Systems analysis of MVA-C induced immune response reveals its significance as a vaccine candidate against HIV/AIDS of clade C

C Gómez1*, B Perdiguero1, V Jimenez1, A Filali-Mouhim2, K Ghneim2, E Haddad2, E Quakkerlaar1, J Delaloye1, A Harari1, T Roger1, T Duhem1, R Sekaly2, C Melief1, T Calandra1, F Sallusto1, A Lanzavecchia1, R Wagner1, G Pantaleo1, M Esteban1

From AIDS Vaccine 2012
Boston, MA, USA. 9-12 September 2012

Background
Based on the partial efficacy of the HIV/AIDS Thai trial (RV144) with a canarypox vector prime and protein boost, attenuated poxvirus recombinants expressing HIV-1 antigens are increasingly sought as vaccine candidates against HIV/AIDS.

Methods
Here we describe using systems analysis the biological and immunological characteristics of the attenuated vaccinia virus Ankara strain expressing the HIV-1 antigens Env/Gag-Pol-Nef of HIV-1 of clade C (referred as MVA-C).

Results
MVA-C infection of human monocyte derived dendritic cells (moDCs) induced the expression of HIV-1 antigens at high levels from 2 to 8 hpi and triggered moDCs maturation as revealed by enhanced expression of HLA-DR, CD86, CD40, HLA-A2 and CD80 molecules. Infection ex vivo of purified mDC and pDC with MVA-C induced the expression of immunoregulatory pathways associated with antiviral responses, antigen presentation, T cell and B cell responses. Similarly, human whole blood or primary macrophages infected with MVA-C express high levels of proinflammatory cytokines and chemokines involved with T cell activation. The vector MVA-C has the ability to cross-present antigens to HIV-specific CD8 T cells in vitro and to increase CD8 T cell proliferation in a dose-dependent manner. The immunogenic profiling in mice after DNA-C prime/MVA-C boost combination revealed activation of HIV-1-specific CD4 and CD8 T cell memory responses, that are polyfunctional and with effector memory phenotype. Env-specific IgG binding antibodies were also produced in animals receiving DNA-C prime/MVA-C boost.

Conclusion
Our systems analysis of profiling immune response to MVA-C infection highlights the potential benefit of MVA-C as vaccine candidate against HIV/AIDS for clade C, the prevalent subtype virus in the most affected areas of the world.

Author details
1Centro Nacional de Biotecnología, Madrid, Spain. 2VGTI, Port Saint Lucie, FL, USA.

Published: 13 September 2012

doi:10.1186/1742-4690-9-S2-P303

Cite this article as: Gómez et al.: Systems analysis of MVA-C induced immune response reveals its significance as a vaccine candidate against HIV/AIDS of clade C. Retrovirology 2012 9(Suppl 2):P303.