Affine extensions of loops
Ágota Figula and Karl Strambach

1 Introduction

Most of the known examples of loops L with strong relations to geometry have classical groups as the groups generated by their left translations ([7], [10], [9], [6], [8], Chapter 9, [12], Chapters 22 and 25, [4], [5]). These groups G may be seen as subgroups of the stabilizer of 0 in the group of affinities of suitable affine spaces A_n, and as the elements of the loops L one can often take certain projective subspaces of the hyperplane at infinity of A_n. The semidirect products $T \rtimes G$, where T is the translation group of the affine space A_n, have in many cases a geometric interpretation as motion groups of affine metric geometries. In the papers [4], [5] three dimensional connected differentiable loops are constructed which have the connected component of the motion group of the 3-dimensional hyperbolic or pseudo-euclidean geometry as the group topologically generated by the left translations and which are Bol, Bruck or left A-loops. The set of the left translations of these loops induces on the plane at infinity the set of left translations of a loop isotopic to the hyperbolic plane loop (cf. [12], Chapter 22, p. 280, [9], p. 189). This and the fact that, up to our knowledge, there are only few known examples of sharply transitive sections in affine metric motion groups, motivated us to seek a simple geometric procedure for an extension of a loop realized as the image Σ^* of a sharply transitive section in a subgroup G^* of the projective linear group $PGL(n - 1, K)$ to a loop realized as the image of a sharply transitive section in a group $\Delta = T' \rtimes C$ of affinities of the n-dimensional projective plane $A_n = \mathbb{K}^n$ over a commutative field \mathbb{K}. Moreover, we desire that T' is a large subgroup of affine translations and that $\alpha(C) = G^*$ holds for the canonical homomorphism $\alpha : GL(n, \mathbb{K}) \to PGL(n, \mathbb{K})$. We show that this goal can be achieved if in the $(n - 1)$-dimensional projective

\footnotesize
\begin{flushleft}
12000 Mathematics Subject Classification: 20N05, 51F25, 12D15, 51N30, 51M05. \\
2Key words and phrases: loop, Bol loops, unitary and orthogonal geometries with positive index.
\end{flushleft}
hyperplane \(E \) of infinity of \(\mathcal{A}_n \) for \(G^* \) there exists an orbit \(\mathcal{O} \) of \(m \)-dimensional subspaces such that \(\Sigma^* \) acts sharply transitively on \(\mathcal{O} \), if there is a subspace of dimension \((n - 1 - m)\) having empty intersection with any element of \(\mathcal{O} \) and if the restriction of \(\alpha^{-1} \) to \(\Sigma^* \) defines a bijection from \(\alpha^{-1}(\Sigma^*) \) onto \(\Sigma^* \).

In the third section we demonstrate that our construction successfully can be applied to sharply transitive sections in unitary and orthogonal groups \(SU_{p_2}(n, F) \) of positive index \(p_2 \) over ordered pythagorean \(n \)-real fields \(F \). In this way we obtain many non-isotopic topological loops. The groups generated by the left translations of these loops are semidirect products \(T \rtimes C \), where \(T \) is the full translation group of \(\mathcal{A}_n \) and where \(\alpha(C) \) is a non-solvable normal subgroup of \(\alpha(SU_{p_2}(n, F)) \).

In the last section we take for the groups \(G \) unitary or orthogonal Lie groups of any positive index in order to obtain differentiable loops \(L \) such that the group topologically generated by the left translations of \(L \) is a pseudo-unitary motion group or the connected component of a pseudo-euclidean motion group.

2 Some basic notations of loop theory

A set \(L \) with a binary operation \((x, y) \mapsto x \cdot y \) is called a loop if there exists an element \(e \in L \) such that \(x = e \cdot x = x \cdot e \) holds for all \(x \in L \) and the equations \(a \cdot y = b \) and \(x \cdot a = b \) have precisely one solution which we denote by \(y = a \setminus b \) and \(x = b / a \). The left translation \(\lambda_a : y \mapsto a \cdot y : L \rightarrow L \) is a bijection of \(L \) for any \(a \in L \). Two loops \((L_1, \cdot)\) and \((L_2, \ast)\) are isotopic if there are three bijections \(\alpha, \beta, \gamma : L_1 \rightarrow L_2 \) such that \(\alpha(x) \ast \beta(y) = \gamma(x \cdot y) \) holds for any \(x, y \in L_1 \). A loop \((L, \cdot)\) is called topological if \(L \) is a topological space and the mappings \((x, y) \mapsto x \cdot y, (x, y) \mapsto x \setminus y, (x, y) \mapsto y / x : L^2 \rightarrow L \) are continuous. A loop \((L, \cdot)\) is called differentiable if \(L \) is a \(C^\infty \)-differentiable manifold and the mappings \((x, y) \mapsto x \cdot y, (x, y) \mapsto x \setminus y, (x, y) \mapsto y / x : L^2 \rightarrow L \) are differentiable.

A loop \(L \) is a Bol loop if the identity \(x(y \cdot xz) = (x \cdot yx)z \) holds. A Bruck loop is a Bol loop \((L, \cdot)\) satisfying the automorphic inverse property, i.e. the identity \((x \cdot y)^{-1} = x^{-1} \cdot y^{-1} \) for all \(x, y \in L \). A loop \(L \) is a left A-loop if each \(\lambda_{x,y} = \lambda_{y,x}^{-1} \lambda_x \lambda_y : L \rightarrow L \) is an automorphism of \(L \).

Let \(G \) be the group generated by the left translations of \(L \) and let \(H \) be the stabilizer of \(e \in L \) in the group \(G \). The left translations of \(L \) form a subset of \(G \) acting on the cosets \(\{xH; x \in G\} \) such that for any given cosets \(aH \) and \(bH \) there exists precisely one left translation \(\lambda_x \) with \(\lambda_x aH = bH \).

Conversely let \(G \) be a group, let \(H \) be a subgroup of \(G \) and let \(\sigma : G/H \rightarrow G \) be a section with \(\sigma(H) = 1 \in G \) such that the subset \(\sigma(G/H) \) generates \(G \).
and acts sharply transitively on the space G/H of the left cosets $\{xH, x \in G\}$ (cf. [12], p. 18). We call such a section sharply transitive. Then the multiplication defined by $xH \ast yH = \sigma(xH)yH$ on the factor space G/H or by $x \ast y = \sigma(xyH)$ on $\sigma(G/H)$ yields a loop $L(\sigma)$. If N is the largest normal subgroup of G contained in H then the factor group G/N is isomorphic to the group generated by the left translations of $L(\sigma)$.

Two loops L_1 and L_2 having the same group G as the group generated by the left translations and the same stabilizer H of $e \in L_1, L_2$ are isomorphic if there is an automorphism of G leaving H invariant and mapping $\sigma_1(G/H)$ onto $\sigma_2(G/H)$. The automorphisms of a loop L corresponding to a sharply transitive section $\sigma : G/H \to G$ are given by the automorphisms of G leaving H and $\sigma(G/H)$ invariant. If two loops are isotopic then the groups generated by their left translations are isomorphic ([13], Theorem III.2.7, p. 65). Loops L and L' having the same group G generated by their left translations are isotopic if and only if there is a loop L'' isomorphic to L' having G again as the group generated by its left translations and there exists an inner automorphism τ of G mapping $\sigma''(G/H)$ belonging to L'' onto the set $\sigma(G/H)$ corresponding to L (cf. [12], Theorem 1.11. pp. 21-22).

3 Affine extensions

Let G be a subgroup of the general linear group $GL(n, \mathbb{K})$ over a commutative field \mathbb{K}. Denote by α the canonical epimorphism from $GL(n, \mathbb{K})$ onto $PGL(n, \mathbb{K})$. The kernel Z of α is the centre of $GL(n, \mathbb{K})$. Let \tilde{H} be a subgroup of G with $Z \cap G \leq \tilde{H}$ such that for the pair $G^* = \alpha(G)$ and $H^* = \alpha(\tilde{H})$ there exists a sharply transitive section $\sigma^* : G^*/H^* \to G^*$ determining a loop L^*. Moreover, we assume that $\Sigma^* := \sigma^*(G^*/H^*)$ generates G^* and that for the preimage $(\alpha|G)^{-1}(\Sigma^*) = \Sigma \subseteq G$ one has $\tilde{H} \cap \Sigma = \{1\}$. Then the mapping α induces a bijection from Σ onto Σ^*.

We denote by \mathcal{A}_n the n-dimensional affine space \mathbb{K}^n and by E the projective hyperplane of dimension $(n-1)$ at infinity of \mathcal{A}_n. Let U^* be an m-dimensional subspace of E having H^* as the stabilizer of U^* in G^*. Let \mathcal{X} be the set

$$\mathcal{X} = \{\gamma U^*; \gamma \in \Sigma^*\}.$$

The elements of \mathcal{X} may be seen as the elements of L^* such that U^* is the identity of L^* and the multiplication is given by $X^* \circ Y^* = \tau_{U^*,X^*}(Y^*)$ for all $X^*, Y^* \in \mathcal{X}$, where τ_{U^*,X^*} is the unique element of the sharply transitive set Σ^* of the linear transformations of E mapping U^* onto X^*.

Let $A = T \rtimes S$ be the semidirect product consisting of affinities of $\mathcal{A}_n = \mathbb{K}^n$, where T is the translation group of \mathcal{A}_n and S is the stabilizer of $0 \in \mathcal{A}_n$.

3
isomorphic to the group $GL(n, \mathbb{K})$. We consider the group G as a subgroup of S in the group $\Theta = \mathbb{K}^* \rtimes G$ of affinities of \mathcal{A}_n. The subgroup \hat{H} of S fixes the point $0 \in \mathcal{A}_n$ and the subspace U^* of the hyperplane E. Let U be the $(m + 1)$-dimensional affine subspace containing 0 and intersecting E in U^*. If H is the stabilizer of U in the group Θ, then one has $\hat{H} = H \cap \Theta_0$, where Θ_0 is the stabilizer of the point 0 in Θ.

Let W be a subspace of \mathcal{A}_n such that W contains 0, has affine dimension $(n - m - 1)$ and intersects any subspace of the set $Z := \{ \rho(U); \rho \in \Sigma \}$ only in 0. Let T_W be the group of affine translations $x \mapsto x + w : \mathcal{A}_n \to \mathcal{A}_n$ with $w \in W$. Then W intersects any subspace $\delta(Y)$, where $\delta \in T_W$ and $Y \in Z$, in precisely one point. Moreover, the stabilizer of $\delta(Y)$ in T_W consists only of the identity.

Theorem 1. The subset $\Xi = T_W \Sigma = \{ \tau \rho; \tau \in T_W, \rho \in \Sigma \}$ of the group $\Theta = T \rtimes G$ acts sharply transitively on the set

$$U = \{ \psi(U); \psi \in \Xi \} = \{ \psi(U); \psi \in \Theta \}.$$

The elements of U can be taken as the elements of a loop L_Ξ which has U as the identity and for which the multiplication is defined by

$$X \circ Y = \tau_{U,X}(Y) \quad \text{for all } X, Y \in U,$$

where $\tau_{U,X}$ is the unique element of Ξ mapping U onto X.

The set Ξ is the set of the left translations of L_Ξ and generates a group Δ which is a semidirect product $\Delta = T' \rtimes C$, where the normal subgroup T' consists of translations of the affine space \mathcal{A}_n and C is a subgroup of G with $\alpha(C) = G^*$. There is a sharply transitive section $\sigma : \Delta/\hat{H} \to \Delta$ such that $\sigma(\Delta/\hat{H}) = \Xi$, the group \hat{H} is the stabilizer of U in Δ and the subgroup $T' \cap \hat{H}$ consists of all translations $x \mapsto x + u : \mathcal{A}_n \to \mathcal{A}_n$ with $u \in U$.

Proof. Let D_1 and D_2 be elements belonging to U. We show that there is precisely one element $\beta \in \Xi$ with $\beta(D_1) = D_2$. Let $D_1^* = D_1 \cap E$ and $D_2^* = D_2 \cap E$, where E is the hyperplane at infinity of \mathcal{A}_n. Thus there exists precisely one element $\rho^* \in \Sigma^*$ and hence there exists precisely one element $\rho \in \Sigma$ with $\alpha(\rho) = \rho^*$ such that $\rho^*(D_1^*) = D_2^*$. The subspaces $\rho(D_1)$ and D_2 intersect E in D_2^*. In the group T_W there exists precisely one translation τ mapping the point $\rho(D_1) \cap W$ onto the point $D_2 \cap W$. Hence the element $\beta = \tau \rho$ is the only element in Ξ mapping D_1 onto D_2 and the set Ξ is a sharply transitive set on U. It follows that the subspaces in U can be taken as the elements of a loop L_Ξ having U as the identity, such that the multiplication is defined as in the assertion of the theorem.
The group \(\Delta \) generated by the left translations of \(L \) is a subgroup of \(\Theta = T \rtimes G \). Let \(\hat{H} \) be the stabilizer of \(U \) in \(\Delta \). Since \(\Xi \) is the image of a sharply transitive section \(\sigma : \Delta / \hat{H} \to \Delta \) we have \(\Delta(U) = \Xi \hat{H}(U) = \Xi(U) \). Let \(\hat{H} \) be the stabilizer of \(U \) in \(\Delta \). Since \(\Xi \) is the image of a sharply transitive section \(\sigma : \Delta / \hat{H} \to \Delta \) we have \(\Delta(U) = \Xi \hat{H}(U) = \Xi(U) \).

Let \(T_U \) be the group of affine translations \(x \mapsto x + u : \mathbb{A}^n \to \mathbb{A}^n \) with \(u \in U \). Since \(W \oplus U = \mathbb{K}^n \) we have that \(T = T_W \times T_U \). Thus one has \(\Delta T(U) = \Delta T_W T_U(U) = \Delta T_W(U) = \Delta(U) \) since \(T_W \leq \Delta \). For the group \(\Lambda \) of dilatations \(x \mapsto ax : \mathbb{A}^n \to \mathbb{A}^n \) with \(a \in \mathbb{K} \setminus \{0\} \) we have that \(T \Lambda \) is a normal subgroup of \(\Theta \Lambda \) and \(\Lambda(U) = U \). Moreover \(\Theta(U) = \Delta T \Lambda(U) \) since the kernel of the restriction of \(\alpha : GL(n, \mathbb{K}) \to PGL(n, \mathbb{K}) \) to \(G \) consists only of dilatations.

The group \(\Delta \) contains a normal subgroup \(N \) fixing the hyperplane \(E \) at infinity pointwise. Since \(\Sigma^* \) generates \(G^* \) we see that \(\Delta/N \) is isomorphic to \(G^* \).

Let \(T' = T \cap \Delta \). Then \(\Delta \) is the semidirect product of \(\Delta = T' \rtimes C \), where \(C \) is the stabilizer of 0 in \(\Delta \) and \(CN/N \) is isomorphic to \(G^* \).

4 Applications

Let \(R \) be an ordered pythagorean field and let \(K = R(i) \) be the algebraic extension of \(R \) such that \(i^2 = -1 \). Let \(F \in \{ R, K \} \) and let \(V = F^n \) be an \(n \)-dimensional \(F \)-vector space for a fixed \(n \geq 3 \). The automorphism \(a \mapsto \bar{a} : F \to F \) is the identity if \(F = R \) or the involutory automorphism fixing \(R \) elementwise and mapping \(i \) onto \(-i \) if \(F = K \). Denote by \(M_n(F) \) the set of the \((n \times n)\)-matrices over \(F \). If \(A = (a_{i,j}) \) is a matrix in \(M_n(F) \) then \(\bar{A}^t = (\bar{a}_{j,i}) \). Let \(\mathcal{H}(n, F) \) be the set of positive definite hermitian \((n \times n)\)-matrices, i.e. the set

\[
\mathcal{H}(n, F) = \{ A \in M_n(F); A = \bar{A}^t \text{ with } \bar{v}^t Av > 0 \text{ for all } v \in V \setminus \{0\} \}.
\]

We assume that the field \(R \) is \(n \)-real which means that the characteristic polynomial of every matrix in \(\mathcal{H}(n, F) \) splits over \(K \) into linear factors. Thus this polynomial splits into linear factors already over \(R \) (cf. [8], p. 14). The class of \(n \)-real fields contains the class of totally real fields (cf. [8], p. 13), which is larger than the class of real closed fields and the class of hereditary euclidean fields. A hereditary euclidean field \(k \) is an ordered field such that every formally real algebraic extension of \(k \) has odd degree over \(k \) (cf. [15], Satz 1.2 (3), p. 197).

The group

\[
U(n, F) = \{ B \in GL(n, F); B \bar{B}^t = I_n \},
\]

where \(I_n \) is the identity in \(GL(n, F) \), is called the orthogonal group for \(F = R \).
and the unitary group for \(F = K \). Let
\[
J_{(p_1,p_2)} = \text{diag}(1, \ldots, 1, -1, \ldots, -1)
\]
be the diagonal \((n \times n)\)-matrix such that the first \(p_1 \) entries are 1 and the remaining \(p_2 \) entries are -1. We have \(p_1 + p_2 = n \). The matrix \(J_{(p_1,p_2)} \) defines a hermitian form on \(F^n \) for \(F = K \) and an orthogonal form for \(F = R \) by
\[
\bar{v}^t J v = \sum_{i=1}^{p_1} \bar{v}_i v_i - \sum_{j=p_1+1}^{n} \bar{v}_j v_j.
\]

Let \(p_2 > 0 \). The unitary (orthogonal) group of index \(p_2 \) is the set
\[
U_{p_2}(n, F) = \{ A \in GL_n(F); \bar{A}^t J_{(p_1,p_2)} A = J_{(p_1,p_2)} \}.
\]

Since the group \(U_{p_2}(n, F) \) is isomorphic to the group \(U_{(n-p_2)}(n, F) \) (cf. [14], Proposition 9.11, p. 153) we may assume that \(p_1 \geq p_2 \). Let
\[
\Omega_{(p_1,p_2)}(F) = U_{p_2}(n, F) \cap U(n, F) \quad \text{and} \quad \Sigma_{(p_1,p_2)}(F) = U_{p_2}(n, F) \cap H(n, F).
\]
The group \(\Omega_{(p_1,p_2)}(F) \) is the direct product \(\Omega_{(p_1,p_2)}(F) = U(p_1, F) \times U(p_2, F) \), where \(U(p_1, F) \) may be identified with the group \(\left(\begin{array}{cc} U(p_1, F) & 0 \\ 0 & I_{p_2} \end{array} \right) \) and \(U(p_2, F) \) may be identified with the group \(\left(\begin{array}{cc} I_{p_1} & 0 \\ 0 & U(p_2, F) \end{array} \right) \); here \(I_{p_i} \) is the identity in \(GL(p_i, F) \) (cf. [5], Theorem 9.13, p. 123).

According to [5] (Theorem 9.11, p. 121) the set \(\Sigma_{(p_1,p_2)}(F) \) is the image of a sharply transitive section \(\sigma' : U_{p_2}(n, F)/\Omega_{(p_1,p_2)}(F) \to U_{p_2}(n, F) \) such that the corresponding loop \(L_{(p_1,p_2)} \) is a Bruck loop.

The group \(G_{(p_1,p_2)} \) generated by the set \(\Sigma_{(p_1,p_2)}(F) \) of the left translations of \(L_{(p_1,p_2)} \) is contained in the group \(SU_{p_2}(n, F) := \{ A \in U_{p_2}(n, F); \det A = 1 \} \) (cf. [5], 9.14, p. 124). Thus the loop \(\bar{L}_{(p_1,p_2)} \) corresponds also to the section
\[
\sigma : SU_{p_2}(n, F)/\Phi \to SU_{p_2}(n, F),
\]
where \(\Phi := (U(p_1, F) \times U(p_2, F)) \cap SU_{p_2}(n, F) \).

The kernel of the restriction of \(\alpha : GL(n, F) \to PGL(n, F) \) to the group \(SU_{p_2}(n, F) \) consists of the matrices \(D_a = \text{diag}(a, \ldots, a), \ a \in F \setminus \{0\} \) and \(a^2 = 1 \). Moreover one has \(a\bar{a} = 1 \) since any matrix \(D_a \) satisfies \(\bar{D}_a^t J_{(p_1,p_2)} D_a = J_{(p_1,p_2)} \). Thus any matrix \(D_a \) is contained in \(\Phi \) and \(\alpha \) induces a bijection from \(\Sigma_{(p_1,p_2)}(F) \) onto \(\alpha(\Sigma_{(p_1,p_2)}(F)) \). The set \(\alpha(\Sigma_{(p_1,p_2)}(F)) \) is the image of a sharply transitive section
\[
\sigma^* : \alpha(SU_{p_2}(n, F))/\alpha(\Phi) \to \alpha(SU_{p_2}(n, F))
\]
which corresponds to a Bruck loop \(L^*_{(p_1,p_2)} \).
The elements of \(\Sigma_{(p_1,p_2)}(F) \) are matrices \(A \in SU_{p_2}(n, F) \) satisfying the relations \(A = \tilde{A}^t \) and \(\tilde{v}^t Av > 0 \) for all \(v \in V \setminus \{0\} \). With \(A \) also \(A^{-1} \) is contained in \(\Sigma_{(p_1,p_2)}(F) \) ([8] 1.11, p. 16). Because of \(B^{-1} = B^t \) for all \(B \in \Phi \) and \(B^t AB \in \Sigma_{(p_1,p_2)}(F) \) ([8] 1.11, p. 16) one has

\[
B^{-1} AB \in \Sigma_{(p_1,p_2)}(F) \quad \text{for all } B \in \Phi \text{ and } A \in \Sigma_{(p_1,p_2)}(F). \tag{1}
\]

Since \(\sigma \) is a section every element \(S \) of \(SU_{p_2}(n, F) \) can be written in a unique way as \(S = S_1 C \) with \(S_1 \in \Sigma_{(p_1,p_2)}(F) \) and \(C \in \Phi \). The set

\[
\Sigma_{(p_1,p_2)}(F)^G_{(p_1,p_2)} = \{ Y^{-1}XY; \ X \in \Sigma_{(p_1,p_2)}(F), Y \in G_{(p_1,p_2)} \}
\]

is invariant with respect to the conjugation by the elements \(S \in SU_{p_2}(n, F) \):

\[
S^{-1}Y^{-1}XYS = C^{-1}S_1^{-1}Y^{-1}XYS_1C = [(C^{-1}S_1^{-1}C)(C^{-1}Y^{-1}C)][(C^{-1}YC)(C^{-1}S_1C)] \in \Sigma_{(p_1,p_2)}(F)^G_{(p_1,p_2)}. \]

Hence the group \(G_{(p_1,p_2)} \), which is generated also by \(\Sigma_{(p_1,p_2)}(F)^G_{(p_1,p_2)} \), is a normal non-central subgroup of \(SU_{p_2}(n, F) \). Then according to Théorème 5 in [2] p. 70 the group \(G_{(p_1,p_2)} \) coincides with \(SU_{p_2}(n, F) \) if \(F = K \). If \(F = R \) and \((n, p_2) \neq (4, 2) \) then the group \(G_{(p_1,p_2)} \) contains the commutator subgroup \([SU_{p_2}(n, F)]' =: K_{(n,p_2)} \) of \(SU_{p_2}(n, F) \) ([3], p. 63 and pp. 58-59). If \(F = R \) and \((n, p_2) = (4, 2) \) then the commutator subgroup \(K_{(4,2)} \) is isomorphic to the direct product \(PSL_2(R) \times PSL_2(R) \) ([3], p. 59). Since the hermitian matrices in the set \(\Sigma_{(2,2)}(F) \) depend on 3 free parameters ([8], 9.12, p. 122) the group \(G_{(2,2)} \) contains \(K_{(4,2)} \). Therefore in any case the group \(G_{(p_1,p_2)} \) is a normal subgroup of \(SU_{p_2}(n, F) \) containing \(K_{(n,p_2)} \).

The group \(G_{(p_1,p_2)} \) leaves the value \(\tilde{v}^tJ_{(p_1,p_2)}v \) invariant since

\[
\tilde{v}^t(A^tJ_{(p_1,p_2)}A)v = \tilde{v}^tJ_{(p_1,p_2)}v \quad \text{for } A \in SU_{p_2}(n, F).
\]

We see the group \(G_{(p_1,p_2)} \) as a subgroup of the stabilizer of the element 0 in the group \(A \) of affinities of \(A_n = F^n \), and the group \(\alpha(G_{(p_1,p_2)}) := G^*_{(p_1,p_2)} \) as a subgroup of the group \(PGL(n, F) \) which acts on the \((n-1) \)-dimensional projective hyperplane \(E \) at infinity of \(A_n \).

We embed the affine space \(A_n \) into the \(n \)-dimensional projective space \(P_n(F) \) such that \((x_1, \ldots, x_n) \mapsto F^*(1, x_1, \ldots, x_n) \), \(x_i \in F \) for all \(1 \leq i \leq n \) and \(F^* = F \setminus \{0\} \). With respect to this embedding the hyperplane \(E \) consists of the points \(\{ F^*(0, x_1, \ldots, x_n), x_i \in F, \text{not all } x_i = 0 \} \). The cone in \(A_n \) which is described by the equation

\[
(*) \quad \sum_{i=1}^{p_1} \bar{x}_i x_i - \sum_{j=p_1+1}^{n} \bar{x}_j x_j = 0
\]
intersects E in a hyperquadric C; the points $\{F^*(0, x_1, \cdots, x_n)\}$ of C satisfy the equation (\ast). The hypersurface C of E divides the points of $E \setminus C$ into two regions R_1 and R_2. A point $F^*(0, x_1, \cdots, x_n)$ belongs to R_1 if and only if
\[\sum_{i=1}^{p_1} \bar{x}_i x_i > \sum_{j=p_1+1}^{n} \bar{x}_j x_j. \]
It belongs to R_2 if and only if
\[\sum_{i=1}^{p_1} \bar{x}_i x_i < \sum_{j=p_1+1}^{n} \bar{x}_j x_j. \]

The group $\alpha(SU_{p_2}(n, F)) = SU_{p_2}(n, F)/\Lambda'$, where Λ' is the group of dilations contained in $SU_{p_2}(n, F)$, leaves R_1, R_2 as well as C invariant since for any $f \in F$ and $v \in V = F^n$ one has $(\bar{f} \bar{v}^t) J_{(p_1, p_2)}(fv) = (\bar{f} f) (\bar{v}^t J_{(p_1, p_2)} v)$ and $\bar{f} f > 0$. The group $\alpha(\Phi) = \Phi/(\Phi \cap \Lambda')$ leaves the subspace
\[W_1^* = \{(0, x_1, \ldots, x_{p_1}, 0, \ldots, 0); x_i \in F\} \subseteq E \]
as well as the subspace
\[W_2^* = \{(0, \ldots, 0, x_{p_1+1}, \ldots, x_n); x_i \in F\} \subseteq E \]
invariant. The intersection $W_1^* \cap W_2^*$ is empty since $W_i^* \subseteq R_i$, $i = 1, 2$.

Let $W_i, i = 1, 2$, be the p_i-dimensional affine subspace of A_n containing 0 such that $W_i \cap E = W_i^*$. Thus $W_1 \cap W_2 = \{0\}$. Let W_j be a p_j-dimensional affine subspace of A_n such that $p_j = n - p_i$ and W_j intersects W_i only in the point 0. Thus W_j intersects any subspace of the set
\[Z_i = \{\rho(W_i), \rho \in G_{(p_1, p_2)}\} = \{\lambda(W_i), \lambda \in \Sigma_{(p_1, p_2)}(F)\}, \]
where $i \neq j$, only in 0. Affine subspaces \tilde{W}_j with these properties exist, one can take for instance $\tilde{W}_j = \rho(W_j) \in Z_j$.

Let Θ be the semidirect product $\Theta = T \rtimes G_{(p_1, p_2)}$, where T is the translation group of A_n. By Theorem 1 the set $\Xi_{(p, \tilde{W}_j)} = \{T_{\tilde{W}_j} \Sigma_{(p_1, p_2)}(F)\}, i \neq j$, acts sharply transitively on the set
\[U_i = \{\psi(W_i); \psi \in \Xi_{(p, \tilde{W}_j)}\}. \]

Thus a loop $L_{(p, \tilde{W}_i)}$ is realized on U_i.

The group $SU_{p_2}(n, K)$ acts irreducibly on the vector space $V = K^n$ and the commutator subgroup $K_{(n, p_2)}$ of $SO_{p_2}(n, R)$ acts irreducibly on $V = R^n$ (cf. [1], Theorem 3.24, p. 136). Hence the group Δ generated by the left translations $\Xi_{(p, \tilde{W}_j)}$ of the loop $L_{(p, \tilde{W}_j)}$ contains all translations of the affine space A_n. It follows that Δ is the semidirect product $\Delta = T \rtimes C$ of the translation group T by a subgroup C of the stabilizer of $0 \in A_n$ in the group A of affinities. If $F = K$ then C is isomorphic to $SU_{p_2}(n, K)$ and the stabilizer \tilde{H} of W_i in Δ is the semidirect product $T_{\tilde{W}_i} \rtimes \Phi$ since any
element $g \in G_{(p_1, p_2)} = SU_{p_2}(n, K)$ has a unique representation as $g = g_1 g_2$ with $g_1 \in \Sigma_{(p_1, p_2)}(K)$ and $g_2 \in \Phi$. If $F = R$ then C is a normal subgroup of $SO_{p_2}(n, R)$ containing $\mathcal{K}_{(n, p_2)}$ and the stabilizer \mathcal{H} of W_i in Δ is the semidirect product $T_{W_i} \rtimes \Gamma$, where $\Gamma = \Phi \cap C$.

For $p_1 > p_2$ the loop $L_{(p_1, W_2)}$ is never isotopic to a loop $L_{(p_2, W_1)}$. This follows from the fact that the stabilizer H_k, $k = 1, 2$, of the identity of $L_{(p_k, W_k)}$ with $l \neq k$ in Δ contains the group T_{W_k} as the largest normal subgroup consisting of affine translations. Since T_{W_1} is not isomorphic to T_{W_2} one has that H_1 is not isomorphic to H_2. (cf. [13], Theorem III.2.7, p. 65)

Now we consider the loops $L_{(p_1, W_j)}$ and $L_{(p_i, W_j)}$ for $W_j \neq W_j$. According to (1) the subspaces W_1 and W_2 are invariant under the subgroup Φ of the stabilizer of $0 \in A_n$ in the group A of affinities. Hence if $g \in \Phi$ then one has $g \Sigma_{(p_1, p_2)}(F) g^{-1} = \Sigma_{(p_1, p_2)}(F)$ and $g T_{W_k} g^{-1} = T_{W_k}$, $k = 1, 2$, for the group $T_{W_k} = \{ x \mapsto x + w_k; w_k \in W_k \}$. This yields $g \Xi_{(p_1, W_j)} g^{-1} = \Xi_{(p_i, W_j)}$. For $W_j \neq W_j$ the group Φ does not normalize the translation group T_{W_j}. Therefore

$$g T_{W_j} \Sigma_{(p_1, p_2)}(F) g^{-1} = (g T_{W_j} g^{-1})(g \Sigma_{(p_1, p_2)}(F) g^{-1}) =$$

$$(g T_{W_j} g^{-1}) \Sigma_{(p_1, p_2)}(F) \neq \Xi_{(p_i, W_j)}$$

for suitable elements $g \in \Phi$. This means that not all elements of Φ induce automorphisms of $L_{(p_1, W_j)}$. Therefore the loops $L_{(p_1, W_j)}$ and $L_{(p_i, W_j)}$ are not isomorphic if $W_j \neq W_j$.

Proposition 2. Any loop $L_{(p_1, W_j)}$ is a topological loop with respect to the topology induced on the set \mathcal{U} by the topology on the set of the p_i-dimensional subspaces of A_n which is derived from the topology of the topological field F.

Proof. Since R is an ordered field, R as well as $K = R(i)$ are topological fields with respect to the topology given by the ordering of R. Then the ring $\mathcal{M}_n(F)$ of $(n \times n)$-matrices over F is a topological ring such that the open ε-neighbourhoods of $0 \in \mathcal{M}_n(F)$ consist of matrices (c_{ij}) with $|c_{ij}| < \varepsilon$. The group $GL(n, F) \leq \mathcal{M}_n(F)$ is a topological group. Since the set $Z = \{ \text{diag}(a, \ldots, a), a \in F \setminus \{0\} \}$ is a closed subgroup of $GL(n, F)$ the group $PGL(n, F) = GL(n, F)/Z$ is a topological group. The subgroups $SU_{p_2}(n, F)$ and $\Phi = (U(p_1, F) \times U(p_2, F)) \cap SU_{p_2}(n, F)$ are closed subgroups of $GL(n, F)$. Moreover $SU_{p_2}(n, F)/Z$ as well as $\Phi Z/Z$ are closed subgroups of $PGL(n, F)$.

The affine space $A_n = F^n$ and the $(n - 1)$-dimensional projective hyperplane E carry topologies derived from the topology of the field F (cf. [13].
Chapter XI). The semidirect product $A = T \rtimes GL(n, F)$ is a topological group consisting of continuous affinities; it induces on the hyperplane E a continuous group of projective collineations. Any subset of A is a topological space with respect to the topology induced from A and any subgroup of A becomes a topological group in this manner.

Let Q_1 be a fixed p_1-dimensional subspace of A_n and let Q be the set of the affine $(n - p_1)$-dimensional affine subspaces with $|Q_1 \cap Q| = 1$ for $Q \in Q$. The set Q also carries a topology determined by the topology of F. The set Q^* of intersections Q_1 of the affine subspaces Q of Q with E inherits the topology of the Grassmann manifold of the $(n - p_1 - 1)$-dimensional subspaces of the hyperplane E. The geometric operation $(Q, Q_1) \mapsto Q \cap Q_1 : Q \rightarrow Q_1$ is continuous.

On the topological space $\Sigma_{(p_1, p_2)}(F)$ a topological Bruck loop $L_{(p_1, p_2)}$ is realized by the multiplication

$$A \circ B = \sqrt{AB^2A} \text{ for all } A, B \in \Sigma_{(p_1, p_2)}(F),$$

where $X \mapsto \sqrt{X}$ is the inverse map of the bijection $X \mapsto X^2 : \Sigma_{(p_1, p_2)}(F) \rightarrow \Sigma_{(p_1, p_2)}(F)$ (cf. [8] (1.14), p. 17 and (9.1) Theorem (4), p. 108, [12], p. 121). We denote by $[\rho(W_i)]^*$ with $\rho \in \Sigma_{(p_1, p_2)}(F)$ the intersection of the subspace $\rho(W_i)$ with the hyperplane E and by Z_i^* the set $\{[\rho(W_i)]^* ; \rho \in \Sigma_{(p_1, p_2)}(F)\}$. For the elements of the loop $L_{(p_1, W_j)}$ one can take the elements of the set

$$U_{(p_1, W_j)} = \{w(W_i); \psi \in \Xi_{(p_1, W_j)}\} = \{\tau \rho(W_i) ; \tau \in T_{\tilde{W}_j}, \rho \in \Sigma_{(p_1, p_2)}(F)\}.$$

The subspace \tilde{W}_j is homeomorphic to the group $T_{\tilde{W}_j}$, and the set Z_i is homeomorphic to $\Sigma_{(p_1, p_2)}(F)$. Any element $\tau \rho(W_i) \in U_{(p_1, W_j)}$ is uniquely determined by $[\rho(W_i)]^*$ and $(\tau \rho(W_i)) \cap \tilde{W}_j$. The mapping

$$\omega : \tau \rho(W_i) \mapsto ((\tau \rho(W_i)) \cap \tilde{W}_j, [\rho(W_i)]^*)$$

from $U_{(p_1, W_j)}$ onto the topological product $\tilde{W}_j \times Z_i^*$ is a bijection such that

$$\omega^{-1} : (w, Z^*) \mapsto w \lor Z^*,$$

where $w \lor Z^*$ is the p_1-dimensional affine subspace containing $w \in \tilde{W}_j$ and intersecting E in $Z^* \in Z_i^*$. Since the geometric operations of joining and of intersecting of distinct subspaces are continuous maps, ω is a homeomorphism.

Let $(w_k, Z_k^*) \in \tilde{W}_j \times Z_i^*$ with $k = 1, 2$ and let $\tau_k \rho_k(W_i)$ be the subspaces of $U_{(p_1, W_j)}$ such that $\omega(\tau_k \rho_k(W_i)) = (w_k, Z_k^*)$. The multiplication given by

$$(w_1, Z_1^*) \circ (w_2, Z_2^*) = (w_3, Z_3^*),$$

(3)
where $Z^*_3 = [\rho_1 \rho_2(W_i)]^*$ and

\[w_3 = \tau_1[\rho_1(\tau_2 \rho_2(W_i)) \cap \tilde{W}_j] = \tau_1[(\rho_1(\tau_2 \rho_2(W_i)) \cap \tilde{W}_j) \vee [\rho_1 \rho_2(W_i)]^*] \cap \tilde{W}_j \]

yields a topological loop. This loop is homeomorphic to $L_{(p_1, \tilde{W}_j)}$ since

$[\rho_1 \tau_2 \rho_2(W_i)]^* = [\rho_1 \rho_2(W_i)]^*$ and $[\tau_1 \rho_1 \tau_2 \rho_2(W_i)]^* = [\rho_1 \rho_2(W_i)]^*$.

\[\square \]

5 Special cases: \mathbb{R} and \mathbb{C}

Proposition 3. The loop $L_{(p_1, \tilde{W}_j)}$ is a differentiable loop diffeomorphic to \mathbb{R}^d, where $d = \varepsilon(p_2 + p_1)$, with $\varepsilon = 1$ if $F = \mathbb{R}$ and $\varepsilon = 2$ if $F = \mathbb{C}$.

If $F = \mathbb{C}$ then the group Δ generated by the left translations of $L_{(p_1, \tilde{W}_j)}$ is the semidirect product $\mathbb{C}^n \rtimes SU_{p_2}(n, \mathbb{C})$ and the stabilizer of W_i in Δ is the semidirect product $\mathbb{C}^n \rtimes \Pi$, where Π is an epimorphic image of the direct product $SU_{p_1}(n, \mathbb{C}) \times SU_{p_2}(n, \mathbb{C}) \times SO_2(\mathbb{R})$.

If $F = \mathbb{R}$ then Δ is the semidirect product $\mathbb{R}^n \rtimes SO_{p_2}(n, \mathbb{R})^\circ$, where $SO_{p_2}(n, \mathbb{R})^\circ$ is the connected component of $SO_{p_2}(n, \mathbb{R})$, and the stabilizer of W_i in Δ is the semidirect product $\mathbb{R}^n \rtimes (SO(p_1, \mathbb{R}) \times SO(p_2, \mathbb{R}))$.

Proof. Clearly the topological manifold $L_{(p_1, \tilde{W}_j)}$ carries the differentiable structure of the real differentiable manifold $\Xi_{(p_1, \tilde{W}_j)}$ which is the topological product of $T_{\tilde{W}_j}$ and $\Sigma_{(p_1, p_2)}(F)$.

According to Section 4 the group Δ topologically generated by the left translations $\Xi_{(p_1, \tilde{W}_j)}$ is the semidirect product $\Delta = F^n \rtimes C$, where C contains the commutator subgroup of $SU_{p_2}(n, F)$.

If $F = \mathbb{C}$ then $C = SU_{p_2}(n, \mathbb{C})$ and the stabilizer \hat{H} of W_i in Δ is the semidirect product $T_{\tilde{W}_j} \rtimes \Phi$ with $\Phi = [U_{p_1}(n, \mathbb{C}) \times U_{p_2}(n, \mathbb{C})] \cap SU_{p_2}(n, \mathbb{C})$ which is a maximal compact subgroup of $SU_{p_2}(n, \mathbb{C})$ ([12], p. 28). The groups $SU_{p_2}(n, \mathbb{C})$ and Φ are connected therefore the groups Δ and \hat{H} are connected. Since Δ is the topological product $\Xi_{(p_1, \tilde{W}_j)} \times \hat{H} = \Xi_{(p_1, \tilde{W}_j)} \times T_{\tilde{W}_j} \rtimes \Phi$ it follows that the manifold $\Xi_{(p_1, \tilde{W}_j)}$ and hence the loop $L_{(p_1, \tilde{W}_j)}$ are diffeomorphic to an affine space.

If $F = \mathbb{R}$ then C is a subgroup of $SO_{p_2}(n, \mathbb{R})$ containing the commutator subgroup $K_{(n, p_2)}$. According to [3] p. 57 the factor group $SO_{p_2}(n, \mathbb{R})/K_{(n, p_2)}$ has order 2. Hence $K_{(n, p_2)}$ is the connected component of $SO_{p_2}(n, \mathbb{R})$. The group $\Phi = [O(p_1, \mathbb{R}) \times O(p_2, \mathbb{R})] \cap SO_{p_2}(n, \mathbb{R})$ is not connected since the factor group $O(p_i, \mathbb{R})/SO(p_i, \mathbb{R})$ has order 2 ([13], Corollary 9.37, p. 158) and the product $\alpha_1 \alpha_2$ with $\alpha_i \in O(p_i, \mathbb{R})$, but $\alpha_i \notin SO(p_i, \mathbb{R})$ for $i = 1, 2$, is an element of $SO_{p_2}(n, \mathbb{R})$. The group $SO_{p_2}(n, \mathbb{R})$ is homeomorphic to the topological product $\Sigma_{(p_1, p_2)}(\mathbb{R}) \times \Phi$. Since $SO_{p_2}(n, \mathbb{R})$ has two connected
components and Φ is not connected the manifold $\Sigma_{(p_1,p_2)}(\mathbb{R})$ is connected. It follows that the group C generated by $\Sigma_{(p_1,p_2)}(\mathbb{R})$ is connected and hence isomorphic to the connected component $SO_{p_2}(n,\mathbb{R})^o = k_{(n,p_2)}$ of $SO_{p_2}(n,\mathbb{R})$. Thus the group $\Delta = T \ltimes C$ is connected. Moreover Δ is the topological product $\Xi_{(p_1,W_j)} \times \hat{H} = \Xi_{(p_1,W_j)} \times T_{W_i} \times (\Phi \cap \hat{H})$. Since Δ, $\Xi_{(p_1,W_j)}$ and T_{W_i} are connected, the group $\Phi \cap \hat{H}$ is connected and hence a maximal compact subgroup of $SO_{p_2}(n,\mathbb{R})$. This yields that $\Xi_{(p_1,W_j)}$ and $L_{(p_1,W_j)}$ are diffeomorphic to an affine space.

The group Δ is the topological product $\Xi_{(p_1,W_j)} \times \hat{H}$. Thus for the real dimension of $L_{(p_1,W_j)}$ one has

$$\dim L_{(p_1,W_j)} = \dim \Xi_{(p_1,W_j)} = \dim \Delta - \dim \hat{H}$$

where $\dim \Delta = \dim \Xi_{(p_1,W_j)} = \dim \Phi \cap \hat{H}$.

If $F = \mathbb{C}$ then the group $\Phi = C \cap \hat{H}$ is an epimorphic image of the direct product $SU(p_1,\mathbb{C}) \times SU(p_2,\mathbb{C}) \times SO_2(\mathbb{R})$ (cf. [16], p. 28). This yields

$$\dim L_{(p_1,W_j)} = [(p_1 + p_2)^2 - 1] + 2p_j - (p_j^2 - 1) - (p_j^2 - 1) = 2p_j + 2p_1p_2 - 2(2(m - 1)^2 + 2(m - 1))$$

for $0 \leq k \leq m$ (16, p. 26 and p. 28). It follows that $L_{(p_1,W_j)}$ is diffeomorphic to $\mathbb{R}^{2(p_1+p_1p_2)}$.

The group Δ is the semidirect product $\Delta = \mathbb{C}^n \rtimes C$, where C is the group $SU_{p_2}(n,\mathbb{C})$ and the stabilizer \hat{H} is the semidirect product $T_{W_i} \rtimes \Phi$, where Φ is an epimorphic image of $SU(p_1,\mathbb{C}) \times SU(p_2,\mathbb{C}) \times SO_2(\mathbb{R})$.

If $F = \mathbb{R}$ then $C \cap \hat{H} = SO(p_1,\mathbb{R}) \times SO(p_2,\mathbb{R})$ ([16], p. 31 and p. 38). It follows that

$$\dim L_{(p_1,W_j)} = \frac{1}{2}((p_1 + p_2)(p_1 + p_2 - 1) + p_j - \frac{1}{2}p_1(p_1 - 1) - \frac{1}{2}p_2(p_2 - 1) = p_j + p_1p_2.$$

Hence the loop $L_{(p_1,W_j)}$ is diffeomorphic to $\mathbb{R}^{p_1+p_1p_2}$.

The group Δ is the semidirect product $\Delta = \mathbb{R}^n \rtimes C$, where C is the group $SO_{p_2}(n,\mathbb{R})^o$ and the stabilizer \hat{H} of W_i in Δ is the semidirect product $\mathbb{R}^n \times (SO(p_1,\mathbb{R}) \times SO(p_2,\mathbb{R})).$

The loop $L_{(p_1,W_j)}$ is diffeomorphic to the manifold $\tilde{W}_j \times Z_i$ since Z_i is diffeomorphic to $\Sigma_{(p_1,p_2)}(\mathbb{R})$. The mapping $(x, D^*) \mapsto x \vee D^*$ assigning to a point $x \in \mathcal{A}_n = F^n, F \in \{\mathbb{R}, \mathbb{C}\}$ and to an element D^* of the Graßmannian manifold of the $(p_1 - 1)$-dimensional F-subspaces of the hyperplane E the affine subspace D containing x and intersecting E in D^* is differentiable. Also the mapping $D \mapsto D \cap \tilde{W}_j$ assigning to a p_1-dimensional affine F-subspace D of \mathcal{A}_n the point $D \cap \tilde{W}_j$ is differentiable. Since the loop realized on $\Sigma_{(p_1,p_2)}(F)$ by the multiplication (2) is differentiable, the representation of $L_{(p_1,W_j)}$ on the manifold $\tilde{W}_j \times Z_i$ by the multiplication (3) yields that $L_{(p_1,W_j)}$ is differentiable.

\[\square\]
References

[1] E. Artin, *Geometric Algebra*, Interscience Publishers, New York London, 1957.

[2] J. A. Dieudonné, *Sur les groupes classiques*, Hermann, Paris, 1958.

[3] J. A. Dieudonné, *La géométrie des groupes classiques*, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer Verlag, Berlin Heidelberg New York, 1971.

[4] Á. Figula, *3-dimensional Bol loops as sections in non-solvable Lie groups*, accepted for publication in Forum Math.

[5] Á. Figula, *3-dimensional loops on non-solvable reductive spaces*, accepted for publication in Adv. Geometry.

[6] E. Gabrieli, H. Karzel, *Point reflection geometries, geometric K-loops and unitary geometries*, Resultate Math. 32 (1997), 66-72.

[7] B. Im, *K-loops in the Minkowski world over an ordered field*, Resultate Math. 25 (1994), 60-63.

[8] H. Kiechle, *Theory of K-Loops*, Lecture Notes in Mathematics. 1778. Springer-Verlag, Berlin, 2002.

[9] E. Kolb, A. Kreuzer, *Geometry of kinematic K-loops*, Abh. Math. Sem. Univ. Hamburg 65 (1995), 189-197.

[10] A. Konrad, *Hyperbolische loops über Oktaven und K-loops*, Resultate Math. 25 (1994), 331-338.

[11] H. Lenz, *Vorlesungen über projektive Geometrie*, Akademische Verlagsgesellschaft Geest and Portig, Leipzig, 1965.

[12] P. T. Nagy and K. Strambach, *Loops in Groups Theory and Lie Theory*, de Gruyter Expositions in Mathematics. 35. Berlin, New York, 2002.

[13] H. O. Pflugfelder, *Quasigroups and Loops: Introduction*, Heldermann-Verlag, Berlin, 1990.

[14] I. R. Porteous, *Topological Geometry*, Van Nostrand Reinhold Company, London, 1969.

[15] A. Prestel and M. Ziegler, *Erblich euklidische Körper*, J. Reine Angew. Math. 274-275 (1975), 196-205.
[16] J. Tits, *Tabellen zu den einfachen Lie Gruppen und ihren Darstellungen*, Lecture notes in mathematics 40. Springer Verlag, Berlin, 1967.

Ágota Figula
Mathematisches Institut
der Universität Erlangen-Nürnberg
Bismarckstr. 1 1/2
D-91054 Erlangen, Germany,
figula@mi.uni-erlangen.de
and
Institute of Mathematics,
University of Debrecen
P.O.B. 12, H-4010 Debrecen,
Hungary, figula@math.klte.hu

Karl Strambach
Mathematisches Institut
der Universität Erlangen-Nürnberg
Bismarckstr. 1 1/2
D-91054 Erlangen, Germany,
strambach@mi.uni-erlangen.de