Effect of dietary L-glutamate levels on growth, digestive and absorptive capability, and intestinal physical barrier function in Jian carp (Cyprinus carpio var. Jian)

Ye Zhao, Tian-Ran Zhang, Qian Li, Lin Feng, Yang Liu, Wei-Dan Jiang, Pei Wu, Juan Zhao, Xiao-Qiu Zhou, Jun Jiang

College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China

Keywords: L-glutamate, Growth, Digestive ability, Intestinal barrier function, Jian carp

Abstract

The present study explored effects of dietary L-glutamate (Glu) levels on growth, digestive and absorptive capability, and intestinal physical barrier functions of Jian carp (Cyprinus carpio). A total of 600 Jian carp (126.40 ± 0.21 g) were randomly distributed into 5 groups with 3 replicates each, fed diets containing graded levels of Glu (53.4 [control], 57.2, 60.6, 68.4, and 83.4 g/kg) for 63 d. Results showed compared with control diet, feed intake and percent weight gain (PWG) in fish fed 83.4 g of Glu/kg diet were increased and feed conversion ratio in fish fed 68.4 g of Glu/kg diet was decreased (P < 0.05). Similarly, body crude protein and lipid contents in fish fed 68.4 g of Glu/kg diet were higher (P < 0.05). The activities of trypsin and chymotrypsin in the hepatopancreas and intestine, and amylase, alkaline phosphatase (AKP), Na⁺, K⁺-ATPase (NKA), and creatine kinase (CK) in intestine were higher in fish fed 68.4 g of Glu/kg diet (P < 0.05). Dietary Glu (57.2 to 83.4 g/kg diet) decreased malondialdehyde (MDA) and protein carbonyl (PCO) contents in the intestine (P < 0.05). The activities of catalase (CAT), glutathione peroxidase (GPx), and glutathione S-transferase (GST) in the hepatopancreas and intestine were higher in fish fed 60.6 and 68.4 g of Glu/kg diets (P < 0.05). Intestinal the glutathione reductase (GR) activity and glutathione (GSH) content in fish fed 60.6, 68.4, and 83.4 g of Glu/kg diet were increased (P < 0.05). The GPx1a, GST, and nuclear factor erythroid 2-related factor 2 (Nrf2) mRNA expressions in the intestine were up-regulated in fish fed 83.4 g of Glu/kg diet (P < 0.05). Fish fed 68.4 g of Glu/kg diet had higher levels of Claudin 2, Claudin7, and protein kinase C (PKC) mRNA (P < 0.05). These results indicated that Glu improved fish growth, digestive and absorptive ability, and intestinal physical barrier functions. Based on the quadratic regression analysis of PWG, and MDA of the hepatopancreas and intestine, the optimal dietary Glu levels were estimated to be 81.97, 71.06, and 71.36 g/kg diet, respectively.

© 2020, Chinese Association of Animal Science and Veterinary Medicine. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

L-glutamate (Glu) is regarded as one of dispensable amino acids in fish (NRC, 2011). Recently, growing evidences show that some dispensable amino acids and their metabolites are important regulators of key metabolic pathways, which are necessary for maintenance, growth, feed intake, nutrient utilization, immunity, as well as resistance to environmental stressors and pathogenic organisms in various fishes (Wu et al., 2012, 2011; Xie et al., 2016, 2011).
Beyond the role of protein synthesis, previous studies also demonstrated Glu has an important role in fish growth, feed utilization, and intestinal health (Caballero-Solares et al., 2015; Chika et al., 2016; Zhao et al., 2015). Dietary supplementation with 8 g of Glu/kg diet improves growth, protein and lipid utilization in grass carp (Ctenopharyngodon idella) (Zhao et al., 2015), with 40 g of Glu/kg diet promotes protein and lipid utilization in gilthead seabream Sparus aurata (Caballero-Solares et al., 2015), with 20 g of Glu/kg diet increases growth in rainbow trout Oncorhynchus mykiss (Chika et al., 2016). The other study shows that dietary supplementation with 15 g of Glu/kg diet has no effect on growth and feed utilization in Atlantic salmon Salmo salar (Larsson et al., 2014). These results showed that dietary Glu level can affect the piscine growth and feed utilization rate, but different fish species might have different optimum levels. According to above studies, based on the better growth performance, dietary Glu supplementation level varies from 8 to 40 g/kg diet in different fish species (Caballero-Solares et al., 2015; Chika et al., 2016; Zhao et al., 2015).

Fish growth depends on the nutrient digestion and absorption, which is governed by the activities of enzymes including digestive and absorptive enzymes (Deng et al., 2010; Hakim et al., 2005). To our knowledge, there is only one report regarding the effects of dietary Glu on the digestive and absorptive capacity of fish, which showed that diet supplementation with 8 g of Glu/kg diet improved the intestinal digestive enzymes activities in grass carp, as well as the activities of intestinal brush-border enzymes, including alkaline phosphatase (AKP), creatine kinase (CK), Na+, K+-ATPase (NKA), and γ-glutamyl transpeptidase (γ-GT) (Zhao et al., 2015). Meanwhile, Glu is one of the most abundant amino acids, which is a truly functional amino acid (Brosnan and Brosnan, 2013). Nevertheless, despite its importance in fish nutrition, few studies have so far endeavored to determine the optimum level of dietary Glu for fish growth, digestive and absorptive function. Therefore, the 5 isoenergetic diets were formulated to supplement with 0 (53.4), 4 (57.2), 8 (60.6), 16 (68.4), and 32 (83.4 g/kg) Glu to evaluate the effect of dietary Glu on growth performance and digestive and absorptive capability in Jian carp.

Fish intestinal physical barrier function is closely related to the integrity of its normal digestion and absorption. Intestinal antioxidant capacity plays a key role in maintaining piscine intestinal structural integrity and function (Jiang et al., 2015a,b,c). To prevent oxidative damage, fish have developed non-enzymatic and enzymatic antioxidant defense systems (Martinez-alvarez et al., 2005). Glutathione (GSH) is an important non-enzymatic antioxidant compound of fish (Hong et al., 2015). The GSH is the preferred source for mucosal GSH synthesis in the intestine (Reeds et al., 1997). The pathway for the synthesis of GSH in the enteroctye cytosol is probably limited by Glu availability (Blachier et al., 2009). As other aerobic organisms, fish developed diverse antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), glutathione reductase (GR), and glutathione peroxidase (GPx) (Zhang et al., 2004). The previous studies showed that dietary supplementation with 8 g of Glu/kg diet improved intestinal antioxidant capacity in grass carp (Zhao et al., 2015) and culture medium pre-supplementation with Glu enhanced antioxidant capacity and regulated antioxidant-related signaling molecule expression in fish enterocytes (Jiang et al., 2015a,b,c). These results suggested Glu plays an important role in fish intestines. Therefore, it is worthy to investigate the optimum level of dietary Glu on effect of intestinal antioxidant capacity and antioxidant-related signaling molecule expression in fish.

In addition to the intestinal antioxidant capacity, the structure integrity also plays a vital role in absorption capacity of intestines (Ballard et al., 1995). The intercellular structural integrity in the intestine depends largely on tight junction (TJ) proteins (such as zonula occludens protein-1 [ZO-1], the transmembrane protein occludin, members of the claudin family, and others) (Gonzalez-Mariscal et al., 2008). Intestinal mucosal absorption ability may be modified by modulating claudin expression specificity (Matsuhsia et al., 2012). The Ca2+ and Mg2+ absorption is increased by increasing expression of claudin2 (Gaffney-Stomberg et al., 2011) and claudin7 (Thongon and Krishnamra, 2012). Previous study also showed the integrity of TJ can be damaged by altered level of TJ protein expression (Landy et al., 2016). Dysfunction of TJ can lead to the disruption of intestinal barrier function. Emerging evidence showed the expression levels of TJ protein is modulated by valine, folic acid, and isoleucine in fish (Luo et al., 2014; Shi et al., 2016; Zhao et al., 2014). In piglets, dietary Glu supplementation increased the relative mRNA expression of ZO-1 and occludin in jejunal mucosa (Luo et al., 2014). However, information regarding the effects of Glu on TJ proteins in fish remains scarce.

Thus, this study was conducted to test the following hypothesis: dietary Glu improved growth, digestive and absorptive capability, and intestinal physical barrier function by enhancing digestion and absorption enzyme activities and TJ gene expressions in Jian carp.

2. Materials and methods

Feeding management of fish was conducted in accordance with the Guidelines for the Care and Use of Laboratory Animals of Sichuan Agricultural University, China.

2.1. Experimental design and diets

Feed formulation and chemical composition of diets are presented in Tables 1 and 2. Crystalline amino acids (Dobnoo Amino Acid, Nantong, Jiangsu, China) were used to simulate the amino acid pattern of diets. Soybean meal, canola meal, corn gluten meal, and fish meal were used as dietary protein sources. All feed ingredients were purchased from Xinnong Feed Company (Shanghai, China). Soybean oil and wheat flour were used as dietary lipid and carbohydrate sources, respectively. The basal diet was formulated to meet the nutrient requirements of carp based on NRC (National Research Council) (2011). The 5 isoenergetic diets were supplemented with Glu (0, 4, 8, 16, 32 g/kg) to provide Glu at the concentrations of 53.4 (control), 57.2, 60.6, 68.4, and 83.4 g/kg diet. Increased Glu levels were compensated by decreasing equal levels of wheat flour. Differences in the amino acid composition of diets were negligible (Table 2), except for diets Glu. Dietary Glu content was analyzed via high performance liquid chromatography as described by Buentello and Gatlin (2002). All dry ingredients were ground through a 60-mesh screen. The diets were prepared by mixing the dry ingredients with the oil and water using a mixer. Then each diet was extruded in a twin-screw extruder (MY-165) with a 2-mm die (EXT50A, Yang gong Machine, China). The processing conditions were as follows: 100 r/min screw speed, 127 °C, and 3.04 to 4.56 MPa. Floating extruded pellets were air-dried and stored at 4 °C in plastic bags until being used.

2.2. Fish management and feeding

The feeding trial was conducted at Experiment Station of Ya'an, Sichuan Agricultural University, China. Carp, obtained from the Tongwei fisheries (Sichuan, China), and were acclimatized to the experimental (outdoor) conditions for 4 wk. Fish were fed 3 times daily with the control diet to satiation during this period. A total of
The pH was maintained at 7.0 ± 0.5. Water was continuously aerated using air stones to adjust the dissolved oxygen (>5.0 mg/L). Each of the 5 diets was fed to 3 replicates of fish 3 times daily (07:20, 13:20, and 18:20) to satiation for 63 d. Uneaten feed was collected 1 h after feeding, dried and weighed to calculate feed intake according to Zhao et al. (2015).

2.3. Sample collection and analysis

After a fasting period of 24 h, fish in each tank were weighed and counted at the initiation and termination of the feeding trial. Prior to sampling, fish were anaesthetized in benzocaine bath (50 mg/L). Fifteen fish from the same population before the experiment and 5 fish from each tank at the end of feeding trial were selected for determination of initial and final carcass proximate composition respectively. The proximate compositions of fish carcass and feed were measured according to AOAC (Horwitz, 2000). The hepatopancreas and intestines of another 6 fish from each tank were quickly removed, weighed and frozen in liquid nitrogen, then stored at −70 °C until analysis.

The intestine and hepatopancreas samples were each homogenized in 10 volumes (wt/vol) of ice-cold physiological saline solution and centrifuged at 6,000 × g for 20 min at 4 °C. The supernatant was collected for enzyme activity analysis. Trypsin, amylase, and lipase activities were determined according to Zhao et al. (2015). Trypsin activity was determined using p-toluenesulphonyl-l-arginine methyl ester as a substrate in 0.05 mol/L Tris–HCl buffer, pH = 9.0. Amylase was assayed using 1% soluble starch as a substrate in 0.02 mol/L phosphate buffer, pH = 8.0. Lipase activity was measured at 405 nm by the rate of methyl red–resorufin formation at 37 °C using a commercial kit (Nanjing Jiangeng Bioengineering Institute, Nanjing, China). The activities of alkaline phosphatase (AKP) and NKA are assayed according to Hong et al. (2015). To measure AKP activity, 50 μL of samples was mixed with 1.0 mL of reaction solution containing disodium phenyl phosphate. Absorbance was monitored at 520 nm. The NKA, creatine kinase (CK) and gamma-glutamyl transpeptidase (γ-GT) activities were determined by commercial kits (Nanjing Jiangeng Bioengineering Institute, Nanjing, China). The intestine and hepatopancreas protein content was determined using the Coomassie Brilliant Blue dye binding technique with bovine serum albumin as the standard following the method of Bradford (1976). The intestinal malondialdehyde (MDA) content was analysed using the thiobarbituric acid reaction. The MDA forms a red adduct with thiobarbituric acid, with an absorbance at 532 nm. The protein carbonyl (PCO) content was determined according to the method described by Jiang et al. (2015a,b,c) with a minor modification using 2,4-dinitrophenylhydrazine (DNPH) reagent. The GSH content and activities of SOD, CAT, and GR in the intestine were determined by the commercial kit (Nanjing Jiangeng Bioengineering Institute, Nanjing, China). The intestinal superoxide anion (·O2-) (SAS) and hydroxyl radical (·OH) (HRS) scavenging activities were measured as our previous study described by Jiang et al. (2015b). The SAS was determined by Superoxide Anion Free Radical Detection Kit. Superoxide radicals were generated by the action of xanthine and xanthine oxidase, with the electron acceptor added, a colouration reaction is developed using the gries reagent. The colouration degree is directly proportional to the quantity of superoxide anion in the reaction. The HRS was determined by a Hydroxyl Free Radical Detection Kit. Hydroxyl radicals are generated in the Fenton reaction with the electron acceptor added, a colouration reaction is developed using the gries reagent. The colouration degree is directly proportional to the quantity of hydroxyl radicals in the reaction.

Table 1
Composition and nutrient contents of the experimental diets (g/kg, as fed basis).

Item	Dietary L-glutamate level, g/kg diet
	53.4
	57.2
	60.6
	68.4
	83.4

Ingredients

Soybean meal 290 290 290 290 290
Canola meal 220 220 220 220 220
Corn gluten meal 60 60 60 60 60
Fish meal 60 60 60 60 60
Wheat flour 277 273 269 261 245
Soy oil 50 50 50 50 50
Vitamin premix 1 10 10 10 10
Trace mineral premix 2 10 10 10 10
Choline chloride 10 10 10 10 10
Monocalcium phosphate 2 2 2 2 2
Lysine 6 6 6 6 6
Methionine 2 2 2 2 2
Threonine 3 3 3 3 3
L-glutamate 0 4 8 16 32
Total 1,000 1,000 1,000 1,000 1,000

1 Per kilogram of vitamin premix contained the following: 400,000 IU of vitamin A as retinyl acetate; 240,000 IU of vitamin D3; 10,000 g of vitamin E; 0.100 g of vitamin K as menadione sodium bisulphate; 0.010 g of cyanocobalamin; 0.100 g of D-biotin; 0.500 g of folic acid; 0.102 g of vitamin B1 as thiamin nitrate; 6.667 g of vitamin C as ascorbyl acetate; 2,800 g of niacin; 51,800 g of meso-inositol; 2,461 g of D-panthothenic acid as calcium-D-panthothenate; 0.500 g of riboflavin; 0.740 g of vitamin B6 as pyridoxine hydrochloride. All ingredients were diluted with corn starch to 1 kg.

2 Per kilogram of mineral premix contained the following: 13.730 g Fe as of FeSO4·7H2O; 0.300 g Cu as of CuSO4·5H2O; 4.869 g Zn as of ZnSO4·7H2O; 1.200 g Mn as of MnSO4·H2O; 0.110 g of as of KI; 0.025 g of as of Na2SeO3. All ingredients were diluted with CaCO3 to 1 kg.

600 fish with similar sizes (mean initial weight 126.40 ± 0.21 g) were randomly assigned into 15 outdoor concrete tanks (2 m × 1.5 m × 1 m), resulting in 40 fish in each tank. During the experimental period, fish were reared under natural light conditions. Water temperature was measured at 08:00, 13:00, and 18:00 daily. Average water temperature was 25.5 ± 3.0 °C. Continuous flowing water were maintained at the rate of 0.7 L/min in each tank.

Table 2
Amino acid composition of experimental diets (g/kg, dry matter basis).

Item	Dietary L-glutamate level, g/kg diet
	53.4
	57.2
	60.6
	68.4
	83.4

Essential amino acids

Lysine 20.7 20.7 20.6 20.6 20.6
Methionine 6.8 6.8 6.8 6.7 6.7
Threonine 15.3 15.3 15.3 15.3 15.2
Arginine 18.7 18.7 18.6 18.6 18.5
Leucine 26.4 26.4 26.4 26.3 26.2
Histidine 7.1 7.1 7.1 7.1 7.1
Isoleucine 11.6 13.5 13.5 13.5 13.4
Phenylalanine 14.5 14.5 14.5 14.5 14.5
Valine 14.2 14.2 14.2 14.2 14.2

Non-essential amino acids

Alanine 14.6 14.5 14.5 14.5 14.4
Aspartate 25.4 25.4 25.4 25.3 25.2
Cysteine 5.0 5.0 4.9 4.9 4.9
Glutamine 2.5 2.6 2.6 2.6 2.5
Glutamate 53.4 57.2 60.6 68.4 83.4
Glycine 14.6 14.6 14.5 14.5 14.4
Proline 16.5 16.5 16.4 16.3 16.2
Serine 14.8 14.8 14.8 14.8 14.7
Tyrosine 10.8 10.8 10.8 10.8 10.7

Y. Zhao et al. / Animal Nutrition 6 (2020) 198–209
2.4. Real-time quantitative PCR

The procedures of RNA isolation, reverse transcription and real-time quantitative PCR were similar to the previous study (Jiang et al., 2016). The total RNA was extracted from the intestine using RNAiso Plus kit (TaKaRa, Dalian, China) according to the manufacturer’s instructions followed by DNase I treatment. The RNA purity and integrity were assessed spectrophotometric (A260:A280 ratio) analysis and agarose gel (1%) electrophoresis, respectively. Subsequently, the 2 μL of total RNA was used to synthesize cDNA using the PrimeScript RT reagent Kit with gDNA Eraser (TaKaRa, Dalian, China). Specific primers for ZO-1 were designed according to sequences of Jian carp cloned in our laboratory (Table 3), and the primers for Cu/Zn superoxide dismutase (CuZnSOD), CAT, GPx1a, GPx1b, GST, GR, Nrf2, and protein kinase C (PKC) were designed using the published sequences of Jian carp (Table 3). All of the real-time quantitative PCR analyses were performed in a CFX96 Real-Time PCR Detection System (Bio-Rad, Hercules, CA, USA). Elongation factor 1A (EF1) was used as a reference gene to normalize cDNA loading, according to the results of our preliminary experiment concerning the evaluation of internal control genes. The amount of the target gene was calculated based on the threshold cycle number (CT), and the CT for each sample was determined using the CFX Manager software. All of the primer amplification efficiencies were approximately 100%. The gene expression results were analyzed using the 2^{-ΔΔCT} method according to Jiang et al. (2015a,b,c).

Table 3
The primers and annealing temperature used for real-time quantitative PCR.

Item	Sequence (5′-3′)	Annealing temperature, °C	GenBank ID
CuZnSOD	F: TGGCGCAAGAGCGCTTGG	60.4	JF342355
	R: TTTCTGGGCGACTTCTACT	54	JF411604
CAT	F: CTGAGAATGGACTTCTGG	60.4	JF411605
	R: GGTTGTAGAAGTCCGAATGG	54	JF411604
GPx1a	F: TGTAGGACTCCTTCAGGG	60.4	JF411604
	R: CGTTTCTTCTGCTGTCTTT	56.6	DQ411314.1
GST	F: TCTACCGAGCAAGCCCTCTTC	56.6	DQ411314.1
	R: GCTCTATCTCAGCTCCAGCAGC	56	JF411607
GR	F: GCAAGTACGACAGACCAGCA	60	JX462955
	R: CACTATTGATGAACTAGGATGAG	60	JX462955
Nrf2	F: TTCCCGCTGGTTATCCCTAC	60	JX470752
	R: CTGTTCAGCAGGTGTCTTTTT	65	KY290394
Keap1	F: GCCTTCGAGAACCACCTT	60	JX470752
	R: GCCCAAAACCACCACTA	65	JX470752
ZO-1	F: GGCAATCGACAGCCGCTCTT	60	YK920394
	R: CTCTCTTCTGCTGCTTCTG	60	JX470752
Occludin1	F: ATGGGCTAATCACATAAGG	55.5	KP975606
	R: GACTATGGAAGCCTAACAAGA	63.5	Syakuri et al. (2013)
Claudin2	F: CTGAGTGGTTGGTGGTTTTT	63.5	JQ767157.1
Claudin3	F: GAAGCTTATGGTACGAGGATG	56.6	JQ767157.1
Claudin7	F: CTCTTTAAAACCCCTCACAGCA	56	JQ767155.1
	R: ACAGTTCCACCTACATTTAGT	56	JQ767157.1
PKC	F: AAATCCCAGGACCCGTCTTTT	60	JX470751.1
	R: CGAAAGCCACGAGCAGCCGAGC	60	JX470751.1
EF1a	F: TGACTTGCAGAAGGAGCCTTC	56	AF485331

CuZnSOD = Cu/Zn superoxide dismutase; F = forward; R = reverse; CAT = catalase; GPx1a = glutathione peroxidase 1a; GPx1b = glutathione peroxidase 1b; GST = glutathione S-transferase; GR = glutathione reductase; Nrf2 = nuclear factor erythroid 2-related factor 2; ZO-1 = zona occludens protein-1; PKC = protein kinase C; EF1a = elongation factor 1a.

2.5. Statistical analysis

Results were presented as means ± standard error (SE). The general linear models (GLM) procedure of SAS software (SAS Institute Inc., 2006) was used to determined treatment effects, and considered significant when P < 0.05 as described (Kabaroff et al., 2006). Orthogonal polynomial contrasts were used to test quadratic effects of dietary Glu level as described by Mahmoud et al. (2017). The quadratic regression analysis model was used to determine the optimal dietary Glu supplementation levels based on different indices, and R2 between 0.7 and 1 indicated a good fit of the regression equation to the data, according to Xu et al. (2018). Pearson correlation coefficient analysis was conducted using the Bivariate Correlation program.

3. Results

Dietary Glu did not have a significant effect on the survival rate of Jian carp (Table 4). No pathological signs were observed during the trial. Effect of graded levels of dietary Glu on growth parameters are presented in Table 4. The final body weight (FBW) and percent weight gain (PWG) were improved with increasing dietary Glu levels up to 83.4 g/kg diet (P < 0.05). The feed intake (FI) of fish was the highest for fish fed 83.4 g of Glu/kg diet (P < 0.05). The feed conversion ratio (FCR) was the highest for fish fed control diet, and significantly decreased with increasing dietary Glu levels up to 68.4 g/kg diet (P < 0.05). Body composition and net nutrient deposition of fish fed diets with graded levels of Glu are presented in Table 5. The body moisture of 57.2, 60.6, and 68.4 g/kg of Glu groups was significantly lower than that of the other groups (P < 0.05). Fish body crude protein and crude lipid contents, and lipid production value (LPV) were improved with increasing levels of dietary Glu up to 68.4 g/kg diet and depressed thereafter (P < 0.05). The ash content was significantly higher for fish fed Glu supplemented diets compared with control diet (P < 0.05). The protein production value (PPV) and ash production value (APV) were the highest for fish fed the diet with 68.4 and 83.4 g of Glu/kg diet, respectively (P < 0.05). Based on the quadratic regression analysis of PWG, the optimal dietary Glu levels were estimated to be 81.97 g/kg diet (Fig. 1).

The effects of dietary Glu on intestine somatic index (ISI), hepatopancreas relative gut length (RGL), and hepatopancreas protein (HPC) and intestinal protein contents (IPC) are shown in Table 6. The ISI and IPC also showed similar trends. Fish fed diets containing 57.2, 60.6, and 68.4 g of Glu/kg diet had significantly higher RGL than those fed other diets (P < 0.05).

The effects of dietary Glu on trypsin, chymotrypsin, lipase and amylase are presented in Table 7. Trypsin and chymotrypsin activities in the hepatopancreas were the highest for fish fed 68.4 g of Glu/kg diet (P < 0.05). Lipase activity in the hepatopancreas was the lowest for fish fed the control diet, and the highest for fish fed diet supplemented with 83.4 g/kg Glu (P < 0.05). Amylase activity in the hepatopancreas was significantly improved with increasing dietary Glu levels up to 60.6 g/kg diet and decreased thereafter (P < 0.05). The activities of trypsin and lipase in the intestine increased with increasing dietary Glu levels in up to 68.4 and 60.6 g/kg diets, respectively, and decreased thereafter (P < 0.05). Fish fed diets containing 68.4 and 83.4 g of Glu/kg diets had higher level of chymotrypsin activity in the intestine than those fed other levels diets (P < 0.05). Amylase activity in the intestine was the highest for fish fed 60.6 g of Glu/kg diet (P < 0.05).

The brush border enzyme activities in proximal intestine (PI), mid intestine (MI) and distal intestine (DI) for Jian carp fed graded
Table 4
The IBW, FBW, survival, FI, PWG, and FCR of carp fed diets with graded levels of L-glutamate for 9 weeks1.

Item	Dietary L-glutamate levels, g/kg diet	53.4	57.2	60.6	68.4	83.4
IBW, g/fish		126.33 ± 0.17	126.33 ± 0.17	125.50 ± 0.00	126.33 ± 0.17	125.50 ± 0.00
FBW, g/fish		306.04 ± 8.97	309.17 ± 3.31ab	311.12 ± 4.89abc	326.49 ± 2.42bc	328.52 ± 5.40bc
Survival rate, %		100.00 ± 0.00	100.00 ± 0.00	100.00 ± 0.00	100.00 ± 0.00	100.00 ± 0.00
Fl, g/fish		263.53 ± 3.01b	248.51 ± 1.42a	251.36 ± 4.21a	257.15 ± 2.40ab	278.36 ± 2.43c
PWG1		142.23 ± 6.83a	144.74 ± 2.90a	145.95 ± 3.86ab	158.44 ± 1.97b	159.70 ± 4.27b
FCR1		1.48 ± 0.09b	1.36 ± 0.01ab	1.36 ± 0.01ab	1.28 ± 0.01a	1.38 ± 0.03ab

Regression

$Y_{	ext{IBW}} = -0.03021X^2 + 4.971X + 124.60$

$Y_{	ext{FBW}} = -0.02416X^2 + 3.961X - 2.081$

$Y_{	ext{FCR}} = 0.00639X^2 - 0.0938X + 4.467$

IBW = initial body weight; FBW = final body weight; Fl = feed intake; PWG = percent weight gain; FCR = feed conversion ratio.

1 Values are means ± SE.
2 PWG = Weight gain (g)/Initial weight (g) × 100.
3 FCR = Feed intake (g)/Wet weight gain (g).

Table 5
Body composition (% as wet tissue), PPV, LPV and APV of carp fed diets with graded levels of L-glutamate for 9 weeks1.

Item	Dietary L-glutamate levels, g/kg diet	53.4	57.2	60.6	68.4	83.4
Moisture		73.83 ± 1.23b	66.81 ± 1.29a	66.54 ± 0.27a	64.30 ± 0.32a	71.84 ± 0.83b
Crude protein		15.05 ± 0.11a	17.24 ± 0.24a	17.31 ± 0.07cd	18.07 ± 0.35a	16.29 ± 0.31b
Crude lipid		7.95 ± 0.53d	8.94 ± 0.24ab	9.01 ± 0.28ab	10.1 ± 0.08b	8.14 ± 0.46a
Ash		2.83 ± 0.04a	3.08 ± 0.10b	3.18 ± 0.04ab	3.21 ± 0.03b	3.06 ± 0.08b
PPV		34.28 ± 1.27a	37.26 ± 1.04ab	36.96 ± 0.42ab	40.16 ± 1.61b	37.24 ± 0.88ab
LPV		124.30 ± 12.7a	130.81 ± 2.9a	131.60 ± 5.15	156.65 ± 1.82b	128.34 ± 8.10b
APV1		25.91 ± 1.02a	25.88 ± 1.08a	26.96 ± 0.72a	28.78 ± 0.22ab	30.29 ± 1.04b

Regression

$Y_{	ext{Moisture}} = -0.03487X^2 - 5.286X + 245.30$

$Y_{	ext{Crude protein}} = -0.01087X^2 + 1.515X - 34.46$

$Y_{	ext{Crude lipid}} = -0.008351X^2 + 1.151X - 29.72$

$Y_{	ext{Ash}} = -0.001326X^2 + 0.1871X - 3.33$

$Y_{	ext{PPV}} = -0.01748X^2 + 2.489X - 48.66$

$Y_{	ext{LPV}} = -0.01106X^2 + 15.45X - 399.60$

$Y_{	ext{APV}} = -0.002347X^2 + 0.4815X + 6.515$

PPV = protein production value; LPV = lipid production value; APV = ash production value.

1 Values are means ± SE.
2 PPV = Fish protein gain (g)/Total protein intake (g) × 100.
3 LPV = Fish lipid gain (g)/Total lipid intake (g) × 100.
4 APV = Fish ash gain (g)/Total ash intake (g) × 100.

Fig. 1. The quadratic regression analysis of percent weight gain (PWG) of Jian carp fed diets containing graded levels of L-glutamate (Glu). Values are means of 3 replicates, with 40 fish in each replicate.

levels of Glu are presented in Table 8. The AKP activity in all intestinal segments was the highest for fish fed 83.4 g of Glu/kg diet (P < 0.05). The NKA activity in PI and DI was the highest for fish fed 68.4 g of Glu/kg diet (P < 0.05), and the lowest for fish fed control diet. The activity of NKA in MI was increased with increasing Glu levels up to 68.4 g/kg diet and decreased thereafter (P < 0.05). The γ-GT activity in MI was not different for fish fed diets containing ≤68.4 g of Glu/kg diet (P > 0.05), and was significantly increased in diet containing 83.4 g of Glu/kg diet (P < 0.05). The γ-GT activity in DI was the highest for fish fed 83.4 g of Glu/kg diet and the lowest for fish fed control diet (P < 0.05). The CK activity in PI, MI, and DI was significantly improved with increasing dietary Glu levels up to 68.4 g/kg diet (P < 0.05), where the response reached a plateau (P > 0.05).

The effect of dietary Glu on antioxidant parameters in the hepatopancreas and intestine are displayed in Table 9. The contents of MDA in the hepatopancreas and intestine, and PCO in the intestine were significantly different with the increased dietary Glu levels up to 68.4 g/kg diet, and then increased with further increase of dietary Glu levels (P < 0.05). The PCO content in the hepatopancreas was reduced in fish fed diets supplemented with Glu.
The HSI, HPC, ISI, RGL and IPC of carp fed diets with graded levels of L-glutamate for 9 weeks (%)[1].

Item	Dietary L-glutamate levels, g/kg diet				
	53.4	57.2	60.6	68.4	83.4
Hepatopancreas					
HSI2	2.79 ± 0.15	2.89 ± 0.11	3.10 ± 0.16	2.73 ± 0.14	2.74 ± 0.23
HPC, %	7.27 ± 0.88a	9.74 ± 0.57ab	9.60 ± 1.14ab	10.09 ± 0.50b	10.28 ± 0.88ab
Intestine					
ISI2	2.42 ± 0.11a	2.67 ± 0.04a	2.55 ± 0.03ab	2.63 ± 0.07b	2.61 ± 0.07b
IPC, %	4.25 ± 0.10a	4.30 ± 0.31a	4.36 ± 0.29ab	6.10 ± 0.25	5.27 ± 0.23bc
HSI = hepatosomatic index; HPC = hepatopancreas protein content; ISI = intestine somatic index; RGL = relative gut length; IPC = intestinal protein content.					

\[Y_{\text{Hepatopancreas}} = -0.7840X^2 + 113.9X - 3.428 \]
\[Y_{\text{Intestine}} = -0.9685X^2 - 139.9X - 4.173 \]
\[Y_{\text{Hepatopancreas lipase}} = -0.0008520X^2 + 0.1681X - 4.931 \]
\[Y_{\text{Intestine trypsin}} = -0.02930X^2 + 4.435X - 129.30 \]
\[Y_{\text{Intestine chymotrypsin}} = -0.03535X^2 + 5.704X - 107.70 \]
\[Y_{\text{Intestine lipase}} = -0.005404X^2 + 0.7691X - 24.54 \]
\[Y_{\text{Intestine amylase}} = -0.4199X^2 + 54.39X - 1.294 \]

\[R^2 = 0.8904 \]
\[R^2 = 0.7433 \]
\[R^2 = 0.6358 \]
\[R^2 = 0.7925 \]
\[R^2 = 0.6516 \]
\[R^2 = 0.5863 \]
\[R^2 = 0.6691 \]

\[P < 0.05 \]

The activities of CAT in the hepatopancreas, GST in the hepatopancreas, and HRS in the intestine were significantly increased with the increased dietary Glu levels up to 68.4 g/kg diet (P < 0.05), and plateaued thereafter (P > 0.05). The activities of GPx1 in the hepatopancreas and intestine, GST in the intestine and SAS in the intestine were significantly increased with increasing dietary Glu levels up to 68.4 and 60.6 g/kg diet, and decreased thereafter (P < 0.05). The optimal dietary Glu level was estimated to be 71.06 (22.5% of crude protein) and 71.36 g/kg diet (22.6% of crude protein).
better growth performance is observed in diet supplemented with Glu at 83.4 g/kg. However, a high level of Glu may result in adverse effects on growth performance. Fish weight gain is primarily attributed to the accretion of protein and fat (Bureau et al., 2000). The present study showed that Glu significantly enhanced carp body protein and lipid contents, and dietary protein and lipids unitization, which were in accordance with the results for grass carp (Zhao et al., 2015), gilthead seabream (Caballero-Solares et al., 2015), and rainbow trout (Chika et al., 2016). However dietary Glu supplementation has no effect on growth and feed utilization in Atlantic salmon S. salar (Larsson et al., 2014). One reason for this difference is that the ratio of dietary Glu to fat level is too low, which are both the main energy source of fish. Recent study indicates Glu contributes the major tissues of approximately 80% of ATP production in the liver, proximal intestine, and skeletal muscle of zebrafish (Danio rerio) and hybrid striped bass (Morone saxatilis + Morone chrysops) (Jia et al., 2017). In grass carp (Zhao et al., 2015), gilthead seabream (Caballero-Solares et al., 2015), and rainbow trout (Chika et al., 2016), the ratios of dietary Glu to protein and fat level are 18.8% and 143.2%, 17.8% and 52.4%, and 23.3% and 74.5%, respectively. In Atlantic salmon, the ratio of dietary Glu to protein is 17.9%, but the ratio of dietary Glu to fat level only is 18% (Larsson et al., 2014). Therefore, it is needed to further study on the appropriate proportions of dietary fat and Glu. The present result also firstly showed the optimal dietary Glu level was 81.97 g/kg diet (116.5% of dietary Glu/kg). Therefore, a high level of Glu may result in adverse effects on growth performance. Fish weight gain is primarily attributed to the accretion of protein and fat (Bureau et al., 2000). The present study showed that Glu significantly enhanced carp body protein and lipid contents, and dietary protein and lipids unitization, which were in accordance with the results for grass carp (Zhao et al., 2015), gilthead seabream (Caballero-Solares et al., 2015), and rainbow trout (Chika et al., 2016). However dietary Glu supplementation has no effect on growth and feed utilization in Atlantic salmon S. salar (Larsson et al., 2014). One reason for this difference is that the ratio of dietary Glu to fat level is too low, which are both the main energy source of fish. Recent study indicates Glu contributes the major tissues of approximately 80% of ATP production in the liver, proximal intestine, and skeletal muscle of zebrafish (Danio rerio) and hybrid striped bass (Morone saxatilis + Morone chrysops) (Jia et al., 2017). In grass carp (Zhao et al., 2015), gilthead seabream (Caballero-Solares et al., 2015), and rainbow trout (Chika et al., 2016), the ratios of dietary Glu to protein and fat level are 18.8% and 143.2%, 17.8% and 52.4%, and 23.3% and 74.5%, respectively. In Atlantic salmon, the ratio of dietary Glu to protein is 17.9%, but the ratio of dietary Glu to fat level only is 18% (Larsson et al., 2014). Therefore, it is needed to further study on the appropriate proportions of dietary fat and Glu. The present result also firstly showed the optimal dietary Glu level was 81.97 g/kg diet (116.5% of dietary crude lipid and 26.4% of dietary crude protein) for Jian carp growth.

4. Discussion

4.1. Effect of dietary glu on growth performance

In the present study, the growth performance of Jian carp was significantly influenced by dietary Glu levels. The FWB and PWC were improved in diet supplemented with 68.4 and 83.4 of Glu/kg, which was in agreement with reports for grass carp (Zhao et al., 2015), Atlantic salmon (Oehme et al., 2010), and rainbow trout (Chika et al., 2016). The enhancement of fish growth may be attributed to the fact that feed efficiency was improved with appropriate dietary Glu. There is growing evidence that some of the traditionally classified nonessential amino acids (NEAA, e.g. glycine) are important regulators of key metabolic pathways, which play enormous roles in multiple signaling pathways, thereby regulating gene expression, intracellular protein turnover, nutrient metabolism, and oxidative defense (Xiao et al., 2014; Xie et al., 2015). In order to avoid the influence of other NEAA, all diets in the present study were not maintained isonitrogenous by supplementation of other NEAA as the study on glycine by Xie et al. (2014). Although a higher protein level was found in diet supplemented with Glu at 83.4 g/kg. However, a better growth performance is observed in diet supplemented with 81.97 g of Glu/kg. Therefore, a high level of Glu may result in adverse effects on growth performance. Fish weight gain is primarily attributed to the accretion of protein and fat (Bureau et al., 2000). The present study showed that Glu significantly enhanced carp body protein and lipid contents, and dietary protein and lipids unitization, which were in accordance with the results for grass carp (Zhao et al., 2015), gilthead seabream (Caballero-Solares et al., 2015), and rainbow trout (Chika et al., 2016). However dietary Glu supplementation has no effect on growth and feed utilization in Atlantic salmon S. salar (Larsson et al., 2014). One reason for this difference is that the ratio of dietary Glu to fat level is too low, which are both the main energy source of fish. Recent study indicates Glu contributes the major tissues of approximately 80% of ATP production in the liver, proximal intestine, and skeletal muscle of zebrafish (Danio rerio) and hybrid striped bass (Morone saxatilis + Morone chrysops) (Jia et al., 2017). In grass carp (Zhao et al., 2015), gilthead seabream (Caballero-Solares et al., 2015), and rainbow trout (Chika et al., 2016), the ratios of dietary Glu to protein and fat level are 18.8% and 143.2%, 17.8% and 52.4%, and 23.3% and 74.5%, respectively. In Atlantic salmon, the ratio of dietary Glu to protein is 17.9%, but the ratio of dietary Glu to fat level only is 18% (Larsson et al., 2014). Therefore, it is needed to further study on the appropriate proportions of dietary fat and Glu. The present result also firstly showed the optimal dietary Glu level was 81.97 g/kg diet (116.5% of dietary crude lipid and 26.4% of dietary crude protein) for Jian carp growth.

4.2. Effect of dietary glu on digestive and absorptive capacity

Fish growth is related to the digestive and absorptive capacity (Gisbert et al., 2009), which can be reflected by digestive organ growth and development, as well as activities of intestinal enzymes related to digestion and absorption (Yan and Qiu-Zhou, 2006). In
the present study, there were significant improvements in HPC, ISI, HSI, and RGL. These results indicated that Glu promoted the growth and development of the fish intestine and hepatopancreas.

Intestinal growth and development are related to the intestinal cell proliferation and differentiation. In parenteral mice, Glu could prevent intestinal mucosal atrophy via promotion of intestine

Item	Dietary L-glutamate levels, g/kg diet
	53.4
	57.2
	60.6
	68.4
	83.4

Hepatopancreas	
MDA, nmol/mg protein	11.52 ± 0.09\(^{c}\)
PRO, nmol/mg protein	4.76 ± 0.30\(^{b}\)
SOD, U/mg protein	563.01 ± 17.99
CAT, U/mg protein	51.23 ± 3.47\(^{a}\)
GST, U/mg protein	4.280.54 ± 7.01\(^{ab}\)
GR, U/mg protein	66.72 ± 2.36\(^{ab}\)
GSH, µmol/g protein	31.96 ± 0.02
SOD, U/mg protein	613.67 ± 10.31\(^{a}\)
Intestine GSH	9.36 ± 0.26\(^{b}\)
Intestine PRO	2.78 ± 0.04\(^{a}\)
Intestine SOD	560.12 ± 15.4
Intestine CAT	59.23 ± 4.04\(^{ab}\)
Intestine GST	4,360.52 ± 50.05\(^{b}\)
Intestine GR	70.77 ± 4.62\(^{ab}\)
Intestine GSH	31.09 ± 1.44
Intestine SOD	3.49 ± 0.35
Intestine PRO	3.93 ± 0.16
Intestine GR	699.34 ± 4.85\(^{ab}\)

Intestine GSH	6.81 ± 0.25\(^{a}\)
Intestine PRO	2.65 ± 0.39\(^{a}\)
Intestine SOD	581.75 ± 5.96
Intestine CAT	65.92 ± 3.76\(^{c}\)
Intestine GST	4,650.92 ± 26.93\(^{c}\)
Intestine GR	80.23 ± 1.01\(^{b}\)
Intestine GSH	63.98 ± 3.00
Intestine SOD	33.73 ± 2.22
Intestine PRO	3.62 ± 0.16
Intestine GR	680.39 ± 16.68\(^{ab}\)
Intestine GSH	56.88 ± 7.93

Intestine SOD	3.0 ± 0.42\(^{a}\)
Intestine CAT	73.84 ± 0.85\(^{c}\)
Intestine GST	204.55 ± 1.15\(^{a}\)
Intestine GR	79.40 ± 0.53\(^{c}\)
Intestine GSH	55.34 ± 9.15\(^{a}\)
Intestine SOD	3.49 ± 0.15\(^{a}\)
Intestine PRO	3.07 ± 0.06\(^{a}\)
Intestine GR	286.37 ± 11.94
Intestine GSH	45.78 ± 2.38\(^{a}\)
Intestine SOD	29.34 ± 0.37\(^{a}\)
Intestine PRO	14.73 ± 0.73\(^{a}\)

Regression	
Y = intercept + slope	0.0186\(^{a}\) - 2.274X + 85.791
R\(^2\)	0.914
P	< 0.05

MDA = malondialdehyde; PRO = protein carbonyl; SOD = superoxide dismutase; CAT = catalase; GST = glutathione peroxidase; GST = glutathione S-transferase; GR = glutathione reductase; GSH = glutathione; SAS = superoxide anion scavenging ability; HRS = hydroxyl radical scavenging ability.

\(^{a,b}\) Mean values within the same row with different superscripts are significantly different (P < 0.05).

\(^{1}\) Values are means ± SE.
epithelial cell proliferation (Xiao et al., 2014). The previous studies showed Glu could improve the proliferation, differentiation, and function of fish enterocytes (Jiang et al., 2015a,b,c), and promote intestinal nucleotide synthesis and cell-proliferation in rainbow trout (Chika et al., 2016). Meanwhile, the activities of trypsin, chymotrypsin, amylase, and lipase in whole intestine, as well as trypsin, chymotrypsin, and lipase in the hepatopancreas were improved by dietary appropriate Glu levels. All these data above suggested that Glu enhanced the digestive capacity of Jian carp, which agreed with our previous study of grass carp (Zhao et al., 2015). Intestinal absorptive ability is also the basis of utilizing nutrient adequately (Wen et al., 2009). The enzymes located in the intestinal brush border section are responsible for the final stages of degradation and assimilation of the food. The AKP is considered to be involved in absorption of nutrients such as lipid, glucose, calcium, and inorganic phosphatase (Tengjaroenkul et al., 2000). The NKA (Gal-Garber et al., 2003; Geering, 1990) and γ-GT (Griffith and Meister, 1980; Ogawa et al., 1998) play a crucial role in absorption of most of amino acids and glucose. The CK has a key role in the energy metabolism of cells (Wallimann and Hemmer, 1994). In the present study, NKA and CK activities in all intestine segments, AKP activity in MI, γ-GT activity in DI significantly increased with increasing dietary Glu levels. Correlation analysis showed activities of intestinal brush-border enzymes was positively related.

Fig. 3. Effects of dietary L-glutamate (Glu) on nuclear factor erythroid 2-related factor 2 (Nrf2) and Keap1 gene expressions in the intestine of Jian carp. Values are means ± SE of 3 replicates with 6 fish in each replicate. Data column with different letters denote significant difference (P < 0.05).

Fig. 4. Effects of dietary L-glutamate (Glu) on zonula occludens protein-1 (ZO-1), occludin1, claudin2, claudin3, and claudin7 gene expressions in the intestine of Jian carp. Values are means ± SE of 3 replicates with 6 fish in each replicate. Data columns with different letters denote significant difference (P < 0.05).
4.3. Effect of dietary glu on antioxidant capacity in the intestine

The structural integrity of fish intestines is the guarantee of its normal digestion and absorption. The structural and functional integrity of the intestine and enterocytes was closely related to the antioxidant enzyme activities (Jiang et al., 2015a,b,c; Jiang et al., 2013; Shoveller et al., 2005). The MDA is a by-product of lipid peroxidation induced by excessive reactive oxygen species (ROS) and a good marker of lipid peroxidation (Mourente et al., 2007). The PCO is one of the most extensively studied forms of proteins oxidative modification (Wang and Powell, 2010). The contents of MDA and PCO can reflect the antioxidant status of living organisms (Ghosh et al., 2008). In the present study, the contents of MDA and PCO were decreased with increasing dietary Glu levels up to certain values in both the intestine and hepatopancreas, suggesting depressions of the lipid peroxidation and protein oxidation. The Glu is a key transamination partner and is required for the synthesis of GSH in the intestine (Johnson et al., 2003). Previous study reported a strong negative correlation between GSH content and MDA level in the intestinal mucosa of weaned piglets (Wang and Li, 2012). The Glu ameliorated copper induced MDA generation in fish intestines (Jiang et al., 2016). Quadratic regression analysis against MDA content in the hepatopancreas and whole intestine showed the optimal dietary Glu level was 71.06 and 71.36 g/kg diet, respectively. Correlation analysis showed PGW was positively related to activities of trypsin and chymotrypsin in the intestine. Activities of trypsin and chymotrypsin were positively related to MDA contents in the hepatopancreas and intestine. However, there was no significant correlation between Glu and activities of trypsin and chymotrypsin. These results indicated Glu might improve the digestive ability by reducing oxidative damage in the hepatopancreas and increasing the ability of the pancreas to synthesize and secrete protease. The specific mechanism needs a further study.

In terrestrial animals, SOD, CAT, GPx, GST, GR, and GSH play a vital role in preventing cellular damage caused by ROS (David et al., 2008; Martínez–álvarez et al., 2005; Rong et al., 2012; Winston and Di Giulio, 1991; Wu et al., 2004). Our present results showed that Glu supplementation increased CAT, GPx, GST, GR activities and GSH content in the intestine. The SAS and HRS activities are 2 indexes used to evaluate the total capacity of scavenging superoxide and hydroxyl radical, respectively (Wu et al., 2004). The present results showed that Glu significantly increased the SAS and HRS activities in the intestine and hepatopancreas. These results indicated that the elevated anti-oxidative capacity of carp may, at least in part, be due to Glu induced the increment of the non-enzymatic content and enzymatic activities. Antioxidant enzymes are proteins, and their activities can be affected by the mRNA levels (Tiedge et al., 1997). In the present study, dietary Glu supplementation up-regulated CAT, GST, GR, and GPx1a mRNA expressions. These results matched a similar pattern to the respective enzyme activity changes. In eukaryote, as a nucleus transcription factor, the intranuclear Nrf2 can promote the transcription of antioxidant genes (Kwak et al., 2004) The Keap1 is identified as an Nrf2-binding protein that prevents Nrf2 translocation to the nucleus and promotes the ubiquitination–proteosomal degradation of Nrf2 (Ma, 2013). The present study showed Glu significantly up-regulated Nrf2 mRNA levels in the intestine of Jian carp. In contrast, Glu significantly decreased Keap1 mRNA expression. This result agreed with the previous study in grass carp that Glu supplementation alleviated oxidative damage induced by copper (Jiang et al., 2016). Thus, the positive effects of Glu on antioxidant enzymes mRNA expression may be partly ascribed to promote Nrf2 nuclear translocation by down-regulating Keap1 mRNA expression. However, the specific action of Glu affecting Nrf2 nuclear translocation needs a further study.

4.4. Effect of dietary glu on intestinal structure integrity

The previous study reported absorption capacity may be associated with TJ permeability of the intestine (Ballard et al., 1995). Our present results also showed that Glu supplementation significantly increased intestinal ZO-1, occludin1, claudin2, claudin3, and claudin7 mRNA expressions. This result was in good agreement with a...
report on piglet. The Glu supplementation improved intestinal integrity and up-regulated jejunal ZO-1 and occludin mRNA expression in weanling piglets (Lin et al., 2014). In addition, evidence from animals and cell studies also shows that glutamine is important for intestinal barrier function and regulation of TJ protein (Li and Neu, 2009). As well, it has been shown that prohibiting the conversion from glutamine to Glu inhibits enhancement effect of glutamine on TJ protein expression (Nose et al., 2010; Vermeulen et al., 2011). In fish enterocyte, the expression of glutaminase mRNA level is increased quickly and effectively by glutamine (Jiang et al., 2015a,b,c). Thus, dietary Glu may improve intestinal barrier functions and nutrient absorptive capacities by up-regulating TJ gene expression. Furthermore, TJ permeability is mediated by PKC (Andreeva et al., 2006; Stenson et al., 1993; Stuart and Nigam, 1995). Previous study showed that dietary arginine and medium pre-supplementation with linolenic acid and docosahexaenoic acid affect TJ permeability in Jian carp and intestinal monolayer cells (Usami et al., 2003; Wang et al., 2016). In the current study, optimal dietary Glu caused an up-regulation of the PKC mRNA expression level in Jian carp. Nevertheless, how Glu interacts with PKC is unknown by now and requires further study.

5. Conclusions

The present study demonstrated that dietary Glu increased fish growth by enhancing digestive and absorptive enzyme activities and intestinal physical barrier functions by regulating antioxidant-related signaling molecule and TJ protein gene expressions in fish intestines. The beneficial actions of Glu in intestinal physical barrier functions are closely associated with its ability in increasing Nr2f and PKC mRNA expression. The optimal dietary Glu levels for Jian carp (126 to 337 g) were estimated to be 81.97 g/kg diet based on growth performance (PWG), 71.06 and 71.36 g/kg diet based on antioxidant-related indices (MDA content in the hepatopancreas and whole intestine, respectively).

Conflict of Interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work. There is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the content of this paper.

Acknowledgements

This study was financially supported by National Key R&D Program of China (2019YFD0900200) and National Natural Science Foundation of China (31702362). The authors would like to express their sincere thanks to the personnel of these teams for their kind assistance.

References

Andreeva AY, Piontek J, Blasing IE, Utepebergov DN. Assembly of tight junction is regulated by the antagonism of conventional and novel protein kinase c isoforms. Int J Biochem Cell Biol 2006;38:222–33.
Ballard ST, Hunter JH, Taylor AE. Regulation of tight-junction permeability during nutrient absorption across the intestinal epithelium. Annu Rev Nutr 1995;15:35–55.
Blachier F, Boutry C, Bos C, Tome D. Metabolism and functions of L-glutamate in the epithelial cells of small and large intestines. Am J Clin Nutr 2009;90:814S–21S.
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976;72:248–54.
Broxnan JT, Broxnan ME. Glutamate: a truly functional amino acid. Amino Acids 2013;45:413–8.
Buentello JA, Gatlin DM. Preliminary observations on the effects of water hardness on free taurine and other amino acids in plasma and muscle of channel catfish. N Am J Aquacult 2002;64:95–102.
Bureau DP, Azvedo PA, Tapia-Salazar M, Cuzon G. Pattern and cost of growth and nutrient deposition in fish and shrimp: potential implications and applications. Av Nutr Acuiculta V 2000;19:111–40. Memorias del V Simposium Internacional de Acuicultura.
Caballero-Solares A, Viegas I, Salgado MC, Siles AM, Saez A, Meton I, et al. Diets supplemented with glutamate or glutamine improve protein retention and antioxidant-related indices (MDA content in the hepatopancreas and muscle of Dentex dentex) in sub-adult grass carp Ctenopharyngodon idella fed graded levels of dietary taurine. J Anim Sci Biotechnol 2015;6:34.
Horwitz W, editor. Of dietary protein in-...
Lin M, Zhang B, Yu C, Li J, Zhang L, Sun H, et al. L-glutamate supplementation improves small intestinal architecture and enhances the expressions of jejunal mucosa amino acid receptors and transporters in weaning piglets. Plos One 2014;9:e111950.

Luo J, Feng L, Jiang W, Liu Y, Wu P, Jiang J, et al. The impaired intestinal mucosal immune system by valine deficiency for young grass carp (Ctenopharyngodon idella) is associated with decreasing immune status and regulating tight junction proteins transcript abundance in the intestine. Fish Shellfish Immunol 2014;40:197–207.

Ma Q. Role of Nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol 2013;53:401–26.

Mahnouk HK, Al-Sagheer AA, Reda FM, Mahgoub SA, Ayyat MS. Dietary curcumin supplement influence on growth, immunity, antioxidant status, and resistance to Aeromonas hydrophila in Oreochromis niloticus. Aquaculture 2017;475:16–23.

Martinez-alvarez RM, Morales AE, Sanz A. Antioxidant defenses in fish: biotic and abiotic factors. Rev Fish Biol Fish 2005;15:75–88.

Matsuhisa K, Kondoh M, Suzuki H, Yagi K. Comparison of mucosal absorption-enhancing activity between a claudin-3/-4 binder and a broadly specific claudin binder. Biochem Biophys Res Commun 2012;423:229–33.

Mourente G, Bell JG, Tocher DR. Does dietary tocopherol level affect fatty acid metabolism in fish? Fish Physiol Biochem 2007;33:269–80.

Nose K, Yang H, Sun X, Nose S, Koga H, Feng Y, et al. Glutamine prevents total parenteral nutrition-associated changes to intraepithelial lymphocyte phenotype and function: a potential mechanism for the preservation of epithelial barrier function. J Interferon Cytokine Res 2010;30:67–80.

NRC (National Research Council). Nutrient requirements of man. Washington DC: National Academy Press; 1980. p. 206–7.

Oehme M, Grammers F, Talek H, Zambonino-Infante J, Reistie S, Thomassen MS, et al. Dietary supplementation of glutamine and arginine to Atlantic salmon (Salmo salar L.) increases growth during the first autumn in sea. Aquaculture 2010;310:156–63.

Ogawa M, Shiozawa M, Hiraoka Y, Takeuchi Y, Aiso S. Immunohistochemical study of localization of γ-glutamyl transpeptidase in the rat brain. Tissue Cell 1998;30:597–601.

Reeds PJ, Burrin DG, Stoll B, Jahoor F, Wykes L, Henry J, et al. Enteral glutamate is the preferential source for mucosal glutathione synthesis in fed piglets. Am J Physiol 1997;273:E408–15.

Ron S, Zhao Y, Bao W, Xiao F, Wang D, Nussler AK, et al. Curcumin prevents chronic alcohol-induced liver disease involving decreasing ROS generation and enhancing antioxidative capacity. Phytomedicine 2012;19:545–59.

Shi L, Feng L, Jiang W, Liu Y, Jiang J, Wu P, et al. Immunity decreases, antioxidant enhancing activity between a claudin-3/-4 binder and a broadly specifi claudin binder. Biochem Biophys Res Commun 2012;423:229–33.

Xie S, Tian L, Jia Y, Zhao Y, Liang G, Liu Y. Effect of glycine supplementation on growth performance, body composition and salinity stress of juvenile pacific white shrimp, Litopenaeus vannamei fed low fishmeal diet. Aquaculture 2014;419:159–64.

Xie S, Zhou W, Tian L, Liu J, Liu Y. Effect of N-acetyl cysteine and glycine supplementation on growth performance, glutathione synthesis, anti-oxidative and immune ability of rale tilapia, Oreochromis niloticus. Fish Shellfish Immunol 2016;55:405–19.

Xie S, Zhou W, Tian L, Liu J, Liu Y. Effect of N-acetyl cysteine and glycine supplementation on growth performance, glutathione synthesis, anti-oxidative and immune ability of rale tilapia, Oreochromis niloticus. Fish Shellfish Immunol 2016;55:405–19.

Yan L, Qiu-Zhou X. Dietary glutamine supplementation improves structure and function of intestine of juvenile Jian carp (Cyprinus carpio var. Jian). Aquacult Nutr 2010;49:119–27.

Yoshihara A, Nakashima AA, Inoue T, Iizuka K, Ikeda K, et al. Effect of dietary glutamate supplementation on growth performance, digestive properties and immune response in blue tilapia, Oreochromis aureus. Aquaculture 2013;409:207–14.

Zhao Y, Hu Y, Zhou XQ, Zeng XY, Feng L, Liu Y, Jiang WD, Li SH, Li DB, Wu XQ. Effects of dietary l-glutamine supplementation on growth performance, digestive enzyme activities and antioxidant capacity in intestine of grass carp (Ctenopharyngodon idella). Fish Physiol Biochem 2013;39:1–13.

Zhao XH, Zhao J, Sun J, Wang J, Cao Y, et al. Effect of Os-β-aminobutyric acid on the growth performance of juvenile grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol 2014;40:227–34.