Topological dimension of singular-hyperbolic attractors

C. A. Morales*

October 29, 2018

Abstract

An attractor is a transitive set of a flow to which all positive orbit close to it converges. An attractor is singular-hyperbolic if it has singularities (all hyperbolic) and is partially hyperbolic with volume expanding central direction [16]. The geometric Lorenz attractor [6] is an example of a singular-hyperbolic attractor with topological dimension \(\geq 2 \). We shall prove that all singular-hyperbolic attractors on compact 3-manifolds have topological dimension \(\geq 2 \). The proof uses the methods in [15].

1 Introduction

This paper is concerned with the topological dimension of attractors for flows on compact manifolds. By attractor we mean a transitive set of the flow to which all positive orbit close to it converges. The attractors under consideration will be singular-hyperbolic in the sense that they have singularities (all hyperbolic) and are partially hyperbolic with volume expanding central direction [16]. In particular, the singular-hyperbolic attractors are volume hyperbolic sets as defined in [1]. The geometric Lorenz attractor is an example of a singular-hyperbolic attractor with topological dimension \(\geq 2 \). We shall prove that all singular-hyperbolic attractors on compact 3-manifolds have topological dimension \(\geq 2 \). The proof uses the methods developed in [15]. Let us state our result in a precise way.

Hereafter \(X \) will be a \(C^1 \) vector field on a compact manifold \(M \). The flow of \(X \) is denoted by \(X_t, t \in \mathbb{R} \). Given \(p \in M \) we define \(\omega(p) = \omega_X(p) \), the \(\omega \)-limit set of \(p \), as the accumulation point set of the positive orbit of \(p \). The \(\alpha \)-limit set of \(p \)

*2000 MSC: Primary 37D30, Secondary 37C45. Key words and phrases: Attractor, Partially Hyperbolic, Topological Dimension. Partially supported by CNPq, FAPERJ and PRONEX-Dyn. Sys./Brazil.
is the set $\alpha(p) = \alpha_X(p) = \omega X(p)$. A compact invariant set Λ of X is transitive or attracting depending on whether $\Lambda = \omega(p)$ or $\cap_{t>0} X_t(U)$ for some $p \in \Lambda$ or some compact neighborhood U of Λ respectively. An attractor is a transitive attracting sets. A closed orbit of X is either periodic or singular. A singularity of X is hyperbolic if none of its eigenvalues have zero real part.

A compact invariant set Λ of X is partially hyperbolic [8] if there are an invariant splitting $T\Lambda = E^s \oplus E^c$ and positive constants K, λ such that:

1. E^s is contracting, namely
 $$\| DX_t / E^s_x \| \leq Ke^{-\lambda t}, \quad \forall x \in \Lambda, \forall t > 0.$$

2. E^s dominates E^c, namely
 $$\| DX_t / E^s_x \| \cdot \| DX_{-t} / E^c_{X_t(x)} \| \leq Ke^{-\lambda t}, \quad \forall x \in \Lambda, \forall t > 0.$$

The central direction E^c of Λ is said to be volume expanding if the additional condition
 $$| \text{Det}(DX_t / E^c_x) | \leq Ke^{-\lambda t}$$
holds $\forall x \in \Lambda, \forall t > 0$ where $\text{Det}(\cdot)$ means the jacobian. The above splitting $E^s \oplus E^c$ will be refered to as a (K, λ)-splitting in the Appendix.

Definition 1.1. ([16]) An attractor is singular-hyperbolic if it has singularities (all hyperbolic) and is partially hyperbolic with volume expanding central direction.

Definition 1.2. ([9]) The topological dimension of a space E is either -1 (if $E = \emptyset$) or the last integer k for which every point has arbitrarily small neighborhoods whose boundaries have dimension less than k.

The relation between dynamics and topological dimension was considered for hyperbolic systems [7, 18, 2, 3]; for expansive systems [10, 13]; and for singular-hyperbolic systems [14]. The result below generalizes to singular-hyperbolic attractors a well known property of both hyperbolic strange attractors and geometric Lorenz attractors.

Theorem A. Singular-hyperbolic attractors on compact 3-manifolds have topological dimension ≥ 2.

The idea of the proof is the following. Let Λ be a singular-hyperbolic attractor of a flow X on a compact 3-manifold M. It follows from [16] that all the singularities $\sigma \in \Lambda$ are Lorenz-like, namely the eigenvalues $\lambda_1, \lambda_2, \lambda_3$ of σ are real and satisfy $\lambda_2 < \lambda_3 < 0 < -\lambda_3 < \lambda_1$. The flow nearby σ can be described using the Grobman-Hartman Theorem [14]. In particular, a Lorenz-like singularity exhibits
two singular cross-sections \(S^t, S^b \) and two singular curves \(l^t, l^b \) ([15]). A singular cross section of \(\Lambda \) is by definition a disjoint collection of singular cross sections \(S^t, S^b \) (as \(\sigma \) runs over all the singularities of \(\Lambda \)) whose horizontal boundaries does not intersect \(\Lambda \). The singular curve of \(S \) is the union \(l \) of the respective singular curves \(l^t, l^b \). A singular partition of \(\Lambda \) will be a compact neighborhood \(O \) of \(\Lambda \cap l \) in \(S \), for some singular cross section \(S \) of \(\Lambda \), such that \(\Lambda \cap l \) does not intersect the boundary of \(O \) and every regular orbit of \(\Lambda \) intersect \(O \). The size of the singular partition \(O \) is the minimal \(\epsilon > 0 \) such that there is an invariant cone field in \(O \) (for the return map \(\Pi : \text{Dom}(\Pi) \subset O \rightarrow O \)) on which the derivative of \(\Pi \) has expansion rate bigger than \(\epsilon^{-1} \). In Proposition 2.7 we prove that one-dimensional singular-hyperbolic attractors on compact 3-manifolds have singular partition with arbitrarily small size. The proof of this proposition uses the Lemmas 7.5 and 7.6 in [15]. These lemmas will be proved in the Appendix for the sake of completeness. In Theorem 2.9 we shall prove that singular-hyperbolic attractors \(\Lambda \) on compact 3-manifolds cannot have singular partitions with arbitrarily small size. Theorem 2.11 will follow from Proposition 2.7 and Theorem 2.9.

2 Proof

We start with some definitions. Hereafter \(\Lambda \) is a singular-hyperbolic attractor of a \(C^1 \) flow \(X \) on a compact 3-manifold \(M \). Since Lorenz-like singularities \(\sigma \) are hyperbolic they are equipped with three invariant manifolds \(W_\sigma^s(\sigma), W_\sigma^u(\sigma), W_\sigma^{ss}(\sigma) \) each one tangent at \(\sigma \) to the eigenspace corresponding to \(\{\lambda_2, \lambda_3\}, \{\lambda_1\}, \{\lambda_2\} \) respectively. It follows from [16] that every singularity \(\sigma \) of \(X \) in \(\Lambda \) is Lorenz-like and satisfies \(\Lambda \cap W_\sigma^{ss}(\sigma) = \{\sigma\} \). The classical Grobman-Hartman Theorem [5] gives the description of the flow nearby \(\sigma \). This is done at Figure ???. Note that \(W_\sigma^{ss}(\sigma) \) separates \(W_\sigma^s(\sigma) \) in two connected components denoted the top and the bottom respectively. In one of these components, say the top one, we consider a cross-section \(S^t = S^t_\sigma \) together with a curve \(l^t = l^t_\sigma \) as in Figure ???. Similarly we consider a cross-section \(S^b = S^b_\sigma \) and a curve \(l^b = l^b_\sigma \) located in the bottom component of \(W_\sigma^s(\sigma) \). See Figure ???. Both \(S^* \) (for \(* = 1, 2 \)) are homeomorphic to \([0, 1] \times [0, 1] \). \(S^* \) can be chosen in a way that \(l^* \) is contained in \(W_\sigma^s(\sigma) \setminus W_\sigma^{ss}(\sigma) \). The positive flow lines of \(X \) starting at \(S^t \cup S^b \setminus (l^t \cup l^b) \) exit a small neighborhood of \(\sigma \) passing through the cusp region as indicated in Figure ???. The positive orbits starting at \(l^t \cup l^b \) goes directly to \(\sigma \). We note that the boundary of \(S^* \) is formed by four curves, two of them transverse to \(l^* \) and two of them parallel to \(l^* \). The union of the curves in the boundary of \(S^* \) which are parallel (resp. transverse) to \(l^* \) is denoted by \(\partial^v S^* \) (resp. \(\partial^b S^* \)). The interior (as a submanifold) of \(S^* \) is denoted by \(\text{Int}(S^*) \).
Remark 2.1. An immediate consequence of \(\Lambda \cap W^{ss}_X(\sigma) = \{ \sigma \} \) is the following. Let \(\sigma \) be a singularity of \(X \) in \(\Lambda \). Then there are cross-sections \(S^t, S^b \) as above arbitrarily close to \(\sigma \) such that \(\Lambda \cap \partial^h S^* = \emptyset \) (\(* = t, b \)). Since the two boundary points of \(l^* \) are in \(\partial^h S^* \) we have that \(\Lambda \cap l^* \subset \text{Int}(S^*) \).

Definition 2.2. We shall call the cross sections \(S^t, S^b \) as singular cross sections associated to \(\sigma \). The curves \(l^t, l^b \) are called singular curves of \(S^t, S^b \) respectively. A singular cross section of \(\Lambda \) is a finite disjoint collection \(\{ S^t_\sigma, S^b_\sigma : \sigma \text{ is a singularity of } X \text{ in } \Lambda \} \). It follows that \(\Lambda \cap \partial^h S = \emptyset \). The singular curve of \(S \) is the associated collection of singular curves \(l = \{ l^t_\sigma, l^b_\sigma : \sigma \text{ is a singularity of } X \text{ in } \Lambda \} \).

Hereafter we denote by \(T_\Lambda M = E^s_\Lambda \oplus E^c_\Lambda \) the singular-hyperbolic splitting of \(\Lambda \). The contracting direction \(E^s \) is one-dimensional and contracting. So, \(E^s_\Lambda \) can be extended to an invariant contracting splitting \(E^s_{U(\Lambda)} \) on a neighborhood \(U(\Lambda) \) of \(\Lambda \). The standard Invariant Manifold Theory \(\mathbb{S} \) implies that \(E^s_{U(\Lambda)} \) is tangent to a continuous foliation \(\mathcal{F} \) on \(U(\Lambda) \). If \(S \) is a singular cross-section contained in \(U(\Lambda) \), we denote by \(\mathcal{F}^s \) the foliation of \(S \) obtained projecting \(\mathcal{F} \) into \(S \) along \(X \). The space of leaves of \(\mathcal{F}^s \) will be denoted by \(I^S \). We extend \(E^s_\Lambda \) continuously to a subbundle \(E^s_{U(\Lambda)} \) of \(T_{U(\Lambda)} M \). In what follows we fix such a neighborhood \(U(\Lambda) \) of \(\Lambda \).

Remark 2.3. It is possible to choose \(S \) arbitrarily close to the singularities of \(\Lambda \) in a way that \(l \) is a finite union of leaves of \(\mathcal{F}^s \) and \(I^S \) is a finite disjoint union of compact intervals.

The following lemma is a direct consequence of standard argument involving topological dimension. We prove it here for the sake of completeness.

Lemma 2.4. Let \(S \) a singular cross-section and \(l \) be its associated singular curve. If \(\Lambda \) is one-dimensional, then there is a compact neighborhood \(O \) of \(\Lambda \cap l \) in \(S \) whose boundary \(\partial O \) satisfies \(\Lambda \cap \partial O = \emptyset \).

Proof. Note that \(\Lambda \cap \partial^h S = \emptyset \) since \(S \) is a singular cross-section. As noted in Remark 2.1 one has \(\Lambda \cap l \subset \text{Int}(S) \). Fix \(x \in \Lambda \cap l \). Then \(x \in \text{Int}(S) \). Because \(\Lambda \) is one dimensional we have that \(\Lambda \cap S \) is zero dimensional \(\mathbb{S} \). Then, by the definition of the topological dimension, one can find an open set \(S_x \) of \(\Lambda \cap S \) containing \(x \) such that \(\partial S_x = \emptyset \). Note that the topology in \(\Lambda \cap S \) is the one induced by \(S \). In follows that \(S_x = (\Lambda \cap S) \cap O_x \) for some open set \(O_x \) of \(M \). Since \(S \) is transversal to \(X \) we can choose \(O_x \) such that \(\partial S_x = (\Lambda \cap S) \cap \partial O_x \) (for this we can use the Tubular Flow-Box Theorem \(\mathbb{S} \)). It follows that

\[
(\Lambda \cap S) \cap \partial O_x = \emptyset.
\]

On the other hand, \(\Lambda \cap l \) is compact in \(S \) and \(\{ S \cap O_x : x \in \Lambda \cap l \} \) is an open covering of \(\Lambda \cap l \). It follows that there is a finite subcollection of \(\{ S \cap O_x : x \in \Lambda \cap l \} \)
covering $\Lambda \cap l$. Denote by O the union of the closures (in S) of the elements of such a subcollection. It follows that O is a compact neighborhood of $\Lambda \cap l$ in S. Since O is a finite union of $S \cap O_x$'s satisfying $(\Lambda \cap S) \cap \partial O_x = \emptyset$ we have that $\Lambda \cap \partial O = \emptyset$. This proves the lemma.

Hereafter O is a set contained in a singular cross section S. Clearly O defines a return map

$$\Pi : \text{Dom}(\Pi) \subset O \to O$$

given by

$$\Pi(x) = X_{t(x)}(x),$$

where $\text{Dom}(\cdot)$ denotes the domain and $t(\cdot)$ denotes the return time.

Remark 2.5. Note that Π may be discontinuous in $\Pi^{-1}(\partial O)$. However if $x \in \Pi^{-1}(\text{Int}(O))$ then Π is C^1 in an open neighborhood of x contained in $\text{Int}(O)$. This is an immediate consequence of the Tubular Flow-Box Theorem.

We denote by TO the tangent space of O relative S. If $x \in M$ we denote by $\angle(v_x, w_x)$ the tangent of the angle between $v_x, w_x \in T_xM$. If L_x is a linear subspace of T_xM, we define

$$\angle(v_x, L_x) = \inf_{w_x \in L_x} \angle(v_x, w_x).$$

Given $\alpha > 0$ we define the cone

$$C_\alpha(L_x) = \{v_x \in T_xM : \angle(v_x, L_x) \leq \alpha\}.$$

If $L : x \in \text{Dom}(L) \to L_x$ is a map and $\alpha > 0$ we define the cone field

$$C_\alpha(L) = \{C_\alpha(L_x) : x \in \text{Dom}(L)\}.$$

The case $L = E^c$ will be interesting. The definition below is a minor modification of the corresponding definition in [15]. If $x \in M$ we denote $X_{\mathbb{R}}(x)$ the full orbit of x.

Definition 2.6. A singular partition of Λ is a set O satisfying the following properties:

1. There is a singular cross-section S such that $O \subset \text{Int}(S)$ is a compact neighborhood of $\Lambda \cap l$.
2. $\Lambda \cap \partial O = \emptyset$.
3. $\text{Sing}_X(\Lambda) = \{q \in \Lambda : X_{\mathbb{R}}(q) \cap O = \emptyset\}$.

5
The size of O is the minimal number $\epsilon > 0$ for which there is $\alpha > 0$ such that the cone field $C_\alpha(E^c)$ satisfies :

4. If $x \in \text{Dom}(\Pi)$, then

$$D\Pi(x) \left(C_\alpha(E^c_x) \cap TO_x \right) \subset \text{int} \left(C_{\frac{\epsilon}{2}\alpha}(E^c_{\Pi(x)}) \cap TO_{\Pi(x)} \right).$$

5. If $x \in \text{Dom}(\Pi)$ and $v_x \in C_\alpha(E^c_x) \cap TO_x$, then

$$\|D\Pi(x)(v_x)\| \geq \epsilon^{-1}\|v_x\|.$$

6. $\inf \{ \angle(v_x, E^s_x) : x \in O, v_x \in C_\alpha(E^c_x) \cap TO_x \} > 0.$

The following proposition studies the existence of singular partition with arbitrarily small size for certain one-dimensional singular-hyperbolic sets. Its proof uses the methods developed in [15]. We let $\text{Sing}_X(\Lambda) = \{\sigma_1, \cdots, \sigma_k\}$ be the set of singularities of X in Λ.

Proposition 2.7. One-dimensional singular-hyperbolic attractors on compact 3-manifolds have singular partitions with arbitrarily small size.

Proof. Let Λ be a singular-hyperbolic attractor of a C^1 flow X on a compact 3-manifold M. We shall assume that Λ has topological dimension 1. We shall prove that Λ has singular partition with arbitrarily small size $\epsilon > 0$. For this we proceed as follows. Since Λ has topological dimension 1 we have that Λ cannot contain hyperbolic sets (the unstable manifold of a hyperbolic set in Λ would be two-dimensional and contained in Λ). It follows that $\omega(x)$ cannot be hyperbolic for all $x \in \Lambda$. By [17] if $L = \omega(x), \alpha(x)$ then

$$L \cap \text{Sing}_X(\Lambda) \neq \emptyset, \ \forall x \in \Lambda.$$

Choose $\alpha > 0$ such that

$$\inf \{ \angle(v_x, E^s_x) : x \in U(\Lambda), v_x \in C_\alpha(E^c_x) \} > 0.$$

By [15] Lemma 7.5] (see Lemma 3.1) we can find a neighborhood $U_\alpha \subset U(\Lambda)$ of Λ and positive constants $T_\alpha, K_\alpha, \lambda_\alpha$ such that the following properties hold:

(P1). If $x \in U_\alpha$ and $t \geq T_\alpha$, then

$$DX_t(x)(C_\alpha(E^c_x)) \subset C_{\alpha/2}(E^c_{X_t(x)}).$$

(P2). If $x \in U_\alpha$ is regular, $X(x) \in C_\alpha(E^c_x)$, $t \geq T_\alpha$ and $v_x \in C_\alpha(E^c_x)$ is orthogonal to $X(x)$, then

$$\|P^t_x(v_x)\| \cdot \|X(X_t(x))\| \geq K_\alpha e^{\lambda_\alpha t}. \|v_x\| \cdot \|X(x)\|,$$
where P^t_x denotes the Poincaré flow associated to X (see [4, 15] or the Appendix).

Once we fix α and U_{α} we apply [15, Lemma 7.6] (see Lemma 3.2) to find, for every $i \in \{1, \ldots, k\}$, a pair of singular cross-sections S^{*0}_i associated to $\sigma_i (\ast = t, b)$ such that

$$X(x) \in C_\alpha(x), \ \forall x \in S^{*0}_i.$$

Define

$$S^0 = \bigcup_{i=1}^k (S^{*,0}_i \cup S^{*0}_i).$$

It is clear that S^0 is a singular cross-section. We denote by l_0 the singular curve of S^0. Since S^0 is transversal to X one can find a constant $D > 0$ (depending on S^0) such that

$$\left\|X(x)\right\| > D,$$

for all $x, y \in S^0$. We choose $T_\epsilon > T_\alpha$ large enough so that

$$K_\alpha e^{\lambda_\alpha t} \cdot D > \epsilon^{-1}$$

(2)

for all $t \geq T_\epsilon$.

For every $\delta > 0$ we consider a singular-cross section $S^\delta \subset S^0 (i = 1, \ldots, k$ and $\ast = t, b)$ formed by small bands $S^{*\delta}_i$ of diameter 2δ around the singular curve l_i^{*} of S^{*0}_i. Note that the singular curve of S^δ is l^0 (the one of S^0) for all δ. Since Λ is one-dimensional Lemma 2.4 implies that $\forall x \in \Lambda \cap l^0$ there is a compact neighborhood $O = O^\delta \subset S^\delta$ of $\Lambda \cap l^0$ such that $\Lambda \cap \partial O = \emptyset$. Note that O is a singular partition of Λ. In fact, (1) and (2) of Definition 2.6 are obvious. And (3) of Definition 2.6 follows from Eq. (1) since O is a compact neighborhood of $\Lambda \cap l^0$.

Let us prove that if $\delta > 0$ small enough, then O has size ϵ. For this we need to prove that for δ small the cone field $C_\alpha(E^c)$ satisfies the properties (4)-(6) of Definition 2.6. Let $\Pi : Dom(O) \subset O \to O$ be the return map induced by X in O. By definition $\Pi(x) = X_{t(x)}(x)$ where $t(x)$ is the return time of $x \in Dom(O) \subset O$ into O. To calculate $D \Pi(x)$ we can assume without loss of generality that S^0 is orthogonal to X. It follows that

$$D \Pi(x) = P^t_{x}$$

for all $x \in Dom(\Pi)$. Shrinking δ one has $t(x) > T_\epsilon$ for all $x \in Dom(\Pi) \subset O$. This allows us to apply the properties (P1)-(P2) above. In fact, since $D \Pi(x) = P^t_{x}$ one has

$$D \Pi(x)/C_\alpha(E^c_{x}) \cap TO_x = P^t_{x}/C_\alpha(E^c_{x}) \cap TO_x.$$

Then, Definition 2.6-(4) follows from (P1), (P2) and Eq. (2) imply

$$\|D \Pi(x)(v_x)\| = \|P^t_{x}(v_x)\| = \epsilon^{-1}$$

(2)
\[
= \|P_x^{t(x)}(v_x)\| \cdot \|X(X_t(x))\| \cdot \|X(X_t(x))\|^{-1} \geq \\
\geq K_\alpha e^{\lambda_\alpha t(x)} \cdot \frac{\|X(x)\|}{\|X(X_t(x))\|} \cdot \|v_x\| \geq K_\alpha e^{\lambda_\alpha t(x)} \cdot D \cdot \|v_x\| \geq e^{-1}\|v_x\|,
\]

\(\forall x \in \text{Dom}(\Pi), \forall v_x \in C_\alpha(E^u_x) \cap TO_x\) because \(X(x) \in C_\alpha(E^u_x) \forall x \in S^0\) and \(t(x) > T_c\) (\(\forall x \in \text{Dom}(\Pi)\)). This proves Definition 2.6-(5). Definition 2.6-(6) is a direct consequence of the choice of \(\alpha\). The result follows. \(\Box\)

The following lemma will be used to prove Theorem 2.9. Recall that if \(S\) is a singular cross-section then \(S\) is endowed with a singular curve \(l\). If \(O \subseteq S\) then \(\Pi : \text{Dom}(\Pi) \subseteq O \rightarrow O\) denotes the return map associated to \(O\).

Lemma 2.8. Let \(\Lambda\) be a singular-hyperbolic attractor of a flow \(X\) on a compact 3-manifold. Let \(O\) be a singular partition of \(\Lambda\). Then, there is an open neighborhood \(O' \subseteq \Lambda \cap O\) such that:

1. \(O' \setminus l \subseteq \text{Dom}(\Pi)\).
2. \(\Pi\) is \(C^1\) in \(O' \setminus l\).
3. \(\Pi(O' \setminus l) \subset O'\).

Proof. Because \(\Lambda\) is an attractor we have that the unstable manifold of any of its singularities is contained in \(\Lambda\). In particular, every connected component of \(W^u_\Lambda(\sigma_i) \setminus \{\sigma_i\}\) is contained in \(\Lambda\) \(\forall i\). It follows from Definition 2.6-(3) that all such components intersect \(O\). By Definition 2.6-(2) such intersections can occur only in \(\text{Int}(O)\). This implies that there are small open bands, centered at the singular curves in \(l\), whose union \(V(l)\) satisfies \(V(l) \setminus l \subseteq \Pi^{-1}(\text{Int}(O))\).

As noted in Remark 2.5 we have that \(\Pi\) is \(C^1\) in \(V(l) \setminus l\). Again by Definition 2.6-(2)-(3) one has \((\Lambda \cap O) \setminus V(l) \subseteq \Pi^{-1}(\text{Int}(O))\). So, by Remark 2.5 since \((\Lambda \cap O) \setminus V(l)\) is compact, there is an open neighborhood \(V\) of \((\Lambda \cap O) \setminus V(l)\) contained in \(\text{Dom}(\Pi)\) such that \(\Pi\) is \(C^1\) in \(V\). Observe that \(V \cup V(l)\) is an open neighborhood of \(\Lambda \cap O\) such that \(\Pi\) is \(C^1\) in \((V \cup V(l)) \setminus l\). On the other hand, \(\Lambda\) is an attractor by assumption. Then, there is a neighborhood \(U^*\) such that \(X_t(U^*) \subset U^*\) \(\forall t > 0\). Clearly one can choose \(U^*\) to be arbitrarily close to \(\Lambda\). In particular, \(O' := O \cap U^*\) is contained in \(V \cup V(l)\). It follows that \(O' \setminus l \subseteq \text{Dom}(\Pi)\) because \(V \cup (V(l) \setminus l) \subseteq \text{Dom}(\Pi)\). Because \(X_t(U^*) \subset U^*\) for all \(t > 0\) and the return time for the points in \(\text{Dom}(\Pi)\) is positive we conclude that \(\Pi(O' \setminus l) \subset O'\).

As \(\Pi\) is \(C^1\) in \((V \cup V(l)) \setminus l\) and \(O' \subseteq V \cup V(l)\) we conclude that \(\Pi\) is \(C^1\) in \(O' \setminus l\). This proves the result. \(\Box\)

Theorem 2.9. Singular-hyperbolic attractors on compact 3-manifolds cannot have singular partitions with arbitrarily small size.
Proof. Let Λ be a singular-hyperbolic attractor of a C^1 flow X on a compact 3-manifold M. By contradiction we assume that Λ has a singular partition O with arbitrarily small size $\epsilon > 0$. We fix $\epsilon \in (0, 1/2)$. We let O' be the open neighborhood obtained in Lemma 2.8 for O. Hereafter we say that a C^1 connected curve c in O is a C^u-curve if its tangent vector belongs to the cone field $C\alpha(E^c)$ at Definition 2.6-(4). Definition 2.6-(4) implies that Π carries C^u curves in $\Pi^{-1}(Int(O))$ into C^u curves in O (see also Remark 2.3). Definition 2.6-(6) implies that a C^u curve in O intersects l in at most one point x_c. In that case x_c divides c in two connected components the largest one being denoted by c^+. Clearly if $L(\cdot)$ denotes the length, then

$$L(c^+) \geq (1/2)L(c).$$

Now, fix a C^u curve $c_1 \subset O' \setminus l$. Define $R = (2\epsilon)^{-1}$. The choice of ϵ implies $\epsilon^{-1} > R > 1$. Lemma 2.8-(1) implies $c_1 \subset \Dom(\Pi)$. Lemma 2.8-(2) implies that $c_2 = \Pi(c_1)$ is a C^u curve contained in O'. Definition 2.6-(5) implies $L(c_2) \geq \epsilon^{-1}L(c_1) \geq R \cdot L(c_1)$. Suppose we have constructed a sequence c_1, c_2, \cdots, c_i of C^u curves of O contained in O' satisfying $L(c_j) \geq R \cdot L(c_{j-1})$ for all $2 \leq j \leq i$. If $c_i \cap l = \emptyset$ we define $c_{i+1} = \Dom(c_i)$ and keep going. If $c_i \cap l \neq \emptyset$ we define $c_{i+1} = \text{Closure}(\Dom(c_i))$. In any case c_{i+1} is a C^u curve of O contained in O'. In the first case we have $L(c_{i+1}) \geq \epsilon^{-1}L(c_i) \geq R \cdot L(c_i)$. In the second case we have

$$L(c_{i+1}) = L(\Dom(c_i^+)) \geq \epsilon^{-1}L(c_i^+) \geq (\epsilon^{-1}/2) \cdot L(c_i) = R \cdot L(c_i).$$

In this way we can construct an infinite sequence $c_1, \cdots, c_i, c_{i+1}, \cdots$ of C^u curves of O in O' all of which satisfying $L(c_{i+1}) \geq R \cdot L(c_i)$. It follows that

$$L(c_i) \geq R^i \cdot L(c_1),$$

for all i. Since $l(c_1) > 0$ and $R = (2\epsilon)^{-1} > 1$ we conclude that

$$\lim_{i \to \infty} L(c_i) = \infty.$$

On the other hand, let S be the singular cross-section containing O given by Definition 2.6-(1). Let F^S be the projection of the stable manifold in $U(\Lambda)$ over S. As noted in Remark 2.3 the leave space I^S of F^S is a finite union of compact intervals. In particular I^S has finite diameter. Since $O' \subset O \subset Int(S)$ we have that all the curves c_i are contained in S. Since c_i is a C^u curve we have by Definition 2.6-(6) that c_i have positive angle with the leaves of F^S (note that these leaves are tangent to E^s). So, we can project c_i to obtain an infinite sequence of intervals in I^S. The lenght of these intervals goes to ∞ (as $i \to \infty$) since $L(c_i) \to \infty$ (as $i \to \infty$). This is a contradiction since I^S has finite diameter. This contradiction proves the result. \hfill \Box
Proof of Theorem A. Let Λ be a singular-hyperbolic attractor on a compact 3-manifold. If Λ has topological dimension < 2 then Λ would be one-dimensional because it has regular orbits [9]. It would follow from Proposition 2.7 that Λ has singular partitions with arbitrarily small size contradicting Theorem 2.9. The proof follows.

3 Appendix

In this section we state (and prove) two technical lemmas which were used in the proof of Theorem A. These lemmas were proved in [15] and here we reproduce these proofs for the sake of completeness. Let us state some definitions and notations.

First we define the Linear Poincaré Flow [4]. Let X be a flow on a compact 3-manifold M. The Riemannian Metric of M is denoted by $\langle \cdot, \cdot \rangle$. If x is a regular point of X (i.e. $X(x) \neq 0$), we denote by $N_x = \{v_x \in T_x M : \langle v_x, X(x) \rangle = 0\}$ the orthogonal complement of $X(x)$ in $T_x M$. Denote $O_x : T_x M \to N_x$ the orthogonal projection onto N_x. For every $t \in \mathbb{R}$ we define $P^t_x : N_x \to N_{X_t(x)}$ by

$$P^t_x = O_{X_t(x)} \circ DX_t(x).$$

It follows that $P = \{P^t_x : t \in \mathbb{R}, X(x) \neq 0\}$ satisfies the cocycle relation

$$P^{s+t}_x = P^s_{X_t(x)} \circ P^s_x,$$

for every $t, s \in \mathbb{R}$. The parametrized family P is called the Linear Poincaré Flow of X.

We denote by $\text{vol}(v_x, w_x)$ the area of the parallelogram in $T_x M$ generated by $v_x, w_x \in T_x M$. As M is a compact manifold, there is a constant $V \geq 1$ such that $V^{-1} \leq \text{vol}(v_x, w_x) \leq V$, $\forall x \in M$, $\forall v_x, w_x \in T_x M$ satisfying $\|v_x\| = \|w_x\| = 1$ and $\langle v_x, w_x \rangle = 0$. For simplicity we shall assume that $V = 1$. In other words,

$$\text{vol}(v_x, w_x) = \|v_x\| \cdot \|w_x\|,$$

$\forall x \in M$, $\forall v_x, w_x \in T_x M$ with $\langle v_x, w_x \rangle = 0$.

In addition,

$$\text{vol}(v_x, X(x)) = \|O_x v_x\| \cdot \|X(x)\|,$$

$\forall x \in M$ regular, $\forall v_x \in T_x M$. In particular,

$$\text{vol}(DX_t(x)v_x, X(X_t(x))) = \|P^t_x(v_x)\| \cdot \|X(X_t(x))\|,$$ \hspace{1cm} (3)

$\forall x \in M$ regular, $\forall t \in \mathbb{R}$, $\forall v_x \in N_x$.

10
Recall that if Λ is a singular hyperbolic set of X with (K, λ)-splitting $T_\Lambda M = E^s_\Lambda \oplus E^c_\Lambda$, then
\[|\text{Det}(DX_t/E^c_x)| \geq Ke^{\lambda t}, \]
$\forall x \in \Lambda$, $\forall t \geq 0$, where $\text{Det}(\cdot)$ denotes the jacobian. So, if Λ is a singular hyperbolic set as above one has
\[
\text{vol}(DX_t(x)v^s_x, DX_t(x)w^c_x) \geq Ke^{\lambda t} \text{vol}(v^s_x, w^c_x),
\]
$\forall x \in \Lambda$, $\forall t \geq 0$, $\forall v^s_x, w^c_x \in E^c_x$.

Remember that $U(\Lambda)$ denotes a neighborhood of Λ where the splitting $E^s_\Lambda \oplus E^c_\Lambda$ extends to $E^s_{U(\Lambda)} \oplus E^c_{U(\Lambda)}$.

Lemma 3.1. Let Λ be a singular-hyperbolic attractor of a C^1 flow X on a compact 3-manifold M. Then for every $\alpha \in (0, 1]$ there are a neighborhood $U_\alpha \subset U(\Lambda)$ of Λ and constants $T_\alpha, K_\alpha, \lambda_\alpha > 0$ such that:

1. If $x \in U_\alpha$ and $t \geq T_\alpha$, then
 \[DX_t(x)(C_\alpha(E^c_x)) \subset C_{\frac{\lambda}{2}}(E^c_{X_t(x)}). \]

2. If $x \in U_\alpha$ is regular, $X(x) \in C_\alpha(E^c_x)$, $t \geq T_\alpha$ and $v_x \in C_\alpha(E_x) \cap N_x$, then
 \[\|P^t_x(v_x)\| \cdot \|X(X_t(x))\| \geq K_\alpha e^{\lambda_\alpha t} \cdot \|v_x\| \cdot \|X(x)\|. \]

Proof. Let Λ and $\alpha \in (0, 1]$ be as in the statement. As mentioned above $T_{U(\Lambda)}M = E^s_{U(\Lambda)} \oplus E^c_{U(\Lambda)}$ denotes the extension of the (K, λ)-splitting $T_\Lambda M = E^s_\Lambda \oplus E^c_\Lambda$ of Λ to a neighborhood $U(\Lambda)$ of Λ. Let π^s the projection of T_Λ on E^s_Λ, and π^c be the projection of T_Λ on E^c_Λ. Denote $v_x = v^s_x + v^c_x \in E^s_x \oplus E^c_x = T_xM \forall x \in U(\Lambda)$, $\forall v_x \in T_xM$. In other words, $v^s_x = \pi^s(v_x)$ and $v^c_x = \pi^c(v_x)$.

As $E^s_\Lambda (K, \lambda)$-dominates E^c_Λ we have that
\[
\|DX_t(x)/E^s_x\| \leq K^{-1} e^{-\lambda t} m(DX_t(x)/E^c_x), \tag{4}
\]
$\forall x \in \Lambda$, $\forall t \geq 0$.

Fix $R > 4$ such that
\[
\frac{K}{R} < 1. \tag{5}
\]
Choosing $T^1 = T^1_\alpha > 0$ large enough one has
\[
\|DX_{T^1}(x)/E^s_x\| \leq \frac{K_\alpha}{2R} m(DX_t(x)/E^c_x), \tag{6}
\]
$\forall x \in \Lambda$, $\forall t \geq 0$.

11
Since \(E^s_\Lambda \oplus E^c_\Lambda \) is invariant we have \(\pi^s_{X_t(x)} \circ DX_t(x) = DX_t(x) \circ \pi^s_{X_t(x)} \), and so
\[
\angle(DX_t(x)v_x, E^c_{X_t(x)}) = \frac{\|DX_t(x)v^s_x\|}{\|DX_t(x)v^c_x\|}, \quad \forall x \in \Lambda \quad \forall t \geq 0. \tag{7}
\]

Recall that \(\angle \) denotes the tangent of the angle. The inequality (6) and the last equality imply
\[
\angle(DX_T(x)v_x, E^c_{X_T(x)}) \leq \frac{K\alpha}{2R}, \quad \forall x \in \Lambda, \forall v_x \in C_\alpha(E^c_x).
\]

So,
\[
DX_T(x)(C_\alpha(E^c_x)) \subset C_{\frac{K\alpha}{2R}}(E^c_{X_T(x)}), \quad \forall x \in \Lambda.
\]

Choose a neighborhood \(U^1 = U^1_\alpha \subset U(\Lambda) \) of \(\Lambda \) sufficiently close to \(\Lambda \) such that
\[
DX_T(x)(C_\alpha(E^c_x)) \subset C_{\frac{K\alpha}{R}}(E^c_{X_T(x)}), \quad \forall x \in U^1. \tag{8}
\]

On the other hand, using (4) we get
\[
\frac{\|DX_t(x)v^s_x\|}{\|v^s_x\|} \leq K^{-1}e^{-\lambda t} \frac{\|DX_t(x)v^c_x\|}{\|v^c_x\|}
\]
and so,
\[
\frac{\|DX_t(x)v^s_x\|}{\|DX_t(x)v^c_x\|} \leq K^{-1}e^{-\lambda t} \frac{\|v^s_x\|}{\|v^c_x\|} = K^{-1}e^{-\lambda t} \angle(v_x, E^c_x).
\]

So, by (7), we get
\[
\angle(DX_r(x)v_x, E^c_{X_r(x)}) \leq K^{-1}e^{-\lambda r} \angle(v_x, E^c_x) \leq K^{-1} \angle(v_x, E^c_x),
\]
\(\forall x \in \Lambda, \forall r \in [0, T^1], \forall v_x \in T_xM. \) This implies
\[
DX_r(x)\left(C_\frac{K\alpha}{R}(E^c_x)\right) \subset C_\frac{K\alpha}{R}(E^c_{X_r(x)}), \quad \forall x \in \Lambda \quad \forall r \in [0, T^1].
\]

Choose a neighborhood \(V^2 = V^2_\alpha \subset U^1 \) of \(\Lambda \) sufficiently close to \(\Lambda \) such that
\[
DX_r(x)\left(C_\frac{K\alpha}{R}(E^c_x)\right) \subset C_\frac{K\alpha}{R}(E^c_{X_r(x)}), \quad \forall x \in V^2, \forall r \in [0, T^1]. \tag{9}
\]

As \(\Lambda \) is an attractor there is a neighborhood \(U^2 \subset V^2 \) of \(\Lambda \) such that
\[
X_t(U^2) \subset V^2, \quad \forall t \geq 0.
\]

Now, let \(x \in U^2 \) and \(t \geq T^1 \) be given. Then, \(t = nT^1 + r \) for some integer \(n \geq 1 \) and some \(r \in [0, T^1] \). Thus,
\[
DX_t(x)(C_\alpha(E^c_x)) = DX_{nT^1+r}(x)(C_\alpha(E^c_x)) =
\]
\[DX_t(X_{nT^1}(x))(DX_{nT^1}(x)(C_\alpha(E_x^c))). \]

Using (S) and (U) recursively, and that \(\frac{K_\alpha}{R} < \alpha \), and \(n \geq 1 \), we obtain

\[DX_{nT^1}(x)(C_\alpha(E_x^c)) = DX_{(n-1)T^1}(X_{T^1}(x))(DX_{T^1}(x)C_\alpha(E_x^c)) \subset \]

\[\subset DX_{(n-1)T^1}(X_{T^1}(x)) \left(C_{\frac{K_\alpha}{R}}(E_{X_{nT^1}(x)}^c(x)) \right) \subset DX_{(n-1)T^1}(X_{T^1}(x))(C_\alpha(E_{X_{nT^1}(x)}^c(x))) \subset \]

\[\subset \cdots \subset DX_{T^1}(X_{(n-1)T^1}(x))(C_\alpha(E_{X_{(n-1)T^1}(x)}^c(x))) \subset C_{\frac{K_\alpha}{R}}(E_{X_{nT^1}(x)}^c(x)). \]

Henceforth

\[DX_{nT^1}(x)(C_\alpha(E_x^c)) \subset C_{\frac{2\alpha}{R}}(E_{X_{nT^1}(x)}^c). \]

Applying \(DX_t(X_{nT^1}(x)) \) to both sides of the last expression, replacing in (10) and using (9) we obtain

\[DX_t(x)(C_\alpha(E_x^c)) \subset DX_t(X_{nT^1}(x)) \left(C_{\frac{K_\alpha}{R}}(E_{X_{nT^1}(x)}^c(x)) \right) \subset C_{\frac{2\alpha}{R}}(E_{X_t(x)}^c). \]

As \(R > 4 \) we have \(\frac{2\alpha}{R} < \frac{\alpha}{2} \) and so

\[DX_t(x)(C_\alpha(E_x^c)) \subset C_{\frac{\alpha}{2}}(E_{X_t(x)}^c). \]

\[\forall x \in U^2, \forall t \geq T^1, \text{ proving (1) of Lemma 3.1.} \]

Throughout we fix the neighborhood \(U^2 \) of \(\Lambda \) and the constant \(T^1 > 0 \) obtained above.

As \(E_{\Lambda}^c \) is \((K, \lambda)\)-volume expanding we have

\[\text{vol}(DX_t(x)v_x^c, DX_t(x)w_x^c) \geq Ke^\lambda \text{vol}(v_x^c, w_x^c), \]

\[\forall x \in \Lambda, \forall t \geq 0, \forall v_x^c, w_x^c \in E_{\Lambda}^c. \]

Clearly there is \(L > 1 \) such that

\[L^{-1} \cdot \text{vol}(v_x^c, w_x^c) \leq \text{vol}(v_x, w_x) \leq L \cdot \text{vol}(v_x^c, w_x^c), \]

\[\forall x \in \Lambda, \forall v_x, w_x \in C_\alpha(E_{\Lambda}^c), \forall \alpha \in (0, 1]. \]

Applying the last two relations and the invariance of \(E_{\Lambda}^s \oplus E_{\Lambda}^c \) we obtain

\[\text{vol}(DX_t(x)v_x, DX_t(x)w_x) \geq L^{-1} \text{vol}(DX_t(x)v_x^c, DX_t(x)w_x^c) \geq \]

\[\geq L^{-1}Ke^\lambda \text{vol}(v_x^c, w_x^c) \geq L^{-2}Ke^\lambda \text{vol}(v_x, w_x), \]

\[\forall x \in \Lambda, \forall t \geq T^1, \forall v_x, w_x \in C_\alpha(E_{\Lambda}^c) \text{ (note that } DX_t(x)v_x, DX_t(x)w_x \in C_\alpha(E_{X_t(x)}^c) \text{ since } t \geq T^1). \]
Choose $S > 0$ large so that
\[
\frac{S}{L^{-2}K} > 1. \quad (11)
\]

It follows that there is $T^2 = T^2_\alpha > T^1$ such that
\[
\text{vol}(DX_{T^2}(x)v_x, DX_{T^2}(x)w_x) \geq \frac{2S}{L^{-2}K} \text{vol}(v_x, w_x),
\]
$\forall x \in \Lambda, \forall v_x, w_x \in C_\alpha(E^c_x)$. In particular,
\[
\inf\{\text{vol}(DX_{T^2}(x)v_x, DX_{T^2}(x)w_x) : x \in \Lambda, v_x, w_x \in C_\alpha(E^c_x), \|v_x\| = \|w_x\| = 1, < v_x, w_x > = 0\} \geq \frac{2S}{L^{-2}K}.
\]

Since Λ is compact there is a neighborhood $V^3 = V^3_\alpha \subset U^2$ of Λ so that
\[
\inf\{\text{vol}(DX_{T^2}(x)v_x, DX_{T^2}(x)w_x) : x \in U^3, v_x, w_x \in C_\alpha(E^c_x), \|v_x\| = \|w_x\| = 1, < v_x, w_x > = 0\} \geq \frac{S}{L^{-2}K}.
\]

Then,
\[
\text{vol}(DX_{T^2}(x)v_x, DX_{T^2}(x)w_x) \geq \frac{S}{L^{-2}K} \text{vol}(v_x, w_x), \quad (12)
\]
$\forall x \in U^3, \forall v_x, w_x \in C_\alpha(E^c_x)$ with $< v_x, w_x > = 0$. As Λ is an attractor there is a neighborhood $U^3 \subset V^3$ of Λ such that
\[
X_t(U^3) \subset V^3, \quad \forall t \geq 0.
\]

We have
\[
\|P^{nT^2}_x v_x\| \|X(X_{nT^2}(x))\| = \|P^{nT^2}_x(X_{(n-1)T^2}(x))P^{(n-1)T^2}_x v_x\| \|X(X_{T^2}(X_{(n-1)T^2}(x)))\|.
\]

Call $z = X_{(n-1)T^2}(x)$, and $v_z = P^{(n-1)T^2}_x v_x$. From the last equality, using that $X(X_{nT^2}(x)) = DX_{nT^2}(x)(X(x))$, v_z is orthogonal to z, and combining (11) with (12) we get
\[
\|P^{nT^2}_x v_x\| \|X(X_{nT^2}(x))\| = \|P^{T^2}_z v_z\| \|X(X_{T^2}(z))\| = \text{vol}(DX_{T^2}(z)v_z, X(X_{T^2}(z))) = \text{vol}(DX_{T^2}(z)v_z, DX_{T^2}(z)(X(z)) \geq \frac{S}{L^{-2}K} \text{vol}(v_z, X(z)) = \frac{S}{L^{-2}K} \text{vol}(P^{(n-1)T^2}_x v_x, X(X_{(n-1)T^2}(x))).
\]
Thus,
\[
\|P_x^{nT^2} v_x\| \cdot \|X(X_{nT^2}(x))\| \geq \left\{ \frac{S}{L^{-2}K} \right\}^n \|v_x\| \cdot \|X(x)\|,
\]
(13)
\[\forall x \in U^3 \text{ regular with } X(x) \in C_\alpha(E_x^c), \forall n \in N, \forall v_x \in C_\alpha(E_x^c) \cap N_x \text{ (recall that } N_x \text{ denotes the orthogonal complement of } X(x) \text{ in } T_xM).\]

On the other hand
\[
\text{vol}(DX_r(x)v_x, DX_r(x)w_x) \geq L^{-2}K \cdot \text{vol}(v_x, w_x),
\]
\[\forall x \in \Lambda, \forall r \in [0, T^2], \forall v_x, w_x \in C_\alpha(E_x^c).\]

As before there is a neighborhood \(V^4 = V_\alpha^4 \subset U^3\) of \(\Lambda\) such that
\[
\text{vol}(DX_r(x)v_x, DX_r(x)w_x) \geq \frac{L^{-2}K}{2} \text{vol}(v_x, w_x),
\]
(14)
\[\forall x \in V^4, \forall v_x, w_x \in C_\alpha(E_x^c) \text{ with } <v_x, w_x> = 0, r \in [0, T^2].\] As \(\Lambda\) is an attractor there is a neighborhood \(U^4 \subset V^4\) of \(\Lambda\) such that
\[
X_t(U_4) \subset V^4, \forall t \geq 0.
\]

Now, let \(x \in U^4\) regular with \(X(x) \in C_\alpha(E_x^c), t \geq T^2\) and \(v_x \in C_\alpha(E_x^c) \cap N_x\).

Then, \(t = nT^2 + r\) for some integer \(n \geq 1\) and some \(r \in [0, T^2]\).

Applying (13), (14), and using (3) and (11) we obtain
\[
\|P_x^t v_x\| \cdot \|X(X_t(x))\| = \|P_x^{nT^2} v_x\| \cdot \|DX_r(X_{nT^2}(x))X(X_{nT^2}(x))\| = \text{vol}(DX_r(X_{nT^2}(x))P_x^{nT^2} v_x, DX_r(X_{nT^2}(x))X(X_{nT^2}(x))) \geq \frac{L^{-2}K}{2} \text{vol}(P_x^{nT^2} v_x, X(X_{nT^2}(x))) = \frac{L^{-2}K}{2} \|P_x^{nT^2} v_x\| \cdot \|X(X_{nT^2}(x))\| \geq \left(\frac{L^{-2}K}{2} \right) \cdot \left\{ \frac{SN}{L^{-2}K} \right\}^n \cdot \|v_x\| \cdot \|X(x)\| = \left(\frac{L^{-2}K}{2} \right) \cdot \left(\frac{S}{L^{-2}K} \right)^{-\frac{rT}{2}} \left\{ \left(\frac{S}{L^{-2}K} \right)^{\frac{1}{T}} \right\}^t \cdot \|v_x\| \cdot \|X(x)\| \geq \left(\frac{L^{-4}K^2}{2S} \right) \cdot \left\{ \left(\frac{S}{L^{-2}K} \right)^{\frac{1}{T}} \right\}^t \cdot \|v_x\| \cdot \|X(x)\|.
\]

Thus, choosing \(U_\alpha = U^4, T_\alpha = T^2, K_\alpha = \frac{L^{-4}K^2}{2S}\) and \(\lambda_\alpha = \ln \left(\frac{S}{L^{-2}K} \right)^{\frac{1}{T}} > 0\) we obtain (2) of Lemma 3.1. \(\square\)
Lemma 3.2. Let Λ a singular-hyperbolic attractor of X, $\alpha > 0$ and $U_\alpha \subset U(\Lambda)$ be a neighborhood of Λ. Let $T_\Lambda M = E^s_\Lambda \oplus E^c_\Lambda$ the splitting of Λ and $E^c_\Lambda U_\alpha$ be a continuous extension of E^c_Λ to U_α. Then, for every singularity σ of X in Λ there are singular cross-sections S^t, S^b associated to σ such that $S^t \cup S^b \subset U_\alpha$,

$$ \Lambda \cap (\partial^h S^t \cup \partial^h S^b) = \emptyset, \text{ and } X(x) \in C_\alpha(E^c_S), \forall x \in S^t \cup S^b. $$

Proof. Let Λ, α be as in the statement. By Remark 2.1 applied to $U = U_\alpha$ there are singular cross-sections S^t_0, S^b_0 associated to σ such that $S^t_0, S^b_0 \subset U(\Lambda)$ and $\Lambda \cap (\partial^h S^t_0 \cup \partial^h S^b_0) = \emptyset$. Recall that $U(\Lambda)$ is the neighborhood of Λ where the (K, λ)-splitting $T_\Lambda M = E^s_\Lambda \oplus E^c_\Lambda$ has an extension to $T_{U(\Lambda)} M = E^s_{U(\Lambda)} \oplus E^c_{U(\Lambda)}$, with $E^c_{U(\Lambda)}$ invariant and contracting. We denote by l^t_0, l^b_0 the singular curves of S^t_0, S^b_0 respectively.

Choose two sequences of singular cross-sections $S^t_n \subset S^t_0, S^b_n \subset S^b_0$ associated to σ satisfying

(a) $\Lambda \cap (\partial^h S^t_n \cup \partial^h S^b_n) = \emptyset$;
(b) $\text{diam}(S^t_n), \text{diam}(S^b_n) \to 0$ as $n \to \infty$;
(c) the singular curves l^t_n, l^b_n of S^t_n, S^b_n satisfy $l^t_n = l^t_0, l^b_n = l^b_0, \forall n$.

The properties (b) and (c) imply that $\forall n$ large there is $T = T_n > 0$ such that

$$ \angle(X(X_T(x)), E^c_\sigma) < \frac{\alpha}{2}, \forall x \in S^t_n \cup S^b_n. $$

As $E^c_\Lambda U_\alpha$ is a continuous extension of E^c_Λ, we have that $E^c_{X(x)}$ is close to E^c_σ, $\forall x \in S^t_n \cup S^b_n$. Then,

$$ X_T(x) \in U_\alpha, \text{ and } X(X_T(x)) \in C_\alpha(E^c_{X(x)}), \forall n \text{ large}, \forall x \in S^t_n \cup S^b_n. $$

By the Property (a) and the above relation we have that for n large enough $S^t = X_T(S^t_n)$ and $S^b = X_T(S^b_n)$ are singular cross-sections associated to σ satisfying the required properties.

References

[1] Bonatti, C.. C^1-Generic Dynamics: Tame and Wild Behavior. ICM 2002 (2002) 2, 265-277.
[2] Bowen, R.. *Markov partitions and minimal sets for Axiom A diffeomorphisms.* Amer. J. Math. **92** (1970), 907-918.

[3] Bowen, R.. *Symbolic dynamics for hyperbolic flows.* Amer. J. Math. **95** (1973), 429-460.

[4] Doering C., I.. Persistently transitive vector fields on three-dimensional manifolds. In *Procs. on Dynamical Systems and Bifurcation Theory*, 1987.

[5] de Melo, W., Palis, J.. *Geometric Theory of Dynamical Systems-An Introduction.* Springer Verlag, Berlin, 1982.

[6] Guckenheimer, J., Williams, R., F.. *Structural stability of Lorenz attractors.* Inst. Hautes Études Sci. Publ. Math. **50** (1979), 59-72.

[7] Hirsch, M., W.. *On invariant subsets of hyperbolic sets.* Essays on Topology and Related Topics, Mémoires dédiés á Georges de Rham (1970), 126-135.

[8] Hirsch, M., W., Pugh, C., C., Shub, M.. *Invariant manifolds,* volume 583 of *Lect. Notes in Math.* Springer Verlag, Berlin, 1977.

[9] Hurewicz, W., Wallman, H.. *Dimension Theory.* Princeton University Press, Princeton, NJ, (1984).

[10] Keynes, H., B., Sears, M.. *Real-expansive flows and topological dimension.* Ergodic Theory Dynamical Systems **1** (1981), 179-195.

[11] Labarca, R., Pacifico, M., J.. *Stability of singular horseshoes.* Topology **25** (1986), 337-352.

[12] Mañé, R.. *An ergodic closing lemma.* Ann. of Math. (2) **116** (1982), 503-540.

[13] Mañé, R.. *Expansive homeomorphisms and topological dimension.* Trans. Amer. Math. Soc. **252** (1979), 313-319.

[14] Morales, C. A.. Singular-hyperbolic sets and topological dimension. Preprint (2002) to appear.

[15] Morales, C., A., Pacifico, M., J.. *A dichotomy for three-dimensional vector fields.* To appear in Ergodic Theory Dynamical Systems.

[16] Morales, C., A., Pacifico, M., J., Pujals, E., R.. *On C¹ robust singular transitive sets for three-dimensional flows.* C. R. Acad. Sci. Paris Sér. I Math. **326** (1998), 81-86.
[17] Morales, C., A., Pacifico, M., J., Pujals, E., R.. Singular hyperbolic systems. Proc. Amer. Math. Soc., 127, Number 11:3393–3401, 1999.

[18] Przytycki, F.. Construction of invariant sets for Anosov diffeomorphisms and hyperbolic attractors. Studia Math. 68 (1980), 199-213.

[19] Shilnikov, L., P., Turaev, D., V.. An example of a wild strange attractor. (Russian) Mat. Sb. 189 (1998), 137-160; translation in Sb. Math. 189 (1998), 291-314.

C. A. Morales
Instituto de Matemática
Universidade Federal do Rio de Janeiro
C. P. 68.530, CEP 21.945-970
Rio de Janeiro, R. J. , Brazil
e-mail: morales@impa.br