Solanesol Mediated SIRT-1 Activation Prevents Neurobehavioral and Neurochemical Defects in Ouabain-Induced Experimental Model of Bipolar Disorder in Rats

Bidisha Rajkhowa
Indo Soviet Friendship College of Pharmacy

Sidharth Mehan (✉ sidh.mehan@gmail.com)
Indo Soviet Friendship College of Pharmacy https://orcid.org/0000-0003-0034-835X

Pranshul Sethi
Indo Soviet Friendship College of Pharmacy

Sonalika Bhalla
Indo Soviet Friendship College of Pharmacy

Aradhana Prajapati
Indo Soviet Friendship College of Pharmacy

Sumit Kumar
Indo Soviet Friendship College of Pharmacy

Abdulrahman Alshammari
King Saud University College of Pharmacy

Metab Alharbi
King Saud University College of Pharmacy

Naif AlSuhaymi
UQU College of Medicine: Umm Al-Qura University College of Medicine

Abdullah Alghamdi
Security Forces Hospital in Riyadh: Security Forces Hospital Program

Abdulsalam A. Alqahtani
Najran University Faculty of Pharmacy

Yosif Almoshari
Jazan University Faculty of Pharmacy

Research

Keywords: Bipolar disorder, Ouabain, SIRT-1, Solanesol, Lithium, Neurotransmitter, Neuroprotection

Posted Date: December 8th, 2021
Abstract

Background

Bipolar disorder (BD) is a chronic mental illness characterized by mood fluctuations that range from depressive lows to manic highs. Several studies have linked the downregulation of SIRT-1 (silent mating type information regulation-2 homologs) signaling to the onset of BD and other neurological dysfunctions. The purpose of this research was to look into the neuroprotective potential of Solanesol (SNL) in rats given ICV-Ouabain injections, with a focus on its effect on SIRT-1 signaling activation in the brain. Ouabain, which is found in hypothalamic and medullary neurons, is an endogenous inhibitor of brain Na+/K+ ATPase. The inhibition of brain Na+/K+ ATPase by Ouabain may also result in changes in neurotransmission within the central nervous system. SNL is a Solanaceae family active phytoconstituent produced from the plant Nicotiana tabacum. SNL is used as a precursor for the production of CoQ10 (Coenzyme Q10), a powerful antioxidant and neuroprotective compound. In the current study, lithium (Li), an important mood stabilizer drug, was used as a control.

Methods

This study looked at the neuroprotective potential of SNL at dosages of 40 and 80 mg/kg in ICV-OUA injections that caused BD-like neurobehavioral and neurochemical defects in Wistar rats. Wistar rats were placed into eight groups (n=6) and administered 1 mM/0.5µl ICV-OUA injections for three days. Neurochemical assessments were done in rat brain homogenates, CSF, and blood plasma samples at the end of the experiment protocol schedule.

Results

Long-term SNL and lithium administration have been shown to decrease the number of rearing and crossings, as well as reduce time spent in the center, locomotor activities, and immobility time. Solansesol treatment gradually raises the amount of Na+/K+ ATPase, limiting the severity of behavioural symptoms. These findings also revealed that SNL increases the levels of SIRT-1 in CSF, blood plasma, and brain homogenate samples. Furthermore, in rat brain homogenates and blood plasma samples, SNL modulates apoptotic markers such as Caspase-3, Bax (pro-apoptotic), and Bcl-2 (anti-apoptotic). Mitochondrial-ETC complex enzymes, including complex-I, II, IV, V, and CoQ10, were also restored following long-term SNL treatment. Furthermore, SNL lowered inflammatory cytokines (TNF-α, IL-1β) levels while restoring neurotransmitter levels (serotonin, dopamine, glutamate, and acetylcholine) and decreasing oxidative stress markers.

Conclusion
As a result, our findings suggest that SNL, as a SIRT-1 signalling activator, may be a promising therapeutic approach for BD-like neurological dysfunctions.

1.0 Introduction

Bipolar Disorder is a highly heritable mental condition marked by severe episodes of depression, mania, psychosis, and cognitive impairments [1, 2, 3]. It has a complicated origin and is associated with an elevated risk of morbidity, mortality, and comorbidity in psychiatry [4, 5, 6]. BD is unique among mental conditions in that its symptoms fluctuate between two distinct mood states: mania and depression [7].

The experimental animal model of mania induced by OUA, a Na+/K+-ATPase enzyme inhibitor, meets these key characteristics, making it suitable for studying numerous behavioral and neurochemical aspects of BD [8]. OUA dose-dependently increases locomotor activity in rats, which is associated with manic-like behavior [9]. In addition to maintaining Na+/K+ equilibrium, the Na+/K+-ATPase is an ion transporter that modulates neuronal excitability, electrochemical gradient, resting membrane potential, and neurotransmitter release and uptake [10, 11, 12]. Additionally, ICV injection of OUA into rats results in neurochemical changes comparable to those observed in BD patients, as well as impairments in neurotrophic factors, mitochondrial function, and oxidative stress [13].

SIRT-1 is a protein found in the adult brain and spinal cord, most notably in the amygdala, hippocampus, cerebellum, hypothalamus, and deeper into the neuronal body[14, 15]. SIRT-1 is involved in a number of processes, including transcription, metabolism, genome maintenance, brain progenitor fates, axon elongation, dendritic branching, and endocrine function [16, 17, 18]. This protein's deacetylation influences cellular processes such as ageing, inflammation, apoptosis, mitochondrial biogenesis, and stress resistance [19, 20].

SIRT-1 deficiency results in hyperglycemia and osteoporosis [21]. Dysregulation of SIRT-1 enhances disease progression by increasing oxidative damage and inflammation [22]. In a recent study, SIRT-1 activation was shown to increase cell survival, decrease cell apoptosis, and diminish the release of pro-inflammatory cytokines [23]. Hypothalamic circuits have increased SIRT-1 specificity due to changes in SIRT-1 downstream factors such as the transcription factor FoxO. Thus, researchers evaluated the relationship between elevating SIRT-1 protein levels rather than reducing SIRT-1 expression and controlling disease progressions such as obesity, cardiovascular disease, and neurodegeneration. SIRT-1 deficiency affects transcription factors (p53, PGC-1, NF-B, and FOXO) as well as molecular alterations like gene expression, which influences brain plasticity, Th17 cell suppression, and interleukin-1 production [26, 27]. SIRT-1 activation appears to help with BD [28], MS [29], Parkinson's disease (PD) [30], and Alzheimer's disease (AD) [18]. Recent studies have found a relationship between SIRT-1 deficiency and disease progression and an increase in oxidative stress and inflammation [31].

In humans, SIRT-1 downregulation has been associated with a depressed phase [32]. According to Abe-Higuchi et al., chronic stress lowers SIRT-1 activity in the dentate gyrus and suppresses the hippocampus SIRT-1 level. Under stressful conditions, activating hippocampus SIRT-1 function was associated with
antidepressive behaviors [33]. Another study found that chronic variable stress (CVS) increased depressive-like behavior, which was associated with a decrease in ERK1/2 phosphorylation, Bcl-2 expression, and H4 (K12) acetylation in the hippocampus subregions after chronic stress [34]. SIRT-1 deficiency increased dopamine neurotransmission, resulting in manic-like episodes of bipolar disorder [35].

Solanesol (SNL) is a Solanaceae family crop produced by the ‘Nicotiana Tobacco’ plant. SNL is a long-chain polyisoprenoid alcohol molecule with nine isoprene units that have also been identified as a CoQ10 precursor in regulating mitochondrial [36, 37]. SNL has a variety of pharmacological actions, such as antibacterial, anti-inflammatory, and anti-tumor properties. It is utilized in the pharmaceutical industry to make coenzyme Q10, vitamin K2, and N-solanesyl-N, N'-bis(3,4-dimethoxybenzyl) ethylenediamine (SDB) [38]. Several neurodegenerative diseases that may benefit from SNL treatment include amyotrophic lateral sclerosis (ALS) [39] and multiple sclerosis (MS) [40]. CoQ10 precursors have been demonstrated to protect against migraine [41] and Huntington's disease [42]. CoQ10 precursors have been linked to the prevention of neurodegenerative illnesses such as Parkinson's [43] and amyotrophic lateral sclerosis (ALS) [44]. It has also been shown to be helpful in the treatment of Alzheimer's disease, multiple sclerosis [45], and bipolar disorder (BD) [46]. It is believed to strengthen the body's immune system and improve cognitive function and have anti-oxidant and anti-aging properties [47]. CoQ10 has also been shown to protect against IR injury in the liver via activating the SIRT-1 pathway [48]. SNL, as a SIRT-1 signaling activator, has been reported to have neuroprotective potential against Alzheimer's disease [49], intracerebral hemorrhage (ICH) [36], and autism [37]. It also has neuroprotective effects against MS [40, 50].

On the other hand, hypoactivity alone is insufficient to mimic a depressive state behavior, and additional study is required to support this hypothesis. The “Na+/K+-ATPase hypothesis,” which proposes that decreased enzyme activity is important in developing manic and depressive mood episodes in BD, was used to develop the OUA model of mania [51]. Several investigations have found that the activity of the Na+/K+-ATPase is diminished in bipolar individuals [52, 53]. Lithium's mood-stabilizing therapeutic benefits were identified without any relevant mechanistic information of BD [54]. Current medications, such as lithium alone or in combination, are effective in 60 percent of people regularly treated for manic attacks [55]. Although olanzapine, quetiapine, and ziprasidone [56], as well as valproate, carbamazepine, and lamotrigine [57], are generally helpful in reversing manic episodes and avoiding future incidents. They are, however, of little or no value in the acute treatment of depressive episodes. Furthermore, conventional antidepressants, whether given alone or in combination with mood stabilizers or antipsychotics are often ineffective for treating depressive episodes and may promote mood flipping in a group of persons with BD [58].

Thus, in the current study, we found that the SNL may increase the level of SIRT-1 protein in rat brain homogenates, blood plasma, and CSF samples, thereby alleviating neurobehavioral alterations in OUA-induced BD-like rats through its potential target-modulating properties.
2.0 Material And Methods

2.1 Experimental animals

Adult Wistar rats (220-250gm, nine weeks of age, either sex) were collected from the ISF College of Pharmacy Central Animal House in Moga, Punjab. These animals were evenly divided and housed in polyacrylic cages with a wire mesh top and soft bedding under typical husbandry circumstances of a 12-hour reverse light cycle, free access to food and water, and a temperature of 23±2°C. According to the requirements of the Government of India, the experimental procedure was approved by the Institutional Animal Ethics Committee (IAEC) with a registration number 816/PO/ReBiBt/S/04/CPCSEAas protocol no. ISFCP/IAEC/CPCSEA/Meeting No: 28/2020/Protocol No.463. Animals were acclimatized to laboratory conditions before being used in experiments.

2.2 Drugs and chemicals

OUA was purchased from Sigma–Aldrich (USA). Ex-gratia samples of SNL from BAPEX (India) and Lithium carbonate from Sun Pharma were provided. All of the other chemicals employed in the experiment were of analytical grade. Before use, the medication and chemical solutions were freshly made. Oral administration of SNL dissolved in water (with 2% ethanol) (p.o.) [59].

2.3 Experimental animal grouping

A total of 48 Wistar rats (either sex), nine weeks old, were employed during the course of the 28-day protocol schedule. These rats were kept in a polyacrylic cage with a wire mesh top and soft bedding (38 cm 32 cm 16 cm; 3–4 rats per cage) at a regulated temperature (22°C±2°C) and humidity (65–70 %) with artificial illumination (12 h/12 h light/dark cycle, lights on at 6:00 AM). Their bedding consisted of residue-free wood shavings that had been sanitized. These animals had unrestricted access to a standard chow diet as well as purified water. To avoid the effects of the circadian rhythm, the entire experimental protocol schedule was completed between 9:00 AM and 1:00 PM. They were randomly divided into eight groups (n=6 per group). Group1 vehicle control; Group2 Sham control; Group3 SNL perse (80mg/kg p.o.); Group 4 OUA (1 mM/0.5µl/5min/Unilateral/ICV injection); Group5 OUA+SNL (40mg/kg, p.o.); Group 6 OUA+SNL (80mg/kg p.o.); Group7 OUA+Li (60mg/kg, i.p.), and Group8 OUA+Li+SNL80. Several behavioral parameters were measured from the first to the 28th day (Forced swim test, Open field test, Locomotor activity). The 28th day was marked by collecting biological samples (CSF and blood plasma) from Wistar adult rats. The animals were fully anesthetized with sodium pentobarbital (270 mg/ mL, i.p.), and then fresh brains were preserved in ice-cold PBS (0.1 M) of PBS for further biochemical evaluation. The biochemical estimation of SIRT-1 level determination in brain homogenate, blood plasma, and CSF was performed on the 29th and 30th days. Oxidative indicators (MDA, GSH, SOD, Nitrite, AChE, LDH) were also measured in brain homogenates. Similarly, apoptotic markers (Caspase-3, Bax, Bcl-2) and mitochondrial ETC-complexes enzymes (Complex-I, II, IV, V, and CoQ10) in the brain homogenate and blood plasma were also examined. Inflammatory markers (IL-1, TNF-α) and neurotransmitters (Ach, Dopamine, 5-HT,
Glutamate) were also measured in brain homogenate and blood plasma. The protocol for the experiment is summarized in (Figure 1).

2.4 ICV-OUA induced experimental animal model of BD

The OUA-induced BD experimental model in rats was established using a well-known method [60]. Three days of OUA-ICV injection (1mM/0.5µl) were given to the rats in the experiment. According to Valvassori et al., OUA generates neurological damage similar to that shown in an experimental animal model of BD. It is a valid model for examining pathophysiological alterations similar to those seen in BD.

The rats were habituated to the laboratory environment. After acclimatization, all animals in the experimental groups were anaesthetized with ketamine (75 mg/kg, i.p.) before being placed in a stereotaxic frame [40]. After shaving the head and cutting a midline scalp incision, the skull was exposed. With the tooth bar set at 0 mm, each animal skin overlying the skull, as well as the coordinates for the striatum, must be precisely measured (AP-1.0mm; ML-2.5mm; DV-3.5mm) [60]. Then, according to the protocol schedule, all animals in the experimental groups received OUA (1mM/0.5µl/5min/Unilateral/ICV injection) for three days (1st, 3rd, and 7th days). The infusion was administered manually, using a Hamilton syringe, through the burr holes drilled onto the skull surface. The injection rate in the experimental groups was 0.5µl/5min, with the needle remaining in place for a further 1 minute before being progressively removed. The cannula is sealed with a detachable plastic ear pin. The hole was filled with dental cement before being sutured with an absorbable surgical suture connected to a sterile surgical needle.

Rats were housed individually in a polyacrylic cage that usually contained a warm cloth for post-operative care. Special attention was given to them until they regained spontaneous movement, which generally occurred 2–3 hours after anaesthesia. The temperature in the room was kept at 25 ± 3°C. Milk and glucose water were kept in the cages for 2–3 days to avoid physical trauma after surgery. Gentamycin (35 mg/kg) was given intraperitoneally to rats for three days to prevent sepsis, and lignocaine gel was applied to the sutured area to relieve pain. Neosporin powder was dusted on them to prevent bacterial infection of the skin. Following surgery, the general health of the body and clinical symptoms such as dehydration were closely examined. After seven days, rats continued to eat healthy food and drink plenty of water, and their spontaneous mobility returned, indicating that they had healed. The protocol drug SNL at 40 and 80mg and the standard drug Lithium alone and Lithium in combination with SNL80 mg/kg were administered chronically beginning on day 8th and continuing until day 28th. Behavioural parameters such as locomotor activity, open field test, and Forced Swimming Test were carried out in accordance with the protocol schedule. After completing the protocol schedule, all animals were decapitated on days 29th and 30th, and their brains were removed to perform biochemical, inflammatory, and neurochemical assessments [61].

2.5 Parameters assessed

Measurement of body weight
According to the protocol schedule, body weight was measured on the 1st, 7th, 14th, 21st, and 28th days of the experiment [60].

Assessment of behavioural parameters

Open field test (OFT)

The animals exhibited manic-like behavior after a single injection of OUA for three days (1st, 3rd, and 7th). The rat was placed in a cage on the first day and trained to explore an open field for 5 minutes. During the test, a camera monitored each rat's activities, including an increase in the number of crossings, rearings, and time spent in the center. According to the protocol schedule, on days 1st, 7th, 14th, 21st, and 28th, an open field test was used to measure the number of crossings, rearings, and time spent in the center in rats [62].

Locomotor activity

Increased locomotor activity is a sign of manic-like behaviour [63]. The device uses photocells to detect motor activity. The animals were placed in the activity room for 3 minutes prior to the recording for habituation. On the 1st, 9th, 18th, and 27th days after ICV administrations, locomotion was assessed using an actophotometer (INCO {Instruments and Chemicals Private Limited}, Haryana) for 5 minutes, and values were represented as counts per 5 minutes [64].

Forced swimming test (FST)

A Forced Swimming Test was used to evaluate the immobility time. Individual rats were placed in cylindrical tanks (height 50 cm; diameter 15 cm) with 30 cm of water at a temperature of 24±1°C. A camera filmed the rat’s movements for 5 minutes. During the training session, rats are exposed to the tank for 15 minutes on the first day and 5 minutes on the second day. The testing period for rats consists of a single 6-minute exposure, with the first 2 minutes serving as a habituation period. Each animal was tested for its depressive-like behaviour on days 1st, 9th, 18th, and 27th following ICV injection. The immobility time was recorded for 5 minutes during each session. When the rat stopped struggling and stayed motionless in an upright position in the water, only making slight movements to keep its head above the water, it was determined to be immobile [64].

Neurochemical alterations evaluation

Collection and preparation of biological samples

On day 29th of the experiment, 2.5 ml of blood was collected from anaesthetized rats through retro-bulbar puncture from the orbital venous plexus by inserting a capillary tube medially into the rat eye. Blood from the plexus was collected into a sterile Eppendorf tube via the capillary action through gentle rotation and retraction of the tube [65]. The blood samples were then centrifuged at 10,000×g for 15 minutes to separate the plasma, and the supernatant was carefully stored in a deep freeze (at -80°C) for further use.
Following blood collection, rats were deeply anesthetized with sodium pentobarbital (270mg/ml, i.p.) and subjected to caudal incision, translucent duramater was exposed, and a 30gauge needle was gently placed at 30° angle into the cisterna magna [66]. Approximately 100µL CSF was carefully ejected into a 0.5ml sterile Eppendorf tube using the suction pressure of a 1ml tuberculin syringe attached to a needle. The collected sample was frozen at 80°C until analysed ELISA [67].

Immediately after CSF collection, rats were sacrificed by decapitation; whole brains were isolated from the skull with the utmost care, freshly weighed and washed with ice-cold, isotonic saline solution, and then homogenized with 0.1M (w/v) of chilled PBS (pH=7.4). The rat brain homogenate was then centrifuged at 10,000×g for 15 minutes, the supernatant was separated, and the aliquots were preserved. The samples were deep-freeze at -80°C to be used as and when required for various biochemical estimations.

Assessment of cellular and molecular markers

Measurement of SIRT-1 protein level

The level of SIRT-1 protein expression was measured using standard ELISA kits (E-EL-R1102/SIRT-1 Elabsciences, Wuhan, Hubei, China). This test was carried out in the brain homogenate [62], blood plasma [68], and CSF [69] according to the standard technique. The values are given in brain homogenate as nM/µg protein [70] and as ng/ml protein in blood plasma [71] and CSF [72].

Assessment of apoptotic markers

Measurement of caspase-3 level

Caspase-3 concentrations were determined using commercial ELISA kits (E-EL-R0160/ Caspase-3 Elabsciences, Wuhan, Hubei, China). ELISA kits were used to perform this test in brain homogenate [64] and blood plasma [47].

Measurement of Bax and Bcl-2 levels

Commercial ELISA kits were used to determine the protein levels of Bax and Bcl-2 (E-EL-R0098/Bax/Bcl2 Elabsciences, Wuhan, Hubei, China). The level of Bax protein in brain homogenate [73] and blood plasma was measured [74]. Using ELISA commercial kits, the quantities of anti-apoptotic proteins such as Bcl-2 were evaluated in brain homogenate [37] and blood plasma [74].

Assessment of mitochondrial ETC-complexes enzyme levels

Preparation of Post mitochondrial supernatant (PMS) from rat whole-brain homogenate

The rat whole brain homogenate was centrifuged for 20 minutes at 5000 rpm at 4°C, and the resulting supernatant was used as rat brain PMS for further research. Differential centrifugation was used to prepare the crude mitochondrial fraction. By gently shaking at 4°C for 60 minutes, the pellet generated during the preparation of PMS was combined with 0.1M sodium phosphate buffer (pH 7.4) in a 1:10
proportion. The pellets were re-suspended in the same buffer containing extra sucrose at a concentration of 250 mmol/L after centrifugation at 16000 rpm at 0°C for 30 minutes. The centrifugation and resuspension steps were done three times, and the crude mitochondrial fraction produced in the buffered sucrose solution was used for further investigation [40, 75].

Mitochondrial ETC complex-I enzyme activity (NADPH dehydrogenase)

To determine complex-I activity, the rate of NADH oxidation at 340 nm in an assay medium was measured spectrophotometrically at 37°C for 3 minutes. In the absence and presence of 2 µM rotenone, reactions were carried out, and the rotenone-sensitive activity was assigned to complex-I [40, 76].

Mitochondrial ETC complex-II enzyme activity (Succinate dehydrogenase/SDH)

At 490nm (Shimadzu, UV-1700), the absorbance of a 0.3 mL sodium succinate solution in a 50µl gradient fraction of homogenate was measured. The molar extinction coefficient of the chromophore (1.36×104 M⁻¹ cm⁻¹) was used to determine the results, which were reported as INT decreased µmol/mg protein [40, 77].

Mitochondrial ETC complex-IV enzyme activity (cytochrome oxidase)

Reduced cytochrome-C (0.3 mM) was added to the assay mixture in a 75 mM phosphate buffer. The process was started by adding a solubilized mitochondrial sample, and the absorbance change was measured for 2 minutes at 550 nm [40].

Mitochondrial ETC complex-V enzyme activity (ATP synthase)

To inactivate the ATPases, aliquots of homogenates were sonicated immediately in ice-cold perchloric acid (0.1N). Supernatants containing ATP were neutralized with 1N NaOH and kept at -80°C until analysis after centrifugation (14.000 g, 4°C, and 5 min). A reverse-phase HPLC was used to measure the amount of ATP in the supernatants (PerkinElmer). The reference solution of ATP was made according to the dissolving standard, and the detecting wavelength was 254 nm [40, 78].

Assessment of neurotransmitters levels

Measurement of brain serotonin levels

The level of serotonin in brain homogenate was estimated using the method of Sharma et al. with minor modifications. HPLC with an electrochemical detector and a C18 reverse-phase column was used to determine it. Sodium citrate buffer (pH 4.5) – acetonitrile (87: 13, v/v) is used in the mobile phase. Ten mmol/L citric acid, 25 mmol/L NaH2 HPO4, 25 mmol/L EDTA, and two mmol/L 1-heptane sulfonic acid made up the sodium citrate buffer. The electrochemical parameters in the experiments were +0.75 V, with sensitivity ranging from 5 to 50 nA. At a flow rate of 0.8 ml/min, the separation procedure was carried out. 20 µl of samples were manually injected. On the day of the experiment, brain samples were homogenized in 0.2 mol/L perchloric acid. The samples were then centrifuged for 5 minutes at 12,000 rpm. The
supernatant was filtered via 0.22 mm nylon filters before being injected into the HPLC sample injector. With the help of the breeze program, data were collected and evaluated. Using a standard with a 10–100 mg/ml concentration, serotonin concentrations were determined from the standard curve [40].

Assessment of brain dopamine levels

Dopamine levels in striatal tissue samples were measured using Tiwari and colleague's technique. Dopamine activity in rat brain homogenate quantified as ng/mg protein [73].

Assessment of brain glutamate levels

According to Alam et al., glutamate was measured in tissue samples after derivatization with o-phthalaldehyde/β-mercaptoethanol (OPA/β-ME) and quantitative analysis in rat brain homogenates, glutamate activity is reported as ng/mg protein [39].

Assessment of brain acetylcholine levels

A diagnostic kit is used to measure acetylcholine (E-EL-0081/acetylcholine; Elabsciences, Wuhan, Hubei, China). All reagents and rat brain homogenate were produced according to the kit's normal procedure. In the microtiter plate, the optical density of the reaction mixture was determined at 540 nm [76].

Assessment of neuroinflammatory cytokines

Measurement of TNF-α and IL-1β levels

Using a rat ELISA immunoassay kit (E-EL-R0019/TNF-α; E-EL-R0012/IL-1β; ELabSciences, Wuhan, Hubei, China), the level of TNF-α was measured in rat brain homogenate [42] and blood plasma. The activity of IL-1β was measured in rat brain homogenate and blood plasma as pg./mg protein [73].

Estimation of oxidative stress markers

Measurement of reduced glutathione levels

In the brain homogenate, the level of reduced glutathione was determined. 1 mL supernatant was precipitated with 1 mL 4% sulfosalicylic acid and cold digested for 1 hour at 4°C. The samples were centrifuged for 15 minutes at 1200 rpm. To 1 ml supernatant, 2.7 ml phosphate buffer (0.1M, pH 8) and 0.2 ml 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) were added. A spectrophotometer was used to measure the yellow color that emerged at 412nm right away. Glutathione content in the supernatant, given as µM/mg protein [79].

Measurement of nitrite levels

A colorimetric assay utilizing Greiss reagent (0.1 % N-(1-naphthyl) ethylenediamine dihydrochloride, % sulfanilamide, and % phosphoric acid) determines the concentration of nitrite in the supernatant, which is indicative of the formation of nitric oxide (NO). Equal amounts of supernatant and Greiss reagent are
mixed, the mixture is incubated at room temperature in the dark for 10 minutes, and the absorbance is measured spectrophotometrically at 540nm. A sodium nitrite standard curve is used to calculate nitrite concentration in the supernatant, which is given as µM/mg protein[79].

Measurement of malondialdehyde (MDA) levels

The MDA end product of lipid peroxidation was determined quantitatively in brain homogenates. A spectrophotometer was used to measure the quantity of MDA after its reaction with thiobarbituric acid at 532nm. MDA concentration is expressed in nM/mg of protein [80].

Measurement of superoxide dismutase (SOD) levels

SOD activity was evaluated by auto-oxidation of epinephrine at pH 10.4 using spectrophotometry. The brain homogenate supernatant (0.2 ml) was combined with 0.8 ml of 50 mM glycine buffer, pH 10.4, and the reaction was begun with 0.02 ml epinephrine. The absorbance was spectrophotometrically measured at 480nm after 5 minutes. The activity of SOD was measured in nM/mg of protein [37].

Measurement of acetylcholinesterase (AChE) levels

The levels of acetylcholinesterase (AChE) were measured using spectrophotometry. The 0.05 ml supernatant, 3 ml 0.01M sodium phosphate buffer (pH 8), 0.10 ml acetylthiocholine iodide, and 0.10 ml DTNB were used in the test mixture (Ellman reagent). The absorbance change was spectrophotometrically recorded at 412 nm right away. In the supernatant, the enzymatic activity is represented as µM/mg protein [40].

Measurement of lactate dehydrogenase (LDH) assay

A diagnostic kit (Coral Diagnostics, India) was used to quantify the amount of LDH in the rat brain homogenate, and the amount of LDH was quantified as Units/L [81].

Evaluation of Na⁺/K⁺ ATPase activity in rat brain homogenate

The activity of the Na⁺/K⁺ ATPase enzyme was measured using a spectrophotometer and a calorimetric method-based assay kit (E-BC-K539-M; Na⁺/K⁺ ATPase ELabSciences, Wuhan, Hubei, China). The Na⁺/K⁺ ATPase assay reaction mixture contains 5.0 mM MgCl₂, 80.0 mM NaCl, 20.0 mM KCl, and 40.0 mM Tris-HCl in a final volume of 200 l with a pH of 7.4. The reaction was begun after a 10-minute pre-incubation interval at 37°C by adding 3.0mM ATP and incubated for 20 minutes. Controls were carried out under identical conditions as before, but with the addition of 1.0 mM ouabain. The difference between the two assays was utilized to calculate Na⁺/K⁺ ATPase activity. The specific activity of the enzyme was measured in nmol of Pi released per minute per mg of protein [82].

Protein estimation

A Coral protein estimation kit (Biuret method) was used to determine the protein content.
Statistical analysis

The mean and standard error of the mean was used to express all of the findings (SEM). The data were analyzed using a two-way ANOVA followed by a Bonferroni post hoc test and a one-way ANOVA followed by a Tukey’s multi comparison test. It was determined that $P<0.001$ was statistically significant. The sample size was estimated after the data was confirmed to be normalized, and the normality distribution was checked using the Kolmogorov Smirnov test. GraphPad Prism version 5.03 for Windows was used to generate all statistical results (GraphPad Software, San Diego, CA, USA). The mean and standard error of the mean was used to express the statistical data (SEM).

3.0 Results

3.1 Neuroprotective potential of solanesol on weight variations in ouabain-induced bipolar disorder rats

Improvement in body weight after solanesol treatment

Bodyweight was measured once a week, on days 1st, 7th, 14th, 21st, and 28th of the procedure schedule. Figure 2 depicts the differences in body weight caused by the toxin OUA compared to the treatment drugs over the protocol schedule. Compared to the vehicle, sham, and SNL80 perse treated groups, the administration of OUA for 1st, 3rd, and 7th days resulted in a consistent decline in body weight. From day 8th to day 28th, rats receiving prolonged oral treatment with SNL and Lithium demonstrate a remarkable restoration in body weight due to improvements in psychiatric behaviors such as decreased locomotor activity, rearing, stress, and increased food intake.

Compared to SNL40 and SNL80 mg/kg treated rats, the Li60 mg/kg treated rats showed a more significant improvement in body weight. In addition, compared to other drug treatment groups such as SNL40 mg/kg, SNL80 mg/kg, and Li60 mg/kg, standard drug Li60 mg/kg in combination with SNL80 mg/kg showed significant weight restoration. SNL 80 mg/kg is more effective than SNL40 mg/kg in recovering OUA-induced lower body weight, demonstrating that SNL has a dose-dependent impact on restoring body weight [Two-way ANOVA: $F(28, 160)=903.4, p<0.001$]. (Figure 2)

3.2 Neuroprotective potential of solanesol in the prevention of neurobehavioral abnormalities in ouabain-induced bipolar disorder rats

Decrease manic-like behavior after solanesol treatment in the open field task

Three days (1st, 3rd, and 7th) following a single OUA injection, the animals developed manic-like behaviors, as seen by the increased number of crossings, rearings, and time spent in the centre. Open field parameters were conducted on days 1st, 7th, 14th, 21st, and 28th of the protocol period to determine the number of crossings, the number of rearings, and time spent in the centre in rats.
a. Decrease number of crossing after solanesol treatment

The number of boxes crossed by rats in an open field is depicted in Figure 3a. There was no significant difference between the groups on the 1st day. The OUA-treated rats crossed more boxes than the vehicle, sham, and SNL80-treated rats. On the 7th day, there was no significant difference between the OUA-treated group and the other treatment groups. After 20 days of oral administration of the neurotoxic OUA, the SNL treatment group had a progressive reduction in the number of boxes crossing compared to the vehicle control, sham control, and SNL80 *perse* groups on days 14th, 21st, and 28th. At the 21st and 28th days, the Li60 mg/kg alone and combined with SNL80 mg/kg treated animals had considerably reduced the number of boxes crossing than the SNL80 mg/kg and SNL40 mg/kg treated groups. Furthermore, when comparing SNL80 mg/kg treatment to SNL40 mg/kg treatment in BD-like rats, animals showed a lesser number of boxes crossed [Two-way ANOVA: F(28,160)=190.0, p<0.001]. (Figure 3a)

b. Decrease number of rearing after solanesol treatment

In the open field, the number of rearing behaviors in BD like rats is shown in Figure 3b. On the 1st day, there was no significant difference between the groups. The OUA-treated rats showed more rearing moves than the vehicle control, sham control, and SNL80 treated rats. There was no significant difference between the OUA treated and other treatment groups on the 7th day. On days 14th, 21st, and 28th, after 20 days of oral administration of the OUA, the number of rearings in the SNL treated groups decreased over time compared to the vehicle control, sham control, and SNL80 *perse* groups. The Li60 mg/kg alone and Li60 mg/kg along with SNL80 mg/kg treated animals showed a significantly lesser number of rearing on 21st and 28th days than the SNL80 mg/kg and SNL40 mg/kg treated groups. Furthermore, when BD-like rats were given SNL80 mg/kg versus SNL40 mg/kg, the animals showed a lesser number of rearing movements. [Two-way ANOVA: F(28,160)=39.51, p<0.001]. (Figure 3b)

c. Decrease time spent in the center after solanesol treatment

Figure 3c indicates BD-like rats in the open field time spent in the center. On the 1st day, there was no significant difference between the groups. The OUA-treated rats stayed longer than vehicle, sham, and SNL80-treated rats. There was no significant difference between the OUA-treated group and the other treatment groups on the seventh day. On days 14th, 21st, and 28th compared to the vehicle control, sham control, and SNL80 *perse* groups, time spent in the center in the SNL treated groups reduced over time following 20 days of oral administration of the OUA. The Li60 mg/kg alone and Li60 mg/kg combined with SNL80 mg/kg treated animals spent significantly less time in the center on the 21st and 28th days than the SNL80 mg/kg and SNL40 mg/kg treated groups. Moreover, BD-like rats administered SNL80 mg/kg spent less time in the center than rats given SNL40 mg/kg. [Two-way ANOVA: F(28,160)=27.00, p<0.001]. (Figure 3c)

Decreased manic-like behavior after solanesol treatment
As illustrated in Figure 4, the results suggest that OUA significantly affects locomotor activity in BD-like rats. On the 1st day, there was no significant difference between the groups. Rats were given OUA on days 1st, 3rd, and 7th, demonstrating considerably higher locomotor activity during the protocol schedule compared to the vehicle control, sham control, and SNL80 treated rats. Locomotor activity decreased from day 8th to day 28th after SNL treatment, as observed with the mood stabilizer Li60 mg/kg treated rats. Compared to the SNL80 mg/kg and SNL40 mg/kg treatment groups, Li60 mg/kg administration, both alone and in combination with SNL80 mg/kg, significantly reduced locomotor activity. In addition, SNL80 mg/kg significantly reduced locomotor activity in actophotometer rats when compared to SNL40 mg/kg treated rats on day 27th [Two-way ANOVA: F(21,120)=244.1, p<0.001]. These results indicate that Lithium and SNL have an antimanic effect when given alone and a more significant enhancement in antimanic action when given together during OUA-induced BD like rats on days 18th and 27th. (Figure 4)

Decreased depression-like behavior after solanesol treatment

As shown in Figure 5, the results reveal that OUA has a considerable influence on immobility time in BD-like rats. On the 1st day, there was no significant difference between the groups. Rats were given OUA on days 1st, 3rd, and 7th had significantly prolonged immobility time during the protocol schedule compared to the vehicle control, sham control, and SNL80 perse treated rats. From day 8th to day 28th, immobility time was significantly reduced with SNL treatment, as reported with the mood stabilizer Li60 mg/kg. Li60 mg/kg treatment, both alone and combined with SNL80 mg/kg, significantly reduced immobility time compared to the SNL80 mg/kg and SNL40 mg/kg treatment groups. Furthermore, compared to SNL40 mg/kg treated rats on day 27th, SNL80 mg/kg significantly reduced immobility time in FST rats [Two-way ANOVA: F(21,120)=244.1, p<0.001] Li60 mg/kg and SNL80 mg/kg showed an antidepressant effect when administered alone on day 27th in OUA-induced BD like rats and a more significant effect when given in combination (Figure 5)

3.3 Neuroprotective potential of solanesol on neurochemical alterations in ouabain-induced bipolar disorder rats

Increased SIRT-1 level after long-term administration of solanesol

At the end of the protocol schedule, SIRT-1 levels were measured in rat brain homogenate, blood plasma, and CSF samples. Compared to vehicle control, sham control, and SNL80 perse groups, the ICV injection of OUA resulted in a significant decline in SIRT-1 levels. The level of SIRT-1 in brain homogenate [One-way ANOVA: F(7, 35)=4.472, P<0.001], blood plasma [One-way ANOVA: F(7, 35)=5.938, P<0.001], and CSF [One-way ANOVA: F(7, 35)=1.243, P<0.001] samples were elevated after continuous oral administration of SNL at doses of 40 mg/kg and 80 mg/kg. In rat brain homogenate, blood plasma, and CSF samples, SNL80 mg/kg was more effective than SNL40 mg/kg in restoring SIRT-1 protein expression. Furthermore, the Li60 mg/kg alone and Li60 mg/kg combined with SNL80 mg/kg treated groups were more effective
in restoring SIRT-1 protein expression in rat brain homogenate, blood plasma, and CSF samples than the SNL80 mg/kg and SNL40 mg/kg treated groups. (Table 1)

S.no.	Groups	SIRT-1 protein level	Brain homogenate (nM/µg protein)	Blood plasma (ng/ml)	CSF (ng/ml)
1.	Vehicle control		311.20 ± 5.164	6.07 ± 0.074	3.29 ± 0.073
2.	Sham control		312.30 ± 5.102	6.07 ± 0.105	3.33 ± 0.047
3.	SNL80 perse		311.90 ± 4.278	6.00 ± 0.081	3.26 ± 0.052
4.	OUA		153.20 ± 9.224*	2.43 ± 0.100*	0.80 ± 0.065*
5.	OUA + SNL40		180.50 ± 2.832#	3.28 ± 0.071#	1.35 ± 0.048#
6.	OUA + SNL80		210.50 ± 3.103#$	3.79 ± 0.074#$	1.64 ± 0.045#$
7.	OUA + Li60		237.60 ± 3.616#β	4.29 ± 0.066#β	1.92 ± 0.041#β
8.	OUA + SNL80 + Li60		267.40 ± 2.215##@	4.77 ± 0.077##@	2.25 ± 0.036##@

Statistical analysis followed by one-way ANOVA (post-hoc Tukey’s test). Values expressed as mean±SEM (n=6 rats per group). * p<0.001 v/s vehicle control, sham control and SNL80 perse; # p<0.001 v/s OUA; #$ p<0.001 v/s OUA + SNL40; #β p<0.001 v/s OUA + SNL40 and OUA + SNL80; #@ OUA + Li60

Decreased level of caspase-3, Bax, and increased Bcl-2 levels after long-term administration of solanesol

The levels of cell death indicators such as Caspase-3, Bax, and Bcl-2 were measured in rat brain homogenate and blood plasma samples after the protocol schedule. In rat brain homogenate and blood plasma samples, ICV injection of OUA treatment resulted in a significant increase in pro-apoptotic markers such as caspase-3 and Bax. In contrast, the ICV injection of OUA for three days (1st, 3rd, and 7th) resulted in a significant decrease in anti-apoptotic Bcl-2 protein levels in rat brain homogenate and blood plasma samples compared to the vehicle control, sham control, and SNL80 perse treated groups. Chronic oral treatment of SNL40 mg/kg and SNL80 mg/kg significantly lowered caspase-3 levels in brain homogenate [One-way ANOVA: F(7, 35)=0.522, P<0.001] and blood plasma samples [One-way ANOVA: F(7, 35)=1.739, P<0.001] respectively.

Similarly, continuous oral administration of SNL40 mg/kg and 80 mg/kg significantly reduced the amount of pro-apoptotic Bax in rat brain homogenate [One-way ANOVA: F(7, 35)=1.092, P<0.001] and blood plasma samples [One-way ANOVA: F(7, 35)=1.628, P<0.001].
Furthermore, regular oral administration of SNL at doses of 40 mg/kg and 80 mg/kg for 20 days (day 8th to 28th) resulted in a significant rise in Bcl-2 protein levels in brain homogenate [One-way ANOVA: F(7, 35)=1.325, P<0.001] and blood plasma [One-way ANOVA: F(7, 35)=1.968, P<0.001] samples with respect to the OUA-treated BD like rats. Also, SNL80 mg/kg treatment was more effective than SNL40 mg/kg treatment in restoring abnormal levels of apoptotic markers in BD-like rats. Furthermore, in rat brain homogenate and blood plasma, the Li60 mg/kg alone and Li60 mg/kg combined with SNL80 mg/kg treated groups showed more significance in restoring the altered levels of apoptotic markers than the SNL80 mg/kg and SNL40 mg/kg treated groups. (Table 2)

S. no.	Groups	Caspase-3	Bax	Bcl-2			
		Brain homogenate	Blood plasma	Brain homogenate	Blood plasma	Brain homogenate	Blood plasma
		(nM/mg protein)	(ng/ml)	(ng/mg protein)	(ng/ml)	(ng/mg protein)	(ng/ml)
1.	Vehicle control	89.96 ± 0.861	1.71 ± 0.028	6.60 ± 0.190	0.90 ± 0.061	26.77 ± 0.133	6.44 ± 0.049
2.	Sham control	90.07 ± 0.819	1.68 ± 0.020	6.73 ± 0.126	0.90 ± 0.058	26.65 ± 0.144	6.51 ± 0.070
3.	SNL80 perse	90.18 ± 0.947	1.69 ± 0.029	6.62 ± 0.125	0.86 ± 0.061	26.57 ± 0.177	6.49 ± 0.044
4.	OUA	132.10 ± 0.717*	4.79 ± 0.073*	11.76 ± 0.089*	4.58 ± 0.062*	18.80 ± 0.117*	1.70 ± 0.072*
5.	OUA + SNL40	117.90 ± 0.677#	3.71 ± 0.075#	10.67 ± 0.074#	4.07 ± 0.061#	21.54 ± 0.147#	2.79 ± 0.063#
6.	OUA + SNL80	112.80 ± 0.779#$	3.29 ± 0.067#$	9.79 ± 0.074#$	3.52 ± 0.061#$	22.81 ± 0.106#$	3.62 ± 0.077#$
7.	OUA + Li60	108.10 ± 0.812#β	2.78 ± 0.069#β	8.70 ± 0.068#β	2.38 ± 0.061#β	23.79 ± 0.118#β	4.57 ± 0.077#β
8.	OUA + SNL80 + Li60	102.40 ± 0.793#@	2.29 ± 0.064@	7.78 ± 0.074@	1.61 ± 0.040@	24.83 ± 0.106@	5.32 ± 0.045@

Table 2
Neuroprotective potential of solanesol on Caspase-3, Bax, and Bcl-2 level in ouabain-induced bipolar disorder in rats

Statistical analysis followed by one-way ANOVA (post-hoc Tukey's test). Values expressed as mean±SEM (n=6 rats per group). * p<0.001 v/s vehicle control, sham control and SNL80 perse; # p<0.001 v/s OUA; #$ p<0.001 v/s OUA + SNL40; #β p<0.001 v/s OUA + SNL40 and OUA + SNL80; #@ OUA + Li60

Restoration of mitochondrial ETC-complexes enzyme level after long-term administration of solanesol
After the experiment protocol schedule, the enzyme activity of mitochondrial ETC-complexes was evaluated in rat brain homogenate. Three days intoxications of OUA in rats through ICV injection resulted in a significant decrease in mitochondrial ETC complexes-I [One-way ANOVA: F(7, 35)=1.796, P<0.001], complexes-II [One-way ANOVA: F(7, 35)=2.936, P<0.001], complexes-IV [One-way ANOVA: F(7, 35)=6.744, P<0.001], and complexes-V [One-way ANOVA: F(7, 35)=0.979, P<0.001] and CoQ10 level [One-way ANOVA: F(7, 35)=4.381, P<0.001], when compared to the vehicle, sham control, and SNL80 perse groups.

In OUA-treated rats, twenty days of chronic administration with SNL40mg/kg and SNL80 mg/kg substantially and dose-dependently recovers and increases mitochondrial ETC complex enzymatic activity. The significant restoration was observed with a high dose of SNL80 mg/kg group in mitochondrial ETC complexes-I, II, IV, V, and CoQ10 compared to a low dose of SNL40 mg/kg. The most significant improvements in mitochondrial ETC complexes-I, II, IV, V, and CoQ10 in rat brain homogenate were seen in the Li60 mg/kg alone and Li60 mg/kg in combination with SNL80 mg/kg treated groups, which were more effective than the SNL80 mg/kg and SNL40 mg/kg treated groups. (Table 3)

Table 3: Neuroprotective potential of solanesol on TNF-α and IL-1β level in ouabain-induced bipolar disorder in rats
S. no.	Groups	Neuroinflammatory cytokines	Brain homogenate (nM/mg protein)	Blood plasma (ng/ml)	Brain homogenate (ng/mg protein)	Blood plasma (ng/ml)
			TNF-α (pg/mg protein)	IL-1β (pg/mg protein)		
1.	Vehicle control	28.16 ± 0.594	20.67 ± 0.330	14.52 ± 0.143	14.39 ± 0.248	
2.	Sham control	28.18 ± 0.535	20.94 ± 0.314	14.47 ± 0.126	14.15 ± 0.219	
3.	SNL80 perse	28.53 ± 0.542	20.97 ± 0.324	14.49 ± 0.113	14.50 ± 0.240	
4.	OUA	61.02 ± 0.827*	96.21 ± 1.371*	26.15 ± 0.151*	77.49 ± 0.560*	
5.	OUA + SNL40	53.15 ± 0.778#	72.76 ± 1.096#	22.61 ± 0.055#	57.12 ± 0.608#	
6.	OUA + SNL80	46.80 ± 0.723$$	57.51 ± 0.648$$	21.79 ± 0.067$$	42.34 ± 0.609$$	
7.	OUA + Li60	40.86 ± 0.745$$β	43.84 ± 0.502$$β	20.70 ± 0.068$$β	26.74 ± 0.454$$β	
8.	OUA + SNL80 + Li60	35.77 ± 0.745$$#@	27.70 ± 0.502$$#@	19.67 ± 0.051$$#@	19.30 ± 0.313$$#@	

Statistical analysis followed by one-way ANOVA (post-hoc Tukey’s test). Values expressed as mean±SEM (n=6 rats per group).

* p<0.001 v/s vehicle control, sham control and SNL80 perse; # p<0.001 v/s OUA; $$ p<0.001 v/s OUA + SNL40; $$β p<0.001 v/s OUA + SNL40 and OUA + SNL80; $$@ OUA + Li60

Restoration of neurotransmitter level after long-term administration of solanesol

Neurochemicals such as serotonin, dopamine, glutamate, and acetylcholine were analyzed in rat brain homogenate samples at the end of the experimental protocol schedule. The injection of OUA through the ICV route considerably reduced serotonin and acetylcholine levels. ICV injection of OUA intoxication resulted in a significant increase in dopamine and glutamate concentrations in brain homogenate compared to vehicle control, sham control, and SNL80 perse treated rats. Treatment with SNL40 mg/kg and 80 mg/kg significantly and dose-dependently increased serotonin [One-way ANOVA: F(7, 35)=4.031, P<0.001] as well as acetylcholine level [One-way ANOVA: F(7, 35)=3.607, P<0.001]. In contrast to the OUA-treated BD like rats, prolonged oral administration of SNL40 mg/kg and SNL80 mg/kg decreased the concentrations of dopamine [One-way ANOVA: F(7, 35)=1.000, P<0.001] and glutamate [One-way ANOVA:
F(7, 35)=1.963, P<0.001] in rat brain homogenate. Moreover, SNL80 mg/kg versus SNL40 mg/kg treated rats re-establish lower neurotransmitter levels. The Li60 mg/kg alone and Li60 mg/kg combined with SNL80 mg/kg treated groups were more effective than the SNL80 mg/kg, and SNL40 mg/kg treated groups in restoring the altered levels of neurotransmitters in rat brain homogenate. (Table 4)

Table 4
Neuroprotective potential of solanesol on neurotransmitters level in ouabain-induced bipolar disorder in rats

S. no.	Groups	Neurotransmitters	Neurotransmitters	Neurotransmitters	
		Serotonin (ng/mg protein)	Acetylcholine (ng/mg protein)	Glutamate (ng/mg protein)	Dopamine (ng/mg protein)
1.	Vehicle control	35.69 ± 0.413	6.63 ± 0.121	92.13 ± 1.413	75.13 ± 1.332
2.	Sham control	35.64 ± 0.516	6.54 ± 0.120	92.15 ± 1.305	75.21 ± 1.215
3.	SNL80 perse	35.59 ± 0.444	6.62 ± 0.147	92.05 ± 1.492	76.12 ± 1.228
4.	OUA	13.46 ± 0.527*	0.52 ± 0.114*	240.60 ± 1.808*	214.58 ± 0.96*
5.	OUA + SNL40	17.69 ± 0.430#	1.78 ± 0.079#	195.30 ± 1.502#	168.67 ± 0.640#
6.	OUA + SNL80	21.92 ± 0.446#$	2.83 ± 0.084#$	165.30 ± 1.412#$	152.54 ± 0.566#$
7.	OUA + Li60	25.66 ± 0.452#β	3.78 ± 0.077#β	136.40 ± 1.473#β	128.75 ± 0.765#β
8.	OUA + SNL80 + Li60	30.01 ± 0.446#@	4.78 ± 0.077#@	116.30 ± 1.487#@	85.83 ± 1.897#@

Statistical analysis followed by one-way ANOVA (post-hoc Tukey’s test). Values expressed as mean±SEM (n=6 rats per group). * p<0.001 v/s vehicle control, sham control and SNL80 perse; # p<0.001 v/s OUA; #$ p<0.001 v/s OUA + SNL40; #β p<0.001 v/s OUA + SNL40 and OUA + SNL80; #@ OUA + Li60

Reduction in neuroinflammatory cytokines after long-term administration of solanesol

We measured the levels of pro-inflammatory cytokines like TNF-α and IL-1β in the whole brain homogenate and blood plasma samples of rats to see whether SNL had a therapeutic effect in OUA-induced BD-like rats. SNL therapy at doses of 40 mg/kg and 80 mg/kg reduced TNF-αexpression in rat brain homogenate [One-way ANOVA: F(7, 35)=1.065, P<0.001] and blood plasma samples [One-way ANOVA: F(7, 35)=0.589, P<0.001]. Similarly, chronic oral treatment with SNL40 mg/kg and SNL80 mg/kg remarkably decreased the level of IL-1β in brain homogenate [One-way ANOVA: F(7, 35)=0.348, P<0.001] and blood plasma samples [One-way ANOVA: F(7, 35)=0.691, P<0.001], as opposed to the OUA toxin administered BD like rats. Meanwhile, compared to the SNL40 mg/kg dose, SNL80 mg/kg demonstrated a significant improvement in lowering the expression of these inflammatory mediators. In rat brain...
homogenate and blood plasma samples, the Li60 mg/kg alone and Li60 mg/kg in conjunction with SNL80 mg/kg treated groups exhibited a substantial improvement in lowering the level of these inflammatory mediators compared to the SNL80 mg/kg, and SNL40 mg/kg treated groups at the end of protocol schedule. (Table 5)

S. no.	Groups	Mitochondrial-ETC complexes enzyme level				
		Complex-I (nM/mg protein)	Complex-II (nM/mg protein)	Complex-IV (nM/mg protein)	Complex-V (nM/mg protein)	CoQ10 (nM/mg protein)
1	Vehicle control	9.71 ± 0.077	11.77 ± 0.088	211.10 ± 1.505	450.40 ± 3.675	9.28 ± 0.240
2	Sham control	9.73 ± 0.063	11.83 ± 0.089	210.70 ± 1.173	451.20 ± 2.648	9.08 ± 0.263
3	SNL80 perse	9.77 ± 0.082	11.85 ± 0.083	209.80 ± 1.573	449.20 ± 3.251	9.00 ± 0.305
4	OUA	4.33 ± 0.053*	3.52 ± 0.141*	118.00 ± 0.740*	160.60 ± 3.673*	2.03 ± 0.051*
5	OUA + SNL40	5.74 ± 0.078#	5.28 ± 0.071#	130.30 ± 1.366#	210.20 ± 2.504#	3.28 ± 0.084#
6	OUA + SNL80	6.77 ± 0.070#@	6.29 ± 0.058#@	149.70 ± 1.558#@	269.00 ± 3.111#@	4.29 ± 0.070#@
7	OUA + Li60	7.72 ± 0.080#β	7.33 ± 0.052#β	170.40 ± 1.527#β	342.20 ± 3.014#β	5.29 ± 0.078#β
8	OUA + SNL80 + Li60	8.75 ± 0.079#@	8.20 ± 0.074#@	190.00 ± 1.449#@	391.00 ± 3.117#@	6.28 ± 0.057#@

Statistical analysis followed by one-way ANOVA (post-hoc Tukey's test). Values expressed as mean±SEM (n=6 rats per group). * p<0.001 v/s vehicle control, sham control and SNL80 perse; # p<0.001 v/s OUA; #$ p<0.001 v/s OUA + SNL40; #β p<0.001 v/s OUA + SNL40 and OUA + SNL80; #@ OUA + Li60

Decreased oxidative stress markers and increased antioxidant levels after long-term administration of solanesol

The oxidative stress indicators such as MDA, Nitrite, SOD, GSH and AChE, LDH were measured in rat brain homogenate samples at the end of the experimental protocol schedule. The levels of MDA, Nitrite, and AChE, LDH increased significantly after ICV injection of OUA. In contrast, antioxidant levels such as SOD and GSH decreased compared to the vehicle control, sham control, and SNL80 perse treated groups. Continuous oral treatment of SNL at doses of 40 mg/kg and 80 mg/kg for twenty days significantly
lowered the levels of AchE [One-way ANOVA: F(7, 35)=2.867, P<0.001], LDH [One-way ANOVA: F(7, 35)=2.829, P<0.001], MDA [One-way ANOVA: F(7, 35)=3.681, P<0.001] and nitrite [One-way ANOVA: F(7, 35)=1.736, P<0.001].

However, SNL40 mg/kg and SNL80 mg/kg remarkably restored the anti-oxidant defense system by increasing the levels of GSH [One-way ANOVA: F(7, 35)=4.281, P<0.001], and SOD [One-way ANOVA: F(7, 35)=6.111, P<0.001] when compared with OUA-treated BD like rats. Furthermore, compared to SNL40 mg/kg, SNL80 mg/kg significantly reduced oxidative stress markers and restored antioxidant expression in a dose-dependent manner. Among these, the most significant improvements were observed in the Li60 mg/kg alone and Li60 mg/kg in combination with SNL80 mg/kg treated groups, which were more effective than the SNL80 mg/kg and SNL40 mg/kg treated groups in significantly reducing oxidative stress markers and restoring antioxidant expression. (Table 6)
Table 6
Neuroprotective potential of solanesol on oxidative stress markers level in ouabain-induced bipolar disorder in rats

S.no.	Groups	Oxidative stress markers						
		AchE (µM/mg protein)	LDH (µM/mg protein)	SOD (µM/mg protein)	GSH (µM/mg protein)	Nitrite (µM/mg protein)	MDA (nM/mg protein)	
1.	Vehicle control	18.61 ± 0.618	100.40 ± 1.523	390.30 ± 1.431	29.97 ± 0.781	5.28 ± 0.075	27.87 ± 0.665	
2.	Sham control	17.82 ± 0.523	101.00 ± 1.560	389.70 ± 1.452	29.99 ± 0.785	5.32 ± 0.050	27.89 ± 0.519	
3.	SNL80 perse	18.38 ± 0.545	100.10 ± 1.155	390.30 ± 1.621	29.98 ± 0.721	5.21 ± 0.065	27.90 ± 0.818	
4.	OUA	45.11 ± 0.639*	326.60 ± 1.423*	268.60 ± 1.532*	8.21 ± 0.594*	10.29 ± 0.069*	61.37 ± 0.577*	
5.	OUA + SNL40	39.83 ± 0.404#	296.10 ± 1.538#	285.50 ± 1.404#	14.08 ± 0.346#	9.22 ± 0.071#	52.76 ± 0.796#	
6.	OUA + SNL80	34.52 ± 0.480#$	246.00 ± 1.511#$	315.40 ± 1.630#$	17.27 ± 0.349#$	8.24 ± 0.056#$	45.15 ± 0.618#$	
7.	OUA + Li60	29.66 ± 0.442#	195.40 ± 1.519#	345.20 ± 1.262#	20.24 ± 0.275#	7.21 ± 0.586#	37.95 ± 0.721#	
8.	OUA + SNL80 + Li60	24.73 ± 0.457#@	144.80 ± 1.337#@	375.80 ± 1.423#@	23.31 ± 0.297#@	6.21 ± 0.071#@	31.14 ± 0.612#@	

Statistical analysis followed by one-way ANOVA (post-hoc Tukey's test). Values expressed as mean±SEM (n=6 rats per group). * p<0.001 v/s vehicle control, sham control and SNL80 perse; # p<0.001 v/s OUA; #$ p<0.001 v/s OUA + SNL40; #β p<0.001 v/s OUA + SNL40 and OUA + SNL80; #@ OUA + Li60

Increased Na⁺/K⁺ ATPase enzyme activity after long-term administration of solanesol

The enzyme activity of Na⁺/K⁺ ATPase in rat brain homogenate was assessed immediately afterward the experiment protocol schedule. Compared to the vehicle control, sham control, and SNL80 perse groups, ICV injection of OUA resulted in a substantial decrease in Na⁺/K⁺ ATPase activity. The activity of Na⁺/K⁺ ATPase in rat brain homogenate was increased after continuous oral administration of SNL at dosages of 40 mg/kg and 80 mg/kg [One-way ANOVA: F(7,35)=2.236, P<0.001]. SNL80 mg/kg restored Na⁺/K⁺ ATPase activity more effectively than SNL40 mg/kg in rat brain homogenate. Furthermore, the Li60 mg/kg alone and combined with SNL80 mg/kg treated groups restored Na⁺/K⁺ ATPase more efficiently than the SNL80 mg/kg, and SNL40 mg/kg treated groups (Table 7; Figure 6)
Table 7
Neuroprotective potential of solanesol on Na+/K+ ATPase enzyme level in ouabain-induced bipolar disorder in rats

S.no.	Groups	Na+/K+ ATPase enzyme level
1.	Vehicle control	121.3 ± 0.240
2.	Sham control	120.832 ± 0.367
3.	SNL80*	120.70 ± 0.391
4.	OUA*	35.65 ± 0.350*
5.	OUA + SNL40#	48.66 ± 0.164#
6.	OUA + SNL80#	63.14 ± 0.217#$
7.	OUA + Li60#β	75.47 ± 0.225#β
8.	OUA + SNL80 + Li60@	91.44 ± 0.260@

Statistical analysis followed by one-way ANOVA (post-hoc Tukey's test). Values expressed as mean±SEM (n=6 rats per group). * p<0.001 v/s vehicle control, sham control and SNL80 perse; # p<0.001 v/s OUA; #$ p<0.001 v/s OUA + SNL40; #β p<0.001 v/s OUA + SNL40 and OUA + SNL80; #@ OUA + Li60

4.0 Discussion

Over the last decade, there has been significant progress in understanding the role of sirtuins in brain ageing, neurodegenerative disorders such as AD, PD, MS, ALS, and neuropsychiatric disorders such as BD [83, 84]. Until recently, little was known about the role of SIRTs in Parkinson’s disease [85], Huntington’s disease [86], and multiple sclerosis [40]. As a possible therapeutic target, SIRT-1 expression and activity may have a significant impact on the progression of AD pathogenesis. SIRT-1 inhibition has been shown to reduce behavioural impairment, neurochemical alterations, and neuronal damage [88, 89]. SIRT-1 downregulation is associated with various events associated with improved neurological deficit, such as synaptic dysfunction, altered neurotransmitter release, and genetic variations [90]. According to a previous study, no pharmacological animal model can imitate both mania and depression in the same animals [91]. Valvassori et al., on the other hand, developed a paradigm in which a single ICV injection of OUA elicited manic and depressive-like behaviour [60].

Several investigations have found that rats exhibit manic behaviours such as increased locomotor activity, rearing, and crossing after ICV injection of OUA [13, 92]. We observed the same result in our experiment, where locomotor activity, number of boxes traversed, number of rearing movements, and time spent at the center significantly increased after seven days of protocol schedule in ICV-OUA induced BD-like rats. In addition, following OUA administration, the current investigation exhibited manic and depressive-like behaviours in the same animal. This study aims to show that SNL can prevent BD-like
behavioural and neurochemical abnormalities in OUA-induced BD in rats by upregulating SIRT-1 protein levels.

The rats did not show any behavioural alterations in the open field test, forced swimming, or locomotor activity following OUA treatment compared to the vehicle control, sham control, and SNL80 perse groups. As a result, rats may have a calm episode nine days after OUA injection [60, 93, 94]. Differences in rat strains and experimental conditions could explain the variation between experiments. The methodology was repeated in the current study for biochemical analysis, and we obtained identical results in the open-field test [95].

Several studies suggest that lithium medication can alleviate manic-like behaviour in rats given OUA-ICV injections [96, 8]. In contrast, lithium treatment significantly reversed the immobility time. Although previous preclinical studies have shown lithium's antidepressant properties [97, 98], the current study replicated the depression and manic-like behaviours in a selective BD animal model.

The development of an animal model of BD using OUA is based on the premise that decreased Na+/K+ATPase activity is essential in starting manic and depressive mood episodes [60, 99]. Seven and nine days after ICV injection, OUA decreased Na+/K+ATPase activity in the rodent's brain. The role of Na+/K+ATPase in BD physiopathology was hypothesized more than 50 years ago [100]. A meta-analysis study found that Na+/K+ATPase activity is lower in the erythrocytes of BD patients [101]. Even a slight reduction in this enzyme activity can put the resting membrane potential near the threshold, enhancing neuronal excitability and delaying the onset of Ca2+ depuration [102]. Hyperactivity, associated with manic episodes in bipolar disorder, may be induced by increased neuronal excitability. Long-term suppression of Na+/K+-ATPase, which increases neuronal excitability, may reduce resting potential regulation, making subsequent neuronal depolarization more challenging. These events may reduce neuronal transmission velocity and, as a result, neuronal synaptic efficiency, resulting in BD depressive episodes [103]. Increasing the activity of the Na+/K+ATPase may be one of lithium's anti-oxidative mechanisms. OUA-induced oxidative damage in rats resembled the pathophysiological characteristics of BD patients. Indeed, reduced anti-oxidant glutathione enzymes in the brain have been reported in mania and depression animal models [104]. One of lithium's possible therapeutic effects is to modulate these anti-oxidant enzymes, which helps to maintain redox balance in the brain [105]. According to research findings, decreased activity of Na+/K+ATPase in BD patients may be associated with increased production of dopamine and glutamate neurotransmitters, as well as oxidative damage, resulting in mood swings [106].

Lithium, as a mood stabilizer, acts to counteract these pathological changes, which helps to reduce BD symptoms. The proposed OUA model could be used to investigate the disorder's pathophysiology and assess potential mood stabilizers. In addition to decreased ATP synthesis, chronic OUA treatment of the brain resulted in increased oxidative stress-mediated by ROS and RNS, glial cell overactivation, and lower SIRT-1 protein level [60]. SIRT-1 deacetylation is dependent on NAD+ and ATP production in cells and regulates its levels in mitochondria and other areas of the brain. SIRT-1 dysregulation also causes
memory impairment, and oxidative markers have been employed to identify the excessive production of ROS and RNS in the brain [107]. An increase in oxidative stress has been associated with a decrease in the activity of the Na+/K+ATPase in bipolar patients [108].

According to current findings, OUA-treated rats had lower body weight on days 14th, 21st, and 28th. Furthermore, on days 9th, 18th, and 27th, there was an increase in locomotor activity in the actophotometer, which was responsible for manic-like behaviour. This manic-like activity was seen by OFT on the 7th, 14th, 21st, and 28th days, demonstrating a progressive rise in the number of rearing, the number of boxes crossing, and time spent in the center. FST on the 9th, 18th, and 27th days indicated an increase in immobility time.

This study investigates the effect of OUA on the protein level of SIRT-1 in the brain, which was found to be lower in brain homogenate, blood plasma, and CSF samples. In addition, the levels of the apoptotic markers caspase-3, Bax, and Bcl-2 were measured, and OUA-treated rats showed greater levels of caspase-3, Bax, and lower levels of Bcl-2. Reduction in mitochondrial ETC complex enzymes, on the other hand, has been associated with a significant increase in inflammatory cytokines TNF-α and IL-1β. Furthermore, this study looked into the effect of OUA on Na+/K+ ATPase activity, which was found to be decreased after the OUA injection. Our investigation demonstrated that when rats were repeatedly exposed to OUA, the amounts of neurotransmitters changed. Neurotransmitters have a variety of diverse effects on the brain. Several neurons in the brain release acetylcholine, which has been connected to memory and learning [109, 110], circadian rhythms [111], antinociception [112, 113], locomotion [114, 115], and the sleep-wake cycle [116,117]. Serotonin is a neurotransmitter that has several effects in the brain that are regulated by various serotonergic receptors [118], involved in cognition [119], learning, memory, and attention [120, 121], emotions [122], stress, mood [123, 124], movement [125], and sleep [126]. Glutamate, a primary excitatory neurotransmitter in the brain, is also implicated in long-term potentiation and long-term depression (synaptic plasticity). These two processes are associated with memory and learning [127] and neurogenesis [128]. Dopamine is a monoamine neurotransmitter that is involved in a variety of brain functions, including motor function control and learning new motor skills [129, 130], pleasure and reward-seeking behavior [131, 132], addiction [133], cognition [134, 135], pain process [136, 137], gastrointestinal motility [138, 139]. Neurotoxic effects by OUA in rats are shown by decreased serotonin and acetylcholine levels and increased dopamine and glutamate levels. Oxidative stress is a major cause of neurodegenerative disorders. Treatment with OUA raises MDA, Nitrite, AChE, and LDH levels while decreasing antioxidant enzymes SOD and GSH levels.

Our findings revealed that twenty days of chronic treatment with SNL40, 80 mg/kg in ICV injection to OUA-treated rats resulted in a significant improvement in body weight. In addition, there was a reduction in locomotor activity measured by the actophotometer. The high dose-response of SNL shows a significant improvement in behavioural abnormalities. In contrast, the standard drug lithium alone and in combination with SNL high dose exhibited a significant improvement in behavioural alterations compared to SNL alone treated rats.
Current research indicates that SIRT-1 levels in CSF, brain homogenate, and blood plasma samples increase after continuous treatment with SNL40 and SNL80 mg/kg. Furthermore, Li-treated groups restored SIRT-1 protein levels more efficiently than SNL-treated groups in rat brain homogenate, blood plasma, and CSF samples. The apoptotic marker level in blood plasma and brain homogenate, on the other hand, shows a decrease in caspase-3, Bax and an increase in Bcl-2. Furthermore, the results show that continuous SNL treatment recovers mitochondrial ETC-complexes enzyme levels Complex I, II, IV, and V, as well as CoQ10 in brain homogenate. SNL administration reduces neuronal inflammation, as evidenced by lower levels of TNF-α and IL-1β in blood plasma and rat brain homogenate. Furthermore, SNL increased serotonin and acetylcholine levels while lowering dopamine and glutamate levels in rat brain homogenates.

Oxidative damage in OUA-treated rats treated with SNL40 and 80 mg/kg, on the other hand, shows a reduction in oxidative stress as seen by a significant decrease in MDA, Nitrite AChE, and LDH levels. In addition, there was a significant rise in the amount of anti-oxidant markers SOD and GSH in brain homogenate. Additionally, after continuous treatment with SNL40 and SNL80 mg/kg, Na+/K+ ATPase enzyme activity increased in rat brain homogenate, although Li-treated groups restored activity more effectively than SNL-treated groups. The Li60 mg/kg alone and Li60 mg/kg in conjunction with SNL80 mg/kg treated groups restored the altered Na+/K+ ATPase enzyme levels more successfully than the SNL80 mg/kg SNL40 mg/kg treated groups in brain homogenate samples.

As a result, the current study indicates that ICV-OUA administration reduces SIRT-1 protein level and neuronal death in rats. Furthermore, there was a reduction of mitochondrial ETC complexes in the disease condition and an increase in inflammation and oxidative stress. Prolonged SNL and Li therapy produces improvements and significant dose-dependent restorations. As a result, these SIRT-1 and SNL activators exerted neuroprotective effects following OUA-mediated BD rat model ICV injections.

Although the current findings are just correlations, they suggest that SNL reduced SIRT-1 protein level in rats with BD-like behavioural and neurochemical symptoms in OUA-induced BD. Our findings suggest that SIRT-1 levels in brain tissue, blood plasma, and CSF can be used as an effective and reliable early diagnostic biomarker for predicting neurological dysfunctions. Lithium works as a mood stabilizer drug to counteract these pathological changes that assist in alleviating BD symptoms. The proposed OUA model could explore disease etiology and screen potential mood stabilizer drug candidates. Overall, a mechanistic approach must be validated using sirtuin gene knock-in or knock-out experiments. A correlative study, such as Western Blot for cellular markers, is also necessary to offer molecular support for this hypothesis. Despite these limitations, the neuroprotective potential of SNL gives the possibility to develop a new disease-modifying treatment for the neurodegenerative disease by SIRT-1 signalling activation in the brain.

5.0 Conclusion
Finally, the research confirms that SNL protects rats from developing BD caused by OUA. This is the first study to link SNL's antioxidant, anti-inflammatory, and anti-apoptotic properties to its potential neuroprotective benefit as a therapy for the management of BD. The amounts of several neurochemicals in brain homogenate, blood plasma, and CSF were examined, revealing that SNL had a central and peripheral protective impact by reducing BD-like alterations. According to the findings, this study can be used as strong evidence that SIRT-1 downregulation and serotonin evaluation can be employed as a potential biomarker for the early detection of BD. The primary limitation of this study is the lack of gross pathology and immunohistology research on the area-specific molecular mechanistic effect of SNL. As a result, more preclinical research on the knock-in and knock-out of the SIRT-1 gene is required to better understand the molecular mechanism.

Abbreviations

SIRT-1: Silent mating-type information regulation 2 homolog-1
NAD+: Nicotinamide adenine dinucleotide
BD: Bipolar Disorder
IL-1β: Interleukin-1β
AD: Alzheimer disease
PD: Parkinson's disease
MS: Multiple sclerosis
NADH: Nicotinamide adenine dinucleotide hydrogen
p53: Tumour proteins p53
FOXO1/3: Fork head box protein O1/3
PGC-1: Peroxisome proliferator-activated gamma co-activator-1
NF-kB: Nuclear factor kappa light chain enhancer of activated B-cells
Na+K+-ATPase: Sodium and potassium-activated adenosine triphosphatase
5-HT: Serotonin
ALS: Amyotrophic lateral sclerosis
TNF-α: Tumour necrosis factor-alpha
AP-1: Activator protein-1
ROS: Reactive oxygen species

RNS: Reactive nitrogen species

BDNF: Brain-derived neurotrophic factor

ATP: Adenosine triphosphate

BAX: Bcl-2-associated X protein

ERK1/2: Extracellular signaling-regulated protein kinases 1 & 2

CVS: Chronic variable stress

AchE: Acetylcholinesterase

CSF: Cerebrospinal fluid

FST: Forced Swim test

GSH: Glutathione

HPLC: High performance liquid chromatography

LDH: Lactate dehydrogenase

MDA: Malondialdehyde

v/v: volume/volume

SNL: Solanesol

ICV: Intracerebroventricular

OUA: Ouabain

CoQ10: Coenzyme Q10

Li: Lithium

ETC: Electron transport chain

HD: Huntington disease

ALS: Amyotrophic lateral sclerosis

ICH: Intracerebral hemorrhage
IAEC : Institutional Animal Ethics Committee
BAPEX : Bangladesh Petroleum Exploration and Production
SEM : Standard error of the mean
ANOVA : Analysis of variance
MDA : malondialdehyde
SOD : superoxide dismutase
LDH : lactate dehydrogenase
OFT : Open field test
Ca2+ : Calcium
Ach : Acetylcholine
FST : Forced Swimming Test
IP : Intraperitoneal
ELISA : Enzyme-linked immunoassay
SDH : Succinatedehydrogenase
PO : Per oral
OPA/β-ME : O-phthalaldehyde/β-mercaptoethanol

Declarations

Ethical declarations
All applicable institutional guidelines for the care and use of animals were followed.

Consent to participate
Not applicable

Consent to publish
Not applicable

Funding
The Government of India supported this work, the experimental procedure was approved by the Institutional Animal Ethics Committee (IAEC) with a registration number 816/PO/ReBiBt/S/04/CPCSEA as protocol no. ISFCP/IAEC/CPCSEA/Meeting No: 28/2020/Protocol No.463.

Competing Interests

“The authors declare no conflict of interest.” “The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results”.

Data Availability Statement (DAS)

All data generated or analysed during this study are included in this published article (and its supplementary information files).

Author contributions

Conceptualization, Sidharth Mehan; Data curation, Abdulrahman Alshammari and Metab Alharbi; Formal analysis, Pranshul Sethi and Sonalika Bhalla; Investigation, Bidisha Rajkhowa; Methodology, Bidisha Rajkhowa; Project administration, Sidharth Mehan; Resources, Sidharth Mehan; Supervision, Sidharth Mehan; Validation, Bidisha Rajkhowa; Visualization, Naif AlSuhaymi and Abdullah Alghamdi; Writing – original draft, Bidisha Rajkhowa and Sumit Kumar; Writing – review & editing, Abdulsalam A. Alqahtani, Yosif Almoshariand Aradhana Prajapati.

Acknowledgements

The authors express their gratitude to Chairman, Mr. Parveen Garg, and Director, Dr. G.D.Gupta, ISF College of Pharmacy, Moga (Punjab), India, for their excellent vision and support.

References

1. Jia X, Goes FS, Locke AE, Palmer D, Wang W, Cohen-Woods S, Genovese G, Jackson AU, Jiang C, Kvale M, Mullins N. Investigating rare pathogenic/likely pathogenic exonic variation in bipolar disorder. Molecular psychiatry. 2021 Jan 22:1-2.

2. Jain A, Mitra P. Bipolar affective disorder. StatPearls [Internet]. 2021 May 18.

3. Dong M, Lu L, Zhang L, Zhang Q, Ungvari GS, Ng CH, Yuan Z, Xiang Y, Wang G, Xiang YT. Prevalence of suicide attempts in bipolar disorder: a systematic review and meta-analysis of observational studies. Epidemiology and psychiatric sciences. 2020;29.

4. Uher R, Zwicker A. Etiology in psychiatry: embracing the reality of poly-gene-environmental causation of mental illness. World Psychiatry. 2017 Jun;16(2):121-9.

5. Serra G, Koukopoulos A, De Chiara L, Koukopoulos AE, Sani G, Tondo L, Girardi P, Reginaldi D, Baldessarini RJ. Early clinical predictors and correlates of long-term morbidity in bipolar disorder.
European Psychiatry. 2017 Jun;43:35-43.

6. Mullins N, Forstner AJ, O’Connell KS, Coombes B, Coleman JR, Qiao Z, Als TD, Bigdeli TB, Børte S, Bryois J, Charney AW. Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nature Genetics. 2021 Jun;53(6):817-29.

7. Hirschfeld RM. Differential diagnosis of bipolar disorder and major depressive disorder. Journal of affective disorders. 2014 Dec 1;169:S12-6.

8. Jornada LK, Valvassori SS, Steckert AV, Moretti M, Mina F, Ferreira CL, Arent CO, Dal-Pizzol F, Quevedo J. Lithium and valproate modulate antioxidant enzymes and prevent ouabain-induced oxidative damage in an animal model of mania. Journal of psychiatric research. 2011 Feb 1;45(2):162-8.

9. Valvassori SS, Resende WR, Lopes-Borges J, Mariot E, Dal-Pont GC, Vitto MF, Luz G, de Souza CT, Quevedo J. Effects of mood stabilizers on oxidative stress-induced cell death signaling pathways in the brains of rats subjected to the ouabain-induced animal model of mania: mood stabilizers exert protective effects against ouabain-induced activation of the cell death pathway. Journal of psychiatric research. 2015 Jun 1;65:63-70.

10. Ladol S, Sharma D. Pharmacotherapeutic Effects of Hippophaerhamnoides in Rat Model of Post-traumatic Epilepsy in View of Oxidative Stress, Na+, K+ ATPase Activity and Sodium Ion Channel Expression. Acta Scientific Neurology (ISSN: 2582-1121). 2021 Jun;4(6).

11. Krishnan V, Nestler EJ. Animal models of depression: molecular perspectives. Molecular and functional models in neuropsychiatry. 2011:121-47.

12. Valvassori SS, Budni J, Varela RB, Quevedo J. Contributions of animal models to the study of mood disorders. Brazilian Journal of Psychiatry. 2013;35:S121-31.

13. Lopes-Borges J, Valvassori SS, Varela RB, Tonin PT, Vieira JS, Goncalves CL, Streck EL, Quevedo J. Histone deacetylase inhibitors reverse manic-like behaviors and protect the rat brain from energetic metabolic alterations induced by ouabain. Pharmacology Biochemistry and Behavior. 2015 Jan 1;128:89-95.

14. Schwartz MW, Woods SC, Porte D, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature. 2000 Apr;404(6778):661-71.

15. Michan S, Sinclair D. Sirtuins in mammals: insights into their biological function. Biochemical Journal. 2007 May 15;404(1):1-3.

16. Li XH, Chen C, Tu Y, Sun HT, Zhao ML, Cheng SX, Qu Y, Zhang S. Sirt1 promotes axonogenesis by deacetylation of Akt and inactivation of GSK3. Molecular neurobiology. 2013 Dec;48(3):490-9.

17. Herskovits AZ, Guarante L. SIRT1 in neurodevelopment and brain senescence. Neuron. 2014 Feb 5;81(3):471-83.

18. Donmez G, Outeiro TF. SIRT1 and SIRT2: emerging targets in neurodegeneration. EMBO molecular medicine. 2013 Mar;5(3):344-52.

19. Aguirre-Rueda D, Guerra-Ojeda S, Aldasoro M, Iradi A, Obrador E, Ortega A, Mauricio MD, Vila JM, Valles SL. Astrocytes protect neurons from Aβ1-42 peptide-induced neurotoxicity increasing TFAM
and PGC-1 and decreasing PPAR-γ and SIRT-1. International journal of medical sciences. 2015;12(1):48.

20. Alcendor RR, Gao S, Zhai P, Zablocki D, Holle E, Yu X, Tian B, Wagner T, Vatner SF, Sadoshima J. Sirt1 regulates aging and resistance to oxidative stress in the heart. Circulation research. 2007 May 25;100(10):1512-21.

21. Bartoli-Leonard F, Wilkinson FL, Schiro A, Inglott FS, Alexander MY, Weston R. Suppression of SIRT1 in diabetic conditions induces osteogenic differentiation of human vascular smooth muscle cells via RUNX2 signalling. Scientific reports. 2019 Jan 29;9(1):1-6.

22. Elibol B, Kilic U. High levels of SIRT1 expression as a protective mechanism against disease-related conditions. Frontiers in endocrinology. 2018 Oct 15;9:614.

23. Li K, Lv G, Pan L. Sirt1 alleviates LPS induced inflammation of periodontal ligament fibroblasts via downregulation of TLR4. International journal of biological macromolecules. 2018 Nov 1;119:249-54.

24. Niilni EA. The metabolic sensor Sirt1 and the hypothalamus: Interplay between peptide hormones and pro-hormone convertases. Molecular and cellular endocrinology. 2016 Dec 15;438:77-88.

25. Baldo B, Gabery S, Soylu-Kucharz R, Cheong RY, Henningsen JB, Englund E, McLean C, Kirik D, Halliday G, Petersén Å. SIRT1 is increased in affected brain regions and hypothalamic metabolic pathways are altered in Huntington disease. Neuropathology and applied neurobiology. 2019 Jun;45(4):361-79.

26. Lee J, Kim Y, Liu T, Hwang YJ, Hyeon SJ, Im H, Lee K, Alvarez VE, McKee AC, Um SJ, Hur M. SIRT3 deregulation is linked to mitochondrial dysfunction in Alzheimer's disease. Aging cell. 2018 Feb;17(1):e12679.

27. Yang H, Zhang W, Pan H, Feldser HG, Lainez E, Miller C, Leung S, Zhong Z, Zhao H, Sweitzer S, Considine T. SIRT1 activators suppress inflammatory responses through promotion of p65 deacetylation and inhibition of NF-κB activity.

28. Alageel A, Tomasi J, Tersigni C, Brietzke E, Zuckerman H, Subramaniappillai M, Lee Y, Iacobucci M, Rosenblat JD, Mansur RB, McIntyre RS. Evidence supporting a mechanistic role of sirtuins in mood and metabolic disorders. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2018 Aug 30;86:95-101...

29. Ma L, Dong W, Wang R, Li Y, Xu B, Zhang J, Zhao Z, Wang Y. Effect of caloric restriction on the SIRT1/mTOR signaling pathways in senile mice. Brain research bulletin. 2015 Jul 1;116:67-72.

30. Feng Y, Liu T, Dong SY, Guo YJ, Jankovic J, Xu H, Wu YC. Rotenone affects p53 transcriptional activity and apoptosis via targeting SIRT 1 and H3K9 acetylation in SH-SY 5Y cells. Journal of neurochemistry. 2015 Aug;134(4):668-76.

31. Singh P, Hanson PS, Morris CM. SIRT1 ameliorates oxidative stress induced neural cell death and is down-regulated in Parkinson's disease. BMC neuroscience. 2017 Dec;18(1):1-3.

32. Zhou C, Wu Y, Ding X, Shi N, Cai Y, Pan ZZ. SIRT1 decreases emotional pain vulnerability with associated CaMKIIα deacetylation in central amygdala. Journal of Neuroscience. 2020 Mar 11;40(11):2332-42.
33. Abe-Higuchi N, Uchida S, Yamagata H, Higuchi F, Hobara T, Hara K, Kobayashi A, Watanabe Y. Hippocampal sirtuin 1 signaling mediates depression-like behavior. Biological psychiatry. 2016 Dec 1;80(11):815-26.

34. Ferland CL, Hawley WR, Puckett RE, Wineberg K, Lubin FD, Dohanich GP, Schrader LA. Sirtuin activity in dentate gyrus contributes to chronic stress-induced behavior and extracellular signal-regulated protein kinases 1 and 2 cascade changes in the hippocampus. Biological psychiatry. 2013 Dec 15;74(12):927-35.

35. Zhu L, Sun C, Ren J, Wang G, Ma R, Sun L, Yang D, Gao S, Ning K, Wang Z, Chen X. Stress-induced precocious aging in PD-patient iPSC-derived NSCs may underlie the pathophysiology of Parkinson's disease. Cell death & disease. 2019 Feb 4;10(2):1-7.

36. Rajdev K, Siddiqui EM, Jadaun KS, Mehan S. Neuroprotective potential of solanesol in a combined model of intracerebral and intraventricular hemorrhage in rats. IBRO reports. 2020 Jun 1;8:101-14.

37. Sharma R, Rahi S, Mehan S. Neuroprotective potential of solanesol in intracerebroventricular propionic acid induced experimental model of autism: Insights from behavioral and biochemical evidence. Toxicology reports. 2019 Jan 1;6:1164-75.

38. Yan N, Liu Y, Gong D, Du Y, Zhang H, Zhang Z. Solanesol: A review of its resources, derivatives, bioactivities, medicinal applications, and biosynthesis. Phytochemistry Reviews. 2015 Jun;14(3):403-17.

39. Alam MM, Minj E, Yadav RK, Mehan S. Neuroprotective potential of adenyl cyclase/cAMP/CREB and mitochondrial CoQ10 activator in amyotrophic lateral sclerosis rats. Curr. Bioact. Compd. 2020;16:1-8.

40. Sharma N, Upadhayay S, Shandilya A, Sahu R, Singh A, Rajkhowa B, Mehan S. Neuroprotection by solanesol against ethidium bromide-induced multiple sclerosis-like neurobehavioral, molecular, and neurochemical alterations in experimental rats. Phytomedicine Plus. 2021 Nov 1;1(4):100051.

41. Sándor PS, Di Clemente L, Coppola G, Saenger U, Fumal A, Magis D, Seidel L, Agosti RM, Schoenen J. Efficacy of coenzyme Q10 in migraine prophylaxis: a randomized controlled trial. Neurology. 2005 Feb 22;64(4):713-5.

42. Mehan, S., Monga, V., Rani, M., Dudi, R., & Ghimire, K. (2018). Neuroprotective effect of solanesol against 3-nitropropionic acid-induced Huntington's disease-like behavioral, biochemical, and cellular alterations: Restoration of coenzyme-Q10-mediated mitochondrial dysfunction. Indian journal of pharmacology, 50(6), 309.

43. Shults CW, Haas R. Clinical trials of coenzyme Q10 in neurological disorders. Biofactors. 2005;25(1-4):117-26.

44. Matthews RT, Yang L, Browne S, Baik M, Beal MF. Coenzyme Q10 administration increases brain mitochondrial concentrations and exerts neuroprotective effects. Proceedings of the National Academy of Sciences. 1998 Jul 21;95(15):8892-7.

45. DeLegge MH, Smoke A. Neurodegeneration and inflammation. Nutrition in clinical practice. 2008 Feb;23(1):35-41.
46. Forester BP, Harper DG, Georgakas J, Ravichandran C, Madurai N, Cohen BM. Antidepressant effects of open label treatment with coenzyme Q10 in geriatric bipolar depression. Journal of clinical psychopharmacology. 2015 Jun;35(3):338.

47. Song J, Jiao Y, Zhang T, Zhang Y, Huang X, Li H, Wu H. Longitudinal changes in plasma Caspase-1 and Caspase-3 during the first 2 years of HIV-1 infection in CD4Low and CD4High patient groups. PloS one. 2015 Mar 25;10(3):e0121011.

48. Mahmoud AR, Ali FE, Abd-Elhamid TH, Hassanein EH. Coenzyme Q10 protects hepatocytes from ischemia reperfusion-induced apoptosis and oxidative stress via regulation of Bax/Bcl-2/PUMA and Nrf-2/FOXO-3/Sirt-1 signaling pathways. Tissue and Cell. 2019 Oct 1;60:1-3.

49. Jaswal P, Riya R, Singh G. Neuroprotective potential of Solanesol and Epigallocatechin gallate on ICV-STZ induced cognitive dysfunction in rats. Journal of the Neurological Sciences. 2019 Oct 15;405:19.

50. Mehan S, Monga V, Rani M, Dudi R, Ghimire K. Neuroprotective effect of solanesol against 3-nitropropionic acid-induced Huntington's disease-like behavioral, biochemical, and cellular alterations: Restoration of coenzyme-Q10-mediated mitochondrial dysfunction. Indian journal of pharmacology. 2018 Nov;50(6):309.

51. El-Mallakh RS, Wyatt RJ. The Na, K-ATPase hypothesis for bipolar illness. Biological psychiatry. 1995 Feb 15;37(4):235-44.

52. Banerjee U, Dasgupta A, Rout JK, Singh OP. Effects of lithium therapy on Na+-K+-ATPase activity and lipid peroxidation in bipolar disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2012 Apr 27;37(1):56-61.

53. El-Mallakh RS. The Na, K-ATPase hypothesis for manic-depression. I. General considerations. Medical hypotheses. 1983 Nov 1;12(3):253-68.

54. Can A, Schulze TG, Gould TD. Molecular actions and clinical pharmacogenetics of lithium therapy. Pharmacology Biochemistry and Behavior. 2014 Aug 1;123:3-16.

55. Pisanu C, Heilbronner U, Squassina A. The role of pharmacogenomics in bipolar disorder: moving towards precision medicine. Molecular diagnosis & therapy. 2018 Aug;22(4):409-20.

56. Monti JM. The effect of second-generation antipsychotic drugs on sleep parameters in patients with unipolar or bipolar disorder. Sleep medicine. 2016 Jul 1;23:89-96.

57. Joas E, Karanti A, Song J, Goodwin GM, Lichtenstein P, Landen M. Pharmacological treatment and risk of psychiatric hospital admission in bipolar disorder. The British Journal of Psychiatry. 2017 Mar;210(3):197-202.

58. McInerney SJ, Kennedy SH. Review of evidence for use of antidepressants in bipolar depression. The primary care companion for CNS disorders. 2014;16(5).

59. Mehan S, Parveen S, Kalra S. Adenyl cyclase activator forskolin protects against Huntington's disease-like neurodegenerative disorders. Neural Regeneration Research. 2017 Feb;12(2):290.

60. Valvassori SS, Dal-Pont GC, Resende WR, Varela RB, Lopes-Borges J, Cararo JH, Quevedo J. Validation of the animal model of bipolar disorder induced by Ouabain: face, construct and predictive
perspectives. Translational psychiatry. 2019 Jun 4;9(1):1-1.

61. Valvassori SS, Dal-Pont GC, Varela RB, Resende WR, Gava FF, Mina FG, Budni J, Quevedo J. Ouabain induces memory impairment and alter the BDNF signaling pathway in an animal model of bipolar disorder: Cognitive and neurochemical alterations in BD model. Journal of Affective Disorders. 2021 Mar 1;282:1195-202.

62. Kumar N, Sharma N, Khera R, Gupta R, Mehan S. Guggulsterone ameliorates ethidium bromide-induced experimental model of multiple sclerosis via restoration of behavioral, molecular, neurochemical and morphological alterations in rat brain. Metabolic Brain Disease. 2021 Jun;36(5):911-25.

63. Nestler EJ, Hyman SE. Animal models of neuropsychiatric disorders. Nat Neurosci. 2010 Oct;13(10):1161-9. doi: 10.1038/nn.2647. Epub 2010 Sep 27. PMID: 20877280; PMCID: PMC3750731.

64. Rahi S, Gupta R, Sharma A, Mehan S. Smo-Shh signaling activator purmorphamine ameliorates neurobehavioral, molecular, and morphological alterations in an intracerebroventricular propionic acid-induced experimental model of autism. Human & Experimental Toxicology. 2021 Apr 28:09603271211013456.

65. Boynton FD, Dunbar M, Koewler N. General Experimental Techniques. InThe Laboratory Rat 2020 Jan 1 (pp. 771-809). Academic Press.

66. Pegg CC, He C, Stroink AR, Kattner KA, Wang CX. Technique for collection of cerebrospinal fluid from the cisterna magna in rat. Journal of neuroscience methods. 2010 Mar 15;187(1):8-12.

67. Rubio N, Cerciat M, Unkila M, Garcia-Segura LM, Arevalo MA. An in vitro experimental model of neuroinflammation: the induction of interleukin-6 in murine astrocytes infected with Theiler's murine encephalomyelitis virus, and its inhibition by oestrogenic receptor modulators. Immunology. 2011 Jul;133(3):360-9.

68. Wu Z, Liu MC, Liang M, Fu J. Sirt1 protects against thrombomodulin down-regulation and lung coagulation after particulate matter exposure. Blood, The Journal of the American Society of Hematology. 2012 Mar 8;119(10):2422-9.

69. Ohta M, Ohta K. Detection of myelin basic protein in cerebrospinal fluid. Expert review of molecular diagnostics. 2002 Nov 1;2(6):627-33.

70. Minj E, Upadhayay S, Mehan S. Nrf2/HO-1 Signaling Activator Acetyl-11-keto-beta Boswellic Acid (AKBA)-Mediated Neuroprotection in Methyl Mercury-Induced Experimental Model of ALS. Neurochemical Research. 2021 Jun 1:1-8.

71. Mariani S, di Giorgio MR, Martini P, Persichetti A, Barbaro G, Basciani S, Contini S, Poggiogalle E, Sarnicola A, Genco A, Lubrano C. Inverse association of circulating SIRT1 and adiposity: a study on underweight, normal weight, and obese patients. Frontiers in endocrinology. 2018 Aug 7;9:449.

72. Jamali-Raeufy N, Mojarrab Z, Baluchnejadmojarad T, Roghani M, Fahani-Babaei J, Goudarzi M. The effects simultaneous inhibition of dipeptidyl peptidase-4 and P2X7 purinoceptors in an in vivo Parkinson's disease model. Metabolic brain disease. 2020 Mar;35(3):539-48.
73. Tiwari A, Khera R, Rahi S, Mehan S, Makeen HA, Khormi YH, Rehman MU, Khan A. Neuroprotective effect of α-mangostin in the ameliorating propionic acid-induced experimental model of autism in Wistar rats. Brain Sciences. 2021 Mar;11(3):288.

74. Wang YC, Yu YH, Tsai ML, Huang AC. Motor function in an animal model with ouabain-induced bipolar disorder and comorbid anxiety behavior. Psychiatry research. 2018 Oct 1;268:508-13.

75. Rana S, Singh L, Mehan S. Forskolin, ameliorates mitochondrial dysfunction in Streptozotocin induced diabetic nephropathy in rats. Asian Journal of Pharmacy and Pharmacology. 2019;5(1):199-206.

76. Mehan S, Rahi S, Tiwari A, Kapoor T, Rajdev K, Sharma R, Khera H, Kosey S, Kukkar U, Dudi R. Adenylate cyclase activator forskolin alleviates intracerebroventricular propionic acid-induced mitochondrial dysfunction of autistic rats. Neural regeneration research. 2020 Jun;15(6):1140.

77. Kapoor T, Mehan S. Neuroprotective Methodologies in the Treatment of Multiple Sclerosis Current Status of Clinical and Pre-clinical Findings. Current drug discovery technologies. 2021 Jan 1;18(1):31-46.

78. Dudi R, Mehan S. Neuroprotection of brain permeable Forskolin ameliorates behavioral, biochemical and histopatho-logical alterations in rat model of intracerebral hemorrhage. Pharmaspire. 2018;10:68-86.

79. Deshmukh R, Sharma V, Mehan S, Sharma N, Bedi KL. Amelioration of intracerebroventricular streptozotocin induced cognitive dysfunction and oxidative stress by vinpocetine—a PDE1 inhibitor. European journal of pharmacology. 2009 Oct 12;620(1-3):49-56.

80. Mehan S, Meena H, Sharma D, Sankhla R. JNK: a stress-activated protein kinase therapeutic strategies and involvement in Alzheimer’s and various neurodegenerative abnormalities. Journal of Molecular Neuroscience. 2011 Mar;43(3):376-90.

81. Khera H, Awasthi A, Mehan S. Myocardial preconditioning potential of hedgehog activator purmorphamine (smoothened receptor agonist) against ischemia-reperfusion in deoxycortisone acetate salt-induced hypertensive rat hearts. Journal of Pharmacology and Pharmacotherapeutics. 2019 Apr;1;10(2):47

82. Rezin, G. T., Scaini, G., Gonçalves, C. L., Ferreira, G. K., Cardoso, M. R., Ferreira, A. G., ... & Streck, E. L. (2013). Evaluation of Na+, K+-ATPase activity in the brain of young rats after acute administration of fenproporex. Brazilian Journal of Psychiatry, 36, 138-142.

83. Jęśko H, Wencel P, Strosznajder RP, Strosznajder JB. Sirtuins and their roles in brain aging and neurodegenerative disorders. Neurochemical research. 2017 Mar 1;42(3):876-90.

84. Yuan Y, Cruzat VF, Newsholme P, Cheng J, Chen Y, Lu Y. Regulation of SIRT1 in aging: roles in mitochondrial function and biogenesis. Mechanisms of ageing and development. 2016 Apr 1;155:10-21.

85. Tang BL. Sirtuins as modifiers of Parkinson's disease pathology. Journal of neuroscience research. 2017 Apr;95(4):930-42.
86. Duan W. Targeting sirtuin-1 in Huntington’s disease: rationale and current status. CNS drugs. 2013 May 1;27(5):345-52.
87. Kupis W, Palyga J, Tomal E, Niewiadomska E. The role of sirtuins in cellular homeostasis. Journal of physiology and biochemistry. 2016 Sep;72(3):371-80.
88. Shah SA, Khan M, Jo MH, Jo MG, Amin FU, Kim MO. Melatonin stimulates the SIRT 1/Nrf2 signaling pathway counteracting lipopolysaccharide (LPS)-induced oxidative stress to rescue postnatal rat brain. CNS neuroscience & therapeutics. 2017 Jan;23(1):33-44.
89. Lima LC, Saliba SW, Andrade JM, Cunha ML, Cassini-Vieira P, Feltenberger JD, Barcelos LS, Guimarães AL, de-Paula AM, de Oliveira AC, Santos SH. Neurodegeneration alters metabolic profile and Sirt 1 signaling in high-fat-induced obese mice. Molecular neurobiology. 2017 Jul;54(5):3465-75.
90. Fujita Y, Yamashita T. Sirtuins in neuroendocrine regulation and neurological diseases. Frontiers in neuroscience. 2018 Oct 26;12:778.
91. Logan RW, McClung CA. Animal models of bipolar mania: the past, present and future. Neuroscience. 2016 May 3;321:163-88.
92. Valvassori SS, Dal-Pont GC, Resende WR, Jornada LK, Peterle BR, Machado AG, Farias HR, de Souza CT, Carvalho AF, Quevedo J. Lithium and valproate act on the GSK-3β signaling pathway to reverse manic-like behavior in an animal model of mania induced by ouabain. Neuropharmacology. 2017 May 1;117:447-59.
93. Wang YC, Yu YH, Tsai ML, Huang AC. Motor function in an animal model with ouabain-induced bipolar disorder and comorbid anxiety behavior. Psychiatry research. 2018 Oct 1;268:508-13.
94. Kirshenbaum GS, Clapcote SJ, Duffy S, Burgess CR, Petersen J, Jarowek KJ, Yücel YH, Cortez MA, Snead OC, Vilsen B, Peever JH. Mania-like behavior induced by genetic dysfunction of the neuron-specific Na+, K+-ATPase α3 sodium pump. Proceedings of the National Academy of Sciences. 2011 Nov 1;108(44):18144-9.
95. Fava GA, Bech P. The concept of euthymia. Psychotherapy and Psychosomatics. 2016;85(1):1-5.
96. El-Mallakh RS, Adnan El-Masri M, Huff MO, Li XP, Decker S, Levy RS. Intracerebroventricular administration of ouabain as a model of mania in rats. Bipolar disorders. 2003 Oct;5(5):362-5.
97. Silva R, Mesquita AR, Bessa J, Sousa JC, Sotiropoulos I, Leão P, Almeida OF, Sousa N. Lithium blocks stress-induced changes in depressive-like behavior and hippocampal cell fate: the role of glycogen-synthase-kinase-3β. Neuroscience. 2008 Mar 27;152(3):656-69.
98. Mohseni G, Ostadhadi S, Imran-Khan M, Norouzi-Javidan A, Zolfaghari S, Haddadi NS, Dehpour AR. Agmatine enhances the antidepressant-like effect of lithium in mouse forced swimming test through NMDA pathway. Biomedicine & Pharmacotherapy. 2017 Apr 1;88:931-8.
99. Riegel RE, Valvassori SS, Moretti M, Ferreira CL, Steckert AV, de Souza B, Dal-Pizzol F, Quevedo J. Intracerebroventricular ouabain administration induces oxidative stress in the rat brain. International Journal of Developmental Neuroscience. 2010 May 1;28(3):233-7.
100. Vitezić D, Pelčić JM, Zupan G, Vitezić M, Ljubicić D, Simonić A. NA+, K+-ATPase activity in the brain of the rats with kainic acid-induced seizures: influence of lamotrigine. Psychiatria Danubina. 2008 Sep
1;20(3):269-76.

101. Omar AK, Ahmed KA, Helmi NM, Abdullah KT, Qarii MH, Hasan HE, Ashwag A, Nabil AM, Abdu AG, Salama MS. The sensitivity of Na+, K+ ATPase as an indicator of blood diseases. African health sciences. 2017 May 23;17(1):262-9.

102. Lu B, Zhang Q, Wang H, Wang Y, Nakayama M, Ren D. Extracellular calcium controls background current and neuronal excitability via an UNC79-UNC80-NALCN cation channel complex. Neuron. 2010 Nov 4;68(3):488-99.

103. Herman L, Houglan T, El-Mallakh RS. Mimicking human bipolar ion dysregulation models mania in rats. Neuroscience & Biobehavioral Reviews. 2007 Jan 1;31(6):874-81.

104. Budni J, Zomkowski AD, Engel D, Santos DB, dos Santos AA, Moretti M, Valvassori SS, Ornell F, Quevedo J, Farina M, Rodrigues AL. Folic acid prevents depressive-like behavior and hippocampal antioxidant imbalance induced by restraint stress in mice. Experimental neurology. 2013 Feb 1;240:112-21.

105. Muneer A. The neurobiology of bipolar disorder: an integrated approach. Chonnam medical journal. 2016 Jan 1;52(1):18-37.

106. Sigitova E, Fišar Z, Hroudová J, Cikánková T, Raboch J. Biological hypotheses and biomarkers of bipolar disorder. Psychiatry and clinical neurosciences. 2017 Feb;71(2):77-103.

107. Shin BK, Kwon SW, Park JH. Chemical diversity of ginseng saponins from Panax ginseng. Journal of ginseng research. 2015 Oct 1;39(4):287-98.

108. Valvassori SS, Resende WR, Lopes-Borges J, Mariot E, Dal-Pont GC, Vitto MF, Luz G, de Souza CT, Quevedo J. Effects of mood stabilizers on oxidative stress-induce cell death signaling pathways in the brains of rats subjected to the ouabain-induced animal model of mania: mood stabilizers exert protective effects against ouabain-induced activation of the cell death pathway. Journal of psychiatric research. 2015 Jun 1;65:63-70.

109. Leaderbrand K, Chen HJ, Corcoran KA, Guedea AL, Jovasevic V, Wass J, Radulovic J. Muscarinic acetylcholine receptors act in synergy to facilitate learning and memory. Learning & Memory. 2016 Nov 1;23(11):631-8.

110. Butcher AJ, Bradley SJ, Prihandoko R, Brooke SM, Mogg A, Bourgognon JM, Macedo-Hatch T, Edwards JM, Bottrill AR, Challiss RJ, Broad LM. An Antibody Biosensor Establishes the Activation of the M1 Muscarinic Acetylcholine Receptor during Learning and Memory*. Journal of Biological Chemistry. 2016 Apr 22;291(17):8862-75.

111. Gnocchi D, Bruscalupi G. Circadian rhythms and hormonal homeostasis: pathophysiological implications. Biology. 2017 Mar;6(1):10.

112. Nissen NI, Anderson KR, Wang H, Lee HS, Garrison C, Eichelberger SA, Ackerman K, Im W, Miwa JM. Augmenting the antinociceptive effects of nicotinic acetylcholine receptor activity through lynx1 modulation. PLoS One. 2018 Jul 3;13(7):e0199643.

113. Yang XF, Xiao Y, Xu MY. Both endogenous and exogenous ACh plays antinociceptive role in the hippocampus CA1 of rats. Journal of neural transmission. 2008 Jan 1;115(1):1-6.
114. Estakhr J, Abazari D, Frisby K, McIntosh JM, Nashmi R. Differential control of dopaminergic excitability and locomotion by cholinergic inputs in mouse substantia nigra. Current Biology. 2017 Jul 10;27(13):1900-14.

115. Martins-Silva C, De Jaeger X, Guzman MS, Lima RD, Santos MS, Kushnerick C, Gomez MV, Caron MG, Prado MA, Prado VF. Novel strains of mice deficient for the vesicular acetylcholine transporter: insights on transcriptional regulation and control of locomotor behavior. PloS one. 2011 Mar 10;6(3):e17611.

116. Cissé Y, Toossi H, Ishibashi M, Mainville L, Leonard CS, Adamantidis A, Jones BE. Discharge and role of acetylcholine pontomesencephalic neurons in cortical activity and sleep-wake states examined by optogenetics and juxtacellular recording in mice. ENeuro. 2018 Jul;5(4).

117. Grossberg S. Acetylcholine neuromodulation in normal and abnormal learning and memory: vigilance control in waking, sleep, autism, amnesia and Alzheimer's disease. Frontiers in neural circuits. 2017 Nov 2;11:82.

118. Dewey SL, Smith GS, Logan J, Alexoff D, Ding YS, King P, Pappas N, Brodie JD, Ashby CR. Serotonergic modulation of striatal dopamine measured with positron emission tomography (PET) and in vivo microdialysis. Journal of Neuroscience. 1995 Jan 1;15(1):821-9.

119. Borg J, Andrée B, Lundberg J, Halldin C, Farde L. Search for correlations between serotonin 5-HT 1A receptor expression and cognitive functions—a strategy in translational psychopharmacology. Psychopharmacology. 2006 Apr;185(3):389-94.

120. King MV, Marsden CA, Fone KC. A role for the 5-HT1A, 5-HT4 and 5-HT6 receptors in learning and memory. Trends in pharmacological sciences. 2008 Sep 1;29(9):482-92.

121. Mendelsohn D, Riedel WJ, Sambeth A. Effects of acute tryptophan depletion on memory, attention and executive functions: a systematic review. Neuroscience & Biobehavioral Reviews. 2009 Jun 1;33(6):926-52.

122. Daly E, Deeley Q, Hallahan B, Craig M, Brammer M, Lamar M, Cleare A, Giampietro V, Ecker C, Page L, Toal F. Effects of acute tryptophan depletion on neural processing of facial expressions of emotion in humans. Psychopharmacology. 2010 Jul;210(4):499-510.

123. Akimova E, Lanzenberger R, Kasper S. The serotonin-1A receptor in anxiety disorders. Biological psychiatry. 2009 Oct 1;66(7):627-35.

124. Lucas G, Rymar VV, Du J, Mnie-Filali O, Bisgaard C, Manta S, Lambas-Senas L, Wiborg O, Haddjeri N, Piñeyro G, Sadikot AF. Serotonin4 (5-HT4) receptor agonists are putative antidepressants with a rapid onset of action. Neuron. 2007 Sep 6;55(5):712-25.

125. Fox SH, Chuang R, Brotchie JM. Serotonin and Parkinson's disease: On movement, mood, and madness. Movement disorders: official journal of the Movement Disorder Society. 2009 Jul 15;24(9):1255-66.

126. Silber BY, Schmitt JA. Effects of tryptophan loading on human cognition, mood, and sleep. Neuroscience & biobehavioral reviews. 2010 Feb 1;34(3):387-407.
127. Groc L, Choquet D. Linking glutamate receptor movements and synapse function. Science. 2020 Jun 12;368(6496).

128. Suzuki M, Nelson AD, Eickstaedt JB, Wallace K, Wright LS, Svendsen CN. Glutamate enhances proliferation and neurogenesis in human neural progenitor cell cultures derived from the fetal cortex. European Journal of Neuroscience. 2006 Aug;24(3):645-53.

129. Gvirts-Probolovski HZ, Dahan A. The Potential Role of Dopamine in Mediating Motor Function and Interpersonal Synchrony. Biomedicines. 2021 Apr;9(4):382.

130. Jankovic J. Dopamine depleters in the treatment of hyperkinetic movement disorders. Expert opinion on pharmacotherapy. 2016 Dec 11;17(18):2461-70.

131. Arias-Carrió O, Caraza-Santiago X, Salgado-Licona S, Salama M, Machado S, Nardi AE, Menéndez-González M, Murillo-Rodríguez E. Orquestic regulation of neurotransmitters on reward-seeking behavior. International archives of medicine. 2014 Dec;7(1):1-5.

132. Perry CJ, Baciadonna L, Chittka L. Unexpected rewards induce dopamine-dependent positive emotion-like state changes in bumblebees. Science. 2016 Sep 30;353(6307):1529-31.

133. Taylor AM, Becker S, Schweinhardt P, Cahill C. Mesolimbic dopamine signaling in acute and chronic pain: implications for motivation, analgesia, and addiction. Pain. 2016 Jun;157(6):1194.

134. Ott T, Nieder A. Dopamine and cognitive control in prefrontal cortex. Trends in cognitive sciences. 2019 Mar 1;23(3):213-34.

135. Engelhard B, Finkelstein J, Cox J, Fleming W, Jang HJ, Ornelas S, Koay SA, Thiberge SY, Daw ND, Tank DW, Witten IB. Specialized coding of sensory, motor and cognitive variables in VTA dopamine neurons. Nature. 2019 Jun;570(7762):509-13.

136. Li C, Sugam JA, Lowery-Gionta EG, McElligott ZA, McCall NM, Lopez AJ, McLveen JM, Pleil KE, Kash TL. Mu opioid receptor modulation of dopamine neurons in the periaqueductal gray/dorsal raphe: a role in regulation of pain. Neuropsychopharmacology. 2016 Jul;41(8):2122-32.

137. Ayano GJ. Dopamine: receptors, functions, synthesis, pathways, locations and mental disorders: review of literatures. J Ment Disord Treat. 2016 Aug 2;2(120):2.

138. Zheng LF, Liu S, Zhou L, Zhang XL, Yu X, Zhu JX. Dopamine and Gastrointestinal Motility. In Dopamine in the Gut 2021 (pp. 133-202). Springer, Singapore.

139. Yang YL, Ran XR, Li Y, Zhou L, Zheng LF, Han Y, Cai QQ, Wang ZY, Zhu JX. Expression of dopamine receptors in the lateral hypothalamic nucleus and their potential regulation of gastric motility in rats with lesions of bilateral substantia nigra. Frontiers in neuroscience. 2019 Mar 14;13:195.

Figures
Figure 1

Experimental protocol schedule (Behavioral & Biochemical estimations)
Figure 2

Neuroprotective potential of solanesol on body weight in ouabain-induced bipolar disorder rats. Statistical analysis followed by two-way ANOVA (post-hoc Bonferroni’s test). Values expressed as mean±SEM (n=6 rats per group). * p<0.001 v/s vehicle control, sham control and SNL80 perse; # p<0.001 v/s OUA; #$ p<0.001 v/s OUA + SNL40; #β p<0.001 v/s OUA + SNL40 and OUA + SNL80; #@ OUA + Li60
Figure 3

a: Neuroprotective potential of solanesol on Number of crossing in OUA induced bipolar disorder rats
Statistical analysis followed by two-way ANOVA (post-hoc Bonferroni’s test). Values expressed as mean±SEM (n=6 rats per group). * p<0.001 v/s vehicle control, sham control and SNL80 perse; # p<0.001 v/s OUA; #$ p<0.001 v/s OUA + SNL40; #β p<0.001 v/s OUA + SNL40 and OUA + SNL80; #@ OUA + Li60

b: Neuroprotective potential of solanesol on Number of rearing in OUA induced bipolar disorder rats
Neuroprotective potential of solanesol on locomotor activity in OUA induced bipolar disorder rats
Statistical analysis followed by two-way ANOVA (post-hoc Bonferroni's test). Values expressed as mean±SEM (n=6 rats per group). * p<0.001 v/s vehicle control, sham control and SNL80 perse; # p<0.001 v/s OUA; #$ p<0.001 v/s OUA + SNL40; #β p<0.001 v/s OUA + SNL40 and OUA + SNL80; #@ p<0.001 v/s OUA + Li60
Figure 5

Neuroprotective potential of solanesol on immobility time in OUA-induced bipolar disorder rats Statistical analysis followed by two-way ANOVA (post-hoc Bonferroni’s test). Values expressed as mean±SEM (n=6 rats per group). * p<0.001 v/s vehicle control, sham control and SNL80 perse; # p<0.001 v/s OUA; #$ p<0.001 v/s OUA + SNL40; #β p<0.001 v/s OUA + SNL40 and OUA + SNL80; #@ OUA + Li60
Figure 6

Neuroprotective potential of solanesol on Na+/K+ ATPase enzyme level in OUA-induced bipolar disorder rats Statistical analysis followed by one-way ANOVA (post-hoc tukey test). Values expressed as mean±SEM (n=6 rats per group). * p<0.001 v/s vehicle control, sham control and SNL80 perse; # p<0.001 v/s OUA; #$ p<0.001 v/s OUA + SNL40; #β p<0.001 v/s OUA + SNL40 and OUA + SNL80; #@ OUA + Li60

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SUPPLEMENTARYBEHAVIOURALPARAMETERS.xlsx
- SUPPLEMENTARYBLOODPLASMAPARAMETERS.xlsx
- SUPPLEMENTARYBODYWEIGHTPARAMETER.xlsx
- SUPPLEMENTARYBRAINHOMOGENATEPARAMETERS.xlsx
- SUPPLEMENTARYMITOCHONDRIALETCPARAMETERS.xlsx
- SUPPLEMENTARYSIRT1LEVELINCSFBLOODPLASMABRAIN.xlsx