Insight into Potential Well Based Nanoscale FDSOI MOSFET Using Doped Silicon Tubs- A Simulation and Device Physics Based Study: Part I: Theory and Methodology

Shruti Mehrotra, S. Qureshi
Department of Electrical Engineering, Indian Institute of Technology Kanpur, India

Abstract
A novel planar device having doped silicon regions (tubs) under the source and drain of an FDSOI MOSFET is reported at 20 nm gate length. The doped silicon regions result in formation of potential wells (PW) in the source and drain regions of FDSOI MOSFET and thus, the device being called as Potential Well Based FDSOI MOSFET (PW-FDSOI MOSFET). Simulation and device physics study on PW-FDSOI MOSFET showed reduction in the OFF current of the device by orders of magnitude. A low I_{OFF} of $22\, \text{pA/}\mu\text{m}$, high I_{ON}/I_{OFF} ratio of 1.5×10^5 and subthreshold swing of 76 mV/decade were achieved in 20 nm gate length PW-FDSOI MOSFET. The study was performed on devices with unstrained silicon channel.

Keywords: FDSOI MOSFET, Ground plane, I_{ON}/I_{OFF}, Planar, Potential well, PW-FDSOI MOSFET

1. Introduction
The recent past has witnessed aggressive scaling of the technology node in a bid to meet Moore’s law. This scaling has caused reduced gate control which consequently leads to high OFF current (I_{OFF}) and poor subthreshold swing (SS) [1]. Studies have reported devices like FinFET, TFET and the concept of negative capacitance to overcome these short comings [2, 3, 4, 5, 6, 7]. Even though FinFET offers excellent gate control, being a 3D device it has process and design level complexities. While NC-FET improves SS with increasing thickness of the ferroelectric layer, it suffers from hysteresis [8]. The Fully Depleted Silicon-on-Insulator (FDSOI) MOSFET continues to be an attractive device option because of its planar topology and back-biasing feature. We have recently reported a novel Potential Well Based FDSOI MOSFET (PW-FDSOI MOSFET) at 10 nm gate length to achieve a high ON-to-OFF current ratio (I_{ON}/I_{OFF}) [9]. In this paper, we explore the details of formation of potential wells at 20 nm gate length in the source and drain regions due to the introduction of heavily doped silicon regions in the BOX under the source and drain. The paper is based on simulation studies supported by p-n junction device physics responsible for the creation of potential wells in the source/drain regions which results in significant reduction in the OFF current of the device. This paper is organised as follows: Section 2 discusses the concept of formation of potential wells in the source and drain regions and the simulation methodology followed to realize the conventional FDSOI MOSFET with ground plane (GP)(reference device in this study) and the proposed PW-FDSOI MOSFET at 20 nm gate length with doped silicon regions under the source and drain in the BOX. Section 3 discusses the physics behind PW-FDSOI MOSFET and Section 4 draws the conclusion.

2. Formation of Potential Wells
We report a novel approach to create potential wells in the source and drain regions of PW-FDSOI MOSFET by introducing doped silicon regions in the buried oxide under the source and drain regions. This study was performed on devices with unstrained silicon channel.

*Corresponding author
Email address: mshruti@iitk.ac.in (Shruti Mehrotra)
Fig. 1: (a) Schematic of 20 nm FDSOI MOSFET with p* ground plane (GP) under the BOX. The horizontal cutline Z-Z' is drawn in the center of the channel (2.5 nm from the gate stack/channel interface). (b) Relative channel potential profile in FDSOI MOSFET with GP in OFF state ($V_{GS}=0$ V). Absence of potential wells in source and drain regions in 20 nm FDSOI MOSFET is observed.

Table 1: Models used in 2D TCAD simulations of FDSOI MOSFET

TCAD Models	Physical Effect Captured
Drift/Diffusion	Carrier transport
SRH and Auger	Carrier recombination
Quantum confinement	SOI layer is very thin leading to quantum confinement of carriers
Lombardi mobility model	Acoustic phonon scattering at low fields and surface recombination scattering at high transverse fields
High field mobility model	Velocity saturation effect
Self heating model	Lattice heating in the SOI layer
Fermi Dirac carrier statistics	Presence of heavily doped regions in the device
Bandgap narrowing	At very high doping in silicon, the pn product becomes doping dependent

Table 2: Device Parameters used in Simulations at 20 nm Gate Length

Parameter	Value
Gate Length	20 nm
EOT	0.9 nm
HfO2 thickness	3.8 nm
SiO2 thickness	0.3 nm
Permittivity of HfO2	25
SOI layer thickness	5 nm
BOX thickness	10 nm
GP thickness	10 nm
Spacer length	3 nm
Gate-to-source/drain overlap	3 nm
SOI layer doping	10^{15} cm^{-3}
Source/Drain doping	10^{20} cm^{-3}
Tb/Td doping	10^{20} cm^{-3}
Ground plane doping	10^{20} cm^{-3}
Substrate doping	10^{15} cm^{-3}
Work function of gate metal	4.52 eV
Fig. 2: (a) Schematic of 20 nm PWFDOSI MOSFET with region T_s under the source. The doping of T_s is p-type with a concentration of 1×10^{20} cm$^{-3}$. The horizontal cutline $Z-Z'$ is drawn in the center of the channel (2.5 nm from the gate stack/channel interface). (b) Potential well in the source region of 20 nm PWFDOSI MOSFET with region T_s under the source. The relative potential profile is plotted along cutline $Z-Z'$ when the device is in OFF state ($V_{GS} = 0$ V).

2.1. Simulation Methodology and Reference Device

FDSOI MOSFET with degenerately doped ($\sim 10^{20}$ cm$^{-3}$) region under the BOX called the ground plane (GP) was the reference device in this study [10]. First a structure as proposed in [10] was realized at 20 nm gate length for calibration. The silicon layer that forms the channel was 6 nm thick and the BOX was 25 nm thick. As a next step to realize an ultra thin body and BOX structure, the silicon layer thickness was reduced to 5 nm and the BOX thickness was reduced to 10 nm. The device had an HKMG gate stack with an EOT of 0.9 nm as shown in Fig. 1(a). The gate-to-source/drain overlap was 3 nm. This has also been confirmed through process simulations in Silvaco Athena [11]. As shown in Fig. 1(b) the relative potential profile along the cutline $Z-Z'$ through the center of the channel shows the channel potential as expected. The simulation study was performed in Silvaco TCAD [12]. Relevant models invoked to capture the physics of the devices are mentioned in Table 1. The device parameters used in simulations are mentioned in Table 2.

2.2. 20 nm gate length PWFDOSI MOSFET

The proposed PWFDOSI MOSFET had heavily doped (10^{20} cm$^{-3}$) silicon regions (tubs) T_s and T_d under the source and drain respectively in the BOX. The proposed device PWFDOSI MOSFET was identical to the reference device in all respects except for the presence of the doped silicon tubs T_s and T_d. The doping of the tubs was of opposite type as compared to source/drain doping (p^+ in n-channel PWFDOSI MOSFET). These doped silicon tubs were 5 nm (depth) x 5 nm (width). As mentioned earlier, the presence of T_s and T_d leads to p-n junctions formation and consequent potential wells in the source and drain regions.

Figure 2(a) shows 20 nm PWFDOSI MOSFET when only T_s is present under the source. Relative potential profile along cutline $Z-Z'$ for this case shows the potential well in the source only which is illustrated in Fig. 2(b). Similarly, when only T_d is present under the drain, a potential well is formed in the drain only.

The schematic of the proposed 20 nm PWFDOSI MOSFET is shown in Fig. 3. Figure 4(a) shows the potential wells in the source and drain regions for the proposed 20 nm gate length PWFDOSI MOS-
Fig. 4: Potential wells in the source and drain regions of 20 nm PWFD-SOI MOSFET with regions T_s and T_d under the source and drain respectively. The relative potential profile is plotted along cutline Z-Z’ when the device is in (a) OFF state (V_{DS} = 50 mV, V_{GS} = 0 V, V_{BS} = 0 V), and, (b) ON state (V_{DS} = 50 mV, V_{GS} = 0.9 V, V_{BS} = 0 V).

Fig. 5: Proposed process flow for the fabrication of PWFD-SOI MOSFET from reference device [11].

FET (Fig. 3) along the same cutline Z-Z’ for OFF state of the device (V_{DS} = 50 mV, V_{GS} = 0 V and V_{BS} = 0 V). Fig. 4(b) shows the relative potential profile along Z-Z’ for ON state of the device (V_{DS} = 50 mV, V_{GS} = 0.9 V and V_{BS} = 0 V). The channel is clearly seen to be in inversion. The proposed process flow for the PWFD-SOI MOSFET is shown in Fig. 5. The details are mentioned in [11]. Simulation studies performed using Silvaco Athena and Atlas showed diffusion of dopants from tubs is controllable and no dopants diffuse into the channel [11].

2.3. Validity of Drift Diffusion Transport Model

For OFF state of the device, the relative potential profile was also studied along three more horizontal cutlines A-A’, B-B’ and C-C’ apart from Z-Z’ as shown in Fig. 6. The cutline A-A’ is taken below the gate stack/channel interface at a distance of 0.5 nm from the interface, the cutline B-B’ is taken at a distance of 1 nm from the gate stack/channel interface and the cutline C-C’ is taken at a distance of 1.5 nm from the gate stack/channel interface. The relative potential profiles of PWFD-SOI MOSFET along these cutlines are shown in Fig. 7. It can be seen from Fig. 7(a) that the potential well depth seen by electrons in the top portion of the source is small. The potential well depth in source along A-A’ is 16 meV, along B-B’ is 42 meV and along C-C’ it is 86 meV. The potential well depth
becomes significantly large at the center along the cutline Z-Z' having a value of 225 meV as observed from Fig. 4(a). Therefore, it is reasonable to assume that primarily electrons in the top portion of the source in the vicinity of the gate contribute to the OFF current in PWFDOSI MOSFET. Under this assumption, the carrier transport mechanism remains the same as in the reference device. Thus, the drift-diffusion transport model is used in the TCAD simulations of the PWFDOSI MOSFET also under this assumption because in PWFDOSI MOSFET it is the reduction in the number of carriers contributing to the OFF current as compared to the reference device.

For PWFDOSI MOSFET in the ON state \(V_{DS} = 50 \text{ mV}, V_{GS} = 0.9 \text{ V}, V_{BS} = 0 \text{ V} \) of the device, the relative potential profile has been analysed along two cutlines, A-A' and Z-Z' as shown in Figs. 6 and 3 respectively. The relative potential profile along cutline A-A' for PWFDOSI MOSFET in ON state is shown in Fig. 8(a). The potential well depth in the source and drain regions is very small, same as in OFF state (16 meV). The relative potential profile along the same cutline A-A' for the reference device is shown in Fig. 8(b). The relative potential profile along cutline Z-Z' in 20 nm gate length PWFDOSI MOSFET in ON state of the device is shown in Fig. 8(c). The potential well depth in the source and drain regions is more than that observed in Fig. 8(a) and is around 300 meV.

3. Physics of PWFDOSI MOSFET

3.1. Transfer characteristics

3.1.1. 20 nm gate length PWFDOSI MOSFET

The transfer characteristics of the 20 nm gate length PWFDOSI MOSFET are shown in Fig. 9 at \(V_{DS} = 0.9 \text{ V} \) and in the absence of a back-bias. It
V MOSFET for the bias condition V_{BS} performance parameters for 20 nm the presence of back wells and thus, reduction of OFF current. Figure 9 shows the transfer characteristics of the reference device, $V_{DS} = 0.9$ V and $V_{BS} = 0$ V.

is interesting to note that I_{OF} (I_{D} at $V_{GS} = 0$ V) when only T_D was present was less than when only T_S was present. This is because when only T_S was present, the carriers which have sufficient energy to overcome the source-to-channel barrier reach the drain terminal and contribute to I_{OF}. On the contrary, when only T_D was present smaller I_{OF} resulted as the carriers experienced barrier due to T_D even though more carriers from the source were expected to get into the channel. Consequently, when neither T_S nor T_D was present (Figs. 1(a) and 1(b)), I_{OF} was maximum and when both T_S and T_D were present (Figs. 3 and 4(a)), I_{OFF} was minimum. The presence of potential wells in source and drain does not lead to a significant reduction in ON current ($I_{ON} = I_{D}$ at $V_{GS} = V_{DS}$) as compared to ON current of the reference device. This results in improved I_{ON}/I_{OF} ratio for 20 nm PWFDOSI MOSFET.

Further, a back-bias of -1 V was applied to achieve better front gate control [13]. In PWFDOSI MOSFET, besides improving gate control, back-bias was seen to increase the depth of the potential wells and thus, reduction of OFF current. Figure 10 shows the transfer characteristics of the reference device in the presence of back-bias. Table 3 gives the device performance parameters for 20 nm PWFDOSI MOSFET for the bias condition V_{DS} of 0.9 V and V_{BS} of -1.0 V.

3.1.2. Physics of PWFDOSI MOSFET

3.2. Electric Field

The electric field profile in PWFDOSI MOSFET is altered significantly in comparison to the electric field profile of the reference device as shown in Fig. 11. This can be attributed to the presence of space charge created by the formation of the p-n junctions which makes the presence of the GP more effective in the termination of field lines. This also explains the improvement of DIBL in PWFDOSI MOSFET in comparison to GP as discussed in Part II.

3.3. Potential well depth as function of distance along Y-Y’ in the source

The variation of depth of potential well in the source as we move from source towards source/TS interface is shown in Fig. 12. The potential well depth increases as we move along cutline Y-Y’ from a point in the source to the source/TS interface. This can be attributed to the increased influence of the positive space charge on the carriers. Thus, electrons located deeper in the source are less likely to contribute to the OFF current. With the application of a back-bias, the potential well depth increases further causing a significant reduction in leakage current as shown in Fig. 10 and for reasons mentioned in Part II.

3.4. Potential variation along Y-Y’

The variation of relative potential was also studied along the cutline Y-Y’ across the n-p junction formed by the source and TS in 20 nm PWFDOSI MOSFET and is shown in Fig. 13. The study was performed under equilibrium condition.
Table 3: Performance parameters at 20 nm gate length

	PWFDSDOI MOSFET	Reference Device
SS (mV/decade)	76	85
I_{OFF} (pA/µm)	22	860
I_{ON} (mA/µm)	0.34	0.37
I_{ON}/I_{OFF}	1.5 x 10^7	8.4 x 10^5

Fig. 11: Electric field profiles of (a) reference device and, (b) PWFDSDOI MOSFET. V_{DS} = 50 mV, V_{AS} = 0 V and V_{BS} = 0 V.

Fig. 12: Variation of potential well depth in the source in 20 nm PWFDSDOI MOSFET along cutline Y-Y’. Here Y-Y’ =0 is the gate stack/channel interface as shown in Fig. 3.

(V_{DS}=V_{GS}=V_{BS}=0 V). The difference in the potential across the n-p junction is approximately equal to 1.12 eV which is the band gap energy of silicon as shown in Fig. 13. Also, it is clearly observed in Fig. 13 that a significantly larger potential drop occurs in the source region and only about 2 nm depth of T_s from the source/T_s interface is depleted. This suggests significant depth of T_s region is quasi neutral. This implies that process variations in depth of the T_s and T_d will not make a significant impact on the performance of the device.

Fig. 13: Variation of relative potential from source to T_s in 20 nm PWFDSDOI MOSFET under the condition: V_{DS} = V_{GS} = V_{BS} = 0 V for doped silicon T_s and T_d. Here Y-Y’ =0 is the gate stack/channel interface as shown in Fig. 3.

4. Conclusion

A study based on simulation and device physics concepts of 20 nm gate length PWFDSDOI MOSFET has been presented in this paper. The potential wells are instrumental in reducing the OFF current of the device significantly. However, the reduction
in ON current is marginal, thus significantly improving I_{ON}/I_{OFF} ratio. The study was done on devices with unstrained silicon channel. However, the study is also applicable to scaled devices having strained silicon channel, thus expecting improvement in I_{ON} and I_{ON}/I_{OFF} ratio.

References

[1] K. Roy, S. Mukhopadhyay, H. Mahmoodi-Meimand, Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits, Proc. IEEE 91 (2) (2003) 305 – 327, DOI:10.1109/JPROC.2002.808156.

[2] P. Zheng, D. Connelly, F. Ding, T. K. Liu, FinFET Evolution Toward Stacked-Nanowire FET for CMOS Technology Scaling, IEEE Trans. Electron Devices 62 (12) (2015) 3945 – 3950, DOI:10.1109/TED.2015.2487367.

[3] A. B. Sachid, M. Chen, C. Hu, FinFET With High-κ Spacers for Improved Drive Current, IEEE Electron Device Lett. 37 (7) (2016) 835 – 838, DOI:10.1109/LED.2016.2572664.

[4] W. Y. Choi, B. Park, J. D. Lee, T. K. Liu, Tunneling Field-Effect Transistors (TFETs) With Subthreshold Swing (SS) Less Than 60 mV/dec, IEEE Electron Device Lett. 28 (8) (2007) 743 – 745, DOI:10.1109/LED.2007.901273.

[5] A. C. Seabaugh, Q. Zhang, Low-Voltage Tunnel Transistors for Beyond CMOS Logic, Proc. IEEE 98 (12) (2010) 2085 – 2110, DOI:10.1109/JPROC.2010.2070470.

[6] H. Lu, A. Seabaugh, Tunnel Field-Effect Transistors: State-of-the-Art, IEEE J. Electron Devices Society 2 (4) (2014) 44 – 49, DOI:10.1109/JEDS.2014.2326622.

[7] S. Salahuddin, S. Datta, Use of negative capacitance to provide voltage amplification for low power nanoscale devices, Nano Lett. 8 (2) (2008) 405 – 410, DOI:10.1021/nl071804g.

[8] V. P. Hu, P. Chiu, A. B. Sachid, C. Hu, Negative capacitance enables FinFET and FDSOI scaling to 2 nm node, in: 2017 IEEE Int. Electron Devices Meeting (IEDM), 2017, pp. 23.1.1 – 23.1.4, DOI:10.1109/IEDM.2017.8268443.

[9] S. Qureshi, S. Mehrotra, Potential Well Based FD-SOI MOSFET: A Novel Planar Device for 10 nm Gate Length, in: 2019 IEEE SOI-3D-Subthres. Microelectronics Tech. Unified Conf. (S3S), 2019.

[10] Q. Liu, et al., High performance UTBB FD-SOI devices featuring 20nm gate length for 14nm node and beyond, in: 2013 IEEE Int. Electron Devices Meeting (IEDM), 2013, pp. 9.2.1 – 9.2.4, DOI:10.1109/IEDM.2013.6724592.

[11] C. K. Jaiswal, Nishant, S. Mehrotra, S. Qureshi, Proposed Process Flow for Potential Well Based FDSOI MOSFET at 20 nm Gate Length, in: 4th IEEE Electron Devices Tech. Manufacturing (EDTM) Conf. 2020, 2020.

[12] Atlas user’s manual, device simulation software, 2015. URL http://www.silvaco.com.

[13] A. Majumdar, Z. Ren, S. J. Koester, W. Haensch, Undoped-body extremely thin SOI MOSFETs with back gates, IEEE Trans. Electron Devices 56 (10) (2009) 2270 – 2276, DOI:10.1109/TED.2009.2028057.