Daily home monitoring of potassium, creatinine, and estimated plasma volume in heart failure post-discharge

Patrick Rossignol*, Renaud Fay, Nicolas Girerd and Faiez Zannad

Centre d’Investigations Cliniques–1433, Université de Lorraine, Inserm, Inserm U1116, CHU Nancy, F-CRIN INI-CRCT, Nancy, France

Abstract

Aims Congestive status, serum potassium, and renal function are major determinants of outcomes as well as critical elements for adjusting drug therapy in heart failure (HF) patients. This study aimed at describing the daily variations in estimated plasma volume (ePV, a surrogate of congestion computed from haemoglobin and haematocrit), blood potassium, and estimated glomerular filtration rate during 2 months post-hospitalization for decompensated HF with reduced ejection fraction.

Methods and results The study was conducted in a single tertiary referral centre. Capillary blood samples were drawn by study nurses at home (7–12 am), and haematocrit, blood haemoglobin, creatinine, and potassium were measured using an approved home-based device (ABOTT i-STAT) (ClinicalTrials.gov: NCT01655134). Among the 15 home-monitored patients, two patients died (one suddenly), and one was readmitted for ischaemic acute pulmonary oedema, with a subsequent acute coronary syndrome, and did not have a complete 2-month follow-up. The 5-day-a-week biological home monitoring revealed an ePV > 5.5 mL/g Hb, suggestive of undiagnosed residual congestion at discharge in 3 out the 15 patients. It was possible to document a number of episodes of hyperkalaemia (>5: mean ± standard deviation: 2.2 ± 2.2 or 5.5: 1.7 ± 1.6 mmol/L), hypokalaemia (<4: 1.9 ± 2.4 or 3.5: 0.5 ± 1.2 mmol/L), worsening renal function (drop in estimated glomerular filtration rate-20%: 1.3 ± 1.8 or 30%: 0.7 ± 1.2) and recongestion (ePV rise above 10%: 1.4 ± 1.5, 15%: 2.3 ± 2.4, 5.5 mL/g Hb: 1.8 ± 2.6) episodes indicative of clinically relevant and potentially actionable cardiorenal and electrolytic patterns.

Conclusions Our findings demonstrate that a 5-day-a-week home monitoring combining haemoglobin/haematocrit, potassium, and creatinine measurements was able to capture a substantial number of clinically relevant cardiorenal and electrolyte events which are frequently overlooked and potentially actionable. Whether acting on these events may help optimizing renin angiotensin aldosterone system inhibitors and diuretic therapy warrants further dedicated testing. The ongoing HERMES HF study (NCT04050904) is assessing the short-term feasibility and safety of such a monitoring strategy, complemented by a decision support system, and generating recommendations based on ESC clinical guidelines in patients discharged after an episode of worsening heart failure with reduced ejection fraction.

Keywords Hypokalaemia; Hyperkalaemia; Estimated plasma volume; Kidney function; Heart failure with reduced ejection fraction; Monitoring

Received: 29 November 2019; Revised: 5 January 2020; Accepted: 22 January 2020

*Correspondence to: Patrick Rossignol, Centre d’Investigations Cliniques–INSERM CHRU de Nancy, Institut lorrain du Cœur et des Vaisseaux Louis Mathieu, 4 rue du Morvan, 54500 Vandoeuvre Lès Nancy, France. Email: p.rossignol@chru-nancy.fr

Background

After discharge from heart failure (HF) hospitalization, patients are at an unacceptably high risk of death and recurrent hospitalization for HF. Patients with chronic HF and reduced ejection fraction (HFrEF) should receive renin angiotensin aldosterone system inhibitors (RAASI) to improve survival and diuretic therapy to alleviate congestion-related symptoms. However, in daily practice, patients receive suboptimal doses of RAASI mostly due to concerns of worsening renal function (WRF) and hyperkalaemia. In addition, undiagnosed residual congestion is a major driver of post-discharge early readmission.

© 2020 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of the European Society of Cardiology. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
Table 1 Baseline characteristics

Characteristics	N	Mean ± SD or n (%)	Median (Q1–Q3)	Range
Demography				
Age (years)	15	71 ± 10	71 (68–76)	38–84
Male gender	15	11 (73%)		
Physical examination				
BMI (kg/m²)	15	28.3 ± 5.7	28.1 (24.4–33.0)	17.6–36.7
Blood pressure systolic (mmHg)	15	117 ± 14	117 (107–126)	95–145
diastolic (mmHg)	15	70 ± 11	67 (63–81)	51–89
MAP (mmHg)	15	86 ± 11	85 (78–95)	66–108
Cardiac examination				
LVEF (%)	15	31 ± 9	30 (25–35)	10–45
Sinus rhythm	15	7 (47%)		
Pacing	15	2 (13%)		
ICD	15	5 (33%)		
NYHA class	15			
I		1 (7%)		
II		6 (40%)		
III		7 (47%)		
IV		1 (7%)		
Acute coronary syndrome				
Previous history				
Ischaemic cardiopathy	15	7 (47%)		
Hypertension	15	7 (47%)		
COPD	15	2 (13%)		
Neoplasia	15	5 (33%)		
Risk factors				
Smoker (past or current)	15	6 (40%)		
Dyslipidaemia	15	6 (40%)		
Diabetes	15	8 (53%)		
Biochemistry				
Kalaemia (mmol/L)	15	4.5 ± 0.6	4.4 (3.9–4.9)	3.8–5.8
eGFR (mL/min/1.73 m²)	15	60 ± 17	61 (47–78)	27–87
ePV (mL/g Hb)	15	4.6 ± 1.3	4.4 (3.5–5.0)	2.8–7.9
Myocardial stretch biomarker		588 ± 405	432 (258–994)	94–1286

BMI, body mass index; COPD, chronic obstructive pulmonary disease; eGFR, estimated glomerular filtration rate (CKD-EPI formula); ePV, estimated plasma volume; ICD, implantable cardioverter defibrillator; LVEF, left ventricular ejection fraction; MAP, mean arterial pressure; NYHA, New York Heart Association.

N: count; SD: standard deviation; Q1–Q3: 1st and 3rd quartiles.

Table 2 Individual clinical characteristics

Patient	Gender	Age (years)	Sinus rhythm	PM Y/N	ICD Y/N	Baseline values	Blood level ranges during follow-up			
						SBP/DBP (mmHg)	EF (%)	eGFR (mL/min/1.73 m²)	K+ (mmol/L)	ePV (mL/g Hb)
01	M	68	Y	N	N	133/86	10	4.4 (3.9–4.9)	3.8–5.8	2.9–4.4
02	M	68	N	Y	N	117/70	30	4.8–6.2	3.5–7.2	2.8–7
03	M	60	N	Y	Y	112/64	35	4.1–6.8	3.5–9.9	2.6–4.6
04	M	88	N	N	N	114/67	25	4.4–6.7	3.7–5.0	3.5–7.2
05	M	78	Y	N	N	126/63	30	4.1–6.8	5.3–9.9	2.6–4.6
06	M	66	Y	N	Y	95/63	25	3.9–7.4	2.6–4.6	3.5–7.2
07	W	38	Y	N	Y	125/86	45	3.9–5.4	2.9–4.7	3.5–7.2
08	W	79	Y	N	N	114/61	33	3.7–5.7	3.6–5.3	3.5–7.2
09	M	72	Y	N	N	107/74	35	4.0–5.4	2.5–3.7	3.5–7.2
10	M	71	N	N	Y	125/69	30	4.0–5.6	3.8–5.3	3.5–7.2
12	M	76	N	Y	N	125/67	35	4.4–5.7	3.7–4.6	3.5–7.2
13	W	75	Y	N	N	145/89	20	3.9–6.0	3.0–4.6	3.5–7.2
15	M	79	N	N	Y	96/51	40	3.6–6.0	5.0–7.6	3.5–7.2
16	M	68	Y	N	N	124/81	30	3.8–4.9	4.6–6.0	3.5–7.2
18	W	84	MD	N	N	124/81	30	3.0–5.6	3.9–6.1	3.5–7.2

EF, ejection fraction; eGFR, estimated glomerular filtration rate; ePV, estimated plasma volume; ICD, implantable cardioverter defibrillator; MD, missing data; N, no; PM, pacemaker; SBP/DBP, systolic/diastolic blood pressure; Y, yes.
Instantaneous plasma volume estimated from haemoglobin/haematocrit and its changes are indicative of congestion status and are associated with prognosis in acute or chronic HF. We hypothesized that daily post-discharge home monitoring of plasma volume, blood potassium, and estimated glomerular filtration rate (eGFR) could identify electrolyte and cardiorenal changes that could benefit outpatient optimization of diuretic and RAASi therapy.

Aims

The aim of this study is to assess the daily variations in estimated plasma volume (ePV), blood potassium, and eGFR after discharge from hospitalization for decompensated heart failure, using a home-based finger capillary blood measurement 5 days a week during 2 months post-discharge and an approved bioassay device (ABOTT i-STAT) (ClinicalTrials.gov: NCT01655134).

Methods

The study was performed in a single tertiary referral centre, sponsored and funded by the University Hospital (CHRU) of Nancy, France. The protocol was approved by the Comité de Protection de Personnes Est-III prior to study initiation. All patients provided written informed consent before

Table 3 Individual treatments and events

Patient	Baseline medications and daily doses (mg)	Drug changes	Clinical event		
01	Ramipril 5, Bisoprolol 2.5, Furosemide 120, Eplerenone 12.5	D13: Biso 3.75, D29: Biso 5, D30: Eple 25, D45: Eple 50	None		
02	Ramipril 10, Celiprolol 200, Furosemide 125, Eplerenone 25, Diffu-K 600	D07: Furo 500, D16: K+ 5400, D17: K+ 4200, D21: K+ decrease, D28: K+ 3600, D30: K+ 3000, D42: Furo 625	None		
03	Ramipril 10, Bisoprolol 10, Furosemide 375, Spiro. 25, Diffu-K 4200	None	D40: sudden death		
04	Candesartan 8, Bisoprolol 1.25, Furosemide 40, None	None	D13: septic shock		
05	Perindopril 5, Bisoprolol 5, Furosemide 40, None, Diffu-K 1200	None	D27: bladder infection		
06	Candesartan 8, —, Furosemide 250, Eplerenone 50, Diffu-K 7200	None	D28: raised creatinine		
07	Perindopril 10, Bisoprolol 2.5, Furosemide 40, Spiro. 25	None	D21: chest pain		
08	Perindopril 7.5, Bisoprolol 2.5, Furosemide 40, Spiro. 25	None	D48: viral infection of upper respiratory tract		
09	Ramipril 5, Bisoprolol 7.5, Furosemide 375, None, Diffu-K 5400	D03: Diffu-K 3600, D03: Biso 10, D03: Furo 125	None		
10	Fosinopril 20, Bisoprolol 10, Furosemide 125, None, Diffu-K 1800	D21: Furo 120, D34: Furo 140	None		
12	Ramipril 10, Bisoprolol 10, Furosemide 40, Eplerenone 50	None	D45: stent (planned)		
13	Fosinopril 20, —, Furosemide 120, Spiro. 25	None	D52: dry cough		
15	Ramipril 2.5, Bisoprolol 3.75, Furosemide 60, None, Diffu-K 1800	None	D22: ischemic acute pulmonary edema		
16	Perindopril 5, Bisoprolol 10, Furosemide 375, Eplerenone 12.5, Diffu-K 1800	D32: Diffu-K 3000, D32: Rami 10	D42: severe chest pain		
18	Yes	Yes	None	D05: Diffu-K 600, D39: Bumetan. 2, D54: Fosi. 10	D36: dehydration

Yes: drug intake, no other specification.
participating in the study. Assuming 8% of nonanalysable observations, a sample size of 20 patients was required to ensure a 0.5 SD accuracy for daily measurements and a corresponding 0.2 mmol/L accuracy for serum potassium.

The capillary blood samples were drawn by study nurses at home (7–12 am). No data were communicated to the treating physician except in instances where blood potassium was ≥5.8 mmol/L. Haematocrit was determined using conductometry by i-STAT, which provides a calculated haemoglobin result as follows:

\[\text{haemoglobin (g/dL)} = \text{haematocrit (\%)} \times 0.34, \]

which was shown to be well correlated with the reference methods over a broad range of values between 6 and 16 g/dL.

Estimated plasma volume and its changes were computed as previously described. A threshold of 5.5 mL/g Hb at discharge was deemed clinically relevant since associated with both congestion features and poor clinical outcomes.

Estimated glomerular filtration rate was calculated using the Chronic Kidney Disease Epidemiology Collaboration formula. Biological events are described as episodes (mean number of separate sequences with values persistently above or below a given threshold, i.e., hyperkalaemia >5.5 mmol/L or >5 mmol/L, hypokalaemia <4 or 3.5 mmol/L, WRF (drop in eGFR) >20% or 30%, ePV increase >10% or 15% or above 5.5 mL/g Hb) and mean number of measurements per episode.

Results

Among the 15 home-monitored patients, two patients died (one suddenly), and one was readmitted for ischaemic acute pulmonary oedema, with a subsequent acute coronary
syndrome, and thus did not have a complete 2-month follow-up (see study flowchart in online supplement).

Baseline patient characteristics are presented in Table 1. Individual follow-up data and post-discharge treatment changes are presented in Tables 2 and 3. The 5-day-a-week biological home monitoring (Figure 1) enabled documenting a number of hyperkalaemia, hypokalaemia, WRF and recongestion episodes (Table 4).

At the individual level (Data S1), relevant and consistent profiles (e.g. persistent and/or recurrent dyskalaemia, WRF, recongestion, or decongestion patterns) were easily identified. For instance, Patient #2 (who suddenly died at Day 40), Patients #6 and #13 were chronically hyperkalaemic and displayed sustained trends towards worsening renal function and recongestion, without any recorded change in cardiovascular medications. Before being rehospitalized for an acute pulmonary oedema of ischaemic origin, Patient #16 had a decrease in ePV and became hypokalaemic, with a transient WRF. When considering congestion separately, six patients presented ePV >5.5 mL/g Hb at inclusion (Patients #05 and #15: permanently raised ePV; Patient #16: ePV oscillating at around the 5.5-threshold value), indicative of post-discharge residual congestion, and/or ePV >5.5 mL/g Hb during follow-up. Patient #02 had an ePV <5.5 at inclusion, which continued to increase steadily until sudden death, which occurred in conjunction with massive leg oedema. Patient #03 had an ePV close to the threshold, with short occasional excursions above 5.5, while Patient #18 had a slow increase in ePV during follow-up, with values oscillating around 5.5 after Day 28. Of note, this latter Patient #18 was nevertheless documented as “clinically dehydrated” by the treating physician at Day 36, concomitant with an obvious decrease in ePV, a WRF, and hypokalaemia.

Conclusions

To the best of our knowledge, this is the first attempt of a daily home monitoring of blood potassium, eGFR, and ePV in HFrEF patients within the vulnerable post-discharge phase. Despite its small sample size and related limitation, such home monitoring study was already able to capture a substantial number of clinically relevant cardiorenal and electrolytic changes which are otherwise undiagnosed in routine daily practice with no monitoring. Additionally, given that (i) undiagnosed residual congestion is a major driver of post-discharge early readmission; (ii) excessive decongestion and use of diuretic therapy is associated with dehydration, hypotension, WRF, and poor prognosis; (iii) dyskalaemia is associated with poor outcome; and hyperkalaemia and WRF are the main reasons for the underuse, underdosing and frequent discontinuation of RAASi, and mineralocorticoid antagonists; and (iv) use of the newly available potassium binders warrants proper biological monitoring, we believe that concomitant monitoring of plasma volume, blood potassium, and renal function is a relevant strategy for assessing congestion and the delicate cardiorenal balance. Plasma volume, blood potassium, and renal function are potentially the most clinically actionable variables for the dynamic optimization of diuretic therapy and of life-saving RAASI therapy.

Table 4 Biological events during follow-up

Parameter	Number of\(^a\)	Mean ± SD	Median (Q1–Q3)	Range
Potassium >5.5 mmol/L	Episodes	1.7 ± 1.6	1.5 (0.5–0.5)	0–5
Potassium >5.0 mmol/L	Episodes	4.4 ± 6.9	1.5 (0.5–0.5)	0–22
Potassium <4.0 mmol/L	Episodes	9.1 ± 10.1	5.5 (2.5–2.5)	1^b–33
Potassium <3.5 mmol/L	Episodes	9.1 ± 10.1	5.5 (2.5–2.5)	1^b–33
WRF > 20%	Episodes	3.7 ± 5.7	1.0 (0.0–0.0)	0–6
WRF > 30%	Episodes	0.5 ± 1.2	0.0 (0.0–0.0)	0–3
ePV >5.5 mL/g Hb	Episodes	1.3 ± 1.8	0.5 (0.0–0.0)	0–6
ePV increase >10%	Episodes	5.3 ± 7.2	2.5 (0.0–0.0)	0–22
ePV increase >15%	Episodes	0.7 ± 1.2	0.0 (0.0–0.0)	0–3
ePV increase	Episodes	2.4 ± 5.0	0.0 (0.0–0.0)	0–16
ePV increase	Episodes	6.8 ± 11.6	0.0 (0.0–12.0)	0–37
ePV increase	Episodes	1.4 ± 1.5	1.0 (0.0–0.0)	0–5
ePV increase	Episodes	10.4 ± 9.1	12.0 (1.0–1.0)	0–30
ePV increase	Episodes	7.7 ± 8.0	8.0 (0.0–0.0)	0–25

Note that an episode with values >x may include several shorter episodes with values y > x, and conversely for values <x and y with y < x. For instance, the mean number of episodes with ePV increases >10% (1.4 ± 1.5) was lower than for increases >15% (2.3 ± 2.4), although the mean number of measurements per episode was higher (10.4 ± 9.1 vs. 7.7 ± 8.0).

- ePV, estimated plasma volume; WRF, worsening renal function from baseline.
- ^a^12 complete observations, excluding three premature (two deaths and one hospitalization for ischaemic acute pulmonary oedema) and five consent withdrawals.
- ^b^One patient had only one 1-day hyperkalaemia >5.5 mmol/L.
The ongoing HERMES HF study (NCT04050904) is currently assessing the short-term feasibility and safety of such a monitoring strategy, complemented by a decision support system (“ExpHeart”), and generating recommendations based on ESC clinical guidelines (CardioRenal ExpHeart) in patients discharged after an episode of worsening HFrEF.

Acknowledgements

The authors thank the CIC team for the study management and CRB Lorrain BB-0033-00035 for biobanking tasks.

Conflict of Interest

Dr. Rossignol reports grants and personal fees from AstraZeneca, Bayer, CVRx, personal fees from Fresenius, grants and personal fees from Novartis, personal fees from Grunenthal, Servier, Stealth Peptides, Vifor Fresenius Medical Care Renal Pharma, Idorsia, NovoNordisk, Ablative Solutions, G3P, Corvidia, Relypsyra, outside the submitted work; and Cofounder: CardioRenal. Cofounder: CardioRenal, a company developing a telemonitoring loop in heart failure (including creatinine, potassium and Hb measurements) Nicolas Girerd: personal fees from Novartis, personal fees from Boehringer, outside the submitted work; Renaud Fay: none Faiez Zannad: personal fees from Novartis, personal fees from Cardior, personal fees from Cereno pharmaceutical, personal fees from Applied Therapeutics, personal fees from Merck, other from CVCT, personal fees from Novartis, outside the submitted work; Cofounder: CardioRenal, a company developing a telemonitoring loop in heart failure (including creatinine, potassium and Hb measurements)

Funding

PR, RF, NG, and FZ are supported by the RHU Fight-HF, a public grant overseen by the French National Research Agency (ANR) as part of the second “Investissements d’Avenir” program (ANR-15-RHUS-0004) and by the French PIA project “Lorraine Université d’Excellence” (ANR-15-IDEX-04-LUE).

Supporting information

Additional supporting information may be found online in the Supporting Information section at the end of the article.

Data S1: Study flowchart.

References

1. Rossignol P, Hernandez AF, Solomon SD, Zannad F. Heart failure drug treatment. *Lancet* 2019; 393: 1034–1044.
2. Girerd N, Seronde MF, Coiro S, Chouhied T, Bilbault P, Braun F, Kenizou D, Mailler B, Naze yr rollas P, Roul G, Fillieux L, Abraham WT, Januzzi J Jr, Sebbag L, Zannad F, Mebazaa A, Rossignol P, INI-CRCT, Great Network, and the EF-HF Group. Integrative assessment of congestion in heart failure throughout the patient journey. *JACC Heart Fail* 2018; 6: 273–285.
3. Testani JM, Chen J, McCauley BD, Kimmel SE, Shannon RP. Potential effects of aggressive decongestion during the treatment of decompensated heart failure on renal function and survival. *Circulation* 2010; 122: 265–272.
4. Greene SJ, Gheorghiade M, Vaduganathan M, Ambrosy AP, Mentz RJ, Subacius H, Maggioni AP, Nodari S, Konstam MA, Butler J, Filippatos G, EVEREST Trial investigators. Haemoco ncentration, renal function, and post-discharge outcomes among patients hospitalized for heart failure with reduced ejection fraction: insights from the EVEREST trial. *Eur J Heart Fail* 2013; 15: 1401–1411.
5. Rossignol P, Menard J, Fay R, Gustafsson F, Pitt B, Zannad F. Eplerenone survival benefits in heart failure patients post-myocardial infarction are independent from its diuretic and potassium-sparing effects. Insights from an EPHESUS (Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study) substudy. *J Am Coll Cardiol* 2011; 58: 1958–1966.
6. Guazzi MD, Agostoni P, Perego B, Lauri G, Salvioni A, Giraldi F, Matturri M, Guazzi M, Marenzi G. Apparent paradox of neurohumoral axis inhibition after furosemide in heart failure. *JAMA* 1994; 272: 534–539.
7. Davidov M, Kakaviasos N, Finnerty FA Jr. Intravenous administration of furosemide in heart failure. *JAMA* 1967; 200: 824–829.
8. Rossignol P, Masson S, Barlera S, Girerd N, Castelnovo A, Zannad F, Clemenza F, Tognoni G, Anand IS, Cohn JN, Anker SD, Tavazzi L, Latini R, GISSI-HF and Val-HeFT Investigators. Loss in body weight is an independent prognostic factor for mortality in chronic heart failure: insights from the GISSI-HF and Val-HeFT trials. *Eur J Heart Fail* 2015; 17: 424–433.
9. Kobayashi M, Rossignol P, Ferreira JP, Aragao I, Paku Y, Iwasaki Y, Watanabe M, Fudim M, Duarte K, Zannad F, Girerd N. Prognostic value of estimated plasma volume in acute heart failure in three cohort studies. *Clin Res Cardiol* 2019; 108: 549–561.
10. Chouihed T, Rossignol P, Bassand A, Duarte K, Kobayashi M, Jaeger D, Sadoune S, Buessler A, Nace L, Giacomin G, Hutter T. Diagnostic and prognostic value of plasma volume status at emergency department admission.
in dyspneic patients: results from the PARADISE cohort. Clin Res Cardiol 2019; 108: 563–573.

11. Rudolf J, Douglass J, Baron J, Lewandrowski K. Evaluation of the i-STAT point-of-care capillary whole blood hematocrit and hemoglobin: Comparison to the Siemens RAPIDLab 1200, Sysmex XE5000, and manual spun hematocrit. Clin Chim Acta 2015; 446: 37–42.

12. Duarte K, Monnez JM, Albuisson E, Pitt B, Zannad F, Rossignol P. Prognostic value of estimated plasma volume in heart failure. JACC Heart Fail 2015; 3: 886–893.

13. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, Coresh J. A new equation to estimate glomerular filtration rate. Ann Intern Med 2009; 150: 604–612.

14. Cooper LB, Hammill BG, Peterson ED, Pitt B, Maciejewski ML, Curtis LH, Hernandez AF. Consistency of laboratory monitoring during initiation of mineralocorticoid receptor antagonist therapy in patients with heart failure. JAMA 2015; 314: 1973–1975.

15. Nilsson E, De Deco P, Trevisan M, Bellocco R, Lindholm B, Lund LH, Coresh J, Carrero JJ. A real-world cohort study on the quality of potassium and creatinine monitoring during initiation of mineralocorticoid receptor antagonists in patients with heart failure. Eur Heart J Qual Care Clin Outcomes 2018; 4: 267–273.

16. Zannad F, Rossignol P. Cardiorenal syndrome revisited. Circulation 2018; 138: 929–944.

17. Nunez J, Bayes-Genis A, Zannad F, Rossignol P, Nunez E, Bodi V, Miñana G, Santas E, Chorro FJ, Mollar A, Carratalà A. Long-term potassium monitoring and dynamics in heart failure and risk of mortality. Circulation 2018; 137: 1320–1330.

18. Trevisan M, de Deco P, Xu H, Evans M, Lindholm B, Bellocco R, Barany P, Jernberg T, Lund LH, Carrero JJ. Incidence, predictors and clinical management of hyperkalemia in new users of mineralocorticoid receptor antagonists. Eur J Heart Fail 2018; 20: 1217–1226.

19. Pitt B, Rossignol P. Potassium lowering agents: recommendations for physician and patient education, treatment reappraisal, and serial monitoring of potassium in patients with chronic hyperkalemia. Pharmacol Res 2017; 118: 2–4.

20. Rossignol P, Coats AJ, Chioncel O, Spoletini I, Rosano G. Renal function, electrolytes, and congestion monitoring in heart failure. Eur Heart J Suppl 2019; 21: M25–M31.