Lung cancer is the leading cause of cancer-related death across the world. Unlike lung adenocarcinoma, patients with lung squamous cell carcinoma (LSCC) have not benefited from targeted therapies. Although immunotherapy has significantly improved cancer patients’ outcomes, the relatively low response rate and severe adverse events hinder the clinical application of this promising treatment in LSCC. Therefore, it is of vital importance to have a better understanding of the mechanisms underlying the pathogenesis of LSCC as well as the inner connection among different signaling pathways, which will surely provide opportunities for more effective therapeutic interventions for LSCC. In this review, new insights were given about classical signaling pathways which have been proved in other cancer types but not in LSCC, including PI3K signaling pathway, VEGF/VEGFR signaling, and CDK4/6 pathway. Other signaling pathways which may have therapeutic potentials in LSCC were also discussed, including the FGFR1 pathway, EGFR pathway, and KEAP1/NRF2 pathway. Next, chromosome 3q, which harbors two key squamous differentiation markers SOX2 and TP63 is discussed as well as its related potential therapeutic targets. We also provided some progress of LSCC in epigenetic therapies and immune checkpoints blockade (ICB) therapies. Subsequently, we outlined some combination strategies of ICB therapies and other targeted therapies. Finally, prospects and challenges were given related to the exploration and application of novel therapeutic strategies for LSCC.

While the steady identification of new oncogenic alterations and development of new targeted drugs continue to prolong the progression-free survival (PFS) and the overall survival (OS) in LUAD patients, it was of note that the use of targeted therapy in LSCC patients has been associated with negative outcomes in early-phase studies. In fact, both the mutated genes and the recurrent somatic copy numbers vary widely between these two diseases. The common driver mutations in LUAD, like EGFR and KRAS, are rarely mutated in LSCC. The biomarker-driven therapies for LSCC evaluated in the Lung Cancer Master Protocol (Lung-MAP; S1400) failed to show an improvement of therapeutic responses and manageable adverse effects. Currently, pembrolizumab and atezolizumab were both approved by the US Food and Drug Administration (FDA) as the first-line monotherapy in patients with advanced LSCC with PD-L1 levels of 50% or more. In addition, pembrolizumab plus chemotherapy is also recommended as a first-line therapy in patients with metastatic LSCC. Other ICB therapies, including nivolumab, ipilimumab, cemiplimab, sintilimab, tislelizumab, camrelizumab, and sugemalimab, have also significantly improved the outcomes in patients with advanced LSCC.
outcomes of patients with advanced LSCC. However, a large proportion of LSCC patients still do not respond to current immunotherapy. Identification of biomarkers for immunotherapy and exploration of more effective therapeutics remains to be an unmet need for LSCC patients.

In this review, we will discuss the current knowledge of potentially targetable molecular alterations in LSCC as well as providing some updated information about ongoing or finished clinical trials which may change or have changed the therapeutic landscapes of LSCC.

GENOMIC LANDSCAPES OF LSCC AND THERAPEUTIC TARGETS

LSCC is strongly associated with smoking and is characterized by a high overall mutation rate of 8.1 mutations per megabase and marked genomic complexity. A number of significantly mutated genes have been identified in LSCC: TP53, CDKN2A, PTEN, PIK3CA, KEAP1, MLL2, HLA-A, NFE2L2, NOTCH1, and RB1, all of which demonstrated robust evidence of gene expression. Almost all LSCC displays somatic mutation of TP53. The amplification between chromosome 3q26 and 3q28 represents a hallmark for LSCC, which harbors key squamous differentiation markers SOX2 and TP63. In addition, other significantly amplified regions include 8p11 (FGFR1, WHSC1L1), 7p11 (EGFR), 11q13 (CCND1) and 4q12 (KDR, KIT, PDGFRα). Although EGFR mutations were found in 7% of the LSCC cases, there were no activating mutations of exon 19 deletions or Leu858Arg substitution. These mutated genes cause frequent alterations in the following signaling pathways: CDKN2A/RB1, NFE2L2/KEAP1/CUL3, PI3K/AKT, and SOX2/TP63/NOTCH1 pathways, some of which play an important role in cell-cycle control, response to oxidative stress, apoptotic signaling, and squamous cell differentiation. These signaling pathways are interconnected with each other. It has been shown that both mutated genes and recurrent somatic copy-number alterations are largely distinct in LSCC and LUAD. In fact, an analysis of 12 cancer types revealed the convergence of squamous-like subtype, suggesting similarities in genomic- and pathway-based determinants in four different tumor types: LSCC, head and neck squamous cell carcinoma (HNSCC), some bladder urothelial carcinoma and a very few LUAD. Besides frequent alterations in different signaling pathways caused by mutated genes and amplification in the chromosome 3q region, aberrant protein lysine methylation modification also influences other cellular pathways in LSCC. Recently, NSD3—a histone dimethyltransferase encoded by an FGFR1-neighboring gene—was identified as a major mutational driver in LSCC. Other histone modifiers, including SETD8, LSD1, and EZH2, have also been identified to be involved in LSCC tumorigenesis and the inhibition of these targets could produce potent antitumoral effects. In the last 10 years, the great benefits that ICB therapy have demonstrated in several clinical trials heralded a new era in the management of LSCC. For resectable NSCLC, compared to traditional cytotoxic chemotherapy alone, the addition of ICB therapy both in the neoadjuvant and adjuvant settings has significantly improved the outcomes of patients. We briefly summarized some of the pivotal clinical studies and discoveries that might change or have changed the management of LSCC in the last thirty years (Fig. 1).

TARGETING SIGNALING PATHWAYS IN LSCC

In the past few decades, multiple mutated genes in LSCC have been discovered. As we mentioned in the last section, these mutated genes cause alterations in several signaling pathways. In this section, we would discuss pathways proved in other cancer types but not in LSCC, including PI3K signaling pathway, VEGF/VEGFR signaling, and CDK4/6 pathway. Other signaling pathways in LSCC which may be potentially targeted were also discussed, including FGFR1 pathway, EGFR pathway, and KEAP1/NRF2 pathway. It is of note that these signaling pathways are also closely connected with each other (Fig. 2).

The classical PI3K pathway

The PI3K signaling pathway is one of the most frequently altered signaling pathways in human cancer, which can be activated by various growth factors/ligands specific to different RTKs, including members of the EGFR family, and the insulin and insulin-like growth factor 1 (IGF-1) receptor, FGF, etc. LSCC has high rates of alterations in the PI3K pathway, and alterations were found in 68% of LSCC samples. Activation of PI3K signaling pathway mediated through molecular aberrations is instrumental in promoting tumor development as well as resistance to antitumor therapies. PI3K belongs to a family of lipid kinases, which are classified into three different classes based on structural

Fig. 1 Timeline illustrating the evolving treatment landscapes and research history of LSCC. Timeline highlights some of the pivotal clinical studies and discoveries that might change or have changed the management of LSCC. 1 L NSCLC collaborative group meta-analysis established the role of platinum-based chemotherapy in advanced NSCLC. 2 JMDB study found cisplatin/gemcitabine offered better OS for LSCC. 3 Nivolumab received the first FDA approval of 2L ICB therapy for LSCC. 4 Pembrolizumab received the first FDA approval of 1L ICB therapy for NSCLC. 5 Atazolizumab received the first FDA approval of adjuvant ICB therapy for NSCLC. 6 Nivolumab received the first FDA approval of neoadjuvant ICB therapy for NSCLC.
features and lipid substrate preferences.59 Class I PI3K is frequently implicated in cancer. Class IA consists of the PIK3CA, PIK3CB, and PIK3CD genes, and encode for the catalytic subunit of p110α, p110β, and p110δ, respectively. Class IB includes PIK3CG coding for p110γ.54 Whereas p110α and p110β show broad tissue distribution, p110δ and p110γ are highly enriched in all leukocyte subtypes.80

A common mechanism of PI3K activation in cancers is through the presence of mutations in the PIK3CA gene.51 The reported incidence of PIK3CA alterations in LSCC varies between 8 and 20% and both main mutation types are canonical PIK3CA mutations and PIK3CA amplification.82-84 The canonical PIK3CA mutations affect two different domains of p110α, the kinase domain and the helical domain.85 These two types of mutations can activate the downstream signaling through two distinctive mechanisms. The kinase domain mutations can change the dynamics of the membrane-binding surface and affect the PI3K substrate.66 The helical domain mutations (e.g., E542K, E545K) abrogate the inhibitory interactions between p110α and the N-terminal SH2 domain of the p85 regulatory subunit, leading to constitutive activity that mimics pTyr stimulation.66,67

Mutations in other genes may also lead to abnormal activation of the PI3K pathway. Phosphatase and tensin homolog (PTEN) is a 9-exon tumor-suppressor gene located on chromosome 10q23. This gene encodes for a 403-amino acid protein with dual lipid and protein phosphatase utility which contains four functional domains: an N-terminal PI(4,5)P2-binding/phosphatase, domain, a C2 domain, a carboxy-terminal tail domain (C-tail), and a PDZ-binding domain (PDZ-BD).68 This protein classically damps the PI3K/PIK3CA activity growth-promoting signaling cascade by directly dephosphorylating phosphatidylinositol-3,4,5-trisphosphate (PIP3) and converting it back to the phosphatidylinositol-4,5-bisphosphate (PIP2) inactive state.69,70 Accordingly, PTEN dysfunction causes dysregulation of this and other pathways, resulting in tumorigenesis and cancer progression.71-73 PTEN is mutated in 7-10% of LSCC,62,63,74 and these somatic mutations tend to be distributed across its 9 exons. Some tumor-associated missense mutations may lead to complete loss or severe impairment of the phosphatase activity of the encoded enzyme.75-77 Many tumor-derived PTEN mutants retain partial or complete catalytic function, suggesting that alternative mechanisms can lead to the inactivation of PTEN.78 In addition to its own genetic alterations, PTEN gene expression is also regulated at epigenetic,79 transcriptional,80-82 post-transcriptional,83-86 and post-translational levels as well as by protein–protein interactions.87,88

Partial loss of PTEN function can have dramatic effects on tumorigenesis and cancer progression.71,72 Reflecting the fact that PTEN is a holoinsufficient tumor suppressor, PTEN function is not often completely lost in cancer, providing an opportunity to reactivate its function as a mode of cancer treatment. It has been reported that a tumor-suppressive metabolic state is induced in transgenic mouse lines with the systemic elevation of PTEN.95 In 2019, Lee et al.76 reported a way to reactivate PTEN by inhibiting the MYC-WWP1 inhibitory pathway. In the study, they identified the HECT-type E3 ubiquitin ligase WWP1 as a physical PTEN interactor, and the amplification, and overexpression of which may lead to pleiotropic inactivation of PTEN. A natural and potent WWP1 inhibitor, indole-3-carbinol (I3C), was also found to effectively suppress tumorigenesis driven by the PI3K-AKT pathway. Therefore, both genetic and pharmacological targeting of the MYC-WWP1 axis may be a viable approach for cancer patients driven by impaired PTEN function.

Although extensive research has been conducted on the PI3K pathway component genes as potential molecular therapeutic targets in human cancers in the past two decades, clinical success to date has been limited to the approval of the PI3K inhibitors for hematological malignancies and breast cancer.97-101 Even among the four current FDA-approved PI3K inhibitors for the treatment of hematological malignancies, some of the indications have been withdrawn from the marketing authorization application.102-105 Although some of the decisions were made, according to the manufacturing companies, based on business needs, this will certainly have implications for the future of PI3K inhibitors. In NSCLC, the early-phase clinical trials of PI3K inhibitors and dual PI3K/mTOR inhibitors have yielded negative results.16-18 The modest therapeutic efficacy of PI3K inhibitors may be attributed to various reasons, including insufficient target inhibition, intrinsic and acquired drug resistance, and tolerability.106 Unlike other oncogenes, such as EGRF in LUAD, the correlation between specific PI3K pathway mutations and drug sensitivity is not absolute.107 This makes patient selection more complicated based

Fig. 2 Mutated driver genes and downstream signal pathways in LSCC. FGFR1 amplification is observed in 20% of LSCC patients. FGFR1 amplifications can lead to overexpression of wild-type FGFR1 proteins on the cell membrane, resulting in increased sensitivity to FGF and the promotion of tumor growth via increased activation of four key downstream signaling pathways: PLCγ, PI3K-AKT, RAS-MAPK, and STAT (green). Although mutations in EGFR gene encode p16INK4A and p14ARF, which regulate cell cycle by factors to activate genes required for G1-S transition. The CDK4/6 activation. The phosphorylation of RB by cyclin D-CDK4/6 MAPK signaling, could drive cyclin D upregulation, which leads to Mitogenic signaling, including activation of upstream PI3K and downstream signaling, promoting cell survival and proliferation. Mitogenic signaling, including activation of upstream PI3K and MAPK signaling, could drive cyclin D upregulation, which leads to CDK4/6 activation. The phosphorylation of RB by cyclin D-CDK4/6 complexes and cyclin E-CDK2 complexes releases E2F transcriptional factors to activate genes required for G1-S transition. The CDKN2A gene encodes p16INK4A and p14ARF, which regulate cell cycle by inhibiting CDK4/6 and CDK2, respectively. In LSCC, the inactivated CDKN2A caused by genomic alterations may upregulate this pathway. DAG diacylglycerol, E2F E2 family, FRS2 FGFR substrate 2, GRB2 growth factor receptor-bound 2, IP3 inositol triphosphate, MDM2 murine double minute 2, P phosphorylation, PIP2 phosphatidylinositol-4,5-bisphosphate, PKC protein kinase C, PLCγ phospholipase Cγ, PTEN phosphatase and tensin homolog, STAT signal transducer and activator of transcription.
on PI3K pathway mutation status. Another issue that cannot be overlooked about PI3K inhibitors is their on-target, off-tumor toxicity, particularly hyperglycemia and hyperinsulinemia which are observed as major dose-limiting toxicities.\(^{98,108,109}\) Despite the benefits of PFS shown in several randomized clinical trials, the increased toxicities of PI3K inhibitors have raised concerns about the potential detriments of OS in the PI3K inhibitor arm.\(^{104,105,110-113}\) In blood cancers, future approvals of PI3K inhibitors by FDA should be supported by randomized data.\(^{114}\)

It has been suggested that alternative dosing regimens which offer intermittent pathway inhibition can increase the therapeutic window without compromising therapeutic efficacy.\(^{115-117}\) Another solution is to develop selective compounds that are more selective for mutant PI3K than wild-type PI3K. In the future, more durable therapeutic responses could be achieved by a more tailored PI3K-based therapies with a better understanding of the role of PI3K in cancer and surrounding environments.

Cell cycle in LSCC: the CDK4/6 pathway

The CDKN2A locus, located on human chromosome 9p21, is one of the most common genetic losses in human cancer.\(^{118,119}\) TCGA profiling of 178 LSCC samples revealed that CDKN2A is inactivated in 72% of cases of LSCC.\(^{6}\) The CDKN2A locus encodes two alternatively spliced proteins, p16INK4a (p16) and p14ARF (p14), which function as cell-cycle inhibitors. These two tumor-suppressor proteins function in distinct anticancer pathways: p16 regulates retinoblastoma (RB), and p14 regulates p53. RB is a tumor-suppressor protein which controls cell cycle by preventing entry into the DNA synthesis (S) phase of the cell-division cycle.\(^{120}\) The p16 protein directly inhibits the activities of the cyclin D-dependent kinases, cyclin-dependent kinase (CDK) 4 and CDK6, thus maintaining RB in its dephosphorylated, anti-proliferative state, and leading to cell growth arrest.\(^{121}\) The tumor-suppressor protein p53 plays a pivotal role in regulating cell growth following exposure of cells to various stress stimuli.\(^{122}\) The p14 protein associates directly with murine double minute 2 (MDM2), a negative regulator of p53, preventing the export and degradation of p53.\(^{123-126}\)

At present, the therapeutic focus has been on leveraging CDK4/6 inhibition to activate RB and limit tumor cell proliferation to delay disease progression.\(^{127,128}\) Interesting to note, the pan-cancer analysis of the CDK4/6 pathway showed that CDKN2A loss and RB1 loss were mutually exclusive in most cancers that lose these genes to as VEGF in this review. Alternative exon splicing causes multiple isoforms of VEGF which are characterized by their differential ability to bind heparin.\(^{130}\) VEGF binds to both VEGF receptor 1 (R1) and VEGF receptor 2 (R2) while VEGF2 is the main receptor for VEGF.\(^{137,138}\) VEGF isoforms can also interact with the neuropilin co-receptors (NRP1 and NRP2).\(^{139,140}\) During tumorigenesis, angiogenesis plays a key role in maintaining the expansion in tumor. Most human tumors overexpressed VEGF mRNA, and its expression correlates with invasiveness, increased vascular density, metastasis, tumor recurrence and poor prognosis.\(^{141}\) Accordingly, several strategies that target this VEGF-VEGFR signaling has been devised.\(^{142,143}\)

Neutralizing monoclonal antibodies (mAbs) against VEGF have shown great effect in preclinical studies\(^{144}\) and were the first type of antiangiogenic drugs that entered the market. In 2004, bevacizumab was approved by the FDA for the treatment of metastatic colorectal cancer based on the results of AVF2107 clinical trial.\(^{145}\) However, as the benefits of bevacizumab extended to other malignancies, including non-squamous NSCLC, renal cell carcinoma, ovarian cancer, and cervical cancer,\(^{142}\) LSCC is not one of them, as clinical trials have shown that bevacizumab increases the risk of life-threatening pulmonary hemorrhages in squamous cell carcinomas.\(^{146,147}\) Another antiangiogenic agent, ramucirumab, a human IgG1 monoclonal antibody targeting the extracellular domain of VEGFR2, is currently the only antiangiogenic agent that is approved by FDA for the treatment of LSCC. Based on the results of phase III REVEL clinical trial,\(^{147}\) ramucirumab plus docetaxel is recommended as a subsequent therapy option for metastatic NSCLC following disease progression on or after platinum-based chemotherapy.\(^{148}\)

FGFR1 pathway

Fibroblast growth factor receptor 1 (FGFR1) belongs to the FGFR family of receptor tyrosine kinases (RTKs), which consists of four members: FGFR1 to FGFR4. All these four members share a common RTK architecture, consisting of a large ligand-binding extracellular domain that comprises three immunoglobulin-like domains (D1-3) followed by a single transmembrane helix and an intracellular domain containing the catalytically active “split” tyrosine-kinase domain.\(^{49,150}\) There is also a fifth related receptor, FGFR5 (also known as FGFR1L), which lacks the cytoplasmic tyrosine-kinase domain.\(^{151}\) The native ligand of FGFRs is fibroblast growth factors (FGFs), which can be divided into two categories: hormone-like FGFs (i.e., FGF19, 21, and 23) and canonical FGFs (i.e., FGF1-10, 16, 18, and 20).\(^{152-155}\) The intracellular signaling of the FGFR pathway is primarily mediated mainly through four key downstream pathways: RAS-RAF-MAPK pathway, PI3K-AKT, signal transducer and activator of transcription (STAT), and phospholipase C (PLC).\(^{153-155}\) Dysregulation of FGFR signaling promotes the proliferation, survival\(^{156}\) and development of drug resistance\(^{157}\) in tumor cells, as well as the development of angiogenesis\(^{158}\) and immune evasion in the tumor microenvironment (TME).\(^{159}\) These findings make FGFRs pursued as a potential therapeutic target and support the development of FGFR-targeting anticancer agents.

FGFR1 amplifications are the predominant type of FGFR mutation, occurring in nearly 20% of LSCC patients.\(^{160,161}\) Although the studies in preclinical models have suggested that FGFR inhibitors may be a viable therapeutic option in this cohort of patients, it is a number of FGFR-specific small molecular inhibitors tested in phase I and phase II trials have shown modest effects with overall response rates of 8–15%.\(^{11-15}\) The results from these trials suggest that FGFR1 amplification is not a reliable predictor of response to FGFR1 inhibitors and that FGFR1 mutations have a more complex impact in NSCLC than EGFR-mutated or ALK-rearranged NSCLC.\(^{162}\) A previous study has found that elevated FGFR1 mRNA and/or protein expression was often independent of FGFR1 amplification.\(^{164}\) Future studies are needed to clarify the role of FGFR1 signaling in the pathogenesis of LSCC.
EGFR pathway
EGFR belongs to the HER/erbB family of RTKs, which includes HER1 (EGFR/erbB1), HER2 (neu, erbB2), HER3 (erbB3), and HER4 (erbB4). All members display similar structures: an extracellular, cysteinerich ligand-binding region, a single alpha-helix membrane-spanning region and a cytoplasmic tyrosine-kinase-containing domain. The intracellular signaling of EGFR pathway is mediated mainly through the RAS/MAPK pathway, the PI3K pathway, and the STAT pathway.166,167 Downstream EGFR signaling ultimately leads to increased proliferation,168 angiogenesis,169 metastasis,170 and decreased apoptosis.171 Alterations in EGFR signaling pathways result in constitutive activation of its kinase activity and the inhibition of tumor apoptosis, leading to a poor clinical outcome.172,173 All these findings make EGFR pursued as therapeutic targets and support the development of EGFR-targeting anticancer agents.174

The reported rate of EGFR mutation in LSCC patients is 4.2–7%,4,175,176 which is much lower compared with LUAD patients. In previous prospective phase III clinical trials assessing the efficacy of first-line EGFR-TKIs in the treatment of NSCLC, only 27 cases of LSCC patients with EGFR mutation were identified in six clinical trials, which were further randomized into two groups.177,178 This limited number of LSCC cases makes it hard to assess the benefits of EGFR-TKIs for EGFR-mutated LSCC in prospective studies. Subgroup analysis in the BR.21 and SATURN clinical trials showed that erlotinib was effective in unselected LSCC patients.181,182 A meta-analysis also confirmed that EGFR-TKIs demonstrated an improved OS and PFS compared to placebo in unselected patients with advanced LSCC.183 Based on previous retrospective matched-pair studies,186,187 EGFR-TKIs were less effective in EGFR-mutant LSCC than in LUAD but still had clinical benefits for LSCC patients. Another retrospective study found that in Chinese female EGFR-mutant LSCC, EGFR-TKIs conferred longer PFS and OS than chemotherapy, but the survival was similar with patients without EGFR mutations.188 In conclusion, for EGFR-mutant LSCC, EGFR-TKIs can improve the outcomes of these patients compared with chemotherapy, but its efficacy is not as robust as that of EGFR-TKIs for EGFR-mutant LUAD.

Notably, EGFR protein was significantly upregulated in the squamous cancers but not in LUAD,190 although many activating EGFR mutations occurred in LUAD. This EGFR amplified LSCC cohort did not show elevated EGFR pathway activity, but displayed a high correlation with mRNA abundance of the five EGFR ligands. This is consistent with the results in HNSCC,190 which indicates a squamous cell carcinoma feature that EGFR ligand abundance drives the activity of EGFR pathways. It suggests that EGFR ligand abundance, rather than EGFR amplification, might be a better predictor for EGFR inhibitor response in this population of LSCC patients.

KEAP1/NRF2 pathway
The Kelch-like ECH-associated protein 1 (KEAP1, encoded by KEAP1)/nuclear factor erythroid 2-related factor 2 (NRF2, encoded by NFE2L2) pathway plays a physiologic protective role against environmental insults.191 This KEAP1/NRF2 system forms the xCT antiporter system (xCT). xCT functions as a concentration-dependent antiporter, which exports glutamate while importing cystine, the dimerized form of cysteine. Three amino acids were required in the synthesis of glutathione: glutamate, cysteine, and glycine, and xCT can keep intracellular stores of cysteine for glutathione synthesis.209,210 This NRF2-mediated depletion of intracellular glutamate stores either through export (xCT) or consumption (glutathione synthesis) makes highly metabolic LSCC cells dependent on extracellular glutamine import, which is transformed to glutamate by GLS1211 (Fig. 3b). This vulnerability of tumor cells can be targeted through the inhibition of the activity of GLS1. Another possible therapeutic target is targeting the PI3K-AKT pathway. PI3K-AKT signaling is a major proliferative signal that inactivates GSK3 by phosphorylation, which increases NRF2 in a KEAP1-independent way (Fig. 3a). The GSK3 pathway is also a key regulator of adaptive glutamine metabolism.206

Based on this preclinical evidence, therapeutic interventions targeting the KEAP/NRF2 signaling have been tested in clinical trials. Three treatment approaches were used to target this signaling, including glutaminase inhibition, glutamine antagonism, and PI3K-AKT signaling inhibition. However, the phase II KEAPSAKE study which evaluated telaglenastat, a glutaminase inhibitor, in advanced non-squamous NSCLC with KEAP1/NRF2 mutations was terminated due to lack of clinical benefits among patients treated with telaglenastat in the interim analysis.212 For PI3K-AKT signaling inhibition, an mTOR kinase inhibitor sapanisertib was evaluated in a phase II clinical trial for advanced or recurrent LSCC with KEAP1/NRF2 mutations (NCT02417701). The preliminary results showed an objective response rate (ORR) of 25% (3/12) in the NFE2L2 mutant squamous cohort and 16.7% (1/6) in the KEAP1 mutant squamous cohort.213 The relatively low response rate in these two cohorts may be attributed to the circumvention of mTOR inhibition by upregulation of glutamine metabolism through GSK3 signaling axis in LSCC cells (Fig. 3b).208 Glutamine blockade seems to be a promising strategy, which has been shown to induce divergent metabolic programs between cancer cells and effector T cells, acting as a “metabolic checkpoint” for tumor immunotherapy.214 Currently, siripigenastat, a broad glutamine antagonist, is being evaluated in combination with atezolizumab for patients with advanced solid tumors in phase I/ll clinical trial (NCT04471415).215

Signal Transduction and Targeted Therapy (2022) 7:353
THERAPEUTIC TARGETS ON CHROMOSOME 3Q IN LSCC

SOX2 and **TP63** are both regarded as key squamous differentiation markers located on chromosome 3q. The suppression of SOX2 gene in LSCC cell lines had the highest anti-proliferative effects among the immediate genes on chromosome 3q26.33, including PIK3CA, TP63, DCUND1. It was also found that LSCC cell lines amplified for SOX2 and TP63 were highly dependent on them, supporting oncogene addiction. SOX2 belongs to the sex-determining region Y (SRY)-related high-mobility-group (HMG) box family characterized by a DNA-binding HMG domain, which shares at least 46% of sequence homology across all sox proteins. As a transcription factor, SOX2 recognizes and binds to the promoter of various target genes with complex, important, and pleiotropic impacts in multiple tissues in development and maintaining homeostasis.

Dysregulation of SOX2 expression is an important factor contributing to cancer pathogenesis, associated with several tumor features, including cancer stemness, cell proliferation and migration, apoptosis, and drug resistance. TP63 encodes p63, a transcription factor that belongs to the tumor-suppressor p53 superfamily of transcription factors, including two additional paralogs, p53 and p73. The three members of the p53 family share very significant homology both at the genomic and at the protein level. Each contains a transactivation domain (TAD), a DNA-binding domain (DBD) and an oligomerization domain (OD). A common feature of all p53 family members is that they can be expressed in many different isoforms. For p63, three different splice variants are characterized by their differences in their C-termini: a full-length α form; a β form that is truncated after exon XII; and a γ form that lacks exons XII-XIV and uses an additional exon XV. Each of these isoforms can be further divided into TA forms and ΔN forms, based on the presence of the TAD or not, which is decided by whether transcription of the precursor mRNA starts from exon I.
acting its proteasome-mediated degradation.258 The researchers showed that USP28, a component of the SCF (Skp1, Cullin 1, and F-box protein) ubiquitin ligase complex, is a tumor suppressor in SCCs.258 In addition to its tumor-suppressive function, inhibition of USP28 showed a selective anti-proliferative response of SCC cells.258 The researchers concluded that inhibition of USP28 could lead to FBXW7 substrate accumulation (either via destabilization of FBXW7 or via stabilization of both FBXW7 and its substrates).264,264 Therefore, targeting USP28 to destabilize the substrates of FBXW7 represents a promising strategy to inhibit the function of MYC and other oncogenic regulators.

SOX2

Given that SOX2 is amplified in various types of cancer and involved in tumorigenesis via complicated signaling pathways and protein–protein interactions, targeting SOX2 is a promising strategy for anticancer therapy.260 Previously, as a transcription factor, SOX2 was deemed undruggable because of its absence of active sites or allosteric regulatory pockets to be targeted by small molecule inhibitors (SMIs).264 Therefore, studies targeting SOX2 in anticancer therapy have been focusing on the upstream and downstream signaling of SOX2. Recently, Liu et al.249 reported the development of a platform using the technique of proteolysis-targeting chimeras (PROTACs), which is able to selectively degrade the transcription factors of interest. This generalizable platform may help target SOX2 as an effective anticancer therapy.

\textbf{ΔNp63}

The main isoform of p63 expressed in adult squamous tissues is ΔNp63.246 For squamous cell carcinomas (SCCs), ΔNp63 acts as a proto-oncogenic transcription factor and the master regulator of SCC formation.247,250 The oncogenic potential of ΔNp63 is related to its direct competition with p53, TAp63, and TAp73 on the same p53 responsive elements and the consequent inhibition.251,252 High levels of endogenous ΔNp63 protein abundance are essential to induce and maintain SCC tumors.247,253 Acute gene ablation of ΔNp63 in an autochthonous SCC model could induce rapid tumor regression.253 Besides, ΔNp63 is also found to regulate chemoresistance in SCCs by controlling the expression of DNA repair genes.254,255 Collectively, these findings implicate that ΔNp63 is a promising therapeutic target in SCC. As a transcription factor, ΔNp63 was considered undruggable, as with most transcription factors which lack suitable domains for the binding of SMIs.244 The development of a generalizable platform by Liu et al.245 based on the technique of PROTACs, which is able to selectively degrade the transcription factors of interest, may provide new strategies to target ΔNp63. However, it is of note that ΔNp63 is associated with the regulation of a massive subset of different genes and cellular processes, which makes complete blocking of ΔNp63 almost impossible.

\textbf{USP28}

Ubiquitin-specific peptidase 28 (USP28) belongs to the largest ubiquitin–proteasome system, which can be targeted by multiple E3 ligases.257 USP28 is highly abundant in SCCs and correlates with poor prognosis.258 In SCCs, USP28 could stabilize ΔNp63 and maintain elevated ΔNp63 levels by counter-acting its proteasome-mediated degradation.258 The researchers further confirmed that the pharmacologic inhibition of USP28 showed a selective anti-proliferative response of SCC cells.258 In addition to its tumor-suppressive function, inhibition of USP28 in ΔNp63 expressing SCC could sensitize SCC cells to cisplatin treatment by toning down the DNA damage response pathways.259 Taken together, these data show that USP28-ΔNp63 axis is required in the maintenance of SCC identity and control of SCC marker gene.

USP28 stabilizes ΔNp63 independently of FBXW7,258 which is a component of the SCF (complex of SKP1, CUL1, and F-box protein)-type ubiquitin ligases.260 FBXW7 is a tumor suppressor that binds to key regulators of cell division and growth, including cyclin E, MYC, JUN, and Notch, most of which are proto-oncogenes that are closely related to the pathogenesis of human cancers.261 Recurrent mutations in the FBXW7 tumor-suppressor gene have been reported in LSCC.20,262 FBXW7 and USP28 are closely related in that USP28 could lead to FBXW7 substrate accumulation (either via destabilization of FBXW7 or via stabilization of both FBXW7 and its substrates).263,264 Therefore, targeting USP28 to destabilize the substrates of FBXW7 represents a promising strategy to inhibit the function of MYC and other oncogenic regulators.

Inhibition of USP28 is particularly effective in mouse LSCC models, resulting in dramatic tumor regression.258,258 The USP28 inhibitor used by Prieto-Garcia et al.258 was AZ1, a dual USP25/USP28 inhibitor, while the USP28 inhibitor FT206 used by Ruiz et al.260 preferentially inhibits USP28 compared to USP25. Despite evidence that USP25 is an oncoprotein,260 its oncogenic function in LSCC is still enigmatic. There is currently no specific inhibitor of USP28 mainly due to the highly similar catalytic structure of USP25 and USP28. In the future, with the help of novel drug development technologies, USP28 inhibitors may become a promising therapeutic option for LSCC, but further clinical trials are still needed.

Survivin

Survivin (also known as BIRC5) has been a well-known cancer therapeutic target since its discovery over 20 years ago.267 Because of its essential role in cell mitosis and inhibition of apoptosis,258,270 as well as its variable expression levels in cancer and normal cells,271 survivin appears to be a ideal candidate for anticancer therapy. However, no survivin-specific drugs have yet reached the clinic. SMIs and inhibitory peptides targeting survivin for NSCLC have been explored in clinical trials but have shown modest or no improvement.272–274 Recently, Satpathy et al.38 identified ΔNp63-low LSCC which showed no elevation at RNA or protein levels. Accordingly, they also discovered a substantial number of LSCC cell lines with low ΔNp63 expression which were significantly more vulnerable to the survivin inhibitor YM-155. These findings may provide new strategies for selecting LSCC patients based on the TP63 status, which may have better response to survivin inhibition.

TNIK

TRAF2/-NCK-interacting kinase (TNIK) is a member of germinal center kinase (GCK) family, which was found previously involved in the promotion of colorectal cancer, triple-negative breast cancer (TNBC), osteosarcoma cancer, and chronic myelogenous leukemia.275–278 Furthermore, this protein kinase was identified as a potential genetic dependency in tumors with distal amplification of the 3q chromosome.280 TNIK gene is amplified in ~50% of LSCC cases.63 In LSCC cell lines with high TNIK expression, depleting TNIK can significantly reduce their growth.281 In addition, TNIK inhibition also showed antitumor activity and increased apoptosis in established LSCC patient-derived xenografts. These findings suggest TNIK as a potential therapeutic target for LSCC patients with TNIK gene copy-number gains.

EPIGENETIC THERAPEUTIC TARGETS IN LSCC

Epigenetics is defined as the DNA sequence-independent inheritance of phenotype or gene expression.282 There are four major mechanisms of epigenetic regulation: DNA methylation, histone post-translational modifications, chromatin structure regulation, and noncoding RNA regulation.282 In cancer cells, the epigenetic features are commonly dysregulated. High rate of alterations in many epigenetic regulator genes was observed in cancer genome-sequencing studies.283 This plethora of genetic lesions in epigenetic regulators has attracted much attention as possible targets for the development of epdrugs. Most epdrugs that has been approved by FDA are for the treatment of hematopoietic malignancies.284 Tazemetostat, an EZH2 inhibitor,
was approved by FDA for advanced epithelioid sarcoma, making it the first epidrug to treat solid tumors. In this chapter, we will discuss some potential epigenetic therapeutic targets in LSCC.

NSD3: the neighboring gene of FGFR1

A recent proteogenomic portrait of LSCC suggested that WHSC1L1 (NSD3), but not FGFR1, may be the critical driver oncogene within this recurrent focal amplicon of 8p11-12 genomic region. The amplification of NSD3 leads to increased NSD3 expression, thus increasing the synthesis of H3K36me2. Less common than the amplification of 8p11-12 and NSD3 expression, the GOF variant NSD3 was also present in LSCC. These two works together to increase H3K36me2, stimulating transcription of oncogenic targets, including mTOR pathways and MYC-associated pathways. This process rendered the tumor NSD3-addicted, which could be inhibited by BETi. SOX2 and BCL11A are both identified as LSCC oncogenes. The BCL11A-SOX2 transcriptional program is crucial for the maintenance of a squamous phenotype. SETDB8 is a monomethyltransferase, whose gene is regulated by SOX2 and BCL11A. The inhibition of SETDB8 selectively limits LSCC tumor growth. LSD1 could promote tumorigenesis in two different ways. The first way is demethylase-dependent. In SOX2 expressing tumor cells, LSD1 inhibition will induce increased H3K9me1/2me2. The repressive H3K9 methylations act on the SOX2 gene, leading to SOX2 downregulation, reduced oncogenic potential, and increased cellular differentiation. The second way is demethylase-independent. In cells with a low level of LSD1, FBXW7 forms a dimer, which promotes ubiquitylation for proteasomal degradation of oncoprotein substrates, thus suppressing cell outgrowth. In cancer cells with overexpressed LSD1, the FBXW7 dimerization is blocked by LSD1 binding to FBXW7 in a demethylase-independent manner. FBXW7 self-ubiquitylation will then be triggered, followed by degradation by proteasome as well as lysosome in a p62-dependent pathway. EZH2 is an enzymatic subunit of PRCC, which also includes EED, SUZ12, and RBBP4/7. The SET domain of EZH2 is responsible for the catalyzes the mono-, di-, and trimethylation of H3K27 from the universal methyl donor SAM, after which SAM becomes SAH. EZH2 also has noncanonical functions with its hidden TAD. The EZH2 TAD directly interacts with cMyc and other activators, including p300 and SWI/SNF. GOF gain-of-function, PRCC polycomb repressive complex 2, SAH S-adenosyl-L-homocysteine, SAM S-adenosyl-L-methionine, TAD transactivation domain.
SETD8

SETD8 (also known as PR-Set7, SET8, and KMT5A) is currently the only known H4K20me1 monomethyltransferase, which is implicated in the regulation of multiple biological activities, including DNA replication, DNA damage repair, cell-cycle progression, and transcription regulation. During mitosis, SETD8 is concentrated in the nucleus during G1 and G2 phases and is degraded through ubiquitination at G1/S transition.

Besides H4K20, SETD8 can also regulate the tumor-suppressor protein p53 and proliferating cell nuclear antigen (PCNA), which are closely related to carcinogenesis.

SETD8 is implicated in cancer proliferation, migration, invasiveness, and oncogenesis, associated with a poor outcome.

In the study by Lazarus et al., BCL11A, which encodes a transcriptional regulator, was identified and characterized as a LSCC oncogene. Along with SOX2, which was also regarded as an oncogene in LSCC, this BCL11A-SOX2 transcriptional program provides a potential therapeutic window for LSCC. To disrupt this BCL11A-SOX2 transcriptional program, a Gene Ontology (GO) was performed and the SETD8 gene is selected, which is regulated by both BCL11A and SOX2. Knockdown of SETD8 gene could selectively inhibit LSCC tumor growth, but not LUAD cell. Besides, SETD8 inhibition also sensitizes LSCC cell lines to chemotherapy. Collectively, this study highlights the BCL11A-SOX2 transcriptional program as a novel target for LSCC and suggests the monomethyltransferase SETD8 as a potential downstream target.

LSD1

Lysine-specific demethylase 1 (LSD1, also known as KDM1A, KIAA0601, BHC110, and AOF2) is one of the SOX2-related targets that has been extensively studied. LSD1 is the first identified histone demethylase, which has the dual substrate specificity to catalyze the demethylation of histone 3 lysine 4 (H3K4me1/2) and H3K9me1/2 for transcriptional repression.

In addition to its demethylase activity, the demethylase-independent activity of LSD1 has also been implicated in carcinogenesis. LSD1 can act as a pseudosubstrate of FBWX7, a typical tumor suppressor that targets many oncoproteins for ubiquitylation and degradation. FBWX7 dimerization is disrupted by the binding of FBWX7 and LSD1 which promotes FBWX7 self-ubiquitylation and degradation through proteasome and lysosomal pathways, independent of the demethylase activity of LSD1, thus leading to accelerated growth. The discovery of this demethylase-independent activity of LSD1 implicates that the efforts to develop LSD1 inhibitors should be extended to directly target LSD1 rather than just inhibit its demethylase activity, which should harbor broader utility in anticancer therapy.

Currently, many LSD1 inhibitors are tested in phase I/II clinical trials, although most inhibitors were based on blocking its demethylase activity. However, the ineffectiveness of catalytic inhibition of LSD1 has been noticed in certain cancers. Therefore, targeting LSD1-involved protein interactions with the emerging technologies of PROTACs not confined to the inhibition of its demethylase activity, may be a novel anticancer therapy in cancers with LSD1 overexpression like LSCC.

EZH2

Enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase associated with transcriptional repression. As an enzymatic subunit of the polycomb repressive complex 2 (PRC2), EZH2 catalyzes the addition of methyl group to histone 3 lysine 27 (H3K27), which serves as an anchor point for the recruitment of additional polycomb group proteins, contributing to formation of a repressive chromatin state. Overexpression of EZH2 is observed in numerous tumor entities and associated with cancer progression and poor outcomes in patients. In LSCC, EZH2 dependency was observed in SOX2 amplified LSCC cell lines. Accordingly, the inhibition of EZH2 in TNBC could lead to the downregulation of SOX2 expression, suggesting that the inhibition of EZH2 may be an alternative strategy to depress the expression of SOX2 in LSCC.

EZH2 is usually found in actively proliferating tissues, whereas its homolog EZH1 is present in both dividing and differentiated cells. Compared to PRC2-EZH2, PRC2-EZH1 demonstrates a lower histone methyltransferase activity, and its knockdown alone does not lead to global reduction of H3K27 methylation. This suggests that EZH2 plays a predominant role in H3K27 methylation in malignant cells and provides a rationale for the development of EZH2-specific inhibitors. On the other hand, the residual H3K27 after EZH2 inhibition also suggests the rationale for dual EZH1 and EZH2 inhibition. Apart from its catalytic function, EZH2 could also modulate gene expression during carcinogenesis in a PRC2-independent way. This PRC2-independent functions is associated with other non-PRC2 partners, the interactions with which are often methyltransferase-independent. For example, EZH2 could exert its oncogenic function as a transcriptional coactivator of androgen receptor in cells of castration-resistant prostate cancer.

In acute leukemia, the noncanonical functions of EZH2 were fulfilled by binding cMyc at non-PRC2 targets and using a hidden transactivation domain (TAD) for activator recruitment and gene activation. The discovery of the noncanonical function of EZH2 provides rationale for the development of EZH2 SMLs, without necessarily inhibiting its catalytic function.

TARGETING THE IMMUNE CHECKPOINT IN LSCC

Cancer immunotherapy has emerged as a powerful tool in the armamentarium against cancer, especially for LSCC which is refractory to currently available chemotherapy and targeted therapies. The field of oncology has been revolutionized by the emergence of cancer immunotherapy with significantly prolonged survival of patients in several fatal cancer types. Immunotherapy is increasingly being used as first-line treatment for many cancer indications. The idea of cancer immunotherapy against cancer is to deploy the immune system as a tool to treat neoplastic cells and selective target for the treatment of LSCC.

Cancer immunotherapy has received a lot of criticism at that time. Compared with traditional chemotherapy and targeted therapy, immunotherapy has potential efficacy across the boundaries of histology and driver mutational status and can lead to sustained remissions for those patients who achieve a response with fewer side effects. In this part, we will mainly discuss ICBr therapies in LSCC. The current application of cancer immunotherapy in LSCC was summarized in Table 1. We will also present new insights into current...
Table 1. ICB therapies approved by FDA or NMPA for the treatment of LSCC

Drug	Brand name	Developer	Target	Approved treatment options for LSCC	Approval time	Related trial
Nivolumab	Opdivo®	Bristol-Myers Squibb Co.	PD-1	Neoadjuvant treatment with platinum-doublet chemotherapy for adult patients with resectable NSCLC (The first FDA approval of a checkpoint inhibitor for neoadjuvant treatment of lung cancer)	3/4/2022	CHECKMATE-816 (NCT02998528)
				First-line treatment plus ipilimumab and 2 cycles of platinum-doublet chemotherapy for patients with metastatic NSCLC, with no EGFR or ALK genomic tumor aberrations. (FDA)	3/26/2020	CHECKMATE-9LA (NCT03215706)
				First-line treatment plus ipilimumab for patients with metastatic NSCLC whose tumors express PD-L1 (≥1%) with no EGFR or ALK genomic tumor aberrations (The first and currently the only FDA approval of a checkpoint inhibitor combination for the treatment of NSCLC)	3/15/2020	CHECKMATE-227 (NCT02477826)
				Second-line treatment for patients with metastatic squamous NSCLC whose disease progressed during or following platinum-containing chemotherapy (FDA)	3/4/2015	CHECKMATE-017 (NCT01642004)
Pembrolizumab	Keytruda®	Merck & Co. Inc.	PD-1	First-line treatment for patients with stage III NSCLC who are not candidates for surgical resection or definitive chemoradiation or metastatic NSCLC. Patients’ tumors must have EGFR or ALK genomic aberrations and express PD-L1 (TPS ≥ 1%) (FDA)	4/11/2019	KEYNOTE-042 (NCT02220894)
				First-line treatment with carboplatin and either paclitaxel or nab-paclitaxel for metastatic squamous NSCLC (FDA)	10/30/2018	KEYNOTE-407 (NCT02775435)
				First-line treatment for patients with metastatic NSCLC whose tumors have high PD-L1 expression (TPS ≥ 50%), with no EGFR or ALK genomic tumor aberrations, and no prior systemic chemotherapy treatment for metastatic NSCLC (The first FDA approval of a checkpoint inhibitor for first-line treatment of lung cancer)	10/24/2016	KEYNOTE-024 (NCT02142738)
				Second-line treatment for patients with metastatic NSCLC whose tumors express PD-L1 (TPS ≥ 1%), with disease progression on or after platinum-containing chemotherapy. (FDA)	10/24/2016	KEYNOTE-024 (NCT02142738)
Cemiplimab	Libtayo®	Regeneron Pharmaceuticals, Inc.	PD-1	First-line treatment for patients with advanced NSCLC (locally advanced who are not candidates for surgical resection or definitive chemoradiation or metastatic) whose tumors have high PD-L1 expression (TPS ≥ 50%), with no EGFR, ALK or ROS1 genomic tumor aberrations (FDA)	2/22/2021	EMPOWER-Lung 1 (NCT03088540)
Atezolizumab	Tecentriq®	Genentech, Inc.	PD-L1	Adjuvant treatment following resection and platinum-based chemotherapy in patients with stage II to IIIA NSCLC whose tumors have PD-L1 expression on ≥1% of tumor cells (The first FDA approval of a checkpoint inhibitor for adjuvant treatment of lung cancer)	10/15/2021	IMpower010 (NCT02486718)
				First-line treatment for adult patients with metastatic NSCLC whose tumors have high PD-L1 expression (TC ≥ 50% or IC ≥ 10%), with no EGFR or ALK genomic tumor aberrations (FDA)	5/18/2020	IMpower110 (NCT02409342)
immunotherapeutic targets as well as new targets for ICB therapies.

ICB therapy
Immune-checkpoint blockade is one of the most promising approaches to activating antitumor immunity. The immune-checkpoint pathways are involved in the major mechanisms underlying tumor immune evasion. Physiologically, these immunosuppressive signaling pathways play important roles in maintaining self-tolerance to prevent autoimmunity, limit immunemediated tissue damage, and control the resolution of inflammation.332,333 Cancer cells may take advantage of these immune checkpoints to disguise themselves from body immune system.334,335 Among these immune checkpoints, cytotoxic T-lymphocyte antigen 4 (CTLA-4) and PD-1/PD-L1 axis are the most potent examples of T-cell immune-checkpoint molecules. The ICB therapies which were approved by FDA or National Medical Products Administration (NMPA) for LSCC are summarized in Table 1.

Drug	Brand name	Developer	Target	Approved treatment options for LSCC	Approval time	Related trial
Durvalumab	Imfinzi®	AstraZeneca Inc.	PD-L1	Second-line treatment for patients with metastatic NSCLC whose disease progressed during or following platinum-containing chemotherapy (FDA)	10/18/2016	OAK (NCT02008227) POPLAR (NCT01903993)
				Treatment for patients with unresectable stage III NSCLC whose disease has not progressed following concurrent platinum-based chemotherapy and radiation therapy (FDA)	3/15/2020	CHECKMATE-227 (NCT02477826)
Ipiilimumab	Yervoy®	Bristol-Myers Squibb Co	CTLA-4	First-line treatment plus nivolumab and 2 cycles of platinum-doublet chemotherapy for patients with metastatic NSCLC, with no EGFR or ALK genomic tumor aberrations (FDA)	3/26/2020	CHECKMATE-9LA (NCT03215706)
				First-line treatment plus nivolumab for patients with metastatic NSCLC whose tumors express PD-L1 (≥1%) with no EGFR or ALK genomic tumor aberrations (The first and currently the only FDA approval of a checkpoint inhibitor combination for the treatment of NSCLC)	3/31/2020	CHECKMATE-119 (NCT03558471)
Sintilimab	Tyvyt®	Innovent Biologics (Suzhou) Co. Ltd.	PD-1	First-line treatment with gemcitabine and platinum for patients with locally advanced or metastatic squamous NSCLC (NMPA)	6/1/2021	ORIENT-12 (NCT03629925)
Camrelizumab	AiRuiKa®	Jiangsu Hengrui Pharmaceuticals	PD-1	First-line treatment with carboplatin and paclitaxel for patients with locally advanced or metastatic squamous NSCLC (NMPA)	12/10/2021	CameL-sq (NCT03668496)
Tislelizumab	BaiZeAn®	BeiGene	PD-1	Second-line or third-line treatment for patients with locally advanced or metastatic NSCLC with disease progression during or following treatment with at least one platinum-containing regimen	1/5/2022	RATIONALE 303 (NCT03358875)
Sugemalimab	Cejemly®	CStone Pharmaceuticals	PD-L1	First-line treatment with carboplatin and paclitaxel for patients with metastatic squamous NSCLC (NMPA)	12/21/2021	GEMSTONE-302 (NCT03789604)

ALK anaplastic lymphoma kinase, \textit{CTLA-4} cytotoxic T-lymphocyte antigen 4, \textit{EGFR} epidermal growth factor receptor, \textit{FDA} Food and Drug Administration, \textit{ICB} immune-checkpoint blockade, \textit{ICR} immune-checkpoint receptor, \textit{TSCC} lung squamous cell carcinoma, \textit{NMPA} National Medical Products Administration, \textit{NSCLC} non-small-cell lung cancer, \textit{PD-L1} programmed cell death ligand 1, \textit{TTP} tumor proportion score. ® Registered sign.

11 The ICB therapies which were approved by FDA or National Medical Products Administration (NMPA) for LSCC are summarized in Table 1.
while the interaction of the ligands with CTLA-4 serves to inhibit T-cell response. These regulatory effects of CTLA-4 mainly restrict the expansion of CD4+ helper T cells while boosting regulatory T cells (Tregs), thus leading to a pro-tumor immunosuppressive phenotype.

The recognition of CTLA-4 as a negative regulator of T-cell activation makes antagonizing CTLA-4 a reasonable method to enhance the antitumor immunity of T cells. Initial preclinical studies found that CTLA-4 blockade enhanced antitumor immunity and caused regression of immunogenic tumors without inducing substantial autoimmunity. Based on these preclinical findings, several clinical trials have been conducted to evaluate the therapeutic efficacy of CTLA-4 antibodies in tumors, which finally led to the FDA approval of ipilimumab by FDA for the treatment of advanced melanoma. However, the impressive effects of ipilimumab in melanoma patients did not proceed in renal cell carcinoma, small-cell lung cancer, and prostate cancer. Another CTLA-4-blocking antibody, tremelimumab, has not received FDA approval since it did not improve survival compared to chemotherapy in metastatic melanoma. As the first immune-checkpoint inhibitor, ipilimumab is also currently the only CTLA-4-blocking antibody that has gained approval for anticancer treatment. No CTLA-4 inhibitors have been approved as monotherapy or in combination therapy with chemotherapy for the treatment of NSCLC (Table 1).

The fact that anti-CTLA-4 antibodies are capable to induce long-term immunity in cancer patients demonstrates that CTLA-4 remains an important immunotherapy target. Nevertheless, CTLA-4-targeting inhibitors have not reached its full potential, as evidenced by high rates of immunotherapy-related adverse effects (irAEs) and relatively low response rates. The strong irAEs of ipilimumab limit the doses tolerated by cancer patients. Both anti-PD-1/PD-L1 antibodies and anti-CTLA-4 antibodies have irAEs, while the effects of anti-CTLA-4 therapy are generally more severe. The dose-limiting toxicity of ipilimumab presented an opportunity of developing the next-generation molecules with wider therapeutic window. Recently, additional mechanisms were raised to explain the immunotherapeutic effects of anti-CTLA-4 mAbs, including depletion of regulatory T cells (Tregs) in TME. According to Du et al., ipilimumab remains full activity without blocking B7-CTLA-4 interaction. In their studies, the humanized antibodies they developed without blockade of the B7-CTLA-4 interaction were as effective as ipilimumab at causing rejection in cancer. To further confirm that this tumor rejection was induced by Treg depletion through antibody-dependent cellular cytotoxicity (ADCC), concurrent administration of anti-FcR antibodies treatment completely abolished the antitumor effect of ipilimumab. Collectively, these findings suggest that the selective Treg depletion in the tumors may be the primary mechanism of antitumor effect of anti-CTLA-4 antibody rather than the blockade of B7-CTLA-4 interactions.

Many new types of anti-CTLA-4 antibodies have been developed to increase antitumor effect, reduce side effects, or both. Increasing the ability of Fc to bind to FcR is one of the strategies to enhance the antitumor effect which can be achieved through a non-fucosylated derivative of ipilimumab (BMS-986249) or an engineered Fc variant of an anti-CTLA-4 antibody (AGEN-1181 or its mouse surrogate). The next-gen anti-CTLA-4 mAb, ONC-392, which effectively and selectively eliminates Tregs, has been granted Fast Track designation granted by FDA for monotherapy in PD-L1-resistant NSCLC. Different from other anti-CTLA-4 mAbs being tested, the pH-sensitivity nature of ONC-392 avoids antibody-triggered lysosomal degradation of CTLA-4, thereby reducing toxicity and exerting its anticancer potential. ONC-392 is currently being evaluated in Phase I clinical trial (PRESERVE-001; NCT04140526) for advanced solid tumors and NSCLC. An additional approach to moderate the adverse event profile of anti-CTLA-4 is to limit the CTLA-4 blockade within the tumor. For example, a “proform” of ipilimumab (BMS-986249) was synthesized, which was designed to remain inert in the periphery, but have activity restored when unmasked by tumor-associated proteases. Another approach is to generate a pH-selective form of ipilimumab, which could preferentially and reversibly target the acidic TME over the neutral periphery.

PD-1 axis

PD-1 axis was the second immune-checkpoint pathway targeted for ICB therapy. In 2014, fully humanized anti-PD-1 mAbs pembrolizumab and nivolumab became the first PD-1 targeted therapeutics approved by FDA for refractory and advanced melanoma. Although anti-PD-(L)1 therapy entered the market later than anti-CTLA-4 therapy, PD-(L)1 blockade have shown broader clinical utility than anti-CTLA-4 treatment. For LSCC, a number of anti-PD-(L)1 therapeutics have been approved by FDA and NMPA as monotherapy or in combination therapy with chemotherapy (Table 1).

PD-1 was first identified as a putative mediator of apoptosis in 1992 and its role in maintaining peripheral tolerance by serving as a negative regulator of immune responses was elucidated in 1999 when Nishimura et al. found that PD-1-deficient mice developed a late onset of lupus-like autoimmune disease. Nearly at the same time, Dong et al. revealed a new member of the B7 family which might be involved in the negative regulation of cell-mediated immune responses. In the next year, this new member of the B7 family was confirmed to be the ligand of PD-1 (PD-L1) and an inhibitor of T-cell activation. PD-L2, a second ligand with higher affinity for PD-1, was also identified. Subsequent work found out that PD-L2 could have both co-stimulatory and co-inhibitory functions depending on the receptor and context. After being implicated in the negative regulation of T cells, the PD-1 axis was regarded as an active target of developing anticancer therapies. Multiple preclinical studies have showed that the PD-1 axis in the tumor causes the resistance to immune-mediated cytolysis, while blocking PD-L1 or PD-1 with specific mAbs in tumors could reverse tumors’ inherent resistance to cytotoxicity by T cells. However, solely blocking PD-L2 did not demonstrate any antitumor effect. Following the success of
preclinical studies, mAbs targeting the PD-1 axis were designed and showed remarkable efficacy in clinical trials. In a head-to-head comparison for PD-L1 expressing advanced NSCLC, monotherapy with the PD-1 inhibitor pembrolizumab showed significantly better OS and lower incidence of adverse events than chemotherapy.186,187 The PD-L1 inhibitor atezolizumab also resulted in significantly longer OS than platinum-based chemotherapy in NSCLC patients with high PD-L1 expression.27,288

As studies in immunotherapy increase, difference between the clinical effect of anti-PD-1 and anti-PD-L1 has been reported. Such disparities have drawn the attention of clinicians and a better understanding of this discrepancy may guide us for a better administration of these drugs. Currently there are no head-to-head comparisons of anti-PD-1 mAbs and anti-PD-L1 mAbs in clinical trials. In a systematic review and meta-analysis, Duan et al.389 adjusted indirect comparisons based on a well-designed mirror principle to minimize the potential bias and found out that anti-PD-1 mAbs appeared to exhibit significantly greater OS compared with anti-PD-L1 with a comparable safety profile in patients with solid tumors. The possible reason for the improved efficacy of anti-PD-1 mAbs compared with anti-PD-L1 mAbs may come from the mechanisms of PD-1 and PD-L1 blockade in anticancer therapy. Anti-PD-1 mAbs can bind to PD-1 and further block the interaction between PD-1 and its ligands (PD-L1 and PD-L2), while the PD-1/PD-L2 axis remains intact and exerts its immune suppressive functions when PD-L1 is blocked by anti-PD-L1 mAbs. Nevertheless, the blockade of PD-1 may shift the balance of the binding of PD-L2 with its other partner, repulsive guidance molecule b (RGMB), which can lead to pneumonitis.390 This is also confirmed by the fact that patients treated with PD-1 inhibitors have a higher incidence of pneumonitis than patients who received PD-L1 inhibitors.390,391

Although great success has been achieved in the treatment of LSCC with the advent of PD-1 axis inhibitors, the ORR of PD-1 axis inhibitor in the treatment of advanced NSCLC is ~30%.27,287 Therefore, it is of utmost importance for the establishment of effective biomarkers for predicting the efficacy of anti-PD-1 axis agents. The assessment of PD-L1 expression on tumor cells is a logical biomarker for the prediction of treatment response to anti-PD-1 or anti-PD-L1 therapies. A real-world study in China has found out that LSCC patients were associated with higher incidence rate of positive PD-L1 expression, suggesting a benefit of using mAbs in LSCC patients.392 Although PD-L1 immunohistochemistry (IHC) plays an important role in patient stratification in clinical trials of anti-PD-1 or anti-PD-L1 therapies, it has poor reliability as a biomarker for anti-PD-1 or anti-PD-L1 therapies, as patients with negative PD-L1 expression can still benefit from anti-PD-1 or anti-PD-L1 therapies.393–395 Beyond PD-L1 expression, several other biomarkers have also successively predicted the efficacy of ICB therapy to certain extent. Among them, tumor mutational burden (TMB), gene expression profiling (GEP), and multiplex immunohistochemistry/immunofluorescence (mIHC/IF) are mostly used.396 Due to the lack of accurate assessment of response, future improvements in diagnostic accuracy may be achieved through a multiple incorporation of existing markers and newly discovered markers.396–400

LAG3

Lymphocyte activating gene 3 (LAG3, also known as CD223), first discovered in 1990,193 is a transmembrane molecule that is expressed on CD4+ and CD8+ T cells, natural killer T (NKT) cells, natural killer (NK) cells, plasmacytoid dendritic cells (pDCs) and Tregs.402,403 The LAG3 gene is located on human chromosome 12 (12p13.31), adjacent to the coding region of CD4.404 The LAG3 protein and CD4 protein share approximately 20% similarities in their amino acid sequences, which is mostly pronounced on their extracellular regions.404,405 Due to this similarity in extracellular structures, like CD4, LAG3 can also bind to major histocompatibility complex class II (MHC-II) proteins, but with higher affinity, which is also the canonical ligand for LAG3.406

Once LAG3 binds to MHC-II proteins, the inhibitory signals are transmitted through its cytoplasmic domain, thereby down-regulating T-cell function.407 Several other ligands were also found to interact with LAG3, including Galectin-3408 (Gal-3), liver sinusoidal endothelial cell lectin409,410 (LSECtin), and fibrinogen-like protein 1411 (FGL1).

The fact that LAG3-deficient T cells show enhanced homeostatic expansion suggests the inhibitory role of LAG3 in immune responses.412,413 LAG3 is co-expressed with other inhibitory receptors, such as PD-1, on CD8+ tumor antigen-specific T cells under chronic tumor antigen stimulation, which leads to T-cell exhaustion.409,414 LAG3 expression was also confirmed to play an important role in supporting Tregs activity.412 In intratumoral Tregs, LAG3 is expressed at a higher level than in Tregs found in peripheral or normal tissue.415,416 Multiple LAG3-modulating candidates have also been developed, including LAG3-inhibiting antibody and LAG3 fusion protein.417 However, LAG3 monotherapy in several mouse models has shown limited antitumor effect with slightly reduced tumor growth, whereas LAG3/PD-1 co-blockade has shown much stronger synergistic antitumor effects.418–422 Several anti-LAG3 antibodies are currently being evaluated in clinical trials, in which relatlimab is the furthest along in clinical development among all the anti-LAG3 mAb. On March 18, 2022, the combination therapy of relatlimab and nivolumab was approved by FDA for the treatment of unresectable or metastatic melanoma, making LAG3 the third FDA-approved immune checkpoint that was approved by FDA after CTLA-4 and PD-1 axis.423,424 This approval of LAG3 mAb marks an exciting beginning for this inhibitory receptor but many aspects of its biological functions still remain enigmatic. New ligands of LAG3 are still emerging and the effects of LAG3 on immune cells remain to be fully characterized.417 For LSCC, several anti-LAG3 antibodies and bispecific antibodies are being evaluated in phase I and phase II clinical trials (Table 2).

Other targets for ICB

More negative regulators of T-cell activation have been discovered which are potential targets for ICB, including T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT), T-cell immunoglobulin 3 (TIM3), V-domain immunoglobulin suppressor of T-cell activation (VISTA).425 TIGIT is a member of the immunoglobulin superfamily and was first identified in 2009.425 Highly expressed on human and murine tumor-infiltrating T cells,426 dual PD-1/PD-L1 and TIGIT blockade is a promising combination immunotherapy for cancer. Co-targeting of TIGIT with PD-1 axis is supported by preclinical studies, which demonstrated a synergistic effect in augmenting proliferation and function of antitumor CD8+ T cells than that shown in each single blockade.426–428 Tiragolumab is the first anti-TIGIT mAb tested in a phase II study. In the phase II CITYSCAPE study,429 tiragolumab plus atezolizumab as a first-line treatment for PD-L1-positive NSCLC have shown significantly improved efficacy compared with atezolizumab alone. Despite the success in this phase II study, the phase III SKYSRAPER-01 study, which evaluated tiragolumab plus atezolizumab for PD-L1-high metastatic NSCLC, did not meet its co-primary endpoint of PFS while the other co-primary endpoint of OS was immature.430 Despite this discouraging news, it is also possible that this combination of immunotherapy may have benefits in long-term efficacy indicators like OS, which has been confirmed in previous immunotherapy clinical trials.331 Before the results of OS came out, it might be too early to judge this combination therapy. Currently, three other combination therapies of anti-TIGIT agents and anti-PD-1 axis agents are being evaluated in phase III clinical trials (Table 2).

TIM3 was originally found to be expressed on differentiated Th1 cells, which has also been defined as a marker for terminally

Signal Transduction and Targeted Therapy (2022) 7:353
Target	Agents	Combinations	Registration number	Trial name	Phase	Enrollment	Target patients	Status
PD-1	Toripalimab	Toripalimab with chemo	NCT04158440	/	III	406	Resectable stage II-III NSCLC	Recruiting
	Adjuvant toripalimab and chemo		NCT04772287	LungMate-008	III	341	Stage II-IIIB(N2) NSCLC without EGFR/ALK Mutation	Not yet recruiting
Zimberelimab	Zimberelimab monotherapy or plus AB154		NCT04736173	/	III	625	Locally advanced or metastatic PD-L1-selected NSCLC	Recruiting
Penpulimab	Neoadjuvant penpulimab plus chemotherapy followed by adjuvant penpulimab	NCT04846634	ALTER-L043	II	90		Resectable IIB-IIIB (N2) NSCLC	Not yet recruiting
Envafolimab	Envafolimab plus chemotherapy and recombinant human endostatin	NCT05243355	/	II	46		Advanced (Stage IIIb-IV) LSCC	Recruiting
PD-L1	Avelumab	Avelumab monotherapy	NCT02576574	JAVELIN Lung 100	III	1224	Recurrent or metastatic PD-L1-selected NSCLC	Active, not recruiting
SHRI 701	SHRI 701 with or without chemo		NCT04580498	/	II	122	Unresectable Stage III NSCLC	Not yet recruiting
SHRI 316	Neoadjuvant SHRI 1316 and chemo followed by adjuvant SHRI 1316	NCT04316364	/	Ib/III	537		Resectable stages II, IIIA, or selected IIB NSCLC	Recruiting
TQB2450	TQB2450 with or without anlotinib		NCT04325763	/	III	315	Locally advanced or unresectable, stage III NSCLC without progression after prior concurrent/sequential chemoradiotherapy	Recruiting
CTLA-4	Tremelimumab	Tremelimumab plus durvalumab and chemo	NCT03164616	POSEIDON	III	1193	Metastatic NSCLC	Recruiting
	BM5986218	BM5986218 monotherapy or with ipilimumab	NCT03110107	/	I/la	390	Advanced solid tumors	Recruiting
	Quavonlimab	Quavonlimab with pembrolizumab	NCT03516981	KEYNOTE-495	II	318	Advanced NSCLC	Active, not recruiting
	ONC-392	ONC-392 monotherapy or with pembrolizumab	NCT04140526	PRESERVE-001	Ia/ib	413	Advanced solid tumors and NSCLC	Recruiting
LAG3	Relatlimab	Neoadjuvant nivolimab with or without relatlimab	NCT04205552	NEOpredict	II	60	Clinical stages IIB, II and selected stage IIB NSCLC	Recruiting
	Relatlimab plus nivolimab and chemo		NCT04623775	/	II	520	Metastatic or recurrent NSCLC	Recruiting
TIGIT	IBI1110	IBI1110 with or without sintilimab	NCT04085185	/	I	268	Advanced malignant tumors	Recruiting
	Tiragolumab	Tiragolumab and atezolizumab	NCT04294810	SKYSCRAPER-01	III	635	Locally advanced unressectable or metastatic PD-L1-selected NSCLC	Recruiting
	Tiragolumab and atezolizumab		NCT04513925	SKYSCRAPER-03	III	800	Locally advanced, unresectable stage III NSCLC after at least two cycles of platinum-based cCRT without radiographic disease progression.	Recruiting
Ociperlimab	Ociperlimab and tislelizumab		NCT04746924	/	III	605	Locally advanced unresectable or metastatic PD-L1-selected NSCLC	Recruiting
Domvanalimab	Domvanalimab and durvalumab		NCT05211895	PACIFIC-8	III	860	Locally advanced, unresectable Stage III NSCLC without progression following definitive platinum-based cCRT.	Recruiting
Vibostolimab	Vibostolimab and pembrolizum		NCT04738487	KEYVIBE-003	III	1246	Metastatic PD-L1-selected NSCLC	Recruiting
Target	Agents	Combinations	Registration number	Trial name	Phase	Enrollment	Target patients	Status
--------	--------	--------------	---------------------	------------	-------	------------	-----------------	--------
TIM3	BGB-A425	BGB-A425 and tislelizumab	NCT03744468	/	I-II	162	Advanced solid tumors	Recruiting
	MBG453	MBG453 monotherapy or with PDR001	NCT02608268	/	IIb/II	252	Advanced solid tumors	Active, not recruiting
4-1BB	PF-05082566	PF-05082566 and avelumab	NCT02554812	JAVELIN Medley	II	398	Advanced solid tumors	Active, not recruiting
OX40	BMS-986178	BMS-986178 monotherapy or with nivolumab or ipilimumab	NCT02737475	/	I/Ila	166	Advanced solid tumors	Completed
	KN046	KN046 and chemo	NCT04474119	ENREACH-L-01	III	482	Advanced LSCC	Active, not recruiting
	KN046	KN046 and Lenvatinib	NCT05001724	/	II/III	522	Advanced NSCLC after failure of prior anti-PD-L1 agent	Recruiting
	AK104	AK104 and avelumab	NCT05215067	/	II	40	Advanced NSCLC after the failure of prior platinum doublet chemotherapy and anti-PD-1/PD-L1 agent	Recruiting
	AK104	AK104 and docetaxel	NCT05377658	/	II	32	Resectable stage II-IIIA NSCLC	Not yet recruiting
	AK104	AK104 and adnolitinib	NCT04544644	/	II	30	Advanced NSCLC	Not yet recruiting
	IBI23	IBI23 with or without chemo	NCT04916119	/	I	322	Advanced solid tumors	Recruiting
	AZD7789	AZD7789 monotherapy	NCT04931654	/	I/Ila	81	Stage IIIB to IV NSCLC	Recruiting
	AK112	AK112 with chemo	NCT04736823	/	II	206	Stage IIIB/C or IV NSCLC	Recruiting
LSD1	CC-90011	CC-90011 with nivolumab	NCT04350463	/	II	92	ES SCLC and advanced LSCC	Active, not recruiting
EZH2	CPI-1205	CPI-1205 with ipilimumab	NCT03525795	ORIOn-E	I/II	24	Advanced solid tumors	Completed
DNMT	Guadecitabine	Guadecitabine plus pembrolizumab and mofetinostat	NCT03220477	/	I	28	Advanced NSCLC after failure of prior anti-PD-L1 agent	Active, not recruiting
	Decitabine	Decitabine plus pembrolizumab and tetrahydrouridine	NCT03233724	/	I/II	85	Locally advanced or metastatic NSCLC, esophageal carcinomas, or pleural mesotheliomas	Recruiting

4-1BB tumor necrosis factor receptor superfamily member 9, ALK anaplastic lymphoma kinase, cCRT concurrent chemoradiation therapy, CTLA-4 cytotoxic T-lymphocyte antigen 4, EGRF epidermal growth factor receptor, LAG3 lymphocyte activating gene 3, LSCC lung squamous cell carcinoma, NMPA National Medical Products Administration, NSCLC non-small-cell lung cancer, OX40 tumor necrosis factor receptor superfamily member 4, PD-1 programmed cell death 1, PD-L1 programmed cell death ligand 1, SCLC small-cell lung cancer, TIGIT T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain, TIM3 T-cell immunoglobulin 3, TPS tumor proportion score, / not found.
differentiated effector Th1 cells. There is a firm connection between elevated TIM3 expression and exhausted CD8+ T cell. This elevated expression level of TIM3 in exhausted T cells is also associated with PD-1 expression, suggesting a correlation between TIM3 and PD-1 in T-cells exhaustion. Most clinical trials of TIM3 inhibitors are assessing the efficacy of the combination of TIM3 inhibitors and anti-PD-1 axis mAbs (e.g., NCT03680508, NCT03099109).

Like TIM3, VISTA (also known as PD-1H, B7-H5) is also a promising target for combination immunotherapy. VISTA shares significant sequence homology with the B7 family ligands PD-L1 and PD-L2 and imposes quiescence on mammalian myeloid and naive T cells. The interaction of VISTA and its ligand P-selectin glycoprotein ligand 1 (PSGL-1) is governed by pH, selectively at acidic pH such as that found in TME. Most antibodies that target VISTA are being evaluated in preclinical studies. Only a few anti-VISTA drugs are currently being assessed in phase I studies (e.g., NCT05082610, NCT04564417).

Activating receptors on T cells have also been extensively studied as targets for immunotherapy, including inducible co-stimulator (ICOS, also known as CD278), tumor necrosis factor receptor superfamily member 4 (TNFRSF4, also known as CD134, OX40), tumor necrosis factor receptor superfamily member 9 (TNFRSF9, also known as 4-1BB). However, the distinct nature of agonist antibodies targeting immune co-stimulatory receptors rendered them unique among other antibody therapies in cancer. Some next-generation approaches, such as recombinant ligands and bispecific antibodies, may help unlock the full therapeutic potential of such targets.

MULTI-TARGET COMBINATION THERAPEUTIC STRATEGIES

CTLA-4 and PD-1 axis
The distinct functions of CTLA-4 and PD-1 axis are reflected in the different toxicity seen in their respective knockout mouse models. Mice lacking the CTLA-4 gene developed lymphoproliferative diseases and died by 3–4 weeks of age, whereas mice lacking PD-1 had more limited and variable, model-dependent autoimmunity, including glomerulonephritis, arthritis and cardiomyopathy. Spatially, CTLA-4 regulation occurs primarily within lymphoid organs, whereas PD-1 limits T-cell activation locally within peripheral tissues. Temporally, PD-1 acts later during T-cell activation for long-term tolerance. The distinct functions of CTLA-4 and PD-1 axis provide a rationale for the combination therapy of CTLA-4 and PD-1 axis blockade. Combitions of anti-CTLA-4 and anti-PD-1, or anti-CTLA-4 and anti-PD-L1, have shown improved efficacy than either agent alone in clinical trials or preclinical models. In NSCLC, based on the results of checkmate 227 clinical trial, nivolumab plus ipilimumab has been approved by FDA for the first-line treatment of patients with tumors expressing PD-L1 (≥1%), which was also the first chemotherapy-free regimen for NSCLC. Besides, nivolumab plus ipilimumab and two cycles of platinum-doublet chemotherapy is also FDA-approved for the first-line treatment of advanced NSCLC, regardless of tumor PD-L1 expression.

Despite the success of nivolumab plus ipilimumab in the treatment of NSCLC, there were also negative results from clinical trials evaluating the combination ICB therapy. In the phase III MYSTIC study, durvalumab plus tremelimumab did not significantly improve OS or PFS compared with chemotherapy in metastatic NSCLC. For advanced, pretreated, immune-checkpoint inhibitor-naive LSCC, the addition of ipilimumab to nivolumab did not improve outcomes. These results demonstrate the need for a better mechanistic understanding of the crosstalk among anti-PD-1, anti-PD-L1, and anti-CTLA-4. The cis-PD-L1/CD80 interactions were found to have implications in the synergy of anti-PD-L1 and anti-CTLA-4 combination therapy. Recognized as the ligands of PD-1 and CD28/CTLA-4 respectively, PD-L1 and CD80 were also found to interact with each other. Recent studies reported that PD-L1 and CD80 could heterodimerize in cis when these molecules are overexpressed on the same cell. This PD-L1:CD80 cis-heterodimerization could inhibit both PD-L1:PD-1 and CD80:CTLA-4 interactions through distinct mechanisms while preserving the ability of CD80 to activate the T-cell co-stimulatory receptor CD28. Therefore, by disrupting PD-L1:CD80 heterodimers, anti-PD-L1 mAbs licenses high-avidity CD80:CTLA-4 interactions which triggers Treg-mediated depletion of CD80 from APCs and inhibits CD28 co-stimulation. Since this CD80 depletion by anti-PD-L1 is CTLA-4 dependent and can be reversed by CTLA-4 blockade, it provides a rationale for co-blocking PD-L1 and CTLA-4 in cancer immunotherapy. In another study, Tekguc et al. also found that the Treg-mediated depletion of CD80 from APCs via CTLA-4-dependent trogocytosis can also increase free PD-L1 available for the inhibition of PD-1 expressing effector T cells. Therefore, the combination of blocking CTLA-4 and PD-1 axis may synergistically hinder this Treg-mediated immunosuppression and enhance antitumor efficacy. Some bispecific antibodies, capable of simultaneously binding PD-1/PD-L1 and CTLA-4 with high affinity, are also being evaluated in ongoing clinical trials (Table 2). KN046, a novel bispecific antibody that blocks PD-L1 interaction with PD-1 and CTLA-4, interaction with CD80/CD86, was well tolerated and effective in treating advanced NSCLC, with promising PFS and OS benefits in LSCC. Pivotal Phase III clinical trials in advanced unresectable or metastatic LSCC is currently ongoing for this bispecific antibody (NCT04474119).

ICB and PI3K pathway inhibition
The hyperactive PI3K signaling, whether it is the consequence of PI3KCA mutations or PTEN deletions, can promote the establishment of tumor suppression by developing tumors, suggesting the potential use of PI3K inhibitor to enhance the efficacy of immunotherapy in the clinic (Fig. 6a). In preclinical models of melanoma, loss of PTEN in tumor cells inhibits T-cell-mediated tumor killing and restricts T-cell trafficking into tumors. A number of immunosuppressive cytokines, including CCL12 and VEGF are elevated in melanoma patients harboring PTEN loss. In this study, the lipidation of autophagosome protein LC3 and autophagy in tumor cells, which can decrease T-cell priming and modulate resistance to T-cell-mediated apoptosis, is also inhibited due to the loss of PTEN protein and activation of PI3K. Consistent with these findings, previous studies have also found that inactivation of PI3Kα could break Tregs-mediated tumor immune tolerance, resulting in the activation of CD8+ T-cell responses and subsequent tumor regression. The Tregs T-cell receptor (TCR) downstream signaling, proliferation, and survival are dominantly dependent on PI3Kδ, but not PI3Kα or PI3Kδ. This potential adjuvant role for PI3Kδ in cancer immunotherapy was confirmed in a neoadjuvant, phase II clinical trial treatment-naive patients with resectable HNSCC. The inhibition of PI3Kδ by AMG319 decreased the number of tumor-infiltrating Tregs and activated intratumoral CD4+ and CD8+ T cells. However, the unfavorable safety profile should also be noticed, with frequent and severe grade 3/4 irAEs, probably driven by the systemic effect on Tregs in non-malignant tissues. Besides, as PI3K signaling is also essential in maintaining effector T-cell function, a systemic inhibition of PI3Kα impairs the function of CD8+ cytotoxic T lymphocytes, which antagonizes ICB therapy intending to boost the CD8+ T-cell response, counteracting any advantages brought by impairing intratumoral Tregs. The protocols of administrating PI3Kδ inhibitors were considered as an essential part. A modified treatment regimen with intermittent dosing of PI3Kδ inhibitors has shown a comparable antitumor efficacy while limiting toxicity. In addition, given that PI3Kδ signaling might be required for signaling reactivation in exhausted T cells by ICB therapy.
sequential combination treatment might be more effective. The study of Isoyama et al. confirmed that the combination protocol with anti-PD-1 mAb administrated first, followed by anti-PD-1 mAb plus PI3Kδ inhibitor induced the most effective and durable antitumor activity.

ICB and CDK4/6 inhibition

CDK4/6 is regarded as a promising target in treating LSCC when appropriate candidate patients are identified by the downstream functional assessment. Recent studies have found that inhibition of CDK4/6 not only induces tumor cell-cycle arrest, but also increases T-cell inflammatory signature in tumors, which may act synergistically with ICB therapies (Fig. 6b). In mouse models, combining CDK4/6 inhibitors with PD-1 axis inhibitors resulted in significantly improved antitumor efficacy compared with either treatment alone. The mechanisms of this synergistic effects have been under extensive studies recently. Goel et al. found that the inhibition of CDK4/6 could increase the functional capacity of tumor cells to present antigens. Besides, CDK4/6 inhibitors could markedly and selectively reduce the immunosuppressive capacity of tumor cells, ablation of LSD1 in cancer cells increases repetitive element expression, including ERVs, and decreases expression of RISC components. This leads to dsRNA stress and activation of type 1 interferon, which stimulates antitumor T-cell infiltration. In addition, inhibiting LSD1 in CD8+ T cells unleashes the transcription program mediated by TCF1, which is critical for the maintenance of the progenitor subset of intratumoral CD8+ T cells for persistent tumor control.

Fig. 6 Impact of oncogenic signaling on tumor immune response. a Loss of PTEN protein function and improper PI3K activation inhibit efficient LC3 lipidation, which further promote resistance to T-cell-mediated killing by inhibiting autophagy. PTEN loss could also induce expression of immunosuppressive cytokines, including CCL12 and VEGF. b CDK4/6 inhibition enhances T-cell activation through the derepression of NFAT family proteins and target genes, which encode critical regulators of T-cell function. CDK4/6 inhibition could also induce Rb-mediated G1-arrest and promote the phenotypic and functional acquisition of immunologic T-cell memory. Besides, the PD-L1 protein stability is regulated by the CDK4/SPOP-FZR1 signaling pathway. Physiologically, PD-L1 protein stability is negatively regulated through phosphorylating its upstream physiological E3 ligase SPOP. This phosphorylation promotes SPOP binding to 14-3-3y, which subsequently disrupts FZR1-mediated destruction of SPOP. The inhibition of CDK4/6 inhibits the phosphorylation of SPOP, thus promoting its degradation by FZR1, thus increasing PD-L1 protein levels. c Tumor-derived VEGF limits NF-kB activation in immature DCs, which in turn leads to defective functional maturation of DCs and insufficient induction of tumor immunity. VEGF could also impact the endothelial cells expression of immunological molecules. It decreases the expression of VCAM-1, which is important for the antitumor T cells adhesion and infiltration into tumors. Besides, VEGF also increases the expression of FAS ligand on endothelial cells, triggering apoptosis of T cells. VEGF also promotes the expansion of immune suppressive MDSCs, which further promotes the recruitment of Tregs. d EZH2 inhibition increases the production of CXCL9 and CXCL10, which are attractant cytokines promoting trafficking of T cells to tumor. Besides, EZH2 inhibition could selectively target intratumeral Tregs and reduce its immunosuppressive capacity. e In tumor cells, the ablation of LSD1 in cancer cells increases repetitive element expression, including ERVs, and decreases expression of RISC components. This leads to dsRNA stress and activation of type 1 interferon, which stimulates antitumor T-cell infiltration. In addition, inhibiting LSD1 in CD8+ T cells unleashes the transcription program mediated by TCF1, which is critical for the maintenance of the progenitor subset of intratumoral CD8+ T cells for persistent tumor control.
of CDK4/6 inhibitors has been proposed which may mitigate the toxicity risk.486,487 The capacity of CDK4/6 inhibitors to promote T-cell memory gives rationales for using CDK4/6 inhibitors as a preconditioning tool, priming the T-cell pool before the application of ICB. In mouse models, preconditioning tumor-bearing mice with a CDK4/6 inhibitor significantly improved the efficacy of anti-PD-1 ICB therapy.488 Taken together, these results suggest CDK4/6 inhibition in combination with immunotherapy is a promising therapeutic strategy but still needs further investigation.

ICB and VEGF-VEGFR signaling blockade
With over 30 years of extensive research on VEGF, the biological role of VEGF has extended beyond its impact on neovascularization and angiogenesis, which also functions as an immunomodulator (Fig. 6c). It has been shown that multiple immune cells could be influenced by VEGF, including DCs, T cells, Tregs, and MDSCs.490 Both in animal models and humans, the inhibition of VEGF could increase the number of tumor-infiltrating lymphocytes.491,492 VEGF is also important for the expansion of the immunosuppressive MDSCs via its binding to VEGFR1, which further promotes an immunosuppressive microenvironment by de novo development of Tregs.493 In renal cell carcinoma, the inhibition of VEGF-VEGFR signaling by either mAbs or VEGF-TKIs could reverse MDSC-mediated immunosuppression.494,495 This immunosuppressive profile of the VEGF/VEGFR axis is also confirmed by the fact that VEGF-A-VEGFR pathway blockade inhibits tumor-induced proliferation of Tregs.496 This axis is also important in maintaining the identity of immunosuppressive Tregs during cellular activation, where it is recruited by Foxp3 to repress key genes.497,498 Disruption of EZH2 activity in Tregs can reprogram the tumor-infiltrating Tregs for pro-inflammatory activities, thereby enhancing the recruitment and function of CD8+ and CD4+ effector T cells to eliminate tumors.522 The dual functions of EZH2 in suppressing antigen presentation and altering Tregs functions makes the EZH2 inhibition a rational strategy in combination with CTLA-4 inhibitors or PD-1 axis inhibitors, respectively. Indeed, the additional efficacy of both combination strategies was confirmed in preclinical mouse models.523-525 This synergistic effect of EZH2 blockade and ICB therapy is currently being validated in multiple clinical trials (e.g., NCT02220842,496 NCT03854474,526 NCT04407741).

As a direct regulator of SOX2, which is a lineage-survival oncogene of LSCC,499 inhibition of LSD1 is regarded as a promising treatment strategy for LSCC.500 Recently, studies have also found that this epigenetic regulator is important in regulating tumor immunity (Fig. 6e). In 2018, Sheng et al.510 found that the inhibition of this histone demethylase in cancer cells resulted in double-stranded RNA (dsRNA) stress and activation of type I interferon, thereby stimulating potent antitumor T-cell immunity. Furthermore, the inhibition of LSD1 could elicit significant response to anti-PD-1 therapy in ICB-refractory mouse melanoma.511 Consistently, TCGA data analysis reveals an inverse correlation between LSD1 expression and CD8+ T-cell infiltration in various human cancers.512 In the same year, Qin et al.513 also found that combining LSD1 inhibitors with anti-PD-1 mAbs significantly suppressed tumor growth and pulmonary metastasis in mice bearing TNBC xenograft tumors, whereas anti-PD-1 mAbs alone failed to elicit an obvious antitumor effect. Over the next few years, the enhancement of immunotherapy efficacy through inhibiting LSD1 was also demonstrated in several other tumors.529-531 The mechanisms of LSD1 ablation in tumor immunity have not been clearly elucidated. According to Liu et al.532 the inhibition of LSD1 in T cells increases the persistence of the progenitor-exhausted CD8+ T cells through increasing the transcriptional network controlled by T-cell factor 1 (TCF1), which is essential for maintaining the progenitor phenotype. These progenitor-exhausted CD8+ T cells are characterized by high proliferation capacity, which gives rise to more differentiated cells with strong cytotoxicity. These properties make progenitor-exhausted CD8+ T cells a major determinant of responses to PD-1 axis blockade.533-535 Based on this synergistic effect of LSD1 inhibitors and PD-1 axis inhibitors, there is already an ongoing clinical trial evaluating this combination therapy in SCLC and LSCC patients (NCT04350463). Another study has proposed the addition of blocking TGF-β in this combination therapy.536 The efficacy of this triple combination therapy has been validated in certain poorly immunogenic or "cold" tumors.537 However, the safety and efficacy of this combination strategy still need to be verified in future studies.

CONCLUSIONS AND FUTURE PERSPECTIVES
Accounting for ~30% of all NSCLC, LSCC remains a leading cause of death with few therapeutic options.538 While targeted therapies...
demonstrated significant benefits in LUAD patients, patients with LSCC have not benefited from targeted therapy due to the distinct nature of LSCC. The advent of immunotherapies has significantly improved the prognosis of patients with LSCC, and this burgeoning field of cancer immunotherapy continues to grow as new druggable targets are discovered. With comprehensive proteogenomic data, the established LSCC biology can be more deeply elucidated, potentially uncovering new potential implicated therapeutics targets.

In this review, we discussed some new insights in some signaling pathways which have been proved in other cancer types, like PI3K pathway, CDK4/6 pathway and VEGF/VEGFR signaling. The two key squamous differentiation markers SOX2 and TP63 offer the chance of therapeutic targets in LSCC. SOX2 was considered undruggable before, thus intensifying therapeutic interests in upstream or downstream targets, including LSD1 and EZH2. Newly identified epigenetic targets, like NSD3, were also emerging as potential targets in treating LSCC. Having shown great benefits in LSCC, ICB therapies still faced the problems of a relatively low response rate and high rate of irAEs in some cases. We discussed some newly discovered mechanisms of these immune checkpoints which may be useful in tackling these problems. Combinations of different ICB therapies or IC therapy and other targeted therapies have emerged as an appealing treatment paradigm. Whether it is the combination of ICB therapies plus epigenetic therapies, or ICB therapies plus VEGF-VEGFR inhibitor, it represents an innate inner connection among these different signaling pathways. With the persistent exploration of these complex biological interactions among different signaling pathways, it will surely provide exciting opportunities for new, improved and personalized therapeutic interventions in LSCC patients. Multi-omics clustering has identified five LSCC molecular subtypes and this heterogeneity of LSCC reveals the fact that combination therapies targeting more than one target or signaling pathway may yield more therapeutic choices. In the last decade, ICB therapies have made a major breakthrough in improving the prognosis of LSCC patients both in the first- and second-line settings. We believe immunotherapy will remain the pillar of LSCC treatment. Meanwhile, the clinical translation of other novel therapeutic targets is still in a great demand which may improve the efficacy of current ICB therapy-based regimens.

ACKNOWLEDGEMENTS
This study was supported by National Key Research and Development Program of China (2021YFC2500903, 2021YFC2500905), National Science Foundation of Shanghai (22ZR1439200), National Natural Science Foundation of China (82072557, 81871882), Shanghai Municipal Commission of Health and Family Planning Outstanding Academic Leaders Training Program (2017B055), and Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant (20172005). Some icons or graphic elements in Figs. 2, 3, 4, 5 and 6 are adapted from BioRender.com (2022), retrieved from https://app.biorender.com/. Final schematic illustrations were created and integrated by our original design.

AUTHOR CONTRIBUTIONS
H.C.L. and Y.Z. conceived and revised the paper. Z.Y.N. and R.S.J. drafted the manuscript and prepared the figures. All authors read and approved the final manuscript.

ADDITIONAL INFORMATION
Competing interests: The authors declare no competing interests.

REFERENCES
1. Siegel, R. L., Miller, K. D., Fuchs, H. E. & Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 72, 7–33 (2022).
2. Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).
3. Herbst, R. S., Morgenstern, D. & Bosshoff, C. The biology and management of non-small cell lung cancer. Nature 553, 446–454 (2018).
4. Heist, R. S., Sequist, L. V. & Engelman, J. A. Genetic changes in squamous cell lung cancer: a review. J. Thorac. Oncol. 7, 924–933 (2012).
5. Society, A. C. Cancer facts & figures 2022. https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2022-cancer-facts-and-figures.pdf (2022).
6. Cheng, Y., Zhang, T. & Xu, Q. Therapeutic advances in non-small cell lung cancer: focus on clinical development of targeted therapy and immunotherapy. Med. Com. 2, 692–729 (2021).
7. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature 511, 543–550 (2014).
8. Non-Small Cell Lung Cancer Collaborative Group. Chemotherapy in non-small cell lung cancer: a meta-analysis using updated data on individual patients from 52 randomised clinical trials. BMJ 311, 899–909 (1995).
9. Paes, J. G. et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304, 1497–1500 (2004).
10. Lynch, T. J. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139 (2004).
11. Paik, P. K. et al. A phase Ib open-label multicenter study of AZD4547 in patients with advanced squamous cell lung cancers. Clin. Cancer Res. 23, 5366–5373 (2017).
12. Lim, S. H. et al. Efficacy and safety of dovitinib in pretreated patients with advanced squamous non-small cell lung cancer with FGFR1 amplification: a single-arm, phase 2 study. Cancer 122, 3024–3031 (2016).
13. Nogova, L. et al. Evaluation of BGJ398, a fibroblast growth factor receptor 1-3 kinase inhibitor, in patients with advanced solid tumors harboring genetic alterations in fibroblast growth factor receptors: results of a global phase I dose-escalation and dose-expansion study. J. Clin. Oncol. 35, 157–165 (2017).
14. Tabernero, J. et al. Phase I dose-escalation study of JNJ-42756493, an oral pan-fibroblast growth factor receptor inhibitor, in patients with advanced squamous tumors. J. Clin. Oncol. 33, 3401–3408 (2015).
15. Aggarwal, C. et al. SWOG S1400D (NCT02965378), a phase II study of the fibroblast growth factor receptor inhibitor AZD4547 in previously treated patients with fibroblast growth factor pathway-activated stage IV squamous cell lung cancer (Lung-MAP Substudy). J. Thorac. Oncol. 14, 1847–1852 (2019).
16. Vansteenkiste, J. F. et al. Safety and efficacy of buparlisib (BKM120) in patients with PI3K pathway-activated non-small cell lung cancer: results from the phase II BASALT-1 study. J. Thorac. Oncol. 10, 1319–1327 (2015).
17. Langer, C. J. et al. SWOG S1008B (NCT02785913), a phase II study of GDC-0032 (taslisib) for previously treated PI3K-positive patients with stage IV squamous cell lung cancer (Lung-MAP Sub-Study). J. Thorac. Oncol. 14, 1839–1846 (2019).
18. Bendell, J. C. et al. A first-in-human phase 1 study of LY3032414, an oral PI3K/mTOR dual inhibitor, in patients with advanced cancer. Clin. Cancer Res. 24, 3253–3262 (2018).
19. Edelman, M. J. et al. SWOG S1600C (NCT02154490)—a phase II study of palbociclib for previously treated cycle gene alteration-positive patients with stage IV squamous cell lung cancer (Lung-MAP Substudy). J. Thorac. Oncol. 14, 1853–1859 (2019).
20. Campbell, J. D. et al. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nat. Genet. 48, 607–616 (2016).
21. Sun, Y. et al. EGFR mutations subset in Chinese lung squamous cell carcinoma patients. Mol. Med. Rep. 17, 7575–7584 (2018).
22. Acker, F. et al. KRAS mutations in squamous cell carcinomas of the lung. Front. Oncol. 11, 788084 (2021).
23. Redman, M. W. et al. Biomarker-driven therapies for previously treated squamous non-small-cell lung cancer (Lung-MAP SWOG S1400): a biomarker-driven master protocol. Lancet Oncol. 21, 1589–1601 (2020).
24. Forde, P. M., Kelly, R. J. & Brahmer, J. R. New strategies in lung cancer: translating immunotherapy into clinical practice. Clin. Cancer Res. 20, 1067–1073 (2014).
25. Sharma, P. & Allison, J. P. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 161, 205–214 (2015).
26. Beck, M. et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N. Engl. J. Med. 375, 1823–1833 (2016).
27. Herbst, R. S. et al. Atezolizumab for first-line treatment of PD-L1-selected patients with NSCLC. N. Engl. J. Med. 383, 1328–1339 (2020).
28. Herbst, R. S. et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet 387, 1540–1550 (2016).
Signaling pathways and targeted therapies in lung squamous cell... Niu et al.

20.

29. Paz-Ares, L. et al. Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. *N. Engl. J. Med.* **379**, 2040–2051 (2018).

30. Hellmann, M. D. et al. Nivolumab plus ipilimumab in advanced non-small-cell lung cancer. *N. Engl. J. Med.* **381**, 2020–2031 (2019).

31. Paz-Ares, L. et al. First-line nivolumab plus ipilimumab combined with two cycles of chemotherapy in patients with non-small-cell lung cancer (CheckMate 942): an international, randomised, open-label, phase 3 trial. *Lancet Oncol.* **22**, 198–211 (2021).

32. Sezer, A. et al. Ceremiplimab monotherapy for first-line treatment of advanced non-small-cell lung cancer with PD-L1 of at least 50%: a multicentre, open-label, global, phase 3, randomised, controlled trial. *Lancet* **397**, 592–604 (2021).

33. Zhou, C. et al. Sintilimab versus placebo plus rituximab in patients with relapsed indolent non-Hodgkin lymphoma (CHRONOS-3): a double-blind, randomised, placebo-controlled, phase 3 trial. *Lancet Oncol.* **22**, 678–689 (2021).

34. Ren, S. et al. Camreizumab plus carboplatin and paclitaxel as first-line treatment for advanced squamous NSCLC (Camel-3Q): a phase 3 trial. *J. Thorac. Oncol.* **17**, 544–557 (2022).

35. Zhou, C. et al. Sugemalimab versus placebo, in combination with platinum-based chemotherapy, as first-line treatment of metastatic non-small-cell lung cancer (GEMSTONE-302): interim and final analyses of a double-blind, randomised, phase 3 clinical trial. *Lancet Oncol.* **23**, 220–233 (2022).

36. Kim, Y. et al. Integrative and comparative genomic analysis of lung squamous cell carcinomas in East Asian patients. *J. Clin. Oncol.* **32**, 121–128 (2014).

37. Satpathy, S. et al. A proteogenomic portrait of lung squamous cell carcinoma. *Cell* **184**, 4348–4371.e4340 (2021).

38. Qin, J. & Massion, P. P. Role of chromosome 3q amplification in lung cancer. *J. Thorac. Oncol.* **3**, 212–215 (2008).

39. Bass, A. J. et al. SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. *Nat. Genet.* **41**, 1238–1242 (2009).

40. Ramos, A. H. et al. Amplification of chromosomal segment 4q12 in non-small cell lung cancer. *Cancer Biol. Ther.* **8**, 2042–2050 (2009).

41. Hoadley, K. A. et al. Multiparameter analysis of 12 cancer types reveals molecular relationships. *Cell* **173**, E59 (2018).

42. Hoadley, K. A. et al. Multiplatform analysis of 12 cancer types reveals molecular relationships. *Nat. Genet.* **51**, 220–237 (2019).

43. Dotto, G. P. & Rustgi, A. K. Squamous cell cancers: a uni...

44. Vanhaesebroeck, B., Guillermet-Guibert, J., Graupera, M. & Bilanges, B. The phosphoinositide 3-kinase catalytic subunit. *Science* **317**, 239–242 (2007).

45. Li, J. et al. PTEN, a putative protein tyrosine phosphate gene mutated in human brain, breast, and prostate cancer. *Science* **275**, 1943–1947 (1997).

46. Wang, D. et al. PTEN loss in the continuum of human brain, breast, and prostate cancer. *Science* **265**, 1641–1646 (1994).

47. Zhang, X. et al. Mamalian microRNA signaling pathways and targeted therapy...
100. Fowler, N. H. et al. Umbralisib, a dual PI3K
103. Secura Bio Announces Copiktra
104. Gilead Statement on Zydelig
108. Baselga, J. et al. Buparlisib plus fulvestrant versus placebo plus fulvestrant in
Signal Transduction and Targeted Therapy (2022) 7:353
110. Gribben, J. G. et al. Umbralisib plus ublituximab (U2) is superior to obinutuzumab-
114. FDA
113.
115. Yang, W. et al. Strategically timing inhibition of phosphatidylinositol 3-kinase to
99. Furman, R. R. et al. Idelalisib and rituximab in relapsed chronic lymphocytic
98. André, F. et al. Alpelisib for PIK3CA-mutated, hormone receptor-positive
96. Lee, Y. R. et al. Reactivation of PTEN tumor suppressor for cancer treatment
95. Garcia-Cao, I. et al. Systemic elevation of PTEN induces a tumor-suppressive
92. González-Santamaría, J. et al. Regulation of the tumor suppressor PTEN by
91. Wang, X. et al. Crucial role of the C-terminus of PTEN in antagonizing NEDD4-1-
2019.
364, eaa0159 (2019).
André, F. et al. Alpelisib plus fulvestrant for PIK3CA-mutated, hormone receptor-positive,
epidermal growth factor receptor-2-negative advanced breast cancer: final overall survival results from SOLAR-1. Ann. Oncol. 32, 208–217 (2021).
André, F. et al. Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer. N. Engl. J. Med. 380, 1929–1940 (2019).
Furman, R. R. et al. Idbelisib and rituximab in relapsed chronic lymphocytic leukemia. N. Engl. J. Med. 370, 997–1007 (2014).
107. Chen, Y. et al. Diverse mechanisms of action of the pan-PI3K inhibitor copiktra in preclinical models of blood cancer.
106. Chen, Y. et al. Preclinical evaluation of the pan-PI3K inhibitor copiktra in preclinical models of blood cancer.
105. Chen, Y. et al. Preclinical evaluation of the pan-PI3K inhibitor copiktra in preclinical models of blood cancer.
104. Gilead Statement on Zydelig
103. Secura Bio Announces Copiktra
102. Lee, R. et al. Reactivation of PI3K for tumor suppressor treatment through inhibition of a MYC-WWP1 inhibitory pathway. Science 364, 364–364 (2019).
André, F. et al. Alpelisib plus fulvestrant for PIK3CA-mutated, hormone receptor-positive, human epidermal growth factor receptor-2-negative advanced breast cancer: final overall survival results from SOLAR-1. Ann. Oncol. 32, 208–217 (2021).
André, F. et al. Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer. N. Engl. J. Med. 380, 1929–1940 (2019).
Furman, R. R. et al. Idbelisib and rituximab in relapsed chronic lymphocytic leukemia. N. Engl. J. Med. 370, 997–1007 (2014).
107. Chen, Y. et al. Diverse mechanisms of action of the pan-PI3K inhibitor copiktra in preclinical models of blood cancer.
106. Chen, Y. et al. Preclinical evaluation of the pan-PI3K inhibitor copiktra in preclinical models of blood cancer.
105. Chen, Y. et al. Preclinical evaluation of the pan-PI3K inhibitor copiktra in preclinical models of blood cancer.
219. Czubayko, F. et al. A secreted FGF-binding protein can serve as the angiogenic inhibitors as a cancer treatment: from a biologic rationale to medical perspec-
tives.

220. Cappuzzo, F. et al. Erlotinib as maintenance treatment in advanced non-small-
cell lung cancer (RADIANT): a randomized, double-blind, phase III trial. J. Clin. Oncol. 33, 4007–4014 (2015).

221. Clark, G. M. et al. Smoking history and epithelial growth factor receptor factor expression as predictors of survival benefit from erlotinib for patients with non-
small-cell lung cancer in the National Cancer Institute of Canada Clinical Trials Group study BR21. Clin. Lung Cancer 7, 389–394 (2006).

222. Chang, Q. et al. Epidermal growth factor receptor-tyrosine kinase inhibi-
tors in advanced squamous cell carcinoma of the lung: a meta-analysis. Asia Pac. J. Clin. Oncol. 10, 273–278 (2014).

223. Liu, Y. et al. Efficacy of epidermal growth factor receptor-tyrosine kinase inhibi-
tors for lung squamous carcinoma harboring EGFR mutation: a multicenter study and pooled analysis of published reports. Oncotarget 8, 49680–49688 (2017).

224. Li, H. et al. Proteogenomic insights into the biology and treatment of HPV-
negative head and neck squamous cell carcinoma. Cancer Cell 39, 361–379.e316 (2021).

225. Yamamoto, M., Kessler, T. W. & Motohashi, H. The KEAP1-NRF2 system: a thiol-
based sensor-effector apparatus for maintaining redox homeostasis. Physiol. Rev. 98, 1169–1203 (2018).

226. Iko, K. et al. Keap1 regulates both cytoplasmic-nuclear shuttling and degra-
dation of Nrf2 in response to electrophiles. J. Biol. Chem. 281, 735–744 (2006).

227. Suzuki, T. et al. Molecular mechanism of cellular oxidative stress sensing by Keap1. Cell Rep. 28, 746–758.7647 (2019).

228. Martin, D. et al. Regulation of heme oxygenase-1 expression through the phosphatidylinositol 3-kinase/Akt pathway and the Nrf2 transcription factor in response to the antioxidant phytochemical carnosol. J. Biol. Chem. 284, 8919–8929 (2004).

229. Salazar, M. et al. Glycogen synthase kinase-3beta inhibits the xenobiotic and anti-
antioxidant cell response by direct phosphorylation and nuclear exclusion of the transcription factor Nrf2. J. Biol. Chem. 281, 14841–14851 (2006).

230. Ichimura, Y. et al. Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol. Cell 51, 618–631 (2013).

231. DeNicola, G. M. et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 475, 106–109 (2011).

232. Le Gal, K. et al. Antioxidants can increase melanoma metastasis in mice. Sci. Transl. Med. 7, 308re308 (2015).

233. Binkley, M. S. et al. KEAP1/NFE2L2 mutations predict lung cancer radiation resistance that can be targeted by glutaminase inhibition. Cancer Discov. 10, 1826–1841 (2020).

234. Homma, S. et al. Nrf2 enhances cell proliferation and resistance to anticancer drugs in human lung cancer. Clin. Cancer Res. 15, 3432–3433 (2009).

235. Shibata, T. et al. Genetic alteration of Keap1 confers constitutive Nrf2 activation and resistance to chemotherapy in gallbladder cancer. Gastroenterology 135, 1358–1368 (2008). 1368.e1351-1354.

236. Satoh, H. et al. Nrf2 prevents initiation but accelerates progression through the Ras signaling pathway during lung carcinogenesis. Cancer Res. 73, 4158–4168 (2013).
Signaling pathways and targeted therapies in lung squamous cell... Niu et al.
Larkin, J. et al. Combined nivolumab and ipilimumab or monotherapy in Khoja, L. et al. Tumour- and class-specific Robert, C. et al. Pembrolizumab versus ipilimumab in advanced melanoma. Ribas, A. et al. Phase III randomized clinical trial comparing tremelimumab with Doyle, A. M. et al. Induction of cytotoxic T lymphocyte antigen 4 (CTLA-4) Harper, K. et al. CTLA-4 and CD28 activated lymphocyte molecules are closely Freeman, G. J. et al. Engagement of the PD-1 immunoinhibitory receptor by a Wykes, M. N. & Lewin, S. R. Immune checkpoint blockade in infectious diseases. Linsley, P. S. et al. CTLA-4 is a second receptor for the B cell activation antigen J. Exp. Med. 174, 561–569 (1991). Linsley, P. S. et al. Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity 1, 793–801 (1994). Qureshi, O. S. et al. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science 322, 600–603 (2011). Wing, K. et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science 322, 271–275 (2008). Morad, G., Helmink, B. A., Sharma, P. & Wargo, J. A. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell 185, 1576 (2022). Grosso, J. F. & Jure-Kunkel, M. N. CTLA-4 blockade in tumor models: an overview Grosso, J. F. & Jure-Kunkel, M. N. CTLA-4 blockade in tumor models: an overview Leach, D. R., Krummel, M. F. & Allison, J. P. Enhancement of antitumor immunity by autoimmune depepitation. J. Exp. Med. 190, 355–366 (1999). Leach, D. R., Krummel, M. F. & Allison, J. P. Enhancement of antitumor immunity by CTLA-4 blockade. Science 271, 1734–1736 (1996). Camacho, L. H. et al. Phase II/III trial of tremelimumab in patients with metastatic melanoma. J. Clin. Oncol. 27, 1075–1081 (2009). Kirkwood, J. M. et al. Phase II trial of tremelimumab (CP-675,206) in patients with advanced refractory or relapsed melanoma. Clin. Cancer Res. 16, 1042–1048 (2010). O'Day, S. J. et al. Efficacy and safety of ipilimumab monotherapy in patients with pretreated advanced melanoma: a multicenter single-arm phase II study. Ann. Oncol. 21, 1712–1717 (2010). Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010). Yang, J. C. et al. Ipilimumab (anti-CTLA4 antibody) causes regression of meta static renal cell cancer associated with enteritis and hypophysitis. J. Immunother. 30, 825–830 (2007). Lynch, T. J. et al. Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIb/IV non-small-cell lung cancer: results from a randomized, double-blind, multicenter phase II study. J. Clin. Oncol. 30, 2046–2054 (2012). Reck, M. et al. Ipilimumab in combination with paclitaxel and carboplatin as first-line therapy in extensive-disease-small-cell lung cancer: results from a randomized, double-blind, multicenter phase 2 trial. Ann. Oncol. 24, 75–83 (2013). Kwon, E. D. et al. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after doc etaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 15, 700–712 (2014). Ribas, A. et al. Phase III randomized clinical trial comparing tremelimumab with standard-of-care chemotherapy in patients with advanced melanoma. J. Clin. Oncol. 31, 616–622 (2013). Maio, M. et al. Five-year survival rates for treatment-naive patients with advanced melanoma who received ipilimumab plus dacarbazine in a phase III trial. J. Clin. Oncol. 33, 1191–1196 (2015). Schadenfeld, D. et al. Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J. Clin. Oncol. 33, 1889–1894 (2015). Robert, C. et al. Pembrolizumab versus ipilimumab in advanced melanoma. N. Engl. J. Med. 372, 2521–2532 (2015). Larkin, J. et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 373, 33–34 (2015). Khoo, L. et al. Tumour- and class-specific patterns of immune-related adverse events of immune checkpoint inhibitors: a systematic review. Ann. Oncol. 28, 2377–2385 (2017). Michot, J. M. et al. Immune-related adverse events with immune checkpoint blockade: a comprehensive review. Eur. J. Cancer 54, 139–148 (2016). 333. Wykes, M. N. & Lewin, S. R. Immune checkpoint blockade in infectious diseases. Nat. Rev. Immunol. 18, 91–104 (2018). 334. Doyle, A. M. et al. Induction of cytotoxic T lymphocyte antigen 4 (CTLA-4) restricts clonal expansion of helper T cells. J. Exp. Med. 194, 893–902 (2001). 335. Freeman, G. J. et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med. 192, 1027–1034 (2000). 336. Brunet, J. F. et al. A new member of the immunoglobulin superfamily-CTLA-4. Nature 328, 267–270 (1987). 337. Harper, K. et al. CTLA-4 and CD28 activated lymphocytes are closely related in both mouse and human as to sequence, message expression, gene structure, and chromosomal location. J. Immunol. 147, 1037–1044 (1991). 338. Linsley, P. S. et al. CTLA-4 is a second receptor for the B cell activation antigen B7. J. Exp. Med. 174, 561–569 (1991). 339. Weber, J. et al. A reappraisal of CTLA-4 checkpoint blockade in cancer immuno therapy. Cell 28, 416–432 (2018). 340. Ang, S. H., Nussenzveig, R. L. & Linsley, P. S. Engagement of PD-L1 by T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. J. Exp. Med. 210, 1695–1710 (2013). 341. Bulliard, Y. et al. Activating Fc receptors contribute to the antitumor activities of immunoregulatory receptor-targeting antibodies. J. Exp. Med. 210, 1685–1693 (2013). 342. Lo, B. et al. AUTOIMMUNE DISEASE. Patients with LRBA deficiency show CTLA4 loss and immune dysregulation responsive to abatacept therapy. Science 349, 436–440 (2015). 343. Du, X. et al. Uncoupling therapeutic from immunotherapy-related adverse effects for safer and effective anti-CTLA-4 antibodies in CTLA4 humanized mice. Cell Res. 28, 433–447 (2018). 344. Lee, P. S. et al. Improved therapeutic index of an acidic pH-selective antibody. Mabs 14, 2024642 (2022). 345. Zhang, Y. et al. Higaking antibody-induced CTLA-4 lysosomal degradation is a safer and more effective cancer immunotherapy. Cell Res 29, 609–627 (2019). 346. Selby, M. J. et al. Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells. Cancer Immunol. Res. 1, 32–42 (2013). 347. Simpson, T. R. et al. Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. J. Exp. Med. 210, 1695–1710 (2013). 348. Bulliard, Y. et al. Activating Fc receptors contribute to the antitumor activities of immunoregulatory receptor-targeting antibodies. J. Exp. Med. 210, 1685–1693 (2013).
cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial. Lancet 393, 1819–1830 (2019).

388. Jassem, J. et al. Updated overall survival analysis from IMpower110: atezolizumab versus platinum-based chemotherapy in treatment-naive programmed death-ligand 1-selected NSCLC. J. Thorac. Oncol. 16, 1872–1882 (2021).

389. Duan, J. et al. Use of immunotherapy with programmed cell death 1 vs programmed cell death ligand 1 inhibitors in nonsmall-cell lung cancer: a systematic review and meta-analysis. JAMA Oncol. 6, 375–384 (2020).

390. Pillai, R. N. et al. Comparison of the toxicity profile of PD-1 versus PD-L1 inhibitors in non-small cell lung cancer: a systematic analysis of the literature. Cancer 124, 271–277 (2018).

391. Khan, M. et al. Incidence of pneumonitis with use of programmed death 1 and programmed cell death ligand 1 inhibitors in non-small cell lung cancer: a systematic review and meta-analysis of trials. Chest 152, 271–281 (2017).

392. Zheng, Q. et al. Clinicopathological and molecular characteristics associated with PD-L1 expression in non-small cell lung cancer: a large-scale, multi-center, real-world study in China. J. Cancer Res. Clin. Oncol. 147, 1547–1556 (2021).

393. Gibney, G. T., Weiner, L. M. & Atkins, M. B. Predictive biomarkers for checkpoint inhibitors in non-small cell lung cancer: a systematic analysis of the literature. Lancet Oncol. 17, e642–e651 (2016).

394. Lanier, L. P., Marciscano, A. E., Drake, C. G. & Vignali, D. A. LAG3 (CD223) as a negative regulator of lymphocyte activation gene-3. Cell 190, 1077–1085 (2022).

395. Kouo, T. et al. Galectin-3 shapes antitumor immune responses by suppressing T cell effector function. J. Exp. Med. 213, 347–357 (2016).

396. Huang, C. T. et al. Role of LAG-3 in regulatory T cells. J. Exp. Med. 213, 412–424 (2015).

397. Huang, C. T. et al. LAG-3 expression de

398. Morel, M. et al. LAG-3 expression by inhibiting antitumor T-cell responses. Cancer Res. 74, 3418–3428 (2014).

399. Wang, J. et al. Fibronogen-like protein 1 is a major immune inhibitory ligand of LAG-3. Cell 176, 334–347.e132 (2019).

400. Workman, C. J. & Vignali, D. A. The LAG-3-related molecule, LAG-3 (CD223), regulates the expansion of activated T cells. Eur. J. Immunol. 33, 970–979 (2003).

401. Workman, C. J. & Vignali, D. A. Negative regulation of T cell homeostasis by lymphocyte activation gene-3 (CD223). J. Immunol. 174, 688–695 (2005).

402. Andrews, L. P., Marciscano, A. E., Drake, C. G. & Vignali, D. A. LAG3 (CD223) as a cancer immunotherapy target. Immunol. Rev. 266, 80–96 (2017).

403. Camisaschi, C. et al. LAG-3 expression defines a subset of CD4(+)CD25(high) Foxp3(+) regulatory T cells that are expanded at tumor sites. J. Immunol. 184, 6545–6551 (2010).

404. Wei, T. et al. Increased expression of immunosuppressive molecules on intratumoral and circulating regulatory T cells in non-small-cell lung cancer patients. Am. J. Cancer Res. 5, 2190–2201 (2015).

405. Mulloid, A. LAG3 pushes immunologic-oncology’s leading edge. Nat. Rev. Drug Discov. 21, 167–169 (2022).

406. Grau, S. et al. LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 72, 917–927 (2012).

407. Huang, R. Y. et al. LAG3 and PD1 co-inhibitory molecules collaborate to limit CD8+ T cell signaling and dampen antitumor immunity in a murine ovarian cancer model. Oncotarget 6, 27359–27377 (2015).

408. Goding, S. R. et al. Restoring immune function of tumor-specific CD4+ T cells during recurrence of melanoma. J. Immunol. 190, 4899–4909 (2013).

409. Matsuzaki, J. et al. Tumor-infiltrating NY-ESO-1-specific CD8+ T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer. Proc. Natl Acad. Sci. U.S.A. 107, 7875–7880 (2010).

410. Jing, W. et al. Combined immune checkpoint protein blockade and low dose whole body irradiation as immunotherapy for myeloma. J. Immunother. Cancer 3, 2 (2015).

411. Tawbi, H. A. et al. Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma. N. Engl. J. Med. 386, 24–34 (2022).

412. FDA approves Opdualag for unresectable or metastatic melanoma. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-
opdualag-unresectable-or-metastatic-melanoma (2022).

413. You, X. et al. The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat. Immunol. 10, 48–57 (2009).

414. Johnston, R. J. et al. The immunoreceptor TIGIT regulates antitumor and antiviral 5′-nucleotidase (CD62L(+)) T cell effector function. Cancer Cell 26, 923–937 (2014).

415. He, W. et al. CD155/TIGIT Signaling Regulates CD8(+) T-cell Metabolism and Promotes Tumor Progression in Human Gastric Cancer. Cancer Res. 77, 6375–6388 (2017).

416. Zhang, Q. et al. Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent anti-tumor immunity. Nat. Immunol. 19, 723–732 (2018).

417. Cho, B. C. et al. Tiralugolubam plus atezolozubam versus placebo plus atezolozubam as a first-line treatment for PD-L1-selected non-small-cell lung cancer (CITYSCAPE): primary and follow-up analyses of a randomised, double-blind, phase 2 study. Lancet Oncol. 23, 781–792 (2022).

418. Genentech Reports Interim Results for Phase III SKYSCRAPER-01 Study in PD-L1-High Metastatic Non-Small Cell Lung Cancer. https://www.gene.com/media/press-releases/14951/2022-05-10/genentech-reports-interim-results-for-ph (2022).

419. Kaen, D. L. et al. Immunotherapy in lung cancer: are the promises of long-term benefit finally met? Adv. Exp. Med. Biol. 1342, 113–142 (2022).

420. Monney, L. et al. Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature 415, 536–541 (2002).

421. Sánchez-Fueyo, A. et al. Tim-3 inhibits T helper type 1-mediated auto- and alloimmune responses and promotes immunological tolerance. Nat. Immunol. 4, 1093–1101 (2003).

422. Golden-Mason, L. et al. Negative immune regulator Tim-3 is overexpressed on T cells in hepatitis C virus infection and its blockade rescues dysfunctional CD4(+) and CD8(+) T cells. J. Virol. 83, 9122–9130 (2009).

423. Jin, H. T. et al. Cooperation of Tim-3 and PD-1 in CD8 T-cell exhaustion during chronic viral infection. Proc. Natl Acad. Sci. U.S.A. 107, 14733–14738 (2010).

424. Wu, W. et al. Blockade of Tim-3 signaling restores the virus-specific CD8(+) T-cell response in patients with chronic hepatitis B. Eur. J. Immunol. 42, 1180–1191 (2012).

425. Ishii, K. et al. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J. Exp. Med. 207, 2187–2194 (2010).

426. Fourcade, J. et al. Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8(+) T cell dysfunction in melanoma patients. J. Exp. Med. 207, 2175–2186 (2010).

427. Zhou, Q. et al. Coincurrence of Tim-3 and PD-1 identifies a CD8(+) T-cell exhaustion phenotype in mice with disseminated acute myelogenous leukemia. Blood 117, 4501–4510 (2011).

428. Yuan, L., Tatineni, J., Mahoney, K. M. & Freeman, G. J. VISTA: a mediator of quiescence and a promising target in cancer immunotherapy. Trends Immunol. 42, 209–227 (2021).

429. Wang, L. et al. VISTA, a novel mouse Ig superfamily ligand that negatively regulates T cell responses. J. Exp. Med. 208, 577–592 (2011).

430. ElTawbouly, M. A. et al. VISTA is a checkpoint regulator for naive T cell quiescence and peripheral tolerance. Science 367, eaay0524 (2020).

431. Johnston, R. J. et al. VISTA is an acidic pH-selective ligand for PSGL-1. Nature 574, 565–570 (2019).
445. Waldman, A. D., Fritz, J. M. & Lenardo, M. J. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat. Rev. Immunol. 20, 651–668 (2020).

446. Mayes, P. A., Hance, K. W. & Hoos, A. The promise and challenges of immune agonist antibody development in cancer. Nat. Rev. Drug Discov. 17, 509–527 (2018).

447. Tevel, E. A. et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3, 541–547 (1995).

448. Waterhouse, P. et al. Lymphoproliferative disorders with early lethality in mice deficient in CTLA-4. Science 270, 985–988 (1995).

449. Nishimura, H. et al. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science 291, 319–322 (2001).

450. Wang, J. et al. Establishment of NOD-Prdc1−/− mice as an efficient animal model of type 1 diabetes. Proc. Natl Acad. Sci. USA 102, 11823–11828 (2005).

451. Wang, J. et al. PD-1 deficiency results in the development of fatal myocarditis in MRL mice. Int. Immunol. 22, 443–452 (2010).

452. Fife, B. T. & Bluestone, J. A. Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways. Immunol. Rev. 224, 166–182 (2008).

453. Topalian, S. L., Taube, J. M., Anders, R. A. & Pardoll, D. M. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat. Rev. Cancer 16, 275–287 (2016).

454. Callahan, M. K., Postow, M. A. & Wolchok, J. D. CTLA-4 and PD-1 pathway blockade: combinations in the clinic. Front. Oncol. 4, 385 (2014).

455. Lim, S. O. et al. Deubiquitination and stabilization of PD-L1 by CSN5. Cancer Cell 30, 925–939 (2016).

456. Rizvi, N. A. et al. Durvalumab with or without tremelimumab vs standard chemotherapy in first-line treatment of metastatic non-small cell lung cancer: the MYSTIC phase 3 randomized clinical trial. JAMA Oncol. 6, 661–674 (2020).

457. Gutierrez, S. N. et al. Nivolumab plus ipilimumab vs nivolumab for previously treated patients with stage IV squamous cell lung cancer: the lung-MAP 514001 phase 3 randomized clinical trial. JAMA Oncol. 7, 1368–1377 (2021).

458. Zhao, Y. et al. PD-L1:CD80 cis-heterodimer triggers the co-stimulatory receptor required for optimal T cell responses. Immunity 9, 1091–1094 (2008).

459. Hunziker, M. et al. PI3Kδ deficiency in CTla-4. J. Immunother. Cancer 6, 158 (2018).

460. Mayes, P. A., Hance, K. W. & Hoos, A. The promise and challenges of immune agonist antibody development in cancer. Nat. Rev. Drug Discov. 17, 509–527 (2018).

461. Carnevali, L. S. et al. PI3Kδ inhibition promotes anti-tumor immunity through direct enhancement of effector CD8(+) T-cell activity. J. Immunother. Cancer 6, 158 (2018).

462. Parry, R. V. et al. CTLA-4 and PD-1 inhibitors inhibit T-cell activation by distinct mechanisms. Mol. Cell. Biol. 25, 9543–9553 (2005).

463. Hui, E. et al. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science 354, 1428–1433 (2017).

464. Schier, D. A. et al. The CDK4/6 inhibitor abemaciclib induces a T cell inflamed tumor microenvironment and enhances the efficacy of PD-L1 checkpoint blockade. Cell Rep. 22, 2978–2994 (2018).

465. Zhang, Q. F. et al. CDK4/6 inhibition promotes immune infiltration in ovarian cancer and synergizes with PD-1 blockade in a B cell-dependent manner. Theranostics 10, 10619–10633 (2020).

466. Zhang, J. et al. Cyclin-D CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature 553, 91–95 (2018).

467. Jerby-Aron, L. et al. A cancer cell program promotes T cell exclusion and resistance to checkpoint blockade. Cell 175, 984–997.e492 (2018).

468. Deng, J. et al. CDK4/6 inhibition augments antitumor immunity by enhancing T-cell activation. Cancer Discov. 8, 216–233 (2018).

469. Heng, T. S. & Paietta, E. M. The Immunological Genome Project: networks of gene expression in immune cells. Nat. Immunol. 9, 1091–1094 (2008).

470. Finn, R. S. et al. PD-323991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro. Breast Cancer Res. 11, R77 (2009).

471. Lelliott, E. J. et al. CDK4/6 Inhibition Promotes Antitumor Immunity through the Induction of T-cell Memory. Cancer Discov. 11, 2582–2601 (2021).

472. Heckler, M. et al. Inhibition of CDK4/6 promotes CD8 T-cell memory formation. Cancer Discov. 11, 2564–2581 (2021).

473. Hugo, R. S. et al. A phase lb study of abeciscimab in combination with pembrolizumab for patients with hormone receptor positive (HR+) human epidermal growth factor receptor 2 (HER2-) locally advanced or metastatic breast cancer (MBC) (NCT02779751): interim results. J. Clin. Oncol. 38, 1051 (2020).

474. Pujol, J. L. et al. A phase Ib study of abeciscimab in combination with pembrolizumab for patients (pts) with stage IV Kirsten rat sarcoma mutant (KRAS-mut) or squamous non-small cell lung cancer (NSCLC) (NCT02779751): interim results. J. Clin. Oncol. 38, 9562 (2020).

475. Khan, K. A. & Kerbel, R. S. Improving immunotherapy outcomes with antiangiogenic treatments and vice versa. Nat. Rev. Clin. Oncol. 15, 310–324 (2018).

476. Shirimaili, R. K. et al. Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer. Cancer Res. 70, 6171–6180 (2010).

477. wallin, J. J. et al. Atezolizumab in combination with bevacizumab enhances antigen-specific T-cell migration in metastatic renal cell carcinoma. Nat. Commun. 7, 12624 (2016).

478. Huang, B. et al. Gr-1+CD11b+ immature myeloid suppressor cells mediate the development of tumor-induced regulatory T cells and T-cell anergy in tumour-bearing host. Cancer Res. 66, 1123–1131 (2006).

479. Kusmartsev, S. et al. Oxidative stress regulates expression of VEGFR1 in myeloid cells: link to tumor-induced immune suppression in renal cell carcinoma. J. Immunol. 181, 346–353 (2008).

480. Ko, J. S. et al. Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin. Cancer Res. 15, 2148–2157 (2009).

481. Terme, M. et al. VEGFA-VEGFR pathway blockade inhibits tumor-induced regulatory T cell proliferation in colorectal cancer. Cancer Res. 73, 539–549 (2013).

482. Faciabene, A. et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and Treg(c) cells. Nature 475, 226–230 (2011).

483. Yang, L. et al. Expansion of myeloid immune suppressor Gr-1+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 6, 409–421 (2004).

484. Curiel, T. J. et al. Dendritic cell subsets differentially regulate angiogenesis in human ovarian cancer. Cancer Res. 64, 5533–5538 (2004).

485. Signaling pathways and targeted therapies in lung squamous cell... Niu et al. 27
503. Cham, C. M. & Gajewski, T. F. Metabolic mechanisms of tumor resistance to T cell effector function. *ImmunoL. Res.* **31**, 107–118 (2005).
504. Chang, C. H. et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. *Cell* **153**, 1239–1251 (2013).
505. Palazon, A. et al. An HIF-1α/VEGF-A axis in cytotoxic T cells regulates tumor progression. *Cancer Cell* **32**, 669–683.e665 (2017).
506. Socinski, M. A. et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. *N. Engl. J. Med.* **378**, 2288–2301 (2018).
507. Coward, J. et al. Safety and efficacy of AK112, an anti-CD123/VEGF-A bivalent antibody, in patients with advanced solid tumors in a phase I dose escalation study. *J. Clin. Oncol.* **39**, 2515–2515 (2021).
508. Roulouis, D. et al. DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. *Cell* **162**, 961–973 (2015).
509. Chiappinelli, K. B. et al. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. *Cell* **162**, 974–986 (2015).
510. Sheng, W. et al. LSD1 ablation stimulates anti-tumor immunity and enables checkpoint blockade. *Cell* **174**, 549–563.e519 (2018).
511. Wu, L. et al. KDM5 histone demethylases repress immune response via suppression of STING. *PloS Biol.* **16**, e2006134 (2018).
512. Dawson, M. A. The cancer epigenome: concepts, challenges, and therapeutic opportunities. *Science* **355**, 1147–1152 (2017).
513. Peng, D. et al. Epigenetic silencing of TH1-type chemokines shapes tumor immunity and immunotherapy. *Nature* **527**, 249–253 (2015).
514. Sullivan, R. J. et al. Efficacy and safety of entinostat (ENT) and pembrolizumab (PEMBRO) in patients with melanoma previously treated with anti-PD1 therapy. *Cancer Res.* **79**, 9530 (2019).
515. Nagarsheth, N. et al. PRC2 epigenetically silences Th1-type chemokines to suppress effector T-cell trafficking in colon cancer. *Cancer Res.* **76**, 275–282 (2016).
516. Guo, B., Tan, X. & Cen, H. EZH2 is a negative prognostic biomarker associated with immunosuppression in hepatocellular carcinoma. *PLoS ONE* **15**, e0242191 (2020).
517. Kim, H. J., Cantor, H. & Cosmopoulos, K. Overcoming immune checkpoint blockade resistance via EZH2 inhibition. *Trends Immunol.* **41**, 948–963 (2020).
518. Guo, W. et al. LncRNA-immunity landscape analysis identifies EPIC1 as a regulator of tumor immune evasion and immunotherapy resistance. *Sci. Adv.* **7**, eabb3555 (2021).
519. Dersh, D. et al. Genome-wide screens identify lineage- and tumor-specific genes modulating MHC-I- and MHC-II-restricted immunosurveillance of human lymphomas. *Immunity* **54**, 116–131.e110 (2021).
520. DuPage, M. et al. The chromatin-modifying enzyme EzH2 is critical for the maintenance of regulatory T cell identity after activation. *Immunity* **42**, 227–238 (2015).
521. Arvey, A. et al. Inflammation-induced repression of chromatin bound by the transcription factor Foxp3 in regulatory T cells. *Nat. Immunol.* **15**, 580–587 (2014).
522. Wang, D. et al. Targeting EZH2 reprograms intratumoral regulatory T cells to enhance cancer immunity. *Cell Rep.* **23**, 3262–3274 (2018).
523. Goswami, S. et al. Modulation of EZH2 expression in T cells improves efficacy of anti-CTLA-4 therapy. *J. Clin. Invest.* **128**, 3813–3818 (2018).
524. Hong, Y. K. et al. Epigenetic modulation enhances immunotherapy for hepatocellular carcinoma. *Cell. Immunol.* **336**, 66–74 (2019).
525. Zhou, L. et al. Targeting EZH2 enhances antigen presentation, antitumor immunity, and circumvents Anti-PD-1 resistance in head and neck cancer. *Clin. Cancer Res.* **26**, 290–300 (2020).
526. Palomba, M. L. et al. Combination of atezolizumab and tazemetostat in patients with relapsed/refractory diffuse large B-cell lymphoma: results from a phase Ib study. *Clin. Lymphoma Myeloma Leuk.* **22**, 504–512 (2021).
527. Meeks, J. J. et al. A pilot study of tazemetostat and MK-3475 (pembrolizumab) in advanced urothelial carcinoma (ETCTN 10183). *J. Clin. Oncol.* **38**, TP5607 (2020).
528. Qin, Y. et al. Inhibition of histone lysine-specific demethylase 1 elicits breast tumor immunity and enhances antitumor efficacy of immune checkpoint blockade. *Onco segue* **38**, 390–405 (2019).
529. Xu, S. et al. LSD1 silencing contributes to enhanced efficacy of anti-CD47/PD-L1 immunotherapy in cervical cancer. *Cell Death Dis.* **12**, 282 (2021).
530. Shen, D. D. et al. LSD1 deletion decreases exosomal PD-L1 and restores T-cell response in gastric cancer. *Mol. Cancer* **21**, 75 (2022).
531. Cheng, W. et al. Growth differentiation factor 1-induced tumour plasticity provides a therapeutic window for immunotherapy in hepatocellular carcinoma. *Nat. Commun.* **12**, 7142 (2021).
532. Liu, Y. et al. LSD1 inhibition sustains T cell invigoration with a durable response to PD-1 blockade. *Nat. Commun.* **12**, 6831 (2021).
533. Blackburn, S. D., Shin, H., Freeman, G. J. & Wherry, E. J. Selective expansion of a subset of exhausted CD8 T cells by alphaPD-L1 blockade. *Proc. Natl Acad. Sci. USA* **105**, 15016–15021 (2008).
534. Im, S. J. et al. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. *Nature* **537**, 417–421 (2016).
535. Miller, B. C. et al. Subsets of exhausted CD8(+) T cells differentially mediate tumor control and respond to checkpoint blockade. *Nat. Immunol.* **20**, 326–336 (2019).
536. Siddiqui, I. et al. Intratumoral Tcf1(+)PD-1(+) T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy. *Immunity* **50**, 195–211.e110 (2019).
537. Sheng, W. et al. Simultaneous inhibition of LSD1 and TGFβ enables eradication of poorly immunogenic tumors with anti-PD-1 treatment. *Cancer Discov.* **11**, 1970–1981 (2021).
538. Paik, P. K. et al. New treatment options in advanced squamous cell lung cancer. *Am. Soc. Clin. Oncol. Educ. Book* **39**, e198–e206 (2019).