Climate change increases North Korea’s hunger: implications for social resilience

Yu Shi
State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University

Yajie Zhang
State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University

Bingyan Wu
State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University

Hao Shi
International Center for Climate and Global Change Research, School of Forestry and Wildlife Sciences, Auburn University

Linchao Li
State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University

Ning Jin
Department of Resources and Environment, Shanxi Institute of Energy

Bin Wang
New South Wales Department of Primary Industries https://orcid.org/0000-0002-6422-5802

De Li Liu
NSW Department of Primary Industries, Wagga Wagga Agricultural Institute https://orcid.org/0000-0003-2574-1908

Ruiqing Miao
Auburn University

Xiaoliang Lu
State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University

Qingling Geng
College of Earth Science and Technology, Zhengzhou University

Chaoqun Lu
Iowa State University https://orcid.org/0000-0002-1526-0513

Liang He
National Meteorological Center
Article

Keywords: climate change, North Korea, hunger, social resilience

Posted Date: September 14th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-877804/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Climate change increases North Korea’s hunger: implications for social resilience

Yu Shi1,2, Yajie Zhang1, Bingyan Wu1,2, Hao Shi3, Linchao Li1,2, Ning Jin4, Bin Wang5, De Li Liu5, Ruiqing Miao6, Xiaoliang Lu1, Qingling Geng7, Chaoqun Lu8, Liang He9, Nufang Fang1, Chao Yue1, Jianqiang He1, Hao Feng1, Shufen Pan3, Hanqin Tian3,*, Qiang Yu1,10,*

Affiliations:
1 State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A\&F University, Yangling, Shaanxi 712100, China
2 College of Natural Resources and Environment, Northwest A\&F University, Yangling 712100, China
3 International Center for Climate and Global Change Research, School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL, USA
4 Department of Resources and Environment, Shanxi Institute of Energy, Jinzhong 030600, China
5 New South Wales Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, New South Wales, Australia
6 Department of Agricultural Economics and Rural Sociology, Auburn University, Auburn, AL, USA
7 College of Earth Science and Technology, Zhengzhou University, Zhengzhou, Henan 450052, China
8 Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
9 National Meteorological Center, Beijing 100081, China
10 Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

*Corresponding author: Qiang Yu and Hanqin Tian
Email: yuq@nwafu.edu.cn (Q. Yu); tianhan@auburn.edu (H. Tian); shiyu174274@163.com (Y. Shi)

Abstract

Adaption based on social resilience is proposed as effective measures to mitigate hunger and avoid disaster caused by climate change. But these have not been investigated comprehensively in climate-sensitive regions especially necessary-quantitative paths. North Korea (NK, undeveloped) and its neighbors (SK, South Korea, developed; China, developing) represent three economic levels that provide us with examples of how to examine climatic risk and quantify the contribution of social resilience to rice production. Our data-driven estimates show that climatic factors determined rice biomass changes in NK, while non-climatic factors dominated biomass changes in NK’s neighbors. If no action is taken, NK will face a higher climatic risk (with continuous high temperature heatwaves and precipitation extremes) by the 2080s with high emission scenario when rice biomass and production are expected to decrease by 20.2% and 14.4%, respectively, thereby potentially increasing hunger in NK. The contribution of social resilience to food production in the undeveloped region (15.2%) was far below the contribution observed in the developed and developing regions (83.0% and 86.1%, respectively). These findings highlight the importance of social resilience to mitigate the negative effects of climate change on food security and human hunger, and provide necessary-quantitative information.
Main Text:

Extreme climate and high-frequency meteorological disasters occurring from abnormal changes in temperature and precipitation are reported to decrease agricultural productivity and increase inter-annual variability of crop production1-3. By the 2050s, predicted increases in frequency and intensity of climate extremes are projected to increase global food prices and place billions of people at risk of hunger4, especially in poor countries, regions, and households, exacerbating risk owing to lower ability to adapt to climate change5-7.

Indeed, regional famine and hunger normally arise from the combined effects of climate and economic vulnerabilities8,9. Further, the adaptive ability that depends on social-economic resilience is consistently regarded as a crucial factor in coping with climatic risk and safeguarding food security. Social-economic resilience includes not only traditional financial assets and infrastructure10, but also demographic structure, resource utilization, technology, education, and attitudes and perceptions of risk in order to change adaptive behaviors11,12. However, few studies have integrated social resilience into the climate risk framework to quantify the contribution of regional food production due to inherently hard-to-quantify human behavior and risk recognition. Moreover, the potential of social-economic resilience to mitigate the adverse effects of climate change, in particular climate extremes, and to ensure food security remain largely unknown.

North Korea (NK), located in a climatic-vulnerable region of Eastern Asia (Figure 1), has been strongly affected by climate change. Many meteorological disasters have occurred that have induced more severe famine over the past decades, including typhoons, heavy precipitation events, and river floods13. It has been reported that NK suffered from a freezing disaster in 1993, hail in 1994, severe floods during 1995 to 1996, a typhoon and drought in 1997, frost in 1998, etc14. Even in the 21st century, NK’s grain production still cannot meet the needs of the population, and food deficits still loom large and are even a growing trend15,16. With large-scale intensification of extreme high temperature and precipitation events in the future, more scholars take a pessimistic attitude towards food self-sufficiency for NK15. Due to the particularity and importance of its geographical location and social-economic policies, the unstable famine and poverty issues in NK may increase risks to global stability that include required extensive international aid14, humanitarian relief17, and open international trade18, especially in the context of the global pandemic of COVID-19.

NK (the undeveloped region) and its neighbors (South Korea, SK, the developed region; China, the developing region) represent different levels of economic development, and also provide us with a natural example for investigating the impacts of climate extremes and their link to social-economic behavior. Additionally, the similar climatic conditions19 of these regions also rule out uncertainties in social-economic assessments due to differences in climate vulnerability. Comparing economic vulnerability based on social resilience among the three regions excepting climate risk is a valuable approach, i.e., the ability to adapt to climate risk for food security resulting from climate and economic vulnerability. Rice (\textit{Oryza sativa L.}) is one of the most important foods in NK. Rice composes more than 60% of the total grain production, and directly affects food security for NK in terms of planting area and production20. Importantly, the adverse impacts of climate change on rice systems is increasing21.

It is well-known that obtaining reliable statistics and survey data from NK is difficult due to NK’s politics and economics. Therefore, this study attempted to fully use remote sensing and climate data with openly available statistical information to examine and assess climatic risk and food security with interaction between climate and social-economic vulnerability for NK and its neighbors (Table
In addition, the method presented in this study can be used in regions of the world that lack official information to evaluate climatic risk and food security status. In this research, we need to answer three key questions: (1) How has climate change (climate extremes) affected rice production in NK? (2) What is the future projection of rice production loss? and (3) How have human activities (adaptation based on social-economic resilience) exacerbated or ameliorated food deficits in NK and its neighbors. Specifically, we focus on normal and extreme climate changes in NK over the past 18 years (2000–2017), and attribute rice biomass changes to climatic factors resulting from high-frequency climate extremes and increased vulnerability. Furthermore, we introduce 27 global climate models (GCMs) under two future scenarios (SSP245 and SSP585 from CMIP6) to assess climate changes and production losses in the future from a climatic risk perspective. Finally, the contribution of social resilience based on five factors (population development, resource use, science and education, economic development, and agricultural input) to rice production is explored quantitatively by contrasting the differences between NK and its neighbors (SK and China). Further details of the data used, methods, and model robustness checks can be found in the Methods and Supplementary Information.

Results

When food famine occurs. The first challenge relative to analyzing food security is to determine the time of the food crisis occurrence, i.e., when food famine occurred. To do this, we employed a general method with food self-sufficiency rate and national-level statistics from FAO to identify the degree of food self-sufficiency in NK and SK, and defined the years when the rice self-sufficiency rate was less than 70% as famine years (see Methods). Over the period from 1984 to 2017, we obtained an impressive result in which the rice self-sufficiency rate in NK was the highest in 1988 and then declined dramatically to the lowest point in 2000 (less than 70%) (Figure 2a). After 2000, NK’s self-sufficiency rate gradually increased, but it still fell sharply in some years, especially in 2007 (again less than 70%). In contrast, SK’s self-sufficiency rate has remained stable and close to 100% (Figure 2a). From 1984 to 2017, the self-sufficiency rate for rice in NK was below 90% in fifty percent of the years, but in SK the self-sufficiency rate was higher than 90% in all the years. We identified two famine years in NK (2000 and 2007), and used data from those two years to study the causes of the famines.

Attribution of famine occurrences to climate. In order to attribute changes in rice growth and major climate in NK, Liaoning and Jilin provinces in China (CH_1_2), and SK (Figure 1), the phenology- and pixel-based paddy rice mapping (PPPM) algorithm was first applied on the Google Earth Engine cloud platform to extract rice paddy map referencing used by Dong et al. (2016) in which they adequately verified this algorithm and the accuracy of rice maps for ensuring robust application in large-scale fields (Figure S1a). Further, we adopted an eLUE model to simulate the biomass of the study areas in 2000 and 2007, and calibrated this model. Figure S1b demonstrated that the eLUE model had good robustness and accurately reproduced the light use efficiency of ecosystems monitored by eddy covariance (EC) towers (10-fold cross-validation: $R^2 > 0.75$, nRMSE < 0.4, $P < 0.01$). Consequently, we reestablished the distribution of gross primary productivity (GPP) in 2000 and 2007 using this model for the study regions (see Methods).

The twelve climatic variables (including three average and nine extreme variables) were incorporated in the analysis to determine climate attribution of famine years (Table S2). We then conducted a multicollinearity analysis of all climate variables to exclude high collinearity for machine
learning modeling, i.e., variance inflation factor more than 10 (Table S3). Although the eLUE model is driven by remote sensing and flux data, it introduces solar radiation into the simulation. We therefore additionally analyzed the impact of solar radiation on attribution to climate. In the two famine years (2000 and 2007), similar accuracy was found for the model with and without solar radiation (Table S4). In the famine years, climate variables produced different levels of explanation of GPP changes in NK, CH_1_2, and SK, with 73%, 43%, and 44%, respectively, explained in 2000, and 65%, 44%, and 55% explained in 2007 (Figure 2b). This meant that climate variability was responsible for nearly three quarters of rice GPP changes in NK, while approximately half of GPP changes in CH_1_2 and SK in the famine years were due to climate change.

We next fully examined the spatial-temporal changes of each climatic factor by comparing the baseline using anomalies to attribute the famine (see Methods). The gray bands in Figure 2c represent the period from heading to tillering during the rice growing season (GS). This period is usually sensitive to climate change, and especially sensitive to high temperatures that can cause plant death. Heat wave caused by sustained high temperatures dominated decreasing in rice production in 2000 for NK. Total solar radiation and average air temperature during GS were not observed to be different from the baseline during the heading to tillering stages in 2000 (Figure 2c). The temperature extremes, annual minimum value of daily minimum temperature (TNn) and annual maximum value of daily maximum temperature (TXx), also did not demonstrate significant increases (Figure 2c), yet their duration increased substantially such as for TR20 (annual count of days when TN > 20°C) and SU30 (annual count of days when TX > 30°C), resulting in a heat wave for nearly five months in 2000 (Figure 2c). In addition, a few long-term periods of rainfall hardly alleviated the high temperatures and heat wave in local areas (Figure 2c). In terms of the spatial distribution of anomalies, the frequency of abnormal increases for TXx, TR20, SU30, and FD0 (annual count of days when TN < 0°C) in 2000 accounted for 27%, 35%, 37%, and 54%, respectively, of the entire region (Figure S2). Specifically, the occurrence of extreme high temperatures increased abnormally in southwest NK, and the anomalies of TXx, TR20, and SU30 were all more than three standard deviations, with the anomalous occurrences covering the rice growing regions (Figure 2c). Significant increases for precipitation and precipitation days were observed in the non-rice region of northeast NK, and this also explains why precipitation did not alleviate the reduction in production caused by the high temperatures and the heat wave (Figure 2c). Precipitation extremes caused by increasing precipitation days with the extra precipitation dominated decreasing in rice production in 2007 for NK. Specifically, high-temperature days were significantly reduced in the heading-tillering stages in 2007 compared with the baseline (Figure 2c). And an important cause of the reduced temperatures was the large amount of precipitation that regulated surface temperatures, decreasing maximum temperatures (TXx) and increasing minimum temperatures (TNn) (Figure 2c). Furthermore, the long-term and substantial amount of precipitation produced conditions that made plants highly susceptible to crop root rot and flood damage. TP (total precipitation during GS), R50 (annual count of days when R ≥ 50mm), and R25 (annual count of days when R ≥ 25mm) in 2007 accounted for 87%, 72%, and 80%, respectively, of the entire region (Figure S2). This was similarly evidenced by the spatial distribution of rainfall extremes that covered the west/southwest rice-growing region in 2007 (anomaly was more than three standard deviations) (Figure 2c).

If NK maintains its current level of rice production, what risks will be faced for future production under climate change? This section focuses on climate change and the potential for warning of food security issues in the future. Here, we show the effects of climate change regarding production losses under two climate scenarios (SSP245 and SSP585) using 27 GCMs (Table S5). Future climate would
see marked increases in temperature and precipitation in the vulnerable climatic region of NK. Specifically, AAT, TNn, and TXx would increase by 2.96±0.93°C, 2.32±0.59°C, and 3.81±1.12°C, respectively, under the SSP585 scenario in the 2080s (Figure S3a, d, e). Most surprisingly, SU30 would increase by 97.6±43.77% and 221.94±77.09% under SSP245 and SSP585, respectively, in the 2080s, indicating that the number of high temperature days would double and triple in the future compared with the 1979–2018 period (Figure S3g). Additionally, TP, R50, and R25 would increase by 19.93±7.74%, 7.57±12.53%, and 13.42±9.75%, respectively, in the 2080s under SSP585, yet R1 would decrease by 19.23±0.86% (Figure S3c, i, j). In general, no matter which climate scenario is considered, the risk of high temperatures and extreme rainfall due to future warming will increase.

More specifically for NK, climatic variables explained 80% of the GPP changes observed from flux towers during 2000–2017 (the baseline period) (Figure 3a). In addition, temperature dominated rice biomass changes in NK over the long time period as seen by the top three important variables being related to temperature (Figure 3b). As a consequence, with extreme high temperatures and altered precipitation in the future, rice biomass in NK would decrease by 18.9% and 20.2% in 2080s under SSP245 and SSP585, respectively, compared with the baseline period. Production would decrease by 13% and 14.4% in the 2080s under SSP245 and SSP585, respectively (Figure 3c). In NK, where vulnerability to climate is especially high, and the frequency of extreme climate leads to low production, 20.2% biomass losses may be conservatively estimated, and the fragile food system may collapse and result in famine. For CH and SK, climate change did not explain the changes in rice biomass, and the assessments of future rice losses are highly uncertain (Figure 2b). Therefore, the future production losses in SK and CH_1_2 were not calculated in this study. However, it is worth clarifying that robust results have shown that the rice production in CH_1_2 and SK was greater than in NK in the context of past climate shocks, and was dominated by non-climatic factors.

Analysis of adaptability in NK, CH, and SK. Although rice production is generally subject to natural-environmental change from the standpoint of a climatic risk framework, the adaptive capacity at regional or national levels from social resilience is more determinant of rice production losses. Social resilience will be driven by population, economics, technology, and culture. To quantify the contribution of social resilience to rice production, we collected and used economic statistics from FAO, World Bank, and an agricultural dataset of remote sensing that involved five factors: population development, resource use, science and education, economic development, and agricultural inputs (Table 1) that together constituted social resilience. The social resilience data was characterized as one of two types to fully reveal the real-social situation: soft-adaptive and hard-adaptive (Table 1). Additionally, discontinuous-economic data for NK were interpolated using regression models to estimate missing values (energy use, school enrollment-tertiary, access to electricity, and patent applications) (Figure S4, R² values are respectively 0.70, 0.99, 0.99, and 0.92; P values are all < 0.01). Figures S5–S7 indicate the correlations between a single social-economic variable and rice production. NK showed weaker correlations between each of the variables of social resilience than SK and CH (rho < 0.5 and not strong significance). Moreover, an interesting result showed the huge difference in the contribution direction of each economic variable to rice production (i.e., positive or negative contribution) in the three regions.

For this purpose, we conducted a more comprehensive integrated analysis based on random forest regression of economics (RFe). The random forest model has been widely applied to ecological studies to quantify the contribution of social-economic resilience to rice production (see Method section, Figure 4a). Of the twelve indexes of social resilience, higher education, rural population, access to electricity, and population ages 0-14 dominated rice production variations in NK (P value >
0.05); patent applications, population ages 0-14, GDP per capita, and energy use dominated rice production variations in SK (P value < 0.05); and population ages 0-14, rural population, net ODA received per capita, and GDP per capita dominated in CH (P value > 0.05) (Figure 4a). The level of economic development and population structure in both developed and developing regions played a more important role than in undeveloped regions, and science and education in developed regions had a greater influence on rice production than other factors (Figure 4a). The RF analysis further illustrated the absolute contribution of social resilience to rice production in SK and CH (explaining 83.0% and 86.1%, respectively, of inter-annual rice production variation, p value < 0.05), values which are much higher than in NK (15.2%, p value < 0.05) (see Methods section, Figure 4a). This result echoes the impact of climate change on rice production, i.e., crop production is interactively affected by climate and economic vulnerability, where rice production in undeveloped regions is controlled by climate factors (Figure 2b), and rice production in developed and developing regions is controlled by social-economic factors (Figure 4a). In addition, the robust results obtained in this study demonstrate the great potential of social resilience to increase crop production, and resist the negative effects of climate shocks and weather extremes on food security.

Rice production in NK exhibited a threshold-like response to all four of the important variables influencing rice production, including school enrollment, tertiary (Figure 4b). Rice production declined when school enrollment was higher than -0.6 units, presumably because limited capital was invested in science education and because of reduced economic investment and labor from family source in agriculture. The non-linear response of rice production in CH to population development provided coherent evidence (Figure 4b). Specifically, rice production decreased with increasing agricultural population and population ages 0-14 in the undeveloped or developing countries (NK and CH) (Figure 4b). The pressures from diet need caused by population growth and uncoordinated structure of population constrain economic development and production increase in undeveloped regions. For instance, the rural areas with relatively higher mechanization contribute to rice production and require less agricultural population. However, in the developed region (SK), one opposite result was shown in the response of rice production to population ages 0-14 (Figure 4b), and this result might be due to differences in population structure among districts. Developed regions have a greater need to increase the proportion of adolescents in the population to adjust for serious aging so that a larger agricultural labor force is available to increase rice production. Energy use produced an increase in rice production for the developing country (CH), yet the opposite result was observed for the developed country (SK) owing to the capacity to import resources because of sufficient capital. In general, social resilience likely results in various impacts of rice production among NK, CH, and SK.

The non-linear response of rice production to agricultural inputs in the three sub-regions is shown in Figure S8. The response curves for nitrogen, phosphorus, and irrigation showed an overall increasing trend in SK and CH. However, in NK, the production responses of the three agricultural practice inputs were seen to be expressed as hump or concave curves (Figure S8). Based on the random forest model and its out of bag error, agricultural inputs (nitrogen, phosphorus, and irrigation) explained -4.8%, 51%, and 77% of rice production changes for NK, SK, and CH, respectively. The explanatory degree for NK was negative, meaning that the model was overfitted, and the three agricultural practices cannot support the increase in rice production in the current situation.

Discussion

Our results demonstrated that climate extremes reduced crop production and contributed to
famine under climate warming in NK. Presently, climate extremes have been known to have a significant impact on the resilience of the food supply chain. Observed extreme temperatures have led to increased yield variability, and occurrence of extreme temperature events is expected to increase in the future. However, abnormal weather and climate extremes do not always cause negative consequences. Some studies relating to differing weather conditions and intensity and target crops have reported different results in various areas of the globe. For instance, Schlenker and Roberts indicated that high temperatures in the future will exceed the tolerable temperatures for corn (Zea mays L.) and soybean (Glycine max L.), resulting in decreased production by 30-46% in US. Yet in the Brazil, yields of soybean, corn, and cotton (Gossypium hirsutism L.) have increased over the past decades, even though the cumulative days of exposure to temperatures above the threshold temperature have been much greater than in the US. Further, Lesk et al. argued that hourly extreme rainfall (> 50 mm hr$^{-1}$) caused severe damage to crop yield, but crop growth benefitted from heavy rainfall of 20 mm hr$^{-1}$. Due to the projected increases in temperature and rainfall intensification in the future, the impact of climate extremes on crops remains somewhat uncertain. It is difficult to identify major changes in climatic sensitivity based only on production data over time because of the infrequency of extreme weather, and therefore, inductive analysis of the changes of exposure and crop sensitivity to climate extremes is a prerequisite for food security assessment.

Differences in the quantitative attribution in rice production between NK and its neighbors (SK and China) reflected the importance of adaptation based on social resilience to mitigate the adverse effects of extreme climate. Food security may benefit most from the changes in adaptive capacity under future climate change, such as in the fields of agricultural practices, economic development, resource use, and social cognition. Irrigation, fertilization, conservation tillage, and crop breeding are being given much attention, with more focus given to increasing yields. For example, Challinor et al. found that anthropogenic adaptability increases the average yield of crops by 7–15%.

However, if the focus is only on increasing crop yields, farmers will still suffer severe production losses due to their low perception of risk concerning the effects of extreme weather disturbances. Learning reflects the ability to produce, absorb, and transform new information about climate risk, adaptation, and coping with uncertainty. This ability to learn and apply new scientific information is a mitigation mechanism applicable to climate change. Capital investment depends on economic development, and is a more direct approach. These investments include building early warning systems and climate insurance, resource and energy use, international trade, and reducing poverty. Insurance is a tool to mitigate climatic risk and restore livelihoods, especially in response to climate extremes, but if the insurance structure is not correct, it has an inhibiting effect on risk reduction. For regions that cannot compensate for losses through trade, these years of low productivity can still be devastating. Poor countries are more vulnerable and less resilient to climate change. When the poor are struck, they have less support from friends, family, and the financial system. Policies meant to reduce poverty under similar climatic risk conditions can also reduce the adverse impacts of climate change. The interaction of social-economic factors from many aspects is the key to decreasing economic vulnerability and increasing social resilience to mitigate climate vulnerability. In this study, social resilience was shown to be enormously important for reducing hunger by contrasting the situation in three regions. Future planning for food security needs to consider climate change and social-economic interactions and development.

Surprisingly, the high-temperature index (SU30) would increase 97.6% and 221.94% under SSP245 and SSP585 in the 2080s, respectively (Figure S3). SU30 was approximately 25 d for the baseline period (1979-2018), and this value is approximately equivalent to an average of one month.
of high-temperature days every year. The number of high-temperature days per year would increase by nearly one month by the 2080s under SSP245, and the number would increase by two months under SSP585. This is probably due to increased frequency and time extension for high-temperature days affected by future temperature increases. This finding is also supported by results documented in previous literature. Kawasaki and Uchida indicated that the abnormal temperature caused by global climate change has had a serious negative impact on agricultural production and quality. And climate extremes will increase in frequency and intensity with rising temperature in the future. Our results also suggested that projected GPP and production may decrease by 20.2% and 14.4%, respectively, in NK in the 2080s under the SSP585 scenario. However, this result may be underestimated, and could be even more serious for crops because we used the average GPP and harvest index for entire regions to calculate relative changes in biomass. Similar conclusions regarding future GPP losses across the study area have been stated in many previous studies. For example, Zhang et al. suggested that rice yield would decrease by 10.7% when CO₂ effects were not considered during the 2090s under the RCP8.5 scenario in Northeast China.

Topography may be one of the factors that limit future rice production potential in NK due to the cultivation of poor-quality land that is not suitable for planting rice. NK contains a wide range of slopes compared with CH_1_2, and SK. The steeper slopes (slope >10°) accounted for 64% of the country's land, and the gentler slopes (5°–10°) accounted for 15% of the country's land (Figure S9b). In addition, land with DEM values greater than 500 m in NK accounted for 47% of the entire land area, while those higher elevation areas in CH_1_2 and SK accounted for 23% and 16%, respectively, of the entire land area (Figure S9b). Long-term deciduous broadleaf forests, deciduous needleleaf forests, and mixed forests are located in regions of DEM > 500 m, and are not suitable for planting crops (Figure S9a).

Our findings are subject to some limitations and should be considered with caution. First of all, lack of sufficient ground truth data for vulnerable regions was the biggest challenge. However, in this study, we used meteorological reanalysis products, openly available statistics, and high-resolution images from Google Earth as a replacement to ensure robustness. The advantage of doing so is extendable to other parts of the world without ground truth data limitations. With the future development of multivariate data (especially remote sensing data), study regions lacking reliable data will have new opportunities for analysis and evaluation. Other potential sources of uncertainty may not have been resolved in our model. For example, missing short-term fertilization data and additional management data are a potential source of uncertainty not considered in this study. Secondly, soil properties may also introduce uncertainty in the results. The physical and chemical properties of soil were different in each region, yet this variable was not included in our model. Folberth et al. found that assessing the impact of climate change on yield depended on soil type because soil characteristics and moisture buffer or amplify climatic impacts. This study also did not consider the effects of rice genotype due to a lack of cultivar data, and therefore there may be potential uncertainty regarding regional production differences. For GPP loss estimation, we did not introduce CO₂ concentration in our model due to the controversy regarding the ability of increasing CO₂ concentration to decrease crop water demand and improve yield while reducing nutritional content of grain. Not introducing CO₂ concentration effects may have affected reliable and robust estimates of climate and economic vulnerability. Finally, rice maps and downscaling methods were also sources of uncertainty. Specifically, uncertainties regarding rice maps may have arisen from remote sensing data, poor weather, data quality, and the number of images observed. This study generated future daily meteorological data based on statistical downscaling, but different results could be obtained.
with different downscaling methods36 (such as the change factor method and dynamical downscaling). In the future, we plan to engage in further in-depth study of multiple climate indexes, particularly extreme climate variables, combined with process-based ecological models to explain the mechanisms of crop growth. However, achieving this next step will require a great deal of data support.

Climate change is expected to increase the frequency and intensity of climate extremes that will likely reduce global food production and induce famines. An accurate assessment of food insecurity, must be valued in the deprived areas of the world because it is a vital link in the world food system and is a major component of the United Nation’s Millennium Development Goals. NK is representative of the world's deprived areas, and it and its neighbors provide an excellent example for studying food insecurity in undeveloped regions. Our robust results suggest that social resilience provides a reliable path for understanding and mitigating the detrimental effects of extreme weather shocks in the future. Using this method, we can clarify future food risks and provide quantifiable pathways and goals for efforts that will contribute to improved national risk awareness, make up for weaknesses in food programs, and guide adjustments to food strategies, and thereby provide further guidance for optimizing social-economic policies.
References

1. Yang, J. et al. Projecting heat-related excess mortality under climate change scenarios in China. *Nat. Commun.* **12**, 1039 (2021).

2. Challinor, A. J. et al. A meta-analysis of crop yield under climate change and adaptation. *Nat. Clim. Change* **4**, 287-291 (2014).

3. Lobell, D. B., Deines, J. M. & Tommaso, S. D. Changes in the drought sensitivity of US maize yields. *Nat. Food* **1**, 729-735 (2020).

4. Wake, B. Hunger and climate. *Nat. Clim. Change* **2**, 566-566 (2012).

5. Hallegatte, S. & Rozenberg, J. Climate change through a poverty lens. *Nat. Clim. Change* **7**, 250-256 (2017).

6. Diaz, D. & Moore, F. Quantifying the economic risks of climate change. *Nat. Clim. Change* **7**, 774-782 (2017).

7. Fischer, E. M. & Knutti, R. Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. *Nat. Clim. Change* **5**, 560-564 (2015).

8. Marotzke, J., Semmann, D. & Milinski, M. The economic interaction between climate change mitigation, climate migration and poverty. *Nat. Clim. Change* **10**, 518-525 (2020).

9. Hallegatte, S., Fay, M. & Barbier, E. B. Poverty and climate change: introduction. *Environ. Dev. Econ.* **23**, 217-233 (2018).

10. Smit, B. & Wandel, J. Adaptation, adaptive capacity and vulnerability. *Glob. Environ. Change* **16**, 282-292 (2006).

11. Clayton, S. et al. Psychological research and global climate change. *Nat. Clim. Change* **5**, 640-646 (2015).

12. Hallegatte, S., Przyluski, V. & Vogt-Schilb, A. Building world narratives for climate change impact, adaptation and vulnerability analyses. *Nat. Clim. Change* **1**, 151-155 (2011).

13. Wang, B., Xiang, B. & Lee, J.-Y. Subtropical High predictability establishes a promising way for monsoon and tropical storm predictions. *Proc. Natl Acad. Sci. USA* **110**, 2718 (2013).

14. Bhatia, R. & Thorne-Lyman, A. L. Food shortages and nutrition in North Korea. *The Lancet* **360**, s27-s28 (2002).

15. Crespo Cuaresma, J. et al. What do we know about poverty in North Korea? *Palgr. Commun.* **6** (2020).

16. McCurry, J. No end in sight for North Korea's malnutrition crisis. *The Lancet* **379**, 602 (2012).

17. Devi, S. North Korea “on the verge of a food crisis”. *The Lancet* **394** (2019).

18. Janssens, C. et al. Global hunger and climate change adaptation through international trade. *Nat. Clim. Change* **10**, 829-835 (2020).

19. Beck, H. E. et al. Present and future Köppen-Geiger climate classification maps at 1-km resolution. *Sci. Data* **5**, 180214 (2018).

20. Gunjal, K. et al. FAO/WFP crop and food security assessment mission to the Democratic People's Republic of Korea. *Food and Agriculture Organization of the United Nations/World Food Programme: Rome, Italy*, 11 (2013).

21. Chen, X. et al. The effects of projected climate change and extreme climate on maize and rice in the Yangtze River Basin, China. *Agric. For. Meteorol.* **282-283**, 107867 (2020).

22. Dong, J. et al. Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine. *Remote Sens. Environ.* **185**, 142-154 (2016).

23. Barnes, M. L. et al. Social determinants of adaptive and transformative responses to climate change. *Nat. Clim. Change* **10**, 823-828 (2020).

24. Lu, C. & Tian, H. Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: shifted hot spots and nutrient imbalance. *Earth Syst. Sci. Data* **9**, 181-192 (2017).

25. Logan, T. M., Guikema, S. D. & Bricker, J. D. Hard-adaptive measures can increase vulnerability to storm surge and tsunami hazards over time. *Nat. Sustain.* **1**, 526-530 (2018).

26. Schneider, U. A. et al. Impacts of population growth, economic development, and technical change on global
food production and consumption. *Agric. Syst.* **104**, 204-215 (2011).

Amare, D. & Endalew, W. Agricultural mechanization: Assessment of mechanization impact experiences on the rural population and the implications for Ethiopian smallholders. *Eng. Appl. Sci.* **1**, 39-48 (2016).

Kim, H. K. & Lee, S.-H. The effects of population aging on South Korea’s economy: The National Transfer Accounts approach. *J. Econ. Ageing* **20**, 100340 (2021).

Scheelbeek, P. F. D. *et al.* United Kingdom’s fruit and vegetable supply is increasingly dependent on imports from climate-vulnerable producing countries. *Nat. Food* **1**, 705-712 (2020).

Hansen, J., Sato, M. & Ruedy, R. Perception of climate change. *Proc. Natl Acad. Sci. USA* **109**, E2415 (2012).

Hawkins, E. *et al.* Increasing influence of heat stress on French maize yields from the 1960s to the 2030s. *Glob. Change Biol.* **19**, 937-947 (2013).

Schlenker, W. & Roberts, M. J. Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. *Proc. Natl Acad. Sci. USA* **106**, 15594 (2009).

Meerburg, B. G. *et al.* Do nonlinear temperature effects indicate severe damages to US crop yields under climate change? *Proc. Natl Acad. Sci. USA* **106**, E120 (2009).

Lesk, C., Coffé, E. & Horton, R. Net benefits to US soy and maize yields from intensifying hourly rainfall. *Nat. Clim. Change* **10**, 819-822 (2020).

Acevedo, M. *et al.* A scoping review of adoption of climate-resilient crops by small-scale producers in low- and middle-income countries. *Nat. Plants* **6**, 1231-1241 (2020).

Engle, N. L. Adaptive capacity and its assessment. *Glob. Environ. Change* **21**, 647-656 (2011).

Fang, W. *et al.* Probabilistic assessment of remote sensing-based terrestrial vegetation vulnerability to drought stress of the Loess Plateau in China. *Remote Sens. Environ.* **232** (2019).

Corbeels, M., Naudin, K., Whitbread, A. M., Kühne, R. & Letourmy, P. Limits of conservation agriculture to overcome low crop yields in sub-Saharan Africa. *Nat. Food* **1**, 447-454 (2020).

Neil Adger, W., Arnell, N. W. & Tompkins, E. L. Successful adaptation to climate change across scales. *Glob. Environ. Change* **15**, 77-86 (2005).

Surminski, S., Bouwer, L. M. & Linnerooth-Bayer, J. How insurance can support climate resilience. *Nat. Clim. Change* **6**, 333-334 (2016).

Miao, R. Climate, insurance and innovation: the case of drought and innovations in drought-tolerant traits in US agriculture. *Eur. Rev. Agric. Econ.* **47**, 1826-1860 (2020).

Hsiang, S. *et al.* Estimating economic damage from climate change in the United States. *Science* **356**, 1362-1369 (2017).

De Cian, E., Hof, A., Marangoni, G., Tavoni, M. & Van Vuuren, D. Alleviating inequality in climate policy costs: an integrated perspective on mitigation, damage and adaptation. *Environ. Res. Lett.* **11**, 074015 (2016).

Barriopedro, D., Fischer, E. M., Luterbacher, J., Trigo, R. M. & Garcia-Herrera, R. The Hot Summer of 2010: Redrawing the Temperature Record Map of Europe. *Science* **332**, 220 (2011).

Kawasaki, K. & Uchida, S. Quality Matters More Than Quantity: Asymmetric Temperature Effects on Crop Yield and Quality Grade. *Am. J. Agr. Econ.* **98**, 1195-1209 (2016).

Wang, G. *et al.* The peak structure and future changes of the relationships between extreme precipitation and temperature. *Nat. Clim. Change* **7**, 268-274 (2017).

Zhang, H. *et al.* Climate-associated rice yield change in the Northeast China Plain: A simulation analysis based on CMIP5 multi-model ensemble projection. *Sci. Total Environ.* **666**, 126-138 (2019).

Spehar, C. R. Impact of strategic genes in soybean on agricultural development in the Brazilian tropical savannas. *Field Crop. Res.* **41**, 141-146 (1995).

Butler, E. E., Mueller, N. D. & Huybers, P. Peculiarly pleasant weather for US maize. *Proc. Natl Acad. Sci. USA* **115**, 11935 (2018).
Bossio, D. A. et al. The role of soil carbon in natural climate solutions. *Nat. Sustain.* **3**, 391-398 (2020).

Folberth, C. et al. Uncertainty in soil data can outweigh climate impact signals in global crop yield simulations. *Nat. Commun.* **7**, 11872 (2016).

Wang, X. et al. Breeding rice varieties provides an effective approach to improve productivity and yield sensitivity to climate resources. *Eur. J. Agron.* **124**, 126239 (2021).

Hasegawa, T. et al. Risk of increased food insecurity under stringent global climate change mitigation policy. *Nat. Clim. Change* **8**, 699-703 (2018).

Dong, J. et al. Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine. *Remote Sens. Environ.* **185**, 142-154 (2016).

Zhou, Y. et al. Mapping paddy rice planting area in rice-wetland coexistent areas through analysis of Landsat 8 OLI and MODIS images. *Int. J. Appl. Earth Obs. Geoinf.* **46**, 1-12 (2016).

Wang, B. et al. Sources of uncertainty for wheat yield projections under future climate are site-specific. *Nat. Food* **1**, 720-728 (2020).
Figure 1: Spatial patterns of geographical and climatic distribution across study area. a shows climate zones. b shows the geographic boundaries of the study area. BSk, Cwa, Cfa, Dwa, Dwb, Dwc, Dfa, and Dfb are defined as arid and cold steppe, temperate regions with dry winter and hot summer, temperate regions with hot summer and without dry season, cold regions with dry winter and hot summer, cold regions with dry winter and warm summer, cold regions with dry winter and cold summer, cold regions with hot summer and without dry season, and cold regions with warm summer and without dry season, respectively. NK, SK, CH_1, and CH_2 are North Korea, South Korea, Liaoning province of China, and Jilin province of China. The World Bank defines North Korea, South Korea, and China as low, high, and upper-middle income countries/regions, respectively, based on income levels.
Figure 2: Identification of famine years in North Korea and attribution of production losses. a shows rice self-sufficiency every year calculated from import, export, and production quantity data from FAO. The dash line is the 70% self-sufficiency rate (that defines the famine level). The bottom left corner inset chart in panel a shows an enlarged view during 1993 to 2008. b shows the contribution of climatic variables to rice biomass production in 2000 and 2007, which is calculated between biomass production and climate indices in all the land pixels in each region. NK, CH_1_2, and SK are North Korea, Liaoning and Jilin provinces of China, and South Korea, respectively. c shows the spatial and temporal distribution of climatic standardized anomalies for 2000, 2007, and the baseline period (2000 to 2007) over North Korea. The vertical gray areas in the surrounding line charts represent the period from tillering stage to heading stage, and the error bars represent one standard deviation. For detailed meanings of the twelve climatic variables, see Supplementary Table S2.
Figure 3: Projected rice production losses under four future scenarios. a, Observed vs. predicted rice biomass from 2000 to 2017 (baseline period). The blue and red points represent the calibration and validation data sets, respectively. b, Relative importance of climatic variables from non-linear modeling (the meaning of the variable abbreviations is provided in Table S2. c, Box plots of projected rice biomass (top panel) and production (bottom panel) losses under four different future scenarios based on non-linear modeling. Box boundaries indicate the 25th and 75th percentiles across 27 GCMs, and whiskers below and above the box indicate the 10th and 90th percentiles, respectively. The black lines within each box indicate the multi-model median.
Table 1 The vulnerable indexes for social resilience.

Factors of social resilience	Vulnerable indexes	Abbreviation
Rice Production	Production	Prod.
Population development (S)	Population ages 0-14 (% of total population)	Pop. 0-14
	Population ages 15-64 (% of total population)	Pop. 15-64
	Rural population (% of total population)	RP
Resources use (H)	Energy use (kg of oil equivalent per capita)	EU
	Access to electricity (% of population)	AE
Science and education (S)	School enrollment, tertiary (% gross)	SE
	Patent applications	PA
Economic development (H)	Net ODA received per capita (current US$)	NOR
	GDP per capita	GDP
Agricultural input (H)	Nitrogen fertilizer use	N
	Phosphorus fertilizer use	P
	Irrigation	Irrigation

S and H represent soft-adaptive and hard-adaptive measures, respectively.
Figure 4: The contribution of vulnerable indexes for social resilience to rice production variability.

Twelve indexes of social resilience are from five factors, i.e., population development, resource use, science and education, economic development, and agricultural input (Table 1). a, The red and green bars represent significance tests for $p < 0.05$ and $p > 0.05$, respectively. The importance indicates explanation degree of the non-linear model for contribution of social resilience to rice production in the three regions. b, The non-linear response of rice production to standardized variables of social resilience. The black lines are smoothed representations of the response, with fitted values (model predictions) for the calibration data. The trend of the line, rather than the actual values, describes the nature of the dependence of rice production on the social resilience. The green and orange dash lines in the partial dependence plots represent rice production from the baseline and SSP585 scenarios, respectively. NK, SK, and CH represent North Korea, South Korea, and China.
Methods

Data sources. We used daily reanalysis data to analyze climate variables over the years of the study. The daily reanalysis data were obtained from the European Center for Medium-Range Weather Forecasts (ECMWF) gridded dataset at 0.1-degree resolution, and included daily 2-m temperature (24-hour maximum, minimum, and mean temperature), precipitation flux, and solar radiation flux from 1979 to 2018. See Table S1 for more details. We selected the ECMWF’s ERA-5 dataset for two reasons: 1) ground data are not readily available; 2) by using the global dataset, we can apply our methods to other areas with limited data. Our primary analysis focused on calculating normal and extreme climate indexes for 2000-2017 (Table S2), and statistical downscaling of data from 1979–2018 was conducted to project future climate change using ERA-5.

For remote sensing information, we employed the MODIS gridded mosaic including 8d_surface reflectance, 8d_leaf area index, and 8d_gross primary productivity accessed from Google Earth Engine (GEE) for 2000–2017. We used MODIS surface reflectance to calculate vegetation indexes, i.e., normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), land-surface water index (LSWI), and the near-infrared reflectance of vegetation (NIRv). The specific formulas are:

\[
EVI = G \frac{\rho_{NIR} - \rho_{Red}}{\rho_{NIR} + C_1 \times \rho_{Red} - C_2 \times \rho_{Blue} + L} \tag{1}
\]

\[
NDVI = \frac{\rho_{NIR} - \rho_{Red}}{\rho_{NIR} + \rho_{Red}} \tag{2}
\]

\[
LSWI = \frac{\rho_{NIR} - \rho_{SWIR}}{\rho_{NIR} + \rho_{SWIR}} \tag{3}
\]

\[
NIR_v = NDVI \times \rho_{NIR} \tag{4}
\]

where \(\rho_{Red}, \rho_{NIR}, \rho_{SWIR},\) and \(\rho_{Blue}\) are the surface reflectance values of the red band, near infrared band, shortwave infrared band, and blue band in the MODIS imagery. \(L\) is the canopy background adjustment that addresses non-linear, differential near infrared and red radiant transfer through a canopy. \(C_1\) and \(C_2\) are the coefficients of the aerosol resistance term that uses the blue band to correct for aerosol influences in the red band\(^{57}\).

For geographic information, we also used the Digital Elevation Model (DEM) with 90-m spatial resolution from SRTM Digital Elevation Data Version 4 in the GEE platform to calculate slope for every grid cell. All datasets supporting the results of this paper are freely available in Supplementary Table 1.

We accessed the observations of daily net ecosystem CO\(_2\) exchange and ecosystem respiration from two eddy covariance (EC) towers from the Chinese FLUX Observation and Research Network (ChinaFLUX) for 2003–2010 to calibrate and simulate the biomass of the study areas without meteorological inputs (except solar radiation). The EC towers were located close to North Korea in Yucheng, Shandong province of China (116°34′12.72″E, 36°49′44.4″N) and at Changbai Mountain, Jilin province of China (128°05′45″E, 42°24′9″N) with farmland and forest ecosystem, respectively. We used the daily net ecosystem exchange and heterotrophic respiration from the flux towers to calculate the gross ecosystem CO\(_2\) exchange. We refer to gross ecosystem CO\(_2\) exchange as gross ecosystem primary productivity.

The phenological periods of the main crops were obtained from the China Meteorological Data Sharing Service System (http://cdc.cma.gov.cn/home.do) in Panjin Plain, Liaoning Province of China to determine the rice growing and transplanting seasons in the study area. We redrew the crop calendar
based on Table S3 of Zhou et al., 2016. The reason for choosing these sites was based on the similar climate zone in the study area (Fig 1) and the lack of real data in North Korea. All data was strictly examined to meet the standards for further analysis, including cross-validation and comparison with existing data.

The statistical data were obtained from the Food and Agriculture Organization (FAO) of the United Nations (including rice production (1984-2017), rice imports and exports (1984-2017), and population (2000-2017) in country-level), the United Nations Statistics Division (GDP and imports/exports of goods and services ($) from 2000 to 2019), and the World Bank (including Population ages 0-14, Population ages 15-64, Rural population, Energy use, Access to electricity, School enrollment, Patent applications, and Net ODA received per capita) (Table 1). Additionally, nitrogen and phosphorus fertilizer application for agriculture production were provided by Lu and Tian, which they developed the global gridded data at 0.5° × 0.5° resolution from 1961-2013 and published for free. The production, imports, and exports were used to calculate rice self-sufficiency rate to identify famine years, and the other statistical data were used to analyze social-economic attribution. FAO's data quality is generally divided into 10 categories: “Unofficial figure, Symbol for indigenous or liveweight meat, Official data, Aggregate (may include official; semi-official; estimated or calculated data), Calculated, FAO estimate, Calculated data, FAO data based on imputation methodology, Data not available, and Trend”. More than 95% of the data used in this study were from the “Official data” and “Aggregate” categories to ensure high quality.

For further analysis of non-climate attribution, we considered the effect of irrigation on rice growth. We used water consumption coefficient (WCE) of rice paddy to replace irrigation because of the lack of irrigation data over the study areas, and because of the large uncertainty in irrigation timing, amounts, and methods. The irrigation period for these maps was from 2001-2017, and the ratio of evapotranspiration (from MOD16A2, Table S1) to precipitation was used to calculate the WCE. Furthermore, we averaged WCE of rice paddy in the study areas.

Rice paddy mapping and estimating biomass. Rice paddy maps were produced on the GEE cloud platform based on vegetation index (see formula 1-3) and rice phenophase (Table S6) calculated from MODIS reflectance bands. For more details, see Dong et al., 2016, where clear steps and full verification are provided. Existing biomass products usually are calculated using meteorological data. However, a misleading result can be obtained when analyzing which climate variables dominate biomass changes using these products, i.e., the climate variables that dominate biomass changes are highly correlated with the climate factors used for calculation. Therefore, we considered using a vegetation index from remote sensing to estimate gross primary productivity without including climatic factors. Traditional light use efficiency (LUE) models need to estimate fAPAR and ε separately when calculating GPP. Furthermore, using $VIs \times PAR_{TOC}$ to estimate GPP means that vegetation indexes (VIs) can be more clearly used as a measure of ecosystem light use efficiency (eLUE). eLUE is defined as the ratio between GPP and PAR_{TOC}:

$$eLUE_{TOC} = \frac{GPP}{PAR_{TOC}} = f(VIs)$$ \hspace{1cm} (5)

We averaged daily GPP (GPP$_{EC}$, g C m$^{-2}$ d$^{-1}$) and daily PAR_{TOC} (MJ m$^{-2}$ d$^{-1}$) from two EC towers as 8-day values to calculate $eLUE_{TOC}$ (g C MJ$^{-1}$). $f(VIs)$ was from the regression of $eLUE_{TOC}$ to VIs. Once $eLUE_{TOC}$ was estimated, the eLUE relationship with PAR_{TOC} (formula 5) was rearranged to predict GPP:
\[GPP = eLUE_{TOC} \times PAR_{TOC} \]

(6)

\(f(VIs) \) is the coupling relationship between eLUE and VIs. Past research has focused on the linear model\(^{58,59}\). However, multiple variables have non-linear relationships in the natural environment, and large-scale areas contain multiple complex ecosystems. The performance of the linear model can no longer meet the practical application in large-scale regions and be extended to other districts. We converted \(f(VIs) \) into a non-linear model (i.e., random forest model), and incorporated a variety of VIs into the model (NVI, EVI, LAI, and NIRv). Random forest has good performance and fewer parameters compared with other nonlinear models. In recent years, it has been widely used in different regions to solve natural science problems at global scale\(^{60}\). For a more detailed explanation of this model, see Breiman (2001)\(^{61}\).

For establishing the relationship between eLUE and VIs (calibrating the eLUE model) and providing independent verification, we randomized EC tower data (397 samples), and then divided the data into two subsets to be used as calibration and validation datasets. To evaluate non-linear model performance, we used a stratified 10-fold cross-validation. Two statistical parameters were used to evaluate the results of cross-validation: (1) coefficient of determination \((R^2_{CV}) \); and (2) normalized root mean squared error \((nRMSE_{CV}) \), where the CV subscript represents the data obtained from the cross-validation datasets\(^{56,60,62,63}\). We used the Cal subscript to represent the data obtained from the calibration datasets. These parameters were calculated as:

\[R^2 = \frac{\sum_{i=1}^{n}(x(i)-x_m)(y(i)-y_m))^2}{\sum_{i=1}^{n}(x(i)-x_m)^2\sum_{i=1}^{n}(y(i)-y_m)^2} \]

(7)

\[RMSE = \sqrt{\frac{\sum_{i=1}^{n}(p(i)-p_e)^2}{n}} \]

(8)

\[nRMSE = \frac{RMSE}{p_e} \]

(9)

Identification of Famine Years. To identify famine years, we relied on statistical data (Rice, paddy index) at the nation-level from the Food and Agriculture Organization of the United Nations (http://www.fao.org) to calculate food self-sufficiency (FSS). FSS is defined differently due to the differences in disciplines, economy, and food application. FAO (1999)\(^{64}\) states that "food self-sufficiency is generally considered to be the degree to which a country can meet its own food needs from domestic production". Generally, FSS is closely related to food security.

A more pragmatic understanding of FSS is that domestic food production equals or exceeds 100% of a country’s food consumption\(^{65}\). This concept can be reflected by the self-sufficiency ratio (SSR)\(^{66}\):

\[SSR = \frac{P}{D} \times 100 \]

(10)

where SSR is the self-sufficiency ratio, P represents food production, and D represents food demand. Food demand can be further refined as food production, food exports, food imports, and fluctuations in domestic food storage\(^{67}\). Therefore, the clear definition of food demand is:

\[D = P + I - E - \Delta S \]

(11)

where I is food imports, E is food exports, \(\Delta S \) represents annual change in food storage.

However, SSR focuses on key crops in order to give an approximate value for a country’s grain self-sufficiency\(^{65}\). In NK and SK, rice is the dominant food produced and affects food security\(^{20}\). We assumed that the annual food storage remains constant due to difficult-to-obtain inventory fluctuations for a country. Then the rice self-sufficiency rate (RSSR) formula is:

\[RSSR_i = \frac{p_i}{p_i + l_i - E_i} \times 100 \]

(12)

where \(i \) is a specific year from 2000 to 2017.
We used RSSR to evaluate the degree of rice self-sufficiency. RSSR indirectly reflects the state of national food security under the conditions of external environmental changes. In this study, we defined 100%–90%, 90%–80%, and 80%–70% of RSSR to be high self-sufficiency, medium self-sufficiency, and low self-sufficiency. RSSR less than 70% was defined as a famine year. It is worth noting that FSS cannot only consider the numbers (i.e., RSSR). It also needs to weigh natural conditions, industrialization level, market operations, and other actual conditions for a country. These factors will not be studied for the time being.

Attributing predominant climate variables. To demonstrate the responses of GPP to climate change, we assessed the importance of each climate variable to biomass changes. To check the multicollinearity and achieve a simple model, we first removed the climatic variables whose variance inflation factors (VIF) indicated the degree of multi-collinearity of any independent variable with the other independent variables in a regression model was greater than 10. The VIF formula was:

\[VIF = \frac{1}{1-R_i^2} \]

(13)

where \(R^2 \) represents the coefficient of determination between the \(i \)th independent variable and other independent variables.

All gridded climatic variables with resolution of 0.1°pixel were resampled to 500 m resolution using the bilinear interpolation method to match biomass. We then used 75% of the random climate and biomass data from 2000–2017 as training data and 25% of the data as validation data to test model performance. We used this model to predict future biomass and production losses. The coefficient of determination values \((R^2) \) were used to evaluate the results of validation (formula 12). Finally, the machine learning model, random forest regression of climate and baseline \((RF_c \) and \(RF_b) \), was used to analyze GPP changes controlled by climatic factors (Table S7). The random forest regression model generated different regression trees by using random multiple training sets and features, and each regression tree was sampled independently and distributed identically. Each regression tree produced different results through branching, and the prediction from the random forest regression model was the average of all trees. The unbiased estimate of random forest performance was from out of bag error, and this result was similar to k fold cross-validation. For more details about the random forest model, please see Breiman (2001) and Shi (2020). Specifically, the \(RF_c \) and \(RF_b \) models were used to determine the fit between biomass and climatic variables with the parameters “\(mtry \) = the square root of the variables, \(ntree=500 \)” in the R package “randomForest”. The \(RF_c \) model was built based on spatial pixels over NK’ rice between biomass and climatic variables in 2000 and 2007 to attribute climatic contribution in the two years, and the \(RF_b \) model was built based on spatial pixels over NK’ rice from 2000 to 2017 to project future rice losses with climate change (Table S7).

We further used function importance that was quantified as the Gini index to compute the variable importance. Compared with linear regression, RF explained the non-linear response of climate variables and unraveled the influence of related variables.

In order to attribute climatic factors in famine years (that is, to identify climate anomalies), we initially calculated normal and extreme meteorological factors for 2000–2017 (for more details, see Table S2). We then calculated the mean value in non-famine years as the baseline. The ratio of the difference between baseline and famine years to the standard deviation of baseline was used to determine the climate anomaly. Therefore, if the anomaly was >1 or < -1, we considered that the values in famine years were clearly greater than or less than the baseline values (2000–2017 except
famine years)68. Specifically, we used the threshold of one standard deviation by assuming that the variations of climatic factors under normal conditions were generally located in the ranges of one standard deviation about the multi-year mean69.

Future climate projection. We used the statistical downscaling (SD) model NWAI-WG, developed by Liu and Zuo70, to downscale global climate models (GCMs) monthly gridded data to daily climate data for 1299 meteorological observing grid points from reanalysis data in NK. SD consisted of three major components: spatial downscaling, bias correction, and temporal downscaling. Spatial downscaling used inverse distance-weighted (IDW) interpolation based on the center of the nearest four grid points in GCMs to improve accuracy70, and then applied bias correction to generate bias-corrected monthly data using a relationship between observations and GCM data for a historical training period, in this case 1979–2018. Finally, the time series daily for maximum and minimum temperature, precipitation, and solar radiation for each pixel were downscaled from the bias-corrected monthly GCM projections using a modified version of the stochastic weather generator71. For a more detailed description of SD, please see Liu and Zuo70.

We downscaled 27 GCMs of the Coupled Model Intercomparison Project Phases 6 (CMIP6) based on the SD method as two future climate scenarios (SSPs, the combination of shared socioeconomic pathways, where SSP245 represents SSP2 + RCP4.5, an intermediate development pathway; SSP585 represents SSP5 + RCP8.5, a high development pathway). Further, the daily normal and extreme climate variables were calculated for two climate scenarios during 2021 to 2100 according to the climatic index as described above for Table S2. We then assessed climate change and production loss in the future for the 2040s (2021-2060) and the 2080s (2061-2100). Specially, for climate change in the future, the relative changes of temperature (maximum and minimum temperature) were calculated by subtracting the means of the historical period (1979-2018) from the future temperature. And for precipitation, solar radiation, SU30, and R50, the relative changes were derived from the ratio of future means to historical means. For production loss in the future, we first obtained the inferred mean value of harvest index (noted as α) from statistical production and estimated GPP (i.e., α as the ratio of GPP to production). The formula is:

$$P_{sta} = \sum B_{t1} \times \alpha_i \times A$$

$$\alpha_{mean} = \frac{\sum\alpha_i}{n}$$

where P_{sta} is statistical production from FAO. $\sum B_{t1}$ represents the sum of each grided GPP. α_i represents harvest index for every year, and α_{mean} is average harvest index calculated by α_i for every year (2000 to 2018). n is the number of years and A is the pixel area.

The non-linear model (RF model, as described above for GPP changes analyzed by the machine learning model) was then established through historical gridded climate data, and GPP was estimated by the eLUE model to assess rice GPP in the future. Future production was projected by using mean harvest index and predicted GPP:

$$P_{pre} = \sum B_{t2} \times \alpha_{mean} \times A$$

where P_{pre} is future production. $\sum B_{t2}$ represents the sum of each predicted GPP. Finally, we used future and historical GPP and production to calculate relative changes as the losses.

The contribution of social resilience to rice production. We interpolated missing statistics from FAO and World Bank based on linear regression (four social-economic variables: energy use, school enrollment, access to electricity, and patent applications). Given that the effects of social resilience effects on rice production are often nonlinear, the random forest model was expected to perform well...
in assessing the nonlinear relationship. On the obtained robust explanation and significance, this study modelled the relationship between social-economic variables and rice production using the random forest regression of economics (RF_e), and significance was tested for a single variable and the full model (Table S7). Details about the random forest regression model and its parameters were provided in the above section. This process was conducted using R software using the "A3" package. The parameters of non-linear models (ntree and mtry) were set as 500 and the number of the square root of the variables, respectively. The Gini index was further used as an index to evaluate variable importance measures to rice production. The partial dependence (i.e., marginal effect) was constructed to assess the non-linear response between rice production and each of the first four variables. This process was accomplished using the “partialPlot” function of the “random forest” package in R.

Data Availability

All original MODIS reflectance and other MODIS products that were provided by NASA LP DAAC at the USGS EROS Center in this study are freely accessible on the GEE platform at https://developers.google.cn/earth-engine/datasets.

The observational, DEM, and reanalysis data are publicly available from the following sources:

- EC data, http://www.cnerm.org.cn/index.jsp
- ERA5 reanalysis
 https://cds.climate.copernicus.eu/cdsapp#!/dataset/sis-agrometeorological-indicators
- DEM data, https://srtm.csi.cgiar.org/

The downscaled 27 GCMs of CMIP6 were kindly provided by the co-authors of Liu et al. who downscaled them based on the original CMIP6 at https://esgf-node.llnl.gov/projects/cmip6/.

The statistical data are freely available from the following sources:

- rice production, rice imports and exports, fertilizer application, and population from FAO, http://www.fao.org/faostat/en/
- GDP from United Nations Statistics Division, https://unstats.un.org/unsd/snaama/Basic
- Population ages 0-14, Population ages 15-64, Rural population, Energy use, Access to electricity, School enrollment, Patent applications, and Net ODA received per capita from World Bank, https://data.worldbank.org/.

Code Availability

The first and corresponding authors are prepared to respond to reasonable requests for code.
References

57 Huete, A. et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195-213 (2002).

58 Ma, X. et al. Parameterization of an ecosystem light-use-efficiency model for predicting savanna GPP using MODIS EVI. Remote Sens. Environ. 154, 253-271 (2014).

59 Ma, X. et al. Spatiotemporal partitioning of savanna plant functional type productivity along NATT. Remote Sens. Environ. 246, 111855 (2020).

60 Shi, Y. et al. Attribution of climate and human activities to vegetation change in China using machine learning techniques. Agric. For. Meteorol. 294 (2020).

61 Breiman, L. Random Forests. Mach. Learn. 45, 5-32 (2001).

62 Altman, N. & Krzywinski, M. Ensemble methods: bagging and random forests. Nat. Methods 14, 933-934 (2017).

63 Loozen, Y. et al. Mapping canopy nitrogen in European forests using remote sensing and environmental variables with the random forests method. Remote Sens. Environ. 247, 111933 (2020).

64 FAO. Global climate changes and rice food security. Rome, Italy (2004).

65 Clapp, J. Food self-sufficiency: Making sense of it, and when it makes sense. Food Policy 66, 88-96 (2017).

66 FAO. FAO STATISTICAL YEARBOOK 2012: WORLD FOOD AND AGRICULTURE. 81, 2095-2096 (2012).

67 Puma, M. J., Bose, S., Chon, S. Y. & Cook, B. I. Assessing the evolving fragility of the global food system. Environ. Res. Lett. 10, 024007 (2015).

68 Lewis, S. L., Brando, P. M., Phillips, O. L., van der Heijden, G. M. F. & Nepstad, D. The 2010 Amazon Drought. Science 331, 554-554 (2011).

69 Wang, S. et al. Warmer spring alleviated the impacts of 2018 European summer heatwave and drought on vegetation photosynthesis. Agric. For. Meteorol. 295 (2020).

70 Liu, D. L. & Zuo, H. Statistical downscaling of daily climate variables for climate change impact assessment over New South Wales, Australia. Clim. Change 115, 629-666 (2012).

71 Richardson, C. & Wright, D. WGEN: A Model for Generating Daily Weather Variables By. USDA Agricultural Research Service (1984).

Acknowledgments: This study was supported by the collaboration project jointly founded by NSFC (no. 41961124006) and NSF (no. 1903722) for Innovations at the Nexus of Food, Energy, and Water Systems (INFEWS: U.S.-China).

Author contributions: Q.Y., and H.T. designed this study. Y.S. performed analysis of the modelling results, created figures, and wrote the draft of the paper. Y.Z., B.Y.W., H.S., L.L., and N.J. provided technology services and analyzed the data. L.L. and B.W. were responsible for technical support and manuscript editing of the partial dependence analysis. D.L.L. provided downscaled GCM data of CMIP6. R.M. provided edits and suggestions for social-economic analysis. X.L., Q.G., C.L., L.H., N.F., C.Y., J.H., H.F., and S.P. contributed to the interpretation of the results and the writing of the manuscript.

Competing interests: Authors declare no competing interests.
Figure 1

Spatial patterns of geographical and climatic distribution across study area. a shows climate zones. b shows the geographic boundaries of the study area. BSk, Cwa, Cfa, Dwa, Dwb, Dwc, Dfa, and Dfb are defined as arid and cold steppe, temperate regions with dry winter and hot summer, temperate regions with hot summer and without dry season, cold regions with dry winter and hot summer, cold regions with dry winter and warm summer, cold regions with dry winter and cold summer, cold regions with hot
summer and without dry season, and cold regions with warm summer and without dry season19, respectively. NK, SK, CH_1, and CH_2 are North Korea, South Korea, Liaoning province of China, and Jilin province of China. The World Bank defines North Korea, South Korea, and China as low, high, and upper-middle income countries/regions, respectively, based on income levels.

Figure 2
Identification of famine years in North Korea and attribution of production losses. a shows rice self-sufficiency every year calculated from import, export, and production quantity data from FAO. The dash line is the 70% self-sufficiency rate (that defines the famine level). The bottom left corner inset chart in panel a shows an enlarged view during 1993 to 2008. b shows the contribution of climatic variables to rice biomass production in 2000 and 2007, which is calculated between biomass production and climate indices in all the land pixels in each region. NK, CH_1_2, and SK are North Korea, Liaoning and Jilin provinces of China, and South Korea, respectively. c shows the spatial and temporal distribution of climatic standardized anomalies for 2000, 2007, and the baseline period (2000 to 2007) over North Korea. The vertical gray areas in the surrounding line charts represent the period from tillering stage to heading stage, and the error bars represent one standard deviation. For detailed meanings of the twelve climatic variables, see Supplementary Table S2.

Figure 3

Projected rice production losses under four future scenarios. a, Observed vs. predicted rice biomass from 2000 to 2017 (baseline period). The blue and red points represent the calibration and validation data sets, respectively. b, Relative importance of climatic variables from non-linear modeling (the meaning of the variable abbreviations is provided in Table S2. c, Box plots of projected rice biomass (top panel) and production (bottom panel) losses under four different future scenarios based on nonlinear modeling. Box boundaries indicate the 25th and 75th percentiles across 27 GCMs, and whiskers below and above the box indicate the 10th and 90th percentiles, respectively. The black lines within each box indicate the multi-model median.
The contribution of vulnerable indexes for social resilience to rice production variability. Twelve indexes of social resilience are from five factors, i.e., population development, resource use, science and education, economic development, and agricultural input (Table 1). a, The red and green bars represent significance tests for $p < 0.05$ and $p > 0.05$, respectively. The importance indicates explanation degree of the non-linear model for contribution of social resilience to rice production in the three regions. b, The
non-linear response of rice production to standardized variables of social resilience. The black lines are smoothed representations of the response, with fitted values (model predictions) for the calibration data. The trend of the line, rather than the actual values, describes the nature of the dependence of rice production on the social resilience. The green and orange dash lines in the partial dependence plots represent rice production from the baseline and SSP585 scenarios, respectively. NK, SK, and CH represent North Korea, South Korea, and China.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- FinalSupplementaryinformation.pdf