Abstract

Background and Aims: The outbreak of coronavirus disease 2019 (COVID-19) over the past year has affected public health worldwide. During pregnancy, the maternal immune system and inflammatory responses are widely suppressed. Pregnancy-related immune system suppression could make the mother vulnerable to infectious diseases like SARS-COV-2. However, current data suggest little to no possibility of COVID-19 transmission in pregnant women to the fetus during pregnancy or childbirth. This systematic review focused on the possible complications of COVID-19 infection in the fetus and newborn babies including the possibility and evidence of vertical transmission by reviewing articles published during the first year of the COVID-19 pandemic.

Methods: We conducted a systematic search using keywords on PubMed, Embase, and Scopus databases. The studies followed a title/abstract and a full-text screening process, and the eligible articles were included in the study.

Results: In total, 238 published papers were identified using a systematic search strategy (44 articles met the inclusion criteria and were included in the final review). In all studies, a total of 2375 women with signs and symptoms of COVID-19, who were in the second and third trimester of pregnancy, were assessed; mild to moderate pneumonia was one of the most common symptoms. Seventy-three percent of the women did not present any comorbidity, 19% had a fever, 17% had to cough as the most frequent clinical signs and symptoms, 7.5% had pulmonary changes with chest scans, 8% had increased C reactive protein, and 9.4% had decreased lymphocytes (lymphocytopenia). A total of 2716 newborns and fetal were assessed; the delivery method of 1725 of them was reported, 913 (53%) through C-section delivery, and 812 through normal vaginal delivery (47%). Of total newborns, 13 died (five died along with the mother), and 1965 were tested for SARS-CoV-2: 118 tested positive. In a study, vertical transmission in seven cases was reported in total of 145 cases assessed.
Conclusion: It appeared that most pregnant COVID patients were mildly ill, and there is currently no convincing evidence to support the vertical transmission of COVID-19 disease. Therefore, neonates do not represent any additional risk for adverse outcomes neither during the prenatal period nor after birth.

KEYWORDS
COVID-19, fetus, neonatal, newborn, prenatal, SARS-CoV-2

INTRODUCTION

The outbreak of coronavirus disease 2019 (COVID-19) over the past year has affected public health worldwide and led to many deaths.1,2 As of January 8, 2021, a total of 86 436 449 clinically confirmed COVID-19 positive and 1 884 341 death reported globally.3 Mothers and newborns are at-risk populations and need special attention.4

During pregnancy, the maternal immune system and inflammatory responses are widely suppressed, and the fetus in the womb without the mother’s immune system attacking.5 Pregnancy-related immune system suppression could make the mother vulnerable to infectious diseases and increases the risk of being infected, including coronavirus-related diseases.6-9 Studies exploring the indirect adverse events of COVID-19 on the population have reported that pregnant women are at greater potential risk.8-10 Maternal death, stillbirth, ruptured ectopic pregnancy, and maternal depression have had significant increase during the pandemic.11 albeit the symptoms and severity of COVID-19 are as mild in most pregnant women as in the general population.12-15 Moreover, the findings of a study showed asymptomatic infection in one-third of pregnant women.16 The most common symptoms reported in COVID-19-positive pregnant women are fever, shortness of breath, diarrhea, and cough. In some severe cases, mechanical ventilation was performed17-22 and maternal deaths were reported.23-25 In a systematic review of the effects of COVID-19 on perinatal and maternal outcomes, the findings of studies from high-income countries (HICs) and low-income and middle-income countries (LMICs) showed a significant heterogeneity in the incidence of pregnancy complications; meaning that the adverse outcomes were much higher in LMICs. It also found that lack of immediate healthcare response in LMICs was responsible for heterogeneity of most of the outcomes rather than the stringent lockdown measures. The COVID-19 pandemic has manifested several lacunae in healthcare systems around the world, widening the gap between HICs and LMICs.11

There are still many challenges related to SARS-CoV-2 infection in newborns and approaching the respiratory involvement in the case of infection.26 However, the possibility of COVID-19 transmission from pregnant women to the fetus during pregnancy or childbirth is still unknown.27,28 The consequences of pregnancy-related diseases could be detrimental to both mother and fetus.29,30 Although most studies considered the vertical transmission unlikely,31-37 a recent case report of a newborn with a positive early test indicated the possibility of vertical transfer in the uterus.38 Additionally, four births with COVID-19 have been reported in recent studies.24,39,40 Several clinical symptoms such as fever,24,31 disseminated intravascular coagulation, feeding intolerance, bleeding, cyanosis,31 birthing problems,31,35 rash, edema, dyspnea,31,41 and pneumonia39 have been reported in neonates born from mothers infected with COVID-19.

One of the World Health Organization (WHO) millennium development goals is to preserve pregnant mother’s and babies’ lives; therefore, knowing how coronavirus affects maternal and fetal health can help to prevent complications. This systematic review focused on the possible complications of COVID-19 infection in the fetus and newborns by reviewing articles published during the SARS-CoV-2 pandemic in the past year.

METHODS

2.1 Design

We conducted a systematic search using keywords on PubMed, Embase, and Scopus databases. The identified records were screened by title/abstract to meet the inclusion criteria. Following this step, the full text of the included studies were evaluated based on the parameters mentioned in Section 2.2. Two researchers then extracted the data of the retrieved articles for drafting this systematic review.

2.2 Search strategy

We utilized the following search strategy using the approach mentioned in [C].

A. [Neonatal*] OR [Newborn*] OR [Maternal*] OR [Prenatal*] OR [Fetus*] OR [Fetal*] OR [Embryo*] (Title/Abstract)
B. [Covid-19] OR [SARS-CoV-2] OR [SARS-CoV2] OR [Novel coronavirus] OR [2019-nCoV] (Title/Abstract)
C. [A] AND [B]

2.3 Eligibility criteria

We performed the systematic search and included the original studies cohering to the aim of our study from December 2019 to August 2021.
ID	Study	Country	Maternal age (years)	GA on admission (weeks)	Symptoms	Other symptoms
1	Zheng et al.44	China	33, 29	36 + 3, 39 + 4	Fatigue, Shortness of breath, Dyspnea, Sore throat, Cough, Fever, Diarrhea, GI symptoms, Malaise	Limb asthenia, fetal distress
2	Zamanian et al.24	Iran	22	32	—	Myalgia, anorexia, nausea (maternal death)
3	Yu et al.45	China	30–34	37–41 + 2	Fatigue, Shortness of breath, Dyspnea, Sore throat, Cough, Fever, Liver function abnormality, Myalgia, anorexia, nausea (maternal death)	Liver function abnormality
4	Wu et al.46	China	29, 59	35–36, 37–38, 39–41	Fatigue, Shortness of breath, Dyspnea, Sore throat, Cough, Fever, Diarrhea, GI symptoms, Malaise, Vomiting, PROM	Fetal intrauterine hypoxia—Nasal obstruction, PROM, Threatened abortion
5	Wu X47	China	24–37	6–40	Fatigue, Shortness of breath, Dyspnea, Sore throat, Cough, Fever, Diarrhea, GI symptoms, Malaise, Vomiting, PROM	Fetal intrauterine hypoxia—Nasal obstruction, PROM, Threatened abortion
6	Spencer et al.48	USA	33	39	Fatigue, Shortness of breath, Dyspnea, Sore throat, Cough, Fever, Liver function abnormality, Myalgia, anorexia, nausea (maternal death)	Liver function abnormality
7	Santana-Cabrera49	Spain	44	29 + 2	Fatigue, Shortness of breath, Dyspnea, Sore throat, Cough, Fever, Liver function abnormality, Myalgia, anorexia, nausea (maternal death)	Liver function abnormality
8	Salvatore et al.50	USA	NR	Median 38 (27–41)	Fatigue, Shortness of breath, Dyspnea, Sore throat, Cough, Fever, Liver function abnormality, Myalgia, anorexia, nausea (maternal death)	Liver function abnormality
9	Pirjani et al.51	Iran	30.97	36.57	Fatigue, Shortness of breath, Dyspnea, Sore throat, Cough, Fever, Liver function abnormality, Myalgia, anorexia, nausea (maternal death)	Liver function abnormality
10	Oncel et al.52	Turkey	NR	37, 35	Fatigue, Shortness of breath, Dyspnea, Sore throat, Cough, Fever, Liver function abnormality, Myalgia, anorexia, nausea (maternal death)	Liver function abnormality
11	Liu et al.53	China	26–38	35 + 2–41 + 2	Fatigue, Shortness of breath, Dyspnea, Sore throat, Cough, Fever, Liver function abnormality, Myalgia, anorexia, nausea (maternal death)	Liver function abnormality
12	Liu et al.54	China	32	37.41	Fatigue, Shortness of breath, Dyspnea, Sore throat, Cough, Fever, Liver function abnormality, Myalgia, anorexia, nausea (maternal death)	Liver function abnormality
13	Lowe and Bopp55	Australia	31	40 + 2	Fatigue, Shortness of breath, Dyspnea, Sore throat, Cough, Fever, Liver function abnormality, Myalgia, anorexia, nausea (maternal death)	Liver function abnormality
14	Martinez-Perez et al.56	Spain	35 (19–43), 33 (19–48)	39 + 1, 38 + 3	Fatigue, Shortness of breath, Dyspnea, Sore throat, Cough, Fever, Liver function abnormality, Myalgia, anorexia, nausea (maternal death)	Liver function abnormality
15	Khan et al.23	China	27–34	31–39	Fatigue, Shortness of breath, Dyspnea, Sore throat, Cough, Fever, Liver function abnormality, Myalgia, anorexia, nausea (maternal death)	Liver function abnormality
16	Koumoutsea et al.57	Canada	40, 23	35 + 3, 35 + 2	Fatigue, Shortness of breath, Dyspnea, Sore throat, Cough, Fever, Liver function abnormality, Myalgia, anorexia, nausea (maternal death)	Liver function abnormality
17	Khan et al.39	China	28, 33, 27	34 + 6, 39 + 1, 38 + 2	Fatigue, Shortness of breath, Dyspnea, Sore throat, Cough, Fever, Liver function abnormality, Myalgia, anorexia, nausea (maternal death)	Liver function abnormality
18	Juusela et al.58	USA	26, 45	39 + 2, 33 + 6	Fatigue, Shortness of breath, Dyspnea, Sore throat, Cough, Fever, Liver function abnormality, Myalgia, anorexia, nausea (maternal death)	Liver function abnormality
19	Hantoushzadeh et al.23	Iran	25–49	24–38	Fatigue, Shortness of breath, Dyspnea, Sore throat, Cough, Fever, Liver function abnormality, Myalgia, anorexia, nausea (maternal death)	Liver function abnormality
ID	Study	Country	Maternal age (years)	GA on admission (weeks)	Symptoms	
-----	------------------------	----------------------	----------------------	-------------------------	--	
20	Griffin et al.	USA	—	39.0 ± 1.4	Fatigue, Shortness of breath, Dyspnea, Sore throat, Cough	
21	Ferrazzi et al.	Italy	21–44	34–37<	Fatigue, Shortness of breath, Dyspnea, Sore throat, Cough	
22	Dos Santos Bezzo et al.	Brazil	—	33 4/7–38 4/7	Fever, Viral pneumonia, acute hypoxemia, end-organ failure	
23	Antoun et al.	UK	29.3 ± 2.9	38.7 ± 1.4	Chest pain, abdominal pain	
24	Buonsenso et al.	Italy	—	17-38	Ageusia, anosmia	
25	Abasse et al.	France	36	33	Bronchiectasis	
26	Alonso Díaz et al.	Spain	41	38 + 4	Pneumonia	
27	Alzamora et al.	Peru	41	33	Chills	
28	Coronado Munoz et al.	USA	21	36	Tachycardia, tachypnea, lymphopenia, mild elevation of liver enzymes,	
29	Iqbal et al.	USA	34	39	UTI	
30	Kalafat et al.	Turkey	32	35 ± 3	Pneumonia	
31	Kulkarni et al.	India	24	38 + 2	Body ache	
32	Kelly et al.	USA	—	33	Tachycardia, tachypnea, lymphopenia, mild elevation of liver enzymes,	
33	Villar et al.	UK	30.2 ± 6.1	37.9 ± 3.3	Infection requiring antibiotics, 1.6% death, ICU admission	
34	Al-Matary et al.	Saudi Arabia	32	38	Premature birth, preeclampsia, leukopenia, neutropenia, thrombocytopenia,	
35	Angelidou et al.	USA	30.4 ± 6.3	37.9 ± 2.6	Myalgia	
36	Rabiei et al.	Iran	38	29 + 2	Myalgia	
37	Puneet et al.	India	24.7 ± 2.4	36.6 ± 3.3		
The exclusion criteria were the following:

- Reviews and other nonoriginal studies
- Ongoing studies and clinical trials
- Laboratory and animal studies
- Abstracts, conference abstracts, and articles not possessing an available full-text

RESULTS

In total, 238 documents were identified using a systematic search strategy. After the initial review of the retrieved articles, duplicates were removed and the title and abstract of the remaining sources were reviewed. Based on the selection criteria, 44 articles were eventually included in the final review (Tables 1 and 2).

Tables 1 and 2 describe the characteristics of pregnant women and newborns associated with COVID-19. A total of 2716 newborns and fetuses were assessed. Also, 2375 women in their second and third trimester, admitted with signs and symptoms of COVID-19; in several studies, the condition of the mothers was not assessed. In women, the most common manifestation was mild to moderate pneumonia. Near three in four women did not present with any comorbidities (73%). The most frequent clinical symptoms were fever (19%) and cough (17%). In terms of the imaging findings, chest CT scans were reported in some studies, which revealed pulmonary changes in 7.5% of women; the most common change was bilateral or unilateral ground-glass opacities (98%). Laboratory examinations revealed increased C reactive protein (8%) and decreased lymphocytes (lymphocytopenia) (9.4%). Of the 2716 infants, the delivery method of 1725 of them was reported, 913 (53%) through Cesarean-section delivery and 812 through normal vaginal delivery (NVD) (47%). Of the total newborns, 13 died; five died along the mother. Also, 10 fetal death occurred before birth. A total of 1965 newborns were tested for SARS-CoV-2, of which 118 (6%) tested positive. In a study, vertical transmission in seven cases were reported in the total 145 assessed cases.43

DISCUSSION

The SARS-CoV-2 virus caused the COVID-19 pandemic that started in Wuhan, China, in December 2019.81,82 Mothers and neonates have been one the most vulnerable population in the pandemic situations due to the weakened immune system of the expectant mother.5 This maternal immune reaction is to prevent the fetus from being rejected as a foreign body by the mother’s immune system. Therefore, the maternal inflammatory responses are diminished to prevent fetal rejection.6,7 Although these responses are essential for a normal reaction to infections, in the case of COVID-19, it can be hypothesized that their decline might help by lowering the severity of the disease symptoms caused by inflammatory reactions. However, pregnant women might carry higher risks for severe COVID-19 compared to
ID	Study	Birth weight	Neonatal medical complication						
1	Zheng et al.	2520, 3520	Pneumonia √, Shortness of breath, Dyspnea, Respiratory tract symptoms √, Cough, Fever, Vomiting √, Other complication: Congenital talipes equinovarus, club foot myocardial injury						
2	Zamanian et al.	2350	Pneumonia, Shortness of breath, Dyspnea, Respiratory tract symptoms, Cough, Fever, Vomiting						
3	Yu et al.	3200–3500	Pneumonia, Shortness of breath, Dyspnea, Respiratory tract symptoms, Cough, Fever, Vomiting						
4	Wu et al.	2760–3570	Pneumonia, Shortness of breath, Dyspnea, Respiratory tract symptoms, Cough, Fever, Vomiting						
5	Wu et al.	NR	Pneumonia, Shortness of breath, Dyspnea, Respiratory tract symptoms, Cough, Fever, Vomiting						
6	Spencer et al.	3320	Pneumonia, Shortness of breath, Dyspnea, Respiratory tract symptoms, Cough, Fever, Vomiting						
7	Santana-Cabrera	NR	Pneumonia, Shortness of breath, Dyspnea, Respiratory tract symptoms, Cough, Fever, Vomiting						
8	Salvatore et al.	3110, 3410	Pneumonia, Shortness of breath, Dyspnea, Respiratory tract symptoms, Cough, Fever, Vomiting						
9	Pirjani et al.	NR	Pneumonia, Shortness of breath, Dyspnea, Respiratory tract symptoms, Cough, Fever, Vomiting						
10	Oncel et al.	3140, 2465	Pneumonia, Shortness of breath, Dyspnea, Respiratory tract symptoms, Cough, Fever, Vomiting						
11	Liu et al.	2500–4120	Pneumonia, Shortness of breath, Dyspnea, Respiratory tract symptoms, Cough, Fever, Vomiting						
12	Liu et al.	3001	Pneumonia, Shortness of breath, Dyspnea, Respiratory tract symptoms, Cough, Fever, Vomiting						
13	Lowe and Bopp	3.93, 2.54	Pneumonia, Shortness of breath, Dyspnea, Respiratory tract symptoms, Cough, Fever, Vomiting						
14	Martínez-Perez et al.	360, 3210	Pneumonia, Shortness of breath, Dyspnea, Respiratory tract symptoms, Cough, Fever, Vomiting						
15	Khan et al.	2940–3300	Pneumonia, Shortness of breath, Dyspnea, Respiratory tract symptoms, Cough, Fever, Vomiting						
16	Koumoutsea et al.	2.93, 2.54	Pneumonia, Shortness of breath, Dyspnea, Respiratory tract symptoms, Cough, Fever, Vomiting						
17	Khan et al.	2.900, 3.500, 3.730	Pneumonia, Shortness of breath, Dyspnea, Respiratory tract symptoms, Cough, Fever, Vomiting						
18	Juusela et al.	2.890	Pneumonia, Shortness of breath, Dyspnea, Respiratory tract symptoms, Cough, Fever, Vomiting						
19	Hantoush Zadeh et al.	1180–3200	Neonatal pneumonia, Pneumonia, Shortness of breath, Dyspnea, Respiratory tract symptoms, Cough, Fever, Vomiting						
20	Griffin et al.	3.348 ± 474	Pneumonia, Shortness of breath, Dyspnea, Respiratory tract symptoms, Cough, Fever, Vomiting						
21	Ferrazzi et al.	840–4040	Pneumonia, Shortness of breath, Dyspnea, Respiratory tract symptoms, Cough, Fever, Vomiting						
ID	Study	Birth weight	Neonatal medical complication	Respiratory tract symptoms	Cough	Fever	Vomiting	Other complication	Neonatal mortality
-----	---	--------------	--	---------------------------	-------	-------	----------	--	-------------------
22	Dos Santos Beozzo et al.61	2980, 2130, 3600	Pneumonia — Dyspnea √	—	—	—	—	Respiratory distress, The head grade II intraventricular hemorrhage, bleeding in the stool, and anemia	—
		–	Shortness of breath —					Nasal congestion and a runny nose	–
23	Antoun et al.62	3139 g ± 437	Bacterial pneumonia	—	—	—	—	Sinus bradycardia, hypocalcemia	—
24	Buonsenso et al.63	–	—	—	—	—	—	Intermittent hyperpnea with mild intercostal retractions	—
25	Abasse et al.64	1830	√	√	√	√	—	Hypotension, tachycardia, hypothermia, tachypnea, and reduced feeding	—
26	Alonso Díaz et al.65	2500	—	√	√	√	—	Lymphopenia, neutropenia, thrombocytopenia, low hemoglobin level, hyperbilirubinemia, fetal death	—
27	Alzamora et al.17	2970	—	√	√	√	√	—	—
28	Coronado Munoz et al.66	–	–	√	√	√	—	—	—
29	Iqbal et al.34	–	–	—	—	—	—	—	—
30	Kalafat et al.67	–	–	—	—	—	—	—	—
31	Kulkarni et al.68	3200	—	—	—	—	√	Thrombocytopenia and elevated inflammatory markers (CRP/procalcitonin/ ferritin), elevated d-dimers	—
32	Kelly et al.69	–	–	—	—	—	—	—	—
33	Villar et al.70	2960 ± 700	√	√	—	—	—	Low birth weight	√
34	Al-Matary et al.71	–	√	√	√	√	—	Lymphopenia, neutropenia, thrombocytopenia, low hemoglobin level, hyperbilirubinemia, fetal death	—
35	Angelidou et al.72	31 116.3 ± 655.6	Yes	√	√	√	√	Hypotonia	√
36	Rabiei et al.73	1390	–	—	—	—	—	NICU admission	—
37	Puneet et al.74	2600 ± 600	–	—	—	—	—	NICU admission, Fetal distress	—
38	Oncel et al.75	2465	–	√	√	—	—	NICU admission	—
39	Mullins et al.76	–	–	—	—	—	—	—	—
nonpregnant patients. The results from the present review indicate that one-third of pregnant women who tested positive for COVID-19 were asymptomatic that is approximately similar to the general population.

In the present review, women were often in their second and third trimesters of pregnancy. Besides, the available data do not show any clear relation between GAI (general admission 1) and infection in mothers or neonates. Likewise, there was no association between maternal age and neonatal complications. Birth weights mostly ranged between 2000 and 4000 g, and Villar et al. demonstrated low birth weight as a complication of COVID-19 in the neonates.

According to findings, cough and fever were the most common symptoms in mothers. Other relatively common symptoms included dyspnea, diarrhea, and cardiac symptoms such as tachycardia. However, fever and respiratory tract symptoms such as cough and dyspnea were the most common symptoms in neonates. But one of the most important and noticeable findings were cardiovascular problems, particularly tachycardia and hypotension.

Neonatal pulmonary changes in chest CT scans were mostly unilateral or bilateral ground-glass opacities. The most common laboratory findings were the increase of C-reactive protein and decrease of lymphocytes (lymphocytopenia). Although less than half of neonatal patients had comorbidities (12%), fetal distress was the most common. Five neonatal death occurred along with the mother. However, other neonatal deaths did not involve maternal death (n = 8). Pneumonia was also one of the most common neonatal complications of COVID-19 disease reported in other reviews.

This study comes with limitations. Some of the included studies lacked information related to the severity of the complications in the neonates. Some also did not report the final status of the newborns and whether they were cured or not, or had short- or long-term sequels. Also it will be useful if the studies mention the long-term outcomes of the patients and the impact of the disease and its possible complications in longer periods. On the other hand, there were also some limitations related to the data about the mothers in a portion of the studies, for example, the starting date of COVID-19 and the duration of the disease. We also did not perform a statistical analysis. Nevertheless, this study provided some important information related to perinatal and neonatal complications of COVID-19 and future well-designed meta-analyses can increase our awareness of this disease more.

5 | CONCLUSION

Evidence suggests that vertical transmission in the uterus is responsible for COVID-19 in neonates that makes neonatal infection through the umbilical cord unlikely. In addition, parental infection is less severe due to the suppression of immune system during pregnancy. Neonates do not present any additional risk for COVID-19 complications during the prenatal period. However, further epidemiological studies are recommended to explore the possibility of mother-to-child...
(vertical) transmission of COVID-19 and determine the potential perinatal complications.

ACKNOWLEDGMENT
The present study was conducted in collaboration with Khalkhal University of Medical Sciences, Iranian Research Center for HIV/AIDS, Tehran University of Medical Sciences, and Federal University of Matogrosso.

FUNDING
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

CONFLICT OF INTEREST
The authors declare that there is no conflict of interest regarding the publication of this manuscript.

AUTHOR CONTRIBUTION
The conception and design of the study: Esmaeil Mehraeen and SeyedAhmad SeyedAlinaghi
Methodology: Esmaeil Mehraeen, SeyedAhmad SeyedAlinaghi, and Amirali Karimi
Acquisition of data: Amirali Karimi, Peyman Mirghaderi, Pegah Mizapour, and Alireza Barzegary
Writing—original draft preparation Zahra Pashaei, Alireza Barzegary, Amirali Karimi, Seyed Peyman Mirghaderi, Pegah Mizapour, Marcarious M. Tantouyiri, Omid Dadras, Kowsar Qaderi and Zoha Ali
Writing—review and editing: SeyedAhmad SeyedAlinaghi, Zahra Pashaei and Fabrizio Voltarelli
Validation: Esmaeil Mehraeen, Fabrizio Voltarelli, Omid Dadras, SeyedAhmad SeyedAlinaghi, and Zahra Pashaei

TRANSPARENCY STATEMENT
Esmaeil Mehraeen affirms that this manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned (and, if relevant, registered) have been explained.

AVAILABILITY OF DATA AND MATERIAL
The authors confirm that the data supporting the findings of this study are available within the article [and/or] its supplementary materials.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE
Not applicable.

CONSENT TO PUBLICATION
Not applicable.

ORCID
AliReza Barzegary https://orcid.org/0000-0002-0512-7014
Omid Dadras https://orcid.org/0000-0001-9385-2170
Esmaeil Mehraeen https://orcid.org/0000-0003-4108-2973

REFERENCES
1. Mehraeen E, Hayati B, Saeidi S, Heydari M, Seyedalinaghi S & Self-care instructions for people not requiring hospitalization for coronavirus disease 2019 (COVID-19). Arch Clin Infect Dis. 2020;15(COVID-19):e102978.
2. SeyedAlinaghi S, Mirzapour P, Dadras O, et al. Characterization of SARS-CoV-2 different variants and related morbidity and mortality: a systematic review. Eur J Med Res. 2021;26(1):51.
3. World Health Organization coronavirus disease (COVID-19) dashboard [Internet]. https://covid19.who.int/. Accessed January 8, 2021.
4. Chen Y-H, Keller J, Wang I-T, Lin C-C, Lin H-C. Pneumonia and pregnancy outcomes: a nationwide population-based study. Am J Obstet Gynecol. 2012;207(4):288.e1-288.e7.
5. PrabhuDas M, Bonney E, Caron K, et al. Immune mechanisms at the maternal-fetal interface: perspectives and challenges. Nat Immunol. 2015;16(4):328-334.
6. Liu S, Diao L, Huang C, Li Y, Zeng Y, Kwak-Kim JY. The role of decidual immune cells on human pregnancy. J Reprod Immunol. 2017;124:44-53.
7. Chen RC, Sang L, Jiang M, et al. Longitudinal hematologic and immunologic variations associated with the progression of COVID-19 patients in China. J Allergy Clin Immunol. 2020;146(1):89-100.
8. Asadollahi-Amin A, Hasibi M, Ghadimi F, Rezaei H, SeyedAlinaghi S, Lung Involvement Found on Chest CT Scan in a Pre-Symptomatic Person with SARS-CoV-2 Infection: A Case Report. Trop Med Infect Dis. 2020;5(2).56.
9. Vouden N, Bunch K, Morris E, et al. The incidence, characteristics and outcomes of pregnant women hospitalized with symptomatic and asymptomatic SARS-CoV-2 infection in the UK from March to September 2020: a national cohort study using the UK Obstetric Surveillance System (UKOSS). PloS One. 2021;16(5):e0251123.
10. Ashish K, Gurung R, Kinney MV, et al. Effect of the COVID-19 pandemic response on intrapartum care, stillbirth, and neonatal mortality outcomes in Nepal: a prospective observational study. Lancet Glob Health. 2020;8(10):e1273-e1281.
11. Chmielewska B, Barratt I, Townsend R, et al. Effects of the COVID-19 pandemic on maternal and perinatal outcomes: a systematic review and meta-analysis. Lancet Glob Health. 2021;9:e1065.
12. Liu Y, Chen H, Tang K, Guo Y. Clinical manifestations and outcome of SARS-CoV-2 infection during pregnancy. J Infect. 2020.50163-4453 (20)30109-2. https://doi.org/10.1016/j.jinf.2020.02.028
13. Baud D, Greub G, Favre G, et al. Second-trimester miscarriage in a pregnant woman with SARS-CoV-2 infection. JAMA. 2020;323:2198-2200.
14. Chen H, Guo J, Wang C, et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet. 2020; 395(10226):809-815.
15. Fan C, Lei D, Fang C, et al. Perinatal transmission of COVID-19 associated SARS-CoV-2: should we worry? Clin Infect Dis. 2021;72(5): 862-864.
16. Breslin N, Baptiste C, Gyaml-Bannerman C, et al. COVID-19 infection among asymptomatic and symptomatic pregnant women: two weeks of confirmed presentations to an affiliated pair of new York City hospitals. Am J Obstet Gynecol MFM. 2020;2(2):100118.
17. Alzamora MC, Paredes T, Caceres D, Webb CM, Valdez LM, La Rosa M. Severe COVID-19 during pregnancy and possible vertical transmission. Am J Perinatol. 2020;37(8):861-865.
18. Hirschberg A, Kern-Goldberger AR, Levine LD, et al. Care of critically ill pregnant patients with coronavirus disease 2019: a case series. Am J Obstet Gynecol. 2020;223:286-290.
19. Lokken EM, Walker CL, Delaney S, et al. Clinical characteristics of 46 pregnant women with a SARS-CoV-2 infection in Washington state. Am J Obstet Gynecol. 2020;223:911.e1-911.e14.
20. Nieuwland M, Wang J, Southworth E, et al. Clinical features and the maternal and neonatal outcomes of pregnant women with coronavirus disease 2019. medRxiv. 2020.

21. Yin M, Zhang L, Deng G, et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection during pregnancy in China: a retrospective cohort study. medRxiv. 2020.

22. Dadras O, Alinaghi SAS, Karimi A, et al. Effects of COVID-19 prevention procedures on other common infections: a systematic review. Eur J Med Res. 2021;26(1):67.

23. Hantoushzadeh S, Shamsheerzad AA, Aleyasina A, et al. Maternal death due to COVID-19 disease. Am J Obstet Gynecol. 2020;223:109.e1-109.e16.

24. Zamanian M, Ebadie A, Aghajanpoor MS, Rahmani Z, Haghshenas M, Azizi S. Preterm delivery, maternal death, and vertical transmission in a pregnant woman with COVID-19 infection. Prenat Diagn. 2020;40(13):1759-1761.

25. Knight M, Bunch K, Vousoen N, et al. Characteristics and outcomes of pregnant women hospitalised with confirmed SARS-CoV-2 infection in the UK: a national cohort study using the UK Obstetric Surveillance System (UKOSS). medRxiv. 2020.

26. Krishnamurthy G, Sahni R, Leone T, et al., eds. Care of the COVID-19 mother in pregnancy: characteristics and outcomes in the UK: a national cohort study using the UK Obstetric Surveillance System (UKOSS). medRxiv. 2020.

27. Kotlyar AM, Grechukhina O, Chen A, et al. Vertical transmission of coronavirus disease 2019: a systematic review and meta-analysis. Am J Obstet Gynecol. 2021;224(3):53-53.e3.

28. Gidlöf S, Savchenko J, Brune T, Josefsson H. COVID-19 in pregnancy: a retrospective, single-Centre, descriptive study. Lancet Infect Dis. 2020;20(5):559-564.

29. Wu YT, Liu J, Xu JJ, et al. Neonatal outcome in 29 pregnant women with COVID-19: a retrospective study in Wuhan, China. PLoS Med. 2020;17(7):e1003195.

30. Wu X, Sun R, Chen J, Xie Y, Zhang S, Wang X. Radiological findings and clinical characteristics of pregnant women with COVID-19 pneumonia. Int J Gynecol Obstet. 2020;150:58-63.

31. Spencer R, Chaves DV, Brooks MC, et al. Performing an urgent neonatal cardiac intervention safely during the COVID-19 pandemic. Prog Pediatr Cardiol. 2021;60:101265.

32. Gonzalez Romero D, Ocampo Perez J, Gonzalez Bautista L, Santana-Cabrera L. Pronóstico perinatal y de la paciente embarazada con infección por COVID-19 [Pregnancy and perinatal outcome of a woman with COVID-19 infection]. Rev Clin Esp (Buc). 2020;220(8):533-534.

33. Salvatore CM, Han JY, Acker KP, et al. Neonatal management and outcomes during the COVID-19 pandemic: an observation cohort study. J Matern Fetal Neonatal Med. 2020;323(18):1848-1850.

34. Piccirillo S, Voss S, Schmid S, et al. Maternal and neonatal outcomes in COVID-19 infected pregnancies: a prospective cohort study. J Matern Fetal Neonatal Med. 2020;323(18):1848-1850.

35. Oncel MY, Akın IM, Kanburoğlu MK, et al. A multicenter study on epidemiological and clinical characteristics of 125 newborns born to women infected with COVID-19 by Turkish Neonatal Society. Eur J Pediatr. 2020;1–10:733-742.

36. Liu W, Wang J, Li W, Zhou Z, Liu S, Rong Z. Original: clinical characteristics of 19 neonates born to mothers with COVID-19. Zhonghua Bing Li Xue Za Zhi. 2020;14:193-198.

37. Liu W, Cheng H, Wang J, et al. Clinical analysis of neonates born to mothers with or without COVID-19: a retrospective analysis of 48 cases from two neonatal intensive care units in Hubei Province. Am J Perinatol. 2020;37(13):1317-1223.

38. Lowe B, Bopp B. COVID-19 vaginal delivery—a case report. Aust N Z J Obstet Gynaecol. 2020;60:465-466.

39. Martinez-Perez O, Vouga M, Cruz Melguizo S, et al. Association between mode of delivery among pregnant women with COVID-19 and maternal and neonatal outcomes in Spain. JAMA. 2020;324(3):296-299.

40. Koumoutsou EV, Vivanti AJ, Shehata N, et al. COVID-19 and acute coagulopathy in pregnancy. J Thromb Haemost. 2020;18(7):1648-1652.

41. Jusupka A, Nazir M, Gimo Mystry M. Two cases of COVID-19 related cardiomyopathy in pregnancy. Am J Obstet Gynecol MFM. 2020;2(2):100113.

42. Griffin I, Benarba F, Peters C, et al. The impact of COVID-19 infection on labor and delivery, newborn nursery, and neonatal intensive care unit: prospective observational data from a single hospital system. Am J Perinatol. 2020;37(10):1022-1030.
60. Ferrazzi E, Frigerio L, Savasi V, et al. Vaginal delivery in SARS-CoV-2-infected pregnant women in northern Italy: a retrospective analysis. BJOG. 2020;127:1116–1121.

61. Dos Santos Beozzo GPN, de Carvalho WB, Krebs VLJ, et al. Neonatal manifestations in COVID-19 patients at a Brazilian tertiary center. Clinics (Sao Paulo, Brazil). 2020;75:e2407.

62. Antoun L, Taweel NE, Ahmed I, Patni S, Honest H. Maternal COVID-19 infection, clinical characteristics, pregnancy, and neonatal outcome: a prospective cohort study. Eur J Obstet Gynecol Reprod Biol. 2020;252:559-562.

63. Buonsenso D, Raffaelli F, Tamburini E, et al. Clinical role of lung ultrasound for the diagnosis and monitoring of COVID-19 pneumonia in pregnant women. Ultrasound Obstet Gynecol. 2020;56:106-109.

64. Abasse S, Essabar L, Costin T, et al. Neonatal COVID-19 pneumonia: report of the first case in a preterm neonate in Mayotte, an overseas Department of France. Children (Basel, Switzerland). 2020;7(8):87.

65. Alonso Díaz C, López Maestro M, Moral Pumarega MT, Flores Antón B, Pallás AC. First case of neonatal infection due to COVID-19 in Spain. An Pediatr. 2020;92(4):237-238.

66. Coronado Munoz A, Nawaratne U, McMann D, Ellsworth M, Meliones J, Boukas K. Late-onset neonatal sepsis in a patient with Covid-19. N Engl J Med. 2020;382(19):e49.

67. Kalafat E, Yaprap E, Cinar G, et al. Lung ultrasound and computed tomographic findings in pregnant woman with COVID-19. Ultrasound Obstet Gynecol. 2020;55:835-837.

68. Kulkarni R, Rajput U, Dawre R, et al. Early-onset symptomatic neonatal COVID-19 infection with high probability of vertical transmission. Infection. 2020;1-5:339-343.

69. Kelly JC, Dombrowski M, O’Neil-Callahan M, Kernberg AS, Florola AI, Stout MJ. False-negative testing for severe acute respiratory syndrome coronavirus 2: consideration in obstetrical care. Am J Obstet Gynecol MFM. 2020;2(3):100130.

70. Villar J, Ariff S, Gunier RB, et al. Maternal and neonatal morbidity and mortality among pregnant women with and without COVID-19 infection: the INTERCOVID multinational cohort study. JAMA Pediatr. 2021;175:817-826.

71. Al-Matary A, Almatari F, Al-Matary M, et al. Clinical outcomes of maternal and neonate with COVID-19 infection—multicenter study in Saudi Arabia. J Infect Public Health. 2021;14(6):702-708.

72. Angelidou A, Sullivan K, Melvin PR, et al. Association of maternal perinatal SARS-CoV-2 infection with neonatal outcomes during the COVID-19 pandemic in Massachusetts. JAMA Netw Open. 2021;4(4):e217523.

73. Rabiei M, Soori T, Abiri A, Farsi Z, Shizarpour A, Pirjani R. Maternal and fetal effects of COVID-19 virus on a complicated triplet pregnancy: a case report. J Med Case Rep. 2021;15(1):1-4.

74. Gupta P, Kumar S, Sharma SS. SARS-CoV-2 prevalence and maternal-perinatal outcomes among pregnant women admitted for delivery: Experience from COVID-19-dedicated maternity hospital in Jammu, Jammu and Kashmir (India). J Med Virol. 2021;93(9):5505-5514.

75. Oncel MY, Akan IM, Kanburuglu MK, et al. A multicenter study on epidemiological and clinical characteristics of 125 newborns born to women infected with COVID-19 by Turkish Neonatal Society. Eur J Pediatr. 2021;180(3):733-742.

76. Mullins E, Hudak ML, Banerjee J, et al. Pregnancy and neonatal outcomes of COVID-19: coreporting of common outcomes from PAN-CoVID and AAP-SONPM registries. Ultrasound Obstet Gynecol. 2021;57(4):573-581.

77. Akbarian-Rad Z, Mojaveri MH, Bouzari Z, et al. Neonatal outcomes in pregnant women infected with COVID-19 by Turkish Neonatal Society. J Infect Public Health. 2020;13(11):1061-109.

78. Mullins E, Hudak ML, Banerjee J, et al. Pregnancy and neonatal outcomes of COVID-19: coreporting of common outcomes from PAN-CoVID and AAP-SONPM registries. Ultrasound Obstet Gynecol. 2021;57(4):573-581.

79. Rabiei M, Soori T, Abiri A, Farsi Z, Shizarpour A, Pirjani R. Maternal and fetal effects of COVID-19 virus on a complicated triplet pregnancy: a case report. J Med Case Rep. 2021;15(1):1-4.

80. Halici-Ozturk F, Ocal FD, Aydin S, et al. Investigating the risk of maternal-fetal transmission of SARS-CoV-2 in early pregnancy. PloS One. 2021;16(12):e264409.

81. SeyedAlinaghi S, Mehrtak M, MohsseniPour M, et al. Genetic susceptibility of COVID-19: a systematic review of current evidence. Arch Acad Emer Med. 2021;9(1):e14.

82. SeyedAlinaghi S, Mehrtak M, MohsseniPour M, et al. Genetic susceptibility of COVID-19: a systematic review of current evidence. Arch Acad Emer Med. 2021;9(1):e14.

83. Wastnedge EAN, Reynolds RM, van Boeckel SR, et al. Pregnancy and COVID-19. Physiol Rev. 2021;101(1):303-318.

How to cite this article: Pashaei Z, SeyedAlinaghi S, Qaderi K, et al. Prenatal and neonatal complications of COVID-19: A systematic review. Health Sci Rep. 2022;5:e510. doi:10.1002/hsr2.510.