Metabelian Wreath Products are LERF

Roger C. Alperin

1. Introduction

The subgroup S of Γ is separable means that S is closed in the profinite topology of Γ. A finitely generated (f.g.) group is LERF if all its f.g. subgroups are separable.

Gruenberg’s theorem [G] asserts that the wreath product $A \wr Q$ is residually finite (r.f.) iff A and Q are r.f. and either A is abelian or Q is finite. We seek general conditions which will characterize the wreath products which are LERF. Since LERF entails r.f. Gruenberg’s theorem gives a first restriction. Since subgroups of LERF groups are LERF we shall assume A and Q are LERF.

In the case where Q is finite and A is a finitely generated LERF group then up to finite index $\Gamma = A \wr Q$ is direct product of finitely many LERF groups.

QUESTION 1. For which f.g. groups X is X^n LERF for all $n \geq 1$.

Polycyclic groups are LERF by a theorem of Malcev and thus X polycyclic gives a positive answer to the question. By a theorem of M. Hall the free group F_n of rank n is LERF while Mihailova has shown that $F_2 \times F_2$ is not L-S; so any group X which contains F_2 cannot give a positive answer to this question.

Our main result concerns the other case when A is f.g. abelian; it generalizes the recent result of [de C]: $A \wr Z$ is LERF for any f.g. abelian group. We show that when A, Q are f.g. abelian then $\Gamma = A \wr Q$ is LERF. Using the Magnus embedding it follows that free metabelian groups are LERF.

2. Lemma

Here is small modification of an important lemma from [de C]. We say a subgroup S of Γ is ‘strongly separable’ if all the finite index subgroups of S are separable in Γ.

LEMMA 1. Let Γ be f.g and r.f. Suppose $f : \Gamma \rightarrow Q$ is a surjective homomorphism with abelian kernel K. If S is a f.g. subgroup such that $f(S)$ is of finite index in Q then S is strongly separable in Γ.

PROOF. If S' is a subgroup of finite index in S then its image Q' is finite index in Q. We can show S' is separable in Γ using $f': f'^{-1}(Q') \to Q'$ with kernel K. If S' is closed in a subgroup of finite index in Γ then it is closed in Γ so S is strongly closed. Also, if $f(S) = Q'$ of finite index in Q then $f^{-1}(Q')$ is a subgroup of finite index in Γ; since separable in a subgroup, say $f^{-1}(Q')$, of finite index in Γ, it suffices to prove the case when $f(S) = Q$. We may suppose then that $S' = S$ and $f(S) = Q$. It now follows that $\Gamma = KS$; consequently $S \cap K$ is normal in Γ. If we show $S/S \cap K$ is separable in $\Gamma/S \cap K$ then since S is f.g we can also separate S in Γ. Thus we need only consider the group $\bar{\Gamma} = \Gamma/S \cap K$ which is a split extension; we assume then $S \cap K = \{1\}$ and consequently $\Gamma = K \times S$.

It now suffices to show that the profinite closure \bar{S} of S in $\bar{\Gamma}$ meets K trivially, $\bar{S} \cap K = \{1\}$. For then, if $x \in \bar{S}$ then $f(x)x^{-1} \in \bar{S} \cap K = \{1\}$; hence $x \in S$ so S is closed. Consider then $x \in \bar{S} \cap K$; if $x \neq 1$ then since Γ is r.f. we can choose a normal subgroup N of finite index in Γ so that $x \notin N$; consider $L = N \cap K$ and $T = N \cap S$; then $x \notin L$. Since T normalizes L then $M = \bigcap_{t \in S \text{ mod } T} L^t$ is finite index in L, and $x \notin M$; since $M \rtimes T$ is finite index in Γ and does not contain x, then $x \notin \bar{S}$; thus we must have $x = 1$. ■

3. Main Results

We now assume A, Q are f.g. abelian. Any subgroup R of Q is contained as a subgroup of finite index in R_1 and there is a (retract) homomorphism $\pi : Q \to R_1$ so that $\pi(r) = r$, $r \in R$. We can in fact achieve the case that π is split and that $Q = R_1 \rtimes R_2$ with R_1, R_2 infinite, when R is non-trivial, not of finite index and Q has rank greater than 1. Then

$$\Gamma = A \wr Q = A^{R_1 \rtimes R_2} \rtimes (R_1 \times R_2)$$

$$= (A^{R_2 \rtimes R_1} \rtimes R_1) \times (A^{R_1 \rtimes R_2} \rtimes R_2)$$

$$= (A^{R_2 \wr R_1}) \rtimes (A^{R_1 \wr R_2})$$

$$= \Gamma^{(2)}_{R_1} \rtimes \Gamma^{(1)}_{R_2}.$$

PROPOSITION 2. Suppose that A, Q are f.g. abelian then $\Gamma^{(2)}_{R_1}, \Gamma^{(1)}_{R_2}$ are f.g and r.f.

PROOF. Since Γ is f.g. these quotient groups are also f.g. By Grunen-berg’s theorem these are also r.f. since any direct sum of cyclics is r.f. ■

THEOREM 3. Suppose A and Q are f.g. abelian groups then $A \wr Q$ is LERF.

PROOF. Let $K = A^Q$, $\Gamma = A \wr Q$; we have the natural homomorphism $f : \Gamma \to Q$. Let $x \notin S$, a f.g. subgroup of Γ; $R = f(S)$. We may assume that R is not of finite index in Q for then the Theorem follows from the Lemma. Also the case of Q having rank one is proven in [de C]. As in the remarks above we consider after passing to a subgroup of finite index
in S if necessary, a retract R_1 with $R_1 \times R_2$ a subgroup of finite index in Q, each R_i infinite. Since a subgroup S is separable if a subgroup of finite index is separable in a subgroup of finite index in Γ, we may now assume that $R_1 \times R_2 = Q$.

If x has a non-trivial image in R_2 we project Γ to $\Gamma^{(1)}_{R_2}$. In this group the image of S is trivial and the image of x is not so we can map to a finite quotient to separate because $\Gamma^{(1)}_{R_2}$ is r.f. by the Proposition.

Suppose then x has trivial image in R_2, then we can replace Γ by $\Gamma^{(2)}_{R_1}$ and consider there $x \notin S$; we can separate them since S is closed in $\Gamma^{(2)}_{R_1}$ by the Lemma since $f(S)$ is of finite index in R_1 and since $\Gamma^{(2)}_{R_1}$ is f.g and r.f. by the Proposition.

Corollary 4. Free metabelian groups are LERF.

Proof. Via the Magnus embedding, [M], the free metabelian group can be embedded in a group $A \wr Q$ where A and Q are f.g. abelian groups. The corollary follows now since subgroups of LERF groups are LERF.

References

[de C] Y. de Cornelier, *Finitely Presented Wreath Products and Double Coset Decompositions*, Geometriae Dedicata, 2006.

[G] K. W. Gruenberg, *Residual Properties of Infinite Soluble Groups*, Proc. London Math. Soc. (3) 7 1957, 29-62.

[L-S] R. Lyndon and P. E. Schupp, *Combinatorial Group Theory*, Springer-Verlag, 1977.

[M] W. Magnus, *On a Theorem of M. Hall*, Ann. Math. 40, 1939, 764-768.

Department of Mathematics, San Jose State University, San Jose, CA 95192

E-mail address: alperin@math.sjsu.edu