Local Backbones

Ronald de Haan1* Iyad Kanj2 Stefan Szeider1*

1 Institute of Information Systems, Vienna University of Technology, Vienna, Austria
2 School of Computing, DePaul University, Chicago, IL

Abstract

A backbone of a propositional CNF formula is a variable whose truth value is the same in every truth assignment that satisfies the formula. The notion of backbones for CNF formulas has been studied in various contexts. In this paper, we introduce local variants of backbones, and study the computational complexity of detecting them. In particular, we consider \(k \)-backbones, which are backbones for sub-formulas consisting of at most \(k \) clauses, and iterative \(k \)-backbones, which are backbones that result after repeated instantiations of \(k \)-backbones. We determine the parameterized complexity of deciding whether a variable is a \(k \)-backbone or an iterative \(k \)-backbone for various restricted formula classes, including Horn, definite Horn, and Krom. We also present some first empirical results regarding backbones for CNF-Satisfiability (SAT). The empirical results we obtain show that a large fraction of the backbones of structured SAT instances are local, in contrast to random instances, which appear to have few local backbones.

1 Introduction

A backbone of a propositional formula \(\varphi \) is a variable whose truth value is the same for all satisfying assignments of \(\varphi \). The term originates in computational physics \cite{24}, and the notion of backbones has been studied for SAT in various contexts. Backbones have also been considered in other contexts (e.g., knowledge compilation \cite{4}) and for other combinatorial problems \cite{25}. If a backbone and its truth value are known, then we can simplify the formula without changing its satisfiability, or the number of satisfying assignments. Therefore, it is desirable to have an efficient algorithm for detecting backbones. In general, however, the problem of identifying backbones is coNP-complete (this follows from the fact that a literal \(l \) is enforced by a formula \(\varphi \) if and only if \(\varphi \land \neg l \) is unsatisfiable).

A variable can be a backbone because of local properties of the formula (such backbones we call local backbones). As an extreme example consider a CNF formula that contains a unit clause. In this case we know that the variable appearing in the unit clause is a backbone of the formula. More generally, we define the order of a backbone \(x \) of a CNF formula \(\varphi \) to be the cardinality of a smallest subset \(\varphi' \subseteq \varphi \) such that \(x \) is a backbone of \(\varphi' \), and we refer to backbones of order \(\leq k \) as \(k \)-backbones. Thus, unit clauses give rise to 1-backbones.

A natural generalization of \(k \)-backbones are variables whose truth values are enforced by repeatedly assigning \(k \)-backbones to their appropriate truth value and simplifying the formula according to this assignment. We call variables that are assigned by this iterative process iterative \(k \)-backbones (for a formal definition, see Section 2.1). For instance, iterative 1-backbones are exactly those variables whose truth values are enforced by unit propagation. The iterative order of a backbone \(x \) is the smallest \(k \) such that \(x \) is an iterative \(k \)-backbone.

Finding Local Backbones For every constant \(k \), we can clearly identify all \(k \)-backbones and iterative \(k \)-backbones of a CNF formula \(\varphi \) in polynomial time by simply going over all subsets of \(\varphi \) of size at most \(k \) (and iterating this process if necessary). However, if \(\varphi \) consists of \(m \) clauses, then this brute-force search requires us to consider at least \(m^k \) subsets, which is impractical already for small values of \(k \). It would be desirable to have an algorithm that detects (iterative) \(k \)-backbones in time \(f(k)||\varphi||^c \) where \(f \) is a function, \(||\varphi|| \) denotes the length of the formula, and \(c \) is a constant. An algorithm with such a running time would render the problem

*Supported by the European Research Council (ERC), project COMPLEX REASON, 239962.
fixed-parameter tractable with respect to parameter k. In this paper we study the question of whether the identification of (iterative) k-backbones of a CNF formula is fixed-parameter tractable or not, considering various restrictions on the CNF formula. We therefore define the following template for parameterized problems, where C is an arbitrary class of CNF formulas.

LOCAL-BACKBONE[C]

Instance: a CNF formula $\varphi \in C$, a variable x of φ, and an integer $k \geq 1$.
Parameter: The integer k.
Question: Is x a k-backbone of φ?

The problem **ITERATIVE-LOCAL-BACKBONE** is defined similarly. It is not hard to see that **LOCAL-BACKBONE[C]** is closely related to the problem of finding a small unsatisfiable subset of a CNF formula (this is proven below in Lemmas 1 and 2). More precisely, for every class C, the problem **LOCAL-BACKBONE[C]** has the same parameterized complexity as the following problem, studied by Fellows et al. [9].

SMALL-UNSATISFIABLE-SUBSET[C]

Instance: a CNF formula $\varphi \in C$, and an integer $k \geq 1$.
Parameter: The integer k.
Question: Is there an unsatisfiable subset $\varphi' \subseteq \varphi$ consisting of at most k clauses?

This problem is of relevance also for classes C for which the satisfiability is decidable in polynomial time. For instance, given an inconsistent knowledge base in terms of an unsatisfiable set of Horn clauses, one might want to detect the cause for the inconsistency in terms of a small unsatisfiable subset.

Results We draw a detailed parameterized complexity map of the considered problems **LOCAL-BACKBONE[C]**, **ITERATIVE-LOCAL-BACKBONE[C]**, and **SMALL-UNSATISFIABLE-SUBSET[C]**, for various classes C. Table 1 provides an overview of our complexity results (FPT indicates that the problem is fixed-parameter tractable, W[1]-hardness indicates strong evidence that the problem is not fixed-parameter tractable; see Section 2.2 for details).

It is interesting to observe that the non-iterative problems tend to be at least as hard as the iterative problems. The polynomial time solvability of finding iterative local backbones in definite Horn formulas is also interesting, especially in the light of the intractability of the corresponding problem of finding (non-iterative) local backbones.

We also provide some first empirical results on the distribution of local backbones in some benchmark SAT instances. We consider structured instances and random instances. For the structured instances that we consider we observe that a large fraction of the backbones are of relatively small iterative order. In contrast, the backbones of the random instances that we consider are of large iterative order. The results suggest that the distribution of the iterative order of backbones might be an indicator for a hidden structure in SAT instances.

Related Work The notion of backbones has initially been studied in the context of optimization problems in computational physics [24]. The notion has later been applied to several combinatorial problems [25], including SAT. The relation between backbones and the difficulty of finding a solution for SAT has been studied by Kilby et al. [18], by Parkes [22] and by Slaney and Walsh [25]. The complexity of finding backbones has been studied theoretically by Kilby et al. [18]. The notion of backbones has also been used for improving SAT solving
algorithms by Dubois and Dequen [7] and by Hertli et al. [14]. The problem of identifying unsatisfiable subsets of size at most k has been considered by Fellows et al. [9], who proved that this problem (parameterized on k) is W[1]-complete. Furthermore, they showed by the same reduction that finding a k-step resolution refutation for a given formula is W[1]-complete as well. Related notions of locally enforced literals have also been studied, including a notion of generalized unit-refutation [12, 19].

2 Preliminaries

2.1 CNF Formulas, Unsatisfiable Subsets and Local Backbones

A literal is a propositional variable x or a negated variable $\neg x$. The complement \overline{x} of a positive literal x is $\neg x$, and the complement $\overline{\neg x}$ of a negative literal $\neg x$ is x. A clause is a finite set of literals, not containing a complementary pair $x, \neg x$. A unit clause is a clause of size 1. We let \bot denote the empty clause. A formula in conjunctive normal form (or CNF formula) is a finite set of clauses. We define the length $|\varphi|$ of a formula φ to be $\sum_{c \in \varphi} |c|$: the number of clauses of φ is denoted by $|\varphi|$. A formula φ is a k-CNF formula if the size of each of its clauses is at most k. A 2-CNF formula is also called a Krom formula. A clause is a Horn clause if it contains at most one positive literal. A Horn clause containing exactly one positive literal is a definite Horn clause. Formulas containing only Horn clauses are called Horn formulas. Definite Horn formulas are defined analogously. We denote the class of all Krom formulas by KROM, the class of all Horn formulas by HORN and the class of all definite Horn formulas by DEFHORN. We let NUHORN denote the class of Horn formulas not containing unit clauses (such formulas are always satisfiable). Let d be an integer. The class of CNF formulas such that each variable occurs at most d times is denoted by VO_d.

For a CNF-formula φ, the set $\text{Var}(\varphi)$ denotes the set of all variables x such that some clause of φ contains x or $\neg x$; the set $\text{Lit}(\varphi)$ denotes the set of all literals l such that some clause of φ contains l or \overline{l}. A formula φ is satisfiable if there exists an assignment $\tau : \text{Var}(\varphi) \to \{0, 1\}$ such that every clause $c \in \varphi$ contains some variable x with $\tau(x) = 1$ or some negated variable $\neg x$ with $\tau(x) = 0$ (we say that such an assignment τ satisfies φ); otherwise, φ is unsatisfiable. φ is minimally unsatisfiable if φ is unsatisfiable and every proper subset of φ is satisfiable. It is well-known that any minimal unsatisfiable CNF formula has more clauses than variables (this is known as Tarsi’s Lemma [11, 20]). For two formulas φ, ψ, whenever all assignments satisfying φ also satisfy ψ, we write $\varphi \models \psi$. The reduct $\varphi|_L$ of a formula φ with respect to a set of literals $L \subseteq \text{Lit}(\varphi)$ is the set of clauses of φ that do not contain any $l \in L$ with all occurrences of \overline{l} for all $l \in L$ removed. For singletons $L = \{l\}$, we also write $\varphi|_l$. We say that a class \mathcal{C} of formulas is closed under variable instantiation if for every $\varphi \in \mathcal{C}$ and every $l \in \text{Lit}(\varphi)$ we have that $\varphi|_l \in \mathcal{C}$. For an integer k, a variable x is a k-backbone of φ, if there exists a $\varphi' \subseteq \varphi$ such that $|\varphi'| \leq k$ and either $\varphi' \models x$ or $\varphi' \models \neg x$. A variable x is a backbone of a formula φ if it is a $|\varphi|$-backbone. Note that the definition of the backbone of a formula that is used in some of the literature includes all literals $l \in \text{Lit}(\varphi)$ such that $\varphi \models l$. For an integer k, a variable x is an iterative k-backbone of φ if either (i) x is a k-backbone of φ, or (ii) there exists $y \in \text{Var}(\varphi)$ such that y is a k-backbone of φ, and for some $l \in \{y, \neg y\}$, $\varphi \models l$ and x is an iterative k-backbone of $\varphi|_l$.

For a Krom formula φ, we let $\text{impl}(\varphi)$ be the implication graph (V, E) of φ, where $V = \{x, \neg x : x \in \text{Var}(\varphi)\}$ and $E = \{(\overline{x}, b), (\overline{\neg x}, a) : \{a, b\} \in \varphi\}$. We say that a path p in this graph uses a clause $\{a, b\}$ of φ if either one of the edges (\overline{x}, b) and $(\overline{\neg x}, a)$ occurs in p; we say that p doubly uses this clause if both edges occur in p.

2.2 Parameterized Complexity

Here we introduce the relevant concepts of parameterized complexity theory. For more details, we refer to text books on the topic [6, 10, 21]. An instance of a parameterized problem is a pair (I, k) where I is the main part of the instance, and k is the parameter. A parameterized problem is fixed-parameter tractable if instances (I, k) can be solved by a deterministic algorithm that runs in time $f(k)|I|^c$, where f is a computable function of k, and c is a constant (algorithms running within such time bounds are called fpt-algorithms). If $c = 1$, we say the problem is fixed-parameter linear. FPT denotes the class of all fixed-parameter tractable problems. Using fixed-parameter tractability, many problems that are classified as intractable in the classical setting can be shown to be tractable for small values of the parameter.
Parameterized complexity also offers a completeness theory, similar to the theory of NP-completeness. This allows the accumulation of strong theoretical evidence that a parameterized problem is not fixed-parameter tractable. Hardness for parameterized complexity classes is based on fpt-reductions, which are many-one reductions where the parameter of one problem maps into the parameter for the other. More specifically, a parameterized problem L is fpt-reducible to another parameterized problem L' (denoted $L \leq_{\text{fpt}} L'$) if there is a mapping R from instances of L to instances of L' such that (i) $(I, k) \in L$ if and only if $(I', k') = R(I, k) \in L'$, (ii) $k' \leq g(k)$ for a computable function g, and (iii) R can be computed in time $O(f(k)|I|^c)$ for a computable function f and a constant c.

Central to the completeness theory is the hierarchy $\text{FPT} \subseteq W[1] \subseteq W[2] \subseteq \cdots \subseteq \text{para-NP}$. Each intractability class $W[t]$ contains all parameterized problems that can be reduced to a certain parameterized satisfiability problem under fpt-reductions. The intractability class para-NP includes all parameterized problems that can be solved by a nondeterministic fpt-algorithm. Fixed-parameter tractability of any problem hard for any of these intractability classes would imply that the Exponential Time Hypothesis fails [10, 16] (i.e., the existence of a $2^{o(n)}$ algorithm for n-variable 3SAT).

3 Local Backbones and Small Unsatisfiable Subsets

The straightforward reductions in the proofs of the following two lemmas, illustrate the close connection between LOCAL-BACKBONE and SMALL-UNSATISFIABLE-SUBSET.

Lemma 1. SMALL-UNSATISFIABLE-SUBSET \leq_{fpt} LOCAL-BACKBONE.

Proof. Let (φ, k) be an instance of SMALL-UNSATISFIABLE-SUBSET. We construct an instance (φ', z, k) of LOCAL-BACKBONE, by letting $\varphi' = \{ c \cup \{ z \} : c \in \varphi \}$ for some $z \notin \text{Var}(\varphi)$. We claim that $(\varphi, k) \in \text{SMALL-UNSATISFIABLE-SUBSET}$ if and only if $(\varphi', z, k) \in \text{LOCAL-BACKBONE}$.

(\Rightarrow) Assume $(\varphi, k) \in \text{SMALL-UNSATISFIABLE-SUBSET}$. Then there exists an unsatisfiable $\varphi'' \subseteq \varphi$ with $|\varphi''| \leq k$. Now consider $\chi = \{ c \cup \{ z \} : c \in \varphi'' \}$. Clearly, $\chi \subseteq \varphi'$ and $|\chi| \leq k$. Also, since φ'' is unsatisfiable, we get $\chi \models z$. Thus χ witnesses that z is a k-backbone of φ'.

(\Leftarrow) Assume $(\varphi', z, k) \in \text{LOCAL-BACKBONE}$. Since $\neg z$ does not occur in φ', this means that there exists a $\varphi'' \subseteq \varphi'$ with $|\varphi''| \leq k$ such that $\varphi'' \models z$. Now take $\chi = \{ c \backslash \{ z \} : c \in \varphi'' \}$. We get that $\chi \subseteq \varphi$ and $|\chi| \leq k$. Also, we know that χ is unsatisfiable, since otherwise it would not hold that $\varphi'' \models z$. Therefore, $(\varphi, k) \in \text{SMALL-UNSATISFIABLE-SUBSET}$.

The reduction in the proof of Lemma 1 shows that instances (φ, z, k) of LOCAL-BACKBONE lead to equivalent instances of SMALL-UNSATISFIABLE-SUBSET by simply taking the disjoint union of the reducts of φ with respect to both z and $\neg z$.

Lemma 2. LOCAL-BACKBONE \leq_{fpt} SMALL-UNSATISFIABLE-SUBSET.

Proof. Let (φ, z, k) be an instance of LOCAL-BACKBONE. We construct an instance (ψ, k) of SMALL-UNSATISFIABLE-SUBSET. For every variable $x \in \text{Var}(\varphi)$ we take two copies x_1, x_2. For $i \in \{ 1, 2 \}$ we let φ_i be a copy of φ using the variables x_i. Now we define $\psi = \varphi_1|_{x_1} \cup \varphi_2|_{x_2}$. In other words, ψ is the union of two disjoint copies of the reducts of φ with respect to z and $\neg z$. We claim that $(\varphi, z, k) \in \text{LOCAL-BACKBONE}$ if and only if $(\psi, k) \in \text{SMALL-UNSATISFIABLE-SUBSET}$.

(\Rightarrow) Assume z is a k-backbone of φ. This means there exists a $\varphi' \subseteq \varphi$ with $|\varphi'| \leq k$ such that either $\varphi' \models z$ or $\varphi' \models \neg z$. Assume without loss of generality that $\varphi' \models z$. Then $\varphi'|_{\neg z}$ is unsatisfiable. One can see this as follows. Assume the contrary, i.e., that $\varphi'|_{\neg z}$ is satisfiable. This means there is a valuation V that satisfies all clauses in $\varphi'|_{\neg z}$. Let V' be a valuation for φ' defined by

$$V'(x) = \begin{cases} 0 & \text{if } x = z \\ V(x) & \text{otherwise}. \end{cases}$$

We show that V satisfies φ'. For each clause $c \in \varphi'$ such that $\neg z \in c$, we clearly have that V' satisfies c, because $V'(z) = 0$. For all other clauses $c \in \varphi'$ with $\neg z \notin c$, we know V' satisfies c, by the following argument.
Because \(\epsilon' = c \setminus \{z\} \in \varphi' \models z \), we know that \(V \) satisfies some literal in \(\epsilon' \). Therefore, we know that \(V' \) satisfies \(c \). This is a contradiction to the fact that \(\varphi' \models z \). Thus, \(\varphi' \models z \) is unsatisfiable. Furthermore, we know that \(|(\varphi' \models z)| \leq |\varphi'| \leq k \). Also, since \(\epsilon' \subseteq \varphi \), we know that \(\varphi' \models z \subseteq \varphi' \models z \). Then, by the fact that \(\varphi' \models z \) is a copy of \(\varphi \models z \), we know that \((\psi, k) \in \text{SMALL-_UNSATISFIABLE-SUBSET} \).

For all \((\psi, k) \in \text{SMALL-_UNSATISFIABLE-SUBSET} \) we can construct an instance \(\varphi \) with \(\psi \subseteq \varphi \), satisfying some literal in \(\varphi \). Take such an instance \((\psi, k) \in \text{SMALL-_UNSATISFIABLE-SUBSET} \). This means there exists an unsatisfiable \(\psi' \subseteq \psi \) with \(|\psi'| \leq k \). Since \(\psi = \varphi_1 \cup \varphi_2 \) and \(\varphi_1 \cup \varphi_2 \) are disjoint, we can construct without loss of generality that either \(\psi' \subseteq \varphi_1 \) or \(\psi' \subseteq \varphi_2 \). Suppose that \(\psi' \subseteq \varphi_2 \). Then, by the fact that \(\psi' \models z \) is a copy of \(\varphi' \models z \). Take such a \(\varphi' \) of minimal size. We then know that there is a subset \(\varphi' \subseteq \varphi \) such that \(\psi' \models z \). Assume the contrary, i.e., that there exists an assignment \(\varphi' \) with \(\varphi' \models z = 0 \) that satisfies \(\varphi' \). Then this \(\varphi' \) would also satisfy \(\varphi' \models z \). From this one can straightforwardly construct an assignment \(\varphi' \), which contradicts our assumption that \(\psi' \models z \) is unsatisfiable. Thus \(\varphi' \) witnesses that \(z \) is a \(k \)-backbone of \(\varphi \). \(\Box \)

Theorem 1. LOCAL-BACKBONE is \text{W[1]}-complete.

Proof. Since \text{SMALL-_UNSATISFIABLE-SUBSET} is \text{W[1]}-complete [8], the result follows from Lemmas 1 and 2. \(\Box \)

4 Local Backbones of Horn and Krom Formulas

Horn formulas Restricting the problem of finding backbones in arbitrary formulas to Horn formulas reduces the classical complexity from \text{co-NP}-completeness to polynomial time solvability. It is a natural question whether the parameterized complexity of finding local backbones decreases in a similar way when the problem is restricted to Horn formulas. We will show that this is not the case. In order to do so, we define the parameterized problem SHORT-HYPERPATH, show that it is \text{W[1]}-hard, and then provide fpt-reductions from SHORT-HYPERPATH.

For a Horn formula \(\varphi \) and \(s, t \in \text{Var}(\varphi) \), we say that a subformula \(\varphi' \subseteq \varphi \) is a hyperpath from \(s \) to \(t \) if (i) \(t = s \) or (ii) \(c = \{x_1, \ldots, x_n, t\} \in \varphi' \) and \(\varphi' \models c \) is a hyperpath from \(s \) to \(x_i \) for each \(1 \leq i \leq n \). If \(|\varphi'| \leq k \) then \(\varphi \) is called a \(k \)-hyperpath. The parameterized problem SHORT-HYPERPATH takes as input a Horn formula \(\varphi \), two variables \(s, t \in \text{Var}(\varphi) \) and an integer \(k \). The problem is parameterized by \(k \). The question is whether there exists a \(k \)-hyperpath from \(s \) to \(t \). For a more detailed discussion on the relation between (backward) hyperpaths in hypergraphs and hyperpaths as defined above, we refer to a survey article by Gallo et al. [11].

For the hardness proof of SHORT-HYPERPATH, we reduce from the \text{W[1]}-complete problem MULTICOLORED-Clique [8]. The MULTICOLORED-Clique problem takes as input a graph \(G \), some integer \(k \), and a proper \(k \)-coloring \(c \) of the vertices of \(G \). The problem is parameterized by \(k \). The question is whether there is a properly colored \(k \)-clique in \(G \).

Lemma 3. SHORT-HYPERPATH is \text{W[1]}-hard, even for instances \((\varphi, s, t, k) \) where \(\varphi \in 3CNF \).

Proof. We give a reduction from MULTICOLORED-Clique. Let \((G, k, c) \) be an instance of MULTICOLORED-Clique, where \(G = (V, E) \) and \(V_1, \ldots, V_k \) are the equivalence classes of \(V \) induced by the \(k \)-coloring \(c \). We construct an instance \((\varphi, s, t, k') \in \text{SHORT-HYPERPATH} \), where \(k' = k + \binom{k}{2} + 1 \) and

\[
\text{Var}(\varphi) = \{s, t\} \cup V \cup \{p_{i,j} : 1 \leq i < j \leq k\};
\]
\[
\varphi = \varphi_V \cup \varphi_p \cup \varphi_t;
\]
\[
\varphi_V = \{\neg s, v : v \in V\};
\]
\[
\varphi_p = \{\neg v_i, \neg v_j, p_{i,j} : 1 \leq i < j \leq k, v_i \in V_i, v_j \in V_j, \{v_i, v_j\} \in E\};
\]
\[
\varphi_t = \{p_{i,j} : 1 \leq i < j \leq k\} \cup \{\}\}.
\]

This construction is illustrated for an example with \(k = 3 \) in Figure 1. We claim that \((G, k, c) \in \text{MULTICOLORED-Clique} \) if and only if \((\varphi, s, t, k') \in \text{SHORT-HYPERPATH} \).

\((\Rightarrow) \) Assume \((G, k, c) \in \text{MULTICOLORED-Clique} \). Then there exists a clique \(V' \) of \(G \) with \(|V \cap V'| = 1 \) for all \(1 \leq i \leq k \). We construct a \(k' \)-hyperpath \(\varphi' \) from \(s \) to \(t \). We define:

\[
\varphi' = \{\{s, v\} : v \in V'\} \cup \varphi_t \cup \{\{v_i, v_j, p_{i,j} : 1 \leq i < j \leq k, v_i \in V_i \cap V', v_j \in V_j \cap V', \{v_i, v_j\} \in E\}\}
\]

It is straightforward to verify that \(\varphi' \) is a \(k' \)-hyperpath from \(s \) to \(t \).
Proof. The reduction works with the exact same line of reasoning as the reduction described above, with the only change that \(k \) literal. Thus both exists a (subset) minimal \(\mathbf{B} \)-hyperpath in \(H \) of size \(k' = 3 + \binom{k}{2} + 1 \) from \(s \) to \(t \) corresponding to the clique.

We are now in a position to prove the \(\mathrm{W}[1] \)-hardness of \(L \). The complexity jumps to \(\mathrm{W}[1] \)-hardness already when allowing a single unit clause. We also show that this hardness crucially depends on allowing unit clauses in the formula, since for definite Horn formulas without unit clauses the problem is trivial. In fact, the complexity jumps to \(\mathrm{W}[1] \)-hardness already when allowing a single unit clause.

Lemma 4. Definite Horn formulas without unit clauses have no backbones.

Proof. Consider the two valuations \(I_{\top} \) and \(I_{\bot} \), where \(I_{\top}(x) = \top \) and \(I_{\bot}(x) = \bot \) for all \(x \in \mathrm{Var}(\varphi) \). Since \(\varphi \in \mathrm{DEHFORN} \) and \(\varphi \) has no unit clauses, we know that each clause has one positive and at least one negative literal. Thus both \(I_{\top} \) and \(I_{\bot} \) satisfy \(\varphi \). Therefore, no \(x \in \mathrm{Var}(\varphi) \) is a backbone of \(\varphi \).

Theorem 2. \(\mathrm{LOCAL-BACKBONE}[\mathrm{DEHFORN} \cap 3\mathrm{CNF}] \) is \(\mathrm{W}[1] \)-hard, already for instances \((\varphi, x, k) \) where \(\varphi \) has at most one unit clause.

Proof. We show \(\mathrm{W}[1] \)-hardness by reducing from \(\mathrm{SHORT-HYPERPATH} \). Let \((\varphi, s, t, k) \) be an instance of \(\mathrm{SHORT-HYPERPATH} \). We can assume that \(\varphi \in 3\mathrm{CNF} \). We construct an instance \((\psi_{\varphi}, t, k') \) of \(\mathrm{LOCAL-BACKBONE} \). Here \(k' = k + 1 \). For each \(\varphi' \subseteq \varphi \) we define a formula \(\psi_{\varphi'} \), by letting \(\mathrm{Var}(\psi_{\varphi'}) = \mathrm{Var}(\varphi') \) and:

\[
\psi_{\varphi'} = \{\{s\}\} \cup \varphi'.
\]

Clearly \(\psi_{\varphi} \in \mathrm{DEHFORN} \cap 3\mathrm{CNF} \) and \(\psi_{\varphi} \) has only a single unit clause. We claim that \((\psi_{\varphi}, t, k') \in \mathrm{LOCAL-BACKBONE} \) if and only if \((\varphi, s, t, k) \in \mathrm{SHORT-HYPERPATH} \).

(\(\Rightarrow \)) Assume that \(t \) is a \(k' \)-backbone of \(\psi_{\varphi} \). Since \(\psi_{\varphi} \in \mathrm{DEHFORN} \), we then know that there exists a \(\psi' \subseteq \psi_{\varphi} \) with \(|\psi'| \leq k' \) and \(\psi' \models t \). By Lemma 4 we know that \(\{s\} \in \psi' \). Now let \(\varphi' \subseteq \varphi \) be the unique subset of clauses.
such that $\psi' = \psi_{\varphi'}$. We know that $|\varphi'| \leq k$. It is easy to verify that since $\psi' \models t$, we get that φ' is a k-hyperpath from s to t.

(\Leftarrow) Assume that there exists a k-hyperpath $\varphi' \subseteq \varphi$ from s to t with $|\varphi'| \leq k$. Then $\psi_{\varphi'}$ witnesses that t is a k'-backbone of $\psi_{\varphi'}$. Clearly, $|\psi_{\varphi'}| \leq k'$. Also, it is straightforward to verify that since φ' is a k-hyperpath from s to t, it holds that $\psi_{\varphi'} \models t$.

Also, restricting the problem to Horn formulas without unit clauses unfortunately does not yield fixed-parameter tractability.

Theorem 3. Local-Backbone[NUHorn \land 3CNF] is W[1]-hard.

Proof. We show the W[1]-hardness of Local-Backbone[NUHorn \land 3CNF] by reducing from Short-Hyperpath. Let (φ, s, t, k) be an instance of Short-Hyperpath. We can assume without loss of generality that $\varphi \in 3CNF$, and that each clause in which t occurs positively is of size 3. We construct an instance (ψ_{φ}, x_s, k) of Local-Backbone. For each $\varphi' \subseteq \varphi$ we define a formula $\psi_{\varphi'}$.

$$\psi_{\varphi'} = \{ \{\neg a, \neg b, c \in \varphi', c \neq t \} \cup \{ \{\neg a, \neg b \in \varphi' \} \cup \{ \{\neg a, b \in \varphi' \}

Clearly we have that $\psi_{\varphi} \in 3CNF$ and that ψ_{φ} has no unit clauses. We claim that $(\psi_{\varphi}, x_s, k) \in$ Local-Backbone if and only if $(\varphi, s, t, k) \in$ Short-Hyperpath.

(\Rightarrow) Assume x_s is a k-backbone of ψ_{φ}. Since $\psi_{\varphi} \in$ Horn and ψ_{φ} has no unit clauses, this means there exists a $\psi' \subseteq \psi_{\varphi}$ with $|\psi'| \leq k$ such that $\psi' \models \neg x_s$. Let $\varphi' \subseteq \varphi$ be the unique subset of clauses such that $\psi' = \psi_{\varphi'}$. We know that $|\varphi'| \leq k$. In order to show that φ' is a hyperpath from s to t, we assume to the contrary that it is not. We now define the assignment μ by letting $\mu(x_v) = T$ for all $v \in Var(\varphi)$ such that there exists a hyperpath $\varphi'' \subseteq \varphi'$ from s to v and letting $\mu(x_v) = \bot$ for all other $v \in Var(\varphi)$. We know that μ does not satisfy $\psi_{\varphi'}$ only if μ does not satisfy $x_a \land x_b$, for some $\{\neg a, \neg b \in \psi_{\varphi'}$ and if there exists a hyperpath from s to both a and b. However, by the construction of $\psi_{\varphi'}$, this can only be the case if there exists a hyperpath $\varphi'' \subseteq \varphi'$ from s to t, which contradicts our assumption. Thus we know that μ satisfies $\psi_{\varphi'}$ as well as x_s. This is a contradiction to our previous conclusion that μ does not satisfy x_s. Therefore, we can conclude that φ' is a hyperpath from s to t. From this follows that $(\varphi, s, t, k) \in$ Short-Hyperpath.

(\Leftarrow) Assume there exists a k-hyperpath $\varphi' \subseteq \varphi$ from s to t. Now consider $\psi_{\varphi'}$. Since $|\varphi'| \leq k$, we know that $|\psi_{\varphi'}| \leq k$. Also, since we know that $\{a, b \}, t \in \varphi'$ for some $a, b \in V$, we know $\{\neg x_a, \neg x_b \} \in \psi_{\varphi'}$. Now assume for an arbitrary assignment μ that $\mu \models \psi_{\varphi'}$ and $\mu \models x_s$. By a simple inductive argument, using the definition of $\psi_{\varphi'}$, we then get that $\mu \models x_u$ for all u for which there exists a hyperpath from s to u. In particular, we get $\mu \models x_a \land x_b$. However, since $\{\neg x_a, \neg x_b \} \in \psi_{\varphi'}$, we get a contradiction to the fact that $\mu \models \psi_{\varphi'}$. Thus we can conclude that $\psi_{\varphi'} \models \neg x_s$. Therefore, $(\psi_{\varphi'}, x_s, k) \in$ Local-Backbone.

Krom formulas Let us now turn to the case of Krom formulas. Restricting the problem of finding backbones in arbitrary formulas to Krom formulas reduces the classical complexity from co-NP-completeness to polynomial time solvability. Interestingly, unlike the case for Horn formulas, the decrease in complexity in this case also holds for finding local backbones.**4** Finding a minimum-size unsatisfiable subset of a Krom formula can be done in polynomial time. This immediately implies that Small-UNSATISFIABLE-SUBSET[Krom] is polynomial-time solvable, and therefore, by Lemma 2 Local-Backbone[Krom] is also polynomial-time solvable (and thus also fixed-parameter tractable).

Proposition 1. Local-Backbone[Krom] is polynomial-time solvable.

Hardness for finding small unsatisfiable subsets We would like to point out that all hardness results for the various restrictions of Local-Backbone also hold for Small-UNSATISFIABLE-SUBSET under the corresponding restrictions. This is because the reduction in the proof of Lemma 2 works for all classes of formulas that are closed under variable instantiations. For instance, the reduction in the proof of Lemma 2 together with

4In a previous version of this paper, we mistakenly claimed that finding local backbones in Krom formulas is W[1]-hard.
Theorem 3 tells us that \texttt{Small-Utisfiably-Subset[Horn \cap 3CNF]} is W[1]-hard. This does not follow from the reduction that Fellows et al. [9] use to prove the W[1]-hardness of \texttt{Small-Utisfiably-Subset}. In particular, the following previously unstated results hold.

Corollary 1. \texttt{Small-Utisfiably-Subset[C]} is W[1]-hard for each C \in \{\texttt{DefHorn\cap 3CNF}, \texttt{NUHorn\cap 3CNF}\}.

In fact, these fixed-parameter intractability results for \texttt{Small-Utisfiably-Subset} give us the following NP-hardness results.

Corollary 2. Let C \in \{3CNF \cap \texttt{DefHorn}, 3CNF \cap \texttt{NUHorn}\}. Given a formula \(\varphi \in C\) and an integer \(k\), deciding whether \(\varphi\) contains an unsatisfiable subset of size \(\leq k\) is NP-hard.

Proof. The fpt-reductions given in the proofs of Lemmas 2 and 3 and Theorems 2 and 3 can be used as polynomial many-one reductions from the NP-hard problem of finding a clique of certain minimum size in a graph.

5 Local Backbones of Formulas with Bounded Variable Occurrence

When considering the restriction of \texttt{Local-Backbone} to formulas where variables occur a bounded number of times, we get a fixed-parameter tractability result at last. This fixed-parameter tractability result is closely related to the result that \texttt{Small-Utisfiably-Subset} is fixed-parameter tractable for instances restricted to classes of formulas that have locally bounded treewidth [9]. Fellows et al. used a meta theorem to prove this. We give a direct algorithm to solve \texttt{Small-Utisfiably-Subset[VO_\ell]} in fixed-parameter linear time.

Let \((\varphi, k)\) be an instance of \texttt{Small-Utisfiably-Subset[VO_\ell]}. The following procedure decides whether there exists an unsatisfiable subset \(\varphi' \subseteq \varphi\) of size at most \(k\), and computes such a subset if it exists. We let \(\varphi^* = \{ c \in \varphi : |c| < k \}\). It suffices to consider subsets of \(\varphi^*\), since any unsatisfiable subset \(\varphi' \subseteq \varphi\) contains a minimally unsatisfiable subset \(\varphi'' \subseteq \varphi'\), and by Tarsi’s Lemma we know that \(\varphi''\) contains only clauses of size smaller than \(k\).

Without loss of generality, we assume that the incidence graph of \(\varphi^*\) is connected. Otherwise, we can solve the problem by running the algorithm on each of the connected components. We guess a clause \(c \in \varphi^*\), we let \(F_1 := \{c\}\), and we let all variables be unmarked initially. We compute \(F_{i+1}\) for \(1 \leq i \leq k\) by means of the following (non-deterministic) rule:

1. take an unmarked variable \(z \in \text{Var}(F_i)\);
2. guess a non-empty subset \(F'_i \subseteq F_z\) for \(F_z = \{c \in \varphi^* : z \in \text{Var}(c)\}\);
3. let \(F_{i+1} := F_i \cup F'_i\);
4. mark \(z\).

If at any point all variables in \(F_i\) are marked, we stop computing \(F_{i+1}\). For any \(F_i\), if \(|F_i| > k\) we fail. For each \(F_i\), we check whether \(F_i\) is unsatisfiable. If it is unsatisfiable, we return with \(\varphi' = F_i\). If it is satisfiable and if it contains no unmarked variables, we fail.

It is easy to see that this algorithm is sound. If some \(\varphi' \subseteq \varphi^*\) is returned, then \(\varphi'\) is unsatisfiable and \(|\varphi'| \leq k\).

In order to see that the algorithm is complete, assume that there exists some unsatisfiable \(\varphi' \subseteq \varphi^*\) with \(|\varphi'| \leq k\).

Then, since we know that the incidence graph of \(F'\) is connected, we know that \(F'\) can be constructed as one of the \(F_i\) in the algorithm.

To see that this algorithm witnesses fixed-parameter linearity, we bound its running time. We have to execute the search process at most once for each clause of \(\varphi^*\). At each point in the execution of the algorithm, \(F_i\) contains at most \(k\) variables. Therefore, there are at most \(k\) choices to take an unmarked variable \(z\). Since each variable occurs in at most \(d\) clauses, for each \(F_z\) used in the rule we know \(|F_z| \leq d\). Thus, there are at most \(2^d\) possible guesses for \(F'_z\) in each execution of the rule. Since we iterate the rule at most \(k\) times, we consider at most \((k2^d)^k\) sets \(F'\), each of size \(O(k^2)\). Thus each (un)satisfiability check can be done in \(O(2^k)\) time. Therefore, the total running time of the algorithm is \(O(k^k2^{dk}n)\), for \(n\) the size of the instance.

This algorithm also gives us a direct algorithm that shows that \texttt{Local-Backbone[VO_\ell]} is fixed-parameter linear.
Whether a formula is a \textit{local backbone} is \textit{tractable}.

Proof. We identify several tractable cases for I_{ACKBONE}.

We now consider the (parameterized) complexity of finding iterative local backbones. It is easy to see that another result that carries over from the case of finding local backbones is the fixed-parameter intractability of finding iterative local backbones in definite Horn formulas without unit clauses.

Another result that carries over from the case of finding local backbones is the fixed-parameter tractability for $L_{\text{LOCAL-BACKBONE}}$. This latter result already follows by Proposition 1. We will however give an alternative (and simpler) algorithm to find iterative local backbones in Krom formulas. In order to show that finding iterative local backbones in definite Horn formulas is tractable, we will use the following algorithm.

Algorithm 1: Deciding \textit{ITERATIVE-LOCAL-BACKBONE} with a \textit{SMALL-UNSATISFIABLE-SUBSET} oracle.

\begin{figure}[h]
\begin{algorithm}
\KwIn{an instance (φ, x, k) of \textit{ITERATIVE-LOCAL-BACKBONE}}
\KwOut{yes iff $(\varphi, x, k) \in \text{ITERATIVE-LOCAL-BACKBONE}$}
\nl $\psi \leftarrow \varphi$; \\
\nl $\text{conseq} \leftarrow \emptyset$; \\
\nl \For{i \leftarrow 1 \text{ to } |\text{Lit}(\varphi)| }{ \\
\nl \text{foreach literal } l \in \text{Lit}(\psi) \text{ do} \\
\nl \nl \text{if } (\psi|_l, k) \in \text{SMALL-UNSATISFIABLE-SUBSET} \text{ then} \\
\nl \nl \text{conseq} \leftarrow \text{conseq} \cup \{l\}; \\
\nl \nl \psi \leftarrow \psi|_{\text{conseq}}$; \\
\nl \nl \nl \nl \return $\{x, \neg x\} \cap \text{conseq} \neq \emptyset$
\end{algorithm}
\end{figure}

Theorem 4. \textit{LOCAL-BACKBONE$[\text{VO}_d]$} is fixed-parameter linear.

Proof. The result follows directly by using the reduction in the proof of Lemma 2 in combination with the above algorithm.

\section{Iterative Local Backbones}

We now consider the (parameterized) complexity of finding iterative local backbones. It is easy to see that I_{ACKBONE} is \textit{tractable}.

We give an algorithm to solve I_{ACKBONE} that calls a subroutine to solve instances of $\text{SMALL-UNSATISFIABLE-SUBSET}$. This algorithm is given in the form of pseudo-code as Algorithm 1. By the fact that C is closed under variable instantiations we are able to apply the reduction in the proof of Lemma 2.

Thus, we can assume that the question of whether some $\varphi \in C$ contains an unsatisfiable subset of size at most k can be solved in $f(k)||\varphi||^{c+2}$ time, for some computable function f and some constant c. Then, the entire algorithm runs in $O(f(k)||\varphi||^{c+2})$ time. This proves the claim.

Another result that carries over from the case of finding local backbones is the fixed-parameter intractability of finding iterative local backbones in Horn formulas without unit clauses.

Corollary 3. $I_{\text{ACKBONE}}[\text{NUHORN} \cap 3\text{CNF}]$ is $W[1]$-hard.

Proof. Observe that the proofs of Lemma 3 and Theorem 3 imply that it is already $W[1]$-hard to determine whether a formula $\varphi \in \text{NUHORN} \cap 3\text{CNF}$ has a subset $\varphi' \subseteq \varphi$ of size exactly k witnessing that any $x \in \text{Var}(\varphi)$ is a k-backbone. From this, it immediately follows that determining whether $(\varphi, x, k) \in I_{\text{ACKBONE}}$ is $W[1]$-hard as well.

We identify several tractable cases for I_{ACKBONE}. The problem of finding iterative local backbones in definite Horn formulas is polynomial time solvable. Interestingly, for this restriction the problem of finding (non-iterative) local backbones remains $W[1]$-hard. Similarly, finding iterative local backbones in Krom formulas is solvable in polynomial time as well. This latter result already follows by Proposition 1. We will however give an alternative (and simpler) algorithm to find iterative local backbones in Krom formulas. In order to show that finding iterative local backbones in definite Horn formulas is tractable, we will use the following observation.
Observation 1. Let φ be any propositional formula, let l be any literal such that there exists a $\varphi' \subseteq \varphi$ with $|\varphi'| \leq k$ and $\varphi' \models l$, and let $\psi = \varphi|_l$. Then $x \in \text{Var}(\psi)$ is an iterative k-backbone of ψ if and only if it is an iterative k-backbone of φ.

Theorem 6. \textsc{Iterative-Local-Backbone[DefHorn]} is polynomial-time solvable.

Proof. We show that for any definite Horn formula φ and any $k \geq 1$ the set of iterative k-backbones of φ coincides with the set of variables $x \in \text{Var}(\varphi)$ such that $\varphi \models x$. The claim then follows, since the entailment relation \models can be decided in linear time for definite Horn formulas [5].

Fix an arbitrary integer $k \geq 1$ and an arbitrary definite Horn formula φ. Since definite Horn formulas cannot entail negative literals, we know that each iterative k-backbone x of φ is also a semantic consequence of φ. Now, let $x \in \text{Var}(\varphi)$ be an arbitrary atom and assume that $\varphi \models x$. So there exist variables $x_1, \ldots, x_m \in \text{Var}(\varphi)$ such that $x_m = x$ and for each x_i we have either (i) $\{x_i\} \in \varphi$ or (ii) $\{-x_i, \ldots, -x_i, x_i\} \in \varphi$ for some $i_1 < \cdots < i_2 < i$. We prove by induction on m that each x_i is an iterative k-backbone. Take an arbitrary x_i. By the induction hypothesis, we can assume that every x_j for $j < i$ is an iterative k-backbone of φ. We proceed by case distinction for the justification of x_i in the sequence. In case (i), we know that $\{x_i\} \in \varphi$. Therefore, it directly follows that x_i is a k-backbone of φ, and thus is an iterative k-backbone too. In case (ii), we know that $\{-x_i, \ldots, -x_i, x_i\} \in \varphi$ for some $i_1 < \cdots < i_2 < i$. We proceed by induction hypothesis, we know that each x_{i_j} is an iterative k-backbone of φ. By assumption, we have that $\varphi \models x_{i_j}$ for each x_{i_j}. By Observation 1 we get that x_i is an iterative k-backbone of φ if and only if it is an iterative k-backbone of $\varphi_{\{x_1, \ldots, x_i\}}$. It holds that $\{x_i\} \in \varphi_{\{x_1, \ldots, x_i\}}$. Thus, x_i is an iterative k-backbone of φ.

Theorem 7. \textsc{Iterative-Local-Backbone[Krom]} is polynomial-time solvable.

Proof. We show that the iterative k-backbones of a Krom formula φ coincide with those backbones of φ that can be identified by iterated application of the following rule: if the implication graph of φ contains a path from a literal $l \in \{x, -x\}$ to its complement \overline{I} of length at most k, conclude that x is a backbone and set $\varphi := \varphi|_{\overline{I}}$. Detection of such a path can be done in polynomial time. Also, at most $O(|\text{Var}(\varphi)|)$ iterated applications of this rule suffice to reach a fixpoint. All that remains is to show the correspondence.

The correspondence claim follows from the following property. Let $l \in \text{Lit}(\varphi)$. If $\text{impl}(\varphi)$ contains a path $\overline{I} \rightarrow^* l$ that uses at most k clauses and that doubly uses m of these clauses, then there exist literals $l_1, \ldots, l_m \in \text{Lit}(\varphi)$ such that (i) $l_{m+1} = l$ and (ii) for each $1 \leq i \leq m + 1$ the graph $\text{impl}(\varphi|_{\{l_1, \ldots, l_i\}})$ contains a path $\overline{I} \rightarrow^* l_i$ that uses at most k clauses and does not doubly use any clause. We prove this claim by induction on m. The case for $m = 0$ is trivial. Consider the case for $m \geq 1$. Since the path $\overline{I} \rightarrow^* l$ doubly uses some clause, we know that $\overline{I} \rightarrow^* a \rightarrow b \rightarrow \overline{I} \rightarrow^* l$, for some $a, b \in \text{Lit}(\varphi)$. We can assume without loss of generality that the path $\overline{I} \rightarrow^* b$ does not doubly use any clause. If this is not the case, the path $\overline{I} \rightarrow^* b$ contains a subpath $\overline{I} \rightarrow^* c$ that does not doubly use any clauses, and we could select c instead of b. Also, we know that $l \leq k$. It is easy to see that $\text{impl}(\varphi|_b)$ contains the path $\overline{I} \rightarrow^* a \rightarrow \overline{I} \rightarrow^* l$, which uses at most k clauses and doubly uses $m - 1$ of these clauses. By the induction hypothesis, we obtain that there exist l'_1, \ldots, l'_m such that $l'_m = l$ and for each $1 \leq i \leq m$ the graph $\text{impl}(\varphi|_{\{l'_i, \ldots, l'_i\}})$ contains a path $\overline{I} \rightarrow^* l'_i$ that uses at most k clauses and does not doubly use any clause. Now let $l_i = b$ and $l_i = l'_{i-1}$ for all $2 \leq i \leq m + 1$. It is straightforward to verify that l_1, \ldots, l_{m+1} satisfy the required properties.

Somewhat related to our mechanism of computing enforced assignments via iterative k-backbones is the mechanism used to define unit-refutation complete formulas of level k [12][19]. This mechanism is based on mappings r_k from CNF formulas to CNF formulas. For a nonnegative integer k, the mapping r_k is defined inductively as follows. In the case for $k = 0$, we let $r_0(\varphi) = \{\bot\}$ if $\bot \in \varphi$, and $r_0(\varphi) = \varphi$ otherwise. In the case for $k > 0$, we let $r_k(\varphi) = r_k(\varphi|_l)$ if there exists a literal $l \in \text{Lit}(\varphi)$ such that $r_{k-1}(\varphi|_l) = \{\bot\}$, and $r_k(\varphi) = \varphi$ otherwise. In particular, the mapping r_k computes the result of applying unit propagation. Note that the result of $r_k(\varphi)$ is the application of a number of forced assignments to φ, i.e., $r_k(\varphi) = \varphi|_L$ for some $L \subseteq \text{Lit}(\varphi)$ such that for all $l \in L$ we have $\varphi \models l$. We let $L_k^{UC}(\varphi)$ denote the set of forced literals that are computed by r_k, i.e., $L_k^{UC}(\varphi) = \overline{L} \subseteq \text{Lit}(\varphi)$ such that $r_k(\varphi) = \varphi|_L$. Similarly, we let $L_k^{ILB}(\varphi)$ denote the set of forced literals that are found by computing iterative k-backbones.

The following observations relate the two mechanisms. Let φ be an arbitrary CNF formula. We have that $L_1^{UC}(\varphi) = L_1^{ILB}(\varphi)$. In fact, this set contains exactly those enforced literals that can be found by unit propagation.
Also, for any $k \geq 2$ we have that $L_k^{LB}(\varphi) \subseteq L_k^{UC}(\varphi)$. The inclusion follows from the fact that each minimal subset φ' of size at most k that enforces a literal l has at most k literals (which is a direct result of Tarsi’s Lemma). Whenever l is identified as an enforced literal in iterative k-backbone computation, it can then also be computed by r_k by first guessing l, and subsequently obtaining a contradiction for each instantiation of the other variables in $\text{Var}(\varphi')$. In order to see that the inclusion is strict, consider the family of formulas $(\varphi_n)_{n \in \mathbb{N}}$, where $\varphi_n = \{\{\neg x_i, x_{i+1}\}: 1 \leq i \leq n\} \cup \{\neg x_n, \neg x_1\}$. For each φ_n, we know that $\varphi_n \models \neg x_1$. Furthermore, we have that $\neg x_1 \in L_2^{UC}(\varphi_n)$, but x_1 is not an iterative k-backbone of φ_n for any $k < n$.

7 Experimental Results

In order to illustrate the relevance of the concept of local backbones and iterative local backbones, we provide some empirical evidence of the distribution of (iterative) local backbones in instances from different domains. We considered both randomly generated instances (3CNF instances with various variable-clause ratios around the phase transition) and instances originating from planning [15, 17], circuit fault analysis [23], inductive inference [23], and bounded model checking [26]. We considered only satisfiable instances. For practical reasons, we used a method that gives us a lower bound on the number of k-backbone variables. By reducing the separate LOCAL-BACKBONE problems to SMALL-UNSATISFIABLE-SUBSET, we can use algorithms computing subset-minimal unsatisfiable subsets to approximate the number of iterative local backbones (we used MUSer2 [2]). In order to get the exact number, we would have to compute cardinality-minimal unsatisfiable subsets, which is difficult in practice.

The experimental results are shown in Figure 2. For each of the instances, we give the percentage of backbones that are of order k (dashed lines) and the percentage of backbones that are of iterative order k (solid lines), as well as the total number of backbones and the total number of clauses. There are instances with several backbones, most of which have relatively small order. This is the case for the instances from the domains of planning (logistics), circuit fault analysis (ssa7552) and bounded model checking (bmc-ibm). It is worth noting that already more than 75 percent of the backbones in all the considered bmc-ibm instances are of iterative order 2. We also found instances that have no backbones of small order or of small iterative order. This is the case for the instances from the domain of inductive inference (ii32) and the randomly generated instances. Some of these instances do have backbones, while others have no backbones at all.

It would be interesting to confirm these findings by a more rigorous experimental investigation.

8 Conclusions

We have drawn a detailed complexity map of the problem of finding local backbones and iterative local backbones, in general and for formulas from restricted classes. Additionally, we have provided some first empirical results on the distribution of (iterative) local backbones in some benchmark SAT instances. We found that in structured instances from different domains backbones are of quite low (iterative) order. This suggests that the notions of local backbones and iterative local backbones can be used to identify structure in SAT instances.

Some of our findings are somewhat surprising. (1) Finding local backbones in Horn formulas is fixed-parameter intractable, whereas backbones for this class of formulas can be found in polynomial time. (2) In certain cases finding iterative local backbones is computationally easier than finding (non-iterative) local backbones. (3) Local backbones and iterative local backbones seem to be a better indicator of structure than backbones. Random instances do have backbones, but these are of high order and iterative order.

Backbones and local backbones are implied unit clauses. It might be interesting to extend our investigation to implied clauses of larger fixed size, binary clauses in particular.
Figure 2: Percentage of backbones that are of order at most \(k \) (dashed) and of iterative order at most \(k \) (solid), for SAT instances from planning (logistics [a–d], 828–4713 variables, 6718–21991 clauses, 437–838 backbones), circuit fault analysis (ssa7552 [158–160], 1363–1501 variables, 3032–3575 clauses, 405–838 backbones), bounded model checking (bmc-ibm [2,5,7], 2810–9396 variables, 11683–41207 clauses, 405–557 backbones), inductive inference (ii32 [1–3], 222–824 variables, 1186–20862 clauses, 0–208 backbones) and random 3SAT instances (random, 200 variables, 820–900 clauses, 1–131 backbones).
References

[1] R. Aharoni and N. Linial. Minimal non-two-colorable hypergraphs and minimal unsatisfiable formulas. *J. Combin. Theory Ser. A*, 43:196–204, 1986.

[2] A. Belov and J. Marques-Silva. MUSer2: An efficient MUS extractor. *J on Satisfiability, Boolean Modeling and Computation*, 8(1/2):123–128, 2012.

[3] J. Buresh-Oppenheim and D. G. Mitchell. Minimum witnesses for unsatisfiable 2CNFs. In A. Biere and C. P. Gomes, editors, *Proceedings of SAT 2006, Ninth International Conference on Theory and Applications of Satisfiability Testing, August 12-15, 2006, Seattle, WA, USA*, volume 4121 of *Lecture Notes in Computer Science*, pages 42–47, 2006.

[4] A. Darwiche and P. Marquis. A knowledge compilation map. *J. Artif. Intell. Res.*, 17:229–264, 2002.

[5] W. F. Dowling and J. H. Gallier. Linear-time algorithms for testing the satisfiability of propositional horn formulae. *J. Logic Programming*, 1(3):267–284, 1984.

[6] R. G. Downey and M. R. Fellows. *Parameterized Complexity*. Monographs in Computer Science. Springer Verlag, New York, 1999.

[7] O. Dubois and G. Dequen. A backbone-search heuristic for efficient solving of hard 3-SAT formulae. In B. Nebel, editor, *Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence, IJCAI 2001, Seattle, Washington, USA, August 4-10, 2001*, pages 248–253, 2001.

[8] M. R. Fellows, D. Hermelin, F. A. Rosamond, and S. Vialette. On the parameterized complexity of multiple-interval graph problems. *Theoretical Computer Science*, 410(1):53–61, 2009.

[9] M. R. Fellows, S. Szeider, and G. Wrightson. On finding short resolution refutations and small unsatisfiable subsets. *Theoretical Computer Science*, 351(3):351–359, 2006.

[10] J. Flum and M. Grohe. *Parameterized Complexity Theory*, volume XIV of *Texts in Theoretical Computer Science. An EATCS Series*. Springer Verlag, Berlin, 2006.

[11] G. Gallo, G. Longo, S. Pallotino, and S. Nguyen. Directed hypergraphs and applications. *Discrete Applied Mathematics*, 42:177–201, 1993.

[12] M. Gwynne and O. Kullmann. Generalising and unifying slur and unit-refutation completeness. In *SOFSEM 2013: Theory and Practice of Computer Science*, volume 7741 of *Lecture Notes in Computer Science*, pages 220–232, 2013.

[13] R. de Haan, I. Kanj, and S. Szeider. Local backbones. In M. Järvisalo and A. V. Gelder, editors, *Proceedings of SAT 2013, 16th International Conference on Theory and Applications of Satisfiability Testing, July 8-12, 2013, Helsinki, Finland*, volume 7962 of *Lecture Notes in Computer Science*, pages 377–393. Springer Verlag, 2013.

[14] T. Hertli, R. A. Moser, and D. Scheder. Improving PPSZ for 3-SAT using critical variables. In T. Schwentick and C. Dürr, editors, *Symposium on Theoretical Aspects of Computer Science*, volume 9, pages 237–248. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2011.

[15] H. H. Hoos and T. Stützle. SATLIB: An online resource for research on SAT. In I. Gent, H. van Maaren, and T. Walsh, editors, *SAT2000: Highlights of Satisfiability Research in the year 2000*, Frontiers in Artificial Intelligence and Applications, pages 283–292. Kluwer Academic, 2000.

[16] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential complexity? *J. of Computer and System Sciences*, 63(4):512–530, 2001.

[17] H. Kautz and B. Selman. Pushing the envelope: planning, propositional logic, and stochastic search. In *Proceedings of the Thirteenth AAAI Conference on Artificial Intelligence, AAAI’96*, pages 1194–1201. AAAI Press, 1996.
[18] P. Kilby, J. K. Slaney, S. Thiébaux, and T. Walsh. Backbones and backdoors in satisfiability. In *Proceedings, The Twentieth National Conference on Artificial Intelligence and the Seventeenth Innovative Applications of Artificial Intelligence Conference, July 9-13, 2005, Pittsburgh, Pennsylvania, USA (AAAI 2005)*, pages 1368–1373, 2005.

[19] O. Kullmann. Investigating a general hierarchy of polynomially decidable classes of cnf’s based on short tree-like resolution proofs. Electronic Colloquium on Computational Complexity (ECCC), 6(41), 1999.

[20] O. Kullmann. An application of matroid theory to the SAT problem. In *Fifteenth Annual IEEE Conference on Computational Complexity*, pages 116–124, 2000.

[21] R. Niedermeier. *Invitation to Fixed-Parameter Algorithms*. Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford, 2006.

[22] A. J. Parkes. Clustering at the phase transition. In *Proceedings of the fourteenth national conference on artificial intelligence, AAAI’97*, pages 340–345. AAAI Press, 1997.

[23] D. Prelotani. Efficiency and stability of hypergraph SAT algorithms. In D. S. Johnson and M. A. Trick, editors, *Clique, Coloring and Satisfiability*, pages 479–498. AMS, 1996.

[24] J. Schneider, C. Froschhammer, I. Morgenstern, T. Husslein, and J. M. Singer. Searching for backbones – an efficient parallel algorithm for the traveling salesman problem. *Computer Physics Communications*, 96:173–188, 1996.

[25] J. K. Slaney and T. Walsh. Backbones in optimization and approximation. In B. Nebel, editor, *Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence, IJCAI 2001, Seattle, Washington, USA, August 4-10, 2001*, pages 254–259, 2001.

[26] O. Strichman. Tuning SAT checkers for bounded model checking. In *Computer Aided Verification: 12th International Conference (CAV 2000)*, pages 480–494, London, UK, UK, 2000. Springer-Verlag.