INTRODUCTION TO QUANTUM THEORY

Since its emergence in the early twentieth century, quantum theory has become the fundamental physical paradigm, and is essential to our understanding of the world.

Providing a deeper understanding of the microscopic world through quantum theory, this supplementary text covers a wider range of topics than conventional textbooks. Emphasis is given to modern achievements such as entanglement, quantum teleportation, and Bose–Einstein condensation. Macroscopic quantum effects of practical relevance, for example, superconductivity and the quantum Hall effect, are also described. Looking to the future, the author discusses the exciting prospects for quantum computing.

Physical, rather than formal, explanations are given, and mathematical formalism is kept to a minimum so that readers can understand the concepts. Theoretical discussions are combined with a description of the corresponding experimental results. This book is ideal for undergraduate and graduate students in quantum theory and quantum optics.

Harry Paul is a retired Professor of Theoretical Physics at the Institute of Physics, Humboldt University Berlin. His research interests are in nuclear physics and quantum theory, especially laser theory, nonlinear optics and quantum optics.
INTRODUCTION TO QUANTUM THEORY

HARRY PAUL

Humboldt-Universität zu Berlin
Contents

Preface
1 Unexpected findings
1.1 Prelude: a new constant enters the stage
1.2 Observing the invisible
1.3 Indeterminism
1.4 Wave–particle dualism and a new kind of uncertainty
1.5 Quantized energies

2 Quantum states
2.1 Elements of the quantum mechanical formalism
2.2 Pure states
2.3 Mixed states
2.4 Wigner function
2.5 How to describe a single system?
2.6 State preparation
2.7 State reconstruction

3 Measurement
3.1 Spin measurement
3.2 Balanced homodyne detection
3.3 Utilizing resonance fluorescence
3.4 Null measurement
3.5 Simultaneous measurement of conjugate variables
3.6 Characteristic features of quantum measurement

4 Correlations
4.1 Field correlations
4.2 $\gamma-\gamma$ angular correlations
4.3 Entanglement
4.4 Quantum fluctuations
4.5 Amplifier noise
Contents

5 Philosophy 93
 5.1 Schrödinger’s cat states 93
 5.2 The EPR paradox 95
 5.3 Causality and nonobjectifiability 97
 5.4 Protection against eavesdropping 99
 5.5 EPR correlations and hidden variables 100

6 Interaction 105
 6.1 Atomic structures 105
 6.2 Transitions 109
 6.3 Scattering 114
 6.4 Tunnelling effect 119

7 Conservation laws 124
 7.1 Energy and momentum conservation 124
 7.2 Angular momentum conservation 128

8 Spin and statistics 130
 8.1 Photons and electrons 130
 8.2 Bose–Einstein condensation 132
 8.3 Statistics 134
 8.4 Symmetry 140

9 Macroscopic quantum effects 144
 9.1 Quantum mechanics casts its shadows before it 144
 9.2 Superconductivity 145
 9.3 Quantum Hall effect 154

10 Quantum computing 159
 10.1 Why quantum computing? 159
 10.2 Qubits 160
 10.3 How might a quantum computer work? 162
 10.4 Effective quantum algorithms 167

References 173
Index 175
Preface

This is an unconventional introduction to quantum mechanics. Emphasis is laid on the physical aspects rather than the formal apparatus. (As a side-effect, the book will be easier to read than usual textbooks in which mathematics is predominant.) To elucidate the novel features displayed by the quantum world, comparison is made with classical physics whenever possible, thus emphasizing the anti-intuitive (in German: ‘unanschaulich’) character of the new physics.

It is my goal to discuss thoroughly the basic quantum mechanical concepts, such as quantum states and their preparation, quantum mechanical uncertainty, quantum correlations and quantum measurement. In addition, selected experiments are reported that show up the potential of quantum theory and, by the way, tell us of the ingenuity of the researchers. Many of those experiments are taken from quantum optics which, in fact, is a wonderful playing ground for quantum physicists. In particular, exciting theoretical concepts, such as the famous gedanken experiment of Einstein, Podolsky and Rosen, and quantum teleportation, could be realized experimentally. Those achievements, of course, find their due place in this book.

Attention is also given to the mysterious interrelationship between spin and statistics, which makes the behaviour of Fermi and Bose gases so different. A special paragraph is devoted to the experimental verification of Bose–Einstein condensation, one of the highlights of experimental research in the last two decades.

Furthermore, fundamental interaction processes, notably scattering, are treated, as well as macroscopic quantum effects, such as superconductivity and the Josephson and quantum Hall effects. Finally, the intriguing concept of quantum computers is briefly discussed.

With this book, I hope to contribute to a deeper understanding of quantum mechanics and its ‘mysteries’. So it might supplement, certainly not substitute,
existing textbooks on quantum theory and quantum optics. It addresses mainly students and scientific workers. However, they should already be familiar with the quantum mechanical formalism.

What fascinates me on quantum physics is, first of all, ideas. I hope, I can convey some of my enthusiasm to the reader.