Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Mobility support for disadvantaged and disabled travelers during pandemic or similar situations

Ye Liua, Yu Qiana,*, Gurcan Comertb, Negash Begashawb

a Department of Civil and Environmental Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208, USA
b Computer Science, Physics, and Engineering Department, Benedict College, 1600 Harden Street, Columbia, SC 29204, USA

ARTICLE INFO

Keywords:
Mobility support
Disadvantaged traveler
Fleet management
Multi-stage stochastic integer programming
Sample Average Approximation
Rolling Horizon

ABSTRACT

The COVID-19 lockdown has reduced public transportation service to the disadvantaged and disabled people who urgently need adequate mobility to obtain essential suppliers. This paper aims to improve the life quality of people with disabilities and elderly people by addressing social exclusion, accessibility, and mobility issues. Demand responsive transport services are frequently offered in the context of door-to-door transportation of the elderly and persons with disabilities. We study and compare two frameworks. We apply both Sample average approximation (SAA) and Rolling Horizon (RH) to optimize a car sharing system for the total cost, including initiation cost and operation cost after fleet size is determined. The model is implemented with given geographic conditions and other local information to be tailored for specific applications for local communities. Given that no historical data is available, random sample data is generated to simulate expected demands. We consider three types of probability distributions for daily demand data, and the results generated using three different distributions are being examined and compared. The research shows that the demand data following a normal distribution results in the minimum total cost. Additionally, we study the impact of several factors on total cost, including demand fulfillment rates and operation hours. Our results suggest that the impact of fulfillment rate on fleet size is exponential after a threshold under all three types of daily demand data, and extended operation hours can significantly reduce the total cost. Finally, the paper provides applicable frameworks for city planners, NPOs, and policymakers to better allocate limited resources to implement the carsharing system when little to no historical travel information is available for low-density population areas. It is anticipated that the outcome from this research would benefit disadvantaged and disabled travelers during COVID-19 or similar difficult situations in the future.

1. Introduction

Criden (2008) pointed out that access to transportation has become limited to low-income individuals and families and as the basic amenities are located in the suburbs while low-income populations reside in rural areas and central cities. The limited access to transportation can pose challenges to those underserved individuals and households in many aspects. Álvaro Aguiler-García (2022) pointed out that the individuals with a higher usage to current carsharing facilities are usually described as male, young, wealthy, well-educated, and those who reside in denser urban areas. Certain populations, such as elderly people and people with disabilities, are more vulnerable to transportation barriers (Dabelko-Schoeny, 2021).

The carsharing and ridesharing services have generated a wide variety of impacts in different aspects, including environment, human behavior, and economy (Shaheen and Cohen, 2020). However, since the pandemic, ride-hailing services provided by Uber and Lyft have been decreasing with less available drivers. The pandemic has led to the city lockdowns, resulting restrictions on billions of people worldwide. Among them, a group of disadvantaged and disabled people are facing greater challenges, especially those who are not able to own a vehicle or without the capability to drive a vehicle. Oluyede (2022) suggests that transportation barriers contribute to poor health outcomes as lack of transportation prevents people from reaching health care provider in a timely manner, resulting in canceled appointments, and delayed or missed medical attention. Rozenfeld (2020) found out transportation insecurity and living in senior living communities are associated with higher odds of initial infection of COVID-19.
Meanwhile, low-density areas have some favorable characteristics for establishing carsharing services, including, high car dependence due to few or absence of public transportation and large parking availability. However, it faces significant challenges in generating profit given low demands. After conducting a case study of a rural area in Italy, Rotaris and Danielis (2018) concluded that the “station-based” business model, which allows users to pick-up and drop-off a car only in stations, operated on the social grounds and provides services to low-income families, was the only viable business model in less-densely populated areas.

To the best of our knowledge, the literatures regarding providing car sharing service to low-income or under representation population stops on a strategic level to propose the most efficient policies to ensure social equity (Pan, Martin, & Shasheen, 2022; Golub, Satterfield, Serritella, Singh, & Phillips, 2019; Vermesch, Boisjoly, & Lachapelle, 2021). Only a few has gone beyond the strategic level to provide the implementing works aimed at such social-oriented car sharing system: Yu & Shen (2019) proposed a shared ride system that can optimize the pick-up routes under a random travel time by solving a stochastic mixed-integer program using decomposition algorithm. However, it did not offer insights on how to determine the initial fleet size for such car sharing system, nor did it provide a detailed analysis on the impacts of different variables that are critical to the success of the system.

In response to the issues mentioned above, we propose a social-oriented carsharing system that can help local government and NPOs provide essential mobility services to such populations that are most vulnerable to COVID-19 and other similar diseases or disasters. The paper aims to provide an easy-to-follow, step-by-step instruction on the planning (fleet size, unit trip fare, operational hours) of a carsharing system to address the equality and fairness concerns of the disadvantaged groups in terms of mobility needs. Our project focuses on designing a carsharing system for the underserved populations in the City of Columbia in South Carolina or areas having similar conditions.

The proposed carsharing system is station-based with service stations chosen to be close to senior housings, hospitals, shopping malls, and local traffic management authorities such as train stations and airports. Due to the COVID-19 or similar pandemic situations, the fleet is supposed to be supported by the local government with the emergency relief fund, volunteers, or a mixing of both. Considering that we focus on carsharing systems in less densely populated areas, parking is assumed to be abundant. Lastly, since real-world data about carsharing is unavailable in many underserved communities, we generate simulation datasets to reflect uncertain travel demands.

In this paper, we formulate and solve a temporal-spatial network problem to maximize the ride demand fulfillment with a given budget. The duration of the carsharing system is assumed to be 3 months. We feed the simulation datasets to a multi-stage stochastic mixed integer linear programming (MILP) model to SAA model and a Rolling Horizon (RH) model to 1) determine the initial fleet size in each service station and 2) suggest the ideal daily operating hours. We further compare these two frameworks to determine the better practice in building out such carsharing system.

The rest of the paper is organized as follows: Section 2 gives an overview of two optimization approaches and reviews the relevant studies in both frameworks. Section 3 presents the problem formulation which introduces the spatial temporal network, describes our approach to generate the random ride request when no real-world data is available and our implementation of the two models. Section 4 conducts a case study and provides insights by applying both frameworks to solve the car sharing problem in the city of Columbia, SC and demonstrate the differences in the computational efficiency for different framework models. Section 5 concludes the paper with our findings, limitations, and direction for future research.

2. Overview of optimization approaches

2.1. Stochastic programming problem

Two-stage stochastic mixed-integer programming has significantly been implemented to solve the optimization problems for the vehicle/bicycle sharing system. A fundamental two-stage stochastic programming problem divides the decision variables into first and second-stage variables (Shapiro et al., 2014). The problem can be stated as follows:

\[
\min_{x \in X} E \left[\left(Q \left(x, \tilde{d} \right) \right) \right] \quad \text{s.t.} \quad Ax = b, x \geq 0, \quad i = 1, 2, \ldots, I
\]

where

\[
Q(x, \tilde{d}) = \min_{y \in Y} E \left[\left(d \right)^T y \right]
\]

\[s.t. \quad Tx + Wy = h
\]

\[d \geq 0, k = 1, 2, \ldots, K
\]

In model 2–1, \(c^T x\) denotes the first-stage cost, \(E[Q(x, \tilde{d})]\) denotes the random cost of the second stage, and \(d\) denotes the discrete random variables in different scenarios for the second-stage problem. \(x\) and \(y\) are the solutions we are looking for that optimize first-stage and second-stage problems, respectively. \(Ax = b\) in model 2–1 and \(Tx + Wy = h\) in model 2–2 are constraints to consider when solving the optimization models, where \(A, b, T, W\) are all deterministic matrices. The optimization model in 2–1 finds the optimal value of \(x\) which minimizes the first stage costs, and the expected cost of the resource function before the demand becomes known. Once the uncertainties are realized, the second stage decisions, also called the recourse decisions, are carried out. Given the optimal determined values of \(x\), the model in 2–2 returns the optimal cost in the second stage with the realization of the known demands.

For example, in this paper, the first stage decision variables \(x\) can be the initial number of vehicles and/or parking slots allocated to each fixed station, \(c\) can be the cost of purchasing a vehicle or/and a parking slot. In the second stage, the variables \(y\) represents the vehicle movement from region \(i\) to region \(j\), and \(d(i)\) represents the realized (expected) car rental demands.

In a case where the demand \(d\) is known, the objective functions in a 2-stage stochastic problem turn into a linear function. However, car/bike sharing companies often need to purchase vehicles and parking slots or permits way before the demands are known. The expected demand \(\tilde{d}\) is then a random variable, and the probability distribution of \(\tilde{d}\) is unknown. In the case of the carsharing system, while vehicle and parking slot/permit purchases happen only once, the relocation actions’ distribution may happen repetitively on a monthly, weekly, or even daily basis. Therefore, the average optimal cost of the second stage resource optimization model 2–2 converges to the expected resource function \(E[Q(x, \tilde{d})]\).

In a scenario-based approach, the random variables \(d\) has a finite number of distributions, \(d_1, d_2, \ldots, d_K\) with probabilities \(p_1, p_2, \ldots, p_K\). Model 1–1 and Model 1–2 can then be written as follows:

\[
\min_{x \in X, y \in Y} \sum_{k=1}^{K} p_k z_k \left(d_k \right)^T y_k
\]

Further, in a carsharing system, the demands happen over a finite horizon of \(T\) periods. The problem turns into a multi-stage stochastic problem with each \(d_k = [d_1, d_2, \ldots, d_k]\), \(t = 1, \ldots, T, k = 1, 2, \ldots, K\) a random vector of car rental demands. At stage \(t = 1\), the problem is a two-stage stochastic problem and can be written as:

\[
\min_{x, y} c^T x + E \left[Q \left(x, \tilde{d} \right) \right]
\]

At stage \(2 \leq t \leq T\), the expected resource function turns into a dynamic programming function:
vehicles are the same across different scenarios, we can add the constraint of random demand sample can be viewed as historical data of k observations. The number of stages is stagewise independent of other ξ. When the number of purchased vehicles and the number of random parameters grows exponentially as the number of scenarios would grow exponentially as the number of stages.

There are two ways to obtain the random demand sample. First, the random demand sample can be viewed as historical data of k observations of d. Second, it can be generated by Monte Carlo simulations (Lampa & Samolejová, 2020), (Takes & Kosters, 2010). To estimate the expected resource function, the sample average approximation (SAA) (Kim, Pasupathy, & Henderson, 2014) is being implemented.

The objective function in model 2–2 can be written as:

$$\phi(x, d) = \mathbb{E}\left\{ \sum_{t=0}^{k} \xi_t \left(\bar{d}_t \right)^T y_t \right\}$$

The challenge to solve the SAA problem is the computational complexity. The number of scenarios would grow exponentially as the number of random parameters d, s ∈ S = {1, ..., S} grows. For multi-stage problems, the computational complexity grows exponentially with the increase in the number of stages.

Lu, Chen, & Shen (2017) proposed a two-stage stochastic integer programming problem to approximate the results of a multi-stage dynamic model to determine the fleet allocations for both reservation-based and free-floating carshare systems. The uncertain travel demand is generated as independent and identically distributed (i.i.d.) samples using Monte Carlo sampling, and the SAA technique is employed to construct the problem. The model is further modified to optimize vehicle relocation in a reservation-based system in a rolling-horizon approach which shows a significant advantage over a benchmark policy in terms of profitability and quality of service (QoS). Like Lu, Chen, & Shen (2017), Shu, et al., (2013) proposed a stochastic network model with proportionality constraints to address the problems such as the deployment and redistribution in the bike sharing network. Shu, et al., (2013) first test the model without considering the rebalancing of the bike sharing system if the number of demands r(x, d) from region i to region j follows a Poisson process. It defines an LP to determine the optimal initial number of bikes assigned to each station and the bicycle utilization rate a(t), with the objective function to maximize the fulfilled demands at a fixed β(t) = Σa(t). The model shows the importance of choosing an appropriate utilization rate, below which the system will need a drastic increase of the number of bicycle deployments to increase the fulfilled requests. It further brings in new decision variables to represent rebalancing arcs in a rolling-horizon format.

Carrese, et al., (2020) employed binary linear programming (BLP) and genetic-based algorithms to help the local government decide the optimal parking slots provided to the rental companies to maximize the total profit. He, Hu, and Zhang (2019) proposed a stochastic dynamic program for the fleet repositioning problem to minimize the repositioning cost and the penalty cost given the observed distribution of the fleet size. They used real-world multi-region data and developed a “myopic” 2-stage model which only considered the cost that emerged in the current period. They used a multi-stage enhanced linear decision rule (ELDR) which utilizes the auxiliary information in a 2-region system. This is illustrated in Fig. 1. The demand is assumed to be joint probability distributed and independent over periods.

In Fig. 1, w_j represents the number of fulfilled one-way trips from region i to region j, w_k and w_l represent the number of fulfilled two-way trips, and r represents the number of relocations, which is a decision the companies need to make. Recently, many studies apply two-stage stochastic program approach has been applied to various topics including relocation problem for electric vehicle (EV) (Lin & Kuo, 2021), EV charging station location problems, (Li, Jiang, & Zhang 2022), EV power distribution through microgrids (Tan, Chen, Zheng, & Huang, 2022; Hou, et al., 2022).

As we mentioned earlier, most literatures focus on for-profit car-sharing or bike sharing system in the city or urban areas where population is dense, our study applies multi-stage stochastic model to set up a car sharing system for underserved populations with uncertain demands, limited budgets, unlimited parking space, and unavailable real-world data. The paper later applies Rolling Horizon Heuristic, also mentioned in section 2.2.2 and compares two models for their results and computational efficiency.

Moving bikes and vehicles around in the city can be very expensive. The operating system needs to make efficient rebalancing decisions to maintain the service quality while minimizing the repositioning cost. Henderson, O’Mahony, and Shmoys (2016) explored the rebalancing problems of bike sharing system for both during and after rush-hour planning in the city of New York. The challenge for rebalancing the bikes during rush hour is that the dynamic system can change drastically, so the system status may no longer hold when the truck arrives. Based on historical trip data, Henderson, O’Mahony, and Shmoys (2016) solved the problem by pre-balancing the bike during the overnight shift before rush hour begins. For an overnight rebalancing problem, they tested both greedy algorithm and mixed-integer programming (MIP) and found out that the greedy algorithm tended to generate better solutions as the number of trucks increased.

However, the problems stated in the above literature mainly focuses on static relocation approaches after initial fleet size is determined whereas our literature considers integrating plannings and operations for car sharing to determine initial fleet size to purchase.

2.2. Rolling horizon Heuristic

Rolling horizon (RH) is a decision-making model that is adopted mainly in making immediate decisions in a dynamic stochastic situation. It was first introduced by Baker (1977) that proves the effectiveness of the rolling schedules for production planning. The Rolling Horizon approach aims to speed up the solution process of a problem with a large time structure by breaking the overall time structure into reasonable time frames. The rolling horizon approach has been used to solve many production planning and scheduling problems in different applications.

Cordeau, et al., (2015) introduced the rolling horizon framework to plan the delivery of vehicles to dealers by auto-carriers to optimize the travel distances, costs of operations, and penalties for deliveries with known demands and initial number of carriers. Local search procedures with a CPU time are invoked in this study to optimize routing plans to a dynamic and multiple-day setting. Ma & Kontsopoulos (2022) introduced the concept of the Near-on-Demand service to obtain future request in advance. The study applied the Rolling Horizon approach to make rebalancing decisions for ride-pooling to minimize the impact on congestion and vehicle miles traveled. Other studies (Wang & Szeto, 2021; Wu et al., 2022; Yang et al., 2021; Zaneti, Arias, Almeida, & Rider, 2022) apply rolling horizon approach to solve various problems, including repositioning of bike/vehicle and charging schedule of EVs.

Most of the literature proposed RH as a solution at a detailed
decision-making level to relocate vehicle when the project is being executed after certain resources (e.g., initial fleet size) is determined. Hartleb & Schmidt (2020) applied the RH to determine the minimum fleet size needed to fulfill given demanded trips. However, the optimal number of vehicles to be purchased before the carsharing system is to be executed is different from the minimum fleet size when other factors, such as fulfillment rate that is smaller than 100%, idle cost, penalty cost, repositioning cost, and etc. are considered. We explore the impact of different settings on the system here to help potential organizations, such as the local governments and NPOs, to quickly set up an efficient temporary carsharing system with little or no historic demand data for reference. Our study mainly focuses on solving a multi-stage stochastic programming problem by using SAA and RH frameworks, to make one-time purchase decisions way before the actual operation starts with the redistribution impact considered simultaneously. When RH framework is used to solve a multi-stage problem, our paper demonstrates the impact of a delicate issue of what horizon length to include in the subproblems.

Our contribution and main results are summarized as follows:

1. We develop demands based on average three probability distribution to simulate uncertain demands when real-world data is unavailable.
2. Our study compares a two-stage stochastic model and a rolling horizon model on determining initial car fleet size to satisfy uncertain carshare demands. We also quantify runtime for both models and recommend rolling horizon model for its flexibility if runtime is a concern.
3. Via numerical experiments using different self-generated data, we conduct sensitivity analysis and show the impact of different variables on the total costs including the initial vehicle purchasing costs and the operating costs. The optimal fleet size has a linear relationship with total cost. The fulfillment rate is showed to have a two-phase impact on total cost - the relationship between the actual fulfillment rate and total cost is linear before a certain threshold and turns to be exponential after. Our study also suggests that extended daily service hours can significantly bring down the required initial fleet size as well as the total cost.

3. Problem formulation

3.1. A Spatial-Temporal network

In the case study, we construct a spatial–temporal network $G (N, E)$ to model the movement of vehicles among the service stations as flows. The network G, also illustrated in Fig. 2, contains two important parts. Node $n_i \in N$ denotes a region $i \in I = \{1, 2, \ldots, I\}$ at time $t \in T, T = \{1, 2, \ldots, T\}$, whereas arc $e_{ij} \in E$ represents the flow from region $i \in I$ to region $j \in I = \{1, 2, \ldots, I\}$. There are three different types of arcs in the network G:

1) Service arc e_R: flows on the service arcs represent fulfilled travel requests. The flow on a service arc $(n_i, n_{i', t}) \in e_R$ represents fleet that is dispatched from region i in period t and returned to region i' in period t'. For a single arc $e \in e_R$, let w_e be the arc’s capacity, i.e., the maximum number of dispatched vehicles. Here we define the arc’s capacity to be

Arc Type	Unit Flow Cost
Service Arc $(n_i, n_{i', t}) \in e_R$	Positive social impact: $-r$ Negative social impact: θ
Reposition Arc $(n_i, n_{i', t'}) \in e_{R}$	Reposition cost: c_L
Idle Arc $(n_i, n_{i', t'}) \in e_I$	Idle cost: c_I

Fig. 2. Spatial-Temporal Network.

Fig. 3. Trip Sizes Following Normal Distribution.
the travel requests. The capacity of each arc equals to the smaller of the travel requests and fleet size.

a) If the fleet size at n_i is larger than the number of travel requests, the arc’s capacity w_{ω} on the service arc equals to the travel request.

b) If the fleet size is smaller than the number of service requests, the arc’s capacity w_{ω} on the service arc equals to the travel fleet size.

On each service arc, the “reward” (in other words, the “positive social impact”) r is generated for each fulfilled service request. Besides the “positive social impact” generated from fulfilled service requests, a “penalty” (in other words, the “negative social impact”) δ occurs for each unfulfilled service request if the service region does not have enough fleet inventory when a customer makes a request.

2) Reposition Arc T_i: To better allocate the fleet size at each region at a certain time period to maximize the fulfillment rate, an optimization model repositions the vehicles across regions at the lowest operation cost. The operation cost, including labor cost and fuel cost, occurs when the reposition happens. We denote the operational cost per flow unit on the reposition arcs to be c_ϵ.

3) Idle Arc e_i: If there are more available service vehicles than the customer service requests in a service region, the decision-maker wastes the limited resources, in other words, pays the holding cost, such as the cost of looking for appropriate parking spaces and the labor costs for the surplus fleets. We use the flow units on an idle arc $e_i = (n_i, n_i') \in e_i$ to represent the surplus fleets that are idle in region i from period t to $t + 1$, and c_ϵ to represent the cost per flow unit on idle arcs.

3.2. Monte Carlo sampling process

Input: Number of scenarios S, number of average trips N_{trip}, Standard deviation std, Total time period T, Travel time matrix and T_{mat}

Output: Demand hash table $d = \{t_o, t_d, i_o, i_d; n\}$

#Step 1:
##Initialize daily travel size as an empty hash table $demand\ dict$, and daily travel request data as another hash table d

$\text{demand\ dict} = \{\}$

$d = \{\}$

#Step 2: Add each valid trip as a hash table key and assign the value as 0

While $1 \leq t_o \leq T$:

While $1 \leq i_o \leq l$:

While $1 \leq i_d \leq l$:

$t_d \leftarrow \text{calculated based on } t_o, i_o \text{ and } i_d \text{ and } T_{mat}$

$d[t_o, t_d, i_o, i_d] = 0$

#Step 3: Generate normal distribution samples among the scenarios

$\text{demand} = \{} \leftarrow \text{Normal distribution } (S, N_{trip}, std)$

#Step 4: Update demand hash table d

for trip size in demand dict:

while trip size ≥ 1:

$n_o \leftarrow \text{randomly pick a start time from } T = [1, 2, ..., T]$

$n_i \leftarrow \text{randomly pick a start region (origin)}$

$n_d \leftarrow \text{randomly pick an end region (destination)}$

$t_d \leftarrow \text{calculated based on } t_o, i_o, i_d \text{ and } T_{mat}$

if $t_o, t_d, i_o, i_d \text{ in } d$:

$d[t_o, t_d, i_o, i_d]++=1$

return d

Table 1

Region (min)	1	2	3	5	6	7	8	9
1	0	15	30	30	30	30	15	30
2	15	0	15	30	30	30	15	30
3	30	30	0	30	15	30	30	30
4	30	30	30	0	30	15	30	30
5	30	30	30	15	30	0	30	30
6	30	30	30	15	30	0	30	30
7	15	15	30	30	30	30	0	30
8	30	30	30	30	30	30	30	30

Algorithm 1 illustrates the detailed steps to generate the daily travel request data for every scenario $s \in S$. The data for daily trip size is stored in a dictionary, or a hash table, $\text{demand\ dict} = \{s_1 = d_1, s_2 = d_2, ..., s_{90} = d_{90}\}$, with its key represents each scenario, and its value indicates daily request data, which is stored in hash table d. For each scenario s, there is a corresponding travel request dataset that d_s. Its key contains four pieces of information: start time (pick-up time) t_o, end time (drop-off time) t_d, start location (pick-up location) i_o, and end location (destination) i_d, whereas its value shows the size of the specific request trip. For example, $d[1, 2, 3, 4] = 10$ suggests that there are 10 requests for trip with pick-up time $t_o = 1$, drop-off time $t_d = 2$, pick-up location $i_o = 3$, and destination $i_d = 4$.

The number of scenarios can also be viewed as the period of operation of the carshare system. We consider 90 scenarios (i.e., $S = 90$) to represent a 3-month operation period and keep the computational time
at a manageable scale. Average daily trip size N_{avg} should be estimated based on the local targeting populations and their needs for mobility. In our case, we approximate the expected average daily trip size $N_{\text{avg}} = 6000$. Typically, the observed data fit a probability distribution among the 3-month operation period, as shown in Fig. 3. The request trip size for each scenario was generated using Monte Carlo Sampling process from a normal distribution.

After the size of the expected daily demand is generated for each scenario, the hash table for each scenario d_i is generated in such a way that start time t_o (origin), start region i_o, and end region i_d (destination) are all randomly selected whereas end time t_d is calculated based on the corresponding t_o, i_o, i_d and travel time matrix T_{mat} in Table 1. In section 4.2.3, we further explored how different types of request travel data impact the overall carsharing system.

The pseudocode for the mixed-integer linear programming (MILP) model is presented in Algorithm 2. The algorithm reflects the multi-stage stochastic model which is constructed in section 3.3. PuLP is an open-source package that integrates with many linear and mixed-integer models, including commercial solvers such as CPLEX and Gurobi (Mitchell, O’Sullivan, & Dunning, 2011), and free open-source solver such as CBC. PuLP can default to its own choice of available solvers, depending on the problem structures. In our case study, we select CBC as our default solver given the target users are mainly government or NPG. Algorithm 2 was coded in Python as a MILP and was solved by CBC. The algorithm is run on Cloud Google Colab.

3.3. A multi-stage stochastic programming model

We employ a multi-stage stochastic model where the demand for the trips is represented by $d_i = \{d_1, \ldots, d_n\}$ Assuming that the expected d demand

\begin{align*}
\text{Input: } & P = (I, T, S, r, c, h_r, h_l, \delta, B), \text{ expected demands } d \text{ (see Algorithm 1)} \\
\text{Output: } & \text{Total vehicle fleet size at the initial time } \sum_{i} x_{i,t} \text{ where } t = 1 \\
\end{align*}

#Set up the Objective function: model 2-1

\[
\text{prob} = \min_{x \in X} \sum_{i=1}^{I} c_{i} x_{i,1} + \sum_{s=1}^{S} \left[c_{y_{i,t}} + c_{L} y_{e_{i}} - r d + \delta (d - d) \right]
\]

#Set up the variables with initial boundaries

\[
x_{i,1} \geq 0, y_{e_{1}} \geq 0, y_{e_{L}} \geq 0
\]

#Iterate through all scenarios

For s in range $(1, S+1)$:

#In each scenario, iterate through the time

For t in range $(1, T+1)$:

#In each time, iterate through each location i

For i in range $(1, I+1)$:

#Subject to the following constraints:

Flow constraint:

Inbound: model 2-4

If $t < T$:

\[
x_{i,t} - \sum_{e \in n_{i,t}(\text{out})} (y_{e_{1}} + y_{e_{L}} + d) = 0
\]

#Outbound: model 2-5

if $t > 1$:

\[
\sum_{e \in n_{i,t+1}(\text{in})} (y_{e_{1}} + y_{e_{L}} + d) - x_{i,t+1} = 0
\]

#Budget constraint: model 2-2

\[
c \sum_{i=1}^{I} x_{i,1} \leq B
\]

#Fleet size constraint: $\sum_{t} x_{i,1}$ share the same value for all scenarios

if $s > 1$:

\[
\sum_{t} x_{i,1} - \sum_{t} x_{i,1}^{s+1} = 0
\]

#Fulfillment rate constraint: model 2-6

\[
\alpha \sum d_{i,t} \leq \sum_{i} d_{i,t} \leq \sum d_{i,t}
\]

#Solve the optimization problem and update $x_{i,1}$ using CBC (Coin-or branch and cut)

\[
x_{i,1} \leftarrow \text{Solve prob}
\]

Return $\sum_{i} x_{i,1}$
follows a certain probability distribution (e.g., Normal distribution) before the actual demand d is known, the company will purchase the vehicles at the fixed cost of v per vehicle. The optimization model below describes the first stage problem.

$$\min_{x \in X} \sum_{i=1}^{T} x_i + \mathbb{E}[Q(x, \hat{d})]$$

(3-1)

where x_i denotes the supply level of vehicles at node n_i. Specifically, x_i is the first stage decision which denotes the number of vehicles to purchase and deploy in region i at $t = 1$. d is the vector of expected demand $\hat{d}_{n_i}' \in d, i \in I = \{1, 2, ..., I\}$ before the demand is known. $\mathbb{E}[Q(x, \hat{d})]$ is the Optimal value of the expected resource function, and B is the budget. The decision process follows the form:

$$\text{expectation}(\hat{d}) \rightarrow \text{decision}(x_1) \rightarrow \text{expectation}(\hat{d}) \rightarrow \text{decision}(x_2) \rightarrow \text{expectation}(\hat{d}) \rightarrow \text{...} \rightarrow \text{decision}(x_T)$$

(3-2)

The goal is to minimize the objective function in 3–1, which is the total cost of purchasing vehicles at the Service Capacity Organization Stage and the total expected cost at the operating stage subject to the constraints in 3–2. Constraint 3–2 specifies that the total cost of purchasing does not exceed the given budget B. After the demand is observed, true demand is denoted by $d = (d_1, d_2, ..., d_T)$. The company decides how to make the optimal reposition decisions. The resource decision is denoted by $y'_s \in Y'$ and represents flows on arc $e \in E = e_k \cap e_{l_1} \cap e_{l_2}$ in scenario $s \in S = \{1, 2, ..., S\}$. The optimization model below describes the problem for stage $t = 2, 3, ..., T$.

$$Q(x, d) = \min_{x \in X} \left\{ \sum_{s=1}^{S} \sum_{e \in E} c_{y'_s} + g(Y) \right\}$$

(3-3)

s.t. $y'_s \geq 0 \ \forall e \in E = e_k \cap e_{l_1} \cap e_{l_2}, s \in S = \{1, 2, ..., S\}$

$$x_s = \sum_{e \in e_k} y'_s, \ \forall s \in S$$

(3-4)

$$x_s = \sum_{e \in e_{l_1}} y'_s, \ \forall s \in S$$

(3-5)

For every scenario s, constraints 3–4 and 3–5 define the vehicle movement at each node n_s. Constraint 3–4 defines total outbound flow, whereas constraint 3–5 describes the total inbound flow, both of which should be equal to the supply level x_s at node n_s. Additionally, constraint 3–6 introduces the fulfillment rate α to make sure that the service flow should satisfy the observed demand d at or above the fulfillment rate α.

3.4. Rolling horizon model

The Rolling Horizon model is implemented in both Service Capacity Organization Stage (Stage I) and Operating Stage (Stage II). In Service Capacity Organization Stage, the RH is used to determine the optimal fleet size with the expected request data before the carsharing system starts to operate. During Stage II, the RH is applied to make repositioning decisions that minimize the total operational costs according to the actual request data with the given fleet size determined from Stage I.

Instead of solving the problem by multi-stage stochastic model, RH
divides the total operation time into manageable batches, known as horizons, so that the spatial–temporal model is solved repeatedly for a horizon length of H by a linear programming model similar to Algorithm 2. Each horizon is being overlapped by a certain period, defined by o. Fig. 4 shows a rolling horizon framework example with the length of horizon equals three time-period and overlapping time equals one time-period. The overlapping period o shall be no less than two times the maximum single trip length minus one time period, as shown by the following inequality.

$$o \geq 2(\max(t_d - t_o)) - 1$$ \hspace{1cm} (3-9)

To determine the optimal fleet size, the expected request daily trip is generated using the same sampling technique illustrated in section 3.2, after which the RH framework is implemented with the objective function defined in model 3–1 for every horizon $H_i \in H = \{H_1, H_2, \ldots, H_n\}$. The model is subject to the same constraints defined in model 2–4, 2–5, and 2–6. Additionally, for horizon $h_i, i \geq 2$, the total initial fleet size should be greater than that in H_{i-1}. A simple RH framework is defined in Algorithm 3, whereas the linear programming function, which is very similar to Algorithm 2, is defined in Algorithm 4.

Input: Instance $P = (I, T, S, r, c, h_r, h_t, \delta, B, H)$. expected demands d (see Algorithm 1)

Output: Total vehicle fleet size at the initial time $\sum x_{i,t}$ where $t = T - H$

The Rolling Horizon Framework
1. Set the initial total fleet size to 0
2. for t_o in range $(1, T \times S - H + 1, H - o)$:
 - $fleet_size = LP(t_o, P, fleet_size)$ #See Algorithm 4
 - return $fleet_size$

Define function $LP(t_o, P, fleet_size)$

$$LP(t_o, P, fleet_size):$$

1. Set up the Objective function: model 2-1
2. $prob = \minimize \sum_{x_{i,t}} + \sum_{t \in \mathcal{X}} [c_i y_{el} + c_{it} y_{el} - rd + \delta(d - d)]$
3. Set up the variables with initial boundaries
 - $x_{i,1} \geq 0, y_{el} \geq 0, y_{el} \geq 0$
4. Iterate through all scenarios
 - for t in range $(t_o, t_o + H)$:
 - In each time, iterate through each location i
 - For i in range $(1, I+1)$:
 - Subject to the following constraints:
 - Flow constraints:
 - Inbound: model 3-4
 - if $t < t_o + H$:
 - $x_{i,t} = \sum_{s} (y_{el} + y_{el} + d) = 0$
 - Outbound: model 3-5
 - if $t > t_o$:
 - $\sum_{s} (y_{el} + y_{el} + d) - x_{i,t+1} = 0$
 - Budget constraint: model 3-2
 - Fleet size constraint:
 - $\sum_{t \in \mathcal{X}} x_{i,t} \leq x_{i,t}$
 - Fulfillment rate constraint: model 3-6
 - $\alpha \leq \sum_{t \in \mathcal{X}} \delta_{i,t} \leq \sum \delta_{i,t}$
 - Solve the optimization problem and update $x_{i,t}$ using CBC (Coin-or branch and cut)
 - $x_{i,t} \leftarrow \text{Solve prob}$

Return $\sum x_{i,t}$
After the optimal fleet size is determined, the rolling horizon framework can be later used to make real-time reposition decisions at Stage II to minimize the total operational costs when the carsharing system starts to operate.

4. Case study

4.1. Numerical settings

4.1.1. Fleet stations

In this case study, we propose a station-based model with eight fleet locations \((I = 8)\) selected from Columbia, the capital city of South Carolina, as stations. The eight fleet locations were chosen to be close to the service areas, which include senior housing, clinics, medical center, shopping center, train station, and airport. The service routes include all the detailed addresses for each service area, as shown in Table 2. Fig. 5 shows the approximate locations of the eight service areas.

4.1.2. Operation stage hour

The demand responsive transport service is planned to offer door-to-door transportation of elderly and persons with disabilities in a three-month period, during which the operation hour is chosen to be from 10:00 AM to 3:00 PM daily with one time period equals to 15 min, resulting in a total of 20 time periods daily (time node \(T = 21\)). The static travel time (minutes) for each service route without considering traffic is estimated using Google Maps.

4.1.3. Cost categories

A summary of other cost categories is described below:

- Vehicle acquisition cost: \(v = $16,000\) per vehicle. However, we use \(v = $54\) as the daily depreciation of the vehicle when considering the resale value.
- Cost per unit flow \(c\) :
 - Vehicle idle cost: \(c_1 = $0.5\) per vehicle per time period (15 min)
 - Vehicle reposition cost: \(c_2 = $3\) per vehicle per time period
- To simplify the calculation, the positive impact (revenue) generated by fulfilled ride request is set as \(r = -$5\) per trip per time period
- Penalty due to unfulfilled ride request: \(\delta = $2\) per request
- Budget \(B = $500,000\) is the constraint for the total cost of the three-month (90 days) service after the resale of the vehicle. The daily budget is therefore calculated as $5,000.

4.2. Numerical results

Table 3 shows different initial fleet sizes with their associated cost categories. In the table, the negative sign indicates that the carsharing system model is making a profit, the second and third columns with same mean (6000 trips) and variance (1200 trips). The results for initial fleet sizes under different fulfillment rate constraints \(\alpha\) are very similar to the model with the trip size following a normal distribution. We used the normal distribution trip size data for the rest of the study.

Fleet size	Min Fulfill Rate	Actual Fulfill Rate	Idle Cost ($)	Reposition Cost ($)	Revenue ($)	Penalty ($)	Daily Total cost ($)
485	66.5 %	90.0 %	473.29	36.57	43,165.83	1,125.84	-15,157.30
520	70.0 %	92.8 %	659.05	41.93	44,707.83	805.60	-14,911.58
571	75.1 %	95.9 %	995.51	48.14	46,319.33	461.93	-13,739.02
621	80.0 %	97.8 %	1,295.35	46.92	47,308.83	242.13	-11,855.62
672	85.1 %	98.9 %	1,859.87	39.38	47,881.17	121.38	-9,375.65
728	90.1 %	99.6 %	2,395.84	34.47	48,206.33	44.76	-6,246.90
790	95.0 %	99.9 %	3,017.80	25.55	48,333.67	10.91	-2,491.66
890	100.0 %	100.0 %	4,033.31	14.76	48,379.28	0.00	3,802.60

Table 3 shows different initial fleet sizes with their associated cost categories.
by large. It also shows that the carsharing system stops generating profit as the fleet size reaches 900.

4.2.2. Impact of positive impact r

We further studied the profitability of the carsharing system with different unit positive impacts \(r \), measured in dollars per period. The study of the impact of positive impact \(r \) was performed with minimum fulfillment rate constraint \(\alpha \) set to 0.8 (\(\alpha_{\text{overall}} = 0.971 \)), right before the relationship between the fleet size and fulfillment rate changes from linear to exponential. The impact of the unit positive impact \(r \) is shown in Fig. 9.

Fig. 6. Different Measurements of Fulfillment Rates.

![Fig. 6. Different Measurements of Fulfillment Rates.](image)

Fig. 7. Impact of Different Actual Overall Fulfillment Rate \(\alpha_{\text{overall}} \) on Optimal Fleet Size

![Fig. 7. Impact of Different Actual Overall Fulfillment Rate \(\alpha_{\text{overall}} \) on Optimal Fleet Size](image)

Fig. 8. Total Daily Cost at Different Daily Fleet Sizes.

![Fig. 8. Total Daily Cost at Different Daily Fleet Sizes.](image)

Fig. 9. Total stage-one cost plus expected operation cost at the different unit positive impact.

![Fig. 9. Total stage-one cost plus expected operation cost at the different unit positive impact.](image)
The carsharing system starts to make a profit as the unit positive impact reaches approximately $2.6 per time period (15 min). Fig. 9 shows that the lowest value of the positive impact can be $2.2 per hour to meet all the constraints without exceeding the daily budget.

4.2.3. Impact of pick-up times following several types of the probability distribution

The case study shown above studies the carsharing when the pick-up (start) time follows a uniform distribution for every scenario. However, the actual pick-up (start) time hardly follows a uniform distribution. Therefore, two additional sets of request data, which follow two types of probability distributions, are generated to reflect the expected demands better. Fig. 10 a) shows that the daily request data is Normally distributed, with the peak pick-up time at around noon. Fig. 10 b), on the other hand, shows a Bimodal Gamma distribution with two peak pick-up times at around 10:00 AM and 2:00 PM ($T = 16$).

Fig. 10. Pick-up time data follows two different probability distributions.

Table 4
Different Initial fleet sizes with their associated costs when demands within a single day follows a normal distribution.

Fleet size	Min Fulfill Rate	Actual Fulfil Rate	Idle Cost ($)	Reposition Cost ($)	Revenue ($)	Penalty ($)	Total cost ($)
473	60.3 %	77.5 %	1,068.29	16.36	36,305.78	2,530.22	-7,067.09
608	70.1 %	87.4 %	1,845.85	21.98	41,928.11	1,412.29	-5,706.07
694	75.0 %	92.1 %	2,441.24	27.77	44,466.72	890.89	-3,491.99
785	80.0 %	95.3 %	3,167.80	28.83	46,272.28	523.64	-17.87
887	85.0 %	97.6 %	4,068.08	27.26	47,499.94	267.82	4,897.49
1006	90.0 %	99.1 %	5,196.16	20.59	48,236.67	100.58	11,507.63
1158	95.0 %	99.8 %	6,701.46	10.88	48,572.50	26.80	20,753.06
1421	100.0 %	100.0 %	9,338.11	2.71	48,668.00	0.00	37,420.34

Table 5
Different Initial fleet sizes with their associated costs when demands within a single day follows a bimodal gamma distribution.

Fleet size	Min Fulfill Rate	Actual Fulfil Rate	Idle Cost ($)	Reposition Cost ($)	Revenue ($)	Penalty ($)	Total cost ($)
432	57.9 %	77.7 %	580.86	24.64	36,947.61	2,510.96	-7,067.09
575	70.1 %	86.9 %	1,487.20	26.24	42,135.56	1,472.18	-7,968.71
648	75.0 %	90.8 %	2,072.89	19.41	43,708.33	1,149.47	-5,377.54
725	80.0 %	92.1 %	2,725.84	16.07	44,952.44	883.31	-2,096.89
835	85.0 %	94.6 %	3,711.34	11.25	46,207.89	611.58	3,272.53
1018	90.0 %	97.3 %	5,414.42	8.84	47,546.72	302.69	13,195.46
1324	95.0 %	99.5 %	8,387.69	4.57	48,476.94	58.93	31,493.12
1778	100.0 %	100.0 %	12,913.70	0.20	48,661.00	0.00	60,265.90

Table 4 and Table 5 show the summarized information regarding the carsharing system when demands within a single day follow a normal distribution and a bimodal gamma distribution, respectively. Fig. 11 shows the impact of the demand distribution on the relationship between the service quality, quantified by actual overall fulfillment rate $a_{overall}$ and the total daily cost. When the total trip size remains the same, the daily demand data following a uniform distribution requires the least total cost to support the carsharing system, whereas a model following daily bimodal gamma distribution and normal distribution requires similar cost. Since the actual daily demand distribution is unknown before the carsharing system begins to operate, it is reasonable to consider all three types of distribution and assign equal weight to all three types of request dataset. To make sure the system operates under the budget while maintaining the desired service level ($a_{overall}$ ≥ 0.85), it is recommended to start with 556 vehicles. Later, as more actual data is available, more vehicles can be added according to the same carsharing...
model to maintain a designated level of fulfillment.

4.3. Further exploration on Rolling horizon Heuristic

4.3.1. Impact of horizon length

During the Service Capacity Organization Stage, it is anticipated that as the length of the horizon increases, the total daily cost would decrease.

The logic behind this is that as the model “sees” further into the future, the LP model can make better decisions in how to optimize repositions. Under the same numerical settings, Table 6 gives optimal total daily cost at different horizon lengths. It shows the results when the overlapping time period is fixed at $o = 3$ and the fulfillment rate at $\alpha = 1$. The model confirms that total cost decreases as the length of the horizon increases. Meanwhile, the total runtime decreases at first and increases almost linearly as horizon length increases, shown in Fig. 12. From Table 6, we can identify that when the overlapping time period is set to 3, the optimal runtime happens at $H = 9$.

Note that the total runtime can be broken down as average runtime per epoch times the number of epochs. Fig. 12 indicates that the average runtime per epoch (unit runtime) in our experiment fits into a 2-degree polynomial function. The number of epochs can be calculated using $S(T-1)$. The degree of the polynomial function can be different, however, as the input size or type of MIP solvers change. Therefore, the general total runtime (R) has a close-to estimation to model 4.1.

$$R = S(T - 1) \times \left(a_1 H^2 + a_2 H + \cdots + a_n \right) \quad (4.1)$$

where a’s are real numbers and n’s are integers.

Fig. 13 shows the numerical comparison between two different model approaches for daily trips under a normal distribution.

Table 6

Fleet Size	Horizon Length	Idle Cost	Reposition Cost	Revenue generated	Total Cost
1421	5	16,071.65	0	48,668.00	44,137.65
1421	6	14,010.69	0.17	48,602.72	42,142.14
1421	7	13,031.62	0.67	48,602.72	41,163.57
1421	8	12,439.73	0	48,629.17	40,544.56
1421	9	12,016.69	0.17	48,602.72	40,148.14
1421	10	11,720.65	0.67	48,577.39	39,877.93
1421	20	10,654.53	0.83	48,104.67	39,284.69
1421	30	10,338.35	0.83	48,032.78	39,040.41
1421	40	10,162.36	0.83	47,599.17	38,893.88
1421	50	10,210.99	3.03	48,512.33	38,435.69

![Fig. 11. Comparison among three different distributions.](image)

![Fig. 12. Run time measured at different horizon lengths for T = 21.](image)

![Fig. 13. Comparison of Multi-stage and RH approaches for daily trips under a normal distribution.](image)
approaches. For the RH approach, the horizon length and overlap are set to 9 and 3, respectively. All other numerical settings are identical. We can see that the two results are very similar. In general, the multi-stage approach can be written as α, where α increases whereas RH is flexible in terms of choosing horizon length, which has a significant effect on total running time.

At this point, it is safe to assume that the RH approach is comparable to multi-stage in terms of producing acceptable results, and we will continue to explore the impact of daily service hours using the RH framework.

As daily operating time T increases, the computational complexity only increases linearly when rolling horizon framework is implemented, and the results are comparable to that when multi-stage model is applied, which is shown in Fig. 13. For example, when daily demand data follow a normal distribution, the fulfillment rate’s impact still holds on the optimal fleet size, as shown in Fig. 14. According to the rolling horizon approach, the optimal fleet size that can fulfill the 85% fulfillment rate should be around 600.

4.3.2. Impact of daily service hours

To cover typical businesses hours (“9 to 5”) for most businesses, we propose to extend the operating hours of the carsharing system from 8:00 AM to 8:00 PM ($T = 48$). When daily trip size remains the same, extending operation hours can significantly reduce the fleet size while maintaining the same overall fulfillment rate. Hence the cost at Service Capacity Organization Stage is lowered. Fig. 15 shows the comparison among three carsharing models with daily data following a normal distribution. It suggests extending operating hours can significantly bring down the daily total cost.

For the extended service hour model with $T = 48$, it is recommended to reduce the fleet size to 400, at which the model is generating profits, and the fulfillment rate reaches around 95%.

5. Conclusions

In this study, a multi-stage stochastic integer programming model is developed to determine the initial fleet size for a temporary carsharing system when the total cost, which includes Service Capacity Organization Stage (Stage I) and Operating Stage (Stage II), is optimal. The model is being tested on randomly generated data whose daily demands follow three different probability distributions and are later being solved by two different approaches. Though the demand data following a normal distribution results in a relatively lower total cost, our results indicate that the distribution of the demand have little impact on the daily cost of the system as long as the average daily demands remain the same. Our results also suggest that the impact of fulfillment rate on fleet size is exponential under all three types of daily demand data, and the number of vehicles has a linear impact on the total cost. Furthermore, the Rolling Horizon (RH) is shown to be more flexible, with a guaranteed linear runtime with a fixed horizon length as daily operation times T increases, than multi-stage stochastic model and the results generated by the two approaches are very similar. We test the impact of the daily operating hour using the Rolling Horizon framework, and the results indicate that the daily operating hour has a significant impact on the fleet size when the total trip remains the same, that is, the longer the daily operating hours, the less the vehicle size is needed. Thus, understanding the optimal operating hours can significantly bring down total cost while fulfilling the needs of our target users.

The case study has two major limitations. First, we choose CBC as our default solver here as it is open source so that the local governments and NPGs who usually have limited fundings can start building out their carsharing system at their earliest convenience. The choice implies the managerial and practical nature of our study. However, CBC as a solver has many limitations itself. CBC’s relatively slower speed compared to that of other commercial solvers which use the most advanced implementations of the latest algorithms will limit itself to solve small-sized problems due to computational complexity. The second limitation lies in the problem formulation portion of the study. First, the traveling time among the stations is based on static traffic information. It is important to consider real-time traffic as the traveling time may have a significant impact on the results. Second, the model is being tested on demand data following three types of probability distribution to simulate real-life situations, considering real-time demand data is expensive and sometimes impossible to obtain given there might be no active users to begin with. However, it is necessary for our future research to test our model on creating real-time demand data so that it can reflect the actual need of our target audience and draw more insights. Furthermore, as electric cars are becoming less expensive and having increased electric range, having an electric fleet for our carsharing system is going to have a positive impact on environment and the society. Our future research plans to study electric or hybrid carsharing system and compare it with the carsharing service with traditional gas cars.

CRediT authorship contribution statement

Ye Liu: Conceptualization, Formal analysis, Methodology, Writing – original draft. Yu Qian: Conceptualization, Methodology, Writing – original draft. Gurcan Comert: Methodology, Writing – review & editing. Negash Begashaw: Methodology, Writing – review & editing.
Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

Data will be made available upon reasonable request.

Acknowledgement

This research is partially funded by the Center for Connected Multimodal Mobility (C³M³), a United States Department of Transportation (USDOT) Tier 1 University Transportation Center. The opinions expressed in this article do not represent the opinions of the funding agencies.

References

Álvarez-Aguilera-García, J., Antoniou, C., & Vassalos, J. M. (2022). Behavioral factors impacting adoption and frequency of use of carsharing: A tale of two European cities. Transport Policy, 55–72.

Baker, R. (1977). An experimental study of the effectiveness of rolling schedules in production planning. Decision Sciences, 8(1), 19–27.

Carrese, S., D’Andreaiovanni, F., Tommaso, G., Nardin, A., & Zamberian, L. (2020). An optimization model and genetic-based heuristic for parking slot rent optimization for carsharing. Research in Transportation Economics, 223.

Criden, M. (2008). The Stranded Poor: Recognizing the Importance of Public Transportation for Low-Income Households. National Association for State Community Services Programs.

Dabelko-Schoeny, H., Maleku, A., Cao, Q., White, K., & Ozbilen, B. (2021). Flexible shared mobility for multiple microgrids with electric vehicle loads based on a novel data-driven optimization model for storage and dynamic distribution of medical supplies in epidemic management. Applied Mathematical Modelling, 35–61.

Liu, M., Zhang, C., Ding, M., & Lv, R. (2022). A two-stage stochastic variational inequality model for storage and dynamic distribution of medical supplies in epidemic management. Applied Mathematical Modelling, 35–61.

Lin, D., & Kuo, J. (2021). The vehicle deployment and relocation problem for electric vehicle sharing systems considering demand and parking space stochasticity. Transportation Research Part E: Logistics and Transportation Review, 156.

Lu, M., Chen, Z., & Shen, S. (2017). Optimizing the Profitability and Quality of Service in Carshare Systems Under Demand Uncertainty. Manufacturing & Service Operations Management. https://doi.org/10.1287/msom.2017.0644.

Ma, Z., & Koutsopoulos, H. N. (2022). Near-on-demand mobility. The benefits of user flexibility for ride-pooling services. Transportation Research Part C: Emerging Technologies.

Mitchell, S., O’Sullivan, M., & Dunning, I. (2011). PuLP: A Linear Programming Toolkit for Python.

Ouyede, L., Cochran, A. L., Prunkl, L., Wang, J., Wolfe, M., & Mcdonald, N. C. (2022). Unpacking transportation barriers and facilitators to accessing health care: Interviews with care coordinators. Transportation Research Interdisciplinary Perspectives.

Pan, A., Martin, E., & Shasheen, S. (2022). Is access enough? A spatial and demographic analysis of one-way carsharing policies and practice. Transport Policy, 127.

Rotaroiu, I., & Daniels, R. (2018). The role for carsharing in medium to small-sized towns and in less-densely populated rural areas. Transportation Research Part A: Policy and Practice, 115. https://doi.org/10.1016/j.tra.2017.07.006, 49–62.

Rozenfeld, Y., Boom, J., Maier, H., Haggerson, W., Boudreau, K., Carlson, J., & Medows, R. (2020). A model of disparities: Risk factors associated with COVID-19 infection. International Journal for Equity in Health.

Shaheen, S., & Cohen, A. (2020). Innovative Mobility: Carsharing Outlook. Berkeley: Transportation Sustainability Research Center - University of California.

Shapiro, A., Dentcheva, D., & Ruszczynski, A. (2014). Lectures on Stochastic Programming: Modeling and Theory. Second Edition.

Shu, J., Chou, M. C., Liu, Q., Teo, C.-P., & Wang, L.-L. (2013). Models for Effective Deployment and Redistribution of Bicycles Within Public Bicycle-Sharing Systems. Operations Research. https://doi.org/10.1287/opre.2013.1215.

Takes, F. W., & Kosters, W. A. (2010). Applying Monte Carlo Techniques to the Capacitated Vehicle Routing Problem.

Tan, B., Chen, H., Zheng, X., & Huang, J. (2022). Two-stage robust optimization dispatch for multiple microgrids with electric vehicle loads based on a novel data-driven uncertainty set. International Journal of Electrical Power & Energy Systems.

Vermesch, P., Bojedo, G., & Lackapelle, U. (2021). Commuting mode share and workplace-based public transport services: An equity perspective. Case Studies on Transport Policy, 9(2).

Wang, Y., & Szeto, W. (2021). The dynamic bike repositioning problem with battery electric vehicles and multiple charging technologies. Transportation Research Part C: Emerging Technologies.

Wu, M., Yu, C., Ma, W., et al. (2022). Joint optimization of timetabling, vehicle scheduling, and ride-matching in a flexible multi-type shuttle bus system. Transportation Research Part C: Emerging Technologies, 139.

Yang, S., et al. (2021). Double-balanced relocation optimization of one-way car-sharing system with real-time requests. Transportation Research Part C: Emerging Technologies.

Yu, M., & Shen, S. (2018). Designing and Optimizing an Integrated Car-and-ride Sharing System for Mobilizing Underserved Populations.

Zaneti, L., Arias, N., Almeida, M., & Rider, M. (2022). Sustainable charging schedule of electric buses in a University Campus: A rolling horizon approach. Renewable and Sustainable Energy Reviews, 161.