Application of matrix-valued integral continued fractions to spectral problems on periodic graphs

Anton A. Kutsenko

Department of Mathematics, Aarhus University, Aarhus, DK-8000, Denmark; email: akucenko@gmail.com

Abstract

We show that spectral problems for periodic operators on lattices with embedded defects of lower dimensions can be solved with the help of matrix-valued integral continued fractions. While these continued fractions are usual in the approximation theory, they are less known in the context of spectral problems. We show that the spectral points can be expressed as zeroes of determinants of the continued fractions. They are also useful in the study of inverse problems (one-to-one correspondence between spectral data and defects). Finally, the explicit formula for the resolvent in terms of the continued fractions is also provided. We apply some of our results to the Schrödinger operator acting on the graphene with line and point defects.

Keywords: periodic operators with defects, Floquet-Bloch dispersion spectrum, inverse spectral problem, integral continued fractions

1. Introduction

Discrete periodic operators with defects have different applications in various problems of physics and mechanics, see discussions in [1, 2] and an example below. The spectrum of purely periodic operators acting on purely periodic lattices corresponds to the extended eigenfunctions which have no attenuation along any direction in the lattice. If we add a defect sublattice of lower dimension to the purely periodic lattice then we obtain new spectral components which correspond to the eigenfunctions bounded along the defect and exponentially decreasing in the perpendicular directions. For example, free surfaces of periodic structures and various wave-guides embedded into the periodic lattices are defects of lower dimensions. The corresponding extended eigenfunctions are called as surface and guided modes. They are of high interest in various problems of the propagation of radio (light) and acoustic waves. In the present paper we show how matrix-valued integral continued fractions can be used for determining the spectrum, the resolvent and other characteristics of periodic operators with defects. We apply these results to the Schrödinger operator acting on the graphene with line and point defects.

It is shown in [3] that discrete periodic operators acting on discrete N-dimensional periodic graphs (lattices) with embedded periodic subgraphs (defect sublattices) of smaller dimensions \(N - 1, \ldots, 0 \) are unitarily equivalent to integral operators of a special form. The
corresponding unitary map is called a Fourier-Floquet-Bloch transformation (FFB). In the simplest case of a single point unite cell \(M = 1 \), it is the Fourier series which allows us to replace infinite discrete sequences with functions of continuous variables. Let

\[
L^2_{N,M} \equiv L^2([0,1]^N, \mathbb{C}^M)
\]

be the Hilbert space of square-integrable vector-valued (if \(M > 1 \)) functions defined on \([0,1]^N\). As it is shown in [3], after applying FFB the periodic operators with defects take the form

\[
\mathcal{A} : L^2_{N,M} \to L^2_{N,M}, \quad \mathcal{A} = \mathcal{A}_0 \cdot + \mathcal{A}_1 \langle \mathcal{B}_1 \cdot \rangle_1 + \ldots + \mathcal{A}_N \langle \mathcal{B}_N \cdot \rangle_{1,N},
\]

where \(\mathcal{A} \equiv \mathcal{A}(k), \mathcal{B} \equiv \mathcal{B}(k) \) are continuous matrix-valued functions on \(k = (k_i) \in [0,1]^N \) of sizes

\[
\dim(\mathcal{A}_0) = M \times M, \quad \dim(\mathcal{B}_j) = M_j \times M, \quad \dim(\mathcal{A}_j) = M \times M_j, \quad j \geq 1
\]

with some positive integers \(M_j \); the dot \(\cdot \) in (2) denotes the place of operator arguments \(u \in L^2_{N,M} \); the integrals \(\langle \cdot \rangle_{i,j} \) in (2) are defined as follows

\[
\langle \cdot \rangle_{i,j} = \int_{[0,1]^{j-i+1}} \cdot dk_i dk_{i+1} \ldots dk_j \quad (j > i), \quad \langle \cdot \rangle_i \equiv \langle \cdot \rangle_{i,i} = \int_{[0,1]} \cdot dk_i.
\]

Note that for purely periodic lattices without defects, the periodic operators are unitarily equivalent to \(\mathcal{A} = \mathcal{A}_0 \), see, e.g., [4]. The presence of defects leads to additional integral terms \(\mathcal{A}_j \langle \mathcal{B}_j \cdot \rangle_{1,j} \), see [3]. The matrix-valued functions \(\mathcal{A}, \mathcal{B} \) depend on the structure of the periodic lattice and its defect sublattices. Roughly speaking, \(\mathcal{A}_j, \mathcal{B}_j \) show how the defect sublattice of the dimension \(N - j \) is embedded into the substrate lattice of the dimension \(N \).
and how it is related to other defect sublattices. The periodicity of the lattice means that there is some unit cell which can be periodically translated to cover our lattice. The value \(M(3) \) is exactly the number of nodes inside the unit cell. While we have different unit cells for different sublattices it is supposed that they have the same periods and hence we can choose the common unit cells. The choice of the unit cell is not unique. In particular, we can increase the size of the unit cell twice or of integer times, see Fig. (a),(b). The new obtained cell can also be considered as a unit cell for our periodic lattice. This procedure increases the size \(M \) of the space \(L^2_{N,M} \) but, at the same time, it can simplify the structure of the operator (2). Namely, if the defect cells are fully integrated into the new unit cells then the operator (2) takes the form

\[
A = A_0 \cdot + A_1(\cdot_1) + ... + A_N(\cdot_1,N), \tag{5}
\]

where \(M \times M \) matrix-valued functions \(A \) satisfy

\[
A_0 \equiv A_0(k_0), \quad k_0 = (k_1, ..., k_N); \quad A_j \equiv A_j(k_j), \quad k_j = (k_{j+1}, ..., k_N). \tag{6}
\]

In particular, \(A_N \) is a constant matrix. Roughly speaking, the independence of \(A_j \) on \(k_1, ..., k_j \) means that we can cover the defect sublattice of the dimension \(N - j \) by the shifted unite cells, where we shift one "zero" unite cell along the defect sublattice and no shifts in perpendicular directions (FFB of perpendicular shifts are \(e^{2\pi ikr}, r \leq j \), see [3]) are used. For example, the unite cells of spring-mass models considered in [1] satisfy these requirements.

Operators (5)-(6) form a linear subspace in the space (algebra, see [3]) of all periodic operators with parallel defects (2)-(3). For the operators (5)-(6) the procedure of finding the spectrum (obtained in [3] for the general case) can be refined. Note that the Hermitian adjoint operator of \(A \) (5) has the same form

\[
A^* = A_0^* \cdot + (A_1^*)_1 + ... + (A_N^*)_{1,N} = A_0^* \cdot + A_1^*(\cdot)_1 + ... + A_N^*(\cdot)_1,N, \tag{7}
\]

since \(A \) satisfy (6).

Definition 1.1. Let \(\lambda \in \mathbb{C} \) and let matrix-valued functions \(A \) be of the form (6). Define the matrix-valued continued fractions \(F_j \equiv F_j(\lambda, k_j) \) by

\[
F_0 = A_0 - \lambda I, \quad F_1 = A_1 + \left\langle \frac{I}{A_0 - \lambda I} \right\rangle^{-1}, \quad F_2 = A_2 + \left\langle \frac{I}{A_1 + \left\langle \frac{I}{A_0 - \lambda I} \right\rangle^{-1}} \right\rangle^{-1} \tag{8}
\]

and so on \(F_j = A_j + \left\langle F_{j-1}^{-1} \right\rangle^{-1} \) up to \(j = N \). The matrix \(I \) is the identity matrix.

The next theorem gives us the expression of the spectrum of the operator \(A \) (5) in terms of the continued fractions (8).
Theorem 1.2. Let an operator \mathcal{A} be of the form (5)-(6). Then the spectrum of \mathcal{A} is

$$\sigma(\mathcal{A}) = \bigcup_{j=0}^{N} \sigma_j, \quad \sigma_j = \{ \lambda : \det G_j(\lambda, k_j) = 0 \text{ for some } k_j \in [0, 1]^{N-j} \}, \quad (9)$$

where

$$G_0 \equiv F_0, \quad G_j \equiv \langle (F_{j-1}) \rangle F_j = I + \langle (F_{j-1}) \rangle A_j, \quad j \geq 1. \quad (10)$$

Remark on the computation of the spectrum $\sigma(\mathcal{A})$. On the zero step we determine σ_0. On the first step, it is convenient to define G_1 for $\lambda \in \mathbb{C} \setminus \sigma_0$ because it is not well defined for $\lambda \notin \sigma_0$ (the matrix F_0 is non-invertible, see (9)-(10)). Zeros of G_1 determine the spectral component σ_1 which is disjoint from σ_0. And so on, on the j-th step we can define G_j for $\lambda \in \mathbb{C} \setminus (\sigma_0 \cup \ldots \sigma_{j-1})$. Zeros of G_j determine σ_j which is disjoint from all $\sigma_{j-1}, \ldots, \sigma_0$. In general, it is also possible to define G_j for $\lambda \in \sigma_0 \cup \ldots \cup \sigma_{j-1}$ but it leads to non-disjoint sets σ_j (of course, the total spectrum $\sigma = \cup \sigma_j$ does not change). It is not important here but we use some of these arguments below.

Let us briefly discuss some aspects of inverse spectral problems. Due to (9) the set of matrix-valued functions $\{G_j\}_{j=0}^{N}$ can be considered as spectral data for our operator \mathcal{A} (5). We just need to show that $\{G_j\}_{j=0}^{N}$ determine the matrix-valued functions $\{A_j\}_{j=0}^{N}$ uniquely.

Theorem 1.3. The following identities hold true

$$A_0 = \lambda I + G_0, \quad A_j = \langle (G_0 \ldots G_{j-1})^{-1} \rangle_{1,j} (G_j - I), \quad j \geq 1, \quad (11)$$

and

$$A_0 = \lambda I + F_0, \quad A_j = F_j - \langle F_{j-1}^{-1} \rangle_{1,j}, \quad j \geq 1. \quad (12)$$

Identities (8), (10)-(12) show that there are one-to-one mappings between the sets of $M \times M$ matrix-valued functions

$$\{F_j\}_{j=0}^{N} \quad \{G_j\}_{j=0}^{N} \quad \{A_j\}_{j=0}^{N} \quad (13)$$

Thus, $\{F_j\}_{j=0}^{N}$ and $\{G_j\}_{j=0}^{N}$ can be considered as spectral data in inverse spectral problems for operators \mathcal{A} (5). In particular, if we have a set of $M \times M$ matrix-valued functions $\{G_j(\lambda, k_j)\}_{j=0}^{N}$. Then this set corresponds to some operator \mathcal{A} (5)-(6) if and only if the matrix-valued functions A_j (11) do not depend on λ. In this case, the obtained A_j are the components of the operator \mathcal{A} and its spectrum satisfies (9).

Note also that the set $\{F_j\}_{j=0}^{N}$ has some advantages over the set $\{G_j\}_{j=0}^{N}$: if all A_j are self-adjoint then \mathcal{A} (5) is self-adjoint and all F_j are also self-adjoint for real λ. At the same time, G_j are usually non-self-adjoint.
we can also use G_j defined by
\[
G_0 \equiv F_0, \quad G_j \equiv F_j(F_{j-1})^{-1} = I + A_j(F_{j-1})^{-1}, \quad j \geq 1.
\] (14)

Thus the matrices G_j allow us to define the spectrum as well as the matrices G_j. The analogues of Theorem 1.3 and (13) are also fulfilled for G_j.

Remark on the resolvent. Let I be the identity operator. Let A be of the form (5)-(6) and let $\lambda \in \mathbb{C} \setminus \sigma(A)$. The following explicit formula for the inverse operator (resolvent) holds true
\[
R(\lambda) \equiv (A - \lambda I)^{-1} = D_0 - H_1 A_1 \langle D_{1'} \rangle_1 - \ldots - H_N A_N \langle D_{N'} \rangle_{1,N},
\] (15)

where the matrix-valued functions H, D are defined by
\[
H_{j+1} = (G_j \ldots G_0)^{-1}, \quad D_j = (G_0 \ldots G_j)^{-1}.
\] (16)

Recall that the matrix-valued functions G_j and G_j^* determine the spectrum of A, see (5)-(10) (and (14)). If all $A_j^* = A_j$ are self-adjoint and $\lambda \in \mathbb{R} \setminus \sigma(A)$ then A and its resolvent are self-adjoint, and
\[
R(\lambda) = H_1 - \sum_{r=1}^{N} H_r A_r \langle H_{r+1}^* \rangle_{1,r} = D_0 - \sum_{r=1}^{N} D_{r-1}^* A_r \langle D_{r'} \rangle_{1,r}.
\] (17)

Let us provide some examples where the resolvent plays important role. In a functional calculus of operators: we can express an analytic function f (defined on some domain $\Omega \subset \mathbb{C}$) of the operator A as the Cauchy’s integral $f(A) = (2\pi i)^{-1} \oint_{\Omega} f(\lambda) R(\lambda) d\lambda$. In a problem with energy sources: we can explicitly express the wave-function u corresponding to the source f as $u = R(\lambda)f$, where λ depends on the energy of the source. We have used such explicit expressions for the defect detection, see [2].

The case $M = 1$. In this special case, all A, F, G, H, D are scalar functions (for scalars we do not use bold fonts). Assume also that A_j are real functions. Then the operator A is self-adjoint. Define $\lambda_0(k_0) \equiv A_0(k_0)$, $k_0 \in [0,1]^N$. It is a standard function but it is more convenient to look at it as a set. By induction, suppose that for $r = 0, \ldots, j-1$ we have already defined the sets $\lambda_r \equiv \lambda_r(k_r)$, $k_r \in [0,1]^{N-r}$. Then for $k_j \in [0,1]^{N-j}$ we define
\[
\lambda_j(k_j) \equiv \{ \lambda : F_j(\lambda, k_j) = 0 \text{ for } \lambda \in \mathbb{R} \setminus \bigcup_{r=0}^{j-1} \lambda_r([0,1]^{j-r}, k_j) \}.
\] (18)

The condition after for in (18) is natural because otherwise some F_r is zero and F_{r+1} is not well defined (see Definition 1.1). We will call λ_j Floquet-Bloch dispersion branches for the operator A. The following result fully describes the spectrum of the operator A and it also allows us to recover the operator A from its spectrum.
Theorem 1.4. i) Let \mathcal{A} be of the form (5)-(6) with real scalar components A_j. Then any set $\lambda_j(k_j)$ (18) consists of no more than one element. The spectrum of \mathcal{A} is a union of intervals σ_j, $j < N$ and one eigenvalue σ_N (some of σ_j or σ_N can be empty)

$$\sigma(\mathcal{A}) = \bigcup_{r=0}^{N} \sigma_r, \text{ where } \sigma_j = \lambda_j([0, 1]^{N-j}).$$

(19)

ii) Suppose that we have $N + 1$ real continuous functions $\lambda_r \equiv \lambda_r(k_r)$, $k_r \in [0, 1]^{N-r}$, $r = 0,...,N$ (this means that any set $\lambda_r(k_r)$ consists of one element) satisfying

$$\lambda_j(k_j) \notin \bigcup_{r=0}^{j-1} \lambda_r([0, 1]^{j-r}, k_j), \forall j \geq 1, \forall k_j \in [0, 1]^{N-j}.$$

(20)

Then there exists the unique operator \mathcal{A} (5)-(6) with Floquet-Bloch branches λ_j. Its components can be calculated by induction $A_0 \equiv \lambda_0$ and $A_j(k_j) = -(F_j^{-1}(\lambda_j(k_j), k_j, k_j))^{-1}, j \geq 1$. The spectrum of \mathcal{A} satisfies (19).

Remark. By analogy with (15), the Floquet-Bloch dispersion branches $\lambda_j(k_j)$ can also be defined for $M > 1$ as zeroes of $\det \mathbf{G}_j$, see (9). The sets $\lambda_j(k_j)$ and their projections $\lambda_r([0, 1]^{j-r}, k_j)$ play important role in physics of waves, see, e.g., [1]. The well-known “band structures” or band-gap diagrams consist of the Floquet-Bloch branches. For different j the components $\sigma_j = \lambda_j([0, 1]^{N-j})$ have different physical (and mathematical) nature. Roughly speaking, σ_j characterizes the waves that propagate along the defect of the dimension $N - j$ and exponentially decrease in the perpendicular directions. The corresponding waves are called guided and localized waves, see, e.g., [5].

Example. Let $M = 1$, $N = 2$. Suppose that we want to construct the operator \mathcal{A} (5)-(6) with the spectrum $\sigma = \bigcup \sigma_j$, where $\sigma_0 = [0, 1]$, $\sigma_1 = [0.5, 1.5]$, and $\sigma_2 = 2$. In order to do this we can choose any real continuous functions λ_j satisfying (20) with $\lambda_j([0, 1]^{N-j}) = \sigma_j$, and use after the procedure from Theorem 1.4.ii) along with Definition 1.1. Ok, suppose that we want $\lambda_0 = k_1k_2$, $\lambda_1 = 0.5 + k_2$, and $\lambda_2 = 2$. Then

$$A_0 = k_1k_2, \quad A_1 = -(F_0^{-1}(\lambda_1, k_1, k_2))^{-1} = -\left(\int_0^1 \frac{dk_1}{k_1k_2 - 0.5 - k_2}\right)^{-1} = \frac{k_2}{\ln(1 + 2k_2)},$$

$$F_1(\lambda_2, k_2) = \frac{k_2}{\ln(1 + 2k_2)} + \left(\int_0^1 \frac{dk_1}{k_1k_2 - 2}\right)^{-1} = \frac{k_2}{\ln(1 + 2k_2) + \ln(1 - 0.5k_2)};$$

$$A_3 = -(F_1^{-1}(\lambda_2, k_2))^{-1} = -\left(\int_0^1 \ln(1 + 2k_2) \ln(1 - 0.5k_2)dk_2\right)^{-1} = 0.935...,$$

and then $\mathcal{A} = k_1k_2 \cdot \frac{k_2}{\ln(1 + 2k_2)}(\cdot)_1 + 0.935...\langle \cdot \rangle_{1,2}$.

As a conclusion note that there are only few papers devoted to applications of (finite or infinite) standard matrix-valued continued fractions (MCF) to spectral problems: in [4] some
general relations between Hamiltonians and MCF are presented; in [7] MCF are applied for calculating Green functions related to some Hamiltonians; in [8] the authors use MCF in analysis of non-linear spectral problems; in [9] some methods of obtaining Floquet eigenvalues and eigensolutions based on MCF are discussed; in [10], [11] the stability of the methods is analyzed. Some applications of MCF to explicit representations of resolvent operators can be found in [12], [13]. Scalar continued fractions (CF) are used in Krein’s inverse spectral problems, see, e.g., [14]. Also note an interesting connections between orthogonal polynomials (including matrix-valued polynomials), CF, and inverse spectral theory, see, e.g., [15], [16]. Classical integral CF are introduced in [17], [18] as solutions of differential equations. They are also discussed in the context of interpolation theory, see, e.g., [19], [20]. At the same time, probably there are no papers devoted to integral CF or MCF of the form (8).

The work is organized as follows. Section 2 contains the proofs of Theorems 1.2, 1.3, and explicit resolvent formulas. Section 3 contains the proof of Theorem 1.4. Section 4 provides an application of our results to the spectral problem of discrete Schrödinger operator acting on the graphene with line and local inclusions. The conclusion is given in Section 5.

2. Proofs of Theorems 1.2, 1.3, and explicit resolvent formulas

The proof is based on the following result from [3]:

Let A be an operator of the form (2)-(3). Then the spectrum of A is

$$\sigma(A) = \bigcup_{j=0}^{N} \sigma_j \quad \text{with} \quad \sigma_j = \{ \lambda : \det E_j = 0 \text{ for some } k_j \in [0, 1]^{N-j} \},$$

(21)

where matrix-valued functions E_j are defined as:

$$C_0 = (A_0 - \lambda I)^{-1}, \quad E_0 = C_0^{-1}, \quad C_1 = -C_0A_1, \quad E_1 = I - \langle B_1C_1 \rangle_1, \quad D_1 = E_1^{-1}B_1C_0$$

and for $1 < j \leq N$ by induction

$$C_j = -C_0A_j - \sum_{r=1}^{j-1} C_r\langle D_rA_j \rangle_{1,r}, \quad E_j = I - \langle B_jC_j \rangle_{1,j},$$

(23)

$$D_j = E_j^{-1}\left(B_jC_0 + \sum_{r=1}^{j-1} \langle B_jC_r \rangle_{1,r}D_r \right).$$

(24)

Adapting (22)-(24) to the special case of A (5)-(6) (where all $B_r = I$) we obtain that:

$$E_j = I - \langle C_j \rangle_{1,j}, \quad D_j = E_j^{-1}\left(C_0 + \sum_{r=1}^{j-1} \langle C_r \rangle_1 D_r \right), \quad j \geq 1,$$

(25)

where $\sum_{r=1}^{0} \text{ is assumed to be zero (for } j = 1)$. Due to the fact that A_r do not depend on $k_1, ..., k_r$ we also deduce

$$C_j = -H_jA_j, \quad \text{where} \quad H_j = C_0 + \sum_{r=1}^{j-1} C_r\langle D_r \rangle_{1,r}, \quad j \geq 1.$$
Using direct calculations we obtain explicit formulas for the first few matrices $C_0 = F_0^{-1}$, $E_0 = F_0$ and

$$H_1 = F_0^{-1}, \ E_1 = I + \langle F_0^{-1} \rangle_1 A_1 = \langle F_0^{-1} \rangle_1 F_1, \ D_1 = F_1^{-1} \langle F_0^{-1} \rangle_1^{-1} F_0^{-1},$$

(27)

$$H_2 = F_0^{-1} \langle F_0^{-1} \rangle_1^{-1} F_1^{-1}, \ E_2 = \langle F_1^{-1} \rangle_2 F_2, \ D_2 = F_2^{-1} \langle F_1^{-1} \rangle_2^{-1} F_1^{-1} \langle F_0^{-1} \rangle_1^{-1} F_0^{-1},$$

(28)

where the matrices F are defined in (N). Now, we prove by induction the following identities

$$E_j = \langle F_{j-1}^{-1} \rangle_j F_j, \ D_j = F_j^{-1} \left(\langle F_{j-1}^{-1} \rangle_j^{-1} F_{j-1}^{-1} \right) \cdots \left(\langle F_0^{-1} \rangle_1^{-1} F_0^{-1} \right)$$

(29)

and

$$H_j = \left(F_0^{-1} \langle F_0^{-1} \rangle_1^{-1} \right) \cdots \left(F_{j-2}^{-1} \langle F_{j-2}^{-1} \rangle_{j-1}^{-1} \right) F_{j-1}^{-1}.$$

(30)

Really, (26) gives us

$$H_{j+1} = H_j + C_j \langle D_j \rangle_{1,j} = H_j (I - A_j \langle D_j \rangle_{1,j}).$$

(31)

Using (29), Fubini’s theorem, and the fact that F_r do not depend on k_1, \ldots, k_r (see (N)) we obtain

$$\langle D_j \rangle_{1,j} = F_j^{-1} \left\langle \langle F_{j-1}^{-1} \rangle_j^{-1} F_{j-1}^{-1} \cdots \left(\langle F_0^{-1} \rangle_1^{-1} F_0^{-1} \right) \right\rangle_{2,j}$$

(32)

$$= F_j^{-1} \left\langle \langle F_{j-1}^{-1} \rangle_j^{-1} F_{j-1}^{-1} \cdots \langle F_0^{-1} \rangle_1^{-1} \right\rangle_{2,j} = F_j^{-1} \left\langle \langle F_{j-1}^{-1} \rangle_j^{-1} F_{j-1}^{-1} \cdots \right\rangle_{2,j} = \cdots = F_j^{-1}.$$

(33)

Substituting (32)-(33) into (31) and using Definition 1.1 we get

$$H_{j+1} = H_j (I - A_j F_j^{-1}) = H_j \langle F_{j-1}^{-1} \rangle_j^{-1} F_j^{-1}$$

(34)

which confirms (30) for $j + 1$. The similar arguments applied to E_{j+1} (see (25)) give us

$$E_{j+1} = I - \langle C_{j+1} \rangle_{1,j+1} = I + (H_{j+1})_{1,j+1} A_{j+1} = I + \langle F_{j-1}^{-1} \rangle_{j+1} A_{j+1} = \langle F_{j-1}^{-1} \rangle_{j+1} F_{j+1}$$

(35)

which confirms the first identity in (29) for $j + 1$. Identities (25) lead to

$$E_{j+1} D_{j+1} = E_j D_j + \langle C_j \rangle_{1,j} D_j = D_j.$$

(36)

Thus, by (29) (it is already proved for E_{j+1}, see (35)) we have

$$D_{j+1} = E_{j+1}^{-1} D_j = F_{j+1}^{-1} \langle F_j^{-1} \rangle_{j+1}^{-1} D_j,$$

(37)

which confirms the second identity in (29) for $j + 1$. Now, identities (29)-(30) are completely proved for all $j = 2, \ldots, N$. We obtain also that $G_j = E_j$ (see (29), (11)). Due to (21) this
means that Theorem 1.2 is true. Identities (12) are obvious by the definition of F (8). Let us compute the second identity in (11)

$$\langle (G_{0}\ldots G_{j-1})^{-1}\rangle^{-1}_{1,j} (G_{j} - I) = \langle (E_{0}\ldots E_{j-1})^{-1}\rangle^{-1}_{1,j} (E_{j} - I) = (38)$$

$$\langle D_{j-1}^{-1}\rangle^{-1}_{1,j} (F_{j-1}^{-1}_{1,j} F_{j} - I) = \langle F_{j-1}^{-1}_{1,j} (F_{j-1}^{-1}_{1,j} F_{j}) - I = A_{j}, (39)$$

where we have used (29), (32)-(33), and Definition 1.1. Thus, Theorem 1.3 is proved.

Identities (15), (16) follow from (26), (34), (37), and from the general result about the resolvent (see [3])

$$(A - \lambda I)^{-1} = C_{0} + C_{1} \langle D_{1}\cdot\rangle_{1} + \ldots + C_{N} \langle D_{N}\cdot\rangle_{1,N}. (40)$$

If all A_{j} are self-adjoint then all F_{j} are self-adjoint and then $D_{j}^{*} = H_{j+1}$, see (31),(37). These arguments lead to (17).

3. Proof of Theorem 1.4

We can consider $\lambda \in \mathbb{R}$ only because the operator A is self-adjoint. For any fixed $k_{0} \in [0,1]^{N}$ the function $F_{0}(\lambda, k_{0}) = A_{0}(k_{0}) - \lambda$ is an injection on $\lambda \in \mathbb{R}$. For any fixed $k_{1} \in [0,1]^{N-1}$ the function $\langle F_{0}^{-1}(\lambda, k_{1})\rangle^{-1}$ does not have zeroes in the set $\lambda \in \mathbb{R} \setminus \lambda_{0}([0,1], k_{1}) = \mathbb{R} \setminus A_{0}([0,1], k_{1})$ because $F_{0}^{-1}(\lambda, k_{1}, k_{1})$ does not change sign inside this set. Thus, by Theorem 1.2 the spectral component

$$\sigma_{1} = \{ \lambda : F_{1}(\lambda, k_{1}) = 0 \ \text{for some} \ k_{1} \in [0,1]^{N-1} \} \equiv \lambda_{1}([0,1]^{N-1}).$$

Consider some fixed $k_{1} \in [0,1]^{N-1}$ and two different points $x_{1} \neq x_{2}$ belonging to the set $\mathbb{R} \setminus \lambda_{0}([0,1], k_{1})$. Then $F_{0}(x_{1}, k_{1}, k_{1}) \neq F_{0}(x_{2}, k_{1}, k_{1})$ and

$$F_{0}(x_{1}, k_{1}, k_{1}) < (or >) F_{0}(x_{2}, k_{1}, k_{1}) \Rightarrow \langle F_{0}^{-1}(x_{1}, k_{1}, k_{1})\rangle^{-1} < (or >) \langle F_{0}^{-1}(x_{2}, k_{1}, k_{1})\rangle^{-1} \Rightarrow$$

$$F_{1}(x_{1}, k_{1}) < (or >) F_{1}(x_{2}, k_{1}),$$

where we use the fact that for any fixed $k_{1} \in [0,1], k_{1} \in [0,1]^{N-1}$ the continuous function $F_{0}(\lambda, k_{1}, k_{1})$ is an injection on the set $\lambda \in \mathbb{R} \setminus \lambda_{0}([0,1], k_{1})$ and hence $F_{0}(x_{1}, k_{1}, k_{1}) - F_{0}(x_{2}, k_{1}, k_{1})$ is not zero and has the same sign for all $k_{1} \in [0,1]$. Thus, for any fixed $k_{1} \in [0,1]^{N-1}$ the function $F_{1}(\lambda, k_{1})$ is an injection on the set $\lambda \in \mathbb{R} \setminus \lambda_{0}([0,1], k_{1})$. Then the set

$$\lambda_{1}(k_{1}) = \{ \lambda : F_{1}(\lambda, k_{1}) = 0 \}$$

consists of no more than one point. The same arguments allow us to finish the proof of i) by induction.

The results of ii) follow also from the facts: for any fixed k_{j} the function $F_{j}(\lambda, k_{j})$ is an injection (it can be proved by induction, see above) on the set $\lambda \in \mathbb{R} \setminus \bigcup_{r=0}^{j-1} \lambda_{r}([0,1]^{j-r}, k_{j})$, and

$$F_{j}(\lambda, k_{j}) = A_{j}(k_{j}) + \langle F_{j-1}^{-1}(\lambda, k_{j}) \rangle_{j}^{-1} = 0 \text{ for } \lambda = \lambda_{j}(k_{j}) \text{ if and only if } A_{j}(k_{j}) = -\langle F_{j-1}^{-1}(\lambda, k_{j}) \rangle_{j}^{-1}. \tag{37}$$
4. Example

In this example we study the spectral problem for the discrete Schrödinger operator acting on the graphene with a line defect and a local defect, see Fig. 2. The graphene Γ is 2-periodic lattice with 2-point unit cell, the line defect Γ_1 is 1-periodic sublattice, and the local defect is one point, i.e.

$$\Gamma = \{1, 2\} \times \mathbb{Z}^2, \quad \Gamma_1 = \{1\} \times 0 \times \mathbb{Z}, \quad \Gamma_2 = \{2\} \times 0 \times 0.$$ \hfill (41)

Consider the discrete Schrödinger operator \mathcal{A} acting on the graphene

$$\mathcal{A} : \ell^2(\Gamma) \to \ell^2(\Gamma), \quad \mathcal{A} U_n = \tilde{\Delta} U_n + V_n U_n, \quad n \in \Gamma,$$ \hfill (42)

where the modified Laplace operator $\tilde{\Delta} U_n = \sum_{n' \sim n} U_{n'}$ is the sum of the values of the wave function $U \in \ell^2(\Gamma)$ counting at neighbor points (for each point n there are 3 neighbor points n'). The potential is

$$V_n = \begin{cases} 0, & n \in \Gamma \setminus (\Gamma_1 \cup \Gamma_2), \\ V_1, & n \in \Gamma_1, \\ V_2, & n \in \Gamma_2. \end{cases}$$ \hfill (43)

After applying FFB transformation

$$\mathcal{F} : \ell^2(\Gamma) \to L^2_{2,2}, \quad \mathcal{F}(U_n) = \sum_{m \in \mathbb{Z}^2} e^{2\pi i m^T k} \begin{pmatrix} U_{1 \times m} \\ U_{2 \times m} \end{pmatrix}, \quad k \in [0,1]^2$$ \hfill (44)

the Schrödinger operator \([42]\) takes the form

$$\mathcal{A} = \mathcal{F} \mathcal{A}^{-1} : L^2_{2,2} \to L^2_{2,2}, \quad \mathcal{A} = \mathbf{A}_0 + \mathbf{A}_1 \langle \cdot \rangle_{1,1} + \mathbf{A}_2 \langle \cdot \rangle_{1,2},$$ \hfill (45)

where

$$\mathbf{A}_0 = \begin{pmatrix} 0 & e^{2\pi i k_1 (1 + e^{-2\pi i k_2}) + 1} \\ e^{2\pi i k_1 (1 + e^{2\pi i k_2}) + 1} & 0 \end{pmatrix},$$ \hfill (46)

$$\mathbf{A}_1 = \begin{pmatrix} V_1 & 0 \\ 0 & 0 \end{pmatrix}, \quad \mathbf{A}_2 = \begin{pmatrix} 0 & 0 \\ 0 & V_2 \end{pmatrix}.$$ \hfill (47)
and I is 2×2 identity matrix. The spectral component σ_0 (see (9)-(10)) is determined by
\[
\det G_0 = \det F_0 = \det (A_0 - \lambda I) = 0 \tag{48}
\]
which leads to two Floquet-Bloch dispersion branches (surfaces)
\[
\lambda = \lambda_\pm = \pm \sqrt{3 + 2 \cos 2\pi k_1 + 2 \cos 2\pi k_2 + 2 \cos 2\pi (k_1 - k_2)} \tag{49}
\]
Then the spectral component $\sigma_0 = \lambda_-(0,1]^2 \cup \lambda_+(0,1]^2)$. The surfaces $\lambda_\pm(k) \in [0,1]^2$ are plotted in Fig. 3. Up to elementary coordinate $(k_1 \rightarrow k_1, k_2 \rightarrow k_1 - k_2)$ which does not have affect on the spectrum) transformations, they are the same as in [21]. Each point of the surfaces corresponds to the bounded non-attenuated wave-function U_α (so-called propagating eigenfunction). That is why these dispersion surfaces are called propagating dispersion surfaces. While the propagating spectrum is usually easy to compute

![Figure 3: (a) Propagating dispersion surfaces λ_\pm and (b) their projections (defined by the curves $\lambda_{\text{min},\text{max}}(k_2)$).](image)

other components are more complex. The spectral component σ_1 (see (9)-(10)) is determined by the determinant of the matrix
\[
G_1 = I + (A_0 - \lambda I)^{-1} A_1 = \begin{pmatrix}
1 & -\frac{1}{\lambda} \frac{V_1}{16 \cos^2 \pi k_2} & \cdots \\
0 & 0 & \cdots \\
\frac{1}{\lambda} \frac{V_1}{16 \cos^2 \pi k_2} & \cdots & 1
\end{pmatrix}, \tag{50}
\]
where the sign \pm depends on whether λ is above or below the projection of the propagating branches $\lambda_\pm(k)$ on the plane (λ, k_2). This projection consists of areas bounded by the four curves
\[
\lambda_{\text{min},\text{max}}(k_2) = \pm \sqrt{3 + 2 \cos 2\pi k_2 \pm 4 \cos \pi k_2} \tag{51}
\]
Returning to the spectral component σ_1, we have that it is determined by the condition $\det G_1 = 0$ (see (9)-(10) and (50)) which leads to

$$\lambda^2 = \lambda^2(k_2) = \frac{2(1 + 4 \cos^2 \pi k_2) + V_1^2 \pm \sqrt{64 \cos^2 \pi k_2 + 4(1 + 4 \cos^2 \pi k_2)V_1^2 + V_1^4}}{2},$$

(52)

where the sign \pm and the sign of $\lambda(k_2)$ depend on the location of $\lambda(k_2)$ (below or above the curves $\lambda_{\text{min},\pm\text{max}}(k_2)$) and on the sign of the potential V_1. The spectral component σ_1 is now $\sigma_1 = \lambda([0,1])$. Each point $\lambda(k_2)$ (where $k_2 \in [0,1]$) corresponds to the bounded wave-function U_n which is non-attenuated along the line defect and exponentially decreasing in the perpendicular directions (so-called guided eigenfunction). That is why these dispersion curves are called guided dispersion curves. They are plotted in Fig. 4. For the discrete spectrum σ_2 we need to calculate zeroes of the following function (see (9)-(10))

$$D_{\text{loc}}(\lambda) = \det G_2 = \det \left(I + \left(A_1 + \left(\frac{I}{A_0 - \lambda I} \right)^{-1} \right)^{-1} A_2 \right).$$

(53)

This function can not be expressed in elementary functions but it can easily be calculated numerically. On the Fig. 5 there are some examples of presence of eigenvalues.

5. Conclusion

We have shown that the set of matrix-valued integral continued fractions defined by the components of the periodic operator with defects determine the spectrum, the resolvent, and, of course, the components of the operator explicitly. Roughly speaking, this set is enough to solve the various direct and inverse spectral problems.
Figure 5: Propagating σ_0 (red line), guided σ_1 (green line) spectral components, and the function $D_{\text{loc}}(\lambda)$ computed for the potential $V_1 = -3.5$ (see Fig. 4(b)) and the potentials (a) $V_2 = 200$, (b) $V_2 = -200$. Zeroes of $D_{\text{loc}}(\lambda)$ are eigenvalues located in the gaps of the continuous spectrum, i.e. in $\mathbb{R} \setminus (\sigma_0 \cup \sigma_1)$.

Acknowledgements

This work was supported by the RSF project N\#15-11-30007. I would also like to thank Dr. Royer for useful discussions.

References

[1] A. A. Kutsenko, Wave propagation through periodic lattice with defects, Comput. Mech. 54 (2014) 1559–1568.
[2] A. A. Kutsenko, Analytic formula for amplitudes of waves in lattices with defects and sources and its application for defects detection, Eur. J. Mech. A-Solid. 54 (2015) 209–217.
[3] A. A. Kutsenko, Algebra of multidimensional periodic operators with defects, J. Math. Anal. Appl. 428 (2015) 221–230.
[4] E. L. Korotyaev, and A. A. Kutsenko, Zigzag nanoribbons in external electric and magnetic fields, Int. J. Comput. Sci. Math. 3 (2010) 168–191.
[5] M. E. Korotyaeva, A. A. Kutsenko, A. L. Shuvalov, and O. Poncelet, Love waves in two-dimensional phononic crystals with depth-dependent properties, Appl. Phys. Lett. 103 (2013) 111902.
[6] C. Ahlbrandt, A. C. Peterson, Discrete Hamiltonian systems: difference equations, Continued Fractions and Riccati Equations, Kluwer, Dordrecht, 1996.
[7] D. F. Martinez, Floquet - Green function formalism for harmonically driven Hamiltonians, J. Phys. A 36 (2003) 9827–9842.
[8] C. Simmendinger, A. Wunderlin, A. Pelster, Analytical approach for the Floquet theory of delay differential equations, Phys. Rev. E 59 (1999) 5344–5353.
[9] W. Otten, Verified inclusions of eigenvalues of linear difference and differential equations, Elsevier, Amsterdam, 1992.
[10] W. Luther, The convergence rate of continued fractions representing solutions of a Riccati equation, J. Comput. Appl. Math. 199 (2007) 271–276.
[11] M. Raissouli, A. Kacha, Convergence of matrix continued fractions, Linear Algebra Appl. 320 (2000) 115–129.
[12] J. V. Iseghem, Matrix continued fraction for the resolvent function of the band operator, Acta Appl. Math. 61 (2000) 351–365.
[13] V. N. Sorokin, J. V. Iseghem, Matrix continued fractions, J. Approx. Theory 96 (1997) 237–257.
[14] Y. Tourigny, Continued fraction solution of Krein's inverse problem, Inverse Probl. 27 (2011) 085008.
[15] L. Golinskii, V. Totik, Orthogonal polynomials: from Jacobi to Simon, Proc. Symp. Pure Math. 76 (2007) 821–874.
[16] D. Damanik, A. Pushnitski, B. Simon, The analytic theory of matrix orthogonal polynomials, Surv. Approx. Theory 4 (2008) 1–85.
[17] R. I. Mikhal’chuk, M. S. Syavavko, Continuous analogue of continued fractions, Ukr. Mat. Zh. 5 (1982) 559–564.
[18] Y. R. Batyuk, M. S. Syavavko, Integral continued fractions, Dokl. Akad. Nauk Ukrain. SSR Ser. A 7 (1984) 6–8.
[19] B. R. Mikhal’chuk, Interpolation of nonlinear functionals with the help of integral continued fractions, Ukr. Mat. Zh. 51 (1999) 364–375.
[20] V. L. Makarov, V. V. Khlobystov, B. R. Mikhal’chuk, Interpolational integral continued fractions, Ukr. Mat. Zh. 55 (2003) 479–488.
[21] P. Kuchment, and O. Post, On the spectra of carbon nano-structures, Comm. Math. Phys. 275 (2007) 805–826.