A 50-year-old man was admitted to the hospital with a 6-month history of progressive, bilateral leg weakness and numbness. For several months, he had also experienced bilateral hypesthesia on and below the T6 dermatome and paraparesis. Magnetic resonance imaging (MRI) showed an intraspinal, extradural tumor suggestive of a neurogenic tumor (a neurofibroma or neurilemmoma). It had grown into the thoracic spinal cord and displaced it into the right portion of the spinal canal. The tumor extended from the 6th thoracic vertebral body to the upper margin of the 7th vertebral body, continuing dumbbell-like through the intervertebral foramen into the right middle thorax (Fig. 1).

A hemi-laminectomy of T6 exposed the tumor, revealing it, with the opening of the dura, as whitish and well-encapsulated. We microsurgically dissected and removed the tumor from the spinal cord. The intraspinal portion underwent complete resection. During the operation, we performed a T5-7 transpedicular screw fixation, with posterolateral fusion because of right T6 facet and pedicle was removed partially (Fig. 3).

Histologic examination revealed a grade 1 meningothelial meningioma, per the World Health Organization classification system. It had grown into the thoracic spinal cord and displaced it into the right portion of the spinal canal. The tumor extended from the 6th thoracic vertebral body to the upper margin of the 7th vertebral body, continuing dumbbell-like through the intervertebral foramen into the right middle thorax (Fig. 1).

A semi-laminectomy of T6 exposed the tumor, revealing it, with the opening of the dura, as whitish and well-encapsulated. We microsurgically dissected and removed the tumor from the spinal cord. The intraspinal portion underwent complete resection. During the operation, we performed a T5-7 transpedicular screw fixation, with posterolateral fusion because of right T6 facet and pedicle was removed partially (Fig. 3).

Histologic examination revealed a grade 1 meningothelial meningioma, per the World Health Organization classification system. It had grown into the thoracic spinal cord and displaced it into the right portion of the spinal canal. The tumor extended from the 6th thoracic vertebral body to the upper margin of the 7th vertebral body, continuing dumbbell-like through the intervertebral foramen into the right middle thorax (Fig. 1).

INTRODUCTION

Spinal dumbbell tumors were defined by Heuer\(^9\) as a group of tumors arising along the spine. They are constricted at the point they penetrate the intervertebral foramina or dura mater, assuming an hourglass (dumbbell) shape. Currently, however, the term “dumbbell tumors” does not refer to the hourglass shape but stands as a conceptual term, meaning separate tumors that connect and comprise two or more separate regions, such as the intradural space, epidural space, and locations outside the paravertebral space\(^10\).

Schwannoma and meningioma are the two most common intraspinal tumors\(^2,9,10,19,20,21,22,23\). Intraspinal schwannomas may occur in the spinal canal or may sometimes extend along the root to the extravertebral space through the intervertebral foramen, becoming dumbbell tumors\(^23\). In contrast, intraspinal meningiomas usually occur in the spinal canal and do not extend through the intervertebral foramen\(^24,25,26\). Therefore, the schwannoma commonly appears as a spinal dumbbell tumor\(^27\); however, in rare cases, the meningioma appears as a spinal dumbbell tumor. In the literature, only few reports mention the spinal dumbbell meningioma\(^1,8,14,15,17,24,28,29\). We present a case report of a dumbbell-shaped meningioma in the thoracic spine.

CASE REPORT

A 50-year-old man was admitted to the hospital with a 6-month history of progressive, bilateral leg weakness and numbness. For several months, he had also experienced bilateral hypesthesia on and below the T6 dermatome and paraparesis. Magnetic resonance imaging (MRI) showed an intraspinal, extradural tumor suggestive of a neurogenic tumor (a neurofibroma or schwannoma). It had grown into the thoracic spinal cord and displaced it into the right portion of the spinal canal. The tumor extended from the 6th thoracic vertebral body to the upper margin of the 7th vertebral body, continuing dumbbell-like through the intervertebral foramen into the right middle thorax (Fig. 1).

A semi-laminectomy of T6 exposed the tumor, revealing it, with the opening of the dura, as whitish and well-encapsulated. We microsurgically dissected and removed the tumor from the spinal cord. The intraspinal portion underwent complete resection. During the operation, we performed a T5-7 transpedicular screw fixation, with posterolateral fusion because of right T6 facet and pedicle was removed partially (Fig. 3).

Histologic examination revealed a grade 1 meningothelial meningioma, per the World Health Organization classification system. Histologic section revealed sheets of meningothelial cells, with oval nuclei arranged in short fascicles (Fig. 2).
The patient's abnormal sensation and motor function in the legs rapidly improved, and we observed no neurologic deterioration after the surgery. A postoperative MRI revealed no evidence of residual tumor (Fig. 4).

DISCUSSION

McCormick\(^{17}\) reported dumbbell-shaped tumors with significant intraspinal and paravertebral involvement and also classified them into four types, based on the location of tumor: intramedullary, intradural extramedullary, epidural, and dumbbell. Differential localized tumors, such as dumbbell tumors, particularly need surgical procedures differing from those for transitional intradural extramedullary and epidural tumors.

From the viewpoint of surgical treatment, “dumbbell tumor” also means a tumor of both a distinctive shape and a location connecting two or more regions. Eden\(^5\) and Nitter\(^{12}\) reported the dumbbell tumor’s incidence in spinal cord tumors as 13.7% and 14.2%, respectively. The rates for all spinal cord tumors were higher at the thoracic and lumbar levels than at the cervical level. However, dumbbell tumors at the cervical level accounted for 44% of all dumbbell tumors\(^{19}\), because the most common types of dumbbell tumors, such as the schwannoma, derive frequently from the upper cervical nerve roots and less frequently from the thoracic nerve roots\(^{6,27}\). Researchers usually classify spinal schwannomas as intradural, extradural, intradural-extradural (i.e., dumbbell-shaped), and intramedullary, and they can occur at any level of the spinal column\(^{4,12,13,21-23}\).

However, subtle differences exist in the literature regarding the occurrence of spinal schwannomas along the spine’s longitudinal axis\(^{4,12,13,21-23}\). Spinal dumbbell-shaped schwannomas seem quite common, running to 10-15% of all spinal schwannomas\(^{28}\). In contrast, dumbbell-shaped meningioma is rare\(^{16,17,28}\). The reason why we have first decided to conclude this as schwannoma in our study is when there is dumbell shape, schwannoma has a high incidence. Also, no sign of dural tale was shown on MRI and enhancement pattern was heterogenous.

Because researchers consider the dumbbell tumor as a typical shape for spinal schwannoma\(^{17,28}\), we initially assumed the presented patient’s thoracic tumor was a schwannoma. However, it was actually a meningioma. Spinal schwannomas generally arise from the Schwann cells of the dorsal nerve roots; thus, they...
commonly form dumbbell tumors along the nerve root. In contrast, spinal meningiomas often appear as globular tumors, because they originate from the arachnoid membrane, and approximately 90% are located intradurally. Occasionally, meningiomas present as extradural or intradural/extradural tumors and exhibit extravertebral extension. The meningioma’s extravertebral extension could occur tumor growth through the intervertebral foramina, but usually to a minor extent. However, rarely, and as seen in this patient, the extradural/extravertebral space could occur tumor growth through the dura and, subsequently, to the extradural/extravertebral space. We also considered the tumor might have arisen from the arachnoid villi at this location is prone to grow through the dura and, subsequently, to the extradural/extravertebral space. We considered the tumor might have arisen from the arachnoid villi at the nerve root exits, because it was adhered tightly to the intervertebral foramen’s posterior wall (posterior wall of intervertebral foramen).

In a considerable number of cases, surgeons excise dumbbell tumors by means of a hemilaminectomy and a facetectomy. However, postoperative instability can occur after resection of a large spinal tumor and may require surgical stabilization. After removing meningioma, we were concerned about spinal instability and thus, performed fixation.

CONCLUSION

Differential diagnosis of intraspinal schwannoma and meningioma can be difficult because some meningiomas may present as dumbbell shape tumors on imaging study. Moreover, treatment strategies for spinal dumbbell schwannoma are widely known to researchers and clinicians while spinal dumbbell meningioma is less known for its specific surgical procedures. Therefore, surgery for a dumbbell meningioma deserves special consideration. We presented a rare case with a thoracic, dumbbell-shaped meningioma, which was excised via a one-stage posterior approach (i.e., hemilaminectomy and transpedicular screw fixation with posterolateral fusion), because this was easier approach to the tumor and created less adhesion with the surrounding dura.

References

1. Buchfelder M, Nomikos P, Paulus W, Rupprecht H : Spinal-thoracic dumbbell meningioma: a case report. *Spine (Phila Pa 1976)* 26 : 1500-1504, 2001
2. Calogero JA, Mossey J : Extradural spinal meningiomas. Report of four cases. *J Neurosurg* 37 : 442-447, 1972
3. Chen JG, Tseng SH, Chen Y, Tseng JE, Lin SM : Cervical dumbbell meningioma and thoracic dumbbell schwannoma in a patient with neurofibromatosis. *Clin Neurol Neurosurg* 107 : 253-257, 2005
4. Conti P, Pansini G, MouchatY, Capuano C, Conti R : Spinal meningiomas: retrospective analysis and long-term outcome of 179 consecutively operated cases and review of the literature. *Surg Neurol* 61 : 34-44; discussion 44, 2004
5. Eden K : The dumb-bell tumors of the spine. *Br J Surg* 28 : 549-570, 1941
6. George B, Lot G : Neurinomas of the first two cervical nerve roots: a series of 42 cases. *J Neurosurg* 82 : 917-923, 1995
7. Gezen F, Kahraman S, Canakci Z, Bedik A : Review of 36 cases of spinal cord meningioma. *Spine (Phila Pa 1976)* 25 : 727-731, 2000
8. Hakuba A, Komiyama M, Tsurimoto T, Ahn MS, Nishimura S, Ohita T, et al. : Transuncodiscal approach to dumbbell tumors of the cervical spinal canal. *J Neurosurg* 61 : 1100-1106, 1984
9. Heuer GJ : The so-called hour-glass tumors of the spine. *Arch Surg* 18 : 935-981, 1929
10. Ibrahim AW, Satti MB, Ibrahim EM : Extradural meningioma. Case report. *J Neurosurg* 64 : 328-330, 1986
11. Iida H, Takahashi M, Mochizuki T, Ramsey RG, Masui T, Takehara Y, et al. : MRI of dumbbell-shaped spinal tumors. *J Comput Assist Tomogr* 20 : 573-582, 1996
12. Jinrai T, Koyama T : Clinical characteristics of spinal nerve sheath tumors : analysis of 149 cases. *Neurosurgery* 56 : 510-515; discussion 510-515, 2005
13. Klekamp J, Samii M : Surgery of spinal nerve sheath tumors with special reference to neurofibromatosis. *Neurosurgery* 42 : 279-289; discussion 289-290, 1998
14. Love JG, Dodge HW Jr: Dumbbell (hourglass) neurofibromas affecting the spinal cord. *Surg Gynecol Obstet* 94 : 161-172, 1952
15. Martinez R, Ramiro J, Montero C, Perez Calvo JM, Vaquejo J : Extradural spinal meningiomas with intrathoracic extension. Report of two cases. *J Neurosurg* 32 : 179-181, 1988
16. Matsumoto S, Hasuo K, Uchino A, Mizushima A, Furukawa T, Matsura Y, et al. : MRI of intradural-extradural spinal meningiomas and meningiomas. *Clin Imaging* 17 : 46-52, 1993
17. McCormick PC : Surgical management of dumbbell and paraspinal tumors of the thoracic and lumbar spine. *Neurosurgery* 38 : 67-74; discussion 74-75, 1996
18. Nitter K : Spinal meningiomas, neurofibromas and neurofibromas and hourglass and tumors in Vinken PJ, Bruyn GW(eds) : *Handbook of Clinical Neurology*. Amsterdam : North-Holland, 1976, Vol 20 pp289-312
19. Ozawa H, Kokubun S, Aizawa T, Hoshikawa T, Kawahara C : Spinal dumbbell tumors : an analysis of a series of 118 cases. *J Neurosurg* 78 : 587-593, 2007
20. Roux FX, Natal E, Pinaudeau M, Borne G, Devaux B, Meder JM : Intraspinal meningioma : review of 54 cases with discussion of poor prognosis factors and modern therapeutic management. *Surg Neurol* 46 : 458-463; discussion 463-464, 1996
21. Safavi-Abbasi S, Senoglu M, Theodore N, Workman RK, Gharabaghi A, Feiz-Erfan I, et al. : Microsurgical management of spinal schwannomas: evaluation of 128 cases. *J Neurosurg Spine* 7 : 40-47, 2008
22. Seppälä MT, Haltia MJ, Sankila RJ, Jääskeläinen JE, Heiskanen O : Long-term outcome after removal of spinal neurofibroma. *J Neurosurg* 82 : 572-577, 1995
23. Seppälä MT, Haltia MJ, Sankila RJ, Jääskeläinen JE, Heiskanen O : Long-term outcome after removal of spinal schwannoma : a clinicopathological study of 187 cases. *J Neurosurg* 83 : 621-626, 1995
24. Smith ER, Ott M, Wain J, Louis DN, Chiocca EA : Massive growth of a meningioma into the brahial plexus and thoracic cavity after intraspinal and supraclavicular resection. Case report and review of the literature. *J Neurosurg* 96 : 107-111, 2002
25. Solero CL, Fornari M, Giombini S, Lasio G, Oliveri G, Cimino C, et al. : Spinal meningiomas : review of 174 operated cases. *Neurosurgery* 25 : 153-160, 1989
26. Souweidane M, Benjamin V : Spinal cord meningiomas. *Neurosurgery Clin N Am* 5 : 283-291, 1994
27. Suzuki A, Nakamura H, Konishi S, Yamano Y: Dumbbell-shaped meningioma with cystic degeneration in the thoracic spine: a case report. Spine (Phila Pa 1976) 27: E193-E196, 2002
28. Sun WS, Jung YT, Kim SC, Sim JH: A dumbbell-shaped thoraco-lumbar extradural ganglioneuroma: case report. J Korean Neurosurg Soc 32: 481-484, 2002
29. Yoshura T, Shrier DA, Pilcher WH, Rudio A: Cervical spinal meningioma with unusual MR contrast enhancement. AJNR Am J Neuroradiol 19: 1040-1042, 1998