Core non-coding RNAs of *Piscirickettsia salmonis*

Cristopher Segovia¹,², Raul Arias-Carrasco²,³, Alejandro J. Yañez⁴, Vinicius Maracaja-Coutinho³,⁵, Javier Santander¹*

¹ Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, Logy Bay, Canada, ² PhD Program in Integrative Genomics, Universidad Mayor, Huechuraba, Chile, ³ Laboratory of Integrative Bioinformatics, Center for Genomics and Bioinformatics, Faculty of Sciences, Universidad Mayor, Huechuraba, Chile, ⁴ Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile, ⁵ Beagle Bioinformatics, Santiago, Chile

* jsantander@mun.ca

Abstract

Piscirickettsia salmonis, a fastidious Gram-negative intracellular facultative bacterium, is the causative agent of Piscirickettsiosis. *P. salmonis* has broad host range with a nearly worldwide distribution, causing significant mortality. The molecular regulatory mechanisms of *P. salmonis* pathogenesis are relatively unknown, mainly due to its difficult in vitro culture and genomic differences between genogroups. Bacterial non-coding RNAs (ncRNAs) are important post-transcriptional regulators of bacterial physiology and virulence that are predominantly transcribed from intergenic regions (trans-acting) or antisense strand of open reading frames (cis-acting). The repertoire of ncRNAs present in the genome of *P. salmonis* and its possible role in bacterial physiology and pathogenesis are unknown. Here, we predicted and analyzed the core ncRNAs of *P. salmonis* base on structure and correlate this prediction to RNA sequencing data. We identified a total of 69 ncRNA classes related to tRNAs, rRNA, thermoregulators, antitoxins, ribozymes, riboswitches, miRNAs and antisense-RNAs. Among these ncRNAs, 29 classes of ncRNAs are shared between all *P. salmonis* genomes, constituting the core ncRNAs of *P. salmonis*. The ncRNA core of *P. salmonis* could serve to develop diagnostic tools and explore the role of ncRNA in fish pathogenesis.

Introduction

The genus *Piscirickettsia* includes two species, the recently described *P. litoralis* [1] and *P. salmonis*. *P. salmonis* is the etiological agent of salmonid rickettsial septicemia (SRS) or Piscirickettsiosis [2]. SRS has a high impact on the Atlantic salmon (*Salmo salar*) aquaculture in Chile, with up to ~100% of losses associated to *P. salmonis* infection in seawater [3]. This Gram-negative, intracellular facultative pathogen was first isolated from Coho salmon (*Oncorhynchus kisutch*) in Chile [4] and since then, it has been reported in different geographic locations (e.g. Canada, USA, Norway, UK, Greece), and isolated from different salmonid and non-salmonid species [5,6].
(PhD Fellowship for Cristopher Segovia),
Universidad Mayor, Pt. Javier Santander; and
CONICYT, FONDECYT-Initiation, 11161020,
Universidad Mayor, Pt. Vinicius Maracajá-
Coutinho. Beagle Bioinformatics provided support
in the form of salaries for author VMC, but did not
have any additional role in the study design, data
collection and analysis, decision to publish, or
preparation of the manuscript. The specific role of
this author is articulated in the ‘author
contributions’ section.

Competing interests: We have the following
interests. Vinícius Maracajá-Coutinho is CEO and
one of the founders of Beagle Bioinformatics. There
are no patents, products in development or
marketed products to declare. This does not alter
our adherence to all the PLOS ONE policies on
sharing data and materials, as detailed online in the
guide for authors.

The P. salmonis strain LF-89 isolated in Chile is the reference strain [7,8] but many others
have been isolated and characterized [9,10]. The knowledge about P. salmonis regulatory
mechanisms of pathogenesis and physiology are limited due to its fastidious nature [9,11,12].
P. salmonis causes a systemic infection associated with the Dot/Icm type IV secretion system
(SSTIV), which is required for cell invasion, immune evasion, and intracellular replication
[13]. Also, it has been reported that P. salmonis macrophage internalization is mediated by clathrin [14]. Additionally, it has been shown that P. salmonis secretes outer membrane vesicles
(OMVs) that could deliver or translocate effectors and other virulence factors into the fish cell
[15]. Recently, pathogenic genomic islands have been identified in P. salmonis [16]. However,
the repertoire and the potential roles of non-coding RNAs (ncRNAs) in P. salmonis gene regu-
lation and pathogenesis have not been described.

ncRNAs are functional molecules of RNAs that are not translated into protein [17]. Geno-
mic regions transcribed into ncRNAs, beside tRNAs and rRNAs, were not considered relevant
for biological roles. The discovery of the first functional microRNA (miRNA) in Caenorhabdi-
tis elegans [18], claimed the scientific attention back to ncRNAs. Today, it is known that
ncRNAs play important biological roles in all kingdoms of life [19, 20].

Bacterial ncRNAs are generally classified as small RNAs (sRNAs). These molecules are
involved in the fine-tuning regulation of different important bacterial physiological processes.
For instance, the sRNA SgrS participates in glucose uptake regulation [21], CrcZ participates
in carbon catabolite repression [22], GlmY/GlmZ participates in feedback inhibition of amino
sugar metabolism [23], and RhyB regulates the synthesis of siderophores and iron acquisition
[24, 25]. sRNAs also have important roles in temperature response [26], bacterial communica-
tion [27], biofilm formation [27,28], iron metabolism [29], and virulence [30–32].

The advancement of high-throughput expression technologies over the last years boosted
the prediction, characterization, and functional classification of different novel types of sRNAs
[33]. This was followed by the development of several computational biology approaches,
based on secondary structure predictions, sequence similarity searches, covariance analysis
models, and minimum free energy models, which together allowed the identification of thou-
sands of different RNA classes from different evolutionary branches [34, 35].

Complexity of organisms along the evolution has been associated with the expansion of
genomic elements [36, 37]. Comparison between the increasing number of protein-coding
genes and non-protein coding genes reveals that the expansion of ncDNA is much higher than
the expansion of protein coding genes [38]. This correlates with the increasing number of
sRNAs described in bacteria genomes [39].

Here we predicted the sRNAs of several P. salmonis genomes and identified the core
cRNA repertoire of P. salmonis. The ncRNAs repertoire of P. salmonis and the possible role
in gene regulation and pathogenesis will contribute to understanding P. salmonis physiology
and host-pathogen interaction, opening new venues for the control of this pathogen.

Material and methods

ncRNAs predictions in P. salmonis

The genome sequences of eleven P. salmonis strains (Table 1) were downloaded from National
Center for Biotechnology Information (NCBI) [40]. The prediction was performed by com-
paring the secondary structures in covariance models from all RNA families available in the
RNA families database (Rfam; version 12.0) [41] against the P. salmonis genome sequences
(Table 1). The comparisons were performed using an in-house developed tool called StructR-
NAfinder [42]. This software automatically integrates different tools for ncRNAs prediction
and secondary structure identification, including Infernal [43], RNAFOLD [44] and Rfam
database. StructRNAfinder utilizes Infernal to generate covariance models and sequence comparisons, and RNAfold for secondary structure prediction. The functional annotation for the predicted ncRNAs is obtained from Rfam. Predicted ncRNAs overlapping the genomic coordinates of coding genes were detected using intersectBED v2.26.0 [45] and manually discarded. Also, ncRNAs predicted more than once in each *P. salmonis* genome were manually eliminated to reduce redundancy. Finally, ncRNAs detected in intergenic regions were considered as part of the *P. salmonis* ncRNA repertoire.

Determination of the *P. salmonis* core ncRNAs

We clustered the *P. salmonis* genomes based on the ncRNAs repertoire of each genome. ncRNA classes were hierarchically clustered using the "complete method" and Euclidean distance through hclust function from R environment. The final heatmap representation was built using gplots R package. The ncRNAs shared by all *P. salmonis* genomes were considered as part of the *P. salmonis* ncRNA core.

Determination of *P. salmonis* codon usage

The *P. salmonis* codon usage was determined mediated the web suite SMS (Sequence Manipulation Suite) [46]. Known functionally annotated and unique hypothetical *P. salmonis* proteins, based on NCBI annotation [40], were used to determine the codon usage (S1 Table).

P. salmonis growth conditions for transcriptome analysis

The reference strain LF-89 strain was maintained and cultivated in CHSE-214 cells at 18˚C [47]. From infected cells, the bacterium was streaked onto CHAB agar plates (Brain heart infusion supplemented with L-cysteine 1 g L⁻¹ and 5% ovine blood) and incubated for 10 days at 18˚C, until the formation of slightly convex and grey–white shiny bacterial colonies [47]. Finally, 10 single colonies were inoculated in 50 ml of Austral-SRS broth [48] and incubated for 5 days at 18˚C with gentle shaking (100 rpm).

RNA extraction and cDNA synthesis

P. salmonis grown in Austral-SRS medium was used for RNA extraction. 50 ml of bacterial culture were centrifuged (6,000 x g) during 10 min and resuspended in 1 ml of Trizol (Invitrogen, Madison, USA). The mixture was vortexed and treated with 700 μl of chloroform. The aqueous
phase was extracted and mixed 1:1 with isopropanol. Total RNA was concentrated by RNeasy cleanup QIAgene kit. The total RNA extracted was treated with Turbo-DNAase I during 30 min at 37°C (Ambion). The absence of DNA was checked by PCR using the ITS primers RTS1 (5’-TGATTATTTATGTTTAGAAGAATGA-3’) and RTS4 (5’-ATGCACCTTATCTGCTA3’) [49]. The purity was determined (ratio A260/A280) with a Nanodrop ND1000 spectrophotometer (Thermo Fisher Scientific, Copenhagen, USA), and the integrity was determined by agarose gel under denaturing conditions.

RNA sequencing of *P. salmonis* LF-89

Double-stranded cDNA libraries were constructed using the TruSeq RNA Sample Preparation Kit v2 (Illumina®, San Diego, CA, USA). Two biological replicates were sequenced using the MiSeq (Illumina®) platform, at the Center for Genomics and Bioinformatics, Faculty of Sciences, Universidad Mayor, Huercuraba, Chile. The raw sequencing reads were analyzed using CLC Genomics Workbench software, version 10.0.1 (Qiagen). The reads were trimmed using the quality score limit of 0.08 and maximum limit of 2 ambiguous nucleotides. Trimmed reads were mapped to the genome and the protein-coding genes of *P. salmonis* LF-89 (ATCC VR-1361; genome AMFF02000000). The expression levels were normalized and evaluated by RPKM method, as described by Mortazavi et al [50]. The raw data was made available at the NCBI SRA database [51], under the Accession number PRJNA383157.

ncRNAs identification and expression confirmation using RNA sequencing (RNA-seq)

We used the PRJNA383157 RNA sequencing data to validate the ncRNAs predicted in the genome *P. salmonis* LF-89 using covariance models searches. Also, the public *P. salmonis* RNA-seq, PRJNA431076, PRJNA413086, PRJNA413085 and PRJNA413083 available at NCBI were utilized. The software sRNA-Detect, which was designed to identify ncRNAs from RNA-seq data [52] was utilized. sRNA-Detect search for reads that have a minimum depth coverage, with a length range corresponding to a ncRNA (< 250 bp), and a low coverage variation rate through their sequence. The input files in sequence alignment map (SAM) format were generated using Bowtie2 [53]. Predicted ncRNAs within coding regions were detected using intersectBED [45] and manually discarded as described previously. Also, we cross-referenced the genomic coordinates of the ncRNAs predicted by covariance models, against those predicted based on *P. salmonis* transcriptional activity through intersectBED. This step allowed us to validate the set of ncRNAs classes predicted in *P. salmonis* LF-89 strain using StructRNAfinder tool. Finally, the Bowtie2 alignment files were converted from sam to bam format, sorted, and indexed using SamTools [54]. These files from each RNA-seq data were visualized and compared with the Integrative Genomics Viewer (IGV) version 2.3.92 [55].

RNA-RNA interaction

In order to identify potential target coding genes regulated by a set of selected ncRNAs predicted in *P. salmonis*, we used IntaRNA tool [56]. Similarly to the RNA-seq assays, we used the protein coding genes from the reference strain LF-89 (accession number: NZ_AMFF00000000) to identify the set of candidate genes potentially regulated by four selected ncRNAs (CsrC, Prb_RsmZ, MicX and Sx4) present in the repertoire of *P. salmonis*. These ncRNAs were selected because they were predicted by the StructureRNAfinder and detected by the sRNA-Detect tool. Additionally these ncRNA have found in other bacterial species. We set a value of minimum energy cutoff of ΔG < -15 to be considered as potential interaction. RNA-RNA binding
specificity parameters used have been previously validated in other Gram-negative bacteria such as *E. coli* and *Salmonella* [56–58].

Results

General prediction of *Piscirickettsia salmonis* ncRNAs using covariance models

Sixteen RNA families were found in the eleven analyzed *P. salmonis* genomes. Based on covariance models, we predict 2239 ncRNAs (Fig 1). As expected, the most abundant ncRNAs families were tRNAs (40.38%) and rRNAs (21.42%). sRNAs corresponded to the 21.42%, suggesting that sRNAs play an important role in *P. salmonis* gene regulation. We found around 3% of miRNA-like, 1.5% of ribozymes, 1.4% of antisense RNAs and long ncRNAs, and 1% of riboswitches. The remaining ncRNAs were distributed among thirteen families, including snoRNAs, cis regulatory elements, catalytic intron RNAs, snRNAs, antitoxin RNAs, and thermoregulators.

P. salmonis ncRNAs repertory

After manual depuration of the predicted ncRNA, we identified 1813 ncRNAs predictions in the analyzed *P. salmonis* genomes (S2 Table). The most abundant classes were tRNAs, rRNAs and sRNAs. Within the *P. salmonis* sRNA repertory, we identify several types of sRNAs with known function. For instance, the CsrC sRNA related to carbon storage regulation in *E. coli* [59] and *Salmonella Typhimurium* [60], and the PrrB_RsmZ, which modulates the expression of genes related to secondary metabolism, swarming and lipase synthesis in *Pseudomonas* [61]. Also, we identified several sRNAs with unknown function, like the IsrK of *S. Typhimurium*.

![Fig 1. Number of ncRNA per family, the most abundant RNA families as was expected where tRNA, rRNA and sRNA. The number of rRNA in certain genomes varies attributable to the number of contigs. Also in all the analyzed genomes were predicted miRNA-like.](https://doi.org/10.1371/journal.pone.0197206.g001)
expressed during stationary phase, and under low oxygen and Mg\(^{2+}\) conditions [62], the T44 sRNA induced during the early intracellular infection stage in S. Typhimurium [63], and the MicX outer membrane protein repressor of Vibrio cholerae [64]. Additionally, we identified sRNAs related to Gram-positive bacteria physiology, like the Sau-5971 associated to small-colony variants, and the RsaA that serves as repressor in Staphylococcus aureus [32,65].

We also found the ubiquitous sRNA 6S RNA that regulates the expression of sigma70-dependent genes [66] and the RimP-leader, a highly conserved motif terminator related to the maturation of the 30S ribosomal subunit [67].

Another sRNAs present in P. salmonis genomes are the Sok that is part of the toxin-antitoxin type I hok/sok system [68], the TPP riboswitch, also known as THI element [69], and the YybP-YkoY a riboswitch that directly binds Mn\(^{2+}\) [70].

Within the repertory of ncRNA we found the miRNAs-like, mir167-1, mir-821, mir-529, mir-574, mir-944, mir-458, and mir-628. miRNAs have been found in several bacterial genomes but their role during infection is not well understood [71,72].

Determination of P. salmonis codon usage

We found that the tRNAs of P. salmonis are conserved between P. salmonis genomes. The P. salmonis codon usage showed some similarities and differences to the E. coli codon usage (Table 2). For instance, P. salmonis arginine (arg), asparagine (asn), cysteine (cys), glycine (gly), histidine (his), isoleucine (ile), lysine (lys), methionine (met), and tryptophan (trp) have similar codons usage than E. coli. In contrast, P. salmonis alanine (ala), glutamine (gln), leucine (leu), phenyl-alanine (phe), serine (ser), threonine (thr), tirosyne (try), and valine (val) have different codon usage than E. coli. In P. salmonis the most utilized condons are GCA (36%) for ala, CAA (74%) for gln, TTA (43%) for leu, TTT (84%) for phe, CCA (50%) for pro, TCA (30%) for ser, ACA (38%) for thr, TAT (83%) for tyr and GTT (42%) for val, in contrast to E. coli (Table 2). Also, the most utilized P. salmonis stop codon is TAA (60%) in contrast to TAG (60%) in E. coli (Table 2).

P. salmonis clusterization based on ncRNAs

The presence and absence of ncRNAs classes in the P. salmonis genomes were used to generate a heatmap representation of a hierarchical cluster through g-plots R package. The clustering was applied to both sides, one side where similar ncRNAs classes in all P. salmonis strains are clustered together, and the other side where P. salmonis strains with similar ncRNA classes are clustered together. We found that similar ncRNA clusters correlates with P. salmonis genome clusters (Fig 2). The ncRNA and the P. salmonis genomes were divided into two clusters (Fig 2). Suggesting that some ncRNAs could be strain related (Fig 3).

ncRNAs core of P. salmonis

Using the ncRNA repertoire we search for the ncRNAs present in all eleven genomes. We found 29 classes of ncRNAs present in all genomes analyzed (Fig 4A), where the most abundant classes were tRNA, rRNA and sRNA with 901, 475 and 7 predictions respectively (Table 3). The sRNAs classes are reduced, in comparison with the tRNAs and rRNA, because most of these sRNAs were present only once in each genome. The T44, PrrB_RsmZ and RpsB (Rfam-RF01815) were present in a single copy per genome. Sx4 was the only one sRNA with more than one prediction per genome.

Also, the rbozymes RNase P class A and B [73], the riboswitches TPP and YybP-YkoY, the transcription attenuator RimP-leader, and the 6S RNA are present in all P. salmonis genomes.
ncRNA prediction by RNA-seq

To compare our results obtained based on ncRNA structure, we analyzed the P. salmonis LF-89 transcriptome (PRJNA383157), and also the public transcriptomes of LF-89 = ATCC-VR1361 (PRJNA413086), T-GIM (PRJNA413086), S-GIM (PRJNA413085) and EM-90 (PRJNA413083) using the sRNA-Detect tool. We identified 894, 494, 619, 633, and 437 ncRNAs transcripts that correlate with the ncRNA structure prediction (S3 Table and Fig 4B), respectively. Beside tRNAs and rRNAs, the sRNAs CsrC, PrrB_RsmZ, IsrK, MicX, Sx4, and the riboswitch YybP-YkoY were identified in our RNA-seq data and in the public P. salmonis transcriptomes. For instance, the ncRNA 6S, CrcC and MicX were expressed in all P. salmonis transcriptomes analyzed (S1, S2 and S3 Figs).

RNA-RNA interaction

Using the IntaRNA tool, a total of 10821 possible interactions for the selected 4 ncRNAs (CsrC, PrrB_RsmZ, MicX and Sx4), with the P. salmonis coding genes were predicted without

Table 2. P. salmonis codon usage comparison with E. coli.

Amino Acid	Codon	P. salmonis	E. coli	Amino Acid	Codon	P. salmonis	E. coli
Ala	GCG	13 %	36 %	Leu	TTG	10 %	13 %
Ala	GCA	36 %	21 %	Leu	TTA	43 %	13 %
Ala	GCT	34 %	16 %	Leu	CTG	7 %	50 %
Ala	GCC	18 %	27 %	Leu	CTA	10 %	4 %
Arg	AGG	8 %	2 %	Lys	AAG	20 %	23 %
Arg	AGA	15 %	4 %	Lys	AAA	80 %	77 %
Arg	CGG	3 %	10 %	Met	ATG	100 %	100 %
Arg	CGT	32 %	38 %	Phe	TTT	84 %	57 %
Asn	AAT	74 %	45 %	Phe	TCC	16 %	43 %
Asn	AAC	26 %	55 %	Pro	CCG	10 %	52 %
Asp	GAT	73 %	63 %	Pro	CCA	50 %	19 %
Asp	GAC	27 %	37 %	Pro	CCT	30 %	16 %
Cys	TGT	49 %	45 %	Pro	CCC	10 %	12 %
Cys	TGC	41 %	55 %	Ser	AGT	25 %	15 %
End	TGA	20 %	7 %	Ser	AGC	24 %	28 %
End	TAG	20 %	64 %	Ser	TCG	2 %	15 %
End	TAA	60 %	29 %	Ser	TCA	30 %	12 %
Gln	CAG	26 %	65 %	Ser	TCT	16 %	15 %
Gln	CAA	74 %	35 %	Ser	TCC	4 %	15 %
Glu	GAG	37 %	31 %	Thr	ACG	17 %	27 %
Glu	GAA	63 %	69 %	Thr	ACA	38 %	13 %
Gly	GGG	16 %	15 %	Thr	ACT	27 %	17 %
Gly	GGA	15 %	11 %	Thr	ACC	18 %	44 %
Gly	GGT	36 %	34 %	Trp	TGG	100 %	100 %
Gly	GGC	33 %	40 %	Tyr	TAT	83 %	57 %
His	CAT	72 %	57 %	Tyr	TAC	17 %	43 %
His	CAC	29 %	43 %	Val	GTG	16 %	37 %
Ile	ATA	13 %	7 %	Val	GTA	31 %	15 %
Ile	ATT	57 %	51 %	Val	GTT	42 %	26 %
Ile	ATC	30 %	42 %	Val	GTC	12 %	22 %

https://doi.org/10.1371/journal.pone.0197206.t002
RNA families in *P. salmonis*
Fig 2. Hierarchical clustering of RNA family content in each *P. salmonis* strain. Presence of ncRNA classes are represented in red and the absence in white.

https://doi.org/10.1371/journal.pone.0197206.g002

Fig 3. Clustering based on ncRNAs classes. Similarities between each *P. salmonis* strain was calculated based on Euclidean distance, using ncRNAs classes content between each *P. salmonis* strain are represented in each square. Low distance (in red) means a similar ncRNAs classes content and a high distance (in black) means many differences in ncRNAs classes.

https://doi.org/10.1371/journal.pone.0197206.g003
After the cutoff (ΔG -15) was applied a total of 55 possible interactions were predicted (S4 Table, Fig 5). Forty-three percent of the 55 possible targets genes, encode for hypothetical proteins. The C200_RS14095 pseudogene is a common target for CsrC, PrrB_RsmZ, MicX and Sx4 (S4 Table). Also, we found that the gene that encode for the hypothetical protein WP_033923871 is the common target of CsrC, PrrB_RsmZ and MicX ncRNAs. CsrC and PrrB_RsmZ have 6 targets in common (S4 Table). CsrC and PrrB_RsmZ targets the genes that encode for glycine dehydrogenase (WP_016209900) and phosphopentomutase (WP_016211224; also known in E. coli as deoB [74]). Likely, CsrC and PrrB_RsmZ are involved in the control of metabolic pathways, related to glycine hydrogen-cyanide [75]. Another target of CsrC is purM gene involved in the synthesis of purine nucleotides [76]. Also, we found that CsrC targets the murJ gene, which is involved in the biogenesis of cell wall [77]. The proton channel proteins MotA/TolQ/ExbB that energize TonB as well flagellar rotation also are targeted by CsrC [78].

We found that PrrB_RsmZ targets the central regulator of chemotaxis CheA and biofilm [79] and the long-chain-fatty-acid—CoA ligase also known as fudD in E. coli [80].

Additionally our analysis showed that ncRNA MicX targets the thiC gene, related to methionine synthesis [81], and the gene that encode for SecA protein that is an essential component of the Type II secretion system, which has also been found in P. salmonis [82,83]. Another predicted target of MicX was the gene that encodes for the outer membrane efflux protein TolC, which is an essential functional component of the Type I secretion system [84]. Among the targets predicted for the sRNA Sx4, we found the gene that encode for the arginine decarboxylase, related to acid stress [85], the purT gene that encode GAR transformylase T enzyme, involved in the purine biosynthetic pathway [86], and the encoding gene of ParB protein, responsible to avoid random segregation of the plasmids prior to cell division [87].

Discussion

Based on covariance models, we predicted 2239 ncRNAs in the eleven P. salmonis analyzed genomes. After manual depuration, 1813 ncRNAs were detected in non-coding regions and
denominated as \textit{P. salmonis} “ncRNA repertoire”, which consists of 69 Rfam classes (S2 Table). From this repertoire, 1383 ncRNAs (29 Rfam classes) were present in all \textit{P. salmonis} genomes analyzed. These ncRNAs were considered as the \textit{P. salmonis} “ncRNA core” (Fig 4A). Here we focus our discussion on the \textit{P. salmonis} ncRNA core that correlates with our transcriptomic data analysis.

We found several ncRNAs that could be relevant to \textit{P. salmonis} physiology, including Yyb-P-YkoY, related to Mn$^{2+}$ sensing response [68], and the sRNA IsrK, present in \textit{Salmonella enterica} and \textit{E. coli}, which regulates the expression of the transcriptional regulator AntQ that arrest bacterial growth [88]. Another sRNA present in the \textit{P. salmonis} ncRNA core is MicX, which has been described as a regulator of genes that encoded for ABC transporters in \textit{Vibrio cholerae} [62]. The RNA–RNA interaction analysis within the \textit{P. salmonis} genome showed that MicX targets the gene that encodes for the ABC transporter substrate binding protein (WP_016210907), an orthologous of the \textit{Vibrio sp}. ABC transporter (WP_099610902), suggesting a possible regulatory role of MicX in \textit{P. salmonis} membrane transport. Additionally, we found that MicX targets the gene that encoded for the TolC protein, an essential component the Type I secretion system that plays a role in pathogenesis [89]. MicX also targets the coding gene for SecA, a Type II secretion component that is present in \textit{P. salmonis} outer membrane

Table 3. ncRNA core predicted in \textit{P. salmonis}

ncRNA	Rfam ID	Characteristic/function	Presence in \textit{P. salmonis} genomes
5S_rRNA	RF00001	5S ribosomal RNA	All
5_8S_rRNA	RF00002	5.8S ribosomal RNA	All
tRNA	RF00005	tRNA	All
RNaseP_bact_a	RF00010	Bacterial RNase P class A	All
RNaseP_bact_b	RF00011	Bacterial RNase P class B	All
6S	RF00013	6S / SsrS RNA	All
tmRNA	RF00023	transfer-messenger RNA	All
TPP	RF00059	TPP riboswitch (THI element)	All
yybP-ykoY	RF00080	yybP-ykoY leader	All
t44	RF00127	t44 RNA	All
PrrB_RsmZ	RF00166	PrrB_RsmZ RNA family	All
Bacteria_small_SR	RF00169	Bacterial small signal recognition particle RNA	All
SSU_rRNA_bacteria	RF00177	Bacterial small subunit ribosomal RNA	All
RNaseP_arch	RF00373	Archaeal RNase P	All
PK-G12rRNA	RF01118	Pseudoknot of the domain G(G12) of 23S ribosomal RNA	All
rimP	RF01770	Gammaproteobacteria rimP leader	All
rpsB	RF01815	rpsB sRNA	All
tRNA-Sec	RF01852	Selenocysteine transfer RNA	All
Bacteria_large_SR	RF01854	Bacterial large signal recognition particle RNA	All
Protozoa_SR	RF01856	Protozoan signal recognition particle RNA	All
Archaea_SR	RF01857	Archaeal signal recognition particle RNA	All
SSU_rRNA_archaea	RF01959	Archaeal small subunit ribosomal RNA	All
SSU_rRNA_eukarya	RF01960	Eukaryotic small subunit ribosomal RNA	All
HPnc0260	RF02194	Bacterial antisene RNA HPnc0260	All
sX4	RF02223	Proteobacterial sRNA sX4	All
LSU_rRNA_archaea	RF02540	Archaeal large subunit ribosomal RNA	All
LSU_rRNA_bacteria	RF02541	Bacterial large subunit ribosomal RNA	All
LSU_rRNA_microsporidia	RF02542	Microsporidia small subunit ribosomal RNA	All
LSU_rRNA_eukarya	RF02543	Eukaryotic large subunit ribosomal RNA	All

https://doi.org/10.1371/journal.pone.0197206.t003
vesicles [83, 90]. Also, RNA-seq data analysis showed that MicX is transcribed in all \textit{P. salmonis} transcriptomes analyzed (S2 Fig).

The RNA-RNA interaction analysis showed that the ncRNA Sx4 could regulate the expression of the enzyme arginine decarboxylase, which plays an essential role in the tissue colonization and acid resistance during pathogenesis in enterohemorrhagic \textit{E. coli} and \textit{Shigella flexneri} [91].

The CsrC sRNA regulates the expression of the RNA-binding protein CsrA (carbon storage regulator A), a key regulatory element in bacterial carbon flux [92]. CsrA represses several processes during stationary phase, like gluconeogenesis, glycogen synthesis and catabolism [92–94]. Also, CsrA indirectly activates glycolysis and acetate metabolism during exponential phase [94,95]. CsrC sRNA sequesters CsrA protein by nine imperfect repeat sequences localized in the CsrC hairpins [59]. CsrA (WP_016209832) and CsrC ncRNA are also present in \textit{P. salmonis}, reinforcing the predicted \textit{P. salmonis} ncRNAs (S2 Table) and transcriptomics analyses (S3 Table).

Additionally, CsrA has a high identity to RsmA, a post-transcriptional regulatory protein present in \textit{Pseudomonas aeruginosa}, \textit{P. fluorescens} CHA0, and \textit{Erwinia carotovora} [96, 97]. RsmA have global regulatory effects in \textit{P. aeruginosa}, modulating \textit{pvdS} (Iron-regulated sigma

![Fig 5. Network of RNA-RNA interactions. Potential regulatory targets with a value of minimum energy cutoff of $\Delta G < -15$ for the ncRNAs CsrC, PrrB_Rsmz, MicX and Sx4 were plotted.](https://doi.org/10.1371/journal.pone.0197206.g005)
factor), \textit{vfr} (transcriptional regulator) and \textit{pilM} (type 4 fimbrial biogenesis protein) transcription levels [98,99]. RmsA is regulated by the two-component system GacS/GacA, also present in \textit{P. salmonis}. It has shown that the GacS/GacA regulates RsmA/RsmB in \textit{E. carotovora}, and CsrA/CsrB/CsrC in \textit{E. coli} and \textit{S. enterica} [59, 96,100, 101]. CsrC is part of the CsrB-CsrC sRNAs regulatory system of \textit{E. coli} [59, 102]. CsrB has similar functions to CsrC but it differs in the number of imperfect repeat sequences that serve as a binding site to CsrA [59]. Both CsrA and CsrB indirectly activate CsrA via the response regulator UvrY9 [59]. We did not found a CsrB orthologue in \textit{P. salmonis}, however, we identified the PrrB_RsmZ sRNA, a \textit{P. aurigenosa} orthologue that has similar structure and function than CsrB [59,61]. The CsrB/CsrC system is also involved in pathogenesis, for instance, \textit{Salmonella enterica} mutants of CsrC have a reduced cell invasion ability and expression of SPI1 (\textit{Salmonella} pathogenicity island 1) related genes, and the double mutant of CsrB/CsrC is deficient for cell invasion [103]. These results suggest that the \textit{P. salmonis} GacS/GacA-CsrA/CsrB/CsrC regulatory system (Fig

\textit{Piscirickettsia salmonis} Genes

Fig 6. Predicted \textit{P. salmonis} GacS/GacA-CsrA/CsrB/CsrC regulatory system.

https://doi.org/10.1371/journal.pone.0197206.g006
6) could have an important role in *P. salmonis* physiology and pathogenesis. However, despite the presence of this system and its possible target genes in *P. salmonis* genome, CsrC and PrrB_RsmZ did not show a strong interaction with the *csrA* *P. salmonis*, having a value under the defined ΔG< -15 cutoff for a strong interaction. Nevertheless, we found a strong interaction between CsrC and the proton channel MotA/TolQ/ExbB encoding gene. MotA/TolQ/ExbB energizes TonB and flagellar rotation motor, both relevant for pathogenesis, especially TonB that is required for iron acquisition [104]. Furthermore, we found that CsrC is present in all transcriptomes analyzed and shows a high transcriptional activity suggesting an important role in *P. salmonis* (S3 Fig).

It has been described that most of the *P. salmonis* isolates harbour 3–4 cryptic plasmids [105]. These results correlate with the strong predicted interaction between Sx4 sRNA and the ParB encoding gene. Also, Sx4 is the only *P. salmonis* core sRNA present in more than copy. Perhaps, Sx4 sRNA play a role during cell division, regulating the expression of ParB, responsible to avoid random segregation of the plasmids prior to cell division.

This is the first description of the ncRNA present in *P. salmonis* genome. The different ncRNA families present in different *P. salmonis* isolates could be utilized to determine the geographic origin, the virulence of a specific isolate or as targets for novel antibacterial treatments. The abundant number of ncRNAs predicted in the genome of *P. salmonis* suggest that these genetic elements play an important role in physiology and pathogenesis. However, all those predicted ncRNA targets and regulatory circuits in *P. salmonis* need experimental validation. Unfortunately, the genetic tools for *P. salmonis* are not developed yet to generate the mutant to test the effects on physiology and pathogenicity. However, despite the lack of specific genetics tools for *P. salmonis*, it has been reported functional validation of predicted genes through heterologous expression [106]. These assays could be a good approach to test our predictions especially to test the function by conserved secondary structure in *P. salmonis* ncRNAs.

Supporting information

S1 Table. Protein used to determine codon usage.

(XLS)

S2 Table. Repertoire of ncRNAs in *Piscirickettsia salmonis*.

(XLS)

S3 Table. Prediction of ncRNA by RNAseq.

(XLS)

S4 Table. RNA-RNA interaction against *Piscirickettsia salmonis*.

(XLSX)

S1 Fig. Visualization of ncRNA 6S transcription in *P. salmonis* transcriptomes.

(TIF)

S2 Fig. Visualization of ncRNA MicX transcription in *P. salmonis* transcriptomes.

(TIF)

S3 Fig. Visualization of ncRNA CsrC transcription in *P. salmonis* transcriptomes.

(TIF)

Acknowledgments

This work was funded by grants FONDECYT-regular 1140330 and FONDECYT-initiation 11161020, COPEC-UC 2014.J0.71, Research & Development Corporation (RDC) of
Newfoundland and Labrador (R&D-Ignite 5404.2113.10), Canada, and, Universidad Mayor, Chile (PhD Fellowship for Cristopher Segovia). We also thank Mª Ignacia Díaz (Marine Microbial Pathogenesis and Vaccinology Laboratory) for her logistic support.

Author Contributions

Conceptualization: Cristopher Segovia, Javier Santander.

Data curation: Cristopher Segovia.

Formal analysis: Cristopher Segovia, Raul Arias-Carrasco.

Funding acquisition: Javier Santander.

Investigation: Cristopher Segovia, Javier Santander.

Methodology: Cristopher Segovia, Vinicius Maracaja-Coutinho, Javier Santander.

Project administration: Javier Santander.

Resources: Raul Arias-Carrasco, Javier Santander.

Software: Raul Arias-Carrasco, Vinicius Maracaja-Coutinho, Javier Santander.

Supervision: Vinicius Maracaja-Coutinho, Javier Santander.

Validation: Cristopher Segovia, Raul Arias-Carrasco, Javier Santander.

Writing – original draft: Cristopher Segovia, Javier Santander.

Writing – review & editing: Cristopher Segovia, Alejandro J. Yañez, Javier Santander.

References

1. Wan X, Lee AJ, Hou S, Ushijima B, Nguyen YP, Thawley JA, et al. Draft Genome Sequence of *Piscirickettsia litoralis*, Isolated from Seawater. Genome Announc. 2016; 4(6):e01252–16. https://doi.org/10.1128/genom eA.01252-16 PMID: 27811116

2. Almendras FE, Fuentesalba IC. Salmonid rickettsial septicemia caused by *Piscirickettsia salmonis*: a review. Dis Aquat Organ. 1997; 29: 137–144.

3. Informe sanitario de salmonicultura en centros marinos 1° semestre 2015- Aqua. Available: http://www.aqua.cl/wpcontent/uploads/sites/3/2015/10/Informe_Sanitario_Salmonicultura_Centros_Marinos_2015.pdf

4. Bravo S, Campos M. Coho salmon syndrome in Chile. FHS/AFS Newsletter. 1989; 17: 3.

5. Fryer JL, Hedrick WP. *Piscirickettsia salmonis*: a Gram-negative intracellular bacterial pathogen of fish. J Fish Dis. 2003; 26: 251–262. https://doi.org/10.1046/j.1365-2761.2003.00460.x PMID: 12962234

6. Marcos-López M, Ruan NM, Scholz F, Bolton-Warberg M, Mitchell SO, Murphy O’Sullivan S, et al. *Piscirickettsia salmonis* infection in cultured lumpfish (*Cyclopterus lumpus* L.). J Fish Dis. 2017; 40: 1625–1634 https://doi.org/10.1111/jfd.12630 PMID: 28429818

7. Otterlei A, Brevik ØJ, Jensen D, Duesund H, Sommerset I, Frost P, et al. Phenotypic and genetic characterization of *Piscirickettsia salmonis* from Chilean and Canadian salmonids. BMC Vet Res. 2016; 12: 55. https://doi.org/10.1186/s12917-016-0681-0 PMID: 26975385

8. Nourdin-Galindo G, Sánchez P, Molina CF, Espinoza-Rojas DA, Oliver C, Ruiz P, et al. Comparative Pan-Genome Analysis of *Piscirickettsia salmonis* Reveals Genomic Divergences within Genogroups. Front Cell Infect Microbiol. 2017; 7: 459 https://doi.org/10.3389/fcimb.2017.00459 PMID: 29164068

9. Marshall SH, Gómez FA, Ramírez R, Nilo L, Henríquez V. Biofilm generation by *Piscirickettsia salmonis* under growth stress conditions: a putative in vivo survival/persistence strategy in marine
12. Rojas V, Galanti N, Bols NC, Marshall SH. Productive infection of *Piscirickettsia salmonis* in macrophages and monocyte-like cells from rainbow trout, a possible survival strategy. J Cell Biochem. 2009; 108: 631–637. https://doi.org/10.1002/jcb.22295 PMID: 19681041

13. Gómez FA, Tobar JA, Henríquez V, Solá M, Altamirano C, Marshall SH. Evidence of the presence of a functional Dot/icm type IV-B secretion system in the fish bacterial pathogen *Piscirickettsia salmonis*. PLoS One. 2013; 8: e54934. https://doi.org/10.1371/journal.pone.0054934 PMID: 23383004

14. Ramírez R, Gómez FA, Marshall SH. The infection process of *Piscirickettsia salmonis* in fish macrophages is dependent upon interaction with host-cell clathrin and actin. FEMS Microbiol Lett. 2015; 362: 1–8.

15. Oliver C, Valenzuela K, Hernández M, Sandoval R, Haro RE, Avendaño-Herrera R, et al. Characterization and pathogenic role of outer membrane vesicles produced by the fish pathogen *Piscirickettsia salmonis* under in vitro conditions. Vet Microbiol. 2016; 184: 94–101. https://doi.org/10.1016/j.vetmic.2015.09.012 PMID: 26854350

16. Lagos F, Cartes C, Vera T, Haussmann D, Figueroa J. Identification of genomic islands in Chilean *Piscirickettsia salmonis* strains and analysis of gene expression involved in virulence. J Fish Dis. 2017; 40: 1321–1331. https://doi.org/10.1111/jfd.12604 PMID: 28150307

17. Goñi BA, Tobar JA, Henríquez V, Solá M, Altamirano C, Marshall SH. Evidence of the presence of a functional Dot/icm type IV-B secretion system in the fish bacterial pathogen *Piscirickettsia salmonis*. PLoS One. 2013; 8: e54934. https://doi.org/10.1371/journal.pone.0054934 PMID: 23383004

18. Ramírez R, Gómez FA, Marshall SH. The infection process of *Piscirickettsia salmonis* in fish macrophages is dependent upon interaction with host-cell clathrin and actin. FEMS Microbiol Lett. 2015; 362: 1–8.

19. Oliver C, Valenzuela K, Hernández M, Sandoval R, Haro RE, Avendaño-Herrera R, et al. Characterization and pathogenic role of outer membrane vesicles produced by the fish pathogen *Piscirickettsia salmonis* under in vitro conditions. Vet Microbiol. 2016; 184: 94–101. https://doi.org/10.1016/j.vetmic.2015.09.012 PMID: 26854350

20. Lagos F, Cartes C, Vera T, Haussmann D, Figueroa J. Identification of genomic islands in Chilean *Piscirickettsia salmonis* strains and analysis of gene expression involved in virulence. J Fish Dis. 2017; 40: 1321–1331. https://doi.org/10.1111/jfd.12604 PMID: 28150307

21. Dogini DB, Pascoal VDB, Avansini SH, Vieira AS, Pereira TC, Lopes-Cendes I. The new world of RNAs. Genet Mol Biol. 2014; 37: 285–293. PMID: 24764762

22. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in *Caenorhabditis elegans*. Nature. 1998; 391: 806–811. https://doi.org/10.1038/35888 PMID: 9486653

23. Heueis N, Vockenhuber M-P, Suess B. Small non-coding RNAs in Streptomyces. RNA Biol. 2014; 11: 464–469. https://doi.org/10.4161/rna.28262 PMID: 24667326

24. Babski J, Maier L-K, Heyer R, Jaschinski K, Prasse D, Jäger D, et al. Small regulatory RNAs in Archaea. RNA Biol. 2014; 11: 484–493. https://doi.org/10.4161/rna.28452 PMID: 24755959

25. Babski J, Maier L-K, Heyer R, Jaschinski K, Prasse D, Jäger D, et al. Small regulatory RNAs in Archaea. RNA Biol. 2014; 11: 484–493. https://doi.org/10.4161/rna.28452 PMID: 24755959

26. Shao Y, Feng L, Rutherford ST, Papenfort K, Bassler BL. Functional determinants of the quorum-sensing non-coding RNAs and their roles in target regulation. EMBO J. 2013; 32: 2158–2171. https://doi.org/10.1038/emboj.2013.155 PMID: 23838640

27. Ghaz-Jahanian MA, Khodaparastan F, Berenjian A, Jafarizadeh-Malmiri H. Influence of small RNAs on biofilm formation process in bacteria. Mol Biotechnol. 2013; 55: 288–297. https://doi.org/10.1007/s12033-013-9700-6 PMID: 24022663

28. Massé E, Gottesman S. A small RNA regulates the expression of genes involved in iron metabolism in *Escherichia coli*. Proc Natl Acad Sci U S A. 2002; 99: 4620–4625. https://doi.org/10.1073/pnas.032066599 PMID: 11917098

29. Gong H, Vu G-P, Bai Y, Chan E, Wu R, Yang E, et al. A *Salmonella* small non-coding RNA facilitates bacterial invasion and intracellular replication by modulating the expression of virulence factors. PLoS Pathog. 2011; 7: e1002120. https://doi.org/10.1371/journal.ppat.1002120 PMID: 21949647
31. Chabelskaya S, Gaillot O, Felden B. A Staphylococcus aureus small RNA is required for bacterial virulence and regulates the expression of an immune-evasion molecule. PLoS Pathog. 2010; 6: e1000927. https://doi.org/10.1371/journal.ppat.1000927 PMID: 20532214
32. Romilly C, Lays C, Tomasi A, Caldelari I, Benito Y, Hammann P, et al. A non-coding RNA promotes bacterial persistence and decreases virulence by regulating a regulator in Staphylococcus aureus. PLoS Pathog. 2014; 10: e1003979. https://doi.org/10.1371/journal.ppat.1003979 PMID: 24651379
33. Mentz A, Nesht A, Pfeifer-Sancar K, Pühler A, Rückert C, Kalinowski J. Comprehensive discovery and characterization of small RNAs in Corynebacterium glutamicum ATCC 13032. BMC Genomics. 2013; 14: 714. https://doi.org/10.1186/1471-2164-14-714 PMID: 24138339
34. Panwar B, Arora A, Raghava GPS. Prediction and classification of ncRNAs using structural information. BMC Genomics. 2014; 15: 127.
35. Paschoal AR, Maracajá-Coutinho V, Setubal JC, Simões ZLP, Verjovski-Almeida S, Durham AM. Non-coding transcription characterization and annotation: a guide and web resource for non-coding RNA databases. RNA Biol. 2012; 9: 274–282. https://doi.org/10.4161/rna.19352 PMID: 22336709
36. Kidwell MG. Transposable elements and the evolution of genome size in eukaryotes. Genetics. 2002; 115: 49–63. PMID: 12188048
37. Giovannoni SJ, Cameron Thrash J, Temperton B. Implications of streamlining theory for microbial ecology. ISME J. 2014; 8: 1553–1565. PMID: 24739623
38. Taft RJ, Mattick JS. Increasing biological complexity is positively correlated with the relative genome-wide expansion of non-protein-coding DNA sequences. Genome Biol. 2003; 5: P1.
39. Charpentier E, Hess WR. Editorial: RNA in bacteria: biogenesis, regulatory mechanisms and functions. FEMS Microbiol Rev. 2015; 39: 277–279. https://doi.org/10.1093/femsre/fuv025 PMID: 26009639
40. NCBI Resource Coordinators. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2017: D12. https://doi.org/10.1093/nar/gkw1071 PMID: 27899561
41. Nawrocki EP, Burge SW, Bateman A, Daub J, Eberhardt RY, Eddy SR, et al. RNA families database update: infernal 1.1. Nucleic Acids Res. 2012; 40: D130–D137. https://doi.org/10.1093/nar/gkr1063 PMID: 22394245
42. Arias-Carrasco R, Vásquez-Morán Y, Nakaya HI, Maracajá-Coutinho V. StructRNAfinder: an automated pipeline and web server for RNA families prediction. BMC Bioinformatics. 2018; 19: 55. https://doi.org/10.1186/s12859-018-2052-2 PMID: 29454313
43. Nawrocki EP, Eddy SR. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics. 2013; 29: 2933–2935. https://doi.org/10.1093/bioinformatics/btt509 PMID: 24008419
44. Denman RB. Using RNAFOLD to predict the activity of small catalytic RNAs. Biotechniques. 1993; 15: 1090–1095. PMID: 8292343
45. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010; 26: 841–842. https://doi.org/10.1093/bioinformatics/btp333 PMID: 20110278
46. Stothard P. The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques. 2000; 28: 1102, 1104. PMID: 10868275
47. Makrinos DL, Bowden TJ. Growth characteristics of the intracellular pathogen, Piscirickettsia salmonis, in tissue culture and cell-free media. J Fish Dis. 2016; 40(8):1115–1127. https://doi.org/10.1111/jfd.12578 PMID: 28026007
48. Yañez AJ, Valenzuela K, Silva H, Retamales J, Romero A, Enriquez R, et al. Broth medium for the successful culture of the fish pathogen Piscirickettsia salmonis. Dis Aquat Organ. 2012; 97: 197–205. https://doi.org/10.3354/da02403 PMID: 22422090
49. Marshall S, Heath S, Henríquez V, Orrego C. Minimally invasive detection of Piscirickettsia salmonis in cultivated salmonids via the PCR. Appl Environ Microbiol. 1998; 64: 3066–3069. PMID: 9687475
50. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008; 5: 621–628. https://doi.org/10.1038/nmeth.1226 PMID: 18516045
51. Leinonen R, Sugawara H, Shumway M. International Nucleotide Sequence Database Collaboration. The sequence read archive. Nucleic Acids Res. 2011; 39: D19–D21. https://doi.org/10.1093/nar/gkr1019 PMID: 21062823
52. Peña-Castillo L, Grüss L, Mulligan ME, Lang AS. Detection of bacterial small transcripts from RNA-Seq data: a Comparative Assessment. Pac Symp Biocomput. 2016; 21: 456–467. PMID: 26776209
53. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012; 9: 357–359. https://doi.org/10.1038/nmeth.1923 PMID: 22388286

PLOS ONE | https://doi.org/10.1371/journal.pone.0197206 May 16, 2018 17 / 20
54. Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., & Durbin R. (2009). The sequence alignment/map format and SAMtools. *Bioinformatics*, 25(16), 2078–2079. https://doi.org/10.1093/bioinformatics/btp352 PMID: 19505943

55. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP. Integrative genomics viewer. Nat Biotechnol 2011; 29:24–26. https://doi.org/10.1038/nbt.1754 PMID: 21221095

56. Busch A, Richter AS, Backofen R. IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions. Bioinformatics. 2008; 24: 2849–2856. https://doi.org/10.1093/bioinformatics/btn544 PMID: 18940824

57. Bernhart SH, Hofacker IL, Stadler PF. Local RNA base pairing probabilities in large sequences. Bioinformatics. 2006; 22: 614–615. https://doi.org/10.1093/bioinformatics/btk014 PMID: 16368769

58. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP. Integrative genomics viewer. Nat Biotechnol 2011; 29:24–26. https://doi.org/10.1038/nbt.1754 PMID: 21221095

59. Weilbacher T, Suzuki K, Dubey AK, Wang X, Gudapaty S, Morozov I, et al. A novel sRNA component of the carbon storage regulatory system of *Escherichia coli*. Mol Microbiol. 2003; 48: 657–670. PMID: 12694612

60. Papenfort K, Pfeiffer V, Lucchini S, Sonawane A, Hinton JCD, Vogel J. Systematic deletion of *Salmonella* small RNA genes identifies CyaR, a conserved CRP-dependent riboregulator of OmpX synthesis. Mol Microbiol. 2008; 68: 890–906. https://doi.org/10.1111/j.1365-2958.2008.06189.x PMID: 18399940

61. Heurlier K, Williams F, Heeb S, Dormond C, Pessi G, Singer D, et al. Positive control of swarming, rhamnolipid synthesis, and lipase production by the posttranscriptional RsmA/RsmZ system in *Pseudomonas aeruginosa* PAO1. J Bacteriol. 2004; 186: 2936–2945. https://doi.org/10.1128/JB.186.10.2936-2945.2004 PMID: 15126453

62. Padalon-Brauch G, Hershberg R, Elgrably-Weiss M, Baruch K, Rosenshine I, Margalit H, et al. Small RNAs encoded within genetic islands of *Salmonella Typhimurium* show host-induced expression and role in virulence. Nucleic Acids Res. 2011; 39: 19–29. https://doi.org/10.1093/nar/gkq768 PMID: 20805242

63. Weilbacher T, Suzuki K, Dubey AK, Wang X, Gudapaty S, Morozov I, et al. A novel sRNA component of the carbon storage regulatory system of *Escherichia coli*. Mol Microbiol. 2003; 48: 657–670. PMID: 12694612

64. Papenfort K, Pfeiffer V, Lucchini S, Sonawane A, Hinton JCD, Vogel J. Systematic deletion of *Salmo-
74. Joloba ML, Rather PN. Mutations in decB and decC alter an extracellular signaling pathway required for activation of the gab operon in *Escherichia coli*. FEMS Microbiol Lett. 2003; 228: 151–157. PMID: 14612251

75. Castric PA. Glycine metabolism by *Pseudomonas aeruginosa*: hydrogen cyanide biosynthesis. *J Bacteriol.* 1977; 130: 826–831. PMID: 233722

76. Smith JM, Daum HA 3rd. Nucleotide sequence of the purM gene encoding 5'-phosphoribosyl-5-aminoimidazole synthetase of *Escherichia coli* K12. *J Biol Chem.* 1986; 261: 1036–1036. PMID: 3015935

77. Meeske AJ, Sham L-T, Kimsey H, Koo B-M, Gross CA, Bernhardt TG, et al. MurJ and a novel lipid flipase are required for cell wall biogenesis in *Bacillus subtilis*. *Proc Natl Acad Sci U S A.* 2015; 112: 6437–6442. https://doi.org/10.1073/pnas.1504967112 PMID: 25918422

78. Cascales E, Lloubès R, Sturgis JN. The TolQ–TolR proteins energize TolA and share homologies with the flagellar motor proteins MotA–MotB. Mol Microbiol. 2001; 42: 795–807. PMID: 11722743

79. Stock A, Chen T, Welsh D, Stock J. CheA protein, a central regulator of bacterial chemotaxis, belongs to a family of proteins that control gene expression in response to changing environmental conditions. *Proc Natl Acad Sci U S A.* 1988; 85: 1403–1407. PMID: 3278311

80. Campbell JW, Morgan-Kiss RM, E Cronan J. A novel *Escherichia coli* metabolic competency: growth on fatty acids by a novel anaerobic β-oxidation pathway. Mol Microbiol. 2003; 47: 793–805. PMID: 12535077

81. Palmer LD, Downs DM. The thiamine biosynthetic enzyme ThiC catalyzes multiple turnovers and is inhibited by S-adenosylmethionine (AdoMet) metabolites. *J Biol Chem.* 2013; 288: 30693–30699. https://doi.org/10.1074/jbc.M113.500280 PMID: 24014032

82. Kusters I, Driessen AJM. SecA, a remarkable nanomachine. *Cell Mol Life Sci.* 2011; 68: 2053. https://doi.org/10.1007/s00018-011-0681-y PMID: 21479870

83. Oliver C, Hernández MA, Tandberg JI, Valenzuela KN, Lagos LX, Haro RE, et al. The proteome of biologically active membrane vesicles from *Piscirickettsia salmonis* LF-89 type strain identifies plasmid-encoded putative toxins. Front Cell Infect Microbiol. 2017; 7: 420. https://doi.org/10.3389/fcimb.2017.00420 PMID: 29034215

84. Koronasik V, Li J, Koronasik E, Stauffer K. Structure of TolC, the outer membrane component of the bacterial type I efflux system, derived from two-dimensional crystals. Mol Microbiol. 1997; 23: 617–626. PMID: 9044294

85. Bignell C, Thomas CM. The bacterial ParA-ParB partitioning proteins. *J Biotechnol.* 2001; 91: 1–34. PMID: 11522360

86. Richard H, Foster JW. *Escherichia coli* glutamate- and arginine-dependent acid resistance systems increase internal pH and reverse transmembrane potential. *J Bacteriol.* 2004; 186: 6032–6041. https://doi.org/10.1128/JB.186.18.6032-6041.2004 PMID: 15342573

87. Nygaard P, Smith JM. Evidence for a novel glycaminamide ribonucleotide transformylase in *Escherichia coli*. *J Bacteriol.* 1993; 175(11):3591–7. PMID: 8501063

88. Hershko-Shalev T, Odenheimer-Bergman A, Elgrably-Weiss M, Ben-Zvi T, Govindarajan S, Seri H, et al. Gifsy-1 Prophage IsrK with dual function as small and messenger RNA modulates vital bacterial machineries. *PLoS Genet.* 2016; 12: e1005975. https://doi.org/10.1371/journal.pgen.1005975 PMID: 27057757

89. Bina JE, Mekalanos JJ. *Vibrio cholerae* TolC is required for bile resistance and colonization. Infect Immun. 2001; 69: 4681–4685. https://doi.org/10.1128/IAI.69.7.4681-4685.2001 PMID: 11402016

90. Economou A, Wickner W. SecA promotes preprotein translocation by undergoing ATP-driven cycles of membrane insertion and deinsertion. *Cell.* 1994; 78: 835–843. PMID: 8087580

91. Small P, Blankenhorn D, Welty D, Zinsberer JL. Acid and base resistance in *Escherichia coli* and *Shigella flexneri*: role of rpoS and growth pH. *J Bacteriol.* 1994; 176: 1729–1737. PMID: 8132468

92. Romeo T. Global regulation by the small RNA-binding protein CsrA and the non-coding RNA molecule CsrB. Mol Microbiol. 1998; 29: 1321–1330. PMID: 9781871

93. Yang H, Liu MY, Romeo T. Pleiotropic regulation of central carbohydrate metabolism in *Escherichia coli* via the gene csrA. *J Biol Chem.* 1995; 270: 29096–29104. PMID: 7493933

94. Wei B, Shin S, LaPorte D, Wolfe AJ, Romeo T. Global regulatory mutations in csrA and rpoS cause severe central carbon stress in *Escherichia coli* in the presence of acetate. *J Bacteriol.* 2000; 182: 1632–1640. PMID: 10692369
96. Blumer C, Heeb S, Pessi G, Haas D. Global GacA-steered control of cyanide and exoprotease production in *Pseudomonas fluorescens* involves specific ribosome binding sites. Proc Natl Acad Sci U S A. 1999; 96: 14073–14078. PMID: 10570200

97. Cui Y, Chatterjee A, Liu Y, Dumenny CK. Identification of a global repressor gene, rsmA, of *Erwinia carotovora* subsp. *carotovora* that controls extracellular enzymes, N-(3-oxohexanoyl)-L-homoserine lactone, and pathogenicity in soft-rotting *Erwinia* spp. J. Bacteriol. 1995; 177:5108–5115. PMID: 7665490

98. Burrows E, Bayssse C, Adams C, O’Gara F. Influence of the regulatory protein RsmA on cellular functions in *Pseudomonas aeruginosa* PAO1, as revealed by transcriptome analysis. Microbiology. 2006; 152: 405–418. https://doi.org/10.1099/mic.0.28324-0 PMID: 16436429

99. Wolfgang MC, Lee VT, Gilmore ME, Lory S. Coordinate regulation of bacterial virulence genes by a novel adenylyl cyclase-dependent signaling pathway. Dev Cell. 2003; 4: 253–263. PMID: 12586068

100. Heeb S, Haas D. Regulatory roles of the GacS/GacA two-component system in plant-associated and other gram-negative bacteria. Mol Plant Microbe Interact. 2001; 14: 1351–1363. https://doi.org/10.1094/MPMI.2001.14.12.1351 PMID: 11768529

101. Hyytialainen H, Montesano M, Palva ET. Global regulators ExpA (GacA) and KdgR modulate extracellular enzyme gene expression through the RsmA-rsmB system in *Erwinia carotovora* subsp. *carotovora*. Mol Plant Microbe Interact. 2001; 14: 931–938. https://doi.org/10.1094/MPMI.2001.14.8.931 PMID: 11497464

102. Suzuki K, Wang X, Weilbacher T, Pernestig A-K, Melefors O, Georgellis D, et al. Regulatory circuitry of the CsrA/CsrB and BarA/UvrY systems of *Escherichia coli*. J Bacteriol. 2002; 184: 5130–5140. https://doi.org/10.1128/JB.184.18.5130-5140.2002 PMID: 12193630

103. Fortune DR, Suyemoto M, Altier C. Identification of CsrC and characterization of its role in epithelial cell invasion in *Salmonella enterica* serovar Typhimurium. Infect Immun. 2006; 74: 331–339. https://doi.org/10.1128/IAI.74.1.331-339.2006 PMID: 16388988

104. Torres AG, Redford P, Welch RA, Payne SM. TonB-dependent systems of uropathogenic *Escherichia coli*: aerobactin and heme transport and TonB are required for virulence in the mouse. Infect Immun. 2001; 69: 6179–6185. https://doi.org/10.1128/IAI.69.10.6179-6185.2001 PMID: 11553558

105. Pulgar R, Travisany D, Zuhiga A, Maas A, Cambiazo V. Complete genome sequence of *Piscirickettsia salmonis* LF-89 (ATCC VR-1361) a major pathogen of farmed salmonid fish. J Biotechnol. 2015; 212: 30–31. https://doi.org/10.1016/j.jbiotec.2015.07.017 PMID: 26220311

106. Almarza O, Valderrama K, Ayala M, Segovia C, Santander J. A functional ferric uptake regulator (Fur) in the fish pathogen *Piscirickettsia salmonis*. Int Microbiol. 2016; 19:49–55. https://doi.org/10.2436/20.1501.01.263 PMID: 27762429