Exosomes: a novel therapeutic target for Alzheimer’s disease?

Zhi-You Cai1,*, Ming Xiao2, Sohel H. Quazi3, Zun-Yu Ke4,*
1 Department of Neurology, Chongqing General Hospital, Chongqing, China
2 Department of Anatomy, Nanjing Medical University, Nanjing, Jiangsu Province, China
3 Department of Biological and Health Sciences, Texas A & M University-Kingsville, Kingsville, TX, USA
4 Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China

Abstract
Extracellular exosomes are formed inside the cytoplasm of cells in compartments known as multivesicular bodies. Thus, exosomes contain cytoplasmic content. Multivesicular bodies fuse with the plasma membrane and release exosomes into the extracellular environment. Comprehensive research suggests that exosomes act as both inflammatory intermediaries and critical inducers of oxidative stress to drive progression of Alzheimer’s disease. An important role of exosomes in Alzheimer’s disease includes the formation of neurofibrillary tangles and beta-amyloid production, clearance, and accumulation. In addition, exosomes are involved in neuroinflammation and oxidative stress, which both act as triggers for beta-amyloid pathogenesis and tau hyperphosphorylation. Further, it has been shown that exosomes are strongly associated with beta-amyloid clearance. Thus, effective measures for regulating exosome metabolism may be novel drug targets for Alzheimer’s disease.

Key Words: nerve regeneration; microvesicle; beta-amyloid; tau; neuroinflammation; oxidative stress; therapeutic target; neurodegeneration; dementia; neural regeneration

Introduction
Alzheimer’s disease (AD) is the most common cause of dementia, and an age-related neurodegenerative disease characterized by progressive memory loss and declining cognitive function. Multiple pathogenic hypotheses have been proposed including amyloid, extracellular beta-amyloid (Aβ) peptide deposition (Lloret et al., 2011; Busche et al., 2016), intracellular accumulation of hyperphosphorylated tau protein (formation of neurofibrillary tangles) (Lloret et al., 2011; Busche et al., 2016; Panza et al., 2016), cholinergic dysfunction (Picon et al., 2010; Cacabelos et al., 2014), neuroinflammation, and oxidative stress (Latta et al., 2015; Liu et al., 2015). Although several medications are available to treat AD, none of them stop or reverse the disease (de la Torre, 2010). Increased knowledge on available treatments and the existing pathogenesis of AD will be beneficial for reaching the best decisions on medications and preventing progression of AD.

Apart from macromolecular complexes and small molecules, a large number of microvesicles are secreted from cells into the extracellular space (Vlassov et al., 2012; Beach et al., 2014). Microvesicles (also known as circulating microvesicles or microparticles) are fragments of plasma membrane between 100 nm and 1,000 nm in diameter. Exosomes are microvesicles secreted by all cells. Exosomes first fuse with multivesicular bodies (MVBs) and the cell surface, and are subsequently released from MVBs into the extracellular space (Laulagnier et al., 2004; Vlassov et al., 2012). MVBs are referred to as late endosomes and contain internal vesicles. The most important role of exosomes is to act as intercellular communication messengers by delivering macromolecules between cells (Thery et al., 2002; Beach et al., 2014). Substantial evidence suggests that exosomes serve as active mediators of neurodegenerative disorders, and transport disease particles such as α-synuclein (Chang et al., 2013; Kong et al., 2014; Tsunemi et al., 2014; Grey et al., 2015). Aβ, and proteins from their cells of origin to other cells (Kalani et al., 2014; Yuyama et al., 2014; Fiandaca et al., 2015; Yuyama et al., 2015). This review discusses the role of exosomes in the pathogenesis of AD, and addresses the association between exosomes and relevant AD pathologies (Aβ, neurofibrillary tangles, oxidative stress, and inflammation). Moreover, this review provides a proposed general role of exosomes in AD pathogenesis, and discusses novel therapeutic interventions of exosomes for AD.

Exosomes
Exosomes are microvesicles of 30–100 nm in diameter, and small lipid vesicles secreted by all cell types (Kastelowitz and Yin, 2014; Sluijter et al., 2014). Internal vesicles formed by the inward budding of cellular compartments are known as MVBs (Vlassov et al., 2012; Al-Nedawi, 2014). When MVBs fuse with the plasma membrane, exosomes are released from these internal vesicles. Exosomes exist in blood, saliva, urine, breast milk, and other body fluids (Vlassov et al., 2012; Qin and Xu, 2014). Exosomes not only maintain normal cellular functions and cellular viability via housekeeping roles, but also safeguard various functions of multicellular organisms (Ohno, 2006).

Exosomes contain various substances, including small RNAs, lipids, and a variety of proteins (Vitek et al., 1994; Beach et al., 2014). MicroRNAs (miRNAs) target messenger RNAs for degradation and prevent translation. It has been shown that exosome-released miRNAs regulate the inflam-
Neurodegeneration encompasses a series of diseases due to loss of structure and function of nerve cells in the brain. Most attention has been focused on Parkinson’s disease (PD), Huntington’s disease, and AD (Tonekaboni and Mollamahmadi, 2014; Mouton-Liger et al., 2015). Indeed, a large proportion of less popular diseases have been ignored (Kerner, 2014), such as multiple sclerosis (Orack et al., 2015), epilepsy (Aboud et al., 2013; Pottoo et al., 2014), and stroke (Seifert et al., 2014; Walberer et al., 2014). Increasing evidence indicates that exosomes are involved in neurodegenerative disorders as potential carriers of misfolded proteins (Russo et al., 2012; Candelario and Steindler, 2014; Kalani et al., 2014).

Two of the most common neurodegenerative diseases are AD and PD. The main cause of PD is death of dopaminergic cells in the substantia nigra. Emerging studies have shown that progression of neurodegeneration in PD may involve release of toxic forms of α-synuclein, which are taken up by neighboring neurons and trigger dysfunction (Russo et al., 2012). Several studies have noted that exosomes are involved in PD pathogenesis such as acceleration of α-synuclein aggregation (Tsunemi et al., 2014; Grey et al., 2015). Molecular biology data support the proposition that lysosomal dysfunction leads to increased α-synuclein release in exosomes, and a concomitant increase in α-synuclein transmission to recipient cells (Alvarez-Erviti et al., 2011). Additionally, an in vitro study suggested involvement of ATP13A2/(PARK9) in exosome biogenesis and α-synuclein secretion (Tsunemi et al., 2014). While PD-linked human ATP13A2/(PARK9) promotes α-synuclein externalization via exosomes (Kong et al., 2014). Furthermore, exosomes secreted from activated microglia are important mediators of α-synuclein-induced neurodegeneration (Chang et al., 2013).

Exosomes and Amyloid Pathology

Senile plaques produced by accumulation of Aβ are a classical hallmark of AD. Aβ originates from sequential cleavage of amyloid precursor protein (APP) (Tam et al., 2014; Agostiniho et al., 2015). Cleavage by β-secretase within the luminal/extracellular domain leads to generation of β-carboxy-terminal fragments (CTFs) (Cai et al., 2012; Ortega et al., 2013). Following β-secretase cleavage, γ-secretase processes APP at the carboxyl-terminus to produce Aβ. CTFs of APP can accumulate in MVBs and be released from the cell in exosomes (Sharple et al., 2008). Exosomes also contain CTFs and β- and γ-secretases (Sharple et al., 2008), indicating a wider role in APP metabolism.

Formation and clearance of Aβ are associated with endosomal compartments as Aβ and CTFs are secreted from exosomes (Rajendran et al., 2006). Cleavage of APP by β-secretase occurs in early endosomes (Rajendran et al., 2006). Exosome-associated Aβ levels increased more significantly in the cerebrospinal fluid of younger cynomolgus monkeys and APP transgenic mice compared with older animals (Yuyama et al., 2015). Additional evidence has confirmed that exosomes promote Aβ aggregation and accelerate amyloid plaque formation (Dinkins et al., 2014). Meanwhile, in vivo exosome reduction contributes to lower amyloid plaque load in the 5xFAD mouse model, a mouse line that expresses five mutations of familial AD (Dinkins et al., 2014).

Recent evidence revealed that infusion of neuronal exosomes into the brain of APP transgenic mice decreased Aβ generation and deposition, which was not observed with glial exosomes (Yuyama et al., 2015). This finding highlights the role of neuronal exosomes in Aβ clearance (Yuyama et al., 2015), and suggests that diminished secretion of neuronal exosomes may relate to Aβ accumulation, and ultimately, development of AD pathology (Figure 1). Indeed, it appears that improving Aβ clearance by exosome administration may provide a novel therapeutic intervention for AD (Yuyama et al., 2014).

Exosomes and Neurofibrillary Tangles

Neurofibrillary tangles are aggregates of hyperphosphorylated tau protein (Gendreau and Hall, 2013). Definitive diagnosis of AD requires postmortem identification of amyloid plaques and neurofibrillary tangles. Several studies suggest that tau can be secreted from neurons via exosomes, and exosome-related tau may be an important contributor to spreading neurofibrillary lesions (Vingtedoux et al., 2012; Saman et al., 2014).

Exosomes as a novel way of interneuronal communication, participate in spreading pathological proteins (such as APP fragments, phosphorylated tau, or α-synuclein) across the nervous system (Chivet et al., 2012, 2013). There is significant correlation between multiple genes of AD and proteins recruited to exosomes by tau overexpression (Saman et al., 2014). A clinical study showed that exosome levels of total tau (pT181-tau and pS396-tau) were significantly higher in AD patients than case-controls, both 1–10 years before and at AD diagnosis, suggesting that pS396-tau and pT181-tau levels in extracts of neutrally-derived blood exosomes predict AD development before clinical onset (Fiandaca et al., 2015). In addition, exosome-associated tau phosphorylated at Thr-181 (AT270) is present in human cerebrospinal fluid samples, suggesting that phosphorylated tau induced by exosome secretion may contribute to abnormal tau processing (Saman et al., 2012).
Exosomes as Mediators of Neuroinflammation Associated with AD

Inflammation represents a response induced by injury or destruction of tissues, which enables removal, dilution, or isolation of both injurious substances and injured tissue. Neuroinflammation is inflammation of nervous tissue, and is a pathological and physiological process in response to a variety of events (Cai et al., 2013a, 2014), including microbial infections (Cox et al., 2013), chemical substances (de Rivero Vaccari et al., 2016), tissue necrosis from ischemia and anoxia (Maddahi and Edvinsson, 2010), traumatic brain injury (Lozano et al., 2015; de Rivero Vaccari et al., 2016), toxic metabolites (Butterworth, 2011; McMillin et al., 2014), and autoimmunity (Liu et al., 2014; Morales et al., 2014). It is well known that inflammation can be classified as either acute or chronic. As a common inflammatory process, acute neuroinflammation occurs immediately following injury to the central nervous system. It is characterized by the release of inflammatory molecules, glial cell activation, endothelial cell activation, platelet deposition, and tissue edema. Meanwhile, chronic neuroinflammation is of longer duration, with maintained glial cell activation and recruitment of other immune cells in the brain (Millington et al., 2014; Phillips et al., 2014). Neuroinflammation is regarded as chronic inflammation of the central nervous system. Mounting evidence shows that AD is associated with chronic inflammatory responses, with sustained presence of inflammatory cytokines from activated microglia and astrocytes, free radicals, and oxidative stress (Kaur et al., 2015; Latta et al., 2015; Zhang and Jiang, 2015).

Exosomes are emerging as important inflammatory mediators because of their role as cargo of inflammatory molecules, and thereby induce neuroinflammation by exchange of information between neurons and glia (Gupta and Pulliam, 2014; Kore and Abraham, 2014; Rajendran et al., 2014; Fernandez-Messina et al., 2015; de Rivero Vaccari et al., 2016). Aβ is effectively packaged into exosomes and spread from one cell to another, initiating an inflammatory cascade (Gupta and Pulliam, 2014). In addition to releasing inflammatory factors, exosomes secreted by dead brain cells can influence bystander cells by the transfer of inflammatory mediators in response to pathogenic stimuli (Prado et al., 2010; Sun et al., 2010; Gupta and Pulliam, 2014). Extracellular exosomes release Aβ and accelerate amyloid plaque formation, which are important causes of neuroinflammation (Engel, 2014). Considering their ability to mediate intercellular communication between cells (Record, 2014; Salido-Guadarrama et al., 2014; Zhang and Grizzle, 2014), exosomes represent one of the key players in transporting neurotoxic inflammatory agents and spreading progression of inflammation in brain cells. Oversecretion of exosomes is harmful and can strengthen progression of inflammation in the extracellular microenvironment. Nonetheless, despite abundant evidence demonstrating a role for exosomes in regulating the inflammatory response, the exact mechanisms remain unclear. Therefore, improved understanding of the role of exosomes in inflammation at different stages of AD will benefit prevention and treatment of AD.

Oxidative Stress: A Direct Mediator of Exosome Release in AD?

Extensive research has shown that oxidative stress is strongly linked to AD pathogenesis (Cai et al., 2011, 2013b; Ferreira et al., 2015). An important feature of AD is an active and self-perpetuating cycle of chronic neuroinflammation and oxidative stress that may contribute to irreversible neuronal dysfunction and cell death (Cai, 2014). Oxidative stress is proposed to contribute to Aβ generation and formation of neurofibrillary tangles (Santos et al., 2014; Kanamaru et al., 2015; Kamat et al., 2016). Many results show that neuroinflammation-induced oxidative stress increases Aβ generation by enhancing β- and γ-secretase activity (Cai et al., 2011; Bonda et al., 2014; Chang et al., 2014). In addition, intracellular Aβ accumulation promotes significant oxidative and
inflammatory mechanisms that generate a vicious cycle of Aβ generation and oxidation, each accelerating the other (Luque-Contreras et al., 2014; Persson et al., 2014).

Many studies have noted that exosome release from MVBS are induced and accelerated by oxidative stress (Soderberg et al., 2007; Eldh et al., 2010; Zhou et al., 2013; Tsonova et al., 2014). Previous studies have indicated that exosome release from MVBS is associated with the pathogenesis of many diseases involved in oxidative stress (Tsonova et al., 2014), such as multiple sclerosis and dysmyelinating syndromes (Pusic et al., 2014), cancer (Goldkorn et al., 2013; Meseure et al., 2014), cerebral ischemia disease (DeGracia et al., 2008; Fröhlich et al., 2014), as well as cardiovascular disease (Fleury et al., 2014; Yamaguchi et al., 2015). However, many questions have not been answered: what is the exact role of exosome release mediated by oxidative damage in AD pathogenesis? Is release of exosomes from MVBS a cause or consequence of oxidative stress in AD? What is the relationship between oxidative-mediated release of exosomes and AD pathology?

Exosomes: A Novel Therapeutic Strategy for AD?

AD is a progressive brain disorder and the most common form of dementia. To date, there is still no cure for AD that can reverse or halt its progress, although there are medications that can help improve symptoms in some cases. Exosomes are extracellular vesicles that transport different molecules between cells. They are formed and stored inside MVBS until they are released to the extracellular environment. It is apparent that the brain microenvironment correlates with neurodegeneration, and brain intercellular communication induced by exosomes is necessary for this to occur. In the past decade, exosomes have been shown to be efficient carriers of genetic information, which can be transferred between cells to regulate gene expression and function of recipient cells (Fernandez-Messina et al., 2015). Hence, they may be an important means of regulating the neurodegenerative process underlying AD, and improve the brain microenvironment by affecting the intercellular communication induced by exosomes.

Exosomes can cross the blood-brain barrier and therefore be used as delivery vehicles of drugs and genetic elements for treatment of neurological disorders. Several studies have suggested that exosomes derived from multipotent mesenchymal stromal cells play a neuroprotective role by promoting functional recovery (Xin et al., 2014), neurovascular plasticity (Xin et al., 2013a, b; Zhang et al., 2015), and repairing injured tissue in traumatic brain injury and neurodegenerative disorders. Thus, it may be possible to use mesenchymal stromal cell exosomes in therapies for AD (Katsuda et al., 2014). Furthermore, intracerebrally administered exosomes can act as potent Aβ scavengers by binding to Aβ through enriched glycans on glycosphinoglipids on the exosome surface, suggesting a role for exosomes in Aβ clearance in the central nervous system (Yuyama et al., 2014). Improving Aβ clearance by exosome administration provides a novel therapeutic intervention for AD.

Ambiguous knowledge of the underlying mechanisms responsible for causing AD and its progression is the major impediment to therapeutic advances. The potential role of exosomes in neurological disorders and knowledge of their biology show promising leads that are close to clinical translation. Regulating the status and state of exosomes may be a ‘Trojan-horse’ approach to deliver drugs into the brain and treat neurodegenerative and other disorders.

Author contributions: ZYC, MX, SHQ and ZYK drafted and reviewed the paper and ZYC finalized the paper. All authors approved the final version of the paper.

Conflicts of interest: None declared.

Copyright license agreement: The Copyright License Agreement has been signed by all authors before publication.

Plagiarism check: Checked twice by iThenticate.

Peer review: Externally peer reviewed.

Open access statement: This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

Open peer reviewer: Sage Arbor, Marian University College of Osteopathic Medicine, USA.

References

Aboud O, Mrak RE, Boop FA, Griffin WS (2013) Epilepsy: neuroinflammation, neurodegeneration, and APOE genotype. Acta Neuropathol Commun 1:41.
Agostinho P, Pliausova A, Oliveira CR, Cunha RA (2015) Localization and trafficking of amyloid-beta protein precursor and secretases: impact on Alzheimer’s disease. J Alzheimers Dis 45:329-347.
Al-Nedawi K (2014) The Yin-yang of microvesicles (exosomes) in cancer biology. Front Oncol 4:172.
Alvarez-Erviti L, Seow Y, Schapira AH, Gardiner C, Sargent IL, Wood MJ, Cooper JM (2011) Lysosomal dysfunction increases exosome-mediated alpha-synuclein release and transmission. Neurobiol Dis 42:360-367.
Arscott WT, Tandle AT, Zhao S, Shabason JE, Gordon IK, Schlaff CD, Zhang G, Tofton PJ, Camphausen KA (2013) Ionizing radiation and glioblastoma exosomes: implications in tumor biology and cell migration. Transl Oncol 6:638-648.
Beach A, Zhang HG, Ratajczak MZ, Kakar SS (2014) Exosomes: an overview of biogenesis, composition and role in ovarian cancer. J Ovarian Res 7:134.
Bonda DJ, Wang X, Lee HG, Smith MA, Perry G, Zhu X (2014) Neuronal failure in Alzheimer’s disease: a view through the oxidative stress looking glass. Neurosci Bull 30:243-252.
Busche MA, Staufenbiel M, Willem M, Haass C, Förstl H (2016) Mechanisms of Alzheimer’s disease: Neuronal hyperactivity and hypoactivity as new therapeutic targets. Nervenarzt 87:1163-1174.
Butterworth RF (2011) Hepatic encephalopathy: a central neuroinflammation disorder? Hepatology 53:1372-1376.
Cacabelos R, Cacabelos P, Torrellas C, Tellado I, Carril JC (2014) Pharmacogenomics of Alzheimer’s disease: novel therapeutic strategies for drug development. Methods Mol Biol 1175:323-356.
Cai Z (2014) Monoamine oxidase inhibitors: promising therapeutic agents for Alzheimer’s disease (Review). Mol Med Rep 9:1533-1541.
Cai Z, Zhao B, Ratka A (2011) Oxidative stress and beta-amylloid protein in Alzheimer’s disease. Neuromolecular Med 13:223-230.
Cai Z, Yan Y, Wan L (2013a) Minocycline alleviates beta-amylloid protein and tau pathology via restraining neuroinflammation induced by diabetic metabolic disorder. Clin Interv Aging 8:1089-1095.
Cai Z, Yan L, Ratka A (2013b) Telomere shortening and Alzheimer’s disease. Neuromolecular Med 15:25-48.
Cai Z, Hussain MD, Yan LJ (2014) Microglia, neuroinflammation, and beta-amylloid protein in Alzheimer’s disease. Int J Neurosci 124:307-321.
Cai Z, Zhao B, Li K, Zhang L, Li C, Quazi SH, Tan Y (2012) Mammalian target of rapamycin: a valid therapeutic target through the autophagy pathway for Alzheimer’s disease? J Neurosci Res 90:1105-1118.
Candelario KM, Steindler DA (2014) The role of extracellular vesicles in the progression of neurodegenerative disease and cancer. Trends Mol Med 20:368-374.
Chang C, Lang H, Geng N, Wang J, Li N, Wang X (2013) Exosomes of BV-2 cells induced by alpha-synuclein: important mediator of neurodegeneration in PD. Neurosci Lett 548:190-195.
Neural Regen Res 13(5):930-935
Cai ZY, Xiao M, Quazi SH, Ke ZY (2018) Exosomes: a novel therapeutic target for Alzheimer's disease?
Gupta A, Pulliam L (2014) Exosomes as mediators of neuroinflammation. J Gendreau KL, Hall GF (2013) Tangles, toxicity, and Tau secretion in AD -
Gao W, Liu H, Yuan J, Wu C, Huang D, Ma Y, Zhu J, Ma L, Guo J, Shi
Fiandaca MS, Kapogiannis D, Mapstone M, Boxer A, Eitan E, Schwartz JB, 
Ferreira ME, de Vasconcelos AS, da Costa Vilhena T, da Silva TL, da Silva 
Fernandez-Messina L, Gutierrez-Vazquez C, Rivas-Garcia E, Sanchez-Ma
Engel PA (2014) Does metabolic failure at the synapse cause Alzheimer's 
Dinkins MB, Dasgupta S, Wang G, Zhu G, Bieberich E (2014) Exosome re
duction in vivo is associated with lower amyloid plaque load in the 5XFAD 
Chang YT, Chang WN, Tsai NW, Huang CC, Kung CT, Su YJ, Lin WC, 
Kong SM, Chan BK, Park JS, Hill KJ, Atikin JB, Cottile L, Farghaian H, Cole 
Korn BD, Dasgupta S, Thomas S, Sadoul R (2013) Exosomes as a novel way of interneuronal communi-
cation. Biochem Soc Trans 41:241-244.
Cox GM, Kitchart AP, Pitt D, Guan Z, Alexander J, Williams JL, Shawler 
T, Dagia NM, Popovich PG, SatoShar AK, Whitacre CC (2013) Macro-
phage migration inhibition factor potentiates autoimmune-mediated neuroinflammation. J Immunol 191:1043-1054.
de la Torre JC (2010) Alzheimer's disease is incurable but preventable. J Alzheimer's Dis 20:
Bevier WC, Wang R, Chiu C, Chou S, Zheng J, Li J, Li X, Jackson J, Pardue ML. 
S, Sadoul R (2013) Exosomes: a novel way of interneuronal communi-
cation. Biochem Soc Trans 41:241-244.
Korn BD, Dasgupta S, Thomas S, Sadoul R (2013) Exosomes as a novel way of interneuronal communi-
cation. Biochem Soc Trans 41:241-244.
Cox GM, Kitchart AP, Pitt D, Guan Z, Alexander J, Williams JL, Shawler 
T, Dagia NM, Popovich PG, SatoShar AK, Whitacre CC (2013) Macro-
phage migration inhibition factor potentiates autoimmune-mediated neuroinflammation. J Immunol 191:1043-1054.
de la Torre JC (2010) Alzheimer's disease is incurable but preventable. J Alzheimer's Dis 20:
Bevier WC, Wang R, Chiu S, Zheng J, Li J, Li X, Jackson J, Pardue ML. 
S, Sadoul R (2013) Exosomes: a novel way of interneuronal communi-
cation. Biochem Soc Trans 41:241-244.
Korn BD, Dasgupta S, Thomas S, Sadoul R (2013) Exosomes as a novel way of interneuronal communi-
cation. Biochem Soc Trans 41:241-244.
Soderberg, A., Barral, M., Soderstrom, M., Sander, B., & Rosen A. (2007) Redox-signaling transmitted in trans to neighboring cells by melanoma-derived TNF-containing exosomes. Free Radic Biol Med 43:90-99.

Sun D, Zhang K, Xiang A, Liu Y, Zhang L, Liu C, Barnes S, Grizzle W, Miller D, Zhang HG (2010) A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther 18:1606-1614.

Tam JH, Seah C, Pasternak SH (2014) The Amyloid Precursor Protein is rapidly transported from the Golgi apparatus to the lysosome and where it is processed into beta-amyloid. Mol Brain:7:54.

Thery C, Zitvogel L, Amigorena S (2003) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2:569-579.

Tonekaboni SH, Mollamohammadi M (2014) Neurodegeneration with brain iron accumulation: an overview. Iran J Child Neurol 8:1-8.

Tsanova B, Spatnick P, Jacobson A, van Houw F (2014) The RNA exosome affects the translational efficiency of mRNAs in Alzheimer's disease. Proc Natl Acad Sci U S A 91:4766-4770.

Vellaisser M, Bucalora R, Manogue K, Cerami A (1994) Advanced glycation end products contribute to amyloidosis in Alzheimer's disease. Proc Natl Acad Sci U S A 91:4766-4770.

Vitek MP, Bhattacharyya K, Glendening JM, Stopa E, Vlassara H, Bucalora R (2013) Increasing rational use of cholinesterase inhibitors and progression of Parkinson's disease. Front Aging Neurosci 5:206.

Wang H, Li Y, Zhang Y, Guo J, Zhang Z (2013) Systemic administration of exosomes released from mesenchymal stem cells promote functional recovery and neurovascular plasticity after stroke in rats. J Cereb Blood Flow Metab 33:2737-2746.

Watanabe T, Usui K, Sawada K, Nakagawa T, Zaitsu S, Nakamura N, Sato Y, Miyata H, Minamino T, Noda T, Suzuki T, Shinoda T, Nakamura Y, Kato K, Hasegawa Y, Kageyama R (2013) Redox-sensitive miRNA in cerebrospinal fluid is increased in menopausal women. Menopause Off Publ Int Menopause Soc 20:577-584.

Wu T, Zeng X, Wang Y, Zhang Y, Zhu J, Liu Y, Zhang J, Wang Y, Cui Y, Zhang X, Chen J, Zhang H (2013) High-dose curcumin modulates the pro-inflammatory activity of monocyte-derived exosomes. Biochim Biophys Acta 1827:205-213.

Wang X, Zou L, Zhang B, Shi H, Wang M, Tao Y, Li J, Zhang Y, Zhang B, Zhao M, Yuan J, Li Y, Tang J, Li C, Wang M, Cui Y, Zhang X, Liu Y, Zhang Z, Shang X, Cui Y, Zhang Z, Chopp M (2013a) Therapeutic exosomal delivery of anti-apoptotic miR-17-92 cluster promotes neuroprotection and functional recovery after permanent middle cerebral artery occlusion. Transl Stroke Res 4:229.

Xie W, Wang Y, Zhang Y, Zhang Z, Li Y, Li L, Li Y, Yu G, Zeng S, Wang M, Cui Y, Zhang X, Shang X, Cui Y, Zhang Z, Chopp M (2013b) Systemic administration of exosomes released from mesenchymal stem cells promotes functional recovery and neurovascular plasticity after stroke in rats. J Cereb Blood Flow Metab 33:2737-2746.

Yahara T, Suzuki T, Hori T, Suzuki R, Kitamura M, Kato K, Hasegawa Y, Kageyama R, Yamanaka S, Nakanishi T, Ishihara Y, Kageyama R (2014) The amyloid-beta pathway in Alzheimer's disease: a new target for neurodegeneration. Mol Neurodegener 9:67.

Yamamoto K, Usui K, Sawada K, Nakagawa T, Zaitsu S, Nakamura N, Sato Y, Miyata H, Minamino T, Noda T, Suzuki T, Shinoda T, Nakamura Y, Kato K, Hasegawa Y, Kageyama R (2013) Redox-sensitive miRNA in cerebrospinal fluid is increased in menopausal women. Menopause Off Publ Int Menopause Soc 20:577-584.

Zhang Y, Chopp M (2013a) Therapeutic exosomal delivery of anti-apoptotic miR-17-92 cluster promotes neuroprotection and functional recovery after permanent middle cerebral artery occlusion. Transl Stroke Res 4:229.

Zhao M, Hu S, Wang Y, Zhang Y, Zhu J, Liu Y, Zhang Z, Shang X, Cui Y, Zhang Z, Chopp M (2013b) Systemic administration of exosomes released from mesenchymal stem cells promotes functional recovery and neurovascular plasticity after stroke in rats. J Cereb Blood Flow Metab 33:2737-2746.

Zhou Y, Xu H, Wang B, Lu W, Tao Y, Zhang B, Wang M, Mao F, Yan Y, Sao S, Gu H, Zhu W, Qian H (2013) Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res Ther 4:34.

(Copied by James R, Frenchman B, Yu J, Li CH, Qiu Y, Song LP; Zhao M)