Coronaviruses (CoVs) are a highly diverse family of enveloped positive-sense single-stranded RNA viruses. They infect humans, other mammals and avian species, including livestock and companion animals, and are therefore not only a challenge for public health but also a veterinary and economic concern. Within the order of Nidovirales and the suborder of Coronavirineae lies the family Coronaviridae. The latter is further specified into the subfamily of Orthocoronavirinae, which consists of four genera: alphacoronavirus, betacoronavirus, gammacoronavirus and deltacoronavirus. Whereas alphacoronaviruses and betacoronaviruses exclusively infect mammalian species, gammacoronaviruses and deltacoronaviruses have a wider host range that includes avian species. Human and animal coronavirus infections mainly result in respiratory and enteric diseases. Human coronaviruses, such as HCoV-229E and HCoV-OC43, have long been known to circulate in the population and they, together with the more recently identified HCoV-NL63 and HCoV-HKU1, cause seasonal and usually mild respiratory tract infections associated with symptoms of the ‘common cold’. In strong contrast, severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV) and SARS-CoV-2, which have emerged in the human population over the past 20 years, are highly pathogenic. By infecting bronchial epithelial cells, pneumocytes and upper respiratory tract cells in humans, SARS-CoV, MERS-CoV and SARS-CoV-2 infections can develop into severe, life-threatening respiratory pathologies and lung injuries for which no specific prophylactic or therapeutic treatment has been approved to date.

The initial steps of coronavirus infection involve the specific binding of the coronavirus spike (S) protein to the cellular entry receptors, which have been identified for several coronaviruses and include human aminopeptidase N (APN; HCoV-229E), angiotensin-converting enzyme 2 (ACE2; HCoV-NL63, SARS-CoV and SARS-CoV-2) and dipeptidyl peptidase 4 (DPP4; MERS-CoV). The expression and tissue distribution of entry receptors consequently influence viral tropism and pathogenicity. During the intracellular life cycle (Fig. 1), coronaviruses express and replicate their genomic RNA to produce full-length copies that are incorporated into newly produced viral particles. Coronaviruses possess remarkably large RNA genomes flanked by 5’ and 3’ untranslated regions that contain cis-acting secondary RNA structures essential for RNA synthesis. At the 5’ end, the genomic RNA features two large open reading frames (ORFs; ORF1a and ORF1b) that occupy two-thirds of the capped and polyadenylated genome. ORF1a and ORF1b encode 15–16 non-structural proteins (nsp), of which 15 compose the viral replication and transcription complex (RTC) that includes, amongst others, RNA-processing and RNA-modifying enzymes.
Fig. 1 | The coronavirus virion and life cycle. a | The coronavirus virion consists of structural proteins, namely spike (S), envelope (E), membrane (M), nucleocapsid (N) and, for some betacoronaviruses, haemagglutinin-esterase (not shown). The positive-sense, single-stranded RNA genome (+ssRNA) is encapsidated by N, whereas M and E ensure its incorporation in the viral particle during the assembly process. S trimers protrude from the host-derived viral envelope and provide specificity for cellular entry receptors.
b | Coronavirus particles bind to cellular attachment factors and specific S interactions with the cellular receptors (such as angiotensin-converting enzyme 2 (ACE2)), together with host factors (such as the cell surface serine protease TMPRSS2), promote viral uptake and fusion at the cellular or endosomal membrane. Following entry, the release and uncoating of the incoming genomic RNA subject it to the immediate translation of two large open reading frames, ORF1a and ORF1b. The resulting polyproteins pp1a and pp1ab are co-translationally and post-translationally processed into the individual non-structural proteins (nsps) that form the viral replication and transcription complex. Concordant with the expression of nsps, the biogenesis of viral replication organelles consisting of characteristic perinuclear double-membrane vesicles (DMVs), convoluted membranes (CMs) and small open double-membrane spherules (DMSs) create a protective micro-environment for viral genomic RNA replication and transcription of subgenomic mRNAs (sg mRNAs) comprising the characteristic nested set of coronavirus mRNAs. Translated structural proteins translocate into endoplasmic reticulum (ER) membranes and transit through the ER-to-Golgi intermediate compartment (ERGIC), where interaction with N-encapsidated, newly produced genomic RNA results in budding into the lumen of secretory vesicular compartments. Finally, virions are secreted from the infected cell by exocytosis. Key steps inhibited by compounds that are currently being validated and which represent attractive antiviral targets are highlighted in red.
enzymes and an RNA proofreading function necessary for maintaining the integrity of the >30 kb coronavirus genome. ORFs that encode structural proteins and interspersed ORFs that encode accessory proteins are transcribed from the 3′-one-third of the genome. Coronavirus accessory proteins are highly variable sets of virus-specific proteins that display limited conservation even within individual species but they are principally thought to contribute to modulating host responses to infection and are determinants of viral pathogenicity. Nevertheless, the molecular functions of many accessory proteins remain largely unknown owing to the lack of homologies to accessory proteins of other coronaviruses or to other known proteins.

Despite the previous public health emergencies caused by the SARS-CoV and MERS-CoV outbreaks and the impact of the ongoing SARS-CoV-2 pandemic on society and human health, intervention strategies to combat coronavirus infections are only in their early stages and await proof of clinical efficacy. Their development intimately relies on the deepened understanding of basic mechanisms of coronavirus gene functions as well as of the molecular interactions with host factors. Since the discovery of the first coronavirus (avian infectious bronchitis virus) in the 1930s and the discovery of the first human coronaviruses (HCoV-229E and HCoV-OC43) in the 1960s, the coronavirus research field has made substantial progress in understanding the basic principles of coronavirus replication and pathogenesis (Box 1). This advancement was accelerated after the emergence of SARS-CoV in 2002 and MERS-CoV in 2012 and has broadened our view on coronaviruses as zoonotic pathogens that can severely affect human health. Moreover, the unprecedented speed and technical progress of coronavirus research that has become evident in a few months after the appearance of SARS-CoV-2 at the end of 2019 has led to a rapidly growing understanding of this newly emerging pathogen and of its associated disease, COVID-19. In this Review, we discuss key aspects of coronavirus biology and their implications for SARS-CoV-2 infections as well as the treatment and prevention strategies.

Entry of coronaviruses

Coronavirus S proteins are homotrimeric class I fusion glycoproteins that are divided into two functionally distinct parts (S1 and S2) (Fig. 2). The surface-exposed S1...

Box 1 | Milestones in coronavirus discovery and research

Coronaviruses (CoVs) are a large family of viruses long known to infect a wide variety of mammalian and avian species, including livestock and companion animals. In 1931, the avian infectious bronchitis virus (IBV) was the first coronavirus to be discovered. Later, in 1966 and 1967, the first human coronaviruses, HCoV-229E and HCoV-OC43, were discovered. The following period was essential in the discovery of research milestones that majorly contributed to coronavirus knowledge: polyprotein processing (1986), first full-length coronavirus genome sequence (1987), first recombinant coronaviruses engineered by targeted recombination (1992), discontinuous transcription (1995), full-length reverse genetic clones (2000, 2001), and electron microscopy of double-membrane vesicles (2002).

The zoonotic emergence of severe acute respiratory syndrome coronavirus (SARS-CoV) and the subsequent SARS epidemic in 2002–2003 caused 8,000 documented SARS cases, 10% of which had lethal consequences. As human-to-human transmission mainly occurred after the onset of symptoms, drastic public health measures, including travel restrictions and isolation of infected patients, succeeded in containing the international spread to limited foyers of infections. The SARS epidemic was followed by an increased amount of virus screening and sequencing, which led to the identification of HCoV-NL63 and HCoV-HKU1 (Box 1).

In contrast to SARS-CoV, HCoV-229E, HCoV-OC43, HCoV-NL63 and HCoV-HKU1 circulate annually and usually cause only mild upper respiratory tract symptoms in immunocompetent individuals. In 2008, SARS-CoV-induced double-membrane vesicles were first shown using electron tomography. The emergence of a second highly pathogenic coronavirus of zoonotic origin, MERS-CoV, resulted in more than 2,500 human MERS cases since 2012, associated with virus-induced lung injuries and severe clinical manifestations (36% case fatality rate). MERS-CoV also originated from bats and established an animal reservoir in dromedary camels. Despite sporadic zoonotic transmissions to humans upon prolonged contact and the limited human-to-human transmission, MERS-CoV infections are still detected.

Recently, the pathogenic SARS-CoV-2 rapidly spread in the human population after a likely spillover from bats or from a yet unidentified intermediate host. As of October 2020, more than 40 million COVID-19 cases have been declared in over 200 countries, causing more than 1 million deaths (COVID-19 Dashboard). SARS-CoV-2 targets both upper and lower respiratory tract tissues and efficient human-to-human transmission occurs even before the onset of symptoms. Clinical manifestations range from asymptomatic or mild infections to acute lung inflammation and pneumonia, mostly in the elderly and patients with comorbidities.

![Flowchart showing milestones in coronavirus discovery and research](image-url)
Fig. 2 | Severe acute respiratory syndrome-related coronavirus spike sequence variation. a | Schematic illustration of coronavirus spike, indicating domain 1 and domain 2. The receptor-binding motif (RBM) is located on S1 and the fusion peptide (FP), heptad repeat 1 (HR1), HR2 and the transmembrane (TM) domains are located on S2. The cleavage sites are indicated. The colour code designates conserved spike regions surrounding the angiotensin-converting enzyme 2 (ACE2)-binding domain among severe acute respiratory syndrome-related coronaviruses (SARSr-CoVs) and high amino acid sequence variations within the site of receptor interaction. b | Amino acid alignment of human SARS-CoV-2 (Wuhan-Hu-1) and SARS-CoV (Frankfurt-1), bat (RaTG13, RmYN02, CoVZC45 and CoVZXC21) and pangolin (MP789, P1E) SARSr-CoVs. The spike gene sequence alignment was performed using MUSCLE and using the default settings and codon alignment, then translated into amino acids using MEGA7, version 7.0.26. The alignment was coloured according to percentage amino acid similarity with a Blossum 62 score matrix. The colour code designates conserved spike regions surrounding the ACE2-binding domain among SARSr-CoVs and high amino acid sequence variations within the site of receptor interaction. The insertion of a polybasic cleavage site (PRRAR, amino acids 681 to 685) in Wuhan-Hu-1 is indicated, and similar insertions are depicted in bat SARSr-CoV RmYN02. c | Within the spike sequence, the ACE2 receptor-binding motif (amino acids 437 to 509, black line) is depicted. The spike contact residues for ACE2 interaction are marked with asterisks.

The high genomic and structural homology between the S proteins of SARS-CoV and SARS-CoV-2 (76% amino acid identity) supported the identification of ACE2 as the cell-surface receptor for SARS-CoV-2 [REFS12,12,13,14]. Remarkably, essential SARS-CoV contact residues that interact with ACE2 were highly conserved in SARS-CoV-2 as well as in members of the species Severe acute respiratory syndrome-related coronavirus that use ACE2 or have similar amino acid side
chain properties. These data were corroborated by the atomic resolution of the interface between the SARS-CoV-2 S protein and ACE2. By contrast, the bat Severe acute respiratory syndrome-related coronavirus RaTG13 S sequence (93.1% nucleotide identity to SARS-CoV-2) shows conservation of only one out of six amino acids directly involved in ACE2 binding, even though, based on the entire genomic sequence, RaTG13 is the closest relative of SARS-CoV-2 known to date (96.2%) (Box 2).

Box 2 | Diversity of severe acute respiratory syndrome-related coronaviruses

SARS-CoV-2 belongs to the species Severe acute respiratory syndrome-related coronavirus in the subgenus Sarbecovirus. Phylogenetic relationships of representative members of the species Severe acute respiratory syndrome-related coronavirus were analysed (sequences retrieved from GenBank and GISAID) were analysed using MEGA7 version 7.0.26, asterisks indicate representative viruses further depicted in figure part b. Interestingly, SARS-CoV-2 shared 79.6% nucleotide identity with SARS-CoV and close relations to severe acute respiratory syndrome-related coronaviruses (SARSr-CoVs) ZC45 and ZXC21 from Rhinolophus sinicus, whereas RaTG13 from Rhinolophus affinis showed the highest nucleotide similarity of 96.2% (figure part a).

Sequence identity differed highly upon comparison of individual genes and domains, indicating frequent recombination events in natural reservoir hosts. This is exemplified by comparing the nucleotide identity of SARS-CoV-2 with bat coronavirus RaTG13, bat CoV RmYN02, pangolin CoV MP789, pangolin CoV P1E, bat CoV ZC45, bat CoV ZXC21 and human SARS-CoV (Frankfurt-1 strain). Remarkably, in all depicted SARSr-CoVs, the spike gene, a major determinant for zoonotic transmission to humans, showed lower sequence similarity with SARS-CoV-2, thus raising the question of the SARS-CoV-2 origin. Despite the detection of a wide variety of similar bat CoVs in China, SARS-CoV-2 or an immediate precursor have not been found, leaving the role of bats in the emergence of SARS-CoV-2 elusive. Moreover, the environmental separation of bats and humans might favour the existence of an intermediate host, responsible for SARS-CoV-2 adaption and transmission into the human population, just like civet cats were suggested in the SARS-CoV outbreak. The example of pangolin CoV MP789, which shared five essential amino acids for ACE2 binding in the S with SARS-CoV-2 highlights the existence of a variety of unidentified betacoronaviruses in wild-life animals and their roles as possible intermediate hosts. Nevertheless, the number of identified bat SARSr-CoVs represents only a fraction of the existing diversity. The recent identification of bat SARSr-CoVs that can use human ACE2 as an entry receptor (CoV WIV1, CoV BrRSHC04) indicates a possibility of direct cross-species transmission from bats to humans (figure part b).
These data suggest that, much like during the evolution of SARS-CoV, frequent recombination events between severe acute respiratory syndrome–related coronaviruses that coexist in bats probably favoured the emergence of SARS-CoV-2 [REF.22]. Indeed, predicted recombination breakpoints divide the S gene into three parts. The middle part of the S protein (amino acids 1,030–1,651, encompassing the RBD) is most similar to SARS-CoV and bat severe acute respiratory syndrome–related coronaviruses WIV1 and RsSHC014, all of which use human ACE2 as a cellular entry receptor14. However, the amino-terminal and carboxy-terminal parts of the SARS-CoV-2 S protein (amino acids 1–1,029 and 1,651–3,804, respectively) are more closely related to severe acute respiratory syndrome–related coronaviruses ZC45 and ZXC21. These observations highlight the importance of recombination as a general mechanism contributing to coronavirus diversity and might therefore drive the emergence of future pathogenic human coronaviruses from bat reservoirs. This emphasizes the need for surveillance to determine the breadth of diversity of severe acute respiratory syndrome–related coronaviruses, to evaluate how frequently recombination events take place in the field and to understand which virus variants have the potential to infect humans. Increased surveillance is thus instrumental to improve our preparedness for future outbreaks of severe acute respiratory syndrome–related coronaviruses.

Besides receptor binding, the proteolytic cleavage of coronavirus S proteins by host cell–derived proteases is essential to permit fusion13,14. SARS-CoV has been shown to use the cell–surface serine protease TMPRSS2 for priming and entry, although the endosomal cysteine proteases cathepsin B (CatB) and CatL can also assist in this process15–17. Concordantly, the simultaneous inhibition of TMPRSS2, CatB and CatL efficiently prevents SARS-CoV entry into in vitro cell cultures15. TMPRSS2 is expressed in the human respiratory tract and thus strongly contributes to both SARS-CoV spread and pathogenesis. Notably, SARS-CoV-2 entry relies mainly on TMPRSS2 rather than on CatB and CatL, as inhibition of TMPRSS2 was sufficient to prevent SARS-CoV-2 entry in lung cell lines and primary lung cells18,19. These data support the evaluation of the TMPRSS2 inhibitors camostat mesylate and nafamostat mesylate in clinical trials, since in vitro studies have demonstrated their potent antiviral activity against emerging coronaviruses, including SARS-CoV-2 [REFS 20,21,22].

Given these similarities in receptor usage and cleavage requirements, it is surprising that SARS-CoV and SARS-CoV-2 display marked differences in virus replication efficiency and spread. SARS-CoV primarily targets pneumocytes and lung macrophages in lower respiratory tract tissues, where ACE2 is predominantly expressed, consistent with the lower respiratory tract disease resulting from SARS-CoV infection and the limited viral spread23–25. By contrast, SARS-CoV-2 replicates abundantly in upper respiratory epithelia, where ACE2 is also expressed, and is efficiently transmitted26–28. Different host cell tropism, replication kinetics and transmission of SARS-CoV and SARS-CoV-2 might be determined by S protein–ACE2 binding affinities. For example, it has been reported that the S protein and ACE2 binding affinity is correlated with disease severity in SARS-CoV infections29. The affinity of the SARS-CoV-2 RBD to ACE2 has been shown to be similar26,29 or stronger29,30 than that of the SARS-CoV RBD. However, the binding affinity of the entire SARS-CoV-2 S protein to ACE2 seems to be equal or lower than that of SARS-CoV, suggestive of a less exposed RBD26,29,30. In addition to ACE2, attachment and entry factors, such as cellular glycans and integrins or neuropilin 1, may also have an impact on the observed phenotypic differences of SARS-CoV and SARS-CoV-2 [REFS 31–47].

A peculiar feature of the SARS-CoV-2 S protein is the acquisition of a polybasic cleavage site (PRRAR) at the S1–S2 boundary, which permits efficient cleavage by the prototype proprotein convertase furin. Cleavage results in enhanced infection and has been proposed to be a key event in SARS-CoV-2 evolution as efficient S protein cleavage is required for successful infection and is a main determinant in overcoming species barriers10,12,13,15,16,18,19,34–41. This pre-processing of the SARS-CoV-2 S protein by furin may contribute to the expanded cell tropism and zoonotic potential and might increase transmissibility42,43. Importantly, such cleavage sites have not been identified in other members of the Sarbecovirus genus44. However, there are multiple instances of furin–like cleavage site acquisitions that occurred independently during coronavirus evolution and similar cleavage sites are present in other human coronaviruses such as HCoV-HKU1 [REF.45], HCoV-OC43 [REF.46] and MERS-CoV47. Recently, an independent insertion of amino acids (PAAs) at the same region of the S protein has been identified in the bat coronavirus RmYN02 [REF.48]. Such independent insertion events highlight the zoonotic potential of bat severe acute respiratory syndrome–related coronaviruses and may increase the possibility of future outbreaks.

The importance of coronavirus S protein–mediated receptor binding and temporally coordinated conformational rearrangements that result in membrane fusion make this process a prime target of innate and adaptive antiviral responses. Notably, a screen involving several hundred interferon–stimulated genes identified lymphocyte antigen 6 family member E (Ly6E) as a potent inhibitor of coronavirus fusion49. Ly6E–mediated inhibition of coronavirus entry was demonstrated for various coronaviruses, including SARS-CoV-2, and seems to have pivotal importance in protecting the haematopoietic immune cell compartment in a mouse model of coronavirus infection. Moreover, the exposure of S protein on the surface of the virion results in the induction of specific neutralizing humoral immune responses44. Coronavirus S proteins are heavily glycosylated, which promotes immune evasion by shielding epitopes from neutralizing antibodies45,46,47. Nevertheless, sera from patients with SARS and COVID-19 can neutralize SARS-CoV and SARS-CoV-2, respectively12,15. Several specific or cross-reactive antibodies that bind the SARS-CoV-2 S protein have been recently reported and their administration to infected patients could potentially provide immediate protection48–50. Human monoclonal antibodies from previous hybridoma collections from SARS-CoV

Recombination breakpoints

Distinct sites in the viral genome that are associated with a high frequency of exchange of genetic material between related viruses during co-infection of the same host cell.

Integrins

Proteins that bind carbohydrate moieties found on proteins of the extracellular matrix or on cell-surface glycoproteins.

Hybridoma

Clonal cells resulting from the fusion of B lymphoblasts and lymphoid myeloma cells. Hybridoma cells are used for the production of monoclonal antibodies.

REVIEWS
S protein–immunized transgenic mice were either directly interfered with RBD–ACE2 interaction or to destabilize intermediate pre-fusion conformations upon binding different epitopes. Taken together, the exploitation of a combination of multiple neutralizing antibodies that do not compete for overlapping epitopes may not only result in synergistic improvements but also impede the appearance of escape mutations.

Viral genome expression and RNA synthesis

Genome translation

The release of the coronavirus genome into the host cell cytoplasm upon entry marks the onset of a complex programme of viral gene expression, which is highly regulated in space and time. The translation of ORF1a and ORF1b from the genomic RNA produces two polyproteins, pp1a and pp1ab, respectively. The latter results from a programmed –1 ribosomal frameshift at the short overlap of ORF1a and ORF1b. Ribosome profiling revealed that the efficiency of the frameshift between ORF1a and ORF1b lies between 45% and 70% in the case of SARS-CoV-2, similar to that measured for mouse hepatitis virus (MHV). This determines the stoichiometry between pp1a and pp1ab, with pp1a being approximately 1.4–2.2 times more expressed than pp1ab. Sixteen non-structural proteins are co-translationally and post-translationally released from pp1a (nsp1–11) and pp1ab (nsp1–10, nspl2–16) upon proteolytic cleavage by two cysteine proteases that are located within nsp3 (papain-like protease; PLpro) and nsp5 (chymotrypsin-like protease; 3CLpro), because of its similarities to the picornaviral 3C protease (3C(pro)).

Escape mutations

Nucleotide changes that enable evasion from a selective pressure. Frequently used to describe changes in the viral genome that impair the efficiency of antibodies or antiviral compounds.
activity. Notably, nsp14 provides a 3’–5’ exonuclease activity that assists RNA synthesis with a unique RNA proofreading function. The coronavirus capping machinery, which is not yet fully elucidated, is composed of nsp10, which functions as a cofactor, nsp13, which provides the RNA 5’-triphosphatase activity, and nsp14 and nsp16, which perform the functions of N7-methyltransferase and 2’-O-methyltransferase, respectively. Notably, one key enzyme typically involved in the formation of the 5’ cap structure, the guanylyltransferase, has not yet been identified in coronaviruses.

The establishment of the viral RTC is crucial for virus replication and thus a promising target for antivirals against SARS-CoV-2. One such target is Mpro, which resides in nsp5. Mpro releases the majority of nsps from the polyproteins and is essential for the viral life cycle. Furthermore, as Mpro is very sequence specific, compounds that structurally mimic those cleavage sites can specifically target the viral protease with little or no impact on host cellular proteases. Based on structural analysis of the protein, multiple research groups have successfully developed lead compounds that block Mpro function in cell culture assays, thus providing frameworks that could aid in rapid drug discovery.

RNA synthesis. Viral genomic replication is initiated by the synthesis of full-length negative-sense genomic copies, which function as templates for the generation of new positive-sense genomic RNA. These newly synthesized genomes are used for translation to generate more nsps and RTCs or are packaged into new virions. A hallmark of coronaviruses and most members of the order *Nidovirales* is the discontinuous viral transcription process, first proposed by Sawicki and Sawicki, that produces a set of nested 3’ and 5’ co-terminal subgenomic RNAs (sgRNAs) (Fig. 4). During negative-strand RNA synthesis, the RTC interrupts transcription following the encounter of transcription regulatory sequences (TRSs) that are located upstream to most ORFs in the 3’ one-third of the viral genome. At these TRS elements, also called TRS ‘body’, the synthesis of the negative-strand RNA stops and is re-initiated at the TRS adjacent to a leader sequence (TRS-L) located at about 70 nucleotides from the 5’ end of the genome. This discontinuous step of coronavirus RNA synthesis involves the interaction between complementary TRSs of the nascent negative-strand RNA (negative-sense TRS body) and the positive strand genomic RNA (positive-sense TRS-L). Upon re-initiation of RNA synthesis at the TRS-L region, a negative strand copy of the leader sequence is added to the nascent RNA to complete the synthesis of negative-strand sgRNAs. The discontinuous step of negative-strand RNA synthesis results in the production of a set of negative-strand sgRNAs that are then used as templates to synthesize a characteristic nested set of positive-sense sg mRNAs that are translated into structural and accessory proteins. Although the coronavirus sg mRNAs are structurally polycistronic, it is assumed that they are functionally monocistronic and that only the first ORF

Fig. 4 | Coronavirus replication and discontinuous transcription. Schematic depiction of coronaviral RNA synthesis. Full-length positive-sense genomic RNA is used as a template to produce both full-length negative-sense copies for genome replication and subgenomic negative-sense RNAs (–sgRNA) to produce the subgenomic mRNAs (sg mRNA). The negative strand RNA synthesis involving a template switch from a body transcription regulatory sequences (TRS-B) to the leader TRS (TRS-L) is illustrated to produce one sg mRNA. This process can take place at any TRS-B and will collectively result in the production of the characteristic nested set of coronaviral mRNAs.
Accessory genes

Sets of coronavirus genes that encode proteins that are neither the non-structural proteins 1–16 (encoded in ORF1a/b and composing the replication and transcription complex) nor the canonical coronavirus structural proteins S, E, M and N. Usually dispensable in cell culture.

at the 5' end, which is absent in the next smaller sgRNA, is translated from each sgRNA\(^{69}\).

The TRS elements for SARS-CoV-2 have already been determined by RNA sequencing analyses of viral RNAs\(^{69,85}\). Like for SARS-CoV, the consensus TRS core of SARS-CoV-2 is 5'-ACGAAC-3' and eight sg mRNAs have been shown to be produced in SARS-CoV-2-infected cells (sg mRNAs 2–9). In addition to canonical sgRNAs, recent reports also determined the existence of numerous non-canonical RNA products of discontinuous transcription, including fusions of the 5' leader sequence to unique 3' sites, TRS-L independent long-distance fusions, and local fusions resulting in small deletions mainly in the structural and accessory genes\(^{69,86}\). However, it remains to be determined whether all of these non-canonical sgRNAs truly arise by discontinuous transcription or whether they represent RNAs that result from recombination. Nevertheless, similar findings were previously reported for other coronaviruses, including MHV\(^{80}\) and HCoV-229E\(^{81}\), which indicates an enhanced coding potential for coronaviruses\(^{82}\). Overall, these unexpected fusion events may drive coronavirus evolution through variant generation, and novel ORFs could encode additional accessory proteins that are involved in either viral replication or modulation of the host immune response\(^{69,86}\).

The RdRP residing in nsp12 is the centrepiece of the coronavirus RTC and has been suggested as a promising drug target as it is a crucial enzyme in the virus life cycle both for replication of the viral genome but also for transcription of sgRNAs. The structure of the SARS-CoV-2 RdRP nsp12 and its cofactors nsp7 and nsp8 has been elucidated and shows a high degree of conservation to the SARS-CoV structure\(^{69,86,87}\). The amino acid sequence of the SARS-CoV and SARS-CoV-2 RdRPs shows a >95% similarity with most changes located in the nidovirus RdRP-associated nucleotidyltransferase domain, which, despite being a genetic marker of *Nidovirales*, has yet to be functionally elucidated\(^{86}\). The structural similarities of the RdRP active site, including conserved key amino acid residues, with other positive-sense RNA viruses suggest the possibility to repurpose known drugs that are effective against other RNA viruses\(^{69}\). One of the most promising candidates is the phosphoramidate remdesivir (RDV), which, in its triphosphate form, acts as a substrate for viral RdRPs and competes with ATP\(^{88}\). RDV has shown potential as an antiviral agent against a broad range of RNA viruses, including Filoviridae (for example, Ebola virus), Paramyxoviridae (for example, Nipah virus) and Pneumoviridae (for example, respiratory syncytial virus) as well as other coronaviruses, including SARS-CoV and MERS-CoV\(^{86,89}\). The RdRP of SARS-CoV-2 selectively incorporates RDV over ATP, which subsequently results in a delayed-chain termination\(^{69,89}\). In contrast to classic nucleoside analogues that lead to immediate termination of the synthesis reaction after incorporation, the RdRP continues for three nucleotides after RDV has been incorporated before chain termination. Nucleotide analogues like RDV may have limited efficacy owing to the proofreading function of the exonuclease domain contained in nsp14 (ExoN)\(^{86}\). The corrective function that is exerted by ExoN is not only responsible for maintaining the stability of the coronavirus genome but also enables the excision of erroneous mutagenic nucleotides\(^{72,90}\). The mode of action observed for RDV might be an explanation for its increased efficiency over other nucleoside analogues as the delayed-chain termination could lead to improved evasion from the proofreading function of nsp14. The current model suggests steric hindrance as a likely reason for termination, disturbing the positioning of the RNA and thus hampering the translocation to the next position\(^{86,88}\). RDV was shown to reduce virus replication of SARS-CoV-2 in vitro\(^{86}\) and was demonstrated to restrict clinical symptoms of SARS-CoV-2 in rhesus macaques upon early pre-symptomatic treatment\(^{87}\). However, a recent randomized, double-blind, placebo-controlled clinical trial in humans with severe COVID-19 showed limited clinical efficacy of RDV treatment\(^{87}\) and further studies will be necessary. Another promising candidate is the purine analogue favipiravir (FPV), which has been shown to effectively target multiple RNA viruses\(^{83}\). Although the mechanism of action is not yet completely understood, a recent study of the in vitro mechanism of FPV suggested a combination of chain termination, slowed RNA synthesis and lethal mutagenesis as the mode of action against SARS-CoV-2, which indicates that FPV might be used to effectively restrict viral replication\(^{87}\). Indeed, results of an experimental pilot study showed that using FPV as treatment against COVID-19 led to increased recovery and faster viral clearance times in treated patients compared to control treatments\(^{86}\). Clinical studies with both RDV and FPV are currently ongoing and will establish whether these compounds are effective antivirals to treat coronavirus infections\(^{86}\).

Expression of structural and accessory proteins. The ORFs encoding the structural proteins (that is, S protein, envelope (E) protein, membrane (M) protein and nucleocapsid (N) protein) are located in the 3' one-third of coronavirus genomes. Interspersed between these ORFs are the ORFs encoding for so-called accessory proteins. The structural proteins of SARS-CoV-2 have not yet been assessed in terms of their role in virus assembly and budding. In general, coronavirus structural proteins assemble and assist in the budding of new virions at the endoplasmic reticulum (ER)-to-Golgi compartment that are suggested to exit the infected cell by exocytosis\(^{86,87}\). However, recent evidence shows that betacoronaviruses, including MHV and SARS-CoV-2, rather egress infected cells via the lysosomal trafficking pathway\(^{86}\). During this process, viral interference with lysosomal acidification, lysosomal enzyme activity and antigen presentation was demonstrated.

At least five ORFs encoding accessory genes have been reported for SARS-CoV-2: ORF3a, ORF6, ORF7a, ORF7b and ORF8 (GenBank entry NC_045512.2) as well as potentially ORF3b\(^{95}\) and ORF9b\(^{100}\), the latter of which is probably expressed as a result of leaky scanning of the sgRNA of the nucleocapsid protein\(^{96,98,101}\). In addition, ORF10 has been postulated to be located downstream of the N gene. However, not all of these ORFs have been experimentally verified yet and the
RNA synthesis. support viral replication and transcription complex and are anchored on convoluted membranes. They anchor the replication and transcription complex and are anchored on convoluted membranes. Upon recognition of peptides. T cells can form of MHC-bound peptides that have been uptaken by the cell in the context of other positive-sense RNA virus infections116. Although, until recently, no openings towards the cytosol have been observed107,110, molecular pores involving nsps were demonstrated to span DMVs in MHV-infected cells109. These newly identified structures, which were also observed in SARS-CoV-2-infected cells, provide a connection between the dsRNA-containing DMV interior and the cytosol, thereby hypothetically rendering newly synthesized viral RNAs available for translation and encapsidation into nascent virions107. They also provide new opportunities to experimentally address the origin, fate and trafficking routes of viral RNAs contained in DMVs.

Replication organelles are a conserved and characteristic feature of coronavirus replication and, consistent with suggested roles of rewired intracellular membranes in the context of other positive-sense RNA virus infections, they provide a propitious niche with adequate concentrations of macromolecules necessary for RNA synthesis while preventing the exposure of viral replication intermediates to cytosolic innate immune sensors107,110,111. The functional dissection of coronavirus replication organelles has proven challenging as their contributions to viral fitness and pathogenesis are indistinguishable from functions provided by enzymes of the RTC, which are anchored on the membranes of the replication organelles105,106. Nevertheless, recent studies revealed the overall composition of the coronavirus RTC, with nsps–nsps interactions and the nucleocapsid protein comprising the viral components105,106. Moreover, several genetic and proteomic screening approaches aimed at deciphering essential coronavirus–host interactions and the RTC microenvironment identified supportive roles of the ER and the early secretory system as well as related vesicular trafficking pathways for efficient replication107,108 and provided a comprehensive list of cellular proteins that are in close proximity to the coronavirus RTC105,107–109. Collectively, these studies, in combination with advanced electron microscopy, provide ground for future studies.
to dissect the microarchitecture of the coronaviral RTC in relation to remodelled ER-derived membranes and to functionally link those structures to processes taking place in close proximity to the RTC such as translation, replication and transcription of viral RNA.

Virus–host interactions and host response

A successful intracellular coronavirus life cycle invariably relies on critical molecular interactions with host proteins that are repurposed to support the requirements of the virus. This includes host factors required for virus entry (such as the entry receptor and host cell proteases), factors required for viral RNA synthesis and virus assembly (such as ER and Golgi components and associated vesicular trafficking pathways) and factors required for the translation of viral mRNAs (such as critical translational initiation factors)\(^{68,124-129}\).

A first systematic expression study of SARS-CoV-2 proteins and subsequent affinity purification followed by mass spectrometry identified more than 300 potential coronavirus–host protein interactions. Although outside the context of a SARS-CoV-2 infection, interactors of individually overexpressed SARS-CoV-2 proteins uncovered several cellular processes reminiscent of those of other coronaviruses that are likely to also be involved in the SARS-CoV-2 life cycle\(^{19}\). Importantly, 69 compounds, either FDA approved or at different stages of clinical development, that target putative SARS-CoV-2 protein interactors were foregrown, a subset of which efficiently prevented SARS-CoV-2 replication in vitro. These systematic screening approaches of large compound libraries that target host proteins provide means of rapidly identifying antiviral (repurposed) drugs and accelerated clinical availability\(^{134}\). However, a detailed functional characterization of conserved host pathways that promote coronavirus replication will guide the development of efficacious targeted therapeutics against coronavirus infections.

In addition, coronaviruses efficiently evade innate immune responses. Virus–host interactions in this context are multifaceted and include strategies to hide viral pathogen-associated molecular patterns, such as replication intermediates (dsRNA), that may be sensed by cytoplasmic pattern recognition receptors\(^{122,133}\). DMVs have been proposed to shield dsRNA and sites of viral RNA synthesis; however, experimental proof supporting this idea has not yet been obtained. The coronavirus RTC also contributes to innate immune evasion through several nsp-encoded functions. These include PL\(^{144,155}\)-mediated deubiquitylation activity\(^{144,155}\), de-ADP-ribosylation by nsp3-encoded macro domains\(^{156}\), RNA-modifying enzymatic activities such as 5'-cap N7-methylation and 2'-O-methylation (nsp14 and nsp16, respectively)\(^{144,157,158}\), and exonuclease\(^{139}\) and endoribonuclease\(^{150,151}\) activities (nsp14 and nsp15, respectively). Although these mechanisms have been elucidated in considerable detail for several prototype coronaviruses, data for SARS-CoV-2 are not yet available.

Besides the well-conserved functions residing in the nsps that comprise the RTC, additional mechanisms to counteract innate immune responses are known for coronaviruses. For example, nsp1 is rapidly proteolytically released from pp1a and pp1ab and affects cellular translation in the cytoplasm to favour viral mRNAs over cellular mRNA, and thereby also decreases the expression of type I and III interferons and of other host proteins of the innate immune response. Indeed, a first structural and functional analysis of SARS-CoV-2 nsp1 showed binding of nsp1 to ribosomes and nsp1-mediated impairment of translation\(^{144}\). Furthermore, several coronavirus accessory proteins are known to affect innate immune responses, most prominently MHV NS2 and MERS-CoV ORF4b proteins, that have 2',5'-phosphodiesterase activity to antagonize the OAS–RNase L pathway\(^{142}\). Although this activity is not predicted for any accessory protein of SARS-CoV or SARS-CoV-2, the ORF3b, ORF6 and N proteins of SARS-CoV have been shown to interfere at multiple levels of the cellular interferon signalling pathway, thereby efficiently inhibiting innate immune responses\(^{153}\). Interestingly, an initial report recently suggested a similar role of SARS-CoV-2 ORF3b as an effective interferon antagonist\(^{155}\). Although this property remains to be demonstrated in the context of viral infection, these results suggest that SARS-CoV-2 shares some preserved accessory protein activities with SARS-CoV that interfere with antiviral host responses.

Coronavirus biology and COVID-19

Our knowledge on SARS-CoV-2 replication, gene function and host interactions is accumulating at unprecedented speed and it will be important to link those findings to the disease induced by SARS-CoV-2 infection, COVID-19. Thus, there is a need to establish experimental systems, such as representative animal models to study the transmission and pathogenicity of SARS-CoV-2, primary airway epithelial cultures and organoids to study SARS-CoV-2 replication and host responses to infection in relevant cell types, and reverse genetics systems to study the specific gene functions of SARS-CoV-2 (TABLE 1). These tools will be instrumental to understanding how the molecular biology of SARS-CoV-2 affects the development of COVID-19.

As we currently understand, SARS and COVID-19 are a consequence of virus-encoded functions and delayed interferon responses and, in severe cases, they are associated with dysregulated immune responses and immunopathologies\(^{135,144}\). Indeed, rapid and uncontrolled viral replication of SARS-CoV has been demonstrated to evade the host innate immune activation during its initial steps. As a consequence, the increase in aberrant pro-inflammatory responses and immune cell infiltration in the lungs provoke tissue damage and contribute to the clinical manifestation of SARS\(^{145}\).

Consistently, host responses, such as cytokine expression, that are known to drive inflammation and immunopathologies have been assessed in studies that revealed that SARS-CoV-2 considerably affects the transcriptional landscape of infected cells by inducing inflammatory cytokine and chemokine signatures\(^{146,147}\). Although interferon responses have been shown to potently impair SARS-CoV-2 replication, only moderate induction of type I interferon, type II interferon and interferon-stimulated genes was reported\(^{144,147}\).
Organoid
Complex 3D structure composed by various cell types, designed to recapitulate the structure of the respective organ; readily available alternative when in vivo models are not available (for example, robust SARS-CoV-2 replication in Rhinolophus sinicus enteroids enables studies with respect to virus origin, and facilitates the isolation of bat severe acute respiratory syndrome-related coronaviruses\(^{(159)}\); human gastrointestinal symptoms mimicked by active replication of SARS-CoV-2 in intestinal organoids; SARS-CoV-2 replication in human capillary organoids and kidney organoids\(^{(160)}\); (personalized) immunomodulatory or antiviral drug screening possible; SARS-CoV-2 replication in human lung organoids with similar innate immune response pattern compared to human COVID-19 infections; organoid co-culture models with various immune cells possible

Primary epithelial cell culture
Readily available to study SARS-CoV-2 replication and tropism or to conduct virus isolation; the 3D culture system mimics their tissue of origin, containing various characteristic cell types, competent of innate immune response\(^{(172)}\); versatile in vitro model recapitulates in vivo conditions; genetically modifiable

Infectious clone
Genetic modifications of viral genomes enable functional characterizations; insertion of reporter genes into the viral genome and creation of deletion mutants possible; synthetic clones obtained by reverse genetic approaches do not rely on primary patient material availability\(^{(163)}\); provide a major opportunity to characterize SARS-CoV-2 [\(\text{REFS}\,159,173,177\)]

Mouse-adapted SARS-CoV-2
Mouse-adapted SARS-CoV-2 strains, developed by serial passages of SARS-CoV in the mouse respiratory tract; pathological impact in mice similar to SARS in humans\(^{(159,175)}\); a recombinant SARS-CoV-2 mouse-adapted strain with a remodelled spike for mouse ACE2 utilization replicates in the upper and lower airways of mice\(^{(164)}\); possibility for selection towards strains causing more severe pathologies and other outcomes observed in human COVID-19 [\(\text{REF}\,113\)]; synthetic reverse genetic approaches provide another opportunity for the rapid construction of mouse-adapted SARS-CoV-2 strains for infection of wild-type mice

ACE2, angiotensin-converting enzyme 2; AGM, African green monkeys; NHP, non-human primates; SARS-CoV, severe acute respiratory syndrome coronavirus.
Together, these effects may translate into strong and dysregulated pro-inflammatory responses, while cells display low innate antiviral defence activation as revealed by single-cell transcriptomic studies of nasopharyngeal and bronchial patient samples17,18,19,20. In severe COVID-19 cases, as opposed to mild cases, aberrant recruitment of inflammatory macrophages and infiltration of T lymphocytes, including cytotoxic T cells, as well as of neutrophils have been measured in the lung18,19,20. The accumulating evidence of dysregulated pro-inflammatory responses during SARS-CoV-2 infections has led to the use of immune modulators to inhibit hyperactivated pathogenic immune responses21,22,23,24.

Conclusions

In contrast to the SARS-CoV epidemic of almost 20 years ago, improved technologies, such as transcriptomics, proteomics, single-cell RNA sequencing, and global single-cell profiling of patient samples, advanced primary 3D cell cultures and rapid reverse genetics, have been valuable tools to understand and tackle SARS-CoV-2 infections. Furthermore, several existing animal models initially established for SARS-CoV are applicable to study SARS-CoV-2 and will help to identify the critical viral and host factors that impact on COVID-19. We need to understand why SARS-CoV-2, in contrast to SARS-CoV, is replicating so efficiently in the upper respiratory tract and which viral and host determinants are decisive on whether COVID-19 patients will develop mild or severe disease25–27. Finally, we need to put the first encouraging studies on SARS-CoV-2 into the context of coronavirus biology to develop efficacious strategies to treat COVID-19 and to develop urgently needed vaccines.

Published online 28 October 2020
66. Zhou, H. et al. A novel bat coronavirus closely related to SARS-CoV-2 contains natural insertions at the S1/S2 cleavage site of the spike protein. Proc. Natl Acad. Sci. USA 111, 15214–15219 (2014).

67. Xu, H. et al. The spike protein of coronavirus closely related to SARS-CoV-2 contains furin-mediated activation of the spike protein. Proc. Natl Acad. Sci. USA 114, 20261–20266 (2017).

68. Pinto, D. et al. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Preprint at bioRxiv https://doi.org/10.1101/2020.03.02.976109 (2020).

69. Watanabe, Y., Allen, J. D., Wrapp, D., McLellan, J. S. & Stahl, D. W. Discovery of N7-methyltransferase′s role in the assembly of coronaviruses. Proc. Natl Acad. Sci. USA 117, 8730–8735 (2020).

70. Cao, Y. et al. Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell RNA-seq screening. bioRxiv https://doi.org/10.1101/2020.05.11.088179 (2020).

71. Shannon, A. et al. The intracellular sites of early replication and budding of SARS-coronavirus. Virolology 561, 304–315 (2020).

72. de Haan, C. A. & Rotter, P. J. Molecular interactions in the assembly of coronaviruses. Adv. Virus Res. 64, 165–250 (2005).

73. Klein, S. et al. SARS-CoV-2 structure and replication characterized by in situ cryo-electron tomography. Preprint at bioRxiv https://doi.org/10.1101/2020.12.06.276084 (2020).

74. DeRisi, J. L. et al. A molecular signature of drug sensitivity in A. thaliana. Proc. Natl Acad. Sci. USA 97, 1129–1133 (2000).

75. Ferron, F. et al. Structural and molecular basis of furin-mediated activation of the spike protein. Proc. Natl Acad. Sci. USA 111, 15214–15219 (2014).

76. Sheahan, T. P. et al. Broad-spectrum antiviral GS-5734 decreases viral load in COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet 395, 1569–1578 (2020).

77. Zhang, Y. et al. The ORF8 protein of SARS-CoV-2 downregulates MHC-I. Preprint at bioRxiv https://doi.org/10.1101/2020.05.11.088179 (2020).

78. Muth, D. et al. Attenuation of replication by a 29′-O-methylation by nsp16/nsp10 protein complex. J. Virol. 83, 1119–1127 (2009).

79. Kim, D. et al. The architecture of SARS-CoV-2 transcriptome. Cell 181, 914–921 (2020).

80. Rahier, J. et al. The SARS-CoV-2 spike protein induces high levels of proinflammatory cytokines and chemokines in human bronchial epithelial cells. J. Virol. 84, 1666–1670 (2020).

81. Hillen, H. S. et al. Structure of replicating SARS-CoV-2 using a synthetic genomics platform. MEB 8 (2020).

82. Wang, Q. et al. Structural basis for RNA replication by the SARS-CoV-2 polymerase. eLife 9, e59200 (2020).

83. Ferron, F. et al. Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA. Proc. Natl Acad. Sci. USA 115, E162–E171 (2017).

84. Wang, M. et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 30, 269–271 (2020).

85. Williamson, B. N. et al. Clinical benefit of remdesivir in phase 3 trials of COVID-19: an open-label control study. Engineering 8, 1274–1278 (2020).

86. Cao, Y. et al. Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell RNA-seq screening. bioRxiv https://doi.org/10.1101/2020.05.07.082909 (2020).

87. Sambrook, K. et al. SARS-CoV-2 Nsp1 binds the ribosomal mRNA channel to inhibit translation. Nat. Struct. Mol. Biol. https://doi.org/10.1038/s41594-020-0511-8 (2020).

88. Schulter, C. et al. Comparative genomics of SARS-CoV-2 to the 4OS ribosomal subunit mRNA entry channel that leads to translation inhibition. Cell 181, 1765–1777 (2020).

89. Angelini, M. M., Akhlaghpour, M., Neuman, B. W. & McCall, J. R. Identification and characterization of a SARS-CoV-2 entry inhibitor that effectively reduces viral infectivity in vitro. bioRxiv https:// doi.org/10.1101/2020.05.11.088179 (2020).

90. Schuster, T. F. et al. Discovery and genomic characterization of a S2β-nucleotide deletion in ORF3b of SARS-CoV-2 that reduces viral infectivity in vitro. bioRxiv https://doi.org/10.1101/2020.05.11.088179 (2020).

91. Zong, Y. et al. The ORF8 protein of SARS-CoV-2 mediates immune evasion through potently downregulating MHC-I. Preprint at bioRxiv https://doi.org/10.1101/2020.08.03.037902 (2020).

92. Lu, Y. et al. Identification and characterization of a SARS-CoV-2 entry inhibitor that effectively reduces viral infectivity in vitro. bioRxiv https://doi.org/10.1101/2020.05.11.088179 (2020).

93. Ferron, F. et al. Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA. Proc. Natl Acad. Sci. USA 115, E162–E171 (2017).

94. Wang, M. et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 30, 269–271 (2020).

95. Williamson, B. N. et al. Clinical benefit of remdesivir in phase 3 trials of COVID-19: an open-label control study. Engineering 8, 1274–1278 (2020).
double membrane vesicles. Mbio 4, e00524–13 (2013).
112. Oudshoorn, D. et al. Expression and cleavage of middle east respiratory syndrome coronavirus nsp3-4 protein implicates formation of double membrane vesicles that mimic those associated with coronaviral RNA replication. Mbio 2014.
113. Lundin, A. et al. Targeting membrane-bound viral RNA synthesis reveals potent inhibition of diverse coronaviruses using the middle East respiratory syndrome virus. PLoS Pathog. 10, e1004166 (2014).
114. Knoop, K. et al. SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum. PLoS Biol. 6, e226 (2008).
115. Landmark study revealing the extent of SARS-CoV membrane reorganisation compartments by electron tomography and the localization of viral nsp5 and dsRNA in infected cells.
116. Snijder, E. J. et al. A unifying structural and functional model of the coronavirus replication organelle. Tracking down RNA synthesis. PLoS Biol. 18, e365175 (2020).
117. Ulasli, M., Verheije, M. H., de Haan, C. A. & Reggiori, F. Qualitative and quantitative ultrastructural analysis of the membrane rearrangements induced by SARS-CoV-2. PLoS Pathog. 15, e1008381 (2018).
118. Wolff, G. et al. A molecular pore spans the double membrane of the coronavirus replication organelle. Science 360, 910–914 (2018).
119. Identification of a pore connecting the interior of the coronavirus DMVs to the cytosol, thereby providing a plausible concept for how viral RNAs can exit DMVs.
120. Overby, A. K., Popov, V. L., Niedrig, M. & Weber, F. Tölk-borne encephalitis virus delays interferon induction and antiviral defense in double-stranded RNA in intracellular membrane vesicles. J. Virol. 84, 8470–8483 (2010).
121. Al-Mulla, H. M. et al. Competitive fitness in SARS-CoV replication. J. Virol. 84, 10107–10113 (2014).
122. Maier, H. J. et al. Excessive coronavirus-induced membrane rearrangements are not a determinant of pathogenicity. Cell Rep. 6, 27126 (2016).
123. Uddoosh, D. et al. Antiviral innate immune response interferes with the formation of replication-associated membrane structures via soluble human ACE2. Mbio 2016.
124. Althammer, G. et al. Angulated nsp15 reveals interactions with coronavirus replication/transcription complex-associated proteins. Mbio 2012.
125. Althammer, G. et al. Angulated nsp15 reveals interactions with coronavirus replication/transcription complex-associated proteins. Mbio 2012.
126. Knoop, K. et al. Integrity of the early secretory pathway promotes, but is not required for, severe acute respiratory syndrome coronavirus RNA synthesis and virus-induced remodeling of endoplasmic reticulum membranes. J. Virol. 84, 833–846 (2010).
127. Zhang, L., Lin, Z. P., Zhang, X. E., Lin, F. S. & Ge, F. Quantitative proteomics analysis reveals BAG3 as a potential target to suppress severe acute respiratory syndrome coronavirus replication. J. Virol. 84, 6050–6059 (2010).
128. de Wilde, A. H. et al. A kinase-wine small interfering RNA screen identifies viral and antiviral host factors in severe acute respiratory syndrome coronavirus replication, including double-stranded RNA activated gene expression and early secretory pathway proteins. J. Virol. 89, 8318–8335 (2015).
129. Reggiori, F. et al. Coronaviruses hijack the LCS-1 positive EDENosome, ER derived vesicles exporting short-lived ERAD regulators, for replication. Cell Host Microbe 7, 500–508 (2010).
130. Wong, H. H. et al. Genome-wide screen reveals valinomycin-dependent replication vesicles for coronavirus exit from endosomes. J. Virol. 89, 11116–11128 (2015).
131. Schneider, M. et al. Severe acute respiratory syndrome coronavirus replication is severely impaired by MG132 due to proteasome-independent inhibition of nsp15. J. Virol. 86, 11012–11012 (2012).
132. Gordon, D. E. et al. SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 583, 459–468 (2020).
118. Van Der Most, R. G., Heijnen, L., Spaan, W. J. M. & De Groot, R. J. Homologous RNA recombination allows efficient introduction of site-specific mutations into the genome of coronavirus mnh-a59 via synthetic co-rePLICating rnas. Nucleic Acids Res. 20, 3375–3381 (1992).

119. Thiel, V., Herold, J., Schelle, B. & Siddell, S. G. Infectious RNA transcribed in vitro from a cDNA copy of the human coronavirus genome cloned in vaccinia virus. J. Gen. Virol. 82, 1273–1281 (2001).

120. Almazán, F. et al. Engineering the largest RNA virus genome as an infectious bacterial artificial chromosome. Proc. Natl Acad. Sci. USA 97, 5516–5521 (2000).

121. Zhong, N. S. et al. Epidemiology and cause of severe acute respiratory syndrome. J. Med. Virol. 70, 1953–1966 (2003).

122. van der Hoek, L. et al. Identification of a new human coronavirus. Lancet 362, 1553–1558 (2003).

123. Ksiazek, T. G. et al. A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med. 348, 1953–1966 (2003).

124. van der Hoek, L. et al. Identification of a new human coronavirus. Nat. Med. 10, 368–375 (2004).

125. Ge, X. Y. et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature https://doi.org/10.1038/nature12711 (2013).

126. Cui, J., Li, F. & Shi, Z.-L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 17, 181–192 (2019).

127. van Boeijen, S., Bestebroer, T. M., Osterhaus, A. D. & Fouchier, R. A. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med. 367, 1814–1820 (2012).

128. Memish, Z. A. et al. Middle East respiratory syndrome coronavirus in Bats, Saudi Arabia. Emerg. Infect. Dis. 19, 1819–1823 (2013).

129. Haagmans, B. L. et al. Middle East respiratory syndrome coronavirus in dromedary camels: An outbreak investigation. Lancet Infect. Dis. 14, 140–145 (2014).

130. Zhu, N. et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 382, 727–733 (2020).

131. Guan, W. et al. Clinical characteristics of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497–506 (2020).

132. Böhmer, M. M. et al. Investigation of a COVID-19 outbreak in Germany resulting from a single travel-associated primary case: a case series. Lancet Infect. Dis. 20, 920–928 (2020).

133. Xu, Z. et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 8, 420–422 (2020).

134. Huang, C. et al. Clinical features of patients infected with the 2019 novel coronavirus from Wuhan, China. J. Med. Virol. 82, 368–373 (2020).

135. Zhang, Y. Z. & Holmes, E. C. A genomic perspective on the origin and emergence of SARS-CoV-2. Cell https://doi.org/10.1016/j.cell.2020.05.035 (2020).

136. Guan, Y. et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in Southern China. Science 302, 276–278 (2003).

137. Lam, T. T. Y. et al. Identifying SARS-CoV-2 related coronaviruses in Malayan pangolins. Nature https://doi.org/10.1038/s41586-020-2169-0 (2020).

138. Böhmer, M. M. et al. Investigation of a COVID-19 outbreak in Germany resulting from a single travel-associated primary case: a case series. Lancet Infect. Dis. 20, 920–928 (2020).

139. Ge, X. Y. et al. Identification of a novel coronavirus from a patient with pneumonia in Saudi Arabia. N. Engl. J. Med. 374, 1966–1973 (2021).

140. Zhang, Y. Z. & Holmes, E. C. A genomic perspective on the origin and emergence of SARS-CoV-2. Cell https://doi.org/10.1016/j.cell.2020.05.035 (2020).

141. Guan, Y. et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in Southern China. Science 302, 276–278 (2003).

142. Lam, T. T. Y. et al. Identifying SARS-CoV-2 related coronaviruses in Malayan pangolins. Nature https://doi.org/10.1038/s41586-020-2169-0 (2020).

143. membranous lesions. Lancet Infect. Dis. 14, 140–145 (2014).

144. Huang, C. et al. Clinical features of patients infected with the 2019 novel coronavirus from Wuhan, China. J. Med. Virol. 82, 368–373 (2020).

145. Zhang, Y. Z. & Holmes, E. C. A genomic perspective on the origin and emergence of SARS-CoV-2. Cell https://doi.org/10.1016/j.cell.2020.05.035 (2020).

146. Guan, Y. et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in Southern China. Science 302, 276–278 (2003).

147. Lam, T. T. Y. et al. Identifying SARS-CoV-2 related coronaviruses in Malayan pangolins. Nature https://doi.org/10.1038/s41586-020-2169-0 (2020).