Clustered Distribution of Natural Product Leads of Drugs in the Chemical Space as Influenced by the Privileged Target-Sites

Lin Tao1,2,3, Feng Zhu1,2,4, Chu Qin2,3, Cheng Zhang2, Shangying Chen2, Peng Zhang5, Cunlong Zhang1, Chunyan Tan1, Chunmei Gao1, Zhe Chen5, Yuyang Jiang1 & Yu Zong Chen1,2,3

1Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, the Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, the Graduate School at Shenzhen, Tsinghua University, Shenzhen, and Shenzhen Technology and Engineering Laboratory for Personalized Cancer Diagnostics and Therapeutics, PO Box 518000, P. R. China, 2Bioinformatics and Drug Design Group, Department of Pharmacy, and Center for Computational Science and Engineering, National University of Singapore, Singapore 117543, 3NUS Graduate School for Integrative Sciences and Engineering, Singapore 117456, 4Innovative Drug Research Centre and College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, P. R. China, 5Zhejiang Key Laboratory of Gastro-intestinal Pathophysiology, Zhejiang Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, P. R. China.

Some natural product leads of drugs (NPLDs) have been found to congregate in the chemical space. The extent, detailed patterns, and mechanisms of this congregation phenomenon have not been fully investigated and their usefulness for NPLD discovery needs to be more extensively tested. In this work, we generated and evaluated the distribution patterns of 442 NPLDs of 749 pre-2013 approved and 263 clinical trial small molecule drugs in the chemical space represented by the molecular scaffold and fingerprint trees of 137,836 non-redundant natural products. In the molecular scaffold trees, 62.7% approved and 37.4% clinical trial NPLDs congregate in 62 drug-productive scaffolds/scaffold-branches. In the molecular fingerprint tree, 82.5% approved and 63.0% clinical trial NPLDs are clustered in 60 drug-productive clusters (DCs) partly due to their preferential binding to 45 privileged target-site classes. The distribution patterns of the NPLDs are distinguished from those of the bioactive natural products. 11.7% of the NPLDs in these DCs have remote-similarity relationship with the nearest NPLD in their own DC. The majority of the new NPLDs emerge from preexisting DCs. The usefulness of the derived knowledge for NPLD discovery was demonstrated by the recognition of the new NPLDs of 2013–2014 approved drugs.

The focus of drug discovery has moved from natural products (NPs) to technology-derived synthetic molecules for about 20 years1 without the anticipated drug productivity improvement2. Although being largely sidelined, NPs are still relevant3,4 with NP-related small molecule drugs representing 29.5% of the 132 FDA approved drugs in 2008–2012 (Supplementary Table S1), NP-related drugs include NPs and NP semi-synthetic derivatives, mimetics, and pharmacophore-guided synthetic molecules5. The NPs from which the NP-related drugs have been derived are named as the NP leads of drugs (NPLDs). There is a renewed interest in discovering drugs6 from NP privileged structures6 and derivative libraries7. The knowledge of the distribution of the NPLDs in the chemical space provides useful clues for prioritizing the relevant efforts.

Although NPs are in well-defined subspaces of the chemical space8, because of their enormous number9, structural diversity9,10 and molecular complexity11, only a fraction of NPs can be practically explored in the foreseeable future. Drug discovery efforts need to be prioritized towards the NPs with higher discovery potentials. The key questions are which NPs to explore and where to find them. Evidences suggest that some NPLDs may congregate in specific drug-productive regions of the chemical space. Certain NP chemical classes (e.g. steroids and nucleosides) are drug prolific12. Half of the drugs are made of dozens of molecular frameworks13–15 and the corresponding principal components16–20 are constrained in specific ranges. Moreover, the GPCR, kinase and protease targeting agents have been reported to each cluster together in the chemical space1. These studies have consistently shown that a substantial percentage of the NPLDs congregate in the chemical space. However, the extent and the detailed distribution patterns of the conformation of NPLDs in the chemical space and the mechanisms leading to such patterns have not been fully investigated.
There is a need to study these questions from different structural and molecular binding perspectives to gain a deeper understanding of the structural characteristics of NPLDs and to find clues for guiding the search of new NPLDs. In this work, we determined the distribution patterns of the 348 and 94 NPLDs of 749 pre-2013 approved and 263 clinical trial small molecule drugs (Supplementary Tables S2, S3) in the chemical space represented by the molecular scaffold trees and the molecular fingerprint based hierarchical clustering tree of 137,836 non-redundant NPs. The number of NPs profiled here is comparable to those of the earlier large-scale NP studies. Molecular fingerprints were used for representing NPs in the hierarchical clustering tree because of its demonstrated effectiveness in structural similarity searching, and its extensive applications in drug lead discovery.

The derived distribution patterns were studied from the perspective of preferential binding of NPLDs to the privileged target-sites for determining whether it contributes to the formation of these patterns. We also evaluated whether these patterns are distinguished from those of the bioactive NPs and how they evolve with time. We further tested whether the derived knowledge can be explored for NPLD discovery by applying it to retrospectively judge the development potential of the new NPLDs of 2013–2014 approved drugs uninvolved in the derivation of the NPLD distribution patterns. New technologies are expected to significantly expand the currently accessible NP chemical space and their potential impact is not reflected in this study.

Drug scaffolds have been well analyzed and drug distribution in the chemical space have been extensively studied from the perspectives of specific molecular and physicochemical properties. To the best of our knowledge, our work is the first large-scale and systematic study of the detailed distribution patterns of the largest set of NPLDs in the chemical space from the perspectives of their molecular scaffolds and structures. The molecular scaffold analysis was intended for determining whether there is a significant change in the congregation patterns of the NPLDs in comparison to the previous studies. The molecular structural analysis was intended for further probing the complex structural features of the NPLD congregation phenomenon and the underlying molecular mechanisms that might contribute to the clustering of NPLDs with particular focus on the possible influence of the binding of NPLDs and their derivatives to the privileged target sites.

Methods

We collected 442 NPLDs and the information about their NP origin from the literature. We also collected 169,037 NPs from the ZINC24, TCM-ID29, TCM@Taiwan25, and other literatures. For database entries with multiple non-linked components, only the largest component was selected. Hydrogens were added and small fragments (counter ions, solvent molecules, etc.) were removed by using Corina. The number of NPs were reduced to 137,836 after removing the duplicate entries, small NPs with molecular weight <50 Daltons (drug leads are >100 Daltons) and the NPs whose molecular fingerprints could not be computed by using available software tools such as PaDEL. Duplicates were identified and removed by structural comparison based on a set of 98 molecular descriptors we have used for classifying bioactive molecules and implemented in the online server MODELL, open-source software PaDEL, and our own software, which can distinguish different molecules non-distinguishable by the 881-bit Pubchem molecular fingerprints.

In deriving the molecular scaffold trees of the 442 NPLDs and 137,836 NPs, Scaffold Hunter was used to select the NPLDs and NPs with ring structures and to subsequently cluster them into molecular scaffold trees by using default rule set in the Scaffold Tree Generation window. The molecular fingerprint based hierarchical clustering tree of the 442 NPLDs and 137,836 NPs was generated by using the MafLab statistics toolbox with the structures of the NPs represented by 2D molecular fingerprints (specifically, the 881-bit PubChem substructure fingerprints computed by using PaDEL) and with their similarity levels measured by the Tanimoto coefficient and the complete linkage. was used because it is the most popular similarity metric for molecular fingerprint based measurement of compound similarity. Complete linkage was used because of its relatively good performance in clustering bioactive compounds in a recent comparative study. The hierarchical tree graphs were generated by using EMRI automatic tree generator in ITOL version-1.8.1.0 with the distance of the NPs measured by the Tanimoto distance $T_d = 1 - T_c$, where T_c is a standardized effect size measure of the community structure in each sub-regions, which is the difference in average T_d between the NPLDs and the 60,000 randomly generated NP sub-regions, and standardized by the standard deviation of the T_d values in 60,000 randomly shuffled sets of NP communities. The sign of the net relatedness index (NRI) informs whether the NPLDs are more clustered ($NRI > 0$) or more dispersed ($NRI < 0$) than the NPs in each sub-region. These quantities were calculated by using Phylocom v4.1 with the T_d values of the NPLDs and NPs as input data.

Results and Discussion

Distribution profiles of NPLDs in the chemical space from the perspectives of molecular scaffolds and molecular structures.

There are 411 NPLDs and 134,097 NPs with ring structures. These were grouped by Scaffold hunter into molecular scaffold trees of 39,051 scaffolds (114 are drug-productive). The distribution of the NPLD scaffolds in this large-scale analysis is similar to the previous findings, the majority (62.7%) of the NPLDs of the approved drugs and a substantial percentage (37.4%) of the NPLDs of the clinical trial drugs congregate in 62 drug-productive scaffolds or scaffolds parent-child sub-branches (DSs) labeled as DS1 to DS62 (Figure 1, Supplementary Table S4 and Figures S1–S5). A DS is defined as a scaffold with ≥2 NPLDs that have yielded ≥1 approved drug or a scaffold parent-child sub-branch with ≥2 NPLD-producing scaffolds that have yielded ≥1 approved drug.

![Figure 1 | Distribution of the natural product leads of approved and clinical trial drugs in branch 5 of the Scaffold-Hunter derived molecular scaffold trees of the 134,097 natural products and 411 natural product leads.](https://www.nature.com/scientificreports/)
These DSs have collectively yielded 69.6% approved and 44.4% clinical trial drugs. The presentation of NPLDs in the DSs coupled with the earlier finding that the GPCR, kinase and protease targeting agents each are clustered together in the chemical space indicates that NPLDs of the same and different scaffolds against the same classes of targets may on a broader scale be clustered together in the chemical space. To facilitate the visualization of our generated scaffold trees by using Scaffold Hunter, the resulting scaffold database was exported as a SQL file that can be downloaded at http://bidd.nus.edu.sg/group/NPLD_Distribution/NP_ScaffoldHunter.zip.

To probe the larger-scale distribution patterns of NPLDs in the chemical space from the perspective of molecular structures, we generated a molecular fingerprint based hierarchical clustering tree of the 442 NPLDs and 137,836 NPs. The derived tree is composed of 33 main branches (Supplementary Figure S6 and Table S5). Most (87.9%) branches are drug-productive, reflecting the fact that NPs primarily co-evolve and interact with proteins and a variety of chemical classes have been therapeutically explored. Nonetheless, NPLDs within each branch are mostly clustered together, with 341 (77.2%) NPLDs (82.5% approved, 3.0% clinical trial) clustered in 60 drug-lead productive clusters (DCs) labeled as DC1 to DC60 (Figure 2, Supplementary S7–S10 and Table S6). A DC is defined as a relatively small region of the molecular fingerprint characterized chemical space with moderate to high concentration of NPLDs yielding ≥1 approved drug.

To facilitate the analysis of the clustered distribution of the NPLDs, we generated the heat map of the proximity matrix of 442 NPLDs against 137,836 non-redundant NPs. The proximity matrix was calculated by using molecular fingerprint Tanimoto distance T_d between NPLDs and NPs with the row and column positions representing the NPLDs and NPs in the same order as their respective positions in the hierarchical clustering tree of the NPLDs and NPs. The heat map was created by using the heatmap.2 function of the gplots package in R with the red to yellow colors indicating the stronger to weaker structural similarity between the NPLDs and NPs.

Figure 2 | Distribution of the natural product leads of approved and clinical trial drugs in branch 3 of the substructure-fingerprint clustering tree of the 137,836 natural products and 442 natural product leads. The drug-lead productive clusters are red-orange colored and marked by the respective cluster label DC4–DC10. The red, purple and blue lines on top of the clustering tree indicate the locations of the approved, + clinical trial, and clinical trial drug-leads with the height correlating with the number of approved + clinical trial drugs.

The heat map for branch 4 and 9 are shown in Supplementary Figures S11–S12 and those of the other branches can be downloaded from http://bidd.nus.edu.sg/group/NPLD_Distribution/NP_heatmaps.zip.

We found that 11.7% of the NPLDs in the DCs have remote-similarity relationships ($0.57 \leq T_c < 0.7$) with the nearest NPLD in their own DC, and another 24.9% of the NPLDs in these DCs have intermediate-similarity relationship ($0.7 \leq T_c < 0.85$) with their nearest NPLD in their own DC. Remote-similarity relationships have been reported in compounds with cross-pharmacology relationships and between a bioactive compound and its scaffold hopping parent bioactive compound. Therefore, the DCs broadly cover the high-similarity to remote-similarity relationships for capturing similar activities, and cross-pharmacology and scaffold hopping types of relationships.

These DCs have collectively yielded 87.9% approved and 68.4% clinical trial drugs. In particular, 56.0% approved and 67.4% clinical trial NPLDs are clustered in 22 NPLD-prolific DCs (Table 1) that have collectively yielded 68.4% approved and 39.2% clinical trial drugs, which is consistent with the report that half of the drugs are made of dozens of molecular frameworks. The NPLD-prolific DCs were ranked based on the ratio of the approved NPLDs to the NPs in each DC. Partly because of the inadequate exploration and partly because of the limited availability of the relevant information, these ratios may not fully reflect the reality but nonetheless provide useful indications. We found that 60% of the top-10 NPLD-prolific DCs with >100 searchable NPs in Table 1 are among top-ranked DCs with higher approved NPLD to NP ratios. Thus, drug productivity of these top-ranked DCs seems to arise from higher NPLD yields instead of the higher number of NPs explored. The top-ranked DC38 and DC8 in Table 1 were excluded because they have <100 searchable NPs. If counted, they are among the DCs with highest approved NPLD to NP ratios.

Statistical significance of the clustering of NPLDs in the DCs. The statistical significance of the clustering of the NPLDs in every DC was evaluated by using the Phylocom software to calculate the P-value and NRI of the NPLDs against the chance clustering of the NPs in the DC from 60,000 sets of randomly selected NPs, as outlined in the Method section. We found that there are statistically more NPLDs in most of the DCs than expected by chance, with 78.3% of the DCs having $P \leq 0.0095$ and additional 10% of the DCs having $0.01 \leq P \leq 0.0362$ respectively (Table 2), which correspond to very strong ($P \leq 0.01$) and strong ($0.01 < P \leq 0.05$) presumption against null hypothesis respectively. The P-value of the remaining 4 (6.7%) and 3 (5%) DCs are in the range of $0.0525 \leq P \leq 0.0736$ and $0.1233 \leq P \leq 0.1857$ respectively, which correspond to low ($0.05 < P \leq 0.1$) and no ($P > 0.1$) presumption against null hypothesis respectively. It is noted that each of these seven DCs has only 2 NPLDs and there is a possibility that the low statistical significance of these DCs are partly due to the few discovered NPLDs in these DCs.

To further provide a more conservative evaluation of the statistical significance of the clustering of NPLDs in the DCs, Bonferroni correction for study-wide hypothesis testing was performed. We found that, under the Bonferroni correction with $\alpha = 0.05/60$, 48.3% DCs still have statistically strong or very strong significance against null hypothesis (Table 2). On the other hand, 16.7% DCs showed weak and 35% DCs showed no significance. It is noted that the majority (67.7%) of these weak or no significance DCs have 2–3 NPLDs in their respective DCs. The low number of NPLDs in each of these DCs likely leads to a higher tendency of forming a distribution pattern with weaker statistical significance that can be exposed by stricter statistic tests.
Drug Lead Cluster (Branch)	Drug Lead Molecular Scaffold Groups	No of NPs	No of Leads, Drugs (Approved/Trial)	Target Site Super Class	Target Site Class
DC19 (14)	Steroids & derivatives	546	32/5, 85/8	steroid sites	Nuclear receptor ligand sites
DC5 (3)	Pyrimidine nucleosides, Aminoglycosides	225	19/0, 32/0	nucleoside phosphate sites, aminoacyl-RNA sites	DNA metab enzymes nucleoside phosphate, ribosome 30s aminoacyl-RNA sites
DC13 (14)	Purine nucleosides, Imidazole analogs & their oligopeptide hybrids	264	17/2, 39/22	Nucleoside sites, nucleoside phosphate sites	nucleoside receptor ligand & metabolism enzyme substrate sites, Nucleoside phosphate receptor ligand, DNA metab enzymes nucleoside phosphate sites
DC7 (3)	Amino acids with acyclic hydroxyl side chain & derivatives	217	15/0, 23/0	amino acid sites	amino acid receptor ligand & metab enzyme substrate sites
DC17 (14)	Macrolides, Polyenes, Spinosyns, Acorvinosin	117	15/4, 29/14	amino acid phosphate sites, oligopeptide sites, lipopolysaccharide sites	phosphatase substrate, ribosome 23S peptidyl transferase, outer membrane lipopolysaccharide sites
DC21 (14)	Fatty acids & derivatives, Prostanoids	423	8/1, 26/1	fatty acid, cannabinoid, eicosanoid, retinoid, coenzyme A sites	retinoid receptor ligand, CoA metab enzyme substrate sites
DC28 (17)	Cardiac glycosides	176	8/1, 12/1	nucleoside phosphate sites	nucleoside phosphate metab enzyme substrate sites, exopeptidase substrate, Neuroneptide receptor ligand, outer membrane lipopolysaccharide sites
DC8 (3)	Beta-lactams	92	6/2, 90/6	peptidoglycan sites	β-lactam binding protein peptidoglycan sites
DC29 (20)	Saponins, Triterpenoid glycosides, Macrocyclic lactones	1696	6/1, 7/2	nucleoside phosphate sites	steroid metab enzyme nucleoside phosphate, calcium channel DHP, chloride channel CBS sites
DC45 (30)	Tetra cyclics, Capsaicinoids, Disulfide bromotyrosine derivatives	447	6/3, 13/7	aminooacyl-RNA sites	ribosome 30s aminoacyl-RNA sites
DC49 (32)	Opiate alkaloids, Phenanthrene alkaloids	457	6/1, 18/1	amine sites, opiate sites	amine receptor ligand, opiate receptor ligand sites
DC10 (3)	Glycosaminoglycans, glucosamines, Lincosamides & derivatives	237	5/0, 17/0	oligopeptide sites	serine endopeptidase substrate sites
DC12 (4)	Purine base analogs, modified purine base analogs	180	5/0, 9/0	nucleoside sites, nucleoside phosphate sites	nucleoside receptor ligand, DNA metab enzymes nucleoside phosphate sites
DC14 (7)	Larger indole alkaloids	4104	5/1, 15/16	amine sites, oligopeptide sites	amine receptor ligand & transporter substrate, exopeptidase substrate sites
DC53 (10)	Cannabinoids, Diarylheptanoids, Dihydroribofuranosides, Small phenolic molecules with a long tail	2531	5/4, 9/8	fatty acid, cannabinoid, eicosanoid, retinoid sites	fatty acid metab enzyme substrate, retinoid receptor ligand, cannabionid receptor ligand sites
DC24 (16)	Oligo, Poly, Cyclic-saccharides	259	5/0, 5/0	cyclic oligosaccharide drug delivery systems, nucleoside phosphate sites, sites within peptidoglycans, saccharide sites, lipopolysaccharide sites	cyclolektin drug delivery systems
DC36 (20)	Large cyclic peptides	265	5/6, 6/7	nucleoside phosphate sites, sites within peptidoglycans, saccharide sites, lipopolysaccharide sites	calcium channel DHP, cell wall peptidoglycan, polysaccharide metab enzyme substrates, outer membrane lipopolysaccharide sites
DC40 (24)	Porphyrins, Prodiginines, Ergoline, Ellipticine, Epibatidine-alkaloids	519	5/3, 8/4	amine sites, nucleobase sites	amine receptors ligand, DNA intercalation sites
DC42 (26)	Indole-containing amino acid tryptophan analogs, Monoterpenoid indole alkaloids, Yohimbine alkaloids	512	5/2, 6/4	amine sites	amine receptor ligand sites
DC43 (28)	Tropane alkaloids	29	5/0, 10/0	amine sites	amine receptor ligand & transporter substrate sites
DC44 (28)	Catecholamines, Small alkaloids with an amine group	358	5/0, 21/0	amine, opiate sites	amine receptor, opiate receptor ligand sites
Molecular mechanisms that contribute to the clustering of NPLDs. To determine what molecular mechanisms might contribute to the clustering of NPLDs within individual DCs with particular focus on the possible influence of the targets of their derived drugs, we evaluated the 203 targets of the 822 approved and clinical trial drugs of the 331 NPLDs in the 55 DCs with their target information available in the therapeutic target database.

Table 2: The statistical significance of the clustering of the NPLDs in every DC

To determine what molecular mechanisms might contribute to the clustering of NPLDs within individual DCs with particular focus on the possible influence of the targets of their derived drugs, we evaluated the 203 targets of the 822 approved and clinical trial drugs of the 331 NPLDs in the 55 DCs with their target information available in the therapeutic target database. We found that the targets of each individual DC are primarily from...

DC	Branch	No of NPLD	MTD	MTD.rnd	NRI	P-value
DC1	1	2	0.2642	1.8368	6.2385	0.00238
DC2	1	2	0.1224	1.8373	6.9228	0.00117
DC3	1	2	0.6296	1.8331	4.7303	0.00847
DC4	3	4	1.0322	1.6705	6.1005	0.00047
DC5	3	19	1.2111	1.6704	16.3408	0.00000
DC6	3	5	1.2328	1.6704	5.2077	0.00142
DC7	3	15	1.4909	1.6706	5.2466	0.00043
DC8	3	6	1.0778	1.6706	8.2775	0.00000
DC9	3	7	1.1073	1.6711	9.1502	0.00002
DC10	3	5	0.8436	1.6704	9.8633	0.00000
DC11	4	4	0.8826	1.5121	4.7221	0.00277
DC12	4	5	0.6238	1.5122	8.4309	0.00000
DC13	4	18	1.0751	1.5107	12.7659	0.00000
DC14	7	5	0.8233	1.2803	4.7221	0.00277
DC15	8	3	0.8090	1.5069	4.7523	0.00175
DC16	9	3	0.4985	1.4882	5.2888	0.00145
DC17	9	16	1.4909	1.4892	10.2529	0.00000
DC18	9	2	1.0548	1.4913	1.5675	0.06920
DC19	9	3	0.8121	1.3910	5.5223	0.00100
DC20	10	2	0.2934	1.2207	3.7910	0.00947
DC21	10	9	0.9145	1.4007	4.5322	0.00078
DC22	10	3	1.2542	1.3999	0.6864	0.15480
DC23	10	2	1.0778	1.3910	8.2775	0.00003
DC24	11	5	0.8436	1.6704	9.8633	0.00000
DC25	12	2	0.2934	1.2207	3.7910	0.00947
DC26	12	2	0.9926	1.2208	2.9058	0.01428
DC27	12	8	0.2007	1.2200	12.9182	0.00000
DC28	12	7	0.7426	1.2203	5.3655	0.00135
DC29	12	13	0.8474	1.3667	6.1017	0.00000
DC30	14	5	0.1097	1.5449	4.2627	0.00000
DC31	14	5	0.9406	1.5439	4.9565	0.00007
DC32	14	4	1.1776	1.5454	2.5820	0.02413
DC33	14	3	0.8209	1.5460	4.0057	0.00120
DC34	14	6	0.6607	1.5452	8.3548	0.00000
DC35	15	10	0.6860	1.3351	7.9798	0.00000
DC36	16	3	0.6935	1.4435	3.4132	0.01103
DC37	16	7	0.5400	1.1431	10.9642	0.00000
DC38	17	3	0.4787	1.1665	5.0540	0.00093
DC39	17	7	0.8464	1.1671	4.7513	0.03623
DC40	17	2	0.6630	1.1649	2.3529	0.03623
DC41	17	7	0.7352	1.1663	6.3612	0.00025
DC42	20	5	0.4329	1.3241	17.2567	0.00000
DC43	20	5	0.6912	1.3241	12.1159	0.00003
DC44	20	7	0.9507	1.3238	10.0919	0.00002
DC45	21	3	0.1372	0.7713	9.7873	0.00010
DC46	21	4	0.5792	0.7708	1.8932	0.02985
DC47	24	2	0.5792	0.7708	1.8932	0.02985
DC48	24	6	0.5427	1.0740	4.3790	0.00000
DC49	26	5	0.4218	0.7916	6.3884	0.00012
DC50	26	2	0.6502	0.7909	1.1859	0.07355
DC51	26	2	0.9049	1.1883	3.5742	0.00135
DC52	26	9	0.9577	1.1880	5.9241	0.00070
DC53	30	2	0.7262	0.8764	0.7311	0.18568
DC54	32	3	0.3393	0.8538	4.4925	0.00152
DC55	32	2	0.6884	0.8548	0.9532	0.12325
DC56	32	2	0.2012	0.8550	3.7418	0.00427
DC57	32	2	0.4916	0.8533	2.0560	0.05248
DC58	32	3	0.8535	0.8535	4.8258	0.00077
DC59	32	2	0.2995	0.8533	4.8258	0.00040
They either have or may be further optimized to gain such additional features as adequate metabolic stability46, metabolite safety47, absorption48 and physical forms49 to reach the drug sweet spots50 in the chemical space. Therefore, our revealed clustered patterns of NPLDs and their links to the selected TCs provide useful information and enable further study of the distribution profiles of the NPLDs in the chemical space particularly with respect to the relevant target-site classes.

Consistent with the reported clustering of GPCR, kinase and protease targeting agents in the chemical space1, the GPCR, kinase and protease TCs are primarily targeted by the selected chemical classes of NPLDs in specific DCs. For GPCRs, amine receptors (TC1) are primarily targeted by amines (DC31, DC44), ergoline alkaloids (DC40, DC41), and indole (DC14, DC42) and tropane (DC43) alkaloids, amino acid receptors (TC20) by amino acids (DC7) and oligopeptides (DC9), cannabinoid receptors (TC39) by cannabimimetics (DC56) and cannabidiols (DC53), uridine nucleoside receptors (TC5) by uracils (DC12, DC13), opiate receptors (TC43) by opiate alkaloids (DC49), and monosaccharide receptors (TC32) by phenylpropanoids (DC60). Kinases (TC11) are primarily targeted by staurosporines (DC39). For the proteases, serine endopeptidases (TC28) are primarily targeted by glycosaminoglycans (DC10) and linear amino acid derivatives (DC43) by oligopeptides (DC9), and exopeptidases (TC23) by phenethylamines (DC34), sesquiterpenes (DC22), and indole alkaloids (DC14), and linear and cyclic peptides (DC38).

The other drug-prolific DCs are also closely linked to specific TCs (Table 1), with DC19 (steroids) linked to the nuclear receptor ligand binding sites (TC44), DC5 (aminoglycosides) to the DNA metabolism enzyme nucleoside phosphate (TC7) and ribosome 30 s subunit aminoacyl-tRNA (TC18) binding sites, DC17 (acarviosins) to the phosphatase substrate (TC19), ribosome 35S RNA peptidyl transferase (TC25) and outer membrane lipopolysaccharide (DC35) sites, DC21 (fatty acids, prostanoids) to the retinoid receptor ligand (TC37) and coenzyme A analog metabolism enzyme substrate (TC40) binding sites, DC28 (cardiac glycosides) to the nucleoside...
phosphate metabolism enzymes substrate binding sites (TC10), and DC8 (β-lactams) to the β-lactam binding protein peptidoglycan binding sites (TC29).

Detailed analysis of the physicochemical landscape of the NPLD distribution profile reveals clues for searching the sweet spots in the DCs. While the knowledge of the clustered distribution patterns of the NPLDs in the DCs and the correlation to the TCs is useful for revealing the NPLD-like structural frameworks for targeting specific target classes, more detailed analysis is needed for identifying the NPLDs within each DC. On the other hand, drug-like and lead-like rules have been derived and extensively used for identifying drug leads on the basis of whether their specific physicochemical properties fall into certain drug-likeness or lead-likeness ranges. Optimal hydrophobic and hydrogen bond interactions, and thus the AlogP/logD and ON/HD/HA values, are important for optimizing NPLDs into drugs. Therefore, additional clues for searching the new NPLDs may be obtained by studying the physicochemical landscapes of the known NPLDs and the NPs in the DCs.

We evaluated the physicochemical landscape of the NPLDs and NPs in branch 9 characterized by the eight physicochemical properties MW, AlogP, logD, ON, HD, HA, RB, RI, and PZ frequently used for analyzing drug-like and lead-like features (Supplementary Figure S13). This branch contains four DCs (DC16, DC17, DC18, and DC19). While, the NPs inside and outside these DCs have mixed MW values, there is a significantly higher concentration of NPs with either higher AlogP/logD values or higher ON/HD/HA values. In particular, regardless of their MW values, the NPLDs tend to be located at the peak of either AlogP/logD or ON/HD/HA. For instance, the NPLDs in DC17 (which include macrolides, polyenes, spinosyns and acarviosins) have peak MW values likely due to the added or enlarged hydrophobic groups (peak AlogP/logD values) to optimally interact with, e.g., the outer membrane lipopolysaccharide sites of TC35, or the added hydrogen bonding components (peak ON/HD/HA values) to optimally interact with, e.g., the phosphate substrate sites of TC19. The NPLDs in DC19 (composed of steroids and derivatives) tend to have peak AlogP or logD values without significantly enlarged MW values over other NPs in the DC, possibly due to enhanced hydrophobic components within the steroid structural framework for achieving optimal hydrophobic interactions with the nuclear receptor ligand sites of TC44. Therefore, the tendency of the NPLDs to be located at either the AlogP/logD or ON/HD/HA peaks in the DCs may be potentially used as an indicator for searching new NPLDs.

The distribution profiles of NPLDs with respect to bioactive NPs. The more clustered distribution of NPLDs (Figure 2 and Supplementary S7–10) are in contrast to the much less clustered distribution of the 48,216 bioactive NPs from the TCM@Taiwan database and the literatures (Supplementary Figures S14–17). Although the number and diversity of our collected bioactive NPs are limited in representing bioactive NPs, useful indications may be revealed. These bioactive NPs are more diversely distributed in 32 of the 33 branches with 78.8% of the bioactive NPs located outside the DCs. Therefore, NPLDs are distinguished from bioactive NPs in their tendency to more closely cluster together in the chemical space, which is consistent with the distribution pattern of drug-productive species families in the phylogenetic tree (drug-productive species families are more closely clustered than the species families of bioactive NPs). To investigate whether the more clustered distribution of NPLDs in the DCs is due to the more extensive exploration efforts towards these DCs, the exploration times of the 442 NPLDs, crudely estimated by the time since the first literature report, were compared to those of the 11,816 bioactive NPs inside and outside the DCs, which are largely comparable to each other (Supplementary Figures S18–21). Hence, there is no clear indication to link drug-productivity of the DCs to the biased exploration efforts.

The distribution profiles of NPLDs with respect to time and disease classes. Since 1988, the number of DCs has been gradually increased at an average rate of 3.2 new DCs per 5 years, and the majority (60.0%–69.0%) of the 15–32 new NPLDs approved in every five-year period from 1560 to 2012 are from preexisting DCs (Table 3). Drug discovery focus has been shifting in terms of targets, chemotypes, diseases and therapeutic strategies. To study if novel drugs derived from shifted focuses are outside pre-existing DCs, we analyzed 27 new NPLDs approved in 1990–2012 each targeting a novel target previously unaddressed by an approved drug (Supplementary Table S8) and thus are novel NPLDs of the time. At the time of their first drug approval, 18 (66.7%) of these novel NPLDs were from preexisting DCs, suggesting that existing DCs remain good sources of novel NPLDs and drugs.

The approved drugs from individual DCs largely targeted one to a few disease classes (Supplementary Figure S22). Specifically, 61.7% of DCs target one (DC1, DC2, DC11, DC18, DC23, DC26, DC39, DC46, DC51 and DC60), two (DC3, DC6, DC16, DC20, DC22, DC25, DC30, DC34, DC35, DC37, DC50, DC54, DC55, DC56, DC57 and DC59) or three (DC4, DC9, DC15, DC28, DC31, DC32, DC41, DC47, DC48, DC52 and DC58) disease classes. While the remaining DCs target multiple disease classes, most drugs from these DCs target a few disease classes. Anti-infectious and anti-parasite drugs are mostly from DC8 (87 drugs), DC5 (22 drugs), DC17 (19 drugs), DC45 (10 drugs), DC4 (9 drugs) and DC13 (8 drugs). Anticancer drugs are primarily from DC19 (31 drugs), DC13 (13

Table 3: chronological data of the natural product leads with the first approved drugs and the drug lead productive clusters during every five-year period from 1963 to 2012. The six drug lead clusters with only one approved drug plus one or more clinical trial drugs were not included here.
Table 4 | The list of natural product derived drugs approved by FDA from 2013 to June 2014. The natural product leads, targets and affiliations to drug productive clusters and target site classes are provided. DOI: 10.1038/srep09325

Drug Type	Drug	NP Lead Type	Drug Lead	Target Site Class	Target	Distance	Affiliation
Small Molecule	Canagliflozin	N	Phlorizin	Near DC57 (saccharide binding sites)	Monosaccharide transporter substrate sites	0.91 to the nearest NPLD	Tc = 0.91 to the nearest NPLD
Small Molecule	Luliconazole	N	Imidazole-based NP	DC13	Lanosterol demethylase	Steroid metabolism enzyme substrate sites	mizoribine in TS19 (steroid binding sites)
Small Molecule	Vorapaxar	N	Himbacine	-	Protease-activated receptor-1	B (oligopeptide)	-
Peptide	Tanzeum	B	Glucagon-like peptide-1 receptor	-	Apolipoprotein B-100 Lipid-binding sites	-	-
Peptide	Dalvance	B	Lipoglycopeptide	-	Cell wall	-	-
Peptide	Mipomerse	B	Antisense Section of mRNA of apoB-100	-	Lipoglycopeptide	-	-
Peptide	Tanzeum	B	Peptide	Glucagon-like peptide-1 receptor	-	-	-

The usefulness of the knowledge of NPLD distribution profile for facilitating new NPLD discovery. The tendencies of NPLDs to cluster together in the chemical space and to preferentially bind to the privileged target-sites in the target-space may be explored for assessing the development potential of new NP leads. Based on the insights derived from our analysis, one can postulate that, apart from the ability of an NPLD or its derivatives to modulate a validated target, an NPLD may have a higher probability to be developed into a drug if it is inside a DC, near a DC (to form an expanded DC) or near an NPLD outside existing DCs (to form a new DC) in the chemical space, and if its target belongs to an existing TC or a new TC in an existing TS. This postulation was tested by the retrospective analysis of the new NPLDs of FDA approved drugs in 2013–June 2014 that were not used in the derivation of the NPLD distribution patterns and the target-site linkages. Our literature search led to the finding of 4 new small molecule NPLDs, 3 of which were retrospectively recognized as developable based on our postulation (Table 4). Specifically, the NPLD uridine monophosphate of sofosbuvir is inside DC5 and target TC7, the NPLD phlorizin of canagliflozin is near DC57 (Tc = 0.91 to the nearest NPLD) and target monosaccharide transporter substrate sites as a new TC in TS12 (saccharide binding sites), and the imidazole-based NPLD (e.g. mizoribine) of luliconazole is inside DC13 and target a steroid metabolism enzyme substrate site in TS19 (steroid binding sites). Therefore, the insights derived from this and other studies of NPLD distribution profiles may be explored for facilitating the assessment of the development potential of NP leads.

Concluding Remarks

This study systematically exposed the clustered distribution profiles of NPLDs and revealed useful insights into the mechanisms that partly contribute to the formation of these profiles, i.e., the tendency of NPLDs to preferentially bind to the privileged target-sites. The insights from this and other studies of NPLD distribution profiles provide useful clues to and enable further studies of the lead sweet spots in the chemical space with respect to the corresponding target-sites. The distribution of NPLDs and the lead sweet spots in the chemical space is collectively influenced by potent binding to the target-sites and such additional factors as the optimization potential to reach the drug sweet spots in the chemical space with more adequate metabolic stability, metabolite safety, absorption and physical forms. Further studies are needed for a deeper understanding of the collective influence of these multiple factors on the distribution of NPLDs in the chemical space. These advances coupled with expanded knowledge of lead-like and drug-like structures and physicochemical properties may enable more prioritized and rational exploration of the NP-subspaces for drug discovery.

1. Lipinski, C. & Hopkins, A. Navigating chemical space for biology and medicine. *Nature* 432, 835–61 (2004).
2. Paul, S. M. et al. How to improve R&D productivity: the pharmaceutical industry’s grand challenge. *Nat Rev Drug Discov* 9, 203–14 (2010).
3. Zhu, F. et al. Clustered patterns of species origins of nature-derived drugs and clues for future bioprospecting. *Proc Natl Acad Sci U S A* 108, 12943–8 (2011).
4. Newman, D. J. & Cragg, G. M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. *J Nat Prod* 75, 311–35 (2012).
et al.

5. Li, J. W. & Veders, J. C. Drug discovery and natural products: end of an era or an endless frontier? Science 325, 161–5 (2009).

6. Hert, J., Irwin, J. J., Laggner, C., Keiser, M. J. & Shoichet, B. K. Quantifying biogenic bias in screening libraries. Nat Chem Biol 5, 479–83 (2009).

7. Aquino, C. et al. A biomimetic polyketide-inspired approach to small-molecule ligand discovery. Nat Chem 4, 99–104 (2012).

8. Erlt, P. & Schuffenhauer, A. Chemoinformatics analysis of natural products: lessons from nature inspiring the design of new drugs. Prog Drug Res 66, 217, 219–35 (2008).

9. Koch, M. A. et al. Charting biologically relevant chemical space: a structural classification of natural products (SCONP). Proc Natl Acad Sci U S A 102, 17272–7 (2005).

10. Wetzel, S., Bork, R., Kumar, K. & Waldmann, H. Biology-oriented synthesis. Angew Chem Int Ed Engl 50, 10800–26 (2011).

11. Clardy, J. & Walsh, C. Lessons from natural molecules. Nature 432, 829–37 (2004).

12. Newman, D. J. & Cragg, G. M. Natural product scaffolds as leads to drugs. Future Med Chem 11, 1415–29 (2009).

13. Bemis, G. W. & Murcko, M. A. The properties of known drugs. 1. Molecular frameworks. J Med Chem 39, 2887–93 (1996).

14. Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46, 3–26 (2001).

15. Awale, M. & Reymond, J. L. Cluster analysis of DrugBank chemical space using molecular quantum numbers. Bioorg Med Chem 20, 3572–8 (2012).

16. Lee, M. L. & Schneider, G. Scaffold architecture and pharmacophoric properties of natural products and trade drugs: application in the design of natural product-based combinatorial libraries. J Comb Chem 3, 284–9 (2001).

17. Paolini, G. V., Shapland, R. H., van Hoorn, W. P., Mason, J. S. & Hopkins, A. L. Global mapping of pharmacological space. Nat Biotechnol 24, 805–16 (2006).

18. Singh, N. et al. Chemoinformatic analysis of combinatorial libraries, drugs, natural products, and molecular libraries small molecule repository. J Chem Inf Model 49, 1010–24 (2009).

19. Bickerton, G. R., Paolini, G. V., Besnard, J., Muresan, S. & Hopkins, A. L. Quantifying the chemical beauty of drugs. Nat Chem 4, 908–9 (2012).

20. Awale, M., van Deursen, R. & Reymond, J. L. MQN-mapplet: visualization of chemical space with interactive maps of DrugBank, ChEMBL, PubChem, GDB-11, and GDB-13. J Chem Inf Model 53, 509–18 (2013).

21. Wetzel, S. et al. Interactive exploration of chemical space with Scaffold Hunter. J Chem Inf Model 50, 581–91 (2010).

22. Becker, A., Derksen, S., Schmidt, E., Teckentrup, A. & Schneider, G. A hierarchical clustering approach for large compound libraries. J Chem Inf Model 45, 807–15 (2005).

23. Willett, P. Similarity-based virtual screening using 2D fingerprints. Drug Discov Today 11, 1046–53 (2006).

24. Irwin, J. J., Sterling, T., Mysinger, M. M., Bolstad, E. S. & Coleman, R. G. ZINC: a free tool to discover chemistry for biology. J Chem Inf Model 52, 1757–68 (2012).

25. Chen, C. Y. TCM Database@Taiwan: the world’s largest traditional Chinese medicine database for drug screening in silico. PLoS One 6, e15939 (2011).

26. Saklanl, A. & Kuty, S. K. Plant-derived compounds in clinical trials. Drug Discov Today 13, 161–71 (2008).

27. Zha, F. et al. Drug discovery prospect from untapped species: indications from approved natural product drugs. PLoS One 7, e39782 (2012).

28. Chen, K. X. et al. Database of traditional Chinese medicine and its application to studies of medicine and to prescription validation. Br J Pharmacol 149, 1092–103 (2006).

29. Perola, E. An analysis of the binding efficiencies of drugs and their leads in a case study of 5-HT1A receptor ligands. PLoS One 9, e102069 (2014).

30. Historic, J. W. & Vederas, J. C. Drug discovery and natural products: end of an era or an endless frontier? Nature Chem Biol 5, 479–83 (2009).

31. Leclerc, H. & Irwin, J. J. Charting biologically relevant chemical space: a structural classification of natural products (SCONP). Proc Natl Acad Sci U S A 102, 17272–7 (2005).

32. Wetzel, S., Bork, R., Kumar, K. & Waldmann, H. Biology-oriented synthesis. Angew Chem Int Ed Engl 50, 10800–26 (2011).

33. Clardy, J. & Walsh, C. Lessons from natural molecules. Nature 432, 829–37 (2004).

34. Newman, D. J. & Cragg, G. M. Natural product scaffolds as leads to drugs. Future Med Chem 11, 1415–29 (2009).

35. Butler, M. S. Natural products to drugs: natural product-derived compounds in successful drug discovery programs. Nat Prod Rep 28, 192–197 (2011).

36. Yap, C. W. PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints. J Comput Chem 32, 1466–74 (2011).

37. Ma, X. H. et al. Virtual screening of selective multitarget kinase inhibitors by combinatorial support vector machines. Mol Pharm 7, 1545–60 (2010).

38. Li, R. et al. MDL molecular descriptor lab a web-based server for computing structural and physicochemical features of compounds. Biotechnol Bioeng 97, 389–96 (2007).

39. Smieja, M., Warszycki, T., Dabor, J. & Bojarski, A. J. Asymmetric clustering in a case study of 5-HT1A receptor ligands. PLoS One 9, e102069 (2014).
