Synthesis of Novel Fluorene Bisamide Derivatives via Ugi Reaction and Evaluation their Biological Activity against Mycobacterium species

Ali Hossein Rezayan, Safoura Hariri, Parisa Azerang, Ghazaleh Ghavami, Isabel Portugal and Soroush Sardari*

*Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.

Abstract

A series of new fluorene bisamide derivatives were synthesized through multi-component Ugi reaction and tested for their in-vitro anti-mycobacterial activity. The structures of the products 5a-w were deduced from their IR, 1H NMR, and 13C NMR spectra. Elemental analyses (CHN) for novel compounds (5a, 5d, 5f, 5h, 5k, 5l, 5p, 5s, 5t, 5v, 5w) was done. These compounds were evaluated as anti-bacterial agents against Mycobacterium bovis and M. tuberculosis, while their activity expressed as the minimum inhibitory concentration (MIC) in μg/mL. Among the twenty-three synthesized compounds, 5a was found to be the most active compound in vitro with MIC of 1.95 μg/mL against Mycobacterium bovis and compound 5k showed greatest potency against sensitive and resistant strains of M. tuberculosis (H37Rv, IHMT149/09, HPV115/08, and HPV65/08).

Keywords: multi-component reaction; Ugi reaction; Mycobacterium bovis; fluorene bisamide derivatives; brine shrimp toxicity study.

Introduction

Tuberculosis (TB) is one of the deadly infectious diseases caused by Mycobacterium spp. mainly Mycobacterium tuberculosis. More than 2 billion humans (>30%) are infected by Mycobacterium tuberculosis, the causing organism of tuberculosis(1-5). Bacillus Calmette-Guerin (BCG) is an attenuated strain of Mycobacterium bovis, a non-virulent tubercle bacillus very closely related to M. tuberculosis (6, 7). Therefore, M. bovis is simpler to use and in less strict biosafety regulations in the lab, hence, it can be used in bioassay instead of M. tuberculosis.

The World Health Organization (WHO) Fact Sheet on TB estimates that between 2000 and 2020, nearly one billion people will get sick and 35 million will die from TB (8). Serious challenges associated with the rising epidemic are multidrug-resistance and the growing number of people co-infected with M. tuberculosis and human immunodeficiency virus (HIV) (9-11).

Hence, it is clear that there is an urgent need to develop novel anti-TB drugs with improved properties such as enhanced activity against multidrug-resistance, reduced toxicity, shortened duration of therapy, rapid mycobactericidal mechanism of action, ability to penetrate
host cells, and exert anti-mycobacterial effect in the intracellular environment. There are various sources for providing molecules with the desired profile of biologic activity, among which natural products and synthetic reactions are two important ones. Although many natural products present the scaffolds with different applications, the synthetic routes have the advantage of diversity of variation in derivative functionalization.

Multi-component reactions (MCRs) are special types of synthetically useful organic reactions in which three or more different starting materials react to give a final product in a one-pot protocol. Compared to conventional multistep organic syntheses, MCRs are advantageous owing to their greater atom efficiency, accessibility to large numbers of compounds and complex molecules, wide structural diversity and simplicity of their one-pot procedures making them amenable to combinatorial synthesis.

Major applications of MCRs described until today arise from the area of drug discovery. Potentially, the ease of performance, the time-saving aspect, the versatility and diversity of scaffolds, and the very large chemical space will attract chemists in pharmaceutical companies to use MCRs for their projects. Recently, the pharmaceutical industries have focused more and more on diversity oriented combinatorial libraries (12-16). Among the known multi-component reactions to date, the most valuable reactions are those based on isocyanides. One such reaction is the Ugi 4-component condensation (4CC) reaction combining an amine, aldehyde (or ketone), carboxylic acid and isocyanide in a single-stage reaction to afford α-acylamino amides (17, 18).

Fluorenes are a useful class of compounds with high utility as building blocks for advanced materials with unique electrical and optical properties (19-21), and also the fluorene unit frequently shows up in bioactive molecules (22). Therefore, in continuation of our research on the development of synthetic methods in heterocyclic chemistry via isocyanide based-multipurpose reactions (23, 24) and also our drug discovery program (25-27) here we report synthesis of fluorene bisamide derivatives and evaluation of their anti-tuberculosis activity.

Experimental

General

Melting points were measured on an Electrothermal 9100 apparatus and are uncorrected. Infrared spectra were determined with a Perkin-Elmer 843 spectrometer. Proton nuclear magnetic resonance (1H NMR) spectra and carbon nuclear magnetic resonance (13C NMR) spectra were determined on a Bruker Avance DRX 500 MHz spectrometer and chemical shifts are reported as δ (ppm) in CDCl3, and DMSO solution (0.05% v/v TMS). The chemicals used in this work were purchased from Merck, Fluka and Sigma-Aldrich Chemical Companies.

General procedure for preparation of products 5a-w

To a magnetically stirred solution of benzaldehyde derivatives (1 mmol) in methanol (5 mL) was added 2-fluoreneamine (1 mmol) and the reaction mixture stirred at room temperature until the imine was formed. After formation of imine, carboxylic acids (1 mmol) and cyclohexyl isocyanide (1.2 mmol) were added to reaction mixture in 0 ºC in ice bath and then reactions were continued in ambient temperature. After completion of the reaction, as indicated by TLC (ethyl acetate/n-hexane, 2:1), the precipitate was cooled at 0-5°C in an ice bath and was washed with cold hexane several times and then washed with freshly methanol and dried on the vacuum evaporator. Finally, the separated solid was filtered and purified by re-crystallization from ethanol to afford analytically pure product 5a-w.

2.2.1. N-[(cyclohexylcarbamoyl)(3-fluorophenyl)methyl]-N-(9H-fluoren-2-yl) prop-2-ynamide (5a). White solid; yield 75%, mp 199-200 °C; FT-IR (KBr): 1638, 2100, 2858, 2926, 3061, 3281 cm⁻¹. 1H NMR (500 MHz,CDCl3): δ = 1.13 -2.02 (m, 10H), 2.85 (s, 1H), 3.81-3.93 (m, 3H), 5.72 (bs, 1H), 6.03 (s, 1H), 7.06-7.13 (m, 3H), 7.01-7.43 (m, 7H), 7.58 (d, 3JHH =7.4 Hz, 1H), 7.64 (d, 3JHH =8.0 Hz, 1H), 7.78 (d, 3JHH =7.5 Hz,1H). 13C NMR (125 MHz, CDCl3): δ = 24.7, 24.8, 25.4, 32.7, 36.7, 48.9, 64.6, 76.0, 80.9, 115.7, 117.2, 119.6, 120.2, 125.1, 125.9, 126.9, 127.2, 129.2, 129.9, 130.0,
136.0, 137.2, 140.6, 142.1, 143.6, 143.7, 153.9, 162.2 (d, $\text{J}_{CF} = 244.5 \text{ Hz}$), 167.2. Anal. Calc'd for C$_{27}$H$_{21}$FN$_{2}$O$_{2}$: C, 77.23; H, 5.83; N, 6.00. Found: C, 77.44; H, 5.73; N, 5.92.

2.2.2. N - [(3-chlorophenyl) (cyclohexylcarbamoyl)methyl] -N-(9H-fluoren-2-yl)-propan-2-ynamide (5b). White solid; yield 55%; mp 208-210 °C; FT-IR (KBr): 1677, 2111, 2855, 2930, 3061, 3281 cm$^{-1}$. 1H NMR (500 MHz, CDCl$_3$): δ = 1.05 -2.00 (m, 10H), 2.82 (s, 1H), 3.85 (m, 3H), 5.72 (bs, 1H), 6.01 (s, 1H), 7.06 -7.13 (m, 3H), 7.21-7.44 (m, 4H), 7.55 (d, $\text{J}_{HH} = 7.4 \text{ Hz}$, 1H), 7.6 (d, $\text{J}_{HH} = 8.0 \text{ Hz}$, 1H), 7.75 (d, $\text{J}_{HH} = 7.5 \text{ Hz}$, 1H). 1C NMR (125 MHz, CDCl$_3$): δ = 24.6, 25.4, 32.7, 32.8, 36.7, 48.9, 64.5, 76.0, 80.9, 119.6, 120.2, 123.1, 125.1, 126.1, 126.8, 127.2, 128.3, 128.9, 129.2, 129.6, 130.4, 134.2, 135.6, 136.1, 140.6, 142.0, 143.6, 143.7, 153.9, 167.1.

2.2.3. N - [(3-bromophenyl) (cyclohexylcarbamoyl) methyl] -N-(9H-fluoren-2-yl)-propan-2-ynamide (5c). White solid; yield 55%; mp 228-230 °C; FT-IR (KBr): 1678, 2112, 2855, 2930, 3270, 3283 cm$^{-1}$. 1H NMR (500 MHz, CDCl$_3$): δ = 1.06 -2.01 (m, 10H), 2.82 (s, 1H), 3.79 -3.90 (m, 3H), 5.70 (bs, 1H), 6.00 (s, 1H), 7.03 -7.11 (m, 3H), 7.32 -7.43 (m, 5H), 7.55 (d, $\text{J}_{HH} = 7.3 \text{ Hz}$, 1H), 7.62 (d, $\text{J}_{HH} = 8.0 \text{ Hz}$, 1H), 7.76 (d, $\text{J}_{HH} = 7.5 \text{ Hz}$, 1H). 1C NMR (125 MHz, CDCl$_3$): δ = 24.6, 25.4, 32.7, 36.7, 48.9, 64.5, 76.0, 80.9, 119.6, 120.2, 123.1, 125.1, 126.8, 127.2, 127.3, 128.8, 129.32, 129.9, 131.8, 133.4, 135.9, 137.1, 140.6, 142.1, 143.6, 143.7, 153.9, 167.1.

2.2.4. N - [(4-chlorophenyl) (cyclohexylcarbamoyl) methyl] -N-(9H-fluoren-2-yl)-prop-2-ynamide (5d). White solid; yield 55%; mp 196-197 °C; FT-IR (KBr): 1655, 2107, 2853, 2931, 3069, 3279 cm$^{-1}$. 1H NMR (500 MHz, CDCl$_3$): δ = 1.06-1.99 (m, 10H), 2.82 (s, 1H, C≡CH), 3.78-3.89 (m, 3H), 5.70 (bs, 1H), 6.02 (s, 1H), 7.07-7.76 (m, 11H). 1C NMR (125 MHz, CDCl$_3$): δ = 24.7, 24.8, 25.4, 32.7, 32.8, 36.7, 48.9, 64.2, 76.0, 80.9, 119.6, 120.2, 123.1, 125.1, 126.9, 127.2, 129.3, 131.6, 132.0, 132.7, 137.1, 140.6, 142.1, 143.6, 143.7, 153.9, 167.2.

2.2.5. N - [(4-bromophenyl) (cyclohexylcarbamoyl) methyl] -N-(9H-fluoren-2-yl)-prop-2-ynamide (5e). White solid; yield 55%; mp 199-202 °C; FT-IR (KBr): 1655, 2107, 2853, 2931, 3069, 3279 cm$^{-1}$. 1H NMR (500 MHz, CDCl$_3$): δ = 1.06-1.99 (m, 10H), 2.82 (s, 1H, C≡CH), 3.78-3.89 (m, 3H), 5.70 (bs, 1H), 6.02 (s, 1H), 7.07-7.76 (m, 11H). 1C NMR (125 MHz, CDCl$_3$): δ = 24.7, 24.8, 25.4, 32.7, 32.8, 36.7, 48.9, 64.2, 76.0, 80.9, 119.6, 120.2, 123.1, 125.1, 126.9, 127.2, 129.3, 131.6, 132.0, 132.7, 137.1, 140.6, 142.1, 143.6, 143.7, 153.9, 167.2.
m.p. 225 °C; FT-IR (KBr): 1683, 2108, 2853, 2924, 3054, 3275, 3319 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ = 1.12-1.98 (m, 10H), 2.26 (s, 3H), 2.8 (s, 1H), 3.76-3.92 (m, 3H), 5.50 (bs,1H), 6.02 (s, 1H), 6.99-7.12 (m, 5H), 7.23-7.48 (m, 3H), 7.54 (d, JHH = 7.45, 1H), 7.58 (d, JHH = 7.95, 1H), 7.74 (d, JHH = 7.5, 1H). ¹³C NMR (125 MHz, CDCl₃): δ = 21.1, 24.7, 24.8, 25.4, 29.6, 32.7, 36.7, 48.8, 64.9, 76.2, 80.4, 119.4, 120.1, 125.1, 126.8, 127.4, 129.9, 131.7, 137.4, 140.7, 141.7, 143.3, 143.7, 153.8, 159.7, 167.9. Anal. Calcd for C₃₁H₂₈N₂O₃: C, 77.80; H, 6.32; N, 5.85; Found: C, 77.92; H, 6.36; N, 5.89.

2.2.12 N-[(cyclohexylcarbamoyl) methyl]-N-(9H-fluoren-2-yl)-3-phenylprop-2-yramid (5j). White solid; yield 55%; mp 210-211 °C; FT-IR (KBr): 1693, 2218, 2854, 2931, 3061, 3321 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ = 1.09-2.03 (m, 10H), 7.06-7.71 (m, 9H). ¹³C NMR (125 MHz, CDCl₃): δ = 24.7, 24.8, 25.4, 32.8, 32.8, 36.8, 48.9, 64.7, 82.4, 92.5, 115.5, 115.7, 117.1, 117.3, 119.5, 120.2, 125.1, 125.9, 126.8, 127.1, 128.2, 129.3, 129.9, 132.4, 136.4, 138.1, 140.7, 141.8, 143.5, 143.7, 155.2, 162.4(d, JCF = 245.7 Hz, CF), 167.5. Anal. Calcd for C₃₆H₃₈FN₂O₃: C, 79.68; H, 5.76; N, 5.16; Found: C, 79.83; H, 5.54; N, 5.21.

2.2.13 N-[(3-chlorophenyl) (cyclohexylcarbamoyl)methyl]-N-(9H-fluoren-2-yl)-3-phenylprop-2-yramid (5m). White solid; yield 60%; mp 191-192 °C; FT-IR (KBr): 1655, 2216, 2854, 2935, 3082, 3264 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ = 1.12 2.03- (m, 10H), 3.91-3.8(m, 3H), 5.86(bs,1H), 6.07(s, 1H), 7.01-7.15(m, 6H), 7.22-7.42(m, 7H), 7.56(d, JHH = 7.4, 1H), 7.66(d, JHH = 8.0, 1H), 7.79(d, JHH = 7.5, 1H). ¹³C NMR (125 MHz, CDCl₃): δ = 24.7, 24.8, 25.4, 32.7, 32.8, 36.8, 48.9, 64.6, 82.4, 92.6, 119.5, 120.1, 120.2, 125.1, 126.8, 127.1, 127.2, 128.2, 128.3, 128.7, 129.3, 129.6, 129.9, 130.4, 132.4, 134.2, 136.0, 137.9, 140.7, 141.8, 143.5, 143.7, 155.2, 167.4.

2.2.14 N-[(3-bromophenyl) (cyclohexylcarbamoyl)methyl]-N-(9H-fluoren-2-yl)-3-phenylprop-2-yramid (5n). White solid; yield 63%; mp 189-190 °C; FT-IR (KBr): 1655, 2215, 2854, 2934, 3082, 3267 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ = 1.12-2.03(m, 10H), 3.80-3.91(m, 3H), 5.86(bs,1H), 6.11-6.22 (m, 3H), 6.54 (d, JHH = 7.9, 1H), 7.74 (d, JHH = 7.5, 1H). ¹³C NMR (125 MHz, CDCl₃): δ = 24.7, 24.8, 25.4, 32.7, 32.8, 36.8, 48.9, 64.6, 82.4, 92.6, 119.5, 120.1, 120.2, 125.1, 126.8, 127.1, 127.2, 128.2, 128.3, 128.7, 129.3, 129.6, 129.9, 130.4, 132.4, 134.2, 136.0, 137.9, 140.7, 141.8, 143.5, 143.7, 155.2, 167.4.
2.2.15. N-[(4-chlorophenyl) (cyclohexylcarbamoyl) methyl]-N-(9H-fluoren-2-yl)-3-Phenylprop-2-ynamide (5o). White solid; yield 76%; mp 200-204 °C; FT-IR (KBr): 1655, 2216, 2932, 2854, 3082, 3271 cm⁻¹.¹³C NMR (500 MHz, CDCl₃): δ = 114.2-156.0 (m, 16H), 200.5 (s, 1H), 7.00-7.02 (m, 3H), 7.14 (t, J = 7.3, 1H), 7.68 (d, J = 7.3, 1H), 7.70 (d, J = 7.3, 1H), 7.76 (d, J = 7.5, 1H), 7.78 (d, J = 7.5, 1H), 8.09-8.11 (m, 1H), 8.23-8.34 (m, 2H).¹³C NMR (125 MHz, CDCl₃), δ = 24.7-25.4, 29.6, 32.7, 32.8, 36.8, 48.9, 64.2, 82.4, 92.6, 119.5, 120.1, 120.2, 122.3, 125.1, 126.8, 127.1, 127.2, 128.2, 128.8, 129.4, 129.8, 129.9, 131.7, 132.4, 132.3, 136.2, 137.8, 140.7, 141.8, 143.5, 143.7, 152.2, 167.4.

2.2.16. N-[(4-bromophenyl) (cyclohexylcarbamoyl) methyl]-N-(9H-fluoren-2-yl)-3-Phenylprop-2-ynamide (5p). White solid; yield 83%; mp 189-190 °C; FT-IR (KBr): 1655, 2217, 2935, 2853, 3081, 3260 cm⁻¹.¹³C NMR (500 MHz, CDCl₃), δ = 2.07-1.20 (m, 10H), 3.91-3.79 (m, 3H), 6.24 (m, 2H), 7.02-7.67 (m, 13H), 7.78 (d, J = 7.5, 1H), 8.09-8.11 (m, 1H), 8.23-8.40 (m, 4H).¹³C NMR (125 MHz, CDCl₃), δ = 24.7-25.4, 29.7, 32.7, 32.8, 36.8, 48.9, 64.2, 82.4, 92.6, 119.5, 120.1, 120.2, 122.3, 125.1, 126.8, 127.1, 127.2, 128.2, 128.6, 129.4, 129.9, 131.7, 132.8, 132.4, 132.5, 132.6, 134.6, 137.2, 137.8, 140.7, 141.8, 143.5, 143.7, 152.2, 167.6.

2.2.17. N-[(cyclohexylcarbamoyl) (2-nitrophenyl)methyl]-N-(9H-fluoren-2-yl)-3-Phenylprop-2-ynamide (5q). Pale yellowish solid; yield 60%; mp 152-154 °C; FT-IR (KBr): 1684, 2214,2930, 2853,3066, 3262 cm⁻¹.¹³C NMR (500 MHz, DMSO-d₆), δ = 1.72-0.94 (m, 10H), 3.59-3.57 (m, 1H), 3.82-3.73 (m, 2H), 7.07-7.05 (m, 2H), 7.45-7.21 (m, 10H), 7.55 (d, J = 7.4, 1H), 7.77-7.64 (m, 2H), 7.83 (d, J = 7.4, 1H), 8.38 (m, 1H), 8.25 (d, J = 7.6, 1H).¹³C NMR (125 MHz, CDCl₃), δ = 24.2, 25.1, 31.9, 36.2, 39.0-4.81, 59.7, 82.8, 90.5, 119.4, 120.3, 125.0, 127.0, 128.8, 129.6, 130.4, 130.9, 131.7, 132.5, 125.0, 127.0, 128.8, 129.6, 130.4, 131.7, 132.5, 133.2, 137.4, 140.1, 140.9, 143.4, 149.1, 153.1, 167.1.

2.2.18. N-[(cyclohexylcarbamoyl) (3-nitrophenyl)methyl]-N-(9H-fluoren-2-yl)-3-Phenylprop-2-ynamide (5r). White solid; yield 80%; mp 187-189 °C; FT-IR (KBr): 1655, 2218, 2935, 2853, 3081, 3260 cm⁻¹.¹³C NMR (500 MHz, CDCl₃), δ = 2.08-1.20 (m, 10H), 3.91-3.79 (m, 3H), 6.24 (m, 2H), 7.02-7.67 (m, 13H), 7.78 (d, J = 7.5, 1H), 8.09-8.11 (m, 1H), 8.23-8.40 (m, 4H).¹³C NMR (125 MHz, CDCl₃), δ = 24.7, 25.4, 29.7, 32.7, 32.8, 36.8, 48.9, 64.2, 82.4, 92.6, 119.5, 120.1, 120.2, 122.3, 125.1, 126.8, 127.1, 127.2, 128.2, 128.6, 129.4, 129.9, 131.7, 132.8, 132.4, 132.5, 132.6, 134.6, 137.2, 137.8, 140.7, 141.8, 143.5, 143.7, 152.2, 167.6.

2.2.19. N-[(cyclohexylcarbamoyl) (4-nitrophenyl)methyl]-N-(9H-fluoren-2-yl)-3-phenylprop-2-ynamide (5s). White solid; yield 50%; mp 200-203 °C; FT-IR (KBr): 1631, 2200, 2924, 2857,3339 cm⁻¹.¹³C NMR (500 MHz, CDCl₃), δ = 1.26-2.10 (m, 10H), 3.88-3.94 (m, 3H, CH₂), 6.10 (brs, 1H), 6.21 (s, 1H), 8.13-7.05 (m, 16H).¹³C NMR (125 MHz, CDCl₃), δ = 22.7, 24.7, 25.4, 29.3, 31.4, 31.9, 36.8, 49.0, 64.2, 83.2, 94.5, 119.8, 120.4, 123.4, 123.9, 124.4, 125.2, 126.2, 127.0, 127.4, 128.3, 129.1, 130.2, 130.8, 132.3, 135.9, 136.3, 137.3, 140.4, 142.1, 143.7, 143.8, 147.9, 155.4, 167.1.

2.2.20. N-[(cyclohexylcarbamoyl) (4-methylphenyl)methyl]-N-(9H-fluoren-2-yl)-3-phenylprop-2-ynamide (5t). White solid; yield 62%; mp 165-167 °C; FT-IR (KBr):1642, 2219, 2855, 2926 and, 3064, 3257 cm⁻¹.¹³C NMR (500 MHz, CDCl₃), δ = 1.04-2.00 (m, 10H), 2.28 (s, 3H), 3.84 (m, 3H), 5.66 (d, 1H), 6.09 (s, 1H), 7.7-7.41 (m, 13H), 7.55 (d, 1H).
J=7.6, 1H), 7.63(d, J=8.0, 1H), 7.77(d, J=7.5, 1H).\(^{1}C\) NMR (125 MHz, CDCl\(_3\)): δ = 20.9, 21.1, 24.7, 25.4, 32.8, 36.8, 48.8, 65.0, 82.6, 92.1, 119.3, 119.8, 120.1, 120.3, 124.8, 125.1, 126.8, 126.9, 127.3, 128.2, 129.2, 129.5, 129.8, 130.1, 130.9, 132.4, 138.3, 138.4, 140.9, 141.4, 143.2, 143.3, 143.7, 155.1, 168.1. Anal. Calcd for C\(_{37}\)H\(_{34}\)N\(_2\)O\(_2\): C, 82.50; H, 6.36; N, 5.20, Found: C, 82.32; H, 6.57; N, 5.48.

2.2.21. N-[(cyclohexylcarbamoyl)(2-methoxyphenyl)methyl]-N-(9H-fluoren-2-yl)-3-phenylprop-2-ynamide (5u). White solid; yield 65%; mp 186-188 °C; FT-IR (KBr): 1685, 2213, 2858, 2931, 3067, 3335 cm\(^{-1}\).\(^{1}H\) NMR (500 MHz, CDCl\(_3\)): δ = 1.04-2.04(m, 10H), 3.75-3.91(m, 6H), 6.45(s, 1H), 6.70(s, 1H), 6.78(d, 1H), 7.02(m, 2H), 7.39-7.11 (m, 9H), 7.53(d, 1H), 7.57(d, 1H), 7.74 (d, 1H).\(^{13}C\) NMR (125 MHz, CDCl\(_3\)): δ = 24.8, 25.5, 29.6, 31.2, 32.8, 36.7, 48.7, 55.2, 59.1, 82.9, 91.6, 110.1, 118.9, 120.1, 120.5, 122.2, 125.1, 126.7, 126.8, 127.2, 128.1, 129.1, 129.6, 130.1, 131.1, 133.8, 132.3, 141.0, 143.0, 141.2, 143.7, 155.1, 157.4, 168.5. Anal. Calcd for C\(_{37}\)H\(_{34}\)N\(_2\)O\(_3\): C, 80.12; H, 6.18; N, 5.05, Found: C, 81.11; H, 6.24; N, 5.09.

2.2.22. N-[(cyclohexylcarbamoyl)(3-methoxyphenyl)methyl]-N-(9H-fluoren-2-yl)-3-phenylprop-2-ynamide (5v). White solid; yield 85%; mp 187-189 °C; FT-IR (KBr): 1655, 2217, 2854, 2932, 3089, 3265 cm\(^{-1}\).\(^{1}H\) NMR (500 MHz, CDCl\(_3\)): δ = 1.15-2.01(m, 10H), 3.65 (m, 3H), 3.84(m, 3H), 5.78(bs, 1H, NH), 6.80(m, 3H), 6.1(s, 1H), 7.01(m, 2H), 7.14(m, 3H), 7.25(m, 2H), 7.33(m, 1H), 7.47(m, 1H), 7.55(m, 2H), 7.64(d, 1H), 7.77(d, J=7.5, 1H).\(^{13}C\) NMR (125 MHz, CDCl\(_3\)): δ = 24.7, 24.8, 25.4, 32.7, 36.7, 48.8, 55.1, 64.3, 76.2, 80.4, 113, 119.4, 120.1, 125.1, 125.6, 126.8, 127.1, 127.4, 129.5, 131.7, 137.4, 140.8, 141.7, 143.3, 143.7, 153.8, 159.7, 167.9. Anal. Calcd for C\(_{37}\)H\(_{34}\)N\(_2\)O\(_3\): C, 80.12; H, 6.18; N, 5.05, Found: C, 79.17; H, 6.29; N, 5.20.

In-vitro evaluation of anti-mycobacterial activity

In vitro anti-mycobacterial activity evaluations of the compounds were done by the broth dilution method against BCG (1173P2) in addition to several sensitive and resistant strains of M. tuberculosis (H37Rv, IHMT149/09, HPV115/08 and HPV65/08) and ethambutol were used as standard controls.

The test compounds were initially dissolved in DMSO to give a concentration of 1 or 2 mg/L. All wells of micro plates received 100 µL of freshly prepared Middle broke 7H9 medium (Himedia, India), except first column. 200 µL of distilled water was added to the first column of 96 well plates to minimize evaporation of the medium in the test wells during incubation. Then 100 µL of test compounds with desired concentrations (2000 µL) were added to the wells of the first row (each concentration was assayed in duplicate) and serial dilution was made from the first row to the last. Microbial suspension of BCG (1173P2) (100 µL), which had been prepared in standard concentration of 0.5 Mcfarland and diluted with 1:10 proportion by the distilled water, was added to all test wells. Plates were then sealed and incubated for 4 days at 37 °C. After that 12 µL Tween 80 10% and 20µL Alamar blue 0.01% (Himedia, India) were added to each test well.The plates were re-incubated at 37 °C.The results were assessed after 24 and 48 h. A blue color was interpreted as no bacterial growth, and color change to pink was scored as bacterial growth. Wells with a well-defined pink color were scored as positive for growth. The MIC (minimal inhibition concentration) was defined as the lowest drug concentration, which
prevented a color change from blue to pink. Ethambutol (Irandaru, Tehran) were used as positive control and DMSO as negative control.

Brine shrimp toxicity study

Brine shrimp lethality bioassay (28-31) was carried out to explore the toxicity of selected compounds with anti-mycobacterial potency. Dried cysts (1 g cyst per liter) of brine shrimp (*Artemia salina*) were hatched in a bottle containing artificial sea water (3.5% (w/v) marine salts/distilled water) at 28–30 °C with strong aeration (flow rate of 7 L/min), under a continuous light regime (1600 lux) for 30-35 h. Consequently, the newly hatched brine shrimp larvae (nauplii) were separated from the remaining cysts and collected with a pipette from the lighted side and concentrated in Petri dishes to be immediately utilized for bioassay. Assays were carried out in 24-well flat test plates (Orange Scientifique, Belgium).

Acetone100% (Merck, Germany) was utilized for the preparation of different concentrations (1000, 100, 10 and 1 μg/mL) of tested compounds, in triplicates. Each well of treated groups exposed with several concentration of acetone dissolved compounds in the basic salt medium (3.5% (w/v) marine salts /distilled water in addition to poly ethylene glycol (PEG) 6000 (Merck, Germany)1.2%, while control groups only received basic salt medium. Gallic acid (Merck, Germany) was utilized as positive control; respectively. Following evaporation of vehicle solvent, entire wells introduced with 10 fresh nauplii and put on a shaker with 40 rpm to be aerated at room temperature. After 24 h, the numbers of survivors (larvae were considered dead if they did not exhibit any internal or external movement during several seconds of observation) were counted by microscope AC 230V, 50 Hz (Sairan, Iran) and recorded to determine the corrected mortality via following formula:

\[
\text{Corrected mortality} (\%) = \left[\frac{\text{Mm}_{ct}}{\text{Mm}_{ct}} - \frac{\text{Mm}_{ct}}{\text{Mm}_{ct}} \right] \times 100
\]

Here:

\[
\text{Mm}_{ct} \text{ (mortality of individuals at time t %)} = \frac{[N_{m_t} \text{ (number of died individuals) / } N_{o} \text{ (initial number of living individuals in every test well at the beginning of the test)}] \times 100}{(\text{Mm}_{ct})_t = \text{calculated Mm}_{ct} \text{ for treated test wells}}
\]

\[
(\text{Mm}_{ct})_c = \text{calculated Mm}_{ct} \text{ for control test wells}
\]

On the subject of calculated corrected mortality, relevant 50% lethality doses (LD50)s with 95% confidence intervals were estimated by GraphPad Prism 5.0 (2007) for each selected anti-mycobacterial compound (30).

Results and Discussion

In order to synthesize fluorene bisamide derivatives, 2-fluoreneamine 1, aromatic aldehydes2, carboxylic acids 3 and cyclohexylisocyanide4 were treated in methanol at room temperature as a modal reaction. After completion of the reaction, the purified products were characterized by IR, 1H, and 13C NMR spectra. For example, the IR spectrum of 5b showed absorptions at 3281(N-H), 2111 (C≡C), and 1677 (C=O) cm\(^{-1}\), indicating the presence of these functional groups in the proposed structure. The 1H NMR spectrum of 5b exhibited a multiplet at δ = 1.17-1.68 ppm for 5CH\(_2\) group of cyclohexyl ring, a singlet for C≡CH group at δ = 2.82 ppm, two other singlets for NH and N-CH at δ = 5.72 and 6.01 ppm, respectively; also a multiplet for three protons of C\(_2\)H and NH-C\(_2\)H at δ = 3.78-3.90, finally a multiplet at δ = 7.06-7.76 ppm for 11 aromatic protons were appeared. The 1H NMR spectra of the related compounds 5 are similar to those of 5b, except for the substitutes, which exhibit characteristic signals with appropriate chemical shifts. The 1H decoupled 13C NMR spectrum of 5b showed 28 resonances.

To explore the scope and limitations of this versatile reaction, we have examined various aromatic aldehydes with 2-fluorenamine, and cyclohexyl isocyanide in the presence of acetylene carboxylic acid or phenyl acetylene carboxylic acid in methanol at room temperature. As indicated Table 1, the reactions proceed efficiently and led to formation of fluorene bisamide derivatives 5a-k and 5l-w in good yields,
Table 1. The structure of fluorene bisamide derivatives and their MIC (µg/mL) against *M. bovis* BCG in micro broth dilution method assay.

MIC (µg/mL)/48(h)	R¹	X	Entry
1.95	H	3-F	5a
3.9	H	3-Cl	5b
3.9	H	3-Br	5c
3.12	H	4-Cl	5d
3.12	H	4-Br	5e
3.9	H	2-NO₂	5f
15.62	H	3-NO₂	5g
2.34	H	4-Me	5h
3.9	H	2-OMe	5i
31.25	H	3-OMe	5j
7.8	H	4-OMe	5k
250	Ph	3-F	5l
125	Ph	3-Cl	5m
125	Ph	3-Br	5n
250	Ph	4-Cl	5o
250	Ph	4-Br	5p
125	Ph	2-NO₂	5q
250	Ph	3-NO₂	5r
250	Ph	4-NO₂	5s
250	Ph	4-Me	5t
125	Ph	2-MeO	5u
125	Ph	3-MeO	5v
250	Ph	4-MeO	5w
0.75/0.75			
6.5/6.5% (v/v)			

Ethambutol

DMSO
respectively. All the synthesized bisamide derivatives were evaluated for anti-mycobacterial activity and the results are summarized in Table 1.

As can be seen from Table 1, in compounds 5, the nature of R' and X and also the location of X functional group on aromatic ring were investigated on Mycobacterium bovis activity. In compounds 5a-c and 5d-e changing of halogen from F to Br in position 3 and 4 has relatively same effect (3.9 and 3.12 μg/mL). In compounds 5f,g in which X is NO2 (very strong electron-withdrawing group), different location has different effect; in this case ortho isomer of these compounds is characterized by higher anti-bacterial activity than meta isomer (3.62 vs 15.62 μg/mL).

About electron-donating substitution (Me or OMe) at positions 2 or 3 or 4, Me in para position relatively has more activity than OMe in different position.

It is important to note that when phenyl acetylene carboxylic acid was used instead of acetylene carboxylic acid in scheme 1 in the same reaction conditions, the obtained products, 5l-w, have poor activity against Mycobacterium bovis in contrast to products 5a-l. The obtained results show substitution on triple bond is important and H more active than Ph on triple bond.

It would be no doubt that investigating cytotoxicity properties of certain drug candidates is one of the key parameters affecting their fate in lead identification and following that further phases during drug discovery procedures. Recently, a number of toxicity tests have been developed in which the response has been demonstrated in invertebrates. The brine shrimp lethality bioassay (28-31) as one of these assays have the virtue of being economical, reproducible, easy to handle, and environmentally relevant deliberated a practical method for preliminary assessment of toxicity. If given factors as temperature, composition and salinity of the medium and the age of the larvae are considered, a fairly satisfactory repeat-ability is attained. Though, the brine shrimp assay is rather inadequate as regards the elucidation of the mechanism of action,(31) it is very practical to assess the toxicity of the natural and synthetic lead compounds. Numerous investigations during recent decades have investigated that the nature of the systems in brine shrimp which respond to drugs appears to be similar to those in mammals that has ended up with proposing this bioassay for screening biological activities.

In current study, the acute toxicity of antimycobacterial compounds, three of them with uppermost anti-mycobacterial potency were tested by means of the A. salina short-term bioassay at Pasteur Institute (Tehran, Iran).

The related LD50s demonstrated based on analytical method non-linear regression (dose response inhabitation). Analyzed data showed selected derivatives exposed 50% lethality to nauplii table 2. in doses between 6.06 to 102.7 μg/mL.

To discover the selectivity of antimycobacterial property for each tested compounds, a selectivity index (SI) was calculated by dividing LD50 to MIC that the range of calculated SIs was from 0.77 to 43.88. There would be no doubt that considering SIs for syntactic compounds may lead to introducing a set of novel anti-mycobacterial candidates with minor side effects for further investigations.
Conclusion

In conclusion, the one-pot procedure for the efficient synthesis of chemical library of fluorene bisamide derivatives via multi-component condensation reaction was carried out. The structures of the products 5a-w were deduced from their IR, 1H NMR, and 13C NMR spectra. Elemental analyses (CHN) for novel compounds (5a, 5d, 5f, 5h, 5k, 5l, 5p, 5s, 5t, 5v, 5w) were done too. All compounds were evaluated for anti-mycobacterial activity. The synthesized compounds exhibited promising anti-tubercular activities against of M. bovis. Among 23 synthesized fluorine bisamide derivatives (5a-w), compound 5a has highest activity against M. bovis, additionally; compound 5k showed greatest potency against sensitive and resistant strains of M. tuberculosi1 (H37Rv, IHMT295-08, HPV115-08 and HPV65-08). Finally, these results make novel fluorene bisamide derivatives, alone or in combination of other agents, interesting molecule for more synthetic, and biological evaluation.

Acknowledgment

We gratefully acknowledge the Pasteur institute of Iran and Ministry of Health and Medical Education in Iran for partial funding of this project as part of grant number 456.

References

(1) Muthukrishnan M, Mujahid M, Yogeeswari P and Sriram D. Syntheses and biological evaluation of new triazole-spirochromone conjugates as inhibitors of Mycobacterium tuberculosis. Tetrahedron Lett. (2011) 52: 2387–9.
(2) Vashishtha VM. WHO global tuberculosis control report: Tuberculosis elimination is a distant dream (2009).
(3) Gutierrez-Lugo MT and Bewley CA. Natural products,
small molecules and genetics in tuberculosis drug development. *J. Med. Chem.* (2008) 51: 2606–12.

(4) Castagnolo D, Rad, M, Dessi F, Manetti F, Saddi M, Meleddu R, De Loga A and Botta M. Synthesis and biological evaluation of new enantioselectively pure azole derivatives as inhibitors of *Mycobacterium tuberculosis*. *Bioorg. Med. Chem. Lett.* (2009) 19: 2203–5.

(5) Argyrou A, Vetting MW, Aladeghami B and Blanchard JS. *Mycobacterium tuberculosis* dihydrofolatereductase is a target for isoniazid. *Nature Struct. Mol. Bio.* (2006) 13: 408–13.

(6) Imaeda T. Deoxyribonucleic acid relatedness among selected strains of *Mycobacterium tuberculosis*, *Mycobacterium bovis*, *Mycobacterium microti*, and *Mycobacterium africanum*. *Int. J. Syst. Bacteriol.* (1985) 35: 147–50.

(7) Mahairas GG, Sabo PJ, Hickey MJ, Singh DC and Stover CKJ. Molecular analysis of genetic differences between *Mycobacterium bovis* BCG and virulent M. bovis. *J. Bacteriol.* (1996) 178: 1274–82.

(8) Agrawal YK, Bhatt HG, Raval HG, Oza PM, Vaidya HB, Manna K and Gogoi P. Emerging trends in tuberculosis therapy. *J. Sci. Indus. Res.* (2007) 66: 191–208.

(9) Nurbo J, Roos AK, Muthas D, Wahlstrom E, Ericsson DJ, Lundstedt T, Unge T and Karlen A. Design, synthesis and evaluation of peptide inhibitors of *Mycobacterium tuberculosis* ribonucleotide reductase. *J. Pept. Sci.* (2007) 13: 822–32.

(10) Nathan C, Gold B, Lin G, Stegman M, de Carvalho LP, Vandal O, Venugopal A and Bryk R. A philosophy of anti-infectives as a guide in the search for new drugs for tuberculosis. *Tuberculosis (Edinb)* (2008) 88: S25–33.

(11) Blumberg HM. American thoracic society/centers for disease Control and prevent/infectious diseases society of america: treatment of tuberculosis. *Am. J. Respir. Crit. Care Med.* (2003) 167: 603–62.

(12) Weber L. The application of multi-component reactions in drug discovery. *Curr. Med. Chem.* (2002) 9: 1241–53.

(13) Akritopoulou-Zanze Iri. Isocyanide-based multicomponent reactions in drug discovery, *Curr. Opin. Chem. Biol.* (2012) 12: 324–31.

(14) Schreiber SL. Target-oriented and diversity-oriented organic synthesis in drug discovery. *Science* (2000) 287: 1964–9.

(15) Domling A. Recent developments in isocyanide based multi-component reactions in applied chemistry. *Chem. Rev.* (2006) 106: 17–89.

(16) Shaabani A, Maleki A, Rezayan AH and Sarvary A. Recent progress of isocyanide-based-multi-component reactions in Iran. *Mol. Divers* (2011) 15: 41–68.

(17) Domling A and Ugi I. Multicomponent reactions with isocyanides. *Angew. Chem. Int. Ed.* (2000) 39: 3168–210.

(18) Nenajdenko VG. Isocyanide chemistry, Chapter 5, *Wiley-VCH, Weinheim* (2012).

(19) Merlet S, Birau M and Wang ZY. Synthesis and characterization of highly fluorescent indenofluorenes. *Org. Lett.* (2002) 4: 2157–61.

(20) Wongsky HU. Metallated molecular materials of fluorine derivatives and their analogues *Coord. Chem. Rev.* (2005) 249: 971–97.

(21) Shen R, Chen L and Huang X. Facile synthesis of polycyclic fluorine derivatives via a palladium-catalyzed coupling, propargyl-allenyl isomerization and schmidt cyclization sequence. *Adv. Synth. Catal.* (2009) 351: 2833–8.

(22) Zeng W, Ballard TE, Tkachenko AG, Burns VA, Feldheim DL and Melander C. Mimicking the biological activity of dibenzo Fluorene natural products with electronically tuned diazofluorene analogs. *Bioorg. Med. Chem. Lett.* (2006) 16: 5148–51.

(23) Shaabani A, Rezayan AH, Kishipour S, Sarvary A and Ng SW. A novel one-pot three-(in situ five-)component condensation reaction: An unexpected approach for the synthesis of tetrahydro-2,4-dioxo-1H-benzo[b][1,5]diazepine-3-yl-2-methylpropanamide derivatives. *Org. Lett.* (2009) 11: 3342–5.

(24) Rezayan AH. Stereoselective synthesis of 3,4-dihydro-7-nitrocoumarins via isocyanide-based multicomponent reaction. *C R Chimie* (2012) 15: 499–503.

(25) Soltani S, Dianat S and Sardari S. Forward modeling of the coumarin antifungals; SPR/SAR based perspective. *Avicenna J. Med. Biotech.* (2009) 1: 95–103.

(26) Rezayan AH, Azerang P, Sardari S and Sarvary A. Synthesis and biological evaluation of coumarin derivatives as inhibitors of *Mycobacterium bovis* (BCG). *Chem. Biol. Drug Des.* (2012) 80: 929–36.

(27) Mehravar M and Sardari S. Screening of antimicrobial membrane-active metabolites of soil microfungi by using chromatic phospholipid/polydiacytelyene vesicles. *J. Mycol. Med.* (2011) 21: 188–97.

(28) Borowitz JL and McLaughlin JL. Evidence for calcium channels in brine shrimp: oiltlazem protects shrimp against cadmium. *Bull. Environ. Contam. Toxicol.* (1992) 48: 435–40.

(29) Hartl M and Humph HU. Toxicity assessment of fumonisins using the brine shrimp (*Artemia salina*) bioassay. *Food Chem. Toxicol.* (2000) 3: 1097–102.

(30) Favilla M, Macchia L, Gallo A and Altomare C. Toxicity assessment of metabolites of fungal biocontrol agents using two different (*Artemia salina* and *Daphnia magna*) invertebrate bioassays. *Food Chem. Toxicol.* (2006) 44: 1922–31.

(31) Ferrão-Filho SA and Kozlowsky-Suzuki B. Cytotoxicity to fish: Bioaccumulation and effects on aquatic animals. *Mar. Drugs* (2011) 9: 2729–72.

This article is available online at http://www.iijpr.ir