Gentianella macrosperma, a new species of Gentianella (Gentianaceae) from Xinjiang, China

Hai-Feng Cao¹, Ji-Dong Ya², Qiao-Rong Zhang³, Xiao-Jian Hu³, Zhi-Rong Zhang³, Xin-Hua Liu³, Yong-Cheng Zhang⁴, Ai-Ting Zhang⁵, Wen-Bin Yu⁶⁷

¹ Shanghai Museum of TCM, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China ² Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, Heilongtian, Kunming, Yunnan, 650201, China ³ Ili Botanical Garden, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Xinyuan, Xinjiang, 835815, China ⁴ Forestry Bureau of Xinyuan County, Xinyuan, Xinjiang, 835800, China ⁵ Xinjiang Agricultural Broadcasting and Television School, Xinyuan, Xinjiang, 835800, China ⁶ Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China ⁷ Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla 666303, Yunnan, China

Corresponding author: Ji-Dong Ya (yajidong@mail.kib.ac.cn)

Academic editor: Cai Jie | Received 15 April 2019 | Accepted 8 August 2019 | Published 29 August 2019

Citation: Cao H-F, Ya J-D, Zhang Q-R, Hu X-J, Zhang Z-R, Liu X-H, Zhang Y-C, Zhang A-T, Yu W-B (2019) Gentianella macrosperma, a new species of Gentianella (Gentianaceae) from Xinjiang, China. In: Cai J, Yu W-B, Zhang T, Li D-Z (Eds) Revealing of the plant diversity in China’s biodiversity hotspots. PhytoKeys 130: 59–73. https://doi.org/10.3897/phytokeys.130.35476

Abstract

Gentianella macrosperma Ma ex H.F. Cao, J.D. Ya & Q.R. Zhang, a new species of Gentianaceae from Xinjiang, Northwest China is described and illustrated. This new species is unique in having equal length of corolla lobe and corolla tube, nectaries located at the throat of the corolla tube and large seeds up to 1.6 mm in diameter. In addition, an updated identification key to the Chinese species of Gentianella is provided.

Keywords
Gentianella, ITS, matK, Morphology, Swertiinae, Taxonomy, Xinjiang

Introduction

Gentianella Moench (Gentianaceae) consists of approximately 300 species distributed from the temperate, arctic and alpine regions of the Northern Hemisphere, to South America, Australia and New Zealand (Pringle 2017). About 70% of species (ca. 200 spe-
cies) occur in South America, where new species continue to be discovered (Pfanzelt et al. 2015; Pringle 2015, 2017; Pringle and Grant 2017). Molecular phylogenetic studies indicated that Gentianella was polyphyletic, and the new circumscription of Gentianella s. str. contains species with one nectary per petal lobe (von Hagen and Kadereit 2001, 2002). However, the taxonomic placement of the Asiatic species with two nectaries per corolla lobe has yet to be determined. Before the phylogenetically-based concept of Asiatic gentianellas proposed, the description of this genus published in Flora of China (Ho and Pringle 1995) remains applicable in the present context. There are 10 species of Gentianella reported from China and mainly distributed in northern China and alpine areas of southwest China mountains (Ho and Pringle 1995, Chen et al. 2011).

During the field expedition to west of Xinjiang, China, an unusual species of Gentianaceae was collected. Its corolla campanulate without plicae and fringed scale, lobed to middle of corolla, two nectaries per corolla lobe located at the corolla tube fit the main characters of Gentianella. Subsequent morphological investigation and molecular study supported this species as new to science and described here.

Materials and methods

Specimen collections of Gentianella were carefully examined, especially the relevant species, including G. holostoides Schott & Kotschy ex N.M. Pritch., G. longicarpa (Gilli) Holub, G. sibirica (Kunst.) Holub, G. stoliczkae (Kurz ex C.B. Clarke) Holub and G. umbellata (M. Bieb.) Holub. Collections at the following herbaria (BM, FR, GH, GLM, HIMC, HNWP, JE, K, E, KFTA, KUN, MA, MPU, MW, P, PE, PEY, W, WAG) were checked on-site and via Chinese Virtual Herbarium (CVH, http://www.cvh.ac.cn/), Global Biodiversity Information Facility (GBIF, https://www.gbif.org/) and Global Plants on JSTOR (https://plants.jstor.org/). The high-resolution images of type specimen of G. sibirica (LE01043410, LE01043411, LE00050650) were obtained from curators of LE. Relevant literatures were investigated (Gillett 1957; Shishkin and Bobrov 1967; Omer et al. 1988; Ho and Pringle 1995; Omer 1995; Struwe et al. 2002; Aitken 2007; Chen et al. 2011; Mohd et al. 2018). Line drawings, description and most of photographs were based on the latest collections (J.D. Ya et al. 17CS16327), except that the images of seeds were from the type specimen (Shun-Li Chen Tianyi281, PE00029466). The conservation status of the new species was evaluated according to the guidelines of the IUCN Red List Categories and Criteria (IUCN 2017).

Fresh leaves of this new species were dried immediately by using silica gel for DNA extraction. Genomic DNA extraction, amplification and DNA sequencing of ITS and the plastid matK followed the protocol described by Xi et al. (2014) and sequences of relevant species were downloaded from GenBank (Appendix 1).

The molecular phylogenetic tree of 88 species representing 13 genera of Gentianaceae was reconstructed using Bayesian Inference (BI) and Maximum Likelihood (ML). Chelonanthus alatus (Aubl.) Pulle (Gentianaceae: Helieae) was chosen as outgroup (Figure 1). ITS and matK datasets were combined for analysis. BI analysis was
Figure 1. The major-rule consensus tree of ML analysis based on the total dataset, including ITS and matK. ML bootstrap values and BI posterior probabilities are shown on branches.
performed using MrBayes 3.26 (Ronquist and Huelsenbeck 2003). Markov Chain Monte Carlo (MCMC) analysis was performed using MrBayes for 10,000,000 generations for the combined dataset, with two simultaneous runs, with each run comprising four incrementally heated chains. BI analysis was started with a random tree and sampled every 1000 generations. The combined dataset was partitioned and the best-fit DNA substitution model for two DNA regions using Bayesian Information Criterion (BIC) was estimated using jModeltest 2 (Darriba et al. 2012). ML analysis was conducted with RAxML 8.2.10 (Stamatakis et al. 2008) using the GTR substitution model with gamma-distributed rate heterogeneity amongst sites and the proportion of invariable sites estimated from the data. Support values for nodes/clades were estimated from 1000 bootstrap replicates.

Results

The ITS matrix was 689 bp in length including 376 variable sites and 266 parsimony-informative sites and the matK matrix was 821 bp in length including 286 variable sites and 198 parsimony-informative sites. The best-fit BIC model of ITS and matK datasets was SYM+G and TVM+G, respectively. The major-rule consensus tree of both BI and ML analyses with support values is shown in Figure 1.

Phylogenetic analyses using ML and BI methods identified that Gentianella, Swertia L. and other genera in subtribe Swertiinae are not monophyletic, which shows a similar conclusion as previous studies (von Hagen and Kadereit 2001, 2002; Xi et al. 2014). Current new species and 44 other Gentianella species were strongly supported as monophyletic (BI PP = 1.00, ML BS = 93; Figure 1). G. arenaria (Maxim.) T.N. Ho, G. angustiflora H. Smith, G. azurea (Bunge) Holub, G. gentianoides (Franch.) H. Smith and G. moorcroftiana (Wall. ex G. Don) A. Shaw formed different clades with Comastoma Toyok., Lomatogonium A. Braun, Swertia and other genera in Swertiinae.

Phylogenetic analyses showed that this new species and G. holosteoides formed a clade (BI PP = 0.93), then sister to the clade including G. aurea (L.) H. Smith, G. umbellata and G. longicarpa (Figure 1). Three samples of G. stoliczkae were located at most basal of the new species clade (BI PP = 1.00, ML BS = 79).

Taxonomic treatment

Gentianella macrosperma Ma ex H.F. Cao, J.D. Ya & Q.R. Zhang, sp. nov. urn:lsid:ipni.org:names:60479356-2 Figures 2, 3

Diagnosis. Resembles G. holosteoides, G. longicarpa, G. sibirica, G. stoliczkae and G. umbellata, but differs from them by having even flower size, corolla white, corolla lobe as long as corolla tube, nectaries located close to the throat of the corolla tube and larger seeds.
Figure 2. Gentianella macrosperma, sp. nov. A plant B flower, top views C–D show opened corollas, 4- and 5-merous, respectively E flower, showing the length of calyx and corolla subequal F calyx, showing 4-merous G calyx, showing 5-merous H capsule I seeds. Drawn by R.M. Zhang. H and I from the isotype S.L. Chen Tianyi281 (PE00029471), others from the paratype J.D. Ya, Q.R. Zhang & X.J. Hu 17CS16327 (KUN1443565). Scale bars: 2 cm (A); 5 mm (B); 2 mm (C–H); 0.5 mm (I).
Figure 3. *Gentianella macrosperma*, sp. nov. A plant in nature habitat B flowers and inflorescence C flowers, showing pedicels and upper leaves D–E front view and side view of corolla, showing nectaries located close to the throat of the corolla tube F middle cauline leaf, abaxial view, showing veins G plants specimen (from KUN1443554) H opened corolla (5-merous) showing ovary I calyx J seed, front view (left and middle) and side view (right) (from S.L. Chen Tianyi281 (PE00029471)). I, H from the paratype J.D. Yu, Q.R. Zhang & X.J. Hu 17CS16327 (KUN1443565). Scale bars: 5 cm (A, G); 2 cm (B); 2 mm (C–E, I, H); 1 mm (J).
Gentianella macrosperma, a new species of Gentianella from Xinjiang, China

Type. CHINA. Xinjiang: Ili Kazak Autonomous Prefecture, Gongliu County, Ji’ergelang Township, Qiaxi Village, on the mountain ridge in the forest, 1780 m elev., 6 September 1956, Shun-Li Chen Tianyi281 (holotype: PE00029466; isotype: PE00029453; PE00029471).

Description. Herbs, annual. Roots slender, yellow. Stems 30–40 cm, erect, subquadrangular, glabrous, yellowish-green, 2.0–2.5 mm in diameter; branched from the base in axils of each node, more slender, suberect or slightly ascending. Leaves opposite, basal leaves not rosette and withered at anthesis, petiole conspicuous, 7–10 mm long, leaves oblong-spatulate, 14–17 × 2–6 mm, base tapering into petiole, margin entire, apex rounded, veins 3–5, raised abaxially and slightly sunken adaxially; lower cauline leaves obovate-spatulate or rounded-spatulate, petiole 10–18 mm long, leaf blades with petiole 18–31 × 10–11 mm, both surfaces glabrous, base tapering into conspicuous petiole, margin entire, apex rounded, veins 5–7 raised abaxially and slightly sunken adaxially; middle leaves on primary stem elliptic, ovate-elliptic, 25–38 × 10–15 mm, base rounded or truncate, inconspicuously short or subsessile, both surfaces glabrous, margin entire, apex rounded, veins 5–9, raised abaxially and slightly sunken adaxially; upper stem leaves ovate-elliptic to ovate, 15–25 × 7–12 mm, with terminal two pairs of leaves nearly in whorls, both surfaces glabrous, base rounded, sessile, margin entire, apex acute, veins 3–5, raised abaxially and sunken adaxially; lateral branches leaves smaller, 10–15 × 4–7 mm. Cymes terminal and axillary, 3–4 flowers per leaf axil, terminal inflorescence 8–10 flowers, dense, inflorescence flowering at different times, pedicel variable in length and up to 36 mm. Flowers 4-merous (rarely 5-merous), all flowers almost the same size (terminal corolla as long as or slightly longer than others), rotating arrangement. Calyx 3.5–4.5 mm long, slightly shorter than corolla or as long as corolla, divided almost to the base, calyx tube 0.7–0.8 mm long, membranous, lobes green, distinctly unequal, 2 slightly larger, ob lanceolate to linear-ob lanceolate, 3.0–3.5 × 0.7–1.0 mm, 2 (–3) slightly smaller, linear, 2.3–3.0 × 0.4–0.5 mm, apex acute or acuminate, margin scabrous, midvein raised abaxially, sinus obtuse. Corolla white, campanulate, 4.0–4.5(5.0) mm long; corolla tube 2.1–2.4 mm long; lobes ovate, with light brown fine longitudinal veins, 2.2–2.5 × 1.5–1.8 mm, apex obtuse and mucronate, margin entire. Nectaries 8(–10), green, oblong, naked and indistinct, two nectaries per corolla lobe located very close to the throat of the corolla tube, ca. 0.2 mm from the top of corolla tube. Stamens inserted at middle of corolla tube, filaments white, linear, 1.1–1.4 mm long, anthers blue, rectangular, 0.2–0.3 mm long; ovary ellipsoidal, ca. 2.0 mm long. Style short, linear, 0.4–0.5 mm long, stigma small, 2-lobed. Gynophore short, 0.2–0.3 mm long. Capsule elliptic, a concavity sometimes present in the centre, 2.5–4.0 mm long, usually with 2–8 seeds each capsule. Seeds brown, glossy, flat-ellipsoid, 1.2–1.6 × 0.5–0.9 mm, seed coat wrinkled-reticulate (smooth when immature).

Phenology. Flowering and fruiting from June to September.

Distribution and habitat. *G. macrosperma* is distributed in Gongliu county and Xinyuan county, west of Xinjiang, China. It grows in thickets on the slope or on the mountain ridge in the forest of *Picea schrenkiana* Fisch. & Mey. at an elevation of 1729–1780 m.
Etymology. The specific epithet “macrosperma” refers to the larger seeds of this new species.

Vernacular name. Chinese mandarin: da zi jia long dan (大籽假龙胆)

Conservation status. Currently only known from three localities in west of Xinjiang, therefore considered to be Vulnerable (VU D2) (IUCN 2017).

Additional specimens examined (paratypes). CHINA. Xinjiang: Ili Kazak Autonomous Prefecture, Xinyuan County, on the road from Xinyuan County to the gold mine, 43°16'06.45"N, 83°17'42.90"E, 1729 m elev., 1 July 2017, J.D. Ya, Q.R. Zhang & X.J. Hu 17CS16327 (KUN1443565!, KUN1443566!, KUN1443554!); Ili Kazak Autonomous Prefecture, Gongliu County, Mohuer Township, Damohe Village, 8 August 1976, Shu-Run Liu s.n. (HIMC0026063!, HIMC0026064!). The sheet 0026064 presents a mixture of Swertia dichotoma Linn. which was labelled as “A” and G. macrosperma labelled as “B”)

Discussion

It was Prof. Yu-Quan Ma (also as Yu Chuan Ma), a specialist of Gentianaceae, who first recognised this plant as a distinct new species and inscribed the name “Gentianella macrosperma Ma” on the specimen kept at PE. Later the same year, he proposed another name “Gentianella procumbens Ma” to the same collections, corresponding to its procumbent stems. However, both names were never published. Based on field observation and specimen examination, procumbent stems occurred occasionally in some individuals, the character of larger seeds being easily distinguished from other Gentianella species.

In all the known Chinese species of Gentianella, the length of corolla lobes is shorter than that of the corolla tube and nectaries which are located at the base or middle of the corolla tube. The same length of corolla lobes and corolla tube and nectaries positioned at the throat of the corolla tube make G. macrosperma a distinctive species amongst them. Its large seeds up to 1.6 mm in diameter are perhaps unique amongst the Asiatic species of Gentianella.

G. macrosperma is similar in size and shape of the corolla lobe to G. sibirica and G. longicarpa, but further differs from them both in the lack of rosette basal leaves, predominant 4-merous flowers and smaller corolla, no more than 5 mm long, except the corolla lobed to the middle, nectaries position and seeds size. Gentianella longicarpa, which is endemic to Afghanistan, is also distinct from G. macrosperma in its light-pink, pale blue or lilac-violet flower and larger corolla up to 8 mm long and all calyx lobes are shorter than the corolla tube. G. macrosperma is similar in habit and inflorescences to G. umbellata and G. stoliczkae. The flower of G. umbellata is larger than those of G. macrosperma and, although the size of the corolla lobe in the two species overlaps, the corolla lobe is much shorter than the corolla tube in G. umbellata. In G. stoliczkae, flowers are in densely clustered cymes, the corolla are generally much larger up to 20 mm long with various colours from purple, pink, pale blue to yellow and the capsule has a short gynophore ca. 1–2 mm long.
Gentianella macrosperma, a new species of Gentianella from Xinjiang, China

The molecular evidence shows that *G. macrosperma* has the closest relationship with *G. holosteoides* which is native to Turkey and Pakistan and they also share similar floral whorls and basal leaves shape, but plants of *G. holosteoides* are smaller in stature, no more than 5 (7) cm height; it further differs from *G. macrosperma* in its smaller basal leaves, larger flowers with corolla lobes shorter than corolla tube, nectaries position at corolla base and smaller, numerous seeds. A detailed morphological comparison is given in Table 1.

Von Hagen and Kadereit (2001) proposed *Gentianella* s. str. to only include species with one nectary per petal lobe, however, *G. umbellata* and *G. stoliczkae* represented in their study are both binectariate species. Current molecular analyses also shows the binectariate *G. macrosperma* clustered into von Hagen and Kadereit’s *Gentianella* s. str. A careful selection of species across wider geographic regions of this genus and data from more nuclear and chloroplast sequences may clarify the generic circumscription in *Gentianella*.

Key to species of *Gentianella* in China

The following key is based on Flora of China (Ho and Pringle 1995), Flora of the U.S.S.R. (Shishkin and Bobrov 1967) and other literature (Omer et al. 1988; Aitken 2007; Chen et al. 2011). It includes 11 species of *Gentianella* in China.

1. Corolla lobes fimbriate at base ... *G. acuta*
 - Corolla lobes glabrous at base .. 2
2. Nectaries above the middle of corolla tube ... 3
 - Nectaries at the base of corolla tube .. 4
3. Plant 12–40 cm tall, nectaries close to the throat of corolla tube, seeds 1.2–1.6 mm in diameter ... *G. macrosperma*
 - Plant 1–4 cm tall, nectaries just above the middle of corolla tube, seeds 0.7–0.8 mm in diameter ... *G. pygmaea*
4. Margin and midvein of calyx lobe blackish .. *G. azurea*
 - Calyx not as above ... 5
5. Stem densely purple pilose .. *G. gentianoides*
 - Stem glabrous (sometimes sparsely pilose in *G. moorcroftiana*) 6
6. Flowers often angled, corolla tube 3–4 times longer than lobe ... *G. angustiflora*
 - Flowers not angled, corolla tube 1–3 time(s) longer than lobe 7
7. Corolla lobes apically obtuse or round .. 8
 - Corolla lobes apically mucronate ... 9
8. Flowers 5-merous, stem leaf blades linear .. *G. moorcroftiana*
 - Flowers 4-merous, stem leaf blades spatulate to oblong-spatulate *G. arenaria*
 - Corolla lobes densely papillate outside ... *G. anomala*
9. Corolla 7–20 mm long, terminal ones ca. 20 mm, lobes 3–7 mm *G. stoliczkae*
 - Corolla 4–10 mm long, terminal ones up to 10 mm, lobes ca. 2 mm *G. sibirica*
Table 1. Morphological comparison between *Gentianella macrosperma* and related species.

	G. macrosperma	*G. holosteoides*	*G. longicarpa*	*G. sibirica*	*G. stoliczkae*	*G. umbellata*
Plant height (cm)	12–40	up to 5	9–22	(1–)10–20	10–45	(4–)10–35
Basal leaves (mm)	not roslate, obovate-spathulate 14–17 × 2–6	roslate, spathulate-ovate or lanceolate, 3–5 × 1–3	roslate, spathulate, oblong-obovate, 7–16 × 3–8	roslate, oblong-obovate, 6–20 × 2–6	roslate, ovate-lanceolate to ovate, 10–35 × 6–20	roslate, spathulate, obovate-lanceolate, 8–25 × 5–12
Cauline leaves (mm)	oval to ovaloid, apex rounded, the uppermost sometimes acute, 15–38 × (7–)10–15	lanceolate-oblanceolate or elliptic, apex acute, 5–15 × 2–6	ovate-oblong, ovate or ovate-lanceolate, apex acute, 3–6–9	ovate-oblong, ovate-lanceolate, apex acute, 6–20 × 3–9	oblong-lanceolate, lanceolate to ovate-lanceolate, apex acute, (20–)25–40 × (2–)10–15	oblong-ovate, oblong-lanceolate, apex acute, 8–25 × 4–18
Calyx length (mm)	3.5–4.5	4–8	4–5	3–6	8–11	4–10
Floral whorls	4(5)–merous	4(5)–merous	5-merous	5(4)–merous	5-merous	5-merous
Flower size	almost all of the same size	variable in size, terminal ones 1–2 × larger than others	variable in size, terminal ones 1–1.5 × larger than others	variable in size, terminal ones 1–2 × larger than others	variable in size, terminal ones 2–3 × larger than others	variable in size, terminal ones 2–3 × larger than others
Corolla colour	white	pale blue to blue	pale blue, light-pink, or lilac-violet	predominantly pink, yellowish or white, rarely pale blue	purple, pink, pale blue or yellowish	pale azure, purple, pink, yellowish or mixture of these, rarely white
Corolla shape	campanulate	tubular to campanulate-tubular	tubular to campanulate-tubular	tubular or tubular-infundibular	tubular to campanulate-tubular	tubular to campanulate-tubular
Corolla length (mm)	4.0–4.5(–5.0)	6–12	(5–) 6–8	(5–) 6–7(–10)	7–20	(5–) 8–11(–15)
Corolla lobes	2.0 mm long, the same length as corolla tube	1.5–3.0 mm long, much shorter than corolla tube	2–3 mm long, shorter than corolla tube	ca. 2 mm long, much shorter than corolla tube	3–7 mm long, much shorter than corolla tube	2–3(4) mm long, much shorter than corolla tube
Nectaries	8(10), at top of corolla tube	8(10), at basal part of corolla tube	10, at basal part of corolla tube	8–10, at basal part of corolla tube	10, at basal part of corolla tube	10, at basal part of corolla tube
Stamens	1.1–1.4 mm	–	–	2–4 mm	ca. 7 mm	1–5 mm
Anthers	blue, 0.2–0.3 mm	–	–	blue, 0.5–0.7 mm	yellow, 1.0–1.2 mm	–
Gynophore	0.2–0.3 mm	subsecille	sessile	subsecille	1.5–2.2 mm	sessile
Seeds	2–8 per capsule, 1.2–1.6 mm in diameter	numerous per capsule, ca. 0.8–1.0 mm in diameter	numerous per capsule, 0.2–0.3 mm in diameter	numerous per capsule, 0.1–0.2 mm in diameter	numerous per capsule, ca. 0.8 mm in diameter	numerous per capsule, 0.2–0.3 mm in diameter
Gentianella macrosperma, a new species of Gentianella from Xinjiang, China

Acknowledgements

We are grateful to three anonymous reviewers and Jie Cai for their critical comments to improve the manuscript; to En Zhou of Shanghai University of Traditional Chinese Medicine for language revision; to Fu-Lin Li and Jian-Zhong Pang from Yeguolin improvement station of Xinyuan for their kind assistance in the field; to Lian-Yi Li of Kunming Institute of Botany, Chinese Academy of Sciences (CAS) for image processing; to Irina Illarionova and Larisa Raenko of LE, Wei Zhao and Yang-Jun Lai of Institute of Botany, CAS for specimen images access; to Rong-Mei Zhang for the line drawing. We appreciate curators of the cited herbaria and the website managers of CVH, GBIF, JSTOR for the online images access. This study was financially supported by CAS’s Large-scale Scientific Facilities (Grant No.: 2017-LSF-GBOWS-02) and Basic Research Project of the Ministry of Science and Technology of China (Grant No.: 2013FY112600).

References

Aitken E (2007) A revision of Gentianella, Comastoma and Gentianopsis (Gentianaceae) in Nepal. Edinburgh Journal of Botany 64(2): 253–268. https://doi.org/10.1017/S0960428607000935

Chen WL, Smirnov SV, Kamelin RV (2011) Some new or noteworthy plant species for China found in North West Xinjiang. Turczaninowia 14(1): 75–80.

Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: More models, new heuristics and parallel computing. Nature Methods 9(8): 772. https://doi.org/10.1038/nmeth.2109

Gillett JM (1957) A revision of the North American species of Gentianella Moench. Annals of the Missouri Botanical Garden 44(3): 195–269. https://doi.org/10.2307/2394633

Ho TN, Pringle JS (1995) Gentianella Moench. In: Wu ZY, Raven PH (Eds) Flora of China vol. 16. Science Press, Beijing & Missouri Botanical Garden Press, St. Louis, 136–138. http://flora.huh.harvard.edu/china/PDF/PDF16/Gentianella.pdf

IUCN (2017) Guidelines for using the IUCN Red List categories and criteria. Version 13. Prepared by the Standards and Petitions Subcommittee. http://www.iucnredlist.org/documents/RedListGuidelines.pdf

Mohd S, Priyanka A, Jay KT (2018) Gentianella tumailica (Gentianaceae) – A new species from cold deserts of northwest Himalaya, India. Nordic Journal of Botany 36(6): 1–5. https://doi.org/10.1111/njb.01919

Omer S (1995) Aloitis Raf. In: Nasir E, Ali SI (Eds) Flora of Pakistan. Missouri Botanical Garden. Omer S, Qaiser M, Ali SI (1988) Studies in the family Gentianaceae: The genus Aloitis Rafin. from Pakistan and Kashmir. Pakistan Journal of Botany 20(2): 153–160. http://pakbs.org/pjbot/PDFs/20(2)/01.pdf

Pfanzelt S, Sylvester S, Ammann L, Sylvester M (2015) Gentianella viridiflora (Gentianaceae), a new species from the Peruvian Andes. Phytotaxa 222(4): 283–289. https://doi.org/10.11646/phytotaxa.222.4.6
Appendix

Appendix 1. Samples for phylogenetic analysis using matK and ITS sequences with voucher information, GenBank accession number.

Species	Voucher specimen (Herbarium/No.)	Locality	matK	ITS
OUTGROUP				
Chelonanthis alatus (Aubl.) Pulle	Maas 9316 (U)	French Guiana	KX904551	KX904610
GENTIANEAE GROUP				
Crawfurdia speciosa Wall.	KEKE 1244 (K)	N/A	AJ010512/	AJ294586/
			AJ011441	AJ294646
Gentiana crassicaulis Duthie ex Burkill	xuechy090107 (KUN)	China	KC861277	KC861348
Gentiana dahurica Fisch.	xuechy0076 (KUN)	China	KC861279	KC861350
Gentiana frigida Haenke	N/A	Germany (Schachen Bot. Garden), cultivated	AJ388166/	AJ294588/
			AJ388236	AJ294648
Species	Voucher specimen (Herbarium/No.)	Locality	matK	ITS
---------------------------------	----------------------------------	----------	------------	--------------
Gentianella macrosperma	xuechy0065 (KUN)	China	KC861282	KC861353
SWERTIIINAe GROUP				
Comastoma cyananthiflorum	XHC120021 (KUN)	China	KC861250	KC861320
(Franch.) Holub	CEE-88 (E 00025334)	China	AJ406324/	AJ294585/
Comastoma jigsawiae T.N. Ho	Chen0423 (KUN)	China	AJ406353/	AJ294645
& J.Q. Liu	xuechy090036 (KUN)	China	AJ406351/	AJ294647
Comastoma pulmonarium	GLM-081307 (KUN)	China	KC861238	KC861306
(Turcz.) Toyok.	K. Gutsche 20 (MJG)	N/A	AJ406325/	AJ294587/
Praesia alciculata Griseb.			AJ406354/	AJ294657
Gentianella amarella (L.)	W.J. Schrenk (FR)	N/A	AJ406326/	AJ294591/
Börner			AJ406355/	AJ294651
Gentianella angustiflorum	Edinburgh Makalu Expedition 430	Nepal	AJ406327/	AJ294592/
(E 00025322)			AJ406356/	AJ294652
Gentianella antipoda (Kirk)	CHR 510015	New Zealand	–	AJ136500
T.N. Ho & S.W. Liu				
Gentianella arenaria (Maxim.)	T.N. Ho et al. 435 (E 00025341)	N/A	AJ406328/	AJ294593/
T.N. Ho	K. Gutsche 45 (MJG)	N/A	AJ101517/	AJ294594/
& Skalicky, Chricht & Gill			AJ101146/	AJ294654
Gentianella azuensis (Petric)	CHR 509942	New Zealand	–	AJ136504
T.N. Ho & S.W. Liu	H. Smith 4131 (E 00025348)	N/A	AJ406329/	AJ294595/
Gentianella aurea (L.) H.			AJ406357/	AJ294655
Smith			AJ406358/	AJ294656
Gentianella auriculata (Pall.)			AJ406330/	AJ294596/
J.M. Gillett			AJ406350/	AJ294657
Gentianella austrica (A. Kern. & Jos.Kern.) Holub	N/A (MJG)	Germany (Schachen Bot. Garden), cultivated	–	AJ294597/
Gentianella azurea (Bunge)	xuechy090033 (KUN)	China	KC861284	KC861355
Holub				
Gentianella azurea (Bunge)	T.N. Ho, B. Bartholomew, M.	China	AJ406331/	AJ294598/
Gilbert 1312 (E 00025339)			AJ406359/	AJ294658
Gentianella azurea (Bunge)	Yangyp-Q-0255 (KUN)	China	MN067526*	MK416127*
Holub				
Gentianella bellidifolia	19923274	Scotland	AJ388162/	AJ294599/
(Hook.f.) Holub		Edinburgh Bot. Garden, cultivated	AJ388232	AJ294659
Gentianella bohemica Skalicky	015	Czech Republic	–	AJ580570
Gentianella carnosii G.L.	S. Gonzales, S. Acevedo 2033 (TEX)	N/A	AJ406332/	AJ294600/
Nesom & B.L. Turner			AJ406360/	AJ294660
Gentianella caseosa (Lodd. ex	J. C. Archibald 8208 (E 00025347)	N/A	AJ294601/	AJ294661
Sims) Holub			AJ294602/	AJ294662
Gentianella cerastoides	R. Greissl (MJG)	N/A	AJ101518/	AJ294603/
(Kunth) Fabris			AJ101147/	AJ294663
Gentianella cernua (Kunth)	C.Viteri 4410 (MO)	N/A	–	AJ294603/
Fabris			–	AJ294663
Gentianella cosmantha (Griseb.) J.S. Pringle	J.G. Haukes, J.P.Hjirting, K. Rahn 3659 (L. 424359)	N/A	AJ406333/	AJ294604/
Gentianella diemensis (Griseb.) J.H. Willis	H. Hurka (MJG)	N/A	AJ406336/	AJ294664
Gentianella engadensis	Ge002	Switzerland	–	AJ580559
(Wettst.) Holub				
Gentianella fastigiata	K. Gutsche (MJG)	N/A	–	AJ294606/
(Benth.) Fabris			–	AJ294666
Gentianella florida (Griseb.)	R. Ehrich 444 (MJG)	N/A	AJ406334/	AJ294607/
Holub			AJ406362/	AJ294667
Gentianella foliosa (Kunth)	1994-508	England (Kew Bot. Garden), cultivated	–	AJ294608/
Fabris	Ge002	Switzerland	–	AJ294668
Gentianella gentianoides	xuechy090065 (KUN)	China	KC861285	KC861356
(Franch.) H. Smith				
Gentianella germanica (Wild.)	xuechy090094 (KUN)	China	KC861286	KC861357
E.F. Warburg	20	Germany	–	AJ580562
Species	Voucher specimen (Herbarium/No.)	Locality	matK	ITS
--	----------------------------------	----------------	------------------	----------------------
Gentianella germanica (Willd.) E.F. Warburg	J.W. Kadereit (MJG)	N/A	AJ406335/ AJ406363	AJ294609/ AJ294669
Gentianella hirculus (Griseb.) Fabris	J.L. Clarke 1787 (QCNE)	N/A	–	AJ294610/ AJ294670
Gentianella holosteoides Schott & Korsky ex N.M. Pritch.	Southampoton University 179 (K)	N/A	–	AJ294611/ AJ294671
Gentianella macroperma Ma ex H.F. Cao, J.D. Ya & Q.R. Zhang	1/CS16527 (KUN)	China	MN067/523*	MK416132*
Gentianella lineata (Kirk) T.N. Ho & S.W. Liu	CHR 509866	New Zealand	–	AJ136503
Gentianella longicarpa (Gilli) Holub	D. Podliech 12436 (M)	N/A	–	AJ294612/ AJ294672
Gentianella magellanica (Gaudich.) Fabris	K. Kubitzki, T. Feurer 99-10 (MJG)	N/A	AJ406336/ AJ406364	AJ294613/ AJ294673
Gentianella microcalyx (Lemmon) J. M. Gillett	E. Joyal, J. Enrique 1853 (TEX)	N/A	AJ406337/ AJ406365	AJ294614/ AJ294674
Gentianella montana (G. Forst.) Holub	CHR 509944	New Zealand	–	AJ136491
Gentianella moorcroftiana (Wall. ex G. Don) A. Shaw	R. McBeath 2093 (E 00025318)	N/A	AJ406338/ AJ406366	AJ294615/ AJ294675
Gentianella narcissoides (Gilg) T.N. Ho & S.W. Liu	L. Naessany 14 (MJG)	N/A	–	AJ294616/ AJ294676
Gentianella patula (Kirk) Holub	19932978	Scotland (Edinburgh Bot. Garden), cultivated	AJ406339/ AJ406367	AJ294617/ AJ294677
Gentianella peruviana (Griseb.) Fabris	19950534	Scotland (Edinburgh Bot. Garden), cultivated	AJ388163/ AJ388233	AJ294618/ AJ294678
Gentianella propinqua (Richardson) J.M. Gillett	G. Halliday A 333/75 (E 00025300)	North America	AJ406340/ AJ406368	AJ294619/ AJ294679
Gentianella quinquefolia (L.) Small	Bozeman, Ramseur, Radford 45200 (E 00025241)	North America	AJ406341/ AJ406365	AJ294620/ AJ294680
Gentianella quinquefolia (L.) Small	D. Pitillo 12106 (WCUH)	America	–	EU812469
Gentianella rapunculoides (Willld. ex Schult.) J.S. Pringle	R. Greissl 616 (MJG)	N/A	–	AJ294621/ AJ294681
Gentianella ruizii (Griseb.) Holub	Weigend, Weigend 2000/386 (NY)	N/A	AJ406342/ AJ406370	AJ294622/ AJ294682
Gentianella ruticola (Kunth) Holub	199930516	Scotland (Edinburgh Bot. Garden), cultivated	–	AJ294623/ AJ294683
Gentianella saxosa (G. Forst.) Holub	Gutsche (MJG)	N/A	–	AJ406343/ AJ406371
Gentianella splendens (Gilg) Fabris	J.L. Clarke 1855 (QCNE)	N/A	AJ295336/ AJ295337	AJ294624/ AJ294684
Gentianella stoliczkae (Kurz ex C.B. Clarke) Holub	LiuJQ0028 (KUN)	China	MN067/524*	MK416130*
Gentianella stoliczkae (Kurz ex C.B. Clarke) Holub	LiuJQ0071 (KUN)	China	MN067/525*	MK416131*
Gentianella stoliczkae (Kurz ex C.B. Clarke) Holub	O. Anders 18178 (M 50043)	N/A	AJ406344/ AJ406372	AJ294625/ AJ294685
Gentianella sulphurea (Gilg) Fabris	J.L. Clarke 1833 (QCNE)	N/A	–	AJ294626/ AJ294686
Gentianella thyroides (Hook. f.) Fabris	D.N. Smith, F. Escalona 10134 (MO)	N/A	–	AJ294627/ AJ294687
Gentianella tristicha (Gilg) Fabris ex T.N. Ho & S.W. Liu	D.N. Smith, F. Escalona 10125 (MO)	N/A	–	AJ294628/ AJ294688
Gentianella umbellata (M. Bieb.) Holub	K91-G3	Georgia	–	Z48102Z48132
Gentianella willizemii (Engelm.) J.M. Gillett	M. Lavin 4947 (TEX)	N/A	–	AJ294630/ AJ294690
Gentianopsis barbata (Froel.) Ma	xueschy090085 (KUN)	China	–	KC861287/ KC861358
Gentianella macrosperma, a new species of Gentianella from Xinjiang, China

Species	Voucher specimen	Locality	matK	ITS
Gentianella macrosperma (C.B. Clarke) C.B. Clarke	XHC120060 (KUN)	China	AJ406348/ AJ406376	AJ294638/ AJ294698
Gentianella crinita (Froel.) Ma	GLM-081543 (KUN)	Germany (Mainz Bot. Garden), cultivated	AJ406345/ AJ406373	AJ294631/ AJ294691
Halenia elliptica D. Don	GLM-081957 (KUN)	China	AJ406347/ AJ406375	AJ294640/ AJ294700
Halenia palmeri A. Gray	K.B.v. Hagen 98/41 (MJG)	N/A	AJ406349/ AJ406377	AJ294639/ AJ294699
Jaeschkea oligosperma (Griseb.) Knobl.	R. McBeath 2300 (E 00025275)	N/A	AJ388171/ AJ388241	AJ294633/ AJ294693
Lomatogonium bellum (Hemsl.) H. Smith	GLM-06075 (KUN)	China	AJ406346/ AJ406374	AJ294634/ AJ294694
Lomatogonium carinthiacum (Wulfen) Rchb.	V. Zuev 6649 (BR)	N/A	AJ406346/ AJ406374	AJ294634/ AJ294694
Lomatogonium forrestii (I.B. Baliour) Fernald	XHC120061 (KUN)	China	AJ388177/ AJ388247	AJ294635/ AJ294695
Lomatogonium gamosepalum (Burkill) H. Smith	GLM-081372 (KUN 1272996)	China	AJ406346/ AJ406374	AJ294634/ AJ294694
Lomatogonium oreocharis (Diels) C. Marquand	CLD-90 1106 (K)	N/A	AJ388174/ AJ388247	AJ294635/ AJ294695
Megacodon stylophorus (C.B. Clarke) H. Smith	GLM-081957 (KUN)	China	AJ388177/ AJ388247	AJ294636/ AJ294696
Megacodon stylophorus (C.B. Clarke) H. Smith	Kuming, Edinburgh, Gothenburgh Exp. 1378 (E 00025279)	China	AJ388174/ AJ388247	AJ294635/ AJ294695
Swertia bifolia Batalin	Chem02388 (KUN)	China	AJ388177/ AJ388247	AJ294636/ AJ294696
Swertia bimaculata (Sieb. & Zucc.) Hook. f. & Thomson ex C.B. Clarke	XHC120026 (KUN)	China	AJ388177/ AJ388247	AJ294636/ AJ294696
Swertia cincta Burkhill	XCY090050 (KUN)	China	JF956557	JF978820
Swertia cimosa Gilg.	XCY090098 (KUN)	China	JF956561	JF978825
Swertia deoria Franch.	XCY090077 (KUN)	China	JF956561	JF978825
Swertia erythrosticta Maxim.	xuechy090044 (KUN)	China	AJ406346/ AJ406374	AJ294639/ AJ294699
Swertia franchetiana H. Smith	XHC120048 (KUN)	China	AJ406346/ AJ406374	AJ294639/ AJ294699
Swertia japonica (Schult.) Makino	N/A (KYO)	Japan (Kyoto Bot. Garden), cultivated	AJ406348/ AJ406376	AJ294638/ AJ294698
Swertia macrosperma (C.B. Clarke) C.B. Clarke	XHC120060 (KUN)	China	AJ406348/ AJ406376	AJ294638/ AJ294698
Swertia macrosperma (C.B. Clarke) C.B. Clarke	J.H. de Haas 2765 (U 500099)	N/A	AJ406349/ AJ406377	AJ294639/ AJ294699
Swertia nervosa (G. Don) Wall. ex C.B. Clarke	XHC120053 (KUN)	China	AJ406349/ AJ406377	AJ294639/ AJ294699
Swertia patens Burkhill	09CS1123 (KIB)	China	AJ406349/ AJ406377	AJ294639/ AJ294699
Swertia perennis L.	K.B. Hungerer (MJG)	N/A	–	AJ294640/ AJ294700
Swertia panicul Hemsl.	19943574	Scotland (Edinburgh Bot. Garden), cultivated	AJ406350/ AJ406378	AJ294641/ AJ294701
Swertia racemosa (Wall. ex Griseb.) C.B. Clarke	J.H. de Haas 2725 (U 500131)	N/A	AJ406351/ AJ406379	AJ294642/ AJ294702
Swertia volvensii Gilg	U. Hecker 1093 (MJG)	N/A	AJ406352/ AJ406380	AJ294643/ AJ294703
Swertia yunnanensis Burkhill	XCY090089 (KUN)	China	JF956585	JF978836
Veratrilla baillonii Franch.	Kuming, Edinburgh, Gothenburgh Exp. 1326 (E 00025273)	China	AJ388196/ AJ388266	AJ294644/ AJ294704

* indicates the taxon was newly sequenced in the present study.