Variational principle, uniqueness and reciprocity theorems in porous magneto-piezothermoelastic medium

Rajneesh Kumar and Poonam Sharma

Abstract: The basic governing equations for an anisotropic porous magneto-piezothermoelastic medium are presented. The variational principle, uniqueness theorem and theorem of reciprocity in this model are established under the assumption of positive definiteness of magnetic and piezoelectric fields. Particular cases of interest are also deduced and compared with the known results.

Keywords: piezothermoelastic; porous; variational principle; uniqueness; reciprocity

1. Introduction

With the increase in use of advanced composites as important structural components in speedy aircrafts, mobiles, missiles, ceramic plates as transducers, marine vehicles, aerospace structures and various other such applications has inspired the research activities. One such composite materials is porous magneto-piezothermoelastic material.

The theory of thermopiezoelectric material was first proposed by Mindlin (1974) who derived the governing equations of a thermopiezoelectric plate. The physical laws for the thermopiezoelectric material have been explored by Nowacki (1978, 1979). Chandrasekharaiah (1984) used generalised Mindlin’s theory of thermopiezoelectricity to account for the finite speed of propagation of thermal disturbances. Rao and Sunar (1993) pointed out the temperature variation in the piezoelectric media. Majhi (1995) studied the transient thermal response of the semi-infinite piezoelectric rod subjected to the heat source. Chen (2000) derived the general solution for transversely isotropic piezothermoelastic media. In this general solution, all components of the coupled field are expressed by four harmonic functions. Sharma and Kumar (2000) discussed the plane harmonic waves in piezothermoelastic material. Sharma, Pal, and Chand (2005) studied the propagation characteristics of Rayleigh waves in transversely isotropic piezothermoelastic materials. Sharma and Walia (2007) investigated Rayleigh waves in transversely isotropic piezothermoelastic materials.
(2010) discussed the propagation of inhomogeneous waves in anisotropic piezothermoelastic media. Alshaikh (2012) presented the mathematical model for studying the influence of the initial stresses and relaxation waves in piezothermoelastic half-space.

From the historical background, it is identified that the two theories namely the Biot Theory and Theory of Porous Media have been used nowadays to study multiphase continuum mechanics. On the basis of work done by Von Terzaghi, a theoretical description of porous material saturated by a viscous fluid was presented by Biot and then extended his theory to anisotropic and further poroviscoelastic cases. The dynamic behaviour of porous medium is important in the field of seismic exploration. The porosity and permeability are the basic and economic parameters for the field of oil production. Reservoir rocks also possess anisotropic behaviour in permeability of pores as a reservoir is a fluid-saturated porous solid medium pervaded by aligned cracks. Porosity is the geometrical property of the solid to hold the fluid. Biot developed the full dynamic theory for wave propagation in fluid-saturated porous media. Biot used Lagrange’s equations to derive a set of coupled differential equations that govern the motions of solid and fluid phases. Biot (1962a) extended the acoustic propagation theory in the wider context of the mechanics of porous media. Biot (1962b) developed new features of the extended theory in more detail. On the other hand, Theory of Porous Media is based on the work done by Fillunger which further is preceded from the assumption of immiscible and superimposed continua with internal interaction.

Sharma and Gogna (1991) discussed wave propagation in porous solid with a viscoelastic frame filled with a viscous fluid. Sharma (2004a) used Biot’s 1956 theory to study the phase velocities and attenuations of quasi-waves in a general anisotropic porous solid with anisotropic permeability controlling the flow of viscous fluid in its pores. Sharma (2004b) studied velocities and polarisation in anisotropic porous solid saturated with non-viscous fluid. Sharma (2005) studied the polarisations of quasi-waves in a general anisotropic porous solid saturated with viscous fluid. Sharma (2008) investigated the wave propagation in thermoelastic saturated porous medium. The boundary conditions for porous solids saturated with viscous fluid are described by Sharma (2009).

Porous piezoelectric materials are studied due to their applications such as low-frequency hydrophones, underwater sensing and actuation application (Arai et al., 1991; Hashimoto & Yamaguchi, 1986). It has high hydrostatic figures of merit and low sound velocity of these materials due to which the reduction in acoustic impedance and enhancement of coupling with water are possible. Some experimental studies (Hayashi et al., 1991; Xia, Ma, Qiu, Wu, & Wang, 2003) have been made for the characterisation of properties of porous piezoelectric materials. A number of authors (Banno, 1993; Gómez Alvarez-Arenas & Montero de Espinosa, 1996) developed theoretical models to study the effect of porosity on the elastic, piezoelectric and dielectric properties of porous piezoelectric materials. Vashishth and Gupta (2009) described the vibrations of porous piezoelectric ceramic plates.

With the development of active material systems, there is significant interest in coupling effects between elastic, electric, magnetic and thermal fields, for their applications in sensing and actuation. Although natural materials rarely show full coupling between elastic, electric, magnetic and thermal fields, some artificial materials do. Van Run, Terrell, and Scholing (1974) reported the fabrication of BaTiO3-CoFe2O4 composite which had the magnetostrictive effect not existing in either the constituent. Li and Dunn (1998) quantitatively explained the magnetostrictive coupling created through the interaction between piezoelectric and piezomagnetic phases. Oatao and Ishihara (2013) analysed the laminated hollow cylinder constructed of isotropic elastic and magneto-electro-thermoelastic material. Pang and Li (2014) studied the SH interfacial waves between piezoelectric/piezomagnetic half-spaces with magneto-electro-elastic imperfect bonding. The effects of piezoelectric and piezomagnetic on the surface wave velocity of magneto-electro-elastic solids are studied by Li and Wei (2014).

A comprehensive work has been done on uniqueness, reciprocity theorems and variational principle by different authors in different media. Ignaczak (1979) studied the uniqueness theorem in
generalised thermoelasticity, Sherie and Dhaliwa (1980) studied variational principle along with uniqueness theorem for generalised thermoelasticity, Ieşan (1990) discussed the reciprocity, uniqueness and minimum principles in the linear theory of piezoelectricity, Ezzat and El Karamany (2002) discussed uniqueness and reciprocity theorems for generalised thermoviscoelastic media, Li (2003) studied these results for linear thermo-electro-magneto-elasticity. Similarly, Othman (2004) proved these results for thermoviscoelastic medium with thermal relaxation times and Aouadi (2007) proved it for thermoelastic diffusive medium. Kuang (2010) established variational principles for generalised thermodiffusive pyroelectric media, Vashishth and Gupta (2011) proved these results and solved eigenvalue problems in porous piezoelectric media, Kumar and Kansal (2013) proved these results for generalised thermoelastic diffusive medium and Kumar and Gupta (2013) discussed these results for generalised thermoelastic diffusive medium with fractional order derivative.

Inspite of these studies, not much work has been done in porous magneto-piezothermoelastic body. The main focus of the present investigation is to study the variational problem, reciprocity theorem and uniqueness of solutions in the considered model. These theorems will be helpful for the further investigation of the various problems.

2. Basic equations
Following Li (2003), Kuang (2010) and Vashishth and Gupta (2011), the governing equations in a homogeneous, anisotropic porous magneto-piezothermoelastic medium in the absence of thermal and magnetic sources and independent of free charge densities and magnetic densities are:

Constitutive equations:

\[\sigma_{ij} = c_{ijkl} E_{kl} - \alpha_{ij} \theta + m_{ij} \varepsilon^* - \zeta_{ij} E_{ij} - q_{ij} H_k - q_{ij}^* H^*_k, \quad (2.1)\]

\[\sigma^* = m_{ij} \varepsilon^* - \zeta_{ij} E_{ij} - \alpha^* \theta + R \varepsilon^* - e_{ij}^* E_{ij} - l_i H_i - l_i^* H_i^*, \quad (2.2)\]

\[-q_{ij} = \rho T \partial S, \quad (2.3)\]

\[\rho S = \alpha_{ij} \varepsilon^* + \tau_i E_i + \tau_i^* \varepsilon^* + \tau_i^* E_i, \quad (2.4)\]

\[D_i = \xi_i E_i + e_{ijk} \varepsilon_{jk} + \tau_i \theta + \zeta_{ij} \varepsilon^* + A_{ij} E_{ij} + f^i_{ij} H_{ij}^* + f_{ij} H_{ij}^*, \quad (2.5)\]

\[D_i^* = \xi_{ij} E_{ij} + e_{ijk} \varepsilon_{jk} + \tau_i^* \theta + \zeta_{ij} \varepsilon^* + e_{ij}^* E_{ij} + f^i_{ij} H_{ij} + f_{ij}^* H_{ij}, \quad (2.6)\]

\[B_i = f_{ij} E_j + q_{ijk} \varepsilon_{jk} + m_i \theta + l_i \varepsilon^* + f^i_{ij} E_{ij} + \rho^i_{ij} H_{ij} + \beta^i_{ij} H_{ij}, \quad (2.7)\]

\[B_i^* = q^i_{ijk} \varepsilon_{jk} + \tau_i^* \theta + f^i_{ij} E_j + \gamma_{ij} E_{ij} + l_i^* \varepsilon^* + \rho^i_{ij} H_{ij} + \gamma^i_{ij} H_{ij}, \quad (2.8)\]

\[E_i = -\phi^i, \quad (2.9)\]

\[E_i^* = -\phi^i, \quad (2.10)\]

\[H_i = -\psi^i, \quad (2.11)\]
\[H_i^* = -\psi_j^*, \quad (i, j, k, l = 1, 2, 3) \] \hfill (2.12)

Equations of motion:
\[\sigma_{ij} + \rho_F f_i - \rho_{11} \dot{u}_i - \rho_{12} \dot{u}_j^* = 0, \] \hfill (2.13)
\[\sigma_{ij}^* + \rho_F^* f_i - \rho_{12} \dot{u}_i - \rho_{22} \dot{u}_j^* = 0, \] \hfill (2.14)

Equation of heat conduction:
\[-K_{ij} \theta_j = \left(1 + \tau_0 \frac{\partial}{\partial t} \right) q_i \] \hfill (2.15)

Gauss equations:
\[D_{ij} = 0 \] \hfill (2.16)
\[D_{ij}^* = 0 \] \hfill (2.17)
\[B_{ij} = 0 \] \hfill (2.18)
\[B_{ij}^* = 0 \quad (i, j = 1, 2, 3) \] \hfill (2.19)

In the Equations, (2.1)–(2.11), \(c_{ijkl} (= c_{klij} = c_{jikl}) \), \(m_{ij} (= m_{ji}) \) are the tensors of elastic constants. The elastic constant \(R \) measures the pressure to be exerted on fluid, \(\rho_{11} \) is the mass density for solid, \(\rho_{12} \) is the mass density for fluid, \(\rho_{11} + \rho_{12} \), \(\rho_{12} \) is the mass coupling parameter and \(\rho \) is the mass density of the material, \(q_i \) are the components of heat flux vector \(\mathbf{q} \), respectively, \(F_i \) and \(f_i \) are components of the external forces per unit mass for the solid and fluid phases, \(\mathbf{u}_i \) and \(\mathbf{u}_j^* \) are the components of displacement vectors \(\mathbf{u} \) and \(\mathbf{u}^* \), \(\sigma_i \) and \(\sigma_i^* \) are the components of the stress tensors for the solid and fluid phases, \(\epsilon_i \) and \(\epsilon_i^* \) are the components of the strain tensors for the solid and fluid phases, \(\kappa(=K) \) are, respectively, the components of thermal conductivity tensors, \(S \) is the entropy per unit mass, respectively, \(E_i \) and \(E_i^* \) are the electric field intensities, \(D_i \) and \(D_i^* \) are the electric displacements, \(\psi_i \) and \(\psi_i^* \) are the magnetic potentials for the solid and fluid phases, \(H_i \) and \(H_i^* \) are the magnetic field intensities, \(B_i \) and \(B_i^* \) are the magnetic displacements, \(\psi \) and \(\psi^* \) are the magnetic potentials, \(\theta \) is the absolute temperature of the medium, \(T_0 \) is the reference temperature of the body, \(r \) is the coefficient describing the measure of thermal effect, \(e_i \) and \(e_i^* \) are tensors of porous magneto-piezothermal moduli, respectively, \(\tau_0 \) is the thermal relaxation time, which ensures that the heat conduction equation predicts finite speeds of heat propagation speeds of matter from one medium to other. The symbol “*” indicates the parameters for pore-fluid phase.

3. Variational principle

The principle of virtual work with variation in displacements for the elastic deformable body is written as
\[
\int_V \left(\rho_0 F_i - \rho_{11} \dot{u}_i - \rho_{12} \dot{u}_j^* \right) \delta u_i \, dV + \int_A \left(\rho_0 f_i - \rho_{12} \dot{u}_i - \rho_{22} \dot{u}_j^* \right) \delta u_i^* \, dA + \int_A \left(h_i \delta u_i + h_i^* \delta u_j^* \right) \, dA + \int_A \left(c_0 \delta \phi + c_0^* \delta \phi^* \right) \, dA + \int_A \left(b_0 \delta \psi + b_0^* \delta \psi^* \right) \, dA = \int_A \left(\sigma_i \delta u_i + \sigma_i^* \delta u_j^* \right) \, dA + \int_A \left(D_i \delta \phi + D_i^* \delta \phi^* \right) \, dA + \int_A \left(B_i \delta \psi + B_i^* \delta \psi^* \right) \, dA,
\] \hfill (3.1)
where \(h_i = \sigma_i n_j, h_i^* = \sigma^* n_i, c_0 = D_i n_j, b_0 = B_i n_j \) and \(b_0^* = B_i^* n_i \).

On the left hand side, we have the virtual work of body forces \(F_i, f_i \) and inertial forces \(\rho_1 \dot{u}_i, \rho_2 \ddot{u}_i \), surface forces \(h_i, h_i^* \), whereas on the right hand side, we have the virtual work of internal forces. We denote the outward normal of \(\partial V \) by \(n_i \). \(c_0, c_0^* \) are the surface charge densities and \(\phi, \phi^* \) are the electric potentials, \(b_0, b_0^* \) are the magnetic densities and \(\psi, \psi^* \) are the magnetic potentials for the solid and fluid phases.

Using the symmetry of the stress tensors, divergence theorem and the definition of the strain tensors, the Equation (3.1) is written in the alternative form as

\[
\int_V \left(\rho_1 F_i - \rho_1 \dot{u}_i - \rho_1 \dddot{u}_i \right) \delta u_i \, dV + \int_V \left(\rho_2 F_i - \rho_2 \dot{u}_i - \rho_2 \dddot{u}_i \right) \delta u_i \, dV + \int_A \left(h_i \delta u_i + h_i^* \delta u_i^* \right) \, dA
+ \int_A \left(c_0 \delta \phi + c_0^* \delta \phi^* \right) \, dA + \int_A \left(b_0 \delta \psi + b_0^* \delta \psi^* \right) \, dA = \int_V \left(\sigma_{ij} \delta \epsilon_{ij} + \sigma^* \delta \epsilon_{ij}^* \right) \, dV
+ \int_V \left(D_{ij} \delta \phi_{ij} + D_{ij}^* \delta \phi_{ij}^* \right) \, dV
+ \int_V \left(b_{i} \delta \psi_{i} + b_{i}^* \delta \psi_{i}^* \right) \, dA,
\]

(3.2)

Substituting the value of \(\sigma_{ij} \) and \(\sigma^* \) from the relation (2.1) and (2.2) in the Equation (3.2) and using Equations (2.9)–(2.12), we obtain

\[
\int_V \left(\rho_1 F_i - \rho_1 \dot{u}_i - \rho_1 \dddot{u}_i \right) \delta u_i \, dV + \int_V \left(\rho_2 F_i - \rho_2 \dot{u}_i - \rho_2 \dddot{u}_i \right) \delta u_i \, dV + \int_A \left(h_i \delta u_i + h_i^* \delta u_i^* \right) \, dA
+ \int_A \left(c_0 \delta \phi + c_0^* \delta \phi^* \right) \, dA + \int_A \left(b_0 \delta \psi + b_0^* \delta \psi^* \right) \, dA = \int_V \left(\frac{1}{2} \left(c_{ijkl} \dot{e}_{kl} \delta \epsilon_{ij} + R \delta \epsilon_{ij} + 2m_{ijkl} \delta \epsilon_{ij} \right) \right) \, dV
+ \int_V \left(\frac{1}{2} \left(c_{ijkl} \dot{e}_{kl} \delta \epsilon_{ij} + R \delta \epsilon_{ij} + 2m_{ijkl} \delta \epsilon_{ij} \right) \right) \, dV
+ \int_A \left(D_{ij} \delta \phi_{ij} + D_{ij}^* \delta \phi_{ij}^* \right) \, dV
+ \int_A \left(b_{i} \delta \psi_{i} + b_{i}^* \delta \psi_{i}^* \right) \, dA
- \int_V \left(\alpha_i \theta \delta \epsilon_{ij} \, dV \right) + \int_V \left(\zeta_{E_i} \delta \epsilon_{ij} \, dV \right) + \int_V \left(q_{ik} H_i \delta \epsilon_{ij} \, dV \right) - \int_V \left(\frac{1}{2} \alpha'' \delta \epsilon_{ij} \, dV \right) + \int_V \left(\frac{1}{2} \alpha'' \delta \epsilon_{ij} \, dV \right)
- \int_V \left(D_i \delta E_i \, dV \right) - \int_V \left(B_i \delta H_i \, dV \right) - \int_V \left(D_{ij}^* \delta E_{ij}^* \, dV \right) - \int_V \left(H_i^* \delta \epsilon_{ij} \, dV \right)
- \int_V \left(\frac{1}{2} \alpha'' \delta \epsilon_{ij} \, dV \right),
\]

where

\[
W = \frac{1}{2} \int_V \left(c_{ijkl} \dot{e}_{kl} \delta \epsilon_{ij} + R \delta \epsilon_{ij} + 2m_{ijkl} \delta \epsilon_{ij} \right) \, dV, \quad \delta u_{ij} = \delta \epsilon_{ij}, \quad \delta u_{ij}^* = \delta \epsilon_{ij}^*, \quad \delta \phi_{ij} = -\delta E_j \quad \text{and} \quad \delta \phi_{ij}^* = -\delta H_j^*,
\]

The Equation (3.3) would be complete for the uncoupled problem of porous magneto-piezothermoelastic, where the temperature \(\theta \), the electric potentials \(\phi, \phi^* \), the magnetic potentials \(\psi, \psi^* \) are known functions. In this case, when we take into account the coupling of the deformation field with the temperature, there arises the necessity of considering one additional relation characterising the phenomenon of the thermal conductivity.
Following Biot (1956), we define a vector J connected with the entropy through the relation

$$\rho S = -J_{,j}$$ \hspace{1cm} (3.4)

Equations (2.3), (2.4), (2.15) and (3.4) combined together yield

$$T_0 L_{ij} \left(\frac{\partial J_i}{\partial t} + \tau_0 \frac{\partial^2 J_i}{\partial t^2} \right) J_j + \theta_{,j} = 0$$ \hspace{1cm} (3.5)

$$-J_{,ij} = -\alpha_y \varepsilon_{,ij} + \tau_0 \varepsilon + \alpha_t \varepsilon + \varepsilon^t E_i^* + m_j H_i + m_i H_j^*,$$ \hspace{1cm} (3.6)

where L_{ij}, the resistivity matrix, is the inverse of the thermal conductivity tensor K_{ij}.

Multiplying both sides of the equation (3.5) by δJ_j and integrating over the region occupied by the body gives

$$\int_V \left[\theta_{,j} + T_0 L_{ij} \left(\frac{\partial J_i}{\partial t} + \tau_0 \frac{\partial^2 J_i}{\partial t^2} \right) \right] \delta J_j \, dV = 0.$$ \hspace{1cm} (3.7)

Now

$$\int_V \theta_{,j} \delta J_j \, dV = \int_V \left(\theta \delta J_j \right)_j \, dV - \int_V \theta \delta J_{,j} \, dV,$$ \hspace{1cm} (3.8)

Applying the divergence theorem defined by,

$$\int_V \left(\theta \delta J_j \right)_j \, dV = \int_A \left(\theta \delta J_j \right) n_j \, dA,$$ \hspace{1cm} (3.9)

in the Equation (3.8), yields

$$\int_V \theta_{,j} \delta J_j \, dV = \int_A \left(\theta \delta J_j \right) n_j \, dA - \int_V \theta \delta J_{,j} \, dV.$$ \hspace{1cm} (3.10)

Substituting Equation (3.10) in the Equation (3.7), we obtain

$$\int_A \left(\theta \delta J_j \right) n_j \, dA - \int_V \theta \delta J_{,j} \, dV + T_0 \int_V \left(\frac{\partial J_i}{\partial t} + \tau_0 \frac{\partial^2 J_i}{\partial t^2} \right) \delta J_j \, dV = 0.$$ \hspace{1cm} (3.11)

Making use of Equation (3.6) in the Equation (3.11), yields the second variational equation

$$\int_A \theta \delta J_i n_i \, dA + \int_a \alpha_y \theta \delta \varepsilon_{,ij} \, dV + \int \theta \tau_j \delta E_j^* \, dV$$
$$+ \int \alpha_t \delta \varepsilon^* \, dV + \int \varepsilon^t \delta E_i^* \, dV + \int m_j \delta H_i^* \, dV + \int m_i \delta H_j^* \, dV + \delta (M + R) = 0,$$ \hspace{1cm} (3.12)

where the function of thermal potential M is defined by
\[M = \frac{r}{2} \int V \, \delta \theta^2 \, dV, \quad \delta M = r \int V \, \delta \theta \, dV, \]
\tag{3.13}

and the function of thermal dissipation \(R \) is defined by

\[R = \frac{T_0}{2} \int V \left(\frac{\partial J_i}{\partial t} + \tau_0 \frac{\partial^2 J_i}{\partial t^2} \right) \, dV, \quad \delta R = T_0 \int V \left(\frac{\partial J_i}{\partial t} + \tau_0 \frac{\partial^2 J_i}{\partial t^2} \right) \delta J_i \, dV. \]
\tag{3.14}

Eliminating integrals

\[\int V \alpha \delta \epsilon \, dV \]
and \(\int V \alpha \theta \delta \epsilon \, dV \) from Equations (3.3) and (3.12) with the aid of Equation (2.7) and (2.8), we obtain the variational principle in the following form:

\[\delta (W + M + R) = \left(\rho_1 f_j - \rho_{12} \ddot{u}_j - \rho_{12} \dot{\ddot{u}}_j \right) \delta u_j \, dV + \left(\rho_2 f_j - \rho_{12} \ddot{u}_j - \rho_{22} \dot{\ddot{u}}_j \right) \delta u_j^+ \, dV + \left(\rho_1 f_j - \rho_{11} \ddot{u}_j - \rho_{12} \dot{\ddot{u}}_j \right) \delta u_j^+ \, dV \]

\[+ \left(h_i \ddot{u}_j + h_i^+ \dot{\ddot{u}}_j \right) \, dA + \int_A \left(b_{ij} \ddot{u}_j + b_{ij}^+ \dot{\ddot{u}}_j \right) \, dA + \int_A \left(c_{ij} \ddot{\theta} + c_{ij}^+ \dot{\ddot{\theta}} \right) \, dA \]

\[+ \int_V \left(D_i \delta E_j \right) \, dV + \int_V \left(\theta \delta J_j \right) \, dV + \int_V \left(e_{ijk} E_k \delta \epsilon_{ij} \right) \, dV + \int_V \left(\zeta_{ijk} \delta \epsilon_{ij} \right) \, dV + \int_V \left(l_i \delta H_j \right) \, dV \]

\[+ \int_V \left(D_i^+ \delta E_{j}^+ \right) \, dV + \int_V \left(B_{ij} \delta H_j \right) \, dV + \int_V \left(B_{ij}^+ \delta H_{j}^+ \right) \, dV + \int_V \left(l_i^+ \delta H_{j}^+ \right) \, dV \]

\[+ \int_V \left(e_{ij}^+ \delta \epsilon_{ij}^+ \right) \, dV + \int_V \left(\zeta_{ij}^+ \delta \epsilon_{ij}^+ \right) \, dV + \int_V \left(m_{ij} \delta \epsilon_{ij} \right) \, dV + \int_V \left(m_{ij}^+ \delta \epsilon_{ij} \right) \, dV \]

\[+ \int_V \left(q_{ijk} H_k \delta \epsilon_{ij} \right) \, dV - \int_V \left(r_{ij} \delta E_j \right) \, dV + \int_V \left(m_{ij} \delta H_j \right) \, dV + \int_V \left(m_{ij}^+ \delta H_{j} \right) \, dV. \]
\tag{3.15}

On the right-hand side of Equation (3.15), we find all the causes, the mass forces, inertial forces, the surface forces and the heating on the surface \(A \) bounding the body.

Particular case:

In the absence of magnetic effect and further if we put coupling coefficients of pore-fluid phase to zero with \(\rho_{12} = \rho_{22} = 0 \), and then we obtain the similar results as obtained by Ieşan (1990).

4. Uniqueness theorem

We assume that the virtual displacements \(\delta u_j, \delta u_j^+ \), the virtual increment of the temperature \(\delta \theta \) etc. correspond to the increments occurring in the body. Then

\[\delta u_j = \frac{\partial u_j}{\partial t} \, dt = \dot{u}_j \, dt, \quad \delta u_j^+ = \frac{\partial u_j^+}{\partial t} \, dt = \ddot{u}_j \, dt, \quad \delta \theta = \frac{\partial \theta}{\partial t} \, dt = \dot{\theta} \, dt, \quad etc. \]
\tag{4.1}

and Equation (3.15) reduces to the following relation
\[
\frac{d}{dt}(W + M + R) = \int_V \left(\rho_1 F_i - \rho_{11} \dot{u}_i - \rho_{12} \dot{u}_i^* \right) \dot{u}_i \, dV + \int_V \left(\rho_2 F_i - \rho_{12} \dot{u}_i - \rho_{22} \dot{u}_i^* \right) \dot{u}_i^* \, dV \\
\quad + \int_A \left(h_1 \dot{u}_i + h_1^* \dot{u}_i^* \right) \, dA + \int_A \left(b_0 \dot{\psi} + b_0^* \dot{\psi}^* \right) \, dA + \int_A \left(c_0 \phi + c_0^* \phi^* \right) \, dA \\
\quad + \int_A D_i \dot{E}_i \, dV - \int_A \theta_j n_j \, dA + \int_A e_{ik} \dot{E}_k \dot{E}_j \, dV + \int_A \zeta_{kj} \dot{E}_k^* \dot{E}_j^* \, dA \\
\quad + \int_A \dot{D}_i^* \dot{E}_i^* \, dV + \int_A \dot{e}_{ij} \dot{E}_j^* \, dV - \int_A \theta_j \dot{E}_j \, dV - \int A \ell_i \dot{H}_i \, dV + \int A B_i \dot{H}_i \, dV \\
\quad + \int A B_i^* \dot{H}_i^* \, dV + \int A m_i \delta H_i \, dV + \int A m_i^* \delta H_i^* \, dV.
\]

(4.2)

Now

\[
\int_V \left(\rho_{11} \dot{u}_i \dot{u}_i + \rho_{12} \dot{u}_i \dot{u}_i^* + \rho_{22} \dot{u}_i \dot{u}_i^* + \rho_{22} \dot{u}_i^* \dot{u}_i^* \right) \, dV = \frac{\partial K}{\partial t},
\]

(4.3)

where \(K = \frac{1}{2} \int_V \left(\rho_{11} \dot{u}_i \dot{u}_i + 2 \rho_{12} \dot{u}_i \dot{u}_i^* + \rho_{22} \dot{u}_i \dot{u}_i^* \right) \, dV \), is the kinetic energy of the body enclosed by the volume \(V \). We also have

\[
M = \frac{1}{2} \int_V r \dot{\theta}^2 \, dV.
\]

(4.4)

Using Equations (4.3) and (4.4) in the Equation (4.2), we obtain

\[
\frac{d}{dt} \left(W + R + K + \frac{1}{2} \int_V r \dot{\theta}^2 \, dV \right) = \int_V \rho_1 F_i \dot{u}_i \, dV + \int_V \rho_2 F_i \dot{u}_i^* \, dV \\
\quad + \int_A \left(h_1 \dot{u}_i + h_1^* \dot{u}_i^* \right) \, dA + \int_A \left(b_0 \dot{\psi} + b_0^* \dot{\psi}^* \right) \, dA + \int_A \left(c_0 \phi + c_0^* \phi^* \right) \, dA \\
\quad + \int_A D_i \dot{E}_i \, dV - \int_A \theta_j n_j \, dA + \int_A e_{ik} \dot{E}_k \dot{E}_j \, dV + \int_A \zeta_{kj} \dot{E}_k^* \dot{E}_j^* \, dA \\
\quad + \int_A \dot{D}_i^* \dot{E}_i^* \, dV + \int_A \dot{e}_{ij} \dot{E}_j^* \, dV - \int_A \theta_j \dot{E}_j \, dV - \int A \ell_i \dot{H}_i \, dV + \int A B_i \dot{H}_i \, dV \\
\quad + \int A B_i^* \dot{H}_i^* \, dV + \int A m_i \delta H_i \, dV + \int A m_i^* \delta H_i^* \, dV,
\]

(4.5)

The above equation is the basis for the proof of the following uniqueness theorem.

Theorem There is only one solution of the Equations (2.13)–(2.19), subjected to the boundary conditions on the surface \(A \)

\[
h_1 = \sigma_1 n_1 = h_1^*, \quad \theta = \theta_1, \quad c_0 = D_i n_i = c_{0i}, h_i^* = \sigma^* n_i = h_i^*, \quad c_0^* = D_i^* n_i = c_{0i}, \quad b_0 = B_i n_i = b_{0i}, \quad b_0^* = B_i^* n_i = b_{0i}.
\]
and the initial conditions on the surface at $t = 0$

$$u_i = u_i^0, \quad \dot{u}_i = \dot{u}_i^0, \quad u_i^* = u_i^{*0}, \quad \dot{u}_i^* = \dot{u}_i^{*0}, \quad \theta = \theta^0, \quad \dot{\theta} = \dot{\theta}^0, \quad \phi = \phi^0, \quad \dot{\phi} = \dot{\phi}^0, \quad \phi^* = \phi^{*0}, \quad \dot{\phi}^* = \dot{\phi}^{*0}, \quad \psi = \psi^0, \quad \dot{\psi} = \dot{\psi}^0, \quad \psi^* = \psi^{*0},$$

where $h_{ij}, \theta, c_{01}, c_{02}, b_{01}, b_{02}, u_i^0, u_i^{*0}, \theta^0, \dot{\theta}^0, \phi^0, \psi^0, \dot{\phi}^0, \dot{\psi}^0, \psi^*, \dot{\psi}^*$ are known functions. We assume that the material parameters satisfy the inequalities

$$T_0 > 0, \quad \tau_0 > 0, \quad \rho_{11} > 0, \quad \rho_{22} > 0, \quad \rho > 0, \quad \text{ (4.6) }$$

$c_{\phi i}, L_0$ and m_j are positive definite.

Proof Let $u_i^{(1)}$, $\theta^{(1)}$, $u_i^{*(1)}$, $\phi^{(1)}$, $\psi^{(1)}$, $\psi^{*(1)}$, $u_i^{(2)}$, $\theta^{(2)}$, $u_i^{*(2)}$, $\phi^{(2)}$, $\psi^{(2)}$, $\psi^{*(2)}$, $p^{*(2)}$, be two solutions of Equations (2.1)–(2.19). Let us take

$$u_i = u_i^{(1)} - u_i^{(2)}, \quad u_i^* = u_i^{*(1)} - u_i^{*(2)}, \quad \theta = \theta^{(1)} - \theta^{(2)}, \quad \phi = \phi^{(1)} - \phi^{(2)}, \quad \psi = \psi^{(1)} - \psi^{(2)}, \quad \psi^* = \psi^{*(1)} - \psi^{*(2)}. \quad \text{ (4.7) }$$

The functions $u_i, u_i^*, \theta, \phi, \psi, \psi^*$ satisfy the governing equations with zero body forces and homogeneous initial and boundary conditions. Thus, these functions satisfy an equation similar to the Equation (4.5) with zero right-hand side, that is,

$$\frac{d}{dt} \left(W + R + K + \frac{1}{2} \int_\gamma r \theta^2 \, dV \right) = 0. \quad \text{ (4.8) }$$

Since, we have

$$L_j = L_j$$

Therefore, from Equation (3.14), we obtain

$$\frac{dR}{dt} = T_0 \int_\gamma L_j j_j \, dV + \frac{1}{2} \int_\gamma \frac{T_0 \tau_0}{2} L_j j_j \, dV \quad \text{ (4.9) }$$

Substitution of Equation (4.9) in the Equation (4.8) yields

$$\frac{d}{dt} \left(W + K + \frac{1}{2} \int_\gamma r \theta^2 \, dV + \frac{T_0 \tau_0}{2} \int_\gamma L_j j_j \, dV \right) + T_0 \int_\gamma L_j j_j \, dV = 0. \quad \text{ (4.10) }$$

Using the inequalities (4.6) in Equation (4.10), we obtain

$$\frac{d}{dt} \left(W + K + \frac{1}{2} \int_\gamma r \theta^2 \, dV + \frac{T_0 \tau_0}{2} \int_\gamma L_j j_j \, dV \right) \leq 0. \quad \text{ (4.11) }$$

We thus see that the expression

$$W + K + \frac{1}{2} \int_\gamma r \theta^2 \, dV + \frac{T_0 \tau_0}{2} \int_\gamma L_j j_j \, dV, \quad \text{ (4.12) }$$

is a decreasing function of time. We also note that the expression $\int_\gamma r \theta^2 \, dV$ occurring in the expression (4.12) is always positive, due to the laws of thermodynamics N\'owacki (1974)

$$0 < r. \quad \text{ (4.13) }$$

Thus, the expression (4.12) vanishes for $t = 0$, due to the homogeneous initial conditions, and it must be always non-positive for $t > 0$.
Using inequalities (4.6) and (4.11), it follows immediately that the expression (4.12) must be identically zero for \(t > 0 \). We thus have
\[
\phi = \phi^* = \psi = \psi^* = u_i = u_i^* = \theta = \theta^* = \varepsilon = \sigma = \sigma^* = 0.
\]
This proves the uniqueness of the solution to the complete system of field equations subjected to the electric potential-magnetic potential-displacement-temperature initial and boundary conditions.

Particular case:

In the absence of magnetic effect and further if we put coupling coefficients of pore-fluid phase to zero with \(\rho_{12} = \rho_{22} = 0 \), then we obtain the similar results as obtained by Ieşan (1990).

5. Reciprocity theorem

We shall consider a homogeneous anisotropic porous magneto-piezothermoelastic elastic body occupying the region \(V \) and bounded by the surface \(A \). We assume that the stresses \(\sigma_j, \sigma^* \) and the strains \(\varepsilon_j, \varepsilon^* \) are continuous together with their first order derivatives, whereas the displacements \(u_j, u_j^* \), temperature \(\theta \) and the electrical potentials \(\phi, \phi^* \), magnetic potentials \(\psi, \psi^* \) are continuous and have continuous derivatives up to second order, for \(x \in V + A, \ t > 0 \). The components of surface tractions, the normal component of the heat flux and electric displacements at regular points of \(\partial V \) are given by
\[
h_j = \sigma_j n_j, \quad h_j^* = \sigma^* n_j, \quad q = q n_j, \quad c_0 = D_j n_j, \quad c_0 = D_j^* n_j, \quad b_0 = B_j n_j, \quad b_0^* = B_j^* n_j
\](5.1)
respectively.

To the system of field equations, we must adjoin boundary conditions and initial conditions. We consider the following boundary conditions:
\[
\begin{align*}
u_i(x, t) = U_i(x, t), & \quad u_i^*(x, t) = U_i^*(x, t), \quad \phi(x, t) = e_0(x, t), \quad \phi^*(x, t) = e_0^*(x, t), \\
\psi(x, t) = e_1(x, t)\psi^*(x, t) = e_1^*(x, t), \quad \theta(x, t) = \eta(x, t),
\end{align*}
\](5.2)
for all \(x \in A, \ t > 0 \)

and the homogeneous initial conditions
\[
\begin{align*}
u_i(x, 0) = U_i(x, 0) = 0, & \quad \theta(x, 0) = \theta(x, 0) = 0, \quad u_i^*(x, 0) = U_i^*(x, 0) = 0, \quad \phi(x, 0) = \phi(x, 0) = 0, \quad \phi^*(x, 0) = \phi^*(x, 0) = 0, \\
\psi(x, 0) = \psi(x, 0) = \psi(x, 0) = 0, & \quad \psi^*(x, 0) = \psi^*(x, 0) = 0, \quad \text{for all } x \in V, \ t = 0.
\end{align*}
\](5.3)

We derive the dynamic reciprocity relationship for a generalised porous magneto-piezothermoelastic bounded body \(V \), which satisfies Equations (2.1)–(2.19), the boundary conditions (5.2) and the homogeneous initial conditions (5.3), and are subjected to the action of body forces \(F_i(x, t), f_i(x, t) \), surface tractions \(h_i(x, t), h_i^*(x, t) \), the heat flux \(q(x, t) \), the magnetic densities \(b_0(x, t), b_0^*(x, t) \) and the surface charge densities \(c_0(x, t), c_0^*(x, t) \).

We define the Laplace transform as
\[
\hat{f}(s) = L(f(x, t)) = \int_0^\infty f(x, t)e^{-st}dt,
\](5.4)
Applying the Laplace transform defined by the Equation (5.4) on the Equations (2.1)–(2.19) and omitting the bars for simplicity, we obtain
\[\sigma_y = c_{ijy} \varepsilon_{ij} - e_{ij} E_k - \alpha_y \theta + m_y \varepsilon^* - \zeta_{kj} E_k^* - q_{ijk} H_k - q_{ijkl}^* H_k^*, \] (5.5)

\[\sigma^* = m_y \varepsilon_{ij} - \zeta^* \varepsilon_i - \alpha^* \theta + Re^* - e^*_i E_i^* - \lambda_i H_i - \lambda_i^* H_i^*, \] (5.6)

\[-q_{ij} = \rho T_0 s S, \] (5.7)

\[\rho S = \alpha_y \varepsilon_{ij} + \tau_i E_i + \tau_0 + \alpha^* \varepsilon^* + \tau_i^* E_i^* + m_i H_i + m_i^* H_i^*, \] (5.8)

\[D_i = \xi_i E_i + e_{ijk} \varepsilon_{jk} + \tau_i \theta + \xi_i \varepsilon^* + A_{ij} E_j^* + f_{ij}^* H_j^* + f_{ij}^* H_j^*, \] (5.9)

\[D_i^* = \xi_i \varepsilon_{jk} + \tau_i^* \theta + A_{ij} E_j^* + \xi_i^* \varepsilon^* + f_{ij}^* H_j^* + f_{ij}^* H_j^*, \] (5.10)

\[B_i = f_{ij}^* E_j + q_{ij} \varepsilon_{jk} + m_i \theta + \xi_i \varepsilon^* + f_{ij}^* E_j^* + \beta_i H_j + \beta_i^* H_j, \] (5.11)

\[B_i^* = q_{ij} \varepsilon_{jk} + m_i \theta + f_{ij}^* E_j + \gamma_i E_j^* + \psi_i H_j + \gamma_i^* H_j, \] (5.12)

\[E_i = -\phi_i, \] (5.13)

\[E_i^* = -\phi_i^*, \] (5.14)

\[H_i = -\psi_i, \] (5.15)

\[H_i^* = -\psi_i^*, \] (5.16)

\[\sigma_{ij} + \rho_1 f_i - \rho_{11} s^2 u_i - \rho_{12} s^2 u_i^* = 0, \] (5.17)

\[\sigma_{ij}^* + \rho_2 f_i - \rho_{21} s^2 u_i - \rho_{22} s^2 u_i^* = 0, \] (5.18)

\[-K_{ij} \theta_j = (1 + \tau_0 s) q_i, \] (5.19)

\[D_{ij} = 0, \] (5.20)

\[D_{ij}^* = 0, \] (5.21)

\[B_{ij} = 0, \] (5.22)

\[B_{ij}^* = 0, \] (5.23)

We now consider two problems where applied body forces, electric potential and the surface temperature are specified differently. Let the variables involved in these two problems be distinguished by superscripts in parentheses. Thus, we have \(u_i^{(1)}, u_i^{(2)}, \varepsilon_i^{(1)}, \varepsilon_i^{(2)}, \varepsilon_i^{(1)}, \varepsilon_i^{(2)}, \sigma_i^{(1)}, \sigma_i^{(2)}, \alpha_i^{(1)}, \alpha_i^{(2)}, \phi_i^{(1)}, \phi_i^{(2)}, \psi_i^{(1)}, \psi_i^{(2)} \) for the first problem and \(u_i^{(2)}, u_i^{(2)}, \varepsilon_i^{(2)}, \varepsilon_i^{(2)}, \varepsilon_i^{(2)}, \sigma_i^{(2)}, \sigma_i^{(2)}, \alpha_i^{(2)}, \alpha_i^{(2)}, \phi_i^{(2)}, \phi_i^{(2)}, \psi_i^{(2)}, \psi_i^{(2)} \) for the second problem. Each set of variables satisfies the Equations (5.5)–(5.23).
Using the assumption $\sigma_{ij} = \sigma_{ji}$ we obtain

$$\int_V \sigma_{ij}^{(1)} \varepsilon_{ij}^{(2)} \, dV + \int_V \sigma_{ni}^{(1)} \varepsilon_{ni}^{(2)} \, dV = \int_V \sigma_{ij}^{(1)} u_{ij}^{(2)} \, dV + \int_V \sigma_{ni}^{(1)} u_{ni}^{(2)} \, dV$$

$$= \int_V \left(\sigma_{ij}^{(1)} u_{ij}^{(2)} \right) \, dV + \int_V \left(\sigma_{ni}^{(1)} u_{ni}^{(2)} \right) \, dV - \int_V \sigma_{ij}^{(1)} u_{ij}^{(2)} \, dV$$

$$- \int_V \sigma_{ni}^{(1)} u_{ni}^{(2)} \, dV. \quad (5.24)$$

Using the divergence theorem in the first term of the right-hand side of Equation (5.24) yields

$$\int_V \sigma_{ij}^{(1)} \varepsilon_{ij}^{(2)} \, dV + \int_V \sigma_{ni}^{(1)} \varepsilon_{ni}^{(2)} \, dV = \int_A \sigma_{ij}^{(1)} u_{ij}^{(2)} \, n_j \, dA + \int_A \sigma_{ni}^{(1)} u_{ni}^{(2)} \, n_i \, dA$$

$$- \int_V \sigma_{ij}^{(1)} u_{ij}^{(2)} \, dV - \int_V \sigma_{ni}^{(1)} u_{ni}^{(2)} \, dV. \quad (5.25)$$

Equation (5.25) with the aid of Equations (5.1) and (5.17) gives

$$\int_V \left(\sigma_{ij}^{(1)} \varepsilon_{ij}^{(2)} + \sigma_{ni}^{(1)} \varepsilon_{ni}^{(2)} \right) \, dV = \int_A \left(h_{ij}^{(1)} u_{ij}^{(2)} + h_{ni}^{(1)} u_{ni}^{(2)} \right) \, dA$$

$$+ \int_V \left(\rho_{1} f_{ij}^{(1)} u_{ij}^{(2)} - \rho_{13} s^{2} u_{ij}^{(1)} u_{ij}^{(2)} - \rho_{12} s^{2} u_{ni}^{(1)} u_{ni}^{(2)} \right) \, dV$$

$$+ \int_V \left(\rho_{2} f_{ij}^{(1)} u_{ij}^{(2)} - \rho_{22} s^{2} u_{ni}^{(1)} u_{ni}^{(2)} - \rho_{23} s^{2} u_{ni}^{(1)} u_{ni}^{(2)} \right) \, dV. \quad (5.26)$$

A similar expression is obtained for the integral $\int_V \left(\sigma_{ij}^{(2)} \varepsilon_{ij}^{(1)} + \sigma_{ni}^{(2)} \varepsilon_{ni}^{(1)} \right) \, dV$, from which together with the Equation (5.26), it follows that

$$\int_V \left(\sigma_{ij}^{(2)} \varepsilon_{ij}^{(1)} - \sigma_{ij}^{(2)} \varepsilon_{ij}^{(1)} + \sigma_{ni}^{(2)} \varepsilon_{ni}^{(1)} - \sigma_{ni}^{(2)} \varepsilon_{ni}^{(1)} \right) \, dV$$

$$= \int_A \left(h_{ij}^{(2)} u_{ij}^{(1)} + h_{ni}^{(2)} u_{ni}^{(1)} - h_{ni}^{(1)} u_{ni}^{(2)} - h_{ni}^{(1)} u_{ni}^{(2)} \right) \, dA$$

$$+ \int_V \rho_{1} \left(F_{ij}^{(1)} u_{ij}^{(2)} - F_{ij}^{(1)} u_{ij}^{(1)} \right) \, dV + \int_V \rho_{2} \left(F_{ij}^{(2)} u_{ij}^{(1)} - F_{ij}^{(2)} u_{ij}^{(2)} \right) \, dV. \quad (5.27)$$

Now multiplying Equations (5.5), (5.6) by $\varepsilon_{ij}^{(2)}$, $\varepsilon_{ni}^{(2)}$ and $\varepsilon_{ij}^{(1)}$, $\varepsilon_{ni}^{(1)}$ for the first and second problems, respectively, subtracting and integrating over the region V, we obtain
\[
\int_V \left(\sigma_y^{(1)} \varepsilon_{yy}^{(2)} - \sigma_y^{(2)} \varepsilon_{yy}^{(1)} + \sigma^{(1)} \varepsilon_y^{(2)} - \sigma^{(2)} \varepsilon_y^{(1)} \right) \, dv \\
= \int_V c_{ij} \left(\varepsilon_{kk}^{(1)} - \varepsilon_{kk}^{(2)} \right) \, dv - \int_V \alpha_{ij} \left(\theta^{(1)} \varepsilon_{ij}^{(2)} - \theta^{(2)} \varepsilon_{ij}^{(1)} \right) \, dv \\
- \int_V \zeta_{ij} \left(\phi^{(1)} \varepsilon_{ij}^{(1)} - \phi^{(2)} \varepsilon_{ij}^{(2)} \right) \, dv - \int_V \zeta_{ik} \left(\phi^{(2)} \varepsilon_{ik}^{(1)} - \phi^{(1)} \varepsilon_{ik}^{(2)} \right) \, dv \\
- \int_V e_{ij} \left(\psi^{(2)} \varepsilon_{ij}^{(1)} - \psi^{(1)} \varepsilon_{ij}^{(2)} \right) \, dv - \int_V d_{ij} \left(\psi^{(2)} \varepsilon_{ij}^{(1)} - \psi^{(1)} \varepsilon_{ij}^{(2)} \right) \, dv \\
- \int_V f_{ij} \left(\psi^{(2)} \varepsilon_{ij}^{(1)} - \psi^{(1)} \varepsilon_{ij}^{(2)} \right) \, dv.
\]

Using the symmetry properties of \(c_{ij} \), we obtain

\[
\int_V \left(\sigma_y^{(1)} \varepsilon_{yy}^{(2)} - \sigma_y^{(2)} \varepsilon_{yy}^{(1)} + \sigma^{(1)} \varepsilon_y^{(2)} - \sigma^{(2)} \varepsilon_y^{(1)} \right) \, dv \\
= - \int_V e_{ik} \left(\phi^{(2)} \varepsilon_{ik}^{(1)} - \phi^{(1)} \varepsilon_{ik}^{(2)} \right) \, dv - \int_V \alpha_{ij} \left(\theta^{(1)} \varepsilon_{ij}^{(2)} - \theta^{(2)} \varepsilon_{ij}^{(1)} \right) \, dv \\
- \int_V \zeta_{ij} \left(\phi^{(2)} \varepsilon_{ij}^{(1)} - \phi^{(1)} \varepsilon_{ij}^{(2)} \right) \, dv - \int_V \zeta_{ik} \left(\phi^{(2)} \varepsilon_{ik}^{(1)} - \phi^{(1)} \varepsilon_{ik}^{(2)} \right) \, dv \\
- \int_V e_{ij} \left(\psi^{(2)} \varepsilon_{ij}^{(1)} - \psi^{(1)} \varepsilon_{ij}^{(2)} \right) \, dv - \int_V d_{ij} \left(\psi^{(2)} \varepsilon_{ij}^{(1)} - \psi^{(1)} \varepsilon_{ij}^{(2)} \right) \, dv \\
- \int_V f_{ij} \left(\psi^{(2)} \varepsilon_{ij}^{(1)} - \psi^{(1)} \varepsilon_{ij}^{(2)} \right) \, dv.
\]

Equating Equations (5.27) and (5.28), we get the first part of the reciprocity theorem.
\[
\int_A \left(h^{(1)}u_i^{(1)} - h_i^{(1)}u_i^{(1)} + h_i^{(1)}u_i^{(1)} - h_i^{(2)}u_i^{(1)} \right) \, dA \\
+ \int_V \rho_1 (F_i^{(1)}u_i^{(2)} - F_i^{(2)}u_i^{(1)}) \, dV + \int_V \rho_2 (f_i^{(1)}u_i^{(2)} - f_i^{(2)}u_i^{(1)}) \, dV \\
= -\int_V e_{ik} (\phi^{(2)}_{ik} e^{(1)}_{ij} - \phi^{(1)}_{ik} e^{(2)}_{ij}) \, dV - \int_V \alpha_{ik} (\theta^{(1)}_{ik} e^{(2)}_{ij} - \theta^{(2)}_{ik} e^{(1)}_{ij}) \, dV \\
- \int_V \zeta_{ik} (\phi^{(2)}_{ik} e^{(1)}_{ij} - \phi^{(1)}_{ik} e^{(2)}_{ij}) \, dV - \int_V \zeta_{ik} (\phi^{(2)}_{ik} e^{(1)}_{ij} - \phi^{(1)}_{ik} e^{(2)}_{ij}) \, dV \\
- \int_V q_{ik} (\psi^{(2)}_{ik} e^{(1)}_{ij} - \psi^{(1)}_{ik} e^{(2)}_{ij}) \, dV - \int_V q_{ik} (\psi^{(2)}_{ik} e^{(1)}_{ij} - \psi^{(1)}_{ik} e^{(2)}_{ij}) \, dV \\
- \int_V l_i (\psi^{(2)}_{ik} e^{(1)}_{ij} - \psi^{(1)}_{ik} e^{(2)}_{ij}) \, dV - \int_V l_i (\psi^{(2)}_{ik} e^{(1)}_{ij} - \psi^{(1)}_{ik} e^{(2)}_{ij}) \, dV. \\
\]

(5.29)

Equation (5.29) contains the mechanical causes of motion \(F, f \) and \(h^i, h_i^i \).

Using Equation (5.8), Equation (5.7) reduces to

\[
-q_{ij} = T_0 S \left(\alpha_{ij} + \tau_1 E_i + r \theta + \alpha' \epsilon^* + \epsilon' E_i^* + m_i H_i + m_i^f H_i^* \right). \\
\]

(5.30)

Now, taking the divergence on both sides of Equation (5.19) and using Equation (5.30), we arrive at the equation of heat conduction, namely

\[
\frac{\partial}{\partial x^k} \left(K_{ij} \theta_i^j \right) = \left(s + \tau_0 s^2 \right) T_0 \left(\alpha_{ij} \theta_i^j + \tau_1 E_i + r \theta + \alpha' \epsilon^* + \epsilon' E_i^* + m_i H_i + m_i^f H_i^* \right) \\
\]

(5.31)

To derive the second part, multiplying Equation (5.31) by \(\theta^{(1)} \) and \(\theta^{(2)} \) for the first and the second problems, respectively, subtracting and integrating over \(V \), we get

\[
\int_V \left(\left(K_{ij} \theta_i^j \right) \theta^{(1)} - \left(K_{ij} \theta_i^j \right) \theta^{(2)} \right) \, dV \\
= \left(s + \tau_0 s^2 \right) T_0 \int_V \alpha_{ij} \left(\theta_i^{(1)} \theta^{(2)} - \theta_i^{(2)} \theta^{(1)} \right) \, dV + \left(s + \tau_0 s^2 \right) T_0 \\
\times \int_V \tau_1 \left(E_i^{(1)} \theta^{(2)} - E_i^{(2)} \theta^{(1)} \right) \, dV + \left(s + \tau_0 s^2 \right) T_0 \\
\times \int_V \alpha' \left(\epsilon^{(1)} \theta^{(2)} - \epsilon^{(2)} \theta^{(1)} \right) \, dV + \left(s + \tau_0 s^2 \right) T_0 \\
\times \int_V m_i \left(H_i^{(1)} \theta^{(2)} - H_i^{(2)} \theta^{(1)} \right) \, dV + \left(s + \tau_0 s^2 \right) T_0 \\
\times \int_V m_i^f \left(H_i^{(1)} \theta^{(2)} - H_i^{(2)} \theta^{(1)} \right) \, dV. \\
\]

(5.32)
\[
\begin{align*}
\left(K_j \theta_j^{(1)} \right)_j \phi_j^{(2)} = \left(K_j \theta_j^{(1)} \theta_j^{(2)} \right)_j - K_j \theta_j^{(1)} \phi_j^{(1)} \text{ and } \left(K_j \theta_j^{(2)} \right)_j \phi_j^{(1)} = \left(K_j \theta_j^{(2)} \theta_j^{(1)} \right)_j - K_j \theta_j^{(2)} \phi_j^{(1)}
\end{align*}
\]
(5.33)

Equation (5.32) with the help of Equations (5.1), (5.2), (5.33) and the divergence theorem is written as

\[
\int_A \left(q^{(1)} \eta^{(2)} - q^{(2)} \eta^{(1)} \right) \, dA = -\left(s + \tau_0 s^2 \right) T_0
\]

\[
\times \int_V \left(\epsilon_{j k} \phi_j^{(1)} \eta^{(2)} - \epsilon_{j k} \phi_j^{(2)} \eta^{(1)} \right) \, dV - \left(s + \tau_0 s^2 \right) T_0
\]

\[
\times \int_V \tau_i \left(E_i^{(1)} \eta^{(2)} - E_i^{(2)} \eta^{(1)} \right) \, dV - \left(s + \tau_0 s^2 \right) T_0
\]

\[
\times \int_V \alpha \left(\varepsilon^{(1)} \phi_j^{(1)} - \varepsilon^{(2)} \phi_j^{(2)} \right) \, dV - \left(s + \tau_0 s^2 \right) T_0
\]

\[
\times \int_V \left(E_i^{(1)} \phi_j^{(2)} - E_i^{(2)} \phi_j^{(1)} \right) \, dV - \left(s + \tau_0 s^2 \right) T_0
\]

\[
\times \int_V \left(H_i^{(1)} \phi_j^{(2)} - H_i^{(2)} \phi_j^{(1)} \right) \, dV.
\]

(5.34)

The Equation (5.34) constitutes the second part of reciprocity theorem which contains the thermal causes of motion \(\eta \) and \(q \).

To derive the third part, multiplying Equations (5.9) and (5.10) by \(E_i^{(2)} \), \(E_i^{(1)} \), \(E_i^{(2)} \), \(E_i^{(1)} \) for the first and the second problems, respectively, subtracting and integrating over \(V \), we get

\[
\int_V \left(D_j^{(1)} E_i^{(2)} - D_j^{(2)} E_i^{(1)} + D_j^{(1)} E_i^{(2)} - D_j^{(2)} E_i^{(1)} \right) \, dV
\]

\[
= \int_V e_{j k} \left(\epsilon_{j k} E_i^{(2)} - \epsilon_{j k} E_i^{(1)} \right) \, dV + \int_V \tau_i \left(\phi_j^{(1)} E_i^{(2)} - \phi_j^{(2)} E_i^{(1)} \right) \, dV + \int_V \tau_i \left(\phi_j^{(1)} E_i^{(2)} - \phi_j^{(2)} E_i^{(1)} \right) \, dV
\]

\[
+ \int_V \left(\varepsilon^{(1)} E_i^{(2)} - \varepsilon^{(2)} E_i^{(1)} \right) \, dV + \int_V \left(\varepsilon^{(1)} E_i^{(2)} - \varepsilon^{(2)} E_i^{(1)} \right) \, dV
\]

\[
+ \int_V \left(H_i^{(1)} \phi_j^{(2)} - H_i^{(2)} \phi_j^{(1)} \right) \, dV + \int_V \left(H_i^{(1)} \phi_j^{(2)} - H_i^{(2)} \phi_j^{(1)} \right) \, dV
\]

\[
+ \int_V \left(H_i^{(1)} E_i^{(2)} - H_i^{(2)} E_i^{(1)} \right) \, dV + \int_V \left(H_i^{(1)} E_i^{(2)} - H_i^{(2)} E_i^{(1)} \right) \, dV.
\]

(5.35)

Equation (5.35) with the aid of Equations (5.13)–(5.16) yields
\[
\int_V (D_i^1 E_j^{(2)} - D_i^2 E_j^{(1)} + D_i^{(1)} E_j^{(2)} - D_i^{(2)} E_j^{(1)}) \, dV
\]

\[
= - \int_V e_{jk} (\epsilon_{jk}^{(1)} \phi_j^{(2)} - \epsilon_{jk}^{(2)} \phi_j^{(1)}) \, dV - \int_V \tau_i \left(\epsilon_i^{(1)} \phi_j^{(2)} - \epsilon_i^{(2)} \phi_j^{(1)} \right) \, dV
\]

\[
- \int_V \tau_i \left(\epsilon_i^{(1)} \phi_j^{(2)} - \epsilon_i^{(2)} \phi_j^{(1)} \right) \, dV - \int_V \epsilon_i^{(1)} \left(\epsilon_i^{(1)} \phi_j^{(2)} - \epsilon_i^{(2)} \phi_j^{(1)} \right) \, dV
\]

\[
\xi_{jk} \left(\epsilon_{jk}^{(1)} \phi_j^{(2)} - \epsilon_{jk}^{(2)} \phi_j^{(1)} \right) \, dV
\]

\[
+ \int_V f^i_j \left(\psi_j^{(1)} \phi_j^{(2)} - \psi_j^{(2)} \phi_j^{(1)} \right) \, dV + \int_V f^i_j \left(\psi_j^{(1)} \phi_j^{(2)} - \psi_j^{(2)} \phi_j^{(1)} \right) \, dV
\]

\[
+ \int_V f^i_j \left(\psi_j^{(1)} \phi_j^{(2)} - \psi_j^{(2)} \phi_j^{(1)} \right) \, dV + \int_V \gamma_0 \left(\psi_j^{(1)} \phi_j^{(2)} - \psi_j^{(2)} \phi_j^{(1)} \right) \, dV.
\]

Also, using (5.13) and (5.14), we have

\[
\int_V \left(D_i^2 E_j^{(2)} - D_i^{(2)} E_j^{(1)} + D_i^{(1)} E_j^{(2)} - D_i^{(2)} E_j^{(1)} \right) \, dV = \int_V \left(D_i^2 \phi_j^{(1)} - D_i^{(2)} \phi_j^{(1)} \right) \, dV + \int_V \left(D_i^{(2)} \phi_j^{(1)} - D_i^{(2)} \phi_j^{(1)} \right) \, dV. \tag{5.37}
\]

Now

\[
D_i^2 \phi_j^{(1)} = \left(D_i^{(2)} \phi_j^{(1)} \right)_j - D_i^{(2)} \phi_j^{(1)}, \quad D_i^{(1)} \phi_j^{(2)} = \left(D_i^{(1)} \phi_j^{(2)} \right)_j - D_i^{(1)} \phi_j^{(2)}, \quad D_i^{(1)} \phi_j^{(2)} = \left(D_i^{(1)} \phi_j^{(2)} \right)_j - D_i^{(1)} \phi_j^{(2)}. \tag{5.38}
\]

Using Equations (5.16), (5.17), (5.38) and divergence theorem in Equation (5.37), we obtain

\[
\int_V \left(D_i^1 E_j^{(2)} - D_i^2 E_j^{(1)} + D_i^{(1)} E_j^{(2)} - D_i^{(2)} E_j^{(1)} \right) \, dV = \int_V \left(\left(D_i^2 \phi_j^{(1)} \right)_j - \left(D_i^{(2)} \phi_j^{(1)} \right)_j \right) \, dV
\]

\[
+ \int_V \left(D_i^2 \phi_j^{(2)} - D_i^{(2)} \phi_j^{(1)} \right) \, dV
\]

\[
+ \int_V \left(\left(D_i^{(1)} \phi_j^{(2)} \right)_j - \left(D_i^{(1)} \phi_j^{(2)} \right)_j \right) \, dV
\]

\[
+ \int_V \left(D_i^{(1)} \phi_j^{(2)} - D_i^{(2)} \phi_j^{(1)} \right) \, dV \tag{5.39}
\]

\[
= \int_V \left(D_i^{(2)} \phi_j^{(1)} n_i - D_i^{(1)} \phi_j^{(2)} n_i + D_i^{(1)} \phi_j^{(2)} n_i - D_i^{(1)} \phi_j^{(2)} n_i \right) \, dA.
\]

Equation (5.39) with the aid of Equation (5.1) gives

\[
\int_V \left(D_i^1 E_j^{(2)} - D_i^2 E_j^{(1)} + D_i^{(1)} E_j^{(2)} - D_i^{(2)} E_j^{(1)} \right) \, dV = \int_V \left(c_i^{(2)} \phi_j^{(1)} - c_i^{(1)} \phi_j^{(2)} + c_i^{(2)} \phi_j^{(1)} - c_i^{(1)} \phi_j^{(2)} \right) \, dA. \tag{5.40}
\]

From Equations (5.36) and (5.40), we have
\[\int_A \left(c_i^{(1)} \phi^{(2)} - c_0^{(1)} \phi^{(1)} + c_i^{(2)} \phi^{(2)} - c_0^{(2)} \phi^{(1)} \right) dA = \int_V \left[e_{jk} \left(\phi^{(1)}_{j} - \phi^{(1)}_{k} \right) \right] dV \\
+ \int_V e_i \left(\phi^{(1)}_{i} - \phi^{(2)}_{i} \right) dV \\
+ \int_V e_i \left(\phi^{(1)}_{i} - \phi^{(2)}_{i} \right) dV \\
+ \int_V c_i \left(\phi^{(1)}_{i} - \phi^{(1)}_{i} \right) dV \\
+ \int_V e_i \left(\phi^{(1)}_{i} - \phi^{(2)}_{i} \right) dV \\
+ \int_V \left[c_{jk} \left(\phi^{(1)}_{jk} - \phi^{(1)}_{jk} \right) \right] dV \\
+ \int_V f_{ij} \left(\psi^{(1)}_{ij} - \psi^{(2)}_{ij} \right) dV \\
+ \int_V f_{ij} \left(\psi^{(1)}_{ij} - \psi^{(2)}_{ij} \right) dV \\
+ \int_V f_{ij} \left(\psi^{(1)}_{ij} - \psi^{(2)}_{ij} \right) dV \\
+ \int_V \gamma_j \left(\psi^{(1)}_{ij} - \psi^{(2)}_{ij} \right) dV. \tag{5.41} \]

The Equation (5.41) constitutes the third part of reciprocity theorem which contains the electric potentials \(\phi, \phi^* \) and surface charge densities \(c_i, c_0^* \).

To derive the last part, multiplying Equations (5.11) and (5.12) by \(H^1_{i}, \ H^1_{i} \) and \(H^2_{i}, \ H^2_{i} \) for the first and the second problems, respectively, subtracting and integrating over \(V \), we get

\[\int_V \left(B_{ij}^{(1)} H^2_{i} - B_{ij}^{(2)} H^1_{i} + B_{ij}^{(1)} H^{(2)} - B_{ij}^{(2)} H^{(1)} \right) dV = \int_V q_{jk} \left(\phi^{(1)}_{j} - \phi^{(2)}_{j} \right) dV \\
+ \int_V m_i \left(\phi^{(1)}_{i} - \phi^{(2)}_{i} \right) dV \\
+ \int_V f_{ij} \left(\psi^{(1)}_{ij} - \psi^{(2)}_{ij} \right) dV \\
+ \int_V c_{ij} \left(\phi^{(1)}_{ij} - \phi^{(2)}_{ij} \right) dV \\
+ \int_V e_i \left(\phi^{(1)}_{i} - \phi^{(2)}_{i} \right) dV \tag{5.42} \]
Equation (5.42) with the aid of Equations (5.13)–(5.16) yields

\[
\int_V \left(B^{(1)}_i H^{(2)}_i - B^{(2)}_i H^{(1)}_i + B^{* (1)}_i H^{* (2)}_i - B^{* (2)}_i H^{* (1)}_i \right) \, dV = - \int_V q_{jk} \left(\epsilon^{(1)}_{ij} \psi^{(2)}_j - \epsilon^{(2)}_{ik} \psi^{(1)}_k \right) \, dV - \int_V m_i \left(\theta^{(1)}_{ij} \psi^{(2)}_j - \theta^{(2)}_{ij} \psi^{(1)}_j \right) \, dV + \int_V f_{ik} \left(\phi^{(1)}_{ik} \psi^{(1)}_j - \phi^{(2)}_{ik} \psi^{(2)}_j \right) \, dV - \int_V m_i \left(\theta^{(1)}_{ij} \psi^{(2)}_j - \theta^{(2)}_{ij} \psi^{(1)}_j \right) \, dV - \int_V l_i \left(\epsilon^{* (1)}_{ij} \psi^{* (2)}_j - \epsilon^{* (2)}_{ij} \psi^{(1)}_j \right) \, dV - \int_V q_{jk} \left(\epsilon^{* (1)}_{ij} \psi^{* (2)}_j - \epsilon^{* (2)}_{ik} \psi^{* (1)}_k \right) \, dV + \int_V f_{ij} \left(\phi^{* (1)}_{ij} \psi^{* (2)}_j - \phi^{* (2)}_{ij} \psi^{(2)}_j \right) \, dV - \int_V l_i \left(\epsilon^{* (1)}_{ij} \psi^{* (2)}_j - \epsilon^{* (2)}_{ij} \psi^{* (1)}_j \right) \, dV.
\]

\((5.43) \)

Also, using Equations (5.15) and (5.16), we have

\[
\int_V \left(B^{(1)}_i H^{(2)}_i - B^{(2)}_i H^{(1)}_i + B^{* (1)}_i H^{* (2)}_i - B^{* (2)}_i H^{* (1)}_i \right) \, dV = \int_V \left(B^{(1)}_i \psi^{(2)}_j - B^{(2)}_i \psi^{(1)}_j \right) \, dV + \int_V \left(B^{* (1)}_i \psi^{* (2)}_j - B^{* (2)}_i \psi^{* (1)}_j \right) \, dV.
\]

\((5.44) \)

Now

\[
B^{(2)}_i \psi^{(1)}_j = \left(B^{(2)}_i \psi^{(1)}_j \right)_j - B^{* (2)}_i \psi^{(1)}_j B^{(1)}_i \psi^{(2)}_j
\]

\[
= \left(B^{(1)}_i \psi^{(2)}_j \right)_j - B^{* (2)}_i \psi^{(2)}_j B^{(1)}_i \psi^{(1)}_j
\]

\[
= \left(B^{* (1)}_i \psi^{(2)}_j \right)_j - B^{* (2)}_i \psi^{(2)}_j B^{* (1)}_i \psi^{(1)}_j, \text{ and } B^{(1)}_i \psi^{(2)}_j
\]

\[
= \left(B^{(1)}_i \psi^{(2)}_j \right)_j - B^{(1)}_i \psi^{(2)}_j B^{* (1)}_i \psi^{(2)}_j.
\]

\((5.45) \)
From Equations (5.45), (5.20), (5.23) and divergence theorem in Equation (5.44), we obtain

\[
\int_V \left(B_i^1 H_j^2 - B_i^2 H_j^1 + B_i^{*1} H_j^{*2} - B_i^{*2} H_j^{*1} \right) \, dV = \int_V \left(\left(B_i^2 \psi^{(1)} \right)_j - \left(B_i^{*2} \psi^{*1} \right)_j \right) \, dV
\]
\[
+ \int_V \left(B_i^1 \psi^{(2)} - B_i^{*1} \psi^{*2} \right) \, dV
\]
\[
+ \int_V \left(\left(B_i^{*2} \psi^{*1} \right)_j - \left(B_i^1 \psi^{(2)} \right)_j \right) \, dV
\]
\[
+ \int_V \left(B_i^{*1} \psi^{*2} - B_i^1 \psi^{(1)} \right) \, dV
\]
\[
= \int_A \left(B_i^2 \psi^{(1)} n_i - B_i^{*2} \psi^{*1} n_i + B_i^{*2} \psi^{*1} n_i - B_i^1 \psi^{(2)} n_i \right) \, dA.
\]
\[
(5.46)
\]

Equation (5.46) with the aid of Equation (5.1), gives

\[
\int_V \left(B_i^1 H_j^2 - B_i^2 H_j^1 + B_i^{*1} H_j^{*2} - B_i^{*2} H_j^{*1} \right) \, dV
\]
\[
= \int_A \left(b_i^{(2)} \psi^{(1)} - b_i^{*1} \psi^{*(2)} + b_i^{*1} \psi^{*(1)} - b_i^{(2)} \psi^{(2)} \right) \, dA.
\]
\[
(5.47)
\]

From Equations (5.43) and (5.47), we have

\[
\int_A \left(b_i^{(1)} \psi^{(2)} - b_i^{*1} \psi^{*(1)} + b_i^{*1} \psi^{*(2)} - b_i^{(2)} \psi^{(1)} \right) \, dA = \int_V \left(q_{jr} \left(\epsilon_{jr}^{(1)} \psi_j^{(2)} - \epsilon_{jr}^{(2)} \psi_j^{(1)} \right) \right) \, dV
\]
\[
+ \int_V \left(\theta^1 \psi_j^{(2)} - \theta^2 \psi_j^{(1)} \right) \, dV
\]
\[
- \int_V f_{jr} \left(\phi_{jr}^{(1)} - \phi_{jr}^{(2)} \right) \, dV
\]
\[
+ \int_V l_{jr} \left(\phi_j^{(1)} \psi_j^{(2)} - \phi_j^{(2)} \psi_j^{(1)} \right) \, dV
\]
\[
+ \int_V q_{jj} \left(\epsilon_{jj}^{(1)} \psi_j^{(2)} - \epsilon_{jj}^{(2)} \psi_j^{(1)} \right) \, dV
\]
\[
+ \int_V m_{jr} \left(\theta^1 \psi_j^{(2)} - \theta^2 \psi_j^{(1)} \right) \, dV
\]
\[
+ \int_V f_{jr} \left(\phi_{jr}^{(1)} - \phi_{jr}^{(2)} \right) \, dV
\]
\[
- \int_V l_{jr} \left(\phi_j^{(1)} \psi_j^{(2)} - \phi_j^{(2)} \psi_j^{(1)} \right) \, dV
\]
\[
= \int_V \left(q_{jr} \left(\epsilon_{jr}^{(1)} \psi_j^{(2)} - \epsilon_{jr}^{(2)} \psi_j^{(1)} \right) \right) \, dV
\]
\[
+ \int_V \left(\theta^1 \psi_j^{(2)} - \theta^2 \psi_j^{(1)} \right) \, dV
\]
\[
- \int_V f_{jr} \left(\phi_{jr}^{(1)} - \phi_{jr}^{(2)} \right) \, dV
\]
\[
+ \int_V l_{jr} \left(\phi_j^{(1)} \psi_j^{(2)} - \phi_j^{(2)} \psi_j^{(1)} \right) \, dV
\]
\[
+ \int_V q_{jj} \left(\epsilon_{jj}^{(1)} \psi_j^{(2)} - \epsilon_{jj}^{(2)} \psi_j^{(1)} \right) \, dV
\]
\[
+ \int_V m_{jr} \left(\theta^1 \psi_j^{(2)} - \theta^2 \psi_j^{(1)} \right) \, dV
\]
\[
+ \int_V f_{jr} \left(\phi_{jr}^{(1)} - \phi_{jr}^{(2)} \right) \, dV
\]
\[
- \int_V l_{jr} \left(\phi_j^{(1)} \psi_j^{(2)} - \phi_j^{(2)} \psi_j^{(1)} \right) \, dV
\]
\[
= \int_V \left(q_{jr} \left(\epsilon_{jr}^{(1)} \psi_j^{(2)} - \epsilon_{jr}^{(2)} \psi_j^{(1)} \right) \right) \, dV
\]
\[
+ \int_V \left(\theta^1 \psi_j^{(2)} - \theta^2 \psi_j^{(1)} \right) \, dV
\]
\[
- \int_V f_{jr} \left(\phi_{jr}^{(1)} - \phi_{jr}^{(2)} \right) \, dV
\]
\[
+ \int_V l_{jr} \left(\phi_j^{(1)} \psi_j^{(2)} - \phi_j^{(2)} \psi_j^{(1)} \right) \, dV
\]
\[
+ \int_V q_{jj} \left(\epsilon_{jj}^{(1)} \psi_j^{(2)} - \epsilon_{jj}^{(2)} \psi_j^{(1)} \right) \, dV
\]
\[
+ \int_V m_{jr} \left(\theta^1 \psi_j^{(2)} - \theta^2 \psi_j^{(1)} \right) \, dV
\]
\[
+ \int_V f_{jr} \left(\phi_{jr}^{(1)} - \phi_{jr}^{(2)} \right) \, dV
\]
\[
- \int_V l_{jr} \left(\phi_j^{(1)} \psi_j^{(2)} - \phi_j^{(2)} \psi_j^{(1)} \right) \, dV
\]
\[
(5.48)
\]

The Equation (5.48) constitutes the last part of reciprocity theorem which contains the magnetic potentials ψ, ψ^* and magnetic densities b_0, b_0^*.
Eliminating the integrals

\[
\begin{align*}
\int_a^b \left(\epsilon^{(1)} \theta^{(2)} - \epsilon^{(2)} \theta^{(1)} \right) dV, & \quad \int_a^b \left(\phi^{(1)} \psi^{(2)}_j - \phi^{(2)} \psi^{(1)}_j \right) dV, \\
\int_a^b \left(\tau^{(1)} \phi^{(2)}_j - \tau^{(2)} \phi^{(1)}_j \right) dV, & \quad \int_a^b \left(\tau^{(1)} \phi^{(2)}_j - \tau^{(2)} \phi^{(1)}_j \right) dV, \\
\int_a^b \left(\xi^{(1)} \phi^{(2)}_j - \xi^{(2)} \phi^{(1)}_j \right) dV, & \quad \int_a^b \left(\xi^{(1)} \phi^{(2)}_j - \xi^{(2)} \phi^{(1)}_j \right) dV, \\
\int_a^b \left(\nu^{(1)} \phi^{(2)}_j - \nu^{(2)} \phi^{(1)}_j \right) dV, & \quad \int_a^b \left(\nu^{(1)} \phi^{(2)}_j - \nu^{(2)} \phi^{(1)}_j \right) dV, \\
\int_a^b \left(\mu^{(1)} \phi^{(2)}_j - \mu^{(2)} \phi^{(1)}_j \right) dV, & \quad \int_a^b \left(\mu^{(1)} \phi^{(2)}_j - \mu^{(2)} \phi^{(1)}_j \right) dV, \\
\int_a^b \left(\gamma^{(1)} \mu^{(2)} \phi^{(2)}_j - \gamma^{(2)} \mu^{(1)} \phi^{(2)}_j \right) dV, & \quad \int_a^b \left(\gamma^{(1)} \mu^{(2)} \phi^{(2)}_j - \gamma^{(2)} \mu^{(1)} \phi^{(2)}_j \right) dV, \\
\int_a^b \left(\gamma^{(1)} \mu^{(2)} \phi^{(2)}_j - \gamma^{(2)} \mu^{(1)} \phi^{(2)}_j \right) dV, & \quad \int_a^b \left(\gamma^{(1)} \mu^{(2)} \phi^{(2)}_j - \gamma^{(2)} \mu^{(1)} \phi^{(2)}_j \right) dV, \\
\int_a^b \left(\gamma^{(1)} \mu^{(2)} \phi^{(2)}_j - \gamma^{(2)} \mu^{(1)} \phi^{(2)}_j \right) dV, & \quad \int_a^b \left(\gamma^{(1)} \mu^{(2)} \phi^{(2)}_j - \gamma^{(2)} \mu^{(1)} \phi^{(2)}_j \right) dV,
\end{align*}
\]

from Equations (5.29), (5.34), (5.41) and (5.48) with the aid of Equations (5.13)–(5.16), we obtain

\[
s(1 + \tau_0 s) T_0 \left[\int_A \left(h^{(1)} u^{(2)}_i - h^{(2)} u^{(1)}_i \right) dA + \int_V \rho_1 \left(F^{(1)}_{ij} u^{(2)}_j - F^{(2)}_{ij} u^{(1)}_j \right) dV \right] + s(1 + \tau_0 s) T_0 \left[\int_V \rho_2 \left(F^{(1)}_{ij} u^{(2)}_j - F^{(2)}_{ij} u^{(1)}_j \right) dV + \int_A \left(c^{(1)} \phi^{(2)}_j - c^{(2)} \phi^{(1)}_j + c^{(1)} \phi^{(2)}_j - c^{(2)} \phi^{(1)}_j \right) dA \right]
\]

(5.49)

\[
+ s(1 + \tau_0 s) T_0 \left[\int_A \left(b^{(1)}_0 \psi^{(2)}_j - b^{(2)}_0 \psi^{(1)}_j + b^{(1)}_0 \psi^{(2)}_j - b^{(2)}_0 \psi^{(1)}_j \right) dA \right]
\]

(5.49)

\[
+ \int A \left(q^{(1)} \psi^{(2)}_j - q^{(2)} \psi^{(1)}_j \right) dA = 0.
\]

This is the general reciprocity theorem in the Laplace transform domain.

For applying inverse Laplace transform on the equations (5.29), (5.34), (5.41), (5.48) and (5.49), we use the convolution theorem

\[
L^{-1}(F(s)G(s)) = \int_0^t f(t - \xi)g(\xi) d\xi = \int_0^t g(t - \xi)f(\xi) d\xi,
\]

(5.50)

and the symbolic notation

\[
Y(f) = 1 + \tau_0 \frac{df(x, \xi)}{d\xi},
\]

(5.51)
Equations (5.29), (5.34), (5.41) and (5.48) with the aid of Equation (5.50) yield the first, second and last parts of the reciprocity theorem in the final form

$$
\int_{A}^{t} \left(h_{j}^{1}(x, t - \xi) u_{j}^{2}(x, \xi) + h_{j}^{21}(x, t - \xi) u_{j}^{21}(x, \xi) \right) d\xi dA + \int_{V}^{t} \rho_{j} \left(F_{j}^{1}(x, t - \xi) u_{j}^{2}(x, \xi) \right) d\xi dV
$$
\[+ \int_{V}^{t} \rho_{j} \left(f_{j}^{1}(x, t - \xi) u_{j}^{21}(x, \xi) \right) dV - \int_{V}^{t} e_{jk} \left(\phi_{k}^{1}(x, t - \xi) u_{j}^{21}(x, \xi) \right) d\xi dV
$$
\[+ \int_{V}^{t} \alpha_{ij} \left(\theta^{1}(x, t - \xi) e_{j}^{21}(x, \xi) \right) d\xi dV + \int_{V}^{t} \alpha^{i} \left(\theta^{1}(x, t - \xi) e_{j}^{21}(x, \xi) \right) d\xi dV
$$
\[- \int_{V}^{t} \xi_{jk} \phi_{k}^{1}(x, t - \xi) e_{j}^{21}(x, \xi) d\xi dV - \int_{V}^{t} e_{jk} \phi_{j}^{1}(x, t - \xi) e_{j}^{21}(x, \xi) d\xi dV
$$
\[- \int_{V}^{t} q_{jk} \left(\psi_{k}^{1}(x, t - \xi) e_{j}^{21}(x, \xi) \right) d\xi dV - \int_{V}^{t} q_{jk} \left(\psi_{j}^{1}(x, t - \xi) e_{j}^{21}(x, \xi) \right) d\xi dV
$$
\[- \int_{V}^{t} l_{jk} \left(\psi_{j}^{1}(x, t - \xi) e_{j}^{21}(x, \xi) \right) d\xi dV - \int_{V}^{t} l_{jk} \left(\psi_{j}^{1}(x, t - \xi) e_{j}^{21}(x, \xi) \right) d\xi dV = S_{21}^{12},
$$
\[(5.52)\]

$$
\int_{A}^{t} q_{11}(x, t - \xi) h_{1}^{2}(x, \xi) d\xi dA - T_{0} \int_{V}^{t} \alpha_{ij} \theta^{1}(x, t - \xi) \frac{\partial Y^{2}(x, \xi)}{\partial \xi} d\xi dV
$$
\[- T_{0} \int_{V}^{t} \alpha^{i} \theta^{1}(x, t - \xi) \frac{\partial Y^{2}(x, \xi)}{\partial \xi} d\xi dV + T_{0} \int_{V}^{t} m_{ij} \theta^{1}(x, t - \xi) \frac{\partial Y^{2}(x, \xi)}{\partial \xi} d\xi dV
$$
\[+ T_{0} \int_{V}^{t} \alpha^{i} \theta^{1}(x, t - \xi) \frac{\partial Y^{2}(x, \xi)}{\partial \xi} d\xi dV + T_{0} \int_{V}^{t} m_{ij} \theta^{1}(x, t - \xi) \frac{\partial Y^{2}(x, \xi)}{\partial \xi} d\xi dV
$$
\[+ T_{0} \int_{V}^{t} m_{ij} \theta^{1}(x, t - \xi) \frac{\partial Y^{2}(x, \xi)}{\partial \xi} d\xi dV = S_{21}^{12},
$$
\[(5.53)\]
\[
\int_t^A \left(c_0^{(1)}(x, t - \xi)\psi^{(2)}(x, \xi) + c_0^{(1)}(x, t - \xi)\psi^{(2)}(x, \xi) \right) d\xi dA + \int_t^V \sum_j e_{jk}^{(1)}(x, t - \xi)\psi_{jk}^{(2)}(x, \xi) d\xi dV
\]

\[
\begin{aligned}
+ & \int_t^V \tau_i \phi_i^{(1)}(x, t - \xi)\theta_i^{(2)}(x, \xi) d\xi dV \\
+ & \int_t^V \tau_i \phi_i^{(1)}(x, t - \xi)\theta_i^{(2)}(x, \xi) d\xi dV \\
+ & \int_t^V \sum_j e_{jk}^{(1)}(x, t - \xi)\psi_{jk}^{(2)}(x, \xi) d\xi dV \\
+ & \int_t^V \sum_j e_{jk}^{(1)}(x, t - \xi)\psi_{jk}^{(2)}(x, \xi) d\xi dV \\
+ & \int_t^V \sum_j f_{ij}^{(1)}(x, t - \xi)\phi_{ij}^{(2)}(x, \xi) d\xi dV \\
+ & \int_t^V \sum_j f_{ij}^{(1)}(x, t - \xi)\phi_{ij}^{(2)}(x, \xi) d\xi dV \\
+ & \int_t^V \sum_j g_j \phi_j^{(1)}(x, t - \xi)\psi_j^{(2)}(x, \xi) d\xi dV = S_{21}^{12}.
\end{aligned}
\]

\begin{align}
\int_t^A \left(\psi_i^{(1)}(x, t - \xi)\phi_i^{(2)}(x, \xi) + \psi_i^{(1)}(x, t - \xi)\psi_i^{(2)}(x, \xi) \right) d\xi dA + \int_t^V q_{jk} \psi_{jk}^{(1)}(x, t - \xi)\phi_{jk}^{(2)}(x, \xi) d\xi dV \\
+ & \int_t^V m_i \phi_i^{(1)}(x, t - \xi)\theta_i^{(2)}(x, \xi) d\xi dV \\
+ & \int_t^V m_i \phi_i^{(1)}(x, t - \xi)\theta_i^{(2)}(x, \xi) d\xi dV \\
+ & \int_t^V q_{ijk} \phi_{ijk}^{(1)}(x, t - \xi)\phi_{ijk}^{(2)}(x, \xi) d\xi dV \\
+ & \int_t^V q_{ijk} \phi_{ijk}^{(1)}(x, t - \xi)\phi_{ijk}^{(2)}(x, \xi) d\xi dV \\
+ & \int_t^V f_{ij}^{(1)}(x, t - \xi)\phi_{ij}^{(2)}(x, \xi) d\xi dV \\
+ & \int_t^V f_{ij}^{(1)}(x, t - \xi)\phi_{ij}^{(2)}(x, \xi) d\xi dV \\
- & \int_t^V f_{ij}^{(1)}(x, t - \xi)\phi_{ij}^{(2)}(x, \xi) d\xi dV = S_{21}^{12}.
\end{align}

Here, \(S_{21}^{12} \) indicates the same expression as on the left-hand side except that the superscripts (1) and (2) are interchanged. Finally, Equation (5.49) with the aid of Equation (5.50) gives the general reciprocity theorem in the final form.
\[\int_{A}^{t} h_{ij}^{(1)}(x, t - \xi) \frac{\partial Y}{\partial \xi} \left(u_{ij}^{(2)}(x, \xi) \right) d\xi dA + \int_{A}^{t} h_{ij}^{(2)}(x, t - \xi) \frac{\partial Y}{\partial \xi} \left(u_{ij}^{(1)}(x, \xi) \right) d\xi dA + \int_{V}^{t} \rho_{F} f_{i}^{(1)}(x, t - \xi) \frac{\partial Y}{\partial \xi} \left(u_{ij}^{(2)}(x, \xi) \right) d\xi dV + \int_{A}^{t} c_{ij}^{(1)}(x, t - \xi) \frac{\partial Y}{\partial \xi} \left(\phi_{i}^{(1)}(x, \xi) \right) d\xi dA + \int_{A}^{t} c_{ij}^{(2)}(x, t - \xi) \frac{\partial Y}{\partial \xi} \left(\phi_{i}^{(2)}(x, \xi) \right) d\xi dA + \int_{A}^{t} b_{ij}^{(1)}(x, t - \xi) \frac{\partial Y}{\partial \xi} \left(\psi_{j}^{(1)}(x, \xi) \right) d\xi dA + \int_{A}^{t} b_{ij}^{(2)}(x, t - \xi) \frac{\partial Y}{\partial \xi} \left(\psi_{j}^{(2)}(x, \xi) \right) d\xi dA + \int_{A}^{t} q^{(1)}(x, t - \xi) \left(\eta^{(1)}(x, \xi) \right) d\xi dA = S_{12}^{12}. \]

(5.56)

Particular case:

In the absence of the magnetic effect and further if we put coupling coefficients of pore-fluid phase to zero with \(\rho_{11} = \rho_{22} = 0 \), then we obtain the similar results as obtained by Ieşan (1990).

6. Conclusion

In this paper, the governing equations for porous magneto-piezothermoelastic model are considered in the context of Biot’s theory of poroelasticity and Lord and Shulman’s generalised theory of thermoelasticity. The variational principle, reciprocity and uniqueness theorems are proved in the above proposed model. The deduced results in the above model are verified from the known results.

Funding

The authors received no direct funding for this research.

Author details

Rajneesh Kumar
E-mail: rajneesh_kuk@rediffmail.com

Poonam Sharma
E-mail: poonamwater189@gmail.com

1 Department of Mathematics, Kurukshetra University, Kurukshetra 136119, Haryana, India.

Citation information

Cite this article as: Variational principle, uniqueness and reciprocity theorems in porous magneto-piezothermoelastic medium, Rajneesh Kumar & Poonam Sharma, Cogent Mathematics (2016), 3: 1231947.

References

Alshalghi, F. A. (2012). The mathematical modelling for studying the influence of the initial stresses and relaxation times on reflection and refraction waves in piezothermoelastic half-space. Applied Mathematics, 03, 819–832. http://dx.doi.org/10.4236/am.2012.318123

Aouadi, M. (2007). Uniqueness and reciprocity theorems in the theory of generalized thermoelastic diffusion. Journal of Thermal Stresses, 30, 665–678. http://dx.doi.org/10.1080/00224430701212815

Arai, T., Ayusawa, K., Sato, H., Miyata, T., Kawamura, K., & Kobayashi, K. (1991). Properties of hydrophone with porous piezoelectric ceramics. Japanese Journal of Applied Physics, 30, 2253–2255. http://dx.doi.org/10.1143/JJAP.30.2253

Bann, H. (1993). Effects of porosity on dielectric, elastic and electromechanical properties of Pb(Zr, Ti)O3 ceramics with open pores: a theoretical approach. Japanese Journal of Applied Physics, 32, 4214–4217. http://dx.doi.org/10.1143/JJAP.32.4214

Biot, M. A. (1962a). Thermoelasticity and Irreversible Thermodynamics. Journal of Applied Physics, 27, 240–253. http://dx.doi.org/10.1063/1.1722351

Biot, M. A. (1962b). Mechanics of deformation and acoustic propagation in porous media. Journal of Applied Physics, 33, 1482–1498. http://dx.doi.org/10.1063/1.1728759

Biot, M. A. (1962c). Generalized theory of acoustic propagation in porous dissipative media. The Journal of the Acoustical Society of America, 34, 1254–1264. http://dx.doi.org/10.1121/1.1918315

Chandrasekhar, D. S. (1984). A generalised linear thermoelasticity theory of piezoelectric media. Acta Mechanica, 71, 293–349.

Chen, W. Q. (2000). On the general solution for piezothermoelasticity for transverse isotropy with application. Journal of Applied Mechanics, 67, 705–711. http://dx.doi.org/10.1115/1.1328369
Ezzat, M. A., & El Karamany, A. S. (2002). The uniqueness and reciprocity theorems for generalized thermoviscoelasticity for anisotropic media. Journal of Thermal Stresses, 25, 507–522. http://dx.doi.org/10.1080/01495730290074261

Gómez Alvarez-Arenas, T. E., & Montero de Espinosa, F. (1996). Highly coupled dielectric behavior of porous ceramics embedding a polymer. Applied Physics Letters, 68, 263–265. http://dx.doi.org/10.1063/1.115657

Hashimoto, K. V., & Yamaguchi, M. (1986). Piezoelectric and dielectric properties of composite materials. Proceedings of the IEEE Ultrasonics Symposium, 2, 697–702.

Hayashi, T., et al. (1991). Processing of porous 3-3 PZT ceramics using capsule-free O 2 -HIP. Japanese Journal of Applied Physics, 30, 2243–2246. http://dx.doi.org/10.1143/JJAP.30.2243

Jegan, D. (1990). Reciprocity, uniqueness and minimum principles in the linear theory of piezoelectricity. International Journal of Engineering Science, 28, 1139–1149. http://dx.doi.org/10.1016/0020-7225(90)90113-W

Ignaczak, J. (1979). Uniqueness in generalized thermoelasticity. Journal of Thermal Stresses, 2, 171–175. http://dx.doi.org/10.1080/0149573790896299

Kumar, R., & Gupta, V. (2013). Uniqueness and reciprocity theorem and plane waves in thermoelastic diffusion with a fractional order derivative. Chinese Physics B, 22, 074601. http://dx.doi.org/10.1088/1674-1056/22/7/074601

Kumar, R., & Kansal, T. (2013). Variational principle, uniqueness and reciprocity theorems in the theory of generalized thermoelastic diffusion material. Giscience Connect, 27. http://dx.doi.org/10.5339/connect.2013.27

Li, J. Y. (2003). Uniqueness and reciprocity theorems for linear thermo-electro-magneto-elasticity. The Quarterly Journal of Mechanics and Applied Mathematics, 56, 35–43. http://dx.doi.org/10.1093/qjmam/56.1.35

Li, J. Y., & Dunn, M. L. (1998). Micromechanics of magnetoelectroelastic composite materials: Average fields and effective behavior. Journal of Intelligent Material Systems and Structures, 9, 404–416. http://dx.doi.org/10.1177/1045389X9800900602

Li, L., & Wei, P. J. (2014). The piezoelectric and piezomagnetic effect on the surface wave velocity of magneto-electro-elastic solids. Journal of Sound and Vibration, 333, 2312–2326. http://dx.doi.org/10.1016/j.jsv.2013.12.005

Majhi, M. C. (1995). Discontinuities in generalized thermo elastic wave propagation in a semi- infinite piezoelectric rod. Journal of Technical Physics, 36, 269–278.

Mindlin, R. D. (1974). Equations of high frequency vibrations of thermopiezoelectric crystal plates. International Journal of Solids and Structures, 10, 625–637. http://dx.doi.org/10.1016/0020-7681(74)90047-X

Nowacki, W. (1974). Dynamical problem of thermomediaction in solid-1. Bull. Of polish Academy of Science Series. Science and Technology, 22, 54–64.

Nowacki, W. (1976). Some general theorems of thermopiezoelectricity. Journal of Thermal Stresses, 1, 171–182. http://dx.doi.org/10.1080/01495737808926940

Nowacki, W. (1979). Foundation of linear piezoelectricity. In H. Porkus (Ed.), Interactions in elastic solids (Chapter 1). Wien: Springer.

Otao, Y., & Ishihara, M. (2013). Transient thermoelastic analysis of a laminated hollow cylinder constructed of isotropic elastic and magneto-electro-thermoelastic material. Advances in Materials Science and Applications, 2, 48–59.

Öhm, M. I. A. (2004). The uniqueness and reciprocity theorems for generalised thermoelasticity with thermal relaxation times. Mechanics and Mechanical Engineering, 7, 77–87.

Pang, Y., & Li, J. X. (2014). SH interfacial waves between piezoelectric/piezomagnetic half-spaces with magneto-electro-elastic imperfect bonding. Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA), 226–230. doi:10.1109/SPAWDA.2014.6989567

Rao, S. S., & Sunar, M. (1993). Analysis of thermopiezoelectric sensors and actuators in advanced intelligent structures. American Institute of Aeronautics and Astronautics Journal, 31, 1280–1286.

Sharma, M. D. (2004a). Three-dimensional wave propagation in a general anisotropic poroelastic medium: Phase velocity, group velocity and polarization. Geophysical Journal International, 156, 329–344. http://dx.doi.org/10.1111/j.1365-246X.2004.156.issue-2

Sharma, M. D. (2004b). 3-D wave propagation in a general anisotropic poroelastic medium: Reflection and refraction at an interface with fluid. Geophysical Journal International, 157, 947–958. http://dx.doi.org/10.1111/j.1365-246X.2004.157.issue-2

Sharma, M. D. (2008). Wave propagation in thermoelastic saturated porous medium. Journal of Earth System Science, 114, 411–419. http://dx.doi.org/10.1007/BF02702141

Sharma, M. D. (2010). Propagation of inhomogeneous waves in anisotropic piezo-thermoelastic media. Acta Mechanica, 215, 307–318. http://dx.doi.org/10.1007/s10483-009-0702-6

Sharma, M. D. (2013). Propagation of inhomogeneous waves in anisotropic piezo-thermoelastic media. Acta Mechanica, 248, 59–71. http://dx.doi.org/10.1007/s10483-012-0189-3

Sharma, M. D., & Gogna, M. L. (1991). Wave propagation in anisotropic liquid-saturated porous solids. The Journal of the Acoustical Society of America, 90, 1068–1073. http://dx.doi.org/10.1121/1.402295

Sharma, J. N., & Kumar, M. (2000). Plane harmonic waves in piezothermoelastic materials. Indian Journal of Engineering and Materials Sciences, 7, 434–442.

Sharma, J. N., & Walia, V. (2007). Further investigations on Rayleigh waves in piezothermoelastic materials. Journal of Sound and Vibration, 301, 189–206. http://dx.doi.org/10.1016/j.jsv.2006.09.018

Sharma, J. N., Pat, M., & Chand, D. (2005). Propagation characteristics of Rayleigh waves in transversely isotropic piezothermoelastic materials. Journal of Sound and Vibration, 284, 227–248. http://dx.doi.org/10.1016/j.jsv.2006.06.036

Sheir, H. H., & Dhalliwa, R. S. (1980). A uniqueness theorem and a variational principle for generalized thermoelasticity. Journal of Thermal Stresses, 3, 223–230. http://dx.doi.org/10.1080/10495738008926964

Van Run, A. M. J. G., Terrell, D. R., & Scholing, J. H. (1974). An in situ grown eutectic magnetoelectric composite material. Journal of Materials Science, 9, 1710–1714. http://dx.doi.org/10.1007/BF00540771
Vashishth, A. K., & Gupta, V. (2009). Vibrations of porous piezoelectric ceramic plates. *Journal of Sound and Vibration*, 325, 781–797. http://dx.doi.org/10.1016/j.jsv.2009.03.034

Vashishth, A. K., & Gupta, V. (2011). Uniqueness theorem, theorem of reciprocity, and eigenvalue problems in linear theory of porous piezoelectricity. *Applied Mathematics and Mechanics*, 32, 479–494. http://dx.doi.org/10.1007/s10483-011-1432-8

Xia, Z., Ma, S., Qiu, X., Wu, Y., Wang, F. (2003). Influence of porosity on the stability of charge and piezoelectricity for porous polytetrafluoroethylene film electrets. *Journal of Electrostatics*, 59, 57–69. http://dx.doi.org/10.1016/S0304-3886(03)00089-5

Xia, Z., Ma, S., Qiu, X., Wu, Y., Wang, F. (2003). Influence of porosity on the stability of charge and piezoelectricity for porous polytetrafluoroethylene film electrets. *Journal of Electrostatics*, 59, 57–69. http://dx.doi.org/10.1016/S0304-3886(03)00089-5