ABSTRACT

This chapter summarizes the sex- and gender-specific diagnosis and treatment of acute/unstable presentations and nacute/stable presentations of cardiovascular disease in women. Guidelines, scientific statements, systematic reviews, meta-analyses, and primary research studies related to diagnosis and treatment of coronary artery disease, cerebrovascular disease (stroke), valvular heart disease, and heart failure in women were reviewed. The evidence is summarized as a narrative, and when available, sex- and gender-specific practice and research recommendations are provided. Acute coronary syndrome and cardiovascular disease (CVD) presentation and emergency department delays vary between women and men. These differences are attributable to the biology of being a male or female (ie, biological sex) as well as the sociocultural norms ascribed to women in their roles, identities, opportunities/experiences, and interactions with others (gender). Sex and gender differences necessitate sex- and gender-specific care.

REZUMÉ

Ce chapitre présente un résumé sur le diagnostic et le traitement des tableaux cliniques aigus/instables et non aigus/stables des maladies cardiovasculaires chez les femmes, et les différences propres à chacun des deux sexes. Les lignes directrices, les énoncés scientifiques, les revues systématiques/méta-analyses et les études de recherche originale sur le diagnostic et le traitement des coronaropathies, des maladies vasculaires cérébrales (AVC), des valvulopathies cardiaques et de l’insuffisance cardiaque chez les femmes ont été examinés. Les données probantes sont résumées sous forme narrative et, lorsqu’elles

See page 601 for disclosure information.
presentations and emergency department delays are different in women than they are in men. Coronary angiography remains the gold-standard test for diagnosis of obstructive coronary artery disease. Other diagnostic imaging modalities for ischemic heart disease detection (eg, positron emission tomography, echocardiography, single-photon emission computed tomography, cardiovascular magnetic resonance, coronary computed tomography angiography) have been shown to be useful in women, with their selection dependent upon both the goal of the individualized assessment and the testing resources available. Noncontrast computed tomography and computed tomography angiography are used to diagnose stroke in women. Although sex-specific differences appear to exist in the efficacy of standard treatments for diverse presentations of acute coronary syndrome, many cardiovascular drugs and interventions tested in clinical trials were not powered to detect sex-specific differences, and knowledge gaps remain. Similarly, although knowledge is evolving about sex-specific difference in the management of valvular heart disease, and heart failure with both reduced and preserved ejection fraction, current guidelines are lacking in sex-specific recommendations, and more research is needed.

approaches to the diagnosis and treatment of CVD. This Atlas chapter aims to summarize these differences across ischemic heart disease (inclusive of both coronary artery disease [CAD] involving the epicardial coronary arteries, and small vessel disease, involving the microvasculature), cerebrovascular disease (stroke), valvular heart disease (VHD), and heart failure (HF). A heterogeneous approach is used to present the evidence in this chapter, across the various manifestations of CVD in women, based on the depth and breadth of the evidence. Table 1 summarizes the guidelines and scientific statements related to the diagnosis and treatment of CAD, cerebrovascular disease (stroke), VHD, and HF, and notes where sex-specific analysis/recommendations are included. This chapter focuses on the following: (i) acute or unstable presentations—diagnosis and treatment; and (ii) nonacute or stable presentations—diagnosis and treatment of various manifestations of CVD in women. Sex and gender summary statements are provided at the end of each section, and key messages are summarized in Figure 1.

Acute Presentations: Diagnosis and Treatment

Table 1 summarizes the current guidelines and scientific statements related to the diagnosis and management of CAD, stroke, HF, and VHD and indicates whether they provide any sex and/or gender analyses or recommendations. Table 2 presents the key sex and gender considerations in the diagnosis and treatment of acute presentations of CVD reviewed herein.

Diagnosis

Women have a varied pattern and distribution of cardiovascular pain symptoms associated with both CAD and stroke that are distinct from those of men. These have historically been described as “anginal equivalents” or “atypical,” making accurate diagnosis of acute or unstable CAD and stroke challenging.24 The 2021 American Heart Association/American College of Cardiology/American Society of Echo-cardiography/American College of Chest Physicians/Society for Academic Emergency Medicine/Society of Cardiovascular Computed Tomography/Society for Cardiovascular Magnetic Resonance (AHA/ACC/AES/CHEST/SAEM/SCCT/SCMR) Guideline for the Evaluation and Diagnosis of Chest Pain recommends describing chest pain as “cardiac,” “possibly cardiac,” or “noncardiac,” as these terms more explicitly describe the potential underlying diagnosis.

Acute coronary artery disease. Chest pain is reported to be the most common presenting symptom in 91% of men (1081 of 1185) and 92% of women (698 of 756) diagnosed with acute coronary syndrome (ACS).5 Women are more likely than men (61.9% vs 54.8%, P < 0.001) to report accompanying symptoms, such as nausea, unusual fatigue, indigestion, dizziness, and palpitations.5, 6, 7 The varied pattern of accompanying symptoms makes it difficult for women to interpret their chest pain as being cardiac-specific.8, 10 Women also may minimize their symptoms, consult with family and friends, have caregiving responsibilities, and have concerns for their family.11, 12 As a result, they may delay seeking care for their chest pain.13 In the International Survey of Acute Coronary Syndromes in Transitional Countries (ISACS-TC), the time from symptom onset to emergency department arrival was longer in women (median: 270 minutes [range: 130-776 minutes]) compared with that in men (median: 240 minutes [range: 120-
Table 1. Summary of guidelines and scientific statements related to the diagnosis and treatment of coronary artery disease, cerebrovascular disease (stroke), valvular heart disease, heart failure, and cardiac rehabilitation/secondary prevention in women

Condition	Guideline/scientific statement	Sex-specific analysis / recommendations
Coronary artery disease	• AHA/ACC/ASE/CHEST/SAEM/SCCM/SCMR Guideline for the Evaluation and Diagnosis of Chest Pain (2021)	Yes
	• ESC Guidelines for the Diagnosis and Management of Chronic Coronary Syndromes (2019)	Yes
	• Spontaneous Coronary Artery Dissection: Current State of the Science: A Scientific Statement From the AHA (2018)	Yes
	• ESC Guidelines for the Management of Cardiovascular Diseases During Pregnancy (2018)	Yes
	• Acute Myocardial Infarction: A Scientific Statement From the AHA (2016)	Yes
	• AHA/ACC Guideline for the Management of Patients With Non-ST-Elevation Acute Coronary Syndromes: A Report of the ACC/AHATask Force on Practice Guidelines (2014)	Yes
	• ACC/AHA/ACP/PCNA/SCAI/STS Focused Update of the Guideline for the Diagnosis and Management of Patients With Stable Ischemic Heart Disease (2014)	No
	• CCS/CAIC/CSCS Position Statement on Revascularization—Multivessel Coronary Artery Disease (2014)	No
	• CCS Guidelines for the Diagnosis and Management of Stable Ischemic Heart Disease (2014)	Yes
	• Role of Noninvasive Testing in the Clinical Evaluation of Women With Suspected Ischemic Heart Disease: A Consensus Statement From the AHA (2014)	Yes
	• ACC/AHA Guideline for the Management of ST-Elevation Myocardial Infarction: A Report of the ACCF/AHA Task Force on Practice Guidelines (2013)	Yes
	• Management of Patients With Refractory Angina: CCS/CPS Joint Guidelines (2012)	No
	• Effectiveness-based Guidelines for the Prevention of Cardiovascular Disease in Women—2011 Update: A Guideline From the AHA (2011)	Yes
	• ACCF/AHA Guideline for Coronary Bypass Graft Surgery: Executive Summary (2011)	Yes
	• Percutaneous Coronary Intervention and Adjunctive Pharmacotherapy in Women: A Statement for Healthcare Professionals From the American Heart Association (2005)	Yes
Cerebrovascular disease	• Canadian Stroke Best Practice Recommendations: Rehabilitation, Recovery, and Community Participation Following Stroke. Part One: Rehabilitation and Recovery Following Stroke; 6th Edition Update (2020)	No
Valvular heart disease	• ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease: A Report of the ACC/ AHA Joint Committee on Clinical Practice Guidelines (2021)	Yes
Heart failure	• CCS Position Statement for Transcatheter Aortic Valve Implantation (2019)	No
	• ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure: Developed by the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure of the ESC With the Special Contribution of the HFA of the ESC (2021)	Yes
	• CCS/CHFS Heart Failure Guidelines Update: Defining a New Pharmacologic Standard of Care for Heart Failure With Reduced Ejection Fraction (2021)	Yes (digoxin)
	• How to Diagnose Heart Failure With Preserved Ejection Fraction: The HFA-PFEF Diagnostic Algorithm: A Consensus Recommendation From the Heart Failure Association (HFA) of the European Society of Cardiology (ESC) (2019)	Yes
	• Sex Differences in Cardiac Arrhythmia: A Consensus Document of the EHRA, Endorsed by the HRS and APHRS (2018)	Yes
	• Comprehensive Update of the CCS Guidelines for the Management of Heart Failure (2017)	Yes
	• ACCF/AHA/HR/ATS/PCNA/SCAI/STS Focused Update Incorporated Into the ACCF/AHA/HR/ATS 2008 Guidelines for Device-Based Therapy of Cardiac Rhythm Abnormalities: A Report of the ACCF/AHA Task Force on Practice Guidelines and the HRS (2013)	No
	• Society Position Statement: CCS/CAIC/CSCS Joint Position Statement on the Perioperative Management of Patients With Implanted Pacemakers, Defibrillators, and Neurostimulating Devices (2012)	No
	• CCS Consensus Conference Guidelines on Heart Failure, Update 2009: Diagnosis and Management of Right-Sided Heart Failure, Myocarditis, Device Therapy and Recent Important Clinical Trials (2009)	No

ACC, American College of Cardiology; ACCF, American College of Cardiology Foundation; AHA, American Heart Association; APHRS, Asia Pacific Heart Rhythm Society; ASE, American Society of Echocardiography; CAIC, Canadian Association of Interventional Cardiology; CAS, Canadian Anesthesiologists’ Society; CCS, Canadian Cardiovascular Society; CHEST, American College of Chest Physicians; CHFS, Canadian Heart Failure Society; CHRS, Canadian Heart Rhythm Society; CPS, Canadian Pain Society; CSCS, Canadian Society of Cardiovascular Surgery; EHRA, European Heart Rhythm Association; ESC, European Society of Cardiology; HFA, Heart Failure Association; HRS, Heart Rhythm Society; SAEM, Society for Academic Emergency Medicine; SCCT, Society of Cardiovascular Computed Tomography; SCMR, Society for Cardiovascular Magnetic Resonance.

600 minutes], which resulted in increased 30-day mortality for women, even after controlling for baseline variables (odds ratio: 1.58; 95% confidence interval [CI], 1.27-1.97).14

Treatment for acute presentations of CAD depends on accurate and timely diagnosis, with imaging being critical to the process. The initial tests for women presenting with a possible ACS are an electrocardiogram (ECG) and biomarkers, which, based on the results, may trigger further diagnostic imaging. An initial normal or nondiagnostic ECG should be followed by serial ECGs based on symptoms, serial biomarkers, and further diagnostic imaging.1 The evidence for using sex-specific biomarker cutoffs (ie, high-sensitivity cardiac troponin [cTn]) for the diagnosis and management of ACS is unclear, with emerging evidence to suggest its clinical value in younger women.15 In the setting of ACS, the preferred diagnostic/therapeutic imaging is invasive coronary angiography for both women and men. However, evidence suggests that the underappreciation of ACS in women (based on anginal equivalent symptoms/ECGs/biomarkers) leads to sex- and gender-based differences in referral for coronary angiography in the setting of ACS.14,16-18

Important to note is that up to 15% of those presenting with acute myocardial infarction (MI) have MI with nonobstructive
CAD (MINOCA), which disproportionately affects women. The etiology of MINOCA includes stress-induced cardiomyopathy, myocarditis, underappreciated plaque rupture, coronary thrombosis/emboli, coronary spasm, microvascular disease, and spontaneous coronary artery dissection. Based on a meta-analysis of studies using cardiovascular magnetic resonance (CMR) as a diagnostic tool in the setting of suspected MINOCA, a diagnosis can be made in 87% of cases when CMR is done early, with myocarditis being diagnosed in 37% of cases. Echocardiography and CMR also should be performed when considering stress-induced cardiomyopathy or when looking for evidence of an infarct that may have occurred secondary to plaque rupture, coronary emboli, or spasm. Whereas CMR provides a thorough evaluation of the myocardium, intravascular ultrasonography and optical coherence tomography can be used to assess the coronary arteries in further detail when trying to determine alternate mechanisms of MINOCA. A recently published study examining coronary optical coherence tomography and CMR in the workup of MINOCA suggested a cause in 84.5% of patients when one or both imaging modalities were used. An ischemic etiology was identified in 63.8% of women (most commonly plaque disruption, such as plaque rupture), whereas a nonischemic cause was discovered in 20.7%. Coronary computed tomography angiography (CCTA) also can be considered as a noninvasive test to assess the coronary arteries and the presence of vulnerable plaque in intermediate- and low-risk patients presenting with ACS. The sensitivity and specificity of CCTA for the diagnosis of spontaneous coronary artery dissection (SCAD) have not yet been defined. However, noninvasive follow-up with CCTA may be useful in patients with SCAD in proximal or large-caliber coronary arteries; it is likely less sensitive in identifying discrete dissections in distal small-caliber coronary arteries. Pathophysiologic and diagnostic SCAD details have been published previously in chapter 5 of this Atlas.

Acute heart failure. New-onset acute HF diagnostic workup begins with a thorough patient history, assessment of clinical signs and symptoms, and investigations that include an ECG, echocardiography, cTn concentration, and levels of natriuretic peptides (brain natriuretic peptide [BNP], N-terminal pro b-type natriuretic peptide [NT-proBNP], and mid-regional pro atrial natriuretic peptide [MR-proANP]). Up to 93% of individuals with acute HF have increased high-sensitivity cTn concentrations; however, sex-specific reference values are lacking. The NT-proBNP level appears to differ by sex, increase with age, and vary by HF phenotype (ie, is lower in patients with HF with preserved ejection fraction [HFpEF], compared with that in patients with HF with reduced ejection fraction [HFrEF]). NT-proBNP sex-specific cutoffs are also not recommended. Further details have been published in chapter 5 of this Atlas. Women, compared with men, hospitalized for acute HF are, on average, 5 years older and more commonly reside in nursing homes. Women report a poorer quality of life than men during hospitalization, and they are less commonly discharged on angiotensin-converting enzyme inhibitors (ACEIs) and
Additional information relating to the site of vascular occlusion, infarct core, salvageable brain tissue, and extent of collateral circulation.

Treatment

Acute coronary artery disease

Pharmacologic. Women less frequently receive appropriate pharmacologic treatment during an episode of ACS and have worse outcomes, compared with men. In the acute setting, there appear to be sex-specific differences in the efficacy of standard treatments for diverse presentations of ACS. For ST-elevation MI (STEMI), women have a more favourable outcome with percutaneous coronary intervention (PCI), compared with thrombolytic therapy, and they seem to benefit more from an early invasive approach in the setting of a non-ST-elevation MI (NSTEMI). However, as demonstrated in the Canadian Gender and Sex Determinants of Cardiovascular Disease: From Bench to Beyond Premature Acute Coronary Syndrome (GENESIS-PRAXY) study of patients with ACS aged 18-55 years, women with STEMI are less likely than men to receive reperfusion therapy.

Debate remains as to whether women and men respond differently to pharmacologic therapies during an ACS event. For example, in a large meta-analysis of glycoprotein IIb/IIIa inhibitors and intravenous antiplatelet therapy used at the time of primary PCI, a reduction in the risk of death or recurrent ACS events was seen in men but not in women. However, when the analysis was limited to only those with biomarker-confirmed ACS, the sex-associated effect was no longer observed. Similarly, anticoagulant (unfractionated heparin, low-molecular weight-heparins, bivalrudin) and oral antiplatelet (P2Y12 receptor inhibitors) agents have been shown to reduce adverse outcomes in both women and men with ACS who have undergone PCI. Importantly, the bleeding risk of thrombolytic, anticoagulant, and antiplatelet therapies in ACS is higher in women than in men, and it may be due to sex-related differences in body surface area, drug metabolism, and pharmacokinetics; weight and renal dose corrections must be considered. In premenopausal women who are still menstruating, antiplatelet therapy may substantially increase menstrual bleeding.

The use of aspirin, acutely at the time of ACS, and for secondary prevention, is of clear benefit in both sexes. Indeed, the long-term benefits of aspirin, beta-blockers, ACEIs, and statins after MI are similar in both women and men, with risk reductions for major adverse cardiac events of 20%-30% for both sexes in each of these drug classes. Despite a definite role for these medications in the treatment of ACS, women are 10%-15% less likely than men to be treated acutely and/or prescribed these medications upon discharge from the hospital. A point of note is that specific cautions are in place regarding medical therapy for cardiovascular syndromes in pregnant women: ACEIs and angiotensin II receptor blockers (ARBs) are in pregnancy category C (meaning animal studies have demonstrated an adverse effect on the fetus) for the first trimester of pregnancy and are labeled as being in pregnancy category D (meaning human fetal risk has been demonstrated) during the second and third trimesters. Similarly, all statins are in pregnancy category X, indicating that studies in animals or humans have demonstrated additional information relating to the site of vascular occlusion, infarct core, salvageable brain tissue, and extent of collateral circulation.

Table 2. Key takeaways regarding sex and gender considerations in the diagnosis and treatment of acute presentations of cardiovascular disease

Evidence
- 80% of CAD, 63% of HF, and no stroke-related guidelines or position statements provided sex-specific analysis or recommendations

Diagnosis

- ACS and stroke presentations are different in women, compared with those in men, which can lead to delayed diagnosis and treatment
- In women, an initial normal or non-diagnostic ECG should be followed by serial ECGs based on symptoms, serial biomarkers, and further diagnostic imaging
- Emerging evidence indicates that using sex-specific high-sensitivity cTn cutoffs in the setting of ACS, especially in younger women, improves detection of ischemic heart disease
- Coronary angiography remains the preferred imaging modality for confirming and/or characterizing the diagnosis of ACS in women as obstructive or nonobstructive CAD

Treatment

- Early invasive stratification by coronary angiography with intention to perform revascularization is recommended for women who present with STEMI as well as NSTEMI with positive troponins
- Technical success rates of PCI are similar in women and men, but differ for CABG surgery
- Women less frequently receive appropriate pharmacologic treatment during an ACS, compared with men
- In the setting of acute HF, NT-proBNP sex-specific cutoffs are not recommended
- Sex-specific evidence is lacking for effects of tissue plasminogen activator and endovascular treatment on stroke outcomes
- Women are much less likely to be referred to and participate in secondary prevention/cardiovascular rehabilitation programs following an acute CVD event/diagnosis due to gender-related barriers, despite experiencing similar or greater benefit, compared with men

ACS, acute coronary syndromes; CABG, coronary artery bypass graft; CAD, coronary artery disease; cTn, cardiac troponin; CVD, cardiovascular disease event; ECG, electrocardiogram; HF, heart failure; MRI, magnetic resonance imaging; NSTEMI, non-ST-elevation myocardial infarction; NT-proBNP, N-terminal pro b-type natriuretic peptide; PCI, percutaneous coronary intervention; STEMI, ST-elevation myocardial infarction.

Cerebrovascular disease. Stroke affects women across their life course, although the risks are higher during pregnancy and menopause, and in later years. Evaluation of patients presenting with symptoms possibly consistent with stroke warrants emergent neuroimaging to exclude hemorrhage as a cause, determine the vascular territory responsible for the deficit, and determine which patients will benefit from thrombolytic therapy. Stroke can present with nontraditional symptoms in women that may be interpreted as less significant (eg, tingling, numbness, short-duration visual or speech disturbances). This interpretation can delay stroke recognition and lead to a missed diagnosis.

However, once stroke is recognized, the approach to diagnostic imaging among women and men is similar, with early noncontrast computed tomography (CT) to exclude hemorrhage. When possible, this imaging should include simultaneous CT perfusion imaging and CT angiography, which together show improved detection of acute infarction, compared with noncontrast CT alone.
associated fetal abnormalities, so they must be avoided during pregnancy. Of additional consideration in women diagnosed with ACS is the discontinuation of harmful medications or medications that are of no benefit. Other pregnancy-related medication recommendations have been published in Chapter 4 of this Atlas. Menopausal hormone therapy, either estrogen plus progesterin or estrogen alone, has been linked to an increased incidence of recurrent infarction and should not be given for the prevention of coronary events. For those women already receiving menopausal hormone therapy at the time of their ACS event, its discontinuation is recommended.

Nonpharmacologic: Revascularization—percutaneous coronary intervention. Women undergo PCI at a lower rate than men following diagnosis of ACS. In 23,473 patients undergoing cardiac catheterization for ACS in an Ontario cohort, a significantly lower proportion of women, compared with men, received coronary revascularization during the index hospitalization (51.8% vs 66.0%). In women diagnosed with STEMI, primary PCI was linked to lower numbers of major adverse cardiovascular events, including target revascularization.

Women who undergo PCI in this setting, compared with fibrinolytic therapy, have a lower risk of major bleeding, including intracranial bleeding, and lower mortality. interestingly, variables related to gender including time-to-presentation, time-to-diagnosis, and door-to-device times are longer in women, and they may contribute to excess mortality. Protocalized diagnosis of STEMI may help reduce this observed gap, thereby improving prompt referral to cardiac catheterization for PCI in women.

In women presenting with NSTEMI with high-risk features, such as a positive troponin test, early invasive stratification by coronary angiography with intention to perform revascularization is recommended (class I recommendation). However, compared with men in a population-based cohort in Canada, women who had coronary revascularization following an NSTEMI had higher risk for recurrent cardiovascular events. Sex-based differences in outcomes following coronary angiography for NSTEMI-ACS persisted despite revascularization. Additionally, evidence suggests that invasive angiography and PCI are associated with a higher risk of bleeding, vascular complications, and renal insufficiency in women.

Low-risk women with a negative troponin test are at higher risk of periprocedural complications, and an early-invasive approach is not recommended (class III).

Technical success rates of PCI are reported to be similar in women and men. Newer-generation drug-eluting stents (DESs) are associated with a reduction in death and recurrent MI, compared with bare-metal stents and older-generation stents. More recently, in a pooled analysis of 2 all-comers randomized controlled trials (RCTs; n = 4605), Bjerkeng et al. reported that DESs are associated with enhanced safety in terms of cardiac death and nonfatal MI, compared with bare-metal stents in women. Specifically, they report that a DES is safe and more effective and should be considered as the stent of choice for large coronary arteries in women.

Nonpharmacologic: Revascularization—corony artery bypass graft surgery. Coronary artery bypass graft (CABG) surgery is considered the gold standard for surgical revascularization in CAD that is not amenable to PCI. The Canadian Cardiovascular Society's position statement on revascularization for multivessel CAD recommends CABG in patients who are acceptable surgical candidates and have multivessel CAD and diabetes, as well as those with complex multivessel CAD (strong recommendation, high-quality evidence).

In part, the recommendation is based on a meta-analysis of 10 RCTs comparing CABG to PCI. Although the subgroup analysis by sex was nonsignificant, the signal suggests that differences between men and women, and female data, may have been statistically attenuated due to the low proportion of women in the RCTs. Female sex is a known risk factor for early in-hospital and late mortality after CABG surgery. In comparison to men, women present for CABG surgery with a higher preoperative risk profile that may include the following: older age at diagnosis, and significant comorbidities (hypertension, diabetes, respiratory disease, HF); more urgent/emergent surgery; less-extensive disease, needing less revascularization; and shorter cross-clamp times. Smaller body size and smaller coronary vessels in women also have been associated with higher risk.

Filardo et al. reinforced the association of female sex and higher short-term mortality risk in isolated CABG using propensity-adjusted analysis (n = 13,327), which equated to a reported 392 “excess” female deaths in the US each year. More recently, Hara and colleagues revealed that female patients had a greater 10-year mortality rate, compared with that of male patients (32.8% vs 24.7%; log-rank \(P = 0.002 \)), but female sex was not an independent predictor of mortality (adjusted hazard ratio [HR]: 1.02; 95% confidence interval [CI], 0.76 to 1.36).

Mortality at 10 years was lower after CABG, compared with PCI, with a similar treatment effect for female vs male patients (adjusted HR for female patients: 0.90 [95% CI, 0.54 to 1.51]; adjusted HR for male patients: 0.76 [95% CI, 0.56 to 1.02]; \(P \) for interaction = 0.952).

The survival benefits of using bilateral internal thoracic (mammary) artery (ITA) grafts is well established in predominantly male populations. Attia et al. reported that single ITA grafting was associated with better survival in both women and men. However, although bilateral ITA grafting demonstrated improved medium-term and late survival in both sexes, woman were less likely to receive this procedure, and when they did, it was less effective.

Finally, the evidence indicates that following CABG surgery, women experience added postoperative complications, such as renal failure, neurologic complications, and postoperative MI. Evidence also indicates that women have more difficulty recovering following CABG surgery, with less improvement in physical functioning and more depressive symptomatology. Significant risk factors for readmission post-CABG surgery include female sex, hospital length of stay, in-hospital complications, and acute MI.

Acute heart failure. The etiology and treatment of acute HF vary based on the signs of congestion and/or peripheral hypoperfusion—acute decompensated HF, acute pulmonary edema, isolated right ventricular failure, and cardiogenic shock. Decompensated HF is responsible for 30%-50% of acute HF presentations and is most commonly treated with loop diuretics, and inotropic agents and vasopressors for peripheral hypoperfusion and/or hypotension.

Cerebrovascular disease. Sex differences in stroke symptoms and door-to-imaging times can result in inappropriate
treatments and/or missed opportunities for treatment within the recommended therapeutic window for women.

Pharmacologic. Tissue plasminogen activator is less frequently used in women than in men, resulting in a lack of evidence on sex-specific effects of tissue plasminogen activator on stroke outcomes.

Nonpharmacologic. Endovascular treatment of acute ischemic stroke has significant benefit for men with internal carotid or proximal middle cerebral artery occlusion.

Evidence suggests that women have a higher prevalence of anterior and intracranial large-artery occlusion, and this may be related to a higher prevalence of atrial fibrillation in women, compared with men.

Data related to sex differences in access and outcomes related to endovascular treatment are scarce, and more research is needed.

Nonacute Presentations: Diagnosis and Treatment

Table 3 presents a summary of the key sex and gender considerations in the diagnosis and treatment of nonacute or chronic presentations of CVD reviewed herein.

Diagnosis

Clinical presentation, traditional and nontraditional risks, and the life course of CVD are different for women, compared with men. This difference makes the accurate diagnosis of nonacute or stable presentations of CAD in women challenging.

A higher prevalence of nonobstructive CAD in women results in lower diagnostic accuracy, compared with obstructive CAD with conventional testing in women.

Various noninvasive imaging modalities are now available to assist in diagnosing CAD in women and are reviewed here. In addition, many sex-specific evaluations and outcomes have been reported in VHD and HF, important CVD diagnoses in women.

Coronary artery disease. Exercise treadmill testing can be obtained rapidly, is inexpensive, and is the most common noninvasive evaluation for suspected ischemia. However, its diagnostic value is limited in women by its lower sensitivity and specificity, which range between 31% and 71%, and 66% and 86%, respectively.

Diagnostic and prognostic evaluation of CAD in women via exercise treadmill testing can be improved by integrating multiple parameters (eg, exercise time, changes in the ST-segment, presence of angina).

Additional risk correlates include heart rate and blood pressure response and recovery. Women with intermediate risk should be referred for additional imaging studies for risk stratification. Despite its false positives and lower accuracy in women, exercise treadmill testing demonstrates similar negative predictive value in both women and men, and it is recommended as a first-line diagnostic test in ruling out CAD in women who are at low risk and can exercise adequately (>5 metabolic equivalents).

In women with an intermediate risk, and the ability to exercise adequately (>5 metabolic equivalents), functional assessment using stress echocardiography, stress single-photon emission computed tomography (SPECT), or positron emission tomography (PET) myocardial perfusion imaging, or stress cardiac magnetic resonance imaging may be considered.

Imaging (echocardiographic or nuclear) stress tests are recommended if the resting electrocardiogram is abnormal, if there is a history of known ischemic heart disease, or in the event of limited exercise capacity; imaging is an essential component of pharmacologic stress testing. In addition to evaluating the presence of myocardial ischemia, stress echocardiography provides additional information with regard to systolic and/or diastolic dysfunction, pulmonary hypertension, and VHD. Sensitivity (79%) and specificity (83%) have been reported for the detection of obstructive CAD in women.

Dobutamine stress echocardiography is recommended for women who are unable to perform exercise, with sensitivity and specificity ranges of 75%-93% and 79%-92%, respectively. Normal stress echocardiography results are associated with a low risk of cardiac events in women.

Observational data suggest that stress echocardiography may be more cost-effective than exercise treadmill testing in that it can appropriately diagnose and avoids unnecessary angiography, especially in younger women. However, stress
microvascular dysfunction and obstructive CAD.88

Gated myocardial perfusion SPECT improves the predictive value in women, with a higher sensitivity range of 80%-91%, and a specificity range of 64%-91%.85,86,89,91

Abnormal perfusion on nuclear medicine imaging is predictive of adverse cardiac events in women, and severe abnormalities on pharmacologic stress SPECT testing are predictive of annual cardiovascular mortality in women with diabetes (8.5% per year) and without diabetes (6.1% per year).12

Stress myocardial perfusion imaging with PET improves spatial resolution and image quality in women, especially in women with obesity.80 Meta-analysis data suggest that sensitivity (92%) and specificity (85%) are higher than they are with SPECT, with significant improvement of diagnostic accuracy.80

Quantification of coronary flow reserve using rubidium is possible and is predictive of prognosis, as PET-

and no obstructive CAD.86,94 Myocardial perfusion reserve is diagnostically useful in symptomatic intermediate-risk patients.1 CCTA is also useful to assess further evaluation of an abnormal exercise stress test in the context of no known CAD.1 CCTA is useful to assess patients with stable angina in the context of known nonobstructive CAD or previous coronary revascularization.1 Plaque progression and high-risk plaque can be assessed using CCTA. In a secondary analysis of the International Study of Comparative Health Effectiveness With Medical and Invasive Approaches (ISCHEMIA) trial, women with evidence of moderate to severe ischemia were less likely than men to have extensive CAD on CCTA (36% women vs 47% men with 3-vessel disease; 32% vs 31% with 2-vessel disease) and more likely to have 1-vessel disease (31% women vs 22% men).96

Noninvasive fractional flow reserve can also be determined in some centres. Radiation exposure is also a consideration, and patients require beta-blocker therapy pretest to slow heart rate and enhance image quality.88

Coronary angiography remains the gold standard test for diagnosis of obstructive CAD. Use of coronary angiography should be considered when noninvasive tests demonstrate high-risk features, or when symptoms persist despite optimal medical therapy (strong recommendation, high-quality evidence).97

Chronic heart failure. Typical chronic HF symptoms include dyspnea, orthopnea, paroxysmal nocturnal dyspnea, fatigue, reduced exercise tolerance, and ankle swelling. Although the signs and symptoms of HF are similar for women vs men, women often demonstrate greater symptom burden, including more dyspnea and poorer quality of life.34,78 Women with HF often are underdiagnosed, are undertreated, and experience delays in referral for health services and invasive care.79 This difference is partly related to sex differences in the etiology of HF; more women than men have HFP EF.100,101 HFP EF is defined as a normal EF (ie, EF > 50%), a nondilated left ventricle with concentric remodelling, or a hypertrophied left ventricle with left atrial enlargement.102 Class I recommended diagnostic investigations for chronic HF include measurement of natriuretic peptides (ie, BNP and NT-proBNP),12 12-lead ECG, transthoracic echocardiography, chest X ray, and other routine blood tests to assess for comorbidities. Cardiac catheterization is recommended when an intermediate probability of HFP EF is determined to exist after history, physical examination, and other recommended diagnostic evaluations (eg, natriuretic peptide determination, echocardiography) have been performed.103 In cases in which access to specialized tests is limited, a more simplified pragmatic approach to diagnosing HFP EF is recommended. This includes assessment of the following: (i) signs/symptoms of HF; (ii) a left ventricular ejection fraction (LVEF) ≥ 50%; and (iii) objective evidence of cardiac structural and/or functional abnormalities consistent with LV diastolic dysfunction/raised LV filling pressures. With this approach, the greater number of objective noninvasive measures increases the probability of an HFP EF diagnosis.26 Further details have been published in Chapter 5 of this Atlas.25

Valvular heart disease. In aortic stenosis, the concomitance of a low flow rate despite a normal EF (ie, paradoxical low flow or HFP EF associated with aortic stenosis) is reported to be higher in women.104 The first issue with paradoxical low flow is linked to the assessment of aortic stenosis severity. Indeed, as the gradient and velocity across the stenosed aortic valve are dependent on the flow rate, a decrease in flow rate will lead to a decrease in gradient and velocity, which may underestimate the degree of stenosis severity. On the other hand, a moderately stenosed valve may not open fully, due to a lower flow rate, thus presenting a small valve area, which overestimates the degree of stenosis severity. Therefore, a discordance between gradient/velocity (in the moderate range) and aortic valve area (in the severe range) at rest echocardiography in these patients is not uncommon.105 The use of multidetector-computed tomography has been validated to assess aortic valve calcification (Agatston method), with sex-
specific thresholds identifying severe aortic stenosis as ≥ 1200 Agatston units (AU) in women and ≥ 2000 AU in men. Moreover, the presence of low flow is an independent predictor of adverse outcomes, and these patients should be considered to have at least intermediate risk. Interestingly, low flow, with or without sex-specific thresholds, appears to have a higher impact in women than in men.

Evaluation of patients with mitral regurgitation (MR) requires comprehensive echocardiographic assessment, including evaluation of MR severity and signs of volume overload. Current guidelines suggest absolute measurements of left ventricular (LV) size as surgical cutoff criteria; however, measurements not indexed to body surface area may underestimate LV dilation and disease severity, impacting timely diagnosis and intervention in asymptomatic women.

Treatment

Coronary artery disease. In Canada, more women die each year of CAD than of chronic lower respiratory disease, Alzheimer’s disease, diabetes, breast cancer, and all female gynecological cancers combined. Pharmacologic and nonpharmacologic treatment strategies reduce morbidity and mortality and improve health-related quality of life (HRQoL).

Pharmacologic. Patients with stable CAD are maintained on a combination of evidenced-based drugs, including acetylsalicylic acid (ASA; aspirin), statins, beta-blockers, ACEIs, ARBs, digoxin, diuretics, and anti-thrombotic drugs. However, the possibility that the “one size fits all” sex-agnostic approach is not appropriate is becoming apparent. A point now recognized is that cardiovascular (CV) medications have been tested predominantly in clinical trials that were not powered for sex-specific analyses. Nonetheless, experiences in the use of these drugs in chronic conditions indicate the presence of sex differences. Further details are described below.

The maintenance care of stable CAD generally focuses on blood pressure and blood lipid levels. The renin-angiotensin system is one mechanism that regulates blood pressure. Methods of inhibiting the renin-angiotensin system include used of 2 drug classes that operate on different stages in the system. ACEIs act by inhibiting the conversion of angiotensin I to angiotensin II. ARBs function by binding to the angiotensin receptor, thus blocking the angiotensin II access to the binding site. Studies have shown that women are more likely to be ACEI intolerant (odds ratio [OR] 1.70; 95% CI, 1.65-1.75). However, pharmacokinetic differences have been identified with the use of ARBs, such as the finding that women’s maximum serum concentrations (given the same dosage) of losartan and telmisartan were twice that in men. Despite such findings, the only sex-specific restriction regarding ARBs is directed to pregnant and lactating women.

Beta-blockers are used in men and women with CAD to decrease the harmful effects of excessive adrenergic stimulation to the heart (ie, angina symptoms in men and women with stable CAD). The Canadian Cardiovascular Society 2014 guidelines for the diagnosis and management of stable ischemic heart disease recommend beta-blockers as first-line therapy for chronic stable angina post-MI, and beta-blockers or long-acting calcium channel blockers for uncomplicated chronic stable angina. Registry studies show that women are less likely than men to receive treatment with beta-blockers. In Canada, use of beta-blockers in obstructive and nonobstructive CAD did not differ by sex 3 months postangiography. However, only 67.5% of women with obstructive CAD, and 41.9% of women with nonobstructive CAD, were prescribed beta-blockers. Alternative anti-anginal medications include non-dihydropyridine calcium-channel blockers (CCBs), which lower heart rate and myocardial inotropism. Women with obstructive and nonobstructive CAD are more commonly prescribed CCBs ($P < 0.001$), although only 38.3% of women with obstructive CAD, and 31% of women with nonobstructive CAD, are prescribed CCBs 3 months post-coronary angiography.

Second-line agents for symptom relief include long-acting nitrates, which reduce pre-load and contribute to coronary vasodilatation. In cases of refractory angina or intolerance to first-line agents, alternate second-line therapies are recommended. Results from the Prospective Observational Longitudinal Registry of Patients with Stable Coronary Artery disease (CLARIFY) international registry across 45 countries suggest that, in addition to calcium-channel blockers, women are more frequently prescribed long-acting nitrates for stable CAD, compared with men ($P < 0.001$).

Although the mechanism of action is not completely understood, ranolazine (recently approved for use in Canada) does not affect heart rate or blood pressure, and it acts on late inward sodium current in myocardial cells, possibly reducing oxygen demand by inhibiting intracellular calcium overload. Effects on potassium currents may cause QT prolongation, and monitoring is warranted when initiating ranolazine. Ranolazine is metabolized by cytochrome P450 family 3 subfamily A member 4 (CYP3A4), and care must be taken to avoid drug-drug interactions with other drugs metabolized or inhibiting CYP3A4, and those causing QT prolongation. Use of ranolazine has been associated with a reduction in angina frequency, nitrroglycerin consumption, and total exercise duration in patients with stable CAD, with evidence of improved outcomes (ie, less angina, improved function, and better HRQoL) in women with myocardial ischemia and nonobstructive CAD. More research powered for sex-based analyses is needed. Nicorandil, a systemic and coronary vasodilator, available through special access programs requiring approval by Health Canada, also has been used for patients with refractory symptoms or vasospastic angina, on a case-by-case basis, but robust trials are lacking.

One of the most commonly used drugs worldwide, ASA, is routinely given to at-risk patients to prevent and treat coronary heart disease. However, the platelet inhibition effect of ASA varies among patients, and the underlying reasons for this are not clear. In the Physician’s Health Study, a 44% reduction in risk of MI in men occurred (relative risk [RR], 0.56, 95% CI, 0.45-0.70, $P < 0.00001$) in the aspirin group, compared with the placebo group, with inconclusive benefit for stroke and cardiovascular deaths. The risk reduction in MI was evident in men aged >50 years ($P = 0.02$). Aspirin appears to have greatest benefit in women of reducing risk of mortality from cardiovascular disease (CAD and stroke; RR,
0.62, 95% CI, 0.55-0.71), with this effect most pronounced within the first 5 years of use and in older women (P < 0.001).131

Statins are a group of drugs used to lower blood cholesterol in both men and women. The inconclusive results from studies of sex differences in the administration and effects of statins are under constant debate. The justification for the use of statins in prevention: an intervention trial evaluating Rosuvastatin (JUPITER) trial showed an increased risk of diabetes in women taking statins, compared with that in men.132 Women are also at higher risk of statin-induced myotoxicity.133

A Dutch cohort study examined adherence to guidelines-based medications after STEMI/NSTEMI by following 52,672 individuals for 12 months after discharge.134 Findings revealed that use of indicated drugs (ASA, P2Y12-inhibitor, statin, beta-blocker, ACE/-AT2-inhibitor) was higher in male patients, compared with that in female patients, regardless of MI subtype (STEMI male 61% vs female 57%, P ≤ 0.001; NSTEMI male 43% vs female 37%, P ≤ 0.001).

Nonpharmacologic. Revascularization can be performed during angiography for obstructive lesions when indicated.88 Currently, no sex-specific guidelines have been developed regarding revascularization in patients with stable angina.

Chronic heart failure. Women are underrepresented relative to disease prevalence as participants in clinical trials of HF; drug dosing protocols, as well as estimates of treatment efficacy and adverse events, are derived from trials with primarily men as trial participants.135,136 Trials often are inadequately powered for sex-specific analysis, and subgroup analyses, when reported, often do not include testing for sex-treatment interactions.135,136 The underrepresentation of women relative to sex distribution of disease has persisted over time, with no change in trends over the past 20 years.136 Sex-specific eligibility criteria; trial leadership by male investigators; and drug, device, or surgical interventions are independently associated with underenrollment of women with HF, highlighting areas that can be targeted to increase enrollment of women.

Pharmacologic. The recent Canadian Cardiovascular Society/Canadian Heart Failure Society (CCS/CHFS) guidelines for HFpEF recommend 4 classes of medications, as follows137: (i) angiotensin receptor-neprilysin inhibitor (ARNI) as first-line therapy (preferably) or following titration of an ACEI/ARB; (ii) beta-blocker; (iii) MRA; and (iv) sodium glucose transport 2 inhibitor. Other medical therapies may be used based on individual patient characteristics. Women and men are commonly prescribed diuretics, beta-blockers, and MRAs at similar rates, but women are less likely to receive ACEIs.138 Women are more likely to receive digoxin and an ARB, which have not been demonstrated to provide a mortality benefit in HFpEF.139 The response and effect of beta-blockers, MRAs, ACEIs, and ARBs appear to be similar between the sexes, although women may require lower doses of ACEI to receive mortality benefit.135,138-141 A post hoc subgroup analysis of the Digitalis Investigation Group (DIG) trial, which originally showed that digoxin use was associated with an overall decrease in hospitalizations, revealed that female patients prescribed digoxin had a 5.8-fold higher absolute risk of all-cause mortality, compared with male patients (interaction P = 0.034), raising concerns about using digoxin therapy in female patients.135 Most eligible women and men with HFrEF do not receive target doses of medical therapy (including ARNs, beta-blockers, ACEIs, ARBs, and MRAs) following hospitalization, and only a minority have guideline-directed serial incremental dose adjustments over time.135

No known drug therapies reduce the risk of CV mortality in HFpEF, although a few reduce the risk of HF hospitalization. PARAGON-HF (Prospective Comparison of ARNI [angiotensin receptor–neprilysin inhibitor] with ARB [angiotensin-receptor blockers] Global Outcomes in HF With Preserved Ejection Fraction), a trial assessing the efficacy of neprilysin inhibition in HFpEF, was associated with lower rates of the composite primary outcome of death or HF hospitalizations, driven by a reduction in HF hospitalizations; a treatment interaction was noted with sex and LVEF such that women derived benefit from sacubitril-valsalan at a higher LVEF than men.138 The preserved, Empagliflozin Outcome Trial in Patients With Chronic Heart Failure With Preserved Ejection Fraction (EMPEROR-Preserved) trial assessed the efficacy of empagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor, in patients with class II-IV heart failure and an ejection fraction > 40%.144 Empagliflozin reduced the combined risk of cardiovascular death or HF hospitalization by 21% (HR, 0.79 [95% CI, 0.69-0.90] in both female and male patients, with the effect due largely to reduced HF hospitalizations. Increasing evidence indicates that LVEF should be treated as a continuum, as therapies effective in HFrEF also appear to be effective in HF with mildly reduced EF (HFmrEF) and HFpEF. The management of HFpEF should include the following: (i) identification and treatment of underlying etiologies, such as hypertensive heart disease, with exclusion of mimickers of HFpEF; (ii) identification and treatment of comorbid conditions that account for an increasing proportion of hospitalizations and deaths as LVEF increases; (iii) use of pharmacotherapies to reduce the burden of HF hospitalization; (iv) management of volume overload; and (v) lifestyle modification, including caloric reduction among obese patients, and exercise to improve functional capacity and quality of life.142 Long-term prognosis after HFpEF onset is poor; however, female patients have better survival, compared with male patients.146

Nonpharmacologic: Cardiac implantable electronic devices. An estimated 200,000 Canadians live with a cardiac implantable electronic device (CIED).147 Indications for CIED use continue to increase. Presently, evidence regarding CIEDs is predominantly only available in retrospective, observational, and registry studies. By and large, women are underrepresented in CIED studies, thereby limiting evidence-based conclusions. Consequently, the available research regarding sex- and gender-specific observations on the outcomes of CIED is presented below.

Nonpharmacologic: Pacemakers. Sick sinus syndrome and atrial fibrillation with bradyarrhythmias have been shown to be the main indications for permanent pacemaker implantation in women, whereas the main indication in men is atrioventricular block.148 Reports vary on the impact of sex on the selection of cardiac pacemakers; Roeters Van Lennep et al.149 found no
significant differences in the selection of pacemakers based on sex, whereas others have reported that women are less likely than men to receive dual-chamber pacemakers.150,151

Sex may also impact outcomes after device insertion. In a 30-year follow-up study examining the prognostic importance of baseline patient characteristics impacting survival post-permanent pacemaker implantation, women survived longer than men, despite being older at the time of the procedure.152 The Canadian Trial of Physiological Pacing (CTOPP) reported no sex differences in HRQoL in men vs women,153 whereas the Mode Selection Trial (MOST) revealed lower HRQoL scores and worsening functional status in women.154 Complications such as pneumothorax and pocket hematoma are more common in women, and hospitalizations for device-related infections are more common in men.155 Some have suggested that complications in women may be related to smaller body size and vessel diameter, as well as thinner right ventricle wall.156,157

Nonpharmacologic: Implantable cardioverter defibrillators. Sudden cardiac arrest can have devastating impacts for individuals and their families.158 Implantable cardioverter defibrillators (ICDs) are the gold standard of treatment for primary prevention (patients at risk for ventricular tachyarrhythmias) and secondary prevention (patients who have survived a life-threatening ventricular arrhythmia or sudden cardiac arrest) in both women and men.159,160 Several studies have shown improved survival rates with the use of these devices in high-risk patients with CAD, ventricular dysfunction, and inducible ventricular tachycardia.159-164 However, a recent meta-analysis of 6 RCTs, including the Danish Study to Assess the Efficacy of ICDs in Patients with Non-Ischemic Systolic Heart Failure on Mortality (DANISH) trial, revealed that women did not attain significant survival benefit from primary preventive ICDs, but men did.165 Nevertheless, guidelines make the same recommendations for ICDs in women and men based on overall treatment effect estimates in ICD trials.166

Indeed, the underrepresentation of women in clinical trials of ICD therapy (8%-32%) and registries limits assessments for sex-specific differences in treatment effect.119,122,124,125 According to the Canadian ICD registry of 6021 patients referred for ICD, only 21.4% were women.169 Female sex may also influence decisions to implant an ICD. Curtis et al. reported that men were 3.2 times more likely than women to receive ICD therapy in a Medicare sample of > 230,000 patients.167 Subgroup analyses performed on data from the Multicenter Unsustained Tachycardia Trial (MUSTT) and the Multicenter Automatic Defibrillator Implantation Trial II (MADIT-II) trial indicated that mortality does not differ between men and women162,163; however, the Sudden Cardiac Death in Heart Failure Trial (SCD-HeFT) reported a statistically significant improvement in mortality for men only.164 Further subgroup analyses, meta-analyses, and population-based studies have also shown discrepant effects of sex on ICD benefit in primary and/or secondary prevention populations.

The National Cardiovascular Data Registry (NCADR) ICD registry reported that women had a higher rate of peri-procedural complications than men (7.2% vs 4.8%; 95% CI, 1.25-1.53; P < 0.001).160 Women were more likely to have device-related complications at 45 days and 1 year, although mortality did not differ between men and women.

Nonpharmacologic: Cardiac resynchronization therapy. Cardiac resynchronization therapy (CRT) defibrillator (CRT-D) is the current standard of care for refractory HF.159,160 It is a class I recommendation for patients with HF (New York Heart Association (NYHA)/CCS class II, III, and IV), reduced ejection fraction (EF ≤ 35%) despite maximally tolerated doses of guideline-directed medical therapies, and electrocardiographic evidence of ventricular dysynchrony (left bundle branch block [LBBB] and QRS > 150 ms).153 In the landmark Comparison of Medical Therapy, Pacing and Defibrillation in Heart Failure (COMPANION) trial, CRT-D reduced mortality by 36%, compared with medical therapy, with significant reduction in hospitalization and improvement in functional status.173 CRT implantation should be performed only when the LVEF meets guideline criteria for nonischemic cardiomyopathy (NICM) for patients who have received > 3 months of medical therapy or those with ischemic cardiomyopathy > 40 days post MI.159,160,174

In a Swedish registry study,174 female sex and age were independent predictors of non-referral for CRT. CRT-D may confer greater benefits to women than to men in the setting of NICM and LBBB.175-178 Subgroup analysis of the Multicenter Automatic Defibrillator Implantation Trial With Cardiac Resynchronization Therapy (MADIT-CRT) study identified women as exceptional responders to CRT, with a 72% decrease in all-cause mortality and greater reduction in left atrial and ventricular volumes.178 Despite men typically being younger at diagnosis, in a retrospective study conducted by Wang et al., women were found to have a lower risk of death, compared with men in LBBB-associated NICM, after controlling for age at diagnosis.176 Women have a shorter baseline QRS duration (QRSd) and smaller LV volumes than men. Therefore, women have relatively more dysynchrony for any prolonged QRSd, which may contribute to a better outcome with CRT.175 Sex-specific, stricter QRSd criteria recommendations (QRSd > 140 for men and > 130 for women) have been proposed and evaluated, with no significant difference in echocardiographic response to CRT between men and women at 12-month follow-up.175,180 Lastly, in the MADIT-CRT trial, women experienced higher device-related adverse events compared with men (10.5% vs 7.9%, respectively, P = 0.001).177 In summary, women appear to be “super-responders” to CRT, but they are under-referred for CRT, relative to men.

Valvular heart disease. When aortic valve replacement is required, transcatheter aortic valve replacement (TAVR) may be preferred to surgical aortic valve replacement (SAVR) in women, given the following: (i) TAVR may be safer for low-flow patients, with evidence of lower operative mortality;181 (ii) women are more susceptible to prosthesis-patient mismatch, which is less prevalent after TAVR; and (iii) women at intermediate/high risk enrolled in the Women’s International Transcatheter Aortic Valve Implantation (WIN-TAVI) all-female registry had reduced incidence of early mortality and stroke.155 Finally, sex was the only subgroup in which a significant interaction with treatment occurred, with a trend toward superiority of TAVR vs SAVR in women.184 An
unfortunate point to note is that RCTs comparing TAVR to SAVR have not stratified randomization by sex.

Earlier cohorts of MR patients suggested lower rates of referral to surgery in women, with worse outcomes in women with severe MR, compared with outcomes in men. Mitral valve repair is less often successfully performed in women, attributable to a higher occurrence of rheumatic disease and anterior/bileaflet valve prolapse. Mortality following mitral valve surgery is similar or slightly higher in women, compared with men, and women are more likely to present with postoperative HF, which may be due to more-advanced disease on presentation. Transcatheter mitral valve repair with the edge-to-edge approach may have less impact in women, compared with men, as the Cardiovascular Outcomes Assessment of the MitraClip Percutaneous Therapy for Heart Failure Patients With Functional Mitral Regurgitation (COAPT) trial demonstrated no superiority of the transcatheter intervention over standard therapy in women and an interaction between sex and treatment with regard to HF rate at 24 months. On the other hand, the study enrolled only 34% of women who may have been at a more advanced stage of LV dilation, as dimensions were not indexed to body surface area. However, as women have a more extensive calcification of the mitral annulus, transcatheter interventions, as well as surgical intervention, may create higher risk in women. Moreover, calcification of the mitral annulus is a contraindication for transcatheter annuloplasty of the mitral valve, and a concern for TAVR. Surgical intervention for tricuspid regurgitation, as an isolated intervention, is performed more in women than in men, and it is associated with an important risk of mortality. In recent years, several transcatheter devices have been developed to repair or replace the tricuspid valve, and they seem to improve outcomes, compared with conservative management.

Cardiovascular Rehabilitation/Secondary Prevention

Many cardiovascular diseases are chronic in nature, disrupt an individual’s life, and create disturbances in various dimensions of HRQoL.

Survivor’s quote:

“A Woman Survivor’s Perspective—With a cardiac diagnosis, there is Loss. Fear. Denial. Anger. There is deep to the core existential uncertainty and angst. One is shaken with the reality of one’s mortality. The physical healing and recovery is a task on one level. However, this must be accompanied by the emotional and spiritual re-piecing together of one’s new life.”

“The challenge of a cardiac rehab program is to include not just exercise and educational components, but also to provide emotional, psychological and social supports to help heal the fragile and traumatized psyche, in order to give the woman her life—with hope, balance, and perspective—back.”

—M. Hardy, Woman With Lived Experience, Canadian Women’s Heart Health Alliance (personal communication, June 16, 2019)

A holistic, gender-tailored, and lifelong approach to rehabilitation and secondary prevention is necessary. Self-management programs allow women to take an active role in the management of CVD and are important predictors of successful behaviour change. Comprehensive cardiovascular rehabilitation/secondary prevention (CR/SP) programs offer structured exercise and physical activity promotion, health education, CVD risk factor management, and psychological support to optimize long-term health outcomes for both primary and secondary prevention. CR/SP programs are widely endorsed as a class IA recommendation and as a standard quality-care indicator for patients diagnosed with CAD. Participation in CR/SP improves HRQoL and functional status, and reduces morbidity and mortality by 50% in patients with CAD. In a recent retrospective cohort study (n = 18,383), exercise-based CR was linked to significantly lower odds of all-cause mortality (0.37; 95% CI, 0.29-0.47) and rehospitalization (0.29; 95% CI, 0.27-0.32) compared with PCI or PCI plus CR. However, results were not stratified by sex.

The “2017 Comprehensive Update of the Canadian Cardiovascular Society Guidelines for the Management of Heart Failure” provides specific recommendations for exercise for HF patients, including in patients with an ICD and/or CRT therapy. A 2019 Cochrane review of 44 RCTs (5783 subjects) of CR/SP in HF (primarily HFrEF) found participation in CR/SP programs to be associated with reductions in all-cause (risk ratio [RR]: 0.70; 95% CI, 0.60 to 0.83) and HF-specific hospitalization (RR: 0.59; 95% CI, 0.42 to 0.84) and improved HRQoL. The role of exercise training in HFrEF patients remains less conclusive; however, available data suggest it does provide benefits, including improved exercise capacity and quality of life.

The “2019 Canadian Cardiovascular Society Position Statement for Transcatheter Aortic Valve Implantation” recommends rehabilitation and physical activity, as appropriate. A 2021 Cochrane review of 6 RCTs in 364 patients who were enrolled in either open or percutaneous heart valve surgery was unable to make conclusions regarding the effect of exercise-based CR on health outcomes in VHD patients. A recent, large cohort study of patients who underwent open valve surgery in the US (n = 41,369; 41% female) found that those who enrolled in CR/SP programs (43.2%) had lower cumulative hospitalization (adjusted HR, 0.66; 95% CI, 0.63-0.69) and mortality (adjusted HR, 0.39; 95% CI, 0.35-0.44) at 1 year, compared with patients who did not participate in a CR/SP program.

In the Canadian healthcare system, referral is the sole requirement for access to and enrollment in CR/SP programs. Ideally, CR referral occurs at hospital discharge through systematic referral, and enrollment should occur within 30 days of acute hospitalization. Unfortunately, women are substantially less likely to be referred to CR/SP programs, and once referred, they are 36% less likely to participate than men. Women would benefit from CR participation, as they are more likely to have depression, diabetes, HF, high blood pressure, and reduced HRQoL following a cardiac event, compared with men. There is an inherent need to distinctly enhance the nature and level of CR/SP care provided to women with CVD in Canada.

Strategies such as healthcare provider endorsement, in-hospital discussion with a peer liaison (patient who has completed CR), early follow-up, and telephone interventions can be effective for improving CR/SP program enrollment.
However, many women prefer gender-tailored or women-only CR programs, with a limited number of trials demonstrating greater adherence and improved mental health outcomes, in comparison to traditional co-ed programs. Conventional CR/SP programs may not meet the recovery needs of all women; it has been suggested that women’s primary “rehabilitative need” may be social support, specifically from women with similar illness experiences. A recent national survey of 1654 Canadian women reinforced the need for social support and revealed perceptions that CR/SP programs are male-centric, lack emotional support and time for social interaction, and reflect a preoccupation with structured exercise that may not be compatible with women’s lifestyles. In addition to CR/SP participation barriers for women, consideration of psychological and mental health implications of cardiac diagnoses is encouraged. Programs could benefit from mental health supports incorporated in a seamless, non-stigmatizing manner.

Women are also less likely than men to be discharged to inpatient rehabilitation or to participate in rehabilitation following stroke in Canada. The Canadian Stroke Best Practices outline recommendations for rehabilitation and recovery. Following stroke, the recommendation is that inpatient rehabilitation therapy begin as early as possible once patients are medically stable and able to participate. Individuals with ongoing rehabilitation needs after leaving the hospital should continue to have access to interdisciplinary, specialized stroke services, including facility-based outpatient services and/or in-home rehabilitation services.

Women’s reduced participation in CR/SP programs is due to a complex and unique mix of demographic, socioeconomic, medical, and societal challenges faced by women. Barriers to women’s CR/SP participation occur across referral, enrollment, completion, and adherence. Common barriers include the following:

(i) financial factors (low income, transportation issues, medical insurance coverage, etc.);
(ii) social factors (racial and ethnic populations, family responsibilities and stressors, low education, etc.);
(iii) lifestyle factors (cigarette smoking, physical inactivity, etc.);
(iv) medical comorbidities (obesity, diabetes, previous MI, etc.);
(v) institutional factors (limited physician referrals, limited healthcare provider endorsement, etc.).

Novel approaches, including home-based, online/virtual CR/SP with technology options, and women-only programs, provide alternatives to reduce program barriers. A recent online survey of CR availability and delivery in Canada identified 182 CR programs across 10 of 13 provinces/territories. Of the 57 responding programs, 49 (79.0%) offered alternative or home-based CR; 3 (5.5%) had women-only CR programming; and 7 programs (14.6%) in Ontario offered women-only sessions or classes. Other Canadian-based programs include the Heart Wise Exercise (HWE) model (heartwise.ottawaheart.ca), which utilizes existing community-based exercise programs to deliver safe and appropriate exercise classes to stable outpatients with chronic disease. More than 250 HWE facilities and 4400 HWE trained fitness leaders are available in Canada. Approximately 89% of HWE attendees in 2015 were women, with a mean age of 60 years, and in 2016-2017, a total of 77% of HWE attendees were women, with a mean age of 75 years. HWE leaders encourage self-monitoring and daily aerobic exercise, and attendees are satisfied with the HWE model. Mobile health technologies also have been developed to help women manage weight and increase physical activity. Although women in other populations indicate that these technologies are supportive, motivate healthy behaviours, reduce symptoms, and improve HRQoL, more evidence is needed in women with CVD.

Conclusions

Sex- and gender-specific differences are present in the diagnosis and treatment of ischemic heart disease in women. Similarly, although the signs and symptoms of HFrEF are similar between women and men, women often demonstrate greater symptom burden and are less likely to receive guideline-directed medical therapies. Emerging data indicate sex differences in diagnosis and pharmacologic and non-pharmacologic treatments for HFrEF, valvular heart disease, and stroke. Current guidelines are limited in scope and must be further developed and disseminated in order to improve quality of life and outcomes for women with CVDs.

Acknowledgements

The authors gratefully acknowledge Lisa Comber for her coordination of this effort. Special thanks go to Alex Desjarlais from the University of Calgary and Manu Sandhu and Angela Poitras from the University of Ottawa Heart Institute for their graphic design of the chapter illustration. This chapter has been submitted on behalf of the Canadian Women’s Heart Health Alliance (CWHHA), a pan-Canadian network of ~95 clinicians, scientists, allied health professionals, program administrators, and patient partners, whose aim is to develop and disseminate evidence-informed strategies to transform clinical practice and enhance collaborative action on women’s cardiovascular health in Canada. The CWHHA is powered by the Canadian Women’s Heart Health Centre at the University of Ottawa Heart Institute.

Funding Sources

This work was supported by the University of Ottawa Heart Institute Foundation.

Disclosures

The authors have no conflicts of interest to disclose.

References

1. Gulati M, Levy PD, Mukherjee D, et al. 2021 AHA/ACC/ASE/CHEST/SCA/SCCM/C II/SCMR guideline for the evaluation and diagnosis of chest pain: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J Am Coll Cardiol 2021;144:e368–454.

2. Poorthuis MH, Algra AM, Algra A, Kappelle LJ, Klijn CJ. Female- and male-specific risk factors for stroke: a systematic review and meta-analysis. JAMA Neurol 2017;74:75-81.
3. Roger VL, Farkouh ME, Weston SA, et al. Sex differences in evaluation and outcome of unstable angina. JAMA 2000;283:646-52.

4. Scirica BM, Moliterno DJ, Every NR, et al. Differences between men and women in the management of unstable angina pectoris (The GUARANTEE Registry). The GUARANTEE Investigators. Am J Cardiol 1999;84:1145-1150.

5. Ferry AV, Anand A, Strachan FE, et al. Presenting symptoms in men and women diagnosed with myocardial infarction using sex-specific criteria. J Am Heart Assoc 2019;8:e012307.

6. Brush JE Jr, Krumholz HM, Greene EJ, Dreyer RP. Sex differences in symptom phenotypes among patients with acute myocardial infarction. Circ Cardiovasc Qual Outcomes 2020;13:e005948.

7. Lichtman JH, Leifheit EC, Safdar B, et al. Sex differences in the presentation and perception of symptoms among young patients with myocardial infarction. Circulation 2018;137:781-90.

8. Canto J, Canto E, Goldberg R. Time to standardize and broaden the criteria of acute coronary symptoms presentations in women. Can J Cardiol 2014;30:721-8.

9. Kirchberger I, Heier M, Wende R, von Scheidt W, Meisinger C. The sex-specific interpretation of myocardial infarction symptoms and its role in the decision process to seek treatment: the MONICA/KORA Myocardial Infarction Registry. Clin Res Cardiol 2012;101:909-16.

10. Pepine C, Ferdinand K, Shaw L, et al. Emergence of nonobstructive coronary artery disease: a woman’s problem and need for change in angiography. J Am Coll Cardiol 2015;66:1918-33.

11. Hadid LAA, Al Barmawi M, Al Hmaimat NAA, Shoqirat N. Factors associated with prehospital delay among men and women newly experiencing acute coronary syndrome: a qualitative inquiry. Cardiol Res Pract 2020;2020:3916361.

12. Sjostrom-Strand A, Fridlund B. Women’s descriptions of symptoms and delay reasons in seeking medical care at the time of a first myocardial infarction: a qualitative study. Int J Nurs Stud 2008;45:1003-10.

13. von Eisenhart Rothe AF, Albarqouni L, Gartner C, et al. Sex specific impact of prodromal chest pain on pre-hospital delay time during an acute myocardial infarction: findings from the multicenter MEDEA study with 619 STEMI patients. Int J Cardiol 2015;201:581-6.

14. Bugiardini R, Ricci B, Cenko E, et al. Delayed care and mortality among women and men with myocardial infarction. J Am Heart Assoc 2017;6:e005968.

15. Bhatia PM, Daniels I.B. Highly sensitive cardiac troponins: the evidence behind sex-specific cutoffs. J Am Heart Assoc 2020;9:e015272.

16. Anand SS, Xie CC, Mehta S, et al. Differences in the management and prognosis of women and men who suffer from acute coronary syndromes. J Am Coll Cardiol 2005;46:1845-51.

17. Gan SC, Beaver SK, Houck PM, et al. Treatment of acute myocardial infarction and 30-day mortality among women and men. N Engl J Med 2000;343:8-15.

18. Hansen KW, Soerensen R, Madsen M, et al. Developments in the invasive diagnostic—therapeutic cascade of women and men with acute coronary syndromes from 2005 to 2011: a nationwide cohort study. BMJ Open 2015;5:e007785.

19. Tamis-Holland JE, Jneid H. Myocardial infarction with nonobstructive coronary arteries (MINOCA): It’s time to face reality. J Am Heart Assoc 2018;7:e009635.

20. Pasupathy S, Air T, Dreyer RP, Tavella R, Belframe JF. Systematic review of patients presenting with suspected myocardial infarction and nonobstructive coronary arteries. Circulation 2015;131:861-70.

21. Pathik B, Raman B, Mohd Amin NH, et al. Troponin-positive chest pain with unobstructed coronary arteries: incremental diagnostic value of cardiovascular magnetic resonance imaging. Eur Heart J Cardiovasc Imaging 2016;17:1146-52.

22. Reynolds HR, Machara A, Kwong RY, et al. Coronary optical coherence tomography and cardiac magnetic resonance imaging to determine underlying causes of myocardial infarction with nonobstructive coronary arteries in women. Circulation 2021;143:624-40.

23. Hayes SN, Kim ESH, Saw J, et al. Spontaneous coronary artery dissection: current state of the science: a scientific statement from the American Heart Association. Circulation 2018;137:e523-57.

24. Aslam A, Stojanovska J. Spontaneous coronary artery dissection: an underdiagnosed clinical entity—a primer for cardiac imagers. Radiographics 2021;41:b1897-915.

25. Pacheco C, Mullen K-A, Coutinho T, et al. The Canadian Women’s Heart Health Alliance atlas on the epidemiology, diagnosis, and management of cardiovascular disease in women; chapter 5: sex- and gender-specific manifestations of cardiovascular disease. CJC Open 2021;4:243-62.

26. McDonagh TA, Metra M, Adamo M, et al. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: developed by the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure of the European Society of Cardiology (ESC) with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 2021;42:5399-726.

27. Eggers KM, Lindahl B. Application of cardiac troponin in cardiovascular diseases other than acute coronary syndrome. Clin Chem 2017;63:223-35.

28. Cediel G, Codina P, Spitaleri G, et al. Gender-related differences in heart failure biomarkers. Front Cardiovasc Med 2021;7:617705.

29. Redfield MM, Redheffer RJ, Jacobsen SJ, et al. Plasma brain natriuretic peptide concentration: impact of age and gender. J Am Coll Cardiol 2002;40:976-82.

30. Maeder MT, Rickenbacher P, Rickli H, et al. N-terminal pro brain natriuretic peptide-guided management in patients with heart failure and preserved ejection fraction: findings from the Trial of Intensified Versus Standard Medical Therapy in Elderly Patients with Congestive Heart Failure (TIME-CHF). Eur J Heart Fail 2013;15:1148-56.

31. Salah K, Stienen S, Pinto YM, et al. Prognosis and NT-proBNP in heart failure patients with preserved versus reduced ejection fraction. Heart 2019;105:1182-9.

32. Valle R, Aspromonte N, Feola M, et al. B-type natriuretic peptide can predict the medium-term risk in patients with acute heart failure and preserved systolic function. J Card Fail 2005;11:498-503.

33. Van Spall HGC, Deelplips EM, Lee SF, et al. Sex-specific clinical outcomes of the PACT-HF randomized trial. Circ Heart Fail 2021;14:e008548.

34. Blumer V, Gayowski A, Xie F, et al. Effect of patient-centered transitional care services on patient-reported outcomes in heart failure: sex-specific analysis of the PACT-HF randomized controlled trial. Eur J Heart Fail 2021;23:1488-98.

35. Averbuch T, Mohamed MO, Islam S, et al. The association between socioeconomic status, sex, race / ethnicity and in-hospital mortality among hospitalized patients for heart failure. J Card Fail 2022;697-709.
Cordonnier C, Sprieg N, Sandset EC, et al. Stroke in women — from evidence to inequalities. Nat Rev Neurol 2017;13:521-32.

Heart and Stroke Foundation. 2018 Heart Report: Ms.Understood. Available at: https://www.heartandstroke.ca/-/media/pdf-canada/2018-heart-month/hs_2018-heart-report_en.ashx. Accessed August 18, 2020.

Wardlaw JM, Seymour J, Cairns J, et al. Immediate computed tomography scanning of acute stroke is cost-effective and improves quality of life. Stroke 2004;35:2477-83.

Ezzeddine MA, Lev MH, McDonald CT, et al. CT angiography with whole brain perfused blood volume imaging: added clinical value in the assessment of acute stroke. Stroke 2002;33:959-66.

Klopa SK, Nahavi DG, Gaus C, et al. Acute stroke assessment with CT: Do we need multimodal evaluation? Radiology 2004;233:79-86.

Hopyan J, Ciarello A, Dowlatshahi D, et al. Certainty of stroke diagnosis: incremental benefit with CT perfusion over noncontrast CT and CT angiography. Radiology 2010;255:142-53.

Tan JC, Dillon WP, Liu S, et al. Systematic comparison of perfusion-CT and CT-angiography in acute stroke patients. Ann Neurol 2007;61:533-43.

Mehta LS, Beckie TM, DeVon HA, et al. Acute myocardial infarction in women: a scientific statement from the American Heart Association. Circulation 2016;133:916-47.

Amsterdam EA, Wenger NK, Brindis RG, et al. 2014 AHA/ACC guideline for the management of patients with non-ST-elevation acute coronary syndromes: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2014;64:e139-228.

O’Gara PT, Kushner FG, Ascheim DD, et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 2013;127:e362-425.

Pelletier R, Humphries KH, Shimony A, et al. Sex-related differences in access to care among patients with premature acute coronary syndrome. CMAJ 2014;186:497-504.

Boersma E, Harrington RA, Moliterno DJ, et al. Platelet glycoprotein IIIb/IIa inhibitors in acute coronary syndromes: a meta-analysis of all major randomised clinical trials. Lancet 2002;359:189-98.

Mehta SR, Yusuf S, Peters RJ, et al. Effects of pretreatment with clopidogrel and aspirin followed by long-term therapy in patients undergoing percutaneous coronary intervention: the PCI-CURE study. Lancet 2001;358:527-33.

Landsy AJ, Hochman JS, Ward PA, et al. Percutaneous coronary intervention and adjunctive pharmacotherapy in women: a statement for healthcare professionals from the American Heart Association. Circulation 2005;111:940-53.

Maas AH, Euler M, Bongers MY, et al. Practice points in gynecology: abnormal uterine bleeding in premenopausal women taking oral anticoagulant or antiplatelet therapy. Maturitas 2015;82:355-9.

Mosc L, Benjamin EJ, Berra K, et al. Effectiveness-based guidelines for the prevention of cardiovascular disease in women—2011 update: a guideline from the American Heart Association. Circulation 2011;123:1243-62.

ISIS-2 (Second International Study of Infarct Survival) Collaborative Group. Randomised trial of intravenous streptokinase, oral aspirin, both, or neither among 17,187 cases of suspected acute myocardial infarction: ISIS-2. Lancet 1988;2:349-60.

Blomkalns AL, Chen AY, Hochman JS, et al. Gender disparities in the diagnosis and treatment of non-ST-segment elevation acute coronary syndromes: large-scale observations from the CRUSADE (Can Rapid Risk Stratification of Unstable Angina Patients Suppress Adverse Outcomes with Early Implementation of the American College of Cardiology/American Heart Association Guidelines) National Quality Improvement Initiative. J Am Coll Cardiol 2005;45:832-7.

Regitz-Zagrosek V, Roos-Hesselink JW, Bauersachs J, et al. 2018 ESC guidelines for the management of cardiovascular diseases during pregnancy. Eur Heart J 2018;39:3165-241.

Botha TC, Pilcher GJ, Wolmarans K, Blom DJ, Raal FJ. Statins and other lipid-lowering therapy and pregnancy outcomes in homoyzous familial hypercholesterolaemia: a retrospective review of 39 pregnancies. Atherosclerosis 2018;277:502-7.

Mulvagh SL, Mullen KA, Nerenberg KA, et al. The Canadian Women’s Heart Health Alliance ATLAS chapter 4: sex- and gender-unique disparities: CVD across the lifespan of a woman. CJC Open 2021;4:115-32.

Yan AT, Yan RT, Tan M, et al. Management patterns in relation to risk stratification among patients with non-ST elevation acute coronary syndromes. Arch Intern Med 2007;167:1009-16.

Stehli J, Martin C, Brennan A, et al. Sex differences persist in time to presentation, revascularization, and mortality in myocardial infarction treated with percutaneous coronary intervention. J Am Heart Assoc 2019;8:e012161.

Pacheco C, Boivin-Proulx L-A, Bastiany A, et al. Impact of STEMI diagnosis and catheterization laboratory activation systems on sex- and age-based differences in treatment delay. CJC Open 2021;3:723-32.

Udell JA, Koh M, Qiu F, et al. Outcomes of women and men with acute coronary syndrome treated with and without percutaneous coronary revascularization. J Am Heart Assoc 2017;6:e004319.

Heer T, Hochadel M, Schmidt K, et al. Sex differences in percutaneous coronary intervention-insights from the coronary angiography and PCI Registry of the German Society of Cardiology. J Am Heart Assoc 2017;6:e004972.

Bjerking LH, Hansen KW, Soersen R, et al. Drug-eluting stents in large coronary vessels improve both safety and efficacy compared with bare-metal stents in women: a pooled analysis of the BASKET-PROVE I and II trials. Open Heart 2019;6:e000986.

Hillis LD, Smith PK, Anderson JL, et al. 2011 ACCF/AHA guideline for coronary artery bypass graft surgery: executive summary. Circulation 2011;124:2610-42.

Teo KK, Cohen E, Buller C, et al. Canadian Cardiovascular Society/Canadian Association of Interventional Cardiology/Canadian Society of Cardiac Surgery position statement on revascularization—multivessel coronary artery disease. Can J Cardiol 2014;30:1482-91.

Hlatky MA, Boohrooy DB, Bravata DM, et al. Coronary artery bypass surgery compared with percutaneous coronary interventions for multivessel disease: a collaborative analysis of individual patient data from ten randomised trials. Lancet 2009;373:1190-7.

Norris CM, Tannenbaum C, Pilote L, et al. Systematic incorporation of sex-specific information into clinical practice guidelines for the management of ST-segment-elevation myocardial infarction: feasibility and outcomes. J Am Heart Assoc 2019;8:e011597.
67. Alam M, Bandedi SJ, Kayani WT, et al. Comparison by meta-analysis of mortality after isolated coronary artery bypass grafting in women versus men. Am J Cardiol 2013;112:309-17.

68. Vaccarino V, Abramson JL, Velledar E, Weintraub WS. Sex differences in hospital mortality after coronary artery bypass surgery: evidence for a higher mortality in younger women. Circulation 2002;105:1176-81.

69. Hassan A, Chiasson M, Burh K, Hirsch GM. Women have worse long-term outcomes after coronary artery bypass grafting than men. Can J Cardiol 2005;21:757-62.

70. Mahowald MK, Alqahtani F, Alkhouli M. Comparison of outcomes of coronary revascularization for acute myocardial infarction in men versus women. Am J Cardiol 2020;125:1-7.

71. Nicolini F, Vezzani A, Fortuna D, et al. Gender differences in outcomes following isolated coronary artery bypass grafting: long-term results. J Cardiotoracovascular Surg 2016;11:144.

72. Ter Woorst JF, van Straten AHM, Houterman S, Soliman-Hamad MA. Sex difference in coronary artery bypass grafting: preoperative profile and early outcome. J Cardiothorac Vasc Anesth 2019;33:2679-84.

73. Filardo G, Hamman BL, Pollock BD, et al. Excess short-term mortality in women after isolated coronary artery bypass graft surgery. Open Heart 2016;3:e000386.

74. Hara H, Takahashi K, van Klaveren D, et al. Sex differences in all-cause mortality in the decade following complex coronary revascularization. J Am Coll Cardiol 2020;76:889-99.

75. Jegaden OJL, Farhat F, Jegaden MPO, et al. How decisive is the number of distal arterial anastomoses in coronary bypass surgery? J Cardiothoracovascular Surg 2021;16:6.

76. Attia T, Koch CG, Houghtaling PL, et al. Does a similar procedure result in similar survival for women and men undergoing isolated coronary artery bypass grafting? J Thorac Cardiovasc Surg 2017;153:571-579.e9.

77. Lytle BW. Bilateral internal thoracic artery grafting. Ann Cardiothoracic Surg 2013;2:485-92.

78. Rubens FD, Wells GA, Coutinho T, Eddeen AB, Sun LY. Sex differences after coronary artery bypass grafting with a second arterial conduit. J Thorac Cardiovasc Surg 2022;163:686-95.

79. Vrancic JM, Navia DO, Espinoza JC, et al. Is sex a risk factor for death in patients with bilateral internal thoracic artery grafts? J Thorac Cardiovasc Surg 2019;158:1345-1353.e1.

80. Bushnell CD, Reeves MJ, Zhao X, et al. Sex differences in quality of life after ischemic stroke. Neurology 2014;82:922-31.

81. Mainz J, Andersen G, Valentin JB, Gude MF, Johnsen SP. Disentangling sex differences in use of reperfusion therapy in patients with acute ischemic stroke. Stroke 2020;51:2332-8.

82. Sarraj A, Sangha N, Hussain MS, et al. Endovascular therapy for acute ischemic stroke with occlusion of the middle cerebral artery M2 segment. JAMA Neurol 2016;73:1291-6.

83. Piccini JP, Simon DN, Steinberg BA, et al. Differences in clinical and functional outcomes of atrial fibrillation in women and men: two-year results from the ORBIT-AF Registry. JAMA Cardiol 2016;1:282-91.

84. Nguyen PK, Nag D, Wu JC. Sex differences in the diagnostic evaluation of coronary artery disease. J Nucl Cardiol 2011;18:144-52.

85. Shaw LJ, Bailey Merz CN, Pepine CJ, et al. Insights from the NHLBI-sponsored Women’s Ischemia Syndrome Evaluation (WISE) Study: part I: gender differences in traditional and novel risk factors, symptom evaluation, and gender-optimized diagnostic strategies. J Am Coll Cardiol 2006;47(3 suppl):S4-20.

86. Mieres JH, Gula W, Bailey Merz N, et al. Role of noninvasive testing in the clinical evaluation of women with suspected ischemic heart disease: a consensus statement from the American Heart Association. Circulation 2014;130:350-79.

87. Kohli P, Gula W. Exercise stress testing in women: going back to the basics. Circulation 2010;122:2570-80.

88. Koilpillai P, Aggarwal NR, Mulvagh SL. State of the art in noninvasive imaging of ischemic heart disease and coronary microvascular dysfunction in women: indications, performance, and limitations. Curr Attheroscler Rep 2020;22:73.

89. Bokhari S, Shahzad A, Bergmann SR. Superiority of exercise myocardial perfusion imaging compared with the exercise ECG in the diagnosis of coronary artery disease. Coron Artery Dis 2008;19:399-404.

90. Melin JA, Wiens W, Vanbutsele RJ, et al. Alternative diagnostic strategies for coronary artery disease in women: demonstration of the usefulness and efficiency of probability analysis. Circulation 1985;71:535-42.

91. Valei US, Miller TD, Hodge DO, Gibbons RJ. Exercise single-photon emission computed tomography provides effective risk stratification of elderly men and elderly women. Circulation 2005;111:1771-6.

92. Raggi P, Shaw LJ, Berman DS, Callister TQ. Prognostic value of coronary artery calcium screening in subjects with and without diabetes. J Am Coll Cardiol 2004;43:1663-9.

93. Murthy VL, Naya M, Taqueti VR, et al. Effects of sex on coronary microvascular dysfunction and cardiac outcomes. Circulation 2014;129:2518-27.

94. Thomson LE, Wei J, Aggarwal M, et al. Cardiac magnetic resonance myocardial perfusion reserve index is reduced in women with coronary microvascular dysfunction. A National Heart, Lung, and Blood Institute-sponsored study from the Women’s Ischemia Syndrome Evaluation. Circ Cardiovasc Imaging 2015;8:e002481.

95. Barsky L, Merz CNB, Wei J, et al. Even “WISE-R”—an update on the NHLBI-sponsored Women’s Ischemia Syndrome Evaluation. Curr Attheroscler Rep 2020;22:35.

96. Reynolds HR, Shaw LJ, Min JK, et al. Association of sex with severity of coronary artery disease, ischemia, and symptom burden in patients with moderate or severe ischemia: secondary analysis of the ISCHEMIA randomized clinical trial. JAMA Cardiol 2020;5:773-86.

97. Mancini GB, Gosselin G, Chow B, et al. Canadian Cardiovascular Society guidelines for the diagnosis and management of stable ischemic heart disease. Can J Cardiol 2014;30:837-49.

98. Delfiopoulos EM, Van Spall HGC. Improving health-related quality of life for women with acute heart failure. JACC Heart Fail 2021;9:346-8.

99. Van Spall HGC, Hill AD, Fu L, Ross HJ, Fowler RA. Temporal trends and sex differences in intensity of healthcare at the end of life in adults with heart failure. J Am Heart Assoc 2021;10:e018495.

100. Duca F, Zotte-Tufaro C, Kammerlander AA, et al. Gender-related differences in heart failure with preserved ejection fraction. Sci Rep 2018;8:1080.

101. Sorotom Y, Hikoso S, Nakatani D, et al. Sex differences in heart failure with preserved ejection fraction. J Am Heart Assoc 2021;10:e018574.

102. Pieske B, Tschöpe C, de Boer RA, et al. How to diagnose heart failure with preserved ejection fraction: the HFA—PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA)
of the European Society of Cardiology (ESC). Eur Heart J 2019;40: 3297-317.

103. Henning RJ. Diagnosis and treatment of heart failure with preserved left ventricular ejection fraction. World J Cardiol 2020;12:7-25.

104. Hachicha Z, Dumesnil JG, Bogaty P, Pibarot P. Paradoxical low-flow, low-gradient severe aortic stenosis despite preserved ejection fraction is associated with higher afterload and reduced survival. Circulation 2007;115:2856-64.

105. Clavel MA, Burwash IG, Pibarot P. Cardiac imaging for assessing low-gradient severe aortic stenosis. JACC Cardiovasc Imaging 2017;10:185-202.

106. Clavel MA, Messika-Zeitoun D, Pibarot P, et al. The complex nature of discordant severe calcified aortic valve disease grading: new insights from combined Doppler-echocardiographic and computed tomographic study. J Am Coll Cardiol 2013;62:2329-38.

107. Otto CM, Nishimura RA, Bonow RO, et al. 2020 ACC/AHA guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2021;143: e72-227.

108. Clavel MA, Dumesnil JG, Capoulade R, et al. Outcome of patients with aortic stenosis, small valve area, and low-flow, low-gradient despite preserved left ventricular ejection fraction. J Am Coll Cardiol 2012;60:1259-67.

110. Mantovani F, Clavel MA, Micheleina HI, et al. Comprehensive imaging in women with organic mitral regurgitation: implications for clinical outcome. JACC Cardiovasc Imaging 2016;9:388-96.

111. Statistics Canada. Deaths and mortality rate, by selected grouped causes, sex and geography—Canada. Available at: https://www150.statcan.gc.ca/n1/pub/84f0209h/2009000/t001-eng.htm. Accessed April 23, 2021.

112. Fihn SD, Blankenship JC, Alexander KP, et al. 2014 ACC/ AHA/ AATS/PCNA/SCAI/STS focused update of the guideline for the diag-
nosis and management of chronic coronary syndromes. Eur Heart J 2015;36: 3291-335.

113. Cooney MT, Kotseva K, Dudina A, et al. Determinants of risk factor control in subjects with coronary heart disease: a report from the EUROASPIRE III investigators. Eur J Prev Cardiol 2013;20:686-91.

114. Mahmoudpour SH, Baranova EV, Souverein PC, et al. Determinants of refractory angina: Canadian Cardiovascular Society/Canadian Pain Society Joint guidelines. Can J Cardiol 2012;28(2 suppl):S20-41.

115. Chaitman BR, Pepine CJ, Parker JO, et al. Effects of ranolazine with angiotensin-converting enzyme inhibitor (ACEI) intolerance and angina frequency in patients with severe chronic angina: a randomized controlled trial. JAMA 2004;291:309-16.

116. Stone PH, Gratsiansky NA, Blokhin A, Huang IZ, Meng L. Anti-
anginal efficacy of ranolazine when added to treatment with amiodpine: the ERICA (Efficacy of Ranolazine in Chronic Angina) trial. J Am Coll Cardiol 2006;48:566-75.

117. Mehta PK, Goykhman P, Thomson LE, et al. Ranolazine improves angina in women with evidence of myocardial ischemia but no obstructive coronary artery disease. JACC Cardiovasc Imaging 2011;4: 514-22.

118. Wütz M. Aspirin in coronary artery disease: an appraisal of functions and limitations. Dan Med J 2015;62:B5011.

119. Cooney MT, Kotseva K, Dudina A, et al. Determinants of risk factor control in subjects with coronary heart disease: a report from the EUROASPIRE III investigators. Eur J Prev Cardiol 2013;20:686-91.

120. Hambraeus K, Tydén P, Lindahl B. Time trends and gender differences in prevention guideline adherence and outcome after myocardial infarction: data from the SWEDHEART registry. Eur J Prev Cardiol 2016;23:340-8.

121. Galway S, Adatia F, Grubisic M, et al. Sex differences in cardiac medication use post-catheterization in patients undergoing coronary angiography for stable angina with nonobstructive coronary artery disease. J Womens Health (Larchmt) 2017;26:976-83.

122. Knutti J, Wijns W, Saraste A, et al. 2019 ESC guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J 2019;41:407-77.

123. Chaitman BR, Pepine CJ, Parker JO, et al. Effects of ranolazine with angiotensin-converting enzyme inhibitor (ACEI) intolerance and angina frequency in patients with severe chronic angina: a randomized controlled trial. JAMA 2004;291:309-16.

124. Stone PH, Gratsiansky NA, Blokhin A, Huang IZ, Meng L. Anti-
anginal efficacy of ranolazine when added to treatment with amiodpine: the ERICA (Efficacy of Ranolazine in Chronic Angina) trial. J Am Coll Cardiol 2006;48:566-75.

125. Mehta PK, Goykhman P, Thomson LE, et al. Ranolazine improves angina in women with evidence of myocardial ischemia but no obstructive coronary artery disease. JACC Cardiovasc Imaging 2011; 514-22.

126. Wütz M. Aspirin in coronary artery disease: an appraisal of functions and limitations. Dan Med J 2015;62:B5011.

127. Steering Committee of the Physicians’ Health Study Research Group. Final report on the aspirin component of the Ongoing Physicians’ Health Study. N Engl J Med 1989;321:129-35.

128. Chan AT, Manson JE, Feskanich D, et al. Long-term aspirin use and mortality in women. Arch Intern Med 2007;167:562-72.

129. Ridker PM, Danielson E, Fonseca FAH, et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med 2008;359:2195-207.

130. Cangemi R, Romiti GF, Campolongo G, et al. Gender related differ-
ces in treatment and response to statins in primary and secondary cardiovascular prevention: the never-ending debate. Pharmacol Res 2017;117:148-55.

131. Cherubini A, Benetos A, d’Avola D, et al. Age, gender and lifestyle factors in the development of coronary artery disease. Eur Heart J 2007;28:2906-12.

132. Eindhoven DC, Hilt AD, Zwaan TC, Schalij MJ, Borleffs CJW. Age and gender differences in medical adherence after myocardial infarction: Women do not receive optimal treatment—The Netherlands claims database. Eur J Prev Cardiol 2018;25:181-9.

133. Sullivan K, Doumouras BS, Santema BT, et al. Sex-specific differences in heart failure: pathophysiology, risk factors, management, and out- comes. Can J Cardiol 2021;37:560-71.

134. Eindhoven DC, Hilt AD, Zwaan TC, Schalij MJ, Borleffs CJW. Age and gender differences in medical adherence after myocardial infarction: Women do not receive optimal treatment—The Netherlands claims database. Eur J Prev Cardiol 2018;25:181-9.
169. MacFadden DR, Crystal E, Krahn AD, et al. Sex differences in implantable defibrillator outcomes: findings from a prospective defibrillator database. Ann Intern Med 2012;156:195-203.

170. Ghanbari H, Dallool G, Hasan R, et al. Effectiveness of implantable cardioverter-defibrillators for the primary prevention of sudden cardiac death in women with advanced heart failure: a meta-analysis of randomized controlled trials. Arch Intern Med 2009;169:1500-6.

171. Mohamed MO, Volgman AS, Contractor T, et al. Trends of sex differences in outcomes of cardiac electronic device implantations in the United States. Can J Cardiol 2020;36:69-78.

172. Varma N, Mittal S, Prillinger JB, et al. Survival in women versus men following implantation of pacemakers, defibrillators, and cardiac resynchronization therapy devices in a large, nationwide cohort. J Am Heart Assoc 2017;6:e005031.

173. Bristow MR, Saxon LA, Boehmer J, et al. Cardiac resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med 2004;350:2140-50.

174. Lund LH, Braunschweig F, Benson L, et al. Association between demographic, organizational, clinical, and socio-economic characteristics and underutilization of cardiac resynchronization therapy: results from the Swedish Heart Failure Registry. Eur J Heart Fail 2017;19:1270-9.

175. Arshad A, Moss AJ, Foster E, et al. Cardiac resynchronization therapy is more effective in women than in men: the MADIT-CRT (Multicenter Automatic Defibrillator Implantation Trial with Cardiac Resynchronization Therapy) trial. J Am Coll Cardiol 2011;57:813-20.

176. Wang NC, Mezu-Chukwu U, Adelstein EC, et al. Sex-specific clinical outcomes after cardiac resynchronization therapy in left bundle branch block-associated idiopathic nonischemic cardiomyopathy: a NEOLITII substudy. Ann Noninvasive Electrocardiol 2019;24:e12641.

177. Zareba W, Klein H, Cygankiewicz I, et al. Effectiveness of cardiac resynchronization therapy by QRS morphology in the Multicenter Automatic Defibrillator Implantation Trial with Cardiac Resynchronization Therapy (MADIT-CRT). Circulation 2011;123:1061-72.

178. Zusterzeel R, Spatz ES, Curris JP, et al. Cardiac resynchronization therapy in women versus men: observational comparative effectiveness study from the National Cardiovascular Data Registry. Circ Cardiovasc Qual Outcomes 2015;8(2 suppl 1):S4-11.

179. Bertaglia E, Migliore F, Baritussio A, et al. Stricter criteria for left bundle branch block diagnosis do not improve response to CRT. Pacing Clin Electrophysiol 2017;40:850-6.

180. Strauss DG, Selvester RH, Wagner GS. Defining left bundle branch block in the era of cardiac resynchronization therapy. Am J Cardiol 2011;107:927-34.

181. Herrmann HC, Pibarot P, Hueter I, et al. predictors of mortality and outcomes of therapy in low flow severe aortic stenosis: a PARTNER trial analysis. Circulation 2013;127:2316-26.

182. Clavel MA, Webb JG, Pibarot P, et al. Comparison of the hemodynamic performance of percutaneous and surgical bioprosthesis for the treatment of severe aortic stenosis. J Am Coll Cardiol 2009;53:1883-91.

183. Chieffo A, Petronio AS, Mehilli J, et al. Acute and 30-day outcomes in women after TAVR. Results From the WIN-TAVI (Women’s 1International Transcatheter Aortic Valve Implantation) Real-World Registry. JACC Cardiovasc Interv 2016;9:1589-600.

184. Smith CR, Leon MB, Mack MJ, et al. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N Engl J Med 2011;364:2187-98.

185. Vakamudi S, Jelis C, Mick S, et al. Sex differences in the etiology of surgical mitral valve disease. Circulation 2018;138:1749-51.

186. Stone GW, Lindenfeld J, Abraham WT, et al. Transcatheter mitral-valve repair in patients with heart failure. N Engl J Med 2018;379:2307-18.

187. Ribeiro RVP, Yanagawa B, Légaré JF, et al. Clinical outcomes of mitral valve intervention in patients with mitral annular calcification: a systematic review and meta-analysis. J Card Surg 2020;35:66-74.

188. Muntané-Carol G, Alperi A, Faroux L, et al. Transcatheter interventions for tricuspid valve disease: what to do and who to do it on. Can J Cardiol 2021;37:953-7.

189. Taylor RS, Dalal HM, McDonagh STJ. The role of cardiac rehabilitation in improving cardiovascular outcomes. Nat Rev Cardiol 2022;19:180-94.

190. Stone J, Arthur H, Suskin N, et al. Canadian Guidelines for Cardiac Rehabilitation and Cardiovascular Disease Prevention: Translating Knowledge Into Action. 3. Winnipeg, Canada: Canadian Association of Cardiac Rehabilitation. 2009.

191. Allee DA, Yu B, Bajaj RR, Oh PI. Relationship between cardiac rehabilitation participation and health service expenditures within a universal health care system. Mayo Clin Proc 2017;92:500-11.

192. Dibben G, Faulkner J, Oldridge N, et al. Exercise-based cardiac rehabilitation for coronary heart disease. Cochrane Database Syst Rev 2021;11:CD001800.

193. Anderson L, Oldridge N, Thompson DR, et al. Exercise-based cardiac rehabilitation for coronary heart disease: Cochrane systematic review and meta-analysis. J Am Coll Cardiol 2016;67:1-12.

194. Buckley BJR, de Koning IA, Harrison SL, et al. Exercise-based cardiac rehabilitation vs. percutaneous coronary intervention for chronic coronary syndrome: impact on morbidity and mortality. Eur J Prev Cardiol 2022;29:1074-80.

195. Taylor RS, Long L, Mordi IR, et al. Exercise-based rehabilitation for heart failure: Cochrane systematic review, meta-analysis, and trial sequential analysis. JACC Heart Fail 2019;7:691-705.

196. Asgar AW, Ouzounian M, Adams C, et al. 2019 Canadian Cardiovascular Society position statement for transcatheter aortic valve implantation. Can J Cardiol 2019;35:1437-48.

197. Abraham LN, Sibiliz KL, Berg SK, et al. Exercise-based cardiac rehabilitation for adults after heart valve surgery. Cochrane Database Syst Rev 2021;5:CD010876.

198. Patel DK, Duncan MS, Shah AS, et al. Association of cardiac rehabilitation with decreased hospitalization and mortality risk after cardiac valve surgery. JAMA Cardiol 2019;4:1250-9.

199. Colbert JD, Martin B-J, Haykowsky MJ, et al. Cardiac rehabilitation referral, attendance and mortality in women. Eur J Prev Cardiol 2015;22:979-86.

200. Colella TJF, Gravely S, Marzolini S, et al. Sex bias in referral of women to outpatient cardiac rehabilitation? A meta-analysis. Eur J Prev Cardiol 2015;22:423-41.

201. Grace SL, Russell KL, Reid RD, et al. Effect of cardiac rehabilitation referral strategies on utilization rates: a prospective, controlled study. Arch Intern Med 2011;171:235-41.

202. Ades PA, Keteyian SJ, Wright JS, et al. Increasing cardiac rehabilitation participation from 20% to 70%: a road map from the Million Hearts Cardiac Rehabilitation Collaborative. Mayo Clin Proc 2017;92:234-42.
203. Grace SL, Turk-Adawi K, Santiago de Araújo Pio C, Alter DA. Ensuring cardiac rehabilitation access for the majority of those in need: a call to action for Canada. Can J Cardiol 2016;32(10 suppl 2):S358-64.

204. Yusuf S, Hawken S, Ounpuu S, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet 2004;364:937-52.

205. Beckie TM, Beckstead JW. Predicting cardiac rehabilitation attendance in a gender-tailored randomized clinical trial. J Cardiopulm Rehabil Prev 2010;30:147-56.

206. Grace SL, Midence L, Oh P, et al. Cardiac rehabilitation program adherence and functional capacity among women: a randomized controlled trial. Mayo Clin Proc 2016;91:140-8.

207. Supervía M, Medina-Inojosa JR, Yeung C, et al. Cardiac rehabilitation for women: a systematic review of barriers and solutions. Mayo Clin Proc 2017;92:565-77.

208. Teasell R, Salbach NM, Foley N, et al. Canadian stroke best practice recommendations: rehabilitation, recovery, and community participation following stroke. Part one: rehabilitation and recovery following stroke; 6th edition update 2019. Int J Stroke 2020;15:763-88.

209. Mamataz T, Ghiisi GLM, Pakosh M, Grace SL. Nature, availability, and utilization of woman-focused cardiac rehabilitation: a systematic review. BMC Cardiovasc Disord 2021;21:459.

210. Rathore S, Kumar B, Tehrani S, et al. Cardiac rehabilitation: appraisal of current evidence and utility of technology aided home-based cardiac rehabilitation. Indian Heart J 2020;72:491-9.

211. Resurrección DM, Motrico E. Reasons for dropout from cardiac rehabilitation programs in women: a qualitative study. PLoS One 2018;13:e0200636.

212. Reed JL, Harris JM, Midence L, Yee EB, Grace SL. Evaluating the Heart Wise Exercise program: a model for safe community exercise programming. BMC Public Health 2016;16:190.