Supporting Information

for

Synthesis of bis-spirocyclic derivatives of 3-azabicyclo[3.1.0]hexane via cyclopropene cycloadditions to the stable azomethine ylide derived from Ruhemann's purple

Alexander S. Filatov, Olesya V. Khoroshilova, Anna G. Larina, Vitali M. Boitsov and Alexander V. Stepakov

Beilstein J. Org. Chem. 2022, 18, 769–780. doi:10.3762/bjoc.18.77

Experimental details for the synthesis and characterization of all compounds, copies of 1H NMR and 13C NMR spectra, X-ray data and details of calculations
Table of contents

1. General information ... S1
2. Experimental details and characterization data ... S3
3. Copies of 1H and 13C NMR spectra .. S9
4. X-ray data for compounds 3b and 3e .. S22
5. Calculation details ... S25
6. References ... S46
1. General information

a) Synthesis
Unless otherwise stated, all reagents were purchased from commercial suppliers and used as received. Solvents were dried by standard procedures and freshly distilled prior to use: tetrahydrofuran and 1,4-dioxane were distilled from sodium and benzophenone ketyl, dimethylformamide and dichloromethane from calcium hydride, acetonitrile from phosphorus pentoxide. Hexane and ethyl acetate used for TLC were distilled without pre-treatment with desiccants. Technical grade methanol was dried by heating over iodine-activated magnesium with a magnesium loading of 2.0 g/L. Commercially available ethanol 96% was used without purification. All reactions were carried out under normal atmosphere. The reaction vessels were heated using a silicone oil bath on a magnetic stirrer with a heating plate and a temperature controller. The progress of reactions was monitored by thin-layer chromatography (TLC) on aluminum sheets with 0.2 mm silica gel with fluorescent indicator using UV-light and iodine for visualization. All synthesized compounds were dried under high vacuum (<1 mbar) before determination of chemical yields and spectroscopic characterization.

b) Characterization and analysis
Melting points were measured on a melting point apparatus and are uncorrected. 1H (400 MHz) and 13C (101 MHz) spectra were recorded on an NMR spectrometer in CDCl$_3$ or DMSO-d_6 at ambient temperature. 13C NMR spectra were registered with broad-band proton decoupling. Chemical shifts (δ) in ppm are reported relative to residual undeuterated solvent in CDCl$_3$ (7.26 ppm for 1H and 77.2 ppm for 13C) and DMSO-d_6 (2.50 ppm for 1H and 39.5 ppm for 13C). The signal patterns are indicated as follows: s = singlet, d = doublet, dd = doublet of doublets, t = triplet, dt = doublet of triplets, m = multiplet, br s = broad singlet. Integrals are given in accordance with assignments, coupling constants are reported in Hz. NMR spectra were processed, analyzed, and prepared with MestReNova x64 NMR software. IR spectra were recorded in KBr pellets and reported in wave numbers (cm$^{-1}$). Electrospray ionization (ESI) mass spectra were measured on a mass spectrometer, HRMS-ESI-QTOF, electrospray ionization, in positive mode.

c) Preparation of starting materials
Stable azomethine ylide protonated Ruhemann's purple (1) was readily synthesized by using a two-step procedure. Ruhemann’s purple (as a sodium salt) was obtained by the reaction of ninhydrin and glycine in citrate buffer (0.2 M, pH \approx 5.0) [1]. In the second step, Ruhemann's purple was treated with concentrated hydrochloric acid in aqueous media, resulting in the target azomethine ylide 1 [2]. The following cyclopropenes were prepared according to the literature data: 1,2,3-
triphenylcyclopropene (2a) [3]; 1,2-diphenylcyclopropene (2b) [4]; 3-ethyl-1,2-
diphenylcyclopropene (2c) [5]; 1,2-diphenyl-3-vinylcyclopropene (2d) [5]; 1,2-diphenyl-3-
(phenylethynyl)cyclopropene (2e) [6]; N,N-dimethyl-2,3-diphenylcycloprop-2-ene-1-
carboxamide (2f) [7]; 2,3-diphenylcycloprop-2-ene-1-carbonitrile (2g) [7]; methyl 2,3-
diphenylcycloprop-2-ene-1-carboxylate (2h) [8]; 2,3-diphenylcycloprop-2-ene-1-carboxylic acid (2i)
[8]; 3-methyl-3-phenylcyclopropene (2j) [9]; methyl 1-methylcycloprop-2-ene-carboxylate (2k)
[10]; 3-methyl-1,2,3-triphenylcyclopropene (2l) [3]; 1-chloro-2-phenylcyclopropene (2m) [11]; 1-
methyl-2-phenylcyclopropene (2n) [12]; 1-phenyl-2-(trimethylsilyl)cyclopropene (2o) [13]; and
parent cyclopropene (2p) [14].
2. Experimental details and characterization data

General procedure A for the preparation of cycloadducts 3a–g, and 4: Protonated Ruhemann's purple (1, 121 mg, 0.400 mmol) and cyclopropene 2a–g, 2j (0.400 mmol) were dissolved in THF (15 mL). The reaction mixture was heated at reflux for 2–6 h and then cooled to room temperature. The mixture was filtered through a plug of celite to remove trace amounts of an insoluble dark brown solid. The plug of celite was carefully rinsed with THF (20 mL). The filtrate was evaporated to dryness under vacuum. The crude residue was purified by recrystallization from a suitable solvent to obtain cycloadducts 3a–g, 4.

meso-(1'R,5'S,6'r)-1',5',6'-Triphenyl-3'-azadispiro[indene-2,2'-bicyclo[3.1.0]hexane-4',2''-indene]-1,1'',3,3''-tetraone (3a)

Cycloadduct 3a was obtained as a single diastereomer according to General procedure A from protonated Ruhemann's Purple (1, 121 mg, 0.400 mmol) and cyclopropene 2a (107 mg, 0.400 mmol). The reaction mixture was refluxed for 2 h to achieve a satisfactory degree of cyclopropene conversion. The crude product was purified by recrystallization from ethanol, giving rise to pure 3a in 75% yield (171 mg); yellow solid; mp > 300 °C (EtOH); Rf 0.42 (SiO2, hexane–EtOAc, 1:1).

IR (KBr, cm⁻¹): 3358, 3093, 3053, 3034, 1745, 1715, 1592, 1495, 1444, 1353, 1324, 1257, 1205, 1158, 1096, 1081, 1040, 1018, 998, 972, 791, 755, 697.

^1^H NMR (400 MHz, DMSO-d6): δ = 7.89–7.84 (m, 2 H), 7.81–7.75 (m, 2 H), 7.74–7.68 (m, 2 H), 7.48–7.42 (m, 2 H), 7.02–6.68 (m, 13 H), 6.17–6.10 (m, 2 H), 4.39 (s, 1 H), 4.05 (s, 1 H).

^1^3^C NMR (101 MHz, DMSO-d6): δ = 199.14 (2 C), 199.09 (2 C), 141.0 (2 C), 139.8 (2 C), 136.4 (2 C), 135.7 (2 C), 135.1, 133.1 (4 C), 130.6 (2 C), 129.6 (2 C), 127.33 (2 C), 127.26 (4 C), 126.5 (2 C), 125.5, 122.4 (4 C), 79.1 (2 C), 53.0 (2 C), 28.0.

HRMS (ESI): calcd. for C_{39}H_{25}NNaO_{4}⁺ [M + Na]⁺: 594.1676; found: 594.1670.

meso-(1'R,5'S)-1',5'-Diphenyl-3'-azadispiro[indene-2,2'-bicyclo[3.1.0]hexane-4',2''-indene]-1,1'',3,3''-tetraone (3b)

Cycloadduct 3b was obtained according to General procedure A from protonated Ruhemann's Purple (1, 121 mg, 0.400 mmol) and cyclopropene 2b (77 mg, 0.400 mmol). The reaction mixture was refluxed for 2 h to achieve a satisfactory degree of cyclopropene conversion. The crude product was purified by recrystallization from methanol, giving rise to pure 3b in 78% yield (155 mg); beige solid; mp 252–253 °C (MeOH); Rf 0.41 (SiO2, hexane–EtOAc, 1:1).

IR (KBr, cm⁻¹): 3318, 3067, 3022, 2960, 2879, 1747, 1717, 1596, 1494, 1447, 1344, 1262, 1193, 1113, 1080, 1056, 1025, 1004, 943, 800, 773, 749, 732, 705.
1H NMR (400 MHz, DMSO-d_6): $\delta = 7.90–7.86$ (m, 2 H), 7.82–7.72 (m, 4 H), 7.59–7.56 (m, 2 H), 7.10–7.05 (m, 4 H), 6.97–6.87 (m, 6 H), 3.71 (s, 1 H), 2.86 (d, $J = 5.5$ Hz, 1 H), 1.29 (d, $J = 5.5$ Hz, 1 H).

13C NMR (101 MHz, DMSO-d_6): $\delta = 199.6$ (2 C), 198.7 (2 C), 141.0 (2 C), 139.4 (2 C), 136.5 (2 C), 135.8 (2 C), 133.7 (2 C), 131.8 (4 C), 127.6 (4 C), 127.6 (2 C), 122.49 (2 C), 122.48 (2 C), 78.7 (2 C), 48.7 (2 C), 15.2.

HRMS (ESI): calcd. for $C_{33}H_{22}NO_4^+$ $[M + H]^+$: 496.1543; found: 496.1553.

meso-(1'R,5'S,6'r)-6'-Ethyl-1',5'-diphenyl-3'-azadispiro[indene-2,2'-bicyclo[3.1.0]hexane-4',2''-indene]-1,1''',3,3'''-tetraone (3c)

Cycloadduct 3c was obtained as a single diastereomer according to General procedure A from protonated Ruhemann's Purple (1, 121 mg, 0.400 mmol) and cyclopropane 2e (88 mg, 0.400 mmol). The reaction mixture was refluxed for 2 h to achieve a satisfactory degree of cyclopropane conversion. The crude product was purified by recrystallization from ethanol, giving rise to pure 3c in 72% yield (151 mg); yellow solid; mp 259–261 °C (EtOH); R_f 0.45 (SiO$_2$, hexane–EtOAc, 1:1).

IR (KBr, cm$^{-1}$): 3296, 3054, 2965, 2921, 2869, 1748, 1715, 1599, 1493, 1443, 1346, 1324, 1278, 1257, 1192, 1152, 1082, 1021, 1003, 952, 776, 762, 701.

1H NMR (400 MHz, DMSO-d_6): $\delta = 8.00–7.94$ (m, 2 H), 7.90–7.83 (m, 2 H), 7.82–7.75 (m, 2 H), 7.54–7.47 (m, 2 H), 7.10–6.90 (m, 10 H), 3.90 (s, 1 H), 2.93 (t, $J = 6.5$ Hz, 1 H), 1.08–0.98 (m, 2 H), 0.90 (t, $J = 7.0$ Hz, 3 H).

13C NMR (101 MHz, DMSO-d_6): $\delta = 199.1$ (2 C), 198.9 (2 C), 141.2 (2 C), 140.0 (2 C), 136.6 (2 C), 135.7 (2 C), 132.3 (2 C), 131.5 (4 C), 127.5 (4 C), 127.0 (2 C), 122.7 (2 C), 122.6 (2 C), 78.2 (2 C), 49.7 (2 C), 25.2, 19.1, 13.6.

HRMS (ESI): calcd. for $C_{35}H_{26}NO_4^+$ $[M + H]^+$: 524.1856; found: 524.1857.

meso-(1'R,5'S,6'r)-1',5'-Diphenyl-6'-vinyl-3'-azadispiro[indene-2,2'-bicyclo[3.1.0]hexane-4',2''-indene]-1,1''',3,3'''-tetraone (3d)

Cycloadduct 3d was obtained as a single diastereomer according to General procedure A from protonated Ruhemann's Purple (1, 121 mg, 0.400 mmol) and cyclopropane 2d (87 mg, 0.400 mmol). The reaction mixture was refluxed for 2 h to achieve a satisfactory degree of cyclopropane conversion. The crude product was purified by recrystallization from ethanol, giving rise to pure 3d in 69% yield (144 mg); yellow solid; mp > 300 °C (EtOH); R_f 0.44 (SiO$_2$, hexane–EtOAc, 1:1).

IR (KBr, cm$^{-1}$): 3355, 3105, 3052, 2979, 1746, 1717, 1594, 1493, 1445, 1351, 1325, 1259, 1206, 1156, 1095, 1043, 993, 908, 754, 704.
1H NMR (400 MHz, DMSO-d_6): $\delta = 7.92$–7.88 (m, 2 H), 7.83–7.77 (m, 2 H), 7.75–7.70 (m, 2 H), 7.48–7.43 (m, 2 H), 7.18–6.88 (m, 10 H), 5.38 (dd, $J = 17.1$, 1.1 Hz, 1 H), 5.00 (dd, $J = 10.3$, 1.1 Hz, 1 H), 4.47 (dt, $J = 17.1$, 10.3 Hz, 1 H), 3.88 (s, 1 H), 3.83 (d, $J = 10.3$ Hz, 1 H).

13C NMR (101 MHz, DMSO-d_6): $\delta = 199.1$ (2 C), 198.7 (2 C), 141.0 (2 C), 139.7 (2 C), 136.4 (2 C), 135.7 (2 C), 135.6, 132.7 (4 C), 131.0 (2 C), 127.6 (4 C), 127.4 (2 C), 122.45 (2 C), 122.41 (2 C), 115.8, 78.9 (2 C), 51.4 (2 C), 27.1.

HRMS (ESI): calcd. for $C_{35}H_{23}NNaO_4$ [$M + Na]^+$: 544.1519; found: 544.1537.

Cycloaduct 3e was obtained as a single diastereomer according to General procedure A from protonated Ruhemann's Purple (1, 121 mg, 0.400 mmol) and cyclopropene 2e (117 mg, 0.400 mmol). The reaction mixture was refluxed for 2 h to achieve a satisfactory degree of cyclopropene conversion. The crude product was purified by recrystallization from ethanol, giving rise to pure 3e in 91% yield (217 mg); yellow solid; mp > 300 °C (EtOH); R_f 0.42 (SiO$_2$, hexane–EtOAc, 1:1).

IR (KBr, cm$^{-1}$): 3286, 3059, 3026, 2873, 1750, 1722, 1594, 1493, 1444, 1348, 1259, 1192, 1155, 1080, 1021, 798, 760, 703.

1H NMR (400 MHz, DMSO-d_6): $\delta = 7.98$–7.90 (m, 2 H), 7.87–7.80 (m, 2 H), 7.79–7.72 (m, 2 H), 7.54–7.48 (m, 2 H), 7.27–7.13 (m, 7 H), 7.06–6.91 (m, 8 H), 4.13 (s, 1 H), 4.09 (s, 1 H).

13C NMR (101 MHz, DMSO-d_6): $\delta = 198.9$ (2 C), 198.8 (2 C), 140.8 (2 C), 139.6 (2 C), 136.5 (2 C), 135.8 (2 C), 132.6 (4 C), 130.7 (2 C), 130.2 (2 C), 128.3 (2 C), 128.2, 127.6 (2 C), 127.4 (4 C), 122.5 (4 C), 122.4, 87.3, 86.4, 77.9 (2 C), 52.4 (2 C), 15.1.

HRMS (ESI): calcd. for $C_{41}H_{25}NNaO_4$ [$M + Na]^+$: 618.1676; found: 618.1647.

Cycloaduct 3f was obtained as a single diastereomer according to General procedure A from protonated Ruhemann's Purple (1, 121 mg, 0.400 mmol) and cyclopropene 2f (105 mg, 0.400 mmol). The reaction mixture was refluxed for 6 h to achieve a satisfactory degree of cyclopropene conversion. The crude product was purified by recrystallization from methanol, giving rise to pure 3f in 58% yield (131 mg); yellow solid; mp 275–278 °C (MeOH); R_f 0.13 (SiO$_2$, hexane–EtOAc, 1:1).
IR (KBr, cm⁻¹): 3306, 3077, 3051, 3025, 2937, 1746, 1710, 1639, 1598, 1493, 1447, 1402, 1349, 1327, 1260, 1204, 1157, 1094, 1021, 781, 761, 705.

¹H NMR (400 MHz, DMSO-d₆): δ = 7.94–7.88 (m, 2 H), 7.84–7.78 (m, 2 H), 7.76–7.71 (m, 2 H), 7.46–7.41 (m, 2 H), 6.97–6.77 (m, 10 H), 4.46 (s, 1 H), 4.06 (s, 1 H), 3.57 (s, 3 H), 2.65 (s, 3 H).

¹³C NMR (101 MHz, DMSO-d₆): δ = 199.7 (2 C), 199.0 (2 C), 166.1, 140.9 (2 C), 139.7 (2 C), 136.5 (2 C), 135.7 (2 C), 131.7 (4 C), 131.0 (2 C), 126.8 (4 C), 126.7 (2 C), 122.4 (4 C), 78.9 (2 C), 53.9 (2 C), 37.4, 35.3, 22.2.

HRMS (ESI): calcd. for C₃₆H₂₆N₂NaO₅⁺ [M + Na⁺]: 589.1734; found: 589.1731.

meso-(1'R,5'S,6'r)-1,1'',3,3''-Tetraoxo-1',5'-diphenyl-1,1'',3,3''-tetrahydro-3'-azadispiro[indene-2,2'-bicyclo[3.1.0]hexane-4',2''-indene]-6'-carbonitrile (3g)

Cycloadduct 3g was obtained as a single diastereomer according to General procedure A from protonated Ruhemann's Purple (1, 121 mg, 0.400 mmol) and cyclopropene 2g (87 mg, 0.400 mmol). The reaction mixture was refluxed for 6 h to achieve a satisfactory degree of cyclopropene conversion. The crude product was purified by recrystallization from ethanol, giving rise to pure 3g in 55% yield (115 mg); yellow solid; mp > 300 °C (EtOH); Rₓ 0.35 (SiO₂, hexane–EtOAc, 1:1).

IR (KBr, cm⁻¹): 3287, 3078, 3055, 3014, 2924, 2878, 2238, 1751, 1716, 1592, 1446, 1351, 1261, 1206, 1160, 1081, 1023, 1002, 944, 779, 758, 700.

¹H NMR (400 MHz, DMSO-d₆): δ = 7.98–7.90 (m, 2 H), 7.88–7.81 (m, 2 H), 7.80–7.74 (m, 2 H), 7.58–7.50 (m, 2 H), 7.22–7.15 (m, 4 H), 7.13–7.01 (m, 6 H), 4.30 (s, 1 H), 4.25 (s, 1 H).

¹³C NMR (101 MHz, DMSO-d₆): δ = 198.55 (2 C), 198.5 (2 C), 140.6 (2 C), 139.4 (2 C), 136.7 (2 C), 136.0 (2 C), 131.9 (4 C), 128.6 (2 C), 128.5 (2 C), 128.1 (4 C), 122.7 (2 C), 122.5 (2 C), 117.2, 76.7 (2 C), 51.4 (2 C), 11.8.

HRMS (ESI): calcd. for C₃₄H₂₀N₂NaO₄⁺ [M + Na⁺]: 543.1315; found: 543.1306.

meso-(1'R,5'S,6'r)-6'-Methyl-6'-phenyl-3'-azadispiro[indene-2,2'-bicyclo[3.1.0]hexane-4',2''-indene]-1,1'',3,3''-tetraone (4)

Cycloadduct was obtained as a single diastereomer 4 from protonated Ruhemann's Purple (1, 121 mg, 0.400 mmol) and cyclopropene 2j (78 mg, 0.6 mmol). The reaction mixture was refluxed for 6 h to achieve a satisfactory degree of cyclopropene conversion. The crude product was purified by recrystallization from methanol, giving rise to pure diastereomer 4 in 62% yield (107 mg); beige solid; mp > 300 °C (MeOH); Rₓ 0.36 (SiO₂, hexane–EtOAc, 1:1).
IR (KBr, cm⁻¹): 3352, 3073, 3050, 2964, 2885, 1745, 1719, 1596, 1497, 1432, 1343, 1264, 1198, 1154, 1058, 960, 780, 747, 692.

¹H NMR (400 MHz, CDCl₃): δ = 8.13–8.01 (m, 4 H, C⁴H (C⁷H) + C⁷H (C⁴H)), 7.95–7.86 (m, 4 H, C⁵H (C⁶H) + C⁶H (C⁵H)), 7.21–7.13 (m, 2 H, C⁹H (C¹¹H)), 7.12–7.05 (m, 1 H, C¹⁰H), 6.98–6.87 (m, 2 H, C⁸H (C¹²H)), 3.26 (br s, 1 H, NH), 2.16 (s, 2 H, C¹'H (C⁵'H)), 1.93 (s, 3 H, CH₃–C⁶').

¹³C NMR (101 MHz, CDCl₃): δ = 197.5 (2 C), 197.2 (2 C), 146.3, 141.2 (2 C), 140.5 (2 C), 136.5 (2 C), 136.0 (2 C), 128.6 (2 C), 126.58, 126.56 (2 C), 124.4 (2 C), 123.9 (2 C), 76.9 (2 C), 39.9 (2 C), 33.3, 18.4.

HRMS (ESI): calcd. for C₂₈H₁₉NNaO₄⁺ [M + Na]⁺: 456.1206; found: 456.1211.

General procedure B for the preparation of cycloadducts 5a–c: Cyclopropene 2m as a solution in carbon tetrachloride or cyclopropene 2n, 2o (0.600 mmol) that had been just prepared from the corresponding precursors was added to a solution of protonated Ruhemann’s purple (1, 121 mg, 0.4000 mmol) in anhydrous THF (15 mL) with stirring at room temperature. After detecting decolorization of solution (24 h later), the reaction mixture was filtered through a plug of celite, and the latter was rinsed with 20 mL of THF. The solvent was distilled off to obtain crude product 5 which was eventually recrystallized from a suitable solvent.

(±)-(1'R,5'R)-1'-Chloro-5'-phenyl-3'-azadispiro[indene-2,2'-bicyclo[3.1.0]hexane-4',2''-indene]-1,1'',3,3''-tetraone (5a)

Cycloadduct 5a was obtained according to General procedure B from protonated Ruhemann’s purple (1, 121 mg, 0.400 mmol) and cyclopropene 2m (90 mg, 0.6 mmol). The crude product was purified by recrystallization from ethanol, giving rise to pure 5a in 82% yield (149 mg); yellow solid; mp > 300 °C (EtOH); Rf 0.42 (SiO₂, hexane–EtOAc, 1:1).

IR (KBr, cm⁻¹): 3365, 3088, 3064, 3031, 1746, 1720, 1598, 1495, 1447, 1425, 1340, 1268, 1229, 1201, 1157, 1043, 1027, 1004, 963, 913, 790, 721, 701.

¹H NMR (400 MHz, CDCl₃): δ = 8.17 (d, J = 7.5 Hz, 1 H), 8.09 (d, J = 7.5 Hz, 1 H), 8.00–7.88 (m, 3 H), 7.72–7.66 (m, 1 H), 7.62–7.56 (m, 1 H), 7.43 (d, J = 7.6 Hz, 1 H), 7.12–7.03 (m, 5 H), 2.94 (br s, 1 H), 2.87 (d, J = 7.1 Hz, 1 H), 1.31 (d, J = 7.1 Hz, 1 H).

¹³C NMR (101 MHz, CDCl₃): δ = 198.3, 196.9, 196.7, 196.5, 142.5, 142.2, 140.9, 139.6, 137.3, 136.5, 136.1, 135.3, 132.3 (2 C), 132.0, 128.4, 128.3 (2 C), 124.2, 123.9, 123.3, 123.1, 79.6, 74.3, 55.5, 48.5, 19.6.

HRMS (ESI): calcd. for C₂₇H₁₆ClNNaO₄⁺ [M + Na]⁺: 476.0660; found: 476.0659.
(±)-(1'R,5'S'R)-1'-Methyl-5'-phenyl-3'-azadispiro[indene-2,2'-bicyclo[3.1.0]hexane-4',2''-indene]-1,1'',3,3''-tetraone (5b)

Cycloadduct 5b was obtained according to General procedure B from protonated Ruhemann's purple (1, 121 mg, 0.400 mmol) and cyclopropene 2n (78 mg, 0.6 mmol). The crude product was purified by recrystallization from methanol, giving rise to pure 5b in 74% yield (128 mg); yellow solid; mp 280–282 °C (MeOH); Rf 0.37 (SiO2, hexane–EtOAc, 1:1).

IR (KBr, cm⁻¹): 3379, 3082, 3057, 3026, 2924, 2852, 1745, 1716, 1590, 1442, 1350, 1253, 1200, 1159, 1033, 793, 756, 727, 703.

¹H NMR (400 MHz, CDCl₃): δ = 8.14 (d, J = 7.3 Hz, 1 H), 8.06 (d, J = 7.3 Hz, 1 H), 7.98–7.85 (m, 3 H), 7.68–7.62 (m, 1 H), 7.58–7.52 (m, 1 H), 7.44–7.38 (m, 1 H), 7.04–6.96 (m, 5 H), 3.23 (br s, 1 H), 2.39 (d, J = 5.9 Hz, 1 H), 0.78 (s, 3 H), 0.65 (d, J = 5.9 Hz, 1 H).

¹³C NMR (101 MHz, CDCl₃): δ = 199.9, 199.5, 198.4, 197.5, 142.0, 141.8, 140.7, 139.8, 136.7, 135.9 (2 C), 134.9, 134.0, 132.0 (2 C), 128.0 (2 C), 127.6, 123.7, 123.4, 122.9, 122.7, 81.2, 75.9, 49.0, 39.3, 16.7, 16.0.

HRMS (ESI): calcd. for C₂₈H₂₀NO₄⁺ [M + H]⁺: 434.1387; found: 434.1396.

(±)-(1'R,5'S'R)-1'-Phenyl-5'-(trimethylsilyl)-3'-azadispiro[indene-2,2'-bicyclo[3.1.0]hexane-4',2''-indene]-1,1'',3,3''-tetraone (5c)

Cycloadduct 5c was obtained according to General procedure B from protonated Ruhemann's purple (1, 121 mg, 0.400 mmol) and cyclopropene 2o (113 mg, 0.6 mmol). The crude product was purified by recrystallization from methanol, giving rise to pure 5c in 79% yield (155 mg); yellow solid; mp 245–247 °C (MeOH); Rf 0.51 (SiO2, hexane–EtOAc, 1:1).

IR (KBr, cm⁻¹): 3374, 3085, 2955, 2897, 1746, 1718, 1598, 1448, 1348, 1274, 1215, 1159, 938, 794, 760, 703.

¹H NMR (400 MHz, CDCl₃): δ = 8.15 (d, J = 7.2 Hz, 1 H), 8.03 (d, J = 7.2 Hz, 1 H), 7.98–7.87 (m, 2 H), 7.84 (d, J = 7.4 Hz, 1 H), 7.64–7.58 (m, 1 H), 7.55–7.49 (m, 1 H), 7.39 (d, J = 7.4 Hz, 1 H), 7.22–7.02 (m, 2 H), 7.00–6.91 (m, 3 H), 2.41 (d, J = 5.6 Hz, 1 H), 2.27 (br s, 1 H), 0.92 (d, J = 5.6 Hz, 1 H), −0.60 (s, 9 H).

¹³C NMR (101 MHz, CDCl₃): δ = 201.2, 199.3, 198.8, 197.3, 142.5, 141.6, 141.2, 140.0, 136.9, 136.2, 136.0, 135.6, 134.9, 131.7 (2 C), 128.0 (2 C), 127.8, 124.3, 123.6, 123.1, 122.7, 82.5, 74.8, 51.7, 33.2, 12.2, −1.1 (3 C).

HRMS (ESI): calcd. for C₃₀H₂₆NO₄Si⁺ [M + H]⁺: 492.1626; found: 492.1637.
3. Copies of 1H and 13C NMR spectra

Figure S1: 1H NMR spectrum of compound 3a (400 MHz, DMSO-d_6)

Figure S2: 13C NMR spectrum of compound 3a (101 MHz, DMSO-d_6)
Figure S3: 1H NMR spectrum of compound 3b (400 MHz, DMSO-d_6)

Figure S4: 13C NMR spectrum of compound 3b (101 MHz, DMSO-d_6)
Figure S5: 1H NMR spectrum of compound 3c (400 MHz, DMSO-d_6)

Figure S6: 13C NMR spectrum of compound 3c (101 MHz, DMSO-d_6)
Figure S7: 1H NMR spectrum of compound 3d (400 MHz, DMSO-d_6)

Figure S8: 13C NMR spectrum of compound 3d (101 MHz, DMSO-d_6)
Figure S9: 1H NMR spectrum of compound 3e (400 MHz, DMSO-d_6)

Figure S10: 13C NMR spectrum of compound 3e (101 MHz, DMSO-d_6)
Figure S11: 1H NMR spectrum of compound 3f (400 MHz, DMSO-d_6)

Figure S12: 13C NMR spectrum of compound 3f (101 MHz, DMSO-d_6)
Figure S13: 1H NMR spectrum of compound 3g (400 MHz, DMSO-d_6)

Figure S14: 13C NMR spectrum of compound 3g (101 MHz, DMSO-d_6)
Figure S15: 1H NMR spectrum of compound 4 (400 MHz, CDCl$_3$)

Figure S16: 13C NMR spectrum of compound 4 (101 MHz, CDCl$_3$)
Figure S17: 2D 1H-1H NOESY spectrum of compound 4 (400 MHz, CDCl$_3$)

Figure S18: Fragment of 2D 1H-1H NOESY spectrum of compound 4
To determine the relative configuration of the cycloadduct derived from 3-methyl-3-phenylcyclopropene, we carried out a quantitative analysis of its two-dimensional (2D) NMR spectrum (1H–1H nuclear Overhauser effect spectroscopy (NOESY)).

A choice was made between two possible configurations (structures 4 and 4') by a comparison of interproton distances with corresponding cross-peak intensities.

The distance 2.9 Å between H-C8 and protons of a methyl group ($r_{H-C8-Me}$) was used as a reference; this value is almost the same for both structures 4 and 4'.

According to the well-known relationship $S_{AB} / S_{AC} = (r_{AC} / r_{AB})^6$, the values $S_{H-C1-H-C8} / S_{H-C1-Me}$ for structures 4 and 4' must be equal (3.8 Å/2.7 Å) = 7.8 and (2.4 Å/3.7 Å) = 0.075, correspondingly. Integration of these cross peaks (Figure S18) provides an unambiguous answer since there is no a cross-peak between H-C1(5) and the Me group in the spectrum at all (Figure S17).

Furthermore, using value $S_{H-C1-H-C8} / S_{H-C8-Me}$ and interproton distance r_{H8-Me} as a reference, it is possible to calculate the distance between H-C8 and protons of the methyl group ($r_{H-C8-Me} = 2.7 *(4.47 / 2.85)^{1/6} = 2.91$ Å). This value corresponds well to the calculated value for diastereomer 4.

Finally, the distance between the methyl group and NH proton in diastereomer 4' is more than 5.0 Å, while there is a quite intensive cross-peak (2.82) which corresponds to the distance less than 3.0 Å.
Figure S20: 1H NMR spectrum of compound 5a (400 MHz, CDCl$_3$)

Figure S21: 13C NMR spectrum of compound 5a (101 MHz, CDCl$_3$)
Figure S22: 1H NMR spectrum of compound 5b (400 MHz, CDCl$_3$)

Figure S23: 13C NMR spectrum of compound 5b (101 MHz, CDCl$_3$)
Figure S24: 1H NMR spectrum of compound 5c (400 MHz, CDCl$_3$)

Figure S25: 13C NMR spectrum of compound 5c (101 MHz, CDCl$_3$)
4. X-ray data for compounds 3b and 3e

General procedure of the sample preparation and crystal structure determination: Single crystals of compounds 3b and 3e were grown by slow evaporation of their solutions in an ethanol–chloroform mixture at room temperature. For single crystal X-ray diffraction experiments crystals were fixed on a micro mount and placed on at SuperNova, single source at offset/far, HyPix3000 or Xcalibur Eos diffractometers and were measured at 100 K using monochromated MoKα (3b) and CuKα (3e) radiations, respectively. The structures were solved by the ShelXT1 structure solution program using Intrinsic Phasing and the Superflip2 structure solution program using Charge Flipping and refined by means of the SHELXL program3 incorporated in the OLEX2 program package. Empirical absorption correction was applied in CrysAlisPro program complex using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. The crystallographic data and some parameters of refinement are collected in Tables S1 and S2. Crystallographic data for compounds 3b and 3e have been deposited at the Cambridge Crystallographic Data Centre (Deposition nos. CCDC 2055282 (3b) and CCDC 2055281 (3e)) and can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

![Figure S26](image_url)

Figure S26: ORTEP representation of the molecular structure of 3b (CCDC 2055282). Thermal ellipsoids are drawn at 50% probability level.

Table S1: Crystal data and structure refinement for compound 3b

Property	Value
Empirical formula	C$_{33}$H$_{21}$NO$_4$
Formula weight	495.51
Temperature/K	100(2)
Crystal system	monoclinic
Space group	P2$_1$/c
a/Å	13.6792(4)
b/Å	10.3557(3)
c/Å	17.7456(5)
α/°	90
β/°	105.580(3)
γ/°	90
Volume/Å³ 2421.43(13)
Z 4
ρ_{calc}g/cm³ 1.359
μ/mm⁻¹ 0.090
F(000) 1032.0
Crystal size/mm³ 0.54 × 0.5 × 0.1
Radiation MoKα (λ = 0.71073)
2Θ range for data collection/° 5.172 to 61.946
Index ranges -19 ≤ h ≤ 16, -14 ≤ k ≤ 14, -23 ≤ l ≤ 24
Reflections collected 28061
Independent reflections 7059 [R_{int} = 0.0356, R_{sigma} = 0.0419]
Data/restraints/parameters 7059/0/346
Goodness-of-fit on F² 1.060
Final R indexes [I>2σ (I)] R₁ = 0.0514, wR₂ = 0.1163
Final R indexes [all data] R₁ = 0.0711, wR₂ = 0.1256
Largest diff. peak/hole / e Å⁻³ 0.40/ -0.25

Figure S27: ORTEP representation of the molecular structure of 3e (CCDC 2055281). Thermal ellipsoids are drawn at 50% probability level.

Table S2: Crystal data and structure refinement for compound 3e

Empirical formula	C_{41}H_{25}NO_{4}
Formula weight	595.62
Temperature/K	100(2)
Crystal system	monoclinic
Space group	I2/a
a/Å	26.0260(2)
b/Å	10.16116(8)
c/Å	22.56815(19)
α/°	90
β/°	98.6498(8)
Parameter	Value
--	--------------------------------------
$\gamma/^{\circ}$	90
Volume/Å^3	5900.37(9)
Z	8
ρ_{calc} g/cm^3	1.341
μ/mm^{-1}	0.690
$F(000)$	2480.0
Crystal size/mm^3	0.33 \times 0.24 \times 0.19
Radiation	CuKα ($\lambda = 1.54184$)
2Θ range for data collection/$^{\circ}$	6.87 to 140.726
Index ranges	-31 \leq h \leq 31, -12 \leq k \leq 12, -27 \leq l \leq 25
Reflections collected	20037
Independent reflections	5600 [R$_{int}$ = 0.0248, R$_{sigma}$ = 0.0172]
Data/restraints/parameters	5600/0/422
Goodness-of-fit on F^2	1.044
Final R indexes [I\geq2σ (I)]	R$_1$ = 0.0367, wR$_2$ = 0.0907
Final R indexes [all data]	R$_1$ = 0.0382, wR$_2$ = 0.0919
Largest diff. peak/hole / e Å^{-3}	0.21/-0.24
5. Calculation details

Computational methodology: The full geometry optimization of reactants, products, and transition state structures (TSs) were carried out at the DFT/HF level of theory using M11 hybrid exchange-correlation functional [15] and the cc-pVDZ basis set [16]. The polarizable continuum model (PCM) was used to calculate solvent effects of water and tetrahydrofuran [17]. The optimizations were performed using the Berny analytical gradient optimization method [18]. All stationary points were described by harmonic vibrational frequency calculations to prove the location of correct minima (only real frequencies) and transition states (only one imaginary frequency). For the transition states, the normal modes corresponding to the imaginary frequencies were related to the vibrations of new developing bonds. IRC calculations were conducted to check the energy profiles connecting each TS to the two associated minima of the proposed mechanism [19]. Due to the poor estimation of the Kohn–Sham orbitals for FMO energy values, HOMO and LUMO energies and the corresponding global descriptors for reactants were computed by using HF/6-311g single-point calculation based on the M11/cc-pVDZ optimized geometries. Thermal corrections to enthalpy and entropy values were evaluated at 298.15 K and 1.0 atm. All calculations were performed using the Gaussian 09 computational program package [20].

Table S3: Energies (a.u.) and Cartesian coordinates of stationary points for reactants, intermediates, products, and transition states (M11/cc-pVDZ, PCM = H₂O or THF).

	Ruhemann's Purple, PCM = H₂O	N-Protonated Ruhemann's Purple (I), PCM = H₂O	
E₀	-1045.828195	-1046.267172	
E (298 K)	-1045.811289	-1046.250052	
H (298 K)	-1045.810345	-1046.249107	
G (298 K)	-1045.874024	-1046.313363	
Imaginary frequencies	= 0	= 0	
Cartesian coordinates:			
C	5.748318 -0.413646 -0.168347	5.845679 -0.206518 -0.117107	
C	5.246647 -1.608523 0.363131	5.441902 -1.477441 0.312961	
C	4.892267 0.651042 -0.474584	4.908349 0.799478 -0.370481	
C	3.534700 0.477130 -0.242165	3.567015 0.488329 -0.190118	
C	3.034851 -0.714378 0.283642	3.162825 -0.782872 0.234132	
C	3.876641 -1.770354 0.603422	4.089416 -1.780433 0.501998	
H	5.939941 -2.426232 0.595195	6.201143 -2.244356 0.506792	
H	3.472288 -2.698520 1.025609	3.763553 -2.769007 0.846174	
H	6.826665 -0.312708 -0.341396	6.913699 0.001013 -0.251667	
H	5.273110 1.596358 -0.880321	5.214381 1.800581 -0.696015	
C	2.395511 1.440428 -0.441844		
C	1.536326	-0.613870	0.439793
-----	---------	-----------	-----------
O	0.851003	-1.432104	1.032399
O	2.510262	2.592112	-0.829282
C	1.158108	0.704170	-0.102181
N	-0.007882	1.329497	-0.053956
C	-1.168299	0.696037	0.014321
C	-2.413545	1.431780	0.325422
C	-1.532990	-0.642128	-0.485819
C	-3.030447	-0.752969	-0.326774
C	-3.542769	0.450897	0.157299
C	-4.902238	0.619240	0.382503
C	-5.747248	-0.464141	0.113459
C	-5.233012	-1.671768	-0.375504
C	-3.861325	-1.827894	-0.609805
H	-3.447584	-2.766103	-0.999390
H	-6.826705	-0.368193	0.284210
H	-5.917736	-2.504179	-0.579028
H	-5.292785	1.574273	0.754825
O	-0.839365	-1.469029	-1.056215
O	-2.540530	2.594857	0.672629

- **O-protonated Ruhemann's Purple (I'), PCM = H₂O**

 | C | 2.361427 | 1.356728 | -0.353057 |
|----------------------|-----------|----------|-----------|
| O | 1.664786 | -0.837067| 0.383145 |
| O | 1.018398 | -1.722502| 0.902288 |
| C | 2.300528 | 2.541881 | -0.618586 |
| C | 1.203003 | 0.479067 | -0.093971 |
| N | -0.006301 | 1.012985 | -0.054029 |
| C | -1.210672| 0.469978 | 0.003990 |
| C | -2.377331| 1.344765 | 0.235574 |
| C | -1.660392| -0.865968| -0.427588 |
| C | -3.158529| -0.821028| -0.279788 |
| C | -3.574678| 0.459805 | 0.103463 |
| C | -4.918745| 0.763228 | 0.276847 |
| C | -5.846213| -0.260644| 0.061385 |
| C | -5.430331| -1.541394| -0.325864 |
| H | -4.075303| -1.836764| -0.508547 |
| H | -3.740124| -2.833228| -0.819438 |
| H | -6.915949| -0.059619| 0.192160 |
| H | -6.182078| -2.322222| -0.490869 |
| H | -5.234156| 1.771725 | 0.568902 |
| O | -1.006249| -1.762166| -0.917419 |
| O | -2.327668| 2.538447 | 0.462118 |
| H | -0.010879| 2.052777 | -0.071387 |

- **Imaginary frequencies = 0**

- **C-protonated Ruhemann's Purple (I''), PCM = H₂O**

 | C | -3.830346 | -0.521810| 0.646660 |
|----------------------|-----------|----------|-----------|
| C | -3.254693| -1.640065| 0.020375 |
| C | -3.065172| 0.599746 | 0.963698 |
| C | -1.711101| 0.571304 | 0.640862 |
| C | -1.138297| -0.543016| 0.017389 |
| C | -1.899478| -1.663863| -0.304639 |
| H | -3.884934| -2.505673| -0.214966 |
| H | -1.437767| -2.528910| -0.794670 |
| H | -4.899796| -0.535250| 0.887713 |
| H | -3.504062| 1.478871 | 1.449560 |
| O | -0.685441| 1.626836 | 0.863802 |
| C | -0.313661| -0.325548| -0.226579 |
| C | 0.627049 | 1.056449 | 0.339538 |
| O | -0.838490| 2.716243 | 1.361487 |
| O | 1.077206 | -1.068888| -0.800141 |
| N | 1.704415 | 1.722107 | 0.371351 |

- **Imaginary frequencies = 0**

Cartesian coordinates:

- **O-protonated Ruhemann's Purple (I'), PCM = H₂O**

- **C-protonated Ruhemann's Purple (I''), PCM = H₂O**
Hydrogen chloride, PCM = H₂O

\[
E_0 = -460.777622 \\
E(298 \text{ K}) = -460.775261 \\
H(298 \text{ K}) = -460.774317 \\
G(298 \text{ K}) = -460.795528 \\
\text{Imaginary frequencies} = 0
\]

\begin{align*}
\text{Cl} & : -3.515911 \quad -0.411782 \quad 0.000000 \\
\text{H} & : -2.216878 \quad -0.411782 \quad 0.000000
\end{align*}

Chloride ion, PCM = H₂O

\[
E_0 = -460.348937 \\
E(298 \text{ K}) = -460.347520 \\
H(298 \text{ K}) = -460.346576 \\
G(298 \text{ K}) = -460.363959 \\
\text{Imaginary frequencies} = 0
\]

\begin{align*}
\text{Cl} & : 0.000000 \quad 0.000000 \quad 0.000000
\end{align*}

N-Protonated Ruhemann's Purple (1), PCM = THF

\[
E_0 = -1046.263857 \\
E(298 \text{ K}) = -1046.246762 \\
H(298 \text{ K}) = -1046.245818 \\
G(298 \text{ K}) = -1046.310010 \\
\text{Imaginary frequencies} = 0
\]

Cartesian coordinates:

\begin{align*}
\text{C} & : 5.843497 \quad -0.208940 \quad -0.116265 \\
\text{C} & : 5.437647 \quad -1.481264 \quad 0.306978 \\
\text{C} & : 4.907846 \quad 0.799728 \quad -0.363652 \\
\text{C} & : 3.566325 \quad 0.489911 \quad -0.184790 \\
\text{C} & : 3.160392 \quad -0.782227 \quad 0.233753 \\
\text{C} & : 4.085107 \quad -1.782609 \quad 0.495715 \\
\text{H} & : 6.195658 \quad -2.250695 \quad 0.495638 \\
\text{H} & : 3.755623 \quad -2.771558 \quad 0.835334 \\
\text{H} & : 6.911883 \quad -0.002873 \quad -0.250178 \\
\text{H} & : 5.213300 \quad 1.802575 \quad -0.684274
\end{align*}

1,2,3-Triphenylcyclopropene (2a), PCM = THF

\[
E_0 = -809.038794 \\
E(298 \text{ K}) = -809.022008 \\
H(298 \text{ K}) = -809.021064 \\
G(298 \text{ K}) = -809.087218 \\
\text{Imaginary frequencies} = 0
\]

Cartesian coordinates:

\begin{align*}
\text{C} & : -0.198883 \quad -0.721064 \quad -0.682374 \\
\text{C} & : 0.779691 \quad 0.270271 \quad -1.263840 \\
\text{C} & : 1.062981 \quad -1.056400 \quad -0.601530 \\
\text{C} & : 1.079236 \quad 1.558192 \quad -0.549564 \\
\text{H} & : 0.870959 \quad 0.346013 \quad -2.362726 \\
\text{C} & : 1.461767 \quad 2.691855 \quad -1.275745 \\
\text{C} & : 0.985517 \quad 1.654799 \quad 0.845304 \\
\text{C} & : 1.268098 \quad 2.855115 \quad 1.495354 \\
\text{C} & : 1.745585 \quad 3.894627 \quad -0.627314 \\
\text{C} & : 1.649993 \quad 3.980947 \quad 0.761980
\end{align*}
\[
\begin{align*}
\text{C} & \quad 2.362242 \quad 1.360451 \quad -0.346617 \\
\text{C} & \quad 1.662072 \quad -0.835219 \quad 0.383090 \\
\text{O} & \quad 1.014612 \quad -1.719154 \quad 0.901685 \\
\text{O} & \quad 2.303127 \quad 2.545878 \quad -0.610938 \\
\text{C} & \quad 1.203037 \quad 0.483319 \quad -0.091513 \\
\text{N} & \quad -0.006351 \quad 1.017049 \quad -0.054653 \\
\text{C} & \quad -1.210337 \quad 0.472832 \quad 0.000681 \\
\text{C} & \quad -2.377484 \quad 1.347009 \quad 0.228513 \\
\text{C} & \quad -1.657708 \quad -0.865376 \quad -0.428223 \\
\text{C} & \quad -3.156132 \quad -0.821525 \quad -0.276836 \\
\text{C} & \quad -3.573461 \quad 0.460090 \quad 0.099323 \\
\text{C} & \quad -4.917499 \quad 0.762782 \quad 0.271398 \\
\text{C} & \quad -5.843849 \quad -0.262803 \quad 0.061266 \\
\text{C} & \quad -5.426599 \quad -1.544764 \quad -0.319673 \\
\text{C} & \quad -4.071657 \quad -1.839186 \quad -0.501977 \\
\text{H} & \quad -3.733336 \quad -2.835857 \quad -0.808712 \\
\text{H} & \quad -6.913850 \quad -0.062674 \quad 0.191255 \\
\text{H} & \quad -6.177494 \quad -2.327550 \quad -0.479706 \\
\text{H} & \quad -5.231926 \quad 1.772919 \quad 0.558729 \\
\text{O} & \quad -1.003474 \quad -1.760385 \quad -0.918505 \\
\text{O} & \quad -2.329035 \quad 2.541195 \quad 0.452604 \\
\text{H} & \quad -0.011670 \quad 2.056479 \quad -0.071654 \\

G (298 K) = \text{H (298 K)} = \text{E}
\end{align*}
\]

1,2-Diphenylcyclopropene (2b), PCM = THF

\[
\begin{align*}
\text{E}_0 & = -578.192681 \\
\text{E} \ (298 \text{ K}) & = -578.180589 \\
\text{H} \ (298 \text{ K}) & = -578.179644 \\
\text{G} \ (298 \text{ K}) & = -578.233052 \\
\text{Imaginary frequencies} & = 0
\end{align*}
\]

3-Ethyl-1,2-diphenylcyclopropene (2c), PCM = THF

\[
\begin{align*}
\text{E}_0 & = -656.712452 \\
\text{E} \ (298 \text{ K}) & = -656.697408 \\
\text{H} \ (298 \text{ K}) & = -656.696464 \\
\text{G} \ (298 \text{ K}) & = -656.756802 \\
\text{Imaginary frequencies} & = 0
\end{align*}
\]

Cartesian coordinates:	Cartesian coordinates:
C -3.049442 0.584125 -0.016217	C -6.051096 0.414588 0.276192
C -2.218220 -0.673337 -0.027454	C -5.585322 -0.810270 0.334128
C -1.751623 0.759887 -0.016210	C -4.581572 0.282470 0.594117
H -2.138231 -1.263367 0.958205	C -7.130791 1.372091 0.095229
H -2.136174 -1.278501 0.893345	C -6.933308 2.713135 0.456152
C -5.552859 1.579633 -0.010990	C -7.961764 3.641364 0.307524
C -0.629234 2.981855 0.002162	C -9.194951 3.242022 -0.210742
C 0.543404 3.741228 0.007071	C -9.397484 1.909260 -0.578410
C 1.791174 3.111718 -0.001111	C -8.373714 0.978327 -0.425396
1,2-Diphenyl-3-vinylcyclopropene (2d), PCM = THF

C	1.868474	1.718059	-0.014183
C	0.702671	0.954997	-0.019022
H	0.749549	-0.141263	-0.029191
H	-1.602476	3.474202	0.008586
H	0.480751	4.835950	0.017358
H	2.708404	3.712837	0.002769
H	2.846342	1.221793	-0.020634
C	-4.423640	1.059358	-0.011203
C	-4.732158	2.423696	0.000205
C	-6.059464	2.842425	0.004430
C	-7.092822	1.901513	-0.002636
C	-6.793539	0.538162	-0.013900
C	-5.465855	0.115738	-0.018168
H	-5.217133	-0.952966	-0.027098
H	-3.920722	3.160923	0.005738
H	-6.292603	3.913887	0.013350
H	-8.137636	2.234684	0.000705
H	-7.602552	-0.202119	-0.019457

1,2-Diphenyl-3-(phenylethynyl)cyclopropene (2e), PCM = THF

C	-5.230075	0.965871	0.262665
C	-4.330310	0.018179	0.311516
C	-3.810485	1.424615	0.516129
C	-6.575124	1.483608	0.084331
C	-6.780157	2.870151	0.127143
C	-8.059176	3.395910	-0.042609
C	-9.142730	2.541904	-0.255409
C	-8.944560	1.159149	-0.29946
C	-7.668192	0.629987	-0.131971
H	-5.918413	3.529452	0.292924
H	-8.212710	4.481122	-0.008684
H	-10.149683	2.955431	-0.388512
H	-9.795094	0.487752	-0.467935
Imaginary frequencies = 0

\[\text{G (298 K)} = \text{H (298 K)} = \text{E (298 K)} = \]

\[
\begin{array}{cccc}
\text{H} & -7.509416 & -0.454348 & -0.167408 \\
\text{C} & -3.875539 & -1.358820 & 0.233774 \\
\text{C} & -4.776685 & -2.422385 & 0.069789 \\
\text{C} & -4.306629 & -3.730519 & -0.002949 \\
\text{C} & -2.936234 & -3.990127 & 0.085383 \\
\text{C} & -2.035246 & -2.936375 & 0.248244 \\
\text{H} & -2.501798 & -1.625783 & 0.323605 \\
\text{H} & -1.805066 & -0.787091 & 0.449952 \\
\text{H} & -5.851470 & -2.215902 & 0.002791 \\
\text{H} & -5.015129 & -4.557756 & -0.129787 \\
\text{H} & -2.569224 & -5.021909 & 0.027005 \\
\text{H} & -0.959680 & -3.138277 & 0.317519 \\
\text{C} & -3.036263 & 2.103951 & -0.561210 \\
\text{H} & -3.531368 & 1.741162 & 1.538943 \\
\text{C} & -2.082841 & 3.014409 & -0.345494 \\
\text{H} & -3.294636 & 1.809902 & -1.591827 \\
\text{H} & -1.812651 & 3.319122 & 0.675848 \\
\text{H} & -1.540500 & 3.486354 & -1.173824
\end{array}
\]

\[E_2 = -670.407466 \]

\[\text{E (298 K)} = -670.393655 \]

\[\text{H (298 K)} = -670.392710 \]

\[\text{G (298 K)} = -670.450322 \]

\[\text{Imaginary frequencies} = 0 \]

\[\text{N,N-Dimethyl-2,3-diphenylcycloprop-2-ene-1-carbonitrile (2f), PCM = THF} \]

\[\text{E}_0 = -670.407466 \]

\[\text{E (298 K)} = -670.393655 \]

\[\text{H (298 K)} = -670.392710 \]

\[\text{G (298 K)} = -670.450322 \]

\[\text{Imaginary frequencies} = 0 \]

\[\text{2,3-Diphenylcycloprop-2-ene-1-carbonitrile (2g), PCM = THF} \]

\[\text{E}_0 = -670.407466 \]

\[\text{E (298 K)} = -670.393655 \]

\[\text{H (298 K)} = -670.392710 \]

\[\text{G (298 K)} = -670.450322 \]

\[\text{Imaginary frequencies} = 0 \]

Cartesian coordinates:

\[
\begin{array}{cccc}
\text{C} & -5.607997 & -0.710920 & 0.387263 \\
\text{C} & -4.661574 & 0.413641 & 0.736864 \\
\text{C} & -7.170389 & 1.467589 & 0.138385 \\
\text{C} & -6.876041 & 2.829968 & 0.283170 \\
\text{C} & -7.872846 & 3.782982 & 0.087167 \\
\text{C} & -9.165605 & 3.381266 & -0.252671 \\
\text{C} & -9.462527 & 2.023464 & -0.398203 \\
\text{C} & -8.470614 & 1.067101 & -0.204744 \\
\text{H} & -8.698685 & 0.008582 & -0.318200 \\
\text{H} & -5.855546 & 3.133373 & 0.549129
\end{array}
\]
Imaginary frequencies = 0

G (298 K) =
E (298 K) =

H -7.639232 4.848131 0.199923
H -9.949870 4.132113 -0.406460
H -10.477958 1.708477 -0.665729
C -5.629185 -2.156764 0.267086
C -6.810279 -2.835504 -0.069453
C -6.608563 -4.222595 -0.178956
C -5.627529 -4.940061 0.044004
C -4.450613 -4.267755 0.377176
C -4.449282 -2.879312 0.489382
H -3.530071 -2.339324 0.749519
H -7.732259 -2.268652 -0.244157
H -7.729818 -4.751032 -0.441543
H -5.627797 -6.033105 -0.043931
H -3.525682 -4.830166 0.550523
C -3.637332 0.815737 -0.227750
H -4.350822 0.582854 1.780951
N -2.825650 1.134652 -0.989870

Diphenylcycloprop-2-ene-1-carboxylate (2h), PCM = THF
E₀ = -805.955099
E (298 K) = -805.938469
H (298 K) = -805.937525
G (298 K) = -805.002974
Imaginary frequencies = 0

Cartesian coordinates:
C -4.679169 0.167128 -0.585694
C -4.389036 -1.096858 -0.717446
C -3.390007 -0.133192 -1.314288
C -5.479320 1.293716 -0.142077
C -5.023284 2.596076 -0.387386
C -5.773900 3.691277 0.034517
C -6.983322 3.493144 0.702525
C -7.442155 2.196373 0.949379
C -6.695513 1.099314 0.530368

2,3-Diphenylcycloprop-2-ene-1-carboxylic acid (2i), PCM = THF
E₀ = -766.711100
E (298 K) = -766.696128
H (298 K) = -766.695184
G (298 K) = -766.756545
Imaginary frequencies = 0

Cartesian coordinates:
C -4.527138 0.193120 -0.485044
C -4.238314 -1.070814 -0.616793
C -3.232016 -0.108101 -1.204772
C -5.331272 1.319665 -0.049115
C -4.901513 2.622314 -0.336770
C -5.658321 3.715703 0.079414
C -6.845562 3.515495 0.785734
C -7.277114 2.218227 1.076007
C -6.525590 1.122946 0.660720

S31
Imaginary frequencies = 0

G (298 K) = H (298 K) = E (298 K) =

3-Methyl-3-phenylcyclopropene (2j), PCM = THF

Methyl 1-methylcycloprop-2-ene-1-carboxylate (2k), PCM = THF

Cartesian coordinates:

E_0 = -386.599146

E (298 K) = -386.590419

H (298 K) = -386.589475

G (298 K) = -386.633071

Imaginary frequencies = 0

E_0 = -383.518236

E (298 K) = -383.509567

H (298 K) = -383.508623

G (298 K) = -383.551458

Imaginary frequencies = 0

C -1.173006 0.390692 -0.690528

C -1.094012 0.186116 0.584038

C -0.164354 1.252201 0.041327

H -1.599159 0.177523 -1.671144

H -1.402645 -0.330474 1.493170

C -0.401419 2.732000 0.293582

H -1.483031 2.923976 0.391917

H -0.007386 3.345202 -0.536323

H 0.102196 3.063505 1.219053

C 1.272172 0.823862 -0.116565

O 1.639808 -0.313490 -0.322358

O 2.128835 1.851377 -0.004079

C 3.511510 1.507918 -0.144987

H 3.694988 1.064055 -1.138905

Cartesian coordinates:	1-Chloro-2-phenylcyclopropene (2m), PCM = THF	
------------------------	---	
H -5.415209 -1.188715 0.393726	E₀ = -806.937394	
H -4.516817 0.899961 -0.634247	E (298 K) = -806.928797	
C -4.343521 -1.099425 0.178473	H (298 K) = -806.927853	
H -3.874928 -3.075685 0.930329	G (298 K) = -806.972529	
C -3.841324 0.069152 -0.397546	Imaginary frequencies = 0	
C -3.480717 -2.156743 0.480197		
C -2.480169 0.180979 -0.673169		
C -2.118971 -2.047101 0.211028		
H -2.070421 1.094266 -1.124547		
C -1.608775 -0.875285 -0.368796		
H -1.439567 -2.875780 0.444446		
C -0.194167 -0.717893 -0.656550		
H 0.217003 1.090827 -3.224219		
H 0.630201 -0.650525 -3.240744		
H 0.555194 0.711464 1.399497		
C 0.779233 0.255883 -1.283232		
C 0.895047 0.325754 -2.800500		
H 0.947376 -3.407657 0.775151		
C 0.900747 1.602309 0.858388		
C 1.068655 -1.050482 -0.576722		
C 1.070440 1.538708 -0.534298		
H 1.018418 2.798624 2.649900		
C 1.161275 2.775724 1.562227		
C 1.510313 2.692581 -1.196702		
H 1.651383 2.681421 -2.283624		
C 1.601642 3.918656 0.890019		
C 1.774733 3.869840 -0.492028		
3-Methyl-1,2,3-triphenylcyclopropene (2l), PCM = THF		
E₀ = -848.300173	E₀ = -848.300173	
E (298 K) = -848.281832	E (298 K) = -848.281832	
H (298 K) = -848.280887	H (298 K) = -848.280887	
G (298 K) = -848.350046	G (298 K) = -848.350046	
Imaginary frequencies = 0	Imaginary frequencies = 0	
1-Methyl-2-phenylcyclopropene (2n), PCM = THF

E₀ = -386.610784
E (298 K) = -386.601487
H (298 K) = -386.600543
G (298 K) = -386.646113
Imaginary frequencies = 0

![Cartesian coordinates](image1.png)

1-Phenyl-2-(trimethylsilyl)cyclopropene (2o), PCM = THF

E₀ = -755.826082
E (298 K) = -755.810628
H (298 K) = -755.809684
G (298 K) = -755.870455
Imaginary frequencies = 0

![Cartesian coordinates](image2.png)
Parent cyclopropene (2p), PCM = THF
E\(_0\) = -116.493751
E (298 K) = -116.490422
H (298 K) = -116.489478
G (298 K) = -116.517054
Imaginary frequencies = 0

Cartesian coordinates:

C	0.501210	-0.648999	0.000000
C	0.501210	0.648999	0.000000
C	-0.862973	0.000000	0.000000
H	-1.467727	0.000000	0.923494
H	-1.467727	0.000000	-0.923494
H	1.049383	-1.591586	0.000000
H	1.049383	1.591586	0.000000

Cycloadduct 4-endo, PCM = THF
E\(_0\) = -1432.958377
E (298 K) = -1432.932771
H (298 K) = -1432.931827
G (298 K) = -1433.014601
Imaginary frequencies = 0

Cartesian coordinates:

C	0.760809	0.338686	-0.394100
C	-0.751947	0.375288	-0.393527
C	0.028343	1.380446	0.425385
H	1.320410	0.677977	-1.274679
H	-1.293541	0.740279	-1.275075
H	0.002545	0.416279	2.397903
H	-0.854368	1.983475	2.293906
H	0.933746	1.935577	2.299233
C	1.284930	3.403616	-0.413550
C	1.320165	4.707639	-0.907924
C	0.130042	5.391400	-1.161593
C	-1.093557	4.765952	-0.917018
C	-1.125269	3.461819	-0.422492
H	-2.087496	2.967385	-0.229636
H	2.220542	2.862942	-0.213750
H	2.284978	5.193391	-1.098188
H	0.156142	6.415538	-1.552989
H	-2.032307	5.297754	-1.114474
C	-5.826014	-1.302954	-0.974333
C	-5.986808	-0.775212	0.318061
C	-4.562865	-1.622442	-1.469529
C	-3.467285	-1.384618	-0.643351
C	-3.627718	-0.858945	0.638307
C	-4.888436	-0.555185	1.147213
H	-6.995406	-0.541910	0.679178
H	-5.001720	-0.158813	2.162954
H	-6.712655	-1.472123	-1.596835
H	-4.424264	-2.048659	-2.470043
C	-2.020709	-1.658564	-0.903336
C	-2.301495	-0.784217	1.310176
O	-2.097301	-0.695747	2.499077
Cycloadduct 4'-endo, PCM = THF
E₀ = -1432.949754
E (298 K) = -1432.924184
H (298 K) = -1432.923239
G (298 K) = -1433.005302
Imaginary frequencies = 0

Cartesian coordinates:

C	-0.768108	-0.306228	1.177458
C	0.752557	-0.351294	1.160315
C	0.033083	0.929632	0.328330
H	-1.321330	-0.776842	2.000268
C	1.299477	-0.857649	1.965979
C	0.071150	2.217347	0.747070
C	0.054702	1.214622	3.025030
H	-0.818957	1.829905	3.305587
H	0.969439	1.774254	3.290702
C	0.030495	0.278772	3.611598
C	-1.110931	2.911788	0.473576
C	-1.073609	4.180230	-0.103650
C	0.152864	4.780340	-0.391068
C	1.339341	4.114174	-0.080396
C	1.294835	2.846148	0.495800
H	2.228377	2.331726	0.762775
H	-2.075710	2.452290	0.725846
H	-2.009936	4.706347	-0.325455
H	0.184350	5.777468	-0.846830
H	2.307280	4.587787	-0.283942
C	-5.989985	-0.521026	-0.259413

Cycloadduct 4'-exo, PCM = THF
E₀ = -1432.956851
E (298 K) = -1432.931116
H (298 K) = -1432.930171
G (298 K) = -1433.013198
Imaginary frequencies = 0

Cartesian coordinates:

C	0.759111	0.296183	-0.328330
C	-0.750436	0.333905	-0.328166
C	0.028514	1.342256	0.489560
H	1.326010	0.629110	-1.206400
C	-1.298188	0.693384	-1.208006
C	0.066353	2.730152	-0.105387
C	0.022617	1.356105	2.008045
C	-0.005573	0.343059	2.430831
H	-0.860913	1.917402	2.363022
H	0.928686	1.873136	2.373074
C	1.290469	3.362041	-0.345479
C	1.329998	4.665761	-0.840195
C	0.141986	5.351986	-1.097387
C	-1.083632	4.729327	-0.855794
C	-1.119575	3.425436	-0.360791
H	-2.083400	2.933195	-0.169992
H	2.224273	2.819095	-0.142691
H	2.296368	5.149414	-1.027941
C -5.827114 -1.838554 0.200852
C -4.891474 0.253509 -0.628470
C -3.628578 -0.319884 -0.500341
C -3.465749 -1.628375 -0.444473
C -4.561464 -2.413195 0.305690
H -6.713978 -2.423400 0.472277
H -4.421356 -3.445556 0.647041
H -7.000422 -1.020566 -0.336944
H -5.007419 1.275979 -1.006555
C -2.297951 0.229808 -0.878786
C -2.015893 -1.996610 -0.062296
O -1.554857 -3.099157 0.880101
O -2.074840 1.142526 -1.638704
C -1.221263 -0.675701 -0.253476
N -0.045177 -0.731981 -1.091554
C 1.153767 -0.721041 -0.286875
C 2.236718 0.171625 -0.920003
C 1.934556 -2.056342 -0.138974
C 3.385183 -1.690322 -0.075198
C 3.560520 -0.378071 -0.517217
C 4.826428 0.195100 -0.609601
C 5.914776 -0.582517 -0.216787
C 5.739576 -1.903405 0.228325
C 4.471442 -2.478939 0.294396
H 4.323091 -3.514386 0.622696
H 6.926881 -0.163497 -0.263572
H 6.618802 -2.490567 0.518955
H 4.952978 1.220249 -0.977076
O 1.472201 -3.165712 -0.065604
O 2.020536 1.069933 -1.698365
H -0.036733 0.094162 -1.703070

H 0.171363 6.375929 -1.489086
H -2.020639 5.263220 -1.055913
C -5.772751 -1.271423 -1.118237
C -5.987676 -0.677970 0.137338
C -4.494555 -1.648769 -1.528597
C -3.439759 -1.400032 -0.650630
C -3.652526 -0.810505 0.594464
C -4.929952 -0.448150 1.015490
H -7.007314 -0.400429 0.430007
H -5.085939 -0.000799 2.004171
H -6.628579 -1.445651 -1.781160
H -4.314244 -2.125698 -2.496436
C -1.993653 -1.728506 -0.811503
C -2.361566 -0.728067 1.340059
O -2.241061 -0.544261 2.526887
O -1.507207 -2.444380 -1.650691
C -1.227673 -0.980128 0.311072
C -0.041373 -1.620051 0.845055
C 1.174457 -1.033908 0.320569
C 1.926963 -1.836290 -0.772231
C 2.312262 -0.801436 1.351189
C 3.598498 -0.893019 0.597306
C 3.374752 -1.500589 -0.637776
C 4.422619 -1.766322 -1.516082
C 5.704407 -1.383297 -1.124659
C 5.930195 -0.771379 0.119862
C 4.879866 -0.527919 1.003400
H 5.044871 -0.067912 1.984798
H 6.554639 -1.568462 -1.791807
H 6.952480 -0.490863 0.400202
H 4.235203 -2.259274 -2.477204
O 2.198086 -0.623042 2.539177
O 1.435759 -2.612731 -1.552677
H -0.061951 -2.633564 0.723832

Cycloadduct 4'-exo, PCM = THF
E0 = -1432.943661
E (298 K) = -1432.917789
H (298 K) = -1432.916845
G (298 K) = -1432.999548
Imaginary frequencies = 0

Cycloadduct 5a-endo, PCM = THF
E0 = -1853.360889
E (298 K) = -1853.281526
H (298 K) = -1853.280582
G (298 K) = -1853.362401
Imaginary frequencies = 0
Element	E0 (298 K)	E (298 K)	H (298 K)	G (298 K)
C	-0.044384	1.217683	2.946092	-1853.358476
H	-0.956998	1.785298	3.219833	-1853.302950
H	0.832013	1.817206	3.235489	-1853.277418
H	-0.037854	0.273202	3.519387	-1853.276474
C	-1.253162	2.912584	4.38569	-1853.58476
C	-1.267216	4.191487	-0.115365	-1853.298476
C	-0.065969	4.839478	-0.406133	-1853.250950
C	1.145975	4.210516	-0.118765	-1853.358476
H	1.153090	2.931296	0.434874	-1853.358476
H	2.106479	2.449867	0.688094	-1853.358476
H	-2.198629	2.415805	0.693016	-1853.358476
H	-2.224169	4.687843	-0.316964	-1853.358476
H	-0.074511	5.844679	-0.844979	-1853.358476
H	2.094588	4.721712	-0.322661	-1853.358476
C	-5.936594	-0.668027	-0.010068	-1853.358476
C	-5.704831	-1.994535	0.390598	-1853.358476
C	-4.892293	0.144163	-0.449840	-1853.358476
H	-3.609751	-0.398859	-0.451637	-1853.358476
C	-3.380010	-1.176579	-0.054777	-1853.358476
H	-4.422702	-2.540817	0.361706	-1853.358476
H	-6.550509	-2.609119	0.721316	-1853.358476
H	-4.231122	-3.580040	0.653795	-1853.358476
H	-6.959008	-0.272547	0.015048	-1853.358476
H	-5.063957	1.173973	-0.784904	-1853.358476
C	-2.325950	0.203392	-0.920518	-1853.358476
C	-1.932236	-2.042637	-0.225455	-1853.358476
O	-1.442075	-3.142370	-0.275967	-1853.358476
O	-2.205086	1.145756	-1.662238	-1853.358476
N	-1.185278	-0.685453	-0.364608	-1853.358476
N	0.020040	-0.643698	-1.148266	-1853.358476
N	1.212294	-0.652993	-0.341256	-1853.358476
N	2.337964	0.247452	-0.906830	-1853.358476
N	1.980525	-1.993542	-0.148220	-1853.358476
C	3.427577	-1.646390	-0.026061	-1853.358476
C	3.653588	-0.334693	-0.451931	-1853.358476
C	4.911667	0.222319	-0.482503	-1853.358476
C	5.972499	-0.570297	-0.046851	-1853.358476
C	5.762530	-1.891216	0.383853	-1853.358476
C	4.486018	-2.450694	0.390140	-1853.358476
H	4.309562	-3.484965	0.708223	-1853.358476
H	6.990796	-0.163545	-0.047469	-1853.358476
H	6.620868	-2.490098	0.711205	-1853.358476
H	5.065675	1.247866	-0.838409	-1853.358476
O	1.499665	-0.307942	-0.095026	-1853.358476
O	2.196629	1.184894	-1.651681	-1853.358476
H	0.034910	-1.297525	-1.929650	-1853.358476

Cycloadduct 5a-exo, PCM = THF

E0 = -1853.302950
E (298 K) = -1853.277418
H (298 K) = -1853.276474
G (298 K) = -1853.358476

TS-4-endo, PCM = THF

E0 = -1432.854105
E (298 K) = -1432.827609
H (298 K) = -1432.826665
G (298 K) = -1432.912343
Imaginary frequencies = 0

Cartesian coordinates:

C -6.094405 -0.340792 1.309732
C -6.431352 0.385572 0.154355
C -4.763718 -0.550462 1.664603
C -3.781957 -0.011895 0.835365
C -4.116109 0.708009 -0.312632
C -5.445576 0.919387 -0.672766
H -7.488801 0.531877 -0.095673
H -5.693534 1.487376 -1.576973
H -6.895541 -0.740762 1.938432
H -4.485193 -1.116720 2.560975
C -2.303073 -0.110327 0.976235
C -2.884046 1.170538 -1.008704
O -2.820524 1.861748 -1.996550
O -1.694170 -0.674316 1.852699
C -1.664725 0.601940 -0.244561
N -0.669047 1.623497 -0.034801
C 0.679022 1.110970 -0.026000
C 1.411546 0.836832 1.305404
C 1.698070 2.023142 -0.757659
C 3.031000 1.737969 -0.155324
C 2.866729 1.022653 1.032129
C 3.961182 0.590811 1.775387
C 5.231597 0.885408 1.281634
C 5.397868 1.161871 0.090755
C 4.297197 2.055190 -0.640769
H 4.412473 2.622877 -1.571592
H 6.118977 0.549712 1.831326
H 6.411502 1.835121 -0.264913
H 3.819015 0.028213 2.705710
O 1.448197 2.768786 -1.673791
O 0.893912 0.604002 2.370017
H 0.858000 2.160739 0.880653
H 0.241575 1.142050 -2.515256
C 0.083408 0.096680 -2.223729
H 2.800281 -0.738587 -2.362709
C 0.576339 -0.175306 -0.886775
C 2.696265 -1.391112 -1.484909
C 0.898241 -0.420146 -1.078077
H 4.566302 -2.422222 -1.821965
C 1.576075 -1.261089 -0.660636
C 3.683176 -2.328425 -1.178700
C 1.435868 -2.084159 0.463582
C 3.546621 -3.142095 -0.052700
Cl -1.578406 -2.046606 -1.168790
H 0.551417 -1.960725 1.105668

Imaginary frequencies = 1 (-334 cm⁻¹)

Cartesian coordinates:

C 0.698444 0.566230 -0.515273
C -6.00839 0.885874 -0.487107
C 0.289466 1.666593 0.451199
H 1.512161 0.407023 -1.229809
H -1.445810 1.076894 -1.154528
C 0.654427 3.074116 0.027570
C 0.219805 1.449695 1.954653
H -0.204286 0.469640 2.211240
H -0.436201 2.212589 2.413053
H 1.215713 1.522763 2.428911
H 1.055457 4.040882 0.960670
C 1.390546 5.339361 0.555700
C 1.327241 5.690735 -0.790811
C 0.931864 4.737839 -1.730653
C 0.603152 3.444914 -1.325137
H 0.297212 2.707760 -2.078451
H 1.112884 3.788057 2.025189
H 1.703242 6.071142 1.305879
H 1.587038 6.707964 -1.107684
H 0.878109 5.002961 -2.793905
C 5.596560 1.648394 0.079948
C 5.284117 2.058377 -1.223770
C 4.591621 -1.412131 1.021235
C 3.274806 -1.588093 0.612366
H 2.963240 -1.990906 -0.688807
C 3.957834 -2.241841 -1.624517
H 6.096466 -2.241227 -1.937205
H 3.699414 -2.571615 -2.637714
H 6.647389 -1.517814 0.364195
H 4.824172 -1.103097 2.046973
C 2.009758 -1.442688 1.386954
C 1.474892 -2.146881 -0.858166
C 0.924839 -2.695639 -1.782732
O 1.856848 -1.248969 2.576207
C 0.899483 -1.585304 0.400362
N -0.330523 -1.612482 0.918331
C -1.508372 -1.271657 0.404434
C -2.583254 -1.000955 1.400050
C -2.114020 -1.331921 -0.956619
C -3.563909 -0.985541 -0.733005
Cartesian coordinates:

C	-0.496720	-0.510664	1.553414
C	0.740526	0.008149	1.681609
C	-0.403258	0.928347	2.015979
H	-1.039294	-1.410327	1.859656
H	1.701143	-0.258273	2.129889
C	-0.807484	2.047031	1.087126
C	-0.667524	1.242131	3.486667
H	-1.741580	1.432373	3.666199
H	-0.112079	2.147852	3.792464
H	-0.352788	0.401559	4.128929
C	-2.139732	2.480872	1.049795
C	-2.522603	3.519885	0.204911
C	-1.579449	4.135281	-0.621938
C	-0.250555	3.715586	-0.585294
C	0.131946	2.687243	0.278864
H	1.180938	2.371260	0.335159
H	-2.889263	1.983902	1.681889
H	-3.569662	3.846845	0.180423
H	-1.883666	4.945243	-1.296069
H	0.500010	4.191670	-1.228662
C	-5.506667	-1.364826	-0.236061
C	-5.071445	-2.646566	0.129890
C	-4.600370	-0.392457	-0.665525
C	-3.254973	-0.738802	-0.695412
C	-2.819494	-2.013566	-0.324402
C	-3.718092	-2.991653	0.806036
TS-4'-exo, PCM = THF

$E_0 = -1432.846428$

E (298 K) = -1432.819824

H (298 K) = -1432.818879

G (298 K) = -1432.903497

Imaginary frequencies = 1 (-370 cm$^{-1}$)

![TS-4'-exo](image1)

Cartesian coordinates:

	C	H	O	H	C	C
X	-0.782949	-0.331563	1.617344			
Y	0.536760	-0.609659	1.640713			
Z	0.138380	0.803018	2.000433			

![TS-Ni-4, PCM = THF](image2)

TS-Ni-4, PCM = THF

$E_0 = -1432.955065$

E (298 K) = -1432.929575

H (298 K) = -1432.928631

G (298 K) = -1433.011232

Imaginary frequencies = 1 (-394 cm$^{-1}$)

![TS-Ni-4](image3)

Cartesian coordinates:

	C	H	O	H	C	C
X	0.762460	0.312875	-0.374916			
Y	-0.751914	0.348328	-0.375026			
Z	0.028084	1.351823	0.446614			
Element	C	H	O			
---------	---	---	---			
C	7	16	0			

TS-NI-4, PCM = THF

E₀	-1432.943535
E (298 K)	-1432.917975
H (298 K)	-1432.917031
G (298 K)	-1432.999297

Imaginary frequencies = 1 (-363 cm⁻¹)

TS-5a-end, PCM = THF

E₀	-1853.206823
E (298 K)	-1853.180966
H (298 K)	-1853.179752
G (298 K)	-1853.263107

Imaginary frequencies = 1 (-323 cm⁻¹)
Cartesian coordinates:

C 5.358432 -1.286081 -0.264136
C 5.171156 -0.331696 -1.273712
C 4.272946 -1.964785 0.295221
C 3.006120 -1.652413 -0.182626
C 2.820250 -0.698531 -1.187038
C 3.894012 -0.029067 -1.754479
H 6.043990 0.184581 -1.691138
H 3.731778 0.718644 -2.540093
H 6.373831 -1.502416 0.088415
H 4.406074 -2.714804 1.083696
C 1.677010 -2.171991 0.239070
C 1.359081 -0.548698 -1.515973
O 0.905764 0.023694 -2.479825
O 1.409800 -3.056357 1.032785
C 0.667371 -1.349589 -0.470515
N 0.065056 -1.702700 -0.282602
H 1.172047 -0.980715 -0.326512
C 2.927675 -1.629773 0.252735
C 2.133809 0.250400 -1.061100
C 3.625328 0.308437 -0.875683
C 4.081126 -0.758062 -0.096279
C 5.422332 -0.884953 0.246238
C 6.303351 0.090700 -0.224453
C 5.845673 1.161426 -1.006309
C 4.494504 1.287616 -1.337480
C 4.119801 2.124289 -1.938714
C 7.369666 0.022850 0.020829
H 6.653028 1.912232 -1.358289
H 5.766469 -1.723531 0.862586
O 1.460903 1.092925 -1.608666
H 2.906172 -2.665794 0.888024
H 0.712945 -2.563711 0.285526
H 0.277993 -1.501152 2.138275
C 0.152666 -0.413466 2.305490
C 2.892047 0.288674 2.353998
C 0.446848 0.439730 1.209424
C 2.814485 1.087590 1.604795
C 0.877780 0.529054 1.411703
H 4.855033 1.751405 1.847676
C 1.601930 1.282203 0.930330
C 3.907037 1.902939 1.317154
C 1.494469 2.283747 -0.047142
C 3.799095 2.901890 0.347062
Cl -2.023837 1.801002 1.599109
H 0.545382 2.396775 -0.589042
Cartesian coordinates:

Atom	x	y	z
C	-18.962791	3.894757	2.151659
C	-18.746329	2.516511	2.294922
C	-17.913297	4.758441	1.831909
C	-16.651927	4.199359	1.665223
C	-16.434655	2.827736	1.810885
C	-17.475296	1.962927	2.122265
H	-19.592003	1.864950	2.545029
H	-17.292444	0.887025	2.226162
H	-19.973092	4.296498	2.292082
H	-18.068653	5.837203	1.715149
C	-15.360030	4.855577	1.334300
C	-14.993677	2.475658	1.559622
O	-14.551886	1.353124	1.469379
O	-15.133280	6.016543	1.062020
C	-14.311423	3.792753	1.416837
N	-13.096928	4.187166	1.035689
C	-11.871524	3.738465	1.293650
C	-10.797867	4.764005	1.156309
C	-11.240927	2.414348	1.529769
C	-9.780920	2.731868	1.721022
C	-9.523780	4.087979	1.508532
C	-8.253667	4.624731	1.671177
C	-7.230942	3.752510	2.052084
C	-7.484777	2.389183	2.257015
C	-8.767951	1.858947	2.092333
H	-8.981331	0.795905	2.255315
H	-6.213755	4.136390	2.193546
H	-6.660222	1.729896	2.553621
H	-8.072770	5.694485	1.512671
O	-11.725075	1.303911	1.568307
Element	X	Y	Z
---------	-----------	-----------	-----------
O	-10.997064	5.924591	0.855875
H	-13.082564	5.204218	0.817336
H	-13.178547	1.616532	3.341860
C	-13.122178	2.427271	4.087528
H	-10.172537	2.659402	4.880225
C	-12.376802	3.703551	3.759951
C	-10.131505	3.753847	4.803719
C	-13.721250	3.757364	3.740777
H	-8.165853	3.914492	5.683168
C	-11.218290	4.441663	4.245479
C	-9.013134	4.457050	5.246333
C	-11.171127	5.839743	4.128031
C	-8.965688	5.846741	5.120038
Cl	-14.890952	4.810445	4.464226
H	-12.020727	6.371931	3.679032
C	-10.044864	6.535612	4.559577
H	-8.080723	6.398598	5.459256
H	-10.008582	7.627029	4.460069
H	-13.111290	2.098020	5.142205
References

1. Moore, S.; Stein, W. H. J. Biol. Chem. 1948, 176, 367–388.

2. Wigfield, D. C.; Buchanan, G. W.; Croteau, S. M. Can. J. Chem. 1980, 58, 201–205.

3. Breslow, D.; Dowd, P. J. Am. Chem. Soc. 1963, 85, 2729–2735.

4. Longone, D. T.; Stehouwer, D. M. Tetrahedron Lett. 1970, 11, 1017–1019.

5. Padwa, A.; Blacklock, T. J.; Getman, D.; Hatanaka, N.; Loza, R. J. Org. Chem. 1978, 43, 1481–1492.

6. Gilbertson, R. D.; Weakley, T. J. R.; Haley, M. M. J. Org. Chem. 2000, 65, 1422–1430.

7. White, E. H.; Winter, R. E. K.; Graeve, R.; Zirngibl, U.; Friend, E. W.; Maskill, H.; Mende, U.; Kreiling, G.; Reisenauer, H. P.; Maier, G. Chem. Ber. 1981, 114, 3906–3915.

8. Jones, W. M.; Stowe, M. E.; Wells, Jr., E. E. J. Am. Chem. Soc. 1968, 90, 1849–1859.

9. Rubin, M.; Gevorgyan, V. Synthesis 2004, 796–800.

10. Alnasleh, B. K.; Sherrill, W. M.; Rubin, M. Org. Lett. 2008, 10, 3231–3234.

11. Henseling, K.-O.; Weyerstahl, P. Chem. Ber. 1975, 108, 2803–2808.

12. Lin, H.-C.; Tsai, R.-T.; Wu, H.-P.; Lee, H.-Y.; Lee, G.-A. Tetrahedron 2016, 72, 184–191.

13. Lee, G.-A.; Chang, C.-Y. Tetrahedron Lett. 1998, 39, 3013–3016.

14. Binger, P.; Wedemann, P.; Goddard, R.; Brinker, U. H. J. Org. Chem. 1996, 61, 6462–6464.

15. Peveratti, R.; Truhlar, D. G. J. Phys. Chem. Lett. 2011, 2, 2810–2817.

16. Dunning, T. H. J. Chem. Phys. 1989, 90, 1007–1023.

17. Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. J. Comput. Chem. 2003, 24, 669–681.

18. Schlegel, H. B. J. Comput. Chem. 1982, 3, 214–218.

19. Fukui, K. J. J. Phys. Chem. 1970, 74, 4161–4163.

20. Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.;
Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ő.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision C.01; Gaussian: Wallingford CT, 2013.