Lee, ACC; Katz, J; Blencowe, H; Cousens, S; Kozuki, N; Vogel, JP; Adair, L; Baqui, AH; Bhutta, ZA; Caulfield, LE; Christian, P; Clarke, SE; Ezzati, M; Fawzi, W; Gonzalez, R; Huybregts, L; Kariuki, S; Kosteren, P; Lusingu, J; Marchant, T; Merialdi, M; Mongkolchati, A; Mullany, LC; Ndirangu, J; Newell, ML; Nien, JK; Osrn, D; Roberfroid, D; Rosen, HE; Sania, A; Silveira, MF; Tielsch, J; Vaidya, A; Willey, BA; Lawn, JE; Black, RE (2013) National and regional estimates of term and preterm babies born small for gestational age in 138 low-income and middle-income countries in 2010. The Lancet Global Health, 1 (1). e26 - e36. DOI: https://doi.org/10.1016/S2214-109X(13)70006-8

Downloaded from: http://researchonline.lshtm.ac.uk/1567802/

DOI: 10.1016/S2214-109X(13)70006-8

Usage Guidelines

Please refer to usage guidelines at http://researchonline.lshtm.ac.uk/policies.html or alternatively contact researchonline@lshtm.ac.uk.

Available under license: http://creativecommons.org/licenses/by/2.5/
National and regional estimates of term and preterm babies born small for gestational age in 138 low-income and middle-income countries in 2010

Anne CC Lee, Joanne Katz, Hannah Blencowe, Simon Cousens, Naoko Kozuki, Joshua P Vogel, Linda Adair, Abdullah H Baqui, Zulfiqar A Bhutta, Laura E Caulfield, Parul Christian, Siân E Clarke, Majid Ezzati, Wafaie Fawzi, Rogelio Gonzalez, Lieven Huybregts, Simon Kariuki, Patrick Kolsteren, John Lusingu, Tanya Marchant, Mario Merla, Aroon Sri, Luke C Mullany, James Ndirangu, Marie-Louise Newell, Jyh Kae Nien, David Osin, Dominique Roberfroid, Heather E Rosen, Ayeshaa Sanja, Marlenagela F Silveira, James Tielsch, Anjana Vaidya, Barbara A Willey, Joy E Lawn, Robert E Black, for the CHERG SGA-Preterm Birth Working Group*

Summary

Background National estimates for the numbers of babies born small for gestational age and the comorbidity with preterm birth are unavailable. We aimed to estimate the prevalence of term and preterm babies born small for gestational age (term-SGA and preterm-SGA), and the relation to low birthweight (<2500 g), in 138 countries of low and middle income in 2010.

Methods Small for gestational age was defined as lower than the 10th centile for fetal growth from the 1991 US national reference population. Data from 22 birth cohort studies (14 low-income and middle-income countries) and from the WHO Global Survey on Maternal and Perinatal Health (23 countries) were used to model the prevalence of term-SGA births. Prevalence of preterm-SGA infants was calculated from meta-analyses.

Findings In 2010, an estimated 32.4 million infants were born small for gestational age in low-income and middle-income countries (27% of livebirths), of whom 10.6 million infants were born at term and low birthweight. The prevalence of term-SGA babies ranged from 5.3% in livebirths in east Asia to 41.5% in south Asia, and the prevalence of preterm-SGA infants ranged from 1.2% in North Africa to 3.0% in southeast Asia. Of 18 million low-birthweight babies, 59% were term-SGA and 41% were preterm. Two-thirds of small-for-gestational-age infants were born in Asia (17.4 million in south Asia). Preterm-SGA babies totalled 2.8 million births in low-income and middle-income countries. Most small-for-gestational-age infants were born in India, Pakistan, Nigeria, and Bangladesh.

Interpretation The burden of small-for-gestational-age birth is very high in countries of low and middle income and is concentrated in south Asia. Implementation of effective interventions for babies born too small or too soon is an urgent priority to increase survival and reduce disability, stunting, and non-communicable diseases.

Funding Bill & Melinda Gates Foundation to support the activities of the Child Health Epidemiology Reference Group (CHERG).

Introduction

An estimated 20 million infants are born globally with low birthweight (<2500 g) every year. Low birthweight is an important population indicator for tracking neonatal health and includes babies born preterm (<37 completed weeks of gestation) and infants with intrauterine growth restriction. These components of low birthweight have different causes and risks of mortality, morbidly, impaired growth, and non-communicable diseases. Hence, for us to guide interventions to address both prevention and care, we must delineate low birthweight according to preterm birth, intrauterine growth restriction, and their overlap.

National estimates of preterm birth for 184 countries have been published for the year 2010, showing a total of 14.9 million preterm births. In the Global Burden of Disease Study, 77 million (3.1%) disability-adjusted life-years were attributed to preterm birth, similar to the burden of HIV or malaria. In 1998, de Onis and colleagues’ reported estimates of intrauterine growth restriction, using babies born full term and with low birthweight as a proxy measure. They estimated that 13.7 million babies were born at term and with low birthweight every year, but they did not provide national estimates. Furthermore, no estimates are available for the co-occurrence of intrauterine growth restriction and preterm birth, or the relation between intrauterine growth restriction and the widely used metric of low birthweight.

The classification of small for gestational age was defined by a 1995 WHO expert committee as infants below the 10th centile of a birthweight-for-gestational-age, gender-specific reference population. A major challenge is selection of an appropriate global reference. Small for gestational age is a commonly accepted proxy measure of intrauterine growth restriction. However, small for gestational age includes babies who are constitutionally small and in the lower tail of the growth curve, in addition to being born preterm.
to infants who were growth-restricted in utero because of maternal and environmental factors, such as chronic undernutrition, multiple pregnancy, placental insufficiency, pregnancy complications (eg, pre-eclampsia), infections, and other toxic exposures. In settings with high rates of small-for-gestational-age births, growth restriction accounts for a high proportion of these, justifying its use as a proxy for intrauterine growth restriction.

Our aim is to estimate the national prevalence and numbers of neonates born small for gestational age at full term (≥37 weeks; term-SGA), and the co-occurrence of small for gestational age with preterm birth (preterm-SGA), in 138 countries of low and middle income. We focus on this group of countries in view of their high burden of disease and the urgent need for data to direct, monitor, and assess public health planning in these regions.

Methods

Definitions

We defined small for gestational age as a birthweight lower than the 10th centile for a specific completed gestational age by gender, using the Alexander reference population (US National Center for Health Statistics, 1991; n=3134879 livebirths). We defined term-SGA as a baby born small for gestational age at 37 or more completed weeks of gestation, and we classified preterm-SGA as infants born small for gestational age at fewer than 37 weeks of gestation. We defined low birthweight as a baby born weighing less than 2500 g. Finally, we defined appropriate for gestational age as a birthweight on or higher than the 10th centile for a specific completed weeks of gestation, and we classed babies born small for gestational age at 37 or more weeks of gestation as term-SGA.

Data sources

We obtained data from three sources: (1) systematic literature reviews to identify birth cohorts with information on birthweight and gestational age; (2) research networks of birth cohorts; and (3) the WHO Global Survey on Maternal and Perinatal Health (appendix p 6), which gathered data between 2004 and 2008 from 373 facilities in 24 countries and included 290610 births. We excluded data from Japan (n=3318) because it is a high-income country. Therefore, a total of 23 countries contributed to the analysis. Details of survey methods are reported elsewhere. The WHO Global Survey selected countries randomly from every WHO subregion and then picked facilities at random from the capital city and two other randomly selected provinces. For this facility-based survey, trained data collectors abstracted relevant data from medical records into standardised forms from all births in the facility over a specific period. Several facilities had data with improbable values or unrepresentative data. To exclude these poor data-quality facilities, we omitted those with fewer than 500 births (small sample size), preterm birth rates greater than 40% or less than 3% (outside biological plausibility range), or rates of low birthweight less than 1% (implausible). We aggregated data at the country level.

Datasets analysed by the original study investigators were approved by existing site institutional review boards. For datasets shared with the CHERG working group, personal identifiers were not included and, therefore, were deemed exempt by the Johns Hopkins Bloomberg School of Public Health institutional review board.

Procedures

In the first step of the estimation process, we developed a model to estimate the national prevalence of term-SGA, based on the included input data. We then estimated the prevalence of preterm-SGA, using meta-analytical methods, and we applied these proportions to recent birth and small-for-gestational-age-related mortality (appendix p 1). We identified additional datasets within maternal-neonatal research networks (ongoing maternal-neonatal health studies, demographic surveillance sites, and WHO UNIMAP studies). We contacted investigators to ascertain whether their studies met our inclusion criteria and, if so, we asked them to join the Child Health Epidemiology Reference Group (CHERG) SGA-Preterm Birth working group and contribute data for secondary analyses (appendix pp 2–4). We did another literature review in February, 2012, to identify published studies reporting the prevalence of both small-for-gestational-age births, using the Alexander reference, and low birthweight to use for statistical modelling, since low birthweight was the primary independent modelling predictor. We implemented two strategies: (1) a Medline search using terms (“small-for-gestational-age” OR “intrauterine growth restriction”) AND “low birthweight” AND (“incidence” OR “prevalence”) AND “developing country”; and (2) a Scopus search identifying all published articles that have cited small for gestational age using the Alexander reference. Further details on our search strategy are in the appendix (p 5).

We also analysed data from the WHO Global Survey on Maternal and Perinatal Health (appendix p 6), which gathered data between 2004 and 2008 from 373 facilities in 24 countries and included 290610 births. We excluded data from Japan (n=3318) because it is a high-income country. Therefore, a total of 23 countries contributed to the analysis. Details of survey methods are reported elsewhere. The WHO Global Survey selected countries randomly from every WHO subregion and then picked facilities at random from the capital city and two other randomly selected provinces. For this facility-based survey, trained data collectors abstracted relevant data from medical records into standardised forms from all births in the facility over a specific period. Several facilities had data with improbable values or unrepresentative data. To exclude these poor data-quality facilities, we omitted those with fewer than 500 births (small sample size), preterm birth rates greater than 40% or less than 3% (outside biological plausibility range), or rates of low birthweight less than 1% (implausible). We aggregated data at the country level.
Table 1: Final statistical model for logit(term-SGA prevalence)

Description	Coefficient (95% CI)	p
ln(LBW prevalence)	0.997 (0.732 to 1.262)	<0.0001
Neonatal mortality rate	0.012 (0.003 to 0.022)	0.010
Population selection dummy variable	0.246 (-0.114 to 0.606)	0.181
Population selection dummy variable	0.188 (-0.203 to 0.419)	0.496
cons	-4.160 (-4.986 to -3.352)	<0.0001

Adjusted R²=0.8237. LBW=low birthweight. SGA=small for gestational age.
Figure 1: Scatterplots showing the relation of term-SGA to LBW and neonatal mortality rate (A) logit(term-SGA prevalence) versus ln(LBW prevalence). (B) logit(term-SGA prevalence) versus neonatal mortality rate. SGA = small for gestational age. LBW = low birthweight.
Articles

Table 2 presents the numbers and prevalence of term-SGA, preterm-SGA, and all small-for-gestational-age births, by UN-MDG region. Prevalence of term-SGA ranged from 5·3% in east Asia to as high as 41·5% in sub-Saharan Africa. The vast majority of small-for-gestational-age infants (87%, 28·2 million) were born in south Asia, southeast Asia, and sub-Saharan Africa.

Figure 2 presents prevalence data for term-SGA, preterm-SGA, and preterm appropriate-for-gestational-age births, compared with the prevalence of babies born with low birthweight. Table 2 also shows the estimated numbers of term-SGA infants who weighed less than 2500 g at birth (term-SGA and with low birthweight), by UN-MDG region for 2010. In all regions, the majority (>50%) of term-SGA infants weighed 2500 g or heavier, with high proportions of babies not low birthweight but small for gestational age in Africa (74%) and Latin America and the Caribbean (71%). The highest regional proportion of low-birthweight babies was recorded in south Asia (26%), and the prevalence of term-SGA infants was also very high in this region (42%). Term-SGA accounted for 65% of low-birthweight babies in south Asia and preterm birth accounted for 35%. In sub-Saharan Africa, although preterm birth rates were similar to those in south Asia, the rate of low-birthweight babies was lower (14%) and preterm birth made a relatively larger contribution to the low-birthweight metric (57% preterm birth vs 43% term-SGA). Similarly in Latin America and the Caribbean, preterm birth comprised a larger proportion of the low-birthweight metric (60% preterm birth vs 40% term-SGA). In east Asia, the proportion of low-birthweight infants was very low (2·6%) and consisted mainly of preterm-SGA infants. In regions with lower rates of low-birthweight babies, such as north Africa or east Asia, preterm birth seems the more influential contributor to the low-birthweight metric.

Overall, in countries of low and middle income in 2010, an estimated 43·3 million infants (36% of livebirths) were born either preterm or small for gestational age, or both (figure 4). Of 18 million low-birthweight infants, 59% were term-SGA whereas 41% were preterm (16% preterm-SGA, 25% preterm and appropriate size for gestational age).

Table 3 shows the ten countries with the largest numbers of small-for-gestational-age infants born in 2010. An estimated 12·8 million babies were born small for gestational age in India alone (95% CI 11·5–14·3 million), with a prevalence of 47%. Pakistan, Nigeria, Bangladesh, China, and Indonesia had more than 1 million small-for-gestational-age babies.
Discussion

Our data provide national and regional estimates for the prevalence and number of babies born small for gestational age and the co-occurrence of small for gestational age with preterm birth. 43·3 million infants (36% of livebirths) in countries of low or middle income were born either too small (small for gestational age) or too soon (preterm), or both, in 2010. The estimated burden of babies born small for gestational age is very high; 32·4 million neonates (27% of livebirths) are affected, of whom 29·7 million infants were born at full term (≥37 weeks) and 10·6 million were born at term and with low birthweight (<2500 g). Almost 3 million infants (2%) were born preterm and small for gestational age.

The highest rates and numbers of babies born small for gestational age were in south Asia, where more than half

Table 2: Estimated prevalence and numbers of preterm and SGA infants, by UN-MDG region in 2010

Region	Preterm prevalence (uncertainty range)	Number of births (uncertainty range)*						
	Preterm SGA	Term-SGA	Preterm-SGA	Preterm SGA	Term-SGA	Term-SGA and LBW	Preterm SGA	
Caucasus and central Asia	1643 000	9·2% (6·1–13·0)	15·0% (10·6–21·4)	12·9% (8·5–19·2)	2·1% (1·3–2·9)	153 300	240 700 (169 800–342 400)	207 000
East Asia	17 490 000	7·2% (5·4–9·0)	7·0% (4·2–11·6)	5·2% (2·7–10·1)	1·7% (1·1–2·1)	1262 200	1182 200 (720 700–1975 000)	901 000
Southeast Asia	10 983 400	13·6% (9·3–18·6)	24·3% (19·5–30·2)	21·2% (16·7–27·1)	3·0% (2·0–4·3)	1497 500	2670 200 (2143 400–3 318 900)	2336 400
South Asia	38 753 000	13·3% (10·1–16·8)	44·5% (40·0–49·7)	41·5% (37·4–46·9)	2·9% (2·1–3·8)	5159 300	17 350 300 (15 600 000–19 400 000)	16 200 000
West Asia	485 300	10·1% (6·9–14·3)	21·8% (17·6–27·2)	19·6% (15·2–25·3)	2·2% (1·5–3·2)	488 200	1066 900 (863 100–1 334 300)	958 100
Oceania	263 100	7·4% (4·5–15·6)	21% (16·2–27·4)	39·4% (19·4–65·3)	1·6% (1·0–3·5)	19 500	55 300 (41 700–72 000)	51 000
North Africa	3543 000	7·3% (4·8–10·9)	9·6% (6·8–13·2)	8·5% (5·7–13·1)	1·2% (0·7–1·9)	259 200	337 600 (229 400–461 400)	296 000
Sub-Saharan Africa	32 085 500	12·3% (9·3–15·8)	25·5% (21·7–28·8)	23·5% (19·9–26·7)	2·0% (1·4–2·8)	3926 800	8157 300 (6 943 600–9 215 500)	7525 200
Latin America and the Caribbean	10 844 500	8·6% (7·0–12·0)	12·5% (9·4–16·3)	10·7% (7·7–14·4)	1·8% (1·4–2·5)	929 300	1374 000 (1029 700–1788 900)	1180 100
Total†	120 461 300	11·3% (8·6–14·7)	27·0% (24·1–30·5)	24·7% (21·7–28·1)	2·3% (1·7–2·9)	13 702 800	32 434 800 (29 001 600–36 742 300)	29 654 600

AGA=appropriate for gestational age. SGA=small for gestational age. LBW=low birthweight. *Uncertainty ranges for all estimates are included in the appendix (pp 19–23). †Total for 138 countries of low and middle income.

Figure 3: Prevalence of SGA, preterm births, and LBW by UN-MDG region in 2010

AGA=appropriate for gestational age. SGA=small for gestational age. LBW=low birthweight.
of babies small for gestational age are born and nearly one in two infants are born too small. The prevalence of babies born small for gestational age reached almost 50% in Pakistan and India, predicted largely on national rates for low birthweight, which were very high. The cutoff for small for gestational age at the 10th centile of the reference population was recommended by a WHO expert committee; however, a lower cutoff could be considered at the 3rd centile, which would indicate especially severe cases of small for gestational age, particularly in high-burden settings. With a 3rd centile cutoff, the prevalence of severe small-for-gestational-age births was 23% in south Asia, affecting 3·9 million infants (analysis not shown). The lowest rates of babies born small for gestational age were noted in east Asia, largely affected by data for China, where the reported low-birthweight rate was 2·4% (WHO Regional Offices, 2008).

A major challenge in estimating the global burden of babies born small for gestational age is selection of a common reference population. The Williams’ reference of Californian livebirths from 1970–76 (n=2288806) was recommended in 1995 by WHO in view of the multiracial population, representation at lower gestational ages, and association with survival. We chose the 1991 US birth reference population,8 which was published after the original WHO recommendation, because it is more recent than the Williams reference, has a large sample size (n=3134879) that better represents low gestational ages, covers a national and diverse multiethnic population, has well characterised methods to smooth centile curves and exclude outlying values, and is the most frequently cited reference in scientific literature.

Choosing a common reference for burden estimates is important, since the estimated prevalence of babies born small for gestational age varies substantially depending on the reference population chosen. For example, within a south Indian cohort, the estimated prevalence of babies born small for gestational age ranged from 10·5%8 to 72·5%6 using the 10th centile cutoff of different reference populations, with the Alexander reference providing a prevalence of 56%6 (Joanne Katz, Johns Hopkins Bloomberg School of Public Health; personal communication). Another consideration is use of a birthweight-for-gestation curve versus an ultrasound-based fetal-weight curve. For preterm infants, a birthweight-for-gestation reference might underestimate the true prevalence of intrauterine growth restriction because preterm infants could be small at birth because of pathological effects, which led to the preterm birth, compared with babies who remain in utero.6 However, ultrasound-based fetal-weight estimation methods also have limitations. A standard proposed by WHO shifts the Hadlock distribution of fetal weights for every gestational age by a particular country’s mean birthweight at 40 weeks, thus setting by default any population-based small-for-gestational-age prevalence close to 10%. This strategy only identifies the most growth-restricted infants in that particular population, rather than establishing the burden of suboptimum growth. Most limitations of available fetal growth references are being addressed in the WHO Intergrowth study, which is currently taking place in eight geographically diverse settings and aims to develop international growth standards to describe optimum fetal growth and newborn nutritional status (completion in 2014).44

Our analyses show important regional differences in babies born small for gestational age and the composition of low birthweight. In south Asia, rates of low birthweight are high and many (65%) low-birthweight births are attributable to term-SGA infants. However, in sub-Saharan Africa and Latin America and the Caribbean, just over 50% of low-birthweight babies are preterm. Furthermore, low birthweight might not fully capture the increased risk of babies born too soon or too small. The median birthweight of an infant born at 33 weeks of gestation is around 2500 g for the Alexander distribution; thus, many late preterm infants could weigh 2500 g or heavier. Two-thirds of term-SGA infants weigh 2500 g or more, although these babies are at lower risk of morbidity and mortality than their low-birthweight counterparts, particularly from non-communicable diseases in adulthood.

Estimates of intrauterine growth restriction were reported by de Onis and colleagues in 1998.8 These researchers estimated that 13·7 million infants (11% of births) in low-income and middle-income countries were born at term and with a low birthweight, an indicator that was a proxy for intrauterine growth restriction. By comparison, we estimated that a total of 10·6 million infants were born with impaired fetal growth.
babies were born at term with low birthweight in countries of low and middle income in 2010. However, our estimation of small for gestational age also included two groups missing in the term and low-birthweight indicator: preterm-SGA infants who are at substantially higher risk of adverse outcomes and babies born small for gestational age but weighing 2500 g or more. The estimates made by de Onis and colleagues were based on 1996 rates of low birthweight from WHO and on older data from 1960–96, which used inputs from 60 datasets in low-income and middle-income countries at a time when less attention was paid to metrics for gestational age. Recent findings show temporal changes in the distribution of small-for-gestational-age and preterm births in low-birthweight babies.45

Estimates of preterm, low-birthweight, and small-for-gestational-age rates are imperfect because of gaps and biases in data. The methods used to ascertain gestational age varied between studies and might affect estimation of gestational length. We included studies meeting a priori data-quality criteria for gestational age, and nine studies included ultrasound measures of gestational age. In several studies, last menstrual period was recorded and ultrasound measures of gestational age were used indicator in countries of low and middle income. However, the prevalence of small-for-gestational-age babies or intrauterine growth restriction (panel). More than half of infants in low-income and middle-income countries are never weighed at birth, particularly those born outside of facilities, and facility-based data are subject to selection biases. Inclusion of birthweight in household surveys (eg, demographic and health survey, multiple indicator cluster survey) since the 1990s has improved data availability, and methods to adjust data quality have been developed.1 Serial fetal ultrasonography is the gold standard for diagnosis of intrauterine growth restriction in high-resource settings, but small for gestational age at birth is the most commonly used indicator in countries of low and middle income. Data for gestational age are also troublesome. In low-income and middle-income countries, ultrasound is

Country	Livebirths in 2010	NMR 2010	LBW births	Preterm births	Term-SGA births	Preterm-SGA births	Number of SGA births	SGA prevalence
1 India	27 000 000	33.1	7 507 200	3 591 100	12 000 000	784 600	12 800 000 (11 500 000–14 300 000)	46.9%
2 Pakistan	4 700 000	36.1	1 222 800	748 100	2 061 300	166 800	2 228 100 (2 012 200–2 529 800)	47.0%
3 Nigeria	6 300 000	40.2	740 900	773 600	1 379 500	124 200	1 503 800 (1 275 200–1 709 100)	23.7%
4 Bangladesh	3 000 000	27.5	666 100	424 100	1 108 500	94 600	1 203 000 (1 071 800–1 369 200)	39.6%
5 China	17 000 000	9.4	398 400	1 172 300	810 700	261 400	1 072 100 (648 300–1 817 600)	6.5%
6 Indonesia	4 400 000	15.9	485 300	625 700	891 600	150 700	1 042 300 (814 800–1 309 300)	23.8%
7 Ethiopia	2 600 000	32.4	530 400	263 400	795 700	42 300	838 000 (698 900–957 600)	32.1%
8 Philippines	2 300 000	36.6	459 500	348 900	708 900	77 800	786 700 (641 600–932 900)	33.6%
9 Democratic Republic of Congo	2 900 000	47.4	275 800	341 400	574 600	54 800	629 500 (523 000–754 900)	21.9%
10 Sudan	1 400 000	31.5	438 600	188 300	565 000	30 200	592 200 (485 900–696 600)	41.7%

Table 3: Top ten countries with the highest numbers of SGA infants born in 2010

NMR=neonatal mortality rate. LBW=low birthweight. SGA=small for gestational age.
In an analysis modelling high coverage of five interventions to prevent preterm birth and fetal growth restriction during the neonatal period, evidence for the primary prevention of premature death is a problem.2 Under-registration of very preterm births attributable to early death is also a problem.3 Our findings have important programmatic and research implications for newborn health and survival; particularly because 43% of under-5 deaths happen during the neonatal period. Evidence for the primary prevention of preterm birth and fetal growth restriction is limited. In an analysis modelling high coverage of five evidence-based interventions in countries with adequate data and investigators willing to join the CHERG SGA-Preterm Birth Working Group. After fitting the statistical model with these data, we observed a high correlation between low birthweight and prevalence of small-for-gestational-age births. To include more data in the model, we did an additional literature review to identify studies that reported low birthweight and prevalence of small-for-gestational-age births using the 1991 US national birthweight reference (Alexander, 1991).4 We searched Medline and Scopus to identify studies reporting either the prevalence of small-for-gestational-age and low-birthweight births or the prevalence of small-for-gestational-age babies using the Alexander reference, using prespecified inclusion criteria. Search terms included “fetal growth restriction”, “intrauterine growth restriction”, OR “small for gestational age” AND “low birthweight”, using MESH subject heading terms. Six reports were identified that reported prevalence of small for gestational age and low birthweight; however, none reported the prevalence of babies born at term and small for gestational age (term-SGA) or preterm and small for gestational age (preterm-SGA) and were therefore excluded. Secondary analyses and statistical modelling were done to estimate the prevalence of term-SGA for 138 countries of low and middle income for the year 2010. We also estimated the proportion of preterm-SGA using meta-analyses.

Interpretation
In the year 2010, 32·4 million (27%) small-for-gestational-age livebirths were estimated, of which 2·8 million babies (2% of births) were preterm-SGA. The prevalence of term-SGA ranged from 5·3% in east Asia to 41·5% in south Asia, and preterm-SGA ranged from 1·2% in north Africa to 3·0% in southeast Asia. Of the 18 million low-birthweight babies born every year, about 59% are because of growth restriction in term infants and 41% are attributable to prematurity. Previously, babies born at term and low birthweight were a proxy for intrauterine growth restriction; last estimates date from 1998, when about 13·7 million infants (11% of births) in countries of low and middle income were born at term and low birthweight, compared with our estimate of 10·6 million babies (9% of births) for the year 2010. However, the number of babies born at term and low birthweight does not fully capture the burden of growth restriction and misses infants born small for gestational age above the 2500 g cutoff in addition to those who are both preterm and small for gestational age. These babies might have increased risk of morbidity or mortality. Globally, a huge burden of fetal growth restriction exists, particularly concentrated in south Asia. Implementation of simple and cost-effective interventions that increase survival and reduce morbidity of these babies born too small is an urgent priority.

Panel: Research in context

Systematic review
No systematic national estimates have been published of the burden of babies born small for gestational age and its co-occurrence with preterm birth. To identify birth cohorts with birthweight and gestational age data required for secondary analysis, we did a systematic literature review of Medline and WHO regional databases with the terms: “preterm birth”, “intrauterine/fetal growth restriction”, OR “small for gestational age”, AND “developing countries”. We identified 45 birth cohorts from low-income and middle-income countries with adequate data and investigators willing to join the CHERG SGA-Preterm Birth Working Group. After fitting the statistical model with these data, we observed a high correlation between low birthweight and prevalence of small-for-gestational-age births. To include more data in the model, we did an additional literature review to identify studies that reported low birthweight and prevalence of small-for-gestational-age births using the 1991 US national birthweight reference (Alexander, 1991).4 We searched Medline and Scopus to identify studies reporting either the prevalence of small-for-gestational-age and low-birthweight births or the prevalence of small-for-gestational-age babies using the Alexander reference, using prespecified inclusion criteria. Search terms included “fetal growth restriction”, “intrauterine growth restriction”, OR “small for gestational age” AND “low birthweight”, using MESH subject heading terms. Six reports were identified that reported prevalence of small for gestational age and low birthweight; however, none reported the prevalence of babies born at term and small for gestational age (term-SGA) or preterm and small for gestational age (preterm-SGA) and were therefore excluded. Secondary analyses and statistical modelling were done to estimate the prevalence of term-SGA for 138 countries of low and middle income for the year 2010. We also estimated the proportion of preterm-SGA using meta-analyses.

Interpretation
In the year 2010, 32·4 million (27%) small-for-gestational-age livebirths were estimated, of which 2·8 million babies (2% of births) were preterm-SGA. The prevalence of term-SGA ranged from 5·3% in east Asia to 41·5% in south Asia, and preterm-SGA ranged from 1·2% in north Africa to 3·0% in southeast Asia. Of the 18 million low-birthweight babies born every year, about 59% are because of growth restriction in term infants and 41% are attributable to prematurity. Previously, babies born at term and low birthweight were a proxy for intrauterine growth restriction; last estimates date from 1998, when about 13·7 million infants (11% of births) in countries of low and middle income were born at term and low birthweight, compared with our estimate of 10·6 million babies (9% of births) for the year 2010. However, the number of babies born at term and low birthweight does not fully capture the burden of growth restriction and misses infants born small for gestational age above the 2500 g cutoff in addition to those who are both preterm and small for gestational age. These babies might have increased risk of morbidity or mortality. Globally, a huge burden of fetal growth restriction exists, particularly concentrated in south Asia. Implementation of simple and cost-effective interventions that increase survival and reduce morbidity of these babies born too small is an urgent priority.
32·4 million neonates, or one in every four babies, were classified as small for gestational age, closely linked to 13·7 million babies born too soon. Half of infants born small for gestational age were in south Asia, where one of two babies was born too small. To improve the epidemiology and adequately monitor the effect of interventions, systems are needed urgently to better capture and track pregnancy outcomes and to increase the quantity and quality of both birthweight and gestational age data. Effective low-technology interventions are available now to deliver care to these most vulnerable babies born too small or too soon.

Contributors
ACL was responsible for study design, data collection, the literature reviews, statistical modelling, data analysis, and wrote the report. JK was responsible for study design, data collection, interpretation of results, and helped write the report. HB did data analysis, and HB, SC, and JEL provided technical input on statistical modelling and helped write the report. NK did literature reviews, data collection, and helped write the report. JP, AS, BAW, JN, JKN, HER, MFS, and JV helped analyse primary datasets and reviewed the report. LA, AHB, ZAB, LEC, PC, SEC, WF, RG, LH, SK, PK, JL, TM, AM, LCM, M-LN, DO, DR, and JT contributed data to the analysis and reviewed the report. ME and REB provided important assistance with study design and reviewed the report.

Conflicts of interest
We declare that we have no conflicts of interest.

Acknowledgments
We thank additional members of the CHERG SGA-Preterm Birth working group: Subarna Khatry and Christenstce Schmiegelow; Joanna Schellenberg for support; and Ramesh Adhikari, Fernando Barros, Christian Coles, Anthony Costello, Gary Darmstadt, Sheela Devi, Hermann Lanou, Steve Le Clerc, Dharma Manandhar, Daniel Minja, R D Thulasiraj, Laeticia Celine Toe, Willy Urassa, WF, RG, LH, SK, PK, JL, TM, AM, LCM, M-LN, DO, DR, and JT contributed data to the analysis and reviewed the report. ME and REB provided important assistance with study design and reviewed the report.

References
1 WHO, UNICEF. Low birthweight: country, regional and global estimates. Geneva: World Health Organization, 2004.
2 Blencowe H, Cousens S, Oestergaard MZ, et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet 2012; 379: 2162–72.
3 Murray CJ, Vos T,洛, zoano R, et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012; 380: 2197–223.
4 de Onis M, Blossner M, Villar J. Levels and patterns of intrauterine growth retardation in developing countries. Eur J Clin Nutr 1996; 52 (suppl 1): S5–15.
5 WHO Expert Committee on Physical Status. Physical status: the use of and interpretation of anthropometry, report of a WHO expert committee. Geneva: World Health Organization, 1995.
6 de Onis M, Habicht JP. Anthropometric reference data for international use: recommendations from a World Health Organization Expert Committee. Am J Clin Nutr 1996; 64: 650–58.
7 Smith G, Lees C. Disorders of fetal growth and assessment of fetal well-being. In: Edmonds DK, ed. Dewhurst textbook of obstetrics and gynaecology, 8th edn. Chichester: John Wiley and Sons, 2012.
8 Alexander GR, Himes JH, Kaufman RB, Mor J, Kogan M. A United States national reference for fetal growth. Obstet Gynecol 1996; 87: 163–68.
9 Shah A, Faundes A, Machiko M, et al. Methodological considerations in implementing the WHO Global Survey for Monitoring Maternal and Perinatal Health. Bull World Health Organ 2008; 86: 126–31.
10 Katz J, Lee AC, Kozuki N, et al, and the CHERG Small-for-Gestational-Age Preterm Birth Working Group. Mortality risk in preterm and small-for-gestational-age infants in low-income and middle-income countries: a pooled country analysis. Lancet 2013; published online June 6. http://dx.doi.org/10.1016/S0140-6736(13)60993-9.
11 Fall CH, Fisher DJ, Osmond C, Margetts BM, for the Maternal Micronutrient Supplementation Study Group. Multiple micronutrient supplementation during pregnancy in low-income countries: a meta-analysis of effects on birth size and length of gestation. Food Nut Bull 2009; 30 (4 suppl): S533–46.
12 Liu L, Johnson HL, Cousens S, et al, for the Child Health Epidemiology Reference Group of WHO and UNICEF. Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000. Lancet 2012; 379: 2151–61.
13 Ndoyemuyenny R, Clarke SE, Hutchison CL, Hansen KS, Maguinness P. Efficacy of malaria prevention during pregnancy in an area of low and unstable transmission: an individually-randomised placebo-controlled trial using intermittent preventive treatment and insecticide-treated nets in the Kabale Highlands, southwestern Uganda. Trans R Soc Trop Med Hyg 2011; 105: 607–16.
14 Rubin DB. Multiple imputation after 18+ years. J Am Stat Assoc 1996; 91: 473–89.
15 Childinfo. Inter-agency Group for Child Mortality Estimation (IGME). July, 2012. http://www.childinfo.org/mortality_igme.html (accessed Oct 18, 2012).
16 UNICEF. State of the world’s children 2012. New York, UNICEF, 2012.
17 Schmiegelow C, Minja D, Oesterholt M, et al. Factors associated with and causes of perinatal mortality in northeastern Tanzania. Acta Obstet Gynecol Scand 2012; 91: 1061–68.
18 Santos IS, Barros AJ, Matijasevich A, Domingues MR, Barros FC, Victora CG. Cohort profie: the 1993 Pelotas (Brazil) birth cohort study. Acta Obstet Gynecol Scand 2012; 91: 1461–68.
19 Magnussen P. Prevention of malaria during pregnancy with intermittent preventive treatment and insecticide-treated nets in the Kabale Highlands, southwestern Uganda. Trans R Soc Trop Med Hyg 2011; 105: 607–16.
20 Childinfo. Inter-agency Group for Child Mortality Estimation (IGME). July, 2012. http://www.childinfo.org/mortality_igme.html (accessed Oct 18, 2012).
21 Victora CG, Barros FC, Cohort profie: the 1982 Pelotas (Brazil) birth cohort study. Int J Epidemiol 2006; 35: 37–42.
22 Victora CG, Hallal PC, Araujo CL, Menezes AM, Wells JC, Barros FC, Cohort profie: the 1993 Pelotas (Brazil) birth cohort study. Int J Epidemiol 2008; 37: 704–09.
23 Gonzalez R, MeriMl d, Lincetto O, et al. Reduction in neonatal mortality in Chile between 1990 and 2000. Pediatrics 2006; 117: e49–54.
Articles

22 Caulfield LE, Zavaleta N, Figueroa A, Leon Z. Maternal zinc supplementation does not affect size at birth in pregnancy duration in Peru. J Nuit 1999; 129: 1561–68.

23 Fawzi WW, Msamanga GI, Urassa W, et al. Vitamins and perinatal outcomes among HIV-negative women in Tanzania. N Engl J Med 2007; 356: 1423–31.

24 Bland R, Cosovad H, Costosoudis A, Rolls N, Newell M. Cohort profile: management of the Africa center vertical transmission study. Int J Epidemiol 2010; 39: 351–60.

25 Huybrechts L, Roberfroid D, Lanou H, et al. Prenatal food supplementation fortified with multiple micronutrients increases birth length: a randomized controlled trial in rural Burkina Faso. Am J Clin Nuit 2009; 90: 1593–600.

26 Roberfroid D, Huybrechts L, Lanou H, et al. Effects of maternal multiple micronutrient supplementation on fetal growth: a double-blind randomized controlled trial in rural Burkina Faso. Am J Clin Nuit 2008; 88: 1330–40.

27 Isaranurug S, Mo-suwan L, Choprapawon C. A population-based cohort study of effect of maternal risk factors on low birthweight in Thailand. J Med Assoc Thai 2007; 90: 2559–64.

28 Adair LS. Low birth weight and intrauterine growth retardation in Filipino infants. Pediatrics 1989; 84: 613–22.

29 Bhutta ZA, Rizvi A, Raza F, et al. A comparative evaluation of multiple micronutrient and iron-folic acid supplementation during pregnancy in Pakistan: impact on pregnancy outcomes. Food Nutr Bull 2005; 26 (suppl 1): 254–61.

30 Christian P, Klemm R, Shamim AA, et al. Effects of vitamin A and beta-carotene supplementation on birth size and length of gestation in rural Bangladesh: a cluster-randomized trial. Am J Clin Nuit 2013; 97: 188–94.

31 Baqui AH, El-Arifeen S, Darmstadt GL, et al. Effects of multiple micronutrient supplementation on fetal growth: a double-blind randomized controlled trial in Nepal. Paediatr Perinat Epidemiol 2009; 23 (suppl 1): 2012; 381: S72–81.

32 Bamkole IA, Perinatal Mortality Research Group. Impact of delivering newborns at term on perinatal mortality: a systematic review. Int J Epidemiol 2010; 39: 5–16.

33 Bland R, Coovadia H, Coutsoudis A, Rollins N, Newell M. Cohort profile: management of the Africa center vertical transmission study. Int J Epidemiol 2010; 39: 351–60.

34 Bailey PN, Roberfroid D, Lanou H, et al. Prenatal food supplementation fortified with multiple micronutrients increases birth length: a randomized controlled trial in rural Burkina Faso. Am J Clin Nuit 2009; 90: 1593–600.

35 Roberfroid D, Huybrechts L, Lanou H, et al. Effects of maternal multiple micronutrient supplementation on fetal growth: a double-blind randomized controlled trial in rural Burkina Faso. Am J Clin Nuit 2008; 88: 1330–40.

36 Caulfield LE, Zavaleta N, Figueroa A, Leon Z. Maternal zinc supplementation does not affect size at birth in pregnancy duration in Peru. J Nuit 1999; 129: 1561–68.

37 Fawzi WW, Msamanga GI, Urassa W, et al. Vitamins and perinatal outcomes among HIV-negative women in Tanzania. N Engl J Med 2007; 356: 1423–31.

38 Bland R, Coovadia H, Coutsoudis A, Rollins N, Newell M. Cohort profile: management of the Africa center vertical transmission study. Int J Epidemiol 2010; 39: 351–60.

39 Williams RL, Creasy RK, Cunningham GC, Hawes WE, Norris FD, Tashiro M. Fetal growth and perinatal viability in California. Obstet Gynecol 1982; 59: 624–32.

40 Boersma ER, Milise RL. Intrauterine growth of live-born Tanzanian infants. Trop Geogr Med 1979; 31: 7–19.

41 Skjaerve R, Gjessing HK, Bakke TS. Birthweight by gestational age in Norway. Acta Obstet Gynecol Scand 2000; 79: 440–49.

42 Bhatia Z. Estimated fetal weights versus birth weights: should the reference intrauterine growth curves based on birth weights be retired? Arch Dis Child Fetal Neonatal Ed 2007; 92: F161–62.

43 Mokolajczyk RT, Zhang J, Betran AP, et al. A global reference for fetal-weight and birthweight percentiles. Lancet 2011; 377: 1855–61.

44 The International Fetal and Newborn Growth Consortium. About study. http://www.intergrowth21.org.uk/about.aspx?lang=1 (accessed Oct 18, 2012).

45 Barros FC, Barros AJ, Villar J, Matijasevich A, Domingues MR, Victora CG. How many low birthweight babies in low- and middle-income countries are preterm? Rev Saude Publica 2011; 45: 607–16.

46 Ndirangu JNM, Bland RM, Thorne C. Maternal HIV infection associated with small-for-gestational age infants but not preterm births: evidence from rural South Africa. Hum Reprod 2012; 27: 1846–56.

47 Chang HH, Larson J, Blencowe H, et al, on behalf of the Born Too Soon preterm prevention analysis group. Preventing preterm births: analysis of trends and potential reductions with interventions in 19 countries with very high human development index. Lancet 2013; 381: 223–34.

48 Iradda A, Bhutta ZA. Maternal nutrition and birth outcomes: effect of balanced protein-energy supplementation. Paediatr Perinat Epidemiol 2012; 26 (suppl 1): 178–90.

49 Ramakrishnan U, Grant FK, Goldenberg T, Bui V, Iradda A, Bhutta ZA. Effect of multiple micronutrient supplementation on pregnancy and infant outcomes: a systematic review. Paediatr Perinat Epidemiol 2012; 26 (suppl 1): 153–67.

50 Lawn JE, Mwansa-Kambwila J, Barros FC, Horta BL, Cousens S. 'Kangaroo mother care' to prevent neonatal deaths due to preterm birth complications. Int J Epidemiol 2011; 40: 275–28.

51 Bang AT, Baitule SB, Reddy HM, Deshmukh MD, Bang RA. Low birth weight and preterm neonates: can they be managed at home by mother and a trained village health worker? J Perinatol 2005; 25 (suppl 1): 572–81.

52 Lee ACC, Cousens S, Wall SN, et al. Neonatal resuscitation and immediate newborn assessment and stimulation for the prevention of neonatal deaths: a systematic review, meta-analysis and Delphi estimation of mortality effect. BMC Public Health 2011; 11 (suppl 3): S12.