Prognostic impact of the number of peri-tumoral alveolar macrophages in patients with stage I lung adenocarcinoma

Osamu Noritake1,2 · Keiju Aokage2 · Ayako Suzuki3 · Kenta Tane2 · Tomohiro Miyoshi2 · Joji Samejima2 · Toyohumi Yoshikawa4 · Shawhay Charles Murata1 · Tokiko Nakai1 · Masahiro Tsuboi2 · Genichiro Ishii1,5

Received: 27 August 2021 / Accepted: 19 April 2022 / Published online: 2 July 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract

Purpose Intratumoral macrophages are reportedly involved in tumor progression in non-small cell lung cancer; however, little is known about the prognostic impact and function of alveolar macrophages (AMs). This study aims to investigate the prognostic impact of the number of peri-tumoral AMs in patients with stage I lung adenocarcinoma.

Methods We investigated 514 patients with pathological stage I lung adenocarcinoma who underwent complete resection with lobectomy or pneumonectomy. The numbers of peri-tumoral AMs were counted, and patients were classified into two groups based on the number of peri-tumoral AMs. Using the Cancer Genome Atlas (TCGA) database of stage I lung adenocarcinoma, we compared gene expression profiles of high and low peri-tumoral AM contents.

Results The median number of peri-tumoral AMs per alveolar space was 15.5. Patients with a high peri-tumoral AM content had significantly shorter disease-free survival and overall survival than patients with a low peri-tumoral AM content (both \(p < 0.01\)). In the multivariate analyses, a higher number of peri-tumoral AMs were an independent prognostic factor \((p = 0.02)\). The analysis of TCGA database revealed that patients with a high peri-tumoral AM content had shorter disease-free survival than those with a low peri-tumoral AM content \((p = 0.04)\). Gene expression analysis of TCGA stage I lung adenocarcinoma revealed enrichment of biological processes, such as chemotaxis and epithelial proliferation, in patients with a high peri-tumoral AM content.

Conclusion The number of peri-tumoral AMs had a strong impact on disease-free survival in patients with stage I lung adenocarcinoma.

Keywords Alveolar macrophage · Peritumoral · Lung adenocarcinoma · The Cancer Genome Atlas

Abbreviations

NSCLC Non-small cell lung cancer
TME Tumor microenvironment
TAM Tumor-associated macrophage
AM Alveolar macrophage
AIS Adenocarcinoma in situ
HE Hematoxylin and eosin
VVG Verhoeff–van Gieson
STAS Spread through air space
TCGA The Cancer Genome Atlas
GO Gene Ontology
OS Overall survival
DFS Disease-free survival
ROC Receiver operating characteristic
Introduction

Lung cancer is the leading cause of cancer-related deaths worldwide (Siegel et al. 2020). Non-small cell lung cancer (NSCLC) accounts for approximately 80% of all lung malignancies (Lewis et al. 2014), and adenocarcinomas are the most common type of NSCLC. Early-stage NSCLC patients are generally treated with complete surgical resection of the tumor. However, even after the complete resection of stage I NSCLC patients, the 5-year survival rate was 81–92% (Rami-Porta et al. 2014). Therefore, it is important to identify risk factors for recurrences that are different from conventional viewpoints, such as invasive tumor size, lymphovascular invasion, and pleural invasion.

In addition to tumor cells, tumor tissues are composed of lymphocytes, monocytes, macrophages, and fibroblasts, establishing a complex tumor microenvironment (TME) (Comito et al. 2020; Kalluri 2016; Shinghal et al. 2019). Not only tumor cells but also non-tumor cells influence tumor progression (Ishii et al. 2016; Hwang et al. 2020). Macrophages are one of the cells that make up TME, and are known to be closely involved in tumorigenesis and progression of lung cancer (Lewis et al. 2014; Bingle et al. 2002; Mantovani et al. 2017; Conway et al. 2016). Intra-tumoral CD204-positive tumor-associated macrophages (TAMs) have been reported to be associated with tumor aggressiveness in lung adenocarcinoma, and squamous cell carcinoma (Ohtaki et al. 2010; Hirayama et al. 2012).

Additionally, some studies have reported that the peri-tumoral microenvironment influences tumor progression. In pancreatic cancer, the expression of secreted protein acidic and rich in cysteine (SPARC) by peri-tumoral fibroblasts indicates a poorer prognosis for patients (Infante et al. 2007). Moreover, hyaluronan in peri-tumoral stroma is associated with cancer cell spreading in breast cancer (Auvinen et al. 2000). Peritumoral macrophages promote tissue remodeling and proangiogenic pathways in hepatocellular carcinoma, by inducing Th17-mediated inflammation in peri-tumoral stroma (Kuang et al. 2010). For small cell lung cancer, Iriki reported that the macrophages that accumulated near the peripheral areas of tumor nests are important for tumor progression via STAT3 activation, suggesting that peri-tumoral macrophages may be deeply involved in tumor progression (Iriki et al. 2017).

Alveolar macrophages (AMs) reside in the alveolar space, and playing a crucial role in lung homeostasis (Lee et al. 2015; Allard et al. 2018). Additionally, AMs are major cells that constitute the peri-tumoral microenvironment. In the mouse model, AMs perform self-renewal throughout their life cycle (Guilliams et al. 2013), unlike stromal macrophages that are recruited from the circulation (Pollard et al. 2004; Sica et al. 2012). In breast cancer, AMs secrete transforming growth factor beta in a pre-metastatic niche, promoting lung metastases (Sharma et al. 2015). Moreover, AMs mainly advance lung metastasis by generating leukotriene B4 in hepatocellular carcinoma (Nosaka et al. 2018). Speth et al. found that SOCS3 secreted by AMs inhibits tumor progression in lung cancer (Speth et al. 2019).

Based on these findings, we hypothesized that peritumoral AMs are associated with the prognosis of lung cancer. Thus, this study aims to investigate the prognostic impact of the number of peri-tumoral AMs in patients with stage I lung adenocarcinoma.

Materials and methods

Patients

Patients with pathological stage I adenocarcinoma who underwent lobectomy or pneumonectomy with systemic lymph node dissection at the National Cancer Center East between January 2011 and December 2015 were enrolled in this study (Supplementary Fig. 1). We excluded patients who received preoperative therapy and those with adenocarcinoma in situ, undetectable tumors in surgical specimens, and synchronous lung cancer. Finally, 514 patients were enrolled in this study. The study was approved by the institutional review board of the National Cancer Center Hospital East (IRB approval number 2020–239). The clinical characteristics of patients were retrospectively retrieved from the Thoracic Surgical Database of the National Cancer Center Hospital East.

Pathologic evaluation

All surgical specimens were fixed in 10% formalin, and embedded in paraffin. All tumors were cut at 5-mm intervals, and 4-μm thick sections were stained using the hematoxylin and eosin (HE) method. The Verhoeff–van Gieson (VVG) method was used to visualize elastic fibers to identify lymphovascular and pleural invasion. Histological diagnosis was based on the fourth edition of the World Health Organization series, and the disease stages were categorized according to the guidelines of the 8th edition of the TNM Classification of Malignant Tumors (Brierley et al. 2017).

Calculation of the number of alveolar macrophages

We selected the largest cross-sectional slide for each patient to calculate the number of AMs (Fig. 1A–D). The number of macrophages per alveolar space was counted in all peritumoral areas of each largest cross-section. The HE slides were scanned and captured using a digital slide scanner...
(Aperio VERSA SL200; Leica, Biosystems, Nußloch, Germany) and were reviewed by two pathologists (O.N and G.I) who were blinded to the clinicopathologic information of each slide. The peri-tumoral alveolar space was defined as the air space adjacent to the tumor edge within three alveoli, and the further air space was defined as non-adjacent alveolar space. The number of macrophages per alveolar space was counted in all peri-tumoral areas of each largest cross-section. We judged the cells existing the area where the tumor cells located as TAM. AMs were distinguished from spread through air spaces (STAS) of tumor cells using the following methods. Macrophages in smokers typically have cytoplasm containing faint brown pigment and black carbon granules, whereas in non-smokers, the pigment is lacking and the cytoplasm is sometimes foamy. Nuclei are small, uniform, and regular, without atypia. Nuclear folds are frequent, and nucleoli are inconspicuous or absent. Contrastingly, STAS generally lack cytoplasmic pigment or foamy cytoplasm. They often grow in cohesive clusters and nuclei are atypical with hyperchromasia and frequent nucleoli. The number of peri-tumoral AMs was determined as the average of the top five AMs in each patient.

We investigated the correlation between the number of peri-tumoral AMs in HE-stained and peri-tumoral CD68 (KP-1; Roche Diagnostics, Switzerland)-positive AMs. 40 patients were examined for CD68 expression in the peri-tumoral alveolar space (Supplementary Fig. 2A). The distribution of peri-tumoral AMs on HE slides and CD68-positive macrophages in each patient strongly correlated ($p < 0.01, r^2 = 0.91$) (Fig. 2A). In addition, we stained CD204 (Scavenger Receptor class A-E5; Transgenic, Japan) in the same 40 cases as CD68 (Supplementary Fig. 2B). The median number of CD204-positive AMs is 13.2, and there were high correlations between the number of AMs in HE slides and in CD204 slides ($p < 0.01, r^2 = 0.91$), and between the number of AMs in CD68 slides and CD204 slides ($p < 0.01, r^2 = 0.93$) (Fig. 2B, C). Because CD204 is the M2 macrophage marker and does not stain monocytes, most of AMs measured on HE slides can be judged to be macrophages. Therefore, we assessed that HE slides were efficient for counting the number of peri-tumoral AMs, and later the number of peri-tumoral AMs was evaluated using HE slides only.
Gene expression signature analysis on the Cancer Genome Atlas data sets

We analyzed the difference in gene signatures between the number of AMs in lung adenocarcinoma, using the Cancer Genome Atlas-Lung Adenocarcinoma (TCGA-LUAD) datasets. All analyses were performed using R software (version 4.0.2) (https://www.r-project.org/; The R Foundation for Statistical Computing, Vienna, Austria). We downloaded the data of 155 patients with stage I lung adenocarcinoma in June 2020 from the Genomic Data Common (GDC) Data Portal (https://portal.gdc.cancer.gov) using the R/Bioconductor package TCGA biolinks. Using representative digital slides of each patient that can be viewed on the site, we counted and calculated peri-tumoral AMs and divided them into two groups in the manner described above. Twenty-five patients were excluded because of difficulty in evaluating peri-tumoral AMs. Differentially expressed genes between the high and low AM groups were identified using the DESeq2 package (version 1.28.1) [Love MI et al.]. Genes were extracted using adjusted p values (padj) of < 0.05 and log2 fold changes (log2FC) of > 1. We performed hierarchical clustering of

Fig. 2 Correlation of the number of peri-tumoral alveolar macrophages between each slide. **A** The x-axis shows the number of peri-tumoral AMs on the HE slide, and the y-axis shows the number of peri-tumoral CD68-positive AMs. **B** the x-axis shows the number of peri-tumoral AMs on the HE slide, and the y-axis shows the number of peri-tumoral CD204-positive AMs. **C** the x-axis shows the number of peri-tumoral CD68-positive AMs, and the y-axis shows the number of peri-tumoral CD204-positive AMs. AMs alveolar macrophages, HE hematoxylin and eosin
genes that differed in expression between the high and low AM groups (log2FC> 1), and heatmap analysis was performed using gplots (version 3.0.4) [Warnes GR et al.] and genefilter (version 1.70.0) [Gentleman R et al.] packages. Additionally, the differentially expressed genes were assessed for enrichment analysis using Metascape (http://metascape.org/gp/index.html#/main/step1) [Zhou Y et al.]. The Metascape pathway enrichment analysis used terms across different ontology sources, such as Gene Ontology (GO).

Statistical analysis

Associations between the clinicopathologic variables and the number of peri-tumoral AMs were analyzed using Fisher’s exact test (for categorical variables) and the Mann–Whitney U test (for continuous variables). The number of peri-tumoral AMs in each predominant subtype group was compared using the Mann–Whitney U test. Pearson’s correlation coefficient was used to evaluate the correlation between the number of peri-tumoral AMs on HE slides and the number of CD68-positive peri-tumoral AMs. To evaluate prognosis, receiver operating characteristic curves of the number of peri-tumoral AMs were used. Disease-free survival (DFS) was defined as the interval between the date of surgery and the date of recurrence detection, death from any cause, or the last follow-up. Hazard ratios (HRs) were estimated using the Cox proportional hazards model. The date of data cut-off was May 2019 at our institution. These data were analyzed using EZR version 1.51, a graphical user interface for R program.

Results

Correlation between clinicopathological factors and the number of peri-tumoral AMs

The median number of peri-tumoral AMs was 15.5 per alveolar space, and we divided patients into two groups based on this value. Patients with a higher number of peri-tumoral AMs were men, with smoking history; high-grade pathologic T stage; larger pathologic total and invasive tumor sizes; the presence of pleural invasion, lymph vessel invasion and vascular invasion; and a higher proportion of invasive predominant subtypes (Table 1).

Correlation between the numbers of peri-tumoral AMs and the predominant subtype

The relationships between the number of peri-tumoral AMs and predominant subtypes are presented in Fig. 3, wherein the micropapillary-predominant subtype was excluded because of one case. The median number of peri-tumoral AMs for the predominant subtype was 9.6 in lepidic, 20.4 in papillary, 20.2 in acinar, 27.2 in solid subtypes. The number of peri-tumoral AMs in the predominantly solid subtype was significantly higher than that in the acinar subtype (p<0.01), papillary subtype (p<0.01), and lepidic subtype (p<0.01). There were no significant differences between the number of peri-tumoral AMs in the predominantly acinar and papillary subtypes (p=0.78), and the number of peri-tumoral AMs in these two subtypes was significantly higher than that in the lepidic subtype (both p<0.01).

Survival by the number of peri-tumoral AMs

The median follow-up time of patients was 61.8 months. Patients with a high peri-tumoral AM content showed significantly shorter OS (p<0.01, 5-year OS rate: 95% vs. 83.4%) (Fig. 4A) and DFS (p<0.01, 5-year DFS rate: 91.3% vs. 73.5%) (Fig. 4B) than patients with a low peri-tumoral AM content in stage I adenocarcinoma. In stage IA, patients with a high AM content showed significantly shorter OS (p=0.02, 5-year OS rate: 95.3% vs. 88.7%) (Fig. 4C) and DFS (p<0.01, 5-year DFS rate: 93.2% vs. 81.4%) (Fig. 4D). In stage IB, patients with a high peri-tumoral AM content showed significantly shorter OS (p=0.03, 5-year OS rate: 92.4% vs. 72.8%) (Fig. 4E) and DFS (p=0.03, 5-year OS rate: 77.2% vs. 57.8%) (Fig. 4F).

Prognostic significance of the number of peri-tumoral AMs

In the univariate analyses, a larger invasive tumor size, the presence of pleural invasion, lymphatic permeation, presence of vascular invasion, and a higher number of peri-tumoral AMs were significantly associated with shorter DFS (Table 2).

In the multivariate analyses, a higher number of peri-tumoral AMs were an independent prognostic factor for DFS (HR 1.85, 95% confidence interval (CI) 1.11–3.09, p=0.02), in addition to invasive tumor size and vascular invasion.
Evaluation of the survival impact of the number of peri-tumoral AMs

Patients were stratified into two groups according to the different cut-off values of the number of peri-tumoral AMs. Multivariate analyses showed that although the cut-off value was 10, there was no significant difference between patients with high and low peri-tumoral AMs. Both the cut-off values of 20 and 30 were independent factors for DFS (HR 2.01, 95% confidence interval: 1.28–3.15, \(p < 0.01 \); HR 3.27, 95% CI 2.10–5.08, \(p < 0.01 \), respectively), and the hazard ratio gradually increased as the cut-off value increased (Supplementary Table 1). This result suggested the possibility that the higher the number of peri-tumoral AMs, the more likely the tumor

Variables	Overall Cohort (n = 514)	Peri-tumoral AMs < 15.5 (n = 257)	Peri-tumoral AMs ≥ 15.5 (n = 257)	\(p \)
Age (y)				
Median	69 (33–93)	68 (35–87)	69 (33–93)	0.92
< 65	152	75	77	
≥ 65	362	182	180	
Sex				
Female	250	149	101	<0.01
Male	264	108	156	
Smoking history				
Never	232	136	96	<0.01
Ever/current	282	121	161	
Pathologic T stage				
1mi/1a/1b/1c	51/122/153/70	39/82/82/23	12/40/71/47	<0.01
2a	118	31	87	
Total tumor size (mm)				<0.01
Median (range)	24 (7–75)	22 (7–62)	25 (8–75)	
Invasive tumor size (mm)				<0.01
Median (range)	14 (1.5–40)	11 (1.5–40)	18 (2–40)	
Pleural invasion				<0.01
Absent	411	230	181	
Present	103	27	76	
Lymphatic permeation				<0.01
Absent	480	250	230	
Present	34	7	27	
Vascular invasion				<0.01
Absent	411	238	173	
Present	103	19	84	
Predominant subtype				<0.01
Lepidic	260	180	80	
Papillary	115	42	73	
Micropapillary	1	1	0	
Acinar	81	27	54	
Solid	57	7	50	
EGFR mutation (n = 244)				0.36
Absent	120	45	75	
Present	124	54	70	
would recur. Moreover, receiver operating characteristic (ROC) curve of the number of peri-tumoral AMs with recurrence showed that the cut-off value 29.2 was the highest with sensitivity and specificity (Supplementary Fig. 3).

Survival and gene ontology analysis by the number of peri-tumoral AMs in TCGA database

Of the 130 patients, the median number of peri-tumoral AMs that we calculated on TCGA digital slides was 11.3, and we divided them into two groups using this value. Patients with a higher number of peri-tumoral AMs showed significantly shorter DFS (\(p = 0.04 \)) (Fig. 5A), whereas there was no significant difference in OS (data not shown).

We extracted 212 differentially expressed genes (DEGs) between patients with high and low peri-tumoral AMs. A heatmap of 212 DEGs is presented in Fig. 5B. The Metascape pathway enrichment analysis was performed, which identified the top 20 biological processes in the DEGs, including chemotaxis (GO: 0.006,935) and epithelial proliferation (GO: 0.050,673) (Fig. 5C).

Discussion

In our study, clinicopathological factors showed that patients with a high peri-tumoral AM content had more aggressive tumors, such as with larger pathologic invasive tumor size; the presence of pleural invasion, lymphatic permeation, and a higher proportion of more invasive predominant subtype, than patients with a low peri-tumoral AM content. The multivariate analysis revealed that the number of peri-tumoral AMs was an independent prognostic factor. These results suggest that the number of peri-tumoral AMs is a strong factor for poor prognosis in patients with stage I lung adenocarcinoma. To the best of our knowledge, this is the first report showing that the number of AMs is associated with the prognosis of stage I lung adenocarcinoma.

In the analysis using the TCGA dataset, patients with a high peri-tumoral AM content showed shorter DFS than those with a low peri-tumoral AM content, indicating that the results using our hospital cohort are reproducible. The significant difference in some GO pathways, such as chemotaxis and epithelial proliferation, might be one of the reasons why the prognosis was poorer in the group with a high peri-tumoral AM content.

Previous reports have described the relationship between the tumor and the microenvironment around the tumor. In some types of cancer, peri-tumoral macrophages facilitate the progression in tumor cells (Kuang et al. 2010; Iriki et al. 2017). These reports indicate that the microenvironment around the tumor, not only within the tumor, is involved in tumor progression. Alternatively, Sharma et al. reported that AMs provide an environment where lung metastases are likely to occur by suppressing anti-tumor T cell responses in breast cancer (Sharma et al. 2015). Future studies are needed to examine the gene expression profiles of AMs around tumors.

Speth et al. showed that AMs secrete extracellular vesicles which contained SOCS3, and reduced tumor cell proliferation by suppressing STAT3 expression. Meanwhile, Iriki showed that macrophages around the tumor promote STAT3 expression, and facilitate tumor progression. This result suggests the possibility that AMs shown in this study is involved in tumor progression.

We suggest two possible reasons why the number of peri-tumoral AMs differs depending on the patient: (1) Cancer cells themselves mobilize the peri-tumoral AMs, and the ability to attract AMs varies depending on the characteristics of cancer cells in each case. (2) AMs that are originally present
in alveoli before tumorigenesis and the characteristics of AMs in each case may influence the development of adenocarcinoma. To verify our theory, we made the following considerations: We defined non-adjacent alveolar space as the air space 2 mm away from the tumor edge on the largest cross-sectional slide, to avoid overlapping with the peri-tumoral alveolar space, and counted macrophages per alveolar space (Supplementary Fig. 4A, B). There was a strong correlation between peri-tumoral and non-adjacent AMs ($r^2 = 0.723$; Supplementary Fig. 4C). The median number of non-adjacent AMs was 8.6 per alveolar space. In the multivariate analysis, there were no significant differences between patients with a
high and low non-adjacent AM content with the cut-off values of 8.6 and 10 (p = 0.54 and 0.50, respectively) (Supplementary Tables 2, 3). For the cut-off value of 20, patients with a high non-adjacent AM content showed poorer DFS than those with a low non-adjacent AM content (HR 1.57, 95% CI 1.21–2.04, p < 0.01) (Supplementary Table 3). This result may indicate that highly malignant tumors are likely to occur in cases with many AMs where the tumor develops. However, we cannot rule out the possibility that AMs 2 mm apart may also be mobilized by cancer cells. Further studies are needed to elucidate why the number of peri-tumoral AMs varies for each case, further studies will be needed.

There are some limitations to our study. First, this was a retrospective study in a single institution. Second, we did not evaluate the number of AMs on all slides with tumors. Third, the number of AMs is affected by how the lungs are inflated during fixation. Therefore, we should interpret the results of this study with caution.

The prognostic influence of the number of peri-tumoral AMs in our study suggests that both intratumoral and the peri-tumoral microenvironments are important. Recent studies have investigated novel therapeutic strategies aimed at depleting TAMs and/or reprogramming their tumor-promoting effects (Mantovani et al. 2017; Anfray et al. 2020; Sarode et al. 2020). Considering the results of our study, there may be a need for therapeutic efforts targeting AMs, not only TAMs.

Table 2
Univariate and multivariate analysis for disease-free survival based on the number of peri-tumoral AMs

Variable	Univariate	Multivariate				
	HR	95% CI	p	HR	95% CI	p
Age(y)						
< 65	Ref			1.31	0.83–2.08	0.24
≥ 65	1.31	0.83–2.08	0.24			
Sex						
Female	Ref			1.32	0.88–1.98	0.18
Male	1.32	0.88–1.98	0.18			
Smoking history						
Never	Ref			1.29	0.85–1.94	0.23
Ever/Current	1.29	0.85–1.94	0.23			
Invasive tumor size(cm) (+ 1.0 cm)	2.25	1.83–2.78	< 0.01			
Pleural invasion						
Absent	Ref			3.12	2.11–4.81	< 0.01
Present	3.12	2.11–4.81	< 0.01			
Lymph vessel invasion						
Absent	Ref			3.02	1.77–5.18	< 0.01
Present	3.02	1.77–5.18	< 0.01			
Vascular invasion						
Absent	Ref			5.07	3.39–7.58	< 0.01
Present	5.07	3.39–7.58	< 0.01			
Number of peri-tumoral AMs						
Low (< 15.5)	Ref			3.44	1.93–4.80	< 0.01
High (≥ 15.5)	3.44	1.93–4.80	< 0.01	1.85	1.11–3.09	0.02
Fig. 5 Survival and gene ontology analyses by the number of peri-tumoral AMs in the TCGA database. A Kaplan–Meier analysis of disease-free survival in the TCGA database. B Heat map compared with higher and lower peri-tumoral AM content. C Gene ontology and pathways were significantly higher in high peri-tumoral AM content than in low peri-tumoral AM content.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s00432-022-04056-4.

Author contributions ON and GI participated in the study design, data collection, data analysis, manuscript writing and manuscript review. SM contributed significantly to the measurement of CD204-positive AMs. All other authors participated in manuscript review and revision and provided final approval for submission.

Funding This study was supported in part by the National Cancer Center Research and Development Fund (31-A-6).

Availability of data and material There is no availability of data and material.

Code availability There is no code availability.
Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Ethics approval This retrospective study was approved by the Institutional Review Board (IRB approval number: 2020–239).

Consent to participate Informed consent was obtained from all patients.

Consent to publication Comprehensive informed consent was obtained from all patients.

References

Allard B, Panerati A, Martin J (2018) Alveolar macrophages in the resolution of inflammation, tissue repair, and tolerance to infection. Front Oncol 9:1777

Anfray C, Ummarino A, Andon F, Allavena P (2020) Current strategies to target tumor-associated-macrophages to improve anti-tumor immune responses. Cells 9(1):46

Auvinen P, Tammi R, Parkkinnen J, Tammi M, Agren U et al (2000) Hyaluronan in peri-tumoral stroma and malignant cells associates with breast cancer spreading and predicts survival. Am J Pathol 156(2):529–536

Bingle L, Brown N, Lewis C (2002) The role of tumour-associated macrophages in tumour progression: implications for new anti-cancer therapies. J Pathol 196:254–265

Brieler J, Gospodarowicz M, Wittekind C (2017) TNM classification of Malignant Tumours, 8th ed. Wiley & Sons; 2017

Comito G, Ippolito L, Chiarugi P, Cirri P (2020) Nutritional exchanges within tumour microenvironment: Impact for cancer aggressiveness. Front Oncol 10:396

Conway E, Pikor L, Kung S, Hamilton M, Lam S et al (2016) Macrophages, inflammation, and lung cancer. Am J Respir Crit Care Med 193(2):116–130

Guilliams M, Kleer I, Henri S, Post S, Vanhoucke L et al (2013) Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF. J Exp Med 210(10):1977–1992

Hirayama S, Ishii G, Nagai K, Ono S, Kojima M, Yamauchi C et al (2012) Prognostic impact of CD-204 positive macrophages in lung squamous cell carcinoma. J Thorac Oncol 7:1790–1797

Hwang L, Kim J, Ylaya K, Chung E, Kitano H et al (2020) Tumor-associated macrophage, angiogenesis and lymphangiogenesis markers predict prognosis of non-small cell lung cancer patients. J Transl Med 18:443

Infante J, Matsuyabashi H, Sato N, Tsunica J, Klein A et al (2007) Peritumoral fibroblast SPARC expression and patient outcome with resectable pancreatic adenocarcinoma. J Clin Oncol 25:319–325

Irik I, Ohnishi K, Fujiyara Y, Horlad H, Saito Y et al (2017) The cell-cell interaction between tumor-associated macrophages and small cell lung cancer cells is involved in tumor progression via STAT3 activation. Lung Cancer 106:22–32

Ishii G, Ochiai A, Neri S (2016) Phenotypic and functional heterogeneity of cancer-associated fibroblast within the tumor microenvironment. Advanced Drug Delivery Reviews. Volume 99, Part B Pages 186–196

Kalluri R (2016) The biology and function of fibroblasts in cancer. Nat Rev Canc 16:582–598

Kuang D, Peng C, Zhao Q, Wu Y, Chen M et al (2010) Activated monocytes in peri-tumoral stroma of hepatocellular carcinoma promote expansion of memory T helper 17 cells. Hepatology 52(1):154–164

Lee Y, Jeong J, Nynhuis S, Berdyshiev E, Chung S et al (2015) Recruited alveolar macrophages, in response to airway epithelial-derived monocyte chemoattractant protein 1 (CCL2), regulated airway inflammation and remodeling in allergic asthma. Am J Respir Cell Mol Biol 52(6):772–784

Lewis C, Pollard J (2006) Distinct role of macrophages in different tumor microenvironments. Cancer Res 66:605–612

Lewis D, Chen H, Cockburn M, Wu X, Stroup A et al (2014) Early estimates of SEER cancer incidence, 2014. Cancer 123(13):2524–2534

Mantovani A, Marches F, Maleschi A et al (2017) Tumor-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol 14(7):399–416

Nosaka T, Baba T, Tanabe Y, Sasaki S, Nishimura T et al (2018) Alveolar macrophages drive hepatocellular carcinoma lung metastasis by generating leukotriene B4. J Immunol 200:1839–1852

Ohtaki Y, Ishii G, Nagai K, Ashime S, Kuwata T et al (2010) Stromal Macrophage expressing CD204 is associated with tumor aggressiveness in lung adenocarcinoma. J Thorac Oncol 5:1507–1515

Pollard J (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4(1):71–78

Rami-Porta R, Bolejack V, Giroux D, Chansky K, Crowley J et al (2014) The IASLC lung cancer staging project: The new database to inform the eighth edition of the TNM classification of lung cancer. J Thorac Oncol 9:1618–1624.

Sarode P, Zheng X, Gitopoulou G, Weigert A, Kuenne C, et al (2020) Reprogramming of tumor-associated macrophages by targeting β-catenin/FOSL2/ARID5A signaling: A potential treatment of lung cancer. Sci. Adv 6:eaaaz6105

Sharma S, Chintala N, Vadrevu S, Patel J, Karbownikczek M et al (2015) Pulmonary alveolar macrophages contribute to the premetastatic niche by suppressing antitumor T cell responses in the lungs. J Immunol 194:5529–5538

Shinghal S, Stadanlick J, Annunziata M, Rao A, Bhojnagarwala, et al (2019) Human tumor-associated monocytes/macrophages and their regulation of T cell responses in early-stage lung cancer. Sci Transl Med 11(479):eaat1500

Sica A, Porta C, Morlacchi S, Banfi S, Strauss L et al (2012) Origin and functions of tumor-associated myeloid cells (TAMCs). Cancer Microenviron 5(2):133–149

Siegel R, Miller K, Jamel A (2020) Cancer statistics, 2020. CA Cancer J Clin 70:7–30

Speth J, Penke L, Bazzill J, Park K, Rubio R et al (2019) Alveolar macrophage secretion of vesicular SOCS3 represents a platform for lung cancer therapeutics. JCI Insight 4(20):e131340

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.