Synthesis, Structural Elucidation and Anti Microbial Screening of \(N\)-(4-aryl amine)-2-\{4-phenyl-5-(pyridin-4-yl)-4H-1,2,4-triazol-3-yl\}sulfanyl\}acetamide Derivatives

KEYWORDS
1,2,4 triazole, Acetamide, Antifungal activity, Anti bacterial activity

Mahyavanshi Jyotindra B Parmar Kokila A. Mahato Anil K.
Department of Chemistry, HNG University, Patan – 384265.

ABSTRACT A new series of 2-\{4-phenyl-5-(pyridine-4-phenyl)-4H-\}1,2,4-triazole-3\text-y1 sulfanyl\}N-aryl-acetamide have been synthesized by the condensation of 4-phenyl-5-(pyridin-4-yl)-4H-1,2,4-triazole-3-thiol and 2-Chloro-N-(aryl)-acetamide in presence of anhydrous potassium Carbonate. The Structure of Synthesized compound was assigned by H\text-NMR, MASS Spectra, IR Spectra and Elemental Analysis. All the compound were Screened for their in-vitro Antibacterial, Antifungal and anti tuberculosis activity.

Introduction
The synthesis of compound containing 1,2,4 triazole ring system has attracted attention because of its wide range of pharmaceutical activity. A variety of biological compound such as anti-inflammatory, analgesic, antibacterial, antifungal, anti tubercular, antiviral, antitumor, anticonvulsant, and anti depressant have been reported for Mercapto and thione substituted 1,2,4 triazole ring system1,2,7.

In last few decades the chemistry of 1,2,4-triazole and their fused heterocyclic derivatives has received important because of there effective biological importance. A wide number of drugs containing 1,2,4-triazole ring system are incorporated because of there widely therapeutically interests including anti inflammatory, CNS stimulants, sedatives, anti anxiety, such as fluconazole, intraconazole, Voriconazole, Also there known drug containing the 1,2,4-triazole group eg. Triazolam, Alprazolam, Etizolam and Furaclylin2,6,8.

Moreover sulphur containing heterocycles represents important group of sulphur compound that are promising for use in practical application1. Among these heterocycles the Mercapto and Thione substituted 1,2,4-triazole ring system have been well studied4,9.

Acetanilide derivatives are reported to exhibit a number of biological activities including anesthetic, antipyretic, anti inflammatory, and anti bacterial effects substitution including alkyl thio and alkenylthio derivatives have been carried out primarily at the third position of the 1,2,4-triazole ring as potential antimicrobial agents5,1.

In continuation of our interest on chemistry of functionalized chloroacetamide derivatives because of the high mobility of chlorine atom and reactive N-H group compound containing chloroacetamide.

Materials and Methods
All melting points were determined using open capillary tubes on electronic apparatus and were uncorrected. The IR spectra (4000-400 cm-1) of synthesized compounds were recorded on Shimadzu 8400-s FTIR spectrometer with KBr pellets. To monitor the reactions, establish the identity, purity of reactants and products, thin layer chromatography performed on TLC coated with silica gel using appropriate mobile phase system and spots visualized under UV radiation. Nuclear magnetic resonance spectra was recorded using Bruker 400 MHz model spectrometer using DMSO as a solvent and TMS as internal standard (Chemical shifts in d ppm). All new compounds subjected to elemental analysis and the results obtained were in acceptable range.
The mixture of 4-phenyl-5-(pyridine-4-yl)-4H-1,2,4-triazol-3-yl[sulfanyl]acetamide

Step 1
Pyridine-4-carboxylic acid (0.1 mole) in 200 ml methanol and 6.0 ml concentrated H$_2$SO$_4$ was refluxed 12 hours and poured into the cold ice. The obtained product was filtered and washed with cold water. Recrystallized from alcohol. The progress of the reaction was monitored by TLC using toluene:acetone (8:2) as eluent.

Step 2
Methyl pyridine-4-carboxylate (0.1 mole) and hydrazine hydrate (0.2 mole) in methanol was refluxed for 15 hours and poured into the ice. The obtained product is filtered and washed with cold water. Recrystallized from ethyl alcohol. The progress of the reaction was monitored by TLC using toluene:acetone (8:2) as eluent.

Step 3
The mixture of pyridine-4-carboxydrazide (0.1 mole) and phenyl isothiocyanate (0.1 mole) was refluxed in ethanol (220 ml) for 3 hours. After cooling the formed product was collected by filtration and recrystallized from ethanol. The progress of the reaction was monitored by TLC using toluene:acetone (8:2) as eluent.

Step 4
The mixture of N-phenyl-2-(pyridine-4-carbonyl)hydrazinecarbothioamide (0.05 mole) and 80 ml of 2N NaOH was refluxed for 4 hours. The resulting solution was cooled and poured into the ice and neutralized with 2N HCl. The precipitate was filtered and washed with cold water. Dried and recrystallized from ethanol. The progress of the reaction was monitored by TLC using toluene:acetone (8:2) as eluent.

Step 5
0.02 mole of chloroacetyl chloride and 2-4 drops of triethylamine was added in the 30 ml of benzene. This mixture was stirred in ice bath. The solution of aryl amine (0.02 mole) and 2-4 drops of triethylamine was added in the 30 ml of benzene. This mixture was refluxed for 5 hours. The resulting ppt. upon cooling was filtered and washed with benzene. Recrystallized from ethanol. The progress of the reaction was monitored by TLC using toluene:acetone (8:2) as eluent.

Step 6
The mixture of 4-phenyl-5-(pyridine-4-yl)-4H-1,2,4-triazole-3-thiol (0.01 mole) and 2-chloro-N-(aryl)-acetamide (0.01 mole) in 50 ml dry acetonitrile and anhydrous K$_2$CO$_3$ (0.02 mole) was stirred for 4 hours at room temp. and poured into ice. The product was filtered and washed with cold water. Recrystallized from alcohol.

N-(4-methylphenyl)-2-[(4-phenyl-5-(pyridine-4-yl)-4H-1,2,4-triazol-3-yl)sulfanyl]acetamide

FTIR (KBr cm$^{-1}$): 1513 cm$^{-1}$ (C=N in triazole), 3387 cm$^{-1}$ (NH Stretching in Amide), 1633 cm$^{-1}$ (C=O in amide), 1441 cm$^{-1}$ (C=C in aromatic), 1601 cm$^{-1}$ (C=S in thioether linkage), 1641 cm$^{-1}$ (C=C in aromatic), 1522 cm$^{-1}$ (C=N in triazole), 3357 cm$^{-1}$ (-NH), 1601 cm$^{-1}$ (C=C in aromatic), 1641 cm$^{-1}$ (C=S in thioether linkage), 1633 cm$^{-1}$ (C=O in amide), 1441 cm$^{-1}$ (C=C in aromatic), 1523 cm$^{-1}$ (C=N in triazole), 3373 cm$^{-1}$ (NH Stretching in Amide), 1657 cm$^{-1}$ (C=O in amide), 1447 cm$^{-1}$ (C=C in aromatic), 1623 cm$^{-1}$ (C=S in thioether linkage), m/z: 467.7 (M$^+$)

N-(4-chloro-3-fluorophenyl)-2-[(4-phenyl-5-(pyridine-4-yl)-4H-1,2,4-triazol-3-yl)sulfanyl]acetamide

FTIR (KBr cm$^{-1}$): 1516 cm$^{-1}$ (C=N in triazole), 3384 cm$^{-1}$ (NH Stretching in Amide), 1635 cm$^{-1}$ (C=O in amide), 1444 cm$^{-1}$ (C=C in aromatic), 1611 cm$^{-1}$ (C=S in thioether linkage), m/z: 406.2 (M$^+$)

N-(4-methoxyphenyl)-2-[(4-phenyl-5-(pyridine-4-yl)-4H-1,2,4-triazol-3-yl)sulfanyl]acetamide
ReseaRch PaPeR

Volume : 4 | Issue : 1 | Jan 2014 | ISSN - 2249-555X

sulfanylacetamide

FTIR (KBr, cm⁻¹): 1511 cm⁻¹ (C=N in triazole), 3376 cm⁻¹ (-NH Stretching in Amide), 1645 cm⁻¹ (C=O in amide), 1461 cm⁻¹ (C=C in aromatic), 1620 cm⁻¹ (C=O in thioether linkage), 1'H NMR (DMSO-d₆, ppm): 4.28(s, 2H, CH₂), 2.37-2.45 (d, J = 2H, Ar-H), 7.57-7.59 (d, J = 8H, Ar-H), 8.53-8.55 (d, J = 2H, Ar-H), 7.19-7.20 (d, J = 8H, Ar-H), 7.41-7.47 (m, 5H, Ar-H), 10.21 (s, 1H, -NH), Mass spectra (m/z): 488.3(M⁺)

N-(3-chlorophenyl)-2-[(4-phenyl-5-(pyridin-4-yl)-4H-1,2,4-triazol-3-yl)sulfanyl]acetamide

FTIR (KBr, cm⁻¹): 1515 cm⁻¹ (C=N in triazole), 3447 cm⁻¹ (-NH Stretching in Amide), 1663 cm⁻¹ (C=O in amide), 1456 cm⁻¹ (C=C in aromatic), 1676 cm⁻¹ (S-C=O in thioether linkage), 1'H NMR (DMSO-d₆, ppm): 4.26(s, 2H, CH₂), 7.25-7.27(d, J = 4, 2H, Ar-H), 7.58-7.59(d, J = 8H, Ar-H), 8.55-8.57(d, J = 8H, Ar-H), 7.16-7.18(d, J = 8H, Ar-H), 7.43-7.50(m, 5H, Ar-H), 10.27(s, 1H, -NH), Mass spectra (m/z): 422.8(M⁺)

N-(4-nitrophenyl)-2-[(4-phenyl-5-(pyridin-4-yl)-4H-1,2,4-triazol-3-yl)sulfanyl]acetamide

FTIR (KBr, cm⁻¹): 1545 cm⁻¹ (C=N in triazole), 3457 cm⁻¹ (-NH Stretching in Amide), 1667 cm⁻¹ (C=O in amide), 1453 cm⁻¹ (C=C in aromatic), 1634 cm⁻¹ (S-C=O in thioether linkage), 1'H NMR (DMSO-d₆, ppm): 4.20(s, 2H, CH₂), 7.24-7.25(d, J = 4, 2H, Ar-H), 7.54-7.56(d, J = 8H, Ar-H), 8.57-8.59(d, J = 2H, Ar-H), 7.16-7.18(d, J = 8H, Ar-H), 7.42-7.47(m, 5H, Ar-H), 10.23(s, 1H, -NH), Mass spectra (m/z): 433.4(M⁺)

Result and Discussion:

Results were obtained by reacting The mixture of 4-phenyl-5-(pyridine-4-yl)-4H-1,2,4-triazole-3-thiol and 2-chloro-N-(aryl)-acetamide The IR spectra of the compound showed absorption band at 1500 cm⁻¹ which proves the presence of 1,2,4-triazole ring system, absorption band at 3400 cm⁻¹ proves the –NH stretching, 1600 cm⁻¹ (S-C=O linkage in thioether), 1475(-CH₂ stretching), 1400 cm⁻¹ (C=C aromatic).

The 1'H NMR of the compound 6(a-j) showed characteristic signal at δ 4.20(s, 2H, CH₂), 7.24-7.27(d, J = 4, 2H, Ar-H), 7.54-7.56(d, J = 8H, Ar-H), 8.57-8.59(d, J = 2H, Ar-H), 7.16-7.18(d, J = 8H, Ar-H), 7.43-7.50(m, 5H, Ar-H), 10.27(s, 1H, -NH). The mass spectrum of all the compound was obtained also in the acceptable range.

Table : 1 Physical Data of Various Synthesized Compound

Sr. No.	Compound	Molecular Formula	M.W.	M.P. (ºC)	% Yield	% of Carbon Found (Calc.)	% of Hydrogen Found (Calc.)	% of Nitrogen Found (Calc.)
1	6a	C₂₂ H₁₉ N₅ O₅ S	401.48	220-223	87	65.21	4.77	17.44
2	6b	C₂₂ H₁₉ N₅ O₂ S	417.48	230-235	89	63.29	4.59	16.78
3	6c	C₂₁ H₁₆ F₅ N₅ O₂	426.8	205-208	85	62.21	3.98	17.27
4	6d	C₂₁ H₁₆ N₅ O₂	401.4	208-212	79	65.81	4.77	17.44
5	6e	C₂₁ H₁₆ Br₅ N₅ O₂	466.3	215-224	75	54.08	3.46	15.02
6	6f	C₂₁ H₁₆ CI₅ N₅ O₂	439.8	179-181	81	57.34	3.44	15.92
7	6g	C₂₁ H₁₆ F₅ N₅ O₂	405.4	211-214	78	62.21	3.98	17.27
8	6h	C₂₁ H₁₆ N₅ O₂	387.4	225-227	75	62.10	4.42	18.08
9	6i	C₂₁ H₁₆ Cl₅ N₅ O₂	421.9	224-226	80	59.78	3.82	16.60
10	6j	C₂₁ H₁₆ N₅ O₂	432.4	177-180	74	58.32	3.73	19.43

The compound were tested using agar cup method for anti-microbial and anti fungal activity using E.Coli, P.Aeruginosa, S.Aureus, S.Pyogenus (bacteria) C.Albicans, A.Niger and A.Claycus (fungi) are listed in below tables respectively. The table shows the anti microbial activity against gram positive, gram negative bacteria and fungi. Comparison of antimicrobial activity produced by compounds with that of standard antimicrobial drug reveals that the produced compounds shows moderate to good activity against all species of bacterial and fungal strains under study.

Table 3: Belowe Table Shows Antifungal Activity of Standard Drugs

Drug	E.Coli	P. Aeruginosa	S.Aureus	S.Pyogenus
	MTCC443	MTCC1688	MTCC96	MTCC442
µg/ml				
Gentamycin	0.05	1	0.25	0.5
Ampicillin	100	100	250	100
Chloramphenicol	50	50	50	50
Ciprofloxacin	25	25	50	50
Norfloxacin	10	10	10	10
Table 4: Shows Antibacterial Activity

Sr No.	Code No.	E.Coli	P. Aeruginosa	S. Aureus	S. Pyogenes
1	6a	125	500	500	1000
2	6b	200	500	100	125
3	6c	125	250	250	1000
4	6d	500	1000	500	500
5	6e	250	200	125	500
6	6f	500	200	100	500
7	6g	1000	250	500	250
8	6h	250	500	250	250
9	6i	500	1000	100	250
10	6j	500	200	500	100

Table 5: Shows Antifungal Activity

Sr No.	Code No.	C. Albi-cans	A. -Niger	A. Clav-antus
1	6a	1000	1000	1000
2	6b	500	1000	1000
3	6c	1000	1000	1000
4	6d	500	1000	1000
5	6e	1000	1000	1000
6	6f	500	1000	1000
7	6g	1000	1000	500
8	6h	1000	500	1000
9	6i	1000	1000	500
10	6j	1000	500	1000

Conclusion:
A series of 10 compound of \(N\)-(4-aryl amine)-2-[(4-phenyl-5-(pyridin-4-yl)-4H-1,2,4-triazol-3-yl)sulfanyl]acetamide derivatives was synthesized and the structure of the compounds were well supported by the IR, 1H NMR, and mass spectra. The anti bacterial and Anti fungal activity of the compounds was studied, which shows that the compounds had well to moderate activity against bacteria and fungi. Table 2: Belowe Table Shows Antibacterial Activity of Standard Drugs

REFERENCE
(1) Olga D., Cretu, Stefania F. Barbuceanu, Gabriel Saramet and Constantin Draghi, Synthetic and characterization of some 1,2,4-triazole-3-thiones obtained from intramolecular cyclisation of newl-(4-(4-v-phenylsulfonyl)benzoyl)-4-(4-iodophenyl)-3-thiosemicarbazides. Journal of the Serbian Chemical society 75(11)1463-1471(2010) | (2) M. Koparir and C. Koreck, Synthesis and Biological Activities Of some Novel Aminomethyl derivatives Of 5,5'-Butan-1,4-diyl-bis(4-allyl-2,4-dihydro-3H-1,2,4-triazole-3-thione Chem. Sci Trans.2013,2(5),5181-5191 | (3) Rafaat M. Shaker, The chemistry of mercapto and thione substituted 1,2,4-triazoles and their utility in heterocyclic synthesis, Arkivoc. 2006(11)359-362 | (4) M. R.K.Somani, R.R.Toraskar and P.K.Naik, P. P.K.Shurjodkar, P. Synthesis of some antifungal and anti-tubercular 1,2,4-triazole analogues International Journal of Chemtech Research-12(1),168-173(2009) | (5) Patla V.G., Shukla M.B., Bhattacharya A., and Prasatap S.N. Synthesis and Antimicrobial Evaluation Of Some New Acetamide Derivatives Containing 1,2,4-triazole ring, Vol-4(1) Jan-Mar-2013. | (6) Sherrin M. Feky, Laila A. Abbou-Zeid, Mohamed A. Massoud, Shady G. Shokralla and Hassan M. Elia, Synthesis, Molecular modeling of Novel 1,2,4-triazole derivatives with potential antimicrobial and antiviral activities, Acta pharmaceutica scientia.5:235-364(2010) | (7) Bantwal S. Holla, Channamata S. Prasanna, Poojary B. Mithun, Ashok Kottapalli S. Rao and Kanakamalagari Shridhara, Synthesis, Characterisation and Antibacterial Studies of some 1,2,4-triazole derivatives containing a 6-chloropyridin-3-yl-methyl moiety. Z.Naturforsch,61b:334-338(2006) | (8) Akbar Mobinhkhaledi, Nasir Foroughifar, Mansooreh Kheirpour and sattar Ebahrini, Synthesis of some novel Schiff bases containing 1,2,4-triazole ring, European Journal Of Chemistry.1(2)2010:33-36. | (9) Suresh CH, Venkateshwara Rao J, Jayaveera KN, Synthesis of 4-(2-Substitutedbenzothiazoles)-5-mercapto-3-substituted-1,2,4-triazole derivatives for possible Antimicrobiological activities. Research Journal Of Pharmaceutical, Biological and Chemical Sciences. 1(4),635,(Oct-Dec-2010) | (10) Manikrao A. M. Khatale, N. Pravin, T. Shivakumar and D. R. Chaple, Pratulla M. Sable, Jawarkar Rahul D. Characterisation, Evaluation Of Products Synthesis in the intraction of 4-(N-Substituted)-3-Pyridyl-5-mercapto-4-triazole with secondary amines. Der Pharma Chemica,2011,3(3):334-340.