An Exogenous Mouse Mammary Tumor Virus with Properties of Mls-1a (Mtv-7)

By Werner Held,*1 Alexander N. Shakhov,*1 Gary Waanders,*
Leo Scarpellino,* Roland Luethy,† Jean-Pierre Kraehenbuhl,t5
H. Robson MacDonald,* and Hans Acha-Orbea*

From the *Ludwig Institute for Cancer Research, Lausanne Branch, and the *Swiss Institute for
Experimental Cancer Research and $Institute of Biochemistry, University of Lausanne, 1066
Epalinges, Switzerland

Summary

The classical minor lymphocyte stimulating (Mls) antigens, which induce a strong primary T
cell response in vitro, are closely linked to endogenous copies of mouse mammary tumor viruses
(MMTV). Expression of Mls genes leads to clonal deletion of T cell subsets expressing specific
T cell receptor (TCR) \(V_\beta \) chains. We describe the isolation and characterization of a new
exogenous (infectious) MMTV with biological properties similar to the Mls antigen Mls-1a.
In vivo administration of either Mls-1a-expressing B cells or the infectious MMTV (SW) led
to an increase of T cells expressing \(V_\beta 6 \) followed by their deletion. Surprisingly, different kinetics
of deletion were observed with the exogenous virus depending upon the route of infection. Infection
through the mucosa led to a slow deletion of \(V_\beta 6^+ \) T cells, whereas deletion was rapid after
subcutaneous infection. Sequence analysis of the open reading frames in the 3' long terminal
repeat of both this exogenous MMTV (SW) and of \(Mtv-7 \) (which is closely linked to Mls-1a)
revealed striking similarities, particularly in the COOH terminus, which has been implicated
in TCR \(V_\beta \) recognition. The identification of an infectious MMTV with the properties of a
strong Mls antigen provides a new, powerful tool to study immunity and tolerance in vivo.

The Mls antigens were originally defined on the basis of
a very strong proliferative T cell response between MHC-
identical mouse strains (1). Several independent Mls loci (Mls-1,
-2, -3, -4) segregating as single autosomal dominant genes
have been defined (for review see reference 2). For each Mls
locus, a stimulating (named, e.g., Mls-1a) and a null (named,
e.g., Mls-1b) allele has been described.

T cell reactivity towards Mls gene products appears to be
determined exclusively by the V domain of the TCR \(\beta \) chain
(3-8), whereas the variable, junctional, and highly polymorphic CDR3 segments of both the TCR \(\alpha \) and \(\beta \) chains
determine classical recognition of antigenic peptides associated
with MHC molecules (for review see reference 9).

Because of their unique \(V_\beta \) specificity, Mls antigens have
been key elements in the development of our current under-
standing of tolerance mechanisms in mice. T cells expressing
Mls-reactive TCR \(V_\beta \) domains are deleted in an Mls-express-
ing mouse strain during thymic maturation by a mechanism
called negative selection. Thus, carriers of the Mls-1a gene
delete T cells expressing TCR \(V_\beta 6, 7, 8.1, \) and 9 from their
peripheral T cell pool as a consequence of self-reactivity (3,
4, 10, 11).

A second tolerance mechanism has been shown to operate for Mls antigens: injection of Mls-1a-expressing cells into
adult Mls-1b mice leads to a specific unresponsiveness to
Mls-1a with or without subsequent peripheral deletion of
the reactive T cell subsets (12-14).

In addition to Mls genes, several other genetic elements
were described that delete T cells from the peripheral T cell
pool depending on the expression of their TCR \(V_\beta \) do-
 mains. However, these deletion elements were found to be-
have differently from Mls-1a. First, in agreement with ear-
erly proliferation studies (15, 16, and for review see reference
2), I-A as well as I-E can present Mls-1b for clonal deletion
in vivo (3, 4), whereas these other deletion elements strictly
require I-E expression for clonal deletion to occur (17-26,
and for review see reference 27). Second, a strong prolifera-
tive T cell response in vitro can be induced with Mls-1a-
expressing B cells (28-30). Such a proliferative response of
T cells expressing the relevant TCR \(V_\beta \) domains was not de-
tected (or only very weakly) with these weaker deletion ele-
ments. Third, Mls-1a mice delete \(V_\beta 6 \) cells very quickly after
birth (31). This is in contrast to the weaker deletion elements,
where a much longer amount of time is required to induce
a near complete deletion \(32, 33\). Thus, for the rest of this article, these weak deletion elements will be referred to as Mls-like determinants.

It has been shown recently that the gene products encoding most (if not all) Mls and Mls-like determinants in mice are closely linked to endogenous mouse mammary tumor virus (MMTV)\(^2\) proviral loci \(32, 34-37\). Until now, >30 different endogenous MMTVs have been mapped and characterized \(38\). They display \(\approx95\%\) nucleotide sequence homology. Usually, two to eight different MMTV copies are dosedly linked to endogenous mouse mammary tumor virus (MMTV)\(^z\) proviral loci \(32, 34-37\). Until now, >30 unique V\(_\beta\) domains are localized at the COOH-terminus of these putative MMTV orf molecules \(32, 39\), and for review see reference 27.

MMTV also exists as an exogenous infectious virus that is maternally transmitted via milk \(40\). Our knowledge about the biology and the life cycle of the virus is still incomplete. Uptake of the virus occurs in the gut. There is some evidence that the immune system is involved in transport of the virus to the mammary gland \(41\). Upon infection of the mammary gland, the virus can complete its life cycle. Integration close to the int-1, -2, -3, and -4 loci leads to development of mammary tumors and high MMTV titers in milk \(42\).

With respect to clonal deletion of T cells expressing specific V\(_\beta\) chains, the two exogenous MMTVs (GR) and (C3H) have been characterized. MMTV (C3H) was shown to induce a slow deletion of T cells expressing V\(_\beta\)\(_{14}\) after neonatal uptake of infectious particles contained in milk \(33\). MMTV (GR) has been analyzed using mice containing the entire viral genome as a transgene. In these transgenic mice, MMTV (GR) leads to a slow, I-E-dependent deletion of V\(_\beta\)\(_{14}\) T cells \(32, 36\). Neither virus is capable of stimulating a strong mixed lymphocyte response. Thus, exogenous MMTVs behave very much like the weak Mls-like structures described above. So far no infectious virus encoding a strong Mls antigen has been described.

In this article we describe the characterization of an exogenous form of Mls-1\(^*\). This infectious MMTV was found in high titers in the milk of several but not all BALB/c mice obtained from IFFA Credo (BALB/c IC), but not in BALB/c mice obtained from Harlan Olac (BALB/c HO). It induces clonal deletion of the same TCR V\(_\beta\)-expressing T cells as Mls-1\(^*\). Either fast or slow clonal deletion of the responsive T cells was observed depending on the route of infection. Analysis of the DNA or cDNA sequences of both endogenous Mtv-7 and of this new exogenous MMTV, respectively, indicates a very high degree of homology in the orf molecules. The most relevant differences to all the other previously sequenced MMTV orf molecules were found in the COOH-terminal amino acids, which is compatible with the unique V\(_\beta\) specificity of Mls-1\(^*\) and this new exogenous virus. Since most likely the new MMTV derives from outbred Swiss mice, we propose the designation MMTV (SW).

Materials and Methods

Mice. BALB/c IC mice were purchased from IFFA Credo (L'Arbresle, France), and BALB/c HO mice from Harlan Olac UK Ltd. (Bicester, UK). C3H/OuJ and BALB.D2 (43) mice were bred in our colony.

Antibodies. The following mAbs were used in this study: 14.2 (anti-V\(_\beta\)\(_{14}\)) \(44\); 44.22.1 (anti-V\(_\beta\)\(_6\)) \(45\); KJ-16 (anti-V\(_\beta\)8.1-2) \(46\); F23.1 (anti-V\(_\beta\)8.1, 8.2, 8.3); F23.2 (anti-V\(_\beta\)8.2) \(47\); KT4.10 (anti-V\(_\beta\)4) \(48\); MR. 10.2 (anti-V\(_\beta\)9) \(49\); TR310 (anti-V\(_\beta\)7) \(11\); GK1.5 (anti-CD4) \(50\); AT 83 (anti-Thy-1) \(51\).

Milk Collection, Virus Purification, and Virus Titration. Milk was aspirated from lactating BALB/c or C3H/OuJ females after infection of 0.5 IU syngeneic/outsyngeneic (Sandoz, Basel, Switzerland), pooled, aliquoted, and stored at \(-70^\circ C\).

Freshly sampled milk was diluted 1:20 with water and centrifuged at 600 g for 5 min to skim and remove casein. Milk serum was then centrifuged at 15,000 g for 1 h and the virus pellet was resuspended in water \(52\).

MMTV gp52 in milk was measured by sandwich ELISA using polyclonal sheep and rabbit anti-gp52 IgG (kindly provided by Dr. P. Hainaut, University of Liège, Liège, Belgium). A biotinylated sheep antibody directed against rabbit IgG and streptavidin peroxidase served as a detection system. MMTV, purified by ultracentrifugation from the supernatant of cultured GR mammary tumor cells, was used as standard. 1 pg of MMTV corresponds to \(\approx10^5\) viral particles \(40\).

Injections and Sampling. Mouse milk (20 \(\mu l\)), which was either MMTV free or contained between 2 \(\times 10^4\) and \(10^5/\mu l\) MMTV (C3H) or (SW) particles, was injected into the hind footpad of 6–10-wk-old BALB/c HO mice. After 4 d, the popliteal and inguinal lymph nodes were isolated. Alternatively, mice were tail bled and leukocytes were recovered from heparinized blood samples by centrifugation through a Ficoll cushion. Splenic BALB/D2 Thy-1\(^-\) cells were prepared by elimination of T cells through complement lysis using the mAb AT83 (anti-Thy-1), and 6 \(\times 10^6\) cells were injected into the footpad.

FACS\(^*\) Staining. Lymph node cells or thymocytes \(10^6\) were stained with anti-TCR V\(_\beta\)-specific monoclonal hybridoma supernatants followed by fluoresceinated anti-rat or anti-mouse IgG or IgG antisera. PE-coupled anti-CD4 (GK1.5) (Becton Dickinson & Co., Mountain View, CA) was used in the second dimension. Streptavidin-PE Texas red (Tandem; Southern Biotechnology Associates, Birmingham, AL) was used to develop the anti-CD8 (Lyt-2)-biotin labeling. Leukocytes were recovered from heparinized blood samples by centrifugation through a Ficoll cushion. These cells were stained in one step with a mixture of FITC-labeled anti-TCR V\(_\beta\) antibody and PE-coupled anti-CD4.

Dead cells were gated by forward scatter and side scatter analysis. Background staining values obtained with the second stage reagents alone were subtracted. Analysis was performed on a FACSscan (Becton Dickinson & Co.) cell analyzer using logarithmic scale for data evaluation.

Southern Blot Analysis. High-molecular weight genomic tail DNA was isolated using standard protocols \(53\). DNA \(10 \mu g\) was completely digested by the restriction enzymes EcoRI (Phar-
mice, Uppsala, Sweden) or PvuII (Pharmacia), and the DNA fragments were separated on 0.8% agarose gels using standard conditions (53). The DNA was transferred on to nylon membranes (GeneScreen PLUS™; DuPont Co., Wilmington, DE) by vacuum blotting. The baked membranes were prehybridized for at least 2 h in 5× SSC, 0.1% SDS, 5× Denhardt’s solution. The DNA probe was radiolabeled using the random hexamer priming method to ~5 × 10⁶ cpm/µg (54) and then hybridized with membrane bound DNA for 20 h at 65°C. The filters were washed in 2× SSC, 0.1% SDS at room temperature then twice with 0.2× SSC, 0.1% SDS at 65°C. Autoradiography was for 48 h using two intensifying screens and Kodak XAR film.

Reverse Transcription. Reverse transcription was used to prepare viral cDNA. Briefly, partially purified MMTV from milk (~10⁹ particles) was added to a reaction mixture containing: 1× PCR buffer (see below), supplemented with 10 mM DTT, 300 U RNasin (Pharmacia), 0.1% NP-40, and 25 U AMV reverse transcriptase (Boehringer Mannheim Biochemicals, Mannheim, Germany). The reaction was carried out at 42°C for 18 h (55).

PCR, Cloning, and Sequencing. The cDNA products of the reverse transcriptase reaction were amplified with the two oligonucleotides spanning the MMTV orf region: 5' oligonucleotide: GTACGTCGACCATCGCGCGCGTACGAGA; 3' oligonucleotide: GTGTCGACCCAAACCAAGTCAGGAAACCACTTG.

The oligonucleotides were chosen on the basis of high degrees of conservation between the previously sequenced orf molecules. The conditions for PCR were 1 min at 55°C, 1 min at 72°C, 1 min at 95°C for 30 cycles in 1× PCR buffer containing 20 mM TRIS-HCl, pH 8.4, 50 mM KCl, 2 mM MgCl₂, 0.01% gelatin, 2 U Taq polymerase (AmpliTaq™, Perkin Elmer Corp., Emeryville, CA) using an LEP amplifier (SCIENTIFIC PREM™; Lep Scientific Ltd. Milton, Keynes, UK). The PCR products were size fractionated in 1% agarose gels and cloned into the pGEM3Zf(+) vector (Promega Biotech, Madison, WI) after SalI digestion and purification using standard techniques (53). The endogenous orf copies were amplified as described above. The BALB/D2 high-molecular weight DNA was size fractionated in agarose gels after complete EcoRI digestion, and the size ranges containing Mtv-6 (16.7 kb), Mtv-7 (11.7 kb), and Mtv-9 (10.0 kb) were electroeluted (Biotrap; Schleicher & Schuell, Inc., Keene, NH) and treated as the PCR products described above. Recombinant plasmids were isolated and used as templates for dideoxy sequencing (Sequenase Version 2.0; U.S. Biochemical Corp., Indianapolis, IN).

Results

Age-dependent Deletion of Vα6 T Cells in Certain BALB/c Mice. In BALB/c mice, Vα6 cells make up ~10% of peripheral CD4+ T cells (4). Upon repeated testing of peripheral blood from a large number of BALB/c mice obtained from IFFA-Credo (BALB/c IC), we found an unexpected age-dependent clonal deletion of T cells expressing Vα6 (Fig. 1). At 5 wk of age ~11% of CD4+ T cells were Vα6+ in some BALB/c IC mice, however, a considerable fraction of age-matched BALB/c IC mice contained only 6% CD4+ Vα6+ T cells (a similar observation was made by Papiernik et al. [56]). In comparison, BALB/D2 mice (which are Mls-1 congenic BALB/c mice), had almost completely deleted CD4+ Vα6+ cells from the peripheral blood at 4 wk of age (data not shown) (31). At 36 wk of age, the deletion in BALB/c IC mice had reached values similar to BALB/D2 mice (i.e., <0.5% CD4+ Vα6 + T cells), whereas control values remained constant at 11% Vα6 cells.

TCR Vα Repertoire of Individual BALB/c Mice. The only genetic element that is known to delete Vα6+ T cells is Mls-1+. Besides Vα6, however, Mls-1+ positive mice also delete T cells expressing Vβ7, Vβ8.1, and Vβ9 (3, 4, 10, 11). Analysis of the peripheral T cell repertoire of Vγ6-deleting BALB/c IC mice showed that among the CD4+ subset Vβ7, as well as Vβ8.1, expressing T cells were also deleted (Table 1). The levels of CD4+ Vβ9+ T cells in BALB/c mice were too low to assess whether the deletion was significant.

Table 1. TCR Vβ Repertoire of CD4+ T Cells in BALB/c Mice

Vβ	BALB/c HO	3 mo	9 mo	BALB/D2
Vβ4	6.9 ± 0.2	8.5 ± 0.4	9.8 ± 0.2	8.9 ± 0.1
Vβ6	10.1 ± 0.2	2.9 ± 0.2	1.2 ± 0.5	0.2 ± 0.1
Vβ7	2.4 ± 0.4	1.7 ± 0.4	0.6 ± 0.2	0.6 ± 0.1
Vβ8.1	6.3 ± 0.8	4.3 ± 0.6	3.3 ± 1.5	0.9 ± 0.3
Vβ8.2	12.7 ± 0.9	12.8 ± 0.8	13.2 ± 0.7	12.5 ± 1.5
Vβ9	1.1 ± 0.2	0.8 ± 0.2	0.7 ± 0.2	0.3 ± 0.1
Vβ14	8.0 ± 1.0	8.2 ± 1.7	9.0 ± 1.1	9.2 ± 0.8

Lymph node cells were analyzed for the TCR Vγ repertoire using FACScan® analysis. The lymph nodes from at least three mice per group were analyzed. Data are indicated as mean ± SD.
addition, deletion of the populations expressing TCR V~3, 5, and 11 (normally deleted in BALB/c mice) was observed. V~8.2^+ and V~4^+ T cells, which have no known Mls specificity, as well as V~14^+ T cells that are known to interact with exogenous MMTVs (C3H) and (GR), were unaffected in these mice. Similarly, all other V~s tested (V~2, 8.3, 10, 13) were unaltered when comparing normal BALB/c mice with V~6-deleting BALB/c IC mice (data not shown).

Among CD4^+ T cells, deletion was most obvious for V~6^+ T cells, whereas V~7^+ and V~8.1^+ T cells were only partially deleted in 9-mo-old animals. Thus, this deletion element has the same V~ specificity as Mls-1^a.

Thymic vs. Peripheral Deletion of V~6^+ T Cells. Deletion of V~6^+ T cells in Mls-1^a strains of mice occurs very rapidly after birth in the thymus (31). In contrast, adult BALB/c IC (3 mo) mice show only a partial deletion of their V~6^+ CD4^+ and V~6^+ CD8^+ thymocytes (Table 2). In the periphery, CD8^+ V~6^+ cells are deleted to a lesser degree than CD4^+ V~6^+ T cells (Table 2). The same was true for the other V~s affected in BALB/c IC mice (data not shown).

Exogenous or Endogenous MMTV. Since most (if not all) known V~ deletion elements are linked to MMTV, we hypothesized that the slow V~6 deletion could be caused by an endogenous or exogenous MMTV.

To test the first possibility, we performed Southern blot analysis on genomic DNA obtained from V~6-deleting and nondeleting BALB/c IC mice. Genomic DNA was either digested with EcoRI (data not shown) or PvulI restriction endonuclease. Both enzymes generate two diagnostic DNA fragments for most integrated viruses. Hybridization of the DNA was performed with an MMTV (GR) LTR probe. Clearly, fragments corresponding to the BALB/c endogenous MMTVs (Mtv-6, -8, -9) can be identified in all the mice (Fig. 2). However, in a total of 30 BALB/c IC mice tested, no new or altered integration site that would correlate with the V~6 deletion phenotype could be detected. Thus, we could exclude a germline-transmitted endogenous MMTV as the causative agent for the slow V~6 deletion.

Table 2. Thymic and Peripheral Deletion of V~6^+ T Cells

	Thymus	Lymph node
BALB/c HO	CD4	9.2 ± 0.2
	CD8	8.3 ± 1.2
BALB/c IC	CD4	4.4 ± 0.2
	CD8	2.7 ± 0.5
BALB.D2	CD4	0.3 ± 0.2
	CD8	0.4 ± 0.3

Table 2: Thymic and Peripheral Deletion of V~6^+ T Cells

Thymocytes and lymph node cells from 3-mo-old BALB/c IC, BALB/c HO, and BALB.D2 mice were analyzed for the presence of V~6^+ T cells using three-color FACS® analysis. V~6 expression in the thymus was assessed by gating on CD4 or CD8 single-positive thymocytes. The lymph node and thymus from at least three mice per group were analyzed. Data are indicated as mean ± SD.

Exogenous MMTVs can be inherited through transmission from mother to offspring via milk. This maternal transmission of MMTV (C3H) has been shown to result in deletion of CD4^+ V~14^+ T cells (33). We therefore bred BALB/c IC female mice that had deleted V~6^+ T cells with nondeleter BALB/c IC males. The offspring of these crosses had all inherited the V~6-deleter phenotype (data not shown). To directly test milk from this mother for exogenous MMTV, we used an ELISA system to detect the MMTV envelope protein gp52 in milk. As shown in Fig. 3, milk from this V~6-deleting BALB/c IC mother contained as much gp52 as milk obtained from lactating C3H/OuJ mice.
which contain high titers of MMTV (C3H). All BALB/c IC deleter females tested showed high titers of MMTV in their milk (data not shown), whereas no gp52 was detected in BALB/c HO milk. This is in agreement with earlier reports that normal BALB/c mice do not contain detectable MMTV particles in milk (57). Since 1 pg of MMTV corresponds to ~1,000 virus particles (40), and purified MMTV (GR) was used as a standard, we could estimate the detection limit of the ELISA to be <2 x 10^4 MMTV particles per microliter of milk. Milk from C3H or from gp6-deleting BALB/c IC mice contained usually between 10^8 and 10^9 MMTV particles per microliter of milk. From now on we refer to this new MMTV as MMTV (SW) (see Discussion).

In Vivo Response to MMTV (SW). To test whether the MMTV (SW) particles could affect Vδ6+ T cells in vivo, we injected 20 μl milk, i.e., ~4 x 10^9 virus particles, in the hind foot pads of normal adult BALB/c HO mice. As controls, BALB/c HO mice were either injected with milk containing MMTV (C3H) (4 x 10^9 to 4 x 10^10 particles) or milk from control BALB/c HO mice (not containing detectable MMTV particles).

To follow the events after virus challenge, we analyzed the popliteal and inguinal lymph nodes. Results obtained with exogenous virus indicated that 4 d after injection was an appropriate time point to analyze the local immune response.

Milk containing the C3H virus induced only a marginal increase of TCR Vδ14-expressing T cells in the local lymph nodes of the injected footpad compared with noninjected control mice. No alteration in the Vδ profile was observed with control milk. However, injection of the milk from Vδ6 deleters induced a strong specific increase of Vδ6 cells from 10% to ~30% of CD4+ T cells (Table 3).

Since it is a distinct feature of Mls-1a B cells to induce a strong proliferative response of T cells from Mls-1a- nonexpressing mice (1, 28-30), we similarly injected Mls-1a B cells into the footpad. Again, CD4+ Vδ6+ T cells increased when BALB/c HO mice were injected with BALB.D2 (Mls-1a) splenic B cells. No specific increase, however, was observed when B cells from BALB/c IC Vδ6 deleters or BALB/c HO mice were injected. Furthermore, B cells from Vδ6 deleters were unable to stimulate a proliferative response of Vδ6+ cells in vitro or to induce IL-2 production by the Vδ6+ T cell hybrid RG-17 (data not shown).

It has been shown for staphylococcal enterotoxins (SE) and

Table 3. The Exogenous MMTV (SW) and Mls-1a B Cells Induce CD4+ Vδ6+ T Cell Increase In Vivo	Percent Vδ among CD4+ T cells		
Injection No.	Vδ6	Vδ8.2	Vδ14
No injection			
1	11.1	12.0	10.0
2	12.0	12.0	9.4
3	11.8	14.0	11.5
BALB/c HO milk			
1	10.9	13.2	10.8
2	10.5	12.5	9.9
C3H milk			
1	9.3	11.4	12.6
2	9.5	11.5	11.5
3	9.1	11.2	13.5
BALB/c IC milk			
1	27.8	7.5	6.7
2	30.7	7.6	6.7
3	30.3	ND	8.1
BALB/c HO B cells			
1	11.6	13.2	ND
2	13.1	ND	10.8
3	12.2	ND	10.6
BALB/c IC B cells			
1	12.2	13.6	ND
2	13.8	ND	11.0
3	12.8	ND	11.0
BALB.D2 B cells			
1	43.8	7.7	ND
2	31.2	ND	8.7
3	39.4	ND	8.3

Milk (20 μl) containing 4 x 10^9 to 10^10 virus particles or 6 x 10^6 splenic B cells were injected into the footpads of normal adult BALB/c HO mice. After 4 d, the percentage of cells expressing the indicated TCR Vδ chains among the CD4+ cells in the popliteal and inguinal lymph nodes was determined by FACS® analysis. Results from individual mice are shown. Values showing significant increases are underlined.

Table 4. MMTV (SW) Induces Deletion of CD4+ Vδ6+ T Cells	Time after injection		
Injection No.	4 d	14 d	40 d
BALB c HO milk			
Vδ6	9.5	11.2	10.8
Vδ14	9.9	11.1	11.1
C3H milk			
Vδ6	10.3	11.4	12.7
Vδ14	9.6	9.4	10.2
BALB/c IC B cells			
Vδ6	6.7	3.3	1.5
Vδ14	7.2	3.6	1.6
BALB/c IC milk			
Vδ6	9.8	10.3	ND
Vδ14	11.7	10.7	11.5

Mice were injected with milk as described in the legend to Table 3. At the indicated time points the percentage of Vδ6+ and Vδ14+ T cells in the CD4+ subset was determined in the peripheral blood by FACS® analysis. Results of individual mice are shown.
Mls-1* that upon injection in vivo, the initial proliferation of T cells is followed by a state of nonresponsiveness and partial peripheral deletion of the reactive T cells (13, 58, 59). Thus, we tested blood samples various times after virus injection for the presence of CD4+ Vα6+ and CD4+ Vβ14+ T cells. At 4 d, a small but significant reduction of Vα6+ T cells was observed in mice injected with MMTV (SW)-containing milk (Table 4). This could have been due either to recruitment of these cells to the local lymph node and/or the onset of clonal deletion. The reduction of CD4+ Vα6+ T cells in peripheral blood reached 75% after 2 wk and was almost complete after 6 wk (1.5% of CD4+ T cells). MMTV (C3H) did not induce a specific reduction of CD4+ Vβ14+ cells 2 wk after injection. After 6 wk, however, C3H milk induced a specific reduction of CD4+ Vβ14+ T cells, which did not exceed 50%. Values for CD4+ Vα6+ and CD4+ Vβ14+ T cells remained unchanged in mice injected with control milk. Thus, both viruses induced deletion of the expected Vα6 from the peripheral T cell pool upon local injection into the footpad.

Purification of the Exogenous Virus and Cloning of MMTV (SW) orf. We partially purified the novel MMTV contained in milk of Vα6 deilters. Reverse transcription was used to prepare cDNA from the viral RNA. The orf molecule in the 3' LTR has recently been shown to mediate the Vα specificity in both exogenous MMTV (C3H) (39) and (GR) (32). Therefore, we used the PCR with primers to conserved regions spanning the off coding region to amplify a 1.1-kb stretch of the 3' LTR containing the entire off sequence. The PCR products were then cloned and sequenced. In addition to BALB/c HO milk, a PCR product was obtained from C3H milk. However, no PCR product was obtained from the control BALB/c HO milk.

Sequence analysis revealed that the 3' LTR from the novel exogenous MMTV (SW) is very similar to other described MMTV sequences at the 5' end of the orf (Fig. 4). However, a stretch with a unique sequence was found at the 3' end, altering the last 21 amino acids of the putative orf protein completely.

Cloning of Mtv-7 orf (Mls-1*). Since the novel MMTV (SW) has the identical Vβ specificity as Mls-1*, and a strong linkage between endogenous Mls-1* and Mtv-7 has been observed (32, 36), we attempted to clone Mtv-7. To this end, genomic DNA isolated from BALB/D2 spleen was digested with the restriction endonuclease EcoRI and size fractionated on an agarose gel. DNA was subsequently isolated from gel slices corresponding to the 3' ends of Mtv-9 (10.0 kb), Mtv-7 (11.7 kb), and Mtv-6 (16.7 kb). (38) PCR analysis was then performed with primers that can amplify all known MMTV orf sequences.

Nucleotide sequences of clones derived from PCR products obtained from the Mtv-9 fraction were nearly identical to the published Mtv-9 LTR orf sequence (Fig. 5, and data not shown). However, clones obtained from the Mtv-7 and Mtv-6 fractions showed striking differences at the 3' end of the LTR, as compared with previously published sequences (Fig. 4). The putative Mtv-7 sequence was very similar to the exogenous virus sequence described above. At the extreme 3' end of the orf coding region, which is very different from all known MMTV orf sequences (and is thought to mediate the Vβ specificity), Mtv-7 and the novel virus display extremely high sequence homology, except for only three conservative amino acid differences (Fig. 5).

Discussion

With the discovery that Mls antigens are encoded by endogenous Mtv proviral loci, experiments using exogenous MMTV to analyze infection, tolerance development, and the interplay between the immune system and cancer development have become possible. This sort of analysis has been hampered by the fact that only two exogenous MMTVs have been characterized in sufficient detail so far, namely the MMTVs (C3H) and (GR) (32, 39). Both of these viruses behave very similarly to the Mls-like antigens that are slow deleters and weak stimulators in a mixed lymphocyte reaction. They can be presented only by MHC I-E molecules and affect T cells expressing Vα14. With the description of MMTV (SW) in this article, a virus with biological properties very similar to Mls-1*, we found the exogenous counterpart of a strong Mls determinant.

One of the most prominent features of Mls-1* is the strong proliferative response of T cells from Mls-1*-negative mice to Mls-1*-expressing B cells (1, 28–30). In that respect, Mls-1* is the strongest of all the Mls determinants. In this study we show that this feature, however, was not found in B cells from mice maternally infected with the Mls-1*-like exogenous MMTV (SW). Several explanations could account for this discrepancy. (a) The amino acid sequence comparison between the exogenous and the endogenous virus indicates a few minor differences at the COOH terminus of the orf molecule. However, these changes in the COOH terminus of the exogenous (Mtv-7-like) orf compared with Mtv-7 are conservative, and thus unlikely to account for an inefficient interaction with the TCR Vβ. The two most likely explanations are: (b) the frequency of MMTV-infected B cells could be too low to induce a stimulation. However, in control mixing experiments, 3% Mls-1* expressing BALB/D2 B cells are required to induce a detectable mixed lymphocyte reaction (H. R. MacDonald, unpublished observations). (c) The expression level of the MMTV orf protein could be too low to induce a strong stimulation. However, injected in vivo, the novel virus is almost as efficient as Mls-1* B cells at triggering Vα6+ T cells. In comparison, exogenous C3H virus is not able to stimulate Vβ14-expressing T cells in the same assay. By this criterion, the novel MMTV encodes a strong Mls determinant.

It is striking that, in vivo, MMTV (C3H) and the novel MMTV induce a slow deletion of T cells expressing their target Vα6 in mice that take up the virus by suckling. Although both the thymus and the periphery show deletion of Vα6+ T cells in infected mice, peripheral deletion of CD4+ Vβ6+ T cells is more profound, suggesting that some
virus-infected cells may recirculate to the thymus in the neonate.

With both viruses it takes several months until the deletion is complete. When introduced into adults by foot pad injection, the C3H virus again induces a slow, 50% reduction of Vq14+ cells, whereas the novel Mls-1'-like virus induces a very rapid and almost complete deletion of Vq6+ T cells. This apparent discrepancy might be explained by a very inefficient uptake of the latter virus through the gut, and argues against a weak stimulation potential of the exogenous virus. Since virus uptake may be dependent upon the envelope protein gp52, detailed analysis of the gp52 sequence may be required to test this hypothesis.

The incidence of mammary tumors induced in BALB/c mice foster nursed to C3H mothers is very high (80-90%) at 1 yr of age (60). In contrast, in our BALB/c IC colony we did not observe a single mammary tumor so far. Even old (>1 yr) breeders (n = 20) that had several litters did not
develop tumors. Thus, on the same genetic background, mammary tumor induction is only observed with MMTV (C3H), although MMTV (SW) deletes Vβ8 as profoundly as MMTV (C3H). This suggests that the tumor-inducing capacity of MMTV is not reflected in its efficiency to delete Vβ8.

The question about the origin of this exogenous virus remains open. BALB/c IC mice were derived from BALB/c J mice, when a breeding colony was established in 1988 at IFFA Credo. A genetic contamination is very unlikely since the endogenous MMTV copies are identical to standard BALB/c mice and because the colony is regularly tested for skin graft rejection with BALB/c J skin. No rejections have been observed. Mice with Mls-1-like determinants have never been reported in the BALB/c J colony. Thus, the most likely means of MMTV infection is maternally through milk. The BALB/c IC breeding pairs were derived from BALB/c J mothers by Caesarian section and fostered to outbred Swiss foster mothers. Therefore, two major possibilities might explain the origin of this exogenous Mls-1-like virus: one is that it represents the original MMTV, which upon integration is found as Mtv-7 in several laboratory mouse strains. Since many outbred Swiss mice have the H-2k haplotype, which is not able to present Mls antigens (15), the exogenous virus would not have been detected by analysis of Vβ6 expression (3, 4, 10). Alternatively, MMTV (SW) originates from Mtv-7. After formation of infectious particles from the integrated provirus, production of infectious particles in milk can occur. Several examples for this possibility exist in the literature. Mtv-1 and Mtv-2 can form infectious virus particles that are then transmitted to offspring through the milk and through the germline (61-63). Normal mice not containing Mtv-1 and Mtv-2 can form mammary tumors, which are most likely due to other endogenous MMTV, after 1 yr of age (57). Furthermore, treatment of laboratory mouse strains or mouse cell lines with irradiation and/or carcinogens can lead to formation of infectious MMTV particles (64-68). Although further experiments are required to definitively settle this question, it seems likely that the virus was transmitted to BALB/c IC mice from outbred Swiss mice. Hence, we propose the designation MMTV (SW) for this virus.

Since most of the divergence in MMTV orf sequences resides in the COOH terminus of the putative orf protein, it has been argued that the COOH terminus confers Vβ specificity (27, 32, 39). It was recently shown that the orf molecule of Mtv-7 is responsible for deletion of Mls-1-reactive T cells (68a) and that the orf molecule of Mtv-9 is responsible for deletion of Vβ5 and Vβ11 T cells (69). For Mtv-7 (and the homologous novel exogenous MMTV [SW]), the COOH terminus is very different from previously published orf sequences. An additional argument for the importance of the COOH terminus in determining the Vβ specificity is that orf of Mtv-6, a gene encoding Mls-3δ (a deletion element for TCR Vβ3), is identical to the orf sequence of Mtv-1, another Vβ3 deleter (Fig. 5). The orf molecules that are implicated in clonal deletion of T cells fall into four groups, each specific for a particular subset of T cells expressing (a) specific Vβ region(s). With the nine MMTV orf molecules sequenced so far, which correspond to one of four TCR Vβ specificities, an excellent correlation exists between the COOH-terminal orf sequences and TCR Vβ specificity. In addition, we have shown in experiments using transgenic mice that a variant of MMTV (C3H) with a dramatically altered orf COOH terminus, failed to induce deletion of TCR
V~14. The key residues within the COOH terminus required for orf-TCR interaction remain to be defined.

Analysis of sequence homology of entire orf molecules did not reveal any significant homologies with sequences in the database. When the unique COOH terminus of the Mtv-7 and MMTV (SW) orfs were compared with the “Swissport” database, however, significant homologies to two members of the SI00 protein family were found: the calpactin L chain p11 and 18A2 (see Fig. 6) (for review see reference 70). SI00 proteins display a common structural feature termed EF hand. This is a helix-loop-helix structure that has in its original form calcium-binding capacity (71). The homology of Mtv-7 and MMTV (SW) orf is located in the COOH-terminal EF hand spanning the first E helix (nine amino acids) and the loop (12 amino acids). The COOH-terminal orf residue (phenylalanine) corresponds to the first amino acid of the second, F helix (Fig. 6). Biochemical evidence suggests that this particular EF hand in the calpactin L chain does not bind calcium anymore (72).

These findings might suggest that the Mtv-7 and MMTV (SW) orf molecules have a COOH terminus forming a helix-loop configuration. Since the polymorphic COOH terminus has been implicated in V~ specificity of the orf molecules, it might be this loop of 12 amino acids that confers the binding to the V~ domain of the TCR.

The existence of exogenous MMTV (and their endogenous counterparts) with different TCR V~ specificity and kinetics of clonal deletion provides a powerful tool to investigate the different phases of peripheral and thymic tolerance mechanisms. The timing of deletion can be controlled with dose, route of infection, and choice of virus. Neonatal and adult immune response and tolerance can be compared. In addition, after local administration, the spread of the virus in the immune system and to the mammary gland can be analyzed in much greater detail.

With the finding of this Mls-1"-like exogenous MMTV (SW), it seems likely that many more exogenous MMTV viruses may exist in the wild (and laboratory) mouse population. Analysis of the milk of different strains of mice will give indications about the frequency and heterogeneity of such viruses. Potentially, MMTVs with many different TCR specificities can be found. Sequence analysis of the orf cDNA and comparison with TCR deletion patterns will give insight into important residues for TCR and MHC interaction.

We thank P. Zaech and C. Knabenbans for FACS® analysis, N. Jeanguenat for performing the ELISA, and IFFA Credo for providing valuable information and mice. We are grateful for the helpful discussions with H. Diggelmann and P. Rollini.

H. Acha-Orbea is a recipient of a START fellowship from the Swiss National Science Foundation.

Address correspondence to H. Acha-Orbea, Ludwig Institute for Cancer Research, Lausanne Branch, 1066 Epalinges, Switzerland.

Received for publication 27 December 1991 and in revised form 26 February 1992.

References

1. Festenstein, H. 1973. Immunogenic and biological aspects of in vitro allotransformation (MLR) in the mouse. Transplant. Rev. 15:62.
2. Abe, R., and R. Hodes. 1989. T cell recognition of minor lymphocyte stimulating (Mls) gene products. Annu. Rev. Immunol. 7:683.
3. Kappler, J.W., U.D. Staerz, J. White, and P.C. Marrack. 1988. Self-tolerance eliminates T cells specific for Mls-modified products of the major histocompatibility complex. Nature (Lond.). 332:35.
4. MacDonald, H.R., R. Schneider, R.L. Lees, R.K. Howe, H. Acha-Orbea, H. Festenstein, R.M. Zinkernagel, and H. Hengartner. 1988. T-cell receptor V~ expression in thymic Mls-1 b T lymphocytes. Nature (Lond.). 332:40.
5. Pullen, A.M., P. Marrack, and J.W. Kappler. 1988. The T-cell repertoire is heavily influenced by tolerance to polymorphic self-antigens. Nature (Lond.). 335:796.
6. Abe, R., M.S. Vaccio, B. Fox, and R. Hodes. 1988. Preferential expression of the T-cell receptor V~3 gene by Mls1 reactive T cells. Nature (Lond.). 335:827.
7. Fry, A.M., and L.A. Matis. 1988. Self-tolerance alters T-cell receptor expression in an antigen-specific MHC-restricted immune response. Nature (Lond.). 335:830.
8. Kanagawa, O., E. Palmer, and J. Bill. 1989. T cell receptor V~6 domain imparts reactivity to the Mls-1" antigen. Cell Immunol. 119:412.
9. Davis, M.M., and P.J. Bjorkman. 1989. T cell receptor V~6 domain imparts reactivity to the Mls-1" antigen. Cell Immunol. 119:412.
10. Happ, M.P., D.C. Woodland, and E. Palmer. 1989. A third T cell receptor V~ domain imparts reactivity to the Mls-1 antigen. Cell Immunol. 119:412.
11. Okada, C.Y., B. Holzmann, S. Guidos, E. Palmer, and I.L. Weissman. 1990. Characterization of a rat antibody specific for a determinant encoded by the V~7 gene segment. J. Immunol. 144:3473.
12. Rammensee, H.-G., R. Kroschewsky, and B. Frangouls. 1989. Clonal anergy induced in mice by a T cell receptor V~ gene encodes reactivity to Mls-1 antigen product. Proc. Natl. Acad. Sci. USA. 86:6293.
13. Webb, S., C. Morris, and J. Sprent. 1990. Extrathymic toler-
ance of mature T cells: clonal elimination as a consequence of immunity. Cell. 63:1249.

14. Jones, L.A., I.T. Chin, D.L. Longo, and A.M. Kruisbeek. 1990. Peripher al clonal elimination of functional T cells. Science (Wash. DC). 250:1726.

15. Lynch, D.H., R.E. Gress, B.W. Needleman, S.A. Rosenberg, and R.J. Hodes. 1985. T cell responses to Mls determinants are restricted by crossreactive MHC determinants. J. Immunol. 134:2071.

16. Janeway, C.A.J., and M.E. Katz. 1985. The Immunobiology of the T cell response to Mls-locus-disparate stimulator cells. I. Unidirectionality, new strain combinations, and the role of Ia antigens. J. Immunol. 134:2057.

17. Kappler, J.W., N. Roehm, and P. Marrack. 1987. T cell tolerance by clonal elimination in the thymus. Cell. 49:273.

18. Kappler, J.W., T. Wade, J. White, W. Kushnir, M. Blackman, J. Bill, N. Roehm, and P. Marrack. 1987. A T cell receptor Vβ segment that imparts reactivity to a class II major histocompatibility complex product. Cell. 49:263.

19. Bill, J., V. Appel, and E. Palmer. 1988. An analysis of T cell receptor variable region gene expression in major histocompatibility complex disparate mice. Proc. Natl. Acad. Sci. USA. 85:9184.

20. Bill, J., O. Kanagawa, D. Woodland, and E. Palmer. 1989. The MHC molecule I-E is necessary but not sufficient for the clonal deletion of Vβ11-bearing T cells. J. Exp. Med. 169:1405.

21. Okada, C.Y., and L.L. Weissman. 1989. Relative Vβ transcript levels in thymus and peripheral lymphoid tissues from various mouse strains. Inverse correlation of I-E and Mls expression with relative abundance of several Vβ transcripts in peripheral lymphoid tissues. J. Exp. Med. 169:1703.

22. Tomonari, K., and E. Lovering. 1988. T-cell receptor-specific monoclonal antibodies against a Vβ11-positive mouse T cell clone. Immunogenetics. 28:445.

23. Vacchio, M.S., and R. Hodes. 1989. Selective decrease in T cell receptor Vβ expression: decreased expression of specific Vβ families is associated with expression of multiple MHC and non-MHC gene products. J. Exp. Med. 170:1335.

24. Vacchio, M.S., J.J. Ryan, and R.J. Hodes. 1990. Characterization of the ligand(s) responsible for negative selection of Vβ11- and Vβ12-expressing T cells: effects of a new Mls determinant. J. Exp. Med. 172:807.

25. Singer, P.A., R.S. Balders, and A.N. Theofilopoulos. 1990. Thymic selection defines multiple T cell receptor Vβ "repertoire phenotypes" at the CD4/CD8 subtype level. EMBO (Eur. Mol. Biol. Organ.) J. 9:3641.

26. Six, A., E. Jouvin-Marote, D.Y. Loh, P.A. Cazenave, and P.N. Marche. 1991. Identification of a T cell receptor β chain variable region, Vβ20, that is differentially expressed in various strains of mice. J. Exp. Med. 174:1263.

27. Acha-Orbea, H., and E. Palmer. 1991. Mls: a retrovirus exploits the immune system. Immunol. Today. 12:356.

28. von Boehmer, H., and J. Sprent. 1974. Expression of M locus differences by B cells but not T cells. Nature (Lond.). 249:363.

29. Molina, I.J., N.A. Cannon, R. Hyman, and B. Huber. 1989. Macrophages and T cells do not express Mls-1d determinants. J. Immunol. 143:39.

30. Webb, S.R., A. Okamoto, Y. Ron, and J. Sprent. 1989. Restricted tissue distribution of Mls-1d determinants. J. Exp. Med. 169:1.

31. Schneider, R., R.K. Lees, T. Pedrazzini, R.M. Zinkernagel, H. Hengartner, and H.R. MacDonald. 1989. Postnatal disappearance of self-reactive (Vβ6+T) cells from the thymus of Mls1 mice. Implications for T cell development and autoimmunity. J. Exp. Med. 169:2149.

32. Acha-Orbea, H., A.N. Shakhov, L. Scarpellino, E. Kolb, V. Müller, A. Vessaz-Shaw, R. Fuchs, K. Blöchliger, P. Rollini, J. Billote, M. Sarafdou, H.R. MacDonald, and H. Diggelmann. 1991. Clonal deletion of Vβ4 positive T cells in mammary tumor virus transgenic mice. Nature (Lond.). 350:207.

33. Marrack, P., E. Kushnir, and J. Kappler. 1991. A maternally inherited superantigen encoded by a mammary tumor virus. Nature (Lond.). 349:524.

34. Woodland, D., M.P. Happ, J. Bill, and E. Palmer. 1990. Requirement for cotolerogenic gene products in the clonal deletion of I-E reactive T cells. Science (Wash. DC). 247:964.

35. Dyson, P.J., A.M. Knight, S. Fairchild, E. Simpson, and K. Tomonari. 1991. Genes encoding ligands for deletion of Vβ11 T cells cosegregate with mammary tumor virus genomes. Nature (Lond.). 349:531.

36. Frankel, W.N., C. Rudy, J.M. Coffin, and B.T. Huber. 1991. Linkage of Mls genes to endogenous mammary tumor viruses of inbred mice. Nature (Lond.). 349:526.

37. Woodland, D.L., M.P. Happ, K.J. Golub, and E. Palmer. 1991. An endogenous retrovirus mediated deletion of αβ T cells? Nature (Lond.). 349:529.

38. Kozak, C., G. Peters, R. Pauley, V. Morris, R. Michaelides, J. Dudley, M. Green, M. Davison, O. Prakash, A. Vaidya et al. 1987. A standardized nomenclature for endogenous mammary tumor viruses. J. Virol. 61:1651.

39. Choi, Y., J.W. Kappler, and P. Marrack. 1991. A superantigen encoded in the open reading frame of the 3′ long terminal repeat of mouse mammary tumor virus. Nature (Lond.). 350:203.

40. Bentvelzen, P., and J. Hilgers. 1980. Murine mammary tumor virus. In Viral Oncology. G. Klein, editor. Raven Press, Ltd., New York. 311–355.

41. Tsubura, A., M. Inaba, S. Imai, A. Murakami, N. Oyaizu, R. Yasumizu, Y. Ohnishi, H. Tanaka, S. Morii, and S. Ikehara. 1988. Intervention of T-cells in transportation of mouse mammary tumor virus (milk factor) to mammary gland cells in vivo. Cancer Res. 48:6555.

42. Peters, G., S. Brooks, R. Smith, M. Placzek, and C. Dickson. 1989. The mouse homolog of the human-β-FGF gene is adjacent to int-2 and is activated by proviral insertion in some virally induced mammary tumors. Proc. Natl. Acad. Sci. USA. 86:5678.

43. Foster, H., and L. Berumen. 1983. BALB.D2-Mls-A new congenic mouse strain. Transplantation (Baltimore). 37:322.

44. Liao, N.-S., J. Maltzman, and D.H. Raulet. 1989. Positive selection determines T cell receptor Vβ14 gene usage by CD8+ T cells. J. Exp. Med. 170:135.

45. Payne, J., B.T. Huber, N.A. Cannon, R. Schneider, M.W. Schillham, H. Acha-Orbea, H.R. MacDonald, and H. Hengartner. 1988. Two monoclonal rat antibodies with specificity for the β-chain variable region Vβ6 of the murine T cell receptor. Proc. Natl. Acad. Sci. USA. 85:7695.

46. Haskins, K., C. Hannum, J. White, N. Roehm, R. Kubo, J. Kappler, and P. Marrack. 1984. The major histocompatibility complex-restricted antigen receptor on T cells. VI. An antibody to a receptor allotype. J. Exp. Med. 160:452.

47. Staerz, U.D., H. Rammasse, and M. Bevan. 1985. Characterization of a murine monoclonal antibody specific for an allotypic determinant on T cell antigen receptor. J. Immunol. 134:3994.

48. Tomonari, K., E. Lovering, and S. Spencer. 1990. Correlation between the Vβ4+ T-cell population and the H-2d haplotype. Immunogenetics. 31:333.
Utsunomiya, Y., H. Kosaka, and O. Kanagawa. 1991. Differential reactivity of Vα9 T cells to minor lymphocyte stimulating antigen in vitro and in vivo. Eur. J. Immunol. 21:1007.

Dialynas, D.P., D.B. Wilde, P. Marrack, A. Pierres, K.A. Wall, W. Havran, G. Otten, M.R. Loken, M. Pierres, J. Kappler, and F.W. Fitch. 1983. Characterization of the murine antigenic determinant designated L3T4a, recognized by monoclonal antibody GK1.5: expression of L3T4a by functional T cell clones appears to correlate primarily with class II MHC antigen reactivity. Immunol. Rev. 74:29.

Dialynas, D.P., M.R. Loken, A.L. Glasebrook, and F.W. Fitch. 1986. General methods for animal viruses.

Hart, M.A. 1986. General methods for animal viruses. In Basic Techniques for Transmission Electron Microscopy. M. Hayat, editor. Academic Press Inc. San Diego. 252–257.

Sambrook, J., E.F. Fritsch, and T. Maniatis. 1989. Molecular cloning: A Laboratory Manual. 2nd ed. Cold Spring Harbor Laboratory Press. Cold Spring Harbor, NY.

Feinberg, A.P., and B. Vogelstein. 1983. A technique for radio-labeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132:6.

Ringold, G., E.Y. Lasfargues, J.M. Bishop, and H.E. Varmus. 1975. Production of mouse mammary tumor virus by cultured cells in the absence and presence of hormones: Assay by molecular hybridization. Virology. 65:135.

Papernik, M., C. Pontoux, and S. Gisselbrecht. 1992. Acquhx-d effect of chemical carcinogen treatment on the immunogenicity of mouse mammary tumors arising from alveolar nodule outgrowth lines. J. Natl. Cancer Inst. 61:1165.

Puley, R.J., D. Medina, and S.H. Socher. 1979. Mammary tumor virus expression during mammary tumorigenesis in BALB/c mice. J. Virol. 29:483.

Beutner, U., W.N. Frankel, M.S. Cote, J.M. Coffin, and B.T. Huber. 1992. Mls-1 is encoded by the ITR open reading frame of the mouse mammary tumor provirus Mtv-7. Proc. Natl. Acad. Sci. USA. In press.

Woodland, D.L., F.E. Lund, M.P. Happ, M.A. Blackman, E. Palmer, and R.B. Corley. 1991. Endogenous superantigen expression is controlled by mouse mammary tumor proviral loci. J. Exp. Med. 174:1255.

Klingman, D., and D.C. Hilt. 1988. The S100 protein family. TIBS (Trends Biochem. Sci.). 13:437.

Kretzinger, R.H. 1987. Calcium coordination and the calmodulin fold: divergent versus convergent evolution. Cold Spring Harbor Symp. Quant. Biol. 52:499.

Gerke, V., and R. Weber. 1985. The regulatory chain in the p36-kDa substrate complex of viral tyrosine-specific protein kinase is related in sequence to the S-100 protein of glial cells. EMBO (Eur. Mol. Biol. Organ.) J. 4:2917.

Donehower, L.A., A.L. Huang, and G.L. Hagler. 1981. Regulatory and coding potential of the mouse mammary tumor virus long terminal repeat. J. Virol. 37:226.

Donehower, L.A., B. Flurdey, and G.L. Hagler. 1983. Further evidence for the protein coding potential of the mouse mammary tumor virus long terminal repeat: Nucleotide sequence of an endogenous proviral long terminal repeat. J. Virol. 45:941.

Fasel, N., K. Pearson, E. Buetti, and H. Diggelmann. 1982. The region of mouse mammary tumor virus DNA containing the long terminal repeat includes a long coding sequence and signals for hormonally regulated transcription. EMBO (Eur. Mol. Biol. Organ.) J. 1:3.

Majors, J.E., and H.E. Varmus. 1983. Nucleotide sequencing of an apparent proviral copy of env mRNA defines determinants of expression of the mouse mammary tumor virus env gene. J. Virol. 47:495.

Moore, R., M. Dixon, R. Smith, G. Peters, and C. Dickson. 1987. Complete nucleotide sequence of a milk-transmitted mouse mammary tumor virus: two frameshift suppression events are required for translation of gag and pol. J. Virol. 61:480.

Kuo, W.-L., L.R. Vilander, M. Huang, and D.O. Peterson. 1988. A transcriptionally defective long terminal repeat within an endogenous copy of mouse mammary tumor virus proviral DNA. J. Virol. 62:2394.

Crouse, C., and R.J. Pauley. 1989. Molecular cloning and sequencing of the Mtv-1 LTR. Virus Res. 12:123.

Held et al.