Rhizoglomus venetianum, a new arbuscular mycorrhizal fungal species from a heavy metal-contaminated site, downtown Venice in Italy

Alessandra Turrini1 · Martina Saran1 · Manuela Giovannetti1 · Fritz Oehl2

Received: 20 July 2018 / Revised: 21 August 2018 / Accepted: 24 August 2018 / Published online: 5 September 2018

© German Mycological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract

Rhizoglomus venetianum, a new arbuscular mycorrhizal fungal species, has been isolated and propagated from a heavy metal-contaminated site in Sacca San Biagio island, downtown Venice, Italy. Interestingly, under the high levels of heavy metals occurring in the site, the new fungus was able to grow only intraradically. In greenhouse trap and single species cultures under low heavy metal levels, the fungus produced innumerous spores, clusters, and sporocarps extraradically, which were formed terminally on subtending hyphae either singly, in small spore clusters, or, preferably, in loose to compact non-organized sporocarps up to $2500 \times 2000 \times 2000 \mu m$. Spores are golden-yellow to bright yellow brown, globose to subglobose to rarely oblong, $75–145 \times 72–140 \mu m$ in diameter, and have four spore wall layers. Morphologically, the new fungus is similar to R. intraradices, and phylogenetically, it forms a monophyletic clade next to R. irregulare, which generally forms irregular spores and lacks, like R. intraradices, the flexible innermost wall layer beneath the structural/persistent third wall layer. A key for the species identification is presented comprising all 18 Rhizoglomus species, so far described or newly combined.

Keywords Arbuscular mycorrhizal fungi · Heavy metals · Rhizoglomus · Morphology · Molecular phylogeny · SSU–ITS–LSU nrDNA

Introduction

The number of species of arbuscular mycorrhizal (AM) fungi (AMF, Glomeromycota, Tedersoo et al. 2018) greatly increased during the last decades, passing from about 120 to ca. 300 species since the 1990s (Schenck and Pérez 1990; Giovannetti et al. 1990; Oehl et al. 2011a; Błaszkowski 2012; Krüger et al. 2012). The continuous progress in the morphological identification of AMF species (e.g., Sieverding et al. 2014; Błaszkowski et al. 2015, 2018) and in the setup of suitable molecular tools based on more informative regions of nuclear rDNA (Silva et al. 2006; Krüger et al. 2009), resolving even very closely related taxa (Stockinger et al. 2010; Krüger et al. 2012), allowed the discovery and separation of new species (ca. 10 per year in the last 20 years), covering diverse genera and families, some ubiquitous, but others rare or associated with particular plants or habitats (Turrini and Giovannetti 2012). However, the huge AMF diversity, evidenced on the basis of environmental DNA sequences, which do not correspond to formally described species (Öpik et al. 2010, 2014), is still far to be fully described. Actually, it was calculated that probably less than 5% of existing AMF in the world have formerly been described so far (Krüger et al. 2009), most of which have not yet been cultivated in pure cultures. Indeed, the difficulty in cultivating AMF out of their original environment still represents one of the major limits to the isolation and description of new species. Nevertheless, AMF research focused on invaluable “hot spots” for species diversity (Myers et al. 2000), distributed around the world, together with studies on AMF occurring in extreme habitats (high-altitude habitat, high-salinity habitat, thermal habitat, desert, wetland, polluted soils) would probably lead to the discovery of novel endemic genetic resources (Turrini and Giovannetti 2012; Sousa et al. 2018). In very recent years, new species were isolated from

Section Editor: Marco Thines

* Fritz Oehl
 fritz.oehl@gmail.com

1 Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy

2 Competence Division for Plants and Plant Products, Ecotoxicology, Agroscope, Müller-Thurgau-Strasse 29, CH-8820 Wädenswil, Switzerland
extreme habitats, i.e., *Rhizoglomus melananum* from wetland (Sudová et al. 2015), *Diversispora omaniana*, *Septoglomus nakheelum* and *Rhizoglomus arabicum* from hyper arid environments of the Arabian Peninsula (Symanczik et al. 2014, 2018), and *Acaulospora pustulata* and *Acaulospora tortuosa* from a high-altitude habitat in Sierra Nevada, Spain (Palenzuela et al. 2013).

Among extreme habitats, those contaminated by heavy metals (HM) represent invaluable sites for the recovery of peculiar AM fungi and species. HM are extremely toxic to microbial communities, modifying the structure of some essential enzymes, causing oxidative damage and DNA injury, and altering plasma membranes (Hassan et al. 2011).

During the last years, HM-polluted habitats have been largely studied in relation to AMF occurrence, due to the beneficial effects in enhancing plant tolerance to such toxic habitats (Pawlowska et al. 1996; Hildebrandt et al. 2007). It has been shown that AMF play a fundamental role in HM phytostabilization and phytoextraction (Göhre and Paszkowski 2006) by trapping HM in their hyphae and spores and, consequently, reducing metal availability for the plants (González-Chávez et al. 2002, 2009; Cornejo et al. 2013). Many studies have described different AMF communities occurring in HM-polluted soils (Turnau et al. 2001; Vogel-Mikuš et al. 2006; Regvar et al. 2010; Hassan et al. 2011; Ban et al. 2015; Yang et al. 2015; Sánchez-Castro et al. 2017) and in the roots of plants spontaneously growing in HM-polluted areas (Whitfield et al. 2004; Vallino et al. 2006; Zarei et al. 2008; Bedini et al. 2010). Molecular analyses of AMF communities of HM-polluted sites detected several sequence types new to science (Vallino et al. 2006; Sánchez-Castro et al. 2017), including sequences from Sacca San Biagio, an ash disposal island located downtown Venice (Italy; Bedini et al. 2010).

Sacca San Biagio, which can be considered a model system for the study of remediation and requalification of polluted environments, has been spontaneously colonized by pioneer plants, animals, and microorganisms during the past 30 years, since the incinerator plant’s closure in 1984. Most of the plants occurring on the island showed a high level of AM fungal colonization (67%), but no spores were retrieved in bottom ashes. The molecular analysis, carried out on the roots of three mycorrhizal plants growing on the island, evidenced the occurrence of sequences corresponding to the “*Rhizoglomus intraradices/Rhizoglomus fasciculatum*” complex, together with sequences detected so far only in planta and sequences new to science (Bedini et al. 2010).

The goals of the present work were to obtain in pure culture AMF spores, after transplanting the host plants from Sacca San Biagio island to a non-polluted environment, and to describe a new AM fungal species associated to the ruderal host plant *Senecio inaequidens*. Both morphological and molecular techniques were used to characterize the AM fungus, which was named *Rhizoglomus venetianum*.

Material and methods

Study site

The new glomeromycotan species originated from Sacca San Biagio island, downtown Venice (latitude 45° 42′ N, longitude 12° 30′ E). The island is a tideland that was elevated after the Second World War, filling the lagoon sand with inert construction waste, which has been subsequently covered by bottom ashes produced by an incinerator plant of municipal solid waste (MSW), operating for more than 10 years, since 1973 up to 1984. Ashes form layers of about 1.5–3 m and occupy a volume of about 60,000 m³ (Bedini et al. 2010). They are highly toxic, since the incineration process enhances the concentration of some pollutants, especially heavy metals, which represent a risk for human health and the environment (Clissijers et al. 2000). Ashes contain high concentrations of different heavy metals: Al (25,941.6 mg kg⁻¹), As (24.8 mg kg⁻¹), Cd (3.4 mg kg⁻¹), Cr (101.6 mg kg⁻¹), Cu (1820.1 mg kg⁻¹), Ni (83.6 mg kg⁻¹), Pb (2000.8 mg kg⁻¹), Zn (3210 mg kg⁻¹) (Bedini et al. 2010). Moreover, they contain 85.1% sand, 10.1% silt, 4.8% clay, 5.1% total organic C, a pH (KCl) of 8, and the following total nutrient concentrations: 2.8% total N, 1215.3 mg kg⁻¹ total P, and 24.6 mg kg⁻¹ available P (Olsen) (Bedini et al. 2010). After the year 1984, the incinerator was demolished and no activities were carried out on the isle, which has been naturally colonized by both herbaceous and woody plants for more than 30 years. Plant communities detected on the isle were mostly ruderal and nitrophilous, (class Artemisietae vulgaris, including perennial ruderal xerophilous phytoceneses, typical of temperate or Mediterranean regions) (Mucina 1997). Among plant species occurring in Sacca San Biagio island, *S. inaequidens* plants, belonging to the Asteraceae family, were selected and collected with their intact root system. They are ruderal plants originating from South Africa, very adaptable to different environments, invasive, and spreading in many countries also in Europe. *Senecio inaequidens*, widely distributed on the isle at the sampling time, was chosen for spore isolation, since it was shown to be highly mycorrhizal and able to host in its roots different AMF species (Bedini et al. 2010).

Sampling, establishment, and growth of trap and pure cultures

Senecio inaequidens plants and rhizosphere toxic ashes were collected in Sacca San Biagio island in May 2011 (Figs. 1 and 2). Plants and ashes were transplanted in 8-L pots filled with a steam-sterilized 1:1 volumetric mixture of agricultural field soil collected at the Interdepartmental Centre for Agri-environmental Research Enrico Avanzi (CIRAA), University of Pisa, S. Piero a Grado, Pisa, Italy (latitude 43° 40′ N, longitude 10° 19′ E) and TerraGreen (calcinated clay; OILDRI,
Chicago, IL, USA), then transferred in greenhouse to induce AMF sporulation of fungi occurring in S. inaequidens roots, which were used as “trap cultures” for the isolation of AM fungal spores from the heavy metal toxic island (Fig. 3). At different time points, after 6, 9, and 12 months of culture, rhizosphere soil (50 g) from different trap cultures was sieved through a set of nested sieves down to a mesh size of 50 μm (Gerdemann and Nicolson 1963) for spore collection and analysis and the spores were extracted by a water-sucrose gradient and centrifugation (Sieverding 1991). Spores investigated in this study were obtained from spore clusters (max 5 spores connected with a common hypha). Pure cultures were achieved making use of the “sandwich system,” useful to allow the interaction between AMF and plant roots (Giovannetti et al. 1993). Briefly, small spore clusters were let to germinate for 10 days in sterile microwells containing sterile water, in a growth chamber at 24 °C in the dark. Germinated spores were then placed in contact with the roots of Trifolium alexandrinum plantlets placed on 47-mm diameter cellulose ester Millipore™ membranes (0.45-μm-diameter pores). Another 47-mm membrane was placed on spores and root systems to close the sandwich. The “sandwich system” was buried in sterile 10-cm pots containing steam-sterilized quartz grit, then maintained in sun-transparent bags (Sigma, Milan, Italy) under controlled conditions (18–24 °C, 16–8-h photoperiod of irradiance 100 μEm−2 s−1, 60% RH). Plants were supplied weekly with 10 ml half strength Hoagland’s solution. After 6 weeks, the “sandwich systems” were opened, plants were gently removed, and the occurrence of extraradical mycelium was assessed under a stereomicroscope (Wild, Leica, Milan, Italy) (Figs. 4 and 5). When colonization check was positive, plants were transferred to 700-cm³ plastic pots containing a 1:1 mixture of soil and Terragreen and moved to the greenhouse. Pots were regularly checked for spore formation, as described above. Sporulation was obtained after 4 months of culture (Fig. 6). The new species was maintained and renewed under greenhouse conditions together with T. alexandrinum and Lactuca sativa as host plants in the International Microbial Archive (IMA) collection of the Department of Agriculture Food and Environment, University of Pisa, Pisa, Italy.

Morphological analyses

Spores were isolated from the pot-culture soil by wet sieving and decanting through a set of nested sieves down to a mesh size of 32 μm (Sieverding 1991), then transferred into Petri dishes and examined under a stereomicroscope (Wild, Leica, Milan, Italy). Spores were isolated by using capillary pipettes, mounted on microscope slides in polyvinyl alcohol lactoglycerol (PVLG; Koske and Tessier 1983), in PVLG + Melzer’s reagent (1:1, v:v; Brundrett et al. 1994) and in water (Spain 1990). Qualitative spore traits (sporocarp and spore shape, color and size, spore wall structure, including color
...and size of each wall layer of the spores and their subtending hyphae) were examined on > 25 sporocarps and > 100 spores.

The terminology of the spore structure basically is that presented for species with glomoid spore formation in Oehl et al. (2011b), Sieverding et al. (2014), and Blaszkowski et al. (2018). Photographs were taken with a digital camera (Leica DFC 295) on a stereomicroscope (Leica S8APO) and a compound microscope (Leica DM750) using Leica Application Suite Version V4.1 software. Specimens mounted in PVLG and a (1:1) mixture of PVLG and Melzer’s reagent were deposited at Z + ZT (ETH Zurich, Switzerland) and at the Botanical Garden of the University of Pisa, Italy.

Molecular analysis and phylogeny

Intact, healthy spores were manually collected with a capillary pipette under a dissecting microscope (Wild, Leica) and cleaned by sonication (120 s) in a B-1210 cleaner. After three rinses in sterile distilled water (SDW), spores were surface sterilized with 2% chloramine T supplemented with streptomycin (400 μg/ml) for 20 min and rinsed five times in SDW. Intact sterilized single spores were selected under a laminar flow hood, individually transferred into Eppendorf PCR tubes, crushed with a glass pestle, and their DNA directly amplified using the nested protocol of Krüger et al. (2009), focused on a fragment of about 1500 bp covering partial SSU, the whole ITS and the D1 and D2 variable regions of the LSU sequences of rDNA. In the first PCR reaction, crushed spores were amplified in 25 μl of PCR reaction mix using 0.125 U GoTaq Flexi DNA Polymerase (Promega, Milan, Italy), 0.4 μM of each primer (SSUmAf1 and LSUmAr3, Krüger et al. 2009), 0.2 mM (each) dNTPs, 1.5 mM MgCl2, and 1× manufacturer’s reaction buffer. The thermal cycler was programmed as follows: a manual hot start at 95 °C for 3 min, 35 cycles at 95 °C for 30 s, 60 °C for 1 min, 72 °C for 2 min, and a final extension step at 72 °C for 10 min. The nested PCR reactions were performed by diluting (1:100) the first PCR amplicons and using 2 μl of dilutions as template for the second reaction in a final volume of 50 μl. The primer pair, SSUmCf1-LSUmBr3 (Krüger et al. 2009; 0.4 μM), was added to the PCR mix. Taq DNA polymerase, dNTPs, buffer, and MgCl2 concentrations were the same as those described above. Amplification conditions were as follows: a manual hot start at 95 °C for 3 min, 35 cycles at 95 °C for 30 s, 63 °C for 45 s, 72 °C for 1.5 min, and a final extension step at 72 °C for 10 min. PCR products (10 μl) were separated on 1% agarose gels containing ethidium bromide (0.5 μg/ml).

Amplified DNA fragments of SSU-ITS-LSU regions were purified by Wizard SV Gel and PCR Clean-Up System according to the manufacturer’s instructions (Promega), with a final elution volume of 20 μl, and purified products (2 μl) were quantified by a BioPhotometer (Eppendorf). Purified products were cloned into pGem®-T Easy vector according to the manufacturer’s instructions (Promega). Putative positive clones were screened by standard SP6/T7 amplifications, followed by a nested PCR using the SSUmCf1-LSUmBr3 primer pair. Concentration of PCR mix components and PCR conditions were the same as those described above for PCR reactions. Six clones from single spores (two clones/spore) were purified by Wizard® Plus SV Miniprep (Promega). Recombinant plasmids were sequenced using SP6/T7 vector primers at GATC Biotech (Köln, Germany). Sequences reported in this study were deposited in the European Nucleotide Archive (http://www.ebi.ac.uk/ena) under the accession numbers LS974594-LS974599. The alignment for the tree obtained in this study was deposited at TreeBase under the ID: 23045.

Sequences were edited in MEGA6 (Tamura et al. 2013) and their similarities determined using the Basic Local Alignment Search Tool (BLASTn) provided by NCBI. Then, they were aligned with those corresponding to the closest matches from GenBank as well as with some sequences from the Glomeraceae family covering the entire SSU-ITS-LSU region or portion thereof, using MUSCLE as implemented in MEGA6. Phylogenetic tree was inferred by Bayesian and maximum-likelihood analyses. The Bayesian analysis was carried out in MrBayes version 3.2 (Ronquist et al. 2012), using the General Time Reversible sequence evolutionary model and branch support values corresponded to the posterior probabilities of two Markov chain Monte Carlo samplings over 500,000 generations and a tree sampling every 100 generations after discarding the initial 10%. For the maximum-likelihood analysis, the evolutionary rate differences among sites were computed in MEGA6 using a discrete Gamma distribution + G method. The confidence of branching was assessed using 1000 bootstrap resamplings.

The generated phylogenetic tree was drawn in MEGA6 and edited in Adobe Acrobat XI.

Results

Taxonomic analyses

Rhizoglomus venetianum Oehl, Turrini & Giovann., sp. nov., Figs. 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 and 18

Mycobank MB 825301

Diagnosis—Differs from *Rhizoglomus irregulare* and *R. intraradices* by having an additional fourth wall layer below the structural wall layer.

Etymology: *venetianum* referring to the city of Venice to which the island Sacca San Biagio belongs.

Type: Holotype, deposited at Z + ZT (accession ZT Myc 58970), derived from a pure culture established on the host plant *Trifolium alexandrinum* in the greenhouse of the Microbiology Laboratory in Pisa, at the Department of
Mycorrhizal mycelia and intraradical mycorrhizal structures, occurring in the roots of *Senecio inaequidens* plants, were collected in Sacca San Biagio island in the central lagoon of Venice Italy (45° 25′ 36″ N; 12° 18′ 34″ E). The island hosted a municipal solid wastes’ incinerator operating since 1973 up to 1984, producing bottom ashes that were disposed all over the island area. Since 1984, no significant activities were carried out on the island and in 2003 the furnace was demolished. In the last 30 years, the highly polluted soil of the island has been naturally colonized by spontaneous vegetation. Collector of the host plant *S. inaequidens* was A. Turrini and collection date 31.05.2011. Isotypes were deposited at Z + ZT (ZT Myc 58971) and at the Botanical Garden of the University of Pisa (PI-MH-Z11 to Z18). The living culture is currently maintained in the International Microbial Archives in Pisa under the accession number IMA10.

Description: Spores formed terminally on subtending hyphae (SH) either singly, in small spore clusters, or, preferably, in loose to compact non-organized sporocarps with (10–)40–150 up to hundreds to a few thousands of spores per sporocarp, with sporocarps up to 2500 × 2000 μm. Large sporocarps may consist of several small sporocarps. Spores are golden yellow-brown to yellow brown, globose to subglobose to rarely oblong or rarely irregular, (75–)85–130(–145) × (72–)84–125(–140) μm. Spores and mycelial hyphae staining pinkish to purple in Melzer’s reagent.

Spore wall has four layers. Outer layer (SWL1) is hyaline, evanescent, 0.6–1.3 μm thick. The second layer (SWL2) is hyaline to subhyaline, evanescent, 0.8–1.4 μm thick. The third layer (SWL3) is structural, persistent, laminate, golden-yellow to bright yellow brown, 2.0–3.5 μm thick, and expanding up to 7.5 μm under pressure in lactic acid-based mountants. Innermost layer (SWL4) flexible, light-yellow to bright yellow, 0.6–1.4 μm thick, usually tightly adherent to SWL3, sometimes separating or showing several folds in crushed spores. In Melzer’s reagent, SWL1 and SWL2 stain pinkish to purple, while SWL3 stain purple.

Subtending hyphae (SH) of spores cylindrical to slightly funnel-shaped, sometimes recurved, 9.1–13.2 μm broad and 15–100 μm long, and without introverted wall thickening toward the spore base. The base generally is not closed by a septum formed by SWL3 or SWL4 but open. Such septa can more often be found in some distance from the spore bases within the intrasporocarpic hyphae (ISH), which are 8–15 μm thick, golden yellow to bright yellow brown. SWL2–4
continue in the ISH. The extrasporocarpic hyphae (ESH, or mycelia hyphae) are hyaline, 5–12 μm thick, and have 1–2 hyphal wall layers. In the transition zone between ISH and ESH, hyphae are slightly pigmented and generally show several septa within a rather short distance of 100 to 200 μm.

Mycorrhiza formation: forming AM associations with *Trifolium alexandrinum* L. and *Lactuca sativa* as plant host in pot cultures. The mycorrhizal structures consist of arbuscules, vesicles, and intra- and extraradical hyphae and stain dark blue in 0.05% trypan blue.

Molecular analyses Phylogenetic analyses of the partial SSU, ITS, and the partial LSU of the rDNA placed *R. venetianum* sequences in the genus *Rhizoglomus* Sieverd. et al., typified by *R. intraradices* (N.C. Schenck & G.S. Sm.) Sieverd. et al. (Sieverding et al. 2014). Sequences of the new species formed a separate, strongly supported clade (BI = 0.99; ML = 95%), sister to that comprising *Rhizoglomus irregulare* (Fig. 19). Actually, blast analyses showed 95–98% homology with *R. irregulare* sequences (isolates DAOM197198 and MUCL46241, accession numbers HE817882 and FR750130), representing the closest species in our molecular analyses.

Erection of a new combination in Rhizoglomus In this paragraph, a recently described species, *Rhizophagus neocaledonicus* (Crossay et al. 2018), which morphologically and phylogenetically belongs to the genus *Rhizoglomus*, is transferred to *Rhizoglomus* in a new combination:

Rhizoglomus neocaledonicum (D. Redecker, Crossay & Cilia) Oehl, Turrini & Giovann. comb. nov.

MycoBank 827095

Basionym: *Rhizophagus neocaledonicus* D. Redecker, Crossay & Cilia Mycological Progress 17: 739. 2018. https://doi.org/10.1007/s11557-018-1386-5.

Key to the species in Rhizoglomus

Here, we are presenting an updated morphological identification key for all 18 species belonging to the genus *Rhizoglomus* according to Sieverding et al. (2014), including the recently described or newly combined species *R. dunense*,...
R. vesiculiferum, and R. neocaledonicum (e.g., Sieverding et al. 2014; Al-Yahya’ei et al. 2017; Błaszkowski et al. 2018):
• 1. Species with two spore wall layers:2
• 1. Species with > two spore wall layers:3
• 2. Spores whitish yellow to yellow; species with 1–2 laminae on structural wall layer:4
• 2. Spores light brown to red brown; 50–90 μm in diam, globose to subglobose, formed singly, in small clusters or large, dense sporocarps (up to 15 × 10 × 10 mm); SWL1 hyaline, evanescent, 1–1.5 μm; SWL2 red to dark brown, 3–6 μm, with several laminae: R. invermaium (I.R. Hall) Sieverd., G.A. Silva & Oehl
• 3. Species with three spore wall layers:5
• 3. Species with > three spore wall layers:6
• 4. Spores generally < 50 μm; whitish yellow to yellow, 15–50 μm in diam, globose to subglobose, formed singly or in clusters; SWL1 hyaline to light yellow, evanescent, 0.5–1.2 μm; SWL2 whitish yellow to yellow, 0.5–2.0 μm: R. microaggregatum (Koske, Gemma & P.D. Olexia) Sieverd., G.A. Silva & Oehl
4. Spores generally > 50 μm; hyaline to yellow, 60–110 μm in diam, globose to subglobose, formed in small clusters to dense sporocarps, up to 1.8 × 1.4 × 1.4 mm; SWL1 hyaline, evanescent, 0.5–1.2 μm; SWL2 yellow to yellow brown, 1.2–2.4 μm, consisting of two laminae that might separate under pressure applied; R. aggregatum (N.C. Schenck & G.S. Sm.) Sieverd., G.A. Silva & Oehl.

5. SWL3 is structural, laminate layer: ..7

6. Spores generally < 75 μm; spores hyaline to yellowish white or subhyaline, 40–75 μm, globose to subglobose, formed in clusters; spore wall with four layers, 3.3–5.8 μm in total, SWL1 and SWL2 2.5–3.0 μm in total, SWL3 and SWL4 laminate, but each is only 0.5–1.0 μm thick: R. proliferum (Dalpé & Declerck) Sieverd., G.A. Silva & Oehl.

7. Spores chestnut brown to dark brown; 50–125 μm thick, staining dark red in Melzer’s reagent; SWL4 laminate, pastel yellow to light yellow, 6.3–7.5 μm thick; SWL1 hyaline or white to creamy, 60–75 μm thick, easily separating from each other in crushed spores; SWL2, yellow to yellow brown, laminated, 0.6–2.0 μm, evanescent; SWL3 light brown, laminated, 4.0–8.0 μm; SWL3 hyaline, 1.5–2.0 μm thick: R. antarcticum (Cabello) Sieverd., G.A. Silva & Oehl.

8. Spores generally < 90 μm: ...11

9. Spores without flexible inner layer beneath the pigmented, structural layer: ..13

10. Spores ovoid, oblong to often irregular; hyaline to pale yellow, 60–130 × 80–240 μm; they may have deep wall depressions and apical cap-like swellings; SWL1 (0.5–1.5 μm thick) and SWL2 (0.6–5.0 μm thick) hyaline and semi-permanent; SWL3 hyaline to pale yellow, with inseparable laminae, 1.5–4.4 μm thick, staining pale orange to deep red in Melzer’s reagent; R. irregulare (Blaszk., Wubet, Renker & Buscot) Sieverd., G.A. Silva & Oehl.

11. Spores usually globose to subglobose, rarely irregular, without deep wall depressions and apical cap-like swellings: ..15

11. Spores hyaline to creamy, 70–90 μm, globose to subglobose, formed singly, in clusters or large sporocarps, SWL1 hyaline, 0.5–1.2 μm, evanescent; SWL2 laminate, 2.0–7.5 μm, persistent; SWL3 (semi-)flexible, 0.5–1.4 μm thick; all layers staining dark purple in Melzer’s: R. fasciculatum (Thaxt.) Sieverd., G.A. Silva & Oehl.

11. Spores dark chestnut to coffee brown, mostly globose to subglobose, 61–83 μm in diam; SWL1 hyaline, mucilaginous, SWL2 laminate, dark brown, 5.4–6.5 μm thick, SWL3 fine, tightly attached to SWL2, subhyaline to bright brown: R. neocaledonicum (D. Redecker, Crossay & Cilia) Oehl, Turrini & Giovann.

12. Spores generally > 100 μm, hyaline or white to creamy or light yellow to brownish yellow: ...16

12. Spores 50–70 μm, yellow to yellow brown, globose to subglobose, formed singly, in clusters or sporocarps, 1.0 × 0.6–0.5 mm; three layered wall up to 12 μm thick; SWL1 hyaline, 0.8–2.0 μm, evanescent; SWL2 light brown, laminated, 4.0–8.0 μm; SWL3 hyaline, 1.5–2.0 μm thick: R. antarcticum (Cabello) Sieverd., G.A. Silva & Oehl.

13. Hylaie outer spore wall layers difficult to differentiate; spores pale yellow to brownish yellow, 110–172 μm, globose to subglobose, formed singly or in small clusters (2–5 spores); SWL1 hyaline, mucilaginous, 0.8–2.5 μm thick, reddish in Melzer’s, SWL2 hyaline, rigid, 1.6–2.8 μm thick, SWL3 hyaline to pale yellow, semi-flexible, easily separated from SWL2, 1.5–2.0 μm thick, non-reactive to Melzer’s reagent; SWL4 yellow to brownish yellow, laminated, 2.6–3.8 μm thick, staining dark red in Melzer’s: R. custos (C. Cano & Dalpé) Sieverd., G.A. Silva & Oehl.

14. Spores pastel yellow to light yellow, 75–131 μm, globose to subglobose, formed single or in loose clusters up to 1.2 mm in diam; SWL1 hyaline, semi-permanent, 1.0–5.3 μm; SWL2 hyaline, permanent and unit, 0.8–1.5 μm; SWL3 laminate, pastel yellow to light yellow, 6.3–14.0 μm, consisting of laminae up to 0.8–1.0 μm thick, frequently easily separating from each other in crushed spores; SWL4 hyaline and flexible, 0.8–2.0 μm. SWL1 and SWL3 stain reddish white to grayish red and brownish violet to violet brown in Melzer’s reagent, respectively: R. natalense (Blaszk., Chwat & B.T. Goto) Sieverd., G.A. Silva & Oehl.

14. Spores golden-yellow to bright yellow brown, globose to subglobose, 75–145 × 72–140 μm in diam, formed singly, in small spore clusters, or, preferably, in loose to compact sporocarps up to 2.5 × 2.0 × 2.0 mm; SWL1, hyaline, evanescent, 0.6–1.3 μm thick; SWL2, hyaline, evanescent, 0.8–1.4 μm thick; SWL3 structural, persistent, laminate, golden-yellow to bright yellow brown, 2.0–3.5 μm thick, expanding up to 7.5 μm under pressure in lactic acid based mountants; SWL4 flexible, light-yellow to bright yellow, 0.6–1.4 μm thick, usually tightly adherent to SWL3, sometimes separating or showing several folds in crushed spores. In Melzer’s reagent, SWL1 and SWL2 stain pinkish, while
SWL3 stain purple: *R. venetianum* Oehl, Turrini, & Giovanni.

- Spores colorless, hyaline, 39–125 µm, globose to subglobose, formed singly in soils; SWL1 semi-permanent, smooth or slightly roughened, 1.0–5.0 µm; SWL2 finely laminar, 4.0–8.8 µm; SWL3 uniform, to laminate, when up to 2.0 µm thick, (semi-)flexible; SWL1 stains pinkish white to dark red in Melzer’s, while SWL3 turns pale yellow: *R. dunense* Błaszk. & Kozłowska

- Spores pastel yellow to light yellow or yellow brown to gray brown: ..17

- Spores yellow brown to grey brown, often with a greenish tint, 90–135 µm, globose to subglobose, without depressions or swelling at the spore apex, formed singly, in clusters or sporocarps; SWL1 (0.5–1.3 µm thick) and SWL2 (0.8–2.0 µm thick) hyaline and evanescent; SWL3 yellow brown to grey brown, laminar, 3.2–12 µm comprises frequently separating sublayers, which are each 0.5–1 µm thick; SWL1 staining purple in Melzer’s reagent: *R. intraradices* (N.C. Schenck & G.S. Sm.) Sieverd., G.A. Silva & Oehl

Discussion

The new AM fungus *Rhizoglomus venetianum* can be easily distinguished from all other *Rhizoglomus* spp. by the combination of spore size, color, and spore wall structure. It forms a four-layered spore wall, such as *R. natalense*, *R. custos*, and *R. proliferum*, which form either smaller spores (*R. proliferum*; <75 µm), spores of a different spore wall structure (*R. custos*), or less-pigmented spores (*R. natalense*; light yellow to bright yellow spores; see identification key above). Morphologically, it resembles *R. intraradices*, which lacks, as also known for *R. irregularare*, the innermost, fourth spore wall layer, which is always present in *R. venetianum*.

R. venetianum is a fungus isolated from a very toxic environment, containing high levels of heavy metals, especially Zn, Pb, and Cu, the latter occurring at very high concentrations, compared with other metal polluted environments in which studies on AMF diversity were performed (Turnau et al. 2001; Vallino et al. 2006; Abdel-Azeem et al. 2007; Khade and Adholeya 2009; Long et al. 2010; Alguacil et al. 2011; Hassan et al. 2011; Krishnamoorthy et al. 2015).

Interestingly, also another new species in the genus *Rhizoglomus* (*R. custos*) was isolated from a naturally heavy metal-polluted environment, i.e., the bank side of the Rio Tinto River in southern Spain (Cano et al. 2009), showing high levels of Fe (2 g/L), Mg (1.3 g/L), Cu (390 mg/L), Zn (280 mg/L), and Mn (100 mg/L). *R. custos*, as *R. venetianum*, forms a multi-stratified wall structure, a trait that might represent a possible barrier to toxic elements for the spores and might help the survival of the species in very toxic environments. Other species in the genus *Rhizoglomus*, such as *R. clarum* or *R. intraradices*, have been shown to possess different attributes linked to the ability of developing strategies, such as avoidance, compartmentalization, or resistance to stress, allowing them to live and grow in environments with high levels of heavy metals (Ferrol et al. 2009). Such traits, accompanied with the attitude of Glomeraceae to colonize roots by hyphal fragments or pieces of mycorrhizal roots rather than by germinated spores, might have helped also *R. venetianum* to be more competitive and widespread in the roots of *S. inaequidens* plants collected on the island. Interestingly, on Sacca San Biagio, *R. venetianum* appeared to grow entirely intraradically, since no spores of any AMF species were previously detected within ashes (Bedini et al. 2010). We can speculate that AM fungal species, living in very disturbed soil, may complete their life cycle in a privileged ecological niche (within plant roots), avoiding the direct contact with toxic compounds. In our previous study on AMF diversity occurring on Sacca San Biagio (Bedini et al. 2010), the most abundant sequence types detected in the roots of three plant species collected on the island corresponded to *R. irregularare/R. fasciculatum* and to *R. intraradices*. Since SSU sequences encompassing the V3–V4 region were not
analyzed in this work, we are not able to confirm the occurrence of *R. venetianum* within the VeGlo8 cluster of our previous work. The genus *Rhizoglomus*, to which the identification key to species is proposed in this work, is the prevalent genus in studies on AMF diversity occurring in HM-contaminated sites, since it was dominant in colonized roots of *Fragaria vesca* L. collected in zinc wastes in southern Poland (Tumau et al. 2001), in a HM-contaminated soil along South Tyne River (Whitfield et al. 2004), in a chemical industry contaminated site in Northern Italy (Vallino et al. 2006), and in soils of mines in Asia (Zarei et al. 2008; Fang et al. 2015; Sun et al. 2016; Wu et al. 2010; Wei et al. 2015; Park et al. 2016) and Europe (Alguacil et al. 2011; del Mar Montiel-Rozas et al. 2017; Sánchez-Castro et al. 2017).

In conclusion, Sacca San Biagio represents an interesting site, contributing to our knowledge of AMF diversity in extreme habitats. Future works will disclose the concentrations of heavy metals able to inhibit the growth of the isolate *R. venetianum* IMA10, compared with other AMF species and isolates, and the occurrence of the new fungus in other environments.

Acknowledgements The authors thank Stefano Bedini for his technical assistance and Prof. Emanuele Argese for his help in the field.

Author contributions The work was conceived by M.G. and A.T. A.T. isolated and carried out the trap cultures. M.S. and A.T. carried out the molecular and phylogenetic analysis. F.O. performed the morphological description. A.T., F.O. and M.G. carried out the manuscript preparation for submission. All authors commented on the final draft of the manuscript.

Funding information The study was financially supported by the University of Pisa (Fondi di Ateneo) and SNF (Bern, projects IZ7370_152740 and IZ76Z0_173895).

References

Abdel-Azeem AM, Abdel-Moneim TS, Ibrahim ME, Hassan MAA, Saleh MY (2007) Effects of long-term heavy metal contamination on diversity of terrioculous fungi and nematodes in Egypt-a case study. Wat Air Soil Pollut 186:233–254. https://doi.org/10.1007/s11270-007-9480-3

Alguacil MM, Torrecillas E, Caravaca F, Fernández DA, Azcón R, Roldán A (2011) The application of an organic amendment modifies the arbuscular mycorrhizal fungal communities colonizing native seedlings grown in a heavy-metal-polluted soil. Soil Biol Biochem 43:1498–1508. https://doi.org/10.1016/j.soilbio.2011.03.026

Al-Yahya’ei MN, Mulliath SK, AlDhaheri LA, Kozłowska A, Błaszkowski J (2017) *Dominikia emiratia* and *Rhizoglomus diaphana*, two new species in the Glomeromyctea. Botany 95:629–639. https://doi.org/10.1139/cjb-2016-0294

Ban Y, Xu Z, Zhang H, Chen H, Tang M (2015) Soil chemistry properties, translocation of heavy metals, and mycorrhizal fungi associated with six plant species growing on lead–zinc mine. Ann Microbiol 65:503–515. https://doi.org/10.1007/s13213-014-0866-z

Bedini S, Turrini A, Rigo C, Argese E, Giovannetti M (2010) Molecular characterization and glomalin production of arbuscular mycorrhizal fungi colonizing a heavy metal polluted ash disposal island, downtown Venice. Soil Biol Biochem 42:758–765. https://doi.org/10.1016/j.soilbio.2010.01.010

Błaszkowski J (2012) Glomeromycota. W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków

Błaszkowski J, Chwat G, Góralksa A, Ryska P, Kovács GM (2015) Two new genera, *Dominikia* and *Kamieniska*, and *D. disticha* sp. nov. In: Glomeromycota. Nova Hedwigia, vol 100, pp 225–238. https://doi.org/10.1127/nova_hedwigia/2014/0216

Błaszkowski J, Kozłowska A, Nieczgoda P, Goto BT, Dalpé Y (2018) A new genus, *Oehlia* with *Oehlia diaphana* comb. nov. and an emended description of *Rhizoglomus vesiculiferum* comb. nov. in the Glomeromyctea. Nova Hedwigia, available online. https://doi.org/10.1127/nova_hedwigia/2018/0488

Brundrett M, Melville L, Peterson L (1994) Practical methods in mycorrhizal research. Mycologue Publications, University of Guelph, Guelph

Cano C, Bago A, Dalpé Y (2009) *Glomus custos* sp. nov., isolated from a naturally heavy metal-polluted environment in southern Spain. Mycotaxon 109:499–512. https://doi.org/10.5248/109.499

Clísters H, Vangronsveld J, van der Lele N, Colpaert J (2000) Ecological aspects of phytostabilization of heavy metal contaminated soils. In: Ceulemans R, Bogaert J, Deckmyn G, Nijs I (eds) Structure and function in plants and ecosystems. University of Antwerp, UIA, Wilrijk, pp 299–306

Cornejo P, Pérez-Tienda J, Meier S, Valderas A, Bore F, Azcón-Aguilar C, Ferrol N (2013) Copper compartmentalization in spores as a survival strategy of arbuscular mycorrhizal fungi in Cu-polluted environments. Soil Biol Biochem 57:925–928. https://doi.org/10.1016/j.soilbio.2012.10.031

Crosay T, Cilia A, Cavaloc Y, Amir H, Redeker D (2018) Four new species of arbuscular mycorrhizal fungi (*Glomeromycota*) associated with endemic plants from ultramafic soils of New Caledonia. Mycol Progress 17:729–744. https://doi.org/10.1007/s11557-018-1386-5

del Mar Montiel-Rozas M, López-García Á, Madejón P, Madejón E (2017) Native soil organic matter as a decisive factor to determine the arbuscular mycorrhizal fungal community structure in contaminated soils. Biol Fertil Soils 53:327–338. https://doi.org/10.1007/s00374-017-1181-5

Ferrol N, González-Guerrero M, Valderas A, Benabdellah K, Azcón-Aguilar C (2009) Survival strategies of arbuscular mycorrhizal fungi in Cu-polluted environments. Phytochem Rev 8:551–559. https://doi.org/10.1007/s11101-009-9133-9

Gerdemann JW, Nicholson TH (1963) Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans Br Mycol Soc 46:235–246

Gerdemann JW, Trappe JM (1974) *The Endogonaceae in the Pacific Northwest*. Mycol Mem 5:1–76

Giovannetti M, Avio L, Salutini L (1990) Morphological, cytochemical, and ontogenetic characteristics of a new species of vesicular-arbuscular mycorrhizal fungus. Can J Bot 69:161–169

Giovannetti M, Sbrana C, Avio L, Citernesi AS, Logi C (1993) Differential hyphal morphogenesis in arbuscular mycorrhizal fungi during pre-infection stages. New Phytol 125:587–594. https://doi.org/10.1111/j.1469-8137.1993.tb03907.x

Göhre V, Pasezkowski U (2006) Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223:1115–1122. https://doi.org/10.1007/s00035-006-0225-0

González-Chávez C, D’Haen J, Vangronsveld J, Dodd JC (2002) Copper sorption and accumulation by the extraradical mycelium of different *Glomus* spp. (arbuscular mycorrhizal fungi) isolated from the same polluted soil. Plant Soil 240:287–297. https://doi.org/10.1023/A:1015794622592

González-Chávez MC, Carrillo-Gonzalez R, Gutierrez-Castorena MC (2009) Natural attenuation in a slag heap contaminated with...
Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68:139–146. https://doi.org/10.1016/j.phytochem.2006.09.023

Khade SW, Adholeya A (2009) Arbuscular mycorrhizal association in plants growing on metal-contaminated and noncontaminated soils adjoining Kanpur tanneries, Uttar Pradesh, India. Wat Air Soil Pollut 202:45–56. https://doi.org/10.1007/s11270-008-9957-8

Koske RE, Tessier B (1983) A convenient, permanent slide mounting medium. Mycol Soc Am Newslett 34:59

Krishnamoorthy R, Kim CG, Subramanian P, Kim KY, Selvakumar G, Sa TM (2015) Arbuscular mycorrhizal fungus community structure, abundance and species richness changes in soil by different levels of heavy metal and metalloid concentration. PLoS One 10: e0128784. https://doi.org/10.1371/journal.pone.0128784

Krüger M, Stockinger H, Krüger C, Schüßler A (2012) Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol 193:970–984. https://doi.org/10.1111/j.1649-8198.2011.03962.x

Long LK, Yao Q, Guo J, Yang RH, Huang YH, Zhu HH (2010) Molecular community analysis of arbuscular mycorrhizal fungi associated with five selected plant species from heavy metal polluted soils. Eur J Soil Biol 46:288–294. https://doi.org/10.1016/j.ejsobi.2010.06.003

Mucina L (1997) Conspectus of classes of European vegetation. Folia Geobot Phytotaxon 32:117–172. https://doi.org/10.1007/BF02803738

Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

Oehl F, Sieverding E, Palenzuela J, Ineichen K, Alves da Silva G (2011a) Advances in glomeromycota taxonomy and classification: IMA Fungus 2:191–199. https://doi.org/10.5598/imafungus.2011.02.02.10

Oehl F, Silva GA, Goto BT, Sieverding E (2011b) Glomeromycota: three new genera, and gmoloid species reorganized. Mycotaxon 116:75–120. https://doi.org/10.5248/116.75

Ópik M, Vanatoo A, Vanatoa E, Moora M, Davison J, Kalwij JM, Reier Ú, Zobel M (2010) The online database MaarAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol 188:223–241. https://doi.org/10.1111/j.1649-8137.2010.03334.x

Ópik M, Davison J, Moora M, Zobel M (2014) DNA-based detection and identification of Glomeromycota: the virtual taxonomy of environmental sequences. Botany 92:135–147. https://doi.org/10.1139/cbj-2013-0110

Palenzuela J, Azcón-Aguilar C, Barea JM, Silva GA, Oehl F (2013) *Acaulospora pustulata* and *Acaulospora tortuosa*, two new species in the Glomeromycota associated with endangered plants in Sierra Nevada (southern Spain). Nova Hedwigia 97:305–319. https://doi.org/10.1127/0029-5035/2013/0129

Park H, Lee EH, Ka KH, Eom AH (2016) Community structures of arbuscular mycorrhizal fungi in soils and plant roots inhabiting abandoned mines of Korea. Mycobiology 44:277–282. https://doi.org/10.5941/MYCO.2016.44.4.277

Pawłowska TE, Blaszkowski J, Rühling Å (1996) The mycorrhizal status of plants colonizing a calamine spoil mound in southern Poland. Mycologia 6:499–505. https://doi.org/10.1007/s005720050154

Regvar M, Likar M, Piltaver A, Kugoníč N, Smith JE (2010) Fungal community structure under goat willows (*Salix caprea* L.) growing at metal polluted site: the potential of screening in a model phytostabilisation study. Plant Soil 330:345–356. https://doi.org/10.1007/s11104-009-0207-7

Ronquist F, Teslenko M, Van Der Mark P et al (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. https://doi.org/10.1093/sysbio/sys029

Sánchez-Castro I, Giaminazzini-Pearson V, Cleyt-Marel JC, Baudoin E, van Tuinen D (2017) Glomeromycota communities survive extreme levels of metal toxicity in an orphan mining site. Sci Tot Environ 598:121–128. https://doi.org/10.1016/j.scitotenv.2017.04.084

Schenck NC, Pérez Y (1990) Manual for the identification of VA mycorrhizal fungi, 3rd edn. Synergistic, Gainesville

Sieverding E (1991) Vescicular-arbuscular mycorrhizal management in tropical agroystems. Deutsche Gesellschaft für Technische Zusammenarbeit 224, Hartmut Bremer Verlag, Friedland

Sieverding E, Silva GA, Berndt R, Oehl F (2014) *Rhizoglomus*, a new genus in the Glomeraceae. Mycotaxon 129:373–386. https://doi.org/10.5248/129.373

Silva GA, Lumini E, Maia LC, Bonfante P, Bianciotto V (2006) Phylogenetic analysis of *Glomeromycota* by partial LSU rDNA sequences. Mycorrhiza 16:183–189. https://doi.org/10.1007/s00572-005-0030-9

Sousa NM, Veresoglou SD, Oehl F, Rillig MC, Maia LC (2018) Predictors of arbuscular mycorrhizal fungal communities in the Brazilian tropical dry forest. Microb Ecol 75:447–458. https://doi.org/10.1007/s00248-017-1042-7

Spain JL (1990) Arguments for diagnoses based on unaltered wall structures. Mycotaxon 38:71–76

Stockinger H, Krüger M, Schüßler A (2010) DNA barcoding of arbuscular mycorrhizal fungi. New Phytol 187:461–474. https://doi.org/10.1111/j.1649-8137.2010.03262.x

Sudova R, Sýkorová Z, Rydlová J, Čtvrtilková M, Oehl F (2015) *Rhizoglomus melanum*, a new arbuscular mycorrhizal fungal species associated with submerged plants in freshwater lake Avsjøen in Norway. Mycol Progress 14:9. https://doi.org/10.1007/s11557-015-1031-5

Sun Y, Zhang X, Wu Z, Hu Y, Wu S, Chen B (2016) The molecular diversity of arbuscular mycorrhizal fungi in the arsenic mining impacted sites in Hunan Province of China. J Environ Sci 39:110–118. https://doi.org/10.1016/j.jes.2015.10.005

Symczak S, Blaszkowski J, Chwat G, Boller T, Wiemken A, Al-Yahya’ei M (2014) Three new species of arbuscular mycorrhizal fungi discovered at one location in a desert of Oman: *Diversispora omaniana*, *Septoglomus nakheelum* and *Rhizophagus arabicus*. Mycologia 106:243–259. https://doi.org/10.3852/106.2.243

Symczak S, Al-Yahya’ei MN, Kozlowska A, Ryszka P, Blaszkowski J (2018) A new genus, *Desertispora*, and a new species, *Diversispora sabulosa*, in the family Diversisporaceae (order Diversisporales, subphylum Glomeromycota). Mycorrhizae 27:437–449. https://doi.org/10.1007%2Fs11557-017-1369-y

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. https://doi.org/10.1093/molbev/ms3197

Tedersoo L, Sánchez-Ramírez S, Urmas Kõljalg U, Bahram M, Döring M, Schigel D et al (2018) High-level classification of the Fungi and a tool for evolutionary ecological analyses. Fung Div 90:135–159. https://doi.org/10.1007/s13225-018-0401-0

Thaxter R (1922) A revision of the Endogoneae. Proc Amer Acad Arts 57:291–351. https://doi.org/10.2307/20025921
Turnau K, Ryszka P, Gianinazzi-Pearson V, van Tuinen D (2001) Identification of arbuscular mycorrhizal fungi in soils and roots of plants colonizing zinc wastes in southern Poland. Mycorrhiza 10: 169–174. https://doi.org/10.1007/s0057200000073

Turrini A, Giovannetti M (2012) Arbuscular mycorrhizal fungi in national parks, nature reserves and protected areas worldwide: a strategic perspective for their in situ conservation. Mycorrhiza 22:81–97. https://doi.org/10.1007/s00572-011-0419-6

Vallino M, Massa N, Lumini E, Bianciotto V, Berta G, Bonfante P (2006) Assessment of arbuscular mycorrhizal fungal diversity in roots of Solidago gigantea growing in a polluted soil in Northern Italy. Environ Microbiol 8:971–983. https://doi.org/10.1111/j.1462-2920.2006.00980.x

Vogel-Mikuš K, Pongrac P, Kamp P, Necemer M, Regvar M (2006) Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake. Environ Pollut 139:362–371. https://doi.org/10.1016/j.envpol.2005.05.005

Wei Y, Chen Z, Wu F, Li J, ShangGuan Y, Li F, Zeng QR, Hou H (2015) Diversity of arbuscular mycorrhizal fungi associated with a sb accumulator plant, ramie (Boehmeria nivea), in an active Sb mining. J Microbiol Biotechnol 25:1205–1215. https://doi.org/10.4014/jmb.1411.11033

Whitfield L, Richards AJ, Rimmer DL (2004) Relationships between soil heavy metal concentration and mycorrhizal colonisation in Thymus polytrichus in northern England. Mycorrhiza 14:55–62. https://doi.org/10.1007/s00572-003-0268-z

Wu FY, Bi YL, Leung HM, Ye ZH, Lin XG, Wong MH (2010) Accumulation of As, Pb, Zn, Cd and Cu and arbuscular mycorrhizal status in populations of Cynodon dactylon grown on metal-contaminated soils. Appl Soil Ecol 44:213–218. https://doi.org/10.1016/j.apsoil.2009.12.008

Yang Y, Song Y, Scheller HV, Ghosh A, Ban Y, Chen H, Tang M (2015) Community structure of arbuscular mycorrhizal fungi associated with Robinia pseudoacacia in uncontaminated and heavy metal contaminated soils. Soil Biol Biochem 86:146–158. https://doi.org/10.1016/j.soilbio.2015.03.018

Zarei M, Saleh-Rastin N, Jouzani GS, Savaghebi G, Buscot F (2008) Arbuscular mycorrhizal abundance in contaminated soils around a zinc and lead deposit. E J Soil Biol 44:381–391. https://doi.org/10.1016/j.ejsobi.2008.06.004