Two-fold complex network approach to discover the impact of word-order in Urdu language

Nuzhat Khan¹, Mohamad Anuar Kamaruddin², Usman Ullah Sheikh³, Muhammad Paend Bakht⁴

¹School of Industrial Technology, Universiti Sains Malaysia, Malaysia
²School of Electrical Engineering, Universiti Teknologi Malaysia, Malaysia
³Faculty of Information and Communication Technology, Balochistan University of Information, Technology, Engineering and Management Sciences, Pakistan

ABSTRACT

This work examines standard Urdu text to confirm impact of word order in the language structure. The complex network approach is used to obtain universal properties of two different word co-occurrence networks. Macro and micro scale two-fold examinations of networks are performed for structure discovery. While preserving the vocabulary size, two networks are generated from same text with and without standard word order. In addition, text networks are benchmarked with a random network to extract global features. Achieved outcomes indicate certain word order in Urdu structure for most of the sentences. The normal and shuffled text networks demonstrated similar large-scale characteristics. The results show that average path length and network diameter is reduced after shuffling. On the other hand, clustering coefficient is increased in shuffled text as compared to normal text. Our results validated that few short sentences in range of three words are fully free order. The observations revealed that long sentences are ambiguous without standard order. Both networks are topologically similar but shuffling caused massive discrepancy in network composition and sentence structure. Inside graph view, grammatical association-based words connectivity exists in normal text network. With this universal approach, impact of word order in Urdu language is confirmed. Meanwhile, this breakthrough directs to uncover language composition by extracting small sentences as motifs.

Keywords: Complex network, Small world, Urdu graph, Urdu word order, Word co-occurrence

This is an open access article under the CC BY-SA license.

1. INTRODUCTION

The pioneer linguistic researchers have defined human language as a system of inter-reliant terms. It is composed of multiple interconnected linguistic units, commonly known as words. Every word falls out uniquely from the synchronized existence of the other words [1]. After deep analysis of this statement, linguistic research found a new direction towards revolutionary integration of complex networks. This framework has been proven a key approach in transformation of human languages into network for structure exploration. Resulting networks are appropriately deployed in advance machine learning and deep learning models [2]. Lexical networks bring together correlated components in the complex system of human language. These components include characters, words, and sentences depending on the nature of

Journal homepage: http://ijeecs.iaescore.com
relationships in semantic networks, syntactic dependency networks or co-occurrence networks. Complex networks are some state-of-the-art models which exhibit small world property and scale free behaviour [3]. Some researchers confirmed small world and scale free properties by examining syntactic dependency between linguistic units and words co-occurrence networks construction [4]. Every model of lexical network displays complex network properties regardless of design, type and building techniques [5]. The above reviewed works have mainly focused on the twofold language network models on macro scale. These large-scale language structure investigations have successfully discovered the average path length, average clustering coefficient and betweenness centrality in a linguistic network [6]. Even without taking in to account fundamental grammatical rules and syntax of the languages, the complex network still reflects basic structure of the natural languages [7].

It has been verified through comparison of normalized and shuffled text networks that shuffled text can be distinguished from real text with help of some micro features presented in apparently macro scale models. Since human language is a highly complex system with some hidden patterns that can be explored via universal network techniques to model its complexity in a reliable, predictable, and measurable way [8]. Moreover, the massive application of micro, meso and macro scale patterns in a language structure can support machine for successfully producing correct sentences [9]. Besides the complex nature and a huge number of languages, the process of artificial language generation, content evaluation and translation are remarkable in terms of efficiency. The speed and accuracy of linguistic tasks are effect of small world structure to some extent. If properly discovered, these detectable patterns in linguistic structures still play an important role in language processing, creation, survival and existence as well. However, most of the previous research concentrated on English language processing, which resulted in evolution of modern English as a highly adopted and rich resource language. On the other hand, some Asian languages remained unexplored due to lack of required lexical resources and difficulty in processing. Consequently, most of current software and tools are not corresponding to these languages. On the other hand, Urdu is a highly spoken language around the world and regarded as national language of Pakistan. However, due to lack of sufficient research, this beautiful language is striving for its existence in modern internet era. Previous work has declared Urdu as a ‘low resource’ language [10]. Unavailability of required resources is the main reason of insufficient structure information of Urdu in current literature. As a result, most of language processing tools are incompatible with Urdu text structure and script. We found a dead lock between language processing tools and linguistic researchers during problem analysis and literature review [10]. It is observed that most of modern programming languages and tools do not properly support Unicode encoding UTF-8 [11]. This encoding system contains characters, numbers, and symbols in Persian-Arabic script of Urdu also known as Nastalik script [12]. For designing a language model, developers need sufficient linguistic resources and fine-grained relevant structural information to achieve the language compatibility with natural language processing (NLP) tools. Discovered deadlock cycle that lasted between linguistic researchers and NLP tools developers is clarified in Figure 1.

This work aims to break the current cycle in order to open up different routes for innovative research on low resource languages. The analysis is conducted while keeping in mind above facts and position of low resource, poor languages that are facing some challenges in machine learning. Large amount of well-structured and pre-processed training set is a fundamental requirement of current machine learning models. Additionally, reliable labelling, significant informative features and powerful framework for application of modern techniques are also necessary. To bridge the research gap between Urdu language and

Figure 1. Deadlock between researchers and developers
Two-fold complex network approach to discover the impact of word-order in Urdu language (Nuzhat Khan)
A lot of designing techniques are applied to construct lexical networks. But in case of exploring low resource language, it is technically preferable to pick co-occurrence network [28]. In fact, this network operates on co-existence of words, which is the only well-known relation among components of a plain text [29], [30].

2. FUNDAMENTALS OF NETWORK STRUCTURE

Any system comprising of connected components is established in the form of a network. Pictorial representation of real-world network turns into visual graph of the system. Visualization of resulting graphs gives deep insight into hidden patterns of system’s components. Belonging to the field of graph theory, the network structure delivers some basic information about the core systems. Here are few comprehensive concepts related to network theory that need to explain ahead of its application. A simple graph \(G \) is expressed as (1).

\[
G = (V, E)
\]

The graph \(G \) consists of two finite sets \(V \) and \(E \) containing vertices and edges, respectively. The vertices are also called nodes while the connecting edges are commonly known as links. Every edge \(e \in E \) is adjacent to two members ‘\(v \)’ and ‘\(u \)’ of set \(V \). According to [31], in an undirected graph,

\[
e = (v, u) \text{ where } (v, u) = (u, v)
\]

2.1. Graph geodesic

Number of direct edges between two nodes is considered as shortest path from source node to sink node [32]. Distance \(D \) between \(i \) nodes and \(j \) edges is symbolized as ‘\(D_{ij} \)’ which is in fact shortest path length from node \(i \) to node \(j \). It is also called geodesic distance. One or more shortest paths may exist between two vertices [33].

2.2. Network density

In a network, portion of potential connections in actual connections is known as network density. It is formulated in [34], [35] as (3).

\[
\text{Network Density} = \frac{\text{Actual connections}}{\text{Potential connections}}
\]

2.3. Network size

A network \(G \) of density \(d \) with \(N \) nodes and \(L \) links emits size \(N \) that is equal to total number of nodes. This means network size is total number of nodes in the network [36].

2.4. Network window

This threshold value defines number of following co-occurred nodes that are permitted to connect. In case of co-occurrence network with predefined window, its window size is considered as maximum number of subsequent components, which are linked together to form the network [37].

2.5. Clustering coefficient

This is measure of nodes tendency in a graph to be clustered together. It can be calculated locally as well as globally corresponding to requirements and sort of analysis. In an undirected graph, clustering coefficient is equivalent to total number of triangles in the graph. Clustering coefficient in a network can be calculated with respect to individual node as local clustering coefficient. Average of all local clustering coefficients is taken as global clustering coefficient. Local and global clustering coefficients are calculated differently depending on type of the network [38]. The average clustering coefficient of a graph is measured with all local clustering coefficient of individual nodes. Clustering coefficient for ‘\(i \)’ node in an undirected graph is measured as (4).

\[
C_i = \frac{\text{number of triangles linked with mode } i}{\text{number of triangles connected to immediate neighbors of mode } i}
\]

The clustering coefficient for the entire graph is measured as average value of all the local clustering coefficients as (5).

\[
GC = \frac{1}{N} \sum_{i=1}^{N} C_i
\]
GC represents global clustering coefficient while \(C_i \) is local clustering coefficient and \(N \) is number of nodes (network size). Value for clustering coefficient remains between 0 to 1. It is described in [39] according to (6) and (7).

\[
0 \leq C_i \leq 1 \quad (6)
\]

\[
0 \leq GC \leq 1 \quad (7)
\]

3. RESEARCH METHOD

For further proceeding to application of deep learning techniques on Urdu, it is obligatory to discover structural properties of this language first, without getting preoccupied by low resources. Staying on this fact, a model of co-occurrence text network is implemented on Urdu text corpus. An open corpus was carefully created from local newspapers, poetry books, novels and two religious books Quran and Bible translated in Urdu from Arabic and Hebrew, respectively. For this case, open corpus refers to generic text collection instead of discipline specific closed corpus. Details of initially collected machine-readable Urdu text are given in Figure 3.

![Figure 3. Corpus collection](image)

An unannotated corpus is constructed after proper preprocessing and text cleaning [23]. Instead of annotation, each word was considered an independent entity regardless of grammar and meaning. Based on bag of bigrams model a word co-occurrence network is designed through sliding window technique [22]. Resultant network is converted to a graph \(G \) having more than 5K words as nodes. Edges are created as path/link between every two coexisting words in real word order. Another graph of same size is created from shuffled text to compare both networks in Python3.4 using networkx and matplotlib plotting libraries. Then, both network graphs are exported to Gephi 0.9.2 for visualization, analysis, and comparison.

During text cleaning for corpus construction, multiple challenging exceptional features of Urdu script such as right to left text direction, multiple word forms, context sensitivity, incorrect spacing, undefined word boundary and spelling mistakes were handled using term frequency-inverse document frequency (TF-IDF) technique as adopted in [23]. Previously, Urdu was stated a free order language earlier, which does not follow certain grammatical rules and particular word order [10]. This misinterpretation was because of not performing scientific research for exploration of word order and sentence structure in natural Urdu language [40]. In our previous work [22], it was observed that there are some hidden patterns in complex topological structure of Urdu network expressed in the form of word order. Specific stable order was detected in most of long sentences except for some short sentences. To confirm the existence of well-preserved word order, we transformed Urdu text into two different co-occurrence networks for its graphical exploration. One network is constructed by connecting co-occurred words according to order provided in the original text. For example, five words generating a sentence as \(W1 \ W2 \ W3 \ W4 \ W5 \), where \(W \) denotes specific words and digits indicate position /index of each word in the sentence. The second network is constructed from shuffled text by altering original word order randomly. The words association methods in normal and shuffled network are shown in Figure 4(a) and (b), respectively.

In both networks, the same text sample is utilized for evaluation. The size of vocabulary is preserved and number of nodes in both networks are equal. Number of nodes are more than 5K in normalized and shuffled text network. To confirm small world and scale free property, both networks are compared with Erdos-Renyi random graph. Text networks are generated likewise in terms of production method however, the text for shuffled network was randomly rearranged. The co-occurrence network graph in default view is shown in Figure 5(a) while zoomed view of labeled nodes is displayed in Figure 5(b).
4. RESULTS AND DISCUSSION

Original order of text remained preserved in network of normal text but in the shuffled text network, all nodes were readjusted in random way. Although new shuffled network lost typical natural language word order, but topological structure still exhibits small world behaviour as shown in Table 1. Apparently reordered text network attained lowered diameter as compared to normalized standard network. On the other hand, diameter of shuffled network equates the random network. Reduced number of links, diminished communities and decreased size of network diameter could be due to the loss of relevancy among co-occurred words. Anticipated higher clustering coefficient in shuffled network as compared to normal text differentiates the original text from the one without preserved order. Macro scale analysis of both networks on basis of universal topological features indicated a strong effect of shuffling through the altered structure. The difference between both networks with some underlying structural parameters clarifies that `definitely some specific word-order exists in Urdu language’. Although order freeness is spotted for few very short sentences only, which means long sentences cannot convey accurate connotation/message without a particular word-order. For clarification of the outcome, two sample sentences of different size are arranged in figure short sentence composed of three words given in Figure 6(a) appears to be almost free of order. Any combination of three words accumulated in the sentence seems to convey the similar message. This is a good feature to be used in machine learning but unfortunately, long sentences do not follow this order-free arrangement. A bit longer sentence containing five words is considered correct if and only if words are composed in anti clockwise order starting from upper most word as illustrated in Figure 6(b). Although some other word-order combinations can produce correct sentence, but appropriate standard composition needs to be regarded in this case.

Table 1. Global features of networks

Properties	Normal graph	Shuffled graph	Random graph
No of nodes	5180	5180	5180
No of Links	101415	101397	101415
Diameter	5	4	4
Radius	3	3	3
Average path length	2.63707629	2.6370723	2.73062725
Clustering coefficient	0.386	0.399	0.007
Number of communities	11	8	1
Although the global features and examined sentence structure are distinguishing between ordered and shuffled networks. By putting some extra effort on both networks for deeply examining individual nodes and links inside networks, few more interesting patterns are detected. As different hubs (centred nodes) in both networks are filtered along with immediate neighbours, subgraphs in both networks display major difference. This process helped in examining network’s structure and nodes behaviour on micro level. Not only immediate neighbours are diverse in both networks in terms of connectivity, but shuffling has also wiped out the grammatical association among nodes. In shuffled network, linked nodes neither present any grammatical association with centered word (hub) nor display any relevance to each other. While nodes are grammatically attached to hub as well as topically correlated with other connected words in normal text netwok. A little insight into both networks revealed that words in shuffled network were linked without grammatical association. Due to lack of association among connected words, nodes association remained random and unobvious. However, the nodes in normal text network were revealing some grammatical relationships among most of adjacent links. Not all but somehow, most of direct neighbors to centred node were topically relevant to hub as well. On deep analysis of centered nodes (hubs), it is observed that the immediate neighbours not only differ in both networks but also reveal consistent behaviour subject to the network. To further clarify the observed patterns, we illustrate it by focusing on unique targeted node (خدا) which is a word from original Urdu text. The centred node is Urdu word for ‘God’ and it is linked with words ‘obedience’, ‘repent’, ‘creature’, ‘reward’, ‘believers’, ‘mighty’, ‘grateful’, ‘blessings’ and ‘creator’. Every node when analysed makes sense that it is directly connected to its co-occurred words from same context. The immediate neighbours are not only associated on the bases of coexistence in the text, but labels of nodes reflect their grammatical connection, context centered organization and topic relevancy with the hub as well as with each other. This association is lost in shuffled network as indicated in Figure 7(a) that the same word is connected with fewer nodes. The word ‘God’ has only three immediate neibour nodes with lable “wide”, ‘sentences’ and ‘throat’ which appear to be less interrelated on basis of context. The centered node and immidate neighbors in both text networks are presented in Figure 7(a) and (b).
Mainly three basic structural differences are found from micro scale analysis of isolated subnetwork in both graphs. The analysed nodes are different in terms of node degree, centrality, and topic relationship among linked nodes as well as with centred nodes. The studied nodes are hubs in normal text due to high degree while in shuffled text, number of links to the nodes have been significantly reduced. Consequently, nodes degree distribution patterns evolved from hierarchical to marginally randomized manner after shuffling. These phenomena also confirm the existence of word order in topological and grammatical structure of Urdu language.

5. CONCLUSION
In this work, two co-occurrence networks of normal text and shuffled text are constructed from Urdu corpus written in Nastalik script. The corpus is collected from four machine-readable text sources; Urdu books, Newspapers, Holy Quran, and Holy Bible. Bag of bigram model is developed for words networks construction. Afterwards, the text networks composed of more than five thousand words each are transformed to graph. With graph visualization and statistical analysis, impact of word order is examined to verify that Urdu is not a free order language. It is found that global features of both networks exhibit small world and scale free properties. However, shuffling reformed the words connection patterns. The results based on empirical data and graph visualization confirmed that Urdu holds solid word order. After deeply investigating both networks, it is analyzed that shuffling evaporated grammatical associations among connected words. The study suggests that Urdu cannot be treated as a fully free order language. In this regard, Urdu needs to be investigated for understandable structural patterns in its word order. This study can be expanded by applying state-of-the-art structure mining techniques on Urdu text. For future research, we recommend motif's extraction algorithm involving motif's frequency to capture appropriate word order in Urdu sentence structure including stop words.

REFERENCES
[1] W. P. Goh, K. K. Luke, and S. A. Cheong. “Functional shortcuts in language co-occurrence networks,” PLoS ONE, vol. 13, no. 9, pp. e0203025, 2018, doi: 10.1371/journal.pone.0203025.
[2] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon, “Network motifs: simple building blocks of complex networks,” Science, vol. 298, no. 5594, pp. 824-827, 2002, doi: 10.1126/science.298.5594.824.
[3] R. F. I. Cancho and R. V. Solé, “The small world of human language,” Proceedings of the Royal Society of London. Series B: Biological Sciences, vol. 268, no. 1482, pp. 2261-2265, doi: 10.1098/rspb.2001.1800.
[4] T. Linzen and B. Leonard, “Distinct patterns of syntactic agreement errors in recurrent networks and humans,” arXiv preprint arXiv:1807.06882, 2018.
[5] T. Stanisz, J. Kwapien, and S. Drożdż, “Linguistic data mining with complex networks: a stylometric-oriented approach,” Information Sciences, vol. 482, pp. 301-320, May 2019, doi: 10.1016/j.ins.2019.01.040.
[6] A. Criado-Alonso, E. Battaner-Moro, D. Aleja, M. Romance, and R. Criado, “Using complex networks to identify patterns in specialty mathematical language: a new approach,” Social Network Analysis and Mining, vol. 10, no. 1, pp. 1-10, 2020, doi: 10.1007/s13278-020-00684-1.
[7] A. P. Masucci and G. J. Rodgers, "Differences between normal and shuffled texts: structural properties of weighted networks," Advances in Complex Systems, vol. 12, no. 01, pp. 113-129, 2009, doi: 10.1142/s0219525909002039.
[8] B. Corominas-Murtra, R. Hanel, and S. Thurner, "Understanding scaling through history-dependent processes with collapsing sample space," Proceedings of the National Academy of Sciences, vol. 112, no. 17, pp. 5348-5353, 2015, doi 10.1073/pnas.1420946112.
[9] J. Wang, "Generating An Overview Report of Multilevel Structure over A Large Corpus of Documents," Doctor Dissertation, Department of Computer Science, University of Massachusetts Lowell, USA, 2019.
[10] A. Daud, W. Khan, and D. Che, "Urdu language processing: a survey," Artificial Intelligence Review, vol. 47, no. 3, pp. 279-311, 2017, doi: 10.1007/s10462-016-9482-x.
[11] S. Hussain, N. Durani, and S. Gul, "Survey of language computing in Asia," Center for Research in Urdu Language Processing, National University of Computer and Emerging Sciences, vol. 2, pp. 2005, 2005.
[12] S. Shabbir and I. Siddiqui, "Optical character recognition system for Urdu words in Nastalig font," Int. J. Adv. Comput. Sci. Appl., vol. 7, no. 5, pp. 567-576, 2016, 10.14569/IJACSA.2016.070575.
[13] J. Sirosh and R. Miikkulainen, " Self-Organization and Functional Role of Lateral Connections and Multisize Receptive Fields in the Primary Visual Cortex," Neural Processing Letters, vol. 3, no. 1 pp. 39-48, 1996.
[14] W Li, "Random texts exhibit Zipf's-law-like word frequency distribution," IEEE Transactions on information theory, vol. 38, no. 6, pp. 1842-1845, Nov, 1992, doi: 10.1109/18.165464.
[15] R. Poping, Computer-assisted text analysis, Los Angeles, United States: Sage, 2000.
[16] D. J. Watts and S. H. Strogatz, "Collective dynamics of 'small-world'networks," Nature, vol. 393, no. 6684, pp. 440-442, 1998, doi:10.1038/30918.
[17] H. H. Liu and F. Hu, "What role does syntax play in a language network?", EPL (Europhysics Letters), vol. 83, no. 1, pp. 18002, 2008, doi: 10.1209/0295-5075/83/18002.
[18] M. Krishna, A. Hassan, Y. Liu, and D. Radev, "The effect of linguistic constraints on the large scale organization of language," arXiv preprint arXiv:1102.2831, 2011.
BIOGRAPHIES OF AUTHORS

Nuzhat Khan received her MS degree in Information Technology from Balochistan University of Information Technology, Engineering and Management Science (BUITEMS) Quetta Pakistan in 2019 through Higher Education Commission (HEC) scholarship. Currently, she is pursuing her PhD degree in Department of Environmental Technology Universiti Sains Malaysia. Her research interests include Natural Language Processing, Applied Linguistics, Statistical Linguistics, Network Science, Graph Theory, Artificial Intelligence, Machine Learning and Deep Learning. She is recently involved in research on application of Artificial Intelligence in oil palm industry.

Two-fold complex network approach to discover the impact of word-order in Urdu language (Nuzhat Khan)
Dr. Anuar received his BSc (Civil Engineering), MSc and PhD in Environmental Engineering from Universiti Sains Malaysia (2005-2015). His research interests include on waste management, landfill leachate treatment and industrial wastewater treatment. Dr. Anuar also has participated in several international conferences organized by reputable bodies worldwide. He also actively engaged in community empowerment through multidisciplinary research that allow him to communicate better with the bottom billion. Dr. Anuar has published peer review articles in various reputable publishers. Dr. Anuar also actively involved in numerous technical visits and environmental protection works related to his expertise. He also sits in various organizing committees, technical committee and a member of several prestigious bodies worldwide.

Dr. Usman Ullah Sheikh received his BEng degree (2003) in electrical and mechatronics engineering, the MEng degree (2005) in telecommunications engineering and PhD degree (2009) in image processing and computer vision from Universiti Teknologi Malaysia. His research work is mainly on computer vision and embedded systems design.

Muhammad Paend Bakht received his MS degree in Telecom Engineering from Balochistan University of Information Technology, Engineering and Management Science (BUITEMS) Quetta Pakistan in 2016 through Higher Education Commission (HEC) scholarship. Currently, he is pursuing his PhD degree in School of Electrical Engineering, Universiti Teknologi Malaysia. His research interests include optimization and energy management of grid connected renewable energy systems, smart grids and forecasting of solar and wind turbine power.