Molecular and cellular pathways associated with chromosome 1p deletions during colon carcinogenesis

Claire M Payne
Chery Crowley-Skillicorn
Carol Bernstein
Hana Holubec
Harris Bernstein
Department of Cell Biology and Anatomy, College of Medicine, University of Arizona, Tucson, AZ, USA

Abstract: Chromosomal instability is a major pathway of sporadic colon carcinogenesis. Chromosome arm 1p appears to be one of the “hot spots” in the non-neoplastic mucosa that, when deleted, is associated with the initiation of carcinogenesis. Chromosome arm 1p contains genes associated with DNA repair, spindle checkpoint function, apoptosis, multiple microRNAs, the Wnt signaling pathway, tumor suppression, antioxidant activities, and defense against environmental toxins. Loss of 1p is dangerous since it would likely contribute to genomic instability leading to tumorigenesis. The 1p deletion-associated colon carcinogenesis pathways are reviewed at the molecular and cellular levels. Sporadic colon cancer is strongly linked to a high-fat/low-vegetable/low-micronutrient, Western-style diet. We also consider how selected dietary-related compounds (eg, excess hydrophobic bile acids, and low levels of folic acid, niacin, plant-derived antioxidants, and other modulatory compounds) might affect processes leading to chromosomal deletions, and to the molecular and cellular pathways specifically altered by chromosome 1p loss.

Keywords: chromosome 1p, colon carcinogenesis, molecular pathways, cellular pathways

Introduction
Chromosomal instability is a major feature of sporadic colon carcinogenesis.1–11 Eighty-five percent of colorectal cancers are aneuploid, the remaining 15% being diploid.5 Chromosome 1p deletions in colon tumors have been reported by laboratories from at least 15 countries around the world.12–49 Chromosome 1p deletions occur at an early stage of colon carcinogenesis,21,24,26–28,30,31,33,37,39,41–45 and are strongly linked to karyotypic evolution during colon cancer development.43

Many reports in the literature indicate that the macroscopically normal mucosa proximal or distal to a colon cancer exhibit aneuploidy (loss or gain of chromosomes or parts of chromosomes). Relevant to this review, Cianciulla et al44 reported that deletions of chromosome 1p were simultaneously found in both the distant normal-appearing mucosa of 76% of patients who also harbored 1p deletions in their cancer. These findings indicate that the loss of chromosome 1p may be one of the “hot spots” among the numerous defects in the non-neoplastic mucosa associated with the possible initiation of colon carcinogenesis.50–70

The pioneering work of Paraskeva et al71–75 indicated the likely involvement of chromosome 1p loss in in vitro immortalization72,74 and in the progression of adenomas to carcinomas.75 The functional importance of loss of distal 1p in colon tumorigenesis was demonstrated in 1993 by Tanaka et al76 who introduced
chromosomal band 1p36 into colon carcinoma cells and found that their tumorigenicity was suppressed.

Chromosome 1p deletions can affect distinct pathways of sporadic colon carcinogenesis, including both chromosomal instability and chromosomal instability-negative pathways. The underlying mechanisms associated with the loss of chromosome 1p that may contribute to genomic instability and drive colon carcinogenesis are loss of genes associated with DNA repair, spindle checkpoint function, apoptosis, multiple microRNAs (miRNAs), the Wnt signaling pathway, tumor suppression, antioxidant activities, and defense against environmental toxins.77–78 Since centromeric instability and resulting telomeric fusions have been proposed as a mechanism for the loss of chromosome 1p,79 the loss of genes located on chromosome 1p that function to ensure centromeric stability and telomere integrity, in turn, can exacerbate chromosomal instability throughout the genome. These 1p deletion-associated pathways that may lead to colon carcinogenesis will be reviewed at the molecular and cellular levels, and dietary factors that affect these pathways (eg, excess hydrophobic bile acids, and low levels of folic acid, niacin, plant-derived antioxidants, and other modulatory compounds) will be explored. It is likely that certain dietary factors prevent, initiate, or exacerbate genomic instability in colon epithelial cells and thus have importance for colon carcinogenesis.

Mechanisms of carcinogenesis associated with the loss of key genes on chromosome 1p
Chromosome 1, the longest human chromosome, is gene-dense with 3141 genes.80 The genes located on chromosome 1 were identified with the assistance of the Weizmann Institute of Science websites:

GeneLoc (www.genecards.weizmann.ac.il/geneloc/index.shtml) and GeneCards – The Human Gene Compendium (www.genecards.org). Genes located on the p arm of chromosome 1 that are associated with protection against oxidative stress, DNA damage, mitotic perturbations, excessive cellular proliferation, development of apoptosis resistance, aberrant colonic cell differentiation, and environmental toxicity have been tabulated and the function of the gene products described (Tables 1–8). Since many of these genes have tumor suppressive capabilities, the simultaneous loss caused by a 1p deletion could initiate the formation of neoplastic clones and enhance tumorigenesis through Darwinian selection.8

Mechanisms protective against genomic instability
Cells with DNA damage, spindle damage, and dysfunctional telomeres signal DNA damage responses.81–84 These DNA damage responses include the activation of numerous checkpoints that arrest the damaged cells in the G1, S, G2, or M-phase of the cell cycle, depending upon the nature of the damage or dysfunction and the stage of the cell cycle of the target cell. DNA-damage checkpoints are activated following direct damage to DNA.85–89 Spindle assembly checkpoints are activated following damage to the mitotic machinery,85,92–98 or as a result of DNA damage during mitosis.99 Telomere checkpoints are activated by defective telomeres.100–106 These checkpoints prevent the damaged cell from completing DNA replication and mitosis until all damage is repaired (Figure 1), and thus prevent 1) mutations that could be formed by replicating a damaged DNA template, 2) aneuploidy that could result from chromosome mis-segregation, and 3) telomere fusions that result in anaphase bridges, broken chromosomes, and translocations as a consequence of the well-known breakage–fusion–bridge cycles.107–114

However, cells with excessive direct DNA damage,115–122 massive chromosome loss or chromosomal imbalances,123 prolonged activation or inhibition of the spindle checkpoint pathways,122–127 or excessively shortened or dysfunctional telomeres,128–140 initiate a cascade of molecular events that ultimately leads to either caspase-dependent cell death,141–143 caspase-independent cell death,144 or a special form of apoptosis referred to as mitotic catastrophe145–148 (Figure 2). (Brightfield micrographs are shown in Figure 3 illustrating the cellular alterations that accompany apoptosis [Figure 3A], mitotic perturbation [Figure 3B], mitotic catastrophe [Figure 3C], and micronuclei formation [associated with aneuploidy] [Figure 3D]). The cell-destructive and cell-protective pathways are downstream of a common signal transduction network that responds to DNA damage.149 The repair/survival and non-repair/cell death pathways are probably activated simultaneously.149 The repair, checkpoint, and cell death response to DNA damage are, however, well co-ordinated,150 the interplay of positive and negative regulatory loops resulting in a delayed death response to DNA damage.149

DNA repair and the DNA damage response (DDR) (Table I)
The genes on chromosome 1p associated with DNA repair or the DNA damage response (DDR) include CLSN, DCLRE1B (APOLLO), DD12, GADD45α, MSH4, MUTYH,
| Gene       | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CLSN       | Claspin homolog (Xenopus laevis); upstream regulator of checkpoint kinase 1 (Chk1) and triggers checkpoint arrest of the cell in response to inhibition of DNA replication or to DNA damage induced by ionizing and UV radiation; binds specifically to BRCA1 and Chk1 and facilitates the ATR-dependent phosphorylation of both proteins; Chk1 is required to maintain Claspin stability; ring-shaped DNA-binding protein with high affinity for branched DNA structures and associates with S-phase chromatin following formation of the pre-replication complex; acts as a sensor which monitors the integrity of DNA replication forks. |
| DCLRE1B    | DNA cross-link repair 1B (PSO2 homolog, S. cerevisiae); aliases: APOLLO, SNM1B; one of several evolutionarily conserved genes involved in the repair of interstrand cross-links which prevent strand separation, thereby blocking transcription, replication, and segregation of DNA; functions in the HSP70-mediated DNA damage response; APOLLO is stabilized when bound to the telomere-binding protein TRF2, and protects human telomeres in S phase; reduced levels result in an increased number of telomere-induced DNA damage foci and telomeric fusions in S-phase, suggesting that APOLLO contributes to a processing step associated with the replication of chromosome ends; interacts with atrasin (microtubule binding protein) and is required for the prophase cell cycle checkpoint in response to spindle stress. |
| DDI2       | DNA-damage inducible 1 homolog 2 (S. cerevisiae); protein has aspartic-type endopeptidase activity; very little is known as to the function of this gene product in the DNA damage response.                                                                                                                                                                                                                                                                                                                                                                      |
| GADD45α    | Growth arrest and DNA-damage-inducible 45 alpha; multifunctional protein; responds to environmental stresses by mediating activation of the p38/JNK pathway via MKT1/MEK4/4 kinase; the DNA damage-induced transcription of this gene is mediated by p53-dependent and -independent mechanisms; exhibits checkpoint function in response to oxidative DNA damage; responsive to p53 and modifies DNA accessibility on damaged chromatin; involved in base excision repair; stimulates DNA excision repair and inhibits entry of cells into S phase; level of expression modulated by glutathione peroxidase-1 and quercetin; deficiency associated with multidrug resistance; interacts with Aurora-A and inhibits its kinase activity; mediator of CD437-induced apoptosis; demethylation of 5’ CpG island in GADD45α leads to apoptosis; increased expression arrests the cell cycle at the G2/M phase; GADD45α-mediated apoptosis is activated by DNA mismatch repair; induces Bim dissociation from the cytoskeleton and translocation to mitochondria; regulates beta-catenin distribution and maintains cell-cell adhesion. |
| MSH4       | MutS homolog 4 (E. coli); multifunctional protein; physically interacts with MSH5, MLH1, MLH3, RAD51, DMCC1, and von Hippel-Lindau tumor suppressor-binding protein 1 during meiosis; required for reciprocal recombination and proper segregation of homologous chromosomes at meiosis; ATP binding by MSH4-MSH5 results in the formation of a sliding clamp that dissociates from the Holliday junction crossover region embracing 2 duplex DNA arms; evidence is lacking at present for functional involvement of MSH4 and MHS in mismatch repair; in addition to meiosis, MSH4 and MSH5 are thought to play roles in mitotic DNA double strand break repair and the DNA damage response in human cells. |
| MUTYH      | MutY homolog (E. coli); DNA glycosylase involved in oxidative DNA damage repair; the enzyme excises adenine bases from the DNA backbone where adenine is inappropriate paired with guanine, cytosine, or 8-oxo-deoxyguanosine (a major DNA lesion caused by oxidative stress); mutations in this gene result in heritable predisposition to colon and stomach cancer; the protein is localized to the nucleus and the mitochondria; excessive activity of MUTYH in response to oxidative DNA damage results in cell death. See text and Figure 4 for an in-depth discussion of the functions of MUTYH in base excision repair and cell death. |
| RAD54L     | RAD54-like (S. cerevisiae); aliases: HR54, HRAD54, RAD54A. DNA repair and recombination protein RAD54-like; protein product is a double-stranded DNA-dependent ATPase belonging to the DEAD-like helicase superfamily (Swi2/Snf2 protein family), and shares similarity with Saccharomyces cerevisiae Rad54, a protein involved in the repair of DNA double-strand breaks through homologous recombination; belongs to the RAD52 epistasis group that additionally includes RAD50, RAD51, RAD52, RAD55, RAD57, RAD59, MRE11, and Nbs1/XRS2; the binding of Rad54 to double-stranded DNA utilizes the energy from ATP hydrolysis to induce topological changes in DNA, believed to facilitate homologous DNA pairing and stimulate DNA recombination in the Rad52 DNA repair pathway; essential for strand invasion of the homologous donor sequence and may involve disruption or movement of nucleosomes (chromatin remodeling activity) that might block joint molecule formation and/or branch migration; dissociates Rad51 from nucleoprotein filaments formed on single-stranded DNA; Rad54 oligomers (dimer to particles >40 nm in diameter) possess a unique ability to cross-bridge or bind double-stranded DNA molecules positioned in close proximity. The combination of the cross-bridging and double-stranded DNA translocation activities of Rad54 stimulates the formation of DNA networks, leading to rapid and efficient DNA strand exchange by Rad51; also plays an essential role in telomere length maintenance and telomere capping in mammalian cells through the Rad51 recombination pathway. |
| TP73       | Tumor protein 73; member of the p53 family of transcription factors involved in cellular responses to stress; the family members include p53, p63, and p73 which have high sequence similarity to each other allowing p63 and p73 to transactivate p53-responsive genes causing cell cycle arrest and apoptosis; regulated by tyrosine kinase c-Abl in the apoptotic response to DNA damage; induces apoptosis via PUMA transactivation and Bax mitochondrial translocation; inactivated by human papillomavirus E6 proteins; has a role in mitotic exit and caspase-independent cell death; regulates DRAM-independent autophagy that does not contribute to programmed cell death; has a role in E2F1-induced apoptosis; may be a tumor suppressor protein. |

*Chromosome 1p deletions during colon carcinogenesis*
Table 2 Mitosis-related and spindle checkpoint genes

| Gene            | Protein function                                                                 |
|-----------------|----------------------------------------------------------------------------------|
| APITD1          | Apoptosis-inducing, TAF9-like domain 1; centromere protein and component of the CENPA-CAD complex found at the distal nucleosome; this complex is recruited to centromeres where it is involved in the assembly of kinetochore proteins, mitotic progression and chromosome segregation; has a role in apoptosis. |
| AURKAIP1        | Aurora kinase A interacting protein 1; functions as a negative regulator of AURKA by degrading AURKA through several mechanisms involving the protooncogenic pathway and ubiquitin-independent pathways involving antizyme 1; the inhibition of Aurora A has the effect of canceling the mitotic delay that occurs as a result of perturbation of cellular microtubules. |
| CCDC28B         | Coiled-coil domain containing 28B; localizes to centrosomes and basal bodies.     |
| CCNL2           | Cyclin L2; a novel RNA polymerase II-associated cyclin located in nuclear speckles; transcriptional regulator involved in regulating the pre-mRNA splicing process; contains a RS region (arginine-serine dipeptide repeat) within the C-terminal domain which is the hallmark of the SR family of splicing factors; co-localizes with splicing factors; pro-apoptotic protein which modulates the expression of a critical apoptotic factor, leading to apoptosis. |
| CDC2L1          | Cell division cycle 2-like 1 (PITSLRE proteins); aliases: CDK11B, p58CDC2L1, galactosyl transferase-associated protein kinase p58/GTA; a member of the p34Cdc2 protein kinase family known to be essential for eukaryotic cell cycle control; has multiple roles in cell cycle progression, cytokinesis, and apoptosis; during Fas or tumor necrosis factor-induced apoptosis, CDK11 p110 isoforms are cleaved by caspases. |
| CDC2L2          | Cell division cycle 2-like 2 (PITSLRE proteins); aliases: CDK11A, PITSLRE protein kinase beta; this gene encodes a member of the p34Cdc2 protein kinase family and is in close proximity to CDC2L1, a nearly identical gene in the same chromosomal region; has multiple roles in cell cycle progression, cytokinesis (maintains sister chromatid cohesion) and apoptosis. |
| CDC7            | Cell division cycle 7 homolog (S. cerevisiae); kinase activity of CDC7 is critical for the G1/S transition of the cell cycle; functions in replication stress and mediates Claspin phosphorylation in DNA replication checkpoint control. |
| CDC14A          | CDC14 cell division cycle 14 homolog A (S. cerevisiae); aliases: dual specificity protein phosphatase CDC14A; required for centrosome separation, chromosome segregation and subsequent cytokinesis during cell division; phosphorylates the APC (anaphase-promoting complex) subunit FZR1/CDH1, thereby promoting APC-FZR1-dependent degradation of mitotic cyclins and subsequent exit from mitosis; interacts with and dephosphorylates tumor suppressor protein p53, thereby regulating p53 function; interacts with Kif20A to localize CDC14 to the midzone of the mitotic spindle. |
| CDC20           | Cell division cycle 20 homolog (S. cerevisiae); acts as a regulatory protein by interacting with several proteins at multiple points in the cell cycle; required for 2 microtubule-dependent processes, nuclear movement prior to anaphase and chromosome separation; required for full ubiquitin ligase activity of the APC; regulated by MAD2L1 resulting in an inactive ternary complex (MAD2L1-CDC20-APC) in metaphase; in anaphase the binary complex (CDC20-APC) is active in degrading its targeted substrates. |
| CDC42           | Cell division cycle 42; 25 kDa GTP binding protein; small GTPase of the Rho-subfamily which regulates multiple signaling pathways including cell cycle progression G1 to S; controls spindle orientation of adherent cells; antagonistic cross-talk between Rac and Cdc42 GTPases regulates generation of reactive oxygen species; Cdc42 is a substrate for caspases and influences Fas-induced apoptosis. |
| CDC8            | Cell division cycle associated 8; alias: BOREALIN; component of a chromosomal passenger complex (CPC) required for stability of the bipolar mitotic spindle; The CPC consists of survivin, CDC8A, INCENP, and Aurora-B; the CPC functions at the centromere to ensure correct chromosome alignment and segregation; CDC8A is required for chromatin-induced microtubule stabilization and spindle assembly; CDC8A may be required to direct the CPC to centromeric DNA; major effector of the TTK kinase in the control of “attachment-error-correction” and chromosome alignment. |
| CDKN2C          | Cyclin-dependent kinase inhibitor 2C; alias: p18-INK4C; this protein is a member of the INK family of cyclin-dependent kinase inhibitors; interacts strongly with CDK6 and weakly with CDK4 and prevents the activation of the CDK kinases; inhibits cell growth and proliferation in the presence of retinoblastoma protein 1 (RB1) and acts as a tumor suppressor. |
| CROCC           | Ciliary rootlet coiled-coil protein; aliases: rootletin, Tax1-binding protein 2, ROLT; major structural component of the ciliary rootlet; forms centriole-associated filaments and contributes to centrosome cohesion before mitosis; recombiant rootletin forms detergent-insoluble filaments radiating from the centrioles; the homopolymeric rootletin protofilaments bundle into variably shaped thick filaments; interacts with C-Nap1 and may function in centrosome cohesion by acting as a physical linker between the pair of centrioles/basal bodies; ciliary rootlet interacts with kinesin light chains and may provide a scaffold for kinesin-1 vesicular cargos; rootletin is phosphorylated by Nek2 kinase and is displaced from the centrosomes at the onset of mitosis, resulting in the binding of beta-catenin to rootletin-independent sites on centrosomes (an event that is required for centrosome separation); overexpression of rootletin in cells results in the formation of extensive fibers resulting in multinucleation, micronucleation and irregularity of nuclear shape and size, indicative of defects in chromosome separation. |
| E2F2            | E2F transcription factor 2; member of the E2F family of transcription factors; transcription activator that binds DNA cooperatively with DP (differentiation regulated transcription factor proteins) through the E2 recognition site, 5’-TTTC(CG)CGC-3’, found in the promoter region of a number of genes whose products are involved in cell cycle regulation. |

(Continued)
Table 2 (Continued)

| Gene        | Protein function                                                                                                                                                                                                                           |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HDAC1       | Histone deacetylase 1: in addition to effects on gene expression, histone deacetylase activity plays an important role in regulating the assembly of kinetochores, the activation of the mitotic checkpoint, and the process of cytokinesis; decreased activity or aberrant control of HDAC activity can result in altered kinetochore assembly by disrupting pericentromeric heterochromatin, failure of appropriate chromosome segregation, and defects in the mitotic spindle checkpoint, resulting in mitotic slippage and chromosome instability; HDACs 1, 2, and 4 are closely related Zn++-dependent enzymes; HDAC1 is a component of the mitotic spindle assembly checkpoint that, like MAD2, may prevent the onset of anaphase until all chromosomes are properly aligned at the metaphase plate; suppression of MAD2L2 confers sensitivity to a range of DNA-damaging agents, especially a DNA cross-linker, such as cisplatin; in MAD2L2-depleted cells there is a significant decrease in the cisplatin-induced sister chromatid exchange rate, a marker for homologous recombination-mediated post-replication repair; Unlike MAD2, MAD2L2 has not been shown to have a dual-role mitotic/pro-apoptotic function; interacts with the small GTPase RAN, which may play a role in the control of the spindle checkpoint during mitosis and the regulation of nucleocytoplasmic trafficking during interphase. |
| KIF1B       | Kinesin family member 1B; motor protein that transports mitochondria and synaptic vesicle precursors; involved in the movement of chromosomes during mitosis; functions as a haploinsufficient tumor suppressor by inducing apoptotic cell death; acts downstream of EglN3 to induce apoptosis. |
| KIF2C       | Kinesin family member 2C; aliases: MCAK (mitotic centromere-associated kinesin); Aurora B regulates MCAK at the mitotic centromere; phosphorylated by STK12 and regulates the association of centromeres and kinetochores; promotes the ATP-dependent removal of tubulin dimers from microtubules in association with the process of microtubule depolymerization and turnover; functions in chromosome segregation during mitosis; contains the microtubule tip localization signal (MtLS) motif; phosphorylated after DNA damage, probably by ATM or ATR. |
| KIF17       | Kinesin family member 17; proteins of the kinesin family are microtubule-dependent molecular motors that transport organelles within cells and move chromosomes during cell division. |
| MAD2L2      | Mitotic arrest deficient-like 2 (yeast)-Like 2; component of the mitotic spindle assembly checkpoint that, like MAD2, may prevent the onset of anaphase until all chromosomes are properly aligned at the metaphase plate; suppression of MAD2L2 confers sensitivity to a range of DNA-damaging agents, especially a DNA cross-linker, such as cisplatin; in MAD2L2-depleted cells there is a significant decrease in the cisplatin-induced sister chromatid exchange rate, a marker for homologous recombination-mediated post-replication repair; Unlike MAD2, MAD2L2 has not been shown to have a dual-role mitotic/pro-apoptotic function; interacts with the small GTPase RAN, which may play a role in the control of the spindle checkpoint during mitosis and the regulation of nucleocytoplasmic trafficking during interphase. |
| PLK3        | Polo-like kinase 3; aliases: FNK, PRK; multifunctional serine/threonine protein kinase involved in stress response pathways; required for entry into S phase; regulates the M phase of the cell cycle; activated by genotoxic stress, through a Chk3-mediated priming phosphorylation followed by an ATM-mediated full activation; functions as a centrosome localization signal, overexpression of which causes mitotic arrest, cytokinesis defects, and apoptosis; involved in checkpoint-mediated cell cycle arrest to ensure genetic stability; links DNA damage to cell cycle arrest and apoptosis, in part through the p53 pathway; may also be part of the signaling network that controls cellular adhesion. |
| PSRC1       | Proline/serine-rich coiled-coil 1; alias: DDA3; functions as a microtubule destabilizing protein that controls spindle dynamics and mitotic progression by recruiting and regulating microtubule depolymerases; the N-terminal domain of PSRC1 regulates the spindle association of the microtubule depolymerase Kif2a and controls the mitotic function of PSRC1; regulated by p53 and may participate in S-phase-mediated growth suppression; direct transcriptional target of p53 and p73. |
| RCC1        | Regulator of chromosome condensation 1; a protein with a 7-bladed propeller structure that is involved in the regulation of onset of chromosome condensation in S phase; binds to chromatin and promotes the exchange of Ran-bound GDP by GTP; phosphorylation of RCC1 by cdc2 kinase in mitosis is essential for producing a high RanGTP concentration on chromosomes and for chromatin-induced mitotic spindle formation; perturbation of the chromosomal binding of RCC1, Mad2 and survivin causes spindle assembly defects and mitotic catastrophe; the RCC1/Ran complex, in conjunction with other proteins, acts as a component of a signal transmission pathway that detects unreplicated DNA. |
| RCC2        | Regulator of chromosome condensation 2; alias: telephase disk protein of 60 kDa (TD-60); has an essential role in the prometaphase to metaphase progression and required for the completion of mitosis and signaling cytokinesis; may function as a guanine nucleotide exchange factor for the small GTPase RAC1; interacts with microtubules; appears in the nucleus at G2, then concentrates at the inner centromere region of chromosomes during prophase, then redistributes to the midzone of the mitotic spindle during anaphase where it covers the entire equatorial diameter from cortex to cortex; phosphorylated upon DNA damage, probably by ATM and ATR. |
| SASS6       | Spindle assembly 6 Homolog (C. elegans); necessary for centrosome duplication and functions during procentriole formation to ensure that each centriole seeds the formation of a single procentriole per cell cycle; part of a ternary complex of SASS6, CENPF, and CEP350. |
Table 3 Apoptosis-related genes

| Gene       | Protein function                                                                                       |
|------------|-------------------------------------------------------------------------------------------------------|
| BCL2L15    | Bcl-2-like protein 15 has a pro-apoptotic function; alias Bfk; human bfk mRNA is found in cerebellum, colon, small intestine, testis, and uterus, but the protein is predominantly expressed in tissues of the gastrointestinal tract; in the transition from normal human colonic mucosal tissue to tumors, 80% of colon tumors show a substantially reduced expression of Bfk; gene expression appears to be regulated by female sex hormones. |
| BCL10      | B-cell lymphoma 10; wild-type bcl10 is a pro-apoptotic protein that suppresses cellular transformation, whereas mutant forms lose this activity and display gain-of-function transforming activity; the bcl10 protein contains an amino-terminal CARD (caspase recruitment domain) found in many apoptotic-related molecules; the BCL10 gene often exhibits a frameshift mutation resulting in truncation distal to the CARD; has a high mutation frequency in hepatocellular carcinoma (57% of cases); the frequency of mutation in other cancers is as follows: lymphoma (45%), colon cancers with the microsatellite mutator phenotype (13%), mesothelioma, male germ cell tumors, adenocarcinoma cell lines (12%), gastric cancers with the microsatellite mutator phenotype (10%); the presence of the bcl10 protein highly correlates with the expression of phosphorylated p65 NF-kappaB in peripheral T-cell lymphomas and is associated with a better clinical outcome than bcl10-negative tumors. |
| CASP9      | Caspase-9 (cysteine-aspartic acid protease, family member 9) precursor; aliases: APAF-3 (apoptotic protease-activating factor 3), apoptosis-related cysteine peptidase, MCH6, ICE-LAP6, ICE-like apoptotic protease 6; caspase-9 and APAF1 bind to each other via their respective NH2-terminal CED-3 homologous domains in the presence of cytochrome C and ATP to form the apoptosome, a high-molecular-weight complex; the caspase-9 precursor then becomes activated, which in turn activates the downstream caspases, caspase-3, and caspase-2, in response to genotoxic stress. |
| DFFA       | DNA fragmentation factor, 45 kD, alpha polypeptide; alias ICAD (inhibitor of caspase-activated DNase, DFFB); DFF is a heterodimeric protein consisting of 45 kD (DFFA) and 40 kD (DFFB) subunits; DFF becomes activated when DFFA is cleaved by caspase 3 and dissociates from DFFB (DFFB is the active component of DFF involved in both DNA fragmentation and chromatin condensation during the process of apoptosis [see below]). |
| DFFB       | DNA fragmentation factor, 40 kD, beta polypeptide (caspase-activated DNase; alias CPAN; enzyme activity is inhibited by DFFA; its Mg++-dependent endonuclease activity degrades DNA and induces DNA fragmentation; the fragmented DNA results in chromatin condensation during apoptosis, and is responsible for the typical crescents and margination of chromatin that are characterized morphological features of the nucleus during apoptosis. |
| THAP3      | THAP domain containing, apoptosis-associated protein 3; the THAP-family C(2)CH zinc-coordinating DNA-binding proteins function in diverse eukaryotic cellular processes, including transposition, transcriptional repression, stem-cell pluripotency, angiogenesis, neurological function, and apoptosis; the specific mechanism by which THAP3 contributes to apoptosis is unknown. |
| TNFRSF25   | Tumor necrosis factor receptor superfamily, member 25; aliases: death receptor 3; DR3; translocating chain-association membrane protein; apoptosis inducing receptor; APO3; lymphocyte-associated receptor of death; LARD; apoptosis-mediating receptor TRAMP; a death domain-containing receptor related to TNFR-1 and CD95 (Apo-1/Fas); receptor for TNFSF12/APO3L/TWEAK; interacts with the adaptor TRADD; DR3 signal transduction is mediated by a complex of intracellular signaling molecules including TRADD, TRAF2, FADD, and FLICE. |

RAD54L, and TP73. The functions of these gene products are described in Table 1. The pathways that lead to the prevention of genomic instability are diagrammatically shown in Figure 4. DNA damage elicits a well orchestrated and highly interactive series of events called the DDR, which causes cells to undergo growth arrest so that DNA damage can be adequately repaired. Although p53 mutation or loss of heterozygosity (LOH) is a late event in colon carcinogenesis, the loss of p73 (found on chromosome 1p) through chromosomal deletion events may act early in colon carcinogenesis. P73 is an important isoform of the p53 family, since it performs many of the transcriptional functions of p53, and may even target the same genes as p53 during the DDR. In addition, TP73 has distinct transcriptional targets and harmonizes with p53 and p63 to maintain genomic stability. In addition to its role in growth arrest after DNA damage to allow DNA repair to take place, p73 plays an active role in spindle dynamics, mitotic exit and chromosomal stability. The PSRC1 (proline-serine-rich coiled-coil 1) gene found on chromosome 1p (see Table 2) encodes a protein which is a direct transcriptional target of both p53 and p73. PSRC1 functions as a microtubule destabilizing protein that controls spindle dynamics and mitotic progression by recruiting and regulating microtubule depolymerases. Through its transcriptional activity, p73 is important for the M-to-G1 transition during mitosis. Functional knock-out of p73 gene expression by small interfering RNAs alters mitotic progression, resulting in an increase of ana-telophase cells, the accumulation of aberrant late mitotic figures, and the appearance of abnormalities in the subsequent interphase. This novel pathway involves the p73-mediated transcription of Kip2/p57, a cyclin-dependent kinase inhibitor, and the coordination of mitotic exit and transition to G1. Like p53, p73 has been confirmed to be a tumor suppressor. Therefore, a loss of p73 should have a major impact in the development of genomic instability during carcinogenesis.
Table 4: MicroRNAs (miRNAs) and components of the miRNA processing complex

| MicroRNA | Function |
|----------|----------|
| 30c-1    | A genetic variant of 30c-1 is associated with familial breast cancer in noncarriers of BRCA1/2 mutations. |
| 30e      | A functional variant of pre-miRNA-30e is strongly associated with schizophrenia. |
| 34a      | Major pro-apoptotic miRNA that is regulated by p53; induced by treatment of pancreatic β cells with IL-1β and TNF-α, and responsible, in part, for cytokine-triggered cell death; expression frequently lost in pancreatic ductal adenocarcinoma cells. |
| 101-1    | MiR-101 is downregulated in stage II MSS and MSI colon cancers compared to normal mucosa, hepatocellular carcinoma, prostate cancer and transitional cell carcinoma of the bladder; miR-101 inhibits cell proliferation, represses the expression of the Polycomb group protein EZH2, and induces apoptosis. |
| 137      | MiR-137 exhibits decreased levels of expression in colon tumors compared to normal mucosa; frequently upregulated in rectal cancer in response to capetaxine chemoradiotherapy; changes level in reaction to xenobiotic challenge; targets MITF (microphthalmia-associated transcription factor) in melanoma cell lines. |
| 186      | Expression of miR-186 significantly reduces the abundance of FOXO1, a tumor suppressor, in endometrial cancer, resulting in deregulated cell cycle control and impaired apoptotic responses; downregulates expression of the pro-apoptotic purinergic P2X7 receptor; dysregulated in human myocardial infarction. |
| 197      | Target mRNAs not experimentally verified. |
| 200a     | Involved in the regulation of the Wnt/β-catenin signaling pathway; miRNAs-200a, -200b, and -429 are all encoded on a 7.5 kb polycistronic primary miRNA transcript. |
| 200b     | Involved in the regulation of the Wnt/β-catenin signaling pathway; miRNAs-200a, -200b, and -429 are all encoded on a 7.5 kb polycistronic primary miRNA transcript. |
| 320b-1   | MiR-320 shows highest expression in the proliferative compartment of the crypts; the decrease in miR-320 in stage II colon cancers is predictive of a metastatic recurrence independent of age, differentiation grade, and histologic subtype; targets the transferrin receptor 1 and inhibits proliferation; expression of miRNA-320 in myeloid microvascular endothelial cells (MMEC) impairs angiogenesis by decreasing proliferation and migration of MMEC; overexpression of miR-320 in mouse hearts increases apoptosis and infarction; targets heat-shock 20 mRNA; potentially targets the mRNA of the p85 subunit of phosphatidylinositol 3-kinase; exhibits a 50-fold increase in insulin-resistant 3T3-L1 adipocytes; affects cell cycle progression of bronchial epithelial cells exposed to benzo[a] pyrene. |
| 429      | Involved in the regulation of the Wnt/β-catenin signaling pathway; miRNAs-200a, -200b, and -429 are all encoded on a 7.5 kb polycistronic primary miRNA transcript; regulates the differential expression of mir200. |
| 551a     | Target mRNAs not experimentally verified. |
| 552      | MiR-552 exhibits decreased levels of expression in proficient mismatch-repair colon tumors relative to deficient mismatch-repair tumors; target mRNAs not identified. |
| 553      | Target mRNAs not identified. |
| 760      | Regulated by 17β-estradiol and may affect a number of transcripts belonging to estrogen-responsive gene clusters. |
| 942      | Target mRNAs not experimentally verified. |
| 1256     | Target mRNAs not experimentally verified. |
| 1262     | Targets the HLA-G mRNA. |
| 1290     | Target mRNAs not experimentally verified. |
| 1302-2   | Controlled by the multifunctional Y-Box protein 1 (YB-1); upregulated more than 1.5-fold in drug-sensitive gastric carcinoma cells. |

**MiRNA processing**

**Ago1**
Argonaute 1; aliases: protein argonaute 1, EIF2C1 (eukaryotic translation initiation factor 2C1), putative RNA-binding protein Q99, GERP95 (Golgi endoplasmic reticulum protein 95); encodes a member of the Argonaute family of proteins which binds to miRNAs and plays a role in gene silencing through RNA interference; may interact with dicer1; highly basic protein which contains a PAZ domain and a PIWI domain; found in a tandem cluster of closely related argonaute proteins, Ago3 and Ago4 on chromosome 1p; lacks endonuclease activity and does not appear to cleave target mRNAs.

**Ago3**
Argonaute 3; aliases: protein argonaute 3, EIF2C3 (eukaryotic translation initiation factor 2C3); encodes a member of the Argonaute family of proteins which binds to miRNAs and plays a role in gene silencing through RNA interference; highly basic protein which contains a PAZ domain and a PIWI domain; found in a tandem cluster of closely related argonaute proteins, Ago1 and Ago4 on chromosome 1p; lacks endonuclease activity and does not appear to cleave target mRNAs.

**Ago4**
Argonaute 4; aliases: protein argonaute 4, EIF2C4 (eukaryotic translation initiation factor 2C4); encodes a member of the Argonaute family of proteins which binds to miRNAs and plays a role in gene silencing through RNA interference; may interact with dicer1; highly basic protein which contains a PAZ domain and a PIWI domain; found in a tandem cluster of closely related argonaute proteins, Ago1 and Ago3 on chromosome 1p; lacks endonuclease activity and does not appear to cleave target mRNAs.
Since base excision repair (BER) removes damage that would otherwise be mutagenic in mammalian cells,\textsuperscript{168–170} BER is one of the most important DNA repair pathways in the gastrointestinal tract. BER ameliorates environmentally induced DNA damage in addition to the alklylation, oxidation, and deamination events that occur during normal metabolic processes.\textsuperscript{171,172} A critical enzyme in the base excision repair pathway is MUTYH (MutY homolog or A/G-specific adenine DNA glycosylase), whose germline mutation is a known cause of MAP (MutYH-associated polyposis), a recently described autosomal recessive colorectal adenoma predisposition syndrome with a very high risk of colorectal cancer.\textsuperscript{173} Myh deficiency enhances intestinal tumorigenesis in multiple intestinal neoplasia (Apc\textsuperscript{Min}+) mice.\textsuperscript{174} Interestingly, Myh deficiency in mice has a larger effect on tumor initiation than on progression in the small bowel.\textsuperscript{174} Since 1p deletions may be responsible for 23% of tumors in human colon cancer,\textsuperscript{175} it is possible that Myh-deficient field defects may initiate the process of colon carcinogenesis in humans as it does in the mouse model. Since MUTYH-null mouse embryonic stem cells exhibit a mutator phenotype,\textsuperscript{175} the loss of MUTYH can affect multiple pathways associated with colon carcinogenesis. The role of MUTYH in the repair of oxidative DNA damage begins with the formation of 8-oxo-guanine (8-oxoG) (see Figure 4), which then causes a mispairing of the oxidized guanine base with adenine upon DNA replication. Mismatch repair processes are activated and MUTYH excises adenine leaving an apurinic (AP) site resulting, after AP endonuclease action, in a DNA single strand (ss) break.\textsuperscript{176–180} The activity of MUTYH, in conjunction with other glycosylases and the spontaneous generation of AP sites, may be quite extensive, since about 9000 AP sites/cell occur daily.\textsuperscript{168} The AP site is then correctly repaired by the sequential action of several enzymes which catalyze template-directed insertion of one or a few nucleotides at the previously damaged site.\textsuperscript{172} In addition to their role in DNA repair or the DDR, MUTYH and p73 play important roles in the death of cells that experience either excessive oxidative DNA damage or chromosomal instability. The MUTYH-mediated cell death pathway is described in the next section followed by a section on the p73-mediated cell death pathway, which utilizes part of the MUTYH pathway in its mediation of cell death in response to excessive mitotic perturbation.

### MUTYH/PARP/AIF pathway of cell death

MUTYH-mediated cell death has, as a central player, the activation of PARP-1 [poly(ADP-ribose) polymerase-1] (Figure 5).
Table 6 Tumor suppressor genes

| Gene and genomic locus (ensembl cytogenetic band) | Functions |
|--------------------------------------------------|-----------|
| CHD5 (1p36.31) | Chromodomain helicase DNA binding protein 5; aliases: ATP-dependent helicase CHD5; belongs to a group of SWI/SNF proteins called CHD proteins, which contain a SWI/SNF-like helicase/ATPase domain, as well as a DNA-binding domain and a chromodomain that directly modifies chromatin structure; chromatin is maintained in a transcriptionally active state by CHD5 which can affect the expression levels of many genes at once and can affect the quick progression of a tumor; appears to be involved in early tumorigenic processes and controls proliferation, apoptosis, and senescence via the p16ink4a and p19Arf pathway; overexpression of CHD5 increases apoptosis through a p19Arf/p53 pathway; mice heterozygous for CHD5 are prone to spontaneous tumor formation; expression is downregulated through methylation, which may explain the higher level of colon cancer incidence in African Americans (78% with methylated CHD5) compared with Iranians (47% with methylated CHD5). |
| DEAR1 (1p35.1) | Ductal epithelium-associated RING chromosome 1; alias: TRiM62 (tripartite motif-containing 62); member of the RING-B-box-coiled-coil (RBCC)/TRIM subfamily of RING finger proteins which regulate tissue architecture; first member of the TRIM family that localizes to the cell–cell junction; down regulation in normal mammary epithelial cells results in formation of aberrant acinar structures with a loss of normal cell polarity and decreased rates of apoptosis. |
| APITD1 (1p36.22) | Apoptosis-inducing, TAF9-like domain 1; see Table 2 for general description; contains a predicted domain with similarity to the human TATA box-binding protein-associated factor, TAFII31, which is required for p53-mediated transcriptional activation; since loss of function for APITD1 is a mechanism by which tumor cells can overcome the cell growth-regulating and apoptosis-inducing properties of p53, it is considered to have tumor-suppressive properties. |
| PRDM2 (1p36.21) | PR domain containing 2, with ZNF domain; aliases: RIZ1, Zinc finger protein RIZ, HUMHOXY1, MTB-ZF, KMT8, retinoblastoma protein-interacting zinc finger protein, Lysine N-methyltransferase, MTE-binding protein, GATA-3-binding protein G3B, PR domain zinc finger protein 2; this tumor suppressor is a member of the nuclear histone/protein methyltransferase superfamily involved in chromatin-mediated gene expression; encodes a zinc finger protein that can bind to the retinoblastoma protein, estrogen receptor, and the macrophage-specific TPA-responsive element (MTE) of the heme oxygenase 1 (HO-1) gene; the PR domain is responsible for its tumor suppressing activity; the S-adenosyl-L-methionine-dependent histone methyltransferase activity of PRDM2 specifically methylates “Lys-9” of histone H3; regulates normal cell division and function using a “Yin-Yang” fashion; overexpression induces a G2-M cell cycle arrest and/or apoptosis (cell death independent of Rb and p53); expression and activity are reduced in many cancers; loss of activity results in decreased apoptosis and differentiation and enhanced proliferation; common target of frameshift mutation in microsatellite-unstable cancers; gene expression epigenetically silenced through promoter hypermethylation; upregulated by a methyl-balanced diet accompanied by the repression of the oncogene, c-jun. |
| SDHB (1p36.13) | Succinate dehydrogenase complex, subunit B, iron sulfur (1p); SDH1, Ip (iron-sulfur protein), GL4, succinic dehydrogenase [ubiquinone] iron-sulfur subunit, mitochondrial; one of 4 nuclear-encoded subunits of complex II of the mitochondrial respiratory chain, specifically involved in the oxidation of succinate and the transfer of electrons from FADH to CoQ (ubiquinone); this iron-sulfur subunit is highly and specifically conserved and contains three cysteine-rich clusters which comprise the iron-sulfur centers of the enzyme; responsible for specifically transferring electrons from succinate to CoQ; decreased activity results in altered mitochondrial metabolism, the activation of pseudohypoxia and a shift to glycolytic respiration; SDHB-silenced cells can result in >400 genes either 6-fold or more upregulated or downregulated (dysregulated genes involve those involved in proliferation, adhesion, and the hypoxia pathway); DDHB-silenced cells display characteristic features of the tumor phenotype (eg, greater capacity to adhere to extracellular matrix components, including fibronectin and laminin) suggesting a possible mechanism of tumor initiation and enhanced tumorigenesis. |
| PRDX1 (1p34.1) | Peroxiredoxin 1; see Table 7 for description; Prdx1 knockout mice generate malignancies in intestines, lymphomas, and sarcomas; prdx1−/− mouse cells show a shift in intracellular ROS from the cytoplasm to the nucleus with increased oxidative DNA damage; prdx1−/− deficient mouse cells show increased sensitivity to oxidative DNA damage; lower expression of PRDX1 found in tumors of the oral cavity and correlates with larger tumor size, lymph node metastasis, and clinically advanced stages. PRDX1 acts as a tumor suppressor in esophageal cells and induces apoptosis after activation by histone deacetylase inhibitors; interacts with a region of the c-Myc transcriptional regulatory (Myc box II) domain that is essential for transformation, and selectively alters its biological function and target gene regulation; inhibits c-Abi kinase activity by interacting with its SH3 domain. |
| PTCH2 (1p34.1) | Patched homolog 2 (Drosophila); aliases: patched (Drosophila) homolog 2, PTCE, protein patched homolog 2; gene encodes a transmembrane receptor of the patched gene family; functions as a tumor suppressor by inhibiting another transmembrane protein SMO (smoothened), which functions in the hedgehog signaling pathway; receptor for Sonic Hedgehog, a secreted molecule implicated in the formation of embryonic structures and in tumorigenesis. |
### Table 6 (Continued)

| Gene and genomic locus (ensembl cytogenetic band) | Functions |
|--------------------------------------------------|-----------|
| *CAMTA1* (1p36.31) | Calmodulin binding transcription activator 1; cell cycle regulatory gene; in cases with 1p LOH, its expression is reduced by half, suggesting a functional effect caused by haploinsufficiency. |
| *AJAP1* (1p36.32) | Adherens junctions associated protein 1; aliases: SHREW1, Mot8, transmembrane protein SHREW1; membrane protein that targets to the basolateral membrane of polarized epithelial cells through cytoplasmic sorting motifs that include three tyrosines and a dileucine; interacts with E-cadherin-catenin complexes of adherens junctions; functions to inhibit cell adhesion and migration. |
| *UBE4B* (1p36.22) | Ubiquitination factor E4B (UFD2 homolog, yeast); UBOX3, ubiquitin-fusion degradation protein 2, homozygously deleted in neuroblastoma-1; binds to the ubiquitin moieties of preformed conjugates and catalyzes ubiquitin chain assembly in conjunction with the E1, E2, and E3 classes of ubiquitin-activating enzymes; activity linked to cell survival under stress conditions; involved in protecting the cell from environmental stress; cleaved by caspase 6 and granulocyte B during apoptosis. |
| *NBL1* (1p36.13) | Neuroblastoma, suppression of tumorigenicity 1; aliases: zinc finger protein DAN, DAND1, Dan domain family member, NO3; founding member of the evolutionarily conserved CAN (cerberus and DAN) family of proteins which contain a domain resembling the CTCK (C-terminal cystine knot-like) motif found in a number of signaling molecules; secreted protein which acts as BMP (bone morphogenetic protein) antagonist by binding BMPs and preventing them from interacting with their receptors; plays an important role in growth and development; contains a putative p53/p73-binding site in the 5'-upstream region of the gene; acts as an inhibitor of cell cycle progression; may play an important role in preventing cells from entering the final stage (G1/S) of the transformation process; functional association exists between NBL1 and p73 during cisplatin-induced cell death. |
| *PLA2SII* (1p36.13) | The secretory type II phospholipase A2; aliases: MOM1 (modifier of MIN-1), group IIA phospholipase A2, non-pancreatic secretory phospholipase A2, phosphatidylcholine 2-acylhydrolase 2A; catalyzes the hydrolysis of the sn-2 fatty acid acyl ester bond of phosphoglycerides, releasing free fatty acids and lyso phospholipids, liberating arachidonic acid (AA) and prostaglandin D2, a metabolite of AA; participates in the regulation of phospholipid metabolism in biomembranes and the maintenance of membrane asymmetry; other known functions are related to microbial defense mechanisms (bactericidal activity) and the inflammatory response; human homolog of the MOM (modifier of min [APC]) gene, which suppresses polyp number during intestinal tumorigenesis in the min mouse model, possibly by altering the cellular microenvironment within the intestinal crypt or inducing AA metabolite-mediated apoptosis in pre-neoplastic or neoplastic cells. |
| *ST7L* (1p13.2) | Suppression of tumorigenesis 7 like; aliases: related to the tumor suppressor gene, ST7, found at the chromosome 7q31 genomic locus; ST7L gene is clustered in a tail-to-tail manner with the WNT2B gene on chromosome 1p (analogous to the clustering of ST7 with the WNT2 gene on chromosome 7q; the related gene, ST7, induces changes in genes involving the re-modeling of the extracellular matrix, such as SPARC, IGFBP5 and several matrix metalloproteinases; may act as a tumor suppressor by modification of the tumor microenvironment. |
| *RAD54L* (1p34.1) | RAD54-like (S. cerevisiae); see Table 1 and text for description. |
| *E2F2* (1p36.12) | E2F transcription factor 2; see Table 2 for a description. |
| *TNFRSF25* (1p36.31) | Tumor necrosis factor receptor superfamily, member 25; see Table 3 for a description. |
| *PLK3* (1p34.1) | Polo-like kinase 3; see Table 2 for a description. |
| *GADD45α* (1p31.3) | Growth arrest and DNA-damage-inducible 45 alpha; see Table 1 for a description. |
| *CTNNB1P1* (1p36.22) | Alias ICAT; see Table 5 for a description. |
| *MUTYH* (1p34.1) | MutY homolog (E. coli); see Table 1 and text for a description. |
| *CDKN2C* (1p23.3) | Cyclin-dependent kinase inhibitor 2C; see Table 2 for a description. |
| *DFRA* (1p36.22) | DNA fragmentation factor; see Table 3 and text for a description. |
| *KIF1B* (1p36.22) | Kinesin family member 1B; see Table 2 and text for a description. |
| *TP73* (1p36.32) | Tumor protein 73; DNA damage response protein and pro-apoptotic tumor suppressor; see Table 1 and text for a description. |
| *MiR-34a* (1p36.22) | miRNA-34a; see Table 4 and text for a description. |
| *MiR-101-1* (1p31.3) | miRNA-101-1; see Table 4 and text for a description. |

Excessive DNA ss breaks caused by the action of MUTYH and AP endonuclease in the nucleus results in the activation of PARP-1, which attaches polymers of ADP-ribose to proteins, thereby opening up the chromatin to allow access of DNA repair proteins.\(^{181,182}\) PARP initially serves as a survival protein facilitating the rapid repair of DNA strand breaks, and also prevents DNA degradation, in part, by inhibiting the activity of deoxyribonucleases through the process of poly(ADP) ribosylation.\(^{183}\) Since the synthesis of ADP-ribose polymers consumes nicotinamide adenine dinucleotide (NAD\(^+\)),\(^{184}\) and NAD\(^+\) is largely found in mitochondria where it participates in the production of ATP (bottom right side of Figure 5), sustained...
PARP activation will consume energy reserves, resulting in cell death, usually through the process of necrosis. A marked deficiency in energy reserves may cause the ATP-dependent Na+/K+ transport proteins, which maintain ionic balance, to fail, resulting in cell swelling and lysis of the cell, one of the hallmarks of necrosis.

In addition to the above energy catastrophe caused by excessive PARP activity in the nucleus, persistent single-stranded gaps in newly replicated DNA initiated by the action of MUTYH in mitochondria can result in the fragmentation and depletion of mitochondrial DNA (mtDNA) accompanied by the loss of mitochondrial function culminating in cell death (bottom right side of Figure 5). Dysfunctional mitochondria can release Ca++ into the cytosol which can activate calpains, causing Bax activation, lysosomal rupture, and the release of cathepsins into the cytosol resulting in a caspase-independent mode of cell death. Calpain activation can also result in Bax activation, followed by Bax oligomerization and mitochondrial damage, resulting in the loss of the mitochondrial membrane potential.

There is another unique mechanism that can lead to PARP-mediated cell death after excessive MUTYH activity, in addition to the fragmentation of mtDNA, energy catastrophe and calpain/lysosomal rupture/cathepsin pathways of mitochondrial failure described above. The main product of PARP-1 activity is the generation of polymers of ADP-ribose (PAR). Although these polymers are usually covalently bound to proteins, free PAR polymers are themselves toxic and function as a death signal. The PAR polymers bind to mitochondria and induce the release of tAIF (truncated apoptosis-inducing factor) from the mitochondria into the cytosol (lower left side of Figure 5). tAIF is then translocated to the nucleus where it binds to DNA, causes DNA condensation and recruits DNA degrading factors (eg, endogenous endo- and exo-nucleases) resulting in DNA degradation (upper left side of Figure 5). This series of events is part of an intricate program of caspase-independent cell death and is currently an active area of research.

Several mechanisms have been proposed to explain how tAIF is released from the mitochondria into the cytosol. Prior to truncation, AIF is embedded in the inner mitochondrial membrane, and the release of AIF requires its cleavage from a 62 kDa AIF mitochondrial form to a truncated 57 kDa soluble AIF form (tAIF). Calpain-I, which is activated by Ca++ and independent cathepsins B, L, and S can cleave intramitochondrial AIF. The calpains and cathepsins can truncate AIF in the same position at Gly102/Leu103 Calpain-I, however, appears to be the critical enzyme regulating AIF processing in which the AIF pathway is important for cell death. Oxidative modification of AIF markedly increases the susceptibility of AIF to calpain-I-mediated processing, most probably through the exposure of a normally hidden calpain cleavage site. Since the PAR polymer is a highly negatively charged molecule, it could depolarize mitochondria leading to opening of the mitochondrial membrane permeability transition pore (MPTP) followed by the release of tAIF.

**Table 7** Genes associated with antioxidant function

| Gene     | Protein function                                                                 |
|----------|----------------------------------------------------------------------------------|
| GCLM     | Glutamate-cysteine ligase, modifier subunit; aliases: gamma-glutamylcysteine synthetase, GSC light chain; the first rate limiting enzyme of glutathione synthesis; the enzyme consists of a large catalytic subunit and a light (30.8 kDa) regulatory subunit. |
| GPX7     | Glutathione peroxidase 7; non-selenocysteine containing phospholipid hydroperoxide glutathione peroxidase; alleviates oxidative stress generated from polyunsaturated fatty acids. |
| PRDX1    | Peroxiredoxin 1; aliases: thioredoxin peroxidase 2, thioredoxin-dependent peroxide reductase 2, TDPX2, natural killer cell-enhancing factor A, PAG, PAGB; member of the peroxiredoxin family of antioxidant enzymes which reduce hydrogen peroxide and alkyl hydroperoxides; the enzyme reduces peroxides using reducing equivalents provided through the thioredoxin system, not through glutaredoxin; plays an important role in eliminating peroxides generated during metabolism; participates in the signaling pathways of growth factors and tumor necrosis factor-alpha by regulating the intracellular concentrations of hydrogen peroxide; overoxidized peroxiredoxins (eg, cysteines oxidized to cysteine sulfonic or sulfonic acids) are regenerated by p53-regulated sestrins (homologs of a bacterial AhpC which reduces bacterial peroxiredoxins), thus re-establishing the antioxidant firewall. |
| TXNDC12  | Thioredoxin domain containing 12; aliases: endoplasmic reticulum protein ERP19, ERP19, hTLP19, protein disulfide isomerase family A (member 16), endoplasmic reticulum thioredoxin superfamily member, 18 kDa; smallest member of the protein disulfide isomerase (PDI) family of proteins to contain a Cys-Xxx-Xxx-Cys active site motif, like the catalytic domains of PDis; TXNDC12 adopts a thioredoxin fold with a thioredoxin-like active site located at the N-terminus of a long kinked helix that spans the length of the protein. |
### Table 8 Genes associated with protection against environmental and metabolic toxicity

| Gene          | Protein function                                                                                   |
|---------------|--------------------------------------------------------------------------------------------------|
| AADACL3       | Arylacetamide deacetylase-like 3; the enzymatic activity of the family of arylacetamide deacetylases carry out the deacetylation of carcinogenic arylacetamides such as 4-acetylaminobiphenyl, 2-acetylaminofluorone, and 2-acetylaminophthalene. |
| AADACL4       | Arylacetamide deacetylase-like 4; the enzymatic activity of the family of arylacetamide deacetylases carry out the deacetylation of carcinogenic arylacetamides such as 4-acetylaminobiphenyl, 2-acetylaminofluorone, and 2-acetylaminophthalene. |
| AKR1A1        | Aldo-keto reductase family 1, member A1; aliases ALDRI, ARM, dihydrodiol dehydrogenase 3; member of the aldo/keto reductase superfamily; catalyzes the NADPH-dependent reduction of a variety of biogenic/xenobiotic aromatic and aliphatic aldehydes to their corresponding alcohols; oxidizes proximate carcinogen trans-dihydrodiols to o-quinones. |
| AKR7A2        | Aldo-keto reductase family 7, member A2; aliases: succinic semialdehyde reductase, SSA reductase, AFAR1; catalyzes the NADPH-dependent reduction of succinic semialdehyde to gamma-hydroxybutyrate; can reduce the dialdehyde protein-binding form of aflatoxin B1 (AFB1) to the non-binding AFB1 dialcohol. |
| AKR7A3        | Aldo-keto reductase family 7, member A3; aliases: AFAR2, AFB1 aldehyde reductase 2; involved in the detoxification of aldehydes and ketones; can reduce the dialdehyde protein-binding form of aflatoxin B1 (AFB1) to the non-binding AFB1 dialcohol. |
| AKR7L         | Aldo-keto reductase family 7-like; aliases: AFAR3, AFB1 aldehyde reductase 3; can reduce the dialdehyde protein-binding form of aflatoxin B1 (AFB1) to the non-binding AFB1 dialcohol; this family member encodes a selenoprotein, which contains a selenocysteine residue; the selenocysteine is encoded by the UGA codon that normally signals translational termination. |
| CYP2J2        | Cytochrome P450, family 2, subfamily J, polypeptide 2; aliases: microsomal monoxygenase, flavoprotein-linked monoxygenase, arachidonic acid epoxygenase; the cytochrome P450 superfamily of enzymes catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids and other lipids; this protein localizes to the endoplasmic reticulum and is the predominant enzyme responsible for epoxidation of endogenous arachidonic acid pools in cardiac tissue; also functions in the gastrointestinal tract; epoxygenase-derived eicosanoids have anti-inflammatory properties. |
| CYP4Z1        | Cytochrome P450, family 4, subfamily Z, polypeptide 1; catalyzes the in-chain hydroxylation of lauric acid and myristic acid; single-pass type II membrane protein found in the endoplasmic reticulum. |
| CYP4A11       | Cytochrome P450, family 4, subfamily A, polypeptide 11; aliases: fatty acid omega-hydrolase, lauric acid omega-hydrolase, alkane-1 monoxygenase, 20-hydroxyeicosatetraenoic acid synthase; this CYP450 member localizes to the endoplasmic reticulum and catalyzes the omega- and omega-1-hydroxylation of medium-chain fatty acids such as laurate, myristate and palmitate; oxidizes arachidonic acid to 20-hydroxyeicosatetraenoic acid (20-HETE). |
| CYP4A22       | Cytochrome P450, family 4, subfamily A; polypeptide 22; aliases: fatty acid omega-hydrolase, lauric acid omega-hydrolase; this CYP450 member localizes to the endoplasmic reticulum and catalyzes the omega- and (omega-1)-hydroxylation of medium-chain fatty acids such as laurate and palmitate; shows no activity toward arachidonic acid and prostaglandin A1. |
| CYP4B1        | Cytochrome P450, family 4, subfamily B, polypeptide 1; aliases: microsomal monoxygenase, P-450HP; this enzyme is located in the endoplasmic reticulum and oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids and xenobiotics; involved in an NADPH-dependent electron transport pathway; can be induced to high levels in the liver and other tissues by various foreign compounds, including drugs, pesticides, and carcinogens. |
| CYP4X1        | Cytochrome P450, family 4, subfamily X, polypeptide 1; aliases: CYP4X1, MGC40051; located in the endoplasmic reticulum and may be involved in neurovascular function in the brain. |
| GSTM1         | Glutathione S-transferase Mu 1; aliases: glutathione S-alkyltransferase M1, S-(hydroxyalkyl)glutathione lyase M1, HB subunit 4; glutathione transferases may serve as an antioxidant system preventing degenerative cellular processes; the genes encoding the mu class of enzymes are organized in a gene cluster on chromosome 1p13.3 and are known to be highly polymorphic; this enzyme conjugates glutathione to a wide number of endogenous and exogenous toxins and carcinogens; null mutations of class mu genes have been linked with an increase in a number of cancers, most likely caused by an increased susceptibility to environmental toxins and carcinogens; specific genetic polymorphisms are associated with susceptibility to colorectal cancer. |
| GSTM2         | Glutathione S-transferase Mu 2; aliases: glutathione S-alkyltransferase M2, S-(hydroxyalkyl)glutathione lyase M2; this enzyme conjugates glutathione to a wide number of endogenous and exogenous toxins and carcinogens; alleviates benzo[a]pyrene-diolepoxide-DNA damage. |
| GSTM3         | Glutathione S-transferase Mu 3; aliases: glutathione S-alkyltransferase M3, S-(hydroxyalkyl)glutathione lyase M3; this enzyme conjugates glutathione to a wide number of endogenous and exogenous toxins and carcinogens; GSTM1 and GSTM3 allele variants are a risk-modulating factor in colorectal cancer patients. |
| GSTM4         | Glutathione S-transferase Mu 4; aliases: glutathione S-alkyltransferase M4, S-(hydroxyalkyl)glutathione lyase M4; this enzyme conjugates glutathione to a wide number of endogenous and exogenous toxins and carcinogens; active on 1-chloro-2,4-dinitrobenzene. |

(Continued)
of increasing complexity and molecular weight are more toxic than simple PAR polymers of low molecular weight.\textsuperscript{197} The PAR polymer could also bind to PAR polymer binding proteins associated with mitochondria, which then release AIF.\textsuperscript{199,224–226} This results in AIF cleavage producing a tAIF, which is soluble and enters the cytosol. The release of tAIF may also be caused by a significant but not excessive decrease in NAD\textsuperscript{+} (as a result of PARP activity), ATP, and the mitochondrial membrane potential, resulting in the opening of the MPTP (mitochondrial permeability transition pore).\textsuperscript{186,196,211} The release of tAIF may also be caused by other caspase-independent pathways involving molecules that are often found in the downstream execution phase of apoptosis, such as tBid (truncated Bid).\textsuperscript{227–229} Bax oligomers (formed after

| Gene   | Protein function                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GSTM5  | Glutathione S-transferase Mu 5; aliases: glutathione S-alkyltransferase M5, S-(hydroxyalkyl)glutathione lyase M5; this enzyme conjugates glutathione to a wide number of endogenous and exogenous toxins and carcinogens.                                                                                                                                                                                                                                                                                                                                                   |
| MTF1   | Metal response element binding transcription factor 1; transcription factor that induces the expression of metallothioneins and other genes involved in metal homeostasis in response to heavy metals such as cadmium, zinc, copper and silver; is a nucleocytoplasmic shuttling protein that accumulates in the nucleus upon heavy metal exposure and binds to promoters containing a metal-responsive element; nucleocytoplasmic shuttling of MTF1 is regulated by diverse signals. |
| MTF2   | Metal response element binding transcription factor 2; alias: polycomb-like protein 2; binds to the metal-regulating element of the metallothionein-IA gene promoter, which is zinc-dependent.                                                                                                                   |

**Table 8 (Continued)**

**Figure 1** The damaging effects of dietary factors and inflammatory conditions on the colonic epithelium. Damage to DNA, the mitotic spindle, and to telomeres is mediated through the generation of ROS (reactive oxygen species) and/or RNS (reactive nitrogen species). This damage results in the activation of spindle and DNA damage checkpoints, which delay mitosis until repairs are made.

**Figure 2** Excessive spindle damage, dysfunctional telomeres, or DNA damage can result in a prolonged cell cycle arrest which activates pro-cell death pathways. This activation of pro-cell death pathways leads to removal of cells with unrepaired damage to the mitotic spindle, the chromosome ends, and DNA and prevents the potential propagation of cells with many types of genomic instability.

**Abbreviations:** ROS, reactive oxygen species; RNS, reactive nitrogen species.
activation of Bax by Ca\\textsuperscript{++}-dependent calpains, Bak, and Bim-EL. The activation of PARP also activates other stress-response pathways such as the RIP/TRAF2/JNK pathway, which may be responsible, in part, for generation of tBid and the phosphorylation of Bim-EL. The phosphorylation of Bim-EL releases Bim-EL from sequestration by the microtubular dynein motor complex, allowing it to bind to bcl-2, thereby enhancing the cell death process.

Mechanisms that interfere with tAIF release include 1) degradation of the PAR polymer by PARG (PAR glycohydrolase), 2) inhibition of tAIF translocation to the nucleus by Bcl-2, Bcl-xl, HSP70, or Iduna, and 3) interference of transcription of the AIF gene by BNIP3. PARG, Bcl-2, Bcl-xl, HSP70, Iduna, and BNIP3 have been shown to be upregulated during carcinogenesis, consistent with the development of tumor cell resistance to cell death. In addition, pro-cell death molecules involved in this MUTYH/PARP/AIF pathway, such as AIF, Bid, Bax, Bak, and Bim-EL, have been reported to be downregulated during carcinogenesis. Thus, overall, MUTYH likely has an important role in the death of cells exposed to excessive reactive oxygen species/reactive nitrogen species (ROS/RNS)-induced DNA damage, and interference with the MUTYH cell death pathway is associated with carcinogenesis.

**P73 and caspase-dependent cell death**

Like p53, p73 is responsible for the induction of apoptosis in response to excessive DNA damage that cannot be repaired. P73 has the ability to upregulate the transcription of numerous classic apoptosis-related genes such as caspases 3, 6, and 8, Bcl-2 family members, and death receptors (Figure 6). In order for p73 to function as a transcription factor, it must be phosphorylated. The c-Abl kinase, activated by DNA damage, phosphorylates and activates p73 on tyrosine. The stress-induced mitogen-activated protein kinase, p38 MAPK, phosphorylates and activates p73 on threonine residues. The degradation of p73 by the E3 ubiquitin-like protein, Itch, is prevented by the Yes-associated protein, YAP. E2F1, p53, and c-jun (located on chromosome 1p; Figures 4 and 6) may also have a role in p73 activation in different cell types.

One mechanism by which p73 induces apoptosis includes the transcription of PUMA (p53 upregulated modulator of apoptosis), which in turn causes Bax translocation to the mitochondria with the release of cytochrome c. A second mechanism involves the transcription of scotin, which causes endoplasmic reticulum (ER) stress and subsequent apoptosis. Unlike p53, a direct role of p73 in the apoptotic process (eg, mitochondrial translocation and perturbation) has not been verified. The role of p73 in the regulation of the miRNA processing complex will be discussed in the section “MiRNAs and miRNA processing.”

As noted above, loss of p73 through chromosome 1p deletion occurs early in colon carcinogenesis, contrary to the loss of p53 which is a late event.

**Mitosis-related and spindle checkpoint function (Table 2)**

There are 24 genes on chromosome 1p whose gene products affect many different aspects of the mitotic process, and include kinases, phosphatases, centromere proteins, centrosome proteins, cyclins, regulatory mitotic proteins, motor spindle proteins, regulators of chromosomal condensation, a mitosis-related transcription factor, a deacetylase, and a major spindle checkpoint protein (Table 2). The large number of mitosis-related genes that are lost if there is a chromosome 1p deletion could potentially be responsible for colon cancer initiation and progression, since cancer epidemiology studies show that abnormal expression of mitosis-related genes is frequent in different tumor types. Mitotic checkpoints, and specifically the spindle assembly checkpoint, are major targets for tumor-associated alterations. The mitotic spindle assembly checkpoint is essential for ensuring that all chromosomes are properly aligned on the metaphase plate, with every chromosome...
attached to a spindle microtubule by its kinetochore to prevent aneuploidy. If these processes fail to occur and the cell undergoes a prolonged mitotic arrest (Figure 2), the cell may be eliminated through caspase-dependent or caspase-independent cell death mechanisms to ensure genomic stability (Figure 7).

Oxidative stress is a major factor that can induce disturbances in spindle organization, induce centrosome amplification, cause proteolysis of the anaphase inhibitor securin and mitotic cyclins, affect components of the anaphase-promoting complex, and override the spindle checkpoint, thereby affecting chromosomal stability.

Figure 4 DNA damage causes several downstream molecular and cellular events. The DNA damage response involves several DNA repair proteins and transcription factors that allow the cell cycle to be arrested at several points to enhance genomic stability. All of the genes associated with these damage response pathways that are also found on chromosome 1p are highlighted in red, and reference to the appropriate tables (contain functions of gene products) in the text is provided below. The large number of molecular and cellular events affected by the loss of chromosome 1p is apparent.

Notes: Genes: CLSN, DCLRE (APOLLO), GADD45α, MSH4, MUTYH, TP73, RAD54L (Table 1); CDC7 (phosphorylates claspin in response to DNA damage), PSRC1 (DDA3) (Table 2); NBL1 (Table 6). Additional protein functions in diagram not discussed in text: astrin (microtubule binding protein involved in the functional and dynamic regulation of mitotic spindles); CHK1 (checkpoint homolog of S. pombe; serine/threonine-protein kinase required for cell cycle arrest in response to DNA damage or presence of unreplicated DNA); cyclin B1 [regulatory protein involved in mitosis; complexes with p34 (cdc2) to form the maturation-promoting factor, MPF; expressed predominantly during G2/M]; TP53iNP1 (tumor protein p53-inducible nuclear protein 1; in response to DNA damage, it promotes p53 phosphorylation on “Ser-46” and promotes cell cycle arrest; promotes apoptosis if DNA damage is excessive); TRF2 (telomeric repeat binding factor 2; component of the shelterin complex that binds the telomere double-stranded – TTAGGG – repeat and protects telomere ends).

Abbreviations: DDR, DNA damage response; ROS, reactive oxygen species; RNS, reactive nitrogen species.
During the process of mitosis, direct oxidative damage to chromosomes resulting in double-strand breaks, or oxidative damage to telomeres can activate p53 (Figure 7) or p73 (Figure 6), major DNA damage response proteins that elicit apoptosis through multiple caspase-dependent mechanisms. In addition, caspase-independent mitotic cell death can also occur during a mitotic catastrophe (Figure 3C, Figure 7), which is a prestage to distinct modes of cell death that may be caspase-dependent or caspase-independent.

The length of time that a spindle is destabilized may determine the mode and timing of cell death after mitotic exit. It has been suggested that prolonged mitotic

Figure 5 The mechanisms by which excessive activity of MUTYH and AP endonucleases can lead to cell death through the activation of PARP and the generation of toxic poly(ADP)ribose (PAR) polymers and mitochondrial DNA (mtDNA) damage (see text for detailed description).

Abbreviations: ROS, reactive oxygen species; RNS, reactive nitrogen species.
delay can lead to the decay of anti-apoptotic messenger RNAs (mRNAs) and/or the gradual accumulation of pro-apoptotic signals. Of the 24 mitosis-related genes (Table 2), the products of 7 genes have dual-role mitosis/pro-apoptotic functions. These dual-role mitosis/pro-apoptotic genes include APITD1, CCNL2, CDC2L2, CDC42, E2F2, KIF1B, and PLK3 (Table 2). Cells may become genomically unstable if they evade mitotic checkpoints through a process referred to as mitotic slippage, mitotic arrest slippage, or mitotic checkpoint slippage (Figure 7). With mitotic slippage, the cell exits mitosis prematurely, carrying broken chromosomes, abnormal numbers of chromosomes, and unrepaired DNA damage into the daughter cells. In addition to loss of pro-apoptotic proteins, it has been reported that the gradual loss of the checkpoint effector, cyclin B, releases the mitotic arrest induced by spindle disruptive agents, despite the continued presence of spindle damage and upstream checkpoint proteins. In order for a DNA-damaged cell to survive after mitotic slippage, it must evade both apoptosis in the subsequent G1 phase of the cell.
cycle\textsuperscript{124} (Figure 7) and reproductive cell death that can follow centrosome amplification and the generation of tetraploid cells\textsuperscript{264} (Figure 7).

Thus, a decrease in pro-apoptotic mitotic/cell cycle-related genes located on chromosome 1p (APITD1, CCNL2, CDC2L2, CDC42, E2F2, KIF1B, PLK3) (Table 2) may result in resistance to cell death, a critical event that drives tumorigenesis.\textsuperscript{52,54,265–267}

Apoptosis-related genes (Table 3)

Seven genes associated with apoptosis are located on chromosome 1p. Bcl-10 and Bcl2L15 are Bcl-2 family members, THAP3 is a zinc-coordinating DNA-binding protein, DNA fragmentation factor A (DFFA) and B (DFFB) are the two subunits of DFF, caspase-9 is a major initiator caspase in the apoptotic proteolytic cascade, and TNFRSF25 is a death domain-containing receptor related to TNFR-1 and CD95 (Apo-1/Fas). The deletion of 3 of these genes would have important implications for carcinogenesis through the increase in apoptosis resistance, and will be discussed in some detail.

DFF is a heterodimeric protein composed of a catalytically active 40 kD subunit, DFFB (CAD [caspase-activated DNase]), and an inhibitory 45 kD subunit, DFFA (ICAD

Figure 7 The different cellular fate following spindle, telomere and DNA damage during mitosis. Cells with excessive genomic damage can undergo caspase-dependent cell death (CDMCD) or caspase-independent mitotic cell death (CiMCD). DNA-damaged cells may, however, exit from mitosis by defying cell death pathways through a process referred to as mitotic slippage. These preneoplastic cells with DNA damage and chromosomal abnormalities can then be clonally expanded to produce a tumor and eventually develop into a malignancy through continued cycles of damage to the genome.

Abbreviation: ROS, reactive oxygen species.
Chromosome 1p deletions during colon carcinogenesis

When bound to DFFB, DFFA inhibits the nuclease activity of DFFB. During apoptosis, caspase-3 cleaves DFFA at amino acids 117 and 224 and dissociates it from DFFB, thereby releasing the inhibition of DFFB. DFFB activity results in chromatin condensation and the formation of the typical crescents and margination of chromatin that are characteristic of classic apoptotic cells at the ultrastructural level. Characteristic ultrastructural features of apoptotic cells treated with a ROS-generating and DNA-damaging agent are shown in Figure 8. At the molecular level, the action of DFF on DNA results in the initial cleavage of DNA into 50- to 300-kb long fragments, representing the dismemberment of the higher order organization of chromatin into chromosomal loop domains, and the fragmentation of DNA into oligonucleosomal sized fragments that form a “ladder” on agarose gel electrophoresis. The importance of DFF in suppressing tumorigenesis was demonstrated by Yan et al using DFF40-null mice. DFF-deficient cells exhibit significant increases in mutation, chromosomal instability, and survival compared with wild-type control cells. This is probably a result of the inhibition of cell death of DNA-damaged cells resulting from the failure to undergo DNA fragmentation. DFF is reported to avoid chromosome instability in a p53-independent manner. Irradiation of cells with a caspase-resistant form of DFFA led to increased clonogenic survival of cells with increased chromosomal aberrations and aneuploidy. Although DFFB has intrinsic DNase activity, both DFFA and DFFB are required to generate DNase activity and must be co-expressed. DFF has been postulated to stabilize the synthesis of DFFB, or mediate the correct folding and chromatin localization of DFFB. The absence of DFF results in an increased frequency of cell transformation and enhanced susceptibility to radiation-induced carcinogenesis, indicating that DFF is a tumor suppressor. Recently, it has been reported that the expression of DFFA protein, but not DFFA mRNA, is regulated by a specific miRNA, miR-145, suggesting a mechanism of translational regulation. The regulation of DFFB by miRNA has not been investigated, and, so far, none of the miRNAs found on chromosome 1p have been determined to have DFFA or DFFB as target mRNAs for translational regulation.

Caspase-9 is a member of the family of cysteine-aspartic acid-specific proteases (caspases), and is also referred to as Apaf-3 (apoptotic protease-activating factor 3). In the presence of cytochrome c and dATP, Apaf-1 binds to procaspase-9 via a CARD (caspase activation recruitment domain), forming a complex referred to as the apoptosome. The cellular oxidative state can affect apoptosome formation by promoting an interaction between caspase-9 and Apaf-1 via disulfide formation. In the apoptosome, caspase-9 is activated to process other downstream caspases, including caspase-3 and caspase-2. Caspase-9 plays an important role in apoptosis induced by genotoxic stress. The caspase-9-induced apoptotic pathway can result from mitochondrial membrane depolarization, formation of the apoptosome,
and the activation of multiple caspases, including caspase-3 and caspase-2.294 Loss of caspase-9 is therefore important to carcinogenesis, since it can result in apoptosis resistance and the propagation of DNA-damaged cells.295 If caspase-9 is lost, caspase-3 cannot be activated, and thus cannot cleave many substrates including DFFA, an essential endonuclease in apoptosis (see previous page). Similarly, if caspase-9 is lost, caspase-2 may not be activated. Caspase-2 plays a specific role in genotoxic stress-induced apoptosis in some cell types.296,297 (However, there is another pathway for specific role in genotoxic stress-induced apoptosis in some cancers.)

Payne et al

MiRNAs and miRNA processing (Table 4)

miRNAs are evolutionarily conserved, endogenous, small (21 to 24 nucleotides) non-coding RNAs cleaved from 70 to 100 nucleotide hairpin-shaped precursors that reduce translation and stability of target mRNAs through RISC (RNA interference effector complex)-mediated mRNA degradation and translational suppression via sequence-recognition interactions with the 3' untranslated region of their targeted mRNAs.305–311 The diverse cellular functions affected by miRNAs306,312,313 is underscored by the prediction that thousands of genes are potential miRNA targets.318–320 At least 800 different miRNAs predicted by computational scanning in the human genome have been documented (http://microrna.sanger.ac.uk). Individual miRNAs have the potential to downregulate large numbers of target mRNAs with seed region complementary sites in their 3' untranslated regions.321–323 It has been speculated that miRNAs could regulate ~30% of the human genome.306 MiRNAs function in proliferation, cell cycle control, the prevention of replicative stress, differentiation, and apoptosis. More than half of the known human miRNAs are located at fragile sites, as well as at sites of LOH, amplification, and common breakpoint regions, which are particular genomic regions that are prone to alteration in cancer cells.527 The overexpression or underexpression of miRNAs as a result of chromosomal additions or deletions, respectively, in individual cells can have dramatic effect on hundreds to thousands of target genes. It is, therefore, not surprising that aberrant expression of miRNAs is associated with cancerous tissues,334–340 and that characteristic miRNA expression profiles are features of certain human cancers.341–350 Impaired miRNA processing enhances cellular transformation and tumorigenesis,351–352 and certain miRNAs are even classified as tumor suppressors and oncopgenes.353–355 Alterations in a series of specific miRNAs have been associated with the age of onset of colon cancer, the growth of colon cancer cells, and certain stages of colon carcinogenesis.342,356–360 Human colon cancer profiles from 80 colon tumors and 28 samples of normal mucosa show differential miRNA expression depending on mismatch repair status and are characteristic of undifferentiated proliferative states.367 Examination of the genomic regions containing differentially expressed miRNAs revealed that they were also differentially methylated in colon cancer at a far greater rate than would be expected by chance.368 MiRNA profiles could accurately predict microsatellite status in a set of 39 colon cancer studied by Lanza and colleagues.370 This is probably a reflection of the presence or near absence of chromosomal instability in the respective microsatellite stable vs unstable cancers.371

There are 20 miRNAs and 3 components of the miRNA processing complex (Argonaute proteins 1, 3, 4) encoded on chromosome 1p (Table 4). One of the 20 miRNAs, miR-34a, is known to be regulated by p53,309,330,372–376 Tarasov et al75 evaluated the differential regulation of 74 miRNAs by p53; 50 miRNAs were either positively or negatively regulated by p53, miR-34a showing the highest fold increase (33.4 fold). Although the 20 miRNAs found on chromosome 1p can have pleiotropic effects on cells, miR-34a is the most well studied for its role in cell cycle arrest and apoptosis in response to DNA damage.309,330,374,377,378 The miR-34 family of miRNAs is one of only 18 mammalian miRNA families379 that are present in flies and worms.309 It is probable that links between p53 and the miRNA-34 family may have arisen early in the evolution of the stress-related p53 network.309 Because of its central role in preventing carcinogenesis, miR-34a has been
classified as a tumor suppressor.\textsuperscript{572,577} MiR-34a has numerous downstream targets, including bcl-2 (major anti-apoptotic protein), NOTCH1, Delta1 (ligand for NOTCH1), NOTCH2 (found on chromosome 1p), CDK4, CDK6, Cyclin D1, Cyclin E2, c-Met, MYCN, SIRT1 and E2F3.\textsuperscript{319,362,374,375,377,380–384} The inhibition of NOTCH1 by miR-34a would enhance apoptosis since NOTCH1 is known to inhibit p53 activity\textsuperscript{385,386} and to have an anti-apoptotic role\textsuperscript{387,388} in tumorigenesis. The inhibition of SIRT1 by miR-34a contributes to p53-dependent apoptosis\textsuperscript{389} through deacetylating and stabilizing p53 leading to an increase in p21 and PUMA.\textsuperscript{384} The E2F3 transcription factor is not known to have a role in apoptosis; however, it is a novel repressor of the ARF/p53 pathway\textsuperscript{390} and a factor is not known to have a role in apoptosis; however, it is a novel repressor of the ARF/p53 pathway\textsuperscript{390} and a potential transcriptional inducer of cell-cycle progression.\textsuperscript{377} Therefore, the downregulation of E2F3 by miRNA-34a would have a growth inhibitory effect.\textsuperscript{362,374} MYCN has important roles in both cell proliferation and apoptosis, and MYCN amplification is almost always associated with the loss of chromosome 1p36.\textsuperscript{382} It is probable that the effects of miR-34a on cellular molecular pathways is widespread, since enforced expression of 34A shows a dramatically altered gene expression profile with upregulation of 532 mRNA transcripts and downregulation of 681 mRNA transcripts highly enriched for those genes that regulate cell-cycle progression, apoptosis (BCL2, BIRC3 [baculoviral IAP repeat-containing 3], DcR3 [decoy receptor 3]), DNA repair, and angiogenesis.\textsuperscript{338} In conclusion, although p53 is a late event in colon carcinogenesis, the deletion of a major downstream target of p53, miR-34a, as a result of chromosomal 1p deletion, could have dramatic effects on colon tumorigenesis.

MiR-101 is a miRNA that, like 34A, is pro-apoptotic\textsuperscript{391} and considered to be a tumor suppressor.\textsuperscript{391,392} The nomenclature of miR-101-1 (Table 4) and miR-101-2 is based on the fact that miR-101-1 is produced from a genomic locus on chromosome 1p31 and miR-101-2 from a genomic locus on chromosome 9p24.\textsuperscript{392} Loss of heterozygosity at both 1p and 9p are known to be associated with cancer.\textsuperscript{392} The mechanism by which miR-101 induces apoptosis is by targeting and decreasing the expression of the multifaceted anti-apoptotic protein Mcl-1 (myeloid cell leukemia sequence 1).\textsuperscript{391} Mcl-1 undergoes rapid turnover which may serve as a convergence point for signals that affect global translation, thereby coupling translation to cell survival and the apoptotic machinery.\textsuperscript{393} (The DNA damage response can also result in Mcl-1 destruction and the initiation of apoptosis.\textsuperscript{394,395}) Mcl-1 specifically inhibits apoptosis, in part, by sequestering the pro-apoptotic Bim, Bak, tBid, and Noxa, in an inactive state. Since Mcl-1 can interact with tBid and inhibit its induction of cytochrome c release, it plays an important role in resistance to TRAIL and TNFα-induced apoptosis.\textsuperscript{396,397}

Therefore, Mcl-1 can inhibit apoptosis induced by both the death receptor (extrinsic) and mitochondrial (intrinsic) pathways. Mcl-1 is targeted for proteasome-mediated degradation by the E3 ubiquitin ligase MULE\textsuperscript{398} and is rapidly degraded with a half-life of 30 minutes to 3 hours.\textsuperscript{393} Its short half-life relates to the presence of a long proline-, glutamic acid-, serine-, and threonine-rich (PEST) region upstream of the Bcl-2 homology domains.\textsuperscript{399} The inhibition of translation with cycloheximide can cause the rapid degradation of Mcl-1 within 30 minutes, thereby triggering the apoptotic machinery through the release of Bim and the activation of Bak and Bax.\textsuperscript{393} Although full-length Mcl-1 does not interact with Bax, the caspase-mediated cleavage of Mcl-1 at Asp127 generates a fragment that induces apoptosis through direct interaction with Bax.\textsuperscript{399} Phosphorylation of Mcl-1 can affect its function and degradation.\textsuperscript{400} The phosphorylation of Mcl-1 is prominent in cells that accumulate in the G2/M phase of the cell cycle as a result of exposure to microtubule disrupting agents, and in synchronized cells passing through this phase.\textsuperscript{401} This phosphorylation, especially at serine 64, enhances the anti-apoptotic function of Mcl-1,\textsuperscript{400} thereby allowing cells to properly align their chromosomes prior to anaphase. In colorectal mucosa, the Mcl-1 protein is found in the apical cells of the crypt,\textsuperscript{402,403} whereas the distribution is more diffuse in the malignant cells.\textsuperscript{403}

In addition to the development of apoptosis resistance, the loss of miR-101 also leads to cancer progression through the overexpression of histone methyltransferase EZH2 (enhancer of zeste homolog 2), a polycomb group member, with concomitant dysregulation of epigenetic pathways.\textsuperscript{392,404} MiR-101 also represses the expression of FOS (v-fos FBJ murine osteosarcoma viral oncogene homolog) oncogene, a key component of the AP-1 (activator protein-1) transcription factor, MYCN (a gene amplified in many tumors), and COX-2, an enzyme involved in the production of prostaglandins from the metabolism of arachidonic acid.\textsuperscript{405} Enhanced expression of miRNA-101 also has an effect on the late stages of cancer, since it inhibits invasion and migration.

The p53/p63/p73 family of tumor suppressors are known to regulate the major components of the miRNA processing complex,\textsuperscript{354,406} which include Drosha-DGCR8, Dicer-TRBP2, and Argonaute proteins. Drosha (RNASEN) is an RNAse III endonuclease; DGCR8 is a double stranded RNA binding protein; DICER contains an RNA helicase motif required for the formation of RISC (RNA induced silencing complex);
TRBP2 (trans-activation-responsive RNA binding protein 2) is a component of the miRNA loading complex (composed of DICER1, AGO2, and TRBP2) required for the formation of RISC. Argonaute proteins are endonucleases that aid in the maturation of pre-miRNAs of 60 to 70 nucleotides to mature miRNAs of 21 to 24 nucleotides; the tethering to mRNA mimics the miRNA-mediated repression of protein synthesis.414,407,408 There are 8 members of the Argonaute family in the human genome;409 4 belong to the PIWI subfamily and are expressed mainly in the testis, whereas the other 4 belong to the eIF2C/AGO subfamily and are expressed in a variety of adult tissues. Ago1 and Ago2 (catalytic engine of RISC) reside in 3 complexes with distinct DICER and RNA-induced proteins involved in RNA metabolism.410 Three of the 4 members of the eIF2C/AGO subfamily are found in a tandem cluster of closely related Argonaute non-nucleolytic proteins,311 Ago1, Ag3, and Ago4 on chromosome 1p (Table 4). Therefore, loss of chromosome 1p should have a major impact on the process of miRNA processing in the affected cells.

A family of miRNAs on chromosome 1p of particular interest to colon carcinogenesis is the miR-200 family, which includes miR-200a, -200b, and -429 (Table 4). These 3 family members are all encoded on a 7.5-kb polycistronic primary miRNA transcript and help determine the epithelial phenotype of cancer cells through the regulation of the Wnt/β-catenin signaling pathway.412,413 Wnt growth factors activate a cascade of intracellular events, known as the canonical Wnt pathway, which ultimately leads to a coordinated proliferation, differentiation, and sorting of the epithelial cell population that forms the colonic crypts.414 In colorectal cancer, epithelial cells that acquire mutations in the Wnt/β-catenin signaling pathway gain inappropriate proliferative capabilities mimicking the effect of a permanent Wnt stimulation.414 Beta-catenin is a transcription factor that translocates to the nucleus and activates target genes involved in stimulation of the cell cycle and inhibition of apoptosis. E-cadherin binds directly to β-catenin in the cytoplasm, which restricts the movement of β-catenin to the nucleus. ZEB1 and ZEB2 are proteins that repress the transcription of E-cadherin. Members of the miR-200 family were found to directly target the mRNA of ZEB1 and ZEB2,412,415–418 upregulate E-cadherin expression in cancer cell lines, and reduce cellular motility.412 Conversely, downregulation of one miR-200 family member that was tested, miR-200a, was shown to promote tumor growth by reducing E-cadherin and activating the Wnt/β-catenin signaling pathway.413 Cancer progression has some similarities with embryonic development and wound healing, in which a process of epithelial-to-mesenchymal transition (EMT) occurs.419 Although the EMT normally occurs as a process of stem cell differentiation, the EMT that occurs during carcinogenesis involves a change from a differentiated tumor to a more invasive dedifferentiated tumor.412,419,420

The loss of the miR-200 family of miRNAs, coupled with the loss of 4 proteins associated with the Wnt/β-catenin signaling pathway (Table 5 below), and the loss of the pro-apoptotic miR-34a and the miRNA transcriptional protein, p73, should have a significant impact on the initiation and progression of colon cancer.

**Wnt/β-catenin signaling pathway (Table 5)**

The Wnt signaling pathway is critical for the differentiation and sorting of the epithelial cell population necessary for the organization of the colonic crypts and for the regulation of crypt cell renewal and homeostasis.414,421 Wnt signaling is initiated by the binding of extracellular Wnt factors to receptors on the cell surface, which triggers a signaling cascade that leads to the accumulation of β-catenin.414,422 In the absence of Wnt signals, β-catenin is degraded by a multicomplex complex composed, in part, of APC (adenomatous polyposis coli), GSK3β (glycogen synthase kinase-3-beta), and the scaffold proteins Axin1 and Axin2/conductin,423–425 forming the β-catenin destruction box. This destruction box is responsible for the GSK3β-mediated phosphorylation of β-catenin and its subsequent degradation by the ubiquitin-proteasome pathway. The Wnt signals block this phosphorylation and degradation, resulting in the accumulation of β-catenin. Cytoplasmic β-catenin accumulation and translocation to the nucleus allows β-catenin to associate with TCF/LEF (T cell factor/lymphocyte enhancer factor) transcription factors which target genes that enhance cell survival and proliferation (ie, c-myc, cyclin D1).426–428 Mutations in APC, β-catenin, Axin1, or ICAT (inhibitor of beta-catenin and Tcf-interacting protein) result in the deregulated accumulation of β-catenin and the constitutive activation of Wnt signaling,429–431 a major cause of cancer, including colorectal cancer.418,424,425,432

There are 4 genes located on chromosome 1p that are directly involved in the Wnt signaling pathway (CTNNBIP1, DVL1, WNT2B, and WNT4) (Table 5). WNT2B and WNT4 are secreted signaling factors and Dvl1 is a cytoplasmic molecule that associates with Frat-1 to activate the Wnt signaling pathway. The loss of these positive regulators of the Wnt signaling pathway as a result of a chromosomal 1p deletion may contribute to the dysregulation of crypt
organization that could initiate the carcinogenic process.\textsuperscript{433} CTNNBIP1/ICAT (Table 5), on the other hand, is a negative protein regulator of the Wnt signaling pathway. ICAT disrupts β-catenin–TCF interactions,\textsuperscript{434–436} thereby downregulating gene expression associated with proliferation and cell survival. The crystallographic structure of ICAT indicates the mechanism by which ICAT interferes with β-catenin function. The NH\textsubscript{2}-terminal domain of ICAT binds to armadillo repeats 10–12 of β-catenin, whereas the COOH-terminal domain of ICAT binds to the groove formed by armadillo repeats 5–9.\textsuperscript{435,437} The armadillo repeats 5–9 are crucial for the binding of β-catenin to both TCF and E-cadherin.\textsuperscript{438} The importance of ICAT in the prevention of carcinogenesis is underscored by the fact that ICAT is a multipotent inhibitor of β-catenin\textsuperscript{438} by interfering with the binding of β-catenin to TCF, cadherins, and APC, with consequences for transcription, cell adhesion, and cytoskeletal function.\textsuperscript{438–440} The cytoplasmic and nuclear location of ICAT, using an immunohistochemical approach, is consistent with a broader role for ICAT than previously reported.\textsuperscript{440}

In addition to the effects on transcription and cell adhesion, ICAT can function as a pro-cell death molecule in certain situations. Overexpression of ICAT in colorectal tumor cells results in growth arrest and cell death, and serves to eliminate cells with a constitutively activated Wnt signaling pathway.\textsuperscript{441} Using flow cytometry, the cell death was evidenced by a sub-G1 peak of the cell cycle, and the forced entry of cells into an illegitimate DNA synthetic phase without having undergone a prior mitosis (enhanced trypan exclusion of >4N cells).\textsuperscript{441} Transgenic mice expressing ICAT also make activated T cells (dependent on β-catenin–TCF signaling for survival\textsuperscript{442,443}) highly susceptible to apoptosis (using annexin V staining), by reducing the expression of Bcl\textsubscript{xL} below a critical threshold.\textsuperscript{446} The mechanism by which ICAT reduces Bcl\textsubscript{xL} expression is not known at the present time.

Since chromosomal instability is a major feature of colon carcinogenesis, it is appropriate to consider the role of the Wnt signaling pathway in mitotic control and aberrant Wnt signaling in the generation of chromosomal aberrations. A precedent for exploring the role of aberrant Wnt signaling in chromosomal instability are the findings that 1) multiple signaling pathways converge to orient the mitotic spindle in \textit{Caenorhabditis elegans} embryos;\textsuperscript{444} 2) APC and EB1 (a microtubule-associated protein) have the ability to maintain proper spindle positioning in the developing nervous system of \textit{Drosophila};\textsuperscript{445,446} 3) binding of APC protein to microtubules increases microtubule stability and is regulated by GSK3β;\textsuperscript{447} 4) APC has a role in chromosome segregation;\textsuperscript{448} 5) β-catenin is a component of the mammalian mitotic spindle and functions to ensure proper centrosome separation and subsequent establishment of a bipolar spindle;\textsuperscript{449} 6) GSK3β has a role in mitotic spindle dynamics and chromosome alignment;\textsuperscript{450} and localizes to the centrosome and specialized cytoskeletal structures.\textsuperscript{451} 7) dishevelled genes are involved in mitotic progression in cooperation with polo-like kinase 1; 452 and 8) conductin/axin2 and Wnt signaling regulates centrosome cohesion.\textsuperscript{453} It is now well established that aberrant Wnt/β-catenin signaling can induce chromosomal instability in cancer, including colon cancer.\textsuperscript{454–458} An understanding of the mechanisms by which specific components of the Wnt signaling pathway affect mitosis, mitotic slippage and other aspects of the cell cycle, including interaction with spindle checkpoint proteins, needs to be experimentally determined.

**Tumor suppressors (Table 6)**

Experiments involving somatic cell fusion and chromosome segregation established the concept that certain genes are capable of suppressing tumorigenesis.\textsuperscript{459,460} Tumor suppressors are genes whose miRNA or protein products reduce the formation of tumors and prevent malignant progression by decreasing proliferation, regulating the cell cycle, maintaining chromosome integrity, enhancing DNA repair, inducing apoptosis, and, by reducing angiogenesis, invasion, migration, and cell adhesion. Classic tumor suppressor genes that, when deleted or mutated, contribute to tumorigenesis in many types of tumors include p53, RB, INK4a (p16), and ARF.\textsuperscript{461} In colorectal cancer, mutations and LOH of the tumor suppressor, APC, can affect both the initiation and progression of cancer, whereas the loss of p53 is a late event. Therefore, when the loss of chromosome 1p became associated with many types of cancer, including colon cancer, several groups began the quest to identify the specific tumor suppressor gene or genes located on 1p.\textsuperscript{462,463} Several genomic loci were identified as “hot spots” for tumor suppressor genes, which included 1p36 and 1p34. It became evident that many genes, both inside and outside of these “hot spots”, could be classified as tumor suppressors; 26 tumor suppressor genes, their genomic loci, and the function of their gene products are listed in Table 6. (Note: 11 genes classified as tumor suppressors in Table 6 are not listed in other tables [Tables 1–5 and 7]).

Several tumor suppressors are haploinsufficient,\textsuperscript{468} and cell cycle regulatory tumor suppressor genes seem especially dosage-sensitive.\textsuperscript{469} These findings indicate that the loss of...
only one copy of a gene in a diploid cell could have a biologic effect. Such a loss could contribute to cellular transformation, with the process of selection driving clonal expansion of pre-neoplastic cells.

Certain tumor suppressors play a more prominent role in tumorigenesis than others in particular tissue types. However, it is probable that the loss of numerous tumor suppressor genes as a result of a chromosomal deletion probably plays a prominent role in the initiation and progression of cancer through a “combination” of different and/or complementary adverse cellular and molecular events.

Antioxidants (Table 7)

Four genes on chromosome 1p are associated with defense against oxidative stress (Table 7). Two of these (peroxiredoxin 1 [PRDX1] and endoplasmic reticulum protein ERP19 [TXNDC12]) utilize reducing equivalents provided through the thioredoxin system, and 2 (glutamate-cysteine ligase [modifier subunit] or GCLM and glutathione peroxidase 7 [GPX7]) utilize glutathione. One of the most important genes associated with oxidative stress is glutamate-cysteine ligase (GCL) (also called gamma-glutamylcysteine synthetase), which is the first rate limiting enzyme of glutathione synthesis. This enzyme requires coupled ATP hydrolysis to form an amide bond between the γ-carboxyl group of glutamate and the amino group of cysteine to form γ-glutamylcysteine. The enzyme consists of a heavy catalytic subunit (73 kDa) and a light chain or modifier subunit is found on chromosome 1p. The specific importance of GCLM to protection against oxidative stress is underscored in GCLM knockout mice, which are severely compromised in the generation of glutathione-S-transferases (GSTs), and 2 metal response element binding transcription factors. A compilation of the 10 most significant transcription factors capable of targeting the 5′-upstream promoter regions of these 19 genes (GeneCards [SABiosciences’ database; UCSC Genome Browser]) indicates the possible involvement of 95 distinct transcription factors that control their expression. In addition, the Wnt/beta-catenin signaling pathway has been shown to activate various P450 family and GST mu class enzymes in mouse models. Since transcription factors respond to different cellular demands and stresses, the presence of these genes on chromosome 1p indicates that the loss of this chromosome arm could compromise the cell’s ability to respond to a variety of environmental toxins/carcinogens that could damage DNA.

It is of interest that all 5 genes of the mu class of GSTs are located on chromosome 1p. The 5 genes are arranged in tandem in the physical order 5′-M4-M2-M1-M5-M3-3′. The M4-M2-M1-M5 sequence in the gene cluster is oriented in a head-to-tail orientation, whereas the M3 gene is oriented tail-to-tail with respect to the adjacent M5 gene, and is therefore transcribed in the reverse orientation relevant to the other 4 GST mu genes. This GST mu gene cluster functions in the detoxification of electrophilic compounds by conjugating glutathione to a wide number of endogenous and exogenous toxins/carcinogens. Genetic polymorphisms in GSTM1 increase susceptibility to gastric and colorectal adenocarcinomas. In addition, about 70% of human loci is deleted for GSTM1 and 50% of the human population is homozygous deleted for GSTM1. This deletion is a result of unequal crossing-over between the two 2.3 kb repeated regions in the intergenic regions that flank the GSTM1 gene. Homozygous deletion of GSTM1 results in increased baseline chromosomal aberrations in lymphocytes among smokers, indicating the role of epoxides and other reactive metabolites of polycyclic aromatic hydrocarbons in inducing
genomic instability in these compromised cells. All 5 GSTM genes have distinct promoter regions that respond to a different array of transcription factors. Therefore, the loss of chromosome 1p would compromise cellular defenses against toxins/carcinogens, especially in individuals harboring the GSTM1 deletion or other specific polymorphisms.

Development of resistance to cell death and the propagation of cells with DNA damage and chromosomal defects (summary)

We have described in this review how the combination of the persistent damage to a cell’s genome with the inability of that cell to adequately repair the damage or die in response to the excessive damage, is a dangerous situation which can result in clonal selection and the development of colon carcinogenesis. The molecular and cellular mechanisms that are associated with the death of cells are most complex, and include both caspase-dependent and caspase-independent processes. Listed in Tables 1–7 are 27 pro-apoptotic/pro-cell death genes found on chromosome 1p, whose simultaneous loss caused by a chromosome 1p deletion could have a major impact on the development of resistance to cell death. In Table 9, we extract from those tables the specific genes whose products contribute to cell death. Caspase-9 and both subunits of DNA fragmentation factor are on the downstream execution phase of apoptosis, and the consequences of their loss are obvious. However, the loss of other gene products (eg, TP73, miR-34a) can have pleiotropic effects on cell death pathways because of multiple transcriptional or translational targets. In addition, TP73, KIF1B, and E2F2 are classified as haploinsufficient genes, with loss of function implied with the presence of only 1 allele. Some gene products have dual DNA repair/pro-cell death functions (eg, MUTYH) and dual mitosis/pro-cell death functions (KIF1B). One can see (Table 9) that, in addition to classic pro-apoptotic genes, there are dual role cell survival/pro-cell death genes, DNA damage-response genes, various tumor suppressor genes, genes associated with mitosis, miRNAs, Wnt signaling, and protection against the generation of peroxides. The mechanism of action of these 27 genes in the control of cell fate is an active area of investigation and beyond the scope of this review. This detailed study of the implications of the loss of chromosome 1p serve as an example of how specific chromosomal deletions can have a major impact on carcinogenesis.

Role of dietary factors in colon carcinogenesis (Table 10)

In this section we first address what alteration in specific dietary factors can lead to the loss of chromosome segments or entire chromosome arms in general to produce loss of heterozygosity. Second, we will consider how the consequences of the loss of genes located on chromosome 1p might be affected by pro-carcinogenic and anti-carcinogenic dietary factors. Our approach is to show how specific dietary factors may influence the molecular and cellular processes affected by chromosome 1p loss that were described in previous sections. Links of diet to any of the specific genes lost by the 1p deletion (see Tables 1–8) are listed in Table 10.

Diets high in fat,473,539–547 but low in fiber,540,548–551 low in vegetable intake,552–555 and micronutrient deficient556–560 induce oxidative stress and DNA damage and adversely affect many molecular pathways that prevent genomic instability and apoptosis resistance, 2 major processes that, together, enhance the development of sporadic colon cancer.

Table 9 Summary of pro-cell death genes on chromosome 1p

| Pro-cell death genes | Reference tables |
|----------------------|-----------------|
| GADD54rr, MUTYH, TP73 | Table 1 DNA repair and DNA damage response genes |
| APITD1, CCNL2, CDC2L2, CDC42, E2F2, KIF1B, PLK3 | Table 2 Mitosis-related and spindle checkpoint genes |
| BCL2L15, BCL10, CASP9, DFFA, DFFB, THAP3, TNFRSF25 | Table 3 Apoptosis-related genes |
| miR-34a, miR-101-1, miR-320b-1 | Table 4 MicroRNAs (miRNAs) and components of the miRNA processing complex |
| CTNNB1P1 (ICAT) | Table 5 Genes associated with Wnt signaling pathway |
| CHDS, DEAR1, PRDM2, NBL1, PLA2S-II, PRDX1 | Table 6 Tumor suppressor genes |
| Table 7 Genes associated with antioxidant function |

Abbreviations: APITD1, Apoptosis-inducing, TAF9-like domain 1; CL2L15, B-Cell Lymphoma-2-like protein 15; BCL10, B-Cell Lymphoma 10; CASP9, cysteine-aspartic acid protease, family member 9; CCNL2, Cyclin L2; CDC2L2, Cell Division Cycle 2-like 2; CDC42, Cell Division Cycle 42; CHDS, Chromodomain Helicase DNA Binding Protein 5; CTNNB1P1 (ICAT), Catenin, beta interacting protein 1 (Inhibitor of beta-catenin-interacting protein 1); DEAR1, Ductal Epithelium-Associated RING Chromosome 1; DFFA, DNA Fragmentation Factor A; DFFB, DNA Fragmentation Factor B; E2F2, E2F transcription factor 2; GADD45rr, Growth Arrest and DNA-Damage-inducible 45 alpha; KIF1B, Kinesin family member 1B; miR-34a, microRNA-34a; miR-101-1, microRNA-101-1; miR-320b-1, microRNA-320b-1; MUTYH, MutY Homolog (E. coli); NBL1, Neuroblastoma, suppression of tumorigenicity 1; PLA2S-II, The Secretory Type II Phospholipase A2; PLK3, Polo-like Kinase 3; PRDM2, PR Domain Containing 2; PRDX1, Peroxiredoxin 1; THAP3, THAP domain containing; TNFRSF25, Tumor Necrosis Factor Receptor Superfamily, Member 25; TP73, Tumor Protein 73.
| Process                      | Dietary factor(s) and food sources                                                                 | Effect(s) of dietary factors and references                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DNA repair and DNA repair proteins | 1) Polyphenols occur in fruits and vegetables, wine, tea, coffee, herbs, extra virgin olive oil, chocolate, and other cocoa products | 1) Stimulates DNA repair<sup>491,492</sup> and increases levels of DNA repair proteins (eg, PARP-1 and PMS2) by chlorogenic acid and metabolites<sup>493</sup> and GADD45 by dihydroxyphenylethanol<sup>494</sup> and quercetin<sup>495</sup> 2) Vitamins | 2) Ascorbate upregulates MLH1 and p73<sup>496</sup> 3) Exerts cancer-protective effects through modulation of miRNA expression;<sup>497,499</sup> rats fed a methyl-deficient diet exhibited decreased expression of miRNA-34a with the concomitant increase in E2F3<sup>498</sup> 4) Quercetin and metabolites modulate inflammatory miRNA gene expression.<sup>501</sup> 5) n-3 polyunsaturated fatty acids modulate carcinogen-directed non-coding miRNA signatures in rat colon.<sup>502</sup> 6) Differences in dietary vitamin E affect hepatic miRNA concentrations in vivo.<sup>503</sup> |
| MicroRNA expression          | 1) Folate                                                                                           | 1) Exerts cancer-protective effects through modulation of miRNA expression.<sup>497,500</sup> 2) Ascorbate upregulates MLH1 and p73<sup>496</sup> | 2) Exert cancer-protective effects through modulation of miRNA expression.<sup>497,499</sup> 3) Exerts cancer-protective effects through modulation of miRNA expression.<sup>497,500</sup> 4) Quercetin and metabolites modulate inflammatory miRNA gene expression.<sup>501</sup> 5) n-3 polyunsaturated fatty acids modulate carcinogen-directed non-coding miRNA signatures in rat colon.<sup>502</sup> |
| Wnt signaling pathway        | 1) Stilbenes (polyphenols) present in grapes, berries, peanuts, and red wine                      | 1) Reduced nuclear and cytoplasmic immunostaining of β-catenin in the AOM rat model of colon carcinogenesis.<sup>504</sup> 2) Curcumin                                                                                       | 2) Curcumin has an inhibitory effect on Wnt signaling<sup>505,506</sup> through a) suppression of β-catenin response transcription activated by Wnt3a<sup>507</sup> b) induction of caspase-3-mediated degradation of β-catenin<sup>508</sup> c) downregulation of p300, a positive regulator of the Wnt/β-catenin pathway,<sup>507</sup> d) reduction of expression of the Frizzled-1 Wnt receptor.<sup>509</sup> 3) Triterpene lupeol found in a variety of fruits, vegetables, and some medicinal herbs | 3) Lupeol treatment resulted in a) an increase of apoptosis, b) a decrease in β-catenin transcriptional activity, c) a restriction of the translocation of β-catenin from the cytoplasm to the nucleus, d) a decrease in expression of the Wnt target genes, c-myc, cyclin D1, e) a decrease in expression of the proliferation markers, PCNA, Ki-67, and f) a decrease in expression of the invasion marker, osteopontin.<sup>510</sup> |
| Antioxidant gene expression  | 1) Polyphenols (eg, red wine, black tea)                                                            | 1) Activate endogenous antioxidant defense systems, which include the glutathione peroxidases,<sup>511,512</sup> enhancement of glutathione and γ-glutamylcysteine synthetase.<sup>513,517</sup> 2) Curcumin                                                                                       | 2) Curcumin alters EpRE and AP-1 binding complexes and elevates glutamate-cysteine ligase expression.<sup>518</sup> 3) Diterpenes (eg, kahweol, cafestol) | 3) The coffee-derived diterpenes (eg, kahweol, cafestol) can induce γ-glutamylcysteine synthetase and glutathione levels in the liver, kidney, lung, and colon of the rat.<sup>519</sup> |
| Environmental/metabolic toxicity genes | 1) Polyphenols and orto-phenols                                                               | 1) Activate endogenous detoxification defense systems,<sup>511,520</sup> including GSTM2, p-coumaric acid, a coffee compound,<sup>512</sup> can increase the mRNA levels of GSTM2.<sup>522</sup> 2) Diallyl disulfide (DADS) | 2) DADS increases tissue activities of quinone reductase and glutathione transferase in the gastrointestinal tract of the rat.<sup>522</sup> 3) Butyrate                                                                                       | 3) Butyrate can induce GSTM2 expression in human colon cells.<sup>524</sup> 4) The coffee-derived diterpenes (eg, kahweol, cafestol)<sup>521</sup> can enhance glutathione S-transferase activities.<sup>519,525</sup> |
| Oxidative DNA damage         | 1) Polyphenols include flavonoids (quercetin, luteolin, kaempferol, naringenin; myricetin), oleuropein, protocatechuic acid, hydroxybenzoic acids, flavones, hydroxycinnamic acids, lignans, anthocyanins, isoflavones, stilbenes, propanoic glycosides, chlorogenic acid, and metabolites | 1) Polyphenols have the capacity to act as antioxidants (chain breakers or free radical scavengers,<sup>526</sup> thereby preventing the induction of oxidative DNA lesions,<sup>527,530</sup> and stimulating DNA repair,<sup>497</sup> black tea complex polyphenols inhibit 1,2-dimethylhydrazine-induced oxidative DNA damage in rat colonic mucosa,<sup>531</sup> 4-coumaric acid, a coffee component, can reduce oxidative DNA damage in rat colonic mucosa.<sup>522</sup> | (Continued)
Table 10 (Continued)

| Process                                                                 | Dietary factor(s) and food sources                                                                 | Effect(s) of dietary factors and references                                                                                                                                                                                                                     |
|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                        | 2) Fish oils, such as docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA)                   | 2) Fish oils reduce oxidative DNA damage in rat colonoocytes.532                                                                                                                                                                                                     |
|                                                                        | 3) Monounsaturated fatty acid (eg, oleic acid) obtained from olive oil.                          | 3) In a study of the effect of olive oils on biomarkers of oxidative DNA stress in Northern and Southern Europeans, 25 mL of 3 olive oils with low, medium, and high phenolic content were administered to 182 males daily for 3 weeks, resulting in a significant reduction of DNA oxidation by 13%.533 The olive oil intake led to marked increase in monounsaturated fatty acid intake independent of the phenolic compounds; lifelong feeding of monounsaturated fatty acid-rich olive oil led to a lower level of oxidative DNA damage and DNA double strand breaks compared with polynsaturated fatty acid-sunflower oil.534 |
|                                                                        | 4) Short-chain fatty acids (eg, butyrate)                                                      | 4) Pre-incubation of normal human colonoocytes ex vivo and HT-29 colon cancer cells in vitro with physiological concentrations of butyrate reduced H2O2-induced DNA damage using the comet assay535 butyrate protects human colon cells from genetic damage by 4-hydroxyxnonenal.536                                                                 |
|                                                                        | 5) Garlic organosulfur compounds (OSC), such as allin, diallyl sulfide, diallyl disulfide, S-allyl cysteine, allyl mercaptan, are derived from garlic | 5) OSC decreased the genotoxicity of hydrogen peroxide and methanesulfonate, assessed using the comet assay.537                                                                                                                                                     |
|                                                                        | 6) Vitamins                                                                                   | 6) Ascorbic acid (vitamin C) protects against endogenous oxidative DNA damage.538                                                                                                                                                                                   |

Abbreviations: AOM, azoxymethane; AP-1, activator protein 1; c-myc, avian myelocytomatosis viral oncogene homolog; DADS, diallyl sulfide; DHA, docosahexaenoic acid; E2F3, E2F transcription factor 3; EPA, eicosapentaenoic acid; EpRE, electrophile response element; GADD45, Growth Arrest and DNA-Damage-inducible 45; GSTM2, Glutathione S-Transferase Mu 2; Ki-67, antigen identified by monoclonal antibody Ki-67; miRNA-34a, microRNA-34a; MLH1, mutL homolog 1; mRNA, messenger ribonucleic acid; E2F2, found on chromosome 1p, have also been reported to be haploinsufficient; 1p36.3 deletion was found in 182 males daily for 3 weeks, resulting in a significant reduction of DNA oxidation by 13%.533 The olive oil intake led to marked increase in monounsaturated fatty acid intake independent of the phenolic compounds; lifelong feeding of monounsaturated fatty acid-rich olive oil led to a lower level of oxidative DNA damage and DNA double strand breaks compared with polynsaturated fatty acid-sunflower oil.534 |

The effects of diet likely occur early in the carcinogenesis process, since an altered vegetable intake is known to affect pivotal carcinogenesis pathways in the colonic mucosa from adenoma patients and controls.561 Although 2 alleles are associated with each gene, and the loss of 1 allele may be compensated for by the other, many genes are reported to be haploinsufficient, including those associated with the mitotic checkpoint.562 It is relevant that TP73, KIF1B, and E2F2, found on chromosome 1p, have also been reported to be haploinsufficient.490,563,564 and could have dramatic consequences for colon tumorigenesis if only 1 allele is expressed in colonic epithelial cells. It is possible that many other genes may be found to be haploinsufficient in the future, since a map of 1079 probable haploinsufficient genes has been compiled by systematic identification of genes unambiguously and repeatedly compromised by copy number variation among 8458 apparently healthy individuals.563 Those genes with a high probability of exhibiting haploinsufficiency were enriched among genes implicated in human dominant diseases and among genes causing abnormal phenotypes in heterozygous knockout mice.563 In addition, the loss of several genes on the same chromosome arm that affect a particular molecular pathway (see Tables 1–8) may together have a significant effect on that pathway, although the loss of a single gene may have little effect. Specific dietary factors may decrease the protein levels of certain genes through post-translational mechanisms (eg, proteasomal degradation), thereby inducing a functional pseudo-biallelic loss of a gene, one through a physical loss of the chromosomal segment harboring that gene, and the other an actual degradation of the gene product.

Although dietary factors may affect many processes associated with carcinogenesis, we will evaluate specific factors associated with oxidative stress/inflammation, since these genotoxic processes are known to have major effects on the initiation and progression of cancer, including colon cancer.566–578 Direct damage to DNA, assessed by immunohistochemical staining of 8-oxoG, correlates with poor survival in colorectal cancer.579 ROS can cause excessive DNA double strand breaks, resulting in the loss of chromosome segments or entire arms, depending on the location of the break. In addition, several DNA repair proteins are degraded through an oxidative mechanism,580,581 thereby affecting DNA repair and increasing susceptibility to cancer.582 Oxidative stress can affect spindle organization, induce centrosome amplification, cause proteolysis of components of the anaphase-promoting complex, and override the spindle checkpoint, thereby affecting chro-
mosomal stability. Therefore, oxidative stress can induce a mutator phenotype in affected cells. The big question is what dietary factors contribute directly to oxidative DNA damage and aneuploidy (alteration in the number of whole chromosomes or chromosomal segments). We now address several dietary factors that may be associated with these forms of genomic instability. Although the literature on dietary factors associated with genomic instability is substantial, we have chosen to discuss the effects of a high-fat diet, folate deficiency, and niacin deficiency, since the molecular and cellular mechanisms associated with the overabundance or deficiency of these factors have been especially well studied.

A high-fat diet derived from beef tallow or corn oil (eg, linoleic acid, palmitic acid) is one of the major causes of sporadic colon cancer. Long-chain nonesterified (“free”) fatty acids (FFA) and some of their derivatives and metabolites can modify the intracellular production of ROS, in particular superoxide anions and hydrogen peroxide, in part, through their interference with the mitochondrial electron transport chain. FFA can also interfere with the glutathione system and stimulate the generation of superoxide anions from phagocytic NADPH oxidases. Chronic exposure of cells to FFA (eg, palmitic acid) can also alter miRNA expression (eg, miR-34a, miR-146).

The genotoxicity associated with a high-fat diet is also caused, in part, by high concentrations of hydrophobic bile acids released into the gastrointestinal tract in response to high-fat meals where they act as detergents to aid in the digestion of fats. Our research group showed that deoxycholic acid (a major hydrophobic bile acid in the human colon) induces ROS in vitro, and oxidative DNA damage, sessile adenomas, and colon cancer dietary-related mouse models. In addition to the bile-acid-induced formation of 8-oxoG in guanine bases of DNA and the induction of DNA strand breaks (activation of γ-H2AX and PARP), we have shown that deoxycholic acid affects genomic instability at the chromosomal level. Evidence indicating the induction of chromosomal damage by deoxycholic acid include the formation of micronuclei and aberrant mitoses, attenuation of activation of the nocodazole-induced spindle checkpoint, and decrease in protein expression of major spindle checkpoint proteins (eg, Mad2, BubR1, securin). The dramatic effect of deoxycholic acid on the process of mitosis is underscored by the finding that deoxycholic acid modulates 71 mitosis-related genes at the mRNA and/or protein levels in vitro and in vivo using mouse models. The induction by hydrophobic bile acids of both DNA and chromosomal damage indicates that hydrophobic bile acids are endogenous carcinogens that, at high pathophysiologic concentrations, are capable of contributing to the initiation and progression of colon cancer. In addition to causing genomic instability, deoxycholic acid can activate survival pathways (eg, NF-κB and autophagy), which allow for the survival and selection of cells with genomic instability.

Coffee drinkers have a lower incidence of cancer, including that of the colon and rectum. One coffee compound that we found to prevent the formation of bile acid-induced proximal colon cancer in a mouse model is chlorogenic acid (CGA), the ester of caffeic acid with quinic acid. CGA is one of the most abundant polyphenols in the human diet, with coffee, fruits (eg, blueberry, strawberry, raspberry, apple), and vegetables (eg, eggplants, potato, carrot, tomato) as its major sources. CGA and its metabolites are likely responsible, in part, for the lower risk of rectal cancer associated with the consumption of decaffeinated coffee in 2 large prospective cohort studies. One possible mechanism by which polyphenols can reduce colon cancer in this model is through the reduction in deoxycholic acid levels. In this study, Han et al report that when rats on a high-fat diet (30% beef tallow) received dietary curcumin (component of the Indian spice turmeric) or caffeic acid (metabolite of CGA), the fecal concentration of deoxycholic acid was substantially reduced. In addition, dietary supplementation of this high-fat diet with caffeic acid, catechin (plant polyphenol), rutin (citrus flavonoid glycoside), and ellagic acid (plant polyphenol) significantly reduced the levels of fecal lithocholic acid, a second major hydrophobic bile acid and risk factor for colon cancer.

The induction of double-strand breaks is a major cause of the production of chromosomal fragments and the deletion of hundreds to thousands of genes. An important DNA repair protein in preventing large chromosomal deletions is Parp-1 (Figure 5). DNA strand breakage is directly caused by ROS (which would be enhanced due to the loss of genes encoding antioxidant proteins in the chromosome 1p deletion [Table 7]) or as a result of the activity of base excision repair enzymes (see Figure 5). Strand breakage activates Parp-1, which is involved with opening up chromatin and allowing DNA repair processes to occur, including base excision repair, single-strand and double-strand repair (Figure 5). Shibata et al carried out mutation analysis using Parp-1 knockout mice, and found that PARP deficiency enhanced deletion mutations, especially >1 kbp. A dietary micronutrient whose deficiency has a major effect on PARP activity is niacin (vitamin B₃) obtained from meat and corn. The term niacin
refers to nicotinic acid and nicotinamide, which are both used by humans to form NAD+. PARP-1 utilizes NAD+ to make poly(ADP-ribose) needed for poly(ADP-ribose)ylation of proteins. In keeping with the protective effect of PARP, we determined that pre-treatment of cells in vitro with nicotinic acid and nicotinamide protected against bile acid-induced apoptosis, presumably by enhancing PARP-mediated DNA repair of bile acid-induced DNA damage and replenishing the NAD+ levels in mitochondria. In addition, we showed that pre-treatment of cells with nicotinic acid and nicotinamide upregulated the mRNA levels of the glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and glucose-6-phosphate dehydrogenase (G6PD). GAPDH and G6PD may protect against oxidative stress, in part through the generation of the reduced pyridine nucleotides, NADH and NADPH, respectively, from NAD+. Niacin supplementation was even reported to improve pellagra (severe niacin deficiency) in a patient with Crohn’s disease, a pre-cancerous inflammatory condition associated with oxidative DNA damage. Pellagra most probably developed in these Crohn’s disease patients through a combination of intestinal malabsorption of niacin/nicotinic acid and the high demand for NAD+ that accompanies DNA damage-induced PARP-1 activity (see Figure 5). Work from our laboratory indicated that CGA and its metabolites, caffeic acid, m-coumaric acid, and 3-(m-hydroxyphenyl) propionic acid, increased PARP-1 protein expression. The modulation of PARP-1 protein levels by CGA may explain, in part, the colon cancer preventive properties of CGA when added as a supplement to the bile acid-induced colon cancer mouse model.

The mechanisms by which chromosome segments are deleted and translocated can be most complex. Deletions and translocations can arise from centromeric instability and telomeric instability, and have been proposed as possible mechanisms for chromosomal aberrations associated with chromosome 1. Centromeric instability can result from hypomethylation or acetylation of pericentromeric heterochromatin, resulting in decondensation/uncoiling/disruption of the centromere and loss of the affected chromosome arms. Telomeric instability is characterized by telomeric fusions, formation of anaphase bridges during mitosis, broken chromosomes upon the stress of cell division, and fusion of chromosomal fragments to chromosome ends. This cycle of chromosomal aberrations is referred to as breakage–fusion–bridge cycles. Six genes found on chromosome 1p (APITD1, CCDC28B, CDC8A, HDAC1, KIF2C, RCC2) are associated with centromeres (see Table 2), and whose loss would affect centromeric instability. A deficiency of HDAC1, for example, has been reported to disrupt pericentromeric heterochromatin. In addition to its role in the repair of interstrand cross-links, APOLLO (aka DCLRE1B [DNA cross-link repair 1 BJ]) is also involved in the protection of telomeres (see Table 1). APOLLO is stabilized when bound to the telomere-binding protein TRF2, and protects human telomeres in S phase suggesting that APOLLO contributes to a processing step associated with the replication of chromosome ends. Hydrophobic bile acids, probably through the generation of oxidative stress, can modulate 71 genes associated with mitosis and decrease the protein expression of 3 major spindle checkpoint proteins (eg, Mad2, BubR1, securin). These alterations in gene expression, coupled with direct oxidative damage to components of the mitotic apparatus, may be responsible, in part, for the observed bile acid-induced mitotic aberrations. It is, therefore, possible that bile acids may contribute to the loss of chromosome 1p through its effects on centromere instability and telomeric fusions.

Another mechanism by which large chromosomal deletions can occur is through folic acid deficiency. Folic acid can attenuate the loss of heterozygosity of the DCC tumor suppressor gene in the colonic mucosa of patients with colorectal adenomas indicating that folic acid deficiency can affect allelic deletion and associated micronuclei formation. Folic acids are a group of water-soluble B vitamins (obtained from leafy, green vegetables, the whole grain quinoa, and lentils) whose deficiency contributes to colon cancer. Folicates maintain DNA stability through their ability to donate one-carbon units for cellular metabolism and particularly for DNA biosynthesis, repair, and methylation. Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme in one-carbon metabolism. MTHFR catalyzes a unidirectional reaction that determines the balance between cellular availability of 5,10-methylenetetrahydrofolate, used for thymidylate and purine synthesis, and methyltetrahydrofolate used for biological methylation. Folate deficiency, therefore, enhances carcinogenesis by impairing normal methylation and nucleotide synthesis, and creates an imbalance between the partitioning of cellular folates into these two pathways. Inhibition of folate metabolism results in excessive uracil misincorporation into DNA with approximately 4 million uracil bases/cell. The repair of 2 adjacent uracil residues on opposite strands of DNA can result in a double-strand break.
leading to chromosomal breakage and aneuploidy.\(^635\)\(^636\)\(^637\)\(^638\)\(^639\) Folate deficiency also induces hypomethylation and inhibits DNA excision repair in immortalized normal human colon epithelial cells\(^633\) and in the rat colon.\(^635\)

Recent studies have implicated folate deficiency in the modulation of miRNA expression.\(^497\)\(^640\) Using microarrays of 385 known human miRNAs, it was determined that folate deficiency in vitro in cultured cells induced a statistically significant fold-change in 24 miRNAs.\(^630\) One of these miRNAs was miR-34a, which is found on chromosome 1p and involved in p53-mediated signaling (see Table 4 and the section on MiRNA and MiRNA Processing). MiRNAs were also determined to be altered in patients on a folate-deficient diet.\(^636\) In addition to folate deficiency, polymorphisms of MTHFR and altered folate levels are associated with colon cancer risk.\(^637\)\(^638\)\(^640\) The fact that MTHFR is located on chromosome 1p at 1p36.22 indicates that the loss of this chromosome arm, coupled with folate deficiency, can have major effects on genomic instability.

In this section we have considered how dietary factors such as niacin, folic acid, and a low-fat diet associated with low bile acid levels, together with antioxidants that protect against oxidative DNA damage (Table 10), might affect the processes relevant to carcinogenesis that are altered by chromosome 1p loss. In addition to a deficiency in dietary factors that prevent oxidative DNA damage, a deficiency of certain dietary factors that modulate DNA repair proteins, miRNA expression, antioxidant enzymes, defenses against environmental toxicity, and the Wnt signaling pathway (Table 10) can exacerbate the effects of the loss of chromosome 1p. An understanding of the complex molecular and cellular pathways that are affected by dietary factors is an enormous undertaking, but one that has become a focus of colon cancer prevention.

**Acknowledgments**

This work was supported in part by NIH 5 R01 CA119087, Arizona Biomedical Research Commission Grant #0803, VA Merit Review Grant 0142 of the Southern Arizona Veterans Affairs Health Care System and Biomedical Diagnostics and Research, Inc., Tucson, Arizona.

**Disclosure**

The authors declare no conflicts of interest.

**References**

1. Steinbeck RG. Chromosome division figures reveal genomic instability in tumorigenesis of human colon mucosa. *Br J Cancer*. 1998;77:1027–1033.

2. Hermesen M, Postma C, Baak J, et al. Colorectal adenoma to carcinoma progression follows multiple pathways of chromosomal instability. *Gastroenterology*. 2002;123:1109–1119.

3. Ribas M, Masramon L, Aiza G, Capella G, Miro R, Peinado MA. The structural nature of chromosomal instability in colon cancer cells. *FASEB J*. 2003;17:289–291.

4. Richter H, Slezak P, Walch A, et al. Distinct chromosomal imbalances in nonpolyoid and polyoid colorectal adenomas indicate different genetic pathways in the development of colorectal neoplasms. *Am J Pathol*. 2003;163:287–294.

5. Rajagopalan H, Nowak MA, Vogelstein B, Lengauer C. The significance of unstable chromosomes in colorectal cancer. *Nat Rev Cancer*. 2003;3:695–701.

6. Postma C, Hermesen MA, Coiffa J, et al. Chromosomal instability in flat adenomas and carcinomas of the colon. *J Pathol*. 2005;205:514–521.

7. Stewenius Y, Gorunova L, Jonson T, et al. Structural and numerical chromosomal changes in colon cancer develop through telomere-mediated anaphase bridges, not through mitotic multipolarity. *Proc Natl Acad Sci U S A*. 2005;102:5541–5546.

8. Payne CM, Bernstein C, Dvorak K, Bernstein H. Hydrophobic bile acids, genomic instability, Darwinian selection, and colon carcinogenesis. *Clin Exp Gastroenterol*. 2008;1:19–47.

9. Ashktorab H, Schaffer AA, Daremipouran M, Smoot DT, Lee E, Brim H. Distinct genetic alterations in colorectal cancer. *PloS One*. 2010;5:e8879.

10. Pino MS, Chung DC. The chromosomal instability pathway in colon cancer. *Gastroenterology*. 2010;138:2059–2072.

11. Bacolod MD, Barany F. Gene dysregulations driven by somatic copy number aberrations-biological and clinical implications in colon tumors: A paper from the 2009 William Beaumont Hospital Symposium on Molecular Pathology. *J Mol Diagn*. 2003;12:552–561.

12. Reichmann A, Martin P, Levin B. Chromosomes in human large bowel tumors. A study of chromosome 1. *Cancer Genet Cytofgenet*. 1984;12:295–301.

13. Muleris M, Salmon RJ, Dutrillaux B, et al. Characteristic chromosomal imbalances in 18 near-diploid colorectal tumors. *Cancer Genet Cytofgenet*. 1987;29:289–301.

14. Muleris M, Salmon RJ, Dutrillaux B. Existence of two distinct processes of chromosomal evolution in near-diploid colorectal tumors. *Cancer Genet Cytofgenet*. 1988;32:43–50.

15. Leister I, Weith A, Bruderlein S, et al. Human colorectal cancer: High frequency of deletions at chromosome 1p35. *Cancer Res*. 1990;50:7232–7235.

16. Bravard A, Luccioni C, Muleris M, Lefrancois D, Dutrillaux B. Relationships between UMPK and PGD activities and deletions of chromosome 1p in colorectal cancers. *Cancer Genet Cytofgenet*. 1991;56:45–56.

17. Couturier-Turpin MH, Ensous C, Louvel A, Poirier Y, Couturier D. Chromosome 1 in human colorectal tumors. Cytogenetic research on structural changes and their significance. *Hum Genet*. 1992;88:431–438.

18. Bard G, Johansson B, Pandis N, et al. Cytogenetic aberrations in colorectal adenocarcinomas and their correlation with clinicopathologic features. *Cancer*. 1993;71:306–314.

19. Bard G, Pandis N, Fenger C, Kronborg O, Bomme L, Heim S. Deletion of 1p36 as a primary chromosomal aberration in intestinal tumorigenesis. *Cancer Res*. 1993;53:1895–1899.

20. Bard G, Johansson B, Pandis N, et al. Cytogenetic analysis of 52 colorectal carcinomas – non-random aberration pattern and correlation with pathologic parameters. *Int J Cancer*. 1993;55:422–428.

21. Bomme L, Bard G, Pandis N, Fenger C, Kronborg O, Heim S. Clonal karyotypic abnormalities in colorectal adenomas: Clues to the early genetic events in the adenoma–carcinoma sequence. *Genes Chromosomes Cancer*. 1994;10:190–196.

22. Bard G, Sukhikh T, Pandis N, Fenger C, Kronborg O, Heim S. Karyotypic characterization of colorectal adenocarcinomas. *Genes Chromosomes Cancer*. 1995;12:97–109.

23. Gerdes H, Chen Q, Elahi AH, et al. Recurrent deletions involving chromosomes 1, 5, 17, and 18 in colorectal carcinomas: Possible role in biological and clinical behavior of tumors. *Anticancer Res*. 1995;15:13–24.
24. Lothe RA, Andersen SN, Hofstad B, et al. Deletion of 1p loci and microsatellite instability in colorectal polyps. *Genes Chromosomes Cancer*. 1995;14:182–188.

25. Prandi C, Finke LH, Herfarth C, Schlag P, Schwab M, Amler L. Deletion mapping defines different regions in 1p34.2-pter that may harbor genetic information related to human colorectal cancer. *Oncogene*. 1999;11:1357–1362.

26. Di Vinci A, Infusini E, Peveri C, Risio M, Rossini FP, Giarettri W. Deletions at chromosome 1p by fluorescence in situ hybridization are an early event in human colorectal tumorigenesis. *Gastroenterol*. 1996;111:102–107.

27. Bomme L, Bardi G, Pandis N, Fenger C, Kronborg O, Heim S. Chromosome abnormalities in colorectal adenomas: Two cytogenetic subgroups characterized by deletion of 1p and numerical aberrations. *Hum Pathol*. 1996;27:1192–1197.

28. Bardi G, Parada LA, Bomme L, et al. Cytogenetic findings in metastases from colorectal cancer. *Int J Cancer*. 1997;72:604–607.

29. Ogunbiyi OA, Goodfellow PJ, Gagliardi G, et al. Prognostic value of chromosome 1p allelic loss in colon cancer. *Gastroenterology*. 1997;113:761–766.

30. Di Vinci A, Infusini E, Peveri C, et al. Correlation between 1p deletions and aneucyosity in human colorectal adenomas. *Int J Cancer*. 1998;75:45–55.

31. Di Vinci A, Infusini E, Negro S, Monaco R, Giarettri W. Intratumor distribution of 1p deletions in human colorectal adenocarcinoma is commonly homogeneous. Indirect evidence of early involvement in colorectal tumorigenesis. *Cancer*. 1998;83:415–422.

32. Tomlinson I, Ilyas M, Johnson V, et al. A comparison of the genetic pathways involved in the pathogenesis of three types of colorectal cancer. *J Pathol*. 1998;184:148–152.

33. Bomme L, Heim S, Bardi G, et al. Allelic imbalance and cytogenetic deletion of 1p in colorectal adenomas: A target region identified between D1S199 and D1S234. *Genes Chromosomes Cancer*. 1998;21:185–194.

34. Di Vinci A, Infusini E, Peveri C, et al. Intratumor heterogeneity of chromosome 1, 7, 17, and 18 aneuploides obtained by FISH and association with flow cytometric DNA index in human colorectal adenocarcinomas. *Cytometry*. 1999;35:369–375.

35. Parada LA, Maranon A, Hallen M, et al. Cytogenetic analyses of secondary liver tumors reveal significant differences in genomic imbalances between primary and metastatic colon carcinomas. *Clin Exp Metastasis*. 1999;17:471–479.

36. Ragnarsson G, Eiriksdottir G, Johannsdottir JT, Jonasson JG, Egilsson V. Loss of heterozygosity at chromosome 1p in different solid human tumours: association with survival. *Br J Cancer*. 1999;79:1468–1474.

37. Rashid A, Houlihan PS, Booker S, Petersen GM, Giardiello FM, Hamilton SR. Phenotypic and molecular characteristics of hyperplastic polyposis. *Gastroenterology*. 2000;119:323–332.

38. Thorstensen L, Qvist H, Heim S, et al. Evaluation of 1p losses in primary carcinomas, local recurrences and peripheral metastases from colorectal cancer patients. *Neoplasia*. 2000;2:514–522.

39. Couturier-Turpin MH, Bertrand V, Couturier D. Distal deletion of 1p in colorectal tumors: An initial event and/or a step in carcinogenesis? Study by fluorescence in situ hybridization interphase cytogenetics. *Cancer Genet Cytogenet*. 2001;124:47–55.

40. Thigalingam S, Laken S, Willson JK, et al. Genetic and pathologic significance of 1p, 17p, and 18q aneuploidy and the ERBB2 gene in colorectal cancer and related normal colonic mucosa. *Cancer Genet Cytogenet*. 2004;151:52–59.

41. Giarretti W, Molini S, Ceccharelli J, Prevosto C. Chromosomal instability, aneuploidy, and gene mutations in human sporadic colorectal adenomas. *Cell Oncol*. 2004;26:301–305.

42. Zhou CZ, Qiu GQ, Zhang F, He L, Peng ZH. Loss of heterozygosity on chromosome 1 in sporadic colorectal carcinoma. *World J Gastroenterol*. 2004;10:1431–1435.

43. Tsafir D, Bacolod M, Selvanayagam Z, et al. Relationship of gene expression and chromosomal abnormalities in colorectal cancer. *Cancer Res*. 2006;66:2129–2137.

44. Fijneman RJ, Carvalho B, Postma C, Mengera S, van Hinsbergh VV, Meijer GA. Loss of 1p36, gain of 8q24, and loss of 9q34 are associated with stroma percentage of colorectal cancer. *Cancer Lett*. 2007;258:223–229.

45. Brosens RP, Haan JC, Carvalho B, et al. Candidate driver genes in focal chromosomal aberrations of stage II colon cancer. *J Pathol*. 2010;221:411–424.

46. Sandfort H, Witzel L, Baizer T, Gutschmidt S, Janicke I, Riecken EO. Identification of patients at high risk for colorectal carcinoma from biopsy studies of the apparently normal colorectal mucosa. A multivariate analysis. *Eur J Clin Invest*. 1991;21:295–302.

47. Chhatwal VJ, Ngoo SS, Chan ST, Chia YW, Moochhala SM. Aberrant expression of nitric oxide synthase in human polyps, neoplastic colonic mucosa and surrounding peritumoral normal mucosa. *Carcinogenesis*. 1994;15:2081–2085.

48. Bernstein C, Bernstein H, Garewal H, et al. A bile acid-induced apoptosis assay for colon cancer risk, and associated quality control studies. *Cancer Res*. 1999;59:2353–2357.

49. Bernstein C, Bernstein H, Payne CM, Garewal H. Field defects in progression to adenocarcinoma of the colon and esophagus. *Electronic J Biotechnol*. 2000;3:1–17. Available on the Web: http://www.ejb.org/content/vol3/issue3/full/1.

50. Bernstein H, Holubec H, Warneke JA, et al. Patchy field defects of apoptosis resistance and dedifferentiation in flat mucosa of colon resections from colon cancer patients. *Ann Surg Oncol*. 2002;9:505–517.

51. Suter CM, Martin DI, Ward RL. Hypomethylation of L1 retrotransposons in colorectal cancer and adjacent normal tissue. *Int J Colorectal Dis*. 2004;19:95–101.

52. Roy HK, Liu Y, Wali RK, et al. Four-dimensional elastic light-scattering fingerprints as preneoplastic markers in the rat model of colon carcinogenesis. *Gastroenterology*. 2004;126:1071–1081.

53. Roy HK, Kim YL, Liu Y, et al. Risk stratification of colon carcinogenesis through enhanced backscattering spectroscopy analysis of the uninvolved colonic mucosa. *Clin Cancer Res*. 2006;12:961–968.

54. Hao CY, Moore DH, Wong P, Bennington JL, Lee NM, Chen LC. Alteration of gene expression in macroscopically normal colonic mucosa from individuals with a family history of sporadic colon cancer. *Clin Cancer Res*. 2005;11:1400–1407.

55. Payne CM, Holubec H, Bernstein C, et al. Crypt-restricted loss and decreased protein expression of cytochrome c oxidase subunit I as potential hypothesis-driven biomarkers of colon cancer risk. *Cancer Epidemiol Biomarkers Prev*. 2005;14:2066–2075.

56. Badvie S, Hanna-Morris A, Aareyev HJ, Cohen P, Saini S, Allen-Mersh TG. A “field change” of inhibited apoptosis occurs in colorectal mucosa adjacent to colorectal adenocarcinoma. *J Clin Pathol*. 2006;59:942–946.

57. Bernstein H, Prasad A, Holubec H, et al. Reduced Pms2 in non-neoplastic flat mucosa from patients with colon cancer correlates with reduced apoptosis competence. *Appl Immunohistochem Mol Morphol*. 2006;14:166–172.

58. Kawakami K, Ruzshiewicz A, Bennett G, et al. DNA hypemethylation in the normal colonic mucosa of patients with colon cancer. *Br J Cancer*. 2006;94:593–598.
84. Ciccia A, Elledge SJ. The DNA damage response: Making it safe to
83. Jackson SP, Bartek. The DNA-damage response in human biology and
82. Harper JW, Elledge. The DNA damage response: Ten years after.
80. Gregory SG, Barlow KF, McLay KE, et al. The DNA sequence and biological
78. Negrini S, Gorgoulis VG, Halazonetis TD. Genetic instability – an evolv-
77. Roschke AV, Glebov OK, Lababidi S, Gehlhaus KS, Weinstein JN,
75. Williams AC, Harper SJ, Parakavea C. Neoplastic transformation of a
74. Paraskeva C, Harvey A, Finerty S, Powell S. Possible involvement of
73. Paraskeva C, Buckle BG, Sheer D, Wigley CB. The isolation and
72. Paraskeva C, Finerty S, Powell S. Immortalization of a human col-
71. Paraskeva C, Buckle BG, Sheer D, Wigley CB. The isolation and
68. Daniel CR, Bostick RM, Flanders WD, et al. TGF-
67. Chao H, Brown RE. Field effect in cancer – an update.
65. Bernstein C, Bernstein H, Payne CM, Dvorak K, Garewal H. Field
defects in progression to gastrointestinal tract cancers. Cancer Lett.
2008;260:1–10.
63. Alberts DS, Einspahr JG, Krouse RS, et al. Karyometry of the colonic
mucosa. Cancer Epidemiol Biomarkers Prev. 2007;16:2704–2716.
62. Payne CM, Bernstein C, Bernstein H. Field change of apoptosis
resistance in colonic mucosa of patients with colorectal carcinoma.
J Clin Path. 2007. [electronic letter published February 5, 2007].
61. Bernstein C, Bernstein H, Payne CM, Dvorak K, Garewal H. Field
defects in progression to gastrointestinal tract cancers. Cancer Lett.
2008;260:1–10.
60. Belshaw NJ, Elliott GO, Foxall RJ, et al. Profiling OpTg island field
methylation in both morphologically normal and neoplastic human
colic mucosa. Br J Cancer. 2008;99:136–142.
59. Chao H, Brown RE. Field effect in cancer – an update. Ann Clin Lab
Sci. 2009;39:331–337.
58. Daniel CR, Bostick RM, Flanders WD, et al. TGF-
57. Gregoroy SG, Barlow KF, McLay KE, et al. The DNA sequence and biological
56. Negrini S, Gorgoulis VG, Halazonetis TD. Genetic instability – an evolv-
55. Nigg EA. Mitotic kinases as regulators of cell division and its check-
54. Nyberg KA, Michelson RJ, Putnam CW, Weinert TA. Toward maintain-
ing the genome: DNA damage and replication checkpoints. Ann Rev Genet.
2002;36:617–656.
53. Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S. Molecular
mechanisms of mammalian DNA repair and the DNA damage check-
points. Annu Rev Biochem. 2004;73:39–85.
52. Su TT. Cellular responses to DNA damage: One signal, multiple
choices. Annu Rev Genet. 2006;40:187–208.
51. Hakem R. DNA-damage repair; the good, the bad, and the ugly.
EMBO J. 2008;27:589–605.
50. Wood JL, Chen J. DNA-damage checkpoints: Location, location,
location. Trends Cell Biol. 2008;18:451–455.
49. Reinhart HD, YaRf MB. Kinases that control the cell cycle in response
to DNA damage: Chk1, Chk2, and MK2. Curr Opin Cell Biol. 2009;
21:245–255.
48. Decordier I, Cundari E, Kirsch-Volders M. Mitotic checkpoints and
the maintenance of the chromosome karyotype. Mutat Res. 2008;651:3–13.
47. Gimenez-Abian JF, Diaz-Martinez LA, Wirth KG, Andrews CA, Gime-
nez-Martín G, Clarke, DJ. Regulated separation of sister centromeres
depends on the spindle assembly checkpoint but not on the anaphase
promoting complex/velocosome. Cell Cycle. 2005;4:1561–1575.
46. Kops GIPL, Weaver BAA, Cleveland DW. On the road to cancer:
ANEUPLOIDY and the mitotic checkpoint. Nat Rev Cancer. 2005;5:
773–785.
45. May KM, Hardwick KG. The spindle checkpoint. J Cell Sci. 2006;119:
4139–4142.
44. Musacchio A, Salmon ED. The spindle-assembly checkpoint in space
and time. Nat Rev Mol Cell Biol. 2007;8:379–393.
43. Suijkerbuijk SJE, Kops GJPL. Preventing aneuploidy: The contribu-
tion of mitotic checkpoint proteins. Biochim Biophys Acta. 2008;1786:
24–31.
42. Thirthagiri E, Robinson CM, Huntley S, et al. Spindle assembly
checkpoint and centrosome abnormalities in oral cancer. Cancer Lett.
2007;258:276–285.
41. Mikhailov A, Cole RW, Rieder CL. DNA damage during mitosis in
human cells delays the metaphase/anaphase transition via the spindle
assembly checkpoint. Curr Biol. 2002;12:1797–1806.
40. D’Adda di Fagagna F, Reaper PM, Clay-Farrace, et al. A DNA damage
checkpoint response in telomere-initiated senescence. Nature. 2003;
426:194–198.
39. Longhese MP. DNA damage response at functional and dysfunctional
telomeres. Genes Develop. 2008;22:125–140.
38. Maser RS, DePinho RA. Telomeres and the DNA damage response:
Why the fox is guarding the henhouse. DNA Repair. 2004;3:
979–988.
37. Meier A, Fieger H, Munoz P, et al. Spreadin of mammalian DNA-
damage response factors studied by ChiP-chip at damaged telomeres. EMBO J. 2007;26:2707–2718.
36. Panthic M, Zimmersmann S, El Daly H, et al. Telomere dysfunction and
loss of p53 cooperate in defective mitotic segregation of chromosomes
in cancer cells. Oncogene. 2006;25:4413–4420.
35. Takai H, Smogorzewska A, de Lange T. DNA damage foci at dysfunc-
tional telomeres. Curr Biol. 2003;13:1549–1556.
34. Viscardi V, Clerici M, Cartagena-Lirola H, Longhese MP. Telomeres
and DNA damage checkpoints. Biochimie. 2005;87:613–624.
33. Gisselsson D, Pettersson L, Hoglund M, et al. Chromosomal breakage-
fusion–bridge events cause genetic intratumor heterogeneity. Proc Natl
Acad Sci U S A. 2000;97:5357–5362.
32. Hoffelder DR, Luo L, Burke NA, Watkins SC, Gollin SM, Saunders WS.
Resolution of anaphase bridges in cancer cells. Chromosoma. 2004;112:
398–397.
31. Kitada K, Yamazaki T. The complicated copy number alterations in
chromosome 7 of a lung cancer cell line is explained by a model based
on repeated breakage–fusion–bridge cycles. Cancer Genet Cytogenet.
2008;185:11–19.
110. Lo AW, Sabatier L, Fouladi B, Pottier G, Ricoul M, Murnane JP. DNA amplification by breakage/fusion/bridge cycles initiated by spontaneous telomere loss in a human cancer cell line. *Neoplasia*. 2002;4:531–538.
111. McClintock B. The behavior in successive nuclear divisions of a chromosome broken at meiosis. *Proc Natl Acad Sci U S A*. 1939;25: 405–416.
112. McClintock B. The fusion of broken ends of chromosomes following nuclear fusion. *Proc Natl Acad Sci U S A*. 1942;28:458–463.
113. Selvarajah S, Yoshimoto M, Park PC, et al. The breakage-fusion-bridge (BBF) cycle as a mechanism for generating genetic heterogeneity in osteosarcoma. *Chromosoma*. 2006;115:459–467.
114. Shimizu N, Shingaki K, Kaneko-Sasaguri Y, Hashizume T, Kanda T. When, where and how the bridge breaks: Anaphase bridge breakage plays a crucial role in gene amplification and HSR generation. *Exp Cell Res*. 2005;302:233–243.
115. Bree RT, Neary C, Samali A, Lowndes NF. The switch from survival responses to apoptosis after chromosomal breaks. *DNA Repair*. 2004; 3:989–995.
116. Brodsky MH, Weinert BT, Tsang G, et al. *Drosophila melanogaster* MNK/Chk2 and p53 regulate multiple DNA repair and apoptotic pathways following DNA damage. *Mol Cell Biol*. 2004;24: 1219–1231.
117. Kastan MB. DNA damage responses: Mechanisms and roles in human disease. *Mol Cancer Res*. 2008;6:517–524.
118. Kohn KW, Pommier Y. Molecular interaction map of the p53 and Mdm2 logic elements, which control the Off-on switch of p53 in response to DNA damage. *Biochem Biophys Res Comm*. 2005;331: 816–827.
119. Lee MW, Kim W-J, Beardsley DI, Brown KD. N-Methyl-N′-Nitro-N′-Nitrosoguanidine activates multiple cell death mechanisms in human fibroblasts. *DNA Cell Biol*. 2007;26:683–694.
120. Liontos M, Niforou K, Velimezi G, et al. Modulation of the E2F1- associated poly(ADP-ribose) polymerase, causes rapid induction of cell death upon overexpression. *J Biol Chem*. 2001;276:38591–38599.
121. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. *Cell Death Differ*. 1999:12:1388–1397.
122. Marabese M, Vikhanskaya F, Broggini M. p73: a chiaroscuro gene in cancer, and chemotherapy: The mitotic checkpoint, adaptation, and cell death. *Adv Protein Chem*. 2004;69:101–135.
123. Kitsukawa K, Niikura Y. Caspase-independent mitotic death (CIMD). *Cell Cycle*. 2008;7:1001–1005.
124. Borges HL, Linden R, Wang YJY. DNA damage-induced cell death: Lessons from the central nervous system. *Cell Res*. 2008;18:17–26.
125. Wang YJ, Cho SK. Coordination of repair, checkpoint and cell death responses to DNA damage. *Adv Protein Chem*. 2004;69:101–135.
126. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. *Cell*. 1990;61:759–767.
127. Murray-Zmijewski F, Lane DP. Bourdon JC. p53/p63/p73 isoforms: an orchestra of isoforms to harmonise cell differentiation and response to stress. *Cell Death Differ*. 2006;13:962–972.
128. Bourdon J-C, p53 and its isoforms in cancer. *Br J Cancer*. 2007;97: 277–282.
129. Marabese M, Vikhanskaya F, Borgini M. p73: a chiorosucro gene in cancer. *Eur J Cancer*. 2007;43:1361–1372.
130. Oswald C, Stiewe T. In good times and bad: p73 and the DNA damage response to apoptosis after chromosomal breaks. *Exp Cell Res*. 2005;307:683–694.
131. Bree RT, Neary C, Samali A, Lowndes NF. The switch from survival responses to apoptosis after chromosomal breaks. *DNA Repair*. 2004; 3:989–995.
132. Brodsky MH, Weinert BT, Tsang G, et al. *Drosophila melanogaster* MNK/Chk2 and p53 regulate multiple DNA repair and apoptotic pathways following DNA damage. *Mol Cell Biol*. 2004;24: 1219–1231.
133. Kastan MB. DNA damage responses: Mechanisms and roles in human disease. *Mol Cancer Res*. 2008;6:517–524.
134. Kohn KW, Pommier Y. Molecular interaction map of the p53 and Mdm2 logic elements, which control the Off-on switch of p53 in response to DNA damage. *Biochem Biophys Res Comm*. 2005;331: 816–827.
135. Lee MW, Kim W-J, Beardsley DI, Brown KD. N-Methyl-N′-Nitro-N′-Nitrosoguanidine activates multiple cell death mechanisms in human fibroblasts. *DNA Cell Biol*. 2007;26:683–694.
136. Liontos M, Niforou K, Velimezi G, et al. Modulation of the E2F1-driven cancer cell fate by the DNA damage response machinery and potential novel E2F1 targets in osteosarcomas. *Am J Pathol*. 2009; 175:376–391.
137. Michalak E, Villunger A, Erlacher M, Strasser A. Death squads enlisted through the dynamics of telomere loss. *Mol Cancer Ther*. 2009;8:1321–1325.
138. Maravina R, Carracedo J, Jimenez R, Canela A, Herrera E. Massive telomere loss is an early event of DNA damage-induced apoptosis. *J Biol Chem*. 2003;278:836–842.
139. Zhang X, Mar V, Zhou W, Harrington L, Robinson MO. Telomere shortening and apoptosis in telomerase-inhibited human tumor cells. *Genes Dev*. 1999;13:2388–2399.
140. Plesca D, Mazumder S, Almasan A. DNA damage response and apoptosis. *Methods Enzymol*. 2008;446:107–122.
141. Roos WP, Kaina B. DNA damage-induced cell death by apoptosis. *Trends Mol Med*. 2006;12:440–450.
142. Yu J, Zhang L. The transcriptional targets of p53 in apoptosis control. *Biochem Biophys Res Comm*. 2005;331:851–858.
143. Kitagawa K, Niikura Y. Caspase-independent mitotic death (CIMD). *Cell Cycle*. 2008;7:1001–1005.
144. Castedo M, Perfettini J-L, Roumier T, et al. Mitotic catastrophe constitutes a special case of apoptosis whose suppression entails aneuploidy. *Oncogene*. 2004;23:4362–4370.
145. Castedo M, Perfettini J-L, Roumier T, Andreau K, Medema R, Kroemer G. Cell death by mitotic catastrophe: A molecular definition. *Oncogene*. 23:2825–2837.
146. Mansilla S, Priebe W, Portugal J. Mitotic catastrophe results in cell death by caspase-dependent and caspase-independent mechanisms. *Cell Cycle*. 2006;5:53–60.
147. Vakifahmetoglu H, Olsson M, Zhivotovsky B. Death through a tragedy: mitotic catastrophe. *Cell Death Differ*. 2008;15:1153–1162.
148. Borges HL, Linden R, Wang YJY. DNA damage-induced cell death: Lessons from the central nervous system. *Cell Res*. 2008;18: 17–26.
149. Wang YJ, Cho SK. Coordination of repair, checkpoint and cell death responses to DNA damage. *Adv Protein Chem*. 2004;69:101–135.
150. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. *Cell*. 1990;61:759–767.
151. Murray-Zmijewski F, Lane DP. Bourdon JC. p53/p63/p73 isoforms: an orchestra of isoforms to harmonise cell differentiation and response to stress. *Cell Death Differ*. 2006;13:962–972.
152. Bourdon J-C, p53 and its isoforms in cancer. *Br J Cancer*. 2007;97: 277–282.
153. Marabese M, Vikhanskaya F, Borgini M. p73: a chiorosucro gene in cancer. *Eur J Cancer*. 2007;43:1361–1372.
154. Oswald C, Stiewe T. In good times and bad: p73 and the DNA damage response to apoptosis after chromosomal breaks. *Exp Cell Res*. 2005;307:683–694.
155. Bree RT, Neary C, Samali A, Lowndes NF. The switch from survival responses to apoptosis after chromosomal breaks. *DNA Repair*. 2004; 3:989–995.
157. Tomkova K, Tomka M, Zajac V. Contributions of p53, p63, and p73 to the developmental diseases and cancer. Neoplasma. 2008;55:177–181.

158. Vilgelm AE, Washington MK, Wei J, Chen H, Prassolov VS, Zaika AI. Interactions of the p53 protein family in cellular stress response in gastrointestinal tumors. Mol Cancer Ther. 2010;9:693–705.

159. Hsieh SC, Lo FK, Wang FF. Mouse DDA3 gene is a direct transcriptional target of p53 and p73. Oncogene. 2002;21:3050–3057.

160. Jang CY, Wong J, Coppinger JA, Seki A, Yates JR 3rd, Fang G. DDA3 recruits microtubule depolymerase Kif2a to spindle poles and controls spindle dynamics and mitotic chromosome movement. J Cell Biol. 2008;181:255–267.

161. Merlo P, Fulco M, Costanzo A, et al. A role of p73 in mitotic exit. J Biol Chem. 289:30354–30360.

162. Tomasi R, Mak TW, Melino G. The impact of p53 and p73 on aneuploidy and cancer. Trends Cell Biol. 2008;18:244–252.

163. Boominathan L. Some facts and thoughts: p73 as a tumor suppressor gene in the network of tumor suppressors. Mol Cancer. 2007;6:27.

164. Boominathan L. The tumor suppressors p53, p63, and p73 are regulators of microRNA processing complex. Plos One. 2010;5:e01615.

165. Parnell JM, Pettenpol JA. The jury is in: p73 is a tumor suppressor after all. Genes Dev. 2008;22:2591–2595.

166. Collavin L, Lurandi A, Del Sal G. p53-family proteins and their regulators: Hubs and spokes in tumor suppression. Cell Death Differ. 2010;17:901–911.

167. Zawacka-Pankau J, Kostecka A, Sznarkowska A, Hedstrom E, Kawiak A. p73 tumor suppressor protein. A close relative of p53 not only in structure but also in anti-cancer approach? Cell Cycle. 2010;9:720–728.

168. Simoniello V, Narciso L, Doglietti E, Fortini P. Base excision repair intermediates are mutagenic in mammalian cells. Nucleic Acids Res. 2000;28:4404–4411.

169. Yoon WS, Leszczyk CA, McCullough AK. hMYH cell-cycle-dependent expression, subcellular localization and association with replication foci: evidence suggesting replication-coupled repair of adenine:8-oxoguanine mismatches. Nucleic Acids Res. 2000;28:4912–4918.

170. Bolgogh I, Milligan D, Lee MS, Bassett H, Lloyd S, McCullough AK. hMYH cell-cycle-dependent expression, subcellular localization and association with replication foci: evidence suggesting replication-coupled repair of adenine:8-oxoguanine mismatches. Nucleic Acids Res. 2000;28:2802–2809.

171. Scharer OD, Jiricny J. Recent progress in the biology, chemistry and structural biology of DNA glycosylases. Bioessays. 2001;23:270–281.
Dovepress

Yuste VJ, Moubarak RS, Delettre C, et al. Cysteine protease inhibition.

Otera H, Ohsakaya S, Nagaura Z, Ishihara N, Mihara K. Export of mitochondrial apoptosis-inducing factor: Vital and lethal.

Son Y-O, Jang Y-S, Heo J-S, Chung W-T, Choi K-C, Lee J-C. Therapeutic potential of AIF-mediated programmed necrosis.

Van Wijk SJ, Hageman GJ. Poly(ADP-ribose) polymerase-1 mediated caspase-independent cell death after ischemia/reperfusion. Free Radic Biol Med. 2005;39:81–90.

Boujrad H, Gulbina O, Robert N, Krantic S, Susin SA. AIF-mediated programmed necrosis: A highly regulated way to die. Cell Cycle. 2007;6:2611–1618.

Krantic S, Mechawar N, Reix S, Quirion R. Apoptosis-inducing factor: A matter of neuron life and death. Prog Neurobiol. 2007;81:179–196.

Li GY, Osborne NN. Oxidative-induced apoptosis to an immobilized ganglion cell line is caspase independent but involves the activation of poly(ADP-ribose) polymerase and apoptosis-inducing factor. Brain Res. 2008;1188:35–43.

Lorenzo HK, Susin SA. Apoptosis-inducing factor plays a critical role in caspase-independent, poly(ADP-ribose) polymerase binding proteins and poly(ADP-ribose)-associated protein complexes. Nucleic Acids Res. 2008;36:6959–6976.

Chen M, He H, Zhan S, Krajewski S, Reed JC, Gottlieb RA. Bid is cleaved by calpain to an active fragment in vitro and during myocardial ischemia/reperfusion. J Biol Chem. 2005;280:1587–1864.

Yacoub A, Park MA, Hanna D, et al. OSU-03012 promotes caspase-independent but PERK-, cathepsin B-, BID-, and AIF-dependent killing of transformed cells. Mol Pharmacol. 2006;70:589–603.

Chaitanya GV, Babu PP. Multiple apoptogenic proteins are involved in the nuclear translocation of apoptosis inducing factor during transient focal cerebral ischemia in rat. Brain Res. 2008;1246:178–190.

Norberg E, Gogvadze V, Ott M, et al. An increase in intracellular Ca2+ is required for the activation of mitochondrial calpain to release AIF during cell death. Cell Death Differ. 2008;15:1857–1864.

Vosler PS, Sun D, Wang S, et al. Calcium dysregulation induces apoptosis-inducing factor release: Cross-talk between PARP-1 and calpain-signaling pathways. Exp Neurol. 2009;218:213–220.

Gagbe JP, Hunter JM, Labrecque B, Chabot B, Poirier GG. A pro-tekine approach to the identification of heterogeneous nuclear ribonucleoproteins as a new family of poly(ADP-ribose)-binding proteins. Biochem J. 2003;371:331–340.

Gagbe JP, Hendzel MJ, Droit A, Poirier GG. The expanding role of poly(ADP-ribose) metabolism: Current challenges and new perspectives. Curr Opin Cell Biol. 2006;18:145–151.

Gagbe JP, Isabelle M, Lo KS, et al. Proteome-wide identification of poly(ADP-ribose)-binding proteins and poly(ADP-ribose)-associated protein complexes. Nucleic Acids Res. 2008;36:6959–6976.

Chen M, He H, Zhan S, Krajewski S, Reed JC, Gottlieb RA. Bid is cleaved by calpain to an active fragment in vitro and during myocardial ischemia/reperfusion. J Biol Chem. 2005;280:1587–1864.

Lorenzo HK, Susin SA. Apoptosis-inducing factor plays a critical role in caspase-independent, poly(ADP-ribose) polymerase binding proteins and poly(ADP-ribose)-associated protein complexes. Nucleic Acids Res. 2008;36:6959–6976.

Chen M, He H, Zhan S, Krajewski S, Reed JC, Gottlieb RA. Bid is cleaved by calpain to an active fragment in vitro and during myocardial ischemia/reperfusion. J Biol Chem. 2005;280:1587–1864.

Yacoub A, Park MA, Hanna D, et al. OSU-03012 promotes caspase-independent but PERK-, cathepsin B-, BID-, and AIF-dependent killing of transformed cells. Mol Pharmacol. 2006;70:589–603.

Chaitanya GV, Babu PP. Multiple apoptogenic proteins are involved in the nuclear translocation of apoptosis inducing factor during transient focal cerebral ischemia in rat. Brain Res. 2008;1246:178–190.
Payne et al

244. Rossi M, Sayan AE, Terrinoni A, Melino G, Knight RA. Mechanism of induction of apoptosis by p73 and its relevance to neuroblastoma biology. Ann NY Acad Sci. 2004;1028:143–149.

245. Ramadan S, Terrinoni A, Catani MV, et al. p73 induces apoptosis by different mechanisms. Biochem Biophys Res Commun. 2005;331:713–717.

246. Carter SL, Eklund AC, Kohane IS, Harris LN, Szallasi Z. A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nat Genet. 2006;38:1043–1048.

247. Perez de Castro I, de Carcer G, Marcos M. A census of mitotic cancer genes: New insights into tumor cell biology and cancer therapy. Carcinogenesis. 2007;28:899–912.

248. Tarin JJ, Vendrell FJ, Ten J, Blanes R, van Blroem J, Cano A. The oxidizing agent tertiary butyl hydroperoxide induces disturbances in spindle organization, c-metiosis, and aneuploidy in mouse oocytes. Mol Human Reprod. 1996;2:895–901.

249. Choi WJ, Banerjee J, Falcone T, Bena J, Agarwal A, Sharma RK. Oxidative stress and tumor necrosis factor-α-induced alterations in metaphase II mouse oocyte spindle structure. Fertil Steril. 2007;88(4 Suppl):1220–1231.

250. D’Angiolillo V, Santaripa C, Grieco D. Oxidative stress overrides the spindle checkpoint. Cell Cycle. 2007;6:576–579.

251. Chang TS, Jeong W, Lee D-Y, Cho C-S, Rhee SG. The ring-H2-finger protein APC11 as a target of hydrogen peroxides. Free Rad Biol Med. 2004;37:521–530.

252. Blagosklonny MV. Mitotic arrest and cell fate: Why and how mitotic inhibition of transcription drives mutually exclusive events. Cell Cycle. 2007;6:70–74.

253. Delcuve GP, He S, Davie JR. Mitotic partitioning of transcription. J Cell Biochem. 2008;105:1–12.

254. Gascoigne KE, Taylor SS. Cancer cells display profound intra- and interline variation following prolonged exposure to antimotic drugs. Cancer Cell. 2008;14:111–122.

255. Elhajouji A, Cunha M, Kirsch-Volders M. Spindle poisons induce mitotic arrest and cell death: The significance of apoptosis. Int Rev Cytol. 1980;68:251–305.

256. Elhajouji A, Cunha M, Kirsch-Volders M. Spindle poisons induce mitotic arrest and cell death: The significance of apoptosis. Int Rev Cytol. 1980;68:251–305.

257. Searle I, Kerr JFR, Bishop CI. Necrosis and apoptosis: Distinct modes of cell death with fundamentally different significance. Pathol Annu. 1982;17:229–259.

258. Wyllie AH, Morris RG, Smith AL, Dunlop D. Chromatin cleavage in apoptosis: Association with condensed chromatin morphology and dependence on macromolecular synthesis. J Pathol. 1984;142:67–77.

259. Payne CM, Bjore CG Jr, Schultz DA. Change in the frequency of apoptosis after low- and high-dose X-irradiation of human lymphocytes. Leukocyte Biol. 1992;52:433–440.

260. Oberhammer F, Wilson JW, Dive C, et al. Apoptotic death in epithelial cells: Cleavage of DNA to 300 and/or 50 kb fragments prior to or in the absence of internucleosomal fragmentation. EMBO J. 1993;12:3679–3684.

261. Widlak P. DFF40/CAD hypersensitive sites are potentially involved in high molecular weight DNA fragmentation during apoptosis. Cell Mol Biol Lett. 2000;5:373–379.

262. McLrroy D, Sakahira H, Talanian RV, Nagata S. Involvement of caspase 3-activated DNAse in internucleosomal DNA cleavage induced by diverse apoptotic stimuli. Oncogene. 1999;18:4401–4408.

263. Widlak P, Garrard WT. Roles of the major apoptotic nuclease-DNA fragmentation factor in biology and disease. Cell Mol Life Sci. 2009;66:263–274.

264. Yan B, Wang H, Peng Y, et al. A unique role of the DNA fragmentation factor in maintaining genomic stability. Proc Natl Acad Sci U S A. 2006a;103:1504–1509.

265. Zhang J, Liu X, Scherer DC, van K Aer L, Wang X, Xu M. Resistance to DNA fragmentation and chromatin condensation in mice lacking the DNA fragmentation factor 45. Proc Natl Acad Sci U S A. 1998;95:12480–12485.

266. Zhang J, Wang X, Bove KE, Xu M. DNA fragmentation factor 45-deficient cells are more resistant to apoptosis and exhibit different dying morphology than wild-type control cells. J Biol Chem. 2009;284:37450–37454.

267. Payn CM, Bernstein H, Bernstein C, Garewal H. The role of apoptosis in biology and pathology: Resistance to apoptosis in colon carcinoma. Ultrastruct Pathol. 1995a;19:221–248.

268. Nelson DA, Tan TT, Rabson AB, Anderson D, Degenhardt K, White E. Hypoxia and defective apoptosis drive genomic instability and tumorgenesis. Genes Develop. 2008;18:2095–2107.

269. Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature. 1998;391:43–50.

270. Halenbeck R, MacDonald H, Roulston A, Chen TT, Conroy L, Williams LT. CPAN, a human nuclease regulated by the caspase-sensitive inhibitor DFF45. Curr Biol. 1998;8:537–540.

271. Liu X, Zou H, Slaughter C, Wang X. DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell. 1997;89:175–184.

272. Liu X, Li P, Widlak P, et al. The 40-kDa subunit of DNA fragmentation factor induces DNA fragmentation and chromatin condensation during apoptosis. Proc Natl Acad Sci U S A. 1998;95:8461–8466.

273. Kerr JFR, Wyllie AH, Currie AR. Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26:239–257.

274. Wyllie AH, Kerr JF, Currie AR. Cell death: The significance of apoptosis. Int Rev Cytol. 1980;68:251–305.

275. Dai W, Wang Q, Liu T, et al. Slippage of mitotic arrest and enhanced tumor development in mice with BubR1 haploinsufficiency. Cancer Res. 2004;64:440–445.

276. Yao W, South VJ, Zhang Y, et al. Induction of apoptosis by an inhibitor of the mitotic kinesin KSP requires both activation of the spindle assembly checkpoint and mitotic slippage. Cancer Cell. 2005;8:49–59.

277. Brint DA, Rieder CL. Mitotic checkpoint slippage in non-cancer cells induced by a microtubule disruptor, disorazole C1. Cell Cycle. 2006;25:5370–5376.

278. Zhang J, Guo H, Qian G, et al. MiR-145, a new regulator of the DNA fragmentation factor-45 (DFF45)-mediated apoptotic network. Mol Cancer. 2010;9:211.

279. Li P, Nijhawan D, Budhajrdion I, et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell. 1997;91:479–489.

Dovepress
301. Raina D, Pandey P, Ahmad R, et al. c-Abl tyrosine kinase regulates oxidative modification of caspase-9 facilitates its activation via disulfide-mediated interaction with Apaf-1. Cell Res. 2009;19:449–457.

302. Slec EA, Harte MT, Kluck RM, et al. Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J Cell Biol. 1999;144:281–292.

303. Jeong W, Lee D-Y, Park S, Rhee SG. ERp16, and endoplasmic reticulum-resident thiol-disulfide oxidoreductase. Biochem J Biol Chem. 2002;277:34287–34294.

304. Jimbo A, Fujita E, Kouroku Y, et al. ER stress induces caspase-8.

305. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschi T. Identification of novel genes coding for small expressed RNAs. Exp Cell Res. 2004;298:154–166.

306. Mace PD, Riedl SJ. Molecular cell death platforms and assemblies. Curr Opin Cell Biol. 2010;22:828–836.

307. Bartel DP, Chen CZ. Micromanagers of gene expression: The potentially widespread influence of metazoan microRNAs. Nat Rev Genet. 2004;5:396–400.

308. He L, Hannon GJ. MicroRNAs: Small RNAs with a big role in gene regulation. Mol Cell. 2004;26:45–752, 2007.

309. He L, He X, Lim LP, et al. A microRNA component of the p53 tumour suppressor network. Nature. 2007;447:1130–1134.

310. Kim VN. MicroRNA biogenesis: Coordinated cropping and dicing. Nat Rev Mol Cell Biol. 2005;6:376–385.
337. Bandres E, Agirre X, Ramirez N, Zarate E, Garcia-Foncillas J. MicroRNAs as cancer players: Potential clinical and biological effects. *DNA Cell Biol.* 2007;26:273–282.

338. Cho WCS. OncomiRs: The discovery and progress of microRNAs in cancers. *Cancer Lett.* 2007;6:60; doi: 10.1186/1476-4596-9-60.

339. Krzywinski M, Altman RB, Wu W, et al. Circuit diagrams for biological pathways. *Nature Biotechnol.* 2009;27:615–622.

340. Yamanaka S, Yamaguchi T, Miyoshi M, et al. MicroRNAs as tumor suppressors and oncogenes. *Cell* 2009;136:586–591.

341. Hostetter TH, Yeh CH, Kao Y, et al. MicroRNA expression profiles separately identify cancer tissue origin. *Nat Rev Cancer.* 2006;6:587–596.

342. Malmstrom TK, Kheradpour P, Platanias LC, et al. p53 regulates a shared microRNA signature in multiple cancers. *Nat Genet.* 2008;40:43–50.

343. Wang YX, Zhang XY, Zhang BF, Yang CQ, Chen XM, Gao HJ. Initial study of microRNA expression profiles of colon cancer without lymph node metastasis. *J Dig Dis.* 2010;11:50–54.

344. Lanza G, Ferracin M, Gafa R, et al. miRNA/microRNA gene expression profile in microsatellite unstable colorectal cells. *Mol Cancer.* 2007;6:54–62.

345. Atkin NB. Microsatellite instability. *Cytogenet Cell Genet.* 2001;92:177–181.

346. Bommer GT, Gerin I, Feng Y, et al. p53-mediated activation of miRNA34 candidate tumor-suppressor genes. *Curr Biol.* 2007;17:1298–1307.

347. Herming H. p53 enters the microRNA world. *Cancer Cell.* 2007;12:414–418.

348. Raver-Shapira N, Marciano E, Meiri E, et al. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. *Mol Cell.* 2007;26:731–743.

349. Tarasov V, Jung P, Verdoodt B, et al. Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. *Cell Cycle.* 2007;6:1586–1593.

350. Dijkstra MK, van Lom K, Tielmans D, et al. 17p13/TP53 deletion of the E2F pathway in human colon cancer cells. *Clin Cancer Res.* 2006;12:21U-RNAs and additional microRNAs and endogenous siRNAs in colon cancer cells. *Oncogene.* 2009;28:414–418.

351. Akao Y, Nakagawa Y, Naoe T, et al. Let-7 microRNA functions as a potential tumor suppressor in colorectal carcinomas. *Clin Cancer Res.* 2006;12:3548–3556.

352. Shi B, Sepp-Lorenzino L, Prisco M, Linsley P, deAngelis T, Baserga R. Micro RNA 145 targets the insulin receptor substrate-1 and inhibits the growth of colon cancer cells. *J Biol Chem.* 2007;282:32582–32590.

353. Slaby O, Svoloba M, Fabian P, et al. Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer. *Oncology.* 2007;72:397–402.
385. Beverly LJ, Felsher DW, Capobianco AJ. Suppression of p53 by Notch in lymphomagenesis: Implications for initiation and regression. 
Cancer Res. 65:7159–7168.

386. Mungamuri SK, Yang X, Thor AD. Somasundaram K. Survival signaling by Notch1: Mammalian target of rapamycin (mTOR)-dependent inhibition of p53. 
Cancer Res. 2006;66:4715–4724.

387. Kobayashi S, Lee SH, Meng XW, et al. Serine 64 phosphorylation induces apoptosis through two distinct pathways, one associated with 
E3 ubiquitin ligase, catalyzes the polyubiquitination of Mcl-1 and BIM in regulation of TRAIL-mediated mitochondrial apoptosis.
J Biol Chem. 2007;282:469–480.

388. Nijhawan D, Fang M, Traer E, et al. Elimination of Mcl-1 is required for the initiation of apoptosis in adenovirus-infected cells.
Genes Dev. 2003;17:2922–2932.

389. Shtutman M, Zhurinsky J, Simcha I, et al. The 
mitochondrial membrane induces apoptosis through direct interaction with Bax.
FEBS Lett. 2010;584:487–492.

390. Kobayashi S, Lee SH, Meng XW, et al. Serine 64 phosphorylation enhances the antiproliferative function of Mcl-1.
J Biol Chem. 2007;282:18407–18417.

391. traysider A, Kobayashi S, Nagai H, et al. Immunohistochemical analysis of Mcl-1 protein in human tissues. Differential regulation of 
Mcl-1 and Bcl-2 protein production suggests a unique role for Mcl-1 in control of programmed cell death in vivo. Am J Pathol. 1995;146: 
1309–1319.

392. Backus HH, Van Groeningen CJ, Yao W, et al. Differential expression of cell cycle and apoptosis related proteins in colorectal mucosa, 
primary colon tumours, and liver metastases. J Clin Pathol. 2002;55: 
206–211.

393. Varambally S, Cao Q, Mani RS, et al. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer.
Science. 2008;322:1695–1699.

394. Liu S, Fu H, Wang Y, et al. MicroRNA-101 regulates expression of the v-fos 
FBJ murine osteosarcoma viral oncogene homolog (FOS) oncogene in human hepatocellular carcinoma. 
Hepatol. 2009;49:1194–1202.

395. Saito S, Daigo Y, Furukawa Y, et al. AXIN1 mutations in hepato-cellular carcinomas and growth suppression in cancer cells by virus-mediated transfer of AXIN1. 
Nat Genet. 2000;24:245–250.
Hulsken J, Birchmeier W, Behrens J. E-cadherin and APC compete

Stow JL. ICAT is a multipotent inhibitor of

Graham TA, Clements WK, Kimelman D, Xu W. The crystal structure

Tago K, Nakamura T, Nishita M, et al. Inhibition of Wnt signaling

Giles RH, van Es JH, Clevers H. Caught up in a Wnt storm: Wnt

Koyama T, Tago K-I, Nakamura T, et al. Mutation and expression of

Payne et al

Kikuchi K, Niikura Y, Kitagawa K, Kikuchi A. Dishevelled, a Wnt

Bobinnec Y, Morin X, Debec A. Shaggy/GSK-3

Kaplan DD, Meigs TE, Kelly P, Casey PJ. Identification of a role

Zumbrunn J, Kinoshita K, Hyman AA, Nathke IS. Binding of the ade-

Rogers SL, Rogers GC, Sharp DJ, Vale RD. Drosophila EB1 is important for proper assembly, dynamics, and positioning of the mitotic spindle. J Cell Biol. 2002;158:873–884.

Zumbrunn J, Kinoshita K, Hyman AA, Nathke IS. Binding of the adenomatous polyposis coli protein to microtubules increases microtubule stability and is regulated by GSK3 beta phosphorylation. Curr Biol. 2001;11:44–49.

Kaplan KB, Burds AA, Swedlow JR, Bekir SS, Sorger PK, Nathke IS. A role for the Adenomatous Polyposis Coli protein in chromosome segregation. Nat Cell Biol. 2001;3:429–432.

Kaplan DD, Meigs TE, Kelly P, Casey PJ. Identification of a role for β-catenin in the establishment of a bipolar mitotic spindle. J Biol Chem. 2004;279:10829–10832.

Wakefield JG, Stephens DJ, Tavare JM. A role for glycogen synthase kinase-3 in mitotic spindle dynamics and chromosome alignment. J Cell Sci. 2003;116:637–646.

Bobińczak Y, Morin X, Debac E. Shaggy/GSK-3β kinase localizes to the centrosome and to specialized cytoskeletal structures in Drosophila. Cell Motil Cytoskel. 2006;63:315–320.

Kikuchi K, Niikura Y, Kitagawa K, Kikuchi A. Dishevelled, a Wnt signalling component, is involved in mitotic progression in cooperation with Plk1. EMBO J. 2010;29:3470–3483.

Hadjiyiannas MV, Bruckner M, Behrens J. Conductin/axin2 and Wnt signalling regulates centrosome cohesion. EMBO Rep. 2010;11:317–324.

Fodde R, Kuiper J, Rosenberg C, et al. Mutations in the APC tumour suppressor gene cause chromosomal instability. Nat Cell Biol. 2001;3:433–438.

Green RA, Kaplan KB. Chromosome instability in colorectal tumors is associated with defects in microtubule plus-end attachments caused by a dominant mutation in APC attachments caused by a dominant mutation in APC. J Cell Biol. 2003;163:949–961.

Hadjiyiannas MV, Bruckner M, Jerchow B, Birchmeier W, Dietmaier W, Behrens J. Abrupt Wnt/β-catenin signaling can induce chromosomal instability in colon cancer. Proc Natl Acad Sci U S A. 2006;103:10747–10752.

Hadjiyiannas MV, Behrens J. CIN by WNT. Growth pathways, mitotic control and chromosomal instability in cancer. Cell Cycle. 2006;5:2077–2081.

Aoki K, Aoki M, Sugai M, et al. Chromosomal instability by β-catenin/TCF transcription in APC β-catenin mutant cells. Oncogene. 2007;26:3511–3520.

Harris H, Miller OL, Klein G, Worst P, Tachibana T. Suppression of malignancy by cell fusion. Nature. 1969;233:363–368.

Stanbridge EJ. Suppression of malignancy in human cells. Nature. 1976;260:17–20.

Sherr CJ. Principles of tumor suppression. Cell. 2004;116:235–246, 976.

Carling T, Imanishi Y, Gaz RD, Arnold A. Analysis of the RAD54 gene on chromosome 1p as a potential tumor-suppressive gene in parathyroid adenomas. Int J Cancer. 1999;83:80–82.

Sulman EP, Whit PS, Brodeur GM. Genomic annotation of the meningioma tumor suppressor locus on chromosome p34. Oncogene. 2004;2:1014–1020.

Bagchi A, Papazoglou C, Wu, et al. CHD5 is a tumor suppressor at human 1p36. Cell. 2007;128:459–475.

Fugita T, Igarashi J, Okawa ER, et al. CDH5, a tumor suppressor gene deleted from 1p36.31 in neuroblastomas. J Natl Cancer Inst. 2008;100:940–949.

Okawa ER, Gotoh T, Manne J, et al. Expression and sequence analysis of candidates for the 1p36.31 tumor suppressor gene deleted in human 1p36. J Biol Chem. 2004;279:7981–7988.

Vogelstein B, Fearon ER, Kern SE, Preisinger AC, Hamilton SR, Lane D, Levine AJ. Genetic alterations during colorectal爁rom development. Science. 1988;241:827–831.

Kaplan DD, Meigs TE, Kelly P, Casey PJ. Identification of a role for β-catenin in the establishment of a bipolar mitotic spindle. J Biol Chem. 2004;279:10829–10832.

Wakefield JG, Stephens DJ, Tavare JM. A role for glycogen synthase kinase-3 in mitotic spindle dynamics and chromosome alignment. J Cell Sci. 2003;116:637–646.

Bobińczak Y, Morin X, Debac E. Shaggy/GSK-3β kinase localizes to the centrosome and to specialized cytoskeletal structures in Drosophila. Cell Motil Cytoskel. 2006;63:315–320.

Kikuchi K, Niikura Y, Kitagawa K, Kikuchi A. Dishevelled, a Wnt signalling component, is involved in mitotic progression in cooperation with Plk1. EMBO J. 2010;29:3470–3483.
475. Ochi T. Hydrogen peroxide increases the activity of γ-glutamylcysteine synthetase in cultured Chinese hamster V79 cells. *Arch Toxicol*. 1995; 70:96–103.

476. Tian L, Shi MM, Forman HJ. Increased transcription of the regulatory subunit of γ-glutamylcysteine synthetase in rat lung epithelial L2 cells exposed to oxidative stress or glutathione depletion. *Arch Biochem Biophys*. 1997;342:126–133.

477. Rima A, Forman HJ. SHP-1 inhibition by 4-hydroxynonenol activates jun N-terminal kinase and glutamate cysteine ligase. *Am J Respir Cell Mol Biol*. 2008;39:97–104.

478. Dickinson DA, Iles KE, Watanabe N, et al. 4-hydroxynonenal induces glutamate cysteine ligase through JNK in JNK1 cells. *Free Radic Biol Med*. 2002;33:974–987.

479. Siitonen T, Alarukka P, Mantymaa P, et al. Protection of acute myeloblastic leukemia cells against apoptotic cell death by high glutathione and G-glutamylcysteine synthetase levels during etoposide-induced oxidative stress. *Ann Oncol*. 1999;10:1361–1367.

480. Botta D, Franklin CC, White CC, et al. Glutamate-cysteine ligase attenuates TNF-induced mitochondrial injury and apoptosis. *Free Radic Biol Med*. 2004;37:632–642.

481. Lu SC. Regulation of glutathione synthesis. *Mol Aspects Med*. 2009;30:52–59.

482. Markovic J, Garcia-Gimenez JL, Gimeno A, Vina J, Pallaro FV. Role of glutathione in cell nucleus. *Free Radic Res*. 2010;44:721–733.

483. Diaz Vivancos P, Wolff T, Markovic J, Pallaro FV, Foyer CH. A nuclear glutathione cycle within the cell cycle. *Biochem J*. 2010;431:169–178.

484. Giera S, Braeuning A, Kohle C, et al. Wnt/beta-catenin signaling activates and determines hepatic zonation expression of the glutathione S-transferases in mouse liver. *Toxicol Sci*. 2010;115:22–33.

485. Patskovsky YV, Huang MQ, Takayama T, Listowsky I, Pearson WR. Distinctive structure of the human GSTM3 gene – inverted orientation relative to the mu class glutathione transferase gene cluster. *Arch Biochem Biophys*. 1999;361:85–93.

486. Yu KD, Fan L, Di GH, et al. Genetic variants in GSTM3 gene within GSTM4-GSTM2-GSTM1-GSTM5-GSTM3 cluster influence breast cancer susceptibility depending on GSTM1. *Breast Cancer Res Treat*. 2010;121:485–496.

487. Pool-Zobel B, Veeriah S, Bohmer F-D. Modulation of xenobiotic metabolising enzymes by anticarcinogens-focus on glutathione S-transferases and their role as targets of dietary chemoprevention in colorectal carcinogenesis. *Mutat Res*. 2005;591:74–92.

488. Katoh T, Nagata N, Kuroda Y, et al. Glutathione S-transferase M1 (GSTM1) and T1 (GSTT1) genetic polymorphism and susceptibility to gastric and colorectal adenocarcinoma. *Carcinogenesis*. 1996;17:1855–1859.

489. Scarpato N, Hirvonen A, Migliore L, Falck G, Norppa H. Influence of GSTM1 and GSTT1 polymorphisms on the frequency of chromosome abnormalities in lymphocytes of smokers and pesticide-exposed greenhouse workers. *Mutat Res*. 1997;389:227–235.

490. Griesmann H, Schlereth K, Krause M, Samans B, Stiewe T. p53 and oxidative stress. *Ann Oncol*. 2005;16:795–806.

491. Gao K, Henning SM, Niu Y, et al. The citrus flavonoid naringenin modulates glutathione and glutathione-related enzymes. *J Nutr Biochem*. 2002;13:765–770.

492. Morel I, Abalea V, Cillard P, Cillard J. Repair of oxidized DNA by Flavonoids increases the intracellular glutathione level by transactivation of the γ-glutamylcysteine synthetase catalytic subunit promoter. *Free Radic Biol Med*. 2002;32:386–393.

493. Yam C, Jamaluddin MS, Aggarwal B, Myers J, Boyd DD. Gene expression profiling identifies activating transcription factor 3 as a novel contributor to the proapoptotic effect of curcumin. *Mol Cancer Ther*. 2005;4:233–241.

494. Yoshida T, Maeda A, Horinaka M, et al. Quercetin induces gadd45 expression through a p53-independent pathway. *Oncof Res*. 2005;14:1299–1303.

495. Catani MV, Costanzo A, Savini I, et al. Ascorbate up-regulates MLH1 (Mut L homologue-1) and p73: Implications for the cellular response to DNA damage. *Biochem J*. 2002;364:441–447.

496. Davis CD, Ross SA. Evidence for dietary regulation of microRNAexpression in cancer. *Nat Rev*. 2008;66:477–482.

497. Pogribny IP, Tryndyak VP, Ross SA, Belan FA. Differential expression of microRNAs during hepatocarcinogenesis induced by methyl deficiency in rats. *Nat Rev*. 2008;66(Suppl 1):S33–S35.

498. Garzon R, Pichiourri F, Palumbo T, et al. MicroRNA gene expression during retinoic acid-induced differentiation of human acute promyelocytic leukemia. *Oncogene*. 2007;26:4148–4157.

499. Sun M, Estrov Z, Yi J, Coombes KR, Harris DH, Kurzrock R. Curcumin (diferuylmethane) alters the expression profiles of microRNAs in human pancreatic cancer cells. *Mol Cancer Ther*. 2008;7:464–473.

500. Boesch-Saadatmandi C, Loboda A, Wagner AE, et al. Effect of quercetin and its metabolites isorhamnetin and quercetin-3-glucorionate on inflammatory gene expression: Role of miR-155. *J Nutr Biochem*. 2010 June 23. [Epub ahead of print].

501. Davidson LA, Wang N, Shah MS, et al. n-3 polyunsaturated fatty acids modulate carcinogen-directed non-coding microRNA signatures in rat colon. *Carcinogenesis*. 2009;30:2077–2084.

502. Gaedicke S, Zhang X, Schmelzer C, et al. Vitamin E dependent microRNA regulation in rat liver. *FEBS Lett*. 2008;582:3542–3546.

503. Paul S, DeCastro AJ, Lee HJ, et al. Dietary intake of pterostilbene, a constituent of blueberries, inhibits the β-catenin/p65 downstream signaling 1 pathway and colon carcinogenesis in rats. *Carcinogenesis*. 2010;31:1272–1278.

504. Sarkar FH, Li Y, Wang Z, Kong D. Cellular signaling perturbation by natural products. *Cell Signal*. 2009;21:1541–1547.

505. Sarkar FH, Li Y, Wang Z, Kong D. The role of neurotrophicals in the regulation of Wnt and Hedgehog signaling in cancer. *Cancer Metastasis Rev*. 2010;29:383–394.

506. Ryu MJ, Cho M, Song JY, et al. Natural derivatives of curcumin attenuate the Wnt/beta-catenin pathway through down-regulation of the transcriptional coactivator p300. *Biochem Biophys Res Commun*. 2008;377:1304–1308.

507. Jaiswal AS, Marlow BP, Gupta N, Narayan S. Beta-catenin-mediated transactivation and cell-cell adhesion pathways are important in curcumin (diferuylmethane)-induced growth arrest and apoptosis in colon cancer cells. *Oncogene*. 2002;8414–8427.

508. Yan C, Jamaluddin MS, Aggarwal B, Myers J, Boyd DD. Gene expression profiling identifies activating transcription factor 3 as a novel contributor to the proapoptotic effect of curcumin. *Mol Cancer Ther*. 2005;4:233–241.

509. Tarapore RS, Siddiqui IA, Saleem M, Adhami VM, Spiegelman VS, Mukhtar H. Specific targeting of Wnt/beta-catenin signaling in human melanoma cells by a dietary triterpene lupeol. *Carcinogenesis*. 2010;31:1844–1853.

510. Masella R, Di Benedetto R, Veli R, Filesi C, Giovanni C. Novel mechanisms of natural antioxidant compounds in biological systems: Involvement of glutathione and glutathione-related enzymes. *J Nutr Biochem*. 2005;16:577–586.

511. Suzuki K, Koike H, Matsui H, et al. Genistein, a soy isoflavone, induces glutathione peroxidase in the human prostate cancer cell lines LNCAP and PC-3. *Int J Cancer*. 2002;99:846–852.

512. Luceri C, Caderni G, Sanna A, Dolara P. Red wine and black tea polyphenols modulate the expression of cyclooxygenase-2, inducible nitric oxide synthase and glutathione-related enzymes in azoxymethane-induced F344 rat colon tumors. *J Nutr*. 2002;132:1376–1379.

513. Myhrstad MC, Carlsen H, Nordstrom O, Blomhoff R, Moskaug JO. Flavonoids increases the intracellular glutathione level by transactivation of the γ-glutamylcysteine synthetase catalytic subunit promoter. *Free Radic Biol Med*. 2002;32:386–393.
515. Scharf G, Prustomersky S, Knaasmuller S, Schulte-Hermann R, Huber WW. Enhancement of glutathione and γ-glutamylcysteine synthetase, the rate limiting enzyme of glutathione synthesis, by chemopreventive plant-derived food and beverage components in the human hepatoma cell line HepG2. *Carcinogenesis*. 2003;45:74–83.

516. Moskaug JO,Carlson EM, Myhrstad MC, Blomhoff R. Polyphenols and glutathione synthesis regulation. *Am J Clin Nutr*. 2005;81(1 Suppl):277S–283S.

517. Na HK, Suh YJ. Modulation of Nrf2-mediated antioxidant and detoxifying enzyme induction by the green tea polyphenol EGCG. *Food Chem Toxicol*. 2008;46:1271–1278.

518. Dickinson DA, Iies KE, Zhang H, Bland V, Forman HJ. Curcumin alters EpRE and AP-1 binding complexes and elevates glutamate-cysteine ligase gene expression. The *FASEB J*. 2003;17:473–475.

519. Huber WW, Scharf G, Rossmanith W, et al. The coffee components 4-coumaric acid and 3,4-dihydroxybenzoic acid on glutathione S-transferases by coffee components: Possible relevance for cancer risk. *Methods Enzymol*. 2005;401:307–341.

520. Fiander H, Schneider H. Dietary orto-phenols that induce glutathione S-transferase and increase the resistance of cells to hydrogen peroxide are potential cancer chemopreventives that act by two mechanisms: The alleviation of oxidative stress and the detoxification of mutagenic naganobiotics. *Cancer Lett*. 2000;156:117–124.

521. Huber WW, Parzefall W. Modification of N-acetyltransferases and glutathione S-transferases by coffee components: Possible relevance for cancer risk. *Methods Enzymol*. 2005;401:307–341.

522. Guglielmi F, Luceri C, Giovannelli L, Dolara P, Lodovici M. Effect of 4-coumaric acid and 3,4-dihydroxybenzoic acid on oxidative damage in rat colon mucosa. *Br J Nutr*. 2003;89:581–587.

523. Munday R, Munday CM. Low doses of diethyl disulfide, a compound derived from garlic, increase tissue activities of quinone reductase and glutathione transferase in the gastrointestinal tract of the rat. *Nutr Cancer*. 1999;34:42–48.

524. Ebert MN, Kliner A, Peters WH, et al. Expression of glutathione S-transferases (GST) in human colon cells and inducibility of GSTM2 by butyrate. *Carcinogenesis*. 2003;24:1637–1644.

525. Huber WW, Teitel CH, Coles BF, et al. Potential chemopreventive effects of the coffee components kahweol and caffeol palmitates via modification of hepatic N-acetyltransferase and glutathione S-transferase activities. *Environ Mol Mutagen*. 2004;44:265–276.

526. Rice-Evans C. Plant polyphenols: Free radical scavengers or other olive phenolic compounds in human blood mononuclear cells protect against endogenous oxidative DNA damage in human sperm. *Proc Natl Acad Sci U S A*. 1991;88:11003–11006.

527. Giovannucci E, Goldin B. The role of fat, fatty acids, and total energy intake in the etiology of human colon cancer. *Am J Clin Nutr*. 1997;66:1564S–1571S.

528. Rieger MA, Parlesak A, Pool-Zobel BL, Rechkemmer G, Bode C. A diet high in fat and meat but low in dietary fibre increases the genotoxic potential of ‘faecal water’. *Carcinogenesis*. 1999;20:2311–2316.

529. Fujise T, Ikawri R, Kakimoto T, et al. Long-term feeding of various fat diets modulates azoxymethane-induced colon carcinoma through Wnt/beta-catenin signaling in rats. *Am J Physiol Gastrointest Liver Physiol*. 2007;292:G1150–G1156.

530. Endo H, Hosono K, Fujisawa T, et al. Involvement of JNK and p38 mitogen-activated protein kinase pathways in the promotion of the early stage of colorectal carcinogenesis under high-fat conditions. *Gut*. 2009;58:1637–1643.

531. Pearson JR, Gill CIR, Rowland IR. Diet, fecal water, and colon cancer – development of a biomarker. *Nutr Rev*. 2009;67:509–526.

532. Xichun Z. Long-term exposure to various types of fat modulates acrylamide-induced preneoplastic lesions of colon mucosa through Wnt/beta-catenin signaling in rats. *Toxicol Mech Methods*. 2009;19:285–291.

533. Larsson SC, Rafter A, Bergkvist L, Wolk A. Red meat consumption and risk of cancers of the proximal colon, distal colon, and rectum: the Swedish Mammography Cohort. *Int J Cancer*. 2005;113:829–834.

534. Glei M, Latunde-Dada GO, Kliner A, et al. Iron-overload induces oxidative DNA damage in the human colon carcinoma cell line HT29 clone 19A. *Mutat Res*. 2002;519:151–161.

535. Isley JMN, Belinsky GS, Guda K, et al. Dietary iron promotes azoxymethane-induced colon tumors in mice. *Carcinogenesis*. 2004;49:162–169.

536. Bingham SA, Day NE, Luben R, et al; European Prospective Investigation into Cancer and Nutrition (EPIC): An observational study. *Lancet*. 2003;361:1496–1501.

537. Young GP, Hu Y, Le Lou RK, Nysholus L. Dietary fibre and colorectal cancer: A model for environment – gene interactions. *Am J Clin Nutr*. 2005;49:571–584.
550. Toden S, Bird AR, Topping DL, Conlon MA. High red meat diets induce greater numbers of colonic DNA double-strand breaks than white meat in rats: Attenuation by high-amylose maize starch. *Carcinogenesis*. 2007;28:2355–2362.

551. Dahm CC, Keogh RH, Spencer EA, et al. Dietary fiber and colorectal cancer risk: A nested case-control study using food diaries. *J Natl Cancer Inst*. 2010;102:614–626.

552. Hertog MG, Bueno-de-Mesquita HB, Fehily AM, Sweetnam PM, Elwood PC, Kromhout D. Fruit and vegetable consumption and cancer mortality in the Caerphilly study. *Cancer Epidemiol Biomarkers Prev*. 1996;5:673–677.

553. Millen AE, Subar AF, Graubard BI, et al. Fruit and vegetable intake and prevalence of colorectal adenoma in a cancer screening trial. *Am J Clin Nutr*. 2007;86:1754–1764.

554. Rimando AM, Suh N. Biological/chemopreventive activity of stilbenes and their effect on colon cancer. *Planta Med*. 2008;74:1635–1643.

555. Van Duijnoven FJ, Bueno-de-Mesquita HB, Ferrari P, et al. Fruit, vegetables, and colorectal cancer risk: The European Prospective Investigation into Cancer and Nutrition. *Am J Clin Nutr*. 2009;89:1441–1452.

556. Tseng M, Murray SE, Kupper LL, Sandler RS. Micronutrients and the risk of colorectal adenomas. *Am J Epidemiol*. 1996;144:1005–1014.

557. Ames BN. Micronutrient deficiencies. A major cause of DNA damage. *Ann NY Acad Sci*. 1989;589:87–106.

558. Ames BN. DNA damage from micronutrient deficiencies is likely to be a major cause of cancer. *Mutat Res*. 2001;475:7–20.

559. Fenech M. Micronutrients and genomic stability: A new paradigm for the prevention of mutation, cancer, and other age-associated diseases by optimizing micronutrient intake. *J Nutr*. 2002;132:40:1113–1117.

560. Huang N, Lee I, Marcotte EM, Hurles ME. Characterising and understanding patterns of sequence evolution in cancer genomes. *Ann Rev Pharmacol Toxicol*. 2004;44:239–267.

561. Van Breda SG, van Agen E, Engels LG, et al. Altered vegetable intake and prevalance of colorectal adenoma in a cancer screening trial. *Am J Clin Nutr*. 2007;86:1754–1764.

562. Ricke RM, van Ree JH, van Deursen JM. Whole chromosome loss and cancer. *Trends Genet*. 2008;24:278–293.

563. Tseng M, Murray SE, Kupper LL, Sandler RS. Micronutrients and the risk of colorectal adenomas. *Am J Epidemiol*. 1996;144:1005–1014.

564. Emerit I. Reactive oxygen species, chromosome mutation and cancer. *Carcinogenesis*. 2008;29:1441–1452.

565. Emerit I, Keck M, Levy A, Feingold J, Michelson AM. Activated protein C induces nuclear loss of DNA repair proteins Ku70 and Ku80 and apoptosis in pancreatic acinar AR42J cells. *J Biol Chem*. 2003;278:36676–36687.

566. Babbs CF. Free radicals and the etiology of colon cancer. *Free Radic Res*. 1990;8:191–200.

567. Emerit I. Reactive oxygen species, chromosome mutation and cancer. Possible role of clastogenic factors in carcinogenesis. *Free Radic Biol Med*. 1994;16:99–109.

568. Poulsen HE, Prieme H, Loft S. Role of oxidative DNA damage in cancer initiation and promotion. *Eur J Cancer*. 1998;7:9–16.

569. Balkwill F, Mantovani A. Inflammation and cancer: Back to Virchow? *Lancet*. 2001;357:539–545.

570. Jackson AL, Loeb AA. The contribution of endogenous sources of DNA damage to the multiple mutations in cancer. *Mutat Res*. 2001;477:7–21.

571. Balkwill F, Mantovani A. Inflammation and cancer: Back to Virchow? *Lancet*. 2001;357:539–545.

572. Jackson AL, Loeb AA. The contribution of endogenous sources of DNA damage to the multiple mutations in cancer. *Mutat Res*. 2001;477:7–21.
619. Kokalj-Vokac N, Almeida A, Viegas-Pequignot E, Jeanpierre M, Malfroy B, Dutrillaux B. Specific induction of uncoiling and recombi-
   nation by azacytidine in classical satellite-containing constitutive heterochromatin. *Cytogenet Cell Genet*. 1993;63:11–15.

620. Sawyer JR, Tricot G, Mattson S, Jagannath S, Barlogie B. Jumping translocations of chromosome 1q in multiple myeloma: Evidence for a mechanism involving decondensation of pericentromeric heterochromatin. *Blood*. 1998;91:1732–1741.

621. Vukovic B, Beheshti B, Park P, et al. Correlating breakage-fusion-bridge events with the overall chromosomal instability and in vitro karyotype evolution in prostate cancer. *Cytogenet Genome Res*. 2007;116:1–11.

622. Robbins AR, Jablonski SA, Yen TJ, et al. Inhibitors of histone deacetylases alter kinetochore assembly by disrupting pericentromeric heterochromatin. *Cell Cycle*. 2005;4:717–726.

623. Demuth I, Digweed M, Concannon P. Human SNN1B is required for normal cellular response to both DNA interstrand crosslink-
   ing agents and ionizing radiation. *Oncogene*. 2004;23: 8611–8618.

624. Ye J, Lenain C, Bauwens S, et al. TRF2 and Apollo cooperate with topoisomerase 2α to protect human telomeres from replicative damage. *Cell*. 2010;142:230–242.

625. Nagothu KK, Jasztewski R, Moragoda L, et al. Folic acid mediated attenuation of loss of reorganization of DCC tumor suppressor gene in the colonic mucosa of patients with colorectal adenomas. *Cancer Detect Prevent*. 2003;27:297–304.

626. Wang X, Thomas P, Xue J, Fenech M. Folate deficiency induces aneuploidy in human lymphocytes in vitro-evidence using cytokinesis-blocked cells and probes specific for chromosomes 17 and 21. *Mutat Res*. 2004;551:167–180.

627. Fenech M, Crott JW. Micronuclei, nucleoplasmic bridges and nuclear buds induced in folic acid deficient human lymphocytes – evidence for breakage-fusion-bridge cycles in the cytokinesis-block micronucleus assay. *Mutat Res*. 2002;504:131–136.

628. Lindberg HK, Wang X, Jarventausta H, Falck GC, Norppa H, Fenech M. Origin of nuclear buds and micronuclei in normal and folate-deprived human lymphocytes. *Mutat Res*. 2007;617:33–45.

629. Choi S-W, Mason JB. Folate status: Effects on pathways of colorectal carcinogenesis. *J Nutr*. 2002;132:2413S–2418S.

630. Kim YJ. Folate and colorectal cancer: An evidence-based critical review. *Mol Nutr Food Res*. 2007;51:267–292.

631. Majumdar AP, Kodali U, Jasztewski R. Chemopreventive role of folic acid in colorectal cancer. *Front Biosci*. 2004;9:2725–2732.

632. Kim J, Kim DH, Lee BH, et al. Folate intake and the risk of colorectal cancer in a Korean population. *Eur J Clin Nutr*. 2009;63: 1057–1064.

633. Duthie SJ. Folate and cancer: How DNA damage, repair and methylation impact on colon carcinogenesis. *J Inherit Metab Dis*. 2011;34:101–109.
634. Blount BC, Mack MM, Wehr CM, et al. Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage: Implications for cancer and neuronal damage. *Proc Natl Acad Sci U S A*. 1997;94:3290–3295.

635. Choi SW, Kim YI, Weitzel JN, Mason JB. Folate depletion impairs DNA excision repair in the colon of the rat. *Gut*. 1998;43:93–99.

636. Marsit CJ, Eddy K, Kelsey KT. MicroRNA responses to cellular stresses. *Cancer Res*. 2006;66:10843–10848.

637. Levine AJ, Siegmund KD, Ervin CM, et al. The methylenetetrahydrofolate reductase 677C→T polymorphism and distal colorectal adenoma risk. *Cancer Epidemiol Biomark Prev*. 2000;9:657–663.

638. Kawakami K, Omura K, Kamehira E, Watanabe G. Methylenetetrahydrofolate reductase polymorphism is associated with folate pool in gastrointestinal cancer tissue. *Anticancer Res*. 2001;21:285–289.

639. Little J, Sharp L, Duthie S, Narayanan S. Colon cancer and genetic variation in folate metabolism: the clinical bottom line. *J Nutr*. 2003;133:3758S–3766S.

640. Chang SC, Lin PC, Lin JK, Yang SH, Wang HS, Li AF. Role of MTHFR polymorphisms and folate levels in different phenotypes of sporadic colorectal cancers. *Int J Colorectal Dis*. 2007;22:483–489.