Brown representability for triangulated categories with a linear action by a graded ring

JANINA C. LETZ

Abstract. In this paper we give necessary and sufficient conditions for a functor to be representable in a strongly generated triangulated category which has a linear action by a graded ring, and we discuss some applications and examples.

Mathematics Subject Classification. 18G80.

Keywords. Brown representability, Representable functor, Triangulated category, Ext-finite, Graded ring.

1. Introduction. Every object X in a category induces a contravariant functor into the category of sets that sends an object Y to the set $\text{Hom}(Y, X)$. Any functor that is naturally isomorphic to such a functor is called representable. There are a number of results in various settings, called Brown representability, when every ‘reasonable’ functor is representable. The first such result is due to Brown; see [11].

The first Brown representability result for triangulated categories was established by Neeman [19, Theorem 3.1]. The work on hand was motivated by [10, Theorem 1.3] and [21, 4.3].

Theorem (see Theorem 2.7). Let R be a \mathbb{Z}-graded graded-commutative noetherian ring and \mathcal{T} a graded R-linear triangulated category, that is strongly generated, Ext-finite, and idempotent complete. Then a graded R-linear cohomological functor $f: \mathcal{T}^{\text{op}} \to \text{grMod}(R)$ is graded representable if and only if f only takes values in $\text{grmod}(R)$.

Partly supported by the NSF grant DMS-1700985, and the Alexander von Humboldt Foundation in the framework of an Alexander von Humboldt Professorship endowed by the German Federal Ministry of Education and Research.
In contrast to the previous works, we characterize the \textit{graded representable} functors; those are the functors naturally isomorphic to
\[\coprod_{d \in \mathbb{Z}} \text{Hom}_T(-, \Sigma^d X) \]
for some object \(X \). The result is proved in Section 2. Without the assumption that \(R \) is noetherian and \(T \) Ext-finite, we obtain necessary, through not sufficient, conditions for a functor to be graded representable; see Corollary 2.19.

The study of representability is motivated by the fact, that the characterization of representable functors in a triangulated category \(T \) yields the existence of a right adjoint functor to a functor \(S \to T \). For a nice discussion on this, see [20, Introduction]. In Section 3, we show the same holds in the graded setting.

Finally we discuss some examples where Theorem 2.7 yields new insight: When \(G \) is a finite group and \(R \) a commutative noetherian ring, then \(D_b(\text{mod}(RG)) \) is Ext-finite as a \(H^*(G, R) \)-linear category. In the second example, we consider the action of Hochschild cohomology \(HH^*(R/Q) \) on \(D_b(\text{mod}(R)) \), when \(Q \) is a regular ring and \(R = Q/(f) \) a quotient by a regular sequence.

2. \textbf{Representable functors in the graded setting.} Let \(T \) be a triangulated category with suspension functor \(\Sigma \).

2.1. For objects \(X \) and \(Y \) in \(T \), we write
\[
\text{Ext}^*_T(X, Y) := \coprod_{d \in \mathbb{Z}} \text{Hom}_T(X, \Sigma^d Y). \tag{2.1.1}
\]
When \(T = D(R) \), the derived category of modules over a ring \(R \), and \(X \) and \(Y \) are \(R \)-modules viewed as objects in \(D(R) \) via the natural embedding, then this coincides with the classical Ext-groups.

2.2. Let \(R \) be a \(\mathbb{Z} \)-graded graded-commutative ring. This means \(R \) decomposes as
\[R = \coprod_{d \in \mathbb{Z}} R_d, \]
and the Koszul sign rule holds
\[rs = (-1)^{de} sr \quad \text{for } r \in R_d \text{ and } s \in R_e. \]
We say \(r \in R_d \) is an homogeneous element of degree \(d \).

2.3. A triangulated category \(T \) is \textit{graded }\(R \)-\textit{linear} if
1. for any objects \(X \) and \(Y \) in \(T \), the abelian group \(\text{Ext}^*_T(X, Y) \) is a graded \(R \)-module with the grading given by the coproduct in (2.1.1), and
2. composition is \(R \)-bilinear.

This data is equivalent to a ring homomorphism \(R \to \mathbb{Z}(T) \), where
\[\mathbb{Z}(T) := \coprod_{d \in \mathbb{Z}} \{ \eta : \text{id}_T \to \Sigma^d \eta \Sigma = (-1)^d \Sigma \eta \} \]
is the graded center of T. More precisely, a ring homomorphism $\varphi: R \to \mathbb{Z}(T)$ yields an R-action on $\text{Ext}^*_T(X,Y)$ via
\[r \cdot - : \text{Ext}^*_T(X,Y) \to \text{Ext}^*_T(X,\Sigma^d Y) = \text{Ext}^*_T(X,Y)[d], \]
for any homogeneous element $r \in R$. Conversely, any homogeneous element $r \in R$ yields a natural transformation η given by
\[\eta_X := r \cdot \text{id}_X : X \to \Sigma^{|r|} X \]
for any $X \in T$. It is straightforward to check that these identifications are well-defined and mutually inverse. The graded center has been studied in a number of works; for example [8,13].

2.4. We denote by $\text{grMod}(R)$ the category of graded R-modules, and by $\text{grmod}(R)$ its full subcategory of finitely generated R-modules. The nth shift $M[n]$ of a graded R-module M is given by $(M[n])_d = M_{n+d}$.

The suspension functor of a graded R-linear category T in the first component of $\text{Ext}^*_T(-,-)$ corresponds to the negative shift in $\text{grMod}(R)$:
\[\text{Ext}^*_T(\Sigma^n X,Y) \cong \text{Ext}^*_T(X,Y)[-n]. \]

2.5. A functor $f: T^{\text{op}} \to \text{grMod}(R)$ is graded R-linear if
1. the induced map $\text{Ext}^*_T(X,Y) \to \text{Ext}^*_R(f(Y),f(X))$ is a map of graded R-modules, and
2. the suspension becomes the negative shift under f, that is
\[f(\Sigma^n X) = f(X)[-n]. \]
The functor f is cohomological if f applied to any exact triangle yields a long exact sequence of graded R-modules.

Without explicitly stating, we always assume that a natural transformation between graded R-linear functors respects this structure.

Definition 2.6. A functor $T^{\text{op}} \to \text{grMod}(R)$ is graded representable if it is naturally isomorphic to
\[g_X := \text{Ext}^*_T(-,X) : T^{\text{op}} \to \text{grMod}(R) \]
for some object X in T.

When T is graded R-linear, then any graded representable functor is graded R-linear.

A graded R-linear functor $f: T^{\text{op}} \to \text{grMod}(R)$ is graded representable if and only if $f_d: T^{\text{op}} \to \text{Mod}(R_0)$ is representable for an (arbitrary) integer d. The functors f_d are the degree d part of f, that is $f_d(X) := f(X)_d$. Since f is graded R-linear, the degree d part f_d for an integer d encodes all the information of f, that is
\[f_d(\Sigma^e X) = f(\Sigma^e X)_d = f(X)[-e]_d = f(X)_{d-e} = f_{d-e}(X). \]
Theorem 2.7. Let R be a \mathbb{Z}-graded graded-commutative noetherian ring and T a graded R-linear triangulated category, that is strongly generated, Ext-finite, and idempotent complete. Then a graded R-linear cohomological functor $f: T^{\text{op}} \to \text{grMod}(R)$ is graded representable if and only if f is locally finite.

Before we give a proof, we recall some definitions and properties:

2.8. A \mathbb{Z}-graded ring R is noetherian if and only if R_0 is noetherian and R is finitely generated as an R_0-algebra; see for example [15, Corollaire (2.1.5)] or [12, Theorem 1.5.5]. In particular, such a ring is bounded below.

2.9. A graded R-linear triangulated category T is Ext-finite if for all $X, Y \in T$, the graded R-module $\text{Ext}^\ast_T(X, Y)$ is finitely generated.

A triangulated category T is idempotent complete if for every object X in T and every idempotent $e \in \text{End}_T(X)$, that is $e^2 = e$, there exists an object Y and maps

$$i: Y \to X \quad \text{and} \quad p: X \to Y$$

such that $p \circ i = \text{id}_Y$ and $i \circ p = e$.

2.10. A subcategory $S \subseteq T$ is thick if it is triangulated and closed under retracts. Since the intersection of thick subcategories is thick, there exists a smallest thick subcategory of T containing an object G, which we denote by $\text{thick}(G)$. We say G finitely builds an object X in T when $X \in \text{thick}(G)$.

There is an exhaustive filtration of $\text{thick}_R(G)$: Let $\text{thick}^1(G)$ be the smallest full subcategory containing G that is closed under finite coproducts, retracts, and suspension. Then

$$\text{thick}^n(G) := \left\{ X \in T \mid \begin{array}{l} \text{there exists } X' \in T \text{ and an exact triangle } Y \to X \oplus X' \to Z \to \Sigma Y \\
\text{such that } Y \in \text{thick}^{n-1}(G) \text{ and } Z \in \text{thick}^1(G) \end{array} \right\}.$$

These are full subcategories and form an exhaustive filtration of $\text{thick}(G)$; cf. [3,10]. In particular, if X lies in $\text{thick}(G)$, then there exists an integer n such that $X \in \text{thick}^n(G)$.

A triangulated category T is strongly generated if there exists an object G in T and a non-negative integer n such that $T = \text{thick}^n(G)$. The object X is a strong generator of T; cf. [21].

In the remainder of this section, we give a proof of Theorem 2.7. We fix a \mathbb{Z}-graded graded-commutative ring R, a graded R-linear triangulated category T, and a graded R-linear cohomological functor $f: T^{\text{op}} \to \text{grMod}(R)$.

Lemma 2.11 (Graded version of Yoneda’s lemma). For any $X \in T$, the map

$$\text{Nat}(g_X, f) \to f_0(X) \quad \text{given by} \quad \eta \mapsto \eta(X)(\text{id}_X)$$

is an isomorphism of abelian groups.

Proof. For $u \in f_0(X)$, we define a natural transformation

$$\eta_u: g_X \to f \quad \text{as} \quad \eta_u(Y)(f) := f(f)(u).$$
where $Y \in \mathcal{T}$ and $f \in \operatorname{Ext}^*_T(Y, X)$. Since u is a degree zero element, the map $\eta_u(Y)$ is homogeneous. It is straightforward to verify that this is the inverse of the map in the claim and both are maps of abelian groups. \qed

In particular, any morphism $f: X \to Y$ corresponds to a natural transformation

$$f_*: \mathcal{g}_X \to \mathcal{g}_Y$$

given by post-composition.

2.12. Adapting the definitions in [21, Section 4] a graded R-linear functor $f: \mathcal{T}^{\text{op}} \to \text{grMod}(R)$ is

- **locally finitely generated** if for every X in \mathcal{T}, there exists Y in \mathcal{T} and a natural transformation $\zeta: \mathcal{g}_Y \to f$ such that $\zeta(X)$ is surjective,
- **locally finitely presented** if it is locally finitely generated and the kernel of any natural transformation $\mathcal{g}_Y \to f$ is locally finitely generated, and
- **locally finite** if f only takes values in $\text{grmod}(R)$.

When $f: \mathcal{T}^{\text{op}} \to \text{grMod}(R)$ is locally finitely generated or locally finitely presented, then $f_d: \mathcal{T}^{\text{op}} \to \text{Mod}(R_0)$ is locally finitely generated or locally finitely presented in the sense of [21, Section 4], respectively. The same need not hold for locally finite, for examples, see Section 3.

If \mathcal{T} is Ext-finite, then any graded representable functor is locally finite. Without the assumption that \mathcal{T} is Ext-finite, we can make the following statement:

Lemma 2.13. Any graded representable functor is locally finitely presented.

Proof. It is clear that a graded representable functor is locally finitely generated. Let \mathcal{g}_X be a graded representable functor, and $\mathcal{g}_Y \to \mathcal{g}_X$ a natural transformation. By Yoneda’s lemma 2.11, this corresponds to a morphism $Y \to X$. If we complete this to an exact triangle $Z \to Y \to X \to \Sigma Z$, the sequence

$$\mathcal{g}_Z \to \mathcal{g}_Y \to \mathcal{g}_X$$

is exact on \mathcal{T}. In particular, the kernel of $\mathcal{g}_Y \to \mathcal{g}_X$ is locally finitely generated. \qed

Lemma 2.14. If f is locally finite, then f is locally finitely generated.

Proof. Let X be an object in \mathcal{T}. Then the R-module $f(X)$ is finitely generated, and we can choose a finite set of homogeneous generators x_1, \ldots, x_n of $f(X)$ in degrees d_1, \ldots, d_n. Set

$$Y := \prod_{j=1}^n \Sigma^{d_j} X.$$

For every generator x_j, we obtain canonical maps

$$\Sigma^{d_j} X \xrightarrow{i_j} Y \xrightarrow{\pi_j} \Sigma^{d_j} X$$
whose composition is the identity map on $\Sigma^d X$. Let $y \in f(Y)$ be the canonical element, for which
\[x_j = f(i_j)(y) \quad \text{for } 1 \leq j \leq n. \]
Because of the suspensions introduced in the definition of Y, the element y is homogeneous of degree 0. By Yoneda’s lemma, the element y corresponds to the natural transformation $\zeta: g_Y \to f$ with $\zeta(Y)(\text{id}_Y) = y$. Then $\zeta(y)(i_j) = x_j$, and $\zeta(X)$ is surjective. That is f is locally finitely generated.

In general a locally finite functor need not be locally finitely presented. This requires further assumptions on R and T:

Lemma 2.15. If R is noetherian and T Ext-finite, then a locally finite functor $f: T^{op} \to \text{grMod}(R)$ is locally finitely presented.

Proof. By Lemma 2.14, the functor f is locally finitely generated. Let $g_Y \to f$ be a natural transformation. We set
\[f'(X) := \ker(g_Y(X) \to f(X)). \]
Since T is Ext-finite, the R-module $g_Y(X)$ is finitely generated. By assumption on f, so is $f(X)$. Since R is noetherian, the kernel $f'(X)$ is also finitely generated. Thus f' is a locally finite functor and by Lemma 2.14 it is locally finitely generated. In particular, f is locally finitely presented. \qed

2.16. Let $(f_i, \eta_i)_{i>0}$ be a direct system of cohomological functors $f_i: T \to A$ where A an abelian category and natural transformations $\eta_i: f_i \to f_{i+1}$. Following [21, 4.2.2], a direct system $(f_i, \eta_i)_{i>0}$ is almost constant on a subcategory S of T if for every $X \in S$, the sequence
\[0 \to \ker(\eta_i(X)) \to f_i(X) \to \text{colim}_j f_j(X) \to 0 \]
is exact for all positive integers i.

A direct system $(X_i, f_i)_{i>0}$ of objects X_i and morphisms $f_i: X_i \to X_{i+1}$ in T is almost constant on S if the induced direct system of functors $(g_{X_i}, (f_i)_*)_{i>0}$ is almost constant on S.

For almost constant direct systems, the following hold; see [21, Proposition 4.13].

Facts 2.17. Let $S \subseteq T$ be a subcategory closed under suspension, and $(f_i, \eta_i)_{i>0}$ a direct system that is almost constant on S. Then
1. $(f_{mi+r})_{i \geq 0}$ is almost constant on $\text{thick}^a(S)$ for any $r > 0$, and
2. $f_{n+1} \to \text{colim}_i f_i$ is split surjective on $\text{thick}^a(S)$.

If the functors f_i are graded R-linear, the assumption that S is closed under suspension is redundant.

Proposition 2.18. Let T be a strongly generated, graded R-linear triangulated category and $f: T^{op} \to \text{grMod}(R)$ a cohomological graded R-linear functor. Then f is locally finitely presented if and only if f is a retract of a graded representable functor.
Proof. We assume \(f \) is locally finitely presented. Let \(G \in \mathcal{T} \) be a strong generator of \(\mathcal{T} \) with \(\text{thick}^d(G) = \mathcal{T} \). Then there exist \(A_1 \in \mathcal{T} \) and a natural transformation \(\zeta_1 : g_{A_1} \to f \) such that \(\zeta_1(G) \) is surjective. Inductively we construct a direct system

\[
\begin{align*}
g_{A_1} & \to g_{A_2} \to \cdots \\
\end{align*}
\]

with compatible natural transformations \(\zeta_i : g_{A_i} \to f \): Assume we have constructed \(A_i \) and \(\zeta_i \) for \(i \leq n \). Since \(f \) is locally finitely presented, there exists

\[
\begin{align*}
g_B & \to \ker(g_{A_n} \to f) \\
\end{align*}
\]

that is surjective on \(G \). This induces a natural transformation \(g_B \to g_{A_n} \), which by the graded version of Yoneda’s lemma \ref{2.11} corresponds to a morphism \(f : B \to A_n \). We complete this morphism to an exact triangle

\[
\begin{align*}
B & \to A_n \to A_{n+1} \to \Sigma B \\
\end{align*}
\]

and apply \(f_0 \), the degree 0 part of \(f \). By the graded version of Yoneda’s lemma \ref{2.11}, we obtain the exact sequence

\[
\begin{align*}
\text{Nat}(g_B, f) & \leftarrow \text{Nat}(g_{A_n}, f) \leftarrow \text{Nat}(g_{A_{n+1}}, f). \\
\end{align*}
\]

Thus by construction of \(B \), there exists a natural transformation \(\zeta_{n+1} \) whose image is \(\zeta_n \).

By this construction, we have

\[
\begin{align*}
\ker(g_{A_n}(G) \to f(G)) = \ker(g_{A_n}(G) \to g_{A_{n+1}}(G)). \\
\end{align*}
\]

Using this and that \(\zeta_1(G) \) is surjective, it is straightforward to verify that the direct system is almost constant on \(G \). Then the induced natural transformation \(\text{colim}_i g_{A_i} \to f \) is a natural isomorphism. By Facts \ref{2.17}, the natural transformation

\[
\begin{align*}
g_{A_{d+1}} & \to \text{colim}_i g_{A_i} \sim f \\
\end{align*}
\]

is split surjective, and thus \(f \) is a retract of \(g_{A_{d+1}} \) on \(\mathcal{T} \).

For the converse direction, we assume \(f \) is the retract of \(g_X \) for some object \(X \). Then we have a canonical projection and a canonical injection

\[
\begin{align*}
g_X & \to f \quad \text{and} \quad f \to g_X, \\
\end{align*}
\]

respectively. The canonical projection is surjective on \(\mathcal{T} \), the canonical injection is injective. In particular, the canonical projection yields that \(f \) is locally finitely generated. Given a natural transformation \(g_Y \to f \), its kernel coincides with the kernel of the composition \(g_Y \to f \to g_X \). By Lemma \ref{2.13}, any representable functor is locally finitely presented, and thus is \(f \).

Corollary 2.19. If \(\mathcal{T} \) is additionally idempotent complete, then every locally finitely presented functor is graded representable.

Proof. Let \(f \) be a locally finitely presented functor. By Proposition \ref{2.18}, it is a retract of a graded representable functor \(g_X \). Then the natural transformation

\[
\begin{align*}
g_X & \to f \to g_X \\
\end{align*}
\]
corresponds to an idempotent $e: X \to X$. Since T is idempotent complete, there exists a retract of Y of X such that e decomposes as the natural inclusion and projection morphism. Then $f \to g_X \to g_Y$ is a natural isomorphism, and f is graded representable. \qed

Proof of Theorem 2.7. Since T is Ext-finite, any graded representable functor is locally finite. For the converse, we assume f is locally finite. Since R is noetherian and T Ext-finite, we can apply Lemma 2.15 to obtain that f is locally finitely presented. Then f is graded representable by Corollary 2.19. \qed

3. Applications. Adjoint functors. As explained in [20, Introduction], there is a connection between representable functors and adjoint functors. In our context, we obtain the following:

Let R be a \mathbb{Z}-graded graded-commutative ring. A functor $f: S \to T$ between R-linear graded triangulated categories is graded R-linear if it is exact and the induced map

$$\text{Ext}^*_S(X, Y) \to \text{Ext}^*_T(f(X), f(Y))$$

is a map of graded R-modules.

Lemma 3.1. Let R be a \mathbb{Z}-graded graded-commutative ring, and S, T graded R-linear triangulated categories. Suppose T is Ext-finite and every cohomological graded R-linear functor $S^{\text{op}} \to \text{grMod}(R)$, that is locally finite, is graded representable. Then every graded R-linear functor $f: S \to T$ has a right adjoint.

Proof. We adapt the proof of [20, Theorem 8.4.4]. Given $Y \in T$, we define a functor $h: S \to \text{grMod}(R)$ by

$$h(-) := \text{Ext}^*_T(f(-), Y).$$

This is a graded R-linear functor. Since T is Ext-finite, this functor is locally finite. So by assumption, h is graded representable, that is there exists an object $f'(Y) \in S$ such that

$$\text{Ext}^*_T(f(-), Y) \cong \text{Ext}^*_S(-, f'(Y)).$$

It remains to verify that f' is a functor and this isomorphism is natural in both components. Let $f: Y \to Z$ be a morphism in T. Then the induced map

$$\text{Ext}^*_S(-, f'(Y)) \to \text{Ext}^*_S(-, f'(Z))$$

corresponds to a morphism $f'(Y) \to f'(Z)$ by Yoneda’s lemma 2.11. Thus f' is a functor. The above isomorphism is natural by construction. So f' is a right adjoint of f.

Corollary 3.2. Let R be a \mathbb{Z}-graded graded-commutative noetherian ring and S, T Ext-finite graded R-linear triangulated categories. Suppose S is strongly generated and idempotent complete. Then every graded R-linear functor $f: S \to T$ has a right adjoint. \qed
Derived category. Let R be a commutative noetherian ring and A an R-algebra that is finitely generated as an R-module. Then A is noetherian; see for example [18, Theorem 3.7]. The bounded derived category of finitely generated modules over A, denoted by $D_b(\text{mod}(A))$, has a canonical structure as an R-linear category, and the R-module $\text{Hom}_{D_b(\text{mod}(A))}(X,Y) = \text{Ext}_R^0(X,Y)$ is finitely generated for any X,Y. In general, the category $D_b(\text{mod}(A))$ need not be Ext-finite as an R-linear category. By [6, Corollary 2.10], the category $D_b(\text{mod}(A))$ is idempotent complete.

3.3. In general the question whether $D_b(\text{mod}(A))$ is strongly generated is rather difficult. When A is artinian, then $D_b(\text{mod}(A))$ is strongly generated by [21, Proposition 7.37]. When $A = R$ is a commutative noetherian ring, then $D_b(\text{mod}(R))$ is strongly generated when R is either essentially of finite type over a field or over an equicharacteristic excellent local ring; see [1, Main Theorem] and [16, Corollary 7.2].

In the following, we discuss two examples in which $D_b(\text{mod}(A))$ is Ext-finite for some cohomology ring connected to A.

Finite group over a commutative ring. We consider $A = RG$, the group algebra of a finite group G.

3.4. The group cohomology of the group algebra RG with coefficients in an RG-complex M is

$$H^*(G,M) := \text{Ext}^*_R(R,M).$$

When $M = R$, this is a \mathbb{Z}-graded graded-commutative ring, and every $H^*(G,M)$ is a graded $H^*(G,R)$-module. In particular, for RG-complexes X, Y, the identification

$$\text{Ext}^*_R(D_b(\text{mod}(R)), X,Y) = \text{Ext}^*_R(R,X,Y) \cong H^*(G, \text{Hom}_R(X,Y))$$

holds and the cohomology ring $H^*(G,R)$ acts on any Ext-module; see for example [9, Proposition 3.1.8]. So the bounded derived category of finitely generated RG-modules $D_b(\text{mod}(RG))$ is graded $H^*(G,R)$-linear.

3.5. By [14,22], the group cohomology ring $H^*(G,R)$ is noetherian, and $H^*(G,M)$ is finitely generated over $H^*(G,R)$ for every finitely generated RG-module M. In particular, the derived category $D_b(\text{mod}(RG))$ is Ext-finite as a graded $H^*(G,R)$-linear triangulated category.

Corollary 3.6. Let R be a commutative noetherian ring and G a finite group. If $D_b(\text{mod}(RG))$ is strongly generated, then a graded $H^*(G,R)$-linear functor

$$f: D_b(\text{mod}(RG)) \to \text{grMod}(H^*(G,R))$$

is graded representable if and only if f is locally finite. □

Regular ring modulo a regular sequence. We consider $R = A$ a commutative noetherian ring.

3.7. The category $D_b(\text{mod}(R))$ is Ext-finite over R if and only if the Ext-modules $\text{Ext}^*_R(X,Y)$ are bounded for all X and Y in $D_b(\text{mod}(R))$. That is precisely when R is regular: When R is regular, the Ext-modules are bounded
by definition. For the converse, for every X in $D_b(\text{mod}(R))$, the Ext-module $\text{Ext}_R^*(X, R/p)$ is bounded and X_p has finite projective dimension for any prime ideal p of R. Then X has finite projective dimension; see [7, Lemma 4.5] for modules, and [5, Theorem 4.1] and [17, Theorem 3.6] for complexes.

When R is regular, the bounded derived category $D_b(\text{mod}(R))$ is strongly generated if and only if R is a strong generator. The later holds precisely when R has finite global dimension, that is R has finite Krull dimension. Then Rouquier’s representability theorem [21, Corollary 4.18] applies.

3.8. Suppose $R = Q/(f)$ is the quotient of a regular ring Q by a regular sequence $f = f_1, \ldots, f_c$. Then there exist cohomological operators $\chi = \chi_1, \ldots, \chi_c$ in degree 2 such that for X, Y in $D_b(\text{mod}(R))$, the graded modules $\text{Ext}_R^*(X, Y)$ are finitely generated over the noetherian graded ring $R[\chi]$; see [4, Theorem (4.2)]. In particular, the category $D_b(\text{mod}(R))$ is $R[\chi]$-linear and Ext-finite.

The ring of cohomological operators coincides with the Hochschild cohomology

$$R[\chi] \cong \text{HH}^*(R/Q) := \text{Ext}_{R\otimes Q R}^*(R, R);$$

see [2, Section 3].

Corollary 3.9. Let $R = Q/(f)$ be the quotient of a regular ring Q by a regular sequence $f = f_1, \ldots, f_c$ with cohomological operators χ. If $D_b(\text{mod}(R))$ is strongly generated, then any graded $R[\chi]$-linear functor $f : D_b(\text{mod}(R)) \to \text{grMod}(R[\chi])$ is graded representable if and only if f is locally finite. □

3.10. For Corollaries 3.6 and 3.9, it is crucial that the ring action on the derived category is graded since the Ext-modules need not be not bounded. In particular, Corollaries 3.6 and 3.9 are not consequences of [21, 4.3], but require Theorem 2.7.

Funding Information Open Access funding enabled and organized by Projekt DEAL.

Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
References

[1] Aihara, T., Takahashi, R.: Generators and dimensions of derived categories of modules. Comm. Algebra 43(11), 5003–5029 (2015)
[2] Avramov, L.L., Buchweitz, R.O.: Homological algebra modulo a regular sequence with special attention to codimension two. J. Algebra 230(1), 24–67 (2000)
[3] Avramov, L.L., Buchweitz, R.-O., Iyengar, S.B., Miller, C.: Homology of perfect complexes. Adv. Math. 223(5), 1731–1781 (2010)
[4] Avramov, L.L., Gasharov, V.N., Peeva, I.V.: Complete intersection dimension. Inst. Hautes Études Sci. Publ. Math. 86, 67–114 (1997)
[5] Avramov, L.L., Iyengar, S.B., Lipman, J.: Reflexivity and rigidity for complexes, I. Commutative rings. Algebra Number Theory 4(1), 47–86 (2010)
[6] Balmer, P., Schlöchting, M.: Idempotent completion of triangulated categories. J. Algebra 236(2), 819–834 (2001)
[7] Bass, H., Murthy, M.P.: Grothendieck groups and Picard groups of abelian group rings. Ann. Math. (2) 86, 16–73 (1967)
[8] Benson, D., Iyengar, S.B., Krause, H.: Local cohomology and support for triangulated categories. Ann. Sci. Éc. Norm. Supér. (4) 41(4), 573–619 (2008)
[9] Benson, D.J.: Representations and Cohomology. I. Basic Representation Theory of Finite Groups and Associative Algebras. Second edition. Cambridge Studies in Advanced Mathematics, 30. Cambridge University Press, Cambridge (1998)
[10] Bondal, A.I., van den Bergh, M.: Generators and representability of functors in commutative and noncommutative geometry. Mosc. Math. J. 3(1), 1–36 (2003)
[11] Brown, E.H.: Cohomology theories. Ann. Math. (2) 2(75), 467–484 (1962). (Correction: Ann. of Math. (2), 78:201 (1963))
[12] Bruns, W., Herzog, J.: Cohen-Macaulay Rings, revised ed., Cambridge Stud. Adv. Math. Cambridge University Press, Cambridge (1998)
[13] Buchweitz, R.-O., Flenner, H.: Global Hochschild (co-)homology of singular spaces. Adv. Math. 217(1), 205–242 (2008)
[14] Evens, L.: The cohomology ring of a finite group. Trans. Amer. Math. Soc. 101, 224–239 (1961)
[15] Grothendieck, A.: Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes. Inst. Hautes Études Sci. Publ. Math. 8, 222pp. (1961)
[16] Iyengar, S.B., Takahashi, R.: Annihilation of cohomology and strong generation of module categories. Int. Math. Res. Not. IMRN 2, 499–535 (2016)
[17] Letz, J.C.: Local to global principles for generation time over commutative Noetherian rings. Homol. Homotopy Appl. 23(2), 165–182 (2021)
[18] Matsumura, H.: Commutative Ring Theory. Translated from the Japanese by M. Reid. Second edition. Cambridge Studies in Advanced Mathematics, 8. Cambridge University Press, Cambridge (1989)
[19] Neeman, A.: The Grothendieck duality theorem via Bousfield’s techniques and Brown representability. J. Amer. Math. Soc. 9(1), 205–236 (1996)
[20] Neeman, A.: Triangulated Categories. Annals of Mathematics Studies, 148. Princeton University Press, Princeton, NJ (2001)

[21] Rouquier, R.: Dimensions of triangulated categories. J. K-Theory 1(2), 193–256 (2008)

[22] Venkov, B.B.: Cohomology algebras for some classifying spaces (Russian). Dokl. Akad. Nauk SSSR 127, 943–944 (1959)

JANINA C. LETZ
Fakultät für Mathematik
Universität Bielefeld
33501 Bielefeld
Germany
e-mail: jletz@math.uni-bielefeld.de

Received: 30 June 2022
Revised: 4 October 2022
Accepted: 21 October 2022