Gene expression of ER\(\beta\) isoforms in laser microdissected human breast cancers: Implications for gene expression analyses

Michele Cummings, James Iremonger, Caroline A. Green, Abeer M. Shaaban and Valerie Speirs

Leeds Institute of Molecular Medicine, St. James’s University Hospital, Leeds, UK

Abstract. Background: Despite many published studies on ER\(\beta\), progress towards understanding its role in breast cancer remains slow. This is largely due to discordant data between mRNA and protein studies as well as failure to take into account the biologically distinct ER\(\beta\) isoforms and their heterogeneous expression profile.

Methods: We compared expression of ER\(\beta\)1, -2 and -5 genes in HB2 and MCF-7 breast cell lines, primary breast fibroblasts \((n = 5)\) and whole tissue and laser microdissected epithelial and stromal cells obtained from 25 human breast tumours.

Results: Our study shows that the level of gene expression of ER\(\beta\) isoforms depends on the cell population within a given tumour and varies dramatically in different cellular compartments. This has implications for gene expression analyses and could explain some of the contradictory data published to date, rendering “grind and bind” analyses of ER\(\beta\) uninformative.

Conclusion: With the technology now available, we suggest a more refined approach be adopted to help resolve some of the controversy surrounding ER\(\beta\).

Keywords: Estrogen receptor \(\beta\), laser microdissection, breast cancer

1. Introduction

Estrogen receptor (ER) \(\beta\) was first described in 1997 [1]. Initial studies on its putative role in breast cancer were conducted using RT-PCR on whole tumour extracts [2–8]. Whilst this was the only method available at the time to study ER\(\beta\), there have since been significant advances. Development of robust antibodies have permitted immunohistochemical studies which have demonstrated that unlike its counterpart ER\(\alpha\), which is generally only seen in epithelial cells, ER\(\beta\) expression is widespread having been found in epithelial, myoepithelial, endothelial and stromal cells as well as lymphocytes and adipocytes [9,10]. We also know that there are five separate ER\(\beta\) isoforms (ER\(\beta\)1–5) formed by alternative splicing of exon 8, the last coding exon [11,12]. Recent immunohistochemical studies have demonstrated that expression of these isoforms can identify breast cancer patients with different prognoses or responses to endocrine therapy, underlining their separate functions [13,14].

Expression analyses using qRT-PCR is a useful screen for candidate genes in cells and tissues. Studies have been performed to account for different ER\(\beta\) isoforms [4–6,8,15] however the heterogeneous cellular expression profile of ER\(\beta\) is mostly overlooked; over ten years since the discovery of ER\(\beta\) recent literature shows that many researchers still continue to study whole tissue [16–18]. This could have implications for data interpretation and may partly explain discordant data between mRNA and protein studies [19–21]. The aim of this study was to use laser microdissection (LMD) to selectively capture epithelial and stromal cells from breast tumour sections and compare gene expression levels of ER\(\beta\)1, -2 and -5, the 3 main isoforms expressed in breast tumours [13] to that of whole tissue and breast cell lines.

2. Methods

2.1. Samples

Clinical material

Ethical approval was obtained from the Leeds (East) Regional Ethical Committee at St. James’s Univer-
Table 1
Clinicopathological characteristics of the tumours studied

Characteristic	Number
Histological type	
DNST	21
Lobular	3
Other	1
Grade	
I	3
II	10
III	10
n/a	2
Lymph node	
+	13
−	12
ER	
+	15
−	8
n/a	2
PR	
+	13
−	7
n/a	3

sity Hospital, Leeds, UK. Fresh tissue was transported to the laboratory, trimmed of adipose tissue and either embedded in Lamb's OCT then snap frozen in liquid nitrogen-cooled isopentane for cryosectioning \((n = 25)\) or enzymatically processed to yield fibroblasts \((n = 5)\) as previously described [22]. Tumour characteristics are shown in Table 1. For cryosectioning (Leica CM3050S), the chamber was cooled to \(-28^\circ\)C for at least 45 min prior to use. Four 7 µm sections were cut onto PALM membrane slides (Zeiss). Cryo-sections were fixed in 100% alcohol for 1 min and dipped in RNase free water for 30 s. Sections were either used immediately or stored at \(-80^\circ\)C. Prior to laser microdissection (LMD) sections were stained with a mix of 2 µl of 1% eosin/10 µl 1% toluidine blue made up in RNase-free deionised water for 45 s. LMD and pressure catapulting was performed at \(\times 20\) magnification on a PALM microbeam microdissector. Areas of 5 mm² were catapulted into sterile opaque adhesive caps (PALM).

Cell lines
MCF-7 and HB2 cell lines were maintained according to Masanat et al., 2008 [23].

RNA extraction, cDNA synthesis and qRT-PCR
Total RNA was extracted according to the manufacturer’s instructions (Stratagene Nanoprep) except that the elution volume was increased to 15 µl to provide sufficient RNA for cDNA synthesis and appropriate controls. First strand cDNA synthesis was performed on 11.5 µl of RNA extract using Affinity script multiple temperature reverse transcriptase (Stratagene) according to the manufacturer’s instructions, using random hexamers (Invitrogen). For cell lines and fibroblasts total RNA was extracted and cDNA synthesised as previously described [24]. For qRT-PCR relative quantification of the test mRNA in relation to the housekeeping gene RPLP0 was carried out using the ΔCt method [25]. MCF-7 cDNA prepared from the same RNA batch was included as a standard in all PCR runs. Samples were batched to ensure each of the 3 ERβ isoforms were represented on each PCR plate, thus allowing comparative expression of each gene. Primer sequences and optimised concentrations are shown in Table 2, and were designed to span exon–intron boundaries, with the exception of ERβ5. qRT-PCR was carried out using Brilliant II SYBR green qPCR master mix (Stratagene) using a Stratagene Mx3000P thermal cycler. Cycle threshold (Ct) values were determined using MxPro software using the adaptive baseline correction algorithm. Primer concentrations were optimised and the amplification efficiencies were 90–110%, calculated from the slope of log [template] vs. Ct graphs, which had RSq-values \(\geq 0.985\). Dissociation curves were performed after each run to ensure amplification of a single product. Negative controls (minus RT and minus template) were also included.

3. Results

3.1. Cell lines
Expression of ERβ1, -2 and -5 genes in MCF-7 and HB2 cells and in 5 different breast fibroblast cultures derived from primary breast tumours is shown in Fig. 1. In terms of relative expression, ERβ5 > ERβ2 > ERβ1, with approximately 10-fold difference in the level of expression between each of the 3 isoforms. When levels of expression of individual genes were compared, ERβ1 was expressed at similar levels in MCF-7 and HB2 cells however considerable variation was seen in fibroblasts, most likely due to biological differences between donors. ERβ5 was generally more abundant in epithelial cells, while ERβ2 expression was variable.
Table 2
Sequences and optimised primer concentrations of ERβ isoform-specific and RPLP0 reference gene qRT-PCR primers

Primer	Sequence (5′−3′)	Concentration (nM)
ERβ1	dCGCCTGGCTAACCTCCTGATG	300
ERβ1	dGAGCAGATGTCCATGCCTTG	300
ERβ2	dCGCGTGACCCGATGCTTTG	400
ERβ2	dCCTTTGCTCCCTCGCA	300
ERβ5	dGCATCTCTCCACCAGCAATC	500
ERβ5	dGCACATAATCCCATCCCAAGCC	500
RPLP0	dGAAACTCTGCATTCTCGCTTCC	100
RPLP0	dGATGCAACAGTTGGTTCGCA	100

3.2. Clinical samples

We then compared expression of ERβ1, -2 and -5 in whole sections and laser microdissected epithelial and stromal cells microdissected from breast tumours. As anticipated, greater gene expression was observed in whole tissue sections compared to microdissected material (Fig. 2a). Scatter plots of laser microdissected epithelial and stromal cells showed that ERβ1 was significantly more abundant in the stromal component while ERβ5 was significantly expressed in the epithelium. ERβ2 expression was low in both cell types when compared to its expression in tissue (Fig. 2b). We then tested the hypothesis that the wide variation in expression of ERβ1, -2 and -5 in whole tissue sections (Fig. 2a) was due to tissue heterogeneity. This was confirmed in Fig. 3, where considerable heterogeneity in ERβ isoform expression in whole sections and microdissected epithelial and stromal samples across individual tumours was observed. This probably reflects phenotypic differences in tissue composition (Fig. 3c, f, i).

4. Discussion

Progress towards understanding the potential clinical role of ERβ has been slow. While there are now good antibodies to measure the protein immunohistochemically, many studies still continue to use “grind and bind” techniques to determine its expression at a genetic level in tissues such as breast, prostate, lung and colon where ERβ has been shown to have a putative clinical role [26,27]. While the contribution of isoforms is often taken into consideration by designing isoform-specific oligonucleotide primers [4–6,8,15] the contribution of different cellular components to
Fig. 2. qRT-PCR expression of ERβ1, -2 and -5 in whole sections and epithelial and stromal cells microdissected from breast cancer cell lines and fibroblasts (a). Mean data for epithelial and stromal components is re-plotted in (b) and shows significantly more ERβ1 and ERβ5 in the stromal and epithelial compartments, respectively. *P < 0.05, **P < 0.01. Data is presented as mean values ± SD from 25 individual breast tumours.

the gene expression signature tends to be overlooked. This study has shown that gene expression of ERβ isoforms varies considerably in different cellular compartments following LMD of human breast tumours.

In mammary cell lines and fibroblasts expression of ERβ isoforms was ranked: ERβ5 > ERβ2 > ERβ1. The high expression of ERβ5 mirrors what Wong and colleagues [28] observed in colon cancer however a similar study in breast cancer revealed mixed expression of ERβ5 in a panel of breast cancer cell lines and 30 primary breast tumours [5]. Similar varied expression of ERβ1 and ERβ2 was reported in the latter study. In fibroblasts ERβ isoform expression seemed to be tissue specific. In mammary fibroblasts derived from both normal and malignant adult mammary glands and in endometrium ERβ2 was the principal isoform [29,30], while in Sertoli cells of the testis ERβ2 but not ERβ1 was expressed [31]. We showed ERβ1 was significantly more abundant in the stromal component, however there was variability in expression in stromal cultures derived from different donors, with one sample in particular (F3) expressing considerably more ERβ1 than the others. Interestingly F3 had very low expression of ERβ2. Work by Hurtado and colleagues have shown that in a prostate cell line, ERβ1 and ERβ2 mRNA and protein expression are cell cycle-associated [32]. It is possible that the proportion of cells within a given phase of the cell cycle may influence ERβ isoform expression.

In general pooled gene expression data showed that levels of specific ERβ isoforms in breast tumours mirrored that observed in benign and malignant breast cell lines and in cultured human mammary fibroblasts. However care must be taken when considering individual tumours as we have shown that, unsurprisingly, their gene expression profiles change with respect to tissue composition. This is reinforced in gene expression profiling of fine needle aspirates from breast carcinoma patients which showed tumour heterogeneity could impact on gene expression profiles [33]. Inspecting H&E sections under the supervision of a pathologist prior to proceeding to extraction should be
considered. An additional concern is that studies on whole tissue may give an overestimate of the level of expression of ERβ as a result of failure to account for the multiple cell types which often exist within a given tumour (as exemplified in Fig. 3f which has a considerable stromal element) and which can express ERβ e.g. endothelial cells, lymphocytes and adipocytes [34]. Stromal density of different tumours could also influence this; the stroma in Fig. 3f is dense compared to that of Fig. 3i and is reflected in the different stromal gene expression signatures in each of these cases. This has been considered recently for the pre-invasive breast lesions LCIS [35], but to our knowledge this is the first time it has been accounted for in invasive breast cancer.

Studies in prostate cancer examined ERβ gene expression in LMD epithelium and stroma, but did not account for specific isoforms [36,37]. In lung LMD was used to microdissect normal lung and NSCLC but subsequent downstream gene expression analysis did into account for isoforms [38]. This was also true for microdissected breast stroma [39]. Our study indicates that both should be taken into account in order to generate the most informative data. We suggest that other reports analysing ERβ gene expression in pulverised frozen tumours must be treated with caution as this is not the most appropriate way of conducting gene expression analysis studies. We already know that ERβ is subject to complex regulation [40] with on-going work from our group showing this involves 5′-UTRs [41] and also miRNAs (Al-Nakhle, Speirs unpublished observations). Such complex regulation may also help explain the non-concordance of ERβ at the mRNA and protein level which has been consistently reported [19–21] and could render these comparisons uninformative.

In summary, the level of expression of ERβ isoforms at the genetic level depends on the cellularity of a given tumour. As breast cancer is an heterogeneous disease a more refined approach for gene expression analysis of ERβ is clearly more rationale in order to avoid producing potentially misleading or uninformative data.
Acknowledgements

This study was supported by The Breast Cancer Research Trust, Cancer Research UK and a New Investigator Award to AMS from the Leeds Teaching Hospitals NHS Trust. Thanks to Yorkshire Cancer Research who contributed to the purchase of our LMD platform and Dr. Eldo Verghese for practical advice. Mair Hughes and Natalie Oxley were involved in the early part of this work.

References

[1] G.G. Kuiper, E. Enmark, M. Pelto-Huikko, S. Nilsson and J.-A. Gustafsson, Cloning of a novel receptor expressed in rat prostate and ovary, Proc. Natl. Acad. Sci. 93 (1996), 5925–5930.
[2] E. Leygue, H. Dotzlaw, P.H. Watson and L.C. Murphy, Altered estrogen receptor α and β messenger RNA expression during human breast tumorigenesis, Cancer Res. 58 (1998), 3197–3201.
[3] V. Speirs, A.T. Parkes, M.J. Kerin, D.S. Walton, P.J. Carleton, J.N. Fox and S.L. Atkin, Coexpression of estrogen receptor α and β: poor prognostic factors in human breast cancer?, Cancer Res. 59 (1999), 525–528.
[4] M.P. Davies, P.A. O’Neill, H. Innes, D.R. Shibon, W. Prime, C. Holcombe and C.S. Foster, Correlation of mRNA for oestrogen receptor β splice variants ERβ1, ERβ2/ERβcx and ERβ5 with outcome in endocrine-treated breast cancer, J. Mol. Endocrinol. 33 (2004), 773–782.
[5] D. Tong, E. Schuster, M. Seifert, K. Czerwenka, S. Leodolte and R. Zeillinger, Expression of estrogen receptor β isoforms in human breast cancer tissues and cell lines, Breast Cancer Res. Treat. 71 (2002), 249–255.
[6] B.W. Park, K.S. Kim, M.K. Heo, W.I. Yang, S.I. Kim, J.H. Kim, G.E. Kim and K.S. Lee, The changes of estrogen receptor β variants expression in breast carcinogenesis: decrease of estrogen receptor β2 expression is the key event in breast cancer development, J. Surg. Oncol. 93 (2006), 504–510.
[7] R. Cullen, T.M. Maguire, E.W. McDermott, A.D. Hill, N.J. O’Higgins and M.J. Duffy, Studies on oestrogen receptor-α and -β mRNA in breast cancer, Eur. J. Cancer 37 (2001), 1118–1122.
[8] I. Poola, S.A. Fuku, R.L. De Witty, J. Abraham, J.J. Marshall-lack and A. Liu, Estrogen receptor α-negative breast cancer tissues express significant levels of estrogen-independent transcription factors, ERβ1 and ERβ3: potential molecular targets for chemoprevention, Clin. Cancer Res. 11 (2005), 7579–7585.
[9] E.V. Jensen, G. Cheng, C. Palmieri, S. Saji, S. Mäkelä, S. Van Noorden, T. Wahlinström, M. Warner, R.C. Coombes and J.-A. Gustafsson, Estrogen receptors and proliferation markers in primary and recurrent breast cancer, Proc. Natl. Acad. Sci. 98 (2001), 15197–15202.
[10] V. Speirs, G.P. Skirits, S.E. Burdall and P.J. Carder, Distinct expression patterns of ERα and ERβ in normal human mammary gland, J. Clin. Pathol. 55 (2002), 371–374.
[11] J.T. Moore, D.D. McKee, K. Slantz-Keuler, L.B. Moore, S.A. Jones, E.L. Horne, J.L. Su, S.A. Kliewer, J.M. Lehmann and T.M. Willson, Cloning and characterisation of human estrogen receptor β isoforms, Biochem. Biophys. Res. Comm. 247 (1998), 75–78.
[12] I. Poola, J. Abraham, K. Baldwin, A. Saunders and R. Bhatnagar, Estrogen receptors β4 and β5 are full length functionally distinct ERβ isoforms: cloning from human ovary and functional characterization, Endocrine 27 (2005), 227–238.
[13] A.M. Shaaban, A.R. Green, S. Karthik, Y. Alizadeh, T.A. Hughes, L. Harkins, I.O. Ellis, J.F. Robertson, E.C. Paish, P.T. Saunders, N.P. Groome and V. Spears, Nuclear and cytoplasmic expression of ERβ1, ERβ2 and ERβ5 identifies distinct prognostic outcome for breast cancer patients, Clin. Cancer Res. 14 (2008), 5228–5235.
[14] N. Honma, R. Horii, T. Iwase, S. Saji, M. Younes, K. Takubo, M. Matsuura, Y. Ito, F. Akiyama and G. Sakamoto, Clinical importance of estrogen receptor-β evaluation in breast cancer patients treated with adjuvant tamoxifen therapy, J. Clin. Oncol. 26 (2008), 3727–3734.
[15] E. Leygue, H. Dotzlaw, P.H. Watson and L.C. Murphy, Expression of estrogen receptor β1, β2 and β5 messenger RNAs in human breast tissue, Cancer Res. 59 (1999), 1175–1179.
[16] M. Suzuki, H. Iseda, Y. Shirotu, T. Nakata, S. Akinaga, S. Takashima, T. Utsumi, T. Saeli and N. Harada, Expression level of enzymes related to in situ estrogen synthesis and clinical pathological parameters in breast cancer patients, J. Steroid Biochem. Mol. Biol. 113 (2009), 195–201.
[17] F.E. Rosa, J.R. Caldeira, J. Felipes, F.B. Bertoonha, F.C. Quevedo, M.A. Dominguez, F.A. Moraes Neto and S.R. Rogatto, Evaluation of estrogen receptor α and β and progesterone receptor expression and correlation with clinicopathologic factors and proliferative marker Ki-67 in breast cancers, Hum. Pathol. 39 (2008), 720–730.
[18] H. Sugiu, T. Toyama, H. Hara, Z. Zhang, S. Kobayashi, Y. Fujii, H. Iwase and H. Yamashita, Expression of estrogen receptor β wild-type and its variant ERβ/cx/2 is correlated with better prognosis in breast cancer, Jpn. J. Clin. Oncol. 37 (2007), 820–828.
[19] P.A. O’Neill, M.P. Davies, A.M. Shaaban, H. Innes, A. Torevell, D.R. Shibon and C.S. Foster, Wild-type oestrogen receptor β (ERβ1) mRNA and protein expression in Tamoxifen-treated post-menopausal breast cancers, Br. J. Cancer 91 (2004), 1694–1702.
[20] M. Vinayagam, D.R. Shibon, C. Holcombe, V. Aachi and M. Davies, Association of oestrogen receptor β2/ERβ2/ERβcx with outcome of adjuvant endocrine treatment for primary breast cancer – a retrospective study, BMC Cancer 7 (2007), 131.
[21] J.A. Shaw, K. Uldokam, J.M. Mosquera, H. Chauhan, J.L. Jones and R.A. Walker, Oestrogen receptors α and β differ in normal human breast and breast carcinomas, J. Pathol. 198 (2002), 450–457.
[22] V. Speirs, A.R. Green, D.S. Walton, M.J. Kerin, J.N. Fox, P.J. Carleton, S.B. Desai and S.L. Atkin, Short-term primary culture of epithelial cells derived from breast tumours, Br. J. Cancer 78 (1998), 1421–1429.
[23] Y.A. Masannat, A. Hanby, K. Horgan and L.J. Hardie, DNA damaging effects of the dyes used in sentinel node biopsy: Pos-
sible implications for clinical practice, J. Surg. Res. 154 (2009), 234–238.

[24] D.J. Scott, A.T. Parkes, F. Ponchel, M. Cummings, I. Poola and V. Speirs, Changes in expression of steroid receptors, their downstream target genes and their associated co-regulators during the sequential acquisition of tamoxifen resistance in vitro, Int. J. Oncol. 31 (2007), 557–565.

[25] F. Ponchel, C. Toomes, K. Bransfield, F.T. Leong, S.H. A. Morani, M. Warner and J.-A. Gustafsson, Biological functions and clinical implications of oestrogen receptors α and β in epithelial tissues, J. Intern. Med. 264 (2008), 128–142.

[26] R. Kennelly, D.O. Kavanagh, A.M. Hogan and D.C. Winter, Oestrogen and the colon: potential mechanisms for cancer prevention, Lancet Oncol. 9 (2008), 385–391.

[27] N.A. Wong, R.D. Malcolmson, D.I. Jodrell, N.P. Groome, D.J. Harrison and P.T. Saunders, ERβ isoform expression in colorectal carcinoma: an in vitro and in vivo study of clinico-pathological and molecular correlates, J. Pathol. 207 (2005), 53–60.

[28] C. Palmieri, S. Saji, H. Sakaguchi, G. Cheng, A. Sunters, M.J. O’Hare, M. Warner, J.-A. Gustafsson, R.C. Coombes and E.W. Lam, The expression of oestrogen receptor (ER)-β and its variants, but not ERα, in adult human mammary fibroblasts, J. Mol. Endocrinol. 33 (2004), 35–50.

[29] T.A. Henderson, P.T. Saunders, A. Moffett-King, N.P. Groome and H.O. Critchley, Steroid receptor expression in uterine natural killer cells, J. Clin. Endocrinol. Metab. 88 (2003), 440–449.

[30] P.T. Saunders, M.R. Millar, S. Macpherson, D.S. Irvine, N.P. Groome, L.R. Evans, R.M. Sharpe and G.A. Scobie, ER-beta1 and the ERbeta2 splice variant (ERbeta1/2) are expressed in distinct cell populations in the adult human testis, J. Clin. Endocrinol. Metab. 87 (2002), 2706–2715.

[31] A. Hurtado, T. Pinos, A. Barbosa-Desongles, S. Lopez-Aviles, J. Barquinero, J. Petriz, A. Santamaría-Martínez, J. Morote, I. de Torres, J. Bellmunt, J. Reventos and F. Munell, Estrogen receptor β displays cell cycle-dependent expression and regulates the G1 phase through a non-genomic mechanism in prostate carcinoma cells, Cell Oncol. 30 (2008), 349–365.

[32] M.B. Lyng, A.V. Laenholm, N. Pallisgaard, W. Vach, A. Knoop, M. Bak and H.J. Ditnel, Intratumor genetic heterogeneity of breast carcinomas as determined by fine needle aspiration and TaqMan low density array, Cell Oncol. 29 (2007), 361–372.

[33] A.H. Taylor and F. Al-Azzawi, Immunolocalisation of oestrogen receptor β in human tissues, J. Mol. Endocrinol. 24 (2000), 145–155.

[34] A.R. Green, P. Young, S. Krivinkas, E.A. Rakha, E.C. Paish, D.G. Powe and I.O. Ellis, The expression of ERα, ERβ and PR in lobular carcinoma in situ of the breast determined using laser microdissection and real-time PCR, Anticancer Res. 21 (2001), 3861–3864.

[35] T.J. Walton, G. Li, T.A. McCulloch, R. Seth, D.G. Powe, M.C. Bishop and R.C. Rees, Quantitative RT-PCR analysis of estrogen receptor gene expression in laser microdissected prostate cancer tissue, Prostate 69 (2009), 810–819.

[36] A. Kerr 2nd, J.F. Eliason and J.L. Wittliff, Steroid receptor and growth factor receptor expression in human non-small cell lung cancers using cells procured by laser-capture microdissection, Adv. Exp. Med. Biol. 617 (2008), 377–384.

[37] R.A. Smith, R.A. Lea, S.R. Weinstein and L.R. Griffiths, Detection of mRNA levels for the estrogen α, estrogen β and androgen nuclear receptor genes in archival breast cancer tissue, Cancer Lett. 237 (2006), 248–255.

[38] L. Smith, Post-transcriptional regulation of gene expression by alternative 5′-untranslated regions in carcinogenesis, Biochem. Soc. Trans. 36 (2008), 708–711.

[39] L. Smith, R.A. Brannan, A.M. Hanby, A.M. Shaaban, E.T. Verghese, M.B. Peter, S. Pollock, S. Satheesha, M. Szykiewicz, V. Speirs and T.A. Hughes, Differential regulation of estrogen receptor β isoforms by 5′-untranslated regions in cancer, J. Cell Mol. Med. (2009), DOI: 10.1111/j.1582-4934.2009.00867.x.