Education

PhD in Physics

University of Toronto

- GPA 3.93/4.0
- Advisor: Hanno Rein
- Admissions Award recipient
- E.F. Burton Fellowship recipient
- Dr John Romanko Graduate Fellowship recipient
- Cray Fellowship in Physics recipient
- 2020 Compute Canada Resources for Research Groups – 60 core years
- Ontario Graduate Scholarship (OGS), 2020-2021

BS in Physics

Brigham Young University

- Minors in Mathematics and Computer Science
- GPA 3.96/4.0
- *Magna Cum Laude*
- University Honors with Thesis; Manuel Berrondo (advisor)
- Member of The Honor Society of Phi Kappa Phi
- Dean's List – College of Physical and Mathematical Sciences
- BYU Astronomical Society President
- John Einar Anderson Scholarship and Brigham Young Full-Tuition Merit Scholarship recipient

Pembroke-Kings Programme

University of Cambridge

- First Class Honours
- Member of the Pembroke Circle
- Courses in world politics, mathematics, and research in theoretical physics
- Worked independently to reduce and combine sophisticated models for application to gravitational wave detection using Bayesian compressed sensing; reported and counselled weekly with research advisor Dr. Priscilla Canizares.

Publications

A Repository of Vanilla Long-term Integrations of the Solar System

RNAAS

GARETT BROWN, HANNO REIN

- RNAS, Volume 4, Number 12, 9 December 2020
- arXiv: 2012.05177

On the accuracy of symplectic integrators for secularly evolving planetary systems

MNRAS

HANNO REIN, GARETT BROWN, DANIEL TAMAYO

- MNRAS, Volume 490, Issue 4, December 2019, Pages 5122–5133
- arXiv: 1908.03468

High order symplectic integrators for planetary dynamics and their implementation in REBOUND

MNRAS

HANNO REIN, DANIEL TAMAYO, GARETT BROWN

- MNRAS, Volume 489, Issue 4, November 2019, Pages 4632–4640
- arXiv: 1907.11335

Hybrid Symplectic Integrators for Planetary Dynamics

MNRAS

HANNO REIN, DAVID M. HERNANDEZ, DANIEL TAMAYO, GARETT BROWN, EMILY ECKELS, EMMA HOLMES, MICHELLE LAU, REJEAN LEBLANC, ARISIL BURT

- MNRAS, Volume 485, Issue 4, June 2019, Pages 5490–5497
- arXiv: 1903.04972
Beyond Phase Transitions: an Algorithmic Approach to Flocking Behavior
BYU Thesis
GARETT BROWN, MANUEL BERRONDO
• BYU Thesis/Capstone Archive (physics.byu.edu/library/theses/2017/8)

Research Experience

Department of Physics, University of Toronto
Research Assistant
Toronto, Ontario, Canada
Jan. 2018 - Present
• Computational physicist developing additional software, techniques, and algorithms for REBOUND motivated by the long-term (sec-ular) dynamics of planetary systems.
• Participated in mentoring 3 undergraduate students from the Fields Summer Undergraduate Research Program 2018, developing and evaluating a fully symplectic, hybrid, Wisdom-Holman n-body integrator with switching method for close encounters. (See Publications below)

Department of Physics and Astronomy, Brigham Young University
Research Assistant
Provo, Utah, USA
Jan. 2014 - Aug. 2017
• University Honors Thesis titled, “Beyond Phase Transitions: an Algorithmic Approach to Flocking Behavior” based on independent original research done with research advisor, Dr. Manuel Berrondo.
• Developed and coded algorithms for modeling and analyzing dynamic systems.

Teaching Experience

Department of Physics, University of Toronto
Teaching Assistant
Toronto, Ontario, Canada
Sep. 2017 - Present
• Planned and executed tutorial sessions for students taking Classical Mechanics course involving ordinary differential equations.
• Practicals, tutorials, and discussions leader for introductory physics and life science students.

Department of Physics and Astronomy, Brigham Young University
LAB MAINTENANCE ASSISTANT
Provo, Utah, USA
Sep. 2014 - Aug. 2017
• Designed, built, and installed vacuum lab equipment, including the construction of a velocity/Wein filter, a classroom lab demonstration vapor deposition system (aluminum onto glass), assisting in the repair of a 2MeV particle accelerator, and the installation of pipelines for spontaneously combustible gas (silane).
• Repaired and maintained oil mechanical roughing vacuum pumps; leak tested laboratory research vacuum equipment.
• Taught and developed curriculum under professor supervision for a lab class on vacuum system design and operation.

College of Physical and Mathematical Sciences, Brigham Young University
Teaching Assistant
Provo, Utah, USA
Sep. 2013 - Apr. 2017
• Tutored students from all majors and backgrounds in all aspects of introductory undergraduate physics and calculus including Newtonian physics, special relativity, electrostatics, electromagnetism, circuits, waves, optics, fluid dynamics, thermodynamics, topics in modern physics, and descriptive astronomy.
• Graded students’ assignments and tests; aided professor in classroom, lectured in professor’s absence.
• Operated 12” Dobsonian telescopes for introductory descriptive astronomy course.

Presentations

ERES V
Quantifying the Effects of Stellar Flybys on Planetary Systems
Ithaca, New York, USA
18 June 2019
• Presentation (Submitted)
• The fifth annual Emerging Researchers in Exoplanet Science (ERES) Symposium. ERES is aimed at early career scientists working in all branches of exoplanetary science and related disciplines.
• Summary: We use long term n-body integrations to measure small cascading effects by analyzing the secular frequencies using frequency analysis (Laskar 1988, 1990). Using the solar system as a model, we have measured the response and long-term variations of the fundamental secular frequencies to external perturbations.
Planetary Dynamics Conference

Quantifying the Effects of Stellar Flybys on Planetary Systems

- Presentation (Submitted)
- The conference brought together experts and students working in the field of extrasolar planets and planetary dynamics.
- Summary: We use long term n-body integrations to measure small cascading effects by analyzing the secular frequencies using frequency analysis (Laskar 1988, 1990). Using the solar system as a model, we have measured the response and long-term variations of the fundamental secular frequencies to external perturbations.

TC13

Coordinate Interpolation and Data Compression Using REBOUND

- Poster (Submitted)
- Theory Canada 13 (TC13) is the thirteenth edition of a series of annual conferences organized by the Division of Theoretical Physics (DTP) of the Canadian Association of Physicists (CAP), as a satellite conference to the annual CAP Congress.
- Summary: Using REBOUND (an n-body integrator), our work has been to compress detailed descriptions of the coordinates of each planetary body in a simulation to aid in more quickly determining celestial events (such as transits) without the need for a second integration.

CPMS Convocation, BYU

On Character, Identity, and Community

- Speech (Invited)
- The College of Physical and Mathematical Sciences (CPMS) at Brigham Young University (BYU) houses seven departments: Chemistry & Biochemistry, Computer Science, Geological Sciences, Mathematics, Mathematics Education, Physics & Astronomy, and Statistics.
- Summary: Our character and identity are not solely defined by how we view ourselves, but rather the way in which we interact with others.

APS4C Annual Meeting

Beyond Phase Transitions: an Algorithmic Approach to Flocking Behavior

- Presentation (Submitted)
- The American Physics Society Four Corners Section (APS4C), has a strong commitment to support the work of physics students and to give them opportunities to present their research and to meet physicists in our region.
- Summary: Discussion of the perturbation used in our model along with a directional correlation function enabling comparisons to observations.

APS4C Annual Meeting

Order in Chaos: an Algorithmic Approach to Holistic Flocking Behavior

- Poster (Submitted)
- Summary: Discussion of the resemblance the model has to observations of physical flocks and physical flocking behavior based on results obtained through order parameters and correlation functions.

APS4C Annual Meeting

Order in Chaos: an Algorithmic Approach to Flocking Behaviour

- Presentation (Submitted)
- Summary: Introduction of flocking model including a basic description of the algorithm and order parameters used to analyze results.

Skills

Computer Languages, Command Line Tools, and Frameworks

- Proficient in Python, C++, Mathematica, MATLAB, Git, and Bash.
- Experience using C#, Java, Swift, HTML, CSS, SolidWorks (DreamSpark), Android Studio, SQLite, LabVIEW, and Fortran77.

Scientific Computing Skills

- Numerical and symbolic computation; graphical analysis
- Numerical solutions of ordinary differential equations, partial differential equations, static and dynamic boundary value problems, linear algebra and eigenvalues
- Applications to mechanics, chaos, optics, special relativity, electrostatics, thermodynamics, waves, and quantum mechanics
COMPUTER PROGRAMMING SKILLS
• Basics in neural network machine learning, deep learning, convolutional neural networks, and autoencoders.
• Parallel computing in Python and C++ using Open MP, Open MPI, and GNU Parallel
• Object-oriented program design and development
• Object-oriented data abstraction; interfaces
• Principles of algorithm formulation, implementation, and analysis; recursion
• Lists, stacks, queues, sets, trees, tries, hashing; sorting and searching
• Grammars and parsing; XML and JSON parsing
• Predicate and propositional logic; relations, relational data model; graphs and graph algorithms
• Try, catch, exception handling
• Unit testing, white and black box testing
• Data persistence techniques, user interface, mobile programming
• Asynchronous programming, accessing web services (html protocol basics)

OTHER SKILLS
• Experienced carpenter apprentice
• Proficient tire technician
• Proficient in drywall trade (mud and taping)
• Proficient with power tools (metal and woodworking)
• Basics in electrical, welding, and pipeline trades

Extracurricular Activity

Brigham Young University Astronomical Society

President

Sep. 2015 - Apr. 2017

I organized and managed a group of 30 or so individuals from various backgrounds and interests, and helped foster enthusiasm and interest in learning about the universe and its myriad celestial bodies.
I also helped organize and execute public outreach activities that extended these interests and understanding to the general public.
I budgeted the club’s money and was instrumental in planning and executing the club’s first public outreach planetarium show.
Before becoming President of the club in Sep. 2015 I was a public outreach officer for the club.

Personal Interests and Hobbies

TRAVELING

I enjoy moving to other countries for extended periods of time and getting to know the local areas. To date I have lived in 3 different countries (Canada, United Kingdom, and USA).
Beyond the 3 countries that I’ve lived in, I’ve also visited Mexico and South Korea.
In the USA I’ve visited 35/50 states; in Canada I’ve visited 7/10 provinces and 2/3 territories; in the United Kingdom I’ve visited 21/100 counties; and in Mexico I’ve visited 2/31 states.
I particularly enjoy driving because it helps me appreciate the scale and beauty of the landscapes, but I also enjoy cycling and hiking. See the figure below for roads that I’ve driven in North America.
I’m interested in the world at large, peoples, history, and cultures.
For photographs and small snippets from my travels visit: https://www.physics.utoronto.ca/~gbrown/travel.php

Honours & Awards

HONOURS
2017 University Honors Graduate, Brigham Young University
2017 Magna Cum Laude, Brigham Young University

RESEARCH GRANTS
2020-2021 OGS. Ontario Graduate Scholarship
2020 RRG. Resources for Research Groups (RRG) – 60 core years, Compute Canada
2017 ORCA. Office of Research and Creative Activities (ORCA) Grant, Brigham Young University
TUITION & STIPEND AWARDS

2020-2021 **Cray Fellowship in Physics**, University of Toronto
2019 **Dr John Romanko Graduate Fellowship**, University of Toronto
2019 **E.F. Burton Fellowship**, University of Toronto
2017-2018 **University of Toronto Fellowship - Stipend Award**, University of Toronto
2017 **Admissions Award**, University of Toronto
2015-2017 **Brigham Young Full-Tuition Merit Scholarship**, Brigham Young University
2014-2015 **John Einar Anderson Scholarship**, Brigham Young University

Writing

Here, We Control the Dragons

BYU Honors Essay

Author

- Personal essay grappling with the consequences of nuclear power and the complex relationship it has with nations and the media.

I Enjoy Travelling and Driving

Figure 1: Roads that I have driven in North America. Comprising 3 countries; 35 states (USA); 7 provinces and 2 territories (Canada); and 2 states (Mexico).