Impact of non-binding FDA guidances on primary endpoint selection in Alzheimer’s disease trials

Jeffrey C. Yu1,2 | Jakub P. Hlávka2,3 | Elizabeth Joe4 | Frances J. Richmond1 | Darius N. Lakdawalla1,2,3

1School of Pharmacy, University of Southern California, Los Angeles, California, USA
2Leonard D. Schaeffer Center for Health Policy & Economics, Los Angeles, California, USA
3Sol Price School of Public Policy, University of Southern California, Los Angeles, California, USA
4Keck School of Medicine, University of Southern California, Los Angeles, California, USA

Correspondence
Jeffrey C. Yu, 635 Downey Way, Verna & Peter Dauterive Hall (VPD), University of Southern California, Los Angeles, CA, USA.
E-mail: jeffrecy@usc.edu

Abstract
Introduction: The U.S. Food and Drug Administration (FDA)’s guidances help describe the agency’s current thinking on regulatory issues and serve as a means of informal policymaking that is non-binding. This study examines the impact of two guidance documents for Alzheimer’s disease (AD) trials. The first guidance in 2013 encouraged the use of cognitive/functional endpoints, while the second in 2018 modified such recommendation.

Methods: Using pivotal trial data, we applied a regression discontinuity in time (RDiT) framework to examine trialist response to these guidance documents. Results were stratified by disease-modifying therapy (DMT) status, and controlled for disease staging, FDA registration status, and trial phase.

Results: Among AD DMT trials, annual use of cognitive/functional composite endpoints significantly increased after the 2013 guidance (+12.9%, \(P < .001 \)), and significantly decreased after the 2018 guidance (−19.9%, \(P = .022 \)).

Discussion: Although guidance documents do not set new legal standards or impose binding requirements, our findings indicate they are broadly followed by AD trialists.

KEYWORDS
Alzheimer’s disease, Clinical Dementia Rating Sum of Boxes, clinical trials, composite endpoints, Food and Drug Administration, guidance documents, legal, mild cognitive impairment, primary endpoints, prodromal, regulatory

1BACKGROUND

In clinical trials, primary endpoint selection governs the nature of the evidence produced and serves as an important input for the review of the drug by regulatory authorities like the US Food and Drug Administration (FDA). Endpoint choices depend on several factors, including the primary objective of the clinical trial, the endpoint’s meaningfulness to end-users, ease of measurement, interpretability, and the likelihood of meeting the endpoint. Selection of endpoints may also be influenced in part by regulatory authorities through formal as well as informal policymaking, which is the focus of this study.

In the United States, the FDA, a federal agency within the US Department of Health and Human Services, oversees clinical trials for drug, biologic, and medical device products. It has several regulatory tools at its disposal. Among these are guidance documents that it issues to help describe its current thinking on regulatory issues. Guidance documents are not legally binding on the public or the FDA itself. They are intended to provide insight on the agency’s current

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

© 2022 The Authors. Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring published by Wiley Periodicals, LLC on behalf of Alzheimer’s Association
thinking and offer advice related to trial elements as diverse as recruitment, the conduct and monitoring of trials, ethics, and trial design—including primary endpoint selection. Trialists may use alternative approaches to these non-binding guidelines, as long as they satisfy the requirements of the applicable statutes and regulations.

To formalize ongoing deliberations for clinical trial design in early Alzheimer’s disease (AD), the FDA released draft guidance in 2013 that offered non-binding recommendations for early-stage AD trials. The 2013 draft guidance recommended that drugs demonstrate efficacy on both a cognitive and a functional or global assessment scale. It acknowledged the challenges to measuring cognitive improvements in early disease (i.e., mild cognitive impairment [MCI]), and suggested the use of a composite cognitive and functional score as a suitable tool for assessment in early disease. The guidance then specifically suggested Clinical Dementia Rating–Sum of Boxes (CDR-SB) as an example of such an endpoint for early disease. A follow-on draft guidance released in 2018 for early AD trials shifted away from such blanket recommendations as “doubly noncommittal” tools. Furthermore, the multi-stakeholder nature of the FDA approval process clouds the potential effect of a non-binding opinion offered by the agency. For example, in the case of the FDA’s approval of Aduhelm, an external panel of experts opposed the drug’s authorization and held a viewpoint counter to that of the FDA. This external panel’s recommendation historically has held great influence in the FDA’s decision-making for approvals. Thus, the multi-stakeholder nature, compliance with FDA guidelines is not immediately obvious. On top of this, trialists adhering to earlier guidance that is later replaced with conflicting recommendations cannot hold the FDA accountable to its earlier expressed views—a form of non-estoppel that could hinder adherence. Last, we have identified a meaningful number of investigators that elected not to follow draft guidelines of the FDA. As such, non-binding guidelines are an imperfect tool whose efficacy needs to be established. At present the FDA issues guidance without knowing the extent to which that advice will impact trialist behavior, and no evidence in the literature yet supports the view that non-binding guidelines have their intended effects.

It also remains unclear whether the FDA is passively responding to trends in clinical research by issuing reactive guidance documents, or rather trying to advance the design of trials by issuing proactive guidelines. Our analysis takes advantage of two shifts in guidance that help to distinguish between these two hypotheses for guidelines related to AD. To the best of our knowledge, this is the first empirical study of trialist response to FDA guidelines, and it applies a framework that could be used in the future to gauge the impact of other guidance changes more generally.

In this study, we analyze historical AD primary endpoint use over time and by clinical domain, by examining differences in how they evolve immediately after these two guidance documents of interest are issued. We also examine the responsiveness of private versus public sponsors to these guidance documents.

METHODS

To understand the impact of the 2013 and 2018 FDA non-binding draft guidelines, we compiled a chronology of pivotal AD trials, assigned primary endpoints to outcome domains of interest, and conducted regression discontinuity in time (RDiT) analyses.

2.1 Trial selection

Pivotal AD trials were identified in the Citeline TrialTrove database, which is a global registry of clinical trials. This dataset was extracted in June 2020, and AD trials were identified based on the following International Classification of Diseases, 10th revision codes: G30.0, G30.1, G30.8, G30.9. We define pivotal trials as later phase trials, and included phase II/III, III, III/IV trials in our dataset. The dataset was then compared to prior AD pipeline reviews, to confirm that all pivotal trials identified in those publications were present in the dataset.

Trials with a start date of 1997 and later were then kept, as trial reporting from this point forward became more comprehensive. Such acts created the ClinicalTrials.Gov registry among other reforms, and thus ensured that trial data from this year forward would be more comprehensive. In cases for which trial start dates were unavailable, an imputation of the trial start date was conducted by subtracting trial length as predicted by trial sample size and individual trial site regions, from trial end dates. Sensitivity analyses were conducted to confirm study findings were robust even when excluding imputed trials.

2.2 Primary endpoints

Primary endpoint data were sourced from the TrialTrove dataset. In cases for which primary endpoint information had not been extracted, a manual review was completed using trial registry websites, as well as published manuscripts and abstracts, to identify primary endpoints. Because some primary endpoints varied simply due to version (e.g., Alzheimer’s Disease Assessment Scale [ADAS]-Cog Korean), we collapsed endpoints into broader categories (e.g., ADAS-Cog) to better summarize trends in endpoint use. Trials that were solely focused on safety and/or tolerability were excluded as our aim was to study trials focused on efficacy. Finally, trials without any primary endpoint data were dropped as the goal of this study was to examine primary endpoint trends.
2.3 | Domain and disease-modifying therapy assignment

All primary endpoints were assigned to domains, which included cognitive, functional, behavioral, and biomarker. Domain assignment was performed based on a review of instrument documentation, published literature, and the medical expert opinion of a neurologist. Trials were then classified as either disease-modifying therapy (DMT) therapies or non-DMT therapies, based on prior published classifications17–21 as well as medical expert opinion.

2.4 | Regression specification

This study applies a RDiT framework, which is a type of time-series analysis, to estimate the impact of the 2013 and 2018 FDA draft guidance documents on primary endpoint selection. The RDiT design relies on time-series variation to identify the effects of policy changes on outcomes, and has been used empirically in a number of economic studies23–26. In a RDiT regression, time is used as a continuous longitudinal measure to determine treatment assignment, and treatment begins at a particular threshold in time. RDiT is engineered to overcome some of the limitations of a simple pre/post or Chi-squared analysis by targeting a very specific date on which a change occurs, and allows us to evaluate outcomes in a continuous longitudinal manner.

The RDiT design was specified as a piecewise linear regression. We regressed the use of a cognitive/functional composite endpoint (or use of CDR-SB) on trial start date, and placed a knot on trial start date at March 1, 2013, as well as March 1, 2018, to study the effects of the 2013 and 2018 FDA draft guidances (Appendix Figure A1). Because trials examining DMT therapies are thought to be more likely to respond to these two sets of guidance documents, as they seek to demonstrate cognitive and functional/global improvements, we stratified models by DMT status. The models controlled for AD staging, FDA registration status, and trial phase. Cognitive/functional composite endpoints were defined as endpoints that measured both cognition and function, regardless of whether they measured other additional domains (such as behavior). AD staging was defined based on the 2011 National Institute on Aging-Alzheimer’s Association diagnostic guidelines27: (1) asymptomatic (i.e., presence of AD biomarkers without cognitive changes); (2) symptomatic predementia (also known as prodromal AD or MCI; i.e., cognitive impairment with preserved functional independence); and (3) dementia due to AD, including mild, moderate, or severe dementia. Model robustness was tested by evaluating model fit and knot \(P \)-values under alternative model specifications in which the policy-relevant knot was varied.

Analyses were then conducted using Stata Version 13.1 (StataCorp).

3 | RESULTS

3.1 | Trial selection

A total of 3227 unique global AD trials were identified in the TrialTrove dataset, of which 487 were phase II/III, III, or III/IV trials (Figure 1).
Thirteen trials with a trial start date predating 1997 were excluded, as well as 62 trials that focused solely on safety and/or tolerability. Thirty-nine trials without a trial start date were excluded, and 59 trials without any identifiable primary endpoint information were also excluded. After excluding all these trials, 314 trials remained eligible for this study.

3.2 Characteristics of the selected trials

Of these trials, 34 (10.8%) were phase II/III trials, 279 (88.9%) were phase III trials, and 1 (0.3%) was a phase III/IV trial (Appendix Table A1). AD trial initiation in these trials reached its peak during the period from 2001 to 2005. Among the trials studied, 124 (39.5%) investigated DMTs. In terms of endpoint frequency, 159 (50.6%) trials had just one primary endpoint, and 155 (49.4%) trials had two or more primary endpoints. One hundred eighty-two (58.0%) trials had at least one site in North America, 150 (47.8%) had at least one site in Europe, and 100 (31.9%) had at least one site in Asia.

3.3 Primary endpoint use

A total of 128 unique primary endpoints were identified from the sample of trials (Table 1 and Appendix Table A2). Over the course of the study period, the five most frequently used primary endpoints were ADAS-Cog (n = 145), Mini-Mental State Examination (MMSE; n = 45), Clinician’s Interview-Based Impression of Change–Plus Caregiver Input (CIBIC+; n = 36), Neuropsychiatric Inventory (NPI; n = 35), and the Alzheimer’s Disease Cooperative Study–Activities of Daily Living (ADCS-ADL) (n = 33). In terms of cognitive-only endpoints, ADAS-Cog was by far the most frequently selected. Regarding multi-domain endpoint use, the three most frequently used endpoints were the CIBIC+ (n = 36), CDR-SB (n = 30), and Clinical Global Impression of Change (CGIC; n = 21).

3.4 Longitudinal trends in primary endpoint use

In Figure 2, the 10 most commonly used primary endpoints are presented across time. Proportions are presented relative to March 2013, which is when the 2013 FDA guidance for AD trials was released. Use of ADAS-Cog has remained relatively consistent, between 37.9% and 46.3% of trials, across the evaluated time periods (Figure 2). However, the use of the CDR-SB tool rose sharply, from a low of 1.9% in the period before March 2013, to a high of 16.7% in the period after. A similar rise was also seen for the Cohen-Mansfield Agitation Inventory (CMAI), which may reflect the increase in novel non-DMT assets targeting agitation during this period. The use of global endpoints such as CIBIC+, CGIC, and Clinical Global Impression of Change (CGI) fell steadily across the study period, reflecting a shift toward alternatives such as CDR-SB.

Broader trends in AD endpoint selection are more apparent in the types of endpoint domains used over time. Figure 3 shows changes in proportions relative to March 2013 for the various domains. Most trials used a primary endpoint that featured only cognition, at rates between 56.1% to 77.6% across the evaluated time periods—this reflects a majority. And while only 15.4% of trials initiated between March 2008 and March 2013 used a primary endpoint that measured

Table 1

Domain classification	Frequency
Cognitive only	
Alzheimer’s Disease Assessment Scale–Cognitive Subscale	145
Mini-Mental State Examination	45
Severe Impairment Battery	24
Global Deterioration Scale	6
Neuropsychological Test Battery	3
Trail Making Test	3
Behavioral only	
Neuropsychiatric Inventory	35
Cohen-Mansfield Agitation Inventory	19
Brief Psychiatric Rating Scale	4
Geriatric Depression Scale	4
Behavioral Pathology in Alzheimer’s Disease	3
Functional only	
Alzheimer’s Disease Cooperative Study–Activities of Daily Living	33
Activities of Daily Living	9
Disability Assessment for Dementia	9
Instrumental Activities of Daily Living	7
Physical Self-Maintenance Scale	2
PROs only	
Nighttime Total Sleep Time	4
Progressive Deterioration Scale	3
Caregiver Stress Scale	2
Quality of Life–Alzheimer’s Disease	2
Biomarkers only	
Magnetic Resonance Imaging	3
Positron Emission Tomography	2
Total Antioxidant Capacity	2
Multi-domain	
Clinician’s Interview-Based Impression of Change–Plus Caregiver Input	36
Clinical Dementia Rating Scale–Sum of Boxes	30
Clinical Global Impression of Change	21
Clinical Global Impression	16
Clinical Dementia Rating Scale	7

Note: For brevity, only the five most frequently used primary endpoints are shown for each domain grouping. A complete list of primary endpoints, including labeled cognitive/functional composite endpoints, is available in Appendix Table A2.
FIGURE 2 Primary endpoint use in pivotal Alzheimer’s disease clinical trials across time. ADAS-Cog, Alzheimer’s Disease Assessment Scale–Cognitive Subscale; ADCS-ADL, Alzheimer’s Disease Cooperative Study – Activities of Daily Living; CDR-SB, Clinical Dementia Rating–Sum of Boxes; CGI, Clinical Global Impression; CGIC, Clinical Global Impression of Change; CIBIC+, Clinician’s Interview-Based Impression of Change–Plus Caregiver Input; CMAI, Cohen-Mansfield Agitation Inventory; MMSE, Mini-Mental State Examination; NPI, Neuropsychiatric Inventory; SIB, Severe Impairent Battery

FIGURE 3 Primary endpoint domain use in pivotal Alzheimer’s disease clinical trials across time
more than one domain, this percentage rose to 27.3% in the 5 years after.

3.5 | Impact of the FDA 2013 and 2018 non-binding guidances

We first descriptively analyze trends in the use of the recommended primary endpoints over time. In Figure 4, LOWESS (locally weighted scatterplot smoothing) plots of the proportion of trials using a cognitive/functional composite endpoint (and CDR-SB) are presented among both DMT and non-DMT trials. Across time, the use of these two types of endpoints steadily declined among non-DMT trials. Among DMT trials, a decline in cognitive/functional composite endpoint use was also seen prior to the March 2013 guidance; however, their use, and the use of CDR-SB, increased sharply in the subsequent period. The LOWESS plots show decreased use of both types of endpoints in the period after March 2018, which reflects the March 2018 guidance that offered alternative options for early AD trials.

A model based on a RDIT framework was then used to investigate empirically the effects of the 2013 and 2018 draft guidance documents (Table 2). Among DMT trials, the proportion of trials using a cognitive/functional composite endpoint significantly increased yearly (+12.9%; P < .001) from March 2013 to March 2018, and significantly decreased yearly after March 2018 (−19.9%; P = .022). Similarly, the proportion of trials using CDR-SB significantly increased yearly from March 2013 to March 2018 (+11.5%; P < .001), and significantly decreased yearly after March 2018 (−14.8%; P = .017). Among non-DMT trials, we did not identify the same type of effects for either of these endpoints. Notably, use of CDR-SB is significantly higher (+25.2%; P < .001) among DMT trials that were FDA registered.

The robustness of the model was tested by evaluating model fit and spline P-values under alternative model specifications in which the policy-relevant spline was varied where applicable (Appendix Table A3A and A3B). The base-case specification offered the highest R^2 and lowest spline P-value, suggesting a robust goodness of fit.

Among DMT trials with private sponsors, the use of cognitive/functional composite endpoints significantly increased yearly in the period from March 2013 to March 2018 (+17.0%; P = .001; Appendix Table A4), as did the use of CDR-SB (+13.3%; P = .005). Among DMT trials with only public sponsors, no such significant yearly response was seen for cognitive/functional composite endpoints (−12.4%; P = .137) or CDR-SB (−5.8%; P = .337) after the 2013 guidance. Evidence for the effects after the 2018 draft guidance was non-significant for DMT trials with either type of sponsor.

We also find that trials with a cognitive/functional composite endpoint (+140.1; P = .020) or CDR-SB (+227.9; P = .005) had significantly larger sample sizes than trials without these types of endpoints (Appendix Tables A5A & A5B).

4 | DISCUSSION

It seems clear from this work that these two guidance documents in the field of AD may have had a strong influence on trial design. After the 2013 draft guidance recommended the use of cognitive/functional composite endpoints, their use increased significantly. Furthermore, after the release of the 2018 draft guidance which changed this recommendation, these trends reversed. Although we show this degree of compliance to guidances, we also identify a number of investigators that elected to use other endpoints (i.e., a single cognitive-only endpoint or a co-primary endpoint) rather than those suggested by the guidances. This observation suggests that non-binding guidance imperfectly influences trialist behavior. These observations are important because they provide quantitative evidence rather than anecdotal observation to demonstrate the effects of regulatory guidance on industry practice.
Our research also shows that suggestions offered in guidances may be interpreted as regulatory requirements. Concerns had in fact been expressed that the FDA’s specific suggestion of CDR-SB would drive the adoption of CDR-SB as a standard of efficacy in early AD. Because research practices in early AD have yet to be fully established, FDA suggestions might impact the measurement of clinical benefit and even innovation itself if the standard for trial success is constrained28. Thus, how the FDA decides to operationalize the guidelines to describe trial design is crucial. The guidelines also did not clarify whether composite endpoints should report effects by component, which could unwittingly lead to findings that are hard to interpret. For instance, it may be hard to tell whether results are driven solely by a cognitive or functional component, or driven by small effects from several components28,29; however, it is understood that when combined, composite endpoints can increase statistical power in trials30,31.

Unlike laws and associated regulations that undergo a rigorous and time-consuming “notice and comment” period for stakeholder input before they are enacted formally, guidance documents are developed to provide insight on the current thinking of regulators, intended as advice rather than legally binding instruments32. Guidance documents from the FDA are becoming increasingly common, because they have more freedom to accept endpoints based on first principles rather than perceived instruction from guidance documents. Lower rates of adherence among private sponsors may be due to the relative inexperience of smaller/newer firms, a lack of scientific consensus on the merits of different endpoints, and the expected likelihood of meeting different endpoints.

To our understanding, the responses of clinical trial stakeholders to FDA guidelines have not been studied previously with quantitative methods in any disease area. This study adds a new dimension to prior work that examined compliance with traditional standards for primary endpoint selection in AD trials (i.e., a co-primary approach involving one cognitive endpoint and one functional/global endpoint)33. Our work also adds on to past research on guidance documents, which has shown their effects on future innovation34, and updates previous work on the landscape of outcome measures in AD35. In addition, this study provides greater context regarding the first approved DMT treatment in AD, whose trial initiated after the 2013 draft guidance and used CDR-SB as its single primary endpoint36,37. Although this work specifically studies the impact of the 2013 and 2018 draft guidances for AD, it also provides a framework to evaluate the impact of changing regulatory guidance in other disease indications.

We acknowledge that our results come with certain limitations. First, trial start dates were imputed for 17.8\% of trials for which data

TABLE 2 Regression discontinuity in time (RDiT) linear model to investigate the impact of the 2013 and 2018 FDA draft guidances on the selection of primary endpoints in AD DMT trials
Independent variables
Intercept
Years prior to March 1, 2013
Years between March 1, 2013, and March 1, 2018
Years after March 1, 2018
AD stage (Reference = overt AD)
Presymptomatic
Prodromal/MCI
FDA registered trial
Phase (reference = phase III)
Phase II/III
Phase III/IV
Number of observations
R-squared

Abbreviations: AD, Alzheimer’s disease; CDR-SB, Clinical Dementia Rating–Sum of Boxes; CI, confidence interval; DMT, disease-modifying therapy; FDA, Food and Drug Administration; MCI, mild cognitive impairment.

* P < .10, ** P < .05, *** P < .01.
were unavailable in the TrialTrove dataset. However, we conducted sensitivity analyses in which we excluded trials with imputed dates, and found our findings to hold. Second, it is possible that the FDA guidance documents may have simply mirrored changes in endpoint selection by AD trialists or regulatory advice that would have been given without such documents. However, our robustness checks suggest this to be unlikely. Third, the effect sizes measured after the first guidance may have been augmented by the release of the European Medicines Agency’s (EMA’s) January 2016 draft guidance for AD trials, which reiterated the FDA’s March 2013 draft guidance on composite endpoints for prodromal AD or MCI trials. However, the effects found in our analysis emerged well before 2016, and it is possible the EMA release only augmented this effect. Given the limited sample size, we are unable to test EMA-specific trials to identify effects within this subgroup. Fourth, our policy effect models did not stratify by AD staging, but specified AD staging in the models instead, to optimize sample size and capture disease-wide effects. Finally, we did not restrict our dataset by trials registered with the FDA, so our findings may have been attenuated by the possibly lower responsiveness of non-US-centered trials—regulatory spillovers should be tested in further work.

The study also finds that trials with more comprehensive endpoints such as those evaluated require larger trials. This may suggest the 2013 and 2018 FDA draft guidances affected clinical trial costs, as larger clinical trials tend to correlate with higher costs; however, more research on this is needed.

Unlike acts such as the Federal Food, Drug, and Cosmetic Act (FD&C Act), and FDA regulations, guidance documents put forth by the FDA are non-binding in nature. While these guidance documents do not set new legal standards or impose new requirements, they may be taken as regulatory expectations by trialists and impact clinical trial design, as shown in our RDiT findings—especially by private-sector trialists. Future research may expand the scope of our analysis to other disease areas or study the effect of FDA guidances on other trial design choices.

ACKNOWLEDGMENTS

The authors are grateful to Bryan Tysinger and others who have provided advice to the research team. This work was supported by the National Institutes of Health (Award R01AG062277), as well as the Alzheimer’s Disease Research Center (ADRC; Award P30-AG066530).

CONFLICTS OF INTEREST

JCY received funding through a University of Southern California (USC) School of Pharmacy Travel Award to attend academic conferences. In the past 3 years, JPH has received speaker fees from FTI Consulting. EJ has received pilot funding from her home institution (USC), which supports her work as a primary investigator. EJ has received salary support from the NIA Alzheimer’s Disease Research Centers (ADRCs; Award P30-AG066530) that was paid to USC and supports her work as a co-investigator. EJ has also received an honoraria payment that was paid to USC to attend the Science of Alzheimer’s Disease and Related Dementias for Social Scientists workshop (P30AG043073-07S1). FJR received funding from the European Commission to serve as an expert reviewer for the Horizon 2020 program (which was called H2020-SC1-2020-Single-Stage-RTD) and has served as the Chair of the Conflicts of Interest Committee at USC. In the past 3 years, Darius N. Lakdawalla has received speaker fees or consulting income from the following sources: Amgen, Genentech, GRAIL, Mylan, Novartis, Otsuka, Perrigo, and Pfizer. Dr. Lakdawalla owns equity in Precision Medicine Group, and previously served as a consultant for them. Dr. Lakdawalla also owns equity in EntityRisk, Inc., and serves as its Chief Scientific Officer. The Leonard D.Schaeffer Center for Health Policy & Economics has received an unrestricted grant from Biogen to support research at the center. This work was supported by the National Institutes of Health (NIH; Award R01AG062277).

REFERENCES

1. International Conference on Harmonisation. ICH Harmonised Tripartite Guideline. Statistical principles for clinical trials. International Conference on Harmonisation E9 Expert Working Group. Stat Med. 1999;18(15):1905-1942.
2. McLeod C, Norman R, Litton E, Saville BR, Webb S, Snelling TL. Choosing primary endpoints for clinical trials of health care interventions. Contemp Clin Trials Commun. 2019;16:100486. https://doi.org/10.1016/j.conctc.2019.100486.
3. Evans S, McRae-McKee K, Wong MM, Hadjichrysanthou C, De Wolf F, Anderson R. The importance of endpoint selection: how effective does a drug need to be for success in a clinical trial of a possible Alzheimer’s disease treatment?. Eur J Epidemiol. 2018;33(7):635-644. https://doi.org/10.1007/s10654-018-0381-0.
4. FDA Related Laws, Regulations, and Guidelines. U.S. Food and Drug Administration. Accessed 2021. https://www.fda.gov/drugs/cder-small-business-industry-assistance-sbia/fda-related-laws-regulations-and-guidances
5. What is the difference between the Federal Food, Drug, and Cosmetic (FD&C Act), FDA regulations, and FDA guidance? U.S. Food and Drug Administration. Accessed 2020. https://www.fda.gov/about-fda/fda-basics/what-difference-between-federal-food-drug-and-cosmetic-act-fdc-act-fda-regulations-and-fda-guidance#:~:text=FDA%20develops%20regulations%20based%20on,law%2C%20or%20issue%20that%20the%20agency%20current%20thinking%20on%20a%20regulated%20issue
6. Noah L. Governance by the Backdoor: Administrative Law(lessness?) at the FDA. Nebraska Law Review. 2014;93(1):89-138.
7. Noah L. Law, Medicine, and Medical Technology, Cases and Materials. 5 ed. University Casebook Series. Foundation Press; 2022.
8. Search for FDA Guidance Documents. U.S. Food and Drug Administration. Accessed 2021. https://www.fda.gov/regulatory-information/search-fda-guidance-documents#guidance
9. Lewis MS. Halted Innovation: The Expansion of Federal Jurisdiction over Medicine and the Human Body. Utah Law Review. 2018;2018(5).
10. Early Alzheimer’s Disease: Developing Drugs for Treatment - Guidance for Industry. U.S. Food and Drug Administration. 2013. Accessed 2020. https://ictsm.org/public_access/FDAGuidance_AD_Developing_Drugs_Early_Stage_Treatment.pdf
11. Early Alzheimer’s Disease: Developing Drugs for Treatment – Guidance for Industry. U.S. Food and Drug Administration. 2018. Accessed 2020. https://www.fda.gov/media/110903/download
12. Alexander L, Burr R, Isakson J, Hatch OG. United States Committee on Health, Education, Labor, and Pensions. 2016. Accessed 2022. https://www.help senate.gov/imo/media/doc/5-6-2016%20FDA%20Guidance%20Letter.pdf
13. Noah L. Guidance Gone Wild?: FDA’s Regrettable Retreat from Legislative Rulemaking. Washington Legal Foundation. 2015. Accessed 2022. https://s3-us-east-2.amazonaws.com/washlegal-uploads/upload/legalstudies/legalback grounder/100915LB_Noah.pdf

14. Joseph A. Member of FDA’s expert panel resigns over controversial Alzheimer’s therapy approval. Stat News. 2021. https://www.statnews.com/2021/06/08/fda-expert-panel-resigns-alzheimers-approval/

15. Lars N. The FDA’s New Policy on Guidelines: Having Your Cake and Eating It Too. Catholic University Law Review. 1997;47(1).

16. Taylor C, Greenlund S, McGuire L, Lu H, Croft J. Deaths from Alzheimer’s Disease – United States, 1994-2014. MMWR Morb Mortal Wkly Rep. 2017;66(20):521-526.

17. Cummings J, Morstorf T, Lee G. Alzheimer’s drug-development pipeline: 2016. Alzheimers Dement (N Y). 2016;2(4):222-232. https://doi.org/10.1016/j.trci.2016.07.001.

18. Cummings J, Lee G, Mortsdorf T, Ritter A, Zhong K. Alzheimer’s disease drug development pipeline: 2017. Alzheimers Dement (N Y). 2017;3(3):367-384. https://doi.org/10.1016/j.trci.2017.05.002.

19. Cummings J, Lee G, Ritter A, Zhong K. Alzheimer’s disease drug development pipeline: 2018. Alzheimers Dement (N Y). 2018;4:195-214. https://doi.org/10.1016/j.trci.2018.03.009.

20. Cummings J, Lee G, Ritter A, Sabbagh M, Zhong K. Alzheimer’s disease drug development pipeline: 2019. Alzheimers Dement (N Y). 2019;5:272-293. https://doi.org/10.1016/j.trci.2019.05.008.

21. Cummings J, Lee G, Ritter A, Sabbagh M, Zhong K. Alzheimer’s disease drug development pipeline: 2020. Alzheimers Dement (N Y). 2020;6(1):e12050. https://doi.org/10.1002/trc2.12050.

22. ClinicalTrials.Gov Background. U.S. Food and Drug Administration. Accessed 2021. https://clinicaltrials.gov/ct2/about-site/background

23. Hauserman C, Rapson D. Regression Discontinuity in Time: Considerations for Empirical Applications. Annual Review of Resource Economics. 2018;10:533-552.

24. Busse M, Jorge S, Zettelmeyer F. $1,000 Cash Back: The Pass-Through of Auto-Manufacturer Promotions. Am Econ Rev. 2006;96(4):1253-1270.

25. Burger N, Daniel T, Bo Y. Did California’s Hand-Held Cell Phone Ban Reduce Accidents?. Trans Res Part A. 2014;66(1):162-172.

26. M Anderson. Subways, Strikes, and Slowdowns: The Impacts of Public Transit on Traffic Congestion. Am Econ Rev. 2014;104(9):2763-2796.

27. Sperling RA, Aisen PS, Beckett LA, et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):280-292. https://doi.org/10.1016/j.jalz.2011.03.003.

28. Schneider LS. Rethinking the Food and Drug Administration’s 2013 guidance on developing drugs for early-stage Alzheimer’s disease. Alzheimers Dement. 2014;10(2):247-250. https://doi.org/10.1016/j.jalz.2013.12.002.

29. McCoy CE. Understanding the Use of Composite Endpoints in Clinical Trials. West J Emerg Med. 2018;19(4):631-634. https://doi.org/10.5811/westjem.2018.4.38383.

30. Insel PS, Donohue MC, Mackin RS, et al. Cognitive and functional changes associated with Aβ pathology and the progression to mild cognitive impairment. Neurobiol Aging. 2016;48:172-181. https://doi.org/10.1016/j.neurobiaging.2016.08.017.

31. Wang J, Logovinsky V, Hendrix SB, et al. ADCOMS: a composite clinical outcome for prodromal Alzheimer’s disease trials. J Neurol Neurosurg Psychiatry. 2016;87(9):993-999. https://doi.org/10.1136/jnnp-2015-312383.

32. Strauss P. Domesticating Guidance. Lewis Clark Environ Law Rev. 2019;49(3):765-792.

33. Takeshima N, Ishiwata K, Sozu T, Furukawa TA. Primary Endpoints in Current Phase II/III Trials for Alzheimer Disease: a Systematic Survey of Trials Registered at ClinicalTrials.gov. Alzheimer Dis Assoc Disord. 2020;34(1):97-100. https://doi.org/10.1097/WAD.0000000000000297.

34. Weitzman RE, Stern AD, Kramer DB. Food and Drug Administration Guidance Documents and New Medical Devices: the Case of Breast Prostheses. Am J Ther. 2021;28(1):e127-e130. https://doi.org/10.1097/MTJ.0000000000000888.

35. Harrison JK, Noel-Storr AH, Demeyere N, Reynish EL, Quinn TJ. Outcomes measures in a decade of dementia and mild cognitive impairment trials. Alzheimers Res Ther. 2016;8(1):48. https://doi.org/10.1186/s13195-016-0216-8. 11 21.

36. 221AD302 Phase 3 Study of Aducanumab (BIIB037) in Early Alzheimer’s Disease (ENGAGE). ClinicalTrials.gov. Accessed 2021. https://clinicaltrials.gov/ct2/show/NCT02477800

37. 221AD301 Phase 3 Study of Aducanumab (BIIB037) in Early Alzheimer’s Disease (EMERGE). ClinicalTrials.gov. Accessed 2021. https://clinicaltrials.gov/ct2/show/NCT02484547

38. European Medicines Agency. Draft guideline on the clinical investigation on medicines for the treatment of Alzheimer’s disease and other dementias. European Medicines Agency. Accessed 2021. https://www.ema.europa.eu/en/documents/scientific-guideline/draft-guideline-clinicalinvestigation-medicines-treatment-alzheimers-disease-other-dementias_en.pdf

39. Cox Grad, S. Trial Design. 2009. New Jersey: John Wiley.
APPENDIX A

We summarize the characteristics of the AD pivotal clinical trials in our dataset in Table A1.

In Figure A1, we present in equation format the linear model specification for our RDIT analysis.

The primary endpoints used in our clinical trials are summarized in Table A2 by domain classification.

Through Appendix Table A3A, we show how the RDIT model’s R2 (also known as the coefficient of determination) changes when we vary

TABLE A1 Characteristics of Alzheimer’s disease pivotal clinical trials

Trial characteristic	Estimate
N	314
Trial phase	
II/III	34 (10.8%)
III	279 (88.9%)
III/IV	1 (0.3%)
Trial start year	
1997–2000	62 (19.1%)
2001–2005	76 (24.2%)
2006–2010	68 (21.7%)
2011–2015	56 (17.8%)
2016–2020	52 (16.6%)
DMT status	
Yes	124 (39.5%)
Number of unique primary endpoints	
1	159 (50.6%)
2	112 (35.7%)
3	23 (7.3%)
4	12 (3.8%)
5	3 (1.0%)
6	2 (0.6%)
7	1 (0.3%)
8	2 (0.6%)
Trial region (not mutually exclusive)	
Americas	187 (59.6%)
North America	182 (58.0%)
South America	43 (13.7%)
Caribbean/Central America	13 (4.1%)
Europe	150 (47.8%)
Eastern Europe	75 (23.9%)
Asia	100 (31.9%)
Australia/Oceania	60 (19.1%)
Western Asia/Middle East	25 (8.0%)
Africa	0 (0.0%)
Not Available	2 (0.6%)

Abbreviation: DMT, disease-modifying therapy.

\[y = \beta_0 + \beta_1 \times \text{trialStartDate} + \beta_2 \times (\text{trialStartDate} - \text{March 2013}) + \beta_3 \times (\text{trialStartDate} - \text{March 2018}) + \beta_4 \times \text{alzheimersDiseaseStaging} + \beta_5 \times \text{registrationStatus} + \beta_6 \times \text{trialPhase} + \epsilon \]

FIGURE A1 Regression discontinuity in time (RDIT) linear model specification

TABLE A2 List of primary endpoints used in phase III-type trials, as grouped by domain classification

Domain classification	Cognitive only
AKT (Alters-Konzentrations-Test)	Alzheimer’s Disease Cooperative Study - Preclinical Alzheimer Cognitive Composite (ADCS-PACC)
Alzheimer’s Prevention Initiative Composite Cognitive (APCC) Test Score	Alzheimer’s Disease Assessment Scale–Cognitive Subscale (ADAS-Cog)
Brief Praxis Test	Cambridge Test for Mental Disorders in the Elderly–Cognitive Section (CAMCOG)
Buschke Selective Reminding Test	Category/Letter Fluency
Change on a composite score of immediate and delayed recall of verbal and visual memory	Choice Reaction Time (CRT)
Clock Drawing Test	Composite Score of a Broad Cognitive Test Battery
Composite Z Score (combining 4 different cognitive tests including 10 Mini-Mental State Examination (MMSE) questions)	Consortium to Establish a Registry for Alzheimer’s Disease–Neuropsychological (CERAD-NP)
Delayed Recall Test	Dementia Rating Scale
DemTect	Free and Cued Selective Reminding Test
Global Deterioration Scale	Gruber & Buscke Test
Gruber’s Dementia Scale-Revised (HDS-R)	Hasegawa’s Dementia Scale-Revised (HDS-R)
Mini-Mental State Examination	National Institute of Neurological Disorders and Stroke (NINDS)-initiated EXecutive Abilities: Measures and Instruments for Neurobehavioral Evaluation and Research or (EXAMINER) Tool Box
Neuropsychological Test Battery	New York University (NYU) Paragraph Delayed Recall Test
Preclinical Alzheimer’s Cognitive Composite-5 (PACC-5)	Rey Auditory Verbal Learning Test
Seoul Neuropsychologic Screening Battery	Seven Minute Test
Severe Impairment Battery	(Continues)
Domain classification	TABLE A2 (Continued)
-----------------------	----------------------
Behavioral only	
Alzheimer’s Disease Assessment Scale (ADAS) - Behavioral Subscale	
Apathy Evaluation Scale (AES)	
Assessment of the Clinical Significance of Behavioral Change Rated by the Study Clinician	
Behavioral Pathology in Alzheimer’s Disease (BEHAVE-AD)	
Brief Psychiatric Rating Scale	
Cohen-Mansfield Agitation Inventory (CMAI)	
Columbia Suicide Severity Rating Scale (C-SSRS)	
Cornell Scale for Depression in Dementia	
Emotional Lability Scale	
Frontal Systems Behavior Scale	
Geriatric Depression Scale	
Global Assessment of Functioning (GAF)	
Hamilton Depression Scale	
Italian “Scala per la valutazione del benessere emotivo dell’anziano (SVEBA)”	
NeuroBehavioral Rating Scale- Agitation (NBRS-A)	
Neuropsychiatric Inventory (NPI)	
Pittsburgh Agitation Scale	
Positive and Negative Syndrome Scale (PANSS)	
Profile of Mood States (POMS)	
Relapse (Hallucinations, Delusions from Dementia-Related Psychosis)	
Sandoz Clinical Assessment-Geriatric	
Sheehan Suicidality Tracking Scale (S-STS) Score	
Social Dysfunction and Aggression Scale - 9 (SDAS-9)	
Functional only	
Activities of Daily Living (ADL)	
Alzheimer’s Disease Cooperative Study–Activities of Daily Living (ADCS-ADL)	
Alzheimer’s Disease Cooperative Study–Instrumental Activities of Daily Living (ADCS-IADL)	
Barthel Index	
Bristol Activities of Daily Living Scale (BrADL)	
Caregiver Activity Survey	
Dependence Scale	
Disability Assessment for Dementia (DAD)	
Functional Assessment Staging Tool (FAST)	

TABLE A2 (Continued)

Domain classification	TABLE A2 (Continued)
Gait Speed	
Instrumental Activities of Daily Living (IADL)	
Minimum Data Set Activities of Daily Living Test (MDS-ADL)	
Nuremberg Gerontopsychological Rating Scale for Activities of Daily Living (NAI-NAA)	
Physical Self-Maintenance Scale (PSMS)	
Timed Up and Go (TUG) Test Score	
PROs only	
Abbey Pain Scale	
Caregiver Stress Scale	
Epworth Sleepiness Scale (ESS) Score	
Goal Attainment Scaling (GAS) Score	
Intensity Rating Scale	
Mean Total Sleep Time	
Nighttime Total Sleep Time	
Pain Assessment Checklist for Seniors with Limited Ability to Communicate (PACS-LAC)	
Pain Assessment in Advanced Dementia (PAINAD)	
Progressive Deterioration Scale	
Quality of Life–Alzheimer’s Disease (QoL-AD)	
Screen for Caregiver Burden	
Short-Form Health Survey (SF-36)	
Biomarkers only	
Amyloid PET scan	
APOE4	
Brain Volume Change (as measured by Magnetic Resonance Imaging [MRI])	
Cerebrospinal Fluid (CSF)	
Ferric Reducing Ability of Plasma	
PMN (Polymorphonuclear Leukocytes) Production	
Glutathione	
Interleuken-1-Beta	
Interleukin-6	
Magnetic Resonance Imaging (MRI)	
Malondialdehyde	
Modified Hachinski Ischemia Score	
Oxygenated Hemoglobin Concentration	
Positron Emission Tomography	
Regional cerebral blood flow using arterial spin-labeling Magnetic Resonance Imaging (MRI)	
Serum Brain-Derived Neurotrophic Factor (BDNF) Levels	
Serum Levels of Malondialdehyde	
Superoxid Dismutase	
TNF-Alpha	

(Continues)
TABLE A2 (Continued)

Domain classification	Total Antioxidant Capacity	Weight change in kilograms
Multi-domain		
Alzheimer’s Disease Assessment Scale (ADAS) Total		
Alzheimer’s Disease Rating Scale*		
Alzheimer’s Disease Cooperative Study – Clinical Global Impression (ADCS-CGI)*		
Blessed-Roth Scale		
Clinical Dementia Rating – Sum of Boxes (CDR-SB)*		
Clinical Dementia Rating (CDR)*		
Clinical Global Impression of Change (CGIC)*		
Clinician’s Interview-Based Impression of Change–Plus Caregiver Input (CIBIC+)*		
Clinician’s Interview-Based Impression of Change (CIBIC)*		
Global Improvement Scale (GIS)*		
Gottfries-Brane-Steen Scale*		
Incidence of Alzheimer’s Disease (AD) (based on NICDS [National Institute For Communicable Diseases], ADRD [Alzheimer’s Disease and Related Dementias], and DSM-IV [Diagnostic and Statistical Manual of Mental Disorders] Criteria)*		
mADCS-CGI*		
Nuremberg Activities Inventory*		
Patient Diary		
Polysomnography		
Time to clinical diagnosis of AD by NINCDS-ADRDA (National Institute of Neurological and Communicative Disorders and Stroke - Alzheimer’s Disease and Related Disorders Association) and DSM-IV Criteria*		
Time to diagnosis of Mild Cognitive Impairment (MCI) due to Alzheimer’s Disease (AD) or dementia due to AD*		

Note: *Cognitive/functional composite endpoints which measure cognition/function and behavior.

the discontinuity years. Findings indicate that the base case offers the highest R2, which implies robust model fit.

Through Appendix Table A3B, we show the RDIT model’s spline P-values when we vary the discontinuity years. Findings indicate that the base case offers the lowest P-value, which implies model robustness.

In Appendix Table A4, we developed an additional RDIT model, which suggests that DMT trials with private sponsors may be more responsive to guidance documents than DMT trials with public sponsors.

In Appendix Table A5A, we use a linear model to show that DMT trials with cognitive/functional composite primary endpoints have larger sample sizes than DMT trials without.

In Appendix Table A5B, we use a linear model to show that DMT trials with CDR-SB as their primary endpoint have larger sample sizes than DMT trials without.

TABLE A3A Regression discontinuity in time (RDIT) design linear model – model R2 when varying discontinuity year

Spline for 2013 FDA guidance	Model R2
March 2007	0.0576
March 2008	0.0788
March 2009	0.0969
March 2010	0.1099
March 2011	0.1213
March 2012	0.1343
March 2013 (Base Case)	0.1407
March 2014	0.1378
March 2015	0.1182
March 2016	0.0958
March 2017	0.0761

Abbreviation: FDA, Food and Drug Administration.

TABLE A3B Regression discontinuity in time (RDIT) design linear model – Spline P-values when varying discontinuity year

Spline for 2013 FDA guidance	Spline P-value
March 2007	.2789
March 2008	.0716
March 2009	.0189
March 2010	.0062
March 2011	.0024
March 2012	.0006
March 2013 (base case)	.0003
March 2014	.0004
March 2015	.0016
March 2016	.0094
March 2017	.0313

Abbreviation: FDA, Food and Drug Administration.
TABLE A4 Regression discontinuity in time (RDiT) design linear model to investigate the impact of the 2013 and 2018 FDA guidances on the selection of primary endpoints in Alzheimer’s disease DMT clinical trials, by sponsor type

Independent variables	Cognitive/functional composite endpoint	CDR-SB						
	Trials with private sponsors	Trials with public sponsors	Trials with private sponsors	Trials with public sponsors				
	Coefficient	P-value	Coefficient	P-value	Coefficient	P-value	Coefficient	P-value
Intercept	3.483 ***	.000	−.978	.490	1.130 **	.041	−.627	.353
Years prior to March 1, 2013	−0.068 ***	.000	0.030	.366	−0.028 **	.030	0.017	.344
Years between March 1, 2013, and March 1, 2018	0.170 ***	.001	−0.124	.137	0.133 ***	.005	−0.058	.337
AD stage (reference = overt AD)								
Presymptomatic	0.514 **	.028	0.310	.244	−0.386 *	.070	0.040	.383
Prodromal/MCI	0.072	.674	−0.203	.458	0.175	.191	−0.127	.356
FDA registered trial	0.156	.282	−0.139	.462	0.406 ***	.001	−0.101	.342
Phase (reference = phase III)								
Phase II/III	−0.133	.290	0.122	.541	−0.150	.209	0.003	.880
Phase III/IV	0.765 ***	.000	−0.236 ***	.001	−	−	−	−
Number of observations	84	34	84	34				
R-Squared	0.337	0.1014	0.409	0.145				

= Abbreviations: AD, Alzheimer’s disease; CDR-SB, Clinical Dementia Rating–Sum of Boxes; CI, confidence interval; DMT, disease-modifying therapy; MCI, mild cognitive impairment.

* P < .10, ** P < .05, *** P < .01.

TABLE A5A Linear regression model to investigate whether trials with cognitive/functional composite primary endpoints have larger sample sizes than trials without, among Alzheimer’s disease DMT clinical trials

Independent variables	Sample size		
	Coefficient	P	
Intercept	1075.760	.251	
Has a cognitive/functional composite endpoint	140.110 **	.020	
AD stage (reference = overt AD)			
Presymptomatic	−822.074	.390	
Prodromal/MCI	−918.275	.331	
FDA registered trial	288.643 ***	.000	
Phase (reference = phase III)			
Phase II/III	−286.396 **	.032	
Phase III/IV	−316.799 ***	.000	
DMT status	240.565 ***	.000	
Number of observations	305		
R-squared	0.213		

Abbreviations: AD, Alzheimer’s disease; CDR-SB, Clinical Dementia Rating; DMT, disease-modifying therapy; FDA, Food and Drug Administration; MCI, mild cognitive impairment.

* P < .05, ** P < .01.

TABLE A5B Linear regression model to investigate whether trials with CDR-SB as a primary endpoint have larger sample sizes than trials without, among Alzheimer’s disease DMT clinical trials

Independent variables	Sample size		
	Coefficient	P	
Intercept	1210.540	.210	
Has CDR-SB	277.909 ***	.005	
AD stage (reference = overt AD)			
Presymptomatic	−961.732	.322	
Prodromal/MCI	−996.694	.301	
FDA registered trial	254.405 ***	.000	
Phase (reference = phase III)			
Phase II/III	−283.080 **	.039	
Phase III/IV	−176.911 **	.010	
DMT status	218.662 ***	.000	
Number of observations	305		
R-squared	0.215		

Abbreviations: AD, Alzheimer’s disease; CDR-SB, Clinical Dementia Rating; DMT, disease-modifying therapy; FDA, Food and Drug Administration; MCI, mild cognitive impairment.

* P < .05, ** P < .01.