Spironolactone: An Anti-androgenic and Anti-hypertensive Drug That May Provide Protection Against the Novel Coronavirus (SARS-CoV-2) Induced Acute Respiratory Distress Syndrome (ARDS) in COVID-19

Flavio A. Cadegiani1,2*, Carlos G. Wambier3 and Andy Goren3,4

1 Department of Endocrinology, Federal University of São Paulo, São Paulo, Brazil, 2 Corpometria Institute, Brasília, Brazil, 3 Department of Dermatology, Warren Alpert Medical School of Brown University, Providence, RI, United States, 4 Applied Biology Inc., Irvine, CA, United States

Keywords: COVID-19, SARS-CoV-2, coronavirus, pandemic, spironolactone, ARDS (acute respiratory distress syndrome), androgen receptor antagonist, TMPRSS2

INTRODUCTION

At the onset of the COVID-19 pandemic, mortality following infection of severe acute respiratory coronavirus (SARS-CoV-2) was thought to be solely associated with aging and pre-existing conditions; however, as the pandemic ensued, several large scale epidemiological observations eluded to additional atypical risk factors, particularly hypertension, obesity, and male gender (1–11).

SARS-CoV-2: CURRENT KNOWLEDGE ON THE MECHANISMS OF ACTION

The peculiarities and complexity of SARS-CoV-2 infection patterns precluded definitive findings regarding the mechanisms of infectivity. Current literature suggests that angiotensin-converting enzyme-2 (ACE2) receptor and transmembrane serine protease 2 (TMPRSS2) are the key for SARS-CoV-2 cell entry (12–19). While ACE2 is the coupling site of the spike protein of SARS-CoV-2, TMPRSS2 facilitates SARS-CoV-2 spikes and ACE2 for viral cell entry. Although ACE2 expression is present diffusely, up to 80% of its expression is located in the type-2 pneumocytes (12, 17), which may explain why COVID-19 is predominantly pulmonary, although SARS-COV-2 may affect any organ and system. TMPRSS2 activity is modulated by androgens, which may justify why males are overrepresented among severe COVID-19 infected patients (20).

Current understanding of SARS-CoV-2 allows the division of COVID-19 into two phases (12–18). In a first, early phase, which corresponds to the period of SARS-CoV-2 cell entry, lung membrane-attached ACE2 expression seems to be positively correlated with virus infectivity, while the balance between circulating ACE2, that could protect from lung infectivity by coupling with SARS-CoV-2 and precluding from the entry into the pneumocytes (13–16), and membrane-attached ACE2, may also be relevant.

In a second phase, represented by the inflammatory and immunological responses to SARS-CoV-2 infection, ACE2 is downregulated due to the entry into cell cytoplasm when coupled with the virus. In opposition to the first phase, in the second phase, lung-attached ACE2 expression may be positively correlated with better clinical outcomes, since ACE2 may limit the cytokine storm that underlies the Acute Respiratory Distress Syndrome (ARDS) in COVID-19, while the...
balance between proinflammatory angiotensin II–angiotensin receptor type 1 (AT1) axis, and the anti-inflammatory angiotensin 1–7–G-coupled Mas receptor (angiotensin 1–7 receptor) axis may also be crucial for level of severity of the second phase (13, 15–19).

SARS-CoV-2: THE LINK BETWEEN MECHANISMS OF ACTION AND RISK FACTORS

The Renin-Angiotensin-Aldosterone System (RAAS) has been shown to be central in COVID-19, since three of the key modulators of SARS-CoV-2 infectivity—angiotensin 1–7, ACE2, and AT1—belong to the RAAS, in addition to the TMPRSS2 expression (12–19).

Disruption of RAAS and ACE2 expression abnormalities are likely the underlying mechanism that links hypertension and obesity as important risk factors for COVID-19 (21–29). Conversely, TMPRSS2 overexpression in response to exposure to androgens may justify the higher occurrence of COVID-19 complications in males (30–33), which can be reinforced by the fact that males under androgen deprivation therapies such as for prostate cancer may experiment decreased risk for ARDS when compared to age-, sex-, and comorbidities-matched subjects (33).

A pro-thrombotic state, and endothelial, hematological, kidney, hepatic, cardiovascular, gonadal, neurological, and gastrointestinal manifestations in COVID-19 are at least partially mediated by ACE2 and TMPRSS2 expressions (34–60).

In summary, aberrancies in ACE2 expression, unbalance between angiotensin II and angiotensin 1–7 levels, and overexpression of TMPRSS2 seem to be key factors for the severity of clinical manifestations in COVID-19.

SPIRONOLACTONE AS A CANDIDATE AGAINST COVID-19

Drugs that address ACE2, any sight of the RAAS, or TMPRSS2 expression are potential candidates for COVID-19. In this context, the use of old drugs against COVID-19 may present major potential benefits over novel drugs for some reasons, including: (1) The well-established long-term safety profile (2) Extensively described risks and contraindications, which allows to prevent its use when contraindicated and monitor for risks directly; and (3) The lower cost of old, non-patented drugs allows its massive use in public health systems, when clinically indicated.

These observations combined with our understanding of SARS-CoV-2 molecular mechanism of infectivity lead us to believe that spironolactone is an ideal candidate drug for the prophylactic treatment of SARS-CoV-2.

Spironolactone is a safe and well-tolerated anti-hypertensive and anti-androgenic drug used since 1959, that is effective to maintain normal blood levels (61–63), address heart function, and provide cardio- and renoprotection (64–68).

While spironolactone is a safe and unexpensive option, it may act in multiple sites against COVID-19, including: (1) Favorable patterns of ACE2 expression, including potential increase of circulating ACE2, enhancing its potential protective role in SARS-CoV-2, once plasma ACE2 may couple to SARS-CoV-2 and avoid its entry in the cells (24, 69–74); (2) Downregulation of the androgen-mediated TMPRSS2 due to its antiandrogenic activity (75–77), without the adverse events of male sexual castration; (3) Mitigation of the deleterious effects of obesity on the RAAS, possibly reducing obesity-related COVID-19 complications (78, 79); (4) Direct anti-inflammatory and anti-viral effects that could directly avoid pulmonary complications of COVID-19 (80–90).

Hence, spironolactone meets corresponding epidemiological data, mechanistical plausibility, and sufficient safety profile to become a candidate against COVID-19.

For the proper management of spironolactone during COVID-19, since spironolactone mostly targets the virus entry in the cells, which is the hallmark of the first phase of Covid-19, spironolactone should be preferably started during the earlier stages of the infection, prior to the complications of respiratory manifestations, but could also be employed in the second phase, when the inflammatory and immunologic responses become clinically relevant, due to its anti-inflammatory effects (91).

CONCLUSION

Abnormal ACE2 expression, angiotensin II and angiotensin 1–7 imbalance, and TMPRSS2 androgen-mediated overactivity seem to be key regulators of SARS-CoV-2 infectivity, in accordance with epidemiological observations of hypertension, obesity, and male sex as being major risk factors. Since spironolactone is a long used safe drug that exhibits concurrent actions in the modulation of ACE2 expression that could avoid SARS-CoV-2 cell entry, attenuation of the harms caused by the overexpression of angiotensin II-AT-1 axis, discloses anti-androgenic activity that can decrease viral priming through TMPRSS2 activity, and has anti-inflammatory effects in the lungs, spironolactone seems to be a plausible candidate for the prophylactic and early treatment of SARS-CoV-2.

AUTHOR CONTRIBUTIONS

FC, CW, and AG developed the underlying theories on the present paper, wrote, and reviewed the manuscript in its final format for submission. All authors contributed to the article and approved the submitted version.

ACKNOWLEDGMENTS

We acknowledge all researchers who have provided insightful and helpful information aiming to overcome the COVID-19 pandemic, as well as all front-line health providers who are directly dealing with COVID-19 infected patients, exposing themselves at risk for this potentially severe infection.
1. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. (2020) 395:1054–62. doi: 10.1016/S0140-6736(20)30563-6

2. Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q, Meredith HR, et al. The incubation period of Coronavirus Disease (2019) (COVID-19) from publicly reported confirmed cases: estimation and application. Ann Intern Med. (2020) 172:577–82. doi: 10.7326/M20-0504

3. Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019. Pneumonia in Wuhan. China. JAMA Intern Med. (2020) 180:1–11. doi: 10.1001/jama internmed.2020.0994

4. Liu W, Tao ZW, Wang L, Yuan ML, Liu K, Zhou L, et al. Analysis of factors associated with disease outcomes in hospitalized patients with 2019 novel coronavirus disease. Chin Med J. (2020) 133:1032–8. doi: 10.1097/CM9.0000000000000775

5. Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Respir Med. (2020) 8:e21. doi: 10.1016/S2213-2600(20)30116-8

6. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical characteristics of 99 cases from the outbreak in Wuhan, China - a descriptive study. Lancet. (2020) 395:71–7. doi: 10.1016/S0140-6736(20)30184-5

7. Hajifathalian K, Kumar S, Newberry C, Shah S, Fortune B, Krisko T, et al. High prevalence of obesity in SARS-CoV-2 COVID-19 patients. Int J Obes. (2020) 44:2265–72. doi: 10.1038/s41366-020-0882-9

8. Kalliergos M, Shehadeh F, Mylonas EA, Benitez G, Beckwith CG, Chan PA, et al. Association of obesity with disease severity among patients with coronavirus disease 2019 (COVID-19). Obesity. (2020) 28:1200–4. doi: 10.1002/oby.22923. [Epub ahead of print].

9. Palaiodimos L, Kokkinidis DG, Li W, Karamanis D, Ognibene J, Arora S, et al. Severe obesity, increasing age and male sex are independently associated with worse in-hospital outcomes, and higher in-hospital mortality, in a cohort of patients with COVID-19 in the Bronx, New York. Metabolism. (2020) 108:154262. doi: 10.1016/j.metabol.2020.154262

10. Goren A, McCoy J, Wambier CG, Van-Galan S, Shapiro J, Dhurat R, et al. What does androgenetic alopecia have to do with COVID-19? An insight into a potential new therapy. Dermatol Ther. (2020) 1:13365. doi: 10.1111/dth.13365

11. Goren A, Vaño-Galván S, Wambier CG, McCoy J, Gomez-Zubiaur A, Moreno-Arromes OM, et al. A preliminary observation: male pattern hair loss among hospitalized COVID-19 patients in Spain - a potential clue to the role of androgens in COVID-19 severity. J Cosmetic Dermatol. (2020) 19:1545–7. doi: 10.1111/jocd.13443

12. Hamming I, Timens W, Bulthuis MLC, Lely AT, Navis GJ, van Goor H. Tissue injury. Circ J. (2020) 84:673–80. doi: 10.1259/circj.20190566-3

13. Li Y, Zhou W, Yang L, You R. Physiological and pathological regulation of ACE2, the SARS-CoV-2 receptor. Pharmacol Res. (2020) 157:104833. doi: 10.1016/j.phrs.2020.104833

14. Song J, Li Y, Huang X, Chen Z, Li Y, Liu C, et al. Systematic analysis of ACE2 and TMPRSS2 expression in salivary glands reveals underlying transmission mechanism caused by SARS-CoV-2. J Med Virol. (2020) 92:1157–64. doi: 10.1002/jmv.26045. [Epub ahead of print]

15. Imai Y, Kuba K, Ohto-Nakanishi T, Penninger JM. Angiotensin-converting enzyme 2 (ACE2) in disease pathogenesis. Circ J. (2010) 74:405–10. doi: 10.1253/circj.CJ-10-0045

16. Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med. (2005) 11:875–9. doi: 10.1038/nm1267

17. Hoffmann M, Kleine-Weber H, Kruger N, Muller M, Drosten C, Plöthl-Höll M, et al. The novel coronavirus (2019) (2019-nCoV) uses the SARS coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry in target cells. Cell. (2020) 181:1–10. doi: 10.1016/j.cell.2020.01.31.929042

18. Ortega JT, Serrano ML, Pujol FH, Rangel HR. Role of changes in SARS-CoV-2 spike protein in the interaction with the human ACE2 receptor: an in silico analysis. EXCLI J. (2020) 19:410–7. doi: 10.17179/excli2020-1167

19. Wambier CG, Goren A. SARS-CoV-2 infection is likely to be androgen mediated. J Am Acad Dermatol. (2020) 83:308–9. doi: 10.1016/j.jaad.2020.04.032R

20. Pirola CJ, Sookoian S. Estimation of RAAS-Inhibitor effect on the COVID-19 outcome: a meta-analysis. J Infect. (2020). doi: 10.1016/j.jinf.2020.05.052. [Epub ahead of print].
37. Natali S, Oliveira V, Calabrese P, Maia LF, Pisani A. Does SARS-Cov-2 invade the brain? Translational lessons from animal models. _Eur J Neurol_. (2020). doi: 10.1111/ene.14277. [Epub ahead of print].

38. Helms J, Kremer S, Merdji H, Clerc-Jehl R, Schenck M, Kummerlen C, et al. Neurologic features in severe SARS-CoV-2 infection. _N Engl J Med_. (2020) 382:2268–70. doi: 10.1056/NEJMoa2008597.

39. Lin L, Jiang X, Zhang Z, Huang S, Zhang Z, Fang Z, et al. Gastrointestinal symptoms of 95 cases with SARS-CoV-2 infection. _Gut_. (2020) 69:997–1001. doi: 10.1136/gutjnl-2020-321013.

40. Cheung KS, Hung IFN, Chan PYY, Lung KC, Tso E, Liu R, et al. Gastrointestinal manifestations of SARS-CoV-2 infection and virus load in fecal samples from a Hong Kong Cohort: systematic review and meta-analysis. _Gastroenterology_. (2020). doi: 10.1053/j.gastro.2020.03.065. [Epub ahead of print].

41. Xiao F, Tang M, Zheng X, Liu Y, Li X, Shan H. Evidence for gastrointestinal infection of SARS-CoV-2. _Gastroenterology_. (2020) 158:1831–3.e3. doi: 10.1053/j.gastro.2020.02.055.

42. Recalcati S. Cutaneous manifestations in COVID-19: a first perspective. _J Eur Acad Dermatol Venereol_. (2020) 34:212–3. doi: 10.1111/jdv.16387.

43. Mungmunpunpitaprit R, Wiwanitkit V. COVID-19 and cutaneous manifestations. _J Eur Acad Dermatol Venereol_. (2020) 34:246. doi: 10.1111/jdv.16483.

44. Zhu H, Rhee JW, Cheng P, Waliany S, Chang A, Witteles RM, et al. Cardiovascular complications in patients with COVID-19: consequences of viral toxicities and host immune response. _Curr Cardiol Rep_. (2020) 22:32. doi: 10.1007/s11886-020-01302-4.

45. Kim IC, Kim JY, Kim HA, Han S. COVID-19-related myocarditis in a 21-year-old female patient. _Eur Heart J_. (2020) 41:1859. doi: 10.1093/eurheartj/ehaa288.

46. Kochi AN, Tagliari AP, Forleo GB, Fassini GM, Tondo C. Cardiac and arrhythmic complications in patients with COVID-19. _J Cardiovasc Electrophysiol_. (2020) 31:1003–8. doi: 10.1111/jce.14479.

47. Zeng JH, Liu YX, Yuan J, Wang FX, Wu WB, Li JX, et al. First case of COVID-19 complicated with fulminant myocarditis: a case report and insights. _Infection_. (2020) 10:1–5. doi: 10.1007/s15010-020-01424-5.

48. Xu L, Liu J, Lu M, Yang D, Zheng X. Liver injury during highly pathogenic human coronavirus infections. _Liver Int_. (2020) 40:998–1004. doi: 10.1111/liv.14435.

49. Lee IC, Huo TI, Huang YH. Gastrointestinal and liver manifestations in patients with COVID-19. _J Chin Med Assoc_. (2020) 83:521–3. doi: 10.1097/CMA.0000000000000319.

50. Musa S. Hepatic and gastrointestinal involvement in coronavirus disease 2019 (COVID-19): what do we know till now? _Arab J Gastroenterol_. (2020) 21:3–8. doi: 10.1016/j.ajge.2020.03.002.

51. Fanelli V, Fiorentino M, Cantaluppi V, Gesualdo L, Stallone G, Ronco C, et al. Acute kidney injury in SARS-CoV-2 infected patients. _Crit Care_. (2020) 24:155. doi: 10.1186/s13054-020-02872-z.

52. Chu KH, Tsang WK, Tang CS, Lam MF, Lai FM, To KF, et al. Pulmonary embolism in patients with COVID-19: time to change the paradigm of computed tomography. _Thorac Res_. (2020) 190:58–9. doi: 10.1016/j.thromres.2020.04.011.

53. Giannini D, Zioaga IA, Gianni P. Coagulation disorders in coronavirus infected patients: COVID-19, SARS-CoV-1, MERS-CoV and lessons from the past. _J Clin Virol_. (2020) 127:104362. doi: 10.1016/j.jcv.2020.104362.

54. Rottinger DC, Bigelow-Aubry C, von Garnier C, Qandadli SD. Pulmonary embolism in patients with COVID-19: time to change the paradigm of computed tomography. _Thorac Res_. (2020) 190:58–9. doi: 10.1016/j.thromres.2020.04.011.

55. Georgianos PI, Vaisos V, Eleftheriadis T, Zebekakis P, Liakopoulos V. Mineralocorticoid antagonists in ESRD: an overview of clinical trial evidence. _Curr Vas Pharmacol_. (2017) 15:599–606. doi: 10.2174/157016116666670120111317.

56. Cadegiani et al. Spironolactone: Strong Potential to Prevent SARS-CoV-2 manifestations. July 2020 | Volume 7 | Article 453
75. Sert M, Tetiker T, Kirim S. Comparison of the efficiency of anti-androgenic regimens consisting of spironolactone, Diane 35, and cyproterone acetate in hirsutism. *Acta Med Okayama*. (2003) 57:73–6. doi: 10.18926/AMO/32820

76. Steelman SL, Brooks JR, Morgan ER, Patanelli DJ. Anti-androgenic activity of spironolactone. *Steroids*. (1969) 14:449–50. doi: 10.1016/S0039-128X(69)80007-3

77. Broulik PD, Stárka L. Antiandrogenic and antirenotropic effect of spironolactone. *Endokrinologie*. (1976) 68:35–9.

78. Vecchiola A, Fuentes CA, Solar I, Lagos CF, Opazo MC, Muñoz-Durango N, et al. Eplerenone implantation improved adipose dysfunction averting RAAS activation and cell division. *Front Endocrinol.* (2020) 11:223. doi: 10.3389/fendo.2020.00223

79. Feraco A, Armani A, Mammi C, Fabbri A, Rosano GM, Caprio M. Role of mineralocorticoid receptor and renin-angiotensin-aldosterone system in adipocyte dysfunction and obesity. *J Steroid Biochem Mol Biol*. (2013) 137:99–106. doi: 10.1016/j.jsbmb.2013.02.012

80. Ji WJ, Ma YQ, Zhang X, Zhang L, Zhang YD, Su CC, et al. Inflammatory monocyte/macrophage modulation by liposome-entrapped spironolactone ameliorates acute lung injury in mice. *Nanomedicine*. (2016) 11:1393–406. doi: 10.2217/nmm-2016-0006

81. Ji WJ, Ma YQ, Zhou X, Zhang YD, Lu RY, Guo ZZ, et al. Spironolactone attenuates bleomycin-induced pulmonary injury partially via modulating mononuclear phagocyte phenotype switching in circulating and alveolar compartments. *PLoS ONE*. (2013) 8:e81090. doi: 10.1371/journal.pone.0081090

82. Rafatian N, Westcott KV, White RA, Leenen FH. Cardiac macrophages and apoptosis after myocardial infarction: effects of central MR blockade. *Am J Physiol Regul Integr Comp Physiol*. (2014) 307:R879–87. doi: 10.1152/ajpregu.00075.2014

83. Zhang L, Hao JB, Ren LS, Ding JL, Hao LR. The aldosterone receptor antagonist spironolactone prevents peritoneal inflammation and fibrosis. *Lab Invest*. (2014) 94:839–50. doi: 10.1038/labinvest.2014.69

84. Ozacmak HS, Ozacmak VH, Barut F, Arasli M, Ucan BH. Pretreatment with mineralocorticoid receptor blocker reduces intestinal injury induced by ischemia and reperfusion: involvement of inhibition of inflammatory response, oxidative stress, nuclear factor xB, and inducible nitric oxide synthase. *J Surg Res*. (2014) 191:350–61. doi: 10.1016/j.jss.2014.04.040

85. Kato Y, Kamiya H, Koide N, Odtkhuu E, Komatsu T, Dagravdorj J, et al. Spironolactone inhibits production of proinflammatory mediators in response to lipopolysaccharide via inactivation of nuclear factor-xB. *Immunopharmacol Immunotoxicol*. (2014) 36:237–41. doi: 10.3109/08923973.2014.921690

86. Lieber GB, Fernandez X, Mingo GG, Jia Y, Caniga M, Gil MA, et al. Mineralocorticoid receptor antagonists attenuate pulmonary inflammation and bleomycin-evoked fibrosis in rodent models. *Eur J Pharmacol*. (2013) 718:290–8. doi: 10.1016/j.ejphar.2013.08.019

87. Fraccarollo D, Galuppo P, Schraut S, Kneitz S, van Rooijen N, Ertl G, et al. Immediate mineralocorticoid receptor blockade improves myocardial infarct healing by modulation of the inflammatory response. *Hypertension*. (2008) 51:905–14. doi: 10.1161/HYPERTENSIONAHA.107.100941

88. Lacombe B, Morel M, Margottin-Goguet F, Ramírez BC. Specific inhibition of HIV infection by the action of spironolactone in T cells. *J Virol*. (2016) 90:10972–80. doi: 10.1128/JVI.01722-16

89. Verma D, Thompson J, Swaminathan S. Spironolactone blocks Epstein-Barr virus production by inhibiting EBV SM protein function. *Proc Natl Acad Sci USA*. (2016) 113:3609–14. doi: 10.1073/pnas.1523686113

90. Yartaş Dumanlı G, Dilken O, Urkmez S. Use of spironolactone in SARS-CoV-2 ARDS patients. *Turk J Anaesthesiol Reanim*. (2020) 48:254–55. doi: 10.5152/TJAR.2020.569

91. Alfano M, Alfano P, Forzeg P, Ianneli A. Renin-angiotensin system at the heart of COVID-19 pandemic. *Biochimie*. (2020) 174:30. doi: 10.1016/j.biochi.2020.04.008

Conflict of Interest: AG is the CEO of the company Applied Biology Inc (Irvine, CA, USA). CW is part of the medical board of the company Applied Biology Inc (Irvine, CA, USA).

The remaining author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Cadegiani, Wambier and Goren. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.