In Vitro Antioxidant Activities of the Aqueous and Methanolic Stem Bark Extracts of *Piliostigma thonningii* (Schum.)

Gervason Moriasi, MSc¹,², Anthony Ireri, PhD³, and Mathew Piero Ngugi, PhD¹

Abstract
Oxidative stress has been recognized as a key driver of many ailments affecting humankind. Free radicals attack biologically important biomolecules, impairing their functioning, thereby initiating and exacerbating diseases. As a comeback, antioxidant therapies have been proposed as novel approaches to ameliorating oxidative stress–associated diseases including chronic ones. Antioxidants are thought to employ multifaceted and multitargeted mechanisms that either restore oxidative homeostasis or prevent free radical buildup in the body, which overwhelm the endogenous defenses. Plants have been used for many ages across time to manage human diseases, and have a host of antioxidant phytocompounds. *Piliostigma thonningii* is traditionally used for the management of inflammation, malaria fever, rheumatism, and insanity, among other diseases caused by a disturbed redox state in the body. In this study, *in vitro* antioxidant activities of the methanolic and aqueous stem bark extracts of *P. thonningii* were evaluated using the *in vitro* antilipid peroxidation, the 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging, and the ferric reducing antioxidant power assay methods. The obtained results revealed remarkable antioxidant activities of the studied plant extracts as evidenced by the low IC₅₀ and EC₅₀ values. These antioxidant activities could be due to the presence of antioxidant phytochemicals like flavonoids, carotenoids, tannins, and phenols, among others. Therefore, the therapeutic potency of this plant could be due to its antioxidant properties. This study recommends *in vivo* antioxidant efficacy testing of the studied plant extracts, as well as isolation and characterization of bioactive antioxidant compounds that are potent against oxidative stress.

Keywords
oxidative stress, antioxidants, *Piliostigma thonningii*

Received February 12, 2020. Received revised May 20, 2020. Accepted for publication May 27, 2020.

Reactive oxygen species are generated in the body during normal cellular metabolism, and at normal levels, they play critical functions in normal cell physiology.¹ However, when they are in excess, they damage cellular components, impairing their proper functioning, leading to a continuum of human diseases with varied degrees of severity.²⁻⁹ Previous studies have demonstrated a clear link of vital metabolic and cellular anomalies to reactive oxygen species when the normally efficient protective mechanisms get overwhelmed.²⁻⁶,¹⁰

Unsaturated fatty acids possess unstable electrons near their double bonds, rendering them most susceptible to oxidative damage in biological systems.¹¹ Thus, they are sensitive to lipid peroxidation, which increases exponentially with an increase in the degree of unsaturation.¹² Similarly, free radicals damage deoxyribonucleic acid (DNA), inducing mutations in cells, which in turn destabilize the prooxidant-antioxidant homeostasis in living tissues.⁷,¹³ Oxidative stress–induced insult to DNA constituents lead to single-strand and double-strand DNA breaks, deoxyribose modification, purine/pyrimidine base modification, and DNA cross-linking, which are evidenced in complex disorders including cancer.⁷

¹ Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, Nairobi, Kenya
² Department of Medical Biochemistry, Mount Kenya University, Thika, Kenya
³ Department of Educational Psychology, Kenyatta University, Nairobi, Kenya

Corresponding Author:
Gervason Moriasi, MSc, Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, PO Box 43844-00100, Nairobi, Kenya.
Email: gmoriasi@outlook.com
Furthermore, cellular proteins can be damaged by oxidative stress.
Following their damage, proteases degrade the damaged proteins to recycle associated atoms rather than repairing them. This takes place in 2 different ways: the peptide bond is damaged first, then the side chains. For instance, the sulphydryl/thiol moieties (–SH) can be oxidized producing disulfide bridges (–S–S–). However, inappropriate oxidation of –SH groups causes misfolding of associated proteins, thereby resulting in dysfunctional or malfunctioning proteins. Furthermore, ominous consequences are imminent if growth regulating genes are turned off, as this can lead to uncontrolled growth, forming clusters of cells as evidenced in cancer.

The human body employs a vastly complex antioxidant defense mechanism to curb oxidative stress. Primarily, the body’s antioxidant machinery comprise enzymes and vitamins, which quench free radicals, thereby restoring the redox state. Under metabolically aerobic settings, there are 3 major levels of prevention, interception, and repair, which maintain and stabilize cellular metabolites as well as their functional integrity. However, during disease states, these antioxidant defenses are either overwhelmed or ineffective, thus exacerbating the detrimental effects of the disease.

Plants harbor a host of biologically active antioxidant compounds that are acquired by humans through vegetable and fruit diets endowed with carotenoids, ascorbic acid, fat-soluble vitamins, flavonoids, and polyphenols among other antioxidant secondary metabolites. Research has shown that vitamins C and E coordinate to protect the thiol moieties of proteins against oxidative damage, thus promoting proper protein folding. Additionally, fat-soluble vitamins including vitamins E and A inhibit lipid oxidation and peroxidation in the body. Moreover, plant-derived phenolics and flavonoids, among other antioxidant amalgams, are strong scavengers of free radicals in the body, thereby averting oxidative stress damage to cellular components. Epidemiological studies have shown that consuming antioxidant-rich diets like vegetables, fruits, and tea play significant roles in preventing chronic diseases in humans.

Piliostigma thonningii is a legume belonging to Caesalpinio-ceae subfamily under Fabaceae family. This plant is well distributed in many African countries ranging from Senegal to Zambia. Twigs and leaves of this plant are traditionally used to manage malaria fever, snake bites, and dysentery, among other conditions. Stem barks of *P. thonningii* are used for management of intestinal, respiratory, and inflammatory conditions. Besides, stem bark decoctions and smoke are traditionally used to manage insanity and rheumatism among other conditions. Elsewhere, studies have shown that antioxidant phytochemicals including phenols, tannins, and flavonoids, among others, have both preventive and curative pharmacologic activities against a wide range of diseases, including malaria, diabetes, cancer, inflammation, and dementia.

In view of the ethnomedical information and uses of *P. thonningii*, the aim of this study was to investigate *in vitro* antioxidant activities of the aqueous and methanolic stem bark extracts of this plant, as a preliminary step towards validation of its use and potential development of arsenal molecules against the reported and associated maladies.

Materials and Methods

Collection and Preparation of Plant Material

Fresh stem barks of *Piliostigma thonningii* were collected from Cianyi village situated in Gitiburi location, in Embu County, Kenya, its natural habitat. The plant was primarily identified by its vernacular name (*Makura*) and its ethnomedical usage with the help of a reputable local herbalist. Further authentication and verification were done by a taxonomist at the Department of Plant Sciences, Kenyatta University, where voucher specimen number GM001/2017 was assigned. Thereafter, duplicate specimen of this plant was kept and archived for future reference at the university herbarium.

The collected stem barks of the studied plant were chopped into small pieces and spread evenly to dry for 2 weeks at room temperature in the laboratory with regular grabbing. The dried material was then ground into a powder using an electric mill, which was packaged in a well-labeled khaki envelope and stored in a clean dry shelf prior to extraction.

Extraction Procedures

Methanol Extraction. About 200 g of *P. thonningii* stem bark powder was deliquesced in analytical grade methanol (0.75 L) in a 1 L capacity conical flask. Regular shaking on a daily basis (morning and evening) was done for 2 consecutive days to increase surface area for extraction. Afterwards, the menstruum was cautiously decanted and filtered through Whatman filter paper No. 1 and reduced in vacuo using a rotary evaporator at 50 °C. The concentrate was then ground into a powder using an electric mill, which was packaged in a well-labeled khaki envelope and stored in a clean dry shelf prior to antioxidant assays.

Aqueous Extraction. To obtain the aqueous extract, approximately 50 g of powdered *P. thonningii* stem bark was soaked in 500 mL of distilled water in a 1 L beaker and heated at 70 °C for 5 minutes before being cooled to room temperature. The mixture was filtered through Whatman filter paper No. 1 and transferred into clean freeze-drying flasks, which were then filled into a freeze dryer for lyophilization for 2 days. The dry and lyophilized extract was transferred into a preweighed flask, which was stored in a clean, dry, and labeled universal glass bottle that was kept in a hot-air oven set at 35 °C for 5 days to facilitate complete drying after which percentage yield was calculated using the formula described by Truong et al.

![Formula](https://example.com/formula.png)

The extract was then sealed and stored in a refrigerator set at 4°C pending antioxidant assays.

Determination of the Effects of the Aqueous and Methanolic Stem Bark Extracts of *P. thonningii* on In Vitro Lipid Peroxidation

Determination of the effects of the studied plant extracts on *in vitro* lipid peroxidation was done following a standard method. Briefly, the
reaction mixtures contained 2.0 mL of the trichloroacetic acid-thiobarbituric acid-hydrochloric acid (TCA-TBA-HCl) reagent (15% [w/v] TCA, 0.375% [w/v] TBA, and 0.25 N HCl) and 1 mL of the studied plant extracts at concentrations of 50 μg/mL, 100 μg/mL, 150 μg/mL, and 200 μg/mL, respectively, or standard (L-ascorbic acid). The resulting mixtures were incubated in a water bath set at 90°C for 10 minutes, cooled, and centrifuged at 10,000 rpm for 15 minutes. The supernatants were aspirated and their respective absorbances measured at λ532 nm using a UV-Vis spectrophotometer (Shimadzu UV-Vis 1600). Percentage inhibition of in vitro lipid peroxidation was determined using the formula described by Prasad and Ramakrishnan and Bajpai et al:

\[
\% \text{ inhibition} = \frac{\text{Absorbance of control} - \text{Absorbance of test sample}}{\text{Absorbance of control}} \times 100
\]

Determination of In Vitro DPPH Radical Scavenging Activities of the Aqueous and Methanolic Stem Bark Extracts of P. thonningii

For in vitro DPPH radical scavenging activity assay, 12 mg of a stable free radical, 1,1-diphenyl-2-picrylhydrazyl (DPPH), was accurately weighed using a Shimadzu analytical balance and dissolved in 100 mL of analytical grade methanol to give 0.3 mM solutions. One milliliter of the methanolic solution of 0.3 mM DPPH was added to 2.5 mL of each of the extract concentrations (100, 10, 1, 0.1 and 0.01 μg/mL). The mixtures were shaken and incubated for 15 minutes in the dark, at room temperature. After incubation, absorbance (A) was measured at λ517 nm with a Shimadzu UV-Vis (1600) microprocessor double beam spectrophotometer. Percentage of the radical scavenging activity (% RSA) was calculated using the formula described by Brand Williams:

\[
\% \text{ RSA} = \frac{\text{Absorbance of control} - \text{Absorbance of test sample}}{\text{Absorbance of control}} \times 100
\]

DPPH Solution (2.5 mL) plus methanol (1 mL) was used as a negative control while methanol (2.5 mL) plus sample solution (1 mL) was used as a blank. In addition, L-ascorbic acid at concentrations equivalent to that of the test samples (100, 10, 1, 0.1, and 0.01 μg/mL) was used as positive control.

Determination of the Potassium Ferricyanide Antioxidant Power of the Aqueous and Methanolic Stem Bark Extracts of P. thonningii

The ferric reducing antioxidant power of the aqueous and methanolic stem bark extracts of P. thonningii was evaluated according the methods described by Brand Williams and Benzie and Strain. Reaction mixtures included 1 mL of different concentrations of assay extracts or L-ascorbic acid standard (0.01, 0.1, 1, 10, 100, and 1000 μg/mL), 2.5 mL of phosphate buffer (200 mM, pH 6.6), and 2.5 mL of potassium ferricyanide (30 mM).

The mixtures were incubated at 50°C for 20 minutes after which 2.5 mL of trichloroacetic acid (600 mM) was added, mixed, and the mixture centrifuged at 3000 rpm for 15 minutes. Thereafter, 2.5 mL of the supernatants was aspirated and mixed with 2.5 mL of distilled water and 0.5 mL of FeCl3 (6 mM). The absorbance values of samples and standard were measured against blank at λ700 nm using a spectrophotometer (Shimadzu UV-Vis 1600).

Table 1. Percentage Yields of Study Plants Extracts.

Plant Extract	Yield (%)
Aqueous extract of Piliostigma thonningii	18.27
Methanolic extract	38.92

Data Management and Statistical Analysis

The yields of the crude extracts following extraction were expressed as percentages of total materials that were deliquesced. Data from antioxidant assays were tabulated in Excel spreadsheet (Microsoft Office 365) and then exported to Minitab v19.2 (State College, Pennsylvania). The data were subjected to descriptive statistics, expressed as x ± SEM and analyzed using One-Way ANOVA for statistical comparison of differences among means followed by Tukey’s test for pairwise comparisons and separation of means at α = .05. Values of P < .05 were considered statistically significant. The obtained data were presented in form of tables.

Results

Percentage Yields of the Studied Plant Extracts

Table 1 presents the percentage yields obtained for the studied plant extracts. It was revealed that methanol had a higher extractive value than water as demonstrated by the high yield (Table 1).

Effects of the Aqueous and Methanolic Stem Bark Extracts of P. thonningii on In Vitro Lipid Peroxidation

The effects of the aqueous and methanolic stem bark extracts of P. thonningii on lipid peroxidation were investigated in vitro in this study. A comparison among the percentage inhibitions caused by the studied plant extracts was done in this study. The results revealed that the aqueous stem bark extract of P. thonningii significantly increased the percentage inhibition of lipid peroxidation from 94.04 ± 0.06% at a concentration of 50 μg/mL to 98.05 ± 0.03% at a concentration of 200 μg/mL (P < .05; Table 2). There was no significant difference in percentage inhibition of in vitro lipid peroxidation caused by the aqueous stem bark extract of P. thonningii between concentrations of 50 μg/mL and 100 μg/mL (P > .05), and between concentrations of 100 μg/mL and 150 μg/mL (P > .05; Table 2).

Besides, the percentage inhibitions of in vitro lipid peroxidation caused by the methanolic stem bark extracts of the studied plant at concentrations of 100 μg/mL and 150 μg/mL were not significantly different (P > .05; Table 2). However, at a concentration of 200 μg/mL of this extract, the percentage inhibition of in vitro lipid peroxidation was significantly higher than the percentage inhibitions obtained in all the other concentrations of this extract (P < .05; Table 2).

Furthermore, the results showed that the aqueous stem bark extract of P. thonningii produced significantly higher percentage inhibitions of lipid peroxidation (P < .05) at all the tested extract concentrations except at 200 μg/mL where the percentage inhibition of lipid peroxidation was significantly similar to
that recorded for the methanolic extract \((P > .05; \text{Table 2})\). In addition, the percentage inhibition of \textit{in vitro} lipid peroxidation produced by the methanolic stem bark extract of the studied plant, at a concentration of 200 \(\mu\)g/mL, was not significantly different from that produced by the standard (L-ascorbic acid) at the same concentration \((P > .05; \text{Table 2})\).

The concentrations of the studied plant extracts and the standard required to cause 50\% inhibition of \textit{in vitro} lipid peroxidation \((\text{IC}_{50})\) were also determined in this study. The aqueous stem bark extract of \textit{P. thonningii} recorded an \text{IC}_{50} value of 27.300 \(\mu\)g/mL while that of the methanolic stem bark extract was 57.125 \(\mu\)g/mL \((\text{Table 2})\). Remarkably, the \text{IC}_{50} value recorded for the aqueous stem bark extract of \textit{P. thonningii} was lower than the \text{IC}_{50} values of all the methanolic stem bark extract of this plant and that of the standard (L-ascorbic acid; \text{Table 2}).

In Vitro DPPH Radical Scavenging Activities of the Aqueous and Methanolic Stem Bark Extracts of \textit{P. thonningii}

The \textit{in vitro} DPPH radical scavenging activities of the aqueous and methanolic stem bark extracts of \textit{P. thonningii} were evaluated in this study. The results demonstrated a dose-dependent increase in percentage DPPH radical scavenging activities of the studied plant extracts \((\text{Table 3})\).

The percentage radical scavenging activities of each of the studied plant extracts were compared among the tested concentrations in this study. The results showed no significant differences among the percentage radical scavenging activities at concentrations of 0.01 \(\mu\)g/mL, 0.1 \(\mu\)g/mL, 1 \(\mu\)g/mL, and 10 \(\mu\)g/mL of the aqueous stem bark extract of \textit{P. thonningii} \((P > .05; \text{Table 3})\). Similarly, the percentage radical scavenging activities of the aqueous stem bark extract of \textit{P. thonningii}, at concentrations of 100 \(\mu\)g/mL and 1000 \(\mu\)g/mL, were not significantly different \((P > .05; \text{Table 3})\). Generally, the obtained results depicted a positive dose-dependent increase in percentage radical scavenging activities of this extract \((\text{Table 3})\).

On the other hand, the methanolic stem bark extract of \textit{P. thonningii} demonstrated a positive dose-dependent increase in percentage radical scavenging activity \((\text{Table 3})\). The results showed that the percentage DPPH radical scavenging activities produced by the methanolic stem bark extract of this plant at concentrations of 0.01 \(\mu\)g/mL and 0.1 \(\mu\)g/mL were not significantly different \((P > .05; \text{Table 3})\). Similarly, no significant differences among the percentage radical scavenging activities caused by the methanolic extract of \textit{P. thonningii} at concentrations of 10 \(\mu\)g/mL, 100 \(\mu\)g/mL, and 1000 \(\mu\)g/mL were observed \((P > .05; \text{Table 3})\).

Besides, the percentage radical scavenging activities caused by the standard (L-ascorbic acid), at concentrations of 0.01 \(\mu\)g/mL and 0.1 \(\mu\)g/mL, were not significantly different \((P > .05; \text{Table 3})\).

Table 2. Effects of the Aqueous and Methanolic Stem Bark Extracts of \textit{Piliostigma thonningii} on \textit{In Vitro} Lipid Peroxidation.\(^\ast\)

Concentration (\(\mu\)g/mL)	Aqueous extract	Methanolic extract	L-Ascorbic acid
0	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
50	94.04 ± 0.06\(^{Ca}\)	47.59 ± 0.52\(^{Ca}\)	72.51 ± 0.77\(^{ab}\)
100	94.41 ± 0.40\(^{BCa}\)	65.81 ± 3.80\(^{BC}\)	75.66 ± 0.74\(^{ab}\)
150	95.03 ± 0.05\(^{Ba}\)	66.23 ± 1.65\(^{BC}\)	78.14 ± 0.22\(^{ab}\)
200	98.05 ± 0.03\(^{A}\)	87.77 ± 3.50\(^{ab}\)	87.08 ± 0.13\(^{ab}\)
\text{IC}_{50} (\(\mu\)g/mL)	27.300	57.125	34.500

\(^{\ast}\)Values are expressed as \(x ± \text{SEM}\). Values with the same lowercase superscript letter across the rows and uppercase superscript letter along the columns are not significantly different \((P > .05; \text{one-way ANOVA followed by Tukey’s test})\).

Table 3. \textit{In Vitro} DPPH Radical Scavenging Activities of the Aqueous and Methanolic Stem Bark Extracts of \textit{Piliostigma thonningii}.\(^\ast\)

Concentration (\(\mu\)g/mL)	Aqueous extract	Methanolic extract	L-Ascorbic acid
0	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
0.01	66.28 ± 0.71\(^{A}\)	49.43 ± 1.55\(^{BC}\)	67.11 ± 1.62\(^{BC}\)
0.1	67.74 ± 1.72\(^{A}\)	52.06 ± 0.85\(^{BC}\)	71.49 ± 0.88\(^{BC}\)
1	69.61 ± 1.35\(^{A}\)	56.66 ± 0.53\(^{BC}\)	79.55 ± 2.36\(^{A}\)
10	72.24 ± 0.82\(^{A}\)	95.27 ± 0.10\(^{A}\)	99.01 ± 0.01\(^{A}\)
100	83.28 ± 3.13\(^{A}\)	97.63 ± 0.04\(^{A}\)	99.08 ± 0.02\(^{A}\)
1000	90.95 ± 0.50\(^{A}\)	97.79 ± 0.12\(^{A}\)	99.12 ± 0.01\(^{A}\)
\text{IC}_{50} (\(\mu\)g/mL)	0.0095	0.0325	0.0098

\(^{\ast}\)Values are expressed as \(x ± \text{SEM}\). Values with the same lowercase superscript letter across the rows and uppercase superscript letter along the columns are not significantly different \((P > .05; \text{one-way ANOVA followed by Tukey’s test})\).
Table 3). Similarly, no significant differences were observed among the percentage radical activities produced by the standard at concentrations of 10 μg/mL, 100 μg/mL, and 1000 μg/mL (P > .05; Table 3). However, the percentage radical scavenging activities recorded at these concentrations were significantly higher than those recorded at concentrations of 0.01 μg/mL, 0.1 μg/mL, and 10 μg/mL (P < .05; Table 3).

The aqueous stem bark extract of *P. thonningii*, at concentrations of 0.01 μg/mL and 0.1 μg/mL, showed significantly higher percentage in vitro DPPH radical scavenging activities compared with the percentage in vitro DPPH radical scavenging activities of the methanolic extract at the same concentrations (P < .05; Table 3). However, at these concentrations, the percentage DPPH radical scavenging activities produced by the aqueous stem bark extract of *P. thonningii* were not significantly different from the percentage DPPH radical scavenging activities produced by the standard (L-ascorbic acid; P > .05; Table 3).

At a concentration of 1 μg/mL, the percentage DPPH radical scavenging activity of the aqueous stem bark extract of *P. thonningii* was significantly higher than that of the methanolic extract of this plant (P < .05; Table 3). However, the standard recorded a significantly higher percentage DPPH radical scavenging activity at this concentration compared with the percentage DPPH radical scavenging activities of the studied plant extracts (P < .05; Table 3).

Conversely, the percentage DPPH radical scavenging activities produced by the methanolic stem bark extract of *P. thonningii*, at concentrations of 10 μg/mL and 1000 μg/mL, were significantly higher than those produced by the aqueous stem bark extract of this plant at the same concentrations (P < .05; Table 3). However, no significant differences in percentage DPPH radical scavenging activities were observed between the standard and the methanolic stem bark extract of *P. thonningii* at a concentration of 10 μg/mL (P > .05; Table 3).

Furthermore, the extraction concentrations required to scavenge 50% of the DPPH radicals (IC₅₀) were determined. Interestingly, the aqueous stem bark extract of *P. thonningii* had a significantly low IC₅₀ value of 0.0095 μg/mL compared with the IC₅₀ values of the methanolic extract and the standard (L-ascorbic acid). On the other hand, the methanolic stem bark extract of *P. thonningii* had a significantly high IC₅₀ value of 0.0325 μg/mL (Table 3).

Ferric Reducing Antioxidant Power (FRAP) Activities of the Aqueous and Methanolic Stem Bark Extracts of *P. thonningii*

The ferric reducing antioxidant power activities of the aqueous and methanolic stem bark extracts of *P. thonningii* were also determined in this study. Generally, the results demonstrated a concentration-dependent increase in absorbance of the reaction mixtures measured under UV-Vis spectrum at λ₉₀₀ nm (Table 4).

The differences between absorbance values recorded at between concentrations of 50 μg/mL and 100 μg/mL, and between 150 μg/mL and 200 μg/mL of the methanolic stem bark extract of *P. thonningii* were not significant (P > .05; Table 4). Similarly, the absorbance values recorded at concentrations of 50 μg/mL, 100 μg/mL, and 150 μg/mL of the aqueous stem bark extract of *P. thonningii* were not significant (P > .05; Table 4). However, the absorbance recorded at 200 μg/mL of the aqueous stem bark extract of *P. thonningii* was significantly higher than the absorbances recorded at the other concentrations of this extract (P < .05; Table 4). Additionally, the absorbances recorded at among concentrations of 50 μg/mL, 100 μg/mL, and 150 μg/mL of the standard (L-ascorbic acid) were not significantly different (P > .05; Table 4).

In this study, we compared the absorbances recorded at each concentration of the studied *P. thonningii* and the standard. The results revealed that the aqueous stem bark extracts, at all the tested concentrations, recorded significantly higher absorbance values compared with the absorbance values of the methanolic extract and the standard (P < .05; Table 4). However, no significant differences between the absorbances recorded for the standard and the methanolic stem bark extract at all the studied were observed (P > .05; Table 4).

We further determined the half effective concentrations (EC₅₀) of the studied plant extracts required to produce an absorbance value of 0.5 were determined in this study. Notably, the aqueous stem bark extract of *P. thonningii* had the lowest EC₅₀ value of 9.0667 μg/mL compared with the EC₅₀ values of the methanolic stem bark extract and the standard (Table 4). In addition, it was observed that the aqueous stem bark extract had a significantly lower EC₅₀ value compared with the methanolic stem bark extract and the standard (Table 4).
Discussion

The spontaneous production of excessive free radicals during cellular metabolism damage biomolecules, leading to a continuum of maladies including chronic inflammation, diabetes mellitus, cancer, and neurodegenerative disorders, among others. Antioxidant therapy is the most practical approach to the management of oxidative stress–related disorders. Despite the availability of many synthetic drugs used to manage oxidative stress, the high costs and adverse side effects associated with them limit their usefulness. As a result, alternative nontoxic antioxidants which are affordable are needed to counter oxidative stress, thereby thwarting the associated diseases. As a result, this study was designed to investigate the \textit{in vitro} antioxidant activities of the aqueous and methanolic stem bark extracts of \textit{P. thonningii} in the quest for cheap and safer antioxidant sources.

The effectiveness of the studied plant extracts in inhibiting \textit{in vitro} lipid peroxidation was appraised according to the criterion of Blois and Fidrianny et al., which posit that samples having $IC_{50}/EC_{50} < 50 \mu g/mL$ are deemed to be very strong antioxidants while those with 50 to $100 \mu g/mL$ are strong antioxidants. In a similar manner, samples with EC_{50}/IC_{50} values of 101 to $150 \mu g/mL$ are moderate antioxidants while those with EC_{50}/IC_{50} values of more than $150 \mu g/mL$ are weak antioxidants. The results of this study indicated that the aqueous stem bark extract of \textit{P. thonningii} was a very strong antioxidant and a potent inhibitor of lipid peroxidation as shown by its IC_{50} value of $27.300 \mu g/mL$. On the other hand, the methanolic stem bark extracts of \textit{P. thonningii} and the standard (L-ascorbic acid) were considered as strong antioxidants based on their IC_{50} values. This suggests that the studied plant extracts could potentially restore and modulate the activity of endogenous antioxidant systems as postulated by Zhang et al., Kirecci et al., Santosa et al., and Rahimzadegan and Soodi.

The \textit{in vitro} DPPH radical scavenging activity of the studied plant extracts revealed remarkable antioxidant potential. Research has demonstrated that antioxidant activity of plant extracts has a positive correlation with percentage radical scavenging activity. Therefore, an extract with high percentage radical scavenging activity ought to be a potent antioxidant \textit{in vitro} and \textit{in vivo}. The high percentage radical scavenging activity translates to low EC_{50}/IC_{50} values.

The results obtained in this study revealed a high percentage radical scavenging potential of the studied plant extracts \textit{in vitro} as demonstrated by the low IC_{50} values. According to the efficacy criterion of Blois and Fidrianny et al., all the studied plant extracts had IC_{50} values that were, by far, lower than $50 \mu g/mL$. This suggests that the studied plant extracts were strong scavengers of the DPPH radical \textit{in vitro} and, therefore, high antioxidant efficacy as evidenced by the low IC_{50} values. These can be attributed to the presence of bioactive antioxidant phytochemical compounds in these extracts, which work synergistically to scavenge the DPPH radicals. These findings, therefore, imply that the studied plant extracts can attenuate the damaging effects caused by oxidative stress.

The ferric reducing antioxidant power (FRAP) activities of the aqueous and methanolic stem bark extracts of \textit{P. thonningii} were also determined in this study. The FRAP method measures the ability of study samples to reduce ferric ion at low pH to ferrous ion, yielding a blue colored complex. An increase in absorbance, measured at 700 nm, is an indication of ferric reducing antioxidant power of the studied sample. This method helps to evaluate the ability of plant extracts to reduce ferric ion to ferrous ion as a determination of antioxidant potential. Moreover, it helps to predict the extracts ability to mimic the body’s endogenous antioxidants like bilirubin and uric acid in attenuating oxidative stress. Therefore, high ferric reducing antioxidant power is correlated with increase in absorbance values and low EC_{50} values.

In this study, the aqueous and methanolic stem bark extracts of \textit{P. thonningii} demonstrated remarkable ferric reducing antioxidant power activity as evidenced by the dose-dependent increase in absorbance and low EC_{50} values. It was observed that all the studied plant extracts were very strong antioxidants according to the criterion of Blois and Fidrianny et al., by indicating EC_{50} values that were lower than $50 \mu g/mL$. The strong antioxidant power of these extracts is attributable to the presence of antioxidant phytochemical compounds in these extracts.

The current study demonstrates that the antioxidant activities of the studied plant extracts are due to the active phytochemicals with phenolic moieties in their structures. Examples of these antioxidant phytochemicals include flavonoids, catechins, coumarins, tannins, carotenoids, and phenols. They relieve oxidative stress either solely or synergistically with other phenolic-containing amalgams. As described in our earlier study, the presence of antioxidant-associated secondary metabolites in the studied plant extracts potentially conferred the reported bioactivity in this study. For example, flavonoids, the major antioxidant phytochemicals, exert their effects via a continuum of various mechanisms including the chelation of iron and copper metal ions and the inactivation of free radical–generating endogenous enzymes in the body.

Besides, natural antioxidants incorporated in the food we consume, are thought to inhibit free radical chain reactions in the body by preventing initiation or propagation steps causing chain termination reactions, and thereby delaying the oxidation process. In the human body, nitric oxide (NO\cdot), superoxide (O$_2^\cdot$), and the hydroxyl (OH$^\cdot$) radicals have been implicated as key agents that inactivate endogenous enzymes and other important cellular components causing oxidative injury. Therefore, the studied plant extracts could potentially modulate and neutralize these free radicals \textit{in vivo}, thereby restoring the redox homeostasis and either prevent or reverse deleterious free radical effects. Perhaps, the curative properties of the aqueous stem bark extract of the studied plant could be through free radical scavenging and antioxidant defense mechanism.
Conclusions and Recommendations

The aqueous and methanolic stem bark extracts of *P. thonningii* have *in vitro* antilipid peroxidation, DPPH radical scavenging, and ferric reducing antioxidant power activities. Therefore, the aqueous and methanolic stem bark extracts of the studied plant can be potential antioxidant compound sources and alternatives for the management of oxidative stress–associated maladies. Furthermore, studies aimed at investigating the *in vivo* antioxidant efficacy of the studied plant extracts are encouraged to determine if the *in vitro* antioxidant results reported herein, are replicable in the *in vivo* setup. This study recommends further studies leading to isolation and characterization of the pure antioxidant molecules, especially those able to ameliorate oxidative stress and related diseases.

Acknowledgments

The authors wish to acknowledge the Directorate of Research under the College of Graduate Studies and Research, Mount Kenya University, for offering laboratory space, equipment, and goodwill for the success of this study. Moreover, we appreciate Mr Elias Nelson, Mr John Nzivo, and Mr Jared Onyancha of Mount Kenya University (School of Pharmacy) and Mr Daniel Gitonga of Kenyatta University (Department of Biochemistry, Microbiology and Biotechnology) for their technical support.

Author Contributions

Gervason Moriasi conducted the study and drafted the manuscript. Mathew Piero Ngugi and Anthony Ireri promoted the idea and supervised the study. All authors read, reviewed, and approved the final draft of the manuscript prior to publication.

Declaration of Conflicting Interests

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

ORCID iD

Gervason Moriasi, MSc https://orcid.org/0000-0001-5604-9987 Mathew Piero Ngugi, PhD https://orcid.org/0000-0002-0226-9092

Ethical Considerations

All the reagents used in this study were prepared, used, and disposed of according to the set laboratory guidelines and the material safety and data sheets (MSDS). Moreover, this study was undertaken after approval from National Council for Science, Technology and Innovation (NACOSTI), Kenya, under License Number NACOSTI/P/19/2080.

Supplemental Material

Supplemental material for this article is available online.

References

1. Weng M, Xie X, Liu C, Lim KL, Zhang CW, Li L. The sources of reactive oxygen species and its possible role in the pathogenesis of Parkinson’s disease. *Parkinsons Dis*. 2018;2018:9163040.
2. Pizzino G, Irrera N, Cucinotta M, et al. Oxidative stress: harms and benefits for human health. *Oxid Med Cell Longev*. 2017;2017:8416763. doi:10.1155/2017/8416763
3. Liguori I, Russo G, Curcio F, et al. Oxidative stress, aging, and diseases. *Clin Interv Aging*. 2018;13:757-772. doi:10.2147/CIA.S158513
4. Gracia KC, Llanas-Cornejo D, Husi H. CVD and oxidative stress. *J Clin Med*. 2017;6:22. doi:10.3390/jcm6020022
5. Perluigi M, Butterfield DA. Oxidative stress and Down syndrome: a route toward Alzheimer-like dementia. *Curr Gerontol Geriatr Res*. 2012;2012:724904. doi:10.1155/2012/724904
6. Huang WJ, Zhang X, Chen WW. Role of oxidative stress in Alzheimer’s disease. *Biomed Rep*. 2016;4:519-522. doi:10.3892/br.2016.630
7. Halliwell B, Gutteridge JMC. *Free Radicals in Biology & Medicine*. 5th ed. Oxford University Press; 2015:961.
8. Sajjad N, Wani A, Hassan S, et al. Interplay of antioxidants in Alzheimer’s disease. *J Transl Sci*. 2019;5:1-11. doi:10.15761/JTS.1000313
9. Liu Z, Ren Z, Zhang J, et al. Role of ROS and nutritional antioxidants in human diseases. *Front Physiol*. 2018;9:477. doi:10.3389/fphys.2018.00477
10. Ullah A, Abad K, Ismail K. Diabetes mellitus and oxidative stress—a concise review. *Saud. Pharm J*. 2016;24:547-553. doi:10.1016/j.jsps.2015.03.013
11. Rahimzadegan M, Soodi M. Comparison of memory impairment and oxidative stress following single or repeated doses administration of scopalamine in rat hippocampus. *Basic Clin Neurosci*. 2018;9:5-14.
12. Farmer EE, Mueller MJ. ROS-mediated lipid peroxidation and RES-activated signaling. *Annu Rev Plant Biol*. 2013;64:429-450. doi:10.1146/annurev-arplant-050312-120132
13. Wojsiat J, Zoltowska KM, Laskowska-Kaszub K, Wojda U. Oxidative stress and related diseases. *Oxid Med Cell Longev*. 2018;2018:6435861. doi:10.1155/2018/6435861
14. Zhang Z, Zhang L, Zhou L, Lei Y, Zhang Y, Huang C. Redox signaling and unfolded protein response coordinate cell fate decisions under ER stress. *Redox Biol*. 2019;25:101047. doi:10.1016/j.redox.2018.11.005
15. Srinivas US, Tan BWQ, Vellayappan BA, Jeyasekharan AD. ROS and the DNA damage response in cancer. *Redox Biol*. 2019;25:101084. doi:10.1016/j.redox.2018.101084
16. Ginter E, Simko V, Panakova V. Antioxidants in health and disease. *Bratisl Lek Listy*. 2014;115:603-606. doi:10.4149/BLL_2014_116
17. Kurutas EB. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. *Nur J*. 2016;15:71. doi:10.1186/s12937-016-0186-5
18. Tiwari AK. Antioxidants: new-generation therapeutic base for treatment of polygenic disorders. *Curr Sci*. 2004;86:1092-1102.
19. Kumar KMP. Antioxidants for clinical use. Int J Diabetes Dev Ctries. 2012;32:183-184. doi:10.1007/s13410-012-0095-x

20. Bouayed J, Bohn T. Exogenous antioxidants—double-edged swords in cellular redox state: health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxid Med Cell Longev. 2010;3:228-237. doi:10.4161/oxim.3.4.12858

21. Cilia G, Carroñ R. Medicinal plants, antioxidants and health. J Toxicol. Health Photon. 2013;103:257-265.

22. Gabriela CL, Raquel CC. Medicinal plants, antioxidants and Health. J Toxicol. Health Photon. 2013;103:257-265.

23. Arulselvan P, Farid MT, Tan WS, et al. Role of antioxidants and natural products in inflammation. Oxid Med Cell Longev. 2016;2016:5276130. doi:10.1155/2016/5276130

24. Aguilar TAF, Navarro BCH, Pérez JAM. Endogenous antioxidants: a review of their role in oxidative stress. In: Morales-Gonzalez JA, Morales-González A, Madrigal-Santillan EO, eds. A Master Regulator of Oxidative Stress—The Transcription Factor Nrf2. IntechOpen; 2016:1-20. doi:10.5772/65715

25. Nemudzivhadi V, Masoko P. In vitro assessment of cytotoxicity, antioxidant, and anti-inflammatory activities of Ricinus communis (Euphorbiaceae) leaf extracts. Evid Based Complement Alternat Med. 2014;2014:625961. doi:10.1155/2014/625961

26. Korkina LG. Phenylnpropanoids as naturally occurring antioxidants: from plant defense to human health. Cell Mol Biol (Noisy-le-grand). 2007;53:15-25. doi:10.1170/T772

27. Sardesai VM. Role of antioxidants in health maintenance. Nutr Clin Pract. 1995;10:19-25. doi:10.1177/0887937X9501001119

28. Orwa et al. Piliostigma thonningii (Schum) Milne-Reddl. Agroforestry Database 40. 2009:1-5.

29. Piliostigma thonningii (PROTA). Accessed May 3, 2020. https://uses.plantnet-project.org/en/Piliostigma_thonningii_(PROTA)

30. Afelayan M, Srivedavyasasri R, Asekun OT, et al. Phytochemical study of Piliostigma thonningii, a medicinal plant grown in Nigeria. Med Chem Res. 2018;27:2325-2330. doi:10.1007/s00044-018-2238-1

31. Kwaji A, Bassi PU, Aoiill M, Nneji CM, Ademowo OG. Preliminary studies on Piliostigma thonningii Schum leaf extract: phytochemical screening and in vitro antimalarial activity. Afr J Microbiol Res. 2010;4:735-739.

32. Kaigongi MM, Musila FM. Ethnobotanical study of medicinal plants used by Tharaka people of Kenya. Int J Ethnobot Vol Ethnomed. 2015;1:1-8.

33. Aderogha MA, Ndhlala AR, Rengasamy KRR, Van Staden J. Antimicrobial and selected in vitro enzyme inhibitory effects of leaf extracts, flavonols and indole alkaloids isolated from Croton menyharthii. Molecules. 2013;18:12633-12644. doi:10.3390/molecules181012633

34. Zhang YJ, Gan RY, Li S, et al. Antioxidant phytochemicals for uses. plantnet-project.org/en/Piliostigma_thonningii_(PROTA)

35. Zhang YJ, Gan RY, Li S, et al. Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules. 2015;20:21138-21156. doi:10.3390/molecules201219753

36. Zhen J, Guo Y, Villani T, et al. Phytochemical analysis and anti-inflammatory activity of the extracts of the African medicinal plant Ximenia caffra. J Anal Methods Chem. 2015;2015:948262. doi:10.1155/2015/948262

37. Azwanda NN. A review on the extraction methods use in medicinal plants, principle, strength and limitation. Med Aromat Plants. 2015;4:1000196. doi:10.4172/2167-0412.1000196

38. Harborne JB. Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis. 3rd ed. Springer; 1998:58.

39. Handa SS, Fermeglia M, Singh J, et al. Extraction Technologies for Medicinal and Aromatic Plants. Earth, Environmental and Marine Sciences and Technologies; 2008.

40. Pandey A, Tripathi S. Concept of standardization, extraction and pre phytochemical screening strategies for herbal drug. J Pharmacogn Phytochem. 2014;2:115-119.

41. Karagöz A, Artun FT, Özcan G, et al. In vitro evaluation of antioxidant activity of some plant methanol extracts. Biotechnol Bio-technol Equip. 2015;29:1184-1189. doi:10.1080/13102818.2015.1080660

42. Truong DH, Nguyen DH, Ta NTA, Bui AV, Do TH, Nguyen HC. Evaluation of the use of different solvents for phytochemical constituents, antioxidants, and in vitro anti-inflammatory activities of Severinia buxifolia. J Food Qual. 2019;2019:8178294. doi:10.1155/2019/8178294

43. Bibi Y, Nisa S, Zia M, Waheed A, Ahmed S, Chaudhary MF. In vitro cytotoxic activity of Aesculus indica against breast adenocarcinoma cell line (MCF-7) and phytochemical analysis. Pak J Pharm Sci. 2012;25:183-187.

44. Jared MO, Bibiawne AV, Gervason AM, Lameek NA, Japhet KN. The antibacterial, antioxidant and phytochemical composition of Combretum tanaense (J Clark) root extracts. Eur J Med Plants. 2018;23:1-8. doi:10.9734/EJMP/2018/40956

45. Wills ED. Lipid peroxide formation in microsomes. General considerations. Biochem J. 1969;113:333-341. doi:10.1042/bj1130333

46. Prasad PSH, Ramakrishnan N. In vitro lipid peroxidation assay of Rumex vesicatorius L. Int J Pharm Pharm Sci. 2012;4(suppl 1):368-370.

47. Bajpai VK, Agrawal P, Park YH. Phytochemicals, antioxidant and anti-lipid peroxidation activities of Ethanolic extract of a medicinal plant, Andrographis paniculata. J Food Biochem. 2014;38:584-591. doi:10.1111/jbpc.12092

48. Brand Williams W, Cuvelier ME, Berret C. Use of a free radical method to evaluate antioxidant activity. Food Sci Technol. 1995; 30:25-30.

49. Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem. 1996;239:70-76. doi:10.1006/abio.1996.0292

50. Zhou L, Chen P, Peng Y, Ouyang R. Role of oxidative stress in the neurocognitive dysfunction of obstructive sleep apnea syndrome. Oxid Med Cell Longev. 2016;2016:9626831. doi:10.1155/2016/9626831

51. Huang D. Dietary antioxidants and health promotion. Antioxidants. 2018;7:9. doi:10.3390/antiox7010009

52. Lourenço SC, Moldão-Martins M, Alves VD. Antioxidants of natural plant origins: From sources to food industry applications. Molecules. 2019;24:4132. doi:10.3390/molecules24224132

53. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature. 1958;181:1199-1200. doi:10.1038/1811199a0
54. Fidrianny I, Budiana W, Ruslan K. Antioxidant activities of various extracts from Ardisia sp leaves using DPPH and CUPRAC assays and correlation with total flavonoid, phenolic, carotenoid content. *Int J Pharmacogn Phytochem Res.* 2015;7:859-865.

55. Kirecci OA, Gokce Z, Ozsahin AD, Kirecci O, Balci G, Yilmaz O. Some plant extracts that prevent lipid peroxidation and protect the unsaturated fatty acids in the fenton reagent environment. *Bitlis Eren Univ J Sci Technol.* 2015;2:52-56. doi:10.17678/beuscitech.47141

56. Santosa PB, Thalib I, Suhartono E, Turjaman M. Antioxidant and anti-lipid peroxidation activities of leaves and seed extracts of gemor (Nothaphoebe coriacea). *Int J Pharmacogn Phytochem Res.* 2016;8:1149-1153.

57. Ngai ND, Moriasi G, Ngugi MP, Njagi JM. In vitro antioxidant activity of dichloromethane: methanolic leaf and stem extracts of Pappea capensis. *World J Pharm Res.* 2019;8:195-211.

58. Qader SW, Abdulla MA, Chua LS, Najim N, Zain MM, Hamdan S. Antioxidant, total phenolic content and cytotoxicity evaluation of selected Malaysian plants. *Molecules.* 2011;16:3433-3443. doi: 10.3390/molecules16043433

59. Singh V, Kahol A, Singh IP, Saraf I, Shri R. Evaluation of anti-amnesic effect of extracts of selected Ocimum species using in-vitro and in-vivo models. *J Ethnopharmacol.* 2016;193:490-499. doi:10.1016/j.jep.2016.10.026

60. Moriasi GA, Ireri AM, Ngugi MP. In vivo cognitive-enhancing, ex vivo malondialdehyde-lowering activities and phytochemical profiles of aqueous and methanolic stem bark extracts of Pilostigma thonningii (Schum). *Int J Alzheimers Dis.* 2020;2020:1367075. doi:10.1155/2020/1367075

61. Brighente IM, Dias M, Verdi LG, Pizzolatti MG. Antioxidant activity and total phenolic content of some Brazilian species. *Pharm Biol.* 2007;45:156-161. doi:10.1080/13880200601113131

62. Pulido R, Bravo L, Saura-Calixto F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. *J Agric Food Chem.* 2000;48:3396-3402. doi:10.1021/jf9913458

63. Banothu V, Neelagiri C, Adepally U, Lingam J, Bommareddy K. Phytochemical screening and evaluation of in vitro antioxidant and antimicrobial activities of the indigenous medicinal plant Albizia odoratissima. *Pharm Biol.* 2017;55:1155-1161. doi:10.1080/13880209.2017.1291694

64. Hossain MA, Shah MD. A study on the total phenols content and antioxidant activity of essential oil and different solvent extracts of endemic plant Merremia borneensis. *Arab J Chem.* 2015;8:66-71. doi:10.1016/j.arabjc.2011.01.007

65. Kareru PG, Kenji GM, Gachanja AN, Keriko JM, Mungai G. Traditional medicines among the Embu and Mbeere peoples of Kenya. *Afr J Tradit Complement Altern Med.* 2007;4:75-86.