Regularity Properties of the Haar System with Respect to Besov-type Spaces

Wen Yuan, Winfried Sickel and Dachun Yang

Abstract Some Besov-type spaces \(B^{s,\tau}_{p,q}(\mathbb{R}^n) \) can be characterized in terms of the behavior of the Fourier–Haar coefficients. In this article, the authors discuss some necessary restrictions for the parameters \(s, \tau, p, q \) and \(n \) of this characterization. Therefore, the authors measure the regularity of the characteristic function \(X \) of the unit cube in \(\mathbb{R}^n \) via the Besov-type spaces \(B^{s,\tau}_{p,q}(\mathbb{R}^n) \). Furthermore, the authors study necessary and sufficient conditions such that the operation \(\langle f, X \rangle \) generates a continuous linear functional on \(B^{s,\tau}_{p,q}(\mathbb{R}^n) \).

1 Introduction

Besov-type spaces \(B^{s,\tau}_{p,q}(\mathbb{R}^n) \) are generalizations of Besov spaces \(B^{s}_{p,q}(\mathbb{R}^n) \). On the other hand, and more intuitively, they are representing relatives of bmo and so-called \(Q \)-spaces, which have been introduced about 30 years ago in complex analysis with applications also in harmonic analysis and partial differential equations (some references will be given in Subsection 3.1). As the most transparent special case, let us consider \(B^{s,\tau}_{p,q}(\mathbb{R}^n) \) with \(p = q, \tau \in [0, 1/p) \) and \(s \in (0, 1) \). Then a function \(f \) belongs to \(B^{s,\tau}_{p,p}(\mathbb{R}^n) \) if

\[
\sup_{P \in Q, |P| \geq 1} \frac{1}{|P|^\tau} \left\{ \int_P |f(x)|^p \, dx \right\}^{1/p} < \infty
\]

and

\[
\sup_{P \in Q} \frac{1}{|P|^\tau} \left\{ \int_P \int_P \frac{|f(x) - f(y)|^p}{|x - y|^{s+p+n}} \, dx \, dy \right\}^{1/p} < \infty;
\]

see [75, 4.3.3]. Here and hereafter, \(Q \) denotes the collection of all dyadic cubes in \(\mathbb{R}^n \). The main philosophy of these Besov-type spaces consists in characterizing the regularity by means of controlling (weighted) differences of \(f \) on cubes. This makes clear that there must exist a connection to Morrey–Campanato spaces. Spaces of this type have found applications in the study on the existence and the regularity of solutions of certain partial differential equations such as (fractional) Navier-Stokes equations (see, for example, [68, 28, 32, 60, 62, 63, 25, 26, 27]).

2010 Mathematics Subject Classification. Primary 42C15; Secondary 46E35.

Key words and phrases. Besov space, Besov-type space, characteristic function, orthonormal Haar system, smooth wavelets.

This project is supported by the National Natural Science Foundation of China and the Deutsche Forschungsgemeinschaft (Grant Nos. 11761131002, 11871100, 11571039 and 11726621). The first author is also supported by the Alexander von Humboldt Foundation.

*Corresponding author/August 29, 2018/Final version.
Many classical function spaces can be described via the Haar system. Let us mention here at least the works of Haar [17], Schauder [44], Marcinkiewicz [35] and Ciesielski [2], related to L^p, of Ropela [41], Triebel [52, 53], Oswald [38, 39] and Kahane and Lemarie [20], related to (isotropic) Besov spaces, of Wojtaszczyk [64], related to Hardy spaces, of Kamont [21, 22, 23], treating anisotropic Besov spaces, and of Garrigós et al. [12, 45, 46], investigating Bessel potential and Triebel–Lizorkin spaces. Good sources are also the monographs by Wojtaszczyk [65, 8.3] and Triebel [59, Chapter 2].

Nowadays it is known that the Haar system is an unconditional Schauder basis in Besov spaces $B_{p,q}^s(\mathbb{R}^n)$ if $p, q \in (0, \infty)$ and
\[
\max \left\{ n \left(\frac{1}{p} - 1 \right), \frac{1}{p} - 1 \right\} < s < \min \left\{ 1, \frac{1}{p} \right\};
\]
see, for example, [59, Theorem 2.21]. Already in [53] Triebel has found that, in cases
\[
s < \max \left\{ n \left(\frac{1}{p} - 1 \right), \frac{1}{p} - 1 \right\} \quad \text{or} \quad s > \min \left\{ 1, \frac{1}{p} \right\},
\]
the Haar system is not an unconditional Schauder basis. For positive and negative results in borderline cases we refer the reader to Oswald [38, 39, 40].

The pairs (p, q) with $\max\{p, q\} = \infty$ have to be excluded because the associated Besov spaces are no longer separable. However, also for those pairs and the associated spaces there exists a characterization in terms of the Fourier–Haar coefficients; see [59, Theorem 2.21]. This is of particular interest because the Besov-type spaces with $\tau > 0$ are always nonseparable (for all s, all p and all q). Finally, we wish to mention that Triebel [61] has established a characterization of some classes $L^pB_{p,q}^s(\mathbb{R}^n)$ (generalizations of Besov spaces also related to Morrey–Campanato spaces, see [60, 62]) in terms of the Haar system. For the relations of $L^pB_{p,q}^s(\mathbb{R}^n)$ and $B_{p,q}^{s,\tau}(\mathbb{R}^n)$ we refer to [76] and [62, 2.7].

The main purpose of this article is to establish some necessary restrictions for the parameters s, τ, p, q and n of the characterization of Besov-type spaces via the Fourier–Haar coefficients. Two obvious restrictions come from the following properties:

- the regularity of the characteristic function X of the unit cube in Besov-type spaces $B_{p,q}^{s,\tau}(\mathbb{R}^n)$;
- the operation $\langle f, X \rangle$ generates a continuous linear functional on $B_{p,q}^{s,\tau}(\mathbb{R}^n)$.

We will give answers in terms of restrictions on the parameters below for which the above two properties hold.

In a continuation [78] of this article, we will discuss sufficient conditions for characterizing $B_{p,q}^{s,\tau}(\mathbb{R}^n)$ in terms of Fourier–Haar coefficients including some applications to pointwise multipliers.

The structure of this article is as follows. Section 2 is devoted to a description of our main results (Theorems 2.1, 2.3, 2.5 and 2.8) and some comments. We give the necessary and sufficient condition on the parameters s, p, q and τ in Theorem 2.1 so that the characteristic function X belongs to $B_{p,q}^{s,\tau}(\mathbb{R}^n)$, while in Theorems 2.3 and 2.5, we also give the near sharp condition on the parameters so that the operation $\langle f, X \rangle$ generates a continuous linear functional on $B_{p,q}^{s,\tau}(\mathbb{R}^n)$.
In Section 3, we recall some basic notation and properties of Besov-type spaces, as well as some tools used to prove the main results. Our main tool is the wavelet characterization of \(B^{s,t}_{p,q}(\mathbb{R}^n) \) in terms of sufficiently smooth Daubechies wavelets. However, also interpolation (\(\pm \)-method of Gustavsson and Peetre) and characterizations in terms of differences will be used. In Section 4, we give the proof of Theorem 2.1, while Section 5 is devoted to the proofs of Theorems 2.3, 2.5 and Corollary 2.7 as well as Theorem 2.8.

Finally, we make some convention on the notation used in this article. As usual, \(\mathbb{N} \) denotes the natural numbers, \(\mathbb{N}_0 \) the natural numbers including 0, \(\mathbb{Z} \) the integers and \(\mathbb{R} \) the real numbers. We also use \(\mathbb{C} \) to denote the complex numbers and \(\mathbb{R}^n \) the \(n \)-dimensional Euclidean space. All functions are assumed to be complex-valued, namely, we consider functions \(f : \mathbb{R}^n \to \mathbb{C} \). Let \(S(\mathbb{R}^n) \) be the collection of all Schwartz functions on \(\mathbb{R}^n \) equipped with the well-known topology determined by a countable family of seminorms and denote by \(S'(\mathbb{R}^n) \) its topological dual, namely, the space of all bounded linear functionals on \(S(\mathbb{R}^n) \) equipped with the weak-* topology. The symbol \(\mathcal{F} \) refers to the Fourier transform, \(\mathcal{F}^{-1} \) to its inverse transform, both defined on \(S'(\mathbb{R}^n) \).

Recall that, for any \(\varphi \in S(\mathbb{R}^n) \) and \(\xi \in \mathbb{R}^n \),

\[
\mathcal{F} \varphi(\xi) := (2\pi)^{-\frac{n}{2}} \int_{\mathbb{R}^n} e^{-ix\xi} \varphi(x) \, dx
\]

and

\[
\mathcal{F}^{-1} \varphi(\xi) := \mathcal{F} \varphi(-\xi),
\]

where, for any \(x := (x_1, \ldots, x_n) \) and \(\xi := (\xi_1, \ldots, \xi_n) \in \mathbb{R}^n \), \(x\xi := \sum_{i=1}^n x_i \xi_i \) and \(\iota := \sqrt{-1} \).

All function spaces, which we consider in this article, are subspaces of \(S'(\mathbb{R}^n) \), namely, spaces of equivalence classes with respect to almost everywhere equality. However, if such an equivalence class contains a continuous representative, then usually we work with this representative and call also the equivalence class a continuous function. By \(C_c^\infty(\mathbb{R}^n) \) we mean the set of all infinitely differentiable functions on \(\mathbb{R}^n \) with compact supports.

For any given \(j \in \mathbb{Z} \) and \(k \in \mathbb{Z}^n \), denote by \(Q_{j,k} \) the dyadic cube \(2^{-j}([-1, 1]^n + k) \) and \(\ell(Q_{j,k}) \) its side length. Let

\[
Q := \{ Q_{j,k} : j \in \mathbb{Z}, k \in \mathbb{Z}^n \}, \quad Q' := \{ Q \in Q : \ell(Q) \leq 1 \}
\]

and \(j_Q := -\log_2 \ell(Q) \) for any \(Q \in Q \).

The symbol \(C \) denotes a positive constant which depends only on the fixed parameters \(n, s, \tau, p, q \) and probably on auxiliary functions, unless otherwise stated; its value may vary from line to line. Sometimes we use the symbol “\(\preceq \)” instead of “\(\leq \)”. The meaning of \(A \preceq B \) is given by that there exists a positive constant \(C \in (0, \infty) \) such that \(A \leq CB \). The symbol \(A \asymp B \) will be used as an abbreviation of \(A \preceq B \preceq A \). Given two quasi-Banach spaces \(X \) and \(Y \), the operator norm of a linear operator \(T : X \to Y \) is denoted by \(\|T\|_{X \to Y} \). Many times we shall use the abbreviation

\[
(1.1) \quad \sigma_p := n \max \left\{ 0, \frac{1}{p} - 1 \right\}, \quad \forall p \in (0, \infty).
\]

For any \(a \in \mathbb{R} \), \(\lfloor a \rfloor \) denotes the largest integer not greater than \(a \).
2 Main results

First, we recall the definition of the Haar system. Let X denote the characteristic function of the interval $[0, 1)$. The generator of the Haar system in dimension 1 is denoted by \tilde{h}, namely,

$$
\tilde{h}(t) := \begin{cases}
1 & \text{when } t \in [0, 1/2), \\
-1 & \text{when } t \in [1/2, 1), \\
0 & \text{otherwise}.
\end{cases}
$$

The functions, we are interested in, are just tensor products of these two functions. For any given $\varepsilon := (\varepsilon_1, \ldots, \varepsilon_n)$ with $\varepsilon_i \in \{0, 1\}$, define

$$
h_{\varepsilon}(x) := \left(\prod_{[i, \varepsilon_i] = 0} X_i(x) \right) \left(\prod_{[i, \varepsilon_i] = 1} \tilde{h}(x) \right), \quad \forall x = (x_1, \ldots, x_n) \in \mathbb{R}^n.
$$

This results in 2^n different functions. In case $\varepsilon = (0, \ldots, 0)$ we always write X instead of $h_{(0, \ldots, 0)}$. The other $2^n - 1$ functions will be enumerated in an appropriate way and denoted by $\{h_1, \ldots, h_{2^n - 1}\}$. These functions are the generators of the inhomogeneous Haar system in \mathbb{R}^n. In what follows, for any $i \in \{1, \ldots, 2^n - 1\}$, we let

$$
X_{j,m} := 2^{jn/2} X(2^j \cdot -m), \quad h_{i,j,m} := 2^{jn/2} h_i(2^j \cdot -m), \quad \forall j \in \mathbb{N}_0, \forall m \in \mathbb{Z}^n.
$$

Then the set

$$
H := \{X_{0,m}, h_{i,j,m} : i \in \{1, \ldots, 2^n - 1\}, \ j \in \mathbb{N}_0, \ m \in \mathbb{Z}^n\},
$$

forms the well-known orthonormal Haar wavelet system in \mathbb{R}^n (we shall call it just the Haar system).

For a function $f \in L^1_{\text{loc}}(\mathbb{R}^n)$ the Haar wavelet expansion is given by

$$
f = \sum_{m \in \mathbb{Z}^n} \langle f, X_{0,m} \rangle X_{0,m} + \sum_{i=1}^{2^n - 1} \sum_{j=0}^{\infty} \sum_{m \in \mathbb{Z}^n} \langle f, h_{i,j,m} \rangle h_{i,j,m}.
$$

When trying to characterize a space $B_{p,q}^{s,t}(\mathbb{R}^n)$ by the associated Haar wavelet expansions as in [59, Theorem 2.21] there are two obvious necessary conditions:

- The Haar wavelet coefficients have to be well defined for any $f \in B_{p,q}^{s,t}(\mathbb{R}^n)$, i.e., the mappings $f \mapsto \langle f, X_{0,m} \rangle$ and $f \mapsto \langle f, h_{i,j,m} \rangle$ extend to continuous linear functionals on $B_{p,q}^{s,t}(\mathbb{R}^n)$ for any m, i and j.

- The partial sums

$$
S_N f := \sum_{m \in \mathbb{Z}^n} \langle f, X_{0,m} \rangle X_{0,m} + \sum_{i=1}^{2^n - 1} \sum_{j=0}^{N} \sum_{m \in \mathbb{Z}^n} \langle f, h_{i,j,m} \rangle h_{i,j,m}
$$

are uniformly bounded in $B_{p,q}^{s,t}(\mathbb{R}^n)$, i.e.,

$$
\sup_{N \in \mathbb{N}_0} \sup_{\|f\|_{L^p_{\loc}(\mathbb{R}^n)} \leq 1} \|S_N f\|_{B_{p,q}^{s,t}(\mathbb{R}^n)} < \infty.
$$

Of course, this requires $H \subset B_{p,q}^{s,t}(\mathbb{R}^n)$.

In the framework of the classical Besov spaces, it is well known that \(X \in B^{s_{p,q}}_p(\mathbb{R}^n) \) if and only if
\[
(2.3) \quad \text{either } s = 1/p \text{ and } q = \infty \text{ or } s < 1/p \text{ and } q \in (0, \infty] ;
\]
see [42, Lemma 2.3.1/3]. This means that, for fixed \(p \in (0, \infty) \), the smallest Besov space, which
the function \(X \) belongs to, is given by \(B^{s_{p,\infty}}_p(\mathbb{R}^n) \). Now we turn to the smoothness of \(X \) and \(h_{i,j,m} \)
with respect to the scale \(B^{s_{p,q}}_{p,q}(\mathbb{R}^n) \).

Theorem 2.1. Let \(s \in \mathbb{R} \) and \(p, q \in (0, \infty] \).

(i) Let \(\tau \in (1/p, \infty) \). Then \(X \in B^{s,\tau}_{p,q}(\mathbb{R}^n) \) if and only if \(s \leq n(1/p - \tau) \).

(ii) Let \(\tau \in [0, 1/p] \). Then \(X \in B^{s,\tau}_{p,q}(\mathbb{R}^n) \) if and only if either
\[
(2.4) \quad s = \frac{1}{p}, \quad q = \infty \quad \text{and} \quad s \leq n \left(\frac{1}{p} - \tau \right)
\]
or
\[
(2.5) \quad s < \frac{1}{p}, \quad q \in (0, \infty] \quad \text{and} \quad s \leq n \left(\frac{1}{p} - \tau \right) .
\]

(iii) All elements of \(H \) have the same smoothness properties with respect to Besov type spaces,
i.e., \(h_{i,j,m} \in B^{s,\tau}_{p,q}(\mathbb{R}^n) \) if and only if \(X_{0,m} \in B^{s,\tau}_{p,q}(\mathbb{R}^n) \) if and only if \(X \in B^{s,\tau}_{p,q}(\mathbb{R}^n) \). Here \(i, j, m \)
are arbitrary (but as in \(H \)).

Remark 2.2. (i) The most interesting thing of Theorem 2.1 is the influence of the Morrey
parameter \(\tau \). Locally, the smoothness of elements of \(B^{s,\tau}_{p,q}(\mathbb{R}^n) \) grows with \(\tau \). If \(\tau \) is large,
discontinuous functions can not belong to \(B^{s,\tau}_{p,q}(\mathbb{R}^n) \). What concerns the smoothness of \(X \),
the Morrey parameter comes into play for \(\tau \geq \frac{p-1}{np} \).

(ii) Measuring the regularity of characteristic functions \(X_\Omega \) of sets \(\Omega \subset \mathbb{R}^n \) in Besov spaces has
attracted some attention in recent decades (see, for example, [11, 13, 14, 42, 47, 48, 55, 56, 57]). These investigations have found applications in various areas such as pointwise
multipliers for Besov and Triebel–Lizorkin spaces (see [13, 14, 42, 57]) and the Calderón
inverse problem (see [11]). For a general set \(\Omega \), the smoothness of \(X_\Omega \) depends on the
quality of the boundary. It turns out that the interrelations of smoothness and quality of the
boundary is surprisingly complicated. We shall return to this problem in our forthcoming
article [78].

Next we consider the mapping \(f \mapsto \langle f, X \rangle \) and discuss under which restrictions it extends to a
continuous linear functional on \(B^{s,\tau}_{p,q}(\mathbb{R}^n) \). It seems to be appropriate to distinguish into the cases
\(p \in [1, \infty) \) and \(p \in (0, 1) \).

Theorem 2.3. Let \(s \in \mathbb{R}, p \in [1, \infty], q \in (0, \infty] \) and \(\tau \in [0, \infty) \). The mapping \(f \mapsto \langle f, X \rangle \) extends
from \(B^{s,\tau}_{p,q}(\mathbb{R}^n) \cap L^1(\mathbb{R}^n) \) to a continuous linear functional on \(B^{s,\tau}_{p,q}(\mathbb{R}^n) \) if and only if either
\[
s = \frac{1}{p} - 1, \quad \tau \in \left[0, \frac{n-1}{np} \right] \quad \text{and} \quad q \in (0, 1] \]

or

\[s > \frac{1}{p} - 1, \quad \tau \in \left[0, \frac{n-1}{np}\right] \text{ and } q \in (0, \infty) \]

or

\[s > \frac{n}{p} - n\tau - 1, \quad \tau \in \left(\frac{n-1}{np}, \infty\right) \text{ and } q \in (0, \infty]. \]

Remark 2.4. (i) In case of classical Besov spaces \(B^{s}_{p,q}(\mathbb{R}^n) \) there is a convenient duality argument to deal with the existence \(\langle f, X \rangle \) (see [53]). It is based on the relation

\[
\left(B^{s}_{p,q}(\mathbb{R}^n) \right)' = B^{-s}_{p',q'}(\mathbb{R}^n), \quad 1 \leq p, q < \infty, \quad s \in \mathbb{R}.
\]

Let us mention that this formula does not extend to the spaces \(B^{s,\tau}_{p,q}(\mathbb{R}^n), \tau > 0 \).

(ii) Let again \(\tau = 0 \). As was mentioned before, Triebel [53] had shown that \(f \mapsto \langle f, X \rangle \) will not extend to a continuous linear functional on \(B^{s}_{p,q}(\mathbb{R}^n) \) if \(p \in [1, \infty), q \in (0, \infty] \) and \(s < \frac{1}{p} - 1 \). Kahane and Lemarié-Rieusset [20, Part II, Chapt. 6, Remark 2 on page 349] have supplemented this dealing with the special limiting case \(s = 1/2 \) and \(p = q = 2 \).

The behavior for \(p < 1 \) is surprisingly different. However, as in Theorems 2.1 and 2.3, the value \(\tau = \frac{n-1}{np} \) still plays a particular role.

Theorem 2.5. Let \(s \in \mathbb{R}, p \in (0, 1) \) and \(q \in (0, \infty] \).

(i) Let \(\tau \in (\frac{n-1}{np}, \infty) \). Then \(f \mapsto \langle f, X \rangle \) extends from \(B^{s,\tau}_{p,q}(\mathbb{R}^n) \cap L^1(\mathbb{R}^n) \) to a continuous linear functional on \(B^{s,\tau}_{p,q}(\mathbb{R}^n) \) if and only if \(s \in (\frac{n}{p} - n\tau - 1, \infty) \).

(ii) Let \(\tau \in [0, \frac{n-1}{np}] \). If either

\[s = (1 - \tau p)n \left(\frac{1}{p} - 1\right) \quad \text{and} \quad q \in (0, p] \quad (q \in (0, 1] \text{ when } \tau = 0) \]

or

\[s > (1 - \tau p)n \left(\frac{1}{p} - 1\right) \quad \text{and} \quad q \in (0, \infty], \]

then the mapping \(f \mapsto \langle f, X \rangle \) extends from \(B^{s,\tau}_{p,q}(\mathbb{R}^n) \cap L^1(\mathbb{R}^n) \) to a continuous linear functional on \(B^{s,\tau}_{p,q}(\mathbb{R}^n) \). If either

\[s = (1 - \tau p)n \left(\frac{1}{p} - 1\right) \quad \text{and} \quad q \in (1, \infty] \]

or

\[s < (1 - \tau p)n \left(\frac{1}{p} - 1\right) \]

then the mapping \(f \mapsto \langle f, X \rangle \) does not extend from \(B^{s,\tau}_{p,q}(\mathbb{R}^n) \cap L^1(\mathbb{R}^n) \) to a continuous linear functional on \(B^{s,\tau}_{p,q}(\mathbb{R}^n) \).
Remark 2.6. Summarizing, the only case, which has been left open by Theorems 2.3 and 2.5, is given by

\[p \in (0, 1), \quad s = (1 - \tau)p - 1, \quad \tau \in \left(0, \frac{n - 1}{np}\right) \quad \text{and} \quad q \in (p, 1). \]

Clearly, all regions, showing up in the restrictions, are convex, and the dependence on the parameters is continuous, there exist no jumps.

For a moment we turn back to the classical situation, namely, we choose \(\tau = 0 \). Then \(B_{p,q}^{s,0}(\mathbb{R}^n) = B_{p,q}^s(\mathbb{R}^n) \) and we obtain, essentially as a corollary of Theorems 2.3 and 2.5, the following final result.

Corollary 2.7. Let \(s \in \mathbb{R} \) and \(q \in (0, \infty) \).

(i) Let \(p \in [1, \infty] \). Then the mapping \(f \mapsto \langle f, X \rangle \) extends from \(B_{p,q}^s(\mathbb{R}^n) \cap L^1(\mathbb{R}^n) \) to a continuous linear functional on \(B_{p,q}^s(\mathbb{R}^n) \) if and only if either

\[s = \frac{1}{p} - 1 \quad \text{and} \quad q \in (0, 1] \]

or

\[s > \frac{1}{p} - 1 \quad \text{and} \quad q \in (0, \infty). \]

(ii) Let \(p \in (0, 1) \). Then the mapping \(f \mapsto \langle f, X \rangle \) extends from \(B_{p,q}^s(\mathbb{R}^n) \cap L^1(\mathbb{R}^n) \) to a continuous linear functional on \(B_{p,q}^s(\mathbb{R}^n) \) if and only if either

\[s = n\left(\frac{1}{p} - 1\right) \quad \text{and} \quad q \in (0, 1] \]

or

\[s > n\left(\frac{1}{p} - 1\right) \quad \text{and} \quad q \in (0, \infty]. \]

Finally we turn to the mappings \(f \mapsto \langle f, X_{0,m} \rangle \) and \(f \mapsto \langle f, h_{i,j,m} \rangle \).

Theorem 2.8. Theorems 2.3, 2.5 and Corollary 2.7 remain true when replacing \(f \mapsto \langle f, X \rangle \) by either \(f \mapsto \langle f, X_{0,m} \rangle, \) \(m \in \mathbb{Z}^n \) or by \(f \mapsto \langle f, h_{i,j,m} \rangle, i \in \{1, \ldots, 2^n - 1\}, \) \(j \in \mathbb{N}_0, \) \(m \in \mathbb{Z}^n \).

Remark 2.9. Oswald [38, 39, 40] discussed the properties of the Haar system in limiting cases with \(p \in (0, 1) \). He is working on \([0, 1]^d\) instead of \(\mathbb{R}^n \) (but this is not a big difference in this case). In his recent paper [40] Oswald proved the following: If \(p \in (\frac{1}{d+1}, 1), s = d\left(\frac{1}{p} - 1\right) \) and \(q \in (p, \infty) \) then it holds:

(i) If \(q \in (1, \infty) \), then the coefficient functionals of the Haar expansion can not be extended to bounded linear functionals on \(B_{p,q}^s([0, 1]^d) \).

(ii) If \(q \in (p, 1) \), then the partial sum operators of the Haar expansion are not uniformly bounded on \(B_{p,q}^s([0, 1]^d) \).

Clearly, (i) is the local counterpart of Corollary 2.7(ii). In addition and surprising, Oswald was able to show that \(H \) restricted to \([0, 1]^d\) is a Schauder basis for \(B_{p,q}^s([0, 1]^d) \) if \(p \in (\frac{d}{d+1}, 1), s = d\left(\frac{1}{p} - 1\right) \) and \(q \in (0, p) \).
3 Besov-type spaces

In this section, we recall some basic notation and properties of Besov-type spaces, as well as some necessary tools used to prove the main results, including characterizations of $B_{p,q}^{s,t}(\mathbb{R}^n)$ in terms of sufficiently smooth Daubechies wavelets and differences, as well as their interpolation property.

3.1 Definition and basic properties

To recall the definition and some basic properties of Besov-type spaces, we begin with some notation. Let $\varphi_0, \varphi \in S(\mathbb{R}^n)$ be such that

$$\text{supp } \mathcal{F} \varphi_0 \subset \{ \xi \in \mathbb{R}^n : |\xi| \leq 2 \} \quad \text{and} \quad |\mathcal{F} \varphi_0(\xi)| \geq C > 0 \quad \text{if} \quad |\xi| \leq \frac{5}{3}$$

and

$$\text{supp } \mathcal{F} \varphi \subset \{ \xi \in \mathbb{R}^n : \frac{1}{2} \leq |\xi| \leq 2 \} \quad \text{and} \quad |\mathcal{F} \varphi(\xi)| \geq C > 0 \quad \text{if} \quad \frac{3}{5} \leq |\xi| \leq \frac{5}{3},$$

where C is a positive constant independent of φ_0 and φ. Observe that there exist positive constants A and B such that

$$A \leq \mathcal{F} \varphi_0(\xi) + \sum_{j=1}^{\infty} \mathcal{F} \varphi(2^{-j}\xi) \leq B \quad \text{for any} \quad \xi \in \mathbb{R}^n.$$

In what follows, for any $j \in \mathbb{N}$, we let $\varphi_j(\cdot) := 2^j \varphi(2^j \cdot)$.

Definition 3.1. Let $s \in \mathbb{R}$, $\tau \in [0, \infty)$, $p, q \in (0, \infty]$ and $\varphi_0, \varphi \in S(\mathbb{R}^n)$ be as in (3.1) and (3.2), respectively. The Besov-type space $B_{p,q}^{s,\tau}(\mathbb{R}^n)$ is defined as the space of all $f \in S'(\mathbb{R}^n)$ such that

$$\|f\|_{B_{p,q}^{s,\tau}(\mathbb{R}^n)} := \sup_{P \in Q} \frac{1}{|P|^{1/q}} \left\{ \sum_{j=\max\{j_p,0\}}^{\infty} 2^{jsq} \left[\int_P |\varphi_j * f(x)|^p \, dx \right]^{q/p} \right\}^{1/q} < \infty$$

with the usual modifications made in case $p = \infty$ and/or $q = \infty$.

Remark 3.2.

(i) The space $B_{p,q}^{s,\tau}(\mathbb{R}^n)$ is a quasi-Banach space (see [75, Lemma 2.1]).

(ii) It is easy to see that $B_{p,q}^{s_1,\tau}(\mathbb{R}^n)$ coincides with the classical Besov space $B_{p,q}^s(\mathbb{R}^n)$.

(iii) We have the monotonicity with respect to s and with respect to q, namely,

$$B_{p,q_0}^{s_0,\tau}(\mathbb{R}^n) \hookrightarrow B_{p,q_1}^{s_1,\tau}(\mathbb{R}^n) \quad \text{if} \quad s_0 > s_1 \quad \text{and} \quad q_0, q_1 \in (0, \infty],$$

as well as

$$B_{p,q_0}^{s,\tau}(\mathbb{R}^n) \hookrightarrow B_{p,q_1}^{s,\tau}(\mathbb{R}^n) \quad \text{if} \quad q_0 \leq q_1.$$
(iv) Let \(s \in \mathbb{R} \) and \(p \in (0, \infty] \). Then it holds that

\[
B_{p,q}^{s,\tau}(\mathbb{R}^n) = B_{\infty,\infty}^{s+n(\tau-1/p)}(\mathbb{R}^n)
\]

if either \(q \in (0, \infty) \) and \(\tau \in (1/p, \infty) \) or \(q = \infty \) and \(\tau \in [1/p, \infty) \); see [73]. In case \(s + n(\tau - 1/p) > 0 \), the space \(B_{\infty,\infty}^{s+n(\tau-1/p)}(\mathbb{R}^n) \) is a Hölder-Zygmund space with a transparent description in terms of differences; see, for example, [54, Section 2.5.7].

(v) Since \(B_{p,q}^{s,\tau}(\mathbb{R}^n) \) with \(\tau > 1/p \) is a classical Besov space, we will mainly consider the situation \(\tau \in [0, 1/p] \) in this article.

As a generalization of the classical Besov spaces, the (inhomogeneous) Besov-type spaces \(B_{p,q}^{s,\tau}(\mathbb{R}^n) \), restricted to the Banach space case, were first introduced by El Baraka in [6, 7, 8]. The extension to quasi-Banach spaces was done in [70, 71]. Indeed, the homogeneous version of \(B_{p,q}^{s,\tau}(\mathbb{R}^n) \) for full parameters was introduced in [70, 71] to cover both the Besov spaces and (real-variable) \(Q \) spaces as special cases. Recall that \(Q \) spaces were originally from complex analysis (see [1, 10, 66, 67]) and their real-variable version has found a lot of applications in harmonic analysis (see, for example, [9, 4, 5, 69, 24]) and partial differential equations (see, for example, [68, 30, 29, 31, 28, 32]). A systematic treatment on the inhomogeneous Besov-type spaces \(B_{p,q}^{s,\tau}(\mathbb{R}^n) \) was later given in [75]. We refer the reader also to [43, 72, 73, 74, 49, 50] for further results on these spaces. In recent years, the Besov-type spaces and some of their special cases have also found interesting applications in some partial differential equations such as (fractional) Navier-Stokes equations (see, for example, [68, 28, 32, 60, 62, 63, 25, 26, 27]).

Of particular importance for us is the following embedding into \(C_{ub}(\mathbb{R}^n) \), the class of all complex-valued, uniformly continuous and bounded functions on \(\mathbb{R}^n \). For its proof, we refer the reader to [75, Proposition 2.6(i)] and [49].

Proposition 3.3. Let \(s \in \mathbb{R} \), \(\tau \in [0, \infty) \) and \(p, q \in (0, \infty] \).

(i) If \(s + n(\tau - 1/p) > 0 \), then \(B_{p,q}^{s,\tau}(\mathbb{R}^n) \hookrightarrow C_{ub}(\mathbb{R}^n) \).

(ii) Let \(p \in (0, \infty), q \in (0, \infty], \tau \in (0, 1/p) \) and \(s + n\tau - \frac{2}{p} = 0 \). Then \(B_{p,q}^{s,\tau}(\mathbb{R}^n) \not\hookrightarrow C_{ub}(\mathbb{R}^n) \).

(iii) Let \(p \in (0, \infty) \) and \(q \in (0, \infty) \). Then \(B_{p,q}^{0,1/p}(\mathbb{R}^n) \not\hookrightarrow C_{ub}(\mathbb{R}^n) \).

Next we recall some characterizations and properties of \(B_{p,q}^{s,\tau}(\mathbb{R}^n) \) which will be used in our proofs of Theorems 2.1, 2.3 and 2.5 below.

3.2 Characterization by wavelets

Wavelet bases in Besov and Triebel–Lizorkin spaces are a well developed concept (see, for example, Meyer [36], Wojtaszczyk [65] and Triebel [57, 58]). Let \(\tilde{\phi} \) be an orthonormal scaling function on \(\mathbb{R} \) with compact support and of sufficiently high regularity. Let \(\psi \) be one corresponding orthonormal wavelet. Then the tensor product ansatz yields a scaling function \(\phi \) and associated wavelets \(\{\psi_1, \ldots, \psi_{2^m-1}\} \), all defined now on \(\mathbb{R}^n \) (see, for example, [65, Proposition 5.2]). We suppose

\[
\phi \in C^{N_1}(\mathbb{R}^n) \quad \text{and} \quad \text{supp} \phi \subset [-N_2, N_2]^n
\]
for certain natural numbers \(N_1\) and \(N_2\). This implies

\[
(3.4) \quad \psi_i \in C^{N_i}(\mathbb{R}^n) \quad \text{and} \quad \text{supp} \, \psi_i \subset [-N_3, N_3]^n, \quad \forall \, i \in \{1, \ldots, 2^n - 1\}
\]

for some \(N_3 \in \mathbb{N}\). For any \(k \in \mathbb{Z}^n, j \in \mathbb{N}_0\) and \(i \in \{1, \ldots, 2^n - 1\}\), we shall use the standard abbreviations in this article:

\[
(3.5) \quad \phi_{j,k}(x) := 2^{jn/2} \phi(2^j x - k) \quad \text{and} \quad \psi_{i,j,k}(x) := 2^{jn/2} \psi_j(2^j x - k), \quad \forall \, x \in \mathbb{R}^n.
\]

Furthermore, it is well known that

\[
(3.6) \quad \int_{\mathbb{R}^n} \psi_{i,j,k}(x) x^\gamma \, dx = 0 \quad \text{if} \quad |\gamma| \leq N_1
\]

(see [65, Proposition 3.1]) and

\[
(3.7) \quad \{\phi_{0,k} : k \in \mathbb{Z}^n\} \cup \{\psi_{i,j,k} : k \in \mathbb{Z}^n, j \in \mathbb{N}_0, i \in \{1, \ldots, 2^n - 1\}\}
\]

yields an orthonormal basis of \(L^2(\mathbb{R}^n)\); see [36, Section 3.9] or [57, Section 3.1]. Thus, for any \(f \in L^2(\mathbb{R}^n)\),

\[
(3.8) \quad f = \sum_{k \in \mathbb{Z}^n} \lambda_k \, \phi_{0,k} + \sum_{i=1}^{2^n-1} \sum_{j=0}^{\infty} \sum_{k \in \mathbb{Z}^n} \lambda_{i,j,k} \, \psi_{i,j,k}
\]

converges in \(L^2(\mathbb{R}^n)\), where \(\lambda_k := \langle f, \phi_{0,k} \rangle\) and \(\lambda_{i,j,k} := \langle f, \psi_{i,j,k} \rangle\) with \(\langle \cdot, \cdot \rangle\) denoting the inner product of \(L^2(\mathbb{R}^n)\). For brevity we put

\[
(3.9) \quad \Lambda(f) := \{\lambda_k\}_k \cup \{\lambda_{i,j,k}\}_{i,j,k}.
\]

By means of such a wavelet system one can discretize the quasi-norm \(\| \cdot \|_{B_{p,q}^{s,s}(\mathbb{R}^n)}\). Therefore we need some sequence spaces (see [75, Definition 2.2]).

Definition 3.4. Let \(s \in \mathbb{R}, \tau \in [0, \infty)\) and \(p, q \in (0, \infty]\). The sequence space \(b_{p,q}^{s,s}(\mathbb{R}^n)\) is defined to be the space of all sequences \(t := \{t_{i,j,m}\}_{i,j,m \in \mathbb{N}, n \in \mathbb{Z}^n} \subset \mathbb{C}\) such that \(\|t\|_{b_{p,q}^{s,s}(\mathbb{R}^n)} < \infty\), where

\[
\|t\|_{b_{p,q}^{s,s}(\mathbb{R}^n)} := \sup_{P \in \mathcal{Q}} \left\{ \frac{1}{|P|^\tau} \left(\sum_{j=\max\{0,j_P\}}^{\infty} \sum_{i=1}^{2^n-1} \left| \sum_{m: Q_{i,m} \subset P} |t_{i,j,m}|^p \right|^{\frac{q}{p}} \right) \left(\sum_{j=\max\{0,j_P\}}^{\infty} \sum_{i=1}^{2^n-1} \left| \sum_{m: Q_{i,m} \subset P} |t_{i,j,m}|^q \right|^{\frac{p}{q}} \right)^{\frac{1}{q}} \right\}.
\]

As a special case of [34, Theorem 4.12] (see also [33]), we have the following wavelet characterization.

Proposition 3.5. Let \(s \in \mathbb{R}, \tau \in [0, \infty)\) and \(p, q \in (0, \infty]\). Let \(N_1 \in \mathbb{N}_0\) satisfy

\[
(3.10) \quad N_1 + 1 > \max \left\{ n + \frac{n}{p} - n\tau - s, 2\sigma_p + 2n + n\tau + 1, n \left(1 + \frac{1}{p} + \frac{1}{2} \right), n + s, -s + \frac{n}{p} \right\}.
\]
Let \(f \in S'(\mathbb{R}^n) \). Then \(f \in B_{p,q}^{s,t}(\mathbb{R}^n) \) if and only if \(f \) can be represented in \(S'(\mathbb{R}^n) \) as in (3.8) such that

\[
\| \Lambda(f) \|_{B_{p,q}^{s,t}(\mathbb{R}^n)} := \sup_{P \in \mathcal{Q}} \frac{1}{|P|^t} \left\{ \sum_{m : \mathbb{Q}_{0,m} \subset P} |\langle f, \phi_{0,m} \rangle|^p \right\}^{\frac{1}{p}} + \| \langle f, \psi_{i,j,m} \rangle \|_{B_{p,q}^{s,t}(\mathbb{R}^n)} < \infty.
\]

Moreover, \(\| f \|_{B_{p,q}^{s,t}(\mathbb{R}^n)} \) is equivalent to \(\| \Lambda(f) \|_{B_{p,q}^{s,t}(\mathbb{R}^n)} \) with the equivalent positive constants independent of \(f \).

Remark 3.6.

(i) On the interpretation of \(\Lambda(f) \), we observe that in general the element \(f \) of \(B_{p,q}^{s,t}(\mathbb{R}^n) \) is not an element of \(L^2(\mathbb{R}^n) \); it might be a singular distribution. Thus, \(\langle f, \phi_{0,m} \rangle \) and \(\langle f, \psi_{i,j,m} \rangle \) require an interpretation, which has been done in the proof of Proposition 3.5 (see [34, Theorem 4.12] for all the details).

(ii) In [34], biorthogonal wavelet systems in the sense of Cohen et al. [3] have been considered. But here we do not need this generality, orthonormal wavelet systems are sufficient for our investigations.

(iii) It is not claimed that the restriction in (3.10) is optimal.

(iv) For the case \(s \in (0, \infty) \), we refer the reader also to [75, Section 4.2].

3.3 Characterization by differences

Historically the characterization by differences (together with some characterizations by approximations) has been the first description of Besov spaces. In addition, they look also more transparent than the definition in terms of convolutions. For that reason the authors of this article have studied those characterizations with a certain care in [75]. To recall one of the results obtained in [75], we first need some notation.

For any \(M \in \mathbb{N} \), function \(f : \mathbb{R}^n \to \mathbb{C} \) and \(h, x \in \mathbb{R}^n \), let

\[
\Delta^M_h f(x) := \sum_{j=0}^M (-1)^j \binom{M}{j} f(x + (M - j)h),
\]

where \(\binom{M}{j} \) for any \(j \in \{0, \ldots, M\} \) denotes the binomial coefficients. For any \(p \in (0, \infty] \), let \(L^p(\mathbb{R}^n) \) denote the Lebesgue space which consists of all measurable functions \(f \) such that

\[
\| f \|_{L^p(\mathbb{R}^n)} := \left[\int_{\mathbb{R}^n} |f(x)|^p \, dx \right]^{1/p} < \infty,
\]

with the usual modification made when \(p = \infty \), and \(L^p_{\text{loc}}(\mathbb{R}^n) \) the space of all measurable functions which belong locally to \(L^p(\mathbb{R}^n) \). For any \(\tau \in [0, \infty) \), \(p \in (0, \infty] \) and \(f \in L^p_{\text{loc}}(\mathbb{R}^n) \), let

\[
\| f \|_{L^p_{\tau}(\mathbb{R}^n)} := \sup_{P \in \mathcal{Q}, |P| \geq 1} \frac{1}{|P|^t} \left[\int_P |f(x)|^p \, dx \right]^{1/p},
\]

for any \(\tau \in [0, \infty) \), \(p \in (0, \infty] \) and \(f \in L^p_{\text{loc}}(\mathbb{R}^n) \).
with the usual modification made when \(p = \infty \). Denote by \(L^p_t(\mathbb{R}^n) \) the set of all functions \(f \) satisfying \(\| f \|_{L^p_t(\mathbb{R}^n)} < \infty \). Obviously, for any \(p \in (0, \infty) \), \(L^p_0(\mathbb{R}^n) = L^p(\mathbb{R}^n) \). Furthermore, we write

\[
\| f \|_{B^s_{p,q}(\mathbb{R}^n)}^p := \sup_{p \in Q} \frac{1}{|P|^q} \left(\int_0^{2\min\{l(P),1\}} t^{-\frac{q}{p}} \sup_{t/2 \leq |h| < t} \left| \int_p \Delta_h^M f(x)|^p \, dx \right|^{q/p} \frac{dt}{t} \right)^{1/q}.
\]

The following difference characterization was proved in [75, Theorems 4.7 and 4.9]. Here we focus on the case \(\tau \in [0,1/p] \).

Proposition 3.7. Let \(q \in (0,\infty] \) and \(M \in \mathbb{N} \).

(i) Let \(p \in [1,\infty] \), \(s \in (0,M) \) and \(\tau \in [0,1/p] \). Then \(f \in B^{s,\tau}_{p,q}(\mathbb{R}^n) \) if and only if \(f \in L^p_t(\mathbb{R}^n) \) and \(\| f \|_{B^{s,\tau}_{p,q}(\mathbb{R}^n)} < \infty \). Furthermore, \(\| f \|_{L^p_t(\mathbb{R}^n)} + \| f \|_{B^{s,\tau}_{p,q}(\mathbb{R}^n)} \) and \(\| f \|_{B^{s,\tau}_{p,q}(\mathbb{R}^n)} \) are equivalent with the equivalent positive constant independent of \(f \).

(ii) Let \(p \in (0,1) \), \(s \in (\sigma_p,M) \) and \(\tau \in [0,1/p] \). Then \(f \in B^{s,\tau}_{p,q}(\mathbb{R}^n) \) if and only if \(f \in L^p_t(\mathbb{R}^n) \), \(\sup_{\alpha \in Z} |P|^{-\tau} \| f \|_{B^0_{\alpha,p}(2P)} < \infty \) with \(s_0 \in (\sigma_p,s) \) and \(\| f \|_{B^{s,\tau}_{p,q}(\mathbb{R}^n)} < \infty \). Furthermore, \(\| f \|_{L^p_t(\mathbb{R}^n)} + \| f \|_{B^{s,\tau}_{p,q}(\mathbb{R}^n)} \) and \(\| f \|_{B^{s,\tau}_{p,q}(\mathbb{R}^n)} \) are equivalent with the equivalent positive constant independent of \(f \).

3.4 Interpolation of Besov-type spaces

The interpolation method we shall use is the \(\pm \)-method introduced by Gustavsson and Peetre [16, 15]. To recall its definition, we consider a couple of quasi-Banach spaces (for short, a quasi-Banach couple), \(X_0 \) and \(X_1 \), which are continuously embedded into a larger Hausdorff topological vector space \(Y \). The space \(X_0 + X_1 \) is given by

\[
X_0 + X_1 := \{ h \in Y : \exists h_i \in X_i, \ i \in \{0,1\}, \ \text{such that} \ h = h_0 + h_1 \},
\]

equipped with the quasi-norm

\[
\| h \|_{X_0 + X_1} := \inf \{ \| h_0 \|_{X_0} + \| h_1 \|_{X_1} : h = h_0 + h_1, \ h_0 \in X_0 \text{ and } h_1 \in X_1 \}.
\]

Definition 3.8. Let \((X_0,X_1) \) be a quasi-Banach couple and \(\Theta \in (0,1) \). An \(a \in X_0 + X_1 \) is said to belong to \((X_0,X_1,\Theta) \) if there exists a sequence \(\{ a_i \}_{i \in \mathbb{Z}} \subset X_0 \cap X_1 \) such that \(a = \sum_{i \in \mathbb{Z}} a_i \) with convergence in \(X_0 + X_1 \) and for any finite subset \(F \subset \mathbb{Z} \) and any bounded sequence \(\{ \varepsilon_i \}_{i \in \mathbb{Z}} \subset \mathbb{C} \),

\[
\| a \|_{(X_0,X_1,\Theta)} := \inf \{ C : C \text{ satisfies } (3.12) \}.
\]

The following property is taken from [16, Proposition 6.1].
Proposition 3.9. Let \((A_0,A_1)\) and \((B_0,B_1)\) be any two quasi-Banach couples and \(\Theta \in (0,1)\).

(i) It holds true that \(\langle A_0,A_1,\Theta \rangle\) is a quasi-Banach space.

(ii) If \(T\) is a linear continuous operator from \(A_i\) into \(B_i\), \(i \in \{0,1\}\), then \(T\) maps \(\langle A_0,A_1,\Theta \rangle\) continuously into \(\langle B_0,B_1,\Theta \rangle\). Furthermore,

\[
\|T\|_{\langle A_0,A_1,\Theta \rangle \to \langle B_0,B_1,\Theta \rangle} \leq \max \{\|T\|_{A_0 \to B_0}, \|T\|_{A_1 \to B_1}\}.
\]

We also refer the reader to Nilsson [37] for more information on this interpolation method.

The following interpolation property of Besov-type spaces and the related sequence spaces via the ± method was obtained in [77, Theorem 2.12].

Theorem 3.10. Let \(\theta \in (0,1)\), \(s_i \in \mathbb{R}\), \(\tau_i \in [0,\infty)\) and \(p_i, q_i \in (0,\infty)\), \(i \in \{0,1\}\), be such that \(s = (1-\theta)s_0 + \theta s_1\), \(\tau = (1-\theta)\tau_0 + \theta \tau_1\),

\[
\frac{1}{p} = \frac{1-\theta}{p_0} + \frac{\theta}{p_1} \quad \text{and} \quad \frac{1}{q} = \frac{1-\theta}{q_0} + \frac{\theta}{q_1}.
\]

If \(\tau_0 p_0 = \tau_1 p_1 = \tau p\), then

\[
\left(B^{s_i,\tau_i}_{p_i,q_i} (\mathbb{R}^n), B^{s_0,\tau_0}_{p_0,q_0} (\mathbb{R}^n) \right) = B^{s,\tau}_{p,q} (\mathbb{R}^n)
\quad \text{and} \quad
\left(b^{s_i,\tau_i}_{p_i,q_i} (\mathbb{R}^n), b^{s_0,\tau_0}_{p_0,q_0} (\mathbb{R}^n) \right) = b^{s,\tau}_{p,q} (\mathbb{R}^n).
\]

4 Proof of Theorem 2.1

In this section, by employing the characterizations of Besov-type spaces via wavelets (see Proposition 3.5) and differences (see Proposition 3.7) as well as their interpolation property (see Theorem 3.10), we give the proof of Theorem 2.1.

First we have to introduce more notation. For any \(Q \in \mathcal{Q}\) and \(j \in \mathbb{Z}\), we let

\[
J_Q := \{ r \in \mathbb{Z}^n : |\text{supp } \phi_{0,r} \cap Q| > 0 \}
\]

and

\[
I_Q,j := \{ r \in \mathbb{Z}^n : \exists i \in \{1,\ldots,2^n-1\} \text{ such that } |\text{supp } \psi_{i,j,r} \cap Q| > 0 \}.
\]

Now we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. We show this theorem by four steps. Steps 1) - 3) will deal with \(X\), in Step 4) the functions \(h_{i,j,m}\) are investigated.

Step 1) We first consider the case \(\tau \in (1/p,\infty)\). Here it is enough to use the monotonicity of the space \(B^{s,\tau}_{p,q} (\mathbb{R}^n)\) with respect to \(s\) and \(q\) (see Remark 3.2) and the fact

\[
X \in B^{0,q}_{\infty,\infty} (\mathbb{R}^n) \quad \iff \quad q = \infty;
\]

see [42, Lemma 4.6.3/2]. Because of \(B^{s,\tau}_{p,q} (\mathbb{R}^n) = B^{s+n(\tau-1/p)}_{\infty,\infty} (\mathbb{R}^n)\) (see Remark 3.2(iv)), we obtain \(X \in B^{s,\tau}_{p,q} (\mathbb{R}^n)\) if and only if \(s + n(\tau - 1/p) \leq 0\).
Step 2) Sufficiency in case $\tau \in [0, 1/p]$. We employ the wavelet characterization of $B^{s,\tau}_{p,q}(\mathbb{R}^n)$ as given in Proposition 3.5. Thus, we have to check the finiteness of

$$
\sup_{P \in Q, |P| \geq 1} \frac{1}{|P|^\tau} \left\{ \sum_{j=\max(|P|-0)}^\infty 2^{j\tau + n/2}\sum_{q=1}^{2^{n-1}} \left[\sum_{k \in I_{P,j}} |\langle X, \psi_{i,j,k} \rangle| \right]^p \right\}^{\frac{q}{p}},
$$

where $\phi_{0,k}$ and $\psi_{i,j,k}$ are as in (3.7). The first term of the above summation is always finite, hence we may concentrate on the second. Because of the moment conditions of $\psi_{i,j,k}$ in (3.6), we conclude that the scalar product $\langle X, \psi_{i,j,k} \rangle = 0$ if either $\sup \psi_{i,j,k} \subset Q_{0,0}$ or $\sup \psi_{i,j,k} \cap Q_{0,0} = \emptyset$. We define

$$
\Omega_{j} := \{ r \in \mathbb{Z}^n : \exists i \in \{1, \ldots, 2^n - 1\} \text{ such that } \sup \psi_{i,j,r} \cap \partial Q_{0,0} \neq \emptyset \}
$$

and $\omega_j := |\Omega_j|$ (the cardinality of Ω_j). The properties of the wavelet system are guaranteeing

$$
\omega_j \asymp 2^{j(n-1)}, \quad \forall j \in \mathbb{N}_0.
$$

Now consider two different cases for the size of the dyadic cube P.

Case 1) Assume that $P \in Q$ with $|P| \geq 1$. In this case, we need a few more information about the set $I_{P,j}$ defined in (4.2). Let $P := Q_{m,\ell}$ with $m \in \mathbb{Z} \setminus \mathbb{N}$ and $\ell \in \mathbb{Z}^n$. Then we know that

$$
I_{P,j} \subset \bigcup_{|i-\ell| \leq M} \{ r \in \mathbb{Z}^n : \exists i \in \{1, \ldots, 2^n - 1\} \text{ such that } |\sup \psi_{i,j,r} \cap Q_{m,\ell}| > 0 \},
$$

where M is a fixed natural number (depending on N_2 and N_3). It follows

$$
|\Omega_j \cap I_{P,j}| \asymp |\Omega_j \cap I_{Q_{0,0}}| \lesssim 2^{j(n-1)}, \quad \forall j \in \mathbb{N}_0.
$$

In addition, we shall use the obvious estimate

$$
|\langle X, \psi_{i,j,k} \rangle| \leq 2^{j/2} \int_{[0,1]^n} |\psi_i(2^j x - k)| \, dx
$$

$$
\leq 2^{-j/2} (\max \{N_2, N_3\})^{n/2} \left[\int_{\mathbb{R}^n} |\psi_i(y)|^2 \, dy \right]^{1/2} \lesssim 2^{-jn/2}.
$$

Consequently, by (2.4), (2.5), (4.3) and the condition on s, for those cubes P we have

$$
\frac{1}{|P|^\tau} \left\{ \sum_{j=\max(|P|-0)}^\infty 2^{j\tau + n/2}\sum_{q=1}^{2^{n-1}} \left[\sum_{k \in I_{P,j}} |\langle X, \psi_{i,j,k} \rangle| \right]^p \right\}^{\frac{q}{p}}
$$

$$
= \frac{1}{|P|^\tau} \left\{ \sum_{j=0}^\infty 2^{j\tau + n/2}\sum_{q=1}^{2^{n-1}} \left[\sum_{k \in I_{P,j} \cap \Omega_j} |\langle X, \psi_{i,j,k} \rangle| \right]^p \right\}^{\frac{q}{p}}
$$

\[\vdots \]
\[\alpha \left\{ \sum_{j=0}^{\infty} 2^{j(m-1)/p} 2^{j(n-1)/p} 2^{j(nq/p - 1)/2} \right\}^{\frac{1}{q}} \leq \left\{ \sum_{j=0}^{\infty} 2^{j(n-1)/p} \right\}^{\frac{1}{q}} < \infty. \]

Case 2) Assume now that \(P \in Q \) with \(|P| < 1 \). We may write \(P := Q_{m, \ell} \) with \(m \in \mathbb{N} \) and \(\ell \in \mathbb{Z}^n \).

Within cubes of this size, we have
\[|\Omega_j \cap I_{P,j}| \leq |\Omega_j \cap I_{Q_{m,0},j}| \leq 2^{j-m(n-1)}, \quad \forall j \in \{m, m+1, \ldots \} \]

From this and (2.4) and (2.5), for those cubes \(P \) we deduce that
\[
\frac{1}{|P|^\tau} \left\{ \sum_{j=\max(I_{P,0})}^{\infty} 2^{j(m-1)/p} \sum_{i=1}^{2^{n-1}} \left[\sum_{k \in I_{P,j} \cap I_{Q_{m,0},j}} 2^{j(nq/p - 1)/2} \right]^{\frac{1}{q}} \right\} \]
\[= 2^{m\tau} \left\{ \sum_{j=m}^{\infty} 2^{j(m-1)/p} \sum_{i=1}^{2^{n-1}} \left[\sum_{k \in I_{P,j} \cap I_{Q_{m,0},j}} 2^{j(nq/p - 1)/2} \right]^{\frac{1}{q}} \right\} \]
\[\leq 2^{m\tau} \left\{ \sum_{j=m}^{\infty} 2^{j(m-1)/p} 2^{j(nq/p - 1)/2} \right\}^{\frac{1}{q}} \]
\[\leq 2^{m\tau} 2^{-m(n-1)/p} \left\{ \sum_{j=m}^{\infty} 2^{j(m-1)/p} \right\}^{\frac{1}{q}} \]

If either \(s = 1/p \) and \(q = \infty \) or \(s < 1/p \) and \(q \) arbitrary, we conclude that
\[
\left(\sum_{j=\max(I_{P,0})}^{\infty} 2^{j(m-1)/p} \sum_{i=1}^{2^{n-1}} \left[\sum_{k \in I_{P,j} \cap I_{Q_{m,0},j}} 2^{j(nq/p - 1)/2} \right]^{\frac{1}{q}} \right) \leq 2^{m(s + \tau - n/p)} \]

which is uniformly bounded in \(m \) for \(s + n(\tau - 1/p) \leq 0 \). Both estimates together, namely, (4.4) and (4.5), prove the sufficiency in cases (i) and (ii).

Step 3) Necessity in case \(\tau \in [0, 1/p) \). It seems to be difficult to apply the wavelet decomposition because we do not know how many scalar products satisfy the inequality
\[|\langle X, \psi_{i,j,k} \rangle| \geq c 2^{-j/2} \]

with some positive constant \(c \) independent of \(j \) and \(k \). For that reason we switch to differences (see Proposition 3.7). Since in case \(p = \infty \) the claim is already known (see (2.3)), we may assume \(p < \infty \). In addition we mention that the necessity of \(s + n(\tau - 1/p) \leq 0 \) follows from Proposition 3.3(i). It remains to deal with the relation between \(s \) and \(1/p \). By the embedding in Remark 3.2(iii), we only need to show that \(X \) is not in \(B^{1/p, \tau}_{p,q}(\mathbb{R}^n) \) with any given \(\tau \in [0, 1/p) \) and \(q \in (0, \infty) \).

Substep 3.1) First we assume that \(p > (n - 1)/n \), that is, \(\sigma_p < 1/p \). In this situation we can employ Proposition 3.7. By using the abbreviations from there and by choosing \(P = Q_{0,0} \), we find
that
\[
\sup_{t/2 \leq \|\theta\| < 1} \left\{ \int_{Q_{t,0}} |\Delta^M_{\theta} X(x)|^p \, dx \right\}^{\frac{1}{p}} \geq \sup_{t/2 \leq \|\theta\| < 1} \left\{ \int_{Q_{t,0}} |\Delta^M_{\theta} X(x)|^p \, dx \right\}^{\frac{1}{p}} \geq (t/2)^{\frac{1}{p}}
\]
for any \(t \in (0, 1) \). This immediately implies that \(\|X\|_{B^{1/p,\tau}(\mathbb{R}^n)} \) is finite for any \(q \in (0, \infty) \).

Substep 3.2 Now we consider the case \(p \leq (n - 1)/n \), that is, \(\sigma_p \geq 1/p \). In addition, we may assume \(\tau \in (0, 1/p) \), due to the known result when \(\tau = 0 \) (see (2.3)). We prove \(X \notin B^{1/p,\tau}(\mathbb{R}^n) \) in this case by contradiction.

Assume that \(X \in B^{1/p,\tau}(\mathbb{R}^n) \) with some \(p \leq (n - 1)/n \) and \(q \in (0, \infty) \). We argue by employing the \(\pm \) interpolation method of Peetre–Gagliardo, in particular we shall use
\[
\left(B^{1/p,\tau}(\mathbb{R}^n), B^{1/p_1,\tau_1}(\mathbb{R}^n), \theta \right) = B^{1/p_0,\tau_0}(\mathbb{R}^n),
\]
with \(\theta \in (0, 1) \), \(\tau_0 = (1 - \theta) \tau + \theta \tau_1 \),
\[
\frac{1}{p_0} = \frac{1 - \theta}{p} + \frac{\theta}{p_1}, \quad \frac{1}{q_0} = \frac{1 - \theta}{q} + \frac{\theta}{q_1} \quad \text{and} \quad \frac{\tau}{p_1} = \frac{\tau_1}{p};
\]
see Theorem 3.10. We choose \(p_1 > (n - 1)/n \) and define
\[
\tau_1 := \frac{\tau p}{p_1}.
\]
Then, by Step 2), we know that \(X \) belongs to \(B^{1/p_1,\tau_1}(\mathbb{R}^n) \), which, together with the assumption \(X \in B^{1/p,\tau}(\mathbb{R}^n) \) and the above interpolation formula, implies that \(X \in B^{1/p_0,\tau_0}(\mathbb{R}^n) \) for some \(q_0 \in (0, \infty) \). Taking \(p_1 \) as large and \(\theta \) as close to 0 as we want, we arrive at a situation where also \(p_0 > (n - 1)/n \). But because of \(q_0 < \infty \) this is in contradiction to Substep 3.1).

Combining Substeps 3.1) and 3.2), we then know that \(X \notin B^{1/p,\tau}(\mathbb{R}^n) \) whenever \(q \in (0, \infty) \).

This finishes the proof of Theorem 2.1 restricted to \(X \).

Step 4 By the translation invariance of the Besov type spaces we have \(X \in B^{s,T}_{p,q}(\mathbb{R}^n) \) if and only if \(X_{0,m} \in B^{s,T}_{p,q}(\mathbb{R}^n) \). Now we turn to the functions \(h_{i,j,m} \). The if-part follows completely analogous to Step 1) - Step 3) by concentrating on \(h_{i,0,0} \). Next we deal with the mapping \(f \mapsto f(2^i \cdot) \).

Essentially as a consequence of the flexibility in choosing the system \(\{ \varrho_j \}_{j \in \mathbb{N}_0} \) in the definition of the spaces \(B^{s,T}_{p,q}(\mathbb{R}^n) \) we conclude that this mapping is bounded on \(B^{s,T}_{p,q}(\mathbb{R}^n) \) for all admissible parameters. By taking into account the translation invariance of the Besov type spaces this yields that the functions \(h_{i,j,m} \) belong to \(B^{s,T}_{p,q}(\mathbb{R}^n) \) whenever \(X \) is in \(B^{s,T}_{p,q}(\mathbb{R}^n) \).

Concerning the only if-part we argue as follows. By the translation and the rotation invariance of \(B^{s,T}_{p,q}(\mathbb{R}^n) \) it will be sufficient to deal with \(h_{1,0,0} \). The support of this function is given by \([0, 2^{-j}]^n \). There exists at least one dyadic subcube \(Q_{j+1,k} \) such that \(h_{1,0,0} = 1 \) on this cube. Without loss of generality we may assume \(Q_{j+1,k} = Q_{j+1,0} \). Let \(\varrho \) be a compactly supported smooth function such that \(\text{supp} \varrho \subset Q_{j+1,0} \cup \{ x : x_1, \ldots, x_n \leq 0 \} \) and \(\varrho \equiv 1 \) on \([2^{-j-3}, 2^{-j-2}] \times \ldots \times [2^{-j-3}, 2^{-j-3}]^{n-1} \). Those smooth functions \(\varrho \) are pointwise multipliers for \(B^{s,T}_{p,q}(\mathbb{R}^n) \) (see [75, 6.1.1]). Hence, if we assume \(h_{1,0,0} \in B^{s,T}_{p,q}(\mathbb{R}^n) \) then \(\varrho \cdot h_{1,0,0} \in B^{s,T}_{p,q}(\mathbb{R}^n) \) follows. But locally, more exactly on \([2^{-j-3}, 2^{-j-2}] \times \ldots \times [2^{-j-3}, 2^{-j-3}]^{n-1} \), the product \(\varrho \cdot h_{1,0,0} \) behaves like a characteristic function. Following the arguments in Step 1) - Step 3) one can show that this can only be true if \(X \) itself belongs to \(B^{s,T}_{p,q}(\mathbb{R}^n) \). This finishes the proof of Theorem 2.1 \(\square \)
5 Proofs of Theorems 2.3, 2.5 and 2.8 as well as Corollary 2.7

This section is devoted to the proofs of Theorems 2.3, 2.5 and 2.8. To be precise, in Section 5.1, we give the proof of the sufficient conditions for the existence of \(\langle f, X \rangle \), while the proof of the necessary conditions for the existence of \(\langle f, X \rangle \) is presented in Section 5.2. Section 5.3 is devoted to the proofs of Theorems 2.3 and 2.5. Finally the proofs of Corollary 2.7 and Theorem 2.8 are presented, respectively, in Sections 5.4 and 5.5.

To prove these theorems, we shall first discuss a reasonable way to define \(\langle f, X \rangle \) for any \(f \in B^{s,t}_{p,q}(\mathbb{R}^n) \). Fix \(s, p, q \) and \(\tau \), and let the wavelet system

\[
\{ \phi_{0,k}, \psi_{i,j,k} : k \in \mathbb{Z}^n, j \in \mathbb{N}_0, i \in \{1, \ldots, 2^n - 1\} \}
\]

be admissible for \(B^{s,t}_{p,q}(\mathbb{R}^n) \) in the sense of Proposition 3.5. Then the wavelet decomposition of \(f \) is given by

\[
f = \sum_{k \in \mathbb{Z}^n} \langle f, \phi_{0,k} \rangle \phi_{0,k} + \sum_{j=1}^{2^n-1} \sum_{k \in \mathbb{Z}^n} \langle f, \psi_{i,j,k} \rangle \psi_{i,j,k} = \lim_{N \to \infty} S_N f
\]

with convergence in \(S'(\mathbb{R}^n) \), where

\[
S_N f := \sum_{k \in \mathbb{Z}^n} \langle f, \phi_{0,k} \rangle \phi_{0,k} + \sum_{j=1}^{2^n-1} \sum_{k \in \mathbb{Z}^n} \langle f, \psi_{i,j,k} \rangle \psi_{i,j,k}.
\]

Observe that the above both summations \(\sum_{k \in \mathbb{Z}^n} \) are locally finite and hence \(S_N f \in C^{N_1}(\mathbb{R}^n) \) (due to (3.3) and (3.4)). Then we define

\begin{equation}
\langle f, X \rangle := \lim_{N \to \infty} \langle S_N f, X \rangle = \lim_{N \to \infty} \int_{[0,1]^n} S_N f(x) \, dx
\end{equation}

whenever this limit exists.

5.1 Sufficient conditions for the existence of \(\langle f, X \rangle \)

Now we turn to the sufficient condition for this existence which at the same time guarantees the independence of \(\langle f, X \rangle \) from the chosen wavelet system.

Theorem 5.1. Let \(q \in (0, \infty] \) and \(\tau \in [0, \infty) \).

(i) Let \(p \in [1, \infty] \). If \(s = \frac{1}{p} - 1 \), then \(f \mapsto \langle f, X \rangle \) extends to a continuous linear functional on \(B^{s,t}_{p,1}(\mathbb{R}^n) \) which coincides on \(B^{s,t}_{p,1}(\mathbb{R}^n) \cap L^r(\mathbb{R}^n) \), \(r \in [1, \infty] \), with \(\int_{\mathbb{R}^n} f(x)X(x) \, dx \).

(ii) Let \(p \in (0,1) \) and \(\tau \in [0, \frac{1}{np}] \). If \(s = (1 - p \tau) m(\frac{1}{p} - 1) \) and \(q \in (0, p] \), then \(f \mapsto \langle f, X \rangle \) extends to a continuous linear functional on \(B^{s,t}_{p,q}(\mathbb{R}^n) \) which coincides on \(B^{s,t}_{p,q}(\mathbb{R}^n) \cap L^r(\mathbb{R}^n) \), \(r \in [1, \infty] \), with \(\int_{\mathbb{R}^n} f(x)X(x) \, dx \).
(iii) Let $p \in (0, 1)$ and $\tau = 0$. If $s = n\frac{1}{p} - 1$ and $q \in (0, 1]$, then $f \mapsto \langle f, X \rangle$ extends to a continuous linear functional on $B^{s, 0}_{p, q}(\mathbb{R}^n)$ which coincides on $B^{s, 0}_{p, q}(\mathbb{R}^n) \cap L^r(\mathbb{R}^n)$, $r \in [1, \infty]$, with $\int_{\mathbb{R}^n} f(x)X(x)\,dx$.

Proof. **Step 1** Proof of (i). Let $p \in [1, \infty]$. With $P := [0, 1]^n$, we find

$$
\langle S_N f, X \rangle = \sum_{k \in J_P} \langle f, \phi_{0,k} \rangle \langle \phi_{0,k}, X \rangle + \sum_{i=1}^{2^n-1} \sum_{j=0}^{N} \sum_{k \in I_{P,j}} \langle f, \psi_{i,j,k} \rangle \langle \psi_{i,j,k}, X \rangle,
$$

where J_P and $I_{P,j}$ are, respectively, as in (4.1) and (4.2) with Q replaced by P. Now we look for sufficient conditions guaranteeing the existence of its limit as $N \to \infty$. Clearly, the sum $\sum_{k \in J_P} \langle f, \phi_{0,k} \rangle \langle \phi_{0,k}, X \rangle$ is a well-defined complex number. Furthermore, because of the moment condition (3.6), we conclude that

$$
\langle \psi_{i,j,k}, X \rangle = 2^{-jn/2} \int_{[0,2]^n} \psi_i(x-k)\,dx = 0
$$

possibly except those cases where

$$
(5.2) \quad \left| \text{supp} \psi_i(\cdot - k) \cap [0, 2^j]^n \right| \cdot \left| \text{supp} \psi_j(\cdot - k) \cap (\mathbb{R}^n \setminus [0, 2^j]^n) \right| > 0.
$$

Let us denote the set of all such k satisfying (5.2) by $K_{i,j}$. Because of the compact support of our generators of the wavelet system, there exists a finite positive constant c_1, independent of $j \in \mathbb{N}_0$, such that the cardinality of $K_{i,j}$ is bounded by $c_1 2^{(n-1)}$. We fix a positive constant c_2 such that

$$
c_2 \geq \max_{k \in \mathbb{Z}^n} \left| \int_{[0,2]^n} \psi_i(x-k)\,dx \right|, \quad \forall j \in \mathbb{N}_0.
$$

Using these observations, we obtain

$$
(5.3) \quad \sum_{i=1}^{2^n-1} \sum_{j=0}^{N} \sum_{k \in I_{P,j}} \langle f, \psi_{i,j,k} \rangle \langle \psi_{i,j,k}, X \rangle \leq c_2 \sum_{i=1}^{2^n-1} \sum_{j=0}^{N} 2^{-jn/2} \sum_{k \in K_{i,j}} |\langle f, \psi_{i,j,k} \rangle|.
$$

From the Hölder inequality for $p > 1$, it follows that

$$
(5.4) \quad \left| \sum_{i=1}^{2^n-1} \sum_{j=0}^{N} \sum_{k \in I_{P,j}} \langle f, \psi_{i,j,k} \rangle \langle \psi_{i,j,k}, X \rangle \right| \\
\leq c_1 1/p' c_2 \sum_{i=1}^{2^n-1} \sum_{j=0}^{N} 2^{-jn/2} 2^{j(n-1)/p} \left(\sum_{k \in K_{i,j}} |\langle f, \psi_{i,j,k} \rangle|^p \right)^{1/p}.
$$

Observe that, if $k \in K_{i,j}$, then, because of the compact supports of the wavelets, there exists a natural number D, independent of i and j, such that

$$
Q_{j,k} \subset \bigcup_{m = 1}^{D} Q_{0,m}.
$$
This implies that
\[
\sum_{i=1}^{2^n} \sum_{j=0}^{N} 2^{-jn/2} 2^{j(n-1)/p'} \left(\sum_{k \in K_{i,j}} |\langle f, \psi_{i,j,k} \rangle|^p \right)^{1/p} \leq c_3 \max_{|\omega| \leq D} \sum_{i=1}^{2^n} \sum_{j=0}^{N} 2^{-jn/2} 2^{j(n-1)/p'} \left(\sum_{k: Q_{i,j} \cap Q_{0,m}} |\langle f, \psi_{i,j,k} \rangle|^p \right)^{1/p} \leq c_4 \|f\|_{B^{1,1}_{p,1}(\mathbb{R}^n)};
\]
see Proposition 3.5. Thus, if \(p \in [1, \infty] \), the limit \(\lim_{N \to \infty} \langle S_N f, X \rangle \) exists for any \(f \in B^{1,1}_{p,1}(\mathbb{R}^n) \).

Step 2 Proof of (ii). Let \(p \in (0, 1) \). Obviously \(f \mapsto \langle f, X \rangle \) makes sense for any \(f \in L^1(\mathbb{R}^n) \). Thus, to show \(\langle f, X \rangle \) can be extended to \(B^{s,t}_{p,q}(\mathbb{R}^n) \), it suffices to show the embedding \(B^{s,t}_{p,q}(\mathbb{R}^n) \subset L^1(\mathbb{R}^n) \). It is also clear that we may assume \(\text{supp} \ f \subset [-1, 2]^n \), because smooth functions with compact supports are pointwise multipliers on \(B^{s,t}_{p,q}(\mathbb{R}^n) \) (see [75, Theorem 6.1]).

Now we prove that we will obtain a sufficient condition by studying the embedding \(B^{s,t}_{p,q}(\mathbb{R}^n) \hookrightarrow L^1(\mathbb{R}^n) \). In [19, Theorem 3.8(i)], Haroske et al. showed that \(B^{s,t}_{p,q}(\mathbb{R}^n) \subset L^1_{\text{loc}}(\mathbb{R}^n) \) when \(p \in (0, 1), s = (1 - p \tau) n(\frac{1}{p} - 1) \) and \(q \in (0, p] \). Looking into the details of their proof, we find that one can sharpen their result as follows: there exists a positive constant \(c \) such that
\[
\int_{[-1, 2]^n} |f(x)| \, dx \leq c \|f\|_{B^{s,t}_{p,q}(\mathbb{R}^n)}
\]
for any function \(f \in B^{s,t}_{p,q}(\mathbb{R}^n) \) with support contained in \([-1, 2]^n \). Thus, \(\langle f, X \rangle \) makes sense for any \(f \in B^{s,t}_{p,q}(\mathbb{R}^n) \) when \(p \in (0, 1), s = (1 - p \tau) n(\frac{1}{p} - 1) \) and \(q \in (0, p] \).

Step 3 Proof of (iii). We argue as in Step 2) but using the continuous embeddings
\[
B^{s-n,0}_{p,1}(\mathbb{R}^n) = B^{s-n}_{p,1}(\mathbb{R}^n) \hookrightarrow B^{0,1}_{p,1}(\mathbb{R}^n) = B^{0}_{1,1}(\mathbb{R}^n) \hookrightarrow L^1(\mathbb{R}^n), \quad \forall \, p \in (0, 1);
\]
see, for example, [51]. The proof of Theorem 5.1 is then complete. \(\square \)

We now consider another variant of extending \(f \mapsto \langle f, X \rangle \) to \(B^{s,t}_{p,q}(\mathbb{R}^n) \).

Theorem 5.2. Let \(s \in \mathbb{R}, p, q \in (0, \infty) \) and \(r \in [0, \infty) \). If \(s > n/p - n \tau - 1 \), then \(f \mapsto \langle f, X \rangle \) extends to a continuous linear functional on \(B^{s,t}_{p,q}(\mathbb{R}^n) \) which coincides on \(B^{s,t}_{p,q}(\mathbb{R}^n) \cap L^r(\mathbb{R}^n), r \in [1, \infty] \), with \(\int_{\mathbb{R}^n} f(x)X(x) \, dx \).

Proof. We only need to modify the proof of Theorem 5.1 after (5.3). Using Proposition 3.5, we know that
\[
|\langle f, \psi_{i,j,k} \rangle| \leq 2^{-j(n+\tau+\frac{2}{p} - 1)} \|f\|_{B^{s,t}_{p,q}(\mathbb{R}^n)}
\]
holds true for any \(i \in \{1, \ldots, 2^n\}, j \in \mathbb{N}_0, k \in \mathbb{Z}^n \) and \(f \in B^{s,t}_{p,q}(\mathbb{R}^n) \). Using (5.3), we conclude, with \(s > n/p - n \tau - 1 \), that
\[
\left| \sum_{i=1}^{2^n-1} \sum_{j=0}^{N} \sum_{k \in I_{i,j}} \langle f, \psi_{i,j,k} \rangle \langle \psi_{i,j,k}, X \rangle \right| \leq \left| \sum_{i=1}^{2^n-1} \sum_{j=0}^{N} 2^{-jn/2} 2^{j(n-1)/p} \|f\|_{B^{s,t}_{p,q}(\mathbb{R}^n)} \right| \leq \|f\|_{B^{s,t}_{p,q}(\mathbb{R}^n)},
\]
which completes the proof of Theorem 5.2. \(\square \)
5.2 Necessary conditions for the existence of $\langle f, X \rangle$

Next we turn to negative results concerning the existence of the limit in (5.1). Therefore we will construct several families of test functions.

To prove these negative statements we need several specific properties of the generators of our wavelet system. First, we require to work with a wavelet system which is admissible in the sense of Proposition 3.5 for $B_{p,q}^{s,\tau}(\mathbb{R}^n)$ with p, q, τ fixed and

$$\min \left(\frac{n}{p} - n\tau - 1, \max \left(n \left(\frac{1}{p} - 1 \right), \frac{1}{p} - 1 \right) \right) - 1 \leq s \leq \min \left(\frac{1}{p}, n \left(\frac{1}{p} - \tau \right) \right) + 1.$$

In addition we require that it will be of Daubechies type (see [65, 4.1, 4.2]). Let $\tilde{\phi}$ be a scaling function and $\tilde{\psi}$ an associated wavelet (both on \mathbb{R}). Here we have the possibility to work also with a shift of these two functions without changing the wavelet system. We claim the following: we may choose a generator $\tilde{\psi} \in C^N_{1}(\mathbb{R})$ such that:

(a) There exist integers $K < 0$ and $L > 0$ such that

$$\text{supp } \tilde{\psi} \subset [K, L].$$

(b) There exists a natural number j_0 such that $2^{-j_0}L \leq 1$ and

$$\int_0^1 \tilde{\psi}(2^{j_0}t) \, dt \neq 0.$$ \hfill (5.5)

Part (a) can be found in [65, 4.1]. To show (b), we argue by contradiction, namely, we assume that, for any generator $\tilde{\psi}(- \cdot - m)$, $m \in \mathbb{Z}$, of this wavelet system and for any $j \in \mathbb{N}$ satisfying $L \leq 2^j$, we have

$$\int_0^1 \tilde{\psi}(2^j t - m) \, dt = 0.$$

Then, in the one-dimensional case, it follows

$$X = \sum_{k \in \mathbb{Z}} \langle X, \tilde{\phi}_{0,k} \rangle \tilde{\phi}_{0,k} + \sum_{j=0}^{j_0-1} \sum_{k \in \mathbb{Z}} \langle X, \tilde{\psi}_{j,k} \rangle \tilde{\psi}_{j,k},$$

where j_0 is as in (5.5), $\tilde{\phi}_{0,k}(x) := \tilde{\phi}(x - k)$ and $\tilde{\psi}_{j,k}(x) := 2^{j/2} \tilde{\psi}(2^j x - k)$ for any $x \in \mathbb{R}$, $j \in \mathbb{N}_0$ and $k \in \mathbb{Z}$. Since the summations on the right-hand side of the above formula are all finite, we conclude by Proposition 3.5 that X belongs to $B_{p,q}^{s,\tau}(\mathbb{R})$ for any $s \leq \frac{1}{p} - \tau + 1$. But this is in contradiction with Theorem 2.1. Thus, (5.5) holds for some j_0. Without loss of generality, we may assume that the integral in (5.5) is positive.

In addition we choose the scaling function $\tilde{\phi} \in C^N_{1}(\mathbb{R})$ (again the degree of freedom we have is the shift) such that $\text{supp } \tilde{\phi} \subset [0, \tilde{L}]$ with $\tilde{L} := L - K$ and

$$\int_0^{\tilde{L}} \tilde{\phi}(t) \, dt > 0.$$
(see [65, 4.1, 4.2]). Let

\[(5.6)\quad \psi_1(x) := \overline{\psi(x_1)} \phi(x_2) \cdots \phi(x_n), \quad \forall \, x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n.\]

Let \(j_0\) be defined as in (b) and let \(\{\lambda_j\}_{j = j_0}^\infty\) be a given sequence of real numbers. We define our first family of test functions as

\[(5.7)\quad f_N(x) := \sum_{\ell = j_0}^{N} \lambda_\ell \sum_{k = (0,0,\ldots, j_0)}^\infty \psi_{1,\ell,k}(x), \quad \forall \, x \in \mathbb{R}^n, \quad \forall \, N \in \mathbb{N} \cap [j_0, \infty),\]

where \(\psi_{1,\ell,k}\) is as in (3.5) with \(i = 1\) and \(j = \ell\). Clearly, \(f_N\) is as smooth as the elements of the wavelet system and has compact support. More exactly, the support is concentrated near a part of the boundary of \([0, 1]^n\). For us important are the following estimates of \(\|f_N\|_{B^s_{p,q}(\mathbb{R}^n)}\).

Lemma 5.3. Let \(s \in \mathbb{R}, \, p, q \in (0, \infty) \) and \(\tau \in [0, \infty)\). Then, for any \(N \in \mathbb{N} \cap [j_0, \infty),\)

\[(5.8)\quad \|f_N\|_{B^s_{p,q}(\mathbb{R}^n)} \approx \left\{ \begin{array}{ll}
2^{j(s + \frac{1}{p} - \frac{1}{q})} \sup\limits_{J \in [j_0, \ldots, N]} \left\{ \sum_{j = J}^N 2^j 2^{j(s + \frac{1}{p} - \frac{1}{q})} |\lambda_j|^q \right\}^{1/q} & \text{if } \tau \in \left[0, \frac{1}{n} \frac{1}{p}, \infty \right], \\
\|f_N\|_{B^s_{p,q}(\mathbb{R}^n)} \approx \left\{ \begin{array}{ll}
\sup\limits_{J \in [j_0, \ldots, N]} \left\{ \sum_{j = J}^N 2^j 2^{j(s + \frac{1}{p} - \frac{1}{q})} |\lambda_j|^q \right\}^{1/q} & \text{if } \tau \in \left[\frac{1}{n} \frac{1}{p}, \infty \right).
\end{array} \right.
\]

with the equivalent positive constants independent of \(N\) and \(\{\lambda_j\}_{j = j_0}^\infty\).

Proof. To estimate \(\|f\|_{B^s_{p,q}(\mathbb{R}^n)}\), we proceed by using Proposition 3.5. Here the following observations will be applied:

- All \(Q_{j,k}\), associated to a non-zero coefficient \(\lambda_j\), are subsets of \([0, 1]^n\). Thus, it will be enough to consider \(P \subset Q_{0,0} = [0, 1]^n\).

- If \(P := Q_{j,k} \in [0, 1]^n\), then it is enough to consider those \(k\) such that \(P \cap \partial[0, 1]^n \neq \emptyset\), where \(\partial[0, 1]^n\) denotes the boundary of \([0, 1]^n\).

- For \(J \in \mathbb{N}_0\) fixed, the cube \(Q_{J,0}\) leads to the largest contribution, more exactly,

\[
\max_{m \in \mathbb{Z}^n} \sum_{Q_{j,m} \subset Q_{j,k}} |\langle f_N, \psi_{i,j,m} \rangle|^p \leq \sum_{m : Q_{j,m} \subset Q_{j,k}} |\langle f_N, \psi_{i,j,m} \rangle|^p.
\]

- If \(J > N\), then there exists no cube \(Q_{j,m}\), associated to a non-zero coefficient and contained in \(P := Q_{j,k}\).

Then, by the orthogonality of the wavelet system, we have

\[
\|f_N\|_{B^s_{p,q}(\mathbb{R}^n)} \approx \sup_{P \subset Q} \frac{1}{|P|^{\tau}} \left\{ \sum_{j = \max \{j_P, j_0\}}^{N} 2^j 2^{j(s + \frac{1}{p} - \frac{1}{q})} \left(\sum_{m : Q_{j,m} \subset P} |\langle f_N, \psi_{i,j,m} \rangle|^p \right)^{q/p} \right\}^{1/q}.
\]
Lemma 5.4.

with the equivalent positive constants independent of N and τ

This finishes the proof of Lemma 5.3.

Now we have to distinguish two cases: $0 \leq \tau \leq \frac{2n-1}{n-1}$ and $\frac{2n-1}{n-1} \leq \tau < \tau$. In the first case we obtain

$$
\|f_N\|_{B_{p,\infty}^s(\mathbb{R}^n)} \asymp \left\{ \sum_{j=j_0}^{N} 2^{j(s+\frac{n-1}{p})} |\lambda_j|^q \right\}^{1/q},
$$

whereas in the second case we conclude that

$$
\|f_N\|_{B_{p,\infty}^s(\mathbb{R}^n)} \asymp \sup_{J \in [j_0, \ldots, N]} 2^{j(n-\frac{2n-1}{p})} \left\{ \sum_{j=j_0}^{N} 2^{j(s+\frac{n-1}{p})} |\lambda_j|^q \right\}^{1/q}.
$$

This finishes the proof of Lemma 5.3. \hfill \Box

Now we turn to the calculation of $\langle f_N, X \rangle$.

Lemma 5.4. For any $N \in \mathbb{N} \cap [j_0, \infty)$, it holds

$$
\langle f_N, X \rangle \asymp \sum_{j=j_0}^N \lambda_j 2^{j(s-1)}
$$

with the equivalent positive constants independent of N and $\{\lambda_j\}_{j=j_0}^{\infty}$, where j_0 is as in (5.5).
Proof. By the definition of \(f_N \) and the choice of \(j_0 \), we conclude that, for any \(N \in \mathbb{N} \cap \{ j_0, \infty \} \),

\[
\langle f_N, X \rangle = \int_{\mathbb{R}^n} \left[\sum_{j=j_0}^N \sum_{k=0}^{n-1} \sum_{j=1}^{\lfloor n/2 \rfloor} \psi_{1,j,k}(x) \right] X(x) \, dx
\]

\[
= \sum_{j=j_0}^N \lambda_j 2^{jn/2} \int_0^1 \psi_1(2^j x_1) \, dx_1 \sum_{k=0}^{n-1} \prod_{i=2}^n \int_0^1 \phi(2^j x_i - k_i) \, dx_i
\]

\[
= \sum_{j=j_0}^N \lambda_j 2^{jn/2} \int_0^{2^{-j/L}} \psi_1(2^j t) \, dt \sum_{k=0}^{n-1} \prod_{i=2}^n \int_0^{2^{-k_i}} \phi(x_i) \, dx_i.
\]

Employing our assumption concerning the support of \(\phi \) and the definition of \(j_0 \), we obtain, for any \(N \in \mathbb{N} \cap \{ j_0, \infty \} \),

\[
\langle f_N, X \rangle = \sum_{j=j_0}^N \lambda_j 2^{jn/2} \left[\int_0^{2^{-j/L}} \psi_1(2^j t) \, dt \sum_{k=0}^{n-1} \prod_{i=2}^n \int_0^{2^{-k_i}} \phi(x_i) \, dx_i \right] \leq 2^{j_0} \sum_{j=j_0}^N \lambda_j 2^{(j_0-1)/2} \left[\int_0^{2^{-j_0/L}} \psi_1(2^{j_0} t) \, dt \sum_{k=0}^{n-1} \prod_{i=2}^n \int_0^{2^{-k_i}} \phi(x_i) \, dx_i \right] \leq \sum_{j=j_0}^N \lambda_j 2^{(j_0-1)/2}.
\]

This proves the desired result of Lemma 5.4. \(\square \)

To deal with the case \(p \in (0, 1) \), we need a second sequence of test functions. Therefore we need a preparation. Let \(\alpha \in (0, n) \) and \(j \in \mathbb{N} \). We would like to distribute \(\lfloor 2^j \rfloor \) dyadic cubes \(Q_{j,m} \) in \(Q_{0,0} = [0, 1]^n \) in a rather specific way (not uniformly). We claim that there exists a set \(A_j \subset \mathbb{N} \) of cardinality \(\lfloor 2^j \rfloor \) such that

\[
Q_{j,m} \subset [0, 1]^n \quad \text{for any} \quad m \in A_j,
\]

\[
\sum_{K=0}^{\lfloor 2^j \rfloor} \sum_{i=1}^n \sum_{m \in A_j; Q_{j,m} \subset Q_{j,K}} 1 \leq 2 \left(\sum_{m \in A_j; Q_{j,m} \subset Q_{j,0}} 1 \right), \quad \forall J \in \{0, \ldots, j\},
\]

and there exists a positive constant \(\overline{C} \), independent of \(j \in \mathbb{N} \), such that

\[
\lfloor 2^{j-j_0} \rfloor \leq \sum_{m \in A_j; Q_{j,m} \subset Q_{j,0}} 1 \leq \overline{C} 2^{j-j_0}, \quad \forall J \in \{0, \ldots, j\}.
\]

The construction of such \(A_j \) is rather easy. Clearly

\[
[0, 1]^n = Q_{j,0} \bigcup \bigcup_{J=1}^j (Q_{J-1,0} \setminus Q_{j,0}).
\]
We will define A_j via first defining the subset of A_j in each $Q_{j-1,0} \setminus Q_{j,0}$ with $J \in \{1, \ldots, j\}$. First, we put 0 into the set A_j, which means that $Q_{j,0}$ is chosen. Inside $Q_{j-1,0} \setminus Q_{j,0}$, there exist $2^n - 1$ dyadic cubes in Q_j and we need to select $\lfloor 2^\alpha \rfloor$. Which one we take is unimportant. We proceed by induction with induction hypothesis

\begin{equation}
|\{m \in A_j : Q_{j,m} \subset Q_{j,0}\}| \leq \tilde{C} 2^{(j-\alpha)\alpha},
\end{equation}

where $\tilde{C} \geq 1$ is a constant independent of j and J and will be determined later. It will be sufficient to look for the step from J to $J - 1$. Of course there exist $2^n - 1$ cubes $Q_{j,K}$ such that

\[Q_{j-1,0} = Q_{j,0} \cup \bigcup_{K} Q_{j,K} \]

Altogether we have $(2^n - 1) 2^{(j-\alpha)n}$ cubes $Q_{j,m}$ in $Q_{j-1,0} \setminus Q_{j,0}$. We decide for an almost uniform distribution, namely, in each $Q_{j,K} \subset (Q_{j-1,0} \setminus Q_{j,0})$, we select

\[\left\lfloor \frac{2^{(j+1)\alpha} - 2^{(j-\alpha)\alpha}}{2^n - 1} \right\rfloor + 1 \]

cubes $Q_{j,m}$. This guarantees the lower bound for $|\{m \in A_j : Q_{j,m} \subset Q_{j-1,0}\}|$ as in (5.12) with J replaced by $J - 1$. Now we deal with the corresponding upper bound. Notice that

\[
\tilde{C} 2^{(j-\alpha)\alpha} + (2^n - 1) \left\lfloor \frac{2^{(j+1)\alpha} - 2^{(j-\alpha)\alpha}}{2^n - 1} \right\rfloor + 1
\]

\[
\leq \tilde{C} 2^{(j-\alpha)\alpha} + (2^n - 1) 2^{(j-\alpha)\alpha} + 2^n - 1.
\]

With

\[\tilde{C} \geq \frac{2^n + 2^n - 2}{2^n - 1} \]

we conclude

\[
\tilde{C} 2^{(j-\alpha)\alpha} + (2^n - 1) \left\lfloor \frac{2^{(j+1)\alpha} - 2^{(j-\alpha)\alpha}}{2^n - 1} \right\rfloor + 1 \leq \tilde{C} 2^{(j+1)\alpha}, \quad \forall J \in \{0, \ldots, j - 1\}.
\]

which implies that $|\{m \in A_j : Q_{j,m} \subset Q_{j-1,0}\}|$ satisfies the upper bound in (5.12) with J replaced by $J - 1$.

Since (5.12) is just (5.11), we know that (5.11) is fulfilled by A_j determined as above. On another hand, since

\[\left\lfloor \frac{2^{(j+1)\alpha} - 2^{(j-\alpha)\alpha}}{2^n - 1} \right\rfloor + 1 \leq 2^{(j-\alpha)\alpha} + 1 \leq 2^{(j-\alpha)\alpha}, \quad \forall J \in \{0, \ldots, j\}, \]

one also finds that (5.10) is fulfilled. This proves the previous claim. Let us mention that our construction was inspired by a similar one in [18, proof of Thm. 3.1, Substep 2.4].

Below we need to indicate the dimension n in which our construction took place. So we will use the notation A_j^n instead of A_j.
Now we are in position to introduce our second family of test functions. For fixed \(\alpha \in (0, n-1) \), \(j_1 \geq j_0 \) and a given sequence \(\{ \lambda_j \}_{j=j_1}^{\infty} \) of real numbers, we define

\[
T_j := \left\{ m = (m_1, \ldots, m_n) : (m_1, \ldots, m_n) \in A_j^{n-1}, \max \{m_1, \ldots, m_n\} < 2^j - L \right\}
\]

for any \(j \in \{ j_1, j_1 + 1, \ldots \} \) and

\[
g_N(x) := \sum_{j=j_1}^{N} \lambda_j \sum_{m \in T_j} \psi_{1,j,m}(x), \quad \forall x \in \mathbb{R}^n, \forall N \in \mathbb{N} \cap [j_1, \infty),
\]

which \(A_j^{n-1} \subset \mathbb{N}_0^{n-1} \) is a set constructed as \(A_j = A_j^n \) above but with \(n \) replaced by \(n - 1 \).

As \(f_N \), the function \(g_N \) is as smooth as the generators of the wavelet system and it has compact support. We have the following estimate.

Lemma 5.5. Let \(s \in \mathbb{R} \), \(p, q \in (0, \infty) \) and \(\tau \in (0, \frac{1}{np}) \). If \(\alpha = n \tau \), then, for any \(N \in \mathbb{N} \cap [j_1, \infty) \),

\[
\|g_N\|_{B^{\alpha}_{p,q}(\mathbb{R}^n)} \leq \left(\sum_{j=j_1}^{N} 2^{j(s+\frac{\alpha}{2}+n\tau-\frac{\tau}{p})q |\lambda_j|^q} \right)^{1/q}
\]

with the equivalent positive constants independent of \(N \) and \(\{ \lambda_j \}_{j=j_1}^{\infty} \), where \(j_1 \geq j_0 \) and \(j_0 \) is as in (5.5).

Proof. First, observe that \(\alpha = n \tau < n - 1 \) as required in our previous construction. As in the case of \(f_N \), we conclude that

\[
\|g_N\|_{B^{\alpha}_{p,q}(\mathbb{R}^n)} \leq \sup_{J \in \{1, \ldots, N\}} 2^{J \tau} \left(\sum_{j=j_1}^{N} 2^{j(s+\frac{\alpha}{2}+n\tau-\frac{\tau}{p})q |\lambda_j|^q} \right)^{1/q}
\]

Using the properties of \(A_j^{n-1} \), namely, (5.10) and (5.11) with \(n \) replaced by \(n - 1 \), we find that

\[
S^+ = \sup_{J \in \{0, \ldots, j_1-1\}} 2^{J \tau} \left(\sum_{j=j_1}^{N} 2^{j(s+\frac{\alpha}{2}+n\tau-\frac{\tau}{p})q |\lambda_j|^q} \right)^{1/q}
\]

Similarly,

\[
S^- = \sup_{J \in \{j_1, \ldots, N\}} 2^{J \tau} \left(\sum_{j=j_1}^{N} 2^{j(s+\frac{\alpha}{2}+n\tau-\frac{\tau}{p})q |\lambda_j|^q} \right)^{1/q}
\]

This proves our desired estimate of Lemma 5.5. \(\Box \)
The parameter j_1 does not play a role in Lemma 5.5, but it will be used for the next result of the estimate of $\langle g_N, X \rangle$.

Lemma 5.6. Let $j_1 \geq j_0$ be sufficiently large with j_0 as in (5.5). Then, for any $N \in \mathbb{N} \cap [j_1, \infty)$,

\[
\langle g_N, X \rangle \approx \sum_{j=J_1}^{N} \lambda_j 2^{j(\alpha - \frac{\tau}{q})}
\]

with the equivalent positive constants independent of sufficiently large N and $\lambda_j^{j_1}$.

Proof. Since the cardinality of A_j^{n-1} equals 2^{j_0}, we know the cardinality $|T_j| < 2^{j_0}$ for any $j \in \{j_1, j_1 + 1, \ldots \}$.

On another hand, let j_1 be large enough such that $2^{j_1} > \bar{L}$. For each $j \geq j_1$, let $J_j \in \{1, \ldots, j\}$ be the unique number satisfying $2^{j-J_j} \leq 2^{j} - \bar{L} < 2^{j-J_j+1}$. Then, by the property of A_j^{n-1} (5.11) with n replaced by $n - 1$, we conclude that

\[
|T_j| \geq \left| \left\{ m = (0, m_2, \ldots, m_n) : (m_2, \ldots, m_n) \in A_j^{n-1}, \max\{m_2, \ldots, m_n\} < 2^{j-J_j} \right\} \right|
\]

\[
\geq 2^{(j-J_j)\alpha} \geq 2^{(j-J_j)\alpha} - 1 > 2^{-\alpha} (2^{j} - \bar{L})\alpha - 1.
\]

Altogether we obtain

\[
2^{-\alpha} (2^{j} - \bar{L})\alpha - 1 < |T_j| < 2^{j_0}.
\]

From this and an argument similar to that used in the proof of Lemma 5.4, we find that (5.15) holds if

\[
2^{-\alpha} (2^{j} - \bar{L})\alpha - 1 \approx 2^{j_0},
\]

which is true when $j \in \{j_1, j_1 + 1, \ldots \}$ and j_1 is sufficiently large. This proves Lemma 5.6. \qed

5.3 Proofs of Theorems 2.3 and 2.5

We are now ready to prove Theorems 2.3 and 2.5.

Step 1 Sufficiency. The if-cases in Theorems 2.3 and 2.5 are covered by Theorems 5.1 and 5.2.

Step 2 Necessity. To show that $\langle f, X \rangle$ cannot be extended to a Besov-type space $B^\infty_{p,q}(\mathbb{R}^n)$, it suffices to find a sequence $\{f_N\}_N$ of functions in $B^\infty_{p,q}(\mathbb{R}^n)$ such that $\|\langle f_N, X \rangle\|/\|f_N\|_{B^\infty_{p,q}(\mathbb{R}^n)}$ is unbounded. Below we only concentrate on limiting cases (if there is one), because for the remaining parameter constellations, one can use the elementary embedding mentioned in Remark 3.2.

Substep 2.1 Let $p \in [1, \infty]$, $s = \frac{1}{p} - 1$, $q \in (1, \infty]$ and $\tau \in \left[0, \frac{\alpha - 1}{np}\right]$. We choose a sequence of positive real numbers, $\{\mu_j\}_{j=0}^{\infty}$, such that

\[
\sum_{j=0}^{\infty} \mu_j = \infty \quad \text{and} \quad \left\{ \sum_{j=0}^{\infty} \mu_j^q \right\}^{1/q} < \infty,
\]

where j_0 is as in (5.5). Now let $\lambda_j := 2^{-j(\frac{q}{2} - 1)}\mu_j$ for any $j \in \{j_0, j_0 + 1, \ldots \}$. Then the associated sequence $\{f_N\}_{N=j_0}^{\infty}$, defined in (5.7), is bounded in $B^{\infty-1,\tau}_{p,q}(\mathbb{R}^n)$ (see Lemma 5.3), while
\[
\int_{\mathbb{R}^n} f_N(x)X(x) \, dx \bigg|_{N=j_0}^{\infty}
\] is unbounded (see Lemma 5.4). Thus, in this case, \(\{f_N\}^{\infty}_{N=j_0} \) is the desired sequence.

Substep 2.2 Let \(p \in (0, \infty) \), \(s = \frac{n}{p} - n\tau - 1 \), \(q \in (0, 1) \) and \(\tau \in (\frac{n-1}{np}, \infty) \). Define \(\lambda_j := j2^{-j(\frac{n}{p}-1)} \) for any \(j \in \mathbb{N}_0 \) and let \(\{f_N\}^{\infty}_{N=j_0} \) be as in (5.7). Then Lemma 5.4 tells us that, for any \(N \in \{j_0, j_0+1, \ldots\} \),

\[
|\langle f_N, X \rangle| \geq \sum_{j=j_0}^N j \times \frac{N^2 - j^2}{2}.
\]

Meanwhile, (5.8) gives that, for any \(N \in \{j_0, j_0+1, \ldots\} \),

\[
\|f_N\|_{B_{pq}^{s-1,\tau} (\mathbb{R}^n)} = \sup_{J \in \{j_0, \ldots, N\}} 2^{J(n\tau - \frac{n+1}{p})} \left(\sum_{j=0}^N 2^{(\frac{n+1}{p} - n\tau)q} j^q \right)^{1/q}.
\]

Since \(\frac{n-1}{np} - n\tau < 0 \), we have, for any \(J \in \{j_0, j_0+1, \ldots\} \) and \(N \in \{J, J+1, \ldots\} \),

\[
\sum_{j=J}^N 2^{(\frac{n+1}{p} - n\tau)q} j^q \approx J^q 2^{J^{(\frac{n-1}{np}) - n\tau}q}.
\]

This implies that, for any \(N \in \{j_0, j_0+1, \ldots\} \),

\[
\|f_N\|_{B_{pq}^{s-1,\tau} (\mathbb{R}^n)} = \sup_{J \in \{j_0, \ldots, N\}} 2^{J(n\tau - \frac{n+1}{p})} J 2^{J^{(\frac{n-1}{np}) - n\tau}q} \approx N.
\]

Therefore,

\[
\frac{|\langle f_N, X \rangle|}{\|f_N\|_{B_{pq}^{s-1,\tau} (\mathbb{R}^n)}} \to \infty
\]
as \(N \to \infty \). Thus, in this case, \(\{f_N\}^{\infty}_{N=j_0} \) is the desired sequence.

Substep 2.3 Let \(p \in (0, 1) \), \(q \in (1, \infty) \), \(\tau \in (0, \frac{n-1}{np}) \) and \(s = (1 - \tau)p(n\frac{1}{p} - 1) \). We shall work with the family \(\{g_N\}^{\infty}_{N=j_1} \) defined in (5.13) with \(\alpha = pnr \). Using Lemma 5.5, we obtain, for any \(N \in \{j_1, j_1+1, \ldots\} \),

\[
\|g_N\|_{B_{pq}^{s^*,r} (\mathbb{R}^n)} \approx \left\{ \sum_{j=j_1}^N 2^{j(-\frac{n}{q} + pnrq)} |\lambda_j|^q \right\}^{1/q}.
\]

On another hand, Lemma 5.6 implies that, for any \(N \in \{j_1, j_1+1, \ldots\} \),

\[
\langle g_N, X \rangle \approx \sum_{j=j_1}^N \lambda_j 2^{j(pnr - \frac{n}{q})}.
\]

If \(\{\mu_j\}^{\infty}_{j=j_0} \) is the same as in Substep 2.1) with \(j_0 \) therein replaced by \(j_1 \), and if we choose \(\lambda_j \) such that \(\lambda_j := 2^{-j(pnr - \frac{n}{q})}\mu_j \) for any \(j \in \{j_1, j_1+1, \ldots\} \), one finds that \(|\langle g_N, X \rangle|/\|g_N\|_{B_{pq}^{s^*,r} (\mathbb{R}^n)}^{\infty}_{N=j_1} \) is unbounded. Thus, in this case, \(\{g_N\}^{\infty}_{N=j_1} \) is the desired sequence.
Substep 2.4) Let \(p \in (0, 1), q \in (1, \infty), \tau = \frac{n-1}{np} \) and \(s = \frac{1}{p} - 1 \). Here we can employ the same example as in Substep 2.1 to obtain the existence of \(\langle f \rangle \).

Substep 2.5) Let \(p \in (0, 1), q \in (1, \infty), \tau = 0 \) and \(s = n(\frac{1}{p} - 1) \). We choose

\[
(5.18) \quad h_N(x) := \sum_{j=j_0}^{N} \lambda_j \psi_{1,j,0}(x), \quad \forall \ x \in \mathbb{R}^n, \quad \forall \ N \in \{j_0, j_0 + 1, \ldots\}.
\]

As in Lemma 5.3, we have, for any \(N \in \{j_0, j_0 + 1, \ldots\}, \)

\[
||h_N||_{L^p_{\mu}(\mathbb{R}^n)} \equiv \left\{ \sum_{j=j_0}^{N} 2^{j(\frac{n}{2} - \frac{n}{2})} |\lambda_j|^q \right\}^{1/q} = \left\{ \sum_{j=j_0}^{N} 2^{j(\frac{n}{2} - \frac{n}{2})} |\lambda_j|^q \right\}^{1/q}.
\]

As in Lemma 5.4, we obtain, for any \(N \in \{j_0, j_0 + 1, \ldots\}, \)

\[
\langle h_N, X \rangle = \sum_{j=j_0}^{N} \lambda_j 2^j.
\]

Then, letting \((\mu_j)^{\infty}_{j=j_0} \) be the same as in Substep 2.1 and \(\lambda_j := 2^j \mu_j \) for any \(j \in \{j_0, j_0 + 1, \ldots\} \), we can argue as before to obtain

\[
\frac{\langle h_N, X \rangle}{||h_N||_{L^p_{\mu}(\mathbb{R}^n)}} \to \infty, \quad N \to \infty.
\]

Thus, in this case, \((h_N)^{\infty}_{N=j_0} \) is the desired sequence.

Altogether we complete the proofs of Theorems 2.3 and 2.5.

5.4 Proof of Corollary 2.7

If \(p \in [1, \infty] \), then Corollary 2.7 follows directly from Theorem 2.3. In case \(p \in (0, 1) \), the if-assertion is contained in Theorem 2.5. For the only if-assertion, we refer the reader to Substep 2.5) in the above proofs of Theorems 2.3 and 2.5.

5.5 Proof of Theorem 2.8

Sufficiency can be proved as in case of \(X \). Necessity follows from a modification of our test functions. As in Step 4) of the proof of Theorem 2.1 in Section 4, it will be enough to deal with the existence of \(\langle f, h_{1,j,0} \rangle \). Recall, \(h_{1,j,0} = 1 \) on \(Q_{j+1,0} \). Now, to define the modified test functions we only select those wavelets \(\psi_{1,\ell,k} \) such that their supports lie in between the hyperplane \(x_1 = 0 \) and \(x_1 = 2^{-j-1} \) and have a nontrivial intersection with the set \(\{x \in \mathbb{R}^n : x_2, \ldots, x_n < 0\} \). This leads to the following family

\[
(5.19) \quad \tilde{f}_N(x) := \sum_{\ell = \max(j_0, j)}^{N} \lambda_{\ell} \sum_{k \in \mathbb{Z}^n, k \neq 0} \psi_{1,\ell,k}(x), \quad \forall \ x \in \mathbb{R}^n, \quad \forall \ N \in \mathbb{N} \cap \{j_0, \infty\},
\]
In a similar way our second family \(\{ g_N \}_{N=j_k}^{\infty} \) has to be modified. Now we can proceed as in proofs of Theorems 2.3 and 2.5. We omit further details.

Acknowledgements. The authors would like to thank Professor Peter Oswald who made the manuscript [40] available for us.

References

[1] R. Aulaskari, J. Xiao and R. Zhao, On subspaces and subsets of BMOA and UBC, Analysis 15 (1995), 101-121.
[2] Z. Ciesielski, Constructive function theory and spline systems, Studia Math. 53 (1975), 277-302.
[3] A. Cohen, I. Daubechies and J.-C. Feauveau, Biorthogonal bases of compactly supported wavelets, Comm. Pure Appl. Math. 45 (1992), 485-560.
[4] G. Dafni and J. Xiao, Some new tent spaces and duality theorems for fractional Carleson measures and \(Q_0(\mathbb{R}^n) \), J. Funct. Anal. 208 (2004), 377-422.
[5] G. Dafni and J. Xiao, The dyadic structure and atomic decomposition of \(Q \) spaces in several real variables, Tohoku Math. J. (2) 57 (2005), 119-145.
[6] A. El Baraka, An embedding theorem for Campanato spaces, Electron. J. Differential Equations 66 (2002), 1-17.
[7] A. El Baraka, Function spaces of BMO and Campanato type, in: Proc. of the 2002 Fez Conference on Partial Differential Equations, 109-115 (electronic), Electron. J. Differ. Equ. Conf. 9, Southwest Texas State Univ., San Marcos, TX, 2002.
[8] A. El Baraka, Littlewood-Paley characterization for Campanato spaces, J. Funct. Spaces Appl. 4 (2006), 193-220.
[9] M. Essén, S. Janson, L. Peng and J. Xiao, \(Q \) spaces of several real variables, Indiana Univ. Math. J. 49 (2000), 575-615.
[10] M. Essén and J. Xiao, Some results on \(Q_p \) spaces, 0 < p < 1, J. Reine Angew. Math. 485 (1997), 173-195.
[11] D. Faraco and K. Rogers, The Sobolev norm of characteristic functions with applications to the Calderón inverse problem, Quart. J. Math. 64 (2013), 133-147.
[12] G. Garrigós, A. Seeger and T. Ullrich, On uniform boundedness of dyadic averaging operators in spaces of Hardy–Sobolev type, Anal. Math. 43 (2017), 267-278.
[13] A. B. Gulisashvili, On multipliers in Besov spaces (in Russian), Sapiisku nau. Sem. LOMI 135 (1984), 36-50.
[14] A. B. Gulisashvili, Multipliers in Besov spaces and traces of functions on subsets of the Euclidean n-space (in Russian), DAN SSSR 281 (1985), 777-781.
[15] J. Gustavsson, On interpolation of weighted \(L^p \)-spaces and Ovchinnikov’s theorem, Studia Math. 72 (1982), 237-251.
[16] J. Gustavsson and J. Peetre, Interpolation of Orlicz spaces, Studia Math. 60 (1977), 33-59.
[17] A. Haar, Zur Theorie der orthogonalen Funktionensysteme, Math. Ann. 69 (1910), 331-371.
[18] D. D. Haroske and L. Skrzypczak, Embeddings of Besov-Morrey spaces on bounded domains, Studia Math. 218 (2013), 119-144.
[19] D. D. Haroske, S. Moura and L. Skrzypczak, Smoothness Morrey spaces of regular distributions, and some unboundedness property, Nonlinear Anal. 139 (2016), 218-244.
[20] J.-P. Kahane and P.-G. Lemarié-Rieusset, Fourier Series and Wavelets, Gordon and Breach Publ., Luxembourg, 1995.
[21] A. Kamont, Isomorphism of some anisotropic Besov and sequence spaces, Studia Math. 110 (1994), 169-189.
[22] A. Kamont, On hyperbolic summation and hyperbolic moduli of smoothness, Constr. Approx. 12 (1996), 111-125.
[23] A. Kamont, A discrete characterization of Besov spaces, Approx. Theory Appl. (N.S.) 13 (1997), 63-77.
[24] P. Koskela, J. Xiao, Y. Zhang and Y. Zhou, A quasiconformal composition problem of Q-spaces, J. Eur. Math. Soc. 19 (2017), 1159-1187.
[25] P. G. Lemarié-Rieusset, The Navier-Stokes Problem in The 21st Century, CRC Press, Boca Raton, FL, 2016.
[26] P. G. Lemarié-Rieusset, Parabolic Morrey spaces and mild solutions of the Navier-Stokes equations. An interesting answer through a silly method to a stupid question, in: Recent progress in the theory of the Euler and Navier-Stokes equations, 126-136, London Math. Soc. Lecture Note Ser., 430, Cambridge Univ. Press, Cambridge, 2016.
[27] P. G. Lemarié-Rieusset, Sobolev multipliers, maximal functions and parabolic equations with a quadratic nonlinearity, J. Funct. Anal. 274 (2018), 659-694.
[28] P. Li and Q. Yang, Wavelets and the well-posedness of incompressible magneto-hydrodynamic equations in Besov type Q-space, J. Math. Anal. Appl. 405 (2013), 661-686.
[29] P. Li and Z. Zhai, Generalized Navier-Stokes equations with initial data in local Q-type spaces, J. Math. Anal. Appl. 369 (2010), 595-609.
[30] P. Li and Z. Zhai, Well-posedness and regularity of generalized Navier-Stokes equations in some critical Q-spaces, J. Funct. Anal. 259 (2010), 2457-2519.
[31] P. Li and Z. Zhai, Riesz transforms on Q-type spaces with application to quasi-geostrophic equation, Taiwanese J. Math. 16 (2012), 2107-2132.
[32] P. Li, J. Xiao and Q. Yang, Global mild solutions of fractional Navier-Stokes equations with small initial data in critical Besov-Q spaces, Electron. J. Differential Equations 185 (2014), 1-37.
[33] Y. Liang, Y. Sawano, T. Ullrich, D. Yang and W. Yuan, New characterizations of Besov-Triebel–Lizorkin-Hausdorff spaces including coorbits and wavelets, J. Fourier Anal. Appl. 18 (2012), 1067-1111.
[34] Y. Liang, Y. Sawano, T. Ullrich, D. Yang and W. Yuan, A new framework for generalized Besov-type and Triebel–Lizorkin-type spaces, Dissertationes Math. (Rozprawy Mat.) 489 (2013), 1-114.
[35] J. Marcinkiewicz, Quelques théorèmes sur les séries orthogonales, Ann. Soc. Polon. Math. 16 (1937), 84-96.
[36] Y. Meyer, Wavelets and Operators, Cambridge Univ. Press, 1992.
[37] P. Nilsson, Interpolation of Banach lattices, Studia Math. 82 (1985), 133-154.
[38] P. Oswald, On inequalities for spline approximation and spline systems in the space L^p ($0 < p < 1$), in: Approximation and Function Spaces, Proceedings Int. Conf. Gdansk 1979 (Z. Ciesielski, ed.) PWN Warszawa and North Holland Amsterdam, pp. 531-552, 1981.
Regularity Properties of the Haar System

[39] P. Oswald, \(L^p\)-Approximation durch Reihen nach dem Haar-Orthogonalsystem und dem Faber-Schauder-System. J. Approx. Theory 33 (1981), 1-27.

[40] P. Oswald, Haar system as Schauder basis in Besov spaces: the limiting cases for \(0 < p \leq 1\), arXiv: 1808.08156.

[41] S. Ropela, Spline bases in Besov spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976), 319-325.

[42] T. Runst and W. Sickel, Sobolev Spaces of Fractional Order, Nemytzkij Operators and Non-linear Partial Differential Equation, de Gruyter, Berlin, 1996.

[43] Y. Sawano, D. Yang and W. Yuan, New applications of Besov-type and Triebel–Lizorkin-type spaces, J. Math. Anal. Appl. 363 (2010), 73-85.

[44] J. Schauder, Eine Eigenschaft der Haarschen Orthogonalsysteme, Math. Z. 28 (1928), 317-320.

[45] A. Seeger and T. Ullrich, Haar projection numbers and failure of unconditional convergence in Sobolev spaces, Math. Z. 285 (2017), 91-119.

[46] A. Seeger and T. Ullrich, Lower bounds for Haar projections: deterministic examples, Constr. Approx. 46 (2017), 227-242.

[47] W. Sickel, Pointwise multipliers of Lizorkin-Triebel spaces, in: The Maz’ya anniversary collection, Vol. 2 (Rostock, 1998), 295-321, Operator Theory Adv. Appl. 110, Birkhäuser, Basel, 1999.

[48] W. Sickel, On pointwise multipliers for \(F^s_{p,q}(\mathbb{R}^n)\) in case \(\sigma_{p,q} < s < n/p\), Ann. Mat. Pura Appl. (4) 176 (1999), 209-250.

[49] W. Sickel, Smoothness spaces related to Morrey spaces—a survey. I, Eurasian Math. J. 3 (2012), 110-149.

[50] W. Sickel, Smoothness spaces related to Morrey spaces—a survey. II, Eurasian Math. J. 4 (2013), 82-124.

[51] W. Sickel and H. Triebel, Hölder inequalities and sharp embeddings in function spaces of \(B^s_{p,q}\) and \(F^s_{p,q}\) type, Z. Anal. Anwendungen 14 (1995), 105-140.

[52] H. Triebel, Über die Existenz von Schauderbasen in Sobolev-Besov-Räumen. Isomorphiebeziehungen, Studia Math. 46 (1973), 83-100.

[53] H. Triebel, On Haar bases in Besov spaces, Serdica 4 (1978), 330-343.

[54] H. Triebel, Theory of Function Spaces, Birkhäuser Verlag, Basel, 1983.

[55] H. Triebel, Function spaces in Lipschitz domains and on Lipschitz manifolds. Characteristic functions as pointwise multipliers, Rev. Mat. Complut. 15 (2002), 475-524.

[56] H. Triebel, Non-smooth atoms and pointwise multipliers in function spaces, Ann. Mat. Pura Appl. 182 (2003), 457-486.

[57] H. Triebel, Theory of Function Spaces III, Birkhäuser Verlag, Basel, 2006.

[58] H. Triebel, Function Spaces and Wavelets on Domains, EMS Tracts in Mathematics 7, European Mathematical Society (EMS), Zürich, 2008.

[59] H. Triebel, Bases in Function Spaces, Sampling, Discrepancy, Numerical Integration, EMS Tracts in Mathematics 11, European Mathematical Society (EMS), Zürich, 2010.

[60] H. Triebel, Local Function Spaces, Heat and Navier-Stokes Equations, EMS Publ. House, Zürich, 2013.

[61] H. Triebel, Characterizations of some function spaces in terms of Haar wavelets, Comment. Math. 53 (2013), 135-153.
[62] H. Triebel, Hybrid Function Spaces, Heat and Navier-Stokes Equations, EMS Tracts in Mathematics 24, European Mathematical Society (EMS), Zürich, 2014.
[63] H. Triebel, Tempered Homogeneous Function Spaces, EMS Series of Lectures in Mathematics, European Mathematical Society (EMS), Zürich, 2015.
[64] P. Wojtaszczyk, The Franklin system is an unconditional basis in H_1, Ark. Mat. 20 (1982), 293-300.
[65] P. Wojtaszczyk, A Mathematical Introduction to Wavelets, Cambridge Univ. Press, Cambridge, 1997.
[66] J. Xiao, Holomorphic Q Classes, Lecture Notes in Mathematics 1767, Springer, Berlin, 2001.
[67] J. Xiao, Geometric Q_p Functions, Birkhäuser Verlag, Basel, 2006.
[68] J. Xiao, Homothetic variant of fractional Sobolev space with application to Navier-Stokes system, Dyn. Partial Differ. Equ. 4 (2007), 227-245.
[69] J. Xiao, The Q_p Carleson measure problem, Adv. Math. 217 (2008), 2075-2088.
[70] D. Yang and W. Yuan, A new class of function spaces connecting Triebel–Lizorkin spaces and Q spaces, J. Funct. Anal. 255 (2008), 2760-2809.
[71] D. Yang and W. Yuan, New Besov-type spaces and Triebel–Lizorkin-type spaces including Q spaces, Math. Z. 265 (2010), 451-480.
[72] D. Yang and W. Yuan, Characterizations of Besov-type and Triebel–Lizorkin-type spaces via maximal functions and local means, Nonlinear Anal. 73 (2010), 3805-3820.
[73] D. Yang and W. Yuan, Relations among Besov-type spaces, Triebel–Lizorkin-type spaces and generalized Carleson measure spaces, Appl. Anal. 92 (2013), 549-561.
[74] D. Yang, W. Yuan and C. Zhuo, Complex interpolation on Besov-type and Triebel–Lizorkin-type spaces, Anal. Appl. (Singap.) 11 (2013), no. 5, 1350021, 45 pp.
[75] W. Yuan, W. Sickel and D. Yang, Morrey and Campanato Meet Besov, Lizorkin and Triebel, Lecture Notes in Mathematics 2005, Springer-Verlag, Berlin, 2010.
[76] W. Yuan, W. Sickel and D. Yang, On the coincidence of certain approaches to smoothness spaces related to Morrey spaces, Math. Nachr. 286 (2013), 1571-1584.
[77] W. Yuan, W. Sickel and D. Yang, Interpolation of Morrey–Campanato and related smoothness spaces, Sci. China Math. 58 (2015), 1835-1908.
[78] W. Yuan, W. Sickel and D. Yang, The Haar wavelet and Besov-type spaces, Preprint.

Wen Yuan and Dachun Yang (Corresponding author)
Laboratory of Mathematics and Complex Systems (Ministry of Education of China), School of Mathematical Sciences, Beijing Normal University, Beijing 100875, People’s Republic of China
E-mails: wenyuan@bnu.edu.cn (W. Yuan)
dcyang@bnu.edu.cn (D. Yang)

Winfried Sickel
Mathematisches Institut, Friedrich-Schiller-Universität Jena, Jena 07743, Germany
E-mail: winfried.sickel@uni-jena.de