Article

Genome-Wide Identification and Expression of the PIN Auxin Efflux Carrier Gene Family in Watermelon (Citrullus lanatus)

Huaiguo Shang 1, Na Zhang 2, Zhouli Xie 3, Siyu Deng 4, Licong Yi 5,6,7,8,* and Xing Huang 6,7,8,*

1 National Agro-Tech Extension and Service Center, Beijing 100125, China; shanghuaiguo@agri.gov.cn
2 Institute of Crop Science, Wuhan Academy of Agricultural Sciences, Wuhan 430045, China; zhangna@wuhanagri.com
3 School of Life Sciences, Peking University, Beijing 100871, China; xzhouli@pku.edu.cn
4 School of Biological Sciences, The University of Hong Kong, Hong Kong 999077, China; siyudeng@connect.hku.hk
5 Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Institute of Cash Crops, Hubei Academy of Agricultural Science, Wuhan 430064, China; ylc881128@163.com
6 Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
7 Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
8 Hainan Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Haikou 571101, China
* Correspondence: huangxing@catas.cn

Abstract: As one of the world’s most popular fruits, watermelon (Citrullus lanatus) is cultivated in more than 3 million hectares across the globe, with a yearly yield of more than 100 million tons. According to ‘97103’ genome version 1, a previous study has shown that the watermelon genome consists of 11 PIN genes. However, the higher quality ‘97103’ genome version 2 was recently assembled by using PacBio long reads with the benefit of fast development sequencing technology. Using this new assembly, we conducted a new genome-wide search for PIN genes in watermelon and compared it with cucumber and melon genomes. We identified nine, nine, and eight PINs in watermelon, cucumber, and melon, respectively. Phylogenetic analysis revealed a distinct evolutionary history of PIN proteins in watermelon, which is shown by the orphan PIN6 in watermelon. We further conducted an expression analysis of the watermelon PIN genes in silico and by qRT-PCR. C1aPIN6 might not play an essential role during shoot regeneration, which is closely related to species-specific evolution. However, the up-regulated expression patterns of C1aPINI-1 and C1aPINI-3 indicated their important roles during shoot regeneration. The result of this research will benefit future studies to understand the regulating mechanisms of auxin in watermelon shoot regeneration.

Keywords: PIN family; auxin efflux carrier; phylogenetic analysis; expression; shoot regeneration; watermelon; cucumber; melon

1. Introduction

As one of the most important hormones, auxin plays a vital role in the growth and development of plants [1]. Auxin is transported from its biosynthesis tissues to the sink organs where it acts through the phloem stream of photosynthetic assimilates in a fast manner [2]. Local auxin transport depends on polar auxin transport (PAT) between neighboring cells, which is slow but essential for generating auxin maxima in developing tissues [3]. Among the gene families related to auxin transport, the PIN-FORMED (PIN) family has been thoroughly characterized in Arabidopsis [4]. Among the eight Arabidopsis PIN proteins, seven contribute to cell-to-cell PAT (AtPIN1-4, 7) and local auxin homeostasis in-cell (AtPIN5, 8) [4–6]. These functions are determined by their subcellular localizations. Besides, AtPIN6 is located both at the plasma membrane and endoplasmic reticulum, which indicates its combined functions of cell-to-cell PAT and intracellular auxin homeostasis [7].
Arabidopsis PIN proteins are involved in regulating diverse growth and developmental processes, such as AtPIN1–3, 7 in gravitropic response [8–11], AtPIN1, 3, 4, 7 in phototropic responses [12,13], AtPIN1, 8 in flower development [14,15], AtPIN3, 4, 7 in apical hook development [13,16], AtPIN2–6 in root formation and development [6,7,17–19], and AtPIN2, 5, 7 in embryogenesis [1,6,20].

Watermelon (Citrullus lanatus) is an important fruit crop, which is cultivated in over 3 million hectares around the world, with a yearly production of over 100 million tons [21]. Watermelon contains a series of healthy nutritional compounds, such as lycopene, citrulline, arginine, and glutathione [22]. Consequently, it is of great importance to improve the fruit’s quality traits [23]. Newly invented CRISPR/Cas9 mediated gene editing technology is an efficient method for genetic improvement of crops, which has long been successfully applied to watermelon [24,25]. However, there is limited knowledge of the mechanisms of shoot regeneration, which is a major impediment for genetic transformation of watermelon. Zhang et al. have clarified the importance of the WOX and SAUR gene families during shoot regeneration of watermelon [26,27]. In Arabidopsis, a complex gene regulatory network for shoot regeneration has been identified [28]. Among the genes involved, AtPINs play essential roles in callus formation and shoot initiation by regulating PAT [29,30]. However, it still remains unknown exactly how the PIN gene family regulates shoot regeneration in watermelon. Using the watermelon 97103 genome (version 1), a previous study has identified the PIN gene family and its expression patterns in response to auxin and extreme stress conditions [31]. Recently, a new high-quality 97103 genome (version 2), which has been assembled using PacBio long reads combined with BioNano optical and Hi-C maps, has been released [23]. In the present study, we have identified 9 PIN genes in the new genome. Two previous PIN genes were reassembled into a single gene. A phylogenetic analysis of PIN proteins was carried out to investigate the evolutionary pattern of PIN genes in Arabidopsis, watermelon, cucumber (Cucumis sativus), and melon (Cucumis melo). We further examined their expression patterns in watermelon tissues and during shoot regeneration. The results presented here will benefit future studies on auxin-mediated regulation mechanisms of shoot regeneration in watermelon.

2. Materials and Methods

2.1. Sequence Retrieval and Bioinformatic Analysis

All Arabidopsis PIN proteins were selected as the queries to search against the genomes of watermelon, cucumber, and melon in the Cucurbit Genomics Database (CuGenDB) with the TBLASTN method [3,32,33]. After removing the redundant sequences, PIN genes from the three species were named after their Arabidopsis homologs and chromosome positions. The details of these sequences are listed in Table 1. The ProtParam tool was used to predict the characteristics of proteins, including sequence lengths, molecular weights, and theoretical pl [34]. The CELLO software was selected for the prediction of subcellular localization [35]. Protein transmembrane topology was analyzed by the TMHMM Server [36]. A Neighbor-Joining (NJ) phylogenetic tree was constructed with the bootstrap value of 1000 trails in the MEGA7 software [37]. The conserved domains were analyzed using DNAMAN 7 software [38]. The TBtools software was used to extract the promoter (2Kb upstream sequence) and genomic sequences of the PIN genes [39]. The PlantCARE software was selected to identify putative cis-elements related to growth, development, and stress responses [40]. The images of chromosome position, cis-element, and intron/exon were displayed in TBtools [39].
Table 1. The IDs, CuGenDB accessions, sequence lengths, molecular weights, pI, and CELLO localizations of PIN genes in watermelon, cucumber, and melon.

Gene ID	CuGenDB Accession	Chromosome Location	Coding Sequence (bp)	Predicted Protein (aa)	Molecular Weight	Theoretical pI	CELLO Localization
ClaPIN1-1	Cla97C04G072260.1	Cla012098	Chr04: 19082426–19084800(−)	1878	625	67109.39	8.22
ClaPIN1-2	Cla97C04G077450.1	Cla018455	Chr04: 25019277–25022350(+)	1860	619	67585.84	9.13
ClaPIN1-3	Cla97C06G123780.1	Cla018924	Chr06: 26050523–26053439(+)	1824	607	66418.71	9.19
ClaPIN2	Cla97C06G123240.1	Cla018871	Chr06: 25556363–25559538(+)	1938	645	70749.52	9.28
ClaPIN3-1	Cla97C01G006350.1	Cla003909	Chr01: 6303561–6306905(−)	1926	641	69902.79	7.12
ClaPIN3-2	Cla97C07G134150.1	Cla011708-Cla011709	Chr07: 9679960–9684183(−)	1872	623	68190.85	8.67
ClaPIN5	Cla97C11G217020.1	Cla010530	Chr11: 20331421–20339597(−)	1113	370	40169.63	7.61
ClaPIN6	Na	Cla015026	Chr09: 9050290–9056689(+).	1449	482	53345.31	9.25
ClaPIN8	Cla97C10G197710.1	Cla017028	Chr10: 2744992–27452031(−)	1071	356	38907.61	9.53
CsaPIN1-1	CsaV3_1G004350.1	Csa017028	Chr01: 2170313–21703712(−)	1827	608	66630.87	9.09
CsaPIN1-2	CsaV3_1G007160.1	Csa017028	Chr01: 4542181–4545627(−)	1857	618	67443.68	9.13
CsaPIN1-3	CsaV3_4G029470.1	Csa017028	Chr04: 1901377–19016561(+).	1791	596	63704.54	8.77
CsaPIN2	CsaV3_1G032010.1	Csa017028	Chr01: 19030317–19033521(+).	1938	645	70831.58	9.29
CsaPIN3-1	CsaV3_5G013380.1	Csa017028	Chr05: 9982996–9987048(−)	1890	629	68479.02	8.5
CsaPIN3-2	CsaV3_5G028620.1	Csa017028	Chr05: 23739663–23744022(−)	1911	636	69462.29	7.12
Gene ID.	CuGenDB Accession	Chromosome Location	Coding Sequence (bp)	Predicted Protein (aa)	Molecular Weight	Theoretical pI	CELLO Localization
---------	-------------------	---------------------	----------------------	------------------------	------------------	---------------	-------------------
CsaPIN5-1	CsaV3_2G009610.1	Chr02: 6112179–6116586(+)	1116	371	40371.92	7.04	PlasmaMembrane (4.592)
CsaPIN5-2	CsaV3_2G009700.1	Chr02: 6189126–6193716(+)	1191	396	43043.53	7.57	PlasmaMembrane (4.916)
CsaPIN8	CsaV3_3G041710.1	Chr03: 34023847–3402847(+)	1071	356	38980.69	9.59	PlasmaMembrane (4.895)
CmePIN1-1	MELO3C017357.2.1	Chr02: 24004740–24008031(+)	1776	591	64524.14	8.5	PlasmaMembrane (4.654)
CmePIN1-2	MELO3C019102.2.1	Chr08: 13382844–13385789(+)	1836	611	65374.38	8.75	PlasmaMembrane (4.526)
CmePIN1-3	MELO3C002132.2.1	Chr12: 26099882–26104026(+)	1929	642	70303.64	9.01	PlasmaMembrane (4.183)
CmePIN2	MELO3C017414.2.1	Chr02: 23469145–2347527(+)	1872	623	68443.69	9.22	PlasmaMembrane (3.928)
CmePIN3-1	MELO3C005326.2.1	Chr09: 20480725–20484941(−)	1911	636	69499.35	7.15	PlasmaMembrane (4.624)
CmePIN3-2	MELO3C018353.2.1	Chr10: 18871332–18876126(+)	1887	628	68548.23	8.69	PlasmaMembrane (4.729)
CmePIN5	MELO3C008726.2.1	Chr05: 18006724–18012271(−)	1209	402	43622.16	6.23	PlasmaMembrane (4.858)
CmePIN8	MELO3C009892.2.1	Chr04: 28346209–28350422(−)	1038	345	37657.14	9.54	PlasmaMembrane (4.939)
2.2. Plant Materials and RNA Extraction

The diploid watermelon inbred line A7 was selected for shoot regeneration, as previously reported [26]. Decoated seeds were cultured on Murashige and Skoog (MS) medium after sterilizing with NaClO solution (10%) for 5 min. After 1-week-germination, cotyledons were collected and cut into segments (0.5 × 0.5 mm), which were incubated on MS medium (1.0 mg/L 6-BA and 1.0 mg/L NAA, Sigma-Aldrich, Saint Louis, MO, USA) at 25 ± 2 °C and a photoperiod of 16/8 h (light/dark). The samples were collected 0, 7, 14, 21, and 28 days after incubation (DAI). Samples at each time point were collected from three different plates as biological replicates, frozen in liquid nitrogen, and ground into a powder for RNA isolation. Total RNA extraction was carried out with a Tiangen RNA prep Pure Plant Kit (Tiangen Biomart, Beijing, China), following the manufacturer’s instructions. All RNA samples were stored at −80 °C until expression analysis.

2.3. Expression Analysis

In silico expression data were calculated using the Cucurbit Expression Atlas Database of CuGenDB and the RPKM values were downloaded with the accession of each watermelon PIN gene [32]. For qRT-PCR expression analysis, RNA samples were used for cDNA synthesis with the GoScript Reverse Transcription System (Promega, Madison, WI, USA). The 20 µL mixture for qRT-PCR reaction contained 10 µL TransStart Tip Green qPCR Supermix (Transgen Biotech, Beijing, China), 0.5 µL gene-specific primers (10 µM), 0.4 µL Passive ReferenceDye (50 ×) (Transgen Biotech, Beijing, China), 1 µL cDNA template, and 7.6 µL ddH2O. A QuantStudio 6 Flex Real-Time PCR System (Thermo Fisher Scientific, Waltham, MA, USA) was used for qRT-PCR reaction. The thermal cycles were 94 °C for 30 s, 40 cycles of 94 °C for 5 s, and 60 °C for 30 s, followed with a dissociation stage. Three reactions were taken for each sample as the technical repeat. Specific primers for watermelon PIN genes were designed using the online tool Primer 3 (Table 2). [41]. Watermelon GAPDH gene was used as a reference gene [26]. The relative expression levels were calculated by the ∆∆Ct method [42].

Table 2. Primers of watermelon 9 PIN genes and GAPDH gene (as the endogenous control) used for qRT-PCR.

Gene ID	Forward Primers	Reverse Primers	References
ClaPIN1-1	CTCGTTTCTGTACACCTTACC	TACGGCGAGGCGGCGAACGAAGA	
ClaPIN1-2	TCTTCTTGCTTCTGTCCGTTT	GCTCGAATAATCGACATCTCTG	
ClaPIN1-3	TACATTATCAGACTTTTACC	GTCCAGATACCGAACCACAC	
ClaPIN2	ACATATACGATGTATTCTCAG	GTGGAAGGAGGAAAGTAAAG	
ClaPIN3-1	ATCATGGAAGGATCTTACAG	AAATCCCAAAGAAAGAACAC	[32]
ClaPIN3-2	ACTGTCTTGACGGGTCCATT	AATTGTAAGAGCAACAGCA	
ClaPIN5	CCATGGGCCCATTGATCTAC	AAGACGAGAAGCATAACGAT	
ClaPIN6	AAGGTGATGTGTTCCGTGATG	TTTGCCGAGAAGAAACAGC	
ClaPIN8	TCTGGTTCGTGTATGCTATC	TATCAGTTGCGAGTACATT	
GAPDH	TGGAGAATCGGTTAAGTGG	CTGTCACGTGTCTTGCGTC	[27]

3. Results

3.1. Genome-Wide Identification and Phylogenetic Analysis of PINs in Cucurbitaceae Species

After the whole genome survey, we identified nine PINs in watermelon (ClaPINs), nine in cucumber (CsaPINs), and eight in melon (CmePINs) (Table 1). The CELLO results indicated that all the Cucurbitaceae PINs were located at the plasma membrane, implying their potential function in auxin transport. Most ClaPINs contained 4–5 transmembrane helices at N- or C-termini (Figure S1).

The PIN proteins of Arabidopsis and the three Cucurbitaceae species were aligned for phylogenetic analysis. These proteins were grouped into seven clusters (Figure 1A). One PIN gene from watermelon clustered together with AtPIN6 from Arabidopsis in cluster I. Clusters IV, V, VI, and VII contained an equal number of PIN genes to the Cucurbitaceae
species. *Arabidopsis* PINs were also clustered in these groups. We further examined the conserved domains of all the PIN proteins (Figure S2). Most sequences contained two conserved domains at both the N and C-termini. The middle parts of these sequences were predicted to be located inside the transmembrane.

Figure 1. Phylogenetic (A) and chromosomal localization (B) of the Cucurbitaceae PIN family. The proteins from *Arabidopsis thaliana*, cucumber, melon and watermelon are shown in yellow, blue, green, and pink, respectively (A). The chromosome numbers are listed beside chromosomes (yellow) for watermelon (pink), cucumber (blue), and melon (green), respectively. The homologous gene pairs are connected with grey solid lines.

3.2. Cis-Element and Gene Structure Analysis of Watermelon PINs

The upstream sequences (2000 bp) of watermelon PINs were selected for scanning *cis*-regulatory elements (Table S1). We annotated 13 kinds of *cis*-elements that are related to salicylic acid, gibberellin, auxin, MeJA, light, low-temperature, defense/stress responses, drought, and anaerobic induction, regulation of zein metabolism, flavonoid biosynthesis, and circadian control (Figure 2A). Among these, the number of light responsive *cis*-element (78) was the most abundant (Table S1). The numbers of MeJA responsive, anaerobic induction responsive, and salicylic acid responsive elements were 16, 14, and 11, respectively. We further analyzed the introns of *ClaPINs* (Figure 2B). Most sequences contained 5 introns. There were 4 introns in *ClaPIN1-1* and 6 introns in both *ClaPIN1-3* and *ClaPIN2*.
3.3. In Silico Expression of PINs in Watermelon Tissues

To estimate the expression patterns of ClaPINs, in silico analysis was carried out in watermelon tissues (Figure 3). Most ClaPINs were highly expressed in roots and leaves compared with flowers and seeds. ClaPIN1–2 showed high expression in both roots and flowers. ClaPIN5 was highly expressed in seeds and leaves. ClaPIN6, meanwhile, showed relatively low expression in all tissues.

Figure 3. In silico expression of ClaPINs in watermelon tissues. The single capital letters represent root (R), leaf (L), flower (F), and seed (S).
3.4. Expression Profiles of Watermelon PINs during Shoot Regeneration

To further examine the expression patterns of ClaPINs, the expression profiles of ClaPINs were examined during shoot regeneration by qRT-PCR. The results indicated that nine ClaPINs followed four different types of expression patterns (Figure 4, Table S2). ClaPIN1-1 and ClaPIN1-3 were up-regulated at early stages of shoot regeneration and then down-regulated during the process. Five ClaPINs that include ClaPIN1-2, ClaPIN2, ClaPIN3-1, ClaPIN3-2 and ClaPIN8 showed the highest expression at the beginning of shoot generation, but had lower levels of expression during successive stages. While there was no significant change in expression levels of ClaPIN6, the expression of ClaPIN5 was gradually down regulated during shoot regeneration.

Figure 4. Expression pattern of ClaPINs during shoot regeneration by qRT-PCR. The numbers of the X-axis represent that the samples were collected at 0, 7, 14, 21, and 28 days after incubation.

4. Discussion
4.1. Identification of PINs in Cucurbitaceae Species

In the present study, PIN genes of watermelon (9 genes), cucumber (9 genes), and melon (8 genes) were partially characterized (Table 1). There might be evolutionary differences between watermelon and cucumber/melon genes. Previous studies revealed the absence of recent whole-genome duplications in cucumber and melon after the ancient eudicot triplication [43,44]. The evolution of PINs tends to be conserved between cucumber and melon. The phylogenetic results indicated that cucumber and melon shared the same number of PINs in each sub-cluster (Figure 1A). In this study, we carried out a new genome-wide characterization of the PIN gene family in watermelon using version 2 of the watermelon 97103 genome, which has been generated by using PacBio long reads, combined with BioNano optical and Hi-C chromatin interaction maps [23]. The results presented here are also different from the previous study [31]. Two of the PINs
(Cla011708 and Cla011709) in genome version 1 were reassembled into a single gene as ClaPIN3-2 in genome version 2 (Table 1). Moreover, despite the existence of it genomic sequence, Cla015026 (ClaPIN6) was not annotated in genome version 2. Interestingly, only watermelon contained PIN6 homologue, which also indicated the different evolutionary history of watermelon compared with cucumber or melon.

4.2. Putative Regulators in ClaPINs

The in silico expression analysis revealed a series of ClaPINs that are mainly expressed in roots (ClaPIN1-1 and ClaPIN2) and leaves (ClaPIN3-1, ClaPIN3-2 and ClaPIN5) (Figure 3). ClaPIN1-2 was mainly and highly expressed in both roots and flowers. These results indicated the tissue specific expression of PINs in watermelon, which has also been reported in Arabidopsis [3,31]. There were four types of expression patterns for ClaPINs during the process of shoot regeneration (Figure 4). Among these, the up-regulation of ClaPIN1-1 and ClaPIN1-3 at a very early stage of shoot regeneration indicated their important functions in regulating auxin transport to generate auxin maxima, which is necessary for fast developing tissues like calli [29]. In contrast, several ClaPINs such as ClaPIN1-2, ClaPIN2, ClaPIN3-1, ClaPIN3-2, ClaPIN5 and ClaPIN8 were down-regulated during the callus stage but up-regulated during the shoot stage. They seemed to have functions in mature tissues after cell differentiation, which might be related to their tissue specific expression patterns. On the other hand, the expression of ClaPIN6 was considerably low at all stages of shoot regeneration and did not show any significant differences among different stages suggesting that it may not play an essential role in shoot regeneration. The loss of PIN6 in cucumber and melon genomes could partly explain the non-essential role of ClaPIN6, which also indicated a species-specific evolution of the PIN family in the Cucurbitaceae species. Besides, auxin responsive cis-elements were identified in six ClaPINs, including ClaPIN1-2/3, ClaPIN2, ClaPIN3-1/2, and ClaPIN5 (Figure 2), which might contribute to their functions during shoot regeneration. There were other types of phytohormone responsive cis-elements identified in ClaPIN1-1, ClaPIN6, and ClaPIN8. This observation suggests that their potential roles might be regulated by auxin crosstalk with other phytohormones [45]. We could draw the preliminary conclusion that ClaPIN1-1 and ClaPIN1-3 are possible candidates for regulators of shoot regeneration. However, more work is still needed to reveal the functions of other ClaPINs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3390/agriculture11050447/s1: Figure S1—The results of transmembrane topology analysis for watermelon PIN proteins. The blue and purple lines represent inside and outside the transmembrane, respectively; Figure S2—Conserved domains of watermelon PIN proteins; Table S1—Cis-element analysis in upstream sequences of watermelon PIN genes; Table S2—The raw data of qRT-PCR analysis.

Author Contributions: Conceptualization, H.S., L.Y., and X.H.; formal analysis, H.S., N.Z., and X.H.; investigation, H.S. and N.Z.; resources, N.Z. and L.Y.; writing—original draft preparation, H.S. and X.H.; writing—review and editing, Z.X., S.D., and L.Y.; supervision, L.Y. and X.H.; funding acquisition, N.Z. and L.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Hubei Natural Science Foundation (2018CFB686), Hubei Key R&D Program (2020BBA037), and the Earmarked Fund for China Agriculture Research System (CARS-25).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data are contained within the article and supplementary materials.

Acknowledgments: We would like to thank Yaning Bao from Guizhou University (Guiyang 550025, China) for her help with the bioinformatics software.

Conflicts of Interest: The authors declare no conflict of interest.
References

1. Wang, Y.; Jiao, Y. Auxin and above-ground meristems. J. Exp. Bot. 2018, 69, 147–154. [CrossRef]
2. Adamowski, M.; Friml, J. PIN-dependent auxin transport: Action, regulation, and evolution. Plant Cell 2015, 27, 20–32. [CrossRef]
3. Kreczek, P.; Skupa, P.; Libus, J.; Naramoto, S.; Tejos, R.; Friml, J.; Zazimalová, E. The PIN-FORMED (PIN) protein family of auxin transporters. Genome Biol. 2009, 10, 249. [CrossRef]
4. Zhou, J.J.; Luo, J. The PIN-FORMED Auxin Efflux Carriers in Plants. Int. J. Mol. Sci. 2018, 19, 2759. [CrossRef]
5. Ding, Z.; Wang, B.; Moreno, I.; Duplakova, N.; Simon, S.; Carraro, N.; Reemmer, J.; Pencik, A.; Chen, X.; Tejos, R.; et al. ER-localized auxin transporter PIN8 regulates auxin homeostasis and male gametophyte development in Arabidopsis. Nat. Commun. 2012, 3, 941. [CrossRef]
6. Mravec, J.; Skupa, P.; Bailly, A.; Hoyerova, K.; Kreczek, P.; Bielach, A.; Petrasek, J.; Zhang, J.; Gaykova, V.; Stierhof, Y.D. Subcellular homeostasis of phytohormone auxin is mediated by the ER localized PIN5 transporter. Nature 2009, 459, 1136–1140. [CrossRef] [PubMed]
7. Simon, S.; Skupa, P.; Viana, T.; Zwiewka, M.; Tejos, R.; Klima, P.; Carna, M.; Rolcik, J.; De Rycke, R.; Moreno, I.; et al. PIN6 auxin transporter at endoplasmic reticulum and plasma membrane mediates auxin homeostasis and organogenesis in Arabidopsis. New Phytol. 2016, 211, 65–74. [CrossRef] [PubMed]
8. Rakusová, H.; Abbas, M.; Han, H.; Song, S.; Robert, H.S.; Friml, J. Termination of shoot gravitropic responses by auxin feedback on PIN3 polarity. Curr. Biol. 2016, 26, 3026–3032. [CrossRef] [PubMed]
9. Rigo, G.; Ayaydın, F.; Tietz, O.; Zsigmond, L.; Kovacs, H.; Pay, A.; Salchert, K.; Darula, Z.; Medzihradszky, K.F.; Szabados, L.; et al. Inactivation of plasma membrane localized CDPK-RELATED KINASE5 decelerates PIN2 exocytosis and root gravitropic response in Arabidopsis. Plant Cell 2013, 25, 1592–1608. [CrossRef]
10. Rosquete, M.R.; Waidmann, S.; Kleine, V.J. PIN7 auxin carrier has a preferential role in terminating radial root expansion in Arabidopsis thaliana. Int. J. Mol. Sci. 2018, 19, 1238. [CrossRef]
11. Xi, W.; Gong, X.; Yang, Q.; Yu, H.; Liou, Y.C. Pin1At regulates PIN1 polar localization and root gravitropism. Nat. Commun. 2016, 7, 10430. [CrossRef]
12. Haga, K.; Sakai, T. PIN auxin efflux carriers are necessary for pulse-induced but not continuous light-induced phototropism in Arabidopsis. Plant Physiol. 2012, 160, 763–776. [CrossRef] [PubMed]
13. Zadnikova, P.; Petrasek, J.; Marhavy, P.; Raz, V.; Vandenbussche, F.; Ding, Z.; Schwarzerova, K.; Morita, M.T.; Tasaka, M.; Hejatko, J.; et al. Role of PIN-mediated auxin efflux in apical hook development of Arabidopsis thaliana. Development 2010, 137, 607–617. [CrossRef] [PubMed]
14. Okada, K.; Ueda, J.; Komaki, M.K.; Bell, C.J.; Shimura, Y. Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation. Plant Cell 1991, 3, 677–684. [CrossRef] [PubMed]
15. Dal Bosco, C.; Dovzhenko, A.; Liu, X.; Woermer, N.; Rensch, T.; Eismann, M.; Eimer, S.; Hegermann, J.; Paponov, I.A.; Ruperti, B.; et al. The endoplasmic reticulum localized PIN8 is a pollen-specific auxin carrier involved in intracellular auxin homeostasis. Plant J. 2012, 71, 860–870. [CrossRef]
16. Willige, B.C.; Chory, J. A current perspective on the role of AGCVIII kinases in PIN-mediated apical hook development. Front. Plant Sci. 2015, 6, 767. [CrossRef] [PubMed]
17. Rahman, A.; Takahashi, M.; Shibasaki, K.; Wu, S.; Inaba, T.; Tsurumi, S.; Baskin, T.I. Gravitropism of Arabidopsis thaliana roots requires the polarization of PIN2 toward the root-tips in meristematic cortical cells. Plant Cell 2010, 22, 1762–1776. [CrossRef] [PubMed]
18. Chen, Q.; Liu, Y.; Maere, S.; Lee, E.; Van, I.G.; Xie, Z.; Xuan, W.; Lucas, J.; Vassileva, V.; Kitakura, S.; et al. A coherent transcriptional feed-forward motif model for mediating auxin-sensitive PIN3 expression during lateral root development. Nat. Commun. 2015, 6, 8821. [CrossRef] [PubMed]
19. Friml, J.; Benková, E.; Bilou, I.; Wisniewska, J.; Hamann, T.; Ljung, K.; Woody, S.; Sandberg, G.; Scheres, B.; Jürgens, G.; et al. APIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Plant Cell 2002, 108, 661–673. [CrossRef]
20. Vieten, A.; Vanneste, S.; Wisniewska, J.; Benková, E.; Benjamins, R.; Beeckman, T.; Luschnig, C.; Friml, J. Functional redundancy of PIN proteins is accompanied by auxin-dependent cross-regulation of PIN expression. Development 2005, 132, 4521–4531. [CrossRef] [PubMed]
21. Food and Agriculture Organization of the United Nations. Available online: Faostat.fao.org (accessed on 6 January 2021).
22. Ellis, A.C.; Dudenbolet, T.; Crowe-White, K. Watermelon Juice: A Novel Functional Food to Increase Circulating Lycopene in Older Adult Women. Plant Foods Hum. Nutr. 2019, 74, 200–203. [CrossRef]
23. Guo, S.; Zhao, S.; Sun, H.; Wang, X.; Wu, S.; Lin, T.; Ren, Y.; Gao, L.; Deng, Y.; Zhang, J.; et al. Resequencing of 414 cultivated and wild watermelon accessions identifies selection for fruit quality traits. Nat. Genet. 2019, 51, 1616–1623. [CrossRef]
24. Choi, P.S.; Soh, W.Y.; Kim, Y.S.; Yoo, O.J.; Liu, J.R. Genetic transformation and plant regeneration of watermelon using Agrobacterium tumefaciens. Plant Cell Rep. 1994, 13, 344–348. [CrossRef]
25. Tian, S.; Jiang, L.; Cui, X.; Zhang, J.; Guo, S.; Li, M.; Zhang, H.; Ren, Y.; Gong, G.; Zong, M.; et al. Engineering herbicide-resistant watermelon variety through CRISPR/Cas9-mediated base-editing. Plant Cell Rep. 2018, 37, 1353–1356. [CrossRef] [PubMed]
26. Zhang, N.; Huang, X.; Yao, B.; Wang, B.; Liu, L.; Dai, L.; Chen, J.; An, X.; Sun, Y.; Peng, D. Genome-wide identification and expression profiling of WUSCHEL-related homeobox (WOX) genes during adventitious shoot regeneration of watermelon (Citrullus lanatus). Acta Physiol. Plant. 2015, 37, 224. [CrossRef]
27. Zhang, N.; Huang, X.; Bao, Y.; Wang, B.; Zeng, H.; Cheng, W.; Tang, M.; Li, Y.; Ren, J.; Sun, Y. Genome-wide identification of SAUR genes in watermelon (Citrullus lanatus). *Physiol. Mol. Biol. Plants* 2017, 23, 619–628. [CrossRef] [PubMed]

28. Radhakrishnan, D.; Kareem, A.; Durgaprasad, K.; Sreeraj, E.; Sugimoto, K.; Prasad, K. Shoot regeneration: A journey from acquisition of competence to completion. *Curr. Opin. Plant Biol.* 2018, 41, 23–31. [CrossRef] [PubMed]

29. Duclercq, J.; Sangwan-Norreel, B.; Catterou, M.; Sangwan, R.S. De novo shoot organogenesis: From art to science. *Trends Plant Sci.* 2011, 16, 597–606. [CrossRef]

30. Krogan, N.T.; Marcos, D.; Weiner, A.I.; Berleth, T. The auxin response factor MONOPTEROS controls meristem function and organogenesis in both the shoot and root through the direct regulation of PIN genes. *New Phytol.* 2016, 212, 42–50. [CrossRef] [PubMed]

31. Yu, C.; Dong, W.; Zhan, Y.; Huang, Z.A.; Li, Z.; Kim, I.S.; Zhang, C. Genome-wide identification and expression analysis of ClLAX, ClPIN and ClABCB genes families in Citrullus lanatus under various abiotic stresses and grafting. *BMC Genet.* 2017, 18, 33. [CrossRef]

32. Cucurbit Genomics Database. Available online: Cucurbitgenomics.org (accessed on 6 January 2021).

33. Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. *J. Mol. Biol.* 1990, 215, 403–410. [CrossRef]

34. ProtParam tool. Available online: Web.expasy.org/protparam/ (accessed on 6 January 2021).

35. Yu, C.S.; Chen, Y.C.; Lu, C.H.; Hwang, J.K. Prediction of protein subcellular localization. *Proteins* 2006, 64, 643–651. [CrossRef] [PubMed]

36. Krogh, A.; Larsson, B.; Von Hejne, G.; Sonnhammer, E.L. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. *J. Mol. Biol.* 2001, 305, 567–580. [CrossRef] [PubMed]

37. Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. *Mol. Biol. Evol.* 2016, 33, 1870–1874. [CrossRef]

38. DNA MAN-Bioinformatics Solutions. Available online: www.lynnon.com (accessed on 6 January 2021).

39. Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools—An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. *Mol. Plant 2020*, 13, 1194–1202. [CrossRef] [PubMed]

40. Lescot, M.; Déhais, P.; Thijs, G.; Marchal, K.; Moreau, Y.; Peer, Y.V.D.; Rouzé, P.; Rombauts, S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. *Nucleic Acids Res.* 2002, 30, 325–327. [CrossRef] [PubMed]

41. Untergasser, A.; Cutcutache, I.; Koressaar, T.; Ye, J.; Faircloth, B.C.; Remm, M.; Rozen, S.G. Primer3—New capabilities and interfaces. *Nucleic Acids Res.* 2012, 40, e115. [CrossRef]

42. Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. *Methods* 2001, 25, 402–408. [CrossRef] [PubMed]

43. Huang, S.; Li, R.; Zhang, Z.; Li, L.; Gu, X.; Fan, W.; Lucas, W.J.; Wang, X.; Xie, B.; Ni, P.; et al. The genome of the cucumber, *Cucumis sativus* L. *Nat. Genet.* 2009, 41, 1275–1281. [CrossRef]

44. García-Mas, J.; Benjak, A.; Sansseverino, W.; Bourgeois, M.; Mir, G.; González, V.M.; Hénaff, E.; Câmara, F.; Cozzuto, L.; Lowy, E.; et al. The genome of melon (*Cucumis melo* L.). *Proc. Natl. Acad. Sci. USA* 2012, 109, 11872–11877. [CrossRef]

45. Altmann, M.; Altmann, S.; Rodriguez, P.A.; Weller, B.; Elorduy Vergara, L.; Palme, J.; Marín-de la Rosa, N.; Sauer, M.; Wenig, M.; Villacíncia-Aguilar, J.A.; et al. Extensive signal integration by the phytohormone protein network. *Nature* 2020, 583, 271–276. [CrossRef] [PubMed]