Empirical Investigation of Treatment Process of Outlet Waste Water from Petroleum Industries

Abstract

Nowadays, lake of potable water, development of industries and population growth, extend desalination units. About 72% of the feed is drained into the sea as concentrated brine wastewater. This large amount of concentrated brine wastewater threatens sea ecosystem as thermal shocking and high salinity. The pretreatment of effluent stream from petroleum refinery is a logical solution to decrease damages which threaten the sea ecosystems. To reach the goal of Zero Discharge Process (ZDP) some experiments were conducted to decrease the total hardness of effluent stream from this desalination unit. So, the determination of the effects of some parameters is considered for decreasing of total hardness in this research. The experiments were conducted for three mineral coagulants by using each coagulant, separately also by coupled coagulants.

Keywords: Treatment process, Flocculation; Sedimentation; Water; Calcium hardness; Magnesium hardness

Materials and Methods

Materials

The experiments are managed for the wastewater of petroleum refinery. Three commercial mineral nano coagulants, zinc oxide (ZnO), lead II oxide (PbO) and titanium dioxide (TiO₂) are used in the pretreatment process. Moreover in softening process Sodium Carbonate and Sodium Hydroxide must be added to the wastewater. The previous researches in this field are focused on finding the optimum ratio of Sodium Carbonate to coagulant and also Sodium Hydroxide to coagulant and these ratios are used in this work too. These proper values are 3 and 4 respectively.

Experimental apparatus

Experiments are held in two pretreatment reactors. The capacity of each reactor is 8 liter and each of them equipped by a mixer. The speed of the mixers can be changed by a “control box”. Figure 1 shows the pre-treatment set up. 27 types of binary mixtures of coagulants are examined by three mentioned speeds. Total hardness removal reveals the efficiency of softening pretreatment process. The initial total hardness of wastewater is about 50696.3 ppm as (CaCO₃). The EC of the waste water is about 29543 micro mho per centimeter and with different pH values. The salinity of feed stream which is entrance to the first pretreatment reactor is about 7 percent. The results show the electrical conductivity, salinity and total hardness vanished, severely in this paper. In addition, the results show the turbidity amount of treated water is decreased in this study.

Results and Discussion

The speed of mixer in the first pretreatment reactor is one of the major operating parameters which affects the size of...
coagulants and then as a result the softening efficiency. The total hardness removal reveals the efficiency of softening pretreatment process. Figure 1 shows the trend of total hardness removal. This illustrates that the speed of 90 rpm in coagulation step increases the total hardness efficiently and also the mixture contains TiO$_2$ and ZnO has enough capacity to remove total hardness from 50696.3 to about 299 ppm as CaCO$_3$. However if this ratio increases to 8/2 or 9/1 the total harness decreases just about 1.5%, so this is concluded that mixture contains 700 cc of TiO$_2$ to 300cc of ZnO is beneficial economically. One of the important aspects on coagulation process is pH of wastewater. Also the pH value of clarified water is important in potable water. The total hardness can state the turbidity and electrical conductivity, also. All of the obtained results which are shown in the Figures 1a to 1i state the treatment is efficient. Experimental results show the ratio for TiO$_2$/PbO and also for TiO$_2$/ZnO is 3/1.5. So, by increasing the amount of TiO$_2$ in the mixture the value of total hardness decreases.
Empirical Investigation of Treatment Process of Outlet Waste Water from Petroleum Industries

Figure 1: variation of total hardness versus amounts of binary mineral coagulant mixtures for different mixing speed.

Conclusion

This work focuses on the finding the major aspects for removing the total hardness of wastewater by different binary mixtures of mineral nano coagulants. The used wastewater is the effluent stream of petroleum refinery. The results reveal that the speed of 90 rpm in coagulation step decreases the total hardness efficiently and a mixture containing TiO\textsubscript{2} and ZnO has higher capacity to remove total hardness comparing with the other coupled mixtures. The experiments show that another effective factor on coagulation step is the high ratio of number of anions to the number of cations of coagulant. This ratio for TiO\textsubscript{2}/PbO and also for TiO\textsubscript{2}/ZnO is 3/1.5. So, by increasing the amount of TiO\textsubscript{2} in the mixture the value of total hardness decreases.

References

1. Khiari R, Dhaouadi SD, Aguir C, Mhenni MF (2010) Experimental evaluation of eco-friendly flocculants prepared from date palm rachis. J Environ Sci (China) 22(10):1539-1543.
2. Gao B, Chu Y, Yue Q, Wang Y (2009) Purification and characterization of AlI3 species in coagulant polyaluminum Chloride. J Environ Sci (China) 21(1): 18-22.
3. Beltrán PA, Roça JAM, Pią AB, Melón MG, Ruiz EP (2009) Application of multicriteria decision analysis to jar-test results for chemicals selection in the physical-chemical treatment of textile wastewater. J Hazard Mater 164(1): 288-295.
4. Yana M, Wang D, Ni J, Ni W, Van Leeuwen J (2009) Natural organic matter (NOM) removal in a typical North-China water plant by enhanced coagulation: Targets and techniques. Sep Purif Technol 68(3): 320-327.
5. Wu Q, Hua T, Zhou Q (2011) Treatment and remediation of a wastewater lagoon using microelectrolysis and modified DAT/IAT methods. J Environ Sci (China) 23(3):388-95.
6. Setiawan AA, Yu Zhao, Nayar CV (2009) Economic analysis and environmental considerations of mini-grid hybrid power system with reverse osmosis desalination plant for remote areas. Renewable Energy 34(2): 374-383.
7. Lee S, Maniquiz MC, Kim LH (2010) Characteristics of contaminants in water and sediment of a constructed. wetland treating piggery wastewater effluent. J Environ Sci (China) 22(6): 940-945.
8. Wang Y, Zhoua WZ, Gao BY (2009) The effect of total hardness on the coagulation performance of aluminum salts with different Al species. Separation and Purification Technology 66(3): 457-462.
9. Wang W, Hua Li , Wang X, Liu Y (2010) Spatial variations of aluminum species in drinking water supplies in Xian studied applying geographic information system. J Environ Sci 22: 519-525.

Citation: Dorostkar B, Farahbod F (2017) Empirical Investigation of Treatment Process of Outlet Waste Water from Petroleum Industries. J Appl Biotechnol Bioeng 2(5): 00045. DOI: 10.15406/jab.2017.02.00045
Empirical Investigation of Treatment Process of Outlet Waste Water from Petroleum Industries

10. Jangkorn S, Kuhakaew S, Theantano S, Klinlaor H, Sriwiriyarat T (2011) Evaluation of reusing alum sludge for the coagulation of industrial wastewater containing mixed anionic surfactants. J Environ Sci (China) 23(4): 587-594.

11. Al-Jasser A (2011) Saudi wastewater reuse standards for agricultural irrigation: Riyadh treatment plants effluent compliance. King Saudi University-Eng Sci 23:1-8.

12. Nan J, He W, Song X, Li G (2009) Impact of dynamic distribution of floc particles on floculation effect. J Environ Sci (China) 21(8): 1059-1065.