The Multivariate Relationship Between Primary Anterior Cruciate Ligament Reconstruction Timing and Revision Rates: A 10-Year Analysis

Michael Brown 1, Gage A. Hurlburt 2, Zachary A. Koenig 3, David Richards 4

1. Medicine, West Virginia School of Osteopathic Medicine, Lewisburg, USA 2. Department of Medicine, West Virginia University School of Medicine, Martinsburg, USA 3. School of Medicine, West Virginia University, Morgantown, USA 4. Orthopedics, West Virginia University, Morgantown, USA

Corresponding author: Zachary A. Koenig, zakoenig@mix.wvu.edu

Abstract

Background and objective

The optimal timing of anterior crucial ligament reconstruction (ACLR) remains a matter of controversy. A revision procedure is performed to improve knee function, correct instability, and enable a safe return to daily function when primary ACLR fails. The present study aimed to determine if the timing of primary ACLR is predictive of revision surgery.

Methods

All patients who underwent primary ACLR at the West Virginia University from January 2008 to December 2018 were identified. Patients were initially grouped into early (≤30 days) and late (>30 days) ACLR based on the onset of the initial injury. The major outcome measure of this study was the incidence of revision ACLR following primary ACLR.

Results

A total of 233 primary ACLRs were included. The incidence of ACLR revisions was 9.4%. The timing of primary ACLR, when categorized into early and late ACLRs, was not found to influence revision risk (p=0.384). Additionally, the damaged anatomical structures based on the postoperative diagnosis at the time of ACLR did not influence the odds of revision ACLR (p=0.9721).

Conclusion

Our study found that the timing of primary ACLR did not influence the revision rates when categorizing primary surgery time into early and late subgroups.

Categories: Plastic Surgery, Orthopedics

Keywords: timing, anterior crucial ligament injury, revision, reconstruction, anterior cruciate ligament

Introduction

The anterior cruciate ligament (ACL) is a key structure providing stability to the knee, and its primary purpose is to limit the anterior translation of the tibia relative to the femur. Aside from this, its secondary role is to limit tibial rotation and varus or valgus stress, a principle known as the screw-home mechanism, which is essential for pivoting activities [1]. Injury to the ACL is one of the most common orthopedic injuries in the United States, affecting approximately 250,000 individuals annually with an annual incidence rate of 68.6 per 100,000 person-years for isolated ACL tears [2,3]. This injury is widely known to impact athletes and physically active individuals. The mechanism of injury is frequently associated with activities in which sudden stress is applied to the knee. Typically, it involves a non-contact injury where the tibia continues to translate anteriorly with the knee in a slightly flexed position, as seen in high-risk pivoting sports. Although ACL injuries are commonly encountered in orthopedic practice, it rarely occurs as an isolated disruption, and concomitant injury to other structures of the knee, such as the medial meniscus (MM) and lateral meniscus (LM), is common [4].

The goals of the management of ACL injuries are to restore knee function, prevent further knee injury, and optimize long-term quality of life [5]. Conservative treatment may be successful in certain populations; however, the intention of returning to a high-activity level may necessitate ACL reconstruction (ACLR) with the goal of regaining functional stability and maximum strength [6].

Nearly 8% of individuals who undergo primary ACLR end up requiring a subsequent revision procedure at some point in the future [7]. Causes for revision include, but are not limited to, nonanatomic tunnel
were treated initially with the hamstring autograft. Initially with an allograft, one was treated initially with the bone-patellar tendon-bone autograft, and 19 autografts. Of the 233 patients included in the study, 22 patients underwent revision ACLR: two were treated

The 233 primary ACLRs included 23 allografts, 45 bone-patellar tendon-bone autografts, and 165 hamstring autografts. Of the 233 patients included in the study, 22 patients underwent revision ACLR: two were treated initially with an allograft, one was treated initially with the bone-patellar tendon-bone autograft, and 19 were treated initially with the hamstring autograft.

Results

A total of 1,081 patients who underwent primary ACLR were reviewed and 233 patients were ultimately included in this study (Figure 1). Many patients were not included in this study either due to their failure to meet the exclusion criteria or the absence of a significant amount of data in the electronic health records. The 233 primary ACLRs included 25 allografts, 45 bone-patellar tendon-bone autografts, and 165 hamstring autografts. Of the 233 patients included in the study, 22 patients underwent revision ACLR; two were treated initially with an allograft, one was treated initially with the bone-patellar tendon-bone autograft, and 19 were treated initially with the hamstring autograft.
Patient characteristics for the early ACLR (n=40) and late ACLR (n=193), as well as the revision ACLR (n=22) and non-revision ACLR (n=211) groups are summarized in Table 1. The frequency of revisions compared to non-revisions among the early and late primary ACLR groups was skewed, as the number of patients in the early (n=2) and late (n=20) primary ACLR subgroups who received a revision was small (Table 2). For those in the early group (≤30 days), the median number of days from injury to primary ACLR was 16.5, and it was 81 for the late group (>30 days). The median number of days from injury to primary ACLR for the revision ACLR group was 59.5, and it was 69 for the non-revision group.

TABLE 1: Patient characteristics and factors related to the early and late primary ACLRs and revision and no-revision ACLRs

ACLR: anterior crucial ligament reconstruction

When subgrouping patients based on early or late primary ACLR, Fisher’s exact test showed that the probability of the revision rates was not influenced by the timing of primary ACLR in relation to the injury
Thus, no significant correlation was found between the timing of primary ACLR and revision ACLR in terms of subgrouping patients into early or late ACLR. However, with respect to grouping the timing of ACLR into early and late groups, the data was skewed due to the disproportionate number of subjects in the late group compared to the early group.

	Non-revision ACLR	Revision ACLR
Early primary ACLR	38	2
Late primary ACLR	173	20
Fisher’s exact test two-sided probability	0.3844	

TABLE 2: Total number of patients in the non-revision and revision ACLR groups who received early or late primary ACLR

Fisher’s exact test analysis was performed to assess the probability of revision rates in relation to the timing of primary ACLR (p>0.05)

ACLR: anterior crucial ligament reconstruction

The anatomic structures involved as demonstrated in the postoperative diagnosis also did not influence the odds of revision ACLR (p=0.972). Each subgroup representative of concomitant knee injuries based on the postoperative diagnosis did not differ in proportion between non-revision ACLR and revision ACLR (Table 3). Additionally, the analysis of the means for proportions showed no true difference between any subgroup proportion and the overall proportion (Figure 2). Thus, the type of concomitant knee injury was not associated with a higher or lower risk for revision. However, Fisher’s exact test showed that the probability of the timing of primary ACLR was influenced by the concomitant knee injury pattern demonstrated in the postoperative diagnosis (p=0.005) (Table 4). The analysis of the means for proportions for subgroup F (ACL + MCL + LM injury) in particular exceeded the upper limit of the expected binomial distribution of the overall mean proportion (Figure 3).

Postoperative diagnostic subgroup	Structure(s) injured	Early ACLR	Late ACLR
A	ACL	10	81
B	ACL + MM	6	22
C	ACL + LM	10	48
D	ACL + MM + LM	4	31
E	Multiligamentous	1	2
F	ACL + MCL + LM	4	2
G	ACL + MCL	1	3
H	ACL + MCL + MM	1	2
I	ACL + MCL + PCL + LM	0	1
J	ACL + LCL	2	1
K	ACL + LCL + PCL	1	0

Fisher’s exact test two-sided probability sp

TABLE 3: Total number of early and late ACLR cases for the postoperative diagnostic subgroups based on concomitant knee injury patterns

Fisher’s exact test was performed on the association between postoperative diagnosis of concomitant injury and timing of primary ACLR (p<0.05)

ACLR: anterior crucial ligament reconstruction; LCL: lateral collateral ligament; LM: lateral meniscus; MCL: medial collateral ligament; MM: medial meniscus; PCL: posterior cruciate ligament
FIGURE 2: Analysis of the means for proportions of the postoperative diagnostic subgroups based on concomitant knee injury pattern for the revision ACLR group

The proportions of revision ACLR for each of the diagnostic subgroups (i.e., categories for the injured structures at postoperative diagnosis) are plotted on the vertical axis. From top to bottom, the three horizontal lines represent the upper decision limit (UDL), the pooled proportion or overall average of the diagnostic subgroups, and the lower decision limit (LDL). No diagnostic group point (green circles) lies outside the UDL or LDL, and hence are not statistically significant from the overall proportion mean.

ACLR: anterior crucial ligament reconstruction

TABLE 4: Total number of non-revision and revision ACLRs for the postoperative diagnostic subgroups based on concomitant knee injury patterns

Fisher’s exact test analysis was performed on the probability of revision rates in relation to concomitant knee injuries based on the postoperative diagnosis (p>0.05)

ACLR: anterior crucial ligament reconstruction; LCL: lateral collateral ligament; LM: lateral meniscus; MCL: medial collateral ligament; MM: medial meniscus; PCL: posterior cruciate ligament
Fisher’s exact test analysis was performed on the probability of revision rates in relation to concomitant knee injuries based on the postoperative diagnosis ($p>0.05$).

ACLR: anterior crucial ligament reconstruction

Discussion

We sought to determine whether reconstructing the ACL in an acutely injured knee irrespective of its preoperative status would lead to less revision rates in the future. The assumption was that a shortened length of time between the injury date and surgical repair prevented further injury and reduced the risk of a future traumatic event, thereby decreasing the risk of additional inflammatory response and damage [20]. The present study demonstrated that the rate of revision is not influenced by the timing of the ACLR.

There is limited supporting literature regarding the association between the timing of initial ACLR and revision ACLR. Nevertheless, Andernord et al.’s study determined that the timing of ACLR was not an independent predictor of revision [21]. Conversely, Snaebjörnsson et al. discovered that there is a higher risk of revision if reconstruction took place within three months of the ACL injury and six months of ACL injury in the hamstring tendon autograft and patellar tendon autograft, respectively [22]. Unlike our hypothesis, Snaebjörnsson et al. proposed that patients in the delayed group have more time to adapt to their injured knee and reduce activities that may lead to subsequent ACLR revision. Similarly, in a study performed by Cristiani et al., ACLR less than 12 months from the time of injury had an increased odds of revision ACLR within two years of primary ACLR [23]. While there is still a lack of consensus about the optimal timing of ACLR, our study suggests that revision rates were not influenced by the timing of ACLR.

Other studies have shown a link between the timing of ACLR and the development of concomitant knee injuries. It is important to consider knee structures other than the ACL that may play a role in determining the timing of surgery. Another topic of debate in the literature regarding ACLR is whether early or late reconstruction will optimize patient outcomes in terms of restoring knee function and minimizing injury to other anatomic structures. Delaying surgical reconstruction can potentially lead to subsequent episodes of instability and may result in concomitant knee pathologies. Late reconstruction may increase the risk of developing meniscal and cartilage injuries [24]. In a study performed by Demirag et al., an increased time interval between injury to surgery increased the incidence of meniscal and osteochondral lesions [25]. Of note, the meniscal and osteochondral lesions occurred not at the time of injury, but during the period between original injury and surgical reconstruction as evidenced by early post-traumatic MRI or diagnostic arthroscopy conducted at the time of injury. This is supported by several studies indicating an increased incidence of meniscal tears in individuals undergoing ACLR more than 12 months from injury [26,27]. A study performed by Kennedy et al. showed that patients who received reconstruction six months after the injury date were noted to have an increased risk of developing degenerative change [27]. This is clinically important as the initial ACL injury can subsequently cause meniscal injury, which could alter the mechanics of the knee and accelerate the degenerative process. Similarly, Granan et al. concluded that the risk of a cartilage lesion in the adult knee increased as more time elapsed from injury date to surgery [28]. Early ACLR may be advantageous to preserve the meniscus and reduce the risk of osteoarthritis [24].

We found a connection between the timing of primary ACLR and the postoperative diagnosis. The contingency analysis (Table 4) demonstrated that postoperative diagnosis did influence the timing of ACLR ($p=0.005$). In fact, the likelihood of early primary surgery was more likely in a certain subset of the...
population. Specifically, subgroup F; individuals who suffered a simultaneous ACL, MCL, and LM injury were more likely to receive early primary ACL reconstruction. Although we cannot extrapolate the reason as to why this occurred, it is worth mentioning as it could aid potential research in the future. It is possible that these involved structures at the time of injury could result in greater instability or decline in daily function and thus warranted the decision to operate earlier.

There were no significant correlations between the postoperative diagnosis at the time of primary ACLR and the risk of revision. As we subcategorized each postoperative diagnosis on the type of injury pattern (Figure 2), none of them significantly affected the risk of revision. This suggests that comitant knee injuries at the time of the initial ACLR were not associated with the need for future revision. Furthermore, revision rates were not influenced by a comitant knee injury that excluded ACL involvement alone.

There is still a level of ambiguity as to whether subgrouping patients into early or late primary ACLR is advantageous, as the correlation between surgical timing for primary ACLR and indication for revision ACLR was not supported in our study. Ultimately, we suggest that the decision to undergo reconstruction is a matter of clinical judgment and the goals of the patient.

Several limitations in our study should be acknowledged. Firstly, the sample size was small (n=233), especially for subjects who received early primary ACLR (n=40), as well as the total number of patients requiring revision ACLR (n=52). This most likely impacted the study’s power and precluded the ability to obtain more significant results for the primary and secondary objectives of the study. Future studies should try to include a cohort large enough (i.e., more subjects with revision surgery) to better analyze the results. This study represents one of the few studies utilizing retrospective data concerning this topic. It is our understanding that the previous literature regarding the timing of primary ACLR and the potential impact it has on future revision was scarce. Additionally, other independent factors could have influenced the outcome of our results. For instance, most patients (70.8%) included in the study received hamstring autograft and it was difficult to account for surgical error, both of which could have impacted the surgical outcome and revision rate. For this reason, we recommend that future studies match subjects who had revision ACLR based on graft utilized, structures injured, and timing of primary ACLR. We also propose for further investigations or randomized control trials to include a standardized rehabilitation protocol for all patients who received ACLR regardless of the timing of primary reconstruction. This would likely minimize an additional potential influence on revision rates. Lastly, it is possible that the timeframe of the study did not allow for adequate capture of revision surgery as the last set of patients were recruited in 2018.

Conclusions

We found no difference in the revision rates by grouping patients into early and late primary ACLR. There may not be a univariate answer for the question related to the optimal timing for primary ACLR, and other factors should also be accounted for when ACLR is considered, such as patient goals, additional anatomical structures involved, surgical technique, graft choice and fixation, and rehabilitation programs.

Additional Information

Disclosures

Human subjects: Consent was obtained or waived by all participants in this study. West Virginia University Institutional Review Board issued approval 2101226723. This study has been approved by the West Virginia University Institutional Review Board. **Animal subjects:** All authors have confirmed that this study did not involve animal subjects or tissue. **Conflicts of interest:** In compliance with the ICMJE uniform disclosure form, all authors declare the following: Payment/services info: All authors have declared that no financial support was received from any organization for the submitted work. **Financial relationships:** All authors have declared that they have no financial relationships at present or within the previous three years with any organizations that might have an interest in the submitted work. **Other relationships:** All authors have declared that there are no other relationships or activities that could appear to have influenced the submitted work.

Acknowledgements

The authors would like to thank Ryan Quigley for assistance with data collection and Carla Toolan and Nathan Fiore for assistance with statistical analysis.

References

1. Georgoulis AD, Ristantis S, Moraiti CO, et al.: ACL injury and reconstruction: Clinical related in vivo biomechanics. Orthop Traumatol Surg Res. 2010, 96:S119-28. 10.1016/j.otsr.2010.09.004
2. The Centers for Disease Control and Prevention: Funded Injury Control Research Centers (ICRCs) . (2018). Accessed: April 20, 2021: https://www.cdc.gov/injury/erpo/icrc/2009/1-R49-CED001495-01.html
3. Sanders TL, Maradit Kremers H, Bryan AJ, et al.: Incidence of anterior cruciate ligament tears and reconstruction: a 21-year population-based study. Am J Sports Med. 2016, 44:1502-7. 10.1177/0363546516629144
4. Hagino T, Ochiai S, Senga S, Yamashita T, Wakao M, Ando T, Haro H: Meniscal tears associated with anterior cruciate ligament injury. Arch Orthop Trauma Surg. 2015, 135:1701-6. 10.1007/s00402-015-2309-4

5. Filbay SR, Grindem H: Evidence-based recommendations for the management of anterior cruciate ligament (ACL) rupture. Best Pract Res Clin Rheumatol. 2019, 33:53-47. 10.1016/j.berh.2019.01.018

6. Bogdanovic L, Matava MJ: Operative and nonoperative treatment options for ACL tears in the adult patient: a conceptual review. Phys Sportmed. 2013, 41:35-40. 10.3810/psm.2013.11.2034

7. Grassi A, Kim C, Marcheggiani Muccioli GM, Zaffagnini S, Amendola A: What Is the mid-term failure rate of revision ACL reconstruction? A systematic review. Clin Orthop Relat Res. 2017, 475:2484-99. 10.1007/s11999-017-5379-3

8. Getelman MB, Friedman MJ: Revision anterior cruciate ligament reconstruction surgery. J Am Acad Orthop Surg. 1999, 7:189-98.

9. Mariscalco MW, Flanagan DC, Mitchell J, et al.: The influence of hamstring autograft size on patient-reported outcomes and risk of revision after anterior cruciate ligament reconstruction: a Multicenter Orthopaedic Outcomes Network (MOON) Cohort Study. Arthroscopy. 2015, 29:1948-53. 10.1016/j.arthro.2015.08.025

10. Yumashke AV, Balitina TV, Babaskin DV: Outcomes after arthroscopic revision surgery for anterior cruciate ligament injuries. Acta Orthop. 2021, 92:445-7. 10.1080/17453674.2021.1997744

11. Shahzad S, Balke M, Hagn U, Hoeber J, Banerjee M: Variability of tunnel positioning in ACL reconstruction. Arch Orthop Trauma Surg. 2014, 134:1429-36. 10.1007/s00167-014-3233-x

12. Kim DH, Bae KC, Kim DW, Choi BC: Two-stage revision anterior cruciate ligament reconstruction. Knee Surg Relat Res. 2019, 31:10. 10.1186/s43019-019-0010-6

13. Shelbourne KD, Wilkens JH, Mollabashy A, DeCarlo M: Arthrofibrosis in acute anterior cruciate ligament reconstruction. The effect of timing of reconstruction and rehabilitation. Am J Sports Med. 1991, 19:332-6. 10.1177/0363546591190402

14. Shelbourne KD, Patel DV: Timing of surgery in anterior cruciate ligament-injured knees. Knee Surg Sports Traumatol Arthrosc. 1995, 3:148-56. 10.1007/BF01565474

15. Mayr HO, Weig TG, Plitz W: Arthrofibrosis following ACL reconstruction—reasons and outcome. Arch Orthop Trauma Surg. 2004, 124:518-22. 10.1007/s00402-004-0718-x

16. Mohtadi NG, Webster-Bogaert S, Fowler PJ: Limitation of motion following anterior cruciate ligament reconstruction, a case-control study. Am J Sports Med. 1991, 19:620-4. 10.1097/00000520-199106000-00012

17. Karikis I, Ahlén M, Sernert N, Ejerhed L, Rostgård-Christensen L, Kartus J: The long-term outcome after early and late anterior cruciate ligament reconstruction. Arthroscopy. 2018, 34:1907-17. 10.1016/j.arthro.2018.01.026

18. Gersoff WK, Clancy WG Jr: Diagnosis of acute and chronic anterior cruciate ligament tears. Clin Sports Med. 1988, 7:727-38.

19. Harner CD, Giffin JR, Durstman RC, Annuzziata CC, Friedman MJ: Evaluation and treatment of recurrent instability after anterior cruciate ligament reconstruction. Instr Course Lect. 2001, 50:465-74.

20. Hunt ER, Jacobs CA, Conley CE, Ireland ML, Johnson DL, Lattermann C: Arthrofibrosis following ACL reconstruction reinitiates an inflammatory and chondrodegenerative process in the knee joint. J Orthop Res. 2021, 39:1281-8. 10.1002/jor.24785

21. Andernord D, Björnsson H, Petzold M, Eriksson BI, Forssblad M, Karlsson J, Samuelsson K: Timing of anterior cruciate ligament reconstruction reinitiates an inflammatory and chondrodegenerative process in the knee joint. J Orthop Res. 2021, 39:1281-8. 10.1002/jor.24785

22. Snaebjörnsson T, Hamrin Senorski E, Svantesson E, Westin O, Persson A, Karlsson J, Samuelsson K: Surgical fixation and timing of surgery are predictors of early anterior cruciate ligament revision: a cohort study from the Swedish and Norwegian Knee Ligament Registers based on 18,425 patients. JBJS Open Access. 2019, 4:e0037. 10.1021/jbjs.19.00037

23. Christini R, Forssblad M, Edman G, Eriksson K, Stålman A: The long-term outcome after early and late anterior cruciate ligament reconstruction. Acta Orthop Traumatol Turc. 2011, 45:348-57. 10.1016/j.berh.2011.11.007

24. Criscuoli S, Zeller J, Baumann F, Pfeifer C, Nerlich M, Angele P: Timing of anterior cruciate ligament reconstruction within the first year after trauma and its influence on treatment of cartilage and meniscal pathology. Knee Surg Sports Traumatol Arthrosc. 2021, 29:4154-62. 10.1007/s00167-021-06517-8

25. Demižić B, Aydemir P, Daniş M, Ermutlu C: Incidence of meniscal and osteochondral lesions in patients undergoing delayed anterior cruciate ligament reconstruction. Acta Orthop Traumatol Turc. 2011, 45:348-52. 10.3944/AOTT.2011.39

26. Church S, Keating JF: Reconstructing the anterior cruciate ligament: timing of surgery and the incidence of meniscal tears and degenerative change. J Bone Joint Surg Br. 2005, 87:639-42. 10.1302/0301-620X.87B12.16916

27. Kennedy J, Jackson MP, O’Kelly P, Moran R:Timing of reconstruction of the anterior cruciate ligament in athletes and the incidence of secondary pathology within the knee. J Bone Joint Surg Br. 2010, 92:562-6. 10.1302/0301-620X.92B3.22424

28. Granan LP, Bahr R, Lie SA, Engbretsen L: Timing of anterior cruciate ligament reconstruction surgery and risk of cartilage lesions and meniscal tears: a cohort study based on the Norwegian National Knee Ligament Registry. Am J Sports Med. 2009, 37:955-61. 10.1177/0363546508350136