Sand and Dust Hazard Risk Zoning for Ningxia Expressway

Wanli Wu¹,², Xiaohui Guo¹,², Yao Liu¹,², Lei Ma²

¹Key Laboratory for Monitoring Early Warning and Risk Management of Characteristic Agricultural Meteorological Disasters in Dry Areas, China Meteorological Administration, Yinchuan, 750002, China
²Ningxia Meteorological Service Center, Yinchuan, 750002, China

Abstract. Based on GIS and AHP methods, the risk assessment and research of expressway sand and dust hazard are carried out from three aspects: 1) dangerous hazard formative factors, 2) environmental sensitivity, and 3) hazard-affected bodies vulnerability. According to 24 stations from 1981 to 2018 in observation data, the risk zoning is given combined with geographic information data. The results show that the high-risk areas are located in Yanchi section of Qingyin expressway (G20), Yanchi section of Dingwu expressway (G2012) and Ningxia section of Yane expressway. The higher risk areas are located in Xingren-downstream section of Beijing-Tibet expressway (G6), Zhongwei section of Dingwu expressway (G2012), Gunquan section of Beijing-Tibet expressway (G6) and Qingtongxia section of Wuma expressway (G1816). The medium risk areas are located in Huinong section of Beijing-Tibet expressway (G6), southern section of Yinchuan ring expressway, Ningdong section of Qingyin expressway (G20) and Taiyangshan-Maerzhuang section of Dingwu expressway (G2012). The dust risk is generally low in Wuzhong section of Beijing-Tibet expressway (G6), Wuzhong section of Yinkun expressway (G85), Tongxin south section of Fuyin expressway (G70) and Ningxia section of Qinglan expressway (G22), etc.

1. Introduction
Expressway transportation is a highly meteorological sensitive industry, which is easily affected by various natural environmental factors. With the rapid development of national economy and urbanization, expressway traffic safety guarantee caused by meteorological conditions has become a key factor affecting economic development [1]. Based on the definition of meteorological observation specifications, floating dust, blowing sand and sandstorm are all atmospheric dust particles phenomenon [2]. They belong to the category of sand and dust weather, and thus they are collectively referred to as sand and dust weather. Floating dust refers to dust and fine sand floating in the air evenly, making the meteorological visibility less than 10km. Sand blowing refers to that the ground dust is blown up by strong wind, which makes the air quite turbid, and the meteorological visibility is greater than or equal to 1.0km to less than 10km. Sandstorm refers to the fact that a large amount of dust on the ground is drawn into the air by strong wind, which makes the air very turbid, and the meteorological visibility is less than 1km. Among them, the meteorological visibility less than 500m is called severe sandstorm, and the meteorological visibility less than 50m is called extremely severe sandstorm. Sand and dust weather can cause visual obstacles, accompanied by strong wind, which is
easy to cause expressway vehicle collision, and has a serious impact on expressway traffic. Ningxia is located in the eastern part of northwest China and the intersection of Loess Plateau, Mongolian Plateau and Qinghai Tibet Plateau. It is surrounded by Tengger Desert, Ulun Buh Desert and Mu Us sandy land in the west, north and east, which is the only place for sand and dust supplement and transportation to the east in northwest China. From the spatial and temporal distribution of sandstorms, Ningxia is one of the most frequent sandstorms in China [4]. Its special geographical and geomorphic conditions determine that there are almost always sandstorm weather effects in spring [5]. It is one of the most serious disastrous weather in spring in Ningxia, which has great harm to industrial and agricultural production, transportation, people's life, life and property [6]-[7]. The research on sand and dust weather in Ningxia mainly focuses on the formation mechanism and climate background of sand and dust weather, the basic characteristics and change trend of severe sand and dust weather, as well as the ecological effects and control countermeasures of sand and dust hazard. With regard to disaster risk analysis, Cheng Wenhao, et al., analyzed the risk of severe sandstorm hazard in Ningxia [8]. Huang Jianwen, et al., carried out the risk zoning analysis of gale and dust meteorological hazard in Jinchang, Gansu Province [9]. Lu Tianping, et al., carried out the risk assessment model construction and zoning of gale and dust hazard in Xinjiang forestry and fruit industry [10]. Liang Fengjuan, et al., carried out the characteristics and risk zoning of hazard in Bayanmaoer region [11]. Li Jinrong carried out a research on the risk assessment of sandstorm hazard in Xilin Gol League, Inner Mongolia [12]. However, there are few literatures on the risk assessment of sand and dust weather hazard on traffic. Based on the research methods at home and abroad, this work took the main expressways in Ningxia as the research object, and analyzed the temporal and spatial characteristics of sandstorm events in Ningxia expressway with the support of GIS spatial information technology. The hazard risk of expressway sand and dust weather is comprehensively analyzed from three aspects: dangerous hazard formative factors, subsequently environmental sensitivity and hazard-affected bodies vulnerability, which offers scientific basis for the early warning and forecasting service of expressway sand and dust weather.

2. Materials and Methods

2.1. Basic situation of Ningxia expressway

By the end of 2018, the highway mileage in Ningxia was 35405 km, and the highway density was 53.3 km / 100 km². Among them, 1678 kilometers of expressways are open to traffic. All prefecture level cities have access to expressways, and all counties (cities) have one hour access to expressways. The proportion of class II and above highways, the proportion of grade roads, and the cement asphalt pavement rate of national and provincial trunk lines are in the forefront of western China. The national expressways in Ningxia include: Beijing-Tibet expressway (G6), Qingyin expressway (G20), Qinglan expressway (G22), Fuyin expressway (G70), Yinkun expressway (G85), Wuma expressway (G1816), Wuyin expressway (G1817), Yinchuan ring expressway (G2004), Dingwu expressway (G2012), etc. The provincial expressways in Ningxia include: Shizuishan ring expressway (S10), Yane expressway (S15), Guqing expressway (S30), Tonghai expressway (S40), Heihai expressway (S50), Guhui expressway (S60), Pengqing expressway (S70), etc. Among them, the Beijing-Tibet expressway (G6) is mainly in the north-south direction, and the main section is located in the north-central part of Ningxia. It is located in the Yellow River irrigation area with flat terrain. Qingyin expressway (G20) is mainly located in the northeast of Ningxia, passing through Yinchuan and Yanchi. Fuzhou-Yinchuan expressway (G70) is mainly located in the southern part of Ningxia, passing through Tongxin county, Guyuan city and Liupan mountain area. The Wuma expressway (G1816) along the Helan mountains has been completed, starting from Shizuishan city in the north to the west of Qingtongxia in the south, which is greatly affected by the environment. Dingwu expressway (G2012) is the main road in the east-west direction of the region, which is located in the central part of Ningxia. It mainly passes through Zhongwei, Zhongning and Yanchi in the central arid zone (see Fig. 1).
2.2. Data sources
According to the "interim provisions on early warning service of sand and dust weather" issued by China Meteorological Administration, the sand and dust weather is divided into floating dust, blowing sand and sandstorm. In this work, the sum of sandstorm days, sand blowing days and floating dust days is taken as the number of sand and dust days. The data were collected from 24 conventional weather stations in Ningxia from 1981 to 2018. The traffic network distribution and other data are from Ningxia Highway Bureau, and the traffic flow information is from the traffic reorganization data of Ningxia traffic information center in 2016. The data of GDP spatial distribution, vegetation index (NDVI) and population spatial distribution are from the Data Center for Resources and Environment Science, Chinese Academy of Sciences. SRTM 90m elevation data is from the free website of SRTM international scientific data service platform. Other basic geographic information data are from the national basic geographic information center.

2.3. Risk assessment model
It is generally believed that the hazard situation of sand and dust hazard is caused by the interaction among the hazard formative factors, subsequently environment and hazard-affected bodies. Its influence degree is determined by dangerous hazard formative factors, subsequently environmental sensitivity and hazard-affected bodies vulnerability. Based on the principle of meteorological hazard, meteorological hazard risk is the comprehensive action result of dangerous hazard formative factors, subsequently environmental sensitivity, hazard-affected bodies vulnerability, etc. The calculation formula of the evaluation model is as follows:

\[V_i = \sum_{j=1}^{n} W_i \cdot X'_{ij} \]
\(V_j \) is the evaluation factor value, and \(W_j \) is the weight of the i-th index. \(X'_j \) is the normalized value of the i-th index for factor j, and \(n \) is the number of evaluation indicators.

The factors that may lead to hazard are called hazard formative factors, and the risk degree of hazard formative factors is determined by the intensity and frequency of hazard formative factors. Generally, the greater the possibility and variation intensity of hazard formative factors, the higher the risk of hazard formative factors. In this work, the days of floating dust, blowing sand and sandstorm are selected as the risk assessment index of hazard formative factors. The specific subsequently environment in a region basically determines the type of disaster in the region, which is mainly composed of geological conditions, geographical environment, water system conditions, ecological environment, etc. The subsequently environment can enlarge or reduce the risk of hazard formative factors. In this work, terrain elevation (topography), slope, river network density and vegetation coverage are selected as the subsequently environmental sensitivity evaluation indexes of expressway sand and dust hazard. Hazard-affected body is the object of hazard formative factors and the entity suffering from hazard. The nature and structure of hazard-affected body basically determines its vulnerability. For expressway sand and dust hazard, hazard-affected body vulnerability refers to the loss of expressway affected by sand and dust weather hazard when hazard comes. In this work, population density, vehicle flow, road density and GDP are selected as hazard-affected body vulnerability evaluation indexes.

In order to eliminate the dimensional difference between the indexes, the following formula is used to normalize the values of each index.

\[
X'_i = \frac{(X_i - X_{i, \text{min}})}{(X_{i, \text{max}} - X_{i, \text{min}})}
\]

\(X_i \) is the i-th index value, and \(X'_i \) is the normalized value of the ith index. \(X_{i, \text{max}} \) and \(X_{i, \text{min}} \) are the maximum and minimum values of the i-th index value respectively.

2.4. Weight coefficient and zoning method

Analytic hierarchy process (AHP) is a decision-making method that decomposes the elements related to decision-making into objectives, criteria, schemes, etc., and carries out qualitative and quantitative analysis on this basis [13]. The analytic hierarchy process has a good accuracy in calculating the weight coefficient, and is a simple and feasible decision-making method that is easy to understand and grasp, and can solve complex multi-objective problems. This work selects 11 evaluation indexes that affect the sand and dust hazard of Ningxia expressway, including floating dust weather days, blowing sand weather days, sandstorm days, GDP spatial distribution, vehicle flow, road density, population density, terrain height, river network density, slope and vegetation coverage. According to the different indexes of hazard formative factors, subsequently environment and hazard-affected bodies for Ningxia expressway sand and dust weather hazard, AHP method is used to construct judgment matrix, and different weight coefficients are given. When all the index hierarchy judgment matrices pass the consistency test (i.e., \(CR < 0.1 \)), it indicates that the allocation of indicators is reasonable. Finally, the weight of each index is sorted and calculated comprehensively to determine the weight value of each index, and the weights of 11 raster data layers are obtained (see Table 1). Combined with GIS spatial analysis method, it is divided into five levels based on the natural breakpoint method. The dangerous hazard formative factors, subsequently environmental sensitivity and hazard-affected bodies vulnerability are analyzed according to five levels: low, secondary low, medium, secondary high and high.
Table 1. Evaluation index system and weight of expressway sand and dust weather risk

Project	Criterion layer	Evaluation layer 1	Evaluation layer 2	Weight
Sand and dust weather risk evaluation	Dangerous hazard formative factors 0.5378	Floating dust	Floating dust days C1	0.1272
		Blowing sand	Blowing sand days C2	0.1766
		Sandstorm	Sandstorm days C3	0.234
	Subsequently environmental sensitivity 0.2509	Terrain	Elevation C4	0.0373
			Gradient C5	0.0446
		Rivers	River network density C6	0.0734
		Vegetation	Vegetation coverage C7	0.0956
Hazard-affected bodies vulnerability 0.2116	Population	Population density C8		0.0542
		Road	Road density C9	0.0496
		Vehicles	Vehicle flowrate C10	0.0561
		Economic	GDP C11	0.0514

Each evaluation index layer is weighted. Finally, the risk of expressway sand and dust hazard in Ningxia is divided according to the low risk, lower risk, medium risk, higher risk and high risk, thus forming the traffic risk zoning of sand and dust hazard in Ningxia.

3. Results Analysis

3.1. Basic characteristics of sand and dust weather

3.1.1. Distribution characteristics of sand and dust weather days. The sum of floating dust days, blowing sand days and sandstorm days was taken as the statistical days of sand and dust weather, and the observation data of 24 conventional weather stations in the whole region from 1981 to 2018 were counted. The annual average days of sand and dust weather in Ningxia is 29.4 days, and Yanchi is the most, reaching 79.9 days. The second was Zhongwei Xingren, which reached 62.8 days. The sand and dust weather in Pingluo, Taole, Yinchuan, Weizhou, etc., lasts 31.1~48.5 days. The least is south of Xiji, about 8 days, and the weather in other areas is 14.9~26.9 days. According to the occurrence days statistics of floating dust, sand blowing and sandstorm (see Fig. 2), the annual average days of floating dust weather are 2~27.4 days. The annual average days of sand blowing weather are 1~50.8 days, and the annual average days of sandstorm weather are 0~14.4 days. Due to the difference of topography and landform, the frequency of sandstorm has different distribution characteristics, showing a trend of "high in the middle and east, low in the south". The sandstorm prone areas in Ningxia are mainly located in Yanchi, Tongxin, Haiyuan and Taole in the north, and the mountainous area in southern Guyuan is less frequent.
3.1.2. Distribution characteristics of sand and dust weather months. Based on the statistics of monthly sand and dust weather days at various meteorological stations in Ningxia, there will be sand and dust weather in all seasons. Spring (March to May) was the most frequent occurrence, accounting for 56% of the total frequency, followed by winter (December to February), accounting for 25%. The sand and dust weather in summer (June to August) is less, accounting for 14%, and autumn is the least, accounting for only 5%. Among them, April is the most in spring, accounting for 24% of the total frequency, and autumn (September, October) is the least, accounting for 0.8% and 1% respectively.

3.1.3. Effects of meteorological factors on sand and dust weather. The correlation between the frequency of sand and dust weather in spring and the precipitation of last year was analyzed. It was found that the frequency of sand and dust in spring (March to May) was inversely correlated with the precipitation of the same year and last year. This is due to the fact that the vegetation growth is better in the years with more precipitation, and the bare degree of the surface is relatively low in spring, which increases the critical wind speed of sand and dust. The frequency of sand and dust weather in Ningxia is obviously opposite to that of winter temperature. When the temperature is low in winter, the frozen soil layer is thick, and the loose soil layer formed after thawing in early spring is also thicker. Therefore, it is easy to form sandstorm weather. Evaluation of dangerous hazard formative factors

The number of floating dust days, sand blowing days and sandstorm days are taken as the evaluation index of dangerous hazard formative factors, and the weight coefficients are 0.1272, 0.1766 and 0.2340 respectively. The index of dangerous hazard formative factors is calculated, and the distribution map of sand and dust hazard dangerous hazard formative factors is obtained (see Fig. 3). It can be seen from Fig. 3 that Yanchi in the eastern part of Ningxia has the highest of dangerous hazard formative factors in space, and the secondary high risk is distributed in Zhongwei city, represented by Xingren, and the low risk is mainly concentrated in the south of Guyuan.

Fig. 2 Distribution map of mean annual dust days in Ningxia autonomous region
3.2. Evaluation of subsequently environmental sensitivity

Terrain elevation (topography), slope, river network density and vegetation coverage are selected as the subsequently environmental sensitivity evaluation indexes of expressway sand and dust weather hazard. The weights are 0.0373, 0.0446, 0.0734 and 0.0956 respectively. The subsequently environmental sensitivity index is calculated and the distribution map of subsequently environmental sensitivity is obtained (see Fig. 4). It can be seen from Fig. 4 that the overall subsequently environmental sensitivity of Ningxia expressway is relatively high. The high sensitive area is located in Huinong section, Gunquan-Zhongning section and Taoshan-Xingren section of Beijing-Tibet expressway (G6), with poor vegetation coverage and obvious topographic slope fluctuation. The secondary sensitive area is located in Zhongwei section of Dingwu expressway (G2012) and Qingtongxia section of Wuma expressway (G1816). The low sensitive areas are located in Wuzhong section of Beijing-Tibet expressway (G6) and GuQing expressway (S30), Fuyin expressway (G70), Qinglan expressway (G22), Pengqin expressway (S30), etc. These sections have high river network density, high vegetation coverage, small slope or in the mountains, which are not easy to be affected by sand and dust hazard.
3.3. Evaluation of hazard-affected bodies vulnerability

Population density, vehicle flow, road density and GDP are used as hazard-affected bodies vulnerability evaluation indexes of expressway sand and dust hazard. The weights are 0.0542, 0.0496, 0.0561 and 0.0514, respectively. The hazard-affected bodies vulnerability index is calculated, and the distribution map of hazard-affected bodies vulnerability in Ningxia expressway is obtained (see Fig. 5).

It can be seen from Fig. 5 that the high vulnerability of hazard-affected bodies is located in Yinchuan-Yongning section of Beijing-Tibet expressway (G6) and Yinchuan-Ningdong section of Qingyin expressway (G20). Population density, vehicle flow, road density and GDP all belong to high value area. The secondary vulnerable area is located in Yongning-Wuzhong section of Beijing-Tibet expressway (G6). The medium vulnerable areas are located in Shizuishan section of Beijing-Tibet expressway (G6), Yinchuan ring city, Wuzhong-Zhongning section of Beijing-Tibet expressway (G6), Ningdong-Yanchi section of Qingyin expressway (G20), Zhongwei city of Dingwu expressway (G2012) and Gunquan-Taoshan section of Fuyin expressway (G70). The Liupan mountain area section of Fu-Yin expressway (G70), Tonghai expressway and Guxi expressway belong to low vulnerability area due to low traffic volume and GDP.

Fig. 4 Environmental sensitivity zoning of sand and dust weather in Ningxia expressway
3.4. Risk zoning for sand and dust weather hazard in Ningxia expressway

The work selects 11 evaluation indexes that affect the sand and dust weather hazard in Ningxia expressway, and gives different weight coefficients (see Table 1). The risk assessment and zoning analysis of sand and dust hazard in Ningxia expressway are carried out by using GIS fuzzy comprehensive evaluation model, and the comprehensive zoning of sand and dust weather hazard in Ningxia expressway is formed (see Fig. 6). It can be seen from Fig. 6 that the high risk areas of sand and dust hazard in Ningxia expressway are located in Yanchi section of Qingyin expressway (G20), Yanchi section of Dingwu expressway (G2012), Ningxia section of Yane expressway. The higher risk areas are located in Xingren-downstream section of Beijing-Tibet expressway (G6), Zhongwei section of Dingwu expressway (G2012), Gunquan section of Beijing-Tibet expressway (G6) and Qingtongxia section of Wuma expressway (G1816). The medium risk areas are located in Huinong section of Beijing-Tibet expressway (G6), southern section of Yinchuan ring expressway, Ningdong section of Qingyin expressway (G20) and Taiyangshan-Maerzhuang section of Dingwu expressway (G2012). The dust risk is generally low in Wuzhong section of Beijing-Tibet expressway (G6), Wuzhong section of Yinkun expressway (G85), Tongxin south section of Fuyin expressway (G70) and Ningxia section of Qinglan expressway (G22), etc.

Fig. 5 Hazard-affected bodies vulnerability zoning of sand and dust weather in Ningxia expressway
4. Conclusion

First, the annual average days of sand and dust weather in Ningxia is 29.4 days, and Yanchi is the most, reaching 79.9 days. The second was Zhongwei Xingren, which reached 62.8 days. The sand and dust weather in Pingluo, Taole, Yinchuan, Weizhou, etc., lasts 31.1–48.5 days, and the least is south of Xiji. Based on the statistics of monthly sand and dust weather days at various meteorological stations in Ningxia, there will be sand and dust weather in all seasons. Spring (March to May) was the most frequent occurrence, accounting for 56% of the total frequency, followed by winter (December to February), accounting for 25%. The sand and dust weather in summer (June to August) is less, accounting for 14%, and autumn is the least, accounting for only 5%.

Second, there are mobile sand areas with serious soil desertification in the middle part of Ningxia, which is the area with the highest frequency of sandstorm. Zhongwei city, due to its back to the famous Tengger Desert in China, is prone to sand in case of strong wind. Most of Guyuan city is relatively humid area in Ningxia, with less gale weather, large vegetation coverage and less sandstorm.

Third, according to Ningxia expressway, this work studied the dangerous hazard formative factors, subsequently environmental sensitivity and hazard-affected bodies vulnerability based on GIS, fuzzy comprehensive evaluation and AHP method, and gave the risk zoning of sand and dust weather hazard. The results show that the high risk areas of sand and dust hazard in Ningxia expressway are located in Yanchi section of Qingyin expressway (G20), Yanchi section of Dingwu expressway (G2012), Ningxia section of Yane expressway. The higher risk areas are located in Xingren-downstream section of Beijing-Tibet expressway (G6), Zhongwei section of Dingwu expressway (G2012), Gunquan section of Beijing-Tibet expressway (G6) and Qingtongxia section of Wuma expressway (G1816). The medium risk areas are located in Huinong section of Beijing-Tibet expressway (G6), southern section of Yinchuan ring expressway, Ningdong section of Qingyin expressway (G20) and Taiyangshan-Maerzhuang section of Dingwu expressway (G2012). The dust risk is generally low in
Wuzhong section of Beijing-Tibet expressway (G6), Wuzhong section of Yinkun expressway (G85), Tongxin south section of Fuyin expressway (G70) and Ningxia section of Qinglan expressway (G22), etc.

Acknowledgements
Fund Project: Road Traffic and Wind and Solar Energy Meteorological Support Service Project in the Five Northwest Provinces of Silk Road Economic Belt.

References
[1] Mo Zhenlong. Analysis and Countermeasures on the Influence of Unfavorable Climate on Expressway Traffic Safety [J]. China Water Transport, 2013, 13 (1): 59-61.
[2] GB/T 35224-2017. Specifications for Surface Meteorological Observations [S]. Beijing: China Standard Press, 2017.
[3] Zhao Guangping, Yang Youlin, Chen Nan, et al. Satellite Remote Sensing Monitoring System for Ningxia Regional Strong Sandstorm [J]. Chinese Desert, 2004, 24 (6): 711-714.
[4] Jiang Dahui. Preliminary Study on Quantitative Assessment and Risk Management of Sandstorm Hazard [D]. Lanzhou University, 2013.
[5] Li Yanchun, Zhao Guangping, Chen Nan, et al. Research Progress of Sandstorms in Ningxia [J]. Chinese Desert, 2006, 20 (1): 137-141.
[6] Zhang Yulin, Zhao Guangping, Yang Shuping. Exploration and Research on the Formation Mechanism of Sandstorms in Ningxia [J]. Chinese Desert, 1996, 16(4): 351-355.
[7] Zhao Guangping, Zheng Guangfen, Wang Weidong. Research on Climate Background and Hazard Law of Super Strong Sandstorm in Ningxia [J]. Desert of China, 2003, 28 (3): 420-427.
[8] Cheng Wenhao, Liu Yaolong. Risk Analysis on Strong Sandstorm Hazard in Ningxia [J]. Guizhou Agricultural Sciences, 2011, 39 (7): 95-98.
[9] Huang Jianwen, Jin Mingyu, Xin Yanan, Liu Xiaoying. Analysis on Meteorological Hazard Risk Zoning of Wind and Sand Dust in Jinchang, Gansu [J]. Gansu Science and Technology, 2019, 35 (22): 37-39.
[10] Lu Tianping, Guo Jing, et al. Construction and Zoning of Risk Assessment Models for Wind and Sand Hazard in the Forest and Fruit Industry in Xinjiang [J]. Journal of Agricultural Engineering, 2016, 32 (S2): 169-176.
[11] Liang Fengjuan. Characteristics and Risk Zoning of Sandstorms in Bayannaoer Area Based on GIS [C]. Chinese Meteorological Society. S10 Meteorology and Modern Agriculture Development, 2012: 839-845.
[12] Li Jinrong. Research on Sandstorm Risk Assessment Based on RS and GIS [D]. Beijing Forestry University, 2011.
[13] Jiang Tong, Wang Yanjun, Zhai Jianqing. Technical Guide for Meteorological Hazard Risk Assessment [M]. Beijing: Meteorological Press, 2018, 16-18.