A review about COVID-19 in the MENA region: environmental concerns and machine learning applications

Hicham Meskher1 · Samir Brahim Belhaouari2 · Amrit Kumar Thakur3 · Ravishankar Sathyamurthy4 · Punit Singh5 · Issam Khelfaoui6 · Rahman Saidur7

Received: 25 July 2022 / Accepted: 26 September 2022 / Published online: 12 October 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Coronavirus disease 2019 (COVID-19) has delayed global economic growth, which has affected the economic life globally. On the one hand, numerous elements in the environment impact the transmission of this new coronavirus. Every country in the Middle East and North Africa (MENA) area has a different population density, air quality and contaminants, and water- and land-related conditions, all of which influence coronavirus transmission. The World Health Organization (WHO) has advocated fast evaluations to guide policymakers with timely evidence to respond to the situation. This review makes four unique contributions. One, many data about the transmission of the new coronavirus in various sorts of settings to provide clear answers to the current dispute over the virus’s transmission were reviewed. Two, highlight the most significant application of machine learning to forecast and diagnose severe acute respiratory syndrome coronavirus (SARS-CoV-2). Three, our insights provide timely and accurate information along with compelling suggestions and methodical directions for investigators. Four, the present study provides decision-makers and community leaders with information on the effectiveness of environmental controls for COVID-19 dissemination.

Keywords COVID-19 · Environmental analysis · Meteorological factors · Machine learning · Artificial intelligent · MENA

Introduction
The current COVID-19 outbreak or SARS-CoV-2 which has been recorded for the first time in Wuhan City in China (Shawaqfah and Almomani 2021; Dubey et al. 2022; Kulshreshtha and Sharma 2022) represents one of the most difficult public health concerns the world has ever seen. On January 30, 2020, the World Health Organization (WHO) declared COVID-19 a global health emergency (Sohrabi et al. 2020; Gupta et al. 2022; Mujwar, 2021; Bruce and Liang 2020). According to the WHO, more than 517 and a half million confirmed cases and more than 6 million fatalities occurred globally during the second week of May
2022. The most difficult aspect of COVID-19 is its high-speed transmission. Because some cases were detected with no travel history to the primarily afflicted areas, there was a substantial chance of community transmission. COVID-19 is transmitted in two ways: directly and indirectly. The direct method of transmission comprises (1) aerosols generated during surgical and dental operations and/or in the form of respiratory droplet nuclei; (2) various bodily fluids and secretions such as feces, saliva, urine, sperm, and tears; and (3) mother-to-child transfer. Indirect transmission can occur through (1) fomites or surfaces (e.g., furniture and fixtures) in an infected patient’s local environment and (2) things used on the infected person (e.g., stethoscope or thermometer). Because many of these modalities are underutilized, it is vital to highlight and demonstrate them (Karia et al. 2020). Several precautionary measures such as lockdowns and travel limitations have already been implemented globally to confront the pandemic and reduce its transmission (Pandey et al. 2021; Kadi and Khelfaoui 2020; Atalan 2020; Komarova and Wodarz 2020). These actions have disrupted people’s lives in all nations and communities, as well as harmed global economic progress. The same methods, however, lowered air and air pollution levels, improved the ozone layer, and reduced carbon emissions (Chakraborty and Maity 2020; Venter et al. 2020).

Climate conditions such as weather parameters and air quality conditions have attracted researchers’ attention because they have a direct impact on SARS-CoV-2 transmission (Eslami and Jalili 2020; Anis 2020; Hamd et al. 2022; Chen et al. 2020a, b; Poole 2020; Habeebullah et al. 2021). According to emerging literature, the pace of transmission of SARS-CoV-2 varies throughout MENA area nations due to differences in land nature and latitudes and water and air quality. As a result, a growing body of research in the field to investigate the bidirectional link between COVID-19 spread and the regional environmental factors in the MENA region is highly recommended. Due to its fast propagation, WHO (Ziaeepour et al. 2008) has suggested studies and financed research programs to offer timely information to policymakers to act and confront the spread of the pandemic.

The coronavirus has slowed regional development in the Middle East and North Africa region, influencing the socioeconomic lives of MENA nations and, in some cases, causing a change in lifestyles in the region. Because of the virus’s pervasiveness, the World Health Organization declared a global health emergency in early 2020. (WHO 2020). Millions of documented SARS-CoV-2 cases had all been reported in the MENA region by the end of April. Once the epidemic became a pandemic at the end of March 2020, half of the MENA region’s workforce was halted, resulting in a regional closure of industrialized activity across all of the region’s territories (Alaoui-Mdaghrí et al. 2020). Both aerial and ground transportation have been hampered as a result of people’s incapacity to relocate (Ji et al. 2021; Sheikh Ismail et al. 2021). Reduced transportation outcomes, on the other hand, result in reduced energy and fuel consumption, both of which provide ecological advantages (Hashim et al. 2021a, b; Abdelsattar et al. 2021). Furthermore, toxic effluents, primarily from the use of fossil fuels, have been linked to a variety of ailments around the globe, including asthma (Tyagi et al. 2022; Gao and Zhao 2022). The quarantine system has resulted in large drops in nitrogen dioxide concentrations in several nations, notably Saudi Arabia, Egypt, Iraq, Algeria, Qatar, and the United Arab Emirates (Abdelsattar et al. 2021; El Knawy et al. 2021; Lu et al. 2020; Benchrif et al. 2021).

Some fast evaluations sought to investigate COVID-19-related studies (Ferrante and Fearnside 2020; Alamo et al. 2020; Sahai et al. 2020; Davenport and Kalakota 2019). Even though dozens of publications have been published on the interaction of COVID-19 and the ecosystem, there is no evaluation of COVID-19 environmental concerns available in the MENA region. Because the COVID-19 environmental correlation findings are ambiguous, a reassessment is urgently required. To confront the present situation, WHO and medical industry experts are trying to develop new technology to screen and diagnosis the infection at various stages, invent SARS-CoV-2 vaccines, and track its spread. Machine learning (ML) and artificial intelligence (AI), according to recent research, may be considered an excellent technology alternative that has been used by many medical experts. ML and AI provide greater scale-up, faster processing power, and even outperform humans in some healthcare jobs (Davenport et al. 2019; Khelfaoui et al. 2022a, b).

The present study aims to make this contribution by addressing COVID-19 environmental problems in MENA area nations. In this review, publications investigate the influence of environmental variables on SARS-CoV-2 and provide four unique contributions. One, the recent works that discuss the transmission of the virus in various sorts of contexts to provide definitive directions to the current discussion about virus transmission are investigated. Two, highlight the most significant ML applications to predict, forecast, and diagnose SARS-CoV-2 infection. Three, our findings provide future researchers in the field with relevant insights as well as methodological guidelines. Four, based on the findings obtained, the importance of good environmental management to control the spread of the pandemic is already clarified to be applied by MENA policymakers. The paper is structured into five sections: “Introduction” describes the impact of environmental conditions on the spread of COVID-19, followed by “Thematic discussion” that analyzes the themes, while “Significant applications of ML for the COVID-19 pandemic” discusses the ML application in the spread of COVID-19; “Advice and future research
directions” provides future instructions and recommendations to the scientists in the field; final decisions and conclusions are present in “Conclusions and future perspective.”

Thematic discussion

As presented in figure S1, several metrological and non-metrological conditions influence the COVID-19 pandemic in the MENA region (Chen et al. 2020a, b; Mansouri Daneshvar et al. 2022; Bentout et al. 2021; Lodder et al. 2020). Transmission can also be detected by inhaling exhaled viruses in respiratory droplets (Jones 2020). The durability of SARS-CoV-2 in the ecosystem, particularly water, soil, and aerosol, necessitates an immediate and thorough examination (Sharma et al. 2021).

MENA region’s air pollution influence the transmission of the pandemic

Many diseases are caused by insufficient or excessive immune responses, including the COVID-19 pandemic. Thus, it is critical to investigate how contaminants impact the immune system and, as a result, disease vulnerability (Quinete and Hauser-Davis et al. 2021; Glencross et al. 2020). Analytical method advancements and adjustments have aided immunotoxicology research. Environmental contaminants have been linked to marine animals in field research, captive feeding tests, and in vitro laboratory studies (Desforges et al. 2016). High levels of airborne pollutants cause health consequences including the MENA region (Al-Hemoud et al. 2022; El-Nadry et al. 2019; Khajavi et al. 2019). Consequently, Mostafa et al. 2021 evaluated nitrogen dioxide (NO2), ozone (O3), and other particulate matter and found that the lockdown in Egypt reduces the air pollution indexes (Mostafa et al. 2021). Another study revealed that sand or dust particles could act as a transporter of COVID-19 (Marquès et al. 2021). A similar work investigated three of Saudi Arabia’s most impacted cities (Riyadh, Jeddah, and Makkah) and concluded that air pollution and climatic factors significantly influenced the daily development of infections in these locations where the illness incidence was very high throughout the summer of 2020 (Ben Maatoug et al. 2021). According to the findings, air pollution may be a substantial risk factor for respiratory illnesses and viral transmission. Gaseous compounds and particulate matter in urban air pollution are well-known aggressive and irritants to the respiratory system (Glencross et al. 2020).

Daily SARS-CoV-2 was confirmed to have been significantly associated with air pollution in Saudi Arabian in a study proposed by Ghanim and team (Ghanim 2022). The study aimed to explore the association between air pollution levels such as PM10 and the propagation of the pandemic. Similar studies have confirmed such a correlation as shown in Fig. 1. Transmission, patient numbers, urgent cases, and fatality rates are all part of the mentioned study. According to the results obtained, Saudi Arabia’s most polluted regions have recorded a high number of confirmed cases. The majority of SARS-CoV-2 cases, with a higher fatality rate and severe cases in these areas than in other parts of the country. Thus, a positive association has been confirmed between air pollution levels and the spread of the pandemic in the region.

To investigate the results obtained by the previous study (Ghanim 2022), excellent research has been conducted in the United Arab Emirates (Mansouri Daneshvar et al. 2022) that studied how COVID-19 reduces pollution at the local scale of the country. As a result, this study and others have also found that SARS-CoV-2 lockdown reduces air pollution levels in MENA nations including Morocco, Kuwait, Tunisia, Qatar, and Iraq (Khomsi et al. 2020; Al-Hemoud et al. 2021; Jribi et al. 2020; Mahmoud et al. 2022; Hashim et al. 2021a, b).

Pollution levels have dropped by 30% points throughout the epidemic in places such as China, the EU, and the USA, suggesting that the pandemic has a transient advantage (Muhammad et al. 2020; Le et al. 2020). Moreover, Hashim and his colleagues suggest that during the lockdown in Baghdad, Iraq, positive air condition shifts were observed as the reason of decreasing air pollution levels (Hashim et al. 2021a, b). Based on the research, Baghdad's indicator of air quality (AQI) increased by 13% points versus the pre-lockdown periods, while NO2 concentrations in Iraq reduced by 35 to 40%. It has been remarkable to watch how nature’s changes in behavior patterns have been incredibly advantageous, with the atmosphere, hydrosphere, and biosphere all recovering, creating the sense that the world is on standby for maintenance. In contrast, quarantine restrictions have led to an increase in wastewater, notably medicinal wastes. During the summer season (June–August 2020), hygienic actions were carried out in Egypt and Saudi Arabia to assess the existing rubbish and then discard it. Nearly every day, Alexandria, Hurghada, and Jeddah gathered 3673, 255, and 848 articles, respectively. Medicine-utilized instruments such as masks amounted to 40–60% of all garbage recovered in both locations where the operations were held, while plastic sacks amounted to 7–20% of overall plastic waste gathered (Hassan et al. 2021). In Contrast, the epidemic has moved focus to a new paradigm focused on the contemporary economy, knowledge-based economy, robust economy, and industry 4.0, which has a lower impact on the environment while disclosing its detrimental impact on human society (Grinin et al. 2022; Nundy et al. 2021).

Over the last 2 years, the pandemic has efficiently rebuilt the ecosystem, which has had a positive effect on worldwide climatic changes (Le Quéré et al. 2020; Klenert et al. 2020).

To summarize, because COVID-19 is prevalent in most regions of the world, one of the key concerns is the
The association between COVID-19, Air Pollution and Climate Change

There were two sides to the relationship between COVID-19 and air pollution and meteorology. Some air pollutants such as PM and O₃ tend to increase COVID-10 cases, whereas COVID-19 lockdowns tend to decrease air pollution problem and short-term global temperature.

AIR POLLUTION PANDEMIC

COVID-19 PANDEMIC

COVID-19 Cytokine storm

Inflammation
Platelet activation
Prothrombotic
Antifibrinolytic
Prooxidant
Less vasodilation
More vasocostriction
More proliferation

Atherosclerosis

Acute coronary syndrome
Heart failure
Arrhythmia
Stroke
interaction between environmental parameters such as air humidity and temperature (Abbasi et al. 2020).

According to one study, the frequency of positive daily SARS-CoV-2 cases is related to three environmental factors: maximum relative humidity, maximum temperature, and maximum wind speed. Chin et al. (2020) found that the SARS-CoV-2 was resistant at 4 °C for a long period, but only 5 min at 70 °C. Heat, high or low pH, and sunshine, in general, make it simpler to destroy the coronavirus (WHO 2020). A research, however, found that the virus is stable at pH levels ranging from 3 to 10 at room temperature (Chin et al. 2020) (Fig. 2).

Many scientists then indicate that outdoors air pollution, generated by a combination of elements such as meteorological records, industrialization degree, and geographical topography, could act as both an infection transmitter and an aggravating driver of COVID-19 aggressiveness (Isaifan 2020; Martelletti and Martelletti 2020). Setti’s team lately reported provisional proof that SARS-CoV-2 RNA can be encountered on open air particulates, suggesting that in circumstances of atmospheric stability and elevated PM concentration levels, it could serve as an important sign of COVID-19; however, it does not give details on COVID-19 evolution or magnitude (Setti et al. 2020). Some other studies supported these findings, although they discovered that the influence of PM$_{2.5}$ on daily verified cases was larger compared to that of PM$_{10}$ (Zhu et al. 2020). The lack of a link between PM$_{10}$ and COVID-19 prevalence and fatality may be due to particulates greater than 5 m being unable to enter type II alveolar cells, which have the SARS-CoV-2 cell entrance receptor (ACE2). For a considerable period, we have understood that reducing outdoor and indoor harmful emissions in countries can have an instant effect on health, and the advantages can far exceed the expenses. Definitely, the world’s major health catastrophe stresses how environmental research is a vital juncture of reference for helping to improve comprehension of contagious diseases and how all academic and financial funds must be dedicated to accelerating initiatives to enact environmental regulatory requirements to improve air quality and build innovative urban planning treatments. Relatively brief absorption of polluted air was also demonstrated to be statistically significantly associated with a rise in new daily occurrences of COVID-19, even when meteorological conditions were accounted for. Nevertheless, a negative connection with relatively brief PM$_{10}$ exposure has been reported (Saez et al. 2020).
Additional research reveals that, in complement to concentrations, the contact period may influence SARS-CoV-2 aberrant volatility. Information on the spread of pollutants in the atmosphere (\(\text{NO}_2\), \(\text{O}_3\), \(\text{PM}_{2.5}\), and \(\text{PM}_{10}\)) in Italian areas over the last four years, as well as days surpassing legislative thresholds and years in the last decade with at least 35 days surpassing the thresholds, demonstrate that Northern Italy has been constantly subjected to persistent air pollution. Long-term data on air quality were significantly linked with Covid-19 cases in as many as 71 Italian localities, providing further proof that long exposures to atmospheric pollution may provide a suitable atmosphere for virus proliferation. Pro-inflammatory responses and a large rate of respiratory and cardiac disorders are well known, but the coronavirus’s ability to link particulate particles is unknown (Fattorini and Regoli 2020).

Based on these studies, we suggest that air quality should be considered a component of a comprehensive plan for ecological sustainability, human preventive care, and the prevention of pandemics such as COVID-19. More investigation is deemed necessary to effectively comprehend the significance of polluted air during the COVID-19 pandemic, namely cross-disciplinary research to enhance scientific proofs and assist conclusive results, which will be effective in making pandemic implementation strategies to appropriately avoid new pandemics.

Land processes impact the spread of the pandemic in the MENA region

The seasonality or dispersibility of a virus, as stated in various publications, is influenced by the atmospheric period (Poole 2020; Lofgren et al. 2007). Similar annual variation is feasible for the present pandemic and other coronaviruses (Poole 2020; Davenport et al. 2019; Auler et al. 2020) when weather conditions promote seasonal respiratory viral spread. In a regional study, the results have confirmed an association between the weather parameters in high-latitude locations and the spread of COVID-19 (Chen et al. 2020a, b). Similarly, Hamd and coworkers (Hamd et al. 2021) demonstrated that there is a relationship between numerous climatic conditions and COVID-19 transmission, but that the virus does not go away as the temperature rises, contrary to popular belief. Our theory is that when the temperature rose, the virus grew more active in Egypt and its latitude or the humidity got unstable. A log-linear quasi-Poisson regression model was used to evaluate the connection between the examined meteorological variables and COVID-19 dissemination. Deforestation has been attributed to several infectious diseases propagated by viruses carried by birds and bats (Afelt et al. 2018). Minhas affirms that population increase would generally lead to city expansion, which will directly or indirectly lead to deforestation, meaning that such novel cities and/or regions will host probably the next pandemics if any (Minhas 2020). COVID-19 is a bat-borne viral epidemic (Afelt et al. 2018). To combat the pandemic, billions of dollars are being invested in the development of diagnostics, therapy, and pharmaceuticals. However, essential preventive actions like forestation and wildlife habitat conservation are being overlooked. As a result, the world must understand the value of trees and support as much afforestation as possible (Chakraborty and Maity 2020).

Finally, infectious disease outbreaks are more likely in quickly deforested tropical environments. Agricultural factors are linked to about half of all zoonotic illnesses that have developed in humans (Rohr et al. 2019). The impending recession caused by the COVID-19 pandemic may potentially exacerbate poverty and food insecurity in deforestation frontiers, leading to increasing bush meat intake and the emergence of new zoonotic illnesses. In this context, governments will face challenges in protecting people’s lives and tropical forests, as well as providing assistance to local communities living on the periphery of the cash economy in deforestation frontiers (Ferrante et al. 2020), which can be critical in preventing new pandemics (Everard et al. 2020).

Based on the findings of th section, we concluded the following points:

- Preventing illicit deforestation should be prioritized during the epidemic.
- Forest fires may exacerbate COVID-19’s health hazards.
- Tropical deforestation raises the prospect of developing zoonotic illnesses.
- Why Indigenous peoples should be given special consideration during the present epidemic.

MENA region’s meteorological factors on the spread of the pandemic

The bulk of research points to weather as one of the most critical elements in forecasting COVID-19 pandemic future trends (Hamd et al. 2021; Chen et al. 2020a, b). As highlighted in Figs. 3, 4, and 5, meteorological parameters such as rainfall, wind, and temperature are climatic variables that influence the survival of viruses and help to spread the infections (Poole 2020; Davenport et al. 2019; Kroumpouzos et al. 2020). (Sangkham et al. 2021) investigated air pollutants, AQI, and meteorological factors, as well as their parameter correlations with the daily number of confirmed COVID-19 cases during the epidemic. The temperature, relative humidity (RH), and wind speed (WS) were shown to be positively linked with daily verified COVID-19 cases in the research. As a result, these factors have the potential to promote SARS-CoV-2 sustained transmission.
A study analyzed the influence of outdoor and weather on daily reported COVID-19 cases in Saudi Arabia’s western areas from March to October 2020 (Habeebullah et al. 2021). The findings suggested that during the hottest periods of the year, the most SARS-CoV-2 confirmed cases were observed in Makkah and Madinah which confirms a concrete
association between the pandemic spread and weather conditions, temperature in particular. Outdoor humidity and daily COVID-19 incidences were shown to have a partial negative association. However, there was no evident link between daily COVID-19 incidences and wind speed suggesting that confirmed cases took place in several indoor settings where the study have been conducted.

By examining the influence of climatic elements in nine Turkish cities, Tosepu (Tosepu., 2020) reveals a significant correlation between wind speed and temperature and the transmission of the pandemic. However, in Algeria, the influence of meteoroogical settings on the spread of covid19 was studied in fourteen cities from April to August 2020 (Boufekane et al. 2022). To find a possible link between climatic factor fluctuations and day-to-day confirmed infections, researchers used a complete time series analysis and linear regression. The data demonstrated a weak correlation between daily confirmed cases and meteorological conditions in all of the areas studied. SARS-CoV-2 can adapt to different temperature levels and humidity, and factors other than the environment, such as demography and human contact, can impact virus replication. Similarly, a previous study on the relationship between temperature and germ and viral transmission reveals, that Anis and coauthors (Anis 2020) investigated the impact of temperature on the spread of the virus in Egypt. The study found that the best average temperature for viral activity and transmission is between 13 and 24 °C. Egypt is then used as a model to validate
the link between temperature and coronavirus activity and distribution in the MENA area. A study explored the link between climatic characteristics and COVID-19 in Algeria and Egypt, concluding that SARS-CoV-2 spread has a substantial relationship with temperature and humidity (Zhao et al. 2020a, b; Davenport et al. 2020). As mentioned earlier, several studies confirmed a significant association between weather and SARS-CoV-2 spread; some studies disagree, however, suggesting that weather parameters alone may not result in a reduction or increase in the number of confirmed cases (Habeebullah et al. 2021; Ismail et al. 2022; Jamil et al. 2020). Ismail and coworkers conducted a study in six Saudi Arabian cities with various weather conditions, such as moisture and temperature, and found that such conditions are unrelated to the frequency of new cases in those areas (Ismail et al. 2022).

The findings of this subsection demonstrated that climatic parameters such as humidity, temperature, and rainfall are important drivers of infectious disease management in many regions of the world (Islam et al. 2020). Elevated temperatures, for example, may inhibit the spread of droplets that transmit coronaviruses, most likely by fast evaporation. Simultaneously, other variables like humidity may increase COVID-19 survival time in the environment and thus alter the infection rate. Previous research has found that humidity impacts the infection rates of the COVID-19 epidemic (Wang et al. 2020; Demongeot et al. 2020). It is uncertain whether seasonal temperature rises will reduce the rate, which warrants additional inquiry. To present, the function of environmental variables in COVID-19 transmission has not been demonstrated. Concrete and evidence-based arguments are required to be investigated, whereas probabilistic determination methods may assist in obtaining potential clues.

The shift in daily COVID-19 instances, according to (Islam et al. 2021a, b), has a significant correlation with AH and RH, which travel southward to enhance easterlies. Our data revealed that the total COVID-19 pandemic in Bangladesh is mostly impacted by humidity changes. According to several researches, temperature and relative humidity are the most important environmental factors impacting COVID-19 cases in other countries. Alkhowailed et al. (2020) presented an outstanding paper that determined the influence of climatic conditions on the infectivity rate of COVID-19. Temperature, humidity, and wind speed were shown to be key variables influencing COVID-19 infectivity in this investigation. We discovered that when the temperature and relative humidity were lower, the number of COVID-19 cases rose. We also discovered that the number of positive cases rose in places with lower average wind speed, particularly in congested areas where lower wind speed was related to a significant rise in positive instances. Because the emergence of the pandemic in Saudi Arabia occurred just four months ago, additional research on the relationship of COVID-19 infectivity rate with weather fluctuation is needed. Overall, PM$_{10}$ and O$_3$ levels increased with the number of verified COVID-19 cases every day. Positive trends were observed for wind and humidity levels that exceeded certain thresholds, 20 m/s for wind and 80% for humidity. Furthermore, temperatures above 25 °C revealed a negative correlation with the number of COVID-19 cases. Insolation also exhibited a definite growing curve over 9 h. While the Precipitation curve was variable below 22 mm and declining beyond that number.

As a result, the literature on this subject has disparate findings. Hence, we raise the attention that in the MENA region, the impact of weather conditions on COVID-19 spread is unknown yet, as sometimes sounds unclear and ambiguous (Boufekane et al. 2022; Zhao et al. 2020a, b). To study such correlational data in the MENA, it is necessary to investigate the combined effect of others based on the demographic features, healthcare facilities, social policies such as lockdowns, and so on.

MENA region's non-meteorological factors impact on the spread of the pandemic

Technically, similar to other respiratory viral epidemics, combined with meteorological conditions, non-meteorological factors such as human behaviors and traditions, and population parameters including age, gender, and also population density may have actions of SARS-CoV-2 spread. To confirm this hypothesis, academics have conducted several works to simultaneously examine their effect on the propagation of the pandemic. For this purpose, and to simulate, analyze, and understand the dynamics of the coronavirus via non-meteorological conditions such as population density, population age, and also population behavior and traditions, and their attitude toward the environment, several mathematical modeling studies have been developed (Lodder et al. 2020; Rashed et al. 2020; Kada et al. 2020; Alrasheed et al. 2020). The studies have confirmed the following:

- Elder people are the most vulnerable part of society to SARS-CoV-2 infection and they have a direct influence on the spread of the pandemic.
- In the MENA region, population behavior and traditions such as weddings gathering, public transport, and greetings (shaking hands or kissing) have accelerated the spread of the pandemic.
- Irresponsible behavior toward the environment (throwing masks, gloves, and other infected medical tools in public sites) has also accelerated the propagation rate of the pandemic.

When it comes to the influence of meteorological factors on the pandemic spread, Sitkowska, Doremalen, and coworkers (Doremalen et al. 2013) feel that environmental
factors in MENA have a bigger impact on the spread of the virus, which changes depending on non-meteorological conditions related to human behavior. A similar study investigated if Algerian local population density has an action on day-to-day SARS-CoV-2 confirmed cases (Kadi and Khelfaoui 2020). According to their research outcome, they confirmed a positive association between population density and the spread of the pandemic in the nation. The authors, on the other hand, suggested also that increasing public awareness can help slow the virus’ spread. Because SARS-CoV-2 may survive on different surfaces such as plastics and glasses (Kampf et al. 2020; Holshue et al. 2020; Davidson 2021), its propagation remains active and moderate. So, human behaviors such as throwing infected medical tools in public or using infected glasses and spoons in coffees and restaurants should be avoided.

MENA region’s wastewater impact on the spread of the pandemic

As shown in Fig. 6, human sewage could be carrying the virus also (Lodder et al. 2020), and a hypothesis has been validated since the first diagnosis of COVID-19 in wastewater (Holshue et al. 2020). Infected people can spread infections via their feces, according to a study published in Saudi Arabia by Ibn Alahdal and the team, highlighting the need for accurately used water treatment plants, as well as the virus’s subsequent spread into the environment (Alahdal et al. 2021). Drinking water is one of the most common ways for humans to be exposed to contaminants (Mandour 2012). This calls attention to several key contaminants in the water supplies that are known to be immunotoxic, as well as potable water routes that may restrict the efficiency of human immune responses (McKeown and Bugyi 2016; Rajkhowa et al. 2021).
According to the literature, a ML device has been used to identify, forecast, and predict certain diseases and calamities, including SARS-CoV-2 (Chamola et al. 2021; Caballé-Cervigón et al. 2020; Merkin et al. 2022; Rahimi et al. 2021). To appropriately assess the transmission of the pandemic, Harrow and coauthors built a presumption data-driven approach, as shown in Figure S2. To do so, the study employed Bayesian optimization to fine-tune the Gaussian process regression (GPR) hyperparameters to build a successful GPR-based prediction model that recovered and confirmed SARS-CoV-2 cases in India and Brazil, two of the most severely affected nations.

ML developed intelligent systems based on AI that helped governments worldwide to take decisions and launch regional lockdowns as a trial to stop the fast spread of the virus at its source in the MENA region (Guezzaz et al. 2021, Ahmed et al. 2021; Saba et al. 2021; Pasayat et al. 2020; EPC 2020). After evaluating those data sets, it can be inferred that using ML approaches to foresee and predict the spread of COVID-19 might be beneficial (figure S2). ML helps humans effectively deal with complex data and/or mathematical approaches in massive volumes of data that are difficult to understand (figure S3). ML algorithms may quickly discover a causal relationship between COVID-19 and another component and/or condition, for example. In addition to detecting them, it may improve or change their actions over time. Efficiency and accuracy improve as data amount increases (Vabalas et al. 2019; Guezzaz et al. 2021; Alsaui et al. 2022; Mirbolouki et al. 2022). Better choices and predictions are made by the algorithm that learns from the data. Another significant benefit is that this method can modify in real-time without the need for human intervention (L’Heureux et al. 2017; Mehmood et al. 2019).

Steps involved in the construction of ML algorithms.

1. Data collection from the local authorities and world meters with various criteria.
2. Train, validate, and test the sample datasets that have been obtained.
3. Predict COVID-19 data trends using the suggested hybrid model.
4. Predict the final COVID-19 data scenarios with dynamic parameters.

Key features of using ML for SARS-CoV-2.

1. Creating a computational hybrid approach for pandemic long-term forecasts over the world.
2. Combing various ML approaches to increase prediction accuracy.
3. Anticipating the pandemic’s future spread and impact by applying historical inputs.
4. Using seasonal statistics such as heat, air quality, and other inputs, the hybrid approach was chosen to forecast SARS-CoV-2 future behavior, as well as state-by-

state and date-by-date data views. Table 1 shows typical examples of diagnosis of COVID-19 using ML models.

Table 1 SARS-CoV-2 Screening using ML models

Reference	ML model	Data	Validation	Accuracy (%)
(Ardakani et al. 2020)	Convolutional neural network	Clinical, mammographic	Holdout	99.51
(Ozturk et al. 2020)	Convolutional neural network	Clinical, mammographic	Cross-validation	98.08
(Sun et al. 2020)	Support vector machine	Clinical, demographics	Holdout	77.5
(Wu et al. 2020a, b)	Random forest algorithm	Clinical, mammographic	Cross-validation	95.95

Provide an intelligent platform for healthcare infrastructure

AI and deep learning could be considered possible strategies for treating emerging coronavirus infections (figure S4). Computers can now apply big data-enabled models for infection pattern recognition, interpretation, and prediction thanks to advances in technology such as natural language processing and computer vision. Because of the pandemic’s rapid spreading over the MENA region, it is critical to explore and develop AI to detect and identify COVID-19-infected persons in the MENA region. Qatar has developed an AI-powered mobile software called “Ehteraz” that can instantaneously detect new infections, even when in groups, in order to predict the highest infected areas. In a rapidly moving pandemic, Ehteraz may be utilized to offer a clear vision about the spread of the pandemic and record confirmed cases effectively in the Qatari cities which allow the local authorities to act and take decisions toward...
the pandemic spread in such an effective manner (Ahmed et al. 2021). In response to the coronavirus outbreak, the UAE has been using AI, big data, and network devices at multiple levels to monitor, assess, and fully comply with lockdown restrictions (Huber 2020). The authorities have used Internet-connected devices to check people's compliance with COVID-19-related laws and restrictions. Dubai Police, for instance, used a system 'Oyoon' which offers an in-site diagnosis of the pandemic (EPC 2020).

A healthcare company, Nabta Health, applies AI to detect SARS-CoV-2 symptoms and estimate related impacts based on medical conditions (Hassan et al. 2022). In Dubai, a digital firm called Nybl has been launched, Nybl helped the government manage health supplies by providing AI and big data solutions. By detecting available resources and hospital requirements, and acquiring supplies as needed, these methods enabled supply to meet demand (Huber 2020). Another AI firm established in Abu Dhabi, Group 42 (G42), has been using technology for testing and research in collaboration with diverse organizations (EPC 2020). The company teamed up with BGI, a global genome sequencing company, to create a COVID-19 detection facility that will allow reverse transcription polymerase chain reaction (RT-PCR) screening and identification to be scaled up to the population level (BGI 2020). Quick viral genome analysis, COVID-19 and tuberculosis screening can be used in vitro model creation to reduce drug testing time are among the company's other services (G42, 2020a, b).

Contact tracing is an important public health strategy for stopping SARS-CoV-2 from spreading (EPC 2020). As shown in Table 1, MENA countries have developed a digital contact tracing process using a mobile application that incorporates various technologies such as Bluetooth, GPS, Social graph, contact information, network-based API, mobile tracking data, card transaction data, and system physical address (Table 2).

COVID-19 forecasting

Anticipating is one of the most effective statistical approaches to discovering and analyzing COVID-19, as well as forecasting future repercussions, and may be used in a variety of fields all around the globe. Depending on the source and data available, a variety of statistical procedures and AI techniques have been used to achieve this aim. For example, Chew and the team employed a proposed G parameter as a function of fused data variables such as defined weather conditions, socioeconomic factors, and regulatory limits to develop a deep learning model to predict COVID-19 transmission rates globally (Chew et al. 2021). They analyzed similar research that modeled the intricate link between COVID-19 transmission rate and many parameters such as climatic and socioeconomic situations in their study. A simulation model based on theories, limited to brief time data, exclusion of affect transformation factors such as time changes, geographic influence, weather patterns, size of the sample, reliance on records, and finally changes of future policies based on assumptions are all drawbacks that must be resolved while doing deep learning (Pasayat et al. 2020; Jaulip and Alfred 2022). Several studies (Pinter et al. 2020; Shrivastav and Jha 2021; Ronald Doni et al. 2022) have been published to predict SARS-CoV-2 infection and fatality rates. To find out the correlation between various characteristics and SARS-CoV-2 transmission rate, researchers used a range of linear regression ML models (figure S5). Furthermore, (Malki et al. 2020) used algorithms to examine the effect of meteorological parameters such as temperature and humidity on COVID-19 transmission by extracting the correlation between the number of confirmed cases and weather factors in particular areas. To test the suggested strategy, relevant datasets relating to weather and census variables were gathered and processed. When compared to other census factors such as population, age, and urbanization, the experimental findings demonstrate that weather data (such as temperature and humidity data) are more useful in predicting mortality rates. Furthermore, another work helped the whole community globally to tackle the five various challenges, such as (I) Predicting the spread of coronavirus across areas. (II) Compare for each nation how SARS-CoV-2 spread and what strategies were used to stop this transmission locally. (III) Predicting the course of

Nation	Application's name	Tracking tool	Started on
Algeria	Coronavirus Algeria	GPS	April 2020
KSA	Tawakkalna (COVID-19 KSA)		
Kuwait	Shlonik		
Jordan	AMAN App—Jordan		
Bahrain	BeAware Bahrain		
Egypt	Egypt Health Passport		
Tunisia	E7mi		
Morocco	Wiqayatna		
Qatar	Ehteraz	Bluetooth and GSM	
UAE	TraceCovid	Bluetooth	
the pandemic and investigating its spread rate and how the weather could affect it (Yadav et al. 2020).

To be well prepared and minimize life loss, it is vital to anticipate the number of expected COVID-19 cases to provide medical care. As highlighted in Table 3, supervised ML methods such as LASSO regression, support vector machine (SVM), and exponential smoothing (ES) have been used to anticipate the transmission of the illness, with ES showing to be the appropriate design when compared to alternative approaches (Rustam et al. 2020). The LSTM model is an excellent deep learning approach since it can handle time-based datasets.

Environmental impact of COVID-19: estimation

ML might be a useful method for estimating and evaluating the impact of the new COVID-19 pandemic on the environment and its resources. For this purpose, a study published by (Rybarczyk and Zalakeviciute 2021) suggested a model in which a ML algorithm is trained to learn the effects of meteorological variables and time on air pollution. Chemical transport models function poorly in difficult terrain regions (Pani et al. 2020) and require an updated emissions inventory, which Quito does not have. NO₂, SO₂, CO, and PM₂.₅ are measured in the Ecuadorian capital, unlike in earlier research. The disparities in pollution reduction are analyzed in different districts with different sources of contamination because the lockdown mostly affected human movement (e.g., traffic vs. industry). To predict pollution concentrations from meteorological and temporal characteristics without the lockdown, one model is constructed for each city area and contaminant. By comparing the value produced by the model to real observations, the concentration variations owing to reduced human activity may be quantified. The authors assess the direct and positive influence of the lockdown in China on local air pollution (Cole et al. 2020; Grange et al. 2018; Vu et al. 2019; Ben-Michael et al. 2021).

Advice and future research directions

The accurate association between SARS-CoV-2 spread and meteorological and non-meteorological conditions along with air quality parameters has been highlighted and discussed in this review. Through the present study, the authors orient researchers and scientists to focus more on the following points:

- Raise public awareness about the long-term impacts of deforestation and the hazards connected with anthropized, since multiple studies have established that SARS-CoV-2 is a bat-borne virus.
- Another major issue for future researchers is the transfer of coronaviruses from multicellular to unicellular creatures, as well as their proliferation, mutation, and transmission. One of the major spread factors is the human direct contact but still needs research on the aerial transmission of the virus and how air quality could support the SARS-CoV-2 spread in MENA countries.
- Population age and gender may influence the pace of viral transmission in susceptible groups (women, children, the elderly, and the immune-compromised); hence, such non-metrological variables should be investigated.
- The transmission of the pandemic in the region is influenced by air conditions (temperature, humidity, and pollution). It is strongly advised that researchers should devote more time and resources to investigating and modeling these elements to predict the current virus’s behavior and forecast future situations to prevent a blanket ban.
- Since the diagnosis of COVID-19 in feces, wastewater-based epidemiology should be considered while researching SARS-CoV-2 pathogenesis. On the other side, treatment plants should be designed to eliminate the virus from the water.
- Studies of indoor vs. exterior transmission rates should be done since the virus can spread through ventilation and air conditioning systems.
- It is critical to understand viral survival mechanisms and create low-cost, user-friendly approaches to eliminate coronavirus now. Modeling via ML and AI is crucial for analyzing factors such as metrological and non-metrological parameters including air quality to have a clear vision of how to forecast the spread of the pandemic. Future studies should add complicating factors including social cognition, demographic shifts, health care systems, and societal taboos like lockdowns to better understand transmission patterns.

Table 3 SARS-CoV-2 forecasting using ML models

Reference	ML model	Data	Validation	Accuracy (%)
(BBC., 2020)	SVM	Clinical	Holdout	96.49–99.13
(Ribeiro et al. 2020)	XGBoost classifier	Cross-validation	90%	
(Yan et al. 2020)	LSTM network	Demographic		–
(Chimmula et al. 2020)	Hybrid wavelet-autoregressive		–	–
Many of us have begun to consider human extinction as a consequence of the pandemic, which is why it is critical to advance these research pathways to better manage future pandemics and protect human health and the environment in the MENA area throughout the world.

While applying machine learning to forecast SARS-CoV-2, researchers have to bear in mind that:

- ML requires large data which requires time and this could be considered a massive challenge when applying ML.
- To achieve a high level of accuracy, ML may need a huge quantity of resources to function. And this may necessitate greater computer processing power.
- Another significant challenge is appropriately interpreting the findings given by the algorithms. It is an obligation to select the algorithms that are suitable to the application's needs and finally.
- ML is self-contained, however, it is prone to mistakes. For instance, if an algorithm is trained on data sets that are too tiny to be inclusive, the model will provide biased predictions based on a biased training set.

Conclusions and future perspective

For the first time in the MENA area, theme analysis and bibliometric assessment of dozens of research publications on the spread and the propagation is conducted, of new coronaviruses in different environments, and the evidence supporting COVID-19’s environmental issues is summarized.

The environment and its parameters have a favorable link with COVID-19 transmission in the region. The present work concludes that temperature and humidity are drivers of COVID-19, but that they are not the only ones. The speed of this transfer, on the other hand, is unrelated to humidity or temperature. In warmer regions, there is some evidence that SARS-CoV-2 expansion can be slowed.

The most obvious technique for limiting the spread of an epidemic is to have a good public health infrastructure and emergency plans. Little study has been done on the usefulness of public health infection, prevention, and control (IPC) techniques in controlling SARS-CoV-2 spread during the current outbreak. Literature on pandemic viral outbreaks derived from clinical samples can also aid in the identification of priority IPC interventions for preventing and limiting pandemic spread. Monitoring clinics and laboratories, according to the literature, are insufficient for fast and accurate diagnosis and control of such emergencies. As a result, a surveillance plan for environmental exposure, as well as a thorough exposure status and sickness effects, are necessary.

The present pandemic is a global threat that needs worldwide involvement and a serious concern, requiring global researchers and academics, legislators, and partners to extend the study on the virus and track its spread and fury as rapidly as possible. Future scholars and professionals should make conscious efforts to aid present or future epidemics throughout the world to keep this potential.

As the globe grapples with COVID-19, every ounce of technical innovation and creativity deployed to combat the epidemic moves us closer to eradicating it. ML and AI have been already applied for an accurate and effective understanding of the spread of the pandemic and they could offer strategies to handle such crises in the future. Because ML can treat big data, the research groups must work more on this subject to mitigate the current situation of SARS-CoV-2, prevent future medical crises, and predict the long- and short-term impacts of such a situation on our society, and economic and environmental lives.

Through the present study, the authors recommend MENA nations leverage their ML capabilities in the battle against COVID-19 in various areas, including understanding how COVID-19 spreads, what factors affecting this spread, and investigating how this pandemic affects our lives.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s11356-022-23392-z.

Author contribution Conceptualization; Methodology; Resources; Formal analysis; Writing—original draft preparation, review, and editing; Supervision; and Investigation were carried out by Hicham Meskher, Samir Braham Belhaouari, Amrit Kumar Thakur, Ravishankar Sathyamurthy, Punit Singh, Issam Khelfaoui, and Rahman Saidur.

Funding The publication of this article was funded by the Qatar National Library (QNL). The authors would like to acknowledge the library for supporting the publication of this article.

Data availability Not applicable.

Declarations

Ethics approval Not applicable.

Consent to participate Not applicable.

Consent for publication Not applicable.

Conflict of interest The authors declare no competing interests.

References

Abbasi F, Samaei MR, Manoochehri Z, Jalili M, Yazdani E (2020) The effect of incubation temperature and growth media on index microbial fungi of indoor air in a hospital building in Shiraz, Iran. J Build Eng 31:101294

Abdelsattar A, Nadhairi RA, Hassan AN (2021) Space-based monitoring of NO2 levels during COVID-19 lockdown in Cairo, Egypt and Riyadh, Saudi Arabia. Egypt J Remote Sens Space Sci 24(3):659–664

Abouzid M et al (2022) Investigating the current environmental situation in the Middle East and North Africa (MENA) Region during
the third wave of COVID-19 pandemic: urban vs. rural context. BMC Public Health 22(1):177

Achak M et al (2021) SARS-CoV-2 in hospital wastewater during outbreak of COVID-19: a review on detection, survival and disinfection technologies. Sci Total Environ 761:143192

Aefl A, Frutos R, Devaux C (2018) Bats, coronaviruses, and deforestation: toward the emergence of novel infectious diseases? Front Microbiol 9:702

Ahmed M, Houkan M, Sadasivuni KK (2021) “Artificial intelligence assisted prediction of COVID-19 hotspots in third wave using EHTERAZ.” In Building resilience at universities: role of innovation and entrepreneurship, Qatar University Press, 156–156. http://hdl.handle.net/10576/24342. 20 June 2022

Ahmed S et al (2020) Rapid tool based on a food environment typology framework for evaluating effects of the COVID-19 pandemic on food system resilience. Food Security 12(4):773–778

Alahdal Hadil M. et al. 2021. “Municipal wastewater viral pollution”

Anis A (2020) “The effect of temperature upon transmission of COVID-19 in Saudi Arabia. Environ Sci Pollut Res 27(33):19535–19548. 20 April 2022

Ben Maatoug A, Triki MB, Fazel H (2021) How do air pollution and meteorological parameters contribute to the spread of COVID-19 in Saudi Arabia? Environ Sci Pollut Res 28(32):44132–39

Cherif EK et al (2020) COVID-19 pandemic consequences on coastal water quality using WST Sentinel-3 data: case of Tangier, Morocco. Water 12(9):2638

Chow AW, Ze YW, Zhang L (2021) Correlating dynamic climate conditions and socioeconomic-governmental factors to spatiotemporal spread of COVID-19 via semantic segmentation deep learning analysis. Sustain Cities Soc 75:103231

Chimnuva K, Kumar R, Zhang L (2020) Time series forecasting of COVID-19 transmission in Canada using LSTM networks. Chaos Solitons Fractals 135:109864

Chin AWH, Chu JTS, Perera MRA, Hui KPY, Yen H-L, Chan MCW, Peiris M, Poon LLM (2020) Stability of SARS-CoV-2 in different environmental conditions. preprint. Infectious Diseases (except HIV/AIDS), Infectious Diseases (except HIV/AIDS)

Coccia M (2021) How do low wind speeds and high levels of air pollution support the spread of COVID-19? Atmos Pollut Res 12(1):437–445

Cole MA et al (2022) Impact of meteorological parameters on COVID-19 pandemic: a comprehensive study from Saudi Arabia. Inform Med Unlocked. 20:100418

Cole MA, Elliott RJR, Liu B (2020) The impact of the Wuhan COVID-19 lockdown on air pollution and health: a machine learning and results of 10 convolutional neural networks. Comput Biol Med 121:103795
augmented synthetic control approach. Environ Resource Econ 76(4):553–580
Davenport T, Kalakota R (2019) The potential for artificial intelligence in healthcare. Future Healthcare J 6(2):94–98
Davidson BL (2021) Bare-bulb upper-room germicidal ultraviolet-C (GUV) indoor air disinfection for COVID-19. Photochem Photobiol 97(3):524–526
Demongeot J, Flét-Berliac Y, Seligmann H (2020) Temperature decreases spread parameters of the new COVID-19 case dynamics. Biology 9:94
Desforges J-P et al (2016) Immunotoxic effects of environmental pollutants in marine mammals. Environ Int 86:126–139
Doremalen N, Bushmaker T, Munster VJ (2013) “Stability of Middle East respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions.” Eurosurveillance 18(38). https://www.eurosurveillance.org/content/10.2807/1560-7917.ES2013.13.38.20590. 20 June 2022
Dubeck AW, Chaudhry SK, Singh HB, Gupta VK, Kaushik A (2022) “Perspectives on nano-nutraceuticals to manage pre and post COVID-19 infections. Biotechnol Rep 33:e00712
El-Nadry M et al (2019) Urban health related air quality indicators over the Middle East and North Africa countries using multiple satellites and AERONET data. Remote Sensing 11(18):2096
EPC (2020) How did the UAE employ artificial intelligence to limit the spread of COVID-19? https://www.eurosurveillance.org/content/10.2807/1560-7917.ES2020.18.38.20077. Accessed 30 April 2022
Everard M, Johnston P, Santillo D, Staddon C (2020) The role of ecosystems in mitigation and management of Covid-19 and other zoonoses. Environ Sci Policy 117:1–17
Eslami H, Jalili M (2020) The role of environmental factors to transmission of SARS-CoV-2 (COVID-19). AMB Express 10(1):92
Fattorini D, Regoli F (2020) Role of the chronic air pollution levels in the Covid-19 outbreak risk in Italy. Environ Pollut 264:114732
Ferrante L, Fearnside PM (2020) Protect Indigenous peoples from COVID-19. Science 368:251–2525
Fleuren LM et al (2020) Machine learning for the prediction of sepsis: a systematic review and meta-analysis of diagnostic test accuracy. Intensive Care Med 46(3):383–400
Gansmeier M, Furceni D, Ostry JD (2021) The impact of weather on COVID-19 pandemic. Sci Rep 11(1):22027
Gao J, Zhao G (2022) Potentials of using dietary plant secondary metabolites to mitigate nitrous oxide emissions from excreta of cattle: impacts, mechanisms and perspectives. Anim Nutr 9:327–334
Ghanim AAJ (2022) Analyzing the severity of coronavirus infections in relation to air pollution: evidence-based study from Saudi Arabia. Environ Sci Pollut Res 29(4):6267–6277
Glencross DA et al (2020) Air pollution and its effects on the immune system. Free Radical Biol Med 151:56–68
Grange SK et al (2018) Random forest meteorological normalisation models for Swiss PM_{2.5} trend analysis. Atmos Chem Phys 18(9):6223–6239
Grinin L, Grinin A, Korotayev A (2022) COVID-19 pandemic as a trigger for the acceleration of the cybernetic revolution, transition from e-government to e-state, and change in social relations. Technol Forecast Soc Chang 175:121348
Guezzaz A, Asimi Y, Azrour M, Asimi A (2021) Mathematical validation of proposed machine learning classifier for heterogeneous traffic and anomaly detection. Big Data Min Anal 4(1):18–24
Gupta R, Rathore B, Srivastava A, Biswas B (2022) “Decision-making framework for identifying regions vulnerable to transmission of COVID-19 pandemic. Comput Ind Eng 169:108207
G42 (2020a) G42 and BGI announce COVID-19 detection lab. https://www.bgi.com/global/company/news/g42-and-bgi-announce-covid-19-detection-lab/. Accessed 02 May 2022
G42 (2020b) G42 Healthcare launches health AI services to accelerate COVID-19 diagnosis and drug discovery. https://g42.ai/news/healthcare/health-ai-platform/. Accessed 02 May 2022
Hamd A et al (2022) Statistical study on the impact of different meteorological changes on the spread of COVID-19 pandemic in Egypt and its latitude. Model Earth Syst Environ 8(2):2225–2231
Hashim BM, Al-Naseri SK, Maliki AA et al (2021a) On the investigation of COVID-19 lockdown influence on air pollution concentration: regional investigation over eighteen provinces in Iraq. Environ Sci Pollut Res 28(36):50344–50362
Hashim BM, Al-Naseri SK, Al-Maliki A, Al-Ansari N (2021) Impact of COVID-19 Lockdown on NO2, O3, PM2.5 and PM10 concentrations and assessing air quality changes in Baghdad, Iraq. Sci Total Environ 754:141978
Hassan IA et al (2022) Contamination of the marine environment in Egypt and Saudi Arabia with personal protective equipment during COVID-19 pandemic: a short focus. Sci Total Environ 810:152046
Hamad MK, Mustafa RR, Abdulla Y (2021) “Socioeconomic impact of COVID-19 in MENA region and the role of Islamic finance.” International Journal of Islamic Economics and Finance (IJIEF) 4(1). https://journal.umy.ac.id/index.php/ijief/article/view/10466. 20 June 2022
Holshue ML et al (2020) First case of 2019 novel coronavirus in the United States. N Engl J Med 382(10):929–936
Huber N (2020) Tech consultants join Gulf’s fight against Covid-19. Financial Times, 2020. https://www.ft.com/content/aeb6bb85-7a74-11ea-bd25-7fd923850377. Accessed 10 April 2022
Isaifan RJ (2020) The dramatic impact of coronavirus outbreak on air quality: has it saved as much as it has killed so far? Global J Environ Sci Manag 6(3). https://doi.org/10.22034/gjesm.2020.03.01.
Islam ARMT, Hasanzuzaan M, Azad MAK et al (2021a) “Effect of meteorological factors on COVID-19 cases in Bangladesh”. Environ Dev Sustain 23:9139
Islam ARMT, Hasanzuzamn M, Shamm M et al (2022b) Are meteorological factors enhancing COVID-19 transmission in Bangladesh? Novel findings from a compound Poisson generalized linear modeling approach. Environ Sci Pollut Res 28:11245
Ismail LC et al (2021) Assessment of eating habits and lifestyle during the coronavirus 2019 pandemic in the Middle East and North Africa region: a cross-sectional study. Br J Nutr 126(5):757–66
Ismail IMI et al (2022) Temperature, humidity and outdoor air quality indicators influence COVID-19 spread rate and mortality in major cities of Saudi Arabia. Environ Res 204:112071
Jamal T, Alam I, Gojobori T, Duarte CM (2020) No evidence for temperature-dependence of the COVID-19 epidemic. Front Public Health 8:436
Jaulip V, Alfred R (2022) A review on statistical and machine learning approaches to forecasting the occurrence of Covid-19 positive cases. In Proceedings of the 8th International Conference on Computational Science and Technology, Lecture Notes in Electrical Engineering, eds. Rayner Alfred and Yuto Lim. Singapore: Computational Science and Technology, Lecture Notes in Electrical Engineering, eds. Rayner Alfred and Yuto Lim. Singapore: Springer Singapore, 139–55. https://link.springer.com/10.1007/978-981-16-8515-6_12. 20 June 2022
Ji B et al (2021) Where do we stand to oversee the coronaviruses in aqueous and aerosol environment? Characteristics of transmission and possible curb strategies. Chem Eng J 413:127522
Jones RM (2020) Relative contributions of transmission routes for COVID-19 among healthcare personnel providing patient care. J Occup Environ Hyg 17(9):408–415

Jribi S, Ismail HB, Doguji D, Debbabi H (2020) COVID-19 virus outbreak lockdown: what impacts on household food wastage? Environ Dev Sustain 22(5):3939–3955

Kada D et al (2020) Mathematical modeling of the spread of COVID-19 among different age groups in Morocco: optimal control approach for intervention strategies. Chaos Solitons Fractals 141:110437

Kadi N, Khelfaoui M (2020) Population density, a factor in the spread of COVID-19 in Algeria: statistic study. Bull Natl Res Centre 44(1):138

Kampf G, Todt D, Pfaender S, Steinmann E (2020) Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J Hosp Infect 104(3):246–251

Karia R, Gupta I, Khandait H, Yadav A, Yadav A (2020) COVID-19 and its modes of transmission. SN Compr Clin Med 2(10):1798–1801

Kenawy El, Ahmed M et al (2021) The impact of COVID-19 lockdowns on surface urban heat island changes and air-quality improvements across 21 major cities in the Middle East. Environ Pollut 288:117802

Khajavi A, Khalili D, Azizi F, Hadaegh F (2019) Impact of temperature and air pollution on cardiovascular disease and death in Iran: a 15-year follow-up of Tehran Lipid and Glucose Study. Sci Total Environ 661:243–250

Khalis M, Toure AB, El Badiisy I, Khomsi K, Najmi H, Bouaddi O, Marfak A, Al-Delaimy WK, Berraoo M, Nejjarj C (2022) Relationship between meteorological and air quality parameters and COVID-19 in Casablanca region, Morocco. Int J Environ Res Public Health 19(9):4989

Khelfaoui I et al (2022a) Information communication technology and infant mortality in low-income countries: empirical study using panel data models. Int J Environ Res Public Health 19(12):7338

Khelfaoui I, Xie Y, Haeez M, Ahmed D, Degha HE, Meskerh H (2022b) Effects of health shocks, insurance, and education on income: fresh analysis using CHNS panel data. Int J Environ Res Public Health 19(14):8298

Khomsi K et al (2020) COVID-19 National lockdown in Morocco: impacts on air quality and public health. One Health 11:100200

Klentner D, Funke F, Mattauch L, O’Callaghan B (2020) Five lessons from COVID-19 for advancing climate change mitigation. Environ Resource Econ 76(4):751–778

Komarova NL, Wodarz D (2020) Modeling the dynamics of COVID19 spread during and after social distancing: interpreting prolonged infection plateaus. Epidemiology, preprint. http://medrxiv.org/lookup doi:10.1101/2020.06.13.20130625, 19 June 2022

Kroupoungos G, et al (2020) “COVID-19: a relationship to climate and environmental conditions?” Dermatologic Therapy 33(4). https://www.tandfonline.com/doi/full/10.1111/dth.13399, 20 June 2022

Kulshreshtha K, Sharma G (2022) From restaurant to cloud kitchen: sustainable development goal (SDG). J Clean Prod 312:127705

Lofgren E et al (2007) Influenza seasonality: underlying causes and modeling theories. J Virol 81(11):5429–5436

Madhav S, et al (2020) “Water pollutants: sources and impact on the environment and human health.” In Sensors in water pollutants monitoring: role of material, Advanced Functional Materials and Sensors, eds. D. Pooja, Praveen Kumar, Pardeep Singh, and Sandip Patil. Singapore: Springer Singapore, 43–62. http://link.springer.com/10.1007/978-981-15-0671-0_4, 20 June 2022

Mahmoud L, et al (2022) “The improvement in PM2.5 levels in Education City, Doha, Qatar during the COVID-19 Lockdown Was Limited and Transient.” QScience Connect 2022(1). https://www.qscience.com/content/journals/10.5339/connect.2022.3. 20 June 2022

Malki Z et al (2020) Association between weather data and COVID-19 pandemic predicting mortality rate: machine learning approaches. Chaos Solitons Fractals 138:110137

Mandour RA (2012) Human health impacts of drinking water (surface and ground) pollution Dakahlia Governorate, Egypt. Appl Water Sci 2(3):157–163

Mansouri Daneshvar MR, Ebrahimi M, Sadeghi A, Mahmouzadeh A (2022) Climate effects on the COVID-19 outbreak: a comparative analysis between the UAE and Switzerland. Model Earth Syst Environ 8(1):469–482

Menzel T et al (2020) The link between air pollution and covid-19 mortality. https://airqualitynews.com/2020/12/10/the-link-between-air-pollution-and-covid-19-mortality/. Accessed 25 April 2022

Marquès M, Rovira J, Nadal M, Domingo JL (2021) Effects of air pollution on the potential transmission and mortality of COVID-19: a preliminary case-study in Tarragona Province (Spain). Environ Res 192:110315

Martelletti L, Martelletti P (2020) Air pollution and the novel Covid-19 disease: a putative disease risk factor. SN Compr Clin Med 2(4):383–387. https://doi.org/10.1007/s42399-020-00274-4

McKeown AE, Bugyi G eds (2016) Impact of water pollution on human health and environmental sustainability: IGI Global. https://services.igi-global.com/resolvedoi/resolver.aspx?doi=10.4018/978-1-4666-9559-7. 20 June 2022

Mehmood MU et al (2019) A review of the applications of artificial intelligence and big data to buildings for energy-efficiency and a comfortable indoor living environment. Energy Build 192:109383

Merkin A, Krishnamurthi R, Medvedev ON (2022) Machine learning, artificial intelligence and the prediction of dementia. Curr Opin Psychiatry 35(2):123–129

Minhas S (2020) Could India be the origin of next COVID-19 like epidemic? Sci Total Environ 728:138918

Mirbolouki A et al (2022) Comparison of the advanced machine learning methods for better prediction accuracy of solar radiation using only temperature data: a case study. Int J Energy Res 46(3):2709–2736

Mostafa MK, Gamal G, Wafiq A (2021) The impact of COVID 19 on air pollution levels and other environmental indicators - a case study of Egypt. J Environ Manage 277:111496

Muhammad S, Long X, Salman M (2020) COVID-19 pandemic and environmental pollution: a blessing in disguise? Sci Total Environ 728:138820

Mujwar S (2021) Computational repurposing of tamibarotene for COVID-19 treatment. OPJCHEM 20(6):101053

Mumtaz MK, Gamal G, Wafiq A (2021) The impact of COVID-19 on the air quality and public health in the Casablanca region, Morocco. J Clean Prod 288:117802

Muntharieff A et al (2020a) The impact of COVID-19 pandemic on global PM emissions.” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects: 1–16

L’Heureux A, Grolinger K, Elyamany HF, Capretz MAM (2017) Machine learning with big data: challenges and approaches. IEEE Access 5:7776–7797

Mantou W, et al (2020) “The impact of COVID-19 on the air quality and public health.” One Health 11:100200

Lodder W, de Roda Husman AM (2020) SARS-CoV-2 in wastewater: potential health risk, but also data source. Lancet Gastroenterol Hepatol 5(6):533–34

Mirbolouki A et al (2022) Comparison of the advanced machine learning methods for better prediction accuracy of solar radiation using only temperature data: a case study. Int J Energy Res 46(3):2709–2736
Xia W, Jiang Y, Chen X, Zhao R (2022) Application of machine learning algorithms in municipal solid waste management: a mini review. Waste Manag Res Sustain Circular Econ 40(6):609–624
Yadav M, Perumal M, Srinivas M (2020) Analysis on novel coronavirus (COVID-19) using machine learning methods. Chaos Solitons Fractals 139:110050
Yan Li et al (2020) An interpretable mortality prediction model for COVID-19 patients. Nat Mach Intell 2(5):283–288
Zhao L, et al (2020a) COVID-19: Effects of environmental conditions on the propagation of respiratory droplets. Infectious Diseases (except HIV/AIDS). preprint. http://medrxiv.org/lookup/doi/10.1101/2020.05.24.20111963. 20 June 2022
Zhao Z et al (2020b) Prediction of the COVID-19 spread in African countries and implications for prevention and control: a case study in South Africa, Egypt, Algeria, Nigeria, Senegal and Kenya. Sci Total Environ 729:138959
Zhu Y, Xie J, Huang F, Cao L (2020) Association between short-term exposure to air pollution and COVID-19 infection: evidence from China. Sci Total Environ 727:138704. https://doi.org/10.1016/j.scitotenv.2020.138704
Ziaeepour H et al (2008) GRB 060607A: a gamma-ray burst with bright asynchronous early x-ray and optical emissions: GRB 060607A asynchronous early emissions. Mon Not R Astron Soc 385(1):453–467

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.