Associations of \textit{MTHFR} Gene Polymorphisms with Hypertension and Hypertension in Pregnancy: A Meta-Analysis from 114 Studies with 15411 Cases and 21970 Controls

Boyi Yang\(^1\), Shujun Fan\(^1\), Xueyuan Zhi\(^1\), Yongfang Li\(^1\), Yuyan Liu\(^1\), Da Wang\(^1\), Miao He\(^1\), Yongyong Hou\(^2\), Quanmei Zheng\(^1\), Guifan Sun\(^1\)*

\(^1\)Environment and Non-Communicable Diseases Research Center, School of Public Health, China Medical University, Shenyang, China, \(^2\)Department of Medical and Molecular Genetics, School of Medicine, Indiana University, Indianapolis, Indiana, United States of America

Abstract

\textbf{Background:} Several epidemiological studies have investigated the associations of methylenetetrahydrofolate reductase (\textit{MTHFR}) C677T and A1298C polymorphisms with hypertension (H) or hypertension in pregnancy (HIP). However, the results were controversial. We therefore performed a comprehensive meta-analysis to provide empirical evidences on the associations.

\textbf{Methodologies:} The English and Chinese databases were systematically searched to identify relevant studies. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to evaluate the strength of the associations. Meta-regression, subgroup analysis, sensitivity analysis, cumulative meta-analysis and assessment of publication bias were performed in our study.

\textbf{Principal Findings:} A total of 114 studies with 15411 cases and 21970 controls were included, 111 studies with 15094 cases and 21633 controls for the C677T polymorphism and 21 with 2533 cases and 2976 controls for the A1298C polymorphism. Overall, the C677T polymorphism was significantly associated with H and HIP (H & HIP: OR = 1.26, 95% CI = 1.17–1.34; H: OR = 1.36, 95% CI = 1.20–1.53; HIP: OR = 1.21, 95% CI = 1.08–1.32). Stratified analysis by ethnicity revealed a significant association among East Asians and Caucasians, but not among Latinos, Black Africans, and Indians and Sri Lankans. In the stratified analyses according to source of controls, genotyping method, sample size and study quality, significant associations were observed in all the subgroups, with the exception of population based subgroup in H studies and large sample size and “others” genotyping method subgroups in HIP studies. For the A1298C polymorphism, no significant association was observed either in overall or subgroup analysis under all genetic models.

\textbf{Conclusions:} This meta-analysis suggests that the \textit{MTHFR} C677T rather than A1298C polymorphism may be associated with H & HIP, especially among East Asians and Caucasians.

Introduction

Hypertension (H), whose prevalence has dramatically increased in recent years, is a major risk factor for many disorders including stroke, cardiovascular diseases and renal failure and ultimately increases mortality worldwide [1]. The development of H is influenced by genetic, environmental, demographic factors and their interactions [2]. Current evidences suggest that 30–50% of variation of blood pressure levels could be attributed to genetic factors [3]. Therefore, identification of H susceptibility genes will help clarify the pathogenesis of the disease and provide new therapeutic and preventive strategies [3]. In the last decade, exhaustive efforts have been devoted to unraveling the genetic underpinning of H, and hundreds of genes and polymorphisms have been hypothesized to be involved in the pathogenesis of the disease [4–6]. Among them, C677T and A1298C polymorphisms in methylenetetrahydrofolate reductase (\textit{MTHFR}) gene have been assessed as potential candidates.

\textit{MTHFR} is an enzyme that catalyzes the reduction of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, the carbon donor for the remethylation of homocysteine (Hcy) to methionine [7]. The \textit{MTHFR} gene is localized on chromosome 1 at 1p36.6 [8]. The C677T polymorphism is a C to T transition at base pair 677 resulting an alanine to valine substitution, and the A1298C polymorphism is an A to C transition at base pair 1298 leading to
MTHFR Polymorphisms and Hypertension

Materials and Methods

Search Strategy and Inclusion Criteria

All studies reporting the relationships of the MTHFR C677T and A1298C polymorphisms with H or HIP published before December 10, 2013 were identified by computerized searches in databases including Pubmed, Embase, ISI Web of Science, China Biological Medicine Database (CBM), Wanfang, China National Knowledge Infrastructure (CNKI), and Chongqing VIP Chinese Science and Technology Periodical Database (VIP). The search strategies were based on combinations of the following key words: (“methylene tetrahydrofolate reductase” or “MTHFR”) and (“hypertension” or “hypertension in pregnancy” or “pregnancy induced hypertension” or “preclampsia” or “ eclampsia” or “gestational hypertension”) and (“gene” or “allele” or “genotype” or “mutation” or “variant” or “variation” or “polymorphism”). The reference lists of retrieved articles were also hand searched for additional articles.

Qualified studies had to meet the following criteria: (1) evaluation of the MTHFR C677T and/or A1298C polymorphisms and H or HIP; (2) hypertensive patients were diagnosed according to the criteria of SBP \geq 140 mmHg or DBP \geq 90 mmHg and the controls were healthy individuals; (3) case-control or cohort study, regardless of sample size, using a hospital based or a population based design; (4) sufficient published data for estimating the Odds Ratio (OR) and 95% confidence interval (CI); (5) for duplicate publication, the most recent or largest study was selected.

Data Extraction

Two reviewers (Boyi Yang and Shujun Fan) independently extracted the following information from each included study: the first author’s name, publication year, sample size, source of controls, ethnicity, genotyping method, matching variables of controls with cases, H type (H vs. HIP), age, gender proportion, and counts of alleles and genotypes in both cases and controls.

Quality Assessment

Two authors (Boyi Yang and Xueyuan Zhi) independently assessed the quality of the included studies according to Newcastle Ottawa Scale (NOS) (www.ohri.ca/programs/clinical_epidemiology/oxford.asp). This scale consists of three parts relating to selection, comparability and ascertainment of exposure. A maximum nine scores could be given to the highest quality studies. A score of five or more was regarded as “high quality”; otherwise, the study was regarded as “low quality”.

Statistical Analysis

All statistic tests performed in this study were two tailed and $P<0.05$ was taken as statistically significant, unless otherwise stated. Statistic analyses were performed using STATA package version 11.0 program (Stata corp, College Station, TX). Hardy-Weinberg equilibrium (HWE) in controls was calculated again in our meta-analysis. The chi-square goodness of fit was used to test deviation from HWE.

Crude ORs with corresponding 95% CIs were calculated to estimate the strength of the associations of the MTHFR C677T and A1298C polymorphisms with H and/or HIP. The significance of the pooled OR was determined by the Z test. Pooled frequency analysis was carried out using the method suggested by Thakkinstian [18]. The overall pooled ORs were calculated using allele contrast model, dominant model and recessive model. Moreover, comparisons of OR$_1$ (AA vs. aa), OR$_2$ (Aa vs. aa) and OR$_3$ (AA vs. Aa) were explored with A as the risk allele. The above pairwise differences were used to determine the most appropriate genetic model. If OR$_1$ = OR$_3$ 1 and OR$_2$ = 1, then a recessive model is selected. If OR$_1$ = OR$_2$ 1 and OR$_3$ = 1, then a dominant model is selected. If OR$_2$ = 1/0 OR$_1$ 1 and OR$_1$ = 1, then a complete overdominant model is selected. If OR$_2$$>0 OR$_>1$ and OR$_>1$ OR$_<1$ (or OR$_<1 OR$_<1$ and OR$_<1$, then a codominant model is selected [19]. Additionally, if some genotypes were very rare or could not be identified in either case or control group in some studies, a recessive or dominant model is selected to combine rare homozygous and heterozygous [20].

Between-study heterogeneity was calculated by Cochran’s Chi-square based Q-test [21]. Simultaneously, it was also detected using the I^2 statistic ($I^2=0$–25% represents no heterogeneity; $I^2=25$–50% represents moderate heterogeneity; $I^2=50$–75% represents large heterogeneity; $I^2=75$–100% represents extreme heterogeneity) [22]. If the between-study heterogeneity was statistically significant ($P<0.10$ for Q-test or $I^2>50$%), the Dersimonian and Laird random effects model was used; otherwise, the Mantel Haenszel method fixed effects model was applied [23].

Subgroup analysis based on ethnicity (East Asians, Caucasians, Latinos, Indians and Sri Lankans, Black Africans), source of controls (population based vs. hospital based), genotyping method (polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) vs. “others”), sample size (studies with \geq median number of participants vs. studies with $<$ median number) and study quality (high quality vs. low quality), respectively, were also performed under the most appropriate genetic model. Furthermore, meta-regression was employed to explore potential sources of heterogeneity including publication date, ethnicity,
genotyping method, source of controls, study quality and sample size [24]. To explore the dynamic trends as studies accumulated over time, cumulative meta-analysis was performed by date of publication [25]. Sensitivity analysis was also conducted to examine the influence of excluding each study or some specific studies on the overall estimate [25]. Finally, potential publication bias was assessed using funnel plot and Egger’s regression test [26].

Results

Study Characteristics

The combined search yielded 1884 articles. After the removal of overlapping articles and those that did not meet our inclusion criteria, a total of 112 articles [27–138] including 114 studies with 15411 cases and 21970 controls were finally included in the meta-analysis (Figure 1). One hundred and eleven studies dealt with C677T. The sample sizes ranged from 39 to 2104 with a median of 225. Twenty one studies dealt with A1298C. The sample sizes ranged from 58 to 754 with a median of 170. The main characteristics of the included studies are presented in Table S1. Among all studies, 42 studies were performed among East Asians [27,28,33,37,42,43,48,50,54,56,57,60,65,73,75,78,81,86–90,94–97,102,103,105–110,115–118,122,124,131,132,134,136], 54 among Caucasians [29,31,32,34,35,38–41,44–47,49,51–53,55,59,63,64,66,67,69–72,74,76,77,80,82,84,92,93,98–101,109,110,112–114,119–122,125,126,130,133,135,137], 10 among Latinos [58,61,68,83,91,104,108,127,128,138], five among Indians and Sri Lankans [53,85,111,123,129] and three among Black Africans [30,36,62]. Thirty eight studies focused on H [28,37,45,54,56–66,75,78,80,81,85,87,88,90,92,95,98,99,102,105,106,114–118,134,119,120,122,124,128,131,132,136,137] and 76 studies focused on HIP [27,29–36,38–44,46–53,56–63,67–74,76,77,82–84,86,91,93,94,96,97,100,101,103,104,107–113,121,123,125–127,129,130,133,135,138]. The sources of controls were hospital based in 91 studies and were population based in 23 studies. PCR-RFLP was the most commonly used genotyping method in these included studies. Genotype and allele frequencies, HWE and NOS scale information are presented in Table S2 and Table S3. Of the total 114 studies, 20 different studies [27,35,40,45,73,79,85,87,94,96,105,107,109,110,115,116,122,124,125,129,130,133,135,138] showed significant deviations from HWE (18 studies concerned C677T and two studies concerned A1298C). Thirteen studies only reported combined genotypes (CC+CT, CT+TT, AC+CC), thus HWE could not be evaluated (12 studies concerned...
C677T [29,41,49,51,67,69,71,77,100,101,114,119] and one study concerned A1298C [119]. According to NOS scale, there were 100 studies with high quality and 14 with low quality.

Frequency of Risk Allele in the Control Population

Figure 2 shows the pooled frequencies of the 677T and 1298C alleles in the control populations stratified by ethnicity. The frequencies of the 677T allele varied among ethnicities: the pooled 677T allele frequency was highest among Latinos (41.3%, 95% CI = 34.0–49.0%), followed by East Asians (33.0%, 95% CI = 29.7–36.3%), Caucasians (30.1%, 95% CI = 28.3–31.6%), Indians and Sri Lankans (12.3%, 95% CI = 9.2–15.4%) and Black Africans (6.7%, 95% CI = 4.8–8.7%). The pooled 1298C allele frequencies also showed heterogeneity among different ethnicities: high among Caucasians (30.4%, 95% CI = 21.1–39.8%), intermediate among Latinos (24.2%, 95% CI = 9.6–38.9%), East Asians (22.3%, 95% CI = 18.5–26.0%) and Indians and Sri Lankans (20.2%, 95% CI = 0–41.6%), and low among Black Africans (12.3%, 95% CI = 8.8–15.8%).

Quantitative Synthesis and Heterogeneity Analysis

Association of MTHFR C677T polymorphism with H & HIP. We firstly pooled all the studies (111 studies with 15094 cases and 21633 controls) involving both H and HIP to estimate the associations between the diseases and the MTHFR C677T polymorphism. Table 1 summarizes the ORs with corresponding 95% CIs for the relationships of the polymorphism with H & HIP in homozygous codominant, heterozygous codominant, dominant, recessive and allele contrast genetic models (Figure S1–S3). The dominant model was determined according to the principle of genetic model selection [19,20]. No significant relationship was observed between the MTHFR A1298C polymorphism and H & HIP. For the dominant model, the overall pooled OR using random effects model was 1.06 (95% CI = 0.90–1.26) (Table 1 and Figure S10). Similarly, stratified analyses based on ethnicity, source of controls, genotyping method, sample size and study quality did not reveal any significant association of the polymorphism with H & HIP (Table 3). Significant heterogeneity was observed, and meta-regression analysis was performed to explore the sources of heterogeneity. However, the H type (P = 0.351), year of publication (P = 0.197) and sample size (P = 0.293) were not the sources of heterogeneity.

Association of MTHFR A1298C polymorphism with H & HIP. Twenty one studies with 2533 cases and 2976 controls on the relationship between the A1298C polymorphism and H & HIP were included in the meta-analysis. The dominant model was determined according to the principle of genetic model selection [19,20]. No significant relationship was observed between the MTHFR A1298C polymorphism and H & HIP under all genetic models (Table 1 and Figure S6–S10). For the dominant model, the overall pooled OR using random effects model was 1.06 (95% CI = 0.90–1.26) (Table 1 and Figure S8). Similarly, stratified analyses based on ethnicity, source of controls, genotyping method, sample size and study quality did not reveal any significant association of the polymorphism with H & HIP (Table 3). Significant heterogeneity was observed, and meta-regression analysis was performed to explore the sources of heterogeneity. However, the H type (P = 0.155), year of publication (P = 0.351), ethnicity (P = 0.411), source of controls (P = 0.906), genotyping method (P = 0.197) and sample size (P = 0.385) were not the sources of heterogeneity.

Figure 2. Pooled frequencies of the MTHFR 677T allele and 1298C allele among controls stratified by ethnicity.

doi:10.1371/journal.pone.0087497.g002
analyses were conducted based on genotyping method, sample size and study quality, significant associations were found in all the subgroups. Meta-regression was performed to find the sources of heterogeneity. However, the year of publication ($P = 0.191$), ethnicity ($P = 0.953$), source of controls ($P = 0.066$), genotyping method ($P = 0.734$) and sample size ($P = 0.551$) were not the sources of heterogeneity.

Association of MTHFR A1298C polymorphism with H. We identified eight studies with 1196 cases and 1213 controls investigating the relationship of the polymorphism with H. The results of overall pooled analyses under five genetic models are listed in Table 1. The dominant model was determined according to the principle of genetic model selection [19,20]. In the overall comparison, the polymorphism was not significantly with H in any of the genetic model. For the dominant model, the overall pooled OR using random effects model was 1.10 (95% CI = 0.75–1.61) (Table 1). As stratified analyses by ethnicity, genotyping method and study quality, significant associations were found in Indians and Sri Lankans and “others” genotyping method studies, whereas a significant negative association was found in low quality studies (Table 3). Notably, each of these associations was based on only one study; therefore, the results should be interpreted with great caution (Table 3). Although significant heterogeneity existed, a meta-regression analysis was not performed due to the limited number of the studies (10) included in this group.

Association of MTHFR C677T polymorphism with H. Seventy five studies with 8510 cases and 14873 controls on the relationship between the MTHFR C677T polymorphism and HIP were included in the meta-analysis. The results of overall pooled analyses under five genetic models are presented in Table 1. The dominant model was determined according to the principle of genetic model selection [19,20].

Table 1. Summarized ORs with 95% CIs for the associations of MTHFR polymorphisms with H and HIP.

Polymorphism	Genetic model	n	Statistical model	OR (95% CI)	P_z	I^2 (%)	P_h	P_e
C677T	Allele contrast	H & HIP	Random	1.23 (1.16–1.31)	<0.001	56.0	<0.001	0.280
	H	34	Random	1.30 (1.18–1.43)	<0.001	64.1	<0.001	0.816
	HIP	65	Random	1.19 (1.10–1.29)	<0.001	48.7	<0.001	0.149
	Homozygous	H & HIP	Random	1.47 (1.30–1.66)	<0.001	41.5	<0.001	0.362
	codominant	H	Random	1.63 (1.34–1.98)	<0.001	54.1	<0.001	0.497
	HIP	65	Random	1.37 (1.18–1.58)	<0.001	31.0	0.011	0.495
	H & HIP	99	Fixed	1.18 (1.10–1.27)	<0.001	38.4	<0.001	0.059
	codominant	H	Random	1.25 (1.11–1.40)	<0.001	43.1	0.005	0.979
	HIP	65	Random	1.14 (1.03–1.26)	0.009	34.3	0.004	0.052
	Dominant	H & HIP	Random	1.26 (1.17–1.34)	<0.001	48.2	<0.001	0.711
	H	35	Random	1.36 (1.20–1.53)	<0.001	55.0	<0.001	0.918
	HIP	66	Random	1.19 (1.08–1.32)	<0.001	41.0	<0.001	0.651
	Recessive	H & HIP	Random	1.37 (1.23–1.52)	<0.001	43.7	<0.001	0.072
	H	35	Random	1.43 (1.21–1.68)	<0.001	45.6	0.002	0.123
	HIP	74	Random	1.34 (1.16–1.53)	<0.001	43.5	<0.001	0.118
A1298C	Allele contrast	H & HIP	Fixed	1.01 (0.92–1.11)	0.791	29.2	0.108	0.112
	H	7	Random	1.05 (0.79–1.39)	0.733	67.6	0.005	0.614
	HIP	13	Fixed	1.01 (0.90–1.14)	0.824	0.0	0.760	0.315
	Homozygous	H & HIP	Fixed	1.06 (0.85–1.32)	0.630	0.0	0.696	0.348
	codominant	H	Fixed	1.08 (0.78–1.50)	0.649	0.0	0.658	0.735
	HIP	13	Fixed	1.04 (0.77–1.40)	0.816	0.0	0.506	0.716
	Heterozygous	H & HIP	Fixed	0.99 (0.84–1.17)	0.928	35.4	0.060	0.818
	codominant	H	Fixed	0.96 (0.65–1.44)	0.854	71.0	0.002	0.708
	HIP	13	Fixed	1.01 (0.86–1.19)	0.918	0.0	0.760	0.716
	Dominant	H & HIP	Fixed	1.06 (0.90–1.26)	0.474	45.3	0.013	0.643
	H	8	Random	1.10 (0.75–1.61)	0.637	77.2	<0.001	0.941
	HIP	13	Fixed	1.01 (0.87–1.18)	0.906	0.0	0.092	0.219
	Recessive	H & HIP	Fixed	1.10 (0.89–1.36)	0.392	0.0	0.709	0.621
	H	7	Fixed	1.15 (0.84–1.57)	0.393	0.0	0.780	0.866
	HIP	13	Fixed	1.06 (0.79–1.41)	0.712	0.0	0.453	0.528

Abbreviation: MTHFR, methylenetetrahydrofolate reductase; H, hypertension; HIP, hypertension in pregnancy; OR, odds ratio; CI, confidence interval; P_z, P value for association test; P_h, P value for heterogeneity test; P_e, P value for publication bias test; n, the number of studies.

doi:10.1371/journal.pone.0087497.t001
that the polymorphism was significantly associated with HIP. For the dominant model, the overall pooled OR using random effects model was 1.19 (95% CI = 1.08–1.32) (Table 1). Results from subgroup analysis based on ethnicity indicated that the C677T polymorphism was associated with HIP among East Asians and Caucasians. However, no significant associations were found among Latinos, Black Africans, and Indians and Sri Lankans. As stratified analyses by source of controls, genotyping method, sample size and study quality, significant associations were found in all the subgroups (Table 2).

Cumulative Meta-analysis
Cumulative meta-analyses were performed using a dominant model for the MTHFR C677T and A1298C polymorphisms. Regarding to C677T, a trend of a more significant association was consistently observed with a narrowing of the 95% CI as information accumulated by year (Figure S11). However, for A1298C, as studies were published, the association of the polymorphism with H & HIP was statistically non-significant (Figure S12).

Sensitivity Analysis
Sensitivity analysis was performed to confirm the stability and liability of the meta-analysis by sequentially omitting individual eligible studies. When any single study was excluded, the corresponding ORs were not materially changed (data were not shown), indicating the stability of our results. Additionally, we excluded the studies that genotype distribution in the controls deviating from HWE, and the corresponding pooled ORs were not significantly changed (Table 2 and Table 3).

Publication Bias
Funnel plot and Egger’s linear regression were performed to assess the publication bias of the included studies. The shapes of the funnel plots did not reveal any evidence of obvious asymmetry (Figure 3). The results of Egger’s test also showed that there was no strong statistical evidence of publication bias (Table 1).

Table 2. Stratified analysis of the associations of MTHFR C677T polymorphism with H and HIP under dominant model.

Subgroup analysis	H & HIP		H		HIP	
	n OR (95% CI)	χ^2	n OR (95% CI)	χ^2	n OR (95% CI)	χ^2
All HWE	81 1.23 (1.13–1.34)	<0.001 (44.9)	28 1.35 (1.17–1.54)	<0.001 (51.0)	53 1.16 (1.05–1.28)	0.003 (38.7)
Ethnicity						
East Asians	40 1.46 (1.29–1.66)	<0.001 (55.7)	23 1.38 (1.19–1.60)	<0.001 (55.5)	17 1.64 (1.28–2.10)	0.002 (57.6)
Caucasians	43 1.18 (1.07–1.29)	0.116 (21.0)	10 1.29 (1.01–1.63)	0.004 (62.5)	33 1.15 (1.05–1.26)	0.648 (0.0)
Latinos	10 1.09 (0.86–1.39)	0.098 (38.9)	1 1.43 (0.81–2.51)	–	9 1.06 (0.82–1.37)	0.094 (41.0)
Indians and	5 0.93 (0.56–1.56)	0.004 (74.4)	1 1.71 (1.00–2.91)	–	4 0.78 (0.48–1.29)	0.039 (64.2)
Sri Lankans	3 1.22 (0.89–1.67)	0.513 (0.0)	0 –	–	3 1.22 (0.89–1.67)	0.513 (0.0)
Source of controls						
Hospital based	80 1.30 (1.18–1.43)	<0.001 (51.0)	23 1.51 (1.30–1.75)	0.003 (50.5)	57 1.20 (1.07–1.35)	<0.001 (46.8)
Population based	21 1.19 (1.06–1.34)	0.048 (36.4)	12 1.15 (0.95–1.40)	0.005 (59.3)	9 1.22 (1.08–1.42)	0.808 (0.0)
Genotyping methods						
PCR-RFLP	86 1.28 (1.18–1.40)	<0.001 (50.4)	31 1.36 (1.20–1.54)	<0.001 (57.6)	55 1.23 (1.10–1.38)	<0.001 (44.5)
Others	15 1.16 (1.02–1.32)	0.122 (30.9)	4 1.40 (1.01–1.96)	0.213 (33.2)	11 1.08 (0.93–1.26)	0.262 (19.1)
Sample size						
Large (≥225)	51 1.17 (1.07–1.27)	<0.001 (54.0)	25 1.30 (1.14–1.48)	<0.001 (58.6)	26 1.05 (0.94–1.17)	0.033 (36.7)
Small (<225)	50 1.46 (1.28–1.67)	0.014 (33.2)	10 1.63 (1.31–2.04)	0.154 (33.0)	40 1.41 (1.21–1.63)	0.025 (32.8)
Study quality						
High (≥5 scores)	89 1.25 (1.15–1.36)	<0.001 (49.2)	31 1.34 (1.18–1.52)	<0.001 (55.9)	58 1.19 (1.07–1.32)	<0.001 (42.8)
Low (<5 scores)	12 1.34 (1.06–1.70)	0.063 (41.8)	4 1.58 (1.03–2.42)	0.086 (54.6)	8 1.23 (1.01–1.64)	0.135 (36.8)

Abbreviation: MTHFR, methylenetetrahydrofolate reductase; HWE, Hardy-Weinberg equilibrium; H, hypertension; HIP, hypertension in pregnancy; OR, odds ratio; CI, confidence interval; χ^2, P value for heterogeneity test; n, the number of studies; PCR-RFLP, polymerase chain reaction-restriction fragment length polymorphism.

doi:10.1371/journal.pone.0087497.t002
Discussion

The present meta-analysis involved 111 studies with 15094 cases and 21633 controls that investigated the C677T polymorphism and 21 studies with 2533 cases and 2976 controls investigated the A1298C polymorphism. Overall, our meta-analytical results provided evidence that the MTHFR C677T polymorphism was associated with both H and HIP. The results were largely in line with other published meta-analyses [16,17,139–141]. Intuitively, our study can further strengthen the validity of these results.

In recent years several meta-analyses have been done to investigate associations of the MTHFR A1298C polymorphism with H and HIP under dominant model. Wang et al. [141] showed that the MTHFR C677T polymorphism was associated with H and HIP among East Asians, Caucasians, Black Africans, and Indians and Sri Lankans. Several factors may contribute to the phenomenon that the C677T polymorphism was associated with H and HIP among East Asians and Caucasians, but not among Latinos, Black Africans, and Indians and Sri Lankans. After subgroup analysis according to ethnicity, the results indicated that the MTHFR C677T polymorphism was associated with H and HIP among East Asians and Caucasians, but not among Latinos, Black Africans, and Indians and Sri Lankans. Several factors may contribute to the phenomenon that the C677T polymorphism was associated with H and HIP among East Asians and Caucasians, but not among Latinos, Black Africans, and Indians and Sri Lankans.
Figure 3. Funnel plot analysis on the detection of publication bias in the meta-analysis of the associations between MTHFR polymorphisms and H & HIP (A: C677T and H & HIP; B: C677T and H; C: C677T and HIP; D: A1298C and H & HIP; E: A1298C and H; F: A1298C and HIP).
doi:10.1371/journal.pone.0087497.g003
and large sample size subgroup in HIP association studies. In addition, hospital based and small sample size studies seem to have stronger associations than population based and large sample size studies. Hospital based studies are prone to produce unreliable results because controls from hospital based studies are less representative of the general population, especially when the polymorphism under investigation are expected to be related to disorders that the hospital based controls may have [142,143]. Small sample with limited participants is often accompanied with selection biases, and lacks sufficient power to support or deny an association [144]. It is therefore speculated that our meta-analysis might overestimate the magnitude of association between the polymorphism and H & HIP in the overall effect estimates. Although this may not influence the final conclusions, further large scale and well designed population based studies are warranted to explore the associations reliably. Stratified analysis by genotyping method suggested significant associations in both PCR-RFLP and “others” genotyping method studies, except among those HIP association studies taking “others” as genotyping method. PCR-RFLP is the most commonly used method for genotyping MTHFR in this meta-analysis because of its relative simplicity. Although it is reported that other genotyping methods (Taqman, Mass Array and gene chip) may provide high sensitivity and accuracy in SNP genotyping under optimized condition [145,146,147], only 12 of total 114 studies included in our meta-analysis employed these genotyping methods. Thus the discrepancies should be concerned with great caution, and the sensitivity and specificity of those genotyping techniques should be further explored to seek out the optimal approaches that could minimize the genotyping errors.

To the best of our knowledge, this is the first comprehensive meta-analysis to date investigating the associations between the MTHFR A1298C polymorphism and H & HIP. Overall, our meta-analytical results indicated that the A1298C polymorphism was not associated with either H or HIP. In the stratified analyses according to ethnicity, source of controls, genotyping method, sample size and study quality, no evidence of any gene-association was obtained in almost all the subgroups. Although significant associations were found in Indians and Sri Lankans, “others” genotyping method and low quality subgroups for H association studies, these results should be interpreted with great caution because only one study was included in each of these subgroups. The overall lack of the correlation may be due to relatively small sample numbers of studies and participants. Detecting a very small effect may require much larger sample sizes. Another potential explanation may be that the effect of a single polymorphism might have a limited effect on H & HIP. This is consistent with the hypothesis that H & HIP are multi-factorial conditions that result from complicated interactions between environmental and genetic factors.

Several potential limitations of the present meta-analysis should be acknowledged. Firstly, significant heterogeneity was observed in overall and subgroup analyses, especially for the MTHFR C677T polymorphism. Although several potential sources of the heterogeneity were investigated including ethnicity, year of publication, source of controls, genotyping, sample size and study quality, none of them sufficiently explain the between-study heterogeneity. These results indicated that other unmeasured characteristics in various study populations and/or inherited limitations of the included studies might partially cause the detected heterogeneity. Secondly, the sample size of the MTHFR A1298C polymorphism involved is not large enough, especially for subgroup analysis. Thus they do not have adequate power to detect the possible association for this polymorphism and the observed significant associations in some subgroup analyses may be false. For the MTHFR C677T polymorphism, the results for East Asians and Black Africans should also be interpreted with caution due to the limited sample size. Thirdly, although funnel plot and Egger’s test showed that publication bias was not evident in the present study, selection bias might have occurred because only studies in English and Chinese (expect one study in Persian) were included in our meta-analysis. Finally, gene-gene, gene-environment or even the different polymorphism loci of the MTHFR gene interactions were not estimated in our study because of the insufficient information. Despite these limitations, our meta-analysis has several clear advantages: (1) including a substantial number of cases and controls (15411 cases and 21970 controls) from different studies, thus guaranteeing the statistical power of our meta-analysis and obtaining more precise estimates; (2) the quality of the studies included in this meta-analysis was sufficient according to our well-designed selection criteria; (3) no evidence of publication bias was observed, and cumulative meta-analysis and sensitivity analysis indicated that our results were statistically robust.

In conclusion, our meta-analysis provides evidences that the MTHFR C677T polymorphism is associated with H & HIP, especially among East Asians and Caucasians. However, the MTHFR A1298C polymorphism is not associated with H & HIP. Considering the limitations aforementioned, further large-scale and population based studies, especially among Black Africans and Indians and Sri Lankans, are warranted to validate the associations observed in our meta-analysis and to explore the potential gene-gene and gene-environment interactions between the polymorphisms and H & HIP.

Supporting Information

Figure S1 Forest plot of the association between MTHFR C677T polymorphism and H & HIP in homozygous codominant model (TT vs. CC).
(TIF)

Figure S2 Forest plot of the association between MTHFR C677T polymorphism and H & HIP in heterozygous codominant model (CT vs. CC).
(TIF)

Figure S3 Forest plot of the association between MTHFR A1298C polymorphism and H & HIP in dominant model (TT+CT vs. CC).
(TIF)

Figure S4 Forest plot of the association between MTHFR C677T polymorphism and H & HIP in recessive model (TT vs. CT+CC).
(TIF)

Figure S5 Forest plot of the association between MTHFR C677T polymorphism and H & HIP in allele contrast model (T vs. C).
(TIF)

Figure S6 Forest plot of the association between MTHFR A1298C polymorphism and H & HIP in homozygous codominant model (CC vs. AA).
(TIF)

Figure S7 Forest plot of the association between MTHFR A1298C polymorphism and H & HIP in heterozygous codominant model (AC vs. AA).
(TIF)

Figure S8 Forest plot of the association between MTHFR A1298C polymorphism and H & HIP in dominant model (CC+AC vs. AA).
(TIF)
MTHFR Polymorphisms and Hypertension

Figure S9 Forest plot of the association between MTHFR A1298C polymorphism and H & HIP in recessive model (CC vs AC+AA).

Figure S10 Forest plot of the association between MTHFR A1298 polymorphism and H & HIP in allele contrast model (C vs A).

Figure S11 The cumulative forest plot of OR with 95% CI for MTHFR C677T polymorphism and H & HIP in dominant model.

Figure S12 The cumulative forest plot of OR with 95% CI for MTHFR A1298C polymorphism and H & HIP in dominant model.

Table S1 Baseline characteristics of qualified studies in this meta-analysis.

Table S2 Distribution of genotypes and allele frequencies of the MTHFR C677T polymorphism.

Table S3 Distribution of genotypes and allele frequencies of the MTHFR A1298C polymorphism.

Check list S1 PRISMA checklist.

Author Contributions
Conceived and designed the experiments: BYY SJF GFS. Performed the experiments: XYZ YYL DW. Analyzed the data: BYY SJF XYZ YYH. Contributed reagents/materials/analysis tools: YFL MH QMZ. Wrote the paper: BYY GFS.

References
1. Lawes CM, Vander HS, Rodgers A (2008) Global burden of blood-pressure-related disease. Lancet 371: 1513–1518.
2. Staessen JA, Wang J, Bianchi G, Birkenhager WH (2003) Essential hypertension. Lancet 361: 1629–1641.
3. Tanira MO, Al BK (2005) Genetic variations related to hypertension: a review. J Hum Hypertens 19: 7–19.
4. Padmanabhan S, Newton-Cheh C, Dominiczak AF (2012) Genetic basis of blood pressure and hypertension. Trends Genet 28: 397–406.
5. Levy D, Ehret GB, Ricke R, Verwoert GC, Launer LJ, et al. (2009) Genome-wide association study of blood pressure and hypertension. Nat Genet 41: 677–687.
6. Newton-Cheh C, Johnson T, Gateva V, Tobin MD, Bochud M, et al. (2009) Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet 41: 666–676.
7. Fross P, Blom HJ, Miles R, Goyette P, Sheppard CA, et al. (1995) A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 10: 111–113.
8. Goyette P, Sumner JS, Miles R, Duncan AM, Rosenblatt DS, et al. (1994) Human methylenetetrahydrofolate reductase: isolation of cDNA, mapping and mutation identification. Nat Genet 7: 195–200.
9. Yang B, Liu Y, Li Y, Fan S, Zhi X, et al. (2013) Geographical Distribution of MTHFR C677T, A1298C and MTR A66G Gene Polymorphisms in China: Findings from over 7000 newborns from 16 areas worldwide. J Med Genet 50: 57–61.
10. Wilcken B, Bamforth F, Li Z, Zhu H, Ritvanen A, et al. (2003) Geographical and ethnic variation of the 677C>T allele of 5,10 methylenetetrahydrofolate reductase (MTHFR): findings from over 7000 newborns from 16 areas worldwide. J Med Genet 40: 619–625.
11. Weiberg I, Tran P, Christensen B, Sibani S, Rozen R (1998) A second genetic polymorphism in the methylenetetrahydrofolate reductase gene and hypertension. Eur J Hum Genet 15: 1239–1245.
12. Gneccche SP, Mosse OK (2000) Methylenetetrahydrofolate reductase polymorphisms are not a risk factor for pre-eclampsia/eclampsia in black South African women with pre-eclampsia. BJ Obstet Gynaecol 106: 1219–1220.
13. O'Shaughnessy KM, Fri B, Ferraro F, Lewis I, Downing S, et al. (1999) Factor V Leiden and thrombophilic methylenetetrahydrofolate reductase gene variants in an East Anglian pre-eclampsia cohort. Hypertension 33: 1338–1341.
14. Powers RW, Minich LA, Lykins DL, Ness RB, Crombleholme WR, et al. (2000) Methylenetetrahydrofolate reductase polymorphism, plasma folate, and susceptibility to preeclampsia. J Soc Gynecol Investig 6: 74–78.
15. Obabi G, Yamada H, Asano T, Nagano S, Hata A, et al. (2000) Absence of association between a common mutation in the methylenetetrahydrofolate reductase gene and preeclampsia in Japanese women. Am J Med Genet 93: 122–125.
16. Kaiser T, Bremer P, Yee S, Dieperink M, Moses OK (2000) Methylenetetrahydrofolate reductase polymorphisms are not a risk factor for pre-eclampsia/eclampsia in Australian women. Gynecol Obstet Invest 50: 100–102.
17. Jr Rijo J, Nagy B, Finton L, Tanyi J, Beke A, et al. (2000) Maternal and neonatal outcome of preeclamptic pregnancies: the potential roles of factor V Leiden mutation and 5,10 methylenetetrahydrofolate reductase polymorphisms. Hypertens Pregnancy 19: 163–172.
18. Rajkovic A, Miosekd K, Rozen R, Malinow MR, King IB, et al. (2000) Methylenetetrahydrofolate reductase 677 C>T polymorphism, plasma folate, vitamin B12 concentrations, and risk of preeclampsia among black African women from Zimbabwe. Mol Genet Metab 69: 33–39.
19. Zhan S, Gao Y, Yin X, Huang Y, Hu Y, et al. (2000) A case control study on the relationship between abnormal homocysteine metabolism and essential hypertension. Chin J Epidemiol 21: 194–197 [In Chinese].
20. Zusterzeel PL, Visser W, Blom HJ, Peters WH, Heil SG, et al. (2000) Methylenetetrahydrofolate reductase polymorphisms in preeclampsia and the HELLP syndrome. Hypertens Pregnancy 19: 299–307.
21. Laivuori H, Kaaja R, Ylikorkala O, Hiltunen T, Konnola K (2000) C677T polymorphism of the methylenetetrahydrofolate reductase gene and preeclampsia. Obstet Gynecol 96: 277–80.
22. Murphy RP, Doneughue G, Nallen RL, D'Mello M, Regan C, et al. (2000) Prospective evaluation of the risk conferred by factor V Leiden and thrombophilic methylenetetrahydrofolate reductase polymorphisms in pregnancy. Arterioscler Thromb Vasc Biol 20: 266–270.

PLOS ONE | www.plosone.org 10 February 2014 | Volume 9 | Issue 2 | e87497
Li K, Zheng D, Xue Y, Sun Y, Chen L, et al. (2000) The common C677T polymorphism in the methylenetetrahydrofolate reductase gene is associated with neural tube defects and preeclampsia. Chin J Med Genet 17: 76–78 [In Chinese].

Kim YJ, Williamson RA, Murray JC, Andrews J, Pietsch J, et al. (2001) Genetic susceptibility to preeclampsia: roles of cytochrome-d monooxygenase at nucleotide 677 of the gene for methylenetetrahydrofolate reductase, 68-base pair insertion at nucleotide 844 of the gene for cystathionine beta-synthase, and factor V Leiden mutation. Am J Obstet Gynecol 184: 1211–1217.

Lavric-Jovanovic A, Croan JR, Park V, Hadari B, Phillips O, et al. (2001) Maternal and fetal inherited thrombophobias are not needed for the development of severe preeclampsia. Am J Obstet Gynecol 185: 153–157.

Benes P, Kankova K, Muzik J, Groch I, Benedik J, et al. (2001) Methylenetetrahydrofolate reductase polymorphism, type II diabetes mellitus, coronary artery disease, and essential hypertension in the Czech population. Mol Genet Metab 73: 188–195.

Lachmeijer AM, Arumugum R, Bastiansen E, Pals G, ten KL, et al. (2001) Mutations in the gene for methylenetetrahydrofolate reductase, homocysteine levels, and vitamin status in women with a history of preeclampsia. Am J Obstet Gynecol 184: 394–402.

Raijmakers MT, Zusterzeel PL, Steegers EA, Peters WH (2001) Homocysteinaemia: a risk factor for preeclampsia? Eur J Obstet Gynecol Reprod Biol 98: 226–227.

Wei S, Zheng J, Shi D, Zou L, Bi L (2001) The relationship between MTHFR gene polymorphisms and homocysteine levels and pregnancy induced hypertension. Chin J Modern Med 11: 10–12 [In Chinese].

Attieff Z, Moisson HA, Mathieu V, Brunet P, Perez-Casal M, et al. (2001) Postnatal scanning for thrombophilia in women with severe pregnancy complications. Obstet Gynecol 97: 753–759.

Watanabe H, Hamada H, Yamakawa-Kobayashi K, Yoshikawa H, Arimani T (2001) Evidence for an association of the R405K polymorphism in the coagulation factor V gene with severe preeclampsia from screening 35 candidates in pregnant women. Thromb Haemost 86: 1594–1595.

D Elia AV, Drul L, Giacomello R, Colaone R, Fabbro D, et al. (2002) Evidence for a genotypic factor, prothrombin and methylenetetrahydrofolate reductase gene variants in preeclampsia. Gynecol Obstet Invest 53: 84–87.

Morrison ER, Miedzybrodza ZH, Campbell DM, Haitez NE, Wilson BJ, et al. (2002) Prothrombotic gene mutations are not associated with preeclampsia and gestational hypertension: results from a large population-based study and systematic review. Thromb Haemost 87: 779–783.

Prasmusino D, Skrublin S, Hofstaetter C, Fimmers R, van der Ven K, et al. (2002) Methylenetetrahydrofolate reductase 677 C>T polymorphism and preeclampsia in two populations. Obstet Gynecol 99: 1035–1092.

Wang L, Gao H, Li Y (2002) MTHFR gene C677T polymorphism and variation of plasma homocysteine levels in Primary hypertension. Tianjin Med J 30: 579–582 [In Chinese].

Rodriguez-Esparraon F, Hernandez-Perea O, Rodriguez-Perez JC, Anahiti A, Dzire-Gonzalez JM, et al. (2003) The effect of methylenetetrahydrofolate reductase C677T common variant on hypertensive risk is not solely explained by increased plasma homocysteine values. Clin Exp Hypertens 25: 209–220.

Li F, Liu H, Liao T, Xiong L, He X, et al. (2003) Investigation of the association between thrombophilia genes and genetic susceptibility to pregnancy induced hypertension syndrome. Thromb Haemost 91: 779–783.

Zhang XY (2003) Homocysteine metabolism abnormality and pathogenesis of pregnancy induced hypertension. Master thesis, Tianjin Medical University [In Chinese].

Zhang XY (2003) Genetic susceptibility to preeclampsia and the prevalence of hypertension in Japanese men. Circ J 70: 83–87.

Liu JW, Ye L, Liu J, Li XY (2004) Methylenetetrahydrofolate reductase gene polymorphisms and congenital thrombophilia. Saudi Med J 27: 1161–1166.

Hirata W, Ishii K, Banno T, Miyazaki H, et al. (2004) Association between thrombophilia and pregnancy induced hypertension syndrome. Int J Gynaecol Obstet 88: 265–270.

Hirata W, Ishii K, Banno T, Miyazaki H, et al. (2004) Association between thrombophilia and pregnancy induced hypertension syndrome. Int J Gynaecol Obstet 88: 265–270.

Dusse LM, Carvalho M, Braganca WF, Paiva SG, Godoi LC, et al. (2007) Polymorphisms of methylenetetrahydrofolate reductase gene (C677T) is not a confounding factor of the relationship between serum uric acid level and the prevalence of hypertension in Japanese men. Circ J 70: 83–87.

Dalmaz CA, Santos KG, Botton MR, Teddoli CL, Rosenberg I (2006) Relationship between polymorphisms of the genes and preeclampsia in a Brazilian population. Blood Cells Mol Dis 37: 107–110.

Yalinkaya A, Erderemoğlu M, Akdeniz N, Kale A, Kale E (2006) The relationship between thrombophilic mutations and preeclampsia: a prospective case-control study. Ann Saudi Med 26: 103–105.

Li XJ, Huang W (2009) The analysis of MTHFR gene polymorphism in women with renal damage caused by hypertension and patients with renal parenchymal hypertension. J Capital Univ Med Sci 27: 497–500 [In Chinese].

Wang Y, Shi R, Liu XM, et al. (2006) The relationship between MTHFR gene polymorphism and gestational hypertension syndrome. Reprod Contracept 26: 378–379 [In Chinese].

Derin SC, Evrique C, Ozgunen T, Kadayifci O, Atintas U, et al. (2006) The relationship between pregnancy induced hypertension and congenital thrombophilia. Saudi Med J 27: 1161–1166.

Hai P, Nakayama T, Moria A, Sato N, Hishiki M, et al. (2007) Common single nucleotide polymorphisms in Japanese patients with essential hypertension: aldolase dehydrogenase 2 gene as a risk factor independent of alcohol consumption. Hypertens Res 30: 585–592.

Nagy B, Hupsac P, Papp Z (2007) High frequency of methylenetetrahydrofolate reductase 677T genotype in Hungarian HELLIP syndrome patients determined by quantitative real-time PCR. J Hum Hypertens 21: 154–158.

Duse LM, Carvalho M, Braganca WF, Paiva SG, Godoi LC, et al. (2007) Inherited thrombophilia and pre-eclampsia in Brazilian women. Eur J Obstet Gynecol Reprod Biol 134: 21–24.

Sato N, Nakayama T, Moria A, Sato M, Hishiki M, et al. (2007) Common single nucleotide polymorphisms in Japanese patients with essential hyper- tension: aldolase dehydrogenase 2 gene as a risk factor independent of alcohol consumption. Hypertens Res 30: 585–592.

Stone A, Hemmer F, Philipp K, Heller LA, Bentz EK, et al. (2007) Methylenetetrahydrofolate reductase C677T polymorphism and pregnancy complications. Obstet Gynecol 110: 363–368.

Markan S, Sachdeva M, Sahravat BS, Kumar S, Jain S, et al. (2007) MTHFR 677 CT/MTHFR 1298 CC genotypes are associated with increased risk of hypertensive end-stage renal disease. J Biomed Biotechnol 2007: 1–11.

Zhang ZH, Zhang RJ, Liu AM, Xu Q, Liu ZH (2007) Study on eNOS gene polymorphism and MTHFR gene polymorphism in preeclampsia. Chin J Obstet Gynecol Reprod Biol 134: 20–23.
109. Fan LP (2007) Association between methylenetetrahydrofolate reductase gene polymorphism and hypertension in pregnancy. Master thesis, Nanchang University [In Chinese].

110. Lin PJ, Cheng CH, Wei JC, Huang YC (2008) Low plasma pyridoxal 5-phosphate concentration and MTHFR677C-T genotypes are associated with increased risk of hypertension. Int J Vitam Nutr Res 78: 35–40.

111. Canto P, Canto-Cetina T, Juez-Velazquez R, Rosas-Vargas H, Rangel-Villabobos H, et al. (2008) Methylenetetrahydrofolate reductase C677T and glutathione S-transferase P1 A313G are associated with a reduced risk of preclampsia in Maya-Mestizo women. Hypertens Res 31: 1015–1019.

112. Ilhan N, Kucukcu M, Kaman D, Ilhan N, Ozbay Y (2008) The 677 C/T MTHFR polymorphism is associated with essential hypertension, coronary artery disease, and higher homocysteine levels. Arch Med Res 39: 125–130.

113. Muiztse S, Leeners B, Ortlepp JR, Kuse S, Tag CG, et al. (2008) Maternal factor V Leiden variant is associated with HELLP syndrome in Caucasian women. Acta Obstet Gynecol Scand 87: 635–642.

114. Ding YS, Guan LX, Wang YH, Zhao L, Chen WY (2008) Study on MTHFR and eNOS gene polymorphisms in pregnancy-induced hypertension in the Han of Weifang area. Chin J Birth Health Hered 16: 12–14 [In Chinese].

115. Luo JW, Tang Y, Chen H, Wu XY, Wu YA, et al. (2008) Study on C677T polymorphism in hypertensive subjects with blood status syndrome. J Beijing Uni Tradit Chin Med 31: 531–535 [In Chinese].

116. Wang SM, Wang LG, Liu XJ, Wu AH, YuJC, et al. (2008) Investigation on the association between MTHFR gene C677T polymorphism and preeclampsia. Chin J Obstet Gynecol 23: 532–534 [In Chinese].

117. Zhang XY, Sun D, Sun J (2008) Relationship between homocysteine metabolism abnormality and preeclampsia. Chin J Perinat Med 11: 245–248 [In Chinese].

118. Ng Y, Boyl D, Duffy L, Naumannski N, Blades B, et al. (2009) Folate nutritional genetics and risk for hypertension in an elderly population sample. J Nutrigenet Nutrigenomics 2: 1–8.

119. Fakhrazadeh H, Mirzaei M, Sharifi F, Gholi S, Rezaei HM, et al. (2009) Association of methylenetetrahydrofolate reductase C677T with metabolic syndrome in an Iranian population: Tehran Homocysteine study. Iran J Diabetes Lipid Disord 9: 37–46.

120. Stiefel P, Miranda ML, Bellido LM, Luna J, Jimenez L, et al. (2009) Genotype of the N237V polymorphism of the MTHFR and APOE genotype in patients with hypertensive disorders of pregnancy: an observational study. Med Clin (Barc) 133: 657–661.

121. Kahn SR, Platt R, McNamara H, Rozen R, Chen MF, et al. (2009) Inherited thrombophilia and adverse pregnancy outcomes: results from the Danish National Birth Cohort. J Thromb Haemost 7: 1320–1325.

122. Yastrzemski VP, Cunto JR, Cunto LA, Person ME, Smith NR, et al. (2009) Folic acid supplementation and Folic acid supplementation and homocysteine levels and placental vasculopathies. Blood Coagul Fibrinolysis 20: 99–102 [In Chinese].

123. Luo JW, Tang Y, Chen H, Wu XY, Wu YA, et al. (2008) Study on the relationship between N 5,10-methylenetetrahydrofolate reductase and endothelial activation markers in patients with preeclampsia. J Thromb Thrombolysis 35: 250–256.

124. Deng FM (2007) Polymorphism of eNOS and MTHFR genes, environmental factors and risk for hypertension in an elderly population sample. J Thromb Thrombolysis 35: 250–256.

125. Deveer R, Engin-Ustun Y, Akbaba E, Halisdemir B, Cakar E, et al. (2013) Analysis of polymorphisms in the C677T and A1298C gene polymorphisms of the MTHFR and eNOS genes in associated with a reduced risk of essential hypertension in patients of Guangdong. Prog Obstet Gynecol 20: 199–202 [In Chinese].

126. Said JM, Higgins JR, Moses EK, Walker SP, Monagle PT, et al. (2012) Thrombophilias and adverse pregnancy outcome: results from the Australian Pregnancy Outcome Study. J Thromb Haemost 10: 2305–2315.

127. Su NJ, Li B, Fen JH, Yu B (2011) Study on the relationship between N 5,10-methylenetetrahydrofolate reductase gene and endothelial nitric oxide synthase gene polymorphisms and preclampsia and eclampsia in the Han nationality women of Guangdong. Prog Obstet Gynecol 20: 199–202 [In Chinese].

128. Alighashem A, Settin AA, Ali A, Dowidar M, Issa MI (2012) Association of MTHFR C677T and A1298C gene polymorphisms with hypertension. Int J Health Sci (Qassim) 6: 3–11.

129. Fosdick JD, Lason MV, Szekely AJ, Lef RA, Griffiths LR (2012) Investigation of homocysteine-pathway-related variants in essential hypertension. Int J Hypertens 2012: 190992.

130. Lykke JA, Bare LA, Olsen J, Lager J, Arellano AR, et al. (2012) Thrombophilias and adverse pregnancy outcome: results from the Danish National Birth Cohort. J Thromb Haemost 10: 1320–1325.

131. Cao ZY (2012) The relationship between MTHFR C677T polymorphism and preeclampsia. Chin J Tradit Chin Med 32: 206–207 [In Chinese].

132. Lykke JA, Bare LA, Olsen J, Lager J, Arellano AR, et al. (2012) Thrombophilias and adverse pregnancy outcome: results from the Danish National Birth Cohort. J Thromb Haemost 10: 1320–1325.

133. Deveer R, Engin-Ustun Y, Akbaba E, Halisdemir B, Cakar E, et al. (2013) Analysis of polymorphisms in the C677T and A1298C gene polymorphisms of the MTHFR and eNOS genes in association with essential hypertension in women of Guangdong. Prog Obstet Gynecol 20: 199–202 [In Chinese].

134. Deng FM (2007) Polymorphism of eNOS and MTHFR genes, environmental factors and risk for hypertension in an elderly population sample. J Thromb Thrombolysis 35: 250–256.

135. Deveer R, Engin-Ustun Y, Akbaba E, Halisdemir B, Cakar E, et al. (2013) Analysis of polymorphisms in the C677T and A1298C gene polymorphisms of the MTHFR and eNOS genes in association with essential hypertension in women of Guangdong. Prog Obstet Gynecol 20: 199–202 [In Chinese].

136. Ibrahim ZM, Metawie MAE, El-Baz AM, El-Bahie MA (2012) Methylenetetrahydrofolate C677T polymorphism and pre-eclamptic Egyptian women. Middle East Fertility Society Journal 17: 105–110.

137. Bayramoglu A, Kucuk MU, Guler HI, Abaci O, Kucukkaya Y, et al. (2013) Is there any genetic predisposition of MPP-9 gene C1562T and MTHFR gene C677T polymorphisms with essential hypertension? Cytotechnology DOI: 10.1007/s10616–013–9665–0.
138. Alaniz FV, Marquez ML, Carrillo S, Duran MA, Hernandez EM, et al. (2013) Association of COMT G675A and $MTHFR$ C677T polymorphisms with hypertensive disorders of pregnancy in Mexican mestizo population. Preg Hyper: An Int J Women’s Card Health. Available online: http://www.sciencedirect.com/science/article/pii/S2210778913002134. Accessed December 10, 2013.

139. Kosmas IP, Tatsioni A, Ioannidis JP (2004) Association of C677T polymorphism in the methylenetetrahydrofolate reductase gene with hypertension in pregnancy and preeclampsia: a meta-analysis. J Hypertens 22: 1655-1662.

140. Xia XP, Chang WW, Cao YX (2012) Meta-analysis of the methylenetetrahydrofolate reductase C677T polymorphism and susceptibility to pre-eclampsia. Hypertens Res 35: 1129-1134.

141. Wang XM, Wu HY, Qiu XJ (2013) Methylenetetrahydrofolate reductase ($MTHFR$) gene C677T polymorphism and risk of preeclampsia: an updated meta-analysis based on 51 studies. Arch Med Res 44: 159-168.

142. Ruano-Ravina A, Perez-Rios M, Barros-Dios JM (2008) Population-based versus hospital-based controls: are they comparable?. Gac Sanit 22: 609-613.

143. Zhao Y, Chen Z, Ma Y, Xia Q, Zhang F, et al. (2013) Lack of association between methionine synthase A2736G polymorphism and digestive system cancer risk: evidence from 3,9327 subjects. PLoS One 8: e61511.

144. Zhong S, Xu J, Li W, Chen Z, Ma T, et al. (2013) Methionine synthase A2736G polymorphism and breast cancer risk: An up-to-date meta-analysis. Gene 527: 510-515.

145. Heller T, Kirchheimer J, Armstrong VW, Luthe H, Tzvetkov M, et al. (2006) AmpliChip CYP450 GeneChip: a new gene chip that allows rapid and accurate CYP2D6 genotyping. Ther Drug Monit 28: 673-677.

146. Li L, Li CJ, Zhang YJ, Zheng L, Jiang HX, et al. (2011) Simultaneous detection of CYP3A5 and MDR1 polymorphisms based on the SNaPshot assay. Clin Biochem 44: 418-422.

147. Zhou C, Ni J, Zhao Y, Su B (2006) Rapid detection of epidermal growth factor receptor mutations in non-small cell lung cancer using real-time polymerase chain reaction with TaqMan-MGB probes. Cancer J 12: 33-39.