Article title: Interaction between row-type genes in barley controls meristem determinacy and reveals novel routes to improved grain
Authors: Monika Zwirek, Robbie Waugh and Sarah M. McKim
Article acceptance date: 22 September 2018

The following Supporting Information is available for this article:

Fig. S1 Spikes of Bowman and single vrs mutants before awn removal
Fig. S2 Spikes of vrs3.f, vrs4, vrs5, vrs1 and Bowman at late awn primordium stage
Fig. S3 Spikes of vrs double mutants before awn removal
Fig. S4 Differential gene expression of meristem regulators in Bowman, vrs3vrs4 and vrs3vrs5 mutants.
Fig. S5 Combined grain area from Bowman, single vrs mutants and double vrs mutants.
Fig. S6 Tiller outgrowth rate over time in Bowman and single vrs mutants and double vrs mutants
Fig. S7 Early tillering phase across Bowman and single vrs mutants

Table S1 Spike and spikelet traits separated by central, lateral and additional spikelets in Bowman, single vrs mutants and double vrs mutants (separate excel file)
Table S2 Spikelet by rachis node for Bowman, single vrs mutants and double vrs mutants (separate excel file)
Table S3 VRS gene expression in Bowman and single vrs mutants (separate excel file)
Table S4 Comparison of spikelet traits between double vrs mutants, their parents and Bowman (separate excel file)
Table S5 Gene expression in Bowman, vrs3vrs4 and vrs3vrs5 double mutants and vrs3, vrs4 and vrs5 parents (separate excel file)
Table S6 Spikelet parameters in single vrs mutants and Bowman compared by ANOVA
Table S7 Grain parameters in single vrs mutants and Bowman compared by ANOVA (separate excel file)
Table S8 Grain parameters in double vrs mutants compared to their parents and Bowman by ANOVA (separate excel file)
Methods S1 Supplemental methods for genotyping and qPCR
Fig. S1 Spikes of Bowman and single vrs mutants before awn removal. Scale, 0.5 cm.

Fig. S2 Spikes of vrs3.f, vrs4, vrs5, vrs1 and Bowman at late awn primordium stage. Scanning electron microscopy of spikes at late awn primordium (AP) stage from intermedium alleles: (a) vrs3.f, (b) vrs4, (c,d) vrs5, (e) vrs1, (f) Bowman. Lemma and awns are false coloured to highlight the gradient in development along the intermdium spikes. Arrow in (d) shows variable lemma and awn development in vrs5. Arrowheads in (d-f) show differentiated stamen lobes in vrs5 lateral spikelets compared to vrs1 and Bowman. Scale, 100 µm. Bw, Bowman
Fig. S3 Spikes of vrs double mutants before awn removal. Genotypes from left to right: vrs1vrs3, vrs1vrs4, vrs1vrs5, vrs3vrs4, vrs3vrs5, and vrs4vrs5. Scale, 0.5 cm.
Fig. S4 Differential gene expression of meristem regulators in Bowman, \textit{vrs3vrs4} and \textit{vrs3vrs5} mutants. \textit{RAMOSA-ENHANCER2} (\textit{REL2}), \textit{INDETERMINATE SPIKELET1} (\textit{IDS1}), \textit{VRS2} and \textit{VRS4} transcript levels in developing spikes of \textit{vrs3vrs4} and \textit{vrs3vrs5} mutants and Bowman. Bar graphs show mean normalised expression (± SD) detected by qPCR (n=3). Significant differences to Bowman indicated by *, $P < 0.05$; **, $P < 0.01$; ***, $P < 0.001$ (student t-test). Bw, Bowman; mne, mean normalised expression. GP, glume primordium; LP, lemma primordium; SP, stamen primordium.
Fig. S5 Combined grain area from Bowman, single vrs mutants and double vrs mutants. Violin plots show grain area distribution from all grain including those from central spikelets, lateral spikelets, and (when present) additional spikelets. Grain harvested from the main culm and tallest tiller per individual. n = 10 individuals.
Fig. S6 Tiller outgrowth rate over time in Bowman and single *vrs* mutants and double *vrs* mutants. Graphs show duration and rate of tiller production in Bowman, single and double *vrs* mutants. Slope indicated by red lines showing rate of tiller production and goodness of fit indicated by R² correlation. Black circle symbols indicate window of active tiller outgrowth; dag, days after germination.
Fig. S7 Early tillering phase across Bowman and single vrs mutants (a) Tiller number was recorded at five days after germination (dag) and repeated at two to three day intervals until 23 dag (n=10 individuals/ genotype). Plants were grown in 7 cm pots under long day glasshouse conditions. Tiller number included tillers with visible spikes as well as ‘vegetative tillers’ without emerged spikes. Dots represent means (±SD). (b) Apex stage was determined at each time point in plants grown along side. VM, vegetative meristem; DR, double ridge; TSM, triple spikelet meristem; GP, glume primordium; LP, lemma primordium; SP, stamen primordium; AP, awn primordium; WA, white anther; GrA, green anther.

(a)

(b)

	5dag	7dag	9dag	11dag	14dag	16dag	18dag	20dag	23dag	35dag		
Bw	VD	VD	early	DR	DR	TSM	GP/LP	LP/SP	SP	AP	WA/GrA	
vrs1	veg	VD	early	DR	DR	TSM	GP/LP	LP/SP	SP	AP	WA/GrA	
vrs2	VD	VD	VD	early	DR	DR	TSM	GP/LP	LP/SP	SP	AP	WA/GrA
vrs3	VD	VD	early	DR	DR	TSM	GP/LP	LP/SP	SP	AP	WA/GrA	
vrs3.f	VD	VD	early	DR/TSM	TSM	TSM	GP	LP/SP	SP	AP	WA/GrA	
vrs4	VD	VD	early	DR	DR	TSM	GP/LP	LP/SP	SP	AP	WA/GrA	
vrs4.k	VD	VD	early	DR/TSM	TSM	TSM	GP	LP/SP	SP	AP	WA/GrA	
vrs5	VD	VD	DR	DR/TSM	TSM	TSM	GP	LP/SP	SP	AP	WA/GrA	
Table S6 Spikelet parameters in single vrs mutants and Bowman compared by ANOVA Values are mean (±SD) from awned spikelets from n = 10 spikes per line. Means with the same letters are not statistically different from each other by ANOVA (p<0.05).

Line	rachis nodes	spikelets/spike (/ node)	spikelets setting grain/spike (/ node)	empty awned spikelets/spike (/ node)	grain area (mm^2)\(^A\)	TGW (g)	Final tiller number
Bw	22.4 ±1.3	66.9 ±3.4b	19.1 ±2.5 a	3.0 ±1.5 a	27.2 ±1.5 b	56.5 ±4.6 c	27 ±3.2 c
	b	(3.0 ±0.0)b	(0.9 ±0.1)d	(0.1 ±0.1)d	(3.0 ±0.5)b	(0.6 ±0.1)a	(0.8 ±0.0)ab
vrs1	20.4 ±0.5	60.3 ±2.1bc	52.7 ±4.2 c	7.7 ±4.2 b	22.2 ±3.1 a	37.7 ±11 ab	21.3±2.2 ab
	a	(3.0 ±0.1)b	(2.6 ±0.2)c	(0.4 ±0.2)c	(3.0 ±0.5c)	(0.6 ±0.1)c	(0.8 ±0.0)ab
vrs2	23.6 ±0.5	76.3 ±3.1ab	14.6 ±2.9 a	20 ±1.4 d	24.2 ±3.1 a	48.1 ±7.6 bc	36.8±2.8d
	b	(3.1 ±0.2)b	(0.6 ±0.1)a	(0.8 ±0.0)a	(3.0 ±0.5b)	(0.6 ±0.1)a	(0.8 ±0.0)ab
vrs3	20.6 ±0.5	62.5 ±1.6bc	35.8 ±7.4 b	8.75 ±4.3 bc	23.2 ±4.1 a	39.6 ±13 ab	22.5±2.6 b
	a	(3.0±0.1)b	(1.7 ±0.4)b	(0.4 ±0.2)c	(3.0 ±0.5b)	(1.7 ±0.4)b	(0.4 ±0.2)cd
vrs4	19.6 ±1.1	78.4 ±6.6a	56.4 ±4.9 c	13.4 ±4.6 c	20.7 ±1.7 a	34.9 ±6.5 a	21.6±2.1b
	a	(4.0±0.3)a	(2.9 ±0.2)c	(0.7 ±0.3)b	(4.0±0.3a)	(2.9 ±0.2)c	(0.7 ±0.3)bc
vrs5	19.5 ±1.6	58.5 ±4.9c	34.5 ±3.2 b	8.5 ±4.4 abc	22.3 ±4.4 a	43.1 ±16 ab	18 ±1.4a
	a	(3±0.1)b	(1.8 ±0.3)b	(0.4 ±0.2)bc	(3±0.1)b	(1.8 ±0.3)b	(0.4 ±0.2)cd

\(^A\)Averaged values for grains deriving from central, lateral and additional spikelets. Bw, Bowman

Methods S1 Supplemental methods for genotyping and qPCR
(1) KASP Genotyping. Each reaction contained 1 µl of 20 ng genomic DNA, 3 µl H2O, 4 µl 2x KASP master mix (LGC Genomics) and 0.11 µl allele-specific primers (LGC Genomics, listed below). Reactions were performed according to the following steps: 2 min at 20°C; 15 min at 94°C; 10 touch-down cycles of 20 sec at 94°C, 1 min at 62°C, with -0.7°C per cycle; 32 cycles of 20 s at 94°C, 1 min at 55°C, 2 min at 20°C. All assays were run on an ABI 3700 Step-One Plus Real Time PCR machine (Applied Biosystems). (2) VRS1 Genotyping. PCR amplicons (primers listed below) were purified with ExoSAP-IT™ PCR Product Cleanup Reagent (ThermoFisher Scientific) and sequenced using the BigDye Terminator version 3.1 Ready Reaction Cycle Sequencing Kit (Applied Biosystems). Samples were sequenced on an ABI3730 and trimmed sequences were analyzed with Sequencher 5.2.3 software (GeneCodes). (3) Quantitative RT-PCR (qRT-PCR). The qRT-PCR for each gene was run in three (technical and biological) replicates and expression measured using TaqMan technology (Roche). Relative expression levels were calculated using two stable expressed internal reference genes, HvACTIN2 and PROTEIN PHOSPHATASE 2 (HvPP2A). Sequences of gene-specific oligonucleotides (listed below) and probe numbers were designed using Roche Universal Probe Library Design Center website.
Primer pair efficiency was tested by standard curve using a 1:5 dilution series over 5 dilution points. The qRT-PCR reaction was performed in 25 µl volume consisting of 2x Universal probe library master mix + ROX Fast Start TaqMan (Roche), 10 µM forward and reverse primer, 10 µM Universal probe library hydrolysis probe, and run in a 96-well plate on a ABI 3700 Step-One Plus Real Time PCR machine (Applied Biosystems) with the following conditions: 10 min at 95°C, 40 cycles of 15 s at 95°C, 1 min at 60°C using the comparative CT program. Statistical differences were assessed with a Student’s t-test (two-tailed).

Primers

Gene	Mutant Line (Allele)	Primer Pair 5'—3'	Expected Fragment Size
HvVRS1	BW898 (vrs1.a)	Forward ACAGGCAACAGAACAACCCTACC, Reverse CAAGAACGGGAGAGAACCCTACC	696 bp

VRS1 Genotyping

Gene	Mutant Line (Allele)	Primer Pair 5'—3'			
HvVRS1	BW898 (vrs1.a)	Forward ACAGGCAACAGAACAACCCTACC, Reverse CAAGAACGGGAGAGAACCCTACC			
Gene	accession number	Primer Pairs (5'--->3')	UPL #	Efficiency (%)	R²
--------	----------------------	--	-------	----------------	-----
HvACT2	HORVU1Hr1G002840.4	Forward GCGAGGTGTCTGGGTCTCTTCT Reverse ACATGGCAAGGAACCTTGAGAAA	129	97.5	0.999
HvPP2A	HORVU5Hr1G109430.2	Forward CGTCGCATCATGATCAAGTG Reverse CGAGGTGAGTAACACGATG	11	99.7	0.998
HvVRS1	HORVU2Hr1G092290.6	Forward CCCATAAAAATAGCCGAGATAGC Reverse AGTTTCTGCCGATCTTGAA	70	98.0	0.969
HvVRS2	HORVU5Hr1G081450.1	Forward CAACATCGGTGTGTCACTG Reverse GGGAACAGGCGTACAGG	9	98.6	0.929
HvVRS3	HORVU1Hr1G051010.5	Forward CACTTCTTTTATGAGTGACGAAA Reverse CAGAAGAAGTTTCACCGCAGA	101	106	0.975
HvVRS4	HORVU3Hr1G016690.1	Forward GTGAACGCCACATTGACCAT Reverse GTGATCCCTACCTATCTCT	77	99.0	0.999
HvVRS5	HORVU4Hr1G007040.1	Forward ACCATTCCTCCCCCTCATT Reverse GCACCGGCACCGCAGAGTGA	31	95.2	0.997
HvIDS1	HORVU5Hr1G112440.1	Forward GACCTGCGGTGCCAGATGACTA Reverse CAGAAAAAGCGCCGCGGAAGTGA	9	100	0.974
HvREL2	HORVU0Hr1G008690.1	Forward AAGACGATGACAACTTTATATG Reverse AGGATGGAATGCGAAGAAAAG	77	95.6	0.993
BM3	HORVU0Hr1G003020.3	Forward CGAGGATATACCTATGGGCTGAA Reverse CGCACTTTGACCAATGCGACT	164	99.5	0.929
BM8	HORVU2Hr1G063800.7	Forward TCTCGGGCGATGTTGCTCTACT Reverse AAGTTGCAATTGCGATGTTG	156	106	0.975
HvLOG1	HORVU5Hr1G124750.1	Forward CCGGTCTTCTTTATGAAATC Reverse AACTCTCTCCTGTCCTCATCG	76	92.7	0.955
HvCKX2	HORVU3Hr1G027460.1	Forward TGTCGATGATGCTTGG Reverse TCCTCGCAAACCCATGAGTATG	25	99.5	0.996