A Survey on Usage of Mobile Health Apps among Medical Undergraduates

Gajendra Singh* and Shravya Alva

1Public Health Specialist, Indian Institute of Health Management Research, Jaipur, India
2Department of Community Medicine, Rajarajeshwari Medical College and Hospital, Bangalore, India

Abstract

Introduction: The widespread adoption and use of mobile technologies is opening new and innovative ways to improve health and healthcare delivery using various health apps. The Health Apps could be beneficial and effective in planning, monitoring and achieving personal health goals.

Objective: To explore the awareness, attitude, and trend among medical students of Rajarajeshwari Medical College and Hospital, Bangalore, Karnataka, India.

Methodology: The cross-sectional study was conducted among all the 2nd and 3rd year medical students of Rajarajeshwari Medical College and Hospital, Bangalore, Karnataka, India.

Results: Out of 140 students, who were studied; 41.4% were males and 58.6% were females. Out of 140 students, 127 (91) % were aware of Health apps. 75 (59%) of the students were using Health apps on their smart phones of which majority were females (56%). Out of various health apps, Samsung Health, Fit bit and healthy me were common Apps used. 58.7% users are motivated of being fit as main reason while 76.9% non-users feel that either no need of using these Apps or they just don’t trust these Apps. Around 80% students are using the Apps from within last 12 months. Almost every 3rd student is using the Apps throughout the day.

Conclusion: The present study reveals that many students were aware of the apps and using it regularly to track their physical activity and calorie intake. It also motivates them to maintain a healthy lifestyle. Users are taking these Apps quiet seriously and update the credentials regularly so that output can be appropriately tracked. Accordingly, they are not only finding the tips and suggestions useful but also using these Apps in different ways like tracking calories, weight and monitoring sleep quality. Also, they are reviewing the data on monthly/ weekly basis to change the fitness activities or food intake.

Keywords: Awareness; Bangalore; Health apps; Medical students

Introduction

Over the last two decades, Smartphone have been evolving rapidly in functionality and propagation. The Smartphone has gained increasing importance in our everyday life. Due to their functionality and potential, Smartphone are gaining importance in healthcare and attract the attention of researchers and developers of healthcare related apps. Recent research has majorly focused on reviewing, testing and developing Smartphone apps for topics such as physical activity tracking, patient monitoring, diagnosis and measurement [1-4].

Smartphone combine a mobile phone with other features of personal digital assistance such as Internet browsing, email access, global positioning system navigation, touch screen, motion sensor, wireless Internet for frequent interface/fourth generation (mobile telecommunications technology) connectivity, desktop synchronization, voice recognition, high-quality camera, large displays, as well as third party applications, commonly referred to as “apps” [5]. These functions turn the smart phone into a portable computer. They have great potential for medical education, as they allow health care providers and students to access resources efficiently at the right time at the point-of-care to support better decision making in patient care [6-10]. Faster processors, improved memory, and long-life batteries in concert with highly efficient operating systems capable of advanced functions have paved the way for apps that are beneficial for both personal and work environments.

A mobile application is a type of application software designed to run on a mobile device like a Smartphone or a tablet (Tables 1 and 2). Smartphone usage has spread too many settings including that of healthcare with numerous potentials and real-life benefits [11]. The number of college students using their cell phones during class has increased over the last few years [12].

Medical Applications, which can be easily downloaded onto mobiles, have an increased popularity among medical students and young clinicians [13]. Studies report that over 85% of health professionals and medical students use a Smartphone, and 30-50% use medical applications for learning and information purposes. The use of mobile technology can significantly enhance blended learning but can have a major role in supporting on-campus teaching.

Smartphone have been used in educational activities to access course content, acquire information related to student’s performance, and to encourage discussion and sharing between students and...
teachers. It is therefore apparent that mobile devices, such as Smartphone can have a significant contribution to modern health care education since these devices might offer possibilities to enhanced teaching and learning [14].

A literature review indicated that there is a lack of research regarding the use of smart-phones Medical Apps among medical students and their perception of the impact of Medical Apps on their health in India. Therefore, the objectives in planning this study were to explore the awareness, attitude, and trend among medical students of Rajarajeshwari Medical College and Hospital, Bangalore, Karnataka, India.

Methodology

Descriptive study was conducted at Rajarajeshwari Medical College and Hospital, Bangalore in month of Sep 2018. All second and third year medical undergraduate students who were willing to participate and present on the day of study were included. Permission for carrying out the study and Institutional ethical clearance was obtained. Written Informed consent was taken from the students and the information was collected by using a self-administered questionnaire to students.

Out of total 240 students (180 and 60 respectively in second and third year), only 140 students (110 and 30 respectively in second and third year) participated in the study and completed the questionnaire and rest were not willing to take part even after 4 attempts being made. Data was entered and analyzed through Microsoft excel work sheet.

Results

In the present survey, out of 240 students, only140 participants returned the filled questionnaire, giving a response rate of (58%). 58 (41.4 %) were males and 82 (58.6%) were females and the mean age of the participants was 20.2 years. Mean Height was 165.7 cm, Mean Weight was 65.1 kg and Mean BMI was 23.7 which are in normal limits.

As shown in table 3, about 90.7% (127) of the participants were aware of different Health Apps for smart devices and considerably good number of people 59.1% (75) had installed different medical apps on their smart devices and is using different Apps.

Table 4 tells that out of 127 people who are aware of Health Apps, 88 (69.3%) people believe that these Apps are useful. It is interesting to note that it also includes the number of people who are not actually using these Apps.

Every participant of our study owned a Smartphone, mostly a Smartphone. Furthermore, 89.1% had already installed one or more Medical Apps on their devices. This finding is consistent with the previously carried out studies at Monash University, Canadian study and King Abdulaziz University, Jeddah in which 79%, 89% and 99% of the participants respectively had installed any mobile Apps on their Smartphone [18-20].

It may also suggest that now owning a Smartphone is a global trend and that medical students are not an exception.
Generally, the medical students using medical apps believed they could easily download the apps, and they could rely on the contents and all were easy to use. Moreover, they showed their willingness to obtain more apps mentioned installing the apps without any guidance from their medical educator. Overall, this trend reflected the positive attitudes toward the utility of Health Apps for personal health and fitness.

There is an increasing recognition that smartphones are mainly being used for unprofessional purposes. It would be beneficial if medical colleges would arrange sessions to convince and guide the students to work online with the help of various Health Apps relevant to their health and fitness needs.

There are certain limitations in our study. Firstly, this was a sample for one site, so our results can-not be generalized. It is quite possible that the use of Health Apps on smart devices may be better in other colleges as well as other regions of the country. Secondly, it was a cross-sectional and questionnaire-based study. Thirdly, as the answers to the questionnaires remained anonymous, the participants may have answered the questions in a casual manner, a problem observed in most of the survey questionnaires.

Sex	Number	Aware of Health Apps	Uses Apps on Mobile
Male	58	Yes 51 87.9%	Yes 33 64.7%
		No 7 12.1%	No 18 35.3%
Female	82	Yes 76 92.7%	Yes 42 55.3%
		No 6 7.3%	No 31 40.8%
		No Ans 3 3.9%	No Ans 3 2.4%
Total	140	Yes 127 90.7%	Yes 75 59.1%
		No 13 9.3%	No 49 38.5%

Table 3: Summary of awareness and use of Health Apps.

Sex	Yes	No	Total
Male	40	14	54
Female	48	25	73
Total	88	39	127

Table 4: Mobile Health Apps are useful.

Sex	Users	Non Users
Male	44	19
	7	5
Female	7	24
	26	11
Total	75	65

Table 5: Reasons for using and not using Mobile Apps.

Name of Mobile Health App	No. of users	%
Samsung Health	8	13.3%
Fit bit	5	8.3%
Healthily me	5	8.3%
Fitness Challenge	6	10.0%
Nike Fitness App	4	6.7%
Health Tracker	4	6.7%
Apple Health	3	5.0%
Gym Trainer	2	3.3%
Home Workout	3	5.0%
Yoga and Meditation App	3	5.0%
Google Fit	2	3.3%
Mi Fit	2	3.3%
Pedometer	2	3.3%
Calorie Counter	2	3.3%
Down Dog		
7 Minutes		
Water Reminder		
Fastrack reflex		
Stomach exercise		
30 days fitness challenge		
Pulse monitoring apps		
Freedletics		
Fit Girls		

Table 6: Usage of various Health Apps (n=60) *Multiple responses.

Duration of use for Health Apps	Male	Female	Total
0-3 months	8	16	24
4-6 months	6	3	9
7-12 months	10	16	26
1-5 years	9	7	16
	33	42	75

Table 7: Duration of use for Health Apps (N= 75).
Citation: Singh G, Alva S (2019) A Survey on Usage of Mobile Health Apps among Medical Undergraduates. J Community Med Public Health Care 6: 053.

Competing Interests
The authors declare that they have no competing interests.

Ethical Approval
We have received ethical approval.

References
1. Bort-Roig J, Gilson ND, Puig-Ribera A, Contreras RS, Trost SG (2014) Measuring and influencing physical activity with Smartphone technology: a systematic review. Sports Med 44: 671-686.
2. Cho MJ, Sim JL, Hwang SY (2014) Development of Smartphone educational application for patients with coronary artery disease. Health Inform Res 20: 117-124.
3. Markman TM, Sampognaro PJ, Mitchell SL, Weeks SR, Khalifian S, et al. (2013) Medical student appraisal: applications for bedside patient education. Appl Clin Inform 4: 201-211.
4. Nishiguchi S, Ito H, Yamada M, Yoshitomi H, Furu M, et al. (2014) Self-assessment tool of disease activity of rheumatoid arthritis by using a smartphone application. Telemed J E Health 20: 235-240.
5. Choi JS, Yi B, Park JH, Choi K, Jung J, et al. (2011) The Uses of the Smartphone for Doctors: An Empirical Study from Samsung Medical Center. Health Inform Res 17: 131-138.
6. Xu X, Akay A, Wei H, Wang SQ, Pingguan-Murphy B, et al. (2015) Advances in Smartphone-Based Point-of-Care Diagnostics. Proc IEEE 103: 236-247.
7. Mosa ASM, Yoo I, Sheets L (2012) A Systematic Review of Healthcare Applications for Smartphones. BMC Med Inform Decis Mak 12: 67.
8. Lindquist AM, Johansson PE, Petersson GI, Saveman BI, Nilsson GC (2008) The use of the Personal Digital Assistant (PDA) among personnel and students in health care: a review. J Med Internet Res 10: 31.
9. Jang D, Shin SY, Soo DW, Joo S, Huh SJ (2015) A smartphone-based system for the automated management of point-of-care test results in hospitals. Telemed J E Health 21: 301-305.
10. Alshuraﬁ N, Eastwood JA, Nyamathi S, Liu JJ, Xu W, et al. (2015) Improving compliance in remote healthcare systems through smartphone battery optimization. IEEE J Biomed Health Inform 19: 57-63.
11. Khan WZ, Xiang Y, Aalsalem MY, Arshad Q (2013) Mobile Phone Sensing Systems: A Survey. IEEE Communications Surveys &Tutorials 15: 402-427.
12. Ellison NB, Steinfield C, Lampe C (2007) The Benefits of Facebook “Friends” Social Capital and College Students’ Use of Online Social Network Sites. J Comp-MediCommun 12: 1143-1168.
13. Payne KF, Wharrad H, Watts K (2012) Smartphone and medical related App use among medical students and junior doctors in the United Kingdom (UK): a regional survey. BMC Med Inform Decis Mak 12: 121.
14. Ozdalga E, Ozdalga A, Ahuja N (2012) The smartphone in medicine: a review of current and potential use among physicians and students. J Med Internet Res 14: 128.
15. Singh K, Drouin K, Newmark LP, Lee J, Faxvaag A, et al. (2016) Many Mobile Health Apps Target High-Need, High-Cost Populations, But Gaps Remain. Health Aff (Millwood) 35: 2310-2318.
16. Bujink AW, Visser BJ, Marshall L (2013) Medical apps for smartphones: lack of evidence undermines quality and safety. Evid Based Med 18: 90-92.

Conclusion
The regular use of medical apps on mobile devices is quite common among medical students of Rajarajeshwari Medical College and Hospital, Bangalore, Karnataka, India. The increasing usage of medical apps on smart devices is an established reality. The present study reveals that majority of students were aware of the Health apps and many were using it to track their physical activity and calorie intake. Many of them were willing to continue using it as it motivates them to do their physical activity regularly. Health apps are useful to track the physical activity and calorie intake.

Recommendations
1. It is recommended for medical students as it helps and motivates them for maintaining healthy lifestyle.
2. It must be stressed that more attention should be focused by the faculty of medical colleges to guide and educate the students on appropriate use of smart phones and health Apps in maintaining their personal health and hygiene.
3. The use of Health Apps for improving health parameters can be institutionalized through guided monitoring of pre-set milestones and targets in relation to individual health.
4. Similar studies involving different populations and larger sample size can be conducted to know the utility and usefulness of various Health apps.

Funding
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Table 8: Time of use (N= 75).

Time of use	Male	Female	Total
After having food to track the calories	2	6	8
During workout only, which may be gym exercises, walking, running, cycling, etc	21	19	40
Throughout the day	10	17	27
Total	33	42	75

Table 9: Active usage of Health Apps (N=75).

Activity	Yes	No	Sometimes
Do you update the details in it promptly like your height, weight, calorie intake, physical activity etc. in a day?	45	6	24
Do you find information tips and suggestions regarding food intake or physical activities useful?	66	9	
Do you track the number of calories you consume with the help of it?	24	28	23
Do you track your weight with the help of your app?	37	26	12
Do you monitor your sleep quality in it?	26	36	13
Does your app motivate your physical activity?	65	8	2
Does the app notification about your calorie intake alter what you eat/ drink?	41	31	3
Does looking at your apps data at the end of day / weekly/monthly summary change your fitness activities or food intake?	58	12	5
17. Sheikhtaheri A, Kermani F (2018) Use of Mobile Apps Among Medical and Nursing Students in Iran. Stud Health Technol Inform 248: 33-39.

18. Koehler N, Yao K, Vujovic O, McMenamin C (2012) Medical Students' Use of and Attitudes Towards Medical Applications. J Mob Technol Med 1: 16-21.

19. Ozdalga E, Ozdalga A, Ahuja N (2012) The smartphone in medicine: a review of current and potential use among physicians and students. J Med Internet Res 14: 128.

20. Sayedalamin Z, Alshuaibi A, Almutairi O, Baghaffar M, Jameel T, et al. (2016) Utilization of smart phones related medical applications among medical students at King Abdulaziz University, Jeddah: A cross-sectional study. J Infect Public Health 9: 691-697.
