Dexamethasone can potentiate the anti-ematic action of a 5HT₃ receptor antagonist on cyclophosphamide induced vomiting in the ferret

J. Hawthorn¹ & D. Cunningham²

¹Department of Physiology, St George's Hospital Medical School, London SW17 0RE, UK; and ²Section of Medicine, Institute of Cancer Research, Royal Marsden Hospital, Downs Road, Sutton, Surrey SM2 5PT, UK.

Summary A new group of selective 5HT₃ antagonists are proving to be effective anti-emetics for cytotoxic and radiation induced vomiting in both animal models and man. Current anti-emetic regimens often benefit from combination therapy, in particular the efficacy of metoclopramide (which can be a weak 5HT₃ antagonist), can be improved by combination with dexamethasone, another anti-emetic. Hence it was of interest to evaluate whether a 5HT₃ receptor antagonist GR38032F could be improved by combination with dexamethasone. The ferret was induced by cyclophosphamide in the ferret was observed after pre-treatment with dexamethasone alone or in combination with GR38032F. Animals were also observed for signs of ‘nausea’. Dexamethasone alone proved a weak anti-emetic in this system but did have significant effects on ‘nausea’. GR38032F has previously been shown to be capable of totally controlling emesis due to cyclophosphamide in the ferret. Here a dose of GR38032F that is not 100% effective was employed; this was shown to have effects on ‘nausea’ but most interestingly its anti-emetic action was increased by combination with dexamethasone. This may be important for the minority of patients whose vomiting is not completely controlled by GR38032F alone.

Nausea and emesis are the most distressing side-effects of cancer chemotherapy (Coates et al., 1983), causing anxiety, demoralisation of the patient and, in extreme cases, patient non-compliance (Laszlo, 1981). The actual trigger(s) causing this nausea and vomiting is complex, probably involving the direct effects of the drugs, their metabolites or substances which they release at both peripheral and central sites (for review see Andrews & Hawthorn, 1988).

One of the most effective and widely used anti-emetics is metoclopramide (for review see Gralla, 1983). Many anti-emetic regimens benefit from combination therapy and in this context the action of metoclopramide is enhanced by the concomitant administration of dexamethasone (Bruera et al., 1982; Allan et al., 1984; Palmer & Colls, 1987). However, even this combination is far from totally effective. Following the demonstration that metoclopramide was more effective at high doses (Gralla et al., 1981) and that high dose metoclopramide showed antagonism at the 5HT₃ receptor (Fozard, 1984) a new group of selective 5HT₃ receptor antagonists, then recently developed (Brittain et al., 1987; Fake et al., 1987; Fozard, 1984; Richardson et al., 1985) were investigated as possible anti-emetics. Their effectiveness has surpassed other anti-emetic therapies in both animal models (Miner & Sanger, 1986; Miner, Sanger & Turner, 1987; Hawthorn et al., 1988; Costall et al., 1986; Stables et al., 1987; Bermudez et al., 1988) and human studies (Cunningham et al., 1988; Liebendurg et al., 1988; Carmichael et al., 1988).

So far they have only been employed singly and hence it was of interest to evaluate whether the effect of a 5HT₃ receptor antagonist, GR38032F (Glaxo), against cyclophosphamide-induced vomiting in the ferret could be improved by combination with dexamethasone. The ferret is an animal that is well established for studies of emesis (Florczyk et al., 1982; Gylls & Gidda, 1986; Hawthorn et al., 1988; King, 1988; Tuor et al., 1988) shows behavioural perturbations which may indicate nausea (Bermudez et al., 1987; Hawthorn & Andrews, 1988) and is a good predictive model of anti-emetics for man (Miner et al., 1987). We employed a dose of GR38032F that had been established as effective in delaying but not reducing the emesis in this model (Stables et al., 1987) and observed whether this was influenced by dexamethasone. We also studied the effect of dexamethasone alone. As this anti-emetic has not been assessed in the ferret before, this would further extend our knowledge of the ferret as a suitable model for anti-emetic studies.

Materials and methods

Animals and drugs

The animals used were albino or fitch ferrets (Mustela putorius faro L.) of either sex weighing between 500 and 1,200 g. They were housed singly under a 12-h light cycle and fed ad libitum on a标准 carnivore diet. Food was withdrawn the night before experimentation. The following morning they were placed in a clear perspex observation pen (70 cm x 40 cm x 60 cm) and filmed on video tape in the absence of any observers. After a 40 min period the appropriate pre-treatment of GR38032F (Glaxo) or dexamethasone (Oradexon, Organon) was administered subcutaneously into the shoulder. GR38032F was dissolved in 154 mM NaCl, dexamethasone was supplied as the sodium phosphate in aqueous solution. The total injection volume was <1.0 ml.

The animals were returned to the observation pen and given milk to drink ad libitum; this facilitated subsequent observation of emesis. Filming continued for a further 30–40 min, after which they were injected intra-peritoneally with 200 mg kg⁻¹ cyclophosphamide; this is the ED₅₀ (in terms of producing emesis) in this species (Hawthorn et al., 1988). Cyclophosphamide (Sigma) was dissolved in alcohol (1 mg ml⁻¹) and diluted with 154 mM NaCl. The final injection volume was 2–3 ml. Filming was continued for a further 4 h after which the animals were killed by an overdose of pentobarbitone (Euthetal, May and Baker).

The groups investigated were controls, GR38032F 0.1 mg kg⁻¹ alone, dexamethasone at 2 mg kg⁻¹ or 5 mg kg⁻¹ and combinations of GR38032F 0.1 mg kg⁻¹ plus dexamethasone 2 mg kg⁻¹ or GR38032F 0.1 mg kg⁻¹ plus dexamethasone 5 mg kg⁻¹.

Analysis of video tapes

Later analyses of the video tapes quantified the number of retches and vomits and the times at which they occurred. The behaviour of the animals was assessed on a points system as described previously (Hawthorn & Andrews, 1988) and briefly outlined here. After considerable time analysing video tapes and timing the number of occasions on which behaviour occurred we were able to draw up a points system

Correspondence: D. Cunningham.
Received 22 May 1989; and in revised form 18 August 1989.
for rating nausea. A point was awarded for the presence of 'nausea-related' behaviour and for the absence of behaviour inhibited by 'nausea'. The positive behaviours were: slit eyed appearance, licking, lying with the chin down on the floor, running backwards, burrowing, walking on tiptoes, lying totally prostrate with hind limbs plantar flexed, assuming a posture like a recumbent 'S', walking while dragging their belly along the ground, pressing the nose up against the side of the pen, holding a very still position with the nose pointing up in the air, being unable to sleep comfortably and falling over. The behaviours scored for their absence were: standing on hind legs, grooming, rolling over, sniffing and playing with a drinking bowl. Using this system 'nausea' could be reliably and reproducibly scored in ferrets which had received emetic agents.

Control behaviour was assessed during the time period 20–40 min after the animals were placed in the observation pen. This allowed a 20 min initial period for the animal to become familiar with the pen. The 20 min period immediately following pre-treatment was used to assess the behavioural effects of GR38032F or dexamethasone. After administration of cyclophosphamide the first 20 min period was not analysed and the observations were made at 20–40 min, as 20 min corresponds to the latency for cyclophosphamide to induce emesis and the associated behavioural changes in this species.

The patterns of retching and vomiting were obtained by counting the number of retches or vomits that occurred in each 10 min time interval following administration of the cyclophosphamide, and taking an average of each 10 min 'bin' across groups. Total retches and vomits are quoted for the entire 4 h observation period. Values are given as the mean ± s.e.m. Even though the same animals were used for sequential observations the combination of data from various groups has necessitated the use of an unpaired t test.

Results

The amount of retching and vomiting in response to cyclophosphamide with or without anti-emetic pre-treatment is given in Table I. Control animals did not start to retch or vomit until 18.0 ± 3.2 (mean ± standard error) min after administration of the drug. GR38032F at 0.1 mg kg⁻¹ delayed the onset of retching and vomiting to 99.0 ± 3.2 and 121.2 ± 30.0 min respectively. The increases in latency were highly significant (P < 0.005 and P < 0.0005), although there was no significant reduction in the total number of retches or vomits over the 4 h observation period. The duration of action of this dose of GR38032F for complete inhibition of the retching and vomiting was 140 and 160 min respectively.

The lower dose of dexamethasone (2 mg kg⁻¹) tended to increase the number of retches and vomits and decrease the latency however this was not significant. The higher dose (5 mg kg⁻¹) also paradoxically reduced the latency to retch and vomit significantly (P < 0.05) and an initial early phase of vomiting was noted, although the total retches and vomits were reduced.

When the low dose of dexamethasone was administered with the GR38032F it had no apparent additional effect and the values obtained were very similar to those observed with GR38032F alone, showing the increased latency and only marginally decreased number of retches and vomits. In fact, the presence of GR38032F seemed to counteract the tendency for dexamethasone to decrease the latency and increase the amount of vomiting.

The higher dose of dexamethasone had a marked effect. Four animals were used in this group and one was completely protected, showing no retching or vomiting at all during the 4 h of observation. A second animal was protected for a considerable time and only had 15 retches and one vomit at 225 min. The other two animals both vomited but the total vomits (4.5 ± 2.4) were significantly reduced compared to the controls (P < 0.05).

The patterns of retching and vomiting are shown in Figures 1 and 2. By viewing the retches and vomits occurring in 10 min time intervals the effects of the various drug pre-treatments are more easily appreciated. Thus the ability of GR38032F at this low dose to delay, but not diminish, the retching and vomiting is quite clear. Dexamethasone at the high dose had a pronounced effect on the later stage of retching and especially vomiting. However, the effect of a combination of GR38032F at 0.1 mg kg⁻¹ and dexamethasone at 5 mg kg⁻¹ was the most dramatic.

Table II shows the effects of the various drug treatments on the 'nausea' experienced by the animals. The group receiving GR38032F plus the low dose of dexamethasone had not been filmed on video and thus nausea scores cannot be given for this group.

GR38032F (0.1 mg kg⁻¹) had a marked effect on the nausea scores at 20 min after injection of cyclophosphamide (5.5 ± 0.9 compared to controls of 12.6 ± 0.6). Part of this action is related to the ability of GR to delay the onset of emesis, as when the animals were evaluated at 100 min during periods of active emesis the nausea score was higher (7.0 ± 0.9), although this was still significantly reduced compared to controls at 20 min (P < 0.001).

Dexamethasone also markedly reduced nausea scores and this was dose related. These scores were measured at 20 min as the latency to vomit was not appreciably altered compared to controls and it is interesting to note that the scores are reduced even though the animals were vomiting. The most marked improvement in nausea was obtained with the combination of GR38032F and the high dose of dexamethasone compared to the controls both at 20 min (P < 0.0001) and 100 min (P < 0.0001). Although the 'nausea' score had increased by 100 min it was not significantly higher than at 20 min.

Table I

Retching and vomiting in response to cyclophosphamide in the presence of GR38032 and/or dexamethasone

	Total retches	Total vomits	Latency retch	Latency vomit
Control	95.4 ± 30.2	15.6 ± 3.0	18.0 ± 3.2	18.0 ± 3.2
(n = 8)				
GR 0.1 mg kg⁻¹	86.7 ± 30.8	12.5 ± 3.5	99.0 ± 31.1b	121.2 ± 30.0a
(n = 4)				
Dex 2 mg kg⁻¹	101.6 ± 29.4	21.0 ± 4.3	14.7 ± 3.5	14.4 ± 3.5
GR 0.1 mg kg⁻¹	74.0 ± 33.7	12.2 ± 5.2	108.0 ± 53.7ac	108.0 ± 53.7a
Dex 2 mg kg⁻¹				
(n = 4)				
Dex 5 mg kg⁻¹	86.0 ± 26.0	10.0 ± 3.3	7.6 ± 1.2a	8.5 ± 1.8
(n = 4)				
Dex 5 mg kg⁻¹	33.5 ± 15.5	4.5 ± 2.4a	84.7 ± 70.6	84.9 ± 60.6
GR 0.1 mg kg⁻¹	(4)	(4)	(3)	(3)

*P < 0.05 compared to control. **P < 0.0005 compared to control.

57 Dexamethasone Potentiation of Anti-emetic Action
Retching in response to cyclophosphamide 200 mg kg\(^{-1}\) i.p. alone or after pretreatment with varying doses of GR38032F or dexamethasone. The anti-emetics were given alone or in combination as shown on the graphs. Results are plotted as mean ± s.e.m. for the number of retches in each 10 min of the total observation period. The number of animals in each group is given in Table 1.

Figure 1 Retching in response to cyclophosphamide 200 mg kg\(^{-1}\) i.p. alone or after pretreatment with varying doses of GR38032F or dexamethasone.

Vomiting in response to cyclophosphamide 200 mg kg\(^{-1}\) i.p.

Figure 2 Vomiting in response to cyclophosphamide 200 mg kg\(^{-1}\) i.p. Details are as in Figure 1.
Table II Nausea scores produced by cyclophosphamide after various anti-emetic treatments

	Control	Plus cyclo at 20–40 min	Plus cyclo at 100–120 min
No treatment	3.1 ± 0.3a (15)	12.6 ± 0.6 (7)	
GR 0.1 mg kg-1	3.25 ± 1.1 (4)	5.5 ± 0.9a (4)	7.0 ± 0.9b (4)
Dex 2 mg kg-1	3.4 ± 0.6 (5)	10.2 ± 0.7a (5)	
Dex 5 mg kg-1	27.5 ± 0.25 (4)	5.2 ± 1.1a (4)	
GR/Dex 5 mg kg-1	2.25 ± 0.5 (4)	4.5 ± 0.5a (4)	6.7 ± 1.2b (4)

aP < 0.05 compared to cyclo alone. bP < 0.001 compared to cyclo alone.
BRUERA, E.D., ROCA, E., CEDARO, L., CHACON, R. & ESTEVAZ, R. (1983). Improved control of chemotherapy-induced emesis by the addition of dexamethasone to metoclopramide in patients resistant to metoclopramide. *Cancer Treat. Rep.*, 67, 381.

CARMICHAEL, J., CANTWELL, B.M.J., EDWARDS, C.M., RAPEPORT, W.G. & HARRIS, A.L. (1988). The serotonin type 3 receptor antagonist BRL43694 and nausea and vomiting induced by cisplatin. *Br. Med. J.*, 297, 110.

CARPENTER, D.O., BRIGGS, D.B., KNOX, A.P. & STROMINGER, N.L. (1986) Radiation induced emesis in the dog: effects of lesions and drugs. *Radiat. Res.*, 106, 307.

COATES, A., ABRAHAM, S., KAYE, S.B. & others (1983). On the receiving end – patient perception of the side effects of cancer chemotherapy. *Eur. J. Cancer Clin. Oncol.*, 19, 203.

COSTALL, B., DOMENEGY, A.M., NAYLOR, R.J. & TATTERSALL, F.D. (1986). 5-hydroxytryptamine M-receptor antagonist to prevent cis-platin induced emesis. *Neuropharmacology*, 25, 959.

CUNNINGHAM, D., HAWTHORN, J., POPLE, A. & others (1987). Prevention of emesis in patients receiving cytotoxic drugs by GR38032F, a selective 5HT3 receptor antagonist. *Lancet*, i, 1461.

CUNNINGHAM, D., TURNER, A., HAWTHORN, J. & ROISIN, R.D. (1989). Ondansetron with and without dexamethasone to treat chemotherapy induced emesis. *Lancet*, i, 1323.

FAKE, C.S., KING, F.D. & SANGER, G.J. (1987). BRL43694: a potent and novel 5HT3 receptor antagonist. *Br. J. Pharmacol. Proc. Suppl.*, 91, 335P.

FLORCYCK, A.P., SCHURIG, J.E. & BRADNER, W.T. (1982). Cis-platin-induced emesis in the ferret: a new animal model. *Cancer Treat. Rep.*, 66, 187.

FOXO, G. (1983). Neuronal 5-HT receptors in the periphery. *Neuropharmacology*, 23, 1473.

GRALLA, R.J. (1983). Metoclopramide: a review of anti-emetic trials. *Drugs*, 25 (suppl.) 63.

GRALLA, R.J., ITRI, L.M., PISKO, S.E. et al. (1981). Anti-emetic efficacy of high dose metoclopramide: randomized trials with placebo and prochlorperazine in patients with chemotherapy induced nausea and vomiting. *N. Engl. J. Med.*, 305, 905.

GYLVS, J.A. & GIDDA, I.S. (1986). Radiation induced emesis in ferrets: an experimental model of emesis. *Gastroenterology*, 90, 1446.

HAWTHORN, J. & ANDREWS, P.L.R. (1988). Can nausea be measured in animals? In *Proceedings of the symposium, Nausea and Vomiting a Multidisciplinary Perspective*, p. 31. Satellite Symposium of American Neuroscience Association: Ottawa.

HAWTHORN, J., OSTLER, K.J. & ANDREWS, P.L.R. (1988). The role of the abdominal visceral innervation and 5-HT3-M receptors in vomiting induced by the cytotoxic drugs cyclophosphamide and cis-platin in the ferret. *J. Physiol.*, 73, 7.

KING, G.L. (1988). Characterisation of radiation induced emesis in the ferret. *Radiat. Res.*, 114, 599.

LASZLO, J. (1983). Emesis as a limiting toxicity in cancer chemotherapy. In *Anti-emetics and Cancer Chemotherapy*, Lazlo, J. (ed) p. 1. Williams & Wilkins: Baltimore.

LEBRINOUDGUT, U. & LANCRANJAN, I. (1987). First results with ICS 205–930 (SH7, receptor antagonist) in prevention of chemotherapy-induced emesis *Lancet*, i, 1198.

LIVREA, P., TROJANO, M., SIMONE, I.L. & others (1985). Acute changes in blood-CSF barrier permeability to serum proteins after intrathecal methotrexate and CNS irradiation. *J. Neurol.*, 231, 336.

MINER, W.D. & SANGER, G.J. (1968). Inhibition of cis-platin induced vomiting by selective 5-hydroxytryptamine M-receptor antagonism. *Br. J. Pharmacol.*, 88, 491.

MINER, W.D., SANGER, G.J. & TURNER, D.H. (1986). Comparison of the effect of BRL24924, metoclopramide and domperidone on cis-platin induced emesis in the ferret. *Br. J. Pharmacol.*, 88, 374P.

PALMER, M.C. & COLLS, B.M. (1987). Amelioration of cytotoxic-induced emesis with high-dose metoclopramide, dexamethasone and lorazepam. *Cancer Chemother. Pharmacol.*, 19, 331.

POLLERA, C.F., NARDI, M., MAROLLA, P. & CARLINI, P. (1987). A randomized trial comparing alizapride alone or with dexamethasone vs a metoclopramide-dexamethasone combination for emesis induced by moderate dose cisplatin. *Cancer Chemother. Pharmacol.*, 19, 335.

PREISTMAN, T., CHALLONER, T., BUTCHER, M. & PREISTMAN, S. (1988). Control of radiation induced emesis with GR38032F. *Proc. Am. Soc. Clin. Oncol.*, 7, 281.

RICH, W.H., ABDULHAYOGLU, G. & DISAI, P.J. (1980). Methylprednisolone as an anti-emetic during cancer chemotherapy – a pilot study. *Gynecol. Oncol.*, 9, 193.

RICHARDSON, B.P., ENGEL, G., DONATSCH, P. & STADLER, P.A. (1985). Identification of serotonin M-receptor subtypes and their specific blockade by a new class of drugs. *Nature*, 316, 126.

STABLES, R., ANDREWS, P.L.R., BAILEY, H.E. & others (1987). Anti-emetic properties of the SH7-receptor antagonist, GR38032F. *Cancer Treat. Rev.*, 14, 94.

STRYKER, J.A., DEMERS, L.M. & MORTEL, R. (1979). Prophylactic ibuprofen administration during pelvic irradiation. *Int. J. Radiat. Oncol. Biol. Phys.*, 5, 2049.

TUOR, U.I., KONDYSAR, M.H. & HARDING, R.K. (1988). Emesis radiation exposure, and local cerebral blood flow in the ferret. *Radiat. Res.*, 114, 532.