Impact of amino acid substitutions at secondary structures in the BRCT domains of the tumor suppressor BRCA1: Implications for clinical annotation

Vanessa C. Fernandes1, Volha A. Golubeva2, Giuliano Di Pietro3,4, Cara Shields3, Kwabena Amankwa5, Thales C. Nepomuceno1, Giuliana de Gregoris1, Renata B.V. Abreu1, Carly Harro2,4, Thiago T. Gomes2, Riccelli F. Silva2, Guilherme Suarez-Kurtz1, Fergus Couch5, Edwin S. Iversen6, Alvaro N.A. Monteiro2, and Marcelo A. Carvalho1,7

From the 1Instituto Nacional de Câncer, Programa de Pesquisa Clínica, Rio de Janeiro, Brazil, 20231-050; 2Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; 3Universidade Federal de Sergipe, Campus São Cristóvão, Brazil, 49100-000; 4Department of Cell Biology, Microbiology, College of Arts and Sciences, University of South Florida Cancer Biology PhD Program, Tampa, FL 33612, USA; 5Department of Laboratory Medicine, Mayo Clinic, Rochester, MN, USA; 6Department of Statistics, Duke University, Durham, NC, USA; 7Instituto Federal do Rio de Janeiro, Rio de Janeiro 20270-021, Brazil.

Running title: Amino acid substitutions in BRCT domains

*To whom correspondence should be addressed: Marcelo A. Carvalho; Instituto Federal do Rio de Janeiro, Rio de Janeiro, Brazil, 20270-021; marcelo.carvalho@ifrj.edu.br; Tel. +55 21 2566-7774; and Alvaro N. Monteiro; H. Lee Moffitt Cancer Center & Research Institute; 12902 Magnolia Drive, Tampa, FL 33612, USA; alvaro.monteiro@moffitt.org; Tel. 813-7456321; Fax: 813-9036847.

Keywords: BRCA1, BRCT domains, clinical annotation, breast cancer risk, VarCall, transcription activation, loss of function mutation, missense variant, clinical risk assessment

ABSTRACT

Genetic testing for BRCA1, DNA repair protein, can identify carriers of pathogenic variants associated with a substantially increased risk for breast and ovarian cancers. However, an association with increased risk is unclear for a large fraction of BRCA1 variants present in the human population. Most of these variants of uncertain clinical significance (VUS) lead to amino acid changes in the BRCA1 protein. Functional assays are valuable tools to assess the potential pathogenicity of these variants. Here, we systematically probed the effects of substitutions in the C terminus of BRCA1: the N and C-terminal borders of its tandem BRCT domain, the BRCT [N-C] linker region, and the α1 and α′1 helices in BRCT[N] and [C]. Using a validated transcriptional assay based on a fusion of the galectin 4 (GAL4) DNA-binding domain to BRCA1 C terminus (aa1396-1863), we assessed the functional impact of 99 missense variants of BRCA1. We include the data obtained for these 99 missense variants in a joint analysis to generate the likelihood of pathogenicity for 347 missense variants in BRCA1 using VarCall, a Bayesian integrative statistical model. The results from this analysis increased our understanding of BRCA1 regions less tolerant to changes, identify functional borders of structural domains, and predict the likelihood of pathogenicity for 98% of all BRCA1 missense variants in this region recorded in the population. This knowledge will be critical for improving risk assessments and clinical treatments of carriers of BRCA1 variants.

Carriers of germline variants in BRCA1 that disrupt protein expression, stability, or function are at increased high risk for developing early-onset breast and ovarian cancer (1,2). The identification of women at risk is now an important aspect to inform and manage preventive and therapeutic clinical decisions. It requires accurate discrimination of genetic variants associated with
high risk (Relative Risk (RR) > 4) from those variants that are not associated with a clinically relevant increase in risk (3,4).

Variants in *BRCA1* whose effect can be inferred using the genetic code can be accurately classified according to their pathogenicity (5). However, the effect of missense variants, in-frame deletions or insertions, and intronic variants need to be assessed using multiple sources of data posing a challenge for clinical annotation. Currently, rigorous clinical annotation of *BRCA1* variants regarding pathogenicity is obtained using a multifactorial likelihood model that incorporates family history, segregation data, personal history, and co-occurrence data (5-8). Importantly, clinical recommendations associated with each class (i.e. 5, pathogenic; 4, likely pathogenic; 3, uncertain; 2, likely not pathogenic; and 1, not pathogenic) are available (9). Variants for which the association with increased risk has not been established are called variants of uncertain clinical significance (VUS).

Missense variants, in particular, constitute a challenge for clinical annotation. Most of these missense VUS alleles are observed in very low frequency (<1/10,000) in the population and, thus family and population-based data are often insufficient to determine pathogenicity. Functional assays which directly or indirectly test for a biological or biochemical function of *BRCA1* in the laboratory can also provide information to clinically annotate missense variants (10-15). However, functional data is not currently considered for the calculation of the multifactorial likelihood but only as a confirmatory source of information. Although genetic and epidemiological models will remain the gold standard methods to associate variant and increased risk, several variants may only be understood through functional assays (16,17).

BRCA1 is a multifunctional protein central to the maintenance of genome integrity through homologous recombination (18). *BRCA1* has also been implicated in transcription (19-21), is associated with the RNA Polymerase II holoenzyme (22,23), and is enriched at transcription start sites (24). The transcriptional activation (TA) assay has been extensively used to evaluate *BRCA1* VUS (25). In this validated assay, a fusion of a heterologous DNA binding domain (yeast GAL4 DBD) and the C-terminus of *BRCA1* drives the expression of a reporter gene. Pathogenic variants have compromised transcription activation while non-pathogenic display activity comparable to the reference “wild type” allele.

To allow for integration of functional assay results in the multifactorial model a Bayesian two-component mixture model, called VarCall, was developed which generates probabilities of pathogenicity given the functional data (26). Recent analysis of 249 missense variants confirmed the importance of the BRCT domains for BRCA1 function, but also revealed regions within the BRCT domains that seemed tolerant to mutations (25). Thus, in order to refine and extend the coverage of missense VUS in the *BRCA1* C-terminal we tested 102 variants (99 missense and 3 truncating) probing the functional borders of the BRCT domains, α helices in BRCT [N] and BRCT [C], and the linker region between BRCT units. Finally, we conducted a joint analysis including all 347 *BRCA1* missense variants tested to date.

Results

BRCA1 variants in this study

We tested 102 (99 missense and 3 truncating) VUS in the *BRCA1* C-terminal region (aa 1396-1863) not previously analyzed using the Transcriptional Activation (TA) assay, with a focus on structural features, divided in five groups: a) Twenty variants located at the border region between the disordered region and the BRCT-[N] at residues p.K1648 (to Q, E, T, R, I, and N), p.R1649 (to G, T, K, I, and S), p.M1650 (to L, V, T, R, and K), and p.S1651 (to A, C, P, and Y); b) Sixty seven variants located in the linker region connecting BRCT-[N] and BRCT-[C]; c) Nine variants in α-helices α1 and α3 in BRCT-[N] and in α’1 and α’3 in BRCT-[C]; d) three deletion mutants to probe the C-terminal border of BRCT domain; and e) three assorted variants documented in the population (p.S1577Y, p.E1609G, and p.G1770E) (Figure 1) (Supplementary Table 1). We also examined two approaches for transcription data normalization using internal vector only and ectopic protein expression levels.

N- and C-terminal border of BRCT domains

We interrogated four amino acid residue positions at the N-terminal border of BRCT domains: 1648-1651. When normalizing against an
internal vector control for 20 variants in this group, 19 displayed transcription activity comparable to that of wild-type BRCA1 protein and variant p.S1651P was the only variant in this set with significantly compromised (< 80%) function (Figure 2A). These results suggest that residue p.S1651 is the first position of the tandem BRCT functional and structural unit sensitive to missense changes.

Nonsense variants that result in an eleven amino acid truncation at the C-terminal region of BRCA1 lead to a dysfunctional protein (2). Deletion of eight final amino acid residues may also disrupt tBRCT function (27). To investigate the minimal region needed for BRCA1 activity we generated three nonsense variants: p.I1855X, p.P1856X, and p.Q1857X (Figure 1B). All three deletions dramatically affected activity and expression levels of the protein carrying the deletion variants (Figure 2B). This finding indicates that deletion of as few as seven amino acid residues from the C-terminus leads to protein instability, abrogation of BRCT function, and may therefore be pathogenic.

Linker region

We tested 67 variants at 18 residue positions located across the BRCT linker region (Figure 1B), and 49 variants displayed reduced activity (mean <80% wt activity). Although the majority of these low activity variants localize to secondary structures every residue position probed (with the exception of 1755 and 1757) had at least one change that impacted function (<80% wt activity) (Figure 3A-C). Residue positions present in intervening sequences were more tolerant to changes than residues at the linker helices. In summary, missense changes in the linker region are likely to have an impact on function and most variants impact protein stability.

α helices

We evaluated nine variants in four α-helices in both BRCT domains (α1, α3, α’1, and α’3) (Figure 3D-E). Seven variants had significantly reduced activity indicating the importance of these α-helices, despite the lack of functional impact of most variants previously analyzed (25).

Assorted variants

We tested two variants described in population (p.S1577Y and p.E1609G) but they did not have an effect on activity (Figure 3), as expected. Variant p.G1770E, located in an intervening segment between β’1 and α’1 had a significant impact on function (Figure 3E).

Protein expression levels

The previous analysis controlled for differences in transfection efficiency in each well by normalizing transcriptional activity, measured by firefly luciferase, by Renilla luciferase control reporter (driven by HSV thymidine kinase promoter) (Supplementary Figure 1A). Protein expression levels of GAL4DBD:BRCA1 variants were assessed by western blot (Supplementary Figure 1B) to determine whether missense variants caused protein instability but were not used to normalize the results.

To test whether using protein levels for normalization would improve the assay accuracy we also assessed each variant’s activity normalized by protein levels (GAL4DBD:BRCA1 and β-actin) (Figure 4). Similar coefficient of variation (CV) distributions were obtained when normalizing by vector only (Mean = 17.52, SD = 17.77) or by vector and protein levels (Mean = 16.57, SD = 12.3) (Supplementary Figure 2A).

Thirty five variants, all located in the BRCT domains, showed discordant results between the two normalization methods (Figure 4A-D) when using the 80% threshold of activity. Of those, 33 variants were called defective when normalizing by vector only but similar to wildtype when normalizing to vector and protein levels due to low levels of expression (Supplementary Figure 1). However, although these variants were discordant using the arbitrary 80% activity threshold, after the generation of likelihood of pathogenicity by VarCall (see below), only five variants were discordant, indicating that this threshold may be too stringent.

Expression of these variants was consistently low in independent experiments suggesting these amino acid changes lead to protein instability rather than reflecting errors during transient transfections. Consistent with this, seven out of 15 select variants with compromised expression in mammalian cells also failed to express in stable yeast transformants (Supplementary Figure 2B). We selected variants V1740E and H1746D, which showed instability in mammalian cells but are stably expressed in yeast to assess reporter function. Both variants showed...
markedly reduced reporter transcription activation function, even when reaching steady state levels comparable to WT (Supplementary Figure 2C).

Taken together, these results indicate that normalization using protein levels may lead to inflated activity levels when lower levels of expression are due to instability caused by the amino acid changes, which ultimately lead to defective function, and not due to errors during transient transfections.

Likelihood of pathogenicity

Next, we incorporated the results obtained for the 99 missense variants in the present study into the VarCall algorithm in a joint analysis with data from published variants in order to estimate the likelihood of pathogenicity of 347 variants (25,26) (Supplementary Table 2). The output from VarCall represents the likelihood of pathogenicity given the effects on the functional capacity of the variant as previously described (Figure 5A) (Supplementary Table 3).

We previously developed a “functional class” (fClass) scoring scheme (25) using the posterior probability calculation of a variant being pathogenic in the TA assays (PrDel) output by VarCall to generate functional classifications (fClass): PrDel\(\leq 0.001\) as fClass 1 (non-pathogenic), \(0.001 < \text{PrDel} \leq 0.05\) as fClass 2 (likely not pathogenic), \(0.05 < \text{PrDel} \leq 0.95\) as fClass 3 (uncertain), \(0.95 < \text{PrDel} \leq 0.99\) as fClass 4 (likely pathogenic), and \(\text{PrDel} > 0.99\) as fClass 5 (pathogenic). According to this scheme, 347 variants were assessed and only 13 variants remain as VUS (Table 1) (Figure 5B) (for variant labels and details see Supplementary Figure 3). Of the 99 variants tested in this manuscript only six remain as VUS (Table 1).

To assess the performance of VarCall we used a reference panel of 49 known variants classified by the multifactorial model (6) (Supplementary Table 4). For this assessment we combined IARC Class 1 with 2 (non-pathogenic & likely non-pathogenic) and IARC Class 4 with 5 classes (likely pathogenic & pathogenic). The assay displayed sensitivity of 0.95 (95% CI = 0.72-1.00) and specificity of 1.00 (95% CI = 0.84-1.00) when including a missense variant whose pathogenicity is due to splicing defects (p.R1495M). When using a panel of variants excluding this variant, with prior knowledge of splicing defects, sensitivity improves to 1 (95% CI = 0.78-1.0), confirming that the model can be used to classify VUS reliably given the functional data.

The contributions of the present data set (n = 99) are not limited to the proposed classification of these individual variants but also will provide refinement of previous classifications when the VarCall is run with the complete dataset (n = 347). Indeed, not only the fraction of VUS decreased significantly but also more variants are now classified as fClass 1 (Table 1) (Figure 5B). The improvement of functional classifications with the present dataset can be visualized in Figure 5B which tracks how variants previously assigned fClasses (P1-5) are now assigned to fClasses after the addition of the present dataset (N1-N5). Note that 100% of variants assigned to P1 remained in the corresponding N1 fClass and so did 100% of variants in P5 remain in N5. Thus, non-pathogenic (fClass 1) and pathogenic (fClass 5) assignments were stable (Figure 5B). Importantly, all variants in P4 were further refined to N5 as did a large fraction (85%) of variants in P2 which were further refined in N1 (Figure 5B).

All BRCT related features (β sheets, α helices, loops and turns, BRCT-N, BRCT-C, Linker, and tandem BRCTs) were sensitive to missense changes with similar fraction of fClass 4 and 5 (mean = 0.43; median = 0.43; range = 0.35-0.48) (Figure 5C; Supplementary Table 5). Notably, no variant in the disordered region (n = 95) had a significant impact on function.

Data integration from multiple assays

The data presented above corresponds to a single functional assay. Thus, it is conceivable that variants that have no functional impact on transcription might be defective in different assays. We compiled published data for missense variants from 35 functional assays that assess variants in the C-terminus of BRCA1 (aa 1315-1863) (Supplementary Table 6). Using the reference panel (Supplementary Table 4) we calculated specificity and sensitivity for this region of the protein for 24 assays for which there was at least three pathogenic and 3 non-pathogenic reference variants tested (Table 2) (for full Table see Supplementary Table 7).

All assays displayed high specificity (range 0.80-1.00) but more variable sensitivity (range 0.63-1.00) with lower sensitivity found for yeast –
based or protein stability assays, presumably due to a subset of pathogenic variants which are stabilized at lower temperatures and variants which do not affect protein stability, respectively (Table 2). Notably, the transcription assay described here achieves, for this region of the protein, the highest sensitivity and specificity of all assays, surpassing other functional assays assessing other canonical functions of BRCA1 such as homologous recombination (HR) (Table 2).

Next, we determined the concordance between VarCall classification for transcription activation and homologous recombination assays (Tracks 18-23; Supplementary Table 6). There were 60/70 variants (86%) scored by VarCall with at least one additional homologous recombination assay result in complete agreement. Three additional variants had agreement between VarCall and at least one HR assay (Figure 6A-B).

However, due to a small sample size there was limited overlap with variants assessed in the present study (three, all concordant). To assess the variants in the present study we compared results from high throughput mutagenesis and cell viability for which there 87 variants classified by both methods. Concordance was also very high with 97% (84/87) agreement (Figure 6C).

Discussion

Variants of uncertain clinical significance (VUS) pose a challenge for genetic counseling. For BRCA1 and BRCA2 variants determination of pathogenicity is based on a multifactorial model incorporating data on segregation analysis, family and personal breast or ovarian cancer history, and co-occurrence (5,7). Due to their low allele frequency many missense alleles of BRCA1 remain as VUS.

Functional assays have emerged as source of empirical data to aid in the determination of pathogenicity of missense VUS (16,25). The transcriptional assay for variants in the BRCA1 C-terminus, in combination with VarCall, was recently assessed for its performance and has been proposed to be used for clinical annotation (25). Recent progress in saturation genome editing for BRCA1 VUS functional analysis demonstrates the feasibility of achieving comprehensive functional assessment of VUS in cancer susceptibility genes for the purposes of clinical annotation of variants (28).

Here we compared the use of two normalization methods using internal vector control only and vector control plus GAL4 DBD BRCA1 fusion protein levels. Normalization using protein levels may lead to incorrect variant classification when loss-of-function variants are associated with protein instability. Although we do not recommend the use of protein expression levels to normalize reporter activity results, protein expression analysis provides important insights regarding the underlying reason for the loss of function. Interestingly, we estimate that 1/3 to 1/2 of variants that score as likely pathogenic or pathogenic in VarCall lead to unstable protein with a higher fraction of variants in secondary structures in the BRCT domains.

Inspection of VarCall results in Woods et al. (25) showed clearly that the likelihood of being pathogenic varies significantly depending on its location, reflecting the importance of secondary and tertiary structures for function, in particular the tandem BRCT domains. Thus, we focused on three areas of improvement on our ability to identify pathogenic variants using the transcription assay: first, the definition of the N- and C-terminal borders of functional domains; second, a more granular analysis of the linker region; and finally, the role of α-helices in the BRCT domains.

In the present study we analyzed 99 missense and 3 deletion variants and define the functional borders of the BRCT domains. Because digestion of a bacterially expressed BRCA1 C-terminal region (aa 1528-1863) resulted in a proteolytically stable fragment (aa 1646-1863) and further deletion of residues 1860 to 1863 yielded a soluble fragment used for structural determination, residue positions [1646 to 1859] have been loosely considered the functional borders of the BRCT domain (29). Structural determination further refined it to [1650 to 1859] as the first secondary structure in the BRCT-N, a β-sheet (B1), starts at residue M1650 (29). Our data suggest that this position is also tolerant to changes as all six variants tested at this position were fClass 1 or 2. Deletion analysis of the C-terminal end of BRCA1 in yeast indicated that 1856-1863 were dispensable for function (in the transcription assay) while aa p.I1855 was required for BRCT stability (30). p.Y1853, p.L1854 and p.I1855 represent a cluster of hydrophobic residues
present at the end of Motif II in several BRCT domains (31). Our data showed that deletion starting at Q1857 significantly compromised the function in mammalian cells, consistent with a higher sensitivity of the transcriptional assay in mammalian cells than in yeast (32,33). Thus, we propose that for clinical variant annotation the BRCT domains in BRCA1 should be conservatively considered [1650-1857]. That is, a variant predicted to modify or truncate protein sequence at residues 1858-1863 is not considered clinically important.

Hayes et al. identified several variants in the liker domain as sensitive to amino acid changes suggesting the existence of unidentified structural requirements for the liker region (30). A flexible linker with a helical central portion connects both BRCT units was identified by X-ray crystallography (29). However, this region had not been systematically explored. Our dense mutagenesis of this region showed that Lβ1-intervening sequence-Lα2 is extremely sensitive to most changes resulting from single nucleotide changes in those residue positions. Previous data had shown that most variants in α1 and α’1 (two corresponding helices in the N- and C- BRCT domains) did not affect function, a case different from α3 and α’3 where most variants have dramatic effect on function (25). Analysis of the current set shows that some variants in these structures lead to a functional defect. The lack of missense variants in the disordered region showing any impact on function (0 out of 95 tested), confirms that this region is unlikely to harbor pathogenic variants. The significant fraction of pathogenic/likely pathogenic variants across all BRCT related features (β sheets, α helices, loops and turns, BRCT-N, BRCT-C, Linker, and tandem BRCTs) highlights their requirement for the integrity of the tandem BRCT domains.

We had previously identified a patch of highly conserved amino acid residues forming a groove on the opposite face from the known phosphopeptide binding pocket formed by residues T1684, T1685, H1686, K1711, W1712, and R1753, specific to BRCA1 BRCT (34). Interestingly, the conservative change R1753K, which is predicted by in silico tools to have no impact on function, shows severely impaired activity, further supporting a role for this putative binding site. Further studies will be needed to investigate this groove on the BRCT surface.

A significant challenge in functional assessment of VUS is the concern that a variant scoring as non-pathogenic in one assay may confer risk of disease through a function other than the one being tested in the assay. Here, using the same reference panel we show that most functional assays achieve high sensitivity and specificity and there is a high level of concordance between assays. Importantly, there was no discordance in variants that scored non-pathogenic in VarCall and in homologous recombination assays. The reason for the excellent agreement across assays of distinct functions (HR, transcription, viability, cisplatin sensitivity) may be partly due to the significant fraction of variants that lead to absence of stable protein product which would affect any readout. It is unlikely that any assay will be ideal and integration of results from different systems will be critical to improve clinical classification of variants.

In summary, data from this study confirms the high accuracy of the transcription assay for BRCA1 missense variants indicating that it can aid in the classification of VUS for clinical decisions. We performed a systematic analysis of several structural features and provide assessment for 98% of all variants recorded in the C-terminal region of BRCA1 with a small fraction (4%) of variants remaining as VUS. While at this point this data should not be used as a sole source of information to classify variants, results are encouraging and warrant further exploration on how to use functional data for clinical annotation of VUS.

Experimental procedures

Plasmid constructs

We used the pcDNA3 [SG] BRCA1 13/24 (WT) plasmid containing a reference cDNA of human *BRCA1* gene (GenBank accession U14680) (OMIM 113705) coding for amino acid residues 1396 to 1863 (exons 13 to 24), as an in-frame fusion to GAL4 DNA binding domain (DBD). Controls were pathogenic (IARC Class 5) variants (p.M1775R and p.Y1853X) and benign (IARC Class 1) variant (p.S1613G) as previously described (35).

VUS were introduced into pcDNA3 [SG] BRCA1 13/24 (WT) by site directed mutagenesis using the QuickChange II Site-Directed Mutagenesis Kit, following the manufacturer's protocol (Agilent; Santa Clara, CA, USA). Primers
used for site directed mutagenesis are listed in Supplementary Table 1. All plasmids containing variants were subjected to Sanger sequencing to confirm the correct reading frame with GAL4 DBD, presence of the variant to be tested, and absence of additional mutations introduced during PCR amplification.

Transcription Activation (TA) assay in human cells

Variants were assayed by the TA assay (27,35,36) using three technical replicates for each variant in at least two independent experiments for a total of at least six measurements per variant. Briefly, BRCA1 constructs containing missense VUS or controls were co-transfected in HEK293FT cells with the pG5Luc plasmid with a Photinus pyralis luciferase reporter gene driven by GAL4 binding sites, and the phGR-TK plasmid, which constitutively expresses the internal control Renilla luciferase. Cells were transfected using Fugene HD (Roche) or PEI (polyethylenimine, Sigma) and harvested 24h after transfection. Transcriptional activity was assayed using the Dual-Luciferase Reporter Assay System (Promega, Madison, WI, USA). For use in VarCall luciferase activity was normalized using the internal constitutive expression of Renilla sp. luciferase and variant activity was depicted as % of the “wild type” activity. For comparison purposes we also provide luciferase activity (as described above) normalized by expression levels measured by western blotting. Note that western blots for expression levels are obtained from parallel cultures and not directly from the wells in which luciferase activity is being measured.

Transcription Activation (TA) assay in yeast cells

The TA assay was also conducted in EGY48 yeast cells using a plasmid reporter JK103, which has one LexA operator driving LacZ, and expressing a fusion of LexA:BRCA1 aa 1396-1864 as previously described (30).

Western Blot

Cells were harvested 24 h after transfection and lysed with RIPA buffer (NaCl 150mM, Tri-Cl 10mM [pH 7.4], EDTA 5mM [pH 8.0], Triton X-100 1%, sodium deoxycholate 0.1% and SDS 0.1%). Whole cell extracts were evaluated by immunoblotting using mouse monoclonal α-GAL4 DBD (Santa Cruz Biotechnology, Dallas, TX, USA; cat.no. SC-510), rabbit polyclonal α-LexA DBD (Millipore Sigma, Burlington, MA, USA; cat.no. 06-719) or α-BRCA1 C-terminus (Santa Cruz; cat.no. sc-642) as a primary antibody and HRP conjugated α-mouse or α-rabbit IgG (Santa Cruz Biotechnology, cat.no. SC-2005 and sc-2030) as secondary antibodies.

VarCall

Results were analyzed using the computation model VarCall (26) with the input dataset as in Supplementary Table 2 which merged the results from the Woods et al. dataset (25) with the missense variants in this study. The Woods et al. dataset incorrectly included variant p.M1652W which was not a natural occurrence and variant p.A1752R which contained a typographical error. These are corrected in the present dataset. The input dataset contained (Supplementary Table 2) assays on 367 variants and the wild type reference (includes one frameshift, three nonsense, and four in-frame deletions) including the 99 missense variants in the present study) and 4,974 individual measurements (1,291 from the present study). For performance evaluation we compared results to a panel of 63 variants classified by the multifactorial model (IARC Class 1: 26 variants; IARC Class 2: 15; IARC Class 4: 5; IARC Class 5: 17) (Supplementary Table 4). Performance metrics for VarCall were calculated using Vassarstats Clinical Calculator (http://vassarstats.net/clin1.html).
Acknowledgements: We thank Bryony Thompson for helpful suggestions and Steven Hart and Xueli Li for technical assistance and all individuals and families who have generously donated their time, samples, and information to facilitate research on the predisposition factors of cancer. This work was supported by the NIH awards U01 CA116167, by FAPERJ, CNPq, Fundação do Câncer (Programa de Oncobiologia) and in part by the Molecular Genomics Core Facilities at the Moffitt Cancer Center through its NCI CCSG grant (P30-CA76292).

Conflict of interests: The authors declare that they have no conflicts of interest with the contents of this article.
References

1. Mavaddat, N., et al. (2013) Cancer Risks for BRCA1 and BRCA2 Mutation Carriers: Results From Prospective Analysis of EMBRACE. *Journal of the National Cancer Institute* 105, 812-822
2. Miki, Y., Swensen, J., Shattuck-Eidens, D., Futreal, P. A., Harshman, K., Tavtigian, S., Liu, Q., Cochran, C., Bennett, L. M., and Ding, W. (1994) A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. *Science* 266, 66-71
3. Frank, T. S., Deffenbaugh, A. M., Reid, J. E., Hulick, M., Ward, B. E., Lingenfelter, B., Gumpper, K. L., Scholl, T., Tavtigian, S. V., Pruss, D. R., and Critchfield, G. C. (2002) Clinical characteristics of individuals with germline mutations in BRCA1 and BRCA2: analysis of 10,000 individuals. *Journal of Clinical Oncology* 20, 1480-1490
4. Easton, D. F., et al. (2015) Gene-panel sequencing and the prediction of breast-cancer risk. *The New England journal of medicine* 372, 2243-2257
5. Goldgar, D. E., Easton, D. F., Deffenbaugh, A. M., Monteiro, A. N., Tavtigian, S. V., and Couch, F. J. (2004) Integrated evaluation of DNA sequence variants of unknown clinical significance: application to BRCA1 and BRCA2. *American journal of human genetics* 75, 535-544
6. Lindor, N. M., Guidugli, L., Wang, X., Valle, M. P., Monteiro, A. N., Tavtigian, S., Goldgar, D. E., and Couch, F. J. (2012) A review of a multifactorial probability-based model for classification of BRCA1 and BRCA2 variants of uncertain significance (VUS). *Human mutation* 33, 8-21
7. Easton, D. F., Deffenbaugh, A. M., Pruss, D., Frye, C., Wenstrup, R. J., len-Brady, K., Tavtigian, S. V., Monteiro, A. N., Iversen, E. S., Couch, F. J., and Goldgar, D. E. (2007) A systematic genetic assessment of 1,433 sequence variants of unknown clinical significance in the BRCA1 and BRCA2 breast cancer-predisposition genes. *Am.J Hum.Genet.* 81, 873-883
8. Goldgar, D. E., Easton, D. F., Byrnes, G. B., Spurdle, A. B., Iversen, E. S., and Greenblatt, M. S. (2008) Genetic evidence and integration of various data sources for classifying uncertain variants into a single model. *Human mutation* 29, 1265-1272
9. Plon, S. E., Eccles, D. M., Easton, D., Foulkes, W. D., Genuardi, M., Greenblatt, M. S., Hogervorst, F. B., Hoogerbrugge, N., Spurdle, A. B., and Tavtigian, S. V. (2008) Sequence variant classification and reporting: recommendations for improving the interpretation of cancer susceptibility genetic test results. *Human mutation* 29, 1282-1291
10. Millot, G. A., et al. (2012) A guide for functional analysis of BRCA1 variants of uncertain significance. *Human mutation* 33, 1526-1537
11. Bouwman, P., van der Gulden, H., van der Heijden, I., Drost, R., Klijn, C. N., Prasetyanti, P., Pieterse, M., Wientjens, E., Seibler, J., Hogervorst, F. B., and Jonkers, J. (2013) A high-throughput functional complementation assay for classification of BRCA1 missense variants. *Cancer discovery* 3, 1142-1155
12. Brzovic, P. S., Meza, J. E., King, M. C., and Klevit, R. E. (2001) BRCA1 RING domain cancer-predisposing mutations. Structural consequences and effects on protein-protein interactions. *Journal of Biological Chemistry* 276, 41399-41406
13. Morris, J. R., Pangon, L., Boutell, C., Katagiri, T., Keep, N. H., and Solomon, E. (2006) Genetic analysis of BRCA1 ubiquitin ligase activity and its relationship to breast cancer susceptibility. *Human molecular genetics* 15, 599-606
14. Starita, L. M., Young, D. L., Islam, M., Kitzman, J. O., Gullingsrud, J., Hause, R. J., Fowler, D. M., Parvin, J. D., Shendure, J., and Fields, S. (2015) Massively Parallel Functional Analysis of BRCA1 RING Domain Variants. *Genetics* 200, 413-422
15. Anantha, R. W., Simhadri, S., Foo, T. K., Miao, S., Liu, J., Shen, Z., Ganesan, S., and Xia, B. (2017) Functional and mutational landscapes of BRCA1 for homology-directed repair and therapy resistance. *Elife* 6
16. Toland, A. E., and Andreassen, P. R. (2017) DNA repair-related functional assays for the classification of BRCA1 and BRCA2 variants: a critical review and needs assessment. *Journal of medical genetics* 54, 721-731
Amino acid substitutions in BRCT domains

17. Starita, L. M., Ahituv, N., Dunham, M. J., Kitzman, J. O., Roth, F. P., Seelig, G., Shendure, J., and Fowler, D. M. (2017) Variant Interpretation: Functional Assays to the Rescue. *American journal of human genetics* 101, 315-325

18. Scully, R., Chen, J., Plug, A., Xiao, Y., Weaver, D., Feunteun, J., Ashley, T., and Livingston, D. M. (1997) Association of BRCA1 with Rad51 in mitotic and meiotic cells. *Cell* 88, 265-275

19. Monteiro, A. N., August, A., and Hanafusa, H. (1996) Evidence for a transcriptional activation function of BRCA1 C-terminal region. *Proc.Natl.Acad.Sci.U.S.A* 93, 13595-13599

20. Nadeau, G., Boufaied, N., Moisan, A., Lemieux, K. M., Cayanan, C., Monteiro, A. N., and Gaudreau, L. (2000) BRCA1 can stimulate gene transcription by a unique mechanism. *Embo Rep.* 1, 260-265

21. Kleiman, F. E., and Manley, J. L. (1999) Functional interaction of BRCA1-associated BARD1 with polyadenylation factor CstF-50. *Science* 285, 1576-1579

22. Scully, R., Anderson, S. F., Chao, D. M., Wei, W., Ye, L., Young, R. A., Livingston, D. M., and Parvin, J. D. (1997) BRCA1 is a component of the RNA polymerase II holoenzyme. *Proceedings of the National Academy of Sciences of the United States of America* 94, 5605-5610

23. Anderson, S. F., Schlegel, B. P., Nakajima, T., Wolpin, E. S., and Parvin, J. D. (1998) BRCA1 protein is linked to the RNA polymerase II holoenzyme complex via RNA helicase A. *Nature genetics* 19, 254-256

24. Dunham, I., *et al.* (2012) An integrated encyclopedia of DNA elements in the human genome. *Nature* 489, 57-74

25. Woods, N. T. B., R.; Golubeva,V.; Jhuraney,A.; De-Gregoriis,G.; Vaclova,T.; Goldgar,D.E.; Couch,F.J.; Carvalho,M.A.; Iversen,E.S.; Monteiro,A.N. (2016) Functional assays provide a robust tool for the clinical annotation of genetic variants of uncertain significance. *NPJ Genomic Medicine* 1, 16001

26. Iversen, E. S., Couch, F. J., Goldgar, D. E., Tavitgian, S. V., and Monteiro, A. N. A. (2011) A Computational Method to Classify Variants of Uncertain Significance Using Functional Assay Data with Application to BRCA1. *Cancer Epidemiology Biomarkers & Prevention* 20, 1078-1088

27. Carvalho, M. A., *et al.* (2007) Determination of Cancer Risk Associated with Germ Line BRCA1 Missense Variants by Functional Analysis. *Cancer research* 67, 1494-1501

28. Findlay, G. M., Daza, R. M., Martin, B., Zhang, M. D., Leith, A. P., Gasperini, M., Janizek, J. D., Huang, X., Starita, L. M., and Shendure, J. (2018) Accurate classification of BRCA1 variants with saturation genome editing. *Nature* 562, 217-222

29. Williams, R. S., Green, R., and Glover, J. N. (2001) Crystal structure of the BRCT repeat region from the breast cancer- associated protein BRCA1. *Nat Struct.Biol.* 8, 838-842

30. Hayes, F., Cayanan, C., Barilla, D., and Monteiro, A. N. (2000) Functional assay for BRCA1: mutagenesis of the COOH-terminal region reveals critical residues for transcription activation. *Cancer research* 60, 2411-2418

31. Bork, P., Hofmann, K., Bucher, P., Neuwald, A. F., Altschul, S. F., and Koonin, E. V. (1997) A superfamily of conserved domains in DNA damage-responsive cell cycle checkpoint proteins. *Faseb J* 11, 68-76

32. Worley, T., Vallon-Christersson, J., Billack, B., Borg, A., and Monteiro, A. N. (2002) A naturally occurring allele of BRCA1 coding for a temperature-sensitive mutant protein. *Cancer Biol Ther.* 1, 497-501

33. Carvalho, M. A., Billack, B., Chan, E., Worley, T., Cayanan, C., and Monteiro, A. N. (2002) Mutations in the BRCT Domain Confer Temperature Sensitivity to BRCA1 in Transcription Activation. *Cancer Biol Ther.* 1, 502-508

34. Karchin, R., Monteiro, A. N., Tavitgian, S. V., Carvalho, M. A., and Sali, A. (2007) Functional Impact of Missense Variants in BRCA1 Predicted by Supervised Learning. *PLoS Comput.Biol* 3, e26

35. Phelan, C. M., *et al.* (2005) Classification of BRCA1 missense variants of unknown clinical significance. *Journal of medical genetics* 42, 138-146
Amino acid substitutions in BRCT domains

36. Vallon-Christersson, J., Cayanan, C., Haraldsson, K., Loman, N., Bergthorsson, J. T., Brondum-Nielsen, K., Gerdes, A. M., Moller, P., Kristoffersson, U., Olsson, H., Borg, A., and Monteiro, A. N. (2001) Functional analysis of BRCA1 C-terminal missense mutations identified in breast and ovarian cancer families. *Human molecular genetics* **10**, 353-360

37. Lee, M. S., Green, R., Marsillac, S. M., Coquelle, N., Williams, R. S., Yeung, T., Foo, D., Hau, D. D., Hui, B., Monteiro, A. N., and Glover, J. N. (2010) Comprehensive analysis of missense variations in the BRCT domain of BRCA1 by structural and functional assays. *Cancer research* **70**, 4880-4890

38. Petitalot, A., *et al.* (2018) Combining Homologous Recombination and Phosphopeptide-binding Data to Predict the Impact of BRCA1 BRCT Variants on Cancer Risk. *Molecular cancer research : MCR*

39. Lu, C., *et al.* (2015) Patterns and functional implications of rare germline variants across 12 cancer types. *Nature communications* **6**, 10086

40. Coyne, R. S., McDonald, H. B., Edgemon, K., and Brody, L. C. (2004) Functional Characterization of BRCA1 Sequence Variants Using a Yeast Small Colony Phenotype Assay. *Cancer Biol.Ther.* **3**, 453-457

41. Thouvenot, P., Ben Yamin, B., Fourriere, L., Lescure, A., Boudier, T., Del Nery, E., Chauchereau, A., Goldgar, D. E., Houdayer, C., Stoppa-Lyonnet, D., Nicolas, A., and Millot, G. A. (2016) Functional Assessment of Genetic Variants with Outcomes Adapted to Clinical Decision-Making. *PLoS genetics* **12**, e1006096

42. Cline, M. S., *et al.* (2018) BRCA Challenge: BRCA Exchange as a global resource for variants in BRCA1 and BRCA2. *PLoS genetics* **14**, e1007752
Tables and Legends

Table 1. Improvement in Classification of BRCA1 missense variants

fClass	All Missense variants in VarCall (Woods et al. 2016)	All Missense variants in VarCall	Missense variants tested in the study
fClass 1	21 (8%)	179 (52%)	38 (38%)
fClass 2	135 (54%)	53 (15%)	26 (26%)
fClass 3	27 (11%)	13 (4%)	6 (6%)
fClass 4	3 (1%)	5 (1%)	2 (2%)
fClass 5	63 (25%)	97 (28%)	27 (27%)
Total	249	347	99
Table 2. Functional assays for BRCA1 variants (aa 1315-1863)

Assays	Track	# of missense variants tested	Fraction of all documented missense variants classified	Sensitivity (95% CI)	Specificity (95% CI)	Ref.
Transcriptional activation	8	346	0.87	1.00 (0.78-1.00)	1.00 (0.84-1.00)	
Phosphopeptide binding specificity	14	117	0.42	1.00 (0.75-1.00)	1.00 (0.68-1.00)	(37)
Phosphopeptide binding	15	42	0.10	1.00 (0.31-1.00)	1.00 (0.52-1.00)	(38)
Homologous recombination	18	16	0.08	1.00 (0.40-1.00)	1.00 (0.52-1.00)	(15)
Homologous recombination	23	28	0.09	1.00 (0.31-1.00)	1.00 (0.60-1.00)	(39)
Cisplatin sensitivity	26	16	0.08	1.00 (0.40-1.00)	1.00 (0.52-1.00)	(15)
Cisplatin sensitivity	27	42	0.11	1.00 (0.31-1.00)	1.00 (0.56-1.00)	(11)
Olaparib sensitivity	28	16	0.08	1.00 (0.31-1.00)	1.00 (0.52-1.00)	(15)
HAP1 viability	30	1,435	0.48	1.00 (0.75-1.00)	0.92 (0.60-1.00)	(28)
Small Colony Phenotype	33	28	0.11	1.00 (0.31-1.00)	0.80 (0.30-0.99)	(40)
Colony Size assay	40	25	0.10	1.00 (0.72-1.00)	0.90 (0.54-0.99)	(41)
Liquid Medium Assay	41	25	0.09	0.92 (0.62-1.00)	1.00 (0.63-1.00)	(41)
Homologous recombination	19	77	0.19	0.88 (0.47-0.99)	1.00 (0.56-1.00)	(38)
ES Viability	32	42	0.13	0.86 (0.42-0.99)	1.00 (0.56-1.00)	(11)
Spot Formation assay	42	25	0.10	0.85 (0.54-0.97)	1.00 (0.66-1.00)	(41)
Phosphopeptide binding activity	13	117	0.44	0.81 (0.54-0.95)	1.00 (0.68-1.00)	(37)
Assays	Track^a	# of missense variants tested^b	Fraction of all documented missense variants classified^c	Sensitivity (95% CI)	Specificity (95% CI)	Ref.
--------------------------------------	-------------------	--	---	----------------------	----------------------	----------
Yeast Localization assay	43	25	0.11	0.77 (0.46-0.94)	1.00 (0.66-1.00)	(41)
Protease sensitivity	12	117	0.50	0.75 (0.47-0.92)	1.00 (0.66-1.00)	(37)
Subcellular localization	16	77	0.19	0.63 (0.26-0.90)	0.86 (0.42-0.99)	(38)
Expression, solubility, and thermostability	17	77	0.19	0.63 (0.26-0.90)	0.86 (0.42-0.99)	(38)

^a Refers to tracks in Supplementary Table 6; ^b Variants tested in region aa 1315-1863; ^c Documented variants (aa 1315-1863) are those reported in BRCA Exchange database (n = 206) (42); ^c Follows individual studies’ cut-offs for classification.
Figure 1. BRCA1 variant functional annotation. A. Overview of BRCA1 variants. B. Diagram of BRCA1 C-terminal region (aa 1396-1863) and location of variants. Variants tested in previous studies and in the current study are shown as blue and red sticks, respectively. Missense VUS tested are grouped according to structural feature.
Figure 2. Transcription activation assay for BRCA1 missense VUS at the N- and C-terminal borders of the BRCT domains. A. Transcription activity of missense variants located at the transition between the disordered region and the BRCT domain. B. Transcription activity of missense variants located at the C-terminal border of the BRCT domain. Western blots indicate steady state levels of expression of the fusion proteins containing C-terminal deletions. Regions of interest are indicated in the crystal structure diagram (PDB: 1Y98_A) by a dashed circle. Variants with significantly reduced activity (≤ 80% WT) are denoted in red font.
Figure 3. Transcription activation assays for BRCA1 missense VUS at the BRCT linker region. A. Structure of BRCA1 tandem BRCT domains (PDB 1JNX). The linker region is shown as a magenta structure perpendicular to the plane of the page (red box). The linker is rotated (90°) and enlarged to show amino acid residue positions tested. B and C. Transcription activity of missense variants located at the linker region between BRCT domains. D. Transcription activity of missense variants located at the disordered region, and intervening segments and alpha helices of BRCT domains. Variants with significantly reduced activity (< 80% WT) are denoted in red font.
Figure 4. Transcription activation assays for BRCA1 missense VUS normalized by internal vector and protein levels. **A-E.** Transcription activity of missense variants located at the transition between the disordered region and the BRCT domain normalized against vector control and protein levels (Supplementary Figure 1). For comparison, squares denote whether the variant displayed activity similar to WT (open squares) or reduced (< 80% WT; filled squares) activity when normalizing against vector control only.
Figure 5. VarCall analysis of missense variants in the C-terminal region of the BRCA1 protein.

A. In this study, transcriptional assays were performed for 99 missense variants (blue bars). Results of these transcriptional assays were combined with previous data (Woods et al. 2016) (combined dataset of 347 variants) and analyzed using VarCall to predict the likelihood of pathogenicity. See Supplementary Figure 3, a high resolution version, for additional details and variant labels.

B. Circos plot illustrates how the new series of variants improves classification for all variants. Variants assigned to fClasses (1-5) in Woods et al. 2016 (denoted as Previous fClass 1-5) were re-assessed by VarCall (denoted as New fClass 1-5) after including the set of variants in the present study.

C. Fraction of variants tested that displayed impact on function grouped by structural features.
Figure 6. High concordance between VarCall classification and other functional assays.

A. Diagram showing classification of all missense variants in aa 1315-1863 as defective (red squares) or not (blue squares according to VarCall (Track 8) or to functional assays based on homologous recombination (Tracks 18-23 in Supplementary Table 6). First row depicts IARC Class using the multifactorial model (Supplementary Table 4) with red squares (Classes 4-5) and blue squares (Classes 1-2). Discordant results between VarCall and any HR assay are indicated by a red star. Green stars indicate discordant from any assay but in agreement with another HR assay. Variants are in bold font. B. Diagram showing classification of variants tested in this study as defective (red squares) or not (blue squares) according to VarCall (Track 8) or to a saturation mutagenesis study (Track 30; Findlay et al. 2018) based on cell viability. Discordant results are indicated by a red star. C. Fraction of missense variants with disagreements between assays.
Impact of amino acid substitutions at secondary structures in the BRCT domains of the tumor suppressor BRCA1: Implications for clinical annotation

Vanessa C. Fernandes, Volha A. Golubeva, Giuliano Di Pietro, Cara Shields, Kwabena Amankwah, Thales C. Nepomuceno, Giuliana de Gregoriis, Renata B. V. Abreu, Carly Harro, Thiago T. Gomes, Ricceli F. Silva, Guilherme Suarez-Kurtz, Fergus Couch, Edwin S. Iversen, Alvaro N. A. Monteiro and Marcelo A. Carvalho

J. Biol. Chem. published online February 14, 2019

Access the most updated version of this article at doi: 10.1074/jbc.RA118.005274

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC’s e-mail alerts