Ozone and Other Air Pollutants and the Risk of Congenital Heart Defects

Bin Zhang1,*, Jinzhu Zhao1,* , Rong Yang1,*, Zhengmin Qian2, Shengwen Liang3, Bryan A. Bassig4, Yiming Zhang1, Ke Hu3, Shunqing Xu5, Guanghui Dong6, Tongzhang Zheng7 & Shaoping Yang1

The objective of this study was to evaluate whether high levels of maternal exposure to O₃, SO₂, NO₂, CO are related to increased risk of congenital heart defects (CHDs) in Wuhan, China. The study included mothers living in the central districts of Wuhan during pregnancy over the two-year period from June 10, 2011 to June 9, 2013. For each study participant, we assigned 1-month averages of O₃, SO₂, NO₂ and CO exposure based on measurements obtained from the nearest exposure monitor to the living residence of mothers during their early pregnancy period. In one-pollutant model, we observed an increased risk of CHDs, ventricular septal defect (VSD), and tetralogy of fallot (TF) with increasing O₃ exposure. In two-pollutant model, associations with all CHDs, VSD, and TF for O₃ were generally consistent compared to the models that included only O₃, with the strongest aORs observed for exposures during the third month of pregnancy. We also observed a positive association between CO exposures during the third month of pregnancy and VSD in two pollution model. Our results contribute to the small body of evidence regarding air pollution exposure and CHDs, but confirmation of these associations will be needed in future studies.
coarctation of the aorta. However, the summary risk estimates were based on a small number of studies, and few specific types of congenital heart defects were explored. Compared to those literatures published in the United States and Europe, a very limited study has been published on the association between ambient air pollution and CHDs in Asia. And almost all prior studies were conducted in developed countries, which may have lower pollution levels and hence narrower ranges of exposure. In contrast, very few studies have been conducted in developing countries where air pollution is usually high (Table 1).

We conducted a cohort study in Wuhan, China, Asia and developed countries to examine the association between maternal exposure to ambient air pollutants and congenital anomalies. Our study included a large, geographically defined population of 105,988 births among women in Wuhan, one of the most polluted cities in China.

Methods

Study population. This study used a population-based cohort design. All births delivered between June 10, 2011 to June 9, 2013 were abstracted from a perinatal health care system from Wuhan Medical & Healthcare Center for Women and Children (WMHCWC), which was one of the first three centers in China to standardize its women and children’s health information system. The perinatal health care system is a standardized, computer-based database that includes data collected prospectively on all births, and has accrued approximately 100,000 annual births from nearly all maternity units in Wuhan since its start in 2003. In addition, the database includes information on other characteristics including maternal age, education, parity, infant sex, and season of conception. Births enrolled in our study included live-born infants, stillbirths, and fetal deaths. The study only included mothers living in the central districts of Wuhan during pregnancy. A total of 105,988 admissions and 188 congenital heart defects were collected by our monitoring systems during the study period.

We included cases of selected congenital anomalies among live births, stillbirths after 20 weeks of gestation, as well as pregnancies that were terminated following a prenatal diagnosis of either isolated or multiple congenital heart defects. Cases were diagnosed from clinical, surgical, or autopsy reports, and were coded according to the International Classification of Diseases, 10th Revision (ICD-10). We included in this study only anomaly types that are well defined and recorded, specifically all congenital heart defects combined (Q20–Q28) and the two most common subgroups of cardiac anomalies individually, namely VSD (Q21.0) and TF (Q21.3). Cases with chromosomal anomalies were ineligible for the study, as these may be associated with congenital anomalies of interest in this study and are unlikely to be related to air pollution exposure.

The study protocol was reviewed and approved by the Health Department of Hubei Province and the Institutional Review Board at Wuhan Women and Children Health Care Center.

Maternal exposure assessment. We used ambient air monitoring data for carbon monoxide (CO), nitrogen dioxide (NO2), ozone (O3), and sulfur dioxide (SO2), which was collected by the Wuhan Environmental Monitoring Center at nine national ambient air quality automatic monitoring stations. Hourly readings were obtained for CO, NO2, SO2 and O3. A daily average was calculated for CO, NO2 and SO2, whereas an 8-hour average was calculated for O3. All pollutants were monitored at all 9 national stations for the entire study period. The stations were located predominantly in the central districts of Wuhan. The collection of air pollutants and installation of air quality monitoring stations was in strict accordance with the monitoring rules on environmental air quality in China, which is a multi-dimensional environmental standard system. It includes quality standards, emission standards, monitoring standards, management standards, and basic standards. For the rules of selection of ambient air quality monitoring stations, it dictates that monitoring stations should not be located directly near traffic and other large emitters (e.g., industrial sources, incinerators etc) and were mandated not to be influenced by local air pollution in general. Thus the data from the monitoring stations should reflect the general background urban air pollution level rather than local sources (e.g., traffic or industrial combustion). Concentrations of CO, NO2, O3, and SO2 were assigned to each maternal residence based on the nearest monitor to the residential address reported at the time of the first routine physical examination.

Concentrations of CO, NO2, O3, and SO2 were assigned to each maternal residence based on the nearest monitor to the residential address reported at the time of the first routine physical examination. By using the estimated date of conception, 14 days from the recorded last menstrual period (LMP), the exposure assessment was performed for the first three months of pregnancy, and we averaged the 24-hr or 8-hr measurements for the first three months of pregnancy. We assigned 1-month averages of the daily values for CO, NO2, O3, and SO2, and assigned 1-week averages of the daily values for O3 for each study participant. We restricted our population to those pregnancies with data available on ≥ 10 days of each month of the first trimester. This resulted in 97.5–98.9% of the original population for CO, NO2, O3, and SO2.

Statistical methods. Multivariable logistic regression analyses were used to estimate the adjusted ORs and 95% confidence intervals (CI) for the association between exposure to the air pollutants and the risk of congestive heart defects. Based on existing literature and the characteristics of the study population, we consider the variables listed below as major potential confounders and/or effect modifiers: maternal age (<25, 25–35, and >35 years), education (<12, 12, 13–15, >15 years), parity (1, >1), infant sex (male, female), and season of conception (Spring: March–May; Summer: June–August; Fall: September–November; and Winter: December–February).

We constructed one-pollutant models to explore associations between individual pollutants using the monthly exposure assessment and risk of CHDs overall, VSD, and TF. Evaluation of other individual defects was not possible because of the small sample sizes. We conducted two-pollutant models to tease out the effects between the regional pollutants (O3 and SO2) and local pollutants (CO and NO2), without concerning on potential confounding by co-pollutants. Finally, we fitted two-pollutant models with O3 and another pollutant. The two-pollutant
| Study                  | Study location          | Period       | Design | Exposure assessment methods                                                                 | Results                                                                 | Air Pollutants | Mean       | Minimum     | 25th percentile | Median       | 75th percentile | Maximum       | IQR        |
|-----------------------|-------------------------|--------------|--------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------|------------|-------------|-----------------|-------------|----------------|----------------|------------|
| The current study     | China                   | 2011–2013    | Cohort | Average of daily concentration of pollutants measured at nearest monitoring station       | O3 exposure and CHDs overall, and VSD and TF individually               | O3            | 72.4 μg/m³ | 1 μg/m³     | 31.9 μg/m³     | 63.6 μg/m³   | 106 μg/m³      | 334.3 μg/m³   | 74.1 μg/m³ |
|                       |                         |              |        |                                                                                             |                                                                         | SO2           | 38.5 μg/m³ | 2 μg/m³     | 18 μg/m³      | 32.6 μg/m³   | 53.9 μg/m³      | 261 μg/m³     | 35.9 μg/m³ |
|                       |                         |              |        |                                                                                             |                                                                         | NO2           | 59.6 μg/m³ | 7.1 μg/m³   | 38 μg/m³      | 55.8 μg/m³   | 77 μg/m³       | 174 μg/m³     | 39 μg/m³   |
|                       |                         |              |        |                                                                                             |                                                                         | CO            | 1.0 mg/m³  | 0.02 mg/m³  | 0.71 mg/m³    | 1.3 mg/m³    | 4.3 mg/m³       | 0.59 mg/m³    | (0.91 ppm) |
| Gianaicolo et al.24   | Southern Italy          | 2001–2010    | Case- control | Daily average exposure measured by 3 monitoring stations over week 3–8 of pregnancy | Exposure to the 90th percentile of SO2 to be associated with CHDs     | SO2           | 2.8 μg/m³  |             |               |               |               |               |            |
| Schembri et al.6      | Barcelona               | 1994–2006    | Case- control | Daily spatio-temporal air pollutant estimates over week 3–8 of pregnancy                  | A significant association between NO2 and coarctation of the aorta   | NO2           |             |             | 55.7 μg/m³    |             |               | 12.2 μg/m³    |            |
| Stingone et al.15     | Nine U.S.states         | 1997–2006    | Case- control | Daily maximum concentrations using the closest air monitor within 50 km to their residence | NO2 was associated with coarctation of the aorta and pulmonary valve stenosis. | O3            |             | 32.2 ppb    | 42.9 ppb      | 51.8 ppb     |               |               |            |
|                       |                         |              |        |                                                                                             |                                                                         | SO2           |             |             | 9.7 ppb       |             |               |               |            |
|                       |                         |              |        |                                                                                             |                                                                         | NO2           |             |             | 33.3 ppb      |             |               |               |            |
|                       |                         |              |        |                                                                                             |                                                                         | CO            |             |             | 1.16 ppb      |             |               |               |            |
| Agay-Shay et al.11    | Israel                  | 2000–2006    | Cohort | Geographic Information System-based spatiotemporal approach with weekly inverse distance weighting model | No significant association had been revealed                          | O3            |             | 0.45 ppb    | 7.8 ppb      | 26.5 ppb     | 39.1 ppb       | 128 ppb       |            |
|                       |                         |              |        |                                                                                             |                                                                         | SO2           |             | 0.33 ppb    | 1.5 ppb      | 2.1 ppb      | 3.3 ppb        | 51.4 ppb       |            |
|                        |                         |              |        |                                                                                             |                                                                         | NO2           |             | 0.2 ppb     | 15.6 ppb     | 23.1 ppb     | 32.3 ppb       | 104.5 ppb      |            |
|                        |                         |              |        |                                                                                             |                                                                         | CO            |             | 0.15 ppm    | 0.7 ppm      | 1.3 ppm      | 1.3 ppm        |               |            |
| Padula et al.26       | San Joaquin Valley of California | 1997–2006 | Case- control | Daily average concentration during the first two months from more than 20 locations with a maximum interpolation radius of 50 km. | No significant association had been revealed                          | O3            | 40.7 ppb    |             |             | 42.15 ppb    |               |               | 30.19 ppb      |
|                        |                         |              |        |                                                                                             |                                                                         | SO2           |             |             | 17.6 μg/m³    |             |               | 31.2 μg/m³    |            |
|                        |                         |              |        |                                                                                             |                                                                         | NO2           |             |             | 2.8 μg/m³     |             |               | 55.8 μg/m³    |            |
|                        |                         |              |        |                                                                                             |                                                                         | CO            |             |             | 0.39 μg/m³    |             |               | 0.64 μg/m³    |            |
| Vinkoorman et al.16   | North Carolina          | 2003–2005    | Cohort | Estimated averaged concentration across weeks 3 through 8 for 12 km x 12 km grid.         | No significant association had been revealed                           | O3(8-h maximum) | 10.49 ppb  | 29.05 ppb   | 46.94 ppb     | 62.64 ppb    | 91.92 ppb      |               |            |
|                        |                         |              |        |                                                                                             |                                                                         | NO2           |             | 2.4 ppb     | 13.36 ppb    | 16.81 ppb    | 20.53 ppb      | 38.93 ppb      |            |
|                        |                         |              |        |                                                                                             |                                                                         | CO            |             | 0.13 ppm    | 0.39 ppm     | 0.52 ppm     | 0.71 ppm       | 1.37 ppm       |            |
| Davdand et al.19      | Northeast England       | 1993–2003    | Case- control | Weekly average of pollutants at nearest of 6 monitors to maternal residence         | No significant association between SO2 and CHDs                       | CO            |             |             |               |             |               |               |            |
|                        |                         |              |        |                                                                                             |                                                                         | SO2           |             |             | 17.6 μg/m³    |             |               | 31.2 μg/m³    |            |
| Davdand et al.22      | Northeast England       | 1985–1996    | Case- control | Two-stage spatiotemporal modeling of weekly exposure levels at maternal residence  | Exposure to CO to be associated with VS,DCSM and CPVS. NO was associated with TF. | O3            |             | 33.2 μg/m³  | 42.4 μg/m³   |             |               |               |            |
|                        |                         |              |        |                                                                                             |                                                                         | NO2           |             | 29.2 μg/m³  | 38.4 μg/m³   |             |               |               |            |
|                        |                         |              |        |                                                                                             |                                                                         | CO            |             | 0.39 μg/m³  |             |             |             |               |            |
| Dolk et al.3          | England                 | 1991–1999    | Cohort | Estimated annual mean of air pollution for 1 km x 1 km grid.                                 | A significant association between SO2 and TF                           | SO2           |             |             | 7.86 μg/m³    |             |               |               |            |
|                        |                         |              |        |                                                                                             |                                                                         | NO2           |             |             | 35.11 μg/m³   |             |               |               |            |
| Hansen et al.35       | Brisbane, Australia     | 1997–2004    | Case- control | Daily averaged measurements of air pollution at 18 nearest monitoring stations.  | O3 was associated with an increased risk of pulmonary artery and valve defects. SO2 was associated with an increased risk of aortic artery and valve defects | O3            | 25.8 ppb    | 4.3 ppb      |             |             | 54.4 ppb       |               |            |
|                        |                         |              |        |                                                                                             |                                                                         | SO2           | 1.5 ppb     |             |             |             | 7.1 ppb        |               |            |
|                        |                         |              |        |                                                                                             |                                                                         | NO2           | 8.2 ppb     | 1.4 ppb      |             |             | 22.7 ppb       |               |            |
|                        |                         |              |        |                                                                                             |                                                                         | CO            | 1.1 ppm     | 0.02 ppm     |             |             | 7 ppm          |               |            |
| Rankin et al.36       | Northern region, UK     | 1985–1990    | Case- control | Daily average concentration during the first trimester from 62 monitors within 10 km of the mother's residence. | No significant association between SO2 exposure and CHDs              | SO2           | 2.7 μg/m³   |             |             |             | 4.4 μg/m³      |               |            |

Continued
models provide estimates of the independent effects of CO, NO2, SO2, and O3 on CHD controlling for the second pollutant in the model. We also explored the associations with these outcomes for weekly O3 exposure levels (up to 12 weeks) because of uncertainty regarding specific windows of susceptibility and the lack of clearly elucidated mechanisms by which cardiac development could be disrupted by exposure to air pollution.

We present the effect of each pollutant on the risk of CHDs as aORs per a 10-μg/m3 change for O3, NO2, and SO2, and per 100-μg/m3 change for CO, along with their 95% CIs. Pearson correlation coefficients were calculated to measure the associations between two air pollutants. Analyses were conducted using SAS 9.3 (SAS Institute Inc., Cary, North Carolina) and P < 0.05 was considered statistically significant.

Results

Characteristics of the subjects. The distribution of demographic factors of the birth cohort is presented in Table 2. There were 105,988 births during the study period that met the study inclusion criteria. The CHD rate was 17.7 per 10,000, with the highest rate observed for VSD (6.2 per 10,000) followed by TF (2.7 per 10,000). The majority of the cohort members had a maternal age less than 25 years at delivery (69%), and had at least a high school education (85%). For approximately 80% of women, this was their first pregnancy.

Air pollution and the risk of CHDs. The mean (25th to 75th percentile range) of the exposure concentrations of the air pollutants was 72.41 μg/m3 (31.97–106.00 μg/m3) for O3, 38.54 μg/m3 (18.00–53.91 μg/m3) for SO2, 59.61 μg/m3 (38.00–77.00 μg/m3) for NO2, and 1024.86 μg/m3 (701.00–1271.00 μg/m3) for CO (Table 1).

Pearson correlation coefficients were calculated for the monthly average concentrations of the air pollutants during the first trimester of pregnancy. NO2 and SO2, NO2 and CO, and SO2 and CO were strongly correlated (r = 0.68, r = 0.71 and r = 0.64, respectively). O3 was less strongly and negatively correlated with NO2, SO2, and CO (r = –0.12, r = –0.16 and r = –0.20, respectively).

Table 3 shows the aORs and 95% CIs for the risk of CHDs in relation to O3, NO2, CO, and SO2 exposure by each month of the first trimester of pregnancy. We observed consistently increased risks and dose-response patterns for the risk of CHDs overall and VSD and TF individually in relation to O3 exposure levels, and the risk increased gradually as the month of pregnancy increased. For CHDs overall, the adjusted OR for a 10-μg/m3 change in O3 was 1.06 (95% CI: 1.00–1.13) for the first month of pregnancy, 1.10 (95% CI: 1.03–1.17) for the second month of pregnancy, and 1.12 (95% CI: 1.05–1.19) for the third month of pregnancy. For TF, we observed positive associations in the second and third month of pregnancy (adjusted OR = 1.24 per 10 μg/m3 change, 95% CI: 1.07–1.44), and third month of pregnancy (adjusted OR = 1.31; 95% CI: 1.13–1.51). The effect estimate for O3 exposure for TF during the first month of pregnancy was slightly elevated but not statistically significant (adjusted OR = 1.15; 95% CI: 0.99–1.33). For VSD, a positive association for O3 was observed in the third month (adjusted OR for a 10-μg/m3 change in O3 = 1.17 (95% CI: 1.05–1.31). The association between O3 exposure and VSD during the first and second month of pregnancy was slightly elevated but not statistically significant (adjusted OR = 1.07; 95% CI: 0.96–1.18; adjusted OR = 1.09; 95% CI: 0.97–1.21, respectively). In contrast, higher SO2 exposure was associated with decreased risk of CHDs overall in the second and third months of pregnancy. We found no associations between NO2 or CO and the selected birth defects.

Table 4 shows the estimated aORs and 95% CIs for the O3 weekly exposure analyses in relation to risk of CHDs overall and for VSD and TF individually. Risk of CHDs overall or for VSD and TF showed variability across the first 12 weeks of pregnancy. Specifically, O3 exposures after the first 5 weeks of pregnancy, particularly during weeks 8–12, were associated with a greater susceptibility to developing CHDs overall and for VSD and TF. During weeks 8 to 12 (6th week to 10th week after fertilization), the aORs for CHDs overall per 10-μg/m3 change in O3 exposure ranged from 1.05 to 1.08. For TF and VSD, the corresponding aORs ranged from 1.12 to 1.18 and from 1.10 to 1.12, respectively.

In the two pollutant models (Table 5), a positive association was observed between CO exposures during the third month of pregnancy and VSD (adjusted OR per 100-μg/m3 = 1.18; 95% CI: 1.02–1.36). Associations with all CHDs, VSD, and TF for O3 were generally consistent in the two pollutant models compared to the models that included only O3, with the strongest aORs observed for exposures during the third month of pregnancy. The results of the positive associations for O3 in the single pollutant models remained in the two-pollutant models, indicating that observed O3 effects were unlikely affected by both regional pollutants and local pollutants.

| Study | Study location | Period | Design | Exposure assessment methods | Results | Air Pollutants | Mean | Minimum | 25th percentile | Median | 75th percentile | Maximum | IQR |
|-------|---------------|--------|--------|-----------------------------|---------|---------------|------|---------|----------------|--------|----------------|---------|-----|
| Strickland et al. | Atlanta, USA | 1986–2003 | Cohort | Average of daily measurements of pollutants from one central monitoring station | No significant association between SO2, O3, NO2, and CO exposure and CHDs | O3 | — | — | — | — | — | — | 29.9 ppb |
| | | | | | | SO2 | — | — | — | — | — | — | — | 4.0 ppb |
| | | | | | NO2 | — | — | — | — | — | — | — | 5.7 ppb |
| | | | | | CO | — | — | — | — | — | — | — | 0.3 ppm |
| Ritz et al.'s | California, USA | 1987–1993 | Case-control | Average of 24-hr measurements of pollutants at nearest monitoring station | Second-month CO exposure was associated with an increased risk of VSD | O3 | — | — | 1.06 pphm | 1.94 pphm | 2.84 pphm | — | — |
| | | | | | CO | — | — | 1.14 pphm | 1.6 ppm | 2.47 pphm | — | — |

Table 1. Characteristics of ambient air pollutants based in Wuhan 2011–2013, and findings from published studies investigating ambient air pollution of O3, SO2, NO2, and CO and the occurrence of CHDs.
Discussion
During the past few decades, CHDs are the most common severe congenital anomalies and the leading cause of infant mortality due to congenital anomalies, and the aetiologies are unknown for the majority of these defects. Recently, studies conducted in developed countries linked ambient air pollution exposure to risk of CHDs; however, these studies provide inconsistent evidence of an association between maternal exposure to ambient air pollutants and CHDs, and few studies have been conducted in developing countries that have higher levels of air pollution.

In this large cohort study conducted among Chinese women and infants exposed to a very high level of pollution, we found that the risk of several CHDs were higher among women with greater exposures to criteria air pollutants. We observed increasing associations between O3 exposure and CHDs overall, and VSD and TF individually, and the risk increased gradually as the month of pregnancy increased. The results are consistent to other studies that have explored the associations between O3 and CHDs. A previous study conducted in Southern California demonstrated a higher risk of aortic artery and valve defects in relation to increasing O3 exposure during the second month of pregnancy. A study conducted in Brisbane used average exposures over the 3–8th weeks of pregnancy and found that O3 exposures were associated with an increased risk of pulmonary artery and valve defects when restricted to those women living within 6 kilometers of an ambient air quality monitor. Similarly, a study in Northeast England reported an increased risk of congenital malformations of pulmonary and tricuspid valves with Oxposure after limiting to those living within 16 kilometers of a monitoring station. Other studies detected no positive associations between O3 and cardiac defects, and few studies have been conducted in developing countries that have higher levels of air pollution.

O3 is homogenously distributed in areas. And it is a photo- chemical pollutant formed by the reactions of volatile organic compounds and nitrogen oxides in the presence of sunlight. The possible mechanisms and causes underlying the cardiac development are still unclear, but one potential etiologic pathway indicates that oxidative stress induced by air pollution may affect the migration and differentiation of organogenesis and neural crest cells, which play an important role in heart development. Oxidative stress may also regulate the hemodynamic responses, pulmonary and placental inflammation, and thus the transportation of nutrients and transplacental oxygenation. Ozone is also a powerful oxidizing agent and a highly reactive molecule that may contribute to oxidative stress. This suggests that ozone exposure may have an effect on cardiac development.

The main source of CO in urban area is vehicle exhaust emissions. The number of motor vehicles in urban China are soaring along with the rapid socioeconomic development, and the exhaust emissions are becoming one of the major contributors to urban air pollution. Maternal CO exposure was not associated with CHDs in our study. The results are similar to other studies that have explored the associations between CO and CHDs. Studies conducted in Barcelona, England, and Israel reported no association between CO concentrations with CHDs. Other studies detected no positive associations between CO and cardiac defects, and few studies have been conducted in developing countries that have higher levels of air pollution.

Table 2. Characteristics of the study subjects (n = 105,988).

| Item | Infants without any malformations (N = 105,800) | Congenital heart defects (N = 188) |
|------|---------------------------------------------|----------------------------------|
| Maternal age (years) | | |
| <20 | 19813 (18.73) | 29 (15.43) |
| 20–25 | 53060 (50.15) | 102 (54.26) |
| 25–30 | 25237 (23.85) | 46 (24.47) |
| >30 | 7690 (7.27) | 11 (5.85) |
| Maternal education (years) | | |
| <12 | 15578 (14.76) | 31 (16.49) |
| 12–15 | 45917 (43.51) | 78 (41.49) |
| >15 | 44042 (41.73) | 79 (42.02) |
| Missing | 263 | |
| Parity | | |
| 1 | 81098 (76.65) | 144 (76.60) |
| >1 | 24702 (23.35) | 44 (23.40) |
| Season of conception | | |
| Spring | 25662 (24.26) | 38 (20.21) |
| Summer | 25042 (23.67) | 47 (25.00) |
| Autumn | 26833 (25.36) | 46 (24.47) |
| Winter | 28263 (26.71) | 57 (30.32) |
| Infant sex | | |
| Male | 56355 (53.27) | 97 (52.43) |
| Female | 49437 (46.73) | 88 (47.57) |
| Type of birth | | |
| Live birth | 105421 (99.64) | 29 (15.42) |
| Stillbirth | 372 (0.35) | 159 (84.57) |
| fetal deaths | 7 (0.01) | |
and cardiac defects. However, some studies have reported positive associations between CO and specific outcomes including ventricular septal defects\(^8,19\), cardiac septal malformations and congenital pulmonary valve stenosis\(^9\). One study has also reported an inverse association between CO and secundum atrial septal defects\(^30\). In a meta-analysis of ambient air pollution and risk of congenital anomalies, ventricular septal defects and atrial septal defects were examined, but showed no association with CO exposure\(^8\). Experimental studies have suggested mechanisms for the fetotoxic effects of CO including reaction with hem-containing proteins, hypoxia, and a reduction in metabolism of xenobiotics\(^19\). The inconsistent evidence of an association between CO and CHDs need further research.

NO\(_2\) is a secondary pollutant which is usually less impacted by regional pollution sources\(^31\). Some studies have found a positive association between NO\(_2\) exposure and low birth weight, Intra-uterine growth retardation, preterm birth, and stillbirth\(^32–36\). However, epidemiological evidence linking maternal NO\(_2\) exposure to CHDs is still inconsistent. Studies conducted in California\(^30,37,38\), Israel\(^11\), England\(^3\), Atlanta\(^26\), and Texas\(^20\) reported no association between NO\(_2\) concentration and cardiac defects. However, the Barcelona study reported a positive association between NO\(_2\) and coarctation of the aorta using spatial and spatiotemporal exposure models during weeks 3–8 of pregnancy\(^6\).

SO\(_2\) emissions have been previously associated with coal in power plants (contributing 49% in 1996 and 59% in 2010 to the total emissions in China) and industrial facilities (34%)\(^39,40\). Maternal SO\(_2\) exposure was not associated with TF in our study, which is similar with Atlanta study\(^26\) that have explored the associations between SO\(_2\) and CHDs. However, other two studies reported inconsistent results. The Northeast England study found an inverse relationship with TF and SO\(_2\)\(^19\). And the England reported an increased risk of TF due to exposure to SO\(_2\)\(^3\). For VSD, our study also showed a non-significant relationship between maternal exposure to SO\(_2\) and VSD.

| All congenital heart defects \((Q20–Q28)\) \((N = 188)\) | Ventricular septal defect \((Q21.0)\) \((N = 63)\) | Tetralogy of Fallot \((Q21.3)\) \((N = 29)\) |
|---|---|---|
| aOR \([95\% CI]\) | aOR \([95\% CI]\) | aOR \([95\% CI]\) |
| O\(_3\) | | | |
| 1\(^{st}\) M\(^{th}\) | 1.06 (1.00–1.13) | 1.07 (0.96–1.18) | 1.15 (0.99–1.33) |
| 2\(^{nd}\) M\(^{th}\) | 1.10 (1.03–1.17) | 1.09 (0.97–1.21) | 1.24 (1.07–1.44) |
| 3\(^{rd}\) M\(^{th}\) | 1.12 (1.05–1.19) | 1.17 (1.05–1.31) | 1.31 (1.13–1.51) |
| NO\(_2\) | | | |
| 1\(^{st}\) M\(^{th}\) | 0.90 (0.79–1.02) | 0.83 (0.67–1.03) | 0.72 (0.53–1.03) |
| 2\(^{nd}\) M\(^{th}\) | 0.94 (0.84–1.06) | 0.89 (0.73–1.09) | 0.81 (0.60–1.11) |
| 3\(^{rd}\) M\(^{th}\) | 0.90 (0.81–1.01) | 0.91 (0.76–1.09) | 0.80 (0.60–1.06) |
| SO\(_2\) | | | |
| 1\(^{st}\) M\(^{th}\) | 0.92 (0.81–1.04) | 0.90 (0.72–1.12) | 0.91 (0.67–1.24) |
| 2\(^{nd}\) M\(^{th}\) | 0.87 (0.76–0.99) | 0.82 (0.65–1.03) | 1.07 (0.78–1.46) |
| 3\(^{rd}\) M\(^{th}\) | 0.83 (0.73–0.95) | 0.81 (0.64–1.02) | 0.97 (0.68–1.38) |
| CO | | | |
| 1\(^{st}\) M\(^{th}\) | 0.97 (0.90–1.06) | 0.99 (0.86–1.14) | 1.01 (0.81–1.26) |
| 2\(^{nd}\) M\(^{th}\) | 0.92 (0.84–1.01) | 0.93 (0.81–1.07) | 0.97 (0.77–1.21) |
| 3\(^{rd}\) M\(^{th}\) | 0.99 (0.91–1.08) | 1.12 (0.87–1.29) | 1.05 (0.85–1.30) |

Table 3. Adjusted \(^a\) odds ratios and 95% CI of CHD and exposure to O\(_3\), NO\(_2\), NO, SO\(_2\), CO of first 3 months of pregnancy in single pollutant model. \(^a\)Adjusted for maternal age, education, parity, infant sex, season of conception.

| Adjusted \(^a\) odds ratios and 95% CI of CHDs in relation to exposure to O\(_3\) during the first 12 weeks of pregnancy. \(^a\)Adjusted for maternal age, education, parity, infant sex, season of conception. |
|---|---|---|
| All congenital heart defects \((Q20–Q28)\) \((N = 188)\) | Ventricular septal defect \((Q21.0)\) \((N = 63)\) | Tetralogy of Fallot \((Q21.3)\) \((N = 29)\) |
| aOR \([95\% CI]\) | aOR \([95\% CI]\) | aOR \([95\% CI]\) |
| 1 week | 1.04 (0.99–1.09) | 1.04 (0.97–1.12) | 1.04 (0.94–1.16) |
| 2 week | 1.01 (0.97–1.06) | 1.07 (0.99–1.14) | 1.03 (0.92–1.15) |
| 3 week | 1.03 (0.98–1.07) | 1.04 (0.97–1.12) | 1.04 (0.94–1.16) |
| 4 week | 1.02 (0.98–1.07) | 1.00 (0.93–1.08) | 1.08 (0.97–1.19) |
| 5 week | 1.05 (1.00–1.10) | 1.05 (0.97–1.13) | 1.18 (1.06–1.31) |
| 6 week | 1.05 (0.99–1.10) | 1.05 (0.96–1.14) | 1.06 (0.94–1.19) |
| 7 week | 1.03 (0.98–1.09) | 1.04 (0.96–1.14) | 1.11 (0.99–1.24) |
| 8 week | 1.08 (1.02–1.13) | 1.03 (0.94–1.13) | 1.18 (1.05–1.32) |
| 9 week | 1.07 (1.02–1.13) | 1.10 (1.01–1.19) | 1.18 (1.05–1.31) |
| 10 week | 1.07 (1.02–1.12) | 1.10 (1.01–1.20) | 1.12 (1.01–1.26) |
| 11 week | 1.07 (1.02–1.12) | 1.10 (1.01–1.16) | 1.13 (1.01–1.27) |
| 12 week | 1.05 (1.00–1.10) | 1.12 (1.04–1.21) | 1.12 (1.01–1.25) |
...to SO2. Additionally, the Brisbane study also reported an increased risk of aortic artery and valve defects due to air pollution exposure assessment was too great. The previous studies generally use pure temporal approaches25, to evaluate the synergistic effect and interaction of other pollutants effect on CHDs, rather than just exploring the resulting increased proportion of early spontaneous abortions9.

Table 5. Adjusted* odds ratios and 95% CI of CHD and exposure to O3, NO2, NO, SO2, CO of first 3 months of pregnancy in two pollutant model. *Adjusted for maternal age, education, parity, infant sex, season of conception. b1st M = The first month exposure; c2nd M = The second month exposure; d3rd M = The third month exposure.

Similarly other three studies conducted in Atlanta26, Brisbane23, and nine-states of U.S. 21 were consistent in showing non-significant associations, and one study conducted in Northeast England detected inverse associations19. In contrast, the Texas study20 and Italy study41 have reported an increased risk of VSD due to maternal exposure to SO2. Additionally, the Brisbane study also reported an increased risk of aortic artery and valve defects due to SO2 exposure23. Our findings did not evaluate this association for the small sample, and other four studies also did not support this association20,25,26,42. We also found inverse associations between CHDs overall and SO2 exposure at the second and third months.

The inverse associations between air pollution exposure and CHDs might be due to chance, but they also might be explained partially by the hypothesis that environmental insults may affect the survival of affected fetuses19,43. Shaw GM et al. suggested inverse association between CO exposure and chromosomal abnormalities, which may also be explained by the increased vulnerability caused by CO and the resulting increased proportion of early spontaneous abortions5.

Most previous studies selected exposure windows to coincide with the period of cardiac morphogenesis and assigned exposures by averaging daily pollutant averages over the critical window (weeks 3–8)6,11,15,19,30. However, susceptibility windows for these adverse effects arising from environmental insults may not directly coincide with the established stages of fetal heart development22, and it is possible that exposures earlier or later in pregnancy could have affected the development of certain malformations26. For example, the National Birth Defects Prevention Study conducted in the U.S found that exposure to air pollutants during weeks 2 of pregnancy were associated with risk of pulmonary valve stenosis (PVS)4. In our study, the results were sensitive to exposures during specific windows of exposure, and we observed maternal exposures to O3 during week 5 and weeks 8–12 of pregnancy were associated with CHDs overall, VSD, and TF.

It is possible that inconsistent findings for air pollution exposure and risk of CHDs across studies may be at least partially due to differences in the level and range of pollution experienced in different countries. Compared with ambient air pollution exposure levels from previous published studies conducted in different countries investigating O3, SO2, NO2, CO and CHDs, our study have the highest level and range of SO2 exposure. However, we didn't observe a significant association between SO2 and TF as the England study did, although we nearly have five times greater SO2 exposure levels than the England study4, which suggests that it is necessary to evaluate the synergistic effect and interaction of other pollutants effect on CHDs, rather than just exploring one kind of pollutants' affection. Another possibility of inconsistent findings is that the measurement error in air pollution exposure assessment was too great. The previous studies generally use pure temporal approaches25, pure spatial modeling5, spatiotemporal modeling, or the nearest monitor approach36, which all can introduces measurement error because of the distance between the monitor and the subject. Exposure misclassification of timing may arise from using the estimated date of conception, 14 days from the LMP. Because women may not
recall LMP date accurately and the LMP may be unreliable. Exposure misclassification of timing may also arise from using residential information for the mother at the time of birth rather than during the first trimester, which is considered to be the critical period for congenital anomalies. Our study used residential information for the mother during the first trimester exposure to reduce exposure measurement error. Additionally, using air pollutants’ concentrations measured from monitoring stations as proxies for personal exposure assumes that air pollution levels are homogeneous across the study areas. There would be exposure misclassification if local pollution sources existed, such as traffic, construction, or other spatially distributed risk factors. Measurement error would also be different for each of the examined pollutants, as their spatial distribution patterns vary quite widely, and it may also arise from not considering the time spent in different micro-environments.

A general limitation of our study approach is that the prevalence of CHDs may be underestimated because of early fetal loss in those with CHDs, or because minor defects may be asymptomatic and undetected among neonates, which could have reduced the number of CHD cases. And we also did not have data on some other variables that could potentially be confounders, such as maternal diabetes and exposure to passive smoking. In addition, using separate models to assess exposures during correlated adjacent exposure windows might make it harder to identify the biologically-relevant critical window of exposure.

Conclusion

Our results suggest that exposure to increased levels of \( O_3 \) during the first trimester of pregnancy may contribute to the risk of CHDs in Wuhan, China, which is a highly polluted region of the country. Our results contribute to the body of evidence regarding air pollution exposure and CHDs, but confirmation of these associations will be needed in future studies.

References

1. Sapkota, A. et al. Exposure to particulate matter and adverse birth outcomes: a comprehensive review and meta-analysis. *Air Quality, Atmosphere & Health* 5, 369–381 (2012).
2. Stieh, D. M., Chen, L., Eshoul, M. & Judek, S. Ambient air pollution, birth weight and preterm birth: a systematic review and meta-analysis. *Environmental research* 117, 100–111 (2012).
3. Dolk, H. et al. Ambient air pollution and risk of congenital anomalies in England, 1991–99. *Occupational and environmental medicine, oem.* 2009.045997 (2009).
4. Sraim, R. J., Binková, B., Dejmek, J. & Bobak, M. Ambient air pollution and pregnancy outcomes: a review of the literature. *Environmental health perspectives*, 375–382 (2005).
5. Glinianaia, S. V., Rankin, J., Bell, R., Pless-Mulloli, T. & Howel, D. Particulate air pollution and fetal health: a systematic review of the epidemiologic evidence. *Epidemiology* 15, 36–45 (2004).
6. Schembri, A. et al. Traffic-related air pollution and congenital anomalies in Barcelona. *Environmental health perspectives* 122, 317 (2014).
7. Stingone, J. et al. Maternal Exposure to Criteria Air Pollutants and Congenital Heart Defects in Offspring: Results from the National Birth Defects Prevention Study. *Environmental health perspectives* (2014).
8. Chen, E. K.-C., Zmirou-Navier, D., Padilla, C. & Deguen, S. Effects of Air Pollution on the Risk of Congenital Anomalies: A Systematic Review and Meta-Analysis. *International journal of environmental research and public health* 11, 7642–7688 (2014).
9. Ritz, B. et al. Ambient air pollution and risk of birth defects in Southern California. *American Journal of Epidemiology* 155, 17–25 (2002).
10. Brook, R. D. et al. Air pollution and cardiovascular disease A statement for healthcare professionals from the expert panel on population and prevention science of the American Heart Association. *Circulation* 109, 2655–2671 (2004).
11. Agay-Shay, K. et al. Air pollution and congenital heart defects. *Environmental research* 124, 28–34 (2013).
12. Ritz, B. Air pollution and congenital anomalies. *Occupational and environmental medicine* 67, 221–222 (2010).
13. Kannan, S., Musa, D. P., Dvovich, I. T. & Krishnakumar, A. Exposures to airborne particulate matter and adverse perinatal outcomes: a biologically plausible mechanistic framework for exploring potential. *Ciencia & saúde coletiva* 12, 1591–1602 (2007).
14. Rankin, J. & Nieuwenhuijsen, M. Ambient air pollution and risk of congenital anomalies: a systematic review and meta-analysis. *Environmental health perspectives* 119, 599 (2011).
15. Vinkoor-Imler, L. C., Davis, J. A., Meyer, R. E. & Luben, T. J. Early prenatal exposure to air pollution and its associations with birth defects in a state-wide birth cohort from North Carolina. *Birth Defects Research Part A: Clinical and Molecular Teratology* 97, 696–701 (2013).
16. Zhao B. et al. Evolution and comparative assessment of ambient air quality standards in China. *Journal of Integrative Environmental Sciences* 1–18 (2016).
17. Chen R., Li Y., Ma Y. et al. Coarse particles and mortality in three Chinese cities: The China Air Pollution and Health Effects Study (CAPES). *Science of the Total Environment* 409, 4934–4938 (2011).
28. Keyte, A. & Hutson, M. R. The neural crest in cardiac congenital anomalies. Differentiation 84, 25–40 (2012).
29. Chen R. et al. Ambient carbon monoxide and daily mortality in three Chinese cities: The China Air Pollution and Health Effects Study (CAPES). Science of the Total Environment 409, 4923–4928 (2011).
30. Padula, A. M. et al. The association of ambient air pollution and traffic exposures with selected congenital anomalies in the San Joaquin Valley of California. American Journal of Epidemiology 177, 1074–1085 (2013).
31. Savitz D. A., Bobb J. F., Carr J. L. et al. Ambient fine particulate matter, nitrogen dioxide, and term birth weight in New York, New York. American Journal of Epidemiology 179, 457–466 (2014).
32. Lee, B. et al. Exposure to air pollution during different gestational phases contributes to risks of low birth weight. Human Reproduction 18, 638–643 (2003).
33. Ballester, F. et al. Air pollution exposure during pregnancy and reduced birth size: a prospective birth cohort study in Valencia, Spain. Environ Health 9 (2010).
34. Llop, S. et al. Preterm birth and exposure to air pollutants during pregnancy. Environmental Research 110, 778–785 (2010).
35. Aguilera, I. et al. Association between GIS-based exposure to urban air pollution during pregnancy and birth weight in the INMA Sabadell Cohort. Environmental health perspectives 117, 1322 (2009).
36. Wang, L. & Pinkerton, K. E. Air pollutant effects on fetal and early postnatal development. Birth Defects Research Part C: Embryo Today: Reviews 81, 144–154 (2007).
37. Padula A. M., Tager I. B., Carmichael S. L., Hammond S. K., Yang W. et al. Ambient air pollution and traffic exposures and congenital heart defects in the San Joaquin Valley of California. Paediatric and perinatal epidemiology 27, 329–339 (2013).
38. Padula, A. M. et al. Ambient air pollution and traffic exposures and congenital heart defects in the San Joaquin Valley of California. Paediatric and perinatal epidemiology 27, 329–339 (2013).
39. Lu Z., Zhang Q. & Streets D. G. Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996–2010. Atmospheric Chemistry & Physics 11, 9839–9861 (2011).
40. Kan H., Chen B. & Hong C. Health Impact of Outdoor Air Pollution in China: Current Knowledge and Future Research Needs. Environmental Health Perspectives 117, A187–A187 (2009).
41. Gianicolo, E. A. L. et al. Congenital anomalies among live births in a high environmental risk area—A case-control study in Brindisi (southern Italy). Environmental research 128, 9–14 (2014).
42. Rankin, J. et al. Maternal exposure to ambient air pollutants and risk of congenital anomalies. Environmental Research 109, 181–187 (2009).
43. Dolk, H. & Vrijheid, M. The impact of environmental pollution on congenital anomalies. British Medical Bulletin 68, 25–45 (2003).
44. Briggs, D. The role of GIS: coping with space (and time) in air pollution exposure assessment. Journal of Toxicology and Environmental Health, Part A 68, 1243–1261 (2005).

Acknowledgements
We are extremely grateful to all the hospitals and community health centers involved in this study. The study was partly supported by the ‘Hubei Province Natural Science Foundation Project: Association between air pollution and pregnancy outcome’, and the grant number is 2010CDB08803, and partly supported by Fogarty training grants D43TW 008323 and D43TW 007864-01 from the US National Institutes of Health.

Author Contributions
B.Z., S.Y. and Z.Q. conceived and designed the experiments. J.Z. and S.Y. wrote the main manuscript text. J.Z. and R.Y. analyzed the data. T.Z. and B.A.B. edited the manuscript. J.Z., B.B. and Y.Z. interpreted data and results. B.Z., S.Y. and Z.Q. conceived and designed the experiments. J.Z. and S.Y. wrote the main manuscript text. J.Z.

Additional Information
Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Zhang, B. et al. Ozone and Other Air Pollutants and the Risk of Congenital Heart Defects. Sci. Rep. 6, 34852; doi: 10.1038/srep34852 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2016