A curious differential calculus on the quantum disc and cones

Tomasz Brzeziński and Ludwik Dąbrowski

Abstract. A non-classical differential calculus on the quantum disc and cones is constructed and the associated integral is calculated.

Mathematics Subject Classification (2010). Primary 58B32.

Keywords. non-commutative geometry; differential forms; integral forms.

1. Introduction

The aim of this note is to present a two-dimensional differential calculus on the quantum disc algebra, which has no counterpart in the classical limit, but admits a well-defined (albeit different from the one in [2]) integral, and restricts properly to the quantum cone algebras. In this way the results of [3] are extended to other classes of non-commutative surfaces and to higher forms. The presented calculus is associated to an orthogonal pair of skew-derivations, which arise as a particular example of skew-derivations on generalized Weyl algebras constructed recently in [1]. It is also a fundamental ingredient in the construction of the Dirac operator on the quantum cone [6] that admits a twisted real structure in the sense of [5].

The reader unfamiliar with non-commutative differential geometry notions is referred to [4].

2. A differential calculus on the quantum disc

Let $0 < q < 1$. The coordinate algebra of the quantum disc, or the quantum disc algebra $\mathcal{O}(D_q)$ [8] is a complex $*$-algebra generated by z subject to

$$z^*z - q^2zz^* = 1 - q^2. \tag{2.1}$$

To describe the algebraic contents of $\mathcal{O}(D_q)$ it is convenient to introduce a self-adjoint element $x = 1 - zz^*$, which q^2-commutes with the generator of $\mathcal{O}(D_q)$, $xz = q^2zx$. A linear basis of $\mathcal{O}(D_q)$ is given by monomials x^kz^l, x^kz^l*. We view $\mathcal{O}(D_q)$ as a \mathbb{Z}-graded algebra, setting $\deg(z) = 1,$
$\deg(z^*) = -1$. Associated with this grading is the degree-counting automorphism $\sigma : \mathcal{O}(D_q) \to \mathcal{O}(D_q)$, defined on homogeneous $a \in \mathcal{O}(D_q)$ by $\sigma(a) = q^{2\deg(a)}a$. As explained in [1] there is an orthogonal pair of skew-derivations $\partial, \bar{\partial} : \mathcal{O}(D_q) \to \mathcal{O}(D_q)$ twisted by σ and given on the generators of $\mathcal{O}(D_q)$ by

$$\partial(z) = z^*, \quad \partial(z^*) = 0, \quad \bar{\partial}(z) = 0, \quad \bar{\partial}(z^*) = q^2z,$$

(2.2)

and extended to the whole of $\mathcal{O}(D_q)$ by the (right) σ-twisted Leibniz rule. Therefore, there is also a corresponding first-order differential calculus $\Omega^1(D_q)$ on $\mathcal{O}(D_q)$, defined as follows.

As a left $\mathcal{O}(D_q)$-module, $\Omega^1(D_q)$ is freely generated by one forms $\omega, \bar{\omega}$. The right $\mathcal{O}(D_q)$-module structure and the differential $d : \mathcal{O}(D_q) \to \Omega^1(D_q)$ are defined by

$$\omega a = \sigma(a) \omega, \quad \bar{\omega} a = \sigma(a) \bar{\omega}, \quad d(a) = \partial(a) \omega + \bar{\partial}(a) \bar{\omega}. \quad (2.3)$$

In particular,

$$dz = z^* \omega = q^2 z \omega^*, \quad dz^* = q^2 z^* \bar{\omega} = \bar{\omega} z,$$

(2.4)

and so, by the commutation rules (2.3),

$$\omega = \frac{q^{-2}}{1-q^2} (dzz - q^4 zdz), \quad \bar{\omega} = \frac{q^{-2}}{1-q^2} (z^* dz^* - q^2 dz^* z^*). \quad (2.5)$$

Hence $\Omega^1(D_q) = \{ \sum_i a_i db_i \mid a_i, b_i \in \mathcal{O}(D_q) \}$, i.e. $(\Omega^1(D_q), d)$ is truly a first-order differential calculus not just a degree-one part of a differential graded algebra. The appearance of $q^2 - 1$ in the denominators in (2.5) indicates that this calculus has no classical (i.e. $q = 1$) counterpart.

The first-order calculus $(\Omega^1(D_q), d)$ is a $*$-calculus in the sense that the $*$-structure extends to the bimodule $\Omega^1(D_q)$ so that $(\nu b)^* = b^* \nu^* a^*$ and $(da)^* = d(a^*)$, for all $a, b \in \mathcal{O}(D_q)$ and $\nu \in \Omega^1(D_q)$, provided $\omega^* = \bar{\omega}$ (this choice of the $*$-structure justifies the appearance of q^2 in the definition of $\bar{\partial}$ in equation (2.2)). From now on we view $(\Omega^1(D_q), d)$ as a $*$-calculus, which allows us to reduce by half the number of necessary checks.

Next we aim to show that the module of 2-forms $\Omega^2(D_q)$ obtained by the universal extension of $\Omega^1(D_q)$ is generated by the anti-self-adjoint 2-form

$$\nu = \frac{q^{-6}}{q^2 - 1} (\omega^* \omega + q^8 \omega \omega^*), \quad \nu^* = -\nu \quad (2.6)$$

and to describe the structure of $\Omega^2(D_q)$. By (2.3), for all $a \in \mathcal{O}(D_q)$,

$$va = \sigma^2(a) v. \quad (2.7)$$

Combining commutation rules (2.3) with the relations (2.4) we obtain

$$z^* dz = q^2 dzz^*, \quad dzz - q^4 zdz = q^2 (1-q^2) \omega, \quad (2.8)$$

\footnote{One should remember that the $*$-conjugation takes into account the parity of the forms; see [3].}
A curious differential calculus on the quantum disc and cones

and their $*$-conjugates. The differentiation of the first of equations (2.8) together with (2.3) and (2.1) yield

$$\omega^* \omega = (1 - x)v, \quad \omega \omega^* = q^6(q^2x - 1)v, \quad (2.9)$$

which means that $\omega^* \omega$ and $\omega \omega^*$ are in the module generated by v. Next, by differentiating $\omega z^* = q^{-2}z^* \omega$ and $\omega z = q^2z \omega$ and using (2.4) and (2.3) one obtains

$$d\omega z^* = q^{-2}z^* dw + z(\omega^* \omega + q^4 \omega \omega^*), \quad d\omega z = q^2zd \omega + (q^2 + q^{-2})z^* \omega^2. \quad (2.10)$$

The differentiation of $dz = z^* \omega$ yields

$$z^* dw = -q^2z^* \omega. \quad (2.11)$$

Multiplying this relation by z from left and right, and using commutation rules (2.1) and (2.3) one finds that $(1 - x)d \omega = q^{-4}z^* d \omega z$. Developing the right hand side of this equality with the help of the second of equations (2.10) we find

$$d \omega = 1 + \frac{q^{-4}}{q^2 - 1} z^* \omega^2. \quad (2.12)$$

Combining (2.10) with (2.12) we can derive

$$z^3 \omega^2 = -z \frac{q^8}{q^4 + 1}(\omega^* \omega + q^4 \omega \omega^*). \quad (2.13)$$

The multiplication of (2.13) by z^3 from the left and right and the usage of (2.1), (2.3) give

$$(1 - q^{2}x)(1 - q^{-4}x)(1 - q^{-6}x)\omega^2 = -\frac{q^8}{q^4 + 1}z^4 (\omega^* \omega + q^4 \omega \omega^*), \quad (2.14a)$$

$$(1 - q^{4}x)(1 - q^2x)(1 - q^6x)\omega^2 = -\frac{q^8}{q^4 + 1}z^4 (\omega^* \omega + q^4 \omega \omega^*). \quad (2.14b)$$

Comparing the left hand sides of equations (2.14), we conclude that

$$x \omega^2 = 0 = \omega^2 x \quad \text{and, by } *\text{-conjugation,} \quad x \omega^* \omega = 0 = \omega^* \omega x, \quad (2.15)$$

and hence in view of either of (2.14)

$$\omega^2 = -\frac{q^8}{q^4 + 1}z^4 (\omega^* \omega + q^4 \omega \omega^*). \quad (2.16)$$

By (2.9), the right hand side of (2.16) is in the module generated by v, and so is ω^2 and its adjoint $\omega^* \omega^2$. Thus, the module $\Omega^2(D_q)$ spanned by all products of pairs of one-forms is indeed generated by v.

Multiplying (2.12) and (2.11) by x and using relations (2.15) we obtain

$$xz \omega^* \omega = 0 = \omega^* \omega xz. \quad (2.17)$$

Following the same steps but now starting with the differentiation of $dz^* = q^2z^* \omega$ (see (2.4)), we obtain the complementary relation

$$xz \omega \omega^* = 0 = \omega \omega^* xz. \quad (2.18)$$

In view of the definition of v, (2.17) and (2.18) yield $xzv = 0 = vzx$. Next, the multiplication of, say, the first of these equations from the left and right
by \(z^* \) and the use of (2.1) yield \(x(1-x)v = 0 \) and \(x(1-q^2x)v = 0 \). The subtraction of one of these equations from the suitable scalar multiple of the other produces the necessary relation

\[
xv = 0 = vx,
\]

(2.19)

which fully characterises the structure of \(\Omega^2(D_q) \) as an \(\mathcal{O}(D_q) \)-module generated by \(v \). In the light of (2.19), the \(\mathbb{C} \)-basis of \(\Omega^2(D_q) \) consists of elements \(vz^n, vz^{*m} \), and hence, for all \(w \in \Omega^2(D_q) \), \(wx = xw = 0 \), i.e., \(\Omega^2(D_q) \) is a torsion (as a left and right \(\mathcal{O}(D_q) \)-module). Since \(\mathcal{O}(D_q) \) is a domain and \(\Omega^2(D_q) \) is a torsion, the dual of \(\Omega^2(D_q) \) is the zero module, hence, in particular \(\Omega^2(D_q) \) is not projective. Again by (2.19), the annihilator of \(\Omega^2(D_q) \),

\[
\text{Ann}(\Omega^2(D_q)) := \{ a \in \mathcal{O}(D_q) \mid \forall w \in \Omega^2(D_q), aw = wa = 0 \},
\]

is the ideal of \(\mathcal{O}(D_q) \) generated by \(x \). The quotient \(\mathcal{O}(D_q)/\text{Ann}(\Omega^2(D_q)) \) is the Laurent polynomial ring in one variable, i.e. the algebra \(\mathcal{O}(S^1) \) of coordinate functions on the circle. When viewed as a module over \(\mathcal{O}(S^1) \), \(\Omega^2(D_q) \) is free of rank one, generated by \(v \). Thus, although the module of 2-forms over \(\mathcal{O}(D_q) \) is neither free nor projective, it can be identified with sections of a trivial line bundle once pulled back to the (classical) boundary of the quantum disc.

With (2.19) at hand, equations (2.9), (2.16), (2.12) and their \(* \)-conjugates give the following relations in \(\Omega^2(D_q) \)

\[
d\omega = q^8 z^2 \omega, \quad d\omega^* = -z^{2*} \omega, \quad \omega^* \omega = q^{6} \omega, \quad \omega^2 = q^{12} z^4 \omega, \quad \omega^{*2} = q^{-4} z^{4*} \omega.
\]

(2.20a)

(2.20b)

One can easily check that (2.20), (2.19) and (2.7) are consistent with (2.3) with no further restrictions on \(v \). Setting \(\Omega^n(D_q) = 0 \), for all \(n > 2 \), we thus obtain a 2-dimensional calculus on the quantum disc.

3. Differential calculus on the quantum cone

The quantum cone algebra \(\mathcal{O}(C_q^N) \) is a subalgebra of \(\mathcal{O}(D_q) \) consisting of all elements of the \(\mathbb{Z} \)-degree congruent to 0 modulo a positive natural number \(N \). Obviously \(\mathcal{O}(C_q^1) = \mathcal{O}(D_q) \), the case we dealt with in the preceding section, so we may assume \(N > 1 \). \(\mathcal{O}(C_q^N) \) is a \(* \)-algebra generated by the self-adjoint \(x = 1 - zz^* \) and by \(y = z^N \), which satisfy the following commutation rules

\[
xy = q^{2N}yx, \quad yy^* = \prod_{l=0}^{N-1} (1 - q^{-2l}x), \quad y^*y = \prod_{l=1}^{N} (1 - q^{2l}x).
\]

(3.1)

The calculus \(\Omega(C_q^N) \) on \(\mathcal{O}(C_q^N) \) is obtained by restricting of the calculus \(\Omega(D_q) \), i.e. \(\Omega^n(C_q^N) = \{ \sum a_i^0 d(a_1^1) \cdots d(a_n^1)a_{n+1} \mid a_i^j \in \mathcal{O}(C_q^N) \} \). Since \(d \) is a degree-zero map \(\Omega(C_q^N) \) contains only these forms in \(\Omega(D_q) \), whose \(\mathbb{Z} \)-degree is a multiple of \(N \). We will show that all such forms are in \(\Omega(C_q^N) \). Since \(\deg(\omega) = 2, \deg(\omega^*) = -2 \) and \(\deg(\nu) = 0 \), this is equivalent to

\[
\Omega^1(C_q^N) = \mathcal{O}(D_q) \omega \oplus \mathcal{O}(D_q) \omega^*, \quad \Omega^2(C_q^N) = \mathcal{O}(C_q^N) \nu,
\]
where \(O(D_q)_{\mathbb{Z}} = \{ a \in O(D_q) \mid \deg(a) \equiv s \mod N \} \).

As an \(O(C_q^N) \)-module, \(O(D_q)_{\mathbb{Z}} \) is generated by \(z^{N-2} \) and \(z^* \), hence to show that \(O(D_q)_{\mathbb{Z}} \omega \subseteq \Omega^1(C_q^N) \) suffices it to prove that \(z^{N-2} \omega, z^* \omega \in \Omega^1(C_q^N) \). Using the Leibniz rule one easily finds that

\[
dy = \left([N; q^2] - q^{-2N+4} [N; q^4] x\right) z^{N-2} \omega, \tag{3.2a}
\]

where \([n; s] := \frac{s^n - 1}{s - 1}\). Hence, in view of (2.1) and (2.3),

\[
y^* dy = [N; q^2] \left(1 - q^4 \frac{[N; q^4]}{[N; q^2]} x\right) \prod_{l=3}^{N} (1 - q^{2l} x) z^{*2} \omega, \tag{3.2b}
\]

The polynomial in \(x \) on the right hand side of (3.2a) has roots in common with the polynomial on the right hand side of (3.2b) if and only if there exists an integer \(k \in [-2N + 2, -N - 1] \cup [2, N - 1] \) such that

\[q^{2k}(q^{2N} + 1) = q^2 + 1. \tag{3.3}\]

Equation (3.3) is equivalent to \(q^{2} [N + k - 1; q^2] + [k; q^2] = 0 \), with the left hand side strictly positive if \(k > 0 \) and strictly negative if \(k \leq -N \). So, there are no solutions within the required range of values of \(k \). Hence the polynomials (3.2a), (3.2b) are coprime, and so there exists a polynomial (in \(x \)) combination of the left hand sides of equations (3.2) that gives \(z^{*2} \omega \). This combination is an element of \(\Omega^1(C_q^N) \) and so is \(z^{*2} \omega \). Next,

\[
z^{*2} \omega y = q^{2N} (1 - q^2 x)(1 - q^4 x) z^{N-2} \omega, \\
y z^{*2} \omega = (1 - q^{-2N+4} x)(1 - q^{-2N+2} x) z^{N-2} \omega,
\]

so again there is an \(x \)-polynomial combination of the left hand sides (which are already in \(\Omega^1(C_q^N) \)) giving \(z^{N-2} \omega \). Therefore, \(O(D_q)_{\mathbb{Z}} \omega \subseteq \Omega^1(C_q^N) \). The case of \(O(D_q)_{\mathbb{Z}} \) follows by the \(* \)-conjugation.

Since \(z^2 \omega^* \), \(z^* \omega \) are elements of \(\Omega^1(C_q^N) \),

\[
\Omega^2(C_q^N) \ni z^2 \omega^* z^{*2} \omega = q^{-4}(1 - x)(1 - q^{-2} x) \omega^* \omega = -q^2 \nu, \tag{3.4}
\]

by the quantum disc relations and (2.20) and (2.19). Consequently, \(\nu \in \Omega^2(C_q^N) \). Therefore, \(\Omega(C_q^N) \) can be identified with the subspace of \(\Omega(D_q) \), of all the elements whose \(\mathbb{Z} \)-degree is a multiple of \(N \).

4. The integral

Here we construct an algebraic integral associated to the calculus constructed in Section 2. We start by observing that since \(\sigma \) preserves the \(\mathbb{Z} \)-degrees of elements of \(O(D_q) \) and \(\partial \) and \(\partial \) satisfy the \(\sigma \)-twisted Leibniz rules, the definition (2.2) implies that \(\partial \) lowers while \(\partial \) raises degrees by 2. Hence, one can equip \(\Omega^1(D_q) \) with the \(\mathbb{Z} \)-grading so that \(d \) is the degree zero map,
provided \(\deg(\omega) = 2, \deg(\omega^*) = -2 \). Furthermore, in view of the definition of \(\sigma \), one easily finds that
\[
\sigma^{-1} \circ \partial \circ \sigma = q^4 \partial, \quad \sigma^{-1} \circ \bar{\partial} \circ \sigma = q^{-4} \bar{\partial},
\]
i.e. \(\partial \) is a \(q^4 \)-derivation and \(\bar{\partial} \) is a \(q^{-4} \)-derivation. Therefore, by [2], \(\Omega(D_q) \) admits a divergence, for all right \(\Omega(D_q) \)-linear maps \(f : \Omega^1(D_q) \rightarrow \Omega(D_q) \), given by
\[
\nabla_0(f) = q^4 \partial (f(\omega)) + q^{-4} \bar{\partial} (f(\omega^*)).
\]
Since the \(\Omega(D_q) \)-module \(\Omega^2(D_q) \) has a trivial dual, \(\nabla_0 \) is flat. Recall that by the integral associated to \(\nabla_0 \) we understand the cokernel map of \(\nabla_0 \).

Theorem 4.1. The integral associated to the divergence (4.2) is a map \(\Lambda : \Omega(D_q) \rightarrow \mathbb{C} \), given by
\[
\Lambda(x^k z^l) = \lambda \frac{(k+1; q^2)}{[k+1; q^4]} \delta_{l,0}, \quad \text{for all } k \in \mathbb{N}, \ l \in \mathbb{Z},
\]
where, for \(l < 0 \), \(z^l \) means \(z^{*-l} \) and \(\lambda \in \mathbb{C} \).

Proof. First we need to calculate the image of \(\nabla_0 \). Using the twisted Leibniz rule and the quantum disc algebra commutation rules (2.1), one obtains
\[
\partial(x^k) = -q^{-2} [k; q^4] x^{k-1} z^{*2}.
\]
Since \(\partial(z^*) = 0 \), (4.4) means that all monomials \(x^k z^t z^{*2} \) are in the image of \(\partial \) hence in the image of \(\nabla_0 \). Using the \(*\)-conjugation we conclude the \(x^k z^t z^{*2} \) are in the image of \(\bar{\partial} \) hence in the image of \(\nabla_0 \). So \(\Lambda \) vanishes on (linear combinations of) all such polynomials. Next note that
\[
\partial(z^2) = (q^2 + 1) - (q^4 + 1)x,
\]
hence
\[
\partial(z^* z^2 - q^4 z^2 z^*) = (1 - q^4)z^*, \quad \partial(z^* z^2 - q^2 z^2 z^*) = (1 - q^2)(1 + q^4)xz^*.
\]
This means that \(z^* \) and \(xz^* \) are in the image of \(\partial \), hence of \(\nabla_0 \). In fact, all the \(x^k z^* \) are in this image which can be shown inductively. Assume \(x^k z^* \in \text{Im}(\partial) \), for all \(k \leq n \). Then using the twisted Leibniz rule, (4.4) and (4.5) one finds
\[
\partial(x^n z^2) = -q^2 [N; q^4] x^{n-1} + (q^2 + 1) [n + 1; q^4] x^n - [n + 2; q^4] x^{n+1}.
\]
Since \(\partial(z^*) = 0 \), equation (4.6) implies that \(\partial(z^n z^2 z^*) \) is a linear combination of monomials \(x^{n-1} z^*, x^n z^* \) and \(x^{n+1} z^* \). Since the first two are in the image of \(\partial \) by the inductive assumption, so is the third one. Therefore, all linear combinations of \(x^k z^* \) and \(x^k z \) (by the \(*\)-conjugation) are in the image of \(\nabla_0 \).

Put together all this means that \(\Lambda \) vanishes on all the polynomials \(\sum_{k,l=1}^{n} (c_{kl} x^k z^l + c'_{kl} x^k z^* l) \). The rest of the formula (4.3) can be proven by induction. Set \(\lambda = \Lambda(1) \). Since \(\Lambda \) vanishes on all elements in the image of \(\nabla_0 \), hence also in the image of \(\partial \), the application of \(\Lambda \) to the right hand side of (4.4) confirms (4.3) for \(k = 1 \). Now assume that (4.3) is true for all \(k \leq n \).
Then the application Λ to the right hand side of (4.6) followed by the use of the inductive assumption yields

$$
[n + 2; q^4] \Lambda (x^{n+1}) = q^2 [N; q^4] \Lambda (x^{n-1}) - (q^2 + 1) [n + 1; q^4] \Lambda (x^n)
$$

$$
= \lambda ((q^2 + 1) [n + 1; q^2] - q^2 [n; q^2]) = \lambda [n + 2; q^2].
$$

Therefore, the formula (4.3) is true also for $n + 1$, as required.

The restriction of Λ to the elements of $O(D_q)$, whose \mathbb{Z}-degree is a multiple of N gives an integral on the quantum cone $O(C_q^N)$.

Acknowledgment

The work on this project began during the first author’s visit to SISSA, supported by INdAM-GNFM. He would like to thank the members of SISSA for hospitality. The second author was supported in part by the Simons Foundation grant 346300 and the Polish Government MNiSW 2015-2019 matching fund.

References

[1] A. Almulhem & T. Brzeziński, *Skew derivations on generalized Weyl algebras*. arXiv:1610.03282 (2016).

[2] E.J. Beggs & S. Majid, *Spectral triples from bimodule connections and Chern connections*. J. Noncommut. Geom. to appear, arXiv:1508.04808v2, (2015).

[3] T. Brzeziński, *Non-commutative differential geometry of generalized Weyl algebras*. SIGMA Symmetry Integrability Geom. Methods Appl. 12 (2016), 059.

[4] T. Brzeziński, *Differential and integral forms on non-commutative algebras*. arXiv:1611.01016 (2016).

[5] T. Brzeziński, N. Ciccoli, L. Dąbrowski & A. Sitarz, *Twisted reality condition for Dirac operators*. Math. Phys. Anal. Geom. 19 (2016), 19:16.

[6] T. Brzeziński & L. Dąbrowski, *In preparation*.

[7] T. Brzeziński, L. El Kaoutit & C. Lomp, *Non-commutative integral forms and twisted multi-derivations*. J. Noncommut. Geom. 4 (2010), 281–312.

[8] S. Klimek & A. Lesniewski, *A two-parameter quantum deformation of the unit disc*. J. Funct. Anal. 115 (1993), 1–23.

[9] S.L. Woronowicz, *Differential calculus on compact matrix pseudogroups (quantum groups)*. Comm. Math. Phys. 122 (1989), 125–170.

Tomasz Brzeziński
Department of Mathematics, Swansea University, Swansea SA2 8PP, U.K.
Department of Mathematics, University of Białystok, K. Ciółkowskiego 1M, 15-245 Białystok, Poland. E-mail: T.Brzezinski@swansea.ac.uk

Ludwik Dąbrowski
SISSA, Via Bonomea 265, 34136 Trieste, Italy. E-mail: dabrow@sissa.it