Ensuring reliability of the brake drive of cars in operation

D N Smirnov¹, A G Kirillov² and M S Shishova³

Vladimir State University n a Alexander and Nikolay Stoletovs, str. Gorky, 87, 600000, Vladimir, Russia

E-mail: ¹sdn87@inbox.ru, ²kirillov_ag@mail.ru, ³sdn87@inbox.ru

Abstract. The article deals with ensuring reliability of the brake drive of cars in operation. Attention is given to the dynamic brake force controller which is installed in the diagonal brake drive in the braking mechanism of rear wheels. On the basis of the hypotheses made concerning the limiting quantities of operational kilometers of the brake force controller and its drive, bench and road tests of cars were carried out. Results of experimental tests confirmed theoretical hypotheses.

1. Introduction

Modern vehicles of category M1 of home manufacture and assembly, such as LADA Kalina, LADA Priora, LADA Granta, LADA 4x4, LADA Largus, Renault Logan, Chevrolet Niva, etc. in bog-standard manufacture are completed with brake force controllers (BFC) in the drive to rear braking mechanisms. When carrying out the statistical analysis it was established that the share of vehicles of category M1 with brake drive BFC makes 37 % (15.54 million) of the park of cars in the country [8]. It means that in the next decades there will be vehicles (V) with brake systems fitted with BFC. Statistics of the AvtoVAZ enterprise should also be taken into account. In 2017 311,588 thousand cars were produced and 24 thousand of this number were exported. Russian LADA cars are officially imported in 24 countries [9]: Azerbaijan, Armenia, Republic of Belarus, Bolivia, Bulgaria, Chile, Egypt, Georgia, Germany, Hungary, Kazakhstan, Kyrgyzstan, Latvia, Lebanon, Republic of Moldova, Slovakia, Tajikistan, Turkmenistan, Ukraine, Uzbekistan, South Ossetia, Serbia, Syria and Peru.

The hypotheses concerning the BFC service life limit and its mechanical drive corresponding to 44,600 ± 2,230 thousand km and 51,120 ± 3,578 thousand km received by calculation are described in the articles [1]–[3].

The hypotheses consist in that the BFC in question stops to perform its functions after running 45,0 thousand km. To check these hypotheses bench and road tests were carried out. Vehicles of category M1 were tested. Technical characteristics of the tested cars are given in Table 1.
Table 1. Technical characteristics of the cars tested

№	brand, model of the car	Kilometerage (milage) (thousands)	Parameters	brand, model of tires	BFC information
			front axle	rear axle	
1	VAZ-2190 «Granta»	3		KAMA-217	didn’t change
				175/65 R14	
2	VAZ-2192 «Kalina»	42		Cordiant Comfort	didn’t change
				185/60 R14	
3	VAZ-2192 «Kalina»	48		Ovation W586	didn’t change
				185/60 R14	
4	VAZ-2172 «Priora»	54		Tunga Nordway	didn’t change
				185/65 R14	
5	VAZ-2113 «Samara»	87		Rosava WQ-102 175/70 R13	didn’t change
				Medved 175/70 R13	
6	Chevrolet «Niva»	140		KAMA-frame 205/70 R16	was replaced with new one before tests
7	IZh-2126 «Ode»	226		KAMA-205 175/70 R13	was replaced with new one 200 thousand km of operation
8	VAZ-21093 «Satellite»	234		Dunlop SP winter ICE01 175/70 R13	didn’t change

According to the bench tests results (the tests are described in [5]) and requirements imposed by specification documents [6, 7] to the brake system implementable grip of wheels was calculated. On this basis point-to-point curves of implementable grip for each wheel of the cars in question (Figure 1) were constructed.

\[Y_1 = \frac{R_{x1}}{R_{z1}} = \frac{R_{x1}}{P_{i+z} + \frac{h_c}{L} M_a g} \] \hspace{1cm} (1)

where \(\gamma_i \) – the realized grip of \(i \) axis; \(R_{x1} \) – force transferred by brakes to an axis \(i \) under usual conditions of braking on the road; \(R_{z1} \) – normal reaction of a road surface on axis \(i \) while braking; \(P_{i+z} \) – normal reaction of a road surface on axis \(i \) under static conditions; \(z \) – the index of an axis (\(i = 1 - \) a forward axis, \(i = 2 - \) the second axis, etc.); \(z \) – vehicle’s braking coefficient; \(g \) – acceleration due to gravity; \(h_c \) – the height of the center of gravity specified by the manufacturer and accepted by technical services which carry out test for official approval; \(L \) – wheel base; \(M_a \) – mass of the vehicle.

2. Results and Discussion

Experimental investigations carried out to determine technical condition of BFC of random cars showed that the life service of the BFC in question is up to 45.0 thousand km.

Road tests results have confirmed those of the bench tests.
Figure 1. Curves of an implementable grip for the car wheels at the equipped weighting state: a) – VAZ-2190 «Granta»; b) – VAZ-2192 «Kalina»; c) – VAZ-2192 «Kalina»; d) – VAZ-2172 «Priora»; implementable grip: 1 – front left wheel; 2 – front right wheel; 3 – rear left wheel; 4 – rear right wheel; 5 – $\gamma = z$.

3. Conclusion

The results obtained correlate with frequency of servicing of the LADA cars. Organizational and technical activities can be recommended to include BFC and its drive in the vehicle maintenance schedule:

1) when carrying out each maintenance it is necessary to remove impurities (dirt, ice, slime, etc.) from the casing of the BFC and its drive. Then remove a protective cover of BFC, remove the old lubricant and put under the cover new lubricant in amounts of 5 – 7 gr, for example, of DT-1, then reinstall the protective cover;

2) when carrying out scheduled maintenance after running 30.0 ± 0.5 thousand km, check the position change of the drive fastening, correct its position by measuring of the Δ gap between the lower part of the lever 4 (Figure 2) of the regulator drive and a spring in the 7th lever. Gap size Δ has to be in the limits of 2.0 \pm 2.1 mm;

3) when carrying out scheduled maintenance after running 45.0 ± 0.5 thousand km before changing the brake fluid replace the BFC and the drive fastening elements: bolt M8×50 of drive fastening III (Figure 2), bracket 2 fastening of the regulator fastening to the car body. Make a necessary gap Δ between the heel of the lever 4 (Figure 2) of an adjuster actuator and a spring of the 7th lever;

4) at each subsequent scheduled maintenance after running 15.0 ± 0.5 thousand km it is necessary to carry out maintenance of the BFC mechanical drive described in points 1 and 2, and 4 after running 5.0 ± 0.5 thousand km – the works described in point 3.
Figure 2. BFC of VAZ-2108-351205211 with the drive: 1 – brake force controller; 2 – a bracket of fastening of the controller to a car body; 3 – controller elastic drive arm; 4 – controller drive arm; 5 – controller drive arm bracket; 6 – pin; 7 – lever spring; I, II, III, IV – interfaces of elements of the drive design where deviations from the mutually joint members can result in the malfunctioning of the controller; ∆ – an adjusting gap

These recommendations come to an agreement with Technical Maintenance frequency VAZ cars according to the service manual; they were implemented into technology process of scheduled maintenance on adjustment and repair of the BFC.

References

[1] Smirnov D N, Kirillov A G and Nuzhdin P B 2014 Diagnosing of the regulator of braking forces by means of bench and road tests Motor transportation enterprise 11 28-31
[2] Timofeeva S I, Smirnov D N 2015 Diagnosing of the regulator of braking forces of VAZ-2108 351205211 according to the value of a dynamic conversion factor Motor transportation enterprise 3 50-53
[3] Smirnov D N, Kirillov A G and Kirillov P A 2014 Determination Technique of operability of the brake force controller Current problems of operation of vehicles: materials of the XVI International scientific and practical conference 66-70
[4] Smirnov D N 2015 Research of operability of the brake force controller in operation (on the example of cars VAZ) Dis. ... Cand. Tech. Sci. Vladimir: VLGU 173
[5] Smirnov D N, Kirillov A G and Nemkov V A 2012 Analysis of the existing techniques of technical condition assessment of the brake force controller Bulletin of the Tajik Technical University: scientific and technical magazine 82-86
[6] State standard of GOST R 51709-2001 Vehicles. Safety requirements to technical condition and check methods [An electronic resource]//URL: http://internet-law.ru/gosts/gost/2246/ (date of the address 17.08.2018).
[7] UNECE Regulations No. 13-N 2008 The uniform instructions concerning approval of cars concerning braking 80.1.
[8] TOP-10 foreign cars in the park of cars of Russia [An electronic resource]//URL: https://automarket-news.ru/statyi/statistika/item/6729-top-10-inomarok-v-parke-legkovykh-avtomobilej-rossii (date of the address 17.08.2018).
[9] Lada Online. Export of the LADA cars in 2017 in detail [An electronic resource]//URL: https://Lada.online/auto-news/autovaz/2896-podrobno-pro-eksport-lada-v-2017-godu.html (date of the address 25.02.2018)