Factorization of stochastic maps using the Stinespring representations

Carlo Pandiscia

January 22, 2016

Abstract

In this work, we investigate the existence of a factorization for a unital completely positive map, between non-commutative probability space which do not change the expectation values of the events. These maps are called in literature stochastic maps. Using the Stinespring representations of completely positive map and assuming the existence of anti-unitary operator on Hilbert space related to these representations which satisfying some modular relations, we prove that stochastic maps with adjoint, admits a factorization.

1 Introduction

We study the existence of a factorization for a preserving Markov operators, question posed and debated by Anantharaman-Delaroche in [2]. The factorization problem is closely connected with the existence of a reversible dilation of a quantum dynamical system in the sense of Kummerer [11], since Haagerup and Musat they proved in [9] that the factorization property is equivalent to the existence of a reversible dilation of quantum dynamical system.

The preserving Markov operator between commutative probability spaces are factorizable and each deterministic map i.e. multiplicative preserving Markov operator between generic probability space have this property since they admits a reversible dilation (see e.g. [9], [11], [16]).

In this paper, we give a constructive methods for to determine a factorization of preserving Markov map using the Stinespring representations and assuming the existence of particular anti-unitary operator on Hilbert space of Stinespring representation. In commutative and deterministic case we have a natural choice for the anti-unitary operator which happens to be a conjugation.

We want to underline that the problem of to establish when a map admits a factorization and hence a reversible dilation, is a problem that still remains largely open, although it was posed many years ago [11].

This paper is organized as follows:
In section 2 we recall the main definitions and results on completely positive maps and quantum dynamical systems that can be found in [4], [15] and [17].

In section 3 Using the Stinespring representaions related to preserving Markov operator Φ and assuming the existence of particular anti-unitary operator on Hilbert space of Stinespring representation, we prove that Φ admits a factorization.

In section 4, After that we have introduced briefly the notion of the generalized conditional expectation of Accardi and Cecchini, which the reader can found in [1] and [5], we prove that if this map is a Umegaki conditional expectation [19], [6], then the preserving Markov operator admits a factorization.

2 Preliminaries

In this paper we consider the probability spaces (ℳ, ϕ) constituted by a von Neumann algebra ℳ and by its normal faithful state ϕ.
Let \((\mathcal{M}, \varphi)\) be a probability space, we set with \((\mathcal{H}, \varphi, \pi, \Omega, \varphi)\) the GNS representation of the normal state \(\varphi\) and with \((J_\varphi, \Delta_\varphi)\) the modular operators associated with the von Neumann algebra \(\pi(\mathcal{M})\) and with \(\{\sigma_\varphi^t\}\) its modular group.

Furthermore we set with \(\mathfrak{B}(\mathcal{H})\) the von Neumann algebra of bounded operators on Hilbert space \(\mathcal{H}\).

A stochastic map \(\Phi: (\mathcal{M}_1, \varphi_1) \rightarrow (\mathcal{M}_2, \varphi_2)\) between probability space \((\mathcal{M}_i, \varphi_i)\) with \(i = 1, 2\), is a normal unital completely positive map \(\Phi\) such that

\[
\Phi_* (\pi_\varphi(A)) = \pi_\varphi(\Phi(A))
\]

for all \(A \in \mathcal{M}_1\).

Moreover, there is a linear contraction \(U_\Phi : \mathcal{H}_{\varphi_1} \rightarrow \mathcal{H}_{\varphi_2}\) defined as

\[
U_\Phi \pi_{\varphi_1}(A) \Omega_{\varphi_1} = \pi_{\varphi_2}(\Phi(A)) \Omega_{\varphi_2}
\]

(1)

for all \(A \in \mathcal{M}_1\).

Furthermore the Stochastic map \(\Phi\) admits a \((\varphi_1, \varphi_2)\)-adjoint if there is a stochastic map \(\Phi^\sharp : (\mathcal{M}_2, \varphi_2) \rightarrow (\mathcal{M}_1, \varphi_1)\) such that

\[
\varphi_2(B, \Phi(A)) = \varphi_1(\Phi^\sharp(B, A))
\]

for all \(A \in \mathcal{M}_1\) and \(B \in \mathcal{M}_2\).

A stochastic map \(\Phi\) between two probability spaces is said be a deterministic map whether is a homomorphism of von Neumann algebras.

We have a fundamental proposition (see [1] and [12]):

Proposition 1. Let \(\Phi : (\mathcal{M}_1, \varphi_1) \rightarrow (\mathcal{M}_2, \varphi_2)\) be a stochastic map, the following conditions are equivalent:

- \(\Phi\) admits \((\varphi_1, \varphi_2)\)-adjoint
- \(\Phi_* \circ \sigma_1^\varphi = \sigma_2^\varphi \circ \Phi_*\) \(t \in \mathbb{R}\)
- \(J_{\varphi_2} \Phi = \Phi J_{\varphi_1}\).

If the equivalent conditions of the previous proposition are satisfied, then we say that \(\Phi\) is a \((\varphi_1, \varphi_2)\)-preserving Markov map [2].

We have the following definition:

Definition 1. Let \(\Phi : (\mathcal{M}_1, \varphi_1) \rightarrow (\mathcal{M}_2, \varphi_2)\) be a \((\varphi_1, \varphi_2)\)-preserving Markov map. We say that \(\Phi\) is a factorizable map if there exists a probability space \((\mathfrak{R}, \omega)\) and two deterministic preserving Markov operators \(\alpha : (\mathcal{M}_2, \varphi_2) \rightarrow (\mathfrak{R}, \omega)\) and \(\beta : (\mathcal{M}_1, \varphi_1) \rightarrow (\mathfrak{R}, \omega)\) such that \(\Phi = \alpha^\sharp \circ \beta\).

The factorization \((\alpha, \beta)\) is minimal if

\[\mathfrak{R} = \alpha(\mathcal{M}_2) \vee \beta(\mathcal{M}_1)\]

where \(\alpha(\mathcal{M}_2) \vee \beta(\mathcal{M}_1)\) is the von Neumann algebra generated by \(\alpha(\mathcal{M}_2)\) and \(\beta(\mathcal{M}_1)\).

We underline that a factorization \((\alpha, \beta)\) of the preserving Markov operator \(\Phi\) determine a factorization of linear contraction \(U_\Phi\) since

\[
U_\Phi = U_\alpha \circ U_\beta
\]

where \(U_\alpha\) and \(U_\beta\) are the linear isometries defined in [1] related to \(\alpha\) and \(\beta\) homomorphism.

In the following of the discussion, unless noted otherwise, we will consider the probability spaces \((\mathcal{M}, \Omega)\) in standard form i.e. concrete von Neumann algebra \(\mathcal{M} \subset \mathfrak{B}(\mathcal{H})\) with \(\Omega\) cyclic and separating vector of Hilbert space \(\mathcal{H}\) and stochastic map \(\Phi : (\mathcal{M}_1, \Omega_1) \rightarrow (\mathcal{M}_2, \Omega_2)\) such that

\[
(\Omega_2, \Phi(A) \Omega_2) = (\Omega_1, A \Omega_1)
\]

2
Indeed, we can define two preserving Markov maps $\alpha, \beta : (M_1, \varphi) \to (M_2, \varphi)$ such that
\[\langle A\Omega_1|\Psi(Y)|\Omega_1 \rangle = \langle \Phi(A)\Omega_2|Y\Omega_2 \rangle \]
for all $A \in M_1$ and $Y \in M_2$. We observe that if (M, φ) is a probability space then φ is factorizable. Indeed, we can define two preserving Markov maps $\alpha, \beta : (M, \varphi) \to (\pi_\varphi(M) \otimes \pi_\varphi(M), \Omega_{\varphi} \otimes \Omega_{\varphi})$ where for any $a \in M$:
\[\alpha(a) = \pi_\varphi(a) \otimes 1 \quad \text{and} \quad \beta(a) = 1 \otimes \pi_\varphi(a) \]
and $\pi_\varphi(M) \otimes \pi_\varphi(M)$ is the von Neumann algebra of $2(\mathcal{H}_1 \otimes \mathcal{H}_2)$ weakly closure of the $*$-algebra generated by elements $\sum a_i \otimes B_i$, with $A_i, B_i \in \pi_\varphi(M)$. Furthermore for the adjoint maps we have:
\[\alpha^*(A \otimes B) = \langle \Omega_{\varphi}, B\Omega_{\varphi} \rangle A \quad \text{and} \quad \beta^*(A \otimes B) = \langle \Omega_{\varphi}, A\Omega_{\varphi} \rangle B \]
for all $A, B \in \pi_\varphi(M)$ and $\varphi(a)I = \beta^*(\alpha(a)) = \alpha^*(\beta(a))$ for all $a \in M$.

We recall briefly the Stinespring representations associated to unital completely positive maps \[17\]. Let M_1 and M_2 be a concrete von Neumann algebra of $\mathcal{B}(\mathcal{H}_1)$ and $\mathcal{B}(\mathcal{H}_2)$ respectively. Let $\Phi : M_1 \to M_2$ be a normal unital completely positive map. On the algebraic tensor $M_1 \otimes \mathcal{H}_2$ we can define a semi-inner product by
\[\langle A \otimes h|X \otimes k \rangle = \langle h, \Phi(A^*X)k \rangle \]
for all $A, X \in M_1$ and $h, k \in \mathcal{H}_2$. Furthermore the Hilbert space \mathcal{L}_Φ is the completion of the quotient space $M_1 \otimes B(\mathcal{H}_2)$ of $M_1 \otimes \mathcal{H}_2$ by the linear subspace
\[\mathcal{V} = \{ \ell \in M_1 \otimes \mathcal{H}_2 : \langle \ell | \ell \rangle = 0 \} \]
with inner product induced by $\langle \cdot, \cdot \rangle$.

We shall denote the image at $A \otimes h \in M_1 \otimes \mathcal{H}_2$ in $M_1 \otimes \mathcal{H}_2$ by $A \otimes_\Phi h$, so that we have
\[\langle A \otimes_\Phi h, X \otimes_\Phi k \rangle_{\mathcal{L}_\Phi} = \langle h, \Phi(A^*X)k \rangle \]
for all $A, X \in M_1$ and $h, k \in \mathcal{H}_2$. Moreover we can define a representation $\sigma_\Phi : M_1 \to \mathcal{B}(\mathcal{L}_\Phi)$ defined by
\[\sigma_\Phi(A)(X \otimes_\Phi h) = AX \otimes_\Phi h, \]
for each $A \otimes_\Phi h \in \mathcal{L}_\Phi$ and $V_\Phi h = 1 \otimes_\Phi h$ for each $h \in \mathcal{H}_2$. Since Φ is a unital map, the linear operator V_Φ is an isometry with adjoint V_Φ^* defined as
\[V_\Phi^* A \otimes_\Phi h = \Phi(A)h \]
for all $A \in M_1$ and $h \in \mathcal{H}_2$. We can define the following linear operator $\Lambda_\Phi : \mathcal{H}_1 \to \mathcal{L}_\Phi$:
\[\Lambda_\Phi A\Omega_1 = A \otimes_\Phi \Omega_2 \]
for all $A \in M_1$.

We remark that
\[U_\Phi = V_\Phi^* \Lambda_\Phi \]
It is easy to prove that for each $A \in M_1$ and $h \in H_2$ we have:

$$\Lambda^*_\phi A \otimes \Phi h = AU^*_\phi h$$

Furthermore

$$\Lambda^*_\phi \sigma(h) \Lambda_\phi = A,$$ \hspace{1cm} (3)

and

$$\Lambda_\phi \Lambda^*_\phi \in \sigma(\Phi(M_1))'.$$ \hspace{1cm} (4)

We have a new statement:

Proposition 2. There is a normal representation $\tau_\phi : M'_2 \to B(L_\Phi)$ such that for each $Y \in M'_2$ and $A \otimes \Phi h \in L_\Phi$

$$\tau_\phi (Y) A \otimes \Phi h = A \Phi(Y) h, \hspace{1cm} (5)$$

Furthermore

$$\tau_\phi (M'_2) \subset \sigma(\Phi(M_1))',$$ \hspace{1cm} (6)

and

$$V_\Phi V^*_\Phi \in \tau_\phi (M'_2)' \hspace{1cm} (7)$$

Proof. We fix a vector $l = \sum_i^n A_i \otimes h_i \in M_1 \otimes H_2$ and we get the following linear functional on M'_2:

$$\omega_l(Y) = \langle l \vert Y l \rangle = \sum_{i,j} \langle h_i, \Phi(A_j^* A_j) Y h_j \rangle$$

for all $Y \in M'_2$.

The linear functional ω_l is positive since

$$\omega_l(Y^* Y) = \sum_{i,j} \langle Y h_i, \Phi(A_j^* A_j) Y h_j \rangle \geq 0$$

then ω_l is a continuous functional [3] with $\omega_l(1) = \langle l \vert l \rangle$ and

$$|\omega_l(Y^* Y)| \leq ||Y||^2 \omega_l(1) = ||Y||^2 \langle l \vert l \rangle$$

For each $Y \in M'_2$ we can define

$$\tau_\phi(Y) \sum_i A_i \otimes h_i = \sum_i A_i \otimes Y h_i.$$

We observe that if $l = 0$ then $\tau_\phi(Y) l = 0$ since $||\tau_\phi(Y) l||^2 = |\omega_l(Y^* Y)| \leq ||Y||^2 \langle l \vert l \rangle = 0$. Therefore $\tau_\phi(M'_2) V \subset V$ where V is the linear space [3]. It follows that $\tau_\phi : M'_2 \to B(H)$ defined as

$$\tau_\phi(Y) \sum_i A_i \otimes \Phi h_i = \sum_i A_i \otimes \Phi(Y) h_i,$$

for all $Y \in M'_2$ is a well-defined representation of the von Neumann algebra M'_2.

Let $\{Y_\alpha\}_\alpha$ be a net in M' such that $Y_\alpha \to Y$ in σ-top, for each $A \otimes \Phi h \in L_\Phi$ we obtain:

$$\langle A \otimes \Phi h, \tau_\phi(Y_\alpha) A \otimes \Phi h \rangle = \langle h, \Phi(A^* A) Y_\alpha h \rangle \to \langle h, \Phi(A^* A) Y h \rangle = \langle A \otimes \Phi h, \tau_\phi(Y) A \otimes \Phi h \rangle$$

therefore the representation τ_ϕ is σ-top continuous.

The others relationships are straightforward.
If \(\Phi : (\mathfrak{M}_1, \Omega_1) \to (\mathfrak{M}_2, \Omega_2) \) is a preserving Markov operator then
\[
\Lambda_\Phi^* \tau_\Phi(Y) \Lambda_\Phi = \Phi'(Y)
\] (8)
for all \(Y \in \mathfrak{M}'_2
\)
Indeed for each \(A \in \mathfrak{M}_1 \) we have
\[
\Lambda_\Phi^* \tau_\Phi(Y) A \Lambda_\Phi = \Lambda_\Phi^* \tau_\Phi(Y) \Lambda_\Phi = \Lambda_\Phi^* A \Lambda_\Phi = AU_\Phi Y \Omega_2
\]
\[
= A J_1 U_\Phi J_2 Y J_2 \Omega_2 = A J_1 \Phi^t(J_2 Y J_2) \Omega_1 = J_1 \Phi^t(J_2 Y J_2 J_1) \Omega_1 = \Phi'(Y) A \Lambda_\Phi
\]

We observe that \(\sigma_\Phi(\mathfrak{M}_1) \) and \(\tau_\Phi(\mathfrak{M}'_2) \) are von Neumann algebras, since the representations \(\sigma_\Phi : \mathfrak{M}_1 \to \mathcal{B}(\mathcal{H}_\Phi) \) and \(\tau_\Phi : \mathfrak{M}'_2 \to \mathcal{B}(\mathcal{H}_\Phi) \) are normal maps.
Furthermore, for each \(A \in \mathfrak{M}_2 \) and \(Y \in \mathfrak{M}'_1 \) we have:
\[
V_\Phi^* \sigma_\Phi(A) \tau_\Phi(Y) V_\Phi = \Phi(A) Y \in \mathfrak{M}_2 \cdot \mathfrak{M}'_2 \subset \mathcal{B}(\mathcal{H}_2)
\]
while
\[
\Lambda_\Phi^* \sigma_\Phi(A) \tau_\Phi(Y) \Lambda_\Phi = \Phi'(Y) \in \mathfrak{M}_1 \cdot \mathfrak{M}'_1 \subset \mathcal{B}(\mathcal{H}_1)
\]
It follows that if \(\mathfrak{B} = \sigma(\mathfrak{M}_1) \vee \tau_\Phi(\mathfrak{M}'_2) \) is von Neumann algebra of \(\mathcal{B}(\mathcal{H}_\Phi) \) generated by \(\sigma(\mathfrak{M}_1) \) and \(\tau_\Phi(\mathfrak{M}'_2) \), then we can define two unital completely positive maps \(E_i : \mathfrak{B} \to \mathfrak{M}_i \cdot \mathfrak{M}'_i \) with \(i = 1, 2 \) such that for any \(T \in \mathfrak{B} \)
\[
E_i(T) = V_\Phi^* T V_\Phi \quad \text{and} \quad E_2(T) = \Lambda_\Phi^* T \Lambda_\Phi
\]
with
\[
\langle \Omega_i, E_i(T) \Omega_i \rangle = \langle \Omega_\Phi, T \Omega_\Phi \rangle
\]
Furthermore, for any \(X_i \in \mathfrak{M}_2 \) and \(h_i \in \mathcal{H}_1 \) with \(i = 1, 2 \ldots n \), we can define
\[
W \sum_{i=1}^n X_i \overline{\otimes}_\Phi h_i = \sum_{i=1}^n J_2 X_i J_2 \overline{\otimes}_\Phi J_1 h_i
\] (9)
where
\[
||W \sum_{i=1}^n X_i \overline{\otimes}_\Phi h_i||^2 = \sum_{i,j} \langle J_2 X_i J_2 \overline{\otimes}_\Phi J_1 h_i, J_2 X_j J_2 \overline{\otimes}_\Phi J_1 h_j \rangle = \sum_{i,j} \langle J_1 h_i, \Phi'(J_2 X_i^* X_j) J_1 h_j \rangle = \sum_{i,j} \langle h_i, \Phi'(X_i^* X_j) h_j \rangle = || \sum_{i=1}^n X_i \overline{\otimes}_\Phi h_i ||^2
\]
In other words, we have an anti-unitary operator \(W : \mathcal{L}_\Phi \to \mathcal{L}_\Phi \) such that
\[
W^* \Phi_\Phi(A_1) W = \Phi_\Phi(J_1 A_1 J_1) \quad \text{and} \quad W^* \Phi_\Phi(Y_2) W = \Phi_\Phi(J_2 Y_2 J_2)
\]
for all \(A_1 \in \mathfrak{M}_1 \) and \(Y_2 \in \mathfrak{M}'_2 \).
3 Factorization of deterministic map

In this section we prove that each deterministic preserving Markov operator $\Phi : (\mathcal{M}_1, \Omega_1) \to (\mathcal{M}_2, \Omega_2)$ is factorizable.

We set with $(\mathcal{L}_{\Omega_1}, \sigma_{\Omega_1}, V_{\Omega_1})$ and $(\mathcal{L}_{\Omega_2}, \tau_{\Omega_2}, A_{\Omega_2})$ the Stinespring representatinos of Φ^\sharp, the adjoint of Φ. We observe that the vector $\Omega_{\Omega_2} = 1\otimes_{\Omega_2} \Omega_1$ is separable for the von Neumann algebra $\sigma_{\Omega_1}(\mathcal{M}_2)$ and we have a probability space $(\sigma_{\Omega_1}(\mathcal{M}_2), \omega)$ where for any $T \in \sigma_{\Omega_1}(\mathcal{M}_2)$ we have defined $\omega(T) = \langle \Omega_{\Omega_2}, T \Omega_{\Omega_2} \rangle$.

Moreover the map $\sigma_{\Omega_1} : (\mathcal{M}_2, \Omega_2) \to (\sigma_{\Omega_1}(\mathcal{M}_2), \omega)$ is a preserving Markov operator with adjoint $\sigma_{\Omega_1}^\sharp(T) = A^\sharp TA^\sharp$ for all $T \in \sigma_{\Omega_1}(\mathcal{M}_2)$ since for each \(A, B \in \mathcal{M}_2 \) we have
\[
\langle \Omega_{\Omega_2}, \sigma_{\Omega_1}(B)\sigma_{\Omega_1}(A)\Omega_{\Omega_2} \rangle = \langle \Omega_1, \Phi^\sharp(BA)\Omega_1 \rangle = \langle \Omega_2, BA\Omega_2 \rangle = \langle \Omega_2, A^\sharp\sigma_{\Omega_1}(B)A_{\Omega_1} A\Omega_2 \rangle
\]

We have the following proposition:

Proposition 3. Any deterministic preserving Markov operator $\Phi : (\mathcal{M}_1, \Omega_1) \to (\mathcal{M}_2, \Omega_2)$ admits a factorization.

Proof. We have that $\Phi^\sharp(A) = \Theta^\sharp(\sigma_{\Omega_1}(A))$ for all $A \in \mathcal{M}_1$ it follows that $\Phi = \sigma_{\Omega_1}^\sharp \circ \Theta$. \qed

4 Factorization and Stinespring representations

We want to study the possibility of extending to any preserving Markov operators, the Stinespring representations methods used in the previous section to the deterministic case.

Let $(\mathcal{M}_1, \Omega_1)$ and $(\mathcal{M}_2, \Omega_2)$ be standard von Neumann algebras in Hilbert spaces \mathcal{H}_1 and \mathcal{H}_2 respectively, and $\Phi : (\mathcal{M}_1, \Omega_1) \to (\mathcal{M}_2, \Omega_2)$ a preserving Markov map with adjoint $\Phi^\sharp : (\mathcal{M}_2, \Omega_2) \to (\mathcal{M}_1, \Omega_1)$.

We consider the Stinespring representations $(\mathcal{L}_{\Omega_1}, \sigma_{\Omega_1}, V_{\Omega_1})$ and $(\mathcal{L}_{\Omega_2}, \tau_{\Omega_2}, A_{\Omega_2})$ of Φ^\sharp.

We assume that there is anti-unitary operator $J : \mathcal{L}_{\Omega_1} \to \mathcal{L}_{\Omega_1}$ with the following property:
\[
\tilde{J}V_{\Omega_1} = V_{\Omega_1}J_1
\]

and we consider the von Neumann algebra \mathcal{R} of $\mathcal{B}(\mathcal{L}_{\Omega_1})$ generated by $\sigma_{\Omega_1}(\mathcal{M}_2)$ and $\tilde{J}^{\star}\tau_{\Omega_2}(Y_1^{\prime})\tilde{J}$.

We remark that $\Omega_{\Omega_2} \in \mathcal{L}_{\Omega_1}$ is cyclic vector for \mathcal{R} since for each $A_2 \in \mathcal{M}_2$ and $Y_1 \in \mathcal{M}_1$ we obtain
\[
\alpha(A_2)\tilde{J}^{\star}\tau_{\Omega_2}(Y_1)\tilde{J}\Omega_{\Omega_1} = A_2\tilde{J}\Omega_{\Omega_1}
\]

We observe that
\[
\mathcal{M}_1 \subseteq V_{\Omega_1}^{\star}\mathcal{R}V_{\Omega_1} \quad \text{while} \quad \mathcal{M}_2 \subseteq \Lambda_{\Omega_2}^{\star}\mathcal{R}\Lambda_{\Omega_2}
\]

We have the following proposition:

Proposition 4. Let $\Phi : (\mathcal{M}_1, \Omega_1) \to (\mathcal{M}_2, \Omega_2)$ be a preserving Markov Operator and $\tilde{J} : \mathcal{L}_{\Omega_1} \to \mathcal{L}_{\Omega_1}$ which satisfies the relationships $\{1\}$. If
\[
V_{\Omega_1}^{\star}\mathcal{R}V_{\Omega_1} \subseteq \mathcal{M}_1 \quad \text{and} \quad \Lambda_{\Omega_2}^{\star}\mathcal{R}\Lambda_{\Omega_2} \subseteq \mathcal{M}_2
\]

then $(\mathcal{M}, \Omega_{\Omega_2})$ is standard in \mathcal{L}_{Ω_2} and Φ is factorizable.
Proof. We prove that the vector Ω_{q5} is separating for \mathfrak{R}.

In fact, if $R \in \mathfrak{R}$ with $R\Omega_{q5} = 0$, then we can write that $\Lambda_{q5} R^* R \Lambda_{q5} \Omega_2 = 0$ and from relationships (11) we have that $\Lambda_{q5} R^* R \Lambda_{q5} \in \mathfrak{M}_2$ with $(\mathfrak{M}_2, \Omega_2)$ standard in \mathfrak{H}_2. It follows that $\Lambda_{q5} R^* R \Lambda_{q5} = 0$ hence $R \Lambda_{q5} = 0$.

In similar way we obtain that $RV_{q5} = 0$.

For each $A_2 \in \mathfrak{M}_2$ we have:

$$R\Lambda_{q5} A_2 \Omega_2 = R\sigma_{q5}(A_2) \Omega_{q5} = 0$$

and repeating the reasoning for $R\sigma_{q5}(A_2) \in \mathfrak{R}$ we obtain:

$$R\sigma_{q5}(A_2) \Lambda_{q5} = 0 \quad \text{and} \quad R\sigma_{q5}(A_2) V_{q5} = 0$$

hence for each $A_1 \in \mathfrak{M}_1$ result

$$R\sigma_{q5}(A_2) V_{q5} J_1 A_1 \Omega_1 = R\sigma_{q5}(A_2) \beta(A_1) \Omega_{q5} = 0$$

in other words $R A_2 \sigma_{q5} A_1 \Omega_1 = 0$ for all $A_2 \in \mathfrak{M}_2$ and $A_1 \in \mathfrak{M}_1$.

We consider $\sigma_{q5} : (\mathfrak{M}_2, \Omega_2) \to (\mathfrak{R}, \Omega_{q5})$, with

$$\sigma_{q5}^2(T) = \Lambda_{q5}^* T \Lambda_{q5} \in \mathfrak{M}_2$$

for all $T \in \mathfrak{R}$, since

$$\langle \Omega_2, A_2 \Lambda_{q5}^* T \Lambda_{q5} \Omega_2 \rangle = \langle \Lambda_{q5} A_2^* \Omega_2, T \Omega_{q5} \rangle = \langle \Omega_{q5}, \sigma_{q5}(A_2) T \Omega_{q5} \rangle$$

We can define an another stochastic map $\beta : (\mathfrak{M}_1, \Omega_1) \to (\mathfrak{R}, \Omega_{q5})$ as

$$\beta(A_1) = \tilde{J}^* \tau_{q5}(J_1 A_1 J_1) \tilde{J}$$

for all $A_1 \in \mathfrak{M}_1$, with

$$\beta^2(T) = V_{q5}^* T V_{q5} \in \mathfrak{M}_1$$

for all $T \in \mathfrak{R}$.

Indeed

$$\langle \Omega_{q5}, \beta(A_1) T \Omega_{q5} \rangle = \langle \Omega_{q5}, \tilde{J}^* \tau_{q5}(J_1 A_1 J_1) \tilde{J} T \Omega_{q5} \rangle = \langle \tilde{J}^* V_{q5} J_1 A_1^* J_1 \Omega_1, T \Omega_{q5} \rangle = \langle \hat{V}_{q5} \Omega_1, T \Omega_{q5} \rangle = \langle \hat{V}_{q5} A_1^* \Omega_1, T \Omega_{q5} \rangle = \langle \Omega_1, A_1 \beta^2(T) \Omega_1 \rangle$$

Furthermore, we have:

$$\beta^2(\sigma_{q5}(A_2)) = \Phi^2(A_2)$$

for all $A_2 \in \mathfrak{M}_2$, hence $\Phi = \sigma_{q5}^2 \circ \beta$.

We observe that if $\tilde{J} \Lambda_{q5} = \Lambda_{q5} J_2$ and $\sigma_{q5}(\mathfrak{M}_2) \subset \beta(\mathfrak{M}_1)'$ then the relationships (11) are satisfying, since \mathfrak{R} is generated by set of elements

$$\{\sigma_{q5}(A_2) \cdot \beta(Y_1) : A_2 \in \mathfrak{M}_2 \quad Y_1 \in \mathfrak{M}_1\}$$

and by relationships (9), (4) and (8) we have:

$$\Lambda_{q5} \sigma_{q5}(A_2) \tilde{J}^* \tau_{q5}(Y_1) \tilde{J} \Lambda_{q5} = \Lambda_{q5} \sigma_{q5}(A_2) \Lambda_{q5} \Lambda_{q5} \tilde{J}^* \tau_{q5}(Y_1) \Lambda_{q5} = \Lambda_{q5} \sigma_{q5}(A_2) \Lambda_{q5} J_2 \Lambda_{q5} \tau_{q5}(Y_1) \Lambda_{q5} J_2 = A_2 \Phi(J_1 Y_1 J_1) \in \mathfrak{M}_2$$
for all \(A_2 \in \mathfrak{M}_2 \) and \(Y_1 \in \mathfrak{M}_1 \).

In similar way we have:

\[
V_{\Phi_1}^* \sigma_{\Phi_1}(A_2) \hat{J}^* \tau_{\Phi_1}(Y_1) \hat{J} V_{\Phi_1} = \Phi^i(A_2)J_1 Y_1 J_1 \in \mathfrak{M}_1
\]

We see some applications of the previous proposition.

Factorization in Abelian case

If \(\Phi : (\mathfrak{M}_1, \Omega_1) \to (\mathfrak{M}_2, \Omega_2) \) is a preserving Markov operator between commutative probability spaces then is factorizable.

Indeed, we consider the anti-unitary operator \(W : \mathcal{L}_{\Phi} \to \mathcal{L}_{\Phi'} \) defined in (11) and the homomorphism \(\beta(A_1) = W^* \tau_{\Phi_1}(J_1 A_1 J_1) W \) for all \(A_1 \in \mathfrak{M}_1 \).

In abelian case, because our von Neumann algebras are in standard form, we have that \(\mathfrak{M}_i = \mathfrak{M}'_i \) for \(i = 1, 2 \) and \(\Phi^i = \Phi' \) with

\[
W^* \tau_{\Phi_1}(\mathfrak{M}_1') W = \tau_{\Phi_1}(\mathfrak{M}_1') = \tau_{\Phi_1}(\mathfrak{M}_1)
\]

since \(\tau_{\Phi_1} = \tau_{\Phi'} \).

We remark that the anti-unitary \(W \) is an involution i.e. \(W^2 = 1 \).

Hence, the von Neumann algebra \(\mathfrak{N} \) is generated by algebra \(\sigma_{\Phi_1}(\mathfrak{M}_2) \) and \(\tau_{\Phi_1}(\mathfrak{M}_1') \). From relationship (10) and of the previous remark, we have that \(\Omega_{\Phi_1} \) is a cyclic and separable vector for \(\mathfrak{N} \) and the pair \((\sigma_{\Phi_1}, \beta)\) is a minimal factorization of \(\Phi \).

Deterministic case

We consider again the deterministic case, we proof that there is an anti-unitary operator \(\hat{J} \) which satisfies the relationship (10) and

\[
\hat{J}^* \tau_{\Phi_1}(\mathfrak{M}_1') \hat{J} \subset \sigma_{\Phi_1}(\mathfrak{M}_2)
\]

in other words that \(\mathfrak{N} = \sigma_{\Phi_1}(\mathfrak{M}_2) \).

Because \(\Omega_{\Phi_1} \) is a cyclic vector for \(\sigma_{\Phi_1}(\mathfrak{M}_2)' \) we can consider the following anti-linear map

\[
\hat{J}^* T' \Omega_{\Phi_1} := J_2 \Lambda_{\Phi_1}^* T' \Lambda_{\Phi_1} J_2 \otimes_{\Phi_1} \Omega_1 \quad T' \in \sigma_{\Phi_1}(\mathfrak{M}_2)'
\]

(12)

We remark that

\[
\Lambda_{\Phi_1}^* \sigma_{\Phi}(\mathfrak{M}_2)' \Lambda_{\Phi_1} \subset (\Lambda_{\Phi_1}^* \sigma_{\Phi}(\mathfrak{M}_2) \Lambda_{\Phi_1})' = \mathfrak{M}_2'
\]

because \(\Lambda_{\Phi_1} \Lambda_{\Phi_1}^* \in \sigma_{\Phi_1}(\mathfrak{M}_2)' \).

Furthermore, we have for any \(A_2 \in \mathfrak{M}_2 \) and \(h_1 \in \mathfrak{H}_1 \) that

\[
\hat{J}^* A_2 \otimes_{\Phi_1} h_1 = \Lambda_{\Phi_1} J_2 A_2 U_\Phi h_1
\]

since for any \(T' \in \sigma_{\Phi_1}(\mathfrak{M}_2)' \) and \(A_2 \in \mathfrak{M}_2 \), \(h_1 \in \mathfrak{H}_1 \) we have

\[
\langle \hat{J}^* A_2 \otimes_{\Phi_1} h_1, T' \Omega_{\Phi_1} \rangle = \langle \hat{J} T' \Omega_{\Phi_1}, A_2 \otimes_{\Phi_1} h_1 \rangle = \langle J_2 \Lambda_{\Phi_1}^* T' \Lambda_{\Phi_1} J_2 \otimes_{\Phi_1} \Omega_1, A_2 \otimes_{\Phi_1} h_1 \rangle = \langle \Omega_1, \Phi^i(J_2 \Lambda_{\Phi_1}^* T' \Lambda_{\Phi_1} J_2 A_2) h_1 \rangle = \langle U_\Phi^i A_2^* \Lambda_{\Phi_1}^* T' \Omega_{\Phi_1}, h_1 \rangle = \langle \Lambda_{\Phi_1} J_2 A_2 U_\Phi h_1, T' \Omega_{\Phi_1} \rangle
\]

Moreover \(\hat{J}^* \hat{J} = \Lambda_{\Phi_1} \Lambda_{\Phi_1}^* \) and since \(\Phi \) is a multiplicative map we have \(\Lambda_{\Phi_1} \Lambda_{\Phi_1}^* = I \).

Since \(\Phi \) is a multiplicative map we have \(U_\Phi^i A_2 U_\Phi = \Phi^i(A_2) \) for all \(A_2 \in \mathfrak{M}_2 \) and

\[
\langle \hat{J}^* A_2 \otimes_{\Phi_1} h_1, \hat{J}^* B_2 \otimes_{\Phi_1} k_1 \rangle = \langle \Lambda_{\Phi_1} J_2 A_2 U_\Phi h_1, \Lambda_{\Phi_1} J_2 B_2 U_\Phi k_1 \rangle = \langle B_2 U_\Phi k_1, A_2 U_\Phi h_1 \rangle = \langle k_1, U_\Phi^* B_2^* A_2 U_\Phi h_1 \rangle = \langle k_1, \Phi^i(B_2^* A_2) h_1 \rangle = \langle B_2 \otimes_{\Phi_1} K_1, A_2 \otimes_{\Phi_1} h_1 \rangle
\]
It follows that $\hat{J}^* = I$.

We observe that for any $R', T' \in \sigma_{\Phi_2}(\mathcal{M}_2)'$ and $A_1 \in \mathcal{M}_1$ we have

$$\langle R' \Omega_{\Phi_2}, \hat{J}^* \tau_{\Phi_2}(J_1 A_1 J_1) \hat{J} T' \Omega_{\Phi_2} \rangle = \langle \tau_{\Phi_2}(J_1 A_1 J_1) \hat{J}^* T' \Omega_{\Phi_2}, \hat{J} R' \Omega_{\Phi_2} \rangle =$$

$$= \langle J_2 A_2^* T' A_2 \Omega_{\Phi_2}, J_1 A_1 \Omega_1 \rangle = \langle J_2 A_2^* T' A_2 \Omega_{\Phi_2}, J_1 A_1 \Omega_1 \rangle =$$

$$= \langle J_1 A_1 \Omega_1, \Phi_2(J_2 A_2^* T' A_2) \Omega_1 \rangle = \langle J_1 A_1 \Omega_1, \Phi_2(J_2 A_2^* T' A_2) \Omega_1 \rangle =$$

$$= \langle J_1 U_2 \Phi_2(A_1), J_2 A_2^* T' A_2 \Omega_2 \rangle = \langle J_1 U_2 \Phi_2(A_1), J_2 A_2^* T' A_2 \Omega_2 \rangle =$$

$$= \langle J_1 U_2 \Phi_2(A_1), J_2 A_2^* T' A_2 \Omega_2 \rangle = \langle J_1 U_2 \Phi_2(A_1), J_2 A_2^* T' A_2 \Omega_2 \rangle =$$

$$= \langle J_1 U_2 \Phi_2(A_1), J_2 A_2^* T' A_2 \Omega_2 \rangle = \langle J_1 U_2 \Phi_2(A_1), J_2 A_2^* T' A_2 \Omega_2 \rangle =$$

Because Ω_{Φ_2} is cyclic for $\sigma_{\Phi_2}(\mathcal{M}_2)'$ we can write

$$\hat{J}^* \tau_{\Phi_2}(J_1 A_1 J_1) \hat{J} = \Lambda_{\Phi_2}^* \Lambda_{\Phi_2}^* \sigma_{\Phi_2}(\Phi(A_1)) = \sigma_{\Phi_2}(\Phi(A_1))$$

thus

$$\hat{J}^* \tau_{\Phi_2}(\mathcal{M}_1') \hat{J} \subset \sigma_{\Phi_2}(\mathcal{M}_2)$$

Moreover for any $A_2 \Omega_{\Phi_2} h_1 \in \mathcal{L}_{\Phi_2}$ we have

$$\Lambda_{\Phi_2}^* \hat{J} A_2 \Omega_{\Phi_2} h_1 = J_2 A_2 U_2 h_1 = J_2 \Lambda_{\Phi_2}^* A_2 \Omega_{\Phi_2} h_1$$

and

$$V_{\Phi_2}^* \hat{J}^* A_2 \Omega_{\Phi_2} h_1 = V_{\Phi_2}^* \Lambda_{\Phi_2} J_2 A_2 U_2 h_1 = J_1 \Phi_2(A_2) h_1 =$$

$$J_1 V_{\Phi_2}^* A_2 \Omega_{\Phi_2} h_1$$

We observe that the anti-unitary operator \hat{J} is an involution since:

$$\langle \hat{J} A_2 \Omega_{\Phi_2} h_1, \hat{J} A_2 \Omega_{\Phi_2} h_1 \rangle = \langle \Lambda J_2 A_2 U_2 h_1, \hat{J} A_2 \Omega_{\Phi_2} h_1 \rangle =$$

$$= \langle \Lambda J_2 A_2 U_2 h_1, \hat{J} A_2 \Omega_{\Phi_2} h_1 \rangle =$$

$$= \langle \Lambda J_2 A_2 U_2 h_1, \hat{J} A_2 \Omega_{\Phi_2} h_1 \rangle =$$

since $A_2 \Omega_{\Phi_2} h_1 = \Lambda_{\Phi_2}^* A_2 \Omega_{\Phi_2} h_1 = \Lambda_{\Phi_2}^* A_2 U_2 h_1$.

5 Factorization and generalized conditional expectation

We recall briefly the notion of generalized conditional expectation of Accardi and Cecchini [1]. Let (\mathcal{M}, φ) be a probability space and \mathcal{A} a von Neumann algebra with $i: \mathcal{M} \to \mathcal{A}$ a injective homomorphism between von Neumann algebras.

We set with the space of normal \mathcal{G}_φ the set:

$$\mathcal{G}_\varphi = \{ \omega \in \mathcal{M}_*: \omega(i(a)) = \varphi(a) \text{ for all } a \in \mathcal{M} \}$$

where \mathcal{M}_* the predual of \mathcal{M}.

Let $(\mathcal{H}_\omega, \pi_\omega, J_\omega, P_\omega)$ be a standard representation of algebra of von Neumann \mathcal{M} [3], it is widely know that there is a unique $\xi_\omega \in P_\omega$ such that

$$\omega(X) = \langle \xi_\omega \pi_\omega(X) \xi_\omega \rangle \quad \text{for all } X \in \mathcal{M}$$

9
We define the following isometry \(\nabla_\omega : \mathcal{H}_\omega \to \mathcal{H}_\omega \):
\[
\nabla_\omega \pi_\omega(a)\Omega_\omega = \pi_s(i(a))\xi_\omega \quad \text{for all } a \in \mathcal{M}
\]
and we obtain (see [1]) a unital completely positive map \(\mathcal{E}_\omega : \mathcal{M} \to \mathcal{M} \) such that
\[
\pi_\omega(\mathcal{E}_\omega(X)) = J_\omega \nabla_\omega^* \pi_s(X) J_\omega \nabla_\omega \quad \text{for all } X \in \mathcal{M}
\]
Furthermore \(\mathcal{E}_\omega(i(a)) = a \) for all \(a \in \mathcal{M} \) if, and only if \(J_\omega \nabla_\omega = \nabla_\omega J_\omega \).

We consider again the preserving Markov Operator \(\Phi : (\mathcal{M}_1, \Omega_1) \to (\mathcal{M}_2, \Omega_2) \) and the Stinespring representations \((\mathcal{L}_{\Phi_1}, \sigma_{\Phi_1}, V_{\Phi_1}) \) and \((\mathcal{L}_{\Phi_2}, \tau_{\Phi_2}, A_{\Phi_2}) \) related to adjoint map \(\Phi^* \).
Let \(\tilde{J} : \mathcal{L}_{\Phi_2} \to \mathcal{L}_{\Phi_2} \) be an anti-unitary operator with the property \((11) \) and we set with \(\mathcal{M} \) the von Neumann algebra generated by \(\sigma_{\Phi_2}(\mathcal{M}_2) \) and \(\tilde{J}\tau_{\Phi_2}(\mathcal{M}_2')\tilde{J} \).
Moreover, let \((\pi_s, \mathcal{H}_s, J_s, \mathcal{P}_s) \) be the standard representation of \(\mathcal{M} \), we define the following isometries \(\nabla_i : \mathcal{H}_i \to \mathcal{L}_{\Phi_2} \) as
\[
\nabla_1 A_1 \Omega_1 = \pi_s(\beta(A_1))\Omega_1 \quad A_1 \in \mathcal{M}_1
\]
\[
\nabla_2 A_2 \Omega_2 = \pi_s(\sigma_{\Phi_2}(A_2))\Omega_2 \quad A_2 \in \mathcal{M}_2
\]
where \(\beta(A_1) = \tilde{J}^* \tau_{\Phi_2}(J_1 A_1 J_1) \tilde{J} \) for all \(A_1 \in \mathcal{M}_1 \).

We have a generalized conditional expectations \(\mathcal{E}_i : \mathcal{M} \to \mathcal{M}_i \) with \(i = 1, 2 \) such that for each \(R \in \mathcal{M} \)
\[
\mathcal{E}_i(R) = J_i \nabla_i^* J_i \pi_s(R) J_i \nabla_i J_i \quad (13)
\]
Furthermore we have \(\mathcal{E}_1(\beta(A_1)) = A_1 \) and \(\mathcal{E}_1(\sigma_{\Phi_2}(A_2)) = A_2 \) for all \(A_i \in \mathcal{M}_i \), with \(i = 1, 2 \) if, and only if
\[
J_i \nabla_i = \nabla_i J_i \quad (14)
\]
The vector \(\Omega_{\Phi_2} \) is cyclic for \(\mathcal{M} \) and we have the following:

Proposition 5. If the relationships \((14) \) hold then \(\Omega_{\Phi_2} \) is a separating vector for \(\mathcal{M} \).
Furthermore we have
\[
\langle \Omega_{\Phi_2}, R\sigma_{\Phi_2}(A_2) \rangle = \langle \Omega_2, \mathcal{E}_2(R) A_2 \Omega_2 \rangle \quad R \in \mathcal{M} \quad A_2 \in \mathcal{M}_2 \quad (15)
\]
and
\[
\langle \Omega_{\Phi_2}, R\beta(A_1) \rangle = \langle \Omega_1, \mathcal{E}_1(R) A_1 \Omega_1 \rangle \quad R \in \mathcal{M} \quad A_1 \in \mathcal{M}_1 \quad (16)
\]
in other words \(\mathcal{E}_1 \) and \(\mathcal{E}_2 \) are adjoints maps of \(\beta \) and \(\alpha \) respectively.

Proof. The proof of separating property is similar the previous proposition. Indeed, let \(R \) belongs to \(\mathcal{M} \) such that \(R\Omega_{\Phi_2} = 0 \). From \((13) \) we have that \(\nabla_i^* R^* R \nabla_i \Omega_i = 0 \) for all \(i = 1, 2 \).
It follows that \(R \nabla_i = 0 \) for all \(i = 1, 2 \).
For each \(A_2 \in \mathcal{M}_2 \) we obtain:
\[
R \nabla_2 A_2 \Omega_2 = R \sigma_{\Phi_2}(A_2) \Omega_{\Phi_2} = 0
\]
and repeating the argument for \(R \sigma_{\Phi_2}(A_2) \in \mathcal{M} \) we obtain:
\[
R \sigma_{\Phi_2}(A_2) \nabla_i = 0
\]
and for each \(A_1 \in \mathcal{M}_1 \) we have
\[
R \sigma_{\Phi_2}(A_2) \nabla_1 A_1 \Omega_1 = R \sigma_{\Phi_2}(A_2) \beta(A_1) \Omega_{\Phi_2} = 0
\]

de fact \(RA_2 \nabla_{\Phi_2} A_1 \Omega_1 = 0 \) for all \(A_i \in \mathcal{M}_i \) with \(i = 1, 2 \).
We have for all \(R \in \mathcal{M} \) and \(A_i \in \mathcal{M}_i \quad i = 1, 2 \)
\[
\langle \Omega_2, \mathcal{E}_2(R) A_2 \Omega_2 \rangle = \langle \Omega_2, \nabla_2^* R \nabla_2 A_2 \Omega_2 \rangle = \langle \Omega_2, \pi_s(R \sigma_{\Phi_2}(A_2) \Omega_2) \rangle = \langle \Omega_{\Phi_2}, R \sigma_{\Phi_2}(A_2) \Omega_{\Phi_2} \rangle
\]
while
\[\langle \Omega_1, \mathcal{E}_1(R)A_1\Omega_1 \rangle = \langle \Omega_1, \nabla_1^1 R\nabla_1 A_1\Omega_1 \rangle = \langle \Omega_s, \pi_s(R\beta(A_1))\Omega_s \rangle = \langle \Omega_{\Phi^\dagger}, R\beta(A_1)\Omega_{\Phi^\dagger} \rangle \]

We can give the following proposition:

Corollary 1. If the relationships \((14) \) is hold then \(\Phi \) is a factorizable map.

Proof. We have that \(\Phi^\dagger(A_1) = \beta^\dagger(\alpha(A_1)) \) for all \(A_1 \in \mathcal{M}_1 \).

Indeed
\[\langle A_1\Omega_1, \beta^\dagger(\alpha(A_2))\Omega_1 \rangle = \langle A_1\Omega_1, \nabla_1^1 \pi_s(\sigma_{\Phi^\dagger}(A_2))\nabla_1\Omega_1 \rangle = \langle \pi_s(\beta(A_1))\Omega_s, \pi_s(\sigma_{\Phi^\dagger}(A_2))\Omega_s \rangle = \langle \beta(A_1)\Omega_{\Phi^\dagger}, \sigma_{\Phi^\dagger}(A_2)\Omega_{\Phi^\dagger} \rangle = \langle 1\otimes_{\Phi^\dagger} A_1\Omega_1, A_2\otimes_{\Phi^\dagger}\Omega_1 \rangle = \langle A_1\Omega_1, \Phi^\dagger(A_2)\Omega_1 \rangle \]

We have an isometry \(\Xi : \mathcal{L}_{\Phi^\dagger} \to \mathcal{H}_s \) such that
\[\Xi A_i \otimes_{\Phi^\dagger} A_1\Omega_1 = \pi_s(\sigma_{\Phi^\dagger}(A_2))\beta(A_1))\xi_\omega \]
for all \(A_i \in \mathcal{M}_i \) with \(i = 1, 2 \), where
\[\langle \Omega_{\Phi^\dagger}, X\Omega_{\Phi^\dagger} \rangle = \langle \xi_\omega, \pi_s(X)\xi_\omega \rangle \quad \text{for all} \quad X \in \mathcal{M} \]

Moreover
\[\Xi V_{\Phi^\dagger} = \nabla_1 \quad \text{and} \quad \Xi A_{\Phi^\dagger} = \nabla_2 \]

and if the \((14) \) is hold, we can write a relationship between the anti-unitary \(\hat{J} \) and the modular conjugation \(J_s \):
\[\hat{J}V_{\Phi^\dagger} = \Xi^* J_s \Xi V_{\Phi^\dagger} \]

We observe that for each \(R \in \mathcal{M} \) we have:
\[V_{\Phi^\dagger}^* RV_{\Phi^\dagger} = \nabla_1^1 \pi_s(R)\nabla_1 \quad \text{and} \quad A_{\Phi^\dagger}^* RA_{\Phi^\dagger} = \nabla_2^2 \pi_s(R)\nabla_2 \]

Indeed for each \(A_1, B_1 \in \mathcal{M}_1 \) with \(i = 1, 2 \) we can write:
\[\langle B_1\Omega_1, \nabla_1^1 \pi_s(R)\nabla_1 A_1\Omega_1 \rangle = \langle \xi_\omega, \pi_s(\beta(B_1^\dagger))\pi_s(R)\pi_s(\beta(A_1))\xi_\omega \rangle = \langle \Omega_{\Phi^\dagger}, \beta(B_1^\dagger)R\beta(A_1)\Omega_{\Phi^\dagger} \rangle = \langle \hat{J}V_{\Phi^\dagger} J_1 B_1\Omega_1, R\hat{J}V_{\Phi^\dagger} J_1 A_1\Omega_1 \rangle = \langle V_{\Phi^\dagger} B_1\Omega_1, RV_{\Phi^\dagger} A_1\Omega_1 \rangle = \langle B_1\Omega_1, V_{\Phi^\dagger}^* RV_{\Phi^\dagger} A_1\Omega_1 \rangle \]

while
\[\langle B_2\Omega_2, \nabla_2^2 \pi_s(R)\nabla_2 A_2\Omega_2 \rangle = \langle \xi_\omega, \pi_s(\sigma_{\Phi^\dagger}(B_2^\dagger))\pi_s(R)\pi_s(\sigma_{\Phi^\dagger}(A_2))\xi_\omega \rangle = \langle \Lambda_{\Phi^\dagger} B_2\Omega_2, R\Lambda_{\Phi^\dagger} A_2\Omega_2 \rangle = \langle B_2\Omega_2, \Lambda_{\Phi^\dagger}^* R\Lambda_{\Phi^\dagger} A_2\Omega_2 \rangle \]

We can give a simple remark:

Remark 1. We have that \(J_s \nabla_i = \nabla_i J_i \) with \(i = 1, 2 \) if, and only if
\[\mathcal{E}_1(R) = V^* RV \quad \text{and} \quad \mathcal{E}_2(R) = \Lambda^* RA \]

for all \(R \in \mathcal{M} \).
6 Conclusion

In this paper we have given a simple method to determine when a preserving Markov operator is factorizable. It is based on the appropriate selection of an anti-unitary operator \(\hat{J} \) on Hilbert space of Stinespring representation \(L_\Phi \).

A useful tool to establish the anti-unitary operator \(\hat{J} \) be found in [12] and [13] since there is a strong connection between conjugation operator and antilinear Jordan map of von Neumann algebra. Indeed, for each antilinear Jordan map \(\gamma : \sigma_{\Phi}(\mathcal{M}_2)' \rightarrow \sigma_{\Phi}(\mathcal{M}_2)' \), i.e.

1. \(\gamma \) is an antilinear bijection
2. \(\gamma \circ \gamma = i \) where \(i \) is identity map
3. \(\gamma(T^*) = \gamma(A)^* \) for all \(T \in \sigma_{\Phi}(\mathcal{M}_2)' \)
4. \(\gamma(\{T, S\}) = \{\gamma(T), \gamma(S)\} \) for all \(T, S \in \sigma_{\Phi}(\mathcal{M}_2)' \)

we can define a conjugation \(\hat{J} \) on Hilbert space \(L_{\Phi} \) \[12\] as \(\hat{J}T\Omega_{\Phi} = \gamma(T)\Omega_{\Phi} \) for all \(T \in \sigma_{\Phi}(\mathcal{M}_2)' \).

We remark that for the relationship \[10\], this Jordan map must necessarily satisfy the following property:

\[\gamma(\tau_{\Phi}(y))\Omega_{\Phi} = V_{\Phi}J_1y\Omega_1 \]

for all \(y \in \mathcal{M}_1 \).

References

[1] L. Accardi and C. Cecchini: Conditional expectations in von Neumann algebras and a theorem of Takesaki, J. Funct. Anal. 45 (1982) 245-273.
[2] C. Anantharaman Delaroche: On ergodic theorems for free groups actions on noncommutative spaces, Prob. Theory Rel. Fields 135 (2006) 520-546.
[3] O. Bratteli and D.W. Robinson: Operator algebras and quantum mechanics, Vol. 1, Springer Verlag (1979).
[4] N.P. Brown and N. Ozawa: C*-algebras and Finite-dimensional Approximations, American Mathematical society Vol. 88 (2008)
[5] C. Cecchini: Conditional expectations on von Neumann algebras, Quantum Probability Communications Vol. XI (2003) 73-85
[6] I. Cuculescu and A.G. Oprea: Noncommutative probability, Springer Science+Business Media (1994)
[7] J. Dixmier von Neumann algebras - North-Holland Publishing Company (1981)
[8] U. Haagerup: The standard cform of von Neumann algebras, Math. Scand. 37 (1975) 271-283.
[9] U. Haagerup and M. Musat: Factorization and dilation problems for completely positive maps on von Neumann algebras, Commun. Math. Phys. 303 (2011) 555-594.
[10] R.V. Kadison and J.R. Ringrose: Fundamentals of the theory of operator algebras Vol. I and II, Academic Press (1983).
[11] B. Kümmerer: Markov dilation on \(W^* \)-algebras, J. Funct. Analysis 63 (1985) 139-177.
[12] W.A. Majewski: The detailed balance condition in quantum statistical mechanics, J. Math. Phys. vol. 25, (1984) 614-616

12
[13] W.A. Majewski: Dynamical semigroups in the algebraic formulation of statistical mechanics,
Fortschr. Phys. vol. 32 n.1 (1984) 89-133

[14] A. Mohari: A mean ergodic theorem of an amenable group action, Infin. Dimens. Anal. Quantum
Probab. and Rel. Top. 17 (2014) 1450003

[15] C. Niculescu, A. Ströh A. and L. Zsidó: Non commutative extensions of classical and multiple
recurrence theorems, Operator Theory 50 (2002) 3-52.

[16] C. Pandiscia: Covariant GNS representation for open C*- dynamical system, Infin. Dimens. Anal.
Quantum Probab. and Rel. Top 16 (2013) 1350033

[17] V.I. Paulsen: Completely bounded maps and dilations, Pitman Research Notes in Mathematics 146,
Longman Scientific Technical (1986)

[18] G. Pisier: Similarity problems and completely bounded maps, Springer Verlag (2001).

[19] H. Umegaki: Conditional expectations in an operator algebra, Tohoku Math. J.6 (1954) 177-181