Article

Evaluation of Housekeeping Genes for Quantitative Real-Time PCR Analysis of *Bradysia odoriphaga* (Diptera: Sciaridae)

Caihua Shi 1,†, Fengshan Yang 2,†, Xun Zhu 3, Erxia Du 4, Yuting Yang 1, Shaoli Wang 3, Qingjun Wu 3 and Youjun Zhang 3,*

1 College of Agriculture, Yangtze University, Jingzhou 434025, China; shicaihua1980@126.com (C.S.); nxy@yangtzeu.edu.cn (Y.Y.)
2 College of Life Science, Heilongjiang University, Harbin 150080, China; jingronghu@126.com
3 Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; nxy2005@126.com (X.Z.); wangshaoli@caas.cn (S.W.); wuqingjun@caas.cn (Q.W.)
4 Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA; du@uchc.edu
* Correspondence: zhangyoujun@caas.cn; Tel.: +86-10-8210-9518
† These authors contribute equally to this work.

Academic Editor: Kun Yan Zhu

Received: 8 April 2016; Accepted: 20 June 2016; Published: 7 July 2016

Abstract: The soil insect *Bradysia odoriphaga* (Diptera: Sciaridae) causes substantial damage to Chinese chive. Suitable reference genes in *B. odoriphaga* (*Bradysia odoriphaga*) have yet to be identified for normalizing target gene expression among samples by quantitative real-time PCR (qRT-PCR). This study was focused on identifying the expression stability of 12 candidate housekeeping genes in *B. odoriphaga* under various experiment conditions. The final stability ranking of 12 housekeeping genes was obtained with RefFinder, and the most suitable number of reference genes was analyzed by GeNorm. The results revealed that the most appropriate sets of internal controls were RPS15, RPL18, and RPS18 across developmental phases; RPS15, RPL28, and GAPDH across temperatures; RPS15 and RPL18 across pesticide treatments; RSP5, RPS18, and SDHA across photoperiods; ACTb, RPS18, and RPS15 across diets; RPS13 and RPL28 across populations; and RPS15, ACTb, and RPS18 across all samples. The use of the most suitable reference genes versus an arbitrarily selected reference gene resulted in significant differences in the analysis of a target gene expression. HSP23 in *B. odoriphaga* was found to be up-regulated under low temperatures. These results will contribute to the standardization of qRT-PCR and will also be valuable for further research on gene function in *B. odoriphaga*.

Keywords: *Bradysia odoriphaga*; normalization; reference genes; RefFinder

1. Introduction

Quantitative real-time PCR (qRT-PCR) is considered as a reliable technique for the gene quantification [1–3]. However, gene expression can be affected by many confounding factors, such as RNA extraction, reverse transcription, and qRT-PCR efficiency [4,5]. Therefore, housekeeping genes are commonly used as “reference genes” to decrease the effects due to confounding factors and to increase the accuracy of the quantification analysis related to the particular biological environment [6,7]. The reference genes overcome the whole steps of the analyses along with interest genes and suppress the variations within the treatment group to the lowest level. Determining the number and identity of the reference genes to be employed for count data of normalization factors (NF) among comparable
samples is indispensable for the precise quantification of gene expression. Thus far, however, qRT-PCR remains unreliable because of unquestioning selection of reference genes and random decision of the number for data standardization. In most of the insect samples thus far studied, for example, the expression levels of frequently used reference genes show unacceptable variability among tissues or under different physiological conditions [8,9]. The use of such reference genes will lead to inaccurate calculations and may hide true differences among samples or may indicate false differences [10]. Gutierrez et al. found that estimates of gene expression level can differ by 100-fold depending on the selection of reference gene [11]. It follows that before a housekeeping gene is applied as a reference gene, its stability should be evaluated in the particular tissue and under the particular experimental conditions of the study [12,13]. In addition, at least two or three reference genes with stable expression pattern should be selected [14–16].

Although qPCR has been frequently utilized for detecting expression in insects, there is still no suitable housekeeping gene and stable gene quantification system for the chive gnat, Bradysia odoriphaga Yang and Zhang (Diptera: Sciaridae). It has been reported that the chive gnat is a major soil pest of Chinese chive, Allium tuberosum Rottler ex Sprengel [17–19]. With its high fecundity, overlapping generations, and wide host range, the chive gnat occurs throughout China [20,21]. The chive gnat commonly reduces the yield of Chinese chive by 40%–60% and in some cases destroys the entire crop [22–25]. Quantitative examination of gene expression in B. odoriphaga (Bradysia odoriphaga) may increase our understanding of the biology and control of this pest.

This study was focused on identifying suitable housekeeping genes for assessing gene expression in B. odoriphaga under various experimental conditions that included differences in developmental stage, temperature, population, pesticide exposure, diet, and photoperiod. We also assessed the significance of variations by comparing different normalization strategies with the merits of using the most appropriate versus a randomly selected reference genes under different temperature treatments.

2. Results

2.1. Amplification Efficiencies

Reverse transcription PCR (RT-PCR) showed that all 12 selected reference genes and one target gene were observed in the B. odoriphaga samples. For each gene, an amplicon of the correct size was evident. In order to estimate the amplification efficiency of the candidate genes, five-point standard curves were drawn based on the known RNA standards concentration, and the melting curve showed a single peak in each case (Figure 1). Amplification efficiencies ranged from 95.1% to 107.0%. Coefficients of determination (R^2) based on linear regression were >0.990 (Table 1).
Figure 1. Melting curve analysis of quantitative real-time PCR (qRT-PCR) amplification (using gene-specific primers) of 12 housekeeping gene and a target gene in *B. odoriphaga*: (A) ACTb; (B) EF1a; (C) GAPDH; (D) RPL18; (E) RPL28; (F) RPS15; (G) RPS18; (H) RSP5; (I) RPS13; (J) SDHA; (K) TUB; (L) UBCE; and (M) HSP23.
Table 1. Features of the 12 housekeeping genes and one target gene in *B. odoriphaga* (*Brady sia odoriphaga*) samples.

Gene Symbol	Gene Name	Forward Primer (5'-3')	Reverse Primer (5'-3')	Product Length (bp)	Efficiency (%)	r^2 *
ACTb	β-actin	CGCCCCCGAAGAAATTGTG	GTCACGACCGCAATGTCTA	128	107.01	1.000
EF1a	Elongation factor 1 alpha	TGCAACTGCAACTGCAAAAG	ACACCTTGCCCTACCGTCTG	153	102.23	0.991
GAPDH	Glyceraldehyde-3-phosphate	GCTAGTGCCGGTGCTGAATA	GAGGCCACAGCGAATTG	144	100.20	1.000
RPL18	Ribosomal protein L18	CCAAACCGCAAGGAACCTCT	AGCTACGTCTGGACCTCTA	160	101.26	0.998
RPL28	Ribosomal protein L28	CGTGCCCCACATTTTCATCA	GACAAAGCCACTGTAACGGA	180	105.18	1.000
RPS15	Ribosomal protein S15	ATCGTGCGCGATTGCGAT	CTATTTGTGGCGCTTCTCT	164	101.03	0.997
RPS18	Ribosomal protein S18	AAGCGCTGATGTGAATGCGA	TGGACCGACGTCAATGTCG	144	101.84	0.999
RSP5	Similar to ubiquity family member	TCTACAAAGGCCGACACAT	CAAACCGAATCCACATGC	116	103.85	1.000
RPS13	Ribosomal protein S13	AATCGATTTTCGTAGCGGT	GTTTGCGAAATACGCCGC	117	97.35	0.999
SDHA	Succinate dehydrogenase	TGGCTGCAGAACATTGCGC	GTCGGTACGCAACCATAT	134	95.10	0.998
TUB	Alpha tubulin	AACTGGCAAGCCCTACGAGG	GCTGGTATCTGCTGGCGA	159	101.80	1.000
UBC1	Ubiquitin-conjugating enzyme	ACTACGGCCGCTTAGCGT	CATTTGTGGCTTCTGCTG	101	102.58	0.998
HSP23	Small heat shock protein	GAGAGCTATCGTCCGCCA	GCTTCTCGGCTGAGTC	140	106.86	0.997

The gene source was transcriptome data in all cases. * Regression coefficient obtained according to standard regression curve.
2.2. Expression Images of Candidate Reference Genes

To analyze mRNA expression level of the 12 candidate housekeeping genes, \(C_1 \) values were calculated for all samples in this study. As shown in Figure 2, the mean \(C_1 \) values of the 12 candidates were <30. The average \(C_1 \) value was lowest for \(RPL28 \) (15.95) and highest for \(TUB \) (25.32).

![Figure 2](image-url)

Figure 2. Expression profiles of the 12 housekeeping genes in all specimens of \(B. odoriphaga \) as indicated by cycle threshold \((C_t)\) values. Samples were from the assays with developmental stages, temperatures, populations, pesticides, diets, and photoperiods. Values are means ± SD.

2.3. Stability of Reference Genes

The following results are based on analyses across the range of each factor. For developmental stage, for example, stability is based on an analysis across all stages.

2.3.1. Developmental Stages

According to the four algorithms, \(TUB \) and \(EF1a \) were the least steady across developmental stage (Table 2). The most stable genes (in order) were \(RPS15, RPL18, \) and \(ACTb \) according to the \(\Delta C_1 \) method; \(RPS18, RPS13, \) and \(RPL28 \) according to BestKeeper; \(SDHA, ACTb, \) and \(GAPDH \) according to NormFinder; and \(RPL18, RPS15, \) and \(RPS18 \) according to GeNorm (Table 2).

According to RefFinder, the order of the reference gene stability across developmental stages was: \(RPS15 > RPL18 > RPS18 > SDHA > ACTb > RPS13 > GAPDH > RPL28 > UBCE > RSP5 > EF1a > TUB \) (Figure 3A). GeNorm analysis results showed that the pair-wise values of V2/3 to V6/7 were all above the cut-off value of 0.15 but that the pair-wise value of V7/8 was <0.15 (Figure 4); a value <0.15 indicates that the supplemental reference genes will not evidently change the normalization. Based on the RefFinder recommendations for selection of reference genes and on convenience of operation, \(RPS15, RPL18, \) and \(RPS18 \) were considered suitable reference genes across developmental stages of \(B. odoriphaga \) (Table 3).
Table 2. Expression stability of the 12 candidate housekeeping genes in *B. odoriphaga* under various experimental conditions.

Experimental Condition	Rank	ΔCt	BestKeeper	NormFinder	GeNorm								
		Gene Name	Standard Value										
Developmental stages		RPS15	1.460	RPS18	0.599	SDHA	0.455	RPL18/RPS15	0.429				
	2	RPL18	1.510	RPS13	0.628	ACTb	0.481						
	3	Actb	1.520	RPL28	0.742	GAPDH	0.729	RPS18	0.530				
	4	SDHA	1.530	RPS15	0.745	RPS15	0.757	RPS13	0.626				
	5	GAPDH	1.620	RPL18	0.757	UBCE	0.810	RPL28	0.756				
	6	RPS18	1.620	SDHA	0.824	RPL18	0.927	SDHA	0.908				
	7	UBCE	1.640	GAPDH	0.856	RPS18	1.140	ACTb	1.020				
	8	RPS13	1.710	ACTb	0.970	RSP5	1.221	GAPDH	1.080				
	9	RPL28	1.770	UBCE	1.238	RPL28	1.264	UBCE	1.130				
	10	RSP5	1.950	UBCE	1.652	RPL18	1.140	ACTb	1.020				
	11	EF1a	2.860	EF1a	1.754	EF1a	2.514	EF1a	1.520				
	12	TUB	3.990	TUB	3.942	TUB	3.870	TUB	1.931				
Temperatures		RPS15	0.640	RPL28	0.298	RPS15	0.307	RPL18/RSP5	0.476				
	2	GAPDH	0.680	RPS15	0.432	GAPDH	0.397						
	3	RPL28	0.690	UBCE	0.457	RPL28	0.415	RPL28	0.521				
	4	RPS13	0.720	SDHA	0.457	RSP5	0.478	GAPDH	0.564				
	5	RPS13	0.750	RPS13	0.468	RSP5	0.515	RPS15	0.581				
	6	UBCE	0.760	TUB	0.486	UBCE	0.522	EF1a	0.625				
	7	EF1a	0.770	RPL18	0.498	EF1a	0.544	UBCE	0.654				
	8	RPL18	0.800	GAPDH	0.564	RPL18	0.612	RPS13	0.674				
	9	Actb	0.830	RSP5	0.585	ACTb	0.645	RPS18	0.696				
	10	SDHA	0.850	Actb	0.608	TUB	0.682	ACTb	0.726				
	11	RPS18	0.860	EF1a	0.712	SDHA	0.683	SDHA	0.748				
	12	TUB	0.860	RPS18	0.721	RPS18	0.695	TUB	0.767				
Pesticides		RPS15	0.550	SDHA	0.277	RPS15	0.297	RPL28/RPS15	0.300				
	2	RPL18	0.580	EF1a	0.305	RPL18	0.323						
	3	RPL28	0.580	Actb	0.402	RPS18	0.356	RPL18	0.351				
	4	RPS18	0.600	TUB	0.496	RPL28	0.373	GAPDH	0.387				
	5	UBCE	0.610	RPS18	0.506	UBCE	0.385	UBCE	0.413				
	6	RPS13	0.620	RPL18	0.511	RPS13	0.387	RPS18	0.438				
	7	RPS5	0.630	RPS5	0.518	RPS5	0.424	RPS5	0.470				
	8	Actb	0.670	RPS13	0.585	ACTb	0.471	RPS13	0.492				
	9	GAPDH	0.670	UBCE	0.632	GAPDH	0.536	ACTb	0.535				
	10	SDHA	0.750	RPS15	0.656	SDHA	0.591	SDHA	0.575				
	11	EF1a	0.830	RPL28	0.684	EF1a	0.704	EF1a	0.622				
	12	TUB	0.880	GAPDH	0.774	TUB	0.765	TUB	0.664				
Experimental Condition	Rank	\(\Delta C_t \)	Gene Name	Standard Value	\(\Delta C_t \)	Gene Name	Standard Value	\(\Delta C_t \)	Gene Name	Standard Value	\(\Delta C_t \)	Gene Name	Standard Value
------------------------	------	-----------------	-----------	----------------	----------------	-----------	----------------	----------------	-----------	----------------	----------------	-----------	----------------
Photoperiods			**BestKeeper**			**NormFinder**			**GeNorm**				
	1	1.620	RSP5	0.526	RSP5	0.324	RPS18/UBCE	0.542					
	2	1.680	ACTb	0.700	SDHA	0.363							
	3	1.720	SDHA	0.967	RPL28	0.442	RPL18	0.580					
	4	1.740	RPL28	0.998	RPS15	0.523	RPS15	0.655					
	5	1.760	RPL28	1.035	RPS18	0.849	GAPDH	0.746					
	6	1.770	UBCE	1.047	UBCE	0.850	RSP5	0.903					
	7	1.780	RPS18	1.212	RPL18	0.899	SDHA	1.009					
	8	1.900	GAPDH	1.335	GAPDH	1.071	RPL28	1.074					
	9	2.040	GAPDH	1.592	ACTb	1.337	ACTb	1.225					
	10	3.040	TUB	1.874	TUB	2.899	TUB	1.564					
	11	3.090	EF1a	2.075	EF1a	2.956	EF1a	1.778					
	12	4.370	RPS13	4.172	RPS13	4.300	RPS13	2.210					
Diets			**BestKeeper**			**NormFinder**			**GeNorm**				
	1	0.850	ACTb	0.596	ACTb	0.333	RPL18/RPS18	0.470					
	2	0.860	RPS18	0.604	RPS18	0.435							
	3	0.920	RPS15	0.638	RPS15	0.550	ACTb	0.546					
	4	0.960	RPL18	0.665	RPL18	0.621	RPL28	0.613					
	5	0.980	RPL28	0.777	RPL28	0.683	RPS13	0.673					
	6	1.020	RPS13	0.803	GAPDH	0.728	RPS15	0.719					
	7	1.050	GAPDH	0.805	RPS13	0.735	UBCE	0.752					
	8	1.060	UBCE	0.864	UBCE	0.801	GAPDH	0.825					
	9	1.130	RPS5	0.928	TUB	0.870	TUB	0.900					
	10	1.160	SDHA	0.956	RSP5	0.920	EF1a	0.945					
	11	1.190	UBCE	0.980	EF1a	0.977	RSP5	0.984					
	12	1.340	RPL18	1.056	SDHA	1.154	SDHA	1.042					
Experimental Condition	Rank	△Ct	Gene Name	Standard Value									
------------------------	------	-------	-----------	----------------	-----------	----------------	-----------	----------------	-----------	----------------			
			Gene	Standard Value									
			Name	Value	Name	Value	Name	Value	Name	Value			
	1		RPS13	0.760	RPL28	0.200	RPS13	0.189	EF1a/RSP5	0.405			
	2		RPS15	0.770	SDHA	0.214	RPS15	0.247					
	3		GAPDH	0.770	GAPDH	0.366	RPL28	0.324	GAPDH	0.430			
	4		RPL28	0.790	RPS13	0.404	GAPDH	0.364	ACTb	0.457			
	5		RSP5	0.810	ACTb	0.406	RSP5	0.445	RPS15	0.498			
	6		SDHA	0.830	RPS15	0.473	SDHA	0.448	RPS13	0.527			
	7		EF1a	0.860	EF1a	0.474	EF1a	0.525	RPL28	0.551			
	8		ACTb	0.860	RPS18	0.503	ACTb	0.546	SDHA	0.567			
	9		RPS18	0.960	RPS5	0.517	RPS18	0.604	RPS18	0.625			
	10		UBCe	1.080	RPL18	0.834	UBCe	0.830	UBCe	0.694			
	11		RPL18	1.550	UBCe	0.937	RPL18	1.472	RPL18	0.829			
	12		TUB	1.740	TUB	1.576	TUB	1.674	TUB	0.981			
	1		RPS15	1.630	RPS18	0.744	ACTb	0.565	RPL28/RPS15	0.893			
	2		ACTb	1.650	ACTb	0.811	RPS15	0.668					
	3		RPL18	1.660	RPL28	0.828	RPS18	0.763	RPL18	0.926			
	4		RPS18	1.670	SDHA	0.917	RPL18	0.768	RPS18	0.968			
	5		RPL28	1.710	RPS15	0.925	UBCe	0.810	ACTb	1.054			
	6		SDHA	1.730	RPL18	1.039	SDHA	0.826	SDHA	1.095			
	7		GAPDH	1.740	GAPDH	1.057	RPL28	0.848	GAPDH	1.127			
	8		UBCe	1.760	UBCe	1.069	GAPDH	0.868	UBCe	1.171			
	9		EF1a	2.530	EF1a	1.192	EF1a	1.116	EF1a	1.354			
	10		TUB	2.990	RPS5	2.125	TUB	2.623	RPS13	1.620			
	11		RPS13	3.030	TUB	2.210	RPS13	2.774	TUB	1.857			
	12		RSP5	3.320	RPS13	2.274	RSP5	3.062	RSP5	2.101			
Figure 3. The stability of the 12 housekeeping genes in *B. odoriphaga* based on the Geomean method of RefFinder and measured across: (A) developmental stages (from adult to pupa); (B) temperatures; (C) pesticides; (D) photoperiods; (E) diets; (F) *B. odoriphaga* populations; and (G) all samples. For (B–F), 4th-instar larvae were used.
was: (Table 2), while they were (Figure 4). Therefore, (Figure 3B). The GeNorm data predicted that the pair-wise values from V2/3 to V3/4 were <0.15 (Table 2).

2.3.2. Temperatures

According to the ΔCt method and NormFinder, the most steady candidate genes across temperature treatments were RPS15, RPL28, and GAPDH, and the least stable were RPS18, SDHA, and TUB (Table 2). According to BestKeeper, the most stable candidate genes were RPL28, RPS15, and UBCE, and the least steady were RPS18, EF1a, and ACTb (Table 2). According to GeNorm, the most stable candidates were RPL18, RPS18, and RPL28, and the least stable were TUB, SDHA, and ACTb (Table 2).

According to RefFinder, the order of reference gene stability across temperature treatments was: RPS15 > RPL28 > GAPDH > RSP5 > RPL18 > UBCE > RPS13 > EF1a > SDHA > ACTb > TUB > RPS18 (Figure 3B). The GeNorm data predicted that the pair-wise values from V2/3 to V3/4 were <0.15 (Figure 4). Therefore, RPS15, RPL28, and GAPDH were considered stable candidate genes across the tested temperatures (Table 3).

2.3.3. Pesticides

TUB, GAPDH, and EF1a were regarded as the least steady genes across pesticide treatments by the ΔCt method and by GeNorm and NormFinder but not by BestKeeper (Table 2). According to the comparative ΔCt method and GeNorm, the most stable candidates were RPS15, RPL18, and RPL28 (Table 2), while they were RPS15, RPL18, and RPS18 by using NormFinder and were SDHA, EF1a, and ACTb according to BestKeeper (Table 2).

Based on RefFinder, the order of reference gene stability across pesticide treatments was: RPS15 > RPL18 > RPL28 > RPS18 > SDHA > UBCE > ACTb > RPS13 > RSP5 > EF1a > GAPDH > TUB.

Figure 4. Pair-wise variation \((V_n/V_{n+1})\) analysis of the number of candidate reference genes in *B. odoriphaga*. Pair-wise variation was analyzed by GeNorm software. A value <0.15 indicates that the normalization could not be dramatically changed by additional reference genes.

Table 3. Recommended reference genes in *B. odoriphaga* under various experimental conditions.

Experimental Condition	Reference Genes
Developmental stages	RPS15, RPL18, RPS18
Temperatures	RPS15, RPL28, GAPDH
Pesticides	RPS15, RPL18
Photoperiods	RSP5, RPS18, SDHA
Diets	ACTb, RPS18, RPS15
Populations	RPS13, RPL28
All samples	RPS15, ACTb, RPS18
According to BestKeeper, the most steady genes were RPS15 (Figure 4). Therefore, RPS15 and RPL18 were considered suitable reference genes for gene expression (Table 3).

2.3.4. Photoperiods

According to the four algorithms, the least stable genes across photoperiod treatments were RPS13, EF1a, and TUB (Table 2). The most stable genes were RSP5, RPS15, and SDHA according to the comparative \(\Delta C_t \) method; RSP5, ACTb, and RPS18 according to BestKeeper; RSP5, SDHA, and RPL28 according to NormFinder; and RPS18, UBCE, and RPL18 according to GeNorm (Table 2).

According to RefFinder, the order of reference gene stability across photoperiod treatments was: RSP5 > RPS18 > SDHA > UBCE > RPS15 > RPL28 > RPL18 > ACTb > GAPDH > TUB > EF1a > RPS13 (Figure 3D). The GeNorm analysis data showed that only the pair-wise value of V7/8 was below the cut-off value of 0.15 (Figure 4). Therefore, RSP5, RPS18, and SDHA were considered to be the most stable candidate genes across photoperiod treatments (Table 3).

2.3.5. Diets

Both NormFinder and \(\Delta C_t \) method results shared the same stable genes (ACTb, RPS18, and RPS15) across diets and confirmed SDHA, EF1a, and RSP5 as the least steady genes across diets (Table 2). According to BestKeeper, the most steady genes were RPS15, EF1a, and GAPDH, and the least stable were RPL18, UBCE, and SDHA (Table 2). According to GeNorm, the most stable genes were RPL18, RPS18, and ACTb, and the least stable were SDHA, RSP5, and EF1a (Table 2).

According to RefFinder, the ranking order of reference gene stability across diets was: ACTb > RPS18 > RPS15 > RPL18 > RPL28 > GAPDH > RPS13 > EF1a > TUB > UBCE > RSP5 > SDHA (Figure 3E). The GeNorm analysis showed that the pair-wise value of V4/5 was <0.15 (Figure 4). Therefore, ACTb, RPS18, and RPS15 were considered fitted reference genes across diets (Table 3).

2.3.6. Populations

Across B. odoriphaga populations, TUB, RPL18, and UBCE were identified as the least stable genes by all the four algorithms (Table 2). The most stable genes were RPS13, RPS15, and GAPDH according to the comparative \(\Delta C_t \) method; RPL28, SDHA, and GAPDH according to BestKeeper; RPS13, RPS15 and RPL28 according to NormFinder; and EF1a, RSP5, and GAPDH according to GeNorm (Table 2).

According to RefFinder, the order of reference gene stability across populations was: RPS13 > RPL28 > GAPDH > RPS15 > RPS5 > EF1a > SDHA > ACTb > RPS18 > UBCE > RPL18 > TUB (Figure 3F). The GeNorm analysis showed that V2/3 value was <0.15 (Figure 4). Therefore, RPS13 and RPL28 were considered suitable reference genes for gene expression (Table 3).

2.4. Ranking of Reference Genes for All Specimens

Across all samples, the three computational programs, and the comparative \(\Delta C_t \) method ranked RSP5, RPS13, and TUB as the least stable genes (Table 2). The most stable genes were RPS15, ACTb, and RPL18 according to the \(\Delta C_t \) method; RPS18, ACTb, and RPL28 according to BestKeeper; ACTb, RPS15, and RPS18 according to NormFinder; and RPL28, RPS15, and RPL18 according to GeNorm (Table 2).

Based on RefFinder, the order of reference gene stability across all samples was: RPS15 > ACTb > RPS18 > RPL28 > RPL18 > SDHA > UBCE > GAPDH > EF1a > TUB > RPS13 > RSP5 (Figure 3G). The GeNorm analysis showed that only the pair-wise values of V6/7 to V7/8 were less than the cut-off value of 0.15 (Figure 4). Therefore, RPS15, ACTb, and RPS18 were regarded as the most suitable reference genes for qRT-PCR (Table 3).
2.5. Target Gene Expression

The selection failure of internal controls led to remarkable differences in quantification target genes. The relative expression level of HSP23 significantly differed among temperature treatments (4, -5, or -10 °C) when normalized by the most stable reference genes (such as RPS15) (Figure 5). Similar changes observed in analyzing relative expression level of HSP23 with the normalization of two reference genes (such as RPS15 and RPL28) (Figure 5) or three reference genes (such as RPS15, RPL28, and GAPDH) (Figure 5). HSP23 in B. odoriphaga was found to be up-regulated under low temperatures, especially when the temperature was below -10 °C. However, HSP23 expression did not significantly differ among these treatments when expression was calculated with an arbitrary reference gene (such as ACTb) (Figure 5).

![Figure 5](image)

Figure 5. Relative expression of a target gene, HSP23, was affected by three temperature treatments and standardized with different numbers, and kinds of reference genes. The expression level was separately normalized by: A (RPS15); B (RPS15 and RPL28); C (RPS15, RPL28 and GAPDH); or D (ACTb) reference genes. The reference genes were selected depending on the expression stability of the 12 housekeeping genes among the three temperature treatments. Values are means ± SD of three biology replications; the “***” means remarkable differences, *p < 0.05; **p < 0.01; ***p < 0.001.

3. Discussion

Results obtained with qRT-PCR depend on several critical factors including RNA quantity, primer efficiency, and an internal control, i.e., a reference gene. When mRNA expression level is determined by qRT-PCR, the RNA must be intact, and primer efficiency must be determined [26]. Here, the OD ratio (A_{260}/A_{280}) of all RNA samples were between 1.8 and 2.0, and the amplification efficiency of the 12 candidates ranged from 90% to 110% (all $R^2 > 0.990$) (Table 1). Thus, the quality of the RNA and amplification was sufficient for qRT-PCR.

Previous researches have reported that expression level of reference genes is not always stable under all experimental conditions [27–29] and that mRNA expression levels varied among several housekeeping genes [2,30]. These earlier findings were confirmed in the current study with B. odoriphaga (Table 2). In the current study, none of the candidate genes exhibited the same level of expression under all experiment conditions [31]. This indicates that reference genes need to be optimized and chosen depending on experimental parameters. Our data showed that, among the tested genes, mRNA expression of RPS15 was the most stable across development stages, temperatures, pesticide treatment, and all samples of B. odoriphaga, which is consistent with previous studies concerning development stage and temperature treatments for Nilaparvata lugens [9] and insecticide
treatments for Helicoverpa armigera [32]. In B. odoriphaga, RSP5 was the most stable gene across photoperiod treatments, while RPS13 was the most stable across populations.

Previous studies have reported high expression stability for genes in the ribosomal protein (RP) genes family [27,33]. For example, among different organs, geographic populations, pesticide treatments, and starvation treatments, expression stability in Nilaparvata lugens was highest for RPS11 [9]; among different organs and developmental stages of Tetranychus cinnabarinus, expression stability was highest for RPS18 [34]; in Phenacoccus solenopsis, expression stability among temperature treatments was highest for RPL32 [35]; among different developmental stages of Schistocerca gregaria, expression stability was highest for RPL49 [36]; among different organs and developmental stages of Cimex lectularius, expression stability was highest for RPL18 [37]; in Spodoptera litura, expression stability among different larval tissues, populations, and food treatments was highest for RPL10 [33]; in Plutella xylostella, expression stability among different developmental stages and photoperiods was highest for RPS13 [38]; in response to virus infection in Tribolium castaneum, expression stability was highest for RPS3 [39]; and in Helicoverpa armigera, expression stability among temperature treatments was highest for RPL28 [40]. As a principal component of ribosomes, ribosomal protein (RP) is important in intracellular protein biosynthesis, DNA repair, cell differentiation, etc. [31]. These results indicate that ribosomal protein genes might be useful as reference genes in interest gene expression studies. In the current study with B. odoriphaga, however, an exception was that RPS13 showed the least steady expression across photoperiod treatments. Another exception was reported for Rhodnius prolixus: RPL26 was the most variable gene in the salivary glands of starved and non-starved specimens [41].

Because actin is the main structural protein of the cellular skeleton and is important for cell function [42], expression of the actin gene is substantial in most cell types [43]. The actin gene is the most stable gene in Chilo suppressalis [44], Schistocerca gregaria [36], and Apis mellifera [45]. Our study showed that ACTb is an ideal reference gene in B. odoriphaga subjected to diet treatments. In Helicoverpa armigera, however, ACTb exhibited the least stable expression in response to photoperiod and temperature treatments [40]. These results further confirmed that validating the stability of reference gene is very significant. The suitability of reference genes relative to both species and experimental conditions.

In addition to be affected by species and conditions [40], the ranking of reference gene stability is also affected by the tools used to perform the ranking. In the current study with B. odoriphaga, for example, the most stable genes across temperature treatments were RPS15, RPL28, and GAPDH by using NormFinder and ΔCt method but were RPL28, RPS15, and UBCE due to BestKeeper. This difference in ranking probably results from differences in the statistical algorithms: while BestKeeper individually analyzes the stability among candidate reference genes, NormFinder and the ΔCt method mainly think of the pair-wise variation between two candidate genes, and then confirm the stability of one of them [44,46]. Therefore, we used RefFinder software to comprehensively estimate the stability ranking of the 12 candidates. In addition, the optimal number of reference genes was confirmed by GeNorm, which calculates the pair-wise variation (Vn/Vn+1) between the continuous standardization factors or NF (NFn and NFn+1) [14] (Figure 3). If the first V value (V2/3) is <0.15, this indicates that two reference genes are enough for reliable normalization [14]. Nevertheless, the most appropriate number of reference genes also appears arbitrary without proper statistical verification under appropriate experimental condition. Some analyses, for example, failed to achieve Vn/n+1 <0.15, but could get relatively stable expression genes across final ranking estimated by GeNorm [47]. The most suitable number of reference genes conforms to the steadiest NF feasible with a unique sample set and a unique panel of candidates [48].

Random selection of reference genes reduces the accuracy of detecting interest genes expression because such a standardization strategy will be either under-estimate or over-estimate the expression differences among specimens. Such as the expression level of HSP23 among different temperature samples did not significantly differ using ACTb as internal control, but did significantly differ using other reference gene (such as RPS15) (Figure 5). Normalization with two or more stable reference genes
may be demanded, and researchers have recommended that multiple normalization genes were used to get more credible results [49–51]. Vandesompele et al. [14] recommended that reliable normalization needs at least three reference genes, and the pair-wise variation analysis in GeNorm hinted the need to include more than two genes in the current study. According to the ranking of expression stability among the 12 candidates evaluated by Reffinder in this work, we selected RPS15, RPL28, and GAPDH to assess the target gene HSP23 in B. odoriphaga under different temperatures; the results showed that HSP23 expression was up-regulated by low temperature, which was consistent with an earlier study that used RPS20 as reference gene [52]. In the current study, however, an arbitrarily selected reference gene (such as ACTb) failed to detect a significant effect of temperature on the expression profile of HSP23. Therefore, optimization of reference genes is critical for exact normalization of mRNA, especially for the subtle difference. To improve the accuracy of results, it is necessary to use the panel of selected housekeeping genes for any sample set.

4. Materials and Methods

4.1. Insects

B. odoriphaga was collected from a Chinese chive field on the Yang Town farm, ShunYi area (40°1’ N, 116°6’ E), Beijing, China. Individuals were reared for three generations with rhizomes of Chinese chive in an incubator (MLR-352H-PC) at 25 ± 1°C, 70% ± 5% relative humidity, and 12:12 (L:D). The specimens were promptly put into liquid nitrogen for further RNA isolation, and then screened following 12 candidate genes and amplification efficiencies.

4.2. Factors that Could Affect the Expression of Housekeeping Genes

The effects of the following factors on candidate reference genes mRNA were measured: developmental stage, temperature, population, pesticide exposure, diet, and photoperiod. After “exposure” to each factor (as described in the following sections), the specimens were placed in liquid nitrogen and then saved in –80°C fridge for further study. Each factor was assessed in three independent experiments.

4.2.1. Developmental Stages

Each of the six developmental stages of B. odoriphaga was placed in an Eppendorf tube (1.5-mL) as follows: adults (10 per tube), eggs (200 per tube), 1st-instar larvae (20 per tube), 2nd-instar larvae (20 per tube), 3rd-instar larvae (6 per tube), 4th-instar larvae (4 per tube), and pupae (4 per tube). The tubes were frozen and stored.

4.2.2. Temperatures

Groups of 20 4th-instar larvae were placed in a plastic Petri dish and exposed to 25, 4, –5, or –10°C. After 4 h, they were exposed to 25°C for another 24 h. Four living insects per group were then put in the tube (1.5-mL), frozen, and stored.

4.2.3. Pesticides

Groups of 40 4th-instar larvae were sprayed in culture dishes (ϕ = 60 mm) with the LC90 value of allyl isothiocyanate, lime nitrogen, or thiamethoxam. An additional group of 40 larvae was sprayed with distilled water. After 24 h at 25°C, four living larvae per group were saved in a 1.5-mL plastic tube, frozen, and stored.

4.2.4. Photoperiods

Groups of 20 4th-instar larvae in plastic Petri dishes were exposed to the following photoperiods (L:D): 24:0, 12:12, or 0:24. After 96 h, 12 individuals per group were stored with a 1.5-mL tube, frozen, and stored.
4.2.5. Diets

Groups of four 4th-instar larvae were maintained in an incubator at 25 ± 1 °C, 70% ± 5% relative humidity, and 12:12 (L:D) and were provided with one of the following: ginger slices, garlic bulbs, Chinese chive rhizomes, onion bulbs, or artificial diet [53]. After three generations, four larvae were placed into a 1.5-mL Eppendorf tube, frozen, and stored.

4.2.6. Populations

Larvae collected from three locations in China (Dezhou, Shandong; Baoding, Hebei; and Shunyi, Beijing) were reared on rhizomes of Chinese chive in an incubator at 25 ± 1 °C, 70% ± 5% relative humidity, and 12:12 (L:D). In the third generation, 12 4th-instar larvae from each population were placed in 1.5-mL micro centrifuge tubes (four larvae per tube), frozen, and stored.

4.3. Candidate Reference Genes

We assessed 12 “housekeeping” genes are known as reference genes selected from other insects. They were EF1a, UBCE, RSP5, GAPDH, RPS18, RPL18, ACTb, SDHA, RPL28, RPS13, RPS15, and TUB [33,34,36,40]. The sequences were obtained from our B. odoriphaga transcriptome data. The secondary structure of DNA template was predicted by the mfold web server [54], with the sets as follows: melting temperature for 60 °C; Na+ concentration for 50 mM; Mg2+ concentration for 3 mM; and linear DNA sequence. Other parameters were used as default. The primers used here were designed and checked by NCBI (National center for Biotechnology Information) Primer-BLAST, under the following conditions: primer GC content between 40% and 60%; primer melting temperature for 60 °C; and PCR products size of between 80 and 200 base pairs (Table 1).

4.4. Total RNA Abstraction and cDNA Synthesis

Total RNA was abstracted by the Trizol method. Each sample was homogenized with 1 mL of Trizol in a glass homogenizer following the manufacturer’s protocol (TIANGEN, Beijing, China). The quality and quantity of RNA were assessed with a Thermo Scientific NanoDrop 2000c UV-Vis spectrophotometer (Thermo Fisher Scientific Inc., Waltham, MA, USA). The quality of the nucleic acid sample was considered good if the OD ratio (A_{260}/A_{280}) was between 1.81 and 2.05. The cDNA was synthesized using the TransStart® (TAKARA, Japan) All-in-One First-Strand cDNA Synthesis SuperMix in a 20 µL volume, with 4 µL 5× TransStart® Buffer, 1 µg total RNA, and 1 µL gDNA Remover. Following the manufacturer’s instruction, the 20-µL mixture was reacted in a Bio-rad PCR machine for 15 min at 42 °C before both the TransStart® RT and gDNA remover were inactivated for 5 s at 85 °C. The cDNA was stored at −20 °C.

4.5. qRT-PCR

Each reaction was operated in a 20-µL solution including 0.4 µL cDNA, 10 µL 5× TransStart® SuperMix, 0.4 µL forward primer, 0.4 µL reverse primer, and 0.4 µL 50× Passive Reference Dye. The amplification conditions for the qRT-PCR were set as follows: 94 °C for 30 s, followed by 40 cycles of 94 °C for 5 s, 60 °C for 15 s, and 72 °C for 34 s. Then, the 10-fold dilution series of cDNA was used for a standard curve. The melting curve analysis from 80 to 90 °C was used for assuring specificity of the amplified product [55]. The corresponding qRT-PCR efficiencies (E) were counted by means of the equation: E = (10^{−1/slope} − 1) × 100 [30,55].

4.6. Constancy of Gene Expression

The constancy of candidate genes was estimated by the ∆Ct method [46] and with the following software: BestKeeper [56], GeNorm [14], and NormFinder [4]. The lower the value estimated by these algorithms, the greater the stability of expression. RefFinder [57], a useful web-based tool, was applied to estimate and screen the most suitable reference genes by combining the results of the four
algorithms. Based on rankings from each algorithm, RefFinder assigned a suitable weight to each gene and counted the geometric mean of the overall ultimate ranking.

4.7. Evaluation of a Target Gene Expression

To select the suitable reference genes from 12 candidates, we estimated latent up- or down-regulation of the HSP23 gene in B. odoriphaga under different temperature treatments. Gene expression ratios were calculated by using the formula \(2^{-\Delta\Delta C_t}\) [58].

\[
\Delta C_t = C_t (\text{target gene}) - C_t (\text{reference gene})
\]

\[
\Delta\Delta C_t = \Delta C_t (\text{sample}) - \Delta C_t (\text{control})
\]

4.8. Statistical Analysis

Results are showed as means ± SD. The means were calculated with Tukey’s test at \(p < 0.05\) by the software SPSS 19.0 for Windows (SPSS Inc., Chicago, IL, USA).

5. Conclusions

In summary, we first systematically evaluated 12 candidate reference genes in B. odoriphaga under various conditions. Four algorithms (NormFinder, BestKeeper, GeNorm, and the comparative \(\Delta C_t\) method) were used for evaluating the suitable reference genes. RefFinder, which was applied to combine the results of the different algorithms, then indicated that the most suitable reference genes were RPS15, RPL18, and RPS18 across developmental phases; RPS15, RPL28, and GAPDH across temperatures; RPS15 and RPL18 across pesticide treatments; RSP5, RPS18, and SDHA across photoperiods; ACTb, RPS18, and RPS15 across diets; RPS13 and RPL28 across populations; and RPS15, ACTb, and RPS18 across all samples. The use of the best reference genes vs. an arbitrarily selected reference gene resulted in substantial differences in the estimation of expression of a target gene. The results of this study will be valuable for research concerning gene function in B. odoriphaga.

Acknowledgments: This work was supported by Special Fund for Agro-scientific Research in the Public Interest (201303027), the Key Laboratory of Vegetable Genetics and Physiology, Ministry of Agriculture, China Agriculture Research System (CARS-26-10), and Beijing Training Project for the Leading Talents in S&T (LJRC201412).

Author Contributions: Caihua Shi and Fengshan Yang conceived and designed the experiments; Caihua Shi performed the experiments; Caihua Shi, Xun Zhu and Yuting Yang analyzed the data; Qingjun Wu, Shaoli Wang and Youjun Zhang contributed reagents/materials/analysis tools; Caihua Shi and Erxia Du wrote the paper; and Youjun Zhang contributed to the final editing and supervised the project.

Conflicts of Interest: The authors declared no conflict of interest.

References

1. Bustin, S.A. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J. Mol. Endocrinol. 2000, 25, 169–193. [CrossRef] [PubMed]
2. Bustin, S.A. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): Trends and problems. J. Mol. Endocrinol. 2002, 29, 23–39. [CrossRef] [PubMed]
3. Kubista, M.; Andrade, J.M.; Bengtsson, M.; Forootan, A.; Jonak, J.; Lind, K.; Sindelka, R.; Sjobac, R.; Sjogren, B.; Strombom, L.; et al. The real-time polymerase chain reaction. Mol. Asp. Med. 2006, 27, 95–125. [CrossRef] [PubMed]
4. Hao, X.Y.; Horvath, D.P.; Chao, W.S.; Yang, Y.J.; Wang, X.C.; Xiao, B. Identification and evaluation of reliable reference genes for quantitative real-time PCR analysis in tea plant (Camellia sinensis (L.) O. Kuntze). Int. J. Mol. Sci. 2014, 15, 22155–22172. [CrossRef] [PubMed]
5. Fleige, S.; Pfaffl, M.W. RNA integrity and the effect on the real-time qRT-PCR performance. Mol. Asp. Med. 2006, 27, 126–139. [CrossRef] [PubMed]
6. Suzuki, T.; Higgins, P.J.; Crawford, D.R. Control selection for RNA quantitation. Biotechniques 2000, 29, 332–337. [PubMed]
7. Coulson, D.T.R.; Brockbank, S.; Quinn, J.G.Q.; Murphy, S.; Ravid, R.; Irvine, G.B.; Johnston, J.A. Identification of valid reference genes for the normalization of RT qPCR gene expression data in human brain tissue. *BMC Mol. Biol.* 2008, 9, 1–11. [CrossRef] [PubMed]

8. Su, Y.L.; He, W.B.; Wang, J.; Li, J.M.; Liu, S.S.; Wang, X.W. Selection of endogenous reference genes for gene expression analysis in the Mediterranean species of the *Remisisc tabaci* (Hemiptera: Aleyrodidae) complex. *J. Econ. Entomol.* 2013, 106, 1446–1455. [CrossRef] [PubMed]

9. Yuan, M.; Lu, Y.H.; Zhu, X.; Wan, H.; Shakeel, M.; Zhan, S.; Jin, B.R.; Li, J.R. Selection and evaluation of potential reference genes for gene expression analysis in the brown plant hopper, *Nilaparvata lugens* (Hemiptera: Delphacidae) using reverse-transcription quantitative PCR. *PLoS ONE* 2014, 9, e86503. [CrossRef] [PubMed]

10. Zhang, L.; He, L.L.; Fu, Q.T.; Xu, Z.F. Selection of reliable reference genes for gene expression studies in the biofuel plant *Jatropha curcas* using real-time quantitative CPR. *Int. J. Mol. Sci.* 2013, 14, 24338–24354. [CrossRef] [PubMed]

11. Gutierrez, L.; Mauriat, M.; Guenin, S.; Pelloux, J.; Lefebre, J.E.; Louvet, R.; Rusterucci, C.; Moritz, T.; Guerineau, F.; Bellini, C.; et al. The lack of a systematic validation of reference genes: A serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants. *Plant Biotechnol.* 2008, 6, 609–618. [CrossRef] [PubMed]

12. Thellin, O.; Zorzi, W.; Lakaye, B.; de Borman, B.; Coumans, B.; Hennen, G.; Grisar, T.; Igout, A.; Heinen, E. Housekeeping genes as internal standards: Use and limits. *J. Biotechnol.* 1999, 75, 291–295. [CrossRef]

13. Stürzenbaum, S.R.; Kille, P. Control genes in quantitative molecular biological techniques: The variability of invariance. *Comp. Biochem. Physiol.* 2001, 130, 281–289. [CrossRef]

14. Vandesompele, J.; de Preter, K.; Pattyn, F.; Poppe, B.; van Roy, N.; de Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. *Genome Biol.* 2002, 3, 0034.1–0034.11. [CrossRef]

15. Wang, E.L.; Wang, K.Y.; Chen, D.F.; Wang, J.; He, Y.; Long, B.; Yang, L.; Yang, Q.; Geng, Y.; Huang, X.L.; et al. Evaluation and selection of appropriate reference genes for real-time quantitative PCR analysis of gene expression in Nile Tilapia (*Oreochromis niloticus*) during vaccination and infection. *Int. J. Mol. Sci.* 2015, 16, 9998–10015. [CrossRef] [PubMed]

16. Peters, I.R.; Peeters, D.; Helps, C.R.; Day, M.J. Development and application of multiple internal reference (housekeeper) gene assays for accurate normalisation of canine gene expression studies. *Vet. Immunol. Immunopathol.* 2007, 117, 55–66. [CrossRef] [PubMed]

17. Yabuki, Y.; Mukaida, Y.; Saito, Y.; Oshima, K.; Takahashi, T.; Muroi, E.; Hashimoto, E.; Uda, Y. Characterisation of volatile sulphur-containing compounds generated in crushed leaves of Chinese chive (*Allium tuberosum* Rottler). *Food Chem.* 2010, 120, 343–348. [CrossRef]

18. Misawa, T.; Kuninaga, S. First report of white leaf rot on Chinese chives caused by *Rhizoctonia solani* AG-2-1. *J. Gen. Plant Pathol.* 2013, 79, 280–283. [CrossRef]

19. Yang, J.K.; Zhang, X.M. Notes on the fragrant onion gnats with descriptions of two new species of Bradysia (Diptera: Sciaridae). *Acta Agric. Univ. Pekin.* 1985, 11, 153–156.

20. Yang, Y.T.; Li, W.X.; Xie, W.; Liu, J.; Li, M.; Li, C.R.; Zhang, Y.J. Development of *Bradysia odoriphaga* (Diptera: Sciaridae) as affected by humidity: An age-stage, two-sex, life-table study. *Bradysia odoriphaga* J. Agric. Urban Entomol. 2013, 24, 153–156. [CrossRef]

21. Mei, Z.X.; Wu, Q.J.; Zhang, Y.J.; Hua, L. The biology, ecology and management of *Bradysia odoriphaga*. *Entomol. Knowl.* 2003, 40, 396–398.

22. Dang, Z.H.; Dong, J.H.; Gao, Z.L.; Jia, H.M.; Zhang, K.J.; Pan, W.L. Biology and injury of *Bradysia odoriphaga* on leek in different types of cultivation. *J. Agric. Univ. Hebei* 2002, 24, 65–68.

23. Li, H.J.; He, K.K.; Zeng, A.J.; Liu, Y.J.; Jiang, S.R. *Bradysia odoriphaga* copulatory behavior and evidence of a female sex pheromone. *J. Agric. Urban Entomol.* 2007, 24, 27–34. [CrossRef]

24. Li, W.X.; Yang, Y.T.; Xie, W.; Wu, Q.J.; Xu, B.Y.; Wang, S.L.; Zhu, X.; Wang, S.J.; Zhang, Y.J. Effects of Temperature on the Age-Stage, Two-Sex Life Table of *Bradysia odoriphaga* (Diptera: Sciaridae). *J. Econ. Entomol.* 2015, 108, 126–134. [CrossRef] [PubMed]

25. Zhang, P.; Liu, F.; Mu, W.; Wang, Q.H.; Li, H.; Chen, C.Y. Life table study of the effects of sublethal concentrations of thiamethoxam on *Bradysia odoriphaga* Yang and Zhang. *Pestic. Biochem. Phys.* 2014, 111, 31–37. [CrossRef] [PubMed]
26. Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009, 55, 611–622. [CrossRef] [PubMed]

27. Li, R.M.; Xie, W.; Wang, S.L.; Wu, Q.J.; Yang, N.N.; Yang, X.; Pan, H.P.; Zhou, X.M.; Bai, L.Y.; Xu, B.Y.; et al. Reference gene selection for qRT-PCR analysis in the sweet potato whitefly, Bemisia tabaci. (Hemiptera: Aleyrodidae). PLoS ONE 2013, 8, e53006. [CrossRef] [PubMed]

28. Zhu, X.; Yuan, M.; Shakeel, M.; Zhang, Y.J.; Wang, S.L.; Wang, X.; Zhan, S.; Kang, T.H.; Li, J.H. Selection and evaluation of reference genes for expression analysis using qRT-PCR in the beet armyworm Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). PLoS ONE 2014, 9, e84730. [CrossRef] [PubMed]

29. Yang, C.X.; Pan, H.P.; Liu, Y.; Zhou, X.G. Selection of reference genes for expression analysis using quantitative real-time PCR in the pea aphid, Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae). PLoS ONE 2014, 9, e10454. [CrossRef] [PubMed]

30. Radonic, A.; Thulke, S.; Mackay, I.M.; Landt, O.; Siegert, W.; Nitsche, A. Guideline for reference gene selection for quantitative real-time PCR. Biochem. Biophys. Res. Commun. 2004, 313, 856–862. [CrossRef] [PubMed]

31. Ladror, D.T.; Frey, B.L.; Scalf, M.; Levenstein, M.E.; Artymiuk, J.M.; Smith, L.M. Methylation of yeast ribosomal protein S2 is elevated during stationary phase growth conditions. Biochem. Biophys. Res. Commun. 2014, 445, 535–541. [CrossRef] [PubMed]

32. Zhang, S.D.; An, S.H.; Li, Z.; Wu, F.M.; Yang, Q.P.; Liu, Y.C.; Cao, J.J.; Zhang, H.J.; Zhang, Q.W.; Liu, X.X. Identification and validation of reference genes for normalization of gene expression analysis using qRT-PCR in Helicoverpa armigera (Lepidoptera: Noctuidae). Gene 2015, 555, 393–402. [CrossRef] [PubMed]

33. Lu, Y.H.; Yuan, M.; Gao, X.W.; Kang, T.H.; Zhan, S.; Wan, H.; Li, J.H. Identification and validation of reference genes for gene expression analysis using quantitative PCR in Spodoptera litura (Lepidoptera: Noctuidae). PLoS ONE 2013, 8, e66059. [CrossRef] [PubMed]

34. Sun, W.; Jin, Y.; He, L.; Lu, W.C.; Li, M. Suitable reference gene selection for different strains and developmental stages of the carmine spider mite, Tetramychus cinnabarinus, using quantitative real-time PCR. J. Insect Sci. 2010, 10, 1–12. [PubMed]

35. Chen, F.; Lu, Y.Y. Selection of reference genes in Phenacoccus solenopsis (Hemiptera: Pseudococcidae) under heat stress. Acta Entomol. Sin. 2014, 57, 1146–1154.

36. Van Hiel, M.B.; Wielendaele, P.V.; Temmerman, L.; Soest, S.V.; Vuerinckx, K.; Huybrechts, R.; Broeck, J.V.; Simonet, G. Identification and validation of housekeeping genes in brains of the desert locust Schistocerca gregaria under different developmental conditions. BMC Mol. Biol. 2009, 10, 56. [CrossRef] [PubMed]

37. Mamidala, P.; Rajarapu, S.P.; Jones, S.C.; Mittapalli, O. Identification and Validation of Reference Genes for Quantitative Real-Time Polymerase Chain Reaction in Cimex lectularius. J. Med. Entomol. 2011, 48, 947–951. [CrossRef] [PubMed]

38. Fu, W.; Xie, W.; Zhang, Z.; Wang, S.; Wu, Q.; Liu, Y.; Zhou, X.M.; Zhou, X.G.; Zhang, Y. Exploring valid reference genes for quantitative real-time PCR analysis in Platella xylostella (Lepidoptera: Plutellidae). Int. J. Biol. Sci. 2013, 9, 792–802. [CrossRef]

39. Lord, J.C.; Hartzler, K.; Toutges, M.; Oppert, B. Evaluation of quantitative PCR reference genes for gene expression studies in Tribolium castaneum after fungal challenge. J. Microbiol. Methods 2010, 80, 219–221. [CrossRef] [PubMed]

40. Shakeel, M.; Zhu, X.; Kang, T.H.; Wan, H.; Li, J.H. Selection and evaluation of reference genes for quantitative gene expression studies in cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). J. Asia-Pac. Entomol. 2015, 18, 123–130. [CrossRef]

41. Paim, R.M.; Pereira, M.H.; Fonzie, R.D.; Rodrigues, J.O.; Guarneri, A.A.; Gontijo, N.F.; Araújo, R.N. Validation of reference genes for expression analysis in the salivary gland and the intestine of Rhodnius prolitus (Hemiptera: Reduviidae) under different experimental conditions by quantitative real-time PCR. BMC Res. Notes 2012, 5, 128. [CrossRef] [PubMed]

42. Hunter, T.; Garrels, J.I. Characterization of the mRNAs for α-, β- and γ-actin. Cell 1977, 12, 767–781. [CrossRef]

43. Ponton, F.; Chapuis, M.P.; Pernice, M.; Sword, G.A.; Simpson, S.J. Evaluation of potential reference genes for reverse transcription-qPCR studies of physiological responses in Drosophila melanogaster. J. Insect Physiol. 2011, 57, 840–850. [CrossRef] [PubMed]
44. Teng, X.; Zhang, Z.; He, G.; Yang, L.; Li, F. Validation of reference genes for quantitative expression analysis by real-time RT-PCR in four lepidopteran insects. *J. Insect Sci.* 2012, 12, 1–17. [CrossRef] [PubMed]

45. Lourenco, A.P.; Mackert, A.; Cristino, A.S.; Simões, Z.L.P. Validation of reference genes for gene expression studies in the honey bee, *Apis mellifera*, by quantitative real-time RT-PCR. *Apidologie* 2008, 39, 372–385. [CrossRef]

46. Silver, N.; Best, S.; Jiang, J.; Thein, S.L. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. *BMC Mol. Biol.* 2006, 7, 33. [CrossRef] [PubMed]

47. Dheda, K.; Huggett, J.F.; Chang, J.S.; Kim, L.U.; Bustin, S.A. The implications of using an inappropriate reference gene for real-time reverse transcription PCR data normalization. *Anal. Biochem.* 2005, 344, 141–143. [CrossRef]

48. Ling, D.J.; Salvaterra, P.M. Robust RT-qPCR data normalization: Validation and selection of internal reference genes during post-experimental data analysis. *PLoS ONE* 2011, 6, e17762. [CrossRef] [PubMed]

49. Ferguson, B.S.; Nam, H.; Hopkins, R.G.; Morrison, R.F. Impact of reference gene selection for target gene normalization on experimental outcome using real-time qRT-PCR in adipocytes. *PLoS ONE* 2010, 5, e15208. [CrossRef] [PubMed]

50. Veazey, K.J.; Golding, M.C. Selection of stable reference genes for quantitative RT-PCR comparisons of mouse embryonic and extra-embryonic stem cells. *PLoS ONE* 2011, 6, e27592. [CrossRef] [PubMed]

51. Jiang, H.C.; Qian, Z.J.; Lu, W.; Ding, H.Y.; Yu, H.W.; Wang, H.; Li, J. Identification and characterization of reference genes for normalizing expression data from red swamp crawfish *Procambarus clarkii*. *Int. J. Mol. Sci.* 2015, 16, 21591–21605. [CrossRef] [PubMed]

52. Colinet, H.; Hoffmann, A.A. Comparing phenotypic effects and molecular correlates of developmental, gradual and rapid cold acclimation responses in *Drosophila melanogaster*. *Funct. Ecol.* 2012, 26, 84–93. [CrossRef]

53. Zhou, X.H.; Zhang, S.C.; Zhuang, Q.Y.; Zhang, A.S.; Li, L.L.; Men, X.Y.; Zhai, Y.F.; Yu, Y. Screening and evaluation of the artificial diets of *Bradysia odoriphaga* Yang et Zhang (Diptera: Sciaridae). *Acta Entomol. Sin.* 2015, 58, 1245–1252.

54. Markham, N.R.; Zuker, M. DNAMelt web server for nucleic acid melting prediction. *Nucleic Acids Res.* 2005, 33, W577–W581. [CrossRef] [PubMed]

55. Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. *Nucleic Acids Res.* 2001, 29, 2002–2007. [CrossRef]

56. Pfaffl, M.W.; Tichopad, A.; Prgomet, C.; Neuvians, T.P. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-Based tool using pair-wise correlations. *Biotechnol. Lett.* 2004, 26, 509–515. [CrossRef] [PubMed]

57. Xie, F.; Sun, G.; Stiller, J.W.; Zhang, B. Genome-wide functional analysis of the cotton transcriptome by creating an integrated EST database. *PLoS ONE* 2011, 6, e26980. [CrossRef] [PubMed]

58. Zhu, X.; Li, Y.L.; Chen, D.X.; Wu, P.; Yi, T.; Chen, T.; Zhang, J.S.; Chu, W.Y. Selection of reference genes for microRNA quantitative expression analysis in Chinese perch, *Siniperca chuatsi*. *Int. J. Mol. Sci.* 2015, 16, 8310–8323. [CrossRef] [PubMed]