Update on the Management of Antibiotic Allergy

Bernard Yu-Hor Thong*

Department of Rheumatology, Allergy and Immunology, Tan Tock Seng Hospital, Singapore

Drug allergy to antibiotics may occur in the form of immediate or non-immediate (delayed) hypersensitivity reactions. Immediate reactions are usually IgE-mediated whereas non-immediate hypersensitivity reactions are usually non-IgE or T-cell mediated. The clinical manifestations of antibiotic allergy may be cutaneous, organ-specific (e.g., blood dyscrasias, hepatitis, interstitial nephritis), systemic (e.g., anaphylaxis, drug induced hypersensitivity syndrome) or various combinations of these. Severe cutaneous adverse reactions manifesting as Stevens Johnson syndrome (SJS) or toxic epidermal necrolysis (TEN) may be potentially life-threatening. The management of antibiotic allergy begins with the identification of the putative antibiotic from a detailed and accurate drug history, complemented by validated in-vivo and in-vitro allergological tests. This will facilitate avoidance of the putative antibiotic through patient education, use of drug alert cards, and electronic medical records with in-built drug allergy/adverse drug reaction prescription and dispensing checks. Knowledge of the evidence for specific antibiotic cross-reactivities is also important in patient education. Apart from withdrawal of the putative antibiotic, immunomodulatory agents like high-dose intravenous immunoglobulins may have a role in TEN. Drug desensitization where the benefits outweigh the risks, and where no alternative antibiotics can be used for various reasons, may be considered in certain situations. Allergological issues pertaining to electronic drug allergy alerts, computerized physician prescriptions and decision support systems, and antibiotic de-escalation in antimicrobial stewardship programmes are also discussed.

Key Words: Anaphylaxis; desensitization; drug hypersensitivity; Stevens Johnson syndrome; toxic epidermal necrolysis

INTRODUCTION

Antibiotics are one of the most common causes of drug allergy in most epidemiological studies, both among adults and children. Among the various classes of antibiotics, beta-lactam antibiotics (penicillins and cephalosporins), cotrimoxazole and quinolones are some of the most common causes of antibiotic allergy. Antibiotic allergy may occur in the form of immediate or non-immediate (delayed) hypersensitivity reactions. Immediate reactions are usually IgE-mediated whereas non-immediate hypersensitivity reactions are usually non-IgE or T-cell mediated. The clinical manifestations of antibiotic allergy may be cutaneous, organ-specific (e.g., blood dyscrasias, hepatitis, interstitial nephritis), systemic (e.g., anaphylaxis, drug induced hypersensitivity syndrome) or various combinations of these. Severe cutaneous adverse reactions (SCAR) manifesting as Stevens Johnson syndrome (SJS) or toxic epidermal necrolysis (TEN) may be potentially life-threatening.

DIAGNOSIS OF ANTIBIOTIC ALLERGY

The management of antibiotic allergy begins with the identification of the putative antibiotic from a detailed and accurate drug history. Not infrequently, the drug history may need to be obtained from a combination of sources other than the patient, including care-givers, records from other prescribing physicians and both non-electronic and electronic medical records. With the use of digital photography, instructing patients to take digital photographs of the initial rash may become increasingly important in helping the allergist to diagnose a drug eruption, especially when the rash is likely to have resolved by the time the patient sees the allergist.

In the diagnosis of immediate allergic reactions to antibiotics, the in-vivo tests available are skin prick tests (SPT) and intradermal tests (IDT). However, these have been well validated mainly for beta-lactam antibiotics and less so for other classes of antibiotics. For in-vitro tests, commercially available assays include fluorescent enzyme immunoassays (FEIA) (Immuno-
CAP, Phadia) which are less sensitive and specific compared to skin tests. Again, these tests are available mainly for penicillins and cephalosporins. Radioimmunoassays previously used mainly for the diagnosis of penicillin allergy (including the radioallergosorbent test, RAST) have over the years been replaced with the FEIA assays. Flow-cytometric based basophil activation tests (BAT) (flow assay stimulation test, FAST/FlowCAST, Buhlmann Laboratories) which measure CD69 or CD203c on drug-specific activated basophils may have a role in the diagnosis of antibiotic allergy, with studies so far mostly focused on beta-lactam allergy.

For non-immediate reactions, delayed readings of IDT are done at 24 hours and 72 hours. Delayed reactions are considered positive when there is an infiltrated erythematous reaction. Patch tests are often done in Europe to assist in the diagnosis of non-immediate reactions to various antibiotics. The tests are read on day 2, day 4, and day 7 (if negative on days 2 and 4), and the vehicle used is usually petrolatum. The patch test allergens can be prepared in-house or using commercially available products (Chemotechnique Diagnostics, Sweden). However, the sensitivity of the test is usually drug- and reaction-specific. Patch tests have been described in the diagnosis of non-immediate reactions to amoxicillin, cefcapene pivoxil, clindamycin, ciprofloxacin, clarithromycin, cotrimoxazole, doxycycline, erythromycin, fluoroquinolones, isoniazid, metronidazole, minocycline, pristinamycin, rifampicin, spiramycin, teicoplanin and vancomycin. Patch tests are generally useful in maculopapular exanthema (MPE), eczema, acute generalized exanthematous pustulosis (AGEP), fixed drug eruptions (FDE) (when done on the lesional skin), symmetric drug-related intertriginous and flexural exanthema (SDRIFE, Baboon’s syndrome); but have not been shown to be very useful in SJS/TEN and vasculitis.

In-vivo tests available for non-immediate reactions include the lymphocyte transformation test (LTT) which is a proliferation assay which detects drug-specific T-cells. This test can be technically difficult to carry out and are thus often done in specialized centres, mostly in Europe. Like the patch test, the LTT is usually positive in a drug- and reaction-specific manner. Antibiotics which have been found to often test positive in LTT are beta-lactams, quinolones, macrolides, sulfonamides, tetracycline, isoniazid and rifampicin. Similar to patch tests, LTT are beta-lactams, quinolones, macrolides, sulfonamides, tetracycline, isoniazid and rifampicin. However, the sensitivity of the test is usually drug- and reaction-specific.

Definitive treatment involves cessation of the suspected antibiotic. In certain instances where the antibiotic is required because there are no better alternatives (e.g., infection with multi-resistant organisms, or when alternative drugs are more expensive), drug desensitization can be carried out. Desensitization is a method of reintroducing antibiotics into highly sensitized patients to induce tolerance. However such individuals are still considered as being allergic to the antibiotic. Recent studies of in vitro rapid antigen desensitizations implicate mast cells and basophils as cellular targets, as well as syk, a signal transducing molecule, and signal transducer and activator of transcription 6 (STAT6), which is responsible for the transcription of interleukin (IL)-4 and IL-13. Rapid desensitization results in patients achieving the target total dose of the drug through rapidly escalating doses usually within 24 hours, slow desensitization results in patients achieving the total target dose within a few days to weeks. Desensitization should be avoided should the initial reaction be potentially life-threatening reactions like immunobullous eruptions and SJS/TEN, with the exception of anaphylaxis. Various desensitization protocols are available for penicillin (benzylpenicillin, ampicillin), cephalosporins (cefazidime, cefotaxime), cotrimoxazole, ethambutol, imipenam, isoniazid, meropenam, metronidazole, rifampicin, streptomycin, vancomycin and fluoroquinolones.
Penicillin allergy

Allergic reactions to beta-lactam antibiotics are the most common cause of drug allergies in most epidemiological studies on adverse drug reactions. SPT and IDT using commercially available penicillloyl polylysine (PPL), minor determinant mix (MDM) and benzylpenicillin G or amoxicillin have been validated in various studies and shown to be useful in the evaluation of suspected immediate reactions to penicillin. In 2004, Allergopharma and Hollister-Stier announced their decision to stop the commercial production of penicillin reagents (AllergoGen® and PrePen® respectively). A Spanish product (Diater®) was subsequently found to be a reliable and consistent alternative and is presently used in many countries worldwide. In September 2009, Pre-Pen® was approved for marketing by the Food and Drug Administration (FDA) through ALK-Abello and Allerquest LLC. In countries where commercial PPL and MDM are not available, skin testing with benzylpenicillin may be used in lieu. However, this may miss patients who may have tested positive to PPL or MDM, and thus could result in potentially positive drug provocation tests being done.

In-vitro tests are often less sensitive and more expensive when compared to skin tests, with the FEIA currently being the most widely commercially available test. The determinants used in FEIA are benzylpenicillloyl and amoxicilloyl. However, the sensitivity (42-74%) and specificity (85-100%) reported varied among studies, depending on when the sample was taken from the time of the initial clinical reaction, and the outcomes of skin tests to PPL, MDM and/or amoxicillin in the respective studies.

The flow cytometric BAT assay, when used in the diagnosis of beta-lactam allergy, has a sensitivity of 50%, and specificity of 93%. However, the test is unable to differentiate between selective reactors and cross-reactors, and tests become negative the longer the duration from the initial reaction. Using a combination of skin tests, specific IgE assays, followed by cellular tests in negative patients, can facilitate confirmation of beta-lactam allergy, avoiding DPT in up to two-thirds of patients. Using an alternative marker like CD203c may increase the sensitivity of these tests.

Patch tests when used, should be carried out with benzylpenicillin, amoxicillin, ampicillin, and any suspect penicillins and/or cephalosporins. LTT for beta lactam allergy has a low sensitivity of 60-70%, hence a positive test is useful in confirming beta lactam allergy but a negative test does not rule it out. The LTT is often positive in AGEP and DRESS, but rarely positive (<10%) in blood dyscrasias and TEN associated with drug allergy.

Cephalosporin allergy

The reported cross-reactivity for IgE-mediated hypersensitivity between cephalosporins and penicillins in patients with IgE-mediated penicillin allergy of 5-10%, were based on early studies from the 1970s on patients with a history of penicillin allergy who developed allergic reactions to cephalaxin, cefalothin and cephaloridine. In addition, early cephalosporin antibiotics contained traces of penicillin. Although the practice parameters of the AAAAI in 1999 did not advocate the use of cephalosporin skin testing, this is recommended by the British Society of Allergy and Clinical Immunology (BSACI) and the European Academy of Allergy and Clinical Immunology (EAACI). The R1 side chain rather than the beta-lactam structure, shared by penicillins and cephalosporins, seems to play a dominant role in determining the specificity of immunologic reactions to cephalosporins. Thus, penicillin can be administered safely to patients allergic to cephalosporins and with a negative skin test result to penicillin determinants. Similarly, this may be the reason why the penicillin allergic individuals appear to be able to tolerate most third and fourth generation cephalosporins.

The flow cytometric BAT assay appears to be a promising in-vitro test in the diagnosis of cephalosporin allergy as well as penicillin allergy.

Carbapenem allergy

Earlier studies from the late 1980s showed that cross-reactivity between penicillin and imipenem allergy was 50% based on 10 of 20 patients with penicillin allergy being skin test positive to one or more penicillin or imipenem determinants. Recent prospective studies in adults and children with penicillin (predominantly amoxicillin) IgE-mediated allergy have shown that the cross-reactivity based on positive skin tests to imipenem-cilastatin and meropenem was 0.9%, and that patients who were SPT/IDT negative to imipenem-cilastatin and meropenem were able to tolerate a graded, challenge dose of intravenous imipenem-cilastatin and meropenem respectively. For delayed reactions to carbapenems, the cross-reactivity with penicillins was 5.5% based on patients with cell-mediated allergy to penicillins showing positive patch tests at least one penicillin reagent and imipenem-cilastatin. All patients with negative patch test and delayed IDT reading to imipenem-cilastatin tolerated an intramuscular provocation test.

Cotrimoxazole allergy

Cotrimoxazole is an immunogenic drug which may cause both immediate and non-immediate reactions. Non-immediate reactions range from mild MPE and FDE to serious SJS and TEN, and are more common than immediate reactions. This is especially prevalent in HIV-infected individuals where cotrimoxazole is used for the treatment and prophylaxis for Pneumocystis jiroveci infection and toxoplasmosis. Slow acetylator phenotype and genotype, and major histocompatibility complex (MHC) polymorphisms have not been shown to be major predisposing risk factors for cotrimoxazole hypersensi-
tivity in HIV-infected individuals. Rapid and slow desensitization to cotrimoxazole especially in the setting of HIV infection, has been shown to be effective and safe.60

FLUOROQUINOLONE ALLERGY

Fluoroquinolone allergy may present in the form of immediate and non-immediate reactions. The immediate reactions may be IgE mediated or non IgE mediated, with non-IgE mediated reactions occurring after the first dose with no previous history of sensitization.61,62 Although previous studies had shown that skin tests to quinolones lack sensitivity and specificity,63 a negative skin test could predict a negative challenge test in 94% of the challenged cases.64 Cross-reactivity has been demonstrated for immediate reactions through positive skin tests to a range of quinolones,65 and delayed reactions through generation and analysis (flow cytometry and proliferation assays) of quinolone-specific T cell clones respectively.65 Thus, patients with allergy to a fluoroquinolone should avoid other fluoroquinolones.

MACROLIDE ALLERGY

Macrolides are classified according to the number of carbon atoms in the chemical structure: 14 membered (erythromycin, roxithromycin, dirithromycin, clarithromycin) and 16 membered (spiramycin, josamycin, midemycycin) macrolides. Allergic reactions to macrolide antibiotics appear to be relatively uncommon (0.4% to 3% of treatments).66 Cases of immediate reactions in the form of anaphylaxis,67 and non-immediate reactions like fixed drug eruptions, toxic epidermal necrolysis and leukocytoclastic vasculitis have been reported, in children and adults, for clarithromycin and azithromycin. Successful desensitization has also been reported.68

TETRACYCLINE ALLERGY

Minocycline can cause serious adverse reactions including drug hypersensitivity syndrome, serum sickness and drug-induced lupus. These occur on average within 4 weeks of therapy, whereas minocycline-induced lupus occurs on average 2 years after the initiation of therapy.69 Apart from photodermatoses and photo-onycholysis which are usually phototoxic in nature, adverse drug reactions, in particular drug allergies to doxycycline and tetracycline are relatively rare.70

CLINDAMYCIN ALLERGY

Clindamycin may be associated with both immediate and non-immediate allergic reactions.71 However, the prevalence of such reactions is rare.72 Apart from exanthematous eruptions, cases reported in the literature include contact dermatitis, AGEP73 and TEN.74 The use of a combination of skin prick tests, patch tests and oral challenges if skin tests are negative, appear to be more useful compared to SPT and IDT alone as negative skin tests may still result in positive challenges.75,76 Clindamycin desensitization has been reported in the literature in particular in HIV-infected individuals.77,78

VANCOMYCIN AND TEICOPOLAN ALLERGY

Vancomycin, a glycopeptide, has rarely been reported to be associated with allergic drug reactions including exfoliative dermatitis and maculopapular rash. This is in contrast to vancomycin red man syndrome, which is commonly associated with too rapid an infusion of vancomycin resulting in direct mast cell histamine release.79

Anaphylaxis from vancomycin may be through IgE mediated allergic mechanisms or non-IgE mediated non-allergic mechanisms. Various effective desensitization regimes have been described in the treatment of vancomycin anaphylaxis.80-83

Linear IgA bullous dermatosis (LABD) is an autoimmune, subepidermal, vesiculobullous disease that has been commonly associated with the use of vancomycin.84,85 Lesions typically appear during vancomycin therapy, 24 hours to 15 days after the first dose. Histopathologic examination and immunofluorescence studies are diagnostic, showing linear IgA and C3 deposits at the basement membrane zone on direct immunofluorescence. Withdrawal of vancomycin is all that is required.

Teicoplanin, another glycopeptide, has fewer side effects compared to vancomycin.79 Red man syndrome is very unusual with teicoplanin because this compound does not cause histamine release even at faster infusion rates than those of vancomycin. Immediate reactions [anaphylaxis,86,87] and non-immediate reactions [rash,88 AGEP89 and DHS90] are infrequent. Although there have been reports of cross-reactivity between individuals with vancomycin and teicoplanin allergy,91-93 there have also been reports of patients with teicoplanin who tolerated vancomycin.94,95

Pre-operative allergy clinic assessment together with penicillin skin testing has been shown to be an effective intervention in reducing unnecessary use of prophylactic vancomycin perioperatively.96,97 This would be helpful in the long-term in reducing the spread of vancomycin resistant infections in hospitals and within the community, and the need for potentially expensive antibiotics like linezolid and tigecycline.

TUBERCULOUS DRUG ALLERGY

Mycobacterium tuberculosis (MTC) infection remains endemic in certain parts of Asia. Treatment of MTC infections involves combinations of anti-tuberculous drugs including isoniazid, rifampicin, ethambutol and pyrazinamide. Non-immediate reactions are much more common than immediate reactions to
anti-tuberculous drugs. Drug eruptions in the form of MPE and lichenoid drug eruptions, haematological reactions, hepatitis, DHS, SJS/TEN have all been reported in the literature. Diagnosis using LTT have not been useful to date. Patch tests are also not consistently useful as they are dependent on the type of cutaneous drug eruption. In practice, it is often not clinically feasible to leave MTC infection untreated for 6 weeks pending evaluation using LTT or patch tests, which in the end may not be helpful. Diagnosis using LTT have not been useful to date. In DHS, systemic corticosteroids (0.5 to 1 mg/kg/day) tapered over 6-8 weeks rapidly improves symptoms and laboratory measurements, but its impact on the long term disease course is not known. Controlled clinical trials are lacking on the use of systemic corticosteroids in DHS. Relapses of rash and hepatitis may occur as corticosteroids are tapered. Sequential reactivation of herpes viruses (e.g., human herpes virus 6, Ebstein Barr virus, cytomegalovirus) and subsequent triggering of autoimmunity may explain these relapses, and hence the effectiveness of systemic corticosteroids.

In SJS, the use of systemic corticosteroids has been supported by case reports and series (prospective and retrospective) which showed positive outcomes with the early use of corticosteroids (prednisolone 1 mg/kg/day or methylprednisolone 1-2 mg/kg/day) within 72 hours was beneficial in arresting the progression of SJS. However, there were also other studies which showed harm or no benefit.

TEN is defined as the detachment of the epidermis affecting more than 30% body surface area of skin involvement. In early TEN, between 10-30% of epidermal detachment occurs which can sometimes be diagnosed clinically from a positive Nikolsky’s sign or histological evidence of epidermal necrolysis. Apart from prompt withdrawal of the suspected drug, supportive measures including specialized nursing, early referral to a specialized unit, nutritional and respiratory care and support, skin care including the use of Biobrane dressings, are standard of care for which there are no controlled trials. Systemic corticosteroids should not been used as most series have suggested that the risks outweigh the benefits. The use of oral and intravenous cyclosporine 3-5 mg/kg/day, of duration of up to 3 weeks in case series of patients with severe TEN suggest that the risks of infection outweighed the benefits. The only double-blind placebo-controlled trial to date in the management of TEN, using thalidomide was stopped because there was excessive mortality in the thalidomide group. Other therapies like cyclophosphamide and plasmapheresis have not been shown to be useful.

In the last decade, several case series have described the use of high dose intravenous immunoglobulins (IVlg) from 0.8-3 g/day in the treatment of TEN. The rationale for the use of IVlg is based on the inhibition of Fas-mediated keratinocyte apoptosis in TEN by naturally occurring Fas-blocking antibodies within the IVlg. Although there were wide variation in patients and treatment protocols, different brands of IVlg used with different dosing regimens, the overall mortality rate was around 20% with earlier re-epithelialization demonstrated in some of the studies.

The prevalence of acute ocular complications ranges from 6% to 100%, and long-term sequelae from 1% to 50%. The most common long-term sequelae is sicca syndrome. Others include corneal ulceration, corneal epithelial defect, symblepharon and fornix foreshortening. Treatment modalities for ocular complications include topical antibiotics, topical corticosteroids, lubricants, and fornix sweeping. High-dose IVlg did not appear to reduce the severity of visually significant ocular complications. Early intervention with cryopreserved amniotic membrane transplantation was shown in a recent study to suppress inflammation and promote epithelial healing at the acute stage. Significant dry eye problems and photophobia may also be avoided with this intervention.

A recent retrospective study from China suggested that combination therapy with corticosteroid and high dose IVIG exhibited a tendency to reduce the mortality rate in comparison with administration of corticosteroid alone. The decrease in the mortality rate, however, was not statistically significant. Combination therapy also arrested progression earlier and decreased the hospitalization time, meaning that the total dose of corti-
corticosteroid may be reduced. Combination therapy, however, did not lead to earlier tapering of corticosteroid.136

DRUG-INDUCED LUPUS

Drug-induced lupus erythematosus (DILE) is defined as a lupus-like syndrome temporally related to continuous drug exposure which resolves after discontinuation of the offending drug. There are currently no standard diagnostic criteria for DILE and the pathomechanisms are still unclear. Among the antibiotics, minocycline and isoniazid are most often associated with DILE. Systemic DILE is characterized by typical lupus-like symptoms including skin signs, usually mild systemic involvement and a typical laboratory profile with positive antinuclear and anti-histon antibodies. In most cases of classic DILE, visceral involvement, low serum complement levels as well as anti-extractable nuclear antigen antibodies and anti-dsDNA antibodies are rarely present. In contrast, these are present in half the cases of anti-tumour necrosis factor (TNF) alpha inhibitor induced DILE. The diagnosis of DILE is based on a temporal association (months to years) of use of the putative drug with characteristic lupus-like symptoms, and resolution of symptoms upon withdrawal of the drug. Systemic corticosteroids and immunosuppressive drugs are only needed in refractory cases.137

ANTIBIOTIC ALLERGY AND ANTIMICROBIAL STEWARDSHIP PROGRAMMES

Antimicrobial stewardship programs in hospitals seek to optimize antimicrobial prescribing in order to improve individual patient care, reduce hospital costs and slow the spread of antibiotic resistant organisms. Such programs are often administered by multidisciplinary teams comprising infectious diseases physicians, clinical pharmacists, clinical microbiologists, and infection control practitioners. Strategies for changing antimicrobial prescribing behaviour include education of prescribers regarding proper antimicrobial usage, creation of an antimicrobial formulary with restricted prescribing of targeted agents, and review of antimicrobial prescribing with feedback to prescribers. De-escalation from broad-spectrum empirical antibiotics to narrow-spectrum, culture and sensitivity specific antibiotic is a supplemental strategy used in such programmes to minimize antimicrobial prescribing in order to improve individual antibiotic resistant organisms. Such programs are often administered by multidisciplinary teams comprising infectious diseases physicians, clinical pharmacists, clinical microbiologists, and infection control practitioners. Strategies for changing antimicrobial prescribing behaviour include education of prescribers regarding proper antimicrobial usage, creation of an antimicrobial formulary with restricted prescribing of targeted agents, and review of antimicrobial prescribing with feedback to prescribers. De-escalation from broad-spectrum empirical antibiotics to narrow-spectrum, culture and sensitivity specific antibiotic is a supplemental strategy used in such programmes to reduce antibiotic resistance from the use of broad-spectrum antibiotics.138 However, de-escalation in a patient with unconfirmed antibiotic allergy should be exercised with caution as drug provocation tests in the presence of negative skin tests, should be avoided in the presence of on-going sepsis unless no other alternative antibiotics are available.25 Similarly, in the patient with a high probability of allergy to a narrow spectrum antibiotic (e.g., penicillin G) who has been tolerating a broad-spectrum antibiotic (e.g., meropenem), it would be prudent to continue the broad-spectrum antibiotic rather than to consider skin testing and desensitization to penicillin G in the presence of on-going sepsis where alternative antibiotic choices remain available.

ANTIBIOTIC ALLERGY ALERTS AND DECISION SUPPORT FOR COMPUTERIZED PHYSICIAN ORDERS

Antibiotic stewardship programmes may also be complemented by electronic computerized physician prescriptions with decision support systems139 utilizing drug/antibiotic allergy checks.140 However, the data from electronic drug allergy physician reporting systems are often inaccurate or incomplete. Thus, using such electronic alerts in any type of electronic medication record system as a decision support tool to facilitate antibiotic prescribing has to be done very cautiously.

CONCLUSIONS

Antibiotics may cause various types of allergic drug reactions ranging from mild to serious cutaneous reactions, organ-specific or systemic reactions. A high index of clinical suspicion and immediate withdrawal of the suspected drug/drugs are the most important steps in the management of antibiotic allergy. Systemic immunomodulatory drugs may be required to suppress severe cutaneous/systemic reactions. Drug desensitization may be considered in cases where the risks of retrying the drug outweigh the benefits, in particular where no alternative medications are available or are as effective.

REFERENCES

1. Cars O, Molstad S, Melander A. Variation in antibiotic use in the European Union. Lancet 2001;357:1851-3.
2. McCaig LF, Hughes JM. Trends in antimicrobial drug prescribing among office-based physicians in the United States. JAMA 1995;273:214-9.
3. Bigbý M, Jick S, Jick H, Arndt K. Drug-induced cutaneous reactions. A report from the Boston Collaborative Drug Surveillance Program on 15,438 consecutive inpatients, 1975 to 1982. JAMA 1986;256:3358-63.
4. Rademaker M, Oakley A, Duffill MB. Cutaneous adverse drug reactions in a hospital setting. N Z Med J 1995;108:165-6.
5. Hunziker T, Kunzi UP, Braunschweig S, Zehnder D, Hoigne R. Comprehensive hospital drug monitoring (CHDM): adverse skin reactions, a 20-year survey. Allergy 1997;52:388-93.
6. Thong BY, Leong KP, Tang CY, Chng HH. Drug allergy in a general hospital: Results of a novel prospective inpatient reporting system. Ann Allergy Asthma Immunol 2003;90:342-7.
7. Johansson SG, Bieber T, Dahl R, Friedmann PS, Lanier BQ, Lockey RF, Motala C, Ortega Martell JA, Platts-Mills TA, Ring J, Thien F, Van Cauwenberge P, Williams HC. Revised nomenclature for allergy for global use: Report of the Nomenclature Review Committee of the World Allergy Organization, October 2003. J Allergy Clin Immunol 2004;113:832-6.
8. Bastuji-Garin S, Rzany B, Stern RS, Shear NH, Naldi L, Roujeau JC.
Clinical classification of cases of toxic epidermal necrolysis, Stevens-Johnson syndrome, and erythema multiforme. Arch Dermatol 1993;129:92-6.

9. Demoly P, Kroepf R, Bircher A, Pichler WJ. Drug hypersensitivity: questionnaire. EAACI interest group on drug hypersensitivity. Allergy 1999;54:999-1003.

10. Park CS, Kim TB, Kim SL, Kim JY, Yang KA, Bae YJ, ChoYS, Moon HB. The use of an electronic medical record system for mandatory reporting of drug hypersensitivity reactions has been shown to improve the management of patients in the university hospital in Korea. Pharmacoeconomic Drug Saf 2008;17:919-25.

11. Mann T, Colven R. A picture is worth more than a thousand words: enhancement of a pre-exam telephone consultation in dermatology with digital images. Acad Med 2002;77:742-3.

12. Leggett P, Gilliland AE, Cupples ME, McGlade K, Corbett R, Stevenson M, O’Reilly D, Steele K. A randomized controlled trial using instant photography to diagnose and manage dermatology referrals. Fam Pract 2004;21:54-6.

13. Eminovic N, de Keizer NF, Wyatt JC, ter Riet G, Peek N, van Weert HC, Bruijnzeel-Koomen CA, Bindels PJ. Teledermatologic consultation and reduction in referrals to dermatologists: a cluster randomized controlled trial. Arch Dermatol 2009;145:558-64.

14. Position paper: Allergen standardization and skin tests. The Euroacademy of Allergology and Clinical Immunology. Allergy 1993;48:48-82.

15. Brockow K, Romano A, Blanca M, Ring I, Pichler W, Demoly P. General considerations for skin test procedures in the diagnosis of drug hypersensitivity. Allergy 2002;57:45-51.

16. Edwards RG, Spackman DA, Dewdney JM. Development and use of three new radioallergosorbent tests in the diagnosis of penicillin allergy. Int Arch Allergy Appl Immunol 1982;68:352-7.

17. Garcia JJ, Blanca M, Moreno F, Vega JM, Mayorga C, Fernandez J, Juarez C, Romano A, de Ramon E. Determination of IgE antibodies to the benzylpenicilloyl determinant: a comparison of the sensitivity and specificity of three radio allergosorbent test methods. J Clin Lab Anal 1997;11:251-7.

18. Hausmann OV, Gentinetta T, Brints CH, Ebo DG. The basophil activation test in immediate-type drug allergy. Immunol Allergy Clin North Am 2009;29:555-66.

19. Barbaud A. Skin testing in delayed reactions to drugs. Immunol Allergy Clin North Am 2009;29:517-35.

20. Barbaud A, Goncalo M, Bruijnzeel D, Bircher A. Guidelines for performing skin tests with drugs in the investigation of cutaneous adverse drug reactions. Contact Dermatitis 2001;45:321-8.

21. Pichler WJ, Tilf I. The lymphocyte transformation test in the diagnosis of drug hypersensitivity. Allergy 2004;59:809-20.

22. Lochmatter P, Zawodniak A, Pichler WJ. In vitro tests in drug hypersensitivity diagnosis. Immunol Allergy Clin North Am 2009;29:537-54.

23. Aberer W, Bircher A, Romano A, Blanca M, Campi P, Fernandez J, Brockow K, Pichler WJ, Demoly P. Drug provocation testing in the diagnosis of drug hypersensitivity reactions: general considerations. Allergy 2003;58:854-63.

24. Nizankowska-Mogilnicka E, Bochenek G, Mastalerz L, Swierzczynska M, Picado C, Scadding G, Kowalski ML, Setkowics M, Ring J, Brockow K, Bachert C, Wohlfert D, Dahlen B, Szczeklik A. EAACI/GA2LEN guideline: aspirin provocation tests for diagnosis of aspirin hypersensitivity. Allergy 2007;62:1111-8.

25. Patterson R, DeSwarte RD, Greenberger PA, Grammer LC, Brown JE, Choy AC. Drug allergy and protocols for management of drug allergies. Allergy Proc 1994;15:239-64.

26. Patterson R, DeSwarte RD, Greenberger PA, Grammer LC. Drug allergy and protocols for management of drug allergies. N Engl J Allergy Proc 1986;7:325-42.

27. Executive summary of disease management of drug hypersensitivity: a practice parameter. Joint Task Force on Practice Parameters, the American Academy of Allergy, Asthma and Immunology, the American Academy of Allergy, Asthma and Immunology, and the Joint Council of Allergy, Asthma and Immunology. Ann Allergy Asthma Immunol 1999;83:665-700.

28. Messaad D, Sahla H, Benahmed S, Godard P, Bousquet J, Demoly P. Drug provocation tests in patients with a history suggesting an immediate drug hypersensitivity reaction. Ann Intern Med 2004;140:1001-6.

29. Castells M. Rapid desensitization for hypersensitivity reactions to medications. Immunol Allergy Clin North Am 2009;29:585-606.

30. Torres MJ, Blanca M, Fernandez J, Romano A, Weck A, Aberer W, Brockow K, Pichler WJ, Demoly P. Diagnosis of immediate allergic reactions to beta-lactam antibiotics. Allergy 2003;58:961-72.

31. Bousquet PJ, Co-Minh HB, Arnoux B, Daures JP, Demoly P. Importance of mixture of minor determinants and benzylpenicilloyl-poly-L-lysine skin testing in the diagnosis of beta-lactam allergy. J Allergy Clin Immunol 2005;115:1314-6.

32. Romano A, Viola M, Bousquet PJ, Gaeta F, Valluzzi R, Caruso C, Demoly P. A comparison of the performance of two penicillin reagent kits in the diagnosis of beta-lactam hypersensitivity. Allergy 2007;62:53-8.

33. Matheu V, Perez E, Gonzalez R, Poza P, de la Torre F, Sanchez-Machin J, Garcia-Robaina JC. Assessment of a new brand of determinants for skin testing in a large group of patients with suspected beta-lactam allergy. J Invest Allergol Clin Immunol 2007;17:257-60.

34. Romano A, Bousquet-Rouanet L, Viola M, Gaeta F, Demoly P, Bousquet PJ. Benzylpenicilloyl skin testing is still important in diagnosing immediate hypersensitivity reactions to penicillins. Allergy 2009;64:249-53.

35. Blanca M, Mayorga C, Torres MJ, Reche M, Moya MC, Rodriguez JL, Romano A, Juarez C. Clinical evaluation of Pharmacia CAP System RAST FEIA amoxicilloyl and benzylpenicilloyl in patients with penicillin allergy. Allergy 2001;56:862-70.

36. Blanca M, Mayorga C, Perez E, Suau R, Juarez C, Vega JM, Carmona MJ, Perez-Estrada M, Garcia J. Determination of IgE antibodies to the benzyl penicilloyl determinant. A comparison between poly-L-lysine and human serum albumin as carriers. J Immunol Methods 1992;153:99-105.

37. Sanz ML, Gamboa PM, Antepara I, Usaf C, Vila L, Garcia-Aviles C, Chazot M, De Weck AL. Flow cytometric basophil activation test by detection of CD63 expression in patients with immediate-type reactions to betalactam antibiotics. Clin Exp Allergy 2002;32:277-86.

38. Torres MJ, Adial A, Mayorga C, Fernandez T, Sanchez-Sabate E, Cornejo-Garcia JA, Antunez C, Blanca M. The diagnostic interpretation of basophil activation test in immediate allergic reactions to betalactams. Clin Exp Allergy 2004;34:1768-75.

39. Fernandez TD, Torres MJ, Blanca-Lopez N, Rodriguez-Bada JL, Gomez E, Canto G, Mayorga C, Blanca M. Negativization rates of IgE radioimmunoassay and basophil activation test in immediate reactions to penicillins. Allergy 2009;64:242-8.

40. De Week AL, Sanz ML, Gamboa PM, Aberer W, Sturm G, Bilo MB, Montroni M, Blanca M, Torres MJ, Mayorga L, Campi P, Manfredi M, Faggiotto D, Bousquet PJ, and the group of asthma allergy and protocols for management of drug allergies.
Daniel M. Sainte-Laudy, Roman A, Merk H, Weber JM, Jermain TM. Diagnosis of immediate-type beta-lactam allergy in vitro by flow-cytometric basophil activation test and sulfidoleukotriene production: a multicenter study. J Investig Allergol Clin Immunol 2009;19:91-109.

Abu N, Rostane H, Rajoey B, Gouaou H, Autegarden JE, Leynadier F, Girot R. Comparison of two basophil activation marker CD63 and CD203c in the diagnosis of anoxicillin allergy. Clin Exp Allergy 2008;38:921-8.

Romano A, Blanca M, Torres MJ, Bircher A, Aberer W, Brockow K, Pichler WJ, Demoly P. Diagnosis of nonimmediate reactions to beta-lactam antibiotics. Allergy 2004;59:1153-60.

Dash CH. Penicillin allergy and the cephalosporins. J Antimicrob Chemother 1975;1:107-18.

Saxon A, Beall GN, Rohr AS, Adelman DC. Immediate hypersensitivity reactions to beta-lactam antibiotics. Ann Intern Med 1987;107:204-15.

Kelkar PS, Li JT. Cephalosporin allergy. N Engl J Med 2001;345:804-9.

Mirakian R, Ewan PW, Durham SR, Youlten LJ, Dugue P, Friedmann PS, English JS, Huber PA, Nasser SM. BASCI guidelines for the management of drug allergy. Clin Exp Allergy 2009;39:43-53.

Perez-Inestrosa E, Suau R, Montanez MI, Rodriguez A, Mayorga C, Torres MJ, Blanca M. Cephalosporin chemical reactivity and its immunological implications. Curr Opin Allergy Clin Immunol 2005;5:323-30.

Antunez C, Blanca-Lopez N, Torres MJ, Mayorga C, Perez-Inestrosa E, Montanez MJ, Fernandez T, Blanca M. Immediate allergic reactions to cephalosporins: evaluation of cross-reactivity with a panel of penicillins and cephalosporins. J Allergy Clin Immunol 2006;117:404-10.

Saxon A, Adelman DC, Patel A, Hajdu R, Calandra GB. Imipenem cross-reactivity with penicillin in humans. J Allergy Clin Immunol 1988;82:213-7.

Romano A, Viola M, Gueant-Rodriguez RM, Gaeta F, Pettinato R, Gueant JL. Imipenem in patients with immediate hypersensitivity to penicillins. N Engl J Med 2006;354:2835-7.

Romano A, Viola M, Gueant-Rodriguez RM, Gaeta F, Valluzzi R, Gueant JL. Brief communication: tolerability of meropenem in patients with IgE-mediated hypersensitivity to penicillins. Ann Intern Med 2007;146:266-9.

Atanaskovic-Markovic M, Gaeta F, Medjo B, Viola M, Nestorovic B, Romano A. Tolerance of meropenem in children with IgE-mediated hypersensitivity to penicillins. Allergy 2008;63:237-40.

Schiavino D, Nucera E, Lombardo C, Decinti M, Pascolini L, Altomonte G, Buonomo A, Patriarca G. Cross-reactivity and tolerability of imipenem in patients with delayed-type, cell-mediated hypersensitivity to beta-lactams. Allergy 2009;64:1644-8.

Mochnaehaupt M, Viboud C, Dunant A, Naldi L, Halevy S, Bouwes Bavinck JN, Sidoroff A, Schneck J, Roujeau JC, Flahault A. Stevens-Johnson syndrome and toxic epidermal necrolysis: assessment of medication risks with emphasis on recently marketed drugs. The EuroSCAR-study. J Invest Dermatol 2008;128:35-44.

Levi N, Bastuji-Garin S, Mochnaehaupt M, Roujeau JC, Flahault A, Kelly JP, Martin E, Kaufman DW, Maisonneuve P. Medications as risk factors of Stevens-Johnson syndrome and toxic epidermal necrolysis in children: a pooled analysis. Pediatrics 2009;123:e297-304.

Ryan C, Madalon M, Wortham DW, Graziano FM. Sulfa hypersensitivity in patients with HIV infection: onset, treatment, critical review of the literature. WMJ 1998;97:23-7.

O’Neill WM, MacArthur RD, Farrough MJ, Doll MA, Fredland AJ, Hein DW, Crane LR, Svensson CK. Acetyltransfer phenotype and genotype in HIV-infected patients with and without sulfonamide hypersensitivity. J Clin Pharmacol 2002;42:613-9.

Pirmohamed M, Allfirevic A, Vilar J, Staffold A, Wilkins EG, Sim E, Park BK. Association analysis of drug metabolizing enzyme gene polymorphisms in HIV-positive patients with co-trimoxazole hypersensitivity. Pharmacogenomics 2000;10:75-63.

Allfirevic A, Vilar FJ, Alsbou M, Jawaaid A, Thomson W, Ollier WE, Bowman CE, Delrieu O, Park BK, Pirmohamed M, TNE, LTA, HSPAIL and HLA-DR gene polymorphisms in HIV-positive patients with hypersensitivity to cotrimoxazole. Pharmacogenomics 2009;10:531-40.

Lin D, Li WK, Rieder MJ. Cotrimoxazole for prophylaxis or treatment of opportunistic infections of HIV/AIDS in patients with previous history of hypersensitivity to cotrimoxazole. Cochrane Database Syst Rev 2007:CD005646.

Schmidt DA, Campi P, Pichler WJ. Hypersensitivity reactions to quinolones. Curr Pharm Des 2006;12:3313-26.

Gonzalez I, Lobera T, Blanco A, del Pozo MD. Immediate hypersensitivity to quinolones: moxifloxacin cross-reactivity. J Investig Allergol Clin Immunol. 2005;15:146-9.

Seitz CS, Brocker EB, Trautmann A. Diagnostic testing in suspected fluoroquinolone hypersensitivity. Clin Exp Allergy 2009;39:1738-45.

Venturini Diaz M, Lobera Labairu T, del Pozo Gil MD, Blasco Sarra-rian A, Gonzalez Mahave I. In vivo diagnostic tests in adverse reactions to quinolones. J Investig Allergol Clin Immunol 2007;17:393-8.

Schmid DA, Depta JP, Pichler WJ. T cell-mediated hypersensitivity to quinolones: mechanisms and cross-reactivity. Clin Exp Allergy 2006;36:59-69.

Araujo L, Demoly P. Macrolides allergy. Curr Pharm Des 2008;14:2840-62.

Fascual C, Crespo JF, Quiralte J, Lopez C, Wheeler G, Martin-Esteban M. In vitro detection of specific IgE antibodies to erythromycin. J Allergy Clin Immunol 1995;95:668-71.

Holmes NE, Hodgkinson M, Dentle C, Korman TM. Report of oral clarithromycin desensitization. Br J Clin Pharmacol 2008;66:323-4.

Shapiro LE, Knowles SR, Shear NH. Comparative safety of tetracycline, minocycline, and doxycycline. Arch Dermatol 1997;133:1224-30.

Smith K, Leyden JJ. Safety of doxycycline and minocycline: a systematic review. Clin Ther 2005;27:1329-42.

Lammintausta K, Tkoka R, Kalimo K. Cutaneous adverse reactions to clindamycin: results of skin tests and oral exposure. Br J Dermatol 2002;146:643-8.

Mazur N, Greenberger PA, Regalado J. Clindamycin hypersensitivity appears to be rare. Ann Allergy Asthma Immunol 1999;82:443-5.

Sulewski RJ Jr, Blyumin M, Kerdel FA. Acute generalized exanthematous pustulosis due to clindamycin. Dermatol Online J 2008;14:14.

Paquet P, Schaaf-Lafonnette N, Pierard GE. Toxic epidermal necrolysis following clindamycin treatment. Br J Dermatol 1995;132:665-6.

Notman MJ, Phillips EJ, Knowles SR, Weber EA, Shear NH. Clindamycin skin testing has limited diagnostic potential. Contact Dermatitis 2005;53:335-8.

Seitz CS, Brocker EB, Trautmann A. Allergy diagnostic testing in clindamycin-induced skin reactions. Int Arch Allergy Immunol 2009;149-246-50.

Marcos C, Sopena B, Luna I, Gonzalez R, de la Fuente J, Martinez-Vazquez C. Clindamycin desensitization in an AIDS patient. AIDS
AAIR

1995;9:1201-2.

78. Martin JA, Alonso MD, Navas E, Antela A. [Clindamycin desensitization in a patient with the acquired immunodeficiency syndrome]. Med Clin (Barc) 1992;98:478-9.

79. Svetitsky S, Leibovici L, Paul M. Comparative efficacy and safety of vancomycin versus teicoplanin: systematic review and meta-analysis. Antimicrob Agents Chemother 2009;53:4069-79.

80. Chopra N, Oppenheimer J, Derimav GS, Fine PL. Vancomycin anaphylaxis and successful desensitization in a patient with end stage renal disease on hemodialysis by maintaining steady antibiotic levels. Ann Allergy Asthma Immunol 2000;84:633-5.

81. Martin JA, Alonso MD, Navas E, Antela A. [Clindamycin desensitization]. Mayo Clin Proc 2000;75:651-62.

82. Lee AY, Jung SY. Two patients with isoniazid-induced photosensitivity lichenoid eruptions confirmed by photopatch test. Photodermatol Photoimmunol Photomed 1998;14:77-8.

83. Lee NT, Park JA. Anaphylactoid reactions to glycopeptide antibiotics. J Antimicrob Chemother 1991;27(Suppl B):17-29.

84. Asen R. Teicoplanin-induced anaphylaxis. Allergy 2000;61:1370.

85. Ushio S, Ikizoglu G, Yoshida A, Kohá K, Kimura S. Successful vancomycin desensitization with a combination of rapid and slow infusion methods. Intern Med 2006;45:317-21.

86. Kitazawa T, Ota Y, Kada N, Morisawa Y, Yoshida A, Koike K, Kimura S, Kato Y. Successful vancomycin desensitization with a combination of rapid and slow infusion methods. Intern Med 2006;45:317-21.

87. Anitong Y, Kobayashi K, Tatsuoka T, Shishido S. [The usefulness of lymphocyte stimulation test (LST) in side effects of antituberculosis drugs]. Kekkaku 2004;79:699-704.

88. Suzuki Y, Miyasaka M, Ohba M, Murakami M, Fujita K, Suda T, Nakamura Y, Hayakawa H, Chida K. Drug lymphocyte stimulation test in the diagnosis of adverse reactions to antituberculosis drugs. Chest 2008;134:1027-32.

89. Kobashi Y, Okimoto N, Matsuoka T, Abe T, Nishimura K, Shishido S, Kawahara S, Shigeto Y. [Desensitization therapy for allergic reactions of antituberculous drugs—evaluation of desensitization therapy according to the guideline of the Japanese Society for Tuberculosis]. Kekkaku 1999;75:699-704.

90. Holland CL, Malisky C, Ogunkoya A, Bielory L. Rapid oral desensitization to isoniazid and rifampin. Chest 1998;113:1518-9.

91. Matz J, Borish LC, Routes JM, Rosenwasser L. Oral desensitization to rifampin and ethambutol in mycobacterial disease. Am J Respir Crit Care Med 1994;149:815-7.

92. Kim JH, Kim KB, Kim BS, Hong SJ. Rapid oral desensitization to isoniazid, rifampin, and ethambutol. Allergy 2003;58:540-1.

93. Puerta CM, McBride SR. Teicoplanin induced drug hypersensitivity syndrome. BMJ 2004;328:1292.

94. Nakaoka N, Togashi S, Kawanishi H, Kato Y, Shiihida S, Kato Y, Kato Y, Kato Y, Kato Y. A case of hypersensitivity syndrome to both vancomycin and teicoplanin. J Korean Med Sci 2006;21:1108-10.

95. Kwon HS, Chang YS, Jeong YY, Lee SM, Song WJ, Kim HB, Kim YK, Cho SH, Kim YY, Min KS. A case of hypersensitivity syndrome to both vancomycin and teicoplanin. J Korean Med Sci 2006;21:1108-10.

96. de Vries E, van Weel-Sipman MH, Vossen JM. A four-year-old child with teicoplanin allergy but no evidence of cross-reaction with vancomycin. Pediatr Infect Dis J 1994;13:167.

97. Macias E, Moreno E, Davila I, Laffond E, Ruiz A, Batista JC, Lorente F. Reaction to teicoplanin with tolerance to vancomycin. J Invest Allergol Clin Immunol 2006;18:71-2.

98. Park M, Markas P, Mateic D, Li JT. Safety and effectiveness of a pre-operative allergy clinic in decreasing vancomycin use in patients with a history of penicillin allergy. Ann Allergy Asthma Immunol 2006;97:681-7.

99. Frigas E, Park MA, Narr BJ, Volcheck GW, Danielson DR, Markus PJ, Olson KE, Schroeder DR, Kita H. Preoperative evaluation of patients with history of allergy to penicillin: comparison of 2 models of practice. Mayo Clin Proc 2008;83:651-62.

100. Forget EJ, Menzies D. Adverse reactions to first-line antituberculosis drugs. Expert Opin Drug Saf 2006;5:231-49.

101. Lee AY, Jung SY. Two patients with isoniazid-induced photosensitivity lichenoid eruptions confirmed by photopatch test. Photodermatol Photoimmunol Photomed 1998;14:77-8.

102. Lee NT, Park JA. Anaphylactoid reactions to glycopeptide antibiotics. J Antimicrob Chemother 1991;27(Suppl B):17-29.

103. Kurobe Y, Kohashi Y, Okamoto N, Matsuoka T, Abe T, Nishimura K, Shishido S, Kawahara S, Shigeto Y. [Desensitization therapy for allergic reactions of antituberculous drugs—evaluation of desensitization therapy according to the guideline of the Japanese Society for Tuberculosis]. Kekkaku 1999;75:699-704.

104. Holland CL, Malaky C, Ogunkoya A, Bielory L. Rapid oral desensitization to isoniazid and rifampin. Chest 1998;113:1518-9.

105. Matz J, Borish LC, Routes JM, Rosenwasser L. Oral desensitization to rifampin and ethambutol in mycobacterial disease. Am J Respir Crit Care Med 1994;149:815-7.

106. Kim JH, Kim KB, Kim BS, Hong SJ. Rapid oral desensitization to isoniazid, rifampin, and ethambutol. Allergy 2003;58:540-1.

107. Puerta CM, McBride SR. Teicoplanin induced drug hypersensitivity syndrome. BMJ 2004;328:1292.

108. Nakaoka N, Togashi S, Kawanishi H, Kato Y, Shiihida S, Kato Y, Kato Y, Kato Y. A case of hypersensitivity syndrome to both vancomycin and teicoplanin. J Korean Med Sci 2006;21:1108-10.

109. de Vries E, van Weel-Sipman MH, Vossen JM. A four-year-old child with teicoplanin allergy but no evidence of cross-reaction with vancomycin. Pediatr Infect Dis J 1994;13:167.

110. Macias E, Moreno E, Davila I, Laffond E, Ruiz A, Batista JC, Lorente F. Reaction to teicoplanin with tolerance to vancomycin. J Invest Allergol Clin Immunol 2006;18:71-2.

111. Park M, Markas P, Mateic D, Li JT. Safety and effectiveness of a pre-operative allergy clinic in decreasing vancomycin use in patients with a history of penicillin allergy. Ann Allergy Asthma Immunol 2006;97:681-7.

112. Frigas E, Park MA, Narr BJ, Volcheck GW, Danielson DR, Markus PJ, Olson KE, Schroeder DR, Kita H. Preoperative evaluation of patients with history of allergy to penicillin: comparison of 2 models of practice. Mayo Clin Proc 2008;83:651-62.
management and recurrent SJS. Allergy Proc 1992;13:89-95.
118. Patterson R, Miller M, Kaplan M, Doan T, Brown J, Detjen P, Grammer LC, Greenberger PA, Hogan MB, Latalj J, et al. Effectiveness of early therapy with corticosteroids in Stevens-Johnson syndrome: experience with 41 cases and a hypothesis regarding pathogenesis. Ann Allergy 1994;73:27-34.
119. Cheriyan S, Patterson R, Greenberger PA, Grammer LC, Latalj J. The outcome of Stevens-Johnson syndrome treated with corticosteroids. Allergy Proc 1995;16:151-5.
120. Tripathi A, Dito AM, Grammer LC, Greenberger PA, McGrath KG, Zeiss CR, Patterson R. Corticosteroid therapy in an additional 13 cases of Stevens-Johnson syndrome: a total series of 67 cases. Allergy Asthma Proc 2000;21:101-5.
121. Hynes AY, Kalkala C, Daoud YJ, Foster CS. Controversy in the use of high-dose systemic steroids in the acute care of patients with Stevens-Johnson syndrome. Int Ophthalmol Clin 2005;45:25-48.
122. Chave TA, Mortimer NJ, Sladden MJ, Hall AP, Hutchinson PE. Toxic epidermal necrolysis: current evidence, practical management and future directions. Br J Dermatol 2005;153:241-53.
123. Zaki I, Patel S, Reed R, Dalziel KL. Toxic epidermal necrolysis associated with severe hypocalcaemia, and treated with cyclosporin. Br J Dermatol 1995;133:337-8.
124. Jarrett P, Ha T, Snow J. Toxic epidermal necrolysis and cyclosporin. Clin Exp Dermatol 1997;22:254.
125. Sullivan JR, Watson A. Lamotrigine-induced toxic epidermal necrolysis treated with intravenous cyclosporin: a discussion of pathogenesis and immunosuppressive management. Australas J Dermatol 1996;37:208-12.
126. Wolkenstein P, Latarjet J, Roujeau JC, Duquett C, Boudeau S, Vaillant L, Maignan M, Schuhmacher MH, Milpied B, Pilorget A, Bocquet H, Brun-Buisson C, Revuz J. Randomised comparison of thalidomide versus placebo in toxic epidermal necrolysis. Lancet 1998;352:1386-9.
127. Trautmann A, Klein CE, Kampgen E, Brocker EB. Severe bullous drug reactions treated successfully with cyclophosphamide. Br J Dermatol 1998;139:1127-8.
128. Barchias G, Nata T, Christidou F, Stangou M, Karagianni A, Koukourkos S, Chaidemenos G, Chrysomallis F, Embolos K. Plasma exchange in patients with toxic epidermal necrolysis. Ther Apher 2002;6:225-8.
129. Stella M, Cassano P, Bollero D, Clemente A, Giorio G. Toxic epidermal necrolysis treated with intravenous high-dose immunoglobulins: our experience. Dermatology 2001;203:45-9.
130. Tristani-Firouzi P, Petersen MJ, Saffle JR, Morris SE, Zone J. Treatment of toxic epidermal necrolysis with intravenous immunoglobulin in children. J Am Acad Dermatol 2002;47:548-52.
131. Prins C, Kerdel FA, Padilla RS, Hunziker T, Chimenti S, Viard I, Mauri DN, Flynn K, Trent J, Margolis DJ, Saurat JH, French LE. Treatment of toxic epidermal necrolysis with high-dose intravenous immunoglobulins: multicenter retrospective analysis of 48 consecutive cases. Arch Dermatol 2003;139:26-32.
132. Trent JT, Kirsner RS, Romanelli P, Kerdel FA. Analysis of intravenous immunoglobulin for the treatment of toxic epidermal necrolysis using SCORTEN: The University of Miami Experience. Arch Dermatol 2003;139:39-43.
133. Bachot N, Revuz J, Roujeau J. Intravenous immunoglobulin treatment for Stevens-Johnson syndrome and toxic epidermal necrolysis: a prospective noncomparative study showing no benefit on mortality or progression. Arch Dermatol 2003;139:33-6.
134. Yap LW, Thong BY, Tan AW, Khin LW, Chng HH, Heng WJ. High-dose intravenous immunoglobulin in the treatment of toxic epidermal necrolysis: a study of ocular benefits. Eye (Lond) 2005;19:846-53.
135. Shuy E, Kheirkhah A, Liang L., Sheha H, Gregory DG, Tseng SC. Amniotic membrane transplantation as a new therapy for the acute ocular manifestations of Stevens-Johnson syndrome and toxic epidermal necrolysis. Surv Ophthalmol 2009;54:686-96.
136. Yang Y, Xu J, Li F, Zhu X. Combination therapy of intravenous immunoglobulin and corticosteroid in the treatment of toxic epidermal necrolysis and Stevens-Johnson syndrome: a retrospective comparative study in China. Int J Dermatol 2009;48:1122-8.
137. Vedove CD, Del Giglio M, Schena D, Girolomoni G. Drug-induced lupus erythematosus. Arch Dermatol Res 2009;301:99-105.
138. Drew RH. Antimicrobial stewardship programs: how to start and steer a successful program. J Manag Care Pharm 2009;15:S18-23.
139. Chazard E, Ficheur G, Merlin B, Serrot E, Beaus R. Adverse drug events prevention rules: multi-site evaluation of rules from various sources. Stud Health Technol Inform 2009;148:102-11.
140. Aboodkire SA, Teich JM, Sandige H, Paterno MD, Martin MT, Kuperman GJ, Bates DW. Improving allergy alerting in a computerized physician order entry system. Proc AMIA Symp 2000;2-6.