Lowered testosterone in male obesity: mechanisms, morbidity and management

Mark Ng Tang Fui1,2, Philippe Dupuis1,2, Mathis Grossmann1,2

With increasing modernization and urbanization of Asia, much of the future focus of the obesity epidemic will be in the Asian region. Low testosterone levels are frequently encountered in obese men who do not otherwise have a recognizable hypothalamic-pituitary-testicular (HPT) axis pathology. Moderate obesity predominantly decreases total testosterone due to insulin resistance-associated reductions in sex hormone binding globulin. More severe obesity is additionally associated with reductions in free testosterone levels due to suppression of the HPT axis. Low testosterone by itself leads to increasing adiposity, creating a self-perpetuating cycle of metabolic complications. Obesity-associated hypotestosteronemia is a functional, non-permanent state, which can be reversible, but this requires substantial weight loss. While testosterone treatment can lead to moderate reductions in fat mass, obesity by itself, in the absence of symptomatic androgen deficiency, is not an established indication for testosterone therapy. Testosterone therapy may lead to a worsening of untreated sleep apnea and compromise fertility. Whether testosterone therapy augments diet- and exercise-induced weight loss requires evaluation in adequately designed randomized controlled clinical trials.

Asian Journal of Andrology (2014) 16, 223–231; doi: 10.4103/1008-682X.122365; published online: 20 January 2014

Keywords: androgens; hypogonadism; obesity; testosterone; weight loss

PREVALENCE AND CLINICAL SIGNIFICANCE OF OBESITY

Obesity, a worldwide epidemic, is on the rise. Populous developing Asian nations such as China and India have seen increases in the prevalence of overweight (body mass index (BMI) 25–29.9 kg m⁻²) and obesity (BMI ≥ 30 kg m⁻²) in adult men by more than 25% in the last 8 years according to WHO estimates (Table 1). In developed countries including Australia, over 75% of the adult male population is already overweight or obese. The number of overweight people is expected to increase from 937 million in 2005 to 1.35 billion in 2030. Similarly the number of obese people is projected to increase from 396 million in 2005 to 573 million in 2030. By 2030, China alone is predicted to have more overweight men and women than the traditional market economies combined.

In addition to posing significant societal and environmental challenges, obesity is associated with a multitude of adverse health outcomes including cardiovascular disease, sleep apnea, osteoarthritis, increased risk of certain cancers, and in men, lowered testosterone levels. A recent systematic review and meta-analysis including 2.8 million people and 270,000 deaths reported increased overall mortality only in those with extreme obesity (BMI > 35 kg m⁻²); hazard ratio (HR) 1.29, 95% confidence interval (CI) 1.18–1.41), but not in grade 1 obesity (BMI 30–34.9 kg m⁻², HR 0.95, 95% CI 0.88–1.01) compared to their non-obese counterparts. However, this meta-analysis has been subsequently criticized in a series of letters and commentaries. For example, the adverse effect of obesity may have been underestimated because the lean comparison group (BMI 18–25 kg m⁻²) included frail and elderly with serious illness and weight loss due to their disease. Therefore, the “obesity paradox” remains a hotly debated, but currently still unresolved issue. In addition, obesity, as measured by BMI, is a relatively crude indicator of metabolic risk with waist circumference providing a better indicator of all-cause (HR 1.19 vs 1.10 per standard deviation) and cardiovascular mortality (HR 1.33 vs 1.23 per standard deviation) compared to BMI. This is because excess weight stored as visceral adipose tissue (VAT) is more closely linked to cardiovascular outcomes than subcutaneous adipose tissue (SAT). Consistent with this, there is evidence that some individuals may be metabolically healthy despite a BMI in the obese range (MHO), because they have lower amounts of VAT. Conversely, others may present with a cluster of obesity-associated risk factors for diabetes and cardiovascular disease despite a BMI in the normal range, the so-called “metabolically obese but normal weight” (MONW). Indeed, a recent prospective cohort study from Korea has shown that MONW individuals have a higher mortality than MHO.

The capacity to store excess energy in SAT vs VAT may be genetically regulated, providing a potential mechanistic explanation for the variability in metabolic risk at a given BMI. Interestingly, diacylglycerol O-acyltransferase 2 (DGAT2), mechanistically implicated in this differential storage, is regulated by dihydrotestosterone, suggesting a potential role for androgens to influence the genetic predisposition to either the MHO or MONW phenotype.

Unfortunately, obesity is a chronic condition that is difficult to treat. Public health measures, lifestyle interventions and pharmacotherapy adopted thus far have neither registered a marked impact on the prevalence of obesity, nor markedly reduced body weight-related obesity...
is uncommonly associated with marked reductions in testosterone levels. This may be because age-related testicular dysfunction is, at least in part, compensated for by an age-associated increase in pituitary LH secretion. However, because obesity blunts this LH rise, obesity leads to hypothalamic-pituitary suppression irrespective of age which cannot be compensated for by physiological mechanisms.

OBESITY AND LOW TESTOSTERONE: POTENTIAL MECHANISMS AND BIOLOGICAL PLAUSIBILITY

Overweight and moderate obesity is predominantly associated with reductions in total testosterone; whereas, free testosterone levels remain within the reference range, especially in younger men. Reductions in total testosterone levels are largely a consequence of reductions in sex hormone binding globulin (SHBG) due to obesity-associated hyperinsulinemia. Indeed, although controversial, measurement of free testosterone levels may provide a more accurate assessment of androgen status than the (usually preferred) measurement of total testosterone in situations where SHBG levels are outside the reference range. However, reference ranges for free testosterone levels are not well established, especially in older men whose SHBG increases with age. Some have argued that the measurement of free testosterone levels merely reintroduces age in a covert form.

More marked obesity however is associated with an unequivocal reduction of free testosterone levels, where LH and follicle-stimulating hormone (FSH) levels are usually low or inappropriately normal, suggesting that the dominant suppression occurs at the hypothalamic-pituitary level. This may be because adipose tissue, especially when in the inflamed, insulin-resistant state, expresses aromatase which converts testosterone to estradiol (E\(_2\)). Adipose E\(_2\), in turn may feedback negatively to decrease pituitary gonadotropin secretion; although, partly due to assay limitations, confirmation of increased circulatory E\(_2\) concentrations is often elusive. In addition, local, tissue-specific increases of E\(_2\) may not be reflected in circulatory concentrations. However, this adipose tissue-aromatase hypothesis is not well supported by other data. Clinical studies showing that treatment of obese men with aromatase inhibitors can increase testosterone levels and restore fertility do not necessarily support the pathophysiological importance of this E\(_2\)-mediated hypothalamic-pituitary-testicular (HPT) axis suppression, because gonadotropins and testosterone levels also rise with this treatment. Interestingly, more recent studies suggest that, diabetic obesity is associated with decreases in circulatory E\(_2\). Moreover, there is evidence from the EMAS that even in nondiabetic obese men, E\(_2\) is low and correlated with low testosterone levels. In addition to E\(_2\), increased visceral fat also releases increased amounts of pro-inflammatory cytokines, insulin and leptin; all of which may inhibit the activity of the HPT axis at multiple levels.

Evidence that obesity leads to lower testosterone

Multiple observational studies in community-dwelling men suggest that obesity leads to decreased testosterone. In the prospective Massachusetts Male Aging Study (MMAS), moving from a non-obese to an obese state resulted in a decline of testosterone levels comparable to that of advancing 10 years in age. Similar findings have been reported in cohort studies of men from Europe and Australia.

Finally, as discussed in more detail in section 5, weight loss, whether by diet or surgery, increases testosterone levels proportional to the amount of weight lost.

Evidence that low testosterone promotes obesity

While the above discussed studies suggest that obesity leads to reduced testosterone, there is also ample evidence, both from experimental and
human studies, to suggest the reverse. Evidence from studies in mice with genetic deletions of the androgen receptor (AR) (AR knockout (ARKO)) is discussed by Rana et al. in more detail elsewhere in this issue. Briefly, ARKO mice develop obesity with increased adipocyte numbers and visceral fat mass suggesting that fat is androgen-responsive. A study of mice with a targeted deletion of the AR in adipose tissue showed that compared to controls, higher visceral fat develops only in the setting of a high fat diet, but not with regular chow, suggesting that low testosterone may augment the effects of a hypercaloric diet.

In support of this, transgenic mice with AR overexpression show reduction in adipose tissue volume due to reduction in adipocyte area and adipocyte size. Primate experiments in Japanese macaques show that androgen depletion via castration alters adipocytes size and appearance to an insulin-resistant phenotype which can be rescued by androgen replacement. Consistent with animal experiments linking low testosterone to increases in fat mass are in vitro studies showing that testosterone promotes commitment of pluripotent rodent stem cells to the myogenic lineage, but inhibits their differentiation into adipocytes via an androgen-receptor mediated pathway. In human male ex vivo adipose tissue, testosterone decreased adipocyte differentiation by 50%. Testosterone enhances catecholamine-induced lipolysis in vitro and reduces lipoprotein lipase activity and triglyceride uptake in human abdominal adipose tissue in vivo. Moreover, in men with prostate cancer receiving 12 months of androgen deprivation therapy, fat mass increased by 3.4 kg and abdominal VAT by 22%, with the majority of these changes established within 6 months. Experimental induction of hypogonadism in healthy young men with gonadotropin-releasing hormone analogue treatment increased fat mass within 10 weeks, suggesting that severe sex steroid deficiency can increase fat mass rapidly.

While evidence reviewed so far suggests that relatively extreme manipulations of testosterone are required to effect changes in fat mass, more moderate variations on testosterone as seen in the majority of men can also impact on fat mass. For example, in a longitudinal study of community-dwelling Japanese-American men, lower baseline testosterone independently predicted increase in intra-abdominal fat after 7.5 years of follow-up. Finally, confirmation that testosterone treatment reduces fat mass has been verified in multiple randomized controlled trials (RCT) (see below).

Low testosterone and obesity: a self-perpetuating cycle

In summary, the current evidence suggests a bidirectional relationship between testosterone and obesity (Figure 1) in men initiating a self-perpetuating cycle, which may have treatment implications (see sections "TREATMENT OF OBESITY LEADING TO INCREASED TESTOSTERONE" and "INTERVENTION STUDIES LINKING EXOGENOUS TESTOSTERONE TO REDUCTION IN BODY FAT MASS" below). On the one hand, increasing body fat suppresses the HPT axis by multiple mechanisms via increased secretion of pro-inflammatory cytokines, insulin resistance and diabetes; while on the other hand low testosterone promotes further accumulation of total and visceral fat mass, thereby exacerbating the gonadotropin inhibition. Finally there is evidence, reviewed elsewhere, that obesity-associated comorbidities including obstructive sleep apnea and hypercortisolism may also suppress the HPT axis.

In addition to lowered circulating serum total testosterone levels, obese individuals may have a propensity to lowered androgens in the local fat milieu. Belanger, et al. found a significant negative correlation of omental testosterone levels with waist circumference ($r = -0.59, P < 0.002$). Increased activity of the DHT inactivating enzyme 3α/β-ketosteroid reductase (3α/β-HSD) in obese versus non-obese male omental fat biopsies coupled with rat studies showing increased expression of AR in VAT as opposed to SAT suggests that androgens may play a more significant role in VAT than SAT. Indeed, men undergoing androgen depletion for prostate cancer show more marked increases in visceral compared to subcutaneous fat following treatment. However, RCT studies of testosterone replacement have largely failed to show benefit of selective VAT reduction following testosterone treatment (see section "INTERVENTION STUDIES LINKING EXOGENOUS TESTOSTERONE TO REDUCTION IN BODY FAT MASS" below). In contrast, relatively little is known about the role of androgens in brown fat, since its potential role in energy expenditure in humans has been recognized only more recently. The recently-discovered hormone irisin, derived from muscle, induces brown fat-like properties in rodent white fat and its overexpression led to reduced weight and improved glucose homeostasis. Whether the action of androgens on fat is mediated in part via irisin is yet to be determined; although, molecular experiments suggest that androgens can act via the PPARγ-pathway which is implicated in the differentiation of precursor fat cells to the energy-consuming phenotype.

LOW TESTOSTERONE AND OBESITY BEYOND TESTOSTERONE-FAT INTERACTIONS

Because of its association with sarcopenia, low testosterone may compendium the effect of increasing fat mass by making it more difficult for obese men to lose weight via exercise. Conversely, obesity in itself contributes to loss of muscle mass and function, thus escalating the effects of sarcopenia on mobility disability and functional impairment, a concept known as ‘sarcopenic obesity’. Indeed, pro-inflammatory cytokines released by adipose tissue may contribute to loss of muscle mass and function, leading to inactivity and further weight gain in a vicious cycle. Sarcomeric obesity, a phenotype recapitulated in men receiving ADT for prostate cancer, may not only be associated with functional limitations, but also aggravate the metabolic risks of obesity; the association of low testosterone with sarcopenia may be an additional mechanism linking low testosterone to insulin resistance beyond its relationship to increased visceral fat.

An important concern related to otherwise desirable weight loss induced by hypocaloric dieting, especially in older obese men who are already at risk of sarcopenia, is the concomitant loss of muscle mass causing altered function of muscle and physical functional decline. Although this accelerated loss of muscle mass can be attenuated by exercise, adherence to an exercise program is often difficult to achieve. Whether testosterone treatment will attenuate
the catabolic effects of diet restriction on loss of muscle mass and function, requires further study. Consistent with this hypothesis is observational evidence associating higher endogenous testosterone with reduced loss of muscle mass and crude measures of muscle function in men losing weight.54

In addition to muscle effects, reduced testosterone levels may also lead to obesity via its effects on motivation to exercise. In a study of male mice lacking the androgen-receptor, spontaneous activity was reduced compared to wildtype mice,55 while another animal study reported a positive association between testosterone intake and amount of time spent on a running wheel.60 In a small RCT, men receiving testosterone undecanoate showed reduced fatigue although the effect of testosterone on exercise motivation and tolerance is to be determined.61

TREATMENT OF OBESITY LEADING TO INCREASED TESTOSTERONE

Observational evidence that weight changes are inversely associated with testosterone levels in community dwelling men have recently been reported in a longitudinal analysis of the EMAS cohort.56 Minor weight loss (<15%) over 4.4 years was associated with modest increases (+2 nmol l−1) in total testosterone, probably as a consequence of increases in SHBG; whereas, free testosterone did not change. However, a more substantial weight loss of >15% led not only to a more marked increase (+5.75 nmol l−1) of total testosterone, but was also associated with significant increase in free testosterone (+51.78 pmol l−1), likely because of HPT activation, evidenced by a significant rise in LH (+2 U l−1). This data suggests that while testosterone levels remain relatively stable with small fluctuations in weight, genuine reactivation of the HPT axis in obese men requires more substantial weight-loss, which may be difficult to achieve with lifestyle changes alone.

A number of intervention studies have confirmed that both diet- and surgically-induced weight losses are associated with increased testosterone, with the rise in testosterone generally proportional to the amount of weight lost (Figure 2). Table 2 lists 15 published trials that have assessed the effects of weight loss interventions on testosterone.62–70 The majority of the trials was single-arm cohort studies and included small numbers of subjects. Follow-up in the lifestyle trials was generally shorter than in the surgical trials. Overall, diet led to modest weight loss (6%–17%) with modest increases in testosterone (2.9–5.1 nmol l−1). In comparison to lifestyle, surgical intervention resulted in loss of weight of 28%–44% and increase of testosterone from 7.8 to 12.5 nmol l−1. While these studies were uncontrolled, a 32-week RCT comparing a very low calorie diet (VLCD) against no intervention reported a 14% weight loss and a 3.0 nmol l−1 increase in testosterone.71 Another small RCT comparing lifestyle modification with gastric bypass found that after prolonged follow-up of 2 years, bariatric surgery led to greater weight loss and greater testosterone increments compared to lifestyle.62 However, not all studies were positive, with a number of studies (Table 2) showing no increase in testosterone, possibly due to small reductions in weight (4%–8%)62,74 or modest baseline obesity in one study (BMI 31 kg m−2).75

A recent systematic review and meta-analysis of the effect of weight loss on testosterone reported that lifestyle changes achieve a mean weight reduction of 9.8% vs 32% for surgical intervention.76 Overall, diet therapy led to an increase in total testosterone of 2.87 vs 8.73 nmol l−1 in the surgical studies. While younger age and higher baseline BMI predicted greater gains in testosterone, in a stepwise logistic regression analysis, only the change in BMI was associated with

Table 2: Effect of weight loss on testosterone: clinical trials

Study, year, design	N	Age (years)	BMI	Baseline T (nmol l−1)	Therapy	Weeks	Weight loss (%)	T increase (nmol l−1)
Reis et al.62 2010, RCT	20	37	56	11.8	Surgery vs lifestyle	104	44	12.5
Hammoud et al.53 2009, case-control	22	50	45	11.8	Surgery	104	36 of BMI	10.8
Omana et al.64 2009, cohort	10	48	48	10.6	Surgery	52	31	10.5
Pellitero et al.65 2012, cohort	33	41	50	8.6	Surgery	52	37	10.3
Globerman et al.66 2005, cohort	17	38	44	13.4	Surgery	52	28	7.8
Pritchard et al.67 1999, cohort	14	21	26	12.3	Exercise	13	6	5.1
Facchiano et al.68 2013, cohort	20	41	44	8.1	Surgery	26	20 of BMI	5.1
Niskanen et al.69 2004, cohort	58	46	36	12	VLCD	9	14	5.0
Stanik et al.70 1981, cohort	24	30-63	ND	13.9	VLCD	8	17	4.7
Kaukua et al.71 2003, RCT	38	46	39	11.1	VLCD vs control	32	14	3.0
Khoo et al.72 (non-DM) 2010, case-control	25	44	36	28	VLCD	8	11	3.0
Vermeulen et al.73 1996, case-control	50	25-62	41	14.6	PSMF	6	12	2.9
Khoo et al.74 (DM) 2010, case-control	19	58	35	10	VLCD	8	8	1.2, n.s.
Khoo et al.74 2011, RCT	19	58	35	11.7	LCD	8	8	3.1, n.s.
Leenen et al.75 1994, cohort	37	40	31	12.7	LCD	13	14	0.6, n.s.

BMI: body mass index, (kg m−2); DM: diabetes mellitus; HP: high protein; N: number; n.s.: not significant; PSMF: protein-sparing modified fast; RCT: randomized controlled trial; T: testosterone; VLCD: very low calorie diet; ND: not disclosed
change in testosterone. This suggests that men, regardless of obesity level, can benefit from the effect of weight loss.

INTERVENTION STUDIES LINKING EXOGENUOUS TESTOSTERONE TO REDUCTION IN BODY FAT MASS

Testosterone replacement in men with authentic, pathologically-based hypogonadism reduces fat mass by 10%–15%.\(^{77,78}\) In a meta-analysis of RCTs of older men without confirmed hypogonadism (mean baseline serum testosterone 10.9 nmol l\(^{-1}\), BMI 29 kg m\(^{-2}\)), testosterone treatment reduced total fat mass by 1.6 kg (95% CI 0.6–2.5), corresponding to a relative reduction of fat mass of 6.2% (95% CI 3.3–9.2).\(^{79}\) While these effects are relatively modest, more recent RCTs using long-acting testosterone undecanoate formulations in men with higher baseline BMI have found more pronounced effects on total fat mass, ranging from 2.5 to 6 kg.\(^{80–83}\) Uncontrolled studies recently reported larger benefits with progressive weight loss of up to 13% after 5 years of continuous testosterone undecanoate therapy in unselected patients.\(^{84}\)

While RCTs consistently show that testosterone treatment reduces total body fat mass, effects of testosterone treatment on regional adipose tissue distribution have been less well-studied (Table 3).\(^{85–103}\) RCTs assessing effects of testosterone therapy on VAT have shown inconsistent results with one showing a reduction\(^{89}\) and others no change.\(^{90,93}\) These inconsistencies may be due to small trial size,\(^{96,100}\) use of oral testosterone therapy (which did not raise serum testosterone levels),\(^{94}\) or imprecise methodology to quantify VAT such as dual energy X-ray absorptiometry\(^{89}\) or ultrasound.\(^{90}\) Given that VAT is more closely related to insulin resistance and cardiovascular risk than SAT, inconsistent effect of testosterone on VAT may be one possible explanation as to why testosterone treatment, despite reduction of fat mass, has not consistently led to improvements in measures of glucose metabolism.\(^{97}\) Effects of testosterone therapy on glucose metabolism are discussed in more detail by Allan elsewhere in this issue.

CLINICAL CONSEQUENCES OF LOW TESTOSTERONE IN OBSESE MEN AND APPROACH TO THERAPY

While many obese men have low testosterone levels and nonspecific symptoms, it is unclear whether such symptoms are causally related to the hypotestosteronemia. In a study of 181 men with a low testosterone (<10.4 nmol l\(^{-1}\)), less than half of men (n = 70) reported symptoms consistent with androgen deficiency and these men had higher BMIs than asymptomatic men.\(^{105}\) A cross-sectional study of older overweight men found that loss of libido occurred at a testosterone level <15 nmol l\(^{-1}\), poor concentration at <10 nmol l\(^{-1}\) and erectile dysfunction at <8 nmol l\(^{-1}\). However, these thresholds confer neither sensitivity nor specificity for these symptoms, and a high specificity (> 90%) was achieved only when testosterone levels declined to <3.7–6.3 nmol l\(^{-1}\).\(^{106}\) In EMAS, while certain end-organ deficits compatible with androgen deficiency, such as reductions in muscle mass, hemoglobin and bone density; occurred more commonly in symptomatic men with a total testosterone of <12 nmol l\(^{-1}\), increased insulin resistance and the metabolic syndrome could only be demonstrated in men with testosterone <8 nmol l\(^{-1}\).\(^{107}\) Low testosterone either directly or via its metabolite E\(_1\) is a risk factor for osteoporotic fractures.\(^{107}\) While this may be counterbalanced by the protective effects of obesity on the skeleton,\(^{108}\) recent evidence suggests that increased VAT may have adverse consequences for skeletal health.\(^{109}\)

One practical issue for the clinician is when and how to evaluate obese men with lowered testosterone for underlying intrinsic HPT axis pathology, rather than to assume that the lowered testosterone is a nonspecific consequence of the obesity. The probability of organic pathology is inversely related to age, BMI, number of comorbidities and testosterone level. We recommend a thorough clinical evaluation for symptoms and signs of androgen deficiency\(^{110}\) including assessment for end-organ deficits and pituitary pressure symptoms in all men. Mild, otherwise unexplained anemia,\(^{110}\) and trabecular-predominant osteopenia may be clues to organic androgen deficiency. Measurements of prolactin and where indicated, iron studies (hemochromatosis is less common in Asian men) should be performed in most men. Provided this evaluation is normal, pituitary imaging can be limited to men with a testosterone of repeatedly <5.2 nmol l\(^{-1}\) and non-raised gonadotropins.\(^ {111}\)

The presence of both obesity and low testosterone and can have negative impacts on fertility, sleep apnea, exercise ability, fatigue, mood and feelings of well-being. Weight loss can improve many of these features, and it is conceivable that the associated rise in testosterone may be responsible for salutary effects beyond those achieved by the weight loss itself. However, because of insufficient evidence regarding its risk-benefit ratio, testosterone treatment should not be used for the sole purpose of weight loss. Nevertheless, a reduction in fat mass may be a collateral benefit for men receiving testosterone therapy for treatment of established androgen deficiency. Potential safety concerns with testosterone treatment particularly relevant to obese, older men include sleep apnea and adverse cardiovascular disease and prostate events,\(^{110,111}\) in part because such comorbidities are common in this population. However, whether testosterone treatment increases risk is unknown because there are no adequately designed and powered RCTs that have assessed the long-term risk-benefit ratio of testosterone therapy. As testosterone treatment impairs spermatogenesis, it is contraindicated in obese men seeking to have children who are already at increased risk of impaired fertility.\(^{111}\) Other approaches using aromatase inhibitors, selective estrogen receptor modulators and gonadotropins may be considered instead. Studies, reviewed elsewhere have shown that use of such agents can improve the endocrine hormonal profile (increased gonadotropins and testosterone), semen parameters and sexual function.\(^{111}\) For example, in one study of men with secondary hypogonadism, clomiphene therapy increased testosterone levels and improved sexual function in 75%; younger men with less comorbidities were more likely to respond.\(^{116}\) However, their effects on fertility are not proven.\(^ {115}\) In addition, because of the associated lowering of circulating E\(_1\) levels, long-term use of such agents may lead to reduced bone mineral density.\(^ {117}\)

SUMMARY AND CONCLUSIONS

The bidirectional, inverse relationship between increased fat mass and testosterone levels suggests that both weight loss as well as testosterone therapy have the potential to break this vicious cycle. While HPT axis reactivation is achievable with weight loss, the degree of weight loss required to achieve this may be difficult to achieve and to maintain, with usual lifestyle changes for many obese men. However, successful weight loss has many other health benefits and should be first priority. The preclinical and observational data reviewed here suggests that testosterone therapy has the potential to augment diet-induced weight loss, and that it may have additional benefits on other, androgen-responsive tissues beyond its effects on fat mass. While a small, uncontrolled study found that testosterone treatment augmented the reductions in central adiposity and insulin resistance achieved with
Table 3: Effect of testosterone therapy on body composition: randomized clinical trials

Study	N	Age (years)	BMI	Baseline T (nmol l⁻¹)	Rx	Weeks	Outcome
Frederiksen et al.²⁸	38	68	30	12.2	Gel	26	↔ VAT ↓ SAT by 2%
Jones et al.³⁴	220	60	32	9.4	Gel	52	n.r. VAT, n.r. SAT ↔ Total fat
Allan et al.³⁰	40	53	34	11.4	i.m.	52	↔ SAT ↓ SAT 9.4% ↓ Total fat by 10.3%
Aversa et al.³¹	50	58	30	8.3	i.m.	52	n.r. VAT, n.r. SAT ↓ Waist circ by 8.1%
Kalinchenko et al.³⁰	184	52	35	6.7	i.m.	30	n.r. VAT, n.r. SAT ↓ Waist circ by 5.1%
Kenny et al.³⁷	131	78	27	13.2	Gel	52	n.r. VAT, n.r. SAT ↔ Total fat
Srinivas-Shankar et al.³⁸	162	74	28	11.0	Gel	26	n.r. VAT, n.r. SAT ↓ Waist by 4.2%
Allan et al.³⁹ 2008	60	62	26	13.6	Patch	52	↔ SAT ↓ SAT by 8.0%
Emmelot-Vonk et al.³⁰	223	67	27	11.0	Oral	26	↔ SAT ↓ SAT by 4.3%
Svarberg et al.³⁵ 2008	35	69	31	8.4	i.m.	52	n.r. VAT ↓ SAT 22.2% ↓ Total fat by 16.2%
Kapoor et al.³¹ 2007	20	63	33	7.5	i.m.	13	n.r. VAT, n.r. SAT ↔ Total fat
Kapoor et al.³² 2006	24	64	33	8.63	i.m.	13	n.r. VAT, n.r. SAT ↓ Waist circ by 1.7%
Nair et al.³⁵ 2006	58	66	28	12.4	Patch	156	↔ VAT n.r. SAT ↓ Total fat
Page et al.³⁴ 2005	25	73	30	14	i.m.	3	n.r. VAT n.r. SAT ↓ BMI by 3.0%
Page et al.³⁵ 2005	48	71	29	9.9	i.m.	78	n.r. VAT, n.r. SAT ↓ Total fat by 17.9%
Schroeder et al.³⁶ 2004	32	72	28	12.8	Oral	12	↔ VAT ↔ SAT
Boyanov et al.³⁷ 2003	48	58	31	9.6	Oral	13	n.r. VAT, n.r. SAT ↓ Total fat by 5.6%
Steidle et al.³⁸ 2003	205	57	30	8.1	Gel	13	n.r. VAT, n.r. SAT ↓ Total fat by 2.8%
Wittert et al.³⁹ 2003	76	69	27	17.0	Oral	52	n.r. VAT, n.r. SAT ↓ Total fat 1.1%
Munzer et al.⁴⁰ 2001	32	71	26	15.3	i.m.	26	↔ VAT ↓ SAT by 9.4%
Snyder et al.⁴¹ 1999	108	>65	27	12.7	Patch	156	↔ VAT by 9% ↔ SAT
Sih et al.⁴² 1997	32	65	29	10.2	i.m.	52	n.r. VAT, n.r. SAT ↓ Total fat by 12.3%
Marin et al.⁴³ 1993	31	57	29	15.1	Gel	39	↓ VAT by 9% ↔ SAT
Marin et al.⁴⁴ 1992	23	52	29	16.0	Oral	35	↓ VAT by 5.5% ↔ SAT

BMI: body mass index, kg m⁻²; i.m.: intramuscular; N: number; n.r.: not reported; Rx: treatment; SAT: subcutaneous adipose tissue; T: testosterone; VAT: visceral adipose tissue

lifestyle;¹¹⁸ a recent, preliminary RCT failed to find additive effects of dietary restriction and testosterone therapy on weight loss.¹¹³ Given the increasing prevalence of obesity-associated hypotestosteronemia, not only the underlying pathophysiology, but also the risk-benefit of testosterone therapy added to lifestyle intervention on long-term outcomes of obesity and its associated adverse health consequences require further study.

ACKNOWLEDGEMENTS
M Grossmann was supported by a National Health and Medical Research Council of Australia Career Development Fellowship (#1024139), M Ng Tang Fui was supported by a National Health and Medical Research Council of Australia Postgraduate Research Scholarship (#1055305) and P Dupuis was supported by Bourse du Comité des Médecins, Dentistes et Pharmaciens du Centre Hospitalier Universitaire de Québec.
COMPETING INTERESTS
The authors are primary investigators of an investigator initiated trial "Effect of Testosterone and Diet on Weight", ClinicalTrials.gov Identifier NCT01616732, supported by Bayer HealthCare.

REFERENCES
1 WHO. WHO Global infobase, estimated overweight and obesity, 2002-2010 in males aged 30-100 y. Available from: https://www.apps.who.int/infobase/Comparisons. aspx. Last accessed on June 2013.
2 Kelly T, Yang W, Chen CS, Reynolds K, He J. Global burden of obesity in 2005 and projections to 2030. Int J Obes (Lond) 2008; 32: 1431–7.
3 Tajer A, Forti G, O'Neill TW, Lee DM, Silman AJ, et al. Characteristics of secondary, primary, and compensated hypogonadism in aging men: evidence from the European Male Ageing Study. J Clin Endocrinol Metab 2010; 95: 1810–8.
4 Flegel KM, Kit BK, Orpana H, Graubard BI. Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis. JAMA 2013; 309: 71–82.
5 Heymsfield SB, Cefalu WT. Does body mass index adequately convey a patient’s mortality risk? JAMA 2013; 309: 87–8.
6 Hughes V. The big fat truth. Nature 2013; 497: 428–30.
7 Willett WC, Hu FB, Thun M. Overweight, obesity, and all-cause mortality. JAMA 2013; 309: 1681.
8 Staiano AE, Reeder BA, Elliott S, Joffres MR, Palha P, et al. Body mass index versus waist circumference as predictors of mortality in Canadian adults. Int J Obes (Lond) 2012; 36: 1450–4.
9 Choi KM, Choi HJ, Choi HY, Yang S, Yoo HJ, et al. Higher mortality in metabolically obese normal-weight people than in metabolically healthy obese subjects in elderly Koreans. Clinical Endocrinol (Oxf) 2013; 79: 364–70.
10 Alligier M, Gabert L, Meugnier E, Lambert-Porcheron S, Channeaume E, et al. Visceral fat accumulation during lipid overfeeding is related to subcutaneous adipose tissue characteristics in healthy men. J Clin Endocrinol Metab 2013; 98: 802–10.
11 Gupta V, Bhasin S, Guo W, Singh R, Miki R, et al. Effects of dihydrotestosterone on differentiation and proliferation of human mesenchymal stem cells and preadipocytes. Mol Cell Endocrinol 2008; 296: 32–40.
12 Proietto J. Why is treating obesity so difficult? Justification for the role of bariatric surgery. Clin Endocrinol (Oxf) 2011; 199: 144–6.
13 Sumithran P, Prendergast LA, Delbridge E, Purcell K, Shulkes A, et al. Long-term persistence of hormonal adaptations to weight loss. N Engl J Med 2011; 365: 1597–604.
14 Glass AR, Swerdlow RS, Bray GA, Dahms WT, Atkinson RL. Low serum testosterone and sex-hormone-binding-globulin in massively obese men. J Clin Endocrinol Metab 1977; 45: 1211–9.
15 Allan CA, McClellan RI. Androgens and obesity. Curr Opin Endocrinol Diabetes Obes 2010; 17: 224–32.
16 Wu FC, Tajer A, Pye SR, Silman AJ, Finn JD, et al. Hypothalamic-pituitary-testicular axis disruptions in older men are differentially linked to age and modifiable risk factors: the European Male Ageing Study. J Clin Endocrinol Metab 2009; 93: 2737–45.
17 Cao J, Chen TM, Hao WJ, Li J, Liu L, et al. Prevalence, incidence, and risk factors of testosterone deficiency in a population-based cohort of men: results from the study of the health in Pomerania. Aging Med 2010; 13: 247–57.
18 Yeap BB, Chubb SA, Hyde Z, Jamrozik K, Hankey GJ, et al. Lower serum testosterone is independently associated with insulin resistance in non-diabetic older men: the Health In Men Study. Eur J Endocrinol 2009, 161: 591–8.
19 Camacho EM, Tajer A, O'Neill TW, Finn JD, Pye SR, et al. Age-associated changes in hypothalamic-pituitary-testicular function in middle-aged and older men are modified by weight change and lifestyle factors: longitudinal results from the European Male Ageing Study. Eur J Endocrinol 2013; 164: 445–55.
20 Liska D, Fan BC, Clarke MA, Pang TP, Zajac AE, et al. Prevalence and distribution of DNA binding-dependent androgen receptor knockout male mice associated with decreased voluntary activity and not insulin resistance. Am J Physiol Endocrinol Metab 2011; 301: E767–78.
21 McNees KJ, Smith LB, Hunger NI, Saunders PT, Andrew R, et al. Deletion of the androgen receptor in adipose tissue in male mice elevates retinol binding protein 4 and reveals independent effects on visceral fat mass and on glucose homeostasis. Diabetes 2012; 61: 1072–81.
22 Semirale AA, Zhang XW, Wiren KM. Body composition changes and inhibition of fat development in vivo implicates androgen in regulation of stem cell lineage allocation. J Cell Biochem 2011; 112: 1773–86.
23 Varamolos O, White AE, Carroll JM, Bethea CL, Reddy A, et al. Androgen effects on adipose tissue architecture and function in nonhuman primates. Endocrinology 2012; 153: 3100–10.
24 Singh R, Arzata JN, Taylor WE, Gonzalez-Cadaf N, Bhasin S. Androgens stimulate myogenic differentiation and inhibit adipogenesis in C3H 101/2 pluripotent cells through an androgen receptor-mediated pathway. Endocrinology 2003; 144: 5081–8.
25 Blouin K, Nadeau M, Perreault M, Veilleux A, Driessler R, et al. Effects of androgens on adipocyte differentiation and adipose tissue expand metabolism in men and women. Clin Endocrinol (Oxf) 2010; 72: 176–88.
26 Hamilton EJ, Gianetti E, Strauss BJ, Wentworth J, Lim-Joon D, et al. Increase in visceral and subcutaneous fat and fat distribution with prostate cancer treated with androgen deprivation therapy. Clin Endocrinol (Oxf) 2011; 74: 377–83.
27 Mauers N, Hayes V, Welch S, Rini A, Helgeson K, et al. Testosterone deficiency in young men: marked alterations in whole body protein kinetics, strength, and adiposity. J Clin Endocrinol Metab 1998; 83: 1886–92.
28 Tsai EC, Boyko EJ, Lesnetti DL, Fujimoto WY. Low serum testosterone level as a predictor of increased visceral fat in Japanese-American men. Int J Obes Relat Metab Disord 2000; 24: 485–91.
29 Grossmann M. Diagnosis and treatment of hypogonadism in older men: proceed with caution. Asian J Androl 2010; 12: 783–8.
30 Mah PM, Wittert GA. Obesity and testicular function. Mol Cell Endocrinol 2010; 316: 180–6.
31 Belanger C, Hould FS, Lebel S, Biron S, Brochu G, et al. Depot differences in steroid receptor expression in adipose tissue: possible role of the local steroid milieu. J Physiol Endocrinol Metab 2011; 15: 85–9.
32 Rodriguez-Cuenca S, Monjo M, Proenzia AM, Roca P. Depot differences in steroid receptor expression in adipose tissue: possible role of the local steroid milieu. J Physiol Endocrinol Metab 2011; 15: 85–9.
33 Dhindsa S, Suri F, Vora M, Ghanim H, Chaudhuri A, et al. Low estradiol concentrations in men with subnormal testosterone concentrations and type 2 diabetes. Diabetes Care 2011; 34: 1854–9.
34 Huhtaniemi IT, Tajer A, Lee DM, O'Neill TW, Finn JD, et al. Comparison of serum testosterone and estradiol measurements in 3174 European men using platform immunoassay and mass spectrometry: relevance for the diagnostics in aging men. Eur J Endocrinol 2012; 166: 983–91.
35 Tajer A, Huhtaniemi IT, O'Neill TW, Finn JD, Pye SR, et al. Characteristics of androgen deficiency in late-onset hypogonadism: results from the European Male Ageing Study (EMAS). J Clin Endocrinol Metab 2012; 97: 1508–16.
36 Grossmann M, Gianatti E, Zajac JD. Testosterone and type 2 diabetes. Curr Opin Endocrinol Diabetes Obes 2010; 17: 246–7.
37 Travis TG, Araujo AB, Kupelian V, O’Donnell AB, McKinlay JB. The relative contributions of aging, health, and lifestyle factors to serum testosterone decline in men. J Clin Endocrinol Metab 2007; 92: 549–55.
Brodsky IG, Balogopal P, Nair KS. Effects of testosterone replacement on muscle and mass and muscle protein synthesis in hypogonadal men—a clinical research center study. J Clin Endocrinol Metab 1996; 81: 3469–75.

Isidori AM, Giannetta E, Greco EA, Gianfrilli D, Bonifacio V, et al. Effects of testosterone on body composition, bone metabolism and serum lipid profile in middle-aged men: a meta-analysis. Clin Endocrinol (Oxf) 2005; 63: 280–93.

Allan CA, Strauss BJ, Forbes EA, McLachlan RJ. Testosterone Therapy Improves Body Composition and Metabolic Parameters in Obese Aging Men: Results of a RCT. In: 2nd Annual Meeting of the Endocrine Society. Vol P2. San Diego: 2010. p.455.

Avendaño A, Brufau R, Franchimon D, Rosano G, Isidori AM, et al. Effects of testosterone undecanoate on cardiovascular risk factors and atherosclerosis in middle-aged men with late-onset hypogonadism and metabolic syndrome: results from a 24-month, randomized, double-blind, placebo-controlled study. J Sex Med 2010; 7: 3495–503.

Kalinchenko SY, Tishova YA, Mokhalaya GJ, Gooren LJG, Gilay EJ, et al. Effects of testosterone treatment on markers of the metabolic syndrome and inflammation in hypogonadal men with the metabolic syndrome: the double-blinded placebo-controlled Moscow study. Clinical Endocrinol 2010; 73: 602–12.

Swartberg J, Agledahl I, Figenbaugh S, Sildnes T, Waterko E, et al. Testosterone treatment in elderly men with subnormal testosterone levels improves body composition and BMD in the hip. Int J Impot Res 2008; 20: 378-87.

Saad F, Haider A, Doros G, Traish A. Long-term treatment of hypogonadal men with testosterone produces substantial and sustained weight loss. Obesity (Silver Spring) 2013. In press.

Frederiksen L, Hjollund K, Hougaard DM, Mosbech TH, Larsen R, et al. Testosterone therapy improves insulin resistance, glycaemic control, visceral adiposity and quality of life in intermediate-frail and frail elderly men: a randomized, double-blind, placebo-controlled study. J Clin Endocrinol Metab 2010; 95: 639–50.

Kapoor D, Goodwin E, Chanter KS, Jones TH. Testosterone replacement therapy improves insulin resistance, glycaemic control, visceral adiposity and hypercholesterolaemia in hypogonadal men with type 2 diabetes. Eur J Endocrinol 2006; 154: 899–906.

Nair KS, Rizza RA, O’Brien P, Dhatariya K, Short KR, et al. DHEA in elderly women with low sex hormone activity but show normal insulin sensitivity with high adiponectin secretion. Diabetes 2003; 54: 1000–8.

Wood RI. Oral testosterone self-administration in male hamsters: dose-response, voluntary exercise, and individual differences. Horm Behav 2002; 41: 247–58.

Deurenberg P, Feskens EJ, Katan MB, Kromhout D. Effects of energy balance in identical twins. J Clin Endocrinol Metab 1994; 78: 1515–20.

Munzer T, Harman SM, Hees P, Shapiro E, Christmas C, et al. The effect of testosterone therapy decreases subcutaneous fat and adiponectin in aging men. Eur J Endocrinol 2012; 166: 469–76.

Chomentowski P, Dube JJ, Amati F, Stefanovic-Racic M, Zhu S, et al. Moderate exercise attenuates the loss of skeletal muscle mass that occurs with intentional caloric restriction-induced weight loss in older, overweight to obese adults. J Appl Physiol 2009; 107: 374–44.

Brodsky IG, Balogopal P, Nair KS. Effects of testosterone replacement on muscle mass and muscle protein synthesis in hypogonadal men—a clinical research center study. J Clin Endocrinol Metab 1996; 81: 3469–75.

Isidori AM, Giannetta E, Greco EA, Gianfrilli D, Bonifacio V, et al. Effects of testosterone on body composition, bone metabolism and serum lipid profile in middle-aged men: a meta-analysis. Clin Endocrinol (Oxf) 2005; 63: 280–93.

Allan CA, Strauss BJ, Forbes EA, McLachlan RJ. Testosterone Therapy Improves Body Composition and Metabolic Parameters in Obese Aging Men: Results of a RCT. In: 2nd Annual Meeting of the Endocrine Society. Vol P2. San Diego: 2010. p.455.

Avendaño A, Brufau R, Franchimon D, Rosano G, Isidori AM, et al. Effects of testosterone undecanoate on cardiovascular risk factors and atherosclerosis in middle-aged men with late-onset hypogonadism and metabolic syndrome: results from a 24-month, randomized, double-blind, placebo-controlled study. J Sex Med 2010; 7: 3495–503.

Kalinchenko SY, Tishova YA, Mokhalaya GJ, Gooren LJG, Gilay EJ, et al. Effects of testosterone treatment on markers of the metabolic syndrome and inflammation in hypogonadal men with the metabolic syndrome: the double-blinded placebo-controlled Moscow study. Clinical Endocrinol 2010; 73: 602–12.

Swartberg J, Agledahl I, Figenbaugh S, Sildnes T, Waterko E, et al. Testosterone treatment in elderly men with subnormal testosterone levels improves body composition and BMD in the hip. Int J Impot Res 2008; 20: 378-87.

Saad F, Haider A, Doros G, Traish A. Long-term treatment of hypogonadal men with testosterone produces substantial and sustained weight loss. Obesity (Silver Spring) 2013. In press.

Frederiksen L, Hjollund K, Hougaard DM, Mosbech TH, Larsen R, et al. Testosterone therapy improves insulin resistance, glycaemic control, visceral adiposity and quality of life in intermediate-frail and frail elderly men: a randomized, double-blind, placebo-controlled study. J Clin Endocrinol Metab 2010; 95: 639–50.

Kapoor D, Goodwin E, Chanter KS, Jones TH. Testosterone replacement therapy improves insulin resistance, glycaemic control, visceral adiposity and hypercholesterolaemia in hypogonadal men with type 2 diabetes. Eur J Endocrinol 2006; 154: 899–906.

Nair KS, Rizza RA, O’Brien P, Dhatariya K, Short KR, et al. DHEA in elderly women with low sex hormone activity but show normal insulin sensitivity with high adiponectin secretion. Diabetes 2003; 54: 1000–8.

Wood RI. Oral testosterone self-administration in male hamsters: dose-response, voluntary exercise, and individual differences. Horm Behav 2002; 41: 247–58.

Deurenberg P, Feskens EJ, Katan MB, Kromhout D. Effects of energy balance in identical twins. J Clin Endocrinol Metab 1994; 78: 1515–20.

Munzer T, Harman SM, Hees P, Shapiro E, Christmas C, et al. The effect of testosterone therapy decreases subcutaneous fat and adiponectin in aging men. Eur J Endocrinol 2012; 166: 469–76.

Chometowski P, Dube JJ, Amati F, Stefanovic-Racic M, Zhu S, et al. Moderate exercise attenuates the loss of skeletal muscle mass that occurs with intentional caloric restriction-induced weight loss in older, overweight to obese adults. J Appl Physiol 2009; 107: 374–44.

Brodsky IG, Balogopal P, Nair KS. Effects of testosterone replacement on muscle mass and muscle protein synthesis in hypogonadal men—a clinical research center study. J Clin Endocrinol Metab 1996; 81: 3469–75.

Isidori AM, Giannetta E, Greco EA, Gianfrilli D, Bonifacio V, et al. Effects of testosterone on body composition, bone metabolism and serum lipid profile in middle-aged men: a meta-analysis. Clin Endocrinol (Oxf) 2005; 63: 280–93.
Lowered testosterone in male obesity
M Ng T Fui et al

102 Sih R, Morley JE, Kaiser FE, Perry HM 3rd, Patrick P, et al. Testosterone replacement in older hypogonadal men: a 12-month randomized controlled trial. J Clin Endocrinol Metab 1997; 82: 1661–7.

103 Marin P, Holmang S, Gustafsson C, Jonsson L, Kvist H, et al. Androgen treatment of abdominally obese men. Obes Res 1993; 1: 245–51.

104 Marin P, Holmang S, Jonsson L, Sjostrom L, Kvist H, et al. The effects of testosterone treatment on body composition and metabolism in middle-aged obese men. Int J Obes Relat Metab Disord 1992; 16: 991–7.

105 Hall SA, Esche GR, Araujo AB, Travison TG, Clark RV, et al. Correlates of low testosterone and symptomatic androgen deficiency in a population-based sample. J Clin Endocrinol Metab 2008; 93: 3870–7.

106 Zitzmann M, Faber S, Nieschlag E. Association of specific symptoms and metabolic risks with serum testosterone in older men. J Clin Endocrinol Metab 2006; 91: 4335–43.

107 Mellstrom D, Vandenput L, Mallmin H, Holmberg AH, Lorentzon M, et al. Older men with low serum estradiol and high serum SHBG have an increased risk of fractures. J Bone Miner Res 2008; 23: 1552–60.

108 De Laet C, Kanis JA, Oden A, Johanson H, Johnell O, et al. Body mass index as a predictor of fracture risk: a meta-analysis. Osteoporos Int 2005; 16: 1330–8.

109 Grossmann M, Zajac JD. Hematological changes during androgen deprivation therapy. Asian J Androl 2012; 14: 187–92.

110 Basaria S, Coviello AD, Travison TG, Storer TW, Farwell WR, et al. Adverse events associated with testosterone administration. N Engl J Med 2010; 363: 109–22.

111 Fernandez-Balsells MM, Murad MH, Lane M, Lampropulos JF, Albuquerque F, et al. Clinical review 1: adverse effects of testosterone therapy in adult men: a systematic review and meta-analysis. J Clin Endocrinol Metab 2010; 95: 2560–75.

112 Hoyos CM, Killick R, Yee BJ, Grunstein RR, Liu PY. Effects of testosterone therapy on sleep and breathing in obese men with severe obstructive sleep apnoea: a randomized placebo-controlled trial. Clin Endocrinol (Oxf) 2012; 77: 599–607.

113 Zitzmann M, Mattern A, Hanisch J, Gooren L, Jones H, et al. IFASS: a study on the tolerability and effectiveness of injectable testosterone undecanoate for the treatment of male hypogonadism in a worldwide sample of 1,438 men. J Sex Med 2013; 10: 579–88.

114 Cabler S, Agarwal A, Flint M, du Plessis SS. Obesity: modern man’s fertility nemesis. Asian J Androl 2010; 12: 480–9.

115 Hammoud AO, Meikle AW, Reis LD, Gibson M, Peterson CM, et al. Obesity and male infertility: a practical approach. Semin Reprod Med 2012; 30: 486–95.

116 Guay AT, Jacobson J, Perez JB, Hodge MB, Velasquez E. Clomiphene increases free testosterone levels in men with both secondary hypogonadism and erectile dysfunction: who does and does not benefit? Int J Impot Res 2003; 15: 156–65.

117 Burnett-Bowie SA, McKay EA, Lee H, Leder BZ. Effects of aromatase inhibition on bone mineral density and bone turnover in older men with low testosterone levels. J Clin Endocrinol Metab 2009; 94: 4785–92.

118 Heufelder AE, Saad F, Bunck MC, Gooren L. Fifty-two-week treatment with diet and exercise plus transdermal testosterone reverses the metabolic syndrome and improves glycemic control in men with newly diagnosed type 2 diabetes and subnormal plasma testosterone. J Androl 2009; 30: 726–33.

How to cite this article: Tang Fui MN, Dupuis P, Grossmann M. Lowered testosterone in male obesity: Mechanisms, morbidity and management. Asian J Androl 20 January 2014. doi: 10.4103/1008-682X.122365. [Epub ahead of print]