Multiple-brain systems dynamically interact during tonic and phasic states to support language integrity in temporal lobe epilepsy

Shilpi Modi a, Xiaosong He b, Kapil Chaudhary a, Walter Hinds a, Andrew Crow a, Ashithkumar Beloor-Suresh a, Michael R. Sperling a, Joseph I. Tracy a,

a Department of Neurology, Comprehensive Epilepsy Centre, Thomas Jefferson University, Philadelphia, PA, USA
b Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA

ARTICLE INFO

Keywords:
Dynamic network neuroscience
Temporal lobe epilepsy
Resting state dynamics
Language task dynamics
Language reorganization
Functional MRI
Intrinsic connectivity networks, Dorsal attention network

ABSTRACT

An epileptogenic focus in the dominant temporal lobe can result in the reorganization of language systems in order to compensate for compromised functions. We studied the compensatory reorganization of language in the setting of left temporal lobe epilepsy (TLE), taking into account the interaction of language (L) with key non-language (NL) networks such as dorsal attention (DAN), fronto-parietal (FPN) and cingulo-opercular (COpN), with these systems providing cognitive resources helpful for successful language performance.

We applied tools from dynamic network neuroscience to functional MRI data collected from 23 TLE patients and 23 matched healthy controls during the resting state (RS) and a sentence completion (SC) task to capture how the functional architecture of a language network dynamically changes and interacts with NL systems in these two contexts.

We provided evidence that the brain areas in which core language functions reside dynamically interact with non-language functional networks to carry out linguistic functions. We demonstrated that abnormal integrations between the language and DAN existed in TLE, and were present both in tonic as well as phasic states. This integration was considered to reflect the entrainment of visual attention systems to the systems dedicated to lexical semantic processing. Our data made clear that the level of baseline integrations between the language subsystems and certain NL systems (e.g., DAN, FPN) had a crucial influence on the general level of task integrations between L/NL systems, with this a normative finding not unique to epilepsy. We also revealed that a broad set of task L/NL integrations in TLE are predictive of language competency, indicating that these integrations are compensatory for patients with lower overall language skills.

We concluded that RS establishes the broad set of L/NL integrations available and primed for use during task, but that the actual use of those interactions in the setting of TLE depended on the level of language skill. We believe our analyses are the first to capture the potential compensatory role played by dynamic network reconfigurations between multiple brain systems during performance of a complex language task, in addition to testing for characteristics in both the phasic/task and tonic/resting state that are necessary to achieve language competency in the setting of temporal lobe pathology. Our analyses highlighted the intra- versus inter-system communications that form the basis of unique language processing in TLE, pointing to the dynamic reconfigurations that provided the broad multi-system support needed to maintain language skill and competency.

1. Introduction

The presence of an epileptogenic focus in the dominant temporal lobe often results in the reorganization of language-relevant systems in the brain (Tracy et al., 2009; He et al., 2018). In the setting of focal left temporal lobe epilepsy (TLE) such potential reorganization has been associated with atypical patterns of representation as revealed by fMRI, (Gaillard et al., 2007; Thivard et al., 2005; Dijkstra and Ferrier, 2013; Bell et al., 2002; Mbwana et al., 2009; for reviews see Balter et al., 2019). To yield competent task output these compensatory systems must interact with the core computational regions for language, which themselves are regionally distributed in the brain ("dual stream" model).
In the setting of a complex language task, it is highly likely that competent performance requires a broader set of non-language functions. When pathology compromises the core language areas one might suspect that these non-language functions take on a larger role, becoming crucial to achieving compensatory language reorganization. One could argue that it might be impossible to capture the essence of compensatory reorganization if one does not account for these interactions with non-language functions. In this project we examined compensated, intact language status in TLE, with a focus on the interaction of language systems with key non-language networks such as dorsal attention network (DAN) (Osher et al., 2019), fronto-parietal attention network (FPN) (Sheffield et al., 2015) and cingulo-opercular network (COpN) (Vaden et al., 2013). We chose a language task (sentence completion, SC) that required a complex set of computations such as understanding the meaning of individual words, constructing the overall meaning of the sentence, and generating the appropriate word to fit the sentence. Because SC is an open-ended task requiring the subject to both hold on to and analyze a pool of candidate words before selecting a response, successful performance depends upon other functions. Such functions would include working memory, selective/sustained attention, stimulus salience, top down cognitive control and flexibility, lexical/semantic search and retrieval strategies, and error monitoring (Ashtari et al., 2005; Just et al., 1996; Price, 2010).

Computational tools from network science were used to capture how the functional architecture of language dynamically changed and interacted with non-language systems during SC task performance (He et al., 2018; Chai et al., 2016; Bassett et al., 2011; Bassett et al., 2013; Fedorenko and Thompson-Schill, 2014). Prior work from our lab has suggested that dynamic analyses of a language network may be superior to static depictions of task-relevant activity in the setting of a neurologic disease such as epilepsy (He et al., 2018). That investigation, however, omitted from analysis the potential role of non-language systems in language performance. More specifically, this prior work failed to examine whether these additional functionalities interacted with language systems only in a transient manner during a task, or if long-standing intrinsic interactions existed between language and non-language systems. It is certainly possible that such transient or long-standing interactions are important, perhaps even necessary, to achieve compensated task performance, as well as a general language competency.

We sought to answer two questions. One, in the face of pressures to reorganize language networks due to TLE, do patients demonstrate abnormal patterns of language/non-language interaction compared to controls, and are any such abnormal network dynamics evident only during task performance or are they also present and, perhaps even influenced, by the level of dynamic activity present in the baseline, tonic state? Two, do brain system dynamics differ depending on an individual’s level of overall language competence, and does this point to the specific language/non-language interactions that support compensated language in the setting of temporal lobe disease?

To accomplish these goals, we analyzed dynamic changes in communication among the core language subsystems and between language and three distinct, well-established non-language systems, systems that likely provide the additional cognitive computations and resources needed for successful language performance (DAN; FPN; COpN). We acquired functional MRI data from TLE patients and matched healthy controls (HCs) during both the SC task and a resting state condition. Time series of the BOLD response were extracted for various brain subsystems at the individual level using the Cole-Anticevic Brain-wide Network Partition (CAB-NP) (Ji et al., 2019). Using a sliding-window strategy, we generated cross-region coherence matrices over time for both the task and rest conditions. We then applied dynamic network analysis methods to detect community structures over time (Mucha et al., 2010), and quantified the aforementioned language and non-language network reconfigurations (Fig. 1). We focused on the dynamic measures of ‘recruitment’ (the probability of intra-communication with peer regions from the same subsystem), ‘flexibility’ (frequency with which a region changes its assigned community over time) and ‘integration’ (probability of inter-communication with...
regions from other subsystems) (Bassett et al., 2015; Mattar et al., 2015). The above designated group comparison (TLE versus matched healthy controls) was undertaken, followed by a partial least square (PLS) analysis of specific dynamic variables during both the SC task and RS to identify the most important predictors of language competence.

We believe our analyses are the first to capture the potential compensatory role played by dynamic network reconfigurations between multiple brain systems during performance of a complex language task, in addition to testing for characteristics in both the phasic/task and tonic/resting state that are necessary to achieve language competency in the setting of temporal lobe pathology. Our analyses specified the communication reconfigurations affected by a temporal lobe disease, highlighting the degree to which intra- versus inter-system communications form the basis of unique language processing in TLE, pointing to the dynamic reconfigurations that provided the broad, multi-system support needed to maintain language skill and competency.

2. Materials and methods

2.1. Participants

A total of twenty-three patients with refractory unilateral TLE were recruited from the Thomas Jefferson Comprehensive Epilepsy Center. All patients were surgical candidates for either a standard anterior temporal lobectomy or thermal ablation of the ictal mesial temporal lobe, determined by a multimodal evaluation including neurological history and examination, scalp video-EEG, MRI, PET, and neuropsychological testing (Sperling et al., 1996) (See Supplementary Section for more details). Given that the functional profile of the language system is associated with handedness (Knecht et al., 2000), patients with left handedness (Oldfield, 1971) were excluded to ensure comparability. Accordingly, all patients were right-handed, demonstrated left hemisphere language dominance through a task-fMRI verb generation task (He et al., 2018), and obtained a verbal IQ of 80 or greater (Verbal Comprehension Index, VCI) (Lange, 2011). The latter ensured that all participants had the cognitive capacity to follow instructions and perform the functional MRI SC task. A total of 23 age- and gender-matched right-handed HCs also participated (Table 1 for sample demographics and clinical characteristics). All controls were free of psychiatric or neurological disorders based on a health screening measure. All study participants gave written informed consent before participating in the study. The study was approved by the Ethics Committee of the Thomas Jefferson University and was conducted in compliance with the Declaration of Helsinki.

2.2. Neuropsychological testing

All participants were assessed for verbal fluency competency through the Controlled Oral Word Association Test (COWA). Scores for the phonemic (letter) and semantic (animal naming) fluency subtests of the COWA were combined to produce a measure of language competency (LC, mean COWA score) (Gladsjo et al., 1999; Benton and Sivan, 1994).

2.3. Imaging data acquisition and preprocessing of resting state and task conditions

All participants underwent a structural scan along with two functional MRI scans (Siemens 3 T). An SC Task (5 min) with five 30 s alternating experimental and control epochs with instructions to covertly generate a single word that meaningfully completed a viewed sentence, or to passively view random letters arrayed in a word and sentence like format (control condition). The second fMRI scan with identical imaging parameters involved a five-minute RS scan when participants viewed a crosshair with no task requirements. The fMRI data was collected with a single shot echoplanar gradient echo imaging sequence acquiring T2* signals (120 volumes; 34 axial slices acquired parallel to the anterior, posterior commissure line; TR = 2.5 s, TE = 35 ms; FOV = 256 mm, 128 × 128 data matrix voxels, flip angle = 90°, in-plane resolution = 2 mm × 2 mm, slice thickness = 4 mm). Each EPI (EPI) image was corrected for motion (EPI movement correction, FSL). The first fMRI scan was acquired with a standard echo planar imaging (EPI) sequence.

Table 1	Sample demographic and clinical characteristics.			
	Left TLE (23)	Healthy controls (23)	t/χ²	P
Age	41.39 ± 14.82	35.06 ± 8.13	−1.542	0.132
Gender (M/F)	(8/15)	(13/10)	2.190	0.139
Education	14.87 ± 2.40	17.35 ± 2.48	3.445	0.001
Edinburgh Handedness	97.83 ± 7.36	95.87 ± 7.36	−0.657	0.534
Phonemic Fluencya	43.56 ± 11.47	47.89 ± 7.99	1.359	0.182
Semantic Fluencya	43.83 ± 14.04	48.39 ± 10.16	1.160	0.253
Language Competence	43.70 ± 14.04	48.14 ± 7.29	1.421	0.163

Continuous variables are presented in mean ± SD. Temporal pathology was diagnosed by neuroradiologists specializing in epilepsy based upon presurgical MRI scans: NB = normal brain; HS = hippocampal sclerosis; TT = temporal tumour; TD = temporal dysplasia; TE = temporal encephalocoele, O = Other MR signal abnormality (e.g., ependymal, cavernoma). Seizure type: SPS = simple partial seizure; CPS = complex partial seizure; 2nd GS = secondary generalized tonic-clonic seizure; GS = generalized tonic-clonic seizure.

Anti-epileptic drugs: VGNC = voltage-gated Na + channel blockage, e.g., phenytoin, carbamazepine, oxcarbazepine, lamotrigine (plus T Type Ca2 + channel blockage); GABAa agonist, e.g. diazepam, clonazepam, clonobam, lorazepam, traxene, phenobarbital; SV2a receptor mediated, e.g. levetiracetam; CRMP2 receptor mediated, e.g. lacosamide (plus VGNC blockage); Multi-action: e.g. Na + valproate (VGNC + GABAa agonist), topiramate (VGNC + GABAa agonist + AMPA/kainate receptor blockage + carbonic anhydrase inhibitor). For continuous variables, independent sample t-tests were carried out. For categorical variables, χ² tests were carried out.

* Measured by Controlled Oral Word Association (COWA) letter fluency score. Five Controls did not have valid data.
* Measured by Animal Naming score of COWA. Five Controls did not have valid data.
* An average of Phonemic Fluency and Semantic Fluency.
* Measured by Wechsler Adult Intelligence Scale-Version IV (WAIS-IV).
imaging series started with three discarded scans to allow for signal stabilization. See Supplementary Section for details on task design and data preprocessing. Of note, subjects with more than 10% of outlier volumes (frame-wise displacements; Derivatives of rms VARiance over voxels) during either the RS or SC task conditions were excluded from analyses. All the participants in the study (23 left TLE group and 23 controls) satisfied this criterion (8 subjects from the initially recruited 31 TLE patients and 6 from the initially recruited 29 controls did not satisfy this criterion and, therefore, were not included in the analyses). Prior to collection of the T2* images, T1-weighted images (180 slices) were collected using an MPRAGE imaging series started with three discarded scans to allow for signal stabilization. The non-language systems (DAN, FPN, COPN) were chosen to capture key functionalities that might be utilized to process the language stimuli of the SC task and carry out its requirements (see Friederici, 2002; Gabrieli, 1998; Foldrak et al., 1999) for further discussion of language/non-language system interactions. These functionalities included: working memory, initiating goals, modulating cognitive control, lexical search and retrieval (FPN) (Sheffield et al., 2015; Welsh et al., 1991; Zanto and Gazzaley, 2013), stimulus salience, maintaining task-relevant goals, tonic alertness, error monitoring (COPN) (Vaden et al., 2013; Sadaghiani and D’Esposito, 2015; Dosenbach et al., 2008; Cocchi et al., 2013), and selective and sustained top-down control of external attention (DAN) (Osher et al., 2019; Vossel et al., 2014). These networks were divided into left and right hemisphere forms, combining all the left and right hemispheric parcels of each system. Based upon prior work on community detection (Bassett et al., 2011), we utilized the following measures of community membership change and interaction: (1) flexibility, capturing the frequency with which a particular parcel changed its assigned community over time, (2) recruitment, quantifying for each parcel in the language and non-language subsystems, the probability with which it was assigned to the same community as parcels from the same subsystem, or (3) with other subsystems over time (referred to as integration) (Bassett et al., 2015; Mattar et al., 2015).

2.7. The relationship between RS and SC task integrations

To more specifically identify the ability of RS dynamics to influence and predict language task dynamics, we conducted repeated measures MANOVA models on our three dynamic measures (recruitment, flexibility, and integration) with L subsystems alone (or L combined with the NL systems) and condition (SC task, RS) as within-subject factors. Experimental group (TLE versus HC) served as a between-subject factor. Our goal was to determine if there were experimental group differences in network dynamics as a function of context (RS versus SC task), dynamic effects for specific subsystems (recruitment and flexibility solely within the L subsystems, or the L/NL subsystem combinations of L/DAN, L/FPN, and L/COPN), and, lastly, integration effects between the L and NL subsystems (dynamic integration measure between the L/DAN, L/FPN, and L/COPN; see Supplementary Section for further details).

2.7. Dynamic network statistics

For each dynamic community structure detected from each multilayer network during each condition, three dynamic network statistics were estimated to characterize the functional reconfigurations among various subsystems of the language network, as well as the interaction between the language and the non-language subsystems (details in the Supplementary Section).

2.7.1. Module allegiance

We used this measure to summarize the consistency with which the parcels of the language and non-language subsystems were assigned to communities over time (Chai et al., 2016; Bassett et al., 2015).

2.7.2. Flexibility, recruitment and integration

The CAB-NP parcels of the language network were categorized into the following six subsystems: left frontal, right frontal, left temporal, right temporal, subcortical, and cerebellar (Supplementary Section, Data Processing). The non-language systems (DAN, FPN, COPN) were chosen to capture key functionalities that might be utilized to process the language stimuli of the SC task and carry out its requirements (see Friederici, 2002; Gabrieli, 1998; Foldrak et al., 1999) for further discussion of language/non-language system interactions. These functionalities included: working memory, initiating goals, modulating cognitive control, lexical search and retrieval (FPN) (Sheffield et al., 2015; Welsh et al., 1991; Zanto and Gazzaley, 2013), stimulus salience, maintaining task-relevant goals, tonic alertness, error monitoring (COPN) (Vaden et al., 2013; Sadaghiani and D’Esposito, 2015; Dosenbach et al., 2008; Cocchi et al., 2013), and selective and sustained top-down control of external attention (DAN) (Osher et al., 2019; Vossel et al., 2014). These networks were divided into left and right hemisphere forms, combining all the left and right hemispheric parcels of each system. Based upon prior work on community detection (Bassett et al., 2011), we utilized the following measures of community membership change and interaction: (1) flexibility, capturing the frequency with which a particular parcel changed its assigned community over time, (2) recruitment, quantifying for each parcel in the language and non-language subsystems, the probability with which it was assigned to the same community as parcels from the same subsystem, or (3) with other subsystems over time (referred to as integration) (Bassett et al., 2015; Mattar et al., 2015).

2.8. Identifying the dynamics within language and between language/ non-language systems

We utilized repeated measures multivariate analysis of variance (MANOVA) on our three dynamic measures (recruitment, flexibility, and integration) with L subsystems alone (or L combined with the NL systems) and condition (SC task, RS) as within-subject factors. Experimental group (TLE versus HC) served as a between-subject factor. Our goal was to determine if there were experimental group differences in network dynamics as a function of context (RS versus SC task), dynamic effects for specific subsystems (recruitment and flexibility solely within the L subsystems, or the L/NL subsystem combinations of L/DAN, L/FPN, and L/COPN), and, lastly, integration effects between the L and NL subsystems (dynamic integration measure between the L/DAN, L/FPN, and L/COPN; see Supplementary Section for further details).

2.9. The relationship between RS and SC task integrations

To more specifically identify the ability of RS dynamics to influence and predict language task dynamics, we conducted repeated measures MANOVA models on our three L/NL integration measures, run separately for the three L/NL combinations (L/DAN, L/FPN, L/COPN). The SC task integration measures served as the dependent variable. The relevant L/NL integration variables during the RS served as independent variables, with experimental group as a between subject factor (TLE, HCs). Our goal was to determine if SC integration levels for each of the L/NL integration sets (L/DAN, L/FPN, L/COPN) could be predicted by their RS integration values, and whether such associations varied by experimental group (TLE, HCs).
2.10. Relationship between dynamic integration and language competence in TLE

Since COWA measures of phonemic and semantic fluency were highly correlated (Pearson \(r = 0.64, P = 0.001 \)), we averaged these to produce a more general measure of language competency (LC) with greater construct validity. To determine whether any observed dynamic L/NL integrations occurring during the SC task or RS were most strongly associated with language competency. The PLS model accounted for the effects of age and gender by including them in the PLS model. We utilized the latent factors that cumulatively explained a substantial portion of the variance in LC (80%), and the predictors with a variable importance value of 1.5 or greater (see Supplementary Section for further details).

2.11. Relationship between RS and SC dynamics and clinical variables

We report univariate Pearson correlations between the dynamic measures and key clinical variables (age of disease onset and illness duration) using a permutation method (mult_comp_perm_corr, 2021) to control for family-wise error rate.

2.12. Statistical analysis

Statistical analyses were conducted using MATLAB functions or IBM® SPSS® v23 with alpha level set at \(p < 0.05 \) for both multivariate and univariate effects in our repeated measures MANOVA’s with appropriate correction for multiple comparisons. Preliminary assumption testing checked for independence of observations, normality, and sphericity. Independence of observations and normality were met. If sphericity was violated, the Huynh-Feldt correction was applied (epsilon > 0.75) to determine significant univariate effects. Tables 2A and 2B present the significant univariate effects (\(p < 0.05 \) or less), with notations indicating if the multivariate test (Wilk’s Lambda) was significant (\(p < 0.05 \) or less). Post hoc pairwise comparisons were applied to the significant univariate effects to delineate the nature of the finding.

3. Results

3.1. Demographical, behavioral, and clinical comparisons

The experimental groups (TLE, HC) did not differ in age, gender, or handedness. The groups, however, did differ in the years of education attained, with controls having higher years of education than the TLE group (Table 1). No significant differences were found between the two experimental groups in either the separate phonemic and semantic fluency scores, or the composite language competency variable (LC). The language performance scores, however, were higher in the HCs compared to the patients (Table 1).

3.2. Group differences in dynamics both within language and between the language/non-language systems

Utilizing repeated measures MANOVA, we tested for group differences in dynamic network reconfigurations during both task and RS conditions, capturing these reconfigurations through our measures of recruitment, flexibility, and integration (Tables 2A and 2B). We first examined our dynamic measures within the language subsystems. For recruitment, there was a significant effect of group with the TLE group showing reduced recruitment within the language subsystems compared to controls (\(p = 0.047 \)). Flexibility displayed a significant condition by group effect (\(p = 0.037 \)) with the TLE group showing a general reduction in flexibility during the SC task (univariate effect, \(p = 0.067 \)). As noted, there was a difference in years of education between the TLE patients and HC’s. This did account for some of the observed group differences in dynamics, reducing some of the statistical effects to trends, particularly for the reduced recruitment effect seen in the patients. These reduced statistical effects and trends were low powered, suggesting that larger samples may be required to observe dynamic recruitment differences between TLE patients and HC’s.

We then shifted to experimental group differences in dynamics between the (L) and non-language (NL) subsystems (DAN, FPN and COPn; split into left and right subsystems), using models similar to above, but in these models the subsystem factor included not just the L subsystems but also the NL subsystems. For recruitment, all three sets of L/NL subsystem dynamics showed a significant group effect, with HC showing greater recruitment across the subsystems (L/DAN, \(p = 0.037 \); L/FPN, \(p = 0.041 \); L/COpN, \(p = 0.049 \)). The L/COpN model also revealed a significant condition X group interaction (\(p = 0.032 \)), with HCs showing greater recruitment during the RS condition.

With regard to flexibility, for the L/DAN subsystems model, a significant condition X subsystem group interaction emerged (\(p = 0.026 \)) with left frontal (\(p = 0.029 \)), left temporal (\(p = 0.045 \)), and right temporal (\(p = 0.008 \)) language subsystems showing increased flexibility during RS in TLE as compared to the HCs. The L/FPN subsystem model showed a main effect for condition with greater flexibility across the subsystems during RS compared to the SC task (\(p = 0.034 \)). No flexibility effects were observed for L/COpN subsystem model.

While with regard to subsystem integration, out of the three L/NL subsystem models, effects emerged most clearly for the L/DAN model. Overall, a condition effect was present with greater L/DAN integration present during the SC condition. There was a significant subsystem X group interaction (\(p < 0.003 \)), revealing greater integration in the TLE group between the right DAN and left temporal (\(p < 0.001 \)), as well the right DAN/right temporal language subsystem (\(p = 0.009 \)) (Fig. 2). Integration for L-FPN subsystems showed a condition effect, with greater integration during the SC task than RS (\(p = 0.014 \)). For the L-COpN subsystem integration model there were no significant experimental group, condition, or subsystem integration effects.

3.3. The relationship between RS and SC task dynamic integrations

To better understand the relationship between RS integration values as a baseline context that potentially influences the level of SC task integration, we ran a repeated measures MANOVA with the L/NL subsystem integration measures as the dependent measure, and their corresponding RS measures as independent variables, along with experimental group as a between subject factor.

The results showed a RS L/DAN integration main effect indicating that the combined level of SC task integration varied as a function of integration values involving the RS right frontal/left DAN (\(p = 0.042 \)) (Table 3A). This right frontal/left DAN integration effect was related to overall task integration. Also, specific RS language/DAN interactions with SC integration values were demonstrated, (see Table 3A) involving the RS cerebellar/right DAN (\(p = 0.006 \)) predicting the SC left temporal/right DAN (\(p = 0.05 \)) and subcortical/right DAN (\(p = 0.007 \)) integrations. Also, the RS cerebellar/left DAN (\(p < 0.001 \)) predicted the SC left frontal/right DAN (\(p = 0.015 \)) and subcortical/right DAN (\(p = 0.001 \)) integrations.

A similar repeated measures MANOVA’s on the SC task integration values involving the L/FPN revealed that three RS /FPN integration main effects were present indicating that the level of the left frontal/left FPN (\(p = 0.017 \)), left temporal/left FPN (\(p = 0.033 \)), and cerebellar/left FPN (\(p = 0.005 \)) communication at RS influenced the broad level of SC integration.
Table 2A
Results of Two-way Repeated-Measures MANOVA for recruitment and flexibility within the language and between the language/non-language subsystems (L/DAN, L/FPN, L/OpN).

Source	Hypothesis df/ error df	F	Sig	Partial Eta Squared	Observed Power	Source	Hypothesis df/ error df	F	Sig	Partial Eta Squared	Observed Power
RECRUITMENT Within Language subsystems											
WS Condition Group 1	1	0.654	0.423	0.015	0.142	WS Condition Group 1	1	0.297	0.588	0.007	0.083
WS Condition X Group 1	1	1.947	0.179	0.042	0.276	WS Condition X Group 1	1	4.639	0.037	0.095	0.558
WS Subsystems X Group 3.662	0.368	0.815	0.008	0.129	WS Subsystems X Group 4.373	0.616	0.666	0.014	0.208		
WS Condition X Subsystem X Group 4.172	1.424	0.226	0.031	0.448	WS Condition X Subsystem X Group 4.303	0.890	0.477	0.020	0.290		
BTWS Group 1	4.160	0.047	0.086	0.514	BTWS Group 1	4.119	0.731	0.003	0.063		
RECRUITMENT Among Language/DAN subsystems											
WS Condition Group 1	1	0.711	0.404	0.016	0.131	WS Condition Group 1	3.430	0.071	0.072	0.441	
WS Condition X Group 1	1	0.236	0.629	0.005	0.076	WS Condition X Group 1	1.878	0.177	0.041	0.268	
WS Subsystems X Group 4.807	0.953	0.445	0.021	0.330	WS Subsystems X Group 5.279	1.277	0.273	0.028	0.463		
WS Condition X Subsystem X Group 4.623	1.772	0.126	0.039	0.578	WS Condition X Subsystem X Group 5.824	2.459	0.026	0.053	0.816		
BTWS Group 1	4.620	0.037	0.095	0.557	BTWS Group 1	1.743	0.194	0.038	0.253		
RECRUITMENT Among Language/FPN subsystems											
WS Condition Group 1	1	0.316	0.577	0.007	0.085	WS Condition Group 1	4.783	0.034	0.098	0.571	
WS Condition X Group 1	1	0.928	0.341	0.021	0.156	WS Condition X Group 1	0.490	0.488	0.011	0.105	
WS Subsystems X Group 4.539	1.538	0.185	0.034	0.505	WS Subsystems X Group 5.319	0.937	0.462	0.021	0.344		
WS Condition X Subsystem X Group 3.889	1.980	0.092	0.043	0.618	WS Condition X Subsystem X Group 5.798	0.935	0.468	0.021	0.361		
BTWS Group 1	4.416	0.041	0.091	0.538	BTWS Group 1	0.105	0.748	0.002	0.062		
RECRUITMENT Among Language/OpN subsystems											
WS Condition Group 1	1	3.419	0.071	0.072	0.440	WS Condition Group 1	0.418	0.521	0.009	0.097	
WS Condition X Group 1	1	4.920	0.032	0.101	0.583	WS Condition X Group 1	1.218	0.276	0.027	0.191	
WS Subsystems X Group 4.618	0.599	0.688	0.013	0.209	WS Subsystems X Group 5.300	0.948	0.454	0.021	0.347		
WS Condition X Subsystem X Group 4.385	1.166	0.328	0.026	0.381	WS Condition X Subsystem X Group 4.611	1.454	0.211	0.032	0.483		
BTWS Group 1	4.117	0.049	0.086	0.510	BTWS Group 1	0.010	0.920	0.000	0.051		

The univariate test results showing main effects and interactions of condition, experimental group, and subsystems for recruitment, flexibility (2a) and integration (2b). Pairwise comparisons were also tested for the results showing a significant univariate effect to determine the nature of the differences between those variables. WS – Within-subject effect, BTWS – Between-subject effect.

*Multivariate effect is significant at p < 0.05 or less.

Recruitment: Group effect: Healthy controls higher recruitment than TLE.

Flexibility:
*Multivariate effect for Condition Group: Wilk’s lambda: 0.905; F(1,44) = 4.639, p = 0.047; partial eta squared = 0.095; power = 0.558. Pairwise comparison indicated during task healthy controls had a greater flexibility as compared to the TLE group (F(1,44) = 3.535, p = 0.067).

Among Language/DAN subsystems
Recruitment: Group effect: Healthy controls higher recruitment than TLE.

Flexibility:
*Multivariate effect for Condition Subsystem Group: Wilk’s lambda: 0.737; F(7,38) = 1.939; p = 0.090; power = 0.571 indicating that the univariate test may be more sensitive to this effect. Pairwise comparison indicated during task TLE group had a greater flexibility as compared to controls for left frontal language (F(1,44) = 5.096, p = 0.029), Left temporal language (F(1,44) = 4.252, p = 0.045), right temporal language (F(1,44) = 7.663, p = 0.008) and BDAN (F(1,44) = 3.219, p = 0.067) subsystems.

Among Language/FPN subsystems
Recruitment: Group effect: Healthy controls higher recruitment than TLE.

Flexibility:
*Multivariate effect for Condition Group: Wilk’s lambda: 0.892; F(1,44) = 4.783; p = 0.034; partial eta squared = 0.098; power = 0.571. Pairwise comparison indicated that flexibility was greater during rest than task condition.

Among Language/OpN subsystems
Recruitment: Group effect: Healthy controls higher recruitment than TLE.

Flexibility:
*Multivariate effect for Condition Group: Wilk’s lambda: 0.899; F(1,44) = 4.920; p = 0.032; partial eta squared = 0.101; power = 0.583. Pairwise comparison
indicated that during rest controls had greater recruitment than TLE group (p = 0.006).

3Group effect: Healthy controls higher recruitment than TLE.

Table 2B
Results of Two-way Repeated-Measures MANOVA for subsystem integration within the language subsystems and between language/non-language subsystems (L/DAN, L/FPN, L/COpN).

Source	df or Hypothesis df/error df	F	Sig	Partial Eta Squared	Observed Power
Within language subsystems		F	Sig	Partial Eta Squared	Observed Power
WS Condition		3.774	0.058	0.079	0.456
WS Condition X Group		1.114	0.297	0.025	0.178
WS Systems X Group	9.024	1.339	0.215	0.030	0.653
WS Condition X Subsystem X Group		8.890	1.260	0.258	0.028
BTWS Group	1/44	0.597	0.444	0.013	0.118
Between L/DAN subsystems		F	Sig	Partial Eta Squared	Observed Power
WS Condition	1	5.205	0.027	0.106	0.607
WS Condition X Group		2.031	0.161	0.044	0.286
WS Systems X Group	9.411	2.778	0.003	0.059	0.964
WS Condition X Subsystem X Group		8.910	0.696	0.711	0.016
BTWS Group	1/44	2.159	0.149	0.047	0.301
Between L/FPN subsystems		F	Sig	Partial Eta Squared	Observed Power
WS Condition	1	6.501	0.014	0.129	0.703
WS Condition X Group		0.198	0.658	0.004	0.072
WS Systems X Group	9.597	0.878	0.550	0.020	0.457
WS Condition X Subsystem X Group		9.812	1.252	0.257	0.028
BTWS Group	1/44	0.949	0.335	0.021	0.159
Between L/COpN subsystems		F	Sig	Partial Eta Squared	Observed Power
WS Condition	1	0.141	0.709	0.003	0.066
WS Condition X Group		0.392	0.534	0.009	0.094
WS Systems X Group	9.891	1.201	0.289	0.027	0.625
WS Condition X Subsystem X Group		10.501	1.185	0.297	0.026
BTWS Group	1/44	3.106	0.085	0.066	0.407

*p Multivariate effect is significant at p < 0.05 or less.

Between L/DAN subsystems

Multivariate effect for Condition: Wilk’s lambda: 0.894; F(1,44) = 5.205; p = 0.027; partial eta squared = 0.106; power = 0.607. Pairwise comparison indicated that L/DAN integration was greater during task as compared to rest.

Multivariate effect for Condition X Group: Wilk’s lambda: 0.425; F(11,34) = 4.182; p = 0.001; partial eta squared = 0.575; power = 0.993. Pairwise comparison indicated that L/DAN integration was greater in the TLE group as compared to healthy controls for left temporal/right DAN (F(1,44) = 20.549, p < 0.001) and right temporal/right DAN (F(1,44) = 7.528, p = 0.009) integrations.

Between L/FPN subsystems

Multivariate effect for Condition: Wilk’s lambda: 0.871; F(1,44) = 6.501; p = 0.014; partial eta squared = 0.129; power = 0.703. Pairwise comparison indicated that L/FPN integration was greater during task as compared to rest.

Between L/COpN subsystems

Group effect: TLE group had higher L/COpN integration than healthy controls.

L/FPN integrations (Table 3B). Also, one specific RS language/FPN interaction with SC integration was present involving RS subcortical/right FPN integration (p = 0.045) (see Table 3B), with this showing a relationship with left frontal/right FPN integration during the SC task (p = 0.046). The results for L/COpN integration revealed no significant RS L/COpN integration main effects (Table 3C). One specific RS integration measure right frontal/left COpN (p = 0.009) (see Table 3C) demonstrated an interaction with two SC integrations (cerebellar/left COpN, p = 0.015; and left frontal/right COpN, p = 0.01).
Table 3A

Within-subject interactions involving SC language/non-language subsystem integrations and their matched RS language/non-language measures for L/DAN model.

Source	df	F	Sig.	Partial Eta Squared	Observed Power
SC L/NL integrations	11.000	1.651	0.083	0.049	0.824
SC L/NL integrations X RS L-Frontal/LDAN	11.000	1.644	0.085	0.049	0.822
SC L/NL integrations X RS L-Temporal/LDAN	11.000	1.446	0.150	0.043	0.758
SC L/NL integrations X RS R-Frontal/LDAN	11.000	0.818	0.622	0.025	0.458
SC L/NL integrations X RS R-Temporal/LDAN	11.000	0.788	0.652	0.024	0.441
SC L/NL integrations X RS Subcortical/LDAN	11.000	0.392	0.959	0.012	0.215
SC L/NL integrations X RS Cerebellar/LDAN	11.000	3.252	0.000	0.092	0.993
SC L/NL integrations X RS L-Frontal/RDAN	11.000	1.005	0.441	0.030	0.561
SC L/NL integrations X RS L-Temporal/RDAN	11.000	0.384	0.962	0.012	0.211
SC L/NL integrations X RS R-Frontal/RDAN	11.000	1.732	0.065	0.051	0.846
SC L/NL integrations X RS R-Temporal/RDAN	11.000	1.053	0.399	0.032	0.585
SC L/NL integrations X RS Subcortical/RDAN	11.000	0.810	0.630	0.025	0.453
SC L/NL integrations X RS Cerebellar/RDAN	11.000	2.444	0.006	0.071	0.959
SC L/NL integrations X Group	11.000	1.590	0.100	0.047	0.806

*See abbreviations at the end of Table 3.

*Multivariate effect is significant at $p < 0.05$ or less.

Multivariate effect for SC L/NL integrations X RS Cerebellar/LDAN: Wilk’s lambda: 0.379; F(11,22) = 3.279, $p = 0.009$; partial eta squared = 0.621; power = 0.939.

**Multivariate effect for SC L/NL integrations X RS Cerebellar/RDAN: Wilk’s lambda: 0.463; F(11,22) = 2.324, $p = 0.044$; partial eta squared = 0.537; power = 0.811.*

Table 3B

Within-subject interactions involving SC language/non-language subsystem integrations and their matched RS language/non-language measures for L/FPN model.

Source	df	F	Sig.	Partial Eta Squared	Observed Power
SC L/NL integrations	11.000	0.856	0.584	0.026	0.480
SC L/NL integrations X RS L-Frontal/LFPN	11.000	1.447	0.150	0.043	0.758
SC L/NL integrations X RS L-Temporal/LFPN	11.000	0.716	0.723	0.022	0.399
SC L/NL integrations X RS R-Frontal/LFPN	11.000	2.201	0.014	0.064	0.933
SC L/NL integrations X RS R-Temporal/LFPN	11.000	1.906	0.109	0.046	0.797
SC L/NL integrations X RS Subcortical/LFPN	11.000	0.931	0.511	0.028	0.521
SC L/NL integrations X RS Cerebellar/LFPN	11.000	1.422	0.946	0.013	0.232
SC L/NL integrations X RS L-Frontal/RFPN	11.000	0.361	0.970	0.011	0.199
SC L/NL integrations X RS L-Temporal/RFPN	11.000	0.980	0.464	0.030	0.547
SC L/NL integrations X RS R-Frontal/RFPN	11.000	0.507	0.899	0.016	0.278
SC L/NL integrations X RS R-Temporal/RFPN	11.000	0.795	0.645	0.024	0.445
SC L/NL integrations X RS Subcortical/RFPN	11.000	1.848	0.045	0.055	0.873
SC L/NL integrations X RS Cerebellar/RFPN	11.000	1.745	0.062	0.052	0.849
SC L/NL integrations X Group	11.000	0.548	0.870	0.017	0.302

*See abbreviations at the end of Table 3.

Multivariate effect for SC L/NL integrations X RS Subcortical/RFPN: Wilk’s lambda: 0.456; F(11,22) = 2.383, $p = 0.040$; partial eta squared = 0.544; power = 0.823.

Table 3C

Within-subject effects for the above model

Source	F(1,32)	Sig.	Partial Eta Squared	Observed Power
RS L-Frontal/LDAN	0.645	0.428	0.020	0.122
RS L-Temporal/LDAN	0.109	0.744	0.003	0.062
RS R-Frontal/LDAN	4.508	0.042	0.123	0.540
RS R-Temporal/LDAN	0.279	0.601	0.009	0.081
RS Subcortical/LDAN	0.119	0.733	0.004	0.063
RS Cerebellar/LDAN	0.145	0.706	0.004	0.066
RS L-Frontal/RDAN	0.997	0.325	0.030	0.163
RS L-Temporal/RDAN	0.031	0.862	0.001	0.055
RS R-Frontal/RDAN	5.111	0.007	0.089	0.402
RS R-Temporal/RDAN	1.944	0.173	0.057	0.272
RS Subcortical/RDAN	0.817	0.373	0.025	0.142
RS Cerebellar/RDAN	0.229	0.636	0.007	0.075
Group	0.268	0.609	0.008	0.079

*See abbreviations at the end of Table 3.

Multivariate effect for SC L/NL integrations X RS Subcortical,RFPN: Wilk’s lambda: 0.456; F(11,22) = 2.383, $p = 0.040$; partial eta squared = 0.544; power = 0.823.
9

Table 3C
Within-subject interactions involving SC language/non-language subsystem integrations and their matched RS language/non-language measures for L/COpN model.

Source	df	F	Sig.	Partial Eta Squared	Observed Power
SC L/NL integrations X RS L-Frontal/LCOpN	11.00	1.345	0.197	0.040	0.720
SC L/NL integrations X RS L-Temporal/LCOpN	11.00	1.345	0.198	0.040	0.719
SC L/NL integrations X RS R-Frontal/LCOpN	11.00	2.315	0.099	0.067	0.946
SC L/NL integrations X RS R-Temporal/LCOpN	11.00	0.974	0.469	0.030	0.544
SC L/NL integrations X RS Subcortical/LCOpN	11.00	0.667	0.770	0.020	0.370
SC L/NL integrations X RS Cerebellar/LCOpN	11.00	1.292	0.227	0.039	0.697
SC L/NL integrations X RS L-Frontal/RCOpN	11.00	1.357	0.192	0.041	0.724
SC L/NL integrations X RS L-Temporal/RCOpN	11.00	1.392	0.175	0.042	0.738
SC L/NL integrations X RS R-Frontal/RCOpN	11.00	0.618	0.814	0.019	0.342
SC L/NL integrations X RS R-Temporal/RCOpN	11.00	0.994	0.451	0.030	0.555
SC L/NL integrations X RS Subcortical/RCOpN	11.00	0.606	0.824	0.019	0.335
SC L/NL integrations X RS Cerebellar/RCOpN	11.00	0.707	0.732	0.022	0.394
SC L/NL integrations X Group	11.00	0.841	0.599	0.026	0.471

Between-subject effects for the above model

Source	F(1,32)	Sig.	Partial Eta Squared	Observed Power
RS L-Frontal/LCOpN	2.263	0.142	0.066	0.309
RS L-Temporal/LCOpN	2.647	0.114	0.076	0.352
RS R-Frontal/LCOpN	1.323	0.259	0.040	0.200
RS R-Temporal/LCOpN	0.695	0.411	0.021	0.128
RS Subcortical/LCOpN	0.206	0.653	0.006	0.073
RS Cerebellar/LCOpN	0.039	0.845	0.001	0.054
RS L-Frontal/RCOpN	0.187	0.668	0.006	0.070
RS L-Temporal/RCOpN	0.000	0.993	0.000	0.050
RS R-Frontal/RCOpN	0.013	0.992	0.086	0.391
RS R-Temporal/RCOpN	3.671	0.064	0.103	0.460
RS Subcortical/RCOpN	0.435	0.514	0.013	0.098
RS Cerebellar/RCOpN	0.179	0.675	0.006	0.069
Group	0.284	0.598	0.009	0.081

3.4. The relationship between dynamic integration and language competence in TLE

Through our PLS model we explored the adaptiveness of integration measures in TLE, testing whether the dynamic integration measures either during the RS or SC contexts predicted language competence (LC). The results showed that one latent factor explained 54.9% of the variance in LC, with two latent factors explaining 82% of the variance (27.1% incremental gain). Thirteen integration features demonstrated substantive variable importance values across the two factors (Fig. 3 shows the substantive loadings on factors 1 and 2; Supplementary Section shows the list of predictors).

The results revealed that negatively weighted SC task integration measures dominated both factors (84.6%), indicating high integration during task predicted low LC. Selected left RS integrations were present (subcortical/left DAN, left frontal/left FPN), each with positive weights indicating high RS integration predicted high LC. The subsystems containing the well-established hubs of the language dominant hemisphere (left frontal and temporal) were strong contributors to both factors, with the left frontal subsystem showing both right and left hemisphere NL integrations in relation to LC. Two of the three predictive left temporal SC integrations involved the left hemisphere (left CoPn, left DAN). The integrations involving the subcortical and cerebellar language subsystems comprised 38.4% (5 of 13) of the predictors of LC, with both right and left hemisphere NL subsystems involved. Also, the bilateral CoPn communication with the language hubs and subcortical/cerebellar language subsystems held the most presence among the integration predictors, revealing a strong inverse relation to LC. Overall, this suggested that L/NL integrations during the phasic/task state, which all displayed an inverse relation to LC, best explained language competence. Selected RS integrations also made a contribution, but showed a positive relationship to LC. The left hemisphere language hubs played a

Fig. 3. Partial Least Squares (PLS) plot showing highest variable importance scores. PLS model predicting language competency indicated 2 latent factors explaining 82% of the variance in language competence. SC and RS indicate condition for integration value. Color code of the bars indicate the specific language subsystem (predictors) involved in the L/NL integration, with the linked NL subsystem indicated on x axis. L – Left, R – Right, DAN – dorsal attention network, FPN – Frontoparietal network, CoPn – Cingulo-opercular network.
large predictive role, as did the bilateral COPN.

3.5. Relationship between RS and SC dynamics and clinical variables

We examined the potential association between key clinical characteristics (age of disease onset; disease duration) and the key dynamic properties within language system (recruitment, flexibility), and between the sets of L/NL integrations. Within the language system, earlier age of disease onset was associated with lower recruitment in the cerebellar subsystem during RS \((r = 0.59, P_{\text{Bonferroni}} = 0.023) \). No reliable association with flexibility of the language subsystems was present.

Regarding integration, earlier age of disease onset was associated with lower integration during RS, involving the L/DAN subsystem (left DAN/subcortical, \(r = 0.59 \), PBonferroni = 0.01; right DAN/right temporal, \(r = 0.47 \), PBonferroni = 0.01; right DAN/cerebellar, \(r = 0.492 \), PBonferroni = 0.07) and one instance of higher integration involving the left COpN/left frontal, \(r = -52 \), PBonferroni = 0.04). No reliable associations between age of disease onset and the dynamic measures during the SC task emerged. Thus, overall, age of onset did influence the probability of intra-communication within language subsystems, as well as with the level of integration between certain L and NL subsystems, though this appeared only in the context of RS. Regarding disease duration, no reliable association with recruitment or flexibility involving the language subsystems was present. In contrast, longer disease duration was associated with higher levels of L/NL integrations during the SC, primarily involving the right temporal subsystem (right temporal/right DAN, \(r = 0.77 \), PBonferroni = 0.001; right temporal/right FPN, \(r = 0.51 \), PBonferroni = 0.05; right temporal/right COPN, \(r = 0.52 \), PBonferroni = 0.05), suggesting the longer the disease impact the more the language subsystems depended on right hemisphere L/NL network integrations to maintain functionality.

As the cognitive reserve of the brain may be a feature that relates to the overall level of healthy functional dynamics in the diseased brain, we investigated whether our dynamic measures were related to overall verbal IQ, noting that IQ is often considered a surrogate of cognitive reserve (Stern, 2009). In this regard we utilized the WAIS-IV (VCI) and found that none of the language subsystem recruitment and flexibility measures, nor any of the various L/NL integration measures (L/DAN, L/FPN, L/COPN), during either RS or the SC, were associated with VCI in our TLE patients.

Lastly, we assessed whether the clinical epilepsy measures (e.g., age of onset) or cognitive reserve (VCI) mediated the relationship between the L/NL integrations and SC as observed in the PLS model (mediation analysis) (Wager et al., 2008). This analysis revealed that neither the clinical measures nor cognitive reserve mediated these relationships.

4. Discussion

In response to the first question we posed for this study regarding abnormal network dynamics in TLE, we utilized the emerging capabilities of dynamic network tools (Bassett and Sporns, 2017) to demonstrate that TLE patients do show a set of abnormal dynamics both during a language task and at rest. In so doing, we provided insight into the dynamic reconfigurations of multiple brain systems implementing language functioning in both TLE patients and matched healthy participants (see Fig. 4).

Overall, our TLE/HC comparisons revealed reduced recruitment in TLE relative to HCs, with this effect present when examined both within the language subsystems, and the broader L/NL subsystems. This suggested that over time during both the RS and SC conditions, community assignment was less fixed in TLE. However, subsequent analyses accounting for the role played by higher years of education in the HC’s weakened the significance of these findings for recruitment (see Supplementary Section for more details). Our findings for flexibility also showed the TLE group had reduced flexibility during the SC task compared to RS within the L subsystems, but increased flexibility during RS involving the DAN and the language hubs (left frontal and temporal, also right temporal). This indicated that a background level of abnormal communication entrainment between language and attention was present in TLE. Given the abnormally reduced levels of intra-language dynamics, this background entrainment of the language and DAN subsystems appeared to be an adaptive feature of TLE network dynamics, helping to explain their overall intact language competency (n. b., no experimental group difference in LC).

To determine the specific L/DAN communication accounting for this abnormality, we turned to our measure of integration and found striking differences in L/DAN subsystem integration, with the TLE patients showing increased integration compared to HCs between the right DAN and the left and right temporal lobe language subsystems. These increased integrations reflected a communication preference that was not related to condition (RS, SC). These L/DAN integrations were the only abnormal L/NL integrations seen in our data, suggesting these dynamics are specific and preferential to the L/DAN subsystems. Thus, the language-dominant temporal lobe pathology of TLE appeared to create a need to call upon functionalities involving top-down attentional control, perhaps with the goal of strongly linking the visual attention systems to the systems dedicated to lexical semantic processing.

Our finding on flexibility for TLE is consistent with a study by Chai et al. (2016) that showed greater flexibility for language ROIs in the resting state compared to a language task. The Chai results focused on healthy normals, thus our data extends this finding to TLE, but showed that this flexibility feature in TLE involved not just language ROI’s but increased flexibility with a non-language system. Given that the preferential inter-network integration findings unique to TLE involved just the DAN, and not the FPN and COPN systems, our findings did not appear to be a domain-general effect related to a broad call for extra-temporal functionality because of their temporal lobe pathology (Braver et al., 2003; Cole and Schneider, 2007; Blank et al., 2014; Blumstein and Amso, 2013; Thompson-Schill et al., 2005). As the dynamic changes we report involved both language and non-language systems, our data goes beyond the concepts of ‘core’ and ‘peripheral’ language systems described in early work (Bassett et al., 2015). Thus, our data provided insight into the adaptive dynamics that may be present in TLE, taking advantage of the computational properties of a non-language system to compensate for the impact of their temporal lobe pathology.

Because our data showed some differences in L/NL dynamics during the different contexts of rest and task for TLE, we sought to determine
more precisely the relationship between rest and task dynamics. We found that RS L/NL integrations, particularly for L/DAN and L/FPN, did influence the overall level of task L/NL integrations. Interestingly, if the RS integration involved a left (dominant) hemisphere language subsystem, the relationship was positive (i.e., higher RS was associated with higher SC integrations). In contrast, if the RS integration involved a right hemisphere language subsystem (contralateral to the seizure focus) the influence of RS on SC integrations was mostly negative (i.e., higher RS integrations associated with lower SC integrations). Our data made clear that there is not a one-to-one correspondence between RS and SC task integrations, meaning that specific RS L/NL integrations did not predict the same pair of SC integrations. Lastly, it is important to note, in contrast to the above noted findings on flexibility and integration with the DAN which were specific to TLE, the influence of RS integrations on SC task integrations were present in both the TLE patients and HCs, indicating that these RS/SC effects were not linked to TLE pathology.

Previous work has suggested that brain activity and functional connectivity during rest and task have high overall correspondence (Smith et al., 2009; Cole et al., 2016; Krienen et al., 2014). There is also strong evidence that the human language system retains similar functional organization during both task (Fedorenko and Thompson-Schill, 2014; Blank et al., 2014; Doucet et al., 2017) and resting state conditions (Doucet et al., 2017; Tomasi and Volkow, 2012; Muller and Meyer, 2014). This has led to the notion that resting-state functional networks provide the pathways over which cognitive task activations flow (Cole et al., 2016). In contrast to our data, the above work has largely relied on static not dynamic measures of functional connectivity. Accordingly, our data shows that there are important differences in inter-network allegiances in the RS and SC contexts when examined through the lenses of more transient network allegiances. Our data is the first to show that the level of pre-existing inter-network dynamic activity laid down at rest is important for L/NL task integrations, perhaps establishing the types of RS integrations associated with lower SC integrations. Our data made clear that baseline rest is important to note that the dynamic organization of the language system the relationship was positive (i.e., higher RS was associated with higher SC integrations). In contrast, if the RS integration involved a right hemisphere language subsystem (DAN, FPN, COCPN). This may be an indication that the longer epilepsy impacts the brain, the more likely the language system will be driven to integrate and rely on right hemisphere functionality.

Limitations and directions for future research

There are caveats to keep in mind with our study. The sample size is relatively small, reducing power and increasing the chance of type II error. Also, it is unclear the degree to which the preference in L/NL integrations reported here in TLE reflect biases in anatomical connectivity, and whether such biases are more important to language competence than RS or task dynamics. (Turken and Dronkers, 2011) It will be important to test the role of other ICN’s for potential preferential integrations with language systems during task or rest.

Several methodological considerations are relevant to this study. First, although identical parameters were used in both the SC and RS scans, the length of 5 min was relatively short. In this light, it is important to note that the dynamic organization of the language system was originally discovered with tasks lasting from only 4 to 6 min (Chai et al., 2016). Second, the selection of window length and sliding steps could still potentially influence our measures of network dynamics (Tellesford et al., 2016). The window length and sliding steps were selected based on an earlier published study from our group (He et al., 2018) where the task and rest scans were of identical length and alterations to the analytic pipeline of the main analyses (more windows, larger window length) produced identical results. Third, no individual responses to the covert SC task were recorded during performance. This limited our ability to link the dynamics with real-time performance profiles. Lastly, it is noteworthy that AEDs can influence the blood oxygen level-dependent signal (Jansen et al., 2006; Haneef et al., 2015; Wandsnieder et al., 2017) that might have a potential influence on patient/control differences. It is also well known that anti-seizure medications can cause cognitive deficits in areas such as language (Witt and Helmstaedter, 2013; Witt et al., 2015; Ojemann et al., 2001) and such medication effects were not tested in our data. Unfortunately, AED regimen heterogeneity (type, dosage, number of AEDs) prevented further testing of these effects.

5. Conclusion

We provided evidence that the brain areas in which core language functions reside dynamically interact with non-language functional networks to carry out linguistic functions. We demonstrated abnormal language subsystem dynamics both at task and rest though the abnormalities differ for each context. We demonstrated that abnormal integrations between the language and a non-language system (DAN) exist in TLE, and these were present both in tonic as well as phasic states. This integration was considered to reflect the entrainment of visual attention systems to the systems dedicated to lexical semantic processing. Our data made clear that the level of tonic, baseline integrations between the language subsystems and certain task-relevant NL systems (e.g., DAN,
FPN had a crucial influence on the general level of task integrations between L/NL systems, with this a normative finding not unique to epilepsy. We also revealed that a broad set of task-shaped transient integrations in TLE are predictive of language competency, indicating that these integrations are compensatory for patients with lower overall language skills.

While the organizational structure of multiple cognitive domains have been studied in TLE (Kellermann et al., 2017), less is known about how cognitive systems interact, and whether such interactions are specific to a task, or also characteristic of the baseline state. While the degree and the profile of cognitive deficits in TLE and epilepsy syndromes has been well described, much less is known about the profile and brain organization of TLE patients who maintain function. This work contributes on both fronts. Also, it is worth noting that our integration findings involving the right DAN is consistent with data showing that left TLE is associated with adaptive right hemisphere activations and connections in order to compensate for a diseased language hub (Thivard et al., 2005; Powell et al., 2007; Tracy et al., 2021).

Our data argued that network dynamic abnormalities provide important insights into language processing in TLE, and perhaps other neurologic diseases affecting the temporal lobe. Our data implied that damage to a wider network of language/non-language languages during the resting state may compromise the availability of those L/NL interactions for use under the demands of a language task. Our data reinforced other work showing that it is these language/non-language interactions that define the adequacy of language as much as its modular dedications (Catani and Mesulam, 2008; Catani and Mesulam, 2008). Indeed, a better understanding of the probability with which pathology might disrupt functions such as language will require an understanding of the dynamic language/non-language system interactions we have demonstrated here. We identified an important relationship between baseline/tonic and phasic/tasks contexts, and showed that the inter-network dynamics of both play a role in language competency, but have different purposes in establishing the network reorganizations that can be compensatory to performance. In so doing, we have advanced our understanding of the normative relationship between rest and task, and specified some of the network integrations and reorganizations that may be necessary to achieve compensated task performance and language competency in the setting of temporal lobe pathology. Through our focus on language/non-language interactions during both rest and task, we bring a new perspective to the characterization of language in TLE, increasing our understanding of language dysfunction and maladaptive seizure-driven plasticity in epilepsy, all toward advancing the process of developing personalized brain-based cognitive therapeutics.

Funding

Study was funded by the National Institute of Health, R01 NS112816-01. Michael R Sperling acknowledges funding support from the National Institute of Health, R01 NS106611 and U01 NS113198.

Acknowledgement

We would like to thank the epilepsy patients and the healthy participants for contributing to this study.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.nicl.2021.102861.

References

Tracy, J.L., Waldrorn, B., Glensor, D., et al., 2009. Hemispheric lateralization and language skill coherence in temporal lobe epilepsy. Cortex 45 (10), 1178–1189.
He, X., Bassett, D.S., Chaitanya, G., Sperling, M.R., Kozlowski, L., Tracy, J.L., 2018. Disrupted dynamic network reconfiguration of the language system in temporal lobe epilepsy. Brain 141 (5), 1375–1389.
Gaillard, W.D., Berl, M.M., Moore, E.N., et al., 2007. Atypical language in lesionsal and nonlesional complex partial epilepsy. Neurology 69 (18), 1761–1771.
Thivard, L., Hombrouck, J., du Montcel, S.T., et al., 2005. Productive and perceptive language reorganization in temporal lobe epilepsy. Neuroimage 24 (3), 841–851.
Dijkstra, R.K., Ferrier, C.H., 2013. Patterns and predictors of atypical language representation in epilepsy. J. Neurol. Neurosurg. Psychiatry 84 (4), 379–385.
Bell, B., Herrmann, B., Seidenberg, M., et al., 2002. Ipsilateral reorganization of language in early-onset left temporal lobe epilepsy. Epilepsy Behav. 3 (2), 158–164.
Mbwana, J., Berl, M.M., Ritil, E.K., et al., 2009. Limitations to plasticity of language network reorganization in localized related epilepsy. Brain 132 (Pt 2), 347–356.
Balter, S., Lin, G., Leyden, K.M., Paul, B.M., McDonald, C.R., 2019. Neuroimaging correlates of language network impairment and reorganization in temporal lobe epilepsy. Brain Lang, 193, 31–44.
Hickox, G., Poppel, D., 2007. The cortical organization of speech processing. Nat. Rev. Neurosci. 8 (5), 395–402.
Fridriksson, J., den Ouden, D.B., Hillis, A.E., et al., 2018. Anatomy of aphasia revisited. Brain 141 (3), 848–862.
Osher, D.E., Bissenden, J.A., Somers, D.C., 2019. Predicting an individual’s dorsal attention network activity from functional connectivity fingerprints. J. Neurophysiol. 122 (1), 232–240.
Sheffield, J.M., Repovs, G., Harms, M.P., et al., 2015. Fronto-parietal and cingulo-opercular network integrity and cognition in health and schizophrenia. Neuropsychologia. 73, 82–93.
Vaden Jr., K.L., Kuchinsky, S.E., Cute, S.L., Ahlstrom, J.B., Dubno, J.R., Eckert, M.A., 2013. The cingulo-opercular network provides word-recognition benefit. J. Neurosci. 33 (48), 18979–18986.
Ashtrizadeh, M., Perrine, K., Elbaz, R., et al., 2005. Mapping the functional anatomy of sentence comprehension and application to presurgical evaluation of patients with brain tumor. AJNR Am. J. Neuroradiol. 26 (6), 1461–1468.
Just, M.A., Carpenter, P.A., Keller, T.A., Eddy, W.F., Thulborn, K.R., 1996. Brain activation modulated by sentence comprehension. Science 274 (5284), 114–116.
Price, C.J., 2010. The anatomy of language: a review of 100 fMRI studies published in 2009. Ann. N. Y. Acad. Sci. 1191, 62–88.
Chai, L.R., Mattar, M.G., Blank, I.A., Fedorenko, E., Bassett, D.S., 2016. Functional network dynamics of the language system. Cereb. Cortex 26 (11), 4146–4159.
Bassett, D.S., Wymbs, N.F., Porter, M.A., Mucha, P.J., Carlson, J.M., Grafton, S.T., 2011. Dynamic reconfiguration of human brain networks during learning. Proc. Natl. Acad. Sci. USA 108 (18), 7641–7646.
Bassett, D.S., Wymbs, N.F., Rombach, M.P., Porter, M.A., Mucha, P.J., Grafton, S.T., 2013. Task-based core-periphery organization of human brain dynamics. PLoS Comput. Biol. 9 (9), e1003171.
Fedorenko, E., Thompson-Schill, S.L., 2014. Reworking the language network. Trends Cogn Sci. 18 (3), 120–126.
Ji, J.L., Spronk, M., Kulkarni, K., Repovs, G., Anticevic, A., Cole, M.W., 2019. Mapping the human brain’s cortico-subcortical functional network organization. Neuroimage 185, 35–57.
Mucha, P.J., Richardson, T., Macon, K., Porter, M.A., Onnela, J.-P., 2010. Community Structure in time-dependent, multivariate, and multiplex networks. Science 328 (5980), 876–879.
Bassett, D.S., Yang, M., Wymbs, N.F., Grafton, S.T., 2015. Learning-induced autonomy of sensorimotor systems. Nat. Neurosci. 18 (5), 744–751.
Mattar, M.G., Cole, M.W., Thompson-Schill, S.L., Bassett, D.S., 2015. A Functional cartography of cognitive systems. PLoS Comput. Biol. 11 (12), e1004533.
Sperling, M.R., O’Connor, M.J., Saykin, A.J., Plummer, C., 1996. Temporal lobectomy for refractory epilepsy. JAMA 276 (6), 470–475.
Knecht, S., Draeger, B., Deppe, M., et al., 2000. Handedness and hemispheric language dominance in healthy humans. Brain 123 (Pt 2), 2512–2518.
Oldfield, R.C., 1971. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9 (1), 97–113.
Lange, R.T. 2011. Verbal Comprehension Index. In: Kreutzer JS, DeLuca J, and Caplan B Encyclopedia of Clinical Neuropsychology. Springer New York, 2602–2603.
Gladding, J.A., Schuman, C.C., Evans, G.M., Miller, S.W., Heaton, R.K., 1999. Norms for letter and category fluency: demographic corrections for age, education, and ethnicity. Assessment 6 (2), 147–178.
Benton, A.L.H.K., Sivan, A.B. (Eds.), 1994. Multilingual aphasia examination. AJA Associates.

Jenkinson, M., Bannister, P., Brady, M., Smith, S., 2002. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17 (2), 825–841.

Power, J.D., Barnes, K.A., Snyder, A.Z., Slaglagar, B.L., Petersen, S.E., 2012. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59 (3), 2142–2154.

Glasser, M.F., Coalson, T.S., Robinson, E.C., et al., 2016. A multi-modal parcellation of human cerebral cortex. Nature 536 (7615), 171–178.

Percival, D.B., Walden, A.T. (Eds.), 2000. Wavelet Methods for Time Series Analysis. Cambridge University Press.

Braun, U., Schafer, A., Bassett, D.S., et al., 2016. Dynamic brain network reconfiguration as a potential schizophrenia genetic risk mechanism modulated by NMDA receptor function. Proc. Natl. Acad. Sci. USA 113 (44), 12568–12573.

Friederici, A.D., 2002. Towards a neural basis of auditory sentence processing. Trends Cogn. Sci. 6 (2), 78–84.

Gabrieli, J.D.E., 1998. COGNITIVE NEUROSCIENCE OF HUMAN MEMORY. Annu. Rev.

Cole, M.W., Schneider, W., 2007. The cognitive control network: Integrated cortical systems but collaborative roles. Neuroscientist 20 (2), 150–159.

Braver, T.S., Reynolds, J.R., Donaldson, D.I., 2003. Neural mechanisms of transient and sustained cognitive control during task switching. Neuron 39 (4), 713–726.

Poldrack, R.A., Wagner, A.D., Prull, M.W., Desmond, J.E., Glover, G.H., Gabrieli, J.D., 2001. Activity flow over resting-state networks shapes cognitive task activations. Nat. Neurosci. 19 (12), 1718–1726.

Krienen, F.M., Yeo, B.T., Buckner, R.L., 2014. Reconfigurable task-dependent functional coupling modes cluster around a core functional architecture. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369 (1653).

Douket, G.E., He, X., Sperling, M.R., Sharan, A., Tracy, J.J., 2017. From “rest” to language task: Task activation selects and prunes from broader resting-state network. Hum. Brain Mapp. 38 (5), 2540–2552.

Tomasi, D., Volkow, N.D., 2012. Resting functional connectivity of language networks: characterization and reproducibility. Mol. Psychiatry 17 (8), 841–854.

Muller, A.M., Meyer, M., 2014. Language in the brain at rest: new insights from resting state data and graph theoretical analysis. Front. Hum. Neurosci. 8, 228.

Kim, E.-H., Ko, T.-S., 2016. Cognitive impairment in childhood onset epilepsy: up-to-date information about its causes. Korean J Pediatr. 59 (4), 155–164.

Turken, A.U., Donkers, N.F., 2011. The neural architecture of the language comprehension network: converging evidence from lesion and connectivity analyses. Front. Syst. Neurosci. 5, 1.

Telesford, Q.K., Lynall, M.E., Vettel, J., Miller, M.B., Grafston, S.T., Bassett, D.S., 2016. Detection of functional brain network reconfiguration during task-driven cognitive states. Neuroimage. 142, 198–210.

Jansen, J.F., Aldenkamp, A.P., Marian Majoe, H.J., et al., 2006. Functional MRI reveals declined prefrontal cortex activation in patients with epilepsy on topiramate therapy. Epilepsy Behav. 9 (1), 181–185.

Hansef, Z., Levin, H.S., Chiang, S., 2015. Brain Graph Topology Changes Associated with Anti-Epileptic Drug Use. Brain Connect. 5 (5), 284–291.

Wandschneider, B., Burdett, J., Townsend, L., et al., 2017. Effect of topiramate and zonisamide on fMRI cognitive networks. Neurology. 88 (12), 1165–1171.

Witt, J.A., Helmstaedter, C., 2013. Monitoring the cognitive effects of antiepileptic pharmacotherapy—approaching the individual patient. Epilepsy Behav. 26 (3), 450–456.

Witt, J.A., Elger, C.E., Helmstaedter, C., 2015. Adverse cognitive effects of antiepileptic pharmacotherapy: Each additional drug matters. Eur. Neuropsychopharmacol. 25 (11), 1954–1959.

Ojemann, L.M., Ojemann, G.A., Dodrill, C.B., Crawford, C.A., Holmes, M.D., Dudley, D. L., 2001. Language disturbances as side effects of topiramate and zonisamide therapy. Epilepsy Behav. 2 (6), 579–584.

Kellermann, T.S., Mueller, M., Carter, E.G., et al., 2017. Prediction of specific depressive symptom clusters in youth with epilepsy: the NDDI-E-Y versus Neuro-QOL SF. Epilepsia 58 (8), 1370–1379.

Powell, H.W., Parker, G.J., Alexander, D.C., et al., 2007. Abnormalities of language networks in temporal lobe epilepsy. Neuroimage 36 (1), 209–221.

Tracy, J.J., Chaudhary, K., Modi, S., et al., 2021. Computational support, not primacy, distinguishes compensatory memory reorganization in epilepsy. Brain Commun. 3 (2).

Catani, M., Mesulam, M., 2008. The arcuate fasciculus and the disconnection theme in language and aphasia: history and current state. Cortex 44 (8), 953–961.

Catani, M., Mesulam, M., 2008. What is a disconnection syndrome? Cortex 44 (8), 911–913.