The Keisler–Shelah isomorphism theorem and the continuum hypothesis II

Mohammad Golshani1 · Saharon Shelah2,3

Received: 27 January 2022 / Accepted: 4 March 2023 / Published online: 1 April 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023

Abstract
We continue the investigation started in Golshani (2021) about the relation between the Keilser–Shelah isomorphism theorem and the continuum hypothesis. In particular, we show it is consistent that the continuum hypothesis fails and for any given sequence \(m = \langle (M_1^n, M_2^n) : n < \omega \rangle \) of models of size at most \(\aleph_1 \) in a countable language, if the sequence satisfies a mild extra property, then for every non-principal ultrafilter \(D \) on \(\omega \), if the ultraproducts \(\prod_D M_1^n \) and \(\prod_D M_2^n \) are elementarily equivalent, then they are isomorphic.

Keywords Ultraproduct · The Keisler-Shelah isomorphism theorem · The continuum hypothesis · Forcing

Mathematics Subject Classification 03C20 · 03E35

1 Introduction
Ultraproducts arise naturally in model theory and many other areas of mathematics, see [6, Chapter VI]. An ultraproduct is a way to connect the notions of elementary equivalence and isomorphism. By a result of Keisler [4], the continuum hypothesis, \(CH \), implies that in a countable language \(\mathcal{L} \), two \(\mathcal{L} \)-models \(M, N \) of size \(\leq 2^{\aleph_0} \), are

Communicated by S.-D. Friedman.

Mohammad Golshani
golshani.m@gmail.com

Saharon Shelah
shelah@math.huji.ac.il

1 School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box: 19395-5746, Tehran, Iran
2 Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
3 Department of Mathematics, Rutgers University, New Brunswick, NJ 08854, USA
elementarily equivalent if and only if they have isomorphic ultrapowers with respect to an ultrafilter on \(\omega \). Recently the authors of this paper [2] have shown that Keisler’s theorem is indeed equivalent to the CH, by showing that there are two elementary equivalent dense linear orders \(M \) and \(N \) of size \(\leq \aleph_2 \) which do not have isomorphic ultrapowers with respect to any ultrafilter on \(2^\omega \). Much earlier but after Keisler, Shelah [5] removed the CH from Keisler’s theorem by weakening the conclusion and showed that if \(L \) is a countable language and \(M, N \) are countable \(L \)-models, then \(M \equiv N \) if and only if they have isomorphic ultrapowers with respect to an ultrafilter on \(2^\omega \). Shelah [7] has shown that the CH is an essential assumption for Keisler’s theorem, even for countable models, by constructing a model of ZFC in which \(2^{\aleph_0} = \aleph_2 \) and there are countable graphs \(\Gamma \equiv \Delta \) such that for no ultrafilter \(U \) on \(\omega \), \(\Delta^\omega/U \simeq \Gamma^\omega/U \). See also [3], where some further connections between several variants of Keilser’s theorem and cardinal invariants are found.

In this paper, we continue the investigations started in [2]. In Sect. 2, we consider some further extensions of Keisler’s isomorphism theorem. To this end, we define the notion of an ultraproduct problem \(m = (M_{m,1}, M_{m,2}, \tau_{m,n}) : n < \omega \) and show the consistency of the failure of the CH with the assertion that for any non-principal ultrafilter \(D \) on \(\omega \), the ultraproducts \(\prod_D M_{m,1} \) and \(\prod_D M_{m,2} \) are elementarily equivalent, then they are indeed isomorphic. In Sect. 3 we show that the above conclusion fails if \(b > \aleph_1 \), where \(b \) denotes the bounding number.

2 Extending the Keisler isomorphism theorem

Recall from [2] that there exists a dense linear order \(N \) of size \(\aleph_2 \) which is elementary equivalent to \(M = (\mathbb{Q}, <) \), but for no ultrafilter \(U \) on \(\omega \), \(\omega M/U \simeq \omega N/U \). We also proved several consistent extensions of the Keisler’s theorem for models of size at most \(\aleph_1 \) in the absence of the continuum hypothesis. In this section, we continue the work started in [2] and give a further extension of Keisler’s isomorphism theorem. To this end, we start by making some definitions.

Definition 2.1 A pseudo ultraproduct problem is a sequence

\[
m = (M_{m,1}, M_{m,2}, \tau_{m,n}) : n < \omega
\]

where

1. \(\langle \tau_{m,n} : n < \omega \rangle \) is a \(\subseteq \)-increasing sequence of finite vocabularies, with \(\tau_{m,0} = \emptyset \). Set \(\tau_m = \bigcup_n \tau_{m,n} \).
2. each \(M_{m,\ell} \) is a \(\tau_m \)-model,
3. \(\kappa(m) \leq \aleph_1 \), where \(\kappa(m) = \sup\{||M_{m,\ell}|| : \ell = 1, 2, \text{ and } n < \omega \} \) and \(||M_{m,\ell}|| \) denotes the size of the universe of the model \(M_{m,\ell} \).

Definition 2.2 Suppose \(m \) is a pseudo ultraproduct problem and \(k \leq n < \omega \).

1. The Ehrenfeucht-Fraïssé game \(\mathcal{D}^n_k(m) = \mathcal{D}^n_k(m_{m,1}, m_{m,2}) \) is defined as a game between two players protagonist and antagonist where

\[\text{Springer} \]
We say that the protagonist loses the game

\(\varnothing_k^n(m) \), when there is no legal move for him to do.

The following easy lemma will be useful later.

Lemma 2.3 Suppose \(m \) is a pseudo ultraproduct problem and \(k \leq n < \omega \). Let \(f \) be the last move of protagonist in the game \(\varnothing_k^n(m) \). If \(\phi(v_0, \ldots, v_{l-1}) \) is a \(\tau_{m,k} \)-formula and \(x_0, \ldots, x_{l-1} \in \text{dom}(f) \), then

\[
\mathbb{M}_n^{m,1} \models \phi_{\text{dom}(f)}(x_0, \ldots, x_{l-1}) \iff \mathbb{M}_n^{m,2} \models \phi_{\text{range}(f)}(f(x_0), \ldots, f(x_{l-1})),
\]

where for any set \(D \), \(\phi_D \) is obtained from \(\phi \) by replacing all quantifiers \(\exists x \) and \(\forall x \) by the restricted quantifiers \(\exists x \in D \) and \(\forall x \in D \) respectively.

Proof By induction on the complexity of the formula \(\phi \). This is true for strictly atomic formulas by the assumption and it is easy to see that if it holds for \(\phi, \phi_0 \) and \(\phi_1 \), then it also holds for \(\neg \phi \) and \(\phi_0 \land \phi_1 \). Now suppose that \(\phi(v_0, \ldots, v_{l-1}) = \exists y \psi(v, v_0, \ldots, v_{l-1}) \) and let \(x_0, \ldots, x_{l-1} \in \text{dom}(f) \). If \(x \in \text{dom}(f) \) is such that

\[
\mathbb{M}_n^{m,1} \models \psi_{\text{dom}(f)}(x, x_0, \ldots, x_{l-1}),
\]

then by the induction hypothesis

\[
\mathbb{M}_n^{m,2} \models \psi_{\text{range}(f)}(f(x), f(x_0), \ldots, f(x_{l-1})),
\]

and hence

\[
\mathbb{M}_n^{m,2} \models \exists y \in \text{range}(f) \psi_{\text{range}(f)}(y, f(x_0), \ldots, f(x_{l-1})).
\]

It then follows that

\[
\mathbb{M}_n^{m,2} \models \phi_{\text{range}(f)}(f(x_0), \ldots, f(x_{l-1})).
\]

Conversely suppose that for some \(y \in \text{range}(f) \),

\[
\mathbb{M}_n^{m,2} \models \psi_{\text{range}(f)}(y, f(x_0), \ldots, f(x_{l-1})).
\]

Let \(x \in \text{dom}(f) \) be such that \(y = f(x) \). Then by the induction hypothesis

\[
\mathbb{M}_n^{m,1} \models \psi_{\text{dom}(f)}(x, x_0, \ldots, x_{l-1})
\]

and hence

\[
\mathbb{M}_n^{m,1} \models \exists y \in \text{dom}(f) \psi_{\text{dom}(f)}(y, x_0, \ldots, x_{l-1}).
\]

Thus

\[
\mathbb{M}_n^{m,1} \models \phi_{\text{dom}(f)}(x_0, \ldots, x_{l-1}).
\]

Definition 2.4 Suppose \(m \) is a pseudo ultraproduct problem and \(n < \omega \). Then \(k_{m,n} \) is the maximal \(k \leq n \) such that the protagonist has a winning strategy in the Ehrenfeucht-Fraïssé game \(\varnothing_k^n(m) = \varnothing_{\tau_{m,k}}(\mathbb{M}_n^{m,1}, \mathbb{M}_n^{m,2}) \). Set also \(\mathbf{k}_m = \langle k_{m,n} : n < \omega \rangle \).

We now define the notion of an ultraproduct problem.

Definition 2.5 An ultraproduct problem is a pseudo ultraproduct problem \(m \) such that

\[
\limsup_{n<\omega} k_{m,n} = \infty.
\]

To each pseudo ultraproduct problem we assign a natural countably generated filter on \(\omega \) and a cardinal invariant, which play an important role for the rest of the paper. We
start by defining such notions in a more general context. Let us first fix some notation.

Notation 2.6 (1) For a filter D on ω, let $\forall_D x \phi(x)$ mean “$\exists A \in D \forall n \in A \phi(n)$”.
(2) The notation $\forall^* x \phi(x)$ means “for all but finitely many x, $\phi(x)$ holds”.

Definition 2.7 (1) Given a sequence $k = \langle k_n : n < \omega \rangle \in \omega^\omega$, let D_k be the filter on ω generated by co-bounded subsets of ω and the sets
\[\{ n < \omega : k_n > k \}, \]
where $k < \omega$.
(2) Suppose $k = \langle k_n : n < \omega \rangle \in \omega^\omega$ is such that $\limsup_{n<\omega} k_n = \infty$, then set
\[d_k = \min \{ |F| : F \subseteq \prod_{n<\omega} [\omega]^{k_n} \text{ and } (\forall \eta \in \omega^\omega) (\exists f \in F) (\forall \eta n \cdot \eta(n) \in f(n)) \}. \]

Remark 2.8 Suppose $k = \langle k_n : n < \omega \rangle \in \omega^\omega$. If $\limsup_{n<\omega} k_n = \infty$, then D_k is a countably generated non-principal proper filter on ω. Otherwise, $D_k = \mathcal{P}(\omega)$.

Definition 2.9 If m is a pseudo ultraproduct problem, then set $D_m = D_{km}$. Furthermore, if it is an ultraproduct problem, then set $d_m = d_{km}$.

The next simple lemma will be very useful.

Lemma 2.10 Suppose m is in an ultraproduct problem.

(1) If $D \supseteq D_m$ is a non-principal ultrafilter on ω. Then the ultraproducts $\prod_D M_n^{m,1}$ and $\prod_D M_n^{m,2}$ are elementary equivalent.
(2) If D is a non-principal ultrafilter on ω and $\prod_D M_n^{m,1} \equiv \prod_D M_n^{m,2}$, then $D \supseteq D_m$.

Proof (1) Suppose m is an ultraproduct problem and $D \supseteq D_m$ is a non-principal ultrafilter on ω. Let ϕ be a τ_m-statement. Then, for some $k < \omega$, it is a $\tau_{m,k}$-statement. We prove by induction on the complexity of ϕ that
\[(\ast)_\phi : \prod_D M_n^{m,1} \models \phi \iff \prod_D M_n^{m,2} \models \phi. \]
If ϕ is a strictly atomic formula, then $E = \{ n < \omega : k_{m,n} > k \} \in D_m \subseteq D$, and for each $n \in E$ we have $M_n^{m,1} \models \phi$ if and only if $M_n^{m,2} \models \phi$, from which the result follows. It is also clear that if $(\ast)_\phi$ holds then $(\ast)_\phi^1$ and that if $(\ast)_\phi$ and $(\ast)_\phi^1$ hold, then $(\ast)_\phi^1 \land \phi_1$ holds. Now suppose that $\phi = \exists x \psi(x)$ and $(\ast)_\psi$ is true. Suppose $\prod_D M_n^{m,1} \models \phi$. Then for some $\bar{x} = \langle x_n : n < \omega \rangle \in \prod_{n<\omega} M_n^{m,1}$, $\prod_D M_n^{m,1} \models \psi([\bar{x}]_D)$, and hence
\[A = \{ n < \omega : M_n^{m,1} \models \psi(x_n) \} \in D. \]
We may further suppose that for any $n \in A$, $k_{m,n} > k$. For $n \in A$ let g_n be the last move of the protagonist in the game $\varnothing_{k_{m,n}}(m)$, in which antagonist always chooses $A_\ell = \{x_n\}$ and $B_\ell = \emptyset$. Thus for any such n, by the induction hypothesis and Lemma 2.3 we have $M_n^{m,2} \models \psi(g_n(x_n)))$. Let $\bar{y} = \langle g_n(x_n) : n < \omega \rangle$. Then $\prod_D M_n^{m,2} \models \psi(\bar{y}^D)$ and hence $\prod_D M_n^{m,2} \models \phi$. Conversely, suppose that $\prod_D M_n^{m,2} \models \phi$. Then for some $\bar{y} = \langle y_n : n < \omega \rangle \in \prod_{n<\omega} M_n^{m,2}$. $\prod_D M_n^{m,2} \models \psi(\bar{y}^D)$, and hence

$$B = \{ n < \omega : M_n^{m,2} \models \psi(y_n) \} \in D.$$

We again assume that $k_{m,n} > k$ for every $n \in B$. For $n \in B$, let h_n be the last move of the protagonist in the game $\varnothing_{k_{m,n}}(m)$, in which antagonist always chooses $A_\ell = \emptyset$ and $B_\ell = \{y_n\}$. Thus for any such n, $y_n \in \text{range}(h_n)$ and hence for some $x_n, y_n = h_n(x_n)$. By the induction hypothesis and Lemma 2.3 we have $M_n^{m,1} \models \psi(x_n)$. Let $\bar{x} = \{x_n : n < \omega \}$. Then $\prod_D M_n^{m,1} \models \psi(\bar{x}^D)$ and hence $\prod_D M_n^{m,1} \models \phi$. We are done.

(2) Suppose by the way of contradiction that $D \nsubseteq D_m$. Let $k < \omega$ be such that $\{ n < \omega : k_{m,n} > k \} \in D_m \setminus D$. It then follows that

$$A = \{ n < \omega : k_{m,n} \leq k \} \in D.$$

Thus for any $n \in A$ with $n > k$, as $k_{m,n} < k + 1$, the protagonist loses the game $\varnothing_{k+1}(m)$, and hence antagonist has a winning strategy. In particular, by enlarging k if necessary, we can find some formula $\phi_n(v_0, \cdots, v_{l_n-1})$, which is a boolean combination of strict atomic formulas of $\tau_{m,k+1}$, and some $a_0, \cdots, a_{l_n-1} \in M_n^{m,1}$ such that $M_n^{m,1} \models \phi_n(a_0, \cdots, a_{l_n-1})$, but for no $b_0, \cdots, b_{l_n-1} \in M_n^{m,2}$ we have $M_n^{m,2} \models \phi_n(b_0, \cdots, b_{l_n-1})$. It thus follows that $M_n^{m,1} \models \exists x_0 \cdots x_{l_n-1} \phi_n$ but $M_n^{m,2} \models \neg \exists x_0 \cdots x_{l_n-1} \phi_n$. As $\tau_{m,k+1}$ is finite and D is an ultrafilter, for some set $B \subseteq A$ in D we have $\phi_B = \phi$ for some fixed formula ϕ. But then $\prod_D M_n^{m,1} \models \exists x_0 \cdots x_{l_n-1} \phi$ while $\prod_D M_n^{m,2} \models \neg \exists x_0 \cdots x_{l_n-1} \phi$, which contradicts our assumption $\prod_D M_n^{m,1} \equiv \prod_D M_n^{m,2}$. \hfill \Box

We would like to construct a model of ZFC in which the continuum is large and for every pseudo ultraproduct problem m, if D is a non-principal ultrafilter on ω and if the structures $\prod_D M_n^{m,1}$ and $\prod_D M_n^{m,2}$ are elementarily equivalent, then $\prod_D M_n^{m,1} \models \prod_D M_n^{m,2}$. We may assume that m is an ultraproduct problem, as otherwise $D_m = P(\omega)$, and everything becomes trivial.

The next lemma reduces the construction of such a model to controlling the size of \varnothing_m’s.

Proposition 2.11 Suppose m is an ultraproduct problem, $\varnothing_m = \aleph_1$ and D is a non-principal ultrafilter on ω such that $\prod_D M_n^{m,1}$ and $\prod_D M_n^{m,2}$ are elementarily equivalent. Then these ultraproducts are isomorphic, i.e., $\prod_D M_n^{m,1} \models \prod_D M_n^{m,2}$. \hfill \Box
Remark 2.12 By [7], it is consistent that \(d = \aleph_1 < \mathfrak{d}_m \), where \(\mathfrak{d} \) is the dominating number. It also follows from [7] that in Lemma 2.11, we cannot replace \(d_m = \aleph_1 \) by \(d = \aleph_1 \).

The following definition plays a key role in the proof of Lemma 2.11.

Definition 2.13 Suppose \(m \) is an ultraproduct problem.

1. We say that \(s \in \AP_m \) iff
 a. \(s = \langle g_{s,n} : n < \omega \rangle \),
 b. \(g_{s,n} \) is an initial segment of a play of \(\mathcal{D}_n \) of length \(l_{s,n} \) with the last function \(f_{s,n} \), where the protagonist plays with a winning strategy,
 c. \(\lim_{D_m} (k_{m,n} - l_{s,n} : n < \omega) = \infty \).

2. Define the partial order \(\leq_{\AP_m} \) on \(\AP_m \) by \(s \leq_{\AP_m} t \) iff
 \(\{n : g_{s,n} \text{ is an initial segment of } g_{t,n}\} \in D_m \).

We are now ready to complete the proof of Lemma 2.11.

Proof of Lemma 2.11 Assume the hypotheses in the lemma hold. The proof of the next claim is evident.

Claim 2.14 (1) \(\AP_m \neq \emptyset \).

2. If \(\langle s_\ell : \ell < \omega \rangle \) is a \(\leq_{\AP_m} \)-increasing sequence from \(\AP_m \), then it has a \(\leq_{\AP_m} \)-upper bound.

3. Suppose \(s \in \AP_m \), \(\ell \in \{1, 2\} \), and \(\bar{w} = \langle w_n : n < \omega \rangle \in \prod_n [\mathbb{N}_n^{m,\ell}]^{k_{m,n}} \). Then for some \(t \in \AP_m \), we have
 a. \(s \leq_{\AP_m} t \),
 b. if \(l_{s,n} < k_{m,n} \), then
 i. \(\ell = 1 \Rightarrow w_n \subseteq \text{dom}(f_{t,n}) \),
 ii. \(\ell = 2 \Rightarrow w_n \subseteq \text{range}(f_{t,n}) \).

Proof Clause (1) is clear. Clause (2) follows by an easy diagonalization argument, but let us elaborate a proof. For each \(\ell < \omega \) set
 \[\eta_\ell = \langle k_{m,n} - l_{s_\ell,n} : n < \omega \rangle \in \omega^\omega. \]

Then \(\lim_{D_m} \eta_\ell(n) = \infty \), and for all \(i < \omega \),
 \[(\omega, <)^\omega / D_m \models \text{id}_i / D_m < \eta_\ell / D_m, \]
where \(\text{id}_i \) is the constant sequence \(i \) on \(\omega \). As the structure \((\omega, <)^\omega / D_m \) is \(\aleph_1 \)-saturated, we can find some \(\eta \in \omega^\omega \) such that for all \(\ell, i < \omega \),
 \[(\omega, <)^\omega / D_m \models \text{id}_i / D_m < \eta / D_m < \eta_\ell / D_m. \]

For \(n < \omega \) let \(\ell_n \) be the maximal natural number \(\ell \) such that:

\[\square \] Springer
(a) $\ell \leq \eta(n)$,
(b) $(g_{s_i,n} : i \leq \ell + 1)$ is \preceq-increasing,
(c) $k_{m,n} - l_{s_i,n} \geq \eta(n)$ for every $i \leq \ell$.

Note that each ℓ_n is well-defined as on the one hand, $\ell_n \leq \eta(n)$, and on the other hand, $\ell = 0$ satisfies the above requirements.

Let $\ell_* < \omega$. Then

$$D_{\ell_*} = \{ n < \omega : \ell_n \geq \ell_*, k_{m,n} - l_{s_\ell(n),n} \geq \eta(n) \} \in D_m.$$

To see this, note that the set

$$\{ n < \omega : \forall j \leq \ell_* (\eta(n) > \ell_*, g_{s_j,n} \preceq g_{s_{j+1},n} \text{ and } k_{m,n} - l_{s_j,n} \geq \eta(n)) \}$$

belongs to D_m and is included in D_{ℓ_*}, so $D_{\ell_*} \in D_m$ as well.

Now set $s = (g_{s,n} : n < \omega)$, where $g_{s,n} = g_{s_{\ell_n},n}$ for each $n < \omega$. We show that s is as required.

In order to show that $s \in AP_m$, it only suffices to show that

$$\lim_{D_m} k_{m,n} - l_{s,n} = \infty.$$

This follows easily from the following inequalities

$$k_{m,n} - l_{s,n} = k_{m,n} - l_{s_{\ell_n},n} \geq \eta_{\ell_n}(n) \geq \eta(n),$$

and the fact that $\lim_{D_m} \eta(n) = \infty$.

Now fix $\ell_* < \omega$. Then for all n with $\ell_n > \ell_*$ we have

$$g_{s_{\ell_n},n} \preceq g_{s_{\ell_n},n} = g_{s,n},$$

hence

$$D_{\ell_*} \subseteq \{ n < \omega : g_{s_{\ell_n},n} \preceq g_{s,n} \},$$

where D_{ℓ_*} is as defined above. As $D_{\ell_*} \in D_m$, we have $\{ n < \omega : g_{s_{\ell_n},n} \preceq g_{s,n} \} \in D_m$, and hence $s_{\ell} \leq_{AP} s$.

Finally (3) follows from the way we defined the game $\partial_k^n(m)$, noting that protagonist plays with a winning strategy.

Definition 2.15 For each $s \in AP_m$, we define H_s as the set

$$H_s = \left\{ (h_1, h_2) : h_1 \in \prod_n \mathbb{M}_n^{m,1}, h_2 \in \prod_n \mathbb{M}_n^{m,2} \text{ and } \{ n < \omega : f_{s,n}(h_1(n)) = h_2(n) \} \in D_m \right\}.$$

The proof of the next claim follows from the way that we defined the game $\partial_k^n(m)$ 2.4 and the fact that by Lemma 2.10 we have $D \supseteq D_m$ (see also the proof of lemmas 2.3 and 2.10).
Claim 2.16 Let $s \in \text{AP}_m$. Then

$$h_{D,s} = \{(h_1/D, h_2/D) : (h_1, h_2) \in H_s\}$$

defines a partial elementary mapping from $\prod_{D} M^{m,1}_n$ into $\prod_{D} M^{m,2}_n$.

Let $\mathcal{F} \subseteq \prod_n \omega^{k_m,n}$ witness $\mathcal{D}_m = \aleph_1$.

For each $\ell \in \{1, 2\}$ let $(M^{m,\ell}_{n,i} : i < \omega_1)$ be a \prec-increasing and continuous chain of countable elementary submodels of $M^{m,\ell}_n$ whose union is $M^{m,\ell}_n$. For each $i < \omega_1$ and $\ell \in \{1, 2\}$, as $||M^{m,\ell}_{n,i}|| \leq \aleph_0$, there is some $\mathcal{F}_i^{\ell} \subseteq \prod_n [M^{m,\ell}_{n,i}]^{k_m,n}$ of cardinality \aleph_1 such that

$$\left(\forall \eta \in \prod_n M^{m,\ell}_{n,i} \right) \left(\exists f \in \mathcal{F}_i^{\ell} \right) \forall_{D_m} \eta(n) \in f(n).$$

Let $(f_j^{\ell} : j < \omega_1)$ enumerate $\bigcup_{i<\omega_1} \mathcal{F}_i^{\ell}$. By induction on $i < \omega_1$, and using Claim 2.14, we choose s_i such that:

1. $s_i \in \text{AP}_m$,
2. $i < j \implies s_i \not\leq_{\text{AP}_m} s_j$,
3. if $i = 2j + 1$, then
 $$n < \omega \text{ and } l_{s_{2j}} < k_m,n \implies f_j^1(n) \subseteq \text{dom}(f_{s_i,n}),$$
4. if $i = 2j + 2$, then
 $$n < \omega \text{ and } l_{s_{2j+1}} < k_m,n \implies f_j^2(n) \subseteq \text{range}(f_{s_i,n}).$$

Now let D be a non-principal ultrafilter on ω which extends D_m. Let

$$h = \bigcup \{h_{D,s_i} : i < \omega_1\}.$$

Claim 2.17 h is an isomorphism from $\prod_{D} M^{m,1}_n$ onto $\prod_{D} M^{m,2}_n$.

Proof By Claim 2.16, each h_{D,s_i} is a partial elementary embedding from $\prod_{D} M^{m,1}_n$ into $\prod_{D} M^{m,2}_n$, and furthermore, for $i < j < \omega_1$ we have $h_{D,s_i} \subseteq h_{D,s_j}$. By the construction of the sequence $(s_i : i < \omega_1)$, we clearly have $\text{dom}(h) = \prod_{D} M^{m,1}_n$ and $\text{range}(h) = \prod_{D} M^{m,2}_n$. So we are done.

Lemma 2.11 follows.

The following is an immediate corollary of Lemma 2.11.

Corollary 2.18 Suppose m is an ultraproduct problem, $\mathcal{D}_m = \aleph_1$ and for each $n < \omega$, $M^{m,1}_n \equiv M^{m,2}_n$. If D is a non-principal ultrafilter on ω, then $\prod_{D} M^{m,1}_n \cong \prod_{D} M^{m,2}_n$.

\Box Springer
We now turn to the problem of controlling the size of \mathfrak{d}_m’s. We again prove a slightly stronger result. We first start with the following simple lemma.

Lemma 2.19 Assume MA_κ, and let $k = \langle k_n : n < \omega \rangle \in {}^{\omega} \omega$ be such that $\lim_{k_\kappa} k_n = \infty$. Let $A \subseteq {}^{\omega} \omega$ be of size $\leq \kappa$. Then there exists $f \in \prod_{n < \omega} [\omega]^{\leq k_n}$ such that for each $n \in A$, we have $\forall \mathcal{D}_k n \left(\eta(n) \in f(n) \right)$.

Proof Let \mathbb{P} be the following covering forcing notion. The conditions are pairs $p = (k_p, f_p)$, where

(α) $k_p < \omega$,

(β) $f_p \in \prod_{n < \omega} [\omega]^{\leq k_n}$ and $\{|f_p(n)| : n < \omega\}$ is bounded.

Given conditions $p, q \in \mathbb{P}$, let $p \leq q$ (q is stronger than p) if

(γ) $k_q \geq k_p$,

(δ) $f_q \upharpoonright k_p = f_q \upharpoonright k_p$,

(ε) $\forall \mathcal{D}_k n, f_q(n) \supseteq f_p(n)$.

It is easily seen that the forcing notion \mathbb{P} is c.c.c. Indeed let $A \subseteq \mathbb{P}$ be of size \aleph_1. By shrinking A if necessary, we can assume that $k_p = k_\ast$ for some fixed $k_\ast < \omega$ and all $p \in A$. Furthermore, we can assume that $f_p(n) = f_q(n)$ for all $p, q \in A$ and all $n < k_\ast$. We show that any two conditions in A are compatible. Thus let $p, q \in A$. Let $l < \omega$ be such that

$$\forall n < \omega (|f_p(n)|, |f_q(n)| < l).$$

Let $E = \{n < \omega : k_n > 2l\}$. Then $E \in \mathcal{D}_k$. Define $r \in \mathbb{P}$ as $r = (k_r, f_r)$, where:

(1) $k_r = k_\ast$,

(2) for all $n < k_\ast$, $f_r(n) = f_p(n) = f_q(n)$,

(3) for all $n \in E \setminus k_\ast$, $f_r(n) = f_p(n) \cup f_q(n)$,

(4) for all $n \in \omega \setminus (E \cup k_\ast)$, $f_r(n) = f_p(n)$.

The condition r is easily seen to be an extension of both of p and q.

For each $\eta \in A$, the set

$$D_\eta = \{p \in \mathbb{P} : \forall \mathcal{D}_k n, \eta(n) \in f_p(n)\}$$

is clearly dense in \mathbb{P}. Thus by MA_κ we can find a filter G such that $G \cap D_\eta \neq \emptyset$ for all $\eta \in A$. Then the function f, defined as $f(n) = \bigcup_{p \in G} f_p(n)$, has the required properties. \qed

Proposition 2.20 Suppose that the GCH holds and $\lambda > \text{cf}(\lambda) = \aleph_1$. Then there exists a c.c.c. forcing notion \mathbb{P} of size λ such that in $V^\mathbb{P}$, we have:

(1) $2^{\aleph_0} = \lambda$,

(2) if $k \in {}^{\omega} \omega$ is such that $\lim_{k_\kappa} k_n = \infty$, then $\mathfrak{d}_k = \aleph_1$.

Proof Let $\langle \lambda_i : i < \omega_1 \rangle$ be an increasing sequence of regular cardinals cofinal in λ. Let $\mathbb{P} = (\langle \mathbb{P}_i : i \leq \omega_1 \rangle, \langle \mathbb{Q}_i : i < \omega_1 \rangle)$ be a finite support iteration of c.c.c. forcing notions such that:

\[Springer \]
• for each $i < \omega_1$, $|P_i| = \lambda_i$,
• for each $i < \omega_1$, $V[G_{P_i}] \models \text{"Martin’s axiom"}$,
• $(2^{\aleph_0})^{V[G_{P_i}]} = \lambda_i$.

It is easily seen, using Lemma 2.19, that $P = P_{\omega_1}$ is as required. Indeed, suppose that k is as in clause (2). Pick $i_* < \omega_1$ such that $k \in V[G_{P_{i_*}}]$. For each $i_* \leq i < \omega_1$, pick, using Lemma 2.19, some $f_i \in \prod_{n < \omega} [\omega]^{k_n} \cap V[G_{P_i}]$ such that:

$$(\forall \eta \in \omega^\omega \cap V[G_{P_i}]) (\forall D_k)(\eta(n) \in f_i(n)).$$

Then the family $\mathcal{F} = \{f_i : i_* \leq i < \omega_1\}$ witnesses $d_k = \aleph_1$.

Remark 2.21 By [8], the conclusion of Lemma 2.20 also holds in the Sacks model.

Putting the above results together we get the following theorem, which extends [2, Theorem 1.2].

Theorem 2.22 Assume the GCH holds and $\lambda > \text{cf}(\lambda) = \aleph_1$. Then there exists a c.c.c. forcing notion P of size λ such that in V_P:

1. $2^{\aleph_0} = \lambda$,
2. for every ultraproduct problem m, if D is a non-principal ultrafilter on ω and if $\prod_D M_{n,1}^m \equiv \prod_D M_{n,2}^m$, then $\prod_D M_{n,1}^m \equiv \prod_D M_{n,2}^m$.

Proof By Lemmas 2.10, 2.18 and 2.20.

The models appearing in a pseudo ultraproduct problem that we have considered so far were of size \aleph_0 or \aleph_1. We now consider the same situation where the models can be finite as well.

Definition 2.23 (see [1] and [8, Chapter V]) Suppose $f, g \in \omega(\omega + 1 \setminus \{0, 1\})$ and $g \leq f$. Then

$$d_{f,g} = \min \left\{|F| : F \subseteq \prod_{n < \omega} [f(n)]^{<1+g(n)} \text{ and } (\forall \eta \in \prod_{n < \omega} f(n))(\exists a \in F)(\forall n, \eta(n) \in a(n))\right\}.$$

Given $f \in \omega(\omega + 1 \setminus \{0, 1\})$, we define the notion of a (pseudo) f-ultraproduct problem as follows.

Definition 2.24 Suppose $f \in \omega(\omega + 1 \setminus \{0, 1\})$. Then a (pseudo) f-ultraproduct problem $m = ((M_{n,1}^m, M_{n,2}^m, \tau_{m,n}) : n < \omega)$ is defined as in the notion of a (pseudo) ultraproduct problem (see Definitions 2.1 and 2.5), but we require for each $n < \omega$ and $\ell = 1, 2$, $||M_{n,\ell}^m|| \leq f(n)$.

Given an f-ultraproduct problem m, the sequence k_m and the filter D_m are defined as before. The proof of the next lemma is essentially the same as in the proof of Lemma 2.11.
Lemma 2.25 Suppose \(f \in \omega(\omega + 1 \setminus \{0, 1\}) \), \(m \) is an \(f \)-ultraproduct problem, \(f \geq k_m \), \(\mathcal{D}_{f,k_m} = \aleph_1 \) and \(\mathcal{D} \supseteq \mathcal{D}_m \) is a non-principal ultrafilter on \(\omega \).

Then \(\prod_{\mathcal{D}} M^{m,1}_n \cong \prod_{\mathcal{D}} M^{m,2}_n \).

The following is analogous to Theorem 2.22 for \(f \)-ultraproduct problems.

Theorem 2.26 Assume the GCH holds. Then there exists a cardinal and cofinality preserving forcing notion \(\mathbb{P} \) such that in \(V^\mathbb{P} \):

1. \(2^{\aleph_0} \geq \aleph_2 \),
2. for every \(f \in \omega(\omega + 1 \setminus \{0, 1\}) \) and every \(f \)-ultraproduct problem \(m \) with \(k_m \leq f \), if \(\mathcal{D} \) is a non-principal ultrafilter on \(\omega \) and if \(\prod_{\mathcal{D}} M^{m,1}_n \cong \prod_{\mathcal{D}} M^{m,2}_n \), then \(\prod_{\mathcal{D}} M^{m,1}_n \cong \prod_{\mathcal{D}} M^{m,2}_n \).

Proof By [1], there exists a cardinal and cofinality preserving forcing notion \(\mathbb{P} \) which forces the failure of the continuum and such that in \(V^\mathbb{P} \), for each \(f \in \omega(\omega + 1 \setminus \{0, 1\}) \) and each \(f \)-ultraproduct problem \(m \) with \(k_m \leq f \), we have \(\mathcal{D}_{f,k_m} = \aleph_1 \). Now the result follows from Lemmas 2.10 and 2.25.

3 An impossibility result

In this section, we show that we cannot extend Theorem 2.22 to get a model of MA + \(2^{\aleph_0} > \aleph_1 \) in which for every ultraproduct problem \(m \) and every non-principal ultrafilter \(\mathcal{D} \) on \(\omega \) if \(\prod_{\mathcal{D}} M^{m,1}_n \cong \prod_{\mathcal{D}} M^{m,2}_n \), then \(\prod_{\mathcal{D}} M^{m,1}_n \cong \prod_{\mathcal{D}} M^{m,2}_n \). Indeed we prove the following stronger result. Recall that the bounding number is defined as

\[
b = \min\{|\mathcal{F}| : \mathcal{F} \subseteq \omega \text{ and } \forall f \in \omega \exists g \in \mathcal{F}, g \not\leq^* f\},
\]

where \(\leq^* \) is the eventual domination order.

Theorem 3.1 Assume \(b > \aleph_1 \). Then there exists an ultraproduct problem \(m \) such that:

1. \(M^{m,1}_n \cong M^{m,2}_n \) for every \(n < \omega \),
2. For every non-principal ultrafilter \(\mathcal{D} \) on \(\omega \), \(\prod_{\mathcal{D}} M^{m,1}_n \not\cong \prod_{\mathcal{D}} M^{m,2}_n \).

Proof We follow [2]. For every \(n < \omega \), let \(M^{m,1}_n = (\mathbb{Q}, <) \) be the dense linear order of rational numbers and \(M^{m,2}_n = (\mathbb{N}, <^N) \) be a dense linear order of size \(\aleph_1 \) which has a point \(a \) with \(\text{cf}(N_a, <^N) = \aleph_1 \), where \(N_a = \{d \in \mathbb{N} : d <^N a\} \).

Suppose by the way of contradiction that \(\prod_{\mathcal{D}} M^{m,1}_n \cong \prod_{\mathcal{D}} M^{m,2}_n \), for some non-principal ultrafilter \(\mathcal{D} \) on \(\omega \) and let \(\pi : \prod_{\mathcal{D}} M^{m,1}_n \cong \prod_{\mathcal{D}} M^{m,2}_n \) witness such an isomorphism.

For notational simplicity set \(M_* = \prod_{\mathcal{D}} M^{m,1}_n = (\mathbb{Q}, <^\omega/D) \) and \(N_* = \prod_{\mathcal{D}} M^{m,2}_n = N^\omega/D \). Let \(a_x = \{\langle a : n < \omega \rangle \}_{D \in N_*} \). By [2, Claim 2.2], \(\text{cf}(\{N_x\}_{a_x}) = \aleph_1 \), and hence \(\text{cf}(\{N_x\}) = \aleph_1 \) where \(a_x \in M_* \) is such that \(\pi(a_x) = a_x \).

By [2, Claim 2.4], \(\text{cf}(\{M_*\}_{b_x}) = \aleph_1 \) for every \(b_x \in M_* \), in particular \(\text{cf}(\{M_*\}_{0}) = \aleph_1 \) where \(0_\uparrow = \{\langle 0 : n < \omega \rangle \}_{D \in M_*} \).
Claim 3.2 \(\text{cf}((M_*)_{0_1}) \geq b \).

Proof Suppose \(\kappa < b \) and let \(([f_i]_D : i < \kappa) \) be an increasing sequence in \(M_* \) where for each \(i < \kappa, [f_i]_D < M_* 0_1 \). We may assume that \(-1 < f_i(n) < 0 \) for every \(n < \omega \).

For each \(i < \kappa \) set
\[
g_i(n) = \min \left\{ k < \omega : f_i(n) < -\frac{1}{k} \right\}
\]

Then \(G = \{g_i : i < \kappa\} \subseteq \omega \omega \) and \(|G| \leq \kappa \). Thus we can find some \(g : \omega \to \omega \) such that for all \(i < \kappa, g_i \leq^* g \). Define \(f : \omega \to \mathbb{Q} \) by
\[
f(n) = -\frac{1}{g(n)}.
\]

For any \(i < \kappa \) we can find some \(\ell_i < \omega \) such that \(g(n) > g_i(n) \) for all \(n > \ell_i \) and hence for any such \(n \),
\[
f(n) = -\frac{1}{g(n)} > -\frac{1}{g_i(n)} > f_i(n).
\]

It follows that the sequence \(([f_i]_D : i < \kappa) \) is bounded from above by \([f]_D < 0_1 \). Thus \(\text{cf}((M_*)_{0_1}) > \kappa \). As \(\kappa < b \) was arbitrary, \(\text{cf}((M_*)_{0_1}) \geq b \) and we are done. \(\square \)

But this implies that \(\text{cf}((M_*)_{0_1}) \geq b > \aleph_1 \) which contradicts \(\text{cf}((M_*)_{0_1}) = \aleph_1 \). The theorem follows. \(\square \)

Remark 3.3 Martin’s axiom implies \(b = 2^{\aleph_0} \), and hence the conclusion of Theorem 3.1 holds under MA + \(2^{\aleph_0} > \aleph_1 \).

Funding The first author’s research has been supported by a grant from IPM (No. 1400030417), National Science Foundation (Grant No. 2051825). The second author’s research partially supported by ISF 1838/19: The Israel Science Foundation (ISF) (2019-2023) and Rutgers 2018 DMS 1833363: NSF DMS Rutgers visitor program (P.I. S. Thomas) (2018-2022). This is publication 1223 of the second author. The first author thanks Mostafa Mirabi and Rahman Mohammadpour for carefully reading the paper and providing useful suggestions. The authors thank the referee of the paper for many useful comments and suggestions.

References

1. Goldstern, M., Shelah, S.: Many simple cardinal invariants. Arch. Math. Logic 32(3), 203–221 (1993)
2. Golshani, M., Shelah, S.: The Keisler-Shelah isomorphism theorem and the continuum hypothesis. Fund. Math., 260(1), 59–66 (2023)
3. Goto, T.: Keisler’s theorem and cardinal invariants, https://arxiv.org/abs/2109.04438
4. Keisler, H.J.: Ultraproducts and elementary classes. Nederl. Akad. Wetensch. Proc. Ser. A Indag Math. 23, 477–495 (1961)
5. Shelah, S.: Every two elementarily equivalent models have isomorphic ultrapowers. Israel J. Math. 10, 224–233 (1971)
6. Shelah, S.: Classification theory and the number of nonisomorphic models. Second edition. Studies in Logic and the Foundations of Mathematics, 92. North-Holland Publishing Co., Amsterdam, xxxiv+705 pp. ISBN: 0-444-70260-1 (1990)
7. Shelah, S.: Vive la différence. I. Nonisomorphism of ultrapowers of countable models. Set theory of the continuum (Berkeley, CA, 1989), 357-405, Math. Sci. Res. Inst. Publ., 26, Springer, New York (1992)

8. Shelah, S.: Proper and improper forcing. Second edition. Perspectives in mathematical logic. Springer-Verlag, Berlin, xlviii+1020 pp. ISBN: 3-540-51700-6 (1998)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.