The Biotechnology of *Ugba*, a Nigerian Traditional Fermented Food Condiment

Nurudeen A. Olasupo 1*, Chimezie P. Okorie 2 and Folarin A. Oguntoyinbo 3

1 Food Microbiology Research Laboratory, Department of Microbiology, Faculty of Science, Lagos State University, Lagos, Nigeria, 2 Department of Biotechnology, Federal Institute of Industrial Research, Lagos, Nigeria, 3 Department of Microbiology, Faculty of Science, University of Lagos, Lagos, Nigeria

Legumes and oil bean seeds used for the production of condiments in Africa are inedible in their natural state; they contain some anti-nutritional factors especially undigestible oligosaccharides and phytate. Fermentation impact desirable changes by reducing anti-nutritional factors and increasing digestibility. *Ugba* is an alkaline fermented African oil bean cotyledon (*Pentaclethra macrophylla*) produced by the Ibos and other ethnic groups in southern Nigeria. Seen as a family business in many homes, its preparation is in accordance with handed-down tradition from previous generations and serves as a cheap source of plant protein. Its consumption as a native salad is made possible by fermentation of the cotyledon for 2–5 days, but could also serve as a soup flavoring agent when fermentation last for 6–10 days. The fermentation process involved is usually natural with an attendant issue of product safety, quality and inconsistency. The production of this condiment is on a small scale and the equipment used are very rudimentary, devoid of good manufacturing procedures that call to question the issue of microbial safety. This paper therefore reviews the production process and the spectrum of microbial composition involved during fermentation. In addition, potential spoilage agents, nutritional and biochemical changes during production are examined. Furthermore, information that can support development of starter cultures for controlled fermentation process in order to guarantee microbiological safety, quality and improved shelf life are also discussed.

Keywords: microbiology, *Ugba*, fermentation, condiment

INTRODUCTION

Ugba, a product of alkaline fermentation of oil bean seeds (*Pentaclethra macrophylla*) is very popular among the Ibos and other ethnic groups in southern Nigeria. The product serves both as a delicacy and a food flavoring agent. As an important nutritional item, *ugba* is very rich in protein. It similarly plays an economic, social and cultural role among the Ibos in the eastern part of Nigeria. The production of *ugba* is usually pursued as a family business that has become an art that is handed over from one generation to another.

The processing of these large brown glossy seeds of the African oil bean (Figure 1) to obtain *ugba* is usually by natural fermentation, a process that involves microbiological and biochemical changes, caused by hydrolysis and desirable changes. This process is usually influenced by the raw materials and the processing method with variations observed from one production batch or producer to another (Steinkraus, 1983).
Most studies on African fermented foods have focused on isolation and identification of desirable microorganisms involved in the fermentation process. The general consensus from these studies is that fermented African oil bean seeds during *ugba* fermentation is predominantly brought about by bacteria identified as *Bacillus* species (Odunfa, 1981; Obeta, 1983; Isu and Ofuya, 2000; Okorie and Olasupo, 2013a; Eze et al., 2014). Other groups of bacteria have also been implicated in the fermentation of this product and they include species of *Escherichia*, *Proteus*, *Micrococcus*, *Staphylococcus*, *Streptococcus*, *Alcaligenes*, *Pseudomonas*, *Corynebacterium*, and *Enterococcus* (Oyeyiola, 1981; Odunfa, 1986; Sanni et al., 2002; Okorie and Olasupo, 2013a). No fungi or yeast species have been implicated in the fermentation of *ugba*.

There is very little information on the occurrence and growth of pathogens in African fermented foods. The natural fermentation process used routinely for *ugba* production allows participation of diverse microorganisms. The involvement of pathogenic and spoilage microorganisms during production cannot be totally ruled out, especially if fermentation takes place under very poor hygiene conditions and sanitation, which is a very common occurrence in West Africa. Product inconsistency as a result of mixed-culture processing and post-fermentation contamination constitutes a major challenge to microbial safety and quality of this product.

Production of *ugba* in Nigeria is still on a small scale industrial process involving production at the household level where there is little or no consideration for good manufacturing practices (GMP) and sanitation (Olasupo et al., 2002; Gadaga et al., 2004). Consequently, microbiota responsible for fermentation is often unpredictable and equipment used is rudimentary. Similarly poor hygiene of handlers, lack of portable water and other raw materials often introduce spoilage and pathogenic microorganisms. All these factors affect the quality of the final product and ultimately the health of the consumers. Fermentation period is chosen according to human judgment and varies from one manufacturer to the other. The lack of standardization in the production process often results in product inconsistency and quality variation.

Lactic fermentation is noted to be a major mode of food processing used to achieve preservation and improve shelf life of foods especially in the West African sub-region, where cereals and tubers are processed to variety of foods. This practice has been very reliable in terms of maintaining quality and safety of food especially at the household level where many of the traditional foods are produced (Steinkraus, 1983). Unfortunately, alkaline fermentation of legumes is about hydrolysis of proteins and release of amino acids and ammonia responsible for the pungent smell as well as characteristic flavor. This preservative influence of condiments after fermentation appears to be limited;
similar observation has been reported during the processing of fermented African oil bean seeds. The unfermented seeds are much more stable with longer shelf life than the fermented products. Fermentation thus leads to flavor enhancement, complex molecules reduction (oligosaccharides and proteins) but reduces the shelf life of the seeds and exposes the product to post fermentation contamination (Mbajunwa et al., 1998; Oguntuyoibo et al., 2007). Post processing techniques proposed for condiment production in Africa include drying and salting of final product (Achi, 2005; Eman, 2009). However, while these methods could increase shelf life considerably, it is characterized with inherent disadvantages such as loss of volatile compounds and vitamins. Also, the consumption of salt in diet has been identified as having deleterious effects on human health, responsible for cardiovascular diseases in the West African sub-region (Brown et al., 2009; He and MacGregor, 2009; Strazzullo et al., 2009).

Since fermentation of African oil bean seeds increases pH toward alkalinity (pH 8) (Odunfa, 1985a; Sanni and Oguntuyoibo, 2014), the anti-microbial effect often associated with most fermented food due to lowering of pH to acidity is lacking in this product. It is therefore possible that some organisms that are of public health concern could survive the fermentation process. Whether the presence of these organisms is as a result of post-fermentation contamination or they survive the fermentation process, their presence in the product portends great danger to the consuming public. The risk is particularly high also because the product can be eaten without pre-heating. The alkaline pH selects and encourages the dominance of Bacillus species. This has been consistently reported to be due to production of peptides, amino acids and ammonia during the hydrolysis of the cotyledons.

Recently, Oguntuyoibo (2014) reported that very little attention is placed on the type of packaging used for many traditional foods in West Africa. Unhygienic and substandard packaging materials can engender easy contamination by hazardous materials, including biological, physical, and chemical hazard of well-prepared foods during preservation. Ugba is usually wrapped in leaves (in most cases banana leaf), and nylon bags and sold to the public. These packaging materials could be the source of contamination of the product.

Many of the agricultural raw materials used for the preparation of traditional W. African food products contain endogenous toxins (Kar and Okechukwu, 1978; Okorie and Olasupo, 2014). However, studies have shown that fermentation drastically reduces anti-nutritional factors in many fermented legumes-based foods (Oboh et al., 1998; Khan et al., 2012; Okorie and Olasupo, 2014). It is well known that these foods contain naturally occurring toxins and anti-nutritional compounds. The removal of anti-nutrients from Nigerian fermented food is an important step in ensuring toxicological safety and quality. Fermentation plays significant roles in detoxification of substrates; for instance, removal of toxins during kawal production, through the fermentation of the leaves of Cassia obtusifolia in Sudan has been shown to improve safety quality and acceptability (Egwin et al., 2013; Taylor and Duodu, 2015).

Most of the legumes and oil seeds used for the production of condiments are inedible in their unfermented state because they suffer from one drawback or the other. For instance, legumes are a particularly rich source of natural toxicants, including protease inhibitors, amylase inhibitors, metal chelates, flatus factors, hemagglutinins, saponins, cyanogens, lathyrogens, tannins, allergens, acetylenic furans, and isoflavonoid phytoalexins (Issoufou et al., 2013; Oguntuyoibo, 2014). The unfermented African oil bean seeds contain a number of anti-nutritional and/or toxic factors including saponins, alkaloids (alkaloid paucine), sterols, glycosides, and growth depressant caffeoylputrescine, but no hemagglutinins (Kar and Okechukwu, 1978).

Understanding the biotechnological principles during fermentation of African oil bean seeds is a crucial strategy for the process optimization of fermented condiments in West Africa. The understanding of the microbiological dynamics, biochemical kinetics and toxicology during fermentation will significantly impact product quality, safety and acceptability. The foregoing has been a review of the different scientific literatures relevant to biotechnology of ugba production in Nigeria and highlighted relevant strategies toward process improvement. In addition, current condiment food safety issues are discussed.

PRODUCTION PROCESS

The production process of ugba is shown in Figure 2. It has been previously described as alkaline fermentation of the seeds of the African oil bean tree (Ikenebomeh et al., 1986; Sanni et al., 2002; Ogueke et al., 2010). Although the production method varies from one community to the other and from one processor to another, a similar end-product, which usually comes with pungent ammonia-like smell is commonly produced across South Eastern Nigeria (Nwokeleme and Ugwuanyi, 2015). There is variation in boiling time and the procedure that aided dehulling of the seeds. Obeta (1983) reported 16–18 h of boiling, Odunfa and Oyeyiola (1985) and Odunfa (1986), reported initial 12 h boiling time, while Njoku and Okemadu (1989), boiled the seeds for 5–8 h. However, Sokari and Wachukwu (1997) used toasting of the bean seeds in hot (ca. 100°C) sand and holding for a further 30 min at 100°C to dehull the seeds. After dehulling, cotyledons are either sliced or cooked for 30 min or longer. Odunfa and Oyeyiola (1985) reported overnight boiling before soaking and slicing. In the fermentation process, varied methods are used. Odunfa and Oyeyiola (1985) reported that the cotyledons are mixed with salt (sodium chloride ca.1–2 w/w), put in a clean pot, covered and fermented for up to 5 days at room temperature, with or without salt. On the other hand, Sokari and Wachukwu (1997) reported that sliced cotyledons were washed and allowed to drain for ¼-1 h, in a basket lined with banana leaves (Musa sapientum Linn.) and later wrapped (about 40–50 g of slices per wrap) using another leaf (Mallotus oppositifolius) and incubated for 72 h at room temperature.

However, the essential steps in the production of this product are similar and as shown in Figure 2. The differences in the various processing methods described could be responsible for the variations in the products quality observed from one community to the other. The fermented bean slices at the end of the fermentation process are kept near smoldering firewood to develop the characteristic ugba flavor and the product is
FIGURE 2 | Flow chart for the preparation of ugba (Odunfa and Oyeyiola, 1988).
Pediococcus are generally observed to play a minor role in the fermentation process (Odunfa, 1985a) while Staphylococcus sp. and Micrococcus sp. play a subsidiary role in the production process (Obeta, 1983; Odunfa and Komolafe, 1989).

Apart from proteolysis, other important biochemical changes mediated by microorganisms during the production of this condiment include production of flavor enhancing compounds, production of vitamins and essential fatty acids, and degradation of indigestible oligosaccharides responsible for flatus factors. A reduction in the contents of stachyose, raffinose, and melibiose in fermented soy bean cotyledon during *kinema* production was previously reported (Sarker et al., 1997). Significant increases in thiamine and riboflavin have been observed in *ugba*, and these have been ascribed to riboflavin synthase associated with *Bacillus subtilis* (Odunfa, 1986). These reductions are ascribed to sucrase activities of the *Bacillus* group Aderibigbe and Odunfa (1990) and possibly by the alpha galactosidase activities of the other microorganisms in the fermenting mash, especially *Staphylococcus* sp. and LAB among which alpha galactosidase activities are common (Odunfa and Oyewole, 1998).

Members of the *Enterobacteriaceae* have also been associated with the ecology of fermenting plant proteins (*ugba* inclusive) especially at the early stages of production (Mulyowidarso et al., 1989; Achi, 1992; Okorie and Olasupo, 2013a). These species do not survive until the end of the fermentation, presumably because of the modified environment. It is evident that production of this fermented condiment is initially mediated by a diverse microbial flora, which eventually becomes Gram-positive flora (a reflection of many African fermented foods; Odunfa, 1985b).

NUTRITIONAL CHANGES ASSOCIATED WITH FERMENTATION OF AFRICAN OIL BEAN SEED

Fermentation has been generally observed to improve the nutritional quality of the products obtained. The protein content, essential amino acids, vitamins and mineral contents of most fermented foods have been shown to increase during fermentation.

Fermented foods and beverages harbor diverse microorganisms from the environment, including mycelia molds, yeasts, and bacteria, mostly lactic acid bacteria and micrococci. These microorganisms transform the chemical constituents of raw materials during fermentation and enhance the nutritional value of the products. The activities of these microorganisms are noted to enrich bland diets with improved flavor and texture; preserve perishable foods; fortify products with essential amino acids, bioactive compounds, vitamins, and minerals for healthy living. They also bring about degradation of undesirable compounds and anti-nutritive factors; imparts antioxidiant and antimicrobial properties; improve digestibility, and stimulate probiotic functions. While fermentation results in a lower proportion of dry matter in the food product, the concentration of the vitamins, minerals, and protein appear to increase when measured on dry weight basis (Adams, 1990; Chung et al., 2010; Shil et al., 2010; Savadogo et al., 2011; Makanjuola and Ajayi, 2012; Okechukwu et al., 2012; Olakunle and Adebayo, 2012; Tofalo et al., 2012).

TABLE 1 | Amino acid content (g/100 g protein) of African oil bean seeds.

Amino acids	Content
Aspartic acid	7.95–10.30
Threonine	3.27–4.17
Serine	4.80–5.54
Glutamic acid	9.32–11.60
Proline	2.90–5.77
Glycine	3.84–4.62
Alanine	3.81–4.70
Cysteine	1.10–4.80
Valine	4.90–6.60
Methionine	0.90–1.80
Isoleucine	3.30–4.88
Leucine	5.30–6.68
Tyrosine	1.80–5.58
Phenylalanine	5.01–7.00
Lysine	5.46–6.97
Histidine	1.53–2.44
Arginine	4.70–6.53
Tryptophan	1.15–1.78

Source: *Mtia et al. (1974)* and *Achinenwu (1982).*

TABLE 1 | Amino acid content (g/100 g protein) of African oil bean seeds.

...
and Okechukwu, 1978; Table 3). For the saturated fatty acids, lignoceric acid appears to be present in the largest amount constituting about 12% of the total fatty acid concentration, while palmitic acid is the least with 3.4%. The major unsaturated fatty acid in the seeds is linoleic acid constituting 42.8%. Oleic acid is also present in appreciable amounts (29.0%). Linolenic and gadoleic acids are present in very small amounts (3.2 and 0.28%, respectively). The presence of appreciable amounts of behenic and lignoceric acids is not desirable for edible oils (Odunfa, 1986). However, Odoemelam (2005) noted that the high degree of unsaturation makes it suitable for cooking purposes and for use as a drying oil for cosmetics, paints and varnishes.

Fermentation has been found to have minimal effect on the fatty acid content of the oil bean seed. (Onwuliri et al., 2004) reported that fatty acid concentrations did not change appreciably with processing and fermentation. Enujiugha and Akanbi (2005) however observed an increase in the oil content from 53.98 to 60.11%. Information available shows that fatty acid content of the oil bean seeds is not qualitatively affected by fermentation. The principal fatty acid linoleic acid however has been shown to increase from 60.68 to 67.57% of the total fatty acids while oleic acid decreased from 26.95 to 22.59% during fermentation. Palmitic acid and other saturated fatty acids in the seed oil are also slightly affected by fermentation.

Available information shows that the vitamin content of the seeds is low while they are a poor source of calcium and phosphorus (Duke, 1981). The mineral and vitamin contents are observed to decrease during fermentation (Table 4). The niacin and riboflavin of the seeds have been found to decrease during fermentation. Enujiugha and Akanbi (2005) noted that fermentation and canning significantly \(P < 0.05 \) reduced the phosphorus and iron contents of the seeds while processing generally raised the calcium and magnesium contents (Table 5).

CHEMICAL AND BIOCHEMICAL CHANGES ASSOCIATED WITH FERMENTATION OF AFRICAN OIL BEAN SEEDS

The major biochemical changes that take place during the fermentation of African oil bean seeds have been shown to be proteolysis. During the process, the protein component of the cotyledons is hydrolyzed to amino acids. Bacillus species are the

Table 2 | Effect of processing on the proximate chemical composition of African oil bean seeds (mean ± s.d.).

Sample	Crude protein (g/100 g)	Oil (g/100 g)	Crude fiber (g/100 g)	Ash (g/100 g)	Carbohydrate (g/100 g)
Raw	22.32 ± 0.37	53.98 ± 0.99	2.13 ± 0.55	2.40 ± 0.11	19.16 ± 0.76
Cooked	19.15 ± 0.13	58.95 ± 0.46	3.26 ± 0.04	1.43 ± 0.13	17.49 ± 0.46
Fermented	17.13 ± 0.21	61.35 ± 1.21	2.93 ± 0.11	1.11 ± 0.04	17.48 ± 1.07
Canned	19.00 ± 0.19	60.11 ± 0.86	3.27 ± 0.12	2.37 ± 0.17	15.26 ± 1.04

Source: Enujiugha and Akanbi (2005).

Table 3 | Fatty acid composition of African oil bean seeds*.

Composition	Values (%)
Saturated Fatty Acids	
Palmitic acid	3.4
Behenic acid	5.2
Lignoceric acid	12.0
Unsaturated Fatty Acids	
Oleic acid	29.0
Linoleic acid	42.8
Linolenic acid	3.2
Gadoleic acid	0.28

*As percentage of total oil.

Source: Achinewhu (1982).

Table 4 | Mineral and vitamin content of unfermented and fermented ugba.

Component (mg/100 g)	Unfermented ugba	Fermented ugba
Minerals		
Phosphorus	172	–
Calcium	192	110
Iron	16	3.3
Vitamins		
Thiamin	0.07	0.07
Riboflavin	0.32	0.30
Niacin	0.90	0.30

Source: Duke (1981).

Table 5 | Changes in mineral contents of African oil bean seeds during processing (mg/kg dry wt).

Mineral	Raw	Cooked	Fermented	Canned
P	351.89 ± 2.58	317.92 ± 2.24	291.02 ± 0.53	176.08 ± 12.69
K	127.19 ± 7.99	175.80 ± 12.46	110.39 ± 6.18	156.67 ± 11.49
Na	184.98 ± 12.31	113.49 ± 2.17	172.06 ± 9.42	168.57 ± 7.30
Ca	314.30 ± 11.32	329.28 ± 11.35	208.92 ± 14.37	404.54 ± 13.34
Mg	292.05 ± 9.86	479.37 ± 5.61	334.98 ± 11.07	397.03 ± 2.02
Zn	9.78 ± 0.61	13.47 ± 0.28	9.23 ± 0.78	15.41 ± 1.98
Fe	56.28 ± 5.42	56.80 ± 1.39	42.46 ± 1.02	42.48 ± 3.19
Mn	23.99 ± 3.06	27.71 ± 1.69	28.76 ± 0.36	15.60 ± 2.75

Source: Enujiugha and Akanbi (2005).
predominant bacteria during fermentation. Protease activity has been shown to rapidly increase from the start of the fermentation period till the end (Odunfa, 1985a).

Another biochemical change that has been shown to occur during the fermentation of oil bean seeds is lipid hydrolysis. Lipids are usually hydrolyzed to fatty acids by lipases. However, though lipids are one of the major components of the oil bean seeds (43–47%), lipolytic activity is reported to be low during the fermentation of the oil bean seeds (Achinewhu, 1986; Njoku and Okemadu, 1989; Onwuliri et al., 2004). Enujiugha (2003) found out that the principal fatty acid of the seeds, linoleic acid, increased from 60.68 to 67.57% of the total fatty acids while oleic acid decreased from 26.95 to 22.59% during fermentation.

Carbohydrates constitute about 4–17% of the total components of the oil bean seed and the major sugars identified in the bean are oligosaccharides hydrolyzed by amylases (Achinewhu, 1982). These are oligosaccharides that are hydrolyzed by amylases to simple sugars during the fermentation process. Monago et al. (2004) observed that the content of this carbohydrate decreased significantly as fermentation time increased.

Obeta (1983) found out that pH increased from 6.5 at 0 h to 9.0 at 48 h and declined to 7.1 at 72 h. The rise in pH has been attributed to the abundant production of ammonia during the fermentation due to protein hydrolysis and deaminase activity.

Also, moisture content has been found to increase throughout the period of fermentation (52–56.90% to 71.20–73%; Odunfa and Oyeyiola, 1985; Njoku and Okemadu, 1989; Ogueke and Aririatu, 2004). The increase in moisture is believed to be due to the hydrolytic activities of the microorganisms. However, Odunfa and Oyeyiola (1985) and Ogueke and Aririatu (2004) believe that the high moisture level brought about by fermentation predisposes the product to rapid spoilage.

ANTI-NUTRITIONAL CONTENT OF Ugba

The African oil bean seeds are inedible in its unfermented state because it suffers from some drawbacks. Little is known about anti-nutritional factors in the raw and fermented African oil bean seeds. Although, Kar and Okechukwu (1978) and Enujiugha and Agbede (2000) reported the presence of a number of anti-nutritional and/or toxic factors, our recent studies (Table 6), have revealed the detection of tannins, saponins, alkaloids, steroids, glycosides, flavonoids, and phytate in the unfermented African oil bean seed (Okorie and Olasupo, 2014). This study also showed that processing and fermentation drastically reduced the content of these toxic factors in the fermented product (Table 7) (Okorie and Olasupo, 2014), mainly due to soaking of the seeds overnight and washing in water before fermentation. This had a significant effect on all the phytochemicals/anti-nutritional factors identified. Tannin was reduced from 12.58 to 3.65 mg/100 g, saponin from 52.00 to 22.00 mg/100 g, phytate from 25.63 to 14.47 mg/100 g, glycosides from 34.76 to 11.33 mg/100 g, alkaloids from 2.52 to 0.14 mg/100 g, flavonoids from 4.66 to 2.49 mg/100 g and sterols from 26.48 to 5.43 mg/100 g. Alkaloids and tannins were completely removed from the samples after 24 and 48 h of fermentation respectively.

MICROBIOLOGICAL SAFETY OF FERMENTED AFRICAN OIL BEAN SEEDS

Most works on African fermented foods (ugba inclusive) have centered on the isolation and characterization of organisms involved in the fermentation processes. Not much effort seems to have been made toward the occurrence and growth of possible pathogens in the product. However, Adewunmi et al. (2014) used a combination of genome-based culture dependent and independent techniques to examine iru microbiota and reported bacterial species with both spoilage and pathogenic history. In addition, genome typing of Bacillus species isolated from okpehe and soumbala identified species of Bacillus cereus with enterotoxin production potential (Ouaba et al., 2008; Oguntoyinbo et al., 2010). It is therefore very important to use genotypic method in combination with phenotypic data to assess microbial quality of fermenting ugba, in order to guarantee its microbial safety. Furthermore, because of the stress associated with the food processing, it would be important to use culture dependent and independent methods in order to find/detect non-cultural or not yet cultured microorganisms. Available information in literature shows that organisms such as E. coli, Staphylococcus aureus, and other members of the Enterobacteriaceae have been isolated from condiments in West Africa (Isu and Njoku, 1997; Okorie and Olasupo, 2013a).

SELECTION OF STARTER CULTURES FOR CONTROLLED FERMENTATION OF Ugba

The traditional method of production of ugba involves natural solid state fermentation of the African oil bean seeds. This chanced inoculation method has the inherent drawback of possible growth and occurrence of pathogens in the final product. Although, microbiota that best adapted brings about the final product, variation in final product due to fermentation time and unhygienic handling does affect the product and its consistency.

Selection and application of starter cultures in the production process has been identified as critical to the elimination of
Several other attempts have been made to control the fermentation of some fermented food products from plant foods. These include the use of pure cultures of *Bacillus subtilis* and *Bacillus licheniformis* singly and as mixed cultures fermentation. The process fermentation time was reduced from 96 to 48 h.

Several other attempts have been made to control the fermentation of *ugba* using *B. subtilis* and *B. licheniformis* singly and as mixed cultures fermentation. The process fermentation time was reduced from 96 to 48 h.

Several other attempts have been made to control the fermentation of this product with similar results as stated above. Efforts at controlled fermentation of the product have shown that some of these observed drawbacks could be overcome by the application of starter cultures in the production process. There is therefore a need to make the local processors of this product realize the potential benefits derivable from the application of starter cultures in their process line.

CONCLUSION

Ugba is an important part of the diet of the Ibos and other ethnic groups in the eastern and southeastern parts of Nigeria. It is produced through a natural solid state fermentation of the oil bean seeds. The major microorganisms involved in the process are *Bacillus* species. These microorganisms metabolize the protein content of the seeds into free amino acids and ammonia, having undergone a biochemical reaction during the fermentation process known as proteolysis.

Fermentation of the oil bean seeds leads to increase in the nutritional values of the product. The natural process of its production, and the persistent level at which the condiment is being produced leaves the safety of this product in doubt and makes its quality inconsistent. Efforts at controlled fermentation of the product have shown that some of these observed drawbacks could be overcome by the application of starter cultures in the production process. There is therefore a need to make the local processors of this product realize the potential benefits derivable from the application of starter cultures in their process line.

AUTHOR CONTRIBUTIONS

NO: Participated in conception, literature search, design and write up. CO: Participate in literature search, design and write up. FO: Participated in literature search, design and write up.

REFERENCES

Achi, O. K. (1992). Microorganisms associated with natural fermentation of *Prosopis africana* seeds for the production of okpehe. *Plt. Foods Hum. Nutr.*, 42, 304–309. doi: 10.1007/BF02194090

Achi, O. K. (2005). The potential of upgrading of traditional fermented foods through biotechnology. *Afr. J. Biotechnol.*, 4, 375–380.

Achinewhu, S. C. (1982). Chemical and nutrient composition of fermented products from plant foods. *Nig. Food J.*, 1, 115–117.

Achinewhu, S. C. (1986). The effect of fermentation on carbohydrate and fatty acid Composition of the African oil bean (*Pentaclethra macrophylla*) seed. *Food Chem.*, 19, 105–116. doi: 10.1016/0308-8146(86)90104-4

Adams, M. R. (1990). Topical aspect of fermented foods. *Trends Food Sci. Technol.*, 1, 141–144. doi: 10.1016/0924-2244(90)90111-B

Aderibigbe, E. Y., and Odunfa, S. A. (1990). Growth and extracellular enzyme production by strains of *Bacillus* species isolated from fermenting African locust bean, *iru*. *J. Appl. Bacteriol.*, 69, 662–671. doi: 10.1111/j.1365-2672.1990.tb01560.x

Aderibigbe, E. Y., Schink, B., and Odunfa, S. A. (1990). Extracellular proteinases of *Bacillus* sp isolated from African locust bean, *iru*. *Food Microbiot.*, 7, 281–293. doi: 10.1016/0743-3398(90)90033-E

Adekunwi, A. R., Ayaji, J. O., and Omotoso, B. O. A. (2014). Assessment of the hygienic practices of food vendors and government intervention in selected secondary schools from Abeokuta south local government area of Ogun State, Nigeria. *J. Sci. Multidiscipl. Res.*, 6, 2277–2285.

Antai, S. P., and Ibrahim, M. H. (1986). Microorganisms associated with African locust bean (*Parkia filicoides*) fermentation for dawadawa production. *J. Appl. Biotechnol.*, 61, 145–148.

TABLE 7 | Effect of soaking and fermentation period on the anti-nutritional/phytochemical contents of African oil bean seed.

Phytochemical (mg/100 g)	Soaking period (h)	Fermentation period (h)							
	0	6	12	18	24	0	24	48	72
Tannin	12.58	10.26	7.02	4.63	3.65	3.65	1.79	0.46	0.00
Saponin	52.00	49.56	40.23	34.29	22.00	22.00	16.06	8.00	2.00
Flavonoid	4.66	4.02	3.46	2.96	2.49	2.49	1.96	1.10	0.43
Alkaloid	2.52	1.94	1.03	0.76	0.14	0.14	0.00	0.00	0.00
Steroid	26.48	12.06	8.69	6.97	5.43	5.43	3.68	2.96	2.07
Glycoside	34.76	30.54	22.09	17.78	11.33	11.33	8.64	5.71	0.78
Phytate	25.63	22.06	18.34	15.69	14.47	14.47	8.67	1.26	0.15

Source: Olorie and Olasupo (2014).
Ogwonna, D. N., Sokari, T. G., and Achinewhu, S. C. (2001). Development of owoh-type product from African yam bean (Sphenostylis stenocarpa) seeds by solid substrate fermentation. *Plt. Foods Hum. Nutr.* 56, 183–194. doi: 10.1023/A:1011185513717

Ogueke, C. C., and Ariyita, L. E. (2004). Microbial and organoleptic changes associated with ugba stored at ambient temperature. *Nig. Food J.* 22, 133–140.

Ogueke, C. C., Nwozu, I. N., Owoamnnam, C. L., and Iwouno, J. N. (2010). Ugba, the fermented African oil bean seeds; its production, chemical composition, preservation and health benefits. *Pakistan J. Biol. Sci.* 13, 489–496. doi: 10.3923/pjbs.2010.489.496

Ogtonyinbo, F. A. (2014). Safety challenges associated with traditional foods of West Africa. *Food Rev. Int.* 30, 338–358. doi: 10.1080/87559129.2014.940086

Ogbonna, D. N., Sokari, T. G., and Achinewhu, S. C. (2001). Development of owoh-type product from African yam bean (Sphenostylis stenocarpa) seeds by solid substrate fermentation. *Plt. Foods Hum. Nutr.* 56, 183–194. doi: 10.1023/A:1011185513717

Copyright © 2016 Olasupo, Okorie and Oguntoyinbo. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.