On Algebra of Program Correctness and Incorrectness

Bernhard Möller, Peter O’Hearn and Tony Hoare

RAMiCS Nov 2021
Context

imperative programs may be reasoned about in two ways:

- show *absence* of bugs
 - safety aspect: nothing bad can ever happen
 - logics of Floyd/Hoare/Dijkstra (1967–1975), briefly (HL)
- show *presence* of bugs to correct them
 - liveness aspect: something expected (but not necessarily good)
 can always happen
 - Incorrectness Logic (IL) of O’Hearn (POPL 2020)
Assertion Triples

- classical: HL triples

\[
\{\text{pre}\} \text{ code } \{\text{post}\}
\]

code guarantees to lead from *pre*-states to *post*-states

- IL triples

\[
[\text{pre}] \text{ code } [\text{post}]
\]

all *post*-states can be reached under *code* from some *pre*-state

- when *post* specifies erroneous situations: all *pre*-states might trigger an error
Relational Formalisation

for a simple semantics consider programs as relations between states

- $\text{img}(P, C)$ means the image of state set P under relation C
- with this, the triples can be expressed as

\[
\{P\} \ C \ \{Q\} \iff_{df} \ \text{img}(P, C) \subseteq Q \quad \text{(over-approximation)}
\]

\[
[P] \ C \ [Q] \iff_{df} Q \subseteq \text{img}(P, C) \quad \text{(under-approximation)}
\]

- IL-like triples were already introduced by de Vries/Koutavas 2011, but for a quite different purpose
Programming Constructs

- essential \textit{atomic commands}:
 - skip
 - abort
 - assume(\(p\))
 - expression assignment \(x := e\)
 - nondeterministic assignment \(x := \text{nondet()}\)
 (also used to “forget” previous value of \(x\))

- general \textit{commands} constructed from atomic ones using
 - choice \(\cup\)
 - sequential composition \(;\)
 - Kleene star \(\ast\) (reflexive transitive closure)
further constructs defined in terms of these

- if P then C else $V' = df (\text{assume}(P); V) \cup (\text{assume}(\neg P); C')$
- while P do $C = df (\text{assume}(P); C^*) ; \text{assume}(\neg P)$
A Toy Example (More Interesting Ones in the Paper)

here is a triple that is true in IL but not in HL:

\[[x = 0] \ (x := x + 1)^* \ [x > 0] \]

since we can iterate the loop body an arbitrary number of times, every value \(x > 0 \) is reachable from any pre-state

contrarily, the triple

\{ x = 0 \} \ (x := x + 1)^* \ \{ x > 0 \}

fails, since the loop body might be iterated zero times \(\square \)
Algebraic Abstraction: Modal Semirings

Operation	Semiring Order	
\rightarrow	$	$
\rightarrow	\leq	
$\text{img}(P, C)$	$\langle a\mid p \rangle$ (backward diamond)	
abort	0	
skip	1	
\cup	$+$	
$;$	\cdot	

Notes:
- R: relations
- a: elements of a modal semiring
- P: predicates
- p: tests
- \cup: union
- \subseteq: subset
Algebraic Abstraction: Modal Semirings

- $\langle a | p \rangle$ equals the strongest postcondition $sp(a, p)$
- which is symmetric to the weakest liberal precondition $wlp(a, p)$,
 represented by the forward box $|a] p$
- Galois connection

$$\langle a | p \rangle \leq q \iff p \leq |a] q$$

- hence $\langle a |$ preserves all existing suprema, $|a]$ all existing infima
- still this is not immediately useful, since the rhs of the IL triple
 $q \leq \langle a | p \rangle$ is the reverse of the one in the Galois connection
- nevertheless there is a lot of (albeit sometimes treacherous)
 symmetry between classical and IL triples
Inference Rules

- some rules for the non-looping constructs
 (side by side with corresponding HL rules)

\[
\begin{align*}
[p] b [q] & \quad b \leq a \\
\hline
 [p] a [q] &
\end{align*}
\]

\[
\begin{align*}
\{p\} b \{q\} & \quad b \geq a \\
\hline
 \{p\} a \{q\} &
\end{align*}
\]

\[
\begin{align*}
[p] a [q] & \\
\hline
[p] a + b [q] &
\end{align*}
\]

\[
\begin{align*}
\{p\} a + b \{q\} & \\
\hline
\{p\} a \{q\} &
\end{align*}
\]
Inference Rules

- rules of sequence and consequence

\[
\frac{[p] \ a \ [r] \ [r] \ b \ [q]}{[p] \ a \cdot b \ [q]}
\]

\[
\frac{\{p\} \ a \ \{r\} \ \{r\} \ b \ \{q\}}{\{p\} \ a \cdot b \ \{q\}}
\]

\[
p' \geq p \quad [p] \ a \ [q] \quad q \geq q'
\]

\[
[p'] \ a \ [q']
\]

\[
p' \leq p \quad \{p\} \ a \ \{q\} \quad q \leq q'
\]

\[
\{p'\} \ a \ \{q'\}
\]
Rules for Loops

For finite iteration things work out well:

\[
[p] \ a^n \ [q] \ \Rightarrow \ [p] \ a^{\leq n} \ [q] \ \Rightarrow \ [p] \ a^* \ [q]
\]

\[
\forall i \leq n : ([p] \ a^i \ [q_i])
\]

\[
[p] \ a^* \ [\bigvee_{i \leq n} q_i]
\]

also the expected fold rules hold:

\[
[p] \ a \ [q]
\]

\[
[p] \ a^* \ [q]
\]

\[
[p] \ a \cdot a^* \ [q]
\]

\[
[p] \ a^* \ [q]
\]

these rules follow directly from isotony
Rules for Loops

- apart from that, however, things get quite different from HL
- we have \(\langle a^* \mid p \rangle = \mu f \) where \(f(q) = p + \langle a \mid q \rangle \)
- hence least fixed point induction applies (diamond star induction)
- this yields the HL inference rule

\[
\begin{array}{c}
p \leq q \\
\{q\} \ a \ \{q\}
\end{array}
\]

\[
\{p\} \ a^* \ \{q\}
\]

where \(q \) is an invariant of \(a \)
- but \([p] \ a \ [q] \) is equivalent to \(q \leq \mu f \) and no general proof principle for such inequations is available
- in particular, invariants are not useful any more
Rules for Loops

- one possible loop rule is (similar to de Vries/Koutavas 2011)

\[\forall n \in \mathbb{N} : [p_n] a [p_{n+1}] \]

\[[p_0] a^* [\bigvee_{n \in \mathbb{N}} p_n] \] (backwards variant)

- the \(p_i \) are in a sense counterparts of variants as used in termination proofs for while programs
- the rule says that the iteration covers at least part of the full transitive \(a \)-image of \(p_0 \)
- however, the infinite disjunction \(\bigvee_{n \in \mathbb{N}} p_n \) is problematic, since its existence is not guaranteed in general semirings
call a modal semiring \textit{countably test complete (CTC)} if every countable set \(\{ p_n \mid n \in \mathbb{N} \} \) has a supremum, denoted by \(\bigvee_{n \in \mathbb{N}} p_n \).

by elementary order theory this is equivalent to saying that every countable ascending chain \(p_0 \leq p_2 \leq \cdots \) has a supremum

henceforth we assume a CTC underlying semiring

in practical applications \(\bigvee_{n \in \mathbb{N}} p_n \) is written as \(\exists n : p_n \)

also we may replace \(\geq \) between tests by \(\leftrightsquigarrow \)
Rules for Loops

- recall the loop rule

\[
\forall n \in \mathbb{N} : \; [p_n] \; a \; [p_{n+1}]
\]

\[
[p_0] \; a^* \; \left[\bigvee_{n \in \mathbb{N}} p_n \right]
\]

(backwards variant)

- by choosing some predicate \(r \) above \(p_0 \) and using the rule of consequence we obtain a more general version:

\[
r \geq p_0 \; \quad \forall n \in \mathbb{N} : \; [p_n] \; a \; [p_{n+1}] \; \quad \left(\bigvee_{n \in \mathbb{N}} p_n \right) \; \geq \; q
\]

\[
[r] \; a^* \; [q]
\]

- expresses that one may need to iterate indefinitely to cover \(q \)
Toy Example Cont’d

- we first prove \([x = 0] (x := x + 1)^* [x \geq 0]\)
- for this, find \(P_n\) with
 \[
 (x = 0) \iff P_0 \quad [P_n] x := x + 1 [P_{n+1}] \quad (\exists n : P_n) \iff (x \geq 0)
 \]
- these conditions can be satisfied by choosing
 \[
 P_n =_{df} (x = n \land n \geq 0)
 \]
- now by the rule of consequence we can shrink the post-condition to \(x > 0\)
More on Algebra

the semiring of relations has an extremely rich structure:

- its carrier is the power set \(\mathcal{P}(M \times M) \) for set \(M \) of states
- hence a complete lattice and even a Boolean quantale
- in particular it is CTC
- the completeness is also deployed in the standard closed star representation:

\[
C^* = \bigcup_{n \in \mathbb{N}} C^i
\]

- can we make do with weaker algebraic concepts for expressing IL?
More on Algebra

- in connection with the Kleene star quantales have already been weakened to \(\ast \)-continuous semirings [Kozen 1980]
- these need suprema only for sets \(\{a^n \mid n \in \mathbb{N}\} \)
- composition \(\cdot \) needs to distribute only through such suprema
- but maybe we can get away with still weaker assumptions?
More on Algebra

- yes, we can!
- as a kind of surprise, CTC is already enough!

Theorem the presented IL calculus is relatively complete (i.e., allows proving all valid IL triples)

- as a quantale, relation algebra is CTC
- hence this result subsumes the concrete completeness proof in Peter O’Hearn’s original POPL 2020 paper
- approach analogous to an earlier one for HL (Möller/Struth 2005)
let’s be a bit more precise in a sketch of the proof

- by isotony and diamond star induction, every CTC modal Kleene is “*-continuous under the diamond”, i.e., all elements a and tests p satisfy $\langle a^* \mid p \rangle = \bigvee_{n \in \mathbb{N}} \langle a^n \mid p \rangle$

- a command is a Kleene algebra element generated from 0, 1 and a set of atomic commands and arbitrary tests using $+, \cdot$ and $*$
we assume for every atomic command a the axiom

\[
[p] a [\langle a \mid p \rangle]
\]

(in the concrete relational version of IL this holds)

induction on the generation structure of command a in a modal CTC Kleene algebra shows that all triples $[p] a [\langle a \mid p \rangle]$ are provable

completeness now follows since for any valid IL triple $[p] a [q]$, i.e., $q \leq \langle a \mid p \rangle$, we infer from $[p] a [\langle a \mid p \rangle]$ using the rule of consequence that $[p] a [q]$ is provable
Conclusion

- Kleene algebra abstracts basic principles of imperative programs
- naturally forms a foundation for the (partial) correctness logic HL
- we have shown that it also allows a foundation for the incorrectness logic IL
- the corresponding triples can be directly translated into inequational formulas of Modal Kleene algebra,
- dual to the ones for HL
- hence Modal Kleene algebra can be said to unify correctness and incorrectness logic
- the same applies to a quite recent equivalent, independently developed, approach using KATs with top elements by Zhang et al. (to appear at POPL 2022)
Conclusion

What else is in the paper?

- application of the logic for disproving conjectured HL triples
- refined semantics with error handling
- a variant of incorrectness logic
- pinpointing the properties really relevant to relative completeness of the logic
Conclusion

some open questions

- how to extend correctness and incorrectness logics from mere safety to liveness or hyperproperties
- how to extend our results to further programming features
- examples: Concurrent Kleene Algebra and Concurrent Separation Logic
Some References

- D. Kozen: A representation theorem for models of $*$-free PDL. In J. de Bakker, J. van Leeuwen (eds): Automata, Languages and Programming. LNCS 85. Springer 1980, 351–362
- E. de Vries, V. Koutavas: Reverse Hoare logic. 9th SEFM. LNCS 7041. pp 155–171, 2011
- B. Möller, G. Struth: Algebras of modal operators and partial correctness. Theoretical Computer Science 351, 221–239 (2006)
- P. O'Hearn: Incorrectness logic. POPL 2020, 10:1–10:32
- Cheng Zhang, Arthur Azevedo de Amorim, Marco Gaboardi: On incorrectness logic and Kleene algebra with top and tests. Accepted for POPL 2022