Impact of preoperative Karnofsky Performance Scale (KPS) and American Society of Anesthesiologists (ASA) scores on perioperative complications in patients with recurrent glioma undergoing repeated operation

Zhong Deng
Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China School of Medicine, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China

Hai Yu
Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China School of Medicine, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China

Ning Wang
Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China

Wahap Alafate
Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China School of Medicine, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China

Jia Wang
Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China

Recommended Citation
Zhong Deng, Hai Yu, Ning Wang et al. Impact of preoperative Karnofsky Performance Scale (KPS) and American Society of Anesthesiologists (ASA) scores on perioperative complications in patients with recurrent glioma undergoing repeated operation. Journal of Neurorestoratology 2019, 7(3): 143-152.

This Research Article is brought to you for free and open access by Tsinghua University Press: Journals Publishing. It has been accepted for inclusion in Journal of Neurorestoratology by an authorized editor of Tsinghua University Press: Journals Publishing.
Impact of preoperative Karnofsky Performance Scale (KPS) and American Society of Anesthesiologists (ASA) scores on perioperative complications in patients with recurrent glioma undergoing repeated operation

Authors
Zhong Deng, Hai Yu, Ning Wang, Wahap Alafate, Jia Wang, Tuo Wang, Changwang Du, and Maode Wang
Impact of preoperative Karnofsky Performance Scale (KPS) and American Society of Anesthesiologists (ASA) scores on perioperative complications in patients with recurrent glioma undergoing repeated operation

Zhong Deng1,2, Hai Yu1,2, Ning Wang1, Wahap Alafate1,2, Jia Wang1, Tuo Wang1, Changwang Du1,2, Maode Wang1,2

1 Department of Neurosurgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi, China
2 School of Medicine, Xi’an Jiaotong University, Xi’an 710061, Shaanxi, China

ARTICLE INFO
Received: 17 July 2019
Revised: 22 August 2019
Accepted: 17 September 2019

© The authors 2019. This article is published with open access at http://jnr.tsinghuajournals.com

KEYWORDS
complications; repeated craniotomy; glioma; Karnofsky Performance Scale (KPS) score; American Society of Anesthesiologists (ASA) score

ABSTRACT
Objective: The objective of this study was to document the impact of the preoperative Karnofsky Performance Scale (KPS) and American Society of Anesthesiologists (ASA) scores on perioperative complications in patients with recurrent glioma who underwent tumor resection via craniotomy.

Methods: A total of 96 patients were retrospectively reviewed. Based on KPS and ASA scores, patients were categorized into high KPS (> 70) or low KPS (≤ 70) and high ASA (3~4) or low ASA (1~2) groups. Differences in intraoperative risk factors and perioperative complications among the groups were analyzed. Multivariate analysis was performed to identify risk factors for perioperative complications.

Results: The most frequent perioperative complications were cerebrospinal fluid leakage (31.8%) and intracranial infection (27.0%); 30-day mortality was 5.2%. The incidence rates of severe complications, central nervous system complications, and total complications were comparable in the low and high KPS groups and in the low and high ASA groups (all p > 0.05). Multivariate analysis showed that low KPS and high ASA scores were not the independent risk factors for perioperative complications.

Conclusion: Low KPS and high ASA scores are not associated with increased postoperative complications in patients with recurrent glioma who undergo tumor resection via craniotomy.

1 Introduction
Glioma is the most common primary malignant brain tumor, accounting for 24% of brain tumors in adults [1]. The standard clinical treatment for glioma includes maximal safe resection, radiotherapy, and temozolomide chemotherapy. However, glioma recurrence is inevitable due to incomplete tumor resection and aggressive invasion. Repeated craniotomy is one of the common treatment strategies for patients with recurrent glioma and has been shown to prolong
postoperative survival, but it also increases the incidence rates of perioperative complications [2, 3]. Identifying preoperative risk factors could be critical for patients with recurrent glioma.

Patient age; Karnofsky Performance Scale (KPS); and tumor pathology, size, and location are among the risk factors for increased postoperative complications [4]. KPS is one of the widely studied risk factors for predicting mortality and morbidity in patients with glioma [4–8]. Increased postsurgical complications in patients with glioma with low KPS have been reported by several groups [4, 9–11]. In addition, the American Society of Anesthesiologists (ASA) score, which is a widely used clinical preoperative physical status classification, is a well-known risk factor for preoperative mortality and complications after craniotomy in patients with various brain tumors [12–18]. However, little is known about the impact of KPS and ASA scores in patients who undergo craniotomy for recurrent glioma.

In the present study, we aimed to evaluate the impact of KPS and ASA scores on perioperative complications in patients with recurrent glioma who undergo repeated craniotomy for glioma by comparing the incidence of perioperative complications in patients with high versus low KPS and with high versus low ASA scores.

2 Patients and methods

2.1 Patients

The medical records of patients who were pathologically diagnosed with recurrent glioma and underwent craniotomy at the First Affiliated Hospital of the Xi’an Jiaotong University between June 2008 and July 2014 were retrospectively retrieved and analyzed. The pathological diagnosis was determined by two senior neuropathologists according to the 2016 World Health Organization classification of central nervous system (CNS) tumors [19]. The study was approved by and conducted in accordance with the policies of the Scientific Ethics Committee of the Xi’an Jiaotong University.

Patients’ demographic characteristics, systemic diseases (hypertension, cardiovascular disease, lung disease, and diabetes mellitus), tumor characteristics (pathological diagnosis and tumor location and size), preoperative tumor-related stroke status (defined as hemorrhagic or ischemic stroke within the tumor area), pre- and postoperative laboratory blood test results (including routine blood test and blood coagulation and liver function tests), imaging (computed tomography or magnetic resonance imaging findings), neurosurgical intensive care unit (NICU) stay duration, KPS and perioperative complications were recorded. The operation-associated intraoperative risk factors (operation route, start and finish time, amount of intraoperative blood loss, and requirement of blood transfusion), extent of resection (gross total resection, TR, 95%–100% enhancement; subtotal resection, STR, 80%–95% enhancement; partial resection, PR, < 80% enhancement), and ASA score were extracted from operation and anesthesia records. The time of skin incision was defined as the start time of the procedure. All procedures were performed by senior neurosurgeons with >10 years of neurosurgical experience.

2.2 Study design

Patients were excluded from the study if they were <16 years old; if their medical records were incomplete; or if they presented with uncontrolled systemic disease, including abnormal blood pressure and blood glucose levels (even with medication), or with acute phase of cardiovascular or lung disease. Patients with a history of glioma who had undergone craniotomy before admission were included in the study. Data of 507 patients who had previously provided written consent for their medical records to be used in retrospective studies were retrieved, and 96 of these patients were included in the study.
The KPS was recorded on the day of admission, and the ASA scores was recorded on the day before operation. On the basis of KPS and ASA scores, patients were categorized into high KPS (> 70) or low KPS (≤ 70) and high ASA (3~4) or low ASA (1~2) groups.

Body mass index (BMI) was calculated using preoperative height and weight. Prognostic nutritional index (PNI) was calculated as follows:

\[
PNI = 10 \times \text{serum albumin level (g/dL)} + 0.005 \times \text{peripheral blood lymphocyte count.}
\]

Intraoperative medical events (blood loss, blood transfusion, and operation duration) and postoperative complications were considered as perioperative complications. Postoperative complications were subdivided into severe complications, CNS complications, and systemic complications. Severe complications were defined as death within 30 days or unplanned reoperation within 7 days of the operation. CNS complications were defined as the occurrence of a seizure and presence of a neurological deficit, an intracranial infection, or cerebrospinal fluid (CSF) leakage. Systemic complications included deep venous thrombosis, electrolyte imbalance, systemic infections (pulmonary and urinary infections), and other medical conditions arising postoperatively. Neurological deficits that were newly diagnosed after the repeated operation and not present after the prior operation were considered as complications of the repeated operation.

2.3 Statistical analysis

Numerical data were expressed as mean ± standard deviation and compared between two groups using Student’s t-test. Categorical data were expressed as percentages and compared using chi-square test. Factors that were reported to be of significant prognostic value in the literature were included and analyzed in a multivariate Cox proportional hazards model. Statistical analyses were performed using SPSS 21.0 (Chicago, IL, USA). A p value < 0.05 was considered to be significant.

3 Results

A total of 550 craniotomies performed on 481 patients were retrospectively reviewed, and 96 patients were included in the present study. In this cohort of patients, CSF leakage (31.8%) and intracranial infection (27.0%) were the most frequent perioperative complications. The overall incidence of total complications was 60% (Table 1), which was higher than that after the first craniotomy (data not shown). Notably, the incidence of death within 30 days was 5.2% (Table 1), which was comparable to that reported in the literature [2, 3]. Baseline characteristics, stratified by KPS and ASA scores, are summarized in Tables 2 and 3, respectively.

Table 1 Types of complications in 96 patients.

Complications	Incidence, n (%)
Extent of resection	
GTR	79 (82.3)
STR	14 (14.5)
PR	3 (3.1)
Death within 30 days	5 (5.2)
Re-operation	1 (1.0)
Hemorrhage	4 (4.2)
Severe edema	3 (3.1)
Hydrocephalus	1 (1.0)
Neurological deficit	19 (19.8)
Intracranial infection	26 (27.0)
Seizure	13 (13.5)
Systemic infection	10 (10.4)
Pulmonary infection	9 (9.7)
Urinary infection	1 (1.0)
Venous thrombosis	0 (0)
CSF leak	21 (31.8)
Porencephalia	3 (3.1)
Severe complication	7 (7.3)
CNS complication	54 (56.3)
Systemic complication	10 (10.4)
Total complication	60 (62.5)
Table 2 Clinical and pathological characteristics stratified by KPS in 96 patients received repeated surgery.

Variable	KPS ≤ 70	KPS > 70	p value
Sex (male), n (%)	4 (36.4)	49 (57.6)	0.182
Age (years)	45 ± 15	45 ± 10	0.032
Body mass index (kg/m²)	21.3 ± 2.7	23.6 ± 3.1	0.897
Tumor stroke	< 0.001		
Hemorrhagic stroke, n (%)	6 (54.5)	2 (2.4)	
Ischemic stroke, n (%)	0 (0)	4 (4.7)	
Hypertension, n (%)	2 (18.2)	7 (8.2)	0.287
Diabetes Mellitus, n (%)	0 (0)	2 (2.4)	0.607
Cardiovascular Disease, n (%)	0 (0)	2 (2.4)	0.607
Chronic Lung Disease, n (%)	0 (0)	1 (1.2)	0.718
Smoking, n (%)	1 (9.1)	12 (14.1)	0.647
Drinking, n (%)	2 (18.2)	9 (10.6)	0.457
White blood cells (10⁹/L)	8.7 ± 4.1	6.2 ± 2.9	0.019
Platelet count (10⁹/L)	162 ± 52	162 ± 45	0.570
Hemoglobin (g/L)	13.0 ± 17.4	138.1 ± 17.7	0.695
PT (s)	12.7 ± 0.8	12.5 ± 1.0	0.516
APTT (s)	31.8 ± 5.5	33.3 ± 4.8	0.679
Albumin (g/L)	43.1 ± 5.9	41.0 ± 3.3	0.023
PNI	43.1 ± 5.9	41.0 ± 3.3	0.023
Tumor Size (cm)	5.5 ± 0.9	4.9 ± 1.6	0.352
Tumor Location, n (%)			0.686
Frontal	3 (27.3)	35 (41.2)	
Temporal	3 (27.3)	14 (16.5)	
Parietal	0 (0)	6 (7.1)	
Occipital	0 (0)	2 (2.4)	
Thalamus	5 (45.5)	23 (27.1)	
Multiple location	0 (0)	2 (2.4)	
Infratentorial	0 (0)	3 (3.5)	
Tumor Grade, n (%)			0.760
WHO I	0 (0)	5 (5.9)	
WHO II	6 (54.5)	35 (41.2)	
WHO III	4 (36.4)	35 (41.2)	
WHO IV	1 (9.1)	10 (11.8)	

Table 3 Clinical and pathological characteristics stratified by ASA score in 96 patients received repeated surgery.

Variable	ASA = 1–2	ASA = 3–4	p value
Sex (male), n (%)	33 (63.5)	20 (45.5)	0.077
Age (years)	46 ± 8	44 ± 12	0.020
Body mass index (kg/m²)	23.3 ± 2.9	23.3 ± 3.5	0.451
Tumor stroke	< 0.001		
Hemorrhagic stroke, n (%)	1 (1.9)	7 (15.9)	
Ischemic stroke, n (%)	1 (1.9)	3 (6.8)	
Hypertension, n (%)	4 (7.7)	5 (11.4)	0.539
Diabetes Mellitus, n (%)	1 (1.9)	1 (2.3)	0.905
Cardiovascular Disease, n (%)	1 (1.9)	1 (2.3)	0.905
Chronic Lung Disease, n (%)	0 (0)	1 (2.3)	0.274
Smoking, n (%)	6 (11.5)	7 (15.9)	0.533
Drinking, n (%)	3 (5.8)	8 (18.2)	0.057
White blood cells (10⁹/L)	5.8 ± 1.9	7.3 ± 4.0	0.002
Platelet count (10⁹/L)	157 ± 44	170 ± 48	0.798
Hemoglobin (g/L)	138 ± 15	138 ± 21	0.106
PT (s)	12.6 ± 1.0	12.4 ± 0.9	0.906
APTT (s)	32.1 ± 3.7	34.4 ± 5.7	0.027
Albumin (g/L)	40.4 ± 3.1	42.3 ± 4.1	0.280
PNI	40.4 ± 3.1	42.3 ± 4.1	0.281
Tumor Size (cm)	5.0 ± 1.5	5.0 ± 1.5	0.735
Tumor Location, n (%)			0.935
Frontal	22 (42.3)	16 (36.4)	
Temporal	8 (15.4)	9 (20.5)	
Parietal	4 (7.7)	2 (4.5)	
Occipital	1 (1.9)	1 (2.3)	
Thalamus	15 (28.8)	13 (29.5)	
Multiple location	1 (1.9)	1 (2.3)	
Infratentorial	1 (1.9)	2 (4.5)	
Tumor Grade, n (%)			0.422
WHO I	4 (7.7)	1 (2.3)	
WHO II	23 (44.2)	18 (40.9)	
WHO III	18 (34.6)	21 (47.7)	
WHO IV	7 (13.5)	4 (9.1)	
Eleven patients exhibited low KPS scores; six of these patients were admitted with tumor-related hemorrhagic stroke (Table 2). The incidence of tumor-related stroke was higher in these patients than in those with high KPS scores ($p < 0.001$). Despite some differences in albumin levels and PNI, patients in the low and high KPS groups had comparable BMI, systemic disease incidence, and tumor characteristics (tumor location and grade). Four patients underwent emergency tumor resection because of tumor-related hemorrhagic grade). Four patients underwent emergency tumor resection classified by KPS.

Table 4 Comparison of complications in patients received repeated surgery classified by KPS.

Complications	KPS ≤ 70 (n = 11)	KPS > 70 (n = 85)	p value
Emergency surgery	4 (36.4)	4 (47.7)	< 0.001
Operation Duration (h)	3.6 ± 1.0	4.6 ± 1.9	0.143
Blood-loss (mL)	639 ± 326	567 ± 448	0.590
Extent of resection, n (%)	0.779		
GTR	9 (81.8)	70 (82.4)	
STR	2 (18.2)	12 (14.1)	
PR	0 (0)	3 (3.5)	
NICU duration(days)	2 ± 1	4 ± 7	0.313
Death within 30 days	0 (0)	5 (5.9)	0.409
Re-operation, n (%)	0 (0)	1 (1.2)	0.718
Hemorrhage, n (%)	0 (0)	4 (4.7)	0.462
Severe edema, n (%)	0 (0)	3 (3.5)	0.527
Hydrocephalus, n (%)	0 (0)	1 (1.2)	0.718
Neurological deficit, n (%)	3 (27.3)	16 (18.8)	0.508
Intracranial infection, n (%)	4 (36.4)	22 (25.9)	0.462
Seizure, n (%)	2 (18.2)	11 (12.9)	0.633
Systemic infection, n (%)	0.936		
Pulmonary infection, n (%)	1 (9.1)	8 (9.4)	
Urinary infection, n (%)	0 (0)	1 (1.2)	

(Continued)

Complications	KPS ≤ 70 (n = 11)	KPS > 70 (n = 85)	p value
Venous thrombosis, n (%)	0 (0)	0 (0)	0.001
CSF leak, n (%)	1(9.1)	20 (23.5)	0.276
Porencephalia, n (%)	0 (0)	3 (3.1)	0.527
Severe complication, n (%)	0 (0)	7 (8.2)	0.323
CNS complication, n (%)	5 (45.5)	49 (57.6)	0.443
Systemic complication, n (%)	1 (9.1)	9 (10.6)	0.878
Total complication, n (%)	5 (45.5)	55 (64.7)	0.215

Table 5 Comparison of complications between ASA score 1~2 and 3~4.

Complications	ASA = 1~2 (n = 52)	ASA = 3~4 (n = 44)	p value
Emergency surgery	1 (1.9)	7 (15.9)	0.013
Operation Duration (h)	4.7 ± 1.8	4.4 ± 2	0.824
Blood-loss (mL)	545 ± 458	611 ± 409	0.990
Extent of resection, n (%)	0.041		
GTR	47 (90.4)	32 (72.7)	
STR	5 (9.6)	9 (20.5)	
PR	0 (0)	3 (6.8)	
NICU duration(days)	4 ± 8	4 ± 6	0.829
Death within 30 days	2 (3.8)	3 (6.8)	0.514
Re-operation, n (%)	0 (0)	1 (2.3)	0.274
Hemorrhage, n (%)	1 (1.9)	3 (6.8)	0.232
Severe edema, n (%)	1 (1.9)	2 (4.5)	0.462
Hydrocephalus, n (%)	0 (0)	1 (2.3)	0.274
Neurological deficit, n (%)	9 (17.3)	10 (22.7)	0.507
Intracranial infection, n (%)	15 (28.8)	11 (25.0)	0.673
Seizure, n (%)	6 (11.5)	7 (15.9)	0.533
Systemic infection, n (%)	0.445		
Pulmonary infection, n (%)	4 (7.7)	5 (11.4)	
Urinary infection, n (%)	0 (0)	1 (2.3)	
Venous thrombosis, n (%)	0 (0)	0 (0)	
CSF leak, n (%)	11 (21.2)	10 (22.7)	0.853
Porencephalia, n (%)	0 (0)	3 (6.8)	0.056
Severe complication, n (%)	2 (3.8)	5 (11.4)	0.158
CNS complication, n (%)	29 (55.8)	25 (56.8)	0.918
Systemic complication, n (%)	4 (7.7)	6 (13.6)	0.342
Total complication, n (%)	32 (61.5)	28 (63.6)	0.832
The rate of tumor-related stroke was significantly higher in patients with high ASA scores than in those with low ASA scores \((p = 0.019)\) (Table 3); thus, the former underwent emergency surgery and had a significantly lower extent of tumor resection than the latter \((p = 0.041)\) (Table 5). Despite these differences, the incidence of perioperative complications was still comparable between the two groups (Table 5).

Nonetheless, we found that low PNI was a risk factor for total complications, which has not been previously reported in patients undergoing craniotomy. On multivariate analysis, neither low KPS nor high ASA score was found to be independently associated with a high incidence of severe complications, CNS complications, or total complications. Unexpectedly and interestingly, the multivariate analysis in the present study showed that women had a higher hazard rate of CNS complications and total complications than men (Table 6).

4 Discussion

In the present study, we assessed the impact of preoperative KPS and ASA scores on perioperative complications in patients undergoing repeated glioma resection. In contrast with the results reported in the literature for patients with newly diagnosed glioma undergoing primary craniotomy [4, 9–11], we did not find any significant correlation between low KPS or high ASA score and perioperative complications, including severe complications (death within 30 days or unplanned reoperation within 7 days), CNS complications, and total complications.

Five patients (5.2%) died within 30 days of the repeated operation; this rate is comparable to that reported in previous studies (2.2%–16%) [2, 3]. The most frequent complications were CSF leakage and intracranial infection, and the incidence of these complications was similar to

Variable	Severe complications	CNS complications	Total complications			
	Univariate analysis		Univariate analysis		Univariate analysis	
	HR (95% CI)	\(p\)	HR (95% CI)	\(p\)	HR (95% CI)	\(p\)
Sex (Male)	0.482 (0.043–5.331)	0.551	2.630 (0.948–7.292)	\textbf{0.063}	2.540 (0.851–7.584)	\textbf{0.095}
Age (≥ 65)	0.998		0.671 (0.041–10.852)	0.778	0.790 (0.047–13.288)	0.870
KPS (< 70)	0.998		1.878 (0.353–10.006)	0.460	1.112 (0.393–3.148)	0.842
ASA score (ASA 3–4)	0.221 (0.023–2.137)	0.192	1.112 (0.416–2.972)	0.833	1.112 (0.393–3.148)	0.842
BMI	0.858 (0.576–1.279)	0.452	1.057 (0.891–1.255)	0.522	0.996 (0.836–1.186)	0.965
PNI	1.159 (0.853–1.575)	0.346	1.088 (0.957–1.238)	0.197	1.175 (1.021–1.353)	\textbf{0.025}
Hypertension (Yes)	0.999		0.236 (0.029–1.899)	0.175	0.200 (0.022–1.854)	0.157
Diabetes (Yes)	0.999		0.999		0.999	
Smoking (Yes)	0.541 (0.035–8.305)	0.660	1.686 (0.394–7.224)	0.481	1.540 (0.351–6.753)	0.567
Tumor size (≥ 5cm)	0.153 (0.015–1.532)	0.110	0.484 (0.176–1.331)	0.160	0.453 (0.154–1.338)	0.152
Location (Supratentorial)	14.073 (0.650–332.616)	\textbf{0.091}	1.525 (0.110–21.228)	0.754	1.033 (0.053–20.033)	0.983
Tumor stroke (Yes)	0.998		3.020 (0.277–32.984)	0.365	3.848 (0.313–47.242)	0.292
Emergency (Yes)	0.998		0.848 (0.051–14.099)	0.909	1.033 (0.053–20.033)	0.983
that reported in previous studies (2.1%~35%) [20, 21]. The surgical pathway for the repeated operation was usually primary skin and skull incisions and a similar or same pathway to decrease damage, which was one of the risk factors for wound-related complications, including CSF leakage and intracranial infections [2].

In the literature, low KPS is one of the established risk factors for perioperative complications in patients with glioma who undergo craniotomy [4, 9–11]. However, most of these studies focused on primary gliomas or gliomas without clarification of recurrence status. The present study did not find significant correlations between perioperative complications and KPS in this cohort of patients undergoing repeated operation. This result is surprising and suggests that repeated operation itself is an independent risk factor for perioperative complications [2].

Increased risk of perioperative complications has been reported in surgeries such as brain tumor craniotomy [12–17]. Reportedly, the length of hospital day after tumor resection is significantly longer in patients with high ASA scores than in those with low ASA scores [12]. Reponen et al. reported that high ASA scores are associated with increased systemic and infectious complications [17]. A more recent study has confirmed that high ASA scores are one of the independent risk factors for surgical site infection after craniotomy [18]. In the present study, the rate of systemic infections was higher in the high ASA than in the low ASA group, but the difference was not significant. These results imply that the impact of low KPS and high ASA scores on perioperative complications is weaker than the impact of repeated operation itself.

The present study is subject to several limitations. First, it is a retrospective study with its inherent limitations. As mentioned above, the small study sample obtained from a single center is another limitation, and it was difficult to include sufficient patients in the low KPS group. In addition, KPS and ASA scores were determined by multiple neurosurgeons and anesthesiologists; thus, there is a possibility of interobserver variability.

Notwithstanding these limitations, the present study did not find a significant impact of KPS and ASA scores on perioperative complications in patients undergoing repeated craniotomy for glioma. Further studies are needed to identify the risk factors associated with repeated glioma resection.

Author contributions

The authors ZD, CWD and MDW contributed for study concept and design. The authors ZD, HY, AW, and NW contributed for data collection. The authors ZD, JW, HY and TW contributed for data analysis. The authors ZD, TW and CWD drafted the manuscript. The authors JW, HY and MDW contributed for critical revision. The author MDW was the supervisor.

Acknowledgments

This work was supported by National Natural Science Foundation of China (grant no. 81802502) and the Clinical Research Award of the First Affiliated Hospital of Xi’an Jiaotong University, China (No. XJTU1AF-2016-018).

Conflict of interests

The authors declare they have no conflict of interests.

References

[1] McNeill KA. Epidemiology of brain tumors. *Neurol Clin*. 2016, 34(4): 981–998.

[2] Hoover JM, Nwojo M, Puffer R, et al. Surgical outcomes in recurrent glioma: clinical article. *J Neurosurg*. 2013, 118(6): 1224–1231.
[3] Hervey-Jumper SL, Berger MS. Reoperation for recurrent high-grade glioma: a current perspective of the literature. *Neurosurgery*. 2014, 75(5): 491–499.

[4] Jackson C, Westphal M, Quiñones-Hinojosa A. Complications of glioma surgery. *Handb Clin Neurol*. 2016, 134: 201–218.

[5] Laws ER, Parney IF, Huang W, et al. Survival following surgery and prognostic factors for recently diagnosed malignant glioma: data from the Glioma Outcomes Project. *J Neurosurg*. 2003, 99(3): 467–473.

[6] Patil CG, Yi A, Elramsisy A, et al. Prognosis of patients with multifocal glioblastoma: a case-control study. *J Neurosurg*. 2012, 117(4): 705–711.

[7] Ruge MI, Ilmberger J, Tonn JC, et al. Health-related quality of life and cognitive functioning in adult patients with supratentorial WHO grade II glioma: status prior to therapy. *J Neurooncol*. 2011, 103(1): 129–136.

[8] Chambless LB, Kistka HM, Parker SL, et al. The relative value of postoperative versus preoperative Karnofsky Performance Scale scores as a predictor of survival after surgical resection of glioblastoma multiforme. *J Neurooncol*. 2015, 121(2): 359–364.

[9] Gerritsen JKW, Arends L, Klimek M, et al. Impact of intraoperative stimulation mapping on high-grade glioma surgery outcome: a meta-analysis. *Acta Neurochir (Wien)*. 2019, 161(1): 99–107.

[10] Chambless LB, Parker SL, Hassam-Malani L, et al. Type 2 diabetes mellitus and obesity are independent risk factors for poor outcome in patients with high-grade glioma. *J Neurooncol*. 2012, 106(2): 383–389.

[11] D’Amico RS, Cloney MB, Sonabend AM, et al. The safety of surgery in elderly patients with primary and recurrent glioblastoma. *World Neurosurg*. 2015, 84(4): 913–919.

[12] Dassenbrock HH, Liu KX, Devine CA, et al. Length of hospital stay after craniotomy for tumor: a national surgical quality improvement program analysis. *Neurosurg Focus*. 2015, 39(6): E12.

[13] Idali B, Lahay B, Khaleq K, et al. Postoperative infection following craniotomy in adults. *Med Mal Infect*. 2004, 34(5): 221–224.

[14] Sherrod BA, Johnston JM, Rocque BG. Risk factors for unplanned readmission within 30 days after pediatric neurosurgery: a nationwide analysis of 9799 procedures from the American college of surgeons national surgical quality improvement program. *J Neurosurg Pediatr*. 2016, 18(3): 350–362.

[15] Nunno A, Li Y, Pieters TA, et al. Risk factors and associated complications of symptomatic venous thromboembolism in patients with craniotomy for meningioma. *World Neurosurg*. 2019, 122: e1505–e1510.

Zhong Deng, MD, Department of Neurosurgery, Center of Brain Science, the First Affiliated Hospital of Xi’an Jiaotong University, China. He specializes in brain tumor minimally invasive craniotomy, experimental tumor biology, and immune therapy in glioblastoma (GBM). Email: dz8981201@126.com.
Hai Yu, Department of Neurosurgery, Center of Brain Science, the First Affiliated Hospital of Xi’an Jiaotong University, China. He specializes in brain tumor minimally invasive craniotomy and tumor heterogeneity in GBM. Email: smart5216@163.com.

Ning Wang, MD, Department of Neurosurgery, the First Affiliated Hospital of Xi’an Jiaotong University, China. He specializes in minimally invasive craniotomy for brain tumors, hypertensive hemorrhage, and spinal disease. Email: 8115411@qq.com.

Wahap Alafate, MD, Department of Neurosurgery, Center of Brain Science, the First Affiliated Hospital of Xi’an Jiaotong University, China. He specializes in chemotherapy and radiation therapy resistance in GBM. Email: alafate513@163.com.

Jia Wang, MD, Department of Neurosurgery, Center of Brain Science, the First Affiliated Hospital of Xi’an Jiaotong University, China. He specializes in minimally invasive craniotomy for brain tumors and hypertensive hemorrhage and experimental chemotherapy and radiation therapy resistance in GBM. Email: jiawang_xjtu@163.com.

Tuo Wang, MD, Department of Neurosurgery, the First Affiliated Hospital of Xi’an Jiaotong University, China. He specializes in minimally invasive craniotomy for skull base diseases, including meningioma, craniopharyngioma, and medulloblastoma. Email: 943133953@qq.com.
Changwang Du, MD, Department of Neurosurgery, the First Affiliated Hospital of Xi’an Jiaotong University, China. He specializes in minimally invasive surgical treatment for brain tumors, hypertensive hemorrhage, Parkinson’s disease, and epilepsy, among others, and in experimental brain tumor biology and three-dimensional imaging. Email: duchang1981@163.com.

Maode Wang, MD, Department of Neurosurgery, Center of Brain Science, the First Affiliated Hospital of Xi’an Jiaotong University, China. He specializes in minimally invasive surgical treatment for brain tumors, hypertensive hemorrhage, Parkinson’s disease and other functional diseases and in experimental tumor biology, heterogeneity, chemotherapy and radiation therapy resistance, and immune therapy. Email: maodewang@163.com.