Coding into K by reasonable forcing

Ralf-Dieter Schindler*

March 26, 2019

1 Introduction.

The present paper was inspired by a talk Itay Neeman gave on his joint work [5] and [6] with J. Zapletal. Assuming that, vaguely, $AD^{L(R)}$ holds (i.e., that $L(R)$ is a model of the Axiom of Determinacy) they can show that no set of ordinals not already in $L(R)$ can be coded into $L(R)$ by a set-sized reasonable forcing and moreover that the theory of $L(R)$ with parameters for ordinals and reals from V is frozen with respect to all generic extensions by set-sized reasonable forcings. "Reasonability" was introduced by Foreman and Magidor in [2]. A notion of forcing P is called reasonable if for any infinite ordinal α it is true that $[\alpha]^\omega \cap V$ is stationary in $[\alpha]^\omega \cap V[G]$, for every G being P-generic over V (cf. [2] Definition 3.1).

On the other hand, Woodin (unpublished) has shown that if the theory of $L(R)$ with real parameters from V is frozen with respect to all set generic extensions whatsoever then in fact $AD^{L(R)}$ holds, providing one more bit of evidence for the naturalness of AD, the Axiom of Determinacy.

So in the light of this one obvious question is: can Woodin’s result be strengthened by restricting the forcings to reasonable ones? This is non-trivial, as Woodin’s proof uses the forcing for making a singular cardinal countable, being anything but reasonable. More specifically:

*The author would like to thank Itay Neeman, Philip Welch, and in particular Sy Friedman for their interest and for their many hints and comments. John Steel even provided a crucial subclaim, and again I do say thanks for his intellectual support during my stay in Berkeley. I gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft (DFG).
Question 1. Suppose that for every formula $\Phi(v)$, for every real $r \in \mathbb{R}^V$, and for every G being P-generic where $P \in V$ is reasonable,

$$L(\mathbb{R}^V) \models \Phi(r) \iff L(\mathbb{R}^V[G]) \models \Phi(r).$$

Does $AD^{L(\mathbb{R})}$ hold (in every generic extension)?

We conjecture but cannot prove that the answer to this question is “yes.” In this paper, we can only give partial evidence in favor of this conjecture. In fact, the argument given below can easily be transformed to show that under its assumption global Π^1_1-determinacy holds.

If in particular ω_1 is not to be collapsed, any attempt to answer this question in the affirmative seems to essentially have to use some coding techniques. As the coding is supposed to be set sized, one cannot use Jensen coding as in \mathbb{N} (although it is reasonable). A set sized variant of it (as in \mathbb{N}, say) only works below 0^+ (or if V is not closed under sharps, for that matter). In general, “coding into K” techniques are called for, where K is the core model, and this is what makes the problem really interesting (and difficult, once we get higher up in the large cardinal zoo).

So the above question naturally leads to the following:

Question 2. Suppose that $AD^{L(\mathbb{R})}$ does not hold. Let $X \subset \omega_1$. Can X be coded into $L(\mathbb{R})$ by a set-sized reasonable forcing?

This would be a dual fact to the Anti-Coding Theorem of \mathbb{N} and \mathbb{N}. However, the transit via inner model theory for attacking this latter question is blocked at the time of writing by some pretty technical obstacles.

Let us now state the main results of the present paper.

Theorem 1.1 Suppose that there is no inner model with a strong cardinal. Let $X \subset \omega_1$. Then X is Δ^1_3 (in the codes) in a generic extension by a set-sized reasonable forcing.

Theorem 1.2 Suppose that there is no inner model with a strong cardinal. Then there is a generic extension by a set-sized reasonable forcing with a Δ^1_3-well-ordering of its reals.
Theorem 1.3 Suppose that for every Σ^1_4-formula $\Phi(v)$, for every G_1 being P_1-generic over V where $P_1 \in V$ is reasonable, for every real $r \in \mathbb{R}^{V[G_1]}$, and for every further G_2 being P_2-generic where $P_2 \in V[G_1]$ is reasonable,

$$V[G_1] \models \Phi(r) \iff V[G_1][G_2] \models \Phi(r).$$

Then there is an inner model with a strong cardinal.

By the following result of Woodin (unpublished), 1.3 is best possible in the sense that one cannot derive more large cardinal strength from its assumption. Let κ be a strong cardinal, let $\lambda = 2^{2^\kappa}$, and let G be $Col(\lambda, \omega)$-generic over V. Then any set generic extension $V[G][H_1]$ of $V[G]$ is Σ^1_4-correct in any of its set generic extensions, $V[G][H_1][H_2]$. As 1.3 will be an immediate corollary to 1.2, 1.2 itself is best possible in the sense that its anti-large cardinal assumption cannot be weakened.

Also, suppose V to be the minimal inner model with one strong cardinal, say $V \models "\kappa$ is strong,” and let G be $Col(\kappa++, \omega)$-generic over V. By Woodin’s result, $V[G]$ is Σ^1_4-correct in its set generic extensions. Writing $\omega_1 = \omega_1^{V[G]}$, we have that $J_{\omega_1}^V$ cannot be Σ^1_3 in the codes: otherwise the Π^1_1-statement

$$\forall \text{countable } \xi \exists \text{countable } \alpha > \xi \rho(\mathcal{J}_\alpha^V) \leq \kappa^{++}$$

were true in $V[G]$, but could be made false by collapsing ω_1, contradicting Σ^1_4-correctness. This implies that 1.1 is best possible again in the sense that its anti-large cardinal assumption cannot be weakened.

Of the many problems deriving from the above questions let me mention just one: it seems to be open whether ”reasonable” can be replaced by ”proper” in the above theorems.

2 Coding below one strong cardinal.

Instead of directly aiming at proving 1.1, 1.2, and 1.3 we shall first present a reasonable generic extension of V under the assumption that there is no inner model with a strong cardinal. This extension will be called V_4 below, and it will be the case that in V_4 there is a real a such that $H_{\omega_2} = J_{\omega_2}^{K(a)}$. (Here, H_{ω_2} is the set of all sets hereditarily smaller than \aleph_2, and $K(a)$ is the core model built over a, cf. the second next paragraph.) We shall then see that this construction in fact easily gives rise to proofs of 1.1, 1.2, and 1.3.
So let us assume throughout this section that there is no inner model with a strong cardinal. Then K, the core model below a strong cardinal, exists (cf. [4]; we here have to assume just a little familiarity with K). Moreover, K is also the core model in the sense of all set generic extensions. We shall code an initial segment of V "into $K."$ The heart of the matter will be the task of checking that a certain ”K-reshaping” is ω-distributive.

For this in turn it seems to be necessary at some point during the construction to switch from $K[A]$ to $K(A)$ for a set A of ordinals, a distinction which should be explicitly explained. Fix A, a set of ordinals. Let E code K’s extender sequence, i.e., $K = L[E]$. Then by $K[A]$ we mean $L[E, A]$, i.e., the constructible universe built with the two additional predicates $v \in E$ and $v \in A$ at hand. Hence $K[A]$ is just the least inner model W with $K \cup \{A\} \subset W$. We shall also write $K_\kappa[A]$ for $J_\kappa[E, A]$, for an ordinal κ. Notice that the presence of A in $K[A]$ in general destroys the internal structure of K. On the other hand, by $K(A)$ we mean the core model built over A, i.e., starting from $TC(\{A\})$, the transitive closure of $\{A\}$, we run the recursive construction of K, with ”strong $TC(\{A\})$-mice” instead of ”strong mice” (cf. [4] on the recursive definition of K; to give a reference for $K(A)$, cf. [9] p. 59). By our assumption that there is no inner model with a strong cardinal, $K(A)$ exists, and in contrast to $K[A]$ it has a fine structure and can be iterated ”above $A.$$"

With these things in mind, we may now commence with our construction.

To get things started, we use almost disjoint forcing in its simplest form. Fix δ, a singular cardinal of uncountable cofinality and such that $\delta^{\aleph_0} = \delta$ (for example, let δ be a strong limit). We also may and shall assume that δ is a cutpoint of K, i.e., if $E_\alpha \neq \emptyset$ is an extender from K’s extender sequence with $\alpha \geq \delta$ then in fact the critical point of E_α is $\geq \delta$, too. (Here we use that there is no inner model with a strong cardinal. If there were no such δ then using Fodor we would get a strong cardinal in K.)

By [4], we know that $\delta^{+K} = \delta^+$. We may also assume w.l.o.g. that $2^\delta = \delta^+$, because otherwise we may collapse 2^δ onto δ^+ by a δ-closed preliminary forcing. We may hence pick $A \subset \delta^+$ with the property that $H_{\delta^+} = L[\delta^+][A]$.

Now let G_1 be $Col(\delta, \omega_1)$-generic over V. Notice that the forcing is ω-closed. Set $V_1 = V[G_1]$. We have that $\omega_2^{V_1} = \delta^+ = \delta^{+K}$. Let $B \subset \omega_1$ code G_1 (in the sense that $G_1 \in L[\omega_1, V_1][B]$).

Claim 1. In V_1, $H_{\omega_2} = L[\omega_2][A, B]$.

4
Proof. Easy, using the fact that \(\text{Col}(\delta, \omega_1) \) is \(\delta^+\text{-c.c.} \). We shall have to repeat the argument a couple of times, so we’ll be more explicit next time.

\(\square \) (Claim 1)

In what follows we let \(\omega_2 \) denote \(\omega_2^V \). It will also be the \(\omega_2 \) of all further extensions.

Now in \(K \) we may pick \((A_\xi') : \xi < \delta^+ \) , a sequence of almost disjoint subsets of \(\delta \). In \(L_{\omega_2}[B] \) we may pick a bijective \(g: \omega_1 \to \delta \). Then if we let \(\alpha \in A_\xi \) iff \(g(\alpha) \in A_\xi' \) for \(\alpha < \omega_1 \) and \(\xi < \delta^+ \), we have that \((A_\xi : \xi < \delta^+) \) is a sequence of almost disjoint subsets of \(\omega_1 \).

In \(V_1 \), we may pick \(A_1 \subset \omega_2 \) with \(H_{\omega_2} = L_{\omega_2}[A, B] = L_{\omega_2}[A_1] \) (for example, the ”join” of \(A \) and \(B \)). We let \(P_2 \) be the forcing for coding \(A_1 \) by a subset of \(\omega_1 \), using the almost disjoint sets \(A_\xi \).

To be specific, \(P_2 \) consists of pairs \(p = (l(p), r(p)) \) where \(l(p): \alpha \to 2 \) for some \(\alpha < \omega_1 \) and \(r(p) \) is a countable subset of \(\omega_2 \). We have \(p = (l(p), r(p)) \models P_2 \) iff \(l(p) \supset l(q), r(p) \supset r(q) \), and for all \(\xi \in r(q) \), if \(\xi \in A_1 \) then

\[
\{ \beta \in \text{dom}(l(p)) \setminus \text{dom}(l(q)) : l(p)(\beta) = 1 \} \cap A_\xi = \emptyset.
\]

By a \(\Delta \)-system argument, \(P_2 \) has the \(\omega_2 \)-c.c. It is clearly \(\omega \)-closed, so no cardinals are collapsed. Moreover, if \(G_2 \) is \(P_2 \)-generic over \(V_1 \), and if we set

\[
C = \bigcup_{p \in G_2} \{ \beta \in \text{dom}(l(p)) : l(p)(\beta) = 1 \},
\]

then \(C \subset \omega_1 \) and we have that for all \(\xi < \omega_2 \),

\[
\xi \in A_1 \text{ iff } \text{Card}(C \cap A_\xi) \leq \aleph_0.
\]

This means that \(A_1 \) is an element of any inner model containing \((A_\xi : \xi < \omega_2) \) and \(C \). (Of course, much more holds.) An example of such a model is \(K[C] \) in the sense explained above. Set \(V_2 = V_1[G_2] \). We then also have, by the same argument as for Claim 1:

Claim 2. In \(V_2 \), \(H_{\omega_2} = K_{\omega_2}[C] \)

Proof. Let \(X \) be a subset of some \(\gamma < \omega_2 \) in \(V_2 \). As \(P_2 \) is \(\omega_2 \)-c.c. and \(P_2 \in H_{\omega_2} \), \(X \) has a name \(\dot{X} \) in \(H_{\omega_2}^V = L_{\omega_2}[A_1] \). I.e., there is \(\theta < \omega_2 \)
such that $\dot{X} \in L_\theta[A_1 \cap \theta]$. Also, there is some $\theta' < \omega_2$, $\theta' > \theta$, such that $(A_\xi : \xi < \theta) \in J^K_\theta \subset K_\theta'[C]$. But then clearly $\dot{X} \in K_\theta'[C]$, i.e., $X \in K_{\omega_2}[C]$.

This then gives $H_{\omega_2} \subset K_{\omega_2}[C]$ in V_2. But $K_{\omega_2}[C] \subset H_{\omega_2}[C]$ is trivial.

\(\Box\) (Claim 2)

Now let $C_1 \subset \omega_1$ be such that $C \in L_{\omega_2}[C_1]$ as well as $J^K_\delta \in L_{\omega_2}[C_1]$ (for example, the "join" of C and a code for J^K_δ).

Our task is now to code "down to a real," i.e., we want to find a further (ω_1-distributive) generic extension in which $H_{\omega_2} \subset K(a)$ where a is a real. As we cannot expect ω_1 to be a successor in K (and as we certainly cannot force this to be the case using an ω_1-preserving forcing), we have to use the slightly more advanced coding technique which first requires C_1 to become "reshaped."

However, there is no hope of showing that reshaping is reasonable if we work with the wrong definition of "being reshaped." Thus, the reader should notice the round brackets in the following definition.

Definition 2.1 Let $X \subset \omega_1$. We say that an f is X-reshaping if $f: \alpha \rightarrow 2$ for some $\alpha \leq \omega_1$ and moreover for all $\beta \leq \alpha$,

$$K(X \cap \beta, f \upharpoonright \beta) \models \text{Card}(\beta) \leq \aleph_0.$$

Now let P_3 be the forcing for adding a C_1-reshaping characteristic function of a subset of ω_1. Formally, $p \in P_3$ iff p is C_1-reshaping and $\text{dom}(p) < \omega_1$. The order is by reverse inclusion, i.e., $q \leq p$ iff $q \supset p$. (In fact we may assume "w.l.o.g." that every C_1-reshaping p has $\text{dom}(p) < \omega_1$, because otherwise we could just fix a counterexample and go ahead with forcing with P_4.)

It is easy to see that for any $\alpha < \omega_1$, the set $D^\alpha = \{ p \in P_3 : \text{dom}(p) \geq \alpha \}$ is open dense in P_3. In fact, given $q \in P_3$ with $\text{dom}(q) < \alpha$, we may let $p \leq q$ with $\text{dom}(p) = \alpha + \omega$ be such that $p \upharpoonright [\text{dom}(q), \text{dom}(q) + \omega)$ codes some bijective $f: \omega \rightarrow \alpha + \omega$, and then $p \in D^\alpha$.

Claim 3. P_3 is ω-distributive.

Proof. We first need the following observation, which is due to John Steel. The argument proving it also has to be repeated a couple of times.

Subclaim 1. (Steel) $H_{\omega_2} = J^K_{\omega_2}(C_1)$.
Proof. Let $W = K^{K(C_1)}$, the core model built inside $K(C_1)$. In V_2, let θ be any regular cardinal, and let κ be a singular cardinal with $\text{cf}(\kappa) > \theta$. By weak covering applied inside $K(C_1)$ (cf. [4]), we have that $\text{cf}^{K(C_1)(\kappa^+ W)} \geq \kappa$, which implies that $\text{cf}^{V_2(\kappa^+ W)} \geq \text{cf}^{V_2(\kappa)} > \theta$. Hence, inside V_2, for any regular θ there is a stationary class of cardinals κ with $\text{cf}(\kappa^+ W) > \theta$.

But this implies that inside V_2, W is a universal weasel in the sense that the coiteration of W with any (set sized) mouse terminates after $< OR$ many steps and the mouse-side is simple.

Moreover, as $J^K_\delta \in K(C_1)$, an easy absoluteness argument using the recursive definition of K yields that $J^K_\delta \triangleleft W$, i.e., J^K_δ is an initial segment of W. Let us consider the coiteration of $K = K^{V_2}$ with W.

Because δ is a cutpoint in K and $J^K_\delta \triangleleft W$, the coiteration is above δ on the K-side. In fact, it must be above $\delta^+ K = \omega_2$ on the K-side, as otherwise we would have to ”drop” to a mouse on the K-side and by non-soundness of the further iterates of K the coiteration would have to last OR many steps, contradicting the universality of W.

But the coiteration has to be above δ on the W-side, too, because otherwise we may replace K by a very soundness witness for a large enough initial segment of K and use its definability property everywhere below δ to get a contradiction as usual. But then the coiteration must be above $\delta^+ W$ on the W-side, too, this time by the universality of K.

This now means that $J^W_{\delta+ W} = J^K_{\delta+ K}$, and hence $J^K_{\omega_2} \subseteq K(C_1)$. In particular, $(A_\xi : \xi < \omega_2) \in K(C)$, in fact $(A_\xi : \xi < \gamma) \in J^K_{\omega_2}$ for any $\gamma < \omega_2$ by acceptability, which easily gives the claim.

\(\square \) (Subclaim 1)

We remark in passing that Subclaim 1 would not have to hold if δ had not been chosen as a cutpoint of K.

We now fix a condition $p \in P_3$, and open dense sets $D'_i, i < \omega$. We have to find $q \leq P_3 p$ with $q \in D'_i$ for every $i < \omega$.

We may pick

$$\pi : N \rightarrow \Sigma_1 J^K_{\omega_2} = H_{\omega_2},$$

where N is countable, $\kappa = \text{c.p.}(\pi)$ is such that $\rho_1(N) = \kappa$, N is sound above κ, and $\{p\} \cup \{D'_i : i < \omega\} \subseteq \text{ran}(\pi)$. Notice that $\pi(\kappa) = \omega_1$.

7
This situation is obtained, for example, if we first let M be the Σ_1-hull of $\omega_1 \cup \{p\} \cup \{(D_i' : i < \omega)\}$, taken inside $J_{\omega_1}^{\omega_2}$, and then let π be $\tilde{\pi} \upharpoonright N$ for some $\tilde{\pi} : \tilde{N} \to H_{\omega_2}$ with $M \in \text{ran}(\tilde{\pi})$, $N = \tilde{\pi}^{-1}(M)$, and \tilde{N} being countable.

Subclaim 2. $N \in K(C_1 \cap \kappa)$.

Proof. We coiterate N with $K(C_1 \cap \kappa)$, getting comparable N^* and K^*. As $\rho_1(N) = \kappa$, every non-trivial iterate of N is non-sound. Hence, by the universality of $K(C_1 \cap \kappa)$, N cannot be moved at all in the comparison, i.e., $N^* = N$.

Now suppose that $K(C_1 \cap \kappa)$ were to be moved. If there is a drop, then K^* is non-sound, and hence $N \not\approx K^*$ by the soundness of N. But if the iteration is simple then we trivially have $N \not\approx K^*$ as well. Because we assume $K^* \neq K(C_1 \cap \kappa)$, letting ν be the index of the first extender of the iteration from $K(C_1 \cap \kappa)$ to K^*, we have that $\nu \leq \mathcal{O}_R \cap N$ and ν is a cardinal in K^*. But this is a contradiction, as $N \not\approx K^*$ and $\rho_1(N) = \kappa$, so that K^* knows that there are no cardinals in the half-open interval $(\kappa, \mathcal{O}_R \cap N]$.

This shows that in fact $N \not\approx K(C_1 \cap \kappa)$, which in particular gives us what we want.

\square (Subclaim 2)

Now let $\{D_i : i < \omega\}$ be the open dense sets in $\text{ran}(\pi)$. It suffices to construct $q \leq_p p$ with $q \in D_i$ for every $i < \omega$. For this we use an argument of \mathfrak{S}.

We may assume w.l.o.g. that $\kappa = \omega_1^{K(C_1 \cap \kappa)}$, as otherwise κ is countable in $K(C_1 \cap \kappa)$ and the task of constructing q turns out to be trivial. But nevertheless N has size κ in $K(C_1 \cap \kappa)$ (because $\rho_1(N) = \kappa$). Hence we may pick a club $E \subset \kappa$ in $K(C_1 \cap \kappa)$ which grows faster than all clubs in N, i.e., whenever $\bar{E} \subset \kappa$ is a club in N then $E \setminus \bar{E}$ is bounded in κ.

Inside $K(C_1 \cap \kappa)$, we are going to construct a sequence $(p_i : i < \omega)$ of conditions below p such that $p_{i+1} \leq p_i$ and $p_{i+1} \in D_i$. We also want to maintain inductively that $p_{i+1} \in N$. (Notice that $p \in N$ to begin with.) In the end we also want to have that setting $q = \cup_{i<\omega} p_i$, we have that $q \in P_3$, which of course is the the non-trivial part.

To commence, let $p_0 = p$. Now suppose that p_i is given, $p_i \in N$. Set $\alpha = \text{dom}(p_i) < \kappa$. Work inside N for a minute. For all β such that $\alpha \leq \beta < \kappa$
we may pick some \(p^g \leq_{P_3} p_i \) such that: \(p^g \in \pi^{-1}(D_i) \), \(\text{dom}(p^g) > \beta \), and for all limit ordinals \(\lambda, \alpha \leq \lambda \leq \beta \), \(p^g(\lambda) = 1 \) iff \(\lambda = \beta \). Then there is \(E \) club in \(\kappa \) such that for any \(\eta \in \check{E}, \beta < \eta \Rightarrow \text{dom}(p^g) < \eta \).

Now back in \(K(C_1 \cap \kappa) \), we may pick \(\beta \in E \) such that \(E \setminus \check{E} \subseteq \beta \). Set \(p_{i+1} = p^g \), and let for future reference \(\beta = \beta_{i+1} \). Of course \(p_{i+1} \in D_i \cap N \).

We also have that \(\text{dom}(p_{i+1}) < \min\{ \epsilon \in E : \epsilon > \beta \} \), so that for all limit ordinals \(\lambda \in E \cap (\text{dom}(p_{i+1}) \setminus \text{dom}(p_i)) \) we have that \(p_{i+1}(\lambda) = 1 \) iff \(\lambda = \beta_{i+1} \).

Now set \(q = \bigcup_{i<\omega} p_i \). Well, for every \(\alpha < \kappa \), \(D^\alpha = \{ r \in P_3 : \text{dom}(r) \geq \alpha \} \in \text{ran}(\pi) \), and hence \(\text{dom}(q) \geq \kappa \). Alas, we also have \(\text{dom}(q) < \kappa \), because \(p_i \in N \) and so \(\text{dom}(p_i) < \kappa \) for all \(i < \omega \). Hence we have arranged that \(\text{dom}(q) = \kappa \).

We are done if we can show that \(q \) is a condition. The only problem here is to show that
\[
K(C_1 \cap \kappa, q) \models \text{Card}(\kappa) \leq \aleph_0.
\]
But by the construction of the \(p_i \)'s we have that
\[
\{ \lambda \in E \cap (\text{dom}(q) \setminus \text{dom}(p)) : \lambda \text{ is a limit ordinal and } q(\lambda) = 1 \}
= \{ \beta_{i+1} : i < \omega \},
\]
being a cofinal subset of \(E \). It hence suffices to verify that \(E \) is an element of \(K(C_1 \cap \kappa, q) \), because then \(\{ \beta_{i+1} : i < \omega \} \in K(C_1 \cap \kappa, q) \) witnesses that \(\text{Card}(\kappa) \leq \aleph_0 \).

But \(E \in K(C_1 \cap \kappa, q) \) is shown by the argument for subclaim 1: we build \(W = K(C_1 \cap \kappa)^{K(C_1 \cap \kappa, q)} \), observe its universality in \(V_2 \), and deduce that \(E \in J_{\omega_2}^{K(C_1 \cap \kappa)} = J_{\omega_2} \subseteq K(C_1 \cap \kappa, q) \).

\(\square \) (Claim 3)

Actually, there is an easier proof showing \(\omega \)-distributivity of \(P_3 \) than the one we just gave. We however chose to include the above argument because it gives more, namely it "almost" proves properness of \(P_3 \):

Claim 3'. Let \(S \in \mathcal{P}(\omega_1) \cap V_2 \) be stationary in \(V_2 \). Then \(P_3 \models \" \hat{S} \text{ is stationary} \." \)

Proof. Let \(r \in P_3, r \models \" \hat{C} \text{ is a club subset of } \omega_1 \." \) In the above argument, let \(p \leq_{P_3} r \), and \(\pi : N \rightarrow H_{\omega_2} \) be such that \(\hat{C} \in \text{ran}(\pi) \) and \(\kappa \in S \).
But then for the q constructed we get that $q \models "\hat{\kappa} \in \hat{S} \cap \hat{C}."$

\square (Claim 3’)

Unfortunately, I cannot decide whether P_3 always has to be proper. We’ll return to this issue at the end of this section.

Now let G_3 be P_3-generic over V_2, and set $V_3 = V_2[G_3]$. Let C' be that subset of ω_1 having $\bigcup_{p \in G_3} p$ as its characteristic function, and let D be the ”join” of C and C'. Again we get:

Claim 4. In V_3, $H_{\omega_2} = J_{\omega_2}^{K(D)}$.

Proof. The only new point here is that we have to check that $J_{\omega_2}^{K(C)} \subset J_{\omega_2}^{K(D)}$. But here we can argue exactly as at the end of the proof of claim 3, by building $K(C)^{K(D)}$, observing its universality, and deducing $J_{\omega_2}^{K(C)} \subset K(D)$.

\square (Claim 4)

We may now finally code down to a real by using almost disjoint forcing once more. By the fact that D is ”K-reshaped,” there is a (unique) sequence $(a_\beta : \beta < \omega_1)$ of subsets of ω such that for each $\beta < \omega_1$, a_β is the $K(D \cap \beta)$-least subset of ω being almost disjoint from any $a_{\bar{\beta}}$ for $\bar{\beta} < \beta$.

We then let P_4 consist of all pairs $p = (l(p), r(p))$ where $l(p) : n \rightarrow 2$ for some $n < \omega$ and $r(p)$ is a finite subset of ω_1. We let $p = (l(p), r(p)) \leq_{P_4} q = (l(q), r(q))$ iff $l(p) \supset l(q)$, $r(p) \supset r(q)$, and for all $\beta \in r(q)$, if $\beta \in D$ then

$$\{\gamma \in \text{dom}(r(p)) \setminus \text{dom}(r(q)) : r(p)(\gamma) = 1\} \cap a_\beta = \emptyset.$$

By another Δ-system argument, P_4 has the c.c.c.. Moreover, if G_4 is P_4-generic over V_3, and if we set

$$a = \bigcup_{p \in G_4} \{\gamma \in \text{dom}(l(p)) : l(p)(\gamma) = 1\},$$

then we have that for $\gamma < \omega_1$,

$$\gamma \in D \text{ iff } Card(a \cap a_\gamma) < \aleph_0.$$

We finally get:
Claim 5. In V_4, $H_{\omega_2} = J_{\omega_2}^{K(a)}$.

Proof. In order to show that $J_{\omega_2}^{K(D)} \subset K(a)$ we first have to verify $D \in K(a)$. This this is easily seen to follow (combined with the uniform definability of the a_β's) from the fact that if $D \cap \gamma \in K(a)$ then $J_{\omega_2}^{K(D \cap \gamma)} \subset K(a)$ (which in turn is true by the argument for Subclaim 1).

But then one more Subclaim 1 type argument proves $J_{\omega_2}^{K(D)} \subset K(a)$.

□ (Claim 5)

At last, we observe that the 4-step iteration yielding from V to V_4 is reasonable. Let α be any infinite ordinal. Because P_1, P_2, and P_3 are all ω-distributive, we have that $[\alpha]^{\omega} \cap V = [\alpha]^{\omega} \cap V_3$. But P_4 is c.c.c., hence proper, which implies that $[\alpha]^{\omega} \cap V$ is stationary in $[\alpha]^{\omega} \cap V_4$.

Actually, we also get that every $S \in P(\omega_1) \cap V$ which is stationary in V remains stationary in V_4. Clearly, any such S is still stationary in V_2, as P_1 and P_2 are both ω-closed, hence proper. But then S is stationary in V_3 by Claim 3', and so in the end S is still stationary in V_4 by the properness of P_4.

3 Getting the theorems.

We may now easily derive I.1, I.2, and I.3 from the work done in the previous section.

Proof of I.1. Let us assume that there is no inner model with a strong cardinal. Fix $X \subset \omega_1$. Running the construction of the last section, we may certainly assume w.l.o.g. that for all $\xi < \omega_1$, $\xi \in X$ iff $2\xi \in D$. But then we have that in V_4, $\xi \in X$ iff

$$\exists (a_\gamma : \gamma \leq 2\xi) \exists d \subset 2\xi + 1 \ [\forall \gamma \leq 2\xi (a_\gamma \text{ is the } K(d \cap \gamma) \text{-least subset of } \omega \text{ a. d. from all } a_{\bar{\gamma}}, \bar{\gamma} < \gamma, \text{ and } \gamma \in d \leftrightarrow \text{Card}(a \cap a_\gamma) < \aleph_0) \text{ and } 2\xi \in d].$$

But a_γ is the $K(d \cap \gamma)$-least subset of ω a. d. from all $a_{\bar{\gamma}}, \bar{\gamma} < \gamma$, iff a_γ is the M-least subset of ω a. d. from all $a_{\bar{\gamma}}, \bar{\gamma} < \gamma$, for all $(d \cap \gamma)$-mice M with
\[\{a_\gamma: \bar{\gamma} \leq \gamma\} \subset \mathcal{M}. \] We may hence rewrite the displayed formula as

\[\exists (a_\gamma: \gamma \leq 2\xi) \exists d \subset 2\xi + 1 \exists (\mathcal{M}_\gamma: \gamma \leq 2\xi) \{ \forall \gamma \leq 2\xi (\mathcal{M}_\gamma \text{ is a } (d \cap \gamma)\text{-mouse with } \{a_\gamma: \bar{\gamma} \leq \gamma\} \subset \mathcal{M}_\gamma, \]

\[a_\gamma \text{ is the } \mathcal{M}_\gamma\text{-least subset of } \omega \text{ a. d. from all } a_\bar{\gamma}, \bar{\gamma} < \gamma, \]

\[\text{and } \gamma \in d \iff \text{Card}(a \cap a_\gamma) < \aleph_0 \} \text{ and } 2\xi \in d \}. \]

As ”mousehood” is \(\Pi^1_2 \), this latter displayed formula is now easily be seen to be \(\Sigma^1_3(a) \). Hence \(X \) turns out to be \(\Sigma^1_3(a) \) in the codes, inside \(V_4 \).

But because \((a_\gamma: \gamma < \omega_1) \) is uniquely determined given \(a \), it is easy that \(X \) is now \(\Pi^1_3(a) \) in the codes as well, inside \(V_4 \).

\(\square \) \((1.1)\)

Proof of (1.2). Assuming that there is no inner model with a strong cardinal and building \(V_4 \) as in the last section, we have by Claim 5 that \(H_{\omega_2} = J^K_{\omega_2} \) in \(V_4 \). Inside \(V_4 \), we may thus define a well-ordering of the reals by \(x < y \) iff

\[\exists \mathcal{M} \{ \mathcal{M} \text{ is an } a\text{-mouse and } x <_\mathcal{M} y \}. \]

(Here, \(<_\mathcal{M} \) denotes the order of constructibility of \(\mathcal{M} \).) Again using the fact that ”mousehood” is \(\Pi^1_2 \), this gives a \(\Sigma^1_3(a) \)-wellordering of \(\mathbb{R} \). But clearly \(x < y \) can now also written in a \(\Pi^1_3(a) \)-fashion.

\(\square \) \((1.2)\)

Proof of (1.3). Let us first suppose that there is a \(\Pi^1_3 \)-well-ordering of \(\mathbb{R} \). This fact can be expressed by a \(\Pi^1_3 \)-statement \(\Phi \) being true in \(V \). By adding \(\omega_1 \) many Cohen reals with finite support we get a (c.c.c., hence proper, hence) reasonable extension \(V[G] \) of \(V \) in which there is no projective well-ordering of the reals, so that \(\Phi \) fails.

Thus if we assumption of (1.3) holds then there can be no \(\Pi^1_3 \)-well-ordering of the reals in \(V \). Now let us suppose that there is no inner model with a strong cardinal.

Then by (1.2) there is a reasonable extension \(V[G] \) of \(V \) with a \(\Pi^1_3 \) (in fact \(\Delta^1_3 \)) well-ordering of its reals. As above, this fact can be expressed by a \(\Pi^1_3 \)-statement \(\Phi \) being true in \(V[G] \). But again by adding \(\omega_1 \) many Cohen
reals we get a reasonable extension $V[G][H]$ of $V[G]$ in which there is no projective well-ordering of the reals, so that Φ fails. Contradiction!

We have shown that there is an inner model with a strong cardinal.

□ (1.3)

4 Further remarks.

In this last section we want to point out a couple of things which are of related interest. The first one is an immediate corollary to 1.2, if combined with an old argument of Harrington (cf. [3] pp. 575 ff.).

Fact 1. Suppose that there is no inner model with a strong cardinal. Let δ be any ordinal. Then there is a generic extension by a set-sized reasonable forcing in which $\delta^{+}_1 > \max\{\delta, \aleph_3\}$.

If V is not closed under \sharp's then a slight variation of the Harrington argument actually shows that we can make δ^{+}_1 as large as prescribed by a set-sized reasonable forcing. On the other hand, if R is closed under \sharp’s (i.e., if Π^1_1-determinacy holds) then $\delta^{+}_3 \leq \aleph_3$.

Proof of Fact 1 (sketch). Going first to a reasonable extension provided by 1.2, we then run the Harrington construction as in [3], pp. 575 ff., say. As the two further forcings are c.c.c., hence proper, the final extension is a reasonable one.

□ (Fact 1, sketch)

Finally, we want to point out a ”converse” to 1.2.

Fact 2. Suppose that there is no inner model with a strong cardinal, and R is closed under \sharp’s (i.e., Π^1_1-determinacy holds). Let $a \in R$. If there is a $\Sigma^1_3(a)$-well-ordering of R then in fact $R = R \cap K(a)$.

This is false if R is not closed under \sharp’s. On the other hand, we can weaken the anti-large cardinal assumption to ”there is no inner model with a Woodin cardinal” if in addition we are willing to assume the existence
of two measurable cardinals (in V) (this follows from Steel's Σ_3^1-correctness theorem, cf. [9]).

Proof of Fact 2 (sketch). Under the hypotheses of the theorem, by [10] there is a tree $T_2 \in K(a)$ projecting to the universal Π_2^1-set of reals. (This tree gives Σ_3^1-correctness of $K(a)$ in V.)

But we can now run the Mansfield proof that if there is a $\Sigma_2^1(b)$-well-ordering of the reals then in fact $\mathbb{R} \subset \mathcal{L}[b]$, for $b \in \mathbb{R}$ (cf. [3] Theorem 100 (c), p. 534), but with the Shoenfield tree replaced by T_2. This gives the desired result.

□ (Fact 2, sketch)

As a by-product of this proof we get that if A is a $\Sigma_3^1(a)$-set of reals, $a \in \mathbb{R}$, and $A \setminus K(a) \neq \emptyset$, then A in fact has a perfect subset. Hence if $\omega_1^{K(a)}$ is countable for every $a \in \mathbb{R}$ then every Σ_3^1-set of reals has the perfect subset property.

References

[1] Beller, A., Jensen, R., and Welch, Ph., Coding the universe, Cambridge 1982.

[2] Foreman, M., and Magidor, M., Large cardinals and definable counterexamples to the continuum hypothesis, Ann. Pure Appl. Logic 76 (1995), pp. 47 - 97.

[3] Jech, T., Set theory, San Diego 1978.

[4] Jensen, R., The core model for non-overlapping extender sequences, handwritten notes.

[5] Neeman, I., and Zapletal, J., Proper forcing and $\mathcal{L}(\mathbb{R})$, preprint.

[6] ———, Proper forcing and absoluteness in $\mathcal{L}(\mathbb{R})$, preprint.

[7] Shelah, S., Proper forcing, Springer-Verlag.
[8] ———, and Stanley, L., *Coding and reshaping when there are no sharps*, in: "Set theory of the continuum," Judah, H., et al. (eds.), Springer Verlag 1992, pp. 407 - 416.

[9] Steel, J., *The core model iterability problem*, Springer Verlag 1996.

[10] ———, and Welch, P., *Σ^1_3-absoluteness and the second uniform indiscernible*, Israel Journal of Mathematics, to appear.

Mathematisches Institut, Uni Bonn, Beringstr. 4, 53115 Bonn, Germany,

rds@math.uni-bonn.de

Math Department, UCB, Berkeley CA 94720, USA,

rds@math.berkeley.edu