Nos últimos anos, tem havido um interesse crescente no uso do ultrassom para a avaliação de doenças torácicas, especialmente para o estudo de pacientes acamados em estado crítico. De fato, o método ultrassonográfico apresenta diversas vantagens: não utiliza radiação, tem baixo custo, pode ser utilizado à beira do leito, não é invasivo e pode ser repetido conforme necessário. Além disso, o ultrassom está começando a ser um método utilizado por outros profissionais, que não radiologistas, com questões clínicas específicas, tendo se tornado uma ferramenta importante para o pneumologista. Nesse contexto, a utilidade do ultrassom para o diagnóstico e manejo do derrame pleural encontra-se bem documentada.

Na presente edição do Jornal Brasileiro de Pneumologia, Perazzo et al. apresentam um ensaio controlado randomizado que teve como objetivo avaliar se a toracocentese com o uso do ultrassom, em contraste com um método cego, reduziria a taxa de pneumotórax. Os autores também tiveram como objetivo avaliar se o ultrassom aumenta a eficácia do procedimento (em termos do número de procedimentos de remoção de líquido bem sucedidos e da quantidade de líquido removido). É importante ressaltar que, naquele estudo, operadores experientes executaram ambos os métodos, seguindo um protocolo padronizado, a fim de focar a atenção na influência do uso ou não do ultrassom, e removeram outros fatores que pudessem ser responsáveis por complicações. Com esses propósitos, 160 pacientes internados e ambulatoriais com derrame pleural que exigia punção pleural foram randomizados em dois grupos. No grupo estudo (constituído por 80 pacientes), a toracocentese foi realizada com o uso do ultrassom, enquanto ela foi realizada sem o ultrassom no grupo controle (também constituído por 80 pacientes). Comparando os grupos estudo e controle, os autores observaram que o primeiro apresentou taxa de pneumotórax significativamente menor (1,25% vs. 12,5%; p = 0,009; OR = 0,09), maior número de pacientes com drenagem bem sucedida (79/80 vs. 72/80) e maior quantidade de líquido removido (média ± dp: 960 ± 500 mL vs. 770 ± 480 mL). Eles concluíram que o uso do ultrassom durante a toracocentese reduziu o número de casos de pneumotórax e aumentou a eficiência do procedimento.

Os achados de Perazzo et al. corroboraram dados já descritos na literatura — a toracocentese com o uso do ultrassom é mais segura do que a abordagem cega. Não obstante, o estudo é interessante porque confirma a ideia de que o ultrassom pode proporcionar vantagens até para operadores mais experientes. Além disso, o estudo é um ensaio clínico randomizado, o que aumenta o poder dos achados.

Apesar de sua utilidade, o ultrassom apresenta algumas limitações. A presença de edema de partes moles, enfisema subcutâneo ou obesidade pode reduzir a qualidade das imagens. Achamos também que os médicos necessitam de treinamento adequado a fim de evitar interpretações equivocadas das imagens de ultrassom e, consequentemente, evitar erros.

O ultrassom e o diagnóstico de derrame pleural

O primeiro passo na avaliação de pacientes com suspeita de derrame pleural é confirmar o diagnóstico, especialmente em casos de hemitórax opaco à radiografia de tórax. O ultrassom é um método útil para esses fins porque permite a distinção entre derrame e consolidações pulmonares e pode detectar derrame pleural com maior precisão do que as radiografias de tórax à beira do leito (93% vs. 47%). De fato, as radiografias de tórax podem detectar a presença de derrame pleural em pacientes em posição ortostática somente se o volume do derrame for de pelo menos 200 mL, e a sensibilidade desse método diminui na posição supina, enquanto o ultrassom pode detectar derrames com volume de apenas 20 mL.

A avaliação ultrassonográfica de um paciente na posição sentada é melhor porque permite uma quantificação mais precisa do derrame pleural. Nessa posição, o líquido livre se acumula no espaço dependente, enquanto ele é encontrado em uma localização posterior com o paciente na posição supina. Além disso, o ultrassom permite a identificação de estruturas adjacentes: parede...
vários componentes (ou seja, células, proteínas e lipídios), e derrames exsudativos podem também aparecer como derrame anecogênico. Os derrames ecogênicos homogêneos são resultado de derrames hemorrágicos ou empiema (Tabela 1).

Em alguns casos, imagens ultrassonográficas além daquelas do derrame podem auxiliar na avaliação da natureza do derrame pleural. Por exemplo, a presença de espessamento da pleura ou de consolidação pulmonar broncograma aéreo dinâmico (sugestivo de origem infecciosa) é geralmente indicativa de exsudato. A presença de sinal difuso de congestion pulmonar (linhas B) sugere derrame transudativo durante insuficiência cardíaca.

Laing & Filly[9] relataram que quase 20% das imagens anecogênicas de pleura revelavam lesão sólida, não a presença de líquido. Por esse motivo, especialmente em casos de derrames pleurais pequenos ou loculados (Figura 2), ou quando a toracocentese é solicitada, é importante focar no diagnóstico diferencial. Um aspecto que pode facilitar o diagnóstico é que os derrames pleurais estão associados a um movimento típico da estrutura adjacente que determina uma mudança na forma do derrame — o movimento do pulmão colapsado para o derrame ou o movimento de partículas dentro do líquido. O uso do modo M pode auxiliar na visualização do movimento sinusoidal do pulmão colapsado no líquido (sinal do sinusoide).[10] Porém, derrames pleurais muito densos ou loculados podem não apresentar nenhuma variação na forma.

Embora vários métodos ultrassonográficos tenham sido descritos para a quantificação do volume dos derrames pleurais,[11] todos eles requerem várias medições. Acreditamos que o conhecimento da quantidade exata de líquido tenha utilidade limitada na prática clínica. Por esse motivo, preferimos a abordagem qualitativa, que se encontra resumida na Tabela 2. Além disso, o ultrassom pode auxiliar na estimativa do efeito do derrame pleural no parênquima pulmonar ao permitir a visualização de diferentes graus de colapso. Essa informação, associada ao

Padrão	Transudativo	Exsudativo	Hemorrágico
Anecogênico	✓	✓	
Complexo não septado	✓		✓
Complexo septado	✓	✓	
Ecogênico	✓	✓	✓

Figura 1 - Identificação ultrassonográfica de derrame pleural em local específico (imagem menor). dp: derrame pleural; d: diafragma; e t: parede torácica.

Tabela 1 - Padrões ultrassonográficos e a natureza do derrame pleural.
O ultrassom de pulmão na avaliação de derrame pleural

O uso do ultrassom na toracocentese reduz a taxa de complicações (ou seja, pneumotórax) e aumenta o êxito da remoção de líquido em comparação a métodos tradicionais. O ultrassom é especialmente útil quando o derrame pleural é pequeno ou loculado.

O ultrassom permite identificar o melhor local para a realização da punção e medir a profundidade dos órgãos adjacentes, a fim de evitar lesões de órgãos. Para os especialistas, o ultrassom permite o estudo dos espaços intercostais antes da inserção da agulha, a fim de identificar vasos intercostais em posição aberrante, evitando assim lesões vasculares.

Nas imagens ultrassonográficas, a aparência do derrame pleural também pode fornecer pistas para a intervenção necessária: por exemplo, um derrame complexo septado pode requerer o uso de um cateter de maior diâmetro. Existem duas técnicas distintas empregadas na toracocentese com ultrassom: o método baseado em pontos de referência, no qual o ultrassom é utilizado para identificar o melhor local de punção; e o método guiado por ultrassom, no qual o procedimento é monitorado de perto, em tempo real, pela visualização contínua da agulha. Esse segundo método requer o envolvimento de um profissional mais experiente no uso do ultrassom.

O ultrassom e o pneumotórax

O uso do ultrassom reduz o risco de pneumotórax após a toracocentese de 18% para 3%. Conforme mostrado em um estudo retrospectivo, isso é especialmente verdadeiro quando se utiliza o método guiado por ultrassom, sendo as taxas de pneumotórax significativamente menores do que quando se utiliza o método baseado em pontos de referência (4% vs. 10%). Além disso, Weingardt et al. demonstraram que o ultrassom pode ser um eficaz método de recuperação em 88% dos casos em que a toracocentese cega é malsucedida. Os autores perceberam que, em 69% daqueles casos, o local da punção escolhido na abordagem cega foi abaixo do diafragma. É interessante notar que a toracocentese guiada por ultrassom também tem se mostrado segura em pacientes em ventilação mecânica.

O ultrassom é também um método mais útil para detectar pneumotórax após a toracocentese do que as radiografias de tórax anteriores na posição supina. A sensibilidade desses dois métodos é de 78,6% e 39,8%, respectivamente, enquanto a especificidade dos mesmos é de 98,4% e 99,3%, respectivamente.

Conforme mostrado na Figura 4, os principais sinais ultrassonográficos para o diagnóstico de...
pneumotórax são ausência de deslizamento pleural — movimento da pleura durante a excursão respiratória — que é mais evidente utilizando-se o modo M, juntamente com o sinal da estratosfera; ausência de linhas B (valor preditivo negativo: 100%); e presença de ponto pulmonar (valor preditivo positivo: 100%) na ausência de pneumotórax maciço.

Em resumo, o ultrassom representa uma ferramenta muito útil para a avaliação de pacientes com derrame pleural durante a fase de diagnóstico e em associação com procedimentos invasivos.

Elena Prina*
Divisão de Pneumologia, Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (SP) Brasil
Institut Clinic del Tòrax (ICT), Servei de Pneumología, Hospital Clinic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Ciber de Enfermedades Respiratorias, Barcelona, Espanha

Antoni Torres
Professor Titular de Pneumologia, Institut Clinic del Tòrax (ICT), Servei de Pneumologia, Hospital Clinic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Ciber de Enfermedades Respiratorias, Barcelona, Espanha

Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Ciber de Enfermedades Respiratorias, Barcelona, Espanha

Carlos Roberto Ribeiro Carvalho
Professor Titular de Pneumologia, Instituto do Coração (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (SP) Brasil

Referências

1. Koenig SJ, Narasimhan M, Mayo PH. Thoracic ultrasonography for the pulmonary specialist. Chest. 2011;140(5):1332-41. http://dx.doi.org/10.1378/chest.11-0348
2. Perazzo A, Gatto P, Barlascini C, Ferrari-Bravo M, Nicolini A. Can ultrasound guidance reduce the risk of pneumothorax following thoracentesis? J Bras Pneumol. 2014;40(1):6-12.
3. Yu CJ, Yang PC, Wu HD, Chang DB, Kuo SH, Luh KT. Ultrasound study in unilateral hemithorax opacification. Image comparison with computed tomography. Am Rev Respir Dis. 1993;147(2):430-4. http://dx.doi.org/10.1164/ajrccm/147.2.430
4. Lichtenstein D, Goldstein I, Mourgeon E, Cluzel P, Grenier P, Rouby JJ. Comparative diagnostic performances of auscultation, chest radiography, and lung ultrasonography in acute respiratory distress syndrome. Anesthesiology. 2004;100(1):9-15. http://dx.doi.org/10.1097/00000542-200401000-00006
5. Blackmore CC, Black WC, Dallas RV, Crow HC. Pleural fluid volume estimation: a chest radiograph prediction rule. Acad Radiol. 1996;3(2):103-9. http://dx.doi.org/10.1016/S1076-6332(05)80373-3
6. Rahman NM, Singanayagam A, Davies HE, Wrightson JM, Mishra EK, Lee YC, et al. Diagnostic accuracy, safety and utilisation of respiratory physician-delivered thoracic ultrasound. Thorax. 2010;65(5):449-53. http://dx.doi.org/10.1136/thx.2009.128496
7. Lomas DJ, Padley SG, Flower CD. The sonographic appearances of pleural fluid. Br J Radiol. 1993;66(787):619-24. http://dx.doi.org/10.1259/0007-1285-66-787-619
8. Chen HJ, Tu CY, Ling SJ, Chen W, Chiu KL, Hsia TC, et al. Sonographic appearances in transudative pleural effusions: not always an anechoic pattern. Ultrasound Med Biol. 2008;34(3):362-9. http://dx.doi.org/10.1016/j.ultrasmedbio.2007.09.009
9. Laing FC, Filly RA. Problems in the application of ultrasonography for the evaluation of pleural opacities. Radiology. 1978;126(1):211-4.
10. Lichtenstein DA. Lung ultrasound in the critically ill. Ann Intensive Care. 2014;4(1):1. http://dx.doi.org/10.1186/2110-5820-4-1
11. Remiérand F, Dellamonica J, Mao Z, Ferrari F, Bouhemad B, Jiamxin Y, et al. Multiplane ultrasound approach to quantify pleural effusion at the bedside. Intensive Care

Figura 4 - Sinais ultrasonográficos de pneumotórax. Em A, pulmão normal, mostrando o sinal da praia no modo M. Em B, pneumotórax, mostrando o sinal da estratosfera no modo M. Em C, enfisema subcutâneo. As cabeças de seta indicam o pneumotórax.

*Dra. Prina é pesquisadora bolsista do programa de bolsas de pesquisa de longo prazo da European Respiratory Society.
12. Diacon AH, Brutsche MH, Solèr M. Accuracy of pleural puncture sites: a prospective comparison of clinical examination with ultrasound. Chest. 2003;123(2):436-41. http://dx.doi.org/10.1378/chest.123.2.436

13. Barnes TW, Morgenthaler TI, Olson EJ, Hesley GK, Decker PA, Ryu JH. Sonographically guided thoracentesis and rate of pneumothorax. J Clin Ultrasound. 2005;33(9):442-6. http://dx.doi.org/10.1002/jcu.20163

14. Weingardt JP, Guico RR, Nemcek AA Jr, Li YP, Chiu ST. Ultrasound findings following failed, clinically directed thoracenteses. J Clin Ultrasound. 1994;22(7):419-26. http://dx.doi.org/10.1002/jcu.1870220702

15. Lichtenstein D, Hulot JS, Rabiller A, Tostivint I, Mezière G. Feasibility and safety of ultrasound-aided thoracentesis in mechanically ventilated patients. Intensive Care Med. 1999;25(9):955-8. http://dx.doi.org/10.1007/s001340050988

16. Alrajab S, Youssef AM, Akkus NI, Caldito G. Pleural ultrasonography versus chest radiography for the diagnosis of pneumothorax: review of the literature and meta-analysis. Crit Care. 2013;17(5):R208. http://dx.doi.org/10.1186/cc13016