High-risk opioid prescribing trends in the outpatient setting prior to issuance of federal guidance

Alyssa M. Peckhama,b, Kathleen A. Fairmanc, Gina Awanisc, Nicole K. Earlyc*

a 360 Huntington Ave, Boston, MA 02115, Bouvé College of Health Sciences, Northeastern University, USA
b 55 Fruit St, Boston, MA 02114, Massachusetts General Hospital, Substance Use Disorders Initiative, USA
c 19555 N 59th Avenue, Glendale, AZ, USA, Department of Pharmacy Practice, Midwestern University College of Pharmacy-Glendale

\textbf{ARTICLE INFO}

Keywords: Opioids Benzodiazepines Sedatives Older adults Medication safety High-risk prescribing

\textbf{ABSTRACT}

Co-prescription of opioid and benzodiazepine products increases the risk of overdose-related mortality four-fold due to respiratory depression. Accordingly, prevention of high-risk opioid prescribing (HROP) has become a focus over the past two decades and was the subject of a black-box warning (BBW) issued by the U.S. Food and Drug Administration (FDA) on August 31, 2016. Because older patients are at increased risk for these outcomes, we compared rates of HROP for older (aged \(\geq 65\) years) and younger (aged 18–64 years) adults using a repeated cross-sectional cohort design. Data from the National Ambulatory Medical Care Survey of U.S. office-based physician visits were accessed for 2006–2016 August. From 2006 to 2016, the opioid-prescribing rate increased by 40% among those aged 18–64 years and by 54% among those aged \(\geq 65\) years. From 2012–2013 to 2014–2016, the HROP rate, expressed as a proportion of all opioid-prescribing visits, increased to 26.6% among those aged 18–64 years but declined to 21.0% among those aged \(\geq 65\) years, primarily because of changes for patients aged \(\geq 75\) years. Prior to the FDA-issued BBW, the HROP prescribing rate trended upward for all adults, except in 2014–2016 when it began to decline among older adults.

1. Introduction

Prevention of opioid overdose-related mortality has become a key target of public health promotion in the past two decades due to rapid increases in use and misuse of both prescribed and/or illicit opioids (Centers for Disease Control and Prevention, 2018; Guy et al., 2017; Kanouse and Compton, 2015). The rate of opioid overdose-related mortality increases up to 4-fold with co-prescribed benzodiazepines, primarily because of the risk of respiratory depression, which is independently associated with each medication, is compounded when the two are co-administered (Jones and McAninch, 2015; Park et al., 2015; Sun et al., 2017). Given this risk, on August 31, 2016, the U.S. Food and Drug Administration (FDA) announced requirements for a “black box” warning. This warning is included in the prescribing information for all benzodiazepine- or opioid-containing products to alert prescribers of the serious risk of respiratory depression and death from opioid-benzodiazepine co-prescription. The warning suggests prescribing this combination only if necessary, for a limited duration, at a limited dose, only if alternative treatment options are unavailable, and with close monitoring (U.S. Food and Drug Administration, 2016).

Even before the FDA warning was issued, trends in opioid-benzodiazepine co-prescription may have begun to decline, but evidence on this point is inconsistent. One analysis of office visits made by adults aged \(\geq 20\) years for pain-related conditions found that the rate of opioid co-prescription in patients using benzodiazepines, measured per 1000 persons, increased by 86% from 189 in 2005 to 351 in 2010, and declined thereafter to 172 in 2015 (Ladapo et al., 2018). However, another study using the same data source and measuring opioid-benzodiazepine co-prescription in adults aged 18–64 years making an office visit for pain-related conditions found a relatively steady rate of increase from 9.8 per 10,000 visits in 1993 to 62.5 per 10,000 visits in 2014 (Hirschtritt et al., 2018).

Whether this difference in findings reflects the inclusion of older adults in the study by Ladapo et al. but not that of Hirschtritt et al. is an important question, because the morbidity and mortality risks associated with opioid-benzodiazepine co-prescription are elevated in patients aged \(\geq 65\) years. In one study of emergency visits made for co-prescribed opioid-benzodiazepine from 2005 to 2011, patients aged \(\geq 65\) years had the highest predicted risk of hospital admission or death compared with patients in younger age groups (Substance Abuse and...
Mental Health Services Administration, 2014). Opioid-benzodiazepine combined misuse also increases the risk of suicidal ideation in older adults (Schepis et al., 2019). Because of these risks, the generally limited base of evidence about the prevalence and predictors of opioid-benzodiazepine misuse by older adults has been identified as an important gap in the literature (Maree et al., 2016), and our more recent search of the literature on medication use by older adults supports this viewpoint (Hirschtritt et al., 2018; Ladapo et al., 2018).

In addition to addressing this gap in information about older adults, the present study was conducted to expand the surveillance of high-risk opioid prescribing (HROP) in two ways. First, the study included barbiturates and hypnotics in the definition of HROP because opioid-related respiratory depression risk may be increased by central nervous system depressants other than benzodiazepines (Paulozzi et al., 2012; National Institute on Drug Abuse, 2018). Second, all opioid-treated patients, rather than only those with pain-related diagnoses, were included in the present study sample to inform prevention initiatives by providing information about population-level prevalence and predictors of HROP. The study examined trends in opioid and HROP over the ten-year period beginning in 2006, comparing rates of use in cohorts of patients aged 18–64 years and ≥65 years. Additionally, the study assessed predictors of HROP in 2014 through the first 8 months of 2016, the 32-month time period preceding the FDA black-box warning.

2. Materials and methods

2.1. Data source

Study data were obtained from the National Ambulatory Medical Care Survey (NAMCS), a nationally representative assessment of care provided in office visits made to non-federally employed U.S. physicians, which is conducted annually by the National Center for Health Statistics (NCHS). NAMCS data are widely used in published research providing information about population-level prevalence and predictors of HROP. The study examined trends in opioid and HROP over the ten-year period beginning in 2006, comparing rates of use in cohorts of patients aged 18–64 years and ≥65 years. Additionally, the study assessed predictors of HROP in 2014 through the first 8 months of 2016, the 32-month time period preceding the FDA black-box warning.

2.3. Study measures

To identify drugs for study, Multum Lexicon generic drug codes provided by the NCHS were matched to drug names, which were classified into therapy categories for analysis (Appendix 1). Drug-related measures included the prescribing of at least one opioid at the visit, alone or with a barbiturate, benzodiazepine, or hypnotic (i.e., HROP). Medical conditions and comorbidities were identified using condition/comorbidity indicators and diagnoses, measured as International Classification of Diseases, Ninth Revision (ICD-9) codes in 2014–2015 and ICD-10 codes in 2016 (Appendix 2).

2.4. Statistical analyses

Use prevalence rates for each drug or drug combination were defined as the number of visits at which the drug was newly prescribed or continued, divided by the total number of visits. HROP prevalence rates were calculated as total number of HROP visits expressed as a proportion of all visits at which an opioid was prescribed. Longitudinal analysis examined these rates over time, grouping data into multiyear time periods as advised by the NCHS to increase statistical reliability, a commonly used technique in analyses of this dataset (Fairman et al., 2017; Hsiao, 2010; Myrick, n.d.; Olfson et al., 2013).

For the most recent time period included in the study, 2014 through the first 8 months of 2016, patient characteristics—including sex, cardiovascular risk factors and diagnosed cardiovascular disease, chronic pain, psychiatric conditions, and substance use disorder—were measured as prevalence rates (total number of visits in which the diagnosis or condition was reported, divided by total number of visits). In bivariate analyses of high-risk opioid users, these calculations were performed separately for each of the two age groups. Characteristics included in these analyses were chosen from literature review, specifically based on (a) those reported by Hirschtritt et al. as significant predictors of opioid-benzodiazepine use compared with opioid use alone, such as substance use disorder, anxiety, and depression, plus (b) risk factors (e.g., diabetes, hypertension) and diagnoses for cardiovascular or respiratory diseases, which are often chronically comorbid with substance use disorders (Wu et al., 2018).

To assess the independent associations of each demographic and clinical characteristic with high-risk opioid use, a binary logistic regression of high-risk opioid use on demographic and clinical predictors was performed. To increase statistical power for this analysis, the list of cardiovascular risk factors was recoded to categories of 1, 2, or ≥3, compared with no (0) risk factors as the reference category. Additionally, predictors that were insignificant in both the work of Hirschtritt et al. (2018) and in the bivariate analysis were not included in the logistic regression analysis, with the exception that chronic pain was included because of the focus on patients with this condition in previous work (Hirschtritt et al., 2018; Ladapo et al., 2018). The logistic regression analysis was limited to patients without cancer due to the high rate of opioid use within this population.

2.5. Statistical reliability and calculation of nationally representative estimates

For each office visit record, the NCHS provides (1) a weight that adjusts for the sampling design and nonresponse and (2) sample design weights that adjust for the sampling design and nonresponse.
weights that reflect the clustered and stratified design. Using these weights, procedures for complex samples produce nationally representative estimates and sampling variance measures that have been adjusted for sampling design. For the present study, the SPSS (IBM SPSS, Armonk, NY) v25.0 complex samples procedure was used. Estimates were assessed for statistical reliability using the standard recommended by the NCHS of ≥30 records and ratio of standard error to the estimate < 30% (National Center for Health Statistics, 2015b).

3. Results

From 2006 to 2007 to 2014–2016 August, opioid prescribing rates in office visits made by adults increased by 40% (from 9.2% to 12.9%) among those aged 18–64 years and by 54% (from 7.1% to 10.9%) among those aged ≥65 years (Fig. 1). For both age groups, about one-fifth of visits in which opioids were prescribed in 2006–2007 included a concomitant high-risk drug (barbiturate, benzodiazepine, or hypnotic). Through 2012–2013, both age groups displayed similar patterns of increase in HROP rates, expressed as a proportion of opioid-prescribing visits. In 2014–2016 August, HROP rates continued to increase to 26.6% among those aged 18–64 years, while declining to 21.0% among those aged ≥65 years, resulting in a very slight decline from 24.8% in 2012–2013 to 24.6% in 2014–2016 for adults overall (results for all adults not shown in Fig. 1).

A post-hoc analysis with separate trends for those aged 50–64 years, 65–74 years, and ≥75 years showed a decline in opioid use by those aged ≥75 years (Fig. 2, Panel A) and a leveling off of HROP among patients aged 65–74 years who were prescribed opioids, from 22.9% in 2012–2013 to 22.7% in 2014–2016 August (Fig. 2, Panel B). Among patients aged ≥75 years who were prescribed opioids, trends in HROP fluctuated over time, declining to 18.5% in 2014–2016 August (Fig. 2, Panel B). Sensitivity analyses of patients with chronic noncancer pain or substance use disorder produced similar results, although the number of older adults with substance use disorder was insufficient for analysis.
Table 1
Characteristics (%) by age group, patients prescribed ≥1 high-risk opioid combination (opioids + barbiturate, benzodiazepine, or hypnotic), 2014–2016 August.

	Aged 18–64 years	Aged ≥ 65 years	All
Unweighted N	1,416	598	2,014
Weighted N, annualized	46,322,848	16,851,254	63,174,102
Female	59.3%	59.2%	59.3%
Race			
White	86.7%	86.3%	86.6%
Nonwhite	13.3%	NR	13.4%
Comorbid cardiac risk factors			
Diabetes*	13.7%	NR	20.5% (26.8%)
Hypertension**	34.2%	63.8%	42.2%
Obesity	12.3%	8.7%	11.4%
Obstructive sleep apnea	3.9%	6.2%	4.5%
Tobacco use**	37.7%	19.8%	23.7%
Cancer*	3.0%	NR	3.5%
Cardiovascular disease (any)**	7.1%	27.5%	12.5%
Atypical fibrillation/ arhythmia**	NR	6.2%	2.0%
Cerebrovascular disease	37.3%	10.0%	21.1%
Coronary artery disease**	4.4%	20.0%	8.7%
Pain (chronic)**	52.4%	44.2%	50.2%
Psychiatric comorbidities			
Anxiety**	16.6%	23.3%	18.7%
Depression**	20.3%	23.8%	21.8%
Renal disease**	26.8%	NR	12.1% (16.3%)
Respiratory disease**	11.9%	16.7%	13.2%
Substance use disorder**	13.9%	5.0%	11.6%
Alcohol (diagnosis or code/recommendation)	2.7%	NR	2.4%
Substance use disorder or long-term drug use code with controlled substance**	17.2%	7.0%	14.4%

BMI = body mass index; COPD = chronic obstructive pulmonary disease; ICD = international classification of diseases; kg = kilograms; m² = body surface area in squared meters; MI = myocardial infarction; NEC = not elsewhere classified; NR = not statistically reliable (standard error exceeds 30% of the estimate). *p < 0.05; **p < 0.001. Indicates that N ≥ 20, N < 30, and ratio of standard error to the estimate meets standards for statistical reliability.

* Through August 2016, prior to the US Food and Drug Administration black-box warning.

** Coded by diagnosis (ICD-9 in 2014–2015, ICD-10 in 2016); see codes in Appendix 2. Hepatic impairment estimates are not shown because they did not meet statistical reliability standards.

† Condition code of coronary artery disease, cerebrovascular disease, or congestive heart failure, or diagnosis of angina, atrial fibrillation/arhythmia, cardiomegaly, cardiomyopathy, hypertensive heart disease, “old” (history) MI, or peripheral arterial disease. ICD codes in Appendix 2.

‡ Condition code for chronic kidney disease or end-stage renal disease.

§ Condition code for asthma or condition code for COPD or any of the following: cystic fibrosis, chronic bronchitis, emphysema, bronchiectasis, extrinsic allergic alveolitis, chronic airway obstruction NEC; see ICD codes in Appendix 2.

(filename)

Table 2
Predictive model of high-risk opioid prescribing, patients without cancer, 2014–2016 August.

	Exponentiated beta (odds ratio)	95% Confidence interval lower limit	95% Confidence interval upper limit
Age (years)			
18–34	0.528	0.378	0.738
35 to 49	Ref	Ref	Ref
50 to 64	1.060	0.824	1.364
65 to 74	0.841	0.602	1.173
75 or older	0.552	0.360	0.844
Anxiety	3.521	2.290	5.412
Depression**	1.765	1.254	2.486
Chronic pain†	3.673	2.906	4.642
Current tobacco use†	2.266	1.794	2.861
Substance use disorder†	2.324	1.626	3.323
Comorbid cardiac risk factors†			
None	Ref	Ref	Ref
One†	1.600	1.206	2.122
Two†	1.441	1.049	1.978
Three or more†	1.789	1.194	2.683

N of cases = 53,928 unweighted; Nagelkerke R square = 0.140; C-statistic = 0.719. Bold font denotes statistical significance.

a Through August 2016, prior to the US Food and Drug Administration black-box warning.

b Relative standard error > 30%; result should be interpreted cautiously.

c For diagnoses and medical conditions, reference category includes those without the disorder shown in the row label.

d Condition code for substance abuse or alcohol abuse, or provided/recommended education on substance abuse or alcohol abuse, or reason for visit is drug- or alcohol-related, or any diagnosis for addiction/abuse of alcohol, opioids, hypnotics/anxiolytics, stimulants, or other/unspecified substances; or code for long-term drug use in patients with a controlled substance prescription; see codes in Appendix 2.

e Diabetes, hyperlipidemia, hypertension, obesity, and obstructive sleep apnea.

Compared with 7% of younger adults, had a diagnosis of cardiovascular disease. Conversely, younger adults were more likely than older adults to have a diagnosis of chronic pain (52% vs. 44%, respectively), depression (27% vs. 20%), or substance use disorder (14% vs. 5%, respectively), and were much more likely to use tobacco (38% vs. 20%, respectively). Anxiety was also common among younger adults (18%). In bivariate analysis of predictors, these factors were strongly predictive of high-risk opioid use, as were age categories based on the work of Hirschtritt et al. (2018) (Appendix 4).

In the logistic regression analysis, the odds of HROP were multiplied by 3.67 (95% confidence interval [CI] = 2.91–4.64) with a diagnosis of chronic pain; by 3.52 (95% CI = 2.29–5.41) with anxiety; and were more than doubled with current tobacco use or substance use disorder (Table 2). Cardiovascular risk factors were also associated with increased odds of HROP, although to a lesser degree. Compared with the reference group of adults aged 35–49 years, odds of HROP were not significantly different among those 50–64 years or 65–74 years, but were significantly lower for those aged 18–34 years (odds ratio = 0.53, 95% CI = 0.38–0.74) and those aged ≥75 years (odds ratio = 0.55, 95% CI = 0.36–0.84).

4. Discussion

In physician office visits made by patients aged ≥65 years, the rate of HROP, which had increased steadily over time from 2006–2007 to 2012–2013, began to decline in 2014–2016 August, primarily because of changes occurring among patients aged ≥75 years and a leveling of
the HROP rate among those aged 65–74 years. Since previous research has found a strong association between use of high-risk opioid combinations and high direct and indirect costs, the decreased rate of HROP may translate to improved patient outcomes, decreased costs, and prevention of opioid-overdose related mortality (Reinhart et al., 2018; Kacara-Mandic et al., 2017).

Although a positive finding because of the elevated risk of respiratory depression in older adults, this result is surprising because our study period preceded the issuance of the new FDA guidance on opioid-benzodiazepine co-prescription. The decline in prescribing rates may have been due to several states implementing more stringent requirements for opioid prescriptions prior to 2016. It is also possible that concern about potential opioid-related risks for the “older-older” has increased (Jaul and Barron, 2017). Our findings are consistent with those of a previous study that reported reduced high-dose opioid use with age ≥75 years (Musich et al., 2019), perhaps because known opioid-related risks, such as cardiovascular events or fractures (Saunders et al., 2010; Solomon et al., 2010) are highly prevalent and clinically serious in this age group (Jaul and Barron, 2017).

In contrast to the findings for older adults, the rate of HROP in patients aged 18–64 years continued to increase in 2014–2016 August. The rate of HROP was multiplied > 3-fold with diagnoses of either chronic pain or anxiety, and doubled with a diagnosis of tobacco or substance use disorder. The continued increase of HROP overlaid with these diagnoses may result in unintended harm, such as increased risk of opioid-overdose related mortality.

Among all study patients, there was a slight decline in HROP from 2012–2013 to 2014–2016. This finding aligns with that of Ladapo et al. (2018), who found an overall reduction in HROP prevalence over time. This reduction was not apparent in the study by Hirschtritt et al. (2018), likely due to the exclusion of patients aged ≥65 years from their sample. Despite the present study’s finding of improvement in HROP rates among patients aged ≥65 years, it should be noted that rates for both age groups remain elevated above those from 2006 to 2007. Additionally, despite the decline in HROP rates, rates of opioid prescribing overall continued to increase among older adults from 2012–2013 to 2014–2016 August, highlighting the importance of public health prevention strategies for opioid use reduction. In concert with the recommendations of the FDA, the Centers for Disease Control and Prevention (CDC) released Guidelines for Prescribing Opioids for Chronic Pain in 2016 that suggest non-pharmacological and non-opioid treatment modalities when managing chronic pain (U.S. Food and Drug Administration, 2016; Dowell et al., 2016). As interest in the risks associated with increased controlled substance use and misuse by older adults continues to grow (Han et al., 2019; Huang et al., 2018; McCabe et al., 2019), continued monitoring of trends in HROP in this age group is warranted. Additional research to clarify sociocultural predictors of high-risk drug use, such as family history, criminality, or socioeconomic status, may be helpful to providers who wish to identify older adults who are at elevated risk (Ranapurwala et al., 2018; Webster, 2017).

4.1. Limitations

Several limitations of the study should be noted. First, the NAMCS does not measure medication strength, prescribed duration or dosage, or patient adherence. Second, each NAMCS record represents a single physician office visit. Other than the medical condition codes (e.g., hypertension, diabetes), the NAMCS record does not provide information on patient history. Third, although the NAMCS record does include medications prescribed by another physician and continued by the sampled physician, it does not capture illicit drugs, prescriptions intentionally concealed by patients (e.g., in “doctor shopping”), or medication that was discontinued in the sampled office visit. Fourth, the study sample represents care delivered in physician office visits, not in emergency departments or inpatient hospital settings.

5. Conclusion

While prescribing rates of high-risk opioid use declined in older adults prior to the FDA Black Box Warning regarding opioid-benzodiazepine co-prescription, these rates continued to trend upwards through the first 8 months of 2016 in adults aged 18–64 years. Future studies are needed to assess the impact of the FDA Black Box Warning and CDC Chronic Pain Guideline from 2016 on the rates of HROP.

Declaration of Competing Interest

The authors declare there is no conflict of interest.

Appendix 1

Appendix 1

Unweighted counts of drugs by therapy class, office visits made by adults, all years and 2014–2016 August.

Opioid	2006–2016	2014–2016
Barbiturates	1521	376
Butalbital	1292	337
Mepobarbital	3	1
Phenobarbital	230	38
Benzodiazepines	23,771	5683
Alprazolam	8240	2054
Chlorodiazepoxide	331	76
Clobazam	16	11
Clonazepam	5427	1253
Clorazepate	186	19
Diazepam	2912	757
Estazolam	38	11
Flurazepam	75	13
Lorazepam	5625	1334
Midaazolam	466	128
Oxazepam	95	17
Temazepam	1270	243
Triazolam	148	19
Opioids	34,688	8353
Buprenorphine	1125	339
Butorphanol	39	3
Codeine	2438	676

(continued on next page)
Appendix 1 (continued)

Drug	2006–2016	2014–2016
Dihydrocodeine	5	1
Fentanyl	1224	296
Hydrocodone	15,939	3722
Hydromorphone	662	160
Meperidine	272	38
Methadone	780	114
Morphine	1226	280
Naltrexone	37	0
Opium	15	3
Oxycodone	7415	2031
Oxymorphone	124	41
Pentazocine	25	4
Propoxyphene	1270	13
Tapentadol	105	31
Tramadol (became a controlled substance in July 2014)	5878	1570
Z hypnotics/other hypnoticsb	7371	1476
Eszopiclone	864	129
Sodium oxybate	14	3
Suvorexant	6	6
Zaleplon	156	28
Zolpidem	6394	1319

a Across all drugs prescribed in the visit; 8 drugs maximum through 2011 and 10 drugs maximum thereafter. Measured through August 2016, prior to the US Food and Drug Administration black-box warning.

b Indicates use of one or more of the drugs shown in the rows below. Individual drug counts may not sum to therapy class total because patients could use more than one drug.

Appendix 2

Medical claims codes for diagnoses.

Diagnosis	ICD-9 codes	ICD-10 codes
Abuse/addiction or condition codes as shown in table; note that these codes did not become available until 2014.		
Alcohol-induced mental disorders	F10 Alcohol related disorders	F11 Opioid related disorders
Drug dependence syndrome	F12 Cannabis related disorders	F13 Sedative, hypnotic, or anxiolytic related disorders
Drug dependence	F14 Cocaine related disorders	F15 Other stimulant related disorders
Nondependent abuse of drugs	F16 Hallucinogen related disorders	F18 Inhalant related disorders
Poisoning by opiates and related narcotics	F19 Other psychoactive substance related disorders	T40 Poisoning by and adverse effects of narcotics and psychostimulants (excluding codes for underdosing)
967.0 Poisoning by sedatives and hypnotics	T42.3x, T42.4x, T42.6x, T42.7x poisoning by and adverse effects of barbiturates, benzodiazepines, other/unspecified antiepileptic and sedative-hypnotic drugs (excluding codes for underdosing)	T43.6x Poisoning by and adverse effects of psychostimulants (excluding codes for underdosing)
969.1, 969.2, 969.4, 969.5, 969.6, 969.7	Underdosing is indicated by a code of “6” in the sixth position.	K70 Alcoholic liver disease
Poisoning by tranquilizers, hallucinogens, or psychostimulants		
970 Poisoning by central nervous system stimulants		
EB50.0 Accidental poisoning by heroin		
EB50.1 Accidental poisoning by methadone		
EB50.2 Accidental poisoning by other opiates and related narcotics		
EB851 Accidental poisoning by barbiturates		
EB852 Accidental poisoning by other sedatives and hypnotics		
EB853 Accidental poisoning by tranquilizers		
EB854.1 Accidental poisoning by psychostimulants [hallucinogens]		
EB854.2 Accidental poisoning by psychostimulants		
EB854.3 Accidental poisoning by central nervous system stimulants		
Angina	413 Angina pectoris	I20 Angina pectoris
Anxiety	300 Anxiety, dissociative and somatoform disorders	F40 Phobic anxiety disorders

(continued on next page)
Appendix 2 (continued)

Diagnosis	ICD-9 codes	ICD-10 codes
Arhythmia	426 Conduction disorders	144 Atrioventricular and left bundle-branch block
	427 Cardiac dysrhythmias	145 Other conduction disorders
	V45.0 Cardiac device in situ; unspecified, pacemaker, automatic implantable defibrillator, or other	148 Atrial fibrillation and flutter
	149 Other cardiac arrhythmias	295.0 Presence of cardiac pacemaker
		295.81 Presence of defibrillator, heart assist device, artificial heart, cardiac implant
Cancer	140–149 Malignant neoplasm of lip, oral cavity, and pharynx	140–149 Malignant neoplasms of lip, oral cavity and pharynx
	150–159 Malignant neoplasm of digestive organs and peritonium	150–159 Malignant neoplasms of digestive organs and peritonium
	160–165 Malignant neoplasm of respiratory and intrathoracic organs	160–165 Malignant neoplasms of respiratory and intrathoracic organs
	170 Malignant neoplasm of bone and articular cartilage	170 Malignant neoplasms of bone and articular cartilage
	171 Malignant neoplasm of connective and other soft tissue	171 Malignant neoplasms of connective and other soft tissue
	172 Malignant melanoma of skin	172 Malignant melanoma of skin
	174 Malignant neoplasm of female breast	174 Malignant neoplasms of female breast
	175 Malignant neoplasm of male breast	175 Malignant neoplasms of male breast
	190–199 Malignant neoplasm of other and unspecified sites	190–199 Malignant neoplasms of other and unspecified sites
	200–209 Malignant neoplasm of lymphatic and hematopoietic tissue	200–209 Malignant neoplasms of lymphatic and hematopoietic tissue
Cardiomegaly (LVH)	429.3 Cardiomegaly	151.7 Cardiomegaly
	425 Cardiomyopathy	142 Cardiomyopathy
Congenital heart anomalies	745 Bulbus cordis anomalies and anomalies of cardiac septal closure	210 Congenital malformations of cardiac septa
	746 Other congenital anomalies of heart	222 Congenital malformations of pulmonary and tricuspid valves
	747 Other congenital anomalies of circulatory system	223 Congenital malformations of aortic and mitral valves
	787 Viral hepatitis	B15 Acute hepatitis A
	570 Acute and subacute necrosis of liver	B16 Acute hepatitis B
	571 Chronic liver disease and cirrhosis	B17 Other acute viral hepatitis
	572 Liver abscess and sequelae of chronic liver disease	B18 Chronic viral hepatitis
	573 Other disorders of liver	B19 Unspecified viral hepatitis
	574 Other unspecified sites	K70 Alcoholic liver disease
	744 Other diseases classified elsewhere	K71 Toxic liver disease
	745 Other hepatobiliary diseases	K72 Hepatic failure, not elsewhere classified
	746 Other viral hepatitis	K73 Chronic hepatitis, not elsewhere classified
	747 Other liver diseases and cirrhosis	K74 Fibrosis and cirrhosis of liver
	748 Other diseases of liver	K75 Other inflammatory liver diseases
	749 Other specified liver diseases	K76 Other diseases of liver
	750 Liver disorders in diseases classified elsewhere	K77 Liver disorders in diseases classified elsewhere
	751 Other unspecified liver diseases	K78 Other unspecified liver diseases
Hypertensive heart disease	402 Hypertensive heart disease	111 Hypertensive heart disease
	403 Hypertensive heart and chronic kidney disease	113 Hypertensive heart and chronic kidney disease
	404 Hypertensive heart and chronic kidney disease	114 Hypertensive heart and chronic kidney disease
	405 Hypertensive heart disease and hypertension	Z79.891 Long-term use of opiate analgesics
	406 Hypertensive heart disease and chronic kidney disease	Z79.891 Long-term use of opiate analgesics
Long-term drug use	58.69 Long-term (current) use of other medications	Z79.891 Long-term use of opiate analgesics
	411.9 Postmyocardial infarction syndrome	I24.1 Dressler's syndrome
	412 Old myocardial infarction	I25.3 Old myocardial infarction
“Old” MI	V45.81 Aortocoronary bypass status	295.1 Presence of aortocoronary bypass graft
	V45.82 PTCA status	295.5 Presence of coronary angioplasty implant and graft
	354 Mononeuropathies of upper limb and mononeuropathies multiplex	Z98.6 Angioplasty status
	355 Mononeuropathies of lower limb and unspecified site	Z98.6 Angioplasty status
	356 Hereditary and idiopathic peripheral neuropathy	114 Hereditary and idiopathic peripheral neuropathy
	357 Inflammatory and toxic neuropathy	115 Inflammatory and toxic neuropathy

(continued on next page)
Appendix 2 (continued)

Diagnosis	ICD-9 codes	ICD-10 codes
707 Chronic ulcer of skin		M00-M02 Infectious arthropathies
710.xx-719.xx Arthropathies and related disorders		M04-M04 Autoinflammatory syndromes
720.xx-724.xx Dorsopathies		M05-M14 Inflammatory polyarthropathies
725.xx-729.xx Rheumatism, excluding the back		M15-M19 Osteoarthritis
730.xx-739.xx Osteopathies, chondropathies, and acquired musculoskeletal deformities		M20-M25 Other joint disorders
V66.7 Encounter for palliative care		M30-M36 Systemic connective tissue disorders
M00-M02 Infectious arthropathies		M40-M42 Deforming dorsopathies
M04-M04 Autoinflammatory syndromes		M43-M49 Spondylopathies
M05-M14 Inflammatory polyarthropathies		M50-M54 Other dorsopathies
M15-M19 Osteoarthritis		M60-M63 Disorders of muscles
M20-M25 Other joint disorders		M65-M67 Disorders of synovium and tendon
M30-M36 Systemic connective tissue disorders		M70-M79 Other soft tissue disorders
M40-M42 Deforming dorsopathies		M80-M85 Disorders of bone density and structure
M43-M49 Spondylopathies		M86-M90 Other osteopathies
M50-M54 Other dorsopathies		M91-M95 Chondropathies and other disorders of musculoskeletal system
M60-M63 Disorders of muscles		M96-M97 Postoperative complications and periprosthetic fracture
M65-M67 Disorders of synovium and tendon		
M70-M79 Other soft tissue disorders		
M80-M85 Disorders of bone density and structure		
M86-M90 Other osteopathies		
M91-M95 Chondropathies and other disorders of musculoskeletal system		
M96-M97 Postoperative complications and periprosthetic fracture		
Z51.5 Encounter for palliative care		
Peripheral arterial disease	443.9 Peripheral artery disease, unspecified	I73.9 Peripheral vascular disease, unspecified
Respiratory disease (chronic) or condition codes as shown in table shell	277.0 Cystic fibrosis	E84 Cystic fibrosis
	491 Chronic bronchitis	J41 Simple and mucopurulent chronic bronchitis
	492 Emphysema	J42 Unspecified chronic bronchitis
	494 Bronchiectasis	J43 Emphysema
	495 Extrinsic allergic alveolitis	J44 Other chronic obstructive pulmonary disease
	496 Chronic airway obstruction, not elsewhere classified	J47 Bronchiectasis
Valvular disorders	397.0 Diseases of tricuspid valve	I34 Nonrheumatic mitral valve disorders
	424.0 Mitral valve disorders	I35 Nonrheumatic aortic valve disorders
	424.1 Aortic valve disorders	I36 Nonrheumatic tricuspid valve disorders
	424.2 Tricuspid valve disorders, specified as nonrheumatic	I37 Nonrheumatic pulmonary valve disorders
	424.3 Pulmonary valve disorders	I38 Endocarditis, valve unspecified
	424.9 Endocarditis valve unspecified	I39 Endocarditis and heart valve disorders in diseases classified elsewhere

Appendix 3

Panel A. Chronic Noncancer Pain

Panel B. Substance Use Disorder

Rates represent ≥1 prescription newly initiated or continued. Opioid prescribing is calculated as a percentage of all office visits. Through August, prior to the warning regarding co-prescription of opioids with benzodiazepines, which was issued on August 31, 2016. Results for 2006-2011 are not shown because they did not meet statistical reliability standards.

Appendix 3. Rates of opioid and high-risk opioid prescribing, 2006–2016, adults diagnosed with chronic noncancer pain or substance use disorder, by age category.
Appendix 4

Rate of high-risk combination (opioids + barbiturate, benzodiazepine, or hypnotic) use by sample subgroups, patients without cancer, 2014–2016 Augusta.

Characteristic	Rateb
Sex	
Female	2.9
Male	3.1
Race	
White	3.2
Nonwhite	2.3
Age group (years)c	
18 to 34	1.7
35 to 49	3.7
50 to 64	4.1
65 to 74	2.7
75 or older	1.8
Comorbid cardiac risk factorsd (sum of condition codes for diabetes, hyperlipidemia, hypertension, obesity, sleep apnea, max = 5, truncated at 3 or more)	
None	2.4
One	3.9
Two	3.2
Three or more	3.8
Individual comorbidities	
Diabetes	3.2
Hyperlipidemiae	3.7
Hypertensionf	3.7
Obesityg	3.8
Obstructive sleep apnea	3.9
Tobacco useh	7.4
Cardiovascular diseasei (any)	3.1
Cerebrovascular disease	2.6
Congestive heart failure	2.3
Coronary artery disease	3.5
Other diagnoses and conditions	
Pain (chronic)j	7.2
Psychiatric comorbidities	
Anxietyk	10.4
Depressionl	6.4
Respiratory diseasem	4.2
Substance use disordern	9.1
Alcohol (dx or code/recommendation)o	5.8
Substance use disorder or long-term drug use code with controlled substancep	10.6

BMI = body mass index; COPD = chronic obstructive pulmonary disease; ICD = international classification of diseases; kg = kilograms; m^2 = body surface area in square meters; MI = myocardial infarction; NEC = not elsewhere classified; NR = not statistically reliable (standard error exceeds 30% of the estimate). Pearson chi-square test * $P < 0.05$; ** $P < 0.01$. Indicates that $N ≥ 20$, $N < 30$, and ratio of standard error to the estimate meets standards for statistical reliability.

a Through August 2016, prior to U.S. Food and Drug Administration black-box warning.

b Number of those in subgroup with high-risk opioid use, divided by total number in subgroup.

c Condition code of coronary artery disease, cerebrovascular disease, or congestive heart failure, or diagnosis of angina, atrial fibrillation/arrhythmia, cardiomegaly, cardiomyopathy, hypertensive heart disease, "old" (history) MI, or peripheral arterial disease.

d ICD codes in Appendix 2.

e Condition code for asthma or condition code for COPD or any of the following: cystic fibrosis, chronic bronchitis, emphysema, bronchiectasis, extrinsic allergic alveolitis, chronic airway obstruction NEC.

f Condition code for substance abuse or alcohol abuse, or provided/recommended education on substance abuse or alcohol abuse, or reason for visit is drug- or alcohol-related, or any diagnosis for addiction/abuse of alcohol, opioids, hypnotics/anxiolytics, stimulants, or other/unspecified substances.

References

Centers for Disease Control and Prevention. 2018. 2018 annual surveillance report of drug-related risks and outcomes — United States. Surveillance special report. <https://www.cdc.gov/drugoverdose/pdf/pubs/2018-cdc-drug-surveillance-report.pdf> (accessed 26 October 2018).

Dowell, D., Haegerich, T.M., Chou, R., 2016. CDC guideline for prescribing opioids for chronic pain — United States. In: MMWR Recomm Rep. 65(No. RR-1), pp. 1–49. <https://doi.org/10.15585/mmwr.rr6501e1>.

Fairman, K.A., Peckham, A.M., Sclar, D.A., 2017. Diagnosis and treatment of ADHD in the United States. J. Atten. Disord. <https://doi.org/10.1177/1087054716688534>.

Gerlach, L.B., Olfson, M., Kales, H.C., Maust, D.T., 2017. Opioids and other central nervous system-active polypharmacy in older adults in the United States. J. Am. Geriatr. Soc. 65 (9), 2052–2056. <https://doi.org/10.1111/jgs.14930>.

Guy, G.P., Zhang, K., Bohm, M.K., Losby, J., Lewis, B., Young, R., Murphy, L.B., Dowell, D., 2017. Vital signs: changes in opioid prescribing in the United States, 2006–2015. MMWR Morb. Mortal. Wkly Rep. 66 (26), 697–704. <https://doi.org/10.15585/mmwr.mm6626a4>.

Han, B.H., Sherman, S.E., Palamar, J.J., 2019. Prescription opioid misuse among middle-aged and older adults in the United States, 2015–2016. Prev. Med. 121, 94–98. <https://doi.org/10.1016/j.ypmed.2019.02.018>.

Hirschtritt, M.E., Delucchi, K.L., Olfson, M., 2018. Outpatient, combined use of opioid and benzodiazepine medications in the United States, 1993–2014. Prev. Med. Rep. 9, 49–54. <https://doi.org/10.1016/j.pmedr.2017.12.010>.

Hsiao, C.J., 2010. Understanding and using NAMCS and NHAMCS data. Data tools and basic programming techniques. <https://www.cdc.gov/nchs/ppt/nchs2010/03_Hsiao.pdf> (accessed 26 October 2018).

Huang, X., Keyes, K.M., Li, G., 2018. Increasing prescription opioid and heroin overdose mortality in the United States, 1999–2014: an age-period-cohort analysis. Am. J. Public Health 108 (1), 131–136. <https://doi.org/10.2105/AJPH.2017.304142>.

Jain, C., Barron, J., 2017. Age-related diseases and clinical and public health implications for the 85 years old and over population. Front. Public Health 5 (335) (10.3389%2Ffpubh.2017.00335).

Jones, C.M., McAninch, J.K., 2015. Emergency department visits and overdose deaths from combined use of opioids and benzodiazepines. Am. J. Prev. Med. 49 (4), 493–501. <https://doi.org/10.1016/j.amepre.2015.03.040>.

Kacara-Mandic, P., Meara, E., Morden, N.E., 2017. The growing problem of co-treatment with opioids and benzodiazepines. BMJ 356 (j1224). <https://doi.org/10.1136/bmj.j1224>.
