ORIGINAL RESEARCH

Anxiety and Depression Following Aortic Valve Replacement

Zachary K. Wegermann, MD; Michael J. Mack, MD; Suzanne V. Arnold, MD, MHA; Christin A. Thompson, PhD; Michael Ryan, MS; Candace Gunnarsson, EdD; Susan Strong, MA; David J. Cohen, MD, MSc; Karen P. Alexander, MD; J. Matthew Brennan, MD, MPH

BACKGROUND: The aim of this study was to identify patients vulnerable for anxiety and/or depression following aortic valve replacement (AVR) and to evaluate factors that may mitigate this risk.

METHODS AND RESULTS: This is a retrospective cohort study conducted using a claims database; 18,990 patients (1/2013–12/2018) ≥55 years of age with 6 months of pre-AVR data were identified. Anxiety and/or depression risk was compared at 3 months, 6 months, and 1 year following transcatheter aortic valve replacement or surgical AVR (SAVR) after risk adjustment using logistic regression and Cox proportional hazards models. Separate models were estimated for patients with and without surgical complications and discharge location. Patients with SAVR experienced a higher relative risk of anxiety and/or depression at 3 months (12.4% versus 8.8%; adjusted hazard ratio [HR] 1.39 [95% CI, 1.19–1.63]) and 6 months (15.6% versus 13.0%; adjusted HR, 1.24 [95% CI, 1.08–1.42]), with this difference narrowing by 12 months (20.1% versus 19.3%; adjusted HR, 1.14 [95% CI, 1.01–1.29]) after AVR. This association was most pronounced among patients discharged to home, with patients with SAVR having a higher relative risk of anxiety and/or depression. In patients who experienced operative complications, there was no difference between SAVR and transcatheter aortic valve replacement. However, among patients without operative complications, patients with SAVR had an increased risk of postoperative anxiety and/or depression at 3 months (adjusted HR, 1.47 [95% CI, 1.23–1.75]) and 6 months (adjusted HR 1.26 [95% CI, 1.08–1.46]), but not at 12 months.

CONCLUSIONS: There is an associated reduction in the risk of new-onset anxiety and/or depression among patients undergoing transcatheter aortic valve replacement (versus SAVR), particularly in the first 3 and 6 months following treatment.

Key Words: aortic valve replacement ■ postoperative anxiety ■ postoperative depression ■ surgical aortic valve replacement ■ transcatheter aortic valve replacement

Generalized anxiety disorder and major depressive disorder, commonly referred to as anxiety and depression, are 2 of the most commonly diagnosed and disabling mental health conditions in the United States.1,2 Both conditions have a higher prevalence in patients with cardiovascular disease3 and are often comorbid.4 Undertreated mental health conditions, particularly anxiety and depression, are recognized risk factors for adverse outcomes among patients with acute and chronic cardiac conditions, including acute myocardial infarction5–7 and heart failure.8 Pre- and postoperative anxiety and depression are associated with increased morbidity and reduced survival following cardiac surgery.9–11 Worse medical and surgical outcomes in these settings may be driven by the interaction between mental health and health behaviors, which includes the impact of anxiety and depression on smoking, substance abuse, decreased physical activity, poor medication compliance, decreased dietary adherence, social isolation, and decreased willingness to seek medical attention.12–14 Compared with surgical aortic
valve replacement (SAVR), transcatheter aortic valve replacement (TAVR) is associated with equivalent or improved morbidity and mortality across all levels of surgical risk. Because TAVR is less invasive than traditional SAVR, patient recovery times are more rapid, and hospital length of stay is reduced. With a faster return to an improved quality of life among patients with transfemoral TAVR, one may hypothesize that patients with TAVR experience a lower incidence of postoperative anxiety and/or depression. Nevertheless, this hypothesis has not been studied previously. Additionally, it is unknown whether certain groups of patients undergoing AVR are at higher risk of developing postoperative anxiety and/or depression and whether interventions such as cardiac rehabilitation may help modify this risk.

In this analysis, we sought to (1) compare the incidence of new-onset anxiety and/or depression among patients treated with TAVR and SAVR and (2) identify features associated with an increased incidence of these conditions.

This is the largest study to date examining the prevalence and factors associated with anxiety and/or depression following aortic valve replacement.

This study also examines the role of complications and discharge location on postoperative anxiety and/or depression.

Mental health issues (anxiety and or depression) are common (20%) following aortic valve replacement.

Patients undergoing transcatheter aortic valve replacement have a reduced risk of depression and/or anxiety compared with surgical aortic valve replacement.

This difference appears to be most pronounced in the first 3 to 6 months, in patients discharged to home, and in patients without postoperative complications.

Mental health issues (anxiety and or depression) are common (20%) following aortic valve replacement.

Patients undergoing transcatheter aortic valve replacement have a reduced risk of depression and/or anxiety compared with surgical aortic valve replacement.

This difference appears to be most pronounced in the first 3 to 6 months, in patients discharged to home, and in patients without postoperative complications.

What Are the Clinical Implications?

Mental health issues (anxiety and or depression) are common (20%) following aortic valve replacement.

Patients undergoing transcatheter aortic valve replacement have a reduced risk of depression and/or anxiety compared with surgical aortic valve replacement.

This difference appears to be most pronounced in the first 3 to 6 months, in patients discharged to home, and in patients without postoperative complications.

The initial cohort for this study was defined as patients ≥55 years of age who underwent AVR between January 2013 and December 2018. A subanalysis of patients with index AVR between 2016 and 2018 was conducted to evaluate the consistency of results in more recent data years. The results of this subanalysis are provided in Tables S1, S2, and Figure S1. Patients were grouped according to whether they underwent TAVR or SAVR. AVR procedures were identified using International Classification of Diseases, Ninth Revision (ICD-9) and Tenth Revision (ICD-10) codes (Table S3).

Data were excluded for cases of AVR coding discrepancies between database files (facility versus physician files) or patients who underwent both procedures to ensure the groups remained as specific as possible (n=356). Patients were required to have at least 6 months of enrollment data, defined as complete medical and pharmacy data, available before AVR to be included in the analysis to determine baseline rates and control for anxiety and depression in the 2 groups (patients with a record of anxiety or depression in the 6-month baseline period were not included in this analysis, n=7784).

Outcomes of Interest

The primary outcome of this study was time to development of incident anxiety and/or depression following AVR among patients treated with TAVR and SAVR. This composite end point was measured in days from the date of discharge from AVR index hospitalization (time
zero) through 3 months, time zero through 6 months, and time zero through 12 months of follow-up. Anxiety and depression were defined in this study as a patient having (1) a record of an inpatient or outpatient visit with a diagnosis code of either anxiety, depression, or both25 (Table S4); or (2) 1 or more prescriptions for an antianxiety or antidepressant medication, based on clinician author’s expert rules (see Table S5 for full medication listing). To evaluate the impact of including pharmacy claims in this outcome definition, a Kaplan–Meier curve was generated where patients were identified using diagnostic codes only.

Analyses were run to assess variables of interest with a potential to affect postoperative depression and anxiety; these included dementia, Elixhauser Comorbidity Index score (as a surrogate for a patient’s overall health status), surgical complications, discharge destination following AVR, and utilization of outpatient cardiac rehabilitation after AVR. History of dementia before or at the time of AVR was collected, although dementia type and severity was not available. Patient demographics and information on comorbid conditions were collected from all inpatient and outpatient claims available 6 months before AVR and used to calculate each patient’s Elixhauser Comorbidity Index, a previously described tool for predicting the risk of mortality based on chronic medical conditions.26 Surgical complications were defined as 1 or more diagnoses of a condition known to be a complication of surgery27 as defined in Table S6. Discharge status was treated as a dichotomous variable, with patients either discharged home or discharged not to home, including locations such as a nursing facility or rehabilitation center.

Cardiac rehabilitation utilization28 (Table S7) was treated as a time-dependent, dichotomous variable measured as time to third visit to make sure patients were reasonably established in the rehabilitation program.

Statistical Analysis

Summary statistics were compiled for patient demographics, comorbidities, and index characteristics for patients with TAVR and SAVR. Time to the composite end point for each cohort (TAVR and SAVR) was assessed using an adjusted survival curve, treating death and end of enrollment as censoring events. The relative risk of developing the anxiety and/or depression composite end point was estimated using the proportional hazard Cox regression model for each cohort at 3, 6, and 12 months following AVR. The Cox model was used since each patient had a different total follow-up period for the outcomes measured and, therefore, had different times they were at risk for each event. All models were estimated using the partial likelihood method, and model adequacy was assessed using residual diagnostics. To test the proportional hazard assumption, the interactions of time and the independent variables were tested for statistical significance. Separate models were generated on the basis of whether or not patients experienced a surgical complication, as well as discharge location. Hazard ratios (HR) and CIs comparing SAVR to TAVR were reported for each model, with any CI including or crossing one considered statistically not significant. Covariates were chosen based on the Andersen Behavioral Model Framework for factors that have a potential to impact postoperative anxiety and depression. The covariates included in each model were as follows: age, sex, region, insurance coverage, dementia, surgical complications, discharge status, and Elixhauser score. Cardiac rehabilitation was also considered as a time-dependent covariate. In surgical complication and discharge status subset models, the respective variables were not included. All statistical analyses were performed using SAS software version 9.4 (SAS Institute, Inc., Cary, NC).

RESULTS

Of 33 002 patients undergoing AVR from January 2013 through December 2018, 18 990 (58%) were at least ≥55 years of age with at least 6 months of data available before their AVR. Patients with a record of anxiety or depression before AVR (n=5566, 29.3%) were removed, reducing the final sample to 13 421 (TAVR, n=3095; SAVR, n=10 329) (Figure 1). Patients treated with TAVR (versus SAVR) were older (80.8 versus 68.5 years old, \(P<0.0001\)), more likely female (40.0% versus 26.6%, \(P<0.0001\)), with a higher rate of dementia (1.4% versus 0.3%, \(P<0.0001\)), and a greater burden of comorbidities (Elixhauser Comorbidity Index score 6.7 versus 5.4, \(P<0.0001\)) as reported in Table 1.

Figure 2 displays an unadjusted Kaplan–Meier curve for time to new-onset anxiety and/or depression for all patients with AVR when the outcome variable is defined by using both diagnosis codes and pharmacy claims (DXRX) and simply using diagnosis codes. At 1 year post AVR, 20% of patients experienced new-onset depression and/or anxiety or filled a new prescription for treatment of the same (DXRX), while 10% of patients experienced new-onset anxiety and/or depression as measured by diagnosis code alone. Interestingly, 50% of those patients diagnosed with new-onset anxiety and/or depression had not been treated with medication at the 1-year follow-up. This may indicate they had accessed other treatment options, such as counseling, which has been shown to be effective; however, this was not measured in the present study.

The adjusted 1-year survival curve for time to incident (new-onset) anxiety and/or depression (DXRX)
for TAVR versus SAVR is shown in Figure 3 and the adjusted HRs at 3, 6, and 12 months are provided in Table 2. Patients with SAVR experienced a higher relative risk of anxiety and/or depression (DXRX) at 3 months (12.4% versus 8.8%; adjusted HR, 1.39 [95% CI, 1.19–1.63]) and 6 months (15.6% versus 13.0%; adjusted HR, 1.24 [95% CI, 1.08–1.42]), with this difference narrowing by 12 months (20.1% versus 19.3%; adjusted HR, 1.14 [95% CI, 1.01–1.29]) after AVR. This association was most pronounced among patients discharged to home, with patients with SAVR having a higher relative risk of anxiety and/or depression (DXRX) at 3 months (adjusted HR, 1.66 [95% CI, 1.37, 2.01]), 6 months (adjusted HR, 1.39 [95% CI, 1.18–1.64]), and 12 months (adjusted HR, 1.23 [95% CI, 1.07–1.42]). No difference in anxiety and/or depression was observed across treatments among those discharged to a location other than home.

In patients who experienced operative complications, there was no difference in the risk of the composite anxiety and/or depression end point (DXRX) between SAVR and TAVR. However, among patients without operative complications, SAVR was associated with an increased risk of developing postoperative anxiety and/or depression at 3 months (adjusted HR, 1.47 [95% CI, 1.23–1.75]) and 6 months (adjusted...
HR, 1.26 [95% CI, 1.08–1.46]), but not at 12 months (adjusted HR 1.13 [95% CI, 0.99–1.30]). Finally, when sustained engagement in outpatient cardiac rehabilitation (≥3 sessions) in the first 3 months (adjusted HR, 0.94 [95% CI, 0.84–1.05]), 6 months (adjusted HR, 0.93 [95% CI, 0.84–1.02]), or 12 months (adjusted HR, 0.92 [95% CI, 0.84–1.01]) following AVR was included as a time-varying covariate, it was not statistically significant; hence, it did not affect the likelihood of developing the composite anxiety and/or depression end point. Furthermore, interactions between AVR and discharge status, as well as surgical complications and AVR were explored but were not significant. All model outputs are provided in Table S8.

Given the evolving landscape of TAVR and SAVR populations, a subgroup analysis was performed using the population from 2016 to 2018 inclusive of intermediate-risk commercial TAVR. Similar results were noted when compared with the overall population (Table S2 and Figure S1). Patients with SAVR were at higher risk of new-onset anxiety and/or depression at 3 months (adjusted HR, 1.54 [95% CI, 1.21–1.95]) and 6 months (adjusted HR, 1.33 [95% CI, 1.08–1.64]) compared with TAVR, but there was no significant difference between the 2 groups at 12 months following AVR (Table S2; adjusted HR, 1.17 [95% CI, 0.97–1.41]).

DISCUSSION

In this largest-to-date study, we have demonstrated high rates of incident anxiety and/or depression following AVR. Additionally, there is an associated reduction in the relative risk of anxiety and/or depression among patients undergoing TAVR (versus SAVR), most apparent in the first 3 and 6 months following treatment. These findings highlight an important issue affecting those recovering from AVR and indicate a need for further research to mitigate this risk, especially among the most vulnerable patients.

The high incidence of anxiety and/or depression following AVR observed in this study is consistent with prior work. Drudi et al. found that 31.5% of patients screened positive for prevalent depression following surgical AVR and Faria et al. reported that 51.9% of patients experienced prevalent depression symptoms at 6 months following surgical AVR. Similar rates have been reported in patients undergoing coronary artery bypass grafting. Despite a substantial early reduction in the risk of anxiety and/or depression with TAVR (versus SAVR), there was only a 1% absolute reduction in the incidence of new-onset anxiety and/or depression with TAVR at 1 year. Ultimately, the incidence of anxiety and depression remained high following AVR,
regardless of operative modality, and suggests that screening for mood disorders should be incorporated into the pre- and postoperative assessment as suggested by other studies.30

The incidence of anxiety and/or depression was high among patients with operative complications (24.2%). Findings of our study show that patients with operative complications were equally likely to experience anxiety and/or depression, independent of treatment (TAVR versus SAVR). Previously published work has reported an association between operative complications and postoperative anxiety and depression following surgical AVR.29 Changes to quality of life or prognosis driven by the operative complications are likely explanatory factors for development of postoperative anxiety and depression. Effects of operative complications on development of postoperative anxiety or depression likely supersede any effects from the procedure itself, as noted by the similar risk between patients with TAVR and SAVR with operative complications at all measured time points. This reinforces prior findings that operative complications are an important risk factor for postoperative anxiety and depression.

Similar to the results seen in patients with operative complications, patients who were not discharged to home from their index hospitalization after AVR had a high overall incidence of postoperative anxiety and/or depression (33.9%), and a similar incidence of postoperative anxiety and/or depression was observed in these patients following TAVR compared with SAVR. Published research has not addressed discharge location as a risk factor for postoperative anxiety and/or depression. This association may be a reflection of the interrelated nature of mental and physical health, with discharge location indicating health-related issues that cannot easily be measured, such as limitations in physical activity following surgery31 and increased postoperative pain.32 This association may also reflect the gap between patient expectations of a smooth recovery and the reality of a complicated postoperative course. These data highlight the reality that while discharge to a location other than home may be necessary for the patient’s physical recovery, it can be a major blow to their mental health. Further work is needed to better understand this association and to develop strategies to support these vulnerable patients.

The TAVR and SAVR procedures have evolved over the years. Over time, smaller delivery catheters were used, intended to reduce the risk of major vascular injuries. Additionally, improvements in the TAVR

Figure 3. Adjusted 1-KM estimates showing time to new-onset anxiety following AVR in patients with TAVR and SAVR.

Adjusted 1-KM estimates showing time to the composite end point of new-onset anxiety and/or depression following AVR in patients having SAVR versus TAVR. AVR indicates aortic valve replacement; SAVR, surgical aortic valve replacement; and TAVR, transcatheter aortic valve replacement.
There are limitations to our study that should be acknowledged. First, our study focused on incident anxiety and depression and excluded patients with pre-AVR anxiety or depression. However, this was necessary for methodological reasons, not because prevalent anxiety or depression is unimportant.

Secondly, this was a retrospective cohort study using health care claims data. While this allowed for examination of the largest cohort on this topic to date, this type of study relies on the assumption that cases of anxiety and/or depression following AVR are accurately captured by either (1) diagnoses billed by providers; or (2) prescriptions filled by patients. The diagnosis codes used in this analysis have been previously validated, although prior work has suggested that the use of claims data alone may underestimate the incidence of anxiety and/or depression, since milder cases may not have been specifically billed or treated. Conversely, the use of pharmacy data to estimate cases of anxiety or depression may lead to overestimation because of use of antidepressants and anxiolytics for other indications, such as insomnia or chronic pain. Third, anxiety and depression are complex conditions, with a number of poorly understood and highly individualized factors contributing to their development. Consequently, there are a number of components that likely contribute to postoperative anxiety and depression that may not be captured in our models, potentially affecting the completeness of our risk adjustment. Finally, this analysis should be interpreted in light of the differences between the 2 AVR cohorts. The data set spans 2013 to 2018, so the majority of TAVR cases in the first 3 years of the primary analysis reflect inoperable and high surgical risk patients, with US Food and Drug Administration approval of intermediate-risk TAVR occurring in 2016. While differences between the 2 populations were adjusted for via multivariable modeling, it is impossible to fully account for all of the differences. As a result, findings would be expected to skew more in favor of SAVR (versus TAVR), because of the lower-risk profile of the SAVR cohort. Importantly, results from a subgroup analysis of the population from 2016 to 2018 after commercial approval of intermediate-risk TAVR showed results similar to those of the overall population, suggesting consistency of the results across risk strata.

CONCLUSIONS

Our study found an associated reduction in the risk of new-onset anxiety and/or depression among patients undergoing TAVR (versus SAVR), particularly in the first 3 and 6 months following treatment. More work is needed to better understand the causes of postoperative anxiety and depression, as well as effective interventions to combat the effects of anxiety and depression in the postoperative setting.

ARTICLE INFORMATION

Received October 19, 2021; accepted March 4, 2022.
Affiliations
Division of Cardiology, Department of Medicine, Duke University Health System, Durham, NC (Z.K.W., K.P.A., J.M.B.); Duke Clinical Research Institute, Durham, NC (Z.K.W., K.P.A., J.M.B.); Baylor Scott & White Health, Dallas, TX (M.J.M.); Saint Luke’s Mid America Heart Institute, University of Missouri-Kansas City, Kansas City, MO (S.V.A.); Edwards Lifesciences, Irvine, CA (C.A.T.); MPR Consulting, Cincinnati, OH (M.R.); Gunnarsson Consulting, Jupiter, FL (C.G.); Heart Valve Voice US, Washington, DC (S.S.); Cardiovascular Research Foundation (D.C.J.) and St. Francis Hospital, Roslyn, NY (D.J.C.).

Acknowledgments
We would like to acknowledge Erin Campbell, MS (Duke Clinical Research Institute) for her help with editorial support.

Sources of Funding
This analysis was funded by Edwards LifeSciences. The sponsor was not involved in direction of the analysis plan, data interpretation, or manuscript writing.

Disclosures
Dr Mack reports being Co-PI, Partner Trial (Edwards Lifesciences); Co-PI, Coapt Trial (Abbott); Study Chair, Apollo Trial (Medtronic); and travel expenses paid for trial-related activities. Dr Thompson reports being a full-time employee and shareholder of Edwards Lifesciences. Dr Gunnarsson and Michael Ryan are paid consultants to Edwards Lifesciences. Dr Cohen reports research grant support from Edwards Lifesciences, Abbott Vascular, Boston Scientific, Medtronic, Svelte, Volcano/Phillips, Corvia, Ancora Heart; and consulting income from Edwards Lifesciences, Abbott Vascular, Boston Scientific, Ancora Heart. Dr Brennan reports consulting and speaking fees from Edwards LifeSciences and Attirice, an advisory board commitment for CardioCare, and grant funding from the Burroughs Wellcome Fund. The remaining authors have no disclosures to report.

Supplemental Material
Tables S1–S8
Figure S1

REFERENCES
1. Hasin DS, Sarvet AL, Meyers JL, Saha TD, Ruan WJ, Stohl M, Grant BF. Epidemiology of adult DSM-5 major depressive disorder and its specifiers in the United States. JAMA Psychiatry. 2018;75:336–346. doi: 10.1001/jamapsychiatry.2017.4602
2. GBD 2016 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries in 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390:1211–1259. doi: 10.1016/S0140-6736(17)32154-2
3. Lichtman JH, Foeleicher ES, Blumenthal JA, Carney RM, Doering LV, Frasure-Smith N, Freedland KE, Jaffe AS, Lehtith-Limson EC, Sheps DS, et al.; American Heart Association Statistics Committee of the Council on Epidemiology and Prevention and the Council on Cardiovascular and Stroke Nursing. Depression as a risk factor for poor prognosis among patients with acute coronary syndrome: systematic review and recommendations: a scientific statement from the American Heart Association. Circulation. 2014;129:1350–1369. doi: 10.1161/ CIR.000000000000019
4. Bankier B, Januzzi JL, Littman AS. The high prevalence of multiple psychiatric disorders in stable outpatients with coronary heart disease. Psychosom Med. 2004;66:645–650. doi: 10.1016/j.psymed.2003.11.001
5. Bush DE, Ziegelstein RC, Tayback M, Richter D, Stevens S, Zalahsky H, Fauerbach JA. Even minimal symptoms of depression increase mortality risk after acute myocardial infarction. Am J Cardiol. 2001;88:337–341. doi: 10.1016/S0002-9149(01)01675-7
6. Meijer A, Conradi HJ, Bos EH, Thoms BD, van Melle JP, de Jonge P. Prognostic association of depression following myocardial infarction with mortality and cardiovascular events: a meta-analysis of 25 years of research. Gen Hosp Psychiatry. 2011;33:203–216. doi: 10.1016/j.genhosppsych.2011.02.007
7. Janszky I, Ahnve S, Lundberg I, Hemmingsson T. Early-onset depression, anxiety, and risk of subsequent coronary heart disease: 37-year follow-up of 49,321 young Swedish men. J Am Coll Cardiol. 2010;56:31–37. doi: 10.1016/j.jacc.2010.03.033
8. Sokorelli I, Pauws CW, Steyerberg EW, de Vries GJ, Rijstama JM, Tesanovic A, Kazmi S, Pellicori P, Cleland JG, Clark AL. Prognostic value of psychosocial factors for first and recurrent hospitalizations and mortality in heart failure patients: insights from the OPERA-HF study. Eur J Heart Fail. 2018;20:689–696. doi: 10.1002/ejhf.1112
9. Tully PJ, Baker RA. Depression, anxiety, and cardiac morbidity outcomes after coronary artery bypass surgery: a contemporary and practical review. J Geratr Cardiol. 2012;9:197–208. doi: 10.3724/ SP.J.1263.2011.12221
10. Drudi LM, Ades M, Turkdogan S, Huynh C, Lauck S, Webb JG, Piazza N, Martucci G, Langlois Y, Perrault LP, et al. Association of depression with mortality in older adults undergoing transcatheter or surgical aortic valve replacement. JAMA Cardiol. 2018;3:191–197. doi: 10.1001/jamacardio.2017.5064
11. Williams JB, Alexander KP, Morin JF, Langlois Y, Noizeux N, Perrault LP, Smolderen K, Arnold SV, Eisenberg MJ, Piliote L, et al. Preoperative anxiety as a predictor of mortality and major morbidity in patients aged >70 years undergoing cardiac surgery. Am J Cardiol. 2013;111:137–142. doi: 10.1016/j.amjcard.2012.08.080
12. Sin NL, Kumar AD, Gehi AK, Whooley MA. Direction of association between depressive symptoms and lifestyle behaviors in patients with coronary heart disease: the Heart and Soul Study. Ann Behav Med. 2016;50:523–532. doi: 10.1007/s12160-016-9777-9
13. Stapelberg NJ, Neumann DL, Shum DH, McConnell H, Hamilton-Craig I. A causal graphical map of the causal network of mechanisms underlying the relationship between major depressive disorder and coronary heart disease. Aust N Z J Psychiatry. 2011;45:351–369. doi: 10.3109/00048674.2011.570427
14. Jha MK, Qamar A, Vaduganathan M, Charney DS, Murrough JW. Screening and management of depression in patients with cardiovascular disease: JACC state-of-the-art review. J Am Coll Cardiol. 2019;73:1827–1845. doi: 10.1016/j.jacc.2019.01.041
15. Leon MB, Smith CR, Mack M, Miller DC, Moses JW, Svensson LG, Tuzcu EM, Webb JG, Fontana GP, Makkar RR, et al.; PARTNER Trial Investigators. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med. 2010;363:1597–1607. doi: 10.1056/NEJMoa1008232
16. Smith CR, Leon MB, Mack MJ, Miller DC, Moses JW, Svensson LG, Tuzcu EM, Webb JG, Fontana GP, Makkar RR, et al.; PARTNER Trial Investigators. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N Engl J Med. 2011;364:2187–2198. doi: 10.1056/NEJMoa103310
17. Popma JJ, Adams DH, Reardon MJ, Yakubov SJ, Kleiman NS, Heimansohn D, Hermiller J Jr, Hughes GC, Harrison JK, Cossel J, et al.; CoreValve United States Clinical Investigators. Transcatheter aortic valve replacement using a self-expanding bioprosthesis in patients with severe aortic stenosis at extreme risk for surgery. J Am Coll Cardiol. 2014;63:1972–1981. doi: 10.1016/j.jacc.2014.02.556
18. Leon MB, Smith CR, Mack MJ, Makkar RR, Svensson LG, Kodali SK, Trouhan VR, Tuzcu EM, Miller DC, Hermann HC, et al.; PARTNER 2 Investigators. Transcatheter or surgical aortic-valve replacement in intermediate-risk patients. N Engl J Med. 2016;374:1609–1620. doi: 10.1056/NEJMoa1514616
19. Reardon MJ, Van Mieghem NM, Popma JJ, Kleiman NS, Sandeegarda L, Mumtaz M, Adams DH, Deeb GM, Maini B, Gada H, et al. Surgical or transcatheter aortic-valve replacement in intermediate-risk patients. N Engl J Med. 2017;376:1321–1331. doi: 10.1056/NEJMoa1700456
20. Mack MJ, Leon MB, Trouhan VH, Makkar R, Kodali SK, Russo M, Kapadia SR, Malaisrie SC, Cohen DJ, Pibarot P, et al.; PARTNER 3 Investigators. Transcatheter aortic-valve replacement with a balloon-expandable valve in low-risk patients. N Engl J Med. 2019;380:1695–1705. doi: 10.1056/NEJMoa1814052
21. Popma JJ, Deeb GM, Yakubov SJ, Mumtaz M, Gada H, O’Hair D, Bajwa T, Heiser JC, Merhi W, Kleiman NS, et al.; Evolut Low Risk Trial Investigators. Transcatheter aortic-valve replacement with a self-expanding valve in low-risk patients. N Engl J Med. 2019;380:1695–1705. doi: 10.1056/NEJMoa1814052
22. Burrage M, Moore P, Cole C, Cox S, Lo WC, Rafter A, Garlick B, Garrahy P, Mundy J, Camuglia A. Transcatheter aortic valve replacement is associated with comparable clinical outcomes to open aortic valve surgery but with a reduced length of in-patient hospital stay: a systematic review and meta-analysis of randomised trials. Heart Lung Circ. 2017;26:285–296. doi: 10.1016/j.hlc.2016.07.011
23. Baron SJ, Arnold SV, Wang K, Magnuson EA, Chinnakondepal K, Makkar R, Herrmann HC, Kodali S, Thourani VH, Kapadia S, et al.; PARTNER 2 Investigators. Health status benefits of transcatheter vs surgical aortic valve replacement in patients with severe aortic stenosis at intermediate surgical risk: results from the PARTNER 2 randomized clinical trial. JAMA Cardiol. 2017;2:837–845. doi: 10.1001/jamacardio.2017.2039

24. Adamson DM, Chang S, Hansen LG. White paper: health research data for the real world: the MarketScan databases. Patient Privacy Rights website. Published January 2006. Available at: http://patientprivacyrights.org/wp-content/uploads/2011/06/Thomson-Medstat-white-paper.pdf. Accessed April 18, 2020.

25. Fiest KM, Patten SB, Wiebe S, Bulloch AG, Maxwell CJ, Jetté N. Validating screening tools for depression in epilepsy. Epilepsia. 2014;55:1642–1650. doi: 10.1111/epi.12754

26. Elixhauser A, Steiner C, Harris DR. Comorbidity measures for use with administrative data. Med Care. 1998;36:8–27. doi: 10.1097/00005650-199801000-00004

27. Risks: aortic valve replacement. NHS website. Updated December 20, 2018. Available at: nhs.uk/conditions/aortic-valve-replacement/risks. Accessed August 13, 2021.

28. Doll JA, Hellkamp A, Thomas L, Ho PM, Kontos MC, Whooley MA, Boyden TF, Peterson ED, Wang TY. Effectiveness of cardiac rehabilitation among older patients after acute myocardial infarction. Am Heart J. 2015;170:855–864. doi: 10.1016/j.ahj.2015.08.001

29. Faria J, Gomes M, Costa G, Marinho A, Gomes D, Lima F. Prevalence and risk analysis for depression after open-heart valve replacement surgery. Rev Port Cir Cardiothorac Vasc. 2014;21:31–35. doi: 10.1097/00003643-201406001-00042

30. Ho PM, Masoudi FA, Spertus JA, Peterson PN, Shroyer AL, McCarthy M Jr, Grover FL, Hammermeister KE, Rumsfeld JS. Depression predicts mortality following cardiac valve surgery. Ann Thorac Surg. 2005;79:1255–1259. doi: 10.1016/j.athoracsur.2004.09.047

31. Oterhals K, Hanssen TA, Haaverstad R, Nordrehaug JE, Eide GE, Norekval TM. Factors associated with poor self-reported health status after aortic valve replacement with or without concomitant bypass surgery. Eur J Cardiothorac Surg. 2015;48:283–292. doi: 10.1093/ejcts/ezu425

32. Ghoneim MM, O’Hara MW. Depression and postoperative complications: an overview. BMC Surg. 2016;16:5. doi: 10.1186/s12893-016-0120-y
Supplemental Material
Sub Analysis years 2016-2018

Table S1. Patient Characteristics.

	TAVR	SAVR	P-Value	
Total Patients	2,038	4,193		
Age			<.0001	
Median	82	64		
Mean	80.3	66.9		
Std Dev	8.8	8.4		
Sex			<.0001	
Male	1,211	3,140		
Female	827	1,053		
Region			<.0001	
Northeast	577	941	22.4	
North Central	584	1,291	30.8	
South	574	1,440	34.3	
West	302	512	12.2	
Missing/Unknown	1	9	0.2	
Insurance Coverage			<.0001	
Commercial	176	2,198	52.4	
Medicare	1,862	1,995	47.6	
Dementia	29	7	0.2	<.0001
Surgical Complications	101	762	18.2	<.0001
Discharge Status at Index			<.0001	
Not Home	154	564	13.5	
Home	1,788	3,394	80.9	
Death	96	235	5.6	
Elixhauser Comorbidity Index, mean (SD)	6.0	5.0	<.0001	
Congestive Heart Failure	1,553	1,785	42.6	<.0001
Peripheral Vascular Disorders	1,116	1,947	46.4	<.0001
Hypertension	1,888	3,538	84.4	<.0001
Chronic Pulmonary Disease	635	803	19.2	<.0001
Diabetes	809	1,379	32.9	<.0001
Renal Failure	615	474	11.3	<.0001
Liver Disease	149	225	5.4	0.0024
Cancer	321	357	8.5	<.0001
Obesity	377	1,072	25.6	<.0001
Table S2. Multivariable Results Cox Regressions 2016-2018 Time Period SAVR versus TAVR.

Time to Anxiety and/or Depression at 3 months, 6 months, and 12 months post AVR

Time Frame	Subset	Hazard Ratio with CI	P-Value
3 months	Overall	1.54 (1.21, 1.95)	0.0005
	Home	1.65 (1.24, 2.18)	0.0005
	Not Home	1.12 (0.70, 1.81)	0.6338
	With Complications	1.20 (0.59, 2.43)	0.6172
	No Complications	1.59 (1.22, 2.07)	0.0005
6 months	Overall	1.33 (1.08, 1.64)	0.0076
	Home	1.38 (1.09, 1.76)	0.0082
	Not Home	1.13 (0.72, 1.76)	0.6072
	With Complications	1.23 (0.65, 2.34)	0.5306
	No Complications	1.34 (1.07, 1.68)	0.0117
12 months	Overall	1.17 (0.97, 1.41)	0.1071
	Home	1.21 (0.97, 1.50)	0.0873
	Not Home	1.01 (0.67, 1.52)	0.9593
	With Complications	1.21 (0.66, 2.23)	0.544
	No Complications	1.16 (0.95, 1.42)	0.1569
Table S3. AVR procedure Codes International Classification of Diseases, Ninth Revision (ICD-9) and Tenth Revision (ICD-10) codes.

Code	Description	ICD Type
TAVR		
35.05	Endovascular replacement of aortic valve	9
35.06	Transapical replacement of aortic valve	9
02RF37Z	Replacement of Aortic Valve with Autologous Tissue Substitute, Percutaneous Approach	10
02RF38Z	Replacement of Aortic Valve with Zooplastic Tissue, Percutaneous Approach	10
02RF31Z	Replacement of Aortic Valve with Synthetic Substitute, Percutaneous Approach	10
02RF3KZ	Replacement of Aortic Valve with Nonautologous Tissue Substitute, Percutaneous Approach	10
02RF37H	Replacement of Aortic Valve with Autologous Tissue Substitute, Transapical, Percutaneous Approach	10
02RF38H	Replacement of Aortic Valve with Zooplastic Tissue, Transapical, Percutaneous Approach	10
02RF3JH	Replacement of Aortic Valve with Synthetic Substitute, Transapical, Percutaneous Approach	10
02RF3KH	Replacement of Aortic Valve with Nonautologous Tissue Substitute, Transapical, Percutaneous Approach	10
SAVR		
35.21	Open and other replacement of aortic valve with tissue graft	9
35.22	Open and other replacement of aortic valve	9
02RF07Z	Replacement of Aortic Valve with Autologous Tissue Substitute, Open Approach	10
02RF08Z	Replacement of Aortic Valve with Zooplastic Tissue, Open Approach	10
02RF0KZ	Replacement of Aortic Valve with Nonautologous Tissue Substitute, Open Approach	10
02RF47Z	Replacement of Aortic Valve with Autologous Tissue Substitute, Percutaneous Endoscopic Approach	10
02RF48Z	Replacement of Aortic Valve with Zooplastic Tissue, Percutaneous Endoscopic Approach	10
02RF4KZ	Replacement of Aortic Valve with Nonautologous Tissue Substitute, Percutaneous Endoscopic Approach	10
02RF0JZ	Replacement of Aortic Valve with Synthetic Substitute, Open Approach	10
02RF4JZ	Replacement of Aortic Valve with Synthetic Substitute, Percutaneous Endoscopic Approach	10
Code	Description	ICD Type
----------	---	----------
Anxiety		
293.84	Anxiety disorder in conditions classified elsewhere	9
300.0	Anxiety state, unspecified	9
300.02	Generalized anxiety disorder	9
300.09	Other anxiety states	9
300.23	Social phobia	9
300.29	Other isolated or specific phobias	9
308.0	Predominant disturbance of emotion	9
309.21	Separation anxiety disorder	9
309.24	Adjustment disorder with anxiety	9
309.28	Adjustment disorder with mixed anxiety and depressed mood	9
313.0	Overanxious disorder	9
F06.4	Anxiety disorder due to known physiological condition	10
F41.0	Panic disorder [episodic paroxysmal anxiety]	10
F41.1	Generalized anxiety disorder	10
F41.3	Other mixed anxiety disorders	10
F41.8	Other specified anxiety disorders	10
F41.9	Anxiety disorder, unspecified	10
F43.23	Adjustment disorder with mixed anxiety and depressed mood	10
Depression		
293.83	Mood disorder in conditions classified elsewhere	9
296.20-296.26	Major depressive disorder, single episode	9
296.30-296.36	Major depressive disorder, recurrent episode	9
296.82	Atypical depressive disorder	9
298	Depressive type psychosis	9
300.4	Dysthymic disorder	9
308	Predominant disturbance of emotion	9
309	Adjustment disorder with depressed mood	9
309.1	Prolonged depressive reaction	9
309.28	Adjustment disorder with mixed anxiety and depressed mood	9
311	Depressive disorder, not elsewhere classified	9
F06.31	Mood disorder due to known physiological condition with depressive features	10
F06.32	Mood disorder due to known physiological condition with major depressive-like episode	10
F06.34	Mood disorder due to known physiological condition with mixed features	10
F32.0	Major depressive disorder, single episode, mild	10
F32.1	Major depressive disorder, single episode, moderate	10
F32.2	Major depressive disorder, single episode, severe without psychotic features	10
F32.3	Major depressive disorder, single episode, severe with psychotic features	10
F32.4	Major depressive disorder, single episode, in partial remission	10
F32.5	Major depressive disorder, single episode, in full remission	10
F32.89	Other specified depressive episodes	10
F32.9	Major depressive disorder, recurrent, unspecified	10
F33.0	Major depressive disorder, recurrent, mild	10
F33.1	Major depressive disorder, recurrent, moderate	10
F33.2	Major depressive disorder, recurrent, severe without psychotic features	10
F33.3	Major depressive disorder, recurrent, severe with psychotic features	10
F33.40	Major depressive disorder, recurrent, in remission, unspecified	10
F33.42	Major depressive disorder, recurrent, in partial remission, unspecified	10
F33.42	Major depressive disorder, recurrent, in full remission, unspecified	10
F33.8	Other recurrent depressive episodes	10
F33.9	Major depressive disorder, recurrent, unspecified	10
F34.1	Dysthymic disorder	10
F41.8	Other specified anxiety disorders	10
F43.21	Adjustment disorder with depressed mood	10
F43.23	Adjustment disorder with mixed anxiety and depressed mood	10
Therapeutic Class	Generic Name	
-------------------------------------	--	
Anxiety		
ASH, Benzodiazepines	Alprazolam	
ASH, Benzodiazepines	Alprazolam; Medical Food	
Anxiolytic/Sedative/Hypnot NEC	Aspirin/Meprobamate	
Anxiolytic/Sedative/Hypnot NEC	Benactyzine/Meprobamate	
Anxiolytic/Sedative/Hypnot NEC	Buspirone Hydrochloride	
Anxiolytic/Sedative/Hypnot NEC	Chlormezanone	
Anticonvulsant, Benzodiazepine	Chlordiazepoxide Hydrochloride	
Anticonvulsant, Benzodiazepine	Chlordiazepoxide	
ASH, Benzodiazepines	Clorazepate Dipotassium	
ASH, Benzodiazepines	Dextrose/Lorazepam	
ASH, Benzodiazepines	Dextrose/Midazolam Hydrochloride	
ASH, Benzodiazepines	Diazepam	
ASH, Benzodiazepines	Diazepam; Lubricant	
ASH, Benzodiazepines	Diazepam; Medical Food	
ASH, Benzodiazepines	Estazolam	
ASH, Benzodiazepines	Flurazepam Hydrochloride	
ASH, Benzodiazepines	Halazepam	
ASH, Benzodiazepines	Lorazepam	
ASH, Benzodiazepines	Lorazepam/Sodium Chloride	
ASH, Benzodiazepines	Midazolam Hydrochloride	
ASH, Benzodiazepines	Midazolam Hydrochloride/Sodium Chloride	
ASH, Benzodiazepines	Oxazepam	
ASH, Benzodiazepines	Prazepam	
ASH, Benzodiazepines	Quazepam	
ASH, Benzodiazepines	Temazepam	
ASH, Benzodiazepines	Triazolam	
Depression		
Psychother, Tranq/Antipsychotic	Actophenazine Maleate	
Psychother, Antidepressants	Amantadine HCl; Amitriptyline HCl; Cyclobenzaprine H	
Psychother, Antidepressants	Amitriptyline HCl; Cream, Multi Ingredient	
Psychother, Antidepressants	Amitriptyline HCl; Medical Food	
Psychother, Antidepressants	Amitriptyline Hydrochloride	
Psychother, Tranq/Antipsychotic	Aripiprazole	
Psychother, Tranq/Antipsychotic	Aripiprazole Lauroxil	
Psychother, Tranq/Antipsychotic	Asenapine	
Psychother, Tranq/Antipsychotic	Brexpiprazole	
Psychother, Antidepressants	Bupropion HCl; Medical Food	
Psychother, Antidepressants	Bupropion Hydrochloride	
-----------------------------	--------------------------	
Psychother, Antidepressants	Citalopram Hydrobromide	
Psychother, Antidepressants	Clomipramine Hydrochloride	
Psychother, Antidepressants	Desipramine Hydrochloride	
Psychother, Antidepressants	Desvenlafaxine	
Psychother, Antidepressants	Desvenlafaxine Succinate	
Psychother, Antidepressants	Doxepin Hydrochloride	
Psychother, Antidepressants	Duloxetine Hydrochloride	
Psychother, Antidepressants	Duloxetine Hydrochloride; Lidocaine/MENThol	
Psychother, Antidepressants	Escitalopram Oxalate	
Psychother, Antidepressants	Fluoxetine HCl; Medical Food	
Psychother, Antidepressants	Fluoxetine Hydrochloride	
Psychother, Antidepressants	Fluvoxamine Maleate	
Psychother, Antidepressants	Imipramine Hydrochloride	
Psychother, Antidepressants	Imipramine Pamoate	
Psychother, Antidepressants	Isocarboxazid	
Psychother, Antidepressants	Levomilnacipran Hydrochloride	
Psychother, Tranq/Antipsychotic	Lurasidone Hydrochloride	
Psychother, Antidepressants	Mirtazapine	
Psychother, Antidepressants	Nortriptyline Hydrochloride	
Psychother, Tranq/Antipsychotic	Olanzapine	
Psychother, Tranq/Antipsychotic	Olanzapine Pamoate	
Psychother, Antidepressants	Paroxetine Hydrochloride	
Psychother, Antidepressants	Paroxetine Mesylate	
Psychother, Antidepressants	Phenelzine Sulfate	
Psychother, Antidepressants	Protriptyline Hydrochloride	
Psychother, Antidepressants	Selegiline	
Psychother, Antidepressants	Selegiline Hydrochloride	
Psychother, Antidepressants	Tranylcypromine Sulfate	
Psychother, Antidepressants	Trazodone HCl; Medical Food	
Psychother, Antidepressants	Trazodone Hydrochloride	
Psychother, Antidepressants	Trimipramine Maleate	
Psychother, Antidepressants	Venlafaxine Hydrochloride	
Psychother, Antidepressants	Vilazodone Hydrochloride	
Psychother, Antidepressants	Vortioxetine Hydrobromide	
Anxiety and Depression		
Psychother, Antidepressants	Amitriptyline Hydrochloride/Clordiazepoxide	
Psychother, Antidepressants	Amitriptyline Hydrochloride/Perphenazine	
Anticonvulsant, Benzodiazepine	Gabapentin; Medical Food	
Psychother, Antidepressants	Maprotiline Hydrochloride	
Psychother, Tranq/Antipsychotic	Quetiapine Fumarate	
Table S6. Surgical Complication Diagnoses defined by ICD-9, ICD-10 and CPT Codes.

Complication	ICD-9 Coding	ICD-10 Coding	CPT Coding
Septicemia	998.59 + (038.xx or 790.7)	T81.4XXA + (A40.##, A41.##, or R78.81)	
Postoperative Infection	998.51, 998.59	K68.11, T81.4XXA	
Respiratory Failure	518.51	J95.82#	
Aortic Rupture	(997.2, 997.79, or 998.89) +	T81.71#A + (I71.1, I71.3, I71.5, or I71.8)	
	(441.1, 441.3, 441.5, or 441.6)		
Acute Kidney Injury	997.5 + 584.x	N99.0 + N17.#	
Stroke	997.02 + (430-432, 433.x1, or 434.x1)	(G97.3# or G97.5#) + (I60.##-I62.##, I97.81#, I97.82#) + I63.##	
Vascular Complication	997.2, 997.79	T81.71#A, T71.72#A	
Hemorrhage	998.11, 998.12	D78.0#, D78.2#, D78.31, D78.32, E36.0#, E89.81#, E89.820, E89.821, G97.3#, G97.5#, G97.61, G97.62, H59.1#, H59.31#, H59.32#, H59.33#, H59.34#, H95.2#, H95.4#, H95.51, H95.52, I97.4#, I97.61#, I97.62, I97.620, I97.621, I97.63#, J95.6#, J95.83#, J95.860, J95.861, K91.6#, K91.84#, K91.870, K91.871, L76.0#, L76.2#, L76.31, L76.32, M96.81#, M96.83#, M96.840, M96.841, N99.6#, N99.82#, N99.840, or N99.841	
Atrial Fibrillation	997.1 + 427.31	(I97.88 or I97.89) + (I48.0, I48.1, I48.2, or I48.91)	
Extended Ventilator Use	96.72	5A1955Z	94002 + 99403 (for 3 days or more)
Code	Description		
--------	--		
93797	Physician or other healthcare professional services for outpatient cardiac		
	rehabilitation, without continuous ECG monitoring (per session)		
93798	Physician or other healthcare professional services for outpatient cardiac		
	rehabilitation, with continuous ECG monitoring (per session)		
G0422	Intensive cardiac rehabilitation; with or without continuous ECG monitoring		
	with exercise, per session		
G0423	Intensive cardiac rehabilitation; with or without continuous ECG monitoring		
	without exercise, per session		
S9472	Cardiac rehabilitation program, non-physician provider, per diem		
Table S8. Regression output for all models.

Outcome	Dataset	Variable	Hazard Ratio	HR Lower	HR Upper	P-Value
3 Months	Overall	SAVR vs TAVR	1.39	1.19	1.63	<.0001
3 Months	Overall	Age (per unit increase)	1.00	0.99	1.01	0.5446
3 Months	Overall	Male vs Female	0.81	0.72	0.90	<.0001
3 Months	Overall	West (yes vs no)	0.96	0.82	1.12	0.5796
3 Months	Overall	Commercial (yes vs no)	1.02	0.85	1.23	0.8018
3 Months	Overall	Elixhauser Comorbidity Index (per unit increase)	1.04	1.01	1.06	0.0023
3 Months	Overall	Dementia (yes vs no)	1.40	0.80	2.44	0.2384
3 Months	Overall	Complications (yes vs no)	1.30	1.16	1.47	<.0001
3 Months	Overall	Home (yes vs no)	0.47	0.42	0.53	<.0001
3 Months	Overall	Outpatient Rehab (yes vs no)	0.94	0.84	1.05	0.2350
3 Months	Home	SAVR vs TAVR	1.66	1.37	2.01	<.0001
3 Months	Home	Age (per unit increase)	1.00	0.99	1.01	0.6939
3 Months	Home	Male vs Female	0.81	0.71	0.92	0.0012
3 Months	Home	West (yes vs no)	0.93	0.77	1.11	0.4141
3 Months	Home	Commercial (yes vs no)	1.01	0.81	1.25	0.9468
3 Months	Home	Elixhauser Comorbidity Index (per unit increase)	1.04	1.01	1.07	0.0083
3 Months	Home	Dementia (yes vs no)	1.65	0.78	3.49	0.1881
3 Months	Home	Complications (yes vs no)	1.33	1.14	1.55	0.0003
3 Months	Home	Outpatient Rehab (yes vs no)	0.97	0.85	1.10	0.5951
3 Months	Not Home	SAVR vs TAVR	0.87	0.66	1.16	0.3443
3 Months	Not Home	Age (per unit increase)	1.00	0.98	1.01	0.6246
3 Months	Not Home	Male vs Female	0.81	0.67	0.99	0.0351
3 Months	Not Home	West (yes vs no)	1.05	0.79	1.39	0.7474
3 Months	Not Home	Commercial (yes vs no)	1.00	0.69	1.44	0.9922
3 Months	Not Home	Elixhauser Comorbidity Index (per unit increase)	1.03	0.99	1.07	0.1442
3 Months	Not Home	Dementia (yes vs no)	1.14	0.49	2.69	0.7610
3 Months	Not Home	Complications (yes vs no)	1.26	1.03	1.53	0.0253
3 Months	Not Home	Outpatient Rehab (yes vs no)	0.84	0.67	1.06	0.1452
3 Months	With Complications	SAVR vs TAVR	1.06	0.71	1.57	0.7840
3 Months	With Complications	Age (per unit increase)	0.99	0.97	1.01	0.2901
3 Months	With Complications	Male vs Female	0.78	0.63	0.97	0.0273
3 Months	With Complications	West (yes vs no)	0.94	0.67	1.31	0.7087
3 Months	With Complications	Commercial (yes vs no)	0.93	0.65	1.33	0.6833
3 Months	With Complications	Elixhauser Comorbidity Index (per unit increase)	1.02	0.97	1.07	0.4577
3 Months	With Complications	Dementia (yes vs no)	0.37	0.05	2.51	0.3079
3 Months	With Complications	Home (yes vs no)	0.50	0.40	0.62	<.0001
3 Months	With Complications	Outpatient Rehab (yes vs no)	0.88	0.70	1.11	0.2915
3 Months	No Complications	SAVR vs TAVR	1.47	1.23	1.75	<.0001
3 Months	No Complications	Age (per unit increase)	1.00	0.99	1.01	0.9168
3 Months	No Complications	Male vs Female	0.81	0.72	0.92	0.0011
3 Months	No Complications	West (yes vs no)	0.96	0.81	1.15	0.6765
3 Months	No Complications	Commercial (yes vs no)	1.06	0.85	1.31	0.6249
3 Months	No Complications	Elixhauser Comorbidity Index (per unit increase)	1.04	1.02	1.07	0.0024
3 Months	No Complications	Dementia (yes vs no)	1.86	1.06	3.27	0.0320
--------------------------	--------------------------	--------------------------	-------	-------	-------	
3 Months	No Complications	Home (yes vs no)	0.46	0.40	0.54	<.0001
3 Months	No Complications	Outpatient Rehab (yes vs no)	0.95	0.84	1.08	0.4106
6 Months	Overall	SAVR vs TAVR	1.24	1.08	1.42	0.0026
6 Months	Overall	Age (per unit increase)	1.00	0.99	1.01	0.4061
6 Months	Overall	Male vs Female	0.80	0.73	0.88	<.0001
6 Months	Overall	West (yes vs no)	0.95	0.83	1.09	0.4634
6 Months	Overall	Commercial (yes vs no)	1.03	0.87	1.21	0.7704
6 Months	Overall	Elixhauser Comorbidity Index (per unit increase)	1.04	1.02	1.06	0.0001
6 Months	Overall	Dementia (yes vs no)	1.52	0.93	2.46	0.0938
6 Months	Overall	Complications (yes vs no)	1.22	1.10	1.37	0.0004
6 Months	Overall	Home (yes vs no)	0.48	0.43	0.54	<.0001
6 Months	Overall	Outpatient Rehab (yes vs no)	0.93	0.84	1.02	0.1230
6 Months	Home	SAVR vs TAVR	1.39	1.18	1.64	<.0001
6 Months	Home	Age (per unit increase)	1.00	0.99	1.01	0.5748
6 Months	Home	Male vs Female	0.79	0.70	0.88	<.0001
6 Months	Home	West (yes vs no)	0.95	0.81	1.12	0.5253
6 Months	Home	Commercial (yes vs no)	1.00	0.82	1.21	0.9713
6 Months	Home	Elixhauser Comorbidity Index (per unit increase)	1.04	1.02	1.07	0.0020
6 Months	Home	Dementia (yes vs no)	1.80	0.97	3.37	0.0646
6 Months	Home	Complications (yes vs no)	1.23	1.07	1.42	0.0036
6 Months	Home	Outpatient Rehab (yes vs no)	0.97	0.86	1.08	0.5701
6 Months	Not Home	SAVR vs TAVR	0.89	0.68	1.15	0.3739
6 Months	Not Home	Age (per unit increase)	1.00	0.98	1.01	0.6134
6 Months	Not Home	Male vs Female	0.85	0.71	1.01	0.0714
6 Months	Not Home	West (yes vs no)	0.95	0.72	1.25	0.7244
6 Months	Not Home	Commercial (yes vs no)	1.09	0.78	1.53	0.6021
6 Months	Not Home	Elixhauser Comorbidity Index (per unit increase)	1.04	1.01	1.08	0.0265
6 Months	Not Home	Dementia (yes vs no)	1.20	0.55	2.61	0.6507
6 Months	Not Home	Complications (yes vs no)	1.19	0.99	1.43	0.0666
6 Months	Not Home	Outpatient Rehab (yes vs no)	0.81	0.65	0.99	0.0426
6 Months	No Complications	SAVR vs TAVR	1.11	0.78	1.59	0.5597
6 Months	No Complications	Age (per unit increase)	0.99	0.98	1.01	0.4582
6 Months	No Complications	Male vs Female	0.75	0.61	0.93	0.0069
6 Months	No Complications	West (yes vs no)	0.94	0.69	1.28	0.6905
6 Months	No Complications	Commercial (yes vs no)	0.95	0.67	1.33	0.7531
6 Months	No Complications	Elixhauser Comorbidity Index (per unit increase)	1.04	1.00	1.09	0.0573
6 Months	No Complications	Dementia (yes vs no)	0.30	0.04	2.09	0.2261
6 Months	No Complications	Home (yes vs no)	0.51	0.41	0.63	<.0001
6 Months	No Complications	Outpatient Rehab (yes vs no)	0.88	0.71	1.08	0.2201
6 Months	NOTCOMP	SAVR vs TAVR	1.26	1.08	1.46	0.0035
6 Months	NOTCOMP	Age (per unit increase)	1.00	0.99	1.01	0.6106
6 Months	NOTCOMP	Male vs Female	0.82	0.73	0.91	0.0003
6 Months	NOTCOMP	West (yes vs no)	0.95	0.82	1.11	0.5526
6 Months	NOTCOMP	Commercial (yes vs no)	1.05	0.87	1.27	0.6833
6 Months	NOTCOMP	Elixhauser Comorbidity Index (per unit increase)	1.04	1.02	1.07	0.0008
6 Months	NOTCOMP	Dementia (yes vs no)	2.05	1.26	3.32	0.0037
6 Months	NOTCOMP	Home (yes vs no)	0.47	0.41	0.54	<.0001
6 Months	NOTCOMP	Outpatient Rehab (yes vs no)	0.94	0.84	1.05	0.2608
12 Months	Overall	SAVR vs TAVR	1.14	1.01	1.29	0.0376
-----------	---------	--------------	------	------	------	--------
12 Months	Overall	Age (per unit increase)	1.00	0.99	1.01	0.6910
12 Months	Overall	Male vs Female	0.80	0.73	0.87	<0.001
12 Months	Overall	West (yes vs no)	0.95	0.84	1.08	0.4266
12 Months	Overall	Commercial (yes vs no)	1.06	0.91	1.23	0.4764
12 Months	Overall	Elixhauser Comorbidity Index (per unit increase)	1.05	1.03	1.07	<0.001
12 Months	Overall	Dementia (yes vs no)	1.39	0.87	2.23	0.1745
12 Months	Overall	Complications (yes vs no)	1.17	1.05	1.30	0.0030
12 Months	Overall	Home (yes vs no)	0.51	0.46	0.57	<0.001
12 Months	Overall	Outpatient Rehab (yes vs no)	0.92	0.84	1.01	0.0659
12 Months	Home	SAVR vs TAVR	1.23	1.07	1.42	0.0041
12 Months	Home	Age (per unit increase)	1.00	0.99	1.01	0.9165
12 Months	Home	Male vs Female	0.78	0.70	0.86	<0.001
12 Months	Home	West (yes vs no)	0.93	0.80	1.07	0.2989
12 Months	Home	Commercial (yes vs no)	1.05	0.89	1.25	0.5646
12 Months	Home	Elixhauser Comorbidity Index (per unit increase)	1.05	1.03	1.08	<0.001
12 Months	Home	Dementia (yes vs no)	1.68	0.95	3.00	0.0770
12 Months	Home	Complications (yes vs no)	1.20	1.06	1.36	0.0048
12 Months	Home	Outpatient Rehab (yes vs no)	0.96	0.87	1.06	0.4093
12 Months	Not Home	SAVR vs TAVR	0.89	0.69	1.13	0.3237
12 Months	Not Home	Age (per unit increase)	1.00	0.98	1.01	0.5823
12 Months	Not Home	Male vs Female	0.86	0.73	1.02	0.0773
12 Months	Not Home	West (yes vs no)	1.02	0.80	1.31	0.8683
12 Months	Not Home	Commercial (yes vs no)	1.05	0.76	1.44	0.7835
12 Months	Not Home	Elixhauser Comorbidity Index (per unit increase)	1.04	1.01	1.07	0.0209
12 Months	Not Home	Dementia (yes vs no)	1.04	0.46	2.31	0.9309
12 Months	Not Home	Complications (yes vs no)	1.09	0.92	1.30	0.3241
12 Months	Not Home	Outpatient Rehab (yes vs no)	0.80	0.66	0.98	0.0271
12 Months	No Complications	SAVR vs TAVR	1.14	0.82	1.60	0.4357
12 Months	With Complications	Age (per unit increase)	0.99	0.98	1.01	0.3674
12 Months	With Complications	Male vs Female	0.76	0.62	0.92	0.0041
12 Months	With Complications	West (yes vs no)	0.93	0.69	1.24	0.6070
12 Months	With Complications	Commercial (yes vs no)	0.89	0.65	1.23	0.4745
12 Months	With Complications	Elixhauser Comorbidity Index (per unit increase)	1.05	1.01	1.09	0.0231
12 Months	With Complications	Dementia (yes vs no)	0.26	0.04	1.84	0.1781
12 Months	With Complications	Home (yes vs no)	0.57	0.47	0.69	<0.001
12 Months	With Complications	Outpatient Rehab (yes vs no)	0.87	0.71	1.05	0.1435
12 Months	NOTCOMP	SAVR vs TAVR	1.13	0.99	1.30	0.0675
12 Months	NOTCOMP	Age (per unit increase)	1.00	0.99	1.01	0.9553
12 Months	NOTCOMP	Male vs Female	0.81	0.73	0.89	<0.001
12 Months	NOTCOMP	West (yes vs no)	0.96	0.83	1.10	0.5313
12 Months	NOTCOMP	Commercial (yes vs no)	1.11	0.94	1.32	0.2251
12 Months	NOTCOMP	Elixhauser Comorbidity Index (per unit increase)	1.05	1.03	1.07	<0.001
12 Months	NOTCOMP	Dementia (yes vs no)	1.88	1.18	3.01	0.0084
12 Months	NOTCOMP	Home (yes vs no)	0.49	0.44	0.56	<0.001
12 Months	NOTCOMP	Outpatient Rehab (yes vs no)	0.93	0.84	1.03	0.1800
Figure S1. Time to Anxiety and/or Depression 2016-2018 Time Period.