Osteosarcoma is the most common primary malignant bone tumor among adolescents and children, with high level of lung metastasis and poor prognosis. The treatment of metastatic cases remains a challenge in the clinic, leading to the dramatically decreased survival rate. However, the molecular mechanisms are still unclear. A recent article by Kang et al. demonstrated how chromosomal translocations in osteosarcoma facilitated lung metastasis, and shed new light on its therapeutic strategies\(^1\) (Fig. 1).

Gene fusions have been identified as driver mutations in neoplasia for more than three decades, and the insights gained from these studies help shape our understanding of multiple tumorigenesis.\(^2\) Previous literatures have pointed out several disease-associated structural chromosomal translocations.\(^3\) For example, the high instability of somatic genome in osteosarcoma, including chromothripsis, chromosomal aneuploidy, and chromosomal rearrangements, could contribute to the production of truncated or fusion proteins, and inhibit many key tumor suppressor genes like \(\text{TP53}\) and \(\text{ATRX}\), triggering tumor cells migration.\(^4\) Although many fusion proteins have been validated as effective targets for treating several cancer types in the clinic, there are no such therapies for osteosarcoma. To comprehensively explore this novel area, Kang et al. used TopHat-fusion and SQUID algorithms to screen out some related structural variations in metastatic osteosarcoma. Unlike the prevailing algorithms, which normally filter out intron-related structural variations when searching RNA sequences, this method can preserve exon–intron fusion information, which lays a solid foundation for the following experiment.

Kang et al. first confirmed that the chromosomal translocation-derived aberrant Rab22a was the driver for osteosarcoma lung metastasis in multiple osteosarcoma cell lines and clinical samples. Specially, six fusion transcripts related to \(\text{RAB22A}-\text{NeoF1}\) were identified, designated as \(\text{RAB22A}-\text{NeoF1}-6\). All of them contain the first two exons of \(\text{RAB22A}\), which encode the first 38 amino acids of Rab22a and multiple inverted noncoding regions of chromosome 20. To investigate the role of these transcripts, they were overexpressed in different osteosarcoma cell lines and cell migration and invasion, but not proliferation, were significantly increased. Consistently, authors screened some clinical samples from osteosarcoma patients w/o metastasis and got the same result.

Notably, among these six fusions, they revealed that the protein products of \(\text{RAB22A}-\text{NeoF1}\) were more stable and dominant when compared to others. Therefore, they selected \(\text{Rab22a}-\text{NeoF1}\) for further study. And by using fluorescence in situ hybridization and immunoprecipitation, the specific presence of endogenous \(\text{Rab22a}-\text{NeoF1}\) in ZOS/ZOS-M cell lines and tumor tissues was determined. Furthermore, via either knockdown or overexpression of \(\text{Rab22a}-\text{NeoF1}\) in osteosarcoma cell lines and tumor tissues, they verified that \(\text{Rab22a}-\text{NeoF1}\) could promote tumor migration and invasion, which might be a potential therapeutic target in patients with metastatic osteosarcoma.

The next step of experiment was to investigate how \(\text{Rab22a}-\text{NeoF1}\) drives metastasis. To explore the \(\text{Rab22a}-\text{NeoF1}\) protein interactome, authors performed tandem affinity purification (TAP) with mass spectrometry (TAP–MS), and determined Rho family members as the key downstream factors in metastasis. Then, through coimmunoprecipitation and other techniques, \(\text{Rab22a}-\text{NeoF1}\) was uncovered to promote osteosarcoma lung metastasis by activating RhoA.

The above data indicated that the activation of RhoA by \(\text{Rab22a}-\text{NeoF1}\) could be a critical determinant to boost the metastasis in osteosarcoma. The authors next sought to how RhoA is activated by \(\text{Rab22a}-\text{NeoF1}\). From TAP–MS data and co-transfection results, they showed that \(\text{Rab22a}-\text{NeoF1}\) constitutively bound to a negatively charged region of SmgGDS-607. Interestingly, this region of SmgGDS has been reported to be crucial for its association with RhoA. Based on that, Kang et al. further revealed that the interaction between SmgGDS-607 and RhoA was notably diminished in the presence of \(\text{Rab22a}-\text{NeoF1}\), indicating that \(\text{Rab22a}-\text{NeoF1}\) changes the binding of SmgGDS-607 to RhoA and transfers RhoA into active form.

To further investigate the binding area of \(\text{Rab22a}-\text{NeoF1}\) and SmgGDS-607, Kang et al. confirmed that amino acids 1–10 of \(\text{Rab22a}-\text{NeoF1}\) was required for the interaction with SmgGDS-607. Meanwhile, the author team has already reported that the promoting function of \(\text{Rab22a}-\text{NeoF1}\) is largely dependent on its Lys7 acetylation in osteosarcoma.\(^5\) Based on that, they focused on some positively charged residues and found that Arg4 and Lys7 of \(\text{Rab22a}-\text{NeoF1}\) were essential for this interaction during lung metastasis. And when using specific targeting peptides of \(\text{Rab22a}\), the interaction between \(\text{Rab22a}-\text{NeoF1}\) and SmgGDS-607 was significantly decreased.

1. Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China; 2. Hunan Key Laboratory of Early Diagnosis and Precision Therapy, Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan, China; 3. Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China; 4. Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China; 5. Department of Cardiovascular Medicine, Third Xiangya Hospital, Central South University, Changsha, 410013 Hunan, China and 6. NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Hunan Key Laboratory of Oncotarget Gene, Central South University, Changsha, 410078 Hunan, China; Correspondence: Yongguang Tao (taoyong@mail.csu.edu.cn)

Received: 17 July 2020 Accepted: 24 July 2020
Published online: 24 August 2020
abolished, which inhibited lung metastasis and increased the survival time, suggesting a potential therapeutic target for osteosarcoma lung metastasis.

Collectively, through comprehensive analysis of different osteosarcoma cell lines, animal models, and patient samples, Kang et al. discovered that Rab22a-NeoF1/SmgGDS-607/RhoA axis is one of the potential mechanisms in driving tumor metastasis. This paper also highlights the importance to understand the genes formed by fusion of exons and introns, which have been ignored by most analyses. With recent advances in deep-sequencing technologies, diverse gene fusions, along with their functions, have been gradually identified and elucidated. More details to understand the fresh fusions are warranted, especially about the mechanisms of modification, downstream factors they target, and cellular processes they regulate. Previous clinical analysis has demonstrated some fusions in other cancers like breast cancer. Considering that clinical trials targeting on fusion proteins have been successfully applied in other tumors, this research provides experimental evidence and clinical basis for therapies targeting truncated or fusion proteins against osteosarcoma lung metastasis.

FUNDING
This work was supported by the National Natural Science Foundation of China (81672787, Y.T.), the National Basic Research Program of China (2015CB553903, Y.T.), and the Key Area R&D Program of the Hunan Province in China (2019SK2253, Y.T.).

ADDITIONAL INFORMATION
Competing interests: The authors declare no competing interests.

REFERENCES
1. Liao, D. et al. Chromosomal translocation-derived aberrant Rab22a drives metastasis of osteosarcoma. Nat. Cell Biol. 22, 868–881 (2020).
2. Mertens, F., Johansson, B., Fioretos, T. & Mitelman, F. The emerging complexity of gene fusions in cancer. Nat. Rev. Cancer 15, 371–381 (2015).
3. PCAWG Transcriptome Core Group. et al. Genomic basis for RNA alterations in cancer. Nature 578, 129–136 (2020).
4. Liang, X. et al. Acetylation dependent functions of Rab22a-NeoF1 fusion protein in osteosarcoma. Theranostics 10, 7747–7757 (2020).
5. Yun, J. W. et al. Dysregulation of cancer genes by recurrent intergenic fusions. Genome Biol. 21, 166 (2020).