In Vitro Multi-Species Oral Biofilms Grown in Presence of H2O2 Production-Affecting Substrates Show Health-Associated Alterations in Composition, Metabolism and Virulence.

Tim Verspecht
University of Leuven (KU Leuven)

Dorien Vermeulen
University of Leuven (KU Leuven)

Wannes Van Holm
University of Leuven (KU Leuven)

Naiera Zayed
University of Leuven (KU Leuven)

Kristel Bernaerts
University of Leuven (KU Leuven)

Nico Boon
Ghent University (UGent)

Wim Teughels (✉️ wim.teughels@med.kuleuven.be)
University of Leuven (KU Leuven)

Research Article

Keywords: therapeutic strategy, Biofilms, virulence genes, periodontal pathogens

DOI: https://doi.org/10.21203/rs.3.rs-568968/v1

License: ☺️ ☛️ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
In vitro multi-species oral biofilms grown in presence of H$_2$O$_2$ production-affecting substrates show health-associated alterations in composition, metabolism and virulence.

Tim Verspecht1,2, Dorien Vermeulen1, Wannes Van Holm1,2, Naiera Zayed1,2,3, Kristel Bernaerts4, Nico Boon2, Wim Teughels1,5*

1 Department of Oral Health Sciences, University of Leuven (KU Leuven), Kapucijnenvoer 33, 3000 Leuven, Belgium.
2 Center for Microbial Ecology and Technology (CMET), Ghent University (UGent), Coupure Links 653, 9000 Gent, Belgium.
3 Faculty of Pharmacy, Menoufia University, Egypt.
4 Bio- and Chemical Systems Technology, Reactor Engineering and Safety, Department of Chemical Engineering, University of Leuven (KU Leuven), Leuven Chem&Tech, Celestijnenlaan 200F (bus 2424), 3001 Leuven, Belgium.
5 Dentistry, University Hospitals Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium.

E-mail addresses authors: tim.verspecht@kuleuven.be, dorien_vermeulen@hotmail.com, wannes.vanholm@kuleuven.be, naiera.zayed@kuleuven.be, kristel.bernaerts@kuleuven.be, nico.boon@ugent.be, wim.teughels@med.kuleuven.be

*Corresponding author: Wim Teughels, KU Leuven, Department of Oral Health Sciences, Kapucijnenvoer 33, 3000 Leuven, Belgium. Phone: +32 (0)16 332 505, fax: +32 (0)16 332 484. E-mail: wim.teughels@med.kuleuven.be
ABSTRACT

Modulation of the commensal oral microbiota is a promising preventive or therapeutic strategy for oral health and can for instance be achieved by increasing the abundance and/or activity of certain species. This study evaluated whether 10 selected substrates could modulate in vitro multi-species oral biofilms towards a more health-associated state. These substrates were chosen based on the possibility that they could stimulate H_2O_2 production by certain commensal species and/or increase their abundance, as previously reported or as hypothesized based on known bacterial H_2O_2 pathways. Biofilms grown in presence of the substrates at a clinically relevant concentration of 1% (w/v) often showed increased abundances of commensal species and decreased abundances of periodontal pathogens. Furthermore, most biofilms also showed an altered metabolic profile. Effects on the expression of a selection of virulence genes were substrate-dependent, but often a decreased expression of certain genes could be observed. In conclusion, this study found that a selection of substrates chosen for their hypothesized beneficial effects on the commensal oral microbiota were able to modulate in vitro multi-species oral biofilms towards a more health-associated state. These modulatory effects were found to be substrate-dependent.
INTRODUCTION
The health status of the oral cavity is determined by a variety of external factors such as oral hygiene, diet and lifestyle1,2. Simultaneously, also the intrinsic characteristics of an individual such as age, genetic predisposition and systemic diseases are known to strongly influence one’s predisposition to develop oral illnesses such as periodontal diseases3-5. Eventually, the oral health status will be determined by the presence or absence of a complex, calibrated interplay between the host, its environment and its commensal oral microbiota6. Knowledge on the latter has increased exponentially over the past decades, leading to the understanding that despite the existence of inter- and intra-individual variability, each person possesses a so-called ‘core oral microbiome’ that plays a crucial role in maintaining the homeostatic, symbiotic relationship between the oral microbiota and its host7-9.

In oral health, an individual’s oral microbiota mainly consists of a few hundred bacterial species that often organize into robust, highly specialized oral biofilms (dental plaque)6,8,9. Within these biofilms, an optimal microenvironment allows oral bacteria to flourish while they are sheltered from external aggressors and stress but where they are also in close contact with each other10,11. As a result, complex inter- and intra-species interactions occur that help shape the homeostatic balances. These interactions are diverse and mediated through for instance metabolic cross-feeding and the production of substances (e.g. hydrogen peroxide (H\textsubscript{2}O\textsubscript{2})) that (in)directly affect the function and survival of nearby species12-14. In this way, the commensal oral microbiota can deal with potentially disease-provoking disruptions while maintaining its core composition and functions15. However, once these disruptions surpass a certain threshold and/or when the function of the commensal oral microbiota is impaired, an imbalanced relationship between host and microbiota or within the microbiota eventually leads to dysbiosis and the onset and progression of oral diseases6,15,16.

Up until today, prevention and treatment of oral diseases are mainly accomplished by mechanical strategies (i.e. plaque removal) in combination with adjunctive antimicrobial therapy (i.e. antibiotics or antiseptics)17-21. However, these approaches also come with certain disadvantages, such as the often aspecific removal and killing of both pathogenic and
commensal species. Furthermore, the widespread use of antimicrobials makes that the risk for adaptation or resistance development could be lurking around the corner19,22,23. Therefore, the focus shifted towards the modulation of the commensal oral microbiota to prevent disruption of oral health-associated homeostatic relationships, or to restore them. Probiotics for oral health are an example of such a ‘pro-microbial approach’, where live microorganisms are administered that eventually provide a health benefit to the host, for instance by inhibiting pathogens through the production of H\textsubscript{2}O\textsubscript{2} or acids24,25. Nowadays, probiotics for oral health are being successfully used in clinical practice26,27. Another example is the use of prebiotics, where substrates are administered that are selectively used by endogenous microorganisms resulting in a health benefit, accomplished by for instance increasing the abundance of commensal species or stimulating their metabolism or health-associated functions28. The potential of prebiotics for oral health has mainly been demonstrated in vitro29-31, but also some in vivo studies were conducted, making it a rapidly evolving research field32,33. Lastly, several other strategies to modulate the commensal oral microbiota are under investigation, such as the use of synbiotics (combination of pro- and prebiotics) or the exploitation of specific functions like increasing the abundance of H\textsubscript{2}O\textsubscript{2} producers or boosting their H\textsubscript{2}O\textsubscript{2} production14,34,35.

The current study hypothesized that certain substrates could modulate in vitro multi-species oral biofilms towards a more health-associated state. These substrates were selected based on the possibility that they could positively influence H\textsubscript{2}O\textsubscript{2} production by certain oral species or increase their abundance. For some substrates, this was described in literature, whereas for others this was hypothesized based on known bacterial H\textsubscript{2}O\textsubscript{2} production pathways. More specifically, arabinose, sorbitol and saccharin have been shown to stimulate H\textsubscript{2}O\textsubscript{2} production by \textit{S. oralis} and \textit{S. sanguinis}36, whereas pyruvate and lactate are two substrates with a central role in the two major oral streptococcal H\textsubscript{2}O\textsubscript{2} production pathways14,37,38. Furthermore, it is known that lactic acid might serve as a substrate for certain streptococcal species resulting in the production of H\textsubscript{2}O\textsubscript{2}38,39. Potassium acetate was shown to slightly affect H\textsubscript{2}O\textsubscript{2} production by \textit{S. gordonii}40, which led to the hypothesis this could also be the case for sodium acetate. Finally,
the conversion of fumarate to succinate is known to yield H_2O_2 as a by-product, and succinate can in turn be re-converted to fumarate41, which led to the inclusion of these two substrates. Given the complex nature of multi-species biofilms and the fact that accurate H_2O_2 measurement within oral biofilms is very difficult to accomplish, this study followed a top-down approach and the focus lied only on evaluating the effects the substrates have on in vitro multi-species oral biofilms. Therefore, this study aimed to investigate whether the selected substrates have beneficial modulatory effects on the composition, metabolic profile and virulence of in vitro multi-species oral biofilms grown in presence of these substrates at a clinically relevant concentration.
RESULTS

Compositional modulation of multi-species biofilms

The effects of each substrate on the absolute and relative abundances of the different species were evaluated to determine their impact on biofilm composition. Most substrates were found to have a significant influence on absolute bacterial numbers in terms of increases/decreases in comparison with the control condition ([Fig. 1](#), [Supplementary Table S1](#)). Biofilm formation in presence of sodium L-lactate resulted in a 1.5 log(Geq/mL) increase in *S. oralis* numbers and a 0.6 log(Geq/mL) decrease in *P. gingivalis* numbers. For sodium pyruvate, also an increase in *S. oralis* abundance was observed (+1.5 log(Geq/mL)), whereas *F. nucleatum* and *P. intermedia* abundance decreased (-1.5 and -0.3 log(Geq/mL)). Sodium acetate and D-(−)-arabinose also yielded an increase in *S. oralis* numbers (+1.4 and +1.5 log(Geq/mL)), with D-(−)-arabinose also decreasing *A. naeslundii* numbers (-0.3 log(Geq/mL)). Potassium acetate resulted for *F. nucleatum* in a decrease (-1.2 log(Geq/mL)) and in an increase for *S. gordonii* (+0.4 log(Geq/mL)) and *S. oralis* (+1.2 log(Geq/mL)). Biofilms formed in presence of lactic acid and saccharin showed decreased *A. actinomycetemcomitans* (-0.4 and -0.9 log(Geq/mL)) and *F. nucleatum* numbers (-0.8 and -1.9 log(Geq/mL)), with saccharin also resulting in decreased *P. intermedia* and *S. gordonii* numbers (-2.6 and -0.2 log(Geq/mL)). D-sorbitol led to decreased numbers of *A. actinomycetemcomitans* and *P. gingivalis* (-0.6 and -0.5 log(Geq/mL)) and increased numbers of *S. mutans*, *S. mitis* and *S. sanguinis* (+1.4, +0.2 and +1.4 log(Geq/mL)). Biofilms grown in presence of sodium fumarate showed decreased *F. nucleatum* and *S. oralis* numbers (-1.6 and -0.4 log(Geq/mL)). Sodium succinate did not result in significant changes in absolute bacterial abundances.

Most substrates also significantly affected the relative abundances of commensal species, periodontal and cariogenic pathogens ([Table 1](#)). For one set of substrates, control biofilms harboured 21.8±3.0% commensal species, 77.8±3.0% periopathogens and 0.4±0.1% cariogenic pathogens. ([Table 1](#)). D-sorbitol, saccharin, lactic acid and sodium fumarate altered the proportion of commensals to 55.2±14.8, 82.6±8.6, 65.9±7.4 and 74.5±7.5%, respectively, while decreasing the abundance of periopathogens to 43.6±15.0, 13.2±6.3, 33.3±7.2 and...
24.2±7.2%, respectively. Saccharin also increased cariogenic pathogens abundance (4.2±2.3%). For the other set of substrates, the control biofilms consisted of 31.7±9.3% commensal species, 68.3±9.3% periopathogens and 0.1±0.0 cariogenic pathogens (Table 1). Significant shifts in biofilm composition were observed for biofilms grown in presence of sodium L-lactate (82.9±7.0% commensals, 17.0±7.0% periopathogens), potassium acetate (69.7±8.6% commensals, 30.2±8.6 periopathogens) and sodium pyruvate (0.5±0.2% cariogenic pathogens).

Metabolic modulation of multi-species biofilms

To investigate the effects of each substrate on the metabolic profiles of the biofilms, levels of organic acids in the biofilm supernatants were determined (Table 2). For one set of substrates, control biofilms consumed 170±2 mg/L lactate and produced 94±103 mg/L formate, 4312±119 mg/L acetate, 2722±23 mg/L propionate and 2498±121 mg/L butyrate (Table 2). Biofilm growth in presence of sodium fumarate resulted in significant lactate production (1490±717 mg/L), whereas saccharin and sodium succinate increased acetate production (1549±90 and 3121±449 mg/L). D-sorbitol, saccharin, lactic acid, sodium succinate and sodium fumarate increased propionate production (6726±96, 1735±37, 6166±93, 5345±54 and 4557±177 mg/L) whereas butyrate production was decreased (1397±166, 280±25, 1312±358, 1308±510 and 409±87 mg/L). For the other set of substrates, control biofilms consumed 194±0 mg/L lactate, 226±7 mg/L formate, 5104±105 mg/L acetate, 3135±182 mg/L propionate and 2449±224 mg/L butyrate (Table 2). Biofilms grown in presence of sodium L-lactate showed decreased lactate consumption (104±2 mg/L), increased acetate and propionate production (5907±66 and 7117±206 mg/L), and decreased butyrate production (1868±117 mg/L). Sodium pyruvate yielded elevated levels of formate, acetate, propionate and butyrate (921±74, 7817±41, 3819±40 and 2086±38 mg/L), whereas potassium acetate and sodium acetate increased acetate production (10624±14 and 8524±264 mg/L).
Virulence modulation of multi-species biofilms

A selection of virulence genes from three periodontal pathogens (A. actinomycetemcomitans, F. nucleatum and P. gingivalis) was made of which the expression profiles were analysed to determine the effects of each substrate on multi-species biofilm virulence (Table 3). Noteworthy is that significant changes in virulence gene expression relative to the control condition were only considered to be biologically relevant when there was >1.5-fold upregulation or >2-fold downregulation and that only such changes were considered.

Altogether, as can be seen based on the color scale used in Table 3, more substrate-gene combinations showed at least a tendency towards decreased virulence gene expression than combinations showing at least a tendency towards increased virulence gene expression. For D-sorbitol, lactic acid, sodium fumarate, D-(-)-arabinose, 6/10 genes showed a tendency towards downregulated expression, for sodium succinate and sodium acetate this were 5/10 genes, for saccharin, sodium L-lactate and sodium pyruvate 4/10 genes and for potassium acetate 3/10 genes.

For five substrates, A. actinomycetemcomitans virulence gene expression was found to be downregulated 3.3- to 100-fold (Table 3). D-(-)-sorbitol downregulated apaH, cagE and orf859 expression (3.6-, 100- and 5.9-fold). Lactic acid, sodium fumarate, D-(-)-arabinose and sodium acetate downregulated orf859 expression with 3.3-, 4.0-, 5.9- and 3.4-fold. On the other hand, pgA expression was upregulated for D-sorbitol, saccharin and sodium pyruvate (3.6-, 3.8- and 3.2-fold). For F. nucleatum, hemin receptor gene expression was downregulated 2.3- to 9.1-fold for D-sorbitol, lactic acid, potassium acetate and sodium acetate (Table 3). Hemolysin gene expression was upregulated 3.6-fold for saccharin. ABC transporter permease gene expression was downregulated 2.3-fold for D-sorbitol, whereas for saccharin, sodium succinate, sodium fumarate, sodium L-lactate, sodium pyruvate and sodium acetate, 2.3- to 18-fold upregulation was observed. Finally, P. gingivalis fimA expression was downregulated for sodium succinate and sodium lactate (3.3- and 3.6-fold) and upregulated for saccharin and potassium acetate (3.6- and 2.7-fold) (Table 3). The expression of kgp was 25.0-fold downregulated for saccharin and 18.8-fold upregulated for sodium pyruvate, whereas rgpA
expression was 3.6- to 4.8-fold downregulated for sodium succinate, sodium L-lactate and sodium acetate.

DISCUSSION

Research on novel preventive and therapeutic interventions for oral health is rapidly evolving, with one of the focuses lying on the modulation of the commensal oral microbiota as a ‘pro-microbial’ approach. Such modulation can for instance be achieved by increasing the abundance and/or activity of certain species, eventually resulting in a more balanced oral microbiota. This study evaluated whether 10 selected substrates could modulate in vitro multi-species oral biofilms towards a more health-associated microbiological composition, an altered metabolic activity and a decreased virulence gene expression profile. The selection of the evaluated substrates was based on the possibility that they could stimulate H$_2$O$_2$ production by certain commensal species and/or increase their abundance, which has been described in literature or was hypothesized based on known bacterial H$_2$O$_2$ pathways. Biofilm growth in presence of the substrates at a clinically relevant concentration of 1% (w/v) often resulted in a microbiological composition with increased abundances of commensal species and decreased abundances of periodontal pathogens. Furthermore, most substrate conditions also altered the metabolic profiles of these biofilms. The effects on virulence gene expression, based on a selection of 10 important virulence genes of 3 periodontal pathogens, were highly substrate-dependent, but for several substrates a decreased expression of certain genes could be observed. Altogether, this study provides novel findings on oral biofilm modulation by 10 substrates selected for their possible effects on the activity and/or abundance of certain commensal oral bacteria. To our knowledge, this work is the first one to simultaneously investigate the modulatory effects of these specific substrates on the microbiological composition, metabolic and virulence profiles of complex, in vitro multi-species oral biofilms.

The substrates included in this study were selected based on previous findings in literature and/or their involvement in bacterial H$_2$O$_2$ production pathways. Arabinose, sorbitol and saccharin have been shown to stimulate H$_2$O$_2$ production by *S. oralis* and *S. sanguinis*.
Pyruvate and lactate are two substrates with a central role in the two major oral streptococcal
H$_2$O$_2$ production pathways14,37,38. Furthermore, it is known that lactic acid might serve as a
substrate for certain streptococcal species resulting in the production of H$_2$O$_2$.38,39 Potassium
acetate was shown to slightly affect H$_2$O$_2$ production by *S. gordonii*,40 which led to the
 hypothesis this could also be the case for sodium acetate. Finally, the conversion of fumarate
to succinate is known to yield H$_2$O$_2$ as a by-product, and succinate can in turn be re-converted
to fumarate.41 The selected substrates thus have a clear link with H$_2$O$_2$-producing commensal
oral species, but the current study merely focused on the effects of these substrates on multi-
species oral biofilms rather than on the potential underlying mechanisms of these effects. The
rationale for this is that accurate determination of H$_2$O$_2$ production within complex oral biofilms
has not been achieved yet. Due to diffusion restrictions, the effects of H$_2$O$_2$ can be very
localized and take mainly place within the biofilm.42,43 Furthermore, determining the effects of
the substrates on certain aspects of a complex multi-species community could be considered
to be more relevant than merely investigating their mode of action in a simpler setting. Since
H$_2$O$_2$ plays an important role in shaping oral bacterial communities during biofilm
development14,43, this study evaluated the effect of the presence of the substrates during oral
biofilm formation.

Dysbiosis is one of the main hallmarks of oral disease development and is
characterized by a decreased prevalence and/or function of commensal species, whereas the
opposite is true for (potentially) pathogenic species15,44,45. Consequently, modulation of the oral
microbiota envisions the achievement of increased abundances of commensals and/or
decreased abundances of pathogens. The majority of the substrates tested in this study
achieved at least one, and often both, of these goals. This shows potential for these substrates
as modulators of oral biofilms, since previous studies on potential prebiotic substrates for oral
health reported similar effects on multi-species biofilm composition30,31,33,46. The role of species
like *A. actinomycetemcomitans*, *F. nucleatum*, *P. gingivalis* and *P. intermedia* in the initiation
and progression of periodontal diseases has been well-characterized11,44,47,48. However, some
streptococci like *S. oralis*, *S. mitis*, *S. sanguinis* and *S. gordonii* are well-known H$_2$O$_2$-producers
that play a role in shaping oral communities during biofilm development, whereas pathobionts like *P. gingivalis* and *P. intermedia* are susceptible to H$_2$O$_2$-mediated toxicity. For substrates with a compositional effect, changes in abundances were generally observed for one or more of the above-mentioned species. For instance, sodium lactate, sodium pyruvate and potassium acetate all resulted in increased *S. oralis* numbers while simultaneously also a decrease in one or two periodontal pathogens like *P. gingivalis, P. intermedia* and *F. nucleatum* was observed. On the other hand, sorbitol was found to increase *S. mitis* and *S. sanguinis* numbers while also decreasing *A. actinomycetemcomitans* and *P. gingivalis* numbers. The effects of other substrates like saccharin or lactic acid were generally limited to decreases in periopathogens. However, this does not automatically imply that such substrates have no effects on the activity of commensal species, as saccharin and lactic acid have been shown to increase H$_2$O$_2$ production by certain oral streptococci. Altogether, the majority of the substrates tested in this study shifted the biofilm composition towards a more health-associated one. It can be hypothesized that, besides increasing the abundance of certain commensals, this could also be mediated by stimulating the activity of these species.

Insights into the metabolic profile of oral communities can provide valuable information on the role they play in oral health or disease. In periodontal disease, inflammmophilic species characterized by asaccharolytic and proteolytic metabolisms are enriched in abundance and show increased activity. This eventually provides for a reciprocally reinforced feedback loop between inflammation and dysbiosis, allowing such species to thrive and which acts as an important disease driver. Species like *Porphyromonas, Prevotella* and *Fusobacterium* are characterized by such metabolic profiles through which peptides and amino acids are converted into organic acids like formate, acetate, propionate and butyrate. In this study, it was remarkable that most of the substrate conditions showed decreases in butyrate production. Although butyrate is known to play a protective role in the gut, butyrate production in the oral cavity is known to be associated with periodontal inflammation. Therefore, the observed decreased butyrate levels can be considered as a favourable metabolic change. Similar findings on decreased butyrate levels were previously reported in an in vitro study.
identifying potential prebiotic substrates for oral health46. However, commensal species like \textit{Actinomyces} and \textit{Streptococcus} have a saccharolytic metabolism, leading to the production of lactate, acetate and formate52. Given that several substrate conditions showed increases in one or two streptococcal species, one would expect to observe an increase in lactate levels, although this was not the case. This can be explained by the complexity of multi-species biofilms, which are characterized by a wide variety of interspecies interactions and metabolic cross-feeding11,52,56-58. Lactate produced by streptococci forms a nutritional source for \textit{Actinomyces} and \textit{Veillonella} species, which results in the production of formate, acetate and propionate (\textit{Veillonella} spp.) or acetate (\textit{Actinomyces} spp.)52,56,57. Formate has been shown to have an inverse relationship with the severity of periodontal disease53, and in the current study, it was increased in the sodium pyruvate condition. On the other hand, in some studies, it has also been associated with undesired effects on oral epithelial cells in vitro, which is also the case for acetate and propionate59. However, given the entanglement of metabolic pathways within complex multi-species oral biofilms, it is difficult to fully interpret the impact of all metabolic shifts observed in this study.

Pathogenic bacteria in dysbiotic oral communities are often characterized by a pronounced virulence that allows them to persist, thrive and contribute to disease progression60,61. The virulence genes evaluated in this study were selected based on their well-known involvement in periodontal disease onset and progression62-67. Effects on virulence gene expression were highly dependent on the substrate and pathogenic species under consideration. For instance, downregulated \textit{apaH}, \textit{cagE} and \textit{orf859} expression in \textit{A. actinomycetemcomitans} was observed for the sorbitol condition. These genes encode virulence factors involved in the invasion of non-phagocytic cells (\textit{apaH})62, conjugation, DNA transport and virulence factor secretion (\textit{cagE})66 and intracellular survival (\textit{orf859})62. \textit{Orf859} expression was also downregulated in several other conditions. Remarkable was the increased \textit{pga} expression in the sorbitol, saccharin and sodium pyruvate conditions. \textit{PgA} encodes a protein involved in the synthesis of a polysaccharide with an important role in aggregation and biofilm formation63. Similar observations for \textit{pga} expression in modulated oral
biofilms were also previously observed46, and this could be explained as a response to external stress, something reported for other \textit{Aggregatibacter} species68. For \textit{F. nucleatum}, downregulation was often observed for the gene encoding a hemin receptor, which is highly immunogenic and plays an important role in hemin uptake65. Apart from sorbitol and lactic acid, most conditions showed upregulated ABC transporter permease gene expression. As its gene product is involved in membrane transport65, this could also be a response to the induced environmental changes. For \textit{P. gingivalis} the effects were also diverse. Most substrates led to decreased \textit{rgpA} expression, a gingipain gene encoding an arginine-specific cysteine protease involved in several processes such as disturbance of host defense systems and tissue degradation67. \textit{FimA} and \textit{kgp} expression, encoding a fimbrilin involved in attachment to oral surfaces and a gingipain gene encoding a lysine-specific cysteine protease, respectively67, were sometimes downregulated and sometimes upregulated, depending on the substrate.

Altogether, the effects of the substrates on the virulence profiles of the biofilms were found to be highly diverse. Nevertheless, it is important to look at the overall effect of the substrates, since oral diseases are caused by the concerted virulence, (metabolic) function and composition of synergistic polymicrobial biofilms6,16. From that point of view, most substrates had beneficial modulatory effects on at least one, and often two or all three of these aspects. To conclude, future research should look into some of the limitations and aspects that were not addressed in the current study. For instance, a broader selection of virulence genes could provide further insight into changes in virulence, and also evaluating the effects on the inflammatory potential of the biofilms towards oral cells could be of interest. Furthermore, now the effects of the substrates on a complex multi-species biofilm have been established, the underlying mechanisms of these effects should be investigated. Given the rationale for the selection of the substrates, this should first focus on the influence they might have on streptococcal H\textsubscript{2}O\textsubscript{2} production. In conclusion, this study found that a selection of substrates chosen for their hypothesized beneficial effects on the abundance and/or activity of commensal oral bacteria were able to modulate in vitro multi-species oral biofilms towards a more health-associated state. More specifically, biofilms grown in presence of the substrates at a clinically
relevant concentration often showed a beneficial shift in microbiological composition, an altered metabolic profile and sometimes a decreased virulence, the latter of which was highly dependent on the substrate under consideration.

MATERIALS AND METHODS

Bacterial strains, growth media and culture conditions

Aggregatibacter actinomycetemcomitans ATCC 43718, *Fusobacterium nucleatum* ATCC 10953, *Porphyromonas gingivalis* ATCC 33277 and *Prevotella intermedia* ATCC 25611 were used as representative periodontal pathogens, *Streptococcus mutans* ATCC 25175 and *Streptococcus sobrinus* ATCC 33478 as representative cariogenic pathogens and *Actinomyces naeslundii* ATCC 51655, *Actinomyces viscosus* ATCC 15987, *Streptococcus gordonii* ATCC 49818, *Streptococcus mitis* ATCC 49456, *Streptococcus oralis* DSM 20627, *Streptococcus sanguinis* LMG 14657 and *Veillonella parvula* DSM 2008 as representative commensal species. Bacteria were grown on blood agar (Oxoid, Ltd, Basingstoke, UK) supplemented with 5 μg/mL hemin, 1 μg/mL menadione (both Sigma-Aldrich Co, St.-Louis, USA) and 5% sterile horse blood (E&O Laboratories Ltd, Bonnybridge, Scotland). *A. actinomycetemcomitans*, *S. gordonii*, *S. mitis*, *S. mutans*, *S. oralis*, *S. sanguinis* and *S. sobrinus* were grown aerobically (37°C, 5% CO₂) whereas *A. naeslundii*, *A. viscosus*, *F. nucleatum*, *P. gingivalis*, *P. intermedia* and *V. parvula* were grown anaerobically (37°C, 80% N₂, 10% H₂, and 10% CO₂). Single species planktonic cultures were grown in brain hearth infusion (BHI) broth (Difco Laboratories, Detroit, USA) as described previously. Multi-species biofilms were grown in modified BHI broth (BHI-2).

Bioreactor-derived multi-species community

A 13-species community was established in a bioreactor (Biostat B Twin 1L bioreactor, Sartorius Stedim Biotech GmbH, Goettingen, Germany) under controlled environmental conditions, as described in detail elsewhere.

Substrates
The substrates used in this study were selected based on the following two criteria: (1) shown in literature to (possibly) stimulate H_2O_2 production by a limited number of oral bacterial species; and/or (2) (in)direct involvement in known pathways of oral bacterial H_2O_2 production.

All substrates were dissolved in BHI-2 without mucin at a concentration of 2% (w/v), followed by pH adjustment to 7.4 and filter sterilization. For the biofilm experiments, one volume of this was supplemented with one volume of sterile BHI-2 with double-concentrated mucin (2 x), yielding sterile BHI-2 solutions (with 1 x mucin) with a final substrate concentration of 1% (w/v).

Following substrates were selected for this study: D-(-)-arabinose, lactic acid, potassium acetate, saccharin, sodium fumarate, sodium L-lactate, sodium pyruvate, sodium succinate (all Sigma-Aldrich Co, St. Louis, USA), sodium acetate and D-sorbitol (both VWR, Radnor, USA).

Multi-species biofilm formation assays, DNA extraction and quantification

Biofilms were grown horizontally on Calcium Deficient Hydroxyapatite (CAD-HA) disks (Hitemco Medical, Old Bethpage, USA) on the bottom of a 24-well plate in presence of a substrate. Samples from the bioreactor-derived multi-species community were diluted 1:5 in fresh BHI-2 with 2 x mucin, after which 1 mL was added to each well containing a HA disk.

Equal volumes (1 mL) of 2% (w/v) substrate solutions in BHI-2 without mucin were added to the bacterial suspensions (final multi-species community dilution of 1:10, final substrate concentration of 1% (w/v) in BHI-2). As a negative control, BHI-2 without substrate supplementation was used. Biofilms were allowed to grow for 48 h under micro-aerophilic (6% O_2, 7% CO_2, 7% H_2, 80% N_2) conditions (170 rpm, 37°C). All experiments were repeated on three different days. After 48 h, biofilms were gently washed with phosphate buffered saline (PBS, pH 7.4) to detach non-adherent cells, after which remaining biofilms were disrupted by trypsinization and bacterial cells were harvested as described before. DNA from only living bacteria was extracted using a previously described propidium monoazide (PMA) treatment. Bacterial numbers were determined using a quantitative polymerase chain reaction (qPCR) assay as described by Slomka et al., whereas species-specific primers and probes were listed by Herrero et al.

Organic acid analysis of multi-species biofilm supernatants
Concentrations of lactate, acetate, formate, propionate and butyrate in the filter sterilized supernatant of the multi-species biofilm assays were determined with a 761 Compact Ion Chromatograph (Metrohm, Switzerland) with a Metrosep Organic acids 250/7.8 column and a Metrosep Organic acids Guard/4.6 guard column, with the eluent consisting of 1 mM H$_2$SO$_4$ at a flow rate of 0.8 mL min$^{-1}$. Organic acid production/consumption was calculated as the organic acid concentrations detected in the filter sterilized supernatants, minus the concentrations of those organic acids detected in sterile BHI-2 with or without supplemented substrate.

RNA extraction and virulence gene expression analysis

Biofilm-coated disks were dip-rinsed in PBS (pH 7.4) to remove unattached cells, followed by bacterial RNA extraction as described previously60. Briefly, RNA was obtained through a mechanical disruption and acid phenol-chloroform extraction as described by Vandecasteele et al.34 in combination with the RNeasy Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer’s protocol. After quality and integrity assessment, a concentration-dependent normalization of all RNA samples was performed, followed by conversion of RNA to complementary DNA (cDNA), all as described previously60. Expression of bacterial virulence genes was analysed through SYBR RT-qPCR and normalized for bacterial housekeeping gene (species-specific 16S rRNA or other genes) expression. Reaction mixtures were prepared and assay conditions were performed as described by Herrero et al.60. Specific sequences of each primer pair can be found elsewhere60. Data were determined as a function of the threshold cycle (CT) values and relative virulence gene expression was calculated according to the $\Delta\Delta$CT method ($2^{-(\Delta\Delta\text{CT}_{\text{exp}} - \Delta\Delta\text{CT}_{\text{control}})}$).

Statistical analysis

Statistical analysis was done using GraphPad Prism v.7.04 for Windows (GraphPad Software, La Jolla, USA). Normality of the residuals was assessed through a Shapiro-Wilk test and a normal quantile plot. For most experiments, comparisons with the control were made and statistically significant differences ($P < 0.05$) were determined through a one-way ANOVA (confidence level of 95%) followed by Dunnett’s correction for simultaneous hypothesis testing. Changes in absolute bacterial abundances expressed as the difference between the value of
the control condition and the value of the substrate condition were analysed through a two-tailed, one sample t test to detect differences significantly different from 0 (no difference between control condition and substrate condition).

DATA AVAILABILITY

The authors declare that all data supporting the findings of this study are available within the paper and its supplementary information files.

REFERENCES

1. Marsh, P. D. In Sickness and in Health-What Does the Oral Microbiome Mean to Us? An Ecological Perspective. *Adv Dent Res* **29**, 60-65, doi:10.1177/0022034517735295 (2018).
2. van der Weijden, F. & Slot, D. E. Oral hygiene in the prevention of periodontal diseases: the evidence. *Periodontol 2000* **55**, 104-123, doi:10.1111/j.1600-0757.2009.00337.x (2011).
3. Genco, R. J. Current view of risk factors for periodontal diseases. *J Periodontol* **67**, 1041-1049, doi:10.1902/jop.1996.67.10.1041 (1996).
4. Cullinan, M. P. & Seymour, G. J. Periodontal disease and systemic illness: will the evidence ever be enough? *Periodontol 2000* **62**, 271-286, doi:10.1111/prd.12007 (2013).
5. da Silva, M. K. *et al.* Genetic Factors and the Risk of Periodontitis Development: Findings from a Systematic Review Composed of 13 Studies of Meta-Analysis with 71,531 Participants. *Int J Dent* **2017**, 1914073, doi:10.1155/2017/1914073 (2017).
6. Lamont, R. J., Koo, H. & Hajishengallis, G. The oral microbiota: dynamic communities and host interactions. *Nature Reviews Microbiology* **16**, 745-759, doi:10.1038/s41579-018-0089-x (2018).
7. Sato, Y. *et al.* Inter-Individual Differences in the Oral Bacteriome Are Greater than Intra-Day Fluctuations in Individuals. *PLoS One* **10**, e0131607, doi:10.1371/journal.pone.0131607 (2015).
8. Aas, J. A., Paster, B. J., Stokes, L. N., Olsen, I. & Dewhirst, F. E. Defining the normal bacterial flora of the oral cavity. *J Clin Microbiol* **43**, 5721-5732, doi:10.1128/JCM.43.11.5721-5732.2005 (2005).
9. Kolenbrander, P. E. *et al.* Bacterial interactions and successions during plaque development. *Periodontal 2000* **42**, 47-79, doi:10.1111/j.1600-0757.2006.00187.x (2006).
10. Kuramitsu, H. K., He, X., Lux, R., Anderson, M. H. & Shi, W. Interspecies interactions within oral microbial communities. *Microbiol Mol Biol Rev* **71**, 653-670, doi:10.1128/MMBR.00024-07 (2007).
Redanz, S. et al. Live and let die: Hydrogen peroxide production by the commensal flora and its role in maintaining a symbiotic microbiome. *Molecular Oral Microbiology* **33**, 337-352, doi:10.1111/omi.12231 (2018).

Rosier, B. T., Marsh, P. D. & Mira, A. Resilience of the Oral Microbiota in Health: Mechanisms That Prevent Dysbiosis. *Journal of Dental Research* **97**, 371-380, doi:10.1177/0022034517742139 (2018).

Lamont, R. J. & Hajishengallis, G. Polymicrobial synergy and dysbiosis in inflammatory disease. *Trends Mol Med* **21**, 172-183, doi:10.1016/j.molmed.2014.11.004 (2015).

Berchier, C. E., Slot, D. E., Haps, S. & Van der Weijden, G. A. The efficacy of dental floss in addition to a toothbrush on plaque and parameters of gingival inflammation: a systematic review. *Int J Dent Hyg* **6**, 265-279, doi:10.1111/j.1601-5037.2008.00336.x (2008).

van der Weijden, G. A. & Hioe, K. P. A systematic review of the effectiveness of self-performed mechanical plaque removal in adults with gingivitis using a manual toothbrush. *J Clin Periodontol* **32 Suppl 6**, 214-228, doi:10.1111/j.1600-051X.2005.00795.x (2005).

Marsh, P. D. Controlling the oral biofilm with antimicrobials. *J Dent* **38 Suppl 1**, S11-15, doi:10.1016/S0300-5712(10)70005-1 (2010).

Feres, M., Figueiredo, L. C., Soares, G. M. & Faveri, M. Systemic antibiotics in the treatment of periodontitis. *Periodontol 2000* **67**, 131-186, doi:10.1111/prd.12075 (2015).

Garcia-Gargallo, M. et al. Evaluation of new chlorhexidine- and cetylpyridinium chloride-based mouthrinse formulations adjunctive to scaling and root planing: pilot study. *Int J Dent Hyg* **15**, 269-279, doi:10.1111/idh.12254 (2017).

Verspecht, T. et al. Development of antiseptic adaptation and cross-adaptation in selected oral pathogens in vitro. *Sci Rep-Uk 9*, doi:10.1038/s41598-019-44822-y (2019).

Chatzigiannidou, I., Teughels, W., Van de Wiele, T. & Boon, N. Oral biofilms exposure to chlorhexidine results in altered microbial composition and metabolic profile. *NPJ Biofilms Microbiomes* **6**, 13, doi:10.1038/s41552-020-0124-3 (2020).

Hill, C. et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. *Nat Rev Gastroenterol Hepatol* **11**, 506-514, doi:10.1038/nrgastro.2014.66 (2014).

Marco, M. L., Pavan, S. & Kleerebezem, M. Towards understanding molecular modes of probiotic action. *Curr Opin Biotechnol* **17**, 204-210, doi:10.1016/j.coopbio.2006.02.005 (2006).

Martin-Cabezas, R., Davideau, J. L., Tenenbaum, H. & Huck, O. Clinical efficacy of probiotics as an adjunctive therapy to non-surgical periodontal treatment of chronic periodontitis: a systematic review and meta-analysis. *J Clin Periodontol* **43**, 520-530, doi:10.1111/jcpe.12700 (2016).

Shimauchi, H. et al. Improvement of periodontal condition by probiotics with Lactobacillus salivarius WB21: a randomized, double-blind, placebo-controlled study. *J Clin Periodontol* **35**, 897-905, doi:10.1111/j.1600-051X.2008.01306.x (2008).

Gibson, G. R. et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. *Nature Reviews Gastroenterology & Hepatology* **14**, 491-502, doi:10.1038/nrgastro.2017.75 (2017).

Slomka, V. et al. Nutritional stimulation of commensal oral bacteria suppresses pathogens: the prebiotic concept. *Journal of Clinical Periodontology* **44**, 344-352, doi:10.1111/jcpe.12700 (2017).

Slomka, V. et al. Oral prebiotics and the influence of environmental conditions in vitro. *Journal of Periodontology* **89**, 708-717, doi:10.1002/jper.17-0437 (2018).
Rosier, B. T., Buetas, E., Moya-Gonzalvez, E. M., Artacho, A. & Mira, A. Nitrate as a potential prebiotic for the oral microbiome. *Sci Rep* 10, 12895, doi:10.1038/s41598-020-69931-x (2020).

Jockel-Schneider, Y. *et al.* Stimulation of the nitrate-nitrite-NO-metabolism by repeated lettuce juice consumption decreases gingival inflammation in periodontal recall patients: a randomized, double-blinded, placebo-controlled clinical trial. *J Clin Periodontol* 43, 603-608, doi:10.1111/jcpe.12542 (2016).

Bijle, M. N., Neelakantan, P., Ekambaram, M., Lo, E. C. M. & Yiu, C. K. Y. Effect of a novel symbiotic on Streptococcus mutans. *Sci Rep* 10, 7951, doi:10.1038/s41598-020-64956-8 (2020).

Cheng, X. *et al.* Magnesium-Dependent Promotion of H2O2 Production Increases Ecological Competitiveness of Oral Commensal Streptococci. *J Dent Res* 99, 847-854, doi:10.1177/0022034520912181 (2020).

Liu, L., Tong, H. & Dong, X. Function of the pyruvate oxidase-lactate oxidase cascade in interspecies competition between Streptococcus oligofermentans and Streptococcus mutans. *Appl Environ Microbiol* 78, 2120-2127, doi:10.1128/AEM.07539-11 (2012).

Tong, H. *et al.* Streptococcus oligofermentans inhibits Streptococcus mutans through conversion of lactic acid into inhibitory H2O2: a possible counteroffensive strategy for interspecies competition. *Mol Microbiol* 63, 872-880, doi:10.1111/j.1365-2958.2006.05546.x (2007).

Barnard, J. P. & Stinson, M. W. Influence of environmental conditions on hydrogen peroxide formation by Streptococcus gordonii. *Infect Immun* 67, 6558-6564 (1999).

Messaer, K. R. & Imlay, J. A. Mechanism of superoxide and hydrogen peroxide formation by fumarate reductase, succinate dehydrogenase, and aspartate oxidase. *J Biol Chem* 277, 42563-42571, doi:10.1074/jbc.M204958200 (2002).

Liu, X. *et al.* Real-time mapping of a hydrogen peroxide concentration profile across a polymicrobial bacterial biofilm using scanning electrochemical microscopy. *Proc Natl Acad Sci U S A* 108, 2668-2673, doi:10.1073/pnas.1018391108 (2011).

Zhu, L. & Kreth, J. The role of hydrogen peroxide in environmental adaptation of oral microbial communities. *Oxid Med Cell Longev* 2012, 717843, doi:10.1155/2012/717843 (2012).

Hajishengallis, G. & Lamont, R. J. Beyond the red complex and into more complexity: the polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology. *Mol Oral Microbiol* 27, 409-419, doi:10.1111/j.2041-1014.2012.00663.x (2012).

Diaz, P. I., Hoare, A. & Hong, B. Y. Subgingival Microbiome Shifts and Community Dynamics in Periodontal Diseases. *J Calif Dent Assoc* 44, 421-435 (2016).

Verspecht, T. *et al.* Potential prebiotic substrates modulate composition, metabolism, virulence and inflammatory potential of an in vitro multi-species oral biofilm. *J Oral Microbiol* 13, 1910462, doi:10.1080/20002297.2021.1910462 (2021).

Friás-López, J. & Durán-Pinedo, A. Effect of periodontal pathogens on the metatranscriptome of a healthy multispecies biofilm model. *J Bacteriol* 194, 2082-2095, doi:10.1128/JB.06328-11 (2012).
Antimicrobial effects of commensal oral species are regulated by environmental factors. *Journal of Dentistry* **47**, 23-33, doi:10.1016/j.jdent.2016.02.007 (2016).

Takahashi, N. Microbial ecosystem in the oral cavity: Metabolic diversity in an ecological niche and its relationship with oral diseases. *International Congress Series* **1284**, 103-112, doi:https://doi.org/10.1016/j.jcs.2005.06.071 (2005).

Hajishengallis, G. The inflammophilic character of the periodontitis-associated microbiota. *Mol Oral Microbiol* **29**, 248-257, doi:10.1111/omi.12065 (2014).

Takahashi, N. Oral Microbiome Metabolism: From "Who Are They?" to "What Are They Doing?". *J Dent Res* **94**, 1628-1637, doi:10.1177/0022034515606045 (2015).

Qi, J., Huanxin, M. & Xuejun, G. Longitudinal study of volatile fatty acids in the gingival crevicular fluid of patients with periodontitis before and after nonsurgical therapy. *J Periodontal Res* **47**, 740-749, doi:10.1111/j.1600-0765.2012.01489.x (2012).

Takahashi, N., Washio, J. & Mayanagi, G. Metabolomics of supragingival plaque and oral bacteria. *J Dent Res* **89**, 1383-1388, doi:10.1177/0022034510377792 (2010).

Guan, X., Li, W. & Meng, H. A double-edged sword: Role of butyrate in the oral cavity and the gut. *Mol Oral Microbiol*, doi:10.1111/omi.12322 (2020).

Fernandez, Y. M. M., Exterkate, R. A. M., Buijs, M. J., Crielaard, W. & Zaura, E. Effect of mouthwashes on the composition and metabolic activity of oral biofilms grown in vitro. *Clin Oral Investig* **1221**, 1221-1230, doi:10.1007/s00784-016-1876-2 (2017).

Periasamy, S. & Kolenbrander, P. E. Central role of the early colonizer Veillonella sp. in establishing multispecies biofilm communities with initial, middle, and late colonizers of enamel. *J Bacteriol* **192**, 2965-2972, doi:10.1128/JB.01631-09 (2010).

Takahashi, N., Washio, J. & Mayanagi, G. Metabolomics of supragingival plaque and oral bacteria. *J Dent Res* **89**, 1383-1388, doi:10.1177/0022034510377792 (2010).

Magrin, G. L., Strauss, F. J., Benfatti, C. A. M., Maia, L. C. & Gruber, R. Effects of Short-Chain Fatty Acids on Human Oral Epithelial Cells and the Potential Impact on Periodontal Disease: A Systematic Review of In Vitro Studies. *Int J Mol Sci* **21**, doi:10.3390/ijms21144895 (2020).

Herrero, E. R. *et al.* Dysbiotic Biofilms Deregulate the Periodontal Inflammatory Response. *J Dent Res* **97**, 547-555, doi:10.1177/0022034517752675 (2018).

Duran-Pinedo, A. E. *et al.* Community-wide transcriptome of the oral microbiome in subjects with and without periodontitis. *ISME J* **8**, 1659-1672, doi:10.1038/ismej.2014.23 (2014).

Umeda, J. E., Longo, P. L., Simionato, M. R. & Mayer, M. P. Differential transcription of virulence genes in Aggregatibacter actinomycetemcomitans serotypes. *J Oral Microbiol* **5**, doi:10.3402/jom.v5i0.21473 (2013).

Hisano, K. *et al.* The pga gene cluster in Aggregatibacter actinomycetemcomitans is necessary for the development of natural competence in Ca(2+) -promoted biofilms. *Mol Oral Microbiol* **192**, 79-89, doi:10.1111/omr.12046 (2014).

Xie, H., Kozlova, N. & Lamont, R. J. Porphyromonas gingivalis genes involved in fimA regulation. *Infect Immun* **72**, 651-658, doi:10.1128/iai.72.2.651-658.2004 (2004).

Lee, H. R. *et al.* In-vivo-induced antigenic determinants of Fusobacterium nucleatum subsp. nucleatum. *Mol Oral Microbiol* **26**, 164-172, doi:10.1111/j.2041-1014.2010.00594.x (2011).

Johansson, A., Claesson, R., Hoglund Aberg, C., Hauben, D. & Oscarsson, J. The cagE gene sequence as a diagnostic marker to identify JP2 and non-JP2 highly leukotoxic Aggregatibacter actinomycetemcomitans serotype b strains. *J Periodontal Res* **52**, 903-912, doi:10.1111/jre.12462 (2017).

Imamura, T. The role of gingipains in the pathogenesis of periodontal disease. *J Periodontol* **74**, 111-118, doi:10.1902/jop.2003.74.1.111 (2003).
Bosse, J. T. et al. Regulation of pga operon expression and biofilm formation in Actinobacillus pleuropneumoniae by sigmaE and H-NS. J Bacteriol 192, 2414-2423, doi:10.1128/JB.01513-09 (2010).

Herrero, E. R. et al. Dysbiosis by neutralizing commensal mediated inhibition of pathobionts. Sci Rep 6, 38179, doi:10.1038/srep38179 (2016).

ACKNOWLEDGEMENTS
This study was supported by grants from the KU Leuven (Belgium) (C24/17/086) and the Research Foundation Flanders (FWO, Belgium) (FWO G091218N).
We thank Ioanna Chatzigiannidou (CMET, UGent) for the help with the organic acid analysis.

AUTHOR CONTRIBUTIONS
T.V. contributed to conception, design, data acquisition and analysis, data interpretation, drafted and critically revised the manuscript; D.V. contributed to data acquisition and analysis, data interpretation and critically revised the manuscript; W.V.H. and N.Z. contributed to data interpretation and critically revised the manuscript; K.B. and N.B. contributed to design, data interpretation and critically revised the manuscript; W.T. contributed to conception, design, data analysis and interpretation, and critically revised the manuscript.

ADDITIONAL INFORMATION
Competing interests statement
All authors report no conflicts of interest related to this study.

Supplementary information
Supplementary information accompanies the manuscript on the Scientific Reports website https://www.nature.com/srep.

FIGURE LEGENDS
Figure 1 Changes in absolute composition of multi-species biofilms grown in presence of H$_2$O$_2$ production-affecting substrates. Multi-species biofilms were grown during two series of experiments in the absence (=control; BHI-2 medium) or presence of the different substrates (a: sodium L-lactate; b: sodium pyruvate; c: sodium acetate; d: potassium acetate; e: D(-)-arabinose; f: lactic acid; g: D-sorbitol; h: saccharin; i: sodium succinate; j: sodium fumarate).
pyruvate; c: sodium acetate; d: potassium acetate; e: D-(−)-arabinose; f: lactic acid; g: D-sorbitol; h: saccharin; i: sodium succinate; j: sodium fumarate) dissolved in BHI-2 medium at a concentration of 1% (w/v). Changes in absolute abundances of each species in comparison with the control are shown as mean ± SD (n = 3) and expressed in Δlogarithmic value of genome equivalents per millilitre (Δlog(Geq/mL)). Δlog(Geq/mL) was calculated by subtracting the log(Geq/mL) values of the control condition for each species from the log(Geq/mL) values of the substrate condition for each species. Δlog(Geq/mL) values that are statistically significantly different from 0 (corresponding to no difference between control condition and substrate condition) are shown in bold and are marked with ‘*’ (P < 0.05, two-tailed one sample t test).

Aa: A. actinomycetemcomitans; Fn: F. nucleatum; Pg: P. gingivalis; Pi: P. intermedia; A. naesl.: A. naeslundii; A. visc.: A. viscosus; S. gord.: S. gordonii; S. sang.: S. sanguinis; V. parv: V. parvula.
Table 1 Changes in relative composition of multi-species biofilms grown in presence of H₂O₂ production-affecting substrates

relative abundance (%Geq/mL)	commensals	periopathogens	cariogenic pathogens
control	21.8 ± 3.0	77.8 ± 3.0	0.4 ± 0.1
D-sorbitol	55.2 ± 14.8 *	43.6 ± 15.0 *	1.2 ± 0.4
saccharin	82.6 ± 8.6 *	13.2 ± 6.3 *	4.2 ± 2.3 *
lactic acid	65.9 ± 7.4 *	33.3 ± 7.2 *	0.8 ± 0.3
sodium succinate	47.5 ± 16.6	51.6 ± 16.8	0.8 ± 0.3
sodium fumarate	74.5 ± 7.5 *	24.2 ± 7.2 *	1.3 ± 0.3

relative abundance (%Geq/mL)	commensals	periopathogens	cariogenic pathogens
control	31.7 ± 9.3	68.3 ± 9.3	0.1 ± 0.0
sodium L-lactate	82.9 ± 7.0	17.0 ± 7.0 *	0.1 ± 0.0
sodium pyruvate	62.4 ± 13.6	37.1 ± 13.6	0.5 ± 0.2 *
D-(-)-arabinose	33.5 ± 19.6	66.4 ± 19.6	0.1 ± 0.0
potassium acetate	69.7 ± 8.6	30.2 ± 8.6 *	0.1 ± 0.1
sodium acetate	49.6 ± 8.1	50.3 ± 8.1	0.1 ± 0.0

Multi-species biofilms were grown during two series of experiments (upper part and lower part) in the absence (=control; BHI-2 medium) or presence of the different substrates dissolved in BHI-2 medium at a concentration of 1%(w/v). Relative abundances of commensals, periopathogens and cariogenic pathogens are shown as mean ± SD (n = 3) and expressed in %genome equivalents per millilitre (%Geq/mL). Statistically significant changes in comparison with the control condition are shown in bold and are marked with ‘*’ (P < 0.05, ANOVA + Dunnett’s correction for simultaneous hypothesis testing).
Table 2 Organic acid production/consumption by multi-species biofilms grown in presence of H$_2$O$_2$ production-affecting substrates

OA production/consumption (mg/L)	lactate	formate	acetate	propionate	butyrate
control	-170 ± 2	94 ± 103	4312 ± 119	2722 ± 23	2498 ± 121
D-sorbitol	-13 ± 222	383 ± 100	3889 ± 52	6726 ± 96 *	1397 ± 166 *
saccharin	-194 ± 0	-78 ± 0	1549 ± 90 *	1735 ± 37 *	280 ± 25 *
lactic acid	85 ± 42	13 ± 59	4791 ± 320	6166 ± 93 *	1312 ± 358 *
sodium succinate	-136 ± 8	28 ± 52	3121 ± 449 *	5345 ± 54 *	1308 ± 510 *
sodium fumarate	1490 ± 717 *	114 ± 41	3864 ± 98	4557 ± 177 *	409 ± 87 *

OA production/consumption (mg/L)	lactate	formate	acetate	propionate	butyrate
control	-194 ± 0	226 ± 7	5104 ± 105	3135 ± 182	2449 ± 224
sodium L-lactate	-104 ± 2 *	203 ± 6	5907 ± 66 *	7117 ± 206 *	1868 ± 117 *
sodium pyruvate	-146 ± 34	921 ± 74 *	7817 ± 41 *	3819 ± 40 *	2086 ± 38 *
D-(-)-arabinose	-134 ± 10	236 ± 6	4965 ± 167	2985 ± 60	2274 ± 91
potassium acetate	-167 ± 38	201 ± 4	10624 ± 14 *	3150 ± 64	2547 ± 39
sodium acetate	-145 ± 34	177 ± 13	8524 ± 264 *	3078 ± 158	2145 ± 26

Multi-species biofilms were grown during two series of experiments (upper part and lower part) in the absence (=control; BHI-2 medium) or presence of the different substrates dissolved in BHI-2 medium at a concentration of 1% (w/v). Organic acid production/consumption (shown as mean ± SD (n = 3) and expressed in mg/L) was calculated as the organic acid concentrations detected in the filter sterilized supernatants, minus the concentrations of those organic acids detected in sterile BHI-2 with or without supplemented substrate. Values preceded by a negative sign (‘-’) indicate organic acid consumption (net decrease), whereas all other values indicate organic acid production (net increase). Statistically significant changes in comparison with the control condition are shown in bold and are marked with ‘*’ ($P < 0.05$, ANOVA + Dunnett’s correction for simultaneous hypothesis testing). OA: organic acid.
Table 3 Changes in virulence gene expression of multi-species biofilms grown in presence of H$_2$O$_2$ production-affecting substrates

Genes	A. actinomycetemcomitans	F. nucleatum	P. gingivalis	
SORBI				
apah	0.28 (0.04-1.84)	0.44 (0.20-0.95)	1.56 (0.18-13.18)	
	(0.14-2.63)	(13.4-24.2)	(2.07-6.18)	
	(0.47-4.17)	(0.16-1.26)	(0.23-1.60)	
	(0.15-18.94)	(1.15-13.67)	(0.13-0.71)	
	(0.33-9.85)	(3.51-7.06)	(0.13-1.39)	
	(0.96-3.42)	(2.66-5.19)	(0.13-0.60)	
	(0.7-0.76)	(0.85-6.16)	(0.26-8.20)	
	(0.39-0.94)	(0.80-1.70)	(0.17-2.14)	
	(0.36-1.97)	(1.60-7.59)	(1.35-5.45)	
	(3.7-19.52)	(1.59-9.91)	(0.13-1.67)	
cagE	0.01 (0.01-0.01)	0.11 (0.02-0.53)	0.45 (0.07-2.89)	
	(0.15-1.48)	(0.67-13.99)	(0.01-0.18)	
	(0.7-11.61)	(0.03-0.75)	(1.76-3.08)	
	(0.61-15.91)	(0.11-1.62)	(0.23-8.90)	
	(0.03-28.02)	(0.17-1.50)	(0.36-0.46)	
	(1.41-8.61)	(0.35-3.82)	(0.3-5.74)	
	(0.59-1.94)	(0.02-4.28)	(7.13-49.53)	
	(0.21-3.11)	(0.07-2.30)	(0.24-19.88)	
	(1.31-3.05)	(0.09-1.96)	(1.75-7.76)	
	(1.45-7.45)	(0.15-0.58)	(0.3-5.08)	
orf859	0.17 (0.05-0.53)	0.11 (0.01-0.18)	1.01 (0.6-1.72)	
	(0.30-4.24)	(1.76-3.08)	(0.12-1.41)	
	(0.11-0.78)	(0.23-8.90)	(0.13-2.58)	
	(0.04-7.20)	(0.36-0.46)	(0.04-2.10)	
	(0.07-1.56)	(0.3-5.74)	(0.29-0.35)	
	(0.42-1.03)	(7.13-49.53)	(0.06-0.72)	
	(0.03-0.96)	(0.24-19.88)	(0.22-2.41)	
	(0.51-0.93)	(1.75-7.76)	(0.14-2.58)	
	(0.07-1.18)	(0.3-5.08)	(0.49-6.63)	
pgA	3.57 (1.44-8.84)	1.08 (0.48-2.44)	1.01 (0.6-1.72)	
	(1.34-10.75)	(2.02-6.41)	(0.12-1.41)	
	(0.72-1.27)	(0.31-1.66)	(0.13-2.58)	
	(0.2-1.22)	(0.24-1.85)	(0.04-2.10)	
	(0.44-7.66)	(0.53-3.03)	(0.29-0.35)	
	(0.17-2.68)	(0.17-7.79)	(0.22-2.41)	
	(0.34-7.4)	(0.51-1.92)	(0.14-2.58)	
	(1.1-2.38)	(1.31-1.92)	(0.49-6.63)	
	(1.2-2.09)	(0.36-2.96)	(0.02-3.20)	
	relative fold change values			

Multi-species biofilms were grown during two series of experiments in the absence (=control; BHI-2 medium) or presence of the different substrates dissolved in BHI-2 medium at a concentration of 1% (w/v). Changes in the expression of a selection of virulence genes from three periodontal pathogens present in the multi-species biofilms were determined. Fold changes in virulence gene expression were calculated with the 2$^\Delta\Delta$Ct method and were determined relative to the control (BHI-2). Data are shown as geometric mean and C.I. (n = 3) of the 2$^\Delta\Delta$Ct values. Values between 0 and 1 indicate downregulation relative to the control, values >1 indicate upregulation relative to the control. Statistically significantly different fold changes relative to the control with a value <0.5 (more than 2-fold downregulated) or >1.5 (more than 1.5-fold upregulated) are considered biologically relevant and are shown in bold (P < 0.05, ANOVA + Dunnett’s correction for simultaneous hypothesis testing). The color
scale indicates the magnitude of the fold change in virulence gene expression relative to the control. SORBI: D-sorbitol; SACCH: saccharin; LA: lactic acid; SS: sodium succinate; SF: sodium fumarate; SL: sodium L-lactate; SP: sodium pyruvate; ARA: D-(-)-arabinose; PA: potassium acetate; SA: sodium acetate; ABC tr. p.: ABC transporter permease; hemin rec.: hemin receptor; C.I.: 95% confidence interval.
Changes in absolute composition of multi-species biofilms grown in presence of H2O2 production-affecting substrates. Multi-species biofilms were grown during two series of experiments in the absence (=control; BHI-2 medium) or presence of the different substrates (a: sodium L-lactate; b: sodium pyruvate; c: sodium acetate; d: potassium acetate; e: D(-)-arabinose; f: lactic acid; g: D-sorbitol; h: saccharin; i: sodium succinate; j: sodium fumarate) dissolved in BHI-2 medium at a concentration of 1%(w/v).

Changes in absolute abundances of each species in comparison with the control are shown as mean ± SD (n = 3) and expressed in Δlogarithmic value of genome equivalents per millilitre (Δlog(Geq/mL)). Δlog(Geq/mL) was calculated by subtracting the log(Geq/mL) values of the control condition for each species from the log(Geq/mL) values of the substrate condition for each species. Δlog(Geq/mL) values that are statistically significantly different from 0 (corresponding to no difference between control condition and substrate condition) are shown in bold and are marked with ‘*’ (P < 0.05, two-tailed one sample t test). Aa: A. actinomycetemcomitans; Fn: F. nucleatum; Pg: P. gingivalis; Pi: P. intermedia; A. naesl.: A. naeslundii; A. visc.: A. viscosus; S. gord.: S. gordonii; S. sang.: S. sanguinis; V. parv: V. parvula.
Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Supplementaryinformation.pdf