Blood-testis barrier and spermatogenesis: lessons from genetically-modified mice

Xiao-Hua Jiang1,*, Ihtisham Bukhari1,*, Wei Zheng1, Shi Yin1, Zheng Wang1, Howard J Cooke1,2, Qing-Hua Shi1,3

The blood-testis barrier (BTB) is found between adjacent Sertoli cells in the testis where it creates a unique microenvironment for the development and maturation of meiotic and postmeiotic germ cells in seminiferous tubes. It is a compound proteinous structure, composed of several types of cell junctions including tight junctions (TJs), adherence junctions and gap junctions (GJs). Some of the junctional proteins function as structural proteins of BTB and some have regulatory roles. The deletion or functional silencing of genes encoding these proteins may disrupt the BTB, which may cause immunological or other damages to meiotic and postmeiotic cells and ultimately lead to spermatogenic arrest and infertility. In this review, we will summarize the findings on the BTB structure and function from genetically-modified mouse models and discuss the future perspectives.

Asian Journal of Andrology (2014) 16, 572–580; doi: 10.4103/1008-682X.125401; published online: 28 March 2014

Keywords: blood-testis barrier; genetically-modified mouse; seminiferous tubule; sertoli cells; spermatogenesis

INTRODUCTION

Blood-testis barrier (BTB) is found between adjacent Sertoli cells within the seminiferous tubules.1–9 The BTB divides the seminiferous tubules into the basal and apical (adluminal) compartments. Meiosis, spermiogenesis and spermiation take place in the apical compartment; whereas, spermatogonial cell division and differentiation to preleptotene spermatocytes occur in the basal compartment.10,11 Thus, the BTB creates a unique microenvironment for meiotic and postmeiotic cells by forming an immunological barrier that separates meiotic and postmeiotic germ cells from blood circulation (reviewed in12).

The BTB consists of several types of cellular junctions including tight junctions (TJs), gap junctions (GJs) and adherence junctions, and many junctional proteins are involved in the establishment of BTB (reviewed in12–14). Defects in these proteins can cause BTB disfunction which may elicit immune responses against meiotic and postmeiotic cells, ultimately leading to spermatogenetic failure and male infertility. Furthermore, functions of BTB may also be compromised due to the defects of genes that regulate the formation and function of cell junctions. In this article, we will review recent findings in BTB functional genes obtained from genetically-modified mice.

TECHNOLOGIES USED FOR BTB FUNCTION STUDY

In vitro method

Since Sertoli cells cultured at high density in vitro show the ability to form junctions that mimic BTB to some extent,15,16 an in vitro system based on the culture of primary Sertoli cells has been established and used as a model for BTB study.17–21 Because it is relatively easy, quick and cheap, many studies have utilized this method to investigate the structure and function of the cell junctions.17–24 However, since the main function of BTB is to provide microenvironment for meiotic and postmeiotic cell development, this in vitro system is not suitable for the study of major aspects of BTB function because coculture of germ cells with Sertoli cells cannot achieve meiosis.25 Moreover, the BTB structure and/or function may also be affected by germ cells. Therefore, this primary Sertoli cell culture system is insufficient for in-depth study of the structure, function and regulation of BTB in the testis.

In vivo method

Genetically-modified mice have been widely used to understand the functional roles of specific gene in development. There are two basic technical approaches used to produce genetically-modified mice, namely, transgenic and knockout (KO) mice.26–28 The transgenic mouse approach involves pronuclear injection into a zygote, where the gene of interest will randomly integrate into the mouse genome.29 The second approach, pioneered by Oliver Smithies and Mario Capecchi, involves modification of embryonic stem cells with a DNA construct containing DNA sequences homologous to the target gene.28 Embryonic stem cells with deletion of the target gene are selected and then injected into the mouse blastocysts. This manipulation causes absence of the gene (null) from all the cells of mouse. This approach, usually called conventional KO technology, is appropriate for investigating the physiological function of tissue or cell type-specific genes.30 A refined version of the KO technology, conditional KO (cKO), which is based on tissue and cell type-specific deletion of a gene of interest, shows significant advantages over conventional KO, especially for those genes whose conventional KO causes embryonic lethality.31 The most
widely used approach at present for cKO is the Cre-LoxP system, which involves a ‘floxed’ mouse line bearing alleles of the gene to be deleted with recombinase-specific sites (i.e. two LoxP repeats flanking critical exons) and a transgenic mouse line expressing the Cre-recombinase driven by a promoter with a desired temporal and/or spatial expression pattern.\cite{32,35} The gene of interest flanked by two LoxP sites will be deleted or disrupted when Cre-recombinase is expressed in specified tissues or cell types at a specific development time point.\cite{35,36-38} Most resulting cKO mice have no evident developmental abnormalities in tissues except the one of interest and thus can be used for studies of gene function in a specified tissue or cell type at specific time point.

By using these genetic approaches, especially conventional and conditional gene KOs, about 400 genes involved in murine spermatogenesis have been inactivated,\cite{39-42} but only a few have been associated with the structure and function of BTB. In the following sections, we will summarize BTB-associated genes identified from genetically-modified mice.

DEFECTS IN SPERMATOGENESIS IN KO MICE OF BTB-ASSOCIATED PROTEINS

The BTB-associated genes are classified into two major groups based on their roles in BTB structure and function. The first group (Table 1) includes the known structural components of the BTB, and the other (Table 2) consists of those that regulate BTB formation, integrity and function. Since many of the mechanisms involved in this process are unknown, these may also include structural components.

Function of BTB structural components

Several cellular junctions function together to establish BTB with each type of cellular junction composed of multiple structural proteins. Deficiency in these proteins would cause significant damage to BTB and consequently spermatogenic failure.

Claudin-11 (Cldn-11)

Claudins, 20–27 kDa phosphoproteins, are the main constituents of the TJ in mammalian body.\cite{43-46} They are intercellular adhesion molecules with variable pore-like properties.\cite{47,48} To date, about 24 different claudins have been identified and many of them show a distinct organ-specific distribution.\cite{49,50,51} In mice and rat testes, Cldn-11 is specifically expressed in the Sertoli cells and responsible for the formation of the typically parallel tight junctional strands between Sertoli cells.\cite{52} In mouse testis, Cldn-11 expression peaks between postnatal day 6–16, coinciding with the BTB formation.\cite{92,93}

Cldn-11 KO mice were the first mouse model used for the study of BTB.\cite{39} In prepubertal and adult Cldn-11 KO mice, the lumens of the seminiferous tubules are narrow and often filled with Sertoli cells.\cite{53,54} Adult mouse testes lacking Cldn-11 in Sertoli cells are devoid of a mature BTB and show increased apoptotic germ cells.\cite{55} Cldn-11 KO Sertoli cells lose polarity and detach from the basement membrane of seminiferous tubules. They experience an epithelial to fibroblastic cell transformation and proliferate actively while still maintaining the expression of Sertoli cell specific differentiation markers. As expected, Cldn-11 KO mice are sterile.\cite{39}

Ocludin (Ocln)

Ocludin, a 65 kDa protein, was the first component of the TJ strand identified.\cite{55-58} It expresses in Sertoli cells, together with claudins, serving as a key component of TJ in BTB.\cite{56} In mouse, Ocln is detected by immunofluorescence in testis cords as early as embryonic day 13.5.\cite{55} By postnatal day 14, it is detected as focal wavy bands toward the base of seminiferous tubules that contain a number of germ cells.\cite{97} By postnatal day 23 and in adult mice, these bands are present in all tubules at all stages of seminiferous epithelial cycle.\cite{57,58} As in mice, Ocln is also detected at all stages of the seminiferous epithelial cycle in dogs and Korean wild rabbits Lepus coreanus.\cite{98,99} However, in rats, Ocln protein expression is stage-specific, expressing heavily in Sertoli cells in seminiferous tubes of all stages except stage VIII, where it is not detectable by immunostaining.\cite{98,99} Interestingly, Ocln is not expressed in seminiferous tubules of guinea pigs (Cavia porcellus) and humans.\cite{57,58}

Compared to Cldn-11 KO mice, the abnormalities of spermatogenesis in Ocln KO mice increase slowly and gradually with ageing.\cite{59-61} In testis of 6-week-old Ocln KO mice, the seminiferous

| Table 1: Defects of spermatogenesis in the BTB structural genetically-modified mice |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| **Gene** | **Abbreviation** | **Type of junction** | **Techniques for gene modification** | **Fertility** | **Defects of BTB in genetically-modified mice** | **Defects of somatic cells in genetically-modified mice** | **Defects of germ cells in genetically-modified mice** | **References** |
| **Claudin 11** | Cldn11 (Osp; Otm; Claudin11; Claudin-11) | TJ | KO | Infertility | Tight junctions diminished | Sertoli cells lose polarity, keep proliferation and show compromised differentiation | Spermatogenesis arrests at spermatids, increased germ cell apoptosis | 39,40 |
| **Ocludin** | Ocln (Ocl; Al503564) | TJ | KO | Progressive infertility | ND | ND | Germ cell loss in testes of old mice | 41 |
| **Tight junction protein 2** | ZO-2 (Tip2) | TJ | KO | Infertility | Increased permeability | Sertoli cell vacuolation | Germ cell loss | 42 |
| **Tight junction protein 3** | ZO-3(Tip3) | TJ | KO | No obvious abnormality | ND | ND | ND | 43 |
| **Gap junction protein, alpha 1** | Cx43 (Gja1; Npm1; Cnx43; Gja-1; AU042049; AW546267; Cnx3alpha1; connexin43) | GJ | cKO (Amh-Cre) | Infertility | ND | Sertoli cell vacuolation | Spermatogenesis arrests at spermatagonia | 44,45 |
| **Catenin (cadherin associated protein), beta 1** | Ctnnb1 (Btc; Mesc; Ctnb) | AJ | cKO (AmhR2-Cre) | No obvious abnormality | Infertility | ND | ND | 46 |
| **References** | | | | | | | | 47,48 |

AJ: adhesion junctions; BTB: blood-testis barrier; GJ: gap junctions; ND: not determined; KO: knockout; TJ: tight junction. -ZO-2 KO embryonic stem (ES) cells were injected into wild type blastocysts to generate viable ZO-2 chimera.

Asian Journal of Andrology
Blood-tests barrier and spermatogenesis
XH Jiang et al

Table 2: Defects of spermatogenesis in the BTB regulatory genetically-modified mice

Gene	Abbreviation (other names)	Protein localization in testes	Techniques used for function analysis	Fertility of genetically-modified mice	Defects of BTB in genetically-modified mice	Potential targets of BTB junction type	Defects of somatic cells in genetically-modified mice	Defects of germ cells in genetically-modified mice	Reference
Androgen receptor	Ar (Tfm; AW320017)	Leydig cells, peritubular myoid cells and Sertoli cells	cKO (Amh-Cre)	Infertility	Increased permeability	TJ	Sertoli cell vacuolation	Spermatogenesis arrest at the diapente stage	49-61
Adenomatosis polypsis coli	Apc (CC1; Min; mAPC; AI047805; AU020952; AW124434)	Leydig cells, Sertoli cells and spermatids	cKO (Amh-Cre)	Infertility	Increased permeability	TJ, AJ	Sertoli cell vacuolation and lacking apical extensions	Abnormal differentiation and desquamation	46
AT rich interactive domain 4A (RBP1-like)	Arid4a (Rbbp1; MrrBbp1; A630009N03; A630067N03Rik)	Sertoli cells	KO	Progressive infertility	Increased permeability in testes of old mice	TJ	Sertoli cell vacuolation	Spermatogenesis arrest at spermatocytes or spermatids	62
AT rich interactive domain 4B (RBP1-like)	Arid4b (BCAA; BRCA4; Rbbp1; MrrBbp1; A630009N03; A630067N03Rik)	Sertoli cells	KO	Progressive infertility	Increased permeability	TJ, GJ, AJ	Sertoli cell vacuolation	Spermatogenesis arrest at spermatids	68
Basigin	Bsg (HT-7; CD147; EMMPRIN; A1115436; A1325119)	Leydig cells, Sertoli cells, spermatocytes and spermatids	KO	Infertility	Increased permeability	AJ	Sertoli cell vacuolation	Spermatogenesis arrest at spermatids	63-65
Ets variant gene 5	Etv5 (ERM; 11100005E01Rik; B430401F14Rik)	Sertoli cells and subpopulation of gonocytes	KO	Infertility	Increased permeability	ND	Sertoli cell vacuolation	SSCs loss during first wave of spermatogenesis	66,67
Fatty acid desaturase 2	Fads2 (Fads2; 2900042M13Rik)	Leydig cells, peritubular myoid cells, Sertoli cells and germ cells (ubiquitously expressed)	KO	Infertility	Increased permeability	TJ, GJ, AJ	Sertoli cell vacuolation	Spermatogenesis arrest at spermatids	68
GATA binding protein 4	Gata4 (Gata-4)	Fetal pre-Sertoli cells, Sertoli cells, fetal Leydig cells, fibroblast-like interstitial cells and peritubular myoid cells Postnatal: Leydig cells and Sertoli cells	cKO (Amhr2-Cre)	Progressive infertility	Increased permeability	GJ	Sertoli cell vacuolation in older cKO testes	Spermatocyte and spermatid desquamation	69-76
Retinoblastoma 1	Rb (Rb1; pRb; Rb-1)	Sertoli cells and germ cells with stage dependent	cKO (Amh-Cre)	Progressive infertility	Increased permeability in testes of old mice	TJ	Sertoli cell vacuolation in older cKO testes	Spermatogenesis arrest at spermatocytes and round spermatids	77
SRY (sex determining region Y)-box 8	Sax8	Sertoli cells	KO	Progressive infertility	Increased permeability in testes of old mice	TJ	Sertoli cell vacuolation in older cKO testes	Abnormal differentiation and desquamation	78-80
TYRO3 protein tyrosine kinase 3	Tyro3 (Brt; Dtk; Rse; Sky; Tf; Etk-2; A1323366)	Sertoli cells	KO	Infertility	Increased permeability in testes of old mice	ND	Increase permeability in testes of old mice	Degeneration of germ cells of different stages	81,82
AXL receptor tyrosine kinase	Axl (Ar; Ufo; Tyro7; A1323647)	Sertoli cells	KO	Infertility	Increased permeability in testes of old mice	ND	Increase permeability in testes of old mice		81,82
c-mer proto-oncogene tyrosine kinase	Merk (Eyk; Mer; Nyk; nfly12)	Leydig cells and Sertoli cells	KO	Infertility	Increased permeability in testes of old mice	ND	Increase permeability in testes of old mice		81,82

AJ: adhesion junctions; BTB: blood-testis barrier; GJ: gap junctions; KO: knockout; ND: not determined; SCC: spermatogonial stem cell; TJ: tight junction. The potential targets of BTB junction type classification is based on the BTB basic gene expression level change in the modified mice. Besides cKO, a transgenic mice is also included in Ar studies. "KO refers to Arid4a KO and Arid4b haploinsufficiency (Arid4a" Arid4b"). The KO mouse is a triple KO for Tyro3, Axl and Mertk.

Tubules and spermatogenesis are histo-cytologically indistinguishable from those in wide-type mice. Around 40–60 weeks of age, the seminiferous tubules of KO mice display atrophy. The atrophic tubules are devoid of germ cells, but retain Sertoli cells along the basement membrane. The exact mechanisms underlying this age-dependent effect in testis of Ocln KO mice remain unknown.
Zonula occludens (ZO) proteins

TJ integral membrane proteins such as claudins and Ocln are tethered to the actin cytoskeleton by adaptor proteins, notably the closely related ZO proteins ZO-1, ZO-2 and ZO-3. These three closely related and widely expressed ZO proteins belong to the membrane-associated guanylate kinase-like protein superfamily. ZO-1 protein is also known as TJ protein 1 (TJPI). It is detected at the inter-Sertoli cell junctions in testis of guinea pig and mouse. In normal human testis, ZO-1 and ZO-2 are observed at the adherent site of adjacent Sertoli cells. The nuclear localization of some ZO proteins is also reported in particular conditions. Recently, these three ZO proteins have been deleted in mice. Although ZO-3 KO mice lack an obvious phenotype, mice deficient in ZO-1 or ZO-2 shows early embryonic lethality. By microinjecting ZO-2 KO embryonic stem cells into wild-type mouse blastocysts, Xu et al. (2009) generated viable ZO-2 chimera. The adult chimera presented a set of phenotypes in different organs. Male ZO-2 chimera showed reduced fertility and pathological changes in the testis. Lanthanum tracer experiments showed a compromised BTB function in these mice. Based on the gene expression and localization analyses, the authors found that the expression level of ZO-1, ZO-3, Cldn-11 and Ocln is not apparently affected when compared to the controls. ZO-1 and Ocln still localize to the BTB region, but Cldn-11 and Connexin43 are mislocalized from BTB. These results indicate there is limited redundance between ZO-2 and other ZO proteins in adult mice.

Connexin-43 (Cx43)

Cx43, also known as GJ protein alpha 1 (Gja1), is the predominant testicular GJ protein located between adjacent Sertoli cells and between Sertoli cells and germ cells. It is colocalized with Ocln, ZO-1 and N-cadherin at the base of the epithelium, and also observed at the focal sites in the epithelium. To study the function of Cx43 in spermatogenesis, mice with Cx43 specifically deleted in Sertoli cells have been generated. Studies on these mice revealed that the expression of Cx43 in Sertoli cells is required for normal testicular development and initiation of spermatogenesis. Adult Sertoli cell-specific Cx43 KO mice are sterile with a dramatic reduction in size and weight of testes. Their spermatogenesis is arrested at spermatogonia in 95% of seminiferous tubules with the number of spermatogonia dramatically decreased and Sertoli cells increased. Sertoli cell-only syndrome and Sertoli cell clusters are also noted in these mice.

Cadherin associated protein beta 1 (β-catenin)

Cadherin associated protein beta 1 (Cttnb1, β-catenin) is a multifunctional molecule that functions in intercellular adhesion and signal transduction. It is colocalized with N-cadherin between adjacent Sertoli cells in the seminiferous tubules near the basal and the lower one-third of the adluminal compartments, and also at cell-cell contacts sites between Sertoli cells and spermatocytes in testes of Sprague–Dawley rats. N-cadherin is considered as a structural component of BTB, so the colocalization of β-catenin with N-cadherin at the inter-Sertoli cells contact point suggests that it is also an integral component of BTB. β-catenin is also an essential component of the WNT/β-catenin signaling pathway, which plays important roles in multiple developmental processes including testis development.

By crossing with mice expressing Cre recombinase driven by the anti-Mullerian hormone (AMH) type II receptor promoter (Amhr2) in Sertoli cells, Cttnb1 is specifically deleted in Sertoli cells. Histological examination of testes of adult (>12 weeks) Cttnb1 cKO mice does not show any abnormalities in testicular morphology. Constitutively activated β-catenin in Sertoli cells leads to continuous proliferation and compromised differentiation of Sertoli cells. Compared with the controls, Sertoli cells in the adult mutant mice still express AMH and glial cell-derived neurotrophic factor (GDNF) at high levels, which are normally expressed only in immature Sertoli cells. Defective differentiation of germ cells and increased apoptosis were observed in these mutant mice. As expected, the epididymus of the adult mutant mice are devoid of sperm. Besides, as a structural component of BTB, it also plays an essential role in the regulation of Sertoli cell proliferation and differentiation. Actually, it has been reported to regulate cell proliferation and differentiation through the WNT/β-catenin signaling pathway. As for its role in BTB, based on the observation that its deficiency does not cause detectable reproductive defects, we speculate that β-catenin may just serve as an adaptor for N-cadherin. To confirm or refute this speculation, more studies are required.

Function of BTB regulatory elements

Androgen receptor

Androgen receptor (Ar), a member of the steroid hormone receptor superfamily, mediates androgen action and plays an important role in male reproduction (reviewed in). In testes, Ar can be detected in Sertoli cells, peritubular myoid cells and cells in the interstitial spaces including Leydig cells and perivascular smooth muscle cells. It has been reported that the Sertoli cell-specific Ar cKO mice are infertile, due to spermatogenic arrest predominately at the diplotene stage with almost no sperm observed in the epididymis. The defects in BTB structure of these cKO mice are associated with the reduced expression of BTB proteins like Cldn-11, ZO-1, Ocln and gelsolin and with a significantly enhanced expression of vimentin. It is noteworthy that the Ar cKO mice had a partial defect in androgen sensitivity when carry this floxed allele, and a marked reduction in AR protein levels in different tissues including the testis and show defects in spermatogenesis. The BTB in Ar cKO mice is disrupted, possibly due to the reduced expression of Cldn-3. These results from Ar mouse models indicate that the function of AR in Sertoli cells is essential for the maintenance of fully competent Sertoli cell function in BTB integrity as well as the sustenance of appropriate hormone levels to support the completion of spermatogenesis.

Adenomatous polyposis coli (Apc)

Mutations in Apc, a multifunction tumor suppressor protein, are associated with the development of various human cancers, including colon, liver, ovarian, endometrial and testicular cancers. In a mouse model that expresses a truncated form of Apc in Sertoli cells, despite having normal embryonic and early postnatal testicular development, premature germ cell loss and Sertoli cell only (SCO) seminiferous tubules were observed. The cKO of Apc does not affect the Sertoli cell quiescence, apoptosis or differentiation, as evidenced by the absence of proliferating cell nuclear antigens and DNA damages in Sertoli cells, as well as AMH expression. However, these Sertoli cells lose their apical extensions, which normally enclose germ cells at late stages of spermatogenesis. As for the BTB structure, ZO-1 and N-cadherin proteins are seen as diffused and away from the BTB site in Apc cKO testes. As a result, deficiency of the Apc in Sertoli cells disrupts the BTB and causes spermatogenic failure most probably by affecting localization of junctional proteins.

AT rich interactive domain 4A and AT rich interactive domain 4B

AT rich interactive domain 4A (Arid4a) and AT rich interactive domain 4B (Arid4b) are members of the ARID (AT-rich interaction...
domain) gene family. ARID4A and ARID4B proteins, also known as RB-binding protein 1 (RBBP1, RBP1) and RBBP1-like protein 1 (RBBP1L1), are the members of chromatin-remodeling complex and function as transcriptional repressors upon recruitment by RB. 135-138 In situ hybridization analysis reveal that Arid4a and Arid4b are expressed mainly in Sertoli cells of testes.62 Mice with complete deficiency of Arid4a and haploinsufficiency of Arid4b showed progressive loss of male fertility, accompanied by impaired BTB, hypogonadism and seminal vesicle agenesis/hypoplasia.62 These mice show spermatogenic arrest at meiotic spermatocytes or postmeiotic spermatids.62 These observations recapitulate the defects found in the Sertoli cell-specific Ar KO mice and the Sertoli cell-specific Rb KO mice.62 Gene expression evaluation revealed that ARID4A and ARID4B contribute to the optimal expression of Cldn-3 by functioning as positive coregulators in the context of the AR and RB complex.62 Furthermore, increased permeability of the BTB in the testes of Arid4a KO and Arid4b haploinsufficiency mice are observed based on a biotin tracer injection experiment. Together, Arid4a and Arid4b are critical for physiological function of Sertoli cells.

Basigin (Bsg)

Bsg is a transmembrane glycoprotein enriched with N-glycans.139,140 It is highly expressed in gonads and plays a crucial role in both male and female reproduction.141,142 In the mouse testis, Bsg is expressed in Sertoli cells, Leydig cells, spermatocytes and spermatids.64,65 Bsg KO males are sterile.65 The Bsg KO testes are devoid of elongated spermatids and mature spermatozoa but have numerous round spermatids.65 Significantly increased apoptotic germ cells and compromised integrity of the BTB are observed in Bsg KO testes. Immunolocalization analysis of BTB component proteins indicates that no obvious difference in the localization of Cxadr, Cx43 or Cldn-11 are seen between wild type and Bsg KO testes, however, the expression of N-cadherin was greatly reduced at the basal compartment of the seminiferous tubules (the site of the BTB) in Bsg KO mice.65 These results imply that Bsg deficiency can compromise BTB integrity.

Ets-variant gene 5

The Ets-variant gene 5 (Etv5), also known as Ets-related molecule or ERM, is a member of the PEA3 subfamily of the ETS family of transcription factors. It is mainly expressed in adult Sertoli cells.66,67 Mice with a targeted deletion of Etv5 can undergo first wave of spermatogenesis, but lose their spermatogonial stem cells during this time, and subsequently show SCO phenotype.66 The disappearance of spermatogonial stem cells in the mutants is attributed to the failure of spermatogonial stem cell proliferation without affecting their differentiation by lack of Etv5. The integrity of BTB in Etv5 KO mice is disturbed which was shown by biotin tracer experiment.67 Whether the BTB is regulated by Etv5 directly or indirectly is still unknown, which deserves the further analysis.

Fatty acid desaturase 2

Fatty acid desaturase 2 (Fads2) is responsible for the initial step in the enzymatic cascade of ω3- and ω6-polyunsaturated fatty acid synthesis from essential fatty acids.142-144 Fads2 KO mice are sterile, their testis weight is reduced to two-thirds of that of age-matched wild littermates.64 The lumen of the seminiferous tubules and epididymis of the adult mutants lacks spermatozoa.64 The epididymal ductuli fill with detritus and immature spermatids. Immunohistochemical studies revealed that Ocln, Cldn-11, JAM-A, ZO-1, Cx43 and β-catenin are dislocated throughout the basolateral and apical compartments of the Fads2 KO Sertoli cell membrane.65 Furthermore, transmission electron microscopic analysis highlighted that the well-structured TJ structures between Sertoli cells are missing in Fads2 KO testes. Finally, compromised selective permeation of BTB in KO testes has been revealed by the lanthanum nitrate and fluorescence dyes perfusion experiments.68

GATA binding protein 4

Transcription factor GATA binding protein 4 (Gata4) has been implicated in the development and function of the mammalian testis.145 During fetal testicular development, Gata4 is expressed in pre-Sertoli cells, Sertoli cells, Leydig cells, fibroblast-like interstitial cells and peritubularmyoid cells.74,75 After birth, Gata4 is found mainly in the Sertoli cells and adult Leydig cells.69-72 Mice, whose Gata4 conditionally is deleted in Sertoli cells, develop age-dependent testicular atrophy and are infertile.73 Histological analysis demonstrated that the older cKO testes displayed Sertoli cell vacuolation, germ cell depletion, multinucleated giant cells and syncytia of degenerating spermatids.73 Biotinylated tracer injection experiments indicate that the BTB appeared intact in young cKO mice (2.5 months), but it had a compromised integrity in the 6-month-old cKO mice.73 Furthermore, biotinylated germ cells, including multinuclear giant cells were evident in seminiferous tubules of 6-month-old cKO mice.73 Thus, the older Gata4 cKO mice develop increased permeability of the BTB with the advancing of age.

Retinoblastoma 1 (RB)

RB protein, encoded by Rb gene, is a negative regulator of the cell cycle and the first tumor suppressor found.146,147 The Sertoli cell-specific Rb KO mice displayed progressive infertility in males.77 Initially, loss of Rb in Sertoli cells has no gross effect on Sertoli cell function and the mice are fertile at 6 week of age.77 However, by the age of 10–14 weeks, the cKO mice demonstrated severe Sertoli cell dysfunction and infertility.77 The most striking defects in mature Sertoli cell function are increased permeability of the BTB by biotin tracer experiment.77 Detailed analysis found that TJ components, Cldn-3 and Occludin, are downregulated in Rb cKO Sertoli cells.77 The progressive loss of integrity of BTB in the Rb cKO testes suggested that Rb was initially dispensable for the formation of the BTB but might be indispensable for its remodeling as maturing germ cells crossed from the basal to adluminal compartment and this function might be directly related to the regulation of TJ genes.

Sex determining region Y-box 8

Sex determining region Y-box 8 (Sox8) is a member of the Sox family of developmental transcription factor genes and is closely related to Sox9, a key gene in testis determination pathway in mammals.148-151 In testis, it is expressed in the developing mouse testis around the time of sex determination and continues beyond 16 days post coitum in Sertoli cells.79 Sox8 KO mice exhibit a progressive male infertility phenotype.80 These KO males sporadically produced litters of reduced size at young ages and showed an age-dependent deregulation of spermatogenesis, characterized by sloughing of spermatocytes and round spermatids, spermatiation failure and a progressive disorganization of the spermatogenic cycle, which resulted in the inappropriate placement and juxtaposition of germ cell types within the epithelium.80 Cldn-3 was significantly decreased in the Sox8 KO testes.80 Furthermore, the use of biotin tracers showed increased BTB permeability in the Sox8 KO adult testes.80 Thus, Sox8 is essential in Sertoli cells for germ cell differentiation, partly by controlling the microenvironment of the seminiferous epithelium.
constitute the TAM family of receptor tyrosine kinases, characterized by a conserved sequence within the kinase domain and adhesion molecule-like extracellular domains.152,153 This small family of receptor tyrosine kinases regulates an intriguing mix of processes, including cell proliferation, survival, cell adhesion and migration and regulation of inflammatory cytokine release.152–154 Tyro3, Axl and Mer (TAM) receptor tyrosine kinases triple KO (TAM KO) male mice are infertile due to impaired spermatogenesis.81,82 These triple KO testes showed a progressive loss of germ cells from elongated spermatids to spermatagonia.82 Young adult TAM KO mice exhibited oligo‑astheno‑teratozoospermia and various morphological malformations of the sperm.82 With the progress of mice age, germ cells were eventually depleted from the seminiferous tubules. Furthermore, biotin can be detected in the seminiferous tubules of 20- to 30-week-old testes indicating that BTB was initially built in TAM KO mice, but subsequently compromised as the mice aged.82 Moreover, major inflammatory cytokines, including tumor necrosis factor-\(\alpha\), interleukin-6 and monocyte chemotactic protein 1 were upregulated in the testis of TAM KO mice, and predominantly located in Sertoli cells.82 It is therefore suggested that the TAM receptors are important in the maintenance of the immune homeostasis in the testis through the BTB.

CONCLUSIONS

Based on the literature reviewed above, we conclude that:

1. BTB gene KO mice, once their BTB integrity is compromised, always show some common abnormalities, e.g. germ cell apoptosis, development arrest, aggregated Sertoli cells in apical compartment, SCO phenotype and infertility. This indicates that the BTB integrity is essential for normal spermatogenesis and male fertility
2. Deletion of genes encoding proteins involved in different types of junctions often causes different phenotypes in seminiferous tubules, suggesting that different junction types in the BTB may play distinct role in maintaining the integrity of BTB in structure and function
3. Deletion of different genes of the same cell junction composed of the BTB, e.g. Cldn, Ocnn and ZO-2, causes slightly different abnormalities in testicular tubules and fertility of animals, which indicates that these proteins function in non-redundant manner
4. Although the interactions between germ cells and Sertoli cells are believed to play a role in BTB function and integrity, a direct convincing evidence to support this hypothesis, where BTB is compromised after specific deletion of a gene in germ cells, is still lacking.

FUTURE PERSPECTIVES

BTB and male infertility

Unexplained male infertility accounts for 30%–40% of men with abnormal semen parameters.155 The causes of spermatogenic defects in infertile patients are multifactorial. Endocrine disruption of testicular development during neonatal period, due to environmental pollution, genetic and epigenetic factors, is the most frequent explanation invoked for unexplained male infertility.156–158 These factors have been associated with testicular dysgenesis, male infertility and recently testicular malignancy.155 It is predicted that these multifactors are associated with the BTB and could participate in the etiopathology of human male infertility by dysregulating BTB. For example, cKO of Cx43 in mouse Sertoli cells results in a very similar spermatogenic failure seen in infertile men.44,45,159,160 Azospermic patients with severe spermatogenic failure have been reported to show altered expression of Cx43 mRNA.161 Furthermore, significantly positive correlation is reported between the histological score and intensity of the testicular Cx43 expression in oligozoospermic men.162 Similar staining pattern of Cx43 are found in testes of healthy men and patients with hypospermatogenesis or spermatogenic arrest at meiotic and postmeiotic stages, while no staining is observed in the seminiferous tubules of patients with spermatogenic arrest at spermatagonia or SCO syndrome.163 It is thus suggested that, to understand the etiopathology of human infertility, the expression and localization of BTB proteins should be studied in men with spermatogenic defects and compared to those observed in BTB gene KO mice.

BTB and spermatogenic microenvironment or biomarkers

In testis, blood vessels, lymphatic vessels and nerves are only present in the interstitium between seminiferous tubules, but not inside the seminiferous tubules. The entry of nutrients (e.g. sugars, amino acids) and regulatory molecules (e.g. hormones, electrolytes), but not toxicants (e.g. environmental toxicants, drugs, chemicals) into the apical compartment where meiotic and postmeiotic germ cells reside is tightly regulated by BTB.12 The selectivity of BTB, thus, provides a unique microenvironment for the development of meiotic and postmeiotic germ cells in the apical compartment.12 The BTB may also function to prevent some molecules from emission from the apical compartment. It is, therefore, reasonable to think that if the integrity of BTB is compromised, some molecules that are only present within the seminiferous tubules normally may diffuse into the blood. These molecules can be used as circulation blood biomarkers of the integrity of BTB or the damage to the microenvironment of spermatogenesis.

BTB and cell specific conditional KO strategy

Normal BTB formation and function require numerous genes, many of which are ubiquitously expressed and function in other organs as well. Conventional KO of these genes may cause embryonic or perinatal lethality in homozygotes, e.g. ZO-1 or ZO-2 KO mice show early embryonic lethality.156,160 Even if the KO of a ubiquitously expressed gene is not lethal, it may cause alterations in the physiology of many organs, which could complicate the studies especially for reproduction, the process also regulated tightly by hypothalamic and pituitary. Therefore, the cKO approach shows obvious advantages over conventional KO. However, till now, only a few genes have been investigated by specific deletion in Sertoli cells for their role in BTB and spermatogenesis. Therefore, to delineate the function of BTB in spermatogenesis, much work is needed by using the conditional gene KO approach.

AUTHOR CONTRIBUTIONS

QHS, XHJ and IB conceived the ideas for preparing this review article, wrote the first draft and prepared the final version of the manuscript. WZ, SY, ZW and HJC modified the manuscript.

COMPETING INTERESTS

All authors declare no competing interests.

ACKNOWLEDGMENTS

This work was supported by the National Basic Research Program (Nos. 2013CB947900, 2013CB945502 and 2014CB943101) of China (973), by grants from National Natural Science Foundation of China (No. 31371519) and the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KSCX2-EW-R-07).
REFERENCES

1. Chiquoine AD. Observations on the early events of cadmium necrosis of the testis. Anat Rec 1964; 149: 23–35.

2. Korman M. Distribution of injected L-3,4-dihydroxyphenylalanine (L-dopa) in the adult rat testis. Acta Physiol Scand 1967; 71: 125–6.

3. Dym M, Fawcett DW. The blood-testis barrier in the rat and the physiological compartmentation of the seminiferous epithelium. Biol Reprod 1970; 3: 308–26.

4. Korman M. Dye permeability and alkaline phosphatase activity of testicular capillaries in the postnatal rat. Histochimie 1967; 9: 327–38.

5. Korman M. Penetration of intravasal trypan blue into the rat testis and epididymis. Acta Histochem 1968; 30: 133–6.

6. Fawcett DW, Leak LV, Heidger PM Jr. Electron microscopic observations on the structural components of the blood-testis barrier. J Reprod Fertil Suppl 1970; 10: 105–22.

7. Dym M, Cavicchia JC. Further observations on the blood-testis barrier in monkeys. Biol Reprod 1977; 17: 390–403.

8. Dym M. Basement membrane regulation of Sertoli cells. Endocr Rev 1994; 15: 102–15.

9. Siu MK, Cheng CY. Dynamic cross-talk between cells and the extracellular matrix in the testis. Bioessays 2004; 26: 978–92.

10. Russell L. Movement of spermatocytes from the basal to the adluminal compartment of the rat testis. Am J Anat 1978; 148: 313–28.

11. Fawcett DW. Intercellular bridges. Exp Cell Res 1961; Suppl B: 174–87.

12. Cheng CY, Mruck DD. The blood-testis barrier and its implications for male contraception. Pharmacol Rev 2012; 64: 16–64.

13. Cheng CY, Mruck DD. A local autocrine axis in the testes that regulates spermatogenesis. Science 2009; 325: 65–9.

14. Pelletier RM, Byers SW. The blood-testis barrier and Sertoli cell junctions: structural considerations. Microsc Res Tech 1992; 20: 3–33.

15. Byers SW, Hadley MA, Dijkstra D, Dym M. Growth and characterization of polarized monolayers of epididymal epithelial cells and Sertoli cells in dual environment culture chambers. J Androl 1986; 7: 59–68.

16. Jannecki A, Steinberger A. Polarized Sertoli cell functions in a new two-compartment culture system. J Androl 1986; 7: 69–71.

17. Hadley MA, Byers SW, Suarez-Quian CA, Kleinman HK, Dym M. Extracellular matrix regulates Sertoli cell differentiation, testicular cord formation, and germ cell development in vitro. J Cell Biol 1985; 101: 1511–22.

18. Mruck DD, Cheng CY. An in vitro system to study Sertoli cell blood-testis barrier dynamics. Methods Mol Biol 2011; 763: 237–52.

19. Jannecki A, Jakubowiak A, Steinberger A. Regulation of transepithelial electrical resistance in two-compartment Sertoli cell cultures: in vitro model of the blood-testis barrier. Endocrinology 1991; 129: 1489–96.

20. Jannecki A, Jakubowiak A, Steinberger A. Effects of cyclic AMP and phorbol ester on transepithelial electrical resistance of Sertoli cell monolayers in two-compartment culture. Mol Cell Endocrinol 1991; 82: 61–9.

21. Okanilawo A, Dym M. Effect of cholesterol on the formation of tight junctions in cultured immature rat Sertoli cells. J Androl 1996; 17: 249–55.

22. Siu MK, Wong CH, Lee WM, Cheng CY. Sertoli-germ cell anchoring junction dynamics in the testis are regulated by an interplay of lipid and protein kinases. J Biol Chem 2005; 280: 25029–47.

23. Wong CH, Mruck DD, Siu MK, Cheng CY. Blood-testis barrier dynamics are regulated by (alpha) 2-macroglobulin via the c-Jun N-terminal protein kinase pathway. Endocrinology 2005; 146: 1893–908.

24. Siu ER, Wong EW, Mruck DD, Porto CS, Cheng CY. Focal adhesion kinase is a blood-testis barrier regulator. Proc Natl Acad Sci U S A 2009; 106: 9288–303.

25. Loir M. Trout Sertoli cells and germ cells in primary culture. I. Morphological and ultrastructural study. Gamete Res 1989; 24: 151–69.

26. Jaenisch R, Mintz B. Simian virus 40 DNA sequences in DNA of healthy adult mice derived from primiparous blastocysts injected with viral DNA. Proc Natl Acad Sci U S A 1974; 71: 1265–6.

27. Gordon JW, Ruddle FH. Integration and stable germ line transmission of genes injected into mouse pronuclei. Science 1981; 214: 1244–6.

28. Thomas K, Kracouck MR. Site-directed mutagenesis by gene targeting in mouse embryonic stem cells. Cell 1987; 51: 503–12.

29. Gordon JW, Scangos GA, Plotkin DJ, Barbosa JA, Ruddle FH. Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci USA 1980; 77: 7380–4.

30. Sun QY, Liu K, Kikuchi K. Oocyte-specific knockout: a novel in vivo approach for studying gene functions during folliculogenesis, oocyte maturation, fertilization, and embryogenesis. Biol Reprod 2008; 79: 1014–20.

31. Liu X, Fu XD. Conditional knockout mice to study alternative splicing in vivo. Methods 2005; 37: 387–92.

32. Araki K, Imaiumi T, Okuyama K, Oike Y, Yamamura K. Efficiency of recombination by Cre transient expression in embryonic stem cells: comparison of various promoters. J Biochem 1997; 122: 977–82.

33. Kellenendonk C, Tranche F, Reichard HM, Schutz G. Mutagenesis of the glucocorticoid receptor in mice. J Steroid Biochem Mol Biol 1999; 69: 253–9.
Blood-testis barrier and spermatogenesis

XH Jiang et al

62 Wu RC, Jiang M, Beaudet AL, Wu MY. ARID4A and ARID4B regulate male fertility, a functional link to the AR and RB pathways. Proc Natl Acad Sci USA 2013; 110: 4616−21.

63 Li J, Li Y, Sun F, Saalbach A, Klein C, et al. Basigin null mutant male mice are sterile and exhibit impaired interactions between germ cells and Sertoli cells. Dev Biol 2013; 380: 145−56.

64 Chen L, Bi J, Nakai M, Bunicik D, Cousse JF, et al. Expression of basigin in reproductive tissues of estrogen receptor-α (α) or (β)ta null mice. Reproduction 2010; 139: 1057−66.

65 Igakura T, Kodanusto K, Kaname T, Muramatsu H, Fan QW, et al. A null mutation in basigin, an immunoglobulin superfamily member, indicates its important roles in peri-implantation development and spermatogenesis. Dev Biol 1998; 194: 152−65.

66 Chen C, Ouyang W, Grigura V, Zhou Q, Carnes K, et al. ERM is required for transcriptional control of the spermatogonial stem cell niche. Nature 2005; 436: 647−57.

67 Morrow CM, Hostettler CE, Griswold MD, Hofmann MC, Murphy KM, et al. ETYV is required for continuous spermatogenesis in adult mice and may mediate blood testses barrier function and testicular immune privilege. Ann N Y Acad Sci 2007; 1120: 144−51.

68 Stoffel W, Holz B, Jenke B, Binzcek E, Gunter RH, et al. Delta6-desaturase (FADS2) deficiency unmasks the role of omega3- and omega6-polyunsaturated fatty acids. EMBO J 2009; 28: 2281−92.

69 Ketola I, Anttonen M, Vaskivuo T, Tapanainen JS, Toppari J, et al. Developmental expression and spermatogenic stage specificity of transcription factors GATA-1 and GATA-4 and their cofactors FOG-1 and FOG-2 in the mouse testis. Euro J Endocrinol 2001; 144: 147−64.

70 Oreal E, Mazaud S, Picard JY, Magre S, Carre-Eusebe D. Different patterns of anti-Mullerian hormone expression, as related to DMTri1, SF-1, WT1, GATA-4, Wnt-4, and Lhx9 expression, in the chick differentiating gonads. Dev Dyn 2002; 225: 221−32.

71 Ketola I, Rahman N, Toppari J, Bielinska M, Porter-Ting SB, et al. Expression and regulation of transcription factors GATA-4 and GATA-6 in developing mouse testis. Endocrinology 1999; 140: 1470−80.

72 Lavoie HA, McCoy GL, Blake CA. Expression of the GATA-4 and GATA-6 transcription factors in the fetal rat gonad and in the ovary during postnatal development and pregnancy. Mol Cell Endocrinol 2004; 227: 31−40.

73 Kim SAH, Euleur P, Bielinska M, Schoeller EL, Moley KH, et al. GATA4 regulates Sertoli cell function and fertility in adult male mice. Mol Cell Endocrinol 2011; 333: 85−95.

74 Bielinska M, Seehra A, Toppari J, Heikinheimo M, Wilson DB. GATA-4 is required for sex steroidogenic cell development in the fetal mouse. Dev Dyn 2007; 236: 203−13.

75 Mccord SA, Wise TH, Fahrenkrug SC, Ford JD. Temporal and spatial localization patterns of Gata4 during porcine gonadogenesis. Biol Reprod 2001; 65: 366−74.

76 Viger RS, Mertinez C, Trasher JM, Nemer M. Transcription factor GATA-4 is expressed in a sexually dimorphic pattern during mouse gonadal development and is a potent activator of the Mullerian inhibiting substance promoter. Development 1998; 125: 2665−75.

77 Nalam RL, Andreu-Vieyra C, Braun RE, Akiyama H, Matzuk MM. Retinoblastoma protein regulates transcription factors ZEB1 and ZEB2 in the mouse seminiferous epithelium. Biol Reprod 2001; 65: 366−74.

78 Singh AP, Cummings CA, Avila-Flores A. MAGUK proteins: structure and role in the tight junction. Semin Dev Cell Biol 2000; 6: 315−24.

79 Pelletier RM, Okawara Y, Vitale ML, Anderson JM. Differential distribution of the tight-junction-associated protein ZO-1 isoforms alpha and alpha- gamma in guinea pig Sertoli cells: a possible association with F-actin and G-actin. Biol Reprod 1997; 57: 367−76.

80 Byers GS, Graham R, Dai HN, Hoyer B. Development of Sertoli cell junctional specializations and the distribution of the tight-junction-associated protein ZO-1 in the mouse testis. Am J Anat 1991; 191: 35−47.

81 Fink C, Weigel R, Hombes T, Laue-Wettwer H, Kloiesch S, et al. Altered expression of ZO-1 and ZO-2 in Sertoli cells and loss of blood-testis barrier integrity in testicular carcinoma in situ. Neoplasia 2006; 8: 1019−27.

82 Islas S, Vega J, Ponce L, Gonzalez-Marsicano L. Nuclear localization of the tight junction protein ZO-2 in epithelial cells. Exp Cell Res 2002; 274: 138−48.

83 Traweger A, Fuchs R, Krizbai IA, Weiger TM, Bauer HC, et al. The tight junction-protein ZO-2 localizes to the nucleus and interacts with the heterogeneous nuclear ribonucleoprotein scaffold attachment factor B. J Biol Chem 2003; 278: 2692−700.

84 Jaramillo BE, Ponce A, Moreno J, Betanos A, Huerta M, et al. Characterization of the tight junction protein ZO-2 localized at the nucleus of epithelial cells. Exp Cell Res 2004; 297: 247−58.

85 Kausalya PJ, Phua DC, Hunziker W. Association of ARVCF with zona ocludens (ZO)-1 and ZO-2: binding to PDZ-domain proteins and cell-cell adhesion regulate plasma membrane and nuclear localization of ARVCF. Mol Cell Biol 2004; 15: 5503−15.

86 Katsuno T, Umeda K, Matsui T, Hata M, Tamura A, et al. Deficiency of zona ocludens-1 causes embryonic lethal phenotype associated with defective yolk sac angiogenesis and apoptosis of embryonic cells. Mol Cell Biol 2008; 19: 2465−75.

87 Adachi M, Inoko A, Hata M, Furuse K, Umeda K, et al. Normal establishment of epithelial tight junctions in mice and cultured cells lacking expression of ZO-3, a tight-junction MAGUK protein. Mol Cell Biol 2006; 26: 9003−15.

88 Cambrosio Mann M, Friess AE, Stoffel MH. Blood-tissue barriers in the male reproductive tract of the dog: a morphological study using lanthanum nitrate as an electron-opaque tracer. Cell Tissues Organs 2003; 174: 162−9.

89 Webster MR, Weeraratna AT. A Wnt-er migration: the confusing role of beta-catenin in melanoma metastasis. Sci Signal 2013; 6: pe11.

90 Burgess TA, Williams BO. Regulation of Wnt/beta-catenin signaling with and without osteocytes. Bone 2013; 54: 244−9.

91 Lie PP, Xia W, Wang CQ, Mruk DD, Yan HH, et al. Dynamin II interacts with the cadherin- and occludin-based protein complexes at the blood-testis barrier in adult rat testes. J Endocrinol 2006; 191: 571−86.

92 Xiong W, Wang CH, Lee NF, Lee WM, Cheng CY. Disruption of Sertoli-germ cell adhesion function in the seminiferous epithelium of the rat tests can be limited to adherens
Junctions without affecting the blood-testis barrier integrity: an in vivo study using an androgen suppression model. J Cell Physiol 2005; 205: 141–57.

Lee NP, Mruk D, Lee WM, Cheng CY. Is the cadherin/catenin complex a functional unit of cell-cell actin-based adherences junctions in the rat testis? Biol Reprod 2003; 68: 489–508.

Lombardi AP, Royer C, Pisolato R, Cavalcanti FN, Lucas TF, et al. Physiopathological aspects of the Wnt/beta-catenin signaling pathway in the male reproductive system. Spermatogenesis 2013; 3: e23181.

Liu DF, Bingham N, Parker K, Yao HH. Sex-specific roles of beta-catenin in mouse gonadal development. Hum Mol Genet 2009; 18: 405–17.

Chang H, Guillou F, Taketo MM, Behringer RR. Ovative beta-catenin signaling causes testicular sertoli cell tumor development in the mouse. Biol Reprod 2009; 81: 842–9.

Maatouk DM, DiNapoli L, Alvers A, Parker KL, Taketo MM, et al. Stabilization of beta-catenin in XY gonads causes male-to-female sex-reversal. Hum Mol Genet 2008; 17: 2949–55.

Wang J, Liu B, Gu S, Liang J. Effects of Wnt/beta-catenin signaling on proliferation and differentiation of apical papilla stem cells. Cell Prolif 2012; 45: 121–31.

Shimizu T, Kagawa T, Inoue T, Nonaka A, Takada S, et al. Stabilized beta-catenin functions through TCF/LEF proteins and the Notch/RBP-Jkappa complex to promote proliferation and suppress differentiation of neural precursor cells. Mol Cell Biol 2008; 28: 7427–41.

Verhoeven G, Willems A, Deneot E, Swinnen JV, De Gundt K. Androgens and spermatogenesis. Lessons from transgenic mouse models. Philos Trans R Soc Lond B Biol Sci 2010; 365: 1537–56.

Patro MT, Silva AJ, Avellar MC. Androgens and the male reproductive tract: an overview of classical roles and current perspectives. Arq Bras Endocrinol Metabol 2009; 53: 934–45.

Zhou X. Roles of androgen receptor in male and female reproduction: lessons from global and cell-specific androgen receptor knockout (ARKO) mice. J Androl 2010; 31: 235–43.

Wang RS, Yeh S, Tzeng CR, Chang C. Androgen receptor roles in spermatogenesis and fertility: lessons from testicular cell-specific androgen receptor knockout mice. Endocr Rev 2009; 30: 119–32.

Tan KA, De Gundt K, Marianova S, Walker M, Sharpe RM, et al. The role of androgens in sertoli cell proliferation and functional maturation: studies in mice with total or Sertoli cell-selective ablation of the androgen receptor. Endocrinology 2005; 146: 2674–83.

Denollet E, De Gundt K, Allemeersch J, Engelen K, Marchal K, et al. The effect of a sertoli cell-selective knockout of the androgen receptor on testicular gene expression in prepubertal mice. Mol Endocrinol 2006; 20: 321–34.

Eacker SM, Shima JE, Connolly CM, Sharma M, Holdcraft RW, et al. Androgens and functions through TCF/LEF proteins and the Notch/RBP-Jkappa complex to promote proliferation and differentiation of neural precursor cells. Mol Cell Biol 2008; 28: 7427–41.

Verhoeven G, Willems A, Deneot E, Swinnen JV, De Gundt K. Androgens and spermatogenesis: Lessons from transgenic mouse models. Philos Trans R Soc Lond B Biol Sci 2010; 365: 1537–56.

Patro MT, Silva AJ, Avellar MC. Androgens and the male reproductive tract: an overview of classical roles and current perspectives. Arq Bras Endocrinol Metabol 2009; 53: 934–45.

Zhou X. Roles of androgen receptor in male and female reproduction: lessons from global and cell-specific androgen receptor knockout (ARKO) mice. J Androl 2010; 31: 235–43.

Wang RS, Yeh S, Tzeng CR, Chang C. Androgen receptor roles in spermatogenesis and fertility: lessons from testicular cell-specific androgen receptor knockout mice. Endocr Rev 2009; 30: 119–32.

Tan KA, De Gundt K, Marianova S, Walker M, Sharpe RM, et al. The role of androgens in sertoli cell proliferation and functional maturation: studies in mice with total or Sertoli cell-selective ablation of the androgen receptor. Endocrinology 2005; 146: 2674–83.

Denollet E, De Gundt K, Allemeersch J, Engelen K, Marchal K, et al. The effect of a sertoli cell-selective knockout of the androgen receptor on testicular gene expression in prepubertal mice. Mol Endocrinol 2006; 20: 321–34.

Eacker SM, Shima JE, Connolly CM, Sharma M, Holdcraft RW, et al. Androgens and functions through TCF/LEF proteins and the Notch/RBP-Jkappa complex to promote proliferation and differentiation of neural precursor cells. Mol Cell Biol 2008; 28: 7427–41.

Verhoeven G, Willems A, Deneot E, Swinnen JV, De Gundt K. Androgens and spermatogenesis: Lessons from transgenic mouse models. Philos Trans R Soc Lond B Biol Sci 2010; 365: 1537–56.

Patro MT, Silva AJ, Avellar MC. Androgens and the male reproductive tract: an overview of classical roles and current perspectives. Arq Bras Endocrinol Metabol 2009; 53: 934–45.

Zhou X. Roles of androgen receptor in male and female reproduction: lessons from global and cell-specific androgen receptor knockout (ARKO) mice. J Androl 2010; 31: 235–43.

Wang RS, Yeh S, Tzeng CR, Chang C. Androgen receptor roles in spermatogenesis and fertility: lessons from testicular cell-specific androgen receptor knockout mice. Endocr Rev 2009; 30: 119–32.

Tan KA, De Gundt K, Marianova S, Walker M, Sharpe RM, et al. The role of androgens in sertoli cell proliferation and functional maturation: studies in mice with total or Sertoli cell-selective ablation of the androgen receptor. Endocrinology 2005; 146: 2674–83.

Denollet E, De Gundt K, Allemeersch J, Engelen K, Marchal K, et al. The effect of a sertoli cell-selective knockout of the androgen receptor on testicular gene expression in prepubertal mice. Mol Endocrinol 2006; 20: 321–34.

Eacker SM, Shima JE, Connolly CM, Sharma M, Holdcraft RW, et al. Transcriptional profiling of androgen receptor (AR) mutants suggests instructive and permissive roles of AR signaling in germ cell development. Mol Endocrinol 2007; 21: 895–907.

Aoki K, Taketo MM. Adenomatous polyposis coli (APC): a multi-functional tumor suppressor gene. Hum Pathol 2006; 37: 48–53.

Wu R, Hendrix-Lucas N, Kucik R, Zhai Y, Schwartz DR, et al. Mouse model of human ovarian endometrioid adenocarcinoma based on somatic defects in the Wnt/beta-catenin and PI3K/Pten signaling pathways. Cancer Cell 2007; 11: 321–33.

Moreno-Bueno G, Hardisson D, Sanchez C, Sarrio D, Cassia R, et al. Abnormalities of the APC/beta-catenin pathway in endometrial cancer. Oncogene 2002; 21: 7981–90.

Defeo-Dones D, Huang PS, Jones RE, Haskell KM, Vuocolo GA, et al. Cloning of cDNAs for cellular proteins that bind to the retinoblastoma gene product. Nature 1991; 352: 251–4.

Cao J, Gao T, Shanbridge EJ, Irie R, RBP1L1, a retinoblastoma-binding protein-related gene encoding an antigenic epitope abundantly expressed in human carcinomas and normal tissues. J Natl Cancer Inst 2001; 93: 1159–65.

Lai A, Kennedy BK, Barbie DA, Bertos NR, Yang XJ, et al. RBP1 recruits the mSin3-histone deacetylase complex to the pocket of retinoblastoma tumor suppressor family proteins found in limited discrete regions of the nucleus at growth arrest. Mol Cell Biol 2001; 21: 2918–32.

Fleischer TC, Yun UJ, Ayer DE. Identification and characterization of three new components of the mSin3A coresspressor complex. Mol Cell Biol 2003; 23: 3456–67.

Miyazaki T, Kanekura T, Yamaoka A, Ozawa M, Miyazawa S, et al. Basigin, a new, broadly distributed member of the immunoglobulin superfamily, has strong homology with both the immunoglobulin V domain and the beta-chain of major histocompatibility complex class II antigen. J Biol Chem 1990; 107: 316–23.

Wang W, Chang SB, Hernier ME. Links between CD147 function, glycosylation, and caveolin-1. Mol Biol Cell 2004; 15: 4043–50.

Kuno N, Kadomatsu K, Fan QW, Hagihara M, Senda T, et al. Female sterility in mice lacking the basigin gene, which encodes a transmembrane glycoprotein belonging to the immunoglobulin superfamily. FEMS Lett 1998; 425: 191–4.

Cunnane SC. Problems with essential fatty acids: time for a new paradigm? Prog Lipid Res 2003; 42: 544–68.

Sprecher H, Lutthia DL, Mohammed BS, Baykousheva SP. Reevaluation of the pathways for the biosynthesis of polyunsaturated fatty acids. J Lipid Res 1995; 36: 2471–7.

Cho HP, Nakamura M, Clarke SD. Cloning, expression, and fatty acid regulation of the human delta-5 desaturase. J Biol Chem 1999; 274: 37335–9.

Vaghe RS, Guittot SM, Antonen M, Wilson DB, Heimkenimo M. Role of the GATA family of transcription factors in endocrine development, function, and disease. Mol Endocrinol 2008; 22: 781–98.

Nguyen DX, McCance DJ. Role of the retinoblastoma tumor suppressor protein in cellular differentiation. J Cell Biochem 2005; 94: 870–9.