The Association of \textit{PTPN22} R620W Polymorphism Is Stronger with Late-Onset AChR-Myasthenia Gravis in Turkey

Gizem A. Kaya, Ayse N. Coşkun, Vuslat Yılmaz, Piraye Oflazer, Yeşim Gülsen-Parman, Fikret Aysal, Rian Disci, Haner Direskeneli, Alexander Marx, Feza Deymeer, Güher Saruhan-Direskeneli

University of Heidelberg, University Medical Centre Mannheim, Institute of Pathology, Mannheim, Germany

Abstract

A functional single nucleotide polymorphism (SNP) of the \textit{PTPN22} gene encoding a protein tyrosine phosphatase has been associated with autoimmune disorders including myasthenia gravis (MG). As the \textit{PTPN22} R620W polymorphism has a wide variation of allele frequencies among different populations, this polymorphism was investigated in MG in Turkey. An emphasis is put on MG subgroups according to autoantibody (Abs) production and presence of thymoma. DNA samples from 416 patients with clinically diagnosed generalized MG (231 with Abs to acetylcholine receptor, AChR-MG), 53 with Abs to muscle-specific kinase (MuSK-MG), 55 patients with no detectable Abs (SN-MG), 77 patients with thymoma (TAMG) and 293 healthy controls (HC) were genotyped for the SNP (\textit{PTPN22} R620W, C1858T, rs2476601). The \textit{PTPN22} T allele was increased in AChR-MG patients (odds ratio [OR]: 2.5, 95%CI: 1.2–5.1). The association was stronger in late disease-onset AChR (LOMG; OR: 3.1, 95%CI: 1.2–8.2), MuSK-MG, SN-MG and TAMG groups did not carry the variant allele more frequently than the HC. In contrast to findings in other autoimmune diseases, the distribution of the \textit{PTPN22} polymorphism in this population provides a susceptibility marker for AChR-MG. The strongest association is detected in patients with LOMG.

Introduction

Acquired myasthenia gravis (MG) is a rare autoimmune disease which is clinically characterized by fatigability and weakness of striated muscles. The symptoms of MG are mediated mainly by pathogenic auto-antibodies (Abs) directed against the nicotinic acetylcholine receptor (AChR). These disease specific anti-AChR Abs are detected in the majority (80–85%) of the patients [1,2]. In a subgroup of MG patients, thymic changes indicate a pivotal involvement of T cells in the initiation of the auto-immune response is not understood in MG. Dependence of antibody producing B cells on T cells as well as thymic selection, T helper or T regulatory (Treg) cell activity [15]. Protein tyrosine phosphatase non receptor 22 gene (\textit{PTPN22}) encodes a lymphoid-specific phosphatase that is involved in terminating TCR signaling and calibrating the T cell activation threshold. A single nucleotide polymorphism (SNP) of \textit{PTPN22} causing an amino acid change (R620W, C1858T, dbSNP reference: rs2476601) has been shown to affect the interaction of this protein phosphatase with Src family kinases in T cell activation [16]. Individuals carrying the variant allele of \textit{PTPN22} may have changes in the threshold for thymic selection and be prone to autoimmunity. However, the mechanism of action remains to be clarified and both gain and loss of function data have been reported [17,18,19].

The initiation of the auto-immune response is not understood in MG. Dependence of antibody producing B cells on T cells as well as thymic changes indicate a pivotal involvement of T cells in the disease pathogenesis. Altered T cell receptor (TCR) signaling has been recognized as a risk factor for other autoimmune diseases. Altering TCR signaling may predispose to diseases by changing thymic selection, T helper or T regulatory (Treg) cell activity [15]. Protein tyrosine phosphatase non receptor 22 gene (\textit{PTPN22}) encodes a lymphoid-specific phosphatase that is involved in terminating TCR signaling and calibrating the T cell activation threshold. A single nucleotide polymorphism (SNP) of \textit{PTPN22} causing an amino acid change (R620W, C1858T, dbSNP reference: rs2476601) has been shown to affect the interaction of this protein phosphatase with Src family kinases in T cell activation [16]. Individuals carrying the variant allele of \textit{PTPN22} may have changes in the threshold for thymic selection and be prone to autoimmunity. However, the mechanism of action remains to be clarified and both gain and loss of function data have been reported [17,18,19].

MG was shown to be associated with \textit{PTPN22} R620W polymorphism similar to several other autoimmune diseases. The polymorphic allele was increased in the non-thymoma MG
Antibody Determinations

Patients and Controls

In this study, 265 women (64%) were included in the study group. All patients were diagnosed as having generalized MG based on clinical criteria. Among the patients with MG in this study, 19% had thymoma (TAMG). To investigate potential associations of disease subgroups, patients were separated on the basis of antibody profile and by age of onset. Regarding the age which separates EOMG from LOMG, 50 years of age was applied (LOMG, ≥50 years) [9]. The distribution of the polymorphism in the patient and HC groups was determined by counting. Genotype distributions were compared between groups and subgroups by chi-square and Fisher’s exact tests where appropriate. The strength of associations was estimated by odds ratio (OR) with 95% confidence intervals (95% CI). P values less than 0.05 were considered significant. Logistic regression analysis was performed for the interaction of sex and disease onset (EOMG and LOMG) in the AChR-MG group.

Results

The distribution of the polymorphism in the patient and HC groups was determined by counting. Genotype distributions were compared between groups and subgroups by chi-square and Fisher’s exact tests where appropriate. The strength of associations was estimated by odds ratio (OR) with 95% confidence intervals (95% CI). P values less than 0.05 were considered significant. Logistic regression analysis was performed for the interaction of sex and disease onset (EOMG and LOMG) in the AChR-MG group.

Table 1. Gender distribution in patients with myasthenia gravis (MG), anti-AChR antibody positive MG (AChR-MG) with early disease onset (EOMG<50 years of age) and late disease onset (LOMG≥50 years of age), anti-MuSK antibody positive MG (MuSK-MG), MG without any of these two antibodies (SN-MG), thymoma associated MG (TAMG) and healthy controls (HC).

	♀	%	♂	%	Total (N)
MG	265	63,7	151	36,3	416
AChR-MG	148	64,1	83	35,9	231
EOMG	126	73,7	45	26,3	171
LOMG	22	36,7	38	63,3	60
MuSK-MG	39	73,6	14	26,4	53
SN-MG	35	63,6	20	36,4	55
TAMG	43	55,8	34	44,2	77
HC	146	49,8	147	50,2	293

doi:10.1371/journal.pone.0104760.t001
relatively small subgroups such as MuSK-MG, SN-MG and TAMG were particularly recruited in addition to the main group, namely AChR-MG.

AChR-MG patients, excluding TAMG patients, carried the \textit{PTPN22} T allele significantly more frequently than HC (9.5 vs. 4.1\%, \textit{OR: 2.5, 95\% confidence interval [CI]: 1.2–5.1, }\textit{p = 0.013, Table 2}). The distribution of \textit{PTPN22} alleles was not significantly different between TAMG and HC groups. Only 3 out of the 77 TAMG patients carried the polymorphic \textit{PTPN22} T allele as one copy only (Table 2).

Similarly, only 3.9\% of MuSK-MG patient group carried the polymorphic allele, based on a proportion of 13\% of the whole MG group. Both anti-MuSK and anti-AChR Abs negative, SN-MG patients made up 13\% of the study group and carried the \textit{PTPN22} T allele in 7.3\% without a significant difference to HC (Table 2).

When the AChR-MG patients were subgrouped according to 50 years of age as the cut-off for disease onset, the \textit{PTPN22} T allele was more strongly associated with LOMG. The T allele was significantly more frequent in the smaller LOMG group (\textit{OR: 3.1, 95\%CI: 1.2–8.2, }\textit{p = 0.03}), but the association was also evident in EOMG (\textit{OR: 2.3, 95\%CI: 1.0–4.9, }\textit{p = 0.04, Table 2}). The difference between LOMG and EOMG was not significant.

Confirming the previous observation of imbalanced sex distribution in disease-onset subgroups [14,29], the proportions of women and men were significantly different in the EOMG and LOMG groups (\textit{p <0.001}). In LOMG, men prevailed (63\%) whereas women dominated the EOMG group (74\%). To delineate the interaction between disease onset and sex, logistic regression analysis was performed (Table 3). In logistic regression analysis, LOMG (\textit{p = 0.02}, \textit{OR: 3.4}) was significantly associated with the presence of T allele irrespective of the sex. The associations of \textit{PTPN22} polymorphism with EOMG (\textit{p = 0.10, OR: 1.95}) and being women (\textit{p = 0.10, OR: 1.95}) in AChR-MG patients were not statistically significant with this analysis.

Discussion

The \textit{PTPN22} R620W polymorphism is accepted as a general risk factor for autoimmune diseases with prominent production of auto-antibodies [15]. MG, being a prototypic auto-antibody mediated disease, has also been one of the diseases showing association with the \textit{PTPN22} R620W polymorphism. A relatively strong association of the polymorphic \textit{PTPN22} allele compared with ethnically matched controls (OR: 2.4 and 2.5) [21]. Based on the recently performed meta-analyses and genome-wide

rs 2476601 (T→C)			
	N	CC	%
MG	416	385	92.5
AChR-MG	231	209	90.5
EOMG	171	156	91.2
LOMG	60	53	88.3
MuSK-MG	53	51	96.2
SN-MG	55	51	92.7
TAMG	77	74	96.1
HC	293	281	95.9

\textit{PTPN22} in Myasthenia Gravis

PLOS ONE | www.plosone.org 3 August 2014 | Volume 9 | Issue 8 | e104760
The main exception to this association was data derived from an Italian population where no association was found with MG. In contrast, the findings of this study demonstrated a relatively strong association of PTPN22 with AChR-MG providing an OR similar to other Caucasian populations and even higher than the cumulative value of the meta-analyses. This discrepancy between Italian and Turkish populations in susceptibility to MG is unexpected. The Italian population is reported to be genetically different from the mentioned European populations, but similar to populations from other Mediterranean countries including Turkey [24]. Previous studies on other diseases including our study on MuSK-MG have emphasized the similar genetic backgrounds of Mediterranean populations [30,31,32,33]. The heterogeneity in the samples selected for the studies from Italy and from Turkey may account for this difference [24].

Another finding of this study was the stronger association of this polymorphism with LOMG than the EOMG group which was not reported in other populations. As the previous studies have focused mainly on EOMG, the extension of association to LOMG may provide a novel aspect for this disease subgroup. However, we have also observed an imbalance of the sex distribution in this relatively smaller subgroup of AChR-MG and the association with the PTPN22 R620W polymorphism was even stronger in women of LOMG group compared with healthy women. Thus, the previous observation of stronger association of HLA-B8 with women in MG [15,34] extends to another locus, PTPN22. This difference of PTPN22 in women and men was not observed previously in the genome-wide association study [15], but similar findings have been proposed previously in rheumatoid arthritis (RA) for PTPN22 [28,33]. In the present study, however, the effect of sex did not persist after the regression analysis. Further studies with higher sample numbers are required to verify this finding.

Data from this study did not provide evidence for an increase of the PTPN22 T allele in TAMG, similar to the French and Swedish cohorts [20,23] and at variance with a German cohort [21]. Several studies have shown that LOMG and TAMG have similarities in autoantibody spectrum [14]. The polymorphic PTPN22 allele frequency in the rare subgroup of MuSK-MG was as low as in the HC and this finding confirms the single previous result in MuSK-MG reported from Italy [24]. The lack of association with both TAMG and MuSK-MG emphasizes the differences between genetic backgrounds of these subgroups and AChR-MG.

The variable distribution of autoimmunity-associated genes might hint to the different frequencies of diseases in different ethnic populations. Among the non-HLA genetic associations with autoimmune diseases, the PTPN22 R620W gene polymorphism was shown to be a major risk factor in association studies of several diseases in Caucasian populations including North American, Spanish, British, Dutch, French-Canadian and Swedish patients [36]. However, there were considerable ethnical differences in the polymorphic allele frequencies of PTPN22 R620W polymorphism in different populations with a North-South gradient ranging between 15.5% and 2.1% in Europe [13,27]. The frequency of the PTPN22 polymorphism was also relatively low in the healthy population from Turkey in the present data as well as in another sample from Turkey [37]. Our previous results on the absence of the association with this PTPN22 polymorphism in other autoimmune diseases such as RA and Takayasu’s arthritis [38,39] in this population underlines the specificity of the current finding in AChR-MG, also supporting the relationship with specific humoral autoimmunity.

Several association studies have shown genetic heterogeneity of MG as in HLA associations. The current study provides a confirmation for an association with AChR-MG in a relatively small sample size in a population with a low frequency of this polymorphism. Moreover, the findings identify PTPN22 R620W polymorphism as the strongest susceptibility marker for LOMG among all other MG subgroups and provide a hint for a sex related difference in susceptibility for AChR-MG. Although no functional implications can be concluded from the data, further analysis of the PTPN22 polymorphism in larger samples and at the cellular level is warranted in disease groups.

Author Contributions
Conceived and designed the experiments: VY PO YGP AM FD GSD. Performed the experiments: GAK ANC VY PO YGP FD GSD. Analyzed the data: GAK RD AM FD GSD. Contributed reagents/materials/analysis tools: PO YGP FA RD HD AM FD GSD. Wrote the paper: PO YGP HD AM FD GSD.

Table 3. The logistic regression analysis of the PTPN22 (rs2476601 T→C) genotype frequencies with sex (women and men) and disease onset (early onset: EOMG and late onset: LOMG) in anti-AChR antibody positive MG (AChR-MG) with reference to healthy controls (HC).

	B	p	OR	95% C.I. Lower	95% C.I. Upper
Sex					
Women	0.67	0.10	1.95	0.88	4.34
Men	1.0				
Group					
EOMG	0.67	0.10	1.95	0.88	4.34
LOMG	1.23	0.02	3.41	1.27	9.18
HC	1.0				

OR: Odds ratio, 95% Confidence interval (CI). doi:10.1371/journal.pone.0104760.t003
References

1. Vincent A, Newsom-Davis J (1985) Acetylcholine receptor antibody as a diagnostic test for myasthenia gravis: results in 153 validated cases and 2967 diagnostic assays. J Neurol Neurosurg Psychiatry 48: 1246–1252.

2. Santulli J, Seybold ME, Lennon VA, Whittingham S, Duane DD (1976) Antbody to acetylcholine receptor in myasthenia gravis. Prevalence, clinical correlates, and diagnostic value. Neurology 26: 1054–1059.

3. Hoch W, McConville J, Helms S, Newsom-Davis J, Helms A, et al. (2001) Autoantibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies. Nat Med 7: 365–368.

4. Higuchi O, Hamuro J, Motomura M, Yamanashi Y (2012) Autoantibodies to low-density lipoprotein receptor-related protein 4 in myasthenia gravis. Ann Neurol 71: 410–412.

5. Pevzner A, Schooer B, Peters K, Cosma NC, Karakatsani A, et al. (2012) Anti-LRP4 autoantibodies in AChR- and MuSK-antibody-negative myasthenia gravis. J Neurol 259: 427–435.

6. Zhang B, Tzartos JS, Belimezi M, Ragheb S, Belimair B, et al. (2012) Autoantibodies to lipoprotein-related protein 4 in patients with double-negative myasthenia gravis. Arch Neurol 69: 445–451.

7. Zhang B, Chen C, Belimair B, Ragheb S, Xiong W-C, et al. (2014) Autoantibodies to agrin in myasthenia gravis patients. PLoS ONE 9: e91816.

8. Compton DA, Vincent A, Newsom-Davis J, Batchelor JR (1980) Clinical, immunochemical, and therapeutic approach to myasthenia gravis. Ann N Y Acad Sci 998: 481–490.

9. Aarli JA, Romi F, Skeie GO, Gilhus NE (2003) Myasthenia gravis in individuals over 40. Ann N Y Acad Sci 998: 424–431.

10. Romi F, Gilhus NE, Varhaug JE, Myking A, Skeie GO, et al. (2003) Thymectomy and antimuscle antibodies in nonthymomatous myasthenia gravis. Ann N Y Acad Sci 998: 401–490.

11. Ishii W, Matsuda M, Hanyuda M, Momose M, Nakayama J, et al. (2007) Comparison of the histological and immunohistochemical features of the thymus in young- and elderly-onset myasthenia gravis without thymoma. J Clin Neurosci 14: 110–115.

12. Manioul AH, Elsais A, Lorentzen AR, Owe JF, Viken MK, et al. (2012) Late-onset myasthenia gravis - CTLA4 genotype association and low-forpopulation. PLoS One 7: e36603.

13. Mustelina E, Bartoccioni E, Scuderi F, Augugliaro A, Chiatamone Ranieri S, Sauchelli D, et al. (2012) PTPN22 and myasthenia gravis: replication in an Italian population and meta-analysis of literature data. Neuromuscular Disord 22: 131–138.

14. Huang D, Zheng C, Giscombe R, Mattell G, Piskaran R, et al. (1999) Polymorphisms at -174 and in the 3′ flanking region of interleukin-6 (IL-6) gene in patients with myasthenia gravis. J Neuroimmunol 101: 197–200.

15. Mori M, Yamaeda R, Kobayashi K, Kacsaia R, Yamamoto K (2005) Ethnic differences in allele frequency of autoimmune-disease-associated SNPs. J Hum Genet 50: 264–266.

16. Vang T, Miletic AV, Bottini N, Mustelin T (2007) Protein tyrosine phosphatase PTPN22 in human autoimmunity. Autoimmunity 40: 453–461.

17. Strobel P, Murumagi A, Klein R, Luster M, Sussen J, et al. (2012) Risk for myasthenia gravis maps to a (151) Pro-flanking region of interleukin-6 (IL-6) gene in patients with myasthenia gravis. J Neuroimmunol 101: 110–113.

18. Meriggioli MN, Sanders DB (2009) Autoimmune myasthenia gravis: emerging clinical and biological heterogeneity. Lancet Neurol 8: 473–490.

19. Pierer M, Kaltenhauser S, Arnold S, Waibel C, Bengwald C, et al. (2006) Association of the PTPN22*R620W polymorphism with autoimmune myasthenia gravis without acetylcholine receptor antibodies. Nat Med 7: 365–368.

20. Meriggioli MN, Sanders DB (2009) Autoimmune myasthenia gravis: emerging clinical and biological heterogeneity. Lancet Neurol 8: 473–490.

21. Meriggioli MN, Sanders DB (2009) Autoimmune myasthenia gravis: emerging clinical and biological heterogeneity. Lancet Neurol 8: 473–490.

22. Greve B, Hoffmann P, Iles Z, Roosa C, Berger K, et al. (2009) The autoimmunity-related polymorphism PTPN22 1855C/T is associated with anti-titin antibody-positive myasthenia gravis. Hum Immunol 70: 549–542.

23. Levert AK, Zhao Y, Ramanujan R, Yu S, Piskaran R, et al. (2008) PTPN22 R620W promotes production of anti-AChR autoantibodies and IL-2 in myasthenia gravis. J Neuroimmunol 197: 110–113.

24. Provenzano C, Ricciardi R, Scuderi F, Maiuri MT, Maestri M, et al. (2012) PTPN22 and myasthenia gravis: replication in an Italian population and meta-analysis of literature data. Neuromuscular Disord 22: 131–138.

25. Meriggioli MN, Sanders DB (2009) Autoimmune myasthenia gravis: emerging clinical and biological heterogeneity. Lancet Neurol 8: 473–490.