Degrees of freedom and Hamiltonian formalism for $f(T)$ gravity

María José Guzmán
Departamento de Física y Astronomía, Facultad de Ciencias, Universidad de La Serena,
Av. Juan Cisternas 1200, La Serena 1720236, Chile
maria.j.guzman.m@gmail.com

Rafael Ferraro
Instituto de Astronomía y Física del Espacio (IAFE), CONICET, Universidad de Buenos Aires,
Casilla de Correo 67, Sucursal 28, Buenos Aires 1428, Argentina
ferraro@iafe.uba.ar

Received Day Month Year
Revised Day Month Year

The existence of an extra degree of freedom (d.o.f.) in $f(T)$ gravity has been recently proved by means of the Dirac formalism for constrained Hamiltonian systems. We will show a toy model displaying the essential feature of $f(T)$ gravity, which is the pseudo-invariance of T under a local symmetry, to understand the nature of the extra d.o.f.

Keywords: Teleparallel gravity; $f(T)$ gravity; constrained Hamiltonian systems.

PACS numbers: 04.50.Kd, 11.10.Ef

1. $f(T)$ Gravity

The teleparallel equivalent of general relativity (TEGR) is a reformulation of general relativity (GR) in terms of a field of tetrads. It encompasses the vector basis $e_a = e^a_\mu \partial_\mu$ and its co-basis $E^a = E^a_\mu dx^\mu$, which are mutually dual: $E^a_\mu e^\mu_b = \delta^a_b$. Tetrads are related to the spacetime metric through the orthonormality condition

$$\eta_{ab} = g_{\mu\nu} e^a_\mu e^b_\nu, \quad g_{\mu\nu} = \eta_{ab} E^a_\mu E^b_\nu.$$ (1)

The spacetime underlying TEGR is endowed with a curvatureless, metric-compatible spin connection. Usually the Weitzenböck connection $\omega^a_{\mu\nu} = 0$ is chosen, which in coordinate bases means $T^a_{\mu\nu} = e^a_\rho \partial_\mu E^\rho_{\nu}$. TEGR Lagrangian is built from the torsion $T^a_{\mu\nu} = e^a_\rho (\partial_\mu E^\rho_{\nu} - \partial_\nu E^\rho_{\mu})$ through the torsion scalar T defined as

$$T = -\frac{1}{4} T_{\mu\nu\sigma} T^{\mu\nu\sigma} - \frac{1}{2} T_{\mu\nu} T^{\mu\nu} + T^a_{\mu\rho} T^{\sigma\mu}_{\rho}.$$ (2)

TEGR Lagrangian $L = ET$ (E stands for $\det(E^a_\mu) = |g|^{1/2}$) and GR Lagrangian $L = -ER$ (R being the Levi-Civita scalar curvature) are dynamically equivalent
since they differ in a boundary term: \(E(R + T) = \partial_\mu (E T^\mu) \). So, both TEGR and GR govern the same d.o.f., which are associated with the metric tensor. The metric tensor is invariant under local Lorentz transformations of the tetrad, \(E^a \rightarrow E^{a'} = \Lambda^a_b(x) E^b \), which is thus a gauge symmetry of TEGR. The TEGR Lagrangian is used as a starting point to describe generalizations to GR inspired in \(f(R) \) theories; the so called \(f(T) \) gravity is governed by the action

\[
S = \frac{1}{2\kappa} \int d^4x \ E f(T). \tag{3}
\]

2. A Toy Model with Rotational Pseudo-Invariance

TEGR Lagrangian \(L = ET \) is not gauge invariant but pseudo-invariant, because \(T^\nu\mu \) in the above mentioned boundary term is not invariant under local Lorentz transformations of the tetrad. Therefore, a general function \(f \) will not allow the boundary term to be integrated out in the \(f(T) \) action \(E \); as a consequence, the theory will suffer a partial loss of the local Lorentz symmetry \(\mathbb{E} \), so an extra d.o.f. not related to the metric could appear. We will analyze this issue by resorting to a simple toy model with rotational pseudo-invariance (a similar one was introduced in a previous work, \(\mathbb{F} \), but the boundary term was simpler). Let be the Lagrangian

\[
L = 2 \left(\frac{d}{dt} \sqrt{zz} \right)^2 - U(z\bar{z}) + \bar{z} \frac{\partial g}{\partial z} + z \frac{\partial g}{\partial \bar{z}} \tag{4}
\]

The two first terms are invariant under local rotations \(z \rightarrow e^{i\alpha(t)} z \). The rest of \(L \) is a total derivative; it does not take part in the dynamics but can be affected by the local rotation. So, the Lagrangian \(L \) is just pseudo-invariant under a local rotation. As any gauge invariance the local pseudo-invariance implies the existence of constraints among the canonical momenta; a unique primary constraint is obtained in this case:

\[
G^{(1)} \equiv z \left(\frac{p_z - \partial g}{\partial z} \right) - \bar{z} \left(\frac{p_{\bar{z}} - \partial g}{\partial \bar{z}} \right) \approx 0. \tag{5}
\]

\(G^{(1)} \) is an angular momentum; it generates rotations. In fact, it is \(\{ G^{(1)}, z\bar{z} \} = 0 \), which means that the dynamical variable \(|z| \) is gauge invariant. As can be seen, the angular momentum not only is conserved in this case; since the symmetry is local (time-dependent), the conserved value is constrained to be zero.

Primary constraints have to be consistent with the evolution, as controlled by the primary Hamiltonian \(H_p = H + u(t) G^{(1)} \). In the case \(\mathbb{E}, \mathbb{F} \) it results that the consistency is fulfilled without specifying the Lagrange multiplier \(u(t) \). Thus, the evolution of any variable that does not commute with \(G^{(1)} \) is affected by an undetermined function \(u(t) \); this is the case of the phase of \(z \), which become a “pure gauge” variable, but not the case of \(|z| \), which is a genuine d.o.f. or observable. \(G^{(1)} \) is called first-class, since it commutes with all the constraints (it is the only constraint in this example). As it is well known, each first class constraint removes one d.o.f. from a Hamiltonian constrained system. In this toy model, one d.o.f. is removed from the pair \((z, \bar{z}) \), showing that \(|z| \) is the only d.o.f. of the theory.
3. Modified toy model

We will deform the toy model of the previous section by introducing the Lagrangian $f(L)$. Let us show that this can be done by means of the Lagrangian

$$L = \phi L - V(\phi),$$

where ϕ is an auxiliary canonical variable. Equation (6) resembles the Jordan-frame representation of $f(R)$ gravity. From L one gets the equation of motion for ϕ:

$$L = V'(\phi).$$

Thus, L is (on-shell) equal to the Legendre transform of $V(\phi)$; therefore it depends only on L, i.e. $L = f(L)$ (from the inverse Legendre transform we also know that $\phi = f'(L)$). Thus the Lagrangian L is dynamically equivalent to a $f(L)$ theory. As expected for a $f(L)$ theory, L is not pseudo-invariant under local rotations. This is because the total derivative coming with L is now multiplied by ϕ in (6). We will present the main outcomes of the Hamiltonian formalism for this $f(L)$ model and see the implicancies of the lost pseudo-invariance.

By computing the canonical momenta for L one gets two primary constraints: the angular momentum and the momentum conjugated to ϕ,

$$G^{(1)} = z \left(p_z - \frac{\partial g}{\partial z} \right) - \overline{z} \left(\overline{p}_\overline{z} - \phi \frac{\partial g}{\partial \overline{z}} \right) \approx 0, \quad G^{(1)}_{\pi} = \pi = \frac{\partial L}{\partial \dot{\phi}} \approx 0. \quad (7)$$

The Poisson bracket between the constraints is

$$\{G^{(1)}, G^{(1)}_{\pi}\} = -\overline{z} \frac{\partial g}{\partial z} + z \frac{\partial g}{\partial \overline{z}}. \quad (8)$$

which depends on the function $g(z, \overline{z})$ appearing in the boundary term of L. Depending on g, the Poisson bracket could be zero or not, which would drastically affect the counting of d.o.f. So, we will separate two cases:

- **Case (i):** $g(z, \overline{z}) \neq v(z \overline{z})$. In this case it is $\{G^{(1)}, G^{(1)}_{\pi}\} \neq 0$, so the constraints are second class. The consistency is guaranteed by choosing the Lagrange multipliers $u^\pi(t)$ and $u(t)$ associated with G_{π} and $G^{(1)}$, respectively. In particular, it results $u^\pi = 0$ which implies that ϕ does not evolve but is a constant. The constancy of ϕ also implies that $|z|$ evolves like in the undeformed theory governed by L. But now the evolution of the phase of z is determined too, because the Lagrange multiplier $u(t)$ is no longer left free. Since the evolution is already consistent at this step, then the algorithm is over. The counting of d.o.f. goes like this: from the set of three canonical variables (ϕ, z, \overline{z}), just one d.o.f. is removed due to the appearance of one pair of second class constraints. We are left with two d.o.f., which can be represented by the variables (z, \overline{z}). The Lagrangian $f(L)$ determines not only the modulus of z but its phase as well.

- **Case (ii):** $g(z, \overline{z}) = v(z \overline{z})$. In this case it is $\{G^{(1)}, G^{(1)}_{\pi}\} = 0$. This case is trivial because if $g(z, \overline{z}) = v(z \overline{z})$ the entire Lagrangian L will depend exclusively on $|z|$, so being locally invariant. Thus we do not expect an
extra d.o.f. in the deformed $f(L)$ theory. So, let us check that Dirac’s algorithm yields the right answer. The consistency of the constraints with the evolution leads to a new secondary constraint $G^{(2)} = L - V'(\phi) \approx 0$. Since $\{G^{(1)}, G^{(2)}\} = 0$, and $\{G_x^{(1)}, G^{(2)}\} = V''(\phi)$, then $G^{(1)}$ is first-class, while $G_x^{(1)}$, $G^{(2)}$ are second-class. The Lagrange multiplier $u^\pi(t)$ is fixed by the consistency equations. Instead $u(t)$ (associated with $G^{(1)}$ in H_p) is not fixed by the algorithm, so meaning that the variables that are sensitive to rotations, like the phase of z, will remain as pure gauge variables. The counting of d.o.f. goes like this: from the three canonical variables (ϕ, z, \bar{z}) we remove two d.o.f., one coming from $G^{(1)}$ being first-class, and the other one because the pair $G_x^{(1)}$, $G^{(2)}$ is second-class, leaving us with the genuine d.o.f. $|z|$. Remarkably, $u^\pi(t)$ results in a non zero function; therefore ϕ is not a constant and affects the evolution of $|z|$, that departs from the evolution it had in the original undeformed theory L.

3.1. Conclusions

In principle $f(T)$ gravity is case-(i), since TEGR Lagrangian is pseudo-invariant under local Lorentz transformations of the tetrad. This means that $f(T)$ gravity entails an extra d.o.f. associated with the orientation of the tetrad. However we could wonder whether $f(T)$ gravity can be case-(ii) on-shell. This is an interesting point because, even though $f(T)$ gravity is case-(i), there could exist particular solutions to the equations of motion making zero the value of the Poisson bracket $\{\delta, \Delta\}$. For such solutions, ϕ (and so T too) would be an evolving field, and no extra d.o.f. would manifest. Remarkably, flat FRW spacetime seems to be a good arena to test this conjecture, because it contains both solutions with T equal to a constant and $T = -6H^2(t)$ an evolving function.

Acknowledgments

M.J.G. has been funded by CONICYT-FONDECYT Postdoctoral grant No. 3190531. R.F. has been funded by CONICET and Universidad de Buenos Aires. R.F. is a member of Carrera del Investigador Científico (CONICET, Argentina).

References

1. R. Aldrovandi and J. G. Pereira, *Teleparallel Gravity* (Springer, Dordrecht, 2013).
2. R. Ferraro and F. Fiorini, *Phys. Rev. D* **75**, 084031 (2007).
3. R. Ferraro and M. J. Guzmán, *Phys. Rev. D* **98**, 124037 (2018).
4. R. Ferraro and M. J. Guzmán, *Phys. Rev. D* **97**, 104028 (2018).
5. C. Bejarano, R. Ferraro and M. J. Guzmán, *Eur. Phys. J. C* **77**, 825 (2017).