Potential Epigenetic Regulation in the Germinal Center Reaction of Lymphoid Tissues in HIV/SIV Infection

Xiaolei Wang and Huanbin Xu*

Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, United States

The production of high-affinity and broadly neutralizing antibodies plays a key role in the defense against pathogens. These antibody responses require effective germinal center (GC) reaction within anatomical niches of GCs, where follicular helper T (Tfh) cells provide cognate help to B cells for T cell-dependent antibody responses. Emerging evidences indicate that GC reaction in normal state and perhaps establishment of latent Tfh cell reservoir in HIV/SIV infection are tightly regulated by epigenetic histone modifications, which are responsible for activating or silencing chromatin. A better understanding of the mechanisms behind GC responses at cellular and molecular levels thus provides necessary knowledge for vaccination and immunotherapy. In this review, we discussed the epigenetic regulation of GC responses, especially for GC B and Tfh cell under normal state or HIV/SIV infection.

Keywords: Epigenetic regulation, germinal center reactions, follicular CD4 T helper cells, B cells, HIV

INTRODUCTION

B-cell lineage commitment develops in primary lymphoid tissues such as fetal liver and bone marrow, and enters circulation (1). In secondary lymphoid tissues [such as lymph nodes, spleen, and gut-associated lymphoid tissues (GALT)], antigen-activated B cells experience clonal expansion, somatic hypermutation (SHM), and selection, and ultimately differentiate into antigen-specific memory subsets and plasma cells, which require T cell-dependent interactions for full responses (2, 3). Of these, germinal center (GC) reaction is the critical checkpoint in the development of T-dependent B-cell responses against foreign pathogens. Emerging studies have shown GC responses are strictly regulated by epigenetic modifications, which cooperate with timely expression of transcriptional factors for follicular B/T helper cell differentiation, thereby modulating antibody responses to foreign- and self-antigens (4). Therefore, understanding the intrinsic mechanisms involved in GC responses, and their dysregulation in HIV infection provides potential for the development of improved vaccines and immunotherapy.

GC FORMATION AND REACTION IN INTERACTION BETWEEN GC B AND FOLLICULAR HELPER T (Tfh) CELLS

Germinal centers are unique highly organized structures that formed within organized lymphoid tissues of both peripheral and mucosal (GALT) lymphoid tissues in response to T cell-dependent antigen. In GCs, Ag-activated B-cell clones proliferate and undergo SHM and selection, eventually produce antibodies with high-affinity and antigen specificity (5–7). For example, early GCs can first be histologically observed in mice at day 4 after immunization, in which B cells expand and...
differentiate into B cell blasts within the network of follicular dendritic cells (FDC) in the center of the follicle (5, 8). The dark zone (DZ) and light zone (LZ) in GCs could be microscopically distinguishable in lymphoid tissues. The DZ B cells (called centroblasts) highly proliferate, with opportunity to produce random immunoglobulin gene hypermutation and diversify Ig repertoire against foreign antigens. These DZ B cells leave DZ, and then migrate to the LZ, form LZ B cells (known as centrocytes), which are subject to clonal selection and terminal differentiation into memory B cells and plasma cells by signals from Th cells and FDCs. GCs are major sites for humoral immune responses, including B-cell development, differentiation and maturation, production of high-affinity antibodies that recognize and/or neutralize infectious pathogens.

The GC reaction is responsible for T-dependent humoral immune responses and is defined as the sequential process of B-cell differentiation, activation, maturation, resulting in antibody affinity maturation, and terminal differentiation, all that occurring within the GCs of lymphoid tissues. GC B cells undergo random SHM, Ig gene rearrangement, and clonal selection and eventually differentiate into long-lived memory B cells and high-affinity antibody-secreting plasma cells (8–12). By B cell receptor signaling via antigen binding, naïve B cells are initially activated and then migrate to the interfollicular (IF) region, where they interact with antigen-specific T cells and are thoroughly activated (13–15). These GC B founders express intermediate levels of BCL6 prior to follicular entry and GC seeding, and subsequent transit to the BCL6 high state in B-cell commitment to the GC lineage, lagging behind Th migration into the follicle interior (16). The transcriptional repressor BCL6 is indispensable for GC B cell differentiation, repressing expression of the transcriptional factors IRF4/Blimp1 and formation of short-term antibody-secreting cell (ASC) (8, 17). However, only a proportion of these antigen-activated B cells are able to enter the GC zones and participate in the GC reaction (8). A subset of activated B cells at the IF zones at the peripheral follicles could differentiate into ASCs, which produce low-affinity antibodies to pathogens, albeit with a rapid antibody responses (18). Another pool of antigen-specific GC B cells with the highest relative affinity gains access to the lymphoid follicles, aggregated to form GCs (19–22). Within anatomical niches of mature GCs, GC B cells in the DZ (densely packed blasts, centroblasts) rapidly proliferate, undergo random SHM catalyzed by activation-induced cytidine deaminase (AID), and rearrange and diversify their IgV genes, resulting in mutant GC B cell clones with a broader repertoire of antibody specificity (23–25). Upon transition into the LZ (sparsely populated B cells, centrocytes), GC B cells with the highest affinity B cell receptors are positively selected by GC Th cells. Signaling from GC Th cells, such as CD40, IL-4, IL-9, IL-21, and ICOS, plays a pivotal role in the GC reaction during intermittent cognate engagement between GC B and Th cells (26–28). Rapid interactions between GC B and Th cells in DZ/LZ occur, as indicated by fluctuating CXCR4 and/or CXCR5 expression, which facilitate several reiterative rounds of B cell mutation and selection, resulting in terminal differentiation into highly specific memory B cells and plasma cells (5, 7, 11, 29). In the GC reaction, increasing evidence indicates that Ig SHM and selection of antigen-experienced B cells are needed for development of broadly neutralizing antibodies at checkpoints during B cell activation (30).

EPIGENETIC HISTONE REGULATION AND ITS POTENTIAL IN B-CELL DIFFERENTIATION AND ANTIBODY RESPONSES

Epigenetic alteration at posttranslational modification (PTM) is able to regulate gene expression or repression, and control cellular function without genomic sequences changes (4). Epigenetic histone modification, either by adding or removing histone methylation, acetylation, phosphorylation, or ubiquitination at histone posttranslational levels, alters chromatin structure and represses (such as chromosomal condensation) or promotes target gene transcriptional pathways affecting cell development, differentiation, and cell fates, and thereby modulates cell functions in both programmed development, or in response to disease states (31). Under the control of epigenetic regulation, cell commitment to a specific differentiated lineage involves the activation of specific genes while maintaining the other gene silence at the genomic loci (32). Among various chromatin-modifying epigenetic factors, polycomb G (PcG) proteins act in multimeric complexes known as polycomb repressive complexes (PRCs, including PRC1, PRC2, and PhoRC), which are specifically involved in histone PTMs. PRC2, composed of three subunits [enhancer of zeste homolog 2 (EZH2)/EZH1, SUZ12, and EED], binds to specific targets of chromatin, and then the enzymatic subunit EZH2 catalyzes the di- and tri-methylation of Lys 27 residues on histone H3 to generate H3K27me2/3 (33), which mediates changes in chromatin structure, transcriptional repression, somatic processes during embryonic development, lineage commitment, and even tumorigenesis (34–41). H3K27me3 could recruit PRC1 (BMI1 subunit) (42, 43), and thus stabilize polycomb G-mediated repression (39, 44, 45). EZH2 is a central core component of the PcG family, as it serves as histone-lysine N-methyltransferase to catalyze H3-K27 methylation (13). Conversely, aberrant EZH2 overexpression and subsequent SHMs are associated with cancer occurrence (13, 46, 47). Although EZH2 is directly responsible for the trimethylation of H3-K27, EZH2 overexpression does not directly increase H3K27me3, but instead results in PRC4-mediated H1K26 trimethylation, upregulation of demethylase (JMJD3/UTX), and phosphorylation of Ezh2 (P-Ezh2-Ser21) (48–51). Loss of H3K27me3 despite high EZH2 and demethylase levels is thus believed to be due to transcriptional suppression of H3K27me3-target genes by increased demethylase or other unknown mechanisms. The degree of lysine methylation within histones (mono-, di-, and tri-) is one modification with distinctive nuclear features and transcriptional states of target genes, and a major determinant for genome organization. Both lysine methyltransferases (KMTs) and lysine demethylases (KDMs) have specificity for specific lysine residues and degrees of methylation within the histone tails. Lysine (K) motifs within the histone tails are primary sites to recruit chromatin-modifying enzymes such as methyltransferase, leading to specific gene repression or...
activation (52). For examples, H4K20 and H3K27 monomethylation (H4K20me1) is associated with active promoters, while H4K20 and H3K27 trimethylation (H4K20me3/27me3) is affiliated with gene repression and compacted genomic regions. However, H3K4me3 is generally responsible for active chromatin (53, 54). H3K27me2 shows a similar distribution and role to H3K27me3 (55, 56). In addition, histone demethylation/acetylation, respectively, catalyzed by demethylase UTX/JMJD3 (H3K27me2/3 substrate), LSD1 (H3K4me2 substrate), JMJD2 (H3K9me3 substrate), JARID (H3K4me3 substrate), or acetyltransferase, is also associated with active transcription, antagonizing the repression of gene expression induced by H3K27me2/3 (57, 58).

In the context of antibody responses, B-cell development and the GC reaction is precisely fine-tuned by histone modifiers (59). Specifically, epigenetic modification controls B-cell differentiation and maturation, thereby regulating Ab responses (4, 13, 60–64). Upon activation by antigens, GC B cells upregulate and highly express EZH2, which segregates primarily in either the LZ or/and DZ (60, 65), and plays a pivotal role in B cell differentiation, GC formation, normal immunoglobulin VDJ recombination, inhibition of terminal B-cell differentiation, and lymphomagenesis via histone trimethylation (H3K27me3) (13, 61, 63, 66). High expression of EZH2, cooperating with Bcl6, is required to maintain the GC B cell phenotype but its relevance diminishes concomitant with GC B cells exiting GCs and terminal differentiation (upregulated IRF4 and BLIMP1), suggesting an important role for this protein in maintaining B cell division (8, 61, 67). EZH2 depletion or mutation perturbs B-cell differentiation and GC reaction with reduction in high-affinity antibodies, while overexpression of EZH2 promotes lymphomagenesis (63, 66). These findings suggest that EZH2 is essential for normal B-cell differentiation, activation, as well as maturation. Additionally, expression of EZH2 is also precisely regulated in various physiological and pathogenic processes (13, 68). Factors, including c-Rel, E2F1/2, Elk-1, and HIF-1α directly bind to the EZH2 promoter, leading to EZH2 expression (69–72). For example, c-Rel supports GC B cell proliferation and maintains the GC through upregulation of EZH2. Another factor, Myc could also indirectly induce EZH2 expression through miRNA or retinoblastoma protein–E2F (pRB–E2F) (73). Myc also enables GC B cell division and transformation, as Myc+ GC B cells are highly proliferative cell subsets (12, 74, 75), compared with p53-mediated suppression of EZH2 expression (76). Combined, multiple B cell-intrinsic epigenetic alterations may be involved in instructing B cells to undergo B cell development, GC formation, SHM, and Ab affinity maturation in the GC reaction, including differentiation to memory B cells or long-lived plasma cells (8, 12, 63, 66) (Figure 1).

EPIGENETIC REGULATION IN Tfh CELL RESERVOIRS IN HIV/SIV INFECTION

CD4 T cells preferentially develop into Tfh cells following repetitive T cell receptor interactions and activation, and the proinflammatory cytokines produced during persistent viral infections (77–79). Notably, epigenetic regulation is also involved in T cell differentiation and memory formation (80–82). These epigenetic alterations include PTMs. For example, EZH2 restricts
The differentiation of Th1 and Th2 cells via H3K27me3-mediated gene repression (83). Conversely, upregulation of UTX, an H3K27 demethylase supports Th1 cell differentiation and eliminates persistent viral infections (84). As indicated in Figure 2, epigenetic histone modification in virus-infected cells is implicated in the immune evasion and latency in HIV infection and AIDS (85–90). The reactivation of HIV latency could be regulated by epigenetic modification through effects on the chromatin state of the viral promoter in the LTR sequence (90–93). The BET (bromodomain and extraterminal domain) family, including BRD2, BRD3, BRD4, and BRDT, are important epigenetic regulators facilitating the gene transcription in chromatin (94). BRD4, a chromatin adaptor protein, forms a tight complex with chromatin through two tandem bromodomains (BD1 and BD2), acetylate lysine residues in histone 3 and 4 at both enhancer and general promoter regions of chromatin, recruiting positive transcription elongation factor b (P-TEFb) (95). The latter facilitates cellular transcription by phosphorylating RNA polymerase II at the serine residue in the C-terminal domain (96). However, recent studies indicate that BET bromodomain inhibitor (e.g., JQ1) dissociates BRD4 from BRD4/P-TEFb complex, resulting in P-TEFb/HIV Tat recruitment to the LTR promoter and reactivation of HIV-infected cells (97, 98). Antiretroviral drugs, in combination with epigenetic regulatory agents, are promising to effectively reactivate HIV latency via histone deacetylase inhibitors (HDACi), histone methyltransferase inhibitors, or DNA methyltransferase inhibitors.

As described above, GC Tfh cells provide help for optimal B-cell differentiation, and antibody affinity maturation (10, 99). Interactions of GC B cells with GC Tfh cells are critical for antibody production. However, persistent SIV infection leads to aberrant GC Tfh cell expansion, ultimate depletion, abnormal B-cell responses, and viral reservoir establishment as a major source of the HIV reservoir within sanctuary sites in lymphoid tissues (79, 100, 101), consistent with the facts that organized lymphoid tissues represent the major tissue reservoir for HIV replication and latency (102–104), even during prolonged ART (78, 105–109). Although studies in adults indicate that HIV infection leads to abnormal B-cell and Tfh cell responses (110–115), yet, studies on the regulation of B-cell responses, especially at the cellular and molecular levels within GCs, needed to be further investigated in HIV/SIV infection.

AUTHOR CONTRIBUTIONS

XW wrote manuscript and HX revised the manuscript.

FUNDING

This work was supported by NIH grants R01 DE025432, R01 AI099795, the National Center for Research Resources, and the Office of Research Infrastructure Programs (ORIP) of the National Institutes of Health through grant no. OD011104-51. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

REFERENCES

1. Lebien TW, Tedder TF. B lymphocytes: how they develop and function. Blood (2008) 112:1570–80. doi:10.1182/blood-2008-02-078071
2. Naradikian MS, Hao Y, Cancro MP. Age-associated B cells: key mediators of both protective and autoreactive humoral responses. Immunol Rev (2016) 269:118–29. doi:10.1111/imr.12380
3. Claes N, Fraussen J, Stinissen P, Hupperts R, Somers V. B cells are multifunctional players in multiple sclerosis pathogenesis: insights from therapeutic interventions. Front Immunol (2015) 6:662. doi:10.3389/fimmu.2015.00662
4. Zan H, Casali P. Epigenetics of peripheral B-cell differentiation and the antibody response. Front Immunol (2015) 6:631. doi:10.3389/fimmu.2015.00631
5. Maclellan IC. Germinal centers. Annu Rev Immunol (1994) 12:117–39. doi:10.1146/annurev.iy.12.040194.001001
6. Victoria GD, Schwikert TA, Fooksman DR, Kamphorst AO, Meyer-Hermann M, Dustin ML, et al. Germinal center dynamics revealed by multiphoton microscopy with a driven photoactivatable fluorescent reporter. Cell (2010) 143:592–605. doi:10.1016/j.cell.2010.10.032

7. Goenka R, Matthews AH, Zhang B, O’Neill PJ, Scholz JL, Migone TS, et al. Local BlyS production by T follicular cells mediates retention of high affinity B cells during affinity maturation. J Exp Med (2014) 211:415–56. doi:10.1084/jem.201330505

8. De Silva NS, Klein U. Dynamics of B cells in germinal centres. Nat Rev Immunol (2015) 15:137–48. doi:10.1038/nri3880

9. Gatto D, Brink R. The germinal center reaction. J Allergy Clin Immunol (2010) 126:898–907. doi:10.1016/j.jaci.2010.09.007

10. Crotty S. Follicular helper CD4 T cells (TFH). Annu Rev Immunol (2011) 29:621–63. doi:10.1146/annurev-immunol-031210-101400

11. Victora GD, Nussenzweig MC. Germinal centers. Annu Rev Immunol (2012) 30:429–57. doi:10.1146/annurev-immunol-020711-070532

12. Corcoran LM, Tarlinton DM. Regulation of germinal center responses, memory B cells and plasma cell formation—an update. Curr Opin Immunol (2016) 39:59–67. doi:10.1016/j.coi.2015.12.008

13. Su IH, Basavaraj A, Krutchinsky AN, Hobert O, Ullrich A, Chait BT, et al. Ezh2 controls B cell development through histone H3 methylation and IgH rearrangement. Nat Immunol (2003) 4:124–31. doi:10.1038/nijm

14. Okada T, Miller MJ, Parker I, Krummel MF, Neighbors M, Hartley SB, et al. Antibody-expressing B cells undergo chemotaxis toward the T zone and form motile conjugates with helper T cells. PLoS Biol (2005) 3:e150. doi:10.1371/journal.pbio.0030150

15. Qi H, Cannons JL, Klauschen F, Schwartzberg PL, Germain RN. SAP-controlled T-B cell interactions underlie germinal centre formation. Nature (2008) 455:764–9. doi:10.1038/nature07345

16. Ferrero E, Vizzaco A, Robaldo A, Ferri M, Piazza S, Cumbo P, et al. True giant ALCs form in the peritoneal cavity of germ-free mice. Cell (1991) 66:389–92. doi:10.1016/0092-8674(91)90289-G

17. Basso K, Dalla-Favera R. Roles of BCL6 in normal and trans-fomed B cells. Annu Rev Immunol (2002) 20:172–83. doi:10.1146/annurev.immunol.20.110600.1605X2.201112.x

18. Jacob J, Kelsoe G. In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. II. A common clonal origin for peripheri-olymphoid lobe, sheath-associated foci and germinal centers. J Exp Med (1992) 176:679–87. doi:10.1084/jem.176.3.679

19. Dal Porto JM, Haberman AM, Kelsoe G, Shlomchik MJ. Very low affinity Fcγ receptors on germinal centre B cells. Nature Immunol (2002) 3:570–5. doi:10.1038/ni803

20. Blink EJ, Light A, Kallies A, Nutt SL, Hodgkin PD, Tarlinton DM. Early appearance of germinal center-derived memory B cells and plasma cells in blood after primary immunization. J Exp Med (2005) 201:545–54. doi:10.1084/jem.20042060

21. Kerfoot SM, Yaari G, Patel JR, Johnson KL, Gonzalez DG, Kleinstein SH, et al. Germinal center B cell development has distinctly regulated stages completed by disengagement from T cell help. Elife (2017) 6. doi:10.7554/eLife.19552

22. Ringrose L, Paro R. Epigenetic regulation of cellular memory by the polycomb group protein EZH2. EMBO Rep (2007) 8:9–12. doi:10.1038/embor.2007.1

23. Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, et al. Role of the Enhancer of Zeste protein. Nature (2002) 419:624–9. doi:10.1038/nature01075

24. Kleer CG, Cao Q, Varambally S, Shen R, Ota I, Tomlins SA, et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci U S A (2003) 100:11666–11671. doi:10.1073/pnas.1933744100

25. Cha TL, Zhou BP, Xia W, Wu Y, Yang CC, Chen CT, et al. Akt-mediated phosphorylation of EZH2 suppresses methylation of lysine 27 in histone H3. Science (2005) 310:306–10. doi:10.1126/science.1118947

26. Varambally S, Dhanasekaran SM, Zhou M, Barrette RT, Kumar-Sinha C, Sanda MG, et al. The polycomb group protein EZH2 in progression of prostate cancer. Nature (2002) 419:624–9. doi:10.1038/nature01075

27. Hyland PL, Mc wearable SM, Cleveland WC, Dickson SJ, Mccloskey DJ, Arthur K, McCance DJ, et al. Evidence for alteration of EZH2, BMI1, and KDM6A and epigenetic reprogram- ing in human papillomavirus type 16 E6/E7-expressing keratinocytes. J Virol (2011) 85:10999–10006. doi:10.1128/JVI.00160-11

28. Wang and Xu Epigenetic Regulation in AIDS
51. McLaughlin-Drubin ME, Crum CP, Munger K. Human papillomavirus E7 oncoprotein induces KDMA6 and KDMA6 histone demethylase expression and causes epigenetic reprogramming. Proc Natl Acad Sci U S A (2011) 108:2130–5. doi:10.1073/pnas.1009933108

52. Pouzadoules' T. Histone methylation in transcriptional control. Curr Opin Genet Dev (2002) 12:198–209. doi:10.1016/S0959-437X(02)00287-3

53. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell (2006) 125:315–26. doi:10.1016/j.cell.2006.02.041

54. Lauberth SM, Nakayama T, Wu X, Ferris AL, Tang Z, Hughes SH, et al. Histone H3K4me3 interactions with TAF3 regulate preinitiation complex assembly and selective gene activation. Cell (2013) 152:1021–36. doi:10.1016/j.cell.2013.01.052

55. Wang J and Xu. Epigenetic Regulation in AIDS

56. Good-Jacobson KL. Regulation of germinal center, B-cell memory, and plasma cell formation by histone modifications. Front Immunol (2014) 5:956. doi:10.3389/fimmu.2014.00956

57. Ferrari KJ, Scelfo A, Jammula S, Cuomo A, Barozzi I, Stutzer A, et al. Polycomb-dependent H3K27me1 and H3K27me2 regulate active transcription and enhancer fidelity. Mol Cell (2014) 53:59–62. doi:10.1016/j.molcel.2013.10.030

58. Tie F, Banerjee R, Stratton CA, Prasad-Sinha J, Stepanek V, Zlobin A, et al. CBP-mediated acetylation of histone H3 lysine 27 antagonizes drosophila polycomb silencing. Development (2009) 136:3131–41. doi:10.1242/dev.037127

59. Hemming SE, Cakouros D, Vandyke K, Davis MJ, Zannettino AC, Gronthos S. The cell cycle regulator c-Myc is essential for the formation and maintenance of germinal centers. Nat Immunol (2012) 13:1092–100. doi:10.1038/ni.2418

60. Velichutina I, Shaknovich R, Geng H, Johnson NA, Gascoyne RD, Melnick AM, et al. EZH2 is down-regulated in mantle cell lymphoma and causes epigenetic reprogramming. Proc Natl Acad Sci U S A (2003) 100:18459–64. doi:10.1073/pnas.2935762100

61. Mandal M, Powers SE, Maienschein-Cline M, Bartom ET, Hamel KM, Kee BL, et al. Cutting edge: polycomb gene expression patterns reflect distinct B cell differentiation stages in human germinal centers. J Immunol (2004) 173:6484–9. doi:10.4049/jimmunol.173.10.6484

62. Neo WH, Lim JF, Grumont R, Gerondakis S, Su IH. c-Rel regulates EZH2 expression and functions as a tumor suppressor. Dev Cell (2013) 25:1209–21. doi:10.1016/j.devcel.2013.07.013

63. Calado DP, Sasaki Y, Godinho SA, Pellerin A, Kochert K, Sleckman BP, et al. The cell-cycle regulator c-Myc is essential for the formation and maintenance of germinal centers. Nat Immunol (2012) 13:1092–100. doi:10.1038/ni.2418

64. Dominguez-Sola D, Victoria GD, Ying CY, Phan RT, Saito M, Nussenzwieg MC, et al. The proto-oncogene MYC is required for selection in the germinal center and cyclic reentry. Nat Immunol (2012) 13:1083–91. doi:10.1038/ni.2428

65. Tang X, Mihaylovsky M, Shats I, Erez N, Goldfinger N, Rotter V. Activated p53 suppresses the histone methyltransferase EZH2 gene. Oncogene (2004) 23:5759–69. doi:10.1038/sj.onc.1207706

66. Brooks DG, Teyton L, Oldstone MB, Mcgavern DB. Intrinsical functional dysregulation of CD4 T cells occurs rapidly following persistent viral infection. Proc Natl Acad Sci U S A (2005) 102:10514–27. doi:10.1073/pnas.1503282102

67. Bracken AP, Pasini D, Capra M, Prosperini E, Colli E, Helin K. EZH2 is down-stream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J (2003) 22:5323–35. doi:10.1093/emboj/cdg542

68. Sanders S, Bullinger L, Klapproth K, Fiedler K, Kestler HA, Barth TF, et al. MYC stimulates EZH2 expression by repression of its negative regulator miR-29a. Blood (2008) 112:2402–12. doi:10.1182/blood-2008-03-147645

69. Chang CJ, Hung MC. The role of EZH2 in tumour progression. Br J Cancer (2012) 106:243–7. doi:10.1038/bjc.2011.551

70. Neo WH, Lim JF, Grumont R, Geng H, Johnson NA, Gascoyne RD, Melnick AM, et al. EZH2 is down-regulated in mantle cell lymphoma and causes epigenetic reprogramming. Proc Natl Acad Sci U S A (2003) 100:18459–64. doi:10.1073/pnas.2935762100

71. Fujii S, Fukamachi K, Tsuda H, Ito K, Ito Y, Ochiai A. RAS oncogenic signal upregulates EZH2 in pancreatic cancer. Biochem Biophys Res Commun (2012) 417:1074–9. doi:10.1016/j.bbrc.2011.12.099

72. Neo WH, Lim JF, Grumont R, Geng H, Johnson NA, Gascoyne RD, Melnick AM, et al. EZH2 is down-regulated in mantle cell lymphoma and causes epigenetic reprogramming. Proc Natl Acad Sci U S A (2003) 100:18459–64. doi:10.1073/pnas.2935762100

73. Calado DP, Sasaki Y, Godinho SA, Pellerin A, Kochert K, Sleckman BP, et al. The cell-cycle regulator c-Myc is essential for the formation and maintenance of germinal centers. Nat Immunol (2012) 13:1092–100. doi:10.1038/ni.2418

74. Chang CJ, Hung MC. The role of EZH2 in tumour progression. Br J Cancer (2012) 106:243–7. doi:10.1038/bjc.2011.551

75. Wang J and Xu. Epigenetic Regulation in AIDS
93. Verma M. Epigenetic regulation of HIV, AIDS, and AIDS-related malignancies. *Methods Mol Biol* (2015) 1238:381–403. doi:10.1007/978-1-4939-1804-1_21
94. Chaidos A, Caputo V, Karanis N A. Inhibition of bromodomain and extra-terminal proteins (BET) as a potential therapeutic approach in haematological malignancies: emerging preclinical and clinical evidence. *Ther Adv Hematol* (2015) 6:128–41. doi:10.1177/204062715576662
95. Dey A, Chitsaz F, Abbasi A, Misteli T, Ozato K. The double bromodomain-containing protein Brd4 binds to acetylated chromatin during interphase and mitosis. *Proc Natl Acad Sci U S A* (2003) 100:8758–63. doi:10.1073/pnas.1433065100
96. Schroder S, Cho S, Zhang Q, Kaehlcke K, Mak L, et al. Two-pronged inhibition of bromodomain and extraterminal proteins (BET) as a potential therapeutic approach in hematological malignancies: emerging preclinical and clinical evidence. *Ther Adv Hematol* (2015) 6:128–41. doi:10.1177/204062715576662
97. Taube R, Peterlin M. Lost in transcription: molecular mechanisms that control HIV latency. *Viruses* (2013) 5:902–27. doi:10.3390/v5030902
98. Mbonye U, Karn J. Transcriptional control of HIV latency: cellular signaling pathways, epigenetics, happenstance and the hope for a cure. *Virology* (2014) 45(4–455):328–39. doi:10.1016/j.virol.2014.02.008
99. Shulman Z, Gitlin AD, Targ S, Jankovic M, Pasqual G, Nussenzweig MC, et al. T follicular helper cell dynamics in germinal centers. *Science* (2013) 341:673–7. doi:10.1126/science.1241680
100. Xu H, Wang X, Lackner AA, Veazey RS. PD-1(HIGH) follicular CD4 T helper cell subsets residing in lymph node germinal centers correlate with B cell maturation and IgG production in Rhesus Macaques. *Front Immunol* (2014) 5:85. doi:10.3389/fimmu.2014.00085
101. Xu H, Wang X, Malam N, Lackner AA, Veazey RS. Persistent simian immunodeficiency virus infection causes ultimate depletion of follicular Th cells in AIDS. *J Immunol* (2015) 195:4351–7. doi:10.4049/jimmunol.1501273
102. Brenchley JM, Vinton C, Tabb B, Hao XP, Connick E, Paiardini M, et al. Follicular helper T cells as a marker for evaluating disease progression in the competition between HIV and host immunity. *Front Immunol* (2016) 7:474. doi:10.3389/fimmu.2016.00474
103. Horiike M, Iwami S, Kodama M, Sato A, Watanabe Y, Yasui M, et al. Vaccine induction of lymph node-resident simian immunodeficiency virus env-specific T follicular helper cells in Rhesus Macaques. *J Immunol* (2016) 196(4):1700–10. doi:10.4049/jimmunol.1502137
104. Moor S, Fauci AS. B cells in HIV infection and disease. *Nat Rev Immunol* (2009) 9:235–45. doi:10.1038/nri2524
105. Overbaugh J, Morris L. The antibody response against HIV-1. *Cold Spring Harb Perspect Med* (2012) 2:a007039. doi:10.1101/cshperspect.a007039
106. Banga R, Procopio FA, Noto A, Pollakis G, Cavassini M, Ohmori K, et al. PD-1(+) and follicular helper T cells are responsible for persistent HIV-1 transcription in treated aviremic individuals. *Nat Med* (2016) 22:734–61. doi:10.1038/nm.4113
107. Vargas-Inchaustegui DA, Demers A, Shaw JM, Kang G, Ball D, Tuero I, et al. Antibody B cell responses in HIV-1 infection cause ultimate depletion of follicular Th cells in AIDS. *J Immunol* (2015) 195:4351–7. doi:10.4049/jimmunol.1501273
108. Horiike M, Iwami S, Kodama M, Sato A, Watanabe Y, Yasui M, et al. Lymph nodes harbor viral reservoirs that cause rebound of plasma viremia in SIV-infected macaques upon cessation of combined antiretroviral therapy. *Virology* (2012) 423:107–18. doi:10.1016/j.virol.2011.11.024
109. Perreau M, Savoye AL, De Crignis E, Corpataux JM, Cubas R, Haddad EK, et al. Follicular helper T cells serve as the major CD4 T cell compartment for HIV-1 infection, replication, and production. *J Exp Med* (2013) 210:143–56. doi:10.1084/jem.20121932
110. Connick E, Folkvord JM, Lind KT, Rakasz EG, Miles B, Wilson NA, et al. Compartmentalization of simian immunodeficiency virus replication within secondary lymphoid tissues of Rhesus Macaques is linked to disease stage and inversely related to localization of virus-specific CTL. *J Immunol* (2014) 193:5613–25. doi:10.4049/jimmunol.1401161
111. Tomaras GD, Haynes BF. HIV-1-specific antibody responses during acute and chronic HIV-1 infection. *Curr Opin HIV AIDS* (2009) 4:373–9. doi:10.1097/COH.0b013e32832800c0
112. Kardava L, Moir S, Shah N, Wang W, Wilson R, Buckner CM, et al. Abnormal immunity. *Nat Med* (2012) 423:107–18. doi:10.1016/j.virol.2011.11.024
113. Piffanelli R, Neri S, Rethi B, Chiòdi F. Impairment of B-cell functions during HIV-1 infection. *AIDS* (2013) 27:2323–34. doi:10.1097/QAD.0b013e3283e1a427
114. Kardava L, Moir S, Shah N, Wang W, Wilson R, Buckner CM, et al. Abnormal B cell memory subsets dominate HIV-specific responses in infected individuals. *J Clin Invest* (2014) 124:3252–62. doi:10.1172/JCI74351
115. Mouquet H. Antibody B cell responses in HIV-1 infection. *Trends Immunol* (2014) 35:549–61. doi:10.1016/j.it.2014.08.007

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. The reviewer KT and handling editor declared their shared affiliation.