Abstract

We present a phase-space analysis of cosmology containing multiple scalar fields with a positive or negative cross-coupling exponential potential. We show that there exist power-law kinetic-potential-scaling solutions for a sufficiently flat positive potential or for a steep negative potential. The former is the unique late-time attractor, but it is difficult to yield assisted inflation. The later is never stable in an expanding universe. Moreover, for a steep negative potential there exists a kinetic-dominated regime in which each solution is a late-time attractor. In the presence of ordinary matter these scaling solutions with a negative cross-coupling potential are found unstable. We briefly discuss the physical consequences of these results.
1 Introduction

Scalar field cosmological models are of great importance in modern cosmology. The dark energy is attributed to the dynamics of a scalar field, which convincingly realizes the goal of explaining current accelerating expansion of universe generically using only attractor solutions [1]. Furthermore a scalar field can drive an accelerated expansion and thus provides possible models for cosmological inflation in the early universe [2]. In particular, there have been a number of studies of spatially homogeneous scalar field cosmological models with an exponential potential. They are already known to have interesting properties; for example, if one has a universe containing a perfect fluid and such a scalar field, then for a wide range of parameters the scalar field mimics the perfect fluid, adopting its equation of state [3]. These scaling solutions are attractors at late times [4]. The inflation models and other cosmological consequences of multiple scalar fields have also been considered [5, 6].

The scale-invariant form makes the exponential potential particularly simple to study analytically. There are well-known exact solutions corresponding to power-law solutions for the cosmological scale factor \(a \propto t^p \) in a spatially flat Friedmann-Robertson-Walker (FRW) model [7]. More generally the coupled Einstein-Klein-Gordon equations for a single field can be reduced to a one-dimensional system which makes it particularly suitable for a qualitative analysis [8, 9]. Recently, adopting a system of dimensionless dynamical variables [10], the cosmological scaling solutions with positive or negative exponentials have been studied [11]. In general there are many scalar fields with exponential potentials in supergravity, superstring and the generalized Einstein theories, thus multiple potentials may be more interesting. In the previous paper [12], we studied the stability of cosmological scaling solutions in an expanding universe model with multiple scalar fields with positive or negative exponential potentials. A phase-space analysis of the spatially flat FRW models shows that there exist cosmological scaling solutions which are the unique late-time attractors and successful inflationary solutions driven by multiple scalar fields with a wide range of each potential slope parameter \(\lambda \). It is assumed that there is no direct coupling between potentials. Multiple cross-coupling exponential potentials arise in many occasions, for instance, from compactifications of vacuum Einstein gravity on product spaces [13]. Indeed they are a natural outcome of the compactification of higher dimensional theories down to 3+1 dimensions. With this in mind it is worth investigating such potential in a bit more detail.

In this paper, we first study a system of dimensionless dynamical variables of multiple scalar fields with a positive or negative cross-coupling exponential potential. We obtain the scaling solutions and analyze their stability. There still exist cosmological scaling solutions which are the unique late-time attractors. In this model we then introduce a barotropic fluid to the system. We discuss the physical consequences of these results.
2 Cross-coupling Exponential Potential

We consider \(n \) scalar fields \(\phi_i \) with a cross-coupling potential

\[
V = V_0 \exp \left(-\sum_{i=1}^{n} \lambda_i \kappa \phi_i \right),
\]

where \(\kappa^2 = 8\pi G_N \) is the gravitational coupling and \(\lambda_i \) are dimensionless constants characterising the slope of the potential. Further we assume all \(\lambda_i \geq 0 \) since we can make them positive through \(\phi_i \rightarrow -\phi_i \) if some of them are negative. The evolution equation of each scalar field for a spatially flat FRW model with Hubble parameter \(H \) is

\[
\ddot{\phi}_i + 3H \dot{\phi}_i - \lambda_i \kappa V = 0,
\]

subject to the Friedmann constraint

\[
H^2 = \frac{\kappa^2}{3} \left(\sum_{i=1}^{n} \frac{1}{2} \dot{\phi}_i^2 + V \right).
\]

Defining \((n+1)\) dimensionless variables

\[
x_i = \frac{\kappa \dot{\phi}_i}{\sqrt{6}H}, \quad y = \frac{\kappa \sqrt{|V|}}{\sqrt{3}H},
\]

the evolution equations \((2)\) can be written as an autonomous system:

\[
x_i' = -3x_i \left(1 - \sum_{j=1}^{n} x_j^2 \right) \pm \lambda_i \sqrt{\frac{3}{2}} y^2, \quad (5)
\]

\[
y' = y \sum_{j=1}^{n} \left(3x_j^2 - \lambda_j \sqrt{\frac{3}{2}} x_j \right), \quad (6)
\]

where a prime denotes a derivative with respect to the logarithm of the scalar factor, \(N \equiv \ln a \), and the constraint equation \((3)\) becomes

\[
\sum_{i=1}^{n} x_i^2 \pm y^2 = 1. \quad (7)
\]

Throughout this paper we will use upper/lower signs to denote the two distinct cases of \(\pm V_0 > 0 \). \(x_i^2 \) measures the contribution to the expansion due to the field’s kinetic energy density, while \(\pm y^2 \) represents the contribution of the potential energy. We will restrict our discussion of the existence and stability of critical points to expanding universes with \(H > 0 \), i.e., \(y \geq 0 \). Critical points correspond to fixed points where \(x_i' = 0 \) and \(y' = 0 \), and there are self-similar solutions with

\[
\frac{\dot{H}}{H^2} = -3 \sum_{i=1}^{n} x_i^2. \quad (8)
\]
This corresponds to an expanding universe with a scale factor $a(t)$ given by $a \propto t^p$, where

$$p = \frac{1}{3 \sum_{i=1}^{n} x_i^2}. \tag{9}$$

The system (5) and (6) has at most one n-dimensional sphere S embedded in $(n + 1)$-dimensional phase-space corresponding to kinetic-dominated solutions, and a fixed point A, which is a kinetic-potential-scaling solution listed in Table 1.

In order to study the stability of the critical points, using the Friedmann constraint equation (7) we first reduce Eqs.(5) and (6) to n independent equations

$$x_i' = \left(\lambda_i \sqrt{\frac{3}{2} - 3x_i} \right) \left(1 - \sum_{j=1}^{n} x_j^2 \right). \tag{10}$$

Substituting linear perturbations $x_i \to x_i + \delta x_i$ about the critical points into Eqs.(10), to first-order in the perturbations, gives equations of motion

$$\delta x_i' = -2 \left(\lambda_i \sqrt{\frac{3}{2} - 3x_i} \right) \sum_{j=1}^{n} (x_j \delta x_j) - 3 \left(1 - \sum_{j=1}^{n} x_j^2 \right) \delta x_i, \tag{11}$$

which yield n eigenvalues m_i. Stability requires the real part of all eigenvalues being negative.

S: $\sum_{i=1}^{n} x_i^2 = 1, y = 0$. These kinetic-dominated solutions always exist for any form of the potential, which are equivalent to stiff-fluid dominated evolution with $a \propto t^{1/3}$ irrespective of the nature of the potential. Then Eqs.(11) become

$$\delta x_i' = -2 \left(\lambda_i \sqrt{\frac{3}{2} - 3x_i} \right) \sum_{j=1}^{n} (x_j \delta x_j),$$

which yield n eigenvalues: one of them, say m_1, does not vanish, $m_1 = -\sqrt{6}(\sum_{i=1}^{n} \lambda_i x_i - \sqrt{6})$; the remains of them vanish. Thus the solutions are marginally stable for $\sum_{i=1}^{n} (\lambda_i x_i) > \sqrt{6}$. For the special case $\lambda_i = \lambda$, using the constraint equation (7) we find $\sqrt{6}/(n\lambda) < \sum_{i=1}^{n} x_i/n \leq (\sum_{i=1}^{n} x_i^2/n)^{1/2} = 1/\sqrt{n}$. That is, if each scalar field has an identical-slope potential, there exist stable points only for $\lambda^2 > 6/n$.

A: $x_i = \lambda \sqrt{6}/\sqrt{n}, y = \sqrt{\pm(1 - \frac{1}{6} \sum_{i=1}^{n} \lambda_i^2)}$. The potential-kinetic-scaling solution exists for sufficiently flat $\sum_{i=1}^{n} \lambda_i^2 < 6$ positive potentials or steep $\sum_{i=1}^{n} \lambda_i^2 > 6$ negative potentials. The power-law exponent, $p = \sum_{i=1}^{n} \lambda_i^2$, depends on parameter λ_i. From Eqs.(11) we find the eigenvalues

$$m_i = -\frac{1}{2} \left(6 - \sum_{j=1}^{n} \lambda_j^2 \right).$$
Thus the scaling solution is always stable when this point exists for a positive potential, which corresponds to the power-law inflation in an expanding universe when $\sum_{i=1}^{n} \lambda_i^2 < 2$. However, this solution is unstable for a negative potential.

The different regions of λ_i parameter space lead to different qualitative evolution. As an example we consider the cosmologies containing n scalar fields with the cross-coupling potential $\lambda_i = \lambda$. For the sufficiently flat ($\lambda^2 < 6/n$) positive potential, these kinetic-dominated solutions are unstable and the kinetic-potential-scaling solution is the stable late-time attractor. Hence generic solutions start in the former and approach the later at late times. For the steep ($\lambda^2 > 6/n$) positive potential, there exists a stable kinetic-dominated regime, in which each points are the late-time attractors. Hence generic solutions start in kinetic-dominated solution and approach the stable regime. For the flat sufficiently ($\lambda^2 < 6/n$) negative potential, only these kinetic-dominated solutions exist which are unstable scaling solutions. For the steep ($\lambda^2 > 6/n$) negative potential, the kinetic-potential-scaling solution is unstable and there exists a stable kinetic-dominated regime. Hence generic solutions start in a kinetic-dominated regime or the kinetic-potential-scaling solution and approach the stable kinetic-dominated regime at late times.

3 Plus a Barotropic Fluid

We now consider multiple scalar fields with the cross-coupling potential Π evolving in a spatially flat FRW universe containing a fluid with barotropic equation of state $P_\gamma = (\gamma - 1)\rho_\gamma$, where γ is a constant, $0 < \gamma \leq 2$, such as radiation ($\gamma = 4/3$) or dust ($\gamma = 1$). The evolution equation for the barotropic fluid is

$$\dot{\rho}_\gamma = -3H(\rho_\gamma + P_\gamma),$$

subject to the Fridemann constraint

$$H^2 = \frac{\kappa^2}{3} \left(\sum_{i=1}^{n} \frac{1}{2} \dot{\phi}_i^2 + V + \rho_\gamma \right).$$

Label	x_i	y	Existence	Stability
S	$\sum_{i=1}^{n} x_i^2 = 1$	0	all λ_i	$\sum_{i=1}^{n} (\lambda_i x_i) > \sqrt{6}$ stable
A_+	$\frac{\lambda}{\sqrt{6}}$	$\sqrt{1 - \sum_{i=1}^{n} \frac{\lambda_i^2}{6}}$	$\sum_{i=1}^{n} \lambda_i^2 < 6$, $V > 0$	stable
A_-	$\frac{\lambda}{\sqrt{6}}$	$\sqrt{\left(\sum_{i=1}^{n} \frac{\lambda_i^2}{6} - 1\right)}$	$\sum_{i=1}^{n} \lambda_i^2 > 6$, $V < 0$	unstable

Table 1: The properties of the critical points in a spatially flat FRW universe containing n scalar fields with the cross-coupling exponential potential.
We define another dimensionless variable \(z \equiv \kappa \sqrt{\rho} \gamma \frac{\sqrt{3}}{3H} \). The evolution equations (2) and (12) can then be written as an autonomous system:

\[
x_i' = 3x_i \left(1 - \sum_{j=1}^{n} x_j^2 - \frac{\gamma}{2} z^2\right) \pm \lambda_i \sqrt{\frac{3}{2}} y^2, \tag{14}
\]

\[
y' = y \left(3 \sum_{i=1}^{n} x_i^2 + \frac{3\gamma z^2}{2} - \sqrt{\frac{3}{2} \sum_{i=1}^{n} \lambda_i x_i}\right), \tag{15}
\]

\[
z' = \frac{3}{2} z \left(-\gamma + 2 \sum_{i=1}^{n} x_i^2 + \gamma z^2\right), \tag{16}
\]

and the constraint equation becomes

\[
\sum_{i=1}^{n} x_i^2 \pm y^2 + z^2 = 1. \tag{17}
\]

Critical points correspond to fixed points where \(x_i' = 0, y' = 0 \) and \(z' = 0 \), and there are self-similar solutions with

\[
\frac{\dot{H}}{H^2} = -3 \sum_{i=1}^{n} x_i^2 - \frac{3\gamma}{2} z^2. \tag{18}
\]

This corresponds to an expanding universe with a scale factor \(a(t) \) given by \(a \propto t^p \), where

\[
p = 2 \left(\frac{2}{6 \sum_{i=1}^{n} x_i^2 + 3\gamma z^2}\right). \tag{19}
\]

The system (14)-(16) has at most one \(n \)-dimensional sphere \(S \) embedded in \((n + 2) \)-dimensional phase-space corresponding to kinetic-dominated solutions, a fixed point \(A \) which is a kinetic-potential-scaling solution, a fixed point \(B \) which is a fluid-dominated solution, and a fixed point \(C \) which is a fluid-potential-kinetic-scaling solution listed in Table 2.

\(S: \sum_{i=1}^{n} x_i^2 = 1, y = 0, z = 0 \). These kinetic-dominated solutions always exist for any form of the potential, which are equivalent to stiff-fluid dominated evolution with \(a \propto t^{1/3} \) irrespective of the nature of the potential. The linearization of system (14)-(16) about these fixed points yields

\[
\delta x_i' = -2 \left(\lambda_i \sqrt{\frac{3}{2}} - 3x_i\right) \sum_{j=1}^{n} (x_j \delta x_j),
\]

\[
\delta z' = \frac{3}{2} (2 - \gamma) \delta z,
\]

which indicate that the solutions are marginally stable for \(\sum_{i=1}^{n} (\lambda_i x_i) > \sqrt{6} \) and a stiff fluid \(\gamma = 2 \).
A: $x_i = \frac{\lambda_i}{\sqrt{6}}, y = \sqrt{\pm(1 - \frac{1}{6} \sum_{j=1}^{n} \lambda_j^2)}, z = 0$. The potential-kinetic-scaling solution exists for sufficiently flat $\sum_{i=1}^{n} \lambda_i^2 < 6$ positive potentials or steep $\sum_{i=1}^{n} \lambda_i^2 > 6$ negative potentials. The power-law exponent, $p = \frac{2}{\sum_{i=1}^{n} \lambda_i^2}$, depends on the slope of the potential. The linearization of system (14)-(16) about this critical point yields $(n+1)$ eigenvalues

$$m_i = -\frac{1}{2} \left(6 - \sum_{j=1}^{n} \lambda_j^2 \right),$$

$$m_z = -\frac{1}{2} \left(3\gamma - \sum_{j=1}^{n} \lambda_j^2 \right).$$

Thus the scaling solution is stable for a positive potential with $\sum_{i=1}^{n} \lambda_i^2 < 3\gamma$, which corresponds to the power-law inflation in an expanding universe when $\sum_{i=1}^{n} \lambda_i^2 < 2$.

B: $x_i = 0, y = 0, z = 1$. The fluid-dominated solution exists for any form of the potential, corresponding to a power-law solution with $p = 2/3\gamma$.

$$\delta x'_i = -3\delta x_i + (3\gamma - \sqrt{6}\lambda_i)\delta z,$$

$$\delta z' = 3\gamma \delta z,$$

which indicate that the solution is never stable.

C: $x_i = \sqrt{\frac{3}{2}} \sum_{j=1}^{n} \frac{\gamma \lambda_i}{\lambda_j^2}, y = \sqrt{\frac{3}{2} \frac{(2-\gamma)\gamma}{\sum_{i=1}^{n} \lambda_i^2}}$, $z = \sqrt{1 - \frac{3\gamma}{\sum_{i=1}^{n} \lambda_i^2}}$. The fluid-potential-kinetic-scaling solution exists for a positive potential with $\sum_{i=1}^{n} \lambda_i^2 > 3\gamma$. The power-law exponent, $p = 2/3\gamma$, is identical to that of the fluid-dominated solution, depends only on the barotropic index γ and is independent of the slope λ_i of the potential. The linearization of system (14)-(16) about the fixed point yields

$$\delta x'_i = 3(2 - \gamma) x_i \sum_{j=1}^{n} (x_j \delta x_j) - 3 \left(1 - \frac{\gamma}{2} \right) \left(1 - \sum_{j=1}^{n} x_j^2 \right) \delta x_i$$

$$+ (\sqrt{6} \lambda_i - 3\gamma x_i) y \delta y,$$

$$\delta y' = 3(2 - \gamma) y \sum_{j=1}^{n} (x_j \delta x_j) - \sqrt{\frac{3}{2}} y \sum_{j=1}^{n} (\lambda_j \delta x_j)$$

$$+ \left(\frac{3}{2} (2 - \gamma) \sum_{j=1}^{n} x_j^2 - \sqrt{\frac{3}{2}} \sum_{j=1}^{n} (\lambda_j x_j) + 3\gamma \frac{3}{2} - 9\gamma \frac{3}{2} \right) \delta y,$$

which yield $(n+1)$ eigenvalues

$$m_1 = -\frac{3(2 - \gamma)}{4} \left(1 + \sqrt{1 - \frac{8\gamma (\sum_{i=1}^{n} \lambda_i^2 - 3\gamma)}{\sum_{i=1}^{n} \lambda_i^2 (2 - \gamma)}} \right),$$

$$m_2 = -\frac{3(2 - \gamma)}{4} \left(1 - \sqrt{1 - \frac{8\gamma (\sum_{i=1}^{n} \lambda_i^2 - 3\gamma)}{\sum_{i=1}^{n} \lambda_i^2 (2 - \gamma)}} \right),$$

$$m_3 = \ldots = m_{n+1}.$$
Table 2: The properties of the critical points in a spatially flat FRW universe containing n scalar fields with the cross-coupling exponential potential plus a barotropic fluid.

\[
m_3 = \ldots = m_{n+1} = -\frac{3}{2}(2 - \gamma).
\]

Thus the scaling solution is stable for a positive potential with $\sum_{i=1}^{n} \lambda_i^2 > 3\gamma$.

The different regions in the (γ, λ_i) parameter space lead to different qualitative evolution. For the sufficiently flat ($\sum_{i=1}^{n} \lambda_i^2 < 3\gamma$) positive potential, S, A, and B exist. Point A is the stable late-time attractor. Hence generic solutions begin in a kinetic-dominated regime or at the fluid-dominated solution and approach the kinetic-potential-scaling solution at late times. For the intermediate ($3\gamma < \sum_{i=1}^{n} \lambda_i^2 < 6$) positive potential, all critical points exist. Point C is the stable late-time attractor. Hence generic solutions start in a kinetic-dominated regime, at the kinetic-potential-scaling solution or at the fluid-dominated solution and approach the stable fluid-kinetic-potential-scaling solution.

For the steep ($\sum_{i=1}^{n} \lambda_i^2 > 6$) positive potential, S, B, and C exist. Point C is the stable late-time attractor. Hence generic solutions start in a kinetic-dominated regime or at the fluid-dominated solution and approach the stable fluid-kinetic-potential-scaling solution.

For the sufficiently flat ($\sum_{i=1}^{n} \lambda_i^2 < 3\gamma$) negative potential, the kinetic-dominated solution S and the fluid-dominated solution B exist, which are unstable. For the intermediate ($3\gamma < \sum_{i=1}^{n} \lambda_i^2 < 6$) negative potential, the kinetic-dominated solution S and the fluid-dominated solution B exist, which are unstable. For the steep ($\sum_{i=1}^{n} \lambda_i^2 > 6$) negative potential, S, A, and B exist. Point A is the stable late-time attractor. Hence generic solutions start in a kinetic-dominated regime or at the fluid-dominated solution and approach the stable kinetic-potential-scaling solution at late times.
4 Conclusions and Discussions

We have presented a phase-space analysis of the evolution for a spatially flat FRW universe containing n scalar fields with a positive or negative cross-coupling exponential potential. In particular, for the $\lambda_i = \lambda$ case, we find that in the expanding universe model with a sufficiently flat ($\lambda^2 < 6/n$) positive cross-coupling potential the only power-law kinetic-potential-scaling solution is the late-time attractor. It is more difficult to obtain assisted inflation in such models since the fields with cross-coupling exponential potential tend to conspire to act against one another rather than assist each other. However, steep ($\lambda^2 > 6/n$) negative cross-coupling potential has kinetic-dominated solutions with $a \propto t^{1/3}$, some of which are the late-time attractors. It can be known that the kinetic energy of each field tends to be equal via their effect on the expansion at late times.

Then we have extended the phase-space analysis of the evolution to a realistic universe model with a barotropic fluid plus n scalar fields with a positive or negative cross-coupling exponential potential. We have shown that for the sufficiently flat ($\sum_{i=1}^{n} \lambda_i^2 < 3\gamma$) positive cross-coupling potential, the kinetic-potential-scaling solution is the stable late-time attractor. The energy density of the scalar fields dominates at late times. Moreover, for the steep ($\sum_{i=1}^{n} \lambda_i^2 > 6$) positive cross-coupling potential, the fluid-kinetic-potential-scaling solution is the stable late-time attractor. However, a negative cross-coupling potential has no stable scaling solutions.

Acknowledgements

This project was in part supported by NNSFC under Grant Nos. 10175070 and 10047004 as well as by NKBRSF G19990754.

References

[1] K.Coble, S.Dodelson and J.A.Frieman, Phys.Rev. D55 (1997) 1851; R.R.Caldwell and P.J.Steinhardt, Phys.Rev. D57 (1998) 6057; I.Zlatev, L.M.Wang and P.J.Steinhardt, Phys.Rev.Lett. 82 (1999) 896; P.J.Steinhardt, L.M.Wang and I.Zlatev, Phys.Rev. D59 (1999) 123504.

[2] A.H.Guth, Phys.Rev. D23 (1981) 347; A.D.Linde, Phys.Lett. B108 (1982) 389; A.D.Linde, Phys.Lett. B129 (1983) 177.
[3] E.J.Copland, A.R.Liddle, D.H.Lyth, E.D.Stewart and D.Wands, Phys.Rev. D49 (1994) 6410; M.Dine, L.Randall and S.Thomas, Phys.Rev.Lett. 75 (1995) 398.

[4] E.D.Stewart, Phys.Rev. D51 (1995) 6847.

[5] A.R.Liddle, A.Mazumdar and F.E.Schunck, astro-ph/9804177; E.J.Copeland, A.Mazumdar and N.J.Nunes, Phys.Rev. D60 (1999) 083506, astro-ph/9904309; K.A.Malik and D.Wands, Phys.Rev. D59 (1999) 123501; F.Finelli, Phys.Lett. B545 (2002) 1, hep-th/0206112.

[6] Y.S.Piao, W.B.Lin, X.M.Zhang and Y.Z.Zhang, Phys.Lett. B528 (2002) 188, hep-ph/0109076; Y.S.Piao, R.G.Cai, X.M.Zhang and Y.Z.Zhang, Phys.Rev. D66 (2002) 121301, hep-ph/0207143.

[7] F.Lucchin and S.Matarrese, Phys.Rev. D32 (1985) 1316; Y.Kitada and K.I.Maeda, Class.Quant.Grav. 10 (1993) 703.

[8] J.J.Halliwell, Phys.Lett. B185 (1987) 341; A.B.Burd and J.D.Barrow, Nucl.Phys. B308 (1988) 929; A.A.Coley, J.Ibanez and R.J.van den Hoogen, J.Math.Phys. 38 (1997) 5256.

[9] E.J.Copeland, A.R.Liddle and D.Wands, Phys.Rev. D57 (1998) 4686; A.P.Billyard, A.A.Coley and R.J.van den Hoogen, Phys.Rev. D58 (1998) 123501; R.J.van den Hoogen, A.A.Coley and D.Wands, Class.Quant.Grav. 16 (1999) 1843.

[10] G.F.R.Ellis and J.Wainwright, *Dynamical systems in cosmology* (Cambridge UP, 1997).

[11] I.P.C.Heard and D.Wands, Class.Quant.Grav. 19 (2002) 5435, gr-qc/0206085.

[12] Z.K.Guo, Y.S.Piao and Y.Z.Zhang, to appear in Phys.Lett.B, hep-th/0304048.

[13] C.M.Chen, P.M.Ho, I.P.Neupane and J.E.Wang, hep-th/0304177.