Bone loss in patients with the ileostomy and ileal pouch for inflammatory bowel disease

Supriya Gupta and Bo Shen*

Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio

*Corresponding author. Department of Gastroenterology/Hepatology, Desk A31, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland OH, 44195, USA. Tel: +1-216 444 9252; Fax: +1-216-444-6305; Email: shenb@ccf.org

Submitted 5 August 2013; Revised 7 October 2013; Accepted 7 October 2013

Low bone mineral density (BMD) or low bone mass is common in patients with inflammatory bowel disease (IBD). Studies have shown that low BMD is also common in patients with ulcerative colitis (UC) even after colectomy and ileal pouch–anal anastomosis (IPAA). The reported frequency of osteopenia ranged from 26–55% and that of osteoporosis ranged from 13–32% in patients with IPAA. Increasing age, low body mass index, lack of calcium supplementation and high inflammatory activity with villous atrophy in the ileo-anal pouch are risk factors for low bone mass in pouch patients. Bone loss is also common in patients with IBD and ostomy. Current professional society guidelines do not specifically address the need for surveillance in patients with ileal pouches or ostomy. A growing body of evidence suggests that patients with ileal pouch or ostomy are at an increased risk of bone loss. Pending prospective studies, screening and surveillance using dual energy X-ray absorptiometry (DEXA) along with calcium/vitamin D supplementation may be beneficial in those patients.

Keywords: Bone loss; Crohn’s disease; inflammatory bowel disease; ulcerative colitis.

INTRODUCTION

Ulcerative colitis (UC) and Crohn's disease (CD) are two common forms of chronic inflammatory bowel disease (IBD), in whom bone loss is common. In addition, fractures secondary to osteoporosis are associated with significant morbidities and health care costs. The current American College of Gastroenterology (ACG), American Gastroenterological Association (AGA) and European Crohn’s and Colitis Organization (ECCO) guidelines recommend screening for bone loss using dual-energy X-ray absorptiometry (DEXA) in patients with CD or UC who have a history of smoking, low body mass, family history of osteoporosis, nutritional deficiencies, hypogonadism, age >60 years, active inflammation, the current or prior use of corticosteroids for >3 months, postmenopausal state, and history of fragility fractures [1–6].

Studies on the natural history of IBD showed that 60% of patients with CD and 15%–30% of patients with UC require surgical intervention for the management of their disease [7, 8]. Restorative proctocolectomy with ileal pouch–anal anastomosis (IPAA) is the surgical treatment of choice in patients with medically refractory UC or UC with neoplasia [9]. This procedure is associated with an improvement in quality of life, due to maintenance of gastrointestinal tract continuity and reduction in dose or discontinuation of corticosteroids and other IBD-related medications. It is unclear whether restorative proctocolectomy with IPAA has a protective or detrimental effect on bone mineral density (BMD) in patients with UC. Prior studies have shown that low BMD is common in patients with UC, even after surgery [10]. Similarly, emerging data has shown a low BMD in patients with CD after surgery and ileostomy [11, 12]. Current ACG and AGA guidelines do not have specific recommendations regarding screening for bone loss in UC or CD patients after surgery. The purpose of this review is to summarize the existing literature on bone loss in IBD.
patients after surgical treatment and to discuss the implications for its screening and management.

BONE LOSS IN INFLAMMATORY BOWEL DISEASE

Incidence and prevalence

Patients with IBD have a higher risk of developing bone loss than the general population. The reported frequency of osteopenia and osteoporosis in IBD ranged from 22 to 77% and from 17 to 41%, respectively [13–15]. The risk of fracture is 40% higher in patients with IBD than that in the general population [16]. CD and UC appear to have a similar risk for fracture [2]. In a population-based study, the incidence of bone fracture was 86.2 per 10,000 patients with CD and 112.4 per 10,000 patients with UC [16]. In a separate population-based study, the incidence of bone fracture in patients with CD was 36% at the 20-year follow-up and 40% in patients with UC at the 25-year follow-up [17, 18] (Table 2).

Risk factors and mechanisms for bone loss in IBD

The etiology of low bone mass in IBD patients is probably multifactorial. Reported risk factors include increasing age, long-term (>3 months) or recurrent corticosteroid use, persistently active disease, long disease duration, prior history of osteoporotic fracture, low body mass index (BMI), malnutrition, hypogonadism, lack of exercise or supplementation of calcium and vitamin D, immobilization, and smoking [2, 4, 5, 13, 19–21]. Long-term glucocorticosteroid use is a well-known cause of osteoporosis, resulting from increased osteoclastic activity. Excessive pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) in the setting of IBD have been shown to increase osteoclastic activity, resulting in bone resorption [22]. Therapy with anti-TNF-α biologics, such as infliximab, was associated with increased bone formation without an increase in bone resorption in patients with CD, supporting the role of excessive inflammatory cytokines in bone loss [22].

Recommendations

DEXA has been the ‘gold standard’ for measuring the bone mass. This technique is widely used to characterize fracture risk in large epidemiological studies. Measurements are usually obtained at the femoral neck (hip) and lumbar spine. These measurements are reported in the form of a Z score, i.e. number of standard deviations (SD) above or below the mean for an age-matched population or T-score, which is the number of standard deviations above or below the mean for a young adult at peak bone density [1]. The World Health Organization (WHO) defines osteoporosis as T-score at the hip or spine < -2.5, osteopenia as T-score between -1 and -2.5 and normal bone density as T-score better than -1, in postmenopausal women. In contrast, the International Society for Clinical Densitometry proposed two categories: low and normal bone mass. The low bone mass was defined as a T-score of the lumbar spine, total hip, or femoral neck of -2.5 or less in postmenopausal women and in men 50 years of age and older; or a Z-score of -2.0 or lower in women before menopause or men younger than 50 years [23]. The current AGA and ACG guidelines recommended screening for bone loss in IBD patients with a high risk features as mentioned above [1, 3, 4]. Additionally, blood tests, such as complete blood count, alkaline phosphatase, calcium, creatinine, testosterone (in males), 25-OH vitamin D and protein electrophoresis are recommended. The ECCO guidelines recommended screening for bone loss using DEXA in those IBD patients with persistently active disease or with repeatedly exposed to corticosteroids, or with a long disease duration [5, 6].

BONE LOSS IN PATIENTS WITH ILEAL POUCHES

Frequency

Studies evaluating bone loss in IBD patients after surgery are summarized in Table 1. The reported frequency of osteopenia in UC patients after IPAA ranged from 26 to 55% [24–26], and that of osteoporosis ranged from 13 to 32% [10, 25–27]. The reported incidence of fragility fractures ranged from 7 to 15% in these studies [10, 25, 27], implying that these patients are at high risk for low BMD-related complications after IPAA. In the study by Navaneethan et al. [27], comparing BMD in UC patients with (n=267) and without (n=119) IPAA, fragility fractures were noted more frequently in the IPAA group than in the UC group (8.1% vs 2.5%, P=0.038). These findings imply that proctocolectomy may not be protective from bone fracture in patients with UC.

Few studies have evaluated the change in BMD over time after IPAA. In a study by Jensen et al. evaluating 24 patients with UC undergoing IPAA, BMD increased by a mean of 1.6% over 4–6 years after IPAA [28]. In a longitudinal study of 15 patients with IPAA, 7 (47%) were found to have an increase in BMD over a mean of 28-month follow up [25]. Similarly, in the study of 267 pouch patients by Navaneethan et al., 13 patients had a longitudinal follow-up on BMD [27]. In that study, 7 out of 13 patients (54%) were found to have an improvement in BMD after a median of 46 months. These studies highlight that some patients have an improvement in BMD after proctocolectomy with IPAA, which may be related to removal of the diseased colon, discontinuation of corticosteroids and improvement in nutritional status. This may imply that proctocolectomy with IPAA may have some protective role on
Table 1. Studies evaluating bone loss in ulcerative colitis after colectomy

Study	Study design	Cases	Controls	Results
Shen B et al. [10]	Cross sectional, case-control	105 UC+IPAA patients with low BMD	222 UC+IPAA patients with normal BMD	32% of UC+IPAA patients had a low BMD. 30% of patients with normal pouch or irritable pouch syndrome had a low BMD. Risk factors for bone loss: advanced age, low BMI, non-use of calcium supplement.
Navaneethan U et al. [27]	Cross sectional, case-control	267 UC+IPAA patients	119 UC patients without colectomy	Low BMD more common in UC+IPAA patients than UC patients (31 vs 15%; *P* = 0.001). Risk factors for bone loss: advanced age, low BMI and the presence of IPAA.
Kuisma J et al. [24].	Case series	88 UC+IPAA patients and 20 UC+ileostomy patients	NA	Low BMD more common in pouch patients with sub-total or total villous atrophy than those with normal villous structure (37 vs 0%). The frequency of osteopenia and osteoporosis was 26.1 and 2.3%, respectively in patients with UC and IPAA. The frequency of osteopenia and osteoporosis was 30 and 5%, respectively in patients with UC and ileostomy. The lowest BMD was seen in patients with inflammation in the afferent limb.
Abitbol V et al. [25]	Case series, longitudinal	20 UC+IPAA patients	NA	Osteopenia (55%) and vertebral crush fractures (15%) common in UC+IPAA. Spontaneous increase in BMD (7 out of 15 patients) over time (mean 28 months) was seen after pouch surgery.
McLaughlin SD et al. [26]	Case series	53 UC+IPAA patients	NA	The frequency of osteopenia and osteoporosis was 43 and 13%, respectively.
BMD in some (not in other) patients with IBD. The finding of severe osteopenia/osteoporosis in only 2.3% of patients after IPAA in a cohort study by Kuisma et al. further supports the notion [24]. Therefore, whether or not the IPAA procedure improves BMD in patients with IBD is controversial. On multivariate analysis, after adjusting for steroid use and severity and duration of disease in our previous study the presence of IPAA was significantly associated with a low BMD with odds ratio 6.02 (95% CI 2.46–14.70) [27]. Prospective studies are needed to further elucidate the association between bone mass and pouch surgery.

Vitamin D and calcium absorption in the gut

The two main forms of vitamin D are vitamin D2 (ergocalciferol) and vitamin D3 (cholecalciferol). Vitamin D from plant sources is in the form of vitamin D2 and that from animal sources is vitamin D3. Vitamin D3 is also produced in the human skin by 7-dehydroxycholesterol after absorption of ultraviolet B light from the sun. Vitamin D from dietary sources is incorporated into chylomicrons and absorbed, mostly from the proximal small bowel, and transported via the gut lymphatics into the venous circulation after being bound to vitamin D binding protein, an alpha-globulin produced in the liver. Vitamin D is then hydroxylated in the liver by cytochrome P450-like enzymes to form 25-hydroxyvitamin D [25(OH)D], which is the major circulating and storage form of vitamin D. Further hydroxylation of vitamin D to form 1,25-dihydroxyvitamin D [1,25(OH)2D] occurs in the kidney. This last step in the kidney is stimulated by parathyroid hormone (PTH), whereas calcium and 1,25(OH)2D itself inhibits it.

Calcium absorption via the intestine occurs via active (transcellular) and passive (paracellular) processes. Active absorption, which is the main mechanism, is controlled by 1,25 (OH)2D. Active calcium absorption also occurs mainly in the proximal small bowel; however some calcium absorption occurs in other segments of the small bowel. Optimal calcium absorption requires the presence of gastric acid.

Risk factors and possible mechanisms of bone loss

Vitamin D malabsorption. Formation of IPAA after proctocolectomy alters the normal anatomy and physiology of the small intestine. Vitamin D is a fat-soluble vitamin, while bile salt metabolism is important for lipid absorption. Bacterial overgrowth leads to deconjugation of bile salts, leading to formation of free bile acids. This impairs the formation of bile-salt-lipid micelle complexes, which leads to dietary fat malabsorption, which in turn can lead to vitamin D deficiency. It has been shown that stasis of stool in the ileum in patients with UC and IPAA causes bacterial overgrowth that causes deconjugation of bile salts leading to malabsorption of vitamin D [29–31]. Our previous study showed that the lack of calcium supplementation was
Bone loss in patients with IBD and ostomy include malabsorption secondary to bowel resection, malnutrition and more aggressive disease and inflammation which led to bowel resection in the first place. In a study evaluating 126 patients with IBD and ostomy, we found that low BMI and history of fragility fracture were predictors of low BMD in these patients [42]. Further studies are needed to evaluate risk factors for bone loss in patients with IBD and ostomy. The current guidelines do not characterize patients with IBD—and ostomy in particular—as at high risk for bone loss.
Recommendations
The current guidelines do not recognize patients with IBD and ostomy as a high risk group for low BMD. The European Society for Parenteral and Enteral (ESPEN) guidelines recommend screening for BMD using DEXA on a yearly basis in patients on total parenteral nutrition (TPN) [43]. The ACG, AGA, ECCO and American Society for Parenteral and Enteral (ESPEN) guidelines do not specifically recommend DEXA in patients with IBD and ostomy. Further studies evaluating bone loss in patients with IBD and ostomy are needed.

CONCLUSIONS
Low BMD is common in patients with IBD with IPAA and ileostomy. Increasing age, low BMI, lack of calcium supplementation and high inflammatory activity with villous atrophy in the ileo-anal pouch are risk factors for low BMD in these patients with IPAA. Patients with IPAA should be considered at high risk for bone loss and fractures. Pending prospective studies, baseline and follow up DEXA screening along with calcium/vitamin D supplementation may be beneficial in these patients.

FUNDING
This project was partially supported by the Ed and Joey Story Endowed Chair (to B.S.).

Conflict of interest: none declared.

REFERENCES
1. American Gastroenterological Association medical position statement: guidelines on osteoporosis in gastrointestinal diseases. Gastroenterology 2003;124:791–94.
2. Kornbluth A, Hayes M, Feldman S et al. Do guidelines matter? Implementation of the ACG and AGA osteoporosis screening guidelines in inflammatory bowel disease (IBD) patients who meet the guidelines’ criteria. Am J Gastroenterol 2006;101:1546–50.
3. Kornbluth A and Sachar DB. Ulcerative colitis practice guidelines in adults: American College Of Gastroenterology, Practice Parameters Committee. Am J Gastroenterol 2010;105:501–23; quiz 524.
4. Lichtenstein GR, Hanauer SB and Sandborn WJ. Management of Crohn’s disease in adults. Am J Gastroenterol 2009;104:465–83; quiz 464, 484.
5. Van Assche G, Dignass A, Reinisch W et al. The second European evidence-based Consensus on the diagnosis and management of Crohn’s disease: Special situations. J Crohns Colitis 2010;4:63–101.
6. Van Assche G, Dignass A, Bokemeyer B et al. Second European evidence-based consensus on the diagnosis and management of ulcerative colitis Part 3: Special situations. J Crohns Colitis 2013;7:1–33.
7. Peyrin-Biroulet L, Harmsen WS, Tremaine WJ et al. Surgery in a population-based cohort of Crohn’s disease from Olmsted County, Minnesota (1970–2004). Am J Gastroenterol 2004;107:1693–701.
8. Targownik LE, Singh H, Nugent Z and Bernstein CN. The epidemiology of colectomy in ulcerative colitis: results from a population-based cohort. Am J Gastroenterol 2012;107:1228–35.
9. Fazio VW, Ziv Y, Church JM et al. Ileal pouch–anal anastomoses complications and function in 1005 patients. Ann Surg 1995;222:120–27.
10. Shen B, Remzi FH, Okonkomo et al. Risk factors for low bone mass in patients with ulcerative colitis following ileal pouch–anal anastomosis. Am J Gastroenterol 2009;104:639–46.
11. de Jong DJ, Constans FH, Mannaerts L, van Rossum LG and Naber AH. Corticosteroid-induced osteoporosis: does it occur in patients with Crohn’s disease? Am J Gastroenterol 2002;97:2011–15.
12. Robinson RJ, al-Azzawi F, Iqbal SJ et al. Osteoporosis and determinants of bone density in patients with Crohn’s disease. Dig Dis Sci 1998;43:2500–6.
13. Ali T, Lam D, Bronze MS and Humphrey MB. Osteoporosis in inflammatory bowel disease. Am J Med 2009;122:599–604.
14. Bjarnason I, Macpherson A, Mackintosh C et al. Reduced bone density in patients with inflammatory bowel disease. Gut 1997;40:228–33.
15. Pollak RD, Karmeli F, Eliaikim R et al. Femoral neck osteopenia in patients with inflammatory bowel disease. Am J Gastroenterol 1998;93:1483–90.
16. Bernstein CN, Blanchard JF, Leslie W, Wajda A and Yu BN. The incidence of fracture among patients with inflammatory bowel disease. A population-based cohort study. Ann Intern Med 2000;133:795–99.
17. Loftus EV Jr., Crowson CS, Sandborn WJ et al. Long-term fracture risk in patients with Crohn’s disease: a population-based study in Olmsted County, Minnesota. Gastroenterology 2002;123:468–75.
18. Loftus EV Jr., Achenbach SJ, Sandborn WJ et al. Risk of fracture in ulcerative colitis: a population-based study from Olmsted County, Minnesota. Clin Gastroenterol Hepatol 2003;1:465–73.
19. Khanna R and Shen B. Adverse metabolic sequelae following restorative proctocolectomy with an ileal pouch. Gastroenterol Hepatol (N Y) 2012;8:322–26.
20. Bernstein CN. Inflammatory bowel diseases as secondary causes of osteoporosis. Curr Osteoporos Rep 2006;4:116–23.
21. Schulte CM. Review article: bone disease in inflammatory bowel disease. Aliment Pharmacol Ther 2004;20(Suppl 4): 43–49.
22. Abreu MT, Geller JL, Vasiliauskas EA et al. Treatment with infliximab is associated with increased markers of bone formation in patients with Crohn’s disease. J Clin Gastroenterol 2006;40:55–63.
23. Leib ES, Blinkley N, Bilezikian JP et al. Position Development Conference of the International Society for Clinical Densitometry. Vancouver, BC, July 15–17, 2005. J Rheumatol 2006;33:2319–21.
24. Kuisma J, Luukkonen P, Jarvinen H, Kahri A and Farkkila M. Risk of osteopenia after proctocolectomy with an ileal pouch–anal anastomosis on bone loss in ulcerative colitis patients. Scand J Gastroenterol 2002;37:171–76.
25. Abitbol V, Roux C, Guillemant S et al. Bone assessment in patients with ileal pouch–anal anastomosis for inflammatory bowel disease. Br J Surg 1997;84:1551–54.
26. McLaughlin SD, Perry-woodford ZL, Clark SK et al. Osteoporosis in patients over 50 years of age following restorative proctocolectomy for ulcerative colitis: is DXA screening warranted? Inflamm Bowel Dis 2010;16:250–55.
27. Navaneethan U, Shen L, Venkatesh PG et al. Influence of ileal pouch anal anastomosis on bone loss in ulcerative colitis patients. J Crohns Colitis 2011;5:415–22.
Bone loss and IBD surgery

28. Jensen MB, Houborg KB, Vestergaard P et al. Improved physical performance and increased lean tissue and fat mass in patients with ulcerative colitis four to six years after ileo-anal anastomosis with a J-pouch. *Dis Colon Rectum* 2002;45:1601–7.

29. Nasmyth DG, Godwin PG, Dixon MF, Williams NS and Johnston D. Ileal ecology after pouch-anal anastomosis or ileostomy. A study of mucosal morphology, fecal bacteriology, fecal volatile fatty acids, and their interrelationship. *Gastroenterology* 1989;96:817–24.

30. Natori H, Utsunomiya J, Yamamura T, Benno Y and Uchida K. Fecal and stomal bile acid composition after ileostomy or ileo-anal anastomosis in patients with chronic ulcerative colitis and adenomatosis coli. *Gastroenterology* 1992;102:1278–88.

31. Salemans JM, Nagengast FM, Tangerman A et al. Postprandial conjugated and unconjugated serum bile acid levels after proctocolectomy with ileal pouch–anal anastomosis. *Scand J Gastroenterol* 1993;28:786–90.

32. Khanna R, Wu X and Shen B. Low levels of vitamin D are common in patients with ileal pouches irrespective of pouch inflammation. *J Crohns Colitis* 2013;7:525–33.

33. Kong J, Zhang Z, Musch MW et al. Novel role of the vitamin D receptor in maintaining the integrity of the intestinal mucosal barrier. *Am J Physiol Gastrointest Liver Physiol* 2008;294:G208–16.

34. Valdez R, Appelman HD, Bronner MP and Greenson JK. Diffuse duodenitis associated with ulcerative colitis. *Am J Surg Pathol* 2000;24:1407–13.

35. Shen B, Wu H, Remzi F et al. Diagnostic value of esophago-gastro-duodenoscopy in patients with ileal pouch–anal anastomosis. *Inflamm Bowel Dis* 2009;15:395–401.

36. Wang Y, Bennett AE, Cai H, Lian L and Shen B. Evaluation of upper and lower gastrointestinal histology in patients with ileal pouches. *J Gastrointest Surg* 2012;16:572–80.

37. Manolagas SC and Jilka RL. Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis. *N Engl J Med* 1995;332:305–11.

38. Oikonomou IK, Fazio VW, Remzi FH et al. Risk factors for anemia in patients with ileal pouch–anal anastomosis. *Dis Colon Rectum* 2007;50:69–74.

39. Mukewar S, Hall P, Lashner BA et al. Risk factors for nephrolithiasis in patients with ileal pouches. *J Crohns Colitis* 2013;7:70–78.

40. Fleischer J, Stein EM, Bessler M et al. The decline in hip bone density after gastric bypass surgery is associated with extent of weight loss. *J Clin Endocrinol Metab* 2008;93:3735–40.

41. Matlaga BR, Shore AD, Magnuson T, Clark JM, Johns R and Makary MA. Effect of gastric bypass surgery on kidney stone disease. *J Urol* 2009;181:2573–77.

42. Gupta S, Wu X, Moore T and Shen B. Frequency, risk factors and adverse sequelae of bone loss in patients with ostomy for inflammatory bowel diseases. Digestive Disease Week. Orlando, FL, May 18–21, 2013.

43. Staun M, Pironi L, Bozzetti F et al. ESPEN Guidelines on Parenteral Nutrition: home parenteral nutrition (HPN) in adult patients. *Clin Nutr* 2009;28:467–79.