I. Introduction

With the widespread use of picture archiving and communication system (PACS) in the hospitals, the amount of medical image data is rapidly increasing. Thus, the more efficient and effective retrieval methods are required for better management of medical image information.

There are two ways that medical images are retrieved, text-based and content-based methods [1]. In text-based image retrieval, the images are retrieved by the manually annotated text descriptions and traditional database techniques to manage images are used. In content-based image retrieval, the images are retrieved on the basis of features such as color, texture, shape, and so on, which were derived from the images themselves.

So far, a variety of medical image retrieval systems have been developed using either method (text-based or content-based) or combining two methods; a rough classification of medical image retrieval methods is displayed in Figure 1.

Therefore, we described two technological approaches for medical image retrieval - past development and present status, and future perspectives.

II. Text-Based Medical Image Retrieval

Text-based image retrieval system can be traced back to 1970s. Text-based image retrieval system is prevalent in the search on the internet web browsers. Although text-based methods are fast and reliable when images are well annotated, they cannot search in unannotated image databases.

Moreover, text-based image retrieval has the following additional drawbacks, it requires time-consuming annotation procedures and the annotation is subjective [2]. Text-based query commonly results in irrelevant images (Figure 2).

Thus, to support effective image searching, retrieval methods based on the image content were developed.
III. Content-Based Medical Image Retrieval

In content-based image retrieval systems, images are indexed and retrieved from databases based on their visual content (image features) such as color, texture, shape, etc. Commercial content-based image retrieval systems have been developed, such as QBIC [3], Photobook [4], Virage [5], VisualSEEK [6], Netra [7]. Eakins [8] has divided these image features into three levels as followings: 1) Level 1 - Primitive features such as color, texture, shape or the spatial location of image elements. Typical query example is 'find pictures like this'; 2) Level 2 - Derived attributes or logical features, involving some degree of inference about the identity of the objects depicted in the image. Typical query example is 'find a picture of a flower'; 3) Level 3 - Abstract attributes, involving complex reasoning about the significance of the objects or scenes depicted. Typical query example is 'find pictures of a beautiful lady.'

The majority of content-based image retrieval systems mostly offer level 1 retrieval, a few experimental systems level 2, but none level 3.

Commonly used image features for content-based image retrieval were followings: 1) Color: color is one of the visual cues often used for content description, but most medical images are grayscale. Thus, color features are not used for medical image retrieval; 2) Texture: texture features mean spatial organization of pixel values of an image and used in standard transform domain analysis by tools such as Fourier transform, wavelets, Gabor or Stockwell filters. In the medical images, texture features are useful because they can reflect the details within an image structure; 3) Shape: shape feature has broad range of visual cues such as contour, curve, surfaces, and so on. Recently, many methods measures similarity between images using shape features has been developed.

Figure 1. Classification of medical image retrieval methods.

Figure 2. Text-based query commonly retrieves irrelevant images on the internet web browser. For user query "bike (bicycle)," irrelevently retrieved images (not relevant to bike) are shown because image annotations contain a word "bike" such as bike tour, school bike rack, water bike, abbreviation, etc. (upper two layers). Miscellaneous medical images retrieved by query of "Reconstruction and computed tomography (CT)" are displayed in the lower 3rd layer of the figure (CT for image reconstruction, 3-dimensional reconstruction CT image, CT reconstruction algorithm, bone reconstruction with CT, breast reconstruction using CT).
Formerly developed commercial content-based image retrieval systems characterized images by global features such as color histogram, texture values and shape parameters, however, for medical images, the systems using global image features failed to capture the relevant information [9]. In medical images, the clinically useful information is mostly highly localized in small areas of the images, that is, the ratio of pathology bearing pixels to the rest of the images is small. Thus, the global image features such as color, texture, shape, etc. cannot effectively characterize the content of the medical images.

Initially, medical images were included in the content-based retrieval systems as a subdomain for trials [10,11]. Recent trials for content-based medical image retrieval were ASSERT system [12] for high resolution computed tomography (CT) images of the lung and image retrieval for medical applications (IRMA) system [13] for the classification of images into anatomical areas, modalities and viewpoints. Flexible image retrieval engine (FIRE) system handles different kinds of medical data as well as non-medical data like photographic databases [14].

In ASSERT system, the system lets the user extract pathol-
ogy-bearing regions in lung images and these regions are then characterized by their grayscale, texture, and shape attributes, which are used for image retrieval.

The IRMA system (Figure 3) is a generic web-based x-ray retrieval system. It allows the user to extract images from a database given an x-ray image query. Local features and similarity measures are used to compute the nearest images. This system also developed a classification code for medical images to classify medical images based on four axes (modality, body orientations, body region, and biological system) [15]. The local features are derived from the previously classified and registered images that have been segmented automatically. IRMA analyzes content of medical images using a six-layer information model: raw data, registered data, feature, scheme, object, and knowledge. IRMA lacks the ability for finding particular pathology that may be localized in particular regions within the image.

In FIRE system (Figure 4), query by example image is implemented using a large variety of different image features that can be combined and weighted individually and relevance feedback can be used to refine the result [16].

The integration of content-based image retrieval system into the PACS system has been proposed [17,18]. However, an effective and precise medical image retrieval still remains a problem and recent researches aim at developing techniques that overcome this point.

IV. Controlled Vocabulary-Based System for Medical Image Retrieval

Currently, work is underway to create tools to enable semantic annotation of images using ontologies, providing an opportunity to enhance content-based image retrieval systems.
with richer descriptions of images. The suggested ontology systems are controlled terminologies such as Systematized Nomenclature of Medicine - Clinical Terms (SNOMED-CT) [19], Foundational Model of Anatomy (FMA) [20] and Radiology Lexicon (RadLex) [21].

1. SNOMED-CT Terminology
SNOMED-CT aims to be a comprehensive terminology that provides clinical content and expressivity for clinical documentation and reporting [19]. The SNOMED hierarchy is easy to compute, which was the primary reason for selecting the terminology for the research. SNOMED-CT has approximately 370,000 concepts and 1.5 million triples i.e., relationships of one concept with another in the terminology (Figure 5).

2. FMA
FMA is a reference ontology for the terms of anatomy and developed and maintained by the University of Washington
and the US National Library of Medicine [20]. It contains 71,202 anatomical entities and more than 1,500,000 relations which form the machine processable standard vocabulary. FMA also provides definitions for conceptual attributes, part-whole, location, and other spatial associations of anatomical entities (Figure 6).

3. RadLex Terminology
RadLex was developed to create a unifying source for medical imaging terminology by the Radiological Society of North America [22] and currently contains more than 32,000 standardized terms used in radiology reports (Figure 7). It contains not only domain knowledge but also lexical information such as synonymy. RadLex terminology helps the analysis of radiological information, allows uniform indexing of image databases, and enables structuring medical image information [23,24].

V. Combined Text and Content-Based Medical Image Retrieval
Considering the intrinsic difference between the text and image in representing and expressing information, there have been approaches to combine the text-based and content-based image retrieval. Techniques that perform the text-based method first [25,26] and two methods at the same time [27,28] were studied.

The hybrid image retrieval systems to incorporate external knowledge that is encoded in lexicons, thesauri and ontologies were suggested [29].

The new project, Annotation and Image Markup (AIM) for medical image annotation and markup is being developed to make all the key semantic (Figure 8) content of images machine-readable using controlled terminologies (mainly RadLex) and image markup standards [30].

VI. Conclusion
In the domain of medical imaging informatics, a huge amount of image data is being produced. A lot of work has already been done to improve the image retrieval systems. One is text-based approach and the other is content-based. Each method has its own advantages and disadvantages. Text-based method is widely used and fast, but it requires precise annotation. Content-based approach provides semantic retrieval, but effective and precise techniques still remains elusive.

Recently, a new controlled vocabulary, RadLex was developed to provide standardized terms for images and combined text and content-based methods were developed. For improved semantic image retrieval, it is proposed that image retrieval techniques be effectively integrated with external knowledge, annotation tools, and image markup systems.

In the near future, it is expected that the semantic contents of medical images will be totally computationally-accessible and reusable by the application of ontology and the development of new convenient tools.

Conflict of Interest
No potential conflict of interest relevant to this article was reported.

References
1. Liu Y, Zhang D, Lu G, Ma WY. A survey of content-based image retrieval with high-level semantics. Pattern Recogn 2007;40:262-82.
2. Brahmi D, Ziou D. Improving CBIR systems by integrating semantic features. In: Proceedings of the 1st Canadian Conference on Computer and Robot Vision, 2004. p.233-40.
3. Faloutsos C, Barber R, Flickner M, Hafner J, Niblack W, Petkovic D, Equitz W. Efficient and effective querying by image content. J Intell Inf Syst 1994;3:231-62.
4. Pentland A, Picard RW, Sclaroff S. Photobook: content-based manipulation of image databases. Int J Comput Vis 1996;18:233-54.
5. Chang SF, Smith JR, Beigi M, Benitez A. Visual information retrieval from large distributed online repositories. Commun ACM 1997;40:63-71.
6. Smith JR, Chang SF. VisualSEEk: a fully automated content-based image query system. In: Proceedings of the fourth ACM international conference on Multimedia, 1996. p.87-98.
7. Ma WY, Manjunath BS. NeTra: a toolbox for navigating large image databases. In: Proceedings of International Conference on Image Processing, 1997. p.568-71.
8. Eakins JP. Towards intelligent image retrieval. Pattern Recogn 2002;35:3-14.
9. Brodley C, Kak A, Shyu C, Dy J, Broderick L, Aisen AM. Content-based retrieval from medical image databases: a synergy of human interaction, machine learning and computer vision. In: Proceedings of the 16th National Conference on Artificial Intelligence and the 11th Innovative Applications of Artificial Intelligence Conference Innovative Applications of Artificial Intelligence, 1999. p.760-7.
10. Kelly PM, Cannon M. Query by image example: the comparison algorithm for navigating digital image databases (CANDID) approach. In: Proceedings of the Storage and Retrieval for Image and Video Databases, 1995. p.238-48.

11. Orphanoudakis SC, Chronaki C, Kostomanolakis S. I2C: a system for the indexing, storage, and retrieval of medical images by content. Med Inform 1994;19:109-22.

12. Shyu CR, Brodley CE, Kak AC, Kosaka A, Aisen AM, Broderick LS. ASSERT: a physician-in-the-loop content-based retrieval system for HRCT image databases. Comput Vis Image Understand 1999;75:111-32.

13. Keysers D, Dahmen J, Ney H, Wein BB, Lehmann TM. Statistical framework for model-based image retrieval in medical applications. J Electron Imaging 2003;12:59-68.

14. Deselaers T. Features for Image Retrieval [dissertation]. Aachen, Germany: Rheinisch-Westfälische Technische Hochschule Aachen; 2003.

15. Muller H, Michoux N, Bandon D, Geissbuhler A. A review of content-based image retrieval systems in medical applications—clinical benefits and future directions. Int J Med Inform 2004;73:1-23.

16. Deselaers T. Fire [Internet]. Tomas Deselaers; c2009 [cited at 2012 Mar 26]. Available from: http://thomas.deselaers.de/fire.

17. El-Kwae EA, Xu H, Kabuka MR. Content-based retrieval in picture archiving and communication systems. J Digit Imaging 2000;13:70-81.

18. Qi H, Snyder WE. Content-based image retrieval in picture archiving and communications systems. J Digit Imaging 1999;12:81-3.

19. Stearns MQ, Price C, Spackman KA, Wang AY. SNOMED clinical terms: overview of the development process and project status. Proc AMIA Symp 2001;2001:662-6.

20. Rosse C, Mejino JL Jr. A reference ontology for biomedical informatics: the foundational model of anatomy. J Biomed Inform 2003;36:478-500.

21. Langlotz CP. RadLex: a new method for indexing online educational materials. Radiographics 2006;26:1595-7.

22. Rubin DL. Creating and curating a terminology for radiology: ontology modeling and analysis. J Digit Imaging 2008;21:355-62.

23. Rubin DL, Flanders A, Kim W, Siddiqui KM, Kahn CE Jr. Ontology-assisted analysis of Web queries to determine the knowledge radiologists seek. J Digit Imaging 2011;24:160-4.

24. Hazen R, Van Esbroeck AP, Mongkolwat P, Channin DS. Automatic extraction of concepts to extend RadLex. J Digit Imaging 2011;24:165-9.

25. Luo B, Wang X, Tang X. World Wide Web based image search engine using text and image content features. Proc SPIE 2003;5018:123-30.

26. Barrios JM, Diaz-Espinoza D, Bustos B. Text-based and content-based image retrieval on Flickr: DEMO. In: Proceedings of the 2nd International Workshop on Similarity Search and Applications, 2009. p.156-7.

27. Deselaers T, Weyand T, Keysers D, Macherey W, Ney H. FIRE in ImageCLEF 2005: combining content-based image retrieval with textual information retrieval. In: Proceedings of the 6th International Conference on Cross-Language Evaluation Forum: accessing Multilingual Information Repositories, 2005. p.652-61.

28. Dinakaran B, Annapurna J, Kumar CA. Interactive image retrieval using text and image content. Cybern Inf Tech 2010;10:20-30.

29. Zhou XS, Zillner S, Moeller M, Sintek M, Zhan Y, Krishnan A, Gupta A. Semantics and CBIR: a medical imaging perspective. In: Proceedings of the 2008 International Conference on Content-based Image and Video Retrieval, 2008. p.571-80.

30. Rubin DL, Mongkolwat P, Kleper V, Supekar K, Channin DS. Medical imaging on the semantic web: annotation and image markup. In: Proceedings of the Semantic Scientific Knowledge Integration, 2008.

31. Rubin DL, Rodriguez C, Shah P, Beaulieu C. iPad: semantic annotation and markup of radiological images. AMIA Annu Symp Proc 2008;2008:626-30.