Impact of Process Variations on Delay in Carbon Nanotube Based Bus Interconnects At Different Technology Nodes
Ch. Praveen Kumar, E. Sreenivasa Rao, P. Chandrasekhar

Abstract: This paper presents the impact of process variations in carbon nanotube based advanced bus interconnects such as single walled carbon nanotube (SWCNT), multi walled carbon nanotube (MWCNT) and mixed carbon nanotube bundle (MCB). The impact of temperature variations on parasitics of interconnects for variable interconnects at different technology nodes is analyzed. From the analysis, it reveal that the mixed bundle carbon nanotube offering the lower parasitics even higher temperatures compared to SWCNT and MWCNT which leads to lower delay and crosstalk effect when it is used in bus interconnects. Further we have also done delay analysis by changing the bundle area, number of shells and metallic ratio of three interconnect structures with the insertion of obtained parasitics using empirical formulas. It is proven that the mixed CNT (MCB) interconnect structures offered a lesser delay compared to other CNT interconnect structures. All the analysis has been done using MATLAB at 22nm and 32nm technology nodes.

Keywords: Single walled carbon nanotube (SWCNT), multi walled carbon nanotube (MWCNT) and mixed carbon nanotube bundle (MCB), temperature dependent, parasitics, interconnects.

I. INTRODUCTION

In current nanometer regime, MOS technology especially at below 32nm is suffered due to performance degradation of conventional copper interconnect material for very large scale integration (VLSI). Due to increasing interconnect lengths, Cu/ low-k materials have to face certain issues like electromigration. Electromigration induced hillock and void formation can damage the circuit performance at global level of interconnects [1]. To avoid such type of issues, researchers are like to find some alternative material suitable for global on-chip interconnects. In search of novel interconnect materials, carbon nanotubes (CNTs) can be considered as suitable material for global VLSI interconnects. In general, CNTs are well-known as carbon allotropes [1].

The cylindrical structure is basically used to make it by rolling up graphene sheets. Graphene is consisted by monolayer sheet of graphite having sp^2 carbon atomic bond arrangement of honeycomb lattice structures. Encouragingly, the sp^2 bonding of atoms in diamond is weaker than sp^3 bonding in graphite that makes graphene extremely strong material [2]. Therefore, the atomic structure and physical properties of CNTs are unique because it is capable to carry large amount of current [3] as well as provides high thermal conductivity [4], long ballistic transport length [5], and high mechanical strength [6-8].

Basically, CNTs have unique atomic structure made by rolled up graphene sheets. Depending on the number CNT shells, the interconnect lines can be categorized as single-walled CNTs (SWCNTs) and multi-walled CNTs (MWCNTs). A SWCNT bundle is formed by a number of SWCNTs packed in the bundle. In this research paper, the analysis of propagation delay is carried out for SWCNT and MWCNT having different widths and heights. The bundle height and width is varied at different technology nodes such as 32nm and 22nm followed by ITRS 2016 [9]. At the time of fabrication, the primary concern with different diameter controlling methods is just because of limitations as well as effective parameters [10]. Hence, it is impractical to realize a pure MWCNT bundle having CNTs with similar diameters. Therefore, a realistic bundle having CNTs of different diameters can be preferred to fabricate and model in future global VLSI interconnects [11-17]. Due to the less complexity involved in fabrication, this paper focused on a mixed CNT bundle (MCB), wherein SWCNTs and MWCNTs are randomly distributed [10].

This paper presents the impact of process variations in carbon nanotube based advanced bus interconnects such as single walled carbon nanotube (SWCNT), multi walled carbon nanotube (MWCNT) and mixed carbon nanotube bundle (MCB). The impact of temperature variations on parasitics of interconnects for variable interconnects at different technology nodes is analyzed. From the analysis, it reveal that the mixed bundle carbon nanotube offering the lower parasitics even higher temperatures compared to SWCNT and MWCNT which leads to lower delay and crosstalk effect when it is used in bus interconnects. Further we have also done delay analysis by changing the bundle area, number of shells and metallic ratio of three interconnect structures with the insertion of obtained parasitics using empirical formulas. It is proven that the mixed CNT (MCB) interconnect structures offered a lesser delay compared to other CNT interconnect structures. All the analysis has been done using MATLAB at 22nm and 32nm technology nodes.
The rest of the paper is organized as follows: section 2 deals about equivalent RLC Parameters of SWCNT, MWCNT and MCB Interconnects. The time delay analysis with empirical formulas is discussed in section 3. Finally, section 4 concludes the work.

II. EQUIVALENT RLC PARAMETERS OF SWCNT, MWCNT AND MCB INTERCONNECTS

This section deals the estimation of resistance, inductance and capacitance of single walled carbon nanotube (SWCNT), multi walled carbon nanotube (MWCNT) and mixed carbon nanotube bundle (MCB) interconnects.

A. Single walled carbon nanotube (SWCNT)

Interconnect line is realized by means of a bundle of N equally spaced SWCNTs, fixed at the Vander Waals distance δ, having the same radius r_{sw} and in the hypothesis of a perfect hexagonal packed structure[18,19].

Lattice constant $\Delta = 2r_{sw} + \delta \quad (1)$

Bundle radius $r_b = r_{sw} + \Delta (Ns - 1) \quad (2)$

Number of SWCNTs in the hexagonal structure is

$Ns = \text{int}_\sim \left(\frac{\omega}{2} - \frac{r_{sw}}{\Delta}\right) + 1 \quad (3)$

Number of conducting Channels

$n = \begin{cases} 2aTr_{sw} + b & r_{sw} > \frac{dT}{2T} \\ \frac{2}{3} & r_{sw} < \frac{dT}{2T} \end{cases} \quad (5)$

Contact Resistance $R_m = \frac{1}{N} \left(\frac{R}{2N} + R_{mc}\right) \quad (6)$

Effective Mean Free Path $\gamma = \frac{2 \times 10^3}{T - T_0} r_{sw} \quad (7)$

Resistance $R = \frac{R}{2nN\gamma} \quad (8)$

Capacitance

$C = \begin{cases} \cosh^{-1} \left[\frac{(rN + d)}{rN}\right] + \frac{1}{C_q} \right]^{-1} \quad (9) \end{cases}$

Inductance $L = \frac{L_k}{2ntot} + L_m \quad (10)$

B. Multi walled carbon nanotube (MWCNT)

Interconnect line is realized by means of a single MWCNT with an external radius $r_N = \frac{W}{2}$

Number of shells as

$N = \text{int}_\sim \left[\frac{r_N - r_l}{\delta}\right] + 1 \quad (11)$

The lumped parameter R_m

$R_m = \left[\sum_{j=1}^{N} \left(\frac{R}{2nj} + R_m\right)^{-1}\right]^{-1} \quad (12)$

Number of channels

$n_j = \begin{cases} 2aTr_j + b & r_j > \frac{dT}{2T} \\ \frac{2}{3} & r_j < \frac{dT}{2T} \end{cases} \quad (13)$

Total Number of conducting Channels n_{tot}

$n_{tot} = \sum_{j=1}^{N} n_j \quad (14)$

Mean free path $\gamma = \frac{2 \times 10^3}{T - T_0} r_{sw} \quad (15)$

Resistance of Multiwall Carbon Nano Tube

$R = \sum_{i=1}^{2N} \left(\gamma^{-1}\right) \quad (16)$

Capacitance of MWCNT

$C = \begin{cases} \cosh^{-1} \left[\left(\frac{rN}{r}\right)\right] + \frac{1}{C_q} \end{cases} \quad (17)$

Magnetic Inductance $L_k = \frac{h}{v_j \times 2 \times e^2} \quad (18)$

Inductance of Multiwall Carbon Nano Tube

$L = \frac{\mu_0}{2\pi} \cosh^{-1} \left[\left(\frac{rN + d}{rN}\right) + \frac{L_k}{2ntot}\right] \quad (19)$

C. Mixed Carbon Nano Tube (MCB)

A SWCNT and MWCNT bundle of width, W, and height, H, are placed above the ground plane at a distance. The diameter of SWCNT is D,
whereas the MWCNT consists of inner shell and outer shell diameters of Dinner and D_{outer}, respectively. The inter shell spacing of MWCNT is equivalent to the Vander-Waals’ gap $δ=0.34\text{nm}$ [18].

The outer shell diameter of MWCNT

$$D_{outer} = D_{inner} + 2*δ*(p-1)$$

(20)

Total Number of CNTs in a bundle

$$N_{bundle} = \left[N_a * N_b - \left(\frac{N_a}{2} \right) \right]$$

(21)

Number of CNTs in vertical direction

$$N_a = \left[\frac{H}{(D+δ)} \right]$$

(22)

Number of CNTs in Horizontal direction

$$N_a = \left[\frac{W}{(D+δ)} \right]$$

(23)

Conducting Channels of each shell

$$N_i(D_t) = n_j = \begin{cases} \frac{K_1TD_2 + K_2}{2} & \text{for } D_t > \frac{dT}{2T} \\ \frac{2}{3} & \text{for } D_t < \frac{dT}{2T} \end{cases}$$

(24)

Total Number of Conducting Channels of bundle SWCNT

$$N_{tot}^{SWCNT} = (N_{bundle}^{SWCNT} * N_i(D_t))$$

(25)

Total Number of Conducting Channels of bundle MWCNT

$$N_{tot}^{MWCNT} = (N_{bundle}^{MWCNT} * \sum_{i=0}^{p} N_i(D_t))$$

(26)

Quantum Capacitance

$$C_q = \frac{2*e^2}{h*v_f} \times \left[(N_{tot})^{SWCNT} + (N_{tot})^{MWCNT} \right]$$

(31)

Electrostatic Capacitance

$$C_e = \frac{2*π*ε_0*ε_r}{\cos^{-1}\left(\frac{D_{outer} + 2Ht}{D_{outer}} \right)}$$

(32)

D. RLC Values of SWCNT, MWCNT and MCB at different technology nodes

In this section, we have calculated the resistance, capacitance and inductance values of different interconnect structures such as SWCNT, MWCNT and MCB by varying length at 22nm and 32nm technology nodes. From the analysis, it is evident that the resistance, inductance and capacitance is very less in mixed CNTs compared to the MWCNT and SWCNT interconnects. The resistance, capacitance and inductance of three interconnect structures such as MCB, MWCNT and SWCNT are tabulated in table I by varying the interconnect length at 22nm. For all the MATLAB simulations MCB has given a very less R, L, C values. We have also tabulated the resistance, capacitance and inductance of for the same three interconnect structures such as MCB, MWCNT and SWCNT in table II by varying the interconnect length at 32nm. All the values calculated at room temperature and even temperature changes, the RLC parameters changes. These RLC values are used to analyze time delay performance of different interconnects by changing the temperature at different technology nodes.

III. TIME DELAY ANALYSIS

This section deals the time delay analysis of single walled carbon nanotube (SWCNT), multi walled carbon nanotube (MWCNT) and mixed carbon nanotube bundle (MCB) interconnects. To evaluate the performance of carbon nano interconnects, the time delay analysis has to perform. The analytical expression has considered for examine the 50% time delay is [19]

$$T_{50\%} = \left(1.48* q + e^{-0.9q} \right) * \sqrt{L_q (C_i + C_L)}$$

(33)

$$q = \frac{2(R_f + R_m)(C_i + C_L) + R_f(C_i + 2C_i)}{\sqrt{L_q (C_i + C_L)}}$$

(34)

Where R_f and C_L represent the input resistance and load capacitance.
Impact of Process Variations on Delay in Carbon Nanotube Based Bus Interconnects At Different Technology Nodes

Table I: Estimated R, L and C Values of MCB, MWCNT and SWCNT at 22nm

Length (µm)	MCB	MWCNT	SWCNT						
	R (KΩ)	L (nH)	C (fF)	R (KΩ)	L (nH)	C (fF)	R (KΩ)	L (nH)	C (fF)
200	1.38	3.22	1.964	2.08	52.6	16.1	45	56.2	11.9
500	3.4	8.05	4.91	5.2	131	40.4	112.5	140	29.8
1000	6.9	16.1	9.82	10.4	263	80.9	225	281	59.7
1500	10.3	24.2	14.7	15.6	394	121	337	421	89
2000	13.8	32.3	19.6	20.8	526	161	450	562	119

Table II: Estimated R, L and C Values of MCB, MWCNT and SWCNT at 32nm

Length (µm)	MCB	MWCNT	SWCNT						
	R (KΩ)	L (nH)	C (fF)	R (KΩ)	L (nH)	C (fF)	R (KΩ)	L (nH)	C (fF)
200	0.6	1.54	1.97	1.2	32	16.6	28.8	36	11.99
500	1.6	3.85	4.93	3.02	80	41.6	72	90.3	30.11
1000	3.2	7.7	9.93	6.04	160	83	144	180	60.7
1500	4.8	11.5	14.81	9.06	240	124	216	270	89.6
2000	6.94	15.4	19.65	12.08	320	166	288	361	119.8

Figure 1: Delay variation of SWCNT, MWCNT and MCB interconnects for different temperatures by varying the length at 22nm technology

From the time delay expressions, we have estimated the time delay for different interconnect structures such as MCB, SWCNT and MWCNT by varying the process parameters such as temperature, bundle area and metallic ratio with respect to length of the interconnect. All the interconnect dimensions are considered from ITRS data at different technology nodes such as 22nm and 32nm [9].

DOI: 10.35940/ijeat.A2034.109119
The time delay analyzed and plotted in figure 1 and figure 2 for different temperatures such as 250k, 300k, 350k, 400k with respect to interconnect length variation. In all the graphs mixed CNT bundle interconnect has given a better performance compared to other interconnects such as SWCNT and MWCNT. Actual process parameters variation range is for temperature is 293.4k to 393.5k, for metallic ratio is considered 1/3, but it can vary maximum 30% and for densely packed bundle area is considered 0.077µm², it can also vary maximum 10% in width and height [18]. We have also estimated the delay values at room temperature (300k), 10% bundle area variation, metallic ratio 0.3 (30% variation) for all interconnect structures such as SWCNT, 3-shell MWCNT, 5-shell MWCNT and MCB at 22nm and 32nm technology nodes, shown in figure 3, figure 4 and figure 5. All the simulations has done in MATLAB and it is evident that the mixed CNT (MCB) interconnect structure offered a lesser delay compared to other CNT interconnect structures.

Figure 2: Delay variation of SWCNT, MWCNT and MCB interconnects for different temperatures by varying the length at 32nm technology

Figure 3: Delay variation of SWCNT, MWCNT (3 and 5-shell) and MCB interconnects for 300k temperature by varying the length at (a) 22nm technology (b) 32nm technology
Impact of Process Variations on Delay in Carbon Nanotube Based Bus Interconnects At Different Technology Nodes

Figure 4: Delay variation of SWCNT, MWCNT (3 and 5-shell) and MCB interconnects for 10% variation of bundle area by varying the length at (a) 22nm technology (b) 32nm technology

Figure 5: Delay variation of SWCNT, MWCNT (3 and 5-shell) and MCB interconnects for 30% variation of metallic ratio by varying the length at (a) 22nm technology (b) 32nm technology

IV. CONCLUSION

The impact of process variations in carbon nanotube based advanced bus interconnects such as single walled carbon nanotube (SWCNT), multi walled carbon nanotube (MWCNT) and mixed carbon nanotube bundle (MCB) are analyzed and the tabular and graphical observations are reported. From the analysis, it reveal that the mixed bundle carbon nanotube offering the lower paracitics even higher temperatures compared to SWCNT and MWCNT which leads to offer lower delay and crosstalk. In addition,
also analyzed the delay by changing the bundle area, number of shells and metallic ratio of three interconnect structures with the insertion of obtained parasitics parameters at 22nm and 32nm technology nodes. It is proven that the mixed CNT (MCB) interconnect structures offered a lesser delay compared to other CNT interconnect structures.

REFERENCES

1. G. Trevilliyan, D. Kung, R. Puri, L. N. Reddy, and M. A. Kazda, “An integrated environment for technology closure of deep-submicron IC designs,” IEEE Design & Test of Computers, vol. 21, no. 1, pp. 14–22, Jan./Feb. 2004.

2. H. Li, C. Xu, N. Srivastava and K. Banerjee, “Carbon Nanomaterials for Next-Generation Interconnects and Passives: Physics, Status and Prospects,” IEEE Trans. Electron Devices, vol. 56, no. 9, pp. 1799-1821, Sep. 2009.

3. B. Q. Wei, R. Vajtai, and P. M. Ajayan, “Reliability and current carrying capacity of carbon nanotubes,” Appl. Phys. Lett., vol. 79, no. 8, pp. 1172-1174, 2001.

4. P. G. Collins, M. Hersam, M. Arnold, R. Martel, and P. Avouris, “Current saturation and electrical breakdown in multiwalled carbon nanotubes,” Phys. Rev. Lett., vol. 86, no. 14, pp. 3128–3131, 2001.

5. A. Javey and J. Kong, Carbon Nanotube Electronics, Springer, 2009.

6. S. Berber, Y.-K. Kwon, and D. Tomanek, “Unusually high thermal conductivity of carbon nanotubes,” Phys. Rev. Lett., vol. 84, no. 20, pp. 4613–4616, 2000.

7. C. Venkataiah, K. Satyaprasad, T. Jayachandra Prasad, “Signal integrity analysis for coupled SWCNT interconnects using stable recursive algorithm”, Microelectronics Journal, volume. 74, pp. 13-23, 2018.

8. M. K. Majumder, N. D. Pandya, B. K. Kaushik, and S. K. Manhas, “Analysis of MWCNT and bundled SWCNT interconnects: Impact on crosstalk and area,” IEEE Electron Device Lett., vol. 33, no. 8, pp. 1180-1182, Aug. 2012.

9. 2016 International Technology Roadmap for Semiconductors [Online], Available: http://public.itrs.net/.

10. C. L. Cheung, A. Kurtz, H. Park, and C. M. Lieber, “Diameter-controlled synthesis of carbon nanotubes,” J. Phys. Chem., vol. 106, no. 10, pp. 2429–2433, Feb. 2002.

11. R. Dhiman and R. Chandel. “Delay analysis of buffer inserted sub threshold interconnects” Analog Integr Circ Sig Process, Springer, DOI 10.1007/s10470-016-0860-8, Sep. 2016.

12. C. Venkataiah, K. Satyaprasad, T. Jayachandra Prasad, “Crosstalk induced performance analysis of single walled carbon nanotube interconnects using stable finite difference time domain model”, Journal of nanoelectronics and optoelectronics. Vol. 12, pp. 1-10, 2017.

13. M K. Majumder, P. K. Das, V. Ramesh Kumar, and B. K. Kaushik, “Crosstalk Induced Delay Analysis of Randomly Distributed Mixed CNT Bundle Interconnect,” Journal of Circuits, Systems and Computers (JCSSC), vol. 24, no. 10, pp. 1550145-1 – 1550145-15, 2015.

14. M. K. Majumder, J. Kumar, V. Ramesh Kumar, and B. K. Kaushik, “Performance analysis for randomly distributed mixed CNT bundle interconnects,” IET Micro & Nano Letters, vol. 9, no. 11, pp. 792-796, 2014.

15. C. Venkataiah, K. Satya Prasad, T. Jaya Chandra Prasad “Effect of Interconnect parasitic variations on circuit performance parameters” IEEE International conference on communication and electronics systems(ICCES), Coimbatore, India, October, 2016.

16. Raychowdhury A, Mukhopadhyay S, Roy K. A circuitcompatible model of ballistic carbon nanotube field-effect transistors. IEEE Trans Comput Aided Design Integr Circuits Syst, 2004, 23(10): 1411.

17. C. Venkataiah, K. Satyaprasad, T. Jayachandra Prasad, “Insertion of optimal number of repeaters in pipelined nano interconnects for transient delay minimization”, Circuit systems and signal processing, June, 2018. DOI: 10.1007/s00034-018-0876-7.

18. M. K. Majumder, J. Kumar, and B. K. Kaushik, “Process Induced Delay Variation in SWCNT, MWCNT and Mixed CNT Interconnects,” IETE Journal of Research, vol. 61, no. 5, pp. 533-540, Apr. 2015.

19. B. De Vivo, L. Egiziano, P. Lambert, and V. Tucci, “Range analysis on the wave propagation properties of a single wall carbon nano tube,” presented at the 12th IEEEWorkshop Signal Propagation on Interconnects, Avignon, France, May 12–15, 2008.

AUTHORS PROFILE

Ch. Praveen Kumar received the B.E. degree in Electronics and Communication Engineering from MYSR College of Engineering, Coimbatore, India, in 2007, and the M.Tech. degree from Motilal Nehru National Institute of Technology, Allahabad, India, in 2009. He is currently working towards the Ph.D. degree from the OSMANIA University, Hyderabad, India. His current research interests include modeling of VLSI on-chip interconnects, and carbon-based nano interconnects.

E. Sreenivasa Rao received the Ph.D. degree from Jawaharlal Nehru Technological University, Hyderabad, India. He has more than 30 years of research and teaching experience and published several papers in reputed journals. His current research interests include Communications, Wireless Networks, Computer Networks, and VLSI.

P. Chandrasekhar received the Ph.D. degree from OSMANIA University, Hyderabad, India. He has more than 30 years of research and teaching experience and published several papers in reputed journals. His current research interests include development of high performance Computational Electro-magnetic and efficient FPGA based signal processing algorithms and Design Automation, and VLSI.