CRYSTAL STRUCTURE AND BINDING PROPERTIES OF THE CD2 AND CD244 (2B4) BINDING PROTEIN, CD48*

Edward J. Evans¹, Mónica A. A. Castro², Ronan O’Brien³, Alice Kearney⁴, Heather Walsh¹, Lisa M. Sparks¹, Michael G. Tucknott⁴, Elizabeth A. Davies⁴, Alexandre M. Carmo², P. Anton van der Merwe⁴, David I. Stuart⁵, E. Yvonne Jones⁵, John E. Ladbury³, Shinji Ikemizu⁶ and Simon J. Davis¹

¹ Nuffield Department of Clinical Medicine, The University of Oxford, MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, OX3 9DS, UK
² Group of Cell Activation and Gene Expression, Instituto de Biologia Molecular e Celular and Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
³ Department of Biochemistry and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK
⁴ Sir William Dunn School of Pathology, The University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
⁵ Division of Structural Biology, Wellcome Trust Centre for Human Genetics, The University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
⁶ Division of Structural Biology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan

Running title: Crystal structure of CD48

Address correspondence to:
Shinji Ikemizu: Tel./Fax. +81-96-371-4647; E-Mail: ikemizu@gpo.kumamoto-u.ac.jp
Simon Davis: Tel. +44-1865-221336; Fax. +44-1865-222737; E-Mail: simon.davis@ndm.ox.ac.uk

The structural analysis of surface proteins belonging to the CD2 subset of the immunoglobulin superfamily has yielded important insights into transient cellular interactions. In mice and rats, CD2 and CD244 (2B4), which are expressed predominantly on T cells and NK cells, respectively, bind the same, broadly expressed ligand, CD48. Structures of CD2 and CD244 have been solved previously, and we now present the structure of the receptor-binding domain of rat CD48. The receptor-binding surface of CD48 is unusually flat, as in the case of rat CD2, and shares a high degree of electrostatic complementarity with the equivalent surface of CD2. The relatively simple arrangement of charged residues and this flat topology explains why CD48 cross-reacts with CD2 and CD244 and, in rats, with the CD244 related protein, 2B4R. Comparisons of modelled complexes of CD2 and CD48 with the complex of human CD2 and CD58 are suggestive of there being substantial plasticity in the topology of ligand binding by CD2. Thermodynamic analysis of the native CD48-CD2 interaction indicates that binding is driven by equivalent, weak enthalpic and entropic effects, in contrast to the human CD2-CD58 interaction, for which there is a large entropic barrier (Kearney et al., accompanying submission). Overall, the structural and biophysical comparisons of the CD2 homologues suggest that the evolutionary diversification of interacting cell surface proteins is rapid and constrained only by the requirement that binding remains weak and specific.

The CD2 subset of the immunoglobulin superfamily (IgSF¹) consists of generally small haematopoietic cell-cell recognition proteins encoded by two groups of genes located either side of the centromere of human chromosome 1. Genes on the p arm encode the prototypical proteins, CD2 and CD58 (also known as LFA-3), whereas the q arm genes encode the set of nine proteins known collectively as the “SLAM family”, i.e. BLAME, SF2001 (CD2F10), NTBA (SF2000), CD84, CD150 (SLAM), CD48, CS1 (19A, CRACC), CD229 (Ly9) and CD244 (2B4) (reviewed by

Copyright 2006 by The American Society for Biochemistry and Molecular Biology, Inc.
Engel et al. (1)). Six members of the SLAM family carry the tyrosine phosphorylation motif, Thr-Ile/Val-Tyr-Xaa-Xaa-Val/Ile, which binds a protein consisting of a single Src homology domain. This protein is known as SLAM associated protein, or SAP, and it is encoded by the gene whose mutation leads to X-linked lymphoproliferative disease (2). The expression of combinations of SLAM family proteins, i.e., SLAM, CD48 and CD244, differentiate hematopoietic stem cells and progenitors, but the physiological significance of this is unclear given, e.g., that SLAM-deficient mice have normal numbers of stem cells (3).

Work on CD2-deficient mice has shown that the CD2-CD48 interaction is not essential for the development or function of an apparently normal immune system (4). Instead, CD2 has a more subtle role in setting TCR-affinity thresholds for T cell activation, thereby ‘fine tuning’ the T cell repertoire (5-8). Mice deficient in CD48, which is expressed on most haematopoietic cells, on the other hand, exhibit a more severe phenotype in which the activation of CD4 + T cells is severely impaired (9), suggesting that CD48 is not restricted to interactions with CD2. Consistent with this possibility, CD48 is now known to bind CD244 in mice and humans (10). CD48 is necessary for both cognate recognition, i.e. by T cells (in rats and mice) and non-antigen specific lymphocyte activation, i.e. by NK cells (in all species studied). The crystal structure of the ligand-binding domain of rat CD48, presented here, completes the initial structural characterization of the murine CD2/CD244/CD48 receptor-ligand system, and allows the generality of observations based on analysis of the human CD2-CD58 complex to be tested for a second weakly-interacting receptor-ligand pair. Although the new structural data lend considerable support to the idea that the specificity of interactions within the CD2 subset is highly dependent on electrostatic contacts, a thermodynamic analysis reveals unexpected differences in the mechanism of ligand interactions ($K_a \sim 0.1$ nM), with their K_a values clustering in the region of 5-20 µM. The interaction of rat CD2 with CD48 is unusual in that it lies well outside this range (65 µM; reviewed in (22,23)). Structural (24,25) and mutational (26) studies suggest a binding mechanism that ensures such weak interactions are nevertheless specific. Mutation of more than half of the charged residues clustered in the ligand binding face of CD2 compromises the specificity rather than the strength of its binding to CD48 (26). This effect likely results from the requirement that electrostatic complementarity compensates for the removal, upon binding, of water interacting with the charged residues. This mode of recognition is well suited to interactions requiring a low affinity because it uncouples increases in specificity from increases in affinity.

Support for such a proposal emerged from structural analyses of human CD2 (25) and both crystallographic (27) and NMR-based (28) analyses of CD58, which revealed a high degree of electrostatic complementarity of the respective binding surfaces. The possibility that specificity depends largely on electrostatic complementarity was confirmed by the prediction of the topology of the CD2-CD58 complex prior to publication of the actual complex (29), based on maximising the degree of electrostatic complementarity in a model of the complex (27). An additional, important property of the interaction revealed by the complex structure is the lack of surface complementarity between the ligand binding faces of CD2 and CD58 (29), which stands in marked contrast to the interfaces of proteins that interact in solution (30).
binding by rat CD2, versus that by human CD2 (see Kearney et al., accompanying submission). Overall, our observations suggest that the evolutionary diversification of interacting cell surface proteins is rapid and constrained only by the requirement that binding is weak and specific.

EXPERIMENTAL PROCEDURES

Protein Production- Briefly, for chimeric (c) CD48, in vitro mutagenesis was used to replace the sequence encoding the C2-set domain of the extracellular region of rat CD48 with the analogous rat CD2 domain. The mature cCD48 polypeptide started with the native CD48 N-terminal sequence “FQDQ…” continued to the CD48 domain 1/CD2 domain 2 junctional sequence “…MEVY/EMVS…” and ended with the C-terminal sequence “…CPEK” of domain 2 of rat CD2. The construct was expressed in Lec3.2.8.1 cells using the glutamine synthetase-based gene expression system in the presence of 0.5 mM N-butyldeoxynojirimycin (a kind gift of R. A. Dwek of the Glycobiology Institute, Oxford) as described (31). Protein was purified by affinity chromatography using the OX45 antibody and gel filtration, deglycosylated using endoglycosylase H at pH 5.2 and 37°C for 90 minutes and re-purified by gel filtration. Soluble forms of rat CD2 and CD48 (srCD2 and srCD48) were produced by similar methods, as described (24). The wild type (WT) and mutant R87A forms of domain 1 of rat CD2 were expressed in the form of fusion proteins with glutathione S-transferase in E. coli, which were cleaved with thrombin so that the monomeric CD48-binding domain of CD2 could be isolated, as described (32). WT and mutant forms of rat CD48 used for binding studies were expressed as chimeras of the extracellular region of CD48 fused to domains 3 and 4 of rat CD4 and a BirA recognition tag, as described (33), by transient transfection of 293T cells in X-VIVO 10 serum free medium (BioWhittaker). Mutants were generated directly in the expression vector (pEF-BOS; (34)) either by using the Muta-Gene Phagemid Mutagenesis Kit v.2 (BioRad) or by PCR with mutagenic oligonucleotide primers. All mutations were confirmed by complete sequencing of the vector constructs.

Crystallization, structure determination and analysis of cCD48- Deglycosylated, purified cCD48 at a concentration of 15mg/ml was crystallized by sitting drop vapour diffusion (35) in the presence of 1.5M lithium sulphate, buffered at pH 7.5 with 0.1M sodium HEPES (Crystal Screen solution from Hampton Research, Riverside, CA). Crystals were briefly transferred to a freezing solution made by adding glycerol to the precipitant solution to a final concentration of 30% before being cooled to 100K for data collection. Diffraction data were collected on beamline ID2 at the European Synchrotron Radiation Facility (Grenoble, France) using a 34.5cm MAR-Research (Hamburg, Germany) image plate detector. Data were processed and scaled using Denzo and Scalepack (36). Phases were determined by molecular replacement using AmoRe (37) and the coordinates of domain 2 of rat CD2 (24), which gave an unambiguous solution for the position of domain 2. A model, using the coordinates of cCD58 (27) with the residues in domain 1 substituted with polyalanine, was positioned on this solution. After two-domain rigid body refinement in CNS (38), this model gave an R factor of 46.7%. Solvent flattening was performed using DM (39) and refinement was carried out using CNS (38), with manual rebuilding in O (40). After simulated annealing, positional refinement and overall B-factor refinement in CNS, 2Fo-Fc and Fo-Fc electron density maps showed bias-free density and the correct sequence could be substituted into domain 1. Further positional and individual B-factor refinement was then carried out, with bulk solvent correction, using all the observed data but with 5% of the data set aside for Rfree cross-validation in 24 refinement cycles.

Structural superpositions were performed using SHP (41). Figs 1, 2 and 5 were produced using Boobscript (42), Raster 3D (43) and Volumes (R. Enouf, personal communication). GRASP (44) was used for the electrostatic analysis and surface display in Figs. 3 and 4. The improved model for the complex between rat CD2 and CD48 was initially generated by superposition of these molecules on the human CD2-CD58 complex (PDB id 1qa9; (29)), followed by manual adjustment to align the residues known to interact by mutagenesis (see text). This model was then refined using MultiDock (45) and atoms within 4Å, allowing for sidechain rotamer combinations that
did not result in steric clashes between the proteins, were identified as possible contacts.

Isothermal Titration Calorimetry- All experiments were performed using the MCS system (MicroCal Inc., MA) as described (46,47). In a typical experiment, 1.75 mM srCD48 was added in twenty 12 µl injections to a 0.09 mM solution of the WT or mutant rCD2 V-set IgSF domain in the 1.3 ml calorimeter cell at the temperature indicated. Ionic strength was varied by diluting the proteins into buffers containing the indicated NaCl molarities prior to the experiments. The resulting data were fitted as described (46) after subtracting the heats of dilution, resulting from addition of sCD2d1 to buffer and buffer to srCD48, determined in separate control experiments. Titration data were fitted using a non-linear least-squares curve-fitting algorithm with three floating variables: stoichiometry, association constant (K_a), and change of enthalpy on binding (ΔH_{obs}). ITC gives a complete thermodynamic characterisation of an interaction based on the equation:

$$\Delta G = -RT\ln(K_a) = \Delta H_{obs} - T\Delta S$$

where R is the gas constant, T is the absolute temperature, and ΔG, ΔH_{obs} and ΔS are the standard free energy, enthalpy and entropy changes on going from unbound to bound states, respectively. All experiments were done in triplicate.

Binding Studies- Binding experiments were performed on BIAcore 2000 or BIAcore 3000 instruments (Biacore AB, Stevenage, UK) at 25°C in the running buffer HBS-EP (10 mM HEPES pH 7.4, 150 mM NaCl, 3 mM EDTA, 0.005% surfactant P20). For analysis of CD2 binding by cCD48, OX54 was coupled covalently to a CM5 research grade sensor chip (Biacore AB) via primary amines using the standard amine coupling kit (Biacore AB). OX54 was injected at 100 µg/ml in 10 mM sodium acetate (pH 5) giving immobilisation levels of 6,000-8,000 response units (RU). For analysis of CD2 binding by WT and mutant CD48, the binding of srCD2 to biotinylated CD48-CD4 chimeras was analyzed. Streptavidin was immobilised on a CM5 chip by amine coupling as above. Streptavidin was injected at 0.5 mg/ml in 10 mM sodium acetate (pH 5.5) and immobilised to a level of 9,000-10,000 RU. Supernatant from 293T cells transiently transfected with the CD48-CD4 chimeric constructs was concentrated and exchanged into 10 mM Tris-HCl (pH 8) for biotinylation with the enzyme BirA (Avidity, Denver, CO). Biotinylated supernatant was injected until immobilisation levels of ~2000 RU CD48-CD4 were obtained. To calculate dissociation constants, equilibrium binding was measured after injection of rCD2d1 (if immobilisation was via OX54) or srCD2 at various concentrations. Specific binding was calculated by subtracting the response in a control flowcell containing only immobilised OX54 or biotinylated rat CD4 domains 3 and 4 immobilised via streptavidin. Binding data were fitted with a 1:1 Langmuir binding model to calculate K_d. For van’t Hoff analysis, the K_d for the interaction srCD2 with immobilised WT CD48-CD4 chimera was calculated from affinity data obtained at several different temperatures. ΔG values were calculated as above and plotted against temperature. These data were fitted with the non-linear van’t Hoff equation (48) to estimate values for ΔH_{vH}, ΔS_{vH} and $\Delta C_{p,vH}$ at 25°C or 37°C:

$$\Delta G = \Delta H_{HT_0} - T\Delta S_{HT_0} + \Delta C_{p,vH}(T-T_0) - T\Delta C_{p,vH}\ln\left(\frac{T}{T_0}\right)$$

where T is the temperature in Kelvin (K); T_0 is an arbitrary reference temperature (e.g., 298.15 K for calculation of constants at 25°C); ΔG is the standard free energy of binding at T (kcal mol$^{-1}$); ΔH_{HT_0} and $\Delta S_{vH,T_0}$ are the enthalpy and entropy changes upon binding at T_0 (kcal mol$^{-1}$ and kcal mol$^{-1}$ K$^{-1}$ respectively) and $\Delta C_{p,vH}$ is the change in heat capacity (kcal mol$^{-1}$ K$^{-1}$, assumed to be temperature independent). Theoretical calculation of the ΔC_{p} based on measurement of the solvent accessible surface area buried on binding utilized the relationship of Spolar et al. (49):

$$\Delta C_{p} = (0.32 \pm 0.04)\Delta A_{np}^\pm - (0.14 \pm 0.04)\Delta A_p$$

where ΔA_{np} and ΔA_p are the changes in water accessible non-polar and polar surface area, respectively.

RESULTS

Expression of a crystallizable form of rat CD48- A soluble form of rat CD48 (srCD48), consisting of
the entire extracellular region of the protein was expressed in Lec3.2.8.1 CHO cells, yielding protein with endoglycosidase H-sensitive N-glycosylation (50). Deglycosylated srCD48 did not crystallize alone and although it crystallized in a complex with the rat CD2 extracellular domain (srCD2; data not shown), these crystals did not diffract. In an alternative strategy, a chimeric form of the protein (cCD48) consisting of the CD48 ligand-binding, V-set IgSF domain and the membrane proximal C2-set IgSF domain of rat CD2 was generated, since this approach had been successful with human CD58 (27). cCD48 was expressed in Lec3.2.8.1 cells in the presence of N-butyldexyloirimycin (31). The deglycosylated form of this protein bound srCD2 with WT affinity (Suppl. Fig. 1), indicating that it is correctly folded and functional. Small crystals of cCD48 were obtained by sitting drop vapour diffusion. After growth for up to 12 months, the crystals reached a size sufficient for diffraction analysis using a microfocus beamline.

Structure determination and overall structure of cCD48- X-ray diffraction data to 2.6Å resolution were collected and the structure solved by molecular replacement with the co-ordinates of the C2-set membrane-proximal IgSF domain of rat CD2, followed by modelling of the V-set ligand-binding domain of CD48 based on the peptide backbone of the equivalent domain from human CD58. After final refinement, the structure had an R factor of 21.6% and a free R factor of 27.2%; additional measures of data and refinement quality are given in Table 1. Three residues in the final structure (Gln-4, Pro-25 and Thr-37) have phi-psi angles that fall outside the allowed regions of the Ramachandran plot. Two of these are in the poorly ordered N-terminus and BC loop of the V-set IgSF domain (Gln-4 and Pro-25). The third (Thr-37) is part of an unusual loop structure that can be manually fitted to the electron density but does not refine well. The structure of this loop and the surrounding electron density is shown in Supplementary Figure 2. Electron density was observed at all three potential glycosylation sites, allowing modelling of the GlcNAc residues (e.g., Suppl. Fig. 2). The final model includes 42 water and 5 glycerol molecules that are ordered in the crystal and form hydrogen bonds with cCD48.

The overall structure of cCD48 is very similar to that of rat CD2 (24) and cCD58 (27; Fig. 1A). The rat CD2 C2-set IgSF domains of all three proteins are not significantly different (rms deviations 0.4Å and 0.5Å for superposition of 77 equivalent Cα atoms respectively). Comparison of the inter-domain angles in these molecules shows that the ligand-binding domain of cCD48 is slightly more upright than that of cCD58 (by approximately 3°), which is in turn slightly more upright than CD2 (by approximately 5°; Fig. 1A). Two hydrophobic interactions fix the inter-domain angle in both srCD2 and cCD58 (Fig. 1B). In cCD48, one of these interactions is conserved (between Ile-12 and Val-168) and the other is replaced by a weaker hydrogen bond involving Asn-10 and Arg-167. A salt bridge (between Lys-78 and Glu-104) is present on the other side of the linker, straightening the molecule slightly (Fig. 1B). Arg-167 is replaced by proline in WT CD48, so the hydrogen bond with Asn-10 cannot form in the native protein. The other interactions are likely to occur, however, as Glu-104 is replaced with an aspartic acid in WT CD48, and Val-168 is present in both cCD48 and WT CD48. Overall, WT rCD48 can be expected to have the same topology as the chimera and CD2, with the ligand binding surface lying close to the top of the molecule. As in the case of cCD58 (27), cCD48 does not form the distinctive lattice contacts involving the ligand binding GFCC” face seen in crystals of both rat (24) and human (25) CD2, due perhaps to the high net charges of the central regions of the equivalent surfaces of CD48 (positive) and CD58 (negative; (27)).

Structure of the CD48 ligand binding domain- The rat CD48 ligand-binding domain has the expected IgSF V-set AGFCC”DEB topology. It is grossly similar to the corresponding domains of CD2 and CD58 (Fig. 2; rms deviations of 1.18Å, 1.17Å and 1.19Å for 86, 85 and 82 equivalent Cα atoms for rat CD2, human CD2 and CD58 respectively) but less similar to the equivalent domain of mouse CD244 (Fig. 2; rms deviation of 1.65 Å for 83 equivalent Cα atoms). As in the case of the other CD2 subset IgSF proteins, CD48 lacks a canonical disulphide bond and the twist in the ligand-binding GFCC” β-sheet that is characteristic of, e.g., antibody variable domains. The strand orientations in CD48 also resemble those in CD244, CD2 and
CD58, including the distinctive position of the C′β-strand and the short DE loop. However, differences also exist, reflecting the considerable divergence within the family as judged by their low sequence homology (e.g., 31% identity for rat CD48 and CD2): the FG loop is shorter in CD48 than in CD2 or CD58 (by 1 and 2 residues respectively) and the CC′ loop is longer (by 4 residues compared to CD2 and 3 residues compared to CD58). The real outlier within the subset is CD244, although this may be due in part to the different method of structure determination i.e. NMR. CD244 has very long FG and CC′ loops, and hydrogen bonding between the A and G strands that extends for the full length of the G strand, rather than for the C terminal-most third or half of the strand only. Automated structure comparisons using DALI (51) selected CD4 (1cdy) as the most CD48-like structure in the Protein Data Bank (PDB), followed by CD2 (1qa9), CD58 (1cez) and CD80 (1dr9). CD244 was only the 25th-most similar structure. Inspection of a superposition of the ligand-binding domains of CD48 and CD4 revealed that the automatic procedure detects largely fortuitous similarities in the conformations adopted by loops of similar length (data not shown).

Ligand binding face of CD48- Residues whose “drastic” mutation was previously shown to disrupt CD2 binding (33) are all located in the ligand binding GFCC′C″ face of CD48. Representative surface plasmon resonance (SPR) binding data for additional drastic and alanine mutations are shown in Supplementary Figure 3; the results for all mutants are summarised in Table 2. In toto, the drastic mutations delineate a contiguous surface consisting of three hydrophobic, two polar and five charged residues (Fig. 3A). This surface is remarkably flat (Fig. 3B), as is that of rat CD2, and both are substantially flatter than the equivalent surfaces of the human proteins. The average distance of surface atoms on the GFCC′C″ face from the least-squares plane they form is 1.5Å and 1.8Å for rat CD48 and CD2, compared to 2.4Å and 3.0Å for human CD58 and CD2. The surface of mCD244 is the least flat of all the available structures, however: the rmsd of the plane from the surface atoms is 3.7Å if all atoms are included, and 3.0Å even if the atoms in the FG and CC′ loops, which vary in conformation in the NMR structure, are removed. The CD48 ligand-binding surface is also highly charged (Fig. 3C), as in the case of its murine ligands, CD2 (Fig. 4A; (24)) and CD244 (for which only the mouse structure is known; Fig. 4B; (16)), but not to the extent of that of human CD2 (Fig. 4C; (25)) and CD58 (Fig. 4D; (27)). Binding is perturbed by alanine substitutions of almost all the residues whose drastic mutation completely abrogates binding (Table 2). The exception is Thr-33, which is situated at the base of a pocket in the CD48 surface. This is in marked contrast to rat CD2 for which 4 of the 7 charged residues in the binding face can be mutated to alanine without substantially affecting binding affinity ((26); Table 3).

The CD48-CD2 interaction- An initial model of the rat CD2-CD48 interaction can be based on superposition of CD2 and CD48 with their counterparts in the human CD2-CD58 complex (29). However, projection of the electrostatic potential of CD2 (Fig. 4A) onto CD48 in this arrangement (Fig. 4F), gives a substantial electrostatic clash centred on Arg-31, Glu-44 and Glu-93 of CD48 and Arg-31, Glu-29 and Glu-33 of CD2. In addition, residue pairs expected to form salt bridges (i.e. CD2 Lys-43 with CD48 Glu-44, and CD2 Glu-41 with CD48 Arg-31 (33)) are not sufficiently close to allow the formation of such contacts. Finally, the model imposes steric clashes in the regions of the FG loops of CD2 and CD48. A second model (Fig. 5A) that differs by a ~7° rotation of CD48 about an axis perpendicular to the binding face and a ~3Å translation toward the base of its GFCC′C″ face, and incorporates a degree of side-chain movement, alleviates the steric and electrostatic clashes (Fig. 5G) and allows the salt-bridges to form (Fig. 5B). The new model also positions two additional pairs of charged side-chains within range of interaction (i.e. CD48 Lys-41 and Glu-93 with CD2 Glu-29 and Arg-31, respectively; Fig. 5B), aligns the only hydrophobic residues on the interacting surfaces (i.e. CD48 L89 and CD2 L38; Fig. 5B), and accounts for virtually all the CD48 and CD2 mutational data (Table 3). The only exception is Phe-54 of CD48, which is not involved in any contacts but whose mutation to Ala disrupts CD2 binding. This residue may influence binding indirectly by stabilizing the aliphatic region of the side-chain of Lys-41 of
CD48 via a hydrophobic interaction, perhaps in conjunction with Tyr-81 of CD2 in the complex. Clear differences in charge distribution (Fig. 4A,B) and FG and CC’ loop conformation (Fig. 2) between rat CD2 and mouse CD244 (16), suggest that the CD244-CD48 interaction may involve substantially different contacts.

Thermodynamics of the rat CD48-CD2 interaction- The flat binding surfaces of CD2 and CD48 would be expected to form an interface exhibiting greater surface complementarity than for the CD2-CD58 complex and, visually, this appears to be the case (Fig. 5C). This ought to in turn confer a higher affinity on the interaction, but the interaction of the rat proteins is in fact fourfold weaker than for the human proteins (17,52), implying that the detail of the interactions of the human and rat proteins is substantially different. In the absence of a complex structure, the thermodynamics of CD2-CD48 binding was investigated.

In a preliminary analysis, the equilibrium affinity of srCD2 for an immobilised, WT CD48-CD4 chimera was determined using SPR at several temperatures. van’t Hoff analysis of the data (Fig. 6A; Table 4) indicated that the interaction is driven by similarly small, favourable enthalpic and entropic components (~2-4 kcal mol⁻¹ at 25°C). Precise measurement of the thermodynamic properties of the interaction was carried out using isothermal calorimetry (ITC). The affinity calculated for the interaction of rCD48 with the CD48-binding domain of rat CD2 (CD2d1 (32); Kₐ = 5.5 x 10⁴ M⁻¹ at 25°C; Fig. 6B, Table 4) using ITC is in good agreement with that obtained by SPR (Kₐ = 3.2 x 10⁴ M⁻¹; (52)). The measured enthalpy is indeed small, and temperature dependent (ΔHₐbs = -3.5 kcal mol⁻¹ at 25°C), and the entropic term is also small and favourable (TΔS = 3.6 kcal mol⁻¹ at 25°C; Table 4). Increasing the ionic strength did not significantly affect the binding constant: a slight reduction in the enthalpy term was balanced by a slight increase in entropy (Table 4). Overall, the data indicate that the net contribution of electrostatic interactions to binding is very limited, as noted previously (26).

The slope of the plot of ΔHₐbs against temperature (Fig. 6C) was used to estimate the change in heat capacity (ΔC_p) on binding, which is generally thought to be the product of solvent-mediated effects and as such can be used to analyse the contribution of the ‘hydrophobic effect’ to binding. The model of the CD2-CD48 complex predicts that the surface area buried by the interaction is approximately 1250 Å² (defined as the area inaccessible to a spherical probe of radius 1.4Å; the value for the CD2-CD58 complex is 1320 Å²). Assuming a ratio of non-polar to polar buried surface of 58%, the average of many such interactions ((53); the value for the CD2-CD58 complex is 56.8%), the predicted ΔC_p for this interaction would be -160 cal mol⁻¹K⁻¹. The value calculated from the ITC data was -180 cal mol⁻¹K⁻¹ (Table 4), in good agreement with the theoretical value for the modelled complex.

DISCUSSION

The mechanisms of weak, specific recognition at cell surfaces are perhaps best understood for interactions involving CD2 (reviewed in (20)). The structures of unliganded human and rat CD2 and CD58, along with that of the complex of human CD2 and CD58 highlighted the importance of charged contacts and poor surface complementarity (27,29). The interaction of rat CD48 with CD2, characterized in detail here, differs from that of human CD2 and CD58 in that it is somewhat weaker, *i.e.*, 4-5 fold, and part of a broader network
of interactions, i.e. involving CD244 (2B4) and 2B4R with which CD48 also binds more strongly (3-4 fold).

The compatibility of rat CD2 domain 2 with the ligand binding domains of CD58 (27,31) and now, CD48, and the conservation of the interdomain linker region sequences in all three proteins are consistent with early suggestions that this region has an important function, i.e. presentation of the ligand binding surface at the “top” of the molecule, facilitating ligand binding (24,25,27). Recent support for this idea has come from comparisons of CD48 and B7-1 as adhesive ligands in model lipid bi-layers (54). B7-1 and CD48 are likely to have similar overall dimensions, but the reduced tilt of domain 1 relative to domain 2 positions the plane of the ligand binding AGFCC′C″ face of B7-1 parallel with the long axis of the molecule, rather than, as in the case of CD48 and CD2, almost orthogonal with it, necessitating “side-to-side” rather than “head-to-head” contacts with their ligands. The solution affinity of B7-1 for CD28 is ~30-fold higher than that of the CD48-CD2 interaction, and yet B7-1 inserted into model lipid bilayers is incapable of ligating CD28 on T cells unless CD48 is also present in the model bilayer (54). The simplest explanation for this is that the membranes need to be proximal before CD28 and B7-1 can interact. The observation that the positioning of the ligand binding domain relative to the rest of the molecule has such an apparently large bearing on binding suggests that proteins at the cell surface are constrained vertically at the membrane, otherwise pivoting about the stalk region would be expected to overcome such constraints. Currently, there is much interest in the possibility that the functions of signaling proteins, such as phosphatases, are influenced by their dimensions orthogonal to the membrane (55). Such effects are likely to require that the vertical positions of such molecules are constrained. Our observations also suggest that topological effects may contribute to the specificity of recognition at the cell surface.

The structure of the CD48 ligand-binding domain is the fourth such domain from the CD2 subset of the IgSF to be solved (i.e. along with CD2, CD58 and CD244), and the second from within the so-called SLAM subgrouping (56,57). These domains share very limited sequence homology and the CD48 structure is no more similar to CD2 or CD58 than CD2 is similar to CD58. Structurally, CD48 shares fewest similarities with CD244, even though both proteins clearly arose via duplications and remain closely linked. This suggests that the CD2 subset of the IgSF consists of very ancient proteins, and that further sub-divisions of these proteins on structural grounds into, e.g., SLAM- and non SLAM-related groupings is, at best, arbitrary.

Genomic analysis indicates that the cd58 gene has been lost from the mouse genome, since, in addition to humans, CD58 genes are present in zebra fish (accession number XM_694417), chickens (accession number CD215002) and mallard ducks (accession number AY032731). This implies that murine CD2 has gained specificity for CD48, which may have previously only bound the higher-affinity ligand, CD244, possibly explaining why the CD2-CD48 interaction is weaker. Human CD2 binds CD48, but so weakly that the interaction is unlikely to be functional (58). An interesting question is: what features of CD48 allow it to bind multiple ligands? An explanation suggested by the new structural data is that the relatively flat binding surface of CD48 and limited number of charged residues compared with, e.g., CD58, allow CD48 to be unusually tolerant of variation in the binding surfaces of potential ligands. Clear evidence of this comes from the observation that, in addition to binding CD2, rat CD48 binds the orthologue of CD244 (rat 2B4; (15)) and a third ligand, 2B4R (14). 2B4 and 2B4R are closely related proteins that bind with comparable affinity to CD48 (56). Interestingly, however, most (i.e. 15/17) of the amino acids that distinguish these proteins align with residues forming the CD48-binding, GFCC′C″ face of rat CD2.

Our most important findings concern the nature of the low affinity interaction of CD48 with CD2. We propose a model of the complex, which, although broadly similar, differs in detail from another based on simple superpositions of rat CD2 and CD48 with their counterparts in the human CD2-CD58 complex (29). We suggest that the new model is credible for the following reasons: (1) it avoids an electrostatic clash at the centre of each binding surface and steric interference involving the FG loops of both proteins; (2) two residue pairs expected to form salt bridges according to charge-swap mutagenesis are brought into close proximity;
(3) it positions two additional pairs of charged side-chains, and a hydrophobic residue on each surface, within range of interaction; and (4) it accounts for virtually all the mutational data. The new model requires a 7° rotation and ~3Å translation of CD48 relative to the position of CD58. If correct, it reveals considerable plasticity in the topology of ligand recognition by CD2.

The thermodynamic analysis provides further evidence that the ligand binding mechanisms of human and rat CD2 are substantially different. Whereas the rat interaction has roughly equivalent enthalpic and entropic components, a relatively high enthalpy overcomes a large entropic barrier for the interaction of human CD2 with CD58. The unfavourable entropy of the interaction of the human proteins likely results from restraining the somewhat flexible binding faces of human CD2 and CD58 in the complex ((59), Kearney et al., accompanying submission) and from the ordering of solvent molecules between the poorly matched binding surfaces. It is conceivable that the unliganded rat proteins are much less conformationally flexible. The small enthalpic contribution to binding in the rat system suggests that the flat binding surfaces do not substantially increase van der Waals contacts between the proteins, since the enthalpy of binding (-3.5 kcal/mol) is approximately one quarter of that of the human interaction (-12 kcal/mol) and one-third to one-sixth that measured for four antibody–protein antigen complexes interacting over comparable surface areas (60). Our model of the rat CD2-CD48 interaction also suggests that comparable numbers of hydrogen (H) bonds and salt bridges form in the rat and human complexes (3 H bonds and 6-8 salt-bridges versus 3 H bonds and 10 salt bridges, respectively; (29)) and that both complexes lack large hydrophobic contacts. It is therefore unclear why the enthalpies of the human and rat interactions are so different. One possibility is that the unusual, inter-digitating network of salt bridges seen in the complex of human CD2 and CD58, which may reduce unfavourable electrostatic interactions between similarly charged residues in the unliganded proteins (29), is likely to be absent from the rat CD2-CD48 interface. Analysis of the R87A mutant of rat CD2, for which binding to CD48 has a higher enthalpy, suggests that steric effects may also constrain the enthalpy of binding by preventing the close apposition of the two relatively flat binding surfaces over their entire area, although these effects are small ($\Delta\Delta H < 0.5$ kcal/mol). An explanation for the enhanced binding entropy of the mutant and its ionic strength-dependence is that the better fit of the two surfaces leads to the formation of additional charge-charge interactions, resulting in the release of previously bound ions to the solvent.

The clear differences in the human and rat CD2-ligand interactions, despite the obvious relatedness of these two molecules, fits an emerging view that the binding properties of cell surface molecules are very heterogeneous. Structures of the complexes formed between CD152 (CTLA-4) and its ligands CD80 (61) and CD86 (62), for example, reveal that, in contrast to the interactions of CD2, binding involves a very high degree of surface complementarity and that there are many fewer electrostatic contacts. Binding in these instances is weak because the proteins interact over a relatively small area and the reaction is constrained, as in the case of the human CD2-CD58 interaction, by a large, and as yet unexplained, entropic barrier. Entropic factors make even larger contributions to the weak affinities of TCRs for their peptide-MHC ligands (63). Much has been made of the significance of this for the TCR in terms of potential repertoire expansion or in the context of the function of the TCR as a molecule that scans extremely large numbers of potential ligands before undergoing conformational rearrangements allowing stable binding with cognate ligands (63,64). As is now clear, the thermodynamics of TCR interactions are not that unusual, and may simply reflect the fact that TCR ligands are cradled in intrinsically flexible loops at the “tops” of the variable domains. The use of these loops is in turn a direct consequence of the genetic mechanism generating diversity.

In conclusion, the binding face of rat CD48 appears to be ideally suited to binding multiple ligands while maintaining low affinity for each of them. It is conceivable that cross-reactive interactions of this type fuelled the initial expansion of CD2-related genes. For the human and rat CD2 homologues, however, it can probably be safely concluded that the major factor constraining their evolution is that their interactions should remain weak and specific.
REFERENCES

1. Engel, P., Eck, M. J., and Terhorst, C. (2003) Nat Rev Immunol 3, 813-821
2. Sayos, J., Wu, C., Morra, M., Wang, N., Zhang, X., Allen, D., van Schaik, S., Notarangelo, L., Geha, R., Roncarolo, M. G., Oetggen, H., De Vries, J. E., Aversa, G., and Terhorst, C. (1998) Nature 395, 462-469
3. Kiel, M. J., Yilmaz, O. H., Iwashita, T., Terhorst, C., and Morrison, S. J. (2005) Cell 121, 1109-1121
4. Killeen, N., Stuart, S. G., and Littman, D. R. (1992) Embo J 11, 4329-4336
5. Teh, S. J., Killeen, N., Tarakhovsky, A., Littman, D. R., and Teh, H. S. (1997) Blood 89, 1308-1318
6. Bachmann, M. F., Barner, M., and Kopf, M. (1999) J Exp Med 190, 1383-1392
7. van der Merwe, P. A. (1999) J Exp Med 190, 1371-1374.
8. Dumont, C., Deas, O., Hebib, C., Durrbach, A., Hirsch, F., Charpentier, B., and Senik, A. (2001) Transplant Proc 33, 199-200.
9. Gonzalez-Cabrero, J., Wise, C. J., Latchman, Y., Freeman, G. J., Sharpe, A. H., and Reiser, H. (1999) Proc Natl Acad Sci U S A 96, 1019-1023
10. Brown, M. H., Boles, K., van der Merwe, P. A., Kumar, V., Mathew, P. A., and Barclay, A. N. (1998) J Exp Med 188, 2083-2090
11. Garni-Wagner, B. A., Purohit, A., Mathew, P. A., Bennett, M., and Kumar, V. (1993) J Immunol 151, 60-70
12. Schuhmachers, G., Araiizumi, K., Mathew, P. A., Bennett, M., Kumar, V., and Takashima, A. (1995) J Invest Dermatol 105, 592-596
13. Schuhmachers, G., Araiizumi, K., Mathew, P. A., Bennett, M., Kumar, V., and Takashima, A. (1995) Eur J Immunol 25, 1117-1120
14. Kumaresan, P. R., Stepp, S. E., Bennett, M., Kumar, V., and Mathew, P. A. (2000) Immunogenetics 51, 306-313
15. Kumaresan, P. R., Stepp, S. E., Verrett, P. C., Chuang, S. S., Boles, K. S., Lai, W. C., Ryan, J. C., Bennett, M., Kumar, V., and Mathew, P. A. (2000) Mol Immunol 37, 735-744.
16. Ames, J. B., Vyas, V., Lusin, J. D., and Mariuzza, R. (2005) Biochemistry 44, 6416-6423
17. van der Merwe, P. A., Barclay, A. N., Mason, D. W., Davies, E. A., Morgan, B. P., Tone, M., Krishnam, A. K., Janelli, C., and Davis, S. J. (1994) Biochemistry 33, 10149-10160
18. van der Merwe, P. A., McPherson, D. C., Brown, M. H., Barclay, A. N., Cyster, J. G., Williams, A. F., and Davis, S. J. (1993) Eur J Immunol 23, 1373-1377
19. Mavaddat, N., Mason, D. W., Atkinson, P. D., Evans, E. J., Gilbert, R. J., Stuart, D. I., Fennelly, J. A., Barclay, A. N., Davis, S. J., and Brown, M. H. (2000) J Biol Chem 275, 28100-28109.
20. Davis, S. J., Ikemizu, S., Wild, M. K., and van der Merwe, P. A. (1998) Immunol Rev 163, 217-236
21. van der Merwe, P. A., and Barclay, A. N. (1994) Trends Biochem Sci 19, 354-358
22. van der Merwe, P. A., and Davis, S. J. (2003) Annu Rev Immunol 21, 659-684
23. Davis, S. J., Ikemizu, S., Evans, E. J., Fugger, L., Bakker, T. R., and van der Merwe, P. A. (2003) Nat Immunol 4, 217-224
24. Jones, E. Y., Davis, S. J., Williams, A. F., Harlos, K., and Stuart, D. I. (1992) Nature 360, 232-239
25. Bodian, D. L., Jones, E. Y., Harlos, K., Stuart, D. L., and Davis, S. J. (1994) Structure 2, 755-766
26. Davis, S. J., Davies, E. A., Tucknott, M. G., Jones, E. Y., and van der Merwe, P. A. (1998) Proc Natl Acad Sci U S A 95, 5490-5494
27. Ikemizu, S., Sparks, L. M., van der Merwe, P. A., Harlos, K., Stuart, D. I., Jones, E. Y., and Davis, S. J. (1999) Proc Natl Acad Sci U S A 96, 4289-4294
28. Sun, Z. Y., Dotsch, V., Kim, M., Li, J., Reinherz, E. L., and Wagner, G. (1999) Embo J 18, 2941-2949
29. Wang, J. H., Smolyar, A., Tan, K., Liu, J. H., Kim, M., Sun, Z. Y., Wagner, G., and Reinherz, E. L. (1999) Cell 97, 791-803
30. Jones, S., and Thornton, J. M. (1996) Proc Natl Acad Sci U S A 93, 13-20
31. Butters, T. D., Sparks, L. M., Harlos, K., Ikemizu, S., Stuart, D. I., Jones, E. Y., and Davis, S. J. (1999) Protein Sci 8, 1696-1701
32. Driscoll, P. C., Cyster, J. G., Campbell, I. D., and Williams, A. F. (1991) Nature 353, 762-765
33. van der Merwe, P. A., McNamee, P. N., Davies, E. A., Barclay, A. N., and Davis, S. J. (1995) Curr Biol 5, 74-84
34. Mizushima, S., and Nagata, S. (1990) Nucleic Acids Res 18, 5322
35. Harlos, K. (1992) J Appl Cryst 25, 536-538
36. Otwinowski, Z., and Minor, W. (1997) Methods Enzymol. 276, 307-326
37. Navaza, J. (1994) Acta. Cryst. A50, 157-163
38. Brunger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J. S., Kuszewski, J., Nilges, M., Pannu, N. S., Read, R. J., Rice, L. M., Simonson, T., and Warren, G. L. (1998) Acta Crystallogr D Biol Crystallogr 54, 905-921
39. Cowtan, K. D., and Main, P. (1996) Acta. Cryst. D52, 43-48
40. Jones, T. A., Zou, J. Y., Cowan, S. W., and Kjeldgaard. (1991) Acta Crystallogr A 47, 110-119
41. Stuart, D. I., Levine, M., Muirhead, H., and Stammers, D. K. (1979) J Mol Biol 134, 109-142
42. Esnouf, R. M. (1997) J Mol Graph Model 15, 132-134, 112-133
43. Merritt, E. A., and Murphy, M. E. P. (1994) Acta Crystallogr D Biol Crystallogr 50, 869-873
44. Nicholls, A., Sharp, K. A., and Honig, B. (1991) Proteins 11, 281-296
45. Jackson, R. M., Gabb, H. A., and Sternberg, M. J. (1998) J Mol Biol 276, 265-285
46. Wiseman, T., Williston, S., Brandts, J. F., and Lin, L. N. (1989) Anal Biochem 179, 131-137
47. Ladbury, J. E., and Chowdhry, B. Z. (1996) Chem Biol 3, 791-801
48. Yoo, S. H., and Lewis, M. S. (1995) Biochemistry 34, 632-638
49. Spolar, R. S., Livingstone, J. R., and Record, M. T., Jr. (1992) Biochemistry 31, 3947-3955
50. Davis, S. J., Puklavec, M. J., Ashford, D. A., Harlos, K., Jones, E. Y., Stuart, D. I., and Williams, A. F. (1993) Protein Eng 6, 229-232
51. Holm, L., and Sander, C. (1995) Trends Biochem Sci 20, 478-480
52. van der Merwe, P. A., Brown, M. H., Davis, S. J., and Barclay, A. N. (1993) Embo J 12, 4945-4954
53. Spolar, R. S., and Record, M. T., Jr. (1994) Science 263, 777-784
54. Bromley, S. K., Iaboni, A., Davis, S. J., Whitty, A., Green, J. M., Shaw, A. S., Weiss, A., and Dustin, M. L. (2001) Nat Immunol 2, 1159-1166
55. Choudhuri, K., Wiseman, D., Brown, M. H., Gould, K., and van der Merwe, P. A. (2005) Nature 436, 578-582
56. Veillette, A., and Latour, S. (2003) Curr Opin Immunol 15, 277-285
57. Wang, N., Morra, M., Wu, C., Gullo, C., Howie, D., Coyle, T., Engel, P., and Terhorst, C. (2001) Immunogenetics 53, 382-394
58. Arulanandam, A. R., Moingeon, P., Concino, M. F., Recny, M. A., Kato, K., Yagita, H., Koyasu, S., and Reinherz, E. L. (1993) J Exp Med 177, 1439-1450
59. Kitao, A., and Wagner, G. (2000) Proc Natl Acad Sci U S A 97, 2064-2068
60. Schwarz, F. P., Tello, D., Goldbaum, F. A., Mariuzza, R. A., and Poljak, R. J. (1995) Eur J Biochem 228, 388-394
61. Stamper, C. C., Zhang, Y., Tobin, J. F., Erbe, D. V., Ikemizu, S., Davis, S. J., Stahl, M. L., Seehra, J., Somers, W. S., and Mosyak, L. (2001) Nature 410, 608-611
62. Schwartz, J. C., Zhang, X., Fedorov, A. A., Nathenson, S. G., and Almo, S. C. (2001) Nature 410, 604-608
63. Willcox, B. E., Gao, G. F., Wyer, J. R., Ladbury, J. E., Bell, J. I., Jakobsen, B. K., and van der Merwe, P. A. (1999) Immunity 10, 357-365
64. Wu, L. C., Tuot, D. S., Lyons, D. S., Garcia, K. C., and Davis, M. M. (2002) Nature 418, 552-556
FOOTNOTES

* The authors are grateful to the staff of beamlines BM14 and ID2 at the European Synchrotron Radiation Facility (Grenoble, France) for assistance with crystallographic data collection and R. Esnouf for assistance with angle calculations and figure preparation. P.A.v.d.M. and D.I.S. are supported by the UK Medical Research Council, M.A.A.C. and A.M.C. by FEDER and Fundação para a Ciência e a Tecnologia, E.Y.J. by Cancer Research UK, S.I. by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan and S.J.D. by the Wellcome Trust.

1The abbreviations used are: IgSF, Immunoglobulin superfamily; Chr, Chromosome; s, soluble; r, rat; h, human; m, mouse; c, chimeric; WT, wild-type; PDB, Protein Data Bank; SPR, Surface Plasmon Resonance;

2E.J.E. and S.J.D., unpublished data.

3J. E. L. et al., unpublished data.

FIGURE LEGENDS

FIG. 1. The structure of cCD48. A, Two orthogonal views of schematic α-carbon representations of cCD48 (green), rat CD2 (blue) and cCD58 (red), superimposed on domain 2 of each molecule. The first residue of domain 2 in each molecule (E104 in cCD48, E99 in rCD2 and E94 in cCD58) is marked with a green sphere. B, The inter-domain contact region is shown enlarged for cCD48 and cCD58 (rCD2 has similar interactions to cCD58) with key non-linker interface residues drawn as ball and stick models. The hydrogen bonds between the two IgSF domains of cCD48 are marked in magenta.

FIG. 2. Comparison of V-set IgSF domain folds. Illustrations of the secondary structure of the membrane distal domains of rCD48 (A), rCD2 (B), hCD2 (C), hCD58 (D), mCD244 (E) and hCD4 (F) are shown in the same orientation, as defined by superposition of each domain onto that of rCD48. The β-strands of each domain are labelled according to the convention for IgSF domains.

Fig. 3. The ligand binding face of rat CD48. The surface of the V-set domain of rCD48 is shown oriented to reveal the ligand-binding GFCC′C″ face of the protein, as in Fig. 2. A, The surfaces of residues whose mutation disrupts CD2 binding are coloured magenta and labelled, whilst those whose mutation has no effect are coloured cyan. B, The surface is uncoloured to reveal its flatness; the outline of the CD2 binding surface (as seen in A) is shown.. C, The surface is coloured by its native electrostatic potential calculated at neutral pH; blue represents positive potential, white represents neutral and red represents negative potential contoured at ±8.5kT.

Fig. 4. The electrostatic potential of CD48 related proteins. A-E, The surfaces of domain 1 from, rCD2 (A), mCD244 (B), hCD2 (C), hCD58 (D)) and, for comparison, rCD48 (E) are shown oriented as in Fig. 3, coloured by the native electrostatic potential of the surface calculated at neutral pH; blue represents positive potential, white represents neutral and red represents negative potential contoured at ±8.5kT. Residues referred to in the text are labelled. F-G, the electrostatic potential of rCD2 is shown projected onto the surface of rCD48 and contoured at ±2.5kT, when docked onto rCD48 by either simple superposition of the molecules onto the structure of the hCD58-hCD2 complex (F) or according to the improved model described in the text (G). It is clear that in the direct superposition model (F), regions of positive potential on CD2 align with regions of positive potential on the native CD48 surface (C) and a similar clash occurs in two regions of negative potential, thus resulting in electrostatic repulsion. These clashes are alleviated in the improved model (G).
Fig. 5. Modelling the rCD48-rCD2 complex. A, Two orthogonal views of a ribbon representation of the likely complex formed between the full extracellular domains of rat CD2 (blue) and rat CD48 (green, modelled on cCD48). B, Expanded view of the interface, with the sidechains of the residues most likely to be involved in the interaction shown as ball-and-stick representations. Hydrogen bonds are shown as dashed red bonds. C, Comparison of the modelled rat CD2-CD48 complex (left) with the solved human CD2-CD58 complex (right, CD58 in red). The solvent-accessible molecular surface of the separate proteins is shown semi-transparently over a representation of their secondary structure to illustrate the complementarity of the binding surfaces.

Fig. 6. Thermodynamics of the rCD2-rCD48 interaction. A, van’t Hoff plot of equilibrium binding affinity data for the rCD2-rCD48 interaction collected using SPR-based methodology at several temperatures. Non-linear curve fitting of the data (see methods) yields estimates of the change in enthalpy (ΔH_{vH}) and entropy (ΔS_{vH}) on binding at an arbitrary temperature (T_0) and the change in heat capacity on binding ($\Delta C_{p,vH}$) which is assumed to be invariant with temperature. The data shown were fitted using two values of T_0, namely 298.15K (25°C) and 310.15K (37°C), and the resulting curves superimpose. The estimates of $\Delta H_{\text{vH}}, \Delta S_{\text{vH}}$ and $\Delta C_{p,vH}$ from these fittings were -3666 calmol$^{-1}$, 5.1 calmol$^{-1}$K$^{-1}$ and -214 calmol$^{-1}$K$^{-1}$ at 25°C and -5432 calmol$^{-1}$, 1.8 calmol$^{-1}$K$^{-1}$ and -225 calmol$^{-1}$K$^{-1}$ at 37°C. Replicate experiments yielded the values given in Table 4. B, An example of titration of rCD48 (2.35mM) into an isothermal calorimetry cell containing rCD2 (0.128mM) at pH 7.4 and 25°C in a buffer containing 150mM NaCl, fitted with a one-site binding model. Similar titrations were undertaken at various temperatures and a second ionic strength (500mM NaCl), the results of which are summarised in Table 4. C, Plot of observed enthalpy versus temperature for the interaction of rCD48 with WT rCD2d1 (––) or R87A rCD2d1 (–•–). The slope of this plot gives the change in heat capacity (ΔC_p) on binding, the values of which are -180 calmol$^{-1}$K$^{-1}$ and -204 calmol$^{-1}$K$^{-1}$ for the interaction with WT and R87A rCD2d1, respectively.
| Table I
Data collection and refinement statistics for the cCD48 structure
Data collection statistics
Wavelength (Å)
Resolution limits (Å)
Space Group
Unit Cell dimensions (Å)
Number of observations
Unique reflections
Completeness (%)
$I / \sigma(I)$
$R_{ ext{merge}}$ (%)

| **Structure refinement statistics** |
Resolution limits (Å)	30 – 2.6
Reflections (I > 0)	9,400
Completeness (%)	98.2
Reflections in (5%) test set	501
R_{cryst} (%)	21.6 (40.7)
R_{free} (%)	27.2 (47.1)
Number of non-hydrogen atoms:	1,596
Protein; sugar; H$_2$O; glycerol	1481; 43; 42; 30
Geometry rms deviations:	0.010; 1.6
Bond lengths (Å); bond angles (°)	
Average B factors (Å2)	
Protein; sugar; water; glycerol	56.4; 77.9; 49.0; 67.6
Main chain; side chain	54.3; 58.3
B factor rms deviations (Å2)	2.6; 4.1
Main chain bonds; side chain bonds	4.3; 6.1

*a Numbers in parentheses refer to highest resolution shell (2.66–2.60Å for data processing and 2.69-2.60Å for structure refinement)

*b $R_{	ext{merge}} = \Sigma|I_i - <I>| / \Sigma|I_i|$ where I_i is the intensity of an individual observation of a reflection and $<I>$ is the average intensity of that reflection.

*c $R_{\text{cryst}} = \Sigma|F_o| - |F_c| / \Sigma|F_o|$ where $|F_o|$ is the observed structure factor amplitude and $|F_c|$ is the calculated structure factor amplitude.

*d R_{free} is calculated as for R_{cryst} but only against the test data excluded from refinement.
Table II

Binding data for mutants of CD48

Binding was assayed by surface plasmon resonance. Chimeras of the extracellular region of rCD48, containing the indicated mutations, with domains 3 and 4 of rat CD4 were immobilised via the OX68 antibody or via biotinylation and binding to streptavidin. Binding to the OX45 antibody and to a high avidity (dimeric) form of the rCD2 ligand binding domain joined to GST (CD2d1-GST) are indicated as follows: ++, WT binding; +, reduced binding; -, no binding. Dissociation constants (K_d) were calculated for the binding of srCD2 to mutants by equilibrium analysis. n.d. indicates a measurement was not determined.

CD48 mutation	OX45	CD2d1-GST	rCD2 K_d (µM)
WT	++	++	37
Q30K	n.d.	n.d.	34
R31A	-	+	168
R31K	++	+	108
R31Y	-	+	22
T33A	++	+	42
L35A	n.d.	n.d.	>1500^b
H36A	++	++	54
Q40A	n.d.	n.d.	294
Q40R	n.d.	n.d.	439
K41A	++	-	n.d.
K41D	++	-	n.d.
K41Y	++	-	n.d.
E44A	++	+	>1500^b
E44D	++	+	102
E44Q	++	+	50
E44R	++	-	n.d.
E44Y	++	-	n.d.
F54A	++	-	n.d.
E55R	n.d.	n.d.	17
R87A	n.d.	n.d.	>1500^b
L89A	++	+	>1500^b
T92A	n.d.	n.d.	11
E93A	-	+	>1500^b

^an.d. indicates that binding was not determined.

^bBinding was undetectable on injection of rCD2d1 at 1500µM, therefore the K_d must be greater than this value.
TABLE III
Comparison of rCD2/rCD48 mutational data with the structural model

rCD2 mutants (binding to rCD48)

Residue	Ala mutant	Other mutation(s)	Binding	Possible structural explanation
H12	n.d.	D	++	Far from binding face
N17	n.d.	D	++	Far from binding face
D26	n.d.	K	++	Far from binding face
D28	-	K	-	No contact with CD48; possibly stabilising K43 & K45 on CD2
E29	-	R	-	Salt bridges to CD48 R31 and K41
R31	-	Y	-	Salt bridge to CD48 E93
E33	++	R	-	Unclear, possible H-bond with CD48 E93
R34	++	D	+++	Far from binding face
S36	n.d.	E	++	Edge of binding face, no contact with CD48
T37	n.d.	K	++	Edge of binding face, pointing away from CD48
L38	-	Y	-	Hydrophobic packing with CD48, especially L89
E41	++	R	-	Salt bridge with CD48 R31 c
K43	+	E	-	Salt bridge with CD48 E44 c
K45	n.d.	E	++	Edge of binding face, no contact with CD48
M46	n.d.	Y	++	Edge of binding face, no contact with CD48
K47	n.d.	D	++	Far from binding face
F49	-	R	-	Hydrophobic packing with CD48, especially L89
K51	++	E	+	Edge of binding face, may interact with CD48 E91
S52	n.d.	E	+	Far from binding face
E56	+	R	++	Far from binding face
R70	n.d.	E	++	Far from binding face
T79	n.d.	E	+	On binding face, but set back from CD48; space for larger sidechain
Y81	-	S	-	H-bond with R87
T83	n.d.	D	+	Edge of binding face, pointing away from CD48
T86	++	D	-	Possible H-bond with CD48 Q40
R87	+++	E	-	Very close to CD48, possible steric interference; may H-bond to T38
N90	n.d.	K	+	Edge of binding face, no contact with CD48
D94	n.d.	K	++	Far from binding face

rCD48 mutants (binding to rCD2)

K23	n.d.	E	+	Far from binding face
S28	n.d.	E	+	Far from binding face
Q30	n.d.	K	+	Edge of binding face, no contact with CD2
R31	+	E	+	Salt bridges with E41 c and E29
T33	+	R, E	-	At base of pocket at centre of binding face (see Fig. 3), no contact with CD2, no space for large sidechain
L35	-	R	-	No contact with CD2 but Arg would disrupt CD48 R87 and K41
H36	+	E	+	Internally pointing residue
T38	n.d.	R	++	Possible H-bond with CD2 R87, very close to CD2 FG loop
N39	n.d.	D	++	Edge of binding face, pointing away from CD2
Q40	-	R	-	Possible H-bond with CD2 T86
K41	-	E, R, D, Y	-	Salt bridge with CD2 E29
E44	-	K	-	Salt bridge with CD2 K43 c
F46	n.d.	D	+	Edge of binding face, no contact with CD2
K50	n.d.	E	+	Edge of binding face, no contact with CD2
T52	n.d.	R	+	Edge of binding face, no contact with CD2
F54	-	D	-	Unclear, see text
E55	n.d.	R	+	Edge of binding face, pointing away from CD2
K59	n.d.	E	+	Far from binding face
Y85	n.d.	D	+	Far from binding face
R87	-	E	-	H-bond with CD2 Y81
L89	-	none		Hydrophobic packing with CD2, especially L38 and F49
H90	n.d.	D	+	Internally pointing residue
E91	n.d.	K	+	Edge of binding face, may interact with CD2 K51
T92	++	R	-	Edge of binding face, no contact with CD2
E93	-	R	-	Salt bridge to CD2 R31; possible H-bond to CD2 E33
Q95	n.d.	R	+	Edge of binding face, no contact with CD2
E101	n.d.	R	+	Far from binding face

a (26); *b* (33); *c* Interaction known from charge swap mutagenesis (33).
TABLE IV

Summary of thermodynamic data for the binding of srCD48 to WT and R87A rCD2d1

srCD48 was titrated into an ITC cell containing either WT or R87A rCD2d1 at various temperatures and ionic strengths and the resulting titration curves were fitted with a one-site binding model (Fig. 6A) to derive values for the stoichiometry, the association constant (K_a) and the change in enthalpy on binding (ΔH_{obs}). Other properties were calculated from these measurements.

Non-linear van’t Hoff analysis of SPR data			
T_0^a	ΔH_vH	$T\Delta S_{vH}$	$\Delta C_P\nu H$
°C	cal mol$^{-1}$	cal mol$^{-1}$	cal mol$^{-1}$ K$^{-1}$
25	-3500 ± 400	2000 ± 300	-205 ± 13
37	-5900 ± 400	200 ± 300	

Isothermal calorimetry								
WT rCD2d1 binding to WT rCD48-CD4 chimera								
$[\text{NaCl}]$	Temp	$[\text{rCD2d1}]$	Stoichiometry	K_a^b	ΔH_{obs}	ΔG_{calc}^c	$T\Delta S_{calc}^d$	
mM	°C	µM	$M^\dagger*10^3$	µM	cal mol$^{-1}$	cal mol$^{-1}$	cal mol$^{-1}$	
150	15	92.7	0.93 ± 0.02	0.83 ± 0.10	12.0	-1355 ± 41	-6481	5346
150	25	107.7	1.10 ± 0.01	0.55 ± 0.02	18.2	-3514 ± 43	-6463	2949
150	35	93.8	1.05 ± 0.007	0.67 ± 0.03	14.9	-4952 ± 52	-6800	1848
500	25	103.1	1.02 ± 0.02	0.52 ± 0.05	19.2	-2533 ± 76	-6429	3896

WT rCD2d1 binding to WT rCD48-CD4 chimera								
[NaCl]	Temp	[rCD2d1]	Stoichiometry	K_a^b	ΔH_{obs}	ΔG_{calc}^c	$T\Delta S_{calc}^d$	
mM	°C	µM	$M^\dagger*10^3$	µM	cal mol$^{-1}$	cal mol$^{-1}$	cal mol$^{-1}$	
150	15	83.5	1.06 ± 0.01	3.70 ± 0.38	2.7	-1592 ± 23	-7342	5750
150	20	86.2	0.99 ± 0.01	3.77 ± 0.29	2.7	-2947 ± 37	-7480	4533
150	25	103.1	1.14 ± 0.002	3.62 ± 0.01	2.8	-3966 ± 126	-7584	3618
150	35	41.2	1.06 ± 0.01	2.79 ± 0.22	3.6	-5752 ± 96	-7679	1927
500	25	51.6	1.12 ± 0.01	2.18 ± 0.13	4.6	-4034 ± 50	-7283	3249

a T_0 is the arbitrary reference temperature used in fitting the van’t Hoff curve, and therefore the temperature at which the given estimates of temperature dependent thermodynamic terms apply; see methods.
b $K_d = 1 / K_a$
c $\Delta G_{calc} = -RT\ln(K_a)$
d $T\Delta S_{calc} = \Delta H_{obs} - \Delta G_{calc}$
Evans et al., Figure 1
Evans et al., Figure 2
Evans et al., Figure 6
Crystal structure and binding properties of the CD2 and CD244 (2B4) binding protein CD48

Edward J. Evans, Mónica A. A. Castro, Ronan O’Brien, Alice Kearney, Heather Walsh, Lisa M. Sparks, Michael G. Tucknott, Elizabeth A. Davies, Alexandre M. Carmo, P. Anton van der Merwe, David I. Stuart, E. Yvonne Jones, John E. Ladbury, Shinji Ikemizu and Simon J. Davis

J. Biol. Chem. published online June 27, 2006

Access the most updated version of this article at doi: 10.1074/jbc.M601314200

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC’s e-mail alerts

Supplemental material:
http://www.jbc.org/content/suppl/2006/06/27/M601314200.DC1