Solar energy plant project selection with AHP decision-making method based on hesitant fuzzy linguistic evaluation

Veysel Çoban

Received: 21 January 2020 / Accepted: 4 May 2020 © The Author(s) 2020

Abstract

Increased energy demand is expected to be met by reliable and continuous energy sources. Renewable energy which is obtained from nature and can continuously reload itself from natural sources is a new generation energy type. The sun, which is the main source of renewable energies and produces heat and electricity by direct and indirect methods, is an important renewable energy source. The installation of solar energy systems takes place under the basic technical, economic and political factors. Alternative solar energy plant projects are evaluated linguistically under the main criteria based on the knowledge and experience of the experts. Hesitant fuzzy linguistic terms are used to incorporate the uncertain and hesitant expressions into the decision-making process. The decision-making process that takes place with hesitant linguistic expressions in multiple sub-criteria is based on the AHP model. The inclusion of hesitant statements in the decision-making process with the AHP model enables more realistic choices among the alternatives. System technology (0.18), energy policy (0.15) and energy price change (0.13) appear as the most important factors in the pairwise comparison of the factors based on hesitant fuzzy linguistic evaluations. The results coincide with the need for high efficiency in solar energy systems, the importance of governmental supportive policies and the effects of price competition in the energy sector. Also, the closeness of the overall priority values of all projects (0.189, 0.23, 0.287, 0.135, 0.158) indicates that the decision makers take into account the effective factors.

Keywords

Hesitant fuzzy linguistic terms · AHP · Solar energy · Decision making

Introduction

Fossil-based energy sources (coal, natural gas, oil) are used as primary sources to meet rising energy demand with population growth and industrialization. The emission of harmful gases (carbon dioxide, nitrous oxide) caused by the combustion of fossil-based resources causes the greenhouse effect. Greenhouse effect-based global warming and climate change reveal environmental, economic and social problems on a global scale. Renewable energy (solar, wind, hydro, geothermal, biomass) is the most important energy source that is proposed as an alternative to fossil-based energy sources to remove the environmental and social hazards. The sun, which is the main source of the energies on earth (except tidal, nuclear, geothermal), emerges as the most important renewable energy source with its unlimited, equal distribution and economic advantages. Renewable energy sources, especially solar energy, should be included in the global energy strategy to meet the growing energy demand. Solar rays are used to obtain heat and electricity from direct and indirect ways by active and passive methods. The sun’s rays are converted into electrical energy by directly or using thermal methods with high-tech flat plate and concentrated photovoltaic (PV) and concentrated solar power (CSP) solar energy systems. Technological developments in recent years have increased the efficiency values of solar energy systems and have ensured the spread of independent and grid related solar energy systems. Although solar energy systems have the advantages of environmental sensitivity and low operating costs, the rapid advances in solar energy technologies could not prevent the high initial cost problem. Therefore, high-tech PV and CSP solar power systems should be installed in the right place and on the right conditions. Hence, investors need to decide on the most optimum...
project by evaluating alternative solar energy projects balancing social, ecological, technical and economic aspects.

The average daily radiation values and the number of sunny days are important starting criteria for the development of solar energy systems. Countries that meet these leading criteria are developing policies to direct and control solar energy investments. Investors should make the right choice among alternative solar projects under these natural and artificial factors. Investors face complex investment decision problems due to uncertainties and variations in the factors affecting the plant installation process. Direct or indirect interaction between factors complicates the decision-making process and causes a great risk for investors. Investors start the decision-making process for solar energy investment projects with the principle of low risk and high profitability.

This study deals with the application of the AHP (Analytic Hierarchy Process) method in determining the most suitable project according to the defined criteria among alternative PV solar power plant projects proposed for solar energy investment. Decision makers make pairwise evaluations among criteria and alternative solar power plants based on their knowledge and experience. The uncertainties in the evaluations are transformed into more stable results using hesitant linguistic expressions and included in the decision-making process.

The contributions of the study to the literature are as follows: (1) the practicality of fuzzy logic based approaches used in AHP decision-making method is once again demonstrated with HFLTS. (2) Factors affecting solar power plant selection are examined in detail using HFLTS and included in the decision-making process. The application of selecting solar power plant using HFLTS based AHP model is the first study in the literature. The study explains in detail the decision makers’ evaluation in hesitant conditions and the effects of the decisions made on the alternative selection based on the original AHP decision-making model. Linguistic expressions are used to enable decision makers to reflect their knowledge and experience naturally and clearly. The fact that single linguistic terms (such as low, medium, high) are insufficient to meet the evaluations in the decision-making process requires the use of hesitant fuzzy linguistic terms. In addition, detailed explanation of the study provides opportunity for the application and development of the method easily by academicians and sector employees at all levels.

The continuation of the paper is organized under the following headings. “Overview of AHP methodology” describes the purpose and application steps of basic AHP, Fuzzy AHP based on fuzzy logic decision-making methods and hesitant fuzzy sets and linguistic terms. “Fuzzy AHP based on hesitant fuzzy linguistic evaluation” discusses hesitant fuzzy linguistic expressions, the process of transforming these expressions into trapezoidal fuzzy numbers and incorporating them into the AHP model. “An application: solar energy plant project selection” describes the application of the proposed model among five alternative solar projects under thirteen sub-criteria. In “Comparison and sensitivity analyses”, the validity of the methods and factors is questioned by making a comparison and sensitivity analysis. In “Conclusions”, the findings are evaluated and recommendations are made for future studies.

Overview of AHP methodology

AHP model

MCDM (Multiple Criteria Decision Making) method is applied to make the most suitable choice among the alternatives offered under multiple criteria and different targets [1]. The AHP technique developed in 1980 to solve unstructured problems by Saaty is an important MCDM method which is used to determine the most appropriate option among alternative options under multiple criteria and different targets. Saaty proposed the AHP method as a decision-making tool for the solution of unstructured MCDM problems in 1980 [2]. AHP is a powerful and useful MCDM technique that can solve complex decision-making problems requiring high flexibility and reliability. AHP provides flexibility and reliability to solve complex MCDM problems with its usable structure [3]. In AHP method, pairwise comparisons are made according to the indices and options determined by the decision maker. The AHP method, which offers comprehensive and rational solutions, is widely used in decision-making problems for the development of renewable energy systems [4–6]. The criteria and alternatives defined in the hierarchical decision tree created by the decision maker are operated to the pairwise comparison process in the AHP method. This method comprehensively carries out the decision-making process by prioritizing the criteria and evaluating the alternatives according to the criteria separately. The basic steps of the AHP approach are as follows [2]:

- The problem, including decision goals, alternatives and criteria for evaluating alternatives is modeled hierarchically.
- Priorities are defined among the elements in the hierarchy by making pairwise comparisons.
- Evaluations based on pairwise comparisons are synthesized to define general priorities for the hierarchy.
- Consistency of evaluations is checked.
- Alternatives are evaluated and the most appropriate decision is obtained under this process.

Fuzzy AHP

Fuzzy logic is used to include uncertainty and hesitancy in calculations in the AHP decision-making method that
Table 1 The linguistic terms and fuzzy number representation for pairwise comparisons [7]

Linguistic scales	Abbreviations	Triangular Fuzzy number
Equally important	EI	(1, 1, 3)
Low important	LI	(1, 3, 5)
Medium important	MI	(3, 5, 7)
Strongly important	SI	(5, 7, 9)
Absolute important	AI	(7, 9, 9)

Table 2 The random index (RI) scale [15]

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
RI	0.00	0.00	0.52	0.89	1.11	1.25	1.35	1.40	1.45	1.49	1.52	1.54	1.56	1.58	1.59

The primary stage of the calculation process is to check the consistency of the comparison matrix. Consistency calculations are made by converting the elements of the comparison matrix created by trapezoidal fuzzy numbers into crisp values by defuzzification method [11]. The transformation of a trapezoidal fuzzy number $A=(a, b, c, d)$ into a crisp value with defuzzification method is as follows [13]:

$$\text{def}(A) = \frac{a + 2b + 2c + d}{6}$$

The form of the fuzzy comparison matrix, \tilde{P}, converted to crisp values is shown as traditional P comparison matrix:
The geometric mean values calculated for the comparison value as in Eq. 7. The weight vectors are defuzzified (\(w_i\)) according to equation Eq. 1 and these values are normalized over the overall sum of the weights as in Eq. 8. Normalized weight vector (\(W\)) refers the weight value for each comparison value.

$$w_i = \frac{\text{def}(\tilde{w}_i)}{\sum_{i=1}^{n} \text{def}(\tilde{w}_i)},$$

(8)

$$W = [w_1 w_2 w_3 \ldots w_n].$$

(9)

In addition, experts evaluate the criteria individually using linguistic expressions in Table 3 and determine the impact values of the criteria for use in the decision-making process [11].

Decision makers evaluate the factors linguistically to determine the impact strength of the criteria. Fuzzy evaluation vectors of criteria are calculated with decision makers, \(D_a\) (\(a = 1, 2, \ldots, m\)) and criteria, \(\epsilon_i\) (\(i = 1, 2, \ldots, n\)) using the linguistic term set, \(\{VL, L, M, H, VH\}\). The fuzzy evaluation value of the criteria defined by decision makers’ linguistic assessments is calculated as follows:

$$\tilde{c}_i = \frac{1}{m} (\epsilon_{i-1} + \epsilon_{i-2} + \ldots + \epsilon_{i-m}).$$

(10)
where decision maker’s (m) evaluation value for the criteria \(e_i \) is defined with trapezoidal fuzzy number \(e_i = (l, m, n, u) \) with respect to Table 3 [11]. The fuzzy evaluating matrix for all criteria is shown in Eq. (11):

\[
\vec{E} = \left[\tilde{e}_1 \tilde{e}_2 \ldots \tilde{e}_m \right].
\]

(11)

Impact values of the criteria are calculated according to the process followed in weight calculation process. The Fuzzy evaluating matrix \(\vec{E} \) is operated following the Eqs. 5–9 and the normalized evaluating matrix \(\vec{E} \) is obtained. The weight values \(W \) obtained from the pairwise comparison of the criteria are combined with the impact values of the criteria \(\vec{E} \) to calculate the actual weight values \(A \) for the criteria.

\[
a_i = w_i e_i.
\]

(12)

The weights of the alternatives obtained from the pairwise comparison with respect to the each criterion are combined with the weights of the criteria \(A \). The priority values of the alternatives are calculated and the alternative with the highest priority value is preferred.

Hesitant Fuzzy Sets and linguistic terms

Hesitant Fuzzy Sets (HFS) was introduced by Torra [18]. The concept of hesitant fuzzy sets reflects the possible values of membership values that belong to the fuzzy set. HFSs, which are extension of fuzzy sets, have been used in different scientific studies along with other fuzzy logic extensions (type-2, intuitionistic, neutrosophic). The use of HFS in various interdisciplinary research fields (Automation control system, Computer science, Engineering, Mathematics, Operations research management science) proves that it is an important application tool [19–21].

HFSs which are extended fuzzy clusters, define the membership degrees of an element in the range \([0,1]\) [22]. \(h_E(x) \) \((h = h_E(x)) \), hesitant fuzzy element (HFE), [23]) represents the membership degrees of the element \(x \in X \) where \(X \) is a fixed set. HFS is shown mathematically as follows:

\[
E = \{ (x, h_E(x)) | x \in X \}.
\]

Linguistic information is an important concept related to HFS.

Real-life problems include non-numerical properties and evaluation criteria as well as numerical values. Linguistic variables defined by Zadeh [24] are used in problems involving the grading and evaluation of qualitative features. Linguistic expressions that provide freedom of evaluation in uncertain and uncertain conditions are developed with new approaches (decision-making approaches, aggregation operators, linguistic intuitionistic, linguistic interval-valued intuitionistic) [22, 25, 26].

\[
S = \{ s_0, s_1, \ldots, s_g \}
\]

is defined a finite Linguistic term sets (LTS) where \(g \) is a positive even number and \(s_j \) is a linguistic term. Accordingly, LTS can be defined as [25]:

- \(s_i \leq s_j \) where \(i < j \) (LTS is ordered set)
- \(\text{Neg}(s_i) = s_j \), where \(j = g - i \) (negation of linguistic term)
- \(\text{max}(s_i, s_j) = s_i \), where \(s_i \geq s_j \)
- \(\text{min}(s_i, s_j) = s_i \), where \(s_i \leq s_j \)

Addition and multiplication of any two linguistic terms \((s_i, s_j \in S_{(0, g)}) \) takes place on the basis of \(t \)-norm and \(t \)-conorm.

\[
s_i \oplus s_j = s_j \oplus s_i = s_{\left(\left(\frac{s_i}{s_j} \right) \right)_{\text{t-norm}}}
\]

\[
s_i \otimes s_j = s_j \otimes s_i = s_{\left(\left(\frac{s_i}{s_j} \right) \right)_{\text{t-norm}}}.
\]

The HFLTSs \(\left(H_{S} \right) \) proposed by Rodriguez and colleagues [27] aim to overcome the hesitations of decision makers in the evaluation process. \(H_S \) is defined as a ordered and finite subset of the linguistic term set \(S = \{ s_0, s_1, \ldots, s_g \} \). Linguistic evaluations expressed by decision makers using context-free grammar are converted into HFLTSs with the transformation function. HFSs developed with linguistic expressions allow decision makers to make their evaluations with a wide set of linguistic expressions. Thus, HFLTS provides an opportunity to be used in various scientific fields with different approaches [26, 28–30].

Fuzzy AHP based on hesitant fuzzy linguistic evaluation

The pairwise comparisons made by the decision makers with the crisp values defined by Saaty [2] limits the decision makers to make an accurate assessment in the AHP technique. The use of linguistic expressions [31] in pairwise comparisons allows the decision makers to make a more realistic and natural assessments. Nevertheless, the linguistic form of evaluations based on the knowledge and experience of the decision maker involves a hesitant situation. Therefore, pairwise comparisons are defined with hesitant fuzzy linguistic
term sets (HFLTS) [32] such as “at most strongly more important”, “between equally important and very strongly more important”, and “lower that moderately more important”, “between equally important and very strongly important” to better reflect uncertain and hesitant evaluations of decision makers.

The fuzzy envelope method is implemented using the Ordered Weighted Average (OWA) aggregation operator [33] which aggregates the hesitant fuzzy expressions. The fuzzy envelop form of HFLTS represents a linguistic interval defined by the linguistic upper bound and lower bound. The application steps of the AHP decision-making technique based on hesitant linguistic evaluations are as follows:

- The decision goal, the criteria for the goal, and the alternatives to be evaluated according to the criteria are defined in the hierarchical model. Criteria and alternatives based on criteria are evaluated in the pairwise comparison matrices. Evaluations are expressed linguistically based on the knowledge and experience of decision makers. Hesitant linguistic evaluations that are words in a natural language are generated by context-free grammar, G_H. A context-free grammar is defined based on the extension of the Backus-Naur Form [32]. HFLTS is defined as a finite subset of consecutive linguistic terms in the linguistic term set $S = \{\text{equally important (EI)}, \text{low important (LI)}, \text{medium important (MI)}, \text{strongly important (SI)}, \text{and absolute important (AI)}\}$. Membership functions of linguistic terms defined in triangular form are normal and their fuzzy values are shown in Table 1 with respect to linguistic terms respectively. Sample hesitant linguistic expressions generated by G_H are defined as; at least low important, greater than equally important, and between medium important and absolute important. Experts specify the inverse relations in pairwise evaluations by putting the word “(–)” symbol before the linguistic expression such that (–) lower than EI, (–) between EI and MI (Table 4).

- Comparative linguistic evaluations of experts are converted to HFLTS (Hesitant Fuzzy Linguistic Term Sets, H_S) using transformation functions (E_{G_H}) to include in decision-making calculations [32]. The functions used to transform hesitant linguistic expressions to HFLTS are as follows [32] (Table 5):

$$E_{G_H}(s_j) = \{s_i | s_i \in S\}$$

$$E_{G_H}(\text{at least } s_i) = \{s_j | s_j \in S \text{ and } s_j \geq s_i\}$$ or

$$E_{G_H}(\text{at most } s_i) = \{s_j | s_j \in S \text{ and } s_j \leq s_i\}$$

$$E_{G_H}(\text{lower than } s_i) = \{s_j | s_j \in S \text{ and } s_j < s_i\}$$ or

$$E_{G_H}(\text{greater than } s_i) = \{s_j | s_j \in S \text{ and } s_j > s_i\}$$

$$E_{G_H}(\text{between } s_i \text{ and } s_j) = \{s_k | s_k \in S \text{ and } s_i \leq s_k \leq s_j\}$$

where $S = \{s_0 : EI, s_1 : LI, s_2 : MI, s_3 : SI, s_4 : AI\}$ is a linguistic term and sample transformation operations are as follows:

$E_{G_H}(\text{lower than medium important})$

$= \{\text{equal important, low important}\}$

$E_{G_H}(\text{at least strong important})$

$= \{\text{strong important, absolute important}\}$

$E_{G_H}(\text{between low and strong important})$

$= \{\text{low important, medium important, strong important}\}$

Table 4	Sample linguistic pairwise comparison matrix			
	PM	EP	EPC	VCM
Permission (PM)	1	(–) between EI and LI	(–) greater than MI	At most MI
Energy policy (EP)	1	At least SI	1	At least SI
Energy price change (EPC)	1	Greater than SI	1	1
Value change of money (VCM)	1	1		1

Table 5	Sample HFLTS of linguistic pairwise comparisons			
	PM	EP	EPC	VCM
Permission (PM)	1	(–) {EI, LI}	(–) {SI, AI}	{EI, LI, MI}
Energy policy (EP)	1	{SI, AI}	{SI, AI}	{AI}
Energy price change (EPC)	1	1		1
Value change of money (VCM)	1			1
• Envelope of HFLTS ($\text{env}(H_S)$), which defines linguistic expressions with linguistic intervals, allows for easier comparison of HFLTS. The enveloping method, expressed by the lower (H_{S-}) and upper (H_{S+}) limits of the linguistic expression, is shown as follows:

$$\text{env}(H_S) = [H_{S-}, H_{S+}], H_{S-} \leq H_{S+}$$

In this study, fuzzy envelopes of HFLTS are defined using trapezoidal fuzzy membership functions, $A = (a, b, c, d)$. The parameters of the trapezoidal fuzzy number are determined using OWA aggregation operations [33, 34]. Actually, the OWA aggregation operator is used to find intermediate parameters (b and c) of the trapezoidal fuzzy membership function (Table 6). The parameters of the trapezoidal membership functions obtained by the OWA aggregation process represent the fuzzy envelope of the linguistic expression.

The obtained trapezoidal membership functions are defuzzified and crisp values are obtained for weight calculations. The consistency of the decisions is controlled according to the consistency ratio (CR) of the crisp pairwise comparison matrices of the criteria and alternatives with respect to the criteria (Table 7).

The priority values (weights) for the criteria and alternatives are calculated depending on the trapezoidal fuzzy numbers and defuzzified values in the pairwise comparison tables. Alternatives’ weights based on the criteria are synthesized with weights of the criteria and general weight (composition impact) values are obtained for the alternatives. The overall composition impact value is calculated for each alternative and the alternatives are sorted according to their impact values. The alternative with the highest combined effect value is preferred as the most suitable solution.

In the AHP decision model, the hesitant fuzzy linguistic term set is used as an assessment tool to enable decision makers to reflect their thoughts more comfortably in evaluations. Since the study was developed based on the ordinary AHP model, the applied method has a similar mathematical operation process as current studies [35, 36]. In contrast, the proposed set of terms for describing hesitant fuzzy linguistic expressions differs from existing methods. In this study, alternative PV solar energy projects are evaluated by AHP method based on hesitant fuzzy linguistic evaluations and the most suitable project is preferred.

An application: solar energy plant project selection

Determining the most suitable project among alternative PV solar energy installation projects is discussed as the main goal of the decision problem in the application phase. The decision group was formed by eight academicians and seven sector managers working on renewable energy and solar energy issues. Thirteen sub-criteria are defined by three basic criteria as technical (T), economic (E) and political (P). Operation management (OM), technical infrastructure (TI), solar irradiance (SI), system technology (ST), plant location (PL), contingency plan (CP) and maintenance and repair (MR) are technical criterion; energy price change (EPC), value change of money (VCM), power demand (PD) and project finance (PF) are economic criterion; and permission (PM) and energy policy (EP) are technical criterion [37–40] (Table 8). The problem is modeled hierarchically based on the defined goal, criteria and alternatives (Fig. 1).

Decision makers evaluate the criteria and alternative projects with respect to sub-criteria linguistically by pairwise comparison according to Table 8 to collect the evaluation data. Criteria defined for PV power plant projects are evaluated by experts using linguistic expressions in
Table 8 Main and sub-criteria that affect to selection of PV solar energy plant

Main criteria	Sub-criteria	Definitions
Technical Operation management	The processing of the project, the generation of energy and the transmission of the generated energy takes place with the operation management of the project. The energy generated is utilized efficiently with the correct management of the project	
Technical infrastructure	The proposed project is expected to have the technical competence to realize energy production, to distribute the generated energy and to solve the technical problems encountered	
Solar irradiance	The main factor that determines the energy to be obtained from the solar energy system is the solar radiation potential of the system. The amount of sunshine duration per year of the proposed project directly determines the energy potential obtained from the project and the return period of the economic investment	
System technology	The developments in solar energy technologies in the last decade have increased the efficiency of solar energy systems. The features of the system equipment used in the project are an important factor determining the cost of installation and the amount of energy generated	
Plant location	The direct and indirect interaction of the energy system with the environment in which it is established is taken into consideration in the evaluation of the project. The project is evaluated by considering the impact of the proposed project on agricultural, habitat and social life	
Contingency plan	Possible disaster scenarios are developed by considering the current and future situations of the projects. Projects are taken into risk groups based on these scenarios and are evaluated comparatively	
Maintenance and repair	Maintenance and repair costs are taken into account in the long-term economic evaluation of projects. The technological features of the energy system, the ability to use the system and environmental conditions are important factors affecting the maintenance and repair costs	
Economic Energy price change	Energy prices should be taken into account in the economic analysis of long-term solar energy investments	
Value change of money	In the economic analysis of energy investment, the value changes of money at local and global scale should be taken into consideration in evaluating whether or not it is economically viable	
Power demand	The general energy demand and the expectation of meeting this demand with renewable energy affect the evaluation of solar energy projects	
Project finance	The realization of solar energy projects with high initial cost is provided by financing the project. The financing of the proposed project demonstrates the realization of the project	
Political Permission	Permission criterion refers to the compliance of the energy system with the rules and regulations of local and national government	
Energy policy	The change in renewable energy policies at national and global extent can affect investment decisions	

Fig. 1 Hierarchy model for project selection

Pairwise comparison matrix. For example, the comparison between PM and EP criteria is linguistically defined as “at least SI” and the fuzzy envelope is obtained in the form of a trapezoidal fuzzy membership function as $A=(1, 1.67, 5.67, 9)$ using OWA operators. The linguistic comparison evaluations for criteria and alternative projects are transformed into a trapezoidal fuzzy membership function. Then the trapezoidal fuzzy forms are defuzzified into crisp values using the weighted average method and the AHP decision is applied. The hesitant linguistic evaluations, trapezoidal fuzzy numbers of HFLTS, defuzzified representations, and consistency control of pairwise comparison matrices for criteria and alternative projects with respect to criteria are given between Tables 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, and 25. While the criteria are evaluated comparatively, it is desirable to
	PM	EP	EPC	VCM	PD	PF	OM	TI	SI	ST	PL	CP	MR	
PM	Lower than EI	(-)between LISI	(-)is LI	Lower than LI	Lower than LI	Between EI LI	(-)lower than MI	(-)lower than MI	(-)lower than SI	Lower than LI	Lower than EI	Lower than LI	Lower than MI	Lower than EI
EP	Lower than EI	(-)lower than LI	between EI SI	Greater than MI	is LI	Lower than LI	Lower than MI	Lower than EI	(-)greater than MI	Lower than EI	Greater than MI	is AI	is AI	Greater than EI
EPC	Lower than EI	Lower than MI	Greater than MI	Lower than LI	Between EI LI	(-)between EI LI	(-)greater than MI	(-)greater than MI	Between EI LI	(-)between EI LI	Greater than MI	Greater than EI	Greater than MI	Greater than EI
VCM	Lower than EI	Lower than MI	Greater than MI	Lower than LI	Lower than EI	(-)between EI LI	(-)between EI LI	(-)greater than MI	(-)between EI LI	Lower than EI	Greater than EI	Greater than EI	Greater than EI	Greater than EI
PD	Lower than EI	(-)greater than EI	Lower than EI	Lower than EI	Lower than MI	Lower than MI	Lower than EI	(-)between EI LI	Lower than MI	Lower than EI	Lower than SI	Lower than EI	Lower than EI	Lower than SI
PF	Lower than EI	Lower than EI	Lower than EI	Lower than EI	Lower than MI	Lower than MI	(-)between EI LI	(-)between EI LI	Lower than EI					
OM	Lower than EI	Lower than EI	(-)between EI LI	Lower than EI	Lower than EI	Lower than EI	(-)between EI LI	(-)between EI LI	Lower than EI					
TI	Lower than EI													
SI	Lower than EI													
ST	Lower than EI													
PL	Lower than EI													
CP	Lower than EI													
MR	Lower than EI													
Table 10 Trapezoidal membership functions of HFLTS of hesitant linguistic comparison

PM	EP	EPC	VCM	PD	PF	OM	TI	SI	ST	PL	CP	MR
PM	(1 1 1 1)	(0.1 0.16 0.23 1)	(0.2 0.3 0.3 1)	(1 1 1 1)	(1 1 3 5)	(1 1 3 5)	(0.2 0.67 1 1)	(0.2 0.67 1 1)	(0.1 0.29 1 1)	(1 1 1 1)	(1 1 3.5 7)	(1 1 6.34 9)
EP	(1 4 3 6.3 9)	(1 1 1 1)	(0.3 1 1)	(1 1 1 1)	(1 1 3 5)	(1 1 3.5 9)	(7 9 9 9)	(1 1 1 5)	(1 1 1 5)	(1 1 1)	(7 9 9 9)	(9 9 9 9)
EPC	(1 3 3 5)	(1 1 1 1)	(1 1 1 1)	(1 2.3 3.4 3.3 7)	(1 1 1 5)	(1 1 1 5)	(1 1 3 5)	(7 9 9 9)	(1 1 1)	(5 1 1 1)	(1 1 1 1)	
VCM	(0.3 1 1)	(0.1 0.18 0.6 1)	(0.1 0.23 0.4 1)	(1 1 1 1)	(1 1 1 5)	(0.2 0.3 1 1)	(1 1 1 1)	(0.1 0.16 0.23 1)	(0.1 0.29 0.1 1)	(0.3 1 1 1)	(9 9 9 9)	
PD	(0.1 0.3 1 1)	(0.1 0.1 0.13 0.2)	(0.2 0.67 1 1)	(1 1 1 1)	(0.1 0.1 0.13 2)	(0.2 0.67 1 1)	(0.1 0.1 0.13 0.2)	(0.1 0.1 0.15 0.3)	(0.1 0.1 0.15 0.3)	(0.1 0.1 0.2 0.3)	(0.1 0.1 0.2 0.3)	(1 1 1 1)
PF	(0.3 1 1)	(0.2 0.3 0.3 1)	(0.1 0.29 1 1)	(1 1 1 1)	(3 6.5 9 9)	(1 1 1 1)	(1 3 6.6 9 9)	(1 1 3 6.6 9 9)	(1 1 3 6.6 9 9)	(1 1 3 6.6 9 9)	(1 1 3 6.6 9 9)	(1 1 3 6.6 9 9)
OM	(0.2 0.3 1 1)	(0.1 0.1 0.1 0.1)	(0.1 0.1 0.2 0.3)	(0.1 0.1 0.1 0.1)	(0.1 0.1 0.1 0.1)	(0.1 0.1 0.1 0.1)	(0.1 0.1 0.1 0.1)	(0.1 0.1 0.1 0.1)	(0.1 0.1 0.1 0.1)	(0.1 0.1 0.1 0.1)	(0.1 0.1 0.1 0.1)	(0.1 0.1 0.1 0.1)
TI	(1 1 1 5)	(0.2 0.67 1 1)	(0.3 1 1)	(1 1 1 1)	(1 1 1 5)	(1 1 1 5)	(1 1 1 5)	(1 1 1 5)	(1 1 1 5)	(1 1 1 5)	(1 1 1 5)	(1 1 1 5)
SI	(1 1 1 5)	(0.2 0.67 1 1)	(1 1 1 1)	(1 1 1 1)	(1 1 1 1)	(1 1 1 1)	(1 1 1 1)	(1 1 1 1)	(1 1 1 1)	(1 1 1 1)	(1 1 1 1)	(1 1 1 1)
ST	(1 1 3 5)	(1 1 1 1)	(1 1 1 1)	(5 7.5 9 9)	(3 6.5 9 9)	(1 4 3.3 6.3 9)	(5 5 9 9)	(1 4 3.3 6.3 9)	(1 4 3.3 6.3 9)	(1 4 3.3 6.3 9)	(1 4 3.3 6.3 9)	(1 4 3.3 6.3 9)
PL	(0.3 1 1)	(0.1 0.1 0.1 0.1)	(0.1 0.1 0.1 0.1)	(1 1 1 1)	(1 1 1 5)	(5 7.5 9 9)	(0.3 1 1 1)	(0.3 1 1 1)	(0.1 0.1 0.1 0.1)	(0.1 0.1 0.1 0.1)	(0.1 0.1 0.1 0.1)	(0.1 0.1 0.1 0.1)
CP	(0.1 0.3 1 1)	(0.1 0.1 0.1 0.1)	(0.1 0.2 0.2 0.3)	(0.1 0.1 0.1 0.1)	(0.1 0.1 0.1 0.1)	(0.1 0.1 0.1 0.1)	(0.1 0.1 0.1 0.1)	(0.1 0.1 0.1 0.1)	(0.1 0.1 0.1 0.1)	(0.1 0.1 0.1 0.1)	(0.1 0.1 0.1 0.1)	(0.1 0.1 0.1 0.1)
MR	(0.1 0.2 1 1)	(0.1 0.1 0.1 0.1)	(0.1 0.1 0.1 0.1)	(0.1 0.1 0.1 0.1)	(0.1 0.1 0.1 0.1)	(0.1 0.1 0.1 0.1)	(0.1 0.1 0.1 0.1)	(0.1 0.1 0.1 0.1)	(0.1 0.1 0.1 0.1)	(0.1 0.1 0.1 0.1)	(0.1 0.1 0.1 0.1)	(0.1 0.1 0.1 0.1)
know the impact weights of the criteria. The criteria are evaluated linguistically by 15 experts according to Table 3 and the number of linguistic evaluations for each criterion is shown in Table 26.

The consistency values of the comparison matrices are calculated before starting the evaluation process. Since the consistency ratio based on consistency indexes is smaller than 0.1 (CR < 0.1) as shown in the tables, all comparison matrices are said to be consistent.

The pairwise comparison matrix of the criteria defined by the hesitant fuzzy linguistic expressions is converted into trapezoidal fuzzy numbers with HFLTS and OWA operations respectively. These trapezoidal fuzzy numbers are converted to real numbers using the defuzzification method defined in Eq. 1. The fuzzy weight vector and weights of the criteria are calculated based on the defuzzified comparison matrix (Table 12).

While the most effective criteria are system technology, energy policy, solar irradiance and energy price change respectively, the weakest criteria are maintenance and repair, contingency plan and power demand respectively according to the normalized weight of the criteria.

Alternative solar energy projects are evaluated using hesitant fuzzy linguistic expressions in the pairwise comparison matrix for each criterion. Hesitant linguistic expressions are converted to HFLTS and trapezoidal fuzzy numbers with the help of the OWA aggregation process respectively.

Trapezoidal fuzzy numbers are converted to actual values and the consistency of the comparison matrix of the projects is measured. The comparison matrices of the projects based
Table 13 Hesitant linguistic pairwise comparison matrix, trapezoidal membership functions of HFLTS, fuzzy weight vector, consistency and normalized weights of alternatives based on permission criterion

| PM | PR₁ | PR₂ | PR₃ | PR₄ | PR₅ | PR₁ | PR₂ | PR₃ | PR₄ | PR₅ | PR₁ | PR₂ | PR₃ | PR₄ | PR₅ | PR₁ | PR₂ | PR₃ | PR₄ | PR₅ | Consistency | w⁺norm |
|----|-------------|-------|
| PR₁ | Lower thanEI | (-)-at leastEI | Lower thanEI | Lower thanEI | Lower thanEI | (1 1 1 1) | (0.1 0.1 0.2 0.3) | (0.1 0.1 0.13 0.2) | (1 1 1 1) | (1 1 1 1) | 1 | 0.2 | 0.13 | 1 | 1 | CI | 0.001 | 0.06 |
| PR₂ | Lower thanEI | (-)-lower thanEI | Between-MISI | Between-MISI | Between-MISI | (3.6 5 9 9) | (1 1 1 1) | (1 1 1 1) | (3 5 7 9) | (3 5 7 9) | 6.2 | 1 | 1 | 6 | 6 | CR | 0.001 | 0.39 |
| PR₃ | Lower thanEI | Lower thanEI | At leastLI | Greater thanEI | At leastLI | (5 7 5 9) | (1 1 1 1) | (1 1 1 1) | (1 3.7 9 9) | (1.3 6 9 9) | 7.5 | 1 | 1 | 6 | 5.9 | 5.9 | RI | 1.1 | 0.39 |
| PR₄ | Lower thanEI | (1 1 1 1) | (0.1 0.1 0.2 0.3) | (0.1 0.1 0.3 1) | (1 1 1 1) | (1 1 1 1) | 1 | 0.2 | 0.2 | 1 | 1 | λmax | 5.0 | 0.07 |
| PR₅ | Lower thanEI | (1 1 1 1) | (0.1 0.1 0.2 0.3) | (0.1 0.1 0.3 1) | (1 1 1 1) | (1 1 1 1) | 1 | 0.2 | 0.2 | 1 | 1 | n | 5 | 0.07 |

Table 14 Hesitant linguistic pairwise comparison matrix, trapezoidal membership functions of HFLTS, fuzzy weight vector, consistency and normalized weights of alternatives based on energy policy criterion

| EP | PR₁ | PR₂ | PR₃ | PR₄ | PR₅ | PR₁ | PR₂ | PR₃ | PR₄ | PR₅ | PR₁ | PR₂ | PR₃ | PR₄ | PR₅ | PR₁ | PR₂ | PR₃ | PR₄ | PR₅ | Consistency | w⁺norm |
|----|-------------|-------|
| PR₁ | Lower thanEI | (-)-between-MIAI | At mostLI | Lower thanLI | Lower thanLI | (1 1 1 1) | (0.1 0.1 0.2 0.3) | (0.1 0.1 0.14 0.2) | (1 1 1 1) | (1 1 1 1) | 1 | 0.17 | 0.14 | 1.33 | 1.33 | CI | 0.009 | 0.07 |
| PR₂ | Lower thanEI | (-)-lower thanEI | Greater thanEI | At leastLI | At leastLI | (3.6 3 8.3 9) | (1 1 1 1) | (1 1 1 1) | (1 3.6 6 9 9) | (1.3 6 6 9 9) | 5.99 | 1 | 1 | 5.88 | 5.88 | CR | 0.008 | 0.38 |
| PR₃ | Lower thanEI | Lower thanEI | At leastLI | Between-LIAI | At leastLI | (5 7 9 9) | (1 1 1 1) | (1 1 1 1) | (1 3.6 6 9 9) | (1.3 6 7 7 6 9) | 7.33 | 1 | 1 | 5.88 | 5.44 | RI | 1.1 | 0.38 |
| PR₄ | Lower thanEI | (-)-lower thanLI | Lower thanLI | Lower thanLI | Lower thanLI | (0.3 1 1 1) | (0.1 0.1 0.13 0.27 1) | (0.1 0.1 0.13 0.27 1) | (1 1 1 1) | (1 1 1 1) | 0.75 | 0.17 | 0.17 | 1 | 0.89 | λmax | 5.035 | 0.077 |
| PR₅ | Lower thanEI | (0.3 1 1 1) | (0.1 0.1 0.13 0.27 1) | (0.1 0.1 0.13 0.27 1) | (1 1 1 1) | (1 1 1 1) | 0.75 | 0.17 | 0.18 | 1.125 | 1 | n | 5 | 0.088 |
Table 15
Hesitant linguistic pairwise comparison matrix, trapezoidal membership functions of HFLTS, fuzzy weight vector, consistency and normalized weights of alternatives based on energy price change criterion

EPC	PR_1	PR_2	PR_3	PR_4	PR_5	PR_1	PR_2	PR_3	PR_4	PR_5	Consistency	w_{norm}
PR_1	Lower than EI	At least EI	Between SIAI	Lower than SIAI	Between SIAI	(1 1 1 1)	(3 6.5 9 9)	(1 3 5 7)	(1 1 6.3 9)	(5 7.9 9 9)	1 7 2.33 4.11 7.67	CI 0.05 0.45
PR_2	Lower than EI	At most EI	Between SIAI	Lower than SIAI	Between SIAI	(0.1 0.1 0.2 0.3)	(1 1 1 1)	(0.1 0.1 0.3 1)	(1 1 1 3.5)	(1 1 3 5)	0.14 1 0.32 1.83 2.33	CR 0.05 0.10
PR_3	Lower than EI	Lower than EI	Between SIAI	Lower than SIAI	Between SIAI	(0.1 0.2 0.3 1)	(1 3.7 7.7 9)	(1 1 1 1)	(1 1 1 3)	(1 1 3.5 7)	0.43 3.13 1 1.83 5	RI 1.11 0.27
PR_4	Lower than EI	Lower than EI	Between SIAI	Lower than SIAI	Between SIAI	(0.1 0.1 0.1 0.2)	(0.2 0.3 0.3 1)	(0.1 0.1 0.3 1)	(0.2 0.3 0.3 1)	(1 1 1 1)	0.13 0.43 0.2 0.33 1	n 5 0.06
PR_5	Lower than EI	Lower than EI	Between SIAI	Lower than SIAI	Between SIAI	(0.1 0.1 0.1 0.2)	(0.1 0.1 0.1 0.2)	(0.1 0.2 0.2 0.3)	(0.1 0.2 0.2 0.4)	(1 1 1 1)	0.13 0.35 0.19 0.28 1	n 5 0.05

Table 16
Hesitant linguistic pairwise comparison matrix, trapezoidal membership functions of HFLTS, fuzzy weight vector, consistency and normalized weights of alternatives based on value change of money criterion

VCM	PR_1	PR_2	PR_3	PR_4	PR_5	PR_1	PR_2	PR_3	PR_4	PR_5	Consistency	w_{norm}
PR_1	Lower than EI	At least EI	Between SIAI	Lower than SIAI	Between SIAI	(1 1 1 1)	(3 6.5 9 9)	(1 3 5 7)	(1 1 6.3 9)	(5 7.9 9 9)	1 7 2.33 4.11 7.67	CI 0.086 0.45
PR_2	Lower than EI	At most EI	Between SIAI	Lower than SIAI	Between SIAI	(0.1 0.1 0.2 0.3)	(1 1 1 1)	(0.1 0.1 0.3 1)	(1 1 1 3.5)	(1 1 3 5)	0.14 1 0.32 1.83 2.33	CR 0.078 0.11
PR_3	Lower than EI	Lower than EI	Between SIAI	Lower than SIAI	Between SIAI	(0.1 0.2 0.3 1)	(1 3.7 7.7 9)	(1 1 1 1)	(1 1 1 3)	(1 1 3.5 7)	0.43 3.13 1 1.83 5	RI 1.11 0.25
PR_4	Lower than EI	Lower than EI	Between SIAI	Lower than SIAI	Between SIAI	(0.1 0.1 0.1 0.2)	(0.2 0.3 0.3 1)	(0.1 0.1 0.3 1)	(0.2 0.3 0.3 1)	(1 1 1 1)	0.13 0.43 0.2 0.33 1	n 5 0.06
PR_5	Lower than EI	Lower than EI	Between SIAI	Lower than SIAI	Between SIAI	(0.1 0.1 0.1 0.2)	(0.1 0.1 0.1 0.2)	(0.1 0.2 0.2 0.3)	(0.1 0.2 0.2 0.4)	(1 1 1 1)	0.13 0.35 0.19 0.28 1	n 5 0.05
PD	PR₁	PR₂	PR₃	PR₄	PR₅	PR₁	PR₂	PR₃	PR₄	PR₅	Consistency	w_{norm}
----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-------------	----------
PR₁	Lower thanEI	(-)at leastSI	MIAI	Lower thanEI	CI	0.003	0.06					
PR₂	Lower thanEI	(-)lower thanEI	MIAI	Between LI	Greater thanEI	Higher thanEI	CR	0.002	0.38			
PR₃	Lower thanLI	Lower thanLI	At leastLI	Between LI	Between MI	RI	1.11	0.40				
PR₄	Lower thanLI	(-)lower thanLI	MIAI	Between LI	n	5	0.08					
PR₅	Lower thanLI	n	5	0.08								

PF	PR₁	PR₂	PR₃	PR₄	PR₅	PR₁	PR₂	PR₃	PR₄	PR₅	Consistency	w_{norm}	
PR₁	Lower thanEI	(-)isSI	(-)between SI	At mostLI	(-)is EI	Lower thanEI	(-)is EL	Lower thanEI	Lower thanEI	Lower thanEI	CI	0.030	0.06
PR₂	Lower thanEI	Lower thanLI	Between MI	Between LI	CR	0.027	0.40						
PR₃	Lower thanEI	Lower thanEI	Lower thanEI	Between MI	Between LI	RI	1.11	0.38					
PR₄	Lower thanEI	Lower thanEI	Lower thanEI	Lower thanEI	(-)is EI	Lower thanEI	λ_{max}	5.121	0.07				
PR₅	Lower thanEI	n	5	0.09									
Table 19 Hesitant linguistic pairwise comparison matrix, trapezoidal membership functions of HFLTS, fuzzy weight vector, consistency and normalized weights of alternatives based on operation management criterion

PR	PR₁	PR₂	PR₃	PR₄	PR₅	PR₁	PR₂	PR₃	PR₄	PR₅	Consistency	\(w_{norm} \)
PR₁	Lower than EI	At least MI	Between MI	Lower than EI	1	1	1	1	1	5.053	0.31	
PR₂	Lower than EI	At least MIAI	0.1 0.1 0.3	Lower than EI	1	1	1	1	1	5.89	0.76	
PR₃	Lower than EI	At least MI	0.1 0.1 0.2	Lower than EI	1	1	1	1	1	5.73	0.76	
PR₄	Lower than EI	At least MI	0.1 0.1 0.2	Lower than EI	1	1	1	1	1	5.73	0.76	
PR₅	Lower than EI	At least MI	0.1 0.1 0.2	Lower than EI	1	1	1	1	1	5.73	0.76	

Table 20 Hesitant linguistic pairwise comparison matrix, trapezoidal membership functions of HFLTS, fuzzy weight vector, consistency and normalized weights of alternatives based on technical infrastructure criterion

PR	PR₁	PR₂	PR₃	PR₄	PR₅	PR₁	PR₂	PR₃	PR₄	PR₅	Consistency	\(w_{norm} \)
PR₁	Lower than EI	At least LI	Between SIAI	Lower than LI	1	1	1	1	1	3.047	0.33	
PR₂	Lower than EI	At least LI	0.1 0.1 0.3	Lower than LI	1	1	1	1	1	3.047	0.33	
PR₃	Lower than EI	At least MI	0.1 0.1 0.2	Lower than EI	1	1	1	1	1	3.047	0.33	
PR₄	Lower than EI	At least MI	0.1 0.1 0.2	Lower than EI	1	1	1	1	1	3.047	0.33	
PR₅	Lower than EI	At least MI	0.1 0.1 0.2	Lower than EI	1	1	1	1	1	3.047	0.33	
Table 21 Hesitant linguistic pairwise comparison matrix, trapezoidal membership functions of HFLTS, fuzzy weight vector, consistency and normalized weights of alternatives based on solar irradiance criterion

| SI | PR₁ | PR₂ | PR₃ | PR₄ | PR₅ | PR₁ | PR₂ | PR₃ | PR₄ | PR₅ | PR₁ | PR₂ | PR₃ | PR₄ | PR₅ | PR₁ | PR₂ | PR₃ | PR₄ | PR₅ | Consistency | w_{norm} |
|----|-------------|-------------|
| PR₁ | Lower than EI | Between MIAI | At least SI | (⁻) lower than EI | (⁻) between EI | (¹ ¹ ¹ ¹) | (³ ³ ³ ³) | (⁵ ⁵ ⁵ ⁵) | (¹ ¹ ¹ ¹) | (¹ ¹ ¹ ¹) | 1 | 6.89 | 7.83 | 1 | 0.64 | CI | 0.026 | 0.25 |
| PR₂ | Lower than EI | (⁻) lower than EI | (⁻) is AI | (⁻) is AI | (¹ ¹ ¹ ¹) | (³ ³ ³ ³) | (⁵ ⁵ ⁵ ⁵) | (¹ ¹ ¹ ¹) | (¹ ¹ ¹ ¹) | 0.2 | 0.15 | 0.89 | 0.12 | 0.12 | CR | 0.023 | 0.04 |
| PR₃ | Lower than EI | (⁻) greater than EI | (⁻) between MIAI | (⁻) lower than EI | (¹ ¹ ¹ ¹) | (³ ³ ³ ³) | (⁵ ⁵ ⁵ ⁵) | (¹ ¹ ¹ ¹) | (¹ ¹ ¹ ¹) | 0.13 | 0.13 | 0.31 | 0.17 | RI | 1.11 | 0.05 |
| PR₄ | Lower than EI | (⁻) lower than SI | (⁻) lower than EI | (⁻) lower than EI | (¹ ¹ ¹ ¹) | (³ ³ ³ ³) | (⁵ ⁵ ⁵ ⁵) | (¹ ¹ ¹ ¹) | (¹ ¹ ¹ ¹) | 0.12 | 0.12 | 0.62 | λ_{max} | 5.103 | 0.25 |
| PR₅ | Lower than EI | (⁻) lower than EI | (⁻) lower than EI | (⁻) lower than EI | (¹ ¹ ¹ ¹) | (³ ³ ³ ³) | (⁵ ⁵ ⁵ ⁵) | (¹ ¹ ¹ ¹) | (¹ ¹ ¹ ¹) | 1.55 | 1.62 | 1 | n | 5 | 0.42 |

Table 22 Hesitant linguistic pairwise comparison matrix, trapezoidal membership functions of HFLTS, fuzzy weight vector, consistency and normalized weights of alternatives based on system technology criterion

| ST | PR₁ | PR₂ | PR₃ | PR₄ | PR₅ | PR₁ | PR₂ | PR₃ | PR₄ | PR₅ | PR₁ | PR₂ | PR₃ | PR₄ | PR₅ | PR₁ | PR₂ | PR₃ | PR₄ | PR₅ | Consistency | w_{norm} |
|----|-------------|-------------|
| PR₁ | Lower than EI | (⁻) at least MII | (⁻) is AI | (⁻) is EI | (¹ ¹ ¹ ¹) | (³ ³ ³ ³) | (⁵ ⁵ ⁵ ⁵) | (¹ ¹ ¹ ¹) | (¹ ¹ ¹ ¹) | 1 | 0.16 | 0.12 | 1.33 | 0.89 | CI | 0.009 | 0.06 |
| PR₂ | Lower than EI | (⁻) lower than MII | Between LIAI | Greater than EI | (¹ ¹ ¹ ¹) | (³ ³ ³ ³) | (⁵ ⁵ ⁵ ⁵) | (¹ ¹ ¹ ¹) | (¹ ¹ ¹ ¹) | 0.2 | 0.12 | 0.76 | 5.44 | 5.89 | CR | 0.008 | 0.35 |
| PR₃ | Lower than EI | Between MIAI | Between MII | Between MII | (¹ ¹ ¹ ¹) | (³ ³ ³ ³) | (⁵ ⁵ ⁵ ⁵) | (¹ ¹ ¹ ¹) | (¹ ¹ ¹ ¹) | 0.13 | 0.13 | 0.89 | 6.89 | 6 | RI | 1.11 | 0.44 |
| PR₄ | Lower than EI | (⁻) between EI | (⁻) between EI | (⁻) between EI | (¹ ¹ ¹ ¹) | (³ ³ ³ ³) | (⁵ ⁵ ⁵ ⁵) | (¹ ¹ ¹ ¹) | (¹ ¹ ¹ ¹) | 0.75 | 0.18 | 0.15 | 1 | 0.64 | λ_{max} | 5.037 | 0.06 |
| PR₅ | Lower than EI | (⁻) lower than EI | (⁻) lower than EI | (⁻) lower than EI | (¹ ¹ ¹ ¹) | (³ ³ ³ ³) | (⁵ ⁵ ⁵ ⁵) | (¹ ¹ ¹ ¹) | (¹ ¹ ¹ ¹) | 1.13 | 0.17 | 0.17 | 1.55 | 1 | n | 5 | 0.09 |
Table 23 Hesitant linguistic pairwise comparison matrix, trapezoidal membership functions of HFLTS, fuzzy weight vector, consistency and normalized weights of alternatives based on plant location criterion

PL	PR₁	PR₂	PR₃	PR₄	PR₅	PR₁	PR₂	PR₃	PR₄	PR₅	PR₁	PR₂	PR₃	PR₄	PR₅	Consistency	w_{norm}	
PR₁	Lower thanEl	(−)isSI (−)at leastAI	Lower thanEl	(1 1 1 1) (0.1 0.1 0.1 0.2) (0.1 0.1 0.1 0.1) (1 1 1 1) (1 1 1 1)	1										1.33	CI	0.021 0.06	
PR₂	Lower thanEl	(−)betweenEI LI	Greater thanEl	(5 7 7 9) (1 1 1 1) (0.2 0.3 1 1) (1 4.3 6.3 9) (1 3.7 9 9)	6.8										5.22	CR	0.019 0.33	
PR₃	Lower thanEl	Lower thanEl	At leastMI	(7 9 9 9) (1 1 3 5) (1 1 1 1) (3 6.5 9 9) (1 3.7 9 9)	8.59										7.17	5.89	RI	1.11 0.46
PR₄	Lower thanEl	(−)at mostMI	Lower thanEl	(1 1 1 1) (0.1 0.2 0.2 0.1) (0.1 0.1 0.2 0.3) (1 1 1 1) (0.1 0.3 1 1)	1										0.62	λ_{max}	5.08 0.06	
PR₅	Lower thanEl	Lower thanEl	(0.3 1 1 1) (0.1 0.1 0.3 1) (0.1 0.1 0.3 1) (1 1 3.5 7) (1 1 1 1)	0.75										1.62	1	n	5	0.10

Table 24 Hesitant linguistic pairwise comparison matrix, trapezoidal membership functions of HFLTS, fuzzy weight vector, consistency and normalized weights of alternatives based on contingency plan criterion

CP	PR₁	PR₂	PR₃	PR₄	PR₅	PR₁	PR₂	PR₃	PR₄	PR₅	PR₁	PR₂	PR₃	PR₄	PR₅	Consistency	w_{norm}	
PR₁	Lower thanEl	(−)betweenSIAI (−)greaterLI	At mostLI	(1 1 1 1) (0.1 0.1 0.1 0.2) (0.1 0.1 0.1 0.3) (1 1 1.5 5) (0.2 0.7 1 1)	1										1.83	CI	0.027 0.06	
PR₂	Lower thanEl	(−)betweenEI AIAI (−)betweenLI	At mostAI	(5 7 9 9) (1 1 1 1) (0.1 0.2 1 1) (1 1 9 9) (1 4.3 6.3 9)	7.33										5	5.22	CR	0.024 0.30
PR₃	Lower thanEl	Lower thanEl	Greater thanEl	(3 6.5 9 9) (1 1 5 9) (1 1 1 1) (3 6.3 8.3 9) (1 3.7 9 9)	6.16										6.89	5.89	RI	1.11 0.46
PR₄	Lower thanEl	(−)lower thanAI	(0.2 0.7 1 1) (0.1 0.1 0.2 0.3) (0.1 0.1 0.2 0.1) (1 1 1 1) (0.1 0.2 1 1)	0.55										0.57	λ_{max}	5.11 0.06		
PR₅	Lower thanEl	Lower thanEl	(1 1 1.5 5) (0.1 0.2 0.2 1) (0.1 0.1 0.3 1) (1 1 6.3 9) (1 1 1 1)	1.32										1.75	1	n	5	0.12
on criteria appear to be consistent, and the calculation results are shown in Tables 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 and 25. The fuzzy weight vectors are calculated by the trapezoidal fuzzy numbers obtained from the comparison matrix of projects with respect to the criteria and the weight values of the alternative projects are determined for each criterion. The weight values obtained for alternative projects under the criteria are combined with the weight values of the criteria and the general priority values are calculated for alternative projects (Table 27). The priorities of the projects differ according to the criteria, for example, the first project has the highest priority value (0.489) according to the CVM criterion, whereas it has the lowest priority value (0.063) according to the PD criterion.

In addition to the comparative evaluation of the criteria, the independent impact weights of the criteria are also calculated. Decision makers evaluate criteria linguistically using linguistic expressions as defined in Table 26 and the number of linguistic values defined for each criterion is shown in Table 26. The fuzzy evaluation vectors are obtained for the criteria based on the number of decision makers’ evaluations defined for each criterion and the trapezoidal fuzzy number of linguistic expressions from Table 3. The weight values obtained from the pairwise comparison matrix are combined with the fuzzy evaluation vectors according to the weight calculation process and the general fuzzy weight vectors are obtained for the criteria (Table 26). The ranking of the weight values of the criteria obtained from the evaluation process and the weight values of the criteria obtained from pairwise comparison matrix are the same. The general weight values obtained from evaluation process of criteria are used in the general priority calculations of alternative projects.

In the final stage of the decision-making process, the impact values of the criteria and the priority values of alternative solar energy projects for each criterion are brought together. Calculations are made separately for each project. The priority value of a project by a criterion and the weight value of that criterion are multiplied and this process is repeated under all criteria for the defined project. The values obtained are summed and the priority value (composition impact) is calculated for the defined project as shown in Table 27. The obtained AHP output defines the general priority values of the PV project alternatives as 0.189, 0.23, 0.287, 0.135, 0.158 respectively. The third project option with the highest overall priority value is selected as the most appropriate project.

In summary, alternative solar power plant projects are evaluated using the AHP model based on HFLTS. Factors used in the selection of the solar power plant are compared by experts using HFLTSs. System technology (0.15), Energy Policy (0.18), Energy price change (0.13), Solar irradiance (0.13) and Technical infrastructure (0.11) factors are defined.
Table 26 Experts’ evaluation for criteria and their impact weights

Evaluation numbers for each criterion	Fuzzy evaluating vectors	Weights of criteria from comparison matrix	Fuzzy weight vector	General weights of criteria
VP P M G CG				
PM 1 2 9 1 2	3.2 4.2 5.2 6.2	0.0602	0.19 0.25	0.03 0.05 0.08 0.12
EP 2 3 7 2 1	2.73 3.73 4.73 5.73	0.1605	0.44 0.6 0.76	0.07 0.12 0.19 0.3
EPC 0 4 7 3 1	3.13 4.13 5.13 6.13	0.1274	0.4 0.53 0.65	0.07 0.1 0.16 0.26
VCM 1 2 6 5 1	3.47 4.47 5.47 6.47	0.0478	0.17 0.21 0.26	0.03 0.04 0.06 0.1
PD 1 3 8 1 2	3.07 4.07 5.07 6.07	0.0217	0.07 0.09 0.11	0.01 0.02 0.03 0.04
PF 1 4 7 2 1	2.8 3.8 4.8 5.8	0.0704	0.2 0.27 0.34	0.03 0.05 0.08 0.13
OM 2 2 6 3 2	3.27 4.27 5.27 6.27	0.0279	0.09 0.12 0.15	0.02 0.02 0.04 0.06
TI 2 3 6 2 2	3 4 5 6	0.1061	0.32 0.42 0.53	0.05 0.08 0.13 0.21
SI 0 4 7 4 0	3 4 5 6	0.128	0.38 0.51 0.64	0.06 0.1 0.16 0.25
ST 2 1 8 3 1	3.13 4.13 5.13 6.13	0.18	0.56 0.74 0.92	0.09 0.15 0.23 0.36
PL 1 2 8 3 1	3.2 4.2 5.2 6.2	0.0423	0.14 0.18 0.22	0.02 0.04 0.05 0.09
CP 1 3 6 4 1	3.2 4.2 5.2 6.2	0.0157	0.05 0.07 0.08	0.01 0.01 0.02 0.03
MR 2 3 5 3 2	3.13 4.13 5.13 6.13	0.0121	0.04 0.05 0.06	0.01 0.01 0.02 0.02
as the most effective factors and Maintenance and repair (0.012), Contingency plan (0.016), Power demand (0.02) and Operation management (0.03) are defined as the weakest factors according to expert evaluations. Taking into consideration the effective and ineffective factors, the latent activities that direct managerial activities and investments can be defined as follows: technological developments increase system efficiency, government supports and incentives direct investors, price changes in alternative energy sources affect consumer behavior, geographical location and environmental factors maximize solar radiation reaching the system, technical infrastructure competence provides ease of system installation and energy distribution, high-tech system ignores maintenance, repair, operational management and emergency activities and the prevalence of alternative energy sources gives consumers choice flexibility. Alternative solar energy projects are evaluated under each factor by pairwise comparison and the project that prevails over other projects under effective factors is preferred in the overall evaluation (Table 27).

Comparison and sensitivity analyses

A comparison and sensitivity analysis is performed to evaluate the suitability of the HFLTS based AHP decision-making model and the consistency of the solar power plant selection application. Decision makers evaluate alternative projects under the same criteria according to Buckley’s AHP and Chang’s extent analysis methods. Expert evaluations are processed under Buckley’s AHP and Chang’s extent analysis methods, and the general priority values of alternative projects for each method are shown in Fig. 2.

The order of alternative projects is the same in all methods and the third project is preferred as the best alternative (Fig. 2). Chang’s extent analysis method reveals the distinctions among alternative projects more clearly. HFL-AHP
Complex & Intelligent Systems

and Buckley’s AHP methods show more similar breaks and differences among alternative projects are clearly reflected in these methods. The fact that the order of preference of alternative projects is the same in all methods indicates that AHP decision-making method is an effective and consistent decision-making tool. The difference among the priority values of the projects is due to the different evaluation scales, pairwise comparison methods and aggregation tools.

Sensitivity analysis is performed to observe the effect degrees of the factors used in the selection of the solar energy project (Fig. 3). While the weight values of PM, EP, PD, PF, ST factors increase, the preference order of alternative projects does not change, and the 3rd and 2nd alternatives are more clearly distinguished from other alternatives.

As the weight values of EPC and VCM factors increase, the order of choice of alternative projects differs. These factors have a significant impact on project 1, and change is more limited in projects 2 and 5. Increasing the weight value of OM, TI, SI, MR factors causes significant changes on the order of preference of 1st, 5th and 4th projects. These factors do not have a significant impact on the preferences of the 3rd and 2nd projects. As the weight value of PL and CP factors increases, alternative projects 3 and 2 appear more prominently, and the order of alternatives 1 and 5 does not change. These results show that the identified factors have important effects in evaluating alternative projects. Therefore, factors should be correctly defined and comparative evaluations should be done carefully by experts.

Conclusions

In this study, it is aimed to select the most suitable PV solar energy plant project among the alternative projects affected by economic, political and technical factors. The evaluation of alternative projects under different criteria has led to the preference of the AHP MCDM model. Criteria and alternatives cannot be evaluated with exact numerical values, so evaluations are made linguistically by experts. Because evaluations based on the knowledge and experience of the experts involve uncertainty and hesitancy, evaluations are made on the basis of hesitant fuzzy linguistic terms.

The hesitant fuzzy linguistic expressions used in the comparison of criteria and alternative projects are converted to HFLTS and to the trapezoidal fuzzy numbers through the OWA aggregation operation. The consistency of the comparison matrices is measured by defuzzifying the trapezoidal fuzzy numbers derived from the hesitant linguistic terms. Trapezoidal fuzzy numbers are also converted to fuzzy weight vectors to calculate the weight values of criteria and alternative projects. Criteria are evaluated singularly with a set of linguistic expressions and trapezoidal fuzzy numbers

Fig. 3 Sensitivity analysis reflecting the effects of factors
are generated. These trapezoidal fuzzy numbers are combined with the comparative weight values of the criteria and the overall weight values are generated for the criteria. The priority value of the alternative projects according to the criteria and the weight vector of the criteria are evaluated together and the overall priority values (composition impact) of the alternative projects are calculated. The project with the highest overall priority value is preferred.

According to this study, while the effect of “system technology”, “energy policy”, “solar irradiance” and “energy price change” criteria is strong, the effect of “power demand”, “contingency plan” and “maintenance and repair” criteria is weak in the selection of solar energy projects. The projects have different priorities according to the criteria. According to the criteria, the third project has the highest priority value with five times, while the other projects get the highest priority value with two times. However, the first project has the lowest priority value with seven times, while the fourth project that is the last in the overall evaluation does not have the lowest priority value. In the general evaluation, while the third project preferred according to the criteria with high impact values is the first in the ranking, the fourth project preferred according to the criteria with low impact values is the last. This result demonstrates the importance of the impact weights of criteria on the decision-making process. In future studies, it is planned to develop the defined criteria and to develop decision-making models based on linguistic evaluations for renewable energy projects.

Factors affecting the selection of solar energy system obtained by literature review are an important source for academic and sector studies. However, the impact values of the factors may change due to geographical location, environmental, social, political and economic differences. Therefore, the factors and expert evaluations defined in the application section cannot be used for each problem. In addition, the usefulness of the HFLTS evaluation method, the validity of AHP decision-making tools and the success of using these tools together are gained in literature. The fact that a large number of decision makers are involved in the decision-making process and that the scope of HFLTS is insufficient in the evaluation process are important limitations for the study.

In the future studies, the new method should be developed according to the size of the decision makers and the decision-making criteria used by the decision makers. The study applied for solar energy systems can be extended to other renewable energy systems. Group decision-making methods based on linguistic interval-valued intuitionistic fuzzy set and hybrid models can be used in the development process [21, 25, 41]. The developed methods can be used in the selection of the most suitable renewable energy systems and the validity of the methods can be verified with comparative analysis.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Asakereh A, Soleymani M, Sheikhdavoodi MJ (2017) A GIS-based Fuzzy-AHP method for the evaluation of solar farms locations: case study in Khuzestan province, Iran. Sol Energy 155:342–353
2. Saaty TL (2013) Analytic hierarchy process, in Encyclopedia of operations research and management science. Springer, Berlin, pp 52–64
3. Carrion JA et al (2008) Environmental decision-support systems for evaluating the carrying capacity of land areas: optimal site selection for grid-connected photovoltaic power plants. Renew Sustain Energy Rev 12(9):2358–2380
4. Kaya T, Kahraman C (2010) Multicriteria renewable energy planning using an integrated fuzzy VIKOR & AHP methodology: the case of Istanbul. Energy 35(6):2517–2527
5. Lee SK, Mogi G, Hui K (2013) A fuzzy analytic hierarchy process (AHP)/data envelopment analysis (DEA) hybrid model for efficiently allocating energy R&D resources: in the case of energy technologies against high oil prices. Renew Sustain Energy Rev 21:347–355
6. Ramanathan R, Ganesh L (1995) Energy resource allocation incorporating qualitative and quantitative criteria: an integrated model using goal programming and AHP. Socio-Econ Plan Sci 29(3):197–218
7. An D et al (2018) Multi-criteria sustainability assessment of urban sludge treatment technologies: method and case study. Resour Conserv Recycl 128:546–554
8. Chang D-Y (1996) Applications of the extent analysis method on fuzzy AHP. Eur J Oper Res 95(3):649–655
9. KUBLER S et al (2016) A state-of-the-art survey and testbed of fuzzy FAHP applications. Expert Syst Appl 65:398–422
10. Wang Y-M, Luo Y, Hua Z (2008) On the extent analysis method for fuzzy AHP and its applications. Eur J Oper Res 186(2):735–747
11. Zheng G et al (2012) Application of a trapezoidal fuzzy AHP method for work safety evaluation and early warning rating of hot and humid environments. Saf Sci 50(2):228–239
12. Wang B et al (2019) Selecting sustainable energy conversion technologies for agricultural residues: a fuzzy AHP-VIKOR based prioritization from life cycle perspective. Resour Conserv Recyl 142:78–87
13. Rezvani S (2013) Ranking method of trapezoidal intuitionistic fuzzy numbers. Ann Fuzzy Math Inf 5(3):515–523
14. Ramanathan R (2001) A note on the use of the analytic hierarchy process for environmental impact assessment. J Environ Manage 63(1):27–35
15. Saaty TL, Tran LT (2007) On the invalidity of fuzzifying numerical judgments in the Analytic Hierarchy Process. Math Comput Model 46(7–8):962–975
16. Zhang C, Ma C-B, Xu J-D (2005) A new fuzzy MCDM method based on trapezoidal fuzzy AHP and hierarchical fuzzy integral. In: International Conference on Fuzzy Systems and Knowledge Discovery. Springer, Berlin
17. Xia H-C et al (2006) Fuzzy LINMAP method for multiattribute decision making under fuzzy environments. J Comput Syst Sci 72(4):741–759
18. Torra V (2010) Hesitant fuzzy sets. Int J Intell Syst 25(6):529–539
19. Vij S et al (2020) Scientometric inspection of research progression in hesitant fuzzy sets. J Intell Fuzzy Syst 38(1):619–626
20. Castillo O, Kutlu F, Atan O (2020) Intuitionistic fuzzy control of twin rotor multiple input multiple output systems. J Intell Fuzzy Syst 38(1):821–833
21. Sotirov S et al (2018) A hybrid approach for modular neural network design using intercriteria analysis and intuitionistic fuzzy logic. Complexity. https://doi.org/10.1155/2018/9327951
22. Deepak D et al (2019) A topological structure involving hesitant fuzzy sets. J Intell Fuzzy Syst 36(6):6401–6412
23. Xu Z, Xia M (2011) Distance and similarity measures for hesitant fuzzy sets. Inf Sci 181(11):2128–2138
24. Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning—III. Inf Sci 9(1):43–80
25. Garg H, Kumar K (2018) Group decision making approach based on possibility degree measure under linguistic interval-valued intuitionistic fuzzy set environment. J Ind Manag Optim 13(5):1
26. Arora R, Garg H (2019) Group decision-making method based on prioritized linguistic intuitionistic fuzzy aggregation operators and its fundamental properties. Comput Appl Math 38(2):36
27. Rodriguez RM, Martinez L, Herrera F (2011) Hesitant fuzzy linguistic term sets for decision making. IEEE Trans Fuzzy Syst 20(1):109–119
28. Garg H, Kaur G (2019) A robust correlation coefficient for probabilistic dual hesitant fuzzy sets and its applications. Neural Comput Appl. https://doi.org/10.1007/s00521-019-04362-y
29. Garg H, Kaur G (2020) Quantifying gesture information in brain hemorrhage patients using probabilistic dual hesitant fuzzy sets with unknown probability information. Comput Ind Eng 140:106211
30. Garg H, Kumar K (2019) Multiattribute decision making based on power operators for linguistic intuitionistic fuzzy set using set pair analysis. Expert Syst 36(4):121428
31. Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning—II. Inf Sci 8(4):301–357
32. Rodríguez RM, Martínez L, Herrera F (2012) Hesitant fuzzy linguistic term sets for decision making. Fuzzy Syst IEEE Trans 20(1):109–119
33. Yager RR (1988) On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Trans Syst Man Cybernetics 18(1):183–190
34. Liu H, Rodríguez RM (2014) A fuzzy envelope for hesitant fuzzy linguistic term set and its application to multicriteria decision making. Inf Sci 258:220–238
35. Kahraman C, Önar SC, Öztayşi B (2018) B2C marketplace prioritization using hesitant fuzzy linguistic AHP. Int J Fuzzy Syst 20(7):2202–2215
36. Tüysüz F, Şimşek B (2017) A hesitant fuzzy linguistic term sets-based AHP approach for analyzing the performance evaluation factors: an application to cargo sector. Complex Intell Syst 3(3):167–175
37. Vepsäläinen V et al (2018) Solar energy project selection by using hesitant Pythagorean fuzzy TOPSIS. Data Sci Knowl Eng Sens Decis Support. https://doi.org/10.1142/9789813273238_0140
38. Sahu BK (2016) Solar energy developments, policies and future prospectus in the state of Odisha, India. Renew Sustain Energy Rev 61:526–536
39. Gherboudj I, Ghedira H (2016) Assessment of solar energy potential over the United Arab Emirates using remote sensing and weather forecast data. Renew Sustain Energy Rev 55:1210–1224
40. Aragonés-Beltrán P et al (2014) An AHP (Analytic Hierarchy Process)/ANP (Analytic Network Process)-based multi-criteria decision approach for the selection of solar-thermal power plant investment projects. Energy 66:222–238
41. Garg H, Kumar K (2019) Linguistic interval-valued atanassov intuitionistic fuzzy sets and their applications to group decision making problems. IEEE Trans Fuzzy Syst 27(12):2302–2311

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.