The category of equilogical spaces and the effective topos as homotopical quotients

Giuseppe Rosolini*

Abstract

We show that the two models of an extensional version of Martin-Löf type theory, those given by the category of equilogical spaces and by the effective topos, are homotopical quotients of appropriate categories of 2-groupoids.

1 Introduction

The category of T_0-spaces embeds fully in the category of equilogical spaces; the category of equilogical spaces is locally cartesian closed and the embedding functor preserves products and any exponential available in the original category. Thus the category of equilogical spaces provides a nice extension of the category of T_0-spaces. The effective topos is the categorical rendering of Kleene’s realizability model for intuitionistic logic, and is the first interesting example of a non-Grothendieck topos. We show that the category of equilogical spaces is the homotopical quotient of a category of groupoids, and that the effective topos is the homotopical quotient of a category of 2-groupoids of partitioned assemblies.

Groupoids are a main tool in algebraic topology, see [Bro68] and groupoids were the first nontrivial models of the intensional version of Martin-Löf Type Theory in [HS98]. Moreover in recent years the Univalent Foundations Program, see [Uni13], has advocated a strong connection between algebraic topology and type theory.

Since both the category of equilogical spaces and the effective topos are models of an extensional version of Martin-Löf type theory, it is useful to find that each comes from the “extensionalization” of a model of intensional type theory and that such a process is actually a homotopical quotient. We should stop here to point out that the meaning we adopt for an homotopical quotient of a category is in line with a suggestion in [CV98] and is the more naive notion obtained from an interval-like object than that derived from a Quillen model category—the main reason is that one of the two example categories we study

*DIMA, via Dodecaneso 35, 16146 Genova, Italy, resolini@unige.it.

Projects MIUR-PRIN 2010-2011 and Correctness by Construction (EU 7th framework programme, grant no. PIRSES-GA-2013-612638) provided support for the research presented in the paper.
is neither complete nor cocomplete. So, as a homotopical quotient, we shall consider a category obtained as a quotient category from a category C with finite limits, as follows:

- there is a fixed interval-like object I, i.e. it has two global points $0: T \to I$ and $1: T \to I$ whose pushout

\[
\begin{array}{ccc}
T & \xrightarrow{1} & I \\
\downarrow & & \downarrow \\
0 & \xrightarrow{0'} & 0' \\
I & \xrightarrow{1'} & I + T I
\end{array}
\]

exists in C and is stable under products, an arrow $\gamma: I \to I + T I$ and an arrow $\iota: I \to I$ such that the four arrows together with the unique arrow $!: I \to T$ form an equivalence co-span in C, i.e. the following diagrams commute

\[
\begin{array}{ccc}
T & \xrightarrow{0} & I & \xrightarrow{1} & T \\
\downarrow & & \downarrow & & \downarrow \\
0 & \xrightarrow{1} & I & \xrightarrow{1'} & I + T I \\
1 & \xleftarrow{\iota} & I & \xleftarrow{!} & I + T I
\end{array}
\]

—note that there is also a necessarily commutative diagram

\[
\begin{array}{ccc}
T & \xrightarrow{0} & I \\
\downarrow & & \downarrow \\
0 & \xrightarrow{!} & T \\
\end{array}
\]

since T is terminal—;

- two arrows $f, g: X \to Y$ are identified in the quotient if there is an arrow $h: X \times I \to Y$ such that the following diagram commute

\[
\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
\downarrow & & \downarrow \\
X \times I & \xrightarrow{h} & Y \\
\end{array}
\]

The condition of the structure on I ensures that the identification is an equivalence relation on parallel arrows in C. 2
It seems plausible that the categories we analyse in the following sustain suitable notions of fibrations, cofibrations and weak equivalences—in particular, that a map of the kind \((\text{id}_X, i): X \to X \times I, i = 0, 1\), is a weak equivalence. But the categories are certainly not complete, nor cocomplete, and that prevents a direct comparison with standard homotopical quotients. It will be considered in future work.

We introduce the category of equilogical spaces in section 2 and we recall one of the presentations of the effective topos in section 3, reviewing properties which are needed in the following sections. In section 4 we determine a category \(\mathcal{A}\) of topological groupoids and an interval-like topological groupoid \(\mathcal{I}\) such that the homotopical quotient of \(\mathcal{A}\) determined by \(\mathcal{I}\) is equivalent to the category of equilogical spaces. In section 5 we produce a similar result for the effective topos using a category of 2-groupoids on partitioned assemblies.

The idea of the paper grew out of work on models for Homotopy Type Theory during discussions at CMU with Steve Awodey and the members of the lively HoTT group there. The author acknowledges how the stimulating environment helped develop the ideas presented in the paper and warmly thanks all the participants for their strong support.

The final draft of the paper was prepared following some interesting remarks made by an anonymous referee; the author thankfully acknowledges the referee’s unconditional contribution.

2 Equilogical spaces

Recall from [Sco96, BBS04] that an equilogical space \(\mathcal{E} = (S_\mathcal{E}, \tau_\mathcal{E}, \sim_\mathcal{E})\) consists of a \(T_0\)-space \((S, \tau)\) and an equivalence relation \(\sim_\mathcal{E} \subseteq S_\mathcal{E} \times S_\mathcal{E}\) on the points of the space.

A map \([f]: \mathcal{E} \to \mathcal{F}\) of equilogical spaces is an equivalence class of continuous functions \(f: (S_\mathcal{E}, \tau_\mathcal{E}) \to (S_\mathcal{F}, \tau_\mathcal{F})\) preserving the equivalence relations, i.e. if \(x \sim_\mathcal{E} x'\), then \(f(x) \sim_\mathcal{F} f(x')\) for all \(x\) and \(x'\) in \(S_\mathcal{E}\). For two such continuous functions \(f, g: (S_\mathcal{E}, \tau_\mathcal{E}) \to (S_\mathcal{F}, \tau_\mathcal{F})\), one sets \(f\) equal to \(g\) when \(f(x) \sim_\mathcal{F} g(x)\) for all \(x \in S_\mathcal{E}\).

Composition of maps of equilogical spaces \([f]: \mathcal{E} \to \mathcal{F}\) and \([g]: \mathcal{F} \to \mathcal{G}\) is given on (any of) their continuous representatives: \([g] \circ [f] := [g \circ f]\).

The data above determine a category \(\mathcal{Equ}\) of equilogical spaces. There is a full embedding
\[
Y: \mathcal{Top}_0 \hookrightarrow \mathcal{Equ}
\]
which maps a \(T_0\)-space \((S, \tau)\) to the equilogical space on \((S, \tau)\) with the diagonal relation, i.e. the equilogical space \((S, \tau, =_S)\).

The category \(\mathcal{Equ}\) is a locally cartesian closed full extension of the category \(\mathcal{Top}_0\) of \(T_0\)-spaces. In fact, it is the intersection of two other locally cartesian
closed full extensions of

\[
\begin{array}{c}
\text{Top}_{0} \downarrow \quad \text{Equ} \downarrow \quad (\text{Top}_{0})_{\text{ex}} \\
\text{Top} \downarrow \quad \text{Top}_{\text{reg}} \downarrow \quad \text{Top}_{\text{ex}}
\end{array}
\]

The exact completions \((\text{Top}_{0})_{\text{ex}}\) and \(\text{Top}_{\text{ex}}\) are pretoposes, while the regular completion \(\text{Top}_{\text{reg}}\) is a quasitopos, see [Ros00].

The product of equilogical spaces \(E \times F\) is computed as expected taking the topological product \((S_{E}, \tau_{E}) \times (S_{F}, \tau_{F})\) and the equivalence relation

\[
(a, b) \sim_{E \times F} (a', b') \text{ when } a \sim_{E} a' \text{ and } b \sim_{F} b'.
\]

The projections to the factors are obvious.

The construction of the exponential \(F^{E}\) is less direct and we refer the reader to the basic sources [Sco76, Sco96, BBS04] as well as [BR14, BCRS98].

It is useful for the purpose of this paper to point out the strong similarity between the presentation of \(\text{Equ}\) and that of \((\text{Top}_{0})_{\text{ex}}\). So recall from [CC82, Car95, FS91, CV98] that the exact completion \(\mathcal{C}_{\text{ex}}\) of a category \(\mathcal{C}\) with finite limits is a quotient category of the full subcategory \(\text{ES}(\mathcal{C})\) of the category \(\mathcal{C}\) of graphs in \(\mathcal{C}\) on the equivalence spans.

Recall that a (directed) graph in \(\mathcal{C}\) is a parallel pair \(A_{1} \xrightarrow{d_{1}} A_{0}\) of arrows of \(\mathcal{C}\) and a homomorphism from the graph \(A_{1} \xrightarrow{d_{1}} A_{0}\) to the graph \(B_{1} \xrightarrow{e_{1}} B_{0}\) is a pair \((f_{1}: A_{1} \to B_{1}, f_{0}: A_{0} \to B_{0})\) of arrows in \(\mathcal{C}\) such that the following diagram commutes

\[
\begin{array}{ccc}
A_{0} & \xrightarrow{d_{1}} & A_{1} & \xrightarrow{d_{2}} & A_{0} \\
| & = & | & = & | \\
B_{0} & \xrightarrow{e_{1}} & B_{1} & \xrightarrow{e_{2}} & B_{0}.
\end{array}
\]

An **equivalence span** is a graph \(A_{1} \xrightarrow{d_{1}} A_{0}\) in \(\mathcal{C}\) which is reflexive, symmetric, and endowed with a compatible operation on pairs of consecutive arcs, i.e. there are arrows \(r: A_{0} \to A_{1}\), \(s: A_{1} \to A_{1}\), and \(t: A_{1} \times_{A_{0}} A_{1} \to A_{1}\),
where

\[
\begin{array}{c}
A_1 \times_{A_0} A_1 \xrightarrow{d_2'} A_1 \\
\downarrow d_1' \quad \downarrow d_1 \\
A_1 \xrightarrow{d_2} A_0
\end{array}
\]

is a pullback in \(\mathcal{C} \), such that the following diagrams commute:

\[
\begin{array}{c}
A_0 \xrightarrow{id_{A_0}} A_0 \xrightarrow{r} A_1 \\
\downarrow d_1 \downarrow \downarrow \\
A_0 \xrightarrow{s} A_1 \xrightarrow{d_2} A_0
\end{array}
\]

\[
\begin{array}{c}
A_1 \xrightarrow{d_1} A_0 \xrightarrow{t} A_1 \\
\downarrow d_1 \downarrow \downarrow \\
A_0 \xrightarrow{t} A_1 \xrightarrow{d_2} A_0
\end{array}
\]

The quotient category \(\mathcal{C}_{ex} \) is obtained by identifying homomorphisms \((f_1, f_0)\) and \((g_1, g_0)\) from \(A_1 \xrightarrow{d_1} A_0\) to \(B_1 \xrightarrow{e_1} B_0\) if there is an arrow \(h: A_0 \to B_1\) such that

\[
\begin{array}{c}
A_0 \xrightarrow{f_0} A_0 \\
\downarrow h \downarrow \\
B_0 \xrightarrow{g_0} B_0
\end{array}
\]

—nothing is asked of the other component.

The following proposition makes the similarity explicit.

2.1 Proposition. The category \(\mathcal{E}qu \) is equivalent to the full subcategory \(\mathcal{A} \) of \((\text{Top}_0)_{ex} \) on those equivalence spans \(A_1 \xrightarrow{d_1} A_0 \) of topological spaces and continuous maps such that the pair \(\langle d_1, d_2 \rangle: A_1 \to A_0 \times A_0 \) is a subspace inclusion.

Proof. Consider an equivalence span \(A = A_1 \xrightarrow{d_1} A_0 \) of topological spaces and continuous maps such that the pair \(\langle d_1, d_2 \rangle: A_1 \to A_0 \times A_0 \) is a subspace inclusion. Note that the functions \(r, s \) and \(t \) requested by the definition of
equivalence span are unique, and determine that the subset $|A_1|$ of pairs of points of $|A_0|$ is an equivalence relation. Write $F(A)$ for the equilogical space which consists of the topological space A_0 and the equivalence relation $|A_1|$.

For a homomorphism (f_1, f_0) between two such equivalence spans, the component f_1 is uniquely determined by the other data as the restriction of the pair (f_0, f_0), and ensures that f_0 is a representative of a map of equilogical spaces. Moreover, in the quotient category $(\text{Top}_0)^{ex}$, the homomorphism (f_1, f_0) is identified with (g_1, g_0) precisely when $(f(x), g(x))$ is in A_1 for all points x in A_0.

Thus the assignment $F([f_1, f_0]) = [f_0]$ is well defined, and determines a functor from \mathcal{A} to \mathcal{E}_{qu} which is full and faithful.

To see that F is also bijective on objects, suppose $E = (S_E, \tau_E, \sim_E)$ is an equilogical space. Consider the subspace topology σ_E on $\sim_E \subseteq S_E \times S_E$ and the graph of topological spaces

$$
\begin{array}{c}
\sim_E, \sigma_E \longrightarrow (S_E, \tau_E)
\end{array}
$$

induced by the two projections. It is easy to check that it is an equivalence span and, by construction, the pair $\langle \pi_1, \pi_2 \rangle: (\sim_E, \sigma_E) \longrightarrow (S_E, \tau_E) \times (S_E, \tau_E)$ is a subspace inclusion. It is obvious that the functor F takes that equivalence span of \mathcal{A} to the equilogical space E.

In the following, we shall refer to an equivalence span $A_1 \xrightarrow{d_1} A_0$ of topological spaces and continuous maps such that the pair $\langle d_1, d_2 \rangle: A_1 \longrightarrow A_0$ is a subspace inclusion as a subspatial equivalence span.

3 The effective topos

The effective topos \mathcal{E}_{eff} was introduced in [HJP80, Hyl82]. It was shown in [RR90] that \mathcal{E}_{eff} is (equivalent to) the exact completion of the category \mathcal{PAsm} of partitioned assemblies, see [CFS88].

A **partitioned assembly** is a function $\xi: X \longrightarrow \mathbb{N}$; a **map** $X \xrightarrow{\xi} Y$ of partitioned assemblies is a function $f: X \longrightarrow Y$ such that there is a partial recursive function $\phi: \mathbb{N} \rightarrow \mathbb{N}$ such that the following diagram commutes

$$
\begin{array}{c}
X & \xrightarrow{f} & Y \\
\downarrow \xi & & \downarrow \zeta \\
\mathbb{N} & \xrightarrow{\phi} & \mathbb{N}
\end{array}
$$

In order to make sure that the exact completion introduced in section 2 can be applied to the category \mathcal{PAsm} we recall how finite limits can be obtained in that category.
The product of two partitioned assemblies is obtained by adopting some particular recursive encoding $\langle n, m \rangle$ of pairs of numbers; the product partitioned assembly of $X\downarrow_N$ and $Y\downarrow_N$ is the function

$$(x, y) \mapsto \langle \langle \xi(x), \zeta(y) \rangle \rangle : X \times Y \rightarrow \mathbb{N}$$

with obvious projections.

The equalizer of $X\downarrow_\xi N \xrightarrow{f} \xrightarrow{g} Y\downarrow_\zeta N$ is the partitioned assembly $\xi\upharpoonright E : E \rightarrow N$ where $E := \{ x \in \mathbb{N} \mid f(x) = g(x) \}$ with the obvious inclusion into $\xi\downarrow_N$.

The next result will be useful in the following.

3.1 Lemma. Every equivalence span

$$A_1 \xrightarrow{d_1} A_0 \xleftarrow{d_2} A_0$$

in \mathcal{PAsm}_{ex} is isomorphic to one of the form

$$E \xrightarrow{\epsilon} E \xleftarrow{e_2} A_0$$

such that the triple (e_1, e_2, ϵ) is monic.

Proof. Consider an arbitrary equivalence span

$$A_1 \xrightarrow{d_1} A_0 \xleftarrow{d_2} A_0$$

in \mathcal{PAsm}_{ex}. So there are two partial recursive functions ϕ_1 and ϕ_2 such that the following diagram commutes

$$A_0 \xrightarrow{d_1} A_1 \xrightarrow{d_2} A_0$$

$$\alpha_0 \quad \alpha_1 \quad \alpha_0$$

$$\phi_1 \quad \phi_2 \quad \phi_2$$

Take E to be the image of the function $\langle d_1, d_2, \alpha_1 \rangle : A_1 \rightarrow A_0 \times A_0 \times \mathbb{N}$, let $f : A_1 \rightarrow E$ be the factoring surjection, and let $\epsilon := \pi_3 \upharpoonright E : E \rightarrow \mathbb{N}$. Let
$e_1, e_2: \frac{E}{\mathbb{N}} \xrightarrow{\epsilon} A_0 \xrightarrow{\alpha_0} \frac{\mathbb{N}}{}$ be the first and second projection respectively. It is easy to see that it is an equivalence span.

Clearly f gives rise to a map of partitioned assemblies $\frac{A_1}{\mathbb{N}} \xrightarrow{\alpha_1} \frac{E}{\mathbb{N}}$ since there is a commutative diagram

\[
\begin{array}{ccc}
A_1 & \xrightarrow{f} & E \\
\downarrow{\alpha_1} & & \downarrow{\epsilon} \\
\mathbb{N} & \xrightarrow{\text{id}_\mathbb{N}} & \mathbb{N}.
\end{array}
\]

Moreover any section $s: E \rightarrow A_1$ of f (as a function of sets) is a map of partitioned assemblies $\frac{E}{\mathbb{N}} \xrightarrow{\epsilon} \frac{A_1}{\mathbb{N}}$ and a section of $\frac{A_1}{\mathbb{N}} \xrightarrow{f} \frac{E}{\mathbb{N}}$ in \mathcal{PAsm}.

Thus an appeal to the axiom of choice yields the conclusion.

3.2 Remark. Note that the axiom of choice was used in a crucial way in 3.1 to determine an equivalence span of the required form and the requested isomorphism, but the proof that

\[
\begin{array}{ccc}
\frac{E}{\mathbb{N}} & \xrightarrow{e_1} & \frac{A_0}{\mathbb{N}} \\
\downarrow{\epsilon} & & \downarrow{\alpha_0} \\
\frac{E}{\mathbb{N}} & \xrightarrow{e_2} & \frac{A_0}{\mathbb{N}}
\end{array}
\]

is an equivalence span does not require the use of the axiom of choice.

We conclude this brief review of the effective topos recalling a diagram of functors considered by Aurelio Carboni in [Car95] which shows how similar the situation is to that of topological spaces. Write \mathcal{PAsm}_0 for the full subcategory of \mathcal{PAsm} on those partitioned assemblies which are 1-1 (functions). This is clearly equivalent to the category \mathcal{PR} whose objects are subsets of \mathbb{N} and whose arrows are restriction of partial recursive functions between those, total on the domain.

\[
\begin{array}{ccc}
\mathcal{PAsm}_0 & \xleftarrow{} & \mathcal{PER} & \xrightarrow{} & (\mathcal{PAsm}_0)_{\text{ex}} \\
\downarrow{\bot} & & \downarrow{\bot} & & \downarrow{\bot} \\
\mathcal{PAsm} & \xleftarrow{} & \mathcal{PAsm}_{\text{reg}} & \xrightarrow{} & \mathcal{PAsm}_{\text{ex}}.
\end{array}
\]

In the diagram of full subcategories of \mathcal{Eff}, the exact completion $\mathcal{PAsm}_{\text{ex}}$ is itself the effective topos; $\mathcal{PAsm}_{\text{reg}}$ is the full subcategory of \mathcal{Eff} on the \bot-separated objects; $(\mathcal{PAsm}_0)_{\text{ex}}$ is the full subcategory of \mathcal{Eff} on the discrete objects—i.e. subquotients of the natural number object of \mathcal{Eff}, see [HRR90].
and \mathcal{PER}_reg is the intersection of the last two, the full subcategory of \mathcal{Eff} on the $\neg\neg$-separated subquotients of the natural number object of \mathcal{Eff}, also known as “partial equivalence relations on \mathbb{N}”, see [Hyl88]. As is shown in [Car95], this last is not the regular completion of $\mathcal{PR}_\equiv = \mathcal{PAsm}_0$. A similar remark applies to \mathcal{Equ} and $(\mathcal{Top}_0)_{\text{reg}}$ which are not equivalent—this corrects a hastily mistaken, happily irrelevant statement in [BR14].

4 Groupoids

Consider a category \mathcal{C} with pullbacks. A groupoid G in \mathcal{C} is a graph $G_1 \xrightarrow{d_1} G_0$ of objects and arrows in \mathcal{C} together with three more arrows

$$i: G_0 \rightarrow G_1 \quad c: G_1 \times_{G_0} G_1 \rightarrow G_1 \quad s: G_1 \rightarrow G_1$$

where

$$
\begin{array}{ccc}
G_1 \times_{G_0} G_1 & \xrightarrow{d'_2} & G_1 \\
\downarrow^{d'_1} & & \downarrow^{d_1} \\
G_1 & \xrightarrow{d_2} & G_0
\end{array}
$$

is a pullback in \mathcal{C}, such that

- the graph $G_1 \xrightarrow{d_1} G_0$ with i and c is a category object in \mathcal{C},
- s is an involution which makes every arrow an isomorphism.

The notions of functor of groupoids in \mathcal{C} is obvious as well as that of natural transformation. It is straightforward to check that a functor between groupoids preserves the involution which makes every arrow an isomorphism.

We have already available a large number of examples as follows from the next property.

4.1 Proposition. Let $G_1 \xrightarrow{d_1} G_0$ be a graph in \mathcal{C} with arrows $r: G_0 \rightarrow G_1$,
\(t: G_1 \times G_0 G_1 \to G_1\), and \(s: G_1 \to G_1\) such that the diagrams commute. If the pair \(G_1 \xrightarrow{\delta_1} \xleftarrow{\delta_2} G_0\) is jointly monic, then

(i) the structure given by

\[
G_2 \xrightarrow{t} G_1 \xleftarrow{d_1} G_0
\]

is a groupoid \(G\) in \(C\),

(ii) for any groupoid \(H\) in \(C\), a graph-homomorphism from the underlying graph \(H_1 \xrightarrow{e_1} H_0\) of \(H\) to \(G_1 \xrightarrow{\delta_1} G_0\) is also a functor from \(H\) to \(G\),

(iii) for any groupoid \(H\) in \(C\), let \((f_1, f_0)\) and \((g_1, g_0)\) be functors from the groupoid \(H\) to the groupoid \(G\). Then an arrow \(a: H_0 \to G_1\) such that

is a natural transformation from \((f_1, f_0)\) to \((g_1, g_0)\).

Proof. Straightforward. \(\Box\)

4.2 Corollary. Every subspatial equivalence span is a groupoid in \(\text{Top}_0\). Every representative of an arrow in \(\mathcal{A}\) is a functor between the groupoids.
Consider the interval-like groupoid
\[I := \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \]
with the discrete topology. A natural transformation as in 4.1(iii) is the same as a functor \(H \times I \rightarrow G \). Thanks to 2.1, we may rephrase Corollary 4.2 as follows.

4.3 Theorem. The category \(\mathcal{E} \) of equilogical spaces is the homotopical quotient of the category \(\mathcal{A} \) of topological groupoids.

5 2-groupoids

A similar case can be made for the effective topos. We prove in the following that it is the homotopical quotient of a category of higher groupoids in \(\mathcal{P} \).

Consider a category \(C \) with pullbacks. A **2-groupoid** \(G \) in \(C \) is a 2-graph

\[
\begin{array}{ccc}
G_2 & \xrightarrow{d_{21}} & G_1 \\
\downarrow^{d_{22}} & & \downarrow^{d_{11}} \\
G_1 & \xrightarrow{d_{12}} & G_0
\end{array}
\]

of objects and arrows in \(C \) together with arrows

\[
\begin{align*}
i_1 &: G_0 \to G_1 \\
i_2 &: G_1 \to G_2 \\
c_1 &: G_1 \times_{G_0} G_1 \to G_1 \\
c_2 &: G_2 \times_{G_1} G_2 \to G_2 \\
c_2' &: G_2 \times_{G_0} G_2 \to G_2 \\
s_1 &: G_1 \to G_1 \\
s_2 &: G_2 \to G_2
\end{align*}
\]

where

\[
\begin{array}{ccc}
G_1 \times_{G_0} G_1 & \to & G_1 \\
\downarrow^{d_{11}} & & \downarrow^{d_{21}} \\
G_1 & \to & G_0 \\
\downarrow^{d_{12}} & & \downarrow^{d_{11}d_{21}} \\
G_2 \times_{G_1} G_2 & \to & G_2 \\
\downarrow^{d_{22}} & & \downarrow^{d_{11}d_{22}} \\
G_2 & \to & G_0 \\
\downarrow^{d_{12}d_{22}} & & \downarrow^{d_{11}d_{22}}
\end{array}
\]

are pullbacks in \(C \), such that

- the 2-graph \(G_2 \xrightarrow{d_{21}} G_1 \xrightarrow{d_{11}} G_0 \) with \(i_1, c_1, i_2, c_2, c_2' \) is a 2-category object in \(C \),
- \(s_1 \) is an involution which makes every 1-arrow an equivalence via the pair of arrows given by \(q \).
• s_2 is an involution which makes every 2-arrow an iso.

The notions of 2-functor of 2-groupoids in C is obvious as well as that of 2-transformation.

Consider the 2-category $\text{Grpd}(\mathcal{PAsm})$ of 2-groupoids in \mathcal{PAsm} with 2-functors and 2-transformations. Clearly, the underlying graph of a 2-groupoid G of \mathcal{PAsm} is an equivalence span in \mathcal{PAsm}, thus an object of Eff. This extends directly to a functor $U: \text{Grpd}(\mathcal{PAsm}) \to \text{Eff}$.

5.1 Theorem. The functor $U: \text{Grpd}(\mathcal{PAsm}) \to \text{Eff}$ is essentially surjective.

Proof. Consider an object in Eff, by 5.1 we can assume without loss of generality that it is an equivalence span $\xymatrix{A_1 \ar[d]_{\alpha_1} \ar[r]^{a_1} & A_0 \ar[d]_{\alpha_0}}$ in \mathcal{PAsm} such that the triple (a_1, a_2, α_0) is monic. Take the free dagger category on that graph in \mathcal{PAsm}—by a dagger category we mean a category together with an involutive contravariant functor which is the identity on objects. It consists of $A_0 \xymatrix{\ar[d]_{\alpha_0}}$ as objects of objects. The object of 1-arrows is $\xymatrix{A^\wedge \ar[d]_{\alpha_0}}$ where A^\wedge consists of the zigzag paths in the graph $\xymatrix{A_1 \ar[r]^{a_1} & A_0}$. By a zigzag path in the graph we mean a list which is either of the form (x) where $x \in A_0$ or

$\langle x_0, e_1, i_1, x_1, e_2, i_2, x_2, \ldots, x_n, e_{n+1}, i_{n+1}, x_{n+1} \rangle$,

where

• $x_\ell \in A_0$ for $0 \leq \ell \leq n+1$,

• $e_\ell \in A_1$ for $1 \leq \ell \leq n+1$,

• $i_\ell \in \{0,1\}$ for $1 \leq \ell \leq n+1$,

• for $0 \leq \ell \leq n$, if $i_\ell = 0$, then $\langle x_\ell, x_{\ell+1}, e_{\ell+1} \rangle \in A_1$,

• for $0 \leq \ell \leq n$, if $i_\ell = 1$, then $\langle x_{\ell+1}, x_\ell, e_{\ell+1} \rangle \in A_1$.

Intuitively, if one considers a triple $\langle x, x', e \rangle \in A_1$ as an edge e from the source x to the target x' in the graph $\xymatrix{A_1 \ar[r]^{a_1} & A_0}$, then the zigzag

$\langle x_0, e_1, i_1, x_1, e_2, i_2, x_2, \ldots, x_n, e_{n+1}, i_{n+1}, x_{n+1} \rangle$

is a mixed-directional path of edges from the vertex x_0 to the vertex x_{n+1} where each edge e_ℓ between x_ℓ and $x_{\ell+1}$ is marked with either 0 or 1: if the mark is 0, e_ℓ goes from x_ℓ to $x_{\ell+1}$ in the original graph; if the mark is 1, e_ℓ goes from
\(x_{l+1}\) to \(x_{l}\). The function \(\alpha^\wedge\) is defined by mapping a zigzag to the encoding of the list of its numerical components:

\[
\alpha^\wedge((x)) := \langle \langle 0, \alpha_0(x) \rangle \rangle
\]

\[
\alpha^\wedge((x_0, e_1, i_1, \ldots, x_n, e_{n+1}, i_{n+1}, x_{n+1})) := \langle \langle n+1, \langle \langle \alpha^\wedge((x_0, e_1, i_1, \ldots, x_n), \langle \langle e_{n+1}, i_{n+1} \rangle, a_0(x_{n+1}) \rangle \rangle \rangle \rangle \rangle.
\]

The structure of dagger category in \(\mathcal{PAsm}\) is obvious, changing each \(i_\ell\) with \(\sigma(i_\ell)\) where \(\sigma: \{0,1\} \rightarrow \{0,1\}\) swaps 0 with 1. The object of 2-arrows \(A^\wedge\) is formed by taking the total relation on each 1-homset, where \(A^\wedge := A^\wedge \times A_0 A^\wedge\). Explicitly, \(A^\wedge\) consists of all pairs of zigzags

\[
((x_0, e_1, \ldots, x_n), (x_0, e_1', \ldots, x_n))
\]

between each two given vertices \(x\) and \(x'\); clearly all 2-diagrams commute as there is at most one 2-arrow from an 1-arrow to another. In this way, the dagger functor becomes the involution which makes every 1-arrow an equivalence. It is easy to see that that gives a 2-groupoid on the given span in \(\mathcal{PAsm}\) and that the functor \(U\) takes it to a span which is isomorphic to

\[
\begin{array}{ccc}
A_1 & \xrightarrow{e_1} & A_0 \\
\downarrow & & \downarrow \\
\mathbb{N} & \xrightarrow{\alpha_0} & \mathbb{N}
\end{array}
\]

We shall refer to a 2-groupoid like that produced in the proof of 5.1 as a **numeric** 2-groupoid as all edges are denoted by numbers. More precisely, it is a 2-groupoid \(G\) in \(\mathcal{PAsm}\) such that its underlying category in \(\mathcal{PAsm}\)

\[
\begin{array}{ccc}
G_1 & \xrightarrow{d_{11}} & G_0 \\
\downarrow & & \downarrow \\
G_0 & \xrightarrow{d_{12}} & G_0
\end{array}
\]

is a free dagger category and \(G\) embeds, fully at level 2, into the 2-groupoid

\[
G_0 \times G_0 \times \mathbb{N} \times \mathbb{N} \xrightarrow{\pi_{123}} G_0 \times G_0 \times \mathbb{N} \xrightarrow{\pi_{1}} \mathbb{N} \xrightarrow{\sigma_2} G_0 \times G_0 \times \mathbb{N} \xrightarrow{\pi_{124}} G_0
\]

where \(\pi_{123}\) and \(\pi_{124}\) are the projections deleting the fourth and third component, respectively.

5.2 Theorem. The functor \(U: \text{Grpd}(\mathcal{PAsm}) \rightarrow \mathcal{E}\text{ff}\) restricts to a homotopical quotient of the full subcategory \(\mathcal{K}\) on the numeric 2-groupoids.

Proof. Suppose that \(G\) and \(H\) are numeric groupoids. Since \(G\) is a free dagger category and all 2-diagrams commute in \(H\), it is easy to see that every arrow \([f]: U(G) \rightarrow U(H)\) in \(\mathcal{E}\text{ff}\) has a representative which is a 2-functor \(F: G \rightarrow H\). To see that the functor \(U: \text{Grpd}(\mathcal{PAsm}) \rightarrow \mathcal{E}\text{ff}\) restricted to \(\mathcal{K}\) is indeed a homotopical quotient, consider the interval-like groupoid \(I\): it is the free dagger category on the graph in \(\mathcal{PAsm}\) on \(T + T\) with two (disjoint) nodes and a single
edge u connecting one with the other, with all possible 2-arrows. It is clearly a numeric 2-groupoid. Consider now two functors $F, F': G \to H$ such that $U(F) = U(F')$; in other words, there is a map $k: G_0 \to H_1$ in $\mathcal{PA}sm$ such that

$$F_0 = d^H_{11} \circ k \quad \text{and} \quad F'_0 = d^H_{12} \circ k.$$

Note that the 1-category underlying the 2-groupoid $G \times I$ is a retract of a free dagger category. Using k to act on the generating arrow of I as follows

$$
\begin{array}{ccc}
(x, 0) & \longrightarrow & F_0(x) \\
\downarrow & & \downarrow \\
\langle(x), u \rangle & \longrightarrow & k(x) \\
\downarrow & & \downarrow \\
(x, 1) & \longrightarrow & F'_0(x)
\end{array}
$$

by freeness it is easy to obtain a functor $K: G \times I \to H$ which gives a homotopy from F to F'.

\[\square\]

References

[BBS04] A. Bauer, L. Birkedal, and D.S. Scott. Equilogical spaces. \textit{Theoret. Comput. Sci.}, 315(1):35–59, 2004.

[BCRS98] L. Birkedal, A. Carboni, G. Rosolini, and D.S. Scott. Type theory via exact categories. In V. Pratt, editor, \textit{Proc. 13th Symposium in Logic in Computer Science}, pages 188–198, Indianapolis, 1998. I.E.E.E. Computer Society.

[BR14] A. Bucalo and G. Rosolini. Sobriety for equilogical spaces. \textit{Theoret. Comput. Sci.}, 546:93–98, 2014.

[Bro68] R. Brown. \textit{Elements of modern topology}. McGraw Hill, 1968.

[Car95] A. Carboni. Some free constructions in realizability and proof theory. \textit{J. Pure Appl. Algebra}, 103:117–148, 1995.

[CC82] A. Carboni and R. Celia Magno. The free exact category on a left exact one. \textit{J. Aust. Math. Soc.}, 33(A):295–301, 1982.

[CFS88] A. Carboni, P.J. Freyd, and A. Scedrov. A categorical approach to realizability and polymorphic types. In M. Main, A. Melton, M. Mislove, and D. Schmidt, editors, \textit{Mathematical Foundations of Programming Language Semantics}, volume 298 of \textit{Lectures Notes in Comput. Sci.}, pages 23–42, New Orleans, 1988. Springer-Verlag.

[CV98] A. Carboni and E.M. Vitale. Regular and exact completions. \textit{J. Pure Appl. Algebra}, 125:79–117, 1998.
[FS91] P.J. Freyd and A. Scedrov. *Categories Allegories*. North Holland Publishing Company, 1991.

[HJP80] J.M.E. Hyland, P.T. Johnstone, and A.M. Pitts. Tripos Theory. *Math. Proc. Camb. Phil. Soc.*, 88:205–232, 1980.

[HRR90] J.M.E. Hyland, E.P. Robinson, and G. Rosolini. The discrete objects in the effective topos. *Proc. Lond. Math. Soc.*, 60:1–36, 1990.

[Hs98] M. Hofmann and Th. Streicher. The groupoid interpretation of type theory. In *Twenty-five years of constructive type theory (Venice, 1995)*, volume 36 of *Oxford Logic Guides*, pages 83–111. Oxford Univ. Press, New York, 1998.

[Hyl82] J.M.E. Hyland. The effective topos. In A.S. Troelstra and D. van Dalen, editors, *The L.E.J. Brouwer Centenary Symposium*, pages 165–216. North Holland Publishing Company, 1982.

[Hyl88] J.M.E. Hyland. A small complete category. *Ann. Pure Appl. Logic*, 40:135–165, 1988.

[Ros00] G. Rosolini. Equilogical spaces and filter spaces. *Rend. Circ. Mat. Palermo*, 64(suppl.):157–175, 2000.

[RR90] E.P. Robinson and G. Rosolini. Colimit completions and the effective topos. *J. Symb. Logic*, 55:678–699, 1990.

[Sco76] D.S. Scott. Data types as lattices. *SIAM J. Comput.*, 5(3):522–587, 1976.

[Sco96] D.S. Scott. A new category? Domains, spaces and equivalence relations. Manuscript, 1996.

[Uni13] The Univalent Foundations Program. *Homotopy Type Theory: Univalent Foundations of Mathematics*. Institute for Advanced Study, 2013.