A Channel Coding Benchmark for Meta-Learning

Rui Li

Work with Ondrej Bohdal, Hyeji Kim, Da Li, Nicholas D. Lane, and Timothy Hospedales

1 Samsung AI Center, Cambridge, UK, 2 University of Edinburgh, UK
3 University of Texas at Austin, US, 4 University of Cambridge, UK

AAAI Workshop on Meta-Learning
9 February 2021
Challenges in Meta-Learning

SOTA Meta-learner often suffer in realistic settings[1][2], when:

- Task distribution is broad and multi-modal
- There is distribution shift between the meta-training and meta-testing tasks

Studying these issues with existing benchmarks lack of quantitative measure and ability to control of task complexity and distribution shifts

[1] Triantafillou et. al. “Meta-dataset: A dataset of datasets for learning to learn from few examples”. In ICLR, 2020.
[2] Yu et.al. “Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning”. In CORL, 2019.
Challenges in Meta-Learning

Which of the following datasets is more complex?

Train dataset #1: “cat-bird”
- cats
- birds

Train dataset #2: “flower-bike”
- flowers
- bikes

Image Source: https://lilianweng.github.io/lil-log/2018/11/30/meta-learning.html and Pinterest
Challenges in Meta-Learning

Which of the following transition is associated with a greater distribution shift?

- Meta-Train-Test Shift #1
- Meta-train task: Switch Manipulation
- Meta-Test task #1: Picking-up and Putting-down an Object

- Meta-Train-Test Shift #2
- Meta-Test task #2: Opening a Door

Video Source: Boston Dynamics
Our Contributions

➢ Propose a channel coding powered meta-learning benchmark.

➢ And use such benchmark to investigate:

 ○ Q1: How vulnerable are existing meta-learners to under-fitting when trained on complex task distributions?
 ○ Q2: How robust are existing meta-learners to task-distribution shift between meta-train and meta-test?
 ○ Q3: Are channel coding meta-learners able to rely on the feature re-use shortcut, or must they learn to adapt?
What is Channel Coding?

Neural Decoder [3] able to obtain superior performance on complex & realistic channels
Why Channel Coding as a Benchmark

➢ A fundamental problem in communications

➢ Task distributions naturally arise, and fast adaptation to new tasks is practically valuable

➢ Controllability of task distributions (via controlling e.g. channel noise distributions)

➢ Information theoretic measures obtainable

\[b \in \{0, 1\}^K \rightarrow \text{Encoder } f_{\text{enc}}(\cdot) \rightarrow c \in \{\pm 1\}^{2K} \rightarrow \text{Channel } P(y|c) \rightarrow y \in \mathbb{R}^{2K} \rightarrow \text{Decoder } f_\theta(\cdot) \rightarrow \hat{b} \in \{0, 1\}^K \]
Channel Coding Benchmark for Meta-Learning

- 4 Families (modes) of common **channel models**: Additive White Gaussian Noise (AWGN), Bursty, Memory, and Multipath interference channels, and corresponding decoding tasks.

- A **task distribution** corresponds to a channel class and is **parameterized** by continuous channel parameters \(\omega \), e.g., SNR value.

- Implementation: Based on and extended Learn2Learn [4] framework.

[4] Arnold, Sebastien M. R., et al. “learn2learn: A Library for Meta-Learning Research.”
Diversity Score and Train-Test Task-Shift Measures

➢ **Definition 1:** The Diversity Score $D(\mathcal{T})$ of a task distribution $p(\mathcal{T})$ is defined as mutual information between the channel parameter ω and the received signal y:

$$D(\mathcal{T}) = \mathbb{E}_c[I(\omega; y|c)],$$

where ω denotes the channel parameter (latent variable) for the task distribution, i.e.

$$p(y|c) = \int_\omega p(y|c, \omega)p_\omega(\omega).$$
Definition 2: Train-Test Task-Shift $S(p_a(\mathcal{T}), p_b(\mathcal{T}))$

Distance between a test distribution \mathcal{T}_a and a train distribution \mathcal{T}_b using Kullback–Leibler divergence (KLD):

$$S(p_a(\mathcal{T}), p_b(\mathcal{T})) := \mathbb{E}_c[D_{KL}(p_a(y_a|c)||p_b(y_b|c))]
+ \mathbb{E}_c[D_{KL}(p_b(y_b|c)||p_a(y_a|c))],$$

In which $p_a(y_a|c)$ and $p_b(y_b|c)$ denote the channels associated with \mathcal{T}_a and \mathcal{T}_b, respectively.
Experiment Setup

- 8 Meta-learners: MAML, MAML FO, Reptile, ANIL, KFO, CAVIA, MetaSGD, and MetaCurvature
- Non-meta-learner: empirical risk minimisation (ERM) baseline “Vanilla”
- 4 Channel families, each sample 200 noise setups
Results [Q1]: Impact of Training Distribution Diversity

Uni-modal/within family (AWGN): Focused (SNR -0.5 ~ 0.5); Expanded (SNR -5 ~ 5)
Multi-modal/mixed: AWGN + Bursty + Memory + Multi-path
=> moderate degradation as diversity increases

BER: Bit-error-rate (lower the better)
Results [Q2]: Impact of \textbf{Train-Test Distribution Shift}

![Graph showing BER for different environments and models]

- MAML
- ANIL
- Vanilla
- Reptile
- MAML FO
- KFO
- MetaSGD
- MetaCurvature
- CAVIA
Results [Q2]: Distance Score vs Accuracy Gain over Vanilla

Each dot corresponds to an experiment
Blue curve: fitted accuracy gain
X-axis: Our distance score; Y-axis: Accuracy gain

- ★ shift from mixed channels
- +, shift within family
- o, shift across family

Blue: AWGN
Red: Bursty
Green: Memory
Black: Multipath
Results [Q2]: Distance Score vs Accuracy Gain over Vanilla
Follow-up Studies (if time allows)

[Q3] *Who is taking the feature re-use short-cut?*

[5] Raghu, Aniruddh, et al. "Rapid learning or feature reuse? towards understanding the effectiveness of maml." *arXiv preprint arXiv:1909.09157* (2019).
Follow-up Studies (if time allows)

Impact of #domains available
Conclusions

➢ Channel coding provides a flexible benchmark for studying meta-learning
➢ Mild degradation in performance under complex task distributions (Q1)
➢ Absolute performance degrades rapidly with distribution shift. (Q2)
➢ Accuracy improvement over non-meta-learner improves with shift (Q2)
➢ Less features re-use in channel coding than vision tasks (Q3)
Thank You & Questions!

Poster Session 12:00-13:00
Room 7

Contact:

Email: rui.li@samsung.com
Website: https://ruihuili.github.io