Perdas reprodutivas e reconcepção em fêmeas bovinas de corte submetidas a inseminação artificial em tempo fixo

Reproductive disorders and reconception of beef cows subjected to timed artificial insemination

Amanda Cristelli Nunes de Lima1*, Everton Tadeu Negrão Pereira2, Iury de Castro Almeida2, Ester Dias Xavier1, Diana Carla Fernandes Oliveira1, Anna Christina de Almeida1

1Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brasil.
2Instituto Federal do Norte de Minas Gerais (IFNMG), Salinas, Minas Gerais, Brasil.
*Correspondente: amandalimatec@yahoo.com.br

Resumo
O objetivo deste estudo foi avaliar as perdas gestacionais entre 30 e 120 dias de gestação e reconcepção em vacas de corte submetidas à inseminação artificial em tempo fixo (IATF). Foram analisadas 18.462 informações do arquivo zootécnico de animais submetidos a IATF no período da estação de monta de novembro de 2019 a abril de 2020 na região do semiárido de Minas Gerais. Os parâmetros avaliados foram perda gestacional, categoria animal, presença do bezerro ao pé da vaca, escore de condição corporal (ECC) e situação final da estação de monta das fêmeas que perderam gestação após a IATF, os dados foram analisados pelo teste qui-quadrado de Person (χ²) e teste de Kruskal-Wallis, com nível de significância de 5% com uso do programa SPSS. A taxa de prenhez final foi de 58,52%. A taxa de perdas entre o primeiro e segundo diagnóstico gestacional foi de 3,6%. Observou-se dependência entre as variáveis categoria e perda gestacional (χ²= 12,374, p< 0,05). A presença do bezerro ou não ao pé da vaca, não teve influência em relação a perda gestacional (p>0,05). A diferença do ECC entre as categorias foi significativa (p<0,05). A situação final foi influenciada (p<0,05) pela categoria animal. A ordem de parição e o escore de condição corporal influenciaram significativamente a taxa de perda gestacional.

Palavras-chave: Bovinocultura; Desempenho reprodutivo; Perdas gestacionais

Abstract
The objective of this study was to evaluate gestational losses between 30 and 120 days of gestation and reconception in beef cows submitted to fixed-time artificial insemination (FTAI). The 18,462 information from the zootechnical file of animals submitted to FTAI in the period of the breeding season from November 2019 to April 2020 in the semiarid region of Minas Gerais were analyzed. The parameters evaluated were gestational loss, animal category, presence of the calf with the cow, body condition score (BCS) and final situation of the breeding season of the females that lost gestation after FTAI, the data were analyzed by Person’s chi-square test (χ²) and Kruskal-Wallis test, with a significance level of 5% with use of the SPSS program. The final pregnancy rate was 58.52%. The loss rate between the first and second gestational diagnosis was 3.6%. Dependence was observed between the variables category and gestational loss (χ²= 12.374, p<0.05). The presence of the calf or not at the foot of the cow had no influence in relation to gestational loss (p>0.05). The difference in BCS between the categories was significant (p<0.05). Final situation was influenced (p<0.05) by animal category. Calving order and body condition score significantly influenced the gestational loss rate.

Keywords: Cattle raising; Gestational losses; Reproductive performance

Introdução
A cadeia da carne bovina possui posição de destaque no contexto do agronegócio brasileiro, ocupando vasta área do território nacional e respondendo pela geração de emprego e renda de milhões de brasileiros. Na bovinocultura de corte quatro pilares são responsáveis pela sustentabilidade econômica do sistema de produção: melhoramento genético, sanidade, nutrição e a reprodução, sendo este último o grande responsável por determinar a eficiência da produção animal, visto que produz a matéria-prima elementar dessa indústria: o bezerro. Porém a pecuária nacional ainda apresenta baixa eficiência reprodutiva, além de um manejo muitas vezes precário, com pouco ou nenhum controle acerca das diferentes fases que envolvem o ano reprodutivo1,2.

A IATF faz parte do manejo reprodutivo de muitos rebanhos de corte e oferece oportunidades de incorporar receita aos sistemas de cria por apresentar vantagens, como: potencializar o uso da inseminação artificial (IA), concentração de nascimentos, obtenção de lotes de bezerros mais homogêneos, antecipação da prenhez em até 30 dias, bezerros com maior peso e uniformidade à desmama, redução da estação reprodutiva e de nascimento, redução do número de touros na propriedade...
e aumento do ganho genético\(^3\).

A eficiência reprodutiva é o fator que, isoladamente, mais afeta a produtividade e a lucratividade de um rebanho. Porém existem obstáculos para otimizá-la, perdas reprodutivas ocorrem desde a concepção (natural ou artificial) até o parto\(^4\). A taxa de perda gestacional atinge o pico durante o desenvolvimento embrionário e diminui após 45 dias à medida que a gestação progride e a placentação ativa está completa. A mortalidade embrionária pode ser classificada como precoce, quando ocorre antes de 28 dias de gestação, ou mortalidade embrionária tardia, após os 28 dias de gestação. Curiosamente, em bovinos de corte, vacas com maior grau de sangue *Bos indicus* (pelo menos 3/8 de influência de *Bos indicus*) apresentam uma maior perda gestacional durante o início de desenvolvimento embrionário\(^5\).

O controle reprodutivo de bovinos de corte é um processo complexo pelo número de fatores envolvidos e suas possíveis interações com a taxa de gestação\(^6\). Vacas falam em conceber devido a vários fatores, tais como condição corporal, fálicas de manejo, saúde reprodutiva no pós-parto, qualidade do sêmen, dentre outros, reduzindo por seguinte a eficiência do serviço de inseminação\(^7\). Perdas gestacionais podem ser atribuídas a causas infecciosas e não infecciosas. Gestão e prevenção de doenças com ramificações reprodutivas tais como rinotraqueite infecciosa bovina, diarreia viral bovina e leptospirose, reduzem as perdas gestacionais associadas a doenças infecciosas\(^8\). Além disso, vacas que tiveram perdas gestacionais têm três vezes maior risco de serem descartadas, e se permanecem no rebanho têm cinco vezes mais probabilidade de abortarem mais tarde do que vacas que nunca abortaram\(^9\).

Poucos são os trabalhos que abordam as perdas gestacionais em bovinos de corte, entretanto constata-se que bovinos de corte apresentam uma maior perda gestacional\(^10\). Vacas que perderam gestação após a IATF (prenha 5=obesa) têm cinco vezes mais probabilidade de abortarem mais tarde do que vacas que nunca abortaram\(^10\). 

Poucos são os trabalhos que abordam as perdas gestacionais em bovinos de corte, entretanto constata-se que bovinos de corte apresentam uma maior perda gestacional\(^10\). Vacas que perderam gestação após a IATF (prenha 5=obesa) têm cinco vezes mais probabilidade de abortarem mais tarde do que vacas que nunca abortaram\(^10\).

**Material e métodos**

Foi analisado 18.462 informações do arquivo zootécnico, cedido por uma empresa de prestação de serviços veterinários, de 24 propriedades rurais em 20 municípios na região do semiárido de Minas Gerais no período de estação de monta de novembro de 2019 a abril de 2020. A estação de monta teve duração variada de acordo com o manejo de cada propriedade. Nessas circunstâncias, contínua a identificação e município da fazenda, a data dos manejos de IATF, o turno em que os animais foram submetidos à IATF, lote, veterinário responsável pelo protocolo, quantidade de animais do lote, descrição do lote, identificação do protocolo hormonal, identificação do animal (brinco ou marca quente), categoria reprodutiva, situação (presença ou não do bezerro ao pé da vaca), escore de condição corporal (ECC), raça, estrutura do ovário, dispositivo (CIDR\(^®!\)), dias de manejo após o início do protocolo, touro, origem do sêmen, inseminador e diagnóstico de gestação.

Os animais foram sincronizados com protocolo hormonal a base de progesterona (P4) e estradiol. No Dia 0, os animais receberam um dispositivo intravaginal de P4 e 2mg de benzoato de estradiol por via intramuscular. No Dia 7, foi aplicado, por via intramuscular, 500 mg do agente luteolítico progtaglandina (PGF2\(\alpha\)). No Dia 9, o dispositivo intravaginal foi removido, e foi administrado, por via intramuscular, 0,5 mg de Cipionato de Estradiol, 500 mcg de PGF2\(\alpha\) e 400 UI de Gonadotrofina Coriônica Equina. No dia 11 foi realizada a inseminação de todos os animais. Sete dias após a IATF, os animais foram submetidos ao repasse com touros até o término da estação de monta.

O diagnóstico de gestação foi realizado aos 30 e 120 dias após a inseminação artificial, ambos foram realizados com o auxílio de ultrassonografia transretal. Para análise da taxa de gestação final considerou-se o número de vacas gestantes aos 120 dias vezes 100, dividido pelo número de animais que foram desafiados à reprodução\(^10\).

Foi considerado como perda gestacional vacas que foram confirmadas gestantes pela primeira vez em cerca de 30 a 50 dias após a inseminação e posteriormente exibiram sinais visuais de aborto ou estavam vazias durante a reconfirmação da prenhez aos 120\(^o\) dia após a inseminação artificial\(^12\). Os parâmetros avaliados foram categoria animal (nulípara precoce (idade média de 14 meses), nulípara (idade média de 24 meses), primípara, secundípara e multipara, situação (presença ou não do bezerro ao pé da vaca) e escore de condição corporal (ECC) atribuído no momento da IATF (na escala de 1 a 5, onde 1= muito magra e 5=obesa\(^13\)) e situação ao final da estação de monta das fêmeas que perderam gestação após a IATF (preença normal, vazio ciclando e vazio em anestro).

Como o estudo de dados se trata de uma análise retrospectiva, só foram utilizados animais que tiverem informações completas e passíveis de serem utilizadas. Os dados foram analisados por meio de estatística descritiva com uso do programa Statistical Package for the Social Sciences (SPSS). Foi realizado o teste qui-quadrado de Person (\(\chi^2\)), com nível de significância de 5%. Nas situações em que os valores foram menores do que 5, utilizou-se o Teste de Fisher. Foram considerados...
o efeito da categoria animal, situação (presença ou não do bezerro ao pé da vaca), e situação ao final da estação de monta das fêmeas que perderam gestação após a IATF. A variável ECC avaliada no início do protocolo de IATF foi submetida à análise não paramétrica pelo teste de Kruskal-Wallis a 5% de significância.

Resultados e discussão

Das 18.462 informações de vacas Nelore submetidas ao protocolo de inseminação artificial em fixo, 10.804 animais tiveram um diagnóstico positivo para prenhez final (IATF+Repasse), fechando a estação de monta de novembro de 2019 a abril de 2020 com uma taxa de prenhez final de 58,52%. De acordo com Siqueira et al. (14), taxas de prenhez em torno de 50% podem ser consideradas razoáveis, e resultados inferiores são insatisfatórios, pois não justificam os custos com implantação do protocolo hormonal e manejo. A porcentagem de vacas gestantes ao final da estação de monta obtida neste estudo justificaria a utilização de IATF. Carvalho et al. (15), analisando a eficiência da inseminação artificial em tempo fixo de vacas zebuínas da região do Pará, observaram uma taxa de prenhez de 53,4%, havendo uma associação com as fazendas, com resultados que variaram de 46,8% a 63,1%.

A partir do banco de dados original, avaliou-se 9.617 animais com prenhez confirmada a partir dos 30 dias após a IATF. Foi observado na análise dos dados que as perdas gestacionais ocorrem com frequência em vacas de corte, encontrou-se nas vinte e quatro fazendas avaliadas uma taxa de 3,6% (350/9617) de vacas que não mantiveram a gestação entre 30 e 120 dias pós IATF. Este resultado está de acordo com dados encontrados por Reese et al. (16), que relatam perdas gestacionais de 5,8% após 30 dias de gestação. A mortalidade embrionária tardia / fetal precoce tem um resultado negativo significativo, causando impactos na eficiência reprodutiva e consequências econômicas porque as vacas podem ser retidas no rebanho por uma temporada inteira sem produzir um produto comercializável (19).

No presente estudo (Tab. 1), observou-se dependência entre as variáveis categoria e perda gestacional ($\chi^2$= 12,374, $p$<0,05). Entre os animais que tiveram perda gestacional a categoria secundípara apresentou uma maior taxa de perda com 5,9%, seguido pela categoria nulípara precoce com 5,2%, primípara 4,3%, multípara 3,6% e pôr fim a categoria nulípara com 2,6%. Gottschall et al. (16) observaram perdas reprodutivas entre 7,6% e 11,6% ($p$<0,01) para vacas multíparas e novilhas de 24 meses, respectivamente. Novilhas de 14 meses apresentaram uma perca de 19,3%. Em contrapartida Silke et al. (17), relataram que não houve evidência de que a incidência de perda embrionária foi afetada pela paridade das vacas, nem houve diferença na extensão ou padrão de perda entre novilhas e vacas.

A baixa taxa observada na categoria nulípara quando comparada com as demais categorias, também está relacionada provavelmente às baixas condições de estresse no início da estação de inseminação, além do fato de não possuírem nenhuma cria ao pé e não estarem em período de lactação (18). Análise que se estende a categoria nulípara precoce porém de acordo com Erb e Holtz (19), animais mais jovens, quando acasalados, tendem a apresentar maiores incidências de distúrbios na gestação, como, principalmente, morte embrionária. Ao analisar o escore de condição corporal das fêmeas que tiveram perda gestacional (Fig. 1), observou-se uma diferença significativa entre as categorias avaliadas, confirmadas pelo teste não paramétrico de Kruskal-Wallis, com valor $p$<0,05. Maiores perdas gestacionais em secundíparas está associada ao ECC dessa categoria (2,5). Silke et al. (17) observaram que mudanças na condição corporal afetaram a incidência de mortalidade embrionária, vacas que perderam a condição corporal durante os dias 28-56 de gestação tiveram uma taxa mais alta (11,6%) de perda embrionária em comparação a vacas que mantiveram (4,7%) ou ganharam (5,7%) a condição corporal durante este período. Para vacas que perdem 0,25 unidades de condição corporal, em comparação com vacas que ganham 0,25 unidades de ECC, a probabilidade de ocorrer perda embrionária também aumentou quase duas vezes. Demonstrando a importância de um acompanhamento do ECC durante o período gestacional do animal e não somente no momento do início do protocolo de IATF.

De acordo com Thangavelu et al. (20) o ECC no momento da IA influenciou significativamente a perda gestacional. Vacas com baixo ECC tiveram maior perda de prenhez do que vacas com alto ECC. Vacas em estado de balanço energético negativo frequentemente mobilizam gordura corporal, resultando em altas concentrações de ácidos graxos livres (AGL) na circulação. Concentrações
aumentadas de AGL podem ter efeitos prejudiciais na função do óócito e no desenvolvimento embrionário inicial.

De acordo com Grillo et al. (21), o controle e o acompanhamento do ECC constituem parâmetros importantes na elaboração estratégica alimentar, refletindo diretamente a melhoria dos indicadores de eficiência reprodutiva nos programas de IATF.

**Figura 1.** Escore de condição corporal (ECC), por categoria de fêmeas da raça Nelore que tiveram perda gestacional entre 30 e 120 dias após a IATF. Letras diferentes nas colunas significam diferença pelo teste de Kruskal-Wallis (p<0,05).

Como exposto na Tab. 2 a situação do animal: parida (com bezerro ao pé) e solteira (sem bezerro ao pé) e não se aplica (novilhas) não teve influência em relação a perda gestacional (p>0,05). Brauner et al. (22) avaliaram a eficiência reprodutiva de vacas de corte solteiras e paridas no município de Aceguá/RS, as vacas solteiras apresentaram melhores índices reprodutivos que as vacas em lactação, demonstrando que fatores ligados à lactação, tais como a gestação e o parto prévio, a produção de leite e a presença do bezerro somados, bem como o balanço energético negativo interferem no desempenho reprodutivo de vacas de corte no período pós-parto. Contudo, dentre as vacas em lactação, a gestação apresentou uma tendência a ser influenciada pela condição reprodutiva pré-acasalamento, sendo essas capazes de produzir adequadamente leite para o desenvolvimento dos terneiros, bem como conceber e produzir novamente um terneiro.

A situação ao final da estação de monta das fêmeas que perderam gestação após a IATF foi influenciada (p<0,05) pela categoria animal (Tab. 3). As vacas multiparas tiveram uma melhor taxa de reconcepção (36,2%) após a perda gestacional em relação as demais categorias. Ao final da estação de monta os animais que tiveram perda gestacional, 30% reconceberam, 22,6% estavam vazias ciclando e 47,4% vazias em anestro. Não houve diferença estatística entre a situação final dentro da categoria secundípara. Ao analisar o impacto do aborto na fertilidade e produtividade subsequentes de vacas leiteiras em regiões subtropicais ElTarabany (9) relata que fêmeas com perda gestacional tiveram um intervalo entre partos e o período de serviço significativamente maior (427 e 151 dias, respectivamente), em comparação com os partos normais (381 e 149 dias, respectivamente).

**Tabela 2.** Incidência de perda gestacional entre 30 e 120 dias após a IATF, de acordo com a situação do animal

| Situação       | Perda gestacional | p valor |
|----------------|-------------------|---------|
| Não se aplica  | 2094              | 69      |
| Parida         | 6526              | 266     | 0,205 |
| Solteira       | 486               | 15      |
| Total          | 9106              | 350     |

**Tabela 3.** Situação ao final da estação de monta por categoria de vacas Nelores que tiveram perda gestacional entre 30 e 120 dias após a IATF

| Categoria       | Situação ao final da estação de monta das fêmeas que perderam gestação após a IATF | Total | p valor |
|-----------------|---------------------------------------------------------------------------------|-------|---------|
|                 | Prenha | Vazia ciclando | Vazia em anestro |               | Teste de aderência | Teste de independência |
| Multipara       | 80 (36,2%) | 47 (21,3%) | 94 (42,5%) | 221 | 0,004 |
| Secundípara     | 3 (25%)    | 6 (50%)     | 3 (25%)    | 12  | 0,4724|
| Primípara       | 16 (33,3%) | 8 (16,7%)   | 24 (50%)   | 48  | 0,0183|
| Nulípara        | 6 (13,3%)  | 16 (35,6%)  | 23 (51,1%) | 45  | 0,0077|
| Nulípara precoce| 0         | 2 (8,3%)    | 22 (91,7%) | 24  | <0,001|
| Total           | 105 (30%)  | 79 (22,6%)  | 166 (47,4%)|     |       |

Lima A C N et al. 2022, Cienc. Anim. Bras., V23, e-70384

CATEGORIA
Conclusão
Os resultados obtidos nas condições dos dados avaliados permitem concluir que a ordem de parição e o escore de condição corporal influenciam significativamente a taxa de perda gestacional em vacas de corte submetidas à IATF. Os dados mostram que das vacas que perderam gestação existe uma diferença entre o ECC entre as categorias. A reconcepção dos animais após a perda gestacional teve dependência em relação a categoria animal, tendo a categoria multipara uma melhor taxa de reconcepção.

Conflito de interesses
Os autores declaram não haver conflito de interesses.

Contriuições do autor
Conceituação: A. C. N. de Lima, A. C. de Almeida; Curadoria de dados: A. C. N. de Lima, A. C. de Almeida, E. T. N. Pereira, I. de C. Almeida, D. C. F. de Oliveira; Análise formal: A. C. N. de Lima, D. C. F. de Oliveira; Investigação: A. C. N. de Lima, A. C. de Almeida, E. T. N. Pereira, I. de C. Almeida, Mendologia: A. C. N. de Lima, A. C. de Almeida; Gerenciamento do projeto: A. C. N. de Lima, A. C. de Almeida; Recursos: A. C. N. de Lima, A. C. de Almeida, E. T. N. Pereira, I. de C. Almeida; Software: A. C. N. de Lima, D. C. F. de Oliveira; Supervisão: A. C. N. de Lima, A. C. de Almeida; Validação: A. C. N. de Lima, A. C. de Almeida, D. C. F. de Oliveira; Visualização: A. C. N. de Lima, E. D. Xavier; Redação: A. C. N. de Lima, E. D. Xavier; Redação (esboço original): A. C. N. de Lima, E. D. Xavier; Redação (revisão e edição): A. C. N. de Lima, E. D. Xavier.

Referências
1. Castro FC, Fernandes H, Leal CLV. Sistemas de manejo para maximização da eficiência reprodutiva em bovinos de trópicos. Veterinária e Zootecnia. 2015; 23(3):217-223.
2. Malafaia GC, Azevedo DB, Pereira MA. A Sustentabilidade na Gado de leite, Circular Técnica; 2010; 64 n. 12 p.
3. Andrade JS, Moreira EM, Silva GM, Souza VL, Nunes VRR, Júnior JSO et al. Aspectos uterinos, foliculares e seminais que influenciam a taxa de prenhez em bovinos leiteiros. Juiz de Fora, MG: Embrapa Gado de leite de corte, Circular Técnica; 2010; 64 n. 12 p.
4. Bergamaschi MACM, Machado R, Barbosa RT. Eficiência reprodutiva das vacas leiteiras. Revista Brasileira de Reprodução Animal. Belo Horizonte. 2013; 34(4):77-89.
5. Reese ST, Franco GA, Poole RK, Hood R, Montero LF, Oliveira Filho RV, Cooke RF, Pohler KG. Pregnancy loss in beef cattle: A meta-analysis. Animal Reproduction Science. 2020; 212:106251.
6. Moraes, JCF.; Jaume, CM.; Souza, CJH. Manejo reprodutivo da vaca de corte. Revista Brasileira de Reprodução Animal. Belo Horizonte. 2007; 31(2):160-166.
7. Jemal H, Lemma A. Review on major factors affecting the successful conception rates on biotechnological application (AI) in cattle. Global Journal of Medical Research. Massachusetts. 2015; 15(3):19-27.
8. Speckhart SL, Reese ST, Franco GA, Ault TB, Oliveira Filho RV, Oliveira AP, Pohler KG. Invited Review: Detection and management of pregnancy loss in the cow herd. The Professional Animal Scientist. 2018; 34(6):544-557.
9. El-Tarabany MS. Impact of stillbirth and abortion on the subsequent fertility and productivity of Holstein, Brown Swiss and their crosses in subtropics. Tropical Animal Health and Production. 2015; 47:1351-1356.
10. Santana RCM, Massa R, Zaifton LF, Megid J, Langoni H, Mathias LA. Estudo epidemiológico sobre as perdas reprodutivas em bovinos leiteiros: ocorrência de Neospora caninum, Brucella abortus, Herpesvirus bovis tipo-1 e Leptospira spp. em uma propriedade do município de São Carlos-SP. ARS Veterinária. Jaboticabal, SP; 2013; 29(3):153-160.
11. Machado R, Bergamaschi MACM, Silva JCB, Binelli M. Estratégias para reduzir a mortalidade embrionária em bovinos. II. Protocolo para reduzir a mortalidade embrionária em vacas de leite e em reprodutores de embrião. 1. ed. São Carlos, SP: Embrapa Pecuária Sudeste, 2010; p. 21.
12. Dahl MO, De Vries A, Mannsell FP, Galvao KN, Risco CA, Hernandez JA. Epidemiologic and economic analyses of pregnancy loss attributable to mastitis in primiparous Holstein cows. Journal of Dairy Science. 2018; 101(11):10142–10150.
13. Houghton PL, Lemenager RP, Moss GE, Hendrix KS. Prediction of postpartum beef cow body composition using weight to height ratio and visual body condition score. Journal of Animal Science. Champaign. 1991; 68:1428-1437.
14. Siqueira LC Oliveira JFCD, Loguercio RDS, Lôf HK, Gonçalves PBB. Sistemas de inseminação artificial em dois dias com observação de estro ou em tempo fixo para vacas de corte amamentando. Ciência Rural. 2008; 38:411-415.
15. Carvalho JS, Cavaalcanti MO, Chaves MS, Rizzo H. Eficiência da inseminação artificial em tempo fixo em fêmeas zebras na mesorregião Sudeste do Pará, Brasil. Revista de Ciências Agrárias Amazonian Journal of Agricultural and Environmental Sciences. 2019; vol. 62.
16. Gottschall C, Ferreira E, Canellas L, Bittencourt HR. Perdas reprodutivas e reconcepção em bovinos de corte segundo a idade ao acasalamento. Arquivo Brasileiro de Medicina Veterinária e Zootecnia. Belo Horizonte: 2008; 60(2):414-418.
17. Silke V, M. Diskin G, Kenny DA, Boland MP, Dillon P, Mee, JF, Sreenan JM. Extent, pattern and factors associated with late embryonic loss in dairy cows. Animal Reproduction Science. 2002; 71:1-12.
18. Batista DSN, Abreu UGP, Filho PBF, Rosa NA. Índices reprodutivos do rebanho Nelore da fazenda Nhumirim, Pantanal da Nhecolândia. Acta Scientiarum. Animal Sciences. 2012; 34(1):71-76.
19. Erb RE, Holtz EW. Factors associated with estimated fertilization and service efficiency of cows. Journal of Dairy Science. 1958; 41:1541-1552.
20. Thangavelu G, Gobikrushanth M, Colazo MG, Ambrose DJ. Pregnancy per artificial insemination and pregnancy loss in lactating dairy cows of a single herd following timed artificial insemination or insemination at detected estrus. Canadian Journal of Animal Science. 2015; 95:383–388.
21. Grillo GF, Guimarães ALL, Couto SRB, Abidufigueiredo M, Palhano HB. Comparação da taxa de prenhez entre novilhas, primiparas e multiparas da raça Nelore submetidas à inseminação artificial em tempo fixo. Revista Brasileira de Medicina Veterinária. 2015; 37(3):193-197.
22. Brauner CC, Pimentel MA, Lemes JS, Pimentel CA, Moraes JCF. Reprodução de vacas de corte em lactação e solteiras submetidas à indução/sincronização de estro. Ciência Rural. 2008; 38:1067-1072.