Cytological and transcriptome analyses reveal OsPUB73 defect affects the gene expression associated with tapetum or pollen exine abnormality in rice

Lin Chen¹,²,³,⁴,⁵, Ruilian Deng¹,²,³, Guoqiang Liu¹,²,³, Jing Jin²,³, Jinwen Wu¹,²,³ and Xiangdong Liu¹,²,³*

Abstract

Background: As one of the main crops in the world, sterility of rice (Oryza sativa L.) significantly affects the production and leads to yield decrease. Our previous research showed that OsPUB73, which encodes U-box domain-containing protein 73, may be associated with male sterility. However, little information is available on this gene that is required for anther development. In the present study, we knocked out OsPUB73 by using the CRISPR/Cas9 system and studied the cytological and transcriptome of the gene-defect associated with pollen development and sterility in the rice variety (Taichung 65).

Results: The sequence analysis indicated that OsPUB73 was comprised of 3 exons and 2 introns, of which CDS encoded 586 amino acids including a U-box domain. The expression pattern of OsPUB73 showed that it was highly expressed in the anther during meiosis stage. The ospub73 displayed low pollen fertility (19.45%), which was significantly lower than wild type (WT) (85.37%). Cytological observation showed tapetum vacuolated at the meiosis stage and pollen exine was abnormal at the bi-cellular pollen stage of ospub73. RNA-seq analysis detected 2240 down and 571 up-regulated genes in anther of ospub73 compared with WT during meiosis stage. Among of 2240 down-regulated genes, seven known genes were associated with tapetal cell death or pollen exine development, including CYP703A3 (Cytochrome P450 Hydroxylase703A3), CYP704B2 (Cytochrome P450 Hydroxylase704B2), DPW (Defective Pollen Wall), PTC1 (Persistant Tapetal Cell1), UDT1 (Undeveloped Tapetum1), OsAP37 (Aspartic protease37) and OsABCG15 (ATP binding cassette G15), which were validated by quantitative real-time polymerase chain reaction (qRT-PCR). These results suggested OsPUB73 may play an important role in tapetal or pollen exine development and resulted in pollen partial sterility.

Conclusion: Our results revealed that OsPUB73 plays an important role in rice male reproductive development, which provides valuable information about the molecular mechanisms of the U-box in rice male reproductive development.

Keywords: Rice, Ubiquitin ligase activity, Transcriptome, Male reproductive development
Background

Rice (Oryza sativa L.) is one of the most essential agricultural crops and feeds over half of the global population. Improving the productivity of rice grain is necessary for food security. However, low seed setting is a major hindrance in the rice yields; moreover male reproductive development presents correlation with success in seed setting.

It is well known that male reproductive development is a critical biological process involving the generation of haploid pollen for sexual reproduction; and anther development is the principal event in male reproductive development [1, 2]. The anther is comprised of a four-lobe structure, and each lobe includes microsporocytes, the epidermis, endothecium, middle layer, and tapetum after the morphogenesis. The tapetum is the innermost cell layer of the anther and provides a safe surrounding, necessary nutrients and enzymes during microspore development [3]. The tapetum begins to degenerate after the meiosis, which is considered to be a process of programmed cell death (PCD). The tapetum degradation promotes the formation of pollen walls and releases microspores. Normal tapetum degradation is critical for the production of viable pollen grains in the male reproductive development, and abnormal tapetum degradation usually causes pollen sterility [4–6]. In the previous studies, some genes controlling tapetum development have been found in rice [7–14]. A MYB transcriptional factor (GAMYB) has been considered important for pollen development, and gamyb mutants displayed abnormal development of exine and Ubisch bodies [15, 16]. Li et al. [17] reported that PTCl encodes a PHD-finger protein that controls tapetal degeneration, pollen wall formation, and aborted microspores.

The ubiquitin–proteasome system, which is involved in post-translational modification, is a key regulatory mechanism for plant growth and development [18, 19]. The ubiquitin–proteasome system involves three essential enzymes, including ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2), and ubiquitin ligase (E3) [20]. The E3 ligase plays an important role in the regulation of the ubiquitin–proteasome system and confers specificity to the ubiquitination reaction. E3 ligases modify a large number of proteins or protein complexes, most of which contain RING, HECT, F-box, and U-box domains [21–24]. The U-box, which contains about 70 amino acids, is a highly conserved domain and the E3 ligase activity-related protein domain; and was first shown to be involved in polyubiquitin chain assembly in yeast [25, 26]. A number of predicted plant U-box (PUB) family proteins in rice and Arabidopsis thaliana can be classified into nine groups according to their other distinguishing domains, including UFD2 specific motif+U-box, U-box+ARM/HEAT, U-box+GKL-box, Kinase+U-box, U-box only, U-box+WD40, TPR+U-box, TPR+Kinase+U-box and MIF4G+U-box, and the U-box+ARM/HEAT is the largest group [27]. PUB proteins are involved in various cellular processes in higher plants, including abiotic stress responses [28], plant hormone regulation [29, 30], flowering time [31], cell division and elongation, plant cell death and defense responses [32, 33]. In addition, Atpub4 showed incomplete degeneration of tapetal cells and their pollen grains had abnormal exine structure. These results indicate that PUB family proteins also play an important role in the plant male fertility.

OsPLUB73 encodes a U-box protein and possesses E3 ligase activity in rice [27]. Our previous research showed that OsPLUB73 was down-regulated in autotetraploid rice hybrid of multi-allelic interactions at pollen sterility loci compared to corresponding diploid rice hybrid by transcriptome analysis, suggesting that OsPLUB73 may be associated with male sterility in rice [34]. To investigate the molecular mechanism of OsPLUB73, we developed ospub73 by using the CRISPR/Cas9 technology. Cyto logical observation was used to investigate the fertility of ospub73 and WT, and we primarily aimed to evaluate the role of OsPLUB73 for male reproductive development. In addition, transcriptome analysis of anther was carried out to identify DEGs (differentially expressed genes) between ospub73 and WT during meiosis. Our study provides an important evidence of the role of PUB in regulating male reproductive development.

Results

Sequence analysis and expression pattern of OsPLUB73

The sequence of OsPLUB73 didn’t show any variation in the Taichung-65 compared to Nipponbare by resequencing, and was consistent with the full-length sequence from the Rice Genome Annotation Project Database (http://rice.plantbiology.msu.edu/). The OsPLUB73 comprised three exons and two introns (Fig. 1a). The CDS sequence of OsPLUB73 is 1758 bp (Additional file 1: Figure S1), and it encodes ubiquitin ligase activity-related protein of 586 amino acids, which includes a U-box domain (Fig. 1b). Zeng et al. [27] found 77 and 63 genes encoding U-box domain-containing proteins in the rice and Arabidopsis genomes, respectively. The OsPLUB73 belonged to V Class (U-box only). To investigate the phylogenetic relationship of V Class between rice and Arabidopsis, 12 genes (included 7 V Class in rice and 5 V Class in Arabidopsis) were used for sequence comparison and phylogenetic analysis. OsPLUB73 and OsPLUB26 were found to be an orthologous pair (Fig. 1c), and U-box domain was detected in all genes (Additional file 2: Figure S2).

The RT-PCR (reverse transcription polymerase chain reaction) and qRT-PCR analysis were used to survey the
spatial and temporal patterns of OsPUB73 in Taichung-65 plants. The OsPUB73 expression was mainly identified in anthers during meiosis stage, and the expression of OsPUB73 was almost undetectable in the mature anthers. In addition, trace amounts of OsPUB73 expression were also detected in the roots, stems and leaves (Additional file 3: Figure S3). The high levels of OsPUB73 expression in meiosis stage anthers are consistent with its role in regulating male reproductive development.

Creation of ospub73 using the CRISPR/Cas9 system
To evaluate the function of OsPUB73, the CRISPR/Cas9 system was used to create ospub73 mutants. The CRISPR/Cas9 recombinant vector, which included three guide RNA targets in the first exon of OsPUB73, was used to transform the plant of Taichung-65. A total of 18 T0 transgenic plants were obtained and we analyzed the target site by sequencing PCR-amplified OsPUB73 genomic DNA from transgenic plants. There were six homozygous mutants, two bi-allelic mutants, seven heterozygous mutants, and three non-mutant plants in the transgenic plants (Additional file 4: Table S1). The ospub73–1 and ospub73–2 used to subsequent experiments (Fig. 2), and the T2 plants of ospub73–1 and ospub73–2 have been used for phenotyping and genetic analysis.

Mutation of OsPUB73 cause pollen semi-sterility
The ospub73 showed normal plant type as well as normal vegetative development (Additional file 5: Figure S4). However, the panicle of the ospub73 appeared many unfilled grains (Fig. 3a), and the seed setting of ospub73–1 and ospub73–2 were only 19.63 and 37.02%, respectively, which were significantly lower than WT (85.37%) (Fig. 3h). These results implied potential defects in pollen or embryo sac development. To verify our supposition, we investigated mature embryo sac (Fig. 3j) and pollen fertility (Fig. 3b-d) between mutant and WT. The mature embryo sac fertility of WT and ospub73 were nearly 90% (Fig. 3j). However, many mature pollen grains were aborted in ospub73, and the pollen fertility of ospub73–1 and ospub73–2 were 16.85 and 22.05%, respectively, which were significantly lower than the pollen fertility of WT (Fig. 3i). These phenomena indicated that there was no difference in embryo sac fertility between WT and ospub73, but that ospub73 displayed male
Fig. 2 Targeted mutagenesis in rice by the CRISPR/Cas9 system. The three target sites disrupt the first exon of ospub73. The black boxes show target sites.

WT: AAGCCAGCTTGCCCTGGA-GATGGCAGCAAGGCAAGGCCGCTGGAGATGTCAGGGCTGGTGGCAACGCTGGCTAGCTGGAG
ospub73-1 Allele1: AAGCCAGCTTGCCCTGGA-GATGGCAGCAAGGCAAGGCCGCTGGAG
Allele2: AAGCCAGCTTGCCCTGGA-GATGGCAGCAAGGCAAGGCCGCTGGAG
ospub73-2 Allele1: AAGCCAGCTTGCCCTGGA-GATGGCAGCAAGGCAAGGCCGCTGGAG
Allele2: AAGCCAGCTTGCCCTGGA-GATGGCAGCAAGGCAAGGCCGCTGGAG

Fig. 3 Comparison of panicle, pollen fertility, and embryo sac fertility in WT and ospub73. a panicle, bar = 5 cm, b-d pollen grains from WT (b), ospub73−1 (c) and ospub73−2 (d), bar = 100 μm, e-f embryo sac from WT (e), ospub73−1(F) and ospub73−2 (g), bar = 100 μm, h seed setting, sample size were n = 20; i pollen fertility, sample size were n = 5; j embryo sac fertility. ** represent p < 0.01. Error bars represent the SD.
semi-sterility. These results indicate that OsPUB73 may be involved in the pollen development.

**Analysis of chromosome behavior and anther development in ospub73 and WT**

To reveal the effects of OsPUB73, we compared chromosome behavior between ospub73 and WT at pollen mother cell meiosis using DAPI (4,6-diamidino-2-phenylindole) staining. Based on the previous classification of meiotic stages [35], meiosis stages could be divided into nine development stages, including prophase I (Fig. 4a and e), metaphase I (Fig. 4b and f), anaphase I (Fig. 4c and g), telophase I (Fig. 4d and h), metaphase II (Fig. 4i and m), anaphase II (Fig. 4j and n), telophase II (Fig. 4k and o) and tetrad (Fig. 4l and p). There were no differences in chromosome behavior between ospub73 and WT by our observation (Fig. 4).

The above results indicated that chromosome behavior of ospub73 is normal, which prompted us to further study ospub73 pollen tissues. The semi-thin section analysis was performed to investigate the pollen developmental process in ospub73 and WT. At the pre-meiosis stage, there was no obviously morphological difference between ospub73 and WT in the anther, and the epidermis, endothecium, middle layer, tapetum and microsporocyte were normal in both ospub73 and WT anthers (Fig. 5a and d). At meiosis stage, the pollen mother cells underwent normal meiosis and formed tetrads, and tapetum were vacuolated in ospub73 (Fig. 5b and e). At the tetrad stage, the pollen mother cells formed tetrads and the middle layer cells became very thin and degenerated. But in ospub73 anther, although the tetrads had formed, the tapetum seemed to be vacuolated (Fig. 5c and f). At the single microspore stage, the tapetum became more condensed and deeply stained (Fig. 5g-h and j-k). At the mature pollen stage, the WT pollen grains were full of starch and the tapetum fully degenerated. However, ospub73 microspores were degenerated, whereas tapetum cells became more vacuolated and did not degenerate (Fig. 5i and l). In addition, the transmission electron microscopy (TEM) analysis showed the tapetum was condensed in WT (Fig. 6a and b), but the tapetum was vacuolated in ospub73 (Fig. 6d and e). This result was consistent with semi-thin section results. Moreover,
the pollen exine was abnormal at the bi-cellular pollen stage (Fig. 6f). These results suggest that `ospub73` tapetum or pollen exine exhibit abnormality in rice.

**Homozygous ospub73 plants were identified for transcriptome analysis**

In order to study the gene regulatory network that is controlled by `OsPLB73`, we analyzed the transcriptome data generated from the anthers (meiosis stage) of homozygous `ospub73`–1 and WT control plants according to cytological results, which the mutant anther exhibited vacuolization during meiosis stage. The three biological replicates were established for each material. In total, about 19 million clean reads were detected in WT and `ospub73` anthers during meiosis. The clean reads were aligned against the Nipponbare reference genome, and 92.91 to 93.61% annotated transcripts of the reference genome were obtained in `ospub73` and WT rice, respectively (Table 1). The correlation coefficients were higher than 0.98 among the three biological replications (Additional file 5: Table S2), and principal component analysis (PCA) showed that replicate samples clustered together (Additional file 7: Figure S5). The correlation coefficients and PCA suggested that expression patterns have high similarity between biological replications.

Compared with WT anthers, a total of 2811 DEGs were found in `ospub73`, including 2240 down-regulated and 571 up-regulated genes (Additional file 8: Table S3). Gene ontology (GO) analysis showed that 85 and 4 GO were significantly enriched in the down and up-regulated DEGs, respectively. In the biological processes

---

**Fig. 5** Analysis of the anther development in WT and `ospub73` plant by transverse semi-thin section. a–c and g–i showed transverse thin-section images of wild-type anther, and d–f and j–l showed transverse thin-section images of `ospub73` anther. Ep, epidermis; En, endothecium; ML, middle layer; Ta, tapetum; PMC, pollen mother cell; Tds, tetrads; Msp, microspores; MP, mature pollen; DMP, degraded mature pollen. Bars = 100 μm
category, 41 GO terms were significantly enriched in the down-regulated DEGs, such as regulation of the biosynthetic process, regulation of transcription, carbohydrate metabolic process, protein amino acid phosphorylation and protein modification process; and GO term of oxidation reduction was significantly enriched in the up-regulated DEGs. In the molecular function category, 40 GO categories, such as oxidoreductase activity, protein kinase activity and kinase activity, were found to be enriched in the down-regulated DEGs while GO terms related to the oxidoreductase activity were detected in the up-regulated DEGs. In the cellular component category, a total of 4 and 2 GO terms were identified to be significantly enriched in the down and up-regulated DEGs, respectively (Additional file 9: Table S4).

KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis suggested that 109 pathways were identified in down-regulated DEGs. The top 20 most enriched pathways were Plant-pathogen interaction, Phenylpropanoid biosynthesis, Protein processing in endoplasmic reticulum, Plant hormone signal transduction, Starch and sucrose metabolism, Ubiquitin mediated proteolysis, Peroxisome in down-regulated DEGs (Fig. 7a). In total 52 pathways were identified in up-regulated DEGs. The top 20 most enriched pathways were mainly focused on the Photosynthesis, Carbon fixation in photosynthetic organisms, Plant hormone signal transduction, Glyoxylate and dicarboxylate metabolism, Endocytosis, Phenylpropanoid biosynthesis and DNA replication (Fig. 7b). The GO and KEGG analysis results showed that DEGs

Table 1  Overview of reads from WT and ospub73 anthers

| Sample  | Total Reads | Clean reads | Mapped Reads | Unique-Mapped Reads | GC Content | Q30 |
|---------|-------------|-------------|--------------|---------------------|------------|-----|
| WT-1    | 66,973,324  | 33,486,662  | 62,602,452 (93.47%) | 60,953,559 (91.01%) | 54.80%    | 93.72% |
| WT-2    | 67,440,172  | 33,720,086  | 62,884,344 (93.24%) | 60,807,362 (90.16%) | 54.95%    | 93.83% |
| WT-3    | 61,328,580  | 30,664,290  | 57,182,779 (93.24%) | 55,530,879 (90.55%) | 54.78%    | 93.53% |
| ospub73–1| 65,360,720  | 32,680,360  | 60,727,192 (92.91%) | 59,119,630 (90.45%) | 54.45%    | 93.58% |
| ospub73–2| 60,833,960  | 30,416,980  | 56,557,714 (92.97%) | 55,052,354 (90.50%) | 54.27%    | 93.52% |
| ospub73–3| 58,140,984  | 29,070,492  | 54,423,148 (93.61%) | 52,916,445 (91.01%) | 53.99%    | 93.56% |
involved in transcription, protein modification and signal transduction were more numerous in the down-regulated DEGs.

In addition, we found that seven genes were associated with tapetum and pollen development, and these genes are down-regulated in ospub73, including CYP703A3, CYP704B2, DPW, PTC1, UDT1, OsAP37 and OsABCG15 (Additional file 8: Table S3). The gene expression were detected in anthers from different pollen stage by using qRT-PCR (Fig. 8). The results showed that these genes were down-regulated in the ospub73 anthers compared with WT during meiosis (Fig. 8h), and the genes expression were similar to our RNA-seq data. At the single microspore stage, the expression levels of CYP703A3, CYP704B2, and DPW presented high expression in the ospub73, and expression level of PTC1 and UDT1 was down-regulated in ospub73 (Fig. 8). The ospub73 had such a broad effects on so many important anther development genes, it is plausible to consider it as an important part of the conserved gene regulation network that regulates rice anther development.

Comparison of OsPUB73 regulatory role with those of PTC1, UDT1, GAMYB and TDR (Tapetum Degeneration Retardation) in anther development

To clarify characterization of OsPUB73, the 2811 DEGs in ospub73 were compared with ptc1 [17], udt1 [13], gamyb-2 [16] and tdr plants [36], and there are 18.27% (449/2458) DEGs changing in ptc1 mutant, 9.88% (121/1255) DEGs changing in udt1 plant, 36.78% (320/870) DEGs changing in gamyb-2 plant and 14.72% (34/231) DEGs changing in tdr (Fig. 9). Five genes showed changes of expression in all five mutants (Fig. 9; Additional file 10: Table S5; Additional file 11: Figure S6), including 3-oxoacyl-reductase (LOC_Os12g13930), LTP (lipid transfer protein) family protein (LTPL2, LOC_Os07g46210), aquaporin protein (LOC_Os01g02190), and male sterility protein (LOC_Os03g07140, DPW) showed down-regulated expression in the all five mutants and pectinesterase (LOC_Os07g41650) showed down-regulated expression in ospub73, udt1, gamyb-2 and tdr plants but up-regulated expression in ptc1 (Additional file 10: Table S5). These genes are involved in lipid metabolism and transport, cell wall, and are played important roles in tapetum and pollen development.

Discussion

OsPUB73 may play an essential role in male reproductive development

Many previous studies showed that the PUB possesses E3 ubiquitin ligase activity in plant, which has a significant effect on ubiquitination modification, and revealed PUB plays central roles in plant cell death, defense responses, immune reactions and flowering time [28, 29, 32, 33, 37]. In addition, a total of 77 U-box protein genes were found in rice [27]. The SPL11 (OsPUB11) was the first PUB gene to be studied in rice, which harbored E3 ligase activity and involved in the
pathway of cell death and defense [38]. Subsequently, the scientists reported OsPUB15 [32], OsPUB44 [39] and OsPUB75 [40]. However, the molecular mechanisms and function PUB genes are still largely unknown. In this study, we identified a PUB gene, OsPUB73, which consists of three exons and two introns. The OsPUB73 possesses E3 ligase activity in vitro [27]. We successfully developed a homozygous ospub73 by CRISPR/Cas9 system. The ospub73 showed normal embryo sac fertility. However, ospub73 showed male semi-sterility.

Meiosis chromosome behavior and anther wall development are essential parts of the correlated plant male reproductive development [41, 42]. The tapetum supplies nutrients and stable environment for microspore development, and the timely degradation of tapetum is crucial for pollen grain formation [4, 43]. The PUB genes were also discovered to have important function in tapetum development and thus affected male reproductive development. Wang et al. [44] reported a PUB gene (AtPUB4) taking part in pollen development in Arabidopsis. The AtPUB4 had abnormal expansion of the tapetum layer after the tetrad stage and tapetum layer incomplete degeneration in the end, and absence of AtPUB4 leads to complete male sterility, these results suggested AtPUB4 may be a crucial factor in male sterility. We observed no differences in chromosome behavior between ospub73 and WT by using DAPI staining observation, but the tapetum layer didn’t degenerate during mature pollen stage and generated aborted pollen in ospub73. These observations suggested knock-out of OsPUB73 may cause semi-sterility in rice.

OsPUB73 may affect the regulatory network of the genes associated with tapetum or pollen exine development in rice

It is well known that plant male reproductive development is a complex biological process and a large number...
of genes take part in this process [45, 46]. Recently, RNA sequencing (RNA-seq) has been found to be a helpful tool for investigating gene expression and researching gene regulated expression networks [47, 48]. The RNA-seq analysis showed 79.69% DEGs were down-regulated in the ospub73 compared with WT. This indicated that down-regulated genes may play important roles in male reproduction. Among the down-regulated genes, many DEGs were enriched in the carbohydrate metabolic process, lipid metabolic process and protein modification process, which are related to anther development or pollen wall generation.

Furthermore, we identified seven down-regulated genes in ospub73, which were associated with tapetum development, including CYP703A3, CYP704B2, DPW, PTC1, UDT1, OsAP37 and OsABCG15. UDT1 encodes a helix-loop-helix protein, which is required for tapetal PCD in the rice [10]. OsABCG15 encodes an ATP binding cassette transport protein that plays an important role in pollen exine development by exporting lipids from tapetum to anther locules [51, 52]. The above genes are essential for tapetum or pollen development. The abrupt alteration of the expression patterns of these tapetum-related genes may cause abnormal tapetum and lead to male semi-sterility in ospub73.

Four transcription factors have been identified to play essential roles in tapetum formation and degeneration in rice, including GAMYB, UDT1, TDR and PTC1. GAMYB is a MYB family transcription factor, UDT1 and TDR encode bHLH family transcription factor, and PTC1 is a PHD-finger transcription factor. The four mutants showed delayed tapetum degeneration and their pollen exine was defective [13, 15–17, 36]. The gamyb, udt1, tdr and ptc1 mutants showed the same phenotype during pollen development, including delayed tapetum degeneration and microspore abortion. In ospub73, we also observed the phenomenon of delayed degradation of tapetum. Furthermore, we found no changes in the expression of OsPUB73 in the gamyb, udt1, tdr and ptc1 plants. In addition, we compared the regulatory networks of OsPUB73, GAMYB, UDT1, TDR and PTC1 [13, 16, 17, 36], and observed that five key genes are co-regulated by OsPUB73, GAMYB, UDT1, TDR and PTC1, including DPW, LTP precursor (LOC_Os07g46210), aquaporin protein (LOC_Os01g02190) and pectinesterase (LOC_Os07g41650). Interestingly, these five genes were almost down-regulated in the five mutants except for LOC_Os07g41650 being up-regulated in ptc1. These five genes regulate metabolism and transport of metabolites involved in tapetum or pollen wall development. For example, DPW is a putative fatty acid reductase and plays important roles in pollen wall development [10]. DPW is down-regulated in all five mutants. As reported, LTPs are related to transport lipidic component from tapetum to the microspore in anther, and are crucial for rice pollen wall formation [4, 11]. LOC_Os07g46210 belongs to LTP family in rice, and it is down-regulated in all five mutants. These results showed that these five genes play essential roles in all five mutants and may be important factors in tapetum development.

Conclusions

In this study, we obtained ospub73 homozygous mutant on a japonica rice variety (Taichung65) by CRISPR/Cas9 system. The ospub73 showed normal vegetative development and mature embryo sac fertility, but exhibited semi-sterility of pollen grain. The cytological observation
showed that *ospub73* tapetum vacuolated during meiosis stage, and pollen exine exhibited abnormal phenomenon at the bi-cellular pollen stage. In addition, some important tapetum-related genes are down-regulated in *ospub73* compared with WT. We speculated that the relationships of these genes are not a simple linear regulatory gene network but there is instead a complex gene regulatory network in male reproductive development. This work provides new insights into the role of PUB in rice male reproductive development.

**Methods**

**Materials**

The *japonica* cultivar Taichung-65 was used as WT. Taichung-65 plants were planted at the experimental farm of South China Agricultural University (SCAU) under natural conditions.

**Development and identification of mutant rice**

*OsPUB73* mutants were generated using the CRISPR/Cas9 system as previously reported [53]. The three target site sequences of *OsPUB73* were cloned into the single guide RNA (sgRNA), and the integrated sgRNA expression cassettes of *OsPUB73* were incorporated into the CRISPR/Cas9 vector pLYCRISPR/Cas9Pubi-H. Then, the vectors were transferred into Taichung-65. The genomic DNAs of transgenic lines and WT were extracted from young leaves using the CTAB method [54]. The genomic region surrounding the CRISPR target site for *OsPUB73* was amplified by PCR, and the segment was subjected to Sanger sequencing to screen for mutants. The T$_2$ plants of homozygous mutant have been used for phenotyping and genetic analysis. The primer sequences used in this study are listed in Additional file 12: Table S6.

**Observation of chromosome behavior**

The spikelet was collected from *ospub73* and WT with $-2$ to $2$ cm between their flag leaf cushion and the second to last leaf cushion, and fixed in Carnoy solution (ethanol: acetic acid = 3:1) over 24 h. Then the samples were stored in 70% ethanol at 4°C after washing two times with 70% ethanol at 20 min. Anthers were dissected from the floret and placed in a small drop of 1 mg/L DAPI on a glass slide. After 5–10 min, the glass slide was covered with a slide cover and was observed under a fluorescence microscope (Leica DMRXA).

**Characterization of *ospub73* phenotype**

The whole mount eosin B confocal laser scanning microscopy (WE-CLSM) was used to investigate the embryo sac fertility in *ospub73* and WT according to Chen et al. [55] with minor modifications. The mature spikelet was collected and fixed in FAA (50% ethanol: acetic acid: methanol = 89:6:5). The ovary was removed from the inflorescences, and was rehydrated, stained for eosin B, dehydrated and shifted into a mixed solution (ethanol and methyl salicylate = 1:1). Finally, the ovary was placed in pure methyl salicylate and examined with a laser scanning confocal microscope (Leica SPE). The pollen fertility of *ospub73* and WT were observed according to Chen et al. [35]. For the semi-thin assay, the anthers of *ospub73* and WT control plants at different pollen developmental stages were collected and fixed in FAA over 48 h at room temperature. After dehydration through an ethanol series, tissues were embedded in a Leica 7022 Histeresin Embedding Kit (7022LR) according to the manufacturers’ protocol (Heraeus Kulzer). Sections of 2 to 3 μm thickness were cut with the microtome (Leica RM2235) and were dried at 60°C for 24 h. The sections were stained in 0.5% toluidine blue (m/v). The sections were observed and photographed under a microscope (Motic BA200). For the TEM assay, the anthers were collected for fixation, and the process was performed as according to Li et al. [56].

**Real-time quantitative polymerase chain reaction (qRT-PCR) assay**

Total RNA was isolated from frozen samples using TRIzol reagent (Invitrogen, USA) according to the manufacturer’s instructions. The first-strand cDNA was synthesized using a Prime Script RT reagent Kit with gDNA Eraser (TaKaRa) (Code No.RR047A, TaKaRa) according to the manufacturer’s instructions. The qRT-PCR reaction was performed on the Roche LightCycler480 by using the TB Green Premix Ex Taq II (Code No.RR820A, TaKaRa), and qRT-PCR reaction process was performed according to Chen et al. [35]. All qRT-PCR reactions were performed in three biological replicates. The primers for qRT-PCR are shown in Additional file 12: Table S6.

**RNA-seq experiments and data analysis**

The anthers of T$_2$ transgenic lines (homozygous mutant) and WT control plants at the meiotic stage were collected in three biological replicates at 80°C for RNA isolation. Total RNA was taken according to the manual instructions of the TRIzol Reagent (Life technologies, California, USA). The RNA-seq process was performed according to a previously described approach [35]. The gene expression differences between samples were detected using the DESeq package. The DEGs were identified with FDR (false discovery rate) $\leq 0.01$ and the absolute value of log2 (Fold change) $\geq 1$, and then DEGs were used for subsequent analysis.
**Additional file 1: Figure S1.** Amplification of OsPUB73 CDS.

**Additional file 2: Figure S2.** Amino acid sequence alignment of OsPUB73 with other V class genes in rice and Arabidopsis.

**Additional file 3: Figure S3.** The expression pattern analysis of OsPUB73 in Taichung 65.

**Additional file 4: Table S1.** List of the T<sub>0</sub> result of knockout OsPUB73 by CRISPR/Cas9.

**Additional file 5: Figure S4.** Plant phenotype of the study and collection, analysis, and interpretation of data and in writing the manuscript.

**Additional file 7: Figure S5.** The principal component analysis (PCA) in WT and mutant plant.

**Additional file 8: Table S2.** The correlation analysis between all samples.

**Additional file 9: Table S3.** Differentially expressed genes in WT and mutant.

**Additional file 10: Table S5.** Changed expression of genes in ospub73 and WT plants. (PPTX 399 kb)

**Additional file 11: Figure S6.** The five important genes expression and mutant.

**Additional file 12: Table S6.** The primers were used in this study.

**Abbreviations**

- DAPI: 4,6-diamidino-2-phenylindole; DEGs: Differentially expressed genes; FDR: False discovery rate; GO: Gene ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; LTP: Lipid transfer protein; PCA: Principal component analysis; PCD: Programmed cell death; PUB: Plant U-box; qRT-PCR: Quantitative real-time polymerase chain reaction; RT-PCR: Reverse transcription polymerase chain reaction; TEM: Transmission electron microscopy; WT: Wild type.

**Acknowledgements**

The authors thank Prof. Guiquan Zhang for donating Taichung 65. We also thank Ms. Shuhong Yu and other lab members for assistance.

**Authors’ contributions**

XDL and LC conceived and designed the experiments. LC and XDL wrote the paper. LC, RLD, GQL, JJ and JWW performed experiment and analyzed the data. All authors read and approved the final manuscript.

**Funding**

This work was supported by the Guangzhou Science and Technology Key Program to XD Liu (201707020015), the NSFC to XD Liu (31571625), the Key Realm R & D Program of Guangdong Province (2018A020202012) and the Opening Foundation of Guangdong Province Key Laboratory of Plant Molecular Breeding (GPKLPMB201803). The funders had no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.

**Availability of data and materials**

The RNA-seq data are available from the NCBI under the accession number PRJNA578476. All data supporting the conclusions described here are provided in tables, figures, and additional files.

**Ethics approval and consent to participate**

Not applicable

**Consent for publication**

Not applicable

**Competing interests**

The authors declare that they have no competing interests.

**Author details**

1. State Key Laboratory for Conservation and Utilization of Subtropical Agro-Biosources, South China Agricultural University, Guangzhou 510642, China. 2. Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China. 3. Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China. 4. Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China.

Received: 12 September 2019 Accepted: 29 November 2019
Published online: 10 December 2019

**References**

1. Gomez JF, Talle B, Wilson ZA. Anther and pollen development: a conserved developmental pathway. J Integr Plant Biol. 2015;57(11):876–91.
2. Itoh J, Nonomura K, Ikeda K, Yamaki S, Inukai Y, Yamagishi H, Kitano H, Nagato Y. Rice plant development from zygote to spikelet. Plant Cell Physiol. 2005;46(1):237–43.
3. Arizumi T, Torigaya K. Genetic regulation of sporopollenin synthesis and pollen exine development. Annu Rev Plant Biol. 2011;62:437–60.
4. Li N, Zhang D, Liu H, Yin C, Li X, Liang W, Yuan Z, Xu B, Chu H, Wang J, et al. The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. Plant Cell. 2006;18(1):2999–3014.
5. Wu HM, Cheun AY. Programmed cell death in plant reproduction. Plant Mol Biol. 2000;44(3):267–81.
6. Papini A, Mosti S, Brighina L. Programmed-cell-death events during tapetum development of angiosperms. Protoplasma. 1999;207(3–4):213–21.
7. Li L, Li Y, Song S, Deng H, Li N, Fu X, Chen G, Yuan L. An anther development F-box (ADF) protein regulated by tapetum degeneration retardation (TDR) controls rice anther development. Plant Sci. 2015;241(1):157–66.
8. Gao H, Li X, Wang Z, Ding M, Sun Y, Dong F, Chen F, Liu L, Doughty J, Li Y, et al. Histone H2B monoubiquitination mediated by HISTONE MONOUBIQUITINATION1 and HISTONE MONOUBIQUITINATION2 is involved in anther development by regulating tapetum degradation-related genes in rice. Plant Physiol. 2015;168(4):539–514.
9. Yang X, Wu D, Shi J, He Y, Pinot F, Guassem B, Yin C, Zhu L, Chen M, Luo Z, et al. Rice CYP703A3, a cytochrome P450 hydroxylase, is essential for development of anther cuticle and pollen exine. J Integr Plant Biol. 2014;56(10):979–94.
10. Shi J, Tan H, Yu XH, Liu Y, Liang W, Ranathunge K, Franke RB, Schreiber L, Wang Y, Kai G, et al. Defective pollen wall is required for anther and microspore development in rice and encodes a fatty acyl carrier protein reductase. Plant Cell. 2011;23(6):2225–46.
11. Zhang D, Liang W, Yin C, Zong J, Gu F, Zhang D, OsC6, encoding a lipid transfer protein, is required for postmeiotic anther development in rice. Plant Physiol. 2010;154(1):149–62.
12. Morant M, Jorgensen K, Schaffer H, Pinot F, Mollier BL, Werck-Reichhart D, Bak S. CYP703 is an ancient cytochrome P450 in land plants catalyzing intrachain hydroxylation of lauric acid to provide building blocks for sporopollenin synthesis in pollen. Plant Cell. 2007;19(5):1473–87.
13. Jung KH, Han MJ, Lee YS, Kim YM, Hwang I, Kim MJ, Kim YK, Nahm BH, An G. Rice undeveloped Tapetum1 is a major regulator of early tapetum development. Plant Cell. 2005;17(10):2705–22.
14. Yang Z, Liu L, Sun L, Yu P, Zhang P, Abbas A, Xiang Y, Wu W, Zhang Y, Cao L, et al. OsMS1 functions as a transcriptional activator to regulate programmed tapetum development and pollen exine formation in rice. Plant Mol Biol. 2019;99(1–2):175–91.
15. Liu Z, Bao W, Liang W, Yin J, Zhang D. Identification of gamyb-4 and analysis of the regulatory role of GAMYB in rice anther development. J Integr Plant Biol. 2010;52(7):670–8.
16. Aya K, Ueguchi-Tanaka M, Kondo M, Hamada K, Yano K, Nishimura M, Matsuzaka M. Gibberellin modulates anther development in rice via the transcriptional regulation of GAMYB. Plant Cell. 2009;21(5):1453–72.
17. Li H, Yuan Z, Vizcay-Barrena G, Yang C, Liang W, Zong J, Wilson ZA, Zhang D. PERSISTENT TAPETAL CELL1 encodes a PHD-finger protein that is required for tapetal cell death and pollen development in rice. Plant Physiol. 2011;156(2):615–30.
18. Cecheanov A. Intracellular protein degradation: from a vague idea thru the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting. Cell Death Differ. 2005;12(9):1178–90.

19. Sullivan JA, Shisaku N, Deng XW. The diverse roles of ubiquitin and the 26S proteasome in the life of plants. Nat Rev Genet. 2003;4(12):948–58.

20. Cecheanov A, Schwartz AL. The ubiquitin-proteasome pathway: the complexity and myriad functions of proteins death. Proc Natl Acad Sci U S A. 1998;95(6):2727–30.

21. Jung C, Zhao P, Seo JS, Mitsuda N, Deng S, Chua N. PLANT U-BOX PROTEIN10 regulates MYC2 stability in Arabidopsis. Plant Cell. 2015;27(7):1616–31.

22. Vierstra RD. The ubiquitin-26S proteasome system at the nexus of plant biology. Nat Rev Mol Cell Biol. 2000;1(6):385–97.

23. Moon J, Parry G, Estelle M. The ubiquitin-proteasome pathway and plant development. Plant Cell. 2004;16(12):3181–95.

24. Cecheanov A. The ubiquitin-proteasome pathway: on protein death and cell life. EMBO J. 1998;17(24):7151–60.

25. Ohl MD, Vander KC, Rosenberg JA, Chazin WJ, Gould KL. Structural insights into the U-box, a domain associated with multi-ubiquitination. Nat Struct Biol. 2003;10(4):292–5.

26. Koepl M, Hoppe T, Schlenker S, Ulrich HD, Mayer TU, Jentsch S. A novel ubiquitin-binding factor, E4, is involved in multubiquitin chain assembly. Cell. 1999;99(6):535–44.

27. Zeng LR, Park CH, Venu RC, Huang KH, Sun J, Xie Q, Arumugam TK, et al. Dwarf and short grain 1, encoding a putative U-box protein regulates F1 pollen sterility loci interactions that increase meiosis abnormalities and pollen abortion in autotetraploid rice. Mol Gen Genomics. 2018;293(6):1407–18.

28. Liu YC, Wu YR, Huang XH, Sun J, Xie Q, Arumugam TK, et al. U-box/ARM E3 ligase OsUBP19-A regulates rice pollen viability and pollen exine formation in rice. Plant Cell. 2008;11(9):3185–200.

29. Park JJ, Yi J, Yoon J, Cho LH, Ping J, Jeong HJ, Cho SK, Kim WT, An G. Classification, expression pattern, and E3 ligase activity assay of rice U-box-containing proteins. Mol Plant. 2008;1(10):988–96.

30. Park CH, Venu RC, Gough J, Wang GL. Classification, expression pattern, and E3 ligase activity assay of rice U-box-containing proteins. Mol Plant. 2008;1(10):988–96.

31. Li W, Ahn IP, Ning Y, Park CH, Zeng L, Whitehill JG, Lu H, Zhao Q, Whitehill JG, et al. Cytochrome P450 450 promotes tapetal cell death by regulating aspartic proteases during male reproductive development in rice. Nat Commun. 2013;4(1445):1.

32. Wang H, Lu Y, Jiang T, Berg H, Li C, Xie Y. The Arabidopsis U-box/ARM repeat repeat 1 E3 ligase AtUBP41 increases growth and degeneration of tapetal cells, and its mutation leads to conditional male sterility. Plant J. 2013;74(3):511–23.

33. Fujita M, Horikouchi Y, Ueda Y, Mizuta Y, Kubo T, Yano K, Yamaki S, Tsuda K, Nagata T, Nihama M, et al. Rice expression atlas in reproductive development. Plant Cell Physiol. 2010;51(12):2060–81.

34. Suwak B, Suzuki G, Takahashi H, Shiono K, Endo M, Yano K, Fujita M, Masuko H, Saito H, Fujioka T, et al. Separated transcriptions of male gametophyte and tapetum in rice: validity of a laser microdissection (LMI) microarray. Plant Cell Physiol. 2008;49(10):1407–16.

35. Sun W, Xue F, Lu X, Xie L, Bai B, Zheng C, Sun H, He Y, Xie XZ. The rice phytocytogenes, PHYA and PHYB, have synergistic effects on anther development and pollen viability. Sci Rep. 2017;7(1):6439.

36. Lin H, Yu J, Pearce SP, Zhang D, Wilson ZA. RiceAntherNet: a gene coexpression network for identifying anther and pollen development genes. Plant J. 2017;92(6):1076–91.

37. Li H, Pinot F, Sauveplane V, Werck-Reichhart D, Diehl P, Schreiber L, Franke R, Zhang P, Chen L, Gao Y, et al. Cytochrome P450 family member CYP704B2 catalyzes the (omega)-hydroxylation of fatty acids and is required for anther cutin biosynthesis and pollen exine formation in rice. Plant Cell. 2010;22(1):173–90.

38. Niu N, Liang W, Yang X, Jin W, Wilson ZA, Hu J, Zhang D, EAT1 promotes tapetal cell death by regulating asparagine proteases during male reproductive development in rice. Nat Commun. 2013;4(1):4451.

39. Zhao G, Shi J, Liang W, Xue F, Luo Q, Zhou L, Qu G, Chen M, Schreiber L, Zhang D. Two ATP binding cassette G transporters, rice ATP binding cassette G26 and ATP binding cassette G15, collaboratively regulate rice male reproduction. Plant Physiol. 2015;169(3):2064–79.

40. Wu L, Gao Y, Wu Z, Yang K, Lv J, Grange S, Huang Y, Mao L, Zhao Y, Zhang W, et al. OsABC15 encodes a membrane protein that plays an important role in anther cuticle and pollen exine formation in rice. Plant Cell Rep. 2014;33(11):1881–99.

41. Ma H, Zhang G, Zhu Q, Liu W, Chen Y, Qiu R, Wang B, Yang Z, Li H, Lin Y, et al. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant. 2015;8(8):1274–84.

42. Cota-Sanchez JH, Remarchuk K, Ubasenas K. Ready-to-use DNA extracted with a CTAB method adapted for herbarium specimens and mucilaginous plant tissue. Plant Mol Biol Report. 2006;24:161–7.

43. Chen L, Yuan W, Wu J, Chen Z, Wang L, Shahid MQ, Liu X. Carbohydrate metabolism and fertility related genes high expression levels promote heterosis in autotetraploid rice harboring double neutral genes. Rice. 2019;12(2):34.

44. Li X, Gao X, Wei Y, Deng L, Ouyang Y, Chen G, Li X, Zhang Q, Wu C. Rice APOTOPSIS INHIBITORS coupled with two DEAD-box adenosine 5'-triphosphate-dependent RNA helicases regulates tapetum degeneration. Plant Cell. 2011;23(4):1416–34.