Non-orientable genus of a knot in punctured Spin 4-manifolds

Kouki Sato
Tokyo Gakugei University

Abstract. For a closed 4-manifold M and a knot K in the boundary of punctured M, we define $\gamma_M^0(K)$ to be the smallest first Betti number of non-orientable and null-homologous surfaces in punctured M with boundary K. Note that $\gamma_{S^4}^0$ is equal to the non-orientable 4-ball genus and hence γ_M^0 is generalization of the non-orientable 4-ball genus.

While it is very likely that for given M, γ_M^0 has no upper bound, it is difficult to show it. In fact, even in the case of $\gamma_{S^4}^0$, its non-boundedness was shown for the first time by Batson in 2012.

In this talk, we show that for any Spin 4-manifold M, γ_M^0 has no upper bound.