Textile waste for chemical and textile industries feedstock (presentation of EU project)

B Voncina¹, J Valh Volmajer¹, S Vajnhandl¹, A Majcen Le Marechal¹, A P Aneja¹ and A Lobnik¹²

¹University of Maribor, Institute of Engineering Materials and Design, Laboratory for Chemistry and Environmental Protection,
²Institute for Environmental Protection and Sensors, Maribor, Slovenia
bojana.voncina@um.si

Abstract The RESYNTEX project aims at designing, developing and demonstrating a new industrial symbiosis between textile waste and the chemical industry. The new original symbiosis is based on the chemical/enzymatic transformation of textile waste in a form that facilitates the easy take up as feedstock by the chemical industry in order to produce high added value chemicals. The parallel production of various high added value products ensures competitive production costs for the chemical market. As a result, economic advantages can be provided besides prevention of industrial environmental problems. The project will consider and demonstrate the whole value chain starting from the citizen behaviour change and the textile collection of unwearable textiles, improving and automatizing the industrial sorting, demonstrating the production of the transformed textile components and the symbiosis with the obtained chemical products and finally analysing the best economic models and policy actions for a successful introduction in EU markets.

Keywords: textile waste, recycling, chemical depolymerisation, enzymatic transformation, circular economy.

1. Introduction

According to the statistic [1] we can estimate that textile waste annual volumes will reach 17 Mt in 2020. Targeting a significant increase in collection rate (50 % in 2020) and considering that 23 % of textile waste is constituted of re-wearable clothes and remaining waste could be recycled at a rate of 95 %, we can estimate a potential of 6.2 Mt of fibers per year that could be converted into new feedstock. In the long term (post 2020), reaching 100 % collection would give access to more than 12.4 Mt of fibers. As a consequence, there is a strong need to develop a new industrial symbiosis based on this textile waste stream associated with adapted processes in order to achieve an efficient recycling especially for non-wearable textile waste and move away from landfilling and energy recovery.

The textile recycling process could therefore be considered as one of the effective methods in reducing the production of virgin materials and minimising the environmental impact, i.e. use of water, energy and chemicals in the textile production chain, as well as in reducing the amount of textile waste.

In general, the post-consumer textile waste can be recycled by 4 main methods:
- Defibrillation/shredding/pulling/carding into fibres
- Energetic recycling
- Thermo-mechanical recycling
- Chemical recycling
Defibrillation/carding is carried out by breakdown of fabric to fiber through cutting, shredding, carding, and other mechanical processes. The fiber is then re-engineered into value-added products. These value-added products include stuffing, automotive components, carpet underlays, building materials such as insulation and roofing felt, and low-end blankets. The majority of this category consists of usable garments - garments that are stained, torn, or otherwise usable. Several methods are available for recovery of energy from waste such as gasification, pyrolysis, carbonisation etc. [3].

Thermo-mechanical recycling is re-melting the sorted waste of thermoplastic. This method is mainly used for bottle-to-fiber technologies, where sorted and cleaned PET bottles are re-extruded into products for non-food application, to textile fibers.

Chemical recycling (also called feedstock or tertiary recycling) allows the recovery of more value products from plastic wastes than incineration. By more restrictively definition, the chemical recycling may be defined as 'the production of chemical products of value from waste polymeric materials by economically feasible processes'. This definition, which requires the recovery of products of value, excludes from chemical recycling both biodegradation and combustion, and limits chemical recycling to those processes that are also economically feasible [4]. The products of chemical recycling are easily reintroduced into the production cycle, without any problems of market saturation; another benefit is that the crude products resulting from chemical breakdown can be used without further purification.

1.1 RESYNTEX Consortium
RESYNTEX has 20 project partners from across 10 different EU member states (Figure 1). Partners include industrial associations, businesses, SMEs and research institutes. Working together, the group creates an effective model for the whole value chain.

![Figure 1. RESYNTEX Consortium](image)

2. Experiments
The main objective of WP4, where University of Maribor is currently mostly involved, is optimisation of a physicochemical recovery/transformation process via depolymerisation of textile waste.

Scope and goal: Total chemical depolymerisation of PET or PA material after sequential protein and cellulose removal.

This eco-friendly process comprises of:
- polyamide recovery with the production of PAs oligomers and
- polyester recovery and the production of PET monomers
3. Results and discussion

3.1 Polyamide recovery with the production of PAs oligomers

Chemical depolymerisation of PA6 was performed – promising results were obtained (liquid fractions which precipitate after few hours were obtained) by high temperature and high pressure hydrolysis with high excess of water. By 1H NMR it was proved that mainly PA6 dimers were produced. With less harsh conditions, several water non-soluble oligomers were produced.
3.2 Polyester recovery and production of PET monomers

Testing of PET depolymerisation efficiency according to experimental conditions P, T and t and PET type (high and low viscosity type), with and without the present of catalyst was carried out. The degree of chemical depolymerisation of virgin PET polymers was preliminary determined gravimetrically, by carboxylic group number, FTIR spectroscopy and DSC.

After depolymerisation of PET textile materials 95 % of monomer (terephthalic acid) was obtained (proved by 1H NMR).

Acknowledgments

RESYNTEX project received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement 641942.

References

[1] JCR Scientific and Technical Report, 2010
[2] Grand Agreement Number 641942-Resynex
[3] Nunes, L.J.R., et al. J. Clean. Production 171 (2018), 1353-1360.
[4] Wang, Y., 2006. Recycling in Textiles - 1st Edition. Woodhead Publishing.