Molecular Mechanism of the Inhibition of Phospholipase C β3 by Protein Kinase C*

Received for publication, May 18, 2000, and in revised form, June 23, 2000
Published, JBC Papers in Press, July 11, 2000, DOI 10.1074/jbc.M004276200

Caiping Yue‡, Chun-Ying Ku‡, Mingyao Liu§, Melvin I. Simon¶, and Barbara M. Sanborn‡∥

From the ‡Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas 77225, the §Department of Medical Biochemistry and Genetics, Center for Cancer Biology and Nutrition, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas 77030, and the ¶Department of Biology, California Institute of Technology, Pasadena, California 91125

Activation of protein kinase C (PKC) can result from stimulation of the receptor-G protein-phospholipase C (PLC/β) pathway. In turn, phosphorylation of PLC/β by PKC may play a role in the regulation of receptor-mediated phosphatidylinositol (PI) turnover and intracellular Ca2+ release. Activation of endogenous PKC by phorbol 12-myristate 13-acetate inhibited both Goα-coupled (oxytocin and M1 muscarinic) and Goγ-coupled (formyl-Met-Leu-Phe) receptor-stimulated PI turnover by 50–100% in P381, HeLa, COSM6, and RBL-2H3 cells expressing PLC/β3. Activation of conventional PKCs with thymeleatoxin similarly inhibited oxytocin or formyl-Met-Leu-Phe receptor-stimulated PI turnover. The PKC inhibitory effect was also observed when PLC/β3 was stimulated directly by Goα or Gβγ in overexpression assays. PKC phosphorylated PLC/β3 at the same predominant site in vivo and in vitro. Peptide sequencing of in vitro phosphorylated recombinant PLC/β3 and site-directed mutagenesis identified Ser1105 as the predominant phosphorylation site. Ser1105 is also phosphorylated by protein kinase A (PKA; Yue, C., Dodge, K. L., Weber, G., and Sanborn, B. M. (1998) J. Biol. Chem. 273, 18023–18027). Similar to PKA, the inhibition by PKC of Goγ-stimulated PLC/β3 activity was completely abolished by mutation of Ser1105 to Ala. In contrast, mutation of Ser1105 or Ser1106, another putative phosphorylation target, to Ala had no effect on inhibition of Gβγ-stimulated PLC/β3 activity by PKC or PKA. These data indicate that PKC and PKA act similarly in that they inhibit Goγ-stimulated PLC/β3 as a result of phosphorylation of Ser1105. Moreover, PKC and PKA both inhibit Gβγ-stimulated activity by mechanisms that do not involve Ser1105.

Phosphorylation appears to play an important role in regulating the activity of PLC/β isoforms. Phosphorylation of PLC/β3 or PLC/β2 by PKA inhibits their activity and establishes a mechanism for cross-talk between Goγ- or Goα-coupled and Goγ-coupled receptors (12, 19). The inhibition of G protein-coupled receptor-mediated PI turnover or intracellular calcium release by protein kinase C has been reported (20–25). Protein kinase C is comprised of three subfamilies, the conventional (α, β1, and γ), novel (δ, ε, η, μ, and θ), and atypical (ζ and λ) PKCs (3). The conventional and novel PKCs are activated subsequent to the stimulation of Goγ- or Goα-coupled receptors (3, 26). The inhibition of PI turnover by PKC may present a feedback for determining the frequency and amplitude of signals being transmitted.

The mechanisms by which PKC inhibits agonist-stimulated PI turnover have not been well defined. PKC can phosphorylate certain G protein-coupled receptors (platelet-activating factor receptor, C5A receptor) and thereby inhibit PI turnover or intracellular calcium release (reviewed in Ref. 27). PKC also appears to inhibit agonist-stimulated PI turnover at a post-receptor level (25, 28). Although phosphorylation of PLC/β1 and PLC/β2 by PKC has been reported (23, 24, 29, 30), the physiological relevance of these observations has not been demonstrated. PLC/β1, a turkey PLC/β isoform with highest homology to PLC/β2, is phosphorylated by conventional PKCs, and its catalytic activity is inhibited (29). PLC/β2 is not phosphorylated by PKCα in vitro (23). Nonetheless, a correlation between PLC/β3 phosphorylation and PKC inhibition of receptor-initiated PI turnover has been reported (21, 31).

To determine the importance of PLC/β3 phosphorylation by PKC, we have identified the phosphorylation site on PLC/β3 and investigated which PKC subfamily can catalyze the phospho-

1, 4, 5-trisphosphate (IP3) and diacylglycerol (1, 2). IP3 binds to a receptor in endoplasmic reticulum and releases intracellular calcium from its stores. Diacylglycerol, alone or in conjunction with elevated intracellular calcium, activates PKC and initiates additional cellular responses (3). Currently, four isoforms of mammalian PLC/β have been identified and characterized (4–10). Significantly, PLC/β3 is ubiquitously expressed in many cellular processes (11–15). Insufficient expression of PLC/β3 has been correlated with increased sensitivity to tumor formation (15, 16), whereas overexpression of PLC/β3 seems to suppress tumor growth (17). PLC/β3 knockout mice exhibit altered response to μ-opioids (11) or early embryonic lethality (18).

* This work was supported in part by National Institutes of Health Grant HD09618 (to B. M. S.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

The abbreviations used are: PLC, phospholipase C; PI, phosphatidylinositol; IP3, 1, 4, 5-trisphosphate; PKC, protein kinase C; PKA, AMP-dependent protein kinase; FMLP, formyl-Met-Leu-Phe; PMA, phorbol 12-myristate 13-acetate; Tx, thymeleatoxin; DMEM, Dulbecco’s modified Eagle’s medium; PBS, phosphate-buffered saline; CPT-cAMP, 8-[4-chlorophenylthio]-cAMP; MES, 4-morpholinoneethanesulfonic acid.
Inhibition of PLCβ3 by PKC

In Vivo and in Vitro 32P Labeling and Isolation of PLCβ3

FIG. 1. Prior treatment with PMA or Tx inhibits oxytocin (OT), carbachol, or fMLP-stimulated total IP production in PHM1–41 (A), HeLa (B), COSM6 (C) or RBL-2H3 (D) cells, respectively. HeLa and COSM6 cells were transfected with (M1R) or without (Vector) a plasmid expressing M1 receptor and were stimulated with 15 μM carbachol. Where indicated, PBS was used as control reagent. Data are presented as the means ± S.E. (n = 3) of 1 of 2–4 similar experiments and were analyzed by analysis of variance and Duncan’s test. Groups with different letters are different from each other at p < 0.05.

In Vivo and **In Vitro**

32P Labeling and Isolation of PLCβ3—For **in vivo** phosphorylation, COSM6 cells seeded in 6-well plates were transfected with PLCβ3(His)6 plasmid and metabolically labeled with [32P] orthophosphate (0.10 mCi) in 0.5 ml of phosphate-free DMEM for 90 min. After PMA (1 μM) treatment for 30 min, cells were lysed in 500 μl of M-PER lysis buffer (Pierce) containing a mixture of protease and phosphatase inhibitors (21) and centrifuged at 15,000 g for 5 min at 4 °C. Phosphorylated PLCβ3(His)6 was isolated with nickel-nitritotriacetic acid resin, separated on a 7.5% SDS-polyacrylamide gel, stained with Coomassie Blue, and analyzed by autoradiography.

In vitro phosphorylation by PKC was carried out according to protocols provided by the vendor. Briefly, 0.8 μM purified recombinant PLCβ3(His)6 or PLCβ3Ser1105→Ala(His)6 was incubated with purified constitutively active PKC fragment (0.04 μM) in the presence of 2.5 μCi of [γ-32P]ATP and 100 μM ATP in a total volume of 10 μl of PKC buffer (50 mM MES, pH 6.5, 1.25 mM EGTA, 12.5 mM MgCl2) for the times specified at 30 °C. Equal amounts of PLCβ3(His)6 were also incubated for 40 min with purified PKCβ3 or PKCγ (20 ng) in a total volume of 10 μl of reaction buffer (20 mM HEPES, pH 7.4, 100 μM CaCl2, 10 μM MgCl2, 100 μg/ml phosphatidylycerine, 20 μg/ml diacylglycerol, 0.03% Triton X-100). Reactions were terminated by adding 10 μl of 2× SDS sample buffer and boiling for 5 min. Proteins were separated by 7.5% SDS-polyacrylamide gel electrophoresis and stained with Coomassie Blue. The phosphorylated bands were visualized by autoradiography.

Phosphoamino Acid Analysis, Peptide Mapping, and Sequencing—For two-dimensional tryptic peptide mapping and phosphoamino acid analysis, [32P]-labeled PLCβ3 from **in vivo** or **in vitro** phosphorylation reactions was separated by SDS-polyacrylamide gel electrophoresis and stained with Coomassie Blue. The phosphorylated bands were localized by autoradiography. The stoichiometry of PLCβ3 phosphorylation by PKC was determined at 100 min by filter binding assay as described elsewhere (12).
Inhibition of PLC\(_{\beta3}\) by PKC

50 \(\mu\)l of 50% acetonitrile in buffer A. The tube was centrifuged at 15,000 \(\times g\) for 5 min, and the supernatant was discarded. The pellet was resuspended in 50 \(\mu\)l of acetonitrile and incubated for 5 min. The tube was centrifuged again, and the pellet was dried in a SpeedVac for 10 min after removal of supernatant. The pellet was resuspended in 75 \(\mu\)l of buffer A, and 2 \(\mu\)g of trypsin was added. The tube was incubated at 37 °C for 5 h before the addition of another 2 \(\mu\)g of trypsin, and the total incubation time was between 18 and 24 h. The liquid containing the digested peptides was recovered and further prepared for two-dimensional peptide mapping with a Hunter thin layer electrophoresis system (C.B.S. Scientific Co., Del Mar, CA) according to the protocol provided by the manufacturer. External markers for each dimension were included in each thin layer plate to facilitate the comparison between samples. For phoshostim acid analysis, about 100 cpm of total tryptic peptides mixture was used. Peptide sequencing using \(^{32}\)P-labeled PLC\(_{\beta3}\)(His\(_6\)) (150 pmol) recombinant protein purified from SF9 cells was carried out as described elsewhere (12).

Cell Culture, Transfection, and PI Turnover—HeLa, COSM6, and RBL-2H3 cells were cultured as described for PHM1-41 cells (33). HeLa and COSM6 cells (1.8 \(\times 10^7\) well) were seeded in 6-well plates and transfected 16–24 h later as described (34) with M1 receptor (1 \(\mu\)g), Go\(_q\) (0.5 \(\mu\)g), G\(_b3\) (0.375 \(\mu\)g), G\(_\gamma2\) (0.375 \(\mu\)g), and PLC\(_{\beta3}\) (0.25 \(\mu\)g) as indicated. Empty rcCMV vector was added to bring the total amount of plasmid DNA to 1.25 \(\mu\)g per well. For effects of endogenous PKC on agonist-stimulated PI turnover, near confluent PHM1 and RBL-2H3 cells (12-well plates) and COSM6 and HeLa cells (6-well plates) were treated with 1 \(\mu\)M PMA or 100 ng/ml thymeleasin for 30 min in PBS + (phosphate-buffered saline (PBS) plus 1.2 mM Ca\(^{2+}\), 1.0 mM Mg\(^{2+}\), and 1.0 mM glucose) containing 10 mM LiCl prior to stimulation by agonists (100 nM oxytocin, 15 mM carbachol, or 100 nM fMLP) for 30 min. Where indicated, H-89 (10 \(\mu\)M) or Go 6976 (8 \(\mu\)M) were added to PHM1-41 cells. After 15 min, PMA or CPT-cAMP were added, followed by oxytocin 15 min later. For direct stimulation of PLC\(_{\beta3}\) by Go\(_q\) or Go\(_b3\), transfected COSM6 cells were first treated with 1 \(\mu\)M PMA for 30 min in PBS + followed by addition of 20 mM LiCl for 30 min. Cells were lysed, and total IPs were determined as described (19).

RESULTS

PKC Inhibits Oxytocin, M1 Muscarinic, and fMLP Receptor-initiated PI Turnover—The effect of activation of endogenous PKC on predominantly Go\(_q\)-coupled oxytocin receptor-initiated PI turnover (35) was studied in PHM1-41 cells, a human myometrial smooth muscle cell line (35). Stimulation of PHM1 cells with 100 nM oxytocin significantly increased the production of total IPs. Pretreating cells with 1 \(\mu\)M PMA completely inhibited this increase (Fig. 1A). The PMA effect was not specific to the oxytocin receptor or to PHM1-41 cells. A similar inhibitory effect of PMA was also evident with Go\(_q\)-coupled M1 muscarinic receptor transfected into HeLa (Fig. 1B) or COSM6 (Fig. 1C) cells. In addition, PMA also significantly inhibited Go\(_b3\)-coupled fMLP receptor-initiated PI turnover (36) in RBL-2H3 cells (Fig. 1D) in which the only PLC\(_{\beta}\) form expressed is PLC\(_{\beta3}\) (21). This occurred under conditions where the fMLP receptor has been shown not to be phosphorylated by PKC (37). These observations, together with those previously reported (21, 31), establish that the PKC inhibitory effect on G protein-coupled receptor-initiated PI turnover is a general mechanism and that the PKC effect can occur at a post-receptor level.

To investigate the potential role of specific PKCs in this process, the effect of Tx, a specific activator of conventional PKCs (38), was compared with PMA, which activates both conventional and novel PKCs (38), in PHM1-41 and RBL-2H3 cell lines. In both cases, Tx was as effective as PMA in inhibiting oxytocin or fMLP-stimulated PI turnover at the concentration tested (Fig. 1, A and D). In addition, Go 6976, an inhibitor of conventional PKC (39), was able to reverse the PMA inhibitory effect by ∼50% at a concentration of 4 \(\mu\)M (data not shown). These data provide evidence that conventional PKCs are capable of inhibiting Go\(_q\)- or Go\(_b3\)-coupled receptor-initiated PI turnover.

PKC Inhibits the Direct Stimulation of PLC\(_{\beta3}\) by Go\(_q\) and G\(_b3\)—Because PLC\(_{\beta3}\) is present in all four cell lines mentioned above and can be phosphorylated by PKC, at least in RBL-2H3 cells (21), it is highly possible that PKC inhibits PI turnover by decreasing PLC\(_{\beta3}\) activity. If so, PKC should inhibit the direct stimulation of PLC\(_{\beta3}\) by Go\(_q\) or G\(_b3\). In both PLC\(_{\beta3}\) into COSM6 cells transfected with both PLC\(_{\beta3}\) and Go\(_q\) plasmids exhibited a marked increase in total \(^{32}\)P-labeled PLC\(_{\beta3}\) activity (data not shown). Cotransfection of G\(_b3\), G\(_\gamma2\), and PLC\(_{\beta3}\) into COSM6 cells also resulted in marked increase in PI turnover. This increase was significantly reduced by PMA (Fig. 2B), but the reduction was not of the magnitude observed for Go\(_q\)-stimulated PLC\(_{\beta3}\). Thus PKC inhibition of PI turnover occurs at a post-receptor level, and this effect may require the phosphorylation of PLC\(_{\beta3}\). Phosphorylation of PLC\(_{\beta3}\) by PKC in Vivo and in Vitro—PLC\(_{\beta3}\) were expressed in COSM6 cells exhibited significant \(^{32}\)P incorporation under basal conditions. Nonetheless, PKC induced a substantial increase in \(^{32}\)P incorporation into PLC\(_{\beta3}\) (Fig. 3A). The phosphorylation of PLC\(_{\beta3}\) by PKC was investigated further in vitro. Purified recombinant PLC\(_{\beta3}\) was incubated with catalytically active PKC fragments (a rat brain mixture of multiple PKC isoforms, including \(\alpha, \beta, \gamma\) in the presence of \([\gamma^{32}\text{P}]\text{ATP}\). As shown in Fig. 3B, PLC\(_{\beta3}\) was phos-
Inhibition of PLCβ3 by PKC

Fig. 4. Two-dimensional tryptic peptide mapping of PLCβ3(His)6-32P-labeled in vivo (A and B) or in vitro (C). Two markers were applied on each TLC plate as migration controls for each dimension. The black markers on the top of each panel indicate the position of one such marker; others outside of the displayed region were also used in lining up the plates. “O” depicts the sample origin. The predominant PKC-stimulated phosphorylation site is indicated by the arrows (B and C) and the minor sites by the arrowheads. Longer exposure of C revealed some minor sites as well. D, two-dimensional phosphoamino acid analysis of PLCβ3(His)6 phosphorylated by PKC in vitro. The dotted circles indicate the migration positions of phosphoserine (PS), phosphothreonine (PT), and phosphotyrosine (PY) standards.

Fig. 5. A. 32P distribution among fractions collected after reverse-phase high pressure liquid chromatography separation of Lys C-digested PLCβ3(His)6 labeled with 32P in vitro. Fraction 12 has ~60% of the total 32P. B, sequence of peptides in fraction 12 and associated 32P. The serine residue with more than 90% of total 32P loaded onto the sequencing membrane is denoted by *. filter represents 32P left on the sequencing membrane after 10 cycles. C, in vitro phosphorylation by PKC (30 min at 30 °C) of recombinant wild type (WT) or Ser1105 → Ala mutant (S/A) PLCβ3(His)6 purified from Sf9 cells. The Coomassie Blue staining (Coomassie) and autoradiography (autorad) of the same gel are shown.

Fig. 6. Mutation of Ser1105 to Ala (S/A) reversed the inhibition by PKC of Gq-activated PLCβ3 in COSM6 cells transfected with plasmids expressing Goq and PLCβ3 plasmids. Data are presented as the means ± S.E. (n = 3) of 1 of 3 similar experiments and were analyzed by analysis of variance and Duncan’s test. Groups with different letters are different from each other at p < 0.05.

phosphorylated in a time-dependent manner. A stoichiometry of 0.4 mol of phosphate/PLCβ3 was achieved after incubation with PKC for 100 min under these conditions. In similar experiments, no phosphorylation was seen in the absence of PKC (data not shown). Purified PKCβ3 or PKCγ also phosphorylated PLCβ3 in vitro, whereas no phosphorylation of PLCβ3 was observed in the absence of kinase (Fig. 3C).

Ser1105 Is the Predominant Phosphorylation Site for PKC—As shown by two-dimensional phosphopeptide mapping of in vitro 32P-labeled PLCβ3, trypsin digestion yielded multiple phosphopeptides in the basal state (Fig. 4A). PMA specifically induced phosphorylation on one predominant site (Fig. 4B, indicated by the arrow). Minor sites increased by PMA were also present (indicated by arrowhead). We cannot exclude the contribution of incomplete digestion by trypsin to this pattern.

In vitro, PKC phosphorylated PLCβ3 on one predominant site (Fig. 4C, arrow). The migration of this peptide relative to the standards was identical to those observed in digests after in vivo phosphorylation. The phosphorylation occurred exclusively on serine residues (Fig. 4D). We utilized in vitro phosphorylated recombinant PLCβ3(His)6 to identify the PKC phosphorylation sites. After isolation by SDS-polyacrylamide gel electrophoresis, 32P-labeled PLCβ3 was digested with Lys C instead of trypsin to achieve more complete cleavage and fewer peptides (12). The digestion mixture was separated by reverse-phase high pressure liquid chromatography, and fractions were recovered and counted. Fig. 5A shows the 32P distribution among these fractions. About 8% of 32P was found in the follow-through (fraction −1 to −4) and appeared to be free 32P as judged by phosphopeptide mapping (data not shown). Nearly 60% of the total 32P was recovered in fraction 12. This fraction was subjected to peptide sequencing. Although two peptides were identified in this fraction, nearly 90% of the total 32P was found in the fourth cycle (Fig. 5B). This clearly identified Ser1105 and not Ser1107 in the peptide Arg-His-Asn-Ser1105-Ile-Ser-Glu-Ala-Lys as the amino acid phosphorylated. Furthermore, mutation of Ser1105 significantly diminished PLCβ3 phosphorylation by PKC in vitro (Fig. 5C). This strongly argues that Ser1105 is the predominant site for PKC. Residual weak phosphorylation associated with Ser1105 → Ala mutant PLCβ3 could indicate the presence of other minor sites. Interestingly, Ser1105, unique to PLCβ3 among the PLCβ isoforms, is preferentially phosphorylated by PKA as well (12).
stimulated Ser1105 encoding the PKA catalytic subunit was cotransfected into COSM6 cells as the means 6 cells transfected with plasmids expressing Gβγ mutant PLCβ3 was cotransfected with Gα, wild type (WT), Ser1105 → Ala or Ser26 → Ala mutant PLCβ3. A, data are presented as the means ± S.E. (n = 3) of 1 of 3 similar experiments and were analyzed by analysis of variance and Duncan’s test. Groups with different letters are different from each other at p < 0.05. B, plasmid encoding the PKA catalytic subunit was cotransfected into COSM6 cells (filled bars), and its expression was induced with 60 μM ZnSO4 for 24 h after transfection. Data represent the mean of duplicate determinations (range denoted by the error bars) in 1 of 2 similar experiments.

Functional Analysis of Phosphorylation of PLCβ3 by PKC Versus PKA—We have previously shown that phosphorylation by PKA of Ser1105 is required for inhibition of Gα, stimulated PLCβ3 activity by PKA. The finding that PKC also phosphorylates Ser1105 suggested that the same mechanism was utilized by PKC. To test this hypothesis, the Ser1105 → Ala mutant PLCβ3 was cotransfected with Gα, into COSM6 cells, and the effect of PKA was evaluated. As shown before (12), the Ser1105 → Ala mutant PLCβ3 was as effective as the wild type enzyme in coupling to Gα, (Fig. 6). Importantly, PKMA inhibited Gα, stimulated wild type PLCβ3 activity but had no effect on Gα, stimulated Ser1105 → Ala PLCβ3 activity. These data unequivocally identify phosphorylation of Ser1105 by PKC as responsible for PKC inhibition of Gα, stimulated PLCβ3 activity.

We also investigated the effect of mutating Ser1105 on PKC inhibition of Gβγ-stimulated PLCβ3 activity. The Ser1105 → Ala mutant PLCβ3 was as effective as wild type PLCβ3 in coupling to Gβγ,γ2 (Fig. 7A). However, in contrast to Gα, stimulated PLCβ3 activity, PKC inhibited Gβγ,γ2-stimulated Ser1105 → Ala mutant PLCβ3 activity to the similar degree as it did the wild type PLCβ3. Thus Ser1105 is not absolutely required for PKC inhibition of Gβγ,γ2-stimulated PLCβ3 activity. The N-terminal region of PLCβ3 appears to contribute to its interaction with Gβγ (40). We had identified Ser26 in the peptide Arg-Arg-Gly-Ser-Lys as a potential phosphorylation site in this region. However, there was no effect of mutating Ser26 to Ala on PKC inhibition of Gβγ-stimulated PLCβ3 activity (Fig. 7A).

In the face of the inability of mutation of Ser1105 and Ser26 to reverse the effect of PKC on Gβγ-stimulated PLCβ3 activity, we examined the effect of mutation of these residues on PKA-mediated inhibition as well. As seen in Fig. 7B, PKA inhibited Gβγ-stimulated PLCβ3 activity. Mutation of Ser1105 or Ser26 also had no effect on inhibition by PKA of Gβγ-stimulated PLCβ3 activity.

**Inhibition of Oxytocin-stimulated Total IP Production in PHM1-41 Cells by PKC or PKA Represents Independent Pathways—Phosphorylation of Ser1105 by PKC or PKA suppressed Gα, stimulated PLCβ3 activity. This fact raised the interesting possibility that PKC activation might lead to PKA activation, resulting in indirect phosphorylation of PLCβ3 at the PKA site or vice versa. We addressed this possibility in PHM1-41 cells. As shown in Fig. 8, H-89, a specific PKA inhibitor, reversed the inhibition by cAMP but did not affect the inhibition by PMA of oxytocin-stimulated PI turnover. Similarly, Go 6976, a specific PKC inhibitor, significantly diminished the inhibitory effect of PMA but not of cAMP on oxytocin-stimulated PI turnover. These data indicate that PKC and PKA exert their inhibitory effects independent of each other.

DISCUSSION

We have presented evidence that PKC inhibits Gα, coupled (oxytocin and M1 muscarinic) and Gα, coupled receptor (IML) receptor-initiated PI turnover in four different cell lines expressing PLCβ3. The response to endogenous PKC activation by PMA differs in order of magnitude between cell lines and the state of the receptor (endogenous or transfected). This variation may reflect differences in relative membrane permeability of PMA and the localization and abundance of the PKC isoforms responsible or the relative contribution of Gα, -coupling to PLCβ3 to PI turnover. We have also demonstrated in co-transfection assays that the PKC inhibitory effect occurred at the G protein-PLCβ3 level, and we have provided direct evidence to support the hypothesis that phosphorylation of PLCβ3...
is involved in the PKC inhibitory effect on Goq-coupled activation.

The use of in vitro phosphorylated PLCβ3 for identifying the PKC phosphorylation site is supported by the demonstration that a similar site was phosphorylated by PKC in vivo and in vitro. PKC phosphorylates predominantly one residue, Ser1105, that is also phosphorylated by PKA (12). The marked reduction of in vitro phosphorylation of the Ser1105→Ala PLCβ2 mutant further corroborates this finding. However, the remaining weak phosphorylation associated with this mutant indicates that PKC may phosphorylate other minor sites as well. The phosphorylation site is supported by the demonstration that the inhibitory effect of PKC occurs in the absence of PKA inhibition, suggesting that it is not a consequence of indirect PKA activation. The convergence of PKC and PKA on Ser1105 underscores the importance of Ser1105 in the regulation of Goq-stimulated PLCβ3 activity in diverse cellular processes and suggests possible redundancy for the inhibition of PLCβ2 activity by these two kinases. In addition, these data also argue that the effect of PKC or PKA targets PLCβ2 and not G protein or proteins involved in the production of substrate phosphatidylinositol 4,5-bisphosphate, as mutation of Ser1105 can completely reverse the inhibition by PKC or PKA of Goq-stimulated PLCβ3 activity. In marked contrast, Ser1105 does not appear to be critical for inhibition of Gβγ-stimulated PLCβ3 activity by either PKC or PKA. Ser26 was also not required, although the N-terminal region of PLCβ2 appears to contribute to its interaction with Gβγ (40). At present the mechanism for the inhibition of Gβγ-stimulated PLCβ3 activity by PKC or PKA remains unknown. It is unlikely that Gβ1γ2 is the direct target for the inhibitory effects of PKC or PKA as these proteins are not phosphorylated by PKC or PKA in vitro. Identification of PKA or PKC minor phosphorylation sites may help to solve this question. Alternatively, the mechanism may involve phosphorylation of other molecules indirectly involved in the coupling (12).

The effects of a conventional PKC-specific activator and an inhibitor indicate that conventional PKCs are capable of phosphorylating PLCβ3. This conclusion is supported by in vitro phosphorylation of PLCβ3 by the constitutively active PKC fragment and by purified PKCβ1 and PKCγ. The wide distribution of conventional PKCs (26) and PLCβ3 (2) in tissues correlates well with the generality of the PKC inhibitory effect on receptor-initiated PI turnover.

We conclude that conventional PKCs phosphorylate PLCβ3 and inhibit Goq and Gβγ-stimulated PLCβ3 activity. PKC and PKA act similarly in that they inhibit Goq-stimulated PLCβ3 as a result of phosphorylation of Ser1105. Moreover, PKA and PKC both inhibit Gβγ-stimulated activity by mechanisms that do not involve Ser1105.

Acknowledgments—We thank Dr. S. McKnight and Dr. D. Haviland for providing valuable experimental materials.

2 C. Yue and B. M. Sanborn, unpublished observations.