Non-Hausdorff groupoids, proper actions and K-theory

JEAN-LOUIS TU

Abstract. Let G be a (not necessarily Hausdorff) locally compact groupoid. We introduce a notion of properness for G, which is invariant under Morita-equivalence. We show that any generalized morphism between two locally compact groupoids which satisfies some properness conditions induces a C^*-correspondence from $C^*_r(G_2)$ to $C^*_r(G_1)$, and thus two Morita equivalent groupoids have Morita-equivalent C^*-algebras.

2000 Mathematics Subject Classification: 22A22 (Primary); 46L05, 46L80, 54D35 (Secondary).
Keywords and Phrases: groupoid, C^*-algebra, K-theory.

Introduction

Very often, groupoids that appear in geometry, such as holonomy groupoids of foliations, groupoids of inverse semigroups [15, 6] and the indicial algebra of a manifold with corners [10] are not Hausdorff. It is thus necessary to extend various basic notions to this broader setting, such as proper action and Morita equivalence. We also show that a generalized morphism from G_2 to G_1 satisfying certain properness conditions induces an element of $KK(C^*_r(G_2), C^*_r(G_1))$.

In Section 2 we introduce the notion of proper groupoids and show that it is invariant under Morita-equivalence. Section 3 is a technical part of the paper in which from every locally compact topological space X is canonically constructed a locally compact Hausdorff space HX in which X is (not continuously) embedded. When G is a groupoid (locally compact, with Haar system, such that $G^{(0)}$ is Hausdorff), the closure X' of $G^{(0)}$ in HG is endowed with a continuous action of G and plays an important technical rôle.

In Section 4 we review basic properties of locally compact groupoids with Haar system and technical tools that are used later. In Section 5 we construct, using tools of Section 3 a canonical $C^*_r(G)$-Hilbert module $E(G)$ for every (locally compact...) proper groupoid G. If $G^{(0)}/G$ is compact, then there exists a projection $p \in C^*_r(G)$ such that $E(G)$ is isomorphic to $pC^*_r(G)$. The projection p is given by $p(g) = (c(s(g))c(r(g)))^{1/2}$, where $c: G^{(0)} \to \mathbb{R}_+$ is a “cutoff” function (Section 6). Contrary to the Hausdorff
case, the function c is not continuous, but it is the restriction to $G^{(0)}$ of a continuous map $X' \to \mathbb{R}_+$ (see above for the definition of X').

In Section 4 we examine the question of naturality $G \to C^*_r(G)$. Recall that if $f : X \to Y$ is a continuous map between two locally compact spaces, then f induces a map from $C_0(Y)$ to $C_0(X)$ if and only if f is proper. When G_1 and G_2 are groups, a morphism $f : G_1 \to G_2$ does not induce a map $C^*_r(G_2) \to C^*_r(G_1)$ (when $G_1 \subset G_2$ is an inclusion of discrete groups there is a map in the other direction). When $f : G_1 \to G_2$ is a groupoid morphism, we cannot expect to get more than a C^*-correspondence from $C^*_r(G_2)$ to $C^*_r(G_1)$ when f satisfies certain properness assumptions: this was done in the Hausdorff situation by Macho-Stadler and O’Uchi [11, Theorem 2.1], see also [7, 13, 17], but the formulation of their theorem is somewhat complicated. In this paper, as a corollary of Theorem 7.8 we get that (in the Hausdorff situation), if the restriction of f to $(G_1)^K$ is proper for each compact set $K \subset (G_1)^{(0)}$ then f induces a correspondence \mathcal{E}_f from $C^*_r(G_2)$ to $C^*_r(G_1)$. In fact we construct a C^*-correspondence out of any groupoid generalized morphism [5, 9] which satisfies some properness conditions. As a corollary, if G_1 and G_2 are Morita equivalent then $C^*_r(G_1)$ and $C^*_r(G_2)$ are Morita-equivalent C^*-algebras.

Finally, let us add that our original motivation was to extend Baum, Connes and Higson’s construction of the assembly map μ to non-Hausdorff groupoids; however, we couldn’t prove μ to be an isomorphism in any non-trivial case.

1. Preliminaries

1.1. Groupoids. Throughout, we will assume that the reader is familiar with basic definitions about groupoids (see [16, 15]). If G is a groupoid, we denote by $G^{(0)}$ its set of units and by $r : G \to G^{(0)}$ and $s : G \to G^{(0)}$ its range and source maps respectively. We will use notations such as $G_x = s^{-1}(x)$, $G^y = r^{-1}(y)$, $G^x_y = G_x \cap G^y$. Recall that a topological groupoid is said to be étale if r (and s) are local homeomorphisms.

For all sets X, Y, T and all maps $f : X \to T$ and $g : Y \to T$, we denote by $X \times_{f,g} Y$, or by $X \times_T Y$ if there is no ambiguity, the set $\{(x, y) \in X \times Y | f(x) = g(y)\}$.

Recall that a (right) action of G on a set Z is given by

(a) a ("momentum") map $p : Z \to G^{(0)}$;
(b) a map $Z \times_{p,r} G \to Z$, denoted by $(z, g) \mapsto zg$

with the following properties:

(i) $p(zg) = s(g)$ for all $(z, g) \in Z \times_{p,r} G$;
(ii) $z(gh) = (zg)h$ whenever $p(z) = r(g)$ and $s(g) = r(h)$;
(iii) $zp(z) = z$ for all $z \in Z$.

Then the crossed-product $Z \rtimes G$ is the subgroupoid of $(Z \times Z) \rtimes G$ consisting of elements (z, z', g) such that $z' = zg$. Since the map $Z \times G \to Z \times G$ given by $(z, z', g) \mapsto (z, g)$ is injective, the groupoid $Z \rtimes G$ can also be considered as a subspace of $Z \times G$, and this is what we will do most of the time.
1.2. Locally compact spaces. A topological space X is said to be quasi-compact if every open cover of X admits a finite sub-cover. A space is compact if it is quasi-compact and Hausdorff. Let us recall a few basic facts about locally compact spaces.

Definition 1.1. A topological space X is said to be locally compact if every point $x \in X$ has a compact neighborhood.

In particular, X is locally Hausdorff, thus every singleton subset of X is closed. Moreover, the diagonal in $X \times X$ is locally closed.

Proposition 1.2. Let X be a locally compact space. Then every locally closed subspace of X is locally compact.

Recall that $A \subset X$ is locally closed if for every $a \in A$, there exists a neighborhood V of a in X such that $V \cap A$ is closed in V. Then A is locally closed if and only if it is of the form $U \cap F$, with U open and F closed.

Proposition 1.3. Let X be a locally compact space. The following are equivalent:

(i) there exists a sequence (K_n) of compact subspaces such that $X = \bigcup_{n \in \mathbb{N}} K_n$;

(ii) there exists a sequence (K_n) of quasi-compact subspaces such that $X = \bigcup_{n \in \mathbb{N}} K_n$;

(iii) there exists a sequence (K_n) of quasi-compact subspaces such that $X = \bigcup_{n \in \mathbb{N}} K_n$ and $K_n \subset \mathring{K}_{n+1}$ for all $n \in \mathbb{N}$.

Such a space will be called σ-compact.

Proof. $(i) \implies (ii)$ is obvious. The implications $(ii) \implies (iii) \implies (i)$ follow easily from the fact that for every quasi-compact subspace K, there exists a finite family $(K_i)_{i \in I}$ of compact sets such that $K \subset \bigcup_{i \in I} K_i$. \square

1.3. Proper maps.

Proposition 1.4. [2, Théorème I.10.2.1] Let X and Y be two topological spaces, and $f: X \to Y$ a continuous map. The following are equivalent:

(i) For every topological space Z, $f \times \text{Id}_Z: X \times Z \to Y \times Z$ is closed;

(ii) f is closed and for every $y \in Y$, $f^{-1}(y)$ is quasi-compact.

A map which satisfies the equivalent properties of Proposition 1.4 is said to be proper.

Proposition 1.5. [2, Proposition I.10.2.6] Let X and Y be two topological spaces and let $f: X \to Y$ be a proper map. Then for every quasi-compact subspace K of Y, $f^{-1}(K)$ is quasi-compact.

Proposition 1.6. Let X and Y be two topological spaces and let $f: X \to Y$ be a continuous map. Suppose Y is locally compact, then the following are equivalent:

(i) f is proper;
(ii) for every quasi-compact subspace K of Y, $f^{-1}(K)$ is quasi-compact;
(iii) for every compact subspace K of Y, $f^{-1}(K)$ is quasi-compact;
(iv) for every $y \in Y$, there exists a compact neighborhood K_y of y such that $f^{-1}(K_y)$ is quasi-compact.

Proof. (i) \implies (ii) follows from Proposition 1.5. (ii) \implies (iii) \implies (iv) are obvious. Let us show (iv) \implies (i).

Since $f^{-1}(y)$ is closed, it is clear that $f^{-1}(y)$ is quasi-compact for all $y \in Y$. It remains to prove that for every closed subspace $F \subset X$, $f(F)$ is closed. Let $y \in \overline{f(F)}$. Let $A = f^{-1}(K_y)$. Then $A \cap F$ is quasi-compact, so $f(A \cap F)$ is quasi-compact. As $f(A \cap F) \subset K_y$, it is closed in K_y, i.e. $K_y \cap f(A \cap F) = K_y \cap f(A \cap F)$. We thus have $y \in K_y \cap \overline{f(A \cap F)} = K_y \cap f(A \cap F) \subset f(F)$. It follows that $f(F)$ is closed. \Box

2. Proper groupoids and proper actions

2.1. Locally compact groupoids.

Definition 2.1. A topological groupoid G is said to be locally compact (resp. σ-compact) if it is locally compact (resp. σ-compact) as a topological space.

Remark 2.2. The definition of a locally compact groupoid in [15] corresponds to our definition of a locally compact, σ-compact groupoid with Haar system whose unit space is Hausdorff, thanks to Propositions 1.5 and 1.6.

Example 2.3. Let Γ be a discrete group, H a closed normal subgroup and let G be the bundle of groups over $[0,1]$ such that $G_0 = \Gamma$ and $G_t = \Gamma/H$ for all $t > 0$. We endow G with the quotient topology of $([0,1] \times \Gamma)/([0,1] \times H)$. Then G is a non-Hausdorff locally compact groupoid such that (t,γ) converges to $(0,\gamma h)$ as $t \to 0$, for all $\gamma \in \Gamma$ and $h \in H$.

Example 2.4. Let Γ be a discrete group acting on a locally compact Hausdorff space X, and let $G = (X \times \Gamma)/\sim$, where (x,γ) and (x,γ') are identified if their germs are equal, i.e. there exists a neighborhood V of x such that $y\gamma = y\gamma'$ for all $y \in V$. Then G is locally compact, since the open sets $V_\gamma = \{(x,\gamma) | x \in X\}$ are homeomorphic to X and cover G.

Suppose that X is a manifold, M is a manifold such that $\pi_1(M) = \Gamma$, \tilde{M} is the universal cover of M and $V = (X \times \tilde{M})/\Gamma$, then V is foliated by $\{[x,\tilde{m}] | \tilde{m} \in \tilde{M}\}$ and G is the restriction to a transversal of the holonomy groupoid of the above foliation.

Proposition 2.5. If G is a locally compact groupoid, then $G^{(0)}$ is locally closed in G, hence locally compact. If furthermore G is σ-compact, then $G^{(0)}$ is σ-compact.

Proof. Let Δ be the diagonal in $G \times G$. Since G is locally Hausdorff, Δ is locally closed. Then $G^{(0)} = (\text{Id}, r)^{-1}(\Delta)$ is locally closed in G.

Suppose that $G = \sqcup_{n \in \mathbb{N}} K_n$ with K_n quasi-compact, then $s(K_n)$ is quasi-compact and $G^{(0)} = \sqcup_{n \in \mathbb{N}} s(K_n)$.
Proposition 2.6. Let Z a locally compact space and G be a locally compact groupoid acting on Z. Then the crossed-product $Z \rtimes G$ is locally compact.

Proof. Let $p : Z \to G^{(0)}$ be the momentum map of the action of G. From Proposition 2.4, the diagonal $\Delta \subset G^{(0)} \times G^{(0)}$ is locally closed in $G^{(0)} \times G^{(0)}$, hence $Z \rtimes G = (p, r)^{-1}(\Delta)$ is locally closed in $Z \times G$. □

Let T be a space. Recall that there is a groupoid $T \times T$ with unit space T, and product $(x, y)(y, z) = (x, z)$.

Let G be a groupoid and T be a space. Let $f : T \to G^{(0)}$, and let $G[T] = \{(t', t, g) \in (T \times T) \times G \mid g \in G_{f(t')}(0)\}$. Then $G[T]$ is a subgroupoid of $(T \times T) \times G$.

Proposition 2.7. Let G be a topological groupoid with $G^{(0)}$ locally Hausdorff, T a topological space and $f : T \to G^{(0)}$ a continuous map. Then $G[T]$ is a locally closed subgroupoid of $(T \times T) \times G$. In particular, if T and G are locally compact, then $G[T]$ is locally compact.

Proof. Let $F \subset T \times G^{(0)}$ be the graph of f. Then $F = (f \times \text{Id})^{-1}(\Delta)$, where Δ is the diagonal in $G^{(0)} \times G^{(0)}$, thus it is locally closed. Let $\rho : (t', t, g) \mapsto (t', r(g))$ and $\sigma : (t', t, g) \mapsto (t, s(g))$ be the range and source maps of $(T \times T) \times G$, then $G[T] = (\rho, \sigma)^{-1}(F \times F)$ is locally closed. □

Proposition 2.8. Let G be a locally compact groupoid such that $G^{(0)}$ is Hausdorff. Then for every $x \in G^{(0)}$, G_x is Hausdorff.

Proof. Let $Z = \{(g, h) \in G_x \times G_x \mid r(g) = r(h)\}$. Let $\varphi : Z \to G$ defined by $\varphi(g, h) = g^{-1}h$. Since $\{x\}$ is closed in G, $\varphi^{-1}(x)$ is closed in Z, and since $G^{(0)}$ is Hausdorff, Z is closed in $G_x \times G_x$. It follows that $\varphi^{-1}(x)$, which is the diagonal of $G_x \times G_x$, is closed in $G_x \times G_x$. □

2.2. Proper groupoids.

Definition 2.9. A topological groupoid G is said to be proper if $(r, s) : G \to G^{(0)} \times G^{(0)}$ is proper.

Proposition 2.10. Let G be a topological groupoid such that $G^{(0)}$ is locally compact. Consider the following assertions:

(i) G is proper;
(ii) (r, s) is closed and for every $x \in G^{(0)}$, G_x is quasi-compact;
(iii) for all quasi-compact subspaces K and L of $G^{(0)}$, G^K_L is quasi-compact;
(iii)' for all compact subspaces K and L of $G^{(0)}$, G^K_L is quasi-compact;
(iv) for every quasi-compact subspace K of $G^{(0)}$, G^K is quasi-compact;
(v) $\forall x, y \in G^{(0)}, \exists K_x, L_y$ compact neighborhoods of x and y such that $G^{L_y}_{K_x}$ is quasi-compact.

Then (i) \iff (ii) \iff (iii) \iff (iii)' \iff (v) \implies (iv). If $G^{(0)}$ is Hausdorff, then (i)–(v) are equivalent.
Proposition Let G be a topological groupoid. Let $r: G \to G(0)$ be open then the canonical mapping $\pi: G(0) \to G(0)/G$ is open.

Proof. Let $V \subset G(0)$ be an open subspace. If r is open, then $r(s^{-1}(V)) = \pi^{-1}(\pi(V))$ is open. Therefore, $\pi(V)$ is open. □

Proposition 2.12. Let G be a topological groupoid such that $G(0)$ is locally compact and $r: G \to G(0)$ is open. Suppose that $(r,s)(G)$ is locally closed in $G(0) \times G(0)$, then $G(0)/G$ is locally compact. Furthermore,

(a) if $G(0)$ is σ-compact, then $G(0)/G$ is σ-compact;
(b) if $(r,s)(G)$ is closed (for instance if G is proper), then $G(0)/G$ is Hausdorff.

Proof. Let $R = (r,s)(G)$. Let $\pi: G(0) \to G(0)/G$ be the canonical mapping. By Proposition 2.11, π is open, therefore $G(0)/G$ is locally quasi-compact. Let us show that it is locally Hausdorff. Let V be an open subspace of $G(0)$ such that $(V \times V) \cap R$ is closed in $V \times V$. Let Δ be the diagonal in $\pi(V) \times \pi(V)$. Then $(\pi \times \pi)^{-1}(\Delta) = (V \times V) \cap R$ is closed in $V \times V$. Since $\pi \times \pi: V \times V \to \pi(V) \times \pi(V)$ is continuous open surjective, it follows that Δ is closed in $\pi(V) \times \pi(V)$, hence $\pi(V)$ is Hausdorff. This completes the proof that $G(0)/G$ is locally compact and of assertion (b).

Assertion (a) follows from the fact that for every $x \in G(0)$ and every compact neighborhood K of x, $\pi(K)$ is a quasi-compact neighborhood of $\pi(x)$. □

2.3. Proper actions.

Definition 2.13. Let G be a topological groupoid. Let Z be a topological space endowed with an action of G. Then the action is said to be proper if $Z \times G$ is a proper groupoid. (We will also say that Z is a proper G-space.)

A subspace A of a topological space X is said to be relatively compact (resp. relatively quasi-compact) if it is included in a compact (resp. quasi-compact) subspace of X. This does not imply that \overline{A} is compact (resp. quasi-compact).

Proposition 2.14. Let G be a topological groupoid. Let Z be a topological space endowed with an action of G. Consider the following assertions:

(i) G acts properly on Z;
(ii) $(r,s): Z \times G \to Z \times Z$ is closed and $\forall z \in Z$, the stabilizer of z is quasi-compact;
(iii) for all quasi-compact subspaces K and L of Z, $\{ g \in G \mid Lg \cap K \neq \emptyset \}$ is quasi-compact;
(iii)' for all compact subspaces K and L of Z, \(\{ g \in G \mid Lg \cap K \neq \emptyset \} \) is quasi-compact;
(iv) for every quasi-compact subspace K of Z, \(\{ g \in G \mid Kg \cap K \neq \emptyset \} \) is quasi-compact;
(v) there exists a family \((A_i)_{i \in I} \) of subspaces of Z such that $Z = \bigcup_{i \in I} A_i$ and \(\{ g \in G \mid A_i g \cap A_j \neq \emptyset \} \) is relatively quasi-compact for all $i, j \in I$.

Then (i) \(\iff \) (ii) \(\iff \) (iii) \(\iff \) (iii)' and (iii) \(\iff \) (iv). If Z is locally compact, then (iii)' \(\implies \) (v) and (iv) \(\implies \) (v). If $G^{(0)}$ is Hausdorff and Z is locally compact Hausdorff, then (i)–(v) are equivalent.

Proof. (i) \(\iff \) (ii) follows from Proposition 2.10(i) \(\iff \) (iii). Implication (i) \(\implies \) (iii) follows from the fact that if \((Z \times G)^K \) is quasi-compact, then its image by the second projection \(Z \times G \to G \) is quasi-compact. (iii) \(\implies \) (iii)' and (iii) \(\implies \) (iv) are obvious.

Suppose that Z is locally compact. Take $A_i \subset Z$ compact such that $Z = \bigcup_{i \in I} A_i$. If (iii)' is true, then \(\{ g \in G \mid A_i g \cap A_j \neq \emptyset \} \) is quasi-compact, hence (v). If (iv) is true, then \(\{ g \in G \mid A_i g \cap A_j \neq \emptyset \} \) is a subset of the quasi-compact set \(\{ g \in G \mid Kg \cap K \neq \emptyset \} \), where $K = A_i \cup A_j$, hence (v).

Suppose that Z is locally compact Hausdorff and that $G^{(0)}$ is Hausdorff. Let us show (v) \(\implies \) (ii). Let C_{ij} be a quasi-compact set such that \(\{ g \in G \mid A_i g \cap A_j \neq \emptyset \} \subset C_{ij}$.

Let $z \in Z$. Choose $i \in I$ such that $z \in A_i$. Since Z and $G^{(0)}$ are Hausdorff, stab(z) is a closed subspace of C_{ii}, therefore it is quasi-compact.

It remains to prove that the map \(\Phi: Z \times_{G^{(0)}} G \to Z \times Z \) given by \(\Phi(z, g) = (z, zg) \) is closed. Let $F \subset Z \times_{G^{(0)}} G$ be a closed subspace, and \((z, z') \in \Phi(F) \). Choose i and j such that $z \in A_i$ and $z' \in A_j$. Then \((z, z') \in \Phi(F) \cap (A_i \times A_j) \subset \Phi(F \cap (A_i \times_{G^{(0)}} C_{ij}))) \subset \Phi(F \cap (Z \times_{G^{(0)}} C_{ij})). \)

There exists a net \((z_\lambda, g_\lambda) \in F \cap (Z \times_{G^{(0)}} C_{ij}) \) such that \((z, z') \) is a limit point of \((z_\lambda, z_\lambda g_\lambda) \). Since C_{ij} is quasi-compact, after passing to a universal subnet we may assume that g_λ converges to an element $g \in C_{ij}$. Since $G^{(0)}$ is Hausdorff, $F \cap (Z \times_{G^{(0)}} C_{ij})$ is closed in $Z \times C_{ij}$, so \((z, g) \) is an element of $F \cap (Z \times_{G^{(0)}} C_{ij})$. Using the fact that Z is Hausdorff and Φ is continuous, we obtain \((z, z') = \Phi(z, g) \in \Phi(F) \).

Remark 2.15. It is possible to define a notion of slice-proper action which implies properness in the above sense. The two notions are equivalent in many cases \[1\, \[3\].

Proposition 2.16. Let G be a locally compact groupoid. Then G acts properly on itself if and only if $G^{(0)}$ is Hausdorff. In particular, a locally compact space is proper if and only if it is Hausdorff.

Proof. It is clear from Proposition 2.10(ii) that G acts properly on itself if and only if the product $\varphi: G^{(2)} \to G \times G$ is closed. Since φ factors through the homeomorphism $G^{(2)} \to G \times_{r,t} G$, $(g, h) \mapsto (g, gh)$, G acts properly on itself if and only if $G \times_{r,t} G$ is a closed subset of $G \times G$.

If \(G^{(0)} \) is Hausdorff, then clearly \(G \times_{r,r} G \) is closed in \(G \times G \). Conversely, if \(G^{(0)} \) is not Hausdorff, then there exists \((x, y) \in G^{(0)} \times G^{(0)}\) such that \(x \neq y \) and \((x, y)\) is in the closure of the diagonal of \(G^{(0)} \times G^{(0)} \). It follows that \((x, y)\) is in the closure of \(G \times_{r,r} G \), but \((x, y) \not\in G \times_{r,r} G \), therefore \(G \times_{r,r} G \) is not closed.

2.4. Permanence properties.

Proposition 2.17. If \(G_1 \) and \(G_2 \) are proper topological groupoids, then \(G_1 \times G_2 \) is proper.

Proof. Follows from the fact that the product of two proper maps is proper [2, Corollaire I.10.2.3].

Proposition 2.18. Let \(G_1 \) and \(G_2 \) be two topological groupoids such that \(G_1^{(0)} \) is Hausdorff and \(G_2 \) is proper. Suppose that \(f : G_1 \to G_2 \) is a proper morphism. Then \(G_1 \) is proper.

Proof. Denote by \(r_1 \) and \(s_1 \) the range and source maps of \(G_1 \) \((i = 1, 2)\). Let \(\bar{f} \) be the map \(G_1^{(0)} \times G_1^{(0)} \to G_2^{(0)} \times G_2^{(0)} \) induced from \(f \). Since \(\bar{f} \circ (r_1, s_1) = (r_2, s_2) \circ f \) is proper and \(G_1^{(0)} \) is Hausdorff, it follows from [2, Proposition I.10.1.5] that \((r_1, s_1)\) is proper.

Proposition 2.19. Let \(G_1 \) and \(G_2 \) be two topological groupoids such that \(G_1 \) is proper. Suppose that \(f : G_1 \to G_2 \) is a surjective morphism such that the induced map \(f' : G_1^{(0)} \to G_2^{(0)} \) is proper. Then \(G_2 \) is proper.

Proof. Denote by \(r_i \) and \(s_i \) the range and source maps of \(G_i \) \((i = 1, 2)\). Let \(F_2 \subset G_2 \) be a closed subspace, and \(F_1 = f^{-1}(F_2) \). Since \(G_1 \) is proper, \((r_1, s_1)(F_1)\) is closed, and since \(f' \times f' \) is proper, \((f' \times f')(r_1, s_1)(F_1)\) is closed. By surjectivity of \(f \), we have \((r_2, s_2)(F_2) = (f' \times f')(r_1, s_1)(F_1)\). This proves that \((r_2, s_2)\) is closed. Since for every topological space \(T \), the assumptions of the proposition are also true for the morphism \(f \times 1 : G_1 \times T \to G_2 \times T \), the above shows that \((r_2, s_2) \times 1_T\) is closed. Therefore, \((r_2, s_2)\) is proper.

Proposition 2.20. Let \(G \) be a topological groupoid with \(G^{(0)} \) Hausdorff, acting on two spaces \(Y \) and \(Z \). Suppose that the action of \(G \) on \(Z \) is proper, and that \(Y \) is Hausdorff. Then \(G \) acts properly on \(Y \times_{G^{(0)}} Z \).

Proof. The groupoid \((Y \times_{G^{(0)}} Z) \times G\) is isomorphic to the subgroupoid \(\Gamma = \{(y, y', z, g) \in (Y \times Y) \times (Z \rtimes G) | p(y) = r(g), y' = yg\} \) of the proper groupoid \((Y \times Y) \times (Z \rtimes G)\). Since \(Y \) and \(G^{(0)} \) are Hausdorff, \(\Gamma \) is closed in \((Y \times Y) \times (Z \rtimes G)\), hence by Proposition 2.10(ii), \((Y \times_{G^{(0)}} Z) \times G\) is proper.

Corollary 2.21. Let \(G \) be a proper topological groupoid with \(G^{(0)} \) Hausdorff. Then any action of \(G \) on a Hausdorff space is proper.

Proof. Follows from Proposition 2.20 with \(Z = G^{(0)} \).
Proposition 2.22. Let G be a topological groupoid and $f: T \to G^{(0)}$ be a continuous map.

(a) If G is proper, then $G[T]$ is proper.

(ii) If $G[T]$ is proper and f is open surjective, then G is proper.

Proof. Let us prove (a). Suppose first that T is a subspace of $G^{(0)}$ and that f is the inclusion. Then $G[T] = G^{(0)}$. Since (r_T, s_T) is the restriction to $(r, s)^{-1}(T \times T)$ of (r, s), and (r, s) is proper, it follows that (r_T, s_T) is proper.

In the general case, let $\Gamma = (T \times T) \times G$ and let $T' \subset T \times G^{(0)}$ be the graph of f.

Then Γ is a proper groupoid (since it is the product of two proper groupoids), and $G[T] = \Gamma[T']$.

Let us prove (b). The only difficulty is to show that (r, s) is closed. Let $F \subset G$ be a closed subspace and $(y, x) \in (r, s)(F)$. Let $\tilde{F} = G[T] \cap (T \times T) \times F$. Choose $(t', t) \in T \times T$ such that $f(t') = y$ and $f(t) = x$. Denote by \tilde{r} and \tilde{s} the range and source maps of $G[T]$. Then $(t', t) \in (\tilde{r}, \tilde{s})(\tilde{F})$. Indeed, let $\Omega \ni (t', t)$ be an open set, and $\Omega' = (f \times f)(\Omega)$. Then Ω' is an open neighborhood of (y, x), so $\Omega' \cap (r, s)(F) \neq \emptyset$. It follows that $\Omega \cap (\tilde{r}, \tilde{s})(\tilde{F}) \neq \emptyset$.

We have proved that $(t', t) \in (\tilde{r}, \tilde{s})(\tilde{F}) = (\tilde{r}, \tilde{s})(\tilde{F})$, so $(y, x) \in (r, s)(F)$.

Corollary 2.23. Let G be a groupoid acting properly on a topological space Z, and let Z_1 be a saturated subspace. Then G acts properly on Z_1.

Proof. Use the fact that $Z_1 \times G = (Z \times G)[Z_1]$.

2.5. Invariance by Morita-equivalence. In this section, we will only consider groupoids whose range maps are open. We thus need a stability lemma:

Lemma 2.24. Let G be a topological groupoid whose range map is open. Let Z be a G space and $f: T \to G^{(0)}$ be a continuous open map. Then the range maps for $Z \times G$ and $G[T]$ are open.

To prove Lemma 2.24, we need a preliminary result:

Lemma 2.25. Let X, Y, T be topological spaces, $g: Y \to T$ an open map and $f: X \to T$ continuous. Let $Z = X \times_T Y$. Then the first projection $\pi_1: X \times_T Y \to X$ is open.

Proof. Let $\Omega \subset Z$ open. There exists an open subspace Ω' of $X \times Y$ such that $\Omega = \Omega' \cap Z$. Let Δ be the diagonal in $X \times X$. One easily checks that $(\pi_1, \pi_1)(\Omega) = (1 \times f)^{-1}(1 \times g)(\Omega') \cap \Delta$, therefore $(\pi_1, \pi_1)(\Omega)$ is open in Δ. This implies that $\pi_1(\Omega)$ is open in X.

Proof of Lemma 2.24. This is clear for $Z \times G = Z \times G^{(0)} G$ using Lemma 2.25. For $G[T]$, first use Lemma 2.25 to prove that $T \times f,s G \xrightarrow{pr_2} G$ is open. Since the range map is open by assumption, the composition $T \times f,s G \xrightarrow{pr_2} G \xrightarrow{\pi_1} G^{(0)}$ is open. Using again Lemma 2.25, $G[T] \simeq T \times f,r \pi_2 (T \times f,s G) \xrightarrow{pr_1} T$ is open.

\square
In order to define the notion of Morita-equivalence for topological groupoids, we introduce some terminology:

Definition 2.26. Let G be a topological groupoid. Let T be a topological space and $\rho: G^{(0)} \to T$ be a G-invariant map. Then G is said to be ρ-proper if the map $(r, s): G \to G^{(0)} \times_T G^{(0)}$ is proper. If G acts on a space Z and $\rho: Z \to T$ is G-invariant, then the action is said to be ρ-proper if $Z \times G$ is ρ-proper.

It is clear that properness implies ρ-properness. There is a partial converse:

Proposition 2.27. Let G be a topological groupoid, T a topological space, $\rho: G^{(0)} \to T$ a G-invariant map. If G is ρ-proper and T is Hausdorff, then G is proper.

Proof. Since T is Hausdorff, $G^{(0)} \times_T G^{(0)}$ is a closed subspace of $G^{(0)} \times G^{(0)}$, therefore (r, s), being the composition of the two proper maps $G \to G^{(0)} \times G^{(0)}$, is proper. \Box

Remark 2.28. When T is locally Hausdorff, one easily shows that G is ρ-proper iff for every Hausdorff open subspace V of T, $G^{\rho^{-1}(V)}$ is proper.

Proposition 2.29. [14] Let G_1 and G_2 be two topological (resp. locally compact) groupoids. Let $r_i, s_i (i = 1, 2)$ be the range and source maps of G_i, and suppose that r_i are open. The following are equivalent:

(i) there exist a topological (resp. locally compact) space T and $f_i: T \to G_i^{(0)}$ open surjective such that $G_1[T]$ and $G_2[T]$ are isomorphic;

(ii) there exists a topological (resp. locally compact) space Z, two continuous maps $\rho: Z \to G_1^{(0)}$ and $\sigma: Z \to G_2^{(0)}$, a left action of G_1 on Z with momentum map ρ and a right action of G_2 on Z with momentum map σ such that

(a) the actions commute and are free, the action of G_2 is ρ-proper and the action of G_1 is σ-proper;

(b) the natural maps $Z/G_2 \to G_1^{(0)}$ and $G_1 \backslash Z \to G_2^{(0)}$ induced from ρ and σ are homeomorphisms.

Moreover, one may replace (b) by

(b)' ρ and σ are open and induce bijections $Z/G_2 \to G_1^{(0)}$ and $G_1 \backslash Z \to G_2^{(0)}$.

In (i), if T is locally compact then it may be assumed Hausdorff.

If G_1 and G_2 satisfy the equivalent conditions in Proposition 2.29, then they are said to be Morita-equivalent. Note that if $G_i^{(0)}$ are Hausdorff, then by Proposition 2.27 one may replace “ρ-proper” and “σ-proper” by “proper”.

To prove Proposition 2.29, we need preliminary lemmas:

Lemma 2.30. Let G be a topological groupoid. The following are equivalent:

(i) $r: G \to G^{(0)}$ is open;

(ii) for every G-space Z, the canonical mapping $\pi: Z \to Z/G$ is open.
Proof. To show (ii) \implies (i), take $Z = G$: the canonical mapping $\pi: G \to G/G$ is open. Therefore, for every open subspace U of G, $r(U) = G^{(0)} \cap \pi^{-1}(\pi(U))$ is open.

Let us show (i) \implies (ii). By Lemma 2.21, the range map $r: Z \times G \to Z$ is open. The conclusion follows from Proposition 2.11. \qed

Lemma 2.31. Let G be a topological groupoid such that the range map $r: G \to G^{(0)}$ is open. Let X be a topological space endowed with an action of G and T a topological space. Then the canonical map

$$f: (X \times T)/G \to (X/G) \times T$$

is an isomorphism.

Proof. Let $\pi: X \to X/G$ and $\pi': X \times T \to (X \times T)/G$ be the canonical mappings. Since π is open (Lemma 2.30), $f \circ \pi' = \pi \times 1$ is open. Since π' is continuous surjective, it follows that f is open. \qed

Lemma 2.32. Let G be a topological groupoid whose range map is open and $f: Y \to Z$ a proper, G-equivariant map between two G-spaces. Then the induced map $\bar{f}: Y/G \to Z/G$ is proper.

Proof. We first show that \bar{f} is closed. Let $\pi: Y \to Y/G$ and $\pi': Z \to Z/G$ be the canonical mappings. Let $A \subset Y/G$ be a closed subspace. Since f is closed and π is continuous, $(\pi')^{-1}(f(A)) = f(\pi^{-1}(A))$ is closed. Therefore, $\bar{f}(A)$ is closed.

Applying this to $f \times 1$, we see that for every topological space T, $(Y \times T)/G \to (Z \times T)/G$ is closed. By Lemma 2.31, $\bar{f} \times 1_T$ is closed. \qed

Lemma 2.33. Let G_2 and G_3 be topological groupoids whose range maps are open. Let Z_1, Z_2 and X be topological spaces. Suppose there are maps

$$X \xleftarrow{\rho_1} Z_1 \xrightarrow{\sigma_1} G_2^{(0)} \xleftarrow{\rho_2} Z_2 \xrightarrow{\sigma_2} G_3^{(0)},$$

a right action of G_2 on Z_1 with momentum map σ_1, such that ρ_1 is G_2-invariant and the action of G_2 is ρ_1-proper, a left action of G_2 on Z_2 with momentum map ρ_2 and a right ρ_2-proper action of G_3 on Z_2 with momentum map σ_2 which commutes with the G_2-action.

Then the action of G_3 on $Z = Z_1 \times_{G_2} Z_2$ is ρ_1-proper.

Proof. Let $\varphi: Z_2 \times G_3 \to Z_2 \times_{G_2^{(0)}} Z_2$ be the map $(z_2, \gamma) \mapsto (z_2, z_2 \gamma)$. By assumption, φ is proper, therefore $1_{Z_1} \times \varphi$ is proper. Let $F = \{(z_1, z_2, z_2') \in Z_1 \times Z_2 \times Z_2 | \sigma_1(z_1) = \rho_2(z_2) = \rho_2(z_2')\}$. Then $1_{Z_1} \times \varphi: (1 \times \varphi)^{-1}(F) \to F$ is proper, i.e. $Z_1 \times_{G_2^{(0)}} (Z_2 \times G_3) \to Z_1 \times_{G_2^{(0)}} (Z_2 \times G_2^{(0)})$ is proper. By Lemma 2.32 taking the quotient by G_2, we get that the map

$$\alpha: Z \times G_3 \to Z_1 \times_{G_2} (Z_2 \times_{G_2^{(0)}} Z_2)$$

defined by $(z_1, z_2, \gamma) \mapsto (z_1, z_2, z_2 \gamma)$ is proper.
By assumption, the map $Z_1 \times G_2 \to Z_1 \times Z_1$ given by $(z_1, g) \mapsto (z_1, z_1g)$ is proper. Endow $Z_1 \times G_2$ with the following right action of $G_2 \times G_2$: $(z_1, g) \cdot (g', g'') = (z_1g', (g'')^{-1}gg'')$. Using again Lemma 2.32, the map

$$\beta: Z_1 \times G_2 \times G_2 \to (Z_1 \times G_2) \times G_2 \times G_2$$

$$\beta = (Z_1 \times G_2) \times G_2 = (Z_1 \times Z_1) \times G_2 \times G_2$$

is proper. By composition, $\beta \circ \alpha: Z \times G_3 \to Z \times Z$ is proper. □

Proof of Proposition 2.34

Let us treat the case of topological groupoids. Assertion (b') follows from the fact that the canonical mappings $Z \to Z/G_2$ and $Z \to G_1 \backslash Z$ are open (Lemma 2.33).

Let us first show that (ii) is an equivalence relation. Reflexivity is clear (taking $Z = G$, $\rho = r$, $\sigma = s$), and symmetry is obvious. Suppose that (Z_1, ρ_1, σ_1) and (Z_2, ρ_2, σ_2) are equivalences between G_1 and G_2, and G_2 and G_3 respectively. Let $Z = Z_1 \times G_2$ be the quotient of $Z_1 \times G_2$ by the action $(z_1, z_2, \gamma = (z_1r, \gamma^{-1}z_2)$ of G_2. Denote by $\rho: Z \to G_1(0)$ and $\sigma: Z \to G_3(0)$ the maps induced from $\rho_1 \times 1$ and $1 \times \sigma_2$. By Lemma 2.32 the first projection $p_1: Z_1 \times G_2 \to Z_1$ is open, therefore $\rho = \rho_1 \circ p_1$ is open. Similarly, σ is open. It remains to show that the actions of G_3 and G_1 are ρ-proper and σ-proper respectively. For G_3, this follows from Lemma 2.33 and the proof for G_1 is similar.

This proves that (ii) is an equivalence relation. Now, let us prove that (i) and (ii) are equivalent.

Suppose (ii). Let $\Gamma = G_1 \times Z \times G_2$ and $T = Z$. The maps $\rho: T \to G_1(0)$ and $\sigma: T \to G_3(0)$ are open surjective by assumption. Since $G_1 \times Z \simeq Z \times G_2$ and $Z \times G_2 \simeq Z \times G_1(0)$, we have $G_2[T] = (T \times T) \times G_1(0) \times G_3(0)$, which is $\simeq G_1 \times (Z \times G_2) \times \sigma \circ p_2 \circ \rho$. This implies that Γ is an equivalence relation. Let $Z = T \times G$. Let us check that the action of G is p_1-proper. Write $Z \times G = \{(t, g, h) \in T \times G, f(t) = r(g) \text{ and } s(g) = r(h)\}$. One needs to check that the map $Z \times G \to (T \times T, G)^2$ defined by $(t, g, h) \mapsto (t, g, t, h)$ is a homeomorphism onto its image. This follows easily from the facts that the diagonal map $T \to T \times T$ and the map $G^{(2)} \to G \times G, (g, h) \mapsto (g, gh)$ are homeomorphisms onto their images.

Let us check that the action of $G[T]$ is $s \circ p_2$-proper. One easily checks that the groupoid $G' = G[T] \times (T \times T, G)$ is isomorphic to a subgroupoid of the trivial groupoid $(T \times T) \times (G \times G)$. It follows that if r' and s' denote the range and source maps of G', the map (r', s') is a homeomorphism of G' onto its image.

Let us now treat the case of locally compact groupoids. In the proof that (ii) is a transitive relation, it just remains to show that Z is locally compact.
Let U_3 be a Hausdorff open subspace of $G_3^{(0)}$. We show that $\sigma^{-1}(U_3)$ is locally compact. Replacing G_2 by $(G_2)^{(0)}_{U_3}$, we may assume that G_2 acts freely and properly on Z_2. Let Γ be the groupoid $(Z_1 \times_{G_2^{(0)}} Z_2) \rtimes G_2$, and $R = (r,s)(\Gamma) \subset (Z_1 \times_{G_2^{(0)}} Z_2)^2$. Since the action of G_2 on Z_2 is free and proper, there exists a continuous map $\varphi: Z_2 \times_{G_2^{(0)}} Z_2 \to G_2$ such that $z_2 = \varphi(z_2, z_2')$. Then $R = \{(z_1, z_2, z_1', z_2') \in (Z_1 \times_{G_2^{(0)}} Z_2)^2; z_1' = z_1 \varphi(z_2, z_2')\}$ is locally closed. By Proposition 2.12, $Z = (Z_1 \times_{G_2^{(0)}} Z_2)/G$ is locally compact.

Finally, if (i) holds with $T = \cup_i V_i$ with V_i open Hausdorff, let $T' = \Pi V_i$. It is clear that $G_1[T'] \simeq G_2[T']$. □

Let us examine standard examples of Morita-equivalences:

Example 2.34. Let G be a topological groupoid whose range map is open. Let $(U_i)_{i \in I}$ be an open cover of $G^{(0)}$ and $U = \Pi_{i \in I} U_i$. Then $G[U]$ is Morita-equivalent to G.

Example 2.35. Let G be a topological groupoid, and let H_1, H_2 be subgroupoids such that the range maps $r_i: H_i \to H_i^{(0)}$ are open. Then $(H_1 \setminus G_{s(H_2)}^{s(H_1)}) \rtimes H_2$ and $H_1 \rtimes (G_{s(H_2)}^{s(H_1)}/H_2)$ are Morita-equivalent.

Proof. Take $Z = G_{s(H_2)}^{s(H_1)}$ and let $\rho: Z \to Z/H_2$ and $\sigma: H_1 \setminus Z$ be the canonical mappings. The fact that these maps are open follows from Lemma 2.30. □

The following proposition is an immediate consequence of Proposition 2.22.

Proposition 2.36. Let G and G' be two topological groupoids such that the range maps of G and G' are open. Suppose that G and G' are Morita-equivalent. Then G is proper if and only if G' is proper.

Corollary 2.37. With the notations of Example 2.34, G is proper if and only if $G[U]$ is proper.

3. A Topological Construction

Let X be a locally compact space. Since X is not necessarily Hausdorff, a filter $^1 \mathcal{F}$ on X may have more than one limit. Let S be the set of limits of a convergent filter \mathcal{F}. The goal of this section is to construct a Hausdorff space $\mathcal{H}X$ in which X is (not continuously) embedded, and such that \mathcal{F} converges to S in $\mathcal{H}X$.

3.1. The space $\mathcal{H}X$.

Lemma 3.1. Let X be a topological space, and $S \subset X$. The following are equivalent:

(i) for every family $(V_s)_{s \in S}$ of open sets such that $s \in V_s$, and $V_s = X$ except perhaps for finitely many s’s, one has $\cap_{s \in S} V_s \neq \emptyset$;

1or a net; we will use indifferently the two equivalent approaches
versely, suppose there exists a singleton subspace of \(V \).

We introduce the notations \(\Omega_V \)'s and \(\Omega^Q \)'s which satisfy the equivalent conditions of Lemma 3.1 and \(\mathcal{H}X = \mathcal{H}X \cup \{ \emptyset \} \).

Lemma 3.2. Let \(X \) be a locally Hausdorff space. Then every \(S \in \mathcal{H}X \) is locally finite. More precisely, if \(V \) is a Hausdorff open subspace of \(X \), then \(V \cap S \) has at most one element.

Proof. Suppose \(a \neq b \) and \(\{ a, b \} \subset V \cap S \). Then there exist \(V_a, V_b \) open disjoint neighborhoods of \(a \) and \(b \) respectively; this contradicts Lemma 3.1(ii). Suppose that \(X \) is locally compact. We endow \(\hat{H}X \) with a topology. Let us introduce the notations \(\Omega_V = \{ S \in \mathcal{H}X | V \cap S \neq \emptyset \} \) and \(\Omega^Q = \{ S \in \mathcal{H}X | Q \cap S = \emptyset \} \). The topology on \(\hat{H}X \) is generated by the \(\Omega_V \)'s and \(\Omega^Q \)'s (\(V \) open and \(Q \) quasi-compact). More explicitly, a set is open if and only if it is a union of sets of the form \(\Omega^Q_{(V_i)_{i \in I}} = \Omega^Q \cap (\cap_{i \in I} \Omega_{V_i}) \) where \((V_i)_{i \in I} \) is a finite family of open Hausdorff sets and \(Q \) is quasi-compact.

Proposition 3.3. For every locally compact space \(X \), the space \(\hat{H}X \) is Hausdorff.

Proof. Suppose \(S \not\subset S' \) and \(S, S' \in \mathcal{H}X \). Let \(s \in S - S' \). Since \(S' \) is locally finite and since every singleton subspace of \(X \) is closed, there exist \(V \) open and \(K \) compact such that \(s \in V \subset K \) and \(K \cap S' = \emptyset \). Then \(\Omega_V \) and \(\Omega_K \) are disjoint neighborhoods of \(S \) and \(S' \) respectively.

For every filter \(\mathcal{F} \) on \(\hat{H}X \), let

\[
L(\mathcal{F}) = \{ a \in X | \forall V \ni a \text{ open, } \Omega_V \in \mathcal{F} \}.
\]

Lemma 3.4. Let \(X \) be a locally compact space. Let \(\mathcal{F} \) be a filter on \(\hat{H}X \). Then \(\mathcal{F} \) converges to \(S \in \mathcal{H}X \) if and only if properties (a) and (b) below hold:

(a) \(\forall V \text{ open, } V \cap S \neq \emptyset \Rightarrow \Omega_V \in \mathcal{F} \);
(b) \(\forall Q \text{ quasi-compact, } Q \cap S = \emptyset \Rightarrow \Omega^Q \in \mathcal{F} \).

If \(\mathcal{F} \) is convergent, then \(L(\mathcal{F}) \) is its limit.

Proof. The first statement is obvious, since every open set in \(\hat{H}X \) is a union of finite intersections of \(\Omega_V \)'s and \(\Omega^Q \)'s.

Let us prove the second statement. It is clear from (a) that \(S \subset L(\mathcal{F}) \). Conversely, suppose there exists \(a \in L(\mathcal{F}) - S \). Since \(S \) is locally finite and every singleton subspace of \(X \) is closed, there exists a compact neighborhood \(K \) of \(a \) such that \(K \cap S = \emptyset \). Then \(a \in L(\mathcal{F}) \) implies \(\Omega_K \in \mathcal{F} \), and condition (b)
implies $\Omega^K \in \mathcal{F}$, thus $\emptyset = \Omega^K \cap \Omega_K \in \mathcal{F}$, which is impossible: we have proved the reverse inclusion $L(\mathcal{F}) \subset S$. \hfill \Box

Remark 3.5. This means that if $S_\lambda \to S$, then $a \in S$ if and only if $\forall \lambda$ there exists $s_\lambda \in S_\lambda$ such that $s_\lambda \to a$.

Example 3.6. Consider Example 3.5 with $\Gamma = \mathbb{Z}_2$ and $H = \{0\}$. Then $\mathcal{H}G = G \cup \{S\}$ where $S = \{(0,0), (0,1)\}$. The sequence $(1/n,0) \in G$ converges to S in $\mathcal{H}G$, and $(0,0)$ and $(0,1)$ are two isolated points in $\mathcal{H}G$.

Proposition 3.7. Let X be a locally compact space and $K \subset X$ quasi-compact. Then $L = \{S \in \mathcal{H}X \mid S \cap K \neq \emptyset\}$ is compact. The space $\mathcal{H}X$ is locally compact, and it is σ-compact if X is σ-compact.

Proof. We show that L is compact, and the two remaining assertions follow easily. Let \mathcal{F} be a ultrafilter on L. Let $S_0 = L(\mathcal{F})$. Let us show that $S_0 \cap K \neq \emptyset$: for every $S \in L$, choose a point $\varphi(S) \in K \cap S$. By quasi-compactness, $\varphi(\mathcal{F})$ converges to a point $a \in K$, and it is not hard to see that $a \in S_0$.

Let us show $S_0 \in \mathcal{H}X$: let $(V_s) (s \in S_0)$ be a family of open subspaces of X such that $s \in V_s$ for all $s \in S_0$, and $V_s = X$ for every $s \notin S_1$ ($S_1 \subset S_0$ finite).

By definition of S_0, $\Omega_{(V_s) \in S_1} = \cap_{s \in S_1} \Omega_{V_s}$ belongs to \mathcal{F}, hence it is non-empty. Choose $S \in \Omega_{(V_s) \in S_1}$, then $S \cap V_s \neq \emptyset$ for all $s \in S_1$. By Lemma 3.1(ii), $\cap_{s \in S_1} V_s \neq \emptyset$. This shows that $S_0 \in \mathcal{H}X$.

Now, let us show that \mathcal{F} converges to S_0.

- **If** V is open Hausdorff such that $S_0 \in \Omega_V$, then by definition $\Omega_V \in \mathcal{F}$.
- **If** Q is quasi-compact and $S_0 \in \Omega_Q$, then $\Omega_Q \in \mathcal{F}$, otherwise one would have $\{S \in \mathcal{H}X \mid S \cap Q \neq \emptyset\} \in \mathcal{F}$, which would imply as above that $S_0 \cap Q \neq \emptyset$, a contradiction.

From Lemma 3.1 \mathcal{F} converges to S_0. \hfill \Box

Proposition 3.8. Let X be a locally compact space. Then $\hat{\mathcal{H}}X$ is the one-point compactification of $\mathcal{H}X$.

Proof. It suffices to prove that $\hat{\mathcal{H}}X$ is compact. The proof is almost the same as in Proposition 3.7. \hfill \Box

Remark 3.9. If $f: X \to Y$ is a continuous map from a locally compact space X to any Hausdorff space Y, then f induces a continuous map $\mathcal{H}f: \mathcal{H}X \to \mathcal{H}Y$. Indeed, for every open subspace V of Y, $(\mathcal{H}f)^{-1}(V) = \Omega_{f^{-1}(V)}$ is open.

Proposition 3.10. Let G be a topological groupoid such that $G^{(0)}$ is Hausdorff, and $r: G \to G^{(0)}$ is open. Let Z be a locally compact space endowed with a continuous action of G. Then $\mathcal{H}Z$ is endowed with a continuous action of G which extends the one on Z.

Proof. Let $p: Z \to G^{(0)}$ such that G acts on Z with momentum map p. Since p has a continuous extension $\mathcal{H}p: \mathcal{H}Z \to G^{(0)}$, for all $S \in \mathcal{H}Z$, there exists $x \in G^{(0)}$ such that $S \subset p^{-1}(x)$. For all $g \in G^*$, write $Sg = \{sg \mid s \in S\}$.
Let us show that $Sg \in \mathcal{H}Z$. Let V_s ($s \in S$) be open sets such that $sg \in V_s$. By continuity, there exist open sets $W_s \ni s$ and $W_g \ni g$ such that for all $(z,h) \in W_s \times G(0) W_g$, $zh \in V_s$. Let $V'_s = W_s \cap p^{-1}(r(W_g))$. Then V'_s is an open neighborhood of s, so there exists $z \in \cap_{s \in S} V'_s$. Since $p(z) = r(h)$, there exists $h \in W_g$ such that $p(z) = r(h)$. It follows that $zh \in \cap_{s \in S} V_s$. This shows that $Sg \in \mathcal{H}Z$.

Let us show that the action defined above is continuous. Let $\Phi: \mathcal{H}Z \times_{G(0)} G \to \mathcal{H}Z$ be the action of G on $\mathcal{H}Z$. Suppose that $(S_\lambda, g_\lambda) \to (S, g)$ and let $S' = L((S_\lambda, g_\lambda))$. Then for all $a \in S$ there exists $s_\lambda \in S_\lambda$ such that $s_\lambda \to a$. This implies $s_\lambda g_\lambda \to ag$, thus $ag \in S'$. The converse may be proved in a similar fashion, hence $Sg = S'$.

Applying this to any universal net (S_λ, g_λ) converging to (S, g) and knowing from Proposition 3.11 that $\Phi(S_\lambda, g_\lambda)$ is convergent in $\mathcal{H}Z$, we find that $\Phi(S_\lambda, g_\lambda)$ converges to $\Phi(S, g)$. This shows that Φ is continuous in (S, g).

3.2. THE SPACE $\mathcal{H}'X$. Let X be a locally compact space. Let $\Omega'_V = \{S \in \mathcal{H}X \mid S \subset V\}$. Let $\mathcal{H}'X$ be $\mathcal{H}X$ as a set, with the coarsest topology such that the identity map $\mathcal{H}'X \to \mathcal{H}X$ is continuous, and Ω'_V is open for every relatively quasi-compact open set V. The space $\mathcal{H}'X$ is Hausdorff since $\mathcal{H}X$ is Hausdorff, but it is usually not locally compact.

Lemma 3.11. Let X be a locally compact space. Then the map
$$
\mathcal{H}'X \to \mathbb{N}^* \cup \{\infty\}, \quad S \mapsto \#S
$$
is upper semi-continuous.

Proof. Let $S \in \mathcal{H}'X$ such that $\#S < \infty$. Let V_s ($s \in S$) be open relatively compact Hausdorff sets such that $s \in V_s$, and let $W = \cup_{s \in S} V_s$. Then $S' \in \mathcal{H}'X$ implies $\#(S' \cap V_s) \leq 1$, therefore $S' \in \Omega'_W$ implies $\#S' \leq \#S$. □

Proposition 3.12. Let X be a locally compact space such that the closure of every quasi-compact subspace is quasi-compact. Then

(a) the natural map $\mathcal{H}'X \to \mathcal{H}X$ is a homeomorphism,

(b) for every compact subspace $K \subset X$, there exists $C_K > 0$ such that
$$
\forall S \in \mathcal{H}X, \ S \cap K \neq \emptyset \implies \#S \leq C_K.
$$

(c) If G is a locally compact proper groupoid with $G(0)$ Hausdorff then G satisfies the above properties.

Proof. To prove (b), let K_1 be a quasi-compact neighborhood of K and let $K' = \overline{K_1}$. Let $a \in K \cap S$ and suppose there exists $b \in S - K'$. Then K_1 and $X - K'$ are disjoint neighborhoods of a and b respectively, which is impossible. We deduce that $S \subset K'$.

Now, let $(V_i)_{i \in I}$ be a finite cover of K' by open Hausdorff sets. For all $b \in S$, let $I_b = \{i \in I \mid b \in V_i\}$. By Lemma 3.2, the I_b’s ($b \in S$) are disjoint, whence one may take $C_K = \#I$.

To prove (a), denote by $\Delta \subset X \times X$ the diagonal. Let us first show that $pr_1: \Delta \to X \times X$ is proper.

Let $K \subset X$ compact. Let $L \subset X$ quasi-compact such that $K \subset \hat{L}$. If $(a, b) \in \Delta \cap (K \times X)$, then $b \in \overline{L}$; otherwise, $L \times L^c$ would be a neighborhood of (a, b) whose intersection with Δ is empty. Therefore, $pr_1^{-1}(K) = \Delta \cap (K \times \overline{L})$ is quasi-compact, which shows that pr_1 is proper.

It remains to prove that Ω'_V is open in $\mathcal{H}X$ for every relatively quasi-compact open set $V \subset X$. Let $S \in \Omega'_V$, $a \in S$ and K a compact neighborhood of a. Let $L = pr_2(\Delta \cap (K \times X))$. Then $Q = L - V$ is quasi-compact, and $S \in \Omega'_K \subset \Omega'_V$, therefore Ω'_V is a neighborhood of each of its points.

To prove (c), let $K \subset G$ be a quasi-compact subspace. Then $L = r(K) \cup s(K)$ is quasi-compact, thus G^L_K is also quasi-compact. But \overline{K} is closed and $\overline{K} \subset G^L_K$, therefore \overline{K} is quasi-compact.

4. HAAR SYSTEMS

4.1. THE SPACE $C_c(X)$. For every locally compact space X, $C_c(X)_0$ will denote the set of functions $f \in C_c(V)$ (V open Hausdorff), extended by 0 outside V. Let $C_c(X)$ be the linear span of $C_c(X)_0$. Note that functions in $C_c(X)$ are not necessarily continuous.

Proposition 4.1. Let X be a locally compact space, and let $f: X \to \mathbb{C}$. The following are equivalent:

(i) $f \in C_c(X)$;

(ii) $f^{-1}(\mathbb{C}^*)$ is relatively quasi-compact, and for every filter \mathcal{F} on X, let $\tilde{\mathcal{F}} = i(\mathcal{F})$, where $i: X \to \mathcal{H}X$ is the canonical inclusion; if $\tilde{\mathcal{F}}$ converges to $S \in \mathcal{H}X$, then $\lim_{\mathcal{F}} f = \sum_{s \in S} f(s)$.

Proof. Let us show (i) \implies (ii). By linearity, it is enough to consider the case $f \in C_c(V)$, where $V \subset X$ is open Hausdorff. Let K be the compact set $\overline{f^{-1}(\mathbb{C}^*)} \cap V$. Then $f^{-1}(\mathbb{C}^*) \subset K$. Let \mathcal{F} and S as in (ii). If $S \cap V = 0$, then $S \in \Omega^K$, hence $\Omega^K \in \mathcal{F}$, i.e. $X - K \in \mathcal{F}$. Therefore, $\lim_{\mathcal{F}} f = 0 = \sum_{s \in S} f(s)$. If $S \cap V \neq \emptyset$, then a is a limit point of \mathcal{F}, therefore $\lim_{\mathcal{F}} f = f(a) = \sum_{s \in S} f(s)$.

Let us show (ii) \implies (i) by induction on $n \in \mathbb{N}^*$ such that there exist V_1, \ldots, V_n open Hausdorff and K quasi-compact satisfying $f^{-1}(\mathbb{C}^*) \subset K \subset V_1 \cup \cdots \cup V_n$. For $n = 1$, for every $x \in V_1$, let \mathcal{F} be a ultrafilter convergent to x. By Proposition 3.8, $\tilde{\mathcal{F}}$ is convergent; let S be its limit, then $\lim_{\mathcal{F}} f = \sum_{s \in S} f(s) = f(x)$, thus $f_{|x}$ is continuous.

Now assume the implication is true for $n - 1$ ($n \geq 2$) and let us prove it for n. Since K is quasi-compact, there exist V'_1, \ldots, V'_n open sets, K_1, \ldots, K_n compact such that $K \subset V'_1 \cup \cdots \cup V'_n$ and $V'_i \subset K_i \subset V_i$. Let $F = (V'_1 \cup \cdots \cup V'_n) - (V'_1 \cup \cdots \cup V'_{n-1})$. Then F is closed in V'_n and $f_{|F}$ is continuous. Moreover, $f_{|F} = 0$ outside $K' = K - (V'_1 \cup \cdots \cup V'_{n-1})$ which is closed in K, hence quasi-compact, and Hausdorff, since $K' \subset V'_n$. Therefore, $f_{|F} \in C_c(F)$. It follows that there exists an extension $h \in C_c(V'_n)$ of $f_{|F}$. By considering $f - h$, we
may assume that \(f = 0 \) on \(F \), so \(f = 0 \) outside \(K' = K_1 \cup \cdots \cup K_{n-1} \). But \(K' \subset V_1 \cup \cdots \cup V_{n-1} \), hence by induction hypothesis, \(f \in C_c(X) \). \(\square \)

Corollary 4.2. Let \(X \) be a locally compact space, \(f : X \to \mathbb{C} \), \(f_n \in C_c(X) \). Suppose that there exists fixed quasi-compact set \(Q \subset X \) such that \(f_n^{-1}(C^*) \subset Q \) for all \(n \), and \(f_n \) converges uniformly to \(f \). Then \(f \in C_c(X) \).

Lemma 4.3. Let \(X \) be a locally compact space. Let \((U_i)_{i \in I} \) be an open cover of \(X \) by Hausdorff subspaces. Then every \(f \in C_c(X) \) is a finite sum \(f = \sum f_i \), where \(f_i \in C_c(U_i) \).

Proof. See [6, Lemma 1.3]. \(\square \)

Lemma 4.4. Let \(X \) and \(Y \) be locally compact spaces. Let \(f \in C_c(X \times Y) \). Let \(V \) and \(W \) be open subspaces of \(X \) and \(Y \) such that \(f^{-1}(C^*) \subset Q \subset V \times W \) for some quasi-compact set \(Q \). Then there exists a sequence \(f_n \in C_c(V) \otimes C_c(W) \) such that \(\lim_{n \to \infty} \| f - f_n \|_\infty = 0 \).

Proof. We may assume that \(X = V \) and \(Y = W \). Let \((U_i)\) (resp. \((V_j)\)) be an open cover of \(X \) (resp. \(Y \)) by Hausdorff subspaces. Then every element of \(C_c(X \times Y) \) is a linear combination of elements of \(C_c(U_i \times V_j) \) (Lemma 4.3). The conclusion follows from the fact that the image of \(C_c(U_i) \otimes C_c(V_j) \to C_c(U_i \times V_j) \) is dense. \(\square \)

Lemma 4.5. Let \(X \) be a locally compact space and \(Y \subset X \) a closed subspace. Then the restriction map \(C_c(X) \to C_c(Y) \) is well-defined and surjective.

Proof. Let \((U_i)_{i \in I} \) be a cover of \(X \) by Hausdorff open subspaces. The map \(C_c(U_i) \to C_c(U_i \cap Y) \) is surjective (since \(Y \) is closed), and \(\oplus_{i \in I} C_c(U_i \cap Y) \to C_c(Y) \) is surjective (Lemma 4.3). Therefore, the map \(\oplus_{i \in I} C_c(U_i) \to C_c(Y) \) is surjective. Since it is also the composition of the surjective map \(\oplus_{i \in I} C_c(U_i) \to C_c(X) \) and of the restriction map \(C_c(X) \to C_c(Y) \), the conclusion follows. \(\square \)

4.2. Haar Systems

Let \(G \) be a locally compact proper groupoid with Haar system (see definition below) such that \(G(0) \) is Hausdorff. If \(G \) is Hausdorff, then \(C_c(G(0)) \) is endowed with the \(C^*_r(G) \)-valued scalar product \(\langle \xi, \eta \rangle(g) = \xi(r(g)) \eta(s(g)) \). Its completion is a \(C^*_r(G) \)-Hilbert module. However, if \(G \) is not Hausdorff, the function \(g \mapsto \xi(r(g)) \eta(s(g)) \) does not necessarily belong to \(C_c(G) \), therefore we need a different construction in order to obtain a \(C^*_r(G) \)-module.

Definition 4.6. [16, pp. 16-17] Let \(G \) be a locally compact groupoid such that \(G^* \) is Hausdorff for every \(x \in G(0) \). A Haar system is a family of positive measures \(\lambda = \{ \lambda^x \mid x \in G(0) \} \) such that \(\forall x, y \in G(0), \forall \varphi \in C_c(G) \):

(i) \(\text{supp}(\lambda^x) = G^* \);
(ii) \(\lambda(\varphi) : x \mapsto \int_{g \in G^*} \varphi(g) \lambda^x(g) \, dg \in C_c(G(0)) \);
(iii) \(\int_{h \in G^*} \varphi(gh) \lambda^x(h) \, dh = \int_{h \in G^*} \varphi(h) \lambda^y(h) \, dh \).

Note that \(G^* \) is automatically Hausdorff if \(G(0) \) is Hausdorff (Prop. 2.8). Recall also [15, p. 36] that the range map for \(G \) is open.
Lemma 4.7. Let G be a locally compact groupoid with Haar system. Then for every quasi-compact subspace K of G, \(\sup_{x \in G^{(0)}} \lambda^x(K \cap G^x) < \infty \).

Proof. It is easy to show that there exists $f \in C_c(G)$ such that $1_K \leq f$. Since\(\sup_{x \in G^{(0)}} \lambda(f)(x) < \infty \), the conclusion follows. \(\square\)

Lemma 4.8. Let G be a locally compact groupoid with Haar system such that $G^{(0)}$ is Hausdorff. Suppose that Z is a locally compact space and that $p : Z \to G^{(0)}$ is continuous. Then for every $f \in C_c(Z \times_{p,r} G)$, $\lambda(f) : z \mapsto \int_{g \in G^{p(z)}} f(z, g) \lambda^g(z)(dg)$ belongs to $C_c(Z)$.

Proof. By Lemma 4.5, f is the restriction of an element of $C_c(Z \times G)$.
If $f(z, g) = f_1(z)f_2(g)$, then $\psi(x) = \int_{g \in G^x} f_2(g) \lambda^g(dx)$ belongs to $C_c(G^{(0)})$, therefore $\psi \circ p \in C_c(Z)$. It follows that $\lambda(f) = f_1(\psi \circ p)$ belongs to $C_c(Z)$.
By linearity, if $f \in C_c(Z) \otimes C_c(G)$, then $\lambda(f) \in C_c(Z)$.
Now, for every $f \in C_c(Z \times G)$, there exist relatively quasi-compact open subspaces V and W of Z and G, and a sequence $f_n \in C_c(V \otimes C_c(W))$ such that f_n converges uniformly to f. From Lemma 4.7, $\lambda(f_n)$ converges uniformly to $\lambda(f)$, and $\lambda(f_n) \in C_c(Z)$. From Corollary 1.2, $\lambda(f) \in C_c(Z)$. \(\square\)

Proposition 4.9. Let G be a locally compact groupoid with Haar system such that $G^{(0)}$ is Hausdorff. If G acts on a locally compact space Z with momentum map $p : Z \to G^{(0)}$, then $(\lambda^g)_{g \in G}$ is a Haar system on $Z \times G$.

Proof. Results immediately from Lemma 4.8. \(\square\)

5. The Hilbert Module of a Proper Groupoid

5.1. The space X'. Before we construct a Hilbert module associated to a proper groupoid, we need some preliminaries. Let G be a locally compact groupoid such that $G^{(0)}$ is Hausdorff. Denote by X' the closure of $G^{(0)}$ in $\mathcal{H}G$.

Lemma 5.1. Let G be a locally compact groupoid such that $G^{(0)}$ is Hausdorff. Then for all $S \in X'$, S is a subgroup of G.

Proof. Since r and $s : G \to G^{(0)}$ extend continuously to maps $\mathcal{H}r = \mathcal{H}s$ on X', i.e. $\exists x_0 \in G^{(0)}$, $S \subset G_{x_0}^{Z_0}$. Let F be a filter on $G^{(0)}$ whose limit is S. Then $a \in S$ if and only if a is a limit point of F. Since for every $x \in G^{(0)}$ we have $x^{-1}x = x$, it follows that for every $a, b \in S$ one has $a^{-1}b \in S$, whence S is a subgroup of $G_{x_0}^{Z_0}$. \(\square\)

Denote by $q : X' \to G^{(0)}$ the map such that $S \subset G_{q(S)}$. The map q is continuous since it is the restriction to X' of $\mathcal{H}r$.

Lemma 5.2. Let G be a locally compact proper groupoid such that $G^{(0)}$ is Hausdorff. Let F be a filter on X', convergent to S. Suppose that $q(F)$ converges to $S_0 \in X'$. Then S_0 is a normal subgroup of S, and there exists $\Omega \in F$ such that $\forall S' \in \Omega, S'$ is group-isomorphic to S/S_0. In particular, $\{S' \in X' \mid \#S = \#S_0 \#S'\} \in F$.

Lemma 5.3. Let G be a locally compact proper groupoid such that $G^{(0)}$ is Hausdorff. Let F be a filter on X', convergent to S. Suppose that $q(F)$ converges to $S_0 \in X'$. Then S_0 is a normal subgroup of S, and there exists $\Omega \in F$ such that $\forall S' \in \Omega, S'$ is group-isomorphic to S/S_0. In particular, $\{S' \in X' \mid \#S = \#S_0 \#S'\} \in F$.

Lemma 5.4. Let G be a locally compact proper groupoid such that $G^{(0)}$ is Hausdorff. Let F be a filter on X', convergent to S. Suppose that $q(F)$ converges to $S_0 \in X'$. Then S_0 is a normal subgroup of S, and there exists $\Omega \in F$ such that $\forall S' \in \Omega, S'$ is group-isomorphic to S/S_0. In particular, $\{S' \in X' \mid \#S = \#S_0 \#S'\} \in F$.

Lemma 5.5. Let G be a locally compact proper groupoid such that $G^{(0)}$ is Hausdorff. Let F be a filter on X', convergent to S. Suppose that $q(F)$ converges to $S_0 \in X'$. Then S_0 is a normal subgroup of S, and there exists $\Omega \in F$ such that $\forall S' \in \Omega, S'$ is group-isomorphic to S/S_0. In particular, $\{S' \in X' \mid \#S = \#S_0 \#S'\} \in F$.
Proof. Using Proposition 5.12 we see that S is finite. We shall use the notation $\Omega_{(V_s)_{s \in S}} = \Omega_{(V_s)_{s \in S}} \cap \Omega_{1_{s=2}V}$. Let $V_s' \subset V_s$ ($s \in S$) be Hausdorff, open neighborhoods of s, chosen small enough so that for some $\Omega \in F$,

(a) $\Omega \subset \Omega_{(V_s')_{s \in S}}$;
(b) $V_s', V_s'_{s_2} \subset V_s_{s_1s_2}, \forall s_1, s_2 \in S$;
(c) $\forall s \in S - S_0, \forall S' \in \Omega, q(S') \notin V$;
(d) $q(\Omega) \subset \Omega_{(V_s')_{s \in S_0}}$.

Let $S' \in \Omega$. Let $\varphi: S \to S'$ such that $\{\varphi(s)\} = S' \cap V_s'$. Then φ is well-defined since $S' \cap V_s' \neq \emptyset$ (see (a)) and V_s' is Hausdorff.

If $s_1, s_2 \in S$ then $\varphi(s_i) \in S' \cap V_s'$. By (b), $\varphi(s_1)\varphi(s_2) \in S' \cap V_s_{s_1s_2}$. Since $V_s_{s_1s_2}$ is Hausdorff and also contains $\varphi(s_1s_2) \in S'$, we have $\varphi(s_1s_2) = \varphi(s_1)\varphi(s_2)$.

This shows that φ is a group morphism.

The map φ is surjective, since $S' \subset \cup_{s \in S} V_s'$ (see (a)). By (c), $\ker(\varphi) \subset S_0$ and by (d), $S_0 \subset \ker(\varphi)$. \hfill \qed

Suppose now that the range map $r: G \to G^{(0)}$ is open. Then X' is endowed with an action of G (Prop. 5.10) defined by $S \cdot g = g^{-1}Sg = \{g^{-1}sg | s \in S\}$.

5.2. Construction of the Hilbert module. Now, let G be a locally compact, proper groupoid. Assume that G is endowed with a Haar system, and that $G^{(0)}$ is Hausdorff. Let

$$E^0 = \{ f \in C_c(X') | f(S) = \sqrt{\#S}f(q(S)) \forall S \in X'\}.$$

$(q(S) \in G^{(0)}$ is identified to $\{q(S)\} \in X'\.)$

Define, for all $\xi, \eta \in E^0$ and $f \in C_c(G)$:

$$(\xi f)(S) = \int_{g \in G^{(0)}} \xi(g^{-1}Sg)f(g^{-1})\lambda^x(dg).$$

Proposition 5.3. With the above assumptions, the completion $E(G)$ of E^0 with respect to the norm $\|\xi\| = \|\langle \xi, \xi \rangle\|^{1/2}$ is a $C^*_r(G)$-Hilbert module.

We won’t give the direct proof here since this is a particular case of Theorem 6.8 (see Example 7.7(c)).

6. Cutoff functions

If G is a locally compact Hausdorff proper groupoid with Haar system. Assume for simplicity that $G^{(0)}/G$ is compact. Then there exists a so-called “cutoff” function $c \in C_c(G^{(0)})_+$ such that for every $x \in G^{(0)}$, $\int_{g \in G^{(0)}} c(s(g))\lambda^x(dg) = 1$, and the function $g \mapsto \sqrt{c(r(g))c(s(g))}$ defines projection in $C^*_r(G)$. However, if G is not Hausdorff, then the above function does not belong to $C_c(G)$ in general, thus we need another definition of a cutoff function.

Let $X_{\geq k}' = \{ S \in X' | \#S \geq k\}$. By Lemma 5.14, $X_{\geq k}'$ is closed.

Lemma 6.1. Let G be a locally compact, proper groupoid with $G^{(0)}$ Hausdorff. Let $X_{\geq k} = q(X_{\geq k}')$. Then $X_{\geq k}$ is closed in $G^{(0)}$.
Proof. It suffices to show that for every compact subspace K of $G^{(0)}$, $X_{\geq k} \cap K$ is closed. Let $K' = G^K$. Then K' is quasi-compact, and from Proposition 3.7 $K'' = \{ S \in \mathcal{H}G | S \cap K' \neq \emptyset \}$ is compact. The set $q^{-1}(K) \cap X'_{\geq k} = K'' \cap X'_{\geq k}$ is closed in K'', hence compact; its image by q is $X_{\geq k} \cap K$. \hfill \Box

Lemma 6.2. Let G be a locally compact, proper groupoid, with $G^{(0)}$ Hausdorff. Let $(\alpha) \in \mathbb{R}$. For every compact set $K \subset G^{(0)}$, there exists $f: X'_K \to \mathbb{R}^*_+$ continuous, where $X'_K = q^{-1}(K) \subset X'$, such that

$$\forall S \in X'_K, \quad f(S) = f(q(S))(\#S)^\alpha.$$

Proof. Let $K' = G^K$. It is closed and quasi-compact. From Proposition 3.7 X'_K is quasi-compact. For every $S \in X'_K$, we have $S \subset K'$. By Proposition 5.12 there exists $n \in \mathbb{N}^*$ such that $X'_{\geq n+1} \cap X'_K = \emptyset$. We can thus proceed by reverse induction: suppose constructed $f_{k+1}: X'_K \cap q^{-1}(X'_{\geq k+1}) \to \mathbb{R}^*_+$ continuous such that $f_{k+1}(S) = f_{k+1}(q(S))(\#S)^\alpha$ for all $S \in X'_K \cap q^{-1}(X'_{\geq k+1})$.

Since $X'_K \cap q^{-1}(X'_{\geq k+1})$ is closed in the compact set $X'_K \cap q^{-1}(X'_{\geq k})$, there exists a continuous extension $h: X'_K \cap q^{-1}(X'_{\geq k}) \to \mathbb{R}$ of f_{k+1}. Replacing $h(x)$ by $\sup(h(x), \inf f_{k+1})$, we may assume that $h(X'_K \cap q^{-1}(X'_{\geq k})) \subset \mathbb{R}^*_+$. Put $f_k(S) = h(q(S))(\#S)^\alpha$. Let us show that f_k is continuous.

Let \mathcal{F} be a ultrafilter on $X'_K \cap q^{-1}(X'_{\geq k})$, and let S be its limit. Since $q(\mathcal{F})$ is a ultrafilter on K, it has a limit $S_0 \in X'_K$. For every $S_1 \in q^{-1}(X'_{\geq k})$, choose $\psi(S_1) \in X'_K$ such that $q(S_1) = q(\psi(S_1))$. Let $S' \in X'_K \cap X'_{\geq k}$ be the limit of $\psi(\mathcal{F})$.

From Lemma 5.2 $\Omega_1 = \{ S_1 \in X'_K \cap q^{-1}(X'_{\geq k}) | \#S = \#S_0 \#S_1 \}$ is an element of \mathcal{F}, and $\Omega_2 = \{ S_2 \in X'_{\geq k} | \#S' = \#S_0 \#S_2 \}$ is an element of $\psi(\mathcal{F})$.

- If $\#S_0 > 1$, then $S' \in X'_{\geq k+1}$, so S and S_0 belong to $q^{-1}(X'_{\geq k+1})$. Therefore, $f_k(S_1) = (\#S_1)^\alpha h(q(S_1))$ converges with respect to \mathcal{F} to

$$\frac{(\#S)^\alpha}{(\#S_0)^\alpha} h(S_0) = \frac{(\#S)^\alpha}{(\#S_0)^\alpha} f_{k+1}(S_0) = f_{k+1}(S) = f_{k+1}(q(S))(\#S)^\alpha = h(q(S))(\#S)^\alpha = f_k(S).$$

- If $S_0 = \{ q(S) \}$, then $f_k(S_1) = (\#S_1)^\alpha h(q(S_1))$ converges with respect to \mathcal{F} to $(\#S)^\alpha h(q(S)) = f_k(S)$.

Therefore, f_k is a continuous extension of f_{k+1}. \hfill \Box

Theorem 6.3. Let G be a locally compact, proper groupoid such that $G^{(0)}$ is Hausdorff and $G^{(0)}/G$ is σ-compact. Let $\pi: G^{(0)} \to G^{(0)}/G$ be the canonical mapping. Then there exists $c: X' \to \mathbb{R}^*_+$ continuous such that

(a) $c(S) = c(q(S)) \#S$ for all $S \in X'$;
(b) $\forall \alpha \in G^{(0)}/G$, $\exists x \in \pi^{-1}(\alpha)$, $c(x) \neq 0$;
(c) $\forall K \subset G^{(0)}$ compact, $\text{supp}(c) \cap q^{-1}(F)$ is compact, where $F = s(G^K)$.

If moreover G admits a Haar system, then there exists $c: X' \to \mathbb{R}^*_+$ continuous satisfying (a), (b), (c) and

(d) $\forall x \in G^{(0)}$, $\int_{g \in G^x} c(s(g)) \lambda^x(g) = 1$.

Non-Hausdorff groupoids

21
Proof. There exists a locally finite cover \((V_i)\) of \(G(0)/G\) by relatively compact open subspaces. Since \(\pi\) is open and \(G(0)\) is locally compact, there exists \(K_i \subset G(0)\) compact such that \(\pi(K_i) \supset V_i\). Let \((\varphi_i)\) be a partition of unity associated to the cover \((V_i)\). For every \(i\), from Lemma \ref{lem:partition} there exists \(c_i: X'_{K_i} \to \mathbb{R}^*_+\) continuous such that \(c_i(S) = c_i(q(S))\#S\) for all \(S \in X'_{K_i}\). Let
\[
c(S) = \sum_i c_i(S) \varphi_i(\pi(q(S))).
\]

It is clear that \(c\) is continuous from \(X'\) to \(\mathbb{R}^*_+\), and that \(c(S) = c(q(S))\#S\).

Let us prove (b): let \(x_0 \in G(0)\). There exists \(i\) such that \(\varphi_i(\pi(x_0)) \neq 0\). Choose \(x \in K_i\) such that \(\pi(x) = \pi(x_0)\), then \(c(x) \geq c_i(x) \varphi_i(\pi(x_0)) > 0\).

Let us show (c). Note that \(F = \pi^{-1}(\pi(K))\) is closed, so \(q^{-1}(F)\) is closed.

Let \(K_1\) be a compact neighborhood of \(K\) and \(F_1 = \pi^{-1}(\pi(K_1))\). Let \(J = \{i| V_i \cap \pi(K_1) \neq \emptyset\}\). Then for all \(i \notin J\), \(c_i(\varphi_i \circ \pi \circ q) = 0\) on \(q^{-1}(F_1)\), therefore \(c = \sum_{j \in J} c_j(\varphi_j \circ \pi \circ q)\) in a neighborhood of \(q^{-1}(F)\). Since for all \(i\), \(\text{supp}(c_i(\varphi_i \circ \pi \circ q))\) is compact and since \(J\) is finite, \(\text{supp}(c) \cap q^{-1}(F) \subset \bigcup_{i \in J} \text{supp}(c_i(\varphi_i \circ \pi \circ q))\) is compact.

Let us show the last assertion. Let \(\varphi(g) = c(s(g))\). Let \(\mathcal{F}\) be a filter on \(G\) convergent in \(\mathcal{H}G\) to \(A \subset G\). Choose \(a \in A\) and let \(S = a^{-1}A\). Then \(s(\mathcal{F})\) converges to \(S\) in \(\mathcal{H}G\), hence
\[
\lim_{\mathcal{F}} \varphi = \#S c(s(a)) = \sum_{g \in S} c(s(g)) = \sum_{g \in S} \varphi(g).
\]

For every compact set \(K \subset G(0)\),
\[
\begin{align*}
\{g \in G | r(g) \in K \text{ and } \varphi(g) \neq 0\} & \subset \{g \in G | r(g) \in K \text{ and } s(g) \in \text{supp}(c)\} \\
& \subset G^K_{q(s(g))},
\end{align*}
\]
so \(G^K \cap \{g \in G | \varphi(g) \neq 0\}\) is included in a quasi-compact set. Therefore, for every \(l \in C_c(G(0))\), \(g \mapsto l(r(g)) \varphi(g)\) belongs to \(C_c(G)\). It follows that \(h(x) = \int_{g \in G} \varphi(g) \lambda^x(dg)\) is a continuous function. Moreover, for every \(x \in G(0)\) there exists \(g \in G^x\) such that \(\varphi(g) \neq 0\), so \(h(x) > 0 \forall x \in G(0)\). It thus suffices to replace \(c(x)\) by \(c(x)/h(x)\).

\[\qed\]

Example 6.4. In Example \ref{ex:locally_compact} with \(\Gamma = \mathbb{Z}_n\) and \(H = \{0\}\), the cutoff function is the unique continuous extension to \(X'\) of the function \(c(x) = 1\) for \(x \in (0,1]\), and \(c(0) = 1/n\).

Proposition 6.5. Let \(G\) be a locally compact, proper, groupoid with Haar system such that \(G(0)\) is Hausdorff and \(G(0)/G\) is compact. Let \(c\) be a cutoff function. Then the function \(p(g) = \sqrt{c(r(g))c(s(g))}\) defines a selfadjoint projection \(p \in C_r^*(G)\), and \(E(G)\) is isomorphic to \(pC_r^*(G)\).
Proof. Let $\xi_0(x) = \sqrt{c(x)}$. Then one easily checks that $\xi_0 \in \mathcal{E}^0$, $(\xi_0, \xi_0) = p$ and $\xi_0(\xi_0, \xi_0) = \xi_0$, therefore p is a selfadjoint projection in $C^*_r(G)$. The maps

$$E(G) \rightarrow pC^*_r(G), \quad \xi \mapsto (\xi_0, \xi) = p(\xi_0, \xi)$$

$$pC^*_r(G) \rightarrow E(G), \quad a \mapsto \xi_0 a = \xi_0 pa$$

are inverses from each other. □

7. Generalized morphisms and C^*-algebra correspondences

Until the end of the paper, all groupoids are assumed locally compact, with open range map. In this section, we introduce a notion of generalized morphism for locally compact groupoids which are not necessarily Hausdorff, and a notion of locally proper generalized morphism.

Then, we show that a locally proper generalized morphism from G_1 to G_2 which satisfies an additional condition induces a $C^*_r(G_1)$-module E and a $*$-morphism $C^*_r(G_2) \rightarrow K(E)$, hence an element of $KK(C^*_r(G_2), C^*_r(G_1))$.

7.1. Generalized morphisms.

Definition 7.1. Let G_1 and G_2 be two groupoids. A generalized morphism from G_1 to G_2 is a triple (Z, ρ, σ) where

$$G_1^{(0)} \xleftarrow{\rho} Z \xrightarrow{\sigma} G_2^{(0)},$$

Z is endowed with a left action of G_1 with momentum map ρ and a right action of G_2 with momentum map σ which commute, such that

(a) the action of G_2 is free and ρ-proper,

(b) ρ induces a homeomorphism $Z/G_2 \simeq G_1^{(0)}$.

In Definition 7.1, one may replace (b) by (b)' or (b)" below:

(b)' ρ is open and induces a bijection $Z/G_2 \rightarrow G_1^{(0)}$.

(b)" the map $Z \times G_2 \rightarrow Z \times G_1^{(0)}$ defined by $(z, \gamma) \mapsto (z, z\gamma)$ is a homeomorphism.

Example 7.2. Let G_1 and G_2 be two groupoids. If $f : G_1 \rightarrow G_2$ is a groupoid morphism, let $Z = G_1^{(0)} \times_{f,r} G_2$, $\rho(x, \gamma) = x$ and $\sigma(x, \gamma) = s(\gamma)$. Define the actions of G_1 and G_2 by $g : (x, \gamma) \cdot \gamma' = (r(g), f(g)\gamma' \gamma)$. Then (Z, ρ, σ) is a generalized morphism from G_1 to G_2.

That ρ is open follows from the fact that the range map $G_2 \rightarrow G_2^{(0)}$ is open and from Lemma 2.26. The other properties in Definition 7.1 are easy to check.

7.2. Locally proper generalized morphisms.

Definition 7.3. Let G_1 and G_2 be two groupoids. A generalized morphism from G_1 to G_2 is said to be locally proper if the action of G_1 on Z is σ-proper.

Our terminology is justified by the following proposition:
Proposition 7.4. Let G_1 and G_2 be two groupoids such that $G_2^{(0)}$ is Hausdorff. Let $f : G_1 \to G_2$ be a groupoid morphism. Then the associated generalized groupoid morphism is locally proper if and only if the map $(f,r,s) : G_1 \to G_2 \times G_1^{(0)} \times G_1^{(0)}$ is proper.

Proof. Let $\varphi : G_1 \times_{f \circ r,s} G_2 \to (G_2 \times_{s,s} G_2) \times_{r \times r,f \times f} (G_1^{(0)} \times G_1^{(0)})$ defined by $\varphi(g_1,g_2) = (f(g_1)g_2,g_2,r(g_1),s(g_1))$. By definition, the action of G_1 on Z is proper if and only if φ is a proper map. Consider $\theta : G_2 \times_{s,s} G_2 \to G_2^{(2)}$ given by $(\gamma,\gamma') = (\gamma \gamma')^{-1}$. Let $\psi = (\theta \times 1) \circ \varphi$. Since θ is a homeomorphism, the action of G_1 on Z is proper if and only if ψ is proper.

Suppose that (f,r,s) is proper. Let $f' = (f,r,s) \times 1 : G_1 \times G_2 \to G_2 \times G_1^{(0)} \times G_1^{(0)} \times G_2$. Then f' is proper. Let $F = \{(\gamma,x,x',\gamma') \in G_2 \times G_1^{(0)} \times G_1^{(0)} \times G_2 \mid s(\gamma) = r(\gamma') = f(x'), r(\gamma) = f(x)\}$. Then $f' : (f')^{-1}(F) \to F$ is proper, i.e. ψ is proper.

Conversely, suppose that ψ is proper. Let $F' = \{(\gamma,y,x,x') \in G_2 \times G_1^{(0)} \times G_1^{(0)} \times G_1^{(0)} \mid s(\gamma) = y\}$. Then $\psi^{-1}(F') \to F'$ is proper, therefore (f,r,s) is proper. \qed

Our objective is now to show the

Proposition 7.5. Let G_1, G_2, G_3 be groupoids. Let (Z_1,ρ_1,σ_1) and (Z_2,ρ_2,σ_2) be two generalized groupoid morphisms from G_1 to G_2 and from G_2 to G_3 respectively. Then $(Z,\rho,\sigma) = (Z_1 \times_{G_2} Z_2,\rho_1 \times 1, 1 \times \sigma_2)$ is a generalized groupoid morphism. If (Z_1,ρ_1,σ_1) and (Z_2,ρ_2,σ_2) are locally proper, then (Z,ρ,σ) is locally proper.

Proposition 7.4 shows that groupoids form a category whose arrows are generalized morphisms, and that two groupoids are isomorphic in that category if and only if they are Morita-equivalent. Moreover, the same conclusions hold for the category whose arrows are locally proper generalized morphisms. In particular, local properness of generalized morphisms is invariant under Morita-equivalence.

All the assertions of Proposition 7.5 follow from Lemma 2.33.

7.3. Proper generalized morphisms.

Definition 7.6. Let G_1 and G_2 be groupoids. A generalized morphism (Z,ρ,σ) from G_1 to G_2 is said to be proper if it is locally proper, and if for every quasi-compact subspace K of $G_2^{(0)}$, $\sigma^{-1}(K)$ is G_1-compact.

Examples 7.7. (a) Let X and Y be locally compact spaces and $f : X \to Y$ a continuous map. Then the generalized morphism (X,Id,f) is proper if and only if f is proper.

(b) Let $f : G_1 \to G_2$ be a continuous morphism between two locally compact groups. Let $p : G_2 \to \{e\}$. Then (G_2,p,p) is proper if and only if f is proper and $f(G_1)$ is co-compact in G_2.

(c) Let G be a locally compact proper groupoid with Haar system such that $G^{(0)}$ is Hausdorff, and let $\pi : G^{(0)} \to G^{(0)}/G$ be the canonical mapping. Then $(G^{(0)}, \text{Id}, \pi)$ is a proper generalized morphism from G to $G^{(0)}/G$.

7.4. Construction of a C^*-correspondence. Until the end of the section, our goal is to prove:

Theorem 7.8. Let G_1 and G_2 be locally compact groupoids with Haar system such that $G_1^{(0)}$ and $G_2^{(0)}$ are Hausdorff, and $(\mathbb{Z}, \rho, \sigma)$ a locally proper generalized morphism from G_1 to G_2. Then one can construct a $C^*_\rho(G_1)$-Hilbert module \mathcal{E}_Z and a map $\pi : C^*_\rho(G_2) \to \mathcal{L}(\mathcal{E}_Z)$. Moreover, if $(\mathbb{Z}, \rho, \sigma)$ is proper, then π maps to $\mathcal{K}(\mathcal{E}_Z)$. Therefore, it gives an element of $KK(C^*_\rho(G_2), C^*_\rho(G_1))$.

Corollary 7.9. (see [14]) Let G_1 and G_2 be locally compact groupoids with Haar system such that $G_1^{(0)}$ and $G_2^{(0)}$ are Hausdorff. If G_1 and G_2 are Morita-equivalent, then $C^*_\rho(G_1)$ and $C^*_\rho(G_2)$ are Morita-equivalent.

Corollary 7.10. Let $f : G_1 \to G_2$ be morphism between two locally compact groupoids with Haar system such that $G_1^{(0)}$ and $G_2^{(0)}$ are Hausdorff. If the restriction of f to $(G_1)^K$ is proper for each compact set $K \subset (G_1)^{(0)}$ then f induces a correspondence \mathcal{E}_f from $C^*_\rho(G_2)$ to $C^*_\rho(G_1)$. If in addition for every compact set $K \subset (G_2)^{(0)}$ the quotient of $(G_1)^{(0)} \times_{f,r}(G_2)^K$ by the diagonal action of G_1 is compact, then $C^*_\rho(G_2)$ maps to $\mathcal{K}(\mathcal{E}_f)$ and thus f defines a KK-element $[f] \in KK(C^*_\rho(G_2), C^*_\rho(G_1))$.

Proof. See Proposition 7.4 and Definition 7.6 applied to the generalized morphism $Z_f = G_1^{(0)} \times_{f,r} G_2$ as in Example 7.2.

The rest of the section is devoted to proving Theorem 7.8. Let us first recall the construction of the correspondence when the groupoids are Hausdorff [11]. It is the closure of $C_c(Z)$ with the $C^*_\rho(G_1)$-valued scalar product

\begin{equation}
\langle \xi, \eta \rangle(g) = \int_{\gamma \in (G_2)^{(0)}} \overline{\xi(g^{-1}z\gamma)} \eta(g^{-1}z\gamma) \lambda^\rho(z)(d\gamma),
\end{equation}

where z is an arbitrary element of Z such that $\rho(z) = r(g)$. The right $C^*_\rho(G_1)$-module structure is defined $\forall \xi \in C_c(Z), \forall a \in C_c(G_1)$ by

\begin{equation}
(\xi a)(z) = \int_{g \in (G_1)^{(0)}} \xi(g^{-1}z)a(g^{-1}) \lambda^\rho(z)(dg),
\end{equation}

and the left action of $C^*_\rho(G_2)$ is

\begin{equation}
(b\xi)(z) = \int_{\gamma \in (G_2)^{(0)}} b(\gamma)\xi(\gamma z) \lambda^\rho(z)(d\gamma)
\end{equation}

for all $b \in C_c(G_2)$.

We now come back to non-Hausdorff groupoids. For every open Hausdorff set $V \subset Z$, denote by V' its closure in $\mathcal{H}((G_1 \times Z)^V)$, where $z \in V$ is identified
to \((ρ(z), z) ∈ \mathcal{H}((G_1 × Z)^0)\). Let \(E^0_V\) be the set of \(ξ ∈ C_c(V')\) such that
\[
ξ(z) = \frac{ξ(S × \{z\})}{\sqrt{\# S}}
\]
for all \(S × \{z\} ∈ V'\).

Lemma 7.11. The space \(E^0_Z = \sum_{i∈I} E^0_{V_i}\) is independent of the choice of the cover \((V_i)\) of \(Z\) by Hausdorff open subspaces.

Proof. It suffices to show that for every open Hausdorff subspace \(V\) of \(Z\), one has \(E^0_V \subset \sum_{i∈I} E^0_{V_i}\). Let \(ξ ∈ E^0_V\). Denote by \(q_V : V' → V\) the canonical map defined by \(q_V(S × \{z\}) = z\). Let \(K ⊂ V\) compact such that \(supp(ξ) ⊂ q_V^{-1}(K)\). There exists \(J ⊂ I\) finite such that \(K ⊂ \bigcup_{i∈J} V_i\). Let \((ϕ_j)_{j∈J}\) be a partition of unity associated to that cover, and \(ξ_j = ξ(ϕ_j ∘ q_V)\). One easily checks that \(ξ_j ∈ E^0_{V_i}\) and that \(ξ = \sum_{j∈J} ξ_j\). □

We now define a \(C^*(G_1)\)-valued scalar product on \(E^0_Z\) by Eqn. 2 where \(z\) is an arbitrary element of \(Z\) such that \(ρ(z) = r(g)\). Our definition is independent of the choice of \(z\), since if \(z'\) is another element, there exists \(γ' ∈ G_2\) such that \(z' = zγ'\), and the Haar system on \(G_2\) is left-invariant.

Moreover, the integral is convergent for all \(g ∈ G_1\) because the action of \(G_2\) on \(Z\) is proper.

Let us show that \(⟨ξ, η⟩ \in C_c(G_1)\) for all \(ξ, η ∈ E^0_Z\). We need a preliminary lemma:

Lemma 7.12. Let \(X\) and \(Y\) be two topological spaces such that \(X\) is locally compact and \(f : X → Y\) proper. Let \(F\) be a ultrafilter such that \(f\) converges to \(y ∈ Y\) with respect to \(F\). Then there exists \(x ∈ X\) such that \(f(x) = y\) and \(F\) converges to \(x\).

Proof. Let \(Q = f^{-1}(y)\). Since \(f\) is proper, \(Q\) is quasi-compact. Suppose that for all \(x ∈ Q\), \(F\) does not converge to \(x\). Then there exists an open neighborhood \(V_x\) of \(x\) such that \(V_x^c ∈ F\). Extracting a finite cover \((V_1, ..., V_n)\) of \(Q\), there exists an open neighborhood \(V\) of \(Q\) such that \(V^c ∈ F\). Since \(f\) is closed, \(f(V^c)^c\) is a neighborhood of \(y\). By assumption, \(f(V^c)^c ∈ F\), i.e. \(∃ A ∈ F\), \(f(A) ⊂ f(V^c)^c\). This implies that \(A ⊂ V\), therefore \(V^c ∈ F\): this contradicts \(V^c ∈ F\).

Consequently, there exists \(x ∈ Q\) such that \(F\) converges to \(x\). □

To show that \(⟨ξ, η⟩ \in C_c(G_1)\), we can suppose that \(ξ ∈ E^0_U\) and \(η ∈ E^0_V\), where \(U\) and \(V\) are open Hausdorff. Let \(F(g, z) = \overline{ξ(z)}η(g^{-1}z)\), defined on \(Γ = G_1 ×_{r, ρ} Z\). Since the action of \(G_1\) on \(Z\) is proper, \(F\) is quasi-compactly supported. Let us show that \(F ∈ C_c(Γ)\).

Let \(F\) be a ultrafilter on \(Γ\), convergent in \(HΓ\). Since \(G_1^{(0)}\) is Hausdorff, its limit has the form \(S = S'g_0 × S''\) where \(S' ⊂ (G_1)^{r(g_0)}, S'' ⊂ r^{-1}(r(g_0))\). Moreover, \(S'\) is a subgroup of \((G_1)^{r(g_0)}\) by the proof of Lemma 5.1.

Suppose that there exist \(z_0, z_1 \in S''\) and \(g_1 ∈ S'g_0\) such that \(z_0 ∈ U\) and \(g_1^{-1}z_1 ∈ V\). By Lemma 7.12 applied to the proper map \(G_1 × Z → Z × Z\), there exists \(s_0 ∈ S'\) such that \(z_0 = s_0z_1\). We may assume that \(g_0 = s_0g_1\). Then
\[
\sum_{s \in S} F(s) = \sum_{s' \in S'} \xi(z_{0}) \eta(g_{0}^{-1}(s')^{-1}z_{0}). \quad \text{If } s' \notin \text{stab}(z_{0}), \text{then } g_{0}^{-1}(s')^{-1}z_{0} \notin V \text{ since } g_{0}^{-1}z_{0} \text{ and } g_{0}^{-1}(s')^{-1}z_{0} \text{ are distinct limits of } (g, z) \mapsto g^{-1}z \text{ with respect to } \mathcal{F} \text{ and } V \text{ is Hausdorff. Therefore,}
\]
\[
\sum_{s \in S} F(s) = \sqrt{\#(\text{stab}(z_{0}) \cap S') \xi(z_{0})} \frac{\#(\text{stab}(g_{0}^{-1}z_{0}) \cap (g_{0}^{-1}S')g_{0})) \eta(z_{0})}{\#(\text{stab}(z_{0}) \cap S') \xi(z_{0})} = \lim_{x \to z} F(x).
\]

If for all \(z_{0}, z_{1} \in S^{\prime \prime}\) and all \(g_{1} \in S'g_{0}, (z_{0}, g_{1}^{-1}z_{1}) \notin U \times V, \) then \(\sum_{s \in S} F(g, z) = 0 = \lim_{x \to z} F(x).\)

By Proposition 4.1, \(F \in C_{c}(\Gamma)\).

Since \((\xi, \eta)(g) = \int_{\gamma \in (G_{2})^{\sigma}(g)} F(g, z_{\gamma}) \lambda^{\sigma}(\gamma)(d\gamma), \) to prove that \((\xi, \eta) \in C_{c}(G_{1})\) it suffices to show:

Lemma 7.13. Let \(G_{1}\) and \(G_{2}\) be two locally compact groupoids with Haar system such that \(G_{1}^{(0)}\) are Hausdorff. Let \((Z, \rho, \sigma)\) be a generalized morphism from \(G_{1}\) to \(G_{2}\). Let \(\Gamma = \Gamma_{1} \times_{\rho, \sigma} Z. \) Then for every \(F \in C_{c}(\Gamma), \) the function

\[
g \mapsto \int_{\gamma \in (G_{2})^{\rho}(g)} F(g, z_{\gamma}) \lambda^{\rho}(\gamma)(d\gamma),
\]

where \(z \in Z\) is an arbitrary element such that \(\rho(z) = r(g)\), belongs to \(C_{c}(G_{1})\).

Proof. Suppose first that \(F(g, z) = f(g)h(z)\), where \(f \in C_{c}(G_{1})\) and \(h \in C_{c}(Z)\). Let \(H(z) = \int_{\gamma \in (G_{2})^{\rho}(g)} h(z_{\gamma}) \lambda^{\rho}(\gamma)(d\gamma). \) By Lemma 7.14 below (applied to the groupoid \(Z \times G_{2}\), \(H\) is continuous. It is obviously \(G_{2}\)-invariant, therefore \(H \in C_{c}(Z/G_{2})\). Let \(\tilde{H} \in C_{c}(G_{1}^{(0)}) \simeq C_{c}(Z/G_{2})\) correspond to \(H\). The map

\[
g \mapsto \int_{\gamma \in (G_{2})^{\rho}(g)} F(g, z_{\gamma}) \lambda^{\rho}(\gamma)(d\gamma) = f(g)\tilde{H}(s(g))
\]

thus belongs to \(C_{c}(G_{1})\).

By linearity, the lemma is true for \(F \in C_{c}(G_{1}) \otimes C_{c}(Z)\). By Lemma 4.1 and Lemma 4.3, \(F\) is the uniform limit of functions \(F_{n} \in C_{c}(G_{1}) \otimes C_{c}(Z)\) which are supported in a fixed quasi-compact set \(Q = Q_{1} \times Q_{2} \subset G_{1} \times Z\). Let \(Q' \subset Z\) quasi-compact such that \(\rho(Q') \supset r(Q_{1})\). Since the action of \(G_{2}\) on \(Z\) is proper, \(K = \{\gamma \in G_{2} | Q' \gamma \cap Q_{2} \neq \emptyset\}\) is quasi-compact. Using the fact that \(G_{1}^{(0)} \simeq Z/G_{2}\), it is easy to see that

\[
\sup_{(g, z) \in \Gamma} \int_{\gamma \in (G_{2})^{\rho}(g)} 1_{Q}(g, z_{\gamma}) \lambda^{\rho}(\gamma)(d\gamma) \leq \sup_{z \in Q'_{1}} \int_{\gamma \in G_{2}^{(0)}} 1_{Q_{2}}(z_{\gamma}) \lambda^{\rho}(\gamma)(d\gamma)
\]

\[
\leq \sup_{x \in G_{2}^{(0)}} \int_{\gamma \in G_{2}^{(0)}} 1_{K}(\gamma) \lambda^{\rho}(d\gamma) < \infty
\]
by Lemma 7.12. Therefore,
\[\lim_{n \to \infty} \sup_{g \in G_1} \left| \int_{\gamma \in G^*_\varphi(s)} F(g, z\gamma) - F_n(g, z\gamma) \lambda^\varphi(z)(d\gamma) \right| = 0. \]
The conclusion follows from Corollary 4.2.

In the proof of Lemma 7.13 we used the

Lemma 7.14. Let \(G \) be a locally compact, proper groupoid with Haar system, such that \(G^x \) is Hausdorff for all \(x \in G^{(0)} \), and \(G^x = \{ x \} \) for all \(x \in G^{(0)} \). We do not assume \(G^{(0)} \) to be Hausdorff. Then \(\forall f \in C_c(G^{(0)}) \),
\[\varphi: G^{(0)} \to \mathbb{C}, \quad x \mapsto \int_{g \in G^x} f(s(g)) \lambda^x(dg) \]
is continuous.

Proof. Let \(V \) be an open, Hausdorff subspace of \(G^{(0)} \). Let \(h \in C_c(V) \). Since \((r, s): G \to G^{(0)} \times G^{(0)} \) is a homeomorphism from \(G \) onto a closed subspace of \(G^{(0)} \times G^{(0)} \), and \((x, y) \mapsto h(x)f(y) \) belongs to \(C_c(G^{(0)} \times G^{(0)}) \), the map \(g \mapsto h(r(g))f(s(g)) \) belongs to \(C_c(G) \), therefore by definition of a Haar system, \(x \mapsto \int_{g \in G^x} h(r(g))f(s(g)) \lambda^x(dg) = h(x)\varphi(x) \) belongs to \(C_c(G^{(0)}) \).
Since \(h \in C_c(V) \) is arbitrary, this shows that \(\varphi|_V \) is continuous, hence \(\varphi \) is continuous on \(G^{(0)} \).

Now, let us show the positivity of the scalar product. Recall that for all \(x \in G^{(0)} \) there is a representation \(\pi_{G_1, x}: C^*(G_1) \to \mathcal{L}(L^2(G_1^x)) \) such that for all \(a \in C_c(G_1) \) and all \(\eta \in C_c(G_1^x) \),
\[\langle \pi_{G_1, x}(a)\eta \rangle(g) = \int_{h \in G_1^{(0)}} a(h)\eta(gh) \lambda^\varphi(g)(dh). \]
By definition, \(\|a\|_{C^*_c(G_1)} = \sup_{x \in G^{(0)}} \|\pi_{G_1, x}(a)\| \).
\[\langle \eta, \pi_{G_1, x}(a)\eta \rangle = \int_{g \in G_1^{(0)}} \overline{\eta(g)}a(h)\eta(gh) \lambda^\varphi(g)(dh) \lambda^x(dg) = \int_{g \in G_1^{(0)}} \overline{\eta(g)}a(g^{-1}h)\eta(h) \lambda^x(dg) \lambda^x(dh). \]
Fix \(z \in Z \) such that \(\rho(z) = x \). Replacing \(a(g^{-1}h) \) by
\[\langle \xi, \xi \rangle(g^{-1}h) = \int_{\gamma \in G^*_\varphi(z)} \xi(g^{-1}z\gamma)\xi(h^{-1}z\gamma) \lambda^\varphi(z)(d\gamma), \]
we get
\[(5) \quad \langle \eta, \pi_{G_1, x}(\langle \xi, \xi \rangle)\eta \rangle = \int_{\gamma \in G^*_\varphi(z)} \lambda^\varphi(z)(d\gamma) \left| \int_{g \in G^x} \eta(g)\xi(g^{-1}z\gamma) \lambda^x(dg) \right|^2. \]
It follows that \(\pi_{G_1, x}(\langle \xi, \xi \rangle) \geq 0 \) for all \(x \in G^{(0)}_1 \), so \(\langle \xi, \xi \rangle \geq 0 \) in \(C^*_c(G_1) \).
Now, let us define a $C^*_r(G_1)$-module structure on E^0_Z by Eqn. 8 for all $\xi \in E^0_Z$ and $a \in C_c(G_1)$.

Let us show that $\xi a \in E^0_Z$. We need a preliminary lemma:

LEMMA 7.15. Let X and Y be quasi-compact spaces, (Ω_k) an open cover of $X \times Y$. Then there exist finite open covers (X_i) and (Y_j) of X and Y such that $\forall i, j \exists k, X_i \times Y_j \subset \Omega_k$.

Proof. For all $(x, y) \in X \times Y$ choose open neighborhoods $U_{x,y}$ and $V_{x,y}$ of x and y such that $U_{x,y} \times V_{x,y} \subset \Omega_k$ for some k. For y fixed, there exist x_1, \ldots, x_n such that $(U_{x_i,y})_{1 \leq i \leq n}$ covers X. Let $V_y = \bigcap_{i=1}^n U_{x_i,y}$. Then for all $(x, y) \in X \times Y$, there exists an open neighborhood $U'_{x,y}$ of x and k such that $U'_{x,y} \times V_y \subset \Omega_k$.

Let $(V_1, \ldots, V_m) = (V_{y_1}, \ldots, V_{y_m})$ such that $\cup_{1 \leq j \leq m} V_j = Y$. For all $x \in X$, let $U'_x = \bigcap_{j=1}^m U'_{x,y_j}$. Let (U_1, \ldots, U_p) be a finite sub-cover of $(U'_x)_{x \in X}$. Then for all i and for all j, there exists k such that $U_i \times V_j \subset \Omega_k$. \[\square\]

Let Q_1 and Q_2 be quasi-compact subspaces of G_1 of Z respectively such that $a^{-1}(C^*) \subset Q_1$ and $\xi^{-1}(C^*) \subset Q_2$. Let Q be a quasi-compact subspace of Z such that $\forall g \in Q_1, \forall z \in Q_2, g^{-1}z \in Q$. Let (\mathcal{U}) be a finite cover of Q by Hausdorff open subspaces of Z. Let $Q' = Q_1 \times_{r,\rho} Q_2$. Then Q' is a closed subspace of $Q_1 \times Q_2$. Let $\Omega'_k = \{(g, z) \in Q'| g^{-1}z \in U_k\}$. Then (Ω'_k) is a finite open cover of Q'. Let Ω_k be an open subspace of $Q_1 \times Q_2$ such that $\Omega'_k = \Omega_k \cap Q'$. Then $(Q_1 \times Q_2 - Q') \cup \{\Omega_k\}$ is an open cover of $Q_1 \times Q_2$. Using Lemma 7.15, there exist finite families of Hausdorff open sets (W_i) and (V_j) which cover Q_1 and Q_2, such that for all i and for all j, there exists k such that $U_i \times V_j \subset \Omega_k$.

Thus, we can assume by linearity and by Lemmas 4.8 and 7.11 that $\xi \in E^0_Z$, $a \in C_c(W)$, $U = W^{-1}V$, and U, V and W are open and Hausdorff.

Let $\Omega = \{(g, S) \in W^{-1} \times U| g^{-1}g_U(S) \in V\}$. Then the map $(g, S) \mapsto (g^{-1}, g^{-1}S)$ is a homeomorphism from Ω onto $W \times_{r,\rho,g_U} V'$. Therefore, the map $(g, z) \mapsto (g^{-1}z)a(g^{-1})$ belongs to $C_c(\Omega) \subset C_c(G_1 \times_{r,\rho,g_U} U')$. By Lemma 7.8

$$S \mapsto (\xi a)(S) = \int_{g \in C_c(W)} \xi(g^{-1}S)a(g^{-1})\lambda^{g_U}(S)(dg)$$

belongs to $C_c(U')$. It is immediate that $(\xi a)(S) = \sqrt{\xi^*}(\xi a)(g(S))$ for all $S \in U'$, therefore $\xi a \in E^0_Z$. This completes the proof that $\xi a \in E^0_Z$.

Finally, it is not hard to check that $(\xi, \eta)a = (\xi, \eta)^*a$. Therefore, the completion E_Z of E^0_Z with respect to the norm $||\xi|| = ||\xi, \xi||^{1/2}$ is a $C^*_r(G_1)$-Hilbert module.

Let us now construct a morphism $\pi: C^*_r(G_2) \rightarrow \mathcal{L}(E_Z)$. For every $\xi \in E^0_Z$ and every $b \in C_c(G_2)$, define $b\xi$ by Eqn. 8. Let us check that $b\xi \in E^0_Z$. As above, by linearity we may assume that $\xi \in E^0_Y$, $b \in C_c(W)$ and $VW^{-1} \subset U$, where $V \subset Z$ and $W \subset G_2$ are open and Hausdorff.

Let $\Phi(S, \gamma) = (S\gamma, \gamma)$. Then Φ is a homeomorphism from $\Omega = \{(S, \gamma) \in U' \times_{\sigma,\rho} V| g_U(S) \gamma \in V\}$ onto $V' \times_{\rho,g_U} W$. Let $F(z, \gamma) = b(\gamma)\xi(z\gamma)$. Since $F = (\xi \otimes b) \circ \Phi$, F is an element of $C_c(\Omega) \subset C_c(U' \times_{\sigma,\rho} W)$. By Lemma 7.8 $b\xi \in C_c(U')$. 29
It is immediate that \((b\xi)(S) = \sqrt{F(S)(b\xi)(q(S))}\). Therefore, \(b\xi \in \mathcal{E}_0^0 \subset \mathcal{E}_Z^0\).

Let us prove that \(\|b\xi\| \leq \|b\| \|\xi\|\). Let

\[
\zeta(\gamma) = \int_{g \in G_1^x} \eta(g)\xi(g^{-1}z\gamma) \lambda^x(dg),
\]

where \(z \in Z\) such that \(\rho(z) = r(g)\) is arbitrary. From \(\mathbf{5}\),

\[
\langle \eta, \pi_{G_1, x}((\xi, \xi)) \eta \rangle = \|\zeta\|_2^2 |L^2(G_2^x)|.
\]

A similar calculation shows that

\[
\langle \eta, \pi_{G_1, x}((b\xi, b\xi)) \eta \rangle = \int_{\gamma \in G_2^x} \lambda^x(\gamma)(d\gamma) \int_{g \in G_1^x} \eta(g)\xi(g^{-1}z\gamma\gamma') b(\gamma') \lambda^x(\gamma')(d\gamma')^2 = \langle b\xi, b\xi \rangle \leq \|b\|^2 \|\zeta\|^2.
\]

By density of \(C_0(G_2^x)\) in \(L^2(G_2^x)\), \(\|\pi_{G_1, x}((b\xi, b\xi))\| \leq \|b\| \|\pi_{G_1, x}((\xi, \xi))\|\). Taking the supremum over \(x \in G_1^x\), we get \(\|b\xi\| \leq \|b\| \|\xi\|\). It follows that \(b \rightarrow (\xi \rightarrow b\xi)\) extends to a *-morphism \(\pi: C^*_e(G_2) \rightarrow \mathcal{L}(\mathcal{E}_Z)\).

Finally, suppose now that \((Z, \rho, \sigma)\) is proper, and let us show that \(C^*_e(G_2)\) maps to \(K(\mathcal{E}_Z)\).

For every \(\eta, \zeta \in \mathcal{E}_Z^0\), denote by \(T_{\eta, \zeta}\) the operator \(T_{\eta, \zeta}(\xi) = \eta(\zeta, \xi)\). Compact operators are elements of the closed linear span of \(T_{\eta, \zeta}\)'s. Let us write an explicit formula for \(T_{\eta, \zeta}\):

\[
T_{\eta, \zeta}(\xi)(z) = \int_{g \in G_1^x} \eta(g^{-1}z)\langle \zeta, \xi(g^{-1}) \rangle \lambda^x(dg) = \int_{g \in G_1^x} \eta(g^{-1}z) \int_{\gamma \in G_2^x} \zeta(g^{-1}z\gamma) \lambda^x(d\gamma) \lambda^x(\gamma)(d\gamma).
\]

Let \(b \in C_0(G_2)\), let us show that \(\pi(b) \in K(\mathcal{E}_Z)\). Let \(K\) be a quasi-compact subspace of \(G_2\) such that \(b^{-1}(C^*) \subset K\). Since \((Z, \rho, \sigma)\) is a proper generalized morphism, there exists a quasi-compact subspace \(Q\) of \(Z\) such that \(\sigma^{-1}(r(K)) \subset G_1Q\). Before we proceed, we need a lemma:

Lemma 7.16. Let \(G_2\) be a locally compact groupoid acting freely and properly on a locally compact space \(Z\) with momentum map \(\sigma: Z \rightarrow G_2(0)\). Then for every \((z_0, \gamma_0) \in Z \times G_2\), there exists a Hausdorff open neighborhood \(\Omega_{z_0, \gamma_0}\) of \((z_0, \gamma_0)\) such that

- \(U = \{z_1\gamma_1 \mid (z_1, \gamma_1) \in \Omega_{z_0, \gamma_0}\}\) is Hausdorff;
- there exists a Hausdorff open neighborhood \(W\) of \(\gamma_0\) such that \(\forall \gamma \in G_2, \forall z \in pr_1(\Omega_{z_0, \gamma_0}), \forall z' \in U, z' = z\gamma \implies \gamma \in W\).

Proof. Let \(R = \{(z, z') \in Z \times Z \mid \exists \gamma \in G_2, z' = z\gamma\}\). Since the \(G_2\)-action is free and proper, there exists a continuous function \(\phi: R \rightarrow G_2\) such that \(\phi(z, \gamma) = \gamma\). Let \(W\) be an open Hausdorff neighborhood of \(\gamma_0\). By continuity of \(\phi\), there exist open Hausdorff neighborhoods \(V\) and \(U_0\) of \(z_0\) and \(z_0\gamma_0\) such that for all \((z, z') \in R \cap (V \times U_0), \phi(z, z') \in W\). By continuity of the action,
there exists an open neighborhood Ω_{z_0,γ_0} of (z_0, γ_0) such that $\forall (z_1, \gamma_1) \in \Omega_{z_0,\gamma_0}$, $z_1 \gamma_1 \in U_0$ and $z_1 \in V$.

By Lemma 4.16 there exist finite covers (V_i) of Q and (W_j) of K such that for every i, j, $(Z \times_{G} G_2) \cap (V_i \times W_j) \subset \Omega_{z_0,\gamma_0}$ for some (z_0, γ_0).

By Lemma 6.2 applied to the groupoids $(G_1 \times Z)_{V_i}$, for all i there exists $c_i' \in C_c(V_i')_+$ such that $c_i'(S) = (\# S)c_i'(q_{V_i}(S))$ for all $S \in V_i'$, and such that $\sum_i c_i' \geq 1$ on Q. Let

$$f_i(z) = \int_{g \in G_{i}^{\prime \prime}(z)} c_i'(g^{-1}z) \lambda^{\rho(z)}(dg)$$

and let $f = \sum_i f_i$. As in the proof of Theorem 6.3 one can show that for every Hausdorff open subspace V of Z and every $h \in C_c(V)$, $(g, z) \mapsto h(z)c_i'(g^{-1}z)$ belongs to $C_c(G \times Z)$, therefore $h f_i$ is continuous on V. Since h is arbitrary, it follows that f_i is continuous, thus f is continuous. Moreover, f is G_1-equivariant, nonnegative, and $\inf_Q f > 0$. Therefore, there exists $f_1 \in C_c(G_1 \setminus Z)$ such that $f_1(z) = 1/f(z)$ for all $z \in Q$. Let $c_i(z) = f_1(z)c_i'(z)$. Let

$$T_i(\xi)(z) = \int_{g \in G_{i}^{\prime \prime}(z)} \int_{g \in G_{i}^{\prime}(z)} c_i(g^{-1}z)b(\gamma)\xi(z\gamma)\lambda^{\rho(z)}(dg)\lambda^{\rho(z)}(d\gamma).$$

Then $\pi(b) = \sum_i T_i$, therefore it suffices to show that T_i is a compact operator for all i.

By linearity and by Lemma 4.3 one may assume that $b \in C_c(W_j)$ for some j. Then, by construction of V_i (see Lemma 4.16), there exist open Hausdorff sets $U \subset Z$ and $W \subset G_2$ such that $\{\gamma \in G_2 \mid \exists (z, z') \in V_i \times U, z' = z\gamma\} \subset W$, and $\{z\gamma \mid (z, \gamma) \in V_i \times W\} \subset U$.

The map $(z, z\gamma) \mapsto c(z)b(\gamma)$ defines an element of $C_c(V_i' \times U)$. Let $L_1 \times L_2 \subset V_i \times U$ compact such that $(z, z\gamma) \mapsto c(z)b(\gamma)$ is supported on $q_{V_i}^{-1}(L_1) \times L_2$.

By Lemma 6.2 applied to the groupoids $(G_1 \times Z)_{V_i}$ and $(G_1 \times Z)_{U}$, there exist $d_1 \in C_c(V_i')_+$ and $d_2 \in C_c(U')_+$ such that $d_1 > 0$ on L_1 and $d_2 > 0$ on L_2, $d_1(S) = \sqrt{\#S}d_1(q_{V_i}(S))$ for all $S \in V_i'$, and $d_2(S) = \sqrt{\#S}d_2(q_{U}(S))$ for all $S \in U'$. Let

$$f(z, z\gamma) = \frac{c(z)b(\gamma)}{d_1(z)d_2(z\gamma)}.$$

Then $f \in C_c(V_i \times_{G_1} U)$. Therefore, f is the uniform limit of a sequence $f_n = \sum \alpha_{n,k} \otimes \beta_{n,k}$ in $C_c(V_i) \otimes C_c(U)$ such that all the f_n are supported in a fixed compact set. Then T_i is the norm-limit of $\sum_k T_{d_1\alpha_{n,k},d_2\beta_{n,k}}$, therefore it is compact.

Remark 7.17. The construction in Theorem 7.3 is functorial with respect to the composition of generalized morphisms and of correspondences. We don’t include a proof of this fact, as it is tedious but elementary. It is an easy exercise when G_1 and G_2 are Hausdorff.
References

[1] Abels, H. Parallelizability of proper actions, global K-slices and maximal compact subgroups. *Math. Ann.* **212** (1974/75), 1–19.

[2] Bourbaki, N.: *Topologie Générale.* Masson, Paris (1990).

[3] Chabert, J.; Echterhoff, S.; Meyer, R. Deux remarques sur l’application de Baum-Connes. *C. R. Acad. Sci. Paris Sér. I Math.* **332** (2001), no. 7, 607–610.

[4] Haefliger, A. *Groupeoides d’holonomie et classifiants,* Astérisque **116** (1984), 70–97.

[5] Hilsam, M. and Skandalis, G.: Morphismes K-orientés d’espaces de feuilles et fonctionnalités en théorie de Kasparov (d’après une conjecture d’A. Connes). *Ann. Sci. École Norm. Sup.* (4) **20**(1987), no. 3, 325–390.

[6] Khoshkam, M.; Skandalis, G. Regular representation of groupoid C^*-algebras and applications to inverse semigroups. *J. Reine Angew. Math.* **546** (2002), **47–72**.

[7] Landsman, N. P. Operator algebras and Poisson manifolds associated to groupoids. *Comm. Math. Phys.* **222** (2001), no. 1, 97–116.

[8] Landsman, N. P. Quantized reduction as a tensor product. Quantization of singular symplectic quotients, 137–180, *Progr. Math.*, 198, Birkhäuser, Basel, 2001.

[9] Le Gall, P.Y.: Théorie de Kasparov équivariante et groupoïdes. I. *K-Theory* **16**(1999), no. 4, 361–390.

[10] Le Gall, P.Y.; Monthubert, B. K-theory of the indicial algebra of a manifold with corners. *K-Theory* **23** (2001), no. 2, 105–113.

[11] Macho-Stadler, M. and O’Uchi, M.: Correspondence of groupoid C^*-algebras, *J. Operator Theory* **42**(1999), 103-119.

[12] Moerdijk, I. *Toposes and groupoids,* in *Categorical algebra and its applications,* 280–298, LNM 1348, Springer, Berlin, 1988.

[13] Mrčun, J., Functoriality of the bimodule associated to a Hilsum-Skandalis map, *K-Theory* **18**(1999), 235–253.

[14] Muhly, P., Renault, J. and Williams, D.: Equivalence and isomorphism for groupoid C^*-algebras, *J. Operator Theory* **17**(1987), 3–22.

[15] Paterson, A.: *Groupoids, inverse semigroups, and their operator algebras.* Progress in Mathematics, 170. Birkhäuser Boston, Inc., Boston, MA, 1999.

[16] Renault, J.: *A groupoid approach to C^*-algebras,* Springer, 1980, LNM no. 793.

[17] Stachura, P. C^*-algebra of a differential groupoid. With an appendix by S. Zakrzewski. *Banach Center Publ.*, **51**, Poisson geometry (Warsaw, 1998), 263–281, Polish Acad. Sci., Warsaw, 2000.