How to construct a upper triangular matrix that satisfy the quadratic polynomial equation with different roots

Ivan Gargate and Michael Gargate

Abstract. Let R be an associative ring with identity 1. We describe all matrices in $T_n(R)$ the ring of $n \times n$ upper triangular matrices over $R (n \in \mathbb{N})$, and $T_\infty(R)$ the ring of infinite upper triangular matrices over R, satisfying the quadratic polynomial equation $x^2 - rx + s = 0$. For such propose we assume that the above polynomial have two different roots in R. Moreover, in the case that R in finite, we compute the number of all matrices to solves the matrix equation $A^2 - rA + sI = 0$, where I is the identity matrix.

1. Introduction

Let R be an associative ring with identity 1. Denote by $T_n(R)$ the $n \times n$ upper triangular groups with entries in R and $T_\infty(R)$ the ring of infinite upper triangular matrices over R. There are several authors who have works over this spaces, for instance, Slowik [2] show how to construct an involution matrix over these spaces, Hou [1] prove the similar results for idempotent matrices and Gargate in [4] compute the number of all involutions over the incidence algebras $\mathcal{I}(X, \mathbb{K})$ where X is a finite poset and \mathbb{K} is a finite field. Recently Gargate [5] compute the number of coninvolution matrices over the special rings: the Gaussian Integers module p and the Quartenion Integers module p, with p an odd prime number. Remember that various special matrices satisfy some polynomial equations, for instance, idempotent matrices satisfies $x^2 - x = 0$ and involution matrices satisfies $x^2 - 1 = 0$.

In the present article the authors generalizes the results of [2] and [1] on a broader class of matrices that satisfy the polynomial equations $x^2 - rx + s = 0$ with the condition that the polynomial has two different roots in R. We investigate how to construct these special matrices and compute the total of these matrices when R is a finite ring.

Our main results is the followings Theorem:

Theorem 1.1. Assume that R is an associative ring with identity 1. Let M be either the group $T_n(K)$ or $T_\infty(K)$ for some $n \in \mathbb{N}$ and denote by I the identity matrix of M. Consider the quadratic polynomial equation $x^2 - rx + s = 0$ and assume that this equation has two different roots $a, b \in R$ such that $a - b$ is not a right zero divisor. Then a matrix $A \in M$ satisfies the quadratic equation of the type

$$A^2 - rA + sI = 0,$$

if and only if A is described by the following statements:

Key words and phrases. triangular matrix, infinite triangular matrix.
(i) For all \(1 \leq i \leq n\), we have \(a_{ii} \in \{a, b\}\) with \(a, b\) different roots of the quadratic equation \(x^2 - rx + s = 0\), \(r = a + b\) and \(s = ab\).

(ii) For all pairs of indices \(1 \leq i < j \leq n\) such that \(a_{ii} = a_{jj}\), then \(a_{ij}\) equals to

\[
a_{ij} = \begin{cases}
0 & \text{if } j = i + 1 \\
-\frac{1}{a_{ii} - \text{another root}} \sum_{p=i+1}^{j-1} a_{ip} a_{pj} & \text{if } j > i + 1.
\end{cases}
\]

(iii) For \(i < j\), such that \(a_{ii} \neq a_{jj}\), then \(a_{ij}\) can be chosen arbitrarily.

Next using the above theorem we will prove the following result

Theorem 1.2. Let \(R\) be an associative ring with identity 1 and \(|R| = q\) the number of the elements in \(R\). Consider the quadratic polynomial equation \(x^2 - rx + s = 0\) and assume that this equation has two different roots \(a, b \in R\) such that \(a - b\) is not a right zero divisor. Then the total number of \(n \times n\) upper triangular matrices that satisfy the quadratic equation \(A^2 - rA + sI = 0\) is equal to

\[
\sum_{n_1 + n_2 = n \atop 0 < n_i} \binom{n}{n_1 n_2} q^{n_1 n_2}.
\]

where \(n_1, n_2\) are the number of times that appears \(a, b\) in the diagonal respectively.

2. Matrix solutions of the equation \(A^2 - rA + sI = 0\)

We start our considerations we notice the following property.

Remark 2.1. Assume that \(R\) is an associative ring with identity 1, \(M = T_\infty(R)\) or \(M = T_n(R)\) for some \(n \in \mathbb{N}\). If \(A \in M\) is a block matrix such that

\[
A = \begin{bmatrix} B_{11} & B_{12} & B_{13} & \cdots \\
B_{21} & B_{22} & B_{23} & \cdots \\
B_{31} & B_{32} & B_{33} & \cdots \\
& \ddots & \ddots & \ddots \\
& & & \ddots & \ddots \\
\end{bmatrix}
\]

where \(B_{ii}\) are square matrices and \(A\) satisfies the quadratic equation \(A^2 - rA + sI = 0\), then for all \(i\), the matrices \(B_{ii}\) satisfy the quadratic equation as well.

Proof. Since \(A\) satisfies the quadratic equation \(A^2 - rA + sI = 0\), we have

\[
A^2 - rA + sI = \begin{bmatrix} B_{11}^2 - rB_{11} + sI & * & * & \cdots \\
* & B_{22}^2 - rB_{22} + sI & * & \cdots \\
* & * & B_{33}^2 - rB_{33} + sI & \cdots \\
& \ddots & \ddots & \ddots \\
\end{bmatrix},
\]

and we obtain \(B_{ii}^2 - rB_{ii} + sI = 0\) for all \(i\) by comparing entries of the diagonal position in the matrix equality above. \(\square\)

Now, we can prove our first main result.

Proof of Theorem 1.1. Let \(A = \sum_{ij} a_{ij} E_{ij} \in M\) be a matrix that satisfies the equation (\text{H}). As we have that \(a\) and \(b\) are different roots of the quadratic equation then \(r = a + b\) and \(s = ab\).

Since \(A^2 - rA + sI = 0\) our coefficients must satisfy the equations:
\[
\begin{align*}
\begin{aligned}
a_{ii}^2 - r \cdot a_{ii} + s &= 0, \\
a_{ii}a_{i,i+i} + a_{i,i+1}a_{i+1,i+1} - r \cdot a_{i,i+1} &= 0, \\
a_{ii}a_{i,i+2} + a_{i,i+1}a_{i+1,i+2} + a_{i,i+2}a_{i+2,i+2} - r \cdot a_{i,i+2} &= 0, \\
& \vdots \\
\sum_{p=0}^{m} a_{i,i+p}a_{i+p,i+m} - r \cdot a_{i,i+m} &= 0, \\
& \vdots
\end{aligned}
\end{align*}
\]

(3)

Since \(A \) satisfies the equation (1) and \(a_{ii}^2 - r \cdot a_{ii} + s = 0 \) then \(a_{ii} \in \{a, b\} \).

We need to proved that (ii) and (iii) given in Theorem 1.1 hold. We use induction on \(j-i \).

Assume that \(j-i = 1 \). We have

\[
a_{ii}a_{i,i+i} + a_{i,i+1}a_{i+1,i+1} - r \cdot a_{i,i+1} = 0,
\]

(4)

from the family of equations (3). One can see that:

- If \(a_{ii} = a_{i+1,i+1} \), of the equation (4) we have
 \[
 2a_{ii}a_{i,i+1} - r \cdot a_{i,i+1} = 0,
 \]
 or
 \[
 a_{i,i+1} (2a_{ii} - r) = 0,
 \]
 then \(a_{i,i+1} = 0 \) since \(a_{ii} \in \{a, b\} \) and \(r = a + b \) with \(a \neq b \).

- If \(a_{ii} \neq a_{i+1,i+1} \), then of the equation (4) we obtain
 \[
 a_{i,i+1} (a_{ii} + a_{i+1,i+1} - r) = 0,
 \]
 thus \(a_{i,i+1} \) can be chosen arbitrarily, since \(r = a + b = a_{ii} + a_{i+1,i+1} \).

So the first super diagonal entries of the matrix \(A \) fulfill (ii) and (iii).

Now, suppose that \(j-i = m > 1 \) and consider the \((i, i+m) \) entries of the equation (1), and we have the \((m+1) \)-st family of the equation (3):

\[
\sum_{p=0}^{m} a_{i,i+p}a_{i+p,i+m} - r \cdot a_{i,i+m} = 0,
\]

or

\[
a_{i,i+m} (a_{ii} + a_{i+m,i+m} - r) + \sum_{p=1}^{m-1} a_{i,i+p}a_{i+p,i+m} = 0,
\]

(5)
• If \(a_{ii} = a_{i+m,i+m} \) then \((a_{ii} + a_{i+m,i+m} - r) \neq 0\) and we obtain that

\[
a_{i,i+m} = -\frac{1}{(a_{ii} + a_{i+m,i+m} - r)} \sum_{p=1}^{m-1} a_{i,i+p}a_{i+p,i+m}
\]

where \(r = a + b \) and

\[
(a_{ii} + a_{i+m,i+m} - r) = (a_{ii} - \text{other root}) = \begin{cases}
 a - b & \text{if } a_{ii} = a_{i+m,i+m} = a \\
 b - a & \text{if } a_{ii} = a_{i+m,i+m} = b
\end{cases}
\]

So (ii) of Theorem 1.1 hold.

• If \(a_{ii} \neq a_{i+m,i+m} \) then we must have \(a_{ii} + a_{i+m,i+m} - r = 0 \) since \(a_{ii} \in \{a, b\} \) and \(r = a + b \). So we get

\[
\sum_{p=1}^{m-1} a_{i,i+p}a_{i+p,i+m} = 0
\]

from equation (5).

Now, consider \(A(m, i) \) the submatrix of \(A \) defined as

\[
A(m, i) = \begin{bmatrix}
 a_{ii} & a_{i,i+1} & \cdots & a_{i,i+m} \\
 a_{i+1,i} & a_{i+1,i+1} & \cdots & a_{i+1,i+m} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{i+m,i} & a_{i+m,i+1} & \cdots & a_{i+m,i+m}
\end{bmatrix}
\]

From Remark (2.1) one can see that \(A \) satisfies the quadratic equation (1) if and only if \(A(m, i) \) also satisfies the equation (1) for all \(m \) and \(i \).

We write this matrix as a block matrix such that

\[
A(m, i) = \begin{bmatrix}
 a_{ii} & \alpha & a_{i,i+m} \\
 0 & \beta & \gamma \\
 0 & 0 & a_{i+m,i+m}
\end{bmatrix}
\]

(8)

Since \(A \) satisfies the equation (1) and by Remark (2.1) we have that the matrices

\[
A(m - 1, i) = \begin{bmatrix}
 a_{ii} & \alpha \\
 0 & \beta
\end{bmatrix}
\]

and

\[
A(m - 1, i + 1) = \begin{bmatrix}
 \beta & \gamma \\
 0 & a_{i+m,i+m}
\end{bmatrix}
\]

also satisfies the equation (1). So, we obtain that

\[a_{ii}\alpha + \alpha\beta - r\alpha = 0\]

and

\[\beta\gamma + \gamma a_{i+m,i+m} - r\gamma = 0\].

Thus

\[
(A(m, i))^2 - rA(m, i) + sI = \begin{bmatrix}
 0 & 0 & a_{ii}a_{i,i+m} + \alpha\gamma + a_{i,i+m}a_{i+m,i+m} - ra_{i,i+m} \\
 0 & 0 & 0 \\
 0 & 0 & 0
\end{bmatrix}
\]

since \(a_{ii} \in \{a, b\} \) with \(a, b \) roots of the equation \(x^2 - rx + s = 0 \).
As \(a_{ii} \neq a_{i+m,i+m} \) from equations 6 and 7 we have

\[
\alpha\gamma = \sum_{p=1}^{m-1} a_{i,i+p}a_{i+p,i+m} = 0.
\]

Hence,

\[
a_{ii}a_{i,i+m} + \alpha\gamma + a_{i,i+m}a_{i+m,i+m} - ra_{i,i+m} = a_{i,i+m}(a_{ii} + a_{i+m,i+m} - r) + \alpha\gamma
\]

\[
= \alpha\gamma
\]

\[
= 0
\]

since \(r = a + b = a_{ii} + a_{i+m,i+m} \).

Therefore, \(A(m,i) \) satisfies the equation 11, regardless of the value of the entry \(a_{i,i+m} \). Thus (iii) of Theorem 1.1 holds.

Assume now that the entries of \(A \) fulfill (i), (ii) and (iii) of Theorem 1.1. We shall prove that \(A \) satisfies the quadratic equation \(A^2 - rA + sI = 0 \). Since the equation 2 involves only the coefficients with indices \(p \), such that \(i \leq p \leq j \), it suffices to prove the claim for \(A(m,i) \). For \(m = 1 \) and \(m = 2 \) one can easily check now that all sub matrices \(A(1,i) \) and \(A(2,i) \) satisfy the quadratic equation \(A^2 - rA + sI = 0 \). Suppose that the claim hold for all \(1 \leq t \leq m - 1 \), i.e. \(A(2,i), A(3,i), \ldots, A(m-1,i) \) satisfy the quadratic equation 11 for all \(i \), we need only prove that \(A(m,i) \) also satisfy the quadratic equation 11.

Consider \(A(m,i) \) as a block matrix given in the form of equation 8. Thus, we have that the quadratic equation \(A(m,i)^2 - rA(m,i) + sI = 0 \) equals

\[
\begin{bmatrix}
\alpha\beta^2 - r\alpha & \beta^2 - r\beta + s \\
0 & \beta^2 - r\beta + s
\end{bmatrix}
\]

By assumption, \(A(m-1,i) \) satisfy the equation 11 for all \(i \). So \(A(m-1,i) \) and \(A(m-1,i+1) \) satisfy the equation 11. Thus,

\[
A(m-1,i)^2 - rA(m-1,i) + sI = \begin{bmatrix}
\alpha\beta^2 - r\alpha & \beta^2 - r\beta + s \\
0 & \beta^2 - r\beta + s
\end{bmatrix}
\]

\[
= \begin{bmatrix}
0 & 0 \\
0 & 0
\end{bmatrix},
\]

and

\[
A(m-1,i+1)^2 - rA(m-1,i+1) + sI = \begin{bmatrix}
\beta^2 - r\beta + s & \beta\gamma + a_{i+m,i+m} - r\gamma \\
0 & \beta^2 - r\beta + s
\end{bmatrix}
\]

\[
= \begin{bmatrix}
0 & 0 \\
0 & 0
\end{bmatrix}.
\]

From the equations 10 and 11 above, we have \(a_{ii}^2 - ra_{ii} + s = 0 \) and \(a_{i+m,i+m}^2 - ra_{i+m,i+m} + s = 0 \) since \(a_{ii} \in \{a, b\} \) is root the equation \(x^2 - rx + s = 0 \), \(\beta^2 - r\beta + sI = 0 \) by Lemma 2.1 and

\[
a_{ii}\alpha + \alpha\beta - r\alpha = 0
\]
\[\beta \gamma + a_{i+m,i+m} \gamma - r \gamma = 0 \quad (13) \]

Then by multiplying the equation (12) by \(\gamma \) and the equation (13) by \(\alpha \) we obtain that
\[a_{ii} \alpha \gamma + \alpha \beta \gamma - r \alpha \gamma = 0 \]
\[\alpha \beta \gamma + a_{i+m,i+m} \alpha \gamma - r \alpha \gamma = 0. \]

Hence,
\[\alpha \beta \gamma = (r - a_{ii}) \alpha \gamma \]
\[\alpha \beta \gamma = (r - a_{i+m,i+m}) \alpha \gamma. \]

- If we consider \(a_{ii} \neq a_{i+m,i+m} \) we have
 \[\alpha \beta \gamma = (a_{ii}) \alpha \gamma \]
 since \(r = a_{ii} + a_{i+m,i+m} \), which implies that \(\alpha \gamma = 0 \).

 So, the \((1, m)\) entries of equation (9) is
 \[a_{i,i+m} (a_{ii} + a_{i+m,i+m} - r) + \alpha \gamma = \alpha \gamma = 0. \]

Therefore, \(A(m, i) \) satisfies the quadratic equation \(A^2 - rA + sI = 0 \).

- On the other hand, if \(a_{ii} = a_{i+m,i+m} \) from (iii) of the Theorem 1.1 or the equations (5) and (6) we have
 \[a_{ii} = -1 \left(a_{ii} + a_{i+m,i+m} - r \right) \sum_{p=1}^{m-1} a_{i,i+p} a_{i,p,i+m} = -1 \left(a_{ii} + a_{i+m,i+m} - r \right) \alpha \gamma; \]

 so, in this case the \((1, m)\) entries of equation (9) is
 \[a_{i,i+m} (a_{ii} + a_{i+m,i+m} - r) + \alpha \gamma = \left(-\frac{\alpha \gamma}{a_{ii} + a_{i+m,i+m} - r} \right) (a_{ii} + a_{i+m,i+m} - r) + \alpha \gamma \]

 \[= 0. \]

Therefore, \(A(m, i) \) also satisfies the quadratic equation (11).

Thus, we have proved that \(A \) satisfies the quadratic equation (11) in the upper triangular matrix ring \(M \) where \(a_{ii} \in \{a, b\} \) and \(a, b \) are different roots of the equation \(x^2 - rx + s = 0 \) if and only if \(A \) is described as in (i), (ii) and (iii) of the Theorem 1.1. \(\square \)

Follows immediately from Theorem 1.1 the results of Hou [1] and Slowik [2]:

Corollary 2.2 (Hou [1]). We can construct any \(n \times n \) idempotent upper triangular matrix over \(R \) that has only zeros and ones on its diagonal

(i) For all \(i \), the entries in the main diagonal \(a_{ii} \in \{0, 1\} \).

(ii) For \(i < j \), if \(a_{ii} = a_{jj} \), then \(a_{ij} \) equals to

\[
 a_{ij} = \begin{cases}
 0 & \text{if } j = i + 1 \\
 (1 - 2a_{ii}) \sum_{p=i+1}^{j-1} a_{ip} a_{pj} & \text{if } j > i + 1.
\end{cases}
\]

(iii) For \(i < j \), if \(a_{ii} \neq a_{jj} \), then \(a_{ij} \) can be chosen arbitrarily.
Proof. For $a_{ii} \in \{0,1\}$ the quadratic equation (1) equals $A^2 = A$ then A is an idempotent matrix.

We need to verify that equation (14) of the Theorem 1.1 yields the same possibilities for a_{ij} shown in the procedure above. The equation (2) becomes

$$a_{ij} = -\frac{1}{a_{ii} - \text{another root}} \sum_{p=1}^{j-1} a_{ip}a_{pj}$$

$$= (1 - 2a_{ii}) \sum_{p=1}^{j-1} a_{ip}a_{pj}$$

for $a_{ii} \in \{0,1\}$. □

Corollary 2.3 (Slowik [2]). We can construct any $n \times n$ involution upper triangular matrix over R when $a_{ii} \in \{1,-1\}$

(i) For all i, the entries in the main diagonal $a_{ii} \in \{-1,1\}$.

(ii) For $i < j$, if $a_{ii} = a_{jj}$, then a_{ij} equals to

$$a_{ij} = \begin{cases}
0 & \text{if } j = i + 1 \\
-(2a_{ii})^{-1} \sum_{p=1}^{j-1} a_{ip}a_{pj} & \text{if } j > i + 1.
\end{cases} \quad (15)$$

(iii) For $i < j$, if $a_{ii} = -a_{jj}$, then a_{ij} can be chosen arbitrarily.

Proof. For $a_{ii} \in \{-1,1\}$ the quadratic equation (11) equals $A^2 = I$ then A is an Involution matrix.

We need to verify that equation (15) of the Theorem 1.1 yields the same possibilities for a_{ij} shown in the procedure above. The equation (2) becomes

$$a_{ij} = -\frac{1}{a_{ii} - \text{another root}} \sum_{p=1}^{j-1} a_{ip}a_{pj}$$

$$= -\frac{1}{a_{ii} - (-a_{ii})} \sum_{p=1}^{j-1} a_{ip}a_{pj}$$

$$= -\frac{1}{2a_{ii}} \sum_{p=1}^{j-1} a_{ip}a_{pj}$$

for $a_{ii} \in \{-1,1\}$. □

3. Compute the number of all solutions for the quadratic polynomial equation

Theorem 3.1. Let R be an associative ring with identity 1 and $|R| = q$ the number of the elements in R. Then the total number of $n \times n$ upper triangular that satisfy the quadratic equation $A^2 - rA + sI = 0$ with $a_{ii} \in \{a, b\}$ on the diagonal where $\{a, b\}$ different roots of the quadratic equation $x^2 - rx - s = 0$ is equal to

$$\sum_{n_1+n_2=n}^{n_1+n_2=n} \binom{n}{n_1 n_2} \cdot q^{n_1 n_2}.$$
where \(n_1, n_2 \) are the number of times that appears \(a, b \) in the diagonal respectively, \(r = a + b \) and \(s = ab \).

Proof of Theorem 1.2. By Theorem 1.1, the number of possible upper triangular matrices that satisfy the quadratic equation \(A^2 - rA + sI = 0 \) with the set \(D = \{a, b\}, a \neq b \) on the diagonal depends entirely on which pairs of diagonal entries have \(a_{ii} \neq a_{jj} \). To enumerate those possibilities, consider an integer column vector \(d = (d_1, d_2, \ldots, d_n) \) the respective diagonal having each \(d_i \in D \) and denote for \(n_1, n_2 \) the numbers of \(a, b \) that appears in the diagonal respectively, such that \(n_1 + n_2 = n \) with \(0 \leq n_i \) for \(i = 1, 2 \). By \(\Delta \) we denote the number of pairs \((d_i, d_j) \) with \(i < j \) and \(d_i \neq d_j \). Notice that

\[
\Delta = n_1 \cdot n_2.
\]

In particular, \(\Delta \) is independent of the order in which the elements of the set \(D \) appear on \(d \). Consequently we have on the diagonal yields \(q^{\Delta} = q^{n_1 \cdot n_2} \), possible upper triangular matrices that satisfy the quadratic equation \(A^2 - rA + sI = 0 \).

Finally, all \(d_i's \) can be put on our main diagonal on

\[
\binom{n}{n_1, n_2} = \binom{n}{n_1} \cdot \binom{n - n_1}{n_2},
\]

where

\[
\binom{n}{n_1, n_2} = \frac{n!}{n_1!n_2!}.
\]

Therefore, the total number of \(n \times n \) upper triangular matrices that satisfy the quadratic equation \(A^2 - rA + sI = 0 \) with elements the set \(\{a, b\} \) with \(a \neq b \) on the diagonal is

\[
\sum_{n_1 + n_1 = n \atop 0 \leq n_i} \binom{n}{n_1, n_2} \cdot q^{n_1n_2}.
\]

\[\square\]

References

[1] Hou X. Idempotents in triangular matrix ring. Linear and Multilinear Algebra. In Press: doi: 10.188003081087.2019.1596223.

[2] Slowik R., Involutions in triangular groups, Linear and Multilinear Algebra. 2013; 61:7, 909-916.

[3] Roksana S??owik. How to construct a triangular matrix of a given order, Linear and Multilinear Algebra, 62:1, 28-38,(2014).

[4] I. Gargate, M. Gargate, Involutions on Incidence Algebras of Finite Posets. (2019). arXiv:1907.06805.

[5] I. Gargate, M. Gargate, Coninvolutions on Upper Triangular Matrix Group over the Ring of Gaussian Integers and Quaternions integers modulo \(p \). (2020). https://arxiv.org/abs/2008.00575.

UTFPR, CAMPUS PATO BRANCO, RUA VIA DO CONHECIMENTO KM 01, 85503-390 PATO BRANCO, PR, BRAZIL.

E-mail address: ivangargate@utfpr.edu.br

UTFPR, CAMPUS PATO BRANCO, RUA VIA DO CONHECIMENTO KM 01, 85503-390 PATO BRANCO, PR, BRAZIL.

E-mail address: michaelgargate@utfpr.edu.br