Enriched weakness

J. Rosický*

International Category Theory Conference, Genova 2010

*Joint work with S. Lack
Definition. Let \mathcal{E} be a class of morphisms in a symmetric monoidal closed category \mathcal{V}. Let $f : A \to B$ be a morphism in a \mathcal{V}-category \mathcal{K}. We say that an object C from \mathcal{K} is f-injective over \mathcal{E} when the induced morphism

$$\mathcal{K}(f, C) : \mathcal{K}(B, C) \to \mathcal{K}(A, C)$$

is in \mathcal{E}.

Given a class \mathcal{F} of morphisms in \mathcal{K}, C is \mathcal{F}-injective over \mathcal{E} if it is f-injective for all $f \in \mathcal{F}$. \mathcal{F}-Inj will denote the full subcategory of \mathcal{K} consisting of \mathcal{F}-injective objects.

Examples. (1) For $\mathcal{E} =$ isomorphisms, one gets the classical enriched orthogonality.
(2) For $\mathcal{V} = \text{Set}$ and $\mathcal{E} =$ surjections, one gets the classical injectivity.
Proposition 1. $\mathcal{F}\text{-}\text{Inj}$ is closed in \mathcal{K} under any class Φ of limits for which \mathcal{E} is closed in \mathcal{V}^2 under Φ-limits.

Proposition 2. $\mathcal{F}\text{-}\text{Inj}$ is closed in \mathcal{K} under any class Φ of colimits for which

1. \mathcal{E} is closed under Φ-colimits;

2. $\mathcal{K}(A, -)$ preserves Φ-colimits for any object A which is the domain or the codomain of a morphism in \mathcal{F}.
Let $G : \mathcal{K} \to \mathcal{L}$ be \mathcal{V}-functor. We say that a family of morphisms

$$(\eta_L : L \to UFL)_{L \in \mathcal{L}}$$

makes F a weak left adjoint to G if the induced morphisms

$$\mathcal{K}(FL, K) \xrightarrow{G} \mathcal{K}(GFL, GK) \xrightarrow{\mathcal{K}(\eta_L, GK)} \mathcal{K}(L, GK)$$

are in \mathcal{E}.

Of course, F does not need to be a functor.

Given \mathcal{V}-functors $D : \mathcal{D} \to \mathcal{K}$ and $H : \mathcal{D}^{\text{op}} \to \mathcal{V}$, $H \ast_w D$ is a weak colimit of D weighted by H if the induced morphism

$$\mathcal{K}(H \ast_w D, K) \to [\mathcal{D}^{\text{op}}, \mathcal{V}](H, \mathcal{K}(D, K))$$

is in \mathcal{E}.
The right choice for enriching classical injectivity is
\[\mathcal{E} = \text{pure epimorphisms}. \]
The reason is that the latter are precisely filtered colimits of split epimorphisms. One has to assume that \(\mathcal{V} \) is locally finitely presentable as a closed category. This means that the underlying ordinary category \(\mathcal{V}_0 \) is locally finitely presentable and the full subcategory of finitely presentable objects is closed under the monoidal structure.

Theorem 1. The following conditions are equivalent for a full subcategory \(\mathcal{A} \) of a locally presentable \(\mathcal{V} \)-category:

1. \(\mathcal{A} = \mathcal{F}-\text{Inj} \) for a set \(\mathcal{F} \);
2. \(\mathcal{A} \) is accessible, accessibly embedded, and closed under products and finite cotensors;
3. \(\mathcal{A} \) is accessibly embedded and weakly reflective.
Theorem 2. The following are equivalent for a \(\mathcal{V} \)-category \(\mathcal{A} \):

1. \(\mathcal{A} \) is accessible and weakly cocomplete;
2. \(\mathcal{A} \) is accessible and has products and finite cotensors;
3. \(\mathcal{A} \) is a small injectivity class in some locally presentable \(\mathcal{V} \)-category;
4. \(\mathcal{A} \) is weakly reflective, accessibly embedded subcategory of \([\mathcal{C}, \mathcal{V}]\) for some small \(\mathcal{V} \)-category \(\mathcal{C} \);
5. \(\mathcal{A} \) is equivalent to the category of models of a (limit, \(\mathcal{E} \))-sketch.

A \(\mathcal{V} \)-functor is a model of a (limit, \(\mathcal{E} \))-sketch if it preserves specified limits and sends specified morphisms to pure epimorphisms.
Now, take $\mathcal{V} = \textbf{Cat}$ and $\mathcal{E} = \text{equivalences}.$

Theorem 3. The following conditions are equivalent for a full subcategory \mathcal{A} of a locally presentable 2-category:

1. $\mathcal{A} = \mathcal{F}\text{-}\text{Inj}$ for a set $\mathcal{F};$

2. \mathcal{A} is accessible, accessibly embedded, closed under flexible limits and 2-replete;

3. \mathcal{A} is accessible, accessibly embedded, weakly reflective and 2-replete.

Flexible limit $\{H, D\}$ is a limit weighted by a retract $H : \mathcal{D} \to \textbf{Cat}$ of some G' where $'$ denotes left adjoint to the inclusion

$$[\mathcal{D}, \textbf{Cat}] \to \text{Psd}[\mathcal{D}, \textbf{Cat}]$$

where $\text{Psd}[\mathcal{D}, \textbf{Cat}]$ denotes the 2-category of 2-functors, pseudonatural transformations and modifications.

If \mathcal{K} has all flexible limits then it has all pseudolimits:

$$\{H, D\}_p \cong \{H', D\}$$
Theorem 4. The following are equivalent for a \mathcal{V}-category \mathcal{A}:

1. \mathcal{A} is a small injectivity class in some locally presentable 2-category;

2. \mathcal{A} is equivalent to the category of models of a $(\text{limit}, \mathcal{E})$-sketch.

One does not have the analogy of Theorem 2 here: the full subcategory of Cat consisting of the terminal category and the free-living isomorphism is accessible, accessible embedded and weakly reflective but does not have flexible limits.

But one has the analogies of Theorems 1 and 2 for the choice of $\mathcal{V} = \text{Cat}$ and $\mathcal{E} =$ retract equivalences. Products and finite cotensors are replaced by flexible limits.

Notice that both pure epimorphisms and retract equivalences are right parts of weak factorization systems in Cat and that retracts equivalences are pure epimorphisms.