Neutron emission in ultraperipheral Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

ALICE Collaboration

Abstract

In ultraperipheral collisions (UPCs) of relativistic nuclei without overlap of nuclear densities, the two nuclei are excited by the Lorentz-contracted Coulomb fields of their collision partners. In these UPCs, the typical nuclear excitation energy is below a few tens of MeV, and a small number of nucleons are emitted in electromagnetic dissociation (EMD) of primary nuclei, in contrast to complete nuclear fragmentation in hadronic interactions. The cross sections of emission of given numbers of neutrons in UPCs of 208Pb nuclei at $\sqrt{s_{NN}} = 5.02$ TeV were measured with the neutron zero degree calorimeters (ZDCs) of the ALICE detector at the LHC, exploiting a similar technique to that used in previous studies performed at $\sqrt{s_{NN}} = 2.76$ TeV. In addition, the cross sections for the exclusive emission of one, two, three, four, and five forward neutrons in the EMD, not accompanied by the emission of forward protons, and thus mostly corresponding to the production of 207,206,205,204,203Pb, respectively, were measured for the first time. The predictions from the available models describe the measured cross sections well. These cross sections can be used for evaluating the impact of secondary nuclei on the LHC components, in particular, on superconducting magnets, and also provide useful input for the design of the Future Circular Collider (FCC-hh).
1 Introduction

Studies of collisions of ultrarelativistic nuclei typically focus on the participant zone where the nuclei overlap and the quark–gluon plasma (QGP), a state of matter where quarks and gluons are free, can be created [1]. This is the domain where hot and dense matter is produced due to the enormous collision energy of the participating nucleons. At the same time, a domain of cold nuclear matter is expected to coexist with the participant zone in peripheral collisions. It is represented by spectator nucleons, which mainly preserve the velocity of the initial nuclei and travel forward. Measurements at the CERN Super Proton Synchrotron (SPS) [2] have shown that some of the spectator nucleons remain bound in nuclear fragments produced in peripheral collisions of ultrarelativistic 208Pb nuclei with a beam energy of 158 GeV per nucleon with a lead target. At this energy heavy spectator fragments were also detected in interactions of 208Pb nuclei with various target nuclei [3]. This was explained by a modest excitation of spectator matter in peripheral collisions [3].

In ultraperipheral collisions (UPCs) of relativistic heavy ions without nuclear overlap the colliding nuclei can be considered entirely as spectators. While their geometrical overlap is excluded because the collision impact parameter exceeds the sum of the nuclear radii, nuclei are still excited by the Lorentz-contracted Coulomb fields of their collision partners. In comparison to hadronic nucleus–nucleus collisions, electromagnetic excitation is a rather soft process that results in the electromagnetic dissociation (EMD) of primary nuclei with the emission of just a few nucleons [4].

Large EMD cross sections for the emission of one, two and three forward neutrons have been reported by the ALICE Collaboration [5] for UPCs of 208Pb nuclei at a centre-of-mass energy per nucleon pair $\sqrt{s_{\text{NN}}} = 2.76$ TeV at the Large Hadron Collider (LHC). EMD products retain beam rapidity similarly to spectators from hadronic nucleus–nucleus collisions. The EMD of 208Pb nuclei contributes significantly to the decay of the beam intensity [6] and produces various secondary nuclei in all four interaction points (ALICE, ATLAS, CMS and LHCb) of the LHC [7]. Certain secondary nuclei with their charge-to-mass ratio close to 208Pb (principally 207Pb) can travel for long distances around the collider rings because their magnetic rigidity is close to that of 208Pb and they may potentially be lost in superconducting magnets [7, 8]. With a proper set-up of the collimation system, most of these secondary nuclei are intercepted efficiently by the off-momentum collimators and the dispersion suppressor sections around the LHC experiments. A dominant source of beam loss in the latter regions is the process of bound-free e^+e^- pair production in UPCs with the electron capture by 208Pb [7, 8].

The methods to study fragmentation of projectile nuclei at multi-GeV or TeV collision energies differ significantly from those used at much lower collision energies. In the latter case, fragments of projectiles with an initial energy of hundreds of MeV per nucleon are emitted at large angles with respect to the beam axis, so that their spread permits complete identification of projectile fragments using, among others, scintillator hodoscopes and time-of-flight detectors [9, 10]. In particular, the multi-fragment break-up of spectator matter has been investigated at intermediate collision energies [9].

In contrast, the detection of projectile fragments in experiments at ultrarelativistic energies exceeding tens of GeV per nucleon is harder. It is difficult to separate these fragments from beam nuclei because they are emitted at very small angles with respect to the beam axis. For example, projectile fragments were intercepted by imposing an external magnetic field and placing fragment detectors far from the interaction point [2]. High resolution nuclear emulsions [11] and solid-state track detectors made of CR39 plastic [12] have also been employed to study fragmentation of ultrarelativistic nuclei. The charge distributions of fragments have been measured [11, 12] in a wide range of charges of secondary nuclei, but nuclear emulsions and stacks of CR39 remained insensitive to spectator neutrons. Measurements of the charge-changing cross sections for lead and indium nuclei at an energy of 158 GeV per nucleon were performed with multiple-sampling ionisation chambers in Refs. [3] and [13], respectively, also without detecting forward neutrons.

Neutron emission in UPC Pb–Pb at $\sqrt{s_{\text{NN}}} = 5.02$ TeV ALICE Collaboration
Neutron emission in UPC Pb–Pb at \(\sqrt{s_{NN}} = 5.02 \) TeV

ALICE Collaboration

It should be emphasised that, to date, the production of charged spectator fragments has not been studied, neither at RHIC nor at the LHC. There exist only two proposals for future experiments to detect charged fragments in collider experiments, in particular, by means of a centrality detector at RHIC [14] and by the ATLAS Forward Proton detectors at the LHC [15]. The ALICE experiment already has a unique possibility to detect forward protons as well as neutrons with its neutron and proton zero degree calorimeters (ZDCs) [16–18].

According to the RELDIS [4, 19, 20] and FLUKA [21] models, the production of various secondary nuclei is expected in EMD of \(^{208}\)Pb at the LHC. It is impossible to identify masses and charges of secondary nuclei at the LHC and thus directly measure the cross sections of production of specific nuclides. However, the cross sections of production of \(^{207},^{206},^{205},^{204},^{203}\)Pb are closely related to the cross sections to emit one, two, three, four, and five neutrons, respectively, in the absence of proton emission.

The aim of the present work is twofold. Firstly, to determine the cross sections of neutron emission in EMD of heavy nuclei at the highest collision energy available in accelerator experiments. Various models [4, 21–23] that are used to calculate neutron emission in EMD can be tested with these new data. Secondly, to measure the cross sections of emission of 1, 2, ..., 5 neutrons without protons, to be used as approximations of the cross sections of production of \(^{207},^{206},^{205},^{204},^{203}\)Pb. The validity of this approximation is studied by means of the RELDIS model.

In Sec. 2 the ALICE ZDCs are briefly described. In Sec. 3 the data sample and the adopted trigger configuration are presented. Section 4 describes the methods of fitting ZDC energy spectra, and the corrections for detection efficiency and acceptance that provided the measured cross sections presented in Sec. 5. In Sec. 6, on the basis of the RELDIS model, the neutron emission without protons in EMD of \(^{208}\)Pb is associated with the production of secondary lead nuclei. Finally, conclusions and outlook are given in Sec. 7.

2 Experimental set-up

A detailed description of the ALICE experiment can be found in Ref. [24]. In the following, only the detectors relevant for the measurements discussed in this paper will be described. Two identical systems of hadronic calorimeters are placed on both sides (C and A) of the nominal interaction point (IP), 112.5 m away from the IP along the beam direction, see Fig. 1 for the placement on the side A. The neutron (ZNC and ZNA) and proton (ZPC and ZPA) calorimeters [16–18] were denoted as ZN and ZP, respectively. The letter C(A) was assigned to the corresponding calorimeter because it intercepts the forward nucleons emitted by nuclei of the clockwise (anticlockwise) beam 1(2). Each ZDC is segmented into four towers. Half the optical fibres uniformly distributed in the calorimeter are read out by four tower photomultipliers (PMTs) and the other half are read out by a single fifth photomultiplier (PMC) common to all towers. Thus, there exist two options to obtain the energy deposited in the ZDC, either from the sum of signals in all PMTs (including PMC), or from the signal in the PMC alone.

ZNC and ZNA are placed at zero degrees with respect to the neutron flight path from the IP to detect neutral forward particles at pseudorapidities \(|\eta| > 8.8\). ZPC and ZPA detect forward protons guided to these calorimeters by the LHC magnet system. Two small electromagnetic calorimeters (ZEM1 and ZEM2) are placed only on the side A, at 7.5 m from the IP, see Fig. 1, covering the pseudorapidity range \(4.8 \leq \eta \leq 5.7\) [18] and two intervals \(-16^\circ < \phi < 16^\circ\) and \(164^\circ < \phi < 196^\circ\) of azimuthal angle. Technical characteristics of the hadronic neutron (ZN), proton (ZP), and electromagnetic (ZEM) calorimeters are summarised in Table 1.
Neutron emission in UPC Pb–Pb at $\sqrt{s_{\text{NN}}} = 5.02$ TeV

Figure 1: Colour online: Simplified layout with respect to the ALICE interaction point (IP2) (not to scale) of the neutron (ZN), proton (ZP), and two electromagnetic (ZEM) calorimeters. The approximate positions of a dipole magnet (D1) and quadruple magnets (Q1, Q2, and Q3) are also shown. A view towards the forward surface of the ZN and ZP (A–A) shows typical distributions of entry points of forward nucleons obtained in Monte Carlo modelling. The longitudinal dimensions of ZN and ZP are shown in a simplified three-dimensional (3D) scheme.

Table 1: Technical characteristics of the hadronic neutron (ZN), proton (ZP), and electromagnetic (ZEM) calorimeters.

	ZN	ZP	ZEM
Dimensions (cm3)	7.04 x 7.04 x 100	12 x 22.4 x 150	7 x 7 x 20.6
Absorber material	W alloy	brass	lead
ρ_{absorber} (g/cm3)	17.61	8.48	11.34
Length (in λ_d units)	8.7	8.2	1.1
Length (in X_0 units)	251	100	35.4
Filling ratio	1/22	1/65	1/22
Fibre spacing (mm)	1.6	4	–
Fibre diameter (mm)	0.365	0.550	0.550
Fibre tilted at (deg)	0	0	45

3 Data sample

Data on $^{208}\text{Pb}–^{208}\text{Pb}$ collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV collected by ALICE in 2018 were analysed. Special runs for the EMD cross section measurement with reduced instantaneous luminosity and, consequently, with reduced event pile-up were considered. For these runs the average number of hadronic inelastic interactions per bunch crossing $\mu_{\text{inel}} \sim 1.3 \times 10^{-4}$ was about 10 times lower than during the ALICE standard physics runs. Events were triggered requiring a signal over threshold either in ZNC or in ZNA. This condition is referred to as the ZED trigger and it is sensitive to one-sided EMD events with neutrons emitted either towards the C or A sides, as well as to EMD and hadronic events with neutrons emitted on both sides. It is customary (see, e.g. Ref. [5]) to define as single EMD events those with at least one
Let the numbers of single EMD, mutual EMD and hadronic events be denoted as N_{se}, N_{me} and N_{hm}, respectively, necessary to estimate the efficiency of the ZEM veto to select electromagnetic events. The fraction of EMD events lost due to the ZEM veto. Hereafter, events with zero, one, two, ..., six neutrons can be also seen from Table 2, there is a trend that the higher the neutron multiplicity, the higher the fraction of EMD events, protons and pions are emitted at larger angles and in some rare cases can hit ZEM. Nevertheless, the efficiency of selecting EMD events by imposing the ZEM veto remains extremely high (> 99.8%) for the 1n–5n channels. The values of ε_i listed in Table 2 were used to correct the numbers of detected events n_i, of each neutron multiplicity i, for the efficiency of the ZEM veto to select EMD events.

The emission of neutrons in the EMD of one or both colliding nuclei can be accompanied by two-photon interactions $\gamma\gamma \rightarrow e^+e^-$ in the same UPC event. This process was considered in Ref. [29] for mutual EMD. By modelling with STARlight [30] dilepton production and neutron emission on one side, the energy distributions of e^+ and e^- within the acceptance of the ZEM were calculated. The probability to obtain leptons with energy above the ZEM veto threshold of about 10 GeV was found to be negligible.
The distributions of energy deposited by forward EMD neutrons in ZNC and ZNA are shown in Fig. 2. The yields of 1n, 2n, ..., 5n EMD events were extracted from these spectra and used to calculate the on the C and A sides are very similar. These spectra were fitted with the functions given by Eq. (1).

These distributions were obtained for events with at least one neutron registered either in ZNC (Fig. 2, left) or in ZNA (Fig. 2, right), surviving the ZEM veto. As seen from this figure, the spectra collected in the neutron spectra, it was not possible to identify unambiguously the numbers of events with six or more neutrons. Though the 6n peak is not well defined, it is still used to improve fit results for 1, 2, ..., 5 neutrons. Because of the large widths of the peaks corresponding to neutron multiplicities larger than 5 in the neutron spectra, it was not possible to identify unambiguously the numbers of events with six or more neutrons. Though the 6n peak is not well defined, it is still used to improve fit results for 1, 2, ..., 5 neutrons. The values of μ_1, σ_1, and n_1 for the first nucleon peak were considered as free parameters. Despite the expected exact correspondence of μ_1 to E_0, some variations of μ_1 in the course of the fitting procedure were allowed within a $\pm 10\%$ deviation from E_0. In addition, the value of σ_1 was constrained to be between $0.1 \times E_0$ and $0.5 \times E_0$ to improve the fit quality. These conditions make it possible to account for imperfect ZDC calibration. The parameters of the Gaussians describing the two-, three-, four-, five-, and six-nucleon peaks were also restricted: μ_i varied within $\pm 20\%$ around $i \times \mu_1$ while σ_i varied from σ_1 to $\sqrt{7}\sigma_1$. The numbers of detected events n_i in each peak were introduced as free parameters of the fit. As described below, after taking into account the acceptance×efficiency of the ZDCs, corrected numbers of events N_i were finally obtained from n_i.

The distributions of energy deposited by forward EMD neutrons in ZNC and ZNA are shown in Fig. 2. These distributions were obtained for events with at least one neutron registered either in ZNC (Fig. 2, left) or in ZNA (Fig. 2, right), surviving the ZEM veto. As seen from this figure, the spectra collected on the C and A sides are very similar. These spectra were fitted with the functions given by Eq. (1). The yields of 1n, 2n, ..., 5n EMD events were extracted from these spectra and used to calculate the

Neutron multiplicity in	ϵ_i (%)	
	Side C	Side A
1n	99.875 ± 0.005	99.902 ± 0.005
2n	99.766 ± 0.014	99.819 ± 0.013
3n	99.457 ± 0.039	99.349 ± 0.042
4n	99.479 ± 0.043	99.321 ± 0.049
5n	99.368 ± 0.050	99.025 ± 0.064
total 1n–5n	99.802 ± 0.005	99.806 ± 0.005
total Xn	96.722 ± 0.017	96.117 ± 0.019

4 Analysis

4.1 Collection, calibration and fit of ZDC energy spectra

In the present work the ZDC energy spectra collected with the PMC were used to obtain the neutron emission cross sections. These spectra were calibrated to satisfy as precisely as possible two main criteria: (1) the pedestal peak is centred at zero energy; (2) the distance between consecutive peaks amounts to the beam energy $E_0 = 2510$ GeV per nucleon.

The numbers of detected events n_i for each neutron multiplicity class i in were extracted by fitting the calibrated distributions of energy E deposited in ZN using the χ^2 fit method. The fitting procedures were validated with Run 1 data in Ref. [5]. The fitting function $F(E)$ is the sum of six Gaussians corresponding to up to six detected neutrons

$$F(E) = \sum_{i=1}^{6} G_i(E) = \sum_{i=1}^{6} \frac{n_i}{\sqrt{2\pi}\sigma_i} \exp\left(-\frac{(E-\mu_i)^2}{2\sigma_i^2}\right).$$

The Gaussian $G_i(E)$ represents the i-th peak and it is characterised by the mean value μ_i, the standard deviation σ_i and the normalisation constant n_i, which denotes the number of detected events with i neutrons. Because of the large widths of the peaks corresponding to neutron multiplicities larger than 5 in the neutron spectra, it was not possible to identify unambiguously the numbers of events with six or more neutrons. Though the 6n peak is not well defined, it is still used to improve fit results for 1, 2, ..., 5 neutrons. The values of μ_1, σ_1, and n_1 for the first nucleon peak were considered as free parameters. Despite the expected exact correspondence of μ_1 to E_0, some variations of μ_1 in the course of the fitting procedure were allowed within a $\pm 10\%$ deviation from E_0. In addition, the value of σ_1 was constrained to be between $0.1 \times E_0$ and $0.5 \times E_0$ to improve the fit quality. These conditions make it possible to account for imperfect ZDC calibration. The parameters of the Gaussians describing the two-, three-, four-, five-, and six-nucleon peaks were also restricted: μ_i varied within $\pm 20\%$ around $i \times \mu_1$ while σ_i varied from σ_1 to $\sqrt{7}\sigma_1$. The numbers of detected events n_i in each peak were introduced as free parameters of the fit. As described below, after taking into account the acceptance×efficiency of the ZDCs, corrected numbers of events N_i were finally obtained from n_i.

The yields of 1n, 2n, ..., 5n EMD events were extracted from these spectra and used to calculate the

Table 2: Efficiency of the ZEM veto to select electromagnetic events with a given neutron multiplicity and for events with any number of neutrons, estimated from the data collected with and without the ZEM veto for the sides C and A.

Neutron multiplicity in	ϵ_i (%)	
	Side C	Side A
1n	99.875 ± 0.005	99.902 ± 0.005
2n	99.766 ± 0.014	99.819 ± 0.013
3n	99.457 ± 0.039	99.349 ± 0.042
4n	99.479 ± 0.043	99.321 ± 0.049
5n	99.368 ± 0.050	99.025 ± 0.064
total 1n–5n	99.802 ± 0.005	99.806 ± 0.005
total Xn	96.722 ± 0.017	96.117 ± 0.019
cross section of emission of given numbers of neutrons along with any number of forward protons, as described in Sec. 5.1.

4.2 Correction for detection efficiency and acceptance of neutron and proton ZDCs

Some of the forward nucleons are lost on their way to the ZDCs due to the limited ZDC acceptance and scattering on various components of the LHC, in particular, on injection collimators, beam pipes, recombination chamber, and in air. Also, a peripheral impact of some nucleons on the calorimeter is responsible for an increased shower leakage leading to reduced energy deposited in the ZDCs. Because of such effects, the distributions of energy deposited in the ZDCs are distorted, particularly in events with a high nucleon multiplicity. For example, either one or two nucleons can be lost in a three-nucleon event. As a result, the three-nucleon event can be misidentified, respectively, as a two-nucleon or as a one-nucleon event. The probability to obtain a fake one-nucleon event will be different in two- and three-nucleon events. This suggests the need to calculate the efficiency of event detection separately for each multiplicity class, as demonstrated in Ref. [31].

The acceptance \times efficiency correction factors $f_{in} = N_{i}^{MC}/n_{i}^{MC}$ were calculated for ZNC and ZNA and, for the study of neutron emission without protons, also for ZPC and ZPA. In a realistic Monte Carlo simulation of the ALICE apparatus, and after transporting neutrons generated with RELDIS, the number of generated events N_{i}^{MC} and the number of events n_{i}^{MC} registered in ZDC were calculated for each neutron multiplicity class i. RELDIS has been validated with data on neutron emission in EMD of 208Pb at the LHC [5] and at lower collision energies [32]. The acceptance \times efficiency correction factors calculated for the channels with the emission of zero, one, two, three, four, and five neutrons, possibly along with other particles, are given in Table 3. The values of f_{in} were obtained by two different methods described below, and the simple averages f_{in} were applied to raw data, as explained in Sec. 4.3. The first method was based on counting nucleons crossing the front area of each ZDC, while in the second method simulated ZDC energy spectra were fitted by the functions given by Eq. (1). Finally, in both methods the numbers of events of each multiplicity in generated by RELDIS were divided by the numbers of detected events to obtain the correction factors. The difference between the results of the two methods divided by $\sqrt{2}$ is considered as the systematic uncertainty for the final average correction factors. These factors
Table 3: Acceptance×efficiency correction factors for detecting neutrons in ZNC and ZNA and their estimated uncertainties.

Neutron multiplicity	Average of two methods	f_{in}	
	ZNC	ZNA	
0n	0.286 ± 0.126	0.302 ± 0.097	
1n	1.064 ± 0.031	1.064 ± 0.030	
2n	1.092 ± 0.024	1.010 ± 0.095	
3n	1.057 ± 0.032	1.066 ± 0.020	
4n	1.001 ± 0.046	0.962 ± 0.094	
5n	0.907 ± 0.132	0.917 ± 0.104	

are given in Table 3 together with their combined statistical and systematic uncertainties. As seen from this table, most of the obtained f_{in} values exceed unity, because the loss of EMD neutrons in a channel of a certain multiplicity is not compensated by the migration of events from less frequent channels of higher multiplicity induced by the loss of one or two neutrons. In contrast, according to RELDIS, only in 3.2% of EMD events neutrons are not emitted, but the 0n channel is filled with events of different neutron multiplicity when all neutrons are lost. This explains a noticeable correction of f_{0n} ≈ 0.3 for the 0n channel.

When considering neutron emission without associated proton emission, additional correction factors for the proton ZDC, f_{0p}, were applied to the raw yields. Hereafter, events with zero protons are denoted as 0p events. These correction factors were calculated with the same two methods as for the neutron ZDC resulting in the average values of 0.848 ± 0.015 and 0.852 ± 0.018 for ZPC and ZPA, respectively. In general, results from MC simulations are consistent with results of the probabilistic model of Ref. [31] with the probability p_{n} = 0.9 to detect a neutron in ZN and with p_{p} = 0.55 to detect a proton in ZP.

4.3 Determination of neutron emission cross sections

The cross sections for specific EMD channels σ(i_{n}) with a given number of neutrons i and an arbitrary number of protons were obtained by combining σ_{ZED} introduced in Sec. 3 and n_{i} from the fit functions given by Eq. (1). The cross sections were measured separately on the C and A sides by ZNC and ZNA, respectively. After the signal extraction, the corrections for the efficiency of the ZEM veto ε_{i} introduced in Sec. 4.1 and for the ZDC efficiency and acceptance, f_{in}, Sec. 4.2, were applied:

\[
σ(i_{n}) = \frac{N_{i}}{N_{\text{tot}}} = \frac{\sigma_{\text{ZED}}}{N_{\text{tot}}} \frac{n_{i}}{f_{in}} \frac{f_{in}}{f_{\text{tot}}} = \frac{\sigma_{\text{ZED}}}{N_{\text{tot}}} \frac{n_{i}}{N_{\text{tot}}} F_{in} \cdot
\]

Here N_{i} is a corrected number of events with given neutron multiplicity i, N_{tot} is the total number of ZED trigger events defined in Sec. 3, and F_{in} is the resulting correction factor. The cross sections of specific EMD channels σ(i_{n},0p) with given number of neutrons i and without protons on the side C or A were obtained in the same way, but with the additional correction factors f_{0p} for the efficiency of registration of 0p events in ZPC and ZPA, respectively:

\[
σ(i_{n},0p) = \frac{N_{i}}{N_{\text{tot}}} = \frac{\sigma_{\text{ZED}}}{N_{\text{tot}}} \frac{n_{i}}{f_{in}} \frac{f_{in}f_{0p}}{f_{\text{tot}}} = \frac{\sigma_{\text{ZED}}}{N_{\text{tot}}} \frac{n_{i}}{N_{\text{tot}}} F_{in,0p} \cdot
\]

Here F_{in,0p} is the resulting correction factor as in Eq. (2), but for 0p events. Because of the very large number of collected ZED trigger events, the uncertainty of N_{tot} is negligible. The statistical uncertainties of n_{i} originate from the uncertainties on the numbers of events found by the fit procedure. The systematic uncertainties of n_{i} were estimated from a variation of the fit procedure by considering the difference in
Table 4: Relative systematic uncertainties of the cross sections of emission of given numbers of neutrons \(i\) accompanied by an arbitrary number of protons (Yp, including zero protons) and without protons (0p), in UPCs of \(^{208}\text{Pb}\) nuclei at \(\sqrt{s_{\text{NN}}} = 5.02\) TeV. Each uncertainty is calculated for the average of the cross sections measured on the sides C and A.

Source	Relative uncertainty (%)									
	1n	2n	3n	4n	5n					
Fitting procedure										
Fitting procedure	0.55	0.55	0.32	0.29	0.83	0.72	0.73	0.67	1.14	1.01
ZDC+ZEM efficiency	2.03	2.45	4.68	4.88	1.78	2.25	5.35	5.52	9.26	9.36
\(\sigma_{\text{ZED}}\) determination from vdM scan										2.4
Total	3.19	3.47	5.27	5.45	3.10	3.37	5.91	6.05	9.63	9.72

\(n_i\) obtained with the nominal and double bin size. Only systematic uncertainties were considered for \(F_{1n}\) and \(F_{1n,0p}\). Following Ref. [26], the relative systematic uncertainty of \(\sigma_{\text{ZED}}\) was taken as 2.4\%, resulting from the vdM scan analysis.

The final cross sections were obtained as the average between the measurements performed on the sides C and A from the event numbers and resulting correction factors introduced in Eqs. (2) and (3):

\[
\sigma = \frac{\sigma^C + \sigma^A}{2} = \sigma_{\text{ZED}} \frac{n^C F^C + n^A F^A}{2N_{\text{tot}}}.
\]

(4)

The contributions to the relative systematic uncertainties of \(\sigma\) were propagated from the systematic uncertainties on each side as summarised in Table 4. These uncertainties were calculated separately for the cross sections of neutron emission accompanied by an arbitrary number of protons (Yp, including zero protons) and without proton emission (0p).

In these measurements, the pile-up of EMD events was lower with respect to the previous ALICE measurements of the EMD cross sections [5]. Nevertheless, the uncertainty due to the residual pile-up of EMD events was also addressed. The main issue with the pile-up is to count two 1n events as a 2n event. For these runs the average number of hadronic inelastic interactions per bunch crossing \(\mu_{\text{inel}}\) was about \(1.3 \times 10^{-4}\). The same value, but calculated for 1n emission in EMD is \(\mu_{1n} = \mu_{\text{inel}} \times (\sigma_{1n}/\sigma_{\text{had}}) = 1.8 \times 10^{-3}\), where \(\sigma_{1n} = 108\) b is calculated with RELDIS and \(\sigma_{\text{had}} = 7.67 \pm 0.25\) b is the inelastic hadronic interaction cross section measured in Ref. [26]. With \(\sigma_{2n}/\sigma_{1n} \approx 0.24\), also estimated with RELDIS, the relation \(\mu_{2n} \approx 0.24 \times \mu_{1n}\) is obtained. Following the Poisson distribution, the ratio of the probabilities to obtain two 1n events in the same bunch crossing \(p(2, \mu_{1n})\) and to have one 2n event \(p(1, \mu_{2n})\) is

\[
p(2, \mu_{1n}) = \frac{\mu_{1n}^2 \exp(-\mu_{1n})}{2\mu_{2n} \exp(-\mu_{2n})} = \frac{\mu_{1n}^2}{0.48} \exp(-0.76\mu_{1n}) \approx 0.004.
\]

(5)

One can conclude that the pile-up effect of 0.4\% for 2n emission can be neglected in view of the total \(\approx 5\%\) uncertainty for this channel reported in Table 4.

5 Results

5.1 Cross sections of emission of given numbers of neutrons

The EMD cross sections \(\sigma(i\text{n})\) for 1n, 2n, 3n, 4n, and 5n emission accompanied by an arbitrary number of forward protons (including zero protons) were measured separately on the C and A sides. They are listed in Table 5. In order to obtain these cross sections, EMD events were selected by applying a veto
on ZEM, as described in Section3. The cross sections given in Table5 were corrected for the ZDC and ZEM efficiency separately for each side as described in Sec.4.2. As seen, the cross sections measured on the side C are slightly larger compared to those on the side A. However, the side C and A cross sections are in most cases consistent, because this difference is within the uncorrelated uncertainty of the side A cross section. As follows from Table4 the main contribution to the systematic uncertainties of the cross sections is due to the uncertainties of the corrections for ZDC and ZEM efficiency.

The average $\sigma_i(n)$ between the C and A sides were calculated for each neutron multiplicity i according to Eq.4. The resulting $\sigma_i(n)$ are given in Table5 with their statistical and systematic uncertainties propagated from the uncertainties on each side, which were considered as uncorrelated, except for the contribution from the vdM scan uncertainty, which is fully correlated between the C and A sides. The differences between the cross sections obtained on the sides C and A depend on the chosen method to calculate the ZDC efficiency, with the exception of 1n channel, so the uncertainties on the efficiency can justify the difference between the cross sections on the C and A sides. On the basis of this finding, the difference between C and A sides divided by $\sqrt{2}$ was considered as an additional uncertainty only for the average 1n cross section.

In Table5 the measured cross sections are compared with results of the RELDIS4 and n_0^n23 models. Both models are based on the Weizsäcker–Williams method to calculate the cross sections of neutron emission in EMD of nuclei by considering the respective photonuclear reactions induced by equivalent photons. RELDIS simulates nuclear reactions induced by Weizsäcker–Williams photons on 208Pb by means of the intranuclear cascade model of photonuclear reactions with the subsequent de-excitation of residual nuclei via neutron evaporation and other processes [33]. A phenomenological approximation for the total photoabsorption cross section on 208Pb is used as an input to RELDIS together with calculated relative contributions of various final states to obtain the absolute values of $\sigma_i(n)$ and $\sigma_i(0n)$. A similar phenomenological approximation of the total photoabsorption cross section is also used in n_0^n. In this event generator the calculations of probability of a given neutron emission channel are based on approximations of partial photoneutron cross sections measured on 208Pb below 140 MeV and extrapolated to higher photon energies [23]. Only neutron emission events can be generated with n_0^n, but the 0n EMD cross section of 6.85 b corresponding to 3.2% of EMD events with the emission of other particles without neutrons was calculated with RELDIS.

The uncertainties of RELDIS results ($\approx 5\%$) given in Table5 stem from the uncertainty of the phenomenological approximation of the total photoabsorption cross section on 208Pb used by this model. As shown in Ref. [20], the uncertainties of the calculations of specific neutron emission channels (1n, 2n) in absorption of low energy photons are typically as high as 7%. Another source of uncertainties is connected to the estimations of unknown total nuclear photoabsorption cross section at high photon energies (> 60 GeV) from the measured total γp cross sections taking into account nuclear shadowing. As evaluated recently [34], the total EMD cross sections calculated with different high-energy approximations for 208Pb–208Pb collisions at the LHC differ by $\approx 2\%$. Similar uncertainties of ≈ 2–4% were attributed to the measured total cross section of the absorption of real intermediate energy photons (0.5–2.6 GeV) by natPb [35]. The total EMD cross section is the sum of the contributions of processes induced by Weizsäcker–Williams photons from the above-mentioned energy domains. Therefore, the combined error of $\approx 5\%$ is attributed to the cross sections calculated with RELDIS also for each individual neutron emission channel in Table5 The uncertainty of 2% also applies to the cross sections calculated with n_0^n because of the uncertainties of the approximation of the total photoabsorption cross section on 208Pb.

The sum of the measured 1n–5n cross sections amounts to $151.5 \pm 0.2 \pm 4.7$ b, and it is within 2σ in agreement with the same sum calculated with RELDIS as 159.8 ± 5.6 b, see Table5 The 1n–5n sum calculated with n_0^n as 143.1 ± 2.2 b is lower. In general, the measured sum is in the middle between the models. The total single EMD cross section for neutron emission can be simply estimated from the cross sections measured in Ref. [26] as $(\sigma_{ZED} - \sigma_{had})/2 = 206.4$ b assuming 100% efficiency of the ZED.
Neutron emission in UPC Pb–Pb at $\sqrt{s_{NN}} = 5.02$ TeV

ALICE Collaboration

Table 5: Cross sections of emission of one, two, three, four and five neutrons along with an arbitrary number of protons in EMD of 208Pb at $\sqrt{s_{NN}} = 5.02$ TeV measured on the C and A sides and their average along with their statistical and systematic uncertainties. Cross sections calculated with RELDIS [4] and nO\textsubscript{O}n [23] are given for comparison. The sum of 1n–5n cross sections is presented in the last row. The uncertainties of the measurements are reported in the order ± (stat.) ± (syst.).

ZN	σ (in) (b) Side C	σ (in) (b) Side A	σ\textsubscript{RELDIS} (in) (b)	σ\textsubscript{nO\textsubscript{O}n} (in) (b)
1n	109.7 ± 0.1 ± 4.2	107.2 ± 0.1 ± 4.1	108.4 ± 0.1 ± 3.9	108.0 ± 5.4
2n	25.8 ± 0.1 ± 0.8	24.1 ± 0.1 ± 2.3	25.0 ± 0.1 ± 1.3	25.9 ± 1.3
3n	7.97 ± 0.07 ± 0.33	7.94 ± 0.04 ± 0.25	7.95 ± 0.04 ± 0.25	11.4 ± 0.6
4n	5.73 ± 0.04 ± 0.30	5.56 ± 0.04 ± 0.56	5.65 ± 0.03 ± 0.33	7.8 ± 0.4
5n	4.61 ± 0.04 ± 0.68	4.47 ± 0.04 ± 0.52	4.54 ± 0.03 ± 0.44	6.3 ± 0.3
1n–5n			151.5 ± 0.2 ± 4.7	159.8 ± 5.6

Figure 3: Colour online: measured (points) and calculated with RELDIS [4] (solid-line histogram) and nO\textsubscript{O}n [23] (dashed-line histogram) cross sections of emission of given numbers of neutrons i in UPCs of 208Pb nuclei at $\sqrt{s_{NN}} = 5.02$ TeV. Combined statistical and systematic uncertainties of the measurements are presented.

trigger. It is in good agreement with the corresponding cross section of 204.6 ± 7.1 b calculated with RELDIS. As seen, the measurements and calculations demonstrate dominant contributions of 73% and 78%, respectively, of 1n–5n channels to the EMD of 208Pb leading to neutron emission.

The measured cross sections are also shown in Fig. 3 together with results of the models. As seen, the cross sections of 1n- and 2n-emission calculated with RELDIS and nO\textsubscript{O}n agree with the measured ones. On the other hand, the measured 3n and 4n cross sections are overestimated by RELDIS and underestimated by nO\textsubscript{O}n. At the same time, the 5n cross section is described very well by nO\textsubscript{O}n, but overestimated by RELDIS. One can note that the models agree well with respect to the 1n and 2n cross sections, but differ

11
for higher neutron multiplicities. This indicates the importance of 3n, 4n, and 5n measurements for tuning the parameters of the models mentioned above.

5.2 Comparison with previous ALICE results

Previous ALICE results on neutron emission in EMD were reported in Ref. [5] for 208Pb–208Pb collisions at $\sqrt{s_{\text{NN}}} = 2.76$ TeV. Events were required to have a signal in one of the two ZN and no signal in the other one, so events of symmetric emission, such as those occurring in hadronic and mutual EMD were rejected, and the sample contained single but not mutual EMD events. The ZEM veto was not used to suppress hadronic events. With this selection the fractions of 1n, 2n, and 3n events were determined in Ref. [5]. Following the same selection, the spectra in ZNC and ZNA for single minus mutual EMD process were obtained also in the present work at $\sqrt{s_{\text{NN}}} = 5.02$ TeV without the ZEM veto described in Sec. 3.

The fractions of 1n-, 2n-, 3n-, and 4n-events over the total number of events without neutrons on the opposite side $N_{\text{one-side}}$ are listed in Table 6. These fractions were extracted from ZNC and ZNA spectra and were corrected for ZNC and ZNA acceptance as described in Sec. 4.2. The measurements are compared with RELDIS results given in the same table. The previous ALICE results for 208Pb–208Pb collisions at $\sqrt{s_{\text{NN}}} = 2.76$ TeV [5] are also given together with RELDIS results for this collision energy.

As seen from Table 6 similar fractions of 1n, 2n, and 3n events are measured at $\sqrt{s_{\text{NN}}} = 2.76$ TeV [5] and $\sqrt{s_{\text{NN}}} = 5.02$ TeV. The dominance of 1n emission is evident at both collision energies. The measured 1n and 2n fractions are in very good agreement with RELDIS. A slight reduction of calculated 1n events is seen at higher energy because of the redistribution of events in favour of higher multiplicities. This can be explained by a higher average equivalent photon energy at $\sqrt{s_{\text{NN}}} = 5.02$ TeV. However, such a subtle effect cannot be traced with confidence because of measurement and modelling uncertainties, which were calculated as described in Sec. 4.3.

5.3 Emission of neutrons without protons

In order to measure the cross section for 1n, 2n, ..., 5n emission without proton emission (0p), the energy spectra in ZNC and ZNA were obtained for events not having a signal in the respective ZP. Measured cross sections of 1n-, 2n-, 3n-, 4n-, and 5n-emission without protons are given in Table 7 together with RELDIS results. As can be seen, the cross sections measured on side C are systematically slightly larger than on side A, but the difference remains within the uncorrelated uncertainty of side A cross sections for all neutron multiplicities. The cross sections were calculated with Eq. (3) from the numbers of events n_i of each neutron multiplicity i obtained from the fit of spectra with the functions given by Eq. (1). In this case of 0p measurements, the numbers of true events of each multiplicity N_i were obtained by correcting for the efficiency of ZNC and ZNA and also for protons undetected in ZPC and ZPA, as described in Sec. 4.2. Statistical and systematic uncertainties were calculated as described in Sections 4.3 and 5.1.
Neutron emission in UPC Pb–Pb at $\sqrt{s_{NN}} = 5.02$ TeV

ALICE Collaboration

Table 7: Cross sections of emission of one, two, three, four and five neutrons without protons on the same side in the EMD of 208Pb at $\sqrt{s_{NN}} = 5.02$ TeV, measured on the C and A sides, and their average along with their statistical and systematic uncertainties. Cross sections calculated with RELDIS are given for comparison. The sum of 1n–5n cross sections is presented in the last row. The uncertainties of the measurements are given in the order ± (stat.) ± (syst.).

ZN	ZP	σ(in,0p) (b)	σ(in,0p) (b)	σRELDIS(in,0p) (b)	
		Side C	Side A		
1n	0p	92.6 ± 0.1 ± 3.9	90.9 ± 0.1 ± 4.0	91.8 ± 0.1 ± 3.4	104.1 ± 5.2
2n	0p	21.4 ± 0.1 ± 0.8	20.0 ± 0.1 ± 2.0	20.7 ± 0.1 ± 1.1	21.9 ± 1.1
3n	0p	6.14 ± 0.07 ± 0.28	6.21 ± 0.04 ± 0.24	6.17 ± 0.04 ± 0.21	7.59 ± 0.38
4n	0p	4.21 ± 0.04 ± 0.23	4.08 ± 0.04 ± 0.42	4.15 ± 0.03 ± 0.25	4.29 ± 0.22
5n	0p	3.16 ± 0.04 ± 0.47	3.08 ± 0.03 ± 0.36	3.12 ± 0.03 ± 0.30	2.95 ± 0.15
		1n–5n		126.0 ± 0.2 ± 4.1	140.8 ± 5.3

Contributions to the total systematic uncertainties are presented in Table 4.

The measured cross sections of 1n, 2n, ..., 5n emission not accompanied by protons, shown in Table 7, are lower than the cross sections of 1n, 2n..., 5n emission along with other particles presented in Table 5. This difference is larger for 4n and 5n channels because protons are emitted more frequently at higher equivalent photon energies associated with multineutron events. With the exception of 5n emission, the measured 0p cross sections are lower than the cross sections calculated with RELDIS. Nevertheless, the agreement between the measurements and calculations for 0p cross sections is better than for Yp cross sections presented in Table 5.

The sum of the measured 0p cross sections from 1n to 5n is estimated as 126.0 ± 0.2 ± 4.1 b. It is also listed in Table 7 for comparison with RELDIS. This sum of 0p cross sections provides a dominant (≈ 83%) contribution to the sum of Yp cross sections $151.5 ± 0.2 ± 4.7$ b given in Table 5. In other words, only ≈ 17% of 1n–5n events are accompanied by the emission of protons.

The measured 0p neutron emission cross sections are shown in Fig. 4 and compared with RELDIS results for the same cross sections and also with the calculated cross sections to produce specific secondary nuclei: 207,206,205,204,203Pb. According to RELDIS, the cross section of the production of 207Pb, is almost the same as (1n,0p) cross section, while the cross sections of production of 206Pb and 205Pb are smaller than (2n,0p) and (3n,0p) cross sections only by 3% and 10%, respectively. According to this model, the calculated 0p cross sections of emission of four, five, six, and seven neutrons can be considered as upper limits for the cross sections of production of 204,203,202,201Pb, respectively. The difference is due to the emission of additional particles, e.g. protons and/or charged π mesons, which leave residual nuclei other than Pb, as explained in Sec. 6.

6 Discussion

The measured cross sections σ(in) of neutron emission accompanied by an arbitrary number of protons in EMD can be used to validate various EMD models. The cross sections of neutron emission σ(in,0p) without protons were also measured. Because of the absence of proton emission, these cross sections can be associated with the production of 207Pb, 206Pb, 205Pb, 204Pb, and 203Pb as secondary nuclei in EMD of 208Pb.

In order to test this association, the RELDIS event generator, validated with data on neutron emission [5, 32] and production of secondary nuclei [5] in EMD of 208Pb at lower collision energies, was used. In each simulated event $\Delta A = A_{\text{res}} + N_A + N_p - 208$ and $\Delta Z = Z_{\text{res}} + N_p - 82$ were calculated from the mass...
Neutron emission in UPC Pb–Pb at $\sqrt{s_{NN}} = 5.02$ TeV

Figure 4: Colour online: measured cross sections of emission of given numbers of neutrons i in UPCs of 208Pb nuclei at $\sqrt{s_{NN}} = 5.02$ TeV without proton emission (points) and the cross sections calculated with RELDIS [4] (solid-line histogram). Calculated cross sections to produce specific secondary nuclei, 207,206,205,204,203,202,201Pb, are presented by the dash-dotted histogram marked by nuclide symbols. Combined statistical and systematic uncertainties of the measurements are presented.

number A_{res} and charge Z_{res} of the heaviest residual nucleus and the numbers of emitted neutrons N_n and protons N_p. The calculated probability distributions to obtain ΔA and ΔZ in events with a given N_n are presented in Fig. 5. As seen from this figure, in RELDIS simulations the probabilities to obtain 1n, 2n, ..., 5n events with $\Delta A = 0$ or $\Delta Z = 0$ among all EMD events are within the range of $3\text{--}50\%$. However, the probability of 1n, 2n, ..., 5n events with $\Delta A < 0$ or $|\Delta Z| > 0$ is well below 1%.

Two examples of such rare events are presented in the following. The first one is represented by the excitation of an intranuclear neutron with its conversion to a proton: $\gamma n \rightarrow \Delta^0 \rightarrow p + \pi^-$. In the case of the undetected π^- escaping the nucleus, the total charge of the system, including emitted nucleons, differs from 82: $\Delta Z = 1$. In Ref. [36] the production of 83Bi from 158A GeV 82Pb nuclei in their ultraperipheral collisions with different targets has been explained by the production of π^-. In the second example, the products of the fragmentation contain an undetected α-particle in addition to nucleons: $\Delta A = -4$. In Ref. [37] a similar reaction of the emission of α-particles from 197Au induced by bremsstrahlung photons was investigated.

One can conclude from Fig. 5 that, according to RELDIS, in the majority of 1n–5n EMD events $\Delta A = 0$ and $\Delta Z = 0$, and it is sufficient to measure N_n and N_p for evaluating A_{res} and Z_{res}. The dominance of $\Delta A = 0$ and $\Delta Z = 0$ events is explained by a rather modest excitation energy per nucleon E^*/A delivered in the absorption of Weizsäcker–Williams photons by 208Pb. This was demonstrated in Ref. [33] where $\langle E^*/A \rangle$ were calculated for photospallation of nat Pb by real photons with energies from 20 MeV to 4 GeV. As found in Ref. [33], $\langle E^*/A \rangle$ is typically below 1 MeV. This suggests the creation of an excited single heavy nuclear residue as a result of the emission of free neutrons and protons during the intranuclear cascade. Such an excited nucleus would evaporate few nucleons and possibly undergo nuclear fission [33] rather than a multi-fragment break-up which becomes possible only at $E^*/A > 3$ MeV [38]. For example,
Neutron emission in UPC Pb–Pb at $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV

The cross sections for emission of given numbers of forward neutrons in EMD of 208Pb nuclei in ultraperipheral collisions at $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV have been measured with the ALICE neutron zero degree calorimeters. The fractions of $1n$, $2n$, and $3n$ events were measured at the highest 208Pb–208Pb collision energy available so far in accelerator experiments. These fractions were found to be similar to those measured at $\sqrt{s_{\mathrm{NN}}} = 2.76$ TeV. The predictions from the RELDIS [4] and n^0_{O} [23] models describe well the measured cross sections, in particular, for low neutron multiplicities. These measurements are important for the extraction of the contributions of high- and low-energy photons from coherent vector meson photoproduction measurements accompanied by neutron emission [42, 43].

The cross sections of EMD events with the emission of exactly one, two, three, four, and five neutrons and without emission of protons have been measured. According to the RELDIS model, in EMD a single heavy residual nucleus is typically produced after the emission of several nucleons. The probability of nuclear fission in EMD is estimated to be below 1%. Therefore, the EMD events of $1n$, $2n$, $3n$, $4n$, and $5n$ emission without protons can be associated with the production of 207Pb, 208Pb, 202Pb, 204Pb, and 203Pb, respectively. In other words, the measured neutron emission cross sections can be considered as
Neutron emission in UPC Pb–Pb at $\sqrt{s_{\text{NN}}} = 5.02$ TeV ALICE Collaboration

upper limits for the respective isotope production cross sections.

Since the charge-to-mass ratio of ^{207}Pb remains close to ^{208}Pb, these frequently produced secondary nuclei emerge from the interaction points and propagate in the field of the LHC magnets on dispersive trajectories in the vicinity of the primary beam [7]. The collider collimation system is adjusted to intercept them (off-momentum collimators around Point 3 of LHC) to avoid the risk of beam dumps or quenches of superconducting magnets [7, 8, 44, 45]. The moderate fluxes of ^{206}Pb nuclei may hit the beam pipe closer to the interaction points. The smaller fluxes of $^{205,204}\text{Pb}$ generated in the collisions are lost at the start of the dispersion suppressor or taken up by physics debris absorbers and do not present any risks in collider operation.

A good quantitative understanding of the cross sections and fluxes of these nuclei provides valuable input for evaluating luminosity decay and beam losses in the design of the Future Circular Collider (FCC-hh) [46]. They also increase confidence in similar calculations for interactions of beam nuclei with carbon and other materials in the collimation systems of the LHC and FCC [8].

Acknowledgements

The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: A. I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences, Austrian Science Fund (FWF); [M 2467-N36] and Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Ministry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (Finep), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Bulgarian Ministry of Education and Science, within the National Roadmap for Research Infrastructures 2020–2027 (object CERN), Bulgaria; Ministry of Education of China (MOEC), Ministry of Science & Technology of China (MSTC) and National Natural Science Foundation of China (NSFC), China; Ministry of Science and Education and Croatian Science Foundation, Croatia; Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Cubaenergía, Cuba; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; The Danish Council for Independent Research | Natural Sciences, the VILLUM FONDEN and Danish National Research Foundation (DNRF), Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat à l’Energie Atomique (CEA) and Institut National de Physique Nucléaire et de Physique des Particules (IN2P3) and Centre National de la Recherche Scientifique (CNRS), France; Bundesministerium für Bildung und Forschung (BMBF) and GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany; General Secretariat for Research and Technology, Ministry of Education, Research and Religions, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy Government of India (DAE), Department of Science and Technology, Government of India (DST), University Grants Commission, Government of India (UGC) and Council of Scientific and Industrial Research (CSIR), India; National Research and Innovation Agency - BRIN, Indonesia; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) and Japan Society for the Promotion of Science (JSPS) KAKENHI, Japan; Consejo Nacional de Ciencia (CONACYT) y Tecnología, through Fondo de Cooperación Internacional en Ciencia y Tecnología (FONCICYT) and Dirección General de Asuntos del Personal Académico (DGAPA), Mexico; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; The Research Council of Norway, Norway; Com-
mission on Science and Technology for Sustainable Development in the South (COMSATS), Pakistan; Pontificia Universidad Católica del Perú, Peru; Ministry of Education and Science, National Science Centre and WUT ID-UB, Poland; Korea Institute of Science and Technology Information and National Research Foundation of Korea (NRF), Republic of Korea; Ministry of Education and Scientific Research, Institute of Atomic Physics, Ministry of Research and Innovation and Institute of Atomic Physics and University Politehnica of Bucharest, Romania; Ministry of Education, Science, Research and Sport of the Slovak Republic, Slovakia; National Research Foundation of South Africa, South Africa; Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW), Sweden; European Organization for Nuclear Research, Switzerland; Suranaree University of Technology (SUT), National Science and Technology Development Agency (NSTDA), Thailand Science Research and Innovation (TSRI) and National Science, Research and Innovation Fund (NSRF), Thailand; Turkish Energy, Nuclear and Mineral Research Agency (TENMAK), Turkey; National Academy of Sciences of Ukraine, Ukraine; Science and Technology Facilities Council (STFC), United Kingdom; National Science Foundation of the United States of America (NSF) and United States Department of Energy, Office of Nuclear Physics (DOE NP), United States of America. In addition, individual groups or members have received support from: Marie Skłodowska Curie, European Research Council, Strong 2020 - Horizon 2020 (grant nos. 950692, 824093, 896850), European Union; Academy of Finland (Center of Excellence in Quark Matter) (grant nos. 346327, 346328), Finland; Programa de Apoyos para la Superación del Personal Académico, UNAM, Mexico.

References

[1] G. Roland, K. Safarik, and P. Steinberg, “Heavy-ion collisions at the LHC”, *Prog. Part. Nucl. Phys.* **77** (2014) 70–127.

[2] NA49 Collaboration, H. Appelshäuser et al., “Spectator nucleons in Pb + Pb collisions at 158-A-GeV”, *Eur. Phys. J. A* **2** (1998) 383–390.

[3] C. Scheidenberger et al., “Charge-changing interactions of ultrarelativistic Pb nuclei”, *Phys. Rev. C* **70** (2004) 014902.

[4] I. A. Pshenichnov, “Electromagnetic excitation and fragmentation of ultrarelativistic nuclei”, *Phys. Part. Nucl. A* **42** (2011) 215–250.

[5] ALICE Collaboration, B. Abelev et al., “Measurement of the cross section for electromagnetic dissociation with neutron emission in Pb–Pb collisions at \(\sqrt{s_{NN}} = 2.76 \) TeV”, *Phys. Rev. Lett.* **109** (2012) 252302, arXiv:1203.2436 [nucl-ex].

[6] A. J. Baltz, M. J. Rhoades-Brown, and J. Weneser, “Heavy ion partial beam lifetimes due to Coulomb induced processes”, *Phys. Rev. E* **54** (1996) 4233–4239.

[7] R. Bruce, D. Bocian, S. Gilardoni, and J. M. Jowett, “Beam losses from ultraperipheral nuclear collisions between \(^{208}\text{Pb}\)^{82+} ions in the Large Hadron Collider and their alleviation”, *Phys. Rev. ST Accel. Beams* **12** (2009) 071002.

[8] P. D. Hermes, R. Bruce, J. M. Jowett, S. Redaelli, B. Salvachua Ferrando, G. Valentino, and D. Wollmann, “Measured and simulated heavy-ion beam loss patterns at the CERN Large Hadron Collider”, *Nucl. Instrum. Meth. A* **819** (2016) 73–83.

[9] A. S. Botvina et al., “Multifragmentation of spectators in relativistic heavy ion reactions”, *Nucl. Phys. A* **584** (1995) 737–756.

[10] A. Schüttauf et al., “Universality of spectator fragmentation at relativistic bombarding energies”, *Nucl. Phys. A* **607** (1996) 457–486, arXiv:nucl-ex/9606001.
Neutron emission in UPC Pb–Pb at $\sqrt{s_{\text{NN}}} = 5.02$ TeV

ALICE Collaboration

[11] P. Deines-Jones et al., “Charged particle production in the Pb + Pb system at 158 GeV/c per nucleon”, *Phys. Rev. C* **62** (2000) 014903, arXiv:hep-ex/9912008.

[12] S. Cecchini, G. Giacomelli, M. Giorgini, G. Mandrioli, L. Patrizii, V. Popa, P. Serra, G. Sirri, and M. Spurio, “Fragmentation cross-sections of 158A GeV Pb ions in various targets measured with CR39 nuclear track detectors”, *Nucl. Phys. A* **707** (2002) 513–524, arXiv:hep-ex/0201039.

[13] U. Uggerhøj, I. A. Pshenichnov, C. Scheidenberger, H. D. Hansen, H. Knudsen, E. Uggerhøj, P. Sona, A. Mangiarotti, and S. Ballestrero, “Charge-changing interactions of ultrarelativistic In nuclei”, *Phys. Rev. C* **72** (2005) 057901.

[14] S. Tarafdar, Z. Citron, and A. Milov, “A Centrality Detector Concept”, *Nucl. Instrum. Meth. A* **768** (2014) 170–178, arXiv:1405.4555 [nucl-ex].

[15] AFP Collaboration, S. Grinstein, “The ATLAS Forward Proton Detector (AFP)”, *Nucl. Part. Phys. Proc.***273-275*** (2016) 1180–1184.

[16] G. Puddu et al., “The zero degree calorimeters for the ALICE experiment”, *Nucl. Instrum. Meth. Phys. Res. Sect. A* **581** (2007) 397–401.

[17] R. Gemme et al., “Commissioning and calibration of the zero degree calorimeters for the ALICE experiment”, *Nucl. Phys. B Proc. Suppl.* **197** (2009) 211–214.

[18] C. Oppedisano et al., “Physics performance of the ALICE zero degree calorimeter”, *Nucl. Phys. B Proc. Suppl.* **197** (2009) 206–210.

[19] I. A. Pshenichnov, I. N. Mishustin, J. P. Bondorf, A. S. Botvina, and A. S. Ilinov, “Particle emission following Coulomb excitation in ultrarelativistic heavy ion collisions”, *Phys. Rev. C* **60** (1999) 044901, arXiv:nucl-th/9901061.

[20] I. A. Pshenichnov, J. P. Bondorf, I. N. Mishustin, A. Ventura, and S. Masetti, “Mutual heavy ion dissociation in peripheral collisions at ultrarelativistic energies”, *Phys. Rev. C* **64** (2001) 024903, arXiv:nucl-th/0101035.

[21] H. H. Braun, A. Fassò, A. Ferrari, J. M. Jowett, P. R. Sala, and G. I. Smirnov, “Hadronic and electromagnetic fragmentation of ultrarelativistic heavy ions at LHC”, *Phys. Rev. ST Accel. Beams* **17** (2014) 021006.

[22] M. Klusek-Gawenda, M. Ciemała, W. Schäfer, and A. Szczeurek, “Electromagnetic excitation of nuclei and neutron evaporation in ultrarelativistic ultraperipheral heavy ion collisions”, *Phys. Rev. C* **89** (2014) 054907, arXiv:1311.1938 [nucl-th].

[23] M. Broz, J. G. Contreras, and J. D. Tapia Takaki, “A generator of forward neutrons for ultra-peripheral collisions: nFOhn”, *Comput. Phys. Commun.* **253** (2020) 107181, arXiv:1908.08263 [nucl-th].

[24] ALICE Collaboration, K. Aamodt et al., “The ALICE experiment at the CERN LHC”, *JINST* **3** (2008) S08002.

[25] S. van der Meer, “Calibration of the effective beam height in the ISR”, tech. rep., CERN, Geneva, 1968, https://cds.cern.ch/record/296752.

[26] ALICE Collaboration, S. Acharya, D. Adamová, A. Adler, J. Adolfsson, et al., “ALICE luminosity determination for Pb–Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV”, arXiv:2204.10148 [nucl-ex].
Neutron emission in UPC Pb–Pb at $\sqrt{s_{NN}} = 5.02$ TeV

[27] A. O. Svetlichnyi and I. A. Pshenichnov, “Formation of Free and Bound Spectator Nucleons in Hadronic Interactions between Relativistic Nuclei”, Bull. Russ. Acad. Sci. Phys. 84 (2020) 911–916.

[28] D. Casadei, “Estimating the selection efficiency”, JINST 7 (2012) P08021, arXiv:0908.0130 [physics.data-an].

[29] A. J. Baltz, Y. Gorbunov, S. R. Klein, and J. Nystrand, “Two-photon interactions with nuclear breakup in relativistic heavy ion collisions”, Phys. Rev. C 80 (2009) 044902, arXiv:0907.1214 [nucl-ex].

[30] S. R. Klein, J. Nystrand, J. Seger, Y. Gorbunov, and J. Butterworth, “STARlight: A Monte Carlo simulation program for ultra-peripheral collisions of relativistic ions”, Comput. Phys. Commun. 212 (2017) 258–268, arXiv:1607.03838 [hep-ph].

[31] U. Dmitrieva and I. Pshenichnov, “On the performance of Zero Degree Calorimeters in detecting multinucleon events”, Nucl. Instrum. Meth. A 906 (2018) 114–119, arXiv:1805.01792 [physics.ins-det].

[32] M. B. Golubeva et al., “Neutron emission in electromagnetic dissociation of ultrarelativistic Pb ions”, Phys. Rev. C 71 (2005) 024905.

[33] I. A. Pshenichnov, B. L. Berman, W. J. Briscoe, C. Cetina, G. Feldman, P. Heimberg, A. S. Iljinov, and I. I. Strakovsky, “Intranuclear-cascade model calculation of photofission probabilities for actinide nuclei”, Eur. Phys. J. A 24 (2005) 69–84, arXiv:nucl-th/0303070.

[34] I. A. Pshenichnov and S. A. Gunin, “Electromagnetic interactions of nuclei at the FCC-hh collider”, Phys. Part. Nucl. 50 (2019) 501–505.

[35] V. Muccifora et al., “Photoabsorption on nuclei in the shadowing threshold region”, Phys. Rev. C 60 (1999) 064616, arXiv:nucl-ex/9810015.

[36] C. Scheidenberger et al., “Electromagnetically induced nuclear-charge pickup observed in ultrarelativistic Pb collisions”, Phys. Rev. Lett. 88 (2002) 042301.

[37] J. O. Adler, G. Andersson, and H. A. Gustafsson, “Alpha particles from 197Au irradiated by 500 MeV bremsstrahlung”, Nucl. Phys. A 223 (1974) 145–156.

[38] J. P. Bondorf, A. S. Botvina, A. S. Ilinov, I. N. Mishustin, and K. Sneppen, “Statistical multifragmentation of nuclei”, Phys. Rept. 257 (1995) 133–221.

[39] V. V. Varlamov, A. I. Davydov, and V. N. Orlin, “New evaluated data on 206,207,208Pb photodisintegration”, Eur. Phys. J. A 57 (2021) 287.

[40] B. Alessandro et al., “Fission cross sections of lead projectiles in Pb nucleus interactions at 40 and 158 GeV/c per nucleon”, Phys. Rev. C 69 (2004) 034904.

[41] NA50 Collaboration, M. C. Abreu et al., “Observation of fission in Pb–Pb interactions at 158A GeV”, Phys. Rev. C 59 (1999) 876–883.

[42] V. Guzey, M. Strikman, and M. Zhalov, “Disentangling coherent and incoherent quasielastic J/ψ photoproduction on nuclei by neutron tagging in ultraperipheral ion collisions at the LHC”, Eur. Phys. J. C 74 (2014) 2942, arXiv:1312.6486 [hep-ph].

[43] Z. Citron et al., “Report from Working Group 5: Future physics opportunities for high-density QCD at the LHC with heavy-ion and proton beams”, CERN Yellow Rep. Monogr. 7 (2019) 1159–1410, arXiv:1812.06772 [hep-ph].
[44] S. R. Klein, “Localized beam pipe heating due to e− capture and nuclear excitation in heavy ion colliders”, *Nucl. Instrum. Meth. A* **459** (2001) 51–57, arXiv:physics/0005032.

[45] M. Schaumann, J. M. Jowett, C. Bahamonde Castro, R. Bruce, A. Lechner, and T. Mertens, “Bound-free pair production from nuclear collisions and the steady-state quench limit of the main dipole magnets of the CERN Large Hadron Collider”, *Phys. Rev. Accel. Beams* **23** (2020) 121003, arXiv:2008.05312 [physics.acc-ph].

[46] M. Schaumann, “Potential performance for Pb-Pb, p-Pb and p-p collisions in a future circular collider”, *Phys. Rev. ST Accel. Beams* **18** (2015) 091002, arXiv:1503.09107 [physics.acc-ph].
A The ALICE Collaboration

S. Acharya, D. Adamov, A. Adler, A. Aglioti, R. Aghel, N. Agram, Z. Ahammed, S. Ahmad, S.U. Ahn, I. Ahuja, A. Akindinov, M. Al-Turany, D. Aleksandrov, B. Alessandro, H.M. Alfanda, R. Alfaro Molina, B. Ali, Y. Ali, A. Alić, N. Alizadehvand, A. Alkin, J. Almeida, G. Alocco, T. Alt, I. Altsybeev, M.N. Anna, C. Andrei, A. Andronic, V. Anguelov, F. Antinori, P. Antonioli, C. Anu, N. Apadula, L. Aphelchejo, H. Appelhans, C. Arata, S. Arcelli, M. Areniti, R. Arnaldi, J.C. Arsene, M. Arslan, A. Augustinus, R. Averbeck, M.D. Azmi, A. Badalà, Y.W. Baeck, X. Bai, R. Bahlache et al., Y. Bailing, R. Bala, A. Balbinò, A. Baldissiri, B. Balis, D. Banerjee, Z. Banoo, R. Barbera, F. Barile, L. Barigiolo, M. Barlou, G.G. Barnaföldi, L.S. Barnby, V. Barret, L. Barret, C. Bartels, N. Barth, E. Bartsch, F. Baruffaldi, N. Bastid, S. Basu, G. Batignani, D. Battistini, B. Batyunya, G. Baur, D. Bauri, J.L. Baz Alba, I.G. Bearden, C. Beattie, P. Becht, D. Behera, I. Belikov, A.D.C. Bell Hechavarria, F. Bellini, R. Bellwied, S. Belokurova, V. Belyaev, G. Bencedi, A. Beole, 2 A. Bercuci, Y. Berdnik, A. Berdnikova, L. Bergmann, M.G. Besoiu, 2 L. Betev, P.P. Bhaduri, A. Bhasin, M.A. Bhat, B. Bhattacharjee, L. Bianchi, N. Bianchi, 2 G. Bielcik, J. Bielcikov, S. Bjerrum, A. Bilazd, G. Bitou, S. Biswas, N. Bize, J.T. Blair, D. Blau, M.B. Bliudari, N. Bluhme, C. Blume, G. Boc, 2 F. Bock, T. Bodanov, A. Bogdanov, S. Boli, J. Bok, L. Boldizsár, A. Bolozdynya, M. Bombard, P.M. Bond, G. Bonomi, 130.5, H. Borel, A. Bors, J. Bos, A.G. Borgez, Carcarno, H. Bossi, A. Botta, Y.E.M. Bouziani, L. Bratrud, L. Braun-Munzinger, M. Bregant, M. Brox, G.E. Bruno, M.D. Buckland, D. Budnikov, 139, H. Buesching, S. Bufalino, O. Bugnon, P. Buhler, Z. Buthelezi, G. Bencedi, S. Bencedi, 2 H. Caines, A. Calear, E. Calvo, T. Camacho, P. Camerin, 2 F.D. Canedo, M. Carabas, A.A. Carbell, F. Carnecchei, R. Caros, J. Castillo Castellanos, F. Cataano, M. Ceballos, A. Chakab, P. Chakraborty, E. Chandra, S. Chapeland, M. Chartier, F. Chattapadhyay, S. Chattapadhyay, T.G. Chavez, T. Cheng, C. Cheshkov, B. Cheynis, V. Chibante Barroso, D.D. Chinellato, E.S. Chizzali, J. Cho, S. Cho, P. Chochula, P. Christakoglou, C.H. Christensen, P. Christiansen, T. Chuo, M. Cicco, C. Cicalo, L. Cifarelli, F. Cindolo, M.R. Ciupak, G. Clai, F. Colamaria, A. Collar, J.S. Colburn, D. Colonna, 139, A. Dohrin, D. Donigus, A.K. Dubey, J.M. Dubinsky, A. Dubla, S. Dudi, P. Dupieux, M. Durka, N. Dziala, T.M. Eder, R.J. Ehlers, V.N. Eikeland, F. Eisenhut, M. Elia, B. Erasmus, F. Ercolessi, F. Erhardt, M.R. Ersdal, B. Espagnon, G. Eulisse, R. Evans, M. Evdokimov, Z. Fabbietti, M. Fagnin, J. Faiivre, F. Fan, W. Fan, F. Fantoni, M. Fasel, P. Feccio, A. Felicio, G. Feofilov, A. Fernández Téllez, M.B. Ferrer, A. Ferrero, J.C. Ferrero, D. Ferrer, F. Ferrer, A. Ferretti, V.J.G. Feuillard, V. Filo, D. Fine, M. Fionda, H. F. Flor, A. Floren, F. Foertsch, I. Fokin, S. Fokin, E. Fragiacomi, F. Frazier, U. Fuchs, N. Funicello, C. Furet, A. Furz, T. Fusayasu, J.G. Gaarde, M. Gagliardi, A.M. Gago, C.D. Galvan, D.R. Ganghadaran, P. Ganoti, C. Garabatos, J.R.A. Garcia, E. Garcia-Solis, K. Gargiulo, A. Garibl, K. Garner, P. Gaski, A. Gautam, M.B. Gay Ducati, M. Germain, C. Ghosh, S.K. Ghosh, M. Giacalone, P. Giubellino, P. Giubellino, A.M.C. Glaenzer, P. Glässe, E. Gliños, J.Q. Goh, V. Gonzalez, L.H. González-Trueba, M. Gor罡, S. Gotovac, V. Grabski, L.K. Graczykowski, J.E. Grecksch, A. Grelli, C. Grigoras, V. Grigoriev, S. Grigoryan, F. Grossa, J.F. Grosse-Oetringhaus, R. Gross, D. Grund, G.G. Guardiano, R. Guernane, 21
Neutron emission in UPC Pb–Pb at $\sqrt{s_{NN}} = 5.02$ TeV

ALICE Collaboration

M. Guillaume103, K. Gulyandsen83, T. Gundem63, T. Gunnì121, W. Guo6, A. Gupta91, R. Gupta91, S.P. Guzman84, L. Gyulai135, M.K. Habib97, C. Hadjidakis72, H. Hamagaki76, A. Hamidi74, M. Hamid39, Y. Han137, R. Hannigan107, M.R. Haque132, J.W. Harris136, A. Harton8, H. Hassan87, D. Hatzifotiadou80, P. Hauer132, L.B. Haven126, S.T. Heckel35, E. Heilbarth97, H. Helstrup58, M. Hemmer86, T. Herman167, G. Herrera Corral97, F. Herrmann134, S. Herrmann125, K.F. Hetland54, B. Heybeck83, H. Hillemanns92, C. Hills116, B. Hippolyte126, B. Hofman58, B. Hohlweg64, J. Hornermann134, G.H. Hong137, M. Horst59, A. Horzyk32, R. Hosokawa18, Y. Hou89, P. Hristov132, C. Hughes119, P. Huhn63, L.M. Huhta114, C.V. Hulse72, T.J. Humanic68, H. Hushnud99, A. Hutson13, D. Hutter138, J.P. Ildoon116, R. Ilkä,139, H. Ilyas12, M. Inaba122, G.M. Innocenti32, M. Ippolito139, A. Isakov80, T. Isidori115, M.S. Islam99, M. Ivanov12, M. Ivanov97, V. Ivanov139, V. Izuichev139, M. Jablonski17, B. Jacak74, N. Jacazio12, P.M. Jacobs74, S. Jadlovska105, J. Jadlovska105, S. Jaelani82, L. Jaffe38, C. Jahne110, M.J. Jakubowska132, M.A. Janik132, T. Janson96, M. Jeric89, A.A.P. Jimenez64, F. Jonas87, P.G. Jones100, J.M. Jowett132, J. Jung63, M. Jung88, A. Juníque32, A. Jusko100, M.J. Kabuk132, J. Kaeijai104, P. Kalinak95, A. Keidly80, V. Kaplinski91, A. Karasua Uyusal71, D. Karlovic129, P. Karavichev139, T. Karavichev139, P. Karczmarsky132, E. Karpechev139, V. Kashyap80, U. Kebshchak90, R. Keidel138, D.L.D. Keidjende88, M. Keil32, B. Ketzer42, A.M. Khan91, S. Khan15, A. Khanzadeev39, Y. Kharlov139, A. Khatun15, A. Khuntia106, B. Kileng17, B. Kim16, C. Kim16, D.J. Kim114, E.J. Kim68, J. Kim137, J.S. Kim10, J. Kim39, Y. Kim19, S. Kim82, H. Kim17, S. Kim123, K. Kimura92, S. Kirsch39, I. Kisel88, S. Kiselev139, A. Kisiel132, J.P. Kitowski109, J.L. Klany5, J. Klein132, S. Klein74, C. Klein-Bössing134, M. Kleine163, T. Klemenz95, A. Kluge32, A.G. Knoppek113, C. Koldaj104, T. Kollegger59, A. Konradtyuk40, E. Konradtyuk139, J. König63, S.A. Königstorfer95, P.J. Konopka32, G. Kornakov132, S.D. Koryciak47, A. Kotliarlov66, V. Kovalekova139, M. Kowalski106, V. Kozhuharova160, I. Krädel35, M. Kravčárová67, L. Kreis8, M. Krivda132, K. Krizkova103, M. Kroesen119, M. Kruger103, D.M. Krupova35, E. Kryshen119, V. Küchera27, C. Kuhn18, P.G. Kujer26, T. Kumaoka122, D. Kumar131, L. Kumar90, N. Kumar90, S. Kumar101, S. Kundra12, P. Kurashvili97, A. Kurepin139, A.B. Kurepin139, S. Kushpi88, J. Kvaspi32, M.J. Kweon107, J.Y. Kwon57, Y. Kwon137, S.L. La Pointe38, P. La Rocca26, Y.S. Lai74, A. Lakrathok104, M. Lamanna12, R. Langoy118, P. Larionov132, E. Lau26, L. Lautner132, R. Lavicka10, T. Lazareva139, R. Lea130, G. Legras134, J. Lehrbach88, R.C. Lemmon53, I. León Monzón108, M.M. Lesch29, E.D. Lesser18, M. Lettrich35, P. Lévy125, X. Li10, X.L. Li8, J. Lien118, R. Lietav100, B. Lim14, S.H. Lim16, V. Lindenstruth38, A. Lindgreen45, C. Lippmann97, A. Liu18, D.H. Liu9, J. Liu116, I.M. Lofnæs20, C. Loizides187, P. Loncar37, J.A. Lopez94, X. Lopez124, E. López Torres78, P. Lu97,117, J.R. Luhder113, M. Lunardon27, G. Luparello56, Y.G. Ma39, A. Maevskaya139, M. Mager32, T. Mahmoud17, A. Maire126, M.V. Makariev56, M. Malaev139, G. Malfattore25, N.M. Malik91, Q.W. Malik19, S.K. Malik91, L. Malinina17, V. Malfatto32, D. Mal'Kevich139, D. Mallick80, N. Mallick137, G. Mandaglio10, V. Manko139, F. Manso124, V. Manzari99, Y. Mao6, G.V. Margagliotti21, A. Margott190, A. Marín97, C. Markert107, P. Martinengo113, J.L. Martínez113, M.I. Martínez García144, M. Marzocchi19, T. Masucci197, M. Masera24, A. Masconi51, L. Massacrier72, A. Mastroserio128,99, A.M. Mathis95, O. Matonohah75, P.F.T. Matukou109, A. Matyja106, C. Mayer106, A.L. Mazuecos132, F. Mazzaachi24, M. Mazzioli32, J.E. Meihsli20, A.F. Mehele39, Y. Melikyan139, A. Menchaca-Rocha66, E. Meninno102,28, A.S. Menon113, M. Meres12, S. Mhlanga12,67, Y. Mika122, M. Micheletti55, L.C. Migliorini25, D.L. Mikhailov95, K. Mikhailov140,139, A.N. Mishra135, D. Miškowsky1, A. Modak67, A.P. Mohanty138, B. Mohanty97, M. Mohisbin Khan15, M.A. Molander13, Z. Moravčík83, C. Mordenski132, D.A. Moreira De Godoy134, I. Morozov39, A. Morsch7, T. Mrnjavac132, V. Muccifora18, S. Muhuri131, J.D. Mulligan97, A. Mulliri22, M.G. Munhoz109, R.H. Munzer63, H. Murakami121, S. Murray122, L. Musa32, J. Musinsky59, J.W. Myrcha132, B. Naik129, A.I. Nambrath18, B.K. Nandi46, R. Nania80, E. Nappi139, A.F. Nassirpour5, J. Nath94, C. Nattrass119, M.N. Naydenov36, A. Neagu18, A. Negru21, L. Nellen64, S.V. Nesbjo64, G. Nesvokios8, D. Nesterov139, B.S. Nielsen83, E.G. Nielsen83, S. Nikolaev139, S. Nikulin139, V. Nikulina139, A. Noferini50, F. Noh11, P. Nomokonov40, J. Norman116, N. Novitzky122, P. Nowakowski132, A. Nyanin139, J. Nystrand20, M. Ogino76, A. Ohsolo75, V.A. Okorokov139, J. Oleniacz132, A.C. Oliveira Da Silva119, M.H. Oliver156, A. Onnerstad114, C. Oppedissano55, A. Ortiz Velasquez64, A. Oskarsson75, J. Otwinowski106, M. Oya92, K. Oyama96, Y. Pachmayer94, S. Padh64, D. Pagano130,54, G. Paic16, A. Palacios4, S. Panebianco127, H. Park122, J. Park97,
Neutron emission in UPC Pb–Pb at $\sqrt{s_{NN}} = 5.02$ TeV

ALICE Collaboration

J.E. Parkkilä, R.N. Patra, B. Paul, H. Pei, T. Peitzmann, X. Peng, M. Pennisi, L.G. Pereira, H. Pereira Da Costa, D. Peresunko, G.M. Perez, S. Perrin, Y. Pestov, V. Petráczei, V. Petrov, M. Petrovic, R.P. Pezzi, S. Pianò, M. Pikna, P. Pillot, O. Pinnazza, L. Pinsky, C. Pinto, S. Pisano, M. Ploshonko, M. Planić, F. Pluiquet, M.G. Poghosyan, S. Politano, N. Poljak, A. Pop, S. Portebeef-Houssais, J. Porter, V. Pozdnyakov, K.K. Pradhan, S.K. Prasad, R. Preghenella, F. Prino, C.A. Pruneau, I. Pšenichnov, M. Puccio, S. Pucillo, Z. Pugelova, S. Qui, L. Quaglia, R.E. Quishe, S. Ragoni, Rakotozafindralabe, L. Ramello, F. Rami, S.A.R. Ramirez, T.A. Rancien, R. Rana, S.S. Räsänen, R. Rath, M.P. Rauch, I. Ravasenga, K.F. Read, C. Reckziegel, M. Redelbach, K. Redlich, V. Reid, H.A. Reme-Ness, Z. Rescakova, K. Reygers, A. Riabov, V. Riabov, R. Ricci, T. Richert, M. Richter, A.A. Riedel, W. Riegler, F. Riggi, C. Ristera, R. Rodriguez Cahuantzi, K. Röed, R. Rogalew, E. Rogochaya, T.S. Rogoschinski, D. Rohr, D. Röhrich, P.F. Rojas, S. Rojas Torres, P.S. Rokita, G. Romanenko, F. Ronchetti, A. Rosano, E.D. Rosas, A. Rossi, A. Roy, S. Roy, N. Rubini, O.V. Rueda, D. Ruggiano, L. Rui, B. Rumyantsev, P.G. Russo, R. Russo, A. Rustamov, S. Ryabinkin, Y. Ryabov, A. Rybicki, H. Rytkonen, W. Rzesza, O.A.M. Saarni, R. Sadok, S. Sadhu, S. Sadovsky, J. Saetre, K. Šafařík, S.K. Saha, S. Saha, B. Sahoo, S. Sahoo, S. Sahul, P.K. Sahu, J. Saini, K. Sajdakova, S. Sakai, M.P. Salvan, S. Sambhal, I. Sanna, T.B. Saramela, D. Sarkar, N. Sarkar, P. Sarma, V. Sarrizzu, V.M. Sarti, M.H.P. Sas, T. Schambach, H.S. Scheid, C. Schiaua, R. Schicker, A. Schmah, C. Schmidt, H.R. Schmidt, M.O. Schmidt, M. Schmidt, N.V. Schmidt, A.R. Schmier, R. Schotte, A. Schröter, J. Schukraft, K. Schwarz, K. Schweda, G. Scioli, E. Scomparin, J.E. Seeger, Y. Sekiguchi, D. Sekihata, I. Selvyzhnevok, S. Senyukov, J.J. Seo, D. Serebryakov, L. Šeršnět, A. Sevcenco, T.J. Shaba, A. Shabet al, R. Shayahon, A. Shangaraev, A. Sharma, D. Sharma, D. Sharma, M. Sharma, S. Sharma, U. Sharma, A. Shatat, O. Sheibani, K. Shigaki, M. Shimomo, J. Shin, S. Shirinkin, Q. Shou, Y. Sibiriak, S. Siddhant, T. Siemiaczuk, T.F. Silva, D. Silvermyr, T. Simantathamkamol, R. Simeonov, B. Singh, B. Singh, R. Singh, R. Singh, R. Singh, R. Singh, V.K. Singh, V. Singhal, T. Sinn, B. Sitar, M. Sitta, T.B. Skaal, G. Skorodunovs, M. Slupecki, N. Smirnov, R.J.M. Snellings, E.H. Solheim, J. Song, A. Songmool, F. Soramel, R. Spijkers, I. Sputowska, J. Staa, J. Stachek, I. Stan, P.J. Steffanic, S.F. Stiefelmaier, D. Stocco, I. Storehaug, P. Stratmann, S. Strazzì, C.P. Stylianidi, A.A.P. Suade, C. Suarez, M. Sukhanov, S.M. Suljic, R. Sultanov, V. Sumberia, S. Sumowidagdo, S. Swain, I. Szarka, U. Tabassam, S.F. Taghavi, G. Taillepied, J.K. Takahashi, G.J. Tambave, S. Tang, Z. Tang, J.D. Tapia Takaki, N. Tapus, L.A. Tarasovciv, M.G. Tarzila, G.F. Tassielli, A. Tauro, A. Telesca, L. Terlizzi, C. Terrevoli, G. Tersimonov, S. Thakur, D. Thomas, A. Tikhonov, J.A. Timmins, M. Tkacik, T. Tkacik, A. Tora, R. Tomokoto, N. Topilskaya, M. Toppi, F. Torales-Acosta, T. Tork, A.G. Torres Ramos, A. Trifiro, A.S. Triolo, S. Tripathy, T. Tripathy, S. Trogolo, V. Trubnikov, W.H. Trzaska, T.P. Trzcinski, T.S. Tveit, K. Ullaland, B. Ulukutlu, A. Uras, M. Urioni, G.L. Usai, M. Vala, N. Vali, S. Vallerio, L.V.R. de Vore Tamael, M. van Leeuwen, C.A. van Veen, R.J.G. van Weekel, P. Vande Vyvre, D. Varga, Z. Varga, M. Varga-Kofarago, M. Vasileiou, A. Vasileiev, O. Vázquez Doce, V. Vechernin, E. Vercellin, S. Vasil'ev, S. Vergara Limón, L. Vermunt, R. Vértesi, M. Verweij, L. Vickovic, Z. Vilakazi, O. Villalobos Baille, G. Vino, A. Vinogradov, T. Viri, V. Visklavicius, A. Vodopyanov, B. Volke, M.A. Völkl, K. Voloshin, S.A. Voloshin, G. Volpe, B. von Halle, I. Vorobyev, N. Vozniuk, J. Vrálková, B. Wagner, C. Wang, D. Wang, A. Wegryn, S.T. Weighiloper, S.C. Wenzel, J.P. Wessels, S.L. Weyhmiiller, J. Wiechula, J. Wikne, G. Wilk, J. Wilkinson, G.A. Willems, B. Windelband, W. Winquardt, Y. Wu, R. Xu, A. Yadav, A.K. Yadav, S. Yalcin, Y. Yamaguchi, K. Yamakawa, S. Yang, S. Yano, S. Ying, I.-K. Yoo, J.H. Yoon, S. Yuan, A. Yuncu, V. Zaccòolo, C. Zampolli, J.H.C. Zanoli, F. Zanone, N. Zardoshhi, Z. Závada, N. Zaviyalov.
Neutron emission in UPC Pb–Pb at $\sqrt{s_{\text{NN}}} = 5.02$ TeV

ALICE Collaboration

M. Zhalov139, B. Zhang6, L. Zhang39, S. Zhang39, X. Zhang6, Y. Zhang117, Z. Zhang6, M. Zhao10, V. Zherebchevskii139, Y. Zhi10, N. Zhigareva139, D. Zhou83, Y. Zhou97,6, Y. Zhu6, G. Zinovjev13, S.C. Zugravel55, N. Zurlo130,54

Affiliation Notes

I Deceased
II Also at: Max-Planck-Institut für Physik, Munich, Germany
III Also at: Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Bologna, Italy
IV Also at: Dipartimento DET del Politecnico di Torino, Turin, Italy
V Also at: Department of Applied Physics, Aligarh Muslim University, Aligarh, India
VI Also at: Institute of Theoretical Physics, University of Wroclaw, Poland
VII Also at: An institution covered by a cooperation agreement with CERN

Collaboration Institutes

1 A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation, Yerevan, Armenia
2 AGH University of Science and Technology, Cracow, Poland
3 Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, Kiev, Ukraine
4 Bose Institute, Department of Physics and Centre for Astroparticle Physics and Space Science (CAPSS), Kolkata, India
5 California Polytechnic State University, San Luis Obispo, California, United States
6 Central China Normal University, Wuhan, China
7 Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Havana, Cuba
8 Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City and Mérida, Mexico
9 Chicago State University, Chicago, Illinois, United States
10 China Institute of Atomic Energy, Beijing, China
11 Chungbuk National University, Cheongju, Republic of Korea
12 Comenius University Bratislava, Faculty of Mathematics, Physics and Informatics, Bratislava, Slovak Republic
13 COMSATS University Islamabad, Islamabad, Pakistan
14 Creighton University, Omaha, Nebraska, United States
15 Department of Physics, Aligarh Muslim University, Aligarh, India
16 Department of Physics, Pusan National University, Pusan, Republic of Korea
17 Department of Physics, Seoul National University, Seoul, Republic of Korea
18 Department of Physics, University of California, Berkeley, California, United States
19 Department of Physics, University of Oslo, Oslo, Norway
20 Department of Physics and Technology, University of Bergen, Bergen, Norway
21 Dipartimento di Fisica, Università di Pavia, Pavia, Italy
22 Dipartimento di Fisica dell’Università and Sezione INFN, Cagliari, Italy
23 Dipartimento di Fisica dell’Università and Sezione INFN, Trieste, Italy
24 Dipartimento di Fisica dell’Università and Sezione INFN, Turin, Italy
25 Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Bologna, Italy
26 Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Catania, Italy
27 Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Padova, Italy
28 Dipartimento di Fisica ‘E.R. Caianiello’ dell’Università and Gruppo Collegato INFN, Salerno, Italy
29 Dipartimento DISAT del Politecnico and Sezione INFN, Turin, Italy
30 Dipartimento di Scienze MIFT, Università di Messina, Messina, Italy
31 Dipartimento Interateneo di Fisica ‘M. Merlin’ and Sezione INFN, Bari, Italy
32 European Organization for Nuclear Research (CERN), Geneva, Switzerland
33 Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Split, Croatia
34 Faculty of Engineering and Science, Western Norway University of Applied Sciences, Bergen, Norway
35 Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
36 Faculty of Physics, Sofia University, Sofia, Bulgaria
Neutron emission in UPC Pb–Pb at $\sqrt{s_{NN}} = 5.02$ TeV

ALICE Collaboration

37 Faculty of Science, P.J. Šafárik University, Košice, Slovak Republic
38 Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
39 Fudan University, Shanghai, China
40 Gangneung-Wonju National University, Gangneung, Republic of Korea
41 Gauhati University, Department of Physics, Guwahati, India
42 Helmholtz-Institut für Strahlen- und Kernphysik, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
43 Helsinki Institute of Physics (HIP), Helsinki, Finland
44 High Energy Physics Group, Universidad Autónoma de Puebla, Puebla, Mexico
45 Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania
46 Indian Institute of Technology Bombay (IIT), Mumbai, India
47 Indian Institute of Technology Indore, Indore, India
48 INFN, Laboratori Nazionali di Frascati, Frascati, Italy
49 INFN, Sezione di Bari, Bari, Italy
50 INFN, Sezione di Bologna, Bologna, Italy
51 INFN, Sezione di Cagliari, Cagliari, Italy
52 INFN, Sezione di Catania, Catania, Italy
53 INFN, Sezione di Padova, Padova, Italy
54 INFN, Sezione di Pavia, Pavia, Italy
55 INFN, Sezione di Torino, Turin, Italy
56 INFN, Sezione di Trieste, Trieste, Italy
57 Inha University, Incheon, Republic of Korea
58 Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University/Nikhef, Utrecht, Netherlands
59 Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovak Republic
60 Institute of Physics, Homi Bhabha National Institute, Blubaneshwar, India
61 Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
62 Institute of Space Science (ISS), Bucharest, Romania
63 Institut für Kernphysik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
64 Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City, Mexico
65 Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
66 Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico
67 iThemba LABS, National Research Foundation, Somerset West, South Africa
68 Jeonbuk National University, Jeonju, Republic of Korea
69 Johann-Wolfgang-Goethe Universität Frankfurt Institut für Informatik, Fachbereich Informatik und Mathematik, Frankfurt, Germany
70 Korea Institute of Science and Technology Information, Daejeon, Republic of Korea
71 KTO Karatay University, Konya, Turkey
72 Laboratoire de Physique des 2 Infinis, Irène Joliot-Curie, Orsay, France
73 Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS-IN2P3, Grenoble, France
74 Lawrence Berkeley National Laboratory, Berkeley, California, United States
75 Lund University Department of Physics, Division of Particle Physics, Lund, Sweden
76 Nagasaki Institute of Applied Science, Nagasaki, Japan
77 Nara Women’s University (NWU), Nara, Japan
78 National and Kapodistrian University of Athens, School of Science, Department of Physics, Athens, Greece
79 National Centre for Nuclear Research, Warsaw, Poland
80 National Institute of Science Education and Research, Homi Bhabha National Institute, Jatni, India
81 National Nuclear Research Center, Baku, Azerbaijan
82 National Research and Innovation Agency - BRIN, Jakarta, Indonesia
83 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
84 Nikhef, National institute for subatomic physics, Amsterdam, Netherlands
85 Nuclear Physics Group, STFC Daresbury Laboratory, Daresbury, United Kingdom
86 Nuclear Physics Institute of the Czech Academy of Sciences, Husinec-Rež, Czech Republic
87 Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States
88 Ohio State University, Columbus, Ohio, United States
89 Physics department, Faculty of science, University of Zagreb, Zagreb, Croatia
Neutron emission in UPC Pb–Pb at $\sqrt{s_{_{NN}}} = 5.02$ TeV

ALICE Collaboration

...