Functional Equation and Its Modular Stability With and Without Δ_p–Condition

Murali Ramdossa, Divyakumari Pachaiyappana, Hemen Duttab

aPG and Research Department of Mathematics, Sacred Heart College (Autonomous), Tirupattur-635 601, TamilNadu, India.
bDepartment of Mathematics, Gauhati University, Guwahati-781014, Assam, India.

Abstract. Mixed type is a further step of development in functional equations. In this paper, the authors made an attempt to introduce such equation of the following form with its general solution

$$h(py + z) + h(py - z) + h(y + pz) + h(y - pz) = (p + p^2)[h(y + z) + h(y - z)] + 2h(py) - 2(p^2 + p - 1)h(y)$$

for all $y, z \in \mathbb{R}, p \neq 0, \pm 1$. Also, without Fatou property authors investigate its various stabilities related to Ulam problem in modular space by considering with and without Δ_p–condition.

1. Introduction

For the detailed study on Ulam problem and its recent developments called generalized Hyers-Ulam-Rassias stability, one can refer [1, 8, 11]. In 1950, Nakano [7] established the modular linear spaces and further developed by many authors, one can refer [5, 6, 9]. The definitions related to our main theorem related to modular space can be referred in [3, 4].

In 2015, Abasalt Bodaghi et al.[1] investigated the stabilities of following mixed type equation

$$h(3y + z) - 5h(2y + z) + h(2y - z) + 10h(y + z) - 5h(y - z) = 10h(z) + 4h(2y) - 8h(y)$$

for all $y, z \in \mathbb{R}$.

In 2016, Pasupathi Narasimman et al.[8] introduced the equations quintic and sextic, respectively of the form

$$p[h(py - z) + h(py + z)] + h(y - pz) + h(y + pz)$$

$$= (p^4 + p^2)[h(y - z) + h(y + z)] + 2(p^6 - p^4 - p^2 + 1)h(y),$$

$$h(py - z) + h(py + z) + h(y - pz) + h(y + pz)$$

$$= (p^4 + p^2)[h(y - z) + h(y + z)] + 2(p^6 - p^4 - p^2 + 1)[h(y) + h(z)]$$

with $p \in \mathbb{R} - \{0, \pm 1\}$ also discussed their various stabilities related to Ulam problem.
In 2017, authors Hark-Mahn Kim and Young Soon Hong [2] investigated the alternative stability theorem in a modular space using Δ_3-condition of a modified quadratic equation.

In 2019, authors John Michael Rassias, Hemen Dutta and Narasimman Pasupathi [10] investigated Ulam stability problem in non-Archimedean intuitionistic fuzzy normed spaces of the generalized quartic equation

\[h(py-z) + h(py+z) + h(y-pz) + h(y+pz) = 2p^2[h(y-z) + h(y+z)] + 2(p^2 - 1)^2[h(y) + h(z)] \]

where \(p \neq 0, \pm 1 \). Motivation from the above literature, the authors made an attempt to introduce a new mixed type equation satisfied by \(h(x) = x + x^3 \) of the form

\[h(py-z) + h(py+z) + h(y-pz) + h(y+pz) = (p + p^3)[h(y-z) + h(y+z)] - 2(p^2 - 1)h(y) \]

for all \(y, z \in \mathbb{R} \), \(p \neq 0, \pm 1 \). Mainly, authors investigate various stabilities concerning Ulam problem in modular spaces and its general solution.

In Section-2 and Section-3, authors obtain the solution of (1) in additive case and cubic case, respectively. Authors provide the various stabilities of equation (1) in modular space in Sections-4 for additive case and in Section-5 for cubic case, and we given the conclusion in Section-6.

2. General Solution of (1): Additive Case

Lemma 2.1. Let \(X \) and \(Y \) are linear spaces, a mapping \(h : X \rightarrow Y \) is additive and odd if \(h \) satisfies

\[h(py-z) + h(py+z) + h(y-pz) + h(y+pz) = (p + p^3)[h(y-z) + h(y+z)] - 2(p^2 - 1)h(y) \]

for all \(y, z \in X \).

Proof. Consider \(h \) satisfies (2). Replacing \((y, z)\) by \((0, 0)\) and \((y, 0)\) in (2), we get \(h(0) = 0 \) and

\[h(y) = ph(y) \]

respectively, for all \(y \in X \). Therefore, \(h \) is an additive function. Let \((y, z) = (0, y)\) in (2) and by (3), we reached

\[h(-y) = -h(y); \quad y \in X. \]

Thus \(h \) is an odd function. \(\square \)

Theorem 2.2. A function \(h : X \rightarrow Y \) is a solution of (2) iff \(A(y) \) is the diagonal of the additive symmetric map \(A : X \times X \rightarrow Y \) such that \(h \) is of the form \(h(y) = A(y) \) for all \(y \in X \).

Proof. Let \(h \) satisfies (2) when \(h \) is additive. We can rewrite (2) as follows

\[h(y) + \frac{1}{2(p^2 - 1)}h(py-z) + \frac{1}{2(p^2 - 1)}h(py+z) + \frac{1}{2(p^2 - 1)}h(y+pz) \]

\[+ \frac{1}{2(p^2 - 1)}h(y-pz) - \frac{p + p^3}{2(p^2 - 1)}h(y+z) - \frac{p + p^3}{2(p^2 - 1)}h(y-z) = 0 \]

for all \(y, z \in X \). Theorems 3.5 and 3.6 in [12] implies that \(h \) is of the form

\[h(y) = A^1(y) + A^0(y) \]

for all \(y \in X \), \(A^0(y) = A^0 \) and for \(i = 1, A^i(y) \) is the diagonal of the \(i \)-additive symmetric map \(A_i : X^i \rightarrow Y \). We get \(A^0(y) = A^0 = 0 \) and \(h \) is odd, by \(h(0) = 0 \) and \(h(-y) = -h(y) \), respectively. It follows that \(h(y) = A^1(y) \).

Conversely, \(A^1(y) \) is the diagonal of the additive symmetric map \(A_1 : X^1 \rightarrow Y \) such that \(h(y) = A^1(y) \) for all \(y \in X \). From

\[A^1(y+z) = A^1(y) + A^1(z), \quad A^1(ry) = r^1A^1(y); \quad y, z \in X, r \in Q, \]

we see that \(h \) satisfies (2) and this completes the proof of Theorem 2.2. \(\square \)
3. General Solution of (1): Cubic Case

Lemma 3.1. Let X and Y are linear spaces, a mapping $h : X \to Y$ is cubic and odd if h satisfies

$$h(py + z) + h(py - z) + h(y + pz) + h(y - pz) = (p + p^2)[h(y + z) + h(y - z)] + 2(p^3 - p^2 - p + 1)h(y)$$

for all $y, z \in X$.

Proof. Consider h satisfies (7). Replacing (y, z) by $(0, 0)$ and $(y, 0)$ in (7), we get $h(0) = 0$ and

$$h(py) = p^3h(y)$$

respectively, for all $y \in X$. Therefore, h is cubic function. Let (y, z) by $(0, y)$ in (7) and using (8), we obtain

$$h(-y) = -h(y); \quad y \in X.$$

Thus h is an odd function. \qed

Theorem 3.2. A function $h : X \to Y$ is a solution of (7) iff $C^3(y)$ is the diagonal of the 3-additive symmetric map $C_3 : X^3 \to Y$ such that $h(y) = C_i^3(y)$ for all $y \in X$.

Proof. Let h satisfies (7) when h is cubic. We can rewrite (7) as follows

$$h(y) + \frac{1}{2(p^2 - 1)}h(py + z) + \frac{1}{2(p^2 - 1)}h(py - z) + \frac{1}{2(p^2 - 1)}h(y + pz)$$

$$+ \frac{1}{2(p^2 - 1)}h(y - pz) - \frac{p + p^2}{2(p^2 - 1)}h(y + z) - \frac{p + p^2}{2(p^2 - 1)}h(y - z) = 0$$

for all $y, z \in X$. Theorems 3.5 and 3.6 in [12] implies that h is of the form

$$h(y) = C_i^3(y) + C^3(y) + C^3(y)$$

for all $y \in X$, where $C^0(y) = C^0$ and $i = 1, 2, 3$, $C^3(y)$ is the diagonal of the i-additive symmetric map $C_i : X^3 \to Y$. We get $C^0(y) = C^0 = 0$ and h is odd, by $h(0) = 0$ and $h(-y) = -h(y)$, respectively. Therefore $C^3(y) = 0$. It follows that $h(y) = C^3(y) + C^3(y)$. By (8) and $C^n(rz) = r^nC^n(y)$ for all $y \in X$ and $r \in Q$, we obtain $n^1C^i(y) = n^1C^i(y)$. Hence, $C^i(x) = 0$ for all $y \in X$. Therefore $h(y) = C^3(y)$.

Conversely, $C^3(y)$ is the diagonal of the 3–additive symmetric map $C_3 : X^3 \to Y$ such that $h(y) = C^3(y)$ for all $y \in X$. From

$$C^3(y + z) = C_3^3(y) + 3C^3(y, z) + 3C^3(y, z) + C^3(z), \quad C^3(rz) = r^3C^3(y),$$

$$C^3(y, rz) = r^1C^3(y, z), \quad C^3(y, rz) = r^2C^3(y, z), \quad C^3(y, rz) = r^3C^3(y, z)$$

for all $y, z \in X, r \in Q$, we see that h satisfies (7) and this completes the proof of Theorem 3.2. \qed

4. Stability of Functional Equation (1): Additive Case

Assume that the linear space X, μ–complete convex modular space X_μ in the following theorems and corollaries. Now, we obtain the stability of (1) called generalized Hyers–Ulam–Rassias in modular spaces without Δ_2–condition and the Fatou property. Here after, we use the following notation

$$D_\mu h(y, z) = h(py + z) + h(py - z) + h(y + pz) + h(y - pz) - (p + p^2)[h(y + z) + h(y - z)] + 2(p^2 - 1)h(y)$$

for all $y, z \in X$.

Theorem 4.1. Let a mapping \(h : X \to X \) satisfies
\[
\mu(D_A h(y, z)) \leq v(y, z) \tag{12}
\]
and a mapping \(v : X^2 \to [0, \infty) \) such that
\[
\zeta(y, z) = \sum_{j=0}^{\infty} \frac{v(p_j y, p_j z)}{p^j} < \infty, \quad y, z \in X. \tag{13}
\]
Then there exists \(A_1 : X \to X \) a unique additive mapping defined by
\[
A_1(y) = \lim_{n \to \infty} h(p_n y) \quad \forall y \in X.
\]

Proof. Substituting \(z = 0 \) in (12), we obtain
\[
\mu(h(p y) - p h(y)) \leq \frac{1}{2} v(y, 0) \tag{15}
\]
and so
\[
\mu\left(h(y) - \frac{h(p y)}{p} \right) \leq \frac{1}{2p} v(y, 0), \quad \forall y \in X. \tag{16}
\]
By induction on \(n \), we arrive
\[
\mu\left(h(y) - \frac{h(p^n y)}{p^n} \right) \leq \frac{1}{2p} \sum_{j=0}^{n-1} \frac{v(p_j y, 0)}{p^{j+1}}, \quad \forall y \in X. \tag{17}
\]
Substituting \(y \) by \(p^m y \) in (17), we obtain
\[
\mu\left(h(p^m y) - \frac{h(p^{m+n} y)}{p^{m+n}} \right) \leq \frac{1}{2p} \sum_{j=m}^{n+m-1} \frac{v(p_j y, 0)}{p^j} \tag{18}
\]
by assumption (13) it converges to zero as \(m \to \infty \). Hence, by inequality (18) the sequence \(\left\{ \frac{h(p^m y)}{p^m} \right\}, \quad \forall y \in X \) is \(\mu \)-Cauchy and hence it is convergent in \(X_\mu \) since \(X_\mu \) is \(\mu \)-complete. Thus, a mapping \(A_1 : X \to X_\mu \) is defined by
\[
A_1(y) = \mu - \lim_{n \to \infty} \left(\frac{h(p^n y)}{p^n} \right)
\]
for all \(y \in X \), which implies
\[
\lim_{n \to \infty} \mu\left(\frac{h(p^n y)}{p^n} - A_1(y) \right) = 0, \quad \forall y \in X.
\]
Next, we claim the mapping \(A_1 \) satisfies (2). Setting \((y, z) = (p^n y, p^n z) \) in (12), and dividing the resultant by \(p^n \), we arrive
\[
\frac{\mu(D_A h(p^n y, p^n z))}{p^n} \leq \frac{v(p^n y, p^n z)}{p^n}, \quad \forall y, z \in X.
\]
Hence, by property $\mu(au) \leq a\mu(u), 0 < a \leq 1, u \in X_\mu$, we get

$$
\mu \left(\frac{1}{4p^2 + 2p + 3} DA_1(y, z) \right)
\leq \mu \left(\frac{1}{4p^2 + 2p + 3} DA_1(y, z) - \frac{Dh(p^n y, p^n z)}{(4p^2 + 2p + 3)p^n} + \frac{Dh(p^n y, p^n z)}{(4p^2 + 2p + 3)p^n} \right)
\leq \frac{1}{4p^2 + 2p + 3} \mu \left(A_1(py + z) - \frac{h(p^n(y + z))}{p^n} \right) + \frac{1}{4p^2 + 2p + 3} \mu \left(A_1(py - z) - \frac{h(p^n(y - z))}{p^n} \right)
$$

for all $y, z \in X$ and n is positive integers. We obtain $\mu \left(\frac{1}{4p^2 + 2p + 3} DA_1(y, z) \right) = 0$, if $n \to \infty$. Hence $DA_1(y, z) = 0$ for all $y, z \in X$. Thus A_1 satisfies (2) and hence it is additive. Since $\sum_{i=0}^n \frac{1}{p^n_i} + \frac{1}{p} \leq 1$ for all $n \in \mathbb{N}$, by the convexity of modular μ and (15), we arrive

$$
\mu \left(h(y) - A_1(y) \right) = \mu \left(h(y) - \frac{h(p^n y)}{p^n} \right) + \mu \left(\frac{h(p^n y)}{p^n} - A_1(y) \right)
\leq \frac{1}{2} \sum_{i=0}^{n-1} \frac{1}{p^{i+1}} v(p^i y, 0) + \mu \left(\frac{h(p^n y)}{p^n} - A_1(y) \right)
\leq \frac{1}{2} \sum_{i=0}^{n-1} \frac{1}{p^{i+1}} v(p^i y, 0) + \frac{1}{2} \varepsilon(y, 0)
$$

for all $y \in X$. Now, to prove the uniqueness of A_1, we consider that there exists a additive mapping $D_1 : X \to X_\mu$ satisfying

$$
\mu \left(h(y) - D_1(y) \right) \leq \frac{1}{2} \sum_{i=0}^{n-1} \frac{1}{p^{i+1}} v(p^i y, 0), \forall y \in X.
$$

But, if $A_1(y_0) \neq D_1(y_0)$ for some $y_0 \in X$. Then there exists a constant $\varepsilon > 0$ which is positive such that $\varepsilon < \mu(A_1(y_0) - D_1(y_0))$. By (13), there is a positive integer $n_0 \in \mathbb{N}$ such that $\sum_{i=0}^\infty \frac{1}{p^n_i} v(p^i y, 0) < \frac{\varepsilon}{2}$. Since A_1 and D_1 are additive mappings, by $A_1(p^{n_0} y_0) = p^{n_0} A_1(y_0)$ and $D_1(p^{n_0} y_0) = p^{n_0} D_1(y_0)$, we arrive

$$
\varepsilon < \mu \left(A_1(y_0) - D_1(y_0) \right)
= \mu \left(\frac{A_1(p^{n_0} y_0) - h(p^{n_0} y_0)}{p^{n_0}} + \frac{h(p^{n_0} y_0) - D_1(p^{n_0} y_0)}{p^{n_0}} \right)
\leq \frac{1}{p^{n_0}} \mu \left(A_1(p^{n_0} y_0) - h(p^{n_0} y_0) \right) + \frac{1}{p^{n_0}} \mu \left(h(p^{n_0} y_0) - D_1(p^{n_0} y_0) \right)
\leq \frac{1}{p^{n_0}} \sum_{j=0}^{n_0} \frac{v(p^{j+n_0} y_0, 0)}{p^{i+1}} \leq \sum_{j=0}^{n_0} \frac{v(p^{j+n_0} y_0, 0)}{p^{i+1}} < \varepsilon,
$$

which implies a contradiction. Therefore the mapping A_1 is a unique additive mapping near h satisfying (14) in X_μ. \[\square \]

Letting $\nu(y, z) = \varepsilon$ and $\nu(y, z) = \varepsilon (||y||^m + ||z||^n)$ in Theorem 4.1, we obtain Hyers-Ulam and generalized Hyers-Ulam stabilities, respectively in the following corollaries.
Corollary 4.2. Let a mapping \(h : X \rightarrow X \) satisfying
\[
\mu(D_{A}h(y,z)) \leq \epsilon, \quad \forall y, z \in X
\]
for some \(\epsilon > 0 \). Then there exists \(A_1 : X \rightarrow X \), a unique additive mapping satisfies (2) and
\[
\mu(h(y) - A_1(y)) \leq \frac{\epsilon}{2(p - 1)}
\]
for all \(y \in X \) and \(p \neq 1 \).

Corollary 4.3. If \(h : X \rightarrow X \) a mapping satisfies
\[
\mu(D_{A}h(y,z)) \leq \epsilon (\|y\|^m + \|z\|^m), \quad \forall y, z \in X, \quad m < 1
\]
a real numbers \(\epsilon > 0 \), then there exists \(A_1 : X \rightarrow X \), a unique additive mapping satisfying
\[
\mu(h(y) - A_1(y)) \leq \frac{\epsilon}{2(p - m^2)} \|y\|^m, \quad \forall y \in X
\]
where \(y \neq 0 \) and \(p^m < p \).

Assuming \(\mu \) satisfies the \(\Delta_p \)-condition and if there exists \(\beta > 0 \) defined by
\[
\mu(\beta y) \leq \beta \mu(y) \quad \text{for all} \quad y \in X.
\]
Theorem 4.4. Letting \(h : X \rightarrow X \) and \(\nu : X^2 \rightarrow [0, \infty) \) be the mappings satisfies
\[
\mu(D_{A}h(y,z)) \leq \nu(y,z)
\]
and
\[
\Psi(y,z) = \sum_{j=1}^{\infty} \frac{\beta^j}{p^j} \nu\left(\frac{y}{p^j}, \frac{z}{p^j}\right) < \infty, \quad \forall y, z \in X.
\]
Then there exists \(A_2 : X \rightarrow X \) a unique additive mapping such that \(A_2(y) = \lim_{n \to \infty} p^n h\left(\frac{y}{p^n}\right) \) which satisfies (2) and
\[
\mu(h(y) - A_2(y)) \leq \frac{1}{2p} \Psi(y,0), \quad \forall y \in X.
\]

Proof. The equation (15), implies that
\[
\mu\left(h(y) - ph\left(\frac{y}{p}\right)\right) \leq \frac{1}{2} \nu\left(\frac{y}{p}, 0\right), \quad y \in X.
\]
Hence, by the convexity \(\mu \), we have
\[
\mu\left(h(y) - p^2 h\left(\frac{y}{p^2}\right)\right) \leq \frac{1}{p} \mu\left(p h(y) - p^3 h\left(\frac{y}{p^3}\right)\right) \leq \frac{\beta}{2p} \nu\left(\frac{y}{p^2}, 0\right) + \frac{\beta^2}{2p^2} \nu\left(\frac{y}{p^3}, 0\right), \forall y \in X.
\]
Then by induction on \(n > 1 \), we have
\[
\mu\left(h(y) - p^n h\left(\frac{y}{p^n}\right)\right) \leq \frac{1}{2} \sum_{j=1}^{n-1} \frac{\beta^{2j-1}}{p^j} \nu\left(\frac{y}{p^j}, 0\right) + \frac{\beta^{2j}}{2p^{j+1}} \nu\left(\frac{y}{p^{j+1}}, 0\right).
\]
for all $y \in X$. Considering (25) holds true for n and we deduce the following by using the convexity of μ,

$$
\mu \left(h(y) - p^{n+1}h \left(\frac{y}{p^{n+1}} \right) \right)
$$

(26)

$$
= \frac{1}{p} \mu \left(ph(y) - p^2 h \left(\frac{y}{p} \right) \right) + \frac{1}{p} \mu \left(p^2 h \left(\frac{y}{p} \right) - p^{n+2}h \left(\frac{y}{p^{n+1}} \right) \right)
$$

$$
\leq \frac{\beta}{p} \mu \left(h(y) - ph \left(\frac{y}{p} \right) \right) + \frac{\beta^2}{p} \mu \left(h \left(\frac{y}{p} \right) - p^n h \left(\frac{y}{p^n} \right) \right)
$$

$$
\leq \frac{\beta}{2p} \nu \left(\frac{y}{p^{m+1}} \right) + \frac{\beta^2}{2p} \sum_{j=1}^{n-1} \frac{\beta^{2j-1}}{p^j} \nu \left(\frac{y}{p^{n+j}} \right) + \frac{\beta^2}{2p} \frac{\beta^{2(n-1)}}{p^{n-1}} \nu \left(\frac{y}{p^{n-1}} \right)
$$

$$
= \frac{1}{2} \sum_{j=1}^{n} \frac{\beta^{2j-1}}{p^j} \nu \left(\frac{y}{p^{j}} \right) + \frac{1}{2} \frac{\beta^{2n}}{p^{n+1}} \nu \left(\frac{y}{p^{n+1}} \right).
$$

The above inequality proves (25) for $n + 1$. Substituting y by $\frac{y}{p^n}$ in (25), we arrive

$$
\mu \left(p^m \left(\frac{y}{p^m} \right) - p^{n+m}h \left(\frac{y}{p^{n+m}} \right) \right)
$$

$$
\leq \frac{\beta^m}{p} \mu \left(h \left(\frac{y}{p^m} \right) - p^n h \left(\frac{y}{p^n} \right) \right)
$$

$$
\leq \frac{\beta^m}{2} \sum_{j=1}^{n-1} \frac{\beta^{2j-1}}{p^j} \nu \left(\frac{y}{p^{n+j}} \right) + \frac{\beta^m}{2} \frac{\beta^{2(n-1)}}{p^{n-1}} \nu \left(\frac{y}{p^{n-1}} \right)
$$

$$
\leq \frac{p^m}{2p^m} \sum_{j=m+1}^{n+m-1} \frac{\beta^{2j-1}}{p^j} \nu \left(\frac{y}{p^{j}} \right) + \frac{p^m}{2p^m} \frac{\beta^{2(n-m-1)}}{p^{n-m-1}} \nu \left(\frac{y}{p^{n-m-1}} \right)
$$

by (22) it converges to zero as $m \to \infty$. Hence, $\left(p^m \left(\frac{y}{p^m} \right) \right)$ is μ–Cauchy for all $y \in X$ and hence it is μ–convergent in X_μ since X_μ is μ–complete. Hence, we have

$$
A_2(y) = \mu - \lim_{n \to \infty} p^n h \left(\frac{y}{p^n} \right)
$$

(27)

for all $y \in X$, which implies

$$
\lim_{n \to \infty} \mu \left(p^n h \left(\frac{y}{p^n} \right) - A_2(y) \right) = 0, \ \forall y \in X.
$$

Hence by the Δ–condition, we arrive the following by taking $n \to \infty$.

$$
\mu \left(h(y) - A_2(y) \right)
$$

$$
\leq \frac{1}{p} \mu \left(ph(y) - p^{n+1}h \left(\frac{y}{p^n} \right) \right) + \frac{1}{p} \mu \left(p^{n+1}h \left(\frac{y}{p^n} \right) - p A_2(y) \right)
$$

$$
\leq \frac{\beta}{p} \mu \left(h(y) - ph \left(\frac{y}{p} \right) \right) + \frac{\beta}{p} \mu \left(p^2 h \left(\frac{y}{p^2} \right) - A_2(y) \right)
$$

$$
\leq \frac{\beta}{2p} \sum_{j=1}^{n-1} \frac{\beta^{2j-1}}{p^j} \nu \left(\frac{y}{p^{j}} \right) + \frac{\beta}{2p} \frac{\beta^{2(n-1)}}{p^{n-1}} \nu \left(\frac{y}{p^{n-1}} \right) + \frac{\beta}{p} \mu \left(p^n h \left(\frac{y}{p^n} \right) - A_2(y) \right)
$$

$$
\leq \frac{1}{2p} \sum_{j=1}^{\infty} \frac{\beta^{2j}}{p^j} \nu \left(\frac{y}{p^j} \right) \leq \frac{1}{2p} W(y, 0).
$$
Next, we prove A_2 satisfies (2). Assuming $(y, z) = \left(\frac{x}{p^n}, \frac{z}{p^n} \right)$ in (21), and multiplying the resultant by p^n, we obtain

$$
\mu \left(p^n D_A h \left(\frac{y}{p^n}, \frac{z}{p^n} \right) \right) \leq p^n \nu \left(\frac{y}{p^n}, \frac{z}{p^n} \right) \leq p^{2n} \nu \left(\frac{y}{p^n}, \frac{z}{p^n} \right)
$$

as $n \to \infty$, which tends to zero. Hence, the property $\mu(y u) \leq \gamma \mu(u), 0 < \gamma \leq 1, u \in \mathcal{X}_\mu$ implies that

$$
\mu \left(\frac{1}{4p^2 + 2p + 3} D_A A_2(y, z) \right) \leq \mu \left(\frac{1}{4p^2 + 2p + 3} D_A A_2(y, z) - p^n D_A h \left(\frac{y}{p^n}, \frac{z}{p^n} \right) \right) \leq \mu \left(\frac{p + p^2}{4p^2 + 2p + 3} \right) A_2(y, z) - p^n h \left(\frac{y}{p^n}, \frac{z}{p^n} \right)
$$

As the limit $n \to \infty$, we obtain

$$
\mu \left(\frac{1}{4p^2 + 2p + 3} D_A A_2(y, z) \right) = 0
$$

for all $y, z \in X$. Hence, $D_A A_2(y, z) = 0$ and A_2 satisfies (2). Hence, it is additive. To prove the uniqueness of A_2, assume that $D_2 : X \to \mathcal{X}_\mu$, a additive mapping satisfies

$$
\mu(h(y) - D_2(y)) \leq \frac{1}{2p} \sum_{j=1}^{\infty} \frac{\beta^{j+1}}{p^j} \nu \left(\frac{y}{p^j}, 0 \right), \ \forall y \in X.
$$

Since A_2 and D_2 are additive mappings and $p^n A_2 \left(\frac{x}{p^n} \right) = A_2(x), p^n D_2 \left(\frac{x}{p^n} \right) = D_2(x)$ implies that

$$
\mu(D_2(y) - A_2(y))
$$

for all $y \in X$ and as $n \to \infty$ it tends to zero. Therefore, A_2 satisfying (23) and is a unique additive mapping. ∎
Considering \(v(y, z) = \epsilon \) and \(v(y, z) = \epsilon (\|y\|^m + \|z\|^m) \) in Theorem 4.4, we obtain the following Hyers-Ulam and Hyers-Ulam-Rassias stabilities, respectively.

Corollary 4.5. Let a mapping \(h : X \rightarrow X \) satisfying
\[
\mu(D_A h(y, z)) \leq \epsilon
\]
for all \(y, z \in X, \epsilon > 0 \). Hence there exists a unique additive mapping \(A_2 : X \rightarrow X \) which satisfies (2) and
\[
\mu(h(y) - A_2(y)) \leq \frac{e\beta^2}{2(p - \beta^2)}
\]
for all \(y \in X \) and for some \(\beta^2 < p \).

Corollary 4.6. If \(h : X \rightarrow X \) a mapping satisfies
\[
\mu(D_A h(y, z)) \leq \epsilon (\|y\|^m + \|z\|^m)
\]
for all \(y, z \in X \). Then there exists \(A_2 : X \rightarrow X \) a unique additive mapping such that
\[
\mu(h(y) - A_2(y)) \leq \frac{e\beta^2}{2(p(p^{m+1} - \beta^2))}
\]
for all \(y \in X, y \neq 0 \), for given real numbers \(\beta^2 < p^{m+1} \) and \(\epsilon > 0 \).

5. Stability of Functional Equation (1): Cubic Case

We obtain generalized Hyers-Ulam-Rassias stability of (1) in modular spaces without \(\Delta_p \)–condition and the Fatou property. Hereafter, we use the following notation
\[
D_C h(y, z) = h(py + z) + h(py - z) + h(y + pz) + h(y - pz) - (p + p^2)[h(y + z) + h(y - z)] - 2(p^3 - p^2 - p + 1)h(y)
\]
for all \(y, z \in X \).

Theorem 5.1. Considering \(h : X \rightarrow X \) a mapping satisfies
\[
\mu(D_C h(y, z)) \leq v(y, z)
\]
and a mapping \(v : X^2 \rightarrow [0, \infty) \) satisfies
\[
\zeta(y, z) = \sum_{j=0}^{\infty} \frac{v(p^j y, p^j z)}{p^j} < \infty, \quad \forall y, z \in X.
\]
Then there exists \(C_1 : X \rightarrow X \) a unique cubic mapping defined by \(C_1(y) = \lim_{n \rightarrow \infty} \frac{h(p^ny)}{p^n}, y \in X \) which satisfies the equation (7) and
\[
\mu(h(y) - C_1(y)) \leq \frac{1}{2p^3} \zeta(y, 0), \quad \forall y \in X
\]

Proof. Assuming \(y = 0 \) in (30), we obtain
\[
\mu(h(py) - p^3 h(y)) \leq \frac{1}{2} v(y, 0)
\]
and hence
\[\mu \left(h(y) - h\left(\frac{py}{p^3} \right) \right) \leq \frac{1}{2p^3} \nu(y,0), \quad \forall y \in X. \]
(34)

Generalizing, we arrive
\[\mu \left(h(y) - h\left(\frac{p^m y}{p^{3m}} \right) \right) \leq \frac{1}{2} \sum_{j=0}^{n-1} \frac{\nu(p^j y,0)}{p^{3(j+1)}}, \quad \forall y \in X. \]
(35)

Substituting \(y \) by \(p^m y \) in (35), we obtain
\[\mu \left(h(p^m y) - h\left(\frac{p^{m+n} y}{p^{3(n+m)}} \right) \right) \leq \frac{1}{2p^3} \sum_{j=m}^{n+m-1} \frac{\nu(p^j y,0)}{p^{3j}}, \quad \forall y \in X. \]
(36)

by the assumption (31) it converges to zero as \(m \to \infty \). Hence (36) implies that the sequence \(\{ h(p^m y) \} \) is \(\mu \)-Cauchy and therefore it is convergent in \(X_\mu \) since the \(X_\mu \) is \(\mu \)-complete. Hence we define \(C_1 : X \to X_\mu \) as
\[C_1(y) = \mu - \lim_{n \to \infty} \left\{ \frac{h(p^m y)}{p^{3m}} \right\}, \quad \forall y \in X, \]
which implies
\[\lim_{n \to \infty} \mu \left(\frac{h(p^m y)}{p^{3m}} - C_1(y) \right) = 0, \quad \forall y \in X. \]

Here after we complete this proof by similar way of Theorem 4.1. \(\square \)

Assuming \(\nu(y,z) = \epsilon \) and \(\nu(y,z) = \epsilon (\|y\|^m + \|z\|^m) \) in Theorem 5.1, we obtain the following stabilities called Hyers-Ulam and Hyers-Ulam-Rassias respectively.

Corollary 5.2. Let a mapping \(h : X \to X_\mu \) satisfying
\[\mu(DC_h(y,z)) \leq \epsilon \]
for all \(y, z \in X \). Then there exists \(C_1 : X \to X_\mu \) a unique cubic mapping which satisfies (7) and
\[\mu(h(y) - C_1(y)) \leq \frac{\epsilon}{2(p^3 - 1)} \]
(37)
for all \(y \in X \), for some \(\epsilon > 0 \) and \(p^3 > 1 \).

Corollary 5.3. If \(h : X \to X_\mu \) a mapping satisfies
\[\mu(DC_h(y,z)) \leq \epsilon (\|y\|^m + \|z\|^m), \quad \forall y, z \in X, \]
then there exists a unique cubic mapping \(C_1 : X \to X_\mu \) such that
\[\mu(h(y) - C_1(y)) \leq \frac{\epsilon}{2(p^3 - p^m)} \|y\|^m \]
(38)
for all \(y \in X, y \neq 0 \), for given real numbers \(m < 3 \) and \(\epsilon > 0 \).

Assuming a nontrivial convex modular \(\mu \) satisfies the \(\Delta_p \)-condition if there exists \(\beta > 0 \) such that
\[\mu(p^3 y) \leq \beta \mu(y) \]
for all \(y \in X_\mu \), where \(\beta \geq p \) and hence \(\mu(p^3 y) \leq M \mu(y) \)
Theorem 5.4. If a mapping \(h : X \rightarrow \mathcal{X}_\mu \) satisfies
\[
\mu(D_{ch}(y, z)) \leq \nu(y, z)
\]
and \(\nu : X^2 \rightarrow [0, \infty) \) is a mapping such that
\[
\Psi(y, z) = \sum_{j=1}^{\infty} \frac{M_{2j}^p}{p^j} \nu \left(\frac{y}{p^j}, \frac{z}{p^j} \right) < \infty, \ \forall y, z \in X.
\]
Then a unique cubic mapping \(C_2 : X \rightarrow \mathcal{X}_\mu \) exists and defined by \(C_2(y) = \lim_{n \to \infty} p^n h \left(\frac{y}{p^n} \right), y \in X \), which satisfies (7) and
\[
\mu(h(y) - C_2(y)) \leq \frac{1}{2p} \Psi(y, 0), \forall y \in X.
\]
Proof. Equation (33) implies that
\[
\mu \left(h(y) - p^n h \left(\frac{y}{p^n} \right) \right) \leq \frac{1}{2p} \nu \left(\frac{y}{p^n}, 0 \right), \ \forall y \in X.
\]
Hence by the convexity \(\mu \), we arrive
\[
\begin{align*}
\mu \left(h(y) - (p^n)^2 h \left(\frac{y}{p^n} \right) \right) & \leq \frac{1}{p^n} \mu \left(p^n h(y) - (p^n)^2 h \left(\frac{y}{p^n} \right) \right) + \frac{1}{p^n} \mu \left((p^n)^2 h \left(\frac{y}{p^n} \right) - (p^n)^3 h \left(\frac{y}{p^n} \right) \right) \\
& \leq \frac{M}{2p^3} \nu \left(\frac{y}{p^n}, 0 \right) + \frac{M^2}{2p^3} \nu \left(\frac{y}{p^n}, 0 \right), \ \forall y \in X.
\end{align*}
\]
Generalizing, we obtain
\[
\begin{align*}
\mu \left(h(y) - (p^n)^n h \left(\frac{y}{p^n} \right) \right) & \leq \frac{1}{2} \sum_{j=1}^{n-1} \frac{M_{2j-1}^p}{p^{j-1}} \nu \left(\frac{y}{p^n}, 0 \right) + \frac{1}{2} \frac{M^{2(n-1)}}{p^{2n-2}} \nu \left(\frac{y}{p^n}, 0 \right)
\end{align*}
\]
for all \(y \in X \). The rest of proof is similar to that of Theorem 4.4. \(\square \)

Assuming \(\nu(y, z) = \epsilon \) and \(\nu(y, z) = \epsilon (||y||^m + ||z||^m) \) in Theorem 5.4, we obtain the following stabilities called Hyers-Ulam and Hyers-Ulam-Rassias respectively.

Corollary 5.5. If a mapping \(h : X \rightarrow \mathcal{X}_\mu \) satisfying
\[
\mu(D_{ch}(y, z)) \leq \epsilon, \ \forall y, z \in X,
\]
then there exists \(C_2 : X \rightarrow \mathcal{X}_\mu \), a unique cubic mapping which satisfies (7) and
\[
\mu(h(y) - C_2(y)) \leq \frac{\epsilon M^2}{2p(p^3 - M^2)}, \ \forall y \in X,
\]
for some \(\epsilon > 0 \) and \(M^2 < p^3 \).

Corollary 5.6. If \(h : X \rightarrow \mathcal{X}_\mu \) a mapping satisfies
\[
\mu(D_{ch}(y, z)) \leq \epsilon (||y||^m + ||z||^m), \ \forall y, z \in X,
\]
then a unique cubic mapping \(C_2 : X \rightarrow \mathcal{X}_\mu \) exists such that
\[
\mu(h(y) - C_2(y)) \leq \frac{\epsilon M^2}{2p(p^{m+3} - M^2)} ||y||^m, \ \forall y \in X,
\]
where \(y \neq 0 \), for given real numbers \(M^2 < p^{m+3} \) and \(\epsilon > 0 \).
6. Conclusion

We introduced a generalized mixed type of additive and cubic functional equation with its general solution and various stabilities concerning Ulam problem in modular spaces by considering with and without Δ_p–condition.

References

[1] Abasalt Bodaghi, Pasupathi Narasimman, Krishnan Ravi and Behrouz Shojaee, Mixed Type of Additive and Quintic Functional Equations, Annales Mathematicae Silesianae 29 (2015), 35–50.
[2] Hark-Mahn Kim and Young Soon Hong, Approximate Quadratic Mappings in Modular Spaces, International Journal of Pure and Applied Mathematics 116(1) (2017) 31–43.
[3] Iz-iddine El-Fassi and Samir Kabbaj, On the generalized orthogonal stability of mixed type additive-cubic functional equations in modular spaces, Tbilisi Mathematical Journal 9(1) (2016) 231–243.
[4] Hark-Mahn Kim and Hwan-Yong Shin, Refined stability of additive and quadratic functional equations in modular spaces, Journal of Inequalities and Applications, (2017) 2017:146.
[5] WA. Luxemburg, Banach function spaces, Ph.D. thesis, Delft University of Technology, Delft, The Netherlands (1959).
[6] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics, 1034 Springer, Berlin (1983).
[7] H. Nakano, Modulared Semi-Ordered Linear Spaces, Maruzen, Tokyo (1950).
[8] Pasupathi Narasimman, John M. Rassias and Krishnan Ravi, n–dimensional quintic and sextic functional equations and their stabilities in Felbin type spaces, Georgian Math. J. 23(1) (2016) 121–137.
[9] W. Orlicz, Collected Papers, vols. I, II, PWN, Warszawa (1988).
[10] John Michael Rassias, Hemen Dutta and Narasimman Pasupathi, Stability of general A–Quartic functional equations in Non-Archimedean intuitionistic fuzzy normed spaces, Proceedings of the Jangjeon Mathematical Society 22(2) (2019) 281–290.
[11] S. M. Ulam, Problems in Modern Mathematics, Chapter VI, Science Ed., Wiley, New York, 1940.
[12] T. Z. Xu, J. M. Rassias and W. X. Xu, A generalized mixed quadratic-quartic functional equation, Bull. Malays. Math. Sci. Soc.(2) 35 (3) (2012) 633–649.