ON SOME ALGEBRAS ASSOCIATED TO GENUS ONE CURVES

TOM FISHER

ABSTRACT. Haile, Han and Kuo have studied certain non-commutative algebras associated to a binary quartic or ternary cubic form. We extend their construction to pairs of quadratic forms in four variables, and conjecture a further generalisation to genus one curves of arbitrary degree. These constructions give an explicit realisation of an isomorphism relating the Weil-Châtelet and Brauer groups of an elliptic curve.

1. Introduction

Let C be a smooth curve of genus one, written as either a double cover of \mathbb{P}^1 (case $n = 2$), or as a plane cubic in \mathbb{P}^2 (case $n = 3$), or as an intersection of two quadrics in \mathbb{P}^3 (case $n = 4$). We write $C = C_f$ where f is the binary quartic form, ternary cubic form, or pair of quadratic forms defining the curve. In this paper we investigate a certain non-commutative algebra A_f determined by f.

The algebra A_f was defined in the case $n = 2$ by Haile and Han [10], and in the case $n = 3$ by Kuo [12]. We simplify some of their proofs, and extend to the case $n = 4$. We also conjecture a generalisation to genus one curves of arbitrary degree n. The following theorem was already established in [10, 12] in the cases $n = 2, 3$. We work throughout over a field K of characteristic not 2 or 3.

Theorem 1.1. If $n \in \{2, 3, 4\}$ then A_f is an Azumaya algebra, free of rank n^2 over its centre. Moreover the centre of A_f is isomorphic to the co-ordinate ring of $E \setminus \{0_E\}$ where E is the Jacobian elliptic curve of C_f.

Let E/K be an elliptic curve. A standard argument (see Section 6.1) shows that the Weil-Châtelet group of E is canonically isomorphic to the quotient of Brauer groups $\text{Br}(E)/\text{Br}(K)$. For our purposes it is more convenient to write this isomorphism as

(1) $H^1(K, E) \cong \ker \left(\text{Br}(E) \xrightarrow{\text{ev}_0} \text{Br}(K) \right)$.

where ev_0 is the map that evaluates a Brauer class at $0 \in E(K)$. The algebras we study explicitly realise this isomorphism.

Theorem 1.2. If $n \in \{2, 3, 4\}$ then the isomorphism (1) sends the class of C_f to the class of A_f.

Date: 25th July 2017.
The following two corollaries were proved in [10, 12] in the cases $n = 2, 3$.

Corollary 1.3. Let $n \in \{2, 3, 4\}$. The genus one curve C_f has a K-rational point if and only if the Azumaya algebra A_f splits over K.

Proof. This is the statement that the class of C_f in $H^1(K, E)$ is trivial if and only if the class of A_f in Br(E) is trivial. \(\square\)

For $0 \neq P \in E(K)$ we write $A_{f,P}$ for the specialisation of A_f at P. This is a central simple algebra over K of dimension n^2.

Corollary 1.4. Let $n \in \{2, 3, 4\}$. The map $E(K) \to \text{Br}(K)$ that sends P to the class of $A_{f,P}$ is a group homomorphism.

Proof. By Theorem 1.2 the Tate pairing $E(K) \times H^1(K, E) \to \text{Br}(K)$ is given by $(P, [C_f]) \mapsto [A_{f,P}]$. This corollary is the statement that the Tate pairing is linear in the first argument. \(\square\)

The algebras A_f are interesting for several reasons. They have been used to study the relative Brauer groups of curves (see [5, 8, 11, 13]) and to compute the Cassels-Tate pairing (see [9]). We hope they might also be used to construct explicit Brauer classes on surfaces with an elliptic fibration. This could have important arithmetic applications, extending for example [17].

In Sections 2 and 3 we define the algebras A_f and describe their centres. In Section 4 we show that these constructions behave well under changes of co-ordinates. The proofs of Theorems 1.1 and 1.2 are given in Sections 5 and 6.

The hyperplane section H on C_f is a K-rational divisor of degree n. Let $P \in E(K)$ where E is the Jacobian of C_f. In Section 7 we explain how finding an isomorphism $A_{f,P} \cong \text{Mat}_n(K)$ enables us to find a K-rational divisor H' on C_f such that $[H-H'] \mapsto P$ under the isomorphism $\text{Pic}^0(C_f) \cong E$. In the cases $n = 2, 3$ our construction involves some of the representations studied in [3].

Nearly all our proofs are computational in nature, and for this we rely on the support in Magma [4] for finitely presented algebras. We have prepared a Magma file checking all our calculations, and this is available online. It would of course be interesting to find more conceptual proofs of Theorems 1.1 and 1.2.

2. **The algebra A_f**

In this section we define the algebras A_f for $n = 2, 3, 4$, and suggest how the definition might be generalised to genus one curves of arbitrary degree. The prototype for these constructions is the Clifford algebra of a quadratic form. We therefore start by recalling the latter, which will in any case be needed for our treatment of the case $n = 2$. We write $[x, y]$ for the commutator $xy - yx$.

2.1. Clifford algebras. Let $Q \in K[x_1, \ldots, x_n]$ be a quadratic form. The Clifford algebra of Q is the associative K-algebra A generated by u_1, \ldots, u_n subject to the relations deriving from the formal identity in $\alpha_1, \ldots, \alpha_n$,

$$(\alpha_1 u_1 + \ldots + \alpha_n u_n)^2 = Q(\alpha_1, \ldots, \alpha_n).$$

The involution $u_i \mapsto -u_i$ resolves A into eigenspaces $A = A_+ \oplus A_-$. By diagonalising Q, it may be shown that A and A_+ are K-algebras of dimensions 2^n and 2^{n-1}. Moreover, rescaling Q does not change the isomorphism class of A_+.

In the case $n = 3$ we let

$$\eta = u_1 u_2 u_3 - u_3 u_2 u_1 = u_2 u_3 u_1 - u_1 u_3 u_2 = u_3 u_1 u_2 - u_2 u_1 u_3.$$

Then η belongs to the centre $Z(A)$, and $\eta^2 = \text{disc } Q$, where if $Q(x) = x^T M x$ then $\text{disc } Q = -4 \det M$. Moreover, if $\text{disc } Q \neq 0$ then A_+ is a quaternion algebra and $A = A_+ \otimes K[\eta]$. Although not needed below, it is interesting to remark that the well known map

$$H^1(K, \text{PGL}_2) \to \text{Br}(K)$$

is realised by sending the smooth conic $\{Q = 0\} \subset \mathbb{P}^2$ (which as a twist of \mathbb{P}^1 corresponds to a class in $H^1(K, \text{PGL}_2)$) to the class of A_+.

2.2. Binary quartics. Let $f \in K[x, z]$ be a binary quartic, say

$$f(x, z) = ax^4 + bx^3 z + cx^2 z^2 + dxz^3 + ez^4.$$

Haile and Han [10] define the algebra A_f to be the associative K-algebra generated by r, s, t subject to the relations deriving from the formal identity in α and β,

$$(\alpha^2 r + \alpha \beta s + \beta^2 t)^2 = f(\alpha, \beta).$$

Thus $A_f = K\{r, s, t\}/I$ where I is the ideal generated by the elements

$$r^2 - a, \quad rs + sr - b, \quad rt + tr + s^2 - c, \quad st + ts - d, \quad t^2 - e.$$

We have $[r, s^2] = [r, rs + sr] = [r, b] = 0$, and likewise $[s^2, t] = 0$. Therefore $\xi = s^2 - c$ belongs to the centre $Z(A_f)$. By working over the polynomial ring $K[\xi]$, instead of the field K, we may describe A_f as the Clifford algebra of the quadratic form

$$Q_\xi(x, y, z) = ax^2 + bxy + cy^2 + dyz + ez^2 + \xi(y^2 - xz).$$

This quadratic form naturally arises as follows. Let $C \subset \mathbb{P}^3$ be the image of the curve $Y^2 = f(X, Z)$ embedded via $(x_1 : x_2 : x_3 : x_4) = (X^2 : XZ : Z^2 : Y)$. Then C is defined by a pencil of quadrics with generic member $x_4^2 = Q_\xi(x_1, x_2, x_3)$.
2.3. Ternary cubics. Let \(f \in K[x, y, z] \) be a ternary cubic, say
\[
f(x, y, z) = ax^3 + by^3 + cz^3 + a_2x^2y + a_3xz^2 \]
\[+ b_1xy^2 + b_3yz^2 + c_1xz^2 + c_2yz^2 + mxyz.
\]
In the special case \(c = 1 \) and \(a_3 = b_3 = c_1 = c_2 = 0 \), Kuo \([12]\) defines the algebra \(A_f \) to be the associative \(K \)-algebra generated by \(x \) and \(y \) subject to the relations deriving from the formal identity in \(\alpha \) and \(\beta \),
\[
f(\alpha, \beta, \alpha x + \beta y) = 0.
\]
We make the same definition for any ternary cubic \(f \) with \(c \neq 0 \). Thus \(A_f = K\{x, y\}/I \) where \(I \) is the ideal generated by the elements
\[
cx^3 + c_1x^2 + a_3x + a,
\]
\[
c(x^2y + xyx + yx^2) + c_1(xy + yx) + c_2x^2 + mx + a_3y + a_2,
\]
\[
c(xy^2 + yyx + y^2x) + c_2(xy + yx) + c_1y^2 + my + b_3x + b_1,
\]
\[
cy^3 + c_2y^2 + b_3y + b.
\]

2.4. Quadric intersections. Let \(f = (f_1, f_2) \) be a pair of quadratic forms in four variables, say \(x_1, \ldots, x_4 \). Assuming \(C_f = \{f_1 = f_2 = 0\} \subset \mathbb{P}^3 \) does meet the line \(\{x_3 = x_4 = 0\} \), we define the algebra \(A_f \) to be the associative \(K \)-algebra generated by \(p, q, r, s \) subject to the relations deriving from the formal identities in \(\alpha \) and \(\beta \),
\[
f_i(\alpha p + \beta r, \alpha q + \beta s, \alpha, \beta) = 0, \quad i = 1, 2
\]
\[
[\alpha p + \beta r, \alpha q + \beta s] = 0.
\]
Explicitly if \(f_1 = \sum_{i \leq j} a_{ij}x_ix_j \) and \(f_2 = \sum_{i \leq j} b_{ij}x_ix_j \) then \(A_f = K\{p, q, r, s\}/I \) where \(I \) is the ideal generated by the elements
\[
a_{11}p^2 + a_{12}pq + a_{22}q^2 + a_{13}p + a_{23}q + a_{33},
\]
\[
a_{11}(pr + rp) + a_{12}(ps + rq) + a_{22}(qs + sq) + a_{14}p + a_{24}q + a_{13}r + a_{23}s + a_{34},
\]
\[
a_{11}r^2 + a_{12}rs + a_{22}s^2 + a_{14}r + a_{24}s + a_{44},
\]
\[
b_{11}p^2 + b_{12}pq + b_{22}q^2 + b_{13}p + b_{23}q + b_{33},
\]
\[
b_{11}(pr + rp) + b_{12}(ps + rq) + b_{22}(qs + sq) + b_{14}p + b_{24}q + b_{13}r + b_{23}s + b_{34},
\]
\[
b_{11}r^2 + b_{12}rs + b_{22}s^2 + b_{14}r + b_{24}s + b_{44},
\]
\[
pq - qp,
\]
\[
ps + rq - qr - sp,
\]
\[
rs - sr.
\]
One motivation for including the commutator relation \((3)\) is that without it, the relations \((2)\) would be ambiguous.
2.5. Genus one curves of higher degree. Let C be a smooth curve of genus one. If D is a K-rational divisor on C of degree $n \geq 3$ then the complete linear system $|D|$ defines an embedding $C \to \mathbb{P}^{n-1}$. We identify C with its image, which is a curve of degree n. If $n = 3$ then C is a plane cubic, whereas if $n \geq 4$ then the homogeneous ideal of C is generated by quadrics.

Let A be the associative K-algebra generated by $u_1, u_2, \ldots, u_{n-2}, v_1, v_2, \ldots, v_{n-2}$, subject to the relations deriving from the formal identities in α and β,

$$f(\alpha u_1 + \beta v_1, \alpha u_2 + \beta v_2, \ldots, \alpha u_{n-2} + \beta v_{n-2}, \alpha, \beta) = 0 \quad \text{for all } f \in I(C),$$

$$[\alpha u_i + \beta v_i, \alpha u_j + \beta v_j] = 0 \quad \text{for all } 1 \leq i, j \leq n - 2.$$

This definition may be thought of as writing down the conditions for C to contain a line. The fact that C does not contain a line then tells us that there are no non-zero K-algebra homomorphisms $A \to K$.

We conjecture that the analogues of Theorems 1.1 and 1.2 hold for these algebras. In support of this conjecture, we have checked that Theorem 1.1 holds in some numerical examples with $n = 5$.

3. The centre of A_f

In this section we exhibit some elements ξ and η in the centre of A_f. In each case ξ and η generate the centre, and satisfy a relation in the form of a Weierstrass equation for the Jacobian elliptic curve.

3.1. Binary quartics. Let C_f be a smooth curve of genus one defined as a double cover of \mathbb{P}^1 by $y^2 = f(x, z)$, where f is a binary quartic. It already follows from the results in Sections 2.1 and 2.2 that the centre of A_f is generated by $\xi = s^2 - c$ and $\eta = rst - tsr$. Alternatively, this was proved by Haile and Han [10] for quartics with $b = 0$, and the general case follows by making a change of co-ordinates (see Section 2.3). The elements ξ and η satisfy $\eta^2 = F(\xi)$ where

$$F(x) = x^3 + cx^2 - (4ae - bd)x - 4ace + b^2e + ad^2.$$

This is a Weierstrass equation for the Jacobian of C_f.

There is a derivation $D : A_f \to A_f$ defined on the generators r, s, t by $Dr = [s, r]$, $Ds = [t, r]$ and $Dt = 0$. To see this is well defined, we checked that the derivation acts on the ideal of relations defining A_f. It is easy to see that D must act on the centre of A_f. We find that $D\xi = 2\eta$ and $D\eta = 3\xi^2 + 2\xi(4ae - bd)$.

3.2. Ternary cubics. Let $C_f \subset \mathbb{P}^2$ be a smooth curve of genus one defined by a ternary cubic f. With notation as in Section 2.3, the centre of A_f contains

$$\xi = c^2(xy)^2 - (cy^2 + c_2y + b_3)(cx^2 + c_1x + a_3) + (cm - c_1c_2)xy + a_3b_3.$$

There is a derivation $D : A_f \to A_f$ defined on the generators x, y by $Dx = c[xy, x]$ and $Dy = c[y, yx]$. Let $a_1', a_2', a_3', a_4', a_6' \in \mathbb{Z}[a, b, c, \ldots, m]$ be the coefficients of a Weierstrass equation for the Jacobian of C_f, as specified in [7 Section 2],
i.e. \(a'_1 = m, a'_2 = -(a_2c_2 + a_3b_3 + b_1c_1), a'_3 = 9abc - (ab_3c_2 + ba_3c_1 + ca_2b_1) - (a_2b_2c_1 + a_3b_1c_2), a'_4 = \ldots \) (These formulae were originally given in [2].) Then
\[
\eta = \frac{1}{7}(D\xi - a'_1\xi - a'_3) \text{ is also in the centre of } A_f, \text{ and these elements satisfy }
\]
\[
\eta^2 + a'_1\xi\eta + a'_3\eta = \xi^3 + a'_2\xi^2 + a'_4\xi + a'_6.
\]

In fact \(\xi \) and \(\eta \) generate the centre of \(A_f \). This was proved by Kuo [12] in the case \(c = 1 \) and \(a_3 = b_3 = c_1 = c_2 = 0 \). The general case follows by making a change of co-ordinates (see Section 3).

3.3. **Quadric intersections.** Let \(C_f \subset \mathbb{P}^3 \) be a smooth curve of genus one defined by a pair of quadratic forms \(f = (f_1, f_2) \). Let \(a_1,\ldots,a_9 \) and \(b_1,\ldots,b_9 \) be the coefficients of \(f_1 \) and \(f_2 \), where we take the monomials in the order
\[
x_1^2, x_1x_2, x_1x_3, x_1x_4, x_2^2, x_2x_3, x_2x_4, x_3^2, x_3x_4, x_4^2.
\]

Let \(d_{ij} = a_ib_j - a_jb_i \). With notation as in Section 2.4 we put
\[
p_i = d_{1i}p + d_{2i}q + d_{3i}, \quad r_i = d_{1i}r + d_{2i}s + d_{4i},
\]
\[
q_i = d_{2i}p + d_{5i}q + d_{6i}, \quad s_i = d_{2i}r + d_{5i}s + d_{7i}
\]
and \(t = qr - ps = rq - sp \). Then
\[
\xi = (p_5s)^2 + (s_1p)^2 + (d_{56}p_4 + d_{29}p_5 + d_{37}p_5 - d_{27}p_6)s - d_{56}(d_{13}r + d_{23}s - d_{17}q + d_{12}t - d_{19})s
\]
\[
+ (d_{14}s_6 + d_{29}s_1 - d_{37}s_1 - d_{23}s_4)p - d_{14}(d_{27}p + d_{57}q + d_{35}r - d_{25}t - d_{59})p
\]
belongs to the centre of \(A_f \). We give a slightly simpler expression for \(\xi \) in Section 4.3 but this alternative expression is only valid when \(t \) is invertible.

There is a derivation \(D : A_f \to A_f \) defined on the generators \(p, q, r, s \) by \(Dp = \frac{1}{2}[p, \varepsilon], Dq = \frac{1}{2}[q, \varepsilon] \) and \(Dr = Ds = 0 \) where
\[
\varepsilon = d_{12}(pr + rp) + d_{15}(ps + qr + sp + rq) + d_{25}(qs + sq).
\]
Then \(\eta = \frac{1}{2}D\xi \) is also in the centre of \(A_f \). We show in Section 5 that \(\xi \) and \(\eta \) generate the centre, and that they satisfy a Weierstrass equation for the Jacobian of \(C_f \).

4. **Changes of co-ordinates**

In this section we show that making a change of coordinates does not change the isomorphism class of the algebra \(A_f \). We also describe the effect this has on the central elements \(\xi \) and \(\eta \), and on the derivation \(D \).

Let \(G_2(K) = K^\times \times GL_2(K) \) act on the space of binary quartics via
\[
(\lambda, M) : f(x, z) \mapsto \lambda^2f(m_{11}x + m_{21}z, m_{12}x + m_{22}z).
\]
Let \(G_3(K) = K^\times \times GL_3(K) \) act on the space of ternary cubics via
\[
(\lambda, M) : f(x, y, z) \mapsto \lambda f(m_{11}x + m_{21}y + m_{31}z, \ldots, m_{13}x + m_{23}y + m_{33}z).
\]
Let \(G_4(K) = \text{GL}_2(K) \times \text{GL}_4(K) \) act on the space of quadric intersections via
\[
(A, I_4) : (f_1, f_2) \mapsto (\lambda_{11} f_1 + \lambda_{12} f_2, \lambda_{21} f_1 + \lambda_{22} f_2),
\]
\[
(I_2, M) : (f_1, f_2) \mapsto (f_1(\sum_{i=1}^4 m_{i1} x_i, \ldots), f_2(\sum_{i=1}^4 m_{i2} x_i, \ldots)).
\]

We write \(\det(\lambda, M) = \lambda \det M \) in the cases \(n = 2, 3 \), and \(\det(A, M) = \det A \det M \) in the case \(n = 4 \). A genus one model is a binary quartic, ternary cubic, or pair of quadratic forms, according as \(n = 2, 3 \) or \(4 \).

Theorem 4.1. Let \(f \) and \(f' \) be genus one models of degree \(n \in \{2, 3, 4\} \). In the case \(n = 3 \) we suppose that \(f(0, 0, 1) \neq 0 \) and \(f'(0, 0, 1) \neq 0 \). In the case \(n = 4 \) we suppose that \(C_f \) and \(C_{f'} \) do not meet the line \(\{x_3 = x_4 = 0\} \). If \(f' = \gamma f \) for some \(\gamma \in \mathcal{G}_n(K) \) then there is an isomorphism \(\psi : A_{f'} \rightarrow A_f \) with
\[
\xi \mapsto (\det \gamma)^2 \xi + \rho \quad (5)
\]
\[
\eta \mapsto (\det \gamma)^3 \eta + \sigma \xi + \tau \quad (6)
\]
for some \(\rho, \sigma, \tau \in K \), with \(\sigma = \tau = 0 \) if \(n \in \{2, 4\} \). Moreover there exists \(\kappa \in A_f \) such that
\[
\psi D(x) = (\det \gamma) D \psi(x) + [\kappa, \psi(x)]
\]
for all \(x \in A_{f'} \).

Proof: We prove the theorem for \(\gamma \) running over a set of generators for \(\mathcal{G}_n(K) \). The set of generators will be large enough that the extra conditions in the cases \(n = 3, 4 \) (avoiding a certain point or line) do not require special consideration.

Writing \(\eta \) in terms of the \(D \xi \) we see that (5) is a formal consequence of (5) and (7). It therefore suffices to check (5) and (7). We may paraphrase (7) as saying that \(\psi D \psi^{-1} \) and \((\det \gamma) D \) are equal up to inner derivations. In particular we only need to check this statement for \(x \) running over a set of generators for \(A_f \).

We now split into the cases \(n = 2, 3, 4 \).

4.1. Binary quartics. Let \(\gamma = (\lambda, M) \). There is an isomorphism \(\psi : A_{f'} \rightarrow A_f \) given by
\[
r \mapsto \lambda(m_{11} r + m_{11} m_{12} s + m_{12} t),
\]
\[
s \mapsto \lambda(2m_{11} m_{21} r + (m_{11} m_{22} + m_{12} m_{21}) s + 2m_{12} m_{22} t),
\]
\[
t \mapsto \lambda(m_{21} m_{22} s + m_{22} t).
\]

We find that (5) and (7) are satisfied with
\[
\rho = -\lambda^2(2m_{11} m_{21} a + m_{11} m_{21}(m_{11} m_{22} + m_{12} m_{21}) b
\]
\[+ 2m_{11} m_{12} m_{22} c + m_{12} m_{22}(m_{11} m_{22} + m_{12} m_{21}) d + 2m_{12} m_{22} c)
\]
and \(\kappa = \lambda(m_{11} m_{21} r + m_{12} m_{21} s + m_{12} m_{22} t) \).
4.2. Ternary cubics. The result is clear for $\gamma = (\lambda, I_3)$. We take $\gamma = (1, M)$. If this change of co-ordinates fixes the point $(0 : 0 : 1)$, equivalently $m_{31} = m_{32} = 0$, then there is an isomorphism $\psi : A_f \rightarrow A_f$ given by

$$
\begin{align*}
 x &\mapsto m_{33}^{-1}(m_{11}x + m_{12}y - m_{13}), \\
y &\mapsto m_{33}^{-1}(m_{21}x + m_{22}y - m_{23}).
\end{align*}
$$

We checked (5) by a generic calculation (leading to a lengthy expression for ρ which we do not record here), and find that (7) is satisfied with $\kappa = cm_{33}(m_{23}(m_{11}x + m_{12}y) - m_{13}(m_{21}x + m_{22}y))$.

It remains to consider a transformation that moves the point $(0 : 0 : 1)$. Let $f'(x, y, z) = f(z, x, y)$. By hypothesis $a = f'(0, 0, 1) \neq 0$. From the first relation defining A_f it follows that x is invertible, i.e. $x^{-1} = -(c x^2 + c_1 x + c_3)/a$. There is an isomorphism $\psi : A_f' \rightarrow A_f$ given by $x \mapsto -yx^{-1}$ and $y \mapsto x^{-1}$. We find that (5) and (7) are satisfied with $\rho = 0$ and $\kappa = cyx + c_1 y$.

4.3. Quadric intersections. The result for $\gamma = (\Lambda, I_4)$ follows easily from the fact our expressions for ε and ξ are linear and quadratic in the d_{ij}. We take $\gamma = (I_2, M)$. If

$$
M = \begin{pmatrix} U^{-1} & 0 \\ 0 & I_2 \end{pmatrix}
\quad \text{or} \quad
\begin{pmatrix} I_2 & 0 \\ V & I_2 \end{pmatrix}
$$

then an isomorphism $\psi : A_f' \rightarrow A_f$ is given by

$$
\begin{align*}
 p &\mapsto u_{11}p + u_{21}q \\
 q &\mapsto u_{12}p + u_{22}q \\
r &\mapsto u_{11}r + u_{21}s \\
s &\mapsto u_{12}r + u_{22}s
\end{align*}
$$

or

$$
\begin{align*}
 p &\mapsto p - v_{11} \\
 q &\mapsto q - v_{12} \\
r &\mapsto r - v_{21} \\
s &\mapsto s - v_{22}
\end{align*}
$$

We checked (5) by a generic calculation, and find that (7) is satisfied with $\kappa = 0$ or $\kappa = v_{11}(d_{12}r + d_{15}s) + v_{12}(d_{15}r + d_{25}s)$.

It remains to consider a transformation that moves the line $\{x_3 = x_4 = 0\}$. Let $f'_i(x_1, x_2, x_3, x_4) = f_i(x_3, x_4, x_1, x_2)$ for $i = 1, 2$. By hypothesis C_f does not meet the line $\{x_1 = x_2 = 0\}$ and so $t = qr - ps$ is invertible, i.e.

$$
t^{-1} = -(d_{89}(s_1r + s_4) + d_{8,10}(r_5 q + r_6 + p_5 s + p_7 + d_{29}) + d_{9,10}(q_1 p + q_3))/\Delta
$$

where $\Delta = d_{8,10}^2 - d_{89}d_{9,10}$. There is an isomorphism $\psi : A_f' \rightarrow A_f$ given by $p \mapsto -st^{-1}$, $q \mapsto qt^{-1}$, $r \mapsto rt^{-1}$, $s \mapsto -pt^{-1}$ and $t \mapsto t^{-1}$. Under our assumption that t is invertible, we have $\xi = \xi_1 + c_1$ where

$$
\begin{align*}
\xi_1 &= (d_{15}^2 - d_{12}d_{25})t^2 + (d_{15}d_{37} - d_{12}d_{47} - d_{15}d_{46} - d_{25}d_{34})t \\
&+ (d_{37}d_{8,10} - d_{36}d_{10,10} + d_{46}d_{8,10} - d_{47}d_{89})t^{-1} + (d_{8,10}^2 - d_{89}d_{9,10})t^{-2},
\end{align*}
$$
and \(c_1 \in K \) is a constant (depending on \(f \)). Working with \(\xi_1 \) in place of \(\xi \) makes it easy to check (5). Finally (7) is satisfied with

\[
\kappa = \lambda(p(s_1r + s_4) + q_{10}) + \mu(r(q_1p + q_3) + s_8) + r(d_{12p} + d_{15q}) - \frac{1}{2}(d_{23r} + d_{26s})
\]

for certain \(\lambda, \mu \in K \). In fact we may take \(\lambda = (2d_{38d_{8,10}} - d_{38d_{9,10}} - d_{89d_{49}} + d_{89d_{3,10}})/(2\Delta) \) and \(\mu = (2d_{3,10d_{8,10}} - d_{4,10d_{89}} - d_{9,10d_{49}} + d_{9,10d_{48}})/(2\Delta) \).

\[\square \]

5. Proof of Theorem \ref{thm:main}

In this section we prove the following refined version of Theorem \ref{thm:main}. The first two parts of the theorem show that \(A_f \) is an Azumaya algebra.

Theorem 5.1. Let \(C_f \) be a smooth curve of genus one, defined by a genus one model \(f \) of degree \(n \in \{2, 3, 4\} \). Then

(i) The algebra \(A = A_f \) is free of rank \(n^2 \) over its centre \(Z \) (say).

(ii) The map \(A \otimes Z A^{op} \to \text{End}_Z(A); a \otimes b \mapsto (x \mapsto axb) \) is an isomorphism.

(iii) The centre \(Z \) is generated by the elements \(\xi \) and \(\eta \) specified in Section 3 subject only to these satisfying a Weierstrass equation.

(iv) The Weierstrass equation in (iii) defines the Jacobian of \(C_f \).

For the proof of the first three parts of Theorem \ref{thm:main} we are free to extend our field \(K \). However working over an algebraically closed field, it is well known that smooth curves of genus one \(C_f \) and \(C' \) are isomorphic as curves (i.e. have the same \(j \)-invariant) if and only if the genus one models \(f \) and \(f' \) are in the same orbit for the group action defined at the start of Section 4. We now split into the cases \(n = 2, 3, 4 \) and verify the theorem by direct computation for a family of curves covering the \(j \)-line. The general case then follows by Theorem \ref{thm:main}.

The generic calculations in Sections 3.1 and 3.2 already prove Theorem \ref{thm:main}(iv) in the cases \(n = 2, 3 \). The case \(n = 4 \) will be treated in Section 5.3.

5.1. **Binary quartics.** Let \(K[x_0, y_0] = K[x, y]/(F) \) where

\[
F(x, y) = y^2 - (x^3 + a_2x^2 + a_4x + a_6).
\]

We consider the binary quartic \(f(x, z) = a_6x^4 + a_4x^3z + a_2x^2z^2 + xz^3 \). Specialising the formulae in Section 3.1 we see that \(\xi, \eta \in A_f \) satisfy \(F(\xi, \eta) = 0 \).

Lemma 5.2. There is an isomorphism of \(K \)-algebras \(\theta : A_f \to \text{Mat}_2(K[x_0, y_0]) \) given by

\[
\begin{align*}
\theta(r) &= \begin{pmatrix}
-y_0 & x_0^2 + a_2x_0 + a_4 \\
-x_0 & y_0
\end{pmatrix}, &
\theta(s) &= \begin{pmatrix}
0 & x_0 + a_2 \\
1 & 0
\end{pmatrix}, &
\theta(t) &= \begin{pmatrix}
0 & 1 \\
0 & 0
\end{pmatrix}.
\end{align*}
\]

Moreover we have \(\theta(\xi) = x_0I_2 \) and \(\theta(\eta) = y_0I_2 \).
Proof: We write E_{ij} for the 2 by 2 matrix with a 1 in the (i, j) position and zeros elsewhere. Then $\text{Mat}_2(K[x_0, y_0])$ is generated as a $K[x_0, y_0]$-algebra by E_{12} and E_{21} subject to the relations $E_{12}^2 = E_{21}^2 = 0$ and $E_{12}E_{21} + E_{21}E_{12} = 1$. We define a K-algebra homomorphism $\phi : \text{Mat}_2(K[x_0, y_0]) \to A_f$ via

$$
x_0 \mapsto \xi, \quad y_0 \mapsto \eta, \quad E_{12} \mapsto t, \quad E_{21} \mapsto s - s^2 t.
$$

We checked by direct calculation that ϕ is well defined and that it is inverse to each other.

5.2. Ternary cubics. Let $K[x_0, y_0] = K[x, y]/(F)$ where

$$
F(x, y) = y^2 + a_1 xy + a_3 y - (x^3 + a_2 x^2 + a_4 x + a_6).
$$

We consider the ternary cubic $f(x, y, z) = x^3 F(z/x, y/x)$. Specialising the formulæ in Section 3.2 we see that $\xi, \eta \in A_f$ satisfy $F(\xi, \eta) = 0$.

Lemma 5.3. There is an isomorphism of K-algebras $\theta : A_f \to \text{Mat}_3(K[x_0, y_0])$ given by

$$
x \mapsto \begin{pmatrix} -x_0 - a_2 & -1 & 0 \\ x_0^2 + a_2 x_0 + a_4 & y_0 \\ y_0 + a_1 x_0 + a_3 & 0 & x_0 \end{pmatrix}, \quad y \mapsto \begin{pmatrix} 0 & 0 & 0 \\ -a_1 & 0 & -1 \\ 1 & 0 & 0 \end{pmatrix}.
$$

Moreover we have $\theta(\xi) = x_0 I_3$ and $\theta(\eta) = y_0 I_3$.

Proof: We write E_{ij} for the 3 by 3 matrix with a 1 in the (i, j) position and zeros elsewhere. Then $\text{Mat}_3(K[x_0, y_0])$ is generated as a $K[x_0, y_0]$-algebra by E_{12}, E_{23} and E_{31} subject to the relations

$$
E_{12}^2 = E_{23}^2 = E_{31}^2 = E_{12}E_{31} = E_{23}E_{12} = E_{31}E_{23} = 0,
$$

and

$$
E_{12}E_{23}E_{31} + E_{23}E_{31}E_{12} + E_{31}E_{12}E_{23} = 1.
$$

We define a K-algebra homomorphism $\phi : \text{Mat}_3(K[x_0, y_0]) \to A_f$ via $x_0 \mapsto \xi$, $y_0 \mapsto \eta$ and

$$
E_{12} \mapsto -xy^2(x + \xi + a_2), \quad E_{23} \mapsto -y^2(xy - a_1), \quad E_{31} \mapsto (yx - a_1)y^2.
$$

We checked by direct calculation that θ and ϕ are well defined, and that they are inverse to each other.
5.3. Quadric intersections. Let $f' \in K[x, z]$ be a binary quartic, say
\[f'(x, z) = ax^4 + bx^3z + cx^2z^2 + dxz^3 + ez^4. \]
The morphism $C_{f'} \to \mathbb{P}^3$ given by $(x_1 : x_2 : x_3 : x_4) = (xz : y : x^2 : z^2)$ has image C_f where $f = (f_1, f_2)$ and
\begin{align*}
 f_1(x_1, x_2, x_3, x_4) &= x_1^2 - x_3x_4, \\
 f_2(x_1, x_2, x_3, x_4) &= x_2^2 - (ax_3^2 + bx_3x_4 + cx_4 + dx_4 + ex_4^2).
\end{align*}
We write r', s', t' and ξ', η' for the generators and central elements of $A_{f'}$.

Lemma 5.4. There is an isomorphism of K-algebras $\theta : A_f \to \text{Mat}_2(A_{f'})$ given by
\begin{align*}
 p &\mapsto \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \\
 q &\mapsto \begin{pmatrix} r' & s' \\ 0 & r' \end{pmatrix}, \\
 r &\mapsto \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \\
 s &\mapsto \begin{pmatrix} t' & 0 \\ s' & t' \end{pmatrix}.
\end{align*}
Moreover we have $\theta(\xi) = (\xi' + c)I_2$ and $\theta(\eta) = -\eta'I_2$.

Proof. Again the proof is by direct calculation, the K-algebra homomorphism inverse to θ being given by $E_{12} \mapsto p$, $E_{21} \mapsto r$ and
\[r'I_2 \mapsto pqr + rqp, \quad s'I_2 \mapsto prqr + rqrp, \quad t'I_2 \mapsto psr + rsp. \]

To complete the proof of Theorem [5.1] and hence of Theorem [1.1] it remains to show that in the case $n = 4$ the Weierstrass equation satisfied by ξ and η is in fact an equation for the Jacobian of C_f.

Let A and B be the 4 by 4 matrices of partial derivatives of f_1 and f_2. We define a, b, c, d, e by writing $\frac{1}{4} \det(Ax + B) = ax^4 + bx^3z + cx^2z^2 + dxz^3 + ez^4$. As shown in [1], the Jacobian of C_f has Weierstrass equation $y^2 = F(x)$ where F is the monic cubic polynomial defined in [1].

We claim that $\eta^2 = F(\xi + c_0)$ for some constant $c_0 \in K$ (depending on f). In verifying this claim we are free to extend our field. We are also free to make changes of coordinates. Indeed if $f' = \gamma f$ for some $\gamma = (\Lambda, M) \in G_4(K)$ then by Theorem [1.1] there is an isomorphism $\psi : A_{f'} \to A_f$ with $\xi \mapsto (\det \gamma)^2 \xi + \rho$ and $\eta \mapsto (\det \gamma)^3 \eta$. On the other hand the monic cubic polynomials F and F' (associated to f and f') are related by $F'(x - \frac{1}{3}c) = (\det \gamma)^6 F((\det \gamma)^{-2}x - \frac{1}{3}c)$. Finally we checked that for f as specified in [8], the claim is satisfied with $c_0 = 0$.

6. **Proof of Theorem [1.2]**

In this section we recall the definition of the isomorphism [1], and then prove that the construction of A_f from C_f is an explicit realisation of this map.
6.1. **Galois cohomology.** Let E/K be an elliptic curve. Writing \overline{K} for a separable closure of K, the short exact sequences of Galois modules

\[
0 \to \overline{K}^\times \to \overline{K}(E)^\times \to \overline{K}(E)^\times /\overline{K}^\times \to 0,
\]

and

\[
0 \to \overline{K}(E)^\times /\overline{K}^\times \to \text{Div} E \to \text{Pic} E \to 0,
\]

give rise to long exact sequences

\[
H^2(K, \overline{K}^\times) \to H^2(K, \overline{K}(E)^\times) \to H^2(K, \overline{K}(E)^\times /\overline{K}^\times),
\]

and

\[
H^1(K, \text{Div} E) \to H^1(K, \text{Pic} E) \to H^2(K, \overline{K}(E)^\times /\overline{K}^\times) \to H^2(K, \text{Div} E).
\]

Since $H^1(K, \mathbb{Z}) = 0$ it follows by Shapiro’s lemma that $H^1(K, \text{Div} E) = 0$. We may identify $H^1(K, \text{Pic} E) = H^1(K, \text{Pic}^0 E) = H^1(K, E)$ and $H^2(K, \overline{K}^\times) = \text{Br}(K)$. As shown in [14] Appendix] we may identify

\[
\text{Br}(E) = \ker \left(H^2(K, \overline{K}(E)^\times) \to H^2(K, \text{Div} E) \right).
\]

We fix a local parameter t at $0 \in E(K)$. The left hand map in (9) is split by the map sending a Laurent power series in t to its leading coefficient. It follows that the right hand map in (11) is surjective, and hence $H^1(K, E) \cong \text{Br}(E)/\text{Br}(K)$. Since the natural map $\text{Br}(K) \to \text{Br}(E)$ is split by evaluation at $0 \in E(K)$ this also gives the isomorphism (1).

6.2. **Cyclic algebras.** Let L/K be a Galois extension with $\text{Gal}(L/K)$ cyclic of order n, generated by σ. For $b \in K^\times$ the cyclic algebra $(L/K, b)$ is the K-algebra with basis $1, v, \ldots, v^{n-1}$ as an L-vector space, and multiplication determined by $v^n = b$ and $v\lambda = \sigma(\lambda)v$ for all $\lambda \in L$. This is a central simple algebra over K of dimension n^2. It is split by L and so determines a class in $\text{Br}(L/K)$.

We compute cohomology of $C_n = \langle \sigma | \sigma^n = 1 \rangle$ relative to the resolution

\[
\cdots \to \mathbb{Z}[C_n] \xrightarrow{\Delta} \mathbb{Z}[C_n] \xrightarrow{N} \mathbb{Z}[C_n] \xrightarrow{\Delta} \mathbb{Z}[C_n] \to 0,
\]

where $\Delta = \sigma - 1$ and $N = 1 + \sigma + \ldots + \sigma^{n-1}$. Thus for A a $\text{Gal}(L/K)$-module,

\[
H^i(\text{Gal}(L/K), A) = \begin{cases}
\ker(N|A)/\text{im}(\Delta|A) & \text{if } i \geq 1 \text{ odd}, \\
\ker(\Delta|A)/\text{im}(N|A) & \text{if } i \geq 2 \text{ even}.
\end{cases}
\]

In particular $K^\times /\mathbb{N}_{L/K}(L^\times) \cong H^2(\text{Gal}(L/K), L^\times) = \text{Br}(L/K)$. This isomorphism is realised by sending $b \in K^\times$ to the class of $(L/K, b)$.

Let E/K be an elliptic curve, and fix a local parameter t at $0 \in E(K)$. If $g \in K(E)^\times$ then we write $(L/K, g)$ for the cyclic algebra $(L(E)/K(E), g)$. We may describe the isomorphism (1) in terms of cyclic algebras as follows.
Lemma 6.1. Let C/K be a smooth curve of genus one curve with Jacobian E, and suppose $Q \in C(L)$. Let P be the image of $[\sigma Q - Q]$ under $\text{Pic}^0(C) \cong E$. Then the isomorphism $\mathbf{1}$\ sends the class of C to the class of $(L/K, g)$ where $g \in K(E)^\times$ has divisor $(P) + (\sigma P) + \ldots + (\sigma^{n-1}P) - n(0)$, and is scaled to have leading coefficient 1 when expanded as a Laurent power series in t.

PROOF: We identify $E \cong \text{Pic}^0(E)$ via $T \mapsto (T) - (0)$. Then the class of C in $H^1(K, \text{Pic} E)$ is represented by $(P) - (0)$, and its image under the connecting map in $\mathbf{1}$ is represented by $g \in K(E)^\times$ where $\text{div} \; g = N_{L/K}((P) - (0))$. Finally to lift to an element of $\ker(\text{ev}_0 : \text{Br}(E) \to \text{Br}(K))$ we scale g as indicated. □

6.3. Binary quartics. We prove Theorem 1.2 in the case $n = 2$. By a change of coordinates we may assume\footnote{It is incorrectly claimed in [10] Section 5] that we may further assume $d = 0.$} that $a \neq 0$ and $b = 0$, i.e.

$$f(x, z) = ax^4 + cx^2z^2 + dxz^3 + ez^4.$$ \hfill (6.3)

Let E be the Jacobian of C_f, with Weierstrass equation as specified in Section 3.1. We know by Theorem 3.1 that the centre Z of A_f is a Dedekind domain with field of fractions $K(E)$. Therefore the natural map $\text{Br}(Z) \to \text{Br}(K(E))$ is injective, and so it suffices for us to consider the class of the quaternion algebra $A_f \otimes Z K(E)$ in $\text{Br}(K(E))$. This algebra is generated by r and s subject to the rules $r^2 = a, rs + sr = 0$ and $s^2 = \xi + c$. It is therefore the cyclic algebra $(L/K, g)$ where $L = K(\sqrt{a})$ and $g \in K(E)^\times$ is the rational function $g(\xi, \eta) = \xi + c$.

By inspection of the Weierstrass equation for E in Section 3.1 we see that $\text{div} \; g = (P) + (\sigma P) - 2(0)$ where $P = (-c, d\sqrt{a}) \in E(L)$. Let C_f have equation $y^2 = f(x_1, x_2)$, and let $Q \in C(L)$ be the point $(x_1 : x_2 : y) = (1 : 0 : \sqrt{a})$. Let $\pi : C_f \to E$ be the covering map, i.e. the map $T \mapsto [2(T) - H]$ where H is the fibre of the double cover $C_f \to \mathbb{P}^1$. Using the formulae in [1] we find that $\pi(Q) = -P$. Therefore $[\sigma Q - Q] = [H - 2(Q)] = P$. It follows by Lemma 6.1 that the isomorphism $\mathbf{1}$ sends the class of C to the class of the cyclic algebra $(L/K, g)$. This completes the proof of Theorem 1.2 in the case $n = 2$.

6.4. Ternary cubics. We prove Theorem 1.2 in the case $n = 3$. Since 2 and 3 are coprime, we are free to replace our field K by a quadratic extension. We may therefore suppose that $\zeta_3 \in K$ and that $f(x, 0, z) = ax^3 - z^3$ with $a \neq 0$. Further substitutions of the form $x \leftarrow x + \lambda y$ and $z \leftarrow z + \lambda y$ reduce us to the case

$$f(x, y, z) = ax^3 + by^3 - z^3 + b_1 xy^2 + b_2 y^2 z + mxyz.$$ \hfill (6.4)

The algebra $A_f \otimes Z K(E)$ is generated by x and $v = yx - \zeta_3 xy - \frac{1}{3}(1 - \zeta_3)m$ subject to the rules $x^3 = a$, $xx = \zeta_3 vx$ and $v^3 = g(\xi, \eta)$ where

$$g(\xi, \eta) = \eta - \zeta_3^2 m \xi - 3(1 - \zeta_3) ab + \frac{1}{9}(\zeta_3 - \zeta_3^2)m^3.$$ \hfill (6.5)

It is therefore the cyclic algebra $(L/K, g)$ where $L = K(\sqrt{d})$.

Let E be given by the Weierstrass equation specified in Section 3.2. We find that $	ext{div } g = (R) + (\sigma R) + (\sigma^2 R) - 3(0)$ for a certain point $R \in E(L)$ with x-coordinate $-(1/3)m^2 + b_1 \sqrt{a} - b_2(\sqrt{a})^2$. Let $Q = (1 : 0 : \sqrt{a}) \in C_f(L)$. Let $\pi : C_f \to E$ be the covering map, i.e. the map $T \mapsto \{T - H\}$ where H is the hyperplane section. Using the formulae in [1] we find that $\pi(Q) = (\sigma R - \sigma^2 R)$. We compute

$$3[\sigma Q - Q] = \pi(\sigma Q) - \pi(Q) = (\sigma R - \sigma^2 R) - (\sigma R - \sigma^2 R) = 3\sigma^2 R.$$

Since generically E has no 3-torsion, it follows that $[\sigma Q - Q] = \sigma^2 R$. Taking $P = \sigma^2 R$ in Lemma 6.1 completes the proof.

6.5. Dihedral algebras. Let L/K be a Galois extension with $\text{Gal}(L/K) \cong D_{2n}$, where $D_{2n} = \langle \sigma, \tau \mid \sigma^n = \tau^2 = (\sigma \tau)^2 = 1 \rangle$ is the dihedral group of order $2n$. Let K_1, F and \tilde{F} be the fixed fields of σ, τ and $\sigma \tau$. For $(b, \varepsilon, \tilde{\varepsilon}) \in K_1^\times \times F^\times \times \tilde{F}^\times$ satisfying $N_{K_1/K}(b)N_{F/K}(\varepsilon) = N_{\tilde{F}/K}(\tilde{\varepsilon})$ we define the dihedral algebra $(L/K, b, \varepsilon, \tilde{\varepsilon})$ to be the K-algebra with basis $1, v, \ldots, v^{n-1}, w, vw, \ldots, v^{n-1}w$ as an L-vector space, and multiplication determined by $v^n = b, w^2 = \varepsilon, (vw)^2 = \tilde{\varepsilon}$, $v\lambda = \sigma(\lambda)v$ and $w\lambda = \tau(\lambda)w$ for all $\lambda \in L$. As we explain below, this is a special case of a crossed product algebra. In particular it is a central simple algebra over K of dimension $(2n)^2$. It is split by L and so determines a class in $\text{Br}(L/K)$.

Let $N = 1 + \sigma + \ldots + \sigma^{n-1} \in \mathbb{Z}[D_{2n}]$. We compute cohomology of D_{2n} relative to the resolution

$$
\ldots \to \mathbb{Z}[D_{2n}]^4 \xrightarrow{\Delta_3} \mathbb{Z}[D_{2n}]^3 \xrightarrow{\Delta_2} \mathbb{Z}[D_{2n}]^2 \xrightarrow{\Delta_1} \mathbb{Z}[D_{2n}] \to 0
$$

where

$$
\Delta_3 = \begin{pmatrix}
\sigma - 1 & 0 & 0 \\
0 & \tau - 1 & 0 \\
0 & 0 & \sigma \tau - 1 \\
\tau + 1 & N & -N
\end{pmatrix}, \quad \Delta_2 = \begin{pmatrix}
N & 0 \\
0 & \tau + 1 \\
\sigma \tau + 1 & \sigma + \tau
\end{pmatrix}, \quad \Delta_1 = \begin{pmatrix}
\sigma - 1 \\
\tau - 1
\end{pmatrix},
$$

and our convention is that Δ_m acts by right multiplication on row vectors. This resolution is a special case of that defined in [15], except that we have applied some row and column operations to simplify Δ_2 and Δ_3. Using this resolution to compute $\text{Br}(L/K) = H^2(\text{Gal}(L/K), L^\times)$ we find

$$
\{ (b, \varepsilon, \tilde{\varepsilon}) \in K_1^\times \times F^\times \times \tilde{F}^\times \mid N_{K_1/K}(b)N_{F/K}(\varepsilon) = N_{\tilde{F}/K}(\tilde{\varepsilon}) \}
\approx \text{Br}(L/K).
$$

This isomorphism is realised by sending $(b, \varepsilon, \tilde{\varepsilon})$ to the class of the dihedral algebra $(L/K, b, \varepsilon, \tilde{\varepsilon})$. Our claim that dihedral algebras are crossed product algebras is justified by comparing this description of $\text{Br}(L/K)$ with that obtained from the standard resolution.
In more detail, there is a commutative diagram of free $\mathbb{Z}[D_{2n}]$-modules

\[
\begin{array}{cccccc}
\bigoplus_{(g,h)\in D_{2n}^2} \mathbb{Z}[D_{2n}] & \xrightarrow{d_2} & \bigoplus_{g\in D_{2n}} \mathbb{Z}[D_{2n}] & \xrightarrow{d_1} & \mathbb{Z}[D_{2n}] & \xrightarrow{0} \\
\downarrow \phi_2 & & \downarrow \phi_1 & & \downarrow & \\
\mathbb{Z}[D_{2n}]^3 & \xrightarrow{\Delta_2} & \mathbb{Z}[D_{2n}]^2 & \xrightarrow{\Delta_1} & \mathbb{Z}[D_{2n}] & \xrightarrow{0}
\end{array}
\]

where the first row is the standard resolution, i.e. $d_1(e_g) = g - 1$ and $d_2(e_{g,h}) = g(e_h) - e_{gh} + e_g$, and the second row is the resolution $\mathbb{Z}[D_{2n}]$. We choose ϕ_1 such that

- $\phi_1(e_1) = (0, 0)$,
- $\phi_1(e_{\sigma^i}) = (1 + \sigma + \ldots + \sigma^{i-1}, 0)$ for $0 < i < n$,
- $\phi_1(e_{\tau}) = (0, 1)$,
- $\phi_1(e_{\sigma^i \tau}) = (1 + \sigma + \ldots + \sigma^{i-1}, \sigma^i)$ for $0 < i < n$.

We further choose ϕ_2 such that for $0 \leq i, j < n$ we have

\[
\phi_2(e_{\sigma^i \tau}) = \phi_2(e_{\sigma^i, \sigma^j \tau}) = \begin{cases} (0, 0, 0) & \text{if } i + j < n, \\ (1, 0, 0) & \text{if } i + j \geq n, \end{cases}
\]

and $\phi_2(e_{\tau}) = (0, 1, 0)$, $\phi_2(e_{\sigma^i \tau}) = (0, 0, 1)$. The 2-cocycle $\xi \in Z^2(D_{2n}, \mathbb{L}^\times)$ corresponding to $(b, \varepsilon, \tilde{\varepsilon})$ is now the unique 2-cocycle satisfying

\[
\xi_{\sigma^i \tau} = \xi_{\sigma^i, \sigma^j \tau} = \begin{cases} 1 & \text{if } i + j < n, \\ b & \text{if } i + j \geq n, \end{cases}
\]

and $\xi_{\tau} = \varepsilon$, $\xi_{\sigma^i \tau} = \tilde{\varepsilon}$. The cross product algebra associated to ξ is the K-algebra with basis $\{v_g : g \in D_{2n}\}$ as an \mathbb{L}-vector space, and multiplication determined by $v_g v_h = \xi_{g,h} v_{gh}$ and $v_g \lambda = g(\lambda) v_g$ for all $\lambda \in \mathbb{L}$. Identifying $v_{g^i} = v^i$ and $v_{\sigma^i \tau} = v^i w$, we recognise this as the dihedral algebra $(L/K, b, \varepsilon, \tilde{\varepsilon})$.

Let E/K be an elliptic curve, and fix a local parameter t at $0 \in E(K)$. We may describe the isomorphism (\mathbb{I}) in terms of dihedral algebras as follows.

Lemma 6.2. Let C/K be a smooth curve of genus one with Jacobian E, and suppose $Q \in C(F)$. Let P be the image of $[\sigma Q - Q]$ under $\text{Pic}^0(C) \cong E$. Then the isomorphism (\mathbb{II}) sends the class of C to the class of $(L/K, g, 1, h)$ where $g \in K_1(E)^\times$ and $h \in \hat{F}(E)^\times$ have divisors $(P) + (\sigma P) + \ldots + (\sigma^{n-1} P) - n(0)$ and $(P) + (-P) - 2(0)$, and are scaled to have leading coefficient 1 when expanded as Laurent power series in t.

Proof: We have $[\sigma Q - Q] = P$ and $[\tau Q - Q] = 0$. We identify $E \cong \text{Pic}^0(E)$ via $T \mapsto (T) - (0)$. Then the class of C in $H^1(K, \text{Pic} E)$ is represented by the pair $((P) - (0), 0)$. Reading down the first column of Δ_2, the image of this class under the connecting map in (\mathbb{II}) is represented by a triple $(g, 1, h)$ where \(\text{div} \ g = N_{L/K_1}((P) - (0)) \) and \(\text{div} \ h = (\sigma \tau + 1)((P) - (0)) = (P) + (-P) - 2(0) \). Finally to lift to an element of $\ker(e v_0 : \text{Br}(E) \to \text{Br}(K))$ we scale g and h as indicated. \square
6.6. Quadric intersections. We prove Theorem 1.2 in the case \(n = 4 \). We are free to make field extensions of odd degree. We may therefore suppose that \(C_f \) meets the plane \(\{ x_4 = 0 \} \) in four points in general position, and that one of the three singular fibres in the pencil of quadrics vanishing at these points is defined over \(K \). In other words, we may assume that \(f_1(x_1, x_2, x_3, 0) = q_1(x_1, x_3) \) where \(q_1 \) is a binary quadratic form. Then \(f_2 \) must have a term \(x_2^2 \), and so by completing the square \(f_2(x_1, x_2, x_3, 0) = x_2^2 + q_2(x_1, x_3) \). Adding a suitable multiple of \(f_1 \) to \(f_2 \) we may suppose that \(q_2 \) factors over \(K \), and so without loss of generality \(q_2(x_1, x_3) = -x_1 x_3 \). Making linear substitutions of the form \(x_i \leftarrow x_i + \lambda x_4 \) for \(i = 1, 2, 3 \) brings us to the case

\[
\begin{align*}
f_1(x_1, x_2, x_3, x_4) &= ax_1^2 + bx_1 x_3 + cx_3^2 + (d_1 x_1 + d_2 x_2 + d_3 x_3 + d_4 x_4) x_4, \\
f_2(x_1, x_2, x_3, x_4) &= x_2^2 - x_1 x_3 - e x_4^2.
\end{align*}
\]

Let \(L/K \) be the splitting field of \(G(X) = aX^4 + bX^2 + c \). Then \(\text{Gal}(L/K) \) is a subgroup of \(D_8 \). We suppose it is equal to \(D_8 \), the other cases being similar. We have \(L = K(\theta, \sqrt{\delta}) \) where \(\theta \) is a root of \(G \) and \(\delta = ac(b^2 - 4ac) \). The generators \(\sigma \) and \(\tau \) of \(D_8 \) act as

\[
\begin{align*}
\sigma : \theta &\mapsto \frac{1}{\sqrt{\delta}}(ab\theta^3 + (b^2 - 2ac)\theta), \\
\sigma : \sqrt{\delta} &\mapsto \sqrt{\delta}, \\
\tau : \theta &\mapsto \theta, \\
\tau : \sqrt{\delta} &\mapsto -\sqrt{\delta}.
\end{align*}
\]

The fixed fields of \(\sigma \), \(\tau \) and \(\sigma \tau \) are \(K_1 = K(\sqrt{\delta}) \), \(F = K(\theta) \) and \(\widetilde{F} = K(\phi) \) where \(\phi = a(\theta + \sigma(\theta)) \).

Let \(A = A_f \otimes_{Z} K(E) \). The second generator \(q \) of \(A_f \) satisfies \(aq^4 + bq^2 + c = 0 \). We may therefore embed \(F \subset A \) via \(\theta \mapsto q \), and hence \(L \subset A_1 = A \otimes_K K_1 \). We find that \(A_1 \) is generated as a \(K_1(E) \)-algebra by \(q \) and

\[
v = a(r\sigma(q) - qr) + \frac{a}{\sqrt{\delta}}(aq^3\sigma(q) - c)(d_1 q + d_2 + d_3 q^{-1})
\]

subject to the rules \(aq^4 + bq^2 + c = 0 \), \(vq = \sigma(q)v \) and \(v^4 = g(\xi, \eta) \), for some \(g \in K_1(E) \). It is therefore the cyclic algebra \((L/K_1, g) \). Writing \(\xi \) for the element that was denoted \(\xi + c_0 \) in Section 5.3, we have

\[
g(\xi, \eta) = \xi^2 - \frac{4acd_2}{\sqrt{\delta}} \eta + \frac{2(bm + 2acd_2)}{b^2 - 4ac} \xi + 8acd_2 + \frac{m^2 + d_2^2 n}{b^2 - 4ac}. \]

where \(m = cd_1^2 - bd_1 d_3 + ad_3^2 + (b^2 - 4ac)d_4 \) and \(n = bcd_1^2 + ac(d_2^2 - 4d_1 d_3) + abd_2^3 \).
Let \(Q = (\theta^2 : \theta : 1 : 0) \in C_f(F) \), and let \(P = [\sigma Q - Q] \) under the usual identification \(\text{Pic}^0(C_f) \cong E \). We compute the point \(P \) as follows. We put

\[
\begin{pmatrix}
Tz_1 \\
2z_2 \\
2z_1 \\
Tz_2
\end{pmatrix} = \begin{pmatrix}
a & \phi & (\phi^2 + ab)/2a & 0 \\
a & -\phi & (\phi^2 + ab)/2a & 0 \\
-ad_1 & -ad_2 & -ad_3 & -ad_4 - e\phi^2 \\
0 & 0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4
\end{pmatrix}.
\]

Inverting this 4 by 4 matrix \(M \) gives

\[
(det M) f_2(x_1, x_2, x_3, x_4) = \alpha(z_1, z_2)T^2 + \beta(z_1, z_2)T + \gamma(z_1, z_2)
\]

for some binary quadratic forms \(\alpha, \beta, \gamma \). Relacing \(f_2 \) by \(f_1 \) gives a scalar multiple of the same equation. Therefore \(C_f \) has equation \(y^2 = \beta(z_1, z_2)^2 - 4\alpha(z_1, z_2)\gamma(z_1, z_2) \). The points \(Q \) and \(\sigma(Q) \) are given by \((z_1 : z_2 : y) = (1 : 0 : \pm a(\theta - \sigma(\theta))) \). Exactly as in Section 6.3. we compute \(P \) using the formulae for the covering map. Relative to the Weierstrass equation for \(E \) specified in Section 5.3, this point has \(x \)-coordinate

\[
(14) \quad x(P) = \frac{2a\phi^2(d_2d_3\phi + m) - d_2(d_1\phi + ad_2)(b\phi^2 + a(b^2 - 4ac))}{2a^2(b^2 - 4ac)} \in \tilde{F}.
\]

We find that \(P \) and its Galois conjugates are zeros of \(g \). Therefore \(\text{div} g = (P) + (\sigma P) + (\sigma^2 P) + (\sigma^3 P) - 4(0) \). It follows by Lemma 6.1 that the class of \(A_f \), and the image of the class of \(C_f \) under \(\mathbb{1} \), agree after restricting to \(\text{Br}(E \otimes_K K_1) \). It remains to show that the same conclusion holds without the quadratic extension.

For \(a \in A_1 = A \otimes_K K_1 \) let \(\overline{a} = (1 \otimes \tau)a \). We find that \(\overline{w} = \xi - x(P) \) where \(x(P) \) is given by \(\mathbb{1} \). Now let \(A_2 = A_1 \oplus A_1 w \) with multiplication determined by \(w^2 = 1 \) and \(wa = \overline{w} \) for all \(a \in A_1 \). This is the dihedral algebra \((L/K, g, 1, -\xi = x(P)) \). The subalgebra generated by \(K_1 \) and \(w \) is a trivial cyclic algebra. Therefore \(A_2 \cong A \otimes_K \text{Mat}_2(K) \). In particular \(A \) and \(A_2 \) have the same class in \(\text{Br}(K(E)) \). Lemma 6.2 now completes the proof.

7. Geometric Interpretation

Let \(C \) be a smooth curve of genus one with Jacobian elliptic curve \(E \). Let \(H \) and \(H' \) be \(K \)-rational divisors on \(C \) of degree \(n \geq 2 \). We assume that \(H \) and \(H' \) are not linearly equivalent, and so their difference corresponds to a non-zero point \(P \in E(K) \). The complete linear systems \(|H| \) and \(|H'| \) define an embedding \(C \to \mathbb{P}^{n-1} \times \mathbb{P}^{n-1} \). Assuming \(n \in \{2, 3, 4\} \), the composite of this map with the first and second projections is described by genus one models \(f \) and \(f' \).

In this section we investigate the following problem.

Given \(f \) and \(P \), how can we compute \(f'' \)?
The answers we give might be viewed as explicitly realising the connection between the Tate pairing and the obstruction map, as studied in [6, 15, 18]. Our answers also serve to motivate the definition of A_f, and indeed (however much it might seem an obvious guess in hindsight) this is how we actually found the correct definition of A_f in the case $n = 4$.

We give no proofs in this section. However all our claims may be verified by generic calculations.

7.1. Binary quartics. The image of $C \to \mathbb{P}^1 \times \mathbb{P}^1$ is defined by a $(2, 2)$-form, say $F(x, z; x', z') = f_1(x, z)x'^2 + 2f_2(x, z)x'z' + f_3(x, z)z'^2$.

Then $f = f_2^2 - f_1f_3$, and f' is obtained in the same way, after switching the two sets of variables. Thus, given a binary quartic f, we seek to find binary quadratic forms f_1, f_2, f_3 such that $(f_2^2 - f_1f_3)^2 = f(\alpha, \beta)I_2$.

Equivalently, we look for matrices $M_1, M_2, M_3 \in \text{Mat}_2(K)$ satisfying

$$f(\alpha, \beta, \gamma) = \det(\alpha M_1 + \beta M_2 + \gamma M_3) = f(\alpha, \beta)I_2.$$

This reduces the problem of finding f' from f to that of finding a K-algebra homomorphism $A_f \to \text{Mat}_2(K)$. By Theorem 1.1 any such homomorphism must factor via A_f, P for some $0 \neq P \in E(K)$. This point P turns out to be the same as the point P considered at the start of Section 7. In conclusion, if $A_f, P \cong \text{Mat}_2(K)$ and we can find this isomorphism explicitly, then we can write down a $(2, 2)$-form, and hence a binary quartic f', such that C_f and $C_{f'}$ are isomorphic as genus one curves, but their hyperplane sections differ by P.

7.2. Ternary cubics. The image of $C \to \mathbb{P}^2 \times \mathbb{P}^2$ is defined by three $(1, 1)$-forms. The coefficients may be arranged as a $3 \times 3 \times 3$ cube. As explained in [3], slicing this cube in three different ways gives rise to three ternary cubics. Two of these are f and f'. Thus, given a ternary cubic f, we seek to find matrices $M_1, M_2, M_3 \in \text{Mat}_3(K)$ satisfying

$$f(\alpha, \beta, \gamma) = \det(\alpha M_1 + \beta M_2 + \gamma M_3).$$

If $f(0, 0, 1) \neq 0$ then we may assume (after rescaling f and multiplying each M_i on the left by the same invertible matrix) that $M_3 = -I_3$. Then $\alpha M_1 + \beta M_2$ has characteristic polynomial $\gamma \mapsto f(\alpha, \beta, \gamma)$, and so by the Cayley-Hamilton theorem

$$f(\alpha, \beta, \alpha M_1 + \beta M_2) = 0.$$

This reduces the problem of finding f' from f to that of finding a K-algebra homomorphism $A_f \to \text{Mat}_3(K)$. By Theorem 1.1 any such homomorphism must factor via A_f, P for some $0 \neq P \in E(K)$. This point P turns out to be the same as
the point P considered at the start of Section 7. In conclusion, if $A_{f,P} \cong \text{Mat}_3(K)$ and we can find this isomorphism explicitly, then we can write down a $3 \times 3 \times 3$ cube, and hence a ternary cubic f', such that C_f and $C_{f'}$ are isomorphic as genus one curves, but their hyperplane sections differ by P.

7.3. Quadric intersections. The image of $C \to \mathbb{P}^3 \times \mathbb{P}^3$ is defined by an 8-dimensional vector space V of $(1,1)$-forms in variables x_1, \ldots, x_4 and y_1, \ldots, y_4. Let W be the vector space of 4 by 4 alternating matrices $B = (b_{ij})$ of linear forms in y_1, \ldots, y_4 such that

$$\sum_{i=1}^4 x_i b_{ij}(y_1, \ldots, y_4) \in V \quad \text{for all } j = 1, \ldots, 4.$$

We find that W is 4-dimensional. We choose a basis, and let M be a generic linear combination of the basis elements, say with coefficients z_1, \ldots, z_4. Then $M = (m_{ij})$ is a 4 by 4 alternating matrix of $(1,1)$-forms in y_1, \ldots, y_4 and z_1, \ldots, z_4. The Pfaffian of this matrix is a $(2,2)$-form, which turns out to be

$$f_1^+(y_1, \ldots, y_4)f_2^-(z_1, \ldots, z_4) - f_2^+(y_1, \ldots, y_4)f_1^-(z_1, \ldots, z_4),$$

where $f^\pm = (f_1^\pm, f_2^\pm)$ describes the image of $C \to \mathbb{P}^3$ via $|H^\pm|$, and $[H-H^\pm] = \pm P$.

To tie in with our earlier notation, $H^+ = H'$ and $f^+ = f'$.

We write $m_{ij} = (y_1, \ldots, y_4)M_{ij}(z_1, \ldots, z_4)^T$ where $M_{ij} \in \text{Mat}_4(K)$. Assuming C_f does not meet the line $\{x_3 = x_4 = 0\}$ we have $\det(M_{12}) \neq 0$, and so we may choose our basis for W such that $M_{12} = I_4$. The matrices M_{ij} then satisfy

$$f_i(\alpha M_{23} + \beta M_{24}, -(\alpha M_{13} + \beta M_{14}), \alpha, \beta) = 0 \quad \text{for } i = 1, 2,$$

where the first two arguments commute, and $M_{34} = M_{13}M_{24} - M_{23}M_{14} = M_{24}M_{13} - M_{14}M_{23}$.

This reduces the problem of finding f' from f to that of finding a K-algebra homomorphism $A_f \to \text{Mat}_4(K)$. By Theorem 1.1 any such homomorphism must factor via $A_{f,P}$ for some $0 \neq P \in E(K)$. Again this point P turns out to correspond to the difference of hyperplane sections for C_f and $C_{f'}$.

References

[1] S.Y. An, S.Y. Kim, D.C. Marshall, S.H. Marshall, W.G. McCallum and A.R. Perlis, Jacobians of genus one curves, *J. Number Theory* 90 (2001), no. 2, 304–315.

[2] M. Artin, F. Rodriguez-Villegas and J. Tate, On the Jacobians of plane cubics, *Adv. Math.* 198 (2005), no. 1, 366–382.

[3] M. Bhargava and W. Ho, Coregular spaces and genus one curves, *Camb. J. Math.* 4 (2016), no. 1, 1–119.

[4] W. Bosma, J. Cannon and C. Playoust, The Magma algebra system I: The user language, *J. Symb. Comb.* 24, 235–265 (1997). http://magma.maths.usyd.edu.au/magma/

[5] M. Ciperiani and D. Krashen, Relative Brauer groups of genus 1 curves, *Israel J. Math.* 192 (2012), no. 2, 921–949.
[6] J.E. Cremona, T.A. Fisher, C. O’Neil, D. Simon and M. Stoll, Explicit n-descent on elliptic curves, I, Algebra, *J. reine angew. Math.* **615** (2008) 121–155.
[7] J.E. Cremona, T.A. Fisher and M. Stoll, Minimisation and reduction of 2-, 3- and 4-coverings of elliptic curves, *Algebra & Number Theory* **4** (2010), no. 6, 763–820.
[8] B. Creutz, Relative Brauer groups of torsors of period two, *J. Algebra* **459** (2016), 109–132.
[9] T.A. Fisher and R.D. Newton, Computing the Cassels-Tate pairing on the 3-Selmer group of an elliptic curve, *Int. J. Number Theory* **10** (2014), no. 7, 1881–1907.
[10] D. Haile and I. Han, On an algebra determined by a quartic curve of genus one, *J. Algebra* **313** (2007), no. 2, 811–823.
[11] D.E. Haile, I. Han and A.R. Wadsworth, Curves C that are cyclic twists of $Y^2 = X^3 + c$ and the relative Brauer groups $Br(k(C)/k)$, *Trans. Amer. Math. Soc.* **364** (2012), no. 9, 4875–4908.
[12] J.-M. Kuo, On an algebra associated to a ternary cubic curve. *J. Algebra* **330** (2011), 86–102.
[13] J.-M. Kuo, On cyclic twists of elliptic curves of period two or three and the determination of their relative Brauer groups, *J. Pure Appl. Algebra* **220** (2016), no. 3, 1206–1228.
[14] S. Lichtenbaum, Duality theorems for curves over p-adic fields. *Invent. Math.* **7** (1969) 120–136.
[15] C. O’Neil, The period-index obstruction for elliptic curves. *J. Number Theory* **95** (2002), no. 2, 329–339.
[16] C.T.C. Wall, Resolutions for extensions of groups, *Proc. Cambridge Philos. Soc.* **57** (1961) 251–255.
[17] O. Wittenberg, Transcendental Brauer-Manin obstruction on a pencil of elliptic curves, Arithmetic of higher-dimensional algebraic varieties (Palo Alto, CA, 2002), 259–267, Progr. Math., 226, Birkhäuser Boston, Boston, MA, 2004.
[18] Ju. G. Zarhin, Noncommutative cohomology and Mumford groups. *Mat. Zametki* **15** (1974), 415–419; English translation: *Math. Notes* **15** (1974), 241–244.

University of Cambridge, DPMMS, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WB, UK

E-mail address: T.A.Fisher@dpmms.cam.ac.uk