Search for Heavy Neutral Leptons in Decays of W Bosons Using a Dilepton Displaced Vertex in $\sqrt{s} = 13$ TeV pp Collisions with the ATLAS Detector

Aad, G.; ATLAS Collaboration

DOI
10.1103/PhysRevLett.131.061803

Publication date
2023

Document Version
Final published version

Published in
Physical Review Letters

License
CC BY

Citation for published version (APA):
Aad, G., & ATLAS Collaboration (2023). Search for Heavy Neutral Leptons in Decays of W Bosons Using a Dilepton Displaced Vertex in $\sqrt{s} = 13$ TeV pp Collisions with the ATLAS Detector. Physical Review Letters, 131(6), Article 061803. https://doi.org/10.1103/PhysRevLett.131.061803

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

Download date: 24 Feb 2025
The observations of neutrino flavor oscillations [1,2] can be explained by postulating the existence of right-handed neutrino states that carry no standard model (SM) gauge charges, allowing them to have Majorana masses. The resulting “type-I seesaw” model [3–9] explains the light neutrino masses and predicts heavy mass eigenstates, referred to as “heavy neutral leptons” (HNLs) and denoted by N henceforth. The existence of HNLs can also explain the baryon asymmetry of the Universe via leptogenesis [10–12], which is efficient for HNL masses down to the sub-GeV range [13–17]. Moreover, a model with three HNLs can incorporate a dark matter candidate [14,18–21]. Each HNL state carries a small admixture of the left-handed neutrino of flavor $\alpha = \{e, \mu, \tau\}$. It can therefore participate in weak interactions, controlled by dimensionless mixing coefficients U_{α}, where $|U_{\alpha}| \ll 1$. Previous searches were interpreted only in terms of a one-HNL model with single-flavor mixing (1SFH) [22–32]. This model is a useful benchmark but is not phenomenologically viable as it predicts neutrino masses that are too large and does not account for two neutrino mass splittings or neutrino flavor oscillations [33–35]. The simplest viable model is that of two quasi degenerate HNLs (2QDH), with close masses and couplings, where all U_{α} are nonzero. A reinterpretation of ATLAS HNL searches in such HNL scenarios has been performed [35]. However, no experiment has directly explored 2QDH models yet.

The search reported here considers the production of HNLs via $W \to N l_\alpha^\prime$, where $\alpha = \{e, \mu\}$ indicates the flavor of the “prompt” lepton l_α^\prime. The HNL decays into two oppositely charged leptons and a neutrino: $N \to l_\beta^\prime l_\gamma^\prime$ via an intermediate W^+ boson, or $N \to \nu_\beta l_\gamma^\prime$ via a Z^* boson, where $\beta, \gamma = e$ or μ, as shown in Fig. 1 (the lepton-number-violating processes are shown in Fig. 1 of the Supplemental Material [36]).

The search focuses on the mixing and mass range (up to 20 GeV) in which the HNL is long-lived. The resulting HNL lifetime can be approximated by $\tau_N \approx (4.3 \times 10^{-12} \text{ s})|U|^2(m_N/1 \text{ GeV})^{-5}$ [37], where $|U|^2 \equiv \sum_{\beta} |U_{\beta}|^2$ is taken from Ref. [38]. The HNL decay occurs at a significantly displaced position from the proton-proton (pp) collision point, forming a displaced vertex (DV) of two charged leptons, $l_\beta^\prime l_\gamma^\prime$ or $l_\beta^\prime l_\gamma$. The measured final states are labeled according to the prompt and displaced

$$\begin{align*}
W^+ & \to N l_\alpha^\prime l_\beta^\prime \nu_\gamma \\
W^{*+} & \to N l_\alpha^\prime l_\beta^\prime l_\gamma
\end{align*}$$

FIG. 1. Feynman diagrams for the HNL production and decay modes targeted in this analysis. Only lepton-number-conserving processes are shown. The flavors of the leptons in the diagrams, labeled by $\alpha, \beta,$ and γ, are either muons or electrons. If the charged leptons in the HNL decay have the same flavor, then both the diagrams with the virtual W (a) and virtual Z (b) contribute to the process. Equivalent processes are also valid for an initial state W^- boson.
charged leptons therein, denoted by \(\ell^-_a - \ell^-_b \ell^-_c \) (explicitly listed in Table 1). Decays of the \(W \) or \(N^- \) to \(\tau \) leptons were determined to have negligible contribution to the analysis, since the leptonic branching fractions of the \(\tau \) and the soft lepton spectrum make their selection highly inefficient. In 1SFH scenarios, the analysis is sensitive to the squared mixing parameter \(|U_{\mu j}|^2 \) via the final states \(\mu - \mu \), \(\mu - \mu \), and \(\mu - e \), while \(|U_{\tau j}|^2 \) is accessible via \(e - e \), \(e - e \mu \), and \(e - \mu \). In 2QDH scenarios, the combination of the six final states provides sensitivity to \(|U_{\tau j}|^2 \), \(|U_{\mu j}|^2 \), and \(|U_{\tau j}|^2 \) decays [36]. The analysis can separate LNC and LNV decays only by using an explicit charge requirement for the 1SFH model in the \(\mu - \mu \) and \(e - e \mu \) channels, where the displaced leptons are experimentally distinguishable by their different flavors. The bounds are tighter than and supersede those of Ref. [22], where only the final states \(\mu - \mu \) and \(\mu - \mu \) were studied.

This search is performed with 139 fb\(^{-1}\) of 13 TeV \(pp \) collision data collected by the ATLAS experiment at the LHC from 2015 to 2018. To study the signal sensitivity, Monte Carlo (MC) signal samples were generated using PYTHIA8.212 [39] with the A14 set of tuned parameters [40] and the NNPDF2.3LO PDF set [41]. The impact of multiple events is modeled by adding simulated minimum-bias events generated with PYTHIA8 and MADGRAPH5_AMC@NLO samples. Subsequently, tracks are propagated through a detector simulation [43] based on GEANT4 [44]. To properly simulate spin correlations between W-boson decay products [35,45,46], events are not accounted for in PYTHIA8, events are weighted to reproduce the angular distributions obtained with MADGRAPH5_AMC@NLO2.9.3 [47] using the HEAVYN model [48,49]. The weighting procedure is validated by comparing the momentum spectra of each of the charged-lepton flavors and the neutrino between the weight PYTHIA8 and MADGRAPH5_AMC@NLO samples. For each \(\ell^-_a - \ell^-_b \ell^-_c \) final state, signal samples were generated with HNL masses in the range \(3 \text{ GeV} < m_N < 20 \text{ GeV} \) and proper decay lengths \(\tau_N = 1, 10, 100 \) mm.

The ATLAS detector [50–52] is a cylindrical detector with forward-backward symmetry and nearly \(4\pi \) solid-angle coverage [53]. It is composed of three major subsystems: the inner detector (ID) closest to the \(pp \) interaction point (IP), the electromagnetic and hadronic calorimeters, and the muon spectrometer farthest from the IP. The ID is used to reconstruct the trajectories of charged particles (tracks) in an almost uniform 2 T magnetic field, and comprises three subsystems: pixel, silicon microstrip tracker (SCT), and transition radiation tracker. An extensive software suite [54] is used in the reconstruction and analysis of data and MC events, in detector operations, and in the trigger and data acquisition systems of the experiment.

Events in the signal region (SR) of this analysis were selected with triggers [55] that require a single isolated electron [56] or muon [57] with a minimum transverse momentum \(p_T \) of 20–26 GeV, depending on the lepton flavor and year. Events passing the trigger are required by a filter algorithm to contain at least one lepton [58,59] with \(p_T > 28 \) GeV and \(|\eta| < 2.5 \).

To ensure isolation of this lepton from hadronic activity, the scalar sum of the \(p_T \) of other tracks within a cone of size \(\Delta R = 0.3 \) around the lepton momentum \(\Sigma p_T^{(0.3)} \) is required to be less than 5% of the lepton \(p_T \). The filter also requires at least one additional lepton with \(p_T > 5 \) GeV, \(|\eta| < 2.5 \), and \(\Sigma p_T^{(0.3)} / p_T < 1.0 \). To reduce the number of events with prompt decays while maintaining efficiency for displaced leptons, the second lepton must have a transverse impact parameter \((d_0) \) with respect to the IP of \((d_0) > 0.1 \) mm (\((d_0) > 1 \) mm) for muons (electrons). Events that pass the filter are then processed with a large-radius tracking (LRT) algorithm [60], that is efficient for tracks with \((d_0) < 300 \) mm. The LRT is run using hits leftover after the standard tracking [61], which is efficient only for \((d_0) < 10 \) mm. Standard and large-radius tracks are combined with muon-spectrometer tracks (electromagnetic energy clusters) to reconstruct muons (electrons). Events are required to contain a reconstructed primary vertex (PV) with at least two tracks, each having \(p_T > 500 \) MeV. When more than one PV is reconstructed, the one with the highest \(\Sigma p_T^{(0.3)} \) is used, where the sum is over the tracks associated with the PV.

Event selection relies on the reconstruction of two physics objects: a prompt lepton and a DV. The prompt-lepton candidate, \(\tau^-_a \), is taken to be the highest-\(p_T \) muon (electron) that satisfies \(p_T > 3 \) GeV, \((d_0) < 3 \) mm, and \(|\eta| < 0.5 \) mm, where \(\eta \) is the track’s longitudinal impact parameter and \(z_{PV} \) is the \(z \) coordinate of the PV. If a prompt muon and a prompt electron have an angular separation \(\Delta R < 0.05 \), the event is rejected. Reconstruction of DVs is performed with an optimized version of the secondary vertexing algorithm described in Ref. [62]. First, “seed” DVs are formed from pairs of tracks from both the standard tracking and LRT algorithms. Subsequently, tracks are added to the DVs, and closely spaced DVs are merged. The secondary vertexing is run with the following configuration changes relative to Ref. [62]: seed DVs are formed from leptons only, with at least one lepton satisfying \((d_0) > 1 \) mm, and each having at least eight pixel plus SCT hits; leptonic and hadronic tracks are subsequently attached to the DVs, but selected DVs must have exactly two leptons and no additional tracks.

Events must contain a prompt lepton and a DV comprising a pair of leptons with opposite-sign (OS) electric charge, although same-sign (SS) DVs are retained and
The final SR selection is $m_{\text{HNL}} < 20$ GeV. The maximum signal selection efficiency is approximately 4%. A control region (CR) is defined as events with 20 GeV $< m_{\text{HNL}} < 50$ GeV. Since HNLs with $m_{\text{HNL}} > 20$ GeV and $|U_{el}|^2$ values that the search is sensitive to are short-lived, they fail the r_{DV} requirements, resulting in negligible signal contamination in the CR.

A validation region (VR) is used for data-driven background modeling and evaluation of systematic uncertainties. The VR comprises events that passed a variety of triggers, underwent LRT reconstruction, and do not contain a prompt lepton. The DVs in the VR must satisfy the r_{DV} requirements and pass the cosmic-ray muon veto. For ee DVs, the detector material veto is also applied. The expected signal contamination in the VR is less than two events for a 100% HNL branching fraction into the channel of interest. Since the VR contains more than 100 events in each DV channel, the signal contamination is negligible.

Background from random track crossings is expected to yield equal numbers of OS and SS DVs, given the large number of tracks produced in each event. By contrast, background from $Z \rightarrow \ell\ell$ or cosmic-ray muons yields only OS DVs, and backgrounds from particle interactions with detector material or from decays of metastable hadrons preferentially yield OS DVs. Figure 2(b) shows the m_{DV} distributions for SS and OS DVs in the VR. Good agreement is seen between the yield and shape of the distributions, shown for $e\mu$ DVs. This indicates that the dominant source of background in the SR is random lepton crossings. Therefore, the background model described next focuses on this background type. A systematic uncertainty related to this assumption is described below.

The signal and background yields are determined using the following fit. The fit uses a data-driven background model obtained from a sample of "shuffled events." This sample is created by combining each OS DV in the VR with each prompt lepton found in a non-VR event that contains an SS DV satisfying loose requirements: $m_{\text{DV}} > 1$ GeV, with no lepton identification criteria imposed on its displaced lepton. For each channel, the shuffled sample has at least 2×10^3 times the number of events in the "unshuffled" data sample, in which the DV and the prompt lepton are from the same event. As with an unshuffled event, a shuffled event may have $m_{\text{DV}} < 20$ GeV (SR) or 20 GeV $< m_{\text{HNL}} < 50$ GeV (CR). The background model in the SR and CR is given by the shuffled events [shown in Fig. 2(a)] with an independent floating normalization factor for each channel. The signal model for the fit is taken from simulation and is assigned a single floating signal strength for all channels. The input to the fit is the OS event yields observed in the SR and CR. Inclusion of the CR in the fit directly constrains the predicted background yield in the SR.
The shuffled-event background model relies on the assumption that the absence of correlation between the randomly crossing tracks results in an absence of correlation between the DV and the prompt lepton. The validity of this assumption is checked by comparing the \(m_{\text{HNL}} \) distributions and the \(m_{\text{DV}+\ell} \) distributions of shuffled events with the distributions of unshuffled events. Only SS DVs are used in this test. In order to have a sufficient number of unshuffled events, the requirements on \(m_{\text{HNL}} \), \(m(\ell_+^2\ell_0^-) \), and \(m_{\text{DV}+\ell} \) are removed, and that on \(m_{\text{DV}} \) is loosened to \(m_{\text{DV}} > 2 \text{ GeV} \). The unshuffled-event samples have between 36 and 187 events in each channel, and the shuffled-event samples are more than 50 times larger. The comparison based on a Kolmogorov-Smirnov test yields probabilities ranging from 20% to 99% for the different channels, indicating the validity of the no-correlation assumption.

Systematic uncertainties in the background model, taken to be 100% correlated between the CR and the SR, are evaluated for two sources. The first estimates the uncertainty from the assumption that nonrandom backgrounds are negligible and is estimated from differences between the \(m_{\text{HNL}} \) distributions of shuffled events created from SS and OS DVs. This uncertainty varies between 5% for the \(e-\mu\mu \) channel and 79% for the \(\mu-\mu \) channel, reaching 5%. The second uncertainty accounts for statistical fluctuations in the \(m_{\text{HNL}} \) distribution of the shuffled sample due to the finite number of prompt leptons used therein. It is estimated from the differences between the \(m_{\text{HNL}} \) distributions for shuffled events of two types: in type 1 (2), the combined DV and prompt lepton originate from events in identical (different) DV channels. As in Ref. [68], an uncertainty in lepton-identification is estimated as the difference in selection efficiency between large and small \(|d_0| \) tracks. Its maximal

TABLE I. Numbers (yields) of estimated postfit background events and of observed events in the signal and control regions.

Channel	Signal region	Control region		
	Background	Observed	Background	Observed
\(e-\mu \)	0.4 ± 0.3	2	3.6 ± 1.8	2
\(\mu-\mu \)	0.2 ± 0.1	1	1.8 ± 1.3	1
\(e-\mu \)	0.9 ± 0.4	0	4.1 ± 1.9	5
\(\mu-\mu \)	2.8 ± 0.8	2	12.2 ± 3.2	13
\(e-\mu \)	1.2 ± 0.9	1	2.8 ± 1.6	3
\(\mu-\mu \)	2.2 ± 1.4	2	8.7 ± 2.9	9
\(e^-\mu, \mu^-\mu \)	0.6 ± 0.3	0	2.4 ± 1.4	3
\(\mu^-\mu, e^-e^+ \)	1.9 ± 0.6	0	8.1 ± 2.6	10

FIG. 2. (a) The \(m_{\text{HNL}} \) distribution in the signal (SR) and control (CR) regions for the observed data, the shuffled-event-model background normalized by the fit described in the text with its uncertainty, and simulated signal for three different mass hypotheses.

(b) The \(m_{\text{DV}} \) distributions for the OS and SS \(e\mu \) DVs in the validation region. The marker is offset from the central position for visualization purposes.
in each of the $e-e\nu$, $\mu-\mu\nu$, and $\mu-\mu\nu$ channels and one OS event in each of the $\nu-\nu\nu$ and $e-e\nu$ channels. No OS $e-e\nu$ events are observed. These yields are consistent with the estimated backgrounds shown. The observed yields in the CR are consistent with the CR background estimates.

Limits are set at 95% confidence level (CL) on $|U_{\alpha}|^2$ vs. m_N for each HNL scenario, using the CL$_s$ prescription [73] implemented in TRExFitter [74–76]. All systematic uncertainties are included in the fit by using nuisance parameters, whose postfit values do not show any significant pull or constraint. Each MC signal sample corresponds to specific values of $|U_{\alpha}|^2$ vs m_N, for which the efficiency is evaluated and a hypothesis test is performed with 10^4 pseudoexperiments.

Figure 3 shows the excluded parameter space in the 1SFH and 2QDH scenarios for both the Dirac limit and the Majorana limit. In the 2QDH scenarios, exclusion limits are shown for the two neutrino-mass hierarchy scenarios. In the inverted-hierarchy case, the relative mixing coefficients are taken to be $x_\alpha = |U_{\alpha}|^2/|U|^2 = 1/3$ ($\alpha = e, \mu, \tau$); for the normal-hierarchy case, the values $x_e = 0.06$, $x_\mu = 0.48$, and $x_\tau = 0.46$ are used [35,77]. These values are at the centers of the regions consistent with the neutrino flavor oscillation data. The observed limits are consistent with the expected limits. The feature visible near $m_N = 5$ GeV is due to the r_{DY}-dependent m_{DY} selection, which limits the sensitivity at low mass.

In conclusion, a search for long-lived heavy neutral leptons is conducted in a 139 fb$^{-1}$ data sample of $\sqrt{s} = 13$ TeV pp collisions collected with the ATLAS detector at the LHC. No excess is observed, and limits are set at 95% CL on the squared mixing coefficient $|U_{\alpha}|^2$ in different HNL masses in the approximate range $3 \text{ GeV} < m_N < 15 \text{ GeV}$. The observed limits exclude a region with wider ranges of $|U_{\alpha}|^2$ and m_N than previously excluded by ATLAS, and the limits on $|U_{\alpha}|^2$ are novel in ATLAS. For the first time, limits are evaluated for the case of multiflavor mixing scenarios that agree with the neutrino flavor oscillation data, for both the normal and inverted neutrino-mass hierarchies. The strongest limits are observed for multiflavor mixing with the inverted hierarchy.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; CNPq and FAPESP, Brazil; NSERC, NRC, and CFI, Canada; CERN; ANID, Chile; CAS, MOST, and NSFC, China; Minciencias, Colombia; MEYS CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS and CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF, and MPG, Germany; GSRI, Greece; RGC and Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS,
Appendix: A HNL mass.—The HNL mass \(m_{\text{HNL}}\) can be obtained using energy–momentum conservation in the HNL production \((W \rightarrow N \ell_1)\) and decay \((N \rightarrow \ell_2 \ell_3 \nu)\), where \(\ell_1\) is the prompt lepton and \(\ell_2\) and \(\ell_3\) are the charged leptons in the DV. The problem can be summarized with the following equations. Four-momentum conservation in the \(N\) decay gives

\[
p_{\ell_2}^N = p_{\ell_2}^p + p_{\ell_3}^p + p_\nu^p = p_{23}^p + p_{\nu}^p. \tag{A1}
\]

Four-momentum conservation in the \(W\) decay gives

\[
p_{W}^p = p_1^p + p_{23}^p = p_{23}^p + p_{\nu}^p. \tag{A2}
\]

The following are defined:

\[
\begin{align*}
p_{23}^2 &= E_{23}^2 - |\vec{p}_{23}|^2 = m_{23}^2, \\
p_\parallel &= \vec{p}_{23} \cdot \hat{v}, \\
p_{\perp} &= |\vec{p}_{23} - p_\parallel\hat{v}|,
\end{align*}
\]

where \(m, E\), and \(|\vec{p}|\) are the mass, energy, and momentum-vector magnitude of the particles indicated by their subscript and \(\hat{v}\) is the flight direction of the HNL given by the vector connecting the PV and DV.

The solution to the HNL mass is presented in the coordinate system \(k = (\hat{x}', \hat{y}', \hat{z}')\), which is rotated relative to the ATLAS coordinate system, such that the origin of the \(k\) frame is at the PV and the \(\hat{z}'\) axis points along the flight direction of the HNL. The definition of this coordinate system is

\[
\hat{z}' = \hat{v}, \quad \hat{x}' = \frac{\vec{p}_{23} \times \hat{z}'}{|\vec{p}_{23} \times \hat{z}'|}, \quad \hat{y}' = \hat{z}' \times \hat{x}'.
\]

The momenta of \(\ell_2'\) and \(\ell_3'\) constrain the components of the neutrino momentum orthogonal to \(\vec{p}_N\). This means that energy-momentum conservation in the \(W\) and \(N\) decays can be expressed in terms of one unknown variable \(\alpha\), which is the component of neutrino momentum in the \(z\) direction. To express Eqs. (A1) and (A2) in terms of \(\alpha\), the following quantities are defined:

\[
\begin{align*}
p_{23}' &= \vec{q}, \\
\vec{q} &= (0, |\vec{p}_{23} \times \hat{z}'| = q_\perp, \vec{p}_{23} \cdot \hat{z}' = q_z), \tag{A4} \\
p_{\nu} &= (0, -q_\perp, \alpha), \tag{A5} \\
E'_{\nu} &= \sqrt{q_\perp^2 + \alpha^2}. \tag{A6}
\end{align*}
\]

Squaring Eq. (A2) gives

\[
p_{W}^2 = m_{W}^2 = m_{1}^2 + m_{2}^2 + m_{23}^2 + 2p_1' \cdot (p_{23}' + p_{\nu}') + 2p_{23}' \cdot p_{\nu}'. \tag{A7}
\]

where

\[
\begin{align*}
p_1' \cdot (p_{23}' + p_{\nu}') &= E_1'(E_{23}' + E_{\nu}') - p_{1,\perp}^z(q_z + \alpha), \\
p_{23}' \cdot p_{\nu}' &= E_{23}'E_{\nu}' - q_\perp^2 - q_z \alpha.
\end{align*}
\]

In the energy regime of interest, the charged leptons and neutrino can be treated as massless particles, such that \(m_1 = m_\nu = 0\). Rearranging Eq. (A7) to solve for \(E_{\nu}'\) gives

\[
E_{\nu}' = A + B\alpha, \tag{A8}
\]

where

\[
A = (m_{W}^2 - m_{23}^2)/2 - E_{1}'E_{23}' + p_{1,\perp}^zq_z - q_z^2, \quad B = \frac{p_{1,\perp}^z + q_z}{E_{1}'+E_{23}'}.
\]

Subtracting Eq. (A8) from Eq. (A6) gives the following quadratic expression in \(\alpha\)
\[(B^2 - 1)\alpha^2 + 2AB\alpha + A^2 - q_\perp^2 = 0.\]

The solution for \(\alpha\) is therefore
\[
\alpha = -\frac{AB \pm \sqrt{(B^2 - 1)q_\perp^2 + A^2}}{(B^2 - 1)}. \tag{A9}
\]

Both solutions for \(\alpha\) were studied using simulated HNL events and it was noted that the solution that led to a smaller \(|\vec{p}_\nu|\) typically led to a value for \(m_{HNL}\) that was closer to the simulated \(m_X\). This solution often corresponded to forward emission of the neutrino with respect to the HNL decay. Therefore, the definition of \(m_{HNL}\) in the analysis uses the solution with the positive radical.

The expression for \(\alpha\) in Eq. (A9) depends on \(m_W\). ATLAS has measured the W-boson pole mass to be \(m_W = 80.370 \pm 0.019\) GeV [79]. This measurement is combined in Ref. [2] with results from other collider experiments to provide a measurement of the W-boson width, \(\Gamma_W = 2.195 \pm 0.083\) GeV. Since the W mass has a width, then if \(m_W = M_W\) in Eq. (A9) it is possible that there is no real solution for \(\alpha\). Instead of rejecting these events, \(m_W\) is set equal to the median W mass in the kinematically allowed region \((m_{W,med})\). This ensures that \(\alpha\) (and correspondingly \(m_{HNL}\)) always has a real solution.

To define the kinematically allowed region, the minimum W mass that is consistent with the charged-lepton decay products \((m_{W,\text{min}})\) is computed. From Eq. (A7), the mass of the W boson is given by
\[
m_W^2 = m_{23}^2 + 2(E'_1 E'_{23} + E'_\nu (E'_1 + E'_{23}) - p'_{1,z}q_z + q_\perp^2 - \alpha(p'_{1,z} + q_z)) \tag{A10}
\]
and \(m_{W,\text{min}}\) occurs where
\[
\frac{d(m_W^2/2)}{d\alpha} = (E'_1 + E'_{23}) \frac{dE'_\nu}{d\alpha} - (p'_{1,z} + q_z) = 0. \tag{A11}
\]

Using
\[
\frac{dE'_\nu}{d\alpha} = \frac{d\sqrt{q_\perp^2 + \alpha^2}}{d\alpha} = \frac{\alpha}{E'_\nu},
\]
in Eq. (A11), the chosen value of \(\alpha\) that gives the minimum \(m_W\) is
\[
\alpha = \frac{q_\perp B}{\sqrt{1 - B^2}}. \tag{A12}
\]

Substituting Eq. (A12) into Eq. (A10), the minimum W boson mass is
\[
m_{W,\text{min}}^2 = m_{23}^2 + 2(E'_1 E'_{23} + (E'_1 + E'_{23}) \sqrt{q_\perp^2 + \frac{q_\perp^2 B^2}{1 - B^2}}
- p'_{1,z}q_z + q_\perp^2 - (p'_{1,z} + q_z) \frac{q_\perp B}{\sqrt{1 - B^2}}).
\]

The cumulative probability for the W boson to have a mass greater than \(m_{W,\text{min}}\) is used to find the median of the remaining distribution. The probability density function \((f)\) for \(m_W^2\) satisfies
\[
f(m_W^2) \propto \frac{1}{(m_W^2 - M_W^2)^2 + m_W^2 \Gamma_W^2}.
\]

Therefore, the cumulative distribution function \((F)\) is
\[
F(m_W^2) = \frac{1}{\pi} \arctan \left(\frac{m_W^2 - M_W^2}{M_W \Gamma_W}\right) + \frac{1}{2}. \tag{A13}
\]

The midpoint of the allowed kinematic region has a value of
\[
F_{\text{med}} = \frac{1 + F(m_{W,\text{min}}^2)}{2}.
\]

Rearranging Eq. (A13) for \(m_W^2\) gives
\[
m_W^2 = M_W^2 + \Gamma_W M_W \tan \left(\pi \left[F - \frac{1}{2}\right]\right). \tag{A14}
\]

Substituting \(F = F_{\text{med}}\) in Eq. (A14) gives an expression for the median W mass in the kinematically allowed region
\[
m_{W,\text{med}}^2 = M_W^2 + \Gamma_W M_W \tan \left(\pi \left[\frac{1 + F(m_{W,\text{min}}^2)}{2} - \frac{1}{2}\right]\right).
\]

This value of \(m_{W,\text{med}}\) is used in Eq. (A9) to solve for \(\alpha\). From Eq. (A1) and the definitions in Eq. (A3) to (A6), the expression for the HNL mass in terms of \(\alpha\) is
\[
m_{HNL}^2 = m_{23}^2 + 2p'_{\nu}p'_{23}
= m_{23}^2 + 2E'_{23} \sqrt{q_\perp^2 + \alpha^2} + 2q_\perp^2 - 2q_z \alpha. \tag{A15}
\]

Substituting the expression for \(\alpha\) in Eq. (A9) into Eq. (A15) gives the solution for the HNL mass.

[1] P. F. de Salas, D. V. Forero, C. A. Ternes, M. Tortola, and J. W. F. Valle, Status of neutrino oscillations 2018: 3σ hint for normal mass ordering and improved CP sensitivity, Phys. Lett. B 782, 633 (2018).
[2] Particle Data Group, Review of particle physics, Prog. Theor. Exp. Phys. 2020, 083C01 (2020).
[3] P. Minkowski, \(\mu \to e\gamma\) at a rate of one out of \(10^9\) muon decays, Phys. Lett. 67B, 421 (1977).
A. Boyarsky, M. Drewes, T. Lasserre, S. Mertens, and O. A. Boyarsky, O. Ruchayskiy, and M. Shaposhnikov, The J. Ghiglieri and M. Laine, Sterile neutrino dark matter via A. Pilaftsis, The little review on leptogenesis, J. Phys. Conf. Ser. 171, 012017 (2009). M. Shaposhnikov, Baryogenesis, J. Phys. Conf. Ser. 171, 012005 (2009). E. K. Akhmedov, V. A. Rubakov, and A. Y. Smirnov, Baryogenesis via Neutrino Oscillations, Phys. Rev. Lett. 81, 1359 (1998). T. Asaka, S. Blanchet, and M. Shaposhnikov, The νMSM, dark matter and neutrino masses, Phys. Lett. B 631, 151 (2005). M. Drewes, B. Garbrecht, P. Hernández, M. Kekic, J. Lopez-Pavon, J. Racker, N. Rius, J. Salvador, and D. Teresi, ARS Leptogenesis, Int. J. Mod. Phys. A 33, 1842002 (2018). T. Klaric, M. Shaposhnikov, and I. Timiryasov, Uniting Low-Scale Leptogenesis Mechanisms, Phys. Rev. Lett. 127, 111802 (2021). T. Klaric, M. Shaposhnikov, and I. Timiryasov, Reconciling resonant leptogenesis and baryogenesis via neutrino oscillations, Phys. Rev. D 104, 055010 (2021). T. Asaka and M. Shaposhnikov, The νMSM, dark matter and baryon asymmetry of the universe, Phys. Lett. B 620, 17 (2005). A. Boyarsky, O. Ruchayskiy, and M. Shaposhnikov, The role of sterile neutrinos in cosmology and astrophysics, Annu. Rev. Nucl. Part. Sci. 59, 191 (2009). A. Boyarsky, M. Drewes, T. Lasserre, S. Mertens, and O. Ruchayskiy, Sterile neutrino Dark Matter, Prog. Part. Nucl. Phys. 104, 1 (2019). J. Ghiglieri and M. Laine, Sterile neutrino dark matter via coinciding resonances, J. Cosmol. Astropart. Phys. 07 (2020) 012. ATLAS Collaboration, Search for heavy neutral leptons in decays of W bosons produced in 13 TeV pp collisions using prompt and displaced signatures with the ATLAS detector, J. High Energy Phys. 10 (2019) 265. Belle Collaboration, Search for heavy neutrinos at Belle, Phys. Rev. D 87, 071102 (2013); 95, 099903(E) (2017). NuTeV Collaboration, Search for Neutral Heavy Leptons in a High-Energy Neutrino Beam, Phys. Rev. Lett. 83, 4943 (1999). DELPHI Collaboration, Search for neutral heavy leptons produced in Z decays, Z. Phys. C 74, 57 (1997); 75, 580(E) (1997). CHARM II Collaboration, Search for heavy isosinglet neutrinos, Phys. Lett. B 343, 453 (1995).
The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, J. High Energy Phys. 07 (2014) 079.

[48] C. Degrande, O. Mattelaer, R. Ruiz, and J. Turner, Fully automated precision predictions for heavy neutrino production mechanisms at hadron colliders, Phys. Rev. D 94, 053002 (2016).

[49] S. Pascoli, R. Ruiz, and C. Weiland, Heavy neutrinos with dynamic jet vetoes: Multilepton searches at $\sqrt{s} = 14$, 27, and 100 TeV, J. High Energy Phys. 06 (2019) 049.

[50] ATLAS Collaboration, The ATLAS experiment at the CERN large hadron collider, J. Instrum. 3, S08003 (2008).

[51] ATLAS Collaboration, ATLAS insertable B-Layer: Technical design report, Reports No. ATLAS-TDR-19, No. CERN-LHCC-2010-013, 2010, https://cds.cern.ch/record/1291633; Addendum: Reports No. ATLAS-TDR-19-ADD-1, No. CERN-LHCC-2012-009, 2012, https://cds.cern.ch/record/1451888.

[52] B. Abbott et al., Production and integration of the ATLAS Insertable B-Layer, J. Instrum. 13, T05008 (2018).

[53] ATLAS uses a right-handed coordinate system with its origin at the nominal IP in the center of the detector and the z axis along the beam pipe. The x axis points from the IP to the center of the LHC ring, and the y axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the z axis. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln \tan \theta/2$. Angular distance is measured in units of $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$.

[54] ATLAS Collaboration, The ATLAS Collaboration software and firmware, Report No. ATL-SOFT-PUB-2021-001, 2021, https://cds.cern.ch/record/2767187.

[55] ATLAS Collaboration, Performance of the ATLAS trigger system in 2015, Eur. Phys. J. C 77, 317 (2017).

[56] ATLAS Collaboration, Performance of electron and photon triggers in ATLAS during LHC Run 2, Eur. Phys. J. C 80, 47 (2020).

[57] ATLAS Collaboration, Performance of the ATLAS muon triggers in Run 2, J. Instrum. 15, P09015 (2020).

[58] ATLAS Collaboration, Muon reconstruction and identification efficiency in ATLAS using the full Run 2 pp collision data set at $\sqrt{s} = 13$ TeV, Eur. Phys. J. C 81, 578 (2021).

[59] ATLAS Collaboration, Electron and photon performance measurements with the ATLAS detector using the 2015–2017 LHC proton–proton collision data, J. Instrum. 14, P12006 (2019).

[60] ATLAS Collaboration, Performance of the reconstruction of large impact parameter tracks in the inner detector of ATLAS, Report No. ATL-PHYS-PUB-2017-014, 2017, https://cds.cern.ch/record/2275635.

[61] ATLAS Collaboration, Performance of the ATLAS track reconstruction algorithms in dense environments in LHC Run 2, Eur. Phys. J. C 77, 673 (2017).

[62] ATLAS Collaboration, Performance of vertex reconstruction algorithms for detection of new long-lived particle decays within the ATLAS inner detector, Report No. ATL-PHYS-PUB-2019-013, 2019, https://cds.cern.ch/record/2669425.

[63] ATLAS Collaboration, Search for displaced vertices of oppositely charged leptons from decays of long-lived particles in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, Phys. Lett. B 801, 135114 (2020).

[64] ATLAS Collaboration, Search for long-lived, massive particles in events with displaced vertices and missing transverse momentum in $\sqrt{s} = 13$ TeV pp collisions with the ATLAS detector, Phys. Rev. D 97, 052012 (2018).

[65] ATLAS Collaboration, Search for exotic decays of the Higgs boson into long-lived particles in pp collisions at $\sqrt{s} = 13$ TeV using displaced vertices in the ATLAS inner detector, J. High Energy Phys. 11 (2021) 229.

[66] ATLAS Collaboration, Early inner detector tracking performance in the 2015 data at $\sqrt{s} = 13$ TeV, Report No. ATL-PHYS-PUB-2015-051, 2015, https://cds.cern.ch/record/2110140.

[67] ATLAS Collaboration, Muon reconstruction performance of the ATLAS detector in proton–proton collision data at $\sqrt{s} = 13$ TeV, Eur. Phys. J. C 76, 292 (2016).

[68] ATLAS Collaboration, Search for Displaced Leptons in $\sqrt{s} = 13$ TeV pp Collisions with the ATLAS Detector, Phys. Rev. Lett. 127, 051802 (2020).

[69] ATLAS Collaboration, Measurement of W^\pm and Z-boson production cross sections in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, Phys. Lett. B 759, 601 (2016).

[70] M. Davier, A. Hocker, and Z. Zhang, The physics of hadronic tau decays, Rev. Mod. Phys. 78, 1043 (2006).

[71] ATLAS Collaboration, Luminosity determination in pp collisions at $\sqrt{s} = 13$ TeV using the ATLAS detector at the LHC, Report No. ATLAS-CONF-2019-021, 2019, https://cds.cern.ch/record/2677054.

[72] G. Avoni et al., The new LUCID-2 detector for luminosity measurement and monitoring in ATLAS, J. Instrum. 13, P07017 (2018).

[73] A. L. Read, Presentation of search results: The CL_s technique, J. Phys. G 28, 2693 (2002).

[74] L. Moneta et al., The RooStats project, Proc. Sci., ACAT2010 (2010) 057 [arXiv:1009.1003].

[75] W. Verkerke and D. P. Kirkby, The RooFit toolkit for data modeling, eConf C0303241, MOLT007 (2003).

[76] K. Cranmer, G. Lewis, L. Moneta, A. Shibata, and W. Verkerke, HistFactory: A tool for creating statistical models for use with RooFit and RooStats, Technical Report No. CERN-OPEN-2012-016, New York University, 2012, https://cds.cern.ch/record/1456844.

[77] P. Agrawal et al., Feebly-interacting particles: FIPs 2020 workshop report, Eur. Phys. J. C 81, 1015 (2021).

[78] ATLAS Collaboration, ATLAS computing acknowledges, Report No. ATL-SOFT-PUB-2021-003, 2021, https://cds.cern.ch/record/2776662.

[79] ATLAS Collaboration, Measurement of the W-boson mass in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector, Eur. Phys. J. C 78, 110 (2018); 78, 898(E) (2018).
Name	Institution/Location	Notes
M. J. Veen	Department of Physics, University of Adelaide, Australia	
I. Veliscek	Department of Physics, University of Alberta, Edmonton	
L. M. Veloce	Department of Physics, Ankara University, Ankara, Türkiye	
F. Veloso	High Energy Physics Division, Argonne National Laboratory,	
S. Veneziano	Department of Physics, University of Arizona, Tucson, Arizona	
A. Ventura	Department of Physics, University of Texas at Arlington,	
A. Verbytskyi	Department of Physics, National and Kapodistrian University of Athens, Athens, Greece	
M. Verducci	Department of Physics, University of Texas, USA	
C. Vergis	Physics Department, University of Arizona, Tucson, Arizona	
M. Villaplana Perez	LAPP, Univ. Savoie Mont Blanc, CNRS-IN2P3, Annecy, France	
M. Villla	APC, Université Paris Cité, CNRS/IN2P3, Paris, France	
M. Villaluna	LAPP, Univ. Savoie Mont Blanc, CNRS-IN2P3, Annecy, France	
M. Villalun	APC, Université Paris Cité, CNRS/IN2P3, Paris, France	
M. Vil学生的	LAPP, Univ. Savoie Mont Blanc, CNRS-IN2P3, Annecy, France	
M. Vil学生的	APC, Université Paris Cité, CNRS/IN2P3, Paris, France	
M. Vil学生的	LAPP, Univ. Savoie Mont Blanc, CNRS-IN2P3, Annecy, France	
M. Vil学生的	APC, Université Paris Cité, CNRS/IN2P3, Paris, France	
M. Vil学生的	LAPP, Univ. Savoie Mont Blanc, CNRS-IN2P3, Annecy, France	
M. Vil学生的	APC, Université Paris Cité, CNRS/IN2P3, Paris, France	
M. Vil学生的	LAPP, Univ. Savoie Mont Blanc, CNRS-IN2P3, Annecy, France	
M. Vil学生的	APC, Université Paris Cité, CNRS/IN2P3, Paris, France	
M. Vil学生的	LAPP, Univ. Savoie Mont Blanc, CNRS-IN2P3, Annecy, France	
M. Vil学生的	APC, Université Paris Cité, CNRS/IN2P3, Paris, France	
M. Vil学生的	LAPP, Univ. Savoie Mont Blanc, CNRS-IN2P3, Annecy, France	
M. Vil学生的	APC, Université Paris Cité, CNRS/IN2P3, Paris, France	
M. Vil学生的	LAPP, Univ. Savoie Mont Blanc, CNRS-IN2P3, Annecy, France	
M. Vil学生的	APC, Université Paris Cité, CNRS/IN2P3, Paris, France	
M. Vil студентов	LAPP, Univ. Savoie Mont Blanc, CNRS-IN2P3, Annecy, France	
M. Vil студентов	APC, Université Paris Cité, CNRS/IN2P3, Paris, France	
M. Vil студентов	LAPP, Univ. Savoie Mont Blanc, CNRS-IN2P3, Annecy, France	
M. Vil студентов	APC, Université Paris Cité, CNRS/IN2P3, Paris, France	
M. Vil студентов	LAPP, Univ. Savoie Mont Blanc, CNRS-IN2P3, Annecy, France	
M. Vil студентов	APC, Université Paris Cité, CNRS/IN2P3, Paris, France	
M. Vil студентов	LAPP, Univ. Savoie Mont Blanc, CNRS-IN2P3, Annecy, France	
M. Vil студентов	APC, Université Paris Cité, CNRS/IN2P3, Paris, France	
M. Vil студентов	LAPP, Univ. Savoie Mont Blanc, CNRS-IN2P3, Annecy, France	
M. Vil студентов	APC, Université Paris Cité, CNRS/IN2P3, Paris, France	
M. Vil студентов	LAPP, Univ. Savoie Mont Blanc, CNRS-IN2P3, Annecy, France	
M. Vil студентов	APC, Université Paris Cité, CNRS/IN2P3, Paris, France	
M. Vil студентов	LAPP, Univ. Savoie Mont Blanc, CNRS-IN2P3, Annecy, France	
M. Vil студентов	APC, Université Paris Cité, CNRS/IN2P3, Paris, France	
M. Vil студентов	LAPP, Univ. Savoie Mont Blanc, CNRS-IN2P3, Annecy, France	
M. Vil студентов	APC, Université Paris Cité, CNRS/IN2P3, Paris, France	
M. Vil студентов	LAPP, Univ. Savoie Mont Blanc, CNRS-IN2P3, Annecy, France	
M. Vil студентов	APC, Université Paris Cité, CNRS/IN2P3, Paris, France	
M. Vil студентов	LAPP, Univ. Savoie Mont Blanc, CNRS-IN2P3, Annecy, France	
M. Vil студентов	APC, Université Paris Cité, CNRS/IN2P3, Paris, France	
M. Vil студентов	LAPP, Univ. Savoie Mont Blanc, CNRS-IN2P3, Annecy, France	
M. Vil студентов	APC, Université Paris Cité, CNRS/IN2P3, Paris, France	
M. Vil студентов	LAPP, Univ. Savoie Mont Blanc, CNRS-IN2P3, Annecy, France	
M. Vil студентов	APC, Université Paris Cité, CNRS/IN2P3, Paris, France	
M. Vil студентов	LAPP, Univ. Savoie Mont Blanc, CNRS-IN2P3, Annecy, France	
M. Vil студентов	APC, Université Paris Cité, CNRS/IN2P3, Paris, France	
M. Vil студентов	LAPP, Univ. Savoie Mont Blanc, CNRS-IN2P3, Annecy, France	
M. Vil студентов	APC, Université Paris Cité, CNRS/IN2P3, Paris, France	
M. Vil студентов	LAPP, Univ. Savoie Mont Blanc, CNRS-IN2P3, Annecy, France	
M. Vil студентов	APC, Université Paris Cité, CNRS/IN2P3, Paris, France	
Deceased.

Also at Department of Physics, King’s College London, London, United Kingdom.

Also at Instituto de Física Teórica, IFT-UAM/CSIC, Madrid, Spain.

Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.

Also at TRIUMF, Vancouver BC, Canada.

Also at Physics Department, An-Najah National University, Nablus, Palestine.

Also at Department of Physics, University of Fribourg, Fribourg, Switzerland.

Also at Department of Physics and Astronomy, University of Louisville, Louisville, Kentucky, USA.

Also at Departamento de Física de la Universitat Autonoma de Barcelona, Barcelona, Spain.

Also at Affiliated with an institute covered by a cooperation agreement with CERN.

Also at The Collaborative Innovation Center of Quantum Matter (CICQM), Beijing, China.

Also at Department of Physics, Ben Gurion University of the Negev, Beer Sheva, Israel.

Also at Università di Napoli Parthenope, Napoli, Italy.

Also at Institute of Particle Physics (IPP), Canada.

Also at Bruno Kessler Foundation, Trento, Italy.

Also at Borough of Manhattan Community College, City University of New York, New York, New York, USA.

Also at Department of Financial and Management Engineering, University of the Aegean, Chios, Greece.

Also at Centro Studi e Ricerche Enrico Fermi, Italy.

Also at Department of Physics, California State University, East Bay, USA.

Also at Instituto Catalá de Recerca i Estudis Avançats, ICREA, Barcelona, Spain.

Also at Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.

Also at University of Chinese Academy of Sciences (UCAS), Beijing, China.

Also at Yeditepe University, Physics Department, Istanbul, Türkiye.

Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia.

Also at CERN, Geneva, Switzerland.

Also at Hellenic Open University, Patras, Greece.

Also at Center for High Energy Physics, Peking University, China.

Also at The City College of New York, New York, New York, USA.

Also at Department of Physics, California State University, Sacramento, USA.

Also at Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève, Switzerland.

Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.

Also at Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, USA.

Associated with Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.

Also at Department of Physics, Stanford University, Stanford, California, USA.

Also at L2IT, Université de Toulouse, CNRS/IN2P3, UPS, Toulouse, France.

Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia, Bulgaria.

Also at National Institute of Physics, University of the Philippines Diliman (Philippines); Philippines.