Human Protein Arginine Methyltransferase 7 (PRMT7) Is a Type III Enzyme Forming ω-N^G-Monomethylated Arginine Residues*[†]

Received for publication, December 20, 2011, and in revised form, January 11, 2012. Published, JBC Papers in Press, January 12, 2012, DOI 10.1074/jbc.M111.336271

Cecilia I. Zurita-Lopez, Troy Sandberg, Ryan Kelly, and Steven G. Clarke†

From the Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, California 90095-1569

Background: PRMT7 is a poorly characterized member of the family of protein arginine methyltransferases (PRMTs) that catalyze the modification of a wide group of proteins.

Results: A bacterially expressed fusion protein of human PRMT7 produces only ω-monomethylated arginine (ω-MMA) derivatives.

Conclusion: PRMT7 is a type III PRMT distinct from type I and type II PRMTs characterized to date.

Significance: ω-MMA may be a distinct post-translational modification.

Full-length human protein arginine methyltransferase 7 (PRMT7) expressed as a fusion protein in *Escherichia coli* was initially found to generate only ω-N^G-monomethylated arginine residues in small peptides, suggesting that it is a type III enzyme. A later study, however, characterized fusion proteins of PRMT7 expressed in bacterial and mammalian cells as a type II/type I enzyme, capable of producing symmetrically dimethylated arginine (type II activity) as well as small amounts of asymmetric dimethylarginine (type I activity). We have sought to clarify the enzymatic activity of human PRMT7. We analyzed the *in vitro* methylation products of a gluthathione S-transferase (GST)-PRMT7 fusion protein with robust activity using a variety of arginine-containing synthetic peptides and protein substrates, including a GST fusion with the N-terminal domain of fibrillarin (GST-GAR), myelin basic protein, and recombinant human histones H2A, H2B, H3, and H4. Regardless of the methylation reaction conditions (incubation time, reaction volume, and substrate concentration), we found that PRMT7 only produces ω-N^G-monomethylarginine with these substrates. In control experiments, we showed that mammalian GST-PRMT1 and Myc-PRMT5 were, unlike PRMT7, able to dimethylate both peptide P-SmD3 and SmD/B3 to give the expected asymmetric and symmetric products, respectively. These experiments show that PRMT7 is indeed a type III human methyltransferase capable of forming only ω-N^G-monomethylarginine, not asymmetric ω-N^G,N^E-dimethylarginine or symmetric ω-N^G,N^E-dimethylarginine, under the conditions tested.

Protein arginine methyltransferases (PRMTs)² are enzymes that transfer methyl groups to the arginine residues of peptides and proteins and play functional roles in transcriptional control, splicing, DNA repair, and signaling (1–4). One of the less well characterized members of this family is PRMT7. This protein is expressed in mouse embryonic stem cells and germ cells in a pattern similar to pluripotency markers, suggesting that PRMT7 may contribute to cellular differentiation (5). PRMT7 activity also seems to increase with the mammalian testis-specific CCTC-binding factor-like protein in genetic imprinting (6). In *Drosophila melanogaster*, deletion of the PRMT7 ortholog Dart7 results in pupal lethality (7). Like PRMT5, PRMT7 also seems to mediate RNA splicing events by methylating Sm proteins, small nuclear ribonucleoproteins (snRNPs) that comprise the spliceosome (8). In addition, changes in PRMT7 expression may indicate cellular toxicity. In adult mice treated with doxorubicin to induce nephropathy, Prmt7 gene expression was about 8-fold lower and confined to the nephrogenic zone, where newly formed epithelia are induced (9). Similarly, several studies have implicated PRMT7 as a modulator of DNA damage response. PRMT7 expression is associated with either hypersensitivity to or protection from the effects of the topoisomerase I inhibitor camptothecin and the topoisomerase II inhibitors 9-hydroxyellipticine and etoposide (10–13). Finally, the human PRMT7 gene is in a region of the genome known to have high copy number aberrations in metastasizing tumors, suggesting a role in metastasis (14).

Human protein arginine methyltransferases are known to generate three different products: ω-N^G-monomethylarginine (ω-MMA), asymmetric ω-N^G,N^E-dimethylarginine (ADMA), and symmetric ω-N^G,N^E-dimethylarginine (SDMA) (1, 4, 15). PRMT1, PRMT2, PRMT3, CARM1/PRMT4, PRMT6, and PRMT8 have type I activity, forming both ω-MMA and ADMA (1, 4, 15). PRMT5 has type II activity, forming both ω-MMA and proteins and play functional roles in transcriptional control, splicing, DNA repair, and signaling (1–4). One of the less well characterized members of this family is PRMT7. This protein is expressed in mouse embryonic stem cells and germ cells in a pattern similar to pluripotency markers, suggesting that PRMT7 may contribute to cellular differentiation (5). PRMT7 activity also seems to increase with the mammalian testis-specific CCTC-binding factor-like protein in genetic imprinting (6). In *Drosophila melanogaster*, deletion of the PRMT7 ortholog Dart7 results in pupal lethality (7). Like PRMT5, PRMT7 also seems to mediate RNA splicing events by methylating Sm proteins, small nuclear ribonucleoproteins (snRNPs) that comprise the spliceosome (8). In addition, changes in PRMT7 expression may indicate cellular toxicity. In adult mice treated with doxorubicin to induce nephropathy, Prmt7 gene expression was about 8-fold lower and confined to the nephrogenic zone, where newly formed epithelia are induced (9). Similarly, several studies have implicated PRMT7 as a modulator of DNA damage response. PRMT7 expression is associated with either hypersensitivity to or protection from the effects of the topoisomerase I inhibitor camptothecin and the topoisomerase II inhibitors 9-hydroxyellipticine and etoposide (10–13). Finally, the human PRMT7 gene is in a region of the genome known to have high copy number aberrations in metastasizing tumors, suggesting a role in metastasis (14).

Human protein arginine methyltransferases are known to generate three different products: ω-N^G-monomethylarginine (ω-MMA), asymmetric ω-N^G,N^E-dimethylarginine (ADMA), and symmetric ω-N^G,N^E-dimethylarginine (SDMA) (1, 4, 15). PRMT1, PRMT2, PRMT3, CARM1/PRMT4, PRMT6, and PRMT8 have type I activity, forming both ω-MMA and ADMA (1, 4, 15). PRMT5 has type II activity, forming both ω-MMA and proteins and play functional roles in transcriptional control, splicing, DNA repair, and signaling (1–4). One of the less well characterized members of this family is PRMT7. This protein is expressed in mouse embryonic stem cells and germ cells in a pattern similar to pluripotency markers, suggesting that PRMT7 may contribute to cellular differentiation (5). PRMT7 activity also seems to increase with the mammalian testis-specific CCTC-binding factor-like protein in genetic imprinting (6). In *Drosophila melanogaster*, deletion of the PRMT7 ortholog Dart7 results in pupal lethality (7). Like PRMT5, PRMT7 also seems to mediate RNA splicing events by methylating Sm proteins, small nuclear ribonucleoproteins (snRNPs) that comprise the spliceosome (8). In addition, changes in PRMT7 expression may indicate cellular toxicity. In adult mice treated with doxorubicin to induce nephropathy, Prmt7 gene expression was about 8-fold lower and confined to the nephrogenic zone, where newly formed epithelia are induced (9). Similarly, several studies have implicated PRMT7 as a modulator of DNA damage response. PRMT7 expression is associated with either hypersensitivity to or protection from the effects of the topoisomerase I inhibitor camptothecin and the topoisomerase II inhibitors 9-hydroxyellipticine and etoposide (10–13). Finally, the human PRMT7 gene is in a region of the genome known to have high copy number aberrations in metastasizing tumors, suggesting a role in metastasis (14).
and SDMA (17). Enzymes that form only \(\omega\)-MMA have type III activity. The only fully characterized type III enzyme to date has been found in the protozoan Trypanosoma brucei (18).

Although seven of the eight mammalian PRMTs characterized thus far are clearly type I or type II enzymes, PRMT7 has proven to be more difficult to characterize. Initially, Miranda and co-workers (19) found that a preparation of human GST-PRMT7 expressed in Escherichia coli could methylate small arginine-containing synthetic peptides but not common PRMT protein substrates such as GST-GAR, histones, and myelin basic protein. Furthermore, acid hydrolysis of the methylated peptides followed by cation-exchange chromatography revealed only the presence of \(\omega\)-MMA (19) suggesting a type III designation for this enzyme. However, in a second study, Lee and colleagues (20) characterized PRMT7 as a type II enzyme capable of forming symmetric dimethylarginine residues. Recombinant GST-PRMT7 expressed in E. coli was reported to be able to dimethylate small peptides corresponding to sequences found in histone H4, myelin basic protein (MBP), and P-SmD3 (a truncated version of pre-mRNA splicing protein SmD3). A preparation of immunopurified FLAG-PRMT7 from HeLa cells was shown to actively methylate histones, MBP, GST-GAR, spliceosomal protein SmB, and peptides P-MBP and P-SmD3. Amino acid analysis via thin layer chromatography (TLC) suggested that the modifications produced were predominantly \(\omega\)-MMA and SDMA, with some formation of ADMA, indicating not just type II activity, but type I activity as well (20).

To resolve this controversy, human recombinant GST-PRMT7 constructs have been purified from E. coli and used to methylate substrates under conditions described in both previous studies (19, 20). Despite using preparations with more robust enzymatic activity than those used by Miranda et al. (19) under a variety of reaction conditions, we were unable to show that GST-PRMT7 catalyzed the formation of either ADMA or SDMA, suggesting that detection of these products by Lee et al. (20) may have been due to contamination. One particular problem is that the antibody previously used to immunopurify the FLAG-PRMT7-tagged protein from HeLa cells (20) also recognizes endogenous PRMT5 (21). To our knowledge, PRMT5 continues to be the only mammalian type II methyltransferase, whereas PRMT7 is capable of forming only monomethylated arginine derivatives in both peptide and protein substrates and is thus the first mammalian type III methyltransferase.

EXPERIMENTAL PROCEDURES

Purification of GST Fusion Proteins of PRMT7, PRMT1, and GAR—Human PRMT7 was expressed as a GST fusion protein from either the construct prepared by Miranda et al. (19) or Lee et al. (20). Prior to expression, both plasmids were confirmed by DNA sequencing. Plasmids expressing rat GST-PRMT1 (22) and GST-GAR (containing the first 148 amino acids of human fibrillarin) (23) have been previously described. Histones H2A (M2502S), H2B (M2505S), H3.2 (M2506S), and H4 (M2504S) are human recombinant species from New England Biolabs, and myelin basic protein from bovine brain was obtained from Sigma (M1891). Purified Myc-PRMT5 from HEK293 cells was a kind gift from Dr. Jill Butler (University of Texas MD Anderson Cancer Center, Houston, TX).

In Vitro Labeling and Acid Hydrolysis of Peptide and Protein Substrates—Enzymatic reactions were initiated by the addition of \(S\)-adenosyl-L-\(\omega\)-methyl-[\(^{14}\)H]methionine ([\(^{14}\)H]AdoMet) at a final concentration of 0.7 \(\mu\)M (PerkinElmer Life Sciences, 75–85 Ci/mmol, from a stock of 0.55 mCi/ml in 10 mM H$_2$SO$_4$; EtOH (9:1, \(v/v\)) in a final reaction volume of either 30 or 60 \(\mu\)l in 6 × 50-mm glass test tubes. The incubation mixture was buffered in 50 mM potassium HEPES, 10 mM NaCl, pH 8.0, and 1 mM DTT and the reactions were allowed to proceed at 37°C (data not shown). We verified the mass of each peptide by MALDI-TOF analysis (data not shown). Peptide R1 (GGFGRGGF-amide)\(^3\) (free N terminus) and peptide R2 (N-acetyl-GGRGG-amide) were purchased from California Peptide Research, Inc. and have been previously described (19).

Peptide Substrates—The following peptides were a kind gift from Dr. Sidney Pestka (UMDNJ, Robert Wood Johnson Medical School, Piscataway, NJ): GRG-amide; P-SmD3, AGR-GRGAAILKAVARGRGRGMGRGN-amide; M1, SGR-GGGKGLKGGAKRHRK-amide; M8, SGGAKGGKGLKGGAKAHAK-amide (M1 with all arginines substituted with alanine); and MM, SGR\(^{\text{RMe}}\)GKGKGLKGGAKRKHRK-amide (R\(^{\text{RMe}}\), monomethylarginine). Their synthesis has been previously described (20). All of these peptides have free N termini.

Protein Substrates and Myc-tagged PRMTs—Recombinant human protein complex SmB/D3 purified from E. coli was generously provided by Dr. Christian Kambach (Paul Scherrer Institut, Switzerland) and Dr. Utz Fischer (Theodor-Boveri-Institute, Biocenter, University of Wuerzburg, Germany) and has been previously described (24). Histones H2A (M2502S), H2B (M2505S), H3.2 (M2506S), and H4 (M2504S) are human recombinant species from New England Biolabs, and myelin basic protein from bovine brain was obtained from Sigma (M1891). Purified Myc-PRMT5 from HEK293 cells was a kind gift from Dr. Jill Butler (University of Texas MD Anderson Cancer Center, Houston, TX).

Substrates—Recombinant human protein complex SmB/D3 purified from E. coli was generously provided by Dr. Christian Kambach (Paul Scherrer Institut, Switzerland) and Dr. Utz Fischer (Theodor-Boveri-Institute, Biocenter, University of Wuerzburg, Germany) and has been previously described (24). Histones H2A (M2502S), H2B (M2505S), H3.2 (M2506S), and H4 (M2504S) are human recombinant species from New England Biolabs, and myelin basic protein from bovine brain was obtained from Sigma (M1891).

In Vitro Labeling and Acid Hydrolysis of Peptide and Protein Substrates—Enzymatic reactions were initiated by the addition of \(S\)-adenosyl-L-\(\omega\)-methyl-[\(^{14}\)H]methionine ([\(^{14}\)H]AdoMet) at a final concentration of 0.7 \(\mu\)M (PerkinElmer Life Sciences, 75–85 Ci/mmol, from a stock of 0.55 mCi/ml in 10 mM H$_2$SO$_4$; EtOH (9:1, \(v/v\)) in a final reaction volume of either 30 or 60 \(\mu\)l in 6 × 50-mm glass test tubes. The incubation mixture was buffered in 50 mM potassium HEPES, 10 mM NaCl, pH 8.0, and 1 mM DTT and the reactions were allowed to proceed at 37°C.

\(^3\) The sequence of the R1 peptide was erroneously given as GGGGRGGP-amide by Miranda et al. (19).
for 1–25 h. Where proteins or the P-SmD3 peptide were used as substrates, 20 μg of bovine serum albumin was added in 2 μl as a carrier protein and the methylation reaction was then quenched with an equal volume of 25% (w/v) trichloroacetic acid. After incubation at room temperature for 30 min, the precipitated protein was collected by centrifugation at 4000 × g for 30 min at 25 °C, and the pellet was allowed to air dry. For the remaining peptide substrates, the reaction mixtures were dried in a vacuum centrifuge. Acid hydrolysis of all dried reaction mixtures (both peptides and proteins) was then carried out in a Waters Pico-Tag Vapor-Phase apparatus in vacuo for 20 h at 110 °C using 50 μl of 12 N HCl.

Amino Acid Analysis of Methylated Species by High Resolution Cation Exchange Chromatography—To determine the products of methylation, vacuum-dried hydrolyzed samples were resuspended in 50 μl of water and mixed with 1.0 μmol of the following standards: ω-MMA (acetate salt, Sigma, M7033), SDMA (di(p-hydroxyazobenzene)-p'-sulfonate salt, Sigma, D0390), and ADMA (hydrochloride salt, Sigma, D4268) for amino acid analysis by high-resolution cation-exchange chromatography. The hydrolyzed samples were diluted with 500 μl of citrate buffer (0.2 M Na⁺, pH 2.2), loaded onto a column (0.9 × 8–12 cm) of PA-35 sulfonated polystyrene beads (6–12 μm; Benson Polymeric Inc., Sparks, NV), and eluted with sodium citrate buffer (0.35 M Na⁺, pH 5.27) at 1 ml/min and 55 °C. The column was regenerated with 0.2 N NaOH for 20–25 min and equilibrated with sodium citrate buffer for 20–25 min prior to each run.

Elution positions of the amino acid standards were determined by a ninhydrin assay (25, 26). The ninhydrin reagent is composed of 20 mg/ml of ninhydrin and 3 mg/ml of hydrindan in a solvent of 75% (v/v) dimethyl sulfoxide and 25% (v/v) 4 M lithium acetate, pH 4.2. Aliquots (100 μl) of 1-ml column fractions were mixed with 600 μl of water and 300 μl of the ninhydrin solution, heated at 100 °C for 15 min and the absorbance measured at 570 nm (1-cm path length cuvette), or 50-μl aliquots of 1-ml column fractions were mixed with 100 μl of the ninhydrin solution, heated at 100 °C for 15 min, and the absorbance measured at 570 nm using a SpectraMax M5 microplate reader. Radioactivity in column fractions was quantitated using a Beckman LS6500 counter and expressed as an average of three 30-min counting cycles after mixing 900–950 μl of the column fractions with 400 μl of water and 10 ml of fluor (Safety Solve, Research Products International, 111177). For fractions from GST-PRMT1 reaction mixtures, only 200 μl was counted.

RESULTS

Because recombinant protein arginine methyltransferases purified from eukaryotic cells may be contaminated with endogenous PRMT family members, we used only GST-PRMT7 fusion protein expressed in E. coli cells lacking endogenous PRMT activity (27) to characterize its activity. The addition of an N-terminal GST protein has allowed for the rapid purification of several active members of the PRMT family and has not interfered with their activity (16, 18, 21, 22, 28, 29). Our GST-PRMT7 preparation was found to contain a major 102-kDa polypeptide of the size expected from the fusion of the 27-kDa GST and the 78-kDa human PRMT7 (Fig. 1). We assayed this enzyme using the buffer system recommended by Lakowski and Frankel (16), who found that replacement of the traditional phosphate buffers with HEPES buffers in the presence of DTT allowed them to detect the in vitro methylation activity of PRMT2 for the first time. In preliminary experiments, we found that DTT markedly enhanced the activity of GST-PRMT7 (supplemental Fig. S1).

To determine whether GST-PRMT7 catalyzed only ω-MMA formation or could also add additional methyl groups to generate SDMA or ADMA residues, we first used the R1 peptide (GGFGRGGFGG-amide) shown to be a substrate by Miranda et al. (19). Using the same concentrations we incubated the R1 peptide with [3H]AdoMet and GST-PRMT7 in the new buffer system, acid hydrolyzed the samples, and purified the amino acids by high-resolution cation-exchange chromatography. Liquid scintillation counting of the column fractions identified ω-MMA as the only radiolabeled methylated residue (Fig. 2A). No radioactivity was detected at the elution positions of ADMA or SDMA standards as detected by ninhydrin analysis. The radioactive peak eluting just before the standard of ω-MMA shows the isotope effect expected for a tritiated methyl group on an arginine residue (22, 26, 30, 31, 32). Control experiments in which either the peptide substrate or GST-PRMT7 was omitted from the reaction mixture did not show formation of this product (Fig. 2A). To determine whether the initial 1-h incubation was insufficient to generate ADMA or SDMA, we then allowed the reaction to proceed for 5 and 20 h like the extended incubation times used by Lee et al. (20). Even under these conditions, however, we were unable to detect any radiolabeled ADMA or SDMA (Fig. 2B and inset).

We then considered the possibility that the R1 peptide might simply be a poor substrate for dimethylation. We note that only ω-MMA formation was found in an initial study with the R1 peptide and GST-PRMT1, even though this enzyme is capable
of forming ADMA in protein substrates (22). We confirmed that only marginal ADMA formation with GST-PRMT1 and the R1 peptide could be detected using our own reaction conditions described above (supplemental Fig. S2). Therefore, we tested the ability of GST-PRMT7 to methylate a 28-residue fragment of the splicing protein SmD3 (P-SmD3). This longer peptide was used by Lee et al. (20) to provide evidence that SDMA and ADMA could be formed after 16 h of incubation with 0.1–1 μg of PRMT7 and 5 μg of peptide P-SmD3. We further extended the assay by incubating 8.4 μg of this peptide for 20 h with a much larger amount of GST-PRMT7 (4 μg) (Fig. 3A). Although we found a substantial peak of radioactivity in the expected position of [3H]ω-MMA, we detected no incorporation of radioactivity in the positions expected for [3H]ADMA and [3H]SDMA. Negative control reactions in the absence of GST-PRMT7 or the P-SmD3 peptide did not show incorporation of radioactivity into arginine residues (Fig. 3B). A positive control using GST-PRMT1 showed that peptide P-SmD3 can be readily dimethylated to form [3H]ADMA (as well as [3H]ω-MMA) (Fig. 3B).

To determine whether arginine residues in a full-length protein could be dimethylated by PRMT7, purified spliceosomal

FIGURE 2. GST-PRMT7 can monomethylate peptide R1 (GGFGGRGGFGG-amide). In vitro methylation reactions in a final reaction volume of 60 μl were carried out with GST-PRMT7 (6 μg; 0.95 μM) in the presence of 0.7 μM [3H]AdoMet with peptide substrate R1 (52 μg; 1.0 mM) as described under “Experimental Procedures.” After acid hydrolysis, methylated amino acid derivatives were analyzed by high-resolution cation-exchange chromatography as described under “Experimental Procedures.” Radioactivity (solid lines) from a 1-h (panel A), 5- (panel B), and 20-h (panel B) incubation is shown for complete reaction mixtures. Control incubations were also performed in the absence of peptide substrate (○) or PRMT7 enzyme (○) for 1 (panel A) or 20 h (panel B). Radioactivity and ninhydrin color of the methylated arginine standards (100 μl analyzed; □, dashed lines) were determined as described under “Experimental Procedures.” Due to a tritium isotope effect, the [3H]-methyl derivatives of ADMA, SDMA, and ω-MMA elute on high-resolution cation-exchange chromatography columns slightly earlier than the non-isotopically labeled standards (22, 26, 30, 31, 32). The inset in panel B shows a magnification of the radioactivity in the elution region of ADMA and SDMA.
protein complex SmB/D3 was tested as a methyl-accepting substrate. Indirect evidence has been presented for a role of PRMT7 in the modification of these proteins (8). We incubated GST-PRMT7 with protein SmB/D3 and [3H]AdoMet and analyzed the products after acid hydrolysis by high resolution cation-exchange chromatography (Fig. 4A). Although we observed robust formation of [3H]ω-MMA, we detected no formation of [3H]ADMA or [3H]SDMA, even under conditions where a peak corresponding to just 0.3% of the [3H]ω-MMA peak could have readily been detected if it was present (see inset of Fig. 4A). Positive controls were performed in which GST-PRMT1 or Myc-PRMT5 was substituted for GST-PRMT7 under the same incubation conditions. We found that GST-PRMT1 catalyzed the formation of [3H]ADMA as the major product (Fig. 4B), and that Myc-PRMT5 catalyzed a significant production of [3H]SDMA (Fig. 4C). Thus, under conditions where ADMA and SDMA are formed by PRMT1 and PRMT5, respectively, only ω-MMA is formed with PRMT7.

To determine whether substrate concentration plays a role in the formation of ADMA or SDMA, methylation reac-

FIGURE 3. GST-PRMT7 fails to dimethylate peptide P-SmD3. In vitro methylation reactions were carried out for 2 h in a final volume of 60 μl with the substrate P-SmD3 (AGRGRGKAAILKAQVAGRGRGMGRGN-amide) (8.4 μg; 50 μM) in the presence of 0.7 μM [3H]AdoMet and GST-PRMT7 (4 μg; 0.63 μM) (●, panel A) or GST-PRMT1 (4 μg; 0.98 μM) (●, panel B) as described under “Experimental Procedures.” Enzyme alone controls (●, PRMT7, panel A, or ●, PRMT1, panel B), and substrate alone controls (●, peptide P-SmD3) were carried out under the same conditions. Chromatography of the hydrolyzed reaction products was carried out as described under “Experimental Procedures” using 100 μl for ninhydrin analysis of the standards (●, dashed lines). Radioactivity is shown by solid lines. The inset in both panels shows a magnification of the radioactivity in the elution region of ADMA and SDMA.
PRMT7 is a Type III PRMT

A. PRMT7

B. PRMT1

C. PRMT5
tions were carried out with GST-PRMT7 and various concentrations of the peptide P-SmD3. Increasing the peptide concentration by 5- and 50-fold greatly increased the production of $[^3]$H$[^9]$275-MMA but failed to produce any dimethylated product (Fig. 5A). To determine whether the methyl donor AdoMet was limiting, we doubled the concentration of $[^3]$H$[^9]$262-AdoMet to 1.4 $[^9]$262M but again saw no evidence for $[^3]$H$[^9]$275 or $[^3]$H$[^9]$262 under conditions where we could detect these compounds at 0.1% of the level of the $[^3]$H$[^9]$275-MMA formed (Fig. 5B, inset). In an independent experiment, we measured $[^3]$H$[^9]$275-MMA formation with concentrations of $[^3]$H$[^9]$ AdoMet ranging from 0.35 to 2.1 $[^9]$262M. We found approximate half-maximal methylation at the lowest concentration (supplemental Fig. S3), consistent with K_m values of 0.35 and

![Graph A](image)

FIGURE 5. GST-PRMT7 fails to form ADMA or SDMA with increased substrate concentrations. In vitro methylation reactions (60 $[^9]$l) of GST-PRMT7 (2 $[^9]$g; 0.32 $[^9]$M) with peptide P-SmD3 (1 $[^9]$g (●), or 5 $[^9]$g (●), or 50 $[^9]$g (●) (6.0, 30, and 300 $[^9]$, respectively)) were carried out for 21 h in the presence of 0.7 $[^9]$M $[^3]$H$[^9]$AdoMet as described under “Experimental Procedures” (panel A). In vitro methylation reactions of GST-PRMT7 (2 $[^9]$g; 0.32 $[^9]$M) with peptide P-SmD3 (8.3 $[^9]$g; 50 $[^9]$) were performed for 21 h in the presence of either 0.7 $[^9]$M $[^3]$H$[^9]$AdoMet (●) or 1.4 $[^9]$M $[^3]$H$[^9]$AdoMet (●) (panel B). Chromatography of the hydrolyzed reaction products was carried out as described under “Experimental Procedures” using 100 $[^9]$l for ninhydrin analysis of the standards (__, dashed lines). The insets show a magnification of the radioactivity in the elution region of ADMA and SDMA.

![Graph B](image)

FIGURE 4. GST-PRMT7 fails to dimethylate protein complex SmB/D3. In vitro methylation reactions were carried out for 1 h in a final volume of 60 $[^9]$l with the protein substrate SmB/D3 (7 $[^9]$g; 5.8 $[^9]$M) in the presence of GST-PRMT7 (15 $[^9]$g; 2.4 $[^9]$M) (●, panel A), GST-PRMT1 (2 $[^9]$g; 0.49 $[^9]$M) with 13 $[^9]$g of SmB/D3 (10.8 $[^9]$M) (●, panel B), or Myc-PRMT5 (4 $[^9]$g; 0.81 $[^9]$M) with 7.5 $[^9]$g of SmB/D3 (5.4 $[^9]$M) (●), panel C) as described under “Experimental Procedures.” Enzyme alone controls (●) and substrate alone controls (●) were carried out under the same conditions for each enzyme. Chromatography of the hydrolyzed reaction products was carried out as described under “Experimental Procedures” using 100 $[^9]$l for ninhydrin analysis of the standards (__, dashed lines). The insets show a magnification of the radioactivity in the elution region of ADMA and SDMA.
PRMT7 Is a Type III PRMT

Histone proteins are common substrates for PRMTs, and specific evidence has been presented for histone methylation by PRMT7 (6). To determine whether PRMT7 could dimethylate an arginine residue in a histone protein, methylation reactions were carried out at 1, 5, and 20 h using GST-PRMT7 with [3H]AdoMet and histone H2B. We found that PRMT7 produces only [3H]-MMA; neither [3H]ADMA nor [3H]SDMA was observed (Fig. 6). To address the possibility that the presence of the GST domain may change the specificity of PRMT7, we measured product formation of a thrombin-cleaved preparation. Once again, only [3H]-MMA was formed (supplemental Fig. S4).

Finally, we tested GST-PRMT7 with each of the remaining peptide and protein substrates previously observed by Lee et al. (20) to form ADMA and SDMA when methylated by PRMT7. In supplemental Fig. S5, we show that ADMA and SDMA are not formed in peptides R2, M1, or MM. These results are summarized in Table 1. Furthermore, under our conditions the protein substrates histone H2A, histone H3, histone H4, myelin basic protein, and GST-GAR, when incubated with [3H]AdoMet and GST-PRMT7, acquired ω-MMA but not ADMA or SDMA residues (supplemental Fig. S6).

Taken together, these results show that GST-PRMT7 has type III protein arginine methyltransferase activity because it monomethylates peptides and proteins to form ω-MMA but is not capable of adding a second methyl group to ω-MMA to form ADMA or SDMA. In this respect PRMT7 now differs from the known type I family members that form ADMA (PRMT1, PRMT2, PRMT3, CARM1/PRMT4, PRMT6, and PRMT8) and the known type II family member PRMT5 that forms SDMA. Although it is possible that a substrate yet to be identified can be dimethylated by PRMT7, it is also possible that the structural makeup of this enzyme may preclude such a reaction.

DISCUSSION

Our results supporting the type III catalytic activity of human PRMT7 are consistent with recent studies involving apparent orthologs of this protein in the protozoan T. brucei (18) and the nematode worm Caenorhabditis elegans (33). In vitro studies using several different protein substrates showed that these methyltransferases, like human PRMT7, only produce ω-MMA (18, 33). The identification of type III activity in these divergent eukaryotes indicates that the ω-MMA modification is not only an intermediate on a pathway to ADMA and SDMA formation. Rather, the ω-MMA

TABLE 1

Peptide substrates for human GST-PRMT7	Methylation product	Reference
Peptide R1 GGFGGRGGFG-amide	ω-MMA	Fig. 2 and Ref. 19
Peptide R2 Acetyl-GGGRG-amide	ω-MMA	Supplemental Fig. SS4 and Ref. 19
Peptide M1 SGRGKGKGKLGGKGRHRK-amide	ω-MMA	Supplemental Fig. SSB
Peptide MM SGR^RGGKGKGGKGGKRGHRK-amide (R^R, monomethylarginine)	ω-MMA	Supplemental Fig. 5C
Peptide SmD3 AGRGGRGKAALKQVRARRGGRMGMRN-amide	ω-MMA	Figs. 3 and 5 and supplemental Figs. S1 and S3
Non-substrates		
Peptide M8 SGAGKGKKGKLGGKAHAK-amide	None detected	Data not shown
Peptide GRG GRG-amide	None detected	Data not shown

0.30 μM previously measured for GST-PRMT1 and GST-(Δ1–60)PRMT8, respectively (29).

Histone proteins are common substrates for PRMTs, and specific evidence has been presented for histone methylation by PRMT7 (6). To determine whether PRMT7 could dimethylate an arginine residue in a histone protein, methylation reactions were carried out at 1, 5, and 20 h using GST-PRMT7 with [3H]AdoMet and histone H2B. We found that PRMT7 produces only [3H]-MMA; neither [3H]ADMA nor [3H]SDMA was observed (Fig. 6). To address the possibility that the presence of the GST domain may change the specificity of PRMT7, we measured product formation of a thrombin-cleaved preparation. Once again, only [3H]-MMA was formed (supplemental Fig. S4).
residue may be recognized as a signal in itself, perhaps as a “methyl mark” by protein interaction domains similar to the Tudor domain that recognizes ADMA (34) and SDMA residues (35) and the BRCT domain that recognizes ADMA (36). These results also indicate that the only member of the mammalian PRMT family with established type II activity forming SDMA is PRMT5 (17).

The structural basis for the inability of PRMT7 to further methylate peptide substrates with MMA is unknown. However, we note that there are two conserved amino acid differences between PRMT7 and the known type I and type II enzymes in the double-E and THW loops in the active site (19, 37). The replacement of a conserved glycine residue in the double-E loop and/or the replacement of the threonine residue in the THW loop with aspartyl residues in PRMT7 may limit the ability of the enzyme to productively bind MMA residues for a second methylation reaction. Additionally, we note that PRMT7, in common with the type I PRMTs, lacks the conserved phenylalanine residue in the pre-motif I region that has been shown to be important in PRMT5 specificity for SDMA (38).

Despite the improved enzymatic activity of human GST-PRMT7 in this study, and despite using a wide variety of reaction conditions and substrates, we were unable to confirm the previous report that human GST-PRMT7 could dimethylate protein and peptide substrates to produce either ADMA or SDMA (20). In our study, we utilized all of the potential methyl-accepting peptide and protein substrates tested by Lee et al. (20) using similar incubation conditions. There are two possible explanations for these discrepancies. In the first, the FLAG-tagged PRMT7 preparation previously used may have been contaminated with endogenous PRMT enzymes present in the mammalian HeLa and COS cells used for its expression. The Sigma anti-FLAG M2 monoclonal antibody used by Lee et al. (20) to purify FLAG-tagged PRMT7 also immunoprecipitates endogenous PRMT5 that catalyzes SDMA formation (21, 39). Thus, the SDMA forming activity that Lee et al. (20) found for FLAG-PRMT7 may actually have resulted from the activity of endogenous PRMT5; contamination with other PRMTs may also explain the low levels of ADMA formation reported. Furthermore, using anti-FLAG M2 antibody to enrich for FLAG-tagged proteins may have compromised other studies such as the identification of FBXO11 as a type II methyltransferase (40) (cf. Ref. 41). A second explanation for the apparent formation of SDMA and ADMA with both the FLAG-tagged and GST fusion PRMT7 preparations is in the identification of these amino acid derivatives by TLC. In our experience, the use of TLC to analyze radiolabeled methylation products is inherently low resolution and can be compromised by the

Protein Substrate	PRMT7	PRMT1	PRMT2	PRMT3	PRMT4/ CARM1	PRMT5	PRMT6	PRMT8
Histone H2A	+	+			+	-		+
		(22, 43, 44, 45)			(43, 59)	-	(45)	(45, 50)
Histone H2B	+	+			+	-	-	+
		(43, 44)			(43, 65)	(63, 65, 66)	-	(50)
Histone H3	+	+			+	-	-	+
		(16, 30, 44, 46)			(66-68)	(63, 65)	(16, 45-47, 50, 62, 72)	(50, 62, 72)
Histone H4	+	+			+	-	-	+
		(16, 30, 43-52)			(62-68)	(50)	(16, 45, 50)	(50)
Myelin basic protein (MBP)	+	+			+	-	+	
		(29, 53)			(30)	(17, 44, 53, 62, 63, 67-69)	(29)	
SmB/D3	+	+			+	-	-	+
		This Study, Fig. 4; (8)			(56)	This Study, Fig. 4; (8, 68, 70, 71)	(29)	
GST-GAR	+	+			+	-	-	+
		(16, 23, 28-30, 44, 52-55)			(30, 52, 54)	(17, 53, 68)	(28, 44, 52, 54, 56)	(29, 30, 44)
PRMT7 Is a Type III PRMT

The presence of [3H]AdoMet breakdown products, especially when the peptide and protein products are not separated before analysis and when the standards are not mixed with the radiolabeled reaction products prior to chromatography.

In this study, we characterized the radiolabeled methylation products by high-resolution cation-exchange chromatography on sulfonated polystyrene spherical resins. This methodology allows for good separation of o-MMA, ADMA, and SDMA without the need of derivatization or the need for analysis of breakdown products. Moreover, the resolution is so high that partial separation can be observed between the tritiated methylated arginine residues and the nonradiolabeled methylated standards. As confirmed in our experiments, tritiated methylated arginine derivatives reproducibly elute 1–2 min earlier due to a tritium isotope effect (22, 26, 30–32, 42). Unlike TLC, cation-exchange chromatography allows for large amounts of material to be separated without loss of resolution, providing for greater sensitivity in detecting methylated product.

We recognize, however, the possibility that PRMT7 may be able under some conditions to further modify o-MMA to produce higher methylated species. Although we have used a wide variety of methyl-accepting substrates, one or more particular substrates may be found that would allow multiple methylation of arginine residues. It is also possible that proteins or other factors present in mammalian cells may affect the product specificity of PRMT7. There are a number of reports of interactions of distinct PRMT species (4). Specifically, a synergistic relationship between PRMT5 and PRMT7 has been suggested (8), although no evidence for a direct interaction has been found. We should emphasize, however, that we have found no evidence for any formation of SDMA by the bacterially expressed GST-PRMT7 fusion protein in this study that would justify a type II designation for this enzyme. Additionally, in preliminary experiments, we have purified a green fluorescent protein-human PRMT7 fusion protein expressed in human HEK293 cells and have not detected any SDMA formation using GST-GAR, P-SmD3, and MBP as substrates (data not shown). Finally, we find no SDMA formation in a commercial preparation of GST-GAR, P-SmD3, and histones H2A and H2B as substrates (data not shown).

In Table 2, we compare the specificities of members of the human PRMT family for the methyl-accepting protein substrates used in this study. Importantly, the substrates found to be methylated by PRMT7 in this study also appear to be substrates for PRMT1, -4, and -6. The PRMT2, -3, and -8 enzymes also share specificity with PRMT7 for GST-GAR, but have apparently not been tested with the other substrates. The only clear difference between PRMT7 and the other family members is that PRMT5 has not been shown to recognize histone H2B in several studies (Table 2). Thus, although PRMT7 cannot form dimethylated arginine derivatives, it can methylate many of the substrates recognized by the other members of the PRMT family.

Acknowledgments—We thank Sidney Pestka for the gift of GST-PRMT7 and peptide substrates, Christian Kambach (Paul Scherrer Institut, Villigen, Switzerland) and Uitz Fischer (Theodor-Boveri-Institute, Biocenter, University of Wuerzburg, Wuerzburg, Germany) for providing the Smb/D3 complex, and Jill Butler for the gift of Myc-PRMT5. We are grateful to Mark Bedford (MD Anderson Cancer Center, Smithville, TX) for providing the green fluorescent protein-PRMT7 construct, and Xiaoyu Xia and Jorge Torres (UCLA) for their help in expressing this construct in HEK293 cells. We also thank members of the Clarke laboratory, in particular Kenen MacKay, Brian Young, and Jonathan Lowenson for help throughout this study.

REFERENCES

1. Pahlisch, S., Zakaryan, R. P., and Gehring, H. (2006) Protein arginine methylation. Cellular functions and methods of analysis. Biochim. Biophys. Acta 1764, 1890–18903

2. McBride, A. E. (2006) in The Enzymes, Third Edition, Protein Methyltransferases (Clarke, S. G., and Tamanoi, F., eds) Vol. 24, pp. 51–103, Academic Press, Burlington, MA

3. Wolf, S. S. (2009) The protein arginine methyltransferase family. An update about function, new perspectives and the physiological role in humans. Cell Mol. Life Sci. 66, 2109–2112

4. Bedford, M. T., and Clarke, S. G. (2009) Protein arginine methylation in mammals. Who, what, and why. Mol. Cell 33, 1–13

5. Buhr, N., Carapito, C., Schaeffer, C., Kieffer, E., Van Dorselaer, A., and Viville, S. (2008) Nuclear proteome analysis of undifferentiated mouse embryonic stem and germ cells. Electrophoresis 29, 2381–2390

6. Jelinic, P., Stehle, J. C., and Shaw, P. (2006) The testis-specific factor CCTFL cooperates with the protein methyltransferase PRMT1 in H19 imprinting control region methylation. PLoS Biol. 4, e355

7. Gonsalvez, G. B., Praveen, K., Hicks, A. J., Tian, L., and Matera, A. G. (2008) Sm protein methylation is dispensable for snRNAP assembly in Dro sophila melanogaster. RNA 14, 878–887

8. Gonsalvez, G. B., Tian, L., Ospina, J. K., Boisvert, F. M., Lamond, A. I., and Matera, A. G. (2007) Two distinct arginine methyltransferases are required for biogenesis of Sm-class ribonucleoproteins. J. Cell Biol. 178, 733–740

9. Zheng, Z., Schmidt-Ott, K. M., Chua, S., Foster, K. A., Frankel, R. Z., Pavlidis, P., Barasch, J., D’Agati, V. D., and Gharavi, A. G. (2005) A Mendelian locus on chromosome 16 determines susceptibility to doxorubicin nephropathy in the mouse. Proc. Natl. Acad. Sci. USA. 102, 2520–2507

10. Verbiest, V., Montaudon, D., Tautu, M. T., Moukarzel, J., Portail, J. P., Markovits, J., Robert, J., Ichas, F., and Pourquier, P. (2008) Protein arginine (N)-methyltransferase 7 (PRMT7) as a potential target for the sensitization of tumor cells to camptothecins. FEBS Lett. 582, 1483–1489

11. Gros, L., Delaporte, C., Frey, S., Deseches, J., de Saint-Vincent, B. R., Cava, rec, L., Dubart, A., Dudkov, A. V., and Jacquier-Sablon, A. (2003) Identification of new drug sensitivity genes using genetic suppressor elements. Protein arginine N-methyltransferase mediates cell sensitivity to DNA-damaging agents. Cancer Res. 63, 164–171

12. Gros, L., Renodon-Cornière, A., de Saint Vincent, B. R., Feder, M., Bu jnicki, J. M., and Jacquier-Sablon, A. (2006) Characterization of prmt7α and β isoforms from Chinese hamster cells sensitive and resistant to topoisomerase II inhibitors. Biochim. Biophys. Acta 1760, 1646–1656

13. Bleibel, W. K., Duan, S., Huang, R. S., Kistner, E. O., Shukla, S. J., Wu, X., Badner, J. A., and Dolan, M. E. (2009) Identification of genomic regions contributing to etoposide-induced cytotoxicity. Hum. Genet. 125, 173–180

14. Thomassen, M., Tan, Q., and Kruse, T. A. (2009) Gene expression meta- analysis identifies chromosomal regions and candidate genes involved in breast cancer metastasis. Breast Cancer Res. Treat. 113, 239–249

15. Bedford, M. T., and Richard, S. (2005) Arginine methylation an emerging regulator of protein function. Mol. Cell 18, 263–272

16. Lakowski, T. M., and Frankel, A. (2009) Arginine methylation of human protein arginine N-methyltransferase 2. Formation of monomethyl- and asym-
metric dimethyl-arginine residues on histone H4. Biochem. J. 421, 253–261
17. Branscombe, T. L., Frankel, A., Lee, J. H., Cook, J. R., Yang, Z., Pestka, S., and Clarke, S. (2001) PRMT5 (Janus kinase-binding protein 1) catalyzes the formation of symmetric dimethylarginine residues in proteins. J. Biol. Chem. 276, 32971–32976
18. Fisk, J. C., Sayegh, J., Zurita-Lopez, C., Menon, S., Presnyak, V., Clarke, S. G., and Read, L. K. (2009) A type III protein arginine methyltransferase from the protozoan parasite Trypanosoma brucei. J. Biol. Chem. 284, 11590–11600
19. Miranda, T. B., Miranda, M., Frankel, A., and Clarke, S. (2004) PRMT7 is a member of the protein arginine methyltransferase family with a distinct substrate specificity. J. Biol. Chem. 279, 22902–22907
20. Lee, J. H., Cook, J. R., Yang, Z. H., Mirochnitchenko, O., Gunderson, S. I., Briggs, S. D., Allis, C. D., Wong, J., Tempst, P., and Zhang, Y. (2001) Methylation of histone H4 at arginine 3 facilitating transcriptional activation by a 40, 10217–10224
21. Castellano, S., Milite, C., Ragno, R., Simeoni, S., Mai, A., Limongelli, V., Novellino, E., Bauer, I., Brosch, G., Spannhoff, A., Cheng, D., Bedford, M. T., and Jho, E. H. (2011) Methylation by PRMT6-mediated methylation of R2 in histone H3 antagonizes H3 K4 trimethylation. J. Biol. Chem. 286, 11393–11401
22. Wang, H., Huang, Z. Q., Xia, L., Feng, Q., Erdjument-Bromage, H., Strahl, B. D., Briggs, S. D., Allis, C. D., Wong, I., Tempst, P., and Zhang, Y. (2001) PRMT7 Is a Type III PRMT. J. Biol. Chem. 276, 32971–32976
23. Takahashi, Y., Daitoku, H., Yokoyama, A., Nakayama, K., Kim, J. D., and Fukuizumi, A. (2001) The C elegans PRMT-3 possesses a type III protein arginine methyltransferase activity. J. Recept. Signal. Transduct. Res. 31, 168–172
24. Yang, Y., Lu, Y., Espejo, A., Wu, J., Xu, W., Liang, S., and Bedford, M. T. (2010) TDRD3 is an effector molecule for arginine-methylated histone marks. Mol. Cell 40, 1016–1023
25. Côté, J., and Richard, S. (2005) Tudor domains bind symmetrical dimethylated arginines. J. Biol. Chem. 280, 28476–28483
26. Lee, Y. H., Bedford, M. T., and Stallcup, M. R. (2011) Regulated recruitment of tumor suppressor BRCA1 to the p21 gene by coactivator methylation. Genes Dev. 25, 176–188
27. Zhang, X., and Cheng, X. (2003) Structure of the predominant protein arginine methyltransferase PRMT1 and analysis of its binding to substrate peptides. Structure 11, 509–520
28. Sun, L., Wang, M., Lv, Z., Yang, N., Liu, Y., Bao, S., Gong, W., and Xu, R. M. (2011) Structural insights into protein arginine symmetric dimethylation by PRMT5. Proc. Natl. Acad. Sci. U.S.A. 108, 20538–20543
29. Miranda, T. B., Webb, K. J., Martin, D. D., Reeves, R., and Clarke, S. (2005) PRMT7 is a member of the protein arginine methyltransferase family with a distinct substrate specificity. J. Biol. Chem. 279, 22902–22907
30. Lee, J., Sayegh, J., Webb, K., Cheng, D., Bedford, M. T., and Clarke, S. G. (2007) PRMT8, a new protein arginine methyltransferase, symmetrically dimethylates arginine residues. Biochem. Biophys. Res. Commun. 342, 472–481
31. Fiedelbach, N., Guardavaccaro, D., Neubert, K., Chan, T., Li, D., Feng, Q., Hutter, H., Pagano, M., and Antebi, A. (2007) DRE-1. An evolutionarily conserved F box protein that regulates C. elegans developmental age. Dev. Cell 12, 433–455
32. Gottschling, H., and Freese, E. (1962) A tritium isotope effect on ion exchange chromatography. Nature 196, 829–831
33. Chen, D., Ma, H., Hong, H., Koh, S. S., Huang, C. H., Schutter, B. T., Aswad, D. W., and Stallcup, M. R. (1999) Regulation of transcription by a protein methyltransferase. Science 284, 2174–2177
34. Bonham, K., Hemmers, S., Lim, Y. H., Hill, D. M., Finn, M. G., and Mowen, K. A. (2010) Effects of a novel arginine methyltransferase inhibitor on T-helper cell cytokine production. FEBS J. 277, 2096–2108
35. Iberget, A. N., Espejo, A., Cheng, D., Kim, D., Michaud-Levesque, J., Richard, S., and Bedford, M. T. (2008) Arginine methylation of the histone H3 tail impedes effector binding. J. Biol. Chem. 283, 3006–3010
36. Thomas, D., Lakowski, T. M., Pak, M. L., Kim, J. J., and Frankel, A. (2010) Förster resonance energy transfer measurements of cofactor-dependent effects on protein arginine N-methyltransferase homodimerization. Protein Sci. 19, 2141–2151
37. Castellano, S., Millite, C., Ragno, R., Simeoni, S., Mai, A., Limongelli, V., Novellino, E., Bauer, I., Brosch, G., Spannhoff, A., Cheng, D., Bedford, M. T., and Shardella, G. (2010) Design, synthesis, and biological evaluation of carboxy analogues of arginine methyltransferase inhibitor 1 (AM1-1). ChemMedChem. 5, 398–414
38. Wang, H., Huang, Z. Q., Xia, L., Feng, Q., Erdjument-Bromage, H., Strahl, B. D., Briggs, S. D., Allis, C. D., Wong, I., Tempst, P., and Zhang, Y. (2001) PRMT7 Is a Type III PRMT. J. Biol. Chem. 276, 32971–32976
39. Li, Y. J., Stallcup, M. R., and Lai, M. M. (2004) Hepatitis δ virus antigen is methylated at arginine residues, and methylation regulates subcellular localization and RNA replication. J. Virol. 78, 13325–13334
40. Hylus, D., Stein, C., Schnabel, K., Schultz, E., Imhof, A., Dou, Y., Hsieh, J., and Bauer, U. M. (2007) PRMT6-mediated methylation of R2 in histone H3 antagonizes H3 K4 trimethylation. Genes Dev. 21, 3369–3380
41. Xu, W., Chen, H., Du, K., Asahara, H., Tini, M., Emerson, B. M., Mottomy, M., and Evans, R. M. (2001) A transcriptional switch mediated by cofactor methylation. Science 294, 2507–2511
42. Cha, B., Kim, W., Kim, Y. K., Hwang, B. N., Park, S. Y., Yoon, I. W., Park, W. S., Choi, J. W., Bedford, M. T., and Jho, E. H. (2011) Methylation by protein arginine methyltransferase 1 increases stability of Axin, a negative regulator of Wnt signaling. Oncogene 30, 2379–2389
43. Rho, J., Choi, S., Seong, Y. R., Cho, W. K., Kim, S. H., and Im, D. S. (2001) Prmt5, which forms distinct homo-oligomers, is a member of the protein arginine methyltransferase family. J. Biol. Chem. 276, 11393–11401
44. Frankel, A., Yadav, N., Lee, J., Branscombe, T. L., Clarke, S., and Bedford, M. T. (2002) The novel human protein arginine N-methyltransferase PRMT6 is a nuclear enzyme displaying unique substrate specificity. J. Biol. Chem. 277, 3537–3543
45. Swierz, R., Person, M. D., and Bedford, M. T. (2005) Ribosomal protein S2 is a substrate for mammalian PRMT3 (protein arginine methyltransferase 3). Biochem. J. 386, 85–91
PRMT7 Is a Type III PRMT

56. Cheng, D., Yadav, N., King, R. W., Swanson, M. S., Weinstein, E. J., and Bedford, M. T. (2004) Small molecule regulators of protein arginine methyltransferases. *J. Biol. Chem.* 279, 23892–23899

57. Singh, V., Miranda, T. B., Jiang, W., Frankel, A., Roemer, M. E., Robb, V. A., Gutmann, D. H., Herschman, H. R., Clarke, S., and Newsham, I. F. (2004) DAL-1/4.1B tumor suppressor interacts with protein arginine N-methyltransferase 3 (PRMT3) and inhibits its ability to methylate substrates in vitro and in vivo. *Oncogene* 23, 7761–7771

58. Frankel, A., and Clarke, S. (2000) PRMT3 is a distinct member of the protein arginine N-methyltransferase family. Conferral of substrate specificity by a zinc finger domain. *J. Biol. Chem.* 275, 32974–32982

59. Schurter, B. T., Koh, S. S., Chen, D., Bunick, G. J., Harp, J. M., Hanson, B. L., Henschen-Edman, A., Mackay, D. R., Stallcup, M. R., and Aswad, D. W. (2001) Methylation of histone H3 by coactivator-associated arginine methyltransferase 1. *Biochemistry* 40, 5747–5756

60. Lee, Y. H., Koh, S. S., Zhang, X., Cheng, X., and Stallcup, M. R. (2002) Synergy among nuclear receptor coactivators. Selective requirement for protein methyltransferase and acetyltransferase activities. *Mol. Cell Biol.* 22, 3621–3632

61. Lee, J., and Bedford, M. T. (2002) PABP1 identified as an arginine methyltransferase substrate using high-density protein arrays. *EMBO Rep.* 3, 268–273

62. Cheng, D., and Bedford, M. T. (2011) Xenobiotics regulate the activity of arginine methyltransferases. *ChemBioChem* 12, 323–329

63. Pollack, B. P., Kotenko, S. V., He, W., Izotova, L. S., Barnoski, B. L., and Pestka, S. (1999) The human homologue of the yeast protein Skb1 and Hsl7p interacts with Jak kinases and contains protein methyltransferase activity. *J. Biol. Chem.* 274, 31531–31542

64. Liu, F., Zhao, X., Perna, F., Wang, L., Koppikar, P., Abdel-Wahab, O., Harr, M. W., Levine, R. L., Xu, H., Tehler, A., Deblasio, A., Hatlen, M., Menendez, S., and Nimer, S. D. (2011) JAK2V617F-mediated phosphorylation of PRMT5 down-regulates its methyltransferase activity and promotes myeloproliferation. *Cancer Cell* 19, 283–294

65. Zhao, Q., Bank, G., Tan, Y. T., Li, H., Moritz, R. L., Simpson, R. J., Cerruti, L., Curtis, D. J., Patel, D. J., Allis, C. D., Cunningham, J. M., and Jane, S. M. (2009) PRMT5-mediated methylation of histone H4R3 recruits DNMT3A, coupling histone and DNA methylation in gene silencing. *Nat. Struct. Mol. Biol.* 16, 304–311

66. Pal, S., Vishwanath, S. N., Erdjument-Bromage, H., Tempst, P., and Sif, S. (2004) Human SWI/SNF-associated PRMT5 methylates histone H3 arginine 8 and negatively regulates expression of ST7 and Nm23 tumor suppressor genes. *Mol. Cell Biol.* 24, 9630–9645

67. Lacroix, M., El Messaoudi, S., Rodier, G., Le Cam, A., Sardet, C., and Fabrizio, E. (2008) The histone-binding protein COPR5 is required for nuclear functions of the protein arginine methyltransferase PRMT5. *EMBO Rep.* 9, 452–458

68. Pesiridis, G. S., Diamond, E., and Van Duyne, G. D. (2009) Role of pICln in methylation of Sm proteins by PRMT5. *J. Biol. Chem.* 284, 21347–21359

69. Kim, S. J., Yoo, B. C., Uhm, C. S., and Lee, S. W. (2011) Post-translational arginine methylation of lamin A/C during myoblast fusion. *Biochim. Biophys. Acta* 1814, 308–317

70. Miranda, T. B., Khusial, P., Cook, J. R., Lee, J. H., Gunderson, S. I., Pestka, S., Zieve, G. W., and Clarke, S. (2004) Spliceosome Sm proteins D1, D3, and B/B′ are asymmetrically dimethylated at arginine residues in the nucleus. *Biochem. Biophys. Res. Commun.* 323, 382–387

71. Chuang, T. W., Peng, P. J., and Tarn, W. Y. (2011) The exon junction complex component Y14 modulates the activity of the methylosome in biogenesis of spliceosomal small nuclear ribonucleoproteins. *J. Biol. Chem.* 286, 8722–8728

72. Guccione, E., Bassi, C., Casadio, F., Martinato, M., Cesaroni, M., Schuchlautz, H., Lüscher, B., and Amati, B. (2007) Methylation of histone H3R2 by PRMT6 and H3K4 by an MLL complex are mutually exclusive. *Nature* 449, 933–937