Data Article

Data from X-ray crystallographic analysis and DFT calculations on isomeric azo disperse dyes

Jihye Lim 1, Malgorzata Szymczyk, Nahid Mehraban, Yi Ding 2, Lisa Parrillo-Chapman, Ahmed El-Shafei, Harold S. Freeman *

College of Textiles, North Carolina State University, Raleigh, NC 27606, USA

ARTICLE INFO

Article history:
Received 9 February 2018
Accepted 4 October 2018
Available online 9 October 2018

ABSTRACT

X-ray crystallography and DFT calculations were used to characterize the molecular nature and excited state properties of isomeric photo-stable azo dyes for textile fibers undergoing extensive sunlight exposure. Structural data in CIF files arising from X-ray analysis are reported and the complete files are deposited with the Cambridge Crystallographic Data Centre as CCDC 1548989 (https://www.ccdc.cam.ac.uk/structures/Search?Ccdcid=1548989) and CCDC 1548990 (https://www.ccdc.cam.ac.uk/structures/Search?Ccdcid=1548990).

Data from calculating the vertical electronic excitation of 20 excited states for each dye and from calculating excited state oxidation potential (ESOP) and Frontier HOMO/LUMO isosurfaces are also presented. This data is related to the article “Molecular and excited state properties of isomeric scarlet disperse dyes” (Lim et al., 2018) [1].

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Specifications table

Subject area	Chemistry, Photophysics
More specific subject area	Inkjet printing, Azo Dyes, Excited State Properties, X-ray
	Crystallography.
Type of data	Table, Image (x-ray, TD-DFT calculations), Figure
How data was acquired	X-ray Diffraction Analysis: Bruker-Nonius X8 Apex2 Diffractometer; DFT Calculations: Gaussian 09 (B3LYP and DGDZVP).
Data format	Raw, analyzed.
Experimental factors	Slow evaporation of CH₂Cl₂ solutions of dyes at room temperature gave thin plate-like single crystals that for X-ray analysis
Experimental features	Excited structures determined using single point energy calculations. Vertical electronic excitations of 20 excited states were solved and excited state oxidation potentials were extracted.
Data source location	North Carolina State University, Raleigh, NC, USA.
Data accessibility	Data is with this article. X-ray: Cambridge Crystallographic Data Centre as CCDC 1548989 (https://www.ccdc.cam.ac.uk/structures/Search?Ccdcid=1548989) and CCDC 1548990 (https://www.ccdc.cam.ac.uk/structures/Search?Ccdcid=1548990).
Related research article	Jihye Lim, Malgorzata Szymczyk, Nahid Mehraban, Yi Ding, Lisa Parrillo-Chapman, Ahmed El-Shafei, Harold S. Freeman, Molecular and excited state properties of isomeric scarlet disperse dyes, J. Molec. Struc., Vol. 1161, 254–261.

Value of the data

- The data illustrate the reliability of current day molecular modeling methods for generating equilibrium geometries of monoazo dyes that are comparable to X-ray crystal structures.
- The data show essential calculations for predicting the molecular and excited state properties of organic dyes.
- The data are useful for further studies on the development of synthetic dyes having high photostability.
- The data show key vertical electronic excitations of 20 excited states for each dye along with the oscillator strength and molecular orbitals involved.

1. Data

The data arise from X-ray crystallographic analysis and computational methods in the characterization of isomeric monoazo dyes Sc2 and Sc3 for textile fibers. The data are Supplementary material for the study describing the “Molecular and excited state properties of isomeric scarlet disperse dyes” [1].

The overlay of data from X-ray and computational analysis of dyes Sc2 and Sc3 is shown in Fig. 1, to demonstrate the ability of DFT-based calculations to accurately predict the structures of these monoazo dyes. Root-mean squared (RMS) values were 0.0053 for Sc2 and 0.0001 for Sc3. Other key crystallographic data for the two dyes are summarized in Tables 1 and 2, including the associated crystal systems, space groups, molecular volumes, number of molecules per unit cell, 2θmax values, and bond lengths. The latter values are especially helpful in establishing the tautomeric form (azo vs.
Table 1
Crystallographic data for the major components of the scarlet disperse dye.

	Sc2	Sc3				
Composition	$\text{C}_{20}\text{H}_{14}\text{F}_3\text{N}_7\text{O}_2 \cdot 0.5(\text{CH}_2\text{Cl}_2)$	$\text{C}_{20}\text{H}_{14}\text{F}_3\text{N}_7\text{O}_2$				
Formula Weight	483.84	441.38				
Temperature (K)	100.01	100.04				
Crystal system	Monoclinic	Triclinic				
Space group	$\text{P}2_1/c$	$P\overline{1}$				
a (Å)	20.753(2)	7.5946(2)				
b (Å)	6.5429(8)	11.0682(3)				
c (Å)	16.9106(19)	11.3236(13)				
α (°)	90	80.9900(10)				
β (°)	113.308(5)	88.6460(10)				
γ (°)	90	81.4210(4)				
Volume (Å³)	2108.8(4)	929.59(4)				
Z	4	2				
ρcalc (g/cm³)	1.524	1.577				
μ (mm⁻¹)	0.243	0.128				
f(000)	988	452				
Crystal dimension (mm)	0.142 × 0.105 × 0.057	0.518 × 0.309 × 0.247				
θmax (°)	4.818–46.51	3.642–72.86				
Reflections collected	7750	28,451				
Independent reflections	2984	9000				
Reflections observed	1711	7465				
Number of variables	323	299				
$R1$ [$	F	> 2\sigma(F)]$	0.0542	0.0405
$wR2$ [$	F	> 2\sigma(F)]$	0.1127	0.1152
$wR1$ [all data]	0.1171	0.0506				
$wR2$ [all data]	0.1341	0.1241				
Largest Diffraction peak/ hole (e⁻/Å³)	0.31/– 0.25	0.70/– 0.46				
Max. shift in final cycles	< 0.001	< 0.001				

Fig. 1. The X-ray structures (top) of Sc2 (a) and Sc3 (b) superimposed on the calculated structures (bottom).
hydrazone) of the dyes analyzed (cf. N1–N2, N2–C8, N4–C12 data) (Table 3).

Data for intermolecular H-bonding interactions between layers of molecules positioned parallel to each other are given in Fig. 2. The unit cell for Sc2 shows intermolecular H-bond distances between the NH2 and CN groups (2.418 Å). Also seen are short contacts corresponding to intermolecular hydrogen bonds for Sc3, namely the NO2 and NH2 groups (2.188 Å), and the NH2 and CN groups (2.512 Å).

Calculation of vertical electronic excitation energies for 20 excited states along with the oscillator strength (f) and molecular orbitals involved for each dye led to the raw data shown in Tables 4 and 5 for Sc2 and Sc3. From these data the excited state oxidation potential (ESOP) for each dye can be extracted.

Table 2
Bond lengths for Sc2.

Atom	Atom	Length/ Å
F1	C7	1.341(5)
F2	C7	1.343(5)
F3	C7	1.346(4)
O1	N3	1.226(5)
O2	N3	1.236(4)
N1	N2	1.284(4)
N1	C1	1.419(5)
N2	C8	1.380(4)
N3	C4	1.464(5)
N4	C12	1.344(4)
N5	C11	1.326(4)
N6	C12	1.349(4)
N6	C15	1.413(5)
N7	C14	1.154(5)
C1	C2	1.400(5)
C1	C6	1.397(5)
C2	C3	1.384(5)

Atom	Atom	Length/ Å
C2	C7	1.503(5)
C3	C4	1.379(6)
C4	C5	1.383(5)
C5	C6	1.375(5)
C8	C9	1.419(5)
C8	C12	1.426(5)
C9	C10	1.377(5)
C9	C13	1.499(5)
C10	C11	1.430(5)
C10	C14	1.428(5)
C15	C16	1.389(5)
C15	C20	1.387(5)
C16	C17	1.383(6)
C17	C18	1.377(6)
C18	C19	1.384(6)
C19	C20	1.386(5)
C20	C15	1.730(11)
C20	C15	1.765(11)

Table 3
Bond lengths for Sc3.

Atom	Atom	Length/ Å
F1	C7	1.3451(9)
F2	C7	1.3380(9)
F3	C7	1.3399(8)
O1	N3	1.2248(10)
O2	N3	1.2243(10)
N1	N2	1.2848(8)
N1	C1	1.4134(9)
N1	C8	1.3675(8)
N3	C4	1.4579(9)
N4	C11	1.3222(9)
N4	C12	1.3351(8)
N5	C14	1.1546(9)
N6	C11	1.3341(9)
N7	C12	1.3503(9)
N7	C15	1.4127(9)
C7	C2	1.5026(10)
C1	C2	1.4084(9)
C1	C6	1.4057(10)
C2	C3	1.3868(9)
C3	C4	1.3838(10)
C4	C5	1.3910(10)
C5	C6	1.3829(10)
C6	C7	1.4176(9)
C7	C8	1.4501(9)
C8	C9	1.3852(9)
C9	C10	1.5007(10)
C10	C11	1.4326(10)
C10	C12	1.4233(10)
C11	C14	1.4013(10)
C12	C15	1.3990(10)
C15	C17	1.3991(10)
C16	C18	1.3868(11)
C17	C19	1.3910(11)
C18	C20	1.3868(10)
Fig. 2. Unit cells showing intermolecular interactions (Å) between molecules of Sc2 (a) and Sc3 (b).

Table 4
Calculated excitation energies and oscillator strengths for the 20 excited states of Sc2.

Excited State	Singlet-A	Excitation Energy (eV)	Oscillator Strength (nm)	Oscillator Strength (a.u.)
111 - > 114	0.16845	2.3593	525.52	1.0963
113 - > 114	0.68009			
Excited State 2:	Singlet-A	2.4599	504.02	0.0772
111 - > 114	0.61550			
111 - > 115	- 0.18095			
112 - > 114	- 0.19991			
113 - > 114	- 0.19321			
Excited State 3:	Singlet-A	3.0046	412.65	0.0698
111 - > 114	0.22058			
112 - > 114	0.66351			
Excited State 4:	Singlet-A	3.3435	370.82	0.2245
109 - > 114	0.12672			
111 - > 115	0.88917			
Excited State 5:	Singlet-A	3.4878	355.48	0.0107
110 - > 114	0.70043			
Excited State 6:	Singlet-A	3.6637	338.41	0.0109
105 - > 114	0.14783			
111 - > 114	0.18820			
111 - > 115	0.60693			
112 - > 115	- 0.22758			
Excited State 7:	Singlet-A	3.7276	332.61	0.0050
105 - > 114	0.59143			
105 - > 115	0.31989			
109 - > 114	0.10910			
111 - > 115	- 0.13494			
Excited State 8:	Singlet-A	3.7570	330.01	0.0971
109 - > 114	0.65678			
113 - > 115	- 0.11278			
Excited State 9:	Singlet-A	3.9326	315.28	0.0126
108 - > 114	0.54817			
112 - > 115	- 0.11815			
113 - > 116	0.23227			
113 - > 117	- 0.31543			
Table 4 (continued)

Excited State 10:	Singlet-A	3.9699 eV	312.31 nm	$f = 0.0747$
108 -> 114	0.12487			
109 -> 114	-0.13850			
111 -> 115	0.14977			
112 -> 115	0.42170			
113 -> 116	0.36207			
113 -> 117	0.32511			

Excited State 11:	Singlet-A	4.0260 eV	307.96 nm	$f = 0.0300$
111 -> 115	0.17399			
112 -> 115	0.47223			
113 -> 116	-0.27249			
113 -> 117	-0.39237			

Excited State 12:	Singlet-A	4.0562 eV	305.67 nm	$f = 0.0019$
107 -> 114	0.66738			
107 -> 115	-0.17285			

Excited State 13:	Singlet-A	4.2097 eV	294.52 nm	$f = 0.0568$
108 -> 114	-0.39065			
113 -> 116	0.46544			
113 -> 117	-0.34136			

Excited State 14:	Singlet-A	4.2568 eV	291.26 nm	$f = 0.0003$
103 -> 114	0.62259			
103 -> 115	0.32497			

Excited State 15:	Singlet-A	4.4996 eV	275.54 nm	$f = 0.0045$
110 -> 115	0.67093			
113 -> 119	-0.15611			

Excited State 16:	Singlet-A	4.5874 eV	270.27 nm	$f = 0.0100$
106 -> 114	0.54991			
111 -> 116	-0.24554			
113 -> 118	0.31130			

Excited State 17:	Singlet-A	4.5933 eV	269.92 nm	$f = 0.0026$
106 -> 114	0.17037			
111 -> 116	0.44354			
111 -> 117	0.40398			
112 -> 116	-0.20839			
112 -> 117	-0.20558			

Excited State 18:	Singlet-A	4.6084 eV	269.04 nm	$f = 0.0008$
106 -> 114	-0.11476			
111 -> 116	-0.40558			
111 -> 117	0.50411			
112 -> 116	0.16311			
112 -> 117	-0.15477			

Excited State 19:	Singlet-A	4.6379 eV	267.33 nm	$f = 0.1619$
106 -> 114	-0.30153			
113 -> 118	0.60206			

Excited State 20:	Singlet-A	4.7032 eV	263.62 nm	$f = 0.0287$
109 -> 115	0.63757			
111 -> 116	0.10091			
112 -> 117	0.14383			

2. Experimental design, materials, and methods

Single crystal X-ray diffraction analysis was conducted using a Bruker–Nonius X8 Apex2 diffractometer. The frame integration was performed with the program SAINT. The resulting raw data
Table 5
Calculated excitation energies and oscillator strengths for the 20 excited states of Sc3.

Excited State 1: Singlet-A	2.3700 eV	523.13 nm	\(f = 0.5373 \)
111 - > 114	0.11383		
112 - > 114	- 0.18480		
113 - > 114	0.66822		
Excited State 2: Singlet-A	2.4473 eV	506.61 nm	\(f = 0.1416 \)
111 - > 114	0.50266		
111 - > 115	- 0.16373		
112 - > 114	- 0.39149		
113 - > 114	- 0.21595		
Excited State 3: Singlet-A	3.0048 eV	412.61 nm	\(f = 0.4636 \)
111 - > 114	0.42774		
112 - > 114	0.54660		
Excited State 4: Singlet-A	3.3508 eV	370.01 nm	\(f = 0.0122 \)
110 - > 114	0.64733		
111 - > 114	- 0.10057		
113 - > 115	0.24591		
Excited State 5: Singlet-A	3.3624 eV	368.74 nm	\(f = 0.0530 \)
110 - > 114	- 0.24661		
113 - > 115	0.64269		
Excited State 6: Singlet-A	3.6418 eV	340.45 nm	\(f = 0.0038 \)
111 - > 114	- 0.17595		
111 - > 115	- 0.44934		
112 - > 115	0.47335		
Excited State 7: Singlet-A	3.7276 eV	332.61 nm	\(f = 0.0003 \)
105 - > 114	0.60898		
105 - > 115	0.33006		
Excited State 8: Singlet-A	3.8726 eV	320.16 nm	\(f = 0.0456 \)
107 - > 114	- 0.17843		
109 - > 114	0.61937		
111 - > 115	- 0.15064		
113 - > 116	- 0.15214		
113 - > 117	- 0.10277		
Excited State 9: Singlet-A	3.9310 eV	315.40 nm	\(f = 0.0241 \)
107 - > 114	0.39742		
108 - > 114	0.35278		
111 - > 115	- 0.11320		
112 - > 115	- 0.10887		
113 - > 116	- 0.27464		
113 - > 117	0.30370		
Excited State 10: Singlet-A	3.9832 eV	311.27 nm	\(f = 0.0557 \)
108 - > 114	0.20907		
109 - > 114	0.26135		
111 - > 115	0.33755		
112 - > 115	0.32994		
113 - > 116	0.35017		
113 - > 117	0.13756		
Excited State 11: Singlet-A	4.0392 eV	306.95 nm	\(f = 0.5148 \)
107 - > 114	0.13790		
111 - > 115	- 0.29550		
112 - > 115	- 0.32129		
113 - > 116	0.49368		
113 - > 117	0.12655		
Excited State 12: Singlet-A	4.1265 eV	300.46 nm	\(f = 0.0008 \)
106 - > 114	0.64834		
106 - > 115	- 0.17133		
was scaled and absorption corrected using a multi-scan averaging of symmetry equivalent data using SIRPOW [2]. Structures were solved using the program SHELXT [3]. Slow evaporation of CH$_2$Cl$_2$ solutions of Sc$_2$ and Sc$_3$ at room temperature gave thin plate-like single crystals that were suitable for X-ray crystallographic analysis. The equilibrium molecular geometries (EMGs) of Sc$_1$, Sc$_2$ and Sc$_3$ were calculated in the neutral forms using density functional theory (DFT) employing the generalized gradient approximation (GGA) at the hybrid exchange-correlation energy functional 3-Parameter (Exchange), Lee et al. (B3LYP) [4,5] and the full-electron basis set Density Gauss double-zeta with polarization functions (DGDZVP) [6,7], implemented in Gaussian 09. The X-ray structures of Sc$_2$ and Sc$_3$ were superimposed on the corresponding calculated molecular geometries and the RMS was calculated in each case. The isosurfaces of the HOMO and LUMO were extracted for each dye from the corresponding checkpoint files. In addition, TD-DFT calculations were performed on the EMGs and the geometry of the excited state structure was calculated using single point energy calculations for each dye. Vertical electronic excitation energies for 20 excited states were calculated for each dye and the excited state oxidation potential (ESOP) for each dye was extracted.

Table 5 (continued)

Excited State 13:	Singlet-A	4.1991 eV	295.27 nm	$f = 0.0884$
108 -> 114	0.12260			
113 -> 116	0.40583			
113 -> 117	0.53076			
Excited State 14:	Singlet-A	4.2585 eV	291.14 nm	$f = 0.0006$
103 -> 114	0.62158			
103 -> 115	0.32547			
Excited State 15:	Singlet-A	4.2974 eV	288.51 nm	$f = 0.0161$
106 -> 114	0.10519			
107 -> 114	0.48658			
108 -> 114	0.34478			
109 -> 114	0.10188			
113 -> 117	0.26919			
Excited State 16:	Singlet-A	4.3887 eV	282.51 nm	$f = 0.0007$
106 -> 114	0.10513			
110 -> 115	0.65507			
111 -> 116	0.10839			
112 -> 116	0.15738			
Excited State 17:	Singlet-A	4.4058 eV	281.41 nm	$f = 0.0203$
110 -> 115	0.19596			
111 -> 116	0.33235			
112 -> 116	0.57520			
Excited State 18:	Singlet-A	4.5811 eV	270.64 nm	$f = 0.0046$
111 -> 117	0.46157			
112 -> 117	0.51752			
Excited State 19:	Singlet-A	4.6346 eV	267.52 nm	$f = 0.1259$
111 -> 116	0.59135			
112 -> 116	0.32627			
Excited State 20:	Singlet-A	4.8246 eV	256.98 nm	$f = 0.0022$
110 -> 116	0.43307			
110 -> 120	0.13187			
112 -> 118	0.16383			
113 -> 118	0.48759			
Acknowledgments

The authors thank the Walmart Innovation Fund (Grant no. 558811) for financial support and the Department of Chemistry at North Carolina State University for use of the Apex2 diffractometer.

Transparency document. Supplementary material

Transparency document associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2018.10.010.

References

[1] J. Lim, M. Szymczyk, N. Mehraban, Y. Ding, L. Parrillo-Chapman, A. El-Shafei, H. Freeman, Molecular and excited state properties of isomeric scarlet disperse dyes, J. Mol. Struct. 1161 (2018) 254–261.
[2] A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. Burla, G. Polidori, et al., SIRPOW, 92—a program for automatic solution of crystal structures by direct methods optimized for powder data, J. Appl. Cryst. 27 (1994) 435–436.
[3] Bruker, Structure Determination Programs. Version 6.10, SHELXTL, Bruker Analytical X-ray Instruments Inc., Madison, Wisconsin, USA, 2000.
[4] C.T. Lee, W.T. Yang, R.G. Parr, Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B Condens Matter. 37 (1988) 785–789.
[5] A.D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A 38 (1988) 3098–3100.
[6] N. Godbout, D.R. Salahub, J. Andzelm, E. Wimmer, Optimization of Gaussian-type basis sets for local spin density functional calculations. Part I. Boron through neon, optimization technique and validation, Can. J. Chem. 70 (1992) 560–571.
[7] C. Sosa, J. Andzelm, B.C. Elkin, E. Wimmer, K.D. Dobbs, D.A. Dixon, A local density functional study of the structure and vibrational frequencies of molecular transition-metal compounds, J. Phys. Chem. 96 (1992) 6630–6636.