Assessment of knowledge of blood loss at delivery among postpartum patients

Michaela K Farber Corresp. 1, Claire M Miller 2, Bharathi Ramachandran 2, Priya Hegde 2, Kulsum Akbar 2, Lawrence Tim Goodnough 3, Alexander J Butwick 2

1 Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston
2 Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California, United States
3 Departments of Pathology and Medicine, Stanford University School of Medicine, Stanford, California, United States

Corresponding Author: Michaela K Farber
Email address: mkfarber@partners.org

Background: Postpartum hemorrhage (PPH) is a leading cause of obstetric morbidity. There is limited understanding of patients’ knowledge about blood loss at delivery, PPH, and PPH-related morbidities, including transfusion and anemia.

Methods: We surveyed 100 healthy postpartum patients who underwent vaginal or cesarean delivery about blood loss, and whether they received information about transfusion and peripartum hemoglobin (Hb) testing. Responses were compared between women undergoing vaginal delivery vs. cesarean delivery; P<0.05 considered as statistically significant.

Results: In our cohort, 49 women underwent vaginal delivery and 51 women underwent cesarean delivery. Only 29 (29%) of women provided blood loss estimates for their delivery. Women who underwent cesarean delivery were more likely to receive clear information about transfusion therapy than those undergoing vaginal delivery (43.1% vs. 20.4% respectively; P=0.04). Women who underwent vaginal delivery were more likely to receive results of postpartum Hb tests compared to those undergoing cesarean delivery (49% vs. 29.4%; P=0.02).

Conclusion: Our findings suggest that women are poorly informed about the magnitude of blood loss at delivery. Hematologic information given to patients varies according to mode of delivery. Further research is needed to better understand the clinical implications of patients’ knowledge gaps about PPH, transfusion and postpartum anemia.
Title: Assessment of Knowledge of Blood Loss at Delivery Among Postpartum Patients

1. Michaela K. Farber, MD MS
   Department: Anesthesiology, Perioperative, and Pain Medicine
   Affiliation: Harvard Medical School, Brigham and Women's Hospital
   Email: mkfarber@partners.org

2. Claire M. Miller, BA
   Department: Anesthesiology, Perioperative, and Pain Medicine
   Affiliation: Stanford University School of Medicine
   Email: clairemm@stanford.edu

3. Bharathi Ramachandran, BS
   Department: Anesthesiology, Perioperative, and Pain Medicine
   Affiliation: Stanford University School of Medicine
   Email: rbharathi722@gmail.com

4. Priya Hegde, MS
   Department: Anesthesiology, Perioperative, and Pain Medicine
   Affiliation: Stanford University School of Medicine
   Email: phedge@stanford.edu

5. Kulsum Akbar, MD
6. Lawrence T. Goodnough, MD

Departments: Pathology and Medicine
Affiliation: Stanford University School of Medicine
Email: LTGoodno@stanford.edu

7. Alexander J. Butwick, MD

Department: Anesthesiology, Perioperative, and Pain Medicine
Affiliation: Stanford University School of Medicine
Email: ajbut@stanford.edu

Corresponding Author:
Dr. Michaela K. Farber; Department of Anesthesiology, Perioperative, and Pain Medicine;
Brigham and Women’s Hospital, Harvard Medical School; 75 Francis Street; Boston, MA 02115; USA.
Phone: (617) 759-1609
Fax (617) 264-6841
Email: mkfarber@partners.org
Abstract:

Background: Postpartum hemorrhage (PPH) is a leading cause of obstetric morbidity. There is limited understanding of patients’ knowledge about blood loss at delivery, PPH, and PPH-related morbidities, including transfusion and anemia.

Methods: We surveyed 100 healthy postpartum patients who underwent vaginal or cesarean delivery about blood loss, and whether they received information about transfusion and peripartum hemoglobin (Hb) testing. Responses were compared between women undergoing vaginal delivery vs. cesarean delivery; P<0.05 considered as statistically significant.

Results: In our cohort, 49 women underwent vaginal delivery and 51 women underwent cesarean delivery. Only 29 (29%) of women provided blood loss estimates for their delivery. Women who underwent cesarean delivery were more likely to receive clear information about transfusion therapy than those undergoing vaginal delivery (43.1% vs. 20.4% respectively; P=0.04). Women who underwent vaginal delivery were more likely to receive results of postpartum Hb tests compared to those undergoing cesarean delivery (49% vs. 29.4%; P=0.02).

Conclusion: Our findings suggest that women are poorly informed about the magnitude of blood loss at delivery. Hematologic information given to patients varies according to mode of delivery. Further research is needed to better understand the clinical implications of patients’ knowledge gaps about PPH, transfusion and postpartum anemia.

Key Words: postpartum hemorrhage; anemia; patient knowledge; estimated blood loss

Short title: Patient survey of blood loss at delivery
Introduction:

In the United States, the rate of severe postpartum hemorrhage (PPH) has been steadily increasing.\textsuperscript{1,2} In order to decrease the frequency of PPH, clinical guidelines have been published to optimize PPH management practices.\textsuperscript{3-5} Obstetric and anesthetic care providers may also obtain updates about PPH management from literature review and other educational forums, such as seminars and conferences. However, it is uncertain whether patients receive information about PPH and PPH-related morbidities, such as transfusion and postpartum anemia.

If patients are inadequately informed about PPH, transfusion, and postpartum anemia, this may have important clinical and health-related implications. Firstly, PPH is recognized as an important cause of postpartum anemia. Women who develop postpartum anemia may be at risk for anemia-related morbidities, including: postpartum depression, reduced cognition, and impaired maternal-neonatal bonding.\textsuperscript{6} Secondly, patients who experience PPH may not receive postpartum counseling. This may negatively impact on how patients cope with the emotional trauma of experiencing major PPH.\textsuperscript{7} Thirdly, patient-centered care and shared decision-making about transfusion have been promoted in the perioperative and medical literature.\textsuperscript{8-10} These approaches have not been well described in the obstetric setting, therefore examining patients’ knowledge of anticipated and actual blood loss at delivery may help inform clinical practice.

To evaluate patients’ knowledge and perceptions of postpartum blood loss, we surveyed a cohort of women who underwent vaginal delivery or cesarean delivery at a US tertiary obstetric center. We secondarily examined whether patients receive information from their care providers about transfusion, and antepartum and postpartum Hb levels.
Methods:

This study was approved by Stanford University IRB, Stanford, CA (Protocol#26391).

Using a convenience sample, we enrolled 100 healthy (ASA physical status 1 or 2) patients who underwent vaginal delivery or cesarean delivery at Lucile Packard Children’s Hospital, a tertiary obstetric center in California, USA. During the postpartum hospitalization, postpartum patients were approached and written informed consent was obtained. We excluded women with psychological disorders or psychiatric disease.

For this study, we asked patients two sets of questions about blood loss. One set of questions assessed patients’ baseline knowledge of normal blood loss following an uncomplicated vaginal or cesarean delivery. The second set of questions was related to the blood loss that occurred for their actual delivery (vaginal or cesarean). For each set of questions, a trained study investigator (PH, BR, KA) surveyed patients using a written questionnaire and recorded patients’ responses. Survey questions are presented in an online supplement (Supplement 1). The questionnaire also contained questions related to patients’ socioeconomic status and educational background.

For the first set of questions, we asked patients to quantify volumes of blood loss for a normal, uncomplicated vaginal delivery and cesarean delivery. For the second set of questions, we asked patients to quantify the estimated blood loss for their actual delivery (hereafter referred to as EBL\textsubscript{patient}), and to indicate whether an obstetric care provider informed them of their EBL. For each patient’s delivery hospitalization, we abstracted demographic, medical, obstetric and laboratory data from the electronic medical record, including: total EBL for their delivery (hereafter referred to as EBL\textsubscript{delivery}), the antenatal hemoglobin (Hb) level most proximate to
delivery, the postpartum Hb level measured closest to the day of hospital discharge, and relevant
transfusion data.

For our secondary analysis, we asked directed questions related to transfusion and Hb
testing. We assessed whether patients were given information, during the antenatal period, about
transfusion, and whether they would consent to a transfusion, if clinically indicated. We asked
patients whether they received information about their antenatal and postpartum Hb levels from
obstetric care providers.

Statistical Analyses:

Data are presented as mean (standard deviation), median [interquartile range], and number
(percentages), as appropriate. For continuous data, we assessed normal distributions using QQ
plots and the Kolmogorov-Smirnov test. We compared patient characteristics and survey
responses between women who underwent vaginal vs. cesarean delivery with a t test or Mann-
Whitney test for continuous data, and \( \chi^2 \) test or Fisher’s exact test for categorical data. We
compared EBL\text{patient} values to EBL\text{delivery} values for women who underwent vaginal and cesarean
delivery respectively, using Wilcoxon signed rank sum test.

Using EBL data, we classified PPH using the following EBL thresholds: \( \geq 500 \) ml EBL
for vaginal delivery and \( \geq 1000 \) ml EBL for cesarean delivery. We calculated sensitivity,
specificity, positive predictive value (PPV) and negative predictive value (NPV) to determine
whether PPH was accurately classified by patients’ EBL estimates for their actual delivery.

Statistical analysis was performed using STATA version 12 (Stata Corp., College Station, TX).
P<0.05 was considered as statistically significant.

Results:
A total of 100 patients were recruited, of which 49 underwent vaginal delivery and 51 underwent cesarean delivery. Demographic, socioeconomic, and obstetric characteristics for the full cohort and for women stratified by mode of delivery are presented in Table 1. In the full cohort, the majority of women had private health insurance, were Caucasian or Asian, married, and had an annual household income of at least $50,000. Compared to women who underwent vaginal delivery, women who underwent cesarean delivery were older, had a higher parity, were delivered at a later gestational age, and were more likely to have undergone prior cesarean delivery.

Data related to the first set of questions about blood loss for an uncomplicated vaginal or cesarean delivery are presented in Table 2. Over two-thirds of patients did not provide estimates for normal blood loss after an uncomplicated vaginal or cesarean delivery. Among those who were willing to provide estimates, patients reported that the mean normal blood loss is higher after an uncomplicated cesarean delivery compared with an uncomplicated vaginal delivery.

The median [IQR] EBL\textsubscript{delivery} values were significantly higher for women who underwent cesarean delivery compared to vaginal delivery (730 [600-1000] ml vs. 250 [200-300] ml respectively; \textit{P}<0.001). A total of 18 women experienced PPH: four of these women underwent vaginal delivery, and 14 underwent cesarean delivery. Of note, no patients received transfusion.

Complete data on EBL\textsubscript{patient} and EBL\textsubscript{delivery} values were available for only 29 patients (Figure 1). For those with complete data who underwent vaginal delivery (n=16), EBL\textsubscript{patient} values were significantly higher than EBL\textsubscript{delivery} values (400 ml [300-578 ml] vs. 250 [200-300 ml] respectively; \textit{P}=0.02). In contrast, for those with complete data who underwent cesarean delivery (n=13), EBL\textsubscript{patient} values were significantly lower than EBL\textsubscript{delivery} values (550 ml [400-800 ml] vs. 750 [600-1000 ml]; \textit{P}=0.02). For the 29 patients with complete EBL\textsubscript{patient} and
EBL\textsubscript{delivery} data, we calculated sensitivity, specificity, PPV and NPV to determine whether PPH was accurately classified according to EBL\textsubscript{patient} values. The sensitivity was 60\% (95\% CI=14.7\% - 94.7\%), specificity was 83.3\% (95\% CI=62.6\%-95.3\%), PPV was 42.9\% (95\% CI=9.9\%-81.6\%), and NPV was 90.9\% (95\% CI=70.8\%-98.9\%).

Hb levels were not measured before or after delivery for 11 women and 20 women, respectively. Predelivery Hb levels were similar for those who underwent vaginal vs. cesarean delivery: 12.4 (1.4) g/dl vs. 12.3 (0.9) g/dl, respectively; \(P=0.8\). Similarly, no significant difference was observed in the last Hb measured before hospital discharge between women who underwent vaginal vs. cesarean delivery: 10.6 (1.1) g/dl vs. 10.4 (1.0) g/dl, respectively; \(P=0.3\).

Data of patients’ knowledge of transfusion and Hb levels are presented in Table 3.

Women who underwent cesarean delivery were more likely to have received clear and understandable information about transfusion and were more likely to consent to transfusion compared to women who had a vaginal delivery. With regard to Hb levels, patients who underwent vaginal delivery were more likely to have known their Hb level before delivery compared to those who underwent cesarean delivery. The proportion of patients who stated that their postpartum Hb level was measured was similar among women who underwent vaginal vs cesarean delivery (40.8\% vs. 47\% respectively; \(P=0.74\)). However, among women who stated that their postpartum Hb level was measured, only 3 (7\%) were given the test result.

**Discussion:**

Our study provides insight into obstetric patients’ perceptions and knowledge of blood loss at delivery, transfusion, and laboratory testing for anemia. Over two-thirds of patients did not provide blood loss estimates for their delivery. Additionally, less than 50\% of patients indicated
that they received information about their pre- or post-delivery Hb levels. Lastly, the quality of
transmitted information about transfusion and patients’ consent for transfusion varied according
to mode of delivery. Based on our findings, a low proportion of women who deliver at a US
tertiary obstetric center receive information about the clinical implications of peripartum blood
loss, transfusion, and Hb testing before and after delivery.

It is unclear why the majority of women in our study did not provide blood loss (EBL\text{patient}) values. We speculate that the reason is that many patients did not receive blood loss information after delivery. Those who did provide blood loss estimates for their delivery were relatively poor at correctly classifying PPH (sensitivity=60%; PPV=42.9%). One possible explanation for these findings is that, within this subcohort [of women who gave blood loss estimates], women may not have been informed about the magnitude of their peripartum blood loss. In addition, it is also possible that some women correctly estimated their blood loss without receiving any EBL information from their obstetric care provider.

Although it is unclear whether patients who undergo uncomplicated deliveries need to be notified of their EBL or postpartum Hb levels, patients who experience PPH may benefit from receiving more detailed information about these indices. Thompson et al. reported that patients who experience PPH express interest in receiving information related to their delivery, and may benefit from counseling, psychological support, and assistance with physical recovery.\textsuperscript{11}

Furthermore, physicians’ estimate of blood loss can often be lower than the actual volume of blood lost at delivery.\textsuperscript{12,13} Therefore, if blood loss is underestimated for women with PPH, then these women may develop anemia that goes undetected after delivery. To improve patient awareness of postpartum anemia, there may be benefit in providing patients with information
sheets which contain advice about seeking medical review if they experience anemia-related
symptoms (e.g., low mood, fatigue, poor cognition).

In our study, patients who underwent cesarean delivery were more likely to receive
information about transfusion compared to those who underwent vaginal delivery. Obstetricians
may be more likely to discuss the need for transfusion with patients who undergo cesarean
delivery, as these women are at greater risk of PPH than those undergoing vaginal delivery. Surprisingly, 20% of women who underwent vaginal delivery reported that they would not
provide consent for a blood transfusion should the obstetrician deem it necessary. This finding is
somewhat concerning as prompt transfusion therapy may be needed for women who experience
severe PPH or postpartum anemia. Misconceptions about transfusion risk may explain why
patients object to transfusion therapy. These misconceptions may be influenced by
sociodemographic factors. For example, in a survey of patients’ perceptions of transfusion by
Vetter et al., patients with a high school education or less expressed increased concern about the
risk of allergic reaction, dyspnea, human immunodeficiency virus transmission, and medical
error. In a different survey examining patients’ beliefs about transfusion, Finucane et al.
observed that patients’ decision to receive transfusion may vary according to patient’s sex,
race/ethnicity, and prior educational history. In light of these findings, counseling during the
antenatal period may help allay the concerns and fears of patients who express a desire to avoid
transfusion.

Antenatal and postpartum anemia can affect up to 52% and 24% women respectively. However, in our study, despite the majority of women having Hb levels measured before and
after delivery, fewer than 50% indicated that they received any information regarding the results
of these tests. Hb testing was less common for women who underwent vaginal delivery. To
determine optimal screening practices, more population-based studies are needed to assess the
frequency of postpartum anemia.

There are some limitations to our study. Our cohort size was relatively small, with
patients recruited at a single, tertiary obstetric center. In addition, the majority of women had
private insurance, were well educated, were Caucasian or Asian, and had an annual income of >
$50,000. Therefore, the specific characteristics of our study population limit the generalizability
of our findings. Further investigations are needed to assess knowledge and perceptions of blood
loss among women from other sociodemographic backgrounds, including those without English
proficiency. Our study cohort comprised healthy women who underwent uncomplicated vaginal
or cesarean delivery. We did not collect information on indications for cesarean delivery or, if
given, the timing of antenatal counseling. It is possible that the presence of select risk factors for
PPH may influence if and when physicians inform patients about peripartum blood loss, anemia
or transfusion. For example, the likelihood of antenatal counseling may be greater for women
with antenatal conditions linked to severe PPH, such as placenta previa or acrreta, than for
women with uncomplicated pregnancies. Recall bias is a possibility as we performed our survey
after delivery. Patients’ responses may have differed if our survey had been prospectively
performed. Lastly, this was a convenience sample, therefore the proportion of patients who
underwent cesarean delivery in our study cohort (51%) is not representative of the rate of
cesarean delivery at LPCH (approximately 31%). In addition, in our study cohort, the proportion
of women who experienced PPH (18%) is higher than reported in the literature.\textsuperscript{12} As our study
was exploratory in nature, further studies are needed to validate our findings using populations
are more representative of a typical delivery population.
In conclusion, our findings suggest that obstetric patients receive limited information about peripartum blood loss, transfusion and peripartum Hb testing. In addition, patients’ understanding of transfusion and postpartum Hb testing may vary according to mode of delivery. Future qualitative studies are needed to examine whether better patient-provider communication improves patients’ understanding and awareness about the clinical implications of PPH, anemia, and transfusion therapy, and to examine alternative ways to disseminate relevant information to patients.

Acknowledgements: The authors would like to thank Flavya Esteves who assisted with data collection for this study.
References:

1. Callaghan WM, Kuklina EV, Berg CJ. Trends in postpartum hemorrhage: United States, 1994-2006. Am J Obstet Gynecol 2010;202(4):353 e351-356.

2. Kramer MS, Berg C, Abenhaim H, et al. Incidence, risk factors, and temporal trends in severe postpartum hemorrhage. Am J Obstet Gynecol 2013;209(5):449 e441-447.

3. ACOG Practice Bulletin: Clinical Management Guidelines for Obstetrician-Gynecologists Number 76, October 2006: postpartum hemorrhage. Obstet Gynecol 2006;108(4):1039-1047.

4. Main EK, Goffman D, Scavone BM, et al. National Partnership for Maternal Safety: Consensus Bundle on Obstetric Hemorrhage. Obstet Gynecol 2015;126(1):155-162.

5. Practice guidelines for perioperative blood management: an updated report by the American Society of Anesthesiologists Task Force on Perioperative Blood Management*. Anesthesiology 2015;122(2):241-275.

6. Milman N. Postpartum anemia I: definition, prevalence, causes, and consequences. Ann Hematol 2011;90(11):1247-1253.

7. Thompson JF, Roberts CL, Ellwood DA. Emotional and physical health outcomes after significant primary post-partum haemorrhage (PPH): a multicentre cohort study. Aust N Z J Obstet Gynaecol 2011;51(4):365-371.

8. Friedman M, Arja W, Batra R, et al. Informed consent for blood transfusion: what do medicine residents tell? What do patients understand? Am J Clin Pathol 2012;138(4):559-565.
9. Vetter TR, Adhami LF, Porterfield JR, Jr., Marques MB. Perceptions about blood transfusion: a survey of surgical patients and their anesthesiologists and surgeons. Anesth Analg 2014;118(6):1301-1308

10. Weiner SJ, Schwartz A, Sharma G, et al. Patient-centered decision making and health care outcomes: an observational study. Ann Intern Med 2013;158(8):573-579

11. Thompson JF, Ford JB, Raynes-Greenow CH, Roberts CL, Ellwood DA. Women's experiences of care and their concerns and needs following a significant primary postpartum hemorrhage. Birth 2011;38(4):327-335

12. Lilley G, Burkett-St-Laurent D, Precious E, et al. Measurement of blood loss during postpartum haemorrhage. Int J Obstet Anesth 2015;24(1):8-14

13. Toledo P, McCarthy RJ, Hewlett BJ, Fitzgerald PC, Wong CA. The accuracy of blood loss estimation after simulated vaginal delivery. Anesth Analg 2007;105(6):1736-1740

14. Bateman BT, Berman MF, Riley LE, Leffert LR. The epidemiology of postpartum hemorrhage in a large, nationwide sample of deliveries. Anesth Analg 2010;110(5):1368-1373

15. Finucane ML, Slovic P, Mertz CK. Public perception of the risk of blood transfusion. Transfusion 2000;40(8):1017-1022

16. Milman N. Prepartum anaemia: prevention and treatment. Ann Hematol 2008;87(12):949-959
Figure 1. Recorded estimated blood loss versus patients’ estimate for blood loss at delivery.

Blood loss was not recorded in the medical records of 4 patients who underwent vaginal delivery and 1 patient who underwent cesarean delivery.

32 patients for vaginal delivery and 37 patients for cesarean delivery did not know or chose not to answer this question.

Table 1. Maternal Characteristics

|                  | All Deliveries (n=100) | Vaginal Deliveries (n=49) | Cesarean Deliveries (n=51) | P value |
|------------------|------------------------|--------------------------|---------------------------|---------|
| Maternal age (y) | 33 (6)                 | 30 (5)                   | 36 (6)                    | <0.001  |
| Race / Ethnicity:                | 0.54 |
|---------------------------------|------|
| Caucasian                       | 51 (51.0%) | 27 (55.1%) | 24 (47.1%) |
| Asian                           | 32 (32.0%) | 14 (28.6%) | 18 (35.3%) |
| African-American                | 2 (2.0%) | 0 (0.0%) | 2 (3.9%) |
| Other                           | 15 (15.0%) | 8 (16.3%) | 7 (13.7%) |

| Insurance type:                | 0.08 |
|--------------------------------|------|
| Private                        | 81 (81.0%) | 36 (73.5%) | 45 (88.2%) |
| Public                         | 19 (19.0%) | 13 (26.5%) | 6 (11.8%) |

| Parity                         | 0.03 |
|--------------------------------|------|
| 1 [0-1]                        | 0 [0-1] | 1 [0-1] |

| Highest level of education:    | 0.61 |
|--------------------------------|------|
| Less than college              | 23 (23.0%) | 13 (26.5%) | 10 (19.6%) |
| College degree                 | 26 (26.0%) | 11 (22.4%) | 15 (29.4%) |
| Graduate degree                | 51 (51.0%) | 25 (51.0%) | 26 (51.0%) |

| Annual household income:      | 0.45 |
|--------------------------------|------|
| Less than $10,000              | 2 (2.0%) | 2 (4.1%) | 0 (0.0%) |
| Between $10,000 - $49,000      | 19 (19.0%) | 10 (20.4%) | 9 (17.6%) |
| Equal to or greater than $50,000 | 75 (75.0%) | 35 (71.4%) | 40 (78.4%) |
| Missing                        | 4 (4.0%) | 2 (4.1%) | 2 (3.9%) |

| Marital status:                | 1.00 |
|--------------------------------|------|
| Married                        | 91 (91.0%) | 45 (91.8%) | 46 (90.2%) |
| Unmarried – lives with other adults | 7 (7.0%) | 3 (6.1%) | 4 (7.8%) |
| Unmarried – lives without      | 1 (1.0%) | 0 (0.0%) | 1 (2.0%) |
|                          | Other adults | Unknown | Known history of anemia or coagulation disorder | \( p \) |
|--------------------------|--------------|---------|-------------------------------------------------|--------|
| Other adults             |              |         |                                                 |        |
| Unknown                  | 1 (1.0%)     | 1 (2.0%)| 0 (0.0%)                                        |        |
| Gestational age at delivery (weeks) | 39 [38-39] | 39 [38-40] | 39 [37-39] | 0.02 |
| Prior cesarean delivery  | 30 (30.0%)   | 2 (4.1%) | 28 (54.9%)                                      | <0.001 |
| Multiple gestation:      |              |         |                                                 | 1.00   |
| Singleton                | 97 (97.0%)   | 48 (98.0%) | 49 (96.1%)                                      |        |
| Twins or higher-order    | 3 (3.0%)     | 1 (2.0%) | 2 (3.9%)                                        |        |
| Known history of anemia or coagulation disorder | 6 (6.0%) | 4 (8.2%) | 2 (3.9%) | 0.43 |

Data presented as mean (SD), median [IQR], and n (%).

- Missing data for 1 patient
Table 2. Survey of Patients’ Knowledge of Normal Blood Loss for an Uncomplicated Vaginal and Cesarean Delivery

|                                | All Deliveries (n=100) | Vaginal Deliveries (n=49) | Cesarean Deliveries (n=51) | P value |
|--------------------------------|-------------------------|---------------------------|----------------------------|---------|
| What is the normal blood loss after a vaginal delivery? | 350 [350-500]\(^a\) | 350 [350-500] | 350 [350-500] | 0.70    |
| What is the normal blood loss after a CD? | 750 [500-750]\(^b\) | 750 [350-750] | 750 [500-750] | 0.66    |

Data presented as median [interquartile range] and n (%)

CD = cesarean delivery; EBL = estimated blood loss.

\(^a\) 39 patients for vaginal delivery and 34 patients for cesarean delivery did not know or chose not to answer this question.

\(^b\) 44 patients for vaginal delivery and 32 patients for cesarean delivery did not know or chose not to answer this question.
Table 3. Survey of Patients’ Knowledge of Transfusion and Hemoglobin Values

|                                      | All Deliveries (n=100) | Vaginal Deliveries (n=49) | Cesarean Deliveries (n=51) | P value |
|--------------------------------------|------------------------|---------------------------|-----------------------------|---------|
| **What was the quality of information you received about blood transfusion?** |                        |                           |                             | 0.04    |
| Clear and understandable             | 32 (32.0%)             | 10 (20.4%)                | 22 (43.1%)                  |         |
| Incompletely explained but I have a good understanding | 41 (41.0%)             | 20 (40.8%)                | 21 (41.2%)                  |         |
| Poorly explained and I have limited understanding | 10 (10.0%)             | 6 (12.2%)                 | 4 (7.8%)                    |         |
| Not explained and I have no understanding | 13 (13.0%)             | 10 (20.4%)                | 3 (5.9%)                    |         |
| Missing                              | 4 (4.0%)               | 3 (6.1%)                  | 1 (2.0%)                    |         |
| **If a blood transfusion was needed, would you give consent?** |                        |                           |                             | 0.09    |
| Yes                                  | 85 (85.0%)             | 38 (77.6%)                | 47 (92.2%)                  |         |
| No                                   | 14 (14.0%)             | 10 (20.4%)                | 4 (7.8%)                    |         |
| Missing                              | 1 (1.0%)               | 1 (2.0%)                  | 0                           |         |
| **Were you given any information about your Hb level before your delivery?** |                        |                           |                             | 0.02    |
| Yes                                  | 39 (39.0%)             | 24 (49.0%)                | 15 (29.4%)                  |         |
|                  | Total | | |  
|-----------------|-------|---|---|---|
| No              | 57 (57.0%) | 25 (51.0%) | 32 (62.8%) |  
| Missing         | 4 (4.0%) | 0 (0.0%) | 4 (7.8%) |  
| Was your Hb level measured after delivery? | | | | 0.74  
| Yes             | 44 (44.0%) | 20 (40.8%) | 24 (47.0%) |  
| No              | 33 (33.0%) | 18 (36.7%) | 15 (29.4%) |  
| Don’t know      | 22 (22.0%) | 11 (22.4%) | 11 (21.6%) |  
| Missing         | 1 (1.0%) | 0 | 1 (2.0%) |  

Data presented as n (%)  
Hb = hemoglobin.