Effect of temperature on life history traits of the invasive calanoid copepod *Arctodiaptomus dorsalis* (Marsh, 1907) from Lake Taal, Philippines

Dino T. Tordesillas¹*, **Nick Khryzzan P. Abaya**², **Moira Allyssa S. Dayo**², **Lou Erika B. Marquez**², **Rey Donne S. Papa**^{1,2,3} & **Syuhei Ban**⁴

¹The Graduate School, University of Santo Tomas, Manila 1008, Philippines
²Department of Biological Sciences, University of Santo Tomas, Manila 1008, Philippines
³Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila 1008, Philippines
⁴School of Environmental Science, The University of Shiga Prefecture, 2500 Hassaka-cho, Hikone, Shiga 522–8533, Japan

Received 29 July 2015; Accepted 11 July 2016
Responsible Editor: Koichi Ara

Abstract: *Arctodiaptomus dorsalis* is an invasive calanoid copepod from America, and is now found in 23 out of 32 lakes and rivers in the Philippines. Live specimens of *A. dorsalis* were collected from Lake Taal and cultured in the laboratory. The specimens were reared under three different temperatures (25°C, 30°C, and 35°C) with the same food and light conditions, i.e. ~10^5 cells mL^−1 of *Chlamydomonas reinhardtii* and 12L:12D at ~60 lx, respectively. Post-embryonic development times from hatching to adult decreased from 31.5 d to 18.3 d as the temperature increased, while those during naupliar stages were quite similar, i.e. 4.4, 2.8 and 2.3 d at 25, 30 and 35°C, respectively. The naupliar durations were substantially shorter than the copepodid stages. Clutch sizes were almost the same, 8.7–9.2 eggs clutch^−1, among all temperatures tested, while hatching success decreased from 85.9% at 25°C to 24.2% at 35°C. Overall survival rates from hatching to adult decreased as well from 67% at 25°C to 23% at 35°C. This is the first successful attempt to culture *A. dorsalis* collected from a freshwater lake in the Philippines.

Key words: clutch size, hatching success, laboratory culture, non-indigenous zooplankton, post-embryonic development

Introduction

Arctodiaptomus dorsalis (Marsh, 1907), a neotropical species, is known for its propensity for transcontinental invasion (Papa et al. 2012a). It was originally recorded to occur in the Americas, extending from the southern United States, through Central America, and to the north of South America (Reid 2007). This calanoid copepod was once mistakenly identified as *Tropodiaptomus vicinus* (Kiefer, 1930) (a native species in the Philippines) in Lake Taal (Amarasinghe et al. 2008). Detailed taxonomic studies on specimens collected from 2008 to 2010 revealed that it was actually *A. dorsalis*, and not *T. vicinus* (Papa et al. 2012b). Recent studies also showed that there has been a massive invasion of *A. dorsalis* in 18 out of 27 lakes investigated in the Philippines (Papa et al. 2012a). Introduction of this species may have been through ship drinking water reserves dumped into Laguna de Bay (Tuyor & Baay 2001) which was then, through aquaculture practices, dispersed to other parts of the country (Papa et al. 2012a). Recent studies by Metillo et al. (2014) and Rizo et al. (2015) added five more new locality records of *A. dorsalis* in the Bicol region of Luzon Island and Lake Lanao in Mindanao Island. These studies likewise failed to find existing *T. vicinus* and *T. gigantoviger* Brehm, 1933 (an endemic species in the Philippines) populations in their original habitats where the populations of *A. dorsalis* have become established.

Previous studies on *A. dorsalis*, formerly *Diaptomus dorsalis* Marsh, 1907, mainly focused on its distribution (Reid 2007) and a couple of them have also dealt with its development. Elmore (1982) observed that the development of *A. dorsalis* was affected by food concentration, wherein low food availability led to a decrease in developmental rates and body size, as well as lower clutch size and survival rates. Another study, focused on the factors
affecting its distribution in subtropical Florida, showed that food concentration clearly affected *A. dorsalis*’ ability to establish populations in oligotrophic and mesotrophic lakes (Elmore 1983). Although variations due to temperature were also shown, its effect on the development of *A. dorsalis* was not thoroughly discussed.

Temperature has been suggested as probably the most significant single parameter that affects the development of aquatic invertebrates (Heip 1974), and, specifically for copepods, strongly influences egg production (Ban 1994, Lee et al. 2003, Bonnet et al. 2009), embryonic development time (Yoshida et al. 2012), post-embryonic development time (Ban 1994, Jimenez-Melero et al. 2005, Devreker et al. 2007) and hatching success (Yoshida et al. 2012). It has been shown that increasing temperatures result in faster development of copepods under experimental conditions (Landry 1975, Ban 1994, Pinchuk & Paul 1998, Lee et al. 2003, Liu & Hopcroft 2006, Devreker et al. 2007, Bonnet et al. 2009) even when reaching 35°C—an extreme temperature simulated for tropical habitats (Burgis 1970, Li et al. 2012a). This is also the first attempt to culture expatriates of *A. dorsalis* outside of its original geographical distribution.

The aim of this study was to successfully culture *A. dorsalis* collected from Lake Taal, a large volcanic caldera (Ramos 2002) and the third largest lake in the Philippines (Hargrove 1991), at three different temperatures to evaluate the effects of temperature on life history parameters, such as post-embryonic development time, clutch size, and hatching success in this calanoid species. Anthropogenic activities, specifically aquaculture due to increasing food demand, can be attributed to Lake Taal’s eutrophication (Vista et al. 2006, White & San Diego-McGlone 2008, Papa & Zafaralla 2011), making conditions favorable for the thriving population of *A. dorsalis* (Reid 2007, Papa et al. 2012a). This is also the first attempt to culture expatriates of *A. dorsalis* outside of its original geographical distribution.

Materials and Methods

Field collection

Zooplankton was collected by performing four vertical net hauls using a conical plankton net (mesh size, 80 µm; mouth diameter, 30 cm) at a pelagic site (depth, 40 m) in Lake Taal, Philippines (14°00′40.6″N, 121°05′19.1″E), where *A. dorsalis* was previously documented (Papa et al. 2012a, b). In addition, one liter each of lake water from depths of 0, 5, 10, 20, 30, and 40 m was collected with a water sampler and then combined for use as the culture medium. The zooplankton samples collected were immediately transferred to 6-L carboy containers filled with filtered (Whatman GF/C) lake water, and transported back to the laboratory within ~1–2 h.

Stock culture

In the laboratory, ovigerous *A. dorsalis* females were

sorted from the samples placed in petri dishes filled with filtered lake water, and then observed using a compound microscope. Identification of *A. dorsalis* was based on the taxonomic keys, illustrations, and descriptions by Dussart & Defaye (2001), Papa et al. (2012a) and Petersen (2013). The isolated animals were then cultivated in 50 mL beakers, containing 30 mL filtered (Whatman GF/C) lake water and *Chlamydomonas reinhardtii* Dangeard 1899 (NIES-2235), which has been previously used in culture studies of *A. dorsalis* (Elmore 1982, 1983), with the concentration at ~10^5 cells mL^-1, which is more than the incipient limiting concentration (Elmore 1983). Cultures were kept at 29°C, with a photoperiod of 12L:12D for at least two generations (> four weeks) prior to the experiment. The light sources used were cool-white fluorescent tubes at a light intensity of ~60 lx, controlled by shading the tubes with cellophane. Culture media and food algae were changed three times a week. Newly hatched nauplii from the first generation of the stock culture were isolated and placed in new 50 mL beakers filled with the same food and medium. All individuals were transferred to new beakers filled with fresh food suspensions by Pasteur pipette every two days until they reached adult stage. Molts and dead animals were checked and removed every two days.

Post-embryonic development

In Lake Taal, the animals experience water temperatures ranging between 28–30°C (Perez et al. 2008), but may reach a minimum of 26°C to a maximum of 34°C (White & San Diego-McGlone 2008, Papa & Mamaril Sr 2011). The experimental temperatures were therefore selected at 25, 30 and 35°C, providing a range between the lowest and highest temperatures in Lake Taal. Thirty newly-hatched nauplii, hatched within 12 h from the eggs produced by the females acclimatized at each experimental temperature, were placed individually in 3-mL wells of a tissue culture plate at the same temperature as those of the mothers. Subsequently, development was recorded from naupliar to copepodid, and finally to adult stages. Each individual was observed under a stereoscopic microscope (Olympus, SZX12) every day to monitor for molts or dead animals. Time zero was defined as the time when the nauplii hatched. All experiments were performed under the same light conditions as the stock culture. The food suspension was changed every two days.

Clutch size and hatching success

When the individuals developed up to the adult stage, five pairs of the males and females were reared in a 50 mL beaker at each experimental temperature (25, 30 and 35°C) under the same food and light conditions as those in the experiments for post-embryonic development. The experiments were made in triplicate at each temperature. Food suspension was replenished every two days. Eggs laid by females and hatched nauplii were counted every day until all nauplii had hatched from the eggs in the first clutch
produced by all five females. Clutch size was defined as the number of eggs per clutch, and hatching success was the percentage of the number of nauplii hatched to the total number of eggs in a clutch. Unhatched eggs that were attached to the mother or had dropped to the bottom of the beaker for over 12 h after laying were defined as non-viable ones (based on Ban 1994, Mavuti 1994, Makino & Ban 2000, Liu et al. 2014, 2015).

Data analyses

The relationship between temperature \(T\) and development time \(D\) was described using Bělehrádek’s function:

\[D = a(T - b)^c, \]

where \(a\), \(b\) and \(c\) are fitted constants. After linearization with log-transformed \(D\) and \(T\), values for \(a\) and \(c\) were calculated by linear-regression with iterative calculation of \(b\). Differences of post-embryonic development times from hatching to adult among the temperature treatments were analyzed using the Kruskal–Wallis test, and then multiple comparisons were made using Dunn’s method when the result indicated statistical significance. Variations among treatments concerning clutch size, hatching success and survival rates were analyzed by one way ANOVA, and then multiple comparisons were made using the Tukey post hoc test, when the result indicated significant difference. Spearman’s rank correlation analysis was made to evaluate the relationship between temperature and sex ratio. All data were analyzed using Origin 2016 (evaluation version from www.OriginLab.com) and SigmaPlot version 13.0 (www.sigmaplot.com).

Results

Post-embryonic development time (Post-EDT)

Results for the effect of temperature on the Post-EDT in \(A. dorsalis\) are summarized in Table 1. Mean post-EDTs from hatching to adult significantly decreased from 31.5 days at 25°C to 18.3 at 35°C with increasing temperature (Kruskal–Wallis test, \(df=2, H=32.535, p < 0.001\)). Durations of naupliar and copepodid stages varied from 4.4 and 25.9 d at 25°C to 2.3 and 15.0 d at 35°C, respectively. Ratios of naupliar to copepodid durations ranged from 0.13 to 0.17, indicating that a substantial period of the juvenile stages was spent as copepodes. The Kruskal–Wallis test showed significant differences between the treatments for both stage durations (\(df=2, H=38.735\) for nauplii and 27.28 for copepodides, \(p < 0.001\)), except for the naupliar stages at 30 and 35°C (Dunn’s method \(Q=1.359, p=0.522\)).

The development times \(D\) were described by the following Bělehrádek’s temperature \(T\) functions:

\[D=1017.9(T-4.4)^{-1.80} (R^2=0.989) \]

for naupliar duration,

\[D=12826.6(T+6.2)^{-1.80} (R^2=0.995) \]

for copepodid duration and

\[D=15527.2(T+6.1)^{-1.80} (R^2=0.957) \]

for the post-EDT from hatching to adult.

The overall survival rates from hatching to adult decreased with increasing temperature, being 66.7, 53.3 and 23.3% at 25, 30 and 35°C, respectively (Table 1). The animals mostly died during copepodid stages, while relatively high survival rates during the naupliar stages were observed (77–97%).

Sex ratio

Sex ratio, the ratio of females to males, in the adult stages were 3.0, 1.7 and 1.3 at 25, 30 and 35°C, respectively (Table 1). Spearman’s rank correlation analysis showed negative correlation between temperature and sex ratio (Spearman’s \(r=-0.946, p < 0.001\)).

Clutch size and hatching success

Mean clutch sizes in \(A. dorsalis\) were 8.9, 9.2 and 8.7 eggs clutch\(^{-1}\) at 25, 30 and 35°C, respectively (Table 2). ANOVA indicated no significant difference in the clutch sizes among the temperatures tested (ANOVA, \(df=44, F=0.125, p=0.883\)).

Mean hatching successes were 85.9, 70.1 and 24.2% at 25, 30, and 35°C, respectively (Table 2). These differences were statistically significant (ANOVA, \(df=44, F=29.523, p < 0.001\)), with multiple comparisons tests indicating significant differences between 25 and 35°C (\(p < 0.001\)), as

Stage	Temperature (°C)	25	30	35								
	D	sd	s%	n	D	sd	s%	n	D	sd	s%	n
Naupliar	4.41	1.02	—	30	2.84	1.37	—	30	2.25	0.68	—	30
Copepodid	25.85	2.80	96.7	29	21.38	2.28	86.7	26	15.00	2.31	76.7	23
Adult*	31.50	2.83	66.7	20	26.00	1.67	53.3	16	18.29	2.13	23.3	7
Sex Ratio	3.00	1.67							1.33			

\(n, n\) number of individuals in the stage, * the post-embryonic time from hatching to adult
well as 30 and 35°C ($p < 0.001$), but not for 25 and 30°C ($p=0.264$).

Discussion

Post-embryonic development time and survival rate

The results in this study on *A. dorsalis* echo previous work on other copepod species that showed a negative temperature function on post-EDTs (Ban 1994, Caramujo & Boavida 1999, Lee et al. 2003, Melão & Rocha 2004, Liu et al. 2014) and survival rates (Amarasinghe et al. 1997, Hall & Burns 2001, Jiménez-Melero et al. 2007). Although the same relationship between temperature and post-EDT was observed by Elmore (1983), the survival rates in this study follow a different trend. Comparison of results shows that the survival rates of *A. dorsalis* in this study have a similar negative relationship with temperature only when it was cultured in water taken from an oligotrophic-mesotrophic lake that *A. dorsalis* does not inhabit, and is not the same as when cultured in eutrophic lake water, wherein a slight increase in survival rates with increasing temperatures was observed.

Arctodiaptomus dorsalis spent more time in its copepodid stages than in its naupliar stages in this study, which has also been observed in *A. salinus* (Dayad, 1885) (Jiménez-Melero et al. 2007), unlike *Eodiaptomus japonicas* (Burckhardt, 1913) (Liu et al. 2014) and *Copodiaptomus numidicus* (Gurney, 1909) (Caramujo & Boavida 1999) which followed the equiproportional development model (Corkett 1984). The non-feeding early naupliar stages rely mostly on the yolk for nutrition (Mauchline 1998, Peterson 2001), thus requiring rapid molting to the feeding stages (Liu et al. 2014), unlike the copepodid stages that may have been influenced by food concentration (Ban 1994, Jiménez-Melero et al. 2007).

Sex ratio

A sex ratio skewed toward females was constantly observed at all three temperatures, which is common for many copepod species (Corkett & McLaren 1978) and also coincides with the general seasonal trend in Lake Taal (Papa et al. 2011). Increasing temperatures may have lowered the sex ratio of *A. dorsalis* due to low female survival, as previously observed in other copepods (Katona 1970, Halsband-Lenk et al. 2002). On the other hand, the higher proportion of males at higher temperatures may be compensatory measures for the low survival rates in order to increase the chances of copulation (Heinle 1970, Sabatini 1989) at temperatures considered to be non-optimal (Jiménez-Melero et al. 2014). Another probable reason for the decreased sex ratio may be sex change during juvenile development which has been linked to environmental temperature (Katona 1970, Voordouw and Anholt, 2002, Lee et al. 2003), although observations on this were not carried out in this study. These results should be investigated in future studies because sex ratios can be influenced by multiple factors aside from temperature (Gusmão et al. 2013, Jiménez-Melero et al. 2014).

Clutch size and hatching success

The results of this study showed no significant effect of temperature on clutch size in *A. dorsalis*, which echoes with previous studies on temperate calanoids such as *Copodiaptomus numidicus* (Caramujo & Boavida 1999), *Pseudocalanus newmani* Frost, 1989 (Lee et al. 2003) and *Eudiaptomus gracilis* (G.O. Sars, 1863) (Jiménez-Melero et al. 2005), although copepod embryonic development (Peterson 2001) and egg production (Hirche et al. 1997) generally depends on temperature. However, the clutch sizes in this study are considerably smaller than those recorded by Elmore (1983) for *A. dorsalis*. This fact is unexpected, since culture experiment conditions (i.e. food algal species and concentration) in this study were similar to those of Elmore (1983). The use of a monoalgal diet in this study, even at the incipient limiting concentration, may not have been enough to simulate eutrophic conditions used by Elmore (1983) wherein *A. dorsalis* was cultured using water from a lake that it inhabits.

On the other hand, mean hatching success was negatively affected by temperature, being just 24% at 35°C. The sudden decline in hatching success at the highest temperature tested can be attributed to severe thermal stress, as has been observed for other calanoids (Lee et al. 2003, Rhyne et al. 2009, Yoshida et al. 2012). The relatively high rates of hatching success at 25 and 30°C suggest that this is the optimal temperature range for hatching in *A. dorsalis*, and an increase in temperature beyond this range may

Table 2. The mean values and standard deviations of reproductive parameters: clutch size (CS) and hatching success (HS) in *Arctodiaptomus dorsalis*.

Reproductive parameter	Temperature (°C)	Mean	sd	n
	25			
CS		8.9	3.0	15
HS (%)		85.9	0.1	15
	30			
CS		9.2	2.4	15
HS (%)		70.1	0.1	15
	35			
CS		8.7	2.1	15
HS (%)		24.2	0.2	15

n, number of pairs observed and used in the experiment among the sex ratio of *A. dorsalis* (Papa et al. 2011). Increasing temperatures may have low-
limit its population growth.

Since higher metabolic losses at higher temperatures are considered more severe in food limited conditions (Liu et al. 2015), the reduced hatching success and low survival rates associated with low sex ratio in adults suggest that high temperatures over a certain threshold may exert a strong influence on an *A. dorsalis* population and can be a limiting factor for its population growth. This thermal stress experienced by *A. dorsalis* over 30°C could have caused energy acquired to be spent on survival rather than reproduction (Rhine et al. 2009) and may explain the slightly longer development time in copepodes and the small clutch sizes. The steady increase in water temperature in Lake Taal from 1948 to 2010 which may have been brought about by global climate change (Souissi 2012), could, therefore, severely affect the population of *A. dorsalis* if it goes beyond 30°C.

Although the food concentration used in this study is beyond the incipient limiting concentration as stated by Elmore (1983), the results resemble those from oligotrophic-mesotrophic setups wherein *A. dorsalis* does not thrive well, indicating that a food concentration of \(10^5\) cells mL\(^{-1}\) in this case may not have been enough to simulate a eutrophic setting. Food quality also affects the development of copepodes cultured in the laboratory (Burns 1985), especially mononaglial cultures, implying that mixtures of algae are better feed for laboratory-raised copepodes (Støttrup 2006, Jeyaraj & Santhanam 2013). These factors should be considered in future studies in order to attain better results.

Studies on the physiology and ecology of copepodes are necessary to predict their invasion of new habitats (Riccardi & Giussani 2006, Sullivan & Kimmerer 2013), as in the case for *A. dorsalis* in the Philippines (Papa et al. 2012a, Metillo et al. 2014, Rizo et al. 2015). It may have already displaced previously recorded endemic species from their habitats in the Philippines, and probably might displace unrecorded endemic calanoid species as well (Papa et al. 2012a). *Arctodiaptomus dorsalis’ small, transparent body (Reid 2007, Papa et al. 2012a), r-type life strategy (based on Elmore 1983, Reid 2007) and preference for eutrophic conditions (Elmore 1983, Reid 2007, Papa et al. 2012a) will enable it to escape predation pressure and significantly increase in number at temperatures below 30°C, potentially outlasting other larger, oligotrophic or mesotrophic-adapted endemic Philippine calanoid species.

Acknowledgements

The authors would like to thank Dr. Xin Liu for his invaluable contribution to the improvement of this paper. This research was conducted under a Memorandum of Understanding between the University of Santo Tomas and the University of Shiga Prefecture. R.D.S. Papa was supported by grants from the UST Research Center for the Natural and Applied Sciences and the Partnerships for Enhanced Engagement in Research (PEER) Science Grant awarded by the US National Academy of Sciences and USAID (Sub Grant No. PGA-2000004881; AID-OAA-A-11-00012 2014–2016). D. T. Tordesillas was supported by a Philippine Department of Science and Technology-Accelerated Science and Technology Human Resource Development Program (DOST-ASTHRDP) Scholarship Grant as part of his Ph.D. dissertation in the USTGS.

References

Amarasinghe PB, Boersma M, Vijverberg J (1997) The effect of temperature, and food quantity and quality on the growth and development rates in laboratory-cultured copepods and cladocerans from a Sri Lankan reservoir. Hydrobiologia 350: 131–144.

Amarasinghe PB, Ariyaratne MG, Chitipalalapong T, Vijverberg J (2008) Production, biomass and productivity of copepods and cladocerans in tropical Asian waterbodies and the carrying capacity for zooplanktivorous fish. In: Aquatic Ecosystems and Development: Comparative Asian Perspectives Biology of Inland Waters Series (eds Schiemer F, Simon D, Amarasinghe U, Moreau J). Backhuys Publishers, Leiden, pp. 173–194.

Ban S (1994) Effect of temperature and food concentration on post-embryonic development, egg production and adult body size of calanoid copepod *Eurytemora affinis*. J Plankton Res 16: 721–735.

Bonnet D, Harris RP, Yebra L, Guilhamon F, Conway DVP, Hirst AG (2009) Temperature effects on *Calanus helgolandicus* (Copepoda: Calanoida) development time and egg production. J Plankton Res 31: 31–44.

Burgis MJ (1970) The effect of temperature on the development of time of eggs of *Thermocyclus sp.*, a tropical cyclopoid copepod from Lake George, Uganda. Limnol Oceanogr 15: 742–747.

Burns CW (1985) The effects of starvation on naupliar development and survivorship of three species of *Boeckella* (Copepoda: Calanoida). Archiv Hydrobiol Beih Ergeb Limnol 21: 297–309.

Caramujo MJ, Boavida MJ (1999) Characteristics of the reproductive cycles and development times of *Copidodiaptomus numidicus* (Copepoda: Calanoida) and *Acanthocyclops robustus* (Copepoda: Cyclopoida). J Plankton Res 21: 1765–1778.

Devreker D, Souissi S, Forget-Leray J, Leboulenger F (2007) Effects of salinity and temperature on the post-embryonic development of *Eurytemora affinis* (Copepoda: Calanoida) from the Seine estuary: a laboratory study. J Plankton Res 29: 742–747.

Corkett CJ (1984) Observations on development in copepods. Crustaceana Suppl. 7: 150–153.

Corkett CJ, McLaren IA (1978) The biology of *Pseudocalanus*. Adv Mar Biol 15: 1–231.

Dussart BH, Defaye D (2001) Introduction to the Copepoda. Backhuys Publishers, Leiden, pp. 344 pp.

Elmore JL (1982) The influence of food concentration and container volume on life history parameters of *Diaptomus dorsalis* Marsh from subtropical Florida. Hydrobiologia 89: 215–223.
Elmore JL (1983) Factors influencing Diaptomus distributions: An experimental study in subtropical Florida. Limnol Oceanogr 28: 522–532.

Gusmão LFM, McKinnon D, Richardson AJ (2013) No evidence of predation causing female-biased sex ratios in marine pelagic copepods. Mar Ecol Prog Ser 482: 279–298.

Hall CJ, Burns CW (2001) Effects of salinity and temperature on survival and reproduction of Boeckella hamata (Copepoda: Calanoida) from a periodically brackish lake. J Plankton Res 23: 97–104.

Halsband-Lenk C, Hirche HJ, Carlotti F (2002) Temperature impact on reproduction and development of congener copepod populations. J Exp Mar Biol Ecol 271: 121–153.

Hargrove T (1991) The Mysteries of Taal, A Philippine Volcano and Lake, Her Sea Life and Lost Towns. Bookman, Manila, 244 pp.

Heinle DR (1970) Population dynamics of exploited cultures of calanoid copepods. Helgoländer Meeresunters 20: 366–372.

Heip C (1974) A comparison between models describing the influence of temperature on the development rate of copepods. Biol Jaarb 42: 121–125.

Hirche H, Meyer U, Niehoff B (1997) Egg production of Calanus finmarchicus: effect of temperature, food and season. Mar Biol 127: 609–620.

Jeyaraj N, Santhanam P (2013) Influence of algal diet on population density, egg production and hatching success of the calanoid copepod, Paracalanus parvus (Clas., 1863). J. Algal Biomass Uthn 4: 1–8.

Jiménez-Melero R, Santer B, Guerrero F (2005) Embryonic and naupliar development of Eudiaptomus gracilis and Eudiaptomus graciloides at different temperatures: Comments on individual variability. J Plankton Res 27: 1175–1187.

Jiménez-Melero R, Parra G, Souissi S, Guerrero F (2007) Post-embryonic developmental plasticity of Arctodiaptomus salinus (Copepoda: Calanoida) at different temperatures. J Plankton Res 29: 553–567.

Jiménez-Melero R, Gilbert JD, Guerrero F (2014) Seasonal variation in the sex ratio of Arctodiaptomus salinus (Copepoda: Calanoida): does it agree with the “cheaper-sex” hypothesis? J Plankton Res 36: 1413–1418.

Katona SK (1970) Growth characteristics of the copepods Eurytemora affinis and E. herdmani in laboratory cultures. Helgol Wiss Meeres 20: 373–384.

Landry MR (1975) The relationship between temperature and the development of the life stages of the marine copepod Acartia clausi Giesbr. Limnol Oceanogr 20: 854–857.

Lee H, Ban S, Ikeda T, Matsuishi T (2003) Effect of temperature on development, growth and reproduction in the marine copepod Pseudocalanus newmani at satiating food condition. J Plankton Res 25: 261–271.

Li C, Luo X, Huang X, Gu B (2009) Influences of temperature on development and survival, reproduction and growth of a calanoid copepod (Pseudodiaptomus daboia). Sci World J 9: 866–879.

Liu H, Hopcroft R (2006) Growth and development of Metridia pacifica in the northern Gulf of Alaska. J Plankton Res 28: 769–781.

Liu X, Beyrend-Dur D, Dur G, Ban S (2014) Effects of temperature on life history traits of Eodiaptomus japonicus (Copepoda: Calanoida) from Lake Biwa (Japan). Limnology 15: 85–97.

Liu X, Beyrend D, Dur G, Ban S (2015) Combined effects of temperature and food concentration on growth and reproduction of Eodiaptomus japonicus (Copepoda: Calanoida) from Lake Biwa (Japan). Freshwater Biol 60: 2003–2018.

Makino W, Ban S (2000) Response of life history traits to food conditions in a cyclopoid copepod from an oligotrophic environment. Limnol Oceanogr 45: 396–407.

Mauchline J (1998) The biology of calanoid copepods. In: Blaxter JHS (eds Southward AJ, Tyler PA). Academic Press, London, pp. 140–172.

Mavuti KM (1994) Durations of development and production estimates by two crustacean zooplankton species Thermocyclops oblongatus Sars (Copepoda) and Diaphanosoma exiguum Sars (Cladocera), in Lake Naivasha, Kenya. Hydrobiologia 272: 185–200.

Melão MDGG, Rocha O (2004) Life history, biomass and production of two planktonic cyclopoid copepods in a shallow subtropical reservoir. J Plankton Res 26: 909–923.

Metillo E, Masorong A, Macabangkit SA, Licayan JR, Tordesillas D, Papa RD (2014) First record of the invasive Arctodiaptomus dorsalis (Marsh, 1907) (Copepoda: Calanoida: Diaptomidae) in Lake Lanao (Mindanao Is., Philippines). Acta Manilana 62: 19–23.

Papa RDS, Mamaril Sr A (2011). History of the biodiversity and limno-ecological studies on Lake Taal with notes on the current state of Philippine limnology. Phil Sci Lett 4: 1–10.

Papa RDS, Zafaralla MT (2011) The composition, diversity and community dynamics of limnetic zooplankton in a tropical caldera lake (Lake Taal, Philippines). Raffles Bull Zool 59: 1–7.

Papa RDS, Zafaralla MT, Eckmann R (2011) Spatio-temporal variation of the zooplankton community in a tropical caldera lake with intensive aquaculture (Lake Taal, Philippines). Hydrobiologia 664: 119–133.

Papa RDS, Li H, Tordesillas DT, Han B, Dumont HJ (2012a) Massive invasion of Arctodiaptomus dorsalis (Copepoda, Calanoida, Diaptomidae) in Philippine lakes: a threat to Asian zooplankton biodiversity? Biol Inv 14: 2471–2478.

Papa RDS, Tordesillas D, Mamaril Sr A (2012b) An updated taxonomic account of limnetic crustacean zooplankton in Lake Taal, Philippines. Philipp J Sci 141: 243–252.

Perez T, Enríquez EE, Guererro III RD, Simon D, Schiemer F (2008) Catchment characteristics, hydrology, limnology and socio-economic features of Lake Taal, Philippines. In: Aquatic Ecosystems and Development: Comparative Asian Perspectives Biology of Inland Waters Series (eds Schiemer F, Simon D, Amarasinghe U, Moreau J). Backhuys Publishers, Leiden, pp. 63–80.

Petersen F (2013) An illustrated key to the Philippine freshwater zooplankton. Including some brackish water species from Laguna De Bay. With ecological notes. Available at: http://www.dafnier.dk/philippines/keyzooplankton/introduction/an_illustrated_key.htm (accessed on 10 June 2015).

Peterson WT (2001) Patterns in stage duration and development among marine and freshwater calanoid and cyclopoid copepods: a review of rules, physiological constraints, and evolu-
Laboratory culture of the invasive A. dorsalis

Pinchuk AI, Paul AJ (1998) Growth of Metridia pacifica (Copepoda: Calanoida) nauplii in the laboratory. Plankton Biol Ecol 45: 195–201.

Ramos EG (2002) Origin and geologic features of Taal Lake, Philippines. Aquat Ecosys Health Manage 5: 155–162.

Reid J (2007) Arctodiaptomus dorsalis (Marsh): A case history of copepod dispersal. Banisteria 1860: 3–18.

Riccardi N, Giussani G (2006) The relevance of life-history traits in the establishment of the invader Eudiaptomus gracilis and the extinction of Eudiaptomus padanus in Lake Candia (Northern Italy): evidence for competitive exclusion? Aquatic Ecol 41: 243–254.

Rhyne AL, Ohs CL, Stenn E (2009) Effects of temperature on reproduction and survival of the calanoid copepod Pseudodiaptomus pelagicus. Aquaculture 292: 53–59.

Rizo EZ, Pascual JA, Dy DJ, Labicane LJ, Trinidad C, Papa RD (2015) New records of an invasive calanoid copepod, Arctodiaptomus dorsalis (Marsh, 1907) in freshwater ecosystems in the Bicol Peninsula (Luzon Is., Philippines). Internat J Philipp Sci Technol 1: 27–30.

Sabatini ME (1990) Ciclo annual del copépodo Acartia tonsa Dana 1849 en la zona interna de la Bahía Blanca (Provincia de Buenos Aires, Argentina). Sci Mar 53: 847–856.

Soussi S (2012) Scientific report on the project BIO-ASIA. French Asian Study on Global Change Effects through Inter-site Comparison of Limnic Ecosystems, Université Lille 1 Sciences et Technologie, Wimereux, 51 pp.

Støttrup J (2006) A review on the status and progress in rearing copepods for marine larviculture, advantages and disadvantages, among calanoid, harpacticoid and cyclopoid copepods. Memorias del Octavo Simposium Internacional de Nutrición Acuícola 62–83.

Sullivan LJ, Kimmerer WJ (2013) Egg development times of Eurytemora affinis and Pseudodiaptomus forbesi (Copepoda, Calanoida) from the upper San Francisco Estuary with notes on methods. J Plankton Res 35: 1331–1338.

Tuyor J, Baay M (2001) Contribution to the knowledge of freshwater copepods of the Philippines. Asian Internat J Life Sci 10: 45–54.

Vista A, Norris P, Lupi F, Bernsten R (2006) Nutrient loading and efficiency of tilapia cage culture in Taal Lake, Philippines. Philipp Agr Sci 89: 48–57.

Voordouw MJ, Anholt BR (2002) Environmental sex determination in a splash pool copepod. Biol J Linn Soc 76: 511–520.

White P, San Diego-McGlone LM (2008) Ecosystem-based approach to aquaculture management. Sci Diliman 20: 1–10.

Yoshida T, Liong C, Majid AM, Toda T, Othman BHR (2012). Temperature effects on the egg development time and hatching success of three Acartia species (Copepoda: Calanoida) from the Strait of Malacca. Zool Stud 51: 644–654.