В обзорной рукописи были использованы научные публикации международной базы данных MEDLINE и clinicaltrials.gov. Поиск проведен в период с марта по июнь 2020 г. В процедуре поиска были использованы фильтры: дата публикации с 2010 г. по настоящее время, ключевые слова: molecular testing, thyroid tumors, thyroid cancer, target therapy, RET, RET/PTC, BRAF, PAX8-PPARγ, KRAS, NRAS, HRAS, CTNNB1, TERT, GNAS, PTEN, EIF1AX, TP53, PIK3CA, AKT1, TSHR, поисковые запросы: диагноз щитовидной железы, мутации щитовидной железы, исследование генома щитовидной железы, молекулярная диагностика, опухоли щитовидной железы, рак щитовидной железы.

THE ROLE OF MOLECULAR TESTING IN THYROID TUMORS

© Vera A. Kachko¹*, Nadezhda M. Platonova², Vladimir E. Vanushko², Boris M. Shifman²

¹I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; ²Endocrinology Research Centre, Moscow, Russia

Thyroid cancer is the most common endocrine gland cancer. In the last few decades, the molecular diagnostics for thyroid tumors have been widely researched. It is one of the few cancers whose incidence has increased in recent years from microcarcinomas to common, large forms, in all age groups, from children to the elder people. Most researches focus on the genetic basis, since our current knowledge of the genetic background of various forms of thyroid cancer is far from being complete. Molecular and genetic research has several main directions: firstly, differential diagnosis of thyroid tumors, secondly, the prognostic value of detected mutations in thyroid cancer, and thirdly, targeted therapy for aggressive or radioactive iodine-resistant forms of thyroid cancer. In this review, we wanted to update our understanding and describe the prevailing advances in molecular genetics of thyroid cancer, focusing on the main genes associated with the pathology and their potential application in clinical practice.

KEYWORDS: molecular diagnostics; molecular genetic markers; thyroid tumors; thyroid cancer; targeted therapy.
биопсия (TAB) является стандартной диагностической процедурой при образовании ЦЖ более 1 см [3], однако она имеет ряд ограничений, таких как необходимость проведения опытными специалистами под контролем ультразвукового исследования (УЗИ) для обеспечения точности попадания в очаг с дальнейшим исследованием опытным патоморфологом, поскольку клеточные особенности могут быть трудны для интерпретации. Примерно 20–30% заключений TAB классифицируются как «неопределенные», относящиеся к диагностическим категориям III–V по классификации Bethesda [4–5]. Среди хирургически резецированных опухолей ЦЖ, цитологически оцениваемых как «неопределенные», злокачественными поражениями являются примерно 15–30% случаев. В результате большинство удаленных опухолей являются доброжелательными и не требуют такого радикального подхода в лечении. Это имеет огромное значение для пациента, поскольку проведение ненужной операции связано с последующей гормональной терапией и наблюдением у эндокринолога на протяжении всей жизни и может привести к послеоперационным осложнениям и снижению качества жизни пациентов. А кроме того, еще один важный вопрос — это высокая стоимость проводимого хирургического лечения и послеоперационного наблюдения [6]. Таким образом, в настоящее время существует необходимость в методах дооперационного наблюдения [6]. Поэтому в данном обзоре мы хотели обобщить современные знания о молекулярных изменениях и их влиянии на развитие РЩЖ, происходят усиление пролиферации клеток и является медуллярным раком щитовидной железы (МРЩЖ) [10]. Считается, что около 75% всех метастазов являются спорадическими, а остальные 25% соответствуют наследственным синдромам, известным как множественная эндокринная неоплазия 2-го типа (MEN2). MEN2 включает в себя три клинически различных типа: MEN2A, MEN2B и семейный МРЩЖ. Семейные не медуллярные РЩЖ являются очень редкими (всего 3–9% всех случаев). Более того, только 5% семейных форм включены в специфические синдромы: Коудена, Гарднера, Вернера, Ли–Фраумени, Мак-Кьюна–Олбрийта, Карнея или DICER1 [11, 12]. Молекулярно-генетические исследования последних лет привели к идентификации некоторых генов, ассоциированных с РЩЖ как с семейными, так и спорадическими формами. И поскольку до конца роль идентифицированных мутаций не установлена, для дальнейшего развития необходимы дополнительные исследования с расширением числа наблюдений [11–15]. Поэтому в данном обзоре мы хотели обобщить современные знания о молекулярных основах РЩЖ и определить гены, которые могут влиять на его развитие.

ОСНОВНЫЕ МОЛЕКУЛЯРНЫЕ МАРКЕРЫ, ПРИМЕНЯЕМЫЕ ДЛЯ ДИФФЕРЕНЦИАЛЬНОЙ ДИАГНОСТИКИ ОПУХОЛЕЙ ЩИТОВИДНОЙ ЖЕЛЕЗЫ

РЩЖ характеризуется молекулярными изменениями, такими как активирующие/инактивирующие мутации, перестройки, делеции и изменения числа копий в генах, ответственных за пролиферацию клеток, дифференцировку и апоптоз [16]. В канцерогенезе РЩЖ участвует несколько основных сигнальных путей. С помощью рецепторов регистрируются все меж- и внутриклеточные сигналы, далее они обрабатываются посредством каскада точно согласованных действий сигнальных путей, которые направляют работу ядерных белков. Основным моментом в функционировании сигнальной трансдукции являются контроль и регуляция генной экспрессии. Клетка реагирует на поступающие сигналы, интегрирует их и посредством активации или подавления активности тех или иных генов преобразует к клеточным ответам. Любые нарушения регуляции или разлад равновесия сигнальных процессов приводят к серьезным последствиям как для отдельной клетки, так и для всего организма. И в первую очередь это относится к ключевым клеточным процессам: пролиферации, дифференцировки и апоптозам. Так, регуляционные нарушения зачастую вызваны мутациями в протоонкогенах или генах опухолевой супрессии, что ведет к малигнизации клеток и развитию канцерогенеза. Опухолевый рост и прогрессирование РЩЖ тесно связаны с соматическими трансформациями в генах BRAF, RAS и RET. Данные мутации способствуют активации сигнальных путей пролиферации митоген-активированной протеинкиназы (МАРК) и фосфонозитид-3-киназы (ΡΙ3Κ), являющихся ключевыми в развитии РЩЖ (рис. 1). Как только экспрессия генов меняется, начинается развитие РЩЖ, происходит усиление пролиферации клеток, их неограниченный рост и потеря дифференцировки, активация ангиогенеза, инвазии. Сигнальный путь WNT является сигнальным каскадом, в котором...
задействованы белки, являющиеся супрессорами опухолевого роста, необходимыми для полноценного эмбрионального развития, поддержания фенотипа клеток и дифференцировки. Сигнальные пути рецептора тирозинкиназы (RTK), пути p53 и p73 также вовлечены в многоступенчатый процесс клеточного взаимодействия при РЩЖ, модулируют ангиогенез, пролиферацию и дифференцировку [10, 17]. Изменения всех этих каскадов могут быть связаны между собой различными механизмами, включая генетические и эпигенетические модификации в рецепторах путей и эффекторах [18]. Наиболее значимые генетические изменения, связанные с опухолями щитовидной железы с указанием их локализации, основного типа изменений и варианта происхождения мутаций, включены в таблицу 1.

Соматические мутации RET
Ген RET (от англ. Rearranged During Transfection, в переводе — перестроенный в процессе трансфекции) кодирует один из рецепторов тирозинкиназы, расположенной на клеточной поверхности. Участвует в передаче клеточных сигналов семейства глиальных производных нейротрофических факторов, которые передают сигналы для клеточного роста и дифференциации [20].

Соматические точечные мутации RET выявляются в 40–50% спорадических МРЩЖ и связаны с худшим прогнозом для пациентов [21]. При ПРЩЖ перестройки RET (RET/PTC от англ. Papillary Thyroid Carcinoma, в переводе ПРЩЖ), по-видимому, являются ранним событием в канцерогенезе, причем у пациентов с ПРЩЖ они выявляются в 10–20% случаев. Перестройки RET/PTC ассоциированы со спорадическими и радиационно-индуктированными ПРЩЖ [20]. Основных онкогенов RET/PTC изучено более 10: RET/PTC1, RET/PTC2, RET/PTC3, RET/PTC4, RET/PTC5, RET/PTC6, RET/PTC7, RET/PTC8, RET/PTC9, RET/ELKS, RET/PCM1, RET/RFP RET/HOOK3, наиболее распространенными из них являются перестройки RET/PTC1 (70% случаев) и RET/PTC3 (до 30% случаев). Они являются наиболее изученными молекулярными событиями при ПРЩЖ и определяющими при оценке опухолей ЩЖ с неопределенным цитологическим заключением [15].

Соматические мутации BRAF
Ген BRAF кодирует серин-треонин-киназу, которая активирует эффекторы MAPK-пути [15]. Мутации в гене BRAF связаны с развитием рака, так как под контролем факторов роста и гормонов активация этого пути в норме регулирует сохранение и пролиферацию клеток, а нарушения стимуляции данного пути могут приводить к избыточной клеточной пролиферации и к ошибочной устойчивости к апоптозу.

Мутации в гене BRAF обнаруживаются у пациентов с ПРЩЖ в 30–67% случаев. Наиболее частая мутация в гене BRAF — это мутация BRAFV600E (p.Val600Glu, широко известная как V600E), которая обнаруживается в 95% случаев, используется в качестве биомаркера риска при ПРЩЖ [24]. Она относится к мутациям с высокой киназной активностью, как и другие, реже встречающиеся мутации Glu586Lys, Val600Asp, Val600Lys, Val600Arg, Lys601Glu и др.
Таблица 1. Наиболее значимые генетические изменения при опухолях щитовидной железы.

Ген	Локализация (хромосома (Chr))	Тип изменений	Происхождение мутаций	Заболевание	Источник данных
RET	Chr 10	RET/PTC перестройка	Соматические	ПРЩЖ	[19, 20]
BRAF	Chr 7	V600E мутация (p.Val600Glu)	Соматические	ПРЩЖ	[15, 23]
RAS	NAAS Chr 1	Точечные мутации	Соматические	ПРЩЖ	[23, 24, 25]
	KRAS Chr 12				
	HRAS Chr 11				
PTEN	Chr 10	Инсекции, делеции, соединения	Герминальные	Синдром Коудена 1	[15, 26]
PIK3A	Chr 3	Точечные мутации	Соматические	ПРЩЖ	[27]
AKT1	Chr 14	Точечные мутации	Герминальные	Синдром Коудена 6	[29]
TERT	promoter Chr 5	Точечные мутации, в том числе в сочетании с BRAF и RAS мутациями	Соматические	АРЩЖ и тяжелые формы семейного не медуллярного РЩЖ	[30, 31]
TP53	Chr 17	Точечные мутации	Герминальные	Синдром Ли-Фраумени 2	[38]
MET	Chr 7	Точечные мутации	Соматические	МРЩЖ	[35]
ALK	Chr 2	Генные перестройки	Соматические	ПРЩЖ, АРЩЖ, НРЩЖ	[36]
CTNNB1	Chr 3	Точечные мутации	Соматические	ПРЩЖ	[15]
JAK3	Chr 19	Точечные мутации	Соматические	ФРЩЖ	[37]
CHEK2	Chr 22	Делеции и точечные мутации	Герминальные	Синдром Ли-Фраумени 2	[38]
APC	Chr 5	Точечные мутации	Соматические	ПРЩЖ	[15, 39]
GNAS	Chr 20	Точечные мутации	Соматические	УКЗ, ФА	[40]
TSHR	Chr 14	Точечные мутации	Соматические	ФА	[41]
EIF1AX	Chr X	Точечные мутации	Соматические	ФА, ФРЩЖ, НРЩЖ	[42]
NTRK1/3	Chr 15	Точечные мутации и хромосомные перестройки	Соматические	ПРЩЖ	[43]
Частота злокачественных опухолей в BRAF-позитивных образцах TАБ составляет 99,8% [28]. В образцах с неопределенным цитологическим заключением мутации BRAF выявляется от 15 до 39% случаев. Таким образом, определение мутации BRAF V600E может значительно улучшить точность дооперационной диагностики ПРЩЖ [5].

Соматические мутации RAS
Гены RAS (H-, N-, K-RAS) кодируют участвующие во внутриклеточной передаче сигнала от рецепторов факторов роста цитоплазматические белки. Они играют важную роль в дифференцировке, клеточном росте и миграции. Локализация мутаций RAS чаще всего встречается в экзоне 2 (кодоны 12 и 13) или 4 (кодоны 117 и 146) [10, 44]. Точечные мутации генов RAS встречаются в фолликулярной аденоме (FA), ПРЩЖ (40–53%), ПРЩЖ (0–20%), фолликулярной варианте ПРЩЖ (17–25%), НДРЩЖ и АРЩЖ (20–60%) [23–25]. Мутация в экзоне 2 кодоны 61 N Ras выявлялась в фолликулярных опухолях в четыре раза чаще, чем при ПРЩЖ, и это вторая по частоте распространенности точечная мутация после мутации BRAF V600E с частотой встречаемости 8,5% [24]. Таким образом, мутации RAS ассоциируются с фолликулярными опухолями, которые могут переходить от преинвазивного поражения к истинной злокачественности, будь то ФРЩЖ, ПРЩЖ или фолликулярный вариант ПРЩЖ, который наиболее трудно диагностируется при TАБ [5].

Соматические мутации PAX8-PPARγ
Блок сцепления PAX8-PPARγ является продуктом хромосомной транслокации. Соматические мутации PAX8-PPARγ связаны с ФРЩЖ и выявляются в 30–40% случаев [45].

Соматические мутации TERT
Ген TERT кодирует катализитическую субъединицу теломеразной обратной транскриптазы, которая выполняет ключевую роль в поддержании длины теломера. Наиболее распространенными мутациями TERT является C228T, реже C250T. Точечные мутации гена TERT не обнаружены при доброкачественных опухолях ЩЖ и при МРЩЖ, честота встречаемости при ВДРЩЖ невысока и составляет 10% [46, 47], однако достаточно велика при НДРЩЖ (40%) и АРЩЖ (до 73%) [5, 30, 31]. Обнаружение данной мутации при TАБ может значительно улучшить дооперационную диагностику более агрессивных форм РЩЖ.

Соматические мутации EIF1AX
Ген EIF1AX кодирует участвующий в трансплазматический белок. Наиболее часто мутации EIF1AX встречаются в экзонах 2, 5 и 6. Мутации гена EIF1AX обнаруживаются при РЩЖ, чаще при ПРЩЖ и АРЩЖ, но и при таких доброкачественных новообразованиях, как ФА. Еще несколько случаев РЩЖ были ассоциированы с сочетанием мутаций в генах EIF1AX и RAS. Однозначное обнаружение мутаций в генах EIF1AX и RAS при фолликулярных опухолях ЩЖ однозначно говорит о злокачественном характере опухоли, что может быть использовано в диагностике опухолей ЩЖ с неопределенным цитологическим заключением [42].

Другие значимые мутации при РЩЖ
Перестройки с участием гена киназы анапластической лимфомы (ALK) и стриатина (STRN) активируют ALK-киназу, индуцируя канцерогенез. Такое слияние может представлять собой терапевтическую мишень для пациентов с высокоагрессивными типами РЩЖ [48].

Ген NTRK относится к кодирующему рецептору тирозинкиназы. Перестройки гена NTRK приводят к активации сигнального пути МРК. Распространенность перестройки NTRK составляет примерно 1–5% при ПРЩЖ и с более высокой частотой встречается у пациентов с историей облучения. Кроме того, перергуппировка ETV6-NTRK3 найдена исключительно при фолликулярном варианте ПРЩЖ, вместе с STRN-ALK они рецидивируют и отсутствуют при доброкачественных поражениях, что может быть полезно для дифференциальной диагностики опухолей ЩЖ [49, 50].

Мутация гена PIK3 является активирующими и, как правило, происходит в горячих точках экзона 9 и 20. Они были выявлены при ФРЩЖ и АРЩЖ [5], и как соматические мутации Pten. При наследовании мутаций pten у пациентов с синдромом Каудена повышен риск развития ФРЩЖ [5].

TP53 является опухолевым супрессором, который играет важную роль в регуляции клеточного цикла и репарации ДНК. Точковые мутации TP53 обнаруживаются в 50–80% АРЩЖ и при НДРЩЖ или при запущенных формах РЩЖ [5].

Мутации генов CTNNB1 (бета-катенин) активируют в WNT сигнальный путь. Частота встречаемости точечных мутаций в экзоне 3 гена CTNNB1 при АРЩЖ — более чем в 60% случаев [5].

При АРЩЖ накопление нескольких онкогенных изменений эквивалентно повышенному уровню дифференцировки и агрессивности [51]. Роль, которую р53 играет в канцерогенезе цитоидной железы, хорошо известна, но роль остальных членов семьи р53 при РЩЖ нуждается в дальнейших исследованиях. Все больше данных свидетельствует о том, что такие члены семьи благоприятствуют развитию множественных вариантов РЩЖ, и, кроме того, они используются в качестве терапевтических мишеней [52].

Соматические мутации гена TSHR наиболее часто встречаются при автономно функционирующих узлах ЩЖ, однако, в том числе, были обнаружены и при РЩЖ [5]. Поэтому данный маркер можно использовать лишь в комбинации с другими маркерами опухолей ЩЖ.

GNAS является геном, кодирующим альфа-субъединицу гетеротримерных белковых комплексов G. Мутации гена GNAS преимущественно встречаются при доброкачественных гиперплазированных узлах и ФА. Из чего можно сделать вывод, что изолированная мутация GNAS может быть использована в качестве маркера доброкачественных образований [5].

Кроме того, следует отметить, что различные взаимосключающие молекулярные изменения могут быть связаны со специфическими стадиями заболевания или с различными гистологическими типами РЩЖ [53]. Наиболее актуальные генетические изменения, участвующие в канцерогенезе, встречающиеся при различных гистологических типах РЩЖ, представлены на рисунке 2. Кроме того, с учетом встречаемости мутаций и их роли
в каспергенезе, можно представить процесс прогрессирования рака щитовидной железы от ПРЩЖ и ФРЩЖ в НДРЩЖ и АРЩЖ. Частота встречаемости основных генетических изменений при различных гистологических типах опухолей ЩЖ представлена в таблице 2. Существенные вариации распространенности мутаций определяются как характером включенных в исследования групп пациентов, так и опухолевой гетерогенностю.

Для дифференциальной диагностики опухолей ЩЖ проводится исследование основных, наиболее часто встречающихся молекулярных маркеров. Как мы рассмотрели ранее, среди онкогенных мутаций для ПРЩЖ наиболее характерны мутации в генах: BRAF (заменение V600E), RAS, генные перестройки RET/PTC. Для ФРЩЖ наиболее характерны мутации, отображающие перестройки PAX8/PPARγ, мутации в генах RAS и PTEN-инактивирующие мутации или делеции. АРЩЖ характеризуется мутациями PTEN и CTNNB1, а также инактивацией TP53 [15]. Однако изолированное их определение не будет обладать достаточной чувствительностью и специфичностью, а также положительной и отрицательной прогностической значимостью (PPV и NPV) для постановки диагноза.

Согласно клиническим рекомендациям, в настоящий момент применение исследования отдельных генов достаточно ограничено: согласно рекомендациям 2015 г. Американской Тиреоидологической Ассоциации [57] и 2016 г. Американской ассоциации клинических эндокринологов, можно рассмотреть применение молекулярно-генетического тестирования при неопределенных результатах ТАБ (диагностические категории III, IV по классификации Bethesda). Рекомендуется исследование на BRAF, RET/PTC, PAX8/PPARγ и можно рассмотреть мутации RAS [58]. Для дифференциальной диагностики опухолей ЩЖ, согласно российским клиническим рекомендациям 2017 г., может быть использовано генетическое тестирование на BRAF, RET/PTC, PAX8/PPARγ, RAS, TERT и пр.) при неопределенных результатах ТАБ (диагностические категории III, IV и V по классификации Bethesda) [3].

Начиная с 2010 г. применяют и исследуют молекулярно-генетические панели, включающие, помимо точечных мутаций, экспрессию наиболее распространенных опухолевых онкогенов и микроРНК [59]. На настоящий момент основными коммерчески доступными являются 4 теста. Общие сведения о них: название, вариант ответа и тип теста, параметры, полученные в ходе исследований, такие как чувствительность, специфичность, NPV, PPV, а также стоимость, включены в таблицу 3. Однако, несмотря на доступность данных тестов и достаточно высокие PPV и NPV, наиболее значимые научные ассоциации не готовы включить их в свои рекомендации [6]. Это связано с тем, что в настоящий момент отсутствуют
данные о прогностическом значении выбранной страте-
gии лечения пациента в соответствии с полученным ре-
зультатом теста.
Таким образом, несмотря на существенное число
обнаруженных генов, которые потенциально можно ис-
 пользовать на этапе дооперационной диагностики, не-
обходимо накопление дополнительных данных перед
тем, как молекулярно-генетическое исследование нач-
нут использовать в рутинной клинической практике.

Таблица 3. Основные коммерчески доступные молекулярно-генетические панели и их характеристики.

Название	Afirma GEC/GSC	ThyroSeq2/3	Rosetta Reveal	ThyGenX/ThyramiR
Методология	Анализ экспрессии генов (РНК)	Анализ мутаций (ДНК)	Анализ экспрессии микроRHК	Анализ мутаций (ДНК), анализ экспрессии микроRHК
Тип теста	Исключить	Подтвердить/исключить	Подтвердить	Подтвердить/исключить если выполнены оба теста
Ответ	Доброкачественный/ подозрительный на злокачественный	Отрицательный/ положительный	Доброкачественный/ подозрительный на злокачественный	Отрицательный/ положительный
Анализируемые мутации	Нет	ThyroSeq2: BRAF, KRAS, HRAS, NRAS и перестройки RET/PTC1, RET/PTC3, PAX8/PPARγ, (TRK)	ThyroSeq3 расширен: PIK3CA, TP53, TSHR, PTEN, GNAS, CTNNB1, AKT1, RET	BRF, HRAS, KRAS, NRAS, PIK3CA и перестройки PAX8/PPARγ, RET/PTC1, RET/PTC3
Параметры теста	NPV 94%, PPV 37%, чувствительность 90%, специфичность 93%	ThyroSeq2: NPV 96%, PPV 83%, чувствительность 90%, специфичность 93%	ThyroSeq3: NPV 91%, PPV 59%, чувствительность 85%, специфичность 72%	NPV 94%, PPV 74%, чувствительность 89%, специфичность 85%
Стоимость [58]	$6400	$4056	$3700	$5675
Источник данных	[60, 61]	[62, 63]	[64]	[65]

данные о прогностическом значении выбранной страте-
gии лечения пациента в соответствии с полученным ре-
зультатом теста.
Таким образом, несмотря на существенное число
обнаруженных генов, которые потенциально можно ис-
пользовать на этапе дооперационной диагностики, не-
обходимо накопление дополнительных данных перед
тем, как молекулярно-генетическое исследование нач-
нут использовать в рутинной клинической практике.

Вторым направлением при изучении молекуляр-
ного профиля опухолей ЩЖ является оценка связи
выявленных генетических изменений с клинико-па-
tологическими особенностями заболевания. Что яв-
ляется крайне важным, так как может привести к раз-
работке точных прогностических критериев, которые
облегчат выбор оптимальной тактики лечения для таких
пациентов, разработке прогностической генетической
маркер-ориентированной стратификации риска [66], что
позволит обосновать при лечении РЩЖ как органосо-
храняющие операции, так и более агрессивные вмеша-
тельства, включая показания к тотальной тиреоидэкто-
мии, профилактической центральной лимфодиссекции
(VI уровень), РЙТ и супрессивной терапии.
Так, мутации гена RET ассоциированы с более агрессив-
ным течением заболевания, большим размером опухоли
на этапе диагностики, инвазий, а также повышением ри-
ска метастазов лимфатических узлов и отдаленных метас-
tазов [15, 20, 21]. Согласно клиническим рекомендациям
по ведению пациентов с MEN2, рекомендовано проводить
ранний генетический скрининг у лиц из группы риска,
с тем чтобы выявить герминальные мутации RET, которые
ассоциированы с самым плохим прогнозом [15].
Примерно у 20% детей с ПРЩЖ выявляют перестрой-
ку RET/PTC1 или RET/PTC3. Перестройки RET/PTC были
выявлены при доброкачественных заболеваниях ЩЖ,
так, высокая распространенность RET/PTC обнаружена у пациентов с тиреоидитом Хашимото [15].

Соматические мутации в гене BRAF чаще ассоциировались с высоким риском рецидива, агрессивного течения заболевания, метастазами в лимфатические узлы и экстратиреоидным распространением и увеличением смертности [67, 68]. Но изолировано мутации в гене BRAF имеют достаточно низкую специфичность при высокой чувствительности, поэтому их трудно использовать при оценке риска рецидива и смертности.

Мутации в гене BRAF отсутствуют в доброкачественных узлах ЩЖ, однако они выявляются в трети случаев АРЩЖ [22, 23].

Соматические мутации в гене RAS являются вторыми по распространенности после BRAF, и их прогностическое значение противоречиво, поскольку обнаружение RAS мутации в ЩЖ не устанавливает степень злокачественности, они встречаются при всех патоморфологических типах новообразований ЩЖ, от доброкачественных до АРЩЖ. При этом частота выявления мутаций RAS при НДРЩЖ и АРЩЖ выше, чем при других типах РЩЖ, и в нескольких исследованиях была подтверждена клинически значимость ассоциации мутации RAS с риском отдаленных метастазов и снижением выживаемости [15].

Кроме того, мутации RAS в сочетании с мутацией TERT были ассоциированы с более агрессивным течением заболевания, высоким риском рецидива и смертностью [30].

Мутации гена TERT ассоциированы с агрессивными характеристиками опухоли ЩЖ: экстратиреоидным распространением, большим размером опухоли, метастазами в лимфатические узлы и отдаленными метастазами, более продвинутой стадией TNM, а также рецидивом опухоли и смертностью; с более агрессивным течением РЩЖ [5, 31]; агрессивными типами РЩЖ: НДРЩЖ, АРЩЖ. Мутации гена TERT не встречались при доброкачественных опухолях ЩЖ.

В сочетании мутации BRAFV600E и TERT имеют сильное синергетическое влияние на такие параметры, как агрессивность ПРЩЖ, увеличение риска рецидива и смертности пациентов, тогда как при отдельном выявлении мутации оно существенно меньше [47].

Поскольку обнаружение мутации EIF1AX встречается как при РЩЖ, так и при доброкачественных опухолях, сложно использовать этот маркер изолированно. Однако одновременное обнаружение мутаций в генах EIF1AX и RAS при фолликулярных опухолях ЩЖ однозначно говорит о злокачественном характере опухоли. Кроме того, при АРЩЖ выявление мутации гена EIF1AX является предиктором наиболее агрессивного течения заболевания [42].

Мутации TP53 и CTNNB1 выявляются при более агрессивном течении ВДРЩЖ, а также при НДРЩЖ и АРЩЖ. Выявление мутаций PTEN, PIK3CA, AKT1 также ассоциировано с АРЩЖ [5].

Таким образом, часть молекулярно-генетических изменений может быть использована в клинической практике в качестве показателя злокачественности опухоли, поскольку связана с более агрессивным течением заболевания, и врач может использовать максимально агрессивную тактику лечения: TERT, RET, BRAF (особенно в сочетании с TERT), TP53, CTNNB1, PTEN, PIK3CA, AKT1. Мутация GNAS может быть маркером доброкачественных образований — в связи с чем тактика терапии может быть минимально агрессивной или ограничиться наблюдением. Еще часть молекулярно-генетических изменений, поскольку выявляется и при доброкачественных, и при злокачественных новообразованиях, может быть использована как дополнительный маркер, который в сочетании с мутациями — показателями злокачественности будет ассоциирован с усилением агрессивности течения заболевания: KRAS, NRAS, Hras, Tshr, EIF1AX. Изолированное же определение данных мутаций никак не должно влиять на тактику лечения. Тем не менее, несмотря на длительный опыт исследования молекулярных тестов, перед тем, как они будут существенно влиять на показания к хирургическому вмешательству и тактику ведения пациента, необходимо накопление дополнительных данных о долгосрочных результатах их применения.

ИСПОЛЬЗОВАНИЕ МОЛЕКУЛЯРНЫХ МАРКЕРОВ ДЛЯ ТАРГЕТНОЙ ТЕРАПИИ ПРИ РАКЕ ЩИТОВИДНОЙ ЖЕЛЕЗЫ

В данном разделе мы хотели бы рассмотреть текущие возможности таргетной терапии при РЩЖ. В подавляющем проценте случаев ВДРЩЖ показывают хороший ответ при стандартном лечении, включающем хирургическое вмешательство с последующей РЙТ (на основе ¹³¹I) и супрессивной гермональной терапией при лечении пациентов высокого риска рецидива [66]. Несмотря на их общую хорошую прогноз, отдаленные метастазы уже при постановке диагноза имеются или развиваются при последующем наблюдении у 10–20% пациентов с ВДРЩЖ. Большинство таких пациентов имеют хороший ответ на РЙТ с 40% вероятностью достижения полного и длительного ответа [16]. Однако оставшиеся 60% проявляют первичную или приобретенную устойчивость РЙТ, что требует применения иных дополнительных вариантов лечения. Небольшая доля (<10%) ВДРЩЖ, а также многие МРЩЖ и почти все АРЩЖ не излечиваются стандартными методами терапии [66]. Кроме того, по мере прогрессирования РЩЖ наследование молекулярных изменений приводит к изменению нормальных функций клеток, результате чего становится резистентность к РЙТ, что обусловлено нарушением экспрессии натрий-йодного транспортера [10, 69, 70].

Поскольку для парафолликулярных клеток свойственно отсутствие захвата ¹³¹I, терапий выбора для локализованного МРЩЖ является тиреоидэктомия с последующей гермональной терапией. Тем не менее таргетная терапия или, реже, химотерапия могут быть применены при местнораспространенных или метастатических формах заболевания [71].

АРЩЖ характеризуется быстрым ростом и утратой особенностей, присущих фолликулярным клеткам, в том числе таких, как поглощение йода, в связи с чем АРЩЖ показывает нарушение функции симпортера јоиды натрия и устойчивость к РЙТ. Таким образом, лучевая терапия и химотерапия являются единственными вариантами лечения этого заболевания при том, что исходы являются достаточно мрачными [72, 73]. При агрессивных формах ВДРЩЖ, МРЩЖ, АРЩЖ, НДРЩЖ 5-летняя выживаемость составляет менее 50% в отличие от ~98% 5-летней выживаемости для пациентов с йод-чувствительными формами ВДРЩЖ.
Таблица 4. Таргетные препараты для лечения агрессивных форм рака щитовидной железы.

Ингибиторы тирозинкиназ	Таргетная тирозинкиназа	Таргетная популяция пациентов	Источник данных
Мультитаргетные ингибиторы			
Анлотиниб (Anlotinib)	VEGFR 2-3, FGFR 1-4, PDGFR-α/β, c-KIT, RET	МРЩЖ	[78–79]
Акситиниб (Axitinib)	VEGFR1-2-3, PDGFR-β, c-KIT	Распространенные формы РЩЖ	[67, 80]
Довитиниб (Dovitinib)	FGFR, VEGFR	Распространенные формы РЩЖ	[81]
Кабозантиниб (Cabozantinib)	MET, VEGFR-2, RET	МРЩЖ (одобрен FDA)	[82–84]
Иматиниб (Imatinib)	ABL, c-KIT, PDGFR	АРЩЖ, МРЩЖ	[67, 85]
Ленватиниб (Lenvatinib)	VEGFR 1-2-3, FGFR 1-2-3-4, PDGFR-α, RET, c-KIT	Резистентный к РЙТ ВДРЩЖ (одобрен FDA)	[86–88]
Мотезаниб (Motesanib)	VEGFR 1-2-3, PDGFR, RET, c-KIT	Распространенные формы ВДРЩЖ, МРЩЖ	[67]
Пазопаниб (Pazopanib)	VEGFR 1-2-3, PDGFR-α/β, c-KIT, FGFR 1-3-4	Резистентный к РЙТ ВДРЩЖ, АРЩЖ, МРЩЖ	[89–91]
Сорafenбиб (Sorafenib)	VEGFR 1-2-3, RET, RAF, PDGFR-β, c-KIT, FLT3	Резистентный к РЙТ ВДРЩЖ (одобрен FDA)	[92–93]
Сунитиниб (Sunitinib)	VEGFR 1-2, c-KIT, RET, PDGFR-β, FLT3	Резистентный к РЙТ ВДРЩЖ, распространенные формы ВДРЩЖ, МРЩЖ	[94–96]
Вандетаниб (Vandetanib)	RET, VEGFR 2-3, c-KIT, EGFR	МРЩЖ (одобрен FDA)	[97–99]
Монотаргетные ингибиторы			
Апатиниб (Apatinib)	VEGFR-2	Резистентный к РЙТ ВДРЩЖ	[100–101]
Дабрафениб (Dabrafenib) + Траметиниб (Trametinib)	BRAF + MEK	BRAFVI600E при АРЩЖ, ПРЩЖ	[102–104]
Дабрафениб (Dabrafenib) + Лапатиниб (Lapatinib)	BRAF + HER2/3	BRAFVI600E при распространенных формах ВДРЩЖ	[105]
Селюметиниб (Selumetinib)	MEK-1/2, BRAF, RAS	Резистентный к РЙТ ВДРЩЖ	[106]
Вемурафениб (Vemurafenib)	BRAF	BRAFVI600E при резистентных к РЙТ ВДРЩЖ, распространенных формах РЩЖ	[107]
Типифарниб (Tipifarnib)	HRAS	Резистентный к РЙТ ВДРЩЖ	[66]
Церитиниб (Ceritinib)	ALK	АРЩЖ	[50, 108,109]
Кризотиниб (Crizotinib)	ALK	АРЩЖ	[110–111]
Энтректиниб (Entrectinib)	NTRK (TRK, ROS1, ALK)	Распространенные формы РЩЖ	[112–114]
Ларотректиниб (Larotrectinib)	NTRK (TRK)	Распространенные формы РЩЖ	[115–116]
LOXO-195	NTRK (TRK)	Распространенные формы РЩЖ	[115]
Бупарлисиб (Buparlisib)	PI3K	Резистентный к РЙТ ВДРЩЖ	[117]
Эверолимус (Everolimus)	mTOR	Резистентный к РЙТ ВДРЩЖ, МРЩЖ	[118–120]
Эверолимус (Everolimus) + Пасиреотид (Pasireotide)	mTOR + PI3K (аналог соматостатина)	Распространенный МРЩЖ, резистентный к РЙТ ВДРЩЖ	[121,122]
Темсиролимус (Temsirolimus)	mTOR	Резистентный к РЙТ ВДРЩЖ	[123]
Сириликум (Sirolimus)	mTOR	Резистентный к РЙТ ВДРЩЖ	[124]
Эфатутазон (Efatutazone) + Паклитаксел (Paclitaxel)	агонист PPAR	АРЩЖ	[125]
Для РЩЖ характерны молекулярные изменения в генах, ответственных за пролиферацию клеток, дифференциацию и апоптоз [74]. В связи с чем в последние годы открытие специфичных для РЩЖ молекулярных изменений привело к тому, что для терапии агрессивных форм РЩЖ изучаются множество таргетных лекарственных препаратов. Однако наличие механизмов внутренней резистентности опухоли к таргетным препаратам, а также система токсичность препаратов приводят к ограничению их клинической пользы и требуют проведения дополнительных исследований [66].

Ингибиторы тирозинкиназ (ИТК) представляют собой основной класс препаратов для таргетной терапии при РЩЖ. ИТК приводят к изменениям сигнальных путей и модулируют процессы ангиогенеза, пролиферации и дифференциации. Основные представители ИТК, их таргетные мишени и популяции пациентов представлены в таблице 4. Часть из этих молекул имеет завершенные исследования, но не показала существенного влияния на прогноз, часть в настоящий момент продолжает исследоваться, и всего лишь несколько молекул, ингибирующих тирозинкиназы, участвующих в пролиферации клеток, их выживании, развитии ангиогенеза, показала клиническую эффективность [75]. На сегодняшний день одобрение управления по санитарному надзору за качеством пищевых продуктов и медикаментов США (англ. — Food and Drug Administration, FDA) получено для четырех препаратов: сорafenib и ленцитаниб и вандетаниб для терапии РЩЖ и кабомзиниб для терапии резистентных к РЙТ ВДРЩЖ и кабозантиби и ванетаниб для терапии МРЩЖ [76, 77].

Применение ИТК показало существенные преимущества в выживаемости как при резистентном к РЙТ ВДРЩЖ, так и при МРЩЖ. Эти преимущества были получены ценой значительных клинических и финансовых затрат [126, 127]. В то время как дополнительные исследования в постоянно развивающемся направлении могут оказать существенное влияние в перспективе, их признание требует проведения дополнительных исследований [66].

Ингибиторы тирозинкиназ (ИТК) представляют собой основной класс препаратов для таргетной терапии при РЩЖ. ИТК приводят к изменениям сигнальных путей и модулируют процессы ангиогенеза, пролиферации и дифференциации. Основные представители ИТК, их таргетные мишени и популяции пациентов представлены в таблице 4. Часть из этих молекул имеет завершенные исследования, но не показала существенного влияния на прогноз, часть в настоящий момент продолжает исследоваться, и всего лишь несколько молекул, ингибирующих тирозинкиназы, участвующих в пролиферации клеток, их выживании, развитии ангиогенеза, показали клиническую эффективность [75]. На сегодняшний день одобрение управления по санитарному надзору за качеством пищевых продуктов и медикаментов США (англ. — Food and Drug Administration, FDA) получено для четырех препаратов: сорafenib и ленцитаниб и вандетаниб для терапии РЩЖ и кабомзиниб для терапии резистентных к РЙТ ВДРЩЖ и кабозантиби и ванетаниб для терапии МРЩЖ [76, 77].

Применение ИТК показало существенные преимущества в выживаемости как при резистентном к РЙТ ВДРЩЖ, так и при МРЩЖ. Эти преимущества были получены ценой значительных клинических и финансовых затрат [126, 127]. В то время как дополнительные исследования в настоящее время изучают ингибиторы тирозинкиназ при ВДРЩЖ и МРЩЖ, применение этих препаратов при резистентных к РЙТ ВДРЩЖ и МРЩЖ. Эти преимущества были получены ценой значительных клинических и финансовых затрат [126, 127].

6. Oczko-Wojciechowska M, Kotecka-Blicharz A, Krajewska J, et al. Mutation spectrum in thyroid cancer. Endocrine Surgery. 2017;11(1):27–36. doi: 10.1002/ijc.31825.
7. Goodarzi E, Moslem A, Feizshadad H, et al. Epidemiology, incidence and mortality of thyroid cancer and their relationship with the human development index in the world: an ecology study in 2018. Adv Hum Biol. 2019(9):2(162)–167.
8. ASCO [Internet] Thyroid Cancer: Statistics. [cited 2020 April 22]. Available from: https://www.cancer.net/cancer-types/thyroid-cancer/statistics.
9. Caballinas ME, McFadden DG, Durante C. Thyroid cancer. Lancet. 2016;388(10061):2783–2795. doi: 10.1016/S0140-6736(16)30715-3.
10. Xing M. Molecular pathogenesis and mechanisms of thyroid cancer. Nat Rev Cancer. 2013(13):818–199. doi: 10.1038/nrc3431.
11. Guimette J, Nose V. Hereditary and familial thyroid tumours. Histopathology. 2018;72(1):71–81. doi: 10.1111/his.13373.
12. Yang PS, Ngeow J. Familial non-medullary thyroid cancer: Unraveling the genetic maze. Endocr Relat Cancer. 2016;23(12):R577–R595. doi: 10.1530/ERC-16-0067.
13. Ruiz-Ferrer M, Fernandez RM, Navarro E, et al. GS34E Variant in HAP2 and Nonmedullary Thyroid Cancer. Thyroid. 2016;26(7):967–988. doi: 10.1089/thy.2016.0193.
14. Ye F, Gao H, Xiao L, et al. Whole exome and target sequencing identifies MAP2K5 as novel susceptibility gene for familial non-medullary thyroid carcinoma. Int J Cancer. 2019;144(6):1321–1330. doi: 10.1002/ijc.31825.
34. Guha T, Malkin D. Inherited TP53 mutations and the li-fraumeni syndrome.

33. Gerber TS, Schad A, Hartmann N, et al. Targeted next-generation sequencing identifies a germline MET mutation in two siblings. *Clin Endocrinol*. 2016;24(4):R192–R202. doi: 10.1111/cte.12881.

32. Bonhomme B, Godbert Y, Perot G, et al. Molecular pathology of anaplastic thyroid carcinomas: a retrospective study of 144 cases. *J Clin Invest*. 2016;126(3):1052–1066. doi: 10.1172/JCIS217.

31. Kunstman JW, Juhlin CC, Goh G, et al. Characterization of the mutational landscape of anaplastic thyroid cancer via whole-exome sequencing. *Hum Mol Genet*. 2015;24(8):2318–2329. doi: 10.1093/hmg/ddu749.

30. Mulligan LM. RET revisited: Expanding the oncogenic portfolio. *Nat Rev Cancer*. 2014;14(3):173–186. doi: 10.1038/nrc3860.

29. Wells SA. Advances in the management of MEN2: From improved surgical and medical treatment to novel kinase inhibitors. *Endocr Relat Cancer*. 2018;25(2):T1–T13. doi: 10.1530/ERC-17-0325.

28. Nishino M, Nikiforova MN. Update on molecular testing for RET rearrangements in thyroid carcinogenesis: assessment and clinicopathological correlations. *Pathol Oncol Res*. 2016;21(7):507–513. doi: 10.1007/s12253-015-0540-3.

27. Milella M, Falcone I, Conciatori F, et al. PTEN: Multiple hallmarks of poorly differentiated and anaplastic thyroid cancers. *Mol Diagn Ther*. 2016;20(7):672–681. doi: 10.1007/s12253-016-0505-3.

26. Santarpia L, Myers JN, Sherman SI, et al. Genetic alterations resembling the tall cell variant of papillary thyroid neoplasms (solid papillary carcinomas with reverse polarity) harbour recurrent mutations affecting IDH2 and PIK3CA. *Genes (Basel)*. 2018;9(12):3814. doi: 10.3390/genes9123814.

25. Rusinek D, Pfeifer A, Krajewska J, et al. Coexistence of TERT promoter mutations and ALK rearrangement in thyroid carcinoma. *Nat Rev Endocrinol*. 2014;10(9):709. doi: 10.1038/nrendo.2014.200.

24. Tirrò E, Martorana F, Romano C, et al. Molecular alterations and PAX8-PPARG fusion protein regulates cancer-related pathways and alters the immune landscape of thyroid cancer. *Oncotarget*. 2017;8(4):4761–4773. doi: 10.18632/oncotarget.7405.

23. Mulligan LM. RET revisited: Expanding the oncogenic portfolio. *Nat Rev Cancer*. 2014;14(3):173–186. doi: 10.1038/nrc3860.

22. Wells SA. Advances in the management of MEN2: From improved surgical and medical treatment to novel kinase inhibitors. *Endocr Relat Cancer*. 2018;25(2):T1–T13. doi: 10.1530/ERC-17-0325.

21. Mulligan LM. RET revisited: Expanding the oncogenic portfolio. *Nat Rev Cancer*. 2014;14(3):173–186. doi: 10.1038/nrc3860.

20. Khan MS, Qadri Q, Makhdoomi MJ, et al. RET/PTC gene rearrangements in thyroid oncocytoma: a clinicopathological study. *Asian Pac J Cancer Prev*. 2016;17(11):4233–4238. doi: 10.7863/aps.2016.17.11.4233.

19. Zarkesh M, Zadeh-Vakili A, Azizi F, et al. Altered epigenetic modifications in Cowden and Cowden-like syndromes. *Arch Pathol Lab Med*. 2018;142(2):339–344. doi: 10.1043/0003-9907/ak432.

18. Zarkesh M, Zadeh-Vakili A, Azizi F, et al. Altered epigenetic modifications in Cowden and Cowden-like syndromes. *Arch Pathol Lab Med*. 2018;142(2):339–344. doi: 10.1043/0003-9907/ak432.

17. Bonhoombe B, Godbert Y, Perot G, et al. Molecular pathology of anaplastic thyroid carcinomas: a retrospective study of 144 cases. *Thyroid*. 2017;27(5):682–692. doi: 10.1089/thy.2016.0254.

16. Tirrò E, Martorana F, Romano C, et al. Molecular alterations and PAX8-PPARG fusion protein regulates cancer-related pathways and alters the immune landscape of thyroid cancer. *Oncotarget*. 2017;8(4):4761–4773. doi: 10.18632/oncotarget.7405.

15. Luzón-Toro B, Fernández RM, Villaal-Benito L, et al. Influencers on thyroid cancer onset: molecular genetic basis. *Genes (Basel)*. 2019;10(11):913. doi: 10.3390/gen10110913.

14. Gerber TS, Schad A, Hartmann N, et al. Targeted next-generation sequencing of cancer genes in poorly differentiated thyroid cancer. *Thyroid*. 2017;27(5):682–692. doi: 10.1089/thy.2016.0254.

13. Gerber TS, Schad A, Hartmann N, et al. Targeted next-generation sequencing of cancer genes in poorly differentiated thyroid cancer. *Thyroid*. 2017;27(5):682–692. doi: 10.1089/thy.2016.0254.

12. Guha T, Malkin D. Inherited TP53 mutations and the li-fraumeni syndrome. *Hum Mol Genet*. 2015;24(8):2318–2329. doi: 10.1093/hmg/ddu749.

11. Mulligan LM. RET revisited: Expanding the oncogenic portfolio. *Nat Rev Cancer*. 2014;14(3):173–186. doi: 10.1038/nrc3860.

10. Wells SA. Advances in the management of MEN2: From improved surgical and medical treatment to novel kinase inhibitors. *Endocr Relat Cancer*. 2018;25(2):T1–T13. doi: 10.1530/ERC-17-0325.

9. Kunstman JW, Juhlin CC, Goh G, et al. Characterization of the mutational landscape of anaplastic thyroid cancer via whole-exome sequencing. *Hum Mol Genet*. 2015;24(8):2318–2329. doi: 10.1093/hmg/ddu749.

8. Agrawal N, Akbari N, Aksoy BA, et al. Integrated genomic characterization of papillary thyroid carcinoma. *Cell*. 2014;159(3):676–690. doi: 10.1016/j.cell.2014.09.050.

7. Santarpia L, Myers JN, Sherman SI, et al. Genetic alterations in the RAS/RAF/mitogen-activated protein kinase and phospholipid phosphatase 3-kinase/AKT signaling pathway in the follicular variant of papillary thyroid carcinoma. *Cancer*. 2010;116(2):2974–2983. doi: 10.1002/cncr.25061.

6. Millen A, Falcone I, Concianto F, et al. PTEN: Multiple functions in human malignant tumors. *Front Oncol*. 2015;5:24. doi: 10.3389/fonc.2015.00024.

5. Lozado JR, Bass T, Pareja FE, et al. Solid papillary breast carcinomas resembling the tall variant of papillary thyroid neoplasms (solid papillary carcinomas with reverse polarity) harbour recurrent mutations affecting IDH2 and PIK3CA. A validation cohort. *Histochemistry and Histochemistry*. 2018;173(2):339–344. doi: 10.1111/his.13522.

4. Nishino M, Nikiforova M. Update on molecular testing for RET rearrangements in thyroid carcinogenesis: assessment and clinicopathological correlations. *Pathol Oncol Res*. 2016;21(7):507–513. doi: 10.1007/s12253-015-0540-3.

3. Gerber TS, Schad A, Hartmann N, et al. Targeted next-generation sequencing of cancer genes in poorly differentiated thyroid cancer. *Endocr Connect*. 2018;7(1):47–55. doi: 10.1530/EC-17-0290.

2. Guha T, Malkin D. Inherited TP53 mutations and the Li-Fraumeni syndrome. *Cold Spring Harb Perspect Med*. 2017;7(4):a026187. doi: 10.1101/cshperspect.a026187.

1. Zarkesh M, Zadeh-Vakili A, Azizi F, et al. Altered epigenetic modifications in Cowden and Cowden-like syndromes. *Arch Pathol Lab Med*. 2015;139(11):1243–1248. doi: 10.1043/0003-9907/ak432.

0. Mulligan LM. RET revisited: Expanding the oncogenic portfolio. *Nat Rev Cancer*. 2014;14(3):173–186. doi: 10.1038/nrc3860.
65. Labourier E, Shifrin A, Busseniers AE, et al. Molecular testing for treating metastatic thyroid cancer. J. Clin Endocrinol Metab. 2015;100(7):2743–2750. doi: 10.1210/jc.2014-3713.

66. Patel KN, Angell TE, Babiarz J, et al. Performance of a genomic sequencing classifier for the preoperative diagnosis of cytologically indeterminate thyroid nodules. JAMA Surg. 2018;153(9):817–824. doi: 10.1001/jamasurg.2018.1153.

67. Tufano RP, Teixeira GV, Bishop J, et al. BRAF mutation in papillary thyroid cancer. J Natl Compr Cancer Netw. 2015;13(12):1588–1595. doi: 10.1016/j.jcc.2015.05.020.

68. Traylor K. Cabozantinib approved for advanced medullary thyroid cancer. Am J Health Syst Pharm. 2017;70(2):88.

69. Bible KC, Suman VJ, Molina JR, et al. NCCN Guidelines Insights: thyroid carcinoma, version 2.2018. J Natl Compr Cancer Netw. 2018;16(12):1429−1440. doi: 10.6004/jnccn.2018.0089.

70. Bible KC, Suman VJ, Muller S, et al. Lenvatinib versus placebo in radiodine-refractory thyroid cancer. N Engl J Med. 2015;372(7):621–630. doi: 10.1056/NEJMoa1406470.

71. Cabanillas ME, Schluemberger M, Jarzab B, et al. A phase II trial of lenvatinib (E7080) in advanced, progressive, radiodine-refractory, differentiated thyroid cancer: a clinical outcomes and biomarker assessment. Cancer. 2015;121(16):2749–2756. doi: 10.1002/cncr.29395.

72. Haddad RI, Nasr C, Bischoff L, et al. Efficacy of pazopanib in patients with advanced anaplastic thyroid cancer. Thyroid. 2012;22(5):622–639. doi: 10.1089/thy.2011.0395.

73. Schluemberger M, Elisei R, Muller S, et al. Overall survival analysis of EXAM, a phase II trial of cabozantinib in patients with radiographically progressive metastatic thyroid carcinoma. Ann Oncol. 2017;28(11):2813–2819. doi: 10.1093/annonc/mdx479.

74. Cabanillas ME, de Souza JA, Geyer S, et al. Cabozantinib as salvage therapy for patients with tyrosine kinase inhibitor-refractory differentiated thyroid cancer: results of a multicenter phase II international thyroid oncology group trial. J Clin Oncol. 2017;35(29):3315−3321. doi: 10.1200/JCO.2017.73.0226.

75. Ha HT, Lee JS, Urd T, et al. Phase II phase of cabozantinib in patients with advanced anaplastic thyroid cancer. Thyroid. 2010;20(9):975–980. doi: 10.1089/thy.2010.0057.

76. Schluemberger M, Tahara M, Wirth LJ, et al. Lenvatinib versus placebo in radiodine-refractory thyroid cancer. N Engl J Med. 2015;372(7):621–630. doi: 10.1056/NEJMoa1406470.

77. Cabanillas ME, Schluemberger M, Jarzab B, et al. A phase II trial of lenvatinib (E7080) in advanced, progressive, radiodine-refractory, differentiated thyroid cancer: a clinical outcomes and biomarker assessment. Cancer. 2015;121(16):2749–2756. doi: 10.1002/cncr.29395.

78. Sun Y, Du F, Gao M, et al. Anlotinib for the treatment of patients with locally advanced or metastatic medullary thyroid cancer. Thyroid. 2018;28(11):1455–1461. doi: 10.1089/thy.2018.0022.

79. Li D, Tang PZ, Chen X, et al. Anlotinib treatment in locally advanced or metastatic medullary thyroid carcinoma. A multicenter, randomized, double-blind, placebo-controlled phase IIb trial. J Clin Oncol. 2019;37(15_Suppl):6019. doi: 10.1200/jco.2019.37.15_suppl.6019.

80. Locati LD, Licitra L, Agate P, et al. Treatment of advanced thyroid cancer with axitinib. Phase 2 study with pharmacokinetic/pharmacodynamic and quality-of-life assessments. Cancer. 2014;120(17):2694–2703. doi: 10.1002/cncr.28676.

81. Lim SM, Chung WC, Narayanan T, et al. A phase II study of dovitinib in advanced thyroid cancer. Eur J Cancer. 2015;51(12):1588–1595. doi: 10.1016/j.ejca.2015.05.020.

82. Traynor K. Cabozantinib approved for advanced medullary thyroid cancer. Am J Health Syst Pharm. 2017;70(2):88.

83. Bible KC, Suman VJ, Muller S, et al. Efficacy of pazopanib in patients with advanced anaplastic thyroid cancer. Thyroid. 2012;22(5):622–639. doi: 10.1089/thy.2011.0395.
97. Leboulleux S, Bastholt L, Krause T, et al. Vandetanib in locally advanced or metastatic differentiated thyroid cancer: A randomised, double-blind, phase 2 trial. *Lancet Oncol.* 2012;13(9):897–905. doi: 10.1016/S1470-2045(12)70335-2.

98. Wells SA, Jr, Robinson BG, Gagel RF, et al. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: A randomized, double-blind phase III trial. *J Clin Oncol.* 2012;30(2):134–141. doi: 10.1200/JCO.2011.35.5040.

99. Thornton K, Kim G, Maher VE, et al. Vandetanib for the treatment of symptomatic or progressive medullary thyroid cancer in patients with unresectable locally advanced or metastatic disease. U.S. Food and Drug Administration drug approval summary. *Clin Cancer Res.* 2012;18(4):3722–3730. doi: 10.1186/1740-6322-12-0411.

100. Lin Y, Wang C, Gao W, et al. Overwhelming rapid metabolic and structural response to apatinib in radiolabeled differentiated thyroid cancer. *Oncotarget.* 2017;8(26):42225–42261. doi: 10.18632/oncotarget.15036.

101. Zhang X, Wang C, Lin Y. Pilot dose comparison of apatinib in Chinese patients with progressive radiolabeled-refractory differentiated thyroid cancer. *J Clin Endocrinol Metab.* 2018;103(10):3640–3646. doi: 10.1210/jc.2018-00381.

102. Falchook GS, Millward M, Hong D, et al. BRAF inhibitor dabrafenib in patients with metastatic BRAF-mutant thyroid cancer. *Thyroid.* 2015;25(1):77–78. doi: 10.1089/thy.2014.0123.

103. Shah MH, Wirth L, Wirth LJ, et al. Results of randomized phase II trial of dabrafenib versus dabrafenib plus trametinib in BRAF-mutated papillary thyroid carcinoma. *J Clin Oncol.* 2017;35(15 suppl):6022. doi: 10.1200/JCO.2017.77.6785.

104. Subbiah V, Kreitman RJ, Wainberg ZA, et al. Dabrafenib and trametinib treatment in patients with locally advanced or metastatic BRAF V600-Mutant anaplastic thyroid cancer. *J Clin Oncol.* 2018;36(1)(7–13). doi: 10.1200/JCO.2017.73.6785.

105. Falchook GS, Millward M, Hong D, et al. BRAF inhibitor dabrafenib in patients with metastatic BRAF-mutant thyroid cancer. *Thyroid.* 2015;25(1)(7)(7–77). doi: 10.1089/thy.2014.0123.

106. Ho AL, Gereoul RK, Lebouef R, et al. Selumetinib-enhanced radiolabeled uptake in advanced thyroid cancer. *N Engl J Med.* 2013;368(7):623–632. doi: 10.1056/NEJMoa1202882.

107. Brose MS, Cabanillas ME, Cohen EE, et al. Vemurafenib in patients with BRAF(V600E)-positive metastatic or unresectable papillary thyroid cancer refractory to radioactive iodine: A nonrandomised, multicentre, open-label, phase 2 trial. *Lancet Oncol.* 2016;17(9):1272–1282. doi: 10.1016/S1470-2045(16)30166-8.

108. Doebele RC, Pilling AB, Aisner DL, et al. Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non-small cell lung cancer. *Clin Cancer Res.* 2012;18(5):1472–1482. doi: 10.1158/1078-0432.CCR-12-0297.

109. Guan J, Wolfstetter G, Siaw J, et al. Anaplastic lymphoma kinase inhibitor everolimus in patients with advanced medullary thyroid carcinoma: subgroup results of a phase II trial. *Int J Endocrinol.* 2015;2015:348124. doi: 10.1155/2015/348124.

110. Godber Y, Henriques de Figueiredo B, Bonichon F, et al. Remarkable response to everolimus in aggressive radiolabeled differentiated thyroid cancer. *Oncotarget.* 2017;8(26):42225–42261. doi: 10.18632/oncotarget.15036.

111. Gambacorti-Passerini C, Orlov S, Zhang L, et al. Long-term effects of sirolimus and cyclophosphamide in patients with advanced differentiated thyroid cancers. *J Clin Endocrinol Metab.* 2015;100(5):1806–1812. doi: 10.1210/jc.2014-3178.

112. Faggiano A, Modica R, Severino R, et al. The antiproliferative effect of pasireotide LAR alone and in combination with everolimus in patients with medullary thyroid cancer: A single-center, open-label, phase II, proof-of-concept study. *Endocrine.* 2016;52(1):46–56. doi: 10.1007/s12020-015-1583-7.

113. Sherman EJ, Dunn LA, Ho AL, et al. Phase 2 study evaluating the combination of sorafenib and temsirolimus in the treatment of radioactive iodine-refractory thyroid cancer. *Cancer.* 2017;123(1):414–421. doi: 10.1002/cncr.30861.

114. Falchook GS, Millward M, Hong D, et al. Dabrafenib and trametinib treatment in patients with locally advanced or metastatic BRAF V600-Mutant anaplastic thyroid cancer. *J Clin Oncol.* 2018;36(1)(7–13). doi: 10.1200/JCO.2017.73.6785.

115. Drilon A, Nagasubramanian R, Blake JF, et al. A next-generation TRK kinase inhibitor overcomes acquired resistance to prior TRK kinase inhibition in patients with TRK fusion-positive solid tumors. *Cancer Discov.* 2017;7(9):963–972. doi: 10.1158/2159-8290.CD-17-0507.

116. Hong DS, Bauer TM, Lee JJ, et al. Larotrectinib in adult patients with solid tumours: A multiple-centre, open-label, phase I dose-escalation study. *Ann Oncol.* 2019;30(2):325–331. doi: 10.1093/annonc/mdy539.

117. Borson-Chazot F, Dantoy E, Illois F, et al. Effect of buparlisib, a pan-class i PI3K inhibitor, in refractory follicular and poorly differentiated thyroid cancer. *Thyroid.* 2018;28(9):1174–1179. doi: 10.1089/thy.2017.0663.

118. Schneider TC, de Witt D, Links TP, et al. Beneficial effects of the mTOR inhibitor everolimus in patients with advanced medullary thyroid carcinoma: subgroup results of a phase II trial. *Int J Endocrinol.* 2015;2015:348124. doi: 10.1155/2015/348124.

119. Schneider TC, de Witt D, Links TP, et al. Everolimus in patients with advanced follicular-derived thyroid cancer: results of a phase II clinical trial. *J Clin Endocrinol Metab.* 2017;102(2):698–707. doi: 10.1210/jc.2016-2525.

120. Hanna GJ, Busaidy NL, Chau NG, et al. Genomic correlates of response to everolimus in aggressive radiolabeled-refractory thyroid cancer: a phase II study. *Clin Cancer Res.* 2018;24(7):1546–1553. doi: 10.1158/1078-0432.CCR-17-2349.

121. Pirosa MC, Leotta S, Cupri A, et al. Long-Term molecular remission of anaplastic thyroid carcinoma treated with crizotinib. *Front Oncol.* 2019;9:57. doi: 10.3389/fonc.2019.00057.
ИНФОРМАЦИЯ ОБ АВТОРАХ [AUTHORS INFO]

Качко Вера Александровна, аспирант [Vera A. Kachko, MD, postgraduate student], адрес: Россия, 117036, Москва, ул. Дм. Ульянова, д. 11 [address: 11 Dm. Ulyanova street, 117036 Moscow, Russia], ORCID: https://orcid.org/0000-0002-0617-7312; eLibrary SPIN: 5869-7470; e-mail: Veraf246@gmail.com

Платонова Надежда Михайловна, д.м.н., [Nadezhda M. Platonova, MD, PhD]; e-mail: doc-platonova@inbox.ru, ORCID: https://orcid.org/0000-0001-6388-1544; eLibrary SPIN: 4053-3033.

Ванушко Владимир Эдуардович, д.м.н., [Vladimir E. Vanushko, MD, PhD], e-mail: vanushko@gmail.com, ORCID: https://orcid.org/0000-0001-6338-7490, eLibrary SPIN: 6097-8990.

Шифман Борис Михайлович, аспирант [Boris M. Shifman, MD, postgraduate student]; e-mail: boris-11@mail.ru, ORCID: https://orcid.org/0000-0002-1848-8978; eLibrary SPIN: 5898-2088.

КАК ЦИТИРОВАТЬ:

Качко В.А., Платонова Н.М., Ванушко В.Э., Шифман Б.М. Роль молекулярной диагностики при опухолях щитовидной железы // Проблемы эндокринологии. — 2020. — Т. 66. — №3. — С. 33–46. doi: https://doi.org/10.14341/probl12491

TO CITE THIS ARTICLE:

Kachko VA, Platonova NM, Vanushko VE, Shifman BM. The role of molecular testing in thyroid tumors. *Problems of Endocrinology*. 2020;66(3):33–46. doi: https://doi.org/10.14341/probl12491