A unique biofilm in human deep mycoses: fungal amyloid is bound by host serum amyloid P component

Melissa C Garcia-Sherman1, Tracy Lundberg2, Richard E Sobonya2, Peter N Lipke1 and Stephen A Klotz3

BACKGROUND/OBJECTIVES: We have demonstrated the presence of Candida cell surface amyloids that are important in aggregation of fungi and adherence to tissue. Fungal amyloid was present in invasive human candidial infections and host serum amyloid P component (SAP) bound to the fungal amyloid. SAP is a protease-resistant glycoprotein that binds avidly to amyloid and interferes with host defence, especially against bacterial pathogens for which neutrophils are important. In this study, we investigated whether biofilm of fungal amyloid and SAP was a feature of other disseminated fungal infections.

METHODS: Tissue specimens from 15 autopsies were systematically evaluated with multiple histochemical stains including thioflavin T and Congo red (dyes that stain amyloid), as well as antibody to SAP. We studied specimens with disseminated aspergillosis, mucormycosis and coccidioidomycosis. The structure of the lesions, host inflammatory cells and the presence of fungal amyloid and SAP were determined.

RESULTS: The structure of the lesions was characteristic in aspergillosis (‘starburst’) and mucormycosis (closely apposed bundles of hyphae). Host inflammatory cells were absent or few in number within these lesions. In Coccidioides lesions, host inflammation was sparse as well. Fungal amyloid was a prominent feature of all lesions along with abundant SAP bound to hyphae and spherules. Fungal amyloid and SAP perhaps contributed to persistence in caseous necrosis lesions. SAP also bound to Aspergillus and Mucorales amyloid in vitro.

CONCLUSIONS: A biofilm including amyloid and SAP is present in invasive fungal infections. This biofilm may dampen host defence leading to the characteristic sparse inflammatory reaction found in these infections.

npj Biofilms and Microbiomes (2015) 1, 15009; doi:10.1038/npjbiofilms.2015.9; published online 8 July 2015

INTRODUCTION
In human deep mycoses such as invasive pulmonary aspergillosis and pulmonary mucormycosis, fungi serve as a substratum for a biofilm within invaded tissue that often has little or no cellular inflammatory response. This characteristic feature is usually attributed to a lack of production of neutrophils often due to use of cytotoxic drugs.1 However, systematic investigation of these two mycoses does not support this statement. Invasive pulmonary aspergillosis patients with neutropenia or normal white blood cell counts have the same histopathological pattern, that is, invasive fungi with an absence of host inflammation.2 This finding also characterises pulmonary mucormycosis.3 Therefore, other causes may account for the absent or weak inflammatory infiltrate in these diseases.

We showed in invasive candidiasis of the gastrointestinal tract that fungal cell surfaces were coated with amyloid along with host serum amyloid P component (SAP) and as a consequence, the inflammatory response was scant or absent.4 Here we show in the deep mycoses of aspergillosis, mucormycoses and coccidioidomycosis an abundance of fungal amyloid coated with SAP. The amyloid and SAP form a protease-resistant biofilm5 that contributes to the stereotypical histology of the lesions with little or no inflammatory reaction. Amyloid and SAP, an invariant component of amyloid in humans,6 characteristically do not elicit an inflammatory response. The presence of fungal surface amyloids and the subsequent binding of SAP may diminish the inflammatory response needed for clearance of infection.

PATIENTS AND METHODS
Tissue stains
Autopsy specimens from 15 patients with histological evidence of invasive aspergillosis (three patients), mucormycosis (three patients) and coccidioidomycosis (nine patients) were examined. Tissue blocks were cut 4 μm thick, deparaffinised and stained with haematoxylin and eosin (H&E) and Gomori methenamine silver (GMS).7 Fungi were identified on H&E or GMS stains. Slides found to be positive for Aspergillus, Mucorales and Coccidioides were then stained with a polyclonal antibody to SAP (Biocare Medical, LLC; Concord, CA, USA). Congo red (0.1%) and 100 nM thioflavin T stains for amyloid8 were also performed on tissue specimens as previously published.4 Thioflavin T fluorescence images were acquired on a Nikon Eclipse 90i confocal microscope with 408 nm excitation and 450 nm emission filters (Nikon, Melville, NY, USA). Studies of thrush (oral pharyngeal candidiasis) were performed on material scraped from an AIDS patient with pseudomembranous thrush.

Fungi
Rhizopus nigricans and Aspergillus flavus were obtained from the clinical microbiology laboratory and maintained on yeast extract peptone dextrose (Life Technologies, Grand Island, NY, USA) agar. The isolates were anonymous with respect to patient origin and did not derive from any of the autopsies. Both species were cultivated in yeast extract peptone dextrose broth for 8–10 h at 37 ºC, washed in tris-buffered saline, pH 7.4 and then heat-killed at 80 ºC for 2 h in a water bath and washed in tris-buffered saline, pH 7.4 with 4% bovine serum albumin and 2 mM Ca++. Fungi were fixed on microscope slides and incubated with human serum (the source of SAP) or tris-buffered saline, pH 7.4, with 4% bovine serum albumin.
Histology of fungal aggregates in situ. (a) View at autopsy of a stereotypical ‘starburst’ lesion of invasive Aspergillus of the lung (tan tissue) encircled by a halo of haemorrhage. (b) H&E stain demonstrating Aspergillus hyphae (light-blue structures in the centre of the photomicrograph) radiating through lung tissue and surrounded by a collar of haemorrhage. Note the absence of inflammatory cells around and within the tangle of fungal hyphae. (×400). Compare b with e below it where darkly stained hyphae stand out from the acellular background. Hyphae are ~7 μ in diameter. (c) H&E stain of heart tissue with a myriad of ribbon-like, non-septate hyphae of a diameter of ~10 μ occupying the majority of the photomicrograph. These features are diagnostic of Mucorales species. Note the absence of host inflammatory cells within and surrounding the hyphal bundles. (d) H&E stain of lung tissue of a patient with pulmonary coccidioidomycosis demonstrating various sizes of spherules (20–50 μ) with and without endospores surrounded by a sparse inflammatory infiltrate. (×400). (e) GMS of lung tissue showing Aspergillus hyphae (black structures) radiating outwards from a central focus or ‘starburst’ (×400). (f) GMS stain of heart showing large, black, non-septate hyphae. Note the density of the hyphae in the lesion. (g) GMS stain of lung tissue showing numerous spherules (black circles) and endospores (black dots); some spherules are empty and do not contain endospores, others are broken open and ‘spilling’ endospores. (×400).

RESULTS

Three autopsy cases with disseminated aspergillosis were studied. Tissue from brain, lung and kidney were stained. Aspergillus was cultured from each case at autopsy (Supplementary Table 1). A stereotypical lesion of this disease is shown in Figure 1a with a spherical infiltrate surrounded by faint haemorrhage located in the periphery of the lung. Fungi are readily identified microscopically in H&E- and GMS-stained tissue (Figure 1b,e) and in all cases appeared as bundles of closely apposed hyphae, the advancing edge radiating outwards in a ‘starburst’ arrangement (suggested in Figures 1a,e and 2a). Within fungal bundles there was little or no identifiable host cellular inflammatory response (appreciated on H&E, Figure 1b). Two of three of the autopsy cases showed deposition of SAP on and within the cell walls of the hyphae in lung and brain tissue (Figure 2a). One specimen from an invasive lesion of the kidney did not show evidence of SAP association with the fungi, but it had undergone autolysis. It should be noted that fixation in formalin and embedding tissue in wax (as was done with these specimens) can damage the immunoreactivity of SAP,9 and this may have affected the results. Thioflavin T staining demonstrated amyloid throughout the length and breadth of all fungi in tissue (Figure 2d). Many of the fungi are cut in cross-section. Some, however, were captured in oblique section and it is apparent that amyloid is present throughout the fungal cell wall, not only on the hyphal surface.

Three autopsy cases with invasive Mucorales infections were studied (Supplementary Table 1). Tissue included brain, heart, larynx and lung. Fungus was cultured from one autopsy. Pathognomonic ribonucleic acid-like, non-septate hyphae were readily visible on H&E- and GMS-stained tissue (Figure 1c,f). Host cells were entirely lacking within the bundle of hyphae seen on the H&E stain, a finding very similar to that seen with Aspergillus. The Mucorales infections differed from aspergillosis, in that rather than a ‘starburst’ the hyphae were bundled together often travelling in the same direction. Two of the autopsy cases had evidence of deposition of SAP onto the fungal surface in tissue from the brain, heart and larynx (Supplementary Table 1; Figure 2b) often at the junction of branching hyphae. Hyphae stained uniformly with thioflavin T, demonstrating distribution of functional amyloid throughout the hyphal walls (Figure 2e) similar to Aspergillus.

Spherules in tissue are pathognomonic of infection with Coccidioides species. Nine autopsy specimens demonstrated spherules in the lung; three cases had evidence of dissemination to other tissue including the brain, spleen, peritoneum and thyroid tissue. Individual spherules of various sizes and maturation were visible on H&E with few neutrophils present in the tissue (Figure 1d). GMS stain (Figure 1g) showed numerous spherules, some ‘spilling’ endospores. A sparse inflammatory response was present and there were few neutrophils. Deposition of SAP was strongest on endospores within spherules, as well as the cell wall of spherules (Figure 2c). Staining with Congo red and thioflavin T demonstrated fluorescent endospores (Figure 2f) scattered within lung tissue. In addition, thioflavin T staining showed empty spherules composed of amyloid throughout the width of the spherule wall with strongly stained material around the inner circumference of the cell wall (Figure 2g). One specimen demonstrated the durability of fungal amyloid in caseous necrosis. Caseous necrosis is a host response mounted in an attempt to ‘wall off’ a pathogen. As seen in Figure 3a, all host tissue was autodigested leaving only spherules with amyloid-impregnated cell walls (Figure 3b). The surrounding material is host cellular debris leaving a caseous or ‘cheesy’ deposit. These lesions may be present in patients for years.

Histology of fungal aggregates in situ. (a) View at autopsy of a stereotypical ‘starburst’ lesion of invasive Aspergillus of the lung (tan tissue) encircled by a halo of haemorrhage. (b) H&E stain demonstrating Aspergillus hyphae (light-blue structures in the centre of the photomicrograph) radiating through lung tissue and surrounded by a collar of haemorrhage. Note the absence of inflammatory cells around and within the tangle of fungal hyphae. Compare b with e below it where darkly stained hyphae stand out from the acellular background. Hyphae are ~7 μ in diameter. (c) H&E stain of heart tissue with a myriad of ribbon-like, non-septate hyphae of a diameter of ~10 μ occupying the majority of the photomicrograph. These features are diagnostic of Mucorales species. Note the absence of host inflammatory cells within and surrounding the hyphal bundles. (d) H&E stain of lung tissue of a patient with pulmonary coccidioidomycosis demonstrating various sizes of spherules (20–50 μ) with and without endospores surrounded by a sparse inflammatory infiltrate. (×400). (e) GMS of lung tissue showing Aspergillus hyphae (black structures) radiating outwards from a central focus or ‘starburst’ (×400). (f) GMS stain of heart showing large, black, non-septate hyphae. Note the density of the hyphae in the lesion. (g) GMS stain of lung tissue showing numerous spherules (black circles) and endospores (black dots); some spherules are empty and do not contain endospores, others are broken open and ‘spilling’ endospores (×400).
Thrush is a superficial mucosal infection caused by Candida species, and we looked for the expression of amyloid in this disease. Scraping pseudomembranous lesions of the oropharynx yielded curds of material coated with saliva. Gram stain of curds showed a mixed biofilm of numerous filamentous and yeast forms of the fungus, each heavily decorated with oral bacteria (Figure 3c). Staining curds with thioflavin T demonstrated extensive amyloid in the hyphae, as well as within some adherent bacteria (Figure 3d). Fungi in this lesion were arranged in a bundle-like scaffold, adjacent to one another, and at some points there was apposition of the cell surfaces. There were few host cells found in this lesion. Fungal amyloid appeared to contribute to the cellular architecture of this macroscopic, amorphous biofilm-like lesion.

Aspergillus and Rhizopus (Mucorales) were studied in vitro to determine whether SAP bound to their surfaces as it does in tissue. SAP bound to the surface of both fungal hyphae (Figure 3e and data not shown) as well as to the surface of the conidiospores of Aspergillus and the sporangiospores of Rhizopus. SAP decorated entire hyphal surfaces similar to what occurred in vivo.

DISCUSSION

Extracellular functional amyloids are common among microbes, fastening them to substrates such as host cells and other microbes, as well as contributing to the acellular composition of the biofilm. Because these amyloids perform a beneficial function for the microbe, they are referred to as 'functional...
amyloids’ in contrast to terms such as amyloidosis and amyloid deposits, which signify pathological aggregates of proteins in tissue or cells. Functional amyloids are believed to be important in the pathogenesis of some infectious diseases, for example, curli protein of Escherichia coli,13 pilus of Mycobacterium tuberculosis15 and merozoite surface protein 2 of Plasmodium falciparum.16 These functional amyloids attach their respective microbes to host tissue. Demonstrating the presence of microbial functional amyloids in human disease is difficult, in part because of their small size as well as lack of knowledge concerning their composition and function. In our studies with candidiasis amyloid was detected on hyphae and yeast cells where it forms spontaneously as aggregates of cell surface adhesion molecules.17,18 The Als adhesins of Candida albicans attach fungi to host tissue and other Candida cells,19 are demonstrable in infected tissue,20,21 and are antigenic.22 Such functional amyloids are common in fungal adhesins.22 We hypothesised that SAP bound to the fungal amyloid and masked fungi from the host defence in spite of the antigenicity of the proteins.

Functional amyloids could contribute physically to excluding host cells due to their extremely tight fungal cell–cell adhesion mediated by amyloid-forming adhesins. Fungal hyphae radiate out from a central focus in aspergillosis (‘starburst’) and in bundles, in the case of Mucorales. These fungi are considerably larger than host cells, and their close apposition at their margins poses a physical barrier to penetration by inflammatory cells. In aspergillosis, a ‘starburst’ of hyphae grows from a central point and is surrounded by coagulation necrosis, which in turn is surrounded with haemorrhage (Figure 1a). The caseous tissue with spherules provides testimony for the persistence of amyloid in tissue (Figure 3b) long after the loss of viability of the fungus. SAP binds to all known amyloid fibrils and is invariably present where amyloid is found in humans.6 In amyloidoses, SAP constitutes about 15% of the amyloid deposits leading to tissue and organ dysfunction.23 SAP covers amyloid fibrils and masks host recognition of the abnormal protein (amyloid) and protects the amyloid from degradation by the host.5 Amyloid bound by SAP is characterised by a total absence of an inflammatory response. SAP also binds to bacteria and has a powerful anti-oepsin effect interfering bacterial phagocytosis by neutrophils.24

Fungal amyloid and SAP in these deep mycoses may be responsible for the exiguous inflammatory response seen in invasive candidiasis,4 as well with infections including Aspergillus, Mucorales and Coccidioides as shown here. This discovery may have opened a new chapter in the pathogenesis of invasive fungal diseases as well as novel therapies.25

ACKNOWLEDGEMENTS
This research was accomplished with intramural funding.

CONTRIBUTIONS
MCG-S carried out the Thioflavin and Congo Red staining of tissue, contributed to the MS and planning of the project. TL performed staining of pathological tissue and formulated their interpretation. RES provided final interpretation of all pathological slides and contributed to the manuscript. PNL contributed to the manuscript and planning of the project. SAK wrote the draft of the MS, performed in vitro data analysis on fungal binding of SAP and formulated the plan for the project.

COMPETING INTERESTS
The authors declare no conflict of interest.

REFERENCES
1 Berenguer J, Allende MC, Lee JW, Garrett K, Lyman C, Ali NM et al. Pathogenesis of pulmonary aspergillosis. Granulocytopenia versus cyclosporine and methylprednisolone-induced immunosuppression. Am J Resp Crit Care Med 1995; 152: 1079–1086.
2 Stengiopoulos T, Meletiadis J, Rolides E, Kleiner DE, Schaufele R, Rendon M et al. Host-dependent patterns of tissue injury in invasive pulmonary aspergillosis. Am J Clin Pathol 2007; 127: 1499–1505.
3 Ben-Ami R, Luma M, Lewis R, Walsh T, Kontoyiannis D. A clinicopathological study of pulmonary mucormycosis in cancer patients: extensive angioinvasion but limited inflammatory response. J Infection 2009; 59: 134–138.
4 Gilchrest KB, Garcia MC, Sobonya RE, Lipke PN, Klotz SA. New features of invasive candidiasis in humans: amyloid formation by the fungus and deposition of serum amyloid P component by the host. J Infect Dis 2011; 206: 1473–1478.
5 Tennent GA, Lovat L, Pepys MB. Serum amyloid P component prevents proteolysis of amyloid fibers. Proc Natl Acad Sci USA 1995; 92: 4299–4303.
6 Pepys MB, Rademacher TW, Amatayakul-Chantler S, Williams P, Noble GE, Hutchinson WL et al. Human serum amyloid P component is an invariant constituent of amyloid deposits and has a uniquely homogenous glycostructure. Proc Natl Acad Sci USA 1994; 91: 5602–5606.
7 Canon FL. Histotechnology: A Self-instructional Text. 2nd edn ACP Press; American Society for Clinical Pathology: Chicago, IL, USA, 1997.
8 Puchelt H, Waldrop FS, Melaon SN. A review of light, polarization and fluorescence microscopic methods for amyloid. Appl Pathol 1985; 3: 5–17.
9 Breathnach SM, Melrose SM, Bhogal B, de Beer FC, Dyck RF, Tennent G et al. Amyloid P component is located on elastic fibre microfibrils in normal human skin tissue. Nature 1984; 308: 652–654.
10 Otzen D, Nielsen PH. We seek them here, we find them there: functional bacterial amyloid. Cell Mol Life Sci 2008; 65: 910–927.
11 Larsen P, Nielsen J, Otzen D, Nielsen PH. Amyloid-like adhesins produced by flock-forming and filamentous bacteria in activated sludge. Appl Environmental Microbiol 2008; 74: 1517–1526.
12 Garcia MC, Lipke PN, Klotz SA, Pathogenic microfibrils: their function and the host response. OA Microbiol 2013; 1: 2.
13 Blanco L, Evans M, Smith D, Badtke M, Chapman M. Diversity, biogenesis and function of microbial amyloids. Trends Microbiol 2012; 20: 66–73.
14 Schwartz K, Syed A, Stephenson R, Rickard A, Boles B. Functional amyloids composed of phenol soluble modulins stabilize Staphylococcus aureus biofilms. PLoS Pathog 2012; 8: e1002752.
15 Alteri CJ, Xicohtencatl-Cortes J, Hess S, Caballero-Olin G, Giron JA, Friedman RL et al. Mycobacterium tuberculosis produces pili during human infection. Proc Natl Acad Sci USA 2007; 104: 5145–5150.
16 Low A et al. Merozoite surface protein 2 of Plasmodium falciparum: expression, structure, dynamics, and fibril formation of the conserved N-terminal domain. Biopolymers 2007; 87: 12–22.
17 Alsteens D, Garcia MC, Lipke PN, Dufrene YF. Force-induced formation and propagation of adhesion nanodomains in living fungal cells. Proc Natl Acad Sci USA 2010; 107: 20744–20749.
18 Lipke PN, Ramscoob CB, Garcia-Sherman MC, Jackson D, Chan D, Bois M et al. Between amyloids and aggregation lies a connection with strength and adhesion. New J Sci 2014; 2014; 8: 815102.
19 Klotz SA, Lipke PN (eds) The Perfect Adhesive. Formatex: Badajoz, Spain, 2010.
20 Garcia-Sherman MC, Lysak N, Filonenke A, Richards H, Sobonya RE, Klotz SA et al. Peptide detection of fungal functional amyloids in infected tissue. PLoS One 2014; 9: e86067.
21 Edwards JEJ. Fungal cell wall vaccines: an update. J Med Microbiol 2012; 61: 895–903.
22 Ramscoob CB, Tan C, Garcia MC, Fung R, Soybelman G, Henry R et al. Yeast cell adhesion molecules have functional amyloid-forming sequences. Eukaryot Cell 2010; 5: 393–404.
23 Pepys MB. Amyloidosis. Annu Rev Med 2006; 57: 223–241.
24 Noursadeghi M, Bickerstaff MCM, Gallimore JR, Herbert J, Cohen J, Pepys MB. Role of serum amyloid P component in bacterial infection: protection of the host or protection of the pathogen. Proc Natl Acad Sci USA 2000; 97: 14584–14589.
25 Pepys MB. Invasive candidiasis: new insights presaging new therapeutic approaches? J Infect Dis 2012; 206: 1339–1341.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/