Assuring Safety and Quality in Image Guided Delivery of Radiation Therapy

David A. Jaffray, Ph.D.a, Katja M. Langen, Ph.D.b, Gikas Mageras, Ph.D.c, Laura A. Dawson, M.D.d, Di Yan, D.Sc.e, Robert Adams, Ed.D.f, Arno J. Mundt, M.D.g, Benedick Fraass, Ph.D.h

a Radiation Medicine Program, Princess Margaret Cancer Centre, Princess Margaret Hospital, Toronto, Ontario, Canada
b Department of Radiation Oncology, MD Anderson Cancer Center, Orlando, Florida
c Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York
d Department of Radiation Oncology, University of Toronto, Princess Margaret Hospital, Toronto, Ontario, Canada
e Department of Radiation Oncology, Beaumont Health System, Detroit, Michigan
f Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina
g Department of Radiation Medicine and Applied Sciences, Moores University of California - San Diego, La Jolla, California
h Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California

Conflict of Interest Disclosure Statement:

Before initiation of this white paper all members of the White Paper Task Group were required to complete disclosure statements. These statements are maintained at the American Society for Radiation Oncology (ASTRO) Headquarters in Fairfax, VA and pertinent disclosures are published with the report. The ASTRO COI Disclosure Statement seeks to provide a broad disclosure of outside interests. Where a potential conflict is detected, remedial measures to address any potential conflict are taken and will be noted in the disclosure statement. Dr. Benedick Fraass has received travel and consulting funding from Varian Oncology Systems as part of the Varian Patient Safety Council. Dr. David Jaffray has received research grants from Philips Medical Systems, Elekta, IMRIS, GE, and RaySearch Laboratories. Dr. Laura Dawson has received a research grant from Bayer. Dr. Katja Langen has received research grants from Varian Medical Systems, Philips Medical Systems, .decimal, and TomoTherapy/Accuray. Dr. Gikas Mageras has received research grants from Varian Medical Systems, and the National Institutes of Health. Dr. Arno Mundt has received research grants from Varian Medical Systems, .decimal, VisionRT, and the National Institutes of Health. Dr. Di Yan has received research grants from Elekta, Phillips Radiation Oncology System, Morphormics Inc., and the National Institutes of Health. The Task Group Chair as well as the chair of the multidisciplinary QA subcommittee reviewed these disclosures and determined that they do not present a conflict with respect to these Task Group members’ work on this White Paper.
Abstract

Radiation oncology is a highly effective cancer therapy that has been transformed over the past 20 years by the rapid pace of technological innovation. Dedicated devices for fraction-by-fraction imaging and guidance within the treatment room have been developed and rapidly deployed in the past 5 years. This is broadly referred to as image guided radiation therapy (IGRT). Through IGRT methods, the target and normal structures can be localized at the time of treatment to assure precise and accurate placement of the radiation, and thereby pursue highly conformal dose distributions, higher dose prescriptions, and shorter fractionation schedules. Capitalizing on IGRT-enabled accuracy and precision requires a strong link between IGRT practices and planning target volume (PTV) design. This is clearly central to high quality, safe radiation therapy. Failure to properly apply IGRT methods or to coordinate their use with an appropriate PTV margin can result in a treatment that is ‘precisely wrong.’ In addition, IGRT technologies emphasize the importance of uncertainty in target delineation wherein aggressive reduction in PTV margins could result in a geometric miss. This white paper recommends a set of 10 fundamental elements for IGRT safety in clinical programs and provides an additional list of recommended activities for the broader radiation oncology community to take into consideration as we collectively work to maximize the safety and effectiveness of IGRT.

This report is part of a series of white papers addressing patient safety commissioned by the American Society for Radiation Oncology (ASTRO) Board of Directors as part of ASTRO’s Target Safely Campaign. The full-length document was approved by the ASTRO Board of Directors on June 23, 2012 and has been endorsed by the American Association of Physicists in Medicine, American Association of Medical Dosimetrists, and the American Society of Radiologic Technologists. The document has also been reviewed and accepted by the American College of Radiology’s Commission on Radiation Oncology. These organizations have a long history of supporting efforts toward improving patient safety in the United States. This report is related to other published reports of the ASTRO white paper series on patient safety, including those on intensity modulated radiation therapy (IMRT) and stereotactic body radiation therapy (SBRT), as well as those still in preparation. There are sections of this report that defer to guidance in these reports.

Outline

1. Overview of Image Guided Radiation Therapy
 1.1 IGRT Technology Affects the Entire RT Process
 1.2 Sensitivity of Outcomes to Errors in Dose Localization
 1.3 IGRT Alters Inter-Professional Communications
2. Nature and Impact of Failures in IGRT Technology and Process
3. Elements of QA in IGRT Infrastructure
 3.1 Commissioning and Continuing QA of IGRT Technologies
 3.2 The Link Between the PTV Margin and IGRT Practice
 3.3 Protocols for Image Acquisition and Interpretation
 3.4 Education, Training, and Human Resources
4. Recommended Foundations and Activities for Safe and Effective IGRT
5. Discussion
6. Conclusion
Legend

Abbreviation	Description
3D	3-dimensional
4D	4-dimensional
AAMD	American Association of Medical Dosimetrists
AAPM	American Association of Physicists in Medicine
ACR	American College of Radiology
AP	Anterior-Posterior
ART	Adaptive Radiation Therapy
ASRT	American Society of Radiation Therapists
ASTRO	American Society for Radiation Oncology
CAMPEP	Commission on Accreditation of Medical Physics Education Programs
CARO	Canadian Association of Radiation Oncology
CBCT	Cone-Beam Computed Tomography
CCPM	Canadian College of Physicists in Medicine
CME	Continuing Medical Education
CT	Computed Tomography
CTV	Clinical Target Volume
DP	Medical Dosimetrists and Other Qualified Planners
DRR	Digitally Reconstructed Radiograph
ESTRO	European Society for Therapeutic Radiology and Oncology
FAA	Federal Aviation Administration
GTV	Gross Tumor Volume
ICAO	International Civil Aviation Organization
ICRU	International Commission on Radiation Units
IGRT	Image Guided Radiation Therapy
IHE-RO	Integrating the Healthcare Enterprise – Radiation Oncology
IMRT	Intensity Modulated Radiation Therapy
IT	Information Technology
kV	Kilovoltage
LR	Left-Right
MP	Medical Physicists
MR	Magnetic Resonance
MV	Megavoltage
OAR	Organ at Risk
PRV	Planning Organ at Risk Volume
PTV	Planning Target Volume
QA	Quality Assurance
RO	Radiation Oncologists
ROI	Region of Interest
ROSIS	Radiation Oncology Safety Information System
RTT	Radiation Therapists
SBRT	Stereotactic Body Radiation Therapy
SI	Superior-Inferior
TG	Task Group
US	Ultrasound
1. Overview of Image Guided Radiation Therapy

Highly tailored, patient-specific dose distributions can now be generated using 3-dimensional (3D) imaging and inverse planning techniques to design intensity modulated radiation therapy (IMRT). This increased dose conformality heightens the need to assure accurate and precise localization of the target and normal structures prior to or during each treatment fraction and has driven the integration of imaging technologies (and/or tracking systems) into the treatment room and onto the treatment machine. For the purpose of this paper, the activities associated with the use of these systems to ensure the dose distribution is placed within the patient as intended is referred to as image guided radiation therapy (IGRT). IGRT techniques can substantially reduce geometric positioning errors that can occur between treatment planning and delivery. These include the reduction in ‘systematic’ errors that would otherwise persist over the entire course of therapy, as well as, ‘random’ errors that vary from fraction-to-fraction. The reduction of geometric positioning errors is achieved by imaging the patient’s anatomy at the time of their treatment, registering the image to a reference image, adjusting the patient or machine to assure the radiation fields are directed at the prescribed target, and appropriately avoiding radiosensitive normal anatomy. In effect, IGRT allows radiation oncologists to prescribe treatments that are much more conformal, but are also much less tolerant to geometric errors. As a result, safe and effective radiation treatment has become extremely dependent upon the proper operation, application, and understanding of IGRT technology and procedures.

1.1 IGRT Technology Affects the Entire RT Process

While IGRT technologies are located at the treatment machine, they have a significant impact on the entire RT process (Fig. 1). IGRT is a method of assuring the geometric/targeting elements of the treatment for the individual patient as well as a method of maintaining a level of geometric targeting performance for a population of patients that allows confident use of smaller planning target volume (PTV) margins in the planning process. The use of smaller PTV margins is a delicate issue that requires strong coordination between the planning process and the image guidance activities at the treatment unit. Failure to reproduce the expected geometric accuracy and precision for which the plan was designed could result in an under-dose to the target or an overdose to surrounding tissues.

1.2 Sensitivity of Outcomes to Errors in Dose Localization

The use of IG methods are logical and can be motivated based on dose-volume arguments. Currently, there is at least one ongoing randomized clinical trial considering the question of whether the added targeting accuracy and...
precision enabled by IGRT provides superior outcome to the use of less tightly targeted, non-image guided radiation therapy for prostate cancer. However, there have been a number of retrospective analyses using single institution outcomes databases of conformal radiation therapy in prostate cancer that highlight the critical importance of “dose-target co-localization.” In 2005, de Crevoisier demonstrated a correlation between patient-specific rectal distension at the time of planning and a reduction in biochemical control rates. The authors argue that those patients with a distended rectum (more than median distension in the cohort) at the time of planning would have a less distended rectum during the subsequent treatment course, and the resulting systematic posterior displacement in the prostate would result in an under-dose to the gland. Similar analyses and results have been reported by Heemsbergen et al, further demonstrating the point. While the patient population studied by de Crevoisier was treated without daily image guidance, a similar study by Kupelian on patients treated with daily ultrasound guidance did not show any difference in biochemical relapse-free survival rate between groups that had different rectal distensions at the time of planning. The study concluded that the use of daily image guidance eliminated the error that is introduced by a distended rectum at the planning stage. It is important to note that this issue could also be addressed by ensuring that the patient is not planned with a distended rectum, however, the use of daily image guidance reduces the need for rigorous patient compliance.

Engels et al reported on the impact of small PTV margins on biochemical control in prostate RT – specifically, they employed 4 and 6 mm margins (left-right [LR] and anterior-posterior/superior-inferior [AP/SI]) in their fiducial implant-based IGRT cases and demonstrated a drop in freedom from biochemical failure from 91% to 58%. Their analysis revealed that the margins applied were, in fact, even smaller than intended due to issues related to PTV margin generation in their treatment planning system. Taken together, these studies demonstrate that significant reduction in control rates can occur if there is an inconsistency between perceived and actual targeting performance. The studies also demonstrate the clinical risks associated with over-confidence in the accuracy and precision of a specific treatment methodology (specifically when image guidance was being used). It is therefore central to any clinic’s IGRT program to accommodate any residual systematic or random uncertainties (eg, target delineation, patient instability, organ deformation, imprecision in IGRT process in clinical practice) through an appropriate PTV margin at the time of treatment planning. This link between planning and IGRT practice highlights the need for communication within the clinical program.

1.3 IGRT Alters Inter-Professional Communications

As illustrated in Fig. 1, the nature of IGRT is such that it involves every member of the multi-professional radiation treatment team. Medical physicists (MP) are active in the acceptance, commissioning, and periodic quality control of these systems/techniques, medical dosimetrists and other qualified planners (DP) and MPs are active in the treatment planning and consultation process, radiation therapists (RTT) routinely apply image guidance, and the radiation oncologists (RO) are responsible for the approval of the plan, interpretation of the images, and the resulting corrections/adjustments. Consistency between the IGRT procedures applied by the RTT and the PTV margins employed by the DP and/or MPs in planning is key to successful IGRT practice. From this perspective, the safe and effective application of IGRT technologies requires a very high degree of inter-professional communication. This is reinforced at the national level with a growing recognition that safety is best advanced in multi-professional forums and in the educational context where integration of IGRT technologies is facilitated through multi-professional learning.

2. Nature and Impact of Failures in IGRT Technology and Process

In the past 10 years, the number of RT clinics employing dedicated image guidance technology has risen dramatically. In the 2010 American Society of Radiation Therapists (ASRT) Workplace Survey, 32.6% of respondents indicated that their facility used cone-beam computed tomography (CT), a technology that arrived on the market only 5 years ago. This is in addition to the use of portal imaging (44.3%), kilovoltage (kV) radiography (26.8%), and ultrasound technologies (10.3%). Simpson et al also reported rapid technology uptake in their survey of IGRT utilization with 70% of respondents (N=385) using volumetric x-ray guidance in 2010, up from almost non-existent in 2003. While it is evident there has been a significant expansion in the IGRT technology present in the treatment room, it is not so evident that there has also been a corresponding investment in (1) the quality assurance and testing activity, (2) the patient-specific work required in preparation for using these systems, and (3) the training necessary for the radiation therapy staff to safely and effectively operate these systems.

Despite this rapid rate of deployment there is little published literature on events associated with malfunctioning, inappropriate use, or mistakes in the application of IGRT technology. However, we cannot take ‘the absence of evidence’ as ‘evidence of absence’, that said, there is some evidence that IGRT systems need constant attention. Vendors have been monitoring and updating their systems to address flaws in the operation of their
image guidance systems, including issuing bulletins advising customers of the presence of these flaws and providing work-around solutions. For example, the major vendors of c-arm linear accelerators with integrated kV radiography systems have detected multiple localization malfunctions in their kV radiographic guidance in the past few years and issued warning bulletins, as well as mandatory field repairs. Whether these flaws have deleteriously affected patient outcomes is very difficult to assess. In 2007, a vendor voluntarily issued a notification of a geometric targeting error associated with the use of their stereotactic guidance system and other manufacturers’ head frames. The magnitude of the error was 1.25 mm and affected practice in 6 centers around the world. This was detected through “[a] custom-made test, performed in addition to the normal tests for commissioning a system, detected a shift in alignment from the intended target treatment area of 1.25 mm.” The impact of a design flaw in IGRT technologies is significant, as it can affect many patients across multiple institutions. The MP has a crucial role in vigilantly testing and monitoring IGRT system performance, particularly testing the system as used in their particular clinic. Furthermore, sharing this information with industry and the community-at-large is an important element enabling safe, high-performance IGRT.5

While a geographic miss is clearly unacceptable in RT, the clinical impact of more subtle IGRT-related errors is difficult to quantify. As mentioned above, Engel et al1 have reported the clinical impact of a misadventure in IGRT deployment, wherein smaller than intended PTV margins associated with a new IGRT-enabled procedure produced a substantial reduction in biochemical control. This example illustrates the link between IGRT technology and the treatment planning process (as emphasized in Figure 1). Specifically, the accuracy and precision of the IGRT process must be well understood and appropriately accounted for when PTV margins are specified. Furthermore, it emphasizes the need for end-to-end testing of a new treatment procedure wherein all the elements (planning and delivery components) are tested for performance.

More subtle geometric targeting errors, such as, the misinterpretation of setup instructions, incorrect skin mark-based positioning, and the generation of invalid reference images are known to occur. A manual, sub-analysis of the Radiation Oncology Safety Information System (ROsis) database, performed for this review, revealed that approximately 15% of the setup-related errors in the ROsis database are related to patient positioning errors.9 Bissonnette and Medlam report 20% of their institution’s RT errors were ‘location-related’ in 2001, falling to 6% by 2007 – a period of substantial adoption of on-line cone-beam IGRT in their facility.10

3. Elements of QA in IGRT Infrastructure

In the past 10 years there has been substantial experience developed in the practice of IGRT. The peer review literature is rich with local experiences, and the community has been vigorously generating guidance documents to assist the community in the application of IGRT.11-13 These sources are briefly reviewed in this report to highlight the expectations for community practice.

There are 4 major categories for consideration in assuring safe, high-quality radiation therapy using IGRT technologies. These are commissioning and continuing quality assurance (QA) of the systems, protocols for image acquisition and interpretation, the link between image guidance practices and the PTV margin, as well as education, training, and human resources.

3.1. Commissioning and Continuing QA of IGRT Technologies

There is a substantial body of literature providing guidance on commissioning and QA of IGRT systems. The American Association of Physicists in Medicine (AAPM) provides a series of task group reports that are dedicated to IGRT or IGRT capable systems (Table 1).

Radiation oncology programs should follow the general guidelines of Task Group (TG)-142 on medical accelerator QA which includes a section that provides guidelines specific to planar, cone-beam kV, and megavoltage (MV) imaging and lists daily, monthly, and annual QA tests and their respective tolerances.12 These should be supplemented by those recommended in technology-specific task group reports, such as, TG-58 on the clinical use of electronic portal imaging, TG-104 on the role of in-room x-ray imaging for patient setup and target localization provide guidance specific to these techniques, TG-154 on QA of ultrasound (US)-guided external beam radiation therapy for prostate cancer, TG-179 and TG-147 for guidance specific to in-room CT systems and non-radiographic localization and positioning systems.13,18-20 In addition, the guidance on CT-simulator QA found in TG-66 can also be applied to in-room ‘CT-on-rails’ systems.14 There is also product-specific guidance, including TG-148 on helical tomotherapy and TG-135 on robotic radiosurgery.16,17

While high-performance IGRT relies on the geometric performance of the image guidance system and assurance of image quality through routine testing and monitoring, it is clearly not sufficient to assure the successful application of IGRT. Newly commissioned IGRT processes need to be evaluated through ‘end-to-end’ tests that mimic the complete process a patient would undergo by taking a phantom through simulation, planning, image guided treatment, and dose delivery verification. When commissioning procedures, the first step is to document the procedure so it can be
characterized and applied reproducibly. The documentation of the procedure and commissioning extends from simulation through to the treatment room. For example, the treatment of lung cancer at a specific phase of the breathing cycle is very sensitive to steps in simulation (4-dimensional [4D] CT and sorting), planning (selection of specific phase), and at the treatment unit (selection of correct reference image). Failure to coordinate these activities will result in a significant geometric miss of the target.

3.2 The Link Between the PTV Margin and IGRT Practice

There have been a number of publications to assist the community in the design of the PTV margins. These ‘margin recipes’ require an accurate estimate of the systematic and random errors associated with the target positioning procedure and device. While it is important to highlight that current IGRT systems are capable of accurately targeting unambiguous objects to sub-mm levels, especially in phantom-type studies, it is equally important to keep in mind that the image registration of actual patient anatomy will be more ambiguous, and hence less precise and less accurate than the phantom studies. It is the accuracy and precision that can be obtained during clinical use that should be considered in the PTV margin design. Therefore, clinics should focus on the development of standard image guidance procedures that are prescriptive and have been reviewed by an ‘IGRT team,’ including medical physicists, medical dosimetrists, radiation therapists, and radiation oncologists at their own institutions. These IGRT procedures should consider all aspects of the image guidance activity – patient preparation, imaging dose, image acquisition details, target and avoidance structures, tolerances for correction, manual or automated analysis, potential for intrafraction motion, and the appropriate use of the specified immobilization devices. Patient compliance in IGRT-related activities should also be considered. For example, bowel preparation to reduce prostate displacement or the use of a breathing maneuver should also be considered and may require additional patient education and the engagement of professions less-typically engaged in IGRT, such as the radiation oncology nursing staff.

Given the importance and challenges of accurate target delineation, it is recommended that a mechanism for peer review of tumor, target, and organ-at-risk International Commission on Radiation Units (ICRU) volumes be adopted to minimize the likelihood of delineation-related systematic errors from impacting patient care. Additionally, a similar issue can occur in the context of image guidance, wherein the image guidance structures (eg, breathing phase of 4D CT, specific vertebral body) identified at the time of simulation or planning are not interpreted the same by the RTTs at the treatment unit. Physician engagement in patient-specific guidance activity at the treatment unit is strongly recommended to avoid these potentially impactful errors from occurring.
In routine practice, DPs are the human link between margin design and IGRT practice. The development of this profession has enabled effective and safe technology advancement in RT as demonstrated by the rapid adoption of IMRT—a workload enabled and shouldered by this profession. This is also the case for IGRT technologies wherein margin design and guidance structures are initiated and managed by DPs. In addition, adaptive radiation therapy (ART) will require a hybrid skill-set that links ‘IGRT expertise,’ treatment planning, and temporal monitoring of response during the course of therapy—driving even greater inter-professional communication and DPs will be central to this activity.

3.3. Protocols for Image Acquisition and Interpretation

As highlighted in many guidance documents, IGRT needs to be performed under the direction of commissioned procedures to assure the clinical use of the system is consistent with the system and process commissioning. These protocols should address every facet of the IGRT procedure including the imaging technique, definition of structures (normal and target), alignment methods, action thresholds (translate/rotate), decision-making process, and documentation.13 These protocols are best designed in an inter-professional environment where the needs of the clinician, operational concerns of the physician, and technical guidance of the medical physicist can be expressed and addressed.39 As these protocols enter into practice, the IGRT performance should be analyzed to confirm appropriate PTV margins are in use. The establishment of a lead medical physicist and radiation therapist for IGRT-related issues is beneficial in the development of informed, consistent practices across the department.12

Ad-hoc, patient-specific adjustment of image acquisition parameters, correction tolerances, and other components of the process should be avoided, since the impact of changing 1 or more of these parameters can significantly influence the patient-specific and overall IGRT performance. For example, the superior/inferior registration uncertainty may vary with choices in the slice thickness in CT-based IGRT, and the length of the scan volume (in systems where these parameters are adjustable) can also affect image guidance performance.31 Similarly, different anatomical regions may have different image registration uncertainties.32 While some of these issues can be simulated with anthropomorphic phantoms, the actual precision is best evaluated with clinical images that are subject to issues such as unclear target localization and anatomical deformations in the patient. For example, Langen et al13 explored variations between physician’s and therapist’s image registrations using MVCT images of prostate patients to compare the precision of different registration techniques (anatomy vs contours vs markers) and discrepancies greater than 3 mm were seen with a high frequency (24%-55% in AP direction) when contour and anatomy matching was employed as compared to marker-based alignments (3% in AP direction). Co-development of the IGRT technique within the multi-professional team and on-going reinforcement of the method is key to assuring performance. In general, there has been little effort put into standardizing nomenclature or processes in IGRT. Unfortunately, this complicates the training, clinical practice, and documentation of IGRT-related corrections. Meanwhile the details specified in the IGRT protocols grow more complex as additional features and functionality are released by vendors. For example, IGRT protocols must now specify the image registration algorithms (bone vs gray scale matching) and the dedicated structures contoured at planning for alignment purposes (eg, physician-approved contours to drive registration and detect deformation). An illustrative example is CT-based IGRT used in IMRT of the head and neck, wherein, interpretation of deformation in the neck requires rather complex rules for interpretation and intervention. These can only be applied consistently by the team with documented procedures. Furthermore, the future promises the development of ART techniques that will require even more complex processes, such as, on-line contouring and re-planning that would surely benefit from standardized analysis tools, nomenclature, and workflows.34

Investigators have documented the potential for substantial radiation dose to the patient as a result of imaging for guidance.35, 36 The dose to water in the patient can range from <0.1 cGy to 10 cGy for kV cone-beam CT images used in typical image guidance procedures and the dose to bone can be even higher. When daily imaging (including multiple images per day) is applied, this can result in a total imaging dose in excess of 100 cGy over the course of treatment. These doses may be of significance, particularly in younger patients, and therefore every effort should be made to use an imaging dose that is as low as possible while still providing sufficient quality to guide the treatment (eg, bone vs soft-tissue structures, guidance vs verification of shifts). Clearly, this is best managed through the use of standardized IGRT protocols that specify imaging technique.

3.4 Education, Training, and Human Resources

IGRT technologies and practice bring a great deal of additional information into the radiation therapy treatment process. In contrast to the pre-IGRT era, RTTs at the treatment unit may find that they handle more volumetric imaging data (eg, > 20 cone-beam CT, US, or MV CT scans) each day than any other profession within the program. In addition, these images each require analysis and a decision that affects patient treatment. The operation of the imaging systems, interpretation of volumetric
images, and image guidance decisions push the limits of the existing training curricula of all professions involved: radiation therapists, medical dosimetrists, radiation oncologists, and medical physicists. It also raises new challenges in terms of inter-professional dependencies and dialog. The recently updated ASRT Practice Standards highlight the role of radiation technologists (at least in the United States) not only operating the systems, but also considering margins: “Work[ing] with radiation oncologists, physicists and dosimetrists to compensate for treatment inaccuracies.”

Through the work of many, there now exists a rich offering of educational forums on IGRT. The success of the annual ASTRO workshops on IMRT and IGRT demonstrates the communities’ demand for high quality educational programs, as well as the willingness of industry to participate. In addition, there are numerous programs now offered by institutions, professional groups, and industry for education and training. The development of continuing medical education (CME) requirements to maintain certification provide an impetus for staff to engage in these educational activities, however, these CME activities are rarely multi-professional and the nature of IGRT requires the development of a high level of competency in this regard. The recently published ASTRO/American College of Radiology (ACR) practice guidelines for IGRT highlight the importance of education dedicated to IGRT and strongly recommend IGRT-specific training for radiation oncologists, physicists, and therapy staff. Given the complexity of these technologies and the critical role they play in safe RT, staff should not operate these systems in the clinical setting unless they have been trained on the theory of their operation, the application interface, the IGRT concepts, and on the decision-making process. Staff also need to be trained on the clinical IGRT processes they are following. The development of local experts (ie, therapist and physicist) on each of the IGRT technologies within the clinical setting should be a priority. Looking forward, the potential for adaptive radiation therapy will take IGRT to another level with imaging information returning to the DPs and closing the loop with time-course analysis of IGRT images, dose reconstruction, and re-delineation of target and normal structures. The safety and effectiveness of these protocols will push the educational needs even further.

Appropriate staffing levels are a critical part of a program’s safe deployment of IGRT technology, requiring additional medical physics staffing for the commissioning, implementation, on-going QA, and operational stages. Staff requirements should be reviewed when a decision to purchase IGRT equipment is made/finalized. The additional time required for quality control testing of IGRT systems and for daily decision-making processes during IGRT practice should be considered/evaluated. The specific form of the additional human resources will vary. However, clinics should identify an IGRT specialist (typically a knowledgeable therapist with additional training on technology and procedures) to assist in the implementation of new techniques, lead internal training, and document protocols. This model has been employed by early adopters of IGRT technology with excellent success.

4. Recommended Foundations and Activities for Safe and Effective IGRT

The primary objective of this report is to provide guidance to the community for the safe and effective application of IGRT technologies. Ten foundational elements for good IGRT practice (Table 2), as well as, a compilation of recommended activities to stimulate ongoing improvement to the quality and safety of IGRT and radiation treatments in general are presented. The foundational elements should be adopted and adapted to the clinical programs as soon as possible, if they are not already in place. Further recommended activities are grouped into 4 tables (Tables 3 through 6) according to their respective audiences, including clinical radiation oncology program leadership, radiation oncology professions (RTTs, DPs, MPs, ROs) and their professional groups and colleges (eg, AAPM, ASTRO, ASRT, AAMD [American Association of Medical Dosimetrists], ESTRO [European Society for Therapeutic Radiology and Oncology], CCCP [Canadian College of Physicists in Medicine], CARO [Canadian Association of Radiation Oncologists], ACR), educational institutions/certification bodies (eg, training programs, Commission on Accreditation of Medical Physics Educational Programs [CAMPEP]), hospital administrators (eg, risk management, human resources), industry representatives (eg, product managers, application specialists), and others (ie, financial, safety, accreditation bodies, insurers). The goal of these recommendations is to stimulate discussion and raise awareness of the opportunity to advance safe and effective practice of IGRT as it continues to evolve.

5. Discussion

The field of radiation oncology has been working diligently to advance the safe and effective practice of IGRT. Through the efforts of individual authors and professional groups such as the AAPM, ASTRO, and ACR, there is a large body of guidance documentation that can be drawn upon. In the interest of highlighting the many elements of safe and effective IGRT, we have assembled a set of 36 recommendations for review by clinical programs, professional groups, regulatory/insurance groups, industry, and hospital administrators. Responding to each and every one of these recommendations may appear to be a daunting task; however, it
is crucial if we are to attain the promise of improved accuracy, which is the goal of IGRT. This report provides an opportunity and framework for each program to evaluate their current IGRT practice with a focus on safety. It is recommended that the list be circulated for review and commented on by each profession within a program, as well as, the hospital administration to provide awareness, stimulate compliance, and lead individual programs to prioritize areas to which additional efforts need to be directed.

The recommendations identify areas of specific concern, but do not speak to a mechanism for assuring compliance. Given that establishing and maintaining the safe and effective deployment of IGRT requires a long-
term perspective. Clinical programs should integrate organizational structures into their operations to make this an ongoing process. The creation of a dedicated committee (or team) within the clinical program to coordinate IGRT practices has been useful in some institutions to standardize practices and assure representation of all the involved professions. Other models include the identification of ‘IGRT specialists’ responsible for image analysis and determination of permanent shift corrections. These have been used by some groups since the development of electronic portal imaging technologies. Regardless of the exact mechanism, it is worthwhile to identify a multi-professional group within the program responsible for IGRT-related processes and education, thereby, providing consistency and local expertise in difficult cases. These individuals would be obvious candidates for attendance to IGRT workshops, additional vendor-based training opportunities, and increased support for credentialing.

IGRT introduces a great deal of new information and decision-making into the radiation treatment process and this challenges conventional roles. The education and training needs emphasized in the recommendations should consider the value of team learning. Radiation therapists, medical dosimetrists, medical physicists, and radiation oncologists each have crucial responsibilities in ensuring the quality and safety of IGRT processes.

Table 3: Recommended activities for assuring quality in IGRT practice within a clinical program

The following table identifies recommended activities for the clinical programs and the associated professions. These activities should be considered in the continuing improvement in the quality of the RT program.

Recommended Activities	Comments	Refs.
1. Commission and employ standardized techniques (eg, kVp, mAs) for IGRT imaging when possible.	Consistency in imaging technique to eliminate variations in process and control image-related dosing.	13
2. Adopt a standardized lexicon for IGRT activities across the program regardless of technology.	Prevents communication errors and allows confident delegation and is useful for documenting information in heterogeneous multi-vendor environments.	45
3. Specify a maximum allowable image guided correction to be applied for each treatment protocol (eg, 10 mm) and steps to be taken when the threshold is exceeded.	Limiting the magnitude of correction prevents gross misalignment to incorrect structures.	None
4. Use patient-specific regions of interest for assessment of target and normal structure location during IGRT. Assists in assessment of normal tissue dose and gross anatomical changes during RT.	Specified by protocol and approved by ROs, employed by RTTs/MPs during IGRT.	None
5. Formulate checklist(s) for IGRT processes (as illustrated in Table 6).	Assures consistent practice/process.	5,46
6. Measure and document estimate of imaging dose delivered in standardized IGRT procedures, including developing techniques for IGRT that minimize dose while achieving image guidance task.	Staff become ‘IGRT Dose Aware.’ Supports minimizing imaging dose and allows accurate retrospective reconstruction of applied imaging dose.	36,47
7. Apply failure mode and effect analysis in implementation of IGRT processes.	Identifies, prioritizes, and mitigates risks in the IGRT process.	48
8. Establish and populate a database of image guidance precision/accuracy performance for treated sites.	Enables rational margin design and brings evidence for evaluation of positioning technologies.	None

Abbreviations: IGRT (Image Guided Radiation Therapy); RTT (Radiation Therapist); MP (Medical Physicist); RO (Radiation Oncologist).
Table 4: Recommended activities for consideration by professional groups in the field of radiation oncology

While much of the responsibility for safe and effective use of IGRT sits with the end user, professional groups have a responsibility in the preparation of appropriate curricula and assisting in the inter-professional dialog that is appropriate when new technologies are added to existing practice paradigms. These groups also have a role in establishing qualifications in specialty topics.

Recommended Activities	Comments	Refs.
1. Assure RTT curriculum includes IGRT theory and practice.	Technology awareness is not sufficient. RTTs also need to understand concepts of margin design, residual uncertainty, and inter-observer variability to knowledgeably apply IGRT.	None
2. Assure DP curriculum includes IGRT theory and practice, dose reconstruction, normal tissue delineation, and understanding of ART concepts.	Understanding concepts of margin design, residual uncertainty, and inter-observer variability are relevant to DP's practice. Future adaptive processes will be coordinated by this profession and this requires curriculum expansion.	None
3. Assure MP residency training in imaging (e.g., CT, MR, US), IGRT theory, and process management.	Imaging technologies need to be understood if they are to be properly applied. In addition, the MP has a leadership role in margin design and the link to planning. Curriculum extensions are needed.	None
4. Assure RO residency curricula explicitly include IGRT theory and practice.	PTV/PRV margin approval requires a sound understanding of IGRT concepts. Target delineation is another critical area for dedicated training. Physicians in practice need to access CME opportunities.	None
5. Facilitate cross-profession engagement between RTTs, DPs, MPs, and ROs for decision-making and delegation issues.	Clarity in decision-making role is critical for safe IGRT. Educational programs that reinforce this engagement are desirable.	11
6. Facilitate the generation of a lexicon for IGRT practice.	ICRU has provided powerful tools for dose prescription and the airline industry has demonstrated the value of consistent language to communicate in complex situations. Furthermore, the development of ART will challenge our current lexicon.	34,42,43,45
7. Include testing on IGRT in the board certification process for all professions.	Including margin design, correction strategies, and quality assurance practices.	39

Abbreviations: IGRT (Image Guided Radiation Therapy); RTT (Radiation Therapist); DP (Medical Dosimetrist and Other Qualified Planner); ART (Adaptive Radiation Therapy); MP (Medical Physicist); CT (Computed Tomography); MR (Magnetic Resonance); US (Ultrasound); RO (Radiation Oncologist); PTV (Planning Target Volume); PRV (Planning Organ at Risk Volume); CME (Continuing Medical Education); ICRU (International Commission on Radiation Units).
Table 5: Recommended activities for the radiation therapy software and device industry

Recommended Activities	Comments	Refs.
1. Support the development and adoption of industry-wide standards in image guidance: localization, analysis, correction methods, and standard/preset workflows.	Consistent nomenclature will improve communication and support standardized procedures. These workflows will enable more complex techniques including ART and support for more complex treatment systems.	45
2. Test, validate, and publish cross-vendor inter-connectivity results.	Data transfer between systems is known to be an area for potential error. IGRT systems extend the data transfer system further. Recent efforts by Integrating the Healthcare Enterprise-Radiation Oncology (IHE-RO) should be expanded upon and accelerated by industry.	49
3. Provide test methods and training for independent testing concurrently with release of new functionality.	Testing methodologies are not always provided to the community concurrently with technology. While many MPs are skilled at developing tests, a more pre-emptive approach is preferred.	50
4. Include human factors testing in design of RT equipment user interfaces.	The growing complexity of technologies requires evaluation of human-machine inter-operability. Clinics will require documentation of human factors testing in their tendering requests in the future.	5

Abbreviations: ART (Adaptive Radiation Therapy); IGRT (Image Guided Radiation Therapy); MP (Medical Physicist).

Table 6: Recommended activities for consideration by hospital administration (including human resources, biomedical engineering, and risk management)

The safe operation of a radiation therapy program relies on the support of the hospital administration. The recommended activities are intended for consideration by the administrator responsible for the radiation oncology program.

Recommended Activities	Comments	Refs.
1. Fund staffing levels for expansions in infrastructure and added complexity/operational costs of treatment delivery.	IGRT technologies represent a substantial increase in the capital infrastructure to be maintained and increase operational costs. Development of human resource budgets that reflect 'device' and 'process' changes.	51,52
2. Funding and travel policy for continuing education/training to support new/upgraded IGRT technology.	Attendance to congresses and training events are central to safe use of IGRT technologies. Development of 'local experts' requires programmatic investment.	13,39
3. Establish a standardized mechanism for receipt and confirmed action on product advisory alerts from industry.	Rapid changes in technology and software result in increased frequency of these notices. These need to be communicated to appropriate staff and evaluated with respect to clinical processes.	None
4. Support radiation oncology dedicated information technology (IT) resources to assure IGRT performance and support pre-release testing.	The practice of radiation oncology is highly dependent on IT and has distinct performance and operational needs. IGRT increases data handling and performance requirements.	53,54

Abbreviations: IGRT (Image Guided Radiation Therapy).
Table 7: Recommended activities for consideration by other stakeholders (eg, regulatory, healthcare funding, insurance groups)

These groups can affect practice and therefore play a role in the safe and effective use of IGRT. The following recommendations identify actions through which they can contribute to greater safety and quality in IGRT practice.

Recommended Activities	Comments	Refs.
1. Regulators promote/stimulate industry adoption of standardized geometric coordinates and terminology for image guided interventions.	Rapid rate of technology change requires accelerated development of standards. Regulators should facilitate the establishment of standards earlier in technology development to avoid diversity in the field.	45
2. Regulators promote adoption of methods for documenting nominal IGRT-related dose to the patient.	Vendors to provide pre-configured low-dose techniques within release of IGRT systems. Increases awareness of magnitude of IGRT-related dose and methods to minimize. Allow accurate retrospective analysis of imaging dose delivered to patients.	13,36
3. Insurers/funding agents recognize IGRT effort through appropriate reimbursement.	Establish data-driven analyses of workload for IGRT. Commissioning, operation, and maintenance of IGRT techniques require human resources to support devices and processes.	51,52

Abbreviations: IGRT (Image Guided Radiation Therapy).

Table 8: A list of checklist components to be included/considered in building patient-specific QA checklists for IGRT

These are IGRT-specific components and should occur somewhere within the quality control checklists found in the external beam radiation therapy process.

Timeframe	Checklist
Planning Phase	• Margins consistent with documented protocol and evidence
	• Guidance structures (clip-boxes or ROIs) approved by physician
	• Patient specific setup instructions communicated to RTT/document in patient record
Prior to First Radiation Therapy Treatment	• Review of reference image and confirmation of isocenter and guidance structures at the treatment unit
	• Image acquisition parameters set per protocol/prescription
	• Image registration and correction methods set per protocol/prescription
	• Imaging frequency and review procedure set per protocol/prescription
During Each Treatment	• Use of correct image acquisition parameters (per protocol/prescription)
	• Visual inspection and verification of automatic registration results
	• Test results against action levels (max and min) for intervention (shifts, rotations, anatomical changes)
	• Perform position correction according to registration results
	• Confirmation of correction using repeat imaging (for hypofractionated cases or larger shifts)
	• Record IGRT corrections in the patient record
	• Physician review of image registration, correction, and intervention (depending on the number of fractions, this may not be during each treatment but rather part of on-going treatment management)

Abbreviations: QA (Quality Assurance); IGRT (Image Guided Radiation Therapy); ROI (Region of Interest); RTT (Radiation Therapist).
Also, the deployment of new systems or even new software releases requires rigorous testing (data transfer, inter-operability, load testing) prior to launch within the clinic. Such activities exceed the capacity of a typical hospital IT group and require tight inter-operation with MPs.

6. Conclusion

IGRT is a powerful advance in radiation oncology practice that can increase the fidelity, quality and safety of the intervention. However, if this increase is to be achieved, IGRT needs to be deployed in a robust and safe fashion. Failure to do so can result in a very complex treatment being ‘precisely wrong.’ This document draws together guidance documents available in the literature and synthesizes recommendations that can be reviewed by clinical, technical, and administrative staff as well as the public at large. The advantage of such an approach is to provide transparency between professions and to increase the awareness of other important parties (administrators, regulators, insurers, and industry) regarding their responsibility in effecting safe IGRT practice.

References

1. de Crevoisier R, Tucker SL, Dong L, Mohan R, Cheung R, Cox JD, Kuban DA. Increased risk of biochemical and local failure in patients with distended rectum on the planning CT for prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys 2005;62:965-973.
2. Heensbergen WD, Hoogeman MS, Witte MG, Peeters ST, Incrocci L, Lebesque JV. Increased risk of biochemical and clinical failure for prostate patients with a large rectum at radiotherapy planning: results from the Dutch trial of 68 GY versus 78 GY. Int J Radiat Oncol Biol Phys 2007;67:1418-1424.
3. Engels B, Soete G, Verellen D, Storme G. Conformal arc radiotherapy for prostate cancer: increased biochemical failure in patients with distended rectum on the planning computed tomogram despite image guidance by implanted markers. Int J Radiat Oncol Biol Phys 2009; 74:388-391.
4. Kupelian PA, Willoughby TR, Reddy CA, Klein EA, Mahadevan A. Impact of image guidance on outcomes after external beam radiotherapy for localized prostate cancer. Int J Radiat Oncol Biol Phys 2009;70:1146-1150.
5. Hendee WR, Herman MG. Improving patient safety in radiation oncology. Med Phys 2011;38:78-82.
6. White E, Kane G. Radiation medicine practice in the image-guided radiation therapy era: new roles and new opportunities. Semin Radiat Oncol 2007;17:298-305.
7. Simpson DR, Lawson JD, Nath SK, Rose BS, Mundt AJ, Mell LK. A survey of image-guided radiation therapy use in the United States. Cancer 2010;116:3953-3960.
8. Oved MC. Radiotherapy error could affect hundreds. USA Today. June 14, 2007: http://usatoday30.usatoday.com/news/health/2007-06-14-4122391515_x.htm.
9. ROSIS - Radiation Oncology Safety Information System. Available at: http://www.rosis.info. Accessed January 22, 2013.
10. Bissonnette JP, Medlam G, “Trend analysis of radiation therapy incidents over seven years. Radiother Oncol 2010;96:139-144.
11. Potters L, Kavanagh B, Galvin JM et al. American Society for Therapeutic Radiology and Oncology (ASTRO) and American College of Radiology (ACR) practice guideline for the performance of stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys 2010;76:326-332.
12. Klein EE, Hanley J, Bayouth J et al. Task Group 142 report: quality assurance of medical accelerators. Med Phys 2009;36:4197-4212.
13. Yin FF, Wong JW et al. TG-104: The Role of In-Room kV X-Ray Imaging for Patient Setup and Target Localization. College Park, MD: AAPM; 2009.
14. Mutic S, Paltu JR, Butker EK et al. Quality assurance for computed-tomography simulators and the computed-tomography-simulation process: report of the AAPM Radiation Therapy Committee Task Group No. 66. Med Phys 2003;30:2762-2792.
15. Herman MG, Balter JM, Jaffray DA et al. Clinical use of electronic portal imaging: report of AAPM Radiation Therapy Committee Task Group 58. Med Phys 2001;28:712-737.
16. Langen KM, Papanikolaou N, Balog J et al. QA for helical tomotherapy: report of the AAPM Task Group 148. Med Phys 2010; 37:4817-4853.
17. Dieterich S, Cavedon C, Chuang CF et al. Report of AAPM TG 135: quality assurance for robotic radiosurgery. Med Phys 2011; 38:2914-2936.
18. Molloy JA, Chan G, Markovic A et al. Quality assurance of U.S.- guided external beam radiotherapy for prostate cancer: report of AAPM Task Group 154. Med Phys 2011;38:857-871.
19. Bissonnette JP, Balter PA, Dong L et al. Quality assurance for image-guided radiation therapy utilizing CT-based technologies: A report of the AAPM TG-179. Med Phys 2012;39:1946-1963.
20. Willoughby T, Lehmann J, Bencomo JA et al. Quality assurance for nonradiographic radiotherapy localization and positioning systems: report of Task Group 147. Med Phys 2012;39:1728-1747.
21. van Herk M, Remeiiper J, Rasch C, Lebesque JV. The probability of correct target dosage: dose-population histograms for deriving treatment margins in radiotherapy. Int J Radiat Oncol Biol Phys 2000; 47:1121-1135.
22. van Herk M. “Errors and margins in radiotherapy.” Semin Radiat Oncol 2004;14:52-64.
23. Sharpe MB, Moseley DJ, Purdie TG, Islam M, Siewerdsen JH, Jaffray DA. The stability of mechanical calibration for a kV cone beam computed tomography system integrated with linear accelerator. Med Phys 2006;33:136-144.
24. Smitsmans MH, Pos FJ, de Bois J, Heensbergen WD, Sonke JJ, Lebesque JV, van Herk M. The influence of a dietary protocol on cone beam CT-guided radiotherapy for prostate cancer patients. Int J Radiat Oncol Biol Phys 2008;71:1279-1286.
25. Nichol AM, Warde PR, Lockwood GA et al. A cinematic magnetic resonance imaging study of milk of magnesia laxative and an antiflatulent diet to reduce intrafraction prostate motion. Int J Radiat Oncol Biol Phys 2010;77:1072-1078.
26. Keall PJ, Mageras GS, Balter JM et al. The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med Phys 2006;33:3874-3900.
27. Meijer GJ, Potten LK, Galvin JM et al. American Society for Therapeutic Radiology and Oncology (ASTRO) and American College of Radiology (ACR) practice guideline for the performance of stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys 2010;76:326-332.
28. Klein EE, Hanley J, Bayouth J et al. Task Group 142 report: quality assurance of medical accelerators. Med Phys 2009;36:4197-4212.
29. Yin FF, Wong JW et al. TG-104: The Role of In-Room kV X-Ray Imaging for Patient Setup and Target Localization. College Park, MD: AAPM; 2009.
30. ASRT. The Practice Standards for Medical Imaging and Radiation Therapy. Albuquerque, NM: American Society of Radiologic Technologists; 2011.
31. Woodford C, Yartsev S, Van Dyk J. Optimization of megavoltage CT scan registration settings for brain cancer treatments on tomosynthesis. *Phys Med Biol* 2007;52:N185-193.

32. Woodford C, Yartsev S, Van Dyk J. Optimization of megavoltage CT scan registration settings for thoracic cases on helical tomosynthesis. *Phys Med Biol* 2007;52:N345-354.

33. Langen KM, Zhang Y, Andrews RD et al. Initial experience with megavoltage (MV) CT guidance for daily prostate alignments. *Int J Radiat Oncol Biol Phys* 2005;62:1517-1524.

34. Yan D. Developing quality assurance processes for image-guided adaptive radiation therapy. *Int J Radiat Oncol Biol Phys* 2008;71(1 Suppl):S28-32.

35. Islam MK, Purdie TG, Norrlinger BD et al. Patient dose from kilovoltage cone beam computed tomography imaging in radiation therapy. *Med Phys* 2006;33:1573-1582.

36. Murphy MJ, Balter J, Balter S et al. The management of imaging dose during image-guided radiotherapy: report of the AAPM Task Group 75. *Med Phys* 2007;34:4041-4063.

37. White E, Kane G. Radiation medicine practice in the image-guided radiation therapy era: new roles and new opportunities. *Semin Radiat Oncol* 2007;17:298-305. Review.

38. Gillan C, Wiljer D, Harnett N, Briggs K, Catton P. Changing stress while stressing change: The role of interprofessional education in mediating stress in the introduction of a transformative technology. *J Interprof Care* 2010;24:710-721.

39. Potters L, Gaspar LE, Kavanagh B et al. American Society for Therapeutic Radiology and Oncology (ASTRO) and American College of Radiology (ACR) practice guidelines for image-guided radiation therapy (IGRT). *Int J Radiat Oncol Biol Phys* 2010;76:319-325.

40. Mills, MD. Analysis and practical use: the Abt Study of Medical Physicist Work Values for Radiation Oncology Physics Services-round II. *J Am Coll Radiol* 2005;2:782-789.

41. American Association of Physicists in Medicine. The Abt Study of Medical Physicist Work Values for Radiation Oncology Physics Services: Round III. http://www.aapm.org/pubs/reports/ABTIIRreport.pdf. Published March 2008. Accessed March 14, 2013.

42. ICRU50. *Prescribing, recording, and reporting photon beam therapy*. Bethesda, MD: International Commission on Radiation Units and Measurements;1993.

43. ICRU62. *Prescribing, recording, and reporting photon beam therapy (Supplement to ICRU Report 50)*. Bethesda, MD: International Commission on Radiation Units and Measurements;1999.

44. Canadian Organization of Medical Physicists. CAPCA Standard for Quality Control at Canadian Radiation Treatment Centres. August 24, 2012. Available at: http://www.medphys.ca/content.php?doc=58. Accessed January 22, 2013.

45. NATO phonetic alphabet. Wikipedia. 2013. Available at: http://en.wikipedia.org/wiki/NATO_phonetic_alphabet. Accessed January 29, 2013.

46. Gawande A. *The Checklist Manifesto: How to Get Things Right*. New York: Metropolitan Books; 2009.

47. Jaffray DA, Bissonnette JP, Craig T. X-Ray Imaging for Verification and Localization in Radiation Therapy. In: Van Dyk J, ed. *Modern Technology of Radiation Oncology*. Madison, WI: Medical Physics Publishing; 2005:259-284.

48. Ford EC, Gaudette R, Myers L et al. Evaluation of safety in a radiation oncology setting using failure mode and effects analysis. *Int J Radiat Oncol Biol Phys* 2009;74:852-858.

49. Abdel-Wahab M, Rengan R, Curran B et al. Integrating the healthcare enterprise in radiation oncology plug and play--the future of radiation oncology? *Int J Radiat Oncol Biol Phys* 2010;76:333-336.

50. Ling CC, Zhang P, Archambault Y, Bocanek J, Tang G, Losasso T. Commissioning and quality assurance of RapidArc radiotherapy delivery system. *Int J Radiat Oncol Biol Phys* 2008;72:575-581.

51. Battista JJ, Clark BG, Patterson MS et al. Medical physics staffing for radiation oncology: a decade of experience in Ontario, Canada. *J Appl Clin Med Phys* 2010;13:3704.

52. Klein EE. A grid to facilitate physics staffing justification. *J Appl Clin Med Phys* 2010;11:2987.

53. Siochi RA, Balter P, Bioch CD et al. Information technology resource management in radiation oncology. *J Appl Clin Med Phys* 2009;10:3116.

54. Siochi RA, Brack CD, Orton CG. Point/counterpoint. The chief information technology officer in a radiation oncology department should be a medical physicist. *Med Phys* 2009;36:3863-3865.

55. Kane GM. Step-by-step: a model for practice-based learning. *J Contin Educ Health Prof* 2007;27:220-226.

56. Yan D. Adaptive radiotherapy: merging principle into clinical practice.” *Semin Radiat Oncol* 2010;20:79-83.

57. FDA (1990). Safe Medical Devices Act. Section 820.30.

58. Simpson DR, Lawson JD, Nath SK, Rose BS, Mundt AJ, Mell LK. Utilization of advanced imaging technologies for target delineation in radiation oncology. *J Am Coll Radiol* 2009;6:876-883.