Organization and phylogenetic relationships of the mitochondrial genomes of *Speiredonia retorta* and other lepidopteran insects

Yu Sun¹,², Hua Huang¹,², Yudong Liu¹, Shanshan Liu³, Jun Xia¹,², Kai Zhang³ & Jian Geng²

In this study, we analyzed the complete mitochondrial genome (mitogenome) of *Speiredonia retorta*, which is a pest and a member of the Lepidoptera order. In total, the *S. retorta* mitogenome was found to contain 15,652 base pairs encoding 13 protein-coding genes (PCGs), 22 tRNAs, 2 rRNAs, as well as an adenine (A) + thymine (T)-rich region. These findings were consistent with the mitogenome composition of other lepidopterans, as we identified all 13 PCGs beginning at ATN codons. We also found that 11 PCGs terminated with canonical stop codons, whereas *cox2* and *nad4* exhibited incomplete termination codons. By analyzing the mitogenome of *S. retorta* using Bayesian inference (BI) and maximum likelihood (ML) models, we were able to further confirm that this species is a member of the Erebidae family.

Speiredonia retorta (Lepidoptera: Erebidae) is a pest species that is widely distributed throughout Southeast Asia. *S. retorta* larvae can adhere to *Acacia* leaves and branches where they undergo pupation, while adults can feed on a range of fruits including apples, pears, and grapes, leading to their more rapid decay. These moths produce three generations per year, with a life cycle consisting of an egg stage (6–18 days), a larval stage with six instars (23–47 days), and a pupal stage (8–13 days). These insects overwinter in the pupal stage, which can last from 194–228 days¹. The primary predators of this species include *Ophion luteus* (Hymenoptera: Ichneumonidae), *Brachymeria obscurata* (Hymenoptera: Chalcididae), and *Exorista sorbillans* (Diptera: Tachinidae). Given that these moths represent a significant economic threat, their management is a key agricultural concern and necessitates an in-depth understanding of their biology. Further exploration of the phylogeny and genetic characteristics of *S. retorta* has the potential to offer novel insights into how to appropriately combat the spread of these moths. Understanding and analyzing the mitochondrial genome (mitogenome) of this species, in particular, may facilitate key comparative phylogenetic and evolutionary studies that can support such preventative efforts²,³.

The mitogenome of metazoan species generally ranges from 14,000–19,000 bp in size, with few or no intergenic spacer regions⁴, encoding 13 protein-coding genes (PCGs), 22 tRNAs, and 2 rRNAs⁵,⁶. In addition to these more broadly conserved features, members of the Lepidoptera order generally exhibit a conserved adenine and thymine (A + T)-rich region within their mitogenome. The mitogenome represents an ideal tool for the analysis of phylogenetic relationships, given that it has a simple structure, is maternally inherited, rarely undergoes recombination, and is conserved over the course of evolution⁷–⁹. Modern advances in sequencing techniques have led to the publication of mitogenomes from many different insects and other species, thereby supporting a wide range of evolutionary analyses⁶.

By conducting a comprehensive analysis of the mitogenome of a given insect species, we have the opportunity to perform intricate phylogenetic or population genetics studies and to identify potentially novel genes that may serve as valuable targets in future research efforts. The Lepidoptera order is the second-largest Insecta order and is composed of > 155,000 species of moths and butterflies¹⁰. Noctuoidea is the largest Lepidopteran sub-family, with > 42,400 species¹¹. Several characteristic mitogenomic markers associated with these phylogenetic classes of insects have been identified to date, enabling us to reliably explore the phylogenetic relationship between *S. retorta* and other species through mitogenomic analyses. Six Noctuidae families were proposed in a phylogenetic

¹Department of Health Inspection and Quarantine, School of Laboratory Medicine, Bengbu Medical College, Bengbu 233004, China. ²Research Center of Clinical Laboratory Science, School of Laboratory Medicine, Bengbu Medical College, Bengbu 233004, China. ³Department of Stomatology, The First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, Bengbu 233004, China. *email: gengjian636@126.com
framework constructed by Zahiri et al., including the Euteliidae, Erebidae, Nolidae, Notodontidae, Oenosandridae, and Noctuidae families. Given the clear value of such analyses, in the present study we sequenced the full *S. retorta* mitogenome in an effort to more fully explore the evolutionary relationship between this agriculturally important insect and other Noctuidae species.

Figure 1. A map of the *S. retorta* mitogenome. Labeling of tRNA genes was conducted in accordance with IUPAC-IUB single-letter amino acid codes. The cytochrome c oxidase subunits (cox1-3), cytochrome b (cob), NADH dehydrogenase components (nad1-6), and rRNAs (rrnL and rrnS) are as indicated.
Results and discussion

Mitogenome structure, organization, and composition. Our sequencing revealed the *S. retorta* mitogenome to be 15,652 bp in length (Fig. 1), consistent with reported mitogenomic lengths in other Lepidopteran species such as *Thitarodes pui* (Hepialidae; 15,064 bp) and *Plutella xylostella* (Plutellidae; 16,179 bp).

We then aligned the *S. retorta* mitogenome sequences with those of other Lepidopteran species, enabling us to identify 13 PCGs (*atp6, atp8, cox1, cox2, cox3, cytb, nad1, nad2, nad3, nad4, nad5, nad6, and nad4L*), two rRNAs (large and small rRNA), 22 tRNAs, and a non-coding A + T-rich region that is conserved within the mitogenome of most known animal species5 (Table 1). The *S. retorta* mitogenome also harbored a *trnM*-*trnI*-*trnQ* gene arrangement that was distinct from the ancestral *trnI*-*trnQ*-*trnM* gene order6.

The composition and skewness of the *S. retorta* mitogenome were compared to those of other Noctuoidea species (Table 2). The major strand was composed of A, T, G, and C nucleotides at relative frequencies of 35.59%, 41.23%, 7.37%, and 11.80%, respectively (80.83% A + T), thus exhibiting negative AT and GC skewness (−0.020 and −0.231, respectively). The AT skewness of other Noctuoidea mitogenomes has been found to range between 0.016 (*L. dispar*) and −0.027 (*A. formosae*), whereas GC skewness values range from −0.266 (*A. formosae*) to −0.178 (*A. ipsilon*). The negative AT skewness in *S. retorta* indicates that there are more T residues than A residues, as previously reported for many Lepidopteran species including *A. formosae* (−0.027), and *A. ipsilon* (−0.006) (Table 2).

Gene	Direction	Location	Size	Anti codon	Start codon	Stop codon	Intergenic nucleotides
tRNA^{Met}	F	1–68	68	CAT	–	–	0
tRNA^{Ile}	F	75–141	69	GAT	–	–	6
tRNA^{Trp}	R	139–207	68	TGG	–	–	−3
nad2	F	267–1280	1014	ATT	TAA	–	59
tRNA^{rRNA}	F	1279–1346	68	TCA	–	–	−2
tRNA^{rRNA}	R	1339–1406	68	GCA	–	–	−8
cox1	F	1494–3032	1539	ATG	TAA	–	7
tRNA^{rRNA}	F	3028–3094	67	TAA	–	–	−5
cox2	F	3095–3776	683	ATG	T	–	0
tRNA^{rRNA}	F	3777–3847	71	CTT	–	–	0
tRNA^{rRNA}	F	3847–3913	67	GTC	–	–	−1
atp8	F	3923–4081	159	ATA	TAA	–	9
atp6	F	4075–4752	678	ATG	TAA	–	7
cox3	F	4801–5589	789	ATG	TAA	–	48
tRNA^{rRNA}	F	5592–5657	66	TCC	–	–	2
nad3	F	5658–6011	354	ATT	TAA	–	0
tRNA^{rRNA}	F	6014–6078	65	TGC	–	–	2
tRNA^{rRNA}	F	6086–6152	67	TCG	–	–	7
tRNA^{rRNA}	F	6162–6227	66	GTT	–	–	9
tRNA^{rRNA}	F	6236–6301	66	GCT	–	–	8
tRNA^{rRNA}	F	6306–6372	67	TTC	–	–	4
tRNA^{rRNA}	R	6378–6445	68	GAA	–	–	5
nad5	R	6451–8163	1713	ATA	TAA	–	5
tRNA^{rRNA}	R	8194–8262	69	GTG	–	–	30
nad4	R	8266–9601	1335	ATG	T	–	3
nad4L	R	9665–9952	288	ATG	TAA	–	63
tRNA^{rRNA}	F	9970–10,034	65	TGT	–	–	17
tRNA^{rRNA}	R	10,035–10,099	65	TGG	–	–	0
nad6	F	10,137–10,640	504	ATT	TAA	–	37
cytb	F	10,692–11,843	1151	ATG	TAA	–	51
tRNA^{rRNA}	F	11,855–11,921	67	TGA	–	–	11
nad1	R	11,968–12,906	939	ATG	TGA	–	47
tRNA^{rRNA}	R	12,908–12,975	68	TAG	–	–	1
rnlL	R	12,976–14,388	1413	–	–	–	0
tRNA^{rRNA}	R	14,389–14,455	67	TAC	–	–	0
trnS	R	14,455–15,235	781	–	–	–	185
A + T-rich region	R	15,236–16,652	417	–	–	–	0

Table 1. List of annotated mitochondrial genes of *S. retorta*.
PCGs and codon usage. We identified 13 total PCGs in the *S. retorta* mitogenome, spanning 71.1% of the mitogenome sequence (11,134 bp). These genes were between 159 bp (*atp8*) and 1713 bp (*nad5*) in length. This is consistent with findings from other Lepidopteran species in which these two mitogenes are often the shortest and longest, respectively\(^{11,13}\). All detected PCGs began with an ATN codon (2 ATA, 3 ATT, and 8 ATG). Atypical *cox1* start codons (including TTAG, ACG, and TTG) have been reported in the mitogenomes of a range of insect species\(^{14–16}\). The TAA stop codon was the most common among these PCGs (*nad2*, *cox1*, *atp8*, *atp6*, *cox3*, *nad3*, *nad5*, *nad4L*, *nad6*, *cytb*), while *nad1* utilized a TAG stop codon, and *nad4* and *cox2* harbored incomplete stop codons (T) (Table 1). This is a common conserved mitogenomic feature among invertebrates\(^{17–19}\), and this single T residue can be still be recognized by endonucleases during polycistronic pre-mRNA transcription, with polyadenylation from contiguous PCGs ultimately yielding a functional stop codon\(^{5,20,21}\).

Next, we assessed codon usage among a range of Lepidopteran species, including three Noctuoidae members as well as Bombycoidea, Tortricoidea, and Geometroidea members (Fig. 2). Through this approach, we found Asn, Ile, Leu2, Lys, Met, Phe, and Tyr to be the amino acids that were used most often. In these 6 species, we identified 4 codon families with at least 80 codons per thousand codons (Ile and Phe), and 3 with a minimum of 60 codons per thousand codons (Leu2, Met and Asn). The Arg and Cys codon families were the least represented. The codon distributions were consistent among the three Noctuoidea species analyzed herein, with the exception of Lys, which was rarely encoded in *S. retorta* (Fig. 3).
The RCSU was next assessed in the PCGs encoded by the mitogenomes of the four Lepidopteran superfamilies (Fig. 4). We found that the PCGs of *S. retorta* contained all possible combinations of codons other than GCG, CGC, GGC, AGG, CCG, ACG, and TGG. This lack of GC-rich codons is common to many other Lepidopterans including *H. cunea* (GCG and GTG), *P. atrilineata* (CGG), and *C. pomonella* (GCG). Utilized codons showed a bias towards A + T content, contributing to the overall mitogenomic AT-bias that was observed both in *S. retorta* and across other insect mitogenomes19,22.

Ribosomal and transfer RNA genes. Two rRNA genes were identified within the *S. retorta* mitogenome, consistent with findings in most other animal species. The 1413 bp large ribosomal RNA gene (*rrnL*) was located in between tRNA Leu (CUN) and tRNA Val, while the 781 bp small ribosomal RNA gene (*rrnS*) was between tRNA Val and the A + T-rich region (Table 1). These rRNA genes were A + T rich (84.40%), falling within the range observed for other Noctuoidea species including *A. formosae* (83.77%) and *A. ipsilon* (85.15%). These rRNA AT and GC skewness values have been found to be negative in the majority of analyzed Lepidopteran mitogenomes17, however, in *S. retorta* these values were positive (0.040 and 0.356, respectively), as has been reported in a subset of prior studies23,24.

We identified a full set of 22 tRNA genes (65–71 nucleotides long) in the *S. retorta* mitogenome, consistent with findings from other Lepidopterans. These tRNA regions were heavily A + T biased (81.39%), with positive AT and GC skewness (0.031 and 0.171, respectively; Table 2). All of these tRNAs exhibited expected cloverleaf-like secondary structures, although the DHU stem was lacking from *trnS1* (Fig. 5), as has previously been observed in other Lepidopterans23. Furthermore, 8/22 tRNAs were encoded on the L-strand while 12/22 were encoded on the H-strand.

Overlapping and intergenic spacer regions. There are 6 overlapping regions in the *S. retorta* mitogenome. These regions range from 1 to 8 bp in size (26 bp total), with the longest region of overlap being located between *trnC* and *trnY* (Table 1). When we aligned the region of overlap between *atp6* and *atp8*, we found that *S. retorta* mitogenome contained an ATGATAA nucleotide sequence common to other Lepidopterans (Fig. 6). In addition, we identified the ‘ATACTAA’ motif within the 17 bp region between *trnS2* (UCN) and *nad1* (Fig. 7A), with this motif being highly conserved in insect mitogenomes in addition to being a potential mitochondrial transcription termination peptide-binding site (mtTERM protein)25.

A + T-rich region analysis. An A + T-rich region that was 417 bp long was detected between *rrnS* and *trnM* in the *S. retorta* mitogenome. This region was composed of 93.76% AT residues and exhibited negative AT and GC skewness (~ −0.038 and ~ −0.462, respectively) (Table 2). This region contained a number of short repeated sequences, such as a 19 bp poly-T region that flanked an ‘ATAGA’ motif near *rrnS*, an **ATTTA** roughly in the center of this A + T-rich region, as well as a poly-A element that was located upstream relative to *trnM*, consistent with mitogenomic findings from other Lepidopteran species (Fig. 7B). In addition, while the exact poly-T region length varies among Lepidopterans4,17,26, the ATAGA motif is highly conserved27.

Phylogenetic analyses. A number of recent studies have explored phylogenetic relationships among Noctuoidea species. In one recent analysis, Zahiri et al. proposed the following relationship among these families: (Notodontidae + (Euteliidae + (Noctuidae + (Erebidae + Nolidae))))28. In contrast, Yang et al. published another
study in which the following grouping scheme was proposed: (Notodontidae + (Erebidae + (Nolidae + (Euteliidae + Noctuidae))))\(^{38}\). In this study, we utilized BI and ML methods as well as the MAFFT alignment approach in order to explore the relationship between \textit{S. retorta} and other Noctuidae insects according to its mitogenome sequence. We utilized the NT dataset to conduct phylogenetic analyses of 65 full mitogenomes which were representative of six Noctuoidea families (Erebidae, Lymantriidae, Euteliidae, Noctuidae, Notodontidae, and Nolidae). For outgrouping purposes, we additionally utilized the mitogenomes of \textit{Ahamus yunnanensis} (NC_018095) and \textit{Thitarodes pui} (NC_023530) in the present analysis (Fig. 8). According to Homziak's study, our analyses revealed a topology within Erebinae that was as follows: ((\textit{Catocala} sp + \textit{Speiredonia retorta}) + (\textit{Grammodes geometrica} + \textit{Parallelia stuposa})) + \textit{Eudocima phalonia}). The result indicated that Catocalini belongs to Erebinae subfamily\(^{30}\), as confirmed via BI (Fig. 8A) and ML (Fig. 8B) analyses. This approach further confirmed that \textit{S. retorta} is a member of Erebidae: (Notodontidae + (Erebidae + Lymantriidae + (Nolidae + (Euteliidae + Noctuidae))))\(^{38}\). This is distinct from a study conducted by Zahiri et al. that yielded different phylogenetic results: (Notodontidae + (Euteliidae + (Noctuidae + (Erebidae + Nolidae)))))\(^{28}\).

Figure 3. The distribution of codons among Lepidopteran species. \textit{CDspT} codons per thousand codons.
Figure 4. Mitogenome Relative Synonymous Codon Usage (RSCU) for the four Lepidoptera superfamilies, with codon families on the x-axis. Any codons above the bar were absent within the mitogenome.

Figure 5. Predicted secondary structures for the 22 S. retorta mitogenome-encoded tRNAs.
S. retorta has previously been identified as a member of the Noctuoidea superfamily within the Erebidae family and the Erebinae subfamily. Our data were consistent with this hypothesis. Even so, our findings were distinct from those of the prior study with respect to some of the identified relationships, suggesting that the sequencing of the mitogenomes of additional Noctuoidea species will be required to more accurately resolve these phylogenetic relationships.

Materials and methods

Insects and DNA collection. Samples of S. retorta were obtained from Bengbu Medical College, Anhui Province, China. The collected specimens were identified as Speiredonia retorta based on their morphological characteristics by a taxonomist of the Department of Entomology, Anhui Agricultural University, Hefei, China (AHAU). After a careful examination of the morphological characteristics and the comparison of voucher specimens to the referenced publications regarding Healthy plantations from the Forest Science Institute of Vietnam.

A Genomic DNA Extraction Ki (Aidlab Co., Beijing, China) was used to extract DNA from these samples, after which 1% agarose gel electrophoresis (AGE) was used to evaluate DNA quality. Samples were then used for mitogenome isolation.

Mitogenome sequencing. The S. retorta mitogenome was amplified using 12 primer pairs designed based on known conserved mitogenome sequences in other Lepidopteran species (Table 3; BGI Group Co., Guangdong, China). An Eppendorf Mastercycler and Mastercycler gradient were used to amplify mitogenomic sequences in a 50 μL reaction volume containing 35 μL dH2O, 5 μL 10× Taq buffer (Mg2+ plus), 4 μL dNTP (25 mM), 1.5 μL DNA, 2 μL of each primer (F + R; 10 μM) as well as 0.5 μL TaqDNA polymerase (Takara Co.,

Figure 6. Alignment of atp8 and atp6 overlap among Lepidopteran species and other insects, with the number of intergenic nucleotides shown on the right.

Figure 7. (A) The intergenic spacer region between trnS2 (UCN) and nad1 was aligned for multiple Lepidopteran species, with the conserved ‘ATACTAA’ motif being highlighted. (B) Features of the S. retorta A + T-rich region are shown in the reverse strand, with the ATATGA motif being highlighted. Double underlines were used to mark the poly-A region, while a single underline was used to mark the poly-T region. A dotted underline was used to mark single microsatellite T/A repeats.

S. retorta has been previously identified as a member of the Noctuoidea superfamily within the Erebidae family and the Erebinae subfamily. Our data were consistent with this hypothesis. Even so, our findings were distinct from those of the prior study with respect to some of the identified relationships, suggesting that the sequencing of the mitogenomes of additional Noctuoidea species will be required to more accurately resolve these phylogenetic relationships.
Dalian, China). Thermocycler settings were: 94 °C for 4 min; 38 cycles of 94 °C for 30 s, 48–59 °C for 1–3 min (based on predicted fragment length); 72 °C for 10 min. Samples were then separated via 1% AGE and collected with a DNA gel extraction kit (Transgen Co., Beijing, China), after which direct sequencing was conducted with appropriate PCR primers.

Sequence assembly and annotation. NCBI BLAST (http://blast.ncbi.nlm.nih.gov/Blast) and SeqMan II (DNASTAR Inc.; WI, USA) were used to annotate the sequenced mitogenome. The Invertebrate Mitochondrial Genetic Code was used to identify putative proteins encoded by specific PCGs. An approach previously detailed by Junqueira et al.33 was used to assess skewness, with base composition being assessed as follows: AT skew = (A – T)/(A + T), GC skew = (G – C)/(G + C).

The tRNAscan-SE program (http://lowelab.ucsc.edu/tRNAscan-SE/) was used to identify tRNA genes34, with additional predictions being made based upon sequences capable of adopting a tRNA secondary structure and containing an anticodon. Tandem repeats within the A + T-rich region were identified with a tandem repeat finder application (http://tandem.bu.edu/trf/trf.html)35.

Codon usage and RCSU. We assessed codon usage across a range of Lepidopteran species, including three Noctuoidea members as well as Bombycoidea and Geometroidea members that were closely related to Noctuoidea species and Tortricoida species that were far more distantly related to these species24,36 (Fig. 2). MEGA7.0 was used to calculate relative synonymous codon usage (RSCU) values37.

Phylogenetic analysis. Lepidopteran phylogenetic relationships were evaluated by utilizing all 64 Noctuoidea mitogenomes available from Genbank (Table 3), with the Ahamus yunnanensis (NC_018095) and Thitarodes pui (NC_023530) mitogenomes serving as an outgroup for this analysis. MAFFT was then used to conduct multiple alignments of concatenated nucleotide sequences for the 13 PCGs using default settings38, and the resultant concatenated sequences were used for phylogenetic analyses, which were conducted via the Maximum Likelihood (ML) method using MEGA7.0 and via a Bayesian Inference (BI) approach using MrBayes v3.2.99. A total of 1000 bootstrap replicates were used for ML analysis in order to develop phylogenetic trees. For the BI analysis, the GTR + I + G model was used for the analyzed nucleotide sequences, with MrModeltest 2.3 being used in accordance with Akaike’s information criterion (AIC). In the BI analysis, four simultaneous MCMC chains were run for 10,000,000 generations, with sampling being conducted in 1000 generation intervals with a 2500 generation burn-in. FigTree v1.4.2 (http://tree.bio.ed.ac.uk/software/figtree/) was then used to visualize the resultant phylogenetic trees.
Superfamily	Family	Subfamily	Species	GenBank accession no
Noctuoidea	Erebiidae	Erebinae	Speire soda retorta	MT013356
Noctuoidea	Erebiidae	Erebinae	Catocala sp.	KJ432280
Noctuoidea	Erebiidae	Erebinae	Eudocima phalonia	KY196412
Noctuoidea	Erebiidae	Erebinae	Grammodes geometrica	NC_039810
Noctuoidea	Erebiidae	Erebinae	Parallelia stiposa	NC_046712
Noctuoidea	Erebiidae	Aganainae	Asota plana lacteata	KJ173908
Noctuoidea	Erebiidae	Arctiinae	Cyana sp. MT-2014	KM244679
Noctuoidea	Erebiidae	Arctiinae	Eilema ussuricum	MN696172
Noctuoidea	Erebiidae	Arctiinae	Haphantria cunea	GU592049
Noctuoidea	Erebiidae	Arctiinae	Lemyra melli	NC_026692
Noctuoidea	Erebiidae	Arctiinae	Nyctemera arcata albifasciata	KM244681
Noctuoidea	Erebiidae	Arctiinae	Paraona staudingeri	NC_037515
Noctuoidea	Erebiidae	Arctiinae	Spilarctia subcarnea	KT258909
Noctuoidea	Erebiidae	Arctiinae	Spilosoma lubricipeda	NC_050385
Noctuoidea	Erebiidae	Arctiinae	Voumna viridis	NC_026844.1
Noctuoidea	Erebiidae	Arctiinae	Hydrillodes lentalis	NC_041106
Noctuoidea	Erebiidae	Hypeninae	Paragabara curvicornata	NC_034638
Noctuoidea	Euteliidae	Eutelinae	Eutelis adustaroides	NC_026840.1
Noctuoidea	Lymanntria	Lachana	Lachana alpherakii	NC_029172
Noctuoidea	Lymanntria	Euproctis	Euproctis pseudomonspersa	NC_027145
Noctuoidea	Lymanntria	Euproctis	Euproctis cryptosticta	KY996558
Noctuoidea	Lymanntria	Euproctis	Euproctis setzii	NC_045892
Noctuoidea	Lymanntria	Euproctis	Euproctis simus	NC_035886
Noctuoidea	Lymanntria	Gynaephora	Gynaephora aureata	KY688084
Noctuoidea	Lymanntria	Gynaephora	Gynaephora juzhensi	NC_036738
Noctuoidea	Lymanntria	Gynaephora	Gynaephora menyuanensis	RC185412
Noctuoidea	Lymanntria	Gynaephora	Gynaephora minora	NC_036739
Noctuoidea	Lymanntria	Gynaephora	Gynaephora ginghauenensis	KJ507133
Noctuoidea	Lymanntria	Gynaephora	Gynaephora gualalensis	NC_029164
Noctuoidea	Lymanntria	Gynaephora	Gynaephora ruwergensis	NC_036737
Noctuoidea	Lymanntria	Lymantria	Lymantria dispar	FL617240
Noctuoidea	Lymaniidae	Somena	Somena scintillans	NC_039764
Noctuoidea	Noctuidea	Amphipyrina	Sesania inferens	JN039362
Noctuoidea	Noctuidea	Amphipyrina	Spodoptera exigua	JX316220
Noctuoidea	Noctuidea	Amphipyrina	Spodoptera littoralis	MN803323
Noctuoidea	Noctuidea	Amphipyrina	Spodoptera littura	KJ701043
Noctuoidea	Noctuidea	Hadeninae	Anarta trifolii	NC_046049
Noctuoidea	Noctuidea	Hadeninae	Mythimna separata	KM099034
Noctuoidea	Noctuidea	Hadeninae	Mythimna pallidiscosta	MH027985
Noctuoidea	Noctuidea	Hadeninae	Protegira songi	NC_034938
Noctuoidea	Noctuidea	Heliothinae	Helicoverpa armigera	MG437196
Noctuoidea	Noctuidea	Heliothinae	Helicoverpa gelotopocon	MG437199
Noctuoidea	Noctuidea	Heliothinae	Helicoverpa punctigera	NC_023791
Noctuoidea	Noctuidea	Heliothinae	Helicoverpa zeag	NC_030370
Noctuoidea	Noctuidea	Heliothinae	Helicoverpa assulta	KT626655
Noctuoidea	Noctuidea	Heliothinae	Heliothys subflexa	NC_028539
Noctuoidea	Noctuidea	Noctuinae	Athetis lepigone	NC_036057
Noctuoidea	Noctuidea	Noctuinae	Athetis pallidipennis	NC_046525
Noctuoidea	Noctuidea	Noctuinae	Agrotis ipsilon	KF163965
Noctuoidea	Noctuidea	Noctuinae	Agrotis segetum	KC894725
Noctuoidea	Noctuidea	Noctuinae	Striacosta albicosta	NC_025774
Noctuoidea	Noctuidea	Plasinae	Ctenoplusia agnata	RC414791
Noctuoidea	Noctuidea	Plasinae	Ctenoplusia limberena	NC_025760

Continued
Table 3. Details of the Lepidopteran mitogenomes used in this study.

Superfamily	Family	Subfamily	Species	GenBank accession no
Noctuoidea	Noctuidae	Plusiinae	Trichophasia ni	NC_045936
Noctuoidea	Nolidae	Chloropinae	Gabala argentina	NC_026842.1
Noctuoidea	Nolidae	Chloropinae	Sonna extrema	NC_045120
Noctuoidea	Nolidae	Risininae	Risina prominens	NC_026841.1
Noctuoidea	Notodontidae	Phaleriniae	Phalaena flavescens	NC_016067
Noctuoidea	Notodontidae	Pygaerinae	Chlorota anastomosis	NC_041140
Noctuoidea	Notodontidae	Thaumetopoeinae	Ochrogaster lunifer	AM946601.1
Hepialoidea	Hepialidae	Ahamus	Ahamus yunnanensis	NC_018095
Hepialoidea	Hepialidae	Thitarodes	Thitarodes pai	NC_023530

Received: 5 August 2020; Accepted: 21 January 2021
Published online: 03 February 2021

References
1. Thu, P. Q. G. et al. Healthy Plantations. A Field Guide to Pests and Pathogens of Acacia, Eucalyptus and Pinus in Vietnam 7–8 (Agri-science Queensland in the Department of Empoloyment, Economic Development and Innovation, DEEDI, Queensland, 2010).
2. Sun, Y. et al. Comparative mitochondrial genome analysis of Daphnisnierii and other lepidopteran insects reveals conserved mitochondrial genome organization and phylogenetic relationships. PLoS ONE 12, e0178773. https://doi.org/10.1371/journal.pone.0178773 (2017).
3. Xin, Z. Z. et al. Mitochondrial genome of Argopecteniradians reveals higher-level phylogenetic relationships in Anisomyaria. Int. J. Biol. Macromol. 117, 1089–1092. https://doi.org/10.1016/j.ijbiomac.2018.06.008 (2018).
4. Jiang, S. T. et al. Characterization of the complete mitochondrial genome of the giant silkworm moth, Eriogynapnycterus (Lepidoptera: Saturniidae). Int. J. Biol. Sci. 5, 351–365 (2009).
5. Cameron, S. L. How to sequence and annotate insect mitochondrial genomes for systematic and comparative genomics research. Syst. Entomol. 39, 400–411 (2014).
6. Boore, J. L. Animal mitochondrial genomes. Nucleic Acids Res. 27, 1767–1780 (1999).
7. Lin, C. P. & Danforth, B. N. How do insect nuclear and mitochondrial gene substitution patterns differ? Insights from Bayesian analyses of combined datasets. Mol. Phylogen. Evol. 30, 686–702. https://doi.org/10.1016/S1055-7903(03)00241-0 (2004).
8. Cameron, S. L. Insect mitochondrial genomes: Implications for evolution and phylogeny. Annu. Rev. Entomol. 59, 95–117. https://doi.org/10.1146/annurev-ento-011613-162007 (2014).
9. Wolstenholme, D. R. Animal mitochondrial DNA: Structure and evolution. Int. Rev. Cytol. 141, 173–216 (1992).
10. Sun, Y. et al. Characterization of the complete mitochondrial genome of Spilarchiarchabusta (Lepidoptera: Noctuoidea: Erebidae) and its phylogenetic implications. Eur. J. Entomol. 113, 558–570. https://doi.org/10.14411/eje.2016.076 (2016).
11. Huang, Y. et al. Comparative mitochondrial genome analysis of Grammosdesgeometrica and other noctuid insects reveals conserved mitochondrial genome organization and phylogeny. Int. J. Biol. Macromol. 125, 1257–1265. https://doi.org/10.1016/j.jbiomac.2018.09.104 (2019).
12. Zahiri, R. et al. Molecular phylogenetics of Erebidae (Lepidoptera, Noctuoidea). Syst. Entomol. 37, 102–124. https://doi.org/10.1111/1365-3111.12067 (2012).
13. Dai, L. S., Kauras, S., Abbas, M. N. & Wang, T. T. Complete sequence and characterization of the Ectropisoblique mitochondrial genome and its phylogenetic implications. Int. J. Biol. Macromol. 107, 1142–1150. https://doi.org/10.1016/j.jbiomac.2017.09.093 (2018).
14. Lee, E. S. et al. The mitochondrial genome of the smaller tea tortrix Adoxophyeshomai (Lepidoptera: Tortricidae). Gene 373, 52–57. https://doi.org/10.1016/j.gene.2006.01.003 (2006).
15. Ogoh, K. & Ohmiya, Y. Complete mitochondrial DNA sequence of the sea-flyfirefly, Vargulaaligenorbii (Crustacea, Ostracoda) with duplicate control regions. Gene 327, 131–139. https://doi.org/10.1016/j.gene.2003.11.011 (2004).
16. Lutz-Bonengel, S., Sanger, T., Pollak, S. & Szibor, R. Different methods to determine length heteroplasmy within the mitochondrial control region. Int. J. Legal Med. 118, 274–281. https://doi.org/10.1007/s00414-004-0457-0 (2004).
17. Liu, Q. N., Chai, X. Y., Bian, D. D., Zhou, C. L. & Yang, B. P. The complete mitochondrial genome of Ploidiapteruncippus (Lepidoptera: Pyralidae) and comparison with other Pyraloidea insects. Genome 59, 37–49. https://doi.org/10.1139/gen-2015-0079 (2016).
18. Yang, L. et al. Characterization of the complete mitochondrial genome of Orthagalluswarre Warre (Lepidoptera Pyralidae) and comparison with other Lepidopteran insects. PLoS ONE 15, e0227831. https://doi.org/10.1371/journal.pone.0227831 (2020).
19. Li, J. et al. Mitochondrial genome characteristics of Somenascintillans (Lepidoptera: Erebidae) and comparison with other Noctuoidea insects. Genomics 111, 1239–1248. https://doi.org/10.1016/j.ygeno.2018.08.003 (2019).
20. Lu, C. et al. Complete sequence determination and analysis of Bombyx Mori mitochondrial genome. J. Agric. Biotechnol. 10, 163–170 (2002).
21. Li, Q., Wang, X., Chen, X. & Han, B. Complete mitochondrial genome of the tea looper caterpillar, Ectropisoblique (Lepidoptera: Geometridae) with a phylogenetic analysis of Geometridae. Int. J. Biol. Macromol. 114, 491–496. https://doi.org/10.1016/j.jbiomac.2018.02.038 (2018).
22. Zhu, X. Y. et al. The complete mitochondrial genome of Closteraanastomosis (Lepidoptera: Nolidae) and implication for the phylogenetic relationships of Noctuoidea species. Int. J. Biol. Macromol. 118, 1574–1583. https://doi.org/10.1016/j.jbiomac.2018.06.188 (2018).
23. Xin, Z. Z. et al. Comparative mitochondrial genome analysis of Spilarchiarchabusta and other noctuid insects. Int. J. Biol. Macromol. 107, 121–128. https://doi.org/10.1016/j.jbiomac.2017.08.153 (2018).
24. Ramirez-Rios, V., Franco-Sierra, N. D., Alvarez, J. C., Saldañando-Benjumea, C. I. & Villanueva-Mejia, D. F. Mitochondrial genome characterization of Tectiasolanivora (Lepidoptera: Gelechiidae) and its phylogenetic relationship with other lepidopteran insects. Gene 581, 107–116. https://doi.org/10.1016/j.gene.2016.01.031 (2016).
25. Tazama, J. W. The mitochondrial genome: Structure, transcription, translation and replication. Biochem. Biophys. Acta 1410, 103–123 (1999).
26. Sun, Y. U. et al. Mitochondrial genome of Abraxasasuxepsecta (Lepidoptera: Geometridae) and comparative analysis with other Lepidoptera. Zoetaxa 4254, 501–519. https://doi.org/10.11646/zootaxa.4254.3.1 (2017).

27. Cameron, S. L. & Whiting, M. F. The complete mitochondrial genome of the tobacco hornworm, Manduca sexta (Insecta : Lepidoptera : Sphingidae), and an examination of mitochondrial gene variability within butterflies and moths. Gene 408, 112–123. https://doi.org/10.1016/j.gene.2007.10.023 (2008).

28. Zahiri, R. et al. A new molecular phylogeny offers hope for a stable family level classification of the Noctuoidea (Lepidoptera). Zool. Scr. 40, 158–173. https://doi.org/10.1111/j.1463-6409.2010.00459.x (2011).

29. Yang, X., Cameron, S. L., Lees, D. C., Xue, D. & Han, H. A mitochondrial genome phylogeny of owllet moths (Lepidoptera: Noctuoidea), and examination of the utility of mitochondrial genomes for lepidopteran phylogenetics. Mol. Phylogenet. Evol. 85, 230–237. https://doi.org/10.1016/j.ympev.2015.02.003 (2015).

30. Homziak, N. T., Breinholt, J. W., Branham, M. A., Storer, C. G. & Kawahara, A. Y. Anchored hybrid enrichment phylogenomics resolves the backbone of erenine moths. Mol. Phylogenet. Evol. 131, 99–105. https://doi.org/10.1016/j.ympev.2018.10.038 (2019).

31. Liu, Q. N. et al. The complete mitochondrial genome of the common cutworm, Spodopteralitara (Lepidoptera: Noctuidae), Mitochondrial DNA 27, 122–123. https://doi.org/10.3109/19401736.2013.873934 (2016).

32. Dai, L. S. et al. The complete mitochondrial genome of the sweet potato hornworm, Agriusconvolvuli (Lepidoptera: Sphingidae), and comparison with other Lepidoptera species. Genome 60, 128–138. https://doi.org/10.1139/gen-2016-0058 (2017).

33. Junqueira, A. C. et al. The mitochondrial genome of the blowfly Chrysomyaeborpygus (Diptera: Calliphoridae). Gene 339, 7–15. https://doi.org/10.1016/j.gene.2004.06.031 (2004).

34. Lowe, T. M. & Eddy, S. R. tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–964 (1997).

35. Benson, G. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580 (1999).

36. Sun, Y. et al. The complete mitochondrial genome of the Papilio euphorbiae (Papilionidae). Mitochondrial DNA B 5, 733–735 (2020).

37. Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874. https://doi.org/10.1093/molbev/msv054 (2016).

38. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780. https://doi.org/10.1093/molbev/msw059 (2013).

39. Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542. https://doi.org/10.1093/sysbio/sys029 (2012).

Acknowledgements

We would like to thank Mr. Junjie Li for his help in taxonomy. This work was supported by the Natural Science Foundation of Bengbu Medical College (Grant number: BYKF1730), the Key Program of Natural Science Education Department of Anhui Province (Grant number: KJ2019A0310), the Key Program of Natural Science Education Department of Anhui Province (Grant number: KJ2019A0323), Anhui Students’ Platform for Innovation and Entrepreneurship Training Program (Grant number: S201910367024), the Department of Science and Technology of Anhui Province (Grant number: 1804h08020290) and the Natural Science Foundation of China (Grant number: 21806002).

Author contributions

Y.S. and J.G. designed the research. Y.S. and H.H. performed the research. Y.S., H.H., S.L., Y.L. and J.X., analyzed the data. J.G. and K.Z. contributed reagents/materials/analysis tools. Y.S. and J.G. wrote the paper with other authors.

Competing interests

The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to J.G.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2021