State-Relevant Maxwell’s Equation from Kaluza-Klein Theory

Jing Luan,1 Yongge Ma,2,∗ and Bo-Qiang Ma3,4

1Yuanpei College, Peking University, Beijing 100871, China
2Department of Physics, Beijing Normal University, Beijing 100875, China
3School of Physics, Peking University, Beijing 100871, China
4MOE Key Laboratory of Heavy Ion Physics, Peking University, Beijing 100871, China

We study a five-dimensional perfect fluid coupled with Kaluza-Klein (KK) gravity. By dimensional reduction, a modified form of Maxwell’s equation is obtained, which is relevant to the equation of state of the source. Since the relativistic magnetohydrodynamics (MHD) and the 3-dimensional formulation are widely used to study space matter, we derive the modified Maxwell’s equations and relativistic MHD in 3+1 form. We then take an ideal Fermi gas as an example to study the modified effect, which can be visible under high density or high energy condition, while the traditional Maxwell’s equation can be regarded as a result in the low density and low temperature limit. We also indicate the possibility to test the state-relevant effect of KK theory in a telluric laboratory.

PACS numbers: 04.50.+h, 04.20.Fy, 04.40.Nr, 52.30.Cv

I. INTRODUCTION

A unified formulation of Einstein’s theory of gravitation and Maxwell’s theory of electromagnetism in four-dimensional (4D) spacetime was first proposed by Kaluza and Klein using a five-dimensional (5D) geometry [1, 2]. A free test particle in 5D KK spacetime shows its electricity in the reduced 4D spacetime when it moves along the fifth dimension. Moreover a 5D dust field coupled with KK gravity can curve the 5D spacetime in such a way that it provides exactly the source of the electromagnetic field in the 4D spacetime after the reduction [3]. In this paper we study the coupling of a 5D perfect fluid with KK gravity. It turns out that the 5D Einstein’s equation with a source gives a modification of Maxwell’s equation (see in section II), which can show its state-relevant effect on high-density or high-temperature condition (see in section IV). Thus this effect provides intriguing possibilities for the experimental test of the KK theory. Note that the KK theory which we are considering is purely classical. The KK theory has also been studied from the particle physics point of view (see e.g. [4]), which can show its effects in high energy scale of TeV. Whereas the energy scale needed for testing our state-relevant effect is only around keV.

In order to reveal the physical implication of the modification more clearly, both the modified Maxwell’s equations and the corresponding general relativistic MHD are reformulated in 3+1 form (see in section III). The formalism is also useful for evolving numerically a relativistic MHD fluid in a spacetime characterized by a strong gravitational field. Taking an ideal Fermi gas as an example, the modification term is studied as a function of degeneracy and temperature parameters (see in section IV). Moreover the modification terms for different components of the perfect fluid may be different. This would result in a net charge excess in high-temperature plasma. Recall that the the electrical neutrality of atoms and of bulk matter has been examined precisely by a number of experiments [5]. However, in those experiments, either the objects considered are not ionized, or the ions in the objects cannot be regarded as a perfect fluid. Therefore, these experiments cannot provide definite opposite evidence to the classical KK theory since they do not satisfy our premise. But they do cast some doubts on it. Taking account of the state-relevant character, we suggest high-temperature plasma in earth laboratory or dense-matter white dwarf in outer space as candidates to test the possible effects of the modified Maxwell’s equation.

∗Electronic address: mayg@bnu.edu.cn
II. KALUZA-KLEIN GRAVITY COUPLED WITH 5D PERFECT FLUID

Using a 5D geometry, Kaluza and Klein proposed a unified formulation of gravity and electromagnetism in 4D spacetime \[1, 2\]. The original KK theory assumed the so-called “Cylinder Condition”, which means that there exists a space-like killing vector field \(\xi^a\) on the 5D spacetime \((\hat{M}, \hat{g}_{ab})\) \[3, 4\]. Note that the abstract index notation \[3\] is employed throughout the paper and the signature of the five-metric is of the convention \((-+, +, +, +)\). In addition, Kaluza also demanded that \(\xi^a\) is normalized, i.e.,

\[
\phi \equiv \hat{g}_{ab} \xi^a \xi^b = 1.
\]

Later research shows that the Ansatz \[1\] may be dropped out and the \(\phi\) may play a key role in the study of cosmology \[10, 11, 12, 13\]. Being an extra dimension, the orbits of \(\xi^a\) are geometrically circles. The physical consideration that any displacement in the usual “physical” 4D spacetime (denoted as \(M\)) should be orthogonal to the extra dimension implies that the “physical” 4D metric should be defined as

\[
g_{ab} = \hat{g}_{ab} - \phi^{-1} \xi_a \xi_b ,
\]

and the projection operator onto \(M\) is

\[
g^a_b = \hat{g}^a_b - \phi^{-1} \xi^a \xi_b .
\]

For practical calculation, it is convenient to take a coordinate system \(\{z^M = (x^\mu, y)|\mu = 0, 1, 2, 3\}\) with coordinate basis \((e_M)^a = \{(e_\mu)^a, (e_5)^a\}\) on \(\hat{M}\) adapted to \(\xi^a\), i.e., \((e_5)^a = \left(\frac{\partial}{\partial y}\right)^a = \xi^a\). Then the 5-metric components \(\hat{g}_{MN}\) take the form

\[
\hat{g}_{MN} = \begin{pmatrix}
g_{\mu\nu} + \phi B_{\mu} B_{\nu} & \phi B_{\mu} \\
\phi B_{\nu} & \phi
\end{pmatrix},
\]

where \(\phi_{\mu 5} \equiv \phi B_{\mu}\). So, locally, the “physical” spacetime can be understood as a 4-manifold \(M\) with the coordinates \(\{x^\mu\}\) endowed with the metric \(g_{ab}\). The whole theory is governed by the 5D Einstein-Hilbert action

\[
S_G = -\frac{1}{2k} \int_{\hat{M}} d^4x dy \sqrt{-\hat{g}} \hat{R} .
\]

Suppose the range of the fifth coordinate to be \(0 \leq y \leq L\) and denote \(k = \hat{k}/L\). Let \(B_\mu = f A_\mu, f^2 = 2k\), then equation \[5\] becomes a coupling action on \(M\) as

\[
\hat{S}_G = \int_{M} d^4x \sqrt{-g} \sqrt{\phi} \left(-\frac{1}{2k} R + \frac{1}{4} \phi F_{ab}(A) F^{ab}(A) \right) ,
\]

where \(R\) is the curvature scalar of \(g_{ab}\) on \(M\) and \(F_{ab}(A) = 2\partial_a A_b\). Thus, it results in a 4D gravity \(g_{ab}\) coupled to an electromagnetic field \(A_a\) and a scalar field \(\phi\). It is clear that, under the Ansatz \[1\], 5D KK theory unifies the Einstein’s gravity and the source-free Maxwell’s field in the standard formulism.

Now we consider a 5D perfect fluid

\[
\dot{\hat{T}}_{ab} = (\hat{\rho} + \hat{p}) \hat{V}_a \hat{V}_b + \hat{p} \hat{g}_{ab} .
\]

The 5-velocity \(\hat{V}^a\) can be projected onto the “physical” spacetime \((M, g_{ab})\) as

\[
u^a \equiv g^a_b \hat{V}^b = \hat{V}^\mu (e_\mu)^a - (B_\mu \hat{V}^\mu)(e_5)^a .
\]

Note that we have \(\hat{V}^a \hat{V}_a = -1\), hence it is easy to show that

\[
\hat{V}^\mu \hat{\nu}_{\mu} \equiv \hat{g}_{ab} \nu^a \nu^b = g_{ab} \hat{V}^a \hat{V}^b = -1 - \frac{Q^2}{\phi} ,
\]
where \(Q \equiv \hat{V}_5 = \hat{g}_{5a}\hat{V}^a \) represents the electric charge in \(M \). The energy-momentum tensor can be projected on \(M \) as \(\tilde{T}_{ab} = g_a^c g_b^d T_{cd} \). In order to obtain the observed 4D energy-momentum tensor \(T_{ab} \) on \(M \), we have to integrate \(\tilde{T}_{ab} \) along the extra dimension. In the light of (8) and (9) we obtain

\[
T_{ab} = (\mu + p)v_a v_b + p g_{ab} ,
\]

where

\[
P = \tilde{p}\sqrt{\phi L},
\]

\[
\mu = \tilde{\mu} L(Q^2 + \phi) + \tilde{p} L Q^2 \phi,
\]

\[
v_a = \frac{u_a}{\sqrt{-\hat{V}^{\mu}\hat{V}_{\mu}}} .
\]

It is clear that \(T_{ab} \) is the energy-momentum tensor of a 4D perfect fluid in \(M \), where \(\mu \) and \(p \) are respectively the energy density and pressure density observed by a comoving observer in \(M \).

We now consider the reduction of 5D Einstein’s equation

\[
\hat{R}_{ab} - \frac{1}{2} \hat{g}_{ab} \hat{R} = \hat{k} \tilde{T}_{ab} ,
\]

which is equivalent to

\[
\hat{R}_{ab} = \hat{k}(\tilde{T}_{ab} - \frac{1}{3} \tilde{T}_{c} \tilde{g}_{ab}) .
\]

It is not difficult to show from Eq. (5) that the components of the 5D Ricci tensor \(\hat{R}_{ab} \) can be expressed as

\[
\hat{R}_{55} = \frac{1}{2} k \phi^2 F^{\sigma\rho} F_{\sigma\rho} - \frac{1}{2} \nabla^\mu \nabla_\mu \phi + \frac{1}{4 \phi} (\nabla^\mu \phi) \nabla_\mu \phi ,
\]

\[
\hat{R}_{\mu5} = \frac{f}{2} (\phi \nabla^\nu F_{\mu\nu} + \frac{3}{2} F_{\mu\nu} \nabla^\nu \phi)
\]

\[
+ B_\mu \left(\frac{1}{2} k \phi^2 F^{\sigma\rho} F_{\sigma\rho} - \frac{1}{2} \nabla^\nu \nabla_\nu \phi + \frac{1}{4 \phi} (\nabla^\nu \phi) \nabla_\nu \phi \right) ,
\]

\[
\hat{R}_{\mu\nu} = R_{\mu\nu} - k \phi F^{\sigma\rho} F_{\sigma\rho} - \frac{1}{2 \phi} \nabla_\mu \nabla_\nu \phi + \frac{1}{4 \phi^2} (\nabla_\mu \phi) \nabla_\nu \phi
\]

\[
+ B_\mu B_\nu \left(\frac{1}{2} k \phi^2 F^{\sigma\rho} F_{\sigma\rho} - \frac{1}{2} \nabla^\sigma \nabla_\sigma \phi + \frac{1}{4 \phi} (\nabla^\sigma \phi) \nabla_\sigma \phi \right)
\]

\[
+ \frac{f}{2} B_\mu (\phi \nabla^\sigma F_{\nu\sigma} + \frac{3}{2} F_{\nu\sigma} \nabla^\sigma \phi)
\]

\[
+ \frac{f}{2} B_\nu (\phi \nabla^\sigma F_{\mu\sigma} + \frac{3}{2} F_{\mu\sigma} \nabla^\sigma \phi) ,
\]

where \(\nabla_a \) is the 4D covariant derivative operator associated with \(g_{ab} \). Substituting Eq. (14) into Eq. (13), we obtain a coupling equation for the matter fields as

\[
\frac{1}{2} k \phi^2 F^{ab} F_{ab} = \sqrt{\phi} \nabla^a \nabla_a \sqrt{\phi} + k \sqrt{\phi} \mu \left(1 - \frac{2 \phi}{3 (\phi + Q^2)} \right) + k \sqrt{\phi} p \frac{Q^2 - \phi}{3 Q^2} .
\]

Substituting Eq. (15) into Eq. (13) and using Eq. (17), we obtain an electromagnetic field equation with source as

\[
\phi \nabla^b F_{ab} + \frac{3}{2} F_{ab} \nabla^b \phi = \tilde{\gamma}(1 + \frac{p}{\mu}) J_a ,
\]
here we have defined \(\tilde{\gamma} \equiv \sqrt{(1 + Q^2)/(\phi + Q^2)} \), \(\rho \equiv \frac{\mu_0 Q}{\sqrt{\phi(1 + Q^2)}} \) and \(J^a \equiv \rho v^a \). Substituting Eq. (16) into Eq. (13) and using Eq. (17) and (18), we obtain a 4D Einstein’s equation with source as

\[
G_{ab} = \frac{k}{\sqrt{\phi}} \left((\mu + p)v_a v_b + g_{ab} p + \phi^{3/2}(F_a^c F_{bc} - \frac{1}{4} g_{ab} F^{cd} F_{cd}) - \frac{1}{k} (g_{ab} \nabla^c \nabla_c \sqrt{\phi} - \nabla_a \nabla_b \sqrt{\phi}) \right),
\]

where \(G_{ab} \) is the Einstein tensor of \(g_{ab} \). More generally, if the 5D perfect fluid consists of \(m \) components, \(\tilde{T}_{ab} \) then reads

\[
\tilde{T}_{ab} = \sum_{\eta=1}^{m} \left((\tilde{\rho}_\eta + \tilde{\mu}_\eta) \tilde{V}_a(\eta) \tilde{V}_b(\eta) + \tilde{\rho}_\eta \delta_{ab} \right).
\]

By similar calculations, Eqs. (17)-(19) become respectively

\[
\frac{1}{2} k \phi^2 F_a^b F_{ab} = \sqrt{\phi} \nabla^a \nabla_a \sqrt{\phi} + k \sqrt{\phi} \sum_{\eta=1}^{m} p(\eta) \left(1 - \frac{2\phi}{3(\phi + Q(\eta)^2)} \right)
\]

\[
+ k \sqrt{\phi} \sum_{\eta=1}^{m} p(\eta) \frac{Q(\eta)^2 - \phi}{3(Q(\eta)^2 + \phi)},
\]

\[
\phi \nabla^b F_{ab} + \frac{3}{2} F_a^b \phi = \sum_{\eta=1}^{m} \tilde{\gamma}(\eta) \left(1 + \frac{p(\eta)}{\mu(\eta)} \right) J_a(\eta),
\]

\[
G_{ab} = \frac{k}{\sqrt{\phi}} \left(\sum_{\eta=1}^{m} ((\mu(\eta) + p(\eta))v_a(\eta)v_b(\eta) + g_{ab} p(\eta)) + \phi^{3/2}(F_a^c F_{bc} - \frac{1}{4} g_{ab} F^{cd} F_{cd}) - \frac{1}{k} (g_{ab} \nabla^c \nabla_c \sqrt{\phi} - \nabla_a \nabla_b \sqrt{\phi}) \right).
\]

It is interesting to see the results when \(\phi \equiv 1 \). Eqs. (17)-19 become respectively

\[
\frac{1}{2} k F_a^b F_{ab} = k \mu \left(1 - \frac{2}{3(1 + Q^2)} \right) + k p \frac{Q^2 - 1}{3(Q^2 + 1)},
\]

\[
\nabla^b F_{ab} = \left(1 + \frac{p}{\mu} \right) J_a,
\]

\[
G_{ab} = k (T_{ab}^{(\text{fluid})} + T_{ab}^{(\text{em})}),
\]

where \(T_{ab}^{(\text{fluid})} = (\mu + p)v_a v_b + g_{ab} p \) and \(T_{ab}^{(\text{em})} = F_a^c F_{bc} - \frac{1}{4} g_{ab} F^{cd} F_{cd} \) are respectively the usual energy-momentum tensors of 4D perfect fluid and electromagnetic field. Eq. (26) is the standard 4D Einstein’s equation while Eq. (25) is not the same as the standard 4D Maxwell’s equation \(\nabla^b F_{ab} = J_a \). The new term \((1 + \frac{\phi}{\mu}) \) brings an effective charge which can be considered as a state-relevant effect, as will be discussed later. We thus call Eq. (25) the state-relevant Maxwell’s equation.

III. MAXWELL’S EQUATIONS AND RELATIVISTIC MHD IN 3+1 FORM

Since relativistic MHD is widely used to study space matter and 3D formulation is frequently applied to dealing with specific issues \[14\], we now derive the modified results of Maxwell’s equations and relativistic MHD in 3+1 form.
The 4D spacetime M is foliated into a family of non-intersecting spacelike three-surfaces Σ, which arise, at least locally, as level surfaces of a scalar time function t. The spatial metric γ_{ab} on the three-dimensional hypersurfaces Σ is induced by the spacetime metric g_{ab} according to

$$\gamma_{ab} = g_{ab} + n_a n_b ,$$

(27)

where n^a is the unit normal vector to the slices and thus $n_a = -\alpha \nabla_a t$. Here the normalization factor α is called the lapse function. The time vector t^a is dual to the foliation 1-form $\nabla_a t$ and can be decomposed as

$$t^a = \alpha n^a + \beta^a ,$$

(28)

where the shift vector β is spatial, i.e., $n_a \beta^a = 0$. Since the extrinsic curvature K_{ab} of Σ can be written as

$$K_{ab} = -\nabla_a n_b - n_a a_b ,$$

(29)

where $a_a \equiv n_b \nabla_b n_a$, the divergence of n^a satisfies

$$\nabla_a n^a = -K ,$$

(30)

here K is the trace of K_{ab}.

Firstly we write the modified Maxwell’s equations in 3+1 form. The Faraday tensor F^{ab} can be decomposed as

$$F^{ab} = n^a E^b - n^b E^a + \epsilon^{abc} B_c ,$$

(31)

where E^a and B^a are the electric and magnetic fields observed by a normal observer n^a. Both fields are purely spatial, whereby

$$E^a n_a = 0 \text{ and } B^a n_a = 0 ,$$

(32)

and the three-dimensional Levi-Civita symbol ϵ_{abc} is defined by

$$\epsilon_{abc} = n^d \epsilon_{dabc} \text{ or } \epsilon^{abc} = n_d \epsilon^{dabc} .$$

(33)

The electromagnetic current four-vector J^a is decomposed as

$$J^a = n^a \rho_e + j^a ,$$

(34)

where ρ_e and j^a are the charge density and 3-current as observed by a normal observer n^a. Note that j^a is purely spatial, i.e., $j^a n_a = 0$. With these definitions, the modified Maxwell’s equations (17), (18) and $\nabla_a F_{bc} = 0$ can be cast into 3+1 form as

$$k \phi^2 (B^2 - E^2) = \phi (D_a D_a \phi - (\alpha^{-1}(\partial_t - \mathcal{L}_\beta))^2 \frac{\phi}{\sqrt{\phi}}
+ K \alpha^{-1}(D_a \sqrt{\phi})(D^a \ln \alpha)(\partial_t - \mathcal{L}_\beta) \sqrt{\phi})
+ k \sqrt{\phi} \mu \left(1 - \frac{2\phi}{3(\phi + Q^2)}\right) + k \sqrt{\phi} \rho_e \frac{Q^2 - \phi}{3(\phi + Q^2)} ,$$

(35)

$$D_a E^a = \phi^{-1}(\gamma(1 + \frac{\rho}{\mu})\rho_e - \frac{3}{2} F^{ab} D_a \phi) ,$$

(36)

$$\phi \mathcal{L}_a E^a = \phi(\alpha K E^a + \mathcal{L}_\beta E^a + \epsilon^{abc} D_b (\alpha B_c))
- \alpha \gamma (1 + \frac{\rho}{\mu}) j^a + \frac{3}{2} \alpha (\epsilon^{abc} B_b D_c \phi - E^a \alpha^{-1}(\partial_t - \mathcal{L}_\beta) \phi) ,$$

(37)

$$D_a B^a = 0 ,$$

(38)

$$\mathcal{L}_a B^a = -\epsilon^{abc} D_b (\alpha E_c) + \alpha K E^a + \mathcal{L}_\beta B^a ,$$

(39)
here \mathcal{L}_s denotes the Lie-derivative along s^a and D_a is the covariant derivative operator associated to γ_{ab}. Note that the Lie-derivative of a spacelike tensor $A^a_{\cdots b}$ along s^a is defined conventionally as $\hat{L}_s A^a_{\cdots b} = \gamma^a_{a'} \cdots \gamma^b_{b'} L_s A^a_{\cdots b'}$, and we write \hat{L}_s as L_s for short. Note also that the formula $n^b \nabla_b \rho_a = a_a = D_a \ln \alpha$ is used in the above calculation. If one considered a 5D perfect fluid consisting of $\sum_{\eta=1}^m \hat{\gamma}(\eta)(1 + \frac{\rho(\eta)}{\mu(\eta)}) \rho_a(\eta)$ and $\sum_{\eta=1}^m \hat{\gamma}(\eta)(1 + \frac{\rho(\eta)}{\mu(\eta)}) \rho_a(\eta)$, then $\hat{\rho}_e$ would be replaced by $\sum_{\eta=1}^m \hat{\gamma}(\eta)(1 + \frac{\rho(\eta)}{\mu(\eta)}) \rho_a(\eta)$ and $\sum_{\eta=1}^m \hat{\gamma}(\eta)(1 + \frac{\rho(\eta)}{\mu(\eta)}) \rho_a(\eta)$ in Eqs. (36) and (37) would be replaced by $\sum_{\eta=1}^m \hat{\gamma}(\eta)(1 + \frac{\rho(\eta)}{\mu(\eta)}) \rho_a(\eta)$ and $\sum_{\eta=1}^m \hat{\gamma}(\eta)(1 + \frac{\rho(\eta)}{\mu(\eta)}) \rho_a(\eta)$ when $\phi \equiv 1$, one can see from Eq. (38) that $\hat{\rho}_e$ is the effective charge density serving as the source of the electric field. This effective charge density is state-relevant, i.e., it is dependent on p/μ. Its significance will be discussed later.

Secondly we rewrite modified relativistic MHD in 3+1 form. Note that the total energy-momentum tensor in M can be read off from the right hand side of Eq. (19) as

$$T^{ab} = T^{ab}_{\text{(fluid)}} + T^{ab}_{\text{(em)}} + T^{ab}_{\phi},$$

where

$$T^{ab}_{\text{(em)}} = \frac{3\sqrt{\phi}}{2} \left(\frac{1}{2} (B^2 + E^2) (D^a \phi + n^a \alpha^{-1} (\partial_t - \mathcal{L}_s) \phi) - (E^a E^b + B^a B^b) D_b \phi + E_c B_d (n^a \epsilon^{bcd} D_b \phi + \epsilon^{acd} \alpha^{-1} (\partial_t - \mathcal{L}_s) \phi) \right),$$

here $E^2 \equiv E_a E^a$ and $B^2 \equiv B_a B^a$. Recall that the relation between three-dimensional Riemann tensor \mathcal{R}^{d}_{abc} and 4D one R^{d}_{abc} reads

$$\mathcal{R}^{d}_{abc} = \gamma^c_{a'b'} \gamma^a_{a'} \gamma^b_{b'} R^{m}_{efl} - 2 K^{c}_{e[a} K^{d}_{b]}. $$

Using

$$\langle \nabla_a \nabla_b - \nabla_b \nabla_a \rangle \nabla^c \sqrt{\phi} = - R^{a}_{bde} \nabla^d \sqrt{\phi},$$

a lengthy but straightforward calculation gives

$$\nabla_a T^{ab}_{\phi} = \frac{1}{2k \sqrt{\phi}} (3 R^{ab}_{\phi} D_b \phi + \alpha^{-1} (D_b K^{ab} - D^a K) (\partial_t - \mathcal{L}_s) \phi - (D^b \phi) (\alpha^{-1} (\partial_t - \mathcal{L}_s) K^a_{b} + K^{c}_{a} K_{bc}) + D^a D_b \ln \alpha + (D^a \ln \alpha) D_b \ln \alpha + n^a (\alpha^{-1} (\partial_t - \mathcal{L}_s) \phi) (K^{bc} K_{bc} + D^b D_b \ln \alpha + a^2 + \alpha^{-1} (\partial_t - \mathcal{L}_s) K) + (D_b K^{bc}) D_c \phi - (D^b K) D_b \phi - K_{bc} (D^b \phi) D^c \ln \alpha),$$

(48)
where $^3R^{ab}$ is the three-dimensional Ricci tensor and $a^2 \equiv a^a a_a$. For a perfect fluid, the energy-momentum tensor $T^{ab}_{(\text{fluid})}$ can also be written as

$$T^{ab}_{(\text{fluid})} = \rho v^a v^b + pg^{ab}, \quad (49)$$

where ρ is the rest-mass density as observed by an observer co-moving with the fluid v^a, p is the pressure and h the specific enthalpy

$$h = 1 + \epsilon + p/\rho. \quad (50)$$

Hence one has $\mu = (1 + \epsilon)\rho$. The local conservation of the 4D Einstein tensor G^{ab} leads to

$$\nabla_b (T^{ab}/\sqrt{\phi}) = 0. \quad (51)$$

We assume that $T^{ab}_{(\phi)}$ does not contribute to the number of baryons. Thus we have the conservation of baryons as

$$\nabla_a (\rho v^a) = 0, \quad (52)$$

which is decomposed into 3+1 form as

$$D_a (\rho v^a) + \alpha^{-1} (\partial_{t} - \mathcal{L}_{\beta}) (\rho W) - \rho W K + \rho \tilde{v}^a D_a \ln \alpha = 0, \quad (53)$$

where $\tilde{v}^a \equiv v^a - W n^a$. The equation for the conservation of energy is obtained by contracting Eq. 51 with n_b as

$$H = \alpha^{-1} (\partial_{t} - \mathcal{L}_{\beta}) p - W \rho (\tilde{v}^a D_a h + W \alpha^{-1} (\partial_{t} - \mathcal{L}_{\beta}) h)$$

$$- \rho h (W \alpha^{-1} (\partial_{t} - \mathcal{L}_{\beta}) W + \tilde{v}^a D_a W$$

$$+ W \tilde{v}^a D_a \ln \alpha - K_{ab} \tilde{v}^a \tilde{v}^b), \quad (54)$$

and the Euler equation is obtained by projecting Eq. 51 onto Σ as

$$\rho h v^a \partial_a h = \rho h (2W K^{ab} \tilde{v}_b - W^2 D^a \ln \alpha) - \rho h W \alpha^{-1} (\partial_{t} - \mathcal{L}_{\beta}) \tilde{v}^a$$

$$- \rho \tilde{v}^a (W \alpha^{-1} (\partial_{t} - \mathcal{L}_{\beta}) h + \tilde{v}^b D_b h) - D^a p - M^a, \quad (55)$$

where

$$H \equiv \phi^{3/2} (-KE^2 + \alpha^{-1} E_a (\mathcal{L}_{t} - \mathcal{L}_{\beta}) E^a - \alpha^{-1} \epsilon^{abc} E_a D_b (\alpha B_c))$$

$$+ \frac{\sqrt{\phi}}{2} (B^2 + E^2) \alpha^{-1} (\partial_{t} - \mathcal{L}_{\beta}) \phi + \sqrt{\phi} \epsilon^{abc} E_a D_b D_c \phi$$

$$+ \frac{1}{2k \sqrt{\phi}} (\alpha^{-1} (\partial_{t} - \mathcal{L}_{\beta}) \phi (-K^{ab} K_{ab} + D^a D_a \ln \alpha + a^2$$

$$+ \alpha^{-1} (\partial_{t} - \mathcal{L}_{\beta}) K) (D_a K^{ab} D_b \phi - (D^a K) D_a \phi)$$

$$- \frac{W}{2\phi} (\mu + p) \tilde{v}^b D_b \phi + \frac{1}{2k \phi} (D_a \phi) (\alpha^{-1} (\mathcal{L}_{t} - \mathcal{L}_{\beta}) D^a \sqrt{\phi}$$

$$- K_{ab} D^b \sqrt{\phi}) + \frac{1}{2\phi} \alpha^{-1} (-W^2 (\mu + p) + p - \frac{1}{k} (D^a D_a \sqrt{\phi}$$

$$+ K \alpha^{-1} (\partial_{t} - \mathcal{L}_{\beta}) \sqrt{\phi} + (D_a \sqrt{\phi}) D^a \ln \alpha)) (\partial_{t} - \mathcal{L}_{\beta}) \phi, \quad (56)$$

and
degeneracy and temperature parameters
see under what condition can the modified term p/μ
fluid and its rationality should be carefully checked. In this section, we adopt an ideal Fermi gas as an example to
which accord with the conventional form [14].

\[M^a \equiv +\sqrt{\phi} \frac{1}{2}(B^2 + E^2)D^a \phi - (E^a E^b + B^a B^b)D_b \phi \\
+ \epsilon^{abc}E_b \epsilon^{-1}(\partial_t - \mathcal{L}_\beta)\phi - \phi^{3/2}E^a D_b E^b \\
+ \phi^{3/2}\epsilon^{abc}(\epsilon^{abc} B_c (\mathcal{L}_t - \mathcal{L}_\beta - \alpha K)E_b + B_b \epsilon^{a}(\alpha B^b) - B_b \epsilon^{a}(\alpha B^a)) \\
+ \frac{1}{2k\sqrt{\phi}}(3R^{ab} D_b \phi + \alpha^{-1}(D_b K^{ab} - D^a K)(\partial_t - \mathcal{L}_\beta)\phi) \\
-(D^b \phi) (\alpha^{-1}(\mathcal{L}_t - \mathcal{L}_\beta)K^b + K^{ac} K_{bc} + D^a D_b \ln \alpha + (D^a \ln \alpha) D_b \ln \alpha) \\
- \frac{1}{2\phi}(\mu + p)(\phi^b D_b \phi + W\alpha^{-1}(\partial_t - \mathcal{L}_\beta)\phi)\tilde{\phi} - \frac{1}{2\phi} p D^a \phi \\
+ K \alpha^{-1}(\partial_t - \mathcal{L}_\beta)\sqrt{\phi} + (D_b \sqrt{\phi}) D^b \ln \alpha \\
- \frac{1}{2k\phi} \left((D_b \phi) D^b D_b \sqrt{\phi} - (\alpha^{-1}(\partial_t - \mathcal{L}_\beta))^2 \sqrt{\phi} \right) \\
- (\alpha^{-1}(\partial_t - \mathcal{L}_\beta) D^a (\alpha^{-1}(\partial_t - \mathcal{L}_\beta) \sqrt{\phi}) \right), \tag{57} \]

here $(\alpha^{-1}(\partial_t - \mathcal{L}_\beta))^2 \sqrt{\phi}$ denotes $\alpha^{-1}(\partial_t - \mathcal{L}_\beta)(\alpha^{-1}(\partial_t - \mathcal{L}_\beta) \sqrt{\phi})$. Note that Eqs. (53), (54) and (55) comprise the basic formulas for the modified relativistic MHD in three-dimensional form. In the special case $\phi \equiv 1$, we have

\[H = -KE^2 + \alpha^{-1}E_a (\mathcal{L}_t - \mathcal{L}_\beta) E^a - \alpha^{-1} \epsilon^{abc} E_a D_b (\alpha B_c), \tag{58} \]

\[M^a = -E^a D_b E^b + \alpha^{-1} \epsilon^{abc} B_c (\mathcal{L}_t - \mathcal{L}_\beta - \alpha K) E_b \\
+ \alpha^{-1} (B_b \epsilon^{a}(\alpha B^b) - B_b \epsilon^{a}(\alpha B^a)) \right), \tag{59} \]

which accord with the conventional form [14].

\[IV. \ \text{DISCUSSION ON THE EFFECTIVE CHARGE} \]

From the state-relevant Maxwell’s equation [29] and its 3+1 form Eq. (30), we can see that $\tilde{\rho}_e \equiv (1 + p/\mu)\rho_e$ is the effective charge density of a perfect fluid. Such effective charge density is relevant to the equation of state of the fluid and its rationality should be carefully checked. In this section, we adopt an ideal Fermi gas as an example to see under what condition can the modified term p/μ show visible effect. We employ in terms of the dimensionless degeneracy and temperature parameters

\[\eta = \frac{\bar{\mu}}{k_B T}, \ \ \ \beta = \frac{k_B T}{mc^2}, \tag{60} \]

where $\bar{\mu}$ is the chemical potential, m is the mass of the fermion, and k_B is the Boltzmann constant. The gas is degenerate for $\eta \gg 0$ while nondegenerate for $\eta \ll 0$. On the other hand, the gas is extremely relativistic for $\beta \gg 1$ while nonrelativistic for $\beta \ll 1$ [17]. The zero of energy for the particles is chosen so that the thermodynamic potential reads

\[\Omega = -V k_B T \int \frac{g d^3 \tilde{p}}{h^3} \ln \left[1 + \exp \frac{\bar{\mu} - \epsilon}{k_B T} \right], \tag{61} \]

where \tilde{p} is the momentum, g is the statistical weight, and

\[\epsilon = \sqrt{(\tilde{p}c)^2 + (mc^2)^2} - mc^2 \tag{62} \]
is the kinetic energy. The number density n, pressure p, and internal energy density E (per volume) of an ideal Fermi gas are respectively

$$n = K \beta^{3/2} \left[F_{1/2}(\eta, \beta) + \frac{1}{3} \beta F_{3/2}(\eta, \beta) \right],$$ \hspace{1cm} (63)$$

$$p = mc^2 K \beta^{5/2} \left[\frac{2}{3} F_{3/2}(\eta, \beta) + \frac{1}{3} \beta F_{5/2}(\eta, \beta) \right],$$ \hspace{1cm} (64)$$

$$E = mc^2 K \beta^{5/2} \left[F_{3/2}(\eta, \beta) + \beta F_{5/2}(\eta, \beta) \right],$$ \hspace{1cm} (65)$$

where $K = 4\sqrt{2} \pi g (mc/h)^3$, and the Fermi integral is

$$F_k(\eta, \beta) \equiv \int_0^{+\infty} \frac{zk(1 + \frac{1}{2} \beta z)^{1/2} dz}{e^z - 1} \quad (k > -1).$$ \hspace{1cm} (66)$$

Then we have

$$\frac{p}{\mu} = \frac{p}{E + nmc^2} = \frac{1}{3 + 3F_{1/2}(\eta, \beta)/(2\beta F_{3/2}(\eta, \beta) + \beta^2 F_{5/2}(\eta, \beta))}. $$ \hspace{1cm} (67)$$

The relation between p/μ and (η, β) is shown in Fig. 1. One can see clearly that both degenerate and relativistic conditions can lead to the value of p/μ comparable to $1/3$ (which is the value of p/μ for radiation).

Now we study the two kinds of conditions respectively. For a nondegenerate ideal Fermi gas (for example $\eta = -30$), the value of p/μ is drawn from nonrelativistic ($\beta = 0$) to relativistic ($\beta = 2$) regime in Fig. 2. It is obvious that we need not to go to extremely relativistic condition since p/μ is already close to $1/3$ when $\beta = 2$. In the specific calculation for an electron gas, we set $p/\mu = 0.002$ when $k_B T = 1$ keV. This result indicates the possibility to test the theory in earth laboratory. For a non-degenerate electron gas at $T = 273K$, one may estimate the modification term as $p/\mu \sim k_B T/m_e c^2 \sim 10^{-8}$. On the other hand, in the experiments on the equality of the electric charges of proton and electron, these charges in a conductor are found to be equal within 10^{-19} or better (see e.g. [18]). However, the proton system in a conductor cannot be seen as a perfect fluid and hence does not satisfy our premise. Hence the effective charges of protons in a conductor cannot be directly obtained by our modified equations. So, those experiments are not in severe contradiction with the KK theory. For similar reason, the experiments reported in Ref. [9] cannot provide definite opponent evidence to the KK theory either. But this kind of experiments do cast some doubts on the classical KK theory. Note that both the electron system and the ion system could be regarded as
FIG. 2: Modified term p/μ as a function of relativistic parameter β in nondegenerate condition $\eta = -30$.

FIG. 3: Modified term p/μ as a function of degeneracy parameter η in nonrelativistic condition $\beta = 10^{-9}$.

perfect fluid in high-temperature plasma. In a thermal equilibrium state the electron and ion in a plasma have the same temperature. Hence they would have different values of p/μ. Actually the value of p/μ for ion is much smaller than the one for electron when $k_B T$ takes value from keV to MeV. It turns out that the two important physical parameters for the description of plasma–Debye length and plasma frequency [19] have to be modified in our 5D theory as

$$\lambda_D = \left[\frac{\epsilon_0 k_B T}{n_e e^2 (1 + p_e/\mu_e)} \right]^{\frac{1}{2}}, \quad (68)$$

and

$$\omega_p = \left[\frac{n_e e^2 (1 + p_e/\mu_e)}{m_e \epsilon_0} \right]^{\frac{1}{2}}, \quad (69)$$

where n_e is the number density of electron and ϵ_0 the permittivity of vacuum. Since the electromagnetic wave whose frequency is lower than ω_p will be reflected while others can transmit through the plasma, the plasma frequency can be measured accurately [20]. Therefore it is possible to test the prediction from the 5D KK theory in earth laboratory. For a degenerate idea Fermi gas, the relation between p/μ and η is demonstrated in Fig. 3. Recall that the white dwarf is known to resist the gravity by an electronic degenerate pressure. It is also possible to test the 5D theory by certain relevant phenomena in outerspace.
Note that the vacuum polarization in quantum electrodynamics (QED) also leads to an effective charge of a point-like particle \cite{21,22}. So the effective charge viewpoint does not merely come from the KK theory. For the Fermi gas in KK theory, the larger the density and the temperature, the larger the effective charge factor $\tilde{\rho}e/\rho_e$, which approaches to $4/3$ as a limit. Whereas for QED, the higher the energy scale (or shorter distance), the larger the effective charge e_{eff}/e, which approaches to infinity as a limit. Therefore the state-relevant Maxwell’s equation and QED give similar results of larger effective charges. However, the state-relevant effect in KK theory is a pure classical effect due to the extra dimension of spacetime, whereas the QED effect is a quantum effect irrespective of any extra dimension. So one does not expect them to be the same. It is easy to distinguish the two effects by comparing their characters.

In Summary, the coupling of 5D perfect fluid to KK gravity is fully studied. The 4D effective equations of this 5D coupling system are derived. In particular, the modified Maxwell’s equation which is relevant to the equation of state of the source is obtained. To facilitate applications, we also derive the 3+1 form of the modified Maxwell’s equations and the relativistic MHD. It turns out that the effective charge density in the KK theory can be written as $\tilde{\rho}_e \equiv (1 + p/\mu)\rho_e$. Moreover, using an ideal Fermi gas model, we study the modification term p/μ as a function of degeneracy parameter η and the relativity parameter β. It reveals that the traditional Maxwell’s equation is the low density and low temperature limit of the state-relevant Maxwell’s equation. We thus indicate the possibility to test the state-relevant effect both in earth laboratory and in astrophysical phenomena.

Acknowledgments

We acknowledge the valuable discussions with Lingzhen Guo, Wenan Guo, Zhi-Qiang Guo, Bin Wu and Ren-Xin Xu. This work is supported in part by Hui-Chun Chin and Tsung-Dao Lee Chinese Undergraduate Research Endowment (Chun-Tsung Endowment) at Peking University, by NSFC (Nos. 10675019, 10421503, 10575003), and by the Key Grant Project of Chinese Ministry of Education (No. 3050001).

\[\text{References}\]

[1] T. Kaluza, Sitzungsber. Preuss. Akad. Wiss. Phys. Mat. Klasse 1921, 966 (1921).
[2] O. Klein, Z. Phys. 37, 895 (1926).
[3] Y. Ma and J. Wu, Int. J. Mod. Phys. A19, 5043 (2004).
[4] Y. A. Kubyshin, Arxiv preprint: [hep-ph/0111027]
[5] C. S. Unnikrishnan and G. T. Gillies, Metrologia 41, S125 (2004).
[6] M.J. Duff, B.E.W. Nilsson, and C.N. Pope, Phys. Rep. 130, 1 (1986).
[7] J.M. Overduin and P.S. Wesson, Phys. Rep. 283, 303 (1997).
[8] X. Yang, Y. Ma, J. Shao, and W. Zhou, Phys. Rev. D68, 024006 (2003).
[9] R.M. Wald, General Relativity (The University of Chicago Press, 1984).
[10] J-P. Uzan, Rev. Mod. Phys. 75, 403 (2003).
[11] P.J.E. Peebles and B. Ratra, Rev. Mod. Phys. 75, 559 (2003).
[12] I.K. Wehus and F. Ravndal, Int. J. Mod. Phys. A19, 4671 (2004).
[13] N. Mohammedi, Phys. Rev. D65, 104018 (2002).
[14] T.W. Baumgarte and S.L. Shapiro, Astrophys. J. 585, 921 (2003).
[15] K.S. Thorne and D.A. MacDonale, Month. Not. R. Astr. Soc. 198, 345 (1982).
[16] C.W. Misner, K.S. Thorne and J.A. Wheeler, Gravitation, (Freeman, New York, 1973).
[17] J.A. Miralles and K.A. Van Riper, Astrophys. J. Suppl. S 105, 407 (1996).
[18] R.W. Stover, T.I. Moran and J.W. Trischka, Phys. Rev. 164, 1599 (1967).
[19] J.A. Bittencourt, Fundamentals of Plasma Physics, (Springer, 2004).
[20] R. Xu, Introduction to Astrophysics, (Peking University Press, 2006, in Chinese).
[21] W. Greiner and J. Reinhardt, Quantum Electrodynamics, Second Edition, (Springer, 1994).
[22] M.E. Peskin and D.V. Schroeder, An Introduction to Quantum Field Theory, (Addison-Wesley Publishing Company, 1997).