Non-contiguous finished genome sequence and description of \textit{Bacillus algeriensis} sp. nov.

Esma Bendjama¹,²,³, Lotfi Loucif¹,²,³, Seydina M. Diene¹, Caroline Michelle¹, Djamila Gacemi-Kirane², Jean-Marc Rolain*¹

¹ Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UMR CNRS, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université, Marseille, France.
² Département de Biochimie, Faculté des Sciences, Université Badji Mokhtar, Annaba, Algérie.
³ Département des Sciences Biologiques, Faculté des Sciences, Université El Hadj Lakhdar, Batna, Algérie.

*Correspondence: Jean-Marc Rolain (jean-marc.rolain@univ-amu.fr)

Keywords: \textit{Bacillus algeriensis}, hypersaline environments, sediments, genome, taxonomics

Strain EB01¹ sp. nov. is the type strain of \textit{Bacillus algeriensis}, a new species within the genus \textit{Bacillus}. This strain, whose genome is described here, was isolated from sediment sample of the hypersaline lake Ezzemoul sabkha in northeastern Algeria. \textit{B. algeriensis} is a facultative anaerobic Gram-positive bacillus. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 5,269,577 bp long genome contains 5,098 protein-coding and 95 RNA genes, including 12 rRNA genes.

Introduction

\textit{Bacillus algeriensis} sp. nov. strain EB01¹ (≡ CSUR P857 = DSM 27334) is the type strain of \textit{B. algeriensis} sp. nov. It is a new Gram-positive, facultatively anaerobic, motile, indole-negative, rod shaped bacterium with rounded ends. It was isolated from a sediment sample from the hypersaline lake Ezzemoul sabkha in the Oum-El-Bouaghi region in northeastern Algeria, which is an important wintering and resting site for several species of waterbirds, including the Greater Flamingo. This site is one of the Ramsar convention wetlands (http://www.ramsar.org). The genus \textit{Bacillus} was created by Cohn about 142 years ago [1] and mainly comprises Gram-positive, rod-shaped, aerobic or facultatively anaerobic, spore-forming bacteria. The genus includes 279 species and 7 subspecies with validly published names [2]. Members of \textit{Bacillus} genus are ubiquitous in nature, ranging from freshwater to marine sediments and from hot springs and desert sands to Arctic soils; many strains have been isolated from the gastrointestinal tracts of various insects and animals, from vegetation and from food [3]. \textit{Bacillus} strains are biotechnologically priceless because of their high capacity to produce a wide range of antimicrobial compounds, enzymes and other metabolites that can be used in industry [4,5]. Some species of \textit{Bacillus} are pathogenic, such as \textit{B. anthracis} (responsible for causing anthrax) [6] and \textit{B. cereus} (a major cause of food poisoning) [7]. Others are opportunists in immunocompromised patients, and may also be involved in various human infections, including pneumonia, endocarditis, ocular, cutaneous, bone or central nervous system infections and bacteremia [8].

The current bacterial taxonomy is based on a combination of various phenotypic and genetic criteria [9,10]. However, the three essential genetic criteria that are used, comprising 16S rRNA gene based phylogeny [11], G+C content, and DNA-DNA hybridization [10,12] exhibit several drawbacks. As a result of the recent decrease in the cost of genomic sequencing, it has been proposed that whole genome sequencing information and MALDI-TOF spectrum [13] be combined with the main phenotypic characteristics as a polyphasic approach strategy (taxonomics) to describe new bacterial taxa [14-26].
Here we present a summary classification and a set of features for \textit{B. algeriensis} sp. nov. strain EB01T together with the description of the complete genome sequence and annotation. These characteristics support the circumscription of the species \textit{B. algeriensis}.

Classification and features

In July 2012, a sediment sample was aseptically collected in sterile bottles, 15 cm below the evaporite crust of the hypersaline lake Ezzemoul sabkha of Oum-El-Bouaghi region in northeastern Algeria. Samples were transferred in a cooler (4°C) to our lab in Algeria. Samples were processed the same day. Sediments were diluted 1:10 v/v with sterile saline water (0.9\% NaCl) and vigorously shaken, tenfold serial dilutions (10^{−1}−10^{−5}) of the sediment suspension were plated in Nutrient Agar (NA) medium (meat extract 1 g/l, peptone 5 g/l, yeast extract 2 g/l, sodium chloride 5 g/l, agar 15 g/l) and the plates were incubated at 30°C for 24-72 h. In order to obtain a pure culture, colonies were transferred to fresh NA medium. \textit{Bacillus algeriensis} sp. nov. strain EB01T (Table 1) was isolated in July 2012 by cultivation under aerobic conditions at 30°C. This strain exhibited a 97.0\% 16S rRNA nucleotide sequence similarity with \textit{Bacillus subterraneus} type strain DSM13966T (Figure 1), the phylogenetically closest validly published \textit{Bacillus} species. These values were lower than the 98.7\% 16S rRNA gene sequence threshold recommended by Stackebrandt and Ebers to delineate a new species without carrying DNA DNA hybridization \cite{11}.

| Table 1. Classification and general features of \textit{Bacillus algeriensis} strain EB01T |
MIGS ID	Property	Term	Evidence codea
Domain	Bacteria	TAS [27]	
Phylum	Firmicutes	TAS [28-30]	
Class	Bacilli	TAS [31,32]	
Order	Bacillales	TAS [33,34]	
Family	Bacillaceae	TAS [33,35]	
Genus	Bacillus	TAS [1,33,36]	
Species	Bacillus algeriensis	IDA	
Type strain	EB01T	IDA	
Gram stain	Positive	IDA	
Cell shape	Rod-shaped	IDA	
Motility	Motile	IDA	
Sporulation	Sporulating	IDA	
Temperature range	Between 37°C and 55°C	IDA	
Optimum temperature	37°C	IDA	
Salinity	Growth in LB medium + 0-2.5% NaCl	IDA	
Oxygen requirement	Facultative anaerobic	IDA	
Carbon source	Unknown	NAS	
Energy source	Unknown	NAS	
Habitat	Hypersaline sediment sample	IDA	
Biotic relationship	Free living	IDA	
Pathogenicity	Unknown	NAS	
Biosafety level	2	NAS	
Isolation	Sediment of Ezzemoul Sabkha Lake	IDA	
Geographic location	Algeria	IDA	
Sample collection	July 2012	IDA	
time			
Latitude	35.88167	IDA	
Longitude	6.503272	IDA	
Depth	Unknown	NAS	
Altitude	800 m	IDA	

aEvidence codes - IDA: Inferred from Direct Assay, TAS: Traceable Author Statement (i.e., a direct report exists in the literature), NAS: Non traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from the Gene Ontology project \cite{37}. If the evidence is IDA, then the property was directly observed for a live isolate by one of the authors or an expert mentioned in the acknowledgements.

http://standardsingenomics.org
A consensus phylogenetic tree based on 16S rRNA gene sequence comparisons, highlighting the position of strain EB01T *Bacillus algeriensis* relative to other type strains within the *Bacillus* genus. GenBank accession numbers are displayed in parentheses. Sequences were aligned using CLUSTALW, and phylogenetic inferences made using the neighbor-joining method \[38\] within the MEGA 5 software \[39\]. Numbers above the nodes are percentages of bootstrap values from 1,000 replicates that support the node. *Paenibacillus polymyxa* was used as the outgroup. The scale bar represents 0.01 substitutions per nucleotide position.

Six different growth temperatures (25, 30, 37, 45, 50 and 55°C), nine NaCl concentrations (0, 2.5, 5, 7.5, 10, 15, 20, 25, 30%) and ten pHs (5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 10, 11) were tested. Growth occurred at all tested temperatures, however the optimal growth was observed at 37°C, between 0% and 2.5% NaCl concentration and pH in the range of 6.5–9 (optimum at pH 7). Colony morphology was observed on sheep blood agar (BioMerieux) after 24 h of aerobic incubation under optimal growth conditions, the colonies of strain EB01T were circular, light yellow, smooth and 2 mm in diameter. Growth of the strain was tested in anaerobic and microaerophilic atmospheres using GasPak EZ Anaerobe Pouch (Becton, Dickinson and Company) and CampyGen Compact (Oxoid) systems, respectively, and in aerobic atmosphere, with or without 5% CO\textsubscript{2}. Growth was achieved under aerobic (with and without CO\textsubscript{2}) and microaerophilic conditions but weak growth was observed under anaerobic conditions. Gram staining showed Gram-positive rods (Figure 2). Cells grown on agar sporulate. A motility test was positive. The size of cells were determined by negative staining transmission electron microscopy on a Technai G2 Cryo (FEI) at an operating voltage of 200 kV, the rods have a length ranging from 2.4 μm to 4.9 μm (mean 3.6 μm) and a diameter ranging from 0.7 μm to 1.1 μm (mean 0.8 μm) (Figure 3).
Strain EB01T exhibited catalase activity but oxidase activity was negative. Using the commercially available API 50CH system (BioMerieux) according to the manufacturer’s instructions, a weak positive reaction was observed for D-ribose, D-glucose, D-fructose, methyl α-D-glucopyranoside, N-acetylglucosamine, D-maltose, D-lactose, D-melibiose, D-saccharose, D-trehalose, D-tagatose, and hydrolysis of starch. Other tests were negative. Using the API ZYM system (BioMerieux), positive reactions were observed for alkaline phosphatase, esterase (C4), esterase lipase (C8), leucine arylamidase, α-chymotrypsin, β-glucuronidase, α-glucosidase, N-acetyl-glucosaminidase and a weak positive reaction was observed for acid phosphatase. The nitrate reduction and β-galactosidase reaction was also positive, but urease and indole production were negative. \textit{B. algeriensis} was susceptible to amoxicillin, nitourantoin, erythromycin, doxycycline, rifampicin, vancomycin, gentamicin, imipenem, trimethoprim-sulfamethoxazole, ciprofloxacin, ceftixime and amoxicillin-clavulanic acid, but resistant to nalidixic acid.

When compared to other \textit{Bacillus} species [40-48], \textit{Bacillus algeriensis} sp. nov. strain EB01T exhibited the phenotypic differences detailed in (Table 2).

Matrix-assisted laser-desorption/ionization time-of-flight (MALDI-TOF) MS protein analysis was performed as previously described [26,49,50]. Briefly, strain EB01T was plated on 5% sheep blood-enriched Columbia agar (BioMerieux) and incubated for 24 h at 37°C. Isolated bacterial colonies were picked, and then deposited as a thin film in 12 replicates on a MALDI-TOF steel target plate (Bruker Daltonics, Bremen, Germany). The plates were allowed to dry at room temperature. Each deposit was overlaid with 1.5 µl of matrix solution containing α-cyano-hydroxycinnamic acid (Sigma, Saint-Quentin Fallavier, France) saturated with 50% acetonitrile, 2.5% trifluoroacetic acid and high-performance liquid chromatography (HPLC)-grade water, and allowed to co-crystallize with the sample. Measurements were conducted using the Microflex LT spectrometer (Bruker Daltonics). Spectra were recorded in the linear positive ion mode over a mass range of 2 to 20 kDa. The acceleration voltage was 20 kV. Spectra were collected as a sum of 240 shots across a spot. The 12 EB01T spectra were imported into the MALDI BioTyper software (version 3.0, Bruker) and analyzed by standard pattern matching (with default parameter settings) against 6,335 bacterial spectra including 210 spectra from 104 \textit{Bacillus} species, used as reference data, in the BioTyper database. A score enabled the identification, or not, from the tested species: a score > 2 with a validated species enabled the identification at the species level, a score > 1.7 but < 2 enabled the identification at the genus level; and a score < 1.7 did not enable any identification. For strain EB01T, the scores obtained ranged from 1.15 to 1.60 thus suggesting that our isolate was a new species. We added the spectrum from strain EB01T (Figure 4) to our database. Spectrum differences with other of \textit{Bacillus} species are shown in (Figure 5).
Characteristic	B. ma	B. su	B. fo	B. je	B. th	B. bo	B. ba	B. ne	B. kr
Cell-diameter (µm)	0.7-1.1	0.5-0.8	1	0.8-1.1	0.5-0.7	0.5-0.9	0.7-1.2	1	1.4-2.0
Oxygen requirement	facultative anaerobic	facultative anaerobic	aerobic	facultative anaerobic	aerobic	na	facultative anaerobic	facultative anaerobic	aerobic
Gram stain	+	-	+	V	V	+	+ or V	+	+
NaCl range (% w/v)	0-2.5	0-9	0-3	0-13	0-5	0-7	na	0-8	0-6
Motility	+	+	na	+	+	+	+	+	+
Endospore formation	+	-	-	+	+	+	+	+	+

Production of

Alkaline phosphatase	+	na	na	na	na	na	+	na	na
Acid phosphatase	w	na							
Catalase	+	+	+	+	+	+	na	+	+
Oxidase	-	-	+	-	-	+	na	na	-
Nitrate reductase	+	+	+	+	+	-	+	-	-
Urease	-	-	+	-	-	-	-	-	-
β-galactosidase	-	na							
β-glucosidase	-	-	+	na	na	-	na	+	na
β-glucuronidase	+	na	na	na	na	na	na	+	na
N-acetyl-β-glucosaminidase	+	na							
Indole	-	-	na	-	-	-	-	na	na
Esterase	+	na							
Esterase lipase	+	na	na	na	na	w	na	na	+
Naphthyl-AS-BI-Phosphohydrolase	na	na	na	na	na	na	na	na	na
Leucine arylamidase	+	na	na	na	na	+	na	na	na

1: Bacillus subterraneus strain COO13B, Bacillus foraminis strain CV53, Bacillus jeotgil strain YKJ-10, Bacillus thioparans strain BMP-1, Bacillus boroniphilus strain T-152, Bacillus batavienis strain IDA1115, Bacillus nealsonii strain FO-92, Bacillus kribbensis strain BT060.

B. algeriensis (B. ma), *B. subterraneus* (B. su), *B. foraminis* (B. fo), *B. jeotgil* (B. je), *B. thioparans* (B. th), *B. boroniphilus* (B. bo), *B. batavienis* (B. ba), *B. nealsonii* (B. ne) and *B. kribbensis* (B. kr).

+: positive result, -: negative result, var: variable, w: weak positive result, na: data not available.
Table 2. (cont.) Differential phenotypic characteristics between *B. algeriensis* sp. nov. strain EB01\(^\dagger\) and phylogenetically close *Bacillus* species\(^\dagger\).

Characteristic	B. ma	B. su	B. fo	B. je	B. th	B. bo	B. ba	B. ne	B. kr
Production of (cont.)									
Cystine arylamidase	-	na	na	na	na	na	w	na	na
Valine arylamidase	-	na	na	na	na	na	w	na	na
Utilization of									
D-mannose	-	-	+	-	-	+	+	+	-
Amygdalin	-	na	+	-	-	+	+	w	-
L-Arabinose	-	-	+	-	-	na	na	+	-
Cellobiose	-	-	+	na	na	+	+	+	+
Lactose	w	-	+	-	na	na	na	+	+
D-xylose	-	+	+	-	na	na	na	-	+
D-Glucose	w	+	+	+	na	na	+	+	+
Mannitol	-	-	+	-	-	na	+	+	na
Arabinose	-	-	+	-	na	na	-	-	na
L-Xylose	-	+	+	-	na	na	-	na	+
Glycerol	-	+	+	-	na	na	+	w	+
D-Galactose	-	-	+	-	na	na	+	+	na
Hydrolysis of									
Starch	w	+	+	+	na	na	v	+	-
Gelatin	-	+	+	+	w	-	+	-	+
G+C content (mol%)	42,22	43±1	43,1	41	43,8	41,1-42,2	39,6	na	43,3

\(^\dagger\)\(Bacillus subterraneus\) strain COOI3B\(^\dagger\), *Bacillus foraminis* strain CV53\(^\dagger\), *Bacillus jeotgali* strain YKJ-10\(^\dagger\), *Bacillus thiothrats* strain BMP-1\(^\dagger\), *Bacillus boroniphilus* strain T-152\(^\dagger\), *Bacillus bataiensis* strain IDA1115\(^\dagger\), *Bacillus nealsonii* strain FO-92\(^\dagger\), *Bacillus kribbensis* strain BT080\(^\dagger\).

B. algeriensis (B. ma), *B. subterraneus* (B. su), *B. foraminis* (B. fo), *B. jeotgali* (B. je), *B. thiothrats* (B. th), *B. boroniphilus* (B. bo), *B. bataiensis* (B. ba), *B. nealsonii* (B. ne) and *B. kribbensis* (B. kr).

\+: positive result, -: negative result, var: variable, w: weak positive result, na: data not available.
Figure 4. Reference mass spectrum from *B. algeriensis* strain EB01^T. Spectra from 12 individual colonies were compared and a reference spectrum was generated.

Figure 5. Gel view comparing *Bacillus algeriensis* EB01^T spectra with other members of the *Bacillus* genus (*B. weihenstephanensis*, *B. vallismortis*, *B. thuringiensis*, *B. thiofrans*, *B. subtilis subsp. subtilis*, *B. subterraneus*, *B. shackletonii*, *B. novalis*, *B. niacini*, *B. nealsonii*, *B. jeotgali*, *B. flexus*, *B. circulans*, *B. bataviensis* and *B. asahii*). The Gel View displays the raw spectra of all loaded spectrum files as a pseudo-electrophoretic gel. The x-axis records the m/z value. The left y-axis displays the running spectrum number originating from subsequent spectra loading. The peak intensity is expressed by a grey scale scheme code. The grey scale bar on the right y-axis indicates the relation between the shade of grey a peak is displayed with and the peak intensity in arbitrary units.
Genome sequencing information

Genome project history

The organism was selected for sequencing on the basis of its phylogenetic position and \(16S\) rRNA similarity to other members of the genus *Bacillus*, and is part of a study of *Bacillus* genus diversity in hypersaline lakes of Algeria. It was the 398th genome of a *Bacillus* species and the first genome of *Bacillus algeriensis* sp. nov. The EMBL accession number is ERP003483 and consists of 46 contigs. Table 3 shows the project information and its association with MIGS version 2.0 compliance [51].

MIGS ID	Property	Term
MIGS-31	Finishing quality	High-quality draft
MIGS-28	Libraries used	Nextera XT library
MIGS-29	Sequencing platform	Miseq-Illumina
MIGS-31.2	Sequencing coverage	34x
MIGS-30	Assemblers	Velvet
MIGS-32	Gene calling method	Prodigal
MIGS-32	EMBL Date of Release	January 10, 2014
	EMBL ID	ERP003483
MIGS-13	Project relevance	Study of the *Bacillus* genus diversity in hypersaline lakes of northeastern Algeria

Growth conditions and DNA isolation

Bacillus algeriensis sp. nov strain EB01\(^{\dagger}\), was grown aerobically on 5% sheep blood enriched Columbia agar at 37°C. Three Petri dishes were spread and resuspended in a 2 ml sterile Eppendorf tube containing 1ml of TE buffer with acid-washed glass beads (diameter \(\leq 106\) µm, Sigma, Saint-Quentin Fallavier, France). Three cycles of shaking were performed using a FastPrep BIO 101 apparatus (Qbiogene, Strasbourg, France) for 15 sec at level 6.5 (full speed). Then, the supernatant was placed in a new tube along with one hundred µl of 10% SDS and 50 µl of Proteinase K (Qiagen GmbH, Hilden, Germany) and incubated over night at 56°C. The digested mixture was used to perform DNA extraction using the classical phenol-chloroform method. The quality of the DNA was checked on an agarose gel (0.8%) stained with SYBR safe.

Genome sequencing

Genomic DNA of *B. algeriensis* sp. nov. strain EB01\(^{\dagger}\) was sequenced on the MiSeq platform (Illumina Inc., San Diego CA 92121, USA) with a paired end and barcode strategy in order to be mixed with 7 others genomic projects constructed with the Nextera XT library kit (Illumina). The gDNA was quantified by a Qubit assay with the high sensitivity kit (Life technologies, Carlsbad, CA, USA) to 34.4 ng/µL and dilution was performed to provide 1 ng of each small genome as input. The “tagmentation” step fragmented and tagged the DNA to generate an optimum insert size of 1.6 kb, validated on a high sensitivity labchip Calliper-Perkin Elmer (Caliper Life Sciences, Inc, Massachusetts, USA). Then limited cycle PCR amplification completed the tags adapters and introduced dual-index barcodes. After purification on Ampure beads (LifeTechnologies, Carlsbad, CA, USA), the libraries were normalized on specific beads according to the Nextera XT protocol (Illumina). Normalized libraries are pooled into a single library for sequencing on the MiSeq. The pooled single strand library was loaded onto the reagent cartridge and then onto the instrument along with the flow cell. Automated cluster generation and paired-end sequencing with dual index reads was performed in a single 39-hour run with a 2×250 bp read length. Within this pooled run, the index representation was determined to 7.1%. Total information of 2.4 G bases was obtained from a 320 K/mm\(^2\) density with 94.9% (5,757,000 clusters) of the clusters passing quality control (QC) filters. From the genome sequencing process, the 775,420 produced Illumina reads for *B. algeriensis* EB01\(^{\dagger}\) were filtered according to the read qualities and sizes using the fastq-mcf program (Ea-utils: command-line tools for processing biological sequencing data) [52]. 714,540 filtered read sequences were kept for genome assembly. The Velvet assembler was used with different kmer values (from 51 to 95) and the best assembly result with kmer value \((n=91)\) producing 46 contigs with sizes from 872 bp to 409,112 bp, was retained for genome annotation.
Bacillus algeriensis

Genome annotation

Open Reading Frames (ORFs) were predicted using Prodigal [53] with default parameters. The predicted bacterial protein sequences were searched against the Clusters of Orthologous Groups (COG) database and the GenBank database [54] using BLASTP. Ribosomal RNAs were found by using RNAmer 2.1 server [55,56] and BLASTn against the GenBank database, whereas the tRNAscanSE tool [57] was used to find tRNA genes. Transmembrane helices and lipoprotein signal peptides were predicted using phobius web server [58]. ORFans were identified if their BLASTP E-value was lower than 1e-03 for alignment length greater than 80 amino acids. If alignment lengths were smaller than 80 amino acids, we used an E-value of 1e-05. Artemis [59] was used for data management and DNA Plotter [60] was used for visualization of genomic features. To estimate the mean level of nucleotide sequence similarity at the genome level between B. algeriensis sp nov. strain EB01T and seven other Bacillus species, we use the Average Genomic Identity of Orthologous gene Sequences (AGIOS) in-house software. Briefly, this software combines the Proteinortho software [61] for pairwise comparison and detection of orthologous proteins between genomes, then retrieves the corresponding genes and determines the mean percentage of nucleotide sequence identity among orthologous ORFs using the Needleman-Wunsch global alignment algorithm.

Genome properties

The genome is 5,269,577 bp long with 42.22% GC content (Figure 6 and Table 4). It is composed of 46 contigs. Of the 5,193 predicted genes, 5,098 were protein-coding genes, and 95 were RNAs (10 genes encode 5S rRNA, 1 gene encodes 16S rRNA, 1 gene encodes 23S rRNA, 83 genes are tRNA genes). A total of 3,217 genes (63.1%) were assigned a putative function (by cogs or by NR blast). 457 genes were identified as ORFans (8.96%). The remaining genes were annotated as hypothetical proteins (1,097 genes, 21.52%). The distribution of genes into COGs functional categories is presented in Table 5. The properties and statistics of the genome are summarized in Tables 4 and 5.
Table 4. Nucleotide content and gene count levels of the genome

Attribute	Value	% of total\(^a\)
Genome size (bp)	5,269,577	100
Coding region (bp)	4,342,253	82.4
G+C content (bp)	2,224,760	42.22
Total genes	5,193	100
RNA genes	95	1.82
Protein-coding genes	5,098	98.17
Genes with function prediction	3,217	63.1
Genes assigned to COGs	3,041	59.65
Genes with peptide signals	653	12.8
Genes with transmembrane helices	1,297	25.44

\(^a\) The total is based on either the size of the genome in base pairs or the total number of protein coding genes in the annotated genome.

Table 5. Number of genes associated with the 25 general COG functional categories

Code	Value	% age\(^a\)	Description
J	176	3.45	Translation, ribosomal structure and biogenesis
A	0	0	RNA processing and modification
K	281	5.51	Transcription
L	165	3.23	Replication, recombination and repair
B	1	0.01	Chromatin structure and dynamics
D	33	0.64	Cell cycle control, mitosis and meiosis
Y	0	0	Nuclear structure
V	63	1.23	Defense mechanisms
T	144	2.82	Signal transduction mechanisms
M	156	3.06	Cell wall/membrane biogenesis
N	48	0.94	Cell motility
Z	0	0	Cytoskeleton
W	0	0	Extracellular structures
U	50	0.98	Intracellular trafficking and secretion
O	110	2.15	Posttranslational modification, protein turnover, chaperones
C	206	4.04	Energy production and conversion
G	277	5.43	Carbohydrate transport and metabolism
E	370	7.25	Amino acid transport and metabolism
F	82	1.60	Nucleotide transport and metabolism
H	109	2.13	Coenzyme transport and metabolism
I	142	2.78	Lipid transport and metabolism
P	213	4.17	Inorganic ion transport and metabolism
Q	86	1.68	Secondary metabolites biosynthesis, transport and catabolism
R	521	10.21	General function prediction only
S	327	6.41	Function unknown
-	2,057	40.34	Not in COGs

\(^a\) The total is based on the total number of protein coding genes in the annotated genome.
Comparison with other species *Bacillus* genomes

Here, we compared the genome of *B. algeriensis* strain EB01\(^T\) with those of *B. kribbensis* strain DSM 17871, *B. nealsonii* strain AAU1, *B. bataviensis* strain LMG 21833, *B. subtilis* subsp. *subtilis* strain 168, *B. vallismortis* strain DV1-F-3, *B. thuringiensis* strain BMB171 and *B. weihenstephanensis* strain KBAB4 (Table 6). The draft genome of *B. algeriensis* (5.26 Mb) is larger in size than those of *B. kribbensis*, *B. nealsonii*, *B. subtilis* subsp. *subtilis* and *B. vallismortis* (5.05, 4.98, 4.22 and 3.88 Mb, respectively) but smaller than those of *B. bataviensis*, *B. thuringiensis* and *B. weihenstephanensis* (5.37, 5.64 and 5.87 Mb, respectively). *B. algeriensis* has a lower G+C content than *B. kribbensis*, *B. nealsonii*, *B. subtilis* subsp. *subtilis* and *B. vallismortis* (42.22% vs 43%, 43.5% and 43.8%, respectively) but higher than *B. nealsonii*, *B. bataviensis*, *B. thuringiensis* and *B. weihenstephanensis* (42.22% vs 35.1%, 39.6%, 35.2% and 35.5%, respectively). *B. algeriensis* has more predicted protein coding genes (5,098) than *B. kribbensis*, *B. nealsonii*, *B. subtilis* subsp. *subtilis* and *B. vallismortis* (4,918, 4,789, 4,175 and 4,097, respectively) but fewer protein coding genes than *B. bataviensis*, *B. thuringiensis* and *B. weihenstephanensis* (5,207, 5,352 and 5,653, respectively). In addition, *B. algeriensis* shared 1,804, 1,778, 2,017, 1,768, 1,985, 1,541, 1,863 orthologous genes with *B. thuringiensis*, *B. nealsonii*, *B. bataviensis*, *B. subtilis* subsp. *subtilis*, *B. kribbensis*, *B. vallismortis* and *B. weihenstephanensis* respectively.

The average nucleotide sequence identity of orthologous genes ranges from 64.54 to 91.06% among the 8 *Bacillus* species, and from 64.77 to 69.33% between *Bacillus algeriensis* and the other compared genomes (Table 7), thus confirming its new species status.

Table 6. Genomic comparison of *B. algeriensis* sp. nov. strain EB01\(^T\) with seven other *Bacillus* species\(^*\).

Species	Strain	Genome accession number	Genome size (Mb)	G+C content
Bacillus algeriensis	EB01\(^T\)	ERP003483	5.26	42.22
Bacillus kribbensis	DSM 17871	AUMQ000000000.1	5.05	43
Bacillus nealsonii	AAU1	ASRU000000000.1	4.98	35.1
Bacillus bataviensis	LMG 21833	AJLS000000000.1	5.37	39.6
Bacillus subtilis subsp. *subtilis*	168	NC_000964.3	4.22	43.5
Bacillus vallismortis	DV1-F-3	AFSH000000000.1	3.88	43.8
Bacillus thuringiensis	BMB171	NC_014171.1	5.64	35.2
Bacillus weihenstephanensis	KBAB4	NC_010184.1	5.87	35.5

\(^*\) species and strain names, genome accession numbers, sizes and G+C contents.
Table 7. Genomic comparison of *B. algeriensis* sp. nov. strain EB01\(^1\) with seven other *Bacillus* species\(^2\).

Species	*B. th*	*B. ne*	*B. ba*	*B. subt*	*B. ma*	*B. kr*	*B. va*	*B. we*
B. thuringiensis	5,352	1,642	1,825	1,786	1,804	1,783	1,548	2,369
B. nealsonii	67.32	67.81	67.33	67.44	67.92	67.86	67.92	67.33
B. bataviensis	66.57	68.78	5,207	1,812	2,017	1,997	1,567	1,904
B. subtilis subsp. subtilis	65.35	65.74	66.03	4,175	1,768	1,841	2,016	1,838
B. algeriensis	64.77	66.61	69.33	65.44	**5,098**	1,985	1,541	1,863
B. kribbensis	64.54	66.05	67.20	65.86	66.92	**4,918**	1,604	1,864
B. vallismortis	64.56	65.05	65.54	91.06	64.92	65.30	**4,097**	1,592
B. weihenstephanensis	89.95	67.27	66.70	65.46	64.87	64.56	64.70	**5,653**

\(^1\)Numbers of orthologous protein shared between genomes (above diagonal), average percentage similarity of nucleotides corresponding to orthologous proteins shared between genomes (below diagonal). Bold numbers indicate numbers of proteins per genome.

B. thuringiensis (*B. th*), *B. nealsonii* (*B. ne*), *B. bataviensis* (*B. ba*), *B. subtilis subsp. subtilis* (*B. subt*), *B. algeriensis* (*B. ma*), *B. kribbensis* (*B. kr*), *B. vallismortis* (*B. va*) and *B. weihenstephanensis* (*B. we*).
Conclusion

On the basis of phenotypic (Table 2), phylogenetic and genomic analyses (taxonogenomics) (Table 6), we formally propose the creation of *Bacillus algeriensis* sp. nov. that contains the strain EB01T. This strain has been found in hypersaline lacustrine sediment sample collected from Algeria.

Description of *Bacillus algeriensis* sp. nov.

Bacillus algeriensis (al.ge.rien’sis. NL. masc adj. algeriensis, of or pertaining to Algeria). Strain EB01T is a facultative anaerobic Gram-positive, endospore-forming, motile and rod shaped bacterium with rounded ends. Growth is achieved aerobically between 30 and 55°C (optimum 37°C), between 0% and 2.5% NaCl concentration and pH in the range of 6.5-9 (optimum at pH 7). Growth is also observed in microaerophilic atmosphere, however, weak growth was observed under anaerobic conditions. After 24h growth on 5% sheep blood-enriched Columbia agar (BioMerieux) at 37°C, bacterial colonies were smooth, light yellow with 2 mm in diameter. Cells have a length ranging from 2.4 μm to 4.9 μm (mean 3.6 μm) and a diameter ranging from 0.7 μm to 1.1 μm (mean 0.8 μm).

Catalase positive but oxidase negative. Using the commercially available API 50CH system (BioMerieux) according to the manufacturer’s instructions, a weak positive reaction was observed for D-ribose, D-glucose, D-fructose, methyl α-D-glucopyranoside, N-acetylglucosamine, D-maltose, D-lactose, D-melibiose, D-saccharose, D-trehalose, D-tagatose, and hydrolysis of starch. Other tests were negative. Using the API ZYM system (BioMerieux), positive reactions were observed for alkaline phosphatase, esterase (C4), esterase lipase (C8), leucine arylamidase, α chymotrypsin, β-glucuronidase, α-glucosidase, N-acetyl-glucosaminidase and a weak positive reaction was observed for acid phosphatase. The nitrate reduction and β-galactosidase reaction was also positive, but urease and indole production were negative. *B. algeriensis* was susceptible to amoxicillin, nitrofurantoin, erythromycin, doxycycline, rifampin, vancomycin, gentamycin, imipenem, trimethoprim-sulfamethoxazole, ciprofloxacin, ceftriaxone and amoxicillin/clavulanic acid, but resistant to nalidixic acid.

The G+C content of the genome is 42.22. The 16S rRNA and genome sequences are deposited in GenBank under accession numbers HG315679 and EMBL database under accession number ERP003483, respectively. The type strain EB01T (= CSUR P857 = DSM 27334) was isolated from sediment sample of the hypersaline lake Ezzemoul sabkha of Oum-El-Bouaghi region in northeastern Algeria.

Acknowledgements

The authors thank Linda Hadjadji for technical assistance and Xegen company for automating the genome annotation process.

References

1. Cohn F. Untersuchungen über Bakterien. *Beitr Biol Pflanz* 1872; 1:127-224.
2. Parte AC. LPSN-list of prokaryotic names with standing in nomenclature. *Nucleic Acids Res* 2013; 42:613-616. PubMed http://dx.doi.org/10.1093/nar/gkt1111
3. Nicholson WL. Roles of *Bacillus* endospores in the environment. *Cell Mol Life Sci* 2002; 59:410-416. PubMed http://dx.doi.org/10.1007/s00018-002-8433-7
4. Moshafi MH, Forootanfar H, Ameri A, Shakibaie M, Nourad G, Razavi M. Antimicrobial activity of *Bacillus* sp. strain FAS1 isolated from soil. *Pak J Pharm Sci* 2011; 24:269-275. PubMed
5. Bumpus SB, Evans BS, Thomas PM, Ntai I, Kelleher NL. A proteomics approach to discovering natural products and their biosynthetic pathways. *Nat Biotechnol* 2009; 27:951-960. PubMed http://dx.doi.org/10.1038/nbt.1565
6. Jernigan JA, Stephens DS, Ashford DA, Omenaca C, Topiel MS, Galbraith M, Tapper M, Fisk TL, Zaki S, Popovic T, et al. Bioterrorism-related inhalational anthrax: the first 10 cases reported in the United States. *Emerg Infect Dis* 2001; 7:933-944. PubMed http://dx.doi.org/10.3201/eid0706.010604
7. Bottone EJ. *Bacillus cereus*, a volatile human pathogen. *Clin Microbiol Rev* 2010; 23:382-398. PubMed http://dx.doi.org/10.1128/CMR.00073-09
8. Mandell GL, Bennett JE, Dolin R. Principles and Practice of Infectious Diseases. Elsevier 2010, 4320p.
9. Stackebrandt E, Frederiksen W, Garrity GM, Grimont PA, Kämper P, Maiden MC, Nesme X, Rosselló-Mora R, Swings J, Trüper HG, et al. Re-
port of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 2002; 52:1043-1047. PubMed http://dx.doi.org/10.1099/ijs.0.02360-0

10. Tindall BJ, Rossello-Mora R, Busse HJ, Ludwig W, Kampfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010; 60:249-266. PubMed http://dx.doi.org/10.1099/ijs.0.016949-0

11. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbial Today 2006; 33:152-155.

12. Rossello-Mora R. DNA-DNA Reassociation Methods Applied to Microbial Taxonomy and Their Critical Evaluation. In: Stackebrandt E (ed), Molecular Identification, Systematics, and population Structure of Prokaryotes. Springer, Berlin 2006, p. 23-50.

13. Welker M, Moore ER. Applications of whole-cell matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry in systematic microbiology. Syst Appl Microbiol 2011; 34:2-11. PubMed http://dx.doi.org/10.1016/j.syapm.2010.11.013

14. Ramasamy D, Mishra AK, Lagier JC, Padmanabhan R, Rossi M, Sentausa E, Raoult D, Fournier PE. A polyphasic strategy incorporating genomic data for the taxonomic description of novel bacterial species. Int J Syst Evol Microbiol 2014; 64:384-391.

15. Ramasamy D, Lagier JC, Gorlas A, Raoult D, Fournier PE. Non contiguous-finished genome sequence and description of Bacillus massiliosenegalensis sp. nov. Stand Genomic Sci 2013; 8:264-278. PubMed http://dx.doi.org/10.4056/sigs.3496989

16. Keita MB, Diene SM, Robert C, Raoult D, Fournier PE, Bittar F. Non-contiguous finished genome sequence and description of Bacillus massiliogorillae sp. nov. Stand Genomic Sci 2013; 9:93-105. PubMed http://dx.doi.org/10.4056/sigs.4388124

17. Mishra AK, Pfleiderer A, Lagier JC, Robert C, Raoult D, Fournier PE. Non-contiguous finished genome sequence and description of Bacillus massiliaanorexius sp. nov. Stand Genomic Sci 2013; 8:465-479. PubMed http://dx.doi.org/10.4056/sigs.4087826

18. Kokcha S, Mishra AK, Lagier JC, Million M, Leroy Q, Raoult D, Fournier PE. Non contiguous-finished genome sequence and description of Bacillus timonensis sp. nov. Stand Genomic Sci 2012; 6:346-355. PubMed http://dx.doi.org/10.4056/sigs.2776064

19. Mishra AK, Lagier JC, Rivet O, Raoult D, Fournier PE. Non-contiguous finished genome sequence and description of Paenibacillus senegalensis sp. nov. Stand Genomic Sci 2012; 7:70-81. PubMed http://dx.doi.org/10.4056/sigs.3056450

20. Mishra AK, Lagier JC, Robert C, Raoult D, Fournier PE. Genome sequence and description of Timonella senegalensis gen. nov., sp. nov., a new member of the suborder Micrococcineae. Stand Genomic Sci 2013; 8:318-335. PubMed http://dx.doi.org/10.4056/sigs.3476977

21. Ramasamy D, Lagier JC, Nguyen TT, Raoult D, Fournier PE. Non contiguous-finished genome sequence and description of Dielma fastidiosa gen. nov., sp. nov., a new member of the Family Erysipelotrichaceae. Stand Genomic Sci 2013; 8:336-351. PubMed http://dx.doi.org/10.4056/sigs.3567059

22. Mishra AK, Hugon P, Lagier JC, Nguyen TT, Couderc C, Raoult D, Fournier PE. Non contiguous-finished genome sequence and description of Enorma massiliensis gen. nov., sp. nov., a new member of the Family Coriobacteriaceae. Stand Genomic Sci 2013; 8:290-305. PubMed http://dx.doi.org/10.4056/sigs.3426906

23. Hugon P, Mishra AK, Lagier JC, Nguyen TT, Couderc C, Raoult D, Fournier PE. Non contiguous-finished genome sequence and description of Brevibacillus massiliensis sp. nov. Stand Genomic Sci 2013; 8:1-14. PubMed http://dx.doi.org/10.4056/sigs.3466975

24. Lagier JC, El Karkouri K, Mishra AK, Robert C, Raoult D, Fournier PE. Non-contiguous finished genome sequence and description of Enterobacter massiliensis sp. nov. Stand Genomic Sci 2013; 7:399-412. PubMed http://dx.doi.org/10.4056/sigs.3396830

25. Mishra AK, Lagier JC, Nguyen TT, Raoult D, Fournier PE. Non-contiguous finished genome sequence and description of Peptoniphilus senegalensis sp. nov. Stand Genomic Sci 2013; 7:370-381. PubMed http://dx.doi.org/10.4056/sigs.3366764

26. Roux V, El Karkouri K, Lagier JC, Robert C, Raoult D. Non-contiguous finished genome sequence and description of Kurthia massiliensis sp. nov. Stand Genomic Sci 2012; 7:221-232. PubMed http://dx.doi.org/10.4056/sigs.3206554

27. Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the do-
Bacillus algeriensis

remains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 1990; 87:4576-4579. PubMed dx.doi.org/10.1073/pnas.87.12.4576

28. Gibbons NE, Murray RGE. Proposals concerning the higher taxa of bacteria. Int J Syst Bacteriol 1978; 28:1-6. dx.doi.org/10.1099/00207713-28-1-1

29. Murray RGE. The Higher Taxa, or, a Place for Everything...? In: Holt JG (ed). Bergey's Manual of Systematic Bacteriology, First Edition, Volume 1, The Williams and Wilkins Co, Baltimore 1984; p. 31-34.

30. Garrity GM, Holt JG. The Road Map to the Manual. In: Garrity GM, Boone DR, Castenholz RW (eds), Bergey's Manual of Systematic Bacteriology, Second Edition, Volume 1, Springer, New York, 2001, p. 119-169.

31. Ludwig W, Schleifer KH, Whitman WB. Class I. Bacilli class nov. In: De Vos P, Garrity GM, Jones D, N.R. Krieg W, Ludwig W, Rainey EA, Schleifer KH, Withman WB. Bergey's Manual of Systematic Bacteriology, second edition, vol 3 (The Firmicutes), Springer, Dordrecht, Heidelberg, London, New York 2009, pp.19-20.

32. List of new names and new combinations previously effectively, but not validly, published. List no. 132. Int J Syst Evol Microbiol 2010; 60:469-472. dx.doi.org/10.1099/ijs.0.022855-0

33. Skerman VBD, McGowan V, Sneath PHA, eds. Approved Lists of Bacterial Names. Int J Syst Bacteriol 1980; 30:225-420. dx.doi.org/10.1099/00207713-30-1-225

34. Prévot AR. In: Hauduroy P, Ehringer G, Guillot G, Magrou J, Prévot AR, Rosset. Urbain A (eds) Dictionnaire des Bactéries Pathogènes, 2nd ed., Masson, Paris, 1953, pp. 1-692.

35. Fischer A. Untersuchungen über bakterien. Jahrbücher für Wissenschaftliche Botanik 1985; 27:1-163.

36. Gibson T, Gordon RE. Genus I. Bacillus Cohn 1872; 174; Nom. gen. cons. Nomencl. Comm. Intern. Soc. Microbiol. 1937, 28; Opin. A. Jud. Comm. 1955, 39. In: Buchanan RE, Gibbons NE (eds), Bergey's Manual of Determinative Bacteriology, Eighth Edition, The Williams and Wilkins Co., Baltimore, 1974, p. 529-550.

37. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000; 25:25-29. PubMed dx.doi.org/10.1038/75556

38. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406-425. PubMed

39. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGAS: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731-2739. PubMed dx.doi.org/10.1093/molbev/msr121

40. Kanso S, Greene AC, Patel BKC. Bacillus subterraneous sp. nov., an iron- and manganese-reducing bacterium from a deep subsurface Australian thermal aquifer. Int J Syst Evol Microbiol 2002; 52:869-874. PubMed dx.doi.org/10.1099/ijs.0.01842-0

41. Tiago I, Pires C, Mendes V, Morais PV, da Costa MS, Verissimo A. Bacillus foraminis sp. nov., isolated from a non-saline alkaline groundwater. Int J Syst Evol Microbiol 2006; 56:2571-2574. PubMed dx.doi.org/10.1099/ijs.0.64281-0

42. Yoon JH, Kang SS, Lee KC, Kho YH, Choi SH, Kang KH, Park YH. Bacillus jeotgali sp. nov., isolated from jeotgal, Korean traditional fermented seafood. Int J Syst Evol Microbiol 2001; 51:1087-1092. PubMed dx.doi.org/10.1099/00207713-51-3-1087

43. Ezzeby J. Validation List no. 117. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2007; 57:1933-1934. PubMed dx.doi.org/10.1099/ijs.0.065495-0

44. Perez-Ibarra BM, Flores ME, Garcia-Varela M. Isolation and characterization of Bacillus thioparus sp. nov., chemolithoautotrophic, thiosulfate-oxidizing bacterium. FEMS Microbiol Lett 2007; 271:289-296. PubMed dx.doi.org/10.1111/j.1574-6968.2007.00729.x

45. Ahmed I, Yokota A, Fujiwara T. A novel highly boron tolerant bacterium, Bacillus boronophilus sp. nov., isolated from soil, that requires boron for its growth. Extremophiles 2007; 11:217-224. PubMed dx.doi.org/10.1007/s00792-006-0027-0

46. Heyman J, Vanparys B, Logan NA, Balcaen A, Rodriguez-Diaz M, Felske A, De Vos P. Bacillus novalis sp. nov., Bacillus vireti sp. nov., Bacillus soli sp. nov., Bacillus bataviensis sp. nov. and Bacillus dreniens sp. nov., from the Drenthe A grasslands. Int J Syst Evol Microbiol 2004; 54:47-
57. PubMed
http://dx.doi.org/10.1099/ijs.0.02723-0

47. Venkateswaran K, Kempf M, Chen F, Satomi M, Nicholson W, Kern R. *Bacillus nealsonii* sp. nov., isolated from a spacecraft-assembly facility, whose spores are gamma-radiation resistant. *Int J Syst Evol Microbiol* 2003; **53**:165-172. PubMed
http://dx.doi.org/10.1099/ijs.0.02311-0

48. Lim JM, Jeon CO, Lee JR, Park DJ, Kim CJ. *Bacillus kribbensis* sp. nov., isolated from a soil sample in Jeju, Korea. *Int J Syst Evol Microbiol* 2007; **57**:2912-2916. PubMed
http://dx.doi.org/10.1099/ijs.0.65227-0

49. Seng P, Rolain JM, Fournier PE, La Scola B, Drancourt M, Raoult D. MALDI-TOF-mass spectrometry applications in clinical microbiology. *Future Microbiol* 2010; **5**:1733-1754. PubMed
http://dx.doi.org/10.2217/fmb.10.127

50. Seng P, Drancourt M, Gouriet F, La Scola B, Fournier PE, Rolain JM, Raoult D. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. *Clin Infect Dis* 2009; **49**:543-551. PubMed
http://dx.doi.org/10.1086/600885

51. Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, Tatusova T, Thomson N, Allen MJ, Angiuoli SV, *et al*. The minimum information about a genome sequence (MIGS) specification. *Nat Biotechnol* 2008; **26**:541-547. PubMed
http://dx.doi.org/10.1038/nbt1360

52. fastq-mcf program. http://code.google.com/p/e-utils

53. Prodigal. http://prodigalornl.gov

54. GenBank database.
http://www.ncbi.nlm.nih.gov/genbank

55. RNAmmer 1.2 Server.
http://www.cbs.dtu.dk/services/RNAmmer/

56. Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. *Nucleic Acids Res* 2007; **35**:3100-3108. PubMed
http://dx.doi.org/10.1093/nar/gkm160

57. Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. *Nucleic Acids Res* 1997; **25**:955-964. PubMed
http://dx.doi.org/10.1093/nar/25.5.0955

58. Kall L, Krogh A, Sonnhammer EL. Advantages of combined transmembrane topology and signal peptide prediction—the Phobius web server. *Nucleic Acids Res* 2007; **35**:W429-W432. PubMed
http://dx.doi.org/10.1093/nar/gkm256

59. Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA, Barrett B. Artemis: sequence visualization and annotation. *Bioinformatics* 2000; **16**:944-945. PubMed
http://dx.doi.org/10.1093/bioinformatics/16.10.944

60. Carver T, Thomson N, Bleasby A, Berriman M, Parkhill J. *DNAPlotter*: circular and linear interactive genome visualization. *Bioinformatics* 2009; **25**:119-120. PubMed
http://dx.doi.org/10.1093/bioinformatics/btn578

61. Lechner M, Findeiss S, Steiner L, Marz M, Stadler PF, Prohaska SJ. Proteinortho: detection of (co-)orthologs in large-scale analysis. *BMC Bioinformatics* 2011; **12**:124-133. PubMed
http://dx.doi.org/10.1186/1471-2105-12-124