Coulomb Blockade in Angstrom-scale latent ion track channels

Yanbo Xie,1,\textasteriskcentered2 Deli Shi,2 Wenhui Wang2 and Ziheng Wang2
1School of Aeronautics and Institute of Extreme Mechanics, Northwestern Polytechnical University
2School of Physical Science and Technology, Northwestern Polytechnical University
Xi’an, 710072, China
(Dated: November 18, 2022)

When channels were scaled down to the size of hydrated ions, ionic Coulomb blockade was discovered. However, the experimental CB phenomenon was rarely reported since Feng et.al., discovered in MoS_2 nanopore. By using latent-track membranes with diameter of 0.6 nm, we found the channels are nearly non-conductive in small voltage due to the blockade of cations bound at surface, however turns to be conductive as rising of voltage due to releasing of bound ions, which differs from the mechanisms in MoS_2 nanopore. By Kramers’ escape framework, we rationalized an analytical equation to fit experimental results, uncovering new fundamental insights of ion transport in the smallest channels.

Introduction— Ionic transport in an angstrom scale channel is critical to understand and mimic the physiological mechanism of biology ion channels[1,3]. The developing of nanotechnology and materials enable to create angstrom-scale structures to study ion transport in such confinement, which has led to several peculiar discoveries[2,4–6] and excellent separation capabilities[7–9]. The Coulomb Blockade (CB) is a unique phenomenon discovered in angstrom-scale channels[8,10], which originated from solid nanoelectronics devices that electrons must overcome an energy barrier to transport through an island of electrons[11,12]. The ionic CB in nanofluidics were proposed by M. Di Ventra et al., in MD simulation[13], which was considered as one of the possible reasons of ion selectivity in biology ion channels[14–16]. Feng et.al discovered a non-linear conduction by using nanopores on a single layer MoS_2, attributed to the joint action of ion-dehydration and self-energy barrier as the ionic CB effects[8]. Although theories progressed rapidly including mechanisms of dehydration[9,17], self-energy[8,18,19], Wien-effects[6,20,21], in addition more types of angstrom-scale pores/materials were used in the study of ionic transport[22–25], the CB effects in experiments were never reported in artificial channels since it was discovered in MoS_2 nanopore[15]. In this work, we fabricated the latent ion track channels with a simplified procedure according to the previous work[26,27]. We characterized the channels with a most probable diameter of 0.60nm by isotherm adsorption of CO_2 gas molecules using Brunauer-Emmett-Teller (BET) model[28,29], quantitatively approving the angstrom-scale latent track channels which were indeed a challenge.

We found a transition of high resistance (HR) to low resistance (LR) of the membranes as rising of an external electrical field in diluted salt solutions. Although the non-linear conduction in latent track channels appeared in the previous work[26,29,31], the mechanisms and analysis of the results were still far from clear. We found the power law of conductance at HR stage matched well with the conductivity of bulk solution, implying the conduction at low voltage is independent of the surface charge density. Besides, the conduction at HR state suggests only effectively $\sim 0.1\%$ of channels were conductive by radius of 0.3nm. We suspect it was caused by the counterions bound to the surface charge, which blockades the transport of free ions (scheme shown in Fig[1]), approval by our MD simulation and well explained the mechanisms of conductance transition. Our CB mechanism differs from the CB effects discovered in single layer MoS_2 caused by self-energy barrier and dehydration of ions[8]. Using Kramer’s escape framework, we rationalized with an analytical equation of the current to fit our experimental results. The fitted values uncovers insightful details of the ionic transport in angstrom scale channels, such as decreases of conductivity at concentrated solution, and reduction of energy barrier as rising of ion density and surface charge density in the channel, resulting a decrease of threshold voltage transiting to conductive state. Our results matched well with the Coulomb Blockade effects predicted by Kavokine[20], at a dielectric surface of “infinite” long angstrom-scale channels. Our experimental results and theoretical analysis possibly give insights of the ion transport in well-defined 1D angstrom-scale channel, useful for fundamental studies of ionic transport or practical applications in angstrom scale channels.

![Figure 1](image-url)

(a) The schematic picture of CB effect. A cation strongly bound to the surface charge, blockade the ion transport through the angstrom-scale channel. (b) The diameter distribution of latent track channels, characterized by the isotherm adsorption of CO_2 gas molecules. Our results showed the most probable diameter of latent track channels was 0.60nm.
Fabrications and Experimental setup—We first irradiated the polymer film by Kr ion with energy of over 1 MeV/u and density of $3 \times 10^8 \text{cm}^{-2}$ to form latent tracks in PET polymer films, from Lanzhou Heavy Ion Research Facility (HIRFL). Then we placed specimens under UV (365 nm) exposure with the illumination density of $65 \text{mW \cdot cm}^{-2}$ for over 30 minutes at each side. Finally, we clamped the irradiated polymer film in the 1mM KCl electrolyte solution bath in 50 degrees under voltage scanning ($\pm 10 \text{V}$), to remove the products of radiolysis in the latent tracks thus fabricating one-dimensional ultrafine channels. The voltage scanning lasts for about half an hour until the amplitude of current get saturated shown as Fig.S1b. The film will be carefully cleaned by filling DI water under sweeping voltage, to remove the residual salts in the channels. The films were well preserved and dried in the air for overnight. For each experimental measurement, we keep the similar cleaning procedure above. Precisely characterizing the size of the latent track channels is indeed a challenge. Traditional methods, including resistance measurements in 1M KCl, are inapplicable because it does not obey the classical conduction laws, as we demonstrated later. Hereby we use isotherms adsorption of CO$_2$ gas to characterize the size of channel, with details as follows.

To maximize surface area on the film, we irradiated the PET film with density of 10^{13}cm^{-2} (6µm thick) finally obtained $2.9 \text{m}^2/\text{g}$ BET surface area measured by Micromeritics 3Flex. We placed specimens in a vacuumun chamber and gradually pressurized with CO$_2$ gas as rising of pressure of P/P_0 where P_0 is the atmosphere pressure. We measured the volume of absorbent in each applied pressure by recording the volume change of CO$_2$ over 15 seconds as a time step of equilibrium (see SM). As a result, we could linearly fit the adsorption kinetics according to Langmuir equation and calculate the surface area of the film. Finally, we calculated the diameter of channel distributed from 0.46 to 1.0 nm with a most probable diameter of 0.60 nm, where the smaller size were not detectable as the CO$_2$ molecules may not forming uniform Langmuir adsorption in such small channels (Fig.1b). However, the factors during irradiation energy [32, 33], UV exposure [34], procedure of removing radiolysis products [27, 35] on the channel size are still not clear, even not the applications [36].

Results and Discussion–We first investigated the conductance as a function of the salt concentration C, ranging from 1 mM to 3M KCl at pH 5.0. To well present the current response in various concentrations, we showed the current divided by bulk conductivity of solution I/κ_b instead of current I in Fig 2a. We found non-linear I-V curves in low C. It appears a high resistance (HR) state at amplitude of voltage smaller than ~3V for both polarity of electrical fields (See SM). Here we only demonstrated the results in positive bias voltages as examples for the analysis. For the HR state, we linear fits the I-V curves at voltage smaller than 3V to obtain the conductance G_{HR} (dark green dots in Figure 2b), and calculated $G_{LR} = I_{HR}/V_{HR}$ as the conductance of LR state (light green dots in Figure 2b). We found the G_{HR} perfectly matched with the power-law of κ_b (dashed lines) without a plateau in low concentrations as classical nanofluids [37], which possibly implies the conduction is independent of surface charges under such low voltage. We calculated the numbers of conductive channels by G_{HR} using classical nanofluidic conduction theories which shows only ~0.1% channels are conductive using diameter of 0.60nm. To validate the electrical field dependent conduction, we investigated conduction using thicknesses of 2.5µm, 6µm, and 12µm. The results show that the threshold voltage for conductance transition decreases with the film thickness, but remains nearly a constant at ~1V/µm. The results are available in SM.

Above clues from experiments inspired us that the HR states of our results were possibly caused by the ionic Coulomb blockade. We performed MD simulations in the CNT with effective diameter of 0.55nm comparable to the diameter measured by isotherm adsorption (see SM). We set a single carbon atom at surface been fully charged by an elementary charge of e, to mimic the dissociation of carboxyl groups at dielectric surface. Similar as previous work [3, 35, 39], we found strong Coulomb interaction be-
is the applied voltage. The fitting parameter
concentration of number of
Hodgkin-Huxley model [41].
that used for fitting I-V curves, slightly different from the
movement of current can be found for the 1D ionic transport by Kramer’s escape approxi-
tween the surface charge and counterions, resulting the
blockade of ionic transport through the angstrom-scale
channel. The small electrical field is not able to “excite”
the bound ion, while the conduction relies on the free
ions passing by the bound ions. As the electrical field
increases, the probability of releasing the bound ions in-
creases, resulting an ”open” state for ion transport as a
LR state.

Besides the Coulomb interaction between cation and
surface charge, additional energy barrier including dehy-
dration [9, 40], self-energy [18], and Bjerrum ion pairs [6]
may play a role. For an approximation, we considered an
equivalent parabolic potential barrier with a height of po-
tential barrier \(\Delta U\), which may from one or joint actions
of above effects. Thus, we have an analytical expression
for the 1D ionic transport by Kramer’s escape approxi-
mation. The detailed derivation of current can be found in
the SM. Thus, we have the following form of equations
that used for fitting I-V curves, slightly different from the
Hodgkin-Huxley model [41].

\[
I = \frac{gV}{1 + kVe^{-kV}}
\tag{1}
\]

where the \(g, k\) and \(b\) are the fitted parameters, and
\(V\) is the applied voltage. The fitting parameter \(g = N \cdot \mu CA_{ch}/L\) are the conduction of all channels with number of \(N\), considering free ions from the bulk solu-
tion with concentration of \(C_b\) and bound ions \(C_s\) at sur-
face \(C = C_b + C_s\). The \(A_{ch}\) is the mean cross-sectional
area of a single channel. When energy barrier is neg-
ligible, the equation (1) turns to the classical nanofluidic
conduction that linear increases as the applied voltage
[42]. For the energy barrier dominated ion transport, it
becomes the same formula as Arrhenius type behavior in
biology ion channels [43] and angstrom-scale slits [7, 44].
The entrance effects was neglected as we have “infinite”
long channels \((r << L)\) [45]. Besides, we only con-
sidered the transport of metal ions as we found the Cl\(^-\)
were not involved in the conduction in negatively charged
angstrom channels in MD simulation. The fitting param-
eter \(k \sim \mu e^\Delta U/kT\) where the \(\Delta U\) is the energy barrier
for ion transport through the confined channel. The fit-
ing parameter \(b\) indicates the strength of electrical force
on the bound ions, which is a constant between 0.20 to
0.25 \(V^{-1}\) for each specimen as in different concentrations
(See SM), however slightly rises to maximal 0.4 \(V^{-1}\) as
pH increases. The deviation of \(b\) in different specimens is
possibly relevant to fabrication procedures such as radi-
olysis of films, which still need to be studied in further.

The fitted conduction \(g\) was shown as solid dots in Fig
[2], as a function of \(C_b\) with different monovalent salt so-
lution. The dashed lines represent the slope of \(\kappa_b\) in various
salt solutions. The power law of experimental conduction
(solid dots) matched well with \(\kappa_b\) below 0.1M, however
obviously getting smaller than \(\kappa_b\) above 1M. We suspect
this reduction of conductivity was caused by the forma-
tion of ion pairs in the angstrom scale channel, previously
reported in the slits nanochannels [6, 47] and CNT [6, 48–
60]. Since only free ions contribute to the conduction in
small HR state, we suspect the formation of ion pairs as
increases of \(C_b\) results the reduction of conductivity [51].

Then we studied the conduction under various pH sol-
solutions (Fig[3b]). Our results showed the amplitude of
conduction gradually increases as the pH values. In ad-
dition, the system gets close to Ohmic as the pH rises.
The fitted conduction \(g\) including the bound ions in the
channel gradually increases and then get saturated as the
pH values, shown in the Fig. [3b]. According to the chem-
ical equilibrium at surface that the surface charge density
varies as the pH using following equations [52].

\[
\Sigma = -e\Gamma \frac{10^{-pK}}{10^{-pK} + 10^{-pH}}
\tag{2}
\]

where \(e\) is the elementary charge. We obtained the site
density \(\Gamma\) of carboxyl groups at the surface as \(\sim 10^{-2}\text{site/nm}^2\) that is smaller than that in the track
etched nanopores [53], possibly due to the lacking of
chemical etching. We obtained dissociation factor as
\(\chi = 10^{-pK}/(10^{-pK} + 10^{-pH})\), where the \(pK\) was taken as
5.8 for the carboxyl group [52]. Taking the counterions
in the conductance \(g_{\Sigma} = N \cdot \mu C_{\Sigma} A_{ch}/L\) where \(C_{\Sigma} = \frac{\Sigma}{eN_A}\)
and \(N_A\) is Avogadro number, we have a theoretical value
shown as solid line in Fig. [3b]. The buffer solutions
were avoided due to their profound effects for chemical equi-
librium at surface [54]. The error bars indicate the pH
change during the measurements (\(\sim 20\) mins), caused by
the adsorption of \(CO_2\) from air. The deviation of experimen-
tal data at pH=3.0 possible caused by the inversion
of surface charge, which doesn’t fits the theoretical pre-
diction in equation [2].
of bound ion or ion pairs predicted by Zhang as follows

\[U = U_0 [1 - 4\gamma \ln\left(\frac{1}{2\rho} \sinh\left(\frac{U}{\gamma}\right)\right)] \] (3)

Finally, we evaluated the \(k/k_0 \sim \mu e^{-W}e^{-bV_C} \) a function of ion density \(\rho \) and surface charge density \(\gamma \) shown as a solid line in Fig. 4, considering the reduction of mobility compared to the bulk values. The increases of ion density, including the concentration of free ions and bound ions at surface, reducing the energy barrier of transport. As a result, current getting close to the linear response to the applied voltage. We statistically counted all fitted \(k/k_0 \) as a function of \(\rho \) derived from \(C_b \) shown in Fig. 4, and \(\gamma = x_T - 2\pi T \chi \) derived from the equation as an inset figure in Fig. 4. The theoretical \(k/k_0 \) by equation matched well with the fitted values in experiments.

To quantitatively evaluate the critical voltage of conductance states transition, we linear fits the I-V curves at LR states and considered a crossing point to the X-axis as \(V_C \), with an example shown as a dashed line in the I-V curves in Fig. 4. Details of deriving the critical voltage in experiments can be found in the SM. From the theoretical aspects, we estimate the transition voltage \(V_C \) by \(kV \cdot e^{-bV_C} = c \), where the current starts rising apparently. Thus we have the solution as follows, where \(W(z) \) is Lambert W Function.

\[V_C = -W\left(-\frac{e \cdot b}{k} \right) \] (4)

With all fitted \(k \) and \(b \) from experiments, we showed the \(V_C \) considering different types of salts, concentrations, and pH values of the film in the Fig. 4. The theoretical values by equation considering the free ion density \(\rho \) and surface charge density \(\gamma \) well predicting the tendency of \(V_C \) in experiments that is helpful for understanding 1D ionic transport due to CB effects.

Conclusion—In conclusion, we fabricated latent ion-track channels and characterized 0.60nm as most probable diameter by the isotherm gas adsorptions. We found a resistance transition from HR to LR state as rises of applied voltage in diluted solutions. We suspect the HR state was caused by the countersion bound to the surface charge that blockades the ion transport due to the strong Coulomb interaction to the surface charge in confinements, approved by MD simulations. The conduction at HR state matched well with the slope of bulk conductivity; illustrating the countersions didn’t contribute to the conduction. As increases of \(E \), the probability of releasing bound ions increases, resulting LR state. We rationalized an analytical equation by Kramer’s escaping approximation, with an equivalent parabolic potential barrier for ion transport, uncovering more insights of ion transport, such as the reduction of conductivity in channels at concentrated salt solutions and decrease of energy barrier as increases of ion density. Our results will be useful for the fundamental studies of ion transport in the smallest scale channels, as well as the application aspects like separations.

ACKNOWLEDGMENTS

The authors thank Jinglai Duan, Jie Liu and Guanghua Du in HIRFL for the help of film irradiation, Shusong Zhang for useful discussions, Xianzhi Ke and Shenghui Guo for the experimental help, Jianwei Cao and Kaijie Chen for the help of isotherm adsorption. This work is supported by NSFC No. 12075191.

[1] S. Faucher, N. Aluru, M. Z. Bazant, D. Blankschtein, A. H. Brozena, J. Cumings, J. Pedro de Souza, M. Elingele, R. Epsstein, J. T. Fourkas, A. G. Rajan, H. J. Kulik, A. Levy, A. Majumdar, C. Martin, M. McEl-
drew, R. P. Misra, A. Noy, T. A. Pham, M. Reed, E. Schwegler, Z. Siwy, Y. Wang, and M. Strano, Critical Knowledge Gaps in Mass Transport through Single-Digit Nanopores: A Review and Perspective, The Journal of Physical Chemistry C 123, 21399 (2019)

[2] L. Bocquet, Nanofluidics coming of age, Nature Materials 19, 254 (2020)

[3] P. Robin, N. Kavokine, and L. Bocquet, Modeling of emergent memory and voltage spiking in ionic transport through angstrom-scale slits, Science 373, 687 (2021)

[4] B. Radha, A. Esfandiar, F. C. Wang, A. P. Rooney, K. Gopinadhan, A. Keerthi, A. Mishchenko, A. Janardanan, P. Blake, L. Fumagalli, M. Lozada-Hidalgo, S. Garaj, S. J. Haigh, I. V. Grigorieva, H. A. Wu, and A. K. Geim, Molecular transport through capillaries made with atomic-scale precision, Nature 538, 222 (2016)

[5] L. Fumagalli, A. Esfandiar, R. Fabregas, S. Hu, P. Ares, A. Janardanan, Q. Yang, B. Radha, T. Taniguchi, K. Watanabe, G. Gomila, K. S. Novoselov, and A. K. Geim, Anomalously low dielectric constant of confined water, Science 360, 1339 (2018)

[6] N. Kavokine, S. Marbach, A. Siria, and L. Bocquet, Ionic coulomb blockade as a fractional wien effect, Nature Nanotechnology 14, 573 (2019)

[7] F. Z. Sun, M. Yagmurcukardes, R. Zhang, W. J. Kuang, M. Lozada-Hidalgo, B. L. Liu, H.-M. Cheng, F. C. Wang, F. M. Peeters, I. V. Grigorieva, and A. K. Geim, Exponentially selective molecular sieving through angstrom pores, Nature Communications 12, 7170 (2021)

[8] J. Feng, M. Graf, K. Liu, D. Ovchinnikov, D. Dunencro, M. Heiranian, V. Nandigana, N. R. Aluru, A. Kis, and A. Radenovic, Single-layer MoS2 nanopores as nanopower generators, Nature 536, 197 (2016)

[9] Y. Fu, S. Su, N. Zhang, Y. Wang, X. Guo, and J. Xue, Dehydration-Determined Ion Selectivity of Graphene Subnanopores, ACS Applied Materials & Interfaces 12, 24281 (2020)

[10] N. Kavokine, R. R. Netz, and L. Bocquet, Fluids at the Nanoscale: From Continuum to Subcontinuum Transport, Annual Review of Fluid Mechanics 53, 377 (2021)

[11] T. A. Fulton and G. J. Dolan, Observation of single-electron charging effects in small tunnel junctions, Physical Review Letters 59, 109 (1987)

[12] L. Clarke, M. N. Wybourne, M. Yan, S. X. Cai, and J. F. W. Keana, Transport in gold cluster structures defined by electron-beam lithography, Applied Physics Letters 71, 617 (1997)

[13] M. Krems and M. Di Ventra, Ionic Coulomb blockade in nanopores, Journal of Physics: Condensed Matter 25, 065101 (2013)

[14] I. K. Kaufman, P. V. E. McClintock, and R. S. Eisenberg, Coulomb blockade model of permeation and selectivity in biological ion channels, New Journal of Physics 17, 083021 (2015)

[15] A. Chernev, S. Marion, and A. Radenovic, Prospects of Observing Ionic Coulomb Blockade in Artificial Ion Confinements, Entropy 22, 1430 (2020)

[16] I. Kaufman, D. G. Luchinsky, R. Tindjong, P. V. E. McClintock, and R. S. Eisenberg, Multi-ion conduction bands in a simple model of calcium ion channels, Physical Biology 10, 026007 (2013)

[17] M. L. Barabash, W. A. T. Gibby, C. Guardiani, A. Smolyanitsky, D. G. Luchinsky, and P. V. E. McClintock, Origin and control of ionic hydration patterns in nanopores, Communications Materials 2, 65 (2021)

[18] A. Parsegian, Energy of an Ion crossing a Low Dielectric Membrane: Solutions to Four Relevant Electrostatic Problems, Nature 221, 844 (1969)

[19] S. Teber, Translocation energy of ions in nano-channels of cell membranes, Journal of Statistical Mechanics: Theory and Experiment 2005, P07001 (2005)

[20] N. Kavokine, P. Robin, and L. Bocquet, Interaction confinement and electronic screening in two-dimensional nanofluidic channels, The Journal of Chemical Physics 157, 114703 (2022)

[21] B. Coquinot, L. Bocquet, and N. Kavokine, Quantum feedback at the solid-liquid interface: flow-induced electronic current and negative friction (2022), arXiv:2205.03250 [cond-mat].

[22] C. Cheng, S. A. Iyengar, and R. Karnik, Molecular size-dependent subcontinuum solvent permeation and ultrafast nanofiltration across nanoporous graphene membranes, Nature Nanotechnology 10.1038/s41565-021-00933-0 (2021).

[23] T. Jain, B. C. Rasera, R. J. S. Guerrero, M. S. H. Boutilier, S. C. O’Hern, J.-C. Idristro, and R. Karnik, Heterogeneous sub-continuum ion transport in statistically isolated graphene nanopores, Nature Nanotechnology 10.1053 (2015)

[24] J. Lu, H. Xu, H. Yu, X. Hu, J. Xia, Y. Zhu, F. Wang, H.-A. Wu, L. Jiang, and H. Wang, Ultrafast rectifying counter-directional transport of proton and metal ions in metal-organic-framework-based nanochannels, Science Advances 8, eabl5070 (2022)

[25] M. E. Suk and N. R. Aluru, Ion transport in sub-5-nm graphene nanopores, The Journal of Chemical Physics 140, 084707 (2014)

[26] Q. Wen, D. Yan, F. Liu, M. Wang, Y. Ling, P. Wang, P. Kluth, D. Schauries, C. Trautmann, P. Apel, W. Guo, G. Xiao, J. Liu, J. Xue, and Y. Wang, Highly Selective Ionic Transport through Subnanometer Pores in Polymer Films, Advanced Functional Materials 26, 5796 (2016)

[27] P. Wang, M. Wang, F. Liu, S. Ding, X. Wang, G. Du, J. Liu, P. Apel, P. Kluth, C. Trautmann, and Y. Wang, Ultrafast ion sieving using nanoporous polymeric membranes, Nature Communications 9, 569 (2018)

[28] S. Brunauer, P. H. Emmett, and E. Teller, Adsorption of Gases in Multimolecular Layers, The Journal of the American Chemical Society 60, 309 (1938)

[29] K.-J. Chen, D. G. Madden, S. Mukherjee, T. Pham, K. A. Forrest, A. Kumar, B. Space, J. Kong, Q.-Y. Zhang, and M. J. Zaworotko, Synergistic sorbent separation for one-step ethylene purification from a four-component mixture, Science 366, 241 (2019)

[30] S. Wu, Y. Cheng, J. Ma, Q. Huang, Y. Dong, J. Duan, D. Mo, Y. Sun, J. Liu, and H. Yao, Preparation and ion separation properties of sub-nanoporous PES membrane with high chemical resistance, Journal of Membrane Science 635, 119467 (2021)

[31] Y. Cheng, Y. Dong, Q. Huang, K. Huang, S. Lyu, Y. Chen, J. Duan, D. Mo, Y. Sun, J. Liu, Y. Peng, and H. Yao, Ionic Transport and Sieving Properties of Subnanoporous Polymer Membranes with Tunable Channel Size, ACS Applied Materials & Interfaces 13, 9015 (2021)

[32] X. Wang, S. Dutt, C. Notthoff, A. Kiy, P. Mota-Santiago, S. T. Mudie, M. E. Toimil-Molares, F. Liu, Y. Wang, and
P. Kluth, SAXS data modelling for the characterisation of ion tracks in polymers, *Physical Chemistry Chemical Physics* **24**, 9345 (2022).

[33] P. Y. Apel, I. Blonskaya, T. Cornelius, R. Neumann, R. Spohr, K. Schwartz, V. Skuratov, and C. Trautmann, Influence of temperature during irradiation on the structure of latent track in polycarbonate, *Radiation Measurements* **44**, 759 (2009).

[34] Z. Zhu, Y. Maekawa, Q. Liu, and M. Yoshida, Influence of UV light illumination on latent track structure in PET, *Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms* **236**, 61 (2005).

[35] P. Y. Apel, I. Blonskaya, O. Ivanov, O. Kristavchuk, A. Nechaev, K. Olejniczak, O. Orelovich, O. Polezhaeva, and S. Dmitriev, Do the soft-etched and UV-track membranes actually have uniform cylindrical subnanometer channels?, *Radiation Physics and Chemistry* **198**, 110266 (2022).

[36] M. H. Ali Haider, S. Nasir, M. Ali, P. Ramirez, J. Cervera, S. Mafe, and W. Ensinger, Osmotic energy harvesting with soft-etched nanoporous polyimide membranes, *Materials Today Energy* **23**, 100909 (2022).

[37] D. Stein, M. Kruithof, and C. Dekker, Surface-Charge-Governed Ion Transport in Nanofluidic Channels, *Physical Review Letters* **93**, 035501 (2004).

[38] R. Qiao and N. R. Aluru, Atypical Dependence of Electroosmotic Transport on Surface Charge in a Single-wall Carbon Nanotube, *Nano Letters* **3**, 1013 (2003).

[39] Y. Xie, L. Fu, T. Niehaus, and L. Joly, Liquid-Solid Slip of Activation Energies of Proton Transfer in Various Gramicidin A Channels, *Biophysical Journal* **82**, 182 (2002).

[40] A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, *The Journal of Physiology* **117**, 500 (1952).

[41] A. Chernyshev and S. Cukierman, Thermodynamic View on Charged Walls actually have uniform cylindrical subnanometer channels?, *Radiation Physics and Chemistry* **198**, 110266 (2022).

[42] L. Bocquet and E. Charlaix, Nanofluidics, from bulk to interfaces, *Chem. Soc. Rev.* **39**, 1073 (2010).

[43] A. Chernyshev and S. Cukierman, Thermodynamic View on Activation Energies of Proton Transfer in Various Gramicidin A Channels, *Biophysical Journal* **82**, 182 (2002).

[44] S. Hu, K. Gopinadhan, A. Rakowski, M. Neek-Amal, T. Heine, I. V. Grigorieva, S. J. Haigh, F. M. Peeters, A. K. Geim, and M. Lozada-Hidalgo, Transport of hydrogen isotopes through interlayer spacing in van der Waals crystals, *Nature Nanotechnology* **13**, 468 (2018).

[45] Y. Ma, J. Guo, L. Jia, and Y. Xie, Entrance Effects Induced Rectified Ionic Transport in a Nanopore/Channel, *ACS Sensors* **3**, 167 (2018).

[46] M. Macha, S. Marion, V. R. Randigiana, and A. Radenovic, 2D materials as an emerging platform for nanopore-based power generation, *Nature Reviews Materials* **4**, 588 (2019).

[47] W. Zhao, Y. Sun, W. Zhu, J. Jiang, X. Zhao, D. Lin, W. Xu, X. Duan, J. S. Francisco, and X. C. Zeng, Two-dimensional monolayer salt nanostructures can spontaneously aggregate rather than dissolve in dilute aqueous solutions, *Nature Communications* **12**, 5602 (2021).

[48] N. Nicholson and N. Quirke, Ion Pairing in Confined Electrolytes, *Molecular Simulation* **29**, 287 (2003).

[49] V. Neklyudov and V. Freger, Putting together the puzzle of ion transfer in single-digit carbon nanotubes: mean-field meets ab initio, *Nanoscale* **14**, 8677 (2022).

[50] F. Aydin, A. Moradzadeh, C. L. Bilodeau, E. Y. Lau, E. Schwegler, N. R. Ahru, and T. A. Pham, Ion solvation and transport in narrow carbon nanotubes: Effects of polarizability, cation π interaction, and confinement, *Journal of Chemical Theory and Computation* **17**, 1596 (2021).

[51] T. J. Yoon, L. A. Patel, M. J. Vigil, K. A. Maerzke, A. T. Findikoglu, and R. P. Currier, Electrical conductivity, ion pairing, and ion self-diffusion in aqueous NaCl solutions at elevated temperatures and pressures, *The Journal of Chemical Physics* **151**, 224504 (2019).

[52] S. H. Behrens and D. G. Grier, The charge of glass and silica surfaces, *The Journal of Chemical Physics* **115**, 6716 (2001).

[53] C.-Y. Lin, L.-H. Yeh, and Z. S. Siwy, Voltage-Induced Modulation of Ionic Concentrations and Ion Current Rectification in Mesopores with Highly Charged Pore Walls, *The Journal of Physical Chemistry Letters* **9**, 393 (2018).

[54] M. Bostrom, D. R. M. Williams, and B. W. Ninham, Specific ion effects: Role of salt and buffer in protonation of cytochrome c, *The European Physical Journal E* **13**, 239 (2004).

[55] J. Zhang, A. Kamenev, and B. I. Shklovskii, Conductance of Ion Channels and Nanopores with Charged Walls: A Toy Model, *Physical Review Letters* **95**, 148101 (2005).

[56] J. Zhang, A. Kamenev, and B. I. Shklovskii, Ion exchange phase transitions in water-filled channels with charged walls, *Physical Review E* **73**, 051205 (2006).