Unconventional elasticity in smectic-A elastomers

Olaf Stenull∗
Fachbereich Physik, Universität Duisburg-Essen, Campus Duisburg, 47048 Duisburg, Germany

T. C. Lubensky
Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
(Dated: February 1, 2008)

We study two aspects of the elasticity of smectic-A elastomers that make these materials genuinely unconventional and qualitatively different from conventional uniaxial rubbers. Under strain applied parallel to the layer normal, monodomain smectic-A elastomers exhibit a drastic change in Young’s modulus above a threshold strain value of about 3%, as has been measured in experiments by Nishikawa and Finkelmann [Macromol. Chem. Phys. 200, 312 (1999)]. Our theory predicts that such strains induce a transition to a smectic-C-like state and that it is this transition that causes the change in elastic modulus. We calculate the stress-strain behavior as well as the tilt of the smectic layers and the molecular orientation for strain along the layer normal, and we compare our findings with the experimental data. We also study the electroclinic effect in chiral smectic-A* elastomers. According to experiments by Lehmann et al. [Nature 410, 447 (2001)] and Köhler et al. [Applied Physics A 80, 381 (2003)], this effect leads in smectic-A* elastomers to a giant or, respectively, at least very large lateral electrostriction. Incorporating polarization into our theory, we calculate the height change of smectic-A* elastomer films in response to a lateral external electric field, and we compare this result to the experimental findings.

PACS numbers: 83.80.Va, 61.30.-v, 42.70.Df

I. INTRODUCTION

Smectic elastomers are rubbery materials that have the macroscopic symmetry properties of smectic liquid crystals. They possess a plane-like, lamellar modulation of density in one direction. In the smectic-A (SmA) phase, the Frank director n describing the average orientation of constituent mesogens is parallel to the normal N of the smectic layers whereas in the smectic-C (SmC) phase, it has a component in the plane of the layers. Monodomain SmA elastomers are macroscopically uniaxial elastomers, albeit with unusual mechanical and electrical properties. For example, when strained along an axis normal to smectic layers, they exhibit a reorientation of smectic layers and an associated decrease in Young’s modulus Y along this axis above a critical strain. This phenomenon, discovered experimentally by Nishikawa and Finkelmann (NF), is the analog in smectic elastomers of the Helfrich-Hurault effect in uncrosslinked smectics. Moreover, like thermotropic chiral smectics, chiral SmA elastomers exhibit electrostriction, as depicted in Fig. 1, in which smectic layer spacing decreases in response to an electric field in the plane of the layers. Early experiments produced a reduction in layer spacing by as much as 4% at field of 1.5 MV m−1. More recent experiments produce a reduction of 1% in fields as high as 3 MV m−1 in films with one free edge to reduce mechanical stress. Even a

* Present address: Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA

FIG. 1: Electroclinic effect in SmA* elastomers. (a) Without electric field, the elastomeric film has a thickness h0. (b) By application of a lateral electric field, a tilt angle φE is induced in a plane perpendicular to the field and the film thickness decreases to a value h.

1% reduction in height is larger than that produced in most traditional actuators.

In this paper, we analyze the experiments just discussed using a phenomenological model of smectic elastomers we have recently developed. This model, which generalizes the standard Lagrangian approach to elasticity theory, brings together in a single rubric physics associated with the crosslinked network that define the elastomer, the layering of the smectic phase, and the interaction between the nematic director and both the network and the smectic layers. It includes energies that favor constant smectic layer spacing and that lead to the development of shear strain in response to stretch perpendicular to layers above a critical stress. It also includes symmetry-permitted interactions between c-ordering (molecular tilt relative to layer normal) and shear strain that cause shear to produce c-ordering and vice versa. Thus a strain along the smectic layer normal produces the c-ordering of a SmC elastomer, as well as
shear strain. We will analyze this instability of a SmA elastomer under strain parallel to the layer normal in terms of an induced transition to a SmC elastomer. Comparing our numerical estimates for the stress-strain behavior and the tilt of the smectic layers to the available experimental curves, we find convincing agreement. To analyze the electrostriction experiments, we add to our model the standard chiral couplings of the electric field to the Frank director and layer normal. The result is that an electric field in the plane of the layers produces both SmC ordering and shear strain linear in the electric field and a reduction in layer spacing quadratic in the field. Our numerical estimate of the magnitude of the reduction in layer spacing is in accord with the experimental values. To our knowledge, experiments have not sought to detect the shear strain induced by the external electric field.

Warner and Adams (AW) [12] have recently developed a theory of the elastic properties of SmA elastomers that combines the neoclassical model of nematic elastomers [1] with the compressional energetics of smectic layers. This theory assumes that the nematic director is locked to the layer normal and that the elastomer is incompressible. Our theory is phenomenological; it is based on an expansion, consistent with all symmetries, of the free energy in powers of the Cauchy-Saint-Venant strain tensor [10] and the nematic director. The AW theory is semi-microscopic, and it applies, strictly speaking, solely to crosslinked networks of liquid crystal polymers. However, it provides a more realistic description of these particular elastomers than does our phenomenological model if strains are large. We compare the AW theory and ours in some detail, and we explain how the former theory can be extended to allow for relative tilt between the director and the layer normal. Though the details of the AW approach and ours differ considerably, except for the development of SmC order, they not surprisingly predict qualitatively identical results. A theory for chiral smectic elastomers was first set up by Terentjev and Warner [13,14] using group theory. Our theory with polarization generalizes the theory by Terentjev and Warner in a formalism that ensures invariance with respect to arbitrary rather than infinitesimal rotations of both the director and mass points.

The outline of our paper is as follows: Section II briefly reviews our model for smectic elastomers. Section III treats the behavior of SmA elastomers under strain imposed along the layer normal. Exploiting the model reviewed in Sec. II, it derives predictions for the stress-strain behavior as well as the layer and the molecular tilt in response to strain. Section IV incorporates polarization into our model of Sec. II and considers the electroclinic effect and electrostriction. Section V presents concluding remarks. There is one appendix that compares our theory in some detail to the AW theory as it stands. Moreover, the appendix presents a generalization of the AW model that allows for SmC ordering.

II. MODELLING SMECTIC ELASTOMERS

Let us first review briefly our model for smectic elastomers. Smectic elastomers are, like any elastomer, permanently crosslinked amorphous solids whose static elasticity is most easily described in Lagrangian coordinates in which \(\mathbf{x} \) labels a mass point in the undeformed (reference) material and \(\mathbf{R}^{\cdot}(\mathbf{x}) = \mathbf{x} + \mathbf{u}^{\cdot}(\mathbf{x}) \), where \(\mathbf{u}^{\cdot}(\mathbf{x}) \) is the displacement variable, labels the position of the mass point \(\mathbf{x} \) in the deformed (target) material. Lagrangian elastic energies are formulated in terms of the strain tensor \(\mathbf{u} = \frac{1}{2}(\mathbf{g} - \mathbf{\delta}) \) where \(\mathbf{\delta} \) is the unit matrix, \(\mathbf{g} = \mathbf{A}^T \mathbf{A} \) is the metric tensor, and \(\Lambda_{ij} = \partial R_i/\partial x_j \) are the components of the Cauchy deformation tensor \(\mathbf{A} \) with \(i,j,k = x,y,z \). The components of \(\mathbf{u} \) are thus \(u_{ij}(\mathbf{x}) = \frac{1}{2}(\Lambda_{ik}\Lambda_{kj} - \delta_{ij}) = \frac{1}{2}(\partial_i u_j + \partial_j u_i + \partial_k u_k\partial_i u_k) \). Here and in the following the summation convention on repeated indices is understood.

As in nematic elastomers, the Frank director \(\mathbf{n} \) interacts with the elastic strain. The strain \(\mathbf{g} \) is a reference-space tensor that transforms under the same reference-space operations that transform \(\mathbf{x} \). The director \(\mathbf{n} \), on the other hand, is a target-space vector that transforms under the same target-space operations that transform \(\mathbf{R} \). To create scalar invariants coupling \(\mathbf{u} \) to \(\mathbf{n} \), we need to convert \(\mathbf{n} \) to a reference-state vector \(\mathbf{n} \). This is accomplished with the aid of the polar decomposition [12] of the deformation tensor: \(\mathbf{A} = \mathbf{O} \mathbf{g}^{1/2} \), where \(\mathbf{g}^{1/2} \) is a symmetric reference-space tensor and \(\mathbf{O} = \mathbf{A} \mathbf{g}^{-1/2} \) is a rotation matrix. The components of \(\mathbf{O} \) are \(O_{ij} = \Lambda_{ik}[\mathbf{g}^{-1/2}]_{kj} \) where we use the notation that \([\mathbf{M}]_{ij} \) is the \(ij \)-component of the matrix \(\mathbf{M} \) for any square matrix \(\mathbf{M} \) and exponent \(\alpha \) (it is understood that \(\mathbf{M}^{\alpha} \equiv [\mathbf{M}]^{\alpha} \)).

The left and right indices in \(O_{ij} \) transform, respectively, under target-space and reference-space operations, and \(\mathbf{O} \) converts reference-space vectors to target-space vectors. Thus, we have \(\mathbf{n} = \mathbf{O} \mathbf{n} \) and \(\mathbf{\hat{n}} = \mathbf{O}^{-1} \mathbf{n} \). We will express the vectors \(\mathbf{n} \) and \(\mathbf{\hat{n}} \) in terms of their components \(c_a \) and \(\tilde{c}_a \) perpendicular to the initial anisotropy axis along \(z: n_z = c_a, n_z = (1 - c_a^2)^{1/2} \approx 1 - \frac{1}{2}c_a^2 \) and similarly for \(\tilde{n}_a \), where we introduced the notation that letters \(a, b, c \ldots \) at the beginning of the alphabet run over the directions \(x, y \) perpendicular to \(z \). Reference-space vectors such as \(\mathbf{\hat{c}} \) and the vector \(\mathbf{\hat{e}} = (0, 0, 1) \) along the reference-space uniaxial direction [10] can be contracted with the strain \(u_{ij} \) to produce scalars like \(\tilde{c}_a u_{ab} \mathbf{\hat{c}}_b \) and \(\tilde{c}_a u_{ax} \).

We can now construct free-energy densities, which we will simply call energies, for the various contributions to the total energy \(f \) of a smectic elastomer. There is a contribution \(f_{\text{net}} \) to \(f \) that is identical to the soft elastic energy of nematic elastomers including both the familiar terms quadratic in \(u_{ij} \) and \(\tilde{c}_a \). The characteristic energies scales in this free energy are set by the volume bulk modulus \(B \approx 3 \times 10^{10} \text{ Pa} \), the network shear modulus \(\mu \approx 10^6 \), and moduli that scale as \(\mu \) times a factor that...
vanishes when the ratio \(p \) of the polymer step lengths parallel and perpendicular to the local director becomes unity.

Smectic elastomers have a layer structure with a preferred layer spacing whose magnitude depends on the angle \(\Theta \) between \(\mathbf{n} \) and the layer normal \(\mathbf{N} \) (or, equivalently between \(\mathbf{n} \) and \(\mathbf{N} \)). Smectic order is described by a complex mass-density-wave amplitude whose phase is \(\phi = \varrho_0[R_z - U(\mathbf{R})] = \varrho_0[z + u_z(x) - U(\mathbf{R}(x))] \), where \(U(\mathbf{R}) \) is the displacement field of the smectic layers, and \(\varrho_0 = 2\pi/d \), where \(d \) is the preferred layer spacing when \(\mathbf{n} \) is parallel to \(\mathbf{N} \). We consider only elastomers crosslinked in the smectic phase in which case, \(U(\mathbf{R}(x)) = u_z(x) \), and \(\phi = \varrho_0 d \). The energy associated with changes in the smectic layer spacing is

\[
f_{\text{layer}} = \frac{1}{2} B_{\text{sm}} \varrho_0^{-4} [(\mathbf{n} \cdot \nabla \phi)^2 - \varrho_0^2]^2 ,
\]

(2.1)

where \(B_{\text{sm}} \) is the smectic compression modulus with a value of order \(10^7 \) Pa deep in the smectic phase though it vanishes as the nematic phase is approached. \(f_{\text{layer}} \) favors a layer spacing of \(d^e = d/\cos \Theta \), where as before \(\Theta \) is the angle between \(\mathbf{n} \) and \(\mathbf{N} \).

Finally, there are interactions favoring \(\hat{\mathbf{n}} \) parallel to \(\hat{\mathbf{N}} \) in the smectic-A phase and tilted relative to \(\hat{\mathbf{N}} \) in the smectic-C phase:

\[
f_{\text{tilt}} = \frac{1}{2} r_t \sin^2 \Theta + \frac{1}{4} r_t \sin^4 \Theta .
\]

(2.2)

The energy \(f_{\text{layer}} + f_{\text{tilt}} \) is the generalization to smectic elastomers of the Chen-Lubensky model [17] for SmA-SmC-nematic phase behavior in uncrosslinked liquid crystals. Its coefficient \(r_t \) is linear in the deviation of the temperature \(T \) from the transition temperature \(T_c \) between the SmA and SmC phases, \(r_t = \alpha |T - T_c| \). The coefficient \(v_t \) is essentially independent of temperature. Experiments by Brehmer, Zentel, Gießelmann, Germer and Zugenmaier (BZGGZ) [18] on smectic elastomers measured the values of the coefficients of a tilt energy similar to our \(f_{\text{tilt}} \) (however, their tilt energy is somewhat more general in that it also accounts for polarization effects which we will discuss later). A short calculation translates their experimental values into estimates for our \(\alpha \) and \(v_t \): \(\alpha \sim 1.3 \times 10^4 \) Pa/K and \(v_t \sim 5 \times 10^5 \) Pa. At a temperature of 20K above the transition temperature, \(r_t \) is or order \(10^5 \) Pa. More recently, similar experiments were performed on liquid smectics by Archer and Dierking (AD) [19]. Their results lead to \(\alpha \sim 4 \times 10^4 \) Pa/K and \(v_t \sim 10^6 \) Pa implying that \(r_t \sim 10^6 \) Pa at 20K above the transition temperature. Though measured for liquid smectics, the AD values should be of some relevance to elastomeric smectics, and we will use them in the following in addition to the BZGGZ values in order to put the estimates that we are going to make on a broader basis.

The energy of a smectic elastomer \(f = f_{\text{net}} + f_{\text{layer}} + f_{\text{tilt}} \) can now be expressed as a sum of a harmonic uniaxial elastic contribution \(f_{\text{uni}} \) depending only on \(u_{ij} \), a contribution \(f_{\text{nonlin}} \) depending only on \(u_{ij} \) that collects the relevant nonlinear terms, a contribution \(f_c \) describing the energy associated with the formation of non vanishing \(\cdot \) order described by \(c_a \), and a contribution \(f_{\text{coup}} \) arising from the coupling of \(u_{ij} \) and \(\hat{c}_a \):

\[
f = f_{\text{uni}} + f_{\text{nonlin}} + f_c + f_{\text{coup}} .
\]

(2.3)

The uniaxial elastic energy to harmonic order in strains is

\[
f_{\text{uni}} = \frac{1}{2} C_1 u_{zz}^2 + C_2 u_{zz} u_{ii} + \frac{1}{2} C_3 u_{ii}^2
+ C_4 u_{ab}^2 + C_5 u_{az}^2 ,
\]

(2.4)

where

\[
\hat{u}_{ab} = u_{ab} - \frac{1}{2} \delta_{ab} u_{cc} \]

(2.5)

is the two-dimensional symmetric, traceless strain tensor. The nonlinear energy reads

\[
f_{\text{nonlin}} = -B_1 u_{zz} u_{az} + B_2 (u_{az}^2) .
\]

(2.6)

The \(c \)-director energy is

\[
f_c = \frac{1}{8} r c_a^2 + \frac{1}{2} u (c_a^2) ,
\]

(2.7)

and the coupling energy is

\[
f_{\text{coup}} = \lambda_1 \hat{c}_a u_{zz} + \lambda_2 \hat{c}_a u_{ii} + \lambda_3 \hat{c}_a \hat{u}_{ab} \hat{c}_b
+ \lambda_4 \hat{c}_a u_{az} + \lambda_5 \hat{c}_a u_{az} \hat{c}_a u_{az} .
\]

(2.8)

Table I reviews the relations between the original elastic constants of \(f_{\text{net}} \), \(f_{\text{layer}} \) and \(f_{\text{tilt}} \) and the effective elastic constants featured in Eq. (2.4) and Eqs. (2.6) to (2.8). As mentioned earlier, the parameter \(p \) appearing in Table I is the anisotropy ratio. In the work of NF, the samples showed at the transition temperature a spontaneous stretch along the director of about 12%. When making estimates, we will view \(p \approx 1.1 \) as a typical value. Based on the relations given in Table I, we deduce that the hierarchy of magnitudes of the effective elastic constants is: \(C_5 \sim 10^9 \) Pa, \(C_3 \sim B_1 \sim B_2 \sim v \sim \lambda_1 \sim \lambda_5 \sim 10^7 \) Pa, \(C_2 \sim C_4 \sim C_5 \sim r \sim v \sim 10^6 \) Pa, \(\lambda_3 \sim -10^6 \) Pa and \(\lambda_2 \sim -10^4 \) Pa. Our estimates for \(r \) and \(\lambda_4 \) depend noticeably on whether we use the BZGGZ or the AD values: we expect \(r \sim 10^5 \) Pa and \(\lambda_4 \sim -10^5 \) Pa based on BZGGZ and \(r \sim \lambda_4 \sim 10^6 \) Pa based on AD. It is worth commenting on the sign of \(\lambda_4 \). Our estimates of its value have different signs for the two physical systems for which we have data. This is possible because the two contributions to \(\lambda_4 \) have opposite signs. The second contribution, \(r_t \), which is positive, arises because \(\Theta \approx \hat{c}_a + u_{az} \), and the \(\frac{1}{2} r_t \sin^2 \Theta \)-term favors \(\hat{c}_a = -u_{az} \). The first term, \(-\mu (p^2 - 1)/p \), describes the rotation of \(\hat{c}_a \) in response to the imposition of a shear \(u_{az} \). It is negative and it favors a \(\hat{c}_a \) with the same sign as \(u_{az} \).

Several observations about \(f \) are in order. First, \(\hat{c}_a \) and \(u_{az} \) are coupled at linear order via the \(\lambda_4 \) term. Thus, if a nonzero \(u_{az} \) develops, it will be accompanied by the development of a nonzero \(\hat{c}_a \) and vice-versa. Negative
λ_4 favors mechanical tilt and mesogenic tilt in the same direction whereas positive λ_4 favors opposite tilt directions. If, for example, $u_{zz} = 0$ and $u_{az} \neq 0$, then \hat{c}_a relaxes to $c_a = -(\lambda_4/r) u_{az}$ to minimize f. This leads to an effective or renormalized renormalized value of the shear modulus C_5,

$$C_5' = C_5 - \frac{\lambda_4^2}{2r} \quad (2.9)$$

If, to give another example, $u_{zz} = 0$ and $\hat{c}_a \neq 0$, u_{az} relaxes to $u_{az} = -\lambda_4/(2C_5) \hat{c}_a$ and r is renormalized to $r_R = r - \lambda_4^2/(2C_5)$. Note that the value of the renormalized elastic constants C_5' and r_R does not depend on the sign of λ_4. Second, an externally imposed strain u_{zz} reduces the coefficient of u_{zz}^2, via the B_1 term. This leads to the elastomer version of the Helfrich-Hurault instability, which we will discuss in Sec. III. Finally, if \hat{c}_a becomes nonzero, there will be an accompanying decrease in u_{zz} and the smectic layer spacing proportional to \hat{c}_a^2 via the $C_{5}'' u_{zz}$-term with positive coupling constant λ_4. The reduction of layer spacing in response to an external electric field that tilts the director in chiral systems will be the subject of Sec. IV.

III. ELASTICITY OF SMECTIC-A ELASTOMERS UNDER STRAIN IMPOSED ALONG THE LAYER NORMAL

Before we start with our analysis, it is useful to clarify the experimental conditions. In the experiments of NF [3], the SmA sample is subjected to an external uniaxial stress normal to the smectic layers. This stress stretches the sample, producing a deformation tensor Λ with $\Lambda_{zz} > 1$. If there is a transition to the SmC phase, the sample will undergo a shape change, as sketched in Fig. 2 from a rectangular parallelepiped to a non-rectangular one with two parallel non-rectangular faces. The external stress is applied along the space-fixed z-axis and causes the target space vector \mathbf{R} to stretch along the z-axis. This defines a preferred orientation in the target space and therefore breaks rotational invariance in this space. In an idealized experiment, the external stress will stretch the sample parallel to the z-axis in the target space only, regardless of the shape of the non-rectangular faces. Thus, in the SmC phase, the configuration of the sample will be that (shown in Fig. 2(c)) of a simple shear in which $\Lambda_{zz} > 0$ and $\Lambda_{zz} = 0$. In a real experiment, boundary conditions prevent a distortion with a spatially uniform value of Λ_{zz}, and the system breaks up into oppositely tilted domains. We will ignore this effect in our analysis. Thus, the general form for the deformation tensor under uniaxial stress along the target-space z axis is

$$\Lambda = \begin{pmatrix}
\Lambda_{xx} & 0 & 0 \\
0 & \Lambda_{yy} & 0 \\
\Lambda_{zz} & 0 & \Lambda_{zz}
\end{pmatrix}, \quad (3.1)$$

where $\Lambda_{xx} = 0$ in the SmA phase. This then implies a strain tensor

$$\hat{u} = \frac{1}{2} \begin{pmatrix}
\Lambda_{xx}^2 + \Lambda_{zz}^2 - 1 & 0 & \Lambda_{zz} \Lambda_{zz} \\
0 & \Lambda_{yy}^2 - 1 & 0 \\
\Lambda_{xx} \Lambda_{zz} & 0 & \Lambda_{zz}^2 - 1
\end{pmatrix}. \quad (3.2)$$

Thus, the zz-component of the strain tensor, $u_{zz} = (\Lambda_{zz}^2 - 1)/2$, depends only on the imposed strain deformation Λ_{zz} in both phases. The formation of the SmC phase is signalled by the development of a nonzero shear strain $u_{zz} = \Lambda_{zz} \Lambda_{zz}/2$.

As we indicated earlier, the imposition of a sufficiently large positive strain u_{zz} induces a transition to a new phase with a nonvanishing shear strain u_{zz}. Because of the linear coupling $\lambda_4 \hat{c}_a u_{zz}$ between strain and α-director in f_{coupl}, director tilt develops along with shear strain, and the phase with nonzero u_{zz} can be viewed as a strain-induced SmC phase. Effective energies in terms of either u_{zz} or \hat{c}_a provide equally valid descriptions of the transition. Here we will describe the transition in terms of an effective energy expressed in terms of \hat{c}_a. To arrive at this energy, we must relax the variables u_{ii}, \hat{u}_{ab} and u_{az} to their equilibrium values in the presence of nonvanishing \hat{c}_a and u_{zz}. The equations for $\partial f/\partial u_{ii} = 0$ and $\partial f/\partial \hat{u}_{ab} = 0$ are linear and are easily solved for u_{ii} and

C_1	C_2	C_3	C_4	C_5	B_1	B_2	λ_1	λ_2	λ_3	λ_4	λ_5	r	v			
3μ	$-\mu$	$4B - \mu$	μ	$\frac{1}{2} \mu (p_1 + p_2 + p_3)$	a	$-a$	$\mu \frac{2p_2 - p_1 - p_2 - p_3 - p_4 - p_5 - p_6}{2p}$	$-\mu \frac{p_2 - p_1 - p_2 - p_3 - p_4 - p_5 - p_6}{2p}$	$-\mu \frac{p_2 - p_1 - p_2 - p_3 - p_4 - p_5 - p_6}{2p}$	$-\frac{2}{a}$	2μ	0	0	0	0	0

| tilt | $4B_{sm}$ | 0 | 0 | 0 | $6B_{sm}$ | B_{sm} | $2B_{sm}$ | 0 | 0 | 0 | $2B_{sm}$ | 0 | 0 | 0 | 0 | 0 |

FIG. 2: Schematic representation of distortions in the xz-plane induced by the SmA-to-SmC transition: (a) undistorted SmA phase, (b) SmC phase with a nonvanishing shear strain $u_{zz} = \Lambda_{zz} \Lambda_{zz}/2$, and (c) SmC phase with $\Lambda_{zz} = 0$ and $\Lambda_{zz} > 0$. |
In the vicinity of the critical point determined by u^c_{zz}, we can expand $r_R(u_{zz})$ and $g_R(u_{zz})$ to lowest order in $\delta u_{zz} = u_{zz} - u^c_{zz}$:

$$r_R(u_{zz}) = -b \delta u_{zz},$$
$$v_R(u_{zz}) = v_R(u^c_{zz}) \equiv v^c_R,$$

where $b = -\partial r_R(u_{zz})/\partial u_{zz} |_{u_{zz}=u^c_{zz}} > 0$. Choosing our coordinate system so that the c-director induced by the u_{zz} strain lies along the x-direction we obtain $c^0_y = 0$ and

$$\tilde{c}^0_x = \begin{cases} 0 & \text{for } u_{zz} < u^c_{zz}, \\ \pm s \sqrt{\delta u_{zz}} & \text{for } u_{zz} > u^c_{zz}, \end{cases}$$

where $s = \sqrt{b/v^c_R}$. The director in the SmC phase under a symmetric shear, i.e. in the geometry shown in Fig. 2(b), is therefore $\tilde{n} = (\sin \alpha, 0, \cos \alpha)$, where $\sin \alpha = \tilde{c}^0_y$. Using the BZGGZ and the AD values, we estimate $s \approx 0.75$ and $s \approx 0.8$, respectively.

From the equilibrium values of the c-director, it is a straightforward exercise to determine the equilibrium strain tensor u^0 from Eqs. (3.3a), (3.3b), and (3.7). Consistent with Eq. (3.9), there is no shear induced by u_{zz} in the xy-plane, $u^0_{xy} = 0$, and there is no shear induced in the yz-plane, $u^0_{yz} = 0$. There is, however, a shear in the xz-plane, which according to Eqs. (3.19) and (3.20) is

$$u^0_{xz} = \begin{cases} 0 & \text{for } u_{zz} < u^c_{zz}, \\ \mp \rho_c s \sqrt{\delta u_{zz}} & \text{for } u_{zz} > u^c_{zz}, \end{cases}$$

(lowest order in δu_{zz} with $\rho_c \equiv \rho(u^c_{zz})$. The BZGGZ and AD values, respectively, lead to $\rho_c \approx 1.2$ and $\rho_c \approx 1.1$.

The equilibrium values for extensional strains follow from Eqs. (3.3a), (3.3b) and $u_{ii} = u_{aa} + u_{zz}$. To lowest order in δu_{zz},

$$u^0_{xx} = -\frac{1}{2} \left[\frac{C_2}{C_3} \right] u_{zz} \quad \text{for } u_{zz} < u^c_{zz},$$
$$u^0_{xx} = -\frac{1}{2} \left[\frac{C_2}{C_3} \right] u_{zz} - \frac{1}{2} \left[\frac{C_2}{C_3} \right] u_{zz}^c \quad \text{for } u_{zz} < u^c_{zz},$$

and u^0_{yy} is given by Eq. (3.15) with ω replaced by $-\omega$. The parameter $\omega = \lambda_2/(2C_5) = -\mu(p-1)/\mu(p-1)^2/p$ is negative and of order -0.05. Figure 3 depicts the equilibrium strain components on u_{zz} schematically.

The quantities c^0_x and u^0_{xz} determine the equilibrium angle Θ^0 between the layer normal and the director. To lowest order,

$$\Theta^0 = c^0_x + u^0_{xz} = [1 - \rho_c] \tilde{c}^0_x. \quad (3.16)$$

The coefficient $1 - \rho_c$ of \tilde{c}^0_x on the right hand side is negative and of the order of -0.2 or -0.1, depending on whether we use the BZGGZ or the AD values. The small but non-zero $1 - \rho_c$ implies that the tilt angles of the layer...
normal and the director are distinct and that, however, their difference will be small for u_{zz} not too far above u^c_{zz}. We will revisit the tilt angles of the layer normal and the director further below.

Now we turn to the effective elastic energy density as a function of u_{zz} only when the other strain components and c have relaxed to their equilibrium values. Plugging c^0_u into Eq. (3.10), we obtain to quadratic order in u_{zz}

$$f = \frac{1}{2} C^R_{11} u_{zz}^2 \quad \text{for} \quad u_{zz} < u^c_{zz},$$

and

$$f = \frac{1}{2} C^R_{11} (u^c_{zz} + \delta u_{zz})^2 - \frac{1}{2} D_1 (\delta u_{zz})^2 \quad \text{for} \quad u_{zz} > u^c_{zz},$$

where $D_1 = (1/2) b^2 / C^R_{11}$. Note that the two branches match at u^c_{zz} as they should.

Next, we address the relation between stress and strain. The engineering or first Piola-Kirchhoff stress measured in experiments is $\sigma_{zz}^{\text{eng}} = \Lambda_{kk} \sigma_{kk}$, where $\sigma_{kk} = \delta f / \delta u_{kk}$ is the symmetric second Piola-Kirchhoff stress tensor. The system reaches equilibrium at fixed u_{zz} with respect to all other components of u_{ij}, i.e., $\sigma_{ij} = 0$ for $ij \neq zz$. Thus, the zz component of the engineering stress tensor is $\Lambda_{zz} \sigma_{zz}$, and

$$\sigma_{zz}^{\text{eng}} = C^R_{11} \Lambda_{zz} u_{zz} \quad \text{for} \quad u_{zz} < u^c_{zz},$$

and

$$\sigma_{zz}^{\text{eng}} = C^R_{11} u^c_{zz} \Lambda_{zz} + [C^R_{11} - D_1] \Lambda_{zz} \delta u_{zz} \quad \text{for} \quad u_{zz} > u^c_{zz}. $$

For the deformation tensor of Eq. (3.1) and small strain, $\Lambda_{zz} = \sqrt{1 + 2u_{zz}} \approx 1 + u_{zz}$. Thus, if the critical strain u^c_{zz} is small as our estimates indicate,

$$\sigma_{zz}^{\text{eng}} \approx C^R_{11} u^c_{zz} \quad \text{for} \quad u_{zz} < u^c_{zz},$$

For $u_{zz} > u^c_{zz}$ and small δu_{zz},

$$\sigma_{zz}^{\text{eng}} \approx C^R_{11} u^c_{zz} + [C^R_{11} - D_1] \delta u_{zz} \quad \text{for} \quad u_{zz} > u^c_{zz},$$

provided that $C^R_1 \neq D_1$, and hence the Young’s modulus $Y_{||}$ is given by

$$Y_{||} = \begin{cases} C^R_{11} & \text{for} \quad u_{zz} \leq u^c_{zz}, \\ C^R_{11} - D_1 & \text{for} \quad u_{zz} > u^c_{zz}, \end{cases}$$

in this case. Adams and Warner in fact find $C^R_1 = D_1$ in their model, and we obtain the same result in our treatment if we lock n to N and set $f = f_{\text{net}} + f_{\text{layer}}$. This limit does not follow cleanly from the model in Eq. (2.3) and the parameters of Table I because that model does not include all of the fourth-order terms in the free energy of the original model defined $f = f_{\text{net}} + f_{\text{layer}} + f_{\text{tilt}}$. If $C^R_1 = D_1$, then $\sigma_{zz}^{\text{eng}} = C^R_{11} u^c_{zz} \Lambda_{zz}$ so that the leading terms for $u_{zz} \ll \delta u_{zz} \ll 1$ are

$$\sigma_{zz}^{\text{eng}} \approx C^R_{11} u^c_{zz} + C^R_{11} u^c_{zz} \delta u_{zz} \quad \text{for} \quad u_{zz} > u^c_{zz},$$

implying that

$$Y_{||} = \begin{cases} C^R_{11} & \text{for} \quad u_{zz} \leq u^c_{zz}, \\ C^R_{11} u^c_{zz} & \text{for} \quad u_{zz} > u^c_{zz}, \end{cases}$$

if $C^R_1 = D_1$. Equations (3.19) and (3.21) reveal that σ_{zz}^{eng} as a function of u_{zz} will consist of two straight lines of different slope (Young’s modulus) meeting at $u_{zz} = u^c_{zz}$. If $C^R_1 = D_1$, then the ratio of the Young’s modulus for $u_{zz} > u^c_{zz}$ to that for $u_{zz} < u^c_{zz}$ is simply u^c_{zz}. Our full equations (3.18) show that there are nonlinear corrections to σ_{zz}^{eng} both above and below u^c_{zz}. Since the experimental value of $u^c_{zz} \approx 0.034$ is much less than one, the nonlinear corrections below u^c_{zz} are unimportant. Those above u^c_{zz} vanish or are unimportant if C^R_1 and D_1 are equal or nearly so. Figure 4 shows the linearized stress-strain behavior along with experimental data. Both, Eq. (3.19b) and (3.21) are used in the plots and both produce excellent agreement with the experimental data.

For completeness we note that, if we use our strain-only model for the SmA-to-SmC transition [8], we find, to leading order in δu_{zz}, essentially the same equilibrium strain tensor, the same effective elastic energy, and the same stress-strain relation as AW. Obvious differences reside in the different definitions of the elastic constants used in both models. These differences are of course qualitatively unimportant.

Next we calculate the tilt angle φ of the layer normal in response to u_{zz}. As illustrated in Fig. 2, the angle that N makes with the z axis is

$$\varphi = \beta + \gamma,$$

where β is the angle that N makes with the z-axis and γ is the clockwise angle about the y-axis through which the sample under symmetric shear has to be rotated to bring it into the configuration with $\Lambda_{zz} = 0$. In terms of the components of the symmetric deformation tensor
The value of Δ_0, these angles are given by

$$\beta = \tan^{-1} \left(\frac{u_0^{\theta}}{u_0^{\phi}} \right) \approx \frac{u_0^{\theta}}{1 - \frac{1}{2}(1 + C_2/C_3)u_0^{\phi}}.$$ \hspace{1cm} (3.24a)

$$\gamma = \tan^{-1} \left(\frac{A_0^{\theta}}{A_0^{\phi}} \right) \approx \frac{u_0^{\theta}}{1 + u_0^{\phi}}.$$ \hspace{1cm} (3.24b)

We find that φ vanishes as $\delta u_{zz} \to 0$, and near $\delta u_{zz} = 0$, its expansion to order $(\delta u_{zz})^{3/2}$ is

$$\varphi = \begin{cases} 0 & \text{for } u_{zz} < u_{zz}^c, \\ A_1 (\delta u_{zz})^{1/2} + A_3 (\delta u_{zz})^{3/2} & \text{for } u_{zz} > u_{zz}^c. \end{cases} \hspace{1cm} (3.25)$$

The value of A_1 is determined entirely by the lowest order expressions for u_0^{ϕ} [Eq. (3.12)] and u_0^{θ} [Eq. (3.15)],

$$A_1 = s \rho_0 \frac{2 + \frac{1}{2}(1 - C_2/C_3)u_0^{\phi}}{[1 + u_0^{\phi}]^2 (1 - \frac{1}{2}(1 + C_2/C_3)u_0^{\phi})}.$$ \hspace{1cm} (3.26)

A_3 has contributions both from the expansions of \tan^{-1} to third order in its arguments, and from $(\delta u_{zz})^{3/2}$ contributions to u_0^{ϕ} and u_0^{θ}, which we have not calculated. Both, the BZGZ and AD values, lead to $A_1 \approx 1.8$. Next, we compare our result (3.25) and our estimate for A_1 with the experimental data by NF, see Fig. 5. For this comparison it is important to note that the expansion (3.25) with A_1 given by Eq. (3.26) expresses φ in its natural unit, radian. The experimental curve by NF as shown Fig. 5, on the other hand, measures φ in degrees. Converting the above estimate for A_1 from radian to degrees we get the estimate $A_1 \approx 1.8 \times 360/(2\pi) \approx 100$.

Fitting our result (3.25) to the experimental curve, we obtain $u_{zz}^c = 0.034$, $A_1 = 90$ and $A_3 = -49$. The fitted analytical and the experimental curve agree remarkably well, and the best-fit value $A_1 = 90$ is certainly of the same order of magnitude as our estimate $A_1 \approx 100$

Finally, we calculate the tilt angle φ_n of the mesogens in response to u_{zz}. The angle that the target-space director makes with the z axis is, as depicted in Fig. 2,

$$\varphi_n = \alpha - \gamma,$$ \hspace{1cm} (3.27)

where $\alpha = \sin^{-1} \frac{\theta_0^0}{\gamma_r}$. Like φ, φ_n vanishes as $\delta u_{zz} \to 0$. In the vicinity of $\delta u_{zz} = 0$, its expansion to order $(\delta u_{zz})^{3/2}$ is

$$\varphi_n = \begin{cases} 0 & \text{for } u_{zz} < u_{zz}^c, \\ A_{n,1} (\delta u_{zz})^{1/2} + A_{n,3} (\delta u_{zz})^{3/2} & \text{for } u_{zz} > u_{zz}^c, \end{cases} \hspace{1cm} (3.28)$$

with the value of $A_{n,1}$ being determined entirely by the lowest order expressions for $\varepsilon_0^{\phi}[\text{Eq. (3.13)}]$ and $u_0^{\phi}[\text{Eq. (3.15)}],$

$$A_{n,1} = s + \frac{s \rho_0}{1 + u_0^{\phi}}.$$ \hspace{1cm} (3.29)

$A_{n,3}$ has contributions both from the expansions of \sin^{-1} and \tan^{-1} to third order in their arguments, and from $(\delta u_{zz})^{3/2}$ contributions to θ_0^0 and u_0^{ϕ}, which we have not calculated. From the BZGZ and AD values we obtain, respectively, approximately $A_{n,1} \approx 85$ and $A_{n,1} \approx 90$ when φ_n is measured in degrees.

In their experiments, NF did not seek to produce curves of φ_n versus u_{zz}. From measuring the layer thickness as a function of u_{zz} and by interpreting their X-ray reflection patterns, however, they conclude that the layer normal and the director remain parallel above the threshold strain and that the reduction of Y_1 above the threshold stems form a strain induced breakdown of the smectic layers into pieces with local SmA order. Our theory, on the other hand, predicts that the angles φ and φ_n are different but of the same order of magnitude, and
that the reduction of Y_i results from shear and SmC-like ordering produced by sample extension. If the difference between φ and φ_n is small, it can be difficult to distinguish between SmA and SmC order experimentally. If this is the case in the experiments of NF, then the differences between the experimental findings and our theoretical predictions for the tilt angles may lie within the experimental error.

Above we have several occasions briefly commented on the relation of our work to that of AW. A more detailed comparison of the two approaches can be found in the Appendix.

IV. ELECTROCLINIC EFFECT IN SMA* ELASTOMERS

In a chiral smectic elastomer an external electric field E can couple to both the elastic and the orientational degrees of freedom. First, we consider the former coupling. E, like the director n and the layer normal N, is a vector in the target space and hence cannot be coupled directly to the reference space tensor $\bar{\Omega}$. By now, of course, we know how to overcome this problem: we can use the polar decomposition theorem to switch from $\bar{\Omega}$ to its reference space counterpart $\bar{\Omega} = O^T \bar{\Omega} E$ and then construct form $\bar{\Omega} E$ and y couplings that are manifestly invariant under simultaneous rotations of the sample and the field in the reference space. Since we are interested in SmA* elastomers, the couplings have to conform with uniaxial symmetry in the reference space which leads us to

$$f_{E,1} = -v_1 \bar{E}_a \bar{u}_{ab} \bar{E}_b - v_2 \bar{u}_{zz} \bar{E}_z^2, \quad (4.1)$$

where v_1 and v_2 are coupling constants. In Eq. (4.1) we have omitted a term of the type $u_{xzy} \bar{E}_z^2$ to keep our discussion as simple as possible. This omission does not affect our results qualitatively.

Now we come to the coupling between the electric field and the orientational degrees of freedom. In a chiral smectic a spontaneous polarization P occurs if the director n and the layer normal N are neither parallel nor perpendicular:

$$P \sim n \times N (n \cdot N). \quad (4.2)$$

Thus, in the presence of E, the elastic energy density of the elastomer has an extra contribution

$$f_{E,2} \sim E \cdot n \times N (n \cdot N). \quad (4.3)$$

In order to combine $f_{E,2}$ with the remaining terms of the elastic energy density we recast $f_{E,2}$ in the reference space to obtain

$$f_{E,2} = K \tilde{E} \cdot \tilde{n} \times \tilde{N} (\tilde{n} \cdot \tilde{N}),$$

where K is a coupling constant. The experimental findings by BZGGZ imply $K \sim 10^{-3}$ Pa(m/V), whereas the value of K implied in the results by AD is one order of magnitude smaller, $K \sim 10^{-4}$ Pa(m/V).

In the typical experimental setup, the normal of the elastomeric film is along the z direction and the electric field E is along the y direction. If we assume that the experiments correspond to the geometry shown in Fig. 1 then $\Lambda_{zz}^0 = 0$ but $\Lambda_{zz}^0 \neq 0$, and the only nonzero components of Λ are Λ_{xx}^0, Λ_{yy}^0, Λ_{zz}^0, and Λ_{xx}^0, implying that that $O_{xy} = O_{yx} = O_{yz} = O_{zy} = 0$. Thus $E_i = O^T_{ij} E_j = E_i$, and $\tilde{E} = (0, E, 0)$. In addition, $\tilde{N} = \lfloor g^{-1/2} \rfloor = \lfloor g^{-1/2} \rfloor = \lfloor g^{-1/2} \rfloor = \lfloor -u_{az} , 1 - \frac{1}{2} u_{zz} \rfloor$. With these expressions, the above coupling energy densities simplify to

$$f_{E,1} = -v_1 \bar{u}_{yy} E^2, \quad (4.5a)$$
$$f_{E,2} = -K E (\tilde{c}_x + u_{zz}) \cdot \tilde{E}_x^2. \quad (4.5b)$$

In Eq. (4.5b) we have dropped higher order terms in \tilde{c}_a which are inconsequential for the leading behavior since we are interested in the SmA* and not in the SmC* phase. For the same reason, we need, when we combine $f_{E,1}$ and $f_{E,2}$ with the remaining parts of f, to keep in f_c and f_{coup} only terms up to second order in \tilde{c}_a. To keep our discussion as simple as possible, we will focus in the following on the incompressible limit. If strains are small, as we assume, we can implement this limit by setting $u_{ii} = 0$. In accordance with the given geometry, we set $u_{xy} = u_{yz} = \tilde{c}_a = 0$. Collecting all parts of the elastic energy density we then obtain

$$f = f_{uni} + f_{nonin} + f_c + f_{coup} + f_{E,1} + f_{E,2}$$
$$= \frac{1}{2} \left(C_1 + C_4 \right) u_{zz}^2 + 2 C_4 u_{zz}^2 + u_{zz}^2 + C_5 u_{zz}^2 + \frac{1}{2} r c_2^2 + \frac{1}{2} \left(2 \lambda_1 + \lambda_3 \right) c_2^2 \bar{u}_{zz} - B_1 u_{zz}^2$$
$$+ \lambda_3 c_2^2 u_{zz} + \lambda_1 \bar{c}_x u_{xx} + \lambda_3 u_{zz} u_{xx} \bar{c}_x - K E (\tilde{c}_x + u_{zz}) + v_1 (u_{xx} + u_{zz}) E^2, \quad (4.6)$$

where we have eliminated u_{yy} by using $u_{ii} = 0$ and where we dropped the $B_2(u_{zz}^2)^2$ term.

Next, we determine the equilibrium values of the strain components and the c-director in the presence of the electric field. The equilibrium values c_2^2 and u_{zz}^0, which are at leading order linear in E, are

$$\frac{c_2^2}{u_{zz}^0} = \frac{2 C_5 - \lambda_4}{2 C_5 r_R} K E, \quad (4.7a)$$
$$u_{zz}^0 = \frac{\lambda_4 - r}{2 C_5 r_R} K E = \frac{r - \lambda_4}{2 C_5 - \lambda_4} u_{zz}^0, \quad (4.7b)$$

where $r_R = r - \lambda_4/(2C_5)$. The diagonal components of u_{ij}^0 can also be calculated by minimizing the free energy of Eq. (4.4). The results are that u_{zz}^0 and u_{zz}^0, both have contributions proportional directly to E^2 and contributions proportional to $(c_2^2)^2$. In addition u_{zz}^0 has a contribution proportional to $-B(u_{zz}^0)^2$. All of these terms are proportional to E^2.

The relative height change

$$\Delta h/h_0 = (h - h_0)/h_0 = u_{zz}^0 \quad (4.8)$$
of the film is
\[
\Delta h/h_0 = \frac{1}{C_1} \left[\lambda_1 (\epsilon_0^2) + \lambda_5 \epsilon_0^2 \epsilon_{zz} - B_1 (\epsilon_{zz}^2) \right] - \frac{v_1}{2C_1} E^2 \\
\approx \frac{1}{2} \left[(\epsilon_{zz}^2 + \epsilon_{zz}^2) - 4(\epsilon_{zz}^2) \right] - \frac{v_1}{2C_1} E^2,
\]
where we used \(B_{sm} \gg \mu, \tau_t\) to obtain the last form (which sets \(f_{layer} = 0\)). The electrostriction coefficient is defined via \(\Delta h/h_0 = -a_{el} E^2\). Inserting Eq. (4.7) into Eq. (4.9), we obtain
\[
a_{el} \approx \frac{v_1}{2C_1} + \frac{2(2p - 1)}{(p + 1)^2} \left(\frac{2C_5 - \lambda_4}{2C_5} K \right)^2 \\
\approx \frac{v_1}{2C_1} + \frac{1}{2} \frac{2p - 1}{p^2 - r_t}. \quad (4.10)
\]

Finally, we compare our theoretical findings to the experimental results. In their experiments, Lehmann et al. applied alternating lateral voltage, \(U_{ac}(t) = U_{ac} \cos(\omega t)\), so that \(E = E_{ac}(t) = U_{ac}(t)/d\), where \(d\) is the width of the sample, and they measured the first and the second harmonic of \(\Delta h\). Rewriting Eq. (4.9) as
\[
\Delta h = h_0 a_{el} U_{ac}^2/4d^2 \left[1 + \cos(2\omega t) \right] + \cdots, \quad (4.11)
\]
our model predicts that the amplitude \(\Delta h_2\) of the second harmonic is
\[
\Delta h_2 = h_0 a_{el} U_{ac}^2/4d^2. \quad (4.12)
\]
In Fig. 6 our result (4.12) is compared to the experimental data of Lehmann et al. Taking the values \(h_0 = 75 \pm 5\) nm and \(d = 1\) mm of Ref. [6] and setting \(a_{el} = 7.147 \times 10^{-14}\) (m/V)^2, we obtain an excellent fit between our theory and the experimental curve for the second harmonic. Likewise, we can fit our theory easily to the experimental curves of Köler et al. [7]. We refrain here to show the corresponding curves in order to save space. Beyond producing fitting curves, we can extract from our theory an estimate for the value of \(a_{el}\). Let us start with the first term in the second line of Eq. (4.10). The coefficient \(v_1\) should be of order \(\epsilon_0 \chi_0\) where \(\epsilon_0 = 8.85 \times 10^{-12}\) Pa (m/V)^2 is the permeability of the vacuum and \(\chi_0 \approx 2.5\) is the electric susceptibility. With these values, the term containing \(v_1\) is of order \(2 \times 10^{-11}/4 \times 10^7 \approx 0.5 \times 10^{-18}\) (m/V)^2, which is orders of magnitude smaller than the experimental values. Now, we turn to the second term in the second line of Eq. (4.10). In accord with this term, the experiments of Lehmann et al. and Köler et al. found the largest values of \(a_{el}\) for temperatures near \(T_c\). Based on the BZGGZ and the AD values, we estimate \(r_t\) to be of the order \(r_t \sim 10^4\) Pa and \(r_t \sim 10^5\) Pa, respectively, for \(T\) within a range of a few degrees about \(T_c\). Recalling the experimental values for \(K\) and that \(p \approx 1\), we are led to \(a_{el} \approx 5 \times 10^{-15}\) (m/V)^2 for the BZGGZ

FIG. 6: Hight change of a SmA* elastomer in response to an alternating lateral voltage \(U_{ac}(t) = U_{ac} \cos(\omega t)\) as a function of the amplitude \(U_{ac}\). The data points are taken from Ref. [6], where a sample of thickness \(h_0 = 75 \pm 5\) nm and width \(d = 1\) mm was used and the frequency of the voltage was \(\omega = 133\) Hz. There is a small piezoelectric contribution, i.e., a contribution that is linear in \(U_{ac}\) or respectively the amplitude of the electric field \(E_{ac}(t) = U_{ac}(t)/d\). In contrast, the contribution proportional to the square of the field, i.e., the effect of electrostriction, at the second harmonic is large. The continuous curve stems from our theoretical result (4.12) with \(a_{el} = 7.147 \times 10^{-14}\) (m/V)^2.

V. CONCLUDING REMARKS

We have investigated the behavior of monodomain SmA elastomers under strains \(u_{zz}\) along the smectic layer normal. When exceeding a threshold value \(u_{zz}^\ast\), these strains induce a transition to a SmC-like state. This effect is accompanied by a tilt of the mesogenic component that sets in at the same threshold. Due to the transition, the Young’s modulus \(Y^\parallel\) is qualitatively different from that of conventional uniaxial elastomers: the slope of the stress-strain curve changes from high constant value for \(u_{zz} < u_{zz}^\ast\) to a much lower constant value for \(u_{zz} > u_{zz}^\ast\). Our results for the stress-strain behavior as well as for the layer tilt agree nicely with the available experimental data.

Moreover, we studied the electroclinic effect in SmA* elastomers in an external, lateral electric field. Here, it is the external field that induces a transition to a SmC*'-like state. Since this state is sheared in the plane perpendicular...
ular to the field, the height of a sample is lower than in the initial SmA* phase. Our theory finds, in absolute agreement with the experimental evidence, that his height change is proportional to the square of magnitude of the external field, i.e., that the mechanism at work is the so-called electrostriction. Our numerical estimate for the electrostriction coefficient is in accord with the available experimental values.

Acknowledgments

This work was supported in part by National Science Foundation under grant DMR 0404670 (TCL).

NOTE ON THE WORK OF ADAMS AND WARNER

Here we will discuss the connection between the AW theory and our theory for SmA’s in some more detail to understand the agreement in the results more systematically. Moreover, we will generalize the AW theory to allow for relative till between the director and the layer normal.

1. Comparison to the work of Adams and Warner

AW extended the neoclassic model of rubber elasticity by formulating an elastic energy density

$$ f_{AW} = \frac{1}{2} \mu \text{Tr} \left[\Lambda_{0}^T \Lambda_{0}^{-1} \right] + \frac{B}{2} (d/d_0 - 1)^2. $$

The first term on the right hand side of Eq. (1) is the usual trace formula of the neoclassic model. μ is the shear modulus.

$$ \Lambda_0 = \delta + (p - 1) n_0 n_0 $$

is the so-called shape tensor describing the conformations of polymeric chains before deformation and

$$ \Lambda^{-1}_0 = \delta - (1 - p^{-1}) n n $$

is its counterpart after a deformation has been applied. As in the main text, p denotes the anisotropy ratio of the uniaxial state, which we assume to be prolate, $p > 1$. The AW model assumes incompressibility, i.e., the deformation tensor is subject to the constraint $\det \Lambda = 1$. The new element in the theory of AW, the second term on the right hand side of Eq. (1), describes changes in the spacing of smectic layers. B is a layer compression modulus. d_0 and d are respectively the layer spacing before and after deformation which are related via

$$ \frac{d}{d_0} = \frac{1}{\sqrt{\det \Lambda^{-1}}} n_0. $$

In the following, we chose $n_0 = (0, 0, 1)$, and we set $n = (\sin \theta, 0, \cos \theta)$. Assuming a deformation of the form shown in Eq. (1), the elastic energy density becomes

$$ f = \frac{1}{2} \mu \left\{ \Lambda_{zz}^2 + 2 \Lambda_{xx}^2 + \Lambda_{yy}^2 + p^{-1} \Lambda_{zz}^2 (1 - p^{-1}) (p \Lambda_{zz}^2 - \Lambda_{xx}^2 + \Lambda_{zz}^2) \sin^2 \theta
ight. $$

$$ - 2 (1 - p^{-1}) \Lambda_{xx} \Lambda_{zz} \sin \theta \cos \theta $$

$$ + b \left(\frac{\Lambda_{zz} \Lambda_{xx}}{\sqrt{\Lambda_{xx}^2 + \Lambda_{zz}^2}} - 1 \right)^2 \} , $$

(5)

where Λ_{yy} has been eliminated via the incompressibility constraint, and where $b = B/\mu$. For studying the response of an SmA elastomer to an imposed deformation Λ_{zz}, AW assume that n and N are locked, which amounts to setting

$$ \sin \theta = \frac{\Lambda_{xx}}{\sqrt{\Lambda_{xx}^2 + \Lambda_{zz}^2}}, \quad \cos \theta = \frac{\Lambda_{zz}}{\sqrt{\Lambda_{xx}^2 + \Lambda_{zz}^2}}. $$

Then, the AW elastic energy density becomes

$$ f_{AW} = \frac{1}{2} \mu \left\{ \Lambda_{xx}^2 + \frac{1}{\Lambda_{zz}^2} + \Lambda_{zz}^2 + \frac{(\Lambda_{xx}^2 + p \Lambda_{zz}^2) \Lambda_{zz}^2}{\Lambda_{xx}^2 + \Lambda_{zz}^2} \right. $$

$$ + b \left(\frac{\Lambda_{zz} \Lambda_{xx}}{\sqrt{\Lambda_{xx}^2 + \Lambda_{zz}^2}} - 1 \right)^2 \} . $$

(7)

In order to make contact to our Lagrangian theories, we re-express the components of the deformation tensor in terms of the components of the strain tensor. From the definition of the strain tensor and (8) it is straightforward to see that the respective components are related by

$$ \Lambda_{yy} = \sqrt{1 + 2u_{yy}}, $$

$$ \Lambda_{zz} = \sqrt{1 + 2u_{zz}}, $$

$$ \Lambda_{xx} = u_{zz}/\Lambda_{zz} , $$

$$ \Lambda_{xx} = \sqrt{1 + 2u_{xx} - \Lambda_{zz}^2} . $$

Inserting Eq. (8) into the elastic energy density (7) to eliminate the Λ_{ij} and then expanding in powers of the u_{ij} we obtain

$$ f_{AW} = \mu \left\{ \frac{3}{2} + \frac{4 + b}{2} u_{zz}^2 + 2 u_{zz} u_{xx} + 2 u_{xx}^2 + \frac{p}{2} u_{zz}^2
ight. $$

$$ - \frac{4 + b}{2} u_{zz} u_{xx}^2 - (1 + p) u_{xx} u_{xx}^2 + \frac{4 + b}{2} u_{xx}^4 \} , $$

(9)

where we have dropped higher order terms which are inconsequential for the argument here.

Next, we revisit elastic energy density f in Eq. (1,3). To obtain a model in terms of strain only, we integrate c_{xx} out of f. This procedure leads to

$$ f = f_{uni} + D_1 u_{zz} u_{zz}^2 + D_2 u_{xx} u_{xx}^2 + D_3 u_{xx}^4 + G (u_{zz}^2) , $$

(10)
with C_5 renormalized to C_5^R [see Eq. (2.39)] in f_{semi}, with $D_m = \lambda_m \Lambda_2^2 / r$ for $m = 1, 2, 3$, and $G = (g/4 + r/2) \Lambda_4^2 / r^4$.

Then, we carry out the following steps: (i) we implement the incompressible limit via the constraint $u_{ii} = 0$ so that the terms featuring C_2, C_3, and D_2 are absent, (ii) we eliminate u_{yy} with help of $u_{ii} = 0$, and (iii) we assume a deformation tensor of the form (3.1) so that $u_{xy} = u_{yx} = 0$. Then, f reduces to

$$f = \frac{1}{2}(C_1 + C_4)u_{xx}^2 + 2C_4 u_{xx} u_{xy} + 2C_4 u_{xy}^2 + C_5^R u_{xx}^2 + (D_1 + \frac{1}{2} D_3) u_{xx} u_{xy}^2 + D_3 u_{xx} u_{xx}' + G u_{xx},$$

which has, besides lacking the inconsequential constant term, exactly the same form as f_{AW}. Comparison of the individual terms in Eqs. (9) and (11) reveals that the terms featuring $(3 + \mu)(1 + p)$ and $G = \mu(4 + b)/8$. Note that AW work with the values $b = 5$ and $p = 2$ which corresponds to negative values of D_1 and D_3.

The effective elastic energy density in terms of u_{xx} only produced by Eq. (11) is essentially the same as the incompressible limit of Eq. (3.17). Thus, in the end, the AW model and our models lead, at least to leading order, to the same stress-strain curve, cf. Fig. 4.

2. Extending the model of Adams and Warner

Now we generalize the AW model by avoiding the assumption that the layer normal and the director are locked. The full elastic energy density (3) rather than the AW elastic energy density (7) will be the vantage point for the following considerations. In the remainder, we abbreviate $\Lambda = \Lambda_{xx}$ for notational simplicity.

We can reduce Eq. (3) to a function of Λ, Λ_{xx}, and Λ_{xx}^2 only by minimizing over θ. The result is

$$\sin \theta = \sqrt{\frac{1}{2}} \left[1 - \sqrt{1 + \frac{B^2}{A^2}} \right] \quad (12a)$$

$$\cos \theta = \sqrt{\frac{1}{2}} \left[1 + \sqrt{1 + \frac{B^2}{A^2}} \right], \quad (12b)$$

where

$$A = p\Lambda^2 + \Lambda_{xx}^2 - \Lambda_{xx}^2$$

$$B = 2\Lambda_{xx} \Lambda_{xx}$$

The free energy minimized over θ is then

$$f_m = \frac{1}{2} \mu \left\{ (1 + p)\Lambda^2 + (1 + p^{-1})\Lambda_{xx}^2 + 2\Lambda^{-1}\Lambda_{xx}^2 \right.$$

$$+ (1 + p^{-1}) \Lambda_{xx}^2$$

$$- (1 - p^{-1}) \sqrt{(r\Lambda^2 - \Lambda_{xx}^2 + \Lambda_{xx}^2)^2 + 4\Lambda_{xx}^2 \Lambda_{xx}^2}$$

$$+ b \left(\frac{\Lambda_{xx} \Lambda_{xx}}{\sqrt{\Lambda_{xx}^2 + \Lambda_{xx}^2}} - 1 \right)^2 \right\}.$$ \hspace{1cm} (14)

To determine instabilities toward the development of Λ_{xx}, we expand f_m to second order in Λ_{xx}:

$$f_m \approx \frac{1}{2} \mu \left\{ p\Lambda^2 + \Lambda_{xx}^2 + \Lambda_{xx}^{-1} \Lambda_{xx}^2 + b(\Lambda - 1)^2 \right.$$

$$+ \frac{1}{2} \mu \left(\frac{\Lambda_{xx}^2 - \Lambda_{xx}^2}{\Lambda_{xx}^2 - \Lambda_{xx}^2} - 2b \frac{\Lambda(\Lambda - 1)}{\Lambda_{xx}^2} \right) \Lambda_{xx}^2 \right\}.$$ \hspace{1cm} (15)

Now we minimize this function over Λ_{xx} at $\Lambda_{xx} = 0$. The result is $\Lambda_{xx} = \Lambda^{-1/2}$. Thus, when $\Lambda = 1$, $\Lambda_{xx} = \Lambda$, the coefficient of Λ_{xx} is zero, i.e., there is no restoring force for infinitesimal shear strains in this model of smectics. The origin of this behavior is the invariance of both terms in the free energy with respect to rotations. Semi-soft terms need to be added to endow the smectic layers with a preferred direction relative to the crosslinked matrix. Next, we consider what happens when $\Lambda > 1$. The coefficient of Λ_{xx}^2 becomes

$$A_{xx} = \frac{1}{2} \mu(\Lambda - 1) \left(\frac{b\Lambda^2 - \Lambda_{xx}^2 + \Lambda + 1}{\Lambda^3 - 1} \right). \quad (16)$$

This term is negative for all $\Lambda > 1$ because $b \gg 1$. Thus, in the absence of a semi-soft term, there is no threshold for the production of shear strain in response to an imposed strain along the z direction.

As we have just seen, there is an an instability to transfer shear for all $\Lambda > 1$ in the original AW theory if the nematic director is allowed to relax. Thus, the model elastic energy density (3) is insufficient to produce stress-strain curves as measured by NF. The problem is that this model is invariant with respect to simultaneous rotations of the smectic layers, the nematic director, and Λ in the target space. To break this invariance, we introduce the semisoft energy

$$f_{semi} = \frac{1}{2} \mu \text{Tr}[\hat{A} - n_0 n_0] \Lambda^T n n^T \Lambda.$$

$$= \frac{1}{2} \mu n_0 \Lambda_{xx} \sin \theta + \Lambda_{xx} \cos \theta$$. \hspace{1cm} (17)

The complete energy is then

$$f_T = f + f_{semi}. \quad \text{(19)}$$

Expanding to second order in θ, we obtain

$$f = \frac{1}{2} \mu \left\{ \Lambda^2 + \Lambda_{xx}^2 + \Lambda_{xx}^{-1} \Lambda_{xx}^2 + (p^{-1} + \alpha) \Lambda_{xx}^2 \right.$$

$$- 2(1 - p^{-1} - \alpha) \Lambda_{xx} \Lambda_{xx} \theta$$

$$+ (1 - p^{-1})(p\Lambda^2 - \Lambda_{xx}^2 + \Lambda_{xx}^2) + \alpha(\Lambda_{xx}^2 - \Lambda_{xx}^2) \theta^2$$

$$+ b \left(\frac{\Lambda_{xx} \Lambda_{xx}}{\sqrt{\Lambda_{xx}^2 + \Lambda_{xx}^2}} - 1 \right)^2 \right\}.$$ \hspace{1cm} (20)

Minimizing over θ, we obtain

$$\theta = \frac{(1 - p^{-1} - \alpha) \Lambda_{xx} \Lambda_{xx}}{(1 - p^{-1})(p\Lambda^2 - \Lambda_{xx}^2 + \Lambda_{xx}^2) + \alpha(\Lambda_{xx}^2 - \Lambda_{xx}^2)}.$$ \hspace{1cm} (21)
and a relaxed free energy to harmonic order in Λ_{xx} of
\[
f_m \approx \frac{1}{2} \mu [p\Lambda^2 + \Lambda_{xx}^2 + \Lambda^{-2}\Lambda_{xx}^{-2}] + b(\Lambda - 1)^2
\]
\[+ \frac{1}{2} \mu \left[\frac{(p - 1)(\Lambda^2 - \Lambda_{xx}^2) + p\alpha((p - 1)\Lambda^2 + \Lambda_{xx}^2)}{(p - 1)(p\Lambda^2 - \Lambda_{xx}^2) + \alpha\Lambda_{xx}^2} \right] - 2b\Lambda(\Lambda - 1)\Lambda_{xx}^2. \tag{22}\]

The term of order 0 in Λ_{xx} has the same form as it did in the absence of the semi-soft term. Thus, as before, $\Lambda_{xx} = \Lambda^{-1/2}$, and the coefficient of Λ_{xx}^2 is
\[
A = \frac{\mu}{2} \left[\frac{(p - 1)(\Lambda^3 - 1) + p\alpha((p - 1)\Lambda^3 + 1)}{(p - 1)(p\Lambda^3 - 1) + \alpha p} - 2b\Lambda(\Lambda - 1) \right]. \tag{23}\]

If $\Lambda = 1 + u_{zz}$, then to lowest order in u_{zz},
\[
A = \frac{\mu}{2} \left[\frac{p\alpha^2}{(p - 1)^2 + \alpha p} - 2bu + \frac{3(p - 1)(p(\alpha - 1) + 1)^2}{(p - 1)^2 + p\alpha^2} u \right]. \tag{24}\]

and thus there is a nonzero the critical value of the strain u_{zz},
\[
u_{zz}^c = \frac{p^2\alpha [(1 - p)^2 + p\alpha]}{2b[(1 - p)^2 + p\alpha] - 3(p - 1)[p(\alpha - 1) + 1]^2}, \tag{25}\]
in accord with the experiments of NF and our Lagrangian theory. Note that this critical strain is linearly proportional to α at small α and vanishes as $\alpha \to 0$ in agreement with our previous observation that the elastomer is unstable to shear at infinitesimal strain along z if it is soft rather than semi-soft. Having u_{zz}^c, we can proceed to calculate the entire stress-strain curve. The result is in full qualitative agreement with the experimental curves and the predictions of our Lagrangian theory. To save space, we leave the remaining steps as an exercise to the reader.

[1] For a review on liquid crystal elastomers see W. Warner and E.M. Terentjev, Liquid Crystal Elastomers (Clarendon Press, Oxford, 2003)
[2] For a review on liquid crystals see P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon Press, Oxford, 1993); S. Chandrasekhar, Liquid Crystals (Cambridge University Press, Cambridge, 1992).
[3] E. Nishikawa and H. Finkelmann, Macromol. Chem. Phys. 200, 312 (1999).
[4] W. Helfrich, Appl. Phys. Lett. 17, 531 (1970); J. Chem. Phys. 55 839 (1971); J.P. Hurault, J. Chem. Phys. 59.
[5] N. Clark and R. Meyer, Appl. Phys. Lett. 22 493 (1973)
[6] W. Lehmann et al., Nature 410, 447 (2001).
[7] R. Köhler, R. Stannarius, C. Tokldorf, and R. Zentel, Applied Physics A - Materials Science and Processing 80, 381 (2003).
[8] O. Stenull and T. C. Lubensky, Phys. Rev. Lett. 94, 018304 (2005).
[9] O. Stenull and T. C. Lubensky, Phys. Rev. E 74, 051709 (2006).
[10] L.D. Landau and E.M. Lifshitz, Theory of Elasticity, 3rd Edition (Pergamon Press, New York, 1986).
[11] P.M. Chaikin and T.C. Lubensky, Principles of Condensed Matter Physics (Cambridge Press, Cambridge, 1995).
[12] J. M. Adams and M. Warner, Phys. Rev. E 71, 021708 (2005).
[13] E. M. Terentjev and M. Warner, J. Phys. II (France) 4, 111 (1994).
[14] E. M. Terentjev and M. Warner, J. Phys. II (France) 4, 849 (1994).
[15] See, e.g., R. A. Horn and C. R. Johnson, Topics in Matrix Analysis (Cambridge University Press, New York, 1991).
[16] The vector $\mathbf{\hat{e}}$ is identical to the anisotropy vector, \mathbf{n}_0, at the time of crosslinking used in the work of Warner, Terentjev, and collaborators (as in Ref. [1]). \mathbf{n}_0 couples to the left-hand index of A_{ij} and is a reference-space vector that sets the anisotropy direction of the reference material.
[17] J.-H. Chen and T.C. Lubensky, Phys. Rev. A 14, 1202-1207 (1976).
[18] M. Brehmer, R. Zentel, F. Gieselmann, R. Germer, and P. Zunenburg, Liquid Crystals 21, 589 (1996).
[19] P. Archer and I. Dierking, Phys. Rev. E 72, 041713 (2005).