario at hand we obtain an effective dark energy sector, with dark energy density and pressure defined as

\[\rho_{DE} \equiv \frac{1}{8\pi G} \left[\frac{1}{2} (FR - f) - 3H \dot{F} + 3(1 - F) H^2 \right], \tag{2.7} \]

\[P_{DE} \equiv \frac{1}{8\pi G} \left[-\frac{1}{2} (FR - f) + \ddot{F} + 2H \dot{F} - (1 - F) \left(2\dot{H} + 3H^2 \right) \right], \tag{2.8} \]

while its effective equation-of-state parameter reads:

\[w \equiv P_{DE}/\rho_{DE}. \tag{2.9} \]

One can easily see that \(\rho_{DE} \) and \(P_{DE} \) defined in (2.7), (2.8) satisfy the usual evolution equation

\[\dot{\rho}_{DE} + 3H(\rho_{DE} + P_{DE}) = 0. \tag{2.10} \]

Finally, the equations close considering the standard matter and radiation evolution equations, namely

\[\dot{\rho}_m + 3H(\rho_m + P_m) = 0, \tag{2.11} \]

\[\dot{\rho}_r + 3H(\rho_r + P_r) = 0, \tag{2.12} \]

respectively.

2.3 Specific \(f(R) \) models

In this subsection we review the most used and viable \(f(R) \) models. First of all, a given \(f(R) \) model must satisfy some basic theoretical constraints, namely to possess a positive effective gravitational constant, as well as to exhibit stable cosmological perturbations \cite{10}. In particular, one should have

\[f_R > 0 \text{ for } R \geq R_0, \tag{2.13} \]
with R_0 the present value of the Ricci scalar, in order to avoid a ghost state, and
\[f_{,RR} > 0 \quad \text{for} \quad R \geq R_0, \quad (2.14) \]
in order to avoid the scalar-field degree of freedom to become tachyonic. Additionally, a given $f(R)$ model must satisfy some basic observational requirements. Specifically, one should have
\[f(R) \to R - 2\Lambda \quad \text{for} \quad R \geq R_0, \quad (2.15) \]
in order to be able to reproduce the matter era and to obtain consistency with equivalence principle and local gravity constraints, and
\[0 < \frac{Rf_{,RR}}{f_{,R}}(r) < 1 \quad \text{at} \quad r = -\frac{Rf_{,R}}{f} = -2, \quad (2.16) \]
in order to have the presence and stability of a late-time de Sitter solution [10]. Hence, considering viable models that have up to two parameters, one can write them as
\[f(R) = R - 2\Lambda y(R, b), \quad (2.17) \]
where the function $y(R, b)$ quantifies the deviation from Einstein gravity, i.e. the effect of the $f(R)$ modification, through the distortion parameter b.

Having these in mind, one can construct four viable $f(R)$ models, that have been investigated in detail in the literature, which are given below.

1. The Hu-Sawicki model [70].

This model corresponds to
\[f(R) = R - \frac{c_1 R_{\text{HS}} (R/R_{\text{HS}})^p}{c_2 (R/R_{\text{HS}})^p + 1}, \quad (2.18) \]
where c_1, c_2 and R_{HS} are parameters and $p > 0$ a positive constant. Note that not all of these parameters are independent since, using the first Friedmann equation (2.4) at present, one of them can be eliminated in favor of the present values of the density parameters $\Omega_i_0 = \frac{8\pi G \rho_i_0}{3H_0^2}$ as well as the present value of the Hubble function H_0 (the subscript “0” denotes the current value of a quantity). One can easily rewrite (2.18) to the form (2.17), with
\[y(R, b) = 1 - \frac{1}{1 + \left(\frac{R}{M_b}\right)^p}, \quad (2.19) \]
where the two free model parameters read as $\Lambda = \frac{c_1 R_{\text{HS}}}{2c_2}$ and $b = 2c_2^1 - 1/p / c_1$. Hence, one can see that for $b \to 0$ (i.e. for $c_1 \to \infty$, $R_{\text{HS}} \to 0$, with $c_1 R_{\text{HS}} \to 2c_2\Lambda$) the Hu-Sawicki model reduces to ΛCDM cosmology since $f(R) \to R - 2\Lambda$. We mention here that the above reduction/mapping to two parameters (plus p) offers an effective way in order to be able to investigate the fittings on all parameters through a reconstruction method via error propagation. In principle one could try to fit all parameters independently, however the existing data (in terms of quantity and precision) cannot lead to a good precision fits.
2. The Starobinsky model [71].

This model corresponds to

$$f(R) = R - \lambda R_S \left[1 - \left(1 + \frac{R^2}{R_S^2} \right)^{-n} \right],$$ \hspace{1cm} (2.20)

with $\lambda(> 0)$ and R_S the free parameters and $n > 0$ a positive constant. One can rewrite (2.20) to the form (2.17), with

$$y(R, b) = 1 - \frac{1}{1 + \left(\frac{R}{\Lambda b} \right)^2},$$ \hspace{1cm} (2.21)

where $\Lambda = \lambda R_S/2$ and $b = 2/\lambda$. Thus, for $b \to 0$ (i.e. for $\lambda \to \infty$, $R_S \to 0$, with $\lambda R_S \to 2\Lambda$) the Starobinsky model reduces to ΛCDM cosmology, namely $f(R) \to R - 2\Lambda$. Note that the mapping to two parameters (plus n) is performed similarly to the previous Hu-Sawicki model.

3. The Tsujikawa model [72].

This model corresponds to

$$f(R) = R - \mu R_T \tanh \left(\frac{R}{R_T} \right),$$ \hspace{1cm} (2.22)

where $\mu(> 0)$ and $R_T(> 0)$ are two positive constants. One can rewrite (2.22) as (2.17), defining

$$y(R, b) = \tanh \left(\frac{R}{b\Lambda} \right),$$ \hspace{1cm} (2.23)

where $\Lambda = \mu R_T/2$, and $b = 2/\mu$. The Tsujikawa model reduces to ΛCDM cosmology for $b \to 0$ (i.e. for $\mu \to \infty$, $R_T \to 0$, with $\mu R_T \to 2\Lambda$).

4. The exponential gravity model [73–75].

This case corresponds to

$$f(R) = R - \beta R_E \left(1 - e^{-R/R_E} \right),$$ \hspace{1cm} (2.24)

with β, R_E the model parameters. One can rewrite (2.24) to the form (2.17), with

$$y(R, b) = 1 - e^{-R/(\Lambda b)},$$ \hspace{1cm} (2.25)

where $\Lambda = \beta R_E/2$, and $b = 2/\beta$. This model reduces to ΛCDM cosmology for $b \to 0$ (i.e. for $\beta \to \infty$, $R_E \to 0$, with $\beta R_E \to 2\Lambda$).
3 Current Observational Data

In this work we are interested in constraining $f(R)$ gravity using observational data acquired from probes that map the expansion history of the late-time universe, namely lying in the redshift region $z < 2.36$. The main ingredient of our analysis is the Hubble parameter measurements obtained with the cosmic chronometers (CC) technique, which are the latest and model-independent measurements of the Hubble parameter, and thus provide better constraints on a cosmological model. In addition, we consider standard probes such as Supernovae Type Ia (SNe Ia), local Hubble parameter value H_0 ones, and Baryon Acoustic Oscillation (BAO) distance measurements, in order to reduce the degeneracy between the free parameters of the models. We mention here that it would be both interesting and necessary to try to constrain $f(R)$ gravity on smaller scales, too. Although at galaxies and smaller scales the effect of modified gravity is expected to be very small and hardly detectable, indeed at galaxy clusters it might lead to observational constraints. This interesting subject lies beyond the scope of the present work, and it is left for a future project. The following subsections describe the employed data sets for our analysis.

3.1 Cosmic chronometer dataset and local value of the Hubble constant

The Cosmic Chronometer (CC) approach is a very powerful implementation in understanding the universe evolution. It was first introduced in [76], and the method determines the Hubble parameter data through the differential age evolution of the passively evolving early-type galaxies. Since the Hubble parameter for FRW universe can be expressed as $H = -(1 + z)^{-1}dz/dt$, by measuring the quantity dz/dt, one can directly measure the Hubble parameter data. Hence, the CC data are very powerful in order to provide better constraints on cosmological models. For a detailed description on the implementation of CC data, all possible kind of uncertainties, as well as some related issues, we refer the reader to [77]. Here we consider the compilation of Hubble parameter measurements as provided in [77, 78]. The data set contains 30 $H(z)$ measurements [77–81] obtained through the CC approach in the redshift range $0 < z < 2$, and it roughly covers about 10 Gyr of cosmic time. Moreover, in addition to the CC data, in our investigation we include the new local value of H_0 as measured by [82] with a 2.4 % determination, which yields $H_0 = 73.02 \pm 1.79$ km s$^{-1}$ Mpc$^{-1}$.

3.2 Type Ia Supernovae

SNe Ia provided the first signal for a universe acceleration [83, 84], and they serve as the main observational data set to probe the late-time, dark-energy epoch. In this work we consider the latest “joint light curves” (JLA) sample [85] containing 740 SNe Ia in the redshift range $z \in [0.01, 1.30]$. From the observational point of view, the distance modulus of a SNe Ia can be abstracted from its light curve, assuming that supernovae with identical color, shape and galactic environment, have on average the same intrinsic luminosity for all redshifts. This hypothesis is quantified by an empirical linear relation, yielding a standardized distance modulus $\mu = 5 \log_{10}(d_L/10pc)$ of the form

$$\mu = m_B^* - (M_B - \alpha \times X_1 + \beta \times C),$$

(3.1)
where \(m^*_B \) corresponds to the observed peak magnitude in rest frame B band and \(\alpha, \beta, \) and \(M_B \) are nuisance parameters in the distance estimate. The absolute magnitude is related to the host stellar mass \((M_{\text{stellar}}) \) by a simple step function: \(M_B = M_B \) if \(M_{\text{stellar}} < 10^{10} M_\odot \), otherwise \(M_B = M_B + \Delta M \). The light-curve parameters \((m^*_B, X_1 \) and \(C) \) result from the fit of a model of the SNe Ia spectral sequence to the photometric data. In our analysis we assume \(M_B, \Delta M, \alpha \) and \(\beta \) as nuisance parameters.

3.3 Baryon Acoustic oscillation

Another potential cosmological test comes from the baryon acoustic oscillations (BAO) data. In our analysis, we adopt the following BAO data to constrain the expansion history of the universe: the measurement from the Six Degree Field Galaxy Survey (6dF) \[86\], the Main Galaxy Sample of Data Release 7 of Sloan Digital Sky Survey (SDSS-MGS) \[87\], the LOWZ and CMASS galaxy samples of the Baryon Oscillation Spectroscopic Survey (BOSS-LOWZ and BOSS-CMASS, respectively) \[88\], and the distribution of the LymanForest in BOSS (BOSS-Ly) \[89\]. These measurements and their corresponding effective redshift \(z \) are summarized in Table 1.

Survey	\(z \)	Parameter	Measurement	Reference
6dF	0.106	\(r_s/D_V \)	0.327 ± 0.015	\[86\]
SDSS-MGS	0.10	\(D_V/r_s \)	4.47 ± 0.16	\[87\]
BOSS-LOWZ	0.32	\(D_V/r_s \)	8.47 ± 0.17	\[88\]
BOSS-CMASS	0.57	\(D_V/r_s \)	13.77 ± 0.13	\[88\]
BOSS-Lyα	2.36	\(c/(Hr_s) \)	9.0 ± 0.3	\[89\]
BOSS-Lyα	2.36	\(D_A/r_s \)	10.08 ± 0.4	\[89\]

Table 1. Baryon acoustic oscillation (BAO) data measurements included in our analysis.

4 Observational Constraints

In this section we shall present the main observational constraints, extracted for the four viable \(f(R) \) models reviewed in subsection 2.3. We use the data described in the previous section, and we first perform fittings using Cosmic Chronometer (CC) + \(H_0 \) observations. Then, we proceed to the combination of all data sets, namely of SNe Ia “joint light curves” (JLA) + BAO + CC + \(H_0 \). To fit the free parameters in these \(f(R) \) scenarios we use the publicly available code CLASS \[90\] in the interface with the public Monte Carlo code Monte Python \[91\]. Moreover, in our analysis we use the Metropolis Hastings algorithm as our sampling method. In the following subsections we shall separately discuss the observational results on the various \(f(R) \) models.

4.1 Constraints on Hu-Sawicki model

We fit the Hu-Sawicki model of (2.18), following the above procedure, and in Fig. 1 we present the contour plots of various quantities and model parameters, for both used data
sets. We mention that since there is a known degeneracy between \(p \) and \(\Omega_{m0} \) that requires to fix \(p \) a priori, we choose the case \(p = 1 \) since it is the most used case in the literature [60] (in principle one could perform the fittings for higher \(p \) too, nevertheless higher values have difficulties in fitting the data). Additionally, in Table 2 we summarize the best fit values of the data analysis for the two data sets respectively. As we observe, and interestingly enough, the parameter \(b \) which quantifies the deviation from ΛCDM cosmology is favored to have nonzero values for both data sets (for the combined analysis, i.e. for JLA + BAO + CC + \(H_0 \), the contours come closer to zero comparing to the CC + \(H_0 \) case, but the zero value is only marginally allowed), although the zero value is still inside the allowed region.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{contour_plots}
\caption{Contour plots for the free parameter \(b \), as well as for the present value of the matter density parameter \(\Omega_{m0} \) and for the dimensionless Hubble parameter \(h \), for the Hu-Sawicki model of (2.18). The red and pink regions correspond to 1σ and 2σ confidence level in the case of CC + \(H_0 \) data sets, while the blue and light blue regions correspond to 1σ and 2σ confidence level for the combined analysis of JLA + BAO + CC + \(H_0 \) data sets. Additionally, we present the corresponding marginalized one-dimensional posterior distributions. The parameter \(\Omega_m \) includes both baryons and cold dark matter, i.e. \(\Omega_m = \Omega_{cdm} + \Omega_b \), and \(h = H_0/100 \text{ km s}^{-1} \text{ Mpc}^{-1} \).}
\end{figure}
at both 1σ and 2σ confidence level. Hence, observations seem to slightly favor a small but not non-zero deviation from ΛCDM cosmology. This is one of the main results of the present work. Although some indications towards this direction were previously obtained in [60], in the present work, with the addition of CC data, this behavior is enhanced.

Table 2. Summary of the best fit values and main results for the free parameter b, as well as for the present value of the matter density parameter Ω_{m0} and for the dimensionless Hubble parameter h, for the Hu-Sawicki model of (2.18), using CC+ H_0 and JLA+BAO+CC + H_0 observational data. The parameter Ω_{m} includes both baryons and cold dark matter, i.e. $\Omega_{m} = \Omega_{cdm} + \Omega_{b}$, and $h = H_0/100$ km s$^{-1}$ Mpc$^{-1}$.

Parameters	CC+ H_0	JLA + BAO + CC + H_0
b	$0.107^{+0.316}_{-0.158}$	$0.045^{+0.062}_{-0.077}$
h	$0.729^{+0.034}_{-0.034}$	$0.722^{+0.042}_{-0.043}$
Ω_{m}	$0.264^{+0.069}_{-0.058}$	$0.264^{+0.050}_{-0.052}$

4.2 Constraints on Starobinsky model

For the case of Starobinsky model of (2.20) with $n = 1$ (similarly to the Hu-Sawicki model there is a degeneracy between n and Ω_{n0} that requires to fix n a priori, and we choose the value $n = 1$ since it is the most used case in the literature), and similarly to the previous model, we perform the fittings using two different data sets, namely CC + H_0 data, and JLA + BAO + CC + H_0. In Fig. 2 we depict the contour plots of various quantities, while in Table 3 we provide the corresponding best fit values. In this model, the distortion parameter b which quantifies the deviation of the model from ΛCDM cosmology has a slight preference to be non zero (as can be especially seen by the marginalized one-dimensional posterior distribution), however the zero value is clearly allowed, at both 1σ and 2σ confidence level, and hence this model can observationally coincide with ΛCDM scenario.

Table 3. Summary of the best fit values and main results for the free parameter b, as well as for the present value of the matter density parameter Ω_{m0} and for the dimensionless Hubble parameter h, for the Starobinsky model of (2.20), using CC+ H_0 and JLA+BAO+CC+ H_0 observational data. The parameter Ω_{m} includes both baryons and cold dark matter, i.e. $\Omega_{m} = \Omega_{cdm} + \Omega_{b}$, and $h = H_0/100$ km s$^{-1}$ Mpc$^{-1}$.

Parameters	CC+ H_0	JLA + BAO + CC + H_0
b	$0.229^{+0.254}_{-0.720}$	$0.111^{+0.070}_{-0.286}$
h	$0.72^{+0.031}_{-0.031}$	$0.71^{+0.030}_{-0.028}$
Ω_{m}	$0.26^{+0.062}_{-0.050}$	$0.26^{+0.050}_{-0.042}$
Figure 2. Contour plots for the free parameter b, as well as for the present value of the matter density parameter Ω_{m0} and for the dimensionless Hubble parameter h, for the Starobinsky model of (2.20). The red and pink regions correspond to 1σ and 2σ confidence level in the case of $CC + H_0$ data sets, while the blue and light blue regions correspond to 1σ and 2σ confidence level for the combined analysis of $JLA + BAO + CC + H_0$ data sets. Additionally, we present the corresponding marginalized one-dimensional posterior distributions. The parameter Ω_m includes both baryons and cold dark matter, i.e., $\Omega_m = \Omega_{cdm} + \Omega_b$, and $h = H_0/100$ km s$^{-1}$ Mpc$^{-1}$.

4.3 Constraints on Tsujikawa model

For the case of Tsujikawa model of (2.22), in Fig. 3 we depict the contour plots arisen from the fitting analysis, while in Table 4 we present the corresponding best fit values for both used data sets, namely for $CC + H_0$ and for $JLA + BAO + CC + H_0$ observational data. As we observe, in this case the distortion parameter b is clearly non-zero, with the zero value only very marginally allowed. Thus, Tsujikawa model exhibits an observable deviation from ΛCDM cosmology. This is one of the main results of the present work.
4.4 Constraints on exponential model

For the case of exponential $f(R)$ gravity model of (2.24), in Fig. 4 we present the likelihood contours arisen from the fitting analysis, while in Table 5 we provide the corresponding best fit values for both used data sets, namely for CC + H_0 and JLA + BAO + CC + H_0. Similarly to the previous model, the parameter b that quantifies the deviation from ΛCDM cosmology is clearly non-zero, with the zero value only very marginally allowed. Hence, exponential $f(R)$ gravity could be observationally distinguished from ΛCDM paradigm. Furthermore, note that this scenario exhibits a very similar behavior with Tsujikawa model,
Figure 4. Contour plots for the free parameter b, as well as for the present value of the matter density parameter Ω_m and for the dimensionless Hubble parameter h, for the exponential $f(R)$ gravity model of (2.24. The red and pink regions correspond to 1σ and 2σ confidence level in the case of CC $+ H_0$ data sets, while the blue and light blue regions correspond to 1σ and 2σ confidence level for the combined analysis of JLA $+$ BAO $+$ CC $+$ H_0 data sets. Additionally, we present the corresponding marginalized one-dimensional posterior distributions. The parameter Ω_m includes both baryons and cold dark matter, i.e. $\Omega_m = \Omega_{cdm} + \Omega_b$, and $h = H_0/100$ km s$^{-1}$ Mpc$^{-1}$.

which was expected due to the relation of the hyperbolic tangent with the exponentials.

4.5 Model comparison

We close the observational analysis with the present subsection, in which we compare the fittings of the various models, using the standard information criteria. There are two main such criteria, namely the Akaike Information Criterion (AIC) [92] and the Bayesian or Schwarz Information Criterion (BIC) [93]. These are respectively defined as

$$AIC = -2 \ln \mathcal{L} + 2d = \chi^2_{\text{min}} + 2d,$$

(4.1)
Table 4. Summary of the best fit values and main results for the free parameter b, as well as for the present value of the matter density parameter Ω_{m0} and for the dimensionless Hubble parameter h, for the Tsujikawa model of (2.22), using CC+ H_0 and JLA+BAO+CC+ H_0 observational data. The parameter Ω_m includes both baryons and cold dark matter, i.e. $\Omega_m = \Omega_{cdm} + \Omega_b$, and $h = H_0/100$ km s$^{-1}$ Mpc$^{-1}$.

Parameters	CC+ H_0	JLA + BAO + CC + H_0
b	$0.429^{+0.400}_{-0.424}$, $-0.0.424$	$0.196^{+0.124}_{-0.195}$, $-0.0.195$
h	$0.726^{+0.031}_{-0.031}$, $-0.0.031$	$0.709^{+0.031}_{-0.035}$, $-0.0.035$
Ω_m	$0.261^{+0.063+0.059}_{-0.056-0.081}$	$0.284^{+0.041+0.048}_{-0.044-0.052}$

Table 5. Summary of the best fit values and main results for the free parameter b, as well as for the present value of the matter density parameter Ω_{m0} and for the dimensionless Hubble parameter h, for the exponential $f(R)$ gravity model of (2.24), using CC+ H_0 and JLA+BAO+CC+ H_0 observational data. The parameter Ω_m includes both baryons and cold dark matter, i.e. $\Omega_m = \Omega_{cdm} + \Omega_b$, and $h = H_0/100$ km s$^{-1}$ Mpc$^{-1}$.

Parameters	CC+ H_0	JLA + BAO + CC + H_0
b	$0.289^{+0.341+0.635}_{-0.289-0.289}$	$0.139^{+0.089+0.118}_{-0.130-0.130}$
h	$0.724^{+0.031+0.046}_{-0.032-0.047}$	$0.711^{+0.030+0.039}_{-0.026-0.033}$
Ω_m	$0.261^{+0.064+0.100}_{-0.055-0.080}$	$0.284^{+0.040+0.043}_{-0.049-0.062}$

and

$$BIC = -2 \ln \mathcal{L} + d \ln N = \chi^2_{min} + d \ln N,$$

(4.2)

where $\mathcal{L} = \exp(-\chi^2_{min}/2)$ is the maximum likelihood function, d is the number of model parameters and N denotes the total number of data points used in the statistical analysis. Definitely, one must also introduce a reference scenario, with respect of which the comparisons will be performed, and obviously this is $ΛCDM$ cosmology. Hence, for any given model denoted by M, and calculating the difference $\Delta X = X_M - X_{ΛCDM}$ (where $X = AIC$ or BIC), one may result to the following conclusions [94]; (i) If $\Delta X \leq 2$, then the concerned model has substantial support with respect to the reference model (i.e. it has evidence to be a good cosmological model), (ii) if $4 \leq \Delta X \leq 7$ it is an indication for less support with respect to the reference model, and finally, (iii) if $\Delta X \geq 10$ then the model has no observational support. Note that including the nuisance parameters arising from Supernova Type Ia, we have 6 model parameters in $ΛCDM$ paradigm, while in all $f(R)$ models we have 7 free parameters.

In Table 6 we present the values of ΔX for the four analyzed models, for both used data sets, namely for CC+ H_0 and JLA+BAO+CC+ H_0 ones. As we can see, for both data sets $\Delta AIC \leq 2$, and hence these models are very efficient and in very good agreement with observations, and they fit the data slightly better than $ΛCDM$ paradigm. Concerning
we observe that it acquires slightly larger values, and therefore according to this criterion ΛCDM scenario is slightly favored, although all $f(R)$ models are still very efficient. In summary, we deduce that all models behave very efficiently, and especially the Hu-Sawicki and Starobinsky ones seem to have a better fitting behavior comparing to ΛCDM paradigm.

Table 6. Summary of the AIC and BIC values, as well as of their difference from the reference model of ΛCDM cosmology, for the CC+ H_0 and JLA+BAO+CC+ H_0 data sets, for all four analyzed $f(R)$ models.

Models	CC+ H_0	JLA + BAO + CC + H_0						
	AIC	ΔAIC	BIC	ΔBIC	AIC	ΔAIC	BIC	ΔBIC
ΛCDM Model	28.205	0	36.809	0	721.084	0	749.017	0
Hu-Sawicki Model	28.744	0.539	38.782	1.973	720.840	−0.244	753.428	4.411
Starobinsky Model	29.096	0.891	39.134	2.325	721.726	0.642	754.314	5.297
Tsujikawa Model	29.407	1.202	39.445	2.636	722.966	1.882	755.554	6.537
Exponential Model	29.310	1.105	39.347	2.538	722.548	1.464	755.136	6.119

5 Conclusions

In this manuscript we have implemented the recently released cosmic chronometer data in order to impose constraints on the viable and most used $f(R)$ gravity models. In particular, we used the recent cosmic chronometer data set, along with the latest measured value of the local Hubble parameter, $H_0 = 73.02 \pm 1.79$ km s$^{-1}$ Mpc$^{-1}$ [82], while we additionally performed a combined analysis using the latest “joint light curves” (JLA) SNe Ia sample [85] in the redshift range $z \in [0.01, 1.30]$, as well as baryon acoustic oscillation (BAO) data points from various probes.

We examined four specific $f(R)$ models, namely the Hu-Sawicki, the Starobinsky, the Tsujikawa, and the exponential one, and we parametrized them introducing a distortion parameter b that quantifies the deviation from ΛCDM cosmology. Thus, we used the above observational data in order to fit this parameter, along with various other cosmological quantities.

For the Hu-Sawicki scenario the parameter b is favored to have nonzero values for both data sets, although the zero value is still inside the allowed region at both 1σ and 2σ confidence level, and thus a small but not non-zero deviation from ΛCDM cosmology is slightly favored. For the Starobinsky scenario b has a slight preference to be non zero, however the zero value is clearly allowed, at both 1σ and 2σ confidence levels, and hence this model can observationally coincide with ΛCDM scenario. However, for the Tsujikawa and exponential models the distortion parameter b is clearly non-zero, with the zero value only very marginally allowed. Hence, both these models exhibit an observable deviation from ΛCDM cosmology. This is one of the main results of the present work. Note that although some indications towards this direction had been previously obtained in the literature, in the present work, with the addition of CC data, this behavior is much more clear.
Finally, we performed a comparison of the fitting procedure with ΛCDM paradigm, using the AIC and BIC Information Criteria. According to AIC, for both data sets all four \(f(R) \) models are very efficient and sightly better than ΛCDM one, while according to BIC the ΛCDM scenario is slightly better, nevertheless with all \(f(R) \) models quite efficient.

In summary, using for the first time the recently released cosmic chronometer data, combined with data from other probes, we fitted the viable and most used \(f(R) \) gravity models. As we saw, clearly \(f(R) \) gravity is consistent with observations. Additionally, a small but non-zero deviation from ΛCDM cosmology is slightly favored, with the corresponding fittings exhibiting very efficient information criteria values. These features indicate that \(f(R) \) gravity may serve as a good candidate for gravitational modifications.

Acknowledgments

S.P. acknowledges Science and Engineering Research Board (SERB), Govt. of India, for awarding National Post-Doctoral Fellowship (File No: PDF/2015/000640). E.M.C.A. thanks CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), and the Brazilian scientific support federal agency, for partial financial support, under Grants numbers 302155/2015-5, 302156/2015-1 and 442369/2014-0 and the hospitality of Theoretical Physics Department at Federal University of Rio de Janeiro (UFRJ), where part of this work was carried out. This article is based upon work from COST Action “Cosmology and Astrophysics Network for Theoretical Advances and Training Actions”, supported by COST (European Cooperation in Science and Technology).

References

[1] K. A. Olive, Inflation, Phys. Rept. 190, 307 (1990).
[2] N. Bartolo, E. Komatsu, S. Matarrese and A. Riotto, Non-Gaussianity from inflation: Theory and observations, Phys. Rept. 402, 103 (2004), [arXiv:astro-ph/0406398].
[3] E. J. Copeland, M. Sami and S. Tsujikawa, Dynamics of dark energy, Int. J. Mod. Phys. D 15, 1753 (2006), [arXiv:hep-th/0603057].
[4] Y. -F. Cai, E. N. Saridakis, M. R. Setare and J. -Q. Xia, Quintom Cosmology: Theoretical implications and observations, Phys. Rept. 493, 1 (2010), [arXiv:0909.2776].
[5] S. Nojiri and S. D. Odintsov, Introduction to modified gravity and gravitational alternative for dark energy, eConf C 0602061, 06 (2006) [Int. J. Geom. Meth. Mod. Phys. 4, 115 (2007)], [arXiv:hep-th/0601213].
[6] S. Capozziello and M. De Laurentis, Extended Theories of Gravity, Phys. Rept. 509, 167 (2011), [arXiv:1108.6266].
[7] K. S. Stelle, Renormalization of Higher Derivative Quantum Gravity, Phys. Rev. D 16, 953 (1977).
[8] T. Biswas, E. Gerwick, T. Koivisto and A. Mazumdar, Towards singularity and ghost free theories of gravity, Phys. Rev. Lett. 108, 031101 (2012), [arXiv:1110.5249].
A. A. Starobinsky, *A New Type of Isotropic Cosmological Models Without Singularity*, Phys. Lett. B 91, 99 (1980).

A. De Felice and S. Tsujikawa, *f(R) theories*, Living Rev. Rel. 13, 3 (2010), [arXiv:1002.4928].

S. Capozziello, *Curvature quintessence*, Int. J. Mod. Phys. D 11, 483 (2002), [arXiv:gr-qc/0201033].

S. Capozziello, S. Carloni and A. Troisi, * quintessence without scalar fields*, Recent Res. Dev. Astron. Astrophys. 1, 625 (2003), [arXiv:astro-ph/0303041].

S. Nojiri and S. D. Odintsov, *Modified gravity with lnR terms and cosmic acceleration*, Gen. Rel. Grav. 36, 1765 (2004), [arXiv:hep-th/0308176].

S. Capozziello, V. F. Cardone and A. Troisi, *Reconciling dark energy models with f(R) theories*, Phys. Rev. D 71, 043503 (2005), [arXiv:astro-ph/0501426].

S. Das, N. Banerjee and N. Dadhich, *Curvature driven acceleration : a utopia or a reality ?*, Class. Quant. Grav. 23, 4159 (2006), [arXiv:astro-ph/0505096].

S. Nojiri and S. D. Odintsov, *Modified f(R) gravity consistent with realistic cosmology: From matter dominated epoch to dark energy universe*, Phys. Rev. D 74, 086005 (2006), [arXiv:hep-th/0608008].

V. Miranda, S. E. Joras, I. Waga and M. Quartin, *Viable Singularity-Free f(R) Gravity Without a Cosmological Constant*, Phys. Rev. Lett. 102, 221101 (2009), [arXiv:0905.1941].

M. Campista, B. Santos, J. Santos and J. S. Alcaniz, *Cosmological Consequences of Exponential Gravity in Palatini Formalism*, Phys. Lett. B 699, 320 (2011), [arXiv:1012.3943].

A. Mukherjee and N. Banerjee, *Acceleration of the Universe in f(R) Gravity Models*, Astrophys. Space Sci. 352, 893 (2014), [arXiv:1405.6788].

A. Paliathanasis and P. G. L. Leach, *Analytical solutions in R + qR^n cosmology from singularity analysis*, Phys. Lett. A 380, 2815 (2016), [arXiv:1605.04204].

S. Nojiri and S. D. Odintsov, *Unified cosmic history in modified gravity: from F(R) theory to Lorentz non-invariant models*, Phys. Rept. 505, 59 (2011), [arXiv:1011.0544].

S. Nojiri and S. D. Odintsov, *Modified gravity with negative and positive powers of the curvature: Unification of the inflation and of the cosmic acceleration*, Phys. Rev. D 68, 123512 (2003), [arXiv:hep-th/0307288].

S. Nojiri and S. D. Odintsov, *Modified f(R) gravity unifying R^n inflation with ΛCDM epoch*, Phys. Rev. D 77, 026007 (2008), [arXiv:0710.1738].

M. Vargas dos Santos, H. A. Winther, D. F. Mota and I. Waga, *N-body Simulations of γ Gravity* Astron. Astrophys. 587, A132 (2016), [arXiv:1601.05433].

R. Voivodic, M. Lima, C. Llinares and D. F. Mota, *Modelling Void Abundance in Modified Gravity*, [arXiv:1609.02544].

S. Nojiri and S. D. Odintsov, *Modified Gauss-Bonnet theory as gravitational alternative for dark energy*, Phys. Lett. B 631, 1 (2005), [arXiv:hep-th/0508049].

A. De Felice and S. Tsujikawa, *Construction of cosmologically viable f(G) dark energy models*, [arXiv:0905.1941].
Phys. Lett. B 675, 1 (2009), [arXiv:0810.5712].

[29] D. Lovelock, *The Einstein tensor and its generalizations*, J. Math. Phys. 12, 498 (1971).

[30] N. Deruelle and L. Farina-Busto, *The Lovelock Gravitational Field Equations in Cosmology*, Phys. Rev. D 41, 3696 (1990).

[31] P. D. Mannheim and D. Kazanas, *Exact Vacuum Solution to Conformal Weyl Gravity and Galactic Rotation Curves*, Astrophys. J. 342, 635 (1989).

[32] E. E. Flanagan, *Fourth order Weyl gravity*, Phys. Rev. D 74, 023002 (2006), [arXiv:astro-ph/0605504].

[33] A. Nicolis, R. Rattazzi and E. Trincherini, *The Galileon as a local modification of gravity*, Phys. Rev. D 79, 064036 (2009), [arXiv:0811.2197].

[34] C. Deffayet, G. Esposito-Farese and A. Vikman, *Covariant Galileon*, Phys. Rev. D 79, 084003 (2009), [arXiv:0901.1314].

[35] C. Deffayet, S. Deser and G. Esposito-Farese, *Generalized Galileons: All scalar models whose curved background extensions maintain second-order field equations and stress-tensors*, Phys. Rev. D 80, 064015 (2009), [arXiv:0906.1967].

[36] G. Leon and E. N. Saridakis, *Dynamical analysis of generalized Galileon cosmology*, JCAP 1303, 025 (2013), [arXiv:1211.3088].

[37] Y. F. Cai, S. Capozziello, M. De Laurentis and E. N. Saridakis, *f(T) teleparallel gravity and cosmology*, Rept. Prog. Phys. 79, 106901 (2016), [arXiv:1511.07586].

[38] G. R. Bengochea and R. Ferraro, *Dark torsion as the cosmic speed-up*, Phys. Rev. D 79, 124019 (2009), [arXiv:0812.1205].

[39] E. V. Linder, *Einstein’s Other Gravity and the Acceleration of the Universe*, Phys. Rev. D 81, 127301 (2010), [arXiv:1005.3039].

[40] S. H. Chen, J. B. Dent, S. Dutta and E. N. Saridakis, *Cosmological perturbations in f(T) gravity*, Phys. Rev. D 83, 023508 (2011), [arXiv:1008.1250].

[41] A. Paliathanasis, J. D. Barrow and P. G. L. Leach, *Cosmological Solutions of f(T) Gravity*, Phys. Rev. D 94, 023525 (2016), [arXiv:1606.00659].

[42] R. C. Nunes, S. Pan and E. N. Saridakis, *New observational constraints on f(T) gravity from cosmic chronometers*, JCAP 1608, 011 (2016), [arXiv:1606.04359].

[43] G. Kofinas and E. N. Saridakis, *Teleparallel equivalent of Gauss-Bonnet gravity and its modifications*, Phys. Rev. D 90, 084044 (2014), [arXiv:1404.2249].

[44] G. Kofinas, G. Leon and E. N. Saridakis, *Dynamical behavior in f(T,T_G) cosmology*, Class. Quant. Grav. 31, 175011 (2014), [arXiv:1404.7100].

[45] G. Kofinas and E. N. Saridakis, *Cosmological applications of F(T,T_G) gravity*, Phys. Rev. D 90, 084045 (2014), [arXiv:1408.0107].

[46] A. Paliathanasis, M. Tsamparlis and S. Basilakos, *Constraints and analytical solutions of f(R) theories of gravity using Noether symmetries*, Phys. Rev. D 84, 123514 (2011), [arXiv:1111.4547].

[47] A. Paliathanasis, *f(R)-gravity from Killing Tensors*, Class. Quant. Grav. 33, 075012 (2016), [arXiv:1512.03239].

[48] J. c. Hwang and H. Noh, Phys. Lett. B 506, 13 (2001), [arXiv:astro-ph/0102423].
K. Yamamoto, G. Nakamura, G. Hutsi, T. Narikawa and T. Sato, *Constraint on the cosmological f(R) model from the multipole power spectrum of the SDSS luminous red galaxy sample and prospects for a future redshift survey*, Phys. Rev. D 81, 103517 (2010), [arXiv:1004.3231].

A. Abebe, A. de la Cruz-Dombriz and P. K. S. Dunsby, *Large Scale Structure Constraints for a Class of f(R) Theories of Gravity*, Phys. Rev. D 88, 044050 (2013), [arXiv:1304.3462].

A. S. Arapoglu, C. Deliduman and K. Y. Eksi, *Constraints on Perturbative f(R) Gravity via Neutron Stars*, JCAP 1107, 020 (2011), [arXiv:1003.3179].

A. Aviles, A. Bravetti, S. Capozziello and O. Luongo, *Updated constraints on f(R) gravity from cosmography*, Phys. Rev. D 87, 044012 (2013), [arXiv:1210.5149].

A. S. Arapoglu, C. Deliduman and K. Y. Eksi, *Constraints on Perturbative f(R) Gravity via Neutron Stars*, JCAP 1107, 020 (2011), [arXiv:1003.3179].

S. Capozziello, V. F. Cardone, S. Carloni and A. Troisi, *Curvature quintessence matched with observational data*, Int. J. Mod. Phys. D 12, 1969 (2003), [arXiv:astro-ph/0307018].

F. C. Carvalho, E. M. Santos, J. S. Alcaniz and J. Santos, *Cosmological constraints on f(R) gravity theories in Palatini formalism: Cosmological dynamics and observational constraints*, Phys. Rev. D 78, 063509 (2007), [arXiv:astro-ph/0701479].

J. Santos, J. S. Alcaniz, F. C. Carvalho and N. Pires, *Latest supernovae constraints on f(R) cosmologies*, Phys. Lett. B 669, 14 (2008), [arXiv:0808.4152].

A. Dev, D. Jain, S. Jhingan, S. Nojiri, M. Sami and I. Thongkool, *Delicate f(R) gravity models with disappearing cosmological constant and observational constraints on the model parameters*, Phys. Rev. D 78, 083515 (2008), [arXiv:0807.3445].

Y. S. Song, H. Peiris and W. Hu, *Cosmological Constraints on f(R) Acceleration Models*, Phys. Rev. D 76, 063517 (2007), [arXiv:0706.2399].

S. Basilakos, S. Nesseris and L. Perivolaropoulos, *Observational constraints on viable f(R) parametrizations with geometrical and dynamical probes*, Phys. Rev. D 87, 123529 (2013), [arXiv:1302.6051].

S. Basilakos and S. Nesseris, *Testing Eistein’s gravity and dark energy with growth of matter perturbations: Indications for new Physics?*, arXiv:1610.00160 [astro-ph.CO], [arXiv:1610.00160].

F. C. Carvalho, E. M. Santos, J. S. Alcaniz and J. Santos, *Cosmological Constraints from Hubble Parameter on f(R) Cosmologies*, JCAP 0809, 008 (2008), [arXiv:0804.2878].

M. Amarzguioui, O. Elgaroy, D. F. Mota and T. Multamaki, *Cosmological constraints on f(r) gravity theories within the palatini approach*, Astron. Astrophys. 454, 707 (2006), [arXiv:astro-ph/0510519].

Y. S. Song, H. Peiris and W. Hu, *Cosmological Constraints on f(R) Acceleration Models*, Phys. Rev. D 76, 063517 (2007), [arXiv:0706.2399].

S. Basilakos, S. Nesseris and L. Perivolaropoulos, *Observational constraints on viable f(R) parametrizations with geometrical and dynamical probes*, Phys. Rev. D 87, 123529 (2013), [arXiv:1302.6051].

S. Basilakos and S. Nesseris, *Testing Eistein’s gravity and dark energy with growth of matter perturbations: Indications for new Physics?*, arXiv:1610.00160 [astro-ph.CO], [arXiv:1610.00160].

F. Schmidt, A. Vikhlinin and W. Hu, *Cluster Constraints on f(R) Gravity*, Phys. Rev. D 80, 083505 (2009), [arXiv:0908.2457].

L. Amendola and S. Tsujikawa, *Phantom crossing, equation-of-state singularities, and local
gravity constraints in $f(R)$ models, Phys. Lett. B 660, 125 (2008), [arXiv:0705.0396].

[67] S. Nojiri and S. D. Odintsov, Unifying inflation with LambdaCDM epoch in modified $f(R)$ gravity consistent with Solar System tests, Phys. Lett. B 657, 238 (2007), [arXiv:0707.1941].

[68] S. Capozziello and S. Tsujikawa, Solar system and equivalence principle constraints on $f(R)$ gravity by chameleon approach Phys. Rev. D 77, 107501 (2008), [arXiv:0712.2268].

[69] L. Iorio, M. L. Ruggiero, N. Radicella and E. N. Saridakis, Constraining the Schwarzschildde Sitter solution in models of modified gravity, Phys. Dark Univ. 13, 111 (2016), [arXiv:1603.02052].

[70] W. Hu and I. Sawicki, Models of $f(R)$ Cosmic Acceleration that Evade Solar-System Tests, Phys. Rev. D 76, 064004 (2007), [arXiv:0705.1158].

[71] A. A. Starobinsky, Disappearing cosmological constant in $f(R)$ gravity, JETP Lett. 86, 157 (2007), [arXiv:0706.2041].

[72] S. Tsujikawa, Observational signatures of $f(R)$ dark energy models that satisfy cosmological and local gravity constraints, Phys. Rev. D 77, 023507 (2008), [arXiv:0709.1391].

[73] G. Cognola, E. Elizalde, S. Nojiri, S. D. Odintsov, L. Sebastiani and S. Zerbini, A Class of viable modified $f(R)$ gravities describing inflation and the onset of accelerated expansion, Phys. Rev. D 77, 046009 (2008), [arXiv:0712.4017].

[74] E. Elizalde, S. Nojiri, S. D. Odintsov, L. Sebastiani and S. Zerbini, Non-singular exponential gravity: a simple theory for early and late-time accelerated expansion, Phys. Rev. D 83, 086006 (2011), [arXiv:1012.2280].

[75] P. Zhang, Testing $f(R)$ gravity against the large scale structure of the universe, Phys. Rev. D 73, 123504 (2006), [arXiv:astro-ph/0511218].

[76] R. Jimenez and A. Loeb, Constraining cosmological parameters based on relative galaxy ages, Astrophys. J. 573, 37 (2002), [arXiv:astro-ph/0106145].

[77] M. Moresco et al., A 6% measurement of the Hubble parameter at $z \sim 0.45$: direct evidence of the epoch of cosmic re-acceleration JCAP 1605, 014 (2016), [arXiv:1601.01701].

[78] M. Moresco, Raising the bar: new constraints on the Hubble parameter with cosmic chronometers at $z \sim 2$, Mon. Not. Roy. Astron. Soc. 450, L16 (2015), [arXiv:1503.01116].

[79] J. Simon, L. Verde and R. Jimenez, Constraints on the redshift dependence of the dark energy potential, Phys. Rev. D 71, 123001 (2005), [arXiv:astro-ph/0412269].

[80] D. Stern, R. Jimenez, L. Verde, M. Kamionkowski and S. A. Stanford, Cosmic Chronometers: Constraining the Equation of State of Dark Energy. I: $H(z)$ Measurements, JCAP 1002, 008 (2010), [arXiv:0907.3149].

[81] C. Zhang, H. Zhang, S. Yuan, T. J. Zhang and Y. C. Sun, Four new observational $H(z)$ data from luminous red galaxies in the Sloan Digital Sky Survey data release seven, Res. Astron. Astrophys. 14, 1221 (2014), [arXiv:1207.4541].

[82] A. G. Riess et al., A 2.4% Determination of the Local Value of the Hubble Constant, Astrophys. J. 826, 56 (2016), [arXiv:1604.01424].

[83] A. G. Riess et al. [Supernova Search Team Collaboration], Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J. 116, 1009 (1998), [arXiv:astro-ph/9805201].
[84] S. Perlmutter et al. [Supernova Cosmology Project Collaboration], Measurements of Omega and Lambda from 42 high redshift supernovae, Astrophys. J. 517, 565 (1999), [arXiv:astro-ph/9812133].

[85] M. Betoule et al. [SDSS Collaboration], Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples, Astron. Astrophys. 568, A22 (2014), [arXiv:1401.4064].

[86] F. Beutler et al., The 6dF Galaxy Survey: Baryon Acoustic Oscillations and the Local Hubble Constant, Mon. Not. Roy. Astron. Soc. 416, 3017 (2011), [arXiv:1106.3366].

[87] A. J. Ross, L. Samushia, C. Howlett, W. J. Percival, A. Burden and M. Manera, The clustering of the SDSS DR7 main Galaxy sample – I. A 4 per cent distance measure at z = 0.15, Mon. Not. Roy. Astron. Soc. 449, 835 (2015), [arXiv:1409.3242].

[88] L. Anderson et al. [BOSS Collaboration], The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in the Data Releases 10 and 11 Galaxy samples, Mon. Not. Roy. Astron. Soc. 441, 24 (2014), [arXiv:1312.4877].

[89] A. Font-Ribera et al. [BOSS Collaboration], Quasar-Lyman α Forest Cross-Correlation from BOSS DR11 : Baryon Acoustic Oscillations, JCAP 1405, 027 (2014), [arXiv:1311.1767].

[90] D. Blas, J. Lesgourgues and T. Tram, The Cosmic Linear Anisotropy Solving System (CLASS) II: Approximation schemes, JCAP 1107, 034 (2011), [arXiv:1104.2933].

[91] B. Audren, J. Lesgourgues, K. Benabed and S. Prunet, Conservative Constraints on Early Cosmology: an illustration of the Monte Python cosmological parameter inference code, JCAP 1302, 001 (2013), [arXiv:1210.7183].

[92] H. Akaike, A new look at the statistical model identification, IEEE Transactions on Automatic Control, 19, 716 (1974).

[93] G. E. Schwarz, Estimating the dimension of a model, Annals of Statistics, 6, 461 (1978).

[94] A. de la Cruz-Dombriz, P. K. S. Dunsby, O. Luongo and L. Reverberi, Model-independent limits and constraints on extended theories of gravity from cosmic reconstruction techniques, arXiv:1608.03746 [gr-qc], [arXiv:1608.03746].