A CHARACTERIZATION OF HILBERT C^*-MODULES OVER FINITE DIMENSIONAL C^*-ALGEBRAS

LJILJANA ARAMBAŠIĆ 1, DAMIR BAKIĆ 2 AND MOHAMMAD SAL MOSLEHIAN 3

Abstract. We show that the unit ball of a full Hilbert C^*-module is sequentially compact in a certain weak topology if and only if the underlying C^*-algebra is finite dimensional. This provides an answer to the question posed in J. Chmieliński et al [Perturbation of the Wigner equation in inner product C^*-modules, J. Math. Phys. 49 (2008), no. 3, 033519].

1. Introduction and preliminaries

Let \mathcal{A} be a C^*-algebra. A linear space \mathcal{M} that is an algebraic left \mathcal{A}-module with $\lambda(ax) = a(\lambda x) = (\lambda a)x$ for $x \in \mathcal{M}$, $a \in \mathcal{A}$, $\lambda \in \mathbb{C}$, is called a pre-Hilbert \mathcal{A}-module (or an inner product \mathcal{A}-module) if there exists an \mathcal{A}-valued inner product on \mathcal{M}, i.e., a mapping $\langle \cdot, \cdot \rangle : \mathcal{M} \times \mathcal{M} \to \mathcal{A}$ satisfying

(i) $\langle \lambda x + y, z \rangle = \lambda \langle x, z \rangle + \langle y, z \rangle$;
(ii) $\langle ax, y \rangle = a \langle x, y \rangle$;
(iii) $\langle x, y \rangle^* = \langle y, x \rangle$;
(iv) $\langle x, x \rangle \geq 0$;
(v) $\langle x, x \rangle = 0 \Leftrightarrow x = 0$,

for all $x, y, z \in \mathcal{M}$, $a \in \mathcal{A}$, $\lambda \in \mathbb{C}$. Conditions (i) and (iii) yield the fact that the inner product is conjugate-linear with respect to the second variable. It follows from the definition that $\|x\|_{\mathcal{M}} := \sqrt{\|\langle x, x \rangle\|_{\mathcal{A}}}$ is a norm on \mathcal{M}, whence \mathcal{M} becomes a normed left \mathcal{A}-module.

A pre-Hilbert \mathcal{A}-module \mathcal{M} is called a Hilbert C^*-module if it is complete with respect to this norm. We say that a Hilbert \mathcal{A}-module \mathcal{M} is full if the linear subspace $\langle \mathcal{M}, \mathcal{M} \rangle$ of \mathcal{A} generated by $\{\langle x, y \rangle : x, y \in \mathcal{M}\}$ is dense in \mathcal{A}. The simplest examples are usual Hilbert spaces as Hilbert \mathcal{C}-modules, and C^*-algebras as Hilbert C^*-modules over themselves via $\langle a, b \rangle = ab^*$.

2000 Mathematics Subject Classification. Primary 46L08; Secondary 46L05, 46L10.

Key words and phrases. Hilbert C^*-module, finite dimensional C^*-algebra, C^*-algebra of compact operators.
The concept of a Hilbert C^*-module has been introduced by Kaplansky [6] and Paschke [11]. For more information we refer the reader e.g. to monographs [7, 9].

Despite a formal similarity of definitions, it is well known that Hilbert C^*-modules may lack many properties familiar from Hilbert space theory. In fact, it turns out that properties of a C^*-module reflect (or originate from) the properties of the underlying C^*-algebra.

A particularly well behaved class is the class of Hilbert C^*-modules over C^*-algebras of compact operators. There are several nice characterizations of such modules (see e.g. [1, 4, 5, 8, 13]). In our proofs we make use of orthonormal bases which exist only in Hilbert C^*-modules over C^*-algebras of compact operators (see [1, 2]). Recall that a system of vectors $\{\varepsilon_i : i \in I\}$ in a Hilbert A-module M is said to be an orthonormal basis for M if it satisfies the following conditions:

1. $p_i := \langle \varepsilon_i, \varepsilon_i \rangle \in A$ is a projection such that $p_i A p_i = C p_i$ for every $i \in I$;
2. $\langle \varepsilon_i, \varepsilon_j \rangle = 0$ for every $i, j \in I, i \neq j$;
3. $\{\varepsilon_i : i \in I\}$ generates a norm-dense submodule of M.

If $\{\varepsilon_i : i \in I\}$ is an orthonormal basis (with the above properties (1), (2), (3)) for M then the reconstruction formula $x = \sum_{i \in I} \langle x, \varepsilon_i \rangle \varepsilon_i$ holds for every $x \in M$, with the norm convergence.

Various specific properties of Hilbert C^*-modules turn out to be particularly useful in applications. An interesting example of investigations of this type is a recent study of the stability of Wigner equation (see [3] and the references therein). In particular, the main result in [3] is obtained for Hilbert C^*-modules satisfying the following condition:

[H] For each norm-bounded sequence (x_n) in M, there exist a subsequence (x_{n_k}) of (x_n) and an element $x_0 \in M$ such that the sequence $(\langle x_{n_k}, y \rangle)$ converges to $\langle x_0, y \rangle$ in norm for any $y \in M$.

Notice that in case of a Hilbert space condition [H] is clearly satisfied: this is simply the fact that the unit (and hence each) ball in a Hilbert space is weakly sequentially compact.

It is proved in [3, Proposition 2.1] that a Hilbert A-module M satisfies condition [H] whenever the underlying C^*-algebra is finite dimensional. In this note we prove the converse, i.e., we show that condition [H] is an exclusive property of the class of Hilbert C^*-modules over finite dimensional C^*-algebras. In this way we obtain a new characterization of such modules and answer a question posed in [3] concerning condition [H].
A CHARACTERIZATION OF HILBERT C*-MODULES

2. The result

For a Hilbert space H we denote by $\mathbb{B}(H)$ and $\mathbb{K}(H)$ the C^*-algebras of all bounded, resp. compact operators acting on H. We begin with a proposition that reduces the discussion to the class of C^*-algebras of compact operators.

Proposition 2.1. Suppose that \mathcal{M} is a full Hilbert C^*-module over a C^*-algebra \mathcal{A}, which satisfies condition $[H]$. Then \mathcal{A} is isomorphic to a C^*-algebra of (not necessarily all) compact operators acting on some Hilbert space.

Proof. Let us fix $y \in \mathcal{M}$. Consider the map $T_y : \mathcal{M} \to \mathcal{M}$ given by $T_y(x) = \langle y, x \rangle y$.

Obviously, T_y is a bounded anti-linear operator.

Let (x_n) be a norm-bounded sequence in \mathcal{M} and let (x_{n_k}) be a subsequence of (x_n) such that, for some $x_0 \in \mathcal{M}$, $\lim_{k \to \infty} \langle x_{n_k}, y \rangle = \langle x_0, y \rangle$ for all $y \in \mathcal{M}$. Then $\lim_{k \to \infty} \langle y, x_{n_k} \rangle y = \langle y, x_0 \rangle y$ for all $y \in \mathcal{M}$. This can be restated in the following way: for each norm-bounded sequence (x_n) in \mathcal{M}, the sequence $(T_y(x_n))$ has a convergent subsequence. Hence, T_y is a compact operator. Moreover, by the hypothesis, this is true for each $y \in \mathcal{M}$.

By [1, Proposition 1], (4) \Rightarrow (1), there is a faithful representation $\pi : \mathcal{A} \to \mathbb{B}(H)$ of \mathcal{A} on some Hilbert space H such that $\pi(\langle y, y \rangle) \in \mathbb{K}(H)$. This holds for every $y \in \mathcal{M}$, so, by polarization, $\pi(\langle x, y \rangle) \in \mathbb{K}(H)$ for all $x, y \in \mathcal{M}$, and therefore $\pi(\mathcal{A}) \subseteq \mathbb{K}(H)$. □

By the preceding proposition, condition $[H]$ can only be satisfied in Hilbert C^*-modules over C^*-algebras of compact operators. (Here, and in the sequel, we identify \mathcal{A} with $\pi(\mathcal{A})$, where π is the representation from the preceding proof.) However, even if the underlying algebra is a C^*-algebra of compact operators, one still cannot conclude that condition $[H]$ is satisfied.

We demonstrate this fact in the following two examples.

Example 2.2. Consider a separable infinite dimensional Hilbert space H with an orthonormal basis (ε_n). We shall regard $\mathbb{K}(H)$ as a Hilbert C^*-module over itself via the inner product $\langle a, b \rangle = ab^*$. Let us show that $\mathbb{K}(H)$ does not satisfy $[H]$.

For $n \in \mathbb{N}$, denote by p_n the orthogonal projection to $\text{span}\{\varepsilon_1, \ldots, \varepsilon_n\}$. Obviously, the sequence (p_n) is norm-bounded.

Suppose that there exist a subsequence (p_{n_k}) and a compact operator $a \in \mathbb{K}(H)$ such that $\lim_{k \to \infty} \langle p_{n_k}, y \rangle = \langle a, y \rangle$ for all $y \in \mathbb{K}(H)$. This means $p_{n_k} y^* \to ay^*$ for all $y \in \mathbb{K}(H)$, which in turn gives us $p_{n_k} y \xi \to ay \xi$ for all $y \in \mathbb{K}(H)$ and for all $\xi \in H$. In particular, for every
\(n \in \mathbb{N}, \) we can take \(y = p_n - p_{n-1} \) (that is the orthogonal projection to the one-dimensional subspace spanned by \(\varepsilon_n \)) and \(\varepsilon = \varepsilon_n. \) Then the preceding relation yields \(a\varepsilon_n = \varepsilon_n \) for all \(n \in \mathbb{N}; \) i.e., \(a \) is the identity operator. Since \(\dim H = \infty, \) this is not a compact operator. Thus, the assumed property \([H]\) leads to a contradiction.

Recall that, by \([2, \text{Example 2}], \) \(\dim_{\mathbb{K}(H)} \mathbb{K}(H) = \dim H. \)

Our following example shows that even a Hilbert \(\mathbb{K}(H) \)-module \(\mathcal{M} \) such that \(\dim_{\mathbb{K}(H)} \mathcal{M} < \infty \) need not have property \([H].\)

Example 2.3. (cf. \([2, \text{Example 1}]) \) Let \(H \) be a Hilbert space. For \(\xi, \eta \in H \) define \(\langle \xi, \eta \rangle = e_{\xi, \eta} \in \mathbb{K}(H), \) where \(e_{\xi, \eta}(\nu) = \langle \nu | \eta \rangle \xi. \) Also, for \(a \in \mathbb{K}(H), \) define a left action on \(\xi \in H \) in a natural way as the action of the operator \(a \) on the vector \(\xi. \)

In this way \(H \) becomes a left Hilbert \(\mathbb{K}(H) \)-module. Notice that the resulting norm coincides with the original norm on \(H. \)

We also know that \(\dim_{\mathbb{K}(H)} H = 1. \) Indeed, if \(\varepsilon \) is an arbitrary unit vector then each \(\xi \in H \) admits a representation of the form \(\xi = \langle \xi, \varepsilon \rangle \varepsilon \) (because \(\langle \xi, \varepsilon \rangle \varepsilon = e_{\varepsilon, \varepsilon}(\varepsilon) = (\varepsilon | \varepsilon)\xi = \xi \)). This means that \(\{\varepsilon\} \) is an orthonormal basis for \(H, \) regarded as a \(\mathbb{K}(H) \)-module.

Notice that the entire preceding discussion was independent on the (usual) dimension of the underlying space \(H. \) Suppose now that \(H \) is a separable infinite dimensional Hilbert space. We claim that then \(H, \) as a Hilbert \(\mathbb{K}(H) \)-module, does not satisfy \([H].\)

To see this, let us fix an orthonormal basis \((\varepsilon_n) \) for \(H. \) The sequence \((\varepsilon_n) \) is obviously norm-bounded. Suppose that there exist a subsequence \((\varepsilon_{n_k}) \) of \((\varepsilon_n) \) and \(\varepsilon_0 \in H \) such that \(\lim_{k \to \infty} \langle \varepsilon_{n_k}, \varepsilon \rangle = \langle \varepsilon_0, \varepsilon \rangle \) for all \(\varepsilon \in H. \) In particular, this would imply \(\lim_{k \to \infty} \langle \varepsilon_{n_k}, \varepsilon_1 \rangle = \langle \varepsilon_0, \varepsilon_1 \rangle, \) i.e., \(\|e_{\varepsilon_{n_k}, \varepsilon_1} - e_{\varepsilon_0, \varepsilon_1}\| \to 0. \) But, \(\|e_{\varepsilon_{n_k}, \varepsilon_1} - e_{\varepsilon_0, \varepsilon_1}\| = \sup_{\|\eta\| = 1} \|e_{\varepsilon_{n_k}, \varepsilon_1}(\eta) - e_{\varepsilon_0, \varepsilon_1}(\eta)\| = \sup_{\|\eta\| = 1} \|e_{\varepsilon_0, \varepsilon_1}(\eta)|\varepsilon_0 - (e_{\varepsilon_{n_k}, \varepsilon_1} - \varepsilon_0)\| = \|e_{\varepsilon_{n_k}, \varepsilon_1} - \varepsilon_0\| \) and the last expression obviously does not converge to 0 as \(k \to \infty. \)

Remark 2.4. Suppose that \(\mathcal{M} \) is an arbitrary Hilbert \(C^* \)-module over a \(C^* \)-algebra \(\mathcal{A} \) of compact operators. It is well known that there is a family \((H_j), j \in J, \) of Hilbert spaces such that \(\mathcal{A} = \bigoplus_{j \in J} \mathbb{K}(H_j). \) Furthermore, it then follows that \(\mathcal{M} = \bigoplus_{j \in J} \mathcal{M}_j, \) where \(\mathcal{M}_j = \overline{\mathbb{K}(H_j) \mathcal{M}} \) (i.e., \(\mathcal{M} \) is an outer direct sum of \(\mathcal{M}_j \)'s, where each \(\mathcal{M}_j \) is a full Hilbert \(\mathbb{K}(H_j) \)-module).

Now, by \([2, \text{Theorem 3}] \) and the preceding example, we conclude that if there exists \(j_0 \in J \) such that \(\dim H_{j_0} = \infty \) then \(\mathcal{M}_{j_0} \) cannot satisfy \([H]. \) Consequently, \(\mathcal{M} \) does not satisfy \([H]. \) Namely, if \(\dim \mathcal{M}_{j_0} = d \) (here \(d \) can be an arbitrary cardinal number), then, by Theorem 3
from \([2]\), \(M_{j_0}\) is an orthogonal sum of \(d\) copies of \(\mathbb{K}(H_{j_0})H_{j_0}\), and, by Example \([2,3]\) just one copy of \(\mathbb{K}(H_{j_0})H_{j_0}\) is enough to ruin property \([H]\).

From the preceding discussion we conclude that if \(\mathcal{M}\) is a full Hilbert \(C^*\)-module satisfying \([H]\), then \(\mathcal{M}\) is necessarily a Hilbert \(C^*\)-module over a \(C^*\)-algebra \(\mathcal{A}\) of compact operators. Moreover, \(\mathcal{A}\) has to be of the form \(\mathcal{A} = \bigoplus_{j \in J} \mathbb{K}(H_j)\) and each \(H_j\) must be finite dimensional. If, moreover, \(J\) is of finite cardinality, then \(\mathcal{A}\) is finite dimensional. Next we show that if card \(J = \infty\) with \(\dim H_j < \infty\) for all \(j \in J\), then again \(\mathcal{M}\) cannot satisfy \([H]\).

First, in this situation, since \(J\) as a set of an infinite cardinality contains a countable subset \(J'\), \(\mathcal{M} = \bigoplus_{j \in J} M_j\) can be written as the orthogonal sum of the form \(\mathcal{M} = \left(\bigoplus_{j \in J'} M_j\right) \bigoplus \left(\bigoplus_{j \in J \setminus J'} M_j\right)\). Thus, \(\mathcal{M}\) contains, as an orthogonal summand, a submodule of the form \(\mathcal{M}' = \bigoplus_{n \in \mathbb{N}} \mathcal{M}_n\), where each \(\mathcal{M}_n\) is a module over \(\mathbb{K}(H_n)\) and \(\dim H_n < \infty\). Moreover, each \(\mathcal{M}_n\) is, by \([2, \text{Theorem 3}]\), unitarily equivalent to the orthogonal sum of \(d_n = \dim \mathcal{M}_n\) copies of \(\mathbb{K}(H_n)H_n\); i.e., \(\mathcal{M}_n \simeq \bigoplus_{j=1}^{d_n} \mathbb{K}(H_n)H_n\).

If we take just one copy of each \(\mathbb{K}(H_n)H_n\), we conclude that \(\mathcal{M}'\) (and hence \(\mathcal{M}\)) contains, as an orthogonal summand, a submodule of the form \(\mathcal{M}'' \simeq \bigoplus_{n=1}^{\infty} \mathbb{K}(H_n)H_n\). It is now enough to prove that \(\mathcal{M}''\) does not satisfy \([H]\) and this can be argued essentially in the same way as in Example \([2,3]\).

Observe that \(\mathcal{M}''\) is also a Hilbert \(C^*\)-module over a direct sum \(\bigoplus_{n=1}^{\infty} \mathbb{K}(H_n) \subset \mathbb{K}(H)\), where \(H = \bigoplus_{n=1}^{\infty} H_n\) is an infinite dimensional Hilbert space. For each \(n \in \mathbb{N}\) take a unit vector \(\varepsilon_n \in H_n \subset H\). Let \(x_n = (\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n, 0, 0, \ldots), n \in \mathbb{N}\). Notice that \(\langle x_n, x_n \rangle = \sum_{i=1}^{n} e_{\varepsilon_i, \varepsilon_i}\). Since this is an orthogonal projection onto an \(n\)-dimensional subspace of \(H\), we have \(\|x_n\| = 1\); thus, \(x_n\) is a norm-bounded sequence in \(\mathcal{M}''\). Suppose now that there exists a subsequence \((x_{n_k})\) and \(x_0 = (\xi_1, \xi_2, \ldots) \in \mathcal{M}''\) such that \(\lim_{k \to \infty} \langle x_{n_k}, y \rangle = \langle x_0, y \rangle\) for all \(y \in \mathcal{M}''\). Inserting \(y = (\varepsilon_1 - \xi_1, 0, 0, \ldots)\) we obtain \(\|\langle x_{n_k}, y \rangle - \langle x_0, y \rangle\| = \|\langle \varepsilon_1 - \xi_1, \varepsilon_1 - \xi_1 \rangle\| \to 0\), which implies \(\xi_1 = \varepsilon_1\). Similarly, for \(y = (0, \varepsilon_2 - \xi_2, 0, \ldots)\) we obtain \(\xi_2 = \varepsilon_2\) and, proceeding in the same way, \(\xi_n = \varepsilon_n\) for all \(n \in \mathbb{N}\). This gives us \(x_0 = (\varepsilon_1, \varepsilon_2, \varepsilon_3, \ldots)\), which is impossible since this sequence does not belong to \(\mathcal{M}''\).

After all, combining the preceding discussion with Proposition 2.1 from \([3]\), we get our main result.

Theorem 2.5. A full Hilbert \(C^*\)-module over a \(C^*\)-algebra \(\mathcal{A}\) satisfies condition \([H]\) if and only if \(\mathcal{A}\) is a finite dimensional \(C^*\)-algebra.

Remark 2.6. We may ask ourselves if one could replace condition \([H]\) with a weaker one:
[H′] For each norm-bounded sequence \((x_n)\) in \(\mathcal{M}\) and for every \(y \in \mathcal{M}\) there exists a subsequence \((x_{n_k})\) of \((x_n)\) such that the sequence \((\langle x_{n_k}, y \rangle)\) converges in norm.

Observe that [H′] is sufficient to prove Proposition 2.1, so full Hilbert \(C^*\)-modules with property [H′] have to be over \(C^*\)-algebras of compact operators. Also, it is obvious that [H′] is fulfilled in every Hilbert \(C^*\)-module over a finite dimensional \(C^*\)-algebra. However, our next example shows that [H′] does not characterize these Hilbert modules; in other words, [H′] is not sufficient for [H].

Consider a separable infinite dimensional Hilbert space \(H\) and the \(C^*\)-algebra \(\mathcal{A} \subset \mathbb{K}(H)\) of all diagonal (with respect to a fixed orthonormal basis) operators with diagonal entries converging to 0. Let \(\mathcal{M} = \mathcal{A}\). Then \(\mathcal{A}\) is a Hilbert \(C^*\)-module whose underlying \(C^*\)-algebra \(\mathcal{A}\) is infinite dimensional. By the preceding theorem, the Hilbert \(C^*\)-module \(\mathcal{A}\) cannot satisfy [H].

On the other hand, since \(\mathcal{A}\) is a Hilbert \(C^*\)-module over the (commutative) \(C^*\)-algebra \(\mathcal{A}\) of compact operators, by [1, Theorem 4] (see also its proof), all mappings \(T_y : \mathcal{A} \to \mathcal{A}\) given by \(T_y(x) = \langle y, x \rangle y\) are compact. But here we have \(T_y(x) = yx^*y = x^*y^2\) for all \(y \in \mathcal{A}\). In particular, taking self-adjoint \(y\) we get that \(x \mapsto x^*y\) is compact for every positive \(y \in \mathcal{A}\), and since positive elements of a \(C^*\)-algebra span the whole \(C^*\)-algebra, we get that the operator \(x \mapsto x^*y = \langle y, x \rangle\) is compact for every \(y \in \mathcal{A}\). This shows that our Hilbert \(C^*\)-module \(\mathcal{A}\) satisfies [H′].

Acknowledgement. The authors are thankful to the referee for several valuable suggestions for improving and clarifying the original manuscript.

References

[1] Lj. Arambašić, Another characterization of Hilbert \(C^*\)-modules over compact operators, J. Math. Anal. Appl. 344 (2008), 735–740.
[2] D. Bakić, B. Guljaš, Hilbert \(C^*\)-modules over \(C^*\)-algebras of compact operators, Acta. Sci. Math. (Szeged) 68 (2002), 249–269.
[3] J. Chmieliński, D. Iliašević, M.S. Moslehian, Gh. Sadeghi, Perturbation of the Wigner equation in inner product \(C^*\)-modules, J. Math. Phys. 49 (2008), no. 3, 033519.
[4] M. Frank, Characterizing \(C^*\)-algebras of compact operators by generic categorical properties of Hilbert \(C^*\)-modules, Journal of K-theory: K-theory and its Applications to Algebra, Geometry, and Topology, Volume 2, Special Issue 03, December 2008, 453–462.
[5] M. Frank, K. Sharifi, Adjointability of densely defined closed operators and the Magajna-Schweizer theorem, to appear in J. Operator Theory, available on arXiv:math.OA/0705.2576v2
[6] I. Kaplansky, *Modules over operator algebras*, Amer. J. Math. 75 (1953), 839–858.
[7] E.C. Lance, *Hilbert C*-Modules*, LMS Lecture Note Series 210, Cambridge Univ. Press, 1995.
[8] B. Magajna, *Hilbert C*-modules in which all closed submodules are complemented*, Proc. Amer. Math. Soc. 125 (1997), no. 3, 849–852.
[9] V.M. Manuilov, E.V. Troitsky, *Hilbert C*-Modules*, Translations of Mathematical Monographs, 226. American Mathematical Society, Providence, RI, 2005.
[10] J.G. Murphy, *C*-Algebras and Operator Theory*, Academic Press, Boston, 1990.
[11] W.L. Paschke, *Inner product modules over B*-algebras*, Trans. Amer. Math. Soc. 182 (1973), 443–468.
[12] G.K. Pedersen, *Analysis Now*, Graduate Texts in Mathematics 118, Springer–Verlag, New York, 1989.
[13] J. Schweizer, *A description of Hilbert C*-modules in which all closed submodules are orthogonally closed*, Proc. Amer. Math. Soc. 127 (1999), no. 7, 2123–2125.

1 Department of Mathematics, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia.
E-mail address: arambas@math.hr

2 Department of Mathematics, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia.
E-mail address: bakic@math.hr

3 Department of Pure Mathematics, Ferdowsi University of Mashhad, P. O. Box 1159, Mashhad 91775, Iran;
Center of Excellence in Analysis on Algebraic Structures (CEAAS), Ferdowsi University of Mashhad, Iran.
E-mail address: moslehian@ferdowsi.um.ac.ir and moslehian@ams.org