Dyslipidemia and associated cardiovascular risk factors in HIV-positive and HIV-negative patients visiting ambulatory clinics: A hospital-based study

Minyahil A. Woldu¹,², Omary Minzi¹ and Ephrem Engidawork²

Abstract

Background: Dyslipidemia is a well-known risk factor for cardiovascular disease (CVD), accounting for more than half of all instances of coronary artery disease globally (CAD).

Purpose: The purpose of this study was to determine lipid-related cardiovascular risks in HIV-positive and HIV-negative individuals by evaluating lipid profiles, ratios, and other related parameters.

Methods: A hospital-based study was carried out from January 2019 to February 2021 in both HIV+ and HIV- ambulatory patients.

Results: High TG (p = .003), high TC (p = .025), and low HDL (p < .001) were all associated with a two-fold increased risk of CVD in people aged 45 and up. Due to higher TG (p < .001) and lower HDL (p < .001), males were found to have a higher risk of atherogenic dyslipidemia. A twofold increase in the likelihood of higher TG levels has been associated with smoking (p = .032) and alcohol intake (p = .022). A twofold increase in a high TC/HDL ratio and an elevated TG/HDL ratio was observed with an increase in waist-to-height ratio (p = .030) and a high level of FBS (126 mg/dl) and/or validated diabetes (p = .017), respectively. In HIV+ participants, central obesity (p < .001), diabetes (p < .001), and high blood pressure (p < .001) were all less common than in HIV- participants.

Conclusions: Dyslipidemia is linked to advanced age, male gender, diabetes, smoking, alcohol consumption, and increased waist circumference, all of which could lead to an increased risk of CVD, according to the study. The study also revealed that the risks are less common in HIV+ people than in HIV-negative ambulatory patients.

Keywords
Dyslipidemia, Cardiovascular risks, Ambulatory patients

Received: 25 December 2021; Revised: 29 June 2022; accepted: 3 July 2022

Introduction

Dyslipidemia is a well-known risk factor for cardiovascular disease (CVD), accounting for more than half of all instances of coronary artery disease (CAD) globally.¹ The mechanism of atherosclerosis that leads to CVD is difficult to diagnose before the appearance of serious clinical outcomes such as CVD-related death, myocardial infarction (MI), or stroke.² Several studies have found a wide number of CVD risk variables, which can be split into non-modifiable risk factors like age and gender and modifiable risk factors including smoking, blood pressure (BP), and diabetes mellitus (DM).³ Because low-density lipoprotein cholesterol (LDL-C) is the principal cholesterol-carrying lipoprotein and is believed to be the main atherogenic lipoprotein,⁴ its levels are optimized in primary and secondary prevention measures to minimize cardiovascular risks.⁵ Other lipoproteins, such as high-density lipoprotein cholesterol (HDL-C) or very-low-density lipoprotein (VLDL), have also been found to have a role in atherogenesis on multiple occasions.⁶-⁸

¹Department of Clinical Pharmacy and Pharmacology, Muhimbili University of Health and Allied Sciences (www.muhas.ac.tz), Dar Es Salaam, Tanzania
²Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University (www.aad.edu.et), Addis Ababa, Ethiopia

Corresponding author:
Minyahil A. Woldu; Department of Pharmacology and Clinical Pharmacy, School of Pharmacy College of Health Sciences, Addis Ababa University, Zambia Street, P.O. Box 9086, Addis Ababa, Ethiopia.
Email: minyahil.alebachew@aau.edu.et

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage).
Excessive weight gain, such as for overweight & obesity, has emerged as a major global health concern, increasing the risk of DM and CVD. Despite this link, there are obese patients without metabolic abnormalities known as “metabolically healthy obese” (MHO), as well as normal-weight patients with metabolic abnormalities known as “metabolically unhealthy normal weight” (MUH-NW). Individuals of normal weight who are at an increased risk of metabolic illnesses such as type 2 diabetes (T2DM) are classified as MUH-NW. MHO is usually diagnosed based on normal glucose and lipid metabolism indicators, as well as the absence of hypertension (HTN), whereas MUH-NW are individuals of normal weight who are at an elevated risk of metabolic illnesses such as DM and HTN.

Waist circumference (WC) and waist-to-height ratio (WHtR), in addition to BMI, can be utilized as surrogate biomarkers of body fat centralization and cardiovascular risks. Finding risk variables to target to avoid or minimize mortality risk has thus become vital, even in people of normal weight. However, there are no universally accepted standards for establishing whether or not someone is metabolically healthy.

In clinical investigations, hyperinsulinemia or insulin resistance (IR) and carotid intima-media thickness (CIMT) are widely utilized biomarkers for predicting lipid-associated cardiovascular risk. Nonalcoholic fatty liver disease (NAFLD) is also connected to IR, hyperglycemia, and T2DM. To predict and diagnose a wide range of lipid-related risks, a variety of biomarkers, both specific and non-specific, can be utilized and are available. For many patients, reliable measurement of several techniques in clinical practice is difficult or impossible due to a variety of factors. The use of simple rapid tests to establish lipid profiles is gaining popularity due to its cost-effectiveness and time-saving capabilities. Even if disparities in discriminating power among populations, as well as variations in rapid test cut-off points, remained an issue.

HIV-positive people are known to have an increased risk of cardiovascular disease (CVD) for a variety of reasons, including pathophysiology and the use of antiretroviral therapy (ART). However, this risk, which is prevalent in people living with HIV/AIDS (PLWHA), must be compared to other people with chronic conditions and who are not using ART drugs. As a result, the goal of this study was to determine lipid-related cardiovascular risks in HIV-positive compared to HIV-negative individuals by evaluating lipid profile patterns, ratios, and other related parameters.

Methods

Study design, period, and setting

Patients visiting the HIV and adult ambulatory clinics of Zewditu Memorial Hospital (ZMH), Addis Ababa, Ethiopia, were studied in a hospital-based observational study from January 25, 2019, to February 25, 2021. This institution has been at the forefront of establishing and launching ART therapy services in Ethiopia since 2003. In addition to HIV counseling and testing, sexually transmitted infection services, and post-exposure prophylaxis treatments, it offers various clinical services and palliative care to the general public. As a general hospital, it provides a wide range of services through its clinics, departments, and wards. Every month, ZMH serves approximately 1163 HIV-positive patients and over 3000 HIV-negative patients.

Study population

The source population consisted of patients who came to ZMH for treatment of HIV and other chronic illnesses. Patients who met the study’s inclusion criteria made up the study’s population.

Inclusion and exclusion criteria

Inclusion criteria. The study included all patients who were 18 years or older, had at least three appointments completed, and were willing to participate.

Exclusion criteria. During the cohort period, severely unwell patients, and pregnant and breastfeeding women were excluded. Patients with HIV who went to ambulatory clinics for reasons other than ART were also excluded so as to avoid double entry.

Sample size determination and sampling technique

The following sample size estimation of independent cohort studies was used to calculate the sample size for the study population.
The sample size was calculated using a two-sided significance criterion (1-alpha) of 95%, a power (1-beta, percent probability of detecting) of 80%, a ratio of Unexposed/Exposed = 1, and a percentage of Exposed with Outcome of 11.3%. A sample size of (n = 620) determined with 10% contingency for (n = 320) HIV-positive and the rest (n = 300) HIV-negative group. The baseline sample size was complete for (n = 510) participants comprising 288 HIV+ and 222 HIV-negative patients. To enroll study participants, a systematic random sampling technique was adopted.

Data collection

Laboratory testing, clinical examinations and measurements, patient interviews, and chart reviews were used to gather detailed information about the participants. The structured questionnaire employed by the WHO stepwise method for non-communicable disease risk factor surveillance was adapted for a face-to-face interview (STEPS-2014). The questionnaire asks about age, religion, civil status, address, educational level, occupation, monthly income, substance use (tobacco, alcohol, coffee, Khat plant use), and use of any prescription and non-prescription medications. Height and weight (body mass index/ BMI), waist circumferences (WC), blood pressure (BP), fasting blood sugar (FBS), and lipid profile were determined through a physical examination and laboratory tests.

Study procedure

All participants in this study were classified as HIV+ if they were registered at an ART clinic for follow-up treatment, and HIV-negative if they were registered at an adult ambulatory clinic for follow-up care and tested negative for HIV within the last 6 months. Borderline, high, and very high cholesterol values were frequently used to mark severity and classify treatment options considering bad cholesterol. Low and very low were terms that were used to describe good cholesterol, and high-density lipoprotein (HDL). Dyslipidemia is defined when one or more of the following are present in both males and females aged 19 and up: 1. Total cholesterol (TC) ≥ 240 mg/dL; 2. non-high-density lipoprotein (non-HDL-C) ≥ 130; 3. Low density lipoprotein (LDL) ≥ 160 mg/dL; 4. TG ≥ 201 mg/dL in both males (M) and females (F) aged 19 and up, and 5. When HDL-C <40 mg/dL (M) or <50 mg/dL (F).

The following Cholesterol Ratios to Predict CVD were employed: 1. Waist circumference: Overweight: >94 cm (M); >80 cm (F); Obesity: >102 cm (M); >88 cm (F). 2. Waist to height ratio: Overweight: 0.53 to 0.89 (M) & 0.49 to 0.84 (F); Obesity: ≥ 0.90 cm (M); ≥ 0.85 cm (F). 3. TC/HDL-C ratio: Ideal: Less than 3.5 (M) < 3.0 (F); Moderate: 3.5 to 5.0 (M) 3.0 to 4.4 (F); High: More than 5.0 (M) > 4.4 (F). 4. LDL-C/HDL-C ratio: Ideal, less than 2.5; Moderate, 2.5 to 3.3; High, more than 3.3. 5. HDL/LDL ratio: Ideal, more than 0.4; Moderate, 0.4 to 0.3; High, less than 0.3. 6. TG/HDL ratio: Ideal: Less than 3.5 (M) < 3.0 (F); Moderate: 3.5 to 5.0 (M) 3.0 to 4.4 (F); High: More than 5.0 (M) > 4.4 (F).

Instruments

Omron HEM 7203 was used to measure BP (Omron Healthcare Co. Ltd, Kyoto, Japan). The devices were calibrated regularly to ensure correct validation. The accuracy of the devices was also tested using a Mercury sphygmomanometer. Before taking measurements, an appropriate BP arm cuff in suitable sizes was applied. Before BP measures, participants were allowed to sit and relax for 5 min without talking, with their legs uncrossed and their arms supported at heart level. The mean of three BP readings taken from the right arm with a 5-min interval was used for analysis. SIEMENS (Dimension EXL 200 Integrated Chemistry System), Omnia Health (CS-T240 Auto-Chemistry Analyzer), and LipidPlus® were used to examine lipid profiles and glucose levels.

Data analysis

IBM statistics software version 25 for Windows was used to code, double-enter, and analyze the data. All categorical characteristics were categorized as 0 or 2 (for females with no responses and HIV-negative) or 1 (for males with yes responses and HIV +). The dependent variables were coded as dichotomous measurements (low-risk was coded as ‘0 or 2’ and ‘Moderate to high-risk’ was coded as ‘1’).

To present sociodemographic data, incidence, and prevalence data, descriptive statistics were used. The connections of predictors with the outcome variables were determined using logistic regression analysis. To control the effect of confounders, independent variables with a p-value of 0.20 in the bivariate logistic regression were incorporated into multivariate logistic regression. Statistical significance was defined as a 95% confidence interval and a p-value of less than 0.05.

Results

General characteristics of study participants

When compared to participants younger than 45 years old, those aged 45 and more were twice as likely to have high TG (p = .003), high TC (p = .025), and low HDL (p = .001). Males were 2 times as likely as females to have high TG (p < .001) and 6 times as likely to have low HDL-C (p < .001).
Characteristics	Triglycerides (mg/dl) OR (95%CI) P. value	Total cholesterol (mg/dl) OR (95%CI) P. value	HDL-C (mg/dl) OR (95%CI) P. value
	≥ 201 n (%) <201	≥ 240 n (%) Else n (%)	<40 (M) or 50 (F) n (%) Else n (%)
Age 45	103 (81.7) 259 (67.4) 2.161 (.131, .003	63 (81.8) 299 (69.1) 2.017 (1.092, 3.726) .025	158 (81.4) 204 (64.6) 2.410 (1.569, <001)
<45	23 (18.3) 125 (32.6) 3.563	14 (18.2) 134 (30.9)	36 (18.6) 112 (35.4) 3.701
Gender Male	70 (55.6) 143 (37.2) 2.107 (.140, .001	32 (41.6) 181 (41.8) 0.990 (.605, 1.169) .968	34 (52.0) 197 (44.7) 0.990 (.605, 1.466)
Female	56 (44.4) 241 (62.8) 3.167	45 (58.4) 252 (58.2)	59 (30.4) 238 (75.3) 10.402
Civil status	Married 64 (50.8) 191 (49.7) 1.043 (.697, .873	37 (48.1) 218 (50.3) 0.912 (.562, 1.482) .711	106 (54.6) 149 (47.2) 1.350 (943, .101)
	Else 62 (49.2) 193 (50.3) 1.560	40 (51.9) 215 (49.7)	88 (45.4) 167 (52.8) 1.933
Edu. status	College & above 48 (38.1) 128 (33.3) 1.231 (.811, .330	31 (40.3) 145 (33.5) 1.339 (.814, 2.201) .520	77 (39.7) 99 (31.3) 1.443 (993, .054)
	Else 78 (61.9) 256 (66.7)	46 (59.7) 288 (66.5)	117 (60.3) 217 (68.7)
Address	Kirkos 49 (39.2) 141 (37.0) 1.097 (.725, .661	31 (40.8) 159 (37.0) 1.174 (.714, 1.931) .527	79 (41.1) 111 (35.4) 1.279 (884, .192)
	Else 76 (60.8) 240 (63.0) 1.662	45 (59.2) 271 (63.0)	113 (58.9) 203 (64.6) 1.849
Income ≥50USD	68 (54.0) 204 (53.1) 1.034 (.691, .869	40 (51.9) 232 (53.6) 0.937 (.576, 1.522) .791	107 (55.2) 165 (52.2) 1.126 (786, .518)
<50USD	58 (46.0) 180 (46.9) 1.549	37 (48.1) 201 (46.4)	87 (44.8) 151 (47.8) 1.611
FH Yes 97 (77.0) 302 (78.9) 1.085	59 (76.6) 340 (78.7)	152 (78.4) 247 (78.4) 1.550	
No	29 (23.0) 81 (21.1) 1.115 (.688, .659	18 (23.4) 92 (21.3) 1.127 (.634, 2.005) .683	42 (21.6) 68 (21.6) 1.004 (650, .997)
TM Yes 17 (13.5) 37 (9.7) 1.458 (.790, .285	12 (15.6) 42 (9.7) 1.714 (.857, 3.429) .128	19 (9.8) 35 (11.1) 0.869 (482, .639)	
No	109 (86.5) 346 (90.3) 2.693	65 (84.4) 390 (90.3)	175 (90.2) 280 (88.9) 1.566
Smoker Yes 15 (11.9) 23 (6.0) 2.115 (.106, .032	3 (3.9) 35 (8.1) 0.460 (.13, 1.534) .206	20 (10.3) 18 (5.7) 1.903 (980, .057)	
No	111 (88.1) 361 (94.0) 4.193	74 (96.1) 397 (91.9)	174 (89.7) 298 (94.3) 3.695
Alcohol Yes 28 (22.2) 52 (13.6) 1.819 (.109, .022	6 (7.8) 74 (17.1) 0.409 (.171, 1.976) .044	38 (19.6) 42 (13.3) 1.583 (979, .061)	
No	28 (77.8) 311 (86.4) 3.034	71 (92.2) 358 (82.9)	156 (80.4) 273 (86.7) 2.561
Coffee Yes 85 (67.5) 240 (62.7) 1.235 (.807, .331	48 (62.3) 277 (64.1) 0.926 (.561, 1.529) .764	125 (64.4) 200 (63.5) 1.042 (.717, .830)	
consumption No 41 (32.5) 143 (37.3) 1.892	29 (37.7) 155 (35.9)	69 (35.6) 115 (36.5) 1.512	
Khat chewing Yes 8 (6.3) 20 (5.2) 1.231 (.528, .631	3 (3.9) 25 (5.8) 0.660 (.194, 2.242) .505	11 (5.7) 17 (5.4) 1.054 (483, .896)	
No	118 (93.7) 363 (94.8)	74 (96.1) 407 (94.2)	183 (94.3) 298 (94.6) 2.300
HIV-status	HIV+ 69 (54.8) 219 (57.0) .912 (.608, .656	41 (53.2) 247 (57.0) .858 (.527, 1.395) .536	107 (55.2) 181 (57.3) 0.917 (640, .639)
HIV- 57 (45.2) 165 (43.0)	36 (46.8) 186 (43.0)	87 (44.8) 135 (42.7)	
Smokers (p = .032) and alcoholics (p = .022) had twice the amount of high TG as non-smokers and non-alcoholics, respectively. Those who consumed alcohol, on the other hand, were less likely to have high TC (p = .044) than those who were not. Other factors like civil status, family history, and HIV status had no significant impact on the specific dyslipidemias. Details are shown in Table 1.

When it came to the TC/HDL-C ratio, the male gender was less likely to be associated with a moderate to a high level of TC/HDL ratio (p < .001), whereas WHtR (p = .030), and high FBS and/or confirmed DM (p = .017) were two-fold more likely to be associated with an elevated TC/HDL ratio after correcting for the confounders. Other variables such as MUH-NW and

Description	TC/HDL ratio	COR (95% CI)	P value	AOR (95% CI)	P value	
Age ≥ 45 years						
≥ 40	264 (73.7)	98 (64.5)	1.548 (1.030, 2.325)	.036	1.345 (.842, 2.148)	.215
< 45	94 (26.3)	54 (35.5)				
Gender (M)						
Male	131 (36.6)	82 (53.9)	.493 (.335, .724)	<.001	.468 (.304, .720)	.001
Female	227 (63.4)	70 (46.1)				
Civil status						
Married	171 (47.8)	84 (55.3)	.740 (.506, 1.084)	.122	.690 (.459, 1.037)	.074
Else	187 (52.2)	68 (44.7)				
Edu						
College & above	120 (33.5)	56 (36.8)	.864 (.582, 1.284)	.471		
Else	238 (66.5)	96 (63.2)				
Monthly income						
≥ 50 USD	193 (53.9)	79c (52.0)	1.081 (.739, 1.581)	.688		
< 50 USD	165 (46.1)	73 (48.0)				
Family history						
Yes	81 (22.7)	29 (19.1)	1.963 (1.256, 2.000)	.366		
No	235 (65.6)	120 (78.9)				
Central Obesity						
WC >35’ (F) or ≤ 40’ (M)	125 (34.9)	22 (14.5)	3.170 (1.920, 5.234)	<.001	1.478 (.803, 2.723)	.210
WC ≤ 35’ (F) or > 40’ (M)	233 (65.1)	130 (85.5)				
BMI						
Over-weight & Obesity	113 (31.6)	27 (17.8)	2.135 (1.332, 3.423)	.002	1.283 (.764, 2.154)	.346
Normal-BMI	245 (68.4)	125 (82.2)	1			
High FBS or Confirmed DM						
FBS ≥ 126 mg/dl or DM	113 (31.6)	27 (17.8)	2.135 (1.332, 3.423)	.002	1.739 (1.052, 2.875)	.031
FBS < 126 mg/dl or No DM	245 (68.4)	125 (82.2)				
SBP >120 & DBP >80 or HTN						
Pre-HTN and HTN	214 (59.9)	71 (46.7)	1.707 (1.165, 2.503)	.006	1.473 (.960, 2.261)	.076
Normal BP	143 (40.1)	81 (53.3)				
MUH_NW						
Yes	224 (62.6)	100 (65.8)	.869 (.584, 1.294)	.490		
Else	134 (37.4)	52 (34.2)				
MHO						
Yes	87 (24.3)	30 (19.7)	1.306 (0.819, 2.082)	.263		
Else	271 (75.7)	122 (80.3)				
WHtR						
>.50	248 (69.3)	74 (48.7)	2.376 (1.610, 3.508)	<.001	1.676 (1.052, 2.669)	.030
Else	110 (30.7)	78 (51.3)				
HIV status						
HIV+	202 (70.1)	86 (29.9)	.994 (.678, 1.457)	.974		
HIV-	156 (70.3)	66 (29.7)				

Moderate to high, ≥ 3.5 (M) & ≥ 3.0 (F); Normal, < 3.5 (M) & < 3.0 (F).
MHO showed no significant association with TC/HDL-C ratio (Table 2).

Before and after adjusting for confounders, none of the covariates were shown to have a significant link with increasing LDL/HDL-C ratio (Table 3). Age, central obesity, BMI, DM, HTN, and WHtR were all found to be linked with higher TG/HDL-C ratios, but after controlling for variables, only DM (hyperglycemia) was shown to be substantially associated with high TG/HDL-C ratio (AOR = 1.597, 95 percent CI (1.061, 2.404; \(p = .025 \)). Details are shown in Table 4.

Discussion

Only a few studies have been found in the scholarly literature that compares HIV-negative ambulatory patients with chronic illnesses to HIV-positive patients. Dyslipidemia has been linked to a higher risk of CVD in...
Table 4. Triglyceride to high-density lipoprotein cholesterol ratio among study participants at the Zewditu Memorial Hospital in Addis Ababa, Ethiopia, 2021.

Characteristics	TG/HDL ratio	Moderate to high	Normal	COR (95% CI)	P value	AOR (95% CI)	P value
Age ≥45 years							
>40 years							
≥45 years							
Gender (M)							
Male							
Female							
Civil status							
Married							
Else							
Address							
Kirkos							
Else							
Educational status							
College & above							
Else							
Monthly income							
≥50 USD							
<50 USD							
Family history							
Yes							
No							
Central Obesity							
WC >35’ (F) or ≤40’ (M)							
BMI							
Over-weight & Obesity							
Normal-BMI							
High FBS or DM							
FBS ≥126 or confirmed DM							
FBS <126 or confirmed DM							
High BP or confirmed HTN							
SBP>120 mmHg and DBP> 80mmHg							
Else							
MUH_NM							
BMI <125 Kg/m² but with DM/HTN							
Else							
MHO							
BMI ≥125 Kg/m² but without DM/HTN							
Else							
WHtR >.50							
HIV status							
HIV +							
HIV-							

Central obesity (AOR = .316, 95 percent CI (.186,.538), p < .001), diabetes (AOR = .330, 95 percent CI (.203,.535), p < .001), and high blood pressure (AOR = .339 (.227,.507), p < .001) were all less common in HIV+ participants than in HIV- participants. WHtR (AOR = 2.973 (1.831, 4.828), p < .001) was the only type of dyslipidemia factor that was substantially linked with HIV+ subjects.
ambulatory diabetic patients, and it is also seen often in HIV-positive patients on protease inhibitors. In clinical settings, assessing and quantifying risk in these populations through comparative research could be highly useful for optimal drug therapy management. The purpose of this study was to use data from ambulatory individuals’ lipid profiles to predict the risk of CVD.

Table 1 shows that people aged 45 and up had a two-fold increased risk of CVD in the form of elevated TG (AOR = 2.161, 95% CI (1.311, 3.563), p = .003), elevated TC (AOR = 2.017, 95% CI (1.092, 3.726), p = .025), and a decline in HDL (AOR = 2.410, 95% CI (1.569, 3.701), regardless of the HIV status. Several studies have found a link between age and dyslipidemia, albeit the specific

| Table 5. Dyslipidemia based on HIV status of the participants at the zewditu memorial hospital in Addis Ababa, Ethiopia, 2021. |
|-----------|-----------------|-----------------|-----------------|-----------------|-----------------|
| BMI | HIV-positive | HIV-negative | COR (95% CI) | P value | AOR (95% CI) | P value |
| Over-weight and obesity (≥ 25 kg/m²) | 92 (31.9) | 63 (28.4) | 1.185 (0.808, 1.737) | .386 |
| Normal (<25 kg/m²) | 196 (68.1) | 159 (71.6) | | |
| Obesity (NCEP) | | | | |
| WC >35 inch in Women and >40 inch in men | 68 (23.6) | 79 (35.6) | .559 (0.380, 0.824) | .003 | .316 (0.186, 0.538) | <.001 |
| WC ≤35 inch in Women and ≤40 inch in men | 220 (76.4) | 143 (64.4) | | |
| High FBS or DM | | | | |
| FBS ≥126 or confirmed DM | 50 (17.4) | 90 (40.5) | .308 (0.205, 0.462) | <.001 | .330 (0.203, 0.535) | <.001 |
| Else (<126) | 238 (82.6) | 132 (59.5) | | |
| High BP or confirmed HTN | | | | |
| SBP>120 mmHg and DBP> 80mmHg | 129 (44.9) | 156 (70.3) | .345 (.345, .500) | <.001 | .339 (0.227, 0.507) | <.001 |
| Else | 158 (55.1) | 66 (29.7) | | |
| MUH_NM | | | | |
| BMI <125 Kg/m² but with DM/HTN | 168 (58.3) | 156 (70.3) | .592 (0.409, 0.858) | .006 | .583 (0.317, 0.974) | .084 |
| Else | 120 (41.7) | 66 (29.7) | | |
| MHO | | | | |
| BMI ≥125 Kg/m² but without DM/HTN | 80 (27.8) | 37 (16.7) | 1.923 (1.242, 2.977) | .003 | 1.206 (0.563, 2.582) | .630 |
| Else | 208 (72.2) | 185 (83.3) | | |
| High TC | | | | |
| ≥240 mg/dl | 41 (14.2) | 36 (16.2) | .536 (.527, 1.395) | .858 | |
| <240 mg/dl | 247 (85.8) | 186 (83.8) | | |
| High Non-HDL-C | | | | |
| ≥130 mg/dl | 163 (56.6) | 131 (59.0) | .906 (.635, 1.292) | .585 | |
| <130 mg/dl | 125 (43.4) | 91 (41.0) | | |
| High LDL-C | | | | |
| ≥160 mg/dl | 42 (14.6) | 31 (14.0) | 1.052 (.637, 1.736) | .843 | |
| <160 mg/dl | 246 (85.4) | 191 (86.0) | | |
| LDL/HDL ratio | | | | |
| ≥1 = 2.5 moderate to high | 137 (47.6) | 101 (45.5) | 1.087 (.765, 1.544) | .642 | |
| <2.5 normal | 151 (52.4) | 121 (54.5) | | |
| TC/HDL ratio | | | | |
| ≥1 = 3.5 (M) & ≥3.0 (F) Moderate to high | 202 (70.1) | 156 (70.3) | .994 (.678, 1.457) | .974 | |
| <3.5 (M) & <3.0 (F) Normal | 86 (29.9) | 66 (29.7) | | |
| TG/HDL ratio | | | | |
| ≥1 = 3.5 (M) & ≥3.0 (F) Moderate to high | 123 (42.7) | 92 (41.4) | 1.053 (.739, 1.502) | .774 | |
| <3.5 (M) & <3.0 (F) Normal | 165 (57.3) | 130 (58.6) | | |
| WHtR >.50 | 193 (67.0) | 199 (58.1) | 1.465 (1.019, 2.165) | .039 | 2.973 (1.831, 4.828) | <.001 |
| Else | 95 (33.0) | 93 (41.9) | | | |
cut-off age differs depending on the scientific literature.45,46 According to one study, the prevalence of dyslipidemia rises in tandem with the progression of diabetes mellitus as people get older.47 As liver and kidney function deteriorates with age, it is also possible that this will affect lipid metabolism, leading to dyslipidemia.48,49

Males were found to have a greater risk of dyslipidemia due to higher TG (AOR = 2.107, 95% CI (1.401, 3.167), p < .001), and lower HDL (AOR = 6.982, 95% CI (4.686, 10.402), p < .001). A high TG and low HDL describe atherogenic dyslipidemia and insulin resistance, which is also a risk factor for CAD and stroke.50,51 Atherogenic dyslipidemia was more common in men than in women, which could be because most men smoke and are genetically predisposed to lipid-related CVD. This finding was supported by several other investigations.52,53

As stated above concerning gender, smoking has been linked to a higher TG level (p = .032), with smokers being two times more likely than non-smokers.54 The likely explanation is that smoking impairs the function of lipoprotein lipase and hormone-sensitive lipase, both of which are regulated by insulin and catecholamines, causing dysregulation and an increase in TG levels.55 This finding was consistent with prior research that linked cigarette smoking to an increased risk of atherosclerosis.56 and also several other studies.57–89

Alcohol consumption was also linked to higher TG levels, with the odds being doubled in alcoholics compared to non-alcoholics (p = .022). Epidemiologic data generally demonstrate an inverse relationship between CAD risk and moderate alcohol consumption, which is characterized in various ways but roughly equates to 1 to 2 pints of beer per day.60 The influence of fasting TG level arising from the effect of alcohol in liver cells can be explained in connection with the involvement of underlying genetic disorders of TG metabolism in increasing TG with alcohol consumption.60,61 This finding is in agreement with several other studies.58,59,62

Lipoprotein ratios can provide information on risk variables that are difficult to measure using traditional methods, and they may be a better reflection of metabolic and clinical interactions between lipid fractions.53,64 Because lipoprotein ratios are underutilized in cardiovascular prevention but can help with risk assessment,65 we used the three most frequent types of ratios to predict the risks in this investigation as shown in table 2.

An increase in WHtR resulted in a twofold rise in a high-Tc/HDL ratio (AOR = 1.676, 95% CI (1.052, 2.669), p = .030). Because the population’s height remains constant over time, the only element that influences this could become the WC. According to the findings, utilizing WHtR as an indicator of ‘early health risk’ is easier and more accurate than using a matrix based on BMI or waist circumference alone.66 Hence, the measurement could be used to track the risk of CAD and NAFLD.

A high level of FBS (≥ 126 mg/dl) and/or verified DM (p = .017) were also connected to a two-fold greater risk of having an elevated TC/HDL ratio. The association between a high WHtR and DM is best explained by the fact that these individuals are prone to metabolic disturbances that can lead to central obesity. This is well addressed in various scientific findings.66,67 Individuals who have increased WHtR could also be prone to develop, CAD, NAFLD, or stroke.68–72 This ratio determination has also been shown to be a better predictor of CIMT advancement than HDL-C or LDL-C alone in a prospective investigation.73,74

Table 4 shows the other lipoprotein ratio, TG/HDL-C, and only DM (hyperglycemia) was shown to be significantly linked with it (AOR = 1.597, 95% CI (1.061, 2.404; p = .025), indicating metabolic dysregulation in this population and its contribution to dyslipidemia once again. The TG/HDL-C ratio can be used to detect IR, cardiometabolic risk, and CVD (9, 10). As a result, a widely available and standardized measurement of the TG/HDL-C ratio is expected to aid clinicians in identifying individuals who are not just IR but also have dyslipidemia.15 A high TG/HDL-C ratio has also been revealed to be a strong predictor of major adverse cardiac events (MACE) such as cardiac death, nonfatal MI, or reintervention, as well as an independent predictor of long-term all-cause mortality.75 Several studies have also used the TG/HDL-C ratio to determine childhood obesity-related CVD.76,77

As shown in table 5, dyslipidemias and related factors were compared based on HIV status, and variables like central obesity (AOR = .316, 95% CI (186, 538), p < .001), diabetes (AOR = .330, 95% CI (203, 535), p < .001), and high blood pressure (AOR = .339 (.227,.507), p < .001) were all less common in the HIV + participants than in the HIV-negatives. The most plausible explanation is that two-thirds of HIV-negative participants had diabetes mellitus (DM), and the rest had other conditions that contributed to the disparities. Diabetes mellitus, as previously noted, is the leading cause of dyslipidemia and CVD in persons aged 45 and up.78,79

\textbf{Limitation of the study}

Because the data was only obtained from a single hospital, the study cannot be considered a representative of all HIV + and HIV − ambulatory patients. Again, since clinical events or surrogate evidence such as coronary plaque was not determined using computed CT, the lipid-related CVD risk calculated in this study may not represent a genuine CVD. During the follow-up phase, good application of preventive clinical guidelines and a healthy lifestyle modification can also help to reduce the risk of CVD.
Conclusion

Dyslipidemia is linked to advanced age, male gender, diabetes, smoking, alcohol consumption, and increased waist circumference, all of which could lead to an increased risk of CVD, according to the study. The study also revealed that the risks are less common in HIV+ people than in HIV-negative ambulatory patients. Diabetes mellitus was the most common cause of dyslipidemia and cardiovascular disease in people aged 45 and up.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the Deutscher Akademischer Austauschdienst.

ORCID iD

Minyahil A. Woldu https://orcid.org/0000-0002-3163-0326

References

1. Liu H-H and Li J-J. Aging and dyslipidemia: a review of potential mechanisms. Aging Research Reviews 2015; 19: 43–52.
2. Rabar S, Harker M, O’Flynn N, et al. Lipid modification and cardiovascular risk assessment for the primary and secondary prevention of cardiovascular disease: summary of updated NICE guidance. Br Med J 2014; 349:g4356.
3. Thayer JF and Lane RD. The role of vagal function in the risk for cardiovascular disease and mortality. Biol Psychol 2007; 74: 224–242.
4. Packard C, Caslake M and Shepherd J. The role of small, dense low-density lipoprotein (LDL): a new look. Int J Cardiol 2000; 74: S17–S22.
5. Imes CC and Austin MA. Low-density lipoprotein cholesterol, apolipoprotein B, and risk of coronary heart disease: from familial hyperlipidemia to genomics. Biol Res Nurs 2013; 15: 292–308.
6. Gotto AM Jr and Moon JE. Management of cardiovascular risk: the importance of meeting lipid targets. Am J Cardiol 2012; 110: 3A – 14A.
7. Kontush A.HDL and Reverse Remnant-Cholesterol Transport (RRT): Relevance to Cardiovascular Disease. Trends Mol Med 2020; 26:1086-100.
8. Grundy SM, Arai H, Barter P, et al. An international atherosclerosis society position paper: global recommendations for the management of dyslipidemia-full report. J Clin Lipidol 2014; 8: 29–60.
9. Klop B, Elte JWF and Cabezas MC. Dyslipidemia in obesity: mechanisms and potential targets. Nutrients 2013; 5: 1218–1240.
10. Despres J. Intra-abdominal obesity: an untreated risk factor for type 2 diabetes and cardiovascular disease. J Endocrinol Invest 2006; 29: 77.
11. Shen J, Goyal A and Sperling L. The emerging epidemic of dyslipidemia in obesity: mechanisms and potential targets. Nutrients 2013; 5: 1218–1240.
12. Caleyachetty R, Thomas GN, Toulios KA, et al. Metabolically healthy obese and incident cardiovascular disease events among 3.5 million men and women. J Am Coll Cardiol 2017; 70: 1429–1437.
13. Mathew H, Farr OM and Mantzoros CS. Metabolic health and weight: understanding metabolically unhealthy normal weight or metabolically healthy obese patients. Metab, Clin Exp 2016; 65: 73–80.
14. Stefan N, Schick F and Häring H-U. Causes, characteristics, and consequences of metabolically unhealthy normal weight in humans. Cell Metab 2017; 26: 292–300.
15. Borrayo G, Basurto L, González-Escudero E, et al. TG/HDL-C RATIO AS CARDIO-METABOLIC BIOMARKER EVEN IN NORMAL WEIGHT WOMEN. Acta Endocrinol (Buchar) 2018; 14: 261–267.
16. Eckel N, Mühlenbruch K, Meidtner K, et al. Characterization of metabolically unhealthy normal-weight individuals: risk factors and their associations with type 2 diabetes. Metabolism 2015; 64: 862–871.
17. Blüher M. Metabolically healthy obesity. Endocr Rev 2020; 41: 405–420.
18. Park S-H, Choi S-J, Lee K-S, et al. Waist circumference and waist-to-height ratio as predictors of cardiovascular disease risk in Korean adults. Circ J 2009; 73: 1643–1650.
19. Zamponi M, Mazzali G, Zoico E, et al. Health consequences of obesity in the elderly: a review of four unresolved questions. Int J Obes 2005; 29: 1011–1029.
20. Primeau V, Codere L, Karelis A, et al. Characterizing the profile of metabolically healthy obese patients. Int J Obes 2011; 35: 971–981.
21. Kang ES, Yun YS, Park SW, et al. Limitation of the validity of the homeostasis model assessment as an index of insulin resistance in Korea. Metabolism 2005; 54: 206–211.
22. Placzkowska S, Pavlik-Sobecka L, Kokot I, et al. Indirect insulin resistance detection: current clinical trends and laboratory limitations. Biomedical Papers of the Medical Faculty of Palacky University in Olomouc 2019; 163: 187–99.
23. Ortiz-Lopez C, Lomonaco R, Orsak B, et al. Prevalence of prediabetes and diabetes and metabolic profile of patients with nonalcoholic fatty liver disease (NAFLD). Diabetes Care 2012; 35: 873–878.
24. Tanase DM, Gosav EM, Costea CF, et al. The intricate relationship between type 2 diabetes mellitus (T2DM), insulin resistance (IR), and nonalcoholic fatty liver disease (NAFLD). J Diabetes Res 2020; 2020: 3920196.
organ damage in overweight/obese children: the CARITALY study. *Nutr Metab Cardiovasc Dis* 2015; 25: 489–494.

77. Di Bonito P, Moio N, Scilla C, et al. Usefulness of the high triglyceride-to-HDL cholesterol ratio to identify cardiometabolic risk factors and preclinical signs of organ damage in outpatient children. *Diabetes Care* 2012; 35: 158–162.

78. Ginsberg HN and MacCallum PR. The obesity, metabolic syndrome, and type 2 diabetes mellitus pandemic: part I. Increased cardiovascular disease risk and the importance of atherogenic dyslipidemia in persons with the metabolic syndrome and type 2 diabetes mellitus. *J Cardiometab Syndr* 2009; 4: 113–119.

79. Johnson ML, Pietz K, Battleman DS, et al. Prevalence of comorbid hypertension and dyslipidemia and associated cardiovascular disease. *Heart Dis.* 2004; 2: 3.

80. Lee HJ, Shim YS, Yoon JS, et al. Distribution of waist-to-height ratio and cardiometabolic risk in children and adolescents: a population-based study. *Sci Rep.* 2021; 11: 9524.

Annexes

Annex 1. Target cholesterol levels by age and sex

Age and sex	Total cholesterol	Non-HDL cholesterol	LDL cholesterol
People aged 19 years and younger			
(children and teens)			
Borderline: 170–199 mg/dL	Borderline: 120–144 mg/dL	Borderline: 110–129 mg/dL	
High: Greater than or equal to	High: Greater than or equal to	High: Greater than or equal to	
200 mg/dL	145 mg/dL	130 mg/dL	
Men aged 20 years and older			
Borderline: 200–239 mg/dL	Borderline: 120–144 mg/dL	Borderline: 110–129 mg/dL	
High: Greater than or equal to	High: Greater than or equal to	High: Greater than or equal to	
239 mg/dL	145 mg/dL	130 mg/dL	
Women aged 20 years and older			
Borderline: 200–239 mg/dL	Borderline: 120–144 mg/dL	Borderline: 110–129 mg/dL	
High: Greater than or equal to	High: Greater than or equal to	High: Greater than or equal to	
239 mg/dL	145 mg/dL	130 mg/dL	

Annex 2. High total, non-HDL, and LDL cholesterol levels by age and sex

Age and sex	Total cholesterol	Non-HDL cholesterol	LDL cholesterol
People aged 19 years and younger			
(children and teens)			
Borderline: 170–199 mg/dL	Borderline: 120–144 mg/dL	Borderline: 110–129 mg/dL	
High: Greater than or equal to	High: Greater than or equal to	High: Greater than or equal to	
200 mg/dL	145 mg/dL	130 mg/dL	
Men aged 20 years and older			
Borderline: 200–239 mg/dL	Borderline: 120–144 mg/dL	Borderline: 110–129 mg/dL	
High: Greater than or equal to	High: Greater than or equal to	High: Greater than or equal to	
239 mg/dL	145 mg/dL	130 mg/dL	
Women aged 20 years and older			
Borderline: 200–239 mg/dL	Borderline: 120–144 mg/dL	Borderline: 110–129 mg/dL	
High: Greater than or equal to	High: Greater than or equal to	High: Greater than or equal to	
239 mg/dL	145 mg/dL	130 mg/dL	