Measurements of the center-of-mass energies at BESIII via the di-muon process

M. Ablikim(麦迪娜)1, M. N. Achasov2,3, X. C. Ai(艾小聪)1, O. Albayrak5, M. Albrecht4, D. J. Ambrose4,4, A. Amoroso9,14,19,49,49c, F. F. An(安芬芳)1, Q. An(安琦)46,46, A. Z. Bai(白景芝)1, R. Baldini Ferroli7,20,4, Y. Ban(班勇)31, D. W. Bennett19, J. V. Bennett5, M. Bertani20,4, D. Bettoni21,24, J. M. Bian(边继勇)44, F. Bianchi49,49,49c, E. Boger3,2,4, I. Boyko25, R. A. Briere5, H. Cai(蔡浩)51, X. Cai(蔡曦)1,4, O. Cakir49,49,49c, A. Calcaterra20,4, G. F. Cao(曹国富)1, S. A. Cetin40,b, J. F. Chang(常润华)1, G. Chelkov23,24,25, G. Chen(陈刚)11, H. S. Chen(陈和生)1, J. C. Chen(陈江川)11, M. L. Chen(陈玛丽)1, S. J. Chen(陈申见)29, X. Chen(陈炫)1, A. X. Chen(陈旭龙)26, Y. B. Chen(陈元柏)1, H. P. Cheng(程平和)17, X. K. Chu(楚新庆)31, G. Cibinetto21,24, H. L. Dai(代洪亮)1, J. P. Dai(代建平)34, A. Dbyessi14, D. Dedovich23, Z. Y. Deng(邓子艳)1, A. Denig22, I. Denysenko23, M. Destefanis49,49c, F. De Mori19,49,49c, Y. Ding(丁勇)27, C. Dong(董超)30, J. Dong(董静)1, L. Y. Dong(董照原)1, M. Y. Dong(董明义)1, S. X. Du(杜书先)51, P. F. Du(段鹏飞)1, J. Z. Fan(范荆州)39, J. Fang(方建)1, A. S. Fang(房双世)1, X. Fang(方馨)46,46, Y. Fang(方易)1, L. Faiva49,49c, F. Feldbauer22, G. Felici20,4, C. Q. Feng(封常青)46,46, E. Fioravanti21,24, M. Fritsch1,12, C. D. Fu(傅成栋)1, Q. Gao(高清)1, X. L. Gao(高鹤锋)46,46, A. Y. Gao(高旭)1, Y. Gao(高原)39, Z. Gao(高剑)46,46, I. Garzia21,4, K. Goetzten10, W. X. Gong(龚文斌)1, W. Gradl22, M. Greco49,49,49c, M. H. Gu(顾曼冬)1, Y. T. Gu(顾顺风)12, Y. H. Guan(管慧)1, A. Q. Gu(郭爱强)1, L. B. Guo(郭立波)28, Y. Guo(郭颖)1, Y. P. Guo(郭玉萍)22, Z. Haddadi43, A. Hafner42, S. Han(韩伟)31, X. Q. Hao(郝喜庆)15, F. A. Harris42, K. L. He(何康林)1, T. Held4, Y. K. Heng(衡山)1, Z. L. Hou(侯治龙)1, C. H. Hu(胡程)28, H. M. Hu(胡晓明)1, J. F. Hu(胡绪辉)49,49c, T. Hu(胡涛)1, Y. Hu(胡誉)1, G. M. Huang(黄光明)6, S. Huang(黄春曦)46,16, J. S. Huang(黄金兴)15, X. T. Huang(黄性涛)33, Y. Huang(黄勇)29, T. Hussain48, Q. J. Ji(积全)1, Q. P. Ji(积思平)30, X. B. Ji(李晓斌)1, X. L. Ji(李瑞)1, L. W. Jiang(姜爽)21, X. S. Jiang(江晓山)1, A. Y. Jiang(蒋晓勇)30, J. B. Jiao(焦健斌)31, Z. J. Jiao(焦建)17, D. P. Jin(金大鹏)1, S. Jin(金山)1, T. Johansson46, A. Julini44, N. Kalantar-Nayestanaki25, X. L. Kang(康晓曦)1, X. S. Kang(康晓坤)30, M. Kavatsys25, B. C. Ke5, P. Kiese22, R. Kient14, B. Kloss42, O. B. Kolecu40,40, B. Kofp6, M. Kornicer12, W. Kühn24, A. Kupsc30, J. S. Lange24, M. Lara4, P. Larin14, C. Leng49c, C. Li(李)50, C. Li(李)50, Cheng Li(李)46,46, D. M. Li(李德民)53, F. Li(李飞)1, A. Y. Li(李艳)31, G. Li(李刚)1, H. B. Li(李海波)1, J. C. Li(李家才)1, Jin Li(李健)32, K. Li(李康)13, K. Li(李科)33, Lei Li(李雷)3, P. R. Li(李培荣)11, T. Li(李鹏)33, W. D. Li(李卫东)1, W. G. Li(李卫国)1, X. L. Li(李晓玲)33, X. M. Li(李小梅)12, N. X. Li(李学涛)30, Z. B. Li(李志兵)58, H. Liang(梁晃)16, A. Y. Liang(梁勇飞)36, Y. T. Liang(梁羽飞)42, G. R. Liao(廖广培)11, D. X. Lin(林)46,46, B. J. Liu(刘海江)1, C. X. Liu(刘春秀)1, D. Liu(刘栋)16, A. F. H. Liu(刘福虎)35, Fang Liu(刘芳)1, Feng Liu(刘峰)16, H. B. Liu(刘宏邦)12, H. H. Liu(刘欢欢)1, H. H. Liu(刘慧)16, M. H. Liu(刘怀民)5, J. Liu(刘杰)3, J. B. Liu(刘建北)46,46, J. P. Liu(刘建平)51, J. Y. Liu(刘剑锋)39, K. Liu(刘凯)39, K. Y. Liu(刘魁)27, L. D. Liu(刘兰鹏)31, P. L. Liu(刘鹏)31, Q. Liu(刘倩)11, S. B. Liu(刘树彬)46,46, X. Liu(刘翔)26, Y. B. Liu(刘玉峰)30, Z. A. Liu(刘振安)1, Qiu Liang(刘智清)22, H. Lohrengel25, C. S. Loo(楼仲)1, A. H. H. J. Lu(吕金海)17, G. J. Lu(吕光)5, Y. Lu(卢宇)1, Y. P. Lu(卢俊鹏)1, C. L. Luo(罗成)28, M. X. Luo(罗民兴)52, T. Luo62, X. L. Luo(罗小兰)1, X. R. Lu(吕晓芬)41, C. F. Ma(马风才)27, H. M. Ma(马海龙)1, L. L. Ma(马连强)33, Q. M. Ma(马秋梅)1, T. Ma(马天)1, X. N. Ma(马旭)

Received 11 November 2015, Revised 4 February 2016

* Supported by National Key Basic Research Program of China (2015CB856700), National Natural Science Foundation of China (11125501, 11325014, 11335008, 11425524, Y61137005C), Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program, CAS Center for Excellence in Particle Physics (CCEPP), Collaborative Innovation Center for Particles and Interactions (CICIP), Joint Large-Scale Scientific Facility Funds of NSFC and CAS (11179007, U1233201, U1332201), CAS (KJCX2-YW-29, KJCX2-YW-N45), 100 Talents Program of CAS, National 1000 Talents Program of China, INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology, German Research Foundation (DFG) (Collaborative Research Center CRC-1044), Istituto Nazionale di Fisica Nucleare, Italy, Ministry of Development of Turkey (DPT2006K-120470), Russian Foundation for Basic Research (14-07-91152), Swedish Research Council, U. S. Department of Energy (DE-FG02-04ER41291, DE-FG02-05ER41374, DE-FG02-04ER40823, DESC0001118), U.S. National Science Foundation, University of Groningen (RuG) and Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt, WCU Program of National Research Foundation of Korea (R33-2008-000-10155-0).

[c] Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Article funded by SCOAP3 and published under licence by Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd.
Abstract: From 2011 to 2014, the BESIII experiment collected about 5 fb$^{-1}$ data at center-of-mass energies around 4 GeV for the studies of the charmonium-like and higher excited charmonium states. By analyzing the di-muon process $e^+e^- \rightarrow \gamma_{ISR/FSR} \mu^+\mu^-$, the center-of-mass energies of the data samples are measured with a precision of 0.8 MeV. The center-of-mass energy is found to be stable for most of the time during data taking.

Keywords: center-of-mass energy, di-muon process, charmoniumlike states

PACS: 06.30.-k, 13.66.Jn DOI: 10.1088/1674-1137/40/6/063001

1 Introduction

The BESIII detector operating at the BEPCII accelerator is designed to study physics in the τ-charm energy region (2–4.6 GeV) [1]. From 2011 to 2014, the BESIII experiment accumulated 5 fb$^{-1}$ of e^+e^- collision data at center-of-mass energies between 3.810 and 4.600 GeV to study the charmonium-like and higher excited charmonium states [2]. In the past, BESIII has taken large data samples at the J/ψ, $\psi(3686)$ and $\psi(3770)$ peaks. The corresponding beam energy was fine tuned by a J/ψ or $\psi(3686)$ mass scan before the data-taking. However, around 4 GeV, there is no narrow resonance in e^+e^- annihilation, and the $\psi(3686)$ peak is too far away to be used to calibrate the beam energy. The Beam Energy Measurement System (BEMS), which was installed in...
2008, is designed to measure the beam energy with a relative systematic uncertainty of 2×10^{-5} [3] based on the energies of Compton back-scattered photons. The performance of BEMS is verified through measurement of the $\psi(3686)$ mass, but 4 GeV is beyond the working range of BEMS. To precisely measure the masses of the newly observed Z_c [4, 5] particles, especially for those which are observed by a partial reconstruction method [6, 7], a precise knowledge of the center-of-mass energy (E_{cm}) is crucial.

In this paper, we develop a method to measure the E_{cm} using the di-muon process

$$e^+e^- \rightarrow (\gamma_{ISR/FSR}) \mu^+\mu^-,$$

where $\gamma_{ISR/FSR}$ represents possible initial state radiative (ISR) or final state radiative (FSR) photons. The E_{cm}
can be written as

$$E_{cm} = M(\mu^+\mu^-) + \Delta M_{ISR/FSR},$$

where $M(\mu^+\mu^-)$ is the invariant mass of $\mu^+\mu^-$, and $\Delta M_{ISR/FSR}$ is the mass shift due to ISR/FSR radiation. In the analysis, $\Delta M_{ISR/FSR}$ is estimated from a Monte Carlo (MC) simulation of the di-muon process by turning the ISR/FSR on or off, where the ISR/FSR is simulated by BABAYAGA3.5 [8]. To make sure the measured invariant mass $M(\mu^+\mu^-)$ is unbiased, we validate the reconstructed momentum of μ^+/μ^- with the J/ψ signal from the process $e^+e^- \rightarrow \gamma_{ISR} J/\psi$ with $J/\psi \rightarrow \mu^+\mu^- (\gamma_{FSR})$ in the same data samples.

2 The BESIII detector and data sets

The BESIII detector is described in detail in Ref. [9]. The detector is cylindrically symmetric and covers 93% of the solid angle around the collision point. The detector consists of four main components: (a) A 43-layer main drift chamber (MDC) provides momentum measurement for charged tracks with a momentum resolution of 0.5% at 1 GeV/c in a 1 T magnetic field. (b) A time-of-flight system (TOF) composed of plastic scintillators has a time resolution of 80 ps (110 ps) in the barrel (endcaps). (c) An electromagnetic calorimeter (EMC) made of 6240 CsI(Tl) crystals provides an energy resolution for photons of 2.5% (5%) at 1 GeV in the barrel (endcaps). (d) A muon counter (MUC), consisting of 9 (8) layers of resistive plate chambers in the barrel (endcaps) within the return yoke of the magnet, provides 2 cm position resolution. The electron and positron beams collide with an angle of 22 mrad at the interaction point (IP) in order to separate the e^+ and e^- beams after the collision. A GEANT4 [10] based detector simulation package is developed to model the detector response for MC events.

In total, there are 25 data samples taken at different center-of-mass energies or during different periods, as listed in Table 1. The data sets are listed chronologically, and the ID number is the requested E_{cm}. The offline luminosity is measured through large-angle Bhabha scattering events with a precision of 1% [11]. In this paper, we measure E_{cm} for all the 25 data samples and examine its stability during each data taking period.

3 Muon momentum validation with J/ψ signal

The measurement of high momentum muons is validated with $J/\psi \rightarrow \mu^+\mu^-$ candidates selected via the process $e^+e^- \rightarrow \gamma_{ISR} J/\psi$. Events must have only two good oppositely charged tracks. Each good charged track must be consistent with originating from the IP, by requiring the impact parameter to be within 1 cm in the radial direction ($V_{xy} < 1$ cm) and 10 cm in the z direction ($|V_z| < 10$ cm) from the run-dependent IP, and within the polar angle region $|\cos\theta| < 0.8$ (i.e. accepting only tracks in the barrel region). The energy deposition in the EMC (E) for each charged track is required to be less than 0.4 GeV to suppress background from radiative Bhabha events. A further requirement on the opening angle between the two tracks, $\cos\theta_{\mu^+\mu^-} > -0.98$, is used to remove cosmic rays. The background remaining after the above selection comes from the radiative di-muon process, which has exactly the same final state and cannot be completely removed. The radiative di-muon events show a smooth distribution in $M(\mu^+\mu^-)$. With the above selection criteria imposed, the distribution of $M(\mu^+\mu^-)$ of each sample, having a tail on the low mass side due to final state radiation (FSR) effects, is fitted with an asymmetric function of a crystal-ball function [12] for the J/ψ signal and a linear function to model the background. Figure 1 shows the fit result for data sample 4600 as an example. In order to reduce the fluctuation of $M(\mu^+\mu^-)$, adjacent data samples with small statistics are combined. Due to FSR, $J/\psi \rightarrow \mu^+\mu^- \gamma_{FSR}$, the measured $M_{obs}(\mu^+\mu^-)$ is slightly lower than the nominal J/ψ mass [13]. The mass shift due to the FSR photon(s) ΔM_{FSR} is estimated by simulated samples of the process $e^+e^- \rightarrow \gamma_{ISR} J/\psi$ with 50,000 events each, generated at different energies using the generator PHOTOS [15] with FSR turned on and off. The mass shift ΔM_{FSR} at each E_{cm} is obtained as the difference in $M_{obs}(\mu^+\mu^-)$ between the MC samples with FSR turned on and off. These simulation studies validate that ΔM_{FSR} is independent of E_{cm}. A weighted average, $\Delta M_{FSR} = (0.59 \pm 0.04)$ MeV/c^2, is obtained by fitting the ΔM_{FSR} versus E_{cm}. The measured mass corrected by ΔM_{FSR}, $M^{cor}(\mu^+\mu^-)$, is plotted in Fig. 2 and listed in Table 1 (column 4). The values of $M^{cor}(\mu^+\mu^-)$ for the different data samples are consistent within errors. By fitting the $M^{cor}(\mu^+\mu^-)$ of all data samples with
a first-order polynomial, the average \(\overline{M}^{\text{cor}}(\mu^+\mu^-) \) is obtained to be \(\overline{M}^{\text{cor}}(\mu^+\mu^-) = 3096.79 \pm 0.08 \text{ MeV}/c^2 \), which agrees with the nominal \(J/\psi \) mass within errors. The goodness of the fit is \(\chi^2/\text{ndf} = 11.68/11 = 1.06 \). The small difference is considered as a systematic uncertainty in Section 7.

Table 1. Summary of the data sets, including ID, run number, offline luminosity, the measured \(M^{\text{cor}}(J/\psi) \), \(M^{\text{obs}}(\mu^+\mu^-) \), and \(E\text{cms} \). The first uncertainty is statistical, and the second is systematic. Superscripts indicate separate samples acquired at the same \(E\text{cms} \). The "-" indicates samples which are combined with the previous one(s) to measure \(M^{\text{cor}}(\mu^+\mu^-) \).

ID	run number	offline lum./pb\(^{-1}\)	\(M^{\text{cor}}(J/\psi) \)/(MeV/c\(^2\))	\(M^{\text{obs}}(\mu^+\mu^-) \)/(MeV/c\(^2\))	\(E\text{cms}/\text{MeV} \)	
4009	23463 to 23505	481.96 \pm 0.01	3097.00 \pm 0.15	4006.90 \pm 0.15	4009.10 \pm 0.15 \pm 0.59	
4010	23510 to 24141	–	–	–	4004.26 \pm 0.05	4007.46 \pm 0.05 \pm 0.66
4260	29677 to 29805	523.74 \pm 0.10	3096.95 \pm 0.26	(4367.37 \pm 3.75 \times 10^{-3} \times N_{\text{run}}) \pm 0.12	10^{-3} \times N_{\text{run}} \pm 0.12	
4260	29822 to 30367	–	–	–	4254.42 \pm 0.06 \pm 0.06	
4190	30372 to 30437	43.09 \pm 0.03	3097.53 \pm 0.51	4185.12 \pm 0.15	4188.59 \pm 0.15 \pm 0.68	
4230	30438 to 30491	44.40 \pm 0.03	–	4223.83 \pm 0.18	4227.36 \pm 0.18 \pm 0.63	
4310	30492 to 30557	44.90 \pm 0.03	–	4304.22 \pm 0.17	4307.89 \pm 0.17 \pm 0.63	
4360	30616 to 31279	539.84 \pm 0.10	3096.42 \pm 0.28	4354.15 \pm 0.05	4358.26 \pm 0.05 \pm 0.62	
4390	31281 to 31325	55.18 \pm 0.04	3096.39 \pm 0.62	4385.60 \pm 0.17	4387.40 \pm 0.17 \pm 0.65	
4420	31327 to 31390	44.67 \pm 0.03	–	4413.10 \pm 0.20	4416.95 \pm 0.20 \pm 0.63	
4260	31561 to 31981	50.33 \pm 0.08	3096.76 \pm 0.34	4253.85 \pm 0.07	4257.43 \pm 0.07 \pm 0.66	
4220	31983 to 32045	54.55 \pm 0.03	3096.88 \pm 0.43	4204.23 \pm 0.14	4207.73 \pm 0.14 \pm 0.61	
4245	32046 to 32140	54.13 \pm 0.03	–	4213.61 \pm 0.14	4217.13 \pm 0.14 \pm 0.67	
4230	32239 to 32489	1047.34 \pm 0.14	3096.58 \pm 0.18	(4316.81 \pm 2.87 \times 10^{-3} \times N_{\text{run}}) \pm 0.05	4320.34 \pm 2.87 \times 10^{-3} \times N_{\text{run}} \pm 0.05 \pm 0.60	
4230	32850 to 33484	–	–	4222.01 \pm 0.05	4225.54 \pm 0.05 \pm 0.65	
3810	33490 to 33556	50.54 \pm 0.03	3097.38 \pm 0.37	3804.82 \pm 0.10	3807.65 \pm 0.10 \pm 0.58	
3900	33570 to 33657	52.61 \pm 0.03	–	3893.26 \pm 0.11	3896.24 \pm 0.11 \pm 0.72	
4090	33659 to 33719	52.63 \pm 0.03	–	4082.15 \pm 0.14	4085.45 \pm 0.14 \pm 0.66	
4600	35227 to 36213	566.93 \pm 0.11	3096.54 \pm 0.33	4595.38 \pm 0.07	4599.53 \pm 0.07 \pm 0.74	
4470	36245 to 36393	1099.94 \pm 0.04	3096.69 \pm 0.42	4463.13 \pm 0.11	4467.06 \pm 0.11 \pm 0.73	
4530	36398 to 36588	1098.98 \pm 0.04	–	4523.10 \pm 0.11	4527.14 \pm 0.11 \pm 0.72	
4575	36603 to 36699	47.67 \pm 0.03	–	4570.39 \pm 0.18	4574.50 \pm 0.18 \pm 0.70	
4420	36773 to 37854	–	–	4411.99 \pm 0.04	4415.84 \pm 0.04 \pm 0.62	
4420	37855 to 38140	1028.89 \pm 0.13	–	4411.21 \pm 0.07	4414.06 \pm 0.07 \pm 0.72	

Fig. 1. (color online) Fit to the \(M^{\text{obs}}(\mu^+\mu^-) \) distribution in \(e^+e^- \to \gamma\text{FSR}\, J/\psi \) events for one data sample. Black dots with error bars are data, the blue curve shows the fit result, the red dashed-dotted curve is for signal, and the green dashed line is for background.

Fig. 2. (color online) Measured \(J/\psi \) mass after the FSR correction, \(M^{\text{cor}}(\mu^+\mu^-) \), for data taken at different energies, in which the data samples with small statistics are merged (described in text). The red solid line is the nominal \(J/\psi \) mass for reference.
4 The mass shift $\Delta M_{\text{ISR/FSR}}$

The E_{cms} of the initial e^+e^- pair is measured via the di-muon process $e^+e^- \rightarrow \gamma_{\text{ISR/FSR}} \mu^+\mu^-$. However, due to the emission of radiative photons, the invariant mass of the $\mu^+\mu^-$ pair is less than the E_{cms} of the initial e^+e^- pair by $\Delta M_{\text{ISR/FSR}}$. In general, the mass shift due to FSR is small, about 0.6 MeV/c^2 at 3.097 GeV, and the mass shift due to ISR is 2–3 MeV/c^2, which has been well studied theoretically [14]. In the analysis, the $\Delta M_{\text{ISR/FSR}}$ is estimated with MC simulation using BABAYAGA3.5 [8]. We generate 50000 di-muon MC events for each sample with FSR turned on and off, and take the difference in $M(\mu^+\mu^-)$ as the mass shift $\Delta M_{\text{ISR/FSR}}$ caused by ISR and FSR. In order to avoid possible bias, the same event selection criteria for the di-muon process applied for data (as described in Section 5) are imposed to the MC samples.

The distributions of $M(\mu^+\mu^-)$ with ISR/FSR turned on and off are fitted with a Gaussian function in a range around the peak (same method with data in section 5). The difference in peak positions (the mass shift $\Delta M_{\text{ISR/FSR}}$) versus E_{cms} is seen to increase with E_{cms}, as shown in Fig. 3. The $\Delta M_{\text{ISR/FSR}}$ is fitted with a linear function. The fit result is $\Delta M_{\text{ISR/FSR}} = (-3.55 \pm 1.11) + (1.67 \pm 0.28) \times 10^{-3} \times E_{\text{cms}}$ MeV with statistical uncertainty only. The goodness of the fit is $\chi^2/n.d.f = 6.3/13$. The resulting E_{cms}-dependent $\Delta M_{\text{ISR/FSR}}$ will be used to correct the measured $M^{\text{obs}}(\mu^+\mu^-)$ for the effects of ISR and FSR.

After applying the above selection, the distribution of $M^{\text{obs}}(\mu^+\mu^-)$ for selected di-muon events has a tail in the low mass side which cannot be described by a single Gaussian. Since only the peak position of the distribution will be used, we estimate it by fitting with a Gaussian function in the range of $(-1\sigma, 2\sigma)$ around the peak, where σ is the standard deviation of the Gaussian. To examine the stability of E_{cms} over time for each data sample, the fit procedure is performed for each run of the data samples, where a run normally corresponds to one hour of data taking. The fit result for one run of the 4600 data sample is shown in Fig. 4. The measured $\mu^+\mu^-$ masses versus the run number for the samples 40901,2, 42601,2, 4360, 42302,3, 4600, and 44202,3 are plotted in Fig. 5. For the sample 42603 (43203), the measured $M^{\text{obs}}(\mu^+\mu^-)$ changes slowly and is fitted with a linear function. The fit gives $(4367.37 \pm 53.53) + (-3.75 \pm 1.80) \times 10^{-3} \times N_{\text{run}}$ (4316.81 \pm 7.84) + (-2.87 \pm 0.24) \times 10^{-3} \times N_{\text{run}}$ in unit of MeV/c^2, where N_{run} is the run number. Since the uncertainty is N_{run} dependent, we take the largest value from error propagation as the corresponding statistical uncertainty. For other data samples, $M^{\text{obs}}(\mu^+\mu^-)$ remains

5 The measurement of E_{cms}

To select the di-muon process $e^+e^- \rightarrow (\gamma_{\text{ISR/FSR}}) \mu^+\mu^-$, the requirement for charged tracks is the same as the $\gamma_{\text{ISR}}, J/\psi$ selection. To achieve the best precision, only events with both tracks in the barrel region (i.e., in the polar angle region $0 < \theta_{\mu} < 179.6^\circ$) are accepted. A requirement on the opening angle between the two tracks of $178.60^\circ < \theta_{\mu} < 179.64^\circ$ is applied to suppress cosmic ray and di-muon events with high-energy radiative photons. To further remove cosmic ray events, the TOF timing difference between the two tracks is required to be $|\Delta t| < 4$ ns. The background contribution following the above selection criteria is less than 0.001% compared to signal and is therefore neglected in the following.
stable, and the average value is used to calculate E_{cmsg}. The samples 4009\(^1\) (4420\(^2\)) and 4009\(^2\) (4420\(^3\)) are separated because they show a sudden drop in the average.

Table 2. Weighted average E_{cmsg} for all data samples. The first uncertainty is statistical, and the second is systematic.

ID	weighted average E_{cmsg}/MeV
3810	3807.65±0.10±0.58
3900	3896.24±0.11±0.72
4009	4007.62±0.05±0.66
4090	4085.45±0.14±0.66
4190	4188.59±0.15±0.68
4210	4207.73±0.14±0.61
4220	4217.13±0.14±0.67
4230	4226.26±0.04±0.65
4245	4241.66±0.12±0.73
4260	4257.97±0.04±0.66
4310	4307.89±0.17±0.63
4360	4358.26±0.05±0.62
4390	4387.40±0.17±0.65
4420	4415.58±0.04±0.72
4470	4467.06±0.11±0.73
4530	4527.14±0.11±0.72
4575	4574.50±0.18±0.70
4600	4599.53±0.07±0.74

E_{cmsg} is finally obtained by adding the energy-dependent mass shift $\Delta M_{\text{ISR/FSR}}$ due to ISR/FSR obtained in Section 4 to the measured $M_{\text{obs}}(\mu^+\mu^-)$. The measured E_{cmsg} is listed in Table 1 (column 6); the systematic uncertainty will be discussed in Section 7.

Each of the data sets 4009, 4230, 4260, and 4420 is split into several sub-samples. We calculate the luminosity-weighted average E_{cmsg} for each, and the largest systematic uncertainty of the sub-samples is taken as the systematic uncertainty. In Table 2, we summarize the weighted average E_{cmsg} for all data samples.

6 Cross check

The processes of $e^+e^- \rightarrow \pi^+\pi^-K^+K^-$ and $e^+e^- \rightarrow \pi^+\pi^-pp$ are used to check the measurement of E_{cmsg}. Similar to the di-muon process $e^+e^- \rightarrow \gamma_{\text{ISR/FSR}}\mu^+\mu^-$, the E_{cmsg} of the initial e^+e^- system is estimated by the corrected invariant masses of the final state particles $M_{\text{cor}}^{\text{e}}(\pi^+\pi^-K^+K^-)$ and $M_{\text{cor}}^{\text{e}}(\pi^+\pi^-pp)$. The measurement of the low momentum charged tracks is validated using the decay channels $D^0 \rightarrow K^-\pi^+$ and $\bar{D}^0 \rightarrow K^+\pi^-$. The measured mass, $M_{\text{obs}}^{\text{e}}(K^-\pi^+/K^+\pi^-)$ = 1864.00±0.70 MeV/c^2 (statistical uncertainty only) is consistent with the nominal D^0/\bar{D}^0 mass [13] with a deviation of 0.84±0.71 MeV/c^2. Both the corrected $M_{\text{cor}}^{\text{e}}(\pi^+\pi^-K^+K^-)$ and $M_{\text{cor}}^{\text{e}}(\pi^+\pi^-pp)$ are found to be consistent with E_{cmsg} obtained using the di-muon process, with the largest deviation of 0.53±0.75 MeV found in sample 4420.
7 Systematic uncertainties

The systematic uncertainty in $E_{	ext{cm}}$ in this analysis is estimated by considering the uncertainties from the momentum measurement of the $\mu^+\mu^-$, the estimation of the mass shift $\Delta M_{\text{ISR/FSR}}$ due to ISR/FSR, the generator, and the corresponding fit procedure.

We use the J/ψ invariant mass via the process $J/\psi \rightarrow \mu^+\mu^-$ to check the momentum reconstruction. The measured J/ψ mass corrected for FSR effects at each energy, $M^{\text{corr}}(J/\psi)$, is close to the nominal J/ψ mass. To be conservative, we use a first-order polynomial to fit the $M^{\text{corr}}(J/\psi)$ versus E_{cm} distribution, and find the largest difference in the J/ψ mass between the fit result and the nominal value to be $0.34 \text{ MeV}/c^2$. We take $0.34 \over 3096.92 = 0.011\%$ as the systematic uncertainty due to the momentum measurement.

The mass shift $\Delta M_{\text{ISR/FSR}}$ due to ISR/FSR is E_{cm} dependent, and is obtained from MC samples with 50,000 generated events each. The standard deviation of the distribution of $\Delta M_{\text{ISR/FSR}}$ versus E_{cm} is given by

$$\sigma = \sqrt{\frac{\sum (\Delta M_{\text{ISR/FSR}} - \overline{\Delta M_{\text{ISR/FSR}}})^2}{N - 1}} = 0.37 \text{ MeV}/c^2,$$

(3)

where $\overline{\Delta M_{\text{ISR/FSR}}}$ is the value from the fit (Fig. 3), and N is the number of points in Fig. 3. A value of $0.37 \text{ MeV}/c^2$ is taken as systematic uncertainty due to the ISR/FSR correction.

Additionally, we use two different generators (BABAYAGA3.5 and BABAYAGA@NLO) to estimate the mass shift $\Delta M_{\text{ISR/FSR}}$. The averaged difference in $\Delta M_{\text{ISR/FSR}}$ from the two generators is $0.036 \pm 0.067 \text{ MeV}/c^2$, which reflects the contribution to the systematic uncertainty of the ISR/FSR correction from the generator; it is negligibly small.

$M^{\text{obs}}(\mu^+\mu^-)$ is measured run-by-run and is found to be stable during data-taking for most samples. For the runs in each sample (except for samples 42302 and 42603, which are described by a first-order polynomial), the average E_{cm} is provided to reduce the statistical fluctuation. If the energy shifts gradually during the data-taking, the simple average value will cause a systematic uncertainty. To estimate this systematic error for each sample, we fit the distribution of $M^{\text{obs}}(\mu^+\mu^-)$ versus run-number by a first-order polynomial and take the largest difference between the fitting result and the average value, less than $0.25 \text{ MeV}/c^2$ on average, as the systematic uncertainty.

The uncertainties from other sources, such as background and event selection, are negligible. Assuming all the sources of systematic uncertainty are independent, the total systematic uncertainty is obtained by adding all items in quadrature, giving the values listed in Table 1 (column 6). The uncertainty is smaller than 0.8 MeV for all the data samples.

8 Summary

The center-of-mass energies of the data taken from 2011 to 2014 for the studies of the charmonium-like and higher excited charmonium states are measured with the di-muon process $e^+e^- \rightarrow (\gamma_{\text{ISR/FSR}})\mu^+\mu^-$. The corresponding statistical uncertainty is very small, and the systematic uncertainty is found to be less than 0.8 MeV. The measured E_{cm} is validated by the processes $e^+e^- \rightarrow \pi^+\pi^-K^+K^-$ and $e^+e^- \rightarrow \pi^+\pi^-p\bar{p}$. The stability of E_{cm} over time for the data samples is examined. For samples 4009, 4230, 4260, 4420, we also give the luminosity-weighted average E_{cm}. The results are essential for the discovery of new states and investigation of the transition of charmonium and charmonium-like states [4–7].

The BESIII collaboration thanks the staff of BEPCII and the IHEP computing center for their strong support.

References

1 D. M. Asner et al, Int. J. Mod. Phys. A, 24: 499 (2009)
2 N. Brambilla et al, Eur. Phys. J. C, 71: 1534 (2011)
3 E. V. Abakumova et al, Nucl. Instrum. Methods A, 659: 21 (2011)
4 M. Ablikim et al (BESIII Collaboration), Phys. Rev. Lett., 110: 252001 (2013)
5 M. Ablikim et al (BESIII Collaboration), Phys. Rev. Lett., 111: 242001 (2014)
6 M. Ablikim et al (BESIII Collaboration), Phys. Rev. Lett., 112: 022001 (2014)
7 M. Ablikim et al (BESIII Collaboration), Phys. Rev. Lett., 112: 132001 (2014)
8 G. Balossini, C. M. Carloni Calame, G. Montagna et al, Nucl. Phys. B, 758: 227 (2006)
9 M. Ablikim et al (BESIII Collaboration), Nucl. Instrum. Methods A, 614: 345 (2010)
10 S. Agostinelli et al (GEANT4 Collaboration), Nucl. Instrum. Methods A, 506: 250 (2003)
11 M. Ablikim et al (BESIII Collaboration), Chin. Phys. C, 39: 093001 (2015)
12 T. Skwarnicki et al, Report No. DESY F31-86-02 (1986)
13 K. A. Olive et al (Particle Data Group), Chin. Phys. C, 38: 090001 (2014)
14 E. A. Kuraev and V. S. Fadin, Yad. Fiz. 41: 773 (1985) (Sov. J. Nucl. Phys., 41: 466 (1985))
15 E. Barberio and Z. Was, Comput. Phys. Commun., 79: 291 (1994)