Carcinoma showing thymus-like differentiation (CASTLE) is a rare carcinoma of the thyroid or adjacent soft tissue of the neck with a histologic resemblance to thymic epithelial tumors. Although the fine-needle aspiration (FNA) plays a central role in the initial evaluation of thyroid nodules, few reports about the cytologic findings of CASTLE have been found according to a review of literatures. 3-6 In Korea, three cases of CASTLE have been reported in the literature but its cytologic findings have not been described. 7-9 We report cytological findings of CASTLE in a 34-year-old woman.

CASE REPORT

A 34-year-old woman presented with a 2-month history of sore throat. The patient had no notable medical or family history. Physical examination revealed a palpable right thyroid mass. Thyroid function and calcium tests were within normal limits. Ultrasound showed a 1.7-cm, well demarcated, heterogeneous, low echoic solid mass in the lower pole of the right thyroid (Fig. 1). A computed tomography scan of the neck revealed a 3.3-cm, exophytic, low-attenuated mass in the lower pole of the right thyroid. The FNA biopsy of the mass was performed, which was accompanied by the standard Papanicolaou stain. The smear was composed of three dimensional clusters and sheets. The tumor cells were round to ovoid with high nuclear : cytoplasmic ratios. Some nuclei were vesicular with small nucleoli. There were some tumor cells showing keratinization. Some lymphocytes were found on the background and within clusters. The presence of poorly-differentiated tumor cells with a focal keratinization and a lymphocytic background on the FNA is suggestive of CASTLE.

Key Words: Thymoma; Thymus gland; Thyroid gland; Biopsy, fine-needle; Cytodiagnosis
mass replacing most of the right thyroid. The mass had a lobular, tan-colored cut surface and a firm consistency (Fig. 3A). On

![Thyroid ultrasonography](https://example.com/thyroid-ultrasound.jpg)

Fig. 1. Thyroid ultrasonography shows a 1.7-cm, well-defined, hypoechoic, solid mass in the lower pole of the right thyroid.

...microscopic examination, the tumor was well-circumscribed and it was composed of variably sized and irregularly shaped lobules of cohesive polygonal tumor cells which were separated by bands of dense fibrous stroma (Fig. 3B). The tumor cells had high N/C ratios, eosinophilic cytoplasm and ill-defined cell borders. The nuclei were vesicular or coarsely granular with prominent nucleoli. The mitotic figures were sparse. There was mild lymphoplasmacytic infiltration within the tumor nodules and septae. Cytoplasmic keratinization was seen. The tumor cells showed positivity for CD5, carcinoembryonic antigen, high molecular weight keratin (HMWK), cytokeratin 5 (CK5), and p63. The tumor was negative for thyroid transcription factor-1, thyroglobulin, and calcitonin. Vascular invasion and extensive extra-thyroidal extension were present. One regional lymph node was found and involved by tumor.

Over a 27-month follow-up period, the patient had no evidence of tumor recurrence.

![Smear and histology](https://example.com/smear-histology.jpg)

Fig. 2. (A) The smear shows cohesive sheets and clusters, and singly scattered cells. (B) Tumor cells have round to ovoid vesicular nuclei, small prominent nucleoli and scanty cytoplasm. A few lymphoid cells are present on the background and within the clusters. (C) Keratinization is seen. (D) Stripped nuclei are present in the background (A-D, Papanicolaou stain).
DISCUSSION

The cytological diagnoses were mentioned in previous 14 reports consisting of 40 cases. Malignant tumor or poorly-differentiated carcinoma were the most frequent cytological diagnosis in cases of CASTLE, except for six cases (Table 1).2-15 One case was diagnosed as CASTLE for which no cytological findings have been described.11

In previously reported cases of CASTLE, the most common cytological findings include tight clusters and sheets of round tumor cells with high N/C ratios, vesicular nuclei, prominent nucleoli, amphophilic cytoplasm, and lymphocytic background, which correspond well with the present case.2-4,6 In the present case and those of Hirokawa et al.,2 keratinized cells were present. Youens et al.6 reported indistinct cell borders, intranuclear grooves and sparse mitotic figures, which were also seen in the present case. Hirokawa et al.2 reported intracytoplasmic space surrounded by cell membrane and spindle tumor cells. Youens et al.6 reported not only intranuclear cytoplasmic inclusions and papillary-like structures but also granular chromatin and rosette-like structures. But these findings were not detected in the present case.

The differential diagnoses of CASTLE include papillary carcinoma, Hürthle cell neoplasm, undifferentiated carcinoma, medullary carcinoma and metastatic lymphoepithelioma-like carcinoma.

CASTLE may show intranuclear pseudoinclusions or papillary-like structures, but it does not show fine pale chromatin and monolayer sheets of cells with dense cytoplasm. Intranuclear pseudoinclusions can be seen in various malignant or benign thyroid nodules. Intranuclear pseudoinclusions should be interpreted in light of the other architectural and nuclear features.

Although Hürthle cell neoplasm contains cellular aggregates with abundant cytoplasm and prominent nucleoli, lymphocytic background of CASTLE is lacking. Unlike Hürthle cell neoplasm, CASTLE does not have granular cytoplasm.

It is very difficult to distinguish CASTLE from metastatic lymphoepithelioma-like carcinoma, which also shows sheets of poorly differentiated round cells intermixed with small lymphocytes. Subtle differences, such as frequent mitotic activity and a polymorphous inflammatory background, favor metastatic lymphoepithelioma-like carcinoma.4

Table 1. Diagnosis of CASTLE on the FNA biopsy in patients with CASTLE

Reference	No. of cases	Diagnosis of FNA biopsy
Hirokawa et al.2	7	Malignant tumor
		1 Indeterminate (necrotic mass)
Nassar et al.3	1	Hürthle cell neoplasm
Ng et al.4	1	Poorly differentiated carcinoma
Yamazaki et al.5	1	Suggesting malignant tumor
Youens et al.6	1	Malignant thyroid neoplasm
Gu et al.7	1	Poorly differentiated carcinoma
Kim et al.9	1	Malignant tumor
Kim et al.9	1	Malignant tumor
Cappelli et al.10	1	Malignant cells, not otherwise typified
Ito et al.11	1	CASTLE
Kusada et al.12	1	Malignant epithelial tumor
Ahuja et al.13	1	Suggested the diagnosis of spindle-cell tumor
Chan et al.14	1	Papillary carcinoma
Luo et al.15	1	Negative (red blood cells, fibrins, lymphocytes, and neutrophils)

CASTLE, carcinoma showing thymus-like differentiation; FNA, fine-needle aspiration.

Fig. 3. (A) The cut surface of the tumor is lobulated, solid, and tan-colored. (B) Broad anastomosing islands of tumor cells are separated by desmoplastic stroma. Squamous differentiation is present.
CASTLE may resemble undifferentiated thyroid carcinoma with squamous differentiation, but it does not show marked cytologic atypia, frequent mitotic activity and necrotic background characteristic of undifferentiated carcinoma.

Although CASTLE may show rosette-like structures and granular chromatin, along with an abundance of single tumor cells as in medullary carcinoma, it is lacking of typical plasmacytoid cells, pink cytoplasmic granules and amyloid deposition.6

Immunocytochemical study for CD5 is helpful to differentiate CASTLE from other malignant thyroid neoplasm. CD5 is a surface glycoprotein expressed on mature T cells and a subset of B cells.10 Thymic carcinoma cells are also known to be positive for CD5.17 CD5 is almost always expressed in CASTLE. CASTLE is positive for HMWK, CK5, and p63 because it is also a squamous cell carcinoma. However, thyroid squamous cell carcinoma and poorly-differentiated carcinoma were negative for CD5.17 Ito et al.11 reported that the sensitivity and specificity for CD5 immunohistochemistry were 82% and 100%, respectively, in making a diagnosis of CASTLE.

In conclusion, the presence of poorly-differentiated tumor cells with a focal keratinization and a lymphocytic background on the FNA biopsy is suggestive of CASTLE.

Conflicts of Interest

No potential conflict of interest relevant to this article was reported.

Acknowledgments

This work was supported by grant from Inje University, 2008.

REFERENCES

1. DeLellis RA, Lloyd RV, Heitz PU, Eng C. World Health Organization Classification of tumours: pathology and genetics of tumours of endocrine organs. Lyon: IARC Press, 2004; 98-7.
2. Hirokawa M, Kuma S, Miyachi A. Cytological findings of intrathyroidal epithelial thymus/carcinoma showing thymus-like differentiation: a study of eight cases. Diagn Cytopathol 2010 Nov 2 [Epub]. http://dx.doi.org/10.1002/dc.21511.
3. Nassar A, Saqi A, Baloch Z, LiVolsi V. Carcinoma showing thymus-like element of the thyroid. Acta Cytol 2003; 47: 313-5.
4. Ng WK, Collins RJ, Shek WH, Ng JO. Cytologic diagnosis of “CASTLE” of thyroid gland: report of a case with histologic correlation. Diagn Cytopathol 1996; 15: 224-7.
5. Yamazaki M, Fuji S, Daiko H, Hayashi R, Ochiai A. Carcinoma showing thymus-like differentiation (CASTLE) with neuroendocrine differentiation. Pathol Int 2008; 58: 775-9.
6. Youans KE, Bean SM, Dodd LG, Jones CK. Thyroid carcinoma showing thymus-like differentiation (CASTLE): case report with cytology and review of the literature. Diagn Cytopathol 2011; 39: 204-9.
7. Gu MJ, Shim YR, Choi JH, Choi WH. Carcinoma showing thymus-like differentiation (CASTLE) of the thyroid gland: a case report. Korean J Pathol 1999; 33: 460-2.
8. Kim EH, Jeong JY, Kim EY, et al. A case of carcinoma showing thymus-like differentiation (CASTLE) in the thyroid. J Korean Endocrinol Soc 2006; 23: 272-6.
9. Kim JP, Sung BG, Ahn SK, Lee JH. A case of carcinoma showing thymus-like differentiation. Korean J Otolaryngol-Head Neck Surg 2004; 47: 470-3.
10. Cappelli C, Tironi A, Marchetti GP, et al. Aggressive thyroid carcinoma showing thymus-like differentiation (CASTLE): case report and review of the literature. Endocr J 2008; 55: 685-90.
11. Ito Y, Miyachi A, Nakamura Y, Miya A, Kobayashi K, Kakuko K. Clinicopathologic significance of intrathyroidal epithelial thymoma/carcinoma showing thymus-like differentiation: a collaborative study with Member Institutes of The Japanese Society of Thyroid Surgery. Am J Clin Pathol 2007; 127: 230-6.
12. Kusada N, Hara Y, Kobayashi S, et al. A case of aggressive carcinoma showing thymus-like differentiation with distant metastases. Thyroid 2005; 15: 1383-8.
13. Ahuja AT, Chan ES, Allen PW, Lau KY, King W, Metreweli C. Carcinoma showing thymuslike differentiation (CASTLE tumor). AJNR Am J Neuroradiol 1998; 19: 1225-8.
14. Chan JP, Chiang FY, Lee KW, Kuo WR. Carcinoma showing thymus-like differentiation (CASTLE) of thyroid: a case report and literature review. Kaohsiung J Med Sci 2008; 24: 591-7.
15. Luo CM, Hsueh C, Chen TM. Extrathyroid carcinoma showing thymus-like differentiation (CASTLE tumor): a new case report and review of literature. Head Neck 2005; 27: 927-33.
16. Bikah G, Lynd FM, Aruffo AA, Ledbetter JA, Bondada S. A role for CD5 in cognate interactions between T cells and B cells, and identification of a novel ligand for CD5. Int Immunol 1998; 10: 1185-96.
17. Reimann JD, Dorfman DM, Nose V. Carcinoma showing thymus-like differentiation of the thyroid (CASTLE): a comparative study. Evidence of thymic differentiation and solid cell nest origin. Am J Surg Pathol 2006; 30: 994-1001.