Identification of 22 N-glycosites on spike glycoprotein of SARS-CoV-2 and accessible surface glycopeptide motifs: Implications for vaccination and antibody therapeutics

Dapeng Zhou 1,2,*,†, Xiaoxu Tian 3,†, Ruibing Qi 4, Chao Peng 3,*, and Wen Zhang 5,6, *

1 Tongji University School of Medicine, 1239 Siping Road, Shanghai 200092, China, 2 Shanghai Pudong New Area Mental Health Center affiliated with Tongji University School of Medicine, 165 Sanlin Road, Shanghai 200124, China, 3 National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, 333 Haike Road, Shanghai 201210, China, 4 Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, 518 Ziyue Road, Shanghai 200241, China, 5 Fudan University Pudong Medical Center, Institutes of Biomedical Sciences, 200433 Gongwei Road, Shanghai, China, and 6 Department of Systems Biology for Medicine, Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China

* To whom correspondence should be addressed: Tel: +86-2165983607; e-mail: dapengzhoulab@tongji.edu.cn
† These authors contributed equally to this work.

Received 8 April 2020; Revised 28 May 2020; Editorial Decision 28 May 2020; Accepted 1 June 2020

Abstract

Coronaviruses hijack human enzymes to assemble the sugar coat on their spike glycoproteins. The mechanisms by which human antibodies may recognize the antigenic viral peptide epitopes hidden by the sugar coat are unknown. Glycosylation by insect cells differs from the native form produced in human cells, but insect cell-derived influenza vaccines have been approved by the US Food and Drug Administration. In this study, we analyzed recombinant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein secreted from BTI-Tn-5B1-4 insect cells, by trypsin and chymotrypsin digestion followed by mass spectrometry analysis. We acquired tandem mass spectrometry (MS/MS) spectrums for glycopeptides of all 22 predicted N-glycosylated sites. We further analyzed the surface accessibility of spike proteins according to cryogenic electron microscopy and homolog-modeled structures and available antibodies that bind to SARS-CoV-1. All 22 N-glycosylated sites of SARS-CoV-2 are modified by high-mannose N-glycans. MS/MS fragmentation clearly established the glycopeptide identities. Electron densities of glycans cover most of the spike receptor-binding domain of SARS-CoV-2, except YQAGSTPCNVEGFNCYFPLQSYGFOPTNGVGYQ, similar to a region FSPDGKPCPTPALNCYWPLNDYGFYTGTGIGYQ in SARS-CoV-1. Other surface-exposed domains include those located on central helix, connecting region, heptad repeats and N-terminal domain. Because the majority of antibody paratopes bind to the peptide portion with or without sugar modification, we propose a snake-catching model for predicted paratopes: a minimal length of peptide is first clamped by a paratope and sugar modifications close to the peptide either strengthen or do not hinder the binding.

Key words: antibody, cryogenic electron microscopy structure, crystal structures, epitope prediction, glycopeptide/SARS-CoV-2
Introduction

Spike proteins are located on the surface of coronaviruses and serve as entry proteins for infection (Xu et al. 2004). The spike molecules form trimers, which must be cleaved by cellular proteases so that the fusion peptide can facilitate the fusion of virus membrane with the infected cells. The proteases generate S1 and S2 subunits from spike molecules, and the S1 subunit contains the critical receptor-binding domain to bind the ACE2 receptor on host cells. The receptor-binding motif of the receptor-binding domain, rich in tyrosine, forms direct contacts with ACE2. Fusion of the virus with host cells involves several other critical structures of the spike protein, including central helix and heptad repeat 1 and 2 domains.

Spike glycoproteins are major targets for vaccine design and antibody-based therapies for coronaviruses, including Middle East respiratory syndrome coronavirus; severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1), which caused a multicity outbreak in 2002–2003; and SARS-CoV-2, which is responsible for a pandemic beginning in 2019. Several antibodies targeting spike proteins of SARS-CoV-1 have shown promising efficacy in preclinical trials (Berry et al. 2010; Bian et al. 2009; Greenough et al. 2005; He et al. 2010; Pak et al. 2009; Prabakaran et al. 2006; Traggiai et al. 2004; van den Brink et al. 2005; Zhu et al. 2007). The receptor-binding domain region of the SARS-CoV-1 spike protein is highly conserved in SARS-CoV-1 and SARS-CoV-2 and N-glycosylation sites for spike protein of coronaviruses are major targets for vaccine design and antibody-based therapies for coronaviruses.

To identify surface-exposed epitopes for antibody recognition and vaccination, the spike protein of SARS-CoV-2 contains 22 N-glycosylation sites (in yellow in Figure 2D). When trimeric structures of the S protein of SARS-CoV-1 and SARS-CoV-2 are aligned (root-mean-square deviation, ∼1.32 Å), the structures are very similar except for a few loops, such as those at the N-terminal of the NTD (Supplementary Figure 3). Sequence alignment and structural comparison revealed that the predicted glycosylation sites are highly conserved. Fourteen of 22 sites were observed by cryogenic electron microscopy for the SARS-CoV-1 S protein, and most predicted sites of SARS-CoV-2 are located similarly to SARS-CoV-1 (Figure 2E). The receptor-binding domains were overall highly conserved with sequence identity (74.5%), structure (root-mean-square deviation, ∼1.14 Å) and two identical glycosylation sites near the N-terminal (Figure 2E), whereas its neighboring fragments were covered or interacting with glycosylation. This region free of glycosylation is favorable for ACE2 and other protein binding (Figure 2G).

Results

N-glycosylation sites for spike protein of coronaviruses

A total of 22 N-glycosylation sites were found in the recombinant spike protein of SARS-CoV-2 secreted from BTI-Tn-5B1-4 insect cells (Figure 1). All 22 N-glycosites were confirmed by fragment ions of glycan moieties and characteristic by ions derived from peptide backbones (Supplementary Figures 1 and 2). Among them, eight are located in the N-terminal domain (NTD), two (N331 and N343) are located in the receptor-binding domain but are outside of the receptor-binding motif (limited to amino acids 438–506), and three are located in the rest of the S1 subunit. Nine are located in the S2 subunit. The glycosylation pattern of the spike protein is highly conserved in SARS-CoV-1, SARS-CoV-2 and Middle East respiratory syndrome coronavirus. The N-terminal and heptad repeat 2 domains are densely glycosylated. The fusion peptide domain is neighbor of N-glycosite N657. In contrast, the receptor-binding motif, central helix domain, and heptad repeat 1 domain are free of glycosylation. The majority of N-glycan moieties are a high-mannose type (Supplementary Table SII), which is consistent with the glycosylation pathway of the BTI-Tn-5B1-4 insect cell line used to produce the recombinant spike protein. To evaluate the efficiency of glycosylation at every N-glycosite, we calculated the relative ion abundance of glycopeptide and nonglycosylated sequences generated by trypsin and chymotrypsin digestion. All 22 N-glycosylation sites were occupied by N-glycans (Supplementary Table SIII). For 18 of the 22 N-glycosites, more than 90% of ions were glycosylated peptides. For N-glycosites 331, 1074, 1158 and 1173, more than 80% of ions were glycosylated peptides. We also searched for the O-glycosylated glycopeptides (Supplementary Supplementary Table SIV). Preliminary analysis indicated that the ion abundance of O-glycopeptide sequences was less than 3% as compared with nonglycosylated sequences for all predicted O-glycosites (T323, T325, S678, S673 and S686).

By cryogenic electron microscopy structure modeling (Protein Data Bank [PDB]: 5X58) of the SARS-CoV-1 spike protein, 14 sites of N-glycosylation were observed. The Asn-GlcNAc groups were identified at the reducing end of the glycans at atomic resolution (PDB: 5X58, 3.2 Å), and the density maps of extending glycan chains were still visible although the density was relatively weak (Figure 2A–C). The receptor-binding domain region of the SARS-CoV-1 spike protein is densely covered by glycans except FSPDGKCPPTPALNCYWPLNDYGFTTTGIGYQQ, which overlaps with a previously identified “Achilles heel” (i.e., vulnerable spot) for antibody binding (Berry et al. 2010).

The spike protein of SARS-CoV-2 contains 22 N-glycosylation sites (in yellow in Figure 2D). When trimeric structures of the S protein of SARS-CoV-1 and SARS-CoV-2 are aligned (root-mean-square deviation, ∼1.32 Å), the structures are very similar except for a few loops, such as those at the N-terminal of the NTD (Supplementary Figure 3). Sequence alignment and structural comparison revealed that the predicted glycosylation sites are highly conserved. Fourteen of 22 sites were observed by cryogenic electron microscopy for the SARS-CoV-1 S protein, and most predicted sites of SARS-CoV-2 are located similarly to SARS-CoV-1 (Figure 2E). The receptor-binding domains were overall highly conserved with sequence identity (74.5%), structure (root-mean-square deviation, ∼1.14 Å) and two identical glycosylation sites near the N-terminal (Figure 2E), whereas its neighboring fragments were covered or interacting with glycosylation. This region free of glycosylation is favorable for ACE2 and other protein binding (Figure 2G).

Accessible surface area calculated according to electron density of glycans on spike proteins of SARS-CoV-1 and SARS-CoV-2

Accessible surface area profiling was used for predicting epitopes for monoclonal antibodies (MAbs) (Supplementary Figure 4). Candidate epitopes are listed in Table I and Figure 3. In addition to receptor-binding domains, multiple potential candidate epitopes were found from amino acid sequences at fusion peptide, heptad repeat 1 and central helix domains. Similar sites were found in receptor-binding domains and central helix domains of both viruses (Figure 3). However, unique sites were also found for each virus. For example, a unique epitope existing in SARS-CoV-2, but not
Fig. 1. N-glycosylation sites of SARS-CoV-2 (2019-nCoV). The arrows represent the protease cleavage of S1 and S2 subunits. CH, central helix; FP, fusion peptide; HR, heptad repeat; MERS, Middle East respiratory syndrome coronavirus; NTD, N-terminal domain; RBD, receptor-binding domain.

in SARS-CoV-1, is the RARR (682–685) site for furin recognition (Supplementary Figure 5).

To evaluate the conservation of spike epitopes on a structural level, we further aligned the epitopes of SARS-CoV-1 and SARS-CoV-2 based on cryogenic electron microscopy structures. Eleven predicted epitope pairs were found in receptor-binding domain, heptad repeat 1, and central helix (Table II, Figure 4, and Supplementary Figure 6). Two structurally conserved epitope pairs (AH1/ah1 and AH2/ah2) were predicted at the Achilles heel region which interacts with ACE2 (Table II). We also identified two conserved epitope pairs located on the surface of the receptor-binding domain but outside the ACE2-binding region (I/i and II/ii). Epitope pair II/ii has been proven to be a target for recognition by MAb S309 (Pinto et al. 2020), a potent neutralization antibody with half-maximal inhibitory concentration (IC50) at 69 ng/mL.

Discussion

Neutralizing antibodies toward spike proteins are critical for protective immunity. Traggiai et al. (2004) reported spike-specific MAbs isolated from a patient who recovered from SARS-CoV-1 infection, with in vitro neutralizing activity ranging from 10^{-8} to 10^{-11} M. Several other groups have reported MAbs targeting spike (Berry et al. 2010; Bian et al. 2009; Greenough et al. 2005; He et al. 2006; He et al. 2005; Ishii et al. 2009; Miyoshi-Akiyama et al. 2011; Rockx et al. 2008; Sui et al. 2014; Sui et al. 2005; ter Meulen et al. 2006; van den Brink et al. 2005; Zhu et al. 2007). Spike protein has also been the focus for vaccine development. For example, mice vaccinated with DNA or subunit vaccines composed of spike proteins (or receptor-binding domain of spike proteins) and adjuvants had high titers of immunoglobulin G antibodies and were protected from SARS-CoV-1 or Middle East respiratory syndrome coronavirus infection (Du et al. 2010; Du et al. 2007; Honda-Oukuto et al. 2015; Iwata-Yoshikawa et al. 2014; Li et al. 2013; Lu et al. 2012; Sekimikau et al. 2020; Yang et al. 2004; Zhao et al. 2014). Toll-like receptor ligands, delta inulin, and monophosphoryl lipid A were reported as effective adjuvants to be combined with subunit vaccines. However, to avoid the use of adjuvant, inactivated SARS-CoV-1 or recombinant adenovirus-associated virus encoding the receptor-binding domain of the SARS-CoV-1 spike protein has also been studied; these induced potent protective antibody responses against infection (Du et al. 2008; Okada et al. 2003; See et al. 2006; Spruth et al. 2006). The safety and efficacy of antibody therapeutics and vaccines in human clinical trials remain to be studied, as well as the mechanisms for specific vaccine components and formulations. For example, pulmonary pathology was reported when alum was used as an adjuvant for a spike protein subunit vaccine (Tseng et al. 2012). Antibody-induced lung injury was also reported in a macaque model of SARS-CoV-1 infection (Liu et al. 2019), which highlights the importance of avoiding antibody-mediated inflammation.

The receptor-binding domain has been a major focus for antibody and vaccine studies. Three antibodies, 80R, m396 and F26G19, complexed with the receptor-binding domain of SARS-CoV-1 have been co-crystallized (Hwang et al. 2006; Pak et al. 2009; Prabakaran et al. 2006). All three antibodies recognize noncontinuous, conformational epitopes (Supplementary Table SI). Several MAbs clones that recognize linear continuous peptide sequences have also been reported...
Fig. 2. The spike structures of SARS-CoV-1 and SARS-CoV-2. (A) The SARS-CoV-1 spike protein structure (green, Protein Data Bank [PDB]:5X58) and its density map (yellow) with Asn-linked GlcNAc (pink) from the solvent side view. (B) Top view with surface area of receptor-binding domain (RBD) (the Achilles heel, AH, blue) exposed in solvent. (C) The typical GlcNAc and its density map, indicated with arrows, extending to outside solvent or neighboring amino acids. (D) Structure comparison of S proteins between the SARS-CoV-2 (green, middle, PDB: 6VSB) and corresponding structure model (cyan, middle) with glycosylation sequons (residues not including GlcNAc, yellow spheres) and RBD highlighted (deep blue). GlcNAc for SARS-CoV-2 (red spheres, middle) and GlcNAc for SARS-CoV-1 (pink sphere, middle) were highlighted. (E) Structure comparison between SARS-CoV-1 (middle, wheat color) and SARS-CoV-2 protein model (cyan); glycosylation sequons of SARS-CoV-2 (residues not including GlcNAc, yellow spheres); GlcNAc for SARS-CoV-1 (pink sphere) were highlighted. (F) The comparison of RBDs (dashed line circled on SARS-CoV-2 S protein) between SARS-CoV-1 S protein (RBD: orange) and SARS-CoV-2 protein (RBD: deep blue) with AH surface map (light blue). Note: the glycosylation sequons from SARS-CoV-1 and SARS-CoV-2 S proteins are surrounding the RBD. (G) AH fragment (sphere) of RBD (orange) in close-up view (dashed line circled part). The interface residues (spheres in deep blue) between SARS-CoV-1 S protein (wheat color, RBD highlighted as brown) and ACE2 (yellow) from the complex structure (PDB:6ACJ). Note: the interface is exactly located on the AH fragment (brown spheres) of the complex structure (4.2 Å cryogenic electron microscopy structure).
Table I. Surface-exposed amino acid sequences of SARS-CoV-1 and SARS-CoV-2 (2019-nCoV)

Sites	Epitope details	Nearby N-glycosite	Monoclonal antibody clone	Ref
SARS-CoV-2				
L18-29	18LTTRTQLPPAYT29		17NLT	
G72-75	72GTNG75		74NGT	
L110-13	110LDK113		122NAT	
Y144-48	144YHK1148		149NKS	
W152-58	152WMESEFR158		149NKS	
A163-66	163ANNC166		165NCT	
E169-77	169EYVSQFLM177			
G181-84	181GKQG184			
K206-15	206KHTPINLVRD215			
R246-56	246RSYLPGDSSS256		234NIT	(He et al. 2005)
L270-74	270LQPR274		282NGT	
L303-06	303LKSF306			
P330-36	330PNITNL336	RBD	331NIT	(Pinto et al. 2020)
A344-47	344ATRF347	RBD	343NAT	S309
P384-87	384PTKL387	RBD		
G413-16	413GQTG416	RBD		
S443-51	443SKVG 446,448 NYNY451	RBD	4D5	(Pinto et al. 2020)
L455-463	455LFKSNLKP463	RBD		
G476-490	476GSTPC 480,482	RBD		
Q498-506	498QPTNGVGYQ506	RBD	201	(Greenough et al. 2005)
L518-21	518LHAP521	RBD		
P527-33	527PKSTNL533			
S555-62	555SNKFLPE562			
Q580-83	580QTE583			
N603-07	603NTSNQ607	603NTS,616NCT		
W633-36	633WRVY636	657NNS		
E654-62	654EHVNNSYEC662			
Y674-87	674YQQTNSPRRARSV687	RBD		
Y707-71	707YSNN710	709NNS		
S746-51	746STEC751			
D808-14	808PSKP814			
T827-83	827TLAD830			
I834-54	834IKQYG 838,840	CR		
	CLGDIARDLICAQK854			
T866-69	866TDEM869	CR		
Q920-23	920QKLI923	HR1		
D936-44	936DSLSTASA944	HR1		
K986-91	986KVEA9991	CH		
A1070-76	1070AQEKTF1076		1074NFT	
T1100-03	1100THF1103	1098NGT		
Q1113-18	1113QHTTT1118			
C1126-29	1126CDV1129		1134NNT	
V1133-37	1133VNN1137		1134NNT	
SARS-CoV-1				
R18-31	18RCTTFDDVQAPNYT31		29NYT	(Greenough et al. 2005)
K142-15	142KPMG145,146QTH150	158NCT	68	
S165-17	165SDAFSL170	158NCT		
E174-77	174EKS177	158NCT		
V205-08	205VVRD208	269NGT		
L257-26	257LKPT260			
I319-23	319TNLC323	RBD	318NIT	

(Continued)
Table I. Continued

Sites	Epitope details	Nearby N-glycosite	Monoclonal antibody clone	Ref	
A331-34	331ATKF334	RBD	330NAT	S309	(Pinto et al. 2020)
R342-47	342RRKIN347	RBD	357NST		
T425-28	425TRN428	RBD			
P462-76	462PDKPCP47PALNCYW476	RBD			
Y484-92	484YTTTGI6YQ492	RBD			
P513-22	513PKLSTDLJKN522		589NASSEV594		
N589-94	589NASEV594				
I610-14	610IHADE614		602NCT	F26G8	(Berry et al. 2010)
Y622-27	622YSTGNN627				
E640-48	640EHVDFESC648				
H661-73	661HTE662,672KS673				
P789-97	789PDPKPTKR797		783NFS	SH10	(Miyoshi-Akiyama et al. 2011)
Q917-26	917QESSLTTTA926	HR1			
N935-39	935NQAQ939	HR1			
K968-73	968KVEAEV973	CH			
C1064-69	1064CHEGKA1069				
G1081-84	1081GTSW1084		1056NFT		
Q1095-00	1095QITT1100		1080NGT		

CH, central helix; CR, connecting region; HR, heptad repeat; RBD, receptor-binding domain.

(4D5, 17H9, F26G18 and 201), although co-crystal structures are not available yet.

In this study, we identified the accessible surface area profiling of the receptor-binding domain of SARS-CoV-2 and found a vulnerable region, YQAGSTPCNGVEGFNCYFPLQSYGFQPT-NGVGYQ. Previously, the structural counterpart of this region was termed the Achilles heel of SARS-CoV-1 (Berry et al. 2010). It mostly overlaps with the interface between ACE2 and S protein (Figure 2G). For SARS-CoV-1, multiple MAbs targeting its Achilles heel have been generated, including F26G18, 4D5, CR3006, m396, FM39, CR3014, F26G19 and 80R (Supplementary Table SI). For antibody and vaccine development, ongoing studies are focusing on epitopes at the Achilles heel of SARS-CoV-2, especially ah1 and ah2 sites (listed in Table II and Figure 4), which directly interact with ACE2.

However, neutralizing antibodies that do not directly compete with ACE2 binding also exist in recovered SARS-CoV-1 and SARS-CoV-2 patients; for example, the CR3022 MAb neutralizes SARS-CoV-1 but not SARS-CoV-2 (Yuan et al. 2020). The S309 MAb isolated from a SARS-CoV-1 patient neutralizes both SARS-CoV-1 and SARS-CoV-2, and structural analysis revealed its epitope to be a glycopeptide sequence located on the N343 glycosite. Notably, this is exactly in structurally conserved regions as we predicted for the II/ii epitope pair (Table II). Clearly, other epitope pairs predicted in our study are candidate targets to isolate neutralizing antibodies as well.

It is well known that predicted epitopes of protein antigens may be masked by glycosylation. Complex datasets and algorithms, such as spatial epitope prediction for protein antigens 3.0, have been developed, which are based on training parameters related to interactions of glycans and surrounding amino acids (Kong et al. 2015). However, no experimental data are available on the effect of glycosylation on epitope surfaces. With the recent breakthrough by high-resolution cryogenic electron microscopy, many glycoproteins can be solved and modeled with glycosylation sites. Here we directly exploit experimental data of the SARS-CoV-1 spike protein from high-resolution cryogenic electron microscopy and screened epitopes for the SARS-CoV-2 spike protein by accessible surface area profiling based on homology-modeled structures. By this approach, we have identified an Achilles heel of SARS-CoV-2, as well as multiple other surface-exposed epitopes within and outside the receptor-binding domain. For example, in the NTD of the SARS-CoV-1 spike protein, MAbs specific for linear epitopes have been reported (Supplementary Table SI) (Greenough et al. 2005). MAbs specific to other regions of the S1 and S2 subunits of SARS-CoV spike proteins were also reported (Miyoshi-Akiyama et al. 2011). As summarized in Table I, promising antibody binding sites within and outside the receptor-binding domain have been identified for SARS-CoV-2; our future investigations will focus on vaccination studies to validate their function as neutralizing epitopes with preventive and therapeutic effects in virus challenge experiments.

Dense glycosylation of glycoproteins is a well-known strategy used by viruses to conceal surface peptide epitopes that would otherwise elicit antibody responses, as exemplified by the Env protein of human immunodeficiency virus 1. However, after decades of effort, MAbs that bind to conformational epitopes on the surface of the Env protein have been identified (Garces et al. 2015; Kong et al. 2015; Kong et al. 2013). Most of these antibodies bind to the N-glycan portion neighboring the peptide epitopes, whereas some antibodies such as MAb 8ANC195 have evolved to recognize peptide...
epitopes with no dependence on glycan binding (Kong et al. 2015). For antibodies specific to spike glycoproteins, there are no data available whether their recognition is hindered by the glycosylation of spike. However, antibodies that bind to both peptide and sugar portions of spike glycopeptides exist, such as MAb S309 that binds to a glycopeptide epitope on the N343 glycosylation site (Pinto et al. 2020). We propose a “snake catching” model: A snake-like epitope is elusive and difficult for an antibody to “catch” because of the highly mobile, “wiggly” sugar chains that hide the peptide portion. Therefore, to overcome the sugar barrier, a minimum length of peptide portion, either conformational or linear continuous, must first be clamped by a paratope. This clamping effect may either be strengthened by sugars close to the peptide epitope or not hindered by sugar modification. Clearly, surface-exposed glycopeptide motifs are critical for vaccine design.

In summary, our study clearly identified, by MS, all of the 22 N-glycosites of the SARS-CoV-2 spike protein. We have identified a list of linear surface-exposed candidate epitopes in the spike proteins of SARS-CoV-1 and SARS-CoV-2 and demonstrated the advantages of studying the effects of glycosylation with real cryogenic electron microscopy data. These candidate epitopes are critical for screening for MAb therapeutics to treat SARS-CoV-2, as well as mechanistic studies on vaccine development.

Material and methods

Prediction of glycosylation sites

Spike proteins for SARS-CoV-2 (GenBank Accession Number: MN908947), SARS-CoV-1 (AB263618), and Middle East respiratory syndrome virus (KM027290) were predicted by NetNGlyc. The sequence identity of the spike proteins between SARS-CoV-2 and SARS-CoV-1 is as high as 84%, which is sufficient to build an accurate homolog model. The sequence of MN908947 was submitted to SWISS-MODEL, and the structural model was built against all available homolog structures as templates. One stable conformation of trimer structure models for SARS-CoV-2 is very close to the spike protein structure from SARS-CoV-1 (PDB: 5X58), and their root-mean-square deviation of a single protein chain is approximately 1.32 Å upon superimposition and comparison in PyMOL (Figure 2D and E).

Expression of a recombinant SARS-CoV-2 spike protein secreted by insect cells

Recombinant baculovirus was generated by a FastBac1 donor vector and DH10Bac Escherichia coli strain (Thermo-Fisher Scientific, San Jose, CA). The signal peptide and secretion signal of the spike protein...
Fig. 3. Surface-exposed amino acid sequences predicted by accessible surface area profiling and glycosylation effect with cryogenic electron microscopy structure. Furin site (red star), N-glycosylation sites(*), epitopes for SARS-CoV-1 (green), and SARS-CoV-2 (cyan). CH, central helix; CR, connecting region; FP, fusion peptide; HR, heptad repeat; RBD, receptor-binding domain.
Fig. 4. Alignment of 11 predicted epitope pairs on the spike protein structure of SARS-CoV-1 and SARS-CoV-2. In A and B, four epitope pairs S1/n1, S2/n2, S3/n3 and S4/n4 located on surface of spike proteins’ heptad repeat (HR1) and central helix (CH) region were compared between SARS-CoV-1 (epitopes in red) and SARS-CoV-2 S proteins (epitopes in orange, or marine blue for site n3). In (C), (D) and (E), seven epitope pairs I/i–IV/iv, AH1/ah1, AH2/ah2 and g1/g2 are compared. The amino acid sequence alignment around Achilles heel (AH) is shown as reference on the top of panel C/D/E (in the same settings as Figure 3). Amino acid sequences of all eleven epitope pairs are listed in Table II. (A) SARS-CoV-1 trimer (in green, chain A specifically in sky blue) with Asn-linked GlcNAc (pink at chain A, light pink from other chains) and their interacting amino acids (yellow); the detailed SARS-CoV-1 trimer is shown as reference between panel A and B, highlighted with the surface map of fusion peptide (red), HR1(yellow), CH(brown), and receptor-binding domain (RBD; deep blue). (B) SARS-CoV-2 trimer (in cyan, with RBD of chain A marked as red). (C) Top solvent view of the RBD located at one side of trimer structure; the close-up view and the reversed view of RBD structure in dashed circle are in the bottom and top of panels (D) and (E), respectively. (D) Comparison of epitopes in RBDs from SARS-CoV-1 (epitopes in red) and SARS-CoV-2 (epitopes in light blue); partially overlapping of AH/ah area is labeled as deep blue, and Asn-linked GlcNAc residues (pink) and their interacting amino acids (yellow) are shown as spheres. Note that the RBD shown here is a closed conformation before binding to ACE2. The AH1/ah1 epitope pair is seen from the top solvent view of RBD. The AH2/ah2 pair is seen from the reversed view, which will be flipped as open conformation of RBD after binding to ACE2. (E) View of epitopes in RBDs from SARS-CoV-1 (epitopes in red) and SARS-CoV-2 (epitopes in light blue), when GlcNAc residues and their interacting amino acids were removed.
The recombinant protein was purified by affinity chromatography.

Protein digestion by trypsin and chymotrypsin
S protein was precipitated with trichloroacetic acid solution (6.1 N). The protein pellet was subsequently dissolved in 8 M urea in 100 mM Tris-HCl, pH 8.5. Tris(2-carboxyethyl)phosphine (5 mM) was added and incubated for 20 min at room temperature to reduce the protein, and iodoacetamide (10 mM) was subsequently added and incubated for 15 min to alkylate the protein. The protein mixture was digested with chymotrypsin (Wako, Richmond, VA) at a 1:100 ratio at 25°C, followed by trypsin (Promega) at 1:50 ratio (w/w) at 37°C. The reaction was terminated by adding formic acid, and the peptide mixture was desalted with a mono-Spin C18 column (GL Sciences).

Liquid chromatography (LC) and MS/MS analyses
The desalted peptide mixture was loaded onto a homemade 30-cm analytical column (ReproSil-Pur C18-AQ 1.9-μm resin, Dr. Maisch GmbH, 360 μm OD × 75 μm ID) connected to an Easy-nLC 1000 system (Thermo Scientific, San Jose, CA) for MS analysis. The mobile phase and elution gradient used for peptide separation were set as follows: 0–1 min, 0%–2% B; 1–10 min, 2%–7% B; 10–90 min, 7%–27% B; 90–122 min, 27%–35% B; 112–15 min, 35%–95% B; 125–125 min, 95% B; and 125–127 min, 95%–2% B (buffer A: 0.1% formic acid (FA) in water and buffer B: 0.1% FA in acetonitrile) at a flow rate of 300 nl/min. Peptides eluted from the LC column were directly electrosprayed into the mass spectrometer with the application of a distal 1.8-kV spray voltage. Survey full-scan MS spectra (from m/z 800–2000) were acquired in the orbitrap analyzer (Q Exactive mass spectrometer, Thermo Scientific), with resolution r = 70,000 at m/z 400. The top 20 MS/MS events were sequentially generated from the full MS spectrum with a resolution of 35,000, stepped normalized collision energy (20, 30, 40), intensity threshold of 1.2 × 10³, automatic gain control target 2 × 10⁵, and maximum injection time of 250 ms of the ions, using an isolation window of 2.0 m/z.

MS data processing
All acquired MS/MS and MS data were interpreted and analyzed as described (Liu et al. 2017) by using pGlyco 2.0 (version 2019.01.01, http://pfind.ict.ac.cn/software/pGlyco/index.html) glycopeptide identification and by using Byologic v3.5 for quantification. Parameters for our database search of intact glycopeptides were as follows: mass tolerance for precursors and fragment ions were set as ±7 and ±20 ppm, respectively. The enzymes were trypsin and chymotrypsin. Maximal missed cleavage was 2. Fixed modification was carbamidomethylation on all Cys residues (C + 57.022 Da). Variable modifications contained oxidation on Met (M + 15.995 Da). The N-glycosylation sequon (N-X-S/T, X ≠ P) was modified by changing “N” to “[I]” (the two shared the same mass). The glycan database was extracted from Glycome DB (www.glycome-db.org). All identified spectra could be automatically annotated and displayed by the software tool gLabel embedded in pGlyco2.0, which facilitates manual verification. Parameter settings in Byonic were the same as that in pGlyco2.0 except that the built-in N-glycan database (N-glycan 38 insect glycan) was used for database searching. The O-glycan database was homemade according to previously reported glycan structures by Gaunitz et al. (Lindberg et al. 2013). The identified N-glycopeptides were further examined manually to verify the accuracy of identification. The glycopeptides were quantified by Byologic based on the extracted ion chromatogram area under the curve.

Calculation according to electron density of glycans on SARS-CoV-1 spike protein
Glycosylation sites were solved and determined from high-resolution cryogenic electron microscopy density maps, and only N-Acetyl-D-glucosamine (Asn-GlcNAc) was determined to represent a whole glycan due to the glycan flexibility and disorder. The SARS-CoV-1 spike protein structure (PDB: 5X58), together with the Asn-GlcNAc sites, were applied for molecular interface calculation with PISA (http://www.ccp4.ac.uk/pisa/). All the amino acids linking or interacting with Asn-GlcNAc were selected and excluded in epitope prediction. Besides the interaction between Asn-GlcNAc and amino acids, the effects of the larger structure of glycans extending from every Asn-GlcNAc may also be considered, as shown in Figure 2C, although their electron densities are weak.

Calculation according to homology-modeled structure of SARS-CoV-2 protein
The aforementioned molecular interface calculation procedure was applied to calculate the accessible surface area and screen the corresponding antigen epitopes, except that the glycosylation effect could not be measured because the structure is not yet available. Because most glycosylation sites are conserved due to the high similarity between these two spike proteins, we could predict the glycosylation site effects in the SARS-CoV-2 spike structure as well. When predicted epitopes coincided with the amino acid residues interacting with Asn-GlcNAc, they were removed from the candidates by cross-reference of the SARS-CoV-1 data.

Supplementary data
Supplementary data for this article is available online at http://glycob.oxfordjournals.org/.

Funding
National Natural Science Foundation of China (31870972 to D.Z. and 11179012 to W.Z.), National Key Research and Development Plan (2017YFA0505901), Fundamental Research Funds for the Central Universities (22120200163), and the Outstanding Clinical Discipline Project of Shanghai PuDong (PWYgy2018–10). All these sponsors have no roles in the study design or the collection, analysis, and interpretation of data.

Conflict of interest statement
None declared.

Author contributions
Dapeng Zhou, Chao Peng, and Wen Zhang designed this study. Dapeng Zhou, Xiaoxiu Tian, Ruibing Qi, Chao Peng and Wen Zhang...
contributed to the collection, analysis, and interpretation of data. Dapeng Zhou and Wen Zhang wrote the manuscript. All authors read and approved the final manuscript.

Abbreviations

LC, liquid chromatography; MAb, monoclonal antibody; MS, mass spectrometry; MS/MS, tandem mass spectrometry; PDB, Protein Data Bank; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.

References

Berry JD, Hay K, Rini JM, Yu M, Wang LF, Plummer FA, Corbett CR, Andonov A. 2010. Neutralizing epitopes of the SARS-CoV S-protein cluster independent of repertoire, antigen structure or mAb technology. *Mabs-Austin*. 2:53–66.

Bian C, Zhang XQ, Cai XF, Zhang LQ, Chen ZW, Zha Y, Xu Y, Xu K, Lu W, Yan LC et al. 2009. Conserved amino acids W423 and N424 in receptor-binding domain of SARS-CoV are potential targets for therapeutic monoclonal antibody. *Virology*. 383:39–46.

Du L, Zhao G, Lin Y, Sui H, Chan C, Ma S, He Y, Jiang S, Wu C, Yuan KY et al. 2008. Intranasal vaccination of recombinant adeno-associated virus encoding receptor-binding domain of severe acute respiratory syndrome coronavirus (SARS-CoV) spike protein induces strong mucosal immune responses and provides long-term protection against SARS-CoV infection. *J Immunol*. 180:948–956.

Du LY, Zhao GY, Chan CCS, Li L, He YX, Zhou YS, Zheng BJ, Jiang SB. 2010. A 219-mer CHO-expressing receptor-binding domain of SARS-CoV S protein induces potent immune responses and protective immunity. *Viral Immunol*. 23:211–219.

Du LY, Zhao GY, He YX, Guo Y, Zheng BJ, Jiang SB, Zhou YS. 2007. Receptor-binding domain of SARS-CoV spike protein induces long-term protective immunity in an animal model. *Vaccine*. 25:2832–2838.

Garces F, Lee JH, de Val N, de la Pena AT, Doores KJ, Murin CD, Julien JP, McBride R, Liu Y, Marozsan A, Cupo A, Klasse PJ et al. 2013. Superantigens of immune variability on the glycosylated face of HIV-1 envelope glycoprotein gp120. *Nat Struct Mol Biol*. 20:796–803.

Li J, Uhlirky L, Silberstein E, Taylor DR, Viscidi R. 2013. Immunogenicity and protection efficacy of monotopic and Trimeric recombinant SARS coronavirus spike protein subunit vaccine candidates. *Viral Immunol*. 26:126–132.

Lindberg L, Liu JN, Gauntner S, Nilsson A, Johansson T, Karlsson NG, Holgersson J. 2013. Mucin-type fusion proteins with blood group a or b determinants on defined O-glycan core chains produced in glycoengineered Chinese hamster ovary cells and their use as immunoaffectivity matrices. *Glycobiology*. 23:720–735.

Liu L, Wei Q, Lin QQ, Fang J, Wang HB, Kwok H, Tang HY, Nishikura K, Peng J, Tan ZW et al. 2019. Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. *J Exp Med*. 4(4):e213158.

Liu MQ, Zeng WF, Fang P, Cao WQ, Liu C, Yan GQ, Zhang Y, Peng C, Wu JQ, Zhang XJ et al. 2017. pGlyco 2.0 enables precision N-glycoproteomics with comprehensive quality control and one-step mass spectrometry for intact glycopeptide identification. *Nat Commun*. 8(438).

Lu BJ, Huang Y, Huang L, Li B, Zheng ZH, Chen Z, Chen J, Hu QX, Wang HZ. 2010. Effect of mucosal and systemic immunization with viral-like particles of severe acute respiratory syndrome coronavirus in mice. *Immunology*. 130:254–261.

Miyoishi-Akiyama T, Ishida I, Fukushima M, Yamaguchi K, Matsuoka Y, Ishihara T, Tsukahara M, Hatakeyama S, Itoh N, Morisawa A et al. 2011. Fully human monoclonal antibody directed to Proteolytic cleavage site in severe acute respiratory syndrome (SARS) coronavirus S protein neutralizes the virus in a rhesus macaque SARS model. *J Infect Dis*. 203:1574–1581.

Okada M, Takemoto Y, Okuno Y, Hashimoto S, Yoshida S, Fukunaga Y, Tanaka T, Kita Y, Kuwayama S, Muraki Y et al. 2005. Development of vaccines against SARS coronavirus in mice and SCID-PBL/hu mice. *Vaccine*. 23:2269–2272.

Pak JE, Sharon C, Satkunarajah M, Auperin TC, Cameron CM, Kelvin DJ, Seetharaman J, Cochrane A, Plummer FA, Berry JD et al. 2009. Structural insights into immune recognition of the severe acute respiratory syndrome coronavirus S protein receptor binding domain. *J Mol Biol*. 388:815–823.

Pinto D, Park VJ, Beltzmann M, Walls AC, Tortorici MA, Bianco S, Jacson C, Culap K, Zatta F, De Marco A et al. 2020. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. *Nature*, online ahead of print.

Prabakaran P, Gan JH, Feng Y, Zhu ZY, Choudhry V, Xiao XD, Ji XH, Dimitrov DS. 2006. Structure of severe acute respiratory syndrome coronavirus receptor-binding domain complexed with neutralizing antibody. *J Biol Chem*. 281:15829–15836.

Rockx B, Corti D, Donaldson E, Sheahan T, Stadler K, Lanzavecchia A, Baric R. 2008. Structural basis for potent cross-neutralizing human monoclonal antibody protection against lethal human and zoonotic severe acute respiratory syndrome coronavirus challenge. *J Virol*. 82:3220–3235.

See RH, Zakhartchouk AN, Petric M, Lawrence DJ, Mok CP, Hogan RJ, Rowe T, Zitzow LA, Karunakaran KP, Hirt MM et al. 2006. Comparative evaluation of two severe acute respiratory syndrome (SARS) vaccine candidates in mice challenged with SARS coronavirus. *J Gen Virol*. 87:641–650.

Sekimukai H, Iwata-Yoshikawa N, Fukushima S, Tani H, Kataoka M, Suzuki T, Hasegawa H, Nishura K, Arai K, Nagata N. 2020. Gold nanoparticle-adjuvanted S protein induces a strong antigen-specific IgG response against severe acute respiratory syndrome-related coronavirus infection, but fails to induce protective antibodies and limit eosinophil infiltration in lungs. *Microb Cell Fluid*. 64:33–51.
Spruth M, Kistner O, Savidis-Dacho H, Hitter E, Crowe B, Gerencer M, Bruhl P, Grillberger L, Reiter M, Tauer C et al. 2006. A double-inactivated whole virus candidate SARS coronavirus vaccine stimulates neutralising and protective antibody responses. Vaccine. 24:652–661.

Sui JH, Deming M, Rockx B, Liddington RC, Zhu QK, Baric RS, Marasco WA. 2014. Effects of human anti-spike protein receptor binding domain antibodies on severe acute respiratory syndrome coronavirus neutralization escape and fitness. J Virol. 88:13769–13780.

Sui JH, Li WH, Roberts A, Matthews LJ, Murakami A, Vogel L, Wong SK, Subbarao K, Farzan M, Marasco WA. 2005. Evaluation of human monoclonal antibody 80R for immunoprophylaxis of severe acute respiratory syndrome by an animal study, epitope mapping, and analysis of spike variants. J Virol. 79:5900–5906.

ter Meulen J, van den Brink EN, Poon LLM, Marissen WE, Leung CSW, Cox F, Cheung CY, Bakker AQ, Bogaards JA, van Deventer E et al. 2006. Human monoclonal antibody combination against SARS coronavirus: Synergy and coverage of escape mutants. J Virol. 80:1071–1079.

Traggiai E, Becker S, Subbarao K, Kolesnikova I, Uematsu Y, Gismondo MR, Murphy BR, Rappuoli R, Lanzavecchia A. 2004. An efficient method to make human monoclonal antibodies from memory B cells: Potent neutralization of SARS coronavirus. Nat Med. 10: 871–875.

Tseng CT, Sbrana E, Iwata-Yoshikawa N, Newman PC, Garron T, Atmar RL, Peters CJ, Couch RB. 2012. Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus. PLoS One. 7(4):e33421.