Whole-Genome-Sequence of Streptococcus Suis LSM178 with a Novel ST1005 Characterized the Hyper Pathogenicity in Human Infection

Yong Hu
Hubei University of Technology

Shiming Fu
Hubei University of Technology

Xingxing Dong
Huazhong Agricultural University

Lin Teng
University of Florida

Jinquan Li (✉ 15527430829@163.com)
Huazhong Agricultural University

Research Article

Keywords: Streptococcus suis, ST1005, Human infection, Virulence, Comparative genomics, Pathogenicity

DOI: https://doi.org/10.21203/rs.3.rs-605467/v1

License: ☑️ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Whole-genome-sequence of *Streptococcus suis* LSM178 with a novel ST1005 characterized the hyper pathogenicity in human infection

Yong Hu¹, Shiming Fu¹, Xingxing Dong³, Lin Teng⁴, Jinquan Li²*
Whole-genome-sequence of *Streptococcus suis* LSM178 with a novel ST1005 characterized the hyper pathogenicity in human infection

Yong Hu\(^1\), Shiming Fu\(^1\), Xingxing Dong\(^2\), Lin Teng\(^3\), Jinquan Li\(^2*\)

1 Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, 430068, Hubei, People’s Republic of China.
2 Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People’s Republic of China.
3 Department of Animal Sciences, University of Florida, Gainesville, Florida, USA.

* Corresponding author. E-mail: lijinquan2007@gmail.com
Abstract

Streptococcus suis (*S. suis*) has been well-recognized as a zoonotic pathogen worldwide gearing up a great risk to the public health. In this study, an *S. suis* LSM178 strain with serotype 2 and novel multi-locus sequence type of 1005, isolating from a patient, was interpreted for the pathogenicity by its genetic information. LSM178 was more efficiently invasive to Caco-2 cells than SC19 and P1/7. Phylogenetic analysis showed that LSM178 clustered with highly virulent strains including all human strains and epidemic strains. These serotype 2 *S. suis* from China shared exclusively the typical virulence characteristics including the maximum (95/96) virulent factors and type I-89 K Pathogenicity Island. Further, groups of genes were identified to distinguish these highly virulent strains from other generally virulent strains, emphasizing the key roles of genes modeling transcription, cell barrier, replication, recombination and repair on the high pathogenicity for highly virulent strains. Additionally, LSM178 contains a novel prophage conducive potentially to pathogenicity. These characters would contribute to deeply studying the pathogenic mechanism and virulence drift of human pathogenic *S. suis*.

Key words: *Streptococcus suis*; ST1005; Human infection; Virulence; Comparative genomics; Pathogenicity

Introduction

Streptococcus suis (*S. suis*) is one of the most important swine pathogens leading to severe economic losses to the porcine industry worldwide. However, *S. suis* has emerged as an great zoonotic agent, causing fever, septicemia, meningitis, arthritis and a variety of other symptoms in human. Since the first case of human *S. suis* infection reported in 1968[1], it had spread in more than 30 countries and/or regions, particularly the southeast Asian countries where the pathogen represents a significant public health concern[2,3]. Seriously, 2 and 4 outbreaks have occurred in China (Sichuan in 2005 and Jiangsu in 1998)[4] and in Thailand (Phayao in 2007, Chiang Mai and Lamphoon in 2008, Phetchabul in 2010 and Uttaradit in 2019)[5] respectively. Typing of *S. suis* strains is epidemiologically important to control the infection. The most commonly used serotyping is not only used for identification and diagnosis of clinical of *S. suis* isolates, but also its importance of on pathogenesis has been suggested[5]. Of the 35 serotypes (types 1-34 and 1/2) originally identified according
to the antigenicity of capsular polysaccharide (CPS), six \textit{S. suis}-like strains (serotypes 20, 22, 26, 32, 33, and 34) have been taxonomically removed from the \textit{S. suis} species based on phylogenetic and/or sequence analyses\cite{6}. Additionally, new variants with serotype Chz and novel cps loci were recently checked out, although their relation to the virulence potential remain unclear\cite{7,8,9,10}. The prevalence of \textit{S. suis} serotypes in countries and regions is different. For instance, isolates associated with pigs disease were predominantly identified as serotypes 2 and 9 in Europe\cite{11}, and serotypes 2 and 3 in North America\cite{12}. However, serotype 2 is considered to be the most toxic and prevalent serotype causing both pig and human infection worldwide\cite{13,14}, although other serotypes such as serotype 9 and 14 are increasingly urgent\cite{15}. A recent study reported that, upon detection of raw pork and edible pig organs collected from 88 sales locations in central Thailand, the positive rate of \textit{S. suis} was as high as 85.23\% and the positive rate of serotype 2 was 17.05\%\cite{16}.

Besides serotyping, genetically classification by multiple sequence locus typing (MLST)\cite{17} has become increasingly important because of the higher resolution on determining the strain evolution and on delineating the relationship between subtype and the pathogenicity. For instance, while the serotype 2 ST1 strains present high zoonotic potential worldwide, ST7 from serotype 2 and 14 is frequent to China\cite{5,18}. And, in Thai for human infections, ST104 are almost exclusively predominant in serotype 2 and the main serotype 14 isolates was ST105\cite{5}. So far as to April 8, 2021, 2,808 STs have been recorded in the \textit{S. suis} MLST database, showing that \textit{S. suis} is constantly evolving as the environment changes. Though only several STs have been found to be mainly responsible for human infections, the increasing diversity brings new risks and challenges, such as ST658 isolated in China\cite{19}.

It is no doubt that virulence arsenal play more roles in human infection, since \textit{S. suis} was suggested to be a cause of community-acquired pathogen\cite{20}. It is difficult to make any clear distinction about the virulence factors belonging exclusively to pigs versus humans. In a recent study, no any defined genomic differences between human strains and pig strains were suggested, although human disease isolates are limited to a single virulent population whose origin nevertheless coincided with the first intensification of pig production\cite{21}. Even, it couldn’t definitely determine whether a strain is a virulent one only by the presence of proposed virulence factors, making the ambiguous definition for virulence factors\cite{22}. Virulence factors play key roles in many aspects. One reason why serotype 2 strain showed a high zoonotic potential and
virulence in human was attributed to its better adherence to a human intestinal epithelial cell[5,23,24]. Deletion of these factors greatly attenuated virulence[25,26,27,28,29]. As well, the ability to escape immune clearance is necessary for strain survival, dissemination and pathogenesis. For example, CPS has been shown to enhance bacterial resistance against the killing by host phagocytes[30]. Many virulence factors have potential to be vaccine candidates[31]. It should be noted that a universal cross-protective vaccine is highly challenging due to the diversity of \textit{S. suis}. The control of infection mainly depends on antibiotics therapy. And, the emergence of antibiotic-resistant strains, especially multidrug-resistant strains, poses an intricate problem[32,33].

In this study, a human \textit{S. suis} LSM178 with serotype 2 and novel ST1005 causing fever, nausea and general malaise, was isolated and comprehensively assessed as a hyper virulent strain based on toxicity tests and genomic analysis. With genome sequencing, genetic features including mainly virulence factors, pathogenicity islands (PAIs), prophages and core virulence genes were characterized to understand the pathogenic potential. The analysis suggested that plastic genome contributes to virulence evolution of \textit{S. suis}, and special elements definitely model the virulence change and the adaption of \textit{S. suis} to human.

Results

Zebrafish challenge

In early a few hours, all three infection groups (LSM178, SC19 and P1/7) of infected zebrafish showed no signs of disease except for a slight decrease of swimming ability. After that, pathological changes appeared in challenged zebrafish such as systemic hemorrhage or abdominal hemorrhage, abdominal swelling and dyspnea. The survival rate did not show significant difference and stabilized at 10% for three groups (Fig. 1 A). However, the 50% and 90% lethal time by LSM178 (24-28 h and 34-38 h) appeared always shorter than that by SC19 (26-32 h and 38-42 h) and P1/7 (30-36 h and 36-40 h) in each of 3 independent repeated tests (Fig. 1 A, as one representative). The main symptoms of the death caused by LSM178 infection are seriously abdominal swelling, blood spots and ecchymosis (Fig. 1 B), which were similar with those caused by SC19 and P1/7.
Human whole blood resistance assay, cytotoxic assay and cell adhesion and invasion test

Though there was no significance in cytotoxicity to Caco-2 among three strains, LSM178 appeared more cytotoxic than SC19 and P1/7 and showed almost twice as toxic as P1/7 strain (Fig. 2 A). In human blood resistance assay, LSM178 survived similarly to P1/7, but seemed grow better than SC19 (Fig. 2 B). Further, LSM178 showed significantly more invasion to Caco-2 cells than P1/7 (Fig. 2 C), whereas the two strains were similar adhesive (Fig. 2 D). And, with lower adhesion (Fig. 2 D), the invasion of LSM178 was equal to that of SC19 (Fig. 2 C).

Analysis of antimicrobial susceptibility profiles

LSM178 genome consists of a single circular chromosome of 2,115,437 base pairs (bp) with average GC content of 41.19% and 2,065 ORFs (Fig. 3). Sequence assays designated LSM178 with serotype 2 and a novel ST (1005) up to now. With goeBURST analysis, ST1005 was shown to be an individual ST (Supplementary Fig. 1).

The scanning results showed that LSM178 possesses 10 potential specific antibiotic-resistant genes. Only two of them might get effects, those are a tetracycline resistant gene (tetM, 04995) conferring the tetracycline resistance and a MSL methylase (04940) encoding gene resulting in both erythromycin and clindamycin resistance (Table 1). Others include five penicillin-binding proteins (PBPs, PBP1b (00760), PBP1a (02025), PBP1a (09665), PBP2b (03000) and PBP2x (08260)), an Aminoglycoside 6-adenylyltansferase (ANT(6)-Ia, 04805) and two primary targets of quinolone (DNA gyrase (GyrA, 04275) and topoisomerase IV (ParC, 05695)). They are ineffective and were verified to sensitive to penicillin, streptomycin and levofloxacin (Table 1).

Phylogenetic tree analysis

A phylogenetic tree was generated based on 51,520 core-genome SNP sites using the genome sequence of LSM178 and 52 published S. suis complete genomes (Fig. 4). Within the 18 strains clustered with LSM178 (LSM178-branch), 7 out of 12 pig isolates and 5 out of 6 human strains were from China. However, the closest 2 strains (NCTC10234 and S735) were neither from China nor from human. Among the 53
strains, most ST1 (5/9) and ST7 (9/12) were clustered in LSM178-branch. It was interesting that in LSM178-branch, the STs of human isolates (LSM178, LSM102, 05ZYH33, SC84, BM407 and 98HAH33 with ST1005, ST658, ST945, ST7, ST1 and ST890 respectively) are more diverse than those of pig strains (just including ST1 and ST7).

Analysis of prophages and toxin-antitoxin (TA)

Two prophages, pha17801 (1,417,367 bp - 1,458,272 bp) and pha17802 (1,871,779 bp - 1,926,900 bp), were found in LSM178. The pha17801 featured by only integrase (1,437,316 bp - 1,437,858 bp / 1,446,215 bp - 1,447,357 bp), with 50 ORFs (1,417,367 bp - 1,458,272 bp) and GC content of 39.36%, is similar highly with partial complete genome of *Streptococcus* phage20617 (NC_023503). The prophage included two overlapping GIs (one from 1,421,901 bp to 1,447,702 bp and the other from 1,437,316 bp to 1,447,702 bp). While these two GIs are shared almost by all 53 strains, the remaining sequence in pha17801 was only shared completely by 18 *S. suis* (LSM178, 05ZYH33, 98HAH33, A7, BM407, CS100322, GZ1, JS14, LSM102, P1/7, S10, SC070731, SC19, SC84, SS12, SS2-1, T15 and ZY05719). Excluding avirulent T15[34], these strains almost constituted the GZ1-branch covering the LSM178-branch (Fig. 4).

In pha17802, the overlapped GI (1,866,902 bp - 1,904,229 bp) was characteristic to LSM178 in comparison with other 52 *S. suis* (Fig. 5 A). The left part (1,871,862 bp - 1,892,563 bp) of the GI is only highly homologous (identity of 90%) with a region of *S. suis* 6407, whereas the right part (1,892,563 bp - 1,903,867 bp) together with sequence from 1,903,868 bp to 1,906,268 bp is not homologous with any *S. suis* but with *Streptococcus agalactiae* Sag37 (identity of 91%) (Fig. 5 B). The prophage comprises 55,121 bp with an average GC content of 41.87%, encoding a total of 68 ORFs including prophage core component genes coding lysin, tail, head, recombinase, capsid, portal, integrase, portal, and Cro/Cl-type repressor. The absence of excisionase confirmed the non-plaques on several strains contaaing LSM178 (data not shown). The short directly repeated sequences (5′GGTTTCAATTTTA3′) located the prophage between 09360 (adenylate kinase) and 09655 (preprotein translocase subunit SecE). The sequence from 1,866,902 bp to 1,906,268 bp contained 23 function-known genes along with 29 hypothetical proteins and the unique sequence (1,892,563 bp - 1,906,268 bp) involved 29 genes where 21 encode unknown proteins.
The TA of HicA (09375)-HicB (09370) is the only candidate virulent elements in this phage.

Scanning the LSM178 genome, there are other 5 pairs of TA as follows, toxin (09760)-antitoxin (09765), toxin (05185)-antitoxin (05180), toxin (06380)-antitoxin (06385), toxin (07105)-antitoxin (07110) and SezA (04880)-SezT (04885) contained in 84K-PAI. In addition, an orphan antitoxin-Xre (04820) was identified.

Comparative analysis of virulence factors

Examining the 96 published virulent factors among 53 *S. suis*, LSM178 is one of the 8 strains (LSM178, ZY05719, 98HAH33, SC84, 05ZYH33, SS2-1, SC19 and LSM102) containing the maximum (95) virulence factors (Supplementary Table 1). The 95 factors contain 15 ones linking to immune evasion or systemic infection, including SalKR, NisKR, Epf, Fhb, IgA1, IdeS_suis, MRP, Sly, Nudp, SsnA, EndA, ScpA and SsadS. Excluding GZ1 and BM407 with 87 and 93 virulent factors respectively, these 8 strains contain all human strains (LSM178, 98HAH33, SC84, 05ZYH33 and LSM102) and epidemic strains (98HAH33, SC84, SC19, 05ZYH33 and ZY05719).

The Rgg is the only virulence factor missed in the 8 *S. suis* and it is found merely in other 5 *S. suis* (D12, 0061, 1081, CZ130302 and HN105). Two (0061 and 1081) of the 5 strains are probably avirulent due to their isolation from healthy pigs, suggesting that the Rgg may not be a virulent determinant. The common characteristics of virulence factors in the 8 highly virulent strains would mean the highly pathogenic phenotype of LSM178.

An 84K (83,582 bp) PAI (926,718 bp - 1,010,299 bp) was found highly homologous with type I-89K-PAI of SC19 and both of them coline with ICESsu05SC260 belonging to ICESA2603 family (Fig. 5 C). The direct repeat sequences indicated the location of the 84K-PAI just downstream of rplL (04665). The PAI includes characterized virulence factors such as SalKR, NisKR and several type IV-like secretion systems (Vir D4, Vir B6, Vir B1 and Vir B4). The presence of integrase, transposase, excisionase and helicase support activity of transposition and propagation of 84K-PAI. The major difference of LSM178 84K-PAI from SC19 89K-PAI is the absence of PqqD family protein, asparagine synthetase and 4 ABC transporter units, and addition of transposase and MSL methylase as described. Except the methylase which may cause epigenetic changes associated with virulence, other proteins are not defined as virulence factors and should not prompt virulent contribution.
The type I-89K-PAI appeared firstly in SS2-1 (diseased pig, 1998) and 98HAH33 (human, 1998), which related closely with SC84 (human, 2005), ZY05719 (pig, 2005) and SC19 (pig, 2005) (Fig. 5 A and Fig. 4). From 2005, the PAI was reported in almost all human strains (SC84 2005, 05ZYH33 2005, LSM102 2014 and LSM178 2016) but GZ1 (2005), but only in two (ZY0571 2005 and SC19 2005) rather than the other 10 pig strains. The human strains not from China (861180/Netherlands/1986 and BM407/vietham/2004) do not contain type I-89K-PAI (Fig. 5 A and Fig. 4). The distribution of the type I-89K-PAI among the strains coincides interestingly with the combination of maximum (95) virulent factors (Fig. 5 A and Supplementary Table 1). Since LSM178 shares these important virulence markers with epidemic strains and almost all human strains, these strains were referred here as the highly virulent strains (HVS) at least for serotype 2 strains from China, those are LSM178, ZY05719, 98HAH33, SC84, 05ZYH33, SS2-1, SC19 and LSM102.

Genomic comparative analysis

Checking virulence factors between strains in GZ1-branch and closely related avirulent T15, T15 have 87 virulence factors which were shared by GZ1-branch strains except A7, P1/7, S10 and GZ1 (Supplementary Table 1). These four strains also have 87 virulence factors, but they share Epf, NadR, RevS and SBP2 instead of Trag, VirB1, VirB4 and VirD4 existed in the T15. However, there are no virulence factors belonging exclusively to avirulent T15 or all GZ1-branch strains. To globally find out the characteristic virulence factors, the difference was checked between strains in GZ1-branch and closely related avirulent T15. Referring to T15, the numbers of unique genes of each virulent strain were between 318 and 582, and 224 shared genes were found (Fig. 6 A). HVSs possess more core genes (332) than other virulent strains (249, called generally virulent strain here) (Fig. 6 B and C). Addition of any one generally virulent strain except BM407 (Vietnam) resulted sharp decreased number of core high virulence genes (Fig. 6 D). However, a little changes were observed when any one highly virulent strain was removed. It supported the HVSs as a seperated group in serotype 2 strains. The characteristic genes from various categories encode a wide range of functions (Fig. 6 E-G). Compared with generally virulent strains, HVSs show predominant increase on genes with functions of transcription, cell barrier, replication, recombination, repair and mobile elements (Fig. 6 F and G). GIs of LSM178 occupy 10.4% of the genome (Fig. 6 H). While there are
3.7% of core virulence genes in GIs of LSM178, 23.5% of core high virulence genes locate in the GIs (Fig. 6 H).

Discussion

Generally, *S. suis* infections in humans were restricted to workers in close contact with pigs or swine byproducts. However, in southeast Asia, the bacterium has been reported to affect the general population\(^\text{[20]}\). The sporadic human *S. suis*, particular those with serotype 2, should be get attention in epidemiological monitoring because of their unpredictable adaptive potential, for instance of LSM178 here, a serotype 2 strain with novel ST1005. LSM178 was more efficiently invasive to Caco-2 cells compared with P1/7 and SC84. However, no significant virulence were detected in cytotoxic activity and challenging zebrafish which has been used as a model to evaluate the virulence of *S. suis*\(^{[35]}\). In deed, virulence of *S. suis* could not be intensively evaluated and compared in other models\(^{[36]}\). Probably, virulent strains have their own outstanding virulence aspects, which can balance the weak ones and eventually lead to a similar pathogenicity at least under the inoculation. For instance, P1/7 and SC84 were prominent in biofilm formation (Supplementary Fig. 2) and adhesion respectively.

Recent studies suggested that quinolones, beta-lactams, florfenicol and trimethoprim/sulfamethoxazole could still treat well the clinic *S. suis* infection\(^{[37,38,39]}\). However, the strains resistant to widely used effective beta-lactams have been increasingly reported\(^{[40,41]}\). LSM178 showed the sensitivity at least to beta-lactams and quinolones, consistent with the features of resistance genes. The PBPs of LSM178 are entirely as same as those of sensitive A7, but harbor substitutions throughout the sequence compared with the resistant R61 (Supplementary Fig. 3A-E)\(^{[40]}\). Several mutations in the quinolone resistance-determining region (QRDR) of both GyrA and ParC could increase the resistance to fluoroquinolone\(^{[42]}\). However, there revealed no amino acid changes in the QRDRs between LSM178 and four quinolone-sensitive strains (A7, BM407, P1/7 and SC84)\(^{[40]}\) (Supplementary Fig. 4). Additionally, it is interesting that the P1/7 without ANT(6)-Ia confered resistance against streptomycin, whereas ANT(6)-Ia containing LSM178 could not\(^{[38]}\). However, ANT(6)-Ia of LSM178 is only 49.5% identical to the functional homologue (UniProtKB - P12055 (AADK_STAAU)) from *Staphylococcus aureus*\(^{[43]}\).
Several factors are deemed to be important for the pathogenesis, such as CPS, Fbps, enolases, dipeptidylpeptidase DppIV and SrtA\cite{22}, which were all found in LSM178. It has been demonstrated that S. suis serotype 2 virulent strains are able to exacerbate inflammatory activation scavenging bacteria. All the 15 known anti-immunity factors\cite{19} exist in LSM178 and would modulate the immune responses improving its survival at the inflammation area. Although it is hardly to define a virulent strain only by proposed virulence genes, many avirulent strains isolated from healthy animal are found with less virulence factors (less than 87), such as WUSS351, 0061, 1081, HA1003, DN13, TL13, 05HAS68, YB51, LS9N, CZ130302, 90-1330 and T15. These S. suis lack at least one of the marker virulence genes (Sly, Mrp, Efp and Cps2).

Notably, five of those strains contain less than 70 virulent factors (0061, 1081, HA1003, LS9N and CZ130302). The 9401240 is an exception since it was isolated from a diseased pig but has 69 virulence factors. Probably, the 9401240 is a non-pathogenic strain occurred just in a case of co-infection. On the contrary, the HVSs contain consistently the maximum (95/96) virulent factors. However, it should be realized that the combination of various virulence factors may cause pathogenicity despite the number of the virulence factors.

It is very clear that intermediately pathogenic strain could evolve to highly pathogenic strain and then epidemic strain\cite{3}. In LSM178-branch, all 18 strains possessed the serotype 2. However, while 6 human strains have their individual STs, 12 pig strains were just ST1 (4 strains) or ST7 (8 strains). It may imply that while S. suis has been purified to relatively stable genotype in pig, multiple evolutionary directions are in progress to be epidemic during their adaption to human, at least for serotype 2 strains in China.

Type I-89K-PAI is specific to highly pathogenic S. suis linked to Chinese epidemics\cite{19} and could horizontally transfer among strains\cite{44}. Humans can carry avirulent S. suis without clinical signs\cite{2,45}. However, the 89K-PAI of human virulent strain should not obtained from pig strain owning to the transfer, since all strains with 89K-PAI presented an extremely short evolutionary distance from each other. It suggested that human pathogenic infection was due to the interspecies transmission of a swine-origin strain. Thinking of the gradually increasing of 89K-PAIs in human strains and decreasing in pig strains, it may suggest that the 89K-PAI is one of the markers adapting pig strain to human. On the contrary, the existence of PAI would not be conducive to the adaptation of strains in pigs, that might explain the reason why the
pig strains loss it more and more rapidly. Under this consideration, the combinations of 95 virulence factors maybe also regarded as one of the potential for the adaptation to human. As well, the ST transition might play roles in adaption of strains to human, since there is only ST7 in all 89K-PAI containing pig strains and just one human strain (SC84) whereas other human strains possessed varied STs (ST1005, ST945, ST890 or ST658).

In published S. suis genomes, many prophages were held as remnants[46,47]. A few intact prophages was described and one of them was reported to be induced to lyse S. suis[48]. The two prophages in LSM178 could not be induced to form plaques on several S. suis strains. The reason might be that improper induction method was adopted or that the phages produced are defective on infection even for the almost intact pha17802[48]. Alternatively, the lysis spectrum of the phages is very narrow, or no phages were induced at all, which could be supported by the facts that pha17801 contains only integrase and pha17802 does not include excisionase. Genomic comparative analysis suggested that the pha17802 may integrate two elements horizontally transferred from S. suis 6407 and strain of S. agalactiae Sag37 respectively. The unique gene fragment from S. agalactiae Sag37 has not been found in any other S. suis genome published so far. The empty target site might accommodate potentially unpredictable integration of other mobile genetic elements.

Prophages make up a platform for the dissemination of virulence determinants between intra- and inter-species, contributing evolution of pathogenic bacteria[28,49]. For pha17802, except the HicAB located in the arm homologous to 6407, no known genes contributing to virulence were identified. There were no evidences demonstrating the contribution of the two transferring elements to virulence. However, the rarity of pha17802 probably suggested that it would provide an advantage under certain circumstances. Some clues may be provided by investigating the patient's infection process. However, the lysogenic state would at least increase the survival in the environment by resisting to infection of similar viruses. Furthermore, it may increase the fitness of the bacteria by modulating host metabolism[48].

While the core virulence genes were identified through the comparation between avirulent T15 and virulent strains in GZ1-branch, they should be responsible for the enhanced pathogenicity. Moreover, some genes could be used to make a distinction between HVSs and other general virulent strains. Particularly, it should emphasize the roles of genes with functions of transcription, cell barrier, replication, recombination
and repair in virulence enhancement, since their number increased obviously in HVSs core genes. Thus, the importance of the mobilizable elements is beyond all doubt, because it is the carrier responsible for genetic differences[^50]. In fact, GIs make up a considerable part of the genome for LSM178 (10.4%). And, higher proportion of virulence-enhancing genes are dispersed in GIs, for example that GIs of LSM178 are colonized with 3.7% of core general virulence genes but with 23.5% of core high virulence genes. However, there are less GIs in LSM178 (number of 23 and total length of 21,5087 bp) than T15 (29 and 31, 4245 bp) (Supplementary Fig. 5 B). These suggested that fusion of specific PAIs increased the virulence. The non-existence of CRISPRs defending against foreign invading elements should be one of the reasons interpreting the rich GIs[^51]. In addition, assay showed that there are more core avirulence genes (535) (Supplementary Fig. 5 A) than core virulence genes (224). Probably, both the gain of virulence genes and loss of avirulence genes contribute to the increased virulence. Other potential difference, such as SNPs and patches of insertion and deletion, deserve also to be explored and should not be ignored. These differences are small but numerous and they would definitely interpret the change of strain virulence through just affecting the genes expression or protein activity[^52].

MATERIALS AND METHODS

Strains and antimicrobial susceptibility testing

S. suis LSM178 was isolated at 2016 from a patient with clinical symptoms of fever, nausea, and general malaise. The patient had contacted the pigs and handled raw pork before admission. The *S. suis* SC19 and *S. suis* P1/7 were stored by our laboratory. Antimicrobial susceptibility was tested by E-test (AB Biodisk, Sweden) with *Streptococcus pneumoniae* ATCC49619 as a control. All protocols was approved by committee of State Key Laboratory of Agriculture Microbiolgy and the ethics committee of Huazhong Agricultural University. Experiments were performed in ABSL 3 laboratory, Huazhong Agricultural University.

Human whole blood resistance assay

Blood assays were conducted according to an approval issued by the Medical Ethics Committee of the Huazhong Agriculture University (Wuhan, China). Strain suspension (100 μL, 5.0 × 10^7 CFU/ml) was transferred into 900 μL of fresh human
whole blood followed by incubation at 37°C. The sample was withdrawn every 1h and
diluted to incubate on TSA solid medium (containing 10% fresh FBS) at 37°C
overnight to count colony-forming units (CFU). Growth index (%) = \(\frac{\text{CFU at a certain time point} - \text{CFU original inoculum}}{\text{CFU original inoculum}} \times 100\% \).

Zebrafish challenge
Zebrafish was fed as previous description. Inoculum was collected at the end of
the logarithm period, cleaned twice with phosphate buffered saline (PBS), and
adjusted to the appropriate dose \(\left(2.5 \times 10^9 \text{ CFU/ml}\right) \)[35]. Adult zebrafish was infected
by intraperitoneal inoculation with 20 μL of bacterial solution per tail. Each
group contained 10 zebrafishes. The symptoms of zebrafish were recorded every 2
hours. Euthanasia of zebrafish was conducted at 60 h after challenge using
Tris-buffered tricaine at a concentration of 320 μg/ml.

Biofilm formation assay
Strains (20 μL, \(5.0 \times 10^7 \text{ CFU/ml} \)) were inoculated into 2 mL TSB medium
(containing 10% fresh FBS) and cultured in a 24-well cell plate at 37°C for 3 days,
and the un-inoculated medium was used as the control. After that, the strains were
washed twice with sterilized PBS, and fixed with 500 μL methanol for 30 min to attach
the strains to the wall. Then, methanol was removed and the plate was air-dried at
room temperature. Next, 500 μL of 0.1% crystal violet dye solution was added in and
removed out until 30 min later. After drying at 56°C, 500 μL of 33% acetic acid
solution was added and placed on a shaker for 30 min to release the crystal violet
bound to the biofilm. The released solution (200 μL) from each well was measured at
a wavelength of 600 nm.

Cell experiments
Strains at log phase was used in the experiments. For cytotoxic assay, Caco-2 cells \((1 \times 10^4) \)[53] in 96 well plate was used to detect cytotoxicity of the strains \((2 \times 10^5 \text{ CFU}) \)
with lactate dehydrogenase kit (Beyotime, Beijing, China). The percentage of
cytotoxicity was calculated referring to the protocol of the kit: cytotoxicity (%) =
LDH release from infected cells – spontaneous release of LDH from uninfected cells
/ (maximum LDH release from cell lysate–spontaneous release of LDH from
uninfected cells) × 100%.

For cell adhesion and invasion, single layer Caco-2 cells in the 24 well culture plate were inoculated with 500 μL bacterial suspension (1 × 10^6 CFU). After washing to remove unadhesive strain, cells were then treated by trypsin digestion for 2 hours. In invasion, extracellular bacteria were treated with gentamicin (100 μg/ml) and penicillin G (5 μg/ml) before trypsin treatment. The digested cells were lysed using 1% saponin and the lysis was inoculated on THB plate. The rate of adhesion (Ra) and invasion (Ri) was expressed as (CFU determined from plate / CFU original inoculum) × 100%. The relative invasion rate was expressed as Ri \text{strain} / Ri \text{P1/7} × 100%.

Plaque assay

LSM178 culture in exponential growth phase was induced by mitomycin C (500 ng/ml) (Sigma, St. Louis, USA) for 5-15 min. The culture (100 μL) was mixed with 3 ml TSA (45°C) containing 10% fresh FBS to prepare sandwich plaque assay at 37°C. Plaque formation was observed after 12 h.

Genomic analysis

The genomic DNA was extracted using a DNA extraction kit (TaKaRa DNAiso; TaKaRa Biotechnology Co., Ltd., Dalian, China). The genome of LMS178 was sequenced using combined platforms of Illumina Miniseq and PacBio sequel. After correction of the results using Pilon (Walker B J, Abeel T, Shea T, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement), the complete circular genome was constructed (NCBI-SRA accession: PRJNA596999).

According to the published studies, virulence factor database of \textit{S. suis} was established (Supplementary Table 1) and used to detect the potential virulence genes in genome. Antibiotic resistance genes were predicted with the comprehensive antibiotic resistance database (CARD) with default settings\cite{54}. The ST was determined using MLST typing scheme (https://pubmlst.org/ssuis/). Serotyping strategy was executed based on the homology and coverage (80%, evalue ≤1e-10) between WZY amino acid sequence of the LSM178 and 33 standard strains with known serotypes. The sequence of CpsK was used to discriminate the serotype 2 (W161) from 1/2 (C161) for all strains with serotype 2 or 1/2\cite{55,56}. ST complexes
were analysed by goeBURST[54] program (http://goeburst.phyloviz.net). Prediction of
gene islands (GI) and prophages were performed using IslandViewer 4[57] and
PHAST[58] respectively. Clustered Regularly Interspaced Short Palindromic Repeats
(CRISPRs) were predicted by CRISPR recognition tool (CRT)[59]. Open reading
frames (ORFs), tRNA and rRNA were predicted with Prokka. The proteins in
prophage and PAI were integrally annotated by databases of NR, eggNOG, KEGG,
Swiss-Prot and GO. Genome mapping with informations was generated by CGView[60].
To identify the unique regions in the genome of LSM178, the whole-genome
sequence was used as a reference to compared with that of the other 52 strains using
BLAST Ring Image Generator (BRIG)[61]. The 84K PAI in LSM178, 89K PAI in SC
19 and ICESsu05SC260 were compared to determine their similarity using BLASTn
embedded in Easyfig. Similarly, the characteristics of the prophages in LSM178 were
evaluated. The differential genes between two strains were extracted with Roary[62] to
create Venn diagrams and their COG functions were classified. Circos[63] was
conducted to map the distribution of GIs and interesting genes in genomes of
LSM178 and T15.

Phylogenetic analysis

Complete genomic sequences of 52 \textit{S. suis} sequences were downloaded from NCBI
database (https://www.ncbi.nlm.nih.gov/genome/genomes/199) (Supplementary Table
2). The chromosomal sequences were aligned using Parsnp program generating
core-genome single-nucleotide polymorphisms (SNPs). Phylogenetic tree based on
core SNP of 53 complete \textit{S. suis} genome (including LSM178) was constructed using
maximum-likelihood phylogenetic trees by FastTree embedded in the Parsnp. The
bootstrap value was set at 1000 times. The phylogenetic tree was displayed using the
online website iTOL (http://itol.embl.de/).

Statistical analysis

Each experiment was repeated 3 times or more and the significance was analyzed
with unpaired student’s test using GraphPad Prism 5. The $P<0.05$ and $P<0.01$ were
represented as * and ** respectively.

Ethics statement
This study was carried out in compliance with the ARRIVE guidelines. The study was approved by ethics committee of Huazhong Agricultural University and all experiments were performed in accordance with guidelines of State Key Laboratory of Agriculture Microbiology. The informed consent was obtained from all participants and/or their legal guardians.

Funding information

This work was supported by Teaching Research Programs of Hubei Province (2018323).

Authors’ contributions

J.L designed the study. Y.H, S.F, X.D and L.T performed experiment and analyzed data. Y.H, S.F wrote the manuscript. All authors provided critical review and commentary and agree to the final version to be published.

Conflict of Interest

The authors declare no conflicts of interest and no competing financial interests.

Reference

1. Perch, B., Kristjansen, P. & Skadhauge, K. Group R streptococci pathogenic for man. Two cases of meningitis and one fatal case of sepsis. *Acta Pathol. Microbiol. Scand.* **74**, 69-76 (1968).
2. Gottschalk, M., Xu, J., Calzas, C. & Segura, M. Streptococcus suis: a new emerging or an old neglected zoonotic pathogen? *Future Microbiol* **5**, 371-391, doi:10.2217/fmb.10.2 (2010).
3. Wertheim, H. F., Nghia, H. D., Taylor, W. & Schultz, C. Streptococcus suis: an emerging human pathogen. *Clin Infect Dis* **48**, 617-625, doi:10.1086/596763 (2009).
4. Ye, C. *et al.* Spread of Streptococcus suis sequence type 7, China. *Emerg Infect Dis* **14**, 787-791, doi:10.3201/eid1405.070437 (2008).
5. Segura, M. *et al.* Update on Streptococcus suis Research and Prevention in the Era of Antimicrobial Restriction: 4th International Workshop on S. suis. *Pathogens* **9**, doi:10.3390/pathogens9050374 (2020).
6. Okura, M. *et al.* Current Taxonomical Situation of Streptococcus suis. *Pathogens* **5**, doi:10.3390/pathogens5030045 (2016).
7. Huang, J. *et al.* Identification of six novel capsular polysaccharide loci (NCL) from Streptococcus suis multidrug resistant non-typeable strains and the pathogenic characteristic of strains carrying new NCLs. *Transbound Emerg Infect Dis* **14**, 787-791, doi:10.3201/eid1405.070437 (2008).
Pan, Z., et al. Novel variant serotype of streptococcus suis isolated from piglets with meningitis. *Appl Environ Microbiol* **81**, 976-985, doi:10.1128/AEM.02962-14 (2015).

Zheng, H. et al. Eight Novel Capsular Polysaccharide Synthesis Gene Loci Identified in Nontypeable Streptococcus suis Isolates. *Appl Environ Microbiol* **81**, 4111-4119, doi:10.1128/AEM.00315-15 (2015).

Qiu, X., Bai, X., Lan, R., Zheng, H. & Xu, J. Novel Capsular Polysaccharide Loci and New Diagnostic Tools for High-Throughput Capsular Gene Typing in *Streptococcus suis*. *Appl Environ Microbiol* **82**, 7102-7112, doi:10.1128/AEM.00315-15 (2016).

Wisselink, H. J., Smith, H. E., Stockhofe-Zurwieden, N., Peerkamp, K. & Vecht, U. Distribution of capsular types and production of muramidase-released protein (MRP) and extracellular factor (EF) of *Streptococcus suis* strains isolated from diseased pigs in seven European countries. *Vet Microbiol* **74**, 237-248, doi:10.1016/s0378-1135(00)00188-7 (2000).

Goyette-Desjardins, G., Auger, J. P., Xu, J., Segura, M. & Gottschalk, M. *Streptococcus suis*, an important pig pathogen and emerging zoonotic agent-an update on the worldwide distribution based on serotyping and sequence typing. *Emerg Microbes Infect* **3**, e45, doi:10.1038/emi.2014.45 (2014).

Ye, C. et al. *Streptococcus suis* sequence type 7 outbreak, Sichuan, China. *Emerg Infect Dis* **12**, 1203-1208, doi:10.3201/eid1708.060232 (2006).

Higgins, R., Gottschalk, M., Boudreau, M., Lebrun, A. & Henrichsen, J. Description of six new capsular types (29-34) of *Streptococcus suis*. *J Vet Diagn Invest* **7**, 405-406, doi:10.1177/104063879500700322 (1995).

Kerssin, A. et al. Emergence of *Streptococcus suis* serotype 9 infection in humans. *J Microbiol Immunol Infect* **50**, 545-546, doi:10.1016/j.jmii.2015.06.011 (2017).

Boonyong, N., Kaewmongkol, S., Khunbutswi, D., Satchasataporn, K. & Meekhanon, N. Contamination of *Streptococcus suis* in pork and edible pig organs in central Thailand. *Vet World* **12**, 165-169, doi:10.14202/vetworld.2019.165-169 (2019).

Auger, J. P., Fittipaldi, N., Benoit-Biancamano, M. O., Segura, M. & Gottschalk, M. Virulence Studies of Different Sequence Types and Geographical Origins of *Streptococcus suis* Serotype 2 in a Mouse Model of Infection. *Pathogens* **5**, doi:10.3390/pathogens5030048 (2016).

Yu, H. et al. Human *Streptococcus suis* outbreak, Sichuan, China. *Emerg Infect Dis* **12**, 914-920, doi:10.3201/eid1206.051194 (2006).

Zhou, Y. et al. Predominance of *Streptococcus suis* ST1 and ST7 in human cases in China, and detection of a novel sequence type, ST658. *Virulence* **8**, 1031-1035, doi:10.1080/21505594.2016.1243193 (2017).

Hui, A. C. et al. Bacterial meningitis in Hong Kong: 10-years’ experience. *Clin Neurol Neurosurg* **107**, 366-370, doi:10.1016/j.clineuro.2004.10.006 (2005).
Weinert, L. A. et al. Genomic signatures of human and animal disease in the zoonotic pathogen Streptococcus suis. *Nat Commun* **6**, 6740, doi:10.1038/ncomms7740 (2015).

Berthelot-Herault, F., Gottschalk, M., Morvan, H. & Kobisch, M. Dilemma of virulence of Streptococcus suis: Canadian isolate 89-1591 characterized as a virulent strain using a standardized experimental model in pigs. *Can J Vet Res* **69**, 236-240 (2005).

del Campo Sepulveda, E. M., Altman, E., Kobisch, M., D'Allaire, S. & Gottschalk, M. Detection of antibodies against Streptococcus suis capsular type 2 using a purified capsular polysaccharide antigen-based indirect ELISA. *Vet Microbiol* **52**, 113-125, doi:10.1016/0378-1135(96)00056-9 (1996).

Benga, L., Goethe, R., Rohde, M. & Valentijn-Weigand, P. Non-encapsulated strains reveal novel insights in invasion and survival of Streptococcus suis in epithelial cells. *Cell Microbiol* **6**, 867-881, doi:10.1111/j.1462-5822.2004.00409.x (2004).

Zhang, Y. et al. SssP1, a Streptococcus suis Fimbria-Like Protein Transported by the SecY2/A2 System, Contributes to Bacterial Virulence. *Appl Environ Microbiol* **84**, doi:10.1128/AEM.01385-18 (2018).

Li, M. et al. The type II histidine triad protein HtpsC is a novel adhesion with the involvement of Streptococcus suis virulence. *Virulence* **6**, 631-641, doi:10.1080/21505594.2015.1056971 (2015).

Ni, H. et al. Inactivation of the htpsA gene affects capsule development and pathogenicity of Streptococcus suis. *Virulence* **11**, 927-940, doi:10.1080/21505594.2020.1792080 (2020).

Yao, X. et al. The chromosomal SezAT toxin-antitoxin system promotes the maintenance of the SsPI-1 pathogenicity island in epidemic Streptococcus suis. *Mol Microbiol* **98**, 243-257, doi:10.1111/mmi.13116 (2015).

Liu, F. et al. Binding of Fibronectin to SsPepO Facilitates the Development of Streptococcus suis Meningitis. *J Infect Dis* **217**, 973-982, doi:10.1093/infdis/jix523 (2018).

Chabot-Roy, G., Willson, P., Segura, M., Lacouture, S. & Gottschalk, M. Phagocytosis and killing of Streptococcus suis by porcine neutrophils. *Microb Pathog* **41**, 21-32, doi:10.1016/j.micpath.2006.04.001 (2006).

Segura, M. Streptococcus suis vaccines: candidate antigens and progress. *Expert Rev Vaccines* **14**, 1587-1608, doi:10.1586/14760584.2015.1101349 (2015).

Wisselink, H. J., Veldman, K. T., Van den Eede, C., Salmon, S. A. & Mevius, D. J. Quantitative susceptibility of Streptococcus suis strains isolated from diseased pigs in seven European countries to antimicrobial agents licensed in veterinary medicine. *Vet Microbiol* **113**, 73-82, doi:10.1016/j.vetmic.2005.10.035 (2006).

Woodford, N. & Ellington, M. J. The emergence of antibiotic resistance by mutation. *Clin Microbiol Infect* **13**, 5-18, doi:10.1111/j.1469-0691.2006.01492.x (2007).
Touil, F., Higgins, R. & Nadeau, M. Isolation of Streptococcus suis from diseased pigs in Canada. *Vet Microbiol* **17**, 171-177, doi:10.1016/0378-1135(88)90008-9 (1988).

Wu, Z., Zhang, W., Lu, Y. & Lu, C. Transcriptome profiling of zebrafish infected with Streptococcus suis. *Microb Pathog* **48**, 178-187, doi:10.1016/j.micpath.2010.02.007 (2010).

Zhao, Y. et al. Role of a type IV-like secretion system of Streptococcus suis 2 in the development of streptococcal toxic shock syndrome. *J Infect Dis* **204**, 274-281, doi:10.1093/infdis/jir261 (2011).

Huang, J., Shang, K., Kashif, J. & Wang, L. Genetic diversity of Streptococcus suis isolated from three pig farms of China obtained by acquiring antibiotic resistance genes. *J Sci Food Agric* **95**, 1454-1460, doi:10.1002/jsfa.6841 (2015).

Jones, M. E. et al. Prevalence of gyrA, gyrB, parC, and parE mutations in clinical isolates of Streptococcus pneumoniae with decreased susceptibilities to different fluoroquinolones and originating from Worldwide Surveillance Studies during the 1997-1998 respiratory season. *Antimicrob Agents Chemother* **44**, 462-466, doi:10.1128/AAC.44.2.462-466.2000 (2000).

Fittipaldi, N., Segura, M., Grenier, D. & Gottschalk, M. Virulence factors involved in the pathogenesis of the infection caused by the swine pathogen and zoonotic agent Streptococcus suis. *Future Microbiol* **7**, 259-279, doi:10.2217/fmb.11.149 (2012).

Hu, P. et al. Comparative genomics study of multi-drug-resistance mechanisms in the antibiotic-resistant Streptococcus suis R61 strain. *PLoS One* **6**, e24988, doi:10.1371/journal.pone.0024988 (2011).

Moneret-Vautrin, A. [Letter to the editor regarding the article entitled:"idiopathic capillary leak syndrome"]. *Rev Med Interne* **31**, 180, doi:10.1016/j.revmed.2009.10.431 (2010).

Wu, Z. et al. Probing genomic diversity and evolution of Streptococcus suis serotype 2 by NimbleGen tiling arrays. *BMC Genomics* **12**, 219, doi:10.1186/1471-2164-12-219 (2011).

Tang, F., Bossers, A., Harders, F., Lu, C. & Smith, H. Comparative genomic analysis of twelve Streptococcus suis (pro)phages. *Genomics* **101**, 336-344, doi:10.1016/j.ygeno.2013.04.005 (2013).

Ma, Y. L. & Lu, C. P. Isolation and identification of a bacteriophage capable of infecting Streptococcus suis type 2 strains. *Vet Microbiol* **132**, 340-347, doi:10.1016/j.vetmic.2008.05.013 (2008).

Nghia, H. D. et al. Risk factors of Streptococcus suis infection in Vietnam. A case-control study. *PLoS One* **6**, e17604, doi:10.1371/journal.pone.0017604 (2011).

Segura, M., Fittipaldi, N., Calzas, C. & Gottschalk, M. Critical Streptococcus suis Virulence Factors: Are They All Really Critical? *Trends Microbiol* **25**, 585-599, doi:10.1016/j.tim.2017.02.005 (2017).

Waldor, M. K. & Friedman, D. I. Phage regulatory circuits and virulence gene
expression. *Curr Opin Microbiol* **8**, 459-465, doi:10.1016/j.mib.2005.06.001 (2005).

48 Fujisawa, H. & Minagawa, T. [DNA packaging by double stranded DNA phages]. *Virusu* **36**, 185-193, doi:10.2222/jsv.36.185 (1986).

49 Wu, Z. *et al.* Comparative genomic analysis shows that Streptococcus suis meningitis isolate SC07031 contains a unique 105K genomic island. *Gene* **535**, 156-164, doi:10.1016/j.gene.2013.11.044 (2014).

50 Frost, L. S., Leplae, R., Summers, A. O. & Toussaint, A. Mobile genetic elements: the agents of open source evolution. *Nat Rev Microbiol* **3**, 722-732, doi:10.1038/nrmicro1235 (2005).

51 Brouns, S. J. *et al.* Small CRISPR RNAs guide antiviral defense in prokaryotes. *Science* **321**, 960-964, doi:10.1126/science.1159689 (2008).

52 Pisarenko, S. V. *et al.* Global evolution and phylogeography of Brucella melitensis strains. *BMC Genomics* **19**, 353, doi:10.1186/s12864-018-4762-2 (2018).

53 Ferrando, M. L. *et al.* Host-pathogen Interaction at the Intestinal Mucosa Correlates With Zoonotic Potential of Streptococcus suis. *J Infect Dis* **212**, 95-105, doi:10.1093/infdis/jiu813 (2015).

54 Alcock, B. P. *et al.* CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. *Nucleic Acids Res* **48**, D517-D525, doi:10.1093/nar/gkz935 (2020).

55 Roy, D. *et al.* A single amino acid polymorphism in the glycosyltransferase CpsK defines four Streptococcus suis serotypes. *Sci Rep* **7**, 4066, doi:10.1038/s41598-017-04403-3 (2017).

56 Athey, T. B. *et al.* Determining Streptococcus suis serotype from short-read whole-genome sequencing data. *BMC Microbiol* **16**, 162, doi:10.1186/s12866-016-0782-8 (2016).

57 Bertelli, C. *et al.* IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets. *Nucleic Acids Res* **45**, W30-W35, doi:10.1093/nar/gkx343 (2017).

58 Zhou, Y., Liang, Y., Lynch, K. H., Dennis, J. J. & Wishart, D. S. PHAST: a fast phage search tool. *Nucleic Acids Res* **39**, W347-352, doi:10.1093/nar/gkr485 (2011).

59 Bland, C. *et al.* CRISPR recognition tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats. *BMC Bioinformatics* **8**, 209, doi:10.1186/1471-2105-8-209 (2007).

60 Stothard, P. & Wishart, D. S. Circular genome visualization and exploration using CGView. *Bioinformatics* **21**, 537-539, doi:10.1093/bioinformatics/bti054 (2005).

61 Alikhan, N. F., Petty, N. K., Ben Zakour, N. L. & Beatson, S. A. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. *BMC Genomics* **12**, 402, doi:10.1186/1471-2164-12-402 (2011).

62 Page, A. J. *et al.* Roary: rapid large-scale prokaryote pan genome analysis. *Bioinformatics* **31**, 3691-3693, doi:10.1093/bioinformatics/btv421 (2015).
Table 1. Minimal inhibitory concentration (MIC) of 12 antimicrobial agents for LSM178 and the resistance phenotype (RP).

Antibiotics	ATCC 49619	LSM178	RP
PEN	0.25	≤0.06	-
TET	≤0.5	>3	+
VAN	≤0.12	≤0.25	-
CRM	0.5	<3	-
CHR	2	>0.5	+
CLI	≤0.06	0.75	-
LVX	0.5	>0.5	-
ERY	≤0.06	≤0.12	-
STR	0.12	≤0.06	-
IPM	0.25	0.12	-
LZD	≤0.06	0.25	-
RFP	0.25	-	-

Abbreviations: PEN, penicillin; TET, tetracycline; VAN, vancomycin; CRM, cefuroxime; CHR, chloramphenicol; CLI, clindamycin; LVX, levofloxacin; ERY, erythromycin; STR, Streptomycin; IPM, Imipenem; LZD, Linezolid; RFP, rifampici; +, resistance; -, sensitivity.

Figure Legends

Figure 1. Evaluation of the virulence of the LSM178 in zebrafish. (A) Survival rate of zebrafish infected with LSM178, SC19, P1/7 and placebo. (B) Images of zebrafish infected with LSM178 or treated with placebo.

Figure 2. The resistance of LSM178 to human whole blood and expriments with Caco-2 cells. (A) The cytotoxicity of LSM178 to cells. (B) The growth index of LSM in human whole blood. (C) The relative invasion of LSM178 to cell. (D) The adhesion of LSM178 to cell. P<0.05 *, P<0.01 **.

Figure 3. The circular diagram of the LSM178 genome. From inside to outside, the first circle, the scale of genome; the second circle, GC skew; the third circle, GC content; the fourth and seventh circles, the COG category of coding sequence (CDS) on two strands; the fifth and sixth circles, the position of CDS, tRNA and rRNA on two strands.
Figure 4. Phylogenetic tree of 53 *S. suis* based on core genome SNP.

Figure 5. Genome analysis of LSM178. (A) Genome comparison among 52 *S. suis* and LSM178. Each circle showed the variations of strain relative to LSM178. From inside to outside, the genomes was as follows: 61, 05HAS68, 05ZYH33, 1081, 6407, 861160, 90-1330, 9401240, 98HAH33, A7, AH681, BM407, CS100322, CZ130302, D12, D9, DN13, GD-0001, GD-0088, GZ0565, GZ1, HA0609, HA1003, HN105, HN136, INT-01, ISU2812, JS14, LS9N, LSM102, NCTC10234, NCTC10237, NSUI002, NSUI060, P1/7, S10, S735, SC070731, SC19, SC84, SH0104, SH1510, SRD478, SS12, SS2-1, ST1, ST3, T15, TL13, WUSS351, YB51 and ZY05719. The variable colors in each circle stand for sequence identity with the inset of *S. suis* 61 as an example. (B) Comparison of the 84K-PAI with the 89K-PAI from SC19. The 84K-PAI were marked with key genes (black) including virulence-related factors (bold), antibiotic resistance factors (bold), major differential genes and core transposition elements. Green box, GIs; Red box, Tn916. (C) Comparison of the pha17802 with the homologous region located in *S. suis* 6407 and *S. agalactiae* Sag37. Genes rather than hypothetical protein-coding ones were given predictable functions (black). Green box, GI. The functional regions were designed with red line.

Figure 6. Chromosomal features of LSM178. (A) Venn diagram of the special genes of each strain from GZ1-branch. The special genes for each strain were extracted with T15 as the reference. The overlap was named core virulence genes. (B) Venn diagram describing the special genes of HVSs. (C) Venn diagram describing the special genes of generally virulent strains. (D) Changes of core high virulence genes. P < 0.01 **. (E-G) COG function classification of the core genes from (A-C) respectively. (H) Locations of GIs (blue), core general virulence genes (black) and core high virulence genes (red) in LSM178 genome.
Figures

Figure 1

Evaluation of the virulence of the LSM178 in zebrafish. (A) Survival rate of zebrafish infected with LSM178, SC19, P1/7 and placebo. (B) Images of zebrafish infected with LSM178 or treated with placebo.
Figure 2

The resistance of LSM178 to human whole blood and experiments with Caco-2 cells. (A) The cytotoxicity of LSM178 to cells. (B) The growth index of LSM in human whole blood. (C) The relative invasion of LSM178 to cell. (D) The adhesion of LSM178 to cell. P<0.05 *, P<0.01 **.

Figure 3

The circular diagram of the LSM178 genome. From inside to outside, the first circle, the scale of genome; the second circle, GC skew; the third circle, GC content; the fourth and seventh circles, the COG category of coding sequence (CDS) on two strands; the fifth and sixth circles, the position of CDS, tRNA and rRNA on two strands.
Figure 4

Phylogenetic tree of 53 S. suis based on core genome SNP.
Figure 5

Genome analysis of LSM178. (A) Genome comparison among 52 S. suis and LSM178. Each circle showed the variations of strain relative to LSM178. From inside to outside, the genomes was as follows: 61, 05HAS68, 05ZYH33, 1081, 6407, 861160, 90-1330, 9401240, 98HAH33, A7, AH681, BM407, CS100322, CZ130302, D12, D9, DN13, GD-0001, GD-0088, GZ0565, GZ1, HA0609, HA1003, HN105, HN136, INT-01, ISU2812, JS14, LS9N, LSM102, NCTC10234, NCTC10237, NSUI002, NSUI060, P1/7, S10, S735, SC07031, SC19, SC84, SH0104, SH1510, SRD478, SS12, SS2-1, ST1, ST3, T15, TL13, WUSS351, YB51 and ZY05719. The variable colors in each circle stand for sequence identity with the inset of S. suis 61 as an example. (B) Comparison of the 84K-PAI with the 89K-PAI from SC19. The 84K-PAI were marked with key genes (black) including virulence-related factors (bold), antibiotic resistance factors (bold), major differential genes and core transposition elements. Green box, GIs; Red box, Tn916. (C) Comparison of the pha17802 with the homologous region located in S. suis 6407 and S. agalactiae Sag37. Genes rather than hypothetical protein-coding ones were given predictable functions (black). Green box, GI. The functional regions were designed with red line.
Figure 6

Chromosomal features of LSM178. (A) Venn diagram of the special genes of each strain from GZ1-branch. The special genes for each strain were extracted with T15 as the reference. The overlap was named core virulence genes. (B) Venn diagram describing the special genes of HVSs. (C) Venn diagram describing the special genes of generally virulent strains. (D) Changes of core high virulence genes. P=0.01 **. (E-G) COG function classification of the core genes from (A-C) respectively. (H) Locations of GIs (blue), core general virulence genes (black) and core high virulence genes (red) in LSM178 genome.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SupplementaryFigure1.jpg
- SupplementaryFigure2.jpg
- SupplementaryFigure3.jpg
- SupplementaryFigure4.jpg
- SupplementaryFigure5.jpg
- SupplementaryTables.xls
- supplementarytableandfigurelegends.docx