Article

Single-Cell Atlas of the Drosophila Leg Disc Identifies a Long Non-Coding RNA in Late Development

Joyce Tse 1,2, Tsz Ho Li 1,2, Jizhou Zhang 1,2, Alan Chun Kit Lee 1,2, Ivy Lee 1,2, Zhe Qu 1,2, Xiao Lin 1,2, Jerome Hui 1,2, and Ting-Fung Chan 1,2,*

1 School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; joycekytse@gmail.com (J.T.); andrewli@cuhk.edu.hk (T.H.L.); zjzace@outlook.com (J.Z.); ckllee@link.cuhk.edu.hk (A.C.K.L.); ivyleeting@gmail.com (I.L.); quzheouc@gmail.com (Z.Q.); alanlamsiu@gmail.com (X.L.); jeromehui@cuhk.edu.hk (J.H.)

2 State Key Lab of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong

* Correspondence: tf.chan@cuhk.edu.hk

Abstract: The Drosophila imaginal disc has been an excellent model for the study of developmental gene regulation. In particular, long non-coding RNAs (lncRNAs) have gained widespread attention in recent years due to their important role in gene regulation. Their specific spatiotemporal expressions further support their role in developmental processes and diseases. In this study, we explored the role of a novel lncRNA in Drosophila leg development by dissecting and dissociating w1118 third-instar larval third leg (L3) discs into single cells and single nuclei, and performing single-cell RNA-sequencing (scRNA-seq) and single-cell assays for transposase-accessible chromatin (scATAC-seq). Single-cell transcriptomics analysis of the L3 discs across three developmental timepoints revealed different cell types and identified lncRNA:CR33938 as a distal specific gene with high expression in late development. This was further validated by fluorescence in-situ hybridization (FISH). The scATAC-seq results reproduced the single-cell transcriptomics landscape and elucidated the distal cell functions at different timepoints. Furthermore, overexpression of lncRNA:CR33938 in the S2 cell line increased the expression of leg development genes, further elucidating its potential role in development.

Keywords: Drosophila; leg imaginal disc; lncRNA; development; scRNA-seq; scATAC-seq

1. Introduction

Long non-coding RNAs (lncRNAs) are defined as RNAs longer than 200 nucleotides and not translated into functional proteins. Human GENCODE (v40) identifies 17,748 lncRNA genes, which roughly equates to the number of protein-coding genes (19,988) signifying the importance of lncRNAs. The majority of lncRNAs are transcribed by RNA polymerase II and are often 5′-end 7-methyl guanosine (m7G) capped, 3′-end polyadenylated, and spliced similarly to mRNAs. They are often classified based on their position relative to neighboring genes (divergent, convergent, intergenic, antisense, sense, enhancer, intronic, and miRNA host), transcript length (long intergenic, very long intergenic, and macroRNA), association with annotated protein-coding genes, association with other DNA elements, protein-coding RNA resemblance, association with repeats, association with a biochemical pathway, sequence and structure conservation, biological state, association with subcellular structures, and function [1,2]. As lncRNAs provide supportive roles by fine-tuning gene expression levels at the epigenetic, transcriptional, and post-transcriptional levels, they are implicated in various biological processes and diseases. The contribution of lncRNAs to organ development in several mammalian species has revealed a transition of broadly expressed lncRNAs towards an increasing number of spatiotemporal-specific and condition-specific lncRNAs [3]. The role of lncRNAs in cancer has been studied extensively, but they are also involved in many other human diseases from neurological disorders to
cardiovascular issues [4]. Notably, lncRNA expression is generally spatiotemporal specific, indicating the unique functions and probable pharmacological targeting of lncRNA.

Drosophila melanogaster (fruit fly) is an ideal model organism to study developmental and cellular processes in higher eukaryotes, including humans, because a wide range of genetic tools can be applied and its genome has been extensively studied [5]. In fact, the *D. melanogaster* genome is 60% homologous to that of humans and nearly 75% of human disease-causing genes are believed to have functional homologs in the fruit fly [6]. Furthermore, its short generation time, high fecundity, and low maintenance as well as the abundance of publicly available fly stocks and databases also make *D. melanogaster* an appealing model organism.

Despite different taxonomic origins, the *Drosophila* larval leg disc, which develops into the adult leg, is an ideal model for studying the complex vertebrate limb because it is relatively simple and amenable to genetic manipulations. Research on fly imaginal discs has revealed the tissue compartments and organ-specific regulator genes critical to development, and has generated established models for the study of cellular interactions and complex genetic pathways [7]. Moreover, the easy accessibility of imaginal discs further supports their utility.

Advances in the past decade on single-cell RNA sequencing (scRNA-seq) and related computational analysis pipelines have allowed scientists and bioinformaticians to understand the cellular heterogeneity of tissues at an unprecedented level, from manually selecting a single-cell under the microscope to plate-based and droplet-based high throughput methods with multimodal capabilities [8]. Since the publication of the first single-cell transcriptome study based on a next-generation sequencing platform, the number of publications on scRNA-seq addressing development, disease, and bioinformatics tool improvement has exponentially grown [9–12]. Many of these publications have focused on developmental biology, often involving single-cell studies, as it represents a crucial period during which cells first begin to differentiate [13]. Single-cell transcriptomics studies on *Drosophila* larval imaginal wing and eye-antennae discs have emerged since 2018 [14–19] and shown that single cells could be mapped to the distinct subregions of their respective imaginal discs, thus confirming the spatial expression of genes determined by previous immunostaining methods.

While the Fly Cell Atlas recently performed single-nucleus RNA-sequencing (snRNA-seq) on adult *Drosophila* legs [20], single-cell transcriptomics and epigenomics studies on the developing leg imaginal disc remain lacking due to the challenges of its dissection compared to the larger wing and eye-antennae discs. We thus report the single-cell transcriptomic and epigenomic landscapes of *w*1118 third leg discs (L3) across three time points of development of third-instar larvae. We identified and validated a novel, highly expressed lncRNA in the distal epithelial cells that changes its spatial expression at various stages of development and confirms its importance in leg development.

2. Results

2.1. Generation of a Transcriptomic Cell Atlas of the Developing Leg Imaginal Disc

2.1.1. Single-Cell RNA-Sequencing Identifies Four Main Cell Types in L3 Discs

To study the cellular heterogeneity of developing L3 discs, collected embryos were dissected for L3 discs at 121 h (T1), 133 h (T2), and 168 h (T3) after egg laying (AEL) (Figure 1A) for scRNA-seq. Sequencing statistics showed similar data quality amongst the three samples, including the percentage of mapped reads, percentage of mapped reads aligned to genes, number of cells, and mean reads per cell (Table S1). The L3 disc was identified as a trio of discs on either side of the larval body that differed from the wing and haltere discs in morphology and patterning (Figure 1B). Cell preparation workflow involved dissection and dissociation of L3 discs into single cells, after which a portion of the cells was used for scRNA-seq and the remaining cells having their nuclei isolated for single-cell assay for transposase-accessible chromatin (scATAC-seq) (Figure 1C). Both assays used the 10× Genomics platform and the prepared libraries were subjected to sequencing and
subsequent data analysis. The integrated dataset overlayed T1, T2, and T3 individual samples and identified four distinct clusters (Figure 1D). The largest cluster represented the leg disc epithelium, which expressed epithelial markers *Fasciclin 3* (*Fas3*) and *narrow (narrow)* (Figure 1E) [21]. Expression of *Sp1* and *Ultrabithorax* (*Ubx*) confirmed that the cells originated from L3 discs [22,23]. The second-largest cluster represented muscle cells, which expressed the muscle markers *twist* (*twi*), *Holes in muscle* (*Him*), *Secreted protein, acidic, cysteine-rich* (*SPARC*), *tenectin* (*tnc*), *cut* (*ct*), *Amalgam* (*Ama*), and *terribly reduced optic lobes* (*trol*) [17,24,25]. The identity of the immune cell cluster was determined by the expression of *regucalcin*, *Hemolectin* (*Hml*), *Peroxidasin* (*Pxtn*), *Transferrin 1* (*Tsf1*), and *reversed polarity* (*repo*) [19,26,27]. The smallest cluster represented the neuronal cells, which expressed *found in neurons* (*fne*) and *couch potato* (*cpo*) [15,28]. The relative expression levels of the marker genes were tabulated (Table A1).

Figure 1. scRNA-seq revealed the major cell types of *D. melanogaster* third-instar third leg discs. (A) The time course of leg disc dissection. Embryos grew until dissection at T1 (121 h AEL), T2 (133 h AEL) or T3 (168 h AEL). (B) The third leg disc was differentiated from other leg discs as it occurred as a mid-size disc with a concentric ring-like pattern at its center within a trio of discs on bilateral sides of the larvae which also included the wing and haltere discs. (C) Flowchart of scRNA-seq and
scATAC-seq experiments. Dissected leg discs were dissociated into single cells, a portion of which were used for scRNA-seq with the remaining cells having their nuclei isolated for scATAC-seq. Both scRNA-seq and scATAC-seq used the 10× Genomics Chromium Controller and proceeded with their respective library preparation protocols, sequencing, and data analysis. (D) UMAP visualizations of the scRNA-seq data show that T1, T2, and T3 overlap each other, although the four identified cell types were quite segregated. (E) Dot plot showing the known marker genes of the respective cell types identified in the UMAP visualization. (F) Muscle cell subset of the scRNA-seq data showing differentiation between early and late muscle cells. (G) Dot plot showing the known marker genes of the early and late muscle cells identified in the UMAP visualization. (H) Neuronal cell subset of the scRNA-seq data showing differentiation between early and late neuronal cells. (I) Dot plot showing the known marker genes of the early and late neuronal cells identified in the UMAP visualization. (J) Immune cell subset of the scRNA-seq data showing differentiation between hemocytes (and plasmatocytes) and glia. (K) Dot plot showing the marker genes of hemocytes (and plasmatocytes) and glia identified in the UMAP visualization.

2.1.2. Subclustering of the Main Cell Types Reveals Cell Subtypes

The muscle cell cluster was composed of early and late muscle cell subclusters (Figure 1F). The early cells expressed tenectin (tnc), terribly reduced optic lobes (trol), cut (ct), maternal gene required for meiosis (mamo). Thor, kin of irre (kirre), roughest (rst), and rolling pebbles (rols) (Figure 1G) [17,19,24,25,29]. The late cells expressed Holes in muscle (Him), twist (twi), Myocyte enhancer factor 2 (Mef2), muscleblind (mbl), and Fasciclin 2 (Fas2) [19,30]. Early muscle cells increased expression of late muscle cell marker Fas2 over time in terms of both expression level and the number of cells that expressed this gene (Figure S1). Late muscle cell marker Mef2, a skeletal muscle differentiation transcription factor, similarly increased expression in the late muscle cell subcluster over time in terms of both expression level and the number of cells that expressed the gene. The heatmap of the most upregulated genes in the early and late muscle cells showed a clear distinction in upregulated genes between the two subclusters (Figure S2).

The neuronal cell cluster was also composed of early and late neuronal cell subclusters (Figure 1H). The early cells expressed miranda (mir), LIM homeobox 1 (Lim1), and empty spiracles (ems) (Figure 1I) [31–33]. The late cells expressed bruchpilot (brp), neuronal Synaptotagmin 1 (nSyt1), Cadherin-N (CadN), nervana 3 (nvr3), Glutamic acid decarboxylase 1 (Gad1), knot (kn), vesicular glutamate transporter (VGluT), and tailup (tup) [34–37]. The heatmap of the most upregulated genes in the early and late neuronal cells showed a clear distinction in upregulated genes between the two subclusters (Figure S3).

The immune cell cluster was composed of glia and hemocytes (including plasmatocytes), which are the phagocytes found in invertebrates (Figure 1J). Glial cells expressed Transferrin 1 (Tsf1), reversed polarity (repo), and moody [27,38], while the hemocytes and plasmatocytes expressed regucalcin, Peroxidasin (Pxn), and Homoelectin (Hml) (Figure 1K) [19,26]. These markers were highly specific to their respective cell subtypes and the heatmap of the most upregulated genes in the glia and hemocytes (including plasmatocytes) showed a clear distinction between the two subclusters (Figure S4).

The leg disc epithelium cluster was subclustered into six cell subtypes, including the distal, medial, and proximal cells as well as stem cell-like cells, such as those of the proximal-distal-axis (PD axis) and anterior-posterior-axis (AP axis), and cells of undetermined fate (Figure 2A). Identification of fate undetermined cells was based on their top upregulated DEGs and gene ontology analysis of the DEGs (Tables A2 and A3). The distal cells expressed the markers aristless (al), C15, and Distal-less (Dll) (Figure 2B) [22]. The medial cells expressed dachshund (dac) and Dll, while the proximal cells expressed teashirt (tsh) and homothorax (hth) [22]. The PD axis cells expressed vestigial (vg), spalt-related (sair), and spalt major (salm) [39], and the AP axis cells expressed hase und igel (hui) (FlyBase ID FBgn0033968).
Figure 2. Subclustering of the epithelial cell cluster with identified cell subtypes along the PD axis and a distal-specific lncRNA:CR33938. (A) Leg disc epithelium subset of the scRNA-seq data showing differentiation of cells along the PD axis of the fly leg. (B) Dot plot showing the known marker genes of the proximal, medial, and distal cells as well as the earlier stem-cell like cells of the PD axis. (C) Heatmap of the top ten most upregulated genes for each cell subtype (subcluster) of the epithelial cell cluster, where black represents known marker genes, blue represents genes of known function as potential markers, and red represents genes of unknown functions. LncRNA:CR33938 was identified as one of the most upregulated genes in the distal cells. (D) Feature plots showing the expression levels of LncRNA:CR33938 in different epithelial subclusters across T1, T2, and T3. (E) Validation of the scRNA-seq LncRNA:CR33938 identified using FISH showing negligible expression during T1, epithelium wide expression in T2, and mainly distal-specific expression in T3. Scale bar represents 50 µm.
2.2. Identification and Characterization of a Novel Long Non-Coding RNA

2.2.1. Identification of a Long Non-Coding RNA of Unknown Function in Distal Cells

The most upregulated genes in each leg disc epithelium subcluster are shown in a heatmap (Figure 2C). The genes colored black represent known markers for their respective subclusters, those colored blue represent genes with known functions as potential markers for their respective subclusters, and the genes colored red represent genes with unknown functions as potential markers for their respective subclusters. lncRNA (lncRNA:CR33938) is unique because the 10× 3′ gene expression kit uses oligo(dT) primers to detect polyA-tailed transcripts, which mostly include mRNAs. However, lncRNA:CR33938 expression was observed in this study (Figure 2D). Indeed, lncRNA:CR33938 was identified in other studies by using polyA+ bulk RNA-sequencing [40,41]. Upon splitting the integrated data into its respective samples (T1, T2, and T3), lncRNA:CR33938 expression was negligible in T1, appeared more widespread in T2 and became specific to the distal cells in T3. Note that while most distal cells expressed lncRNA:CR33938, a small subset of medial and proximal cells also expressed the lncRNA.

2.2.2. Experimental Validation of lncRNA:CR33938 Expression in L3 Discs

Fluorescence in-situ hybridization (FISH) of lncRNA:CR33938 in T1, T2 and T3 L3 discs was performed alongside region-delineating controls Dll and dac (Figure 2E). Expression of only Dll represented the distal cells, while co-expression of Dll and dac or only dac represented the medial cells. LncRNA:CR33938 expression in T1 L3 discs did not occur. LncRNA:CR33938 expression in T2 L3 discs was present in the proximal, medial, and distal cells, while lncRNA:CR33938 expression in T3 L3 discs was most prominent in distal cells, although medial cells also showed more limited expression. More specifically, six regions of large punctated lncRNA:CR33938 expression were observed in T3, including four regions of high expression and two regions of lower expression. Three of the six regions were within the distal cells, while the other three regions were outside of the distal cells, suggesting expression of lncRNA:CR33938 in cells other than the distal cells, namely the medial cells. The proximal cells also had a low level of lncRNA:CR33938 expression, as displayed by a tint of red fluorescence peripheral to the medial cells delineated by the dac marker. In fact, Figure 2D did show other cells expressed the lncRNA, but these cells represented only small subsets of the subclusters. Thus, these FISH results corroborated the scRNA-seq data. Note that the punctated regional expressions may suggest localized lncRNA:CR33938 function in aggregates.

2.2.3. Conservation of lncRNA:CR33938 in Insect Species

The conservation state of lncRNA:CR33938 across 124 insect species revealed that the lncRNA had a high conservation level in exon regions (Figure 3A). Moreover, a comparison with the conservation state of all 2258 lncRNAs annotated in the reference annotation suggested that lncRNA:CR33938 was more conserved than 90% of the other lncRNAs (Figure 3B). These concordances reflected a critical regulatory role of lncRNA:CR33938 in insect development.
Figure 3. LncRNA:CR33938 is conserved among insects and overexpression in Drosophila S2 cells increased expression levels of genes involved in leg development. (A) LncRNA:CR33938, identified on chromosome 3, is conserved within insects. (B) The fraction of conserved bases of LncRNA:CR33938 across insects is greater than 0.8. (C) Overexpression of LncRNA:CR33938 in S2 cells produced an increase in the expression of leg development genes, including PD axis genes, distal leg tarsal disco-r, and medial leg tibial dac according to qPCR. There was no effect on proximal leg femur genes. *, **, *** equate to p-values of less than 0.05, 0.001 and 0.0001, respectively.

2.2.4. Overexpression of LncRNA:CR33938 in S2 Cells

Transient overexpression of full-length LncRNA:CR33938 in S2 cells produced an approximately 40,000-fold increase in expression level compared to the empty vector control (Figure 3C) according to qRT-PCR. Correspondingly, expression of the PD axis genes (Hh, wg, and dpp) showed an increasing trend upon LncRNA:CR33938 overexpression. While there was no effect on the expression of genes controlling proximal leg femur growth, expression of distal leg tarsal disco-r and medial leg tibial dac significantly increased with LncRNA:CR33938 overexpression. This corroborated the scRNA-seq and FISH data that LncRNA:CR33938 more greatly affected (and was normally expressed in) the distal end of the leg.
2.3. Generation of an Epigenomic Cell Atlas of the Developing Leg Imaginal Disc

2.3.1. scATAC-seq Identified Similar Cell Types as scRNA-seq

The sample-wide integrated scATAC-seq dataset showed an overlaying of the T1, T2, and T3 individual samples (Figure 4A) and identified twelve distinct clusters based on differences in chromatin accessibility (Figure 4B). A heatmap distinguished the proportion of cells in each cluster at each timepoint and showed differences in chromatin accessibility and cell composition across three timepoints (Figure 4C). For example, cluster 6 (C6) showed greater than 80% of the cells in T1, a small proportion of the cells in T2, and nearly no cells in T3. Similarly, T1 had many cells from cluster 12 (C12) and cluster 2 (C2).

Figure 4. scATAC-seq revealed the same major cell types of Drosophila L3 disc as in scRNA-seq. (A) UMAP visualization of the scATAC-seq data, showing that T1, T2, and T3 overlay one another.
(B) UMAP visualization revealing the different clusters identified prior to integration with scRNA-seq. (C) Heatmap showing the proportion of cells of each cluster within each sample (T1, T2, and T3). The color scale represents the cell proportion within each cluster. (D) UMAP visualization of clusters after integration of scATAC-seq data with scRNA-seq data. Most cell types and cell subtypes were remapped, including the proximal, medial, and distal cells as well as the muscle, neuronal, immune, and stem-cell like cells of the PD axis. (E) Feature plots showing the known marker genes, and the respective cell types and cell subtypes identified in the UMAP visualization after scRNA-seq data integration. (F) Heatmap of important motifs in each cluster. (G) Gene Ontology analysis of the chromatin-accessible distal genes of T2 and T3 relative to those of T1 showed many metabolic processes occurring in early T2 (left), while many chitin-based cuticle development processes occurred in late T3 (right). (H) Genome tracks of distal marker genes (Dll and C15) revealed high co-accessibility in neighboring genes.

Upon integration of the chromatin accessibility data with the gene expression data, seven cell types identified in scRNA-seq were transferred to the scATAC-seq clusters (Figure 4D). These cell types corresponded to the cell subtypes of the PD axis of the leg disc epithelium (proximal, medial, and distal cells) as well as those of the muscle, neuronal, and immune cells.

The cell type identities were confirmed by an inferred gene score of chromatin accessibility for a list of known marker genes specific to the cell types (Figure 4E). Similar to the gene expression data in scRNA-seq, high gene scores of Sp1 and Ubx confirmed that the cells originated from L3 discs. All cells that composed the leg disc epithelium (proximal, medial, and distal cells) showed markers Fas3 and nw. The presence of Dll only (without dac), al, and C15 confirmed the identity of the distal cells. Dll (with dac) and dac only confirmed the identity of the medial cells. Similarly, tsh and hth were markers for the proximal cells, while Him and twi represented the muscle cells. The neuronal cells showed high gene scores for nervana 3 (nrv3) and complexin (cpx), and the immune cells produced high scores for Hml (for hemocytes) and Pxn (for plasmatocytes) markers.

The most enriched motifs for each cell type are shown as a heatmap (Figure 4F). The GATA motifs were evident in the immune cells, with several GATA family members observed. The PRDM9 and HIF2a.bHLH motifs were highly enriched in the medial and distal cells, respectively. While the NRF motif was enriched in the proximal cells, its enrichment was more evident in the neuronal cells. The muscle cells were enriched in many motifs, including Maz, KLF14, ZNF, Egr2, Olig2, Egr1, KLF10, and Klf9. The neuronal cells were also enriched for many motifs, including MyoD, Myf5, E2A, PAX5, MyoG, Tcf12, EKLF, Ascl1, and NRF.

2.3.2. Chromatin Accessibility Differentiated the T1, T2, and T3 Distal Cell Functions

Gene set enrichment of T2 genes relative to T1 and T3 genes relative to T1 showed differences in cellular processes (Figure 4G). The T2 distal cells were more involved in metabolic processes, while the T3 distal cells had a larger role in chitin-based larval cuticle development.

Fragment coverage within the 40,000 base pairs on either side of the distal cell marker gene Dll showed increased coverage in the distal cells with marked co-accessibility in neighboring genes (Figure 4H). Distal cell marker gene C15 similarly displayed increased coverage in the distal cells with marked co-accessibility in neighboring genes.

3. Discussion

We used scRNA-seq and scATAC-seq to explore the Drosophila L3 disc transcriptomic and epigenomic landscapes, respectively, at three timepoints of development. The multiomics datasets corroborated each other and showed similar cell types that delineated the various regions of the leg disc, namely, those along the PD axis. Moreover, scRNA-seq identified an experimentally validated late-stage distal-specific and conserved lncRNA (lncRNA:CR33938) that, upon further characterization by overexpression studies, promoted distal leg growth gene expression. In addition, differences in chromatin accessibility
determined by scATAC-seq indicated the disparate functions of early- and late-stage distal cells.

Given that the three legs of Drosophila differ in their developmental programs, their underlying differences cannot be ignored when studying leg disc development [23]. Subsequently, we specifically isolated the third leg disc to provide a more coherent single-cell atlas.

Simultaneous multi-omics library preparation methods, where the same cell or nuclei are used for different single-cell assays, were not available at the time these experiments were completed. As a result, the same cell suspension was used for both scRNA-seq and scATAC-seq to minimize biological variation. Furthermore, the limited number of cells extracted per leg disc prevented the execution of multiple experiments of biological replicates, in which one experiment consisted of one replicate. Rather, a single assay comprised of many biological replicates was conducted for each time point.

The computationally determined assignment of cell types to clusters depended upon the most upregulated genes in each cluster and prior information about cell type-specific marker genes. In addition to the prominent distal, medial, and proximal cell types, cells that did not express explicit marker genes denoting specific cell types represented early developing cells with undetermined fate, which we referred to as “stem-cell like cells”.

We found a large cluster of epithelial cells and a smaller cluster of muscle cells in the L3 discs, which corroborated previous studies that have shown the presence of many epithelial cells and accompanying muscle cells in the wing discs of third-instar larva [15–17]. Previous studies have suggested that the epithelial cells of the wing disc can be mapped to distinct subregions, including the pouch, hinge, notum, and peripodial membrane [16]. Similarly, the epithelial cells of the leg disc could be mapped to distinct proximal, medial, and distal subregions. Regarding muscle cells, research has shown that they can be subcategorized into direct and indirect flight muscles [17]. Given this finding, we also subcategorized the L3 disc muscle cells based on early versus late muscle development genes.

Our results also demonstrated the presence of neuronal and immune cells in L3 discs, which corroborates the recent single-nucleus transcriptomics study on the adult fruit fly leg by the Fly Cell Atlas showing the presence of various differentiated neurons as well as hemocytes and glial cells [20]. This illustrated that the neuronal cells in the developing leg disc have not yet differentiated, though they can subsequently differentiate.

Despite the publication of several works on single-cell transcriptomic landscapes of the Drosophila wing and eye-antennae imaginal discs [14–19], this study is the first to describe the transcriptomic and epigenomic landscape of the leg disc, specifically the third leg disc, at single-cell resolution. The Fly Cell Atlas study determined the single-nucleus transcriptomic atlas of the adult fruit fly leg, but it was based on fully differentiated tissues [20]. Conversely, our work was based on developing tissue and characterized the importance of an identified lncRNA.

lncRNAs tend to have lower expression levels than protein-coding genes [42]. The detection of IncRNA:CR33938 by our polyA-tailed single-cell transcriptomics assay indicated that it had a robust level of expression and suggested that it had an important physiological function in leg development given that lncRNA expression is environment-specific [42].

Our work highlighted the spatiotemporal expression of IncRNA:CR33938. It was largely distal-specific, as suggested by the scRNA-seq and FISH results, despite some cells other than the distal cells also showing expression. We also provided evidence that IncRNA:CR33938 may have an important role in leg development. We used a previously published list of larval stage genes that establish the PD axis of the Drosophila leg [43]. IncRNA:CR33938 promoted tarsal leg growth gene expression upregulation, namely disco-r.

The expression of its paralog, disco, is maintained by Dll, and disco gene function is also required for the maintenance of Dll expression [44]. Given the important function of disco in maintaining a key gene in PD axis development, this suggests that IncRNA:CR33938 has an important potential role in leg development. Note that dac was also upregulated by IncRNA:CR33938 overexpression. This was not surprising, as the IncRNA was also expressed in the medial cells in T2. This suggests that IncRNA:CR33938 exhibits a spa-
tiotemporal role, in which it first modulates medial leg cell fate early in development and then distal leg cell fate modulation later in development. This hypothesis could be tested by using the GAL80 temperature-sensitive and GAL4 with UAS system of flies to spatiotemporally overexpress lncRNA:CR33938 and to assess leg phenotype, such as leg length. Prior to this study, lncRNA:CR33938 did not have an annotated function, but our study indicated that it may influence late-stage distal, and perhaps mid-stage medial, leg growth.

4. Materials and Methods

4.1. Fly Maintenance and Stocks

The w1118 Drosophila melanogaster fly line was obtained as a gift from Prof. Edwin Chan’s lab at The Chinese University of Hong Kong. All flies were maintained at room temperature in regular light-dark cycles in vials containing standard cornmeal agar medium (Nutri-fly, #66-112).

4.2. Fly Breeding Schedule for T1, T2, and T3

Male and female w1118 flies were allowed to mate for 2 h at room temperature in a clear plastic cup with an attached petri dish containing apple juice agar. After this time had elapsed, embryos were transferred from the apple juice agar plate to a vial containing standard cornmeal agar medium. They were then allowed to grow for 121, 133 or 168 h, corresponding to T1, T2, and T3, after which the third leg discs of these third-instar larvae (L3) were dissected.

4.3. Third Leg Disc Dissection and Single Cell Dissociation

At least 70 L3 discs were dissected for T1, and at least 50 L3 discs each were dissected for T2 and T3. These discs were collected in an Eppendorf tube containing phosphate-buffered saline (PBS) with 0.04% bovine serum albumin (BSA) on ice. After pipetting out the PBS from briefly centrifuged samples, we added TrypLE Select Enzyme (10×) (ThermoFisher, Waltham, MA, USA, #A1217702). The discs were then incubated in a thermomixer shaken at 500 rpm for 25 min at 37°C (with the tube being flicked every five minutes). S2 medium (Gibco, Waltham, MA, USA, #21720) supplemented with 10% fetal bovine serum and 2% penicillin/streptomycin were then added to stop the dissociation reaction. Finally, the isolated single cells were washed and resuspended in PBS + 0.04% BSA.

4.4. DNA Library Preparation and Sequencing

The complementary DNA (cDNA) libraries for T1, T2, and T3 were prepared according to the 3′ scRNA-seq library preparation protocol (v3.1) of 10× Genomics. In summary, a microfluidics chip was used to produce GEMs (Gel Bead-in-Emulsions), which are droplets that each contain a single microbead with attached oligonucleotides that include a unique cell barcode, a single cell, and reverse transcription reagents. When the single cell lyses within the intact GEM, the cellular polyA-tailed transcript sequences become exposed, reverse transcription occurs, and each cDNA transcript within the same cell receives the same cell barcode with a different UMI (unique molecular identifier). Subsequently, the droplets lyse and the cell-barcoded cDNA from all cells are pooled and amplified. cDNA library construction involved fragmentation, end-repair, A-tailing, double-sided size selection, and sample index incorporation. Quality control and qualitative analysis of the final library were performed on an Agilent Bioanalyzer DNA High Sensitivity chip (Beijing, China). Sequencing of the libraries was completed on the Illumina NovaSeq6000 platform by Novogene (Beijing, China).

4.5. scRNA-seq Raw Data Processing, Quality Assessment, and Filtering

The raw paired-end sequencing data files (Fastq) were processed using the Cell Ranger pipeline v4.0.0 with default settings. Read alignment and UMI counts were based on a BDGP6 genome reference fasta file and annotated by a BDGP6.28 gtf file devel-
oped by Ensembl. Cell-UMI count tables were loaded into Seurat v4.0 [45]. Cells with 1000–250,000 UMI counts and less than 5% mitochondrial genes were used as filtering gates to select cells for downstream analysis. We only kept genes with at least 20 UMI counts in all cells. Qualimap (v2.2.1) was further used to assess the percentage of mapped reads and percentage of mapped reads aligned to genes for comparison between T1, T2, and T3.

4.6. scRNA-seq Data Integration, Clustering, and Cell Type Identification

The T1, T2 and T3 filtered single-cell datasets were merged and integrated using Seurat (v4.0) Batch effects between samples were corrected using Harmony (v1.0) prior to clustering analysis. PCA was used to determine the optimal dimension for dimensionality reduction, and clustering was performed based on K-nearest neighbor (KNN) graphs with a resolution of 0.02 before UMAP visualization of the single-cell data in two dimensions. The major cell types of the clusters were identified based on known marker genes, and these marker genes were listed among the most upregulated differentially expressed genes compared to other clusters. All clusters were further subclustered into constituent cells based on known marker genes. Dotplots, featureplots, heatmaps, and UMAPs were then generated. Other than the known marker genes, novel genes were also identified as potential markers.

4.7. Validation of scRNA-seq Results by FISH and Confocal Imaging

w^{118} flies were bred and T1, T2, and T3 L3 discs were dissected as described above. The discs were fixed in 3.7% paraformaldehyde on ice for 30 min. Then, probe hybridization was completed according to the protocol provided by Molecular Instruments. The discs were first permeabilized in a detergent solution containing sodium dodecyl sulfate and Tween-20, before custom-designed probes for Dll, dac, and IncRNA:CR33938 were hybridized to the fixed and permeabilized discs for 20 h at 37 °C. After several washes with 5X SSC-Tween-20, hairpins with different fluorophores for each probe were added and incubated for 16 h in darkness at room temperature. The discs then underwent another several washes with 5X SSC-Tween-20 and were mounted onto a Menzel-Glaser Superforst Plus microscope slide (Thermo Scientific, Waltham, MA, USA, #J1800AMNZ) with a Hydromount mounting medium (National Diagnostics, Charlotte, NC, USA, #HS-106) and a 22 × 50 mm Deckglaser microscope coverglass (VWR, Radnor, PA, USA, #630-1461). The mounts were visualized on a Leica SP8 confocal microscope and each sample was imaged every 0.25 µm along the z-axis. The confocal images were z-stacked and processed with Leica Application Suite software.

4.8. Construction of IncRNA:CR33938 Expression Vector for Expression Studies

Total RNA was extracted from D. melanogaster L3 discs using NucleoZOL (Macherey-Nagel, UK, #740404.200) following the manufacturer’s protocol. Following RNase-free DNasel (Thermo Scientific #EN0521) treatment and DNasel inactivation by EDTA, the purified RNA was subjected to cDNA generation using PrimeScript II (Takara, Japan, #RR036A). The cDNA concentration was measured using the Qubit High Sensitivity double-stranded DNA assay. IncRNA:CR33938 was amplified with PCR from the cDNA using the following primers with restriction site sequences inserted: forward primer 5'-TTTGGTACCCTTGAGTCCGAGAGGTT-3' and reverse primer 5'-CCGCTCTAGACTCTTTTTTTGTAGCCTATT-3'). The amplicon and the pAc5.1/V5-His B expression vector (Invitrogen, Waltham, MA, USA, #V411020) were digested with Kpnl (New England Biolabs, USA, #R3142) and Xbal (New England Biolabs, Ipswich, MA, USA, #R0145) restriction enzymes and subsequently ligated using T4 DNA ligase (Invitrogen #15224017). The ligation mixture was transformed to chemically competent Escherichia coli (Invitrogen, #C404003) and selected using 100 mg/mL of ampicillin. The sequence of the IncRNA:CR33938 construct cloned into the expression vector was verified by Sanger sequencing at the Beijing Genomics Institute. Transfection-ready plasmid DNA was extracted using a Plasmid Miniprep kit (Invitrogen, #K210011).
4.9. S2 Cell Culture and Transfection

D. melanogaster S2 cells were provided by Prof. Jerome Hui from the School of Life Sciences of The Chinese University of Hong Kong. S2 cells were cultured in Schneider’s Drosophila Medium (Gibco #21720) supplemented with 10% heat-inactivated fetal bovine serum (Gibco #10270) and 1% penicillin-streptomycin antibiotic mixtures (Gibco #15140122) in a 25 °C humidified incubator. The cloned pAc5.1-lncRNA:CR33938 construct was transfected into S2 cells using Effectene (Qiagen, Germantown, TN, USA, #301425) and the pAc5.1 backbone vector was used as a negative control. The cells were then incubated at 25 °C for 48 h prior to RNA extraction for qRT-PCR.

4.10. RNA Extraction and qRT-PCR of S2 Cells

RNA was extracted with NucleoZOL (Macherey-Nagel, Allentown, PA, USA, #740404.200). Following RNase-free DNasel (Thermo Scientific #EN0521) treatment and DNasel inactivation by EDTA, the purified RNA was subjected to cDNA generation using PrimeScript II (Takara, Tokyo, Japan, #RR036A). The cDNA concentration was measured with a Qubit High Sensitivity double-stranded DNA assay. For qRT-PCR, 1 ng of template cDNA and 1xTB Green II (Takara #RR820) were added to each well of a 96-well plate (Axygen, Union City, CA, USA, #PCR-96-FSC) and covered with an optical adhesive film (Applied Biosystems ABI, Waltham, MA, USA, #4311971) prior to execution on a BioRad CFX96 real-time PCR detection system. Primer sequences for each tested gene are listed in Table S2.

4.11. Nuclei Isolation for scATAC-seq

The same suspension of single cells used for scRNA-seq was used for nuclei isolation for scATAC-seq. Nuclei isolation was performed according to a 10× Genomics low input protocol for scATAC-seq with some optimizations. The cell suspension was pelleted and lysed on ice in a buffer containing the detergents Tween-20 and nonidet-P40 (NP40) for 30 s. The isolated nuclei were then washed twice and resuspended in chilled 10× diluted nuclei buffer (provided by 10× Genomics). Trypan blue stained nuclei were observed under the microscope to assess nuclei quality.

4.12. DNA Library Preparation and scATAC-seq

DNA library preparation was performed according to the scATAC-seq preparation protocol (v1.1) of 10× Genomics. First, the nuclei suspensions were incubated in a transposition mix that included a transposase that preferentially fragments the DNA in open regions of the chromatin. Simultaneously, adapter sequences were added to the ends of the DNA fragments. As in scRNA-seq, a microfluidics chip was used to produce GEMs (Gel Bead-in-Emulsions), but in this case, the droplets contained a single microbead with attached sequences consisting of a unique cell barcode, a single nucleus, and DNA amplification reagents. Once the DNA from each nucleus was barcoded, all nuclei were pooled for DNA library construction. Because only the histone unbound areas of the genome are cut by the transposase, the library consisted of DNA fragments that represented the open chromatin regions of the genome. Quality control and qualitative analysis of the final library were performed on an Agilent Bioanalyzer High Sensitivity DNA chip. The libraries were sequenced on the Illumina NovaSeq6000 platform by Novogene at PE50 with a sequencing depth of approximately 50,000 read pairs per cell.

4.13. scATAC-seq Data Analysis

The raw paired-end sequencing data were processed by Cell Ranger ATAC pipeline v2.0.0 with default settings, using a dm6 UCSC reference generated by the 10× Genomics mkref function. Data processing, filtering, dimensionality reduction, and clustering were performed with ArchR v1.0.1 [46]. UMAP visualizations of the scATAC-seq clusters were created before and after integration with scRNA-seq data. Determination of cell type identities were aided by manual annotation of cell type-specific marker genes based on gene scores estimated from the chromatin accessibility data. Peak calling with MACS2
v2.2.7.1 [47] was performed on each cell cluster. Identification of robust peak sets allowed the prediction of enriched transcription factor motifs for each cluster. Gene ontology analysis was performed using Cluster Profiler to determine the enriched distal process in T2 and T3 relative to T1. Genome browser plots depicting co-accessibility of distal genes with nearby genes were also generated using ArchR.

Supplementary Materials: The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/ijms23126796/s1.

Author Contributions: Conceptualization: T.-F.C. and J.H.; methodology: J.T.; validation: J.T., T.H.L. and A.C.K.L.; formal analysis: J.T.; investigation: J.T., T.H.L., A.C.K.L., I.L., Z.Q. and X.L.; data curation: J.T. and J.Z.; writing—original draft preparation: J.T.; writing—review and editing: X.L., T.-F.C. and J.H.; visualization: J.T.; supervision: T.-F.C. and J.H.; project administration: J.T.; funding acquisition: T.-F.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by System Information Science fund from The Chinese University of Hong Kong Faculty of Science, Donation from Mr. and Mrs. Sunny Yang, The Chinese University of Hong Kong Direct grant 4053486, and Innovation and Technology Fund (to the State Key Lab of Agrobiotechnology.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The sequencing data presented in this study are openly available in NCBI SRA with BioProject ID PRJNA831899.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Relative expression levels of marker genes. The average log2FC expression levels of the marker genes displayed in Figures 1 and 2 are tabulated here.

Cell Subtype	Gene	Percent Expressed	Normalized UMI Count	Seurat Scaled Normalized UMI Count
Medial	al	14.47507953	0.446617753	−0.38657561
Medial	C15	1.033934252	0.020802751	−0.414645183
Medial	Dll	75.95440085	5.12873566	0.4402522
Medial	dac	68.31919406	3.578504256	1.883267974
Medial	tsh	8.324496288	0.18788577	−0.980689638
Medial	hth	39.10392365	4.268092807	−0.888707309
Medial	vg	1.802757158	0.078396772	−0.412093522
Medial	salr	1.272534464	0.028393623	−0.448546528
Medial	salm	1.405090138	0.032101424	−0.457590917
Medial	hui	10.49840933	0.275768473	−0.441380335
Medial	betaTub56D	99.73488865	67.01346734	−0.603531241
Medial	alphaTub84B	99.70837752	57.70906617	−0.54154286
Medial	tsr	99.60233298	52.63663428	−0.473061117
Medial	Act5C	99.76139979	61.24349032	−0.509223741
Proximal	al	17.52711497	0.862922147	0.067037547
Proximal	C15	0.954446855	0.015783215	−0.4175847
Proximal	Dll	28.63340564	1.420345973	−0.645129847
Table A1. Cont.

Cell Subtype	Gene	Percent Expressed	Normalized UMI Count	Seurat Scaled Normalized UMI Count
Proximal	dac	18.13449024	0.723348582	−0.290659318
Proximal	tsh	71.32321041	4.083784238	1.609816265
Proximal	hth	96.52928416	79.60652398	1.461906241
Proximal	vg	1.561822126	0.068269738	−0.417599705
Proximal	slr	2.212581345	0.12027794	−0.360530445
Proximal	salm	2.993492408	0.195738255	−0.347537362
Proximal	hui	8.937093275	0.343389783	−0.426442771
Proximal	betaTub56D	99.65292842	67.46030873	−0.576381945
Proximal	alphaTub84B	99.52277657	59.83865741	−0.467998663
Fate_Undetermined	al	7.564469914	0.479912329	−0.350297209
Fate_Undetermined	C15	1.088825215	0.054030437	−0.395186544
Fate_Undetermined	Dll	37.13467049	2.905723476	−0.210385285
Fate_Undetermined	dac	24.41260745	1.538342317	0.329880269
Fate_Undetermined	tsh	13.29512894	0.933420238	−0.484960231
Fate_Undetermined	hth	51.5793123	10.93855676	−0.680584090
Fate_Undetermined	vg	1.891117479	0.261258161	−0.312669703
Fate_Undetermined	slr	1.604584527	0.097676107	−0.382180764
Fate_Undetermined	salm	2.063037249	0.167802628	−0.3663254
Fate_Undetermined	hui	6.074485867	0.405081245	−0.412815111
Fate_Undetermined	betaTub56D	99.94269341	87.40336921	0.635323338
Fate_Undetermined	alphaTub84B	99.88538682	77.19868569	0.131519833
Fate_Undetermined	tsr	99.82808023	67.62449968	0.452211633
Fate_Undetermined	Act5C	99.77077364	82.08451192	−0.077098121
Proximal-Distal-Axis	al	10.36789298	0.323764339	−0.520439017
Proximal-Distal-Axis	C15	2.173913043	0.053608202	−0.395433811
Proximal-Distal-Axis	Dll	34.44816054	1.98972318	−0.478482888
Proximal-Distal-Axis	dac	12.04013378	0.424840171	−0.517944852
Proximal-Distal-Axis	tsh	29.59866221	2.366915062	0.468215741
Proximal-Distal-Axis	hth	81.27090301	59.52749037	0.835425868
Proximal-Distal-Axis	vg	39.96655518	4.585898734	2.038686595
Proximal-Distal-Axis	slr	43.81270903	2.625894433	2.039602193
Proximal-Distal-Axis	salm	53.3448161	3.74465689	2.039279287
Proximal-Distal-Axis	hui	6.18729097	0.155657069	−0.467912975
Proximal-Distal-Axis	betaTub56D	99.49832776	71.17380529	−0.350756424
Proximal-Distal-Axis	alphaTub84B	98.82943144	59.83141261	−0.468248858
Table A1. Cont.

Cell Subtype	Gene	Percent Expressed	Normalized UMI Count	Seurat Scaled Normalized UMI Count
Proximal-Distal-Axis	tsr	98.66220736	44.76118553	-0.959250307
Proximal-Distal-Axis	Act5C	99.49832776	55.6216358	-0.625789399
Distal	al	60	2.603283736	1.963370297
Distal	C15	73.57142857	4.214297242	2.041126432
Distal	Dll	92.14285714	9.809431808	1.810211936
Distal	dac	9.642857143	0.250736492	-0.650508111
Distal	hth	27.85714286	2.856922579	-0.932736841
Distal	vg	1.071428571	0.02411907	-0.441604926
Distal	salr	1.071428571	0.013810745	-0.462515482
Distal	salm	2.142857143	0.045931453	-0.448289565
Distal	hui	12.85714286	0.966716888	-0.288749653
Distal	betaTub56D	100	62.93114147	-0.851566182
Distal	alphaTub84B	100	55.43422202	-0.620103282
Distal	tsr	100	53.09832627	-0.444558658
Distal	Act5C	100	69.10840865	-0.346149551
Anterior-Posterior-Axis	al	4.519774011	0.091887873	-0.773096008
Anterior-Posterior-Axis	C15	1.129943503	0.014602416	-0.418276194
Anterior-Posterior-Axis	Dll	13.55932203	0.493279925	-0.916466206
Anterior-Posterior-Axis	dac	5.649717514	0.11476684	-0.75403963
Anterior-Posterior-Axis	tsh	56.49717514	2.156294232	0.3281673
Anterior-Posterior-Axis	hth	88.70056497	39.31225982	0.204696051
Anterior-Posterior-Axis	vg	0	0	-0.454718739
Anterior-Posterior-Axis	salr	1.694915254	0.093867563	-0.385828973
Anterior-Posterior-Axis	salm	3.389830508	0.088684597	-0.419536042
Anterior-Posterior-Axis	hui	79.0960452	11.49658469	2.037300845
Anterior-Posterior-Axis	betaTub56D	100	105.6986505	1.746912454
Anterior-Posterior-Axis	alphaTub84B	100	130.3298526	1.966373831
Anterior-Posterior-Axis	tsr	100	89.72629303	1.816661244
Anterior-Posterior-Axis	Act5C	100	182.5387119	2.005757244

Table A2. DEGs of fate undetermined cells. DEG list generated with cutoff value of log2FC equals 0.25 and minimum percentage of cells expressing the DEG of 0.25.

Gene	p_val	avg_log2FC	pct.1	pct.2
eEF2	2.63 × 10^{-76}	0.541911833	0.949	0.968
fabp	1.12 × 10^{-11}	0.468294279	0.655	0.722
Uba1	1.76 × 10^{-5}	0.462953007	0.446	0.655
CG14984	0.000107	0.459747394	0.323	0.445
Stip1	2.15 × 10^{-8}	0.417890064	0.375	0.582
Table A2. Cont.

Gene	p_val	avg_log2FC	pct.1	pct.2
Karybeta3	5.45 x 10^{-13}	0.411510198	0.293	0.469
CG3226	0.024048	0.40942343	0.553	0.731
SmD3	5.37 x 10^{-21}	0.403214155	0.733	0.868
Ran	4.25 x 10^{-44}	0.394201883	0.888	0.942
AsnRS	1.47 x 10^{-11}	0.392768286	0.36	0.569
Nph	1.83 x 10^{-39}	0.388031758	0.86	0.928
CG9922	0.673966	0.381062842	0.531	0.76
LIQR-CQ	1.16 x 10^{-23}	0.377240451	0.782	0.901
SmD2	2.31 x 10^{-16}	0.375790159	0.724	0.865
eIF3b	0.002117	0.374134239	0.619	0.813
CCT2	0.275826	0.370703182	0.539	0.763
CG8149	5.72 x 10^{-7}	0.369303556	0.41	0.627
COX5A	2.80 x 10^{-27}	0.36834579	0.789	0.9
CG3760	4.05 x 10^{-6}	0.3672513	0.625	0.792
san	0.000989	0.366350781	0.443	0.663
CCT7	0.000414	0.36533304	0.601	0.799
Tudor-SN	0.001026	0.363468674	0.489	0.701
CG11858	0.394245	0.362893992	0.531	0.743
CG11980	8.49 x 10^{-10}	0.362794172	0.382	0.598
Fkbp39	1.10 x 10^{-34}	0.362430772	0.837	0.917
CG17202	0.063868	0.362292286	0.508	0.74
Cyt-c-p	0.739486	0.360850946	0.547	0.754
Tim9a	8.62 x 10^{-5}	0.360541648	0.447	0.675
UQCR-14	5.71 x 10^{-9}	0.35959829	0.693	0.862
Rph8	0.014119	0.3594748	0.474	0.699
CCT8	3.72 x 10^{-8}	0.355410141	0.642	0.81
alphaTub554D	9.72 x 10^{-106}	0.351533668	0.999	0.996
ATPsynbeta	5.99E-54	0.351328277	0.926	0.955
betaTub556D	2.12 x 10^{-111}	0.351110198	0.999	0.997
eEF1delta	3.35 x 10^{-36}	0.348262336	0.861	0.934
eIF6	8.97 x 10^{-5}	0.346187749	0.437	0.661
CG11267	4.58 x 10^{-18}	0.345982895	0.788	0.902
Aos1	3.11 x 10^{-5}	0.345697042	0.633	0.808
NHP2	1.59 x 10^{-5}	0.34467569	0.66	0.835
mod	1.41 x 10^{-12}	0.343973569	0.709	0.863
CG2021	4.20 x 10^{-12}	0.343366272	0.345	0.547
Nurf-38	5.99 x 10^{-18}	0.339601891	0.75	0.879
ND-ACP	9.76 x 10^{-13}	0.338718622	0.711	0.872
CG13994	1.07 x 10^{-15}	0.337794285	0.295	0.484
Table A2. Cont.

Gene	p_val	avg_log2FC	pct.1	pct.2
tsr	1.61×10^{-102}	0.336728868	0.998	0.995
ATPsynCF6	1.79×10^{-26}	0.335348459	0.818	0.923
Nedd8	1.67×10^{-12}	0.334310017	0.715	0.876
Nap1	6.07×10^{-12}	0.334107702	0.773	0.895
hwp	6.18×10^{-6}	0.333796151	0.689	0.847
SmB	1.14×10^{-20}	0.333628168	0.315	0.513
Incomp	6.88×10^{-10}	0.332309093	0.381	0.598
CG14210	7.27×10^{-22}	0.331635151	0.298	0.518
Act5C	6.76×10^{-84}	0.330948305	0.650	0.83
Pfdn5	1.92×10^{-20}	0.328343557	0.602	0.804
RanGAP	1.02×10^{-11}	0.328311508	0.339	0.531
CCT1	0.001893	0.326762196	0.621	0.814
CRIF	8.74×10^{-14}	0.326369065	0.313	0.499
Ahcy	0.140383	0.325984833	0.497	0.717
UbEc2M	2.61×10^{-5}	0.324931312	0.452	0.684
LysRS	1.92×10^{-20}	0.324813333	0.284	0.486
Pfdn1	0.015668	0.322437535	0.505	0.745
janA	0.027436	0.322236117	0.64	0.84
Ote	2.27×10^{-11}	0.321707361	0.335	0.517
Rpn9	0.001611	0.321592929	0.626	0.817
CG1542	1.21×10^{-12}	0.321248406	0.351	0.568
COX5B	1.43×10^{-14}	0.320638424	0.768	0.899
eIF3l	3.71×10^{-6}	0.320621493	0.434	0.656
Pen	3.70×10^{-15}	0.320548585	0.764	0.892
nop5	3.23×10^{-8}	0.31963021	0.432	0.655
HP4	0.192532	0.319387871	0.517	0.737
NAT1	1.18×10^{-16}	0.318248392	0.38	0.613
Rpn1	1.24×10^{-10}	0.318033663	0.422	0.661
ND-51	1.15×10^{-9}	0.31799648	0.41	0.652
Txl	0.013031	0.317304773	0.484	0.704
Prosbeta5	8.73×10^{-19}	0.316609822	0.779	0.894
wac	0.050386	0.316434419	0.484	0.703
Hsc70-4	5.19×10^{-63}	0.316015021	0.982	0.986
me31B	0.419468	0.315758713	0.581	0.797
GluProRS	1.96×10^{-9}	0.315644484	0.181	0.28
Prp8	1.00×10^{-14}	0.3153532	0.221	0.363
Set	1.77×10^{-13}	0.3136136	0.755	0.882
Table A2. Cont.

Gene	p_val	avg_log2FC	pct.1	pct.2
Pfhd2	7.64 × 10^{-6}	0.313432961	0.669	0.849
SelD	0.008104	0.313112222	0.61	0.807
HmgD	3.22 × 10^{-58}	0.31212012	0.995	0.994
jafrac1	1.11 × 10^{-22}	0.309289263	0.7	0.873
Mcm6	4.23 × 10^{-10}	0.309268908	0.67	0.863
lost	0.001046	0.30826181	0.306	0.505
Sem1	0.001049	0.308257341	0.587	0.808
smid	2.02 × 10^{-16}	0.307967688	0.386	0.61
CG15019	0.475046	0.30744727	0.662	0.836
Echs1	0.000121	0.306858295	0.739	0.862
CG34132	4.59 × 10^{-11}	0.30568901	0.746	0.88
Rpn10	0.557285	0.305096172	0.231	0.368
CCT5	1.39 × 10^{-12}	0.304167028	0.516	0.768
baf	1.48 × 10^{-9}	0.299991914	0.533	0.769
CG16985	7.99 × 10^{-12}	0.299743419	0.571	0.795
ND-13B	0.003083	0.298876442	0.791	0.903
Cdk1	0.182413	0.298829465	0.694	0.867
Phb2	0.056628	0.298465681	0.286	0.471
La	0.012425	0.298305603	0.813	0.907
Prp19	5.29E-15	0.297450632	0.4	0.586
CG12321	4.27E-21	0.297139314	0.537	0.768
ox	0.214652	0.296185019	0.602	0.808
Prosalpha3	5.63E-19	0.295209903	0.581	0.802
SmE	4.45E-06	0.294435499	0.409	0.639
CG3594	2.93E-15	0.293989942	0.444	0.68
Pomp	5.66E-19	0.293161476	0.83	0.931
CG5903	0.6842	0.292139314	0.537	0.763
Actb1	0.059744	0.292049575	0.399	0.631
CG6523	0.022022	0.291847165	0.868	0.941
aurB	3.70E-05	0.291768757	0.399	0.631
ND-SGDH	0.175992	0.291207665	0.334	0.547
mtSSB	1.81E-10	0.29048841	0.652	0.843
Rpb5	1.51E-06	0.289356898	0.669	0.852
CG2862	8.93E-22	0.289356898	0.669	0.852
Table A2. Cont.

Gene	p_val	avg_log2FC	pct.1	pct.2
tko	0.060424	0.288967965	0.515	0.744
ND-19	6.71E-06	0.288617644	0.468	0.717
CG9752	1.15E-05	0.288354586	0.316	0.44
mge	2.15E-08	0.28818938	0.449	0.704
Srp19	8.31E-13	0.287931596	0.401	0.64
Chc	3.98E-16	0.28742202	0.377	0.612
eIF3j	6.29E-20	0.287256028	0.367	0.623
CG14543	1.82E-16	0.28676099	0.276	0.458
CCT6	0.088352	0.286307611	0.598	0.809
Mdh2	2.50E-12	0.285312875	0.39	0.639
bonsai	2.32E-18	0.284517765	0.311	0.53
feo	2.85E-14	0.28445883	0.342	0.551
CG5355	7.68E-19	0.284380697	0.371	0.611
GlyRS	6.75E-13	0.283564199	0.405	0.644
CG9205	2.12E-11	0.28348611	0.394	0.623
Rrp40	5.61E-18	0.282892518	0.274	0.461
l(1)G0004	1.37E-17	0.282407454	0.303	0.511
Non2	9.28E-23	0.282276666	0.856	0.941
CG10576	3.19E-07	0.281613969	0.695	0.85
CG6617	1.29E-11	0.281332974	0.408	0.653
CCT4	3.04E-07	0.280798696	0.7	0.856
Tom7	1.14E-06	0.280078089	0.706	0.878
Pfdh6	0.957133	0.279903383	0.564	0.792
Uch	1.44E-06	0.279613571	0.492	0.738
CG4866	1.67E-13	0.279468463	0.341	0.555
roh	9.19E-20	0.279380844	0.816	0.916
Rpn13	0.12711	0.279322366	0.543	0.772
alphaTub84D	3.38E-07	0.279114348	0.666	0.844
Nlp	3.51E-44	0.278341613	0.955	0.978
fzy	1.92E-16	0.277611464	0.293	0.481
Nmt	1.32E-15	0.277587163	0.364	0.6
CG34200	2.80E-19	0.277548087	0.342	0.573
CG3420	6.50E-15	0.2771143	0.362	0.589
Cdc37	9.32E-12	0.276940009	0.45	0.704
CG10038	6.04E-16	0.276910568	0.308	0.506
CG10638	8.48E-05	0.276901373	0.466	0.701
Tim23	0.098321	0.275458009	0.536	0.772
Rpn11	0.777644	0.274812562	0.548	0.771
CG5515	8.66E-09	0.274683335	0.434	0.676
Pcd	9.01E-12	0.274174524	0.433	0.671
DENR	7.60E-11	0.27411005	0.418	0.67
Table A2. Cont.

Gene	p_val	avg_log2FC	pct.1	pct.2
CG8635	4.18E-08	0.274072152	0.449	0.698
Rpn12	0.021678	0.273993176	0.513	0.745
pont	1.01E-08	0.273709261	0.417	0.654
Grx1	6.78E-20	0.273641436	0.344	0.58
Gart	6.00E-18	0.27314057	0.297	0.5
Nacalpha	6.76E-49	0.272817196	0.981	0.988
GstO2	4.65E-08	0.272726982	0.441	0.685
CG14817	6.98E-14	0.272320839	0.377	0.598
cypr	7.38E-26	0.2714151	0.857	0.948
COX7A	2.08E-20	0.270870929	0.858	0.936
Rpn8	5.05E-07	0.270666209	0.468	0.725
Prosalpha2	1.35E-06	0.27064609	0.708	0.865
Prosalpha5	4.93E-09	0.270487893	0.705	0.86
Rpn7	0.494035	0.27046284	0.551	0.765
Ski6	1.25E-18	0.270029048	0.269	0.461
Scsalpha1	0.33089	0.269419769	0.568	0.784
COX8	2.60E-14	0.269389489	0.808	0.923
CG7630	1.15E-13	0.268873423	0.803	0.922
Arp1	2.34E-15	0.268500605	0.411	0.662
Prosbeta7	0.700295	0.268425349	0.597	0.804
elF3c	6.27E-06	0.268191638	0.509	0.751
CG6937	1.25E-14	0.267816225	0.356	0.588
Rae1	8.51E-20	0.267383088	0.301	0.509
Art1	0.001476	0.266939135	0.488	0.72
Roc1a	6.33E-16	0.266631796	0.801	0.918
CG17059	2.17E-09	0.266613285	0.453	0.708
Non3	4.49E-17	0.266495993	0.339	0.564
ncd	4.47E-16	0.264327838	0.277	0.447
CG4511	1.92E-16	0.264239389	0.394	0.649
Updo	2.45E-20	0.264041525	0.345	0.591
CG1598	1.46E-17	0.263529104	0.362	0.604
CG1789	3.81E-22	0.263440367	0.319	0.548
ATPsynE	8.47E-21	0.263433084	0.848	0.943
Nop56	0.013911	0.262395693	0.655	0.841
Prosbeta6	0.000207	0.262237698	0.678	0.857
COX4	1.30E-19	0.262022839	0.844	0.936
CG13364	5.33E-09	0.261858812	0.768	0.914
Rpt5	1.59E-07	0.26115752	0.467	0.709
CG9667	8.35E-18	0.261015475	0.269	0.454
ATPsynB	1.97E-20	0.261004129	0.854	0.934
ND-13A	1.30E-15	0.260501665	0.389	0.632
Ssb-c31a	0.428003	0.260444449	0.609	0.813
Table A2. Cont.

Gene	p_val	avg_log2FC	pct.1	pct.2
eEF1beta	2.95E-47	0.260441246	0.986	0.989
RnrL	3.99E-14	0.25996256	0.231	0.365
ND-B15	0.00029	0.259827447	0.501	0.742
p23	3.03E-21	0.259043522	0.88	0.947
RFeSP	0.446974	0.258835685	0.601	0.82
AIMP2	1.69E-19	0.258671195	0.332	0.569
CG17776	1.54E-13	0.257691639	0.398	0.638
Usp5	4.82E-22	0.257589507	0.232	0.413
Rpn3	9.87E-05	0.257434516	0.487	0.726
blw	1.28E-26	0.257118864	0.883	0.946
Rpn5	0.209107	0.256465518	0.572	0.8
pAbp	3.06E-12	0.256184891	0.972	0.994
sxx	6.04E-19	0.256144854	0.193	0.338
CHORD	3.20E-17	0.255801888	0.191	0.33
Cbs	1.29E-15	0.255282574	0.308	0.498
Vha14-1	0.000131	0.255064003	0.497	0.74
CG9643	2.04E-22	0.254773967	0.286	0.495
Fib	2.20E-09	0.254765817	0.444	0.685
endos	0.001143	0.2546236	0.677	0.86
msd5	3.63E-13	0.254565067	0.268	0.423
Prosbeta3	8.21E-15	0.254528661	0.785	0.904
cl	0.010449	0.254513723	0.679	0.86
CG11444	0.171588	0.25436775	0.559	0.779
CG8891	8.66E-09	0.254175553	0.443	0.691
icln	0.000109	0.25393175	0.492	0.748
mAcon1	2.12E-21	0.253581166	0.295	0.51
SmF	0.001047	0.253472919	0.677	0.866
porin	1.68E-18	0.252948112	0.846	0.943
Nup50	1.92E-19	0.252683608	0.259	0.443
dpa	1.96E-08	0.252625619	0.22	0.322
thoc6	1.31E-18	0.252359096	0.296	0.498
RpA-70	4.90E-19	0.252331257	0.243	0.413
CG9705	0.019547	0.252183496	0.676	0.873
Shmt	1.73E-06	0.251894976	0.455	0.699
alien	3.33E-15	0.251507249	0.385	0.636
Arl2	1.16E-21	0.251458627	0.256	0.445
SerRS	0.076293	0.250932882	0.547	0.774
CG1943	2.38E-10	0.250821203	0.795	0.895
ND-B14.5B	5.78E-05	0.250452901	0.496	0.755
Table A3. Gene ontology analysis of the fate undetermined DEGs indicated enrichment in metabolic processes, DNA replication, RNA splicing and translation initiation suggestive of highly active, premature, growing cells.

Analysis Type:	PANTHER Over-representation Test (Released on 2 February 2022)
Annotation Version and Release Date:	GO Ontology database DOI: 10.5281/zenodo.6399963 Released on 22 March 2022
Analyzed List:	upload_1 (Drosophila melanogaster)
Reference List:	Drosophila melanogaster (all genes in database)
Test Type:	FISHER
Correction:	FDR

GO biological process complete	Drosophila melanogaster—REFLIST (13821)	upload_1 (205)	upload_1 (expected)	upload_1 (over/under)	upload_1 (fold Enrichment)	upload_1 (raw P-value)	upload_1 (FDR)
mitochondrial electron transport, ubiquinol to cytochrome c (GO:0006122)	13	5	0.19	+	25.93	4.66E-06	4.54E-04
DNA unwinding involved in DNA replication (GO:0006268)	11	4	0.16	+	24.52	5.33E-05	4.03E-03
spliceosomal snRNP assembly (GO:0000387)	18	6	0.27	+	22.47	9.79E-07	1.12E-04
proton motive force-driven ATP synthesis (GO:0015986)	21	6	0.31	+	19.26	2.08E-06	2.25E-04
mitochondrial electron transport, cytochrome c to oxygen (GO:0006123)	15	4	0.22	+	17.98	1.45E-04	9.39E-03
ATP biosynthetic process (GO:0006754)	23	6	0.34	+	17.59	3.25E-06	3.38E-04
purine ribonucleoside triphosphate biosynthetic process (GO:0009206)	27	6	0.4	+	14.98	7.22E-06	6.54E-04
purine ribonucleoside triphosphate metabolic process (GO:0009205)	27	6	0.4	+	14.98	7.22E-06	6.47E-04
purine nucleoside triphosphate biosynthetic process (GO:0009145)	27	6	0.4	+	14.98	7.22E-06	6.39E-04
aerobic electron transport chain (GO:0019646)	54	12	0.8	+	14.98	1.70E-10	4.56E-08
Table A3. Cont.

Process	Count	Freq	q-value	p-value 1	p-value 2		
purine nucleoside triphosphate metabolic process (GO:0009144)	28	6	0.42	+	14.45	8.66E-06	7.42E-04
mitochondrial electron transport, NADH to ubiquinone (GO:0006120)	19	4	0.28	+	14.19	3.16E-04	1.89E-02
mitochondrial ATP synthesis coupled electron transport (GO:0042775)	58	12	0.86	+	13.95	3.48E-10	7.34E-08
ribonucleoside triphosphate biosynthetic process (GO:0009201)	30	6	0.44	+	13.48	1.22E-05	1.03E-03
ribonucleoside triphosphate metabolic process (GO:0009199)	30	6	0.44	+	13.48	1.22E-05	1.01E-03
nucleoside triphosphate metabolic process (GO:0009141)	36	7	0.53	+	13.11	2.65E-06	2.83E-04
ATP synthesis coupled electron transport (GO:0042773)	62	12	0.92	+	13.05	6.83E-10	1.40E-07
respiratory electron transport chain (GO:0022904)	69	13	1.02	+	12.7	1.75E-10	4.54E-08
oxidative phosphorylation (GO:0006119)	69	13	1.02	+	12.7	1.75E-10	4.39E-08
electron transport chain (GO:0022900)	76	14	1.13	+	12.42	4.43E-11	1.38E-08
nucleoside triphosphate biosynthetic process (GO:0009142)	33	6	0.49	+	12.26	1.98E-05	1.60E-03
germarium-derived female germ-line cyst formation (GO:0030727)	23	4	0.34	+	11.73	5.97E-04	3.35E-02
female germ-line cyst formation (GO:0048135)	24	4	0.36	+	11.24	6.89E-04	3.75E-02
DNA duplex unwinding (GO:0032508)	25	4	0.37	+	10.79	7.90E-04	4.16E-02
aerobic respiration (GO:0009060)	101	16	1.5	+	10.68	1.33E-11	4.70E-09
cellular respiration (GO:0045333)	111	17	1.65	+	10.33	4.82E-12	1.88E-09
ATP metabolic process (GO:0046034)	118	18	1.75	+	10.28	1.18E-12	5.73E-10
Table A3. Cont.							

mitochondrial respiratory chain complex I assembly (GO:0032981)							
36	5	0.53	+	9.36	3.10E-04	1.90E-02	
NADH dehydrogenase complex assembly (GO:0010257)							
36	5	0.53	+	9.36	3.10E-04	1.89E-02	
translational initiation (GO:0006413)							
53	7	0.79	+	8.9	2.58E-05	2.05E-03	
tRNA aminooacylation for protein translation (GO:0006418)							
38	5	0.56	+	8.87	3.89E-04	2.30E-02	
energy derivation by oxidation of organic compounds (GO:0015980)							
135	17	2	+	8.49	7.90E-11	2.28E-08	
tRNA aminooacylation (GO:0043039)							
41	5	0.61	+	8.22	5.35E-04	3.04E-02	
amino acid activation (GO:0043038)							
43	5	0.64	+	7.84	6.53E-04	3.61E-02	
protein folding (GO:0006457)							
132	15	1.96	+	7.66	3.85E-09	6.82E-07	
proteasome-mediated ubiquitin-dependent protein catabolic process (GO:0043161)							
217	24	3.22	+	7.46	1.08E-13	1.20E-10	
proteasomal protein catabolic process (GO:0010498)							
229	24	3.4	+	7.07	3.16E-13	2.74E-10	
generation of precursor metabolites and energy (GO:0006991)							
183	18	2.71	+	6.63	8.59E-10	1.67E-07	
centrosome cycle (GO:0007098)							
72	7	1.07	+	6.55	1.53E-04	9.85E-03	
ribonucleoprotein complex assembly (GO:0022618)							
117	11	1.74	+	6.34	2.72E-06	2.86E-04	
modification-dependent macromolecule catabolic process (GO:0043632)							
318	29	4.72	+	6.15	2.43E-14	4.74E-11	
microtubule organizing center organization (GO:0031023)							
77	7	1.14	+	6.13	2.25E-04	1.41E-02	
ribonucleoprotein complex subunit organization (GO:0071826)							
122	11	1.81	+	6.08	3.96E-06	3.90E-04	
modification-dependent protein catabolic process (GO:0019941)							
311	28	4.61	+	6.07	9.51E-14	1.23E-10	
GO term	n	pVal	FDR	Log2 fold change	qVal	FDR	
---	---	---	---	---	---	---	---
ubiquitin-dependent protein degradation process (GO:006511)	307	27	4.55	+	5.93	4.57E-13	2.97E-10
proteolysis involved in cellular protein degradation process (GO:0051603)	332	28	4.92	+	5.69	4.22E-13	2.99E-10
cellular protein degradation process (GO:004257)	334	28	4.95	+	5.65	4.83E-13	2.90E-10
microtubule cytoskeleton organization involved in mitosis (GO:1902850)	85	7	1.26	+	5.55	3.94E-04	2.31E-02
protein degradation process (GO:0030163)	343	28	5.09	+	5.5	8.82E-13	4.58E-10
nuclear transport (GO:0051169)	118	9	1.75	+	5.14	1.02E-04	6.99E-03
nucleocytoplasmic transport (GO:0006913)	118	9	1.75	+	5.14	1.02E-04	6.93E-03
establishment of protein localization to membrane (GO:0090150)	95	7	1.41	+	4.97	7.35E-04	3.95E-02
purine ribonucleotide biosynthetic process (GO:0009152)	96	7	1.42	+	4.92	7.79E-04	4.13E-02
ribonucleoprotein complex biogenesis (GO:0022613)	288	21	4.27	+	4.92	5.00E-09	8.65E-07
cellular macromolecule degradation process (GO:004265)	447	32	6.63	+	4.83	5.01E-13	2.79E-10
purine-containing compound biosynthetic process (GO:0072522)	112	8	1.66	+	4.82	3.77E-04	2.24E-02
cell population proliferation (GO:0008283)	122	8	1.81	+	4.42	6.43E-04	3.58E-02
rRNA metabolic process (GO:0016072)	168	11	2.49	+	4.41	6.48E-05	4.80E-03
mRNA splicing, via spliceosome (GO:0000398)	214	14	3.17	+	4.41	6.56E-06	6.08E-04
RNA splicing, via transesterification reactions with bulged adenosine as nucleophile (GO:0000377)	214	14	3.17	+	4.41	6.56E-06	6.01E-04
rRNA processing (GO:0006364)	153	10	2.27	+	4.41	1.41E-04	9.25E-03
Table A3. Cont.

Process Description	ID	Count	q-value	log2FoldChange	False Discovery Rate	FDR
nucleotide biosynthetic process (GO:0009165)	123	8	1.82	+	4.39	6.77E-04
RNA splicing, via transesterification reactions (GO:000375)	216	14	3.2	+	4.37	7.25E-06
macromolecule catabolic process (GO:0009057)	494	32	7.33	+	4.37	6.16E-12
nucleotide phosphate biosynthetic process (GO:1901293)	124	8	1.84	+	4.35	7.12E-04
spindle organization (GO:0007051)	125	8	1.85	+	4.31	7.48E-04
translation (GO:0006412)	304	19	4.51	+	4.21	2.72E-07
protein-containing complex assembly (GO:0065003)	433	27	6.42	+	4.2	7.19E-10
establishment of protein localization to organelle (GO:0072594)	179	11	2.66	+	4.14	1.11E-04
RNA splicing (GO:0008380)	228	14	3.38	+	4.14	1.29E-05
peptide biosynthetic process (GO:0043043)	310	19	4.6	+	4.13	3.61E-07
meiotic cell cycle (GO:0051321)	215	13	3.19	+	4.08	3.09E-05
mitotic cell cycle (GO:0000278)	399	24	5.92	+	4.06	1.33E-08
meiotic cell cycle process (GO:1902046)	204	12	3.03	+	3.97	8.02E-05
organonitrogen compound catabolic process (GO:1901565)	514	30	7.62	+	3.93	3.34E-10
microtubule cytoskeleton organization (GO:0000226)	344	20	5.1	+	3.92	3.88E-07
nuclear division (GO:0000280)	246	14	3.65	+	3.84	2.88E-05
cell cycle (GO:0007049)	608	34	9.02	+	3.77	5.64E-11
ribosome biogenesis (GO:0042254)	215	12	3.19	+	3.76	1.29E-04
mitochondrion organization (GO:0007005)	235	13	3.49	+	3.73	7.34E-05
amide biosynthetic process (GO:0043604)	350	19	5.19	+	3.66	2.03E-06
organelle fission (GO:0048285)	259	14	3.84	+	3.64	4.92E-05
Table A3. Cont.

Protein-Containing Complex Organization (GO:0043933)	527	28	7.82	+	3.58	9.82E-09	1.59E-06
mRNA Metabolic Process (GO:016071)	344	18	5.1	+	3.53	6.19E-06	5.81E-04
mRNA Processing (GO:0006397)	268	14	3.98	+	3.52	6.98E-05	4.99E-03
Cell Cycle Process (GO:0022402)	513	26	7.61	+	3.42	8.53E-08	1.17E-05
Mitotic Cell Cycle Process (GO:1903047)	277	14	4.11	+	3.41	9.75E-05	6.72E-03
Chromosome Organization (GO:0051276)	476	24	7.06	+	3.4	3.06E-07	3.84E-05
Spermatogenesis (GO:0007283)	264	13	3.92	+	3.32	2.21E-04	1.40E-02
Peptide Metabolic Process (GO:0006518)	409	20	6.07	+	3.3	4.90E-06	4.71E-04
Protein Localization to Organelle (GO:0033365)	249	12	3.69	+	3.25	4.63E-04	2.67E-02
Cellular Catabolic Process (GO:0044248)	801	38	11.88	+	3.2	3.45E-10	7.48E-08
Microtubule-Based Process (GO:0007017)	464	21	6.88	+	3.05	8.79E-06	7.44E-04
Male Gamete Generation (GO:0048232)	310	14	4.6	+	3.04	2.97E-04	1.84E-02
ncRNA Metabolic Process (GO:0034660)	377	17	5.59	+	3.04	6.83E-05	4.97E-03
Cellular Nitrogen Compound Biosynthetic Process (GO:0044271)	711	32	10.55	+	3.03	3.45E-08	5.07E-06
Regulation of Catabolic Process (GO:0009894)	291	13	4.32	+	3.01	5.39E-04	3.04E-02
RNA Processing (GO:0006396)	560	25	8.31	+	3.01	1.46E-06	1.63E-04
Organic Substance Catabolic Process (GO:1901575)	823	36	12.21	+	2.95	8.56E-09	1.42E-06
Intracellular Protein Transport (GO:0006886)	328	14	4.87	+	2.88	5.12E-04	2.93E-02
Cellular Amide Metabolic Process (GO:00483603)	493	21	7.31	+	2.87	2.10E-05	1.69E-03
Female Gamete Generation (GO:0007292)	628	26	9.31	+	2.79	3.36E-06	3.45E-04
Gene Expression (GO:010467)	1120	46	16.61	+	2.77	3.36E-10	7.48E-08
Catabolic Process (GO:0009056)	932	38	13.82	+	2.75	1.91E-08	2.92E-06
Cellular Macromolecule Biosynthetic Process (GO:0034645)	496	20	7.36	+	2.72	6.96E-05	5.02E-03
Sexual Reproduction (GO:0019953)	931	37	13.81	+	2.68	5.75E-08	8.30E-06
Germ Cell Development (GO:0007281)	713	28	10.58	+	2.65	3.63E-06	3.63E-04
Cellular Component Biogenesis (GO:0044085)	1285	50	19.06	+	2.62	2.90E-10	6.85E-08
Organonitrogen Compound Biosynthetic Process (GO:1901566)	800	31	11.87	+	2.61	1.34E-06	1.52E-04
Cellular Process Involved in Reproduction in Multicellular Organism (GO:0022412)	852	33	12.64	+	2.61	5.89E-07	6.95E-05
RNA Metabolic Process (GO:0016070)	828	32	12.28	+	2.61	9.37E-07	1.09E-04
Gamete Generation (GO:0007276)	915	35	13.57	+	2.58	3.38E-07	4.18E-05
Oogenesis (GO:0048477)	576	22	8.54	+	2.58	6.48E-05	4.76E-03
Cellular Protein Metabolic Process (GO:0044267)	1683	63	24.96	+	2.52	4.07E-12	1.67E-09
Cellular Component Assembly (GO:0022607)	1109	41	16.45	+	2.49	8.82E-08	1.18E-05
Nucleobase-Containing Compound Metabolic Process (GO:0006139)	1369	50	20.31	+	2.46	2.65E-09	4.79E-07
Cytoskeleton Organization (GO:0007010)	580	21	8.6	+	2.44	3.13E-04	1.89E-02
Nucleic Acid Metabolic Process (GO:0090304)	1105	40	16.39	+	2.44	1.96E-07	2.54E-05
Reproductive Process (GO:0022414)	1190	43	17.65	+	2.44	6.16E-08	8.57E-06
Developmental Process Involved in Reproduction (GO:0003008)	892	32	13.23	+	2.42	5.10E-06	4.84E-04
Cellular Nitrogen Compound Metabolic Process (GO:0034641)	1801	64	26.71	+	2.4	2.20E-11	7.45E-09
Heterocycle Metabolic Process (GO:0046483)	1451	51	21.52	+	2.37	7.34E-09	1.24E-06
Table A3. Cont.

GO:0044260	2106	74	31.24	+	2.37	3.46E-13	2.70E-10
GO:0006996	1721	60	25.53	+	2.35	2.20E-10	5.35E-08
GO:0048609	1041	36	15.44	+	2.33	3.50E-06	3.54E-04
GO:0009059	696	24	10.32	+	2.32	1.57E-04	1.00E-02
GO:006725	1495	51	22.17	+	2.3	1.55E-08	2.42E-06
GO:0006508	861	29	12.77	+	2.27	5.96E-05	4.46E-03
GO:1901360	1558	51	23.11	+	2.21	5.89E-08	8.35E-06
GO:0044237	3877	126	57.51	+	2.19	7.75E-23	3.02E-19
GO:0071840	2778	88	41.2	+	2.14	2.76E-13	2.69E-10
GO:0003306	874	27	12.96	+	2.08	4.25E-04	2.47E-02
GO:0044249	1178	36	17.47	+	2.06	4.31E-05	3.32E-03
GO:0000003	1421	43	21.08	+	2.04	7.99E-06	6.92E-04
GO:0016843	2616	79	38.8	+	2.04	8.68E-11	2.41E-08
GO:1901576	1212	36	17.98	+	2	9.41E-05	6.55E-03
GO:0043170	3193	94	47.36	+	1.98	1.44E-12	6.23E-10
GO:0009058	1239	36	18.38	+	1.96	1.15E-04	7.63E-03
GO:0006807	3671	106	54.45	+	1.95	3.62E-14	5.64E-11
GO:0019388	2183	63	32.38	+	1.95	1.26E-07	1.67E-05
GO:0032504	1275	36	18.91	+	1.9	2.28E-04	1.42E-02
Biological Process	GO ID	P-val	q-val	c-value			
--	-----------	--------	--------	---------			
cellular process (GO:0009987)	7306	188	108.37	+			
organonitrogen compound metabolic process (GO:1901564)	2725	75	40.42	+	1.86	2.76E-08	4.14E-06
primary metabolic process (GO:0044238)	4039	109	59.91	+	1.82	1.30E-12	5.96E-10
organic substance metabolic process (GO:0071704)	4283	110	63.53	+	1.73	2.91E-11	9.45E-09
biological_process (GO:0008150)	11314	197	167.81	+	1.17	1.87E-09	3.47E-07
Unclassified (UNCLASSIFIED)	2507	8	37.19	–	0.22	1.87E-09	3.55E-07

References

1. Schmitz, S.U.; Grote, P.; Herrmann, B.G. Mechanisms of long noncoding RNA function in development and disease. *Cell. Mol. Life Sci.* 2016, 73, 2491–2509. [CrossRef] [PubMed]
2. Laurent, G.S.; Wahlestedt, C.; Kapranov, P. The Landscape of long non-coding RNA classification: The non-coding RNA universe. *Trends Genet.* 2016, 31, 239–251. [CrossRef] [PubMed]
3. Sarropoulos, I.; Marin, R.; Cardoso-Moreira, M.; Kaessmann, H. Developmental dynamics of lncRNAs across mammalian organs and species. *Nature* 2019, 571, 510–514. [CrossRef] [PubMed]
4. Esteller, M. Non-coding RNAs in human disease. *Nat. Rev. Genet.* 2011, 12, 861–874. [CrossRef]
5. Chen, G.; Ning, B.; Shi, T. Single-Cell RNA-Seq Technologies and Related Computational Data Analysis. *Front. Genet.* 2019, 10, 317. [CrossRef] [PubMed]
6. Svensson, V.; da Veiga Beltrame, E.; Pachter, L. A curated database reveals trends in single-cell transcriptomics. *Database* 2020, 2020, baaa073. [CrossRef]
7. Klein, A.M.; Treutlein, B. Single cell analyses of development in the modern era. *Development* 2019, 146, dev181396. [CrossRef] [PubMed]
8. Ariss, M.M.; Islam, A.B.M.M.K.; Critcher, M.; Zappia, M.P.; Frolov, M.V. Single cell RNA-sequencing identifies a metabolic aspect of apoptosis in Rbf mutant. *Nat. Commun.* 2018, 9, 5024. [CrossRef] [PubMed]
9. Bageritz, J.; Willnow, P.; Valentini, E.; Leible, S.; Boutros, M.; Telemann, A.A. Gene expression atlas of a developing tissue by single cell expression correlation analysis. *Nat. Methods* 2019, 16, 750–756. [CrossRef]
10. Deng, M.; Wang, Y.; Zhang, L.; Yang, Y.; Huang, S.; Wang, J.; Ge, H.; Ishibashi, T.; Yan, Y. Single cell transcriptomic landscapes of pattern formation, proliferation and growth in *Drosophila* wing imaginal discs. *Development* 2019, 146, dev179754. [CrossRef]
11. Zappia, M.P.; de Castro, L.; Ariss, M.M.; Jefferson, H.; Islam, A.B.; Frolov, M.V. A cell atlas of adult muscle precursors uncovers early events in fibre-type divergence in *Drosophila*. *EMBO Rep.* 2020, 21, e49555. [CrossRef]
12. González-Blas, C.B.; Quan, X.J.; Duran-Romaña, R.; Taskiran, I.I.; Koldere, D.; Davie, K.; Christiaens, V.; Makhzami, S.; Hulselmans, G.; de Waegeneer, M.; et al. Identification of genomic enhancers through spatial integration of single-cell transcriptomics and epigenomics. *Mol. Syst. Biol.* 2020, 16, e9438. [CrossRef]
13. Everetts, N.J.; Worley, M.I.; Yasutomi, R.; Yosef, N.; Harirhan, I.K. Single-cell transcriptomics of the *Drosophila* wing disc reveals instructive epithelium-to-myoblast interactions. *Elife* 2021, 10, e61276. [CrossRef]
14. Li, H.; Janssens, J.; De Waegeneer, M.; Kolluru, S.S.; Davie, K.; Gardeux, V.; Saelens, W.; David, F.P.A.; Bribi, M.; Spanier, K.; et al. Fly Cell Atlas: A single-nucleus transcriptomic atlas of the adult fruit fly. *Science* 2022, 375, 6584. [CrossRef]
21. Worley, M.I.; Everetts, N.J.; Yasutomi, R.; Yosef, N.; Hariharan, I.K. Critical genetic program for Drosophila imaginal disc regeneration revealed by single-cell analysis. *BioRxiv* 2021. [CrossRef]

22. Estella, C.; Voutet, R.; Mann, R.S. A Dynamic Network of Morphogens and Transcription Factors Patterns the Fly Leg. *Curr. Top. Dev. Biol.* 2012, 98, 173–198. [PubMed]

23. Schubiger, G.; Schubiger, M.; Suster, A. The three leg imaginal discs of Drosophila: “Vive la différence”. *Dev. Biol.* 2012, 369, 76–90. [CrossRef]

24. Sudarsan, V.; Anant, S.; Guptan, P.; Vijayaraghavan, K.; Skaer, H. Myoblast Diversification and Ectodermal Signaling in Drosophila. *Front. Cell Dev. Biol.* 2021, 9, 643712. [CrossRef]

25. Fraichard, S.; Bougé, A.L.; Kendall, T.; Chauvel, I.; Bouhin, H.; Bunch, T.A. Tenecin is a novel αPS2βPS integrin ligand required for wing morphogenesis and male genital looping in Drosophila. *Dev. Biol.* 2010, 340, 504–517. [CrossRef] [PubMed]

26. Cattenoz, P.B.; Monticelli, S.; Pavlidaki, A.; Giangrande, A. Toward a Consensus in the Repertoire of Hemocytes Identified in Drosophila. *Front. Dev. Biol.* 2021, 9, 643712. [CrossRef]

27. Trébuchet, G.; Cattenoz, P.B.; Zsámboki, J.; Mazaud, D.; Siekhaus, D.E.; Fanto, M.; Giangrande, A. The Repo Homeodomain Transcription Factor Suppresses Hematopoiesis in Drosophila and Preserves the Glial Fate. *J. Neurosci.* 2019, 39, 255. [CrossRef]

28. Zaharieva, E.; Haussmann, I.U.; Bräuer, U.; Soller, M. Concentration and Localization of Coexpressed ELAV/Hu Proteins Control Specificity of mRNA Processing. *Mol. Cell. Biol.* 2015, 35, 3104–3115. [CrossRef]

29. Morriss, G.R.; Bryantsev, A.L.; Chechenova, M.; LaBeau, E.M.; Lovato, T.L.; Ryan, K.M.; Cripps, R.M. Analysis of Skeletal Muscle Development in Drosophila. Methods Mol. Biol. 2012, 798, 127–152. [PubMed]

30. Taylor, M.V. Comparison of Muscle Development in Drosophila and Vertebrates. In *Muscle Development in Drosophila*; Springer: New York, NY, USA, 2006.

31. Lee, C.-Y.; Andersen, R.O.; Cabernard, C.; Manning, L.; Tran, K.D.; Lanksy, M.J.; Bashirullah, A.; Doe, C.Q. Drosophila Aurora-A kinase inhibits neuroblast self-renewal by regulating aPKC/Numb cortical polarity and spindle orientation. *Genes Dev.* 2006, 20, 3474. [CrossRef]

32. Lilly, B.; O’Keefe, D.D.; Thomas, J.B.; Botas, J. The LIM homeodomain protein dLim1 defines a subclass of neurons within the embryonic ventral nerve cord of Drosophila. *Mech. Dev.* 1999, 88, 195–205. [CrossRef]

33. Sen, S.; Hartmann, B.; Reichert, H.; Rodrigues, V. Expression and function of the empty spiracles gene in olfactory sense organ development of Drosophila melanogaster. *Development* 2010, 137, 3687–3695. [CrossRef] [PubMed]

34. Avalos, C.B.; Maier, G.L.; Bruggmann, R.M.; Sprecher, S.G. Single cell transcriptome atlas of the Drosophila larval brain. *Elife* 2019, 8, e50354. [CrossRef] [PubMed]

35. Wagh, D.A.; Rasse, T.M.; Asan, E.; Hofbauer, A.; Dürrbeck, H.; Buchner, S.; Dabauvalle, M.-C.; Schmidt, M.; Qin, G.; et al. Bruchpilot, a Protein with Homology to ELKS/CAST, Is Required for Structural Integrity and Function of Synaptic Active Zones in Drosophila. *Neuron* 2006, 49, 833–844. [CrossRef]

36. Lee, C.H.; Herman, T.; Clandinin, T.R.; Lee, R.; Zipursky, S.L. N-Cadherin Regulates Target Specificity in the Drosophila Neural System. *Neuron* 2001, 30, 437–450. [CrossRef]

37. De Navascués, J.; Modeliell, J. The pronotum LIM-HD gene tailup is both a positive and a negative regulator of the proneural genes achaete and scute of Drosophila. *Mech. Dev.* 2001, 127, 393–406. [CrossRef]

38. Ho, T.Y.; Wu, W.H.; Hung, S.J.; Liu, T.; Lee, Y.M.; Liu, Y.H. Expressional Profiling of Carpet Glia in the Developing Drosophila Eye Reveals Its Molecular Signature of Morphology Regulators. *Front. Neurosci.* 2019, 13, 244. [CrossRef]

39. Organista, M.F.; de Celis, J.F. The spalt transcription factors regulate cell proliferation, survival and epithelial integrity downstream of the Decapentaplegic signalling pathway. *Cell Tissue Res.* 2013, 351, 37–48. [CrossRef]

40. Brown, J.B.; Boley, N.; Eisman, R.; May, G.E.; Stoiber, M.H.; Duff, M.O.; Booth, B.W.; Wen, J.; Park, S.; Suzuki, A.M.; et al. Diversity and dynamics of the Drosophila transcriptome. *Nature* 2014, 512, 393–399. [CrossRef]

41. Samuels, T.J.; Järvelin, A.I.; Ish-Horowicz, D.; Davis, I. Imp/IGF2BP levels modulate individual neural stem cell growth and division through myc mRNA stability. *Elife* 2020, 9, e51529. [CrossRef]

42. Xu, Q.; Song, Z.; Zhu, C.; Tao, C.; Kang, L.; Liu, W.; He, F.; Yan, J.; Sang, T. Systematic comparison of IncRNAs with protein coding mRNAs in population expression and their response to environmental change. *BMC Plant Biol.* 2017, 17, 42. [CrossRef] [PubMed]

43. Grubbs, N.; Leach, M.; Su, X.; Petrisko, T.; Rosario, J.B. New Components of Drosophila Leg Development Identified through Genome Wide Association Studies. *PLoS ONE* 2013, 8, e60261. [CrossRef] [PubMed]

44. Dey, B.K.; Zhao, X.L.; Popo-Ola, E.; Campos, A.R. Mutual regulation of the Drosophila disconnected (disco) and Distal-less (Dll) genes contributes to proximal-distal patterning of antenna and leg. *Cell Tissue Res.* 2009, 338, 227–240. [CrossRef] [PubMed]

45. Hao, Y.; Hao, S.; Andersen-Nissen, E.; Mauck, W.M.; 3rd; Zheng, S.; Butler, A.; Lee, M.J.; Wilk, A.J.; Darby, C.; Zager, M.; et al. Integrated analysis of multimodal single-cell data. *Cell* 2021, 184, 3573–3587.e29. [CrossRef]

46. Granja, J.M.; Corces, M.R.; Pierce, S.E.; Bagdatli, S.T.; Choudhry, H.; Chang, H.Y.; Greenleaf, W.J. ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis. *Nat. Genet.* 2021, 53, 403–411. [CrossRef] [PubMed]

47. Gaspar, J.M. Improved peak-calling with MACS2. *BioRxiv* 2018, 496521. [CrossRef]