A Genetic Susceptibility Mechanism for Major Depression
Combinations of polymorphisms Defined the Risk of Major Depression and Subpopulations

Yanfang Wang, MM, Ning Sun, MD, Suping Li, Bachelor, Qiaorong Du, Bachelor, Yong Xu, MD, Zhifeng Liu, MD, and Kerang Zhang, MD

INTRODUCTION

Major depression (MD) is a highly inherited psychiatric disorder. At present, the pathogenesis of MD has remained unclear. Family, twin, and adoption studies suggested that genetic contribution to the disease is one of the main etiological factors. The heritability of MD is about 60%.1–3 In the prevailing pathogenic model, MD is a disorder with abnormal synaptic connectivity in which Monoamine neurotransmission systems are involved. Some studies also showed that the dysfunction of norepinephrine (NE) neurotransmission is an important hypothesis for the pathogenesis of MD.4 Studies of NE metabolites showed decreased urinary levels of 3-methoxy-4-hydroxyphenylglycol, the major metabolite of NE in depressive states of unipolar patients, and antidepressant treatment could cause decreased NE turnover.5–9

The norepinephrine transporter (NET) is a major target for antidepressant drugs such as serotonin noradrenalin reuptake inhibitors (SNRI), and selective NE reuptake inhibitor (NRI). According to the clinic therapeutic effects of antidepressant drugs, NET might play important roles in pathophysiology and pharmacological treatment of MD, and has become one of the attractive candidate genes in MD research.9–14 As a Na+/Cl− -dependent substrate-specific transporter, NET is a 617-amino acid protein and contains 12 cross membrane sectors. NET gene (SLC6A2) is located on chromosome 16q12.2, and it spans approximately 45 kb and consists of 14 exons (protein coding regins).15 Till now, studies of NET mainly focused on the 5′ flanking promoter region T-182C polymorphism16 and the silent polymorphism G1287A, located in exon 9,17 but the relationship between polymorphisms of NET gene and MD remained unclear. The current findings as mentioned above, the present study attempts to examine the relationship between polymorphisms of NET gene and MD in northern Han Chinese population.

MATERIAL AND METHODS

Subjects

The sample consisted of 388 unrelated patients with MD (185 males and 203 females; average age, 30.90 ± 9.76 years, range 16–63 years) who were recruited from the Shanxi Medical University Institute of Mental Health and 388 matched normal controls (176 males and 212 females, average age 29.49 ± 10.63 years, range 16–64 years). All patients and Control volunteers were interviewed by the consensus of at least 2 experienced psychiatrists and diagnosed according to Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) criteria.24 Detailed information of a history of the illness, hospitalization, and medication was noted, and patients with mental and organic diseases, history of drug dependence, major neurological disorder, and substance dependence were excluded.
Single-Nucleotide Polymorphism Identification

Following the standard procedures, genomic DNA extrac-
tion was prepared from elbow vein whole blood samples. Two single-nucleotide polymorphisms (SNPs) of the NET gene, T-182C and G1287A, were examined in this study. The primer analysis software primer 5.0 was used to design primer pairs, and each primer was checked against BLAST to ensure the specificity.

Polymerase chain reaction (PCR) was used to amplify 2 polymorphisms of NET gene for T-182C and G1287A. For genotyping the T-182C polymorphism, forward primer 5'-CTG TGG TGC TGT TGT ATT GAC G-3' and reverse primer 5'-GGG TTT TGG TGT TTT ACT GCT T-3' were used. The PCR reaction mixtures contained 60 ng of genomic DNA, 200 μmol/L dNTPs, 0.2 μmol/L each primer, 2.5 μL 10 × PCR buffer, and 1 unit of Taq DNA polymerase with a total volume of 25 μL. PCR amplification was performed using the following cycling profile: initial denaturation at 94°C for 5 minutes, followed by 35 cycles of 94°C for 30 seconds, 63°C annealing for 30 seconds, 72°C for 30 seconds, and final elongation at 72°C for 10 minutes. For genotyping the G1287A polymorphism, forward primer 5'-GGC TCT GCT TGG ATA AAG GGA AA-3' and reverse primer 5'-GTC TGG CGC TTT GCG TTT ACT GCT G-3' were used. The PCR reaction mixtures contained 60 ng of genomic DNA, 200 μmol/L dNTPs, 0.2 μmol/L each primer, 2.5 μL 10 × PCR buffer, and 1 unit of Taq DNA polymerase with a total volume of 25 μL. PCR amplification was performed using the following cycling profile: initial denaturation at 94°C for 5 minutes, followed by 35 cycles of 94°C for 30 seconds, 59°C annealing for 30 seconds, 72°C for 30 seconds, and final elongation at 72°C for 10 minutes. NET gene mutations were confirmed by bidirectional direct sequencing analysis with a model 3700 DNA analyzer (Applied Biosystems, Foster City, CA).

TABLE 1. Genotype Distributions and Allele Frequencies of T-182C Polymorphism in the NET Gene Between Patients With Major Depression or its Clinical Subtypes and Control Subjects

Group	n	Genotype, n (%)	Allele, n (%)		
		T/T T/C T/C	T/C		
			χ² df P	T/C	χ² df P
Major depression	388	173 (46.4)	172 (44.3)	43 (11.1)	6.865 2 0.034 518 (66.8) 258 (33.2) 6.458 1 0.011
MD, positive FH	80	31 (38.8)	40 (50.0)	9 (11.3)	5.388 2 0.068 102 (63.8) 58 (36.3) 5.154 1 0.023
MD, negative FH	308	142 (46.1)	132 (42.9)	34 (11.0)	5.089 2 0.079 416 (67.5) 200 (32.5) 4.367 1 0.037
MD, early-onset	200	87 (43.5)	89 (44.5)	24 (12.0)	6.658 2 0.035 263 (65.8) 137 (34.2) 6.075 1 0.014
MD, late-onset	188	86 (45.7)	83 (44.1)	19 (10.1)	3.145 2 0.028 225 (67.8) 121 (32.2) 2.913 1 0.088
MD, suicide	272	121 (44.5)	117 (43.0)	34 (12.5)	7.911 2 0.019 359 (66.0) 185 (34.0) 6.801 1 0.009
MD, no suicide	116	52 (44.8)	55 (47.4)	9 (7.8)	1.870 2 0.393 159 (68.5) 73 (31.5) 1.514 1 0.219
Control	388	102 (52.1)	160 (41.2)	26 (6.7)	564 (72.7) 212 (27.3) *
analyses with these 2 polymorphisms were not applicable. To evaluate the genotype–genotype interaction between the 2 loci of T-182C and G1287A in the NET gene for risk of MD and its subclinical phenotypes, 8 combinatorial genotypes of the 2 loci were analyzed by logistic regression (Table 4). Compared with those having both -182T/T and 1287G/G genotype, we found that in patients with MD, early-onset MD, MD with suicide concept group, the -182C/C and 1287G/A combinatorial genotype has significant risk (OR = 2.468, \(P = 0.040 \); OR = 4.050, \(P = 0.003 \); OR = 3.130, \(P = 0.010 \)). In patients with FH group, the -182C/C and 1287A/A combinatorial genotype has significant risk (OR = 8.100; \(P = 0.010 \)).

DISCUSSION

Recently, researches of NET gene polymorphism start to focus on the 5’ flanking promoter region T-182C polymorphism and the silent polymorphism G1287A located in exon 9. The T-182C polymorphism is 182 upstream of the first codon in the 5’ flanking promoter region of the NET gene, where several potential transcriptional elements are located, and seem to have an important meaning as enhancer of transcription and correct splicing. The T/C point mutation lies in this intron may lead to an altered transcriptional activity by changes in the DNA structure.16,26 The G1287A polymorphism located in exon9 of the NET gene, and the G→A change is a silent mutation. It caused amino acid sequence change without protein structural effect, then possibly affects protein function. Among potential genetic markers of MD, it is a particularly interesting candidate because of its higher heterozygosity than the others.17,27 Therefore, attempting to explore the relationship between T-182C and G1287A polymorphisms of the norepinephrine transporter gene and MD, we performed a case–control association study in northern Han Chinese population.

In this study, significant differences were found in genotypic and allelic frequencies of T-182C polymorphism between the patient and control group. The CC genotype portion (11.1%) and the C allele frequency (33.2%) of MD patients are both higher than the control group (6.7% and 27.3%, respectively), indicating that the NET gene is possibly a susceptible gene for MD. Furthermore, using TT and GG genotype as reference, respectively, we observed the relative risk factor change tendency of various genotypes. The result showed that when referenced by TT genotype, the OR value increased gradually from TC to CC genotype and had remarkable difference; when referenced by T allele, the OR value of C allele also significantly increased. These results suggested that the T-182C polymorphism of NET gene may be a risk factor for MD, which is consistent with previous findings in Asian population.18,19 Ryu et al performed a case–control association study with 112 South Korea MD patients and 136 healthy controls, and found that the TT genotype frequency in the case group was significantly lower than that in the control group, showing there was a positive relationship between the T-182C gene polymorphism and MD. However, there were also some inconsistent results in Han Chinese and white populations. Chang et al found no relationship between the T-182C polymorphism of NET gene and MD.20,21,23 The contradictory findings are possibility due to race, analysis method, and sample size differences and clinical heterogeneity of illness. In addition, we could not detect an association between G1287A polymorphism and MD, which is consistent with previous findings.20,21,23 But using antidepressant drug such as methylphenidate, Yang et al12 observed the association between NET gene and NRI antidepressant, and further discovered that the G1287A gene polymorphism has significant efficacy in response to NRI antidepressant, indicating a positive relationship between G1287A polymorphism and MD. Larger replication studies with different ethnic samples for these markers are needed in future study.

Several studies have reported that FH and the morbidity age are associated with depressive patients,28–31 and norepinephrine may be associated with the suicide concept of MD. In

TABLE 2. Genotype Distributions and Allele Frequencies of G1287A Polymorphism in the NET Gene Between Patients with Major Depression or its Clinical Subtypes and Control Subjects

Genotype, n (%)	Allele, n (%)											
Group	n	G/G	G/A	A/A	\(\chi^2 \)	df	\(P \)	G	A	\(\chi^2 \)	df	\(P \)
Major depression	388	199 (51.3)	159 (41.0)	30 (7.7)	0.316	2	0.856	557 (71.8)	219 (28.2)	0.080	1	0.777
MD, positive FH	80	40 (50.6)	31 (39.2)	8 (10.1)	1.169	2	0.577	111 (76.3)	47 (23.7)	0.307	1	0.580
MD, negative FH	308	159 (51.5)	128 (41.4)	12 (7.1)	0.049	2	0.976	446 (72.2)	172 (27.8)	0.011	1	0.916
MD, early-onset	200	97 (48.5)	91 (45.5)	12 (6.0)	0.774	2	0.686	285 (71.3)	115 (28.8)	0.180	1	0.671
MD, late-onset	188	102 (54.3)	68 (36.2)	18 (9.6)	2.534	2	0.282	272 (72.3)	104 (27.7)	0.001	1	0.977
MD, suicide	272	138 (50.7)	114 (41.9)	20 (7.4)	0.119	2	0.946	390 (71.7)	157 (28.3)	0.085	1	0.770
MD, no suicide	116	61 (52.6)	45 (38.8)	10 (8.6)	0.670	2	0.715	167 (72.0)	65 (28.0)	0.017	1	0.895
Control	388	200 (51.5)	162 (41.8)	26 (6.7)	\n							
Significant level calculated through a 1000-fold permutation method. FH = family history, MD = major depression.
Logistic Regression Analysis of Combinatory 2 Loci of T-182C and G1287A in NET Gene for Risk of Major Depression and its Clinical Subtypes

Group	OR 95% CI	P-value
Major depression		
MD, positive FH	1.286/0.762–2.169/0.346	1.504/0.882–2.566/0.133
MD, negative FH	1.567/0.807–3.043/0.183	1.051/0.277–3.983/0.942
MD, suicide	3.130/1.270–7.706/0.390	2.452/0.212–28.303/0.438
MD, no suicide	1.285/0.661–2.495/0.459	1.471/0.373–5.807/0.579

MD, early-onset	1.286/0.762–2.169/0.346	1.504/0.882–2.566/0.133
MD, suicide	3.130/1.270–7.706/0.390	2.452/0.212–28.303/0.438
MD, no suicide	1.285/0.661–2.495/0.459	1.471/0.373–5.807/0.579

| MD, suicide | 3.130/1.270–7.706/0.390 | 2.452/0.212–28.303/0.438 |
| MD, no suicide | 1.285/0.661–2.495/0.459 | 1.471/0.373–5.807/0.579 |

In conclusion, we investigated 2 main polymorphisms within the 5' promoter and coding region of the NET gene in this study and found possible genetic combinatorial risk factors for MD and MD sub-populations. The pathogenesis of MD is still unclear at present, and it is possible that other sequence variations are also important in determining susceptibility to MD. As a multifactorial complex disease, MD probably occurs by various genetic and environmental influences. Therefore, further studies with larger size and more complicated factors are needed to replicate and extend the initial finding.

References

1. Nobile M, Cataldo MG, Giorda R, et al. A case-control and family-based association study of the 5-HTTLPR in pediatric-onset depressive disorders. Biol Psychiat. 2004;56:292–295.
2. Hammen C, Shih JH, Brennan PA. Intergenerational transmission of depression: test of an interpersonal stress model in a community sample. J Consult Clin Psychol. 2004;72:511–522.
3. Jonathan F, Kenneth SK. The genetics of major depression. Neuron. 2014;81:484–503.
4. Charney DS. Monoamine dysfunction and the pathophysiology and treatment of depression. J Clin Psychiatry. 1998;59(Suppl 14):11–14.
5. De Bellis MD, Geracioli TD Jr, Altemus M, et al. Cerebrospinal fluid monoamine metabolites in fluoxetine-treated patients with major depression and in healthy volunteers. Biol Psychiatry. 1993;33:636–641.
6. Owens MJ. Molecular and cellular mechanisms of antidepressant drugs. Depress Anxiety. 1997;4:153–159.
7. Goddard AW, Ball SG, Martinez J, et al. Current perspectives of the roles of the central norepinephrine system in anxiety and depression. Depress Anxiety. 2010;27:339–350.
8. Sheline Y, Bardgett ME, Csernansky JG. Correlated reductions in cerebrospinal fluid 5-HIAA and MHPG concentrations after treatment with selective serotonin reuptake inhibitors. J Clin Psychopharmacol. 1997;17:11–14.
9. Britta H, Heinz B. Depression and antidepressants: insights from knockout of dopamine, serotonin or noradrenaline re-uptake transporters. Pharmacol Therapeut. 2011;129:352–368.
10. Yoshida K, Takahashi H, Higuchi H, et al. Prediction of Antidepressant Response to Milnacipran by Norepinephrine Transporter Gene Polymorphisms. Am J Psychiatry. 2004;161:1575–1580.
11. Nnadi CU, Goldberg JF, Malhotra AK. Pharmacogenetics in mood disorder. *Curr Opin Psychiatr.* 2005;18:33–39.
12. Dziedzicka-Wasylewska M, Faron-Górecka A, Kuśmider M, et al. Effect of antidepressant drugs in mice lacking the norepinephrine transporter. *Neuropsychopharmacol.* 2006;31:2424–2432.
13. Yang L, Wang YF, Li J, et al. Association of norepinephrine transporter gene with methylphenidate response. *J Am Acad Child Psy.* 2004;43:1154–1158.
14. Kim H, Lim SW, Kim S, et al. Monoamine transporter gene polymorphisms and antidepressant response in Koreans with late-life depression. *JAMA.* 2006;296:1609–1618.
15. Porzgen P, Bonisch H, Brüss M. Molecular cloning and organization of the coding region of the human norepinephrine transporter gene. *Biochem Biophys Res Commun.* 1995;215:1145–1150.
16. Kim CH, Kim HS, Cubells JF, et al. Previously undescribed intron and extensive 5′ upstream sequence, but not Phox2a-mediated transactivation, are necessary for high level cell type-specific expression of the human norepinephrine transporter gene. *J Biol Chem.* 1999;274:6507–6518.
17. Stöber G, Nöthen MM, Pörzgen P, et al. Systematic search for variation in the human norepinephrine transporter gene: identification of five naturally occurring missense mutations and study of association with major psychiatric disorders. *Am J Med Genet.* 1996;67:523–532.
18. Ryu SH, Lee SH, Lee HJ, et al. Association between norepinephrine transporter gene polymorphism and major depression. *Neuropsychobiology.* 2004;49:174–177.
19. Inoue K, Itoh K, Yoshida K, et al. Positive association between T-182C polymorphism in the norepinephrine transporter gene and susceptibility to major depressive disorder in a Japanese population. *Neuropsychobiology.* 2004;50:301–304.
20. Owen D, Du L, Bakish D, et al. Norepinephrine transporter gene polymorphism is not associated with susceptibility to major depression. *Psychiatry Res.* 1999;87:1–5.
21. Zill P, Engel R, Baghai TC, et al. Identification of a naturally occurring polymorphism in the promoter region of the norepinephrine transporter and analysis in major depression. *Neuropsychopharmacol.* 2002;26:489–493.
22. Leszczynska-Rodziiewicz A, Czerski PM, Kapelski P, et al. Polymorphism of the norepinephrine transporter gene in bipolar disorder and schizophrenia: Lack of association. *Neuropsychobiology.* 2002;45:182–185.
23. Chang C-C, Lu R-B, Chen C-L, et al. Lack of association between the norepinephrine transporter gene and major depression in a Han Chinese population. *J Psychiatry Neurosci.* 2007;32:121–128.
24. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 4th edition text revised. Washington, DC: American Psychiatric Association; 2000.
25. Dudbridge F. Pedigree disequilibrium tests for multilocus haplotypes. *Genet Epidemiol.* 2003;25:115–121.
26. Meyer J, Wiedemann P, Okladnova O, et al. Cloning and functional characterization of the human norepinephrine transporter gene promoter. *J Neural Transm.* 1998;105:1341–1350.
27. Sand PG, Mori T, Godau C, et al. Norepinephrine transporter gene (NET) variants in patients with panic disorder. *Neurosci Lett.* 2002;333:41–44.
28. Duggan C, Sham P, Minne C, et al. Family history as a predictor of poor long-term outcome in depression. *Br J Psychiatry.* 1998;173:527–530.
29. Fiedorowicz JG, Endicott J, Leon AC, et al. Subthreshold hypomanic symptoms in progression from unipolar major depression to bipolar Disorder. *Am J Psychiatry.* 2011;168:40–48.
30. Klein DN, Schatzberg AF, McCullough JP, et al. Age of onset in chronic major depression: relation to demographic and clinical variables, family history, and treatment response. *J Affect Disord.* 1999;55:149–157.
31. Zisook S, Rush AJ, Albal A, et al. Factors that differentiate early vs. later onset of major depression disorder. *Psychiatry Res.* 2004;129:127–140.