Some Ideas to Test if a Polyhedron is Empty

Laurent Truffet
IMT-A
Dpt. Automatique-Produitique-Informatique
Nantes, France
email: laurent.truffet@imt-atlantique.fr

April 28, 2020

Abstract

In this paper we develop a pure algebraic method which provides an algorithm for testing emptiness of a polyhedron.

Keywords. Moore-Penrose inverse, interval arithmetic.

1 Introduction

Testing if a polyhedron is empty is a fundamental issue for linear optimization theory. In the seminal work [6] a geometric approach was proposed to solve this problem. Since this work and to the best knowledge of the author only geometric approaches were proposed (see e.g. [5], [1] among many others). In this work we develop a method based only on algebraic considerations. The main concepts deal with Moore-Penrose inverse of a rectangular matrix (see Definition 1.1) and some results of arithmetic intervals [8]. This method provides an algorithm which seems to be new for testing emptiness of a polyhedron.

1.1 Main notations

For any integer $k \geq 1$ we defined the set $[k] := \{1, \ldots, k\}$.

Bold letters represent matrices or column vectors. $t(\cdot)$ denotes transpose operator. $\text{Mat}(\mathbb{R}, m, n)$ denotes the set of all real $m \times n$-matrices.

We denote by $0_{p,q} \in \text{Mat}(\mathbb{R}, p, q)$ the $p \times q$-matrix whose elements are all zero. We denote by $I_p \in \text{Mat}(\mathbb{R}, p, p)$ the $p \times p$-identity matrix. We denote 0 (resp. $-\infty$) the column vector whose components are all 0 (resp. $-\infty$). The dimension is fixed by the context.

The natural order defined on \mathbb{R} is denoted \leq. For any integer $p \geq 2$ this total order is extended to the partial order (called componentwise ordering), once again denoted \leq, defined on p-dimensional vectors as follows. If $x = t(x_1, \ldots, x_p)$ and $y = t(y_1, \ldots, y_p)$ then
\[x \leq y \iff \forall i = 1, \ldots, p : \ x_i \leq y_i. \]

(1)

The relation \(y \geq x \) means \(x \leq y \).

The vector \(e_i \) denotes the vector such that \(\forall j, e^i_j = 1 \) if \(j = i \) and 0 otherwise. Its dimension is determined by the context.

1.2 Problem statement

In this paper we consider the following set:

\[\mathcal{P}(A, b) := \{ x \in \mathbb{R}^n : Ax \leq b \}. \]

(2)

\(A \in \text{Mat}(\mathbb{R}, m, n) \) and \(b \in \mathbb{R}^m \).

And we wonder wether this set is empty or not ?

We make the following assumptions (see Section 3 for a discussion):

ASSUMPTION (A). Matrix \(A \) has no null row.

ASSUMPTION (B). We assume \(m > n \) and that \(A \) has full column-rank, that is \(\text{rk}(A) = n \).

1.3 Basic concepts and results

Our method is based on the following concepts, remarks and results.

Definition 1.1 (Moore-Penrose inverse [7], [10]) The Moore-Penrose inverse of the matrix \(A \in \text{Mat}(\mathbb{R}, m, n) \) is the unique matrix \(A^+ \in \text{Mat}(\mathbb{R}, n, m) \) such that:

1. \(AA^+A = A \)
2. \(A^+AA^+ = A^+ \)
3. \((AA^+) = AA^+ \)
4. \((A^+A) = A^+A \)

A matrix which satisfies relations 1 and 2 will be called a \(\{1, 2\} \)-inverse.

We make the following remarks:

R1 \(\mathcal{P}(A, b) \neq \emptyset \iff \exists x, \exists c \leq b, Ax = c \)

R2 \(\exists x, Ax = c \iff AA^+c = c \), recalling that \(A^+ \in \text{Mat}(\mathbb{R}, n, m) \) denotes the Moore-Penrose inverse of \(A \).
Remark (R1) is obvious. Remark (R2) can be found in e.g. [4]. As a main consequence of (R1) and (R2) we have:

$$\mathcal{P}(A, b) \neq \emptyset \iff \exists c \leq b, A^t c = c.$$ \hfill (3)

Noticing that each component c_i of c belongs to the interval $C_i := [−\infty, b_i]$, $i = 1, \ldots, m$, we recall some results of interval arithmetic [8].

Let $−\infty \leq s \leq t \leq +\infty$ and $−\infty \leq s' \leq t' \leq +\infty$ we define the intervals $[s, t]$ and $[s', t']$ as the following sets: $[s, t] := \{a : s \leq a \leq t\}$ and $[s', t'] := \{a : s' \leq a \leq t'\}$.

- Interval addition. The addition of the intervals $[s, t]$ and $[s', t']$ is the new interval denoted by $[s, t] + [s', t']$ and defined by:

$$[s, t] + [s', t'] := \{a + a', a \in [s, t], a' \in [s', t']\} = [s + s', t + t].$$ \hfill (4)

Because the addition of reals is commutative and associative so is the interval addition. The interval $[0, 0]$ being its neutral element.

- Interval multiplication by a real. Let $z \in \mathbb{R}$ the multiplication of z by the interval $[s, t]$ provides the new interval denoted $z \cdot [s, t]$ and defined by:

$$z \cdot [s, t] := \{za, a \in [s, t]\} = \begin{cases} [zs, zt] & \text{if } z > 0 \\ [zt, zs] & \text{if } z < 0 \\ [0, 0] & \text{if } z = 0 \end{cases}$$ \hfill (5)

- Linear combination of two intervals. Let $z, z' \in \mathbb{R}$. The linear combination $z \cdot [s, t] + z' \cdot [s', t']$ is the set defined as:

$$z \cdot [s, t] + z' \cdot [s', t'] := \{za + z'a', a \in [s, t], a' \in [s', t']\}.$$ \hfill (6)

Let $r \geq 1$, and let $I_i := [s_i, t_i], i = 1, \ldots, r$ be a series of r intervals. Let $a := \{I_1, \ldots, I_r\}$ be the r-dimensional vector of the intervals $I_i, i = 1, \ldots, r$. Let us also define $s := \{s_1, \ldots, s_r\}$ and $t := \{t_1, \ldots, t_r\}$. We then have:

$$a = \{a : s \leq a \leq t\}.$$ \hfill (7)

An interval $[s, t]$ is thin if $s = t$. By extension we say that the interval vector a is thin if $s = t$.

Result 1.1 (Beeck) For all $z \in \mathbb{R}^r$ we have:

$$\exists a \text{ s.t. } s \leq a \leq t \text{ and } ^t z a = 0 \iff \exists \theta \text{ s.t. } ^t z \cdot a.$$ \hfill (8)

Where

$$^t z \cdot a := z_1 \cdot I_1 + \ldots + z_r \cdot I_r,$$

with $z_1 \cdot I_1 + \ldots + z_r \cdot I_r$ that generalizes the linear combination of two intervals as follows: $z_1 \cdot I_1 + \ldots + z_r \cdot I_r := \{\sum_{i=1}^r z_i a_i, a_i \in I_i, i = 1, \ldots, r\}$.

3
Proof. By definition of the set $z_1 \cdot I_1 + \ldots + z_r \cdot I_r$ we remark that:

$$^t z \cdot a = \{ ^t z a, \ a \in a \}.$$ \hfill (9)

And the proof is thus obvious. In fact, it is a very simplified version of Beeck’s Theorem (see e.g. [9] and references therein).

Let us also recall the following rules of interval calculus (see e.g. [9]):

AI1. Two arithmetical expressions which are equivalent in real arithmetic are equivalent in interval arithmetic when every variable occurs only once on each side.

AI2. If f and g are two arithmetical expressions of variables $x_1 \in I_1, \ldots, x_n \in I_n$ where I_1, \ldots, I_n are given intervals, which are equivalent in real arithmetic then the inclusion $f(I_1, \ldots, I_n) \subseteq g(I_1, \ldots, I_n)$ holds if every variable x_i occurs only once in f.

Acknowledgment

Author would like to thank Odile Bellenguez, Gilles Chabert, Chams Lahlou, Olivier Le Corre and James Ledoux for helpful discussions.

2 Main results

Let us consider a matrix $A \in \text{Mat}(\mathbb{R}, m, n)$ satisfying ASSUMPTIONS (A) and (B) (see subsection 1.2), and a vector $b \in \mathbb{R}^m$.

As a direct consequence of ASSUMPTION (B) we can suppose that $A = \begin{pmatrix} A_1 \\ A_2 \end{pmatrix}$ with $A_1 := \begin{pmatrix} a_{1,..} \\ \vdots \\ a_{m-n,..} \end{pmatrix} \in \text{Mat}(\mathbb{R}, m-n, n)$ and $A_2 := \begin{pmatrix} a_{m-n+1,..} \\ \vdots \\ a_{m,..} \end{pmatrix} \in \text{Mat}(\mathbb{R}, n, n)$ assumed to be invertible. Its inverse is denoted A_2^{-1}. For all $i \in [m]$, $a_{i,*}$ denotes the ith row of matrix A.

Finally, let us recall that A^+ denotes the Moore-Penrose inverse of matrix A (see Definition 1.1).

Lemma 2.1 We have the following two logical equivalences:

$$\forall c, \ AA^+ c = c \iff (AA^+ - I_m)c = 0 \iff Uc = 0$$

with:

$$U := \begin{pmatrix} I_{m-n} & -A_1A_2^{-1} \\ 0_{n,m-n} & 0_{n,n} \end{pmatrix}$$ \hfill (10)

Proof. The first equivalence is obvious. So, let us prove $(AA^+ - I_m)c = 0 \iff Uc = 0$.

Using [3] we develop A^+ as follows:

$$A^+ = \begin{pmatrix} A_1 \\ A_2 \end{pmatrix}^+ = \begin{pmatrix} K^+ \ t A_1 \\ K^+ \ t A_2 \end{pmatrix},$$

with $K := A_1 A_1 \ t + A_2 A_2$.

Because A_2 is invertible, $A_2 A_2$ is symmetric invertible and thus K is invertible. Hence, $K^+ = K^{-1}$.

Now, we have by block multiplication of matrices:

$$AA^+ - I_m = \begin{pmatrix} A_1 \\ A_2 \end{pmatrix} \begin{pmatrix} K^+ \ t A_1 \\ K^+ \ t A_2 \end{pmatrix} - \begin{pmatrix} I_{m-n} & 0_{m-n,n} \\ 0_{n,m-n} & I_n \end{pmatrix}$$

$$= \begin{pmatrix} A_1 K^+ \ t A_1 - I_{m-n} & A_1 K^+ \ t A_2 \\ A_2 K^+ \ t A_1 & A_2 K^+ \ t A_2 - I_n \end{pmatrix}$$

Using block linear elimination we have (last row block multiplied by $A_1 A_2^{-1}$ and then substracting to first row block):

$$\begin{pmatrix} I_{m-n} & -A_1 A_2^{-1} \\ A_2 K^+ \ t A_1 & A_2 K^+ \ t A_2 - I_n \end{pmatrix}$$

Left multiplying the last row block by $K A_2^{-1}$ one has:

$$\begin{pmatrix} I_{m-n} & -A_1 A_2^{-1} \\ \ t A_1 & \ t A_2 - KA_2^{-1} \end{pmatrix}$$

Right multiplying the first row block by $-A_1$ and adding to the second row block we obtain:

$$\begin{pmatrix} I_{m-n} & -A_1 A_2^{-1} \\ 0_{n,m-n} & \ t A_1 A_2^{-1} + \ t A_2 - KA_2^{-1} \end{pmatrix}.$$

Now, we just have to note that:

$$\ t A_1 A_2^{-1} + \ t A_2 - KA_2^{-1} = (\ t A_1 A_1 + \ t A_2 A_2 - K) A_2^{-1}$$

$$= (K - K) A_2^{-1} = 0_{n,n}.$$

Conversely, assume that $Uc = 0$. This equality is equivalent to

$$c_1 = Rc_2,$$

with $c_1 := \ t (c_1, \ldots, c_{m-n}), c_2 := \ t (c_{m-n+1}, \ldots, c_m)$ and

$$R := A_1 A_2^{-1}. \quad (12)$$

Now, every c such that $Uc = 0$ has the form: Rc_2, with $R := \begin{pmatrix} R \\ I_n \end{pmatrix}$. It remains to check that $AA^+ R = \hat{R}$. We develop the computation as follows.
\[\mathbf{AA}^+ \mathbf{R} = \begin{pmatrix} A_1 \mathbf{K}^+ t_a & A_1 \mathbf{K}^+ t_a \mathbf{A}_2 \\ A_2 \mathbf{K}^+ t_a & A_2 \mathbf{K}^+ t_a \mathbf{A}_2 \end{pmatrix} \begin{pmatrix} \mathbf{R} \\ \mathbf{I}_n \end{pmatrix} \]

Now, we have:

\[A_1 \mathbf{K}^+ t_a \mathbf{A}_1 \mathbf{R} + A_1 \mathbf{K}^+ t_a \mathbf{A}_2 = A_1 \mathbf{K}^+ t_a \mathbf{A}_1 \mathbf{A}_2^{-1} + A_1 \mathbf{K}^+ t_a \mathbf{A}_2 \]

\[= A_1 \mathbf{K}^+ (t_a \mathbf{A}_1 + t_a \mathbf{A}_2 \mathbf{A}_2^{-1}) \]

\[= A_1 \mathbf{K}^+ \mathbf{A}_2^{-1} \]

And

\[A_2 \mathbf{K}^+ t_a \mathbf{A}_1 \mathbf{R} + A_2 \mathbf{K}^+ t_a \mathbf{A}_2 = A_2 \mathbf{K}^+ t_a \mathbf{A}_1 \mathbf{A}_2^{-1} + A_2 \mathbf{K}^+ t_a \mathbf{A}_2 \]

\[= A_2 \mathbf{K}^+ (t_a \mathbf{A}_1 + t_a \mathbf{A}_2 \mathbf{A}_2^{-1}) \]

\[= A_2 \mathbf{K}^+ \mathbf{A}_2^{-1} \]

Thus, the result is proved.

Let \(t_a \) be any row vector of matrix \(\mathbf{A}_1 \). Let \(\mathbf{A}_2 \) be any submatrix of \(\mathbf{A}_2 \) such that \(\mathbf{A}_2 \in \text{Mat} (\mathbb{R}, k, n) \) for some \(k \in [n] \). Let \(\mathbf{A} := \begin{pmatrix} t_a \\ \mathbf{A}_2 \end{pmatrix} \). Finally, let us denote \(\mathbf{c} := \begin{pmatrix} c \\ \mathbf{c}_2 \end{pmatrix} \) where \(c \in \mathbb{R} \) and \(\mathbf{c}_2 \in \mathbb{R}^k \). Then

Lemma 2.2

\[\forall \mathbf{c}, (\mathbf{A} \mathbf{A}^+ - \mathbf{I}_{k+1}) \mathbf{c} = 0 \leftrightarrow \mathbf{U} \mathbf{c} = 0, \]

with

\[\mathbf{U} := \begin{pmatrix} 1 & -t_a \mathbf{A}_2^+ \\ 0_{k,1} & 0_{k,k} \end{pmatrix}. \]

Proof. Let us denote \(\mathbf{\delta} := \mathbf{A}_2^+ \mathbf{a} \), and \(\mathbf{\gamma} := \mathbf{a} - \mathbf{A}_2 \mathbf{\delta} \). Because \(\mathbf{A}_2 \) is a \(k \times n \)-submatrix of the invertible matrix \(\mathbf{A}_2 \), the matrix \(\mathbf{A}_2^+ \) is the right inverse of \(\mathbf{A}_2 \), thus \(\mathbf{A}_2 \mathbf{A}_2^+ = \mathbf{I}_k \). So, we are in the case where \(\mathbf{\gamma} = 0 \). And we apply [2, section 4] to the block matrix \(\mathbf{A} \) to obtain:

\[\mathbf{A}^+ = \left(h^{-1} \mathbf{A}_2^+ t \mathbf{A}_2^+ \mathbf{a} - h^{-1} \mathbf{A}_2^+ t \mathbf{A}_2^+ t \mathbf{a} \mathbf{A}_2^+ \right), \]

where \(h := 1 + t \mathbf{v} \mathbf{v}^t \) with \(t \mathbf{v} := t \mathbf{A}_2^+ \mathbf{a} \) and the matrix \(\mathbf{A}_2^+ \) is defined as the matrix \(t (\mathbf{A}_2^+) = (t \mathbf{A}_2^+)^t \). Now, we have:

\[\mathbf{\hat{A}} \mathbf{A}^+ = \begin{pmatrix} h^{-1} t \mathbf{v} & t \mathbf{v}^t - h^{-1} t \mathbf{v}^t \mathbf{A}_2^+ t \mathbf{a}^t \\ h^{-1} \mathbf{A}_2 \mathbf{A}_2^+ t \mathbf{v} & \mathbf{A}_2 \mathbf{A}_2^+ t \mathbf{v}^t - h^{-1} \mathbf{A}_2 \mathbf{A}_2^+ t \mathbf{v}^t \end{pmatrix}. \]
Then, left multiplying the first row by

\(-\mathbf{R}v\)

Noticing that \(\tilde{a}\) recalling that \(\tilde{\mathbf{c}}\)

And the result is proved.

Conversely, the system of equations \(\tilde{\mathbf{U}}\mathbf{c} = \mathbf{0}\) is equivalent to \(c = ^{\mathsf{T}}v\tilde{\mathbf{c}}_2 = ^{\mathsf{T}}a\tilde{\mathbf{A}}_2\tilde{\mathbf{c}}_2\). Thus, we have to prove that matrix \(\tilde{\mathbf{R}} := \left(\begin{array}{c} ^{\mathsf{T}}v \\ I_k \end{array}\right)\) satisfies: \(\tilde{\mathbf{A}}\tilde{\mathbf{R}} = \tilde{\mathbf{R}}\).

We then, have:

\[
\tilde{\mathbf{A}}\tilde{\mathbf{R}} = \left(\begin{array}{c c c}
^{\mathsf{T}}v_h \mathbf{v} & ^{\mathsf{T}}v_h - ^{\mathsf{T}}v_h^{\mathsf{T}}\tilde{\mathbf{A}}_2^{\mathsf{T}}a^{\mathsf{T}}v \\
^{\mathsf{T}}v_h^{\mathsf{T}}\tilde{\mathbf{A}}_2^{\mathsf{T}}v & \tilde{\mathbf{A}}_2^{\mathsf{T}}\tilde{\mathbf{A}}_2 - h^{-1}\tilde{\mathbf{A}}_2^{\mathsf{T}}a^{\mathsf{T}}v
\end{array}\right) \left(\begin{array}{c} I_k \\
0_{k,k}
\end{array}\right).
\]

Noticing that \(v = ^{\mathsf{T}}\tilde{\mathbf{A}}_2a\) we have:

\[
h^{-1}^{\mathsf{T}}vv^{\mathsf{T}}v - h^{-1}^{\mathsf{T}}v\tilde{\mathbf{A}}_2^{\mathsf{T}}a^{\mathsf{T}}v = h^{-1}^{\mathsf{T}}vv^{\mathsf{T}}v + ^{\mathsf{T}}v - h^{-1}^{\mathsf{T}}v\mathbf{v}^{\mathsf{T}}v = ^{\mathsf{T}}v.
\]

Noticing that \(\tilde{\mathbf{A}}_2\tilde{\mathbf{A}}_2 = I_k\) we have:

\[
h^{-1}\tilde{\mathbf{A}}_2\tilde{\mathbf{A}}_2^{\mathsf{T}}v^{\mathsf{T}}v + \tilde{\mathbf{A}}_2\tilde{\mathbf{A}}_2 - h^{-1}\tilde{\mathbf{A}}_2\tilde{\mathbf{A}}_2^{\mathsf{T}}v^{\mathsf{T}}v = h^{-1}v^{\mathsf{T}}v + I_k - h^{-1}v^{\mathsf{T}}v = I_k.
\]

And the result is proved. \(\square\)

For \(i \in [m]\) we define:

\[
\mathcal{L}_i := \{\mathbf{x} \in \mathbb{R}^n : a_i \cdot \mathbf{x} \leq b_i\}, \quad (14)
\]

recalling that \(a_i\) denotes the \(i\)th row vector of matrix \(\mathbf{A}\).

Recall \(\mathcal{C}_i = (-\infty, b_i], \ i \in [m]\). And let us define the vector of the intervals \(\mathcal{C}_i, \ i \in [m]\) by \(\mathbf{c} := ^{\mathsf{T}}(\mathcal{C}_1, \ldots, \mathcal{C}_m)\). That is

\[
\mathbf{c} = \{c : -\infty \leq c \leq b\}. \quad (15)
\]

For \(i \in [m-n]\) we define \(B_i := \{j \in [m] : u_{i,j} \neq 0\}\) recalling that \(\mathbf{U} = [u_{i,j}]\) is defined by (10).
Theorem 2.1 For all \(i \in [m - n]\) we have:

\[0 \in u_{i, \cdot} \iff \cap_{j \in B_i} L_j \neq \emptyset. \]

Proof. Without loss of generality we can assume that \(i = m - n\). So, that:

\[u_{m-n,} = (0_{1,m-n-1}, 1, -a_{m-n}, A_2^{-1}). \]

Which could be rewritten as:

\[u_{m-n,} = (0_{1,m-n-1}, 1, -a_{m-n}, A_2^{-1}\tilde{\Pi}). \quad (16) \]

Where \(\tilde{\Pi} = [\tilde{\pi}_{i,j}] \in \text{Mat}(\mathbb{R}, n, n)\) such that: \(\tilde{\pi}_{i,j} = 1\) if \(i = j\) and \(u_{m-n,i} \neq 0\), and 0 otherwise.

Now, let us define \(\Pi = [\pi_{i,j}] \in \text{Mat}(\mathbb{R}, m, m)\) by:

\[\pi_{i,j} := \begin{cases} 0 & \text{if } i \neq j \text{ or } i = j \leq m - n - 1 \\ 1 & \text{if } i = j = m - n \\ \tilde{\pi}_{i,j} & \text{otherwise.} \end{cases} \]

By definition of \(\Pi\), we remark that:

\[\cap_{j \in B_i} L_j \neq \emptyset \iff \exists x, \Pi A x \leq \Pi b \\
\iff \exists x, \exists c \leq b, \Pi A x = \Pi c \\
\iff \exists c \leq b, (\Pi A) (\Pi A)^+ \Pi c = \Pi c \\
\iff \exists c \leq b, (\Pi A)(\Pi A)^+ (\Pi - \Pi)c = 0. \]

Let \(k := |B_{m-n}|\) be the number of elements of the set \(B_{m-n}\). By renumbering the lines of matrix \(A\) we can assume that

\[\Pi A = \begin{pmatrix} 0_{m-n-1,n} \\ a_{m-n,} \\ \Pi A_2 \end{pmatrix}, \]

with

\[\Pi = \begin{pmatrix} I_k & 0_{k,n-k} \\ 0_{n-k,k} & 0_{k,n-k} \end{pmatrix}. \]

Because of the expression of vector \(u_{m-n,}\) (see \((16)\)) we define \(X \in \text{Mat}(\mathbb{R}, n, n)\) as \(X := A_2^{-1}\tilde{\Pi}\). It is easy to check that \(X\) is a \(\{1, 2\}\)-inverse (see Definition 1.1) of the matrix \(\Pi A_2\) such that: \((\Pi A_2)X = \Pi\). The latter equation means that because \(\Pi A_2 = \begin{pmatrix} A_2 & 0_{n-k,n} \\ 0_{n-k,n} & 0_{n-k,n-k} \end{pmatrix}\) where \(A_2\) is a submatrix of \(A_2\), we have \(X = \begin{pmatrix} A_2^+ & 0_{k,n-k} \end{pmatrix}\) where \(A_2^+\) is the right inverse of \(A_2\).

Noticing matrix \(\Pi A\) has the form \(\begin{pmatrix} 0_{m-n-1,n} & Y \\ 0_{n-k,n} \end{pmatrix}\) with \(Y := \begin{pmatrix} a_{m-n,} \\ A_2 \end{pmatrix}\), its Moore-Penrose inverse is then the matrix \(\begin{pmatrix} 0_{m-n-1,m-n-1} & 0_{m-n-1,k+1} & 0_{m-n-1,n-k} \\ 0_{k+1,m-n-1} & YY^+ & 0_{k+1,n-k} \\ 0_{n-k,m-n-1} & 0_{n-k,k+1} & 0_{n-k,n-k} \end{pmatrix}\). Hence,

\[\Pi A (\Pi A)^+ = \begin{pmatrix} 0_{m-n-1,m-n-1} & 0_{m-n-1,k+1} & 0_{m-n-1,n-k} \\ 0_{k+1,m-n-1} & YY^+ & 0_{k+1,n-k} \\ 0_{n-k,m-n-1} & 0_{n-k,k+1} & 0_{n-k,n-k} \end{pmatrix}. \]
By definition of matrix Π we then have:

$$\Pi A(\Pi A)^+\Pi - \Pi = \begin{pmatrix} 0_{m-n-1, m-n-1} & 0_{m-n-1, k+1} & 0_{m-n-1, k} \\ 0_{k+1, m-n-1} & YY^+ - I_{k+1} & 0_{k+1, n-k} \\ 0_{n-k, m-n-1} & 0_{n-k, k+1} & 0_{n-k, n-k} \end{pmatrix}.$$

We can focus our attention on matrix $Y = \begin{pmatrix} a_{m-n-1} \\ A_2 \end{pmatrix}$ and apply Lemma 2.2 to obtain that the system of equations $(\Pi A(\Pi A)^+\Pi - \Pi)c = 0$ is equivalent to $u_{m-n}, c = 0$. Hence the result is now proved.

Theorem 2.2 The polyhedron $\mathcal{P}(A, b)$ is not empty iff

$$\mathfrak{B} : \forall k, 0 \in ^t kU \cdot c.$$

Proof. Using the characterization of non emptiness of polyhedron $\mathcal{P}(A, b)$ (see (3)) and Lemma 2.1 we have:

$$\mathcal{P}(A, b) \neq \emptyset \iff \exists \mathfrak{A} : \exists c \leq b, UC = 0,$$

recalling that $U = \begin{pmatrix} I_{m-n} & -R \\ 0_{n,m-n} & 0_{n,n} \end{pmatrix}$ with $R = A_1 A_2^{-1}$. Thus, we have to prove: $\mathfrak{A} \iff \mathfrak{B}$.

By application of Result 1.1 $\mathfrak{A} \Rightarrow \mathfrak{B}$.

Let us prove $\mathfrak{B} \Rightarrow \mathfrak{A}$ by absurd. Thus, assume \mathfrak{B} and $\overline{\mathfrak{A}} : \forall c \leq b, \exists i, u_i, c \neq 0$.

Let $c \leq b$ then by $\overline{\mathfrak{A}}$ there exists $i \in [m]$ such that $u_i, c \neq 0$. But, take $k = e^i$, then by \mathfrak{B} we have: $0 \in ^t e^i U \cdot c = u_i \cdot c$ which means that $\exists c^1 \leq b$ such that $u_i, c^1 = 0$ (see Result 1.1). Let us define $C := [-\infty, b_1] \times \cdots \times [-\infty, b_m]$.

The vector c^1 is $\leq b$ and such that $\exists i \in [m]$ with $u_i, c^1 \neq 0$ (by $\overline{\mathfrak{A}}$). But by \mathfrak{B} there exists c^2 such that $u_i, c^2 = 0$. So, we construct a $[m] \times C$-valued series

$$\sigma := \{(i_0 = i, e^0 = ^t c), (i_1, e^1), (i_2, e^2), (i_3, e^3), \ldots \}$$

which has the following property $\forall n \geq 0$:

(p). $u_{i_n}, c^n \neq 0$ and $u_{i_n}, c^{n+1} = 0$.

The set $[m] \times C$ is the cartesian product of compact spaces thus it is a compact space. Hence the sequence σ admits a subsequence $\varphi. \sigma := \{(i_{\varphi(k)}, e^k(k)), k \in \mathbb{N}\}$ with $\varphi : \mathbb{N} \rightarrow \mathbb{N}$ strictly increasing and such that $\lim_{k \rightarrow \infty} \varphi(k) = \infty$. And the subsequence $\varphi. \sigma$ admits a limit $(i, \ell) := \lim_{k \rightarrow \infty} (i_{\varphi(k)}, e^k(k))$. The point (i, ℓ) is an element of $[m] \times C$ which must satisfy property (p) by construction. Thus, we obtain a contradiction. And the result is now proved. □
Remark 2.1 Due to the structure of the matrix \(U \) we can restrict our attention to all \(m - n \) dimensional vectors \(k' \) such that

\[
0 \in \langle k' \rangle G \cdot \mathbf{e}, \tag{17}
\]

where matrix \(G \) is:

\[
G := \left(\begin{array}{cc} I_{m-n} & -R \end{array} \right). \tag{18}
\]

The main problem is then to enumerate only the relevant vectors \(k' \) such that \(0 \in \langle k' \rangle G \). The following result adresses this problem.

Let \(\mathcal{B} := \{ e^i \} \) be the canonical basis of \(\mathbb{R}^{m-n} \). Let us define

\[
k'(j, i, i') := -r'_{i',j} e^i + r_{ij} e^{i'}, \tag{19}
\]

for all \(j \in [n], i \in [m - n - 1] \) and \(i' = i + 1 \) to \(m - n \).

Let us define

\[
\ker'(R) := \{ k' : \langle k' \rangle R = \langle 0 \rangle \}. \tag{20}
\]

The set \(\mathcal{K} \) denotes a basis of \(\ker'(R) \) if \(\ker'(R) \neq \{ 0 \} \) and \(\{ 0 \} \) otherwise.

Let us define \(b_1 = \left(\begin{array}{c} b_1 \\ \vdots \\ b_{m-n} \end{array} \right) \) and \(b_2 = \left(\begin{array}{c} \vdots \\ b_{m-n+1} \end{array} \right) \). Let us denote \((b_1)\perp \) a basis of the set \(\{ k' : \langle k' \rangle b_1 = 0 \} \). And let us denote \((Rb_2)\perp \) a basis of the set \(\{ k' : \langle k' \rangle (Rb_2) = 0 \} \).

Theorem 2.3 If for all \(i \in [m - n] \):

\[
0 \in \langle e^i \rangle G \cdot \mathbf{e},
\]

and

\[
\forall k' \in \mathcal{K}, \: 0 \in \langle k' \rangle G \cdot \mathbf{e},
\]

and

\[
\forall k' \in (b_1)\perp, \: 0 \in \langle k' \rangle G \cdot \mathbf{e},
\]

and

\[
\forall k' \in (Rb_2)\perp, \: 0 \in \langle k' \rangle G \cdot \mathbf{e},
\]

and for all \(j \in [n], i \in [m - n - 1] \) and \(i' = i + 1 \) to \(m - n \):

\[
0 \in \langle k'(j, i, i') \rangle G \cdot \mathbf{e}.
\]

Then

\[
\forall k', 0 \in \langle k' \rangle G \cdot \mathbf{e}.
\]

Proof. First, let us remark that by definition of \(\mathbf{e} \) (see (15)) we have:

\[
\langle k' \rangle G \cdot \mathbf{e} = \begin{cases}
[-\infty, \langle k' \rangle Gb] & \text{if } \langle k' \rangle G \geq \langle 0 \rangle \\
\langle k' \rangle Gb, +\infty & \text{if } \langle k' \rangle G \leq \langle 0 \rangle \\
[-\infty, +\infty] & \text{otherwise}.
\end{cases}
\]
Noticing that \(t'k'G \leq t'0 \iff -t'k'G \geq t'0 \) we can focus our attention on the cone:

\[\mathcal{G} := \{ k' : t'k'G \geq t'0 \} \]

If \(\mathcal{G} = \{ 0 \} \) then the result is obviously true. Thus, let us assume that the cone \(\mathcal{G} \neq \{ 0 \} \). In this case we have:

\[\forall k' \in \mathcal{G}, 0 \in t'k'G \cdot \iff 0 \in \cap k' \in \mathcal{G} (\left[\begin{array}{c} -\infty \\ t'k'Gb \end{array} \right]) \iff \forall k' \in \mathcal{G}, \ t'k'Gb \geq 0 \]

The last equivalence is then equivalent to \(\min_{k' \in \mathcal{G}} (t'k'Gb) \geq 0 \).

Now, let us remark that:

\[f(k') := t'k'Gb = t'k'b_1 - t'k'Rb_2 \]

Due to the structure of matrix \(G \) the inequality \(t'k'G \geq t'0 \) implies \(k' \geq 0 \).

The different possibilities for the choice of vector \(k' \in \mathcal{G} \) in the function \(f \) are as follows:

1. \(k' = e^i, i \in [m - n] \). In such case \(f = g_i, b \).
2. \(k' \in K \) or \(k' \in (Rb_2)\perp \). In this case \(f = t'k'b_1 \).
3. \(k' \in (b_1)\perp \). And then, \(f = -t'k'Rb_2 \).
4. Finally, we can eliminate variables \(b_{m-n+j}, j \in [n] \), between the rows \(i \) and \(i' \) of matrix \(R \) for \(i \in [m - n - 1], i' = i + 1, \ldots, m - n \). In this case \(f = t'k'(j, i, i')Gb \).

Hence, the result. \(\square \)

Based on the previous results definitions and notations we provide the following algorithm for testing if a polyhedron is empty or not.

Algorithm

- **Inputs:** \(A \in \text{Mat}(\mathbb{R}, m, n) \) satisfying ASSUMPTIONS (A) and (B), and vector \(b \in \mathbb{R}^n \)
- **Output:** answer to the question “is \(\mathcal{P}(A, b) := \{ x \in \mathbb{R}^n : Ax \leq b \} \) empty?”

0. Put matrix \(A \) in the form \(\begin{pmatrix} A_1 \\ A_2 \end{pmatrix} \) with \(A_2 \) invertible.

1. Compute \(A_2^{-1} \).
2. Compute \(G := (I_{m-n} - R) \), with \(R := A_1A_2^{-1} \).
3. Compute \((b_1)^\perp\) a basis of the set \(\{k': \, ^t k' b_1 = 0\}\).
\[
(b_1)^\perp := ((b_1)^\perp \cup (-b_1)^\perp) \cap \mathcal{G}.
\]

4. Compute \((Rb_2)^\perp\) a basis of the set \(\{k': \, ^t k'(Rb_2) = 0\}\).
\[
(Rb_2)^\perp := ((Rb_2)^\perp \cup (-Rb_2)^\perp) \cap \mathcal{G}.
\]

5. Compute \(\mathcal{K}\) a basis of \(\ker(R)\).
\[
\mathcal{K}_+ := (\mathcal{K} \cup (-\mathcal{K})) \cap \mathcal{G}.
\]

6. For \(k' \in (b_1)^\perp \cup (Rb_2)^\perp \cup \mathcal{K}_+\)
 - if \(0 \notin \, ^t k' \mathcal{G} \cdot e\) exit: polyhedron \(\mathcal{P}(A, b) = \emptyset\)
 EndFor

7. For \(i = 1\) to \(m - n\)
 - if \(0 \notin \, ^te' \mathcal{G} \cdot e\) exit: polyhedron \(\mathcal{P}(A, b) = \emptyset\)
 EndFor

8. For \(j = 1\) to \(n\)
 - For \(i = 1\) to \(m - n\)
 * For \(i' = i + 1\) to \(m - n\)
 \(\cdot k' := -r_{i',j}e' + r_{i,j}e''\)
 \(\cdot\) if \(0 \notin \, ^t k' \mathcal{G} \cdot e\) exit: polyhedron \(\mathcal{P}(A, b) = \emptyset\)
 * EndFor
 - EndFor

EndFor

3 Discussion about ASSUMPTIONS (A) and (B)

3.1 ASSUMPTION (A)

Independently of the definitions of a polyhedron (see subsection 3.2), if there exists a row \(a_{i,.} = \, ^t 0\) then the set \(\mathcal{L}_i\) (see (14)) is thus defined as
\[
\mathcal{L}_i = \{x \in \mathbb{R}^n : \, ^t 0 x \leq b_i\}.
\]

Then if \(b_i < 0\) \(\mathcal{L}_i = \emptyset\) and thus the polyhedron \(\mathcal{P}(A, b) = \emptyset\). Otherwise the inequality \(\, ^t 0 x \leq b_i\) can be removed.
3.2 ASSUMPTION (B)

In this subsection we discuss several definitions of polyhedron which appear in linear programming. We consider a matrix \(\tilde{A} \in \text{Mat}(\mathbb{R}, \tilde{m}, \tilde{n}) \) whose rank is \(\text{rk}(\tilde{A}) = r \). We assume that \(r \neq \tilde{n} \). And we consider a vector \(\tilde{b} \in \mathbb{R}^{\tilde{m}} \).

- If the polyhedron is defined as the following set:
 \[
P(\tilde{A}, \tilde{b}) := \{ x \in \mathbb{R}^\tilde{n} : \tilde{A}x \leq \tilde{b}, x \geq 0 \},
 \]
 then, we have:
 \[
 \tilde{A}x \leq \tilde{b}, x \geq 0 \iff Ax \leq b,
 \]
 with: \(A := \begin{pmatrix} \tilde{A} & -I_{\tilde{n}} \end{pmatrix} \in \text{Mat}(\mathbb{R}, \tilde{m} + \tilde{n}, \tilde{n}) \) and \(b := \begin{pmatrix} \tilde{b} \\ 0 \end{pmatrix} \in \mathbb{R}^{\tilde{m} + \tilde{n}} \). It is clear that \(m := \tilde{m} + \tilde{n} > n := \tilde{n} \) and that \(A \) has full column-rank (equal to \(n \)).

- If the polyhedron is defined as the following set:
 \[
P(\tilde{A}, \tilde{b}) := \{ x \in \mathbb{R}^\tilde{n} : \tilde{A}x = \tilde{b}, x \geq 0 \},
 \]
 then, we have:
 \[
 \tilde{A}x = \tilde{b}, x \geq 0 \iff Ax \leq b,
 \]
 with: \(A := \begin{pmatrix} \tilde{A} & -\tilde{A} \\ -I_{\tilde{n}} \end{pmatrix} \in \text{Mat}(\mathbb{R}, 2 \tilde{m} + \tilde{n}, \tilde{n}) \) and \(b := \begin{pmatrix} \tilde{b} \\ -\tilde{b} \\ 0 \end{pmatrix} \in \mathbb{R}^{2 \tilde{m} + \tilde{n}} \). Once again, it is clear that \(m := 2 \tilde{m} + \tilde{n} > n := \tilde{n} \) and that \(A \) has full column-rank (equal to \(n \)).

- Finally, if a polyhedron is defined as the set
 \[
P(\tilde{A}, \tilde{b}) := \{ x \in \mathbb{R}^\tilde{n} : \tilde{A}x \leq \tilde{b} \}.
 \]
Writing every element \(x \) of \(\mathbb{R}^\tilde{n} \) as: \(x = x_+ - x_- \) with \(x_+, x_- \geq 0 \) one has:

\[
\tilde{A}x \leq \tilde{b} \iff \begin{cases} \tilde{A}(x_+ - x_-) \leq \tilde{b} \\ x_+, x_- \geq 0 \end{cases} \equiv \begin{pmatrix} \tilde{A} & -\tilde{A} \\ -I_{\tilde{n}} & 0_{\tilde{n}, \tilde{n}} \end{pmatrix} \begin{pmatrix} x_+ \\ 0 \end{pmatrix} \leq \begin{pmatrix} \tilde{b} \\ 0 \end{pmatrix}.
\]

Let \(m := \tilde{m} + 2 \tilde{n} \) and \(n := 2 \tilde{n} \). Then, the matrix \(A := \begin{pmatrix} \tilde{A} & -\tilde{A} \\ -I_{\tilde{n}} & 0_{\tilde{n}, \tilde{n}} \end{pmatrix} \in \text{Mat}(\mathbb{R}, m, n) \) such that its submatrix \(A_2 := \begin{pmatrix} -I_{\tilde{n}} & 0_{\tilde{n}, \tilde{n}} \\ 0_{\tilde{n}, \tilde{n}} & -I_{\tilde{n}} \end{pmatrix} \) is clearly invertible. And thus, \(A \) has full column rank \(n \) with \(m > n \).
References

[1] S. Chubanov. A Polynomial Projection Algorithm For Linear Feasibility Problems. *Math. Program.*, 153, 2015. (687-713).

[2] T. N. E. Greville. Some Applications of the Pseudoinverse of a Matrix. *SIAM Review*, 2(1), 1960. (15-22).

[3] C-h Hung and T. L. Markham. The moore-penrose inverse of a partitioned matrix \(M = \begin{pmatrix} A & D \\ B & C \end{pmatrix} \). *Lin. Alg. Applic.*, 11, 1975. (73-86).

[4] M. James. The Generalized Inverse. *Math. Gazette*, 62(420), 1978. (109-114).

[5] N. K. Karmarkar. A New Polynomial-Time Algorithm For Linear Programming. *Combinatorica*, 4, 1984. (373-395).

[6] L. G. Khachiyan. A Polynomial Algorithm in Linear Programming (in russian). *Dokl. Akad. Nauk SSSR*, 244, 1979. (1093-1096).

[7] E. H. Moore. On the Reciprocal of the General Algebraic Matrix. *Bull. Amer. Math. Soc.*, 26(9), 1920. (394-395).

[8] R. Moore. *Method and Applications of Interval Analysis*. SIAM Publ., 1979.

[9] A. Neumaier. *Interval Methods for Systems of Equations*. Cambridge University Press, 1990.

[10] R. Penrose. A Generalized Inverse for Matrices. *Proc. Camb. Phil. Soc.*, 51(3), 1955. (406-413).