We consider the thermal aspect of a system composed of two coupled harmonic oscillators and study the corresponding purity. We initially consider a situation where the system is brought to a canonical thermal equilibrium with a heat-bath at temperature $T$. We adopt the path integral approach and introduce the evolution operator to calculate the density matrix and subsequently the reduced matrix density. It is used to explicitly determine the purity in terms of different physical quantities and therefore study some limiting cases related to temperature as well as other parameters. Different numerical results are reported and discussed in terms of the involved parameters of our system.

**Keywords:** entanglement entropies, two coupled harmonic oscillators, path integral, density matrix, purity
1. Introduction

For a given many body system, it is not easy to measure the quantum mechanical correlations because of their infinitesimal sizes. In some cases, for instance like superconductivity, there exists strong correlations and the pure states persist even for a large number of the many body state. In such states the classical thermodynamic quantities have been theoretically defined and identified with measured variables but the quantum mechanical correlations are lost. One way to recover what was lost is to introduce so-called entanglement as a mathematical tool to describe the correlated systems. Entanglement is one of the most remarkable features of quantum mechanics that does not have any classical counterpart. It is a notion that was initially introduced and coined by Schrödinger [1] when quantum mechanics was still in its early stages of development. Its status has evolved throughout the decades and has been subjected to significant changes.

Traditionally, entanglement has been related to the most quantum mechanical exotic concepts such as the Schrödinger cat [1], the Einstein–Podolsky–Rosen paradox [2] and violation of Bell’s inequalities [3]. Despite its conventional significance, entanglement has gained, in the last decades, a renewed interest mainly because of the development of quantum information science [4]. It has been revealed that it lies at the heart of various communication and computational tasks that cannot be implemented classically. It is believed that entanglement is the main ingredient of the quantum speed-up in quantum computation [4]. Moreover, several quantum protocols such as
teleportation, quantum dense coding, and so on [5–11] are exclusively realized with the help of entangled states.

We propose a new approach to explicitly determine the purity function for a given system for the whole energy spectrum rather than the ground state, as mostly used in the literature. This will be based on choosing the harmonic oscillators as a system and using the path integral technique as tools to deal with our issues. Our analysis will involve the temperature as an important parameter that will play a crucial role in discussing different properties of our system. To prove the validity of our approach, we will show that our results will allow recovering the standard case describing the quantum system in the ground state at absolute zero temperature, which was obtained in our previous work dealing with the entanglement in coupled harmonic oscillators studied using a unitary transformation [12].

More precisely, we investigate the entanglement of a system of two coupled harmonic oscillators [13] by adopting the path integral formalism. Indeed, we build the propagator corresponding to our system and therefore derive its density matrix. This will allow us to determine the wavefunction describing the state of our system and subsequently end up with the purity in terms of different physical parameters. We emphasis that such wavefunction is temperature dependent and associated to the whole energy spectrum including the ground-state, which offers an exact derivation of the purity for our system. We study interesting cases of the purity by considering different limiting cases related to the temperature, coupling parameter and type of particles. At low temperature, we recover our former result obtained in [12] and at high temperature the purity shows another behavior. As well as our findings, we present different numerical results and discuss their basic features.

The present paper is organized as follows. In section 2, we construct the density matrix of a bipartite corresponding to a system of two coupled harmonic oscillators. By examining the two limiting cases of the temperature parameter $\beta$ of the density matrix and from the well-known solution of the imaginary time Schrödinger equation [14] we derive the $\beta$-dependent wavefunction, which verifies the low and high temperature limits as well as allows obtaining the reduced density matrix. This will be done by making use of unitary transformation together with the initial conditions as well as different changes. In section 3, from the obtained results we show how to derive the purity in general form and study interesting cases related to the strengths of different physical quantities defining our system. We conclude our results in the final section and give some perspectives.

2. Path integral and bipartite

We consider a system of two coupled harmonic oscillators of masses $(m_1, m_2)$ parameterized by the planar coordinates $(x_1, x_2)$. This is governed by a Hamiltonian sum of free and interacting parts

$$\hat{H} = \frac{\hat{p}_1^2}{2m_1} + \frac{\hat{p}_2^2}{2m_2} + \frac{1}{2}C_1\hat{x}_1^2 + \frac{1}{2}C_2\hat{x}_2^2 + \frac{1}{2}C_3\hat{x}_1\hat{x}_2$$

(1)
where $C_1$, $C_2$ and $C_3$ are constant parameters. It is clear that the decoupled harmonic oscillators are recovered by requiring $C_3 = 0$. In the next section, we will adopt the path formalism to explicitly determine the wavefunction corresponding to the present system and later on study the purity to characterize the strengths of the entanglement. In doing so, we proceed by introducing the density matrix and particularly the reduced density matrix.

2.1. Density matrix

As claimed by Kleinert [15] the path integral approach is useful to also understand the thermal equilibrium properties of a given system. Here we assume that the time-independent Hamiltonian (1) is in contact with a reservoir of temperature $T$ and apply the Kleinert method to study the thermal properties of our system. Recall that the temperature is introduced via the quantum-statistical partition function

$$Z = \text{Tr} e^{-\frac{i\hat{H}}{\hbar}}$$

which can be seen as an analytic continuation of the quantum-mechanical partition function

$$Z_{MQ} = \text{Tr} e^{\beta (\hat{H} - E_0 \hat{I})}$$

to the imaginary time

$$t_b - t_a = -\frac{i\hbar}{k_B T} = -i\beta$$

with the Boltzmann constant $k_B$. As it will be clear in the following, we will show that our system in both limiting cases of temperature will give similar results to those obtained by Kleinert [15]. Recall that, such transformation (4) from the real time to the imaginary time $t \rightarrow -i\beta$, which represents an inverse temperature, was used in different context, for instance in [16–19].

Furthermore, for imaginary time, the propagator of a system is equivalent to the density matrix for a particle that is in a heat bath. Thus, the density matrix of the system can be obtained directly from the propagator under the transformation (4). In constructing the the path integral for the propagator corresponding to the Hamiltonian (1), according to [14, 20] we consider the energy shift

$$\hat{H} \rightarrow \hat{H} - E_0 \hat{I}$$

to ensure that the wavefunction of the system converges to that of the ground state at low temperature ($T \rightarrow 0$). Now let us introduce the evolution operator

$$\hat{U}(\beta) = \mathcal{T}_D \exp \left( -\int_0^\beta (\hat{H} - E_0 \hat{I}) \, d\tau \right) = e^{i\beta E_0} \mathcal{T}_D \exp \left( -\int_0^\beta \hat{H} \, d\tau \right)$$

with $\mathcal{T}_D$ being the chronological Dyson operator. Because of the partition function does not determine any local thermodynamic quantities, then important local information resides in the thermal analog of the time evolution amplitude [15]
which are the matrix elements of the propagator (6), where $A$ and $B$ are two sub-regions forming our system, with $|x_1a, x_2a\rangle$ and $|x_{1b}, x_{2b}\rangle$ the initial and final states. Note that, such states actually correspond to the temperature cases $T \rightarrow 0$ and $T \neq 0$ [15, 18]. In the forthcoming analysis, we consider the shorthand notation $\rho^{AB}(x_{1b}, x_{2b}, x_{1a}, x_{2a}; \beta) = \rho^{AB}(b, a; \beta)$. To write this latter in terms of the path integral, one can divide the temperature parameter $\beta$ into $N + 1$ intervals of length $\epsilon = \frac{\beta}{N+1}$, use the Trotter formula and insert the completeness relation

$$
\int |x_1, x_2\rangle\langle x_1, x_2| dx_1 dx_2 = \mathbb{I}
$$

to get the continuous form

$$
\rho^{AB}(b, a; \beta) = e^{+\beta E_0} \int Dx_1 Dx_2 \exp \left\{ -\int_0^{\beta} \left( \frac{m_1}{2} \dot{X}_1^2 + \frac{m_2}{2} \dot{X}_2^2 + \frac{1}{2} C_1 X_1^2 + \frac{1}{2} C_2 X_2^2 + \frac{1}{2} C_3 x_1 x_2 \right) d\tau \right\}
$$

where the initial conditions $X_1(0) = x_{1a}$, $X_2(0) = x_{2a}$, $X_1(\beta) = x_{1b}$, $X_2(\beta) = x_{2b}$ will be taken into account in order to get the solutions.

To go further in developing the above density matrix, we proceed by introducing some relevant tools. Indeed, in the beginning we consider the unitary transformation

$$
\begin{pmatrix}
x_1 \\
x_2
\end{pmatrix} = \begin{pmatrix}
\frac{1}{\mu} \cos \theta & \frac{1}{\mu} \sin \theta \\
-\mu \sin \theta & \mu \cos \theta
\end{pmatrix} \begin{pmatrix}
X_1 \\
X_2
\end{pmatrix}
$$

where we have set the quantities

$$
\tan \theta = \frac{C_3}{\mu^2 C_2 - C_1^2}, \quad \mu = \left( \frac{m_1}{m_2} \right)^{\frac{1}{4}}.
$$

This transforms the density matrix (9) into the form

$$
\rho^{AB}(b, a; \beta) = e^{+\beta E_0} \int DX_1 DX_2 \exp \left\{ -\int_0^{\beta} \left( \frac{m}{2} \dot{X}_1^2 + \frac{m}{2} \dot{X}_2^2 + \frac{1}{2} k e^{2\eta} X_1^2 + \frac{1}{2} k e^{-2\eta} X_2^2 \right) d\tau \right\}
$$

and the involved parameters are given by

$$
e^{\pm 2\eta} = \frac{C_1}{\mu^2} + \mu^2 C_2 \mp \sqrt{\left( \frac{C_1}{\mu^2} - \mu^2 C_2 \right)^2 + C_3^2}, \quad k = \sqrt{C_1 C_2 - \frac{C_3^2}{4}}, \quad m = \sqrt{m_1 m_2}.
$$

With the above transformation the system is now becoming decoupled and therefore (12) is separable in terms of the new variables $X_1$ and $X_2$. Consequently, we have

$$
\rho^{AB}(X_{1b}, X_{2b}, X_{1a}, X_{2a}; \beta) = e^{+\beta E_0} \rho_1(X_{1b}, X_{1a}; \beta) \rho_2(X_{2b}, X_{2a}; \beta)
$$

(14)
where the two parts read, see appendix, as
\[ \rho_1 = \left( \frac{\hbar \omega \eta}{2 \pi e} \right)^\frac{1}{2} \exp \left[ -\frac{m \omega \eta}{\hbar} \left( \left( X_{1b}^2 + X_{1a}^2 \right) \cosh \left( \hbar \omega \beta \eta \right) - 2X_{1b}X_{1a} \right) \right] \]
\[ \rho_2 = \left( \frac{m \omega \eta}{2 \pi \hbar} \right)^\frac{1}{2} \exp \left[ -\frac{m \omega \eta}{\hbar} \left( \left( X_{2b}^2 + X_{2a}^2 \right) \cosh \left( \hbar \omega \beta \eta \right) - 2X_{2b}X_{2a} \right) \right] \]
with the frequency \( \omega = \sqrt{\frac{k}{m}} \). At this level some comment is in order. Firstly the main difference between both parts (15) and (16) is the sign of the coupling parameter \( \eta \), which will play a crucial role in the forthcoming analysis. Secondly, these densities actually correspond to the whole energy spectrum including all system states. Thirdly, we recall that similar expressions were obtained in [21] but only for the ground state.

Using the transformation (10) to map the density matrix of the composite system in terms of the original variables \((x_1, x_2)\) as
\[ \rho^{AB} (b, a; \beta) = \frac{m \omega}{2 \pi \hbar} e^{+\beta E_0} \left( \frac{1}{\sinh (\hbar \omega \beta \eta) \sinh (\hbar \omega \beta \eta)} \right)^\frac{1}{2} \exp \left\{ -ax_{1b}^2 - bx_{1b}^2 - ax_{1a}^2 - bx_{1a}^2 \right\} \]
\[ \times \exp \left\{ 2cx_{1b}x_{2b} + 2cx_{1a}x_{2a} + 2dx_{1b}x_{1a} + 2fx_{2b}x_{2a} - 2gx_{1b}x_{2a} - 2gx_{1a}x_{2b} \right\} \]
where the different quantities are
\[ a = \frac{\mu^2 m \omega}{2 \hbar} \left[ e^{\eta} \coth (\hbar \omega \beta \eta) \cos^2 \frac{\theta}{2} + e^{-\eta} \coth (\hbar \omega \beta \eta) \sin^2 \frac{\theta}{2} \right] \]
\[ b = \frac{m \omega}{\mu^2 2 \hbar} \left[ e^{\eta} \coth (\hbar \omega \beta \eta) \sin^2 \frac{\theta}{2} + e^{-\eta} \coth (\hbar \omega \beta \eta) \cos^2 \frac{\theta}{2} \right] \]
\[ c = \frac{m \omega}{2 \hbar} \left( e^{\eta} \coth (\hbar \omega \beta \eta) - e^{-\eta} \coth (\hbar \omega \beta \eta) \right) \cos \frac{\theta}{2} \sin \frac{\theta}{2} \]
\[ d = \frac{\mu^2 m \omega}{2 \hbar} \left[ \frac{e^{\eta}}{\sinh (\hbar \omega \beta \eta)} \cos^2 \frac{\theta}{2} + \frac{e^{-\eta}}{\sinh (\hbar \omega \beta \eta) \sin^2 \frac{\theta}{2}} \right] \]
\[ f = \frac{m \omega}{\mu^2 2 \hbar} \left[ \frac{e^{\eta}}{\sinh (\hbar \omega \beta \eta) \sin^2 \frac{\theta}{2}} + \frac{e^{-\eta}}{\sinh (\hbar \omega \beta \eta) \cos^2 \frac{\theta}{2}} \right] \]
\[ g = \frac{m \omega}{2 \hbar} \left( \frac{e^{\eta}}{\sinh (\hbar \omega \beta \eta)} - \frac{e^{-\eta}}{\sinh (\hbar \omega \beta \eta) \sin \theta} \right) \cos \frac{\theta}{2} \sin \frac{\theta}{2}. \]
In the following section, we will show how (17) can be used to deal with different issues related to our system behavior. More precisely, it will help in getting the corresponding wavefunction describing the whole energy spectrum of our system and later on derive its purity. This will be used to analyze the degree of the entanglement and obtain different results.

https://doi.org/10.1088/1742-5468/aad19b
2.2. Reduced density matrix

To analyze the entanglement of our system, we need first to determine the reduced density matrix and later evaluate the purity. In doing so, in the early stage we have to derive the wavefunction corresponding to our system described by the Hamiltonian (1), which has to satisfy the imaginary time Schrödinger equation and gives rise two wavefunctions at low and high temperature limits. This will be used to explicitly determine without approximation the corresponding purity in terms of different physical parameters. To get such a suitable wavefunction, we start by making the variable substitution \((x_{1a}, x_{2a}) = (x_{1b}, x_{2b}) = (x_1, x_2)\) into (17) and taking only the diagonal elements of the density matrix, then we have the probability density

\[
P_\beta(x_1, x_2) = \text{diag} \left( \rho_{AB}(b, a; \beta) \right)
\]

which can be evaluated to get the form

\[
P_\beta(x_1, x_2) = \frac{m\omega e^{+\beta E_0}}{2\pi \hbar \sqrt{\sinh (\hbar \omega/\beta \eta) \sinh (\hbar \omega/\beta \eta)}} e^{-\tilde{a}(\beta)x_1^2 - \tilde{b}(\beta)x_2^2 + 2\tilde{c}(\beta)x_1x_2}
\]

(25)

where we have introduced the shorthand notations

\[
\tilde{a}(\beta) = 2(a - d) = \mu^2 \frac{m\omega}{\hbar} \left[ e^\eta \tanh \left( \frac{\hbar \omega}{2\beta \eta} \right) \cos^2 \frac{\theta}{2} + e^{-\eta} \tanh \left( \frac{\hbar \omega}{2\beta \eta} \right) \sin^2 \frac{\theta}{2} \right]
\]

(26)

\[
\tilde{b}(\beta) = 2(b - f) = \frac{m\omega}{\mu^2 \hbar} \left[ e^\eta \tanh \left( \frac{\hbar \omega}{2\beta \eta} \right) \sin^2 \frac{\theta}{2} + e^{-\eta} \tanh \left( \frac{\hbar \omega}{2\beta \eta} \right) \cos^2 \frac{\theta}{2} \right]
\]

(27)

\[
\tilde{c}(\beta) = 2(c - g) = \frac{m\omega}{\hbar} \left[ e^\eta \tanh \left( \frac{\hbar \omega}{2\beta \eta} \right) - e^{-\eta} \tanh \left( \frac{\hbar \omega}{2\beta \eta} \right) \right] \cos \frac{\theta}{2} \sin \frac{\theta}{2}.
\]

(28)

Note that, (25) looks like the probability density corresponding to the ground-state of two-dimensional harmonic oscillator but involving an interesting term that is the last one with the \(\tilde{c}(\beta)\) parameter. Clearly, if \(\tilde{c}(\beta) = 0\) we end up with the solution of decoupled harmonic oscillators.

At this level, let us check the validity of the probability density (25) by examining two limiting cases related to the temperature parameter \(\beta\). In the classical limit of high temperature, the probability distribution takes the form

\[
P_{\beta_0} (x_1, x_2) = \lim_{\beta \to 0} P_\beta (x_1, x_2) \sim \rho_{cl}(x_1, x_2; \beta_0)
\]

\[
= \frac{m\omega e^{\beta_0 E_0}}{2\pi \hbar^2 \beta_0} \exp \left[ -\beta_0 V(x_1, x_2) \right]
\]

(29)

where \(V(x_1, x_2)\) is the potential energy

\[
V(x_1, x_2) = \frac{1}{2} C_1 x_1^2 + \frac{1}{2} C_2 x_2^2 + \frac{1}{2} C_3 x_1 x_2
\]

(30)

and here we have involved the high temperature value \(\beta_0\). It is clearly seen that \(P_{\beta_0} (x_1, x_2)\) is nothing but the Boltzmann probability distribution depending only on the potential energy \(V(x_1, x_2)\). Such a result is in agreement with the comments of

https://doi.org/10.1088/1742-5468/aad19b
Kleinert’s book [15]. However, in the opposite limit of low temperature we end up with the the probability distribution associated to the ground-state
\[
\lim_{\beta \to \infty} P_\beta(x_1, x_2) \sim \frac{m\omega}{\pi} e^{\beta(E_0 - \hbar \omega \cosh \eta)} e^{-\frac{m\epsilon}{2\pi}((\cos \frac{\theta}{2} x_1 - \sin \frac{\theta}{2} x_2)^2 - \frac{m\epsilon}{2\pi}((\sin \frac{\theta}{2} x_1 + \cos \frac{\theta}{2} x_2)^2)}
\]
and it is interesting to stress that such a limit of temperature imposes that the ground-state energy should be of the form
\[
E_0 = \hbar \omega \cosh \eta
\]
giving rise the ground-state wavefunction
\[
\psi_0(x_1, x_2) = \sqrt{\frac{m\omega}{\pi}} e^{-\frac{m\epsilon}{2\pi}((\cos \frac{\theta}{2} x_1 - \sin \frac{\theta}{2} x_2)^2 - \frac{m\epsilon}{2\pi}((\sin \frac{\theta}{2} x_1 + \cos \frac{\theta}{2} x_2)^2)}
\]
which is in agreement with those obtained in our previous work [12] just by fixing the quantum numbers \(n_1 = n_2 = 0\).

Generally for any temperature parameter \(\beta\), the wavefunction describing our system can be determined by integrating over the initial variables, as has been done in [14]. Thus, in our case we have to write the solution of the imaginary time Schrödinger equation as
\[
\psi(x_1, x_2; \beta) = \int \rho^{AB}(b, a; \beta - \frac{\epsilon}{2}) \psi(x_{1a}, x_{2a}; \frac{\epsilon}{2}) dx_{1a} dx_{2a}
\]
where the density matrix of the system verifies the condition
\[
\lim_{\beta \to \frac{\pi}{2}} \rho^{AB}(b, a; \beta - \frac{\epsilon}{2}) = \delta(x_1 - x_{1a})\delta(x_2 - x_{2a}).
\]
Note that in order to eliminate \(\frac{\epsilon}{2}\) introduced in the initial wavefunction we have written the propagator \(\rho^{AB}(b, a; \beta - \frac{\epsilon}{2})\) with the prescription \(\frac{\epsilon}{2}\) and in this case (34) is nothing but the exact convolution product. To go further it is clear that one has to fix the form of the initial wavefunction \(\psi(x_{1a}, x_{2a}; \frac{\epsilon}{2})\) and then from (29) we choose a non-normalized initial wavefunction as
\[
\psi(x_{1a}, x_{2a}; \frac{\epsilon}{2}) = \frac{\sqrt{\frac{m\omega}{\pi}}}{\sqrt{\cosh(\hbar \omega \eta \frac{\epsilon}{2}) \cosh(\hbar \omega \eta \frac{\epsilon}{2})}} e^{-\frac{1}{2} \tilde{a}(\epsilon)x_1^2 - \frac{1}{2} \tilde{b}(\epsilon)x_2^2 + \tilde{c}(\epsilon)x_1 x_2}
\]
where \(\epsilon\) is a small value of the high temperature, which is introduced to insure the convergence of the probability density of the initial state. Clearly \(\psi(x_{1a}, x_{2a}; \frac{\epsilon}{2})\) does not verify the Schrödinger equation but its square absolute value \(\left|\psi(x_{1a}, x_{2a}; \frac{\epsilon}{2})\right|^2\) is proportional to the probability density (29). Now replacing (36) and integrating (34) to end up with the suitable wavefunction for the whole energy spectrum
\[
\psi(x_1, x_2; \beta) = \frac{\sqrt{\frac{m\omega}{\pi}}}{\sqrt{\cosh(\hbar \omega \eta \beta) \cosh(\hbar \omega \eta \beta)}} e^{+\beta \hbar \omega \cosh \eta} e^{-\tilde{a}(\epsilon)x_1^2 - \tilde{b}(\epsilon)x_2^2 + 2\tilde{c}(\epsilon)x_1 x_2}
\]
and the quantities take the form
\[ \tilde{\alpha} = \mu^2 m \omega^2 \left[ e^{\eta} \tanh (\hbar \omega \eta \beta) \cos^2 \frac{\theta}{2} + e^{-\eta} \tanh (\hbar \omega^{-\eta} \beta) \sin^2 \frac{\theta}{2} \right] \]
\[ \tilde{\beta} = \frac{m \omega^2}{2 \mu^2 \hbar} \left[ e^{\eta} \tanh (\hbar \omega \eta \beta) \sin^2 \frac{\theta}{2} + e^{-\eta} \tanh (\hbar \omega^{-\eta} \beta) \cos^2 \frac{\theta}{2} \right] \]
\[ \tilde{\gamma} = \frac{m \omega}{2 \hbar} \left[ e^{\eta} \tanh (\hbar \omega \eta \beta) - e^{-\eta} \tanh (\hbar \omega^{-\eta} \beta) \right] \cos \frac{\theta}{2} \sin \frac{\theta}{2} \]
\[ \text{(38) to (40)} \]

At this level, we have two interesting comments in order. Indeed, firstly it is interesting to stress that the obtained wavefunction is temperature dependent and satisfies the imaginary time Schrödinger equation
\[ \left( \hat{H} - E_0 \hat{I} \right) \psi(x_1, x_2; \beta) + \frac{\partial}{\partial \beta} \psi(x_1, x_2; \beta) = 0 \]
\[ \text{(41)} \]
where the substitution \( t \rightarrow -i \hbar \beta \) is taken into account. Secondly, in both limiting cases of temperature, \( \psi(x_1, x_2; \beta) \) (37) converges to the initial wavefunction (36) at high temperature \( (\beta \rightarrow \frac{\epsilon^2}{2}) \) as well as to the ground-state wavefunction (33) at low temperature.

Once the wavefunction corresponding to our system is obtained, we now return to explicitly determine the reduced density matrix. Then based on the standard definition
\[ \rho^A_{\text{red}}(x_1, x_1'; \beta) = \frac{\int \psi(x_1, x_2; \beta) \psi^*(x_1', x_2; \beta) dx_2}{\int \psi(x_1, x_2; \beta) \psi^*(x_1, x_2; \beta) dx_1 dx_2} \]
\[ \text{(42)} \]
we show that the one-particle reduced density matrix takes the form
\[ \rho^A_{\text{red}}(x_1, x_1'; \beta) = A(\beta) \exp \left( -\frac{2\tilde{\alpha} \tilde{\beta} - \tilde{\gamma}^2}{2\tilde{\beta}} x_1^2 - \frac{2\tilde{\alpha} \tilde{\beta} - \tilde{\gamma}^2}{2\tilde{\beta}} x_1'^2 + \frac{\tilde{\gamma}^2}{\tilde{\beta}} x_1 x_1' \right) \]
\[ \text{(43)} \]
where the normalization factor \( A(\beta) \) verifies the von Neumann normalization \( \text{Tr}_A (\rho^A_{\text{red}}(x_1, x_1'; \beta)) = 1 \) and is given by
\[ A(\beta) = \sqrt{\frac{2\tilde{\alpha} \tilde{\beta} - \tilde{\gamma}^2}{\pi \tilde{\beta}}} \]
\[ \text{(44)} \]

We close this part by noting that in the present analysis we did not require a normalized wavefunction to determine the reduced matrix density because this type of function does not satisfy the imaginary time Schrödinger equation (41).

3. Purity function

Having obtained the necessary materials, we move to the second step and derive the general form of the purity function corresponding to our system. Later on, we will
Purity temperature dependency for coupled harmonic oscillator

study interesting limiting cases of such purity in terms of the strengths of different
physical parameters. To underline our system behavior, we will numerically illustrate
the obtained results and give some discussion.

3.1. General case

In general, the degree of information about the preparation of a quantum state can be
characterized by the associated purity. In other terms, to quantify the mixedness of a
state $\rho$ one can use the purity [22, 23]

$$P = \text{Tr}_A (\rho)^2$$

where for $d$-dimensional systems $P$ ranges from $1/d$ for completely mixed states to 1 for
pure states. It is closely related to the linear entropy measure of mixedness [24]

$$S = \frac{d}{d-1} (1 - P)$$

which ranges from 0 (for a pure state) to 1 (for a maximally mixed state). The linear
entropy is generally a simpler quantity to calculate than the von Neumann entropy as
there is no need for diagonalization.

Before determining the purity, let us first stress that the reduced density matrix $\rho^B_{\text{red}}$
corresponding to subregion $B$ has the same form as in (43), which can also be obtained
by integrating (24) over the variable $x_1$. Therefore, for both subregions $A$ and $B$ we have
the same purity, which will be denoted by $P^A = P^B = P$. It is defined as trace over
square of the reduced density matrix, such as

$$P = \text{Tr}_A (\rho^A_{\text{red}} (x_1, x'_1; \beta))^2$$

or equivalently by using (43) together with (44) we obtain

$$P = \int \rho^A_{\text{red}} (x_1, x'_1; \beta) \rho^A_{\text{red}} (x'_1, x_1; \beta) dx_1 dx'_1 = A^2 (\beta) \int e^{-\frac{2\tilde{\alpha}x_1^2}{\tilde{\alpha}^2} + \frac{2\tilde{\gamma}x_1x'_1}{\tilde{\alpha}^2} + \frac{2\tilde{\gamma}x'_1^2}{\tilde{\alpha}^2} + \frac{2\tilde{\gamma}x_1x'_1}{\tilde{\alpha}^2}} dx_1 dx'_1.$$  

After integral performance, we end up with the compact form

$$P = \sqrt{\frac{\tilde{\alpha}^2 - \tilde{\gamma}^2}{\tilde{\alpha}^2}}$$

and also we can replace different quantities and make a straightforward calculation to
get the explicit form

$$P = \sqrt{\frac{\tanh (h\omega\beta e^\eta) \tanh (h\omega\beta e^{-\eta})}{e^\eta \tanh (h\omega\beta e^\eta) \sin^2 \frac{\theta}{2} + e^{-\eta} \tanh (h\omega\beta e^{-\eta}) \cos^2 \frac{\theta}{2} + (e^\eta \tanh (h\omega\beta e^\eta) \cos^2 \frac{\theta}{2} + e^{-\eta} \tanh (h\omega\beta e^{-\eta}) \sin^2 \frac{\theta}{2})}}$$

which shows a strong dependence on the external parameters $\eta$, $\theta$ and temperature $\beta$.
One more thing, $P$ is actually the product of two quantities and they are differentiated by
the $\eta$ sign of the numerator and the geometric functions in the denominator. Moreover,
we notice that the obtained purity is actually based on exact calculation without use of approximation and it corresponds to the whole energy spectrum. Consequently to underline our system behavior versus different configurations of the physical parameters we numerically investigate the basic features of the purity (50). For the numerical use in the following, it is convenient to consider the rescaling $\hbar \omega \beta \rightarrow \beta$ giving rise to a dimensionless parameter.

In figure 1, we plot the purity versus the coupling parameter $\eta$ and the mixing angle $\theta \in [0, 2\pi]$ for four fixed values of the temperature $\beta = 1, 2, 5, 10$. It is clear that the purity, as a function of $\eta$ and $\theta$, is symmetric with respect to the case $\eta = 0$ and the decoupling case $\theta = \pi$ and it lies in the interval $[0, 1]$. It is maximal for $\eta = 0$ as well for $\theta = \pi$, which actually shows that the system is disentangled. After that it decreases rapidly to reach zero and this indicates that the entanglement is maximal. More importantly, the purity becomes constant whenever $\theta$ takes the value zero or $2\pi$. This behavior of the purity, tells us that one can easily play with two parameters to control the degree of entanglement in our system. As one can see from the four plots that the purity increases as long as temperature is decreased. It means that the temperature plays a great role in destroying the system entanglement.

Figure 2 shows the purity versus the temperature $\beta$ and the rotating angle $\theta$ for four fixed values of the coupling parameter $\eta = 1, 2, 3, 4$. In this situation, we observe that the purity presents another behavior rather than that observed in figure 1. Indeed, it converges rapidly to the minimal and maximal values as long as the coupling parameter is increased. More precisely from plot with $\eta = 1$ to that with $\eta = 4$ there is a radical change from a highly entangled system to minimal entanglement.

To accomplish such numerical analysis, we inspect the last case by plotting the purity versus the coupling parameter $\eta$ and the temperature $\beta$ for four fixed values of the rotating angle $\theta = \frac{\pi}{2}, \frac{\pi}{3}, \frac{\pi}{4}, \frac{\pi}{8}$ in figure 3. It is clearly seen that the purity is increasing slowly from $\theta = \frac{\pi}{2}$ to $\theta = \frac{\pi}{8}$, which show some minima and maxima. However the purity takes a maximal value when the coupling parameter $\eta$ is null and also it has a symmetrical behavior.

3.2. Special cases

It is interesting to study some limiting cases in order to characterize our system behavior. Since our theory involves three free parameters, one can examine different situations according to some chosen configurations to simplify the purity function and therefore extract more information about the entanglement of our system. These concern the temperature limits, coupling limits and finally a system composed of identical particles.

3.2.1. Temperature limits. We start our study by looking at the asymptotic behavior of our system with respect to the temperature parameter $\beta$ limits. Indeed, to analyze the low temperature case we take the limit $\beta \rightarrow \infty$ in the general form of the purity (50). Doing this process we get the interesting result

$$P(\eta, \theta; \beta \rightarrow \infty) = \frac{1}{|\sin \frac{\theta}{2} \cos \frac{\theta}{2}| \sqrt{(2 \cosh (2\eta) + \tan^2 \frac{\theta}{2} + \cot^2 \frac{\theta}{2})}}$$  (51)
which ensures that our system is actually in the ground-state and therefore it is exactly the purity $P_{0,0}(\eta, \theta)$ corresponding to the ground-state ($n_1 = 0, n_2 = 0$) obtained in our previous work in dealing with the entanglement of two coupled harmonic oscillators studied using unitary transformation [12]. This result confirms that considering the environment temperature as a reservoir acting on our system is a good candidate to describe its degree of entanglement.

Now let us consider the high temperature regime and analyze the degree of entanglement of our system in this situation. This can be worked out by taking the limit $\beta \to \frac{\varepsilon}{2}$ in (50) to end up with the purity form

$$P\left(\eta, \theta; \beta \to \frac{\varepsilon}{2}\right) = \sqrt{\frac{1}{\left(e^{2\eta} \sin^2 \frac{\theta}{2} + e^{-2\eta} \cos^2 \frac{\theta}{2}\right)\left(e^{2\eta} \cos^2 \frac{\theta}{2} + e^{-2\eta} \sin^2 \frac{\theta}{2}\right)}}. \quad (52)$$

To make comparison with respect to the previous limiting case, we can use straightforward algebra to rearrange this relation as

$$P\left(\eta, \theta; \beta \to \frac{\varepsilon}{2}\right) = \frac{1}{\sin \frac{\theta}{2} \cos \frac{\theta}{2} \sqrt{2 \cosh (4\eta) + \tan^2 \frac{\theta}{2} + \cot^2 \frac{\theta}{2}}} \frac{C_1C_2 - C_2^2}{C_1C_2}. \quad (53)$$

Figure 1. Purity versus the coupling parameter $\eta$ and the mixing angle $\theta$ for four fixed values of the temperature $\beta = 1, 2, 5, 10$. 

https://doi.org/10.1088/1742-5468/aad19b
It is clear that now we can establish a link between both temperature regimes and therefore write the following relation

$$P(\eta, \theta; \beta \rightarrow \epsilon/2) = P(2\eta, \theta; \beta \rightarrow \infty)$$

which tells us that it is a matter of controlling the values taken by the coupling parameter $\eta$ to go from one regime to another.

Figure 4 shows the high temperature regime for the purity as a function of the coupling parameter $\eta$ and the mixing angle $\theta$. We observe that $P$ increases slowly and at some interval of $\eta$ with $\theta \in [0, \pi]$, it reaches the maximum where the system becomes highly disentangled and the same behavior happens for $\theta \in [\pi, 2\pi]$. Also $P$ shows a symmetrical behavior for two values $\eta = 0$ and $\theta = \pi$, which correspond to the maximal value of $P$.

3.2.2. Coupling limits. Two situations will be analyzed with respect to the strength of the coupling parameter $\eta$, which will allow us to see how much our system is entangled. We start with the weak coupling that is characterized by taking the limit $C_3 \rightarrow 0$ where the angle $\theta \rightarrow \theta_w$ and the coupling $\eta \rightarrow \eta_w$. In this case, (11) and (13) reduce to the following.
which can be implemented into (50) to get the maximal value of the purity

\[ P(\eta_w, \theta_w; \beta) = 1 \]  

Figure 3. Purity versus the coupling parameter \( \eta \) and the temperature \( \beta \) for four fixed values of the mixing angle \( \theta = \frac{\pi}{2}, \frac{\pi}{3}, \frac{\pi}{4}, \frac{\pi}{8} \).

Figure 4. Purity versus the coupling parameter \( \eta \) and the mixing angle \( \theta \) for the high temperature limit.

\[ e^{2\eta_w} = \frac{1}{\mu^2} \sqrt{\frac{C_1}{C_2}}, \quad \theta_w = 0 \]  

(55)
and therefore it shows that our system is completely separable and consequently there are no entangled states.

Now we consider the strong coupling limit and derive the corresponding purity. In doing so, we notice that if the limit $C_3 \rightarrow 2\sqrt{C_1 C_2}$ is required then one could obtain

$$\tan \theta_s \rightarrow \frac{2\sqrt{C_1 C_2}}{\mu^2 C_2 - C_1^2} \rightarrow 0$$

(57)

$$\eta \rightarrow \eta_s = +\infty, \quad k \rightarrow 0^+.$$  

(58)

Combining all to end up with the results

$$k e^{2\eta_s} \rightarrow \frac{C_1}{\mu^2} + \mu^2 C_2, \quad \theta_s = \tan^{-1} \left( \frac{2\sqrt{C_1 C_2}}{\mu^2 C_2 - C_1^2} \right)$$

(59)

and thus the purity (50) reduces to the following quantity

$$P^A (\eta_s, \theta_s; \beta) \rightarrow 0$$

(60)

which is telling us that our system is maximally entangled. This summarizes that there are two extremely values of the purity that could be reached as long as the coupling parameter takes small or large values.

3.2.3. Identical particles. The last situation is related to the nature of our system, which is equivalent to require that both of harmonic oscillators have the same mass $m_1 = m_2$ and frequency $C_1 = C_2$. Thus from (11) and (13), we end up with the constraint $\theta \rightarrow \frac{\pi}{2}$ and $\eta \rightarrow \eta_{id}$ with

$$e^{2\eta_{id}} = \sqrt{\frac{C_1 + \frac{C_4}{\pi^2}}{C_1 - \frac{C_4}{\pi^2}}}$$

(61)
and replacing in the purity (50) to obtain

\[
P(\eta_{id} = \pi/2; \beta) = \frac{2\sqrt{\tanh \left( \sqrt{\frac{C_1+C_2}{m_1}} \beta \right) \tanh \left( \sqrt{\frac{C_1-C_2}{m_1}} \beta \right)}}{\left( \frac{C_1+C_2}{C_1-C_2} \right)^{1/4} \tanh \left( \sqrt{\frac{C_1+C_2}{m_1}} \beta \right) + \left( \frac{C_1-C_2}{C_1+C_2} \right)^{1/4} \tanh \left( \sqrt{\frac{C_1-C_2}{m_1}} \beta \right)}
\]

which depends on the temperature. We notice that there is a special value of the coupling parameter reducing the above expression to a simplified form. Indeed, by requiring \( C_3 = \frac{30}{17} C_1 \), we obtain \( \eta_{id} = \ln 2 \) and therefore the purity becomes

\[
P(\eta_{id} = \ln 2, \theta = \pi/2; \beta) = \frac{2\sqrt{\tanh \left( \sqrt{\frac{32C_1}{17m_1}} \beta \right) \tanh \left( \sqrt{\frac{2C_1}{17m_1}} \beta \right)}}{2\tanh \left( \sqrt{\frac{32C_1}{17m_1}} \beta \right) + \frac{1}{2} \tanh \left( \sqrt{\frac{2C_1}{17m_1}} \beta \right)}
\]

which converges to a maximal value at low temperature

\[
\lim_{\beta \to \infty} P(\eta_{id} = \ln 2, \theta = \pi/2; \beta) = \frac{4}{5}.
\]

We plot the reduced purity in terms of the temperature \( \beta \) as shown in figure 5. One observes that at high temperature the purity is fixed to a minimal value, as long as the temperature is decreased the purity rapidly increases to reach a maximal value 0.8 at very low temperature.

4. Conclusion

We have analyzed the entanglement of a system of two coupled harmonic oscillators by using the path integral mechanism. For this, we have involved a global propagator based on temperature evolution of our system. Considering a unitary transformation we were able to explicitly obtain the reduced density matrix and therefore the wavefunction describing the whole spectrum of our system. Later on, we have shown that at high temperature regime one could obtain the classical distribution that is the Boltzmann probability and also at low temperature regime the system is in the ground state, as it should be.

Subsequently, we have used the reduced matrix density to discuss the entanglement of our system. For this, in the first stage we have calculated the corresponding purity function, which has been obtained in terms of different physical parameters. These allowed us to present different numerical results according to the choice of some configurations of such parameters and therefore extract information about the system behavior. In fact in different occasions, we have obtained the degree of the entanglement varying between maxima and minima values.

We close by mentioning some extension of the present work. Indeed, one could ask about the corresponding entropies of Rényi and von Neumann. Also, we can ask about the inseparability and the uncertainty relations by defining the associated
Podolsky–Einstein–Rosen operator [25]. These issues and related matters are actually under consideration.

**Acknowledgment**

We thank Youness Zahidi for his numerical help. The authors acknowledge the financial support from King Faisal University. The present work was done under Project Number ‘180118’, Purity Temperature Dependent for two Coupled Harmonic Oscillators. We thank the referees for their instructive comments.

**Appendix**

Considering the well-known Lagrangian of one dimensional harmonic oscillator of mass \( m \) and frequency \( \omega \)

\[
\mathcal{L}(x, \dot{x}) = \frac{m}{2} \dot{x}^2 - \frac{m}{2} \omega^2 x^2
\]

and the corresponding propagator takes the form

\[
K(x_a, x_b; t) = \int Dx \exp \left[ \frac{i}{\hbar} \int_0^t \left( \frac{m}{2} \dot{x}^2 - \frac{m}{2} \omega^2 x^2 \right) d\tau \right].
\]

This path integral can exactly be evaluated, see for example [15], to get

\[
K(x_a, x_b; t) = \sqrt{\frac{m\omega}{2\pi i\hbar \sin(\omega t)}} \exp \left[ -\frac{m\omega}{2i\hbar \sin(\omega t)} \left( x_a^2 + x_b^2 \right) \cos(\omega t) - 2x_a x_b \right].
\]

Now, we can use \( K(x_a, x_b; t) \) to obtain the density matrix \( \rho(x_a, x_b; \beta) \) with respect to the canonical distribution with \( \beta = \frac{1}{k_B T} \) and the substitution \( t \rightarrow -i\hbar \beta \). This gives the result

\[
\rho(x_a, x_b; \beta) = \int DX \exp \left[ -\int_0^\beta \left( \frac{m}{2} \dot{X}_1^2 + \frac{m}{2} \dot{X}_2^2 + \frac{m}{2} \omega^2 x^2 \right) d\tau \right]
\]

\[
= \sqrt{\frac{m\omega}{2\pi i\hbar \sinh(\hbar\omega\beta)}} \exp \left[ -\frac{m\omega}{2\hbar \sinh(\hbar\omega\beta)} \left( x_a^2 + x_b^2 \right) \cosh(\hbar\omega\beta) - 2x_a x_b \right].
\]

Recall that we have two separate path integral of two harmonic oscillators with the same masses \( m_1 = m_2 = m \) and different frequencies \( \omega_1 = \omega e^{\eta}, \omega_2 = \omega e^{-\eta} \), with \( \omega = \sqrt{\frac{\hbar}{m}} \). Then from (A.4), we can easily derive the two density matrices

\[
\rho_1(X_{1b}, X_{1a}; \beta) = \int DX_1 \exp \left\{ -\int_0^\beta \left( \frac{m}{2} \dot{X}_1^2 + \frac{1}{2} k e^{\eta} X_1^2 \right) d\tau \right\}
\]

\[
= \left( \frac{m\omega e^{\eta}}{2\pi \hbar \sinh(\hbar\omega\beta)} \right) \frac{1}{2} \left( \frac{m\omega e^{-\eta}}{2\pi \hbar \sinh(\hbar\omega\beta)} \right) \left( X_{1b}^2 + X_{1a}^2 \right) \cosh(\hbar\omega\beta) - 2X_{1b} X_{1a} \right).
\]

https://doi.org/10.1088/1742-5468/aad19b
Purity temperature dependency for coupled harmonic oscillator

\[
\rho_2(X_{2b}, X_{2a}; \beta) = \int DX_2 \exp \left\{ -\int_0^{\beta} \left( \frac{m}{2} \dot{X}_2^2 + \frac{1}{2} ke^{-2\eta} X_2^2 \right) d\tau \right\}
\]

\[
= \left( \frac{m \omega e^{-\eta}}{2 \hbar \pi \sinh (\hbar \omega e^{-\eta})} \right)^{1/2} \exp \left\{ -\frac{m \omega e^{-\eta}}{2 \hbar \sinh (\hbar \omega e^{-\eta}) \left( X_{2b}^2 + X_{2a}^2 \right)} \times \cosh (\hbar \omega e^{-\eta}) - 2 X_{2b} X_{2a} \right\}.
\]

(A.6)

References

[1] Schrödinger E 1935 Naturwissenschaften 23 807
[2] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
[3] Bell J S 1987 Speakable and Unspeakable in Quantum Mechanics (Cambridge: Cambridge University Press)
[4] Bennett C H and Shor P W 1998 IEEE Trans. Inf. Theory 44 2724
[5] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[6] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[7] Ekert A K 1991 Phys. Rev. Lett. 67 661
[8] Murao M, Jonathan D, Plenio M B and Vedral V 1999 Phys. Rev. A 59 156
[9] Fuchs C A 1997 Phys. Rev. Lett. 79 1162
[10] Raussendorf R and Briegel H 2000 Quantum computing via measurements only (arXiv:quant-ph/0010033)
[11] Gottesman D and Chuang I 1999 Nature 402 390
[12] Jellal A, Madouri F and Merdaci A 2011 J. Stat. Mech. P09015
[13] Jellal A, El Kinani E H and Schreiber M 2005 Int. J. Mod. Phys. A 20 1515
[14] Koszin I, Faber B and Schulen K 1996 Am. J. Phys. 64 633.
[15] Kleinert H 2009 Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets (Singapore: World Scientific)
[16] Feynman R P 1972 Statistical Mechanics: a set of Lectures (New York: Benjamin) pp 72–8
[17] Chaichian M and Demichev A 2001 Path Integral in Physics vol. 2 Quantum Field Theory, Statistical Physics and Other Moleer Applications (Bath: Bookcraft) pp 210–3
[18] Putterprom C, Yoo-Kong S, Tanasittikosol M and Liewrian W 2014 Bulg. J. Phys. 41 1
[19] Los V F and Los M V 2015 An exact solution of the time-dependent Schrödinger equation with a rectangular potential for real and imaginary time (arXiv:1509.02809)
[20] Rossi M, Nava M, Reatto L and Galli D E 2009 J. Chem. Phys. 131 154108
[21] Han D, Kim Y S and Noz M E 1999 Am. J. Phys. 67 61
[22] Adesso G, Serafini A and Illuminati F 2005 Open Syst. Inf. Dyn. 12 189
[23] McHugh D, Ziman M and Buzek V 2006 Phys. Rev. A 74 042303
[24] Wei T-C, Nemoto K, Goldbart P M, Kwiat P G, Munro W J and Verstraete F 2003 Phys. Rev. A 67 022110
[25] Duan L-M, Giedke G, Cirac J I and Zoller P 2000 Phys. Rev. Lett. 84 2722

https://doi.org/10.1088/1742-5468/aad19b