Multifunctional Magnetic Nano-platforms for Advanced Biomedical applications: A Brief Review

Prashant B. Kharat¹, Sandeep B. Somvanshi², K. M. Jadhav²

¹Department of Physics, Vinayak Vidyan Mahavidyalaya, Nandgaon Khandeshwar, Amravati – 444708, Maharashtra, India

²Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad – 431004, Maharashtra, India

Corresponding author e-mail : drpbkharat@gmail.com, sbsomvanshi1993@gmail.com, drjadhavkm@gmail.com

Abstract. In this concise survey, we have introduced overview and features on biomedical utilizations of a class of metal nanoparticles including magnetic nanoparticles. Their most significant related materials are additionally examined for biomedical applications for treating different cancer like diseases. At present, physicochemical techniques have been demonstrated fruitful to orchestrate, shape, control, and produce metal and oxide based homogeneous frameworks, e.g., nano and micro scale particles. In this way, we have principally centred around useful magnetic nanoparticles for nano-medications as a result of their high bioflexibility to the organs inside human body. Here, bio-conjugation procedures are extremely urgent to interface nanoparticles with customary medications, nano-drugs, bio-particles or polymers for biomedical applications. Bio-functionalization of tailored nanoparticles for biomedicine is demonstrated separate to in vitro and in vivo investigation conventions that commonly incorporate medication conveyance, hyperthermia treatment, magnetic resonance imaging (MRI). The last can be particularly applied utilizing magnetic nanoparticles, for example, spinel ferrite oxide nanoparticles for diagnostic and treatment of malignancies. Significantly, nano scale-frameworks or micro scale-frameworks or hybrid micro-nano scale frameworks are shortly brought into nano-medications.

1. Introduction

The grouping of nanotechnology and molecular science has formed into a rising exploration territory i.e. nano-biotechnology [1, 2]. Magnetic nanoparticles are entrenched nanomaterials that offer controlled size, capacity to be controlled remotely, and improvement of difference in magnetic imagining [3-8]. Therefore, these nanoparticles could have numerous applications in science and medication, Photocatalysis, nanofluids, including protein cleansing, drug transportation, and clinical imaging [9-11]. As a result of the expected advantages of multimodal usefulness in biomedical applications, analysts might want to structure and manufacture multifunctional magnetic nanoparticles [12, 13]. At present, there are two systems to manufacture attractive nanoparticle-based multifunctional nanostructures. The main, sub-atomic functionalization, includes appending antibodies, proteins, and dyes to the magnetic nanoparticles. The other strategy incorporates the magnetic nanoparticles with other useful nano-parts, for example, quantum dots or metallic...
nanoparticles. Since they can display a few highlights synergistically and convey more than one capacity all the while, such multifunctional attractive nanoparticles could have one of a kind preferences in biomedical applications [14, 15].

In this brief review, we audit instances of the structure and biomedical use of multifunctional magnetic nanoparticles. After their conjugation with legitimate ligands, antibodies, or proteins, the bio-practical magnetic nanoparticles display profoundly particular binding. These outcomes show that such nanoparticles could be applied to organic clinical issues, for example, protein filtration, bacterial location, and poison de-enterprise. The cross breed nanostructures, which consolidate magnetic nanoparticles with other nano-parts, show para-magnetism along with highlights, for example, fluorescence or upgraded optical complexity. Such structures could give a stage to improved clinical imaging and controlled medication conveyance. We expect that the grouping of one of a kind basic qualities and coordinated elements of multicomponent magnetic nanoparticles will pull in expanding research intrigue and could prompt new open doors in nano-medication.

2. Synthesis of magnetic nanoparticles (MNPs)
The techniques for preparation impact the properties of MNPs on the measurement, molecule size circulation and morphology. Physical strategies including gas phase formation and electron beam lithography are detailed techniques that can't control the size of particles. The wet synthetic routes to produce MNPs, which give a helpful way to the size control and organization balance, are less complex, more proficient and fiercely received for the preparation of MNPs. The most well-known wet substance strategy utilized for the fabrication of MNPs is co-precipitation [16-18]. This methodology offers a wide scope of focal points: i) It is minimal effort as a result of the utilization of modest synthetic substances and mellow response conditions, ii) It is naturally well disposed in light of the fact that the MNPs can be straightforwardly combined in water, iii) The technique is incredibly adaptable with regards to the tweak of the core and surface properties by controlling the parameters, for example, the response temperature, pH worth and ionic quality of the media; 4) It is very repeatable if the experiment conditions are fixed. For instance, by utilizing this technique, size-controllable iron oxide nanoparticles can be productively combined from fluid salt arrangements by the expansion of a base at room temperature. Different methodologies including miniaturized scale emulsions [19], sol gel synthesis [20, 21], coprecipitation [22], sonochemical synthesis [23], aqueous precursors, hydro-lysis and thermo-lysis of precursors [24], spray pyrolysis[25, 26], and copolymer strategy are accounted in the literature too. For example, so as to expand the stacking measure of the responsive gatherings on the magnetic particles and to improve the dependability and dispersibility of magnetic particles, a few MNPs have been combined by the copolymer technique, with the adaptability and decent variety to control the compound piece and useful gatherings on the outside of nanoparticles. A concise outline of different MNPs combination strategies with respect to the preparation routes, experimental setup, size distribution, shape controlling and other properties is appeared in Table 1.

Table 1. Comparative summary of preparation routes for MNPs

Preparation route	Experimental setup	Size distribution	Shape controlling
Sol-gel auto combustion	Very simple, ambient atmosphere	Comparatively narrow	Not good
Chemical co-precipitation	Very simple, ambient atmosphere	Comparatively narrow	Not good
Thermal decomposition	Complex, inert atmosphere	Very narrow	Very good
Hydro-thermal	Simple, High pressure	Very narrow	Very good
Micro-emulsion	Complex, inert atmosphere	Comparatively narrow	Good
3. Surface functionalization of MNPs

The surface functionalization of MNPs is necessary to their exhibition and applications [27, 28]. Functionalized MNPs with incredible natural similarity and particularity empower a lot of energizing new ways to deal with applications for biomedicine. For example, MNPs which are joined to bio-agents, for example, antibodies, aptamers, DNA or RNA, can be applied in bio-partition [29]. Furthermore, these appended to paclitaxel, doxorubicin, and so forth., can be utilized in the field of medication conveyance and disease treatment. These functionalization are accomplished by utilizing the particles containing carboxyl, thiol or amine gatherings to append to the outside of MNPs through covalent linkage. Different methods of functionalization of MNPs, for example, consolidating them with other useful nanostructures by consecutive development or covering, have additionally been accounted for. For instance, MNPs joined with quantum dots or metallic species lead to a promising possibility for sub-atomic imaging. The embodiment of an expected anticancer medication by iron oxide nano-shells bears the core-shell nanostructures, which is possibly encouraging for controlled medication conveyance [30-32]. These MNPs will in general agglomerate and structure bigger groups with restricted application. By functionalizing MNPs, it is conceivable to stay away from this marvel and accomplish alluring dispersibility in the fluid state too.

4. Biomedical applications of MNPs

4.1. Magnetic hyperthermia

Hyperthermia is a clinical treatment that specifically kills the tumor cells over normal cells by warming a tumor at temperatures between 41-45ºC, and incorporates full body hyperthermia and limited hyperthermia [33]. The full body hyperthermia includes warming the whole body and requires cautious control of the temperature to treat metastatic disease cells when spread all through the body [34]. Restricted hyperthermia includes just warming a little region of intrigue, for example, a tumor. Right now accessible methods for enlistment of hyperthermia are ultrasound, radiofrequency, microwaves, infrared radiation, magnetic thermo-seeds, etc. The difficulties in customary hyperthermia treatment are either normal tissue being harmed by warming, or constrained entrance of warmth into body tissues. In the MNPs-based hyperthermia treatment, ferromagnetic or superparamagnetic particles are utilized to create heat into the tumor tissue, trailed by irradiation utilizing an external magnetic field. In contrast with regular hyperthermia treatment, MNPs can offer a few favorable circumstances: i) Increasing the viability of hyperthermia. MNPs utilized for hyperthermia are in the scope of barely any several nanometer in size, in this way permitting simple venture into tumors after intravenous infusion with the guide of the applied magnetic field; ii) Improving the explicitness of hyperthermia. The MNPs custom fitted with malignant growth explicit restricting operators permit them being focused toward explicit tumor tissues; 3) Ensuring the security of hyperthermia. The warming of MNPs by the remotely exchanging attractive field permits the warmth activity just slaughtering the tumor cells with least harm to typical tissue. Figure 1, outlines the hyperthermia schematics, where the MNPs inserted in the human body at the tumor sites then exposed to AC magnetic field to kill the tumor cells by heat generated by MNPs.

Fig. 1 Schematics of MNPs based hyperthermia therapy for cancer treatment
4.2. Medical imaging
Magnetic Resonance Imaging (MRI) is a noninvasive method that utilizes magnetic fields to create high-resolution and better contrast pictures of tissue structure and functioning [35, 36]. It depends on the reaction of proton spinning within the sight of an applied magnetic field. Under the applied magnetic field, protons adjust in one direction. At the point when the Radio Frequency (RF) beat is applied, adjusted protons are perturbed and in this way loose to their unique state. Two autonomous unwinding forms, longitudinal unwinding (T1) and cross over unwinding (T2), can be used to produce a MR picture [37]. Ordinary Gd\(^{3+}\) or Mn\(^{2+}\) compounds, having a place with the T1 differentiate specialists, may show poisonousness because of the presence of metal particles and raise new ecological issues. On the opposite side, MNPs with improved proficiency, superfluity, and biocompatibility, having a place with the T2 differentiate operators, have subsequently been the subject of various examinations as potential MRI differentiate specialists [38, 39].

4.3. Bio-entity separation
In the realm of bio-medicine, magnetic detachment dependent on MNPs, which is modest and proficient in nature, is a great answer for the issues experienced by the regular repetitive and tedious bio-medicine partition techniques including centrifugation and filtration [40, 41]. Upon the conjugation of the objective bio-molecules and MNPs functionalized with explicit receptors, the as-framed edifices can be effectively pulled in by the applied magnetic field and removed from the pristine solution, hence giving an advantageous and efficient methodology for bio-partition [42]. For example, MNPs bearing immobilized single-abandoned DNAs are utilized to refine correlative DNAs. After appropriate hatching time, the correlative DNAs are permitted to firmly tie to the single-abandoned DNAs tied down to the MNPs. Through magnetic decantation and washing system, the sanitized DNAs are effectively segregated from and recuperated by relocation from the MNPs by legitimate elution methods. Fig. 2 shows the schematics of MNPs based bio-entity separation.

4.4. Drug transportation
During malignancy chemo-therapeutic process, appropriate drugs with high cytotoxic exercises should be conveyed into singular tumour cells to harm or execute tumour cells [43]. In the customary techniques, the aggregation of these medications in the tumour and normal tissue is frequently proportional due to the vague idea of medications infused into the blood frameworks. This wonder offers ascend to the notable symptoms, for example, that ordinary normal cells are assaulted in the strategy of treatment. Directed medication conveyance of molecules with MNPs can improve the medication explicitness and diminish this symptom. Remedial specialists are appended to, or epitomized inside MNPs to frame the MNPs/helpful operator co-complex. These attractive transporters are infused into the circulatory system and guided to centre over the tumour area through outer applied inhomogeneous magnetic fields. The remedial operators pressed in the MNPs are then delivered to pulverize the tumour cell adequately. Directed conveyance of medication molecules with MNPs can improve the bio-appropriation and shield the medications from the microenvironment,
showing higher disguise by malignant growth cells than normal cells and allowing the utilization of the helpful operators at low enough portions to diminish the poisonousness of chemotherapy.

Fig. 3 Schematics of MNPs based targeted drug delivery

4.5. Biosensors
The functionalized unit of the magneto-resistive sensors dependent on MNPs for biosensing application comprises of the sensor and MNPs authoritative to the sensors [44]. The working standard of this sort of magneto-resistive sensors is that the magnetic fields produced by the MNPs which adjust the magnetic fields of the sensor bring about electrical flow or opposition changes inside the sensor [45]. Contrasted with colorimetric, radioactive or electrochemical strategies, the MNPs based sensors has demonstrated prevalent focal points for biomarker recognition and capabilities, giving high affectability, long haul security and probability of the equipment miniaturization. Along these lines the procedure has expansive applications in clinical analysis, food industry and environment sector. The mode in which MNPs binds to the sensor surface incorporate direct marking and aberrant naming. Subsequently, magnetic field unsettling influences in light of these MNPs are detected by the magnetic sensors. The guideline of indirect marking is the sandwich immuno-assay. The antibodies for the objective protein are immobilized on a superficial level.

5. Conclusions
In this brief survey, we have summed up the preparation, functionalization and biomedical utilizations of MNPs. The idea of utilizing MNPs in biomedical applications significantly profits by the fast advancement of the nanoscale materials. On one hand, the MNPs with controlled and barely circulated sizes can be fabricated by gently choosing the preparation conditions, while then again, surface functionalization of the MNPs with different bio-entities, which is profoundly basic for the biomedical application, has been created and exhibited by the reasonable plan of both the arrangement of the MNPs and the molecular level structure of the bio-entities. These functionalized MNPs with high selectivity, high affectability and extraordinary attractive properties show the prevalence not just over the conventional strategies or specialists utilized in the bio-partition, biosensing and medical imaging by expanding the proficiency and precision yet in addition in the medication conveyance and hyperthermia by expanding the particularity and decreasing the harm of the normal tissues during the in-vivo therapy.

Acknowledgement
The author Sandeep B. Somvanshi acknowledges Department of Science and Technology (DST), Government of India for DST-INSPIRE Fellowship (IF170288).

References
[1]. Z. Luo, S. Fan, C. Gu, W. Liu, J. Chen, B. Li, J. Liu, Metal–organic framework (MOF)-based nanomaterials for biomedical applications, Current medicinal chemistry, 26 (2019) 3341-3369.
[2]. W. Liu, G. Speranza, Functionalization of Carbon Nanomaterials for Biomedical Applications, C—Journal of Carbon Research, 5 (2019) 72.
[3]. R. Fopase, L.M. Pandey, Iron Oxide based Magnetic Nanomaterials for Biomedical Applications, Magnetoochemistry: Materials and Applications, 66 (2020) 276.
[4]. X. Tian, L. Zhang, M. Yang, L. Bai, Y. Dai, Z. Yu, Y. Pan, Functional magnetic hybrid nanomaterials for biomedical diagnosis and treatment, Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 10 (2018) e1476.

[5]. S.B. Somvanshi, M.V. Khedkar, P.B. Kharat, K. Jadhav, Influential diamagnetic magnesium (Mg2+) ion substitution in nano-spinel zinc ferrite (ZnFe2O4): thermal, structural, spectral, optical and physisorption analysis, Ceramics International, 46 (2020) 8640-8650.

[6]. V. Bharati, S.B. Somvanshi, A.V. Humbe, V. Murumkar, V. Sondur, K. Jadhav, Influence of trivalent Al–Cr co-substitution on the structural, morphological and Mössbauer properties of nickel ferrite nanoparticles, Journal of Alloys and Compounds, 821 (2020) 153501.

[7]. R.M. Borade, S.B. Somvanshi, S.B. Kale, R.P. Pawar, K. Jadhav, Spinel zinc ferrite nanoparticles: an active nanocatalyst for microwave irradiated solvent free synthesis of chalcones, Materials Research Express, 7 (2020) 016116.

[8]. A. Bhosale, S.B. Somvanshi, V. Murumkar, K. Jadhav, Influential incorporation of RE metal ion (Dy3+) in yttrium iron garnet (YIG) nanoparticles: Magnetic, electrical and dielectric behaviour, Ceramics International, (2020).

[9]. P.B. Kharat, S. More, S.B. Somvanshi, K. Jadhav, Exploration of thermoacoustics behavior of water based nickel ferrite nanofluids by ultrasonic velocity method, Journal of Materials Science: Materials in Electronics, 30 (2019) 6564-6574.

[10]. P.B. Kharat, S.B. Somvanshi, J.S. Kounsalye, S.S. Deshmukh, P.P. Khirade, K. Jadhav, Temperature dependent viscosity of cobalt ferrite/ethylene glycol ferrofluids, in: AIP Conference Proceedings, AIP Publishing LLC, 2018, pp. 050044.

[11]. S.A. Jadhav, S.B. Somvanshi, M.V. Khedkar, S.R. Patade, K. Jadhav, Magneto-structural and photocatalytic behavior of mixed Ni–Zn nano-spinel ferrites: visible light-enabled active photodegradation of rhodamine B, Journal of Materials Science: Materials in Electronics, 1-14.

[12]. W. Park, H. Shin, B. Choi, W.-K. Rhim, K. Na, D.K. Han, Advanced Hybrid Nanomaterials for Biomedical Applications, Progress in Materials Science, (2020) 100686.

[13]. N.L. Pacioni, M.A.M. Torres, R.N. Núñez, Synthesis and Characterization of Nanomaterials for Biomedical Applications, in: Nanoengineering Materials for Biomedical Uses, Springer, 2019, pp. 13-34.

[14]. P. Das, P. Fatehbasharzad, M. Colombo, L. Fiandra, D. Prosperi, Multifunctional magnetic gold nanomaterials for cancer, Trends in biotechnology, 37 (2019) 995-1010.

[15]. C. Tudisco, M.T. Cambria, G.G. Condorelli, Multifunctional Magnetic Nanoparticles for Theranostic Applications, in: Biomedical Applications of Functionalized Nanomaterials, Elsevier, 2018, pp. 335-370.

[16]. Y.I. Kim, D. Kim, C.S. Lee, Synthesis and characterization of CoFe2O4 magnetic nanoparticles prepared by temperature-controlled coprecipitation method, Physica B: Condensed Matter, 337 (2003) 42-51.

[17]. S. Wu, A. Sun, F. Zhai, J. Wang, W. Xu, Q. Zhang, A.A. Volinsky, Fe3O4 magnetic nanoparticles synthesis from tailings by ultrasonic chemical co-precipitation, Materials Letters, 65 (2011) 1882-1884.

[18]. N. Kandpal, N. Sah, R. Loshali, R. Joshi, J. Prasad, Co-precipitation method of synthesis and characterization of iron oxide nanoparticles, (2014).

[19]. J. Lopez Perez, M. Lopez Quintela, J. Mira, J. Rivas, S. Charles, Advances in the preparation of magnetic nanoparticles by the microemulsion method, The journal of physical chemistry B, 101 (1997) 8045-8047.

[20]. S.B. Somvanshi, S.A. Jadhav, M.V. Khedkar, P.B. Kharat, S. More, K. Jadhav, Structural, thermal, spectral, optical and surface analysis of rare earth metal ion (Gd3+) doped mixed Zn–Mg nano-spinel ferrites, Ceramics International, (2020).
[21]. A.V. Humbe, J.S. Kounsalye, S.B. Somvanshi, A. Kumar, K. Jadhav, Cation distribution, magnetic and hyperfine interaction studies of Ni–Zn spinel ferrites: role of Jahn-Teller ion (Cu 2+) substitution, Materials Advances, (2020).

[22]. S.R. Patade, D.D. Andhare, S.B. Somvanshi, P.B. Kharat, S.D. More, K.M. Jadhav, Preparation and characterisations of magnetic nanofluid of zinc ferrite for hyperthermia, Nanomaterials and Energy, (2020) 1-6.

[23]. M.N. Islam, J.-R. Jeong, C. Kim, A facile route to sonochemical synthesis of magnetic iron oxide (Fe3O4) nanoparticles, Thin Solid Films, 519 (2011) 8277-8279.

[24]. S.F. Chin, S.C. Pang, C.H. Tan, Green synthesis of magnetite nanoparticles (via thermal decomposition method) with controllable size and shape, (2011).

[25]. H. Kardile, S.B. Somvanshi, A.R. Chavan, A. Pandit, K. Jadhav, Effect of Cd2+ doping on structural, morphological, optical, magnetic and wettability properties of nickel ferrite thin films, Optik, (2020) 164462.

[26]. A.R. Chavan, S.B. Somvanshi, P.P. Khirade, K. Jadhav, Influence of trivalent Cr ion substitution on the physicochemical, optical, electrical, and dielectric properties of sprayed NiFe2O4 spinel-magnetic thin films, RSC Advances, 10 (2020) 25143-25154.

[27]. S.B. Somvanshi, P.B. Kharat, M.V. Khedkar, K. Jadhav, Hydrophobic to hydrophilic surface transformation of nano-scale zinc ferrite via oleic acid coating: magnetic hyperthermia study towards biomedical applications, Ceramics International, 46 (2020) 7642-7653.

[28]. S.B. Somvanshi, R.V. Kumar, J.S. Kounsalye, T.S. Saraf, K. Jadhav, Investigations of structural, magnetic and induction heating properties of surface functionalized zinc ferrite nanoparticles for hyperthermia applications, in: AIP Conference Proceedings, AIP Publishing LLC, 2019, pp. 030522.

[29]. S. Jeon, R. Subbiah, T. Bonaedy, S. Van, K. Park, K. Yun, Surface functionalized magnetic nanoparticles shift cell behavior with on/off magnetic fields, Journal of Cellular Physiology, 233 (2018) 1168-1178.

[30]. W.J. Chen, P.J. Tsai, Y.C. Chen, Functional Fe3O4/TiO2 core/shell magnetic nanoparticles as photokilling agents for pathogenic bacteria, Small, 4 (2008) 485-491.

[31]. L. Li, X. He, L. Chen, Y. Zhang, Preparation of core-shell magnetic molecularly imprinted polymer nanoparticles for recognition of bovine hemoglobin, Chemistry–An Asian Journal, 4 (2009) 286-293.

[32]. I. Robinson, L.D. Tung, S. Maenosono, C. Wälti, N.T. Thanh, Synthesis of core-shell gold coated magnetic nanoparticles and their interaction with thiolated DNA, Nanoscale, 2 (2010) 2624-2630.

[33]. S.B. Somvanshi, S.R. Patade, D.D. Andhare, S.A. Jadhav, M.V. Khedkar, P.P. Khirade, K. Jadhav, Hyperthermic evaluation of oleic acid coated nano-spinel magnesium ferrite: enhancement via hydrophobic-to-hydrophilic surface transformation, Journal of Alloys and Compounds, (2020) 155422.

[34]. S.R. Patade, D.D. Andhare, S.B. Somvanshi, S.A. Jadhav, M.V. Khedkar, K. Jadhav, Self-heating evaluation of superparamagnetic MnFe2O4 nanoparticles for magnetic fluid hyperthermia application towards cancer treatment, Ceramics International, (2020).

[35]. S.A. Corr, S.J. Byrne, R. Tekoruiute, C.J. Meledandri, D.F. Brougham, M. Lynch, C. Kerskens, L. O'Dwyer, Y.K. Gun'ko, Linear assemblies of magnetic nanoparticles as MRI contrast agents, Journal of the American Chemical Society, 130 (2008) 4214-4215.

[36]. Q.L. Vuong, J.F. Berret, J. Fresnais, Y. Gossuin, O. Sandre, A universal scaling law to predict the efficiency of magnetic nanoparticles as MRI T2-contrast agents, Advanced healthcare materials, 1 (2012) 502-512.

[37]. J. Wang, Y. Huang, A. E David, B. Chertok, L. Zhang, F. Yu, V. C Yang, Magnetic nanoparticles for MRI of brain tumors, Current Pharmaceutical Biotechnology, 13 (2012) 2403-2416.
[38]. K. Hayashi, Y. Sato, W. Sakamoto, T. Yogo, Theranostic nanoparticles for MRI-guided thermochemotherapy: “tight” clustering of magnetic nanoparticles boosts relaxivity and heat-generation power, ACS Biomaterials Science & Engineering, 3 (2017) 95-105.

[39]. K. Hola, Z. Markova, G. Zoppellaro, J. Tucek, R. Zboril, Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances, Biotechnology advances, 33 (2015) 1162-1176.

[40]. S. B. Somvanshi, P. B. Kharat, T. S. Saraf, S. B. Somwanshi, S. B. Shejul, K. M. Jadhav, Multifunctional nano-magnetic particles assisted viral RNA-extraction protocol for potential detection of COVID-19, Materials Research Innovations, (2020) 1-6.

[41]. H. Fatima, K.-S. Kim, Magnetic nanoparticles for bioseparation, Korean Journal of Chemical Engineering, 34 (2017) 589-599.

[42]. Y.Y. Liang, L.M. Zhang, W. Jiang, W. Li, Embedding Magnetic Nanoparticles into Polysaccharide-Based Hydrogels for Magnetically Assisted Bioseparation, ChemPhysChem, 8 (2007) 2367-2372.

[43]. S.B. Kale, S.B. Somvanshi, M. Sarnaik, S. More, S. Shukla, K. Jadhav, Enhancement in surface area and magnetization of CoFe2O4 nanoparticles for targeted drug delivery application, in: AIP Conference Proceedings, AIP Publishing LLC, 2018, pp. 030193.

[44]. L. Tu, Detection of magnetic nanoparticles for bio-sensing applications, (2013).

[45]. M. Hasanzadeh, N. Shadjou, M. de la Guardia, Iron and iron-oxide magnetic nanoparticles as signal-amplification elements in electrochemical biosensing, TrAC Trends in Analytical Chemistry, 72 (2015) 1-9.