Dissipation, correlation and lags in heat engines

Michele Campisi1 and Rosario Fazio1,2

1NEST, Scuola Normale Superiore & Istituto Nanoscienze-CNR, I-56126 Pisa, Italy
2ICTP, Strada Costiera 11, I-34151 Trieste, Italy

E-mail: michele.campisi@sns.it

Received 17 March 2016, revised 7 June 2016
Accepted for publication 24 June 2016
Published 18 July 2016

Abstract

By modelling heat engines as driven multi-partite system we show that their dissipation can be expressed in terms of the lag (relative entropy) between the perturbed state of each partition and their equilibrium state, and the correlations that build up among the partitions. We show that the non-negativity of the overall dissipation implies Carnot formulation of the second law. We illustrate the rich interplay between correlations and lags with a two-qubit device driven by a quantum gate.

Keywords: heat engine, quantum thermodynamics, quantum information

(Some figures may appear in colour only in the online journal)

1. Introduction

Quantum thermodynamics, the discipline that studies the impact of the laws of quantum mechanics on the transduction of work into heat (and vice versa) in the microscopic domain, is currently undergoing a fast and intense development \cite{1–6}. One of its main objectives concerns the understanding of quantum thermal machines: their underlying functionalities, mode of operation, bounds that limit their performance, as well as the conception and experimental realisation thereof.

Among the recent advancements in the field of non-equilibrium (classical and quantum) thermodynamics \cite{7, 8}, the fluctuation relation for heat engines \cite{9–11} establishes the microscopic conditions under which a generic heat engine cannot have an efficiency overcoming the Carnot efficiency. In its essence a heat engine can be imagined composed by a working substance and two (or more) thermal reservoirs. The whole system can be modelled as a driven multi-partite system starting in a factorised state \cite{10, 11}.
Here H_i includes both the Hamiltonian of bath i, H_{iB}, and possibly the Hamiltonian H_{iWS} of one sub-part (part i) of the working substance (as well as their mutual interactions), see figure 1, panel (b) (although we use a quantum notation, the theory developed in this paper applies unaltered in classical mechanics). Machines that seem to achieve efficiencies larger than Carnot’s can be conceived when the above modelling does not apply, e.g., when the initial state contains non-factorisable correlation terms, coherences $^{[12]}$, or if it contains non-thermal states, e.g., squeezed thermal states $^{[13]}$. Here we continue the investigation of heat engines along the lines set in $^{[10, 11]}$ and study the sources of dissipation in a heat engine by analysing the non-equilibrium behaviour of a generic driven multi-partite system. In the case of a mono-partite system prepared in a thermal state one of the cornerstones of modern non-equilibrium thermodynamics establishes that the total dissipation during the driving can be quantified by means of an information theoretic quantity, namely the relative entropy $D[\rho_t || \rho_{eq}^0]$ between the off-equilibrium state ρ_t, i.e. the time evolved of ρ_0^0, and the corresponding equilibrium $\rho_{eq}^t = e^{-\beta H(\lambda_t)} / Z(\lambda_t, \beta)$ $^{[14–16]}$:

$$\beta W_{\text{diss}} = D[\rho_t || \rho_{eq}^0].$$

Here $H(\lambda_t)$ is the systems Hamiltonian depending on a time-dependent parameter λ_t, $W_{\text{diss}} = \langle W \rangle - \Delta F$, is the average dissipated work with $\langle W \rangle$ the average work and ΔF, the free energy difference between the initial state ρ_0^0 and the reference thermal state ρ_{eq}^0 at time t.

Figure 1. Panel (a): sources of dissipation in a multipartite system. During the drive the state of each subsystem (empty disks) lags (solid line) behind the reference equilibrium (filled disks), and develops correlations (dashed lines) with the other subsystem. Panel (b): a heat engine working with two reservoirs is modelled as a bipartite system starting in the factorised initial state (1).

$$\rho_0 = \frac{e^{-\beta_1 H_1}}{Z_1} \otimes \frac{e^{-\beta_2 H_2}}{Z_2} \otimes \cdots \otimes \frac{e^{-\beta_N H_N}}{Z_N}.$$

(1)
This relation has been useful for analysing and understanding fundamental questions such as the Landauer principle [14, 17].

Here we generalise equation (2) to the case of a multipartite system in contact with many baths. The corresponding expression, our first main result, reads

\[\sum_i \beta_i W_{i, \text{diss}}^i = \sum_i D[\rho_i^t||\rho_i^{\text{eq}}] + I[\rho_i], \]

where \(W_{i, \text{diss}} \) is the work dissipated in each part, and \(D[\rho_i^t||\rho_i^{\text{eq}}] \) denotes the relative entropy between the reduced density matrix of part \(i \), \(\rho_i^t \), and its the reference equilibrium state \(\rho_i^{\text{eq}} \). Most remarkably, besides the lags \(D[\rho_i^t||\rho_i^{\text{eq}}] \), another term \(I[\rho_i] \) occurs in equation (3) which is the total correlation among all the parts composing the system, (that is the mutual information in the case of bi-partite system) [18]. In a multipartite system there are two sources of dissipation: the lag of each subsystem with respect to its equilibrium and the correlation which builds up among the parts. Equation (3) is illustrated in figure 1, panel (a). That correlation is a source of dissipation was established previously in [19], which focussed on an open system, starting in a generic state, and identified entropy production with the system bath correlations. The present work thus unifies the result of Esposito et al [19] with equation (2).

In the specific case when the driven multi-partite system is a heat engine working with \(N \) reservoirs equation (3) implies our second main result

\[\beta_{\text{max}} W_{\text{out}}^t \delta \eta \geq \sum_i D[\rho_i^t||\rho_i^{\text{eq}}] + I[\rho_i], \]

where \(\delta \eta = \eta^C/\eta - 1 \) is the relative deviation of the heat engine’s efficiency from Carnot’s efficiency \(\eta^C = 1 - \beta_{\text{min}}/\beta_{\text{max}} \) and \(W_{\text{out}} \geq 0 \) is the heat engine’s output work. Here \(\beta_{\text{min}}, \beta_{\text{max}} \) are the smallest and largest among the inverse temperatures of all reservoirs.

Equation (4) has far-reaching consequences for the microscopic theory of heat engines (i) no quantum (nor classical) thermal machine can overcome Carnot efficiency. This is a consequence of the fact that the rhs of equation (4) is non-negative. (ii) Carnot efficiency can only be reached at zero work output. We shall detail both points below.

We further illustrate the main result of this work by considering an experimentally feasible quantum engine based on a double qubit, undergoing gate operations [11]. This example also helps shading light onto the question of what is the role of correlations in quantum thermodynamics, a topic of great current interest [20–23]. As we shall see depending on whether one looks at efficiency or work, correlations can be either an obstacle or a help.

2. Dissipation in driven multi-partite systems

Consider a driven multipartite system:

\[H(t) = H_1(t) + H_2(t) + \ldots + H_N(t) + V(t) \]

\(H_i(t) \) denotes the time dependent Hamiltonian of subsystem \(i \), while \(V(t) \) denotes a time dependent coupling among the subsystems. The driving consists in the temporal sequence \(t \) between \(t = 0 \) and \(t = \tau \). The coupling \(V \) is assumed to vanish for all times \(t \notin (0, \tau) \), so that the driving moves the Hamiltonian from \(H(0) = \sum_i H_i(0) \) to \(H(\tau) = \sum_i H_i(\tau) \). Let us
assume that at $t = 0$ each subsystem is prepared in a thermal equilibrium at inverse temperature β_i and is uncorrelated from the other sub-systems:

$$\rho_0 = \bigotimes_{i=1}^{N} \rho_{i,0}^{\text{eq}}, \quad \rho_{i,0}^{\text{eq}} = \frac{e^{-\beta_i H_i(0)}}{Z_i(0)}$$

with $Z_i(0) = \text{Tr} e^{-\beta_i H_i(0)}$ being the partition functions. Let

$$\rho_t = U_t \rho_0 U_t^\dagger, \quad \rho_{i,t} = \text{Tr}_i' \rho_t$$

be the state of the full system and of each subsystem at time t, as resulting from the evolution U_t generated by the full Hamiltonian $H(t)$. The symbol Tr_i' denotes trace over all subsystems except subsystem i. The energy dissipation in subsystem i is given by:

$$W^{\text{diss}}_i = \text{Tr}_i [H_i(r) \rho_{i,r} - H_i(0) \rho_{i,0}^{\text{eq}}] - \Delta F_i,$$

where

$$\Delta F_i = -\beta_i^{-1} \ln \frac{Z_i(\tau)}{Z_i(0)}.$$

Consider now the reference thermal equilibrium of subsystem i corresponding to the value $H(t)$ of its Hamiltonian

$$\rho_{i,\text{eq}} = \frac{e^{-\beta_i H_i(t)}}{Z_i(t)}.$$

This is the state that subsystem i would reach if at time t one would turn off the coupling V, freeze the subsystem Hamiltonian to $H_i(t)$, weakly couple the system with a thermal bath at temperature β_i and let the system relax to thermal equilibrium. Solving equation (10) for $\beta_i H_i(t)$ and plugging into (8) one finds

$$\beta_i W^{\text{diss}}_i = -\text{Tr}_i \rho_{i,r}^\dagger \ln \rho_{i,r}^{\text{eq}} + \text{Tr}_i \rho_{i,0}^{\text{eq}} \ln \rho_{i,0}^{\text{eq}}$$

adding and subtracting the quantity $\text{Tr}_i \rho_{i,r}^\dagger \ln \rho_{i,r}$, and summing over i one obtains

$$\sum_i \beta_i W^{\text{diss}}_i = \sum_i D[\rho_{i,r}^\dagger || \rho_{i,\text{eq}}^{\text{eq}}] + \sum_i \Delta S_i,$$

where $\Delta S_i = S[\rho_{i,r}] - S[\rho_{i,0}^{\text{eq}}]$ denotes the change in von-Neumann information (\(S[\sigma] = -\text{Tr} \sigma \ln \sigma\)) of sub-system i from time 0 to time t. Note that if the evolution taking $\rho_{i,0}^{\text{eq}}$ to $\rho_{i,r}$ were unitary, then the change in von Neumann information ΔS_i would be null. This happens if the system consists of a single subsystem (i.e. if $N = 1$), in which case one recovers the known result in (2). For $N > 1$ however the evolution of each reduced density matrix may be non-unitary, and this can in general lead to non-null von Neumann information changes ΔS_i. The last step of our argument consists in proving that

$$\sum_i \Delta S_i = I[\rho_r] = \sum_i S[\rho_{i,r}^\dagger] - S[\rho_{i,0}]$$

which in turn implies equation (3). To this end recall that the von Neumann information of the tensor product of several density matrices is the sum of the individual von Neumann informations. Therefore, since the initial state is factorised, equation (6), then

$$\sum_i S[\rho_{i,0}^{\text{eq}}] = S[\rho_0].$$

But, due to the unitarity of the evolution of the full density matrix, it is $S[\rho_0] = S[\rho_r]$ hence $\sum_i \Delta S_i = \sum_i S[\rho_{i,r}^\dagger] - \sum_i S[\rho_{i,0}^{\text{eq}}] = \sum_i S[\rho_{i,r}^\dagger] - S[\rho_{i,0}]$, that is $I[\rho_r]$. Note that the total correlation $I[\rho_r]$ is non-negative: the system starts in a factorised, i.e.
uncorrelated state, and in the course of time, the evolution can only increase the correlation. The more the correlation established within the parts, the more the total dissipation³.

3. Application to heat engines

Equation (3) has deep consequences in assessing the performance of thermal machines (large and small alike, classical or quantum). In this respect it is worth remarking that the whole argument presented above can be repeated within the formalism of classical Hamiltonian mechanics, with density matrices replaced by Liouville densities in phase space and traces replaced by phase space integrals. The crucial assumption is that most thermal machines can be understood as multi-partite systems initially staying in an uncorrelated product of N thermal states at different temperatures, and undergoing, as a whole, a unitary process. Consider for example the textbook Carnot engine. A device, which can range from a macroscopic gas in a box to a single two level system, is initially in thermal contact and equilibrium with a bath at temperature T_1, and is neither in contact nor correlated with a second bath at temperature T_2. The device plus bath at T_1 forms subsystem 1, with Hamiltonian H_1 initially staying at $\rho_0^{\text{eq}} = e^{-\beta_1 H_1}/Z_1$. The bath at temperature T_2 forms subsystem 2 with Hamiltonian H_2 and initially staying at $\rho_0^{2,\text{eq}} = e^{-\beta_2 H_2}/Z_2$. The initial state of the bipartite system is the factorised state in equation (6). Next a number of manipulations acting on the system and on the coupling with the heat reservoirs, are performed on the total Hamiltonian. This process fits within the general scheme presented above. In general any other thermal machine that can be modelled as a driven open system operating between various thermal baths can be modelled with our general scheme as well.

For a heat engine that works in a cycle between N reservoirs, the final Hamiltonian $H(t)$ coincides with the initial Hamiltonian $H(0)$. In this case equation (3) simplifies into:

$$\sum_i \beta_i \langle \Delta E_i \rangle = \sum_i D[\rho_i^{\text{eq}}][\rho_i^{\text{eq}}] + I[\rho_i],$$

where $\langle \Delta E_i \rangle = \text{Tr}_i H_1(0)[\rho_i^{\text{eq}} - \rho_i^{\text{eq}}]$ is the energy that remains stored in subsystem i after the driving is over. Note that under the assumption that at the end of the driving the working substance stores no energy or a negligible amount thereof, and assuming all device-baths coupling are weak, $\langle \Delta E_i \rangle$ can be understood as the negative heat Q_i that has been given away by bath i, $\langle \Delta E_i \rangle = -Q_i$. Also the sum $\sum_i \langle \Delta E_i \rangle$ quantifies the total energy injected $\langle W \rangle$ into the full system, i.e., the negative work output

$$\langle W \rangle = \sum_i \langle \Delta E_i \rangle = -W_{\text{out}}.$$

In order to obtain equation (4) we group the $\langle \Delta E_i \rangle$’s according to their sign:

$$\langle \Delta E_1 \rangle \ldots \langle \Delta E_i \rangle < 0 \quad \langle \Delta E_{i+1} \rangle \ldots \langle \Delta E_N \rangle \geq 0.$$

Accordingly the total heat input (i.e. the total heat given away by the baths), heat output (i.e. the heat taken by the baths) and work output are respectively

We notice the interesting fact that the sum of lags and correlations can also be expressed as a lag in the full Hilbert space $\sum_i D[\rho_i][\rho_i^{\text{eq}}] + I[\rho]$ (this is not true in general but depends on the initial state being that of equation (6)), hence the multi-partite version of equation (2) can also be written $\sum_i \beta_i W_{\text{diss}}^{(i)} = D[\rho_i][\rho_i^{\text{eq}}]$, which is not immediately evident.
We assume $W_{\text{out}} > 0$, i.e., heat engine operation. The efficiency is accordingly $\eta = W_{\text{out}} / Q_{\text{in}} > 0$. Within each group of reservoirs we now arrange the inverse temperatures in increasing fashion:

$$\beta_1 < \cdots < \beta_i, \quad \beta_{i+1} < \cdots < \beta_N$$

Note that no ordering is assumed between the two groups. We have

$$\sum_i \beta_i \langle \Delta E_i \rangle \leq \beta_1 \sum_{i=1}^I \langle \Delta E_i \rangle + \beta_N \sum_{i=I+1}^N \langle \Delta E_i \rangle$$

$$= - \beta_1 Q_{\text{in}} - \beta_N Q_{\text{out}}$$

$$= - \beta_1 Q_{\text{in}} - \beta_N (W_{\text{out}} - Q_{\text{in}})$$

$$= - \beta_N W_{\text{out}} \left(1 - \frac{(\beta_N - \beta_i) Q_{\text{in}}}{\beta_N W_{\text{out}}} \right)$$

$$= \beta_N W_{\text{out}} \left(\eta - 1 \right),$$

where $\eta^{1-N} = 1 - \beta_i / \beta_N$. Carnot efficiency is given by $\eta^C = 1 - \beta_{\text{min}} / \beta_{\text{max}}$, where β_{min} and β_{max} are the smallest(largest) among all β_is, i.e., with the ordering in equation (20), $\beta_{\text{min}} = \min \{ \beta_i, \beta_i+1 \}$, $\beta_{\text{max}} = \max \{ \beta_i, \beta_N \}$. This implies $\eta^{1-N} \leq \eta^C$, hence, using (21) and the definition $\delta \eta = \eta^C / \eta - 1$, we obtain

$$\sum_i \beta_i \langle \Delta E_i \rangle \leq \beta_N W_{\text{out}} \delta \eta.$$

Equation (4), follows from equation (14) and $\beta_{\text{max}} \geq \beta_N$. Note that by virtue of equation (21), our assumption $W_{\text{out}} > 0$ is compatible with equation (14) (which implies $\sum_i \beta_i \langle \Delta E_i \rangle \geq 0$) only if $\beta_1 < \beta_N$. That is heat engine operation is possible only if the hottest of the reservoirs that give energy away is hotter than the coldest of the reservoirs that gain energy. We remark that these do not necessarily coincide with the hottest and coldest of all reservoirs.

In the specific case when $N = 2$, the inequality in (4) reduces to an equality

$$\beta_2 W_{\text{out}} \delta \eta = D[\rho_1 || \rho_0^{\text{eq}}] + D[\rho_0^{\text{eq}} || \rho_2] + I[\rho_1]$$

and heat engine operation ($W_{\text{out}} > 0$) is only possible if $\beta_1 < \beta_2$, i.e., if the hot bath gives energy away and the cold one takes it.

It follows from the fact that the expression on the rhs of equation (4) is non-negative that if, as assumed above, $W_{\text{out}} > 0$ then it is $\delta \eta \geq 0$, which implies $\eta \leq \eta^C$. That is no heat engine can overcome the Carnot efficiency. A similar conclusion can be drawn for refrigerators (see appendix).

Equation (4) has however much deeper and stronger implications. Can Carnot efficiency coexist with finite work output? At vanishing Carnot efficiency the left-hand side of equation (4) vanishes. Since the right-hand side is the sum of three non-negative terms, each of them must vanish at vanishing Carnot efficiency. Recall that the relative entropy $D[||\cdot|\cdot]$ only vanishes when its two arguments are identical. This implies that as Carnot efficiency is
approached $\rho_{\tau} \rightarrow \rho_{0}^{\text{eq}}$. Hence $\langle \Delta E_i \rangle \rightarrow 0$ and $\sum_i \langle \Delta E_i \rangle = \langle W \rangle \rightarrow 0$. This implies a very strong result: any machine working arbitrarily close to Carnot efficiency delivers/absorbs vanishing heat and work. This seems to contrast with the textbook knowledge that the Carnot engine delivers a finite work (given by the non-null area enclosed by the cycle in the $S-T$ plane). To reconcile these two apparently incompatible facts notice that we have modelled the evolution of the engine as a global unitary U that involves both working substance and baths, and changes not only the state of the working substance but that of the bath as well. If one assumes the latter to have an infinite heat capacity so as to be resilient to the external action, as is implied in the textbook treatment, the work is then indeed infinitesimally small when compared to the infinite energy stored in the bath4.

4. Two-qubit engine

We consider the experimentally feasible two-qubit engine described in [11] and first introduced in [25], see figure 2. Two uncoupled qubits are prepared each in thermal equilibrium with a distinct reservoir. Between time $t = 0$ and $t = \tau$ the two qubits are coupled to each other by means of coupling $V(t)$ and the coupling with their respective reservoirs is sufficiently weak that we can assume they evolve unitarily. Hence we can apply the theory developed above to the small Hilbert space of the two qubits, rather than the total qubits plus reservoirs. This allows for a drastic simplification. The Hamiltonian of the two qubits reads:

4 In a separate work [24] we have addressed how one can asymptotically approach the Carnot point at finite power per number of constituents of the working substance.
\[H(t) = H_1 + H_2 + V(t) = \frac{\omega_1}{2}\sigma_z^1 + \frac{\omega_2}{2}\sigma_z^2 + V(t) \] (24)

with \(\sigma_z^i \) the Pauli matrices. After the coupling is applied each qubit is in an out of equilibrium state, and is then allowed to relax to thermal equilibrium with its own thermal bath for a sufficient time \(\tau_{\text{relax}} \) so that the initial state is restored and the cycle is completed\(^5\). The energies \(\langle \Delta E \rangle \) delivered to each qubit during the drive equal the negative heat \(Q_i \) transferred from their respective reservoir during the relaxation step.

It is known \([11]\) that heat engine operation is achieved for \(\beta_1/\beta_2 \leq \omega_2/\omega_1 \leq 1 \) irrespective of the temperatures of the two reservoirs and that the maximal efficiency that can be achieved is \(\eta = 1 - \omega_2/\omega_1 \). The maximal efficiency is achieved by any partial swap operation, that is a rotation in the subspace spanned by the states \(|+\rangle, |-\rangle\). Among all partial swaps, full swaps (that operations that map \(|+\rangle \) into \(|-\rangle \) (modulo a phase) and vice versa) achieve maximal work output. This behaviour can now be understood in terms of equation \((4)\): among all partial swaps, full swaps produce no correlation.

It is also known \([11]\) that at Carnot efficiency (i.e., when \(\omega_2/\omega_1 \to \beta_1/\beta_2 \)) the work output vanishes. This is now understood on the basis of equation \((23)\). It is worth emphasising that correlation and lags are not independent on each other because they are both functions of \(\rho_z \). This gives rise to a rich interplay between the two sources of dissipation. To get an insight into this interplay we consider the following gate operation:

\[U = U_{\text{SWAP}}(\theta_1) \cdot U_{\text{CNOT}}(\theta_2), \] (25)

where \(U_{\text{CNOT}}(\theta_2) \) is a partial CNOT gate, that is a rotation of an angle \(\theta_2 \) in the space spanned by \(|+\rangle, |-\rangle\), followed by a partial swap \(U_{\text{SWAP}}(\theta_1) \), that is a rotation in the space spanned by \(|-\rangle, |+\rangle\).

Figure 3 presents contour plots of work and efficiency as a function of \(\theta_1 \) and \(\theta_2 \). It also shows how the ratio

\[R[\rho_z] = \frac{I[\rho_z]}{D[\rho_z]} + D[\rho_z^0] + D[\rho_z^2] \] (26)

of correlation over lags behave at fixed work and efficiency. The plots highlight how at fixed efficiency the lesser the relative strength of correlations, as compared to lags, the more the work output. Vice versa, at fixed work output, the higher the relative strength of correlations the higher the efficiency. This evidences the very remarkable fact that the build-up of correlations do not necessarily represent a thermodynamic cost. Whether it does so may depend on whether one is interested in the work output or the efficiency. By comparison of the two contour plots it is also possible to see that not necessarily an increase in work output is accompanied by a decrease in efficiency. It is in fact possible to draw curves in the \((\theta_1, \theta_2)\) plane where they both increase (not shown). A similar occurrence has been recently noticed in \([26]\).

5. Conclusions

We have identified correlations and lags as the two sources of dissipation in driven multipartite systems, (equation \((4)\)). In the case of heat engines, this implies the inequality \((4)\), concerning the product of deviation from Carnot’s efficiency and the work output. The interplay of lags and correlations is illustrated with a two-qubit engine driven by a partial

\(^5\) Operation with partial thermalisation is also possible. In such cases coherences may survive. See \([23]\) for a thorough discussion of the role of coherences in similar devices.
CNOT-SWAP gate. The example shows that correlation build up is not necessarily a thermodynamic cost. It can depend on whether one looks at work or efficiency.

Acknowledgments

This research was supported by Unicredit, by the 7th European Community Framework Programme under grant agreements n. 623085 (MC-IEF-NeQuFlux), n. 600645 (IP-SIQS), n. 618074 (STREP-TERMIQ) and by the COST action MP1209 ‘Thermodynamics in the quantum regime’.
Appendix. Refrigerator case

We derive here the counterpart of equation (22) for the case of refrigerators. We keep the grouping and ordering of section 3, but now we assume \(W_{\text{out}} < 0 \). We also assume \(\beta_1 > \beta_N \), that is, we assume a full ordering:

\[
\beta_{i+1} < \cdots < \beta_N < \beta_1 < \cdots < \beta_i.
\]

(A1)

This means that the whole set of reservoirs which give heat away (labels from 1 to \(l \)) is colder than the whole set of reservoirs that take heat in (labels from \(l+1 \) to \(N \)). We thus exclude cases where heat goes from hot to cold. Under these assumptions the cooling efficiency is given by \(\eta_{\text{cool}} = -Q_{\text{in}}/W_{\text{out}} \), and the cooling Carnot efficiency \(\eta_{\text{cool}}^C \) is given by the usual expression \(T_{\text{cool}}/(T_{\text{hot}} - T_{\text{cool}}) \), calculated for the smallest temperature ratio between the two sets of reservoirs (that is for reservoirs \(1 \) and \(N \)), namely

\[
\eta_{\text{cool}}^C = T_1/(T_N - T_1) = \beta_N/\beta_1 - \beta_N).
\]

We have:

\[
\sum_i \beta_i \langle \Delta E_i \rangle \leqslant \beta_1 \sum_{i=1}^{l} \langle \Delta E_i \rangle + \beta_N \sum_{i=l+1}^{N} \langle \Delta E_i \rangle = -\beta_1 Q_{\text{in}} - \beta_N Q_{\text{out}} = -\beta_1 Q_{\text{in}} - \beta_N (W_{\text{out}} - Q_{\text{in}}) = -\beta_N W_{\text{out}} \left(1 - \frac{(\beta_1 - \beta_N) - Q_{\text{in}}}{\beta_N} \right) = \beta_N W_{\text{out}} (\eta_{\text{cool}}/\eta_{\text{cool}}^C - 1)
\]

which extends equation (22) to the refrigerator case. Since \(\sum_i \beta_i \langle \Delta E_i \rangle \geqslant 0 \), \(W_{\text{out}} < 0 \), and \(\beta_1 > \beta_N \), equation (A2) implies \(\eta_{\text{cool}} \leqslant \eta_{\text{cool}}^C \) that is the refrigerator efficiency is bounded by the Carnot efficiency.

References

[1] Benenti G, Casati G, Prosen T and Saito K 2013 arXiv:1311.4430
[2] Kosloff R and Levy A 2014 Annu. Rev. Phys. Chem. 65 365
[3] Vinjanampathy S and Anders J 2015 arXiv:1508.06099
[4] Goold J, Huber M, Riera A, del Rio L and Skrzypczyk P 2015 J. Phys. A: Math. Theor. 49 143001
[5] Gelbwaser-Klimovsky D, Niedenzu W and Kurizki G 2015 Advances In Atomic, Molecular, and Optical Physics vol 64 (New York: Academic), pp 329–407
[6] Millen J and Xuereb A 2016 New J. Phys. 18 011002
[7] Esposito M, Harbola U and Mukamel S 2009 Rev. Mod. Phys. 81 1665
[8] Campisi M, Hänggi P and Talkner P 2011 Rev. Mod. Phys. 83 771
[9] Campisi M, Hänggi P and Talkner P 2011 Rev. Mod. Phys. 83 1653
[10] Sinitsyn N A 2011 J. Phys. A: Math. Theor. 44 405001
[11] Campisi M 2014 J. Phys. A: Math. Theor. 47 245001
[12] Campisi M, Pekola J and Fazio R 2015 New J. Phys. 17 035012
[13] Scully M O, Zubairy M S, Agarwal G S and Walther H 2003 Science 299 862
[14] Roßnagel J, Abah O, Schmidt-Kaler F, Singer K and Lutz E 2014 Phys. Rev. Lett. 112 030602
[15] Vaikuntanathan S and Jarzynski C 2009 Europhys. Lett. 87 60005
[16] Deffner S and Lutz E 2010 Phys. Rev. Lett. 105 170402
[17] Berut A, Arakelyan A, Petrosyan A, Ciliberto S, Dillenschneider R and Lutz E 2012 Nature 483 187
[18] Lindblad G 1973 Commun. Math. Phys. 33 305
[19] Esposito M, Lindenberg K and den Broeck C 2010 New J. Phys. 12 013013
[20] Correa L A, Palao J P, Alonso D and Adesso G 2014 Sci. Rep. 4 3949
[21] Apollaro T J G, Francica G, Paternostro M and Campisi M 2015 Phys. Scr. 2015 014023
[22] Huber M, Perarnau-Llobet M, Hovhannisyan K V, Skrzypczyk P, Klöckl C, Brunner N and Acín A 2015 New J. Phys. 17 065008
[23] Uzdin R, Levy A and Kosloff R 2015 Phys. Rev. X 5 031044
[24] Campisi M and Fazio R 2016 Nat. Commun. 7 11895
[25] Quan H, Liu Y-x, Sun C and Nori F 2007 Phys. Rev. E 76 031105
[26] Raz O, Subaşı Y and Pugatch R 2016 Phys. Rev. Lett. 116 160601