A practical criterion for positivity of transition densities

David P Herzog\(^1\) and Jonathan C Mattingly\(^2\)

\(^1\) Department of Mathematics, Iowa State University, Ames, IA 50011, USA
\(^2\) Department of Mathematics and Department of Statistical Science, Duke University, Durham, NC 277081, USA

E-mail: dherzog@iastate.edu

Received 14 July 2014, revised 20 May 2015
Accepted for publication 2 June 2015
Published 10 July 2015

Abstract
We establish a simple criterion for locating points where the transition density of a degenerate diffusion is strictly positive. Throughout, we assume that the diffusion satisfies a stochastic differential equation (SDE) on \(\mathbb{R}^d\) with additive noise and polynomial drift. In this setting, we will see that it is often the case that local information of the flow, e.g. the Lie algebra generated by the vector fields defining the SDE at a point \(x \in \mathbb{R}^d\), determines where the transition density is strictly positive. This is surprising in that positivity is a more global property of the diffusion. This work primarily builds on and combines the ideas of Arous and Léandre (1991 Décroissance exponentielle du noyau de la chaleur sur la diagonale. II Probab. Theory Relat. Fields 90 377–402) and Jurdjevic and Kupka (1985 Polynomial control systems Math. Ann. 272 361–8).

Keywords: degenerate stochastic differential equations, Malliavin calculus, geometric control theory
Mathematics Subject Classification: 60H10, 60H07, 93B03, 93B29

1. Introduction
The goal of this paper is to develop an easily applicable framework for locating points where the probability density of a degenerate diffusion is strictly positive. We will focus on the setting where the diffusion satisfies a stochastic differential equation (SDE) on \(\mathbb{R}^d\) where each component of the drift is a polynomial in the standard Euclidean coordinates and the noise is additive. Our methods reduce finding points of positivity to computing a certain collection of constant vector fields generated by taking iterated commutators of the vector fields defining the SDE. This is convenient since a similar computation is typically used to show that the...
diffusion has a smooth probability density function \(p_t(x, y) \) with respect to Lebesgue measure \(dy \). While the existence of a smooth density is decided locally, we show that in some settings the bracket computation also determines the more global property of where the density is strictly positive. Additionally, uncovering sufficiently large regions of positivity is useful for proving unique ergodicity.

While methods already exist for proving positivity of transition densities, most require knowledge of attainable sets via controls. Here we have structured our assumptions to require as little global control information as possible. In particular, our results prove smoothness of the densities, the needed control statements, and positivity, all with one set of primarily local assumptions.

Although our general framework is limited to SDEs with polynomial drift and additive noise, working within such boundaries is reasonable in many applications. In particular, to illustrate the utility of our results, we will apply them to a collection of examples, each with quite different structure, either obtaining new results or improving upon existing ones.

The ideas used in this note build on a number existing works. Beyond the now classical theory of Hörmander on hypoelliptic operators in the ‘sum of squares’ form \([4]\), we employ the associated probabilistic techniques of Malliavin calculus \([12]\). We also use a number of ideas from geometric control theory \([7]\). Moreover, we modify the idea that odd powered polynomial vector fields are ‘good’ (due to their time reversal properties) and even powered polynomial vector fields are ‘bad’ \([6]\). Similar ideas were critical in the work of Romito \([14]\). We also integrate into our results the powerful ideas of Ben Arous and Léandre \([2]\) for proving positivity of densities of random variables over a Wiener space. Our hope is that bringing these ideas together and adapting them to our specific context will provide a useful tool for many applied equations.

It is important to remark that geometric control theory and Malliavin calculus can also be useful in determining points of positivity of the density \(p_t(x, y) \) in the more general setting where the coefficients of the SDE on \(\mathbb{R}^d \) are merely assumed to be \(C^\infty \) functions. However, two parts of the proof of our main general result rely on the structure of SDEs with polynomial drift and additive noise. First, in order to generate points in the reachable sets of the associated control system, we use the fact that the leading-order behavior at infinity of a polynomial vector field, when evaluated along a fixed constant direction, is determined by a Lie bracket. In particular, one cannot expect to be able to, in a more general setting, produce directions which correspond to Lie brackets that the control system can move freely along in arbitrarily small amounts of positive time. For further details on this topic, we refer the reader to the heuristic discussions on p.13. Second, another part of the proof, in particular the proof of lemma 4.18, relies both on the structure of zero sets of polynomials and on the fact that polynomial vector fields are closed under the Lie bracket operation. Given the existence of a control driving the point \(x \in \mathbb{R}^d \) to the point \(y \in \mathbb{R}^d \) in time \(t > 0 \), lemma 4.18 allows us to more easily verify that its associated deterministic Malliavin matrix is invertible, thus giving that \(p_t(x, y) > 0 \) \([2]\). However, this part of the proof can be modified so that it only relies on the coefficients of the SDE being \(C^\infty \) functions. See remark 4.27 for how to change the existing argument.

The layout of this paper is as follows. In section 2, we introduce notation and terminology and state the main general results of the paper. In section 3, we apply our results to specific examples. Section 4 contains heuristic discussions of why the main results hold and are natural. We also include an ‘non-example’, that is an example where the main results fail to apply yet the corresponding density has regions of positivity (in space and time), and illustrate how to adapt the general theory in such cases. Additionally, section 4 contains the proof of the main results as stated in section 2.
Throughout, we study stochastic differential equations on \mathbb{R}^d of the following form
\begin{equation}
\mathrm{d}x_t = Y(x_t)\,\mathrm{d}t + \sum_{j=1}^r X_j\,\mathrm{d}B_j^t
\end{equation}
where Y is a polynomial vector field; that is, $Y = \sum_{j=1}^d Y^j(x)\partial_x^j$ is such that each map $x \mapsto Y^j(x)$ is a polynomial in the standard Euclidean coordinates, X_1, \ldots, X_r are constant vector fields; that is, they do not depend on the base point, and B_j^t, B_j^t, \ldots, B_j^t are standard independent real-valued Brownian motions defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

To deal with the issue of finite-time explosion in (2.1), we will need to stop the process x_t prior to the time of explosion. Thus for $n \in \mathbb{N}$, let $B(0, n)$ denote the open ball of radius n centered at the origin in \mathbb{R}^d, and define the stopping times $\tau_n = \inf\{t > 0 : x_t \not\in B(0, n)\}$ and $\tau_\infty = \lim_{n\uparrow\infty}\tau_n$. Our results will be stated for the stopped processes $x_{t\wedge\tau_n}$, $n \in \mathbb{N}$. Of course, $x_{t\wedge\tau_n}$ coincides with x_t for all times $t \leq \tau_n$.

For vector fields $V = \sum_{j=1}^d V_j(x)\partial_x^j$ and $W = \sum_{j=1}^d W_j(x)\partial_x^j$, let $\operatorname{ad}^0V(W) = W$, $\operatorname{ad}^1V(W) = [V, W] := \sum_{j=1}^d \sum_{k=1}^d V^k(x) \frac{\partial W_j(x)}{\partial x_k} - W^k(x) \frac{\partial V_j(x)}{\partial x_k}$.

Inductively, for $m \geq 2$ we let $\operatorname{ad}^mV(W) = \operatorname{ad}V\operatorname{ad}^{m-1}V(W)$. For a set of vector fields \mathcal{G} on \mathbb{R}^d, $\operatorname{span}(\mathcal{G})$ denotes the \mathbb{R}-linear span of \mathcal{G} and $\operatorname{cone}_{\geq0}(\mathcal{G}) = \left\{ \sum_{i=1}^j \lambda_i V_i : j \in \mathbb{N}, \lambda_i \geq 0, V_i \in \mathcal{G} \right\}$.

We call $x \in \mathbb{R}^d$ an equilibrium point of a set of vector fields \mathcal{G} if $V(x) = 0$ for some $V \in \mathcal{G}$. If V is a constant vector field with constant value $v \in \mathbb{R}^d$ and W is a polynomial vector field, then we may define a map from \mathbb{R} into \mathbb{R}^d given by $\lambda \mapsto (W^j(\lambda v))$. Note that since W is a polynomial vector field, $(W^j(\lambda v))$ is a vector of polynomials in λ. Let n_j be the degree of the polynomial $p_j(\lambda) := W^j(\lambda v)$ and define $n(V, W) = \max_j n_j$ (For purposes below, we assume that the zero polynomial has neither even nor odd degree). We call $n(V, W)$ the relative degree of V and W.

We now introduce the set of constant vector fields \mathcal{C} which will play a fundamental role throughout the paper. It will be defined as the subset of constant vector fields in a larger set of vector fields which we now introduce. To initialize the inductive procedure let $\mathcal{G}_0 = \operatorname{span}[X_1, \ldots, X_r]$ and $\mathcal{G}^0_1 = \mathcal{G}_0 \cup \{ \operatorname{ad}^{n(V,Y)}V(Y) : V \in \mathcal{G}_0, n(V, Y) \text{ odd} \}$, $\mathcal{G}^0_e = \{ \operatorname{ad}^{n(V,Y)}V(Y) : V \in \mathcal{G}_0, n(V, Y) \text{ even} \}$, $\mathcal{G}_1 = \operatorname{span}(\mathcal{G}^0_1) + \operatorname{cone}_{\geq0}(\mathcal{G}^0_1)$.

For $j \geq 1$, we define \mathcal{G}^j_0, \mathcal{G}^j_e, \mathcal{G}_{j+1} inductively as $\mathcal{G}^j_0 = \mathcal{G}^j_0 \cup \{ \operatorname{ad}^{n(V,W)}V(W) : V \in \mathcal{G}^j_0 \text{ constant}, W \in \mathcal{G}_j, n(V, W) \text{ odd} \}$, $\mathcal{G}^j_e = \mathcal{G}^j_e \cup \{ \operatorname{ad}^{n(V,W)}V(W) : V \in \mathcal{G}^j_e \text{ constant}, W \in \mathcal{G}_j, n(V, W) \text{ even} \}$, $\mathcal{G}_{j+1} = \operatorname{span}(\mathcal{G}^j) + \operatorname{cone}_{\geq0}(\mathcal{G}^j)$.

Let \mathcal{C}^0 denote the set of constant vector fields in $\cup_j \mathcal{G}^0_j$ and \mathcal{C}^e denote the set of constant vector fields in $\cup_j \mathcal{G}^e_j$. Finally, define $\mathcal{C} = \operatorname{span}(\mathcal{C}^0) + \operatorname{cone}_{\geq0}(\mathcal{C}^e)$.

(2.2)
Remark 2.3. Throughout, we will often identify a constant vector field on \(\mathbb{R}^d \) with the vector in \(\mathbb{R}^d \) which defines it. For example, depending on the context, \(C^0 \) will be used to denote either the set of vector fields \(C^0 \) defined above or the set of vectors \(v \in \mathbb{R}^d \) such that \(v = V(x) \) for some \(V \in C^0 \).

Remark 2.4. The primary assumption we will make is that \(C \) is \(d \)-dimensional; that is, \(C \) contains \(d \) linearly independent vectors over \(\mathbb{R} \). This is equivalent to assuming that \(C \) spans the entire tangent space at all points \(x \in \mathbb{R}^d \) as \(C \) contains only constant vector fields. Since \(C \) is contained in the Lie algebra generated by

\[
X_1, \ldots, X_r, [X_1, Y], \ldots, [X_r, Y],
\]

it follows by Hörmander’s hypoellipticity theorem [4] (see also [16]) that for every \(n \geq 1 \), \(x \in B(0, n) \) and every Borel set \(A \subset B(0, n) \)

\[
P_t \{ x_t, t_n \in A \} = \int_A p^n_t (x, y) \, dy
\]

for some nonnegative function \(p^n_t (x, y) \) which is defined and smooth on \((0, \infty) \times B(0, n) \times B(0, n) \). Note that this observation shows that the distribution of the stopped process \(x_{t_n} \) when restricted to Borel sets \(A \subset B(0, n) \) is absolutely continuous with respect to Lebesgue measure on \(B(0, n) \). Moreover, it also shows that this restricted measure has a Radon–Nikodym derivative \(p^n_t (x, y) \) which is a \(C^\infty \) function on \((0, \infty) \times B(0, n) \times B(0, n) \). Certainly if \(x \in B(0, n) \) and \(P_t \{ \tau_n \leq t \} > 0 \), then the transition kernel of \(x_{t_n} \) contains a singular component concentrated on the boundary of \(B(0, n) \). However, this is invisible to sets contained in \(B(0, n) \) since \(B(0, n) \) is open and the stopped process has yet to exit \(B(0, n) \).

We now state the main general result of the paper.

Theorem 2.5. Suppose that \(C \) is \(d \)-dimensional and let \(\{ y_1, \ldots, y_d \} \subset C \) be linearly independent such that \(\{ y_1, \ldots, y_k \} \subset C^c \) and \(\{ y_{k+1}, \ldots, y_d \} \subset C^c \). For \(x \in \mathbb{R}^d \), define the set

\[
\mathcal{D}(x) = \{ x \} + \left\{ \sum_{i=1}^k \alpha_i y_i + \sum_{j=k+1}^d \lambda_j y_j : \alpha_i \in \mathbb{R}, \lambda_j > 0 \right\}.
\]

and suppose that \(x, z \in \mathbb{R}^d \) are such that \(z \in \mathcal{D}(x) \).

(a) For all \(T > 0 \) there exist \(t \in (0, T) \) and \(N \in \mathbb{N} \) such that

\[
p^n_t (x, z) > 0 \quad \text{for all} \quad n \geq N.
\]

(b) If there exists an equilibrium point \(y \in \mathbb{R}^d \) of \(\mathcal{G} = \{ Y + \sum_{j=1}^d u_j X_j : u_j \in \mathbb{R} \} \) such that \(y \in \mathcal{D}(x) \) and \(z \in \mathcal{D}(y) \), then for all \(T > 0 \) there exists \(N \in \mathbb{N} \) such that

\[
p^n_t (x, z) > 0 \quad \text{for all} \quad t \geq T, n \geq N.
\]

Remark 2.6. Suppose that \(C \) is \(d \)-dimensional and that \(x_t \) is non-explosive; that is, for every \(x \in \mathbb{R}^d \)

\[
P_x \{ \tau_x < \infty \} = 0.
\]

Then by Hörmander’s hypoellipticity theorem [4] (see also [16]), \(x_t \) has a probability density function \(p_t (x, y) \) with respect to Lebesgue measure \(dy \) which is smooth on \((0, \infty) \times \mathbb{R}^d \times \mathbb{R}^d \).

Moreover, all conclusions of theorem 2.5 hold with \(p^n_t (x, z) \) replaced by \(p_t (x, z) \).

Remark 2.7. Even if \(C \) is \(d \)-dimensional, it is still possible that the set \(\mathcal{D}(x) \) cannot be chosen to be the entire space \(\mathbb{R}^d \). See example 3.4 in section 3.
Remark 2.8. It is worth emphasizing that \(y \in \mathbb{R}^d \) can be an equilibrium without being an equilibrium point of the drift vector field \(Y \). For example, if \(Y(y_1, y_2) = (g(y_1, y_2)(1 - y_2), f(y_2, y_1)) \) for some scalar functions \(f, g \) and \(X_1 = (0, 1) \) then all points of the form \((y_1, 1) \) are equilibrium points since \(X(y_1, 1) + uX_1 = (0, 0) \) if \(u = -f(y_1, 1) \).

Using the results of theorem 2.5, we will also show:

Theorem 2.9. Suppose that \(C \) is \(d \)-dimensional and \(x_t \) is non-explosive. Let \(\mathcal{D}(x) \) be as in the statement of theorem 2.5. Then there is at most one invariant probability measure corresponding to the Markov process \(x_t \) defined by (2.1). Moreover, if such an invariant probability measure \(\mu \) exists, then \(\mu(dx) = m(x) \, dx \) for some smooth, non-negative function \(m \) and if \(x \in \text{supp}(\mu) \) then for all \(z \in \mathcal{D}(x) \), \(m(z) > 0 \).

3. Examples

Before proving the main results, we apply them to specific examples to show their utility. A ‘non-example’, that is an example where theorem 2.5 is not applicable, is given in the next section in remark 4.11 as it fits in better with the discussion there.

Example 3.1. As a first example, we consider the Langevin dynamics on \(\mathbb{R}^{2d}, d \geq 1 \),

\[
\begin{align*}
\frac{dx_i}{dt} & = [-\gamma x_i - \nabla F(y_i)] \, dt + \sum_{j=1}^{d} \sigma_j \, dB_i^j \\
\frac{dy_i}{dt} & = x_i \, dt
\end{align*}
\]

(3.2)

where \(x_t, y_t \in \mathbb{R}^d, \gamma > 0 \) is a constant, \(F \in \mathcal{C}^\infty (\mathbb{R}^d : \mathbb{R}) \) is a polynomial, \(\sigma_j \in \mathbb{R}^d \) and the \(B_i^j \) are independent standard Wiener processes. Here we observe that noise is explicitly absent in all of the directions \(y_i \) where \(\gamma = (\gamma_j) \). Also, so that solutions of (3.2) do not explode in finite time, we assume that \(F \) satisfies the one-sided local Lipschitz and growth assumptions of condition 3.1 in [9]. A prototypic example of a polynomial potential which satisfies these assumptions is \(F(y) = \frac{1}{2} |y|^4 - \frac{1}{2} |y|^2 \).

As a consequence of theorem 2.5, we now prove:

Corollary 3.3. If \(\text{span} \{\sigma_1, \ldots, \sigma_d\} = \mathbb{R}^d \), then for all \((x, y), (x', y') \in \mathbb{R}^{2d} \) and \(t > 0 \)

\[
p_t((x, y), (x', y')) > 0.
\]

Proof. Let \(0 = (0, 0, \ldots, 0) \in \mathbb{R}^d \) and let \(\mathcal{G} = \{Y + \sum_{j=1}^{d} u_j X_j : u_j \in \mathbb{R}\} \) where

\[
Y(x, y) = \left(-\gamma x + \nabla F(y) \right) \quad \text{and} \quad X_j(x, y) = \begin{pmatrix} \sigma_j \\ 0 \end{pmatrix}.
\]

We begin by computing \(\mathcal{C} \) (defined in the introduction) corresponding to equation (3.2). Since \(n(Y, X_j) = 1 \) for all \(j \), we see that

\[
\mathcal{G}^o_j \supset \{ [X_j, Y] : j = 1, 2, \ldots, d \}
\]

and

\[
[X_j, Y](x, y) = \begin{pmatrix} -\gamma \sigma_j \\ \sigma_j \end{pmatrix}.
\]

Hence, in particular, \(\mathcal{C} \supset \{ [X_j, Y] : j = 1, 2, \ldots, d \} \). Since the vectors \(\sigma_1, \ldots, \sigma_d \) are linearly independent, it follows that \(\mathcal{C} \) has a basis. Additionally, since \(\mathcal{C}^o \supset \{ [X_j, Y] : j = 1, 2, \ldots, d \} \) we can choose a basis so that \(\mathcal{D}(x, y) = \mathbb{R}^{2d} \) for all \((x, y) \in \mathbb{R}^{2d} \). To finish
proving the result, we claim that the origin $(0, 0) \in \mathbb{R}^d$ is an equilibrium point of G. Indeed, since
\[
Y(0, 0) + \sum_{j=1}^{d} u_j x_j(0, 0) = \left(\nabla F(0)\right) + \left(\sum_{j=1}^{d} u_j \sigma_j\right)
\]
and the σ_j form a basis of \mathbb{R}^d, we may choose real numbers $u_j \in \mathbb{R}$ such that
\[
Y(0, 0) + \sum_{j=1}^{d} u_j x_j(0, 0) = \left(0 \ 0\right).
\]
In light of remark 2.6, applying theorem 2.5 (b) finishes the proof of corollary 3.3. □

Example 3.4. Let $a_1, a_2 \in \mathbb{R}$, $\alpha_2 > \alpha_1 > 0$, and $\epsilon > 0$. With motivations from turbulent transport of inertial particles, the stochastic differential equation on \mathbb{R}^2 given by
\[
\begin{aligned}
\frac{dx_t}{dt} &= (a_1 x_t - \alpha_1 x_t^2 + y_t^2) dt \\
\frac{dy_t}{dt} &= (a_2 y_t - \alpha_2 x_t y_t) dt + \epsilon \, dB_t^2
\end{aligned}
\tag{3.5}
\]
is considered in [3]. Here, we strengthen the results of section 4 of this work. A more hands on application of some of the ideas of this note were applied to a specific case of this example in section 11 of [1]. Applying theorem 2.1 of [3], we first note that (x_t, y_t) is non-explosive.

We now prove:

Corollary 3.6. Suppose that $(x, y) \in \mathbb{R}^2$ satisfies
\[
x < \frac{a_1 - |a_1|}{2\alpha_1} \text{ or } x \geq \frac{a_1 + |a_1|}{2\alpha_1}.
\]
Then for all $t > 0$ and $(x', y') \in \mathbb{R}^2$ with $x' > x$
\[
p_t((x, y), (x', y')) > 0.
\]
Otherwise if $(x, y) \in \mathbb{R}^2$ satisfies
\[
\frac{a_1 - |a_1|}{2\alpha_1} \leq x \leq \frac{a_1 + |a_1|}{2\alpha_1},
\]
then for all $t > 0$ and $(x', y') \in \mathbb{R}^2$ with $x' > \frac{a_1 + |a_1|}{2\alpha_1}$
\[
p_t((x, y), (x', y')) > 0.
\]

Remark 3.7. It is important to point out that corollary 3.6 is not sharp. For example if $a_1 = a_2 = 0$, $\alpha_1 = 1$ and $\alpha_2 = 2$, it was shown in section 11 of [1] that, in addition to the result above, for all $(x, y), (x', y') \in \mathbb{R}^2$ with $x' > 0$
\[
p_t((x, y), (x', y')) > 0
\]
for all $t > 0$ sufficiently large. The weakness of our result is due to the fact that theorem 2.5 does not fully exploit the flow along Y in favor of making general statements for any positive time. However, corollary 3.6 is more than sufficient to prove unique ergodicity in equation (3.5). Nevertheless, it is not hard to bootstrap from corollary 3.6 to obtain the full (sharp) result proved in [1].
Proof. As in the previous example, we begin by computing the set C corresponding to equation (3.5). Let
\[\mathcal{G} = \{ Y + uX_1 : u \in \mathbb{R} \} \]
where $Y = (a_1x - a_1x^2 + y^2)\partial_x + (a_2y - a_2xy)\partial_y$ and $X_1 = \partial_y$. Since $n(Y, X_1) = 2$, we find that $\text{ad}^2 X_1(Y) = 2\partial_x \in \mathcal{G}$. Let $D(x, y) = \{(x, y) + u(0, 1) + \lambda(1, 0) : u \in \mathbb{R}, \lambda > 0\}$.

As opposed to the previous example, the set $D(x, y)$ is not the entire space. Hence we must make sure we have enough equilibrium points in the right locations.

Consider the polynomial equation
\[a_1x - a_1x^2 + y^2 = 0 \]
where $u \in \mathbb{R}$. Clearly, any pair $(x, y) \in \mathbb{R}^2$ satisfying the above equations for some $u \in \mathbb{R}$ is an equilibrium point of \mathcal{G}. In particular, we may solve $a_1x - a_1x^2 + y^2 = 0$ producing
\[x = \frac{a_1 \pm \sqrt{a_1^2 + 4a_1y^2}}{2a_1}. \]

Since we may pick $u = a_2xy - a_2y$, we therefore deduce that all points $(x, y) \in \mathbb{R}^2$ such that either
\[x \geq \frac{a_1 + |a_1|}{2a_1} \quad \text{or} \quad x \leq \frac{a_1 - |a_1|}{2a_1} \]
are equilibrium points for the control system \mathcal{G}. Hence remark 2.6 now implies corollary 3.6. \hfill \Box

Example 3.8. Let $\nu > 0$ be a constant. We now study Galerkin truncations of the following randomly forced two-dimensional viscous Burgers’ equation
\[\partial_t u(x, t) + (u(x, t) \cdot \nabla_x) u(x, t) = \nu \Delta_x u(x, t) + \xi(x, t) \quad (3.9) \]
with periodic boundary conditions on the torus $\mathbb{T}^2 = [0, 2\pi]^2$. Here, we assume that there is no mean flow and that ξ is a Gaussian process which is white in time and colored in space. To emphasize, we do not require the divergence free condition $\nabla \cdot u = 0$; hence, (3.9) is not the 2D Navier Stokes equation. Moreover, we do not restrict ourselves to gradient solutions as is often done when considering the multidimensional Burgers equation. In the dynamics (3.9), we are precisely interested how the divergence free forcing spreads to the non-divergence free (gradient-like directions). Since one does not have global solutions in this setting, here we must make use of the stopped processes.

Let us now be more precise. Writing
\[\sum_{0 \neq k \in \mathbb{Z}^2} a_k(t)e^{-i(k, x)}, \]
where (\cdot, \cdot) denotes the dot product, and fixing a positive integer $N \geq 2$, we consider the following stochastic differential equation on $\mathbb{C}^{2(N+1)^2-1}$(10)
\[d\tilde{u}_k = [iF^N_k(u) - \nu|k|^2\tilde{u}_k]dt + \frac{k}{|k|^2}(\sigma_k d\tilde{r}_k, \alpha_k d\tilde{\omega}_k, \beta_k d\tilde{\theta}_k) \quad (3.10) \]
\[+ \frac{k}{|k|^2}(\gamma_k d\tilde{\omega}_k, \beta_k d\tilde{\omega}_k, \beta_k d\tilde{\theta}_k) \]

where

- \(u_k \in \mathbb{C} \);
- the equation is over all indices \(k \in H_N = \{ k \in \mathbb{Z}^2 \setminus \{(0,0)\} : \| k \|_\infty \leq N \} \);
- \(F_N^k(u) = \sum_{1 \leq k < H_N} (u_1, k-1) u_k \cdot 1 \);
- \(\sigma_k, \sigma_k', \gamma_k, \gamma_k' \in \mathbb{R} \);
- \(k^\perp = (k_1, k_2)^T = (-k_2, k_1) \);
- \(\{ \alpha_k^{(1)}, \alpha_k^{(2)}, \beta_k^{(1)}, \beta_k^{(2)} \}_{k \in H_N} \) is a set of independent Brownian motions.

To further illuminate the discussion, we first split the equation into incompressible and compressible directions. To this end, write

\[
\begin{align*}
 u_k &= u_k^\perp \frac{k^\perp}{|k|^2} + q_k \frac{k}{|k|^2} \\
 F_k(u) &= F_k^\perp(w, q) \frac{k^\perp}{|k|^2} + F_k^\parallel(w, q) \frac{k}{|k|^2}
\end{align*}
\]

where \(u_k, q_k \in \mathbb{C} \). In particular, equation (3.10) now becomes

\[
\begin{align*}
 du_k &= [-v|k|^2 u_k + iF_k^\perp(w, q)] \, dt + \sigma_k \, d\alpha_k + i\sigma_k' \, d\beta_k^{(1)} + \gamma_k \, d\alpha_k^{(2)} \, d\beta_k^{(2)} \quad (3.11) \\
 dq_k &= [-v|k|^2 q_k + iF_k^\parallel(w, q)] \, dt + \gamma_k \, d\beta_k^0
\end{align*}
\]

for some \(F_k^\perp, F_k^\parallel \) to be computed in a moment. Note that (3.11) evolves on \(C^{2(2N+1)^2-1} \) for all \(t < \tau_\infty \).

We will now use theorem 2.5 to prove the following result:

Theorem 3.12. Suppose that

\(\{ k \in H_N : \sigma_k \neq 0, \sigma_k' \neq 0 \} \supset \{ k \in H_N : \| k \|_\infty = 1 \} \).

Then for all \((w, q), (w', q') \in C^{\infty(\mathbb{N}+1)} \) and \(T > 0 \), there exists \(N \in \mathbb{N} \) large enough so that \(p_0^N((w, q); (w', q')) > 0 \) for all \(t \geq T, n \geq N \).

Remark 3.13. It is interesting to note that, even if the process \((w_t, q_t)\) is assumed to be incompressible initially; that is, \((w_0, q_0) = (0, 0) \in C^{\infty(\mathbb{N}+1)} \), a small amount of low mode forcing ensures that any mixture of incompressible and compressible states becomes instantaneously possible. As we will see in the proof below, this cannot happen if we do not force the incompressible directions. In particular, if we assume that the process \((w_t, q_t)\) is initially compressible; that is, \((w_0, q_0) = (0, 0) \) and \(\sigma_k = \sigma_k' = 0 \) for all \(k \in H_N \), then \(w_t \equiv 0 \) for all \(t \geq 0 \).

Proof of theorem 3.12. We will first write out and symmetrize the nonlinear terms \(F_k^\perp \) and \(F_k^\parallel \).

Using the relations \((k^\perp, l) = -(k, l^\perp) \) and \((k^\perp, l^\perp) = (k, l) \), we find that

\[
\begin{align*}
 F_k^\perp(w, q) &= \mathcal{L}_{k \leq l} \sum_{1 \leq k < H_N} u_1 u_{k-1} \frac{(l^\perp, k)(k - 1, k)}{|l|^2|k - 1|^2} + u_1 q_{k-1} \frac{(l^\perp, k)^2}{|l|^2|k - 1|^2} \\
 &\quad + \sum_{1 \leq k < H_N} q_1 u_{k-1} \frac{(l, k - l)(k - 1, k)}{|l|^2|k - 1|^2} - q_1 q_{k-1} \frac{(l, k - l)(l, k^\perp)}{|l|^2|k - 1|^2}
\end{align*}
\]

and

\[
\begin{align*}
 F_k^\parallel(w, q) &= \mathcal{L}_{k \leq l} \sum_{1 \leq k < H_N} -u_1 u_{k-1} \frac{(l^\perp, k)^2}{|l|^2|k - 1|^2} + u_1 q_{k-1} \frac{(l^\perp, k)(k - 1, k)}{|l|^2|k - 1|^2} \\
 &\quad - \sum_{1 \leq k < H_N} q_1 u_{k-1} \frac{(l, k - l)(l^\perp, k)}{|l|^2|k - 1|^2} + q_1 q_{k-1} \frac{(l, k - l)(k - 1, k)}{|l|^2|k - 1|^2}.
\end{align*}
\]
After considering the effect of the mapping \((\mathbf{1}, \mathbf{k} - \mathbf{l}) \mapsto (\mathbf{k} - \mathbf{l}, \mathbf{l})\) on each of the terms above, we may write

\[
F^\perp_k(w, q) = \sum_{\mathbf{k} \in \mathcal{H}_s} w_1 w_{w-1} \frac{(l^\perp, k)}{2((1 - l) + 1)} + w_l q_{1-l} (k - 1, 1)
\]

\[
F^\parallel_k(w, q) = \sum_{\mathbf{k} \in \mathcal{H}_s} -w_1 w_{w-1} \frac{(l^\parallel, k)^2}{l|k - 1| + 1} + w_l q_{1-l} \frac{(l^\parallel, k)(k - 1, k + 1)}{|l| l|k - 1|^2}
\]

\[
+ \sum_{\mathbf{k} \in \mathcal{H}_s} q_{1-l} - \frac{k^2}{2|l| l|k - 1|^2}.
\]

The assertion made in the previous remark now follows easily from these expressions since if \(\sigma_k = \sigma_k' = 0\) for all \(k \in \mathcal{H}_s\) and \(w_0 = 0\), then \(u_i = (u_k(t))_{k \in \mathcal{H}_s} = 0\) for all times \(t\).

To prove theorem 3.12, we do as in the previous two examples and start by computing \(C\) corresponding to (3.11). Define

\[
\mathcal{G} = \left\{ Y + \sum_{k \in \mathcal{F}_D} u_k X_k + v_k Y_k : u_k, v_k \in \mathbb{R} \right\}
\]

where

\[
Y = \sum_{k \in \mathcal{H}_s} \left[-v|k|^2 u_k + \frac{i F^\perp_k(w, q)}{\partial w_k} + \left[-v|k|^2 q_k + \frac{i F^\parallel_k(w, q)}{\partial q_k} \right] \frac{\partial}{\partial q_k} \right] + \sum_{k \in \mathcal{G}_s} \left[-v|k|^2 \bar{w}_k - \frac{i F^\perp_k(\bar{w}, q)}{\partial w_k} + \left[-v|k|^2 \bar{q}_k - \frac{i F^\parallel_k(\bar{w}, q)}{\partial q_k} \right] \frac{\partial}{\partial q_k} \right]
\]

and

\[
X_k = \frac{\partial}{\partial w_k} + \frac{\partial}{\partial w_k}, \quad Y_k = \frac{\partial}{\partial q_k} - \frac{\partial}{\partial q_k}.
\]

Notice that \(n(Y, X_j) = 1\) for all \(j \in \{k \in \mathcal{H}_s : \sigma_k \neq 0, \sigma_k' \neq 0\}\) since there are no diagonal terms in the nonlinear part of \(Y\). In particular,

\[
[X_j, Y] \in \mathcal{G}_s^\perp \quad \text{for all } j \in \{k \in \mathcal{H}_s : \sigma_k \neq 0, \sigma_k' \neq 0\}.
\]

Moreover, one can compute these commutators to see that

\[
[X_j, Y] = -v|j|^2 \frac{\partial}{\partial w_j} - v|j|^2 \frac{\partial}{\partial w_j}
\]

\[
+ i \sum_{k \in \mathcal{H}_s} \left[u_{k-j} (j^-, k) \left(\frac{1}{|k|^2} - \frac{1}{|k - j|^2} \right) + q_{k-j} \frac{(k - j, k)}{|k - j|^2} \right] \frac{\partial}{\partial w_k}
\]

\[
- i \sum_{k \in \mathcal{H}_s} \left[\bar{u}_{k-j} (j^+, k) \left(\frac{1}{|k|^2} - \frac{1}{|k - j|^2} \right) + \bar{q}_{k-j} \frac{(k - j, k)}{|k - j|^2} \right] \frac{\partial}{\partial \bar{w}_k}
\]

\[
+ i \sum_{k \in \mathcal{H}_s} \left[-2 u_{k-j} (j^+, k)^2 + q_{k-j} \frac{(j^+, k)(j - k, k + j)}{|j| |k - j|^2} \right] \frac{\partial}{\partial q_k}
\]

\[
- i \sum_{k \in \mathcal{H}_s} \left[-2 \bar{u}_{k-j} (j^-, k)^2 + \bar{q}_{k-j} \frac{(j^-, k)(k - j, k + j)}{|j| |k - j|^2} \right] \frac{\partial}{\partial \bar{q}_k}.
\]

Note also that for all \(j, m \in \{k \in \mathcal{H}_s : \sigma_k \neq 0, \sigma_k' \neq 0\}\) such that \(j + m \in \mathcal{H}_s\)

\[
n(X_m, [X_j, Y]) = n(Y_m, [X_j, Y]) = 1.
\]
Hence for all $j, m \in \{k \in H_N : \sigma_k \neq 0, \sigma_k' \neq 0\}$ with $j + m \in H_N$, $[X_m, [X_j, Y_i]] \in G_2^0$ and $[Y_m, [X_j, Y_i]] \in G_2^0$. Computing these commutators we find that

$$[X_m, [X_j, Y_i]] = (j^1, m) \left(\frac{1}{|j|^2} - \frac{1}{|m|^2} \right) Y_{j+m} - 2 \frac{(j^1, m)^2}{|j|^2 |m|^2} \widetilde{Y}_{j+m}$$

(3.14)

and

$$[Y_m, [X_j, Y_i]] = -(j^1, m) \left(\frac{1}{|j|^2} - \frac{1}{|m|^2} \right) X_{j+m} + 2 \frac{(j^1, m)^2}{|j|^2 |m|^2} \widetilde{X}_{j+m}$$

(3.15)

where

$$\widetilde{X} = \frac{\partial}{\partial q} + \frac{\partial}{\partial \tilde{q}}, \quad \widetilde{Y} = i \frac{\partial}{\partial q} - i \frac{\partial}{\partial \tilde{q}}.$$

We will now use the above computations to prove that

$$\{X_j, Y_j, \widetilde{X}_j, \widetilde{Y}_j : \|k\|_\infty \leq k \} \subset C^0$$

for all $k = 1, 2, \ldots, N$ by induction on k. It will then follow that C^0 spans the tangent space, and so we may pick $D(w, q) = C^{8N(N+1)}$ for all $(w, q) \in C^{8N(N+1)}$.

To prove the claim when $k = 1$, first substitute

$$(j, m) = ((1, 0), (0, 1)), ((1, 0), (0, -1)), ((-1, 0), (0, -1)), ((-1, 0), (0, 1))$$

into equations (3.14)–(3.15) to see that $\widetilde{X}_{(1,1)}, \widetilde{Y}_{(1,1)}, \widetilde{X}_{(-1,-1)}, \widetilde{Y}_{(-1,-1)}$ are such that $\widetilde{X}_{(1,1)} = \widetilde{Y}_{(-1,-1)}$, $\widetilde{Y}_{(1,1)} = \widetilde{X}_{(-1,-1)}$. Substituting

$$(j, m) = ((1, 1), (0, -1)), ((-1, 1), (0, -1)), ((-1, -1), (1, 0))$$

into the same equations and using the fact that $X_k, Y_k \in C^0$ for any $\|k\|_\infty = 1$, we find by taking linear combinations that $\widetilde{X}_{(1,0)}, \widetilde{Y}_{(1,0)}, \widetilde{X}_{(0,1)}, \widetilde{Y}_{(0,1)}, \widetilde{X}_{(-1,0)}, \widetilde{Y}_{(-1,0)} \in C^0$. This proves the initial statement in the inductive argument. Suppose now that for some $1 \leq k < N$

$$\{X_j, Y_j, \widetilde{X}_j, \widetilde{Y}_j : j \in H_N, \|j\|_\infty \leq k \} \subset C^0.$$

Note that if $m, j \in H_N$ are such that $\|m\|_\infty \leq k$, $\|j\|_\infty = 1$, then $[\widetilde{X}_m, [X_j, Y_i]] \in C^{0,0}$ and $[\widetilde{Y}_m, [X_j, Y_i]] \in C^0$. Note moreover that

$$[\widetilde{X}_m, [X_j, Y_i]] = \frac{(m, j + m)}{|m|^2} Y_{j+m} + \frac{(j^1, m)(m, m + 2j)}{|j|^2 |m|^2} \widetilde{Y}_{j+m}$$

(3.16)

and

$$[\widetilde{Y}_m, [X_j, Y_i]] = -\frac{(m, j + m)}{|m|^2} X_{j+m} - \frac{(j^1, m)(m, m + 2j)}{|j|^2 |m|^2} \widetilde{X}_{j+m}.$$

(3.17)

We claim that if $m, j \in H_N$ are such that $|j| \neq |m|$ and $(j^1, m) \neq 0$, then the pairs (3.14) and (3.16), (3.15) and (3.17), are independent. Indeed, if they are dependent under these assumptions, then

$$|j|^2 (m, m + j) = \frac{1}{2} (|j|^2 - |m|^2) (m, m + 2j)$$

which is true if and only if

$$|j|^2 + |m|^2 + 2(m, j) = 0.$$

Note that this equality is impossible since $|j| \neq |m|$. Therefore, to finish the inductive argument, it suffices to show that for all $k \in H_N$ with $\|k\|_\infty = k + 1$, there exist $m, j \in H_N$.

2832
such that

- $\|\mathbf{m} \| = k, \|\mathbf{j} \| = 1, \|\mathbf{m} \| \neq \|\mathbf{j} \|, \text{and} \ (\mathbf{j}^\perp, \mathbf{m}) \neq 0.$

For those such k away from the axes and the lines $|y| = |x|$ in the (x, y)-plane, take $j \in H_N$ to be the unique member of the set $\{(1, 0), (0, 1), (−1, 0), (0, −1)\}$ such that $\|k − j\| = k$. Thus define $\mathbf{m} = \mathbf{k} − \mathbf{j}$ and note that \mathbf{j} and \mathbf{m} have different Euclidean lengths and $\langle \mathbf{j}^\perp, \mathbf{m} \rangle \neq 0$. Now suppose k is on one of the axes or the lines $|y| = |x|$. Then there exists $j \in \{(1, 0), (0, 1), (−1, 0), (0, −1)\}$ such that $\mathbf{m} = \mathbf{k} − \mathbf{j}$ belongs to the set of indices generated up to this point of sup norm length $k + 1$. It is easy to check that, again \mathbf{j} and \mathbf{m} have different Euclidean lengths and $\langle \mathbf{j}^\perp, \mathbf{m} \rangle \neq 0$. This finishes the proof of the inductive argument.

Now note that we may choose a basis of C such that

$$\mathcal{D}(w, q) = \mathbb{C}^{N(N + 1)}$$

for all $(w, q) \in \mathbb{C}^{N(N + 1)}$. Moreover, the origin is clearly an equilibrium point of \mathcal{G}. Because the issue of explosion is still evident, theorem 2.5 implies that for every $(w, q), (w', q') \in \mathcal{C}^{N(N + 1)}$ and $T > 0$, there exists $N \in \mathbb{N}$ large enough such that

$$p^\pi_t(\mathbf{w}, \mathbf{q}), (\mathbf{w}', \mathbf{q}') > 0 \text{ for all } t \geq T, \ n \geq N.$$

for all $t > 0$. □

4. Proof of main results

The goal of this section is to prove theorems 2.5 and 2.9. Theorem 2.9 will be a relatively straightforward consequence of theorem 2.5, so we focus our attention first on proving theorem 2.5.

To prove theorem 2.5, we will use a slight modification of the condition for positivity of the density given by Ben Arous and Léandre in corollaire 2.2 on p.15 of [2] (see also proposition 4.3.1 on p.183 of [12]). The slight modification is necessary to remove the global Lipschitzian and boundedness conditions often assumed of the coefficients in the SDE. In particular, since in our context the drift \mathbf{Y} is assumed general polynomial vector field, the coefficients of the SDE (2.1) are only locally Lipschitz, so we need this modification.

It is also important to point out that, because \mathbf{Y} is assumed to be a general polynomial vector field, solutions of the various differential equations involving \mathbf{Y} below are only defined until the time of explosion, which could be finite depending on the choice of \mathbf{Y} and H. In particular, we can only utilize the trajectories of the system until the time of explosion, hence the use of "maximally-defined" in what follows.

To setup the statement of our slight modification, let $H = \int_0^s h_i \, ds, \ h \in L^2([0, \infty) : \mathbb{R}^r)$, and $\Phi_t^s(H)$ denote the maximally-defined solution (in time) of the equation

$$\Phi_t^s(H) = \mathbf{x} + \int_0^s Y(\Phi_r^s(H)) \, du + \sum_{j=1}^r X_j \int_0^s h_j \, du.$$

(4.1)

$J_{x,t}^s(H)$ denotes the maximally-defined $d \times d$ matrix-valued solution of

$$J_{x,t}^s(H) = \mathrm{Id}_{d \times d} + \int_t^s D(h)(\Phi_u^s(H)) \, du$$

(4.2)

where $\mathrm{Id}_{d \times d}$ is the identity matrix and D is the Jacobian. Define the Gramian matrix $M_t^s(H)$ by

$$(M_t^s(H))_{\mu \nu} = \sum_{m=1}^r \int_0^s (J_{x,t}^s(H)X_m)^\mu (J_{x,t}^s(H)X_m)^\nu \, ds,$$

(4.3)

\[2833 \]
Remark 4.4. Sometimes $M_t^i(H)$ is called the deterministic Malliavin covariance matrix. Formally replacing H with a Brownian motion W yields the standard (stochastic) Malliavin covariance matrix.

Lemma 4.5. Fix $x, z \in \mathbb{R}^d$ and $t > 0$ and suppose that $H = \int_0^t h_s ds, h \in L^2([0, \infty) : \mathbb{R}^r)$, is such that $\Phi_t^x(H)$ is defined for all times $s \in [0, t]$ and $\Phi_t^x(H) = z$. If $M_t^i(H)$ is invertible, then

$$p_n^0(x, z) > 0$$

for any integer $n \geq 1$ such that $\Phi_t^x(H) \subset B(0, n)$ for all $s \in [0, t]$.

We defer the proof of lemma 4.5 until the Appendix, and focus our efforts in this section on exhibiting a control $H = \int_0^t h_s ds, h \in L^2([0, \infty) : \mathbb{R}^r)$, so that $\Phi_t^x(H)$ has all of the properties stated in lemma 4.5. The proof of the existence of such a control splits into two parts. First, in section 4.1 we will use the enlargement techniques of Jurjevic and Kupka [5–7] to see which directions can be flowed along in small times by $\Phi_t^x(H)$ over the class of controls H defined above. Second, we will see that there are enough directions so that we can construct a sufficiently “twisty” control H, ensuring that $M_t^i(H)$ is invertible. The existence of an equilibrium point $y \in \mathbb{R}^d$ as in the statement of theorem 2.5 allows us control over the time parameter.

4.1. A primer on geometric control theory

For $x \in \mathbb{R}^d$ and $t > 0$, let $A(x, t)$ be the set of points $z \in \mathbb{R}^d$ such that for some time $t_0 \in (0, t]$ there exists $H = \int_0^{t_0} h_s ds, h \in L^2([0, \infty) : \mathbb{R}^r)$, for which $\Phi_{t_0}^x(H)$ is defined for all $s \in [0, t_0]$ and $\Phi_{t_0}^x(H) = z$. Recalling the set \mathcal{C} defined in section 2, here we will use the techniques [5–7] to prove the following result:

Lemma 4.6. For all $x \in \mathbb{R}^d$ and all $t > 0$, $\{x\} + C \subset A(x, t)$.

We start by making some heuristic observations, arguing intuitively why we should expect lemma 4.6 to be true. To make notation more legible, for any C^∞ vector field V on \mathbb{R}^d let $\exp(tV)(x)$ denote the maximally-defined integral curve of V passing through x at $t = 0$.

We first see why we should expect the following containment to hold

$$\{x\} + \text{span}\{X_1, \ldots, X_r\} \subset A(x, \leq t)$$ (4.7)

for all $x \in \mathbb{R}^d$, $t > 0$. Let $x \in \mathbb{R}^d, \alpha \in \mathbb{R} \setminus \{0\}$ and $j \in \{1, \ldots, r\}$ be given. The key is to realize that for $\lambda > 0$ large and $t > 0$ small

$$\exp(t(Y + \alpha \lambda X_j))(x) \approx \exp(t\lambda X_j)(x)$$

This is because the behavior of the flow along $Y + \alpha \lambda X_j$ is initially dominated for small times by the flow along $\alpha \lambda X_j$ since λ is large. More precisely, taking $t = t'/\lambda$ for some $t' > 0$ fixed, one can show that as $\lambda \rightarrow \infty$

$$\exp(t(Y + \alpha \lambda X_j))(x) = \exp\left(\frac{t'}{\lambda}(Y + \alpha \lambda X_j)\right)(x) \rightarrow \exp(t'\alpha X_j)(x).$$

Since $x \in \mathbb{R}^d$, $\alpha \in \mathbb{R} \setminus \{0\}$ and $j \in \{1, 2, \ldots, r\}$ were assumed to be arbitrary, we now see why one should believe the containment (4.7) as one could repeat the same argument with αX_j replaced by an arbitrary linear combination of X_1, \ldots, X_r.

To see how some of the commutators in the definition of \mathcal{C} arise, we start by ‘tweaking’ the directions X_1, \ldots, X_r obtained in the previous step by Y; that is, we will first flow along X_j for $\alpha \lambda$ units of time and then flow along Y for $t > 0$ units of time. Again let $x \in \mathbb{R}^d$. 2834
\(\alpha \in \mathbb{R} \setminus \{0\} \) and \(j \in \{1, \ldots, r\} \) be given. If \(x_j \in \mathbb{R}^d \) is the constant value of \(X_j \), we notice that for \(t > 0 \) small
\[
\exp(tY) \circ \exp(\alpha \lambda x_j) = x + \alpha \lambda x_j + \int_0^t Y(x + \alpha \lambda x_j + \mathcal{O}(s)) \, ds.
\] (4.8)

Letting \(t = t'/n(X_j, Y) \), it follows that as \(\lambda \to \infty \)
\[
\int_0^t Y(x + \alpha \lambda x_j + \mathcal{O}(s)) \, ds \to \frac{\alpha n(X_j, Y)}{n(X_j, Y)} \text{ad}^{n(X_j, Y)} X_j(Y)(x).
\] (4.9)

As much as we would like to obtain this potentially new direction by taking \(\lambda \to \infty \) in (4.8), we cannot as \(\alpha \lambda x_j \) blows up as \(\lambda \to \infty \). To rid ourselves of this problem, we need to flow backwards along \(X_j \) for \(\alpha \lambda \) units of time producing the relation
\[
\exp(-\alpha \lambda x_j) \circ \exp(tY) \circ \exp(\alpha \lambda x_j) = x + \int_0^t Y(x + \alpha \lambda x_j + \mathcal{O}(s)) \, ds.
\]

Using the same scaling of time \(t = t'/n(X_j, Y) \), we now see how the commutator on the right-hand side of (4.9), hence in the definition of \(G_1^{m} \) and \(G_0^{m} \), arises.

Remark 4.10. Note that this computation explains why the separation of \(C \) into \(C^0 \) and \(C^e \) is needed. If \(n(X_j, Y) \) is even and \(\text{ad}^{n(X_j, Y)} X_j(Y) \) is constant, then relation (4.9) implies that we may only flow along \(\text{ad}^{n(X_j, Y)} X_j(Y) \) for positive times. Additionally, in the subsequent iteration of this method we cannot necessarily flow backwards along this vector field producing yet another direction.

Remark 4.11. Following these observations, it is evident where and why theorem 2.5 will fail to either produce optimal results or be applicable at all. The failure is precisely due to the fact that the set \(C \) only includes those constant vector fields which can be flowed along in small positive times. In particular, theorem 3.7 does not account for cases where there is an unavoidable time delay needed to access certain points in space (as in the example highlighted in remark 3.7), usually due the need to employ the drift vector field \(Y \). Moreover, theorem 3.7 will not even apply in situations if there is a more serious absence of time reversibility preventing \(C \) from being \(d \)-dimensional. As an example, consider the following SDE on \(\mathbb{R}^3 \)
\[
\begin{align*}
\mathrm{d}x_t &= -x_t y_t \, dt + dB_t^1, \\
\mathrm{d}y_t &= (x_t^2 - y_t z_t) \, dt, \\
\mathrm{d}z_t &= (y_t^2 - z_t) \, dt.
\end{align*}
\] (4.12)

For this system, it is not hard to check that Hörmander’s bracket condition is satisfied globally but
\[
C = \{ \alpha \partial_x + \lambda \partial_y : \alpha \in \mathbb{R}, \lambda \geq 0 \}.
\]

Hence, theorem 2.5 does not apply since \(C \) has dimension \(2 < 3 \).

Even though our general result does not apply in this example, computing \(C \) is still useful in that lemma 4.6 is true regardless if \(C \) is \(d \)-dimensional. If \(C \) is not \(d \)-dimensional, one can now proceed to find more points in the set \(A(x, \leq \tilde{T}) \) by using \(C \) and the specific nature of the drift vector field \(Y \). Then, given the existence of \(H = \int_0^t h_s \, ds, h \in L^2([0, \infty) \times \mathbb{R}^r) \) such that \(\Phi^t_h(H) = z \), positivity of \(p^n_t(x, z) \) for \(n \) large enough can then be shown by following a similar line of reasoning to lemma 4.22 or remark 4.27.
We now turn the previous heuristics into a proof of lemma 4.6. Our proof will employ results from the reference [7], so we will first introduce some further notation and terminology to connect with the setup there.

We recall that for any C^∞ vector field V on \mathbb{R}^d, $\exp(tV)(x)$ denotes the maximally defined integral curve of V passing through x at time $t = 0$. Let \mathcal{H} be any set of C^∞ vector fields on \mathbb{R}^d. For $x \in \mathbb{R}^d$ and $t > 0$, $A_H(x, \leq t)$ denotes the set of $z \in \mathbb{R}^d$ such that there exist positive times t_1, \ldots, t_k and corresponding vector fields $V_1, \ldots, V_k \in \mathcal{H}$ such that $t_1 + \cdots + t_k \leq t$ and

$$\exp(t_k V_k) \circ \exp(t_{k-1} V_{k-1}) \circ \cdots \circ \exp(t_1 V_1)(x) = z.$$

Because there will be many different sets of vector fields, here we will absolutely need to emphasize the dependence of these sets on \mathcal{H}.

Two sets of $C^\infty \mathbb{R}^d$-vector fields, \mathcal{H} and \mathcal{I}, are called equivalent, denoted by $\mathcal{H} \sim \mathcal{I}$, if $A_H(x, \leq t) = A_I(x, \leq t)$ for all $x \in \mathbb{R}^d$ and all $t > 0$. One can show, see [7], that if $\mathcal{H} \sim \mathcal{I}$ and $\mathcal{H} \sim \mathcal{J}$, then $\mathcal{H} \sim \mathcal{I} \cup \mathcal{J}$. In particular, if we define

$$\text{sat}(\mathcal{H}) = \bigcup_{\mathcal{I} \sim \mathcal{H}} \mathcal{I},$$

then it also follows that $\text{sat}(\mathcal{H}) \sim \mathcal{H}$. $\text{sat}(\mathcal{H})$ is called the saturate of \mathcal{H}.

Remark 4.13. It is often the case that $\text{sat}(\mathcal{H})$ contains more vector fields than \mathcal{H} itself. Moreover, the saturate maintains identical accessibility properties in the sense (\sim) described above. This is convenient in that it allows one to use simpler vector fields to determine accessibility properties of the original set of vector fields \mathcal{H}. For example, even though the constant vector field X_j, $j \geq 1$, does not belong to $\mathcal{G} = \{ Y + \sum_{j=1}^r u_j X_j : u_j \in \mathbb{R} \}$, we used it above to generate more directions in $A_H(x, \leq t)$ as done in the arguments following equation (4.8). Using a limiting procedure, however, one can justify that this is indeed permissible.

In the next two lemmas, we list operations which allow us to expand (up to equivalence) a set of vector fields \mathcal{H}.

Lemma 4.14. \mathcal{H} is equivalent to the closed convex hull of the set

$$\{ \lambda V : \lambda \in [0, 1], V \in \mathcal{H} \}.$$

Here the closure is taken in the topology of uniform convergence with all derivatives on compact subsets of \mathbb{R}^d.

Proof. Apply theorems 5 and 6 in chapter 2 of [7].

To state the next lemma, let $\psi : \mathbb{R}^d \to \mathbb{R}^d$ be a diffeomorphism. For any $V \in \mathcal{H}$, we may define a vector field $\psi_*(V)$ by

$$\psi_*(V)(x) = D\psi(\psi^{-1}(x))V(\psi^{-1}(x))$$

where $D\psi$ is the Jacobian of ψ. A diffeomorphism $\psi : \mathbb{R}^d \to \mathbb{R}^d$ is called a normalizer of \mathcal{H} if $\psi(x), \psi^{-1}(x) \in A_H(x, \leq t)$ for all $x \in \mathbb{R}^d$ and all $t > 0$. The set of normalizers of \mathcal{H} is denoted by $\text{Norm}(\mathcal{H})$.

2836
Lemma 4.15.
\[\mathcal{H} \sim \bigcup_{\psi \in \text{Norm}(\mathcal{H})} \{ \psi_{\alpha}(V) : V \in \mathcal{H} \} \].

Proof. Notice that by the lemma immediately after definition 5 of chapter 2 of [7], if \(\psi \) is a normalizer of \(\mathcal{H} \) using our definition, then it is also a normalizer using the definition given in [7]. The result then follows after applying theorem 9 in chapter 2 of [7] and using the fact that the identity map is a normalizer. \(\square \)

Remark 4.16. We will see in the proof of lemma 4.6 that the limiting procedure used in our heuristic calculations is exactly of the type covered by lemma 4.14. We will also see that the use of normalizers is very much in line with one’s ability to flow along a constant vector field for positive or negative times (hence the \(\psi \) and \(\psi^{-1} \) in the definition of a normalizer).

Using repeated applications of lemmas 4.14 and 4.15, we now prove lemma 4.6.

Proof of lemma 4.6. Let \(\mathcal{G} = \{ Y + \sum_{j=1}^{r} u_j X_j : u_j \in \mathbb{R} \} \). First note that it suffices to show that if \(V \in C^0 \) and \(W \in C^\infty \), then \(\alpha V, \lambda W \in \text{sat}(\mathcal{G}) \) for all \(\alpha \in \mathbb{R} \) and all \(\lambda \geq 0 \). The result would then follow by lemma 4.14 since if \(V_1, V_2, \ldots, V_k \in C^0 \) and \(W_1, W_2, \ldots, W_j \in C^\infty \), then
\[\sum_{l=1}^{k} \alpha_l V_l + \sum_{i=1}^{j} \lambda_i W_i \in \text{sat}(\mathcal{G}) \]
for all \(\alpha_i \in \mathbb{R} \) and all \(\lambda_i \geq 0 \).

We first demonstrate that \(\alpha X_j \in \text{sat}(\mathcal{G}) \) for all \(\alpha \in \mathbb{R} \) and \(j \in \{1, \ldots, r\} \). Indeed, by lemma 4.14 we have
\[\alpha X_j = \lim_{\lambda \to \infty} \frac{1}{\lambda} (Y + \alpha \lambda X_j) \in \text{sat}(\mathcal{G}) \].

By induction, it is enough to show that if \(V \) is a constant vector field with \(\alpha V \in \text{sat}(\mathcal{G}) \) for all \(\alpha \in \mathbb{R} \) and \(W \in \text{sat}(\mathcal{G}) \) is a polynomial vector field, then
\[\frac{\alpha^m(V,W)}{m(V,W)!} \text{ad}^m(V,W) V(W) \in \text{sat}(\mathcal{G}) \]
for all \(\alpha \in \mathbb{R} \). To prove this result, we seek to apply lemma 4.15. Since \(V \) is a constant vector field, let \(v = V(x) \in \mathbb{R}^d \) denote its constant value. For \(\alpha \in \mathbb{R} \), define a map \(\psi_{\alpha} : \mathbb{R}^d \to \mathbb{R}^d \) by
\[\psi_{\alpha}(x) = x - \alpha v \].

Note that, for each \(\alpha \in \mathbb{R} \), \(\psi_{\alpha} \) is a normalizer for \(\mathcal{G} \). Hence, for each \(\alpha \in \mathbb{R} \), lemma 4.15 implies that \((\psi_{\alpha})_* \) is a normalizer. Since \(D\psi_{\alpha} \) is the identity matrix, notice that
\[(\psi_{\alpha})_*(W)(x) = W(x + \alpha v) \].

Applying lemma 4.14, we thus find that for all \(\alpha \in \mathbb{R} \)
\[V_\alpha W := \lim_{\lambda \to 0} \frac{1}{\lambda^m(V,W)} (\psi_{\lambda \alpha})_*(W) \in \text{sat}(\mathcal{G}) \].

To finish the proof, all we must see is that
\[V_\alpha W = \frac{\alpha^m(V,W)}{m(V,W)!} \text{ad}^m(V,W) V(W) \].

Recalling that \(v \in \mathbb{R}^d \) denotes the constant value of \(V \), for \(x \in \mathbb{R}^d \) fixed consider the function
\[F : \mathbb{R} \to \mathbb{R}^d \text{ defined by } \alpha \mapsto W(x + \alpha v). \]

By induction, for \(j \geq 1 \)
\[F^{(j)}(\alpha) = \text{ad}^j V(W)(x + \alpha v) \].
where $F^{(j)}$ is the jth derivative of F with respect to α. Hence we obtain the formula

$$(\psi_\alpha)_* W(x) = F(\alpha) = \sum_{j=0}^{n(V,W)} \frac{\alpha^j}{j!} F^{(j)}(0) = \sum_{j=0}^{n(V,W)} \frac{\alpha^j}{j!} \text{ad}^j V(W)(x)$$

since each component of $F(\alpha)$ is a polynomial in α with degree $\leq n(V, W)$. Hence we now see that

$$V_\alpha W = \lim_{\lambda \to \infty} \frac{1}{\lambda^{n(V,W)}} (\psi_{\alpha \lambda})_*(W) = \frac{\alpha^{n(V,W)}}{n(V,W)!} \text{ad}^{n(V,W)} V(W),$$

completing the proof. \qed

Before proceeding onto the second part of the argument, we state the following lemma which we will need later.

Lemma 4.17. Suppose that, for some $x \in \mathbb{R}^d$, the Lie algebra generated by \mathcal{H} evaluated at x spans the tangent space. Then for all $t, \epsilon > 0$

$$\text{interior}(A_{\mathcal{H}}(x, \leq t + \epsilon)) \supset \text{interior}(A_{\mathcal{H}}(x, \leq t)).$$

Proof. See theorem 2 of chapter 3 in [7]. \qed

4.2. Strict positivity

The next two lemmas will operate as an easy-to-check criterion assuring that, for a given control H, $M_x(t(H))$ is invertible. Though not necessary (see remark 4.27), these results use the fact that \mathcal{G} contains only polynomial vector fields. In particular, the special structure of zero sets of polynomials is employed in the following lemma.

Lemma 4.18. Suppose that C is d-dimensional and let $\mathcal{H} = \bigcup_{m=1}^{r} \{X_m, [Y, X_m]\}$. Then for any non-empty open $A \subset \mathbb{R}^d$ the set of points in \mathbb{R}^d given by

$$\bigcup_{x \in A} \{V(x) : V \in \mathcal{H}\}$$

is d-dimensional.

Proof. Suppose that the subspace spanned by the set in (4.19) has dimension $l \leq d$ and choose a basis $v_1, v_2, \ldots, v_l \in \mathbb{R}^d$ for this subspace. The goal is to show that $l = d$. Let V_1, V_2, \ldots, V_l be the constant vector fields with constant values v_1, v_2, \ldots, v_l, respectively. Notice that every vector field V in the span of \mathcal{H} is a polynomial vector field and satisfies the following equality on the open set A

$$V = p_1 V_1 + p_2 V_2 + \cdots + p_l V_l$$

for some polynomials p_1, \ldots, p_l. Since A is open and V is a polynomial vector field, (4.20) is valid everywhere on \mathbb{R}^d. Moreover, since vector fields of the form (4.20) are closed under commutators and linear combinations, we see that

$$\text{span}(C) \subset \text{span}\{v_1, v_2, \ldots, v_l\}$$

Note that this finishes the proof since C is d-dimensional. \qed

To setup the statement of the next result, define $K^s(H) \subset \mathbb{R}^d$ as follows:

$$K^s(H) = \bigcup_{m=1}^{r} \{X_m(\Phi_s^t(H)), [Y, X_m](\Phi_s^t(H)) : s \in (0, t)\}.$$
Lemma 4.22. Suppose that \(K^x_t(H) \) is \(d \)-dimensional. Then the associated matrix \(M^x_t(H) \) is invertible.

Proof. It suffices to show that \(M^x_t(H) \) is positive definite. Assume, to the contrary, that \(M^x_t(H) \) is not positive-definite and let \(\langle \cdot, \cdot \rangle \) denote the inner product on \(\mathbb{R}^d \). Then there exists \(y \in \mathbb{R}^d \setminus \{0\} \) such that

\[
0 = \langle M^x_t(H) y, y \rangle = \sum_{m=1}^r \int_0^t \langle J^x_{s,t}(H) X_m, y \rangle^2 ds.
\]

To get a contradiction, we seek to obtain a lower bound \(\langle M^x_t(H) y, y \rangle \) which is positive using the equality above. To derive such a bound, first observe that for \(s \leq s_0 \leq u_0 \leq l_0 \leq t \), \(J^x_{u_0} = J^x_{u_0,0} J^x_{0,u_0} (H) \) and that the matrix \(J^x_{u_0,0} (H) \) is invertible. Using these two facts, it is not hard to check that for \(s \leq s_0 \leq l_0 \leq t \)

\[
\partial_{s_0} J^x_{t,l_0}(H) = - J^x_{u_0,0} (H) DY (\Phi^x_{u_0} (H))
\]

(4.23)

Letting \(|\cdot| \) denote the Euclidean norm on \(\mathbb{R}^d \), we then see that for all \(u \in (0, t) \), \(\epsilon \in (0, \min(u, t-u)) \)

\[
0 = \langle M^x_t(H) y, y \rangle \geq \int_0^t \langle J^x_{s,t}(H) X_m, y \rangle^2 ds
\]

\[
\geq \int_{u-\epsilon}^{u+\epsilon} \langle J^x_{s,t}(H) X_m, y \rangle^2 ds
\]

(4.24)

\[
= \int_{u-\epsilon}^{u+\epsilon} \langle J^x_{s,u} (H) X_m, (J^x_{u,t}(H))^y \rangle^2 ds
\]

\[
\geq \langle (J^x_{u,t}(H))^y \rangle^2 \inf_{y, \|y\|=1} \int_{u-\epsilon}^{u+\epsilon} \langle J_{s,u} X_m, y \rangle^2 ds.
\]

Since \(|J^x_{u,t}(y)| > 0 \) and the unit disk is compact in \(\mathbb{R}^d \), it suffices to show that for all nonzero \(y \in \mathbb{R}^d \) there exists \(m \in \{1, 2, \ldots, r\}, u \in (0, t), \) and \(\epsilon \in (0, \min(u, t-u)) \) such that

\[
\int_{u-\epsilon}^{u+\epsilon} \langle J^x_{s,u} (H) X_m, y \rangle^2 ds > 0.
\]

(4.25)

Thus let \(y \in \mathbb{R}^d, y \neq 0 \), be arbitrary. By hypothesis, either \(\langle X_m, y \rangle \neq 0 \) for some \(m \in \{1, \ldots, r\} \) or \(\langle X_m, Y \rangle \neq 0 \) for some \(m \in \{1, \ldots, r\} \), \(t_0 \in (0, t) \). Clearly, if \(\langle X_m, y \rangle \neq 0 \) for some \(m \in \{1, 2, \ldots, r\} \), then there is nothing to show by continuity and (4.25).

Thus suppose that \(\langle X_m, y \rangle = 0 \) for all \(m = 1, 2, \ldots, r \) and pick \(t_0 \in (0, t) \), \(m \in \{1, 2, \ldots, r\} \) such that

\[
\langle z, y \rangle = \langle [X_m, Y] (\Phi^x_{t_0} (H), y \rangle \neq 0.
\]

Since \(\langle X_m, y \rangle = 0 \), using the definition of \(J^x_{s,t_0} (H) \) twice we see that

\[
\langle J^x_{s,t_0} (H) X_m, y \rangle = \int_{t_0}^t \langle D Y (\Phi^x_{s} (H)) J^x_{s,u} (H) X_m, y \rangle du.
\]

\[
= \int_{t_0}^t \langle [X_m, Y] (\Phi^x_{u} (H), y \rangle du
\]

\[
+ \int_{t_0}^t \int_s^u \langle D Y (\Phi^x_{s} (H)) J^x_{s,u} (H) X_m, y \rangle dv \rangle du.
\]

2839
Therefore, for s sufficiently close to t_0, $(J_{s,t_0}^x(H)X_m, y) \neq 0$. Hence continuity then implies for any $\epsilon \in (0, t_0)$

$$\int_{t_0-s}^{t_0} (J_{s,t_0}^x(H)X_m, y)^2 \, ds > 0,$$

finishing the proof. \hfill \Box

We now use the previous two results and lemma 4.6 to prove theorem 2.5.

Proof of theorem 2.5. We first prove theorem 2.5 part (b) and then show how part (a) follows by a similar argument. Therefore suppose that $y \in \mathbb{R}^d$ is an equilibrium point of G and that $x, z \in \mathbb{R}^d$ are such that $y \in D(x)$ and $z \in D(y)$. By lemma 4.5, our goal is to exhibit $H = \int_0^t h_s \, ds, h \in L^2([0, t] : \mathbb{R}^r)$, such that $\Phi^t_y(H) = z$ and $M^t_y(H)$ invertible. To ensure that $M^t_y(H)$ is invertible, we will build H in such a way so as to ‘twist’ the path of $\Phi^t_y(H)$ from x to z.

We first claim that there exist countably many non-empty disjoint open subsets $U_l, l \geq 0$, with the property that

$$U_{l+1} \subset \bigcup_{w \in U_l} D(w) \tag{4.26}$$

for all $l \geq 0$. Suppose first that $D(x) = \mathbb{R}^d$. Then it follows that $D(x') = \mathbb{R}^d$ for all $x' \in \mathbb{R}^d$. Thus in this case simply let U_l be any partition of \mathbb{R}^d. If $D(x) \neq \mathbb{R}^d$, then since $y \in D(x)$ write

$$y = x + \sum_{j=1}^k \alpha_j y_j + \sum_{j=k+1}^d \lambda_j y_j$$

for some $\alpha_j \in \mathbb{R}$ and $\lambda_j > 0$. Let $\lambda = \min_j \lambda_j > 0$ and define constants $\alpha_0 = 0$ and $\alpha_l = \sum_{k=1}^l 2^{-k}, l \geq 1$. Note that for $l \geq 0$ the sets

$$U_l = x + \text{span}\{y_1, \ldots, y_k\} + \{\mu y_1 + \cdots + \mu_d y_d : \mu_j \in (\alpha_l \lambda, \alpha_{l+1} \lambda)\}$$

are disjoint, open and satisfy (4.26). This finishes the proof of the claim.

By construction of the sets $U_l, l \geq 0$, and lemma 4.18, there exist $x_{l+1} \in U_l$ such that

$$\bigcup_{m=1}^r \{x_1, \ldots, x_r, [X_m, Y](x_{r+1}), \ldots, [X_m, Y](x_{r+l})\}$$

is d-dimensional. Here, recall that x_1, \ldots, x_r are the constant values of X_1, \ldots, X_r, respectively. Moreover, $x_{r+1} \in D(x), y \in D(x_{r+1})$ and

$$x_{l+1} \in D(x_{l+1})$$

for all $l = 1, 2, \ldots, j$.

We now show that we can build H so that the path $\Phi^t_y(H)$ passes through each of these points prior to time $t > 0$ and so that $\Phi^t_y(H) = z$. Observe that lemma 4.17 and lemma 4.6 together imply $A(w, \leq s) \supseteq D(w)$ for all $w \in \mathbb{R}^d$ and all $s > 0$. Hence by definition of $A(w, \leq s)$, there exist positive times $t_1, t_2, \ldots, t_{j+1}$ with $\sum_{l=1}^{j+1} t_l < \frac{t}{2}$ and corresponding $H_l(\cdot) = \int_0^t h_s \, ds, h_l \in L^2([0, t] : \mathbb{R}^r)$, such that $\Phi^t_{x_{r+1}}(H_1) = x_{r+1}, \Phi^t_{x_{r+1}}(H_{j+1}) = x_{r+1} + l, l = 1, \ldots, j - 1, \text{ and } \Phi^t_{x_{r+1}}(H_{j+1}) = y$. By piecing together the H_l’s, this now gives us the path from x to y. For the rest of the path, we may also pick a positive time $t_{j+2} < \frac{t}{2}$ and $H_{j+2} (\cdot) = \int_0^t h_{j+2} \, ds, h_{j+2} \in L^2([0, t_{j+2}] : \mathbb{R}^r)$ such that $\Phi^t_{x_{r+1}}(H_{j+3}) = z$. Moreover, since y is an equilibrium point of G, letting $t_{j+1} = t = (t_1 + \cdots + t_{j+1} + t_{j+3}) > 0$ there exists a control
\[H_{j+2}(t) = \int_{0}^{t} h_{j+2}(s) \, ds, h_{j+2} \in L^2([0, t_j+2] : \mathbb{R}^r) \] such that \(\Phi_{t_j+2}^{H_j}(H_{j+2}) = y \). By lemma 4.22, we now obtain the conclusion in part (b).

To prove part (a), simply let \(z = y \) in the first argument and, for an arbitrary \(T > 0 \), choose \(t < T \). Note that this now finishes the proof of theorem 2.5. \(\square \)

Remark 4.27. In the arguments establishing theorem 2.5 above, one can obtain invertibility of \(M_t^i(H) \) in a slightly different way which we outline below. The interest in this approach is that it does not employ any special structure of the vector fields defining the SDE other than that they are \(C^\infty \) and they are such that the Malliavin matrix is almost surely invertible. However, when adopting this approach, one still must use the fact that there exists a collection of linearly independent vectors \(y_i \in \mathbb{R}^d \) such that for all \(x \in \mathbb{R}^d \) and all \(t > 0 \)

\[
A(x, t) \supseteq \{ y \} + \left\{ \sum_{i=1}^{k} \alpha_i y_i + \sum_{j=k+1}^{d} \lambda_j y_j : \alpha_i \in \mathbb{R}, \lambda_j > 0 \right\}
\]

where \(A(x, t) \) is the corresponding accessibility set for the general SDE with smooth coefficients. Such a fact can be either false (as we saw even under the hypothesis that \(Y \) is polynomial and \(X_i \) are constant in remark 4.11) or difficult to obtain for a general SDE with smooth coefficients.

To obtain invertibility of \(M_t^i(H) \), in the context of the proof of theorem 2.5 we choose the path from \(x \) to \(y \) differently as follows. Define

\[
D(x, y) = \begin{cases} D(x) \setminus D(y) & \text{if } D(x) \neq \mathbb{R}^d \\ \mathbb{R}^d & \text{otherwise} \end{cases}
\]

and let \(y' \in D(x, y) \) be arbitrary. Since \(D(x, y) \) is open, let \(\delta > 0 \) be such that \(B(y', \delta) \subset D(x, y) \). By the support theorems \([15, 17]\), there exists \(s_1 \in (0, t/4) \) such that for all \(n \) large enough

\[
P_x \{ s_1 < \tau_n, x_n \in B(y', \delta) \} > 0.
\]

Now recall that \(B_t = (B_1^t, \ldots, B_r^t) \) is an \(r \)-dimensional standard Wiener process defined on the probability space \((\Omega, \mathcal{F}, \mathbb{P})\). In this remark, we identify the set \(\Omega \) with the space of continuous paths \(C([0, \infty) : \mathbb{R}^r) \). Letting \(M_t^i(B(\omega)) \) denote the matrix \(M_t^i(H) \) when \(H_s = (B_1^t(\omega), \ldots, B_r^t(\omega)) \), we note that by Malliavin’s proof of Hörmander’s theorem \([8, 11]\)

\[
P_x \{ s_1 < \tau_n, x_n \in B(y', \delta), M_{s_1}^i(B) \text{ invertible} \} = P_x \{ s_1 < \tau_n, x_n \in B(y', \delta) \} > 0
\]

for all \(n \) sufficiently large. Therefore, fix

\[
\omega \in \{ s_1 < \tau_n, x_n \in B(y', \delta), M_{s_1}(B(\omega)) \text{ invertible} \}
\]

and define \(H_t = (B_1^t(\omega), \ldots, B_r^t(\omega)) \) on the time interval \([0, s_1]\). Hence \(\Phi_{s_1}^{H}(H) \in B(y', \delta) \).

Since

\[
y \in \bigcap_{w \in B(y', \delta)} D(w),
\]

pick \(\tilde{H} \) such that for some \(s_2 < \frac{t}{4} \)

\[
\Phi_{s_2}^{H}(\tilde{H}) = y.
\]

We can complete our path from \(y \) to \(z \) in exactly the same way as in the proof of theorem 2.5. Invertibility of the covariance matrix for our chosen control at time \(t \) follows immediately since \(M_{s_1}^i(B(\omega)) \) is invertible. See theorem 8.1 in [10] for a similar argument.
Remark 4.28. Yet another way to approach the proof of theorem 2.5 is to use a Feynman–Kac representation of the function $p^n_t(x, z)$. Indeed fixing $n \in \mathbb{N}$ and $x \in B(0, n)$, observe that the time-reversed function $q^n_t(x, z) = p^n_{-t}(x, z)$ solves the following PDE
\[
\frac{\partial q^n_t}{\partial s} = -\mathcal{L}^*_t q^n_t \quad \text{on} \quad [0, t) \times B(0, n)
\]
where \mathcal{L}^*_t is the formal adjoint (in the z variable) of the Markov generator \mathcal{L} corresponding to the diffusion x_t. Now consider the process y_t solving
\[
d y_t = -Y(y_t) \, dt - \sum_{j=1}^r X_j \, dB^j_t
\]
and let $T_n = \inf\{t > 0 : |y_t| \geq n\}$. It then follows that we may write $p^n_t(x, z)$ as
\[
O^n_t(x, z) = q^n_0(x, z) = \mathbf{E} \left[\exp \int_0^{T_n} f(y_u) \, du \right] q^n_{T_n}(x, y_{T_n} \wedge T_n)
\]
for some $f \in C^\infty(\mathbb{R}^d : \mathbb{R})$. One can use now the expression above coupled with the support theorems [15, 17] applied to the time-reversed process y_t to bound $p^n_t(x, z)$ from below by a positive quantity.

We finish this section by proving theorem 2.9 as a consequence of theorem 2.5 (a).

Proof of theorem 2.9. Let μ be an invariant probability measure for the Markov process x_t defined by (2.1). Again, since \mathcal{C} is contained in the Lie algebra generated by $X_1, \ldots, X_r, [X_1, Y], \ldots, [X_r, Y]$ and \mathcal{C} is d-dimensional, it follows by Hörmander’s theorem [4] that $\mu(dx) = m(x) \, dx$ for some nonnegative function $m \in C^\infty(\mathbb{R}^d)$. Recall also that, for the same reasons, the Markov process x_t defined by (2.1) has a probability density function $p_t(x, y)$ with respect to Lebesgue measure on \mathbb{R}^d which is smooth for $(t, x, y) \in (0, \infty) \times \mathbb{R}^d \times \mathbb{R}^d$. Since μ is an invariant probability measure, we have the following relation for almost every $z \in \mathbb{R}^d$ and $t > 0$
\[
m(z) = \int_{\mathbb{R}^d} m(y) p_t(y, z) \, dy.
\]
We now use this relation to prove the positivity assertion. Let $x \in \text{supp}(\mu)$. Hence $\mu(B_{\delta}(x)) > 0$ for all $\delta > 0$. By smoothness of the density m, for each $\delta > 0$ there exists $x_1 = x_1(\delta) \in B_{\delta}(x)$ such that $m(x_1) > 0$. Since m is smooth, in particular continuous, there exists $\gamma > 0$ such that $B_{\gamma}(x_1) \subset B_{\delta}(x)$ and $m(y) \geq \gamma > 0$ for all $y \in B_{\gamma}(x_1)$. Hence for almost every $z \in \mathbb{R}^d$ we have
\[
m(z) \geq \int_{B_{\gamma}(x_1)} m(y) p_t(y, z) \, dy \geq \epsilon \int_{B_{\gamma}(x_1)} p_t(y, z) \, dy.
\]
To bound $p_t(y, z)$ from below, there are two cases. First suppose that $\mathcal{D}(x) = \mathbb{R}^d$. Then by definition of $\mathcal{D}(x)$, we have that \mathcal{C}^0 is d-dimensional, and hence $\mathcal{D}(y) = \mathbb{R}^d$ for all $y \in \mathbb{R}^d$. Theorem 2.5 (a) implies that for any $y \in B_{\gamma}(x_1), z \in \mathcal{D}(x)$ there exists $t > 0$ such that $p_t(y, z) > 0$. Since the transition density is a continuous function in all of its arguments, there exists an open neighborhood U of (t, x, z) in $(0, \infty) \times B_{\gamma}(x_1) \times \mathbb{R}^d$ such that $p_t(x', z') \geq \epsilon > 0$ for $(s, x', z') \in U$. In particular, for almost every y in an open ball centered at z
\[
m(y) \geq \epsilon c > 0.
\]
Since m is continuous it follows that $m(z) \geq \epsilon c > 0$. For the second case, suppose that $\mathcal{D}(x) \neq \mathbb{R}^d$. In particular, this implies that \mathcal{C}^0 has dimension $l < d$ and $x \notin \mathcal{D}(x)$. Take $z \in \mathcal{D}(x)$ and decrease $\delta > 0$ so that for every $y \in B_{\gamma}(x), z \in \mathcal{D}(y)$. Following now in the same way as in the previous case we finish the proof of the result. \qed
Acknowledgments

The authors would like to thank A Athreya, R Durrett, T Kolba, J Nolen, and J Wehr for helpful conversations on the topic of this paper. DPH would also like to thank M Hairer for suggesting the paper [6], from which his understanding of these ideas began and lead to the current collaboration. We would also like to acknowledge partial support of the NSF through grant DMS-08-54879 and the Duke University Dean’s office.

Appendix A

Here we prove lemma 4.5. We recall that this result is the slight modification of the criterion for positivity of the density given by Ben-Arous Léandre [2] which was applied without proof in section 4. Such an extension is needed in this paper since the drift vector field Y was not assumed to be globally Lipschitzian and its derivatives were not assumed to be globally bounded.

The proof of lemma 4.5 is almost identical to (and in some parts simpler than) the proof of proposition 4.2.2 of [12]. The basic difference needed to remove these assumptions on Y is that we need to compare the stopped process $x_{t \wedge \tau_n}$ with another process $x^{(n)}_t$ such that $x^{(n)}_t$ solves an SDE whose coefficients satisfy the required Lipschitzian and boundedness conditions and $x_{t \wedge \tau_n} = x^{(n)}_t$ for all $t \geq 0$.

This localization procedure is relatively standard but we include the details for completeness.

To do such a comparison, for any integer $n \geq 1$ let $Y(n)$ be a C^∞ vector field on \mathbb{R}^d satisfying

$$Y^{(n)}(x) = \begin{cases} Y(x) & \text{for } |x| \leq n \\ 0 & \text{for } |x| \geq n + 1 \end{cases}.$$

For $x \in \mathbb{R}^d$, $n \in \mathbb{N}$, $t > 0$ and $H = (H^j) \in C([0, t] : \mathbb{R}^r)$ let $\Phi^{x, n}_t(H)$ denote the solution of the equation

$$\Phi^{x, n}_t(H) = x + \int_0^t Y^{(n)}(\Phi^{x, n}_{s}(H)) \, ds + \sum_{j=1}^r X_j H_j^t.$$

Let $J^{x, n}_{s,t} = J^{x, n}_{s,t}(H)$ denote the $d \times d$ matrix-valued solution of the equation

$$J^{x, n}_{s,t} = \operatorname{Id}_{d \times d} + \int_s^t D Y^{(n)}(\Phi^{x, n}_{u}(H)) J^{x, n}_{u,u} \, du$$

and $M^{x, n}_t(H)$ denote the matrix

$$(M^{x, n}_t(H))_{lm} = \sum_{j=1}^r \int_0^t (J^{x, n}_{s,t}(H) X_j)^l (J^{x, n}_{s,t}(H) X_j)^m \, ds.$$

Proof of lemma 4.5. As in [12], our goal is to use Malliavin calculus to bound $p_t(x, z)$ from below by a quantity which is positive if the covariance matrix $M^{x, n}_t(H)$ is invertible. For brevity of notation during this proof, we will write the functional $\Phi^{x, n}_t(\cdot)$ simply as $\Phi(\cdot)$. Let $H = \int_0^t h_u \, du$, $h \in L^2([0, \infty) : \mathbb{R}^r)$ be as in the statement of the lemma and let $k_l(s)$ denote the lth row of the matrix $k_l(s) = (J^{x, n}_{s,t}(H) X_j)_l$. For $y \in \mathbb{R}^d$, let

$$(T_y B)(t) = B(t) + \sum_{l=1}^d Y_l \int_0^t k_l(s) \, ds \text{ and } g(y, B) = \Phi(T_y B) - \Phi(B)$$
where $B(t) = (B^1(t), \ldots, B^r(t))$ denotes the standard r-dimensional Wiener process on (Ω, \mathcal{F}, P). For $\beta > 1$, define cutoff functions $K_\beta, \alpha_\beta \in C(\mathbb{R} : [0, 1])$ by

$$
K_\beta(x) = \begin{cases}
0 & \text{if } |x| \geq \beta \\
1 & \text{if } |x| \leq \beta - 1
\end{cases} \quad \text{and} \quad \alpha_\beta(x) = \begin{cases}
0 & \text{if } |x| \leq \frac{1}{2} \\
1 & \text{if } |x| \geq \frac{1}{2} \beta .
\end{cases}
$$

and set

$$
\mathcal{H}_\beta = K_\beta(\|g(\cdot, B)\|_{C^2(B[0,1); \mathbb{R}^r)})\alpha_\beta(1/\det \partial_j g^i(0)).
$$

Under our assumptions, one can check that (see [13], example 1.2.1, theorem 2.2.2 and surrounding text) $g(\cdot, B(\omega)) \in C^\infty(\mathbb{R}^d)$ for a.s. $\omega \in \Omega$.

Now let $f : C(\mathbb{R}^d : [0, \infty))$ be supported in $B(0, n)$ and let $\rho : \mathbb{R}^d \rightarrow (0, \infty)$ be a measurable function satisfying $\int_{\mathbb{R}^d} \rho(y) \, dy = 1$. Observe that since f is supported in $B(0, n)$

$$
E_x f(x_t, \tau_n) \leq \int_{\mathbb{R}^d} E_x f(x_t, \tau_n) \rho(y) \, dy
$$

where

$$
\{\|\Phi(\omega)\|_i \leq n\} = \left\{\omega \in \Omega : \sup_{s \in [0, t]} |\Phi^{(n)}_x(\omega)| \leq n \right\}.
$$

Girsanov's theorem then gives

$$
\int_{\mathbb{R}^d} E_x f(\Phi(\omega)) \rho(y) \, dy = \int_{\mathbb{R}^d} E_x f(\Phi(T_n B)) \rho(y) \, dy
$$

where $G(y) > 0$ is the Radon–Nikodym derivative in the Girsanov change of measure formula. Using this equality we see that for any $c_\beta > 0$

$$
E_x f(x_t, \tau_n) \geq \int_{\mathbb{R}^d} E_x f(\Phi(T_n B)) \rho(y) \, dy
$$

$$
\geq E \mathcal{H}_\beta \int_{\|\Phi(T_n B)\|_i \leq n} f(g(y) + \Phi(B)) \rho(y) \, dy
$$

$$
\geq E \mathcal{H}_\beta \sup_{\|\Phi(T_n B)\|_i \leq n} \int_{\|\Phi(T_n B)\|_i \leq n} f(g(y) + \Phi(B)) G(y) \rho(y) \, dy.
$$

Let $A_\beta = \{\sup_{\|\Phi(T_n B)\|_i \leq n} \|\Phi(T_n B)\|_i \leq n\}$. By lemma 4.2.1 of [12], for any $\beta > 1$ there exist constants $c_\beta \in (0, \beta^{-1})$ and $\delta_\beta > 0$ such that any mapping $g : B(0, 1) \rightarrow \mathbb{R}^d$ with $g(0) = 0$, $\|g\|_{C^2(B[0,1); \mathbb{R}^d)} \leq \beta$ and $|\det \partial_j g^i(0)| \geq \frac{1}{\beta}$ is diffeomorphic from $B(0, c_\beta) \subset \mathbb{R}^d$ into a neighborhood of $B(0, \delta_\beta) \subset \mathbb{R}^d$. In particular, we find that after changing variables twice

$$
E_x f(x_t, \tau_n) \geq E \mathcal{H}_\beta \sup_{\|\Phi(T_n B)\|_i \leq n} \int_{\|\Phi(T_n B)\|_i \leq n} f(g(y) + \Phi(B)) G(y) \rho(y) \, dy
$$

$$
\geq E \mathcal{H}_\beta \sup_{\|\Phi(T_n B)\|_i \leq n} \int_{\|\Phi(T_n B)\|_i \leq n} f(z + \Phi(B)) G(g^{-1}(z)) \rho(g^{-1}(z)) \, dz
$$

$$
\geq E \mathcal{H}_\beta \sup_{\|\Phi(T_n B)\|_i \leq n} \int_{\|\Phi(T_n B)\|_i \leq n} f(z) G(g^{-1}(z - \Phi(B))) \rho(g^{-1}(z - \Phi(B))) \, dz.
$$
Therefore we deduce the following inequality
\[
p_t^n(x, z) \geq E[H_{\beta} I_{A_{\beta}} G(g^{-1}(z - \Phi(B)))
\times \rho(g^{-1}(z - \Phi(B))) \det \partial_j g^j(g^{-1}(z - \Phi(B)))].
\]
By construction, if $H_{\beta} \neq 0$ and $|z - \Phi(B)| \leq \delta_{\beta}$ then
\[
G(g^{-1}(z - \Phi(B)))\rho(g^{-1}(z - \Phi(B))) \det \partial_j g^j(g^{-1}(z - \Phi(B))) > 0.
\]
Thus it remains to prove that $\beta > 0$ can be chosen large enough so that the event
\[
A_{\beta} \cap \{|z - \Phi(B)| \leq \delta_{\beta}, \ |\det \partial_j g^j(0)| \geq 2\beta^{-1}, \ \|g(\cdot, B)\|_{C^1(B(0, 1))} \leq \beta - 1\}
\]
has positive probability. Note that this can be shown by following exactly the same line of reasoning starting in the last paragraph of p 1777 of [10].

\[
\square
\]

References

[1] Athreya A, Kolba T and Mattingly J C 2012 Propagating Lyapunov functions to prove noise-induced stabilization Electron. J. Probab. 17 38
[2] Arous G B and Léandre R 1991 Décroissance exponentielle du noyau de la chaleur sur la diagonale. II Probab. Theory Relat. Fields 90 377–402
[3] Birrell J, Herzog D P and Wehr J 2012 The transition from ergodic to explosive behavior in a family of stochastic differential equations Stoch. Process. Appl. 122 1519–39
[4] Hormander L 1967 Hypoelliptic second order differential equations Acta Math. 119 147–71
[5] Jurdjevic V and Kupka I 1981 Control systems on semisimple Lie groups and their homogeneous spaces Ann. Inst. Fourier 31 151–79
[6] Jurdjevic V and Kupka I 1985 Polynomial control systems Math. Ann. 272 361–8
[7] Jurdjevic V 1997 Geometric Control Theory (Cambridge Studies in Advanced Mathematics vol 52) (Cambridge; Cambridge University)
[8] Kusuoka S and Stroock D 1985 Applications of the Malliavin calculus. II J. Fac. Sci. Univ. Tokyo 32 1–76
[9] Mattingly J C, Stuart A M and Higham D J 2002 Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise Stoch. Process. Appl. 101 185–232
[10] Mattingly J C and Pardoux E 2006 Malliavin calculus for the stochastic 2D Navier-Stokes equation Commun. Pure Appl. Math. 59 1742–90
[11] Norris J 1986 Simplified Malliavin calculus Séminaire de Probabilités, XX, 1984/85 (Lecture Notes in Mathematics vol 1204) (Berlin: Springer) pp 101–30
[12] Nualart D 1998 Analysis on Wiener space and anticipating stochastic calculus Lectures on Probability Theory and Statistics (Saint-Flour, 1995) (Lecture Notes in Mathematics vol 1690) (Berlin: Springer) pp 123–227
[13] Nualart D 2006 The Malliavin Calculus and Related Topics (Probability and its Applications) 2nd edn (Berlin: Springer)
[14] Romito M 2004 Ergodicity of the finite dimensional approximation of the 3D Navier-Stokes equations forced by a degenerate noise J. Stat. Phys. 114 155–77
[15] Stroock D and Varadhan S R S 1972 On degenerate elliptic-parabolic operators of second order and their associated diffusions Commun. Pure Appl. Math. 25 651–713
[16] Stroock D W 2012 Partial Differential Equations for Probabilists (Cambridge Studies in Advanced Mathematics vol 112) (Cambridge: Cambridge University)
[17] Stroock D W and Varadhan S R S 1972 On the support of diffusion processes with applications to the strong maximum principle Proc. of the Sixth Berkeley Symp. on Mathematical Statistics and Probability: Probability Theory vol 3 (Berkeley, CA: University of California) pp 333–59