Coincident glutamatergic depolarizations enhance GABA_A receptor-dependent Cl\(^-\) influx in mature and suppress Cl\(^-\) efflux in immature neurons

Aniello Lombardi\(^1\), Peter Jedlicka\(^2,3,4\), Heiko J. Luhmann\(^1\), Werner Kilb\(^1\)*

1 Institute of Physiology, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany, 2 ICAR3R - Interdisciplinary Centre for 3Rs in Animal Research, Faculty of Medicine, Justus-Liebig-University, Giessen, Germany, 3 Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University, Frankfurt/Main, Germany, 4 Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany

* wkilb@uni-mainz.de

Abstract

The impact of GABAergic transmission on neuronal excitability depends on the Cl\(^-\)-gradient across membranes. However, the Cl\(^-\)-fluxes through GABA_A receptors alter the intracellular Cl\(^-\) concentration ([Cl\(^-\)]) and in turn attenuate GABAergic responses, a process termed ionic plasticity. Recently it has been shown that coincident glutamatergic inputs significantly affect ionic plasticity. Yet how the [Cl\(^-\)] changes depend on the properties of glutamatergic inputs and their spatiotemporal relation to GABAergic stimuli is unknown. To investigate this issue, we used compartmental biophysical models of Cl\(^-\) dynamics simulating either a simple ball-and-stick topology or a reconstructed CA3 neuron. These computational experiments demonstrated that glutamatergic co-stimulation enhances GABA receptor-mediated Cl\(^-\) influx at low and attenuates or reverses the Cl\(^-\) efflux at high initial [Cl\(^-\)]. The size of glutamatergic influence on GABAergic Cl\(^-\)-fluxes depends on the conductance, decay kinetics, and localization of glutamatergic inputs. Surprisingly, the glutamatergic shift in GABAergic Cl\(^-\)-fluxes is invariant to latencies between GABAergic and glutamatergic inputs over a substantial interval. In agreement with experimental data, simulations in a reconstructed CA3 pyramidal neuron with physiological patterns of correlated activity revealed that coincident glutamatergic synaptic inputs contribute significantly to the activity-dependent [Cl\(^-\)] changes. The size of glutamatergic influence on GABAergic Cl\(^-\)-fluxes depends on the conductance, decay kinetics, and localization of glutamatergic inputs. Surprisingly, the glutamatergic shift in GABAergic Cl\(^-\)-fluxes is invariant to latencies between GABAergic and glutamatergic inputs over a substantial interval. In agreement with experimental data, simulations in a reconstructed CA3 pyramidal neuron with physiological patterns of correlated activity revealed that coincident glutamatergic synaptic inputs contribute significantly to the activity-dependent [Cl\(^-\)] changes. Whereas the influence of spatial correlation between distributed glutamatergic and GABAergic inputs was negligible, their temporal correlation played a significant role. In summary, our results demonstrate that glutamatergic co-stimulation had a substantial impact on ionic plasticity of GABAergic responses, enhancing the attenuation of GABAergic inhibition in the mature nervous systems, but suppressing GABAergic [Cl\(^-\)] changes in the immature brain. Therefore, glutamatergic shift in GABAergic Cl\(^-\)-fluxes should be considered as a relevant factor of short-term plasticity.
Author summary

Information processing in the brain requires that excitation and inhibition are balanced. The main inhibitory neurotransmitter in the brain is gamma-amino-butyric acid (GABA). GABA actions depend on the Cl\(^-\) gradient, but activation of ionotropic GABA receptors causes Cl\(^-\) fluxes and thus reduces GABAergic inhibition. Here, we investigated how a coincident membrane depolarization by excitatory glutamatergic synapses influences GABA-induced Cl\(^-\) fluxes using a biophysical compartmental model of Cl\(^-\) dynamics, simulating either simple or realistic neuron topologies. We demonstrate that glutamatergic co-stimulation directly affects GABA-induced Cl\(^-\) fluxes, with the size of glutamatergic effects depending on the conductance, the decay kinetics, and localization of glutamatergic inputs. We also show that the glutamatergic shift in GABAergic Cl\(^-\) fluxes is surprisingly stable over a substantial range of latencies between glutamatergic and GABAergic inputs. We conclude from these results that glutamatergic co-stimulation alters GABAergic Cl\(^-\) fluxes and in turn affects the strength of GABAergic inhibition. These coincidence-dependent ionic changes should be considered as a relevant factor of short-term plasticity in the CNS.

Introduction

Information transfer within networks of single neurons is carried out via synaptic contacts, that use different neurotransmitters acting on pre- and postsynaptic receptors. The two most important neurotransmitters in the mammalian brain are glutamate and \(\gamma\)-amino butyric acid (GABA), which in general exert an excitatory and inhibitory action in the postsynaptic cell, respectively [1]. Beside regulating the excitability of neuronal circuits, GABA is also required for the control of sensory integration, regulation of motor functions, generation of oscillatory activity, and neuronal plasticity [2]. The responses to GABA are mediated by metabotropic GABA\(_B\) receptors and by ionotropic GABA\(_A\) receptors, which are ligand-gated anion-channels with a high Cl\(^-\) permeability and a lower HCO\(_3\)\(^-\) permeability [1]. The GABAergic effects therefore depend mainly on the Cl\(^-\) gradient across the neuronal plasma membrane [1, 3]. The typical inhibitory action of GABA requires a low intracellular Cl\(^-\) concentration ([Cl\(^-\)]\(_i\)), which is typically maintained by the action of a Cl\(^-\) extruder termed KCC2 [3]. During early development [Cl\(^-\)]\(_i\) is maintained at high levels by active Cl\(^-\) accumulation via the Na\(^+\)-K\(^+\)-2Cl\(^-\) Symporter NKCC1, rendering GABA responses depolarizing and under certain conditions excitatory [4–6]. Such excitatory GABAergic responses contribute to the generation of spontaneous neuronal activity, which is essential for the correct maturation of nervous systems [7–9].

However, the Cl\(^-\) fluxes through GABA\(_A\) receptors, which underlie GABAergic currents, change [Cl\(^-\)], and thus temporarily affect the amplitude of subsequent GABAergic responses, a process termed ionic-plasticity [3, 10, 11]. Such activity-dependent [Cl\(^-\)]\(_i\) transients have been observed in various neurons [12–19]. Ionic plasticity plays an important role for physiological functions [20–22] as well as for pathophysiological processes [23, 24]. Theoretical assumptions and computational studies indicate that the amount and duration of [Cl\(^-\)]\(_i\) ionic plasticity directly depends on the relation between Cl\(^-\) influx and the capacity of Cl\(^-\) extrusion systems [3, 24–28]. In addition, the size and geometrical structure of the postsynaptic compartments critically affect the magnitude, duration and dimensions of [Cl\(^-\)]\(_i\), changes upon GABAergic activation [27, 29]. Further analyses also revealed that the membrane resistance, the kinetics of GABAergic responses and the stability of bicarbonate gradients affect the magnitude and duration of [Cl\(^-\)]\(_i\), changes [12, 27, 30].

Funding: This research was funded by grants of the Deutsche Forschungsgemeinschaft to WK (KI-835/3) and to HJL (CRC 1080, A01), by the BMBF grant to PJ (No. 031L0229) and by funds from the von Behring Röntgen Foundation to PJ. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.
Another factor that directly influences the amount of GABA_A receptor-mediated Cl^- fluxes is a coincident membrane depolarization [11, 27, 31]. Accordingly, recent in-vitro and in-silico studies demonstrated that coincident glutamatergic depolarization profoundly augments the GABA_A receptor mediated Cl^- fluxes [32, 33]. However, to our knowledge it has not been analyzed how the interdependency between glutamatergic and GABAergic inputs affects the magnitude and the spatiotemporal properties of activity dependent [Cl^-]i changes.

In order to determine the influence of coincident glutamate stimulation on GABA_A receptor-induced [Cl^-]i transients, we utilized a computational model of [Cl^-]i homeostasis in the NEURON environment [25, 30]. Using a simple ball-and-stick geometry, we were able to show that the conductance and decay kinetics of glutamatergic responses directly affect the size of GABAergic [Cl^-]i changes, with a complex spatiotemporal dependency between glutamatergic and GABAergic inputs. Furthermore, we employed the model to uncover the contribution of coincident glutamatergic activity on the activity-dependent [Cl^-]i transients during simulated giant-depolarizing potentials (GDPs) [17, 30]. GDPs represent correlated spontaneous network events crucial for the development of neuronal circuits [34–36]. These simulations demonstrate for the first time that coincident glutamatergic stimulation with realistic parameters substantially modifies the GABA_A receptor-induced [Cl^-]i changes.

Results
In order to analyze how co-activation of depolarizing neurotransmitter receptors affects the [Cl^-]i transients evoked by GABA_A receptor activation, we used a previously established biophysical model of Cl^- dynamics in the NEURON environment [17, 25]. The model allows for realistic simulations of activity-dependent transmembrane Cl^- fluxes, intracellular Cl^- diffusion and corresponding intracellular Cl^- accumulation or depletion (see Methods). In a first step we computed the GABA-induced [Cl^-]i changes in a ball-and-stick model with a single dendrite (Fig 1A), in order to enable a detailed mechanistic understanding of the interaction between a single or a small group of GABA_A receptor-mediated and glutamate receptor-mediated synaptic inputs (Figs 1–6). Subsequently we utilized a model of a reconstructed CA3 pyramidal neuron [17, 30] stimulated by a large number of inputs to compute a more realistic estimation of how the GABA_A receptor-mediated [Cl^-]i transients in neurons are influenced by correlated co-activation of glutamate receptors (Figs 7–9).

Effect of GABA and AMPA co-activation for a weak focal synaptic activation
First we analyzed the effect of glutamate receptor co-activation on the GABA_A receptor-induced [Cl^-]i transients. It is important to emphasize that simulations of single or a low number of synaptic inputs necessarily led to small absolute effects of glutamatergic activation on GABAergic [Cl^-]i, or membrane voltage (E_m) changes (Figs 1–6), but nevertheless allowed for systematic parameter scans important for the detailed understanding of glutamatergic effects (see below). For quantitatively stronger effects during more realistic GABAergic and glutamatergic distributed input activation see Sections 2.4 and 2.5.

Simulation of a single GABA synapse using parameters determined in-vitro for spontaneous GABAergic postsynaptic currents (PSCs) (g_GABA = 0.789 nS, t_GABA = 37 ms) [17], induced [Cl^-]i changes (Fig 1B and 1C) that depended on the initial [Cl^-]i ([Cl^-]i^0), as has been shown before [17]. At low [Cl^-]i^0 the inwardly directed driving force (DF_GABA = E_m – E_GABA) caused a Cl^-influx and thus a membrane hyperpolarization. At higher [Cl^-]i^0 of 25 mM the outwardly directed DF_GABA caused a Cl^-efflux and thus a membrane depolarization, while at an [Cl^-]i^0 of 15 mM, which is close to the [Cl^-]i given by a passive distribution at -60 mV, only a slight [Cl^-]i
efflux was induced (Fig 1B and 1C). The simultaneous co-activation with a simulated single glutamate synapse, using parameters that were determined in-vitro for spontaneous glutamatergic PSCs [17]) and resemble the properties of the AMPA subtype of glutamate receptors \(g_{\text{AMPA}} = 0.305 \text{nS}, \tau_{\text{AMPA}} = 11 \text{ms} \) imposed an additional depolarizing drive to the \(E_m \) responses (Fig 1B, dashed lines). Thereby it caused slight changes in the activity-dependent \([\text{Cl}^-]_i \), transients towards higher concentration, thus enhancing the \([\text{Cl}^-]_i \) increase at low \([\text{Cl}^-]_0 \) and attenuating the \([\text{Cl}^-]_i \) decrease at higher \([\text{Cl}^-]_0 \) (Fig 1C, dashed lines).

Since physiological and pathophysiological activity is typically characterized by neurotransmitter release from several release sites [37, 38], we next analyzed the effect of varying \(g_{\text{AMPA}} \) on the \(\text{GABA}_A \) receptor-mediated \([\text{Cl}^-]_i \) transient. As expected, these simulations showed that \(\text{GABA}_A \) receptor-induced \(\text{Cl}^- \) fluxes depended on the \([\text{Cl}^-]_0 \) (Fig 2A black trace). However, the \(\text{Cl}^- \) fluxes were systematically shifted towards \(\text{Cl}^- \) influx in the presence of AMPA receptor-mediated inputs (Fig 2A and 2B). At a \(g_{\text{AMPA}} \) of 305 nS and 30.5 nS (corresponding to 100x and 1000x glutamatergic PSCs) a consistent \(\text{Cl}^- \) influx was induced even at high \([\text{Cl}^-]_i \) (Fig 2A and 2B). At a \(g_{\text{AMPA}} \) of 0.305 nS (Fig 2C and 2E) and 3.05 nS (Fig 2D and 2E) bimodal effects, consisting of an initial \(\text{Cl}^- \) influx followed by an efflux, were observed within a limited \([\text{Cl}^-]_i \) range. These biphasic responses were caused by the fact that the membrane depolarization only temporarily exceeds \(E_{\text{Cl}} \) (Fig 2C and 2D). The maximal values of \(\text{Cl}^- \) influx and efflux are displayed in separate panels in Fig 2E and 2F.

A systematic analysis of the direction of \(\text{Cl}^- \) fluxes at various \(g_{\text{AMPA}} \) revealed that the \(\text{GABA}_A \) receptor-mediated \(\text{Cl}^- \) fluxes show a logarithmic dependency on \(g_{\text{AMPA}} \), resulting in sigmoidal curves in a monologarithmic plot (Fig 2F). Only at low \([\text{Cl}^-]_i \), concentrations, which permit a \(\text{Cl}^- \) influx even without AMPA co-stimulation, a monotonous increase in the \(\text{Cl}^- \) fluxes were induced by increasing \(g_{\text{AMPA}} \) (Fig 2E and 2F). When \([\text{Cl}^-]_i \) was above 13 mM (corresponding to \(E_{\text{Cl}} \) above -60 mV) addition of \(g_{\text{AMPA}} \) caused biphasic \(\text{Cl}^- \) fluxes (Fig 2E and 2F).

In summary, these results indicate that co-activation of AMPA receptors enhances \(\text{Cl}^- \) influx at low \([\text{Cl}^-]_i \), and attenuates \(\text{Cl}^- \) efflux at high \([\text{Cl}^-]_i \), with the possibility to even revert the latter to \(\text{Cl}^- \) influx. Already relatively low, physiologically relevant \(g_{\text{AMPA}} \) values representing 10–100 spontaneous postsynaptic events, are sufficient to substantially modulate \(\text{GABA}_A \) receptor mediated \(\text{Cl}^- \) fluxes.
Influence of τ_{AMPA} on GABA$_A$ receptor-induced $[\text{Cl}^-]$ transients

Next we analyzed the influence of the kinetics of coincident AMPA receptor activation on the GABA$_A$ receptor-induced $[\text{Cl}^-]$ transients. For this purpose, we modified the decay time constant of the AMPA synapse (τ_{AMPA}) using values between 1 and 100 ms. These simulations were performed under consideration of the experimentally determined values for GABA$_A$ receptor-mediated inputs either at g_{AMPA} of 0.305 nS (i.e. the experimentally determined value [17]) or at g_{AMPA} of 3.05 nS (to estimate the effects of a small number of coincident colocalized glutamatergic inputs). As the depolarizing effect of the AMPA synapse strictly depends on τ_{AMPA} (Fig 3A), for τ_{AMPA} values < 37 ms biphasic voltage responses were induced at low $[\text{Cl}^-]$ (Fig 3A). In contrast, at high $[\text{Cl}^-]$ (where GABAergic responses are depolarizing) the peak depolarization was enhanced. For τ_{AMPA} values > 37 ms the depolarization was virtually saturated (Fig 3B). In accordance with this observation the AMPA-mediated shift in the GABAergic $[\text{Cl}^-]$ transients was sensitive to τ_{AMPA} at values < 37 ms, while at values > 37 ms only minimal additional effects were observed (Fig 3C and 3D). These findings indicate that the kinetics of glutamatergic synaptic inputs have a consistent effect on activity-dependent $[\text{Cl}^-]$ changes and that shorter glutamatergic postsynaptic potentials (PSPs) will attenuate the effect of AMPA on activity-dependent $[\text{Cl}^-]$ transients.
These simulations with an established model for the NMDA receptor [39] revealed that co-activation of NMDA receptors ($\tau_{\text{NMDA}} = 500$ ms) induced at high g_{NMDA} changes induced without (black traces) or with AMPA co-stimulation ($g_{\text{AMPA}} = 0.305$ nS) at τ_{AMPA} values of 5, 11, 37, and 50 ms (in ascending gray shades). Note the biphasic voltage responses at short τ_{AMPA}. (b) Membrane potential changes induced by a AMPA/GABA co-stimulation at different τ_{AMPA} simulated for different [Cl$^-$] (for color code see panel c). The upper traces were simulated using g_{AMPA} of 0.305 nS, while the lower traces represent simulation with g_{AMPA} of 0.305 nS. Note that the depolarization increased with larger τ_{AMPA}. (c) Transients induced by AMPA/GABA co-stimulation at different τ_{AMPA} simulated with different [Cl$^-$] (color coded) for a g_{AMPA} of 0.305 nS. (d) As in c) but for a g_{AMPA} of 3.05 nA. Note that the [Cl$^-$] changes were shifted towards diminished Cl$^-$ efflux or enhanced Cl$^-$ influx with larger τ_{AMPA}. (e) Effect of NMDA receptor-mediated synaptic inputs with various g_{NMDA} on the [Cl$^-$] transients at different [Cl$^-$] (color coded). The dashed traces represent the responses using AMPA receptors. Note the right shift and steeper rising phase of the NMDA responses. (f) Voltage responses and [Cl$^-$] changes with only GABAergic synaptic inputs (black trace) and with simultaneous AMPA inputs in a passive dendrite (orange trace) or in a dendrite with an active HH mechanism (blue trace). (g) Effect of different active properties of the dendrite on [Cl$^-$] transients at a [Cl$^-$]0 of 5 mM. Note the lack of influence of Ca$^{2+}$ channels and that at $g_{\text{AMPA}} \geq 3.05$ active dendritic properties augment the [Cl$^-$] transients. (h) Effect of active dendritic properties on the [Cl$^-$] transients at different [Cl$^-$]0 (color coded). The dashed traces represent the responses in the passive model.

https://doi.org/10.1371/journal.pcbi.1008573.g003

Fig 3. Effect of τ_{AMPA} on the [Cl$^-$] transients induced by GABA$_A$ and AMPA receptor co-stimulation. (a) Schematic illustration of the compartmental model. The inset traces represent schematic illustrations of AMPA- and GABA-receptor mediated currents. The GABA synapse ($g_{\text{GABA}} = 0.789$ nS) was stimulated with a constant g_{GABA} of 37 ms, while τ_{AMPA} was systematically varied. The traces below the scheme displays the voltage responses (left panel) and [Cl$^-$], changed induced without (black traces) or with AMPA co-stimulation ($g_{\text{AMPA}} = 0.305$ nS) at τ_{AMPA} values of 5, 11, 37, and 50 ms (in ascending gray shades). Note the biphasic voltage responses at short τ_{AMPA}. (b) Membrane potential changes induced by a AMPA/GABA co-stimulation at different τ_{AMPA} simulated for different [Cl$^-$] (for color code see panel c). The upper traces were simulated using g_{AMPA} of 0.305 nS, while the lower traces represent simulation with g_{AMPA} of 0.305 nS. Note that the depolarization increased with larger τ_{AMPA}. (c) Transients induced by AMPA/GABA co-stimulation at different τ_{AMPA} simulated with different [Cl$^-$] (color coded) for a g_{AMPA} of 0.305 nS. (d) As in c) but for a g_{AMPA} of 3.05 nA. Note that the [Cl$^-$] changes were shifted towards diminished Cl$^-$ efflux or enhanced Cl$^-$ influx with larger τ_{AMPA}. (e) Effect of NMDA receptor-mediated synaptic inputs with various g_{NMDA} on the [Cl$^-$] transients at different [Cl$^-$] (color coded). The dashed traces represent the responses using AMPA receptors. Note the right shift and steeper rising phase of the NMDA responses. (f) Voltage responses and [Cl$^-$] changes with only GABAergic synaptic inputs (black trace) and with simultaneous AMPA inputs in a passive dendrite (orange trace) or in a dendrite with an active HH mechanism (blue trace). (g) Effect of different active properties of the dendrite on [Cl$^-$] transients at a [Cl$^-$]0 of 5 mM. Note the lack of influence of Ca$^{2+}$ channels and that at $g_{\text{AMPA}} \geq 3.05$ active dendritic properties augment the [Cl$^-$] transients. (h) Effect of active dendritic properties on the [Cl$^-$] transients at different [Cl$^-$]0 (color coded). The dashed traces represent the responses in the passive model.

https://doi.org/10.1371/journal.pcbi.1008573.g003
(electrotonically) into the dendritic compartment, were able to augment the \[\text{[Cl}^-\text{]}\] transients (Fig 3G). The addition of voltage gated Ca\(^{2+}\) channels [41] in the dendrite had no effect on the \[\text{[Cl}^-\text{]}\] transients (Fig 3G).

Spatial and temporal constrains of AMPA receptor-mediated shift in GABAergic \[\text{[Cl}^-\text{]}\] transients for a weak focal synaptic activation

To analyze how the spatial distance between the AMPA and the GABA synapse influences the GABA\(_A\) receptor-induced \[\text{[Cl}^-\text{]}\] transients, we systematically moved the AMPA synapse along the dendrite from the somatic (0%) to the distal end (100%) (Fig 4A and 4B) using the experimentally determined parameters for AMPA and GABA inputs (\(g_{\text{GABA}} = 0.789\) nS, \(\tau_{\text{GABA}} = 37\) ms, \(g_{\text{AMPA}} = 0.305\) nS, \(\tau_{\text{AMPA}} = 11\) ms [17]). These experiments revealed that the membrane potential change depends on the location of the AMPA synapse. The maximal amplitude of the positive shift in \(E_m\) induced by the AMPA co-stimulation decreased substantially at distant positions (Fig 4B), due to the leak conductance shunting the synaptic currents (i.e. dendritic filtering). In accordance with these smaller depolarizing \(E_m\) shifts, the \[\text{[Cl}^-\text{]}\] changes were slightly decreased with increasing distance between AMPA and GABA synapses (Fig 4B). To quantify this effect, we calculated the amount of additional \[\text{[Cl}^-\text{]}\] changes induced by AMPA co-stimulation (\(\Delta_c[\text{Cl}^-]\)) by subtracting the \[\text{[Cl}^-\text{]}\] changes at GABA stimulation from the \[\text{[Cl}^-\text{]}\] changes at AMPA/GABA co-stimulation. These simulations revealed that the decrease of \(\Delta_c[\text{Cl}^-]\) with increasing distance between both synapses could be perfectly fitted (\(R^2 = 0.023\)) with a monoexponential function, using a decay length constant (\(\lambda\)) of 248 \(\mu\)m (Fig 4C). This is exactly the \(\lambda\) value determined for the attenuation of the peak voltage responses (Fig 4D) and reflects the exponential decay of voltage in a linear cable with homogeneous membrane resistance. These observations indicate that the distance between GABAergic and glutamatergic synapses is a relevant factor determining the effects of co-activation on the activity-dependent \[\text{[Cl}^-\text{]}\] transients.

To analyze how the temporal relation between the AMPA- and the GABA-mediated activity influences the GABA\(_A\) receptor-induced \[\text{[Cl}^-\text{]}\] transients we next systematically varied the delay between the AMPA and the GABAergic stimulus from -49 ms (i.e. AMPA before GABA) to +100 ms (i.e. AMPA after GABA) and determined the impact of this latency shift...
on the [Cl-]_i transients (Fig 5A and 5B). The parameters for AMPA and GABA inputs were identical to the parameters used before (g\textsubscript{GABA} = 0.789 nS, \(\tau\text{GABA} = 37\) ms, g\textsubscript{AMPA} = 0.305 nS, \(\tau\text{AMPA} = 11\) ms) and both synapses were located at the same position. These simulations revealed that the additional effect of AMPA co-stimulation on the [Cl-]_i transients (\(\Delta G_{[\text{Cl}^-]}\)) became maximal when GABA and AMPA stimulus were provided simultaneously (Fig 5C). Surprisingly, this AMPA effect on \(\Delta G_{[\text{Cl}^-]}\) remained stable for a latency of \(\approx 20\) ms, before it rapidly declined (Fig 5C). To provide a mechanistic explanation for this plateau phase, we next...
plotted the rate of \([\text{Cl}^-]\) changes versus the absolute value of the \([\text{Cl}^-]\) change (Fig 5D). This phase plane plot illustrates that the trajectories of all AMPA stimulations with a latency between 0 and 20 ms converged with the trajectory of the 0 ms latency stimulus (purple line), thus reaching identical minimal \([\text{Cl}^-]\) values (obtained at the intersection with the y-axis value \(\partial[\text{Cl}^-]/\partial t = 0 \text{mM/s}\)). Latencies between 22 and 34 ms provided a gradual decline in the minimal \([\text{Cl}^-]\). For latencies > 34 ms the additional AMPA-mediated reduction of the \([\text{Cl}^-]\) efflux was initiated after a minimal \([\text{Cl}^-]\) was reached, therefore these stimulations did not provide a \([\text{Cl}^-]\) decrease exceeding the \([\text{Cl}^-]\) decrease mediated by a pure GABA stimulation (black line).

To investigate how the duration of GABA and AMPA receptor-mediated currents influence this complex time course of \([\text{Cl}^-]\) transients, we next systematically varied \(\tau_{\text{GABA}}\) (5 ms, 37 ms 50 ms) as well as \(\tau_{\text{AMPA}}\) (5 ms, 11 ms, 37 ms, 50 ms) and determined \(\Delta_{\text{G}}[\text{Cl}^-]\) (Fig 5E). These simulations revealed that, in accordance with the previous results, \(\Delta_{\text{G}}[\text{Cl}^-]\) increased at longer \(\tau_{\text{AMPA}}\) for all three \(\tau_{\text{GABA}}\) tested. While at a short \(\tau_{\text{GABA}}\) of 5 ms no plateau phase was observed, such a plateau occurred for \(\tau_{\text{GABA}}\) of 37 ms and 50 ms with short \(\tau_{\text{AMPA}}\) values of 5 ms or 11 ms (Fig 5E). However, in contrast to our hypothesis that such a plateau phase occurred when \(\tau_{\text{AMPA}}\) was shorter than \(\tau_{\text{GABA}}\) for a \(\tau_{\text{GABA}} \geq 37 \text{ ms}\) and \(\tau_{\text{AMPA}} \geq 37 \text{ ms}\) \(\Delta_{\text{G}}[\text{Cl}^-]\), steadily declined after the maximal value was obtained at simultaneous AMPA/GABA stimulation. Another finding of these simulations that appears counter-intuitive is the fact that for short \(\tau_{\text{AMPA}}\) of 5 ms and 11 ms the peak \(\Delta_{\text{G}}[\text{Cl}^-]\) decreases when \(\tau_{\text{GABA}}\) increased from 5 ms to 37 ms (Fig 5E).

To investigate these issues in detail, we next systematically varied \(\tau_{\text{GABA}}\) between 5 and 50 ms using fixed \(\tau_{\text{AMPA}}\) values of 5, 11, and 37 ms and determined \(\Delta_{\text{G}}[\text{Cl}^-]\) at different AMPA/GABA latencies. In these simulations we were able to identify a complex dependency between \(\Delta_{\text{G}}[\text{Cl}^-]\) and the relation between \(\tau_{\text{GABA}}\) and \(\tau_{\text{AMPA}}\) (Fig 6A–6C). For \(\tau_{\text{AMPA}}\) of 5 and 11 ms the influence of the AMPA/GABA latency on \(\Delta_{\text{G}}[\text{Cl}^-]\) changed from a “peak”-like pattern to a “plateau”-like phase, in which the maximal \(\Delta_{\text{G}}[\text{Cl}^-]\) remained rather constant for a progressively longer latency interval between AMPA and GABA stimulation. This “plateau”-like phase occurred under conditions when \(\tau_{\text{GABA}}\) is at more than about 3 times larger than \(\tau_{\text{AMPA}}\) (Fig 6A and 6B). For \(\tau_{\text{AMPA}}\) of 37 ms this “plateau”-like phase was not reached, but a phase with linearly decreasing \([\text{Cl}^-]\) shifts became visible (Fig 6C). In any way, the maximal AMPA-dependent \([\text{Cl}^-]\) shift was observed at \(\tau_{\text{GABA}}\) of 11 ms, 18 ms and 47 ms for \(\tau_{\text{AMPA}}\) of 5 ms, 11 ms and 37 ms, respectively (red plots in Fig 6A), reproducing the observation that prolonging \(\tau_{\text{GABA}}\) can reduce \(\Delta_{\text{G}}[\text{Cl}^-]\). From these results it can be concluded, first, that the effect of AMPA co-stimulation on \(\Delta_{\text{G}}[\text{Cl}^-]\) depends critically on the timing between both inputs, second, that \(\Delta_{\text{G}}[\text{Cl}^-]\) is maximal when \(\tau_{\text{GABA}}\) is slightly larger than \(\tau_{\text{AMPA}}\), and, third, that a “plateau”-like interval of stable \(\Delta_{\text{G}}[\text{Cl}^-]\) occurred when \(\tau_{\text{GABA}}\) is at least 3 times larger than \(\tau_{\text{AMPA}}\).

Next, we investigated how the time course of \(E_m\) changes contributes to this complex dependency. For this purpose, we used identical stimulation parameters (\(g_{\text{GABA}} = 0.789 \text{nS}, \tau_{\text{GABA}} = 37 \text{ ms}, g_{\text{AMPA}} = 0.305 \text{nS}, \tau_{\text{AMPA}} = 11 \text{ ms}, [\text{Cl}^-]_i = 25 \text{ mM}\)) and modified the time course of the voltage traces by changing the membrane time constant (S1 Fig). These simulations revealed that reducing the membrane time constant, which enhanced the onset kinetics of AMPA and GABA receptors, as well as the decay of AMPA receptor-mediated voltage responses, had only a minor effect on the observed \([\text{Cl}^-]\) changes (S1A Fig). The trajectories at different latencies converge virtually in the same manner as at physiological conditions (S1B Fig). On the other hand, a substantial prolongation of the membrane time constant slowed the kinetics of both AMPA and GABA-receptor dependent depolarizations (S1C Fig) and led to significantly different behavior of \([\text{Cl}^-]\) changes: The delayed GABAergic depolarization increased \(\Delta[\text{Cl}^-]\), when GABAergic input was stimulated alone (black trace). In addition, the
maximum amount of $\Delta C_{i}[\text{Cl}^-]$ (i.e. the difference between the 0 ms latency trajectory and the GABA only trajectory) was smaller. More importantly, the trajectories for latencies > 4 ms did no longer converge with the trajectory of simultaneous AMPA/GABA stimulation (purple line), which resulted in a steady decline of $\Delta C_{i}[\text{Cl}^-]$ for all conditions in which AMPA was stimulated after the GABA input. In summary, these results indicate a complex interplay between the membrane time constant and the kinetics of AMPA- and GABA-mediated synaptic events. Only in cases in which the kinetics of the receptors dominate the time course of membrane responses, the complex, plateau-like dependency of $\Delta C_{i}[\text{Cl}^-]$ on the latency between GABA and AMPA inputs was observed.

While in these models the background conductance was set by a purely passive conductance [42], we additionally implemented a tonic background conductance of 8.75 nS/cm2 [43] and reduced the passive conductance to 0.99125 mS/cm2, to maintain the input resistance of 188.2 MΩ. These simulations revealed that under this condition a constant increase in the basal $[\text{Cl}^-]$ occurred. In the presence of this tonic $[\text{Cl}^-]$ conductance activation of AMPA-mediated synapses led to $[\text{Cl}^-]$ changes that depended on g_{AMPA} and τ_{AMPA} (S2 Fig). However, at physiologically relevant values for AMPA receptor-mediated inputs ($g_{\text{AMPA}} = 0.305$ nS and $\tau_{\text{AMPA}} = 11$ ms), only a minimal additional $[\text{Cl}^-]$ increase by
0.1 μM was induced, which slightly increased to 0.85 μM and 3.74 μM at gAMPA of 3.05 nS and 30.05 nS, respectively (Figs 6D and S2). Accordingly, addition of a tonic GABAergic current had no effect on the [Cl$^{-}$]$_{i}$ changes induced by phasic GABAergic inputs, despite a slight shift in the basal [Cl$^{-}$]$_{i}$ (Fig 6E).

Influence of gAMPA and τAMPA on the GABAergic [Cl$^{-}$]$_{i}$ transients in a morphologically realistic neuronal model with multiple distributed synaptic inputs

To investigate in a more physiological setting how the interference between GABA$_{A}$ and AMPA receptors influence the resulting [Cl$^{-}$]$_{i}$ transients, we implemented GABA and AMPA synapses in a morphologically realistic model of an immature CA3 pyramidal neuron (Fig 7A and 7B), using morphology and membrane parameters determined in in-vitro experiments [17]. In the majority of simulations, we applied experimentally estimated correlated GABAergic and glutamatergic activity recorded during giant depolarizing potentials (GDPs, [17], see Fig 7C). GDPs are highly relevant network events in the immature hippocampus that have been shown to cause substantial [Cl$^{-}$]$_{i}$ changes [8, 17, 35, 44]. Therefore, the use of these neurons and their activity patterns allows to simulate ionic plasticity in a morphologically and physiologically relevant setting. This computational model, which incorporates basic morphological and biophysical properties of hippocampal neurons, generated complex trajectories of [Cl$^{-}$]$_{i}$ within individual dendrites during a simulated GDP (Fig 7D). These [Cl$^{-}$]$_{i}$ changes in the individual neurites are determined by Cl$^{-}$-fluxes via GABA$_{A}$ receptors, lateral Cl$^{-}$ diffusion within the dendritic compartment and transmembrane Cl$^{-}$-transport [25, 29, 33]. For a better understanding of this complex behavior, we performed a series of simulations with different [Cl$^{-}$]$_{0}$ and gAMPA (Fig 7E).}

![Figure 7](https://doi.org/10.1371/journal.pcbi.1008573.g007)
quantification and display, the average [Cl\(^–\)] over all nodes of all dendrites was calculated at each simulated interval (compare e.g. Fig 7F), while E\(_m\) was determined in the soma.

In a first set of simulations, we investigated the impact of g\(_{\text{AMPA}}\) on GABAergic [Cl\(^–\)] changes during a simulated GDP. For the simulation of a GDP, 534 GABAergic synapses were randomly distributed within the dendrites and activated stochastically to emulate the distribution of GABAergic PSCs during a GDP observed in-vitro [17] (see Materials and Methods for detail). In accordance with previous observations [17, 30], the massive GABAergic activity during a GDP led to substantial [Cl\(^–\)] changes, with a [Cl\(^–\)] increase by 3.94 ± 0.05 mM (n = 9 repetitions with random distribution/stimulation) at a low [Cl\(^–\)]\(^0\) of 5 mM and a [Cl\(^–\)] decrease by -3.78 ± 0.08 mM (n = 9) at a [Cl\(^–\)]\(^0\) of 25 mM (black traces in Fig 7E and 7F). Adding 107 AMPA synapses with a g\(_{\text{AMPA}}\) of 0.305 nS (i.e. the experimentally determined number and conductance of AMPA inputs) led to a substantial increase in the activity-dependent [Cl\(^–\)] transients to 4.95 ± 0.07 mM for a [Cl\(^–\)]\(^0\) of 5 mM and significantly attenuated the activity-dependent [Cl\(^–\)] decrease at 25 mM to -2.88 ± 0.06 mM (Fig 7F red trace). A similar trend was also observed for other [Cl\(^–\)]\(^0\) concentrations. Co-stimulation with 107 AMPA inputs increased the [Cl\(^–\)] transients at low [Cl\(^–\)]\(^0\) and attenuated the transients at high [Cl\(^–\)]\(^0\) (Fig 7H). Using a larger value for g\(_{\text{AMPA}}\) enhanced this impact on activity-dependent [Cl\(^–\)] shift (Fig 7F). At g\(_{\text{AMPA}}\) values of 30.5 and 305 nS at all investigated [Cl\(^–\)]\(^0\), an increase in [Cl\(^–\)], was induced (Fig 7H), in accordance with the depolarized E\(_m\) induced by these conditions (Fig 7G). In summary, these results indicate that physiological levels of AMPA co-stimulation can significantly affect the GABA\(_A\) receptor induced [Cl\(^–\)], transients. In line with the results from the ball-and-stick model, implementation of the tonic GABAergic conductance of 8.75 nS/cm\(^2\) [43] had only a negligible effect (S3 Fig). With this tonic current, the [Cl\(^–\)], increase at physiological g\(_{\text{AMPA}}\) values of 0.305 nS was augmented by only 0.046 mM at a [Cl\(^–\)]\(^0\) of 5 mM and the [Cl\(^–\)] decrease at a [Cl\(^–\)]\(^0\) of 25 mM was reduced by only 0.036 mM. Even at higher g\(_{\text{AMPA}}\) values the effect of tonic GABAergic conductances remained below 0.1 mM.

In the next series of simulations, we systematically altered the decay time constant t\(_{\text{AMPA}}\) for all 107 AMPA receptor-mediated synaptic inputs during a GDP from the experimentally determined value of 11 ms to 5, 37 and 50 ms, while using g\(_{\text{AMPA}}\) of 0.305 nS and the experimentally determined values for the GABAergic synaptic inputs. Although this slight shift in t\(_{\text{AMPA}}\) had only a minor effect on the size of the voltage deflections (Fig 8A and 8C), it significantly modified the effect of AMPA co-stimulation on GABA\(_A\) receptor mediated [Cl\(^–\)] (Fig 8B and 8D). At a [Cl\(^–\)]\(^0\) of 5 mM the enhancement of GDP-induced [Cl\(^–\)] transient by AMPA (ΔC,[Cl\(^–\)]) was reduced from 1.02 ± 0.06 mM (n = 9 repetitions) at t\(_{\text{AMPA}}\) = 11 ms to 0.48 ± 0.06 mM at t\(_{\text{AMPA}}\) = 5 ms (Fig 8B). Similarly, at a [Cl\(^–\)]\(^0\) of 25 mM, ΔC,[Cl\(^–\)] was diminished by shortening t\(_{\text{AMPA}}\) from 11 ms (0.93 ± 0.1 mM) to 5 ms (0.43 ± 0.07 mM) (Fig 8B). In contrast, prolonging t\(_{\text{AMPA}}\) to 37 or even 50 ms had a substantial impact on the time course and amount of the voltage deflections (Fig 8A). Accordingly, the activity-dependent [Cl\(^–\)], transients were systematically shifted toward more influx or less efflux, respectively (Fig 8B–8D). In summary, these results indicate that even slight changes in t\(_{\text{AMPA}}\) can substantially influence the impact of AMPA co-activation on GABA\(_A\) receptor-mediated [Cl\(^–\)], transients.

In addition, we also evaluated the effect of NMDA receptors, which possess slow onset and decay kinetics, on the GABA receptor-induced [Cl\(^–\)], transients. These simulations, using the same temporal and spatial pattern of glutamatergic inputs, but an established model for the NMDA receptor [39], revealed that co-activation of NMDA receptors (t\(_{\text{NMDA}}\) = 500 ms) induced in general larger [Cl\(^–\)], transients as compared to AMPA receptor co-activation (S4 Fig). While the effects were small at a g\(_{\text{NMDA}}\) of 0.305 nS (1.2 ± 0.1 mM vs. 0.9 ± 0.1 mM at [Cl\(^–\)]\(^0\) of 5 mM), substantial differences were observed at intermediate g\(_{\text{NMDA}}\) values (17.5 ± 0.7 mM vs. 6.1 ± 0.3 mM at 3.05 nS or 29.3 ± 0.8 mM vs. 18.6 ± 0.7 mM at 30.5 nS) (S4 Fig).
Spatial and temporal constrains of AMPA-mediated influences on GABAergic \([\text{Cl}^-]_i\) transients in a morphologically realistic neuronal model

Next we analyzed how the spatial relation between GABA and AMPA synapse activation influences the size of GDP-dependent \([\text{Cl}^-]_i\) transients. For this purpose, we first compared whether direct co-localization of each of the 107 AMPA synapses with a GABA synapse (100% spatial correlation) affects the AMPA-mediated shift in the GDP-dependent \([\text{Cl}^-]_i\) transients. These simulations revealed that the activity-dependent \([\text{Cl}^-]_i\) shifts with this 100% spatially correlated AMPA synapses were not significantly different from models with a random spatial distribution of AMPA synapses (Fig 9A). Also a restriction of AMPA synapses in either the distal 25% or the proximal 25% of the dendrite length had no substantial effect on the magnitude of activity-dependent \([\text{Cl}^-]_i\) transients (S5 Fig). We propose that this lack of an effect was caused by the fact that the overall density of GABA and AMPA synapses in each of the 56 dendrites was so high, that independent of the individual synaptic localization comparable effects on \(DF_{GABA}\) were induced. Therefore, we next relocated the GABA and AMPA synapses in distinct parts of the dendritic compartment, with either AMPA synapses located only in the most proximal 12 dendritic branches and the GABA synapses in the most distal 34 dendritic branches, or vice versa (Fig 9B). In these simulations the GABA receptor-induced \([\text{Cl}^-]_i\) shift without AMPA co-stimulation differ from the previous stimulations, as the \(\text{Cl}^-\)-influx was restricted to a subset of dendrites (Fig 9B). Under this strict regime, the location of the AMPA synapses had a slight effect on \(\Delta G[\text{Cl}^-]_i\). With all GABA synapses in the proximal dendrites and the AMPA synapses located in the distal dendrites a co-stimulation induced a \(\Delta G[\text{Cl}^-]_i\) of 1.25 ± 0.17 mM (n = 9 repetitions) at a \([\text{Cl}^-]_i^0\) of 5 mM (Fig 9B). In contrast, when all GABA synapses were located in the distal dendrites and all AMPA synapses in the proximal dendrites co-stimulation induced a \(\Delta G[\text{Cl}^-]_i\) of 0.72 ± 0.07 mM (Fig 9B). A similar tendency was also observed for other \([\text{Cl}^-]_i^0\) (Fig 9B). In summary, these results indicate that for a massive stimulation, like the modeled GDP, changes in the spatial correlation between AMPA and GABA receptors have only subtle effects on activity-dependent \([\text{Cl}^-]_i\) transients.

Finally, we investigated the effect of the temporal correlation between AMPA and GABA synaptic inputs on the activity-dependent \([\text{Cl}^-]_i\) changes. Since it was not possible to generate a non-trivial decorrelation of AMPA and GABA synaptic inputs during GDP-like activity, we stimulated 100 AMPA (\(g_{\text{AMPA}} = 0.305 \text{nS/} \tau_{\text{AMPA}} = 11 \text{ ms}\)) and 100 GABA (\(g_{\text{GABA}} = 0.789 \text{pS/} \tau_{\text{GABA}} = 37 \text{ ms}\)) synaptic inputs at a frequency of 20 Hz, using a random temporal distribution
for both types of synapses. While at a [Cl\(_i\)]\(_0\) of 5 mM the random stimulation of only GABA synapses induced a [Cl\(_i\)] increase by 2.06 ± 0.16 mM (n = 9 repetitions), this increase was augmented by 0.04 ± 0.005 mM upon random co-stimulation of AMPA synapses (Fig 9C and 9D). Comparable \(\Delta [\text{Cl}_i]\) values were also observed for [Cl\(_i\)]\(_0\) of 10 mM and 15 mM. For higher [Cl\(_i\)]\(_0\) the trend towards larger [Cl\(_i\)] at AMPA co-stimulation maintained. However, the large variance in the individual maximal [Cl\(_i\)] responses in each simulation and the resulting high SD values for \(\Delta [\text{Cl}_i]\) values caused that these changes were not significant. If in this stimulation paradigm the AMPA stimuli occurred exactly at the same time points as the GABAergic inputs (i.e. 100% temporal correlation), \(\Delta [\text{Cl}_i]\) was significantly increased to 0.065 ± 0.008 mM (at a [Cl\(_i\)]\(_0\) of 5 mM), to 0.078 ± 0.009 mM (at 10 mM [Cl\(_i\)]\(_0\)), and to 0.084 ± 0.034 mM (at 15 mM [Cl\(_i\)]\(_0\)) (Fig 9D).

To investigate the effect of a decorrelation between GABA and AMPA inputs, we implemented an algorithm that generates refractory periods of 5, 11, and 37 ms around each GABAergic stimulus in which AMPA inputs are omitted (Fig 9E). These experiments revealed that for a [Cl\(_i\)]\(_0\) of 5 mM the \(\Delta [\text{Cl}_i]\) values are significantly decreased from 0.041 ± 0.005 mM (n = 9 repetitions at random correlation) to 0.027 ± 0.004 at a refractory period of 11 ms, and to 0.014 ± 0.003 at a refractory period of 37 ms (Fig 9F). At a refractory period of 5 ms \(\Delta [\text{Cl}_i]\) decreased only slightly and not significantly to 0.037 ± 0.006. A comparable reduction was also observed for a [Cl\(_i\)]\(_0\) of 10 mM (Fig 9F). At 15 mM only for a refractory period of 37 ms a significant reduction in \(\Delta [\text{Cl}_i]\) was observed (from 0.048 ± 0.026 mM to 0.016 ± 0.011 mM). In summary, these results support the finding that the temporal correlation between GABA and AMPA synapses enhance activity-dependent [Cl\(_i\)] shifts, in particular if AMPA and GABA inputs are correlated within the time range of their decay time constants.
Discussion

Recent studies provide increasing evidence that GABAergic responses show an activity- and compartment-dependent behavior due to ionic plasticity in [Cli]. Here we used biophysical modeling to study how coincident glutamatergic inputs enhance the [Cli], changes induced by GABAergic activation. The main findings of this computational study can be summarized as follows: 1.) Glutamatergic co-stimulation had a direct effect on the GABAergic [Cli], changes, thereby enhancing Cli influx at low [Cli],0 and attenuating or even reversing the Cli efflux caused at high [Cli],0. 2.) Massive glutamatergic co-stimulation promotes Cli influx at all [Cli],0, whereas physiological levels of glutamatergic co-stimulation mediate biphasic [Cli], changes at intermediate [Cli], levels typical for immature neurons. 3.) Keeping the decay kinetics of glutamatergic inputs below that of GABAergic inputs attenuated the [Cli], changes. 4.) The spatial and temporal correlation between glutamatergic and GABAergic inputs has a substantial influence on the [Cli], changes, with a surprisingly large temporal interval with correlation-independent [Cli], changes. 5.) In a morphologically realistic model with physiologically relevant synaptic activity that replicates GDPS, the conductance and kinetics of correlated glutamatergic activity have a substantial impact on the [Cli], changes. 6.) While the spatial correlation between distributed GABA and glutamatergic synapses has only a minor effect on activity-dependent [Cli], changes, their temporal correlation has strong effects. 7.) Besides AMPA receptors also NMDA receptors and dendritic action potentials can enhance the GABAergic [Cli], changes.

In the present model we emulated the membrane transport processes by two exponentially decaying functions [25, 29]. This model offers the advantage that it is computationally less demanding than other approaches, which model the [Cli], dynamics by a set of transmembrane ion transporters that influence [Cli], [27, 45]. On the other hand, our model does not consider additional effects that can be mediated by the influence of the glutamatergic Na+ and K+ fluxes on the NKCC1 and KCC2-based [Cli], homeostasis [46]. While these oppositely directed Na+ and K+ fluxes will lead to balanced effects in the NKCC1-based [Cli], homeostasis typical for immature neurons, it will attenuate the driving force for Cli extrusion in the mature KCC2-based [Cli], homeostasis. Presumably, larger [Cli], increases can be expected when more realistic transport processes are considered for the [Cli], models. In addition, we used a purely diffusional model without considering electrodiffusion [26, 27], as it has been demonstrated recently that for Cli ions the diffusional movement is considerably larger than the contribution of electric drift [46].

In this study we investigated the effect of co-activation of glutamatergic AMPA receptors on GABA receptor-dependent [Cli], changes over a wide range of [Cli],0, which gave us the opportunity to evaluate the role of ionic plasticity for mature and developing nervous systems [3, 47]. In the mature brain GABAergic activity causes an increase in [Cli], [11, 16, 25, 48, 49], thereby decreasing the inhibitory action of the GABAergic system [13, 26, 27, 33]. Note in this respect that inhibition, as defined by a decrease in spike probability, is not necessarily related to a hyperpolarization, but that shunting inhibition considerably contributes to inhibition [1, 42, 50]. The present study demonstrates that glutamatergic co-stimulation enhances the GABAergic Cli-influx and thus enhances the activity-dependent [Cli], increase, as has recently been shown in-vitro [32] and in-silico [33]. As a consequence, the inhibitory effect of GABA may be even more impaired upon a co-activation of glutamate receptors [33]. The high basal [Cli], in immature neurons leads to GABAergic Cli-efflux and thus to a decrease in [Cli], upon GABAergic activation [18, 51]. This [Cli], decline can be associated with a loss of excitatory action and/or an enhancement of the shunting inhibitory effect of GABA receptors [21, 50, 52]. The present study demonstrates for the first time that in immature neurons a co-activation...
of GABA and glutamate receptors attenuates the activity-dependent $[\text{Cl}^-]$ decrease, thereby stabilizing the depolarizing actions of GABA.

The absolute values of the additional $[\text{Cl}^-]_i$ changes induced by AMPA co-stimulation in our ball-and-stick simulations are small, however it has to be taken into account that these changes represent the $[\text{Cl}^-]_i$ changes induced at a single synapse with a single synaptic stimulus. Physiological levels of synaptic activity may thus cause significantly larger $[\text{Cl}^-]_i$ changes, as has been shown in-vitro [32]. Even physiological levels of glutamatergic co-stimulation (0.305–3.05 nS, representing 1-10x spontaneous synaptic inputs) mediate in our model a reliable increase in Cl^- influx at low $[\text{Cl}^-]_i$, implicating that glutamatergic co-stimulation will enhance ionic plasticity in mature neurons. Thereby coincident glutamatergic activity provides an additional challenge for the $[\text{Cl}^-]_i$ homeostasis in mature neurons and can substantially contribute to an activity-dependent decline in the inhibitory action of GABAergic synapses [33, 53, 54]. But even small Cl^- changes can cause substantial functional alterations for neuronal computation, as has been recently demonstrated in-silico [45, 55]. Subtle changes in GABAergic membrane responses can directly interfere with the action potential threshold [56], but may also affect the temporal fidelity of inhibitory synaptic inputs, as with a weakening of GABAergic inhibition the temporal window for effective inhibition of excitatory inputs became smaller [52].

In addition, we were also able to demonstrate that several other depolarizing events can augment the GABAergic $[\text{Cl}^-]_i$ changes. Co-activation of NMDA receptors augment the $[\text{Cl}^-]_i$ changes with a steeper dependency on the membrane conductance as compared to AMPA receptors. This behavior is probably reflecting the Mg$^{2+}$ block of NMDA receptors [40], leading to smaller inward currents as long as E_m was below the threshold for the release of the Mg$^{2+}$ block. Accordingly, at moderate conductances NMDA receptors mediate smaller effects on the $[\text{Cl}^-]_i$ changes than AMPA receptors. But under physiological conditions, with AMPA-NMDA receptor co-activation, we assume that NMDA receptors will provide an additional drive for larger $[\text{Cl}^-]_i$ changes. Accordingly, we observed in the reconstructed neurons that the simulated GDP-like activity generated larger $[\text{Cl}^-]_i$ changes when the AMPA-receptors were replaced with NMDA-receptors, because under this condition the dendritic depolarizations were sufficient to effectively remove the Mg$^{2+}$ block [40]. In addition, we were able to demonstrate that action potential firing, generated by a Hodgkin-Huxley-like mechanism, mediates an additional increase in the $[\text{Cl}^-]_i$ changes. This suggests that under physiological conditions burst firing can substantially contribute to ionic plasticity. In contrast, the addition of a tonic GABAergic conductance had only a negligible effect of the activity-dependent $[\text{Cl}^-]_i$ changes.

As mentioned before, the high $[\text{Cl}^-]_i$ in immature neurons and the resulting GABAergic Cl^--efflux results in a condition in which glutamatergic co-stimulation attenuates GABAergic $[\text{Cl}^-]$ loss and thereby stabilizes depolarizing GABAergic actions. In addition, our computational model demonstrates that glutamatergic co-stimulation at physiologically relevant levels (g_{AMPA} of 0.305 to 3.05 nS, corresponding to 1 to 10x of experimentally determined conductance for spontaneous AMPA receptor mediated inputs) causes biphasic $[\text{Cl}^-]_i$ changes [4], changes at $[\text{Cl}^-]_i$ values between 15 and 35 mM (i.e. in the typical range determined in immature neurons [4, 57, 58]). These biphasic $[\text{Cl}^-]_i$ changes rely on the fact that the activation of glutamatergic receptors transiently pushes the membrane potential above E_{Cl} and thus supports a Cl^--influx during this interval. The biphasic $[\text{Cl}^-]_i$ changes reduce the maximal $[\text{Cl}^-]_i$ decline at the end of the GABAergic postsynaptic potential. By this process the activity-dependent $[\text{Cl}^-]_i$ decline as well as the burden of glutamatergic co-stimulation on $[\text{Cl}^-]_i$ homeostasis is reduced. It is tempting to speculate that this limitation of activity-dependent Cl^--fluxes may be one reason for the inefficient Cl^--transport in the immature CNS [4, 22]. The functional implications of
activity dependent \([\text{Cl}^-]\), changes in immature neurons are harder to predict, as depolarizing GABAergic responses can mediate inhibitory [59, 60] as well as excitatory actions [61–63]. However, it can be estimated that an attenuation of the GABAergic \([\text{Cl}^-]\) depletion will prevent/ameliorate a loss of GABAergic excitation and will prevent/ameliorate an increase in the inhibitory effect of depolarizing GABAergic responses. Thereby coincident glutamatergic activity, which is a typical feature of the correlated network events in developing neuronal systems [36, 37], can stabilize GABAergic functions.

Our simulation demonstrated that \(\tau_{\text{AMPA}}\) has, as expected, a substantial influence on \(\Delta_c[\text{Cl}^-]\), with faster AMPA events reducing the amount of ionic plasticity. Thus the shorter AMPA receptor-mediated responses at adult synapses [64, 65] can reduce the impact of AMPA/GABA co-activation on \([\text{Cl}^-]_i\) homeostasis, in addition to making transmission more precise. In this respect, it is also tempting to speculate that conditions which permit the unblocking of NMDA-receptors (a subtype of glutamate receptors that is characterized by a rather long decay and that plays an essential role in learning, [66]), will also lead to more massive burden on \([\text{Cl}^-]_i\) homeostasis. The resulting short-term decline in GABAergic inhibition will make neurons more prone to the induction of long-term potentiation.

In addition to this expected influence of \(\tau_{\text{AMPA}}\) on ionic plasticity, our simulations revealed a complex dependency of \(\Delta_c[\text{Cl}^-]\) on \(\tau_{\text{GABA}}\) and \(\tau_{\text{AMPA}}\). Interestingly the maximal \(\Delta_c[\text{Cl}^-]\) values were obtained when \(\tau_{\text{GABA}}\) was slightly larger than \(\tau_{\text{AMPA}}\). An additional prolongation of \(\tau_{\text{GABA}}\) even reduced \(\Delta_c[\text{Cl}^-]\) and thus diminished ionic plasticity. Intriguingly, such a prolongation of \(\tau_{\text{GABA}}\) led to the appearance of a “plateau”-like phase, in which \(\Delta_c[\text{Cl}^-]\) is insensitive to the latency between GABA and AMPA inputs. The analysis of the \([\text{Cl}^-]\)-fluxes in the phase diagram revealed that this “plateau”-like phase was due to the fact, that the \([\text{Cl}^-]\)-fluxes converged over a wide range of AMPA/GABA latencies in the trajectory of \([\text{Cl}^-]\), changes obtained by synchronous GABAergic and glutamatergic stimulation. For short \(\tau_{\text{AMPA}}\) no “plateau”-like phase could be observed because under these conditions the time course of \(E_m\) was mainly determined by the membrane time constant. This explanation was supported by our observation that an artificial increase in the membrane time constant by an augmented \(C_m\) caused a dissipation in the phase plane plot from two attractors towards more dissociated trajectories. For larger \(\tau_{\text{AMPA}}\) of 37 and 50 ms such a “plateau”-line phase was not reached because at this longer time constant the decay of the voltage deflection is determined by both the inactivation of AMPA- and GABA\(_A\) receptors and thus a gradual decrease in \(DF_{\text{GABA}}\) occurred during the course of co-activation.

It has been suggested that under mature conditions ionic plasticity of \([\text{Cl}^-]\), can act as a coincidence detector for simultaneous GABAergic and glutamatergic synaptic inputs [32]. Via such a coincidence detection GABAergic inhibition will be particularly attenuated by coincident glutamatergic inputs. The resulting \([\text{Cl}^-]\) increase and the corresponding reduction in the inhibitory GABAergic capacity will subsequently promote the relay of excitation in neuronal networks. The intriguing finding of the present manuscript, that the effect of glutamatergic co-stimulation on the GABAergic \([\text{Cl}^-]\) increase was stable for a considerable latency interval between GABAergic and glutamatergic inputs would allow the system to use a stable mechanism for adjusting the gating of excitatory information. In this respect, the striking asymmetry in \(\Delta_c[\text{Cl}^-]\), under physiological conditions of the decay times (\(\tau_{\text{AMPA}} < \tau_{\text{GABA}}\)) implies a spike-time dependency of ionic plasticity. While glutamatergic inputs preceding GABAergic inputs have only a small effect on \(\Delta_c[\text{Cl}^-]\), a stable shift in \(\Delta_c[\text{Cl}^-]\) was induced when glutamatergic synapses were activated during the decay phase of GABAergic responses. A possible functional implication of this spike-time dependency would be that common feed-forward inhibitory circuits, in which synaptic inhibition always occurs after the glutamatergic inputs, will be only minimally affected by ionic plasticity, guaranteeing an efficient and stable feed-
forward inhibition. Only in cases in which glutamatergic excitation was induced during ongoing GABAergic stimulation, a substantial ionic plasticity would operate. By this mechanism the inhibitory capacity of GABA will be reduced particularly in the postsynaptic neurons that receive frequent glutamatergic inputs, thereby facilitating particularly these pathways.

In summary, our results demonstrate that glutamatergic co-activation has a prominent time- and space-dependent effect on the amount of GABA-receptor mediated $[\text{Cl}^-]$ changes. This ionic plasticity depends on the properties of glutamatergic inputs and their temporal correlation with the GABAergic inputs. These glutamatergic modulations of GABAergic ionic plasticity could possibly contribute to short-term memory and are likely to influence information processing in the developing and mature nervous system.

Materials and methods

Compartmental modeling

The biophysics-based compartmental modeling was performed using the NEURON environment (neuron.yale.edu). The source code of models and stimulation files used in the present paper can be found in ModelDB (http://modeldb.yale.edu/266823). For compartmental modelling we used in the first simulations a simple ball-and-stick model (soma with $d = 20 \mu m$, linear dendrite with $l = 200 \mu m$, diameter $1 \mu m$, and 103 nodes; cell_soma_dendrite.hoc). In the experiment investigating the role of spatial orientation between GABA and AMPA synapses, the length of the dendrite was increased to 1000 μm (cell_soma_dendrite_long.hoc). In further experiments we used a reconstructed CA3 pyramidal cell (Cell1_Cl-HCO3_Pas.hoc; [17]). We used the reconstruction of an immature CA3 pyramidal neuron for this purpose, because coincident GABAergic and glutamatergic activity used for modelling of ionic plasticity was recorded in exactly this neuron population [17]. This reconstructed neuron contained a soma ($d = 15 \mu m$), a dendritic trunk ($d = 2 \mu m$, $l = 32 \mu m$, 9 segments) and 56 dendrites ($d = 0.36 \mu m$, 9 segments each). In all of these compartments a specific axial resistance (R_a) of 34.5 Ωcm and a specific membrane capacitance (C_m) of 1 μFcm^{-2} were implemented. C_m was varied in two experiments to accelerate/decelerate the membrane time constant. A specific membrane conductance (g_{pas}) of 1.0 mS/cm^2 with a reversal potential of -60 mV was inserted in all neuronal elements. In some experiments we additionally implemented a tonic background conductance of 8.75 $\mu S/cm^2$ [43] and reduced the passive conductance to 0.99125 mS/cm^2, to maintain the input resistance of 188.2 $M\Omega$.

GABA$_A$ synapses were simulated as a postsynaptic parallel Cl$^-$ and HCO$_3^-$ conductance with exponential rise and exponential decay:

$$I_{\text{GABA}} = I_{\text{Cl}} + I_{\text{HCO3}} = 1/(1 + P) \cdot g_{\text{GABA}} \cdot (V - E_{\text{Cl}}) + P/(1 + P) \cdot g_{\text{GABA}} \cdot (V - E_{\text{HCO3}})$$

where P is a fractional ionic conductance that was used to split the GABA$_A$ conductance (g_{GABA}) into Cl$^-$ and HCO$_3^-$ conductance. E_{Cl} and E_{HCO3} were calculated from the Nernst equation. The GABA$_A$ conductance was modeled using a two-term exponential function, using separate values of rise time (0.5 ms) and decay time (variable, mostly 37 ms). Parameters used in our simulations were as follows: [Cl$^-$]$_o$ = 133.5 mM, [HCO$_3^-$]$_i$ = 14.1 mM, [HCO$_3^-$]$_o$ = 24 mM, temperature = 31˚C, $P = 0.18$. The conductance values for GABA synapses varied as given in the main text. AMPA synapses were modeled by an Exp2Syn point process using a reversal potential of 0 mV, a tau1 value of 0.1 ms and a tau2 value of 11 ms, in accordance with the experimentally determined value [17], except where noted. The conductance values for AMPA synapses varied as given in the main text.

For the ball-and-stick model a single GABA$_A$ synapse was placed in the middle of the dendrite, except where noted. The AMPA synapse was placed as indicated in the figure legends.
For the simulation of a GDP in the reconstructed CA3 neuron, 534 GABAergic synapses and 107 AMPA synapses were randomly distributed within the dendrites of the reconstructed neuron, except where noted. The number of GABA and AMPA synapses replicate the estimated synapse numbers during experimentally recorded GDPs [17]. The properties of these synapses were given in the results part and/or the corresponding figure legends. Nine repetitions of these simulations were generated by altering the seed values for the random functions, which resulted in a redistribution of all synapses within the dendritic compartment and the timing of their activation. The results of these repeated simulations were given and displayed as mean ± SD.

For each synapse, the index of the dendrite as well as the position within this dendrite was randomly determined using a normal distribution. The time points of GABA and AMPA inputs were determined stochastically using a normal distribution ($\mu = 600$ ms, $\sigma = 9000$ ms for GABA and $\mu = 650$ ms, $\sigma = 8500$ ms for AMPA), which emulates the distribution of GABAergic and glutamatergic PSCs during a GDP observed in immature hippocampal CA3 pyramidal neurons [17]. In a few simulated experiments, the 107 AMPA inputs were stimulated synchronously with a random subgroup of the GABA inputs. Since it was not possible to generate a non-trivial decorrelation of AMPA and GABA synaptic inputs during GDP-like activity, for the decorrelation experiments, we stimulated 100 AMPA and 100 GABA synaptic inputs at a frequency of 20 Hz, using a random temporal distribution for both synapses. For the decorrelation, we used a simple algorithm that generated new random numbers until the time point of an AMPA input was temporally separated by more than the given refractory periods with respect to the time points of all GABA inputs.

For analyzing the effect of NMDA receptors, we included an established model for the NMDA receptor (Exp2NMDA2 from Senselab Model DB ID: 145836 [39]) with an onset time constant of 8.8 ms and a τ_{NMDA} of 500 ms, using similar conductance values for g_{NMDA} as for the AMPA receptors. In addition, in a limited set of simulated experiments we inserted an established Hodgkin-Huxley based model of hippocampal action potentials (Model DB ID: 3263 [41]) into soma and dendrite of the ball-and-stick model to emulate somatic and back-propagating dendritic action potentials. This Hodgkin-Huxley-based model also includes a voltage-gated Ca$^{2+}$ conductance, which we also implemented separately in soma and dendrite of the ball-and-stick model to investigate the contribution of Ca$^{2+}$ conductances to $[\text{Cl}^-]_i$ transients.

For the modeling of the GABA$_A$ receptor-induced $[\text{Cl}^-]_i$ and $[\text{HCO}_3^-]_i$ changes, we calculated ion diffusion and uptake by standard compartmental diffusion modeling. In order to keep the computational complexity at reasonable levels, we used a purely diffusional model without considering electrodiffusion [26, 27], as recently it has been demonstrated that for Cl$^-$ ions the diffusional movement is considerably larger than the contribution of electric drift [46]. To simulate intracellular Cl$^-$ and HCO$_3^-$ dynamics, we adapted our previously published model [25, 30]. Longitudinal Cl$^-$ diffusion along dendrites was modeled as the exchange of anions between adjacent compartments. For radial diffusion, the volume was discretized into a series of four concentric shells around a cylindrical core and Cl$^-$ or HCO$_3^-$ was allowed to flow between adjacent shells. The free diffusion coefficient for Cl$^-$ inside neurons was set to 2 μm2/ms [14] and for HCO$_3^-$ to 1.18 μm2/ms [67]. To simulate transmembrane transport of Cl$^-$ and HCO$_3^-$, we implemented an exponential relaxation process for $[\text{Cl}^-]_i$ and $[\text{HCO}_3^-]_i$ to resting levels $[\text{Cl}^-]_i^{\text{rest}}$ or $[\text{HCO}_3^-]_i^{\text{rest}}$ with a time constant τ_{Ion}.

$$\frac{d[\text{Ion}^-]}{dt} = \frac{[\text{Ion}^-]^{\text{rest}} - [\text{Ion}^-]}{\tau_{\text{Ion}}}$$
Cl⁻ transport was in most experiments (if not otherwise noted) modeled as bimodal process, for $[\text{Cl}^-]_i < [\text{Cl}^-]_i^{\text{rest}}$, τ_{ion} was set to 174 s to emulate an NKCC1-like Cl⁻ transport mechanism. For $[\text{Cl}^-]_i > [\text{Cl}^-]_i^{\text{rest}}$, τ_{ion} was set to 321 s to emulate passive Cl⁻ efflux [43].

The impact of GABAergic Cl⁻ currents on $[\text{Cl}^-]_i$ and $[\text{HCO}_3^-]$ was calculated as:

$$ \frac{d[\text{ion}^-]_i}{dt} = \frac{1}{F_{\text{volume}}} I_{\text{ion}} $$

To simulate the GABAergic activity during a GDP, a unitary peak conductance of 0.789 nS and a decay of 37 ms were applied to each GABAergic synapse, in accordance with properties of spontaneous GABAergic postsynaptic currents in CA3 pyramidal neurons [17].

For the analysis and display of the data in the ball-and-stick model we used E_{m} and $[\text{Cl}^-]_i$ values at the site of the GABAergic synapses. For the reconstructed CA3 neuron we used the somatic E_{m} and the mean $[\text{Cl}^-]_i$ within the dendritic compartment. The mean $[\text{Cl}^-]_i$ of all dendrites was calculated by averaging the $[\text{Cl}^-]_i$ at 50% of dendritic length for all 56 dendrites. This procedure mimics the experimental procedure of Lombardi et al. [17], who determined E_{GABA} by focal application in the dendritic compartment.

For the calculation of $\Delta[\text{Cl}^-]_i$, the maximal deviation of $[\text{Cl}^-]_i$ upon a GABAergic stimulus ($([\text{Cl}^-]_i^S)^S$) was subtracted from the resting $[\text{Cl}^-]_i$ before the stimulus ($([\text{Cl}^-]_i^R)^R$). For biphasic responses both minimal and maximal $[\text{Cl}^-]_i$ were determined and displayed. In some cases, the manifest $\Delta[\text{Cl}^-]_i$ for these responses was calculated as:

$$ \Delta[\text{Cl}^-]_i = [\text{Cl}^-]_i^{S,\text{min}} - [\text{Cl}^-]_i^R $$

$$ \Delta[\text{Cl}^-]_i = [\text{Cl}^-]_i^{S,\text{max}} - [\text{Cl}^-]_i^R $$

To quantify the influence of AMPA co-stimulation on the GABAergic $[\text{Cl}^-]_i$ transients, the amount of additional $[\text{Cl}^-]_i$ changes induced by AMPA co-stimulation ($\Delta_{\text{GABA}}[\text{Cl}^-]_i$) was calculated from the $\Delta[\text{Cl}^-]_i$ values with/without AMPA co-stimulation as follows:

$$ \Delta_{\text{GABA}}[\text{Cl}^-]_i = \Delta[\text{Cl}^-]_i^{\text{AMPA}/\text{GABA}} - \Delta[\text{Cl}^-]_i^{\text{GABA}} $$

Supporting information

S1 Fig. Effect of the membrane time constant on the trajectories of $[\text{Cl}^-]_i$ transients in a phase-plane plot. The black lines represent the $[\text{Cl}^-]_i$ changes induced by stimulation of GABA synapses only. Typical voltage deflections are displayed in the insets. Note that decreasing the membrane time constant (panel a) resulted in a comparable convergence of the trajectories towards 0 ms latency (purple line) and GABA only conditions (black lines) as under control conditions (panel b), despite the sharper trajectories. In contrast, after prolonging the membrane time constant (panel c) the trajectories did not converge to the 0 ms latency condition at the intersection with $\partial[\text{Cl}^-]_i / \partial t = 0$ mM/s (dashed line).

(TIF)

S2 Fig. Effect of AMPA receptor activation on $[\text{Cl}^-]_i$ in a ball-and-stick model with a tonic GABAergic background conductance of 8.75 nS/cm². Conductance and time constant of the AMPA receptor-mediated inputs were systematically varied as indicated in the diagram. Note the minimal $[\text{Cl}^-]_i$ changes in the μM range under these conditions. At physiological values for AMPA inputs ($g_{\text{AMPA}} = 0.305$ nS, $\tau_{\text{AMPA}} = 11$ ms) a $[\text{Cl}^-]_i$ change of 0.1 μM was induced.

(TIF)
S3 Fig. Effect of AMPA receptor co-stimulation on GABA_A receptor-induced [Cl]_i transients in a morphologically realistic neuronal model with a tonic GABAergic background conductance of 8.75 nS/cm^2. g_{AMPA} and [Cl]_i^0 was varied as indicated in the graph, all other values were kept constant at physiological values (g_{GABA} = 0.789 nS, \tau_{GABA} = 37 ms, \tau_{AMPA} = 11 ms). Addition of the tonic GABA conductance had no obvious effect on the activity-dependent [Cl]_i transients.

(TIF)

S4 Fig. Effect of NMDA receptor co-activation on GABA_A receptor-induced [Cl]_i transients in a morphologically realistic neuronal model. (a) Typical voltage deflections during a GDP at an [Cl]_i^0 of 5 mM (left panel) and 25 mM (right panel) using different strength of NMDA co-stimulation as indicated by the color code. Note the substantial shift towards depolarized potentials at high g_{NMDA}. (b) Time course of average dendritic [Cl]_i at different [Cl]_i^0 and g_{NMDA}. Note that at both [Cl]_i^0 the maximal [Cl]_i change was augmented by addition of 107 NMDA synapses. (c) Statistical analysis of the voltage changes induced by simulated GDPs with different [Cl]_i^0 and g_{NMDA}. (d) Statistical analysis of [Cl]_i changes induced by simulated GDPs with the given [Cl]_i^0 and g_{NMDA} (closed bars) as compared to the [Cl]_i changes with AMPA receptor co-stimulation (open bars). Bars represent mean ± SD of 9 repetitions.

(TIF)

S5 Fig. Effect of AMPA receptor co-stimulation on GABA_A receptor-induced [Cl]_i transients in a morphologically realistic neuronal model, in which the 107 AMPA synapses were positioned either in the distal or proximal quarter of each dendrite and the 534 GABA synapses in the remaining 75% of dendritic length to implement partial spatial decorrelation. Parameters are set to physiological values (g_{GABA} = 0.789 nS, \tau_{GABA} = 37 ms, g_{AMPA} = 0.305 nS, \tau_{AMPA} = 11 ms). (a) illustrates that the GABA_A receptor-induced [Cl]_i transients are slightly altered with the reposition of the GABA synaptic sites. (b) The increase of [Cl]_i transients by AMPA co-stimulation was virtually unaffected by this mild spatial decorrelation.

(TIF)

Acknowledgments

The authors thank Beate Krumm for her excellent technical support.

Author Contributions

Conceptualization: Peter Jedlicka, Werner Kilb.
Formal analysis: Aniello Lombardi, Peter Jedlicka, Werner Kilb.
Writing – original draft: Aniello Lombardi, Peter Jedlicka, Werner Kilb.
Writing – review & editing: Peter Jedlicka, Heiko J. Luhmann, Werner Kilb.

References

1. Farrant M, Kaila K. The cellular, molecular and ionic basis of GABA(A) receptor signalling. Prog Brain Res. 2007; 160: 59–87. https://doi.org/10.1016/S0079-6123(06)60005-8 PMID: 17499109
2. Swanson OK, Maffei A. From hiring to firing: Activation of inhibitory neurons and their recruitment in behavior. Front Mol Neurosci. 2019; 12: 1–9. https://doi.org/10.3389/fnmol.2019.00001 PMID: 30809121
3. Blaesse P, Airaksinen MS, Rivera C, Kaila K. Cation-chloride cotransporters and neuronal function. Neuron. 2009; 61: 820–838. https://doi.org/10.1016/j.neuron.2009.03.003 PMID: 19323993
4. Achilles K, Okabe A, Ikeda M, Shimizu-Okabe C, Yamada J, Fukuda A, et al. Kinetic properties of Cl− uptake mediated by Na+−dependent K+-2Cl− cotransport in immature rat neocortical neurons. J Neurosci. 2007;27. https://doi.org/10.1523/JNEUROSCI.4017-06.2007 PMID: 17202469

5. Yamada J, Okabe A, Toyoda H, Kilb W, Luhmann HJ, Fukuda A. Cl− uptake promoting depolarizing GABA actions in immature rat neocortical neurones is mediated by NKCC1. J Physiol. 2004. https://doi.org/10.1113/jphysiol.2004.062471 PMID: 15090604

6. Ben Ari Y, Woodin MA, Semnagor E, Cancedda L, Vinay L, Rivera C, et al. Refuting the challenges of the developmental shift of polarity of GABA actions: GABA more exciting than ever! Front Cell Neurosci. 2012; 6:35. https://doi.org/10.3389/fncel.2012.00035 PMID: 22973192

7. Kilb W, Kirischuk S, Luhmann HJ. Electrical activity patterns and the functional maturation of the neocortex. Eur J Neurosci. 2011; 34: 1677–1686. https://doi.org/10.1111/j.1460-9568.2011.07878.x PMID: 22103424

8. Kirischuk S, Sinning A, Blanquie O, Yang JW, Luhmann HJ, Kilb W. Modulation of neocortical development by early neuronal activity: Physiology and pathophysiology. Front Cell Neurosci. 2017; 11: 1–21. https://doi.org/10.3389/fncel.2017.00001 PMID: 28154525

9. Sipila ST, Schuchmann S, Voipio J, Yamada J, Kaila K. The cation-chloride cotransporter NKCC1 promotes sharp waves in the neonatal rat hippocampus. J Physiol. 2006; 573: 765–773. https://doi.org/10.1113/jphysiol.2004.077495 PMID: 15528236

10. Rivera C, Voipio J, Kaila K. Two developmental switches in GABAergic signalling: the K+-Cl− cotransporter KCC2 and carbonic anhydrase CAVII. J Physiol. 2005; 562: 27–36. https://doi.org/10.1113/jphysiol.2004.077495 PMID: 15528236

11. Raimondo JV, Markram H, Akerman CJ. Short-term ionic plasticity at GABAergic synapses. Front Synaptic Neurosci. 2012; 4: 5. https://doi.org/10.3389/fnsyn.2012.00005 PMID: 23087642

12. Cordero-Erausquin M, Coull JA, Boudreau D, Rolland M, De Koninck Y. Differential maturation of GABA action and anion reversal potential in spinal lamina I neurons: impact of chloride extrusion capacity. J Neurosci. 2005; 25: 9613–9623. https://doi.org/10.1523/JNEUROSCI.1488-05.2005 PMID: 16237166

13. Staley KJ, Soldo BL, Proctor WR. Ionic mechanisms of neuronal excitation by inhibitory GABA(A) receptors. Science. 1995; 269: 977–981. https://doi.org/10.1126/science.7638623 PMID: 7638623

14. Kuner T, Augustine GJ. A genetically encoded ratiometric indicator for chloride: Capturing chloride transients in cultured hippocampal neurons. Neuron. 2000; 27: 447–459. https://doi.org/10.1016/s0896-6273(00)00056-8 PMID: 11055428

15. Bracci E, Vreugdenhil M, Hack SP, Jefferys JGR. Dynamic modulation of excitation and inhibition during stimulation at gamma and beta frequencies in the CA1 hippocampal region. J Neurophysiol. 2001; 85: 2412–2422. https://doi.org/10.1152/jn.2001.85.6.2412 PMID: 11387387

16. Isomura Y, Sugimoto M, Fujiwara-Tsukamoto Y, Yamamoto-Muraki S, Yamada J, Fukuda A. Synaptically activated Cl− accumulation responsible for depolarizing GABAergic responses in mature hippocampal neurons. J Neurophysiol. 2003; 90: 2752–2756. https://doi.org/10.1152/jn.01422.2003 PMID: 14534278

17. Lombardi A, Jedlicka P, Luhmann HJ, Kilb W. Giant depolarizing potentials trigger transient changes in the intracellular Cl− concentration in CA3 pyramidal neurons of the immature mouse hippocampus. Front Cell Neurosci. 2018; 12: 420. https://doi.org/10.3389/fncel.2018.00420 PMID: 30515078

18. Kolbaev SN, Luhmann HJ, Kilb W. Activity-dependent scaling of GABAergic excitation by dynamic Cl− changes in Cajal-Retzius cells. Pflugers Arch Eur J Physiol. 2011;461. https://doi.org/10.1113/jphysiol.2006.077495 PMID: 15528236

19. Lindsley C, Gonzalez-Islas C, Wenner P. Activity Blockade and GABA(A) Receptor Blockade Produce Synaptic Scaling through Chloride Accumulation in Embryonic Spinal Motoneurons and Interneurons. PLoS One. 2014; 9. https://doi.org/10.1371/journal.pone.0094559 PMID: 24733046

20. Jedlička P, Backus KH. Inhibitory transmission, activity-dependent ionic changes and neuronal network oscillations. Physiological Research. 2006; 55:139–49. PMID: 15910171

21. Chub N, Mentis GZ, O’Donovan MJ. Chloride-sensitive MEO fluorescence in chick embryo motoneurons following manipulations of chloride and during spontaneous network activity. J Neurophysiol. 2006; 95: 323–330. https://doi.org/10.1152/jn.00162.2005 PMID: 16192339

22. Gonzalez-Islas C, Chub N, Wenner P. NKCC1 and AE3 appear to accumulate chloride in embryonic motoneurons. J Neurophysiol. 2009; 101: 507–518. https://doi.org/10.1152/jn.00986.2008 PMID: 19036864

23. Kaila K, Ruusuvuori E, Seja P, Voipio J, Puskarjov M. GABA actions and ionic plasticity in epilepsy. Current Opinion in Neurobiology. Elsevier Ltd; 2014. pp. 34–41. https://doi.org/10.1016/j.conb.2013.11.004 PMID: 24650502
24. Wright R, Raimondo J V, Akerman CJ. Spatial and Temporal Dynamics in the Ionic Driving Force for GABA(A) Receptors. Neural Plast. 2011; 2011:728395. https://doi.org/10.1155/2011/728395 PMID: 21766044

25. Jedlicka P, Deller T, Gutkin BS, Backus KH. Activity-dependent intracellular chloride accumulation and diffusion controls GABAA receptor-mediated synaptic transmission. Hippocampus. 2011; 21: 885–898. https://doi.org/10.1002/hipo.20804 PMID: 20575006

26. Düsterwald KM, Currin CB, Burman RJ, Akerman CJ, Kay AR, Raimondo J V. Biophysical models reveal the relative importance of transporter proteins and impermeant anions in chloride homeostasis. Elife. 2018; 7: 1–30. https://doi.org/10.7554/eLife.39575 PMID: 30260315

27. Doyon N, Prescott SA, Castonguay A, Godin AG, Kroger H, De Koninck Y. Efficacy of Synaptic Inhibition Depends on Multiple, Dynamically Interacting Mechanisms Implicated in Chloride Homeostasis. Plos Comput Biol. 2011; 7: e1002149. https://doi.org/10.1371/journal.pcbi.1002149 PMID: 21931544

28. Buchin A, Chizhov A, Huberfeld G, Miles R, Gutkin BS. Reduced efficacy of the KCC2 cotransporter promotes epileptic oscillations in a subiculum network model. J Neurosci. 2016; 36: 11619–11633. https://doi.org/10.1523/JNEUROSCI.4228-15.2016 PMID: 27852771

29. Mohapatra N, Tonnesen J, Vlachos A, Kuner T, Deller T, Nagerl U V, et al. Spines slow down dendritic chloride diffusion and affect short-term-ionic plasticity of GABAergic inhibition. Sci Rep. 2016; 6: 23196. https://doi.org/10.1038/srep23196 PMID: 26987404

30. Lombardi A, Jedlicka P, Luhmann HJ, Kilb W. Interactions between membrane resistance, GABA-A receptor properties, bicarbonate dynamics and Cl−transport shape activity-dependent changes of intracellular Cl− concentration. Int J Mol Sci. 2019; 20: 1–22. https://doi.org/10.3390/ijms20061416 PMID: 30897846

31. Backus KH, Deitmer JW, Friauf E. Glycine-activated currents are changed by coincident membrane depolarization in developing rat auditory brainstem neurones. J Physiol. 1998. https://doi.org/10.1111/j.1469-7793.1998.783obs PMID: 9508839

32. Halbhuber L, Achtner C, Luhmann HJ, Sinning A, Kilb W. Coincident Activation of Glutamate Receptors Enhances GABA Receptor-Induced Ionic Plasticity of the Intracellular Cl−-Concentration in Dissociated Neuronal Cultures. Front Cell Neurosci. 2019; 13: 1–15. https://doi.org/10.3389/fncel.2019.00001 PMID: 30723396

33. Currin CB, Trevellyan AJ, Akerman CJ, Raimondo J V. Chloride dynamics alter the input-output properties of neurons. PLoS Comput Biol. 2020; 16: 1–22. https://doi.org/10.1371/journal.pcbi.1007932 PMID: 32453795

34. Leinekugel X, Khazipov R, Cannon R, Hirase H, Ben-Ari Y, Buzsáki G. Correlated Bursts of Activity in the Neonatal Hippocampus in Vivo. Science. 2002; 296: 2049 LP– 2052. https://doi.org/10.1126/science.1071111 PMID: 12065842

35. Ben-Ari Y. Developing networks play a similar melody. Trends in Neurosciences. 2001; 24:353–60. https://doi.org/10.1016/S0166-2236(00)01813-0 PMID: 11356508

36. Luhmann HJ, Sinning A, Yang JW, Reyes-Puerta V, Stuttgen MC, Kirischuk S, et al. Spontaneous Neuronal Activity in Developing Neocortical Networks: From Single Cells to Large-Scale Interactions. Front Neuronal Circuits. 2016; 10: 40. https://doi.org/10.3389/fncir.2016.00040 PMID: 27252626

37. Khalilov I, Minlebaev M, Mukhtarov M, Khazipov R. Dynamic Changes from Depolarizing to Hyperpolarizing GABAergic Actions during Giant Depolarizing Potentials in the Neonatal Rat Hippocampus. J Neurosci. 2015; 35: 12635–12642. https://doi.org/10.1523/JNEUROSCI.1922-15.2015 PMID: 26377455

38. Librizzi L, Losi G, Marcon I, Sessolo M, Scalmani P, Carmignoto G, et al. Interneuronal network activity at the onset of seizure-like events in entorhinal cortex slices. J Neurosci. 2017; 37:10398–10407 https://doi.org/10.1523/JNEUROSCI.3906-16.2017 PMID: 28947576

39. Moradi K, Moradi K, Ganjkhani M, Hajjhasani M, Gharibzadeh S, Kaka G. A fast model of voltage-dependent NMDA receptors. J Comput Neurosci. 2013; 34: 521–531. https://doi.org/10.1007/s10827-012-0434-4 PMID: 23224774

40. Rao VR, Finkbeiner S. NMDA and AMPA receptors: old channels, new tricks. Trends Neurosci. 2007; 30: 284–291. https://doi.org/10.1016/j.tins.2007.03.012 PMID: 17418904

41. Migliore M, Cook EP, Jaffe DB, Turner DA, Johnston D. Computer simulations of morphologically reconstructed CA3 hippocampal neurons. J Neurophysiol. 1995; 73:1157–1168. https://doi.org/10.1152/jn.1995.73.3.1157 PMID: 7608762

42. Mody I, Pearce RA. Diversity of inhibitory neurotransmission through GABA(A) receptors. Trends Neurosci. 2004; 27: 569–575. https://doi.org/10.1016/j.tins.2004.07.002 PMID: 15331240

43. Kolbaev SN, Mohapatra N, Chen R, Lombardi A, Staiger JF, Luhmann HJ, Jedlicka P, Kilb W. NKCC-1 mediated Cl− uptake in immature CA3 pyramidal neurons is sufficient to compensate phasic GABAergic inputs. Sci Reports. 2020; 10:18399. https://doi.org/10.1038/s41598-020-75382-1 PMID: 33110147
44. Griguoli M, Cherubini E. Early Correlated Network Activity in the Hippocampus: Its Putative Role in Shaping Neuronal Circuits. Front Cell Neurosci. 2017; 11: 255. https://doi.org/10.3389/fncel.2017.00255 PMID: 2887868
45. Doyon N, Prescott SA, Koninck Y De. Mild KCC2 Hypofunction Causes Inconspicuous Chloride Dysregulation that Degrades Neural Coding. 2016; 9: 1–16. https://doi.org/10.3389/fncel.2015.00516 PMID: 26858607
46. Saetra MJ, Einevoll GT, Halnes G. An electrodiffusive, ion conserving Pinsky-Rinzel model with homeostatic mechanisms. PLoS Computational Biology. 2020; 16:e1007661. https://doi.org/10.1371/journal.pcbi.1007661 PMID: 32348299
47. Watanabe M, Fukuda A. Development and regulation of chloride homeostasis in the central nervous system. Frontiers in Cellular Neuroscience. 2015; 9: 371. pp. 1–14. https://doi.org/10.3389/fncel.2015.00371 PMID: 26441542
48. Huguenard JR, Alger BE. Whole-cell voltage-clamp study of the fading of GABA-activated currents in acutely dissociated hippocampal neurons. J Neurophysiol. 1986; 56: 1–18. https://doi.org/10.1152/jn.1986.56.1.1 PMID: 3746390
49. Staley KJ, Proctor WR. Modulation of mammalian dendritic GABA(A) receptor function by the kinetics of Cl- and HCO3- transport. J Physiol. 1999; 519: 693–712. https://doi.org/10.1111/j.1469-7793.1999.00693.x PMID: 10457084
50. Kolbaev SN, Achilles K, Luhmann HJ, Kilb W. Effect of depolarizing GABA A-mediated membrane responses on excitability of Cajal-Retzius cells in the immature rat neocortex. J Neurophysiol. 2011; 106: 2034–2044. https://doi.org/10.1152/jn.00699.2010 PMID: 21775719
51. Gonzalez-Islas C, Chub N, Garcia-Berenguia MA, Wenner P. GABAergic synaptic scaling in embryonic motoneurons is mediated by a shift in the chloride reversal potential. J Neurosci. 2010; 30: 13016–13020. https://doi.org/10.1523/JNEUROSCI.1659-10.2010 PMID: 20881119
52. Valeeva G, Abdullin A, Tyzio R, Skorinkin A, Nikolski E, Ben-Ari Y, et al. Temporal coding at the immature depolarizing GABAergic synapse. Front Cell Neurosci. 2010; 4: 1–12. https://doi.org/10.3389/neuro.03.001.2010 PMID: 20407584
53. Doyon N, Vinay L, Prescott SA, De Koninck Y. Chloride Regulation: A Dynamic Equilibrium Crucial for Synaptic Inhibition. Neuron. 2016; 89: 1157–1172. https://doi.org/10.1016/j.neuron.2016.02.030 PMID: 26985723
54. Kaila K, Price TJ, Payne JA, Puskarjov M, Voipio J. Cation-chloride cotransporters in neuronal development, plasticity and disease. Nat Rev Neurosci. 2014; 15: 637–654. https://doi.org/10.1038/nrn3819 PMID: 25234263
55. Prescott SA, Sejnowski TJ, De Koninck Y. Reduction of anion reversal potential subverts the inhibitory control of firing rate in spinal lamina I neurons: Towards a biophysical basis for neuropathic pain. Mol Pain. 2006; 2: 1–20. https://doi.org/10.1186/1744-8069-2-1 PMID: 16393346
56. Sorensen AT, Ledri M, Melis M, Nikitidou Ledri L, Andersson M, Kokaia M. Altered Chloride Homeostasis Decreases the Action Potential Threshold and Increases Hyperexcitability in Hippocampal Neurons. eneuro. 2017; 4: ENEURO.0172-17.2017. https://doi.org/10.1523/ENEURO.0172-17.2017 PMID: 29379872
57. Dzhala V, Valeeva G, Glykys J, Khazipov R, Staley K. Traumatic alterations in GABA signaling disrupt hippocampal network activity in the developing brain. J Neuroscience. 2012; 32: 4017–4031. https://doi.org/10.1523/JNEUROSCI.5139-11.2012 PMID: 22442068
58. Glykys J, Dzhala VI, Kuchibhotla K V., Feng G, Kuner T, Augustine G, et al. Differences in Cortical versus Subcortical GABAergic Signaling: A Candidate Mechanism of Electroclinical Uncoupling of Neonatal Seizures. Neuron. 2009; 63: 657–672. https://doi.org/10.1016/j.neuron.2009.08.022 PMID: 19755108
59. Kirmse K, Kummer M, Kovalchuk Y, Witte OW, Garaschuk O, Holthoff K. GABA depolarizes immature neurons and inhibits network activity in the neonatal neocortex in vivo. Nat. 2013; 15: 7750. https://doi.org/10.1038/ncomms8750 PMID: 26177896
60. Valeeva G, Tressard T, Mukhtarov M, Baude A, Khazipov R. An Optogenetic Approach for Investigation of Excitatory and Inhibitory Network GABA Actions in Mice Expressing Channelrhodopsin-2 in GABAergic Neurons. J Neuroscience. 2016; 36: 5961–5973. https://doi.org/10.1523/JNEUROSCI.3482-15.2016 PMID: 27251618
61. Flossmann T, Kaas T, Rahmati V, Kiebel SJ, Witte OW, Holthoff K, et al. Somatostatin Interneurons Promote Neuronal Synchrony in the Neonatal Hippocampus. Cell Rep. 2019; 28: 3173. https://doi.org/10.1016/j.celrep.2019.02.061 PMID: 30893591
62. Valeeva G, Valiullina F, Khazipov R. Excitatory actions of GABA in the intact neonatal rodent hippocampus in vitro. Front Cell Neurosci. 2013; 7: 20. https://doi.org/10.3389/fncel.2013.00020 PMID: 23467988
63. Sava BA, Chen R, Sun H, Luhmann HJ, Kilb W. Taurine activates GABAergic networks in the neocortex of immature mice. Front Cell Neurosci. 2014; 8: 26. https://doi.org/10.3389/fncel.2014.00026 PMID: 24550782

64. Koike-Tani M, Saitoh N, Takahashi T. Mechanisms underlying developmental speeding in AMPA-EPSC decay time at the calyx of Held. J Neurosci. 2005; 25: 199–207. https://doi.org/10.1523/JNEUROSCI.3861-04.2005 PMID: 15634782

65. Seifert G, Zhou M, Dietrich D, Schumacher TB, Dybek A, Weiser T, et al. Developmental regulation of AMPA-receptor properties in CA1 pyramidal neurons of rat hippocampus. Neuropharmacology. 2000; 39: 931–942. https://doi.org/10.1016/s0028-3908(99)00212-9 PMID: 10727703

66. Cain DP. LTP, NMDA, genes and learning. Curr Opin Neurobiol. 1997; 7: 235–242. https://doi.org/10.1016/s0959-4388(97)80012-8 PMID: 9142751

67. Hashitani T, Kigoshi K. Measurements of the Self-diffusion Coefficients of Carbon Dioxide, Hydrogen Carbonate Ions and Carbonate Ions in an Aqueous Solution. Bull Chem Soc Jpn. 1965; 38: 1395–1396. https://doi.org/10.1246/bcsj.38.1395