Introduction

Laryngoscopy is used to facilitate tracheal intubation under vision. Successful laryngoscopy depends on achieving a line of sight from the maxillary teeth to the larynx. The tongue and epiglottis are the anatomic structures that intrude into the line of sight. Management of the tongue and epiglottis is therefore central to successful direct laryngoscopy. Before the laryngoscope is inserted, the patient is normally placed in the “sniff” position. The direct laryngoscope is then used to displace the tongue and epiglottis out of the line of sight. The tongue is displaced horizontally (normally to the left) from the line of sight, the hyoid bone and attached tissues are moved anteriorly, and the epiglottis is elevated to reveal the larynx. The force applied to the laryngoscope handle should lift the hyoid bone and attached tissues parallel to the line of sight. Adequate lifting force is a key factor in successful direct laryngoscopy. It is important to achieve the best possible view of the larynx without causing tissue trauma. It is not always possible to achieve line of sight with direct laryngoscopy. The Macintosh curved laryngoscope is radically different from the preexisting straight laryngoscopes. In particular, the long axis of the blade is curved, the cross section is a right-angled “Z” section, the web and flange are bulky, the tip is atraumatic, and the light bulb is shielded by the web. The three component steps of direct laryngoscopy are insertion of the laryngoscope, adjustment of its position and lifting force, and use of other maneuvers to optimize the view of the glottis.
The “sniff” position is used. Full mouth opening facilitates insertion of the laryngoscope. It is inserted from the right side of mouth and to the right of the tongue while taking care to not trap the lips between the laryngoscope blade and the teeth. The laryngoscope is advanced and simultaneously moved into the midline to displace the tongue to the left. Progressive visualization of anatomic structures minimizes the risk of trauma. The epiglottis is the first key anatomic landmark. The tip of the laryngoscope is advanced into the vallecula, and the epiglottis is elevated indirectly by applying a force that tensions the hyoepiglottic ligament. Elevation of the epiglottis is optimized and a further lifting force is applied to the laryngoscope to achieve the best view of the larynx. It is very important not to lever on the maxillary teeth because this may cause dental damage and reduce the view of the larynx. When a good view of the larynx is achieved, the vocal cords, aryepiglottic folds, posterior cartilage, and interarytenoid notch can be identified. This technique has some hemodynamic effects. Introducing tube through nasal passage also has different effects as nasotracheal intubation can evoke the nasocardiac reflex, which depresses the tachycardic response. So we conducted the study to observe haemodynamic response in nasotracheal intubation under general anaesthesia using direct laryngoscope.

Aims and objective

To observe haemodynamic response in nasotracheal intubation under general anaesthesia using direct laryngoscope in 50 ASA grade I and II patients for elective surgery under general anaesthesia requiring endotracheal intubation with respect to

- Haemodynamic changes during intubation.
- Haemodynamic changes at the time of & after intubation.
- Time required for intubation.
- Saturation.
- Post extubation epistaxis.
- Mean arterial pressure.

Materials and methods

The study was conducted at Rajindra Hospital, Patiala in 50 patients, aged 18 to 60 yrs of ASA grade I and II scheduled for undergo elective surgery under general anaesthesia requiring intubation.

Inclusion criteria

- ASA I and II
- Age 18 to 60 yrs
- BMI of 30 or less
- No diagnosed chronic medical disease

Exclusion criteria

- Patient’s refusal
- Patients with an anticipated difficult airway
- Obesity
- Cardiovascular and Endocrine disease
- On drugs known to produce changes in heart rate and blood pressure like beta blockers, digitalis, calcium channel blockers, oral contraceptives.
- Bleeding disorders
- History of nasal surgery or trauma
- Nasal polyp

A written informed consent was obtained from each patient after explaining the technique prior to inclusion in this study in their own vernacular language. Preanaesthetic checkup was done in every patient. All patients received Inj Glycopyrolate (0.2mg) I.V, Inj Midazolam (2mg) iv + Inj Promethazine (25mg) IM as premedication 30 min before the elective surgery. Fifteen minutes before shifting the patient to the OT table, in both the nasal passages 0.1% Oxymetazoline nasal drops were instilled. All patients received Tab. Alprazolam 0.25 mg I HS and 6 am on the day of surgery.

Method

The study was conducted in 50 patients of either gender aged 18 to 60 years belonging to ASA I and II scheduled for elective surgery. After the patient is brought to operation table baseline measurements of heart rate, blood pressure and Spo2 were taken. Fentanyl in a dose of 1.5 μg/kg were administered intravenously 5 minutes before induction. Patients were preoxygenated with 100% O2 for 3 minutes. General anaesthesia was induced with an intravenous injection of propofol, 2mg/kg and intubation was facilitated with the use of rocuronium 0.9 mg/kg intravenously. Then patient were ventilated with 100% oxygen. Intubation was commenced exactly after 90 seconds of giving inj.rocuronium. Nasotracheal intubation was carried out with the aid of laryngoscope. A 7.00 mm internal diameter, cuffed endotracheal tube (ETT) was used for female patients and 7.5 mm internal diameter cuffed ETT for male patients. The ETT was advanced into the trachea over the scope After introduction of ETT, anaesthesia was maintained with O2:N2O:40:60 along with 0.8-1.5% isoflurane. The following parameters were observed: heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean arterial blood pressure (MAP). These parameters were recorded at following time intervals: baseline value, after induction, at the time of insertion of laryngoscope, immediately after intubation and thereafter at 3, 5 and 10 minutes. ECG and SPO2 were monitored continuously as per the intervals mentioned above. The study was terminated at the end of 10 minutes after intubation. However, vitals were monitored throughout the surgery.

Time of intubation from cessation of mask ventilation to connection of breathing circuit to ETT was noted. And postintubation epistaxis if any was noted.

Observations

The mean age was 37.04 yrs and male to female ratio was 6:44. with mean weight being 59.08 Kg. Spo2 was continuously monitored during intubation and it was found that patients maintained 100% saturation during induction, at the time of insertion of direct laryngoscope, at 3min, 5min and 10 min. 8 patients had lower reading immediately after intubation with mean Spo2 of 99.96%. Mean time for intubation using laryngoscope was 18.2 sec. Epistaxis was seen in2 of 50 patients i.e.4%.

Haemodynamic parameters are tabulated and depicted in graphs.
Results

Table 1: Demographics Data

Variables	Observation
Age [yrs]	37.04 +/- 21.06
Sex [M:F]	6:44
Weight [kg]	59.08 +/- 13.9
Time req for intub. [sec]	18.2 +/- 7.12
Epistaxis	2[4%]
Spo2	99.96 +/- 0.4

Table 2: Haemodynamic changes

Parameter	Baseline	After induction	At Insertion	Immediately after intubation,	3 min	5 min	10 min
HR (bpm)	82.72±16.83	76.12±13.88	88.56±21.99	85.8±20.39	82.28±13.4	80.52±12.65	79.4±12.62
SBP (mmHg)	122.04±14.67	107.92±19.06	140±28.67	133.16±31.23	116.64±21.3	114.12±22.8	114.36±22.71
DBP (mmHg)	79.6±18.77	68.16±19.61	91.96±26.28	87.24±24.25	75.24±24.18	74.4±19.7	75.4±24.8
MAP (mmHg)	93.75±15.68	81.4±16.93	107.97±24.56	102.55±24.69	89.04±20.53	87.67±18.1	88.39±22.8

Table shows that Baseline HR, SBP, DBP and MAP were 82.72±16.83 bpm, 122.04±14.67 mmHg, 79.6±18.77 mmHg and 93.75±15.68 mmHg (mean±2sd) respectively. Maximum readings of all parameters were noted at the time of insertion of DLS. There was significant fall of all parameters after induction comparing with baseline (p<0.0001). At the time of insertion of DLS there was significant rise of heart rate (p<0.005), SBP, DBP & MAP (p<0.0001). HR, SBP, DBP & MAP remained high even after intubation and returned to baseline value at 3 min. HR, SBP, DBP & MAP continued to be below baseline at 5 min and 10 min.

Discussion

Mean age of the patients in study was 37.04yrs, male to female ratio was 3:22 and mean weight was 59.08 Kg. Epistaxis was seen in 2 of 50 patients i.e. 4% using DLS. It depends on proper preparation of patients. Spo2 was continuously monitored during nasotracheal intubation technique and it was found that patients maintained 100% saturation during induction, at 3 min, 5 min and 10 min. The mean Spo2 of the patient was 99.96%.

Mean time for intubation was 18.2 sec. Our findings were consistent with most of the studies conducted [3, 6, 10, 12, 18].

Table 3: Various studies conducted by researchers

Studies conducted by	Time required in sec (DLS)
J. E. Smith[3]	9.6
J. E. Smith, et al.[9]	30
H.G. Schaefer, et al.[7]	17.7
Michal Barak, et al.[10]	16.9
Finfer SR, et al. [5]	36.5
Aghdaii N, et al.[18]	19.3
Yushi U. Adachi, et al.[9]	46

There was significant fall of all parameters after induction.
Nasotracheal intubation under general anaesthesia has significant Haemodynamic effect.

References
1. Zeitels SM. Chevalier Jackson's contributions to direct laryngoscopy. J Voice. 1998; 12(1):1-6.
2. Thomas KB, Sir Ivan Whiteside Magill, KCVO, DSc, MB, BCh, BAO, FRCS, FFARCS (Hon), FFARCSI (Hon), DA. A review of his publications and other references to his life and work. Anaesthesia. 1978; 33(7):628-34
3. Smith JE. Heart rate and arterial pressure changes during fiberoptic tracheal intubation under general anaesthesia. Anaesthesia. 1988; 43:629-632.
4. Smith JE, Mackenztte AA, Sanghara SS, Scott-knight VCE. Cardiovascular effects of fibrescope-guided nasotracheal intubation. Anaesthesia. 1989; 44:907-910.
5. Finfer SR, MacKenzie SI, Saddler JM, Watkins TG. Cardiovascular responses to tracheal intubation: a comparison of direct laryngoscopy and fiberoptic intubation. Anaesth. Intens. Care. 1989; 17:44-48.
6. Schaefer HG, Marsch SCU. Comparison of orthadox with fiberoptic orotracheal intubation under total i.v. anaesthesia. British Journal of Anaesthesia. 1991; 66(5):608-610.
7. Schaefer HG, Marsch SCU, Keller HL, Strebel S, Anselmi L, Drew J. Teaching fiberoptic intubation in anesthetised patients. Anaesthesia.1994; 49:331-334.
8. Staender S, Marsch SCU, Schumacher P, Schaefer HG. Haemodynamic response to fiberoptic versus laryngoscopic nasotracheal intubation under total intravenous anaesthesia. European Journal of Anaesthesiology. 1994; 11(3):175-179.
9. Yushi U. Adachi, Isao Takamatsu, Kazuhiko Watanabe, Yoshitaka Uchihashi, Hideyuki Higuchi, Tetsuo Satoh. Evaluation of the Cardiovascular Responses to Fibreoptic Oorotracheal Intubation with Television Monitoring: Comparison with Conventional Direct Laryngoscopy. Journal of Clinical Anesthesia. 2000; 12:503-508.
10. Michal Barak, Avishai Ziser, Avital Greenberg, Sophie Lischinsky, Beno Rosenberg. Haemodynamic and Catecholamine Response to Tracheal Intubation: Direct Laryngoscopy Compared with Fibreoptic Intubation. Journal of Clinical Anesthesia. 2003; 15:132-136.
11. Xue FS, Zhang GH, Sun HY, Li CW, Li P, Sun HT, et al. Blood pressure and heart rate changes during intubation: A comparison of direct laryngoscopy and a fibropect method. Anaesthesia.2006; 61(5):444-448.
12. Xue FS, Zhang GH, Sun HT, Li CW, Li P, LIU KP, et al. A comparative study of haemodynamic responses to orotracheal intubation with fibroptic bronchoscope and laryngoscope in children. Pediatric Anesthesia. 2006; 16:743-747.
13. Zhang Guo-hua, Xue Fu-shan, LI Ping, SUN Hai-yan, LIU Kun-peng, Xu Ya-chao et al. Effect of fibroptic bronchoscope compared with direct laryngoscope on haemodynamic responses to orotracheal intubation. Chin Med J. 2007; 120(4):336-338.
14. Jakusenko Kopieika, Mihelsons, Nagobade, Vija Putniña, Pavars. Comparison of Stress Response Performing Endotracheal Intubation by Direct Laryngoscopy, Fibropeptic Intubation and Intubation by the Glidescope Laryngoscope. ISSN. 2008; 62(4):176-181.
15. Arash Farbood MD, Hamid Kamalipour MD, Mohammad Ali, Sahmeddini Kazem Samadi. Comparison of the haemodynamic changes following tracheal intubation with direct laryngoscopy and fibroptic bronchoscope method in hypertensive patients. Journal of iranian society anaesthesiology and intensive care. 2009; 31(67):50-57.
16. Ranju Singh, Pramod Kohli, Sunil Kumar. Haemodynamic Response to Nasotracheal Intubation under General Anaesthesia – A Comparison between Fibreoptic Bronchoscopy and Direct Laryngoscopy.J Anaesth Clin Pharmacol. 2010; 26(3):335-339.
17. Singh R, Kohli P, Kumar S. Haemodynamic response to nasotracheal intubation under general anaesthesia - a comparison between fiberoptic bronchoscopy and direct laryngoscopy. Journal of Anaesthesiology Clinical Pharmacology. 2010; 26(3):335-339.
18. Aghdaii N, Azafararin F, Yazdanian F, Faritus SZ. Cardiovascular responses to orotracheal intubation in patients undergoing coronary artery bypass grafting surgery. Comparing fiberoptic bronchoscopy with direct laryngoscopy. Middle East J Anaesthesiol. 2010; 20(6):833-8.