Conserved quantities and generalized solutions of the ultradiscrete KdV equation

Masataka Kanki1, Jun Mada2 and Tetsuji Tokihiro1

1 Graduate school of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Tokyo 153-8914, Japan
2 College of Industrial Technology, Nihon University, 2-11-1 Shin-ei, Narashino, Chiba 275-8576, Japan

E-mail: kanki@ms.u-tokyo.ac.jp

Received 16 December 2010, in final form 11 February 2011
Published 8 March 2011
Online at stacks.iop.org/JPhysA/44/145202

Abstract

We construct generalized solutions to the ultradiscrete KdV equation, including the so-called negative solition solutions. The method is based on the ultradiscretization of soliton solutions to the discrete KdV equation with gauge transformation. The conserved quantities of the ultradiscrete KdV equation are shown to be constructed in a similar way to those for the box–ball system.

PACS numbers: 02.30.Ik, 05.45.Yv, 05.65.+b

1. Introduction

The ultradiscrete KdV equation

\[U_{n,t}^{(t+1)} = \min\left[1 - U_{n,t}^{(t)}, \sum_{k=-\infty}^{n-1} (U_{k,t}^{(t)} - U_{k+1,t}^{(t+1)}) \right] \] \hspace{1cm} (1)

was first introduced as a dynamical equation for the so-called box–ball system (BBS) [1, 2]. Since (1) is closed on the binary values 0 or 1, if we regard $U_{n,t}^{(t)}$ as the number of balls in the nth box at time step t, and assume the boundary condition $\lim_{|n|\to\infty} U_{n,t}^{(t)} = 0$, it describes the time evolution of balls in a one-dimensional array of boxes. The updating rule of the BBS according to (1) can be expressed as follows.

- Find all the pairs of a ball and an adjacent vacant box to the right of it, and draw arclines from the ball to the vacant box for each of these pairs.
- Neglecting the pairs connected by arclines, find all the pairs of a ball and an adjacent vacant box to the right of it and draw arclines in a similar way.
- Repeat the above procedure until all the balls are connected to vacant boxes, and then move all the balls into the vacant boxes connected by arclines.
Figure 1. A solitonic time evolution pattern of the BBS. The symbol ‘.’ denotes ‘0’.

![Figure 1](image1.jpg)

Figure 2. The update rules of the BBS.

![Figure 2](image2.jpg)

An example of the time evolution pattern is shown in figure 1. The consecutive balls behave like solitons in the KdV equation. Furthermore, when we denote by \(q_1 \) the number of archines drawn in the first step of the updating rule, by \(q_2 \) one in the second step and so on, we obtain a nonincreasing integer sequence \((q_1, q_2, q_3, \ldots) \), which is a conserved quantity of the BBS in time [3]. (See figure 2. A vacant box and a box with a ball are represented by ‘0’ and ‘1’, respectively. The conserved quantities are simultaneously determined \((q_1 = 3, q_2 = q_3 = 2) \).)

The reason why the BBS has these solitonic properties is understood by the fact that (1) is obtained from the KdV equation through a limiting procedure, ultradiscretization [4]. The process involved in obtaining (1) from the KdV equation can be explained as follows. The integrable discrete KdV equation is given in the bilinear form as

\[
(1+\delta)\sigma_{n+1}^r\sigma_n^l = \delta\sigma_{n+1}^{r-1}\sigma_n^{l+1} + \sigma_n^r\sigma_{n+1}^l,
\]

where \((n, t) \in \mathbb{Z}^2\) and \(\delta\) is a discretization parameter [5]. By putting

\[
u^l_n := \frac{\sigma_n^l\sigma_{n+1}^{r-1}}{\sigma_{n+1}^r\sigma_n^{l+1}}, \quad \nu^r_n := \frac{\sigma_{n+1}^{r+1}\sigma_n^{l-1}}{(\sigma_n^r)^2},
\]

(2) gives the simultaneous equations

\[
(1+\delta) \frac{1}{u_n^{l+1}} = \delta u_n^l + \frac{1}{\nu_n^l},
\]

(4)

\[
u_{n+1}^{l+1} = u_n^l \nu_n^r.
\]

(5)

When we impose the boundary condition \(\lim_{|n| \to \infty} \sigma_n^r = \text{const.}\), and then \(\lim_{|n| \to \infty} \nu_n^r = \lim_{|n| \to \infty} u_n^l = 1\) from (4) and (5) we have

\[
(1+\delta) \frac{1}{u_n^{l+1}} = \delta u_n^l + \prod_{k=-\infty}^{n-1} \frac{u_k^{l+1}}{u_k^l},
\]

(6)
We introduce a parameter ϵ and put $\delta := e^{-1/\epsilon}$. If there exists a one-parameter family of solutions to (6) $u_n^\epsilon(\epsilon)$, and if the limit $\lim_{\epsilon \to +0} \epsilon \log u_n^\epsilon(\epsilon) =: U_n^\epsilon$ exists, then, using the identities for arbitrary real numbers a and b

$$\lim_{\epsilon \to +0} \epsilon \log (e^{a/\epsilon} + e^{b/\epsilon}) = \max[a, b],$$
$$\lim_{\epsilon \to +0} \epsilon \log (e^{a/\epsilon} \cdot e^{b/\epsilon}) = a + b,$$
$$- \max[-a, -b] = \min[a, b],$$

we find that U_n^ϵ satisfies (1).

Recently, (1) has been studied without the constraint of binary values [6, 7]. One interesting feature in this extension is that there exist background solutions composed of so-called negative solitons traveling at speed one [6]. A typical example of the background solutions is shown in figure 3. Furthermore, such negative solitons interact nontrivially with ordinary solitons as shown in figure 4. A method to solve the initial value problem for this generalized situation is given in [7]. From these properties, the dynamical systems described by (1) in the general setting are also regarded as integrable cellular automata, just as the BBS. However, several important features of integrable cellular automata have not been clarified yet, such as the conserved quantities, the relation to integrable lattice models, extension to the case of a cyclic boundary condition and so on, all of which are well understood in the case of BBS. In this paper, we report that a simple transformation reveals the underlying integrable structure of (1) for the generalized states. By this transformation, the relation to the BBS and hence to the integrable lattice models, and generalization to a different boundary condition become apparent. We explicitly show how to obtain the conserved quantities and give the expression of general solutions to (1) where negative solitons and ordinary solitons coexist.

2. Conserved quantities for states with negative solitons

We start from the ultradiscretization of the coupled equations (4) and (5). By putting $\delta = e^{-1/\epsilon}$ and assuming that the limit

$$\lim_{\epsilon \to +0} \epsilon \log u_n^\epsilon(\epsilon) =: U_n^\epsilon, \quad \lim_{\epsilon \to +0} \epsilon \log v_n^\epsilon(\epsilon) =: V_n^\epsilon$$

...
exist, we obtain the equations
\[\begin{align*}
U_{n+1}^t &= \min \left[1 - U_n^t, V_n^t \right], \\
V_{n+1}^t &= U_n^t + V_n^t - U_n^{t+1}.
\end{align*}\]
(7)

If we impose the boundary condition \(\lim_{|n| \to \infty} U_n^t = \lim_{|n| \to \infty} V_n^t = 0\), equations (7) and (8) are equivalent to (1). It is easily seen that (7) and (8) are generalized by introducing a positive integer constants \(L\) and \(C\) as
\[\begin{align*}
U_n^t &= U_n^t + \min \left[L - U_n^t, V_n^t \right] - \min \left[U_n^t, C - V_n^t \right], \\
V_n^{t+1} &= U_n^t + V_n^t - U_n^{t+1}.
\end{align*}\]
(9)

Equations (9) and (10) are known as the ultradiscrete limit of the modified KdV equation and are interpreted as a BBS of the box capacity \(L\) with carrier of capacity \(C\) \([8, 9]\). At the same time, they represent the action of the combinatorial R-matrix of an \(A_1^{(1)}\) crystal on a certain symmetric tensor product representation as long as \(U_n^t \in [0, 1, \ldots, L]\) and \(V_n^t \in [0, 1, 2, \ldots, C]\) \([10]\). Note that equations (9) and (10) are closed under values \(U_n^t \in [0, 1, \ldots, L]\) and \(V_n^t \in [0, 1, 2, \ldots, C]\). Hence, the time evolution patterns of the BBS are regarded as the ground states of a two-dimensional integrable lattice model at temperature 0 and its generalization has been investigated in detail \([11, 12]\).

When we allow \(U_n^t\) or \(V_n^t\) in (7) and (8) to take negative integer values and/or the values greater than \(L\) or \(C\) respectively, they are no longer interpreted as a BBS nor as a realization of the combinatorial R-matrix. For an arbitrary initial state including negative integer values, let \(M := -\min_{n \in \mathbb{Z}} \left[U_n^0, V_n^0, L - U_n^0, C - V_n^0 \right]\). When we change variables \(\tilde{U}_n^t := U_n^t + M, \tilde{V}_n^t := V_n^t + M\), \(\tilde{L} := L + 2M, \tilde{C} := C + 2M\), we find that equations (9) and (10) are unchanged under this gauge transformation \([13]\), that is,
\[\begin{align*}
\tilde{U}_n^{t+1} &= \tilde{U}_n^t + \min \left[\tilde{L} - \tilde{U}_n^t, \tilde{V}_n^t \right] - \min \left[\tilde{U}_n^t, \tilde{C} - \tilde{V}_n^t \right], \\
\tilde{V}_{n+1}^t &= \tilde{U}_n^t + \tilde{V}_n^t - \tilde{U}_{n+1}^t.
\end{align*}\]

Since these equations are closed under the values \(\tilde{U}_n^t \in [0, 1, \ldots, \tilde{L}]\) and \(\tilde{V}_n^t \in [0, 1, 2, \ldots, \tilde{C}]\), and initial values \(\tilde{U}_n^0, \tilde{V}_n^0\) belong to the same sets, we can regard them as equations for a BBS with box capacity \(L + 2M\) and carrier capacity \(C + 2M\), and regard them as a realization of an \(A_1^{(1)}\) crystal lattice composed of a larger tensor product representation. Thus, we can conclude that equations (9) and (10) as well as equations (7) and (8) do not change their mathematical structure even in the case where the dependent variable takes negative integer values.

From the above argument, we find that we can identify the ultradiscrete KdV equation (1) as a BBS with larger box capacity when its dependent variables take negative integer values. The conserved quantities of the BBS have been widely investigated in general cases and we can apply the results to this system \([11, 14]\). In \([11, 15]\), it is shown that the energy functions which are combinatorially determined, are conserved in time, and in \([14]\) the path description for the conserved quantities is given. Here we give another expression of the conserved quantities for (1).

Let \(M := -\min_{n \in \mathbb{Z}} \left[U_n^0, V_n^0, 1 - U_n^0 \right]\). Then equations (7) and (8) are transformed to the BBS with box capacity \(1 + 2M\) (with infinite carrier capacity). Let the number of balls in the \(n\)th box be \(\tilde{U}_n^t\). We consider the time evolution starting from the time step \(t = 0\), and choose the two integers \(M_0\) and \(N_0\) which satisfy the following conditions.

1. \(U_n^0 = U_n^1 = 0\) for \(n \leq M_0 + 1\) and \(N_0 - 1 \leq n\) \((\tilde{U}_n^0 = \tilde{U}_n^1 = M (n \leq M_0 + 1, N_0 - 1 \leq n))\).
(2) $N_0 - M_0 \equiv 0$ (mod 2).

(3) No vacancy in the N_0th box is connected by an arcline in the first step of the construction of the conserved quantities which we explain below.

Conditions (ii) and (iii) are used to avoid the redundancy of the definition of conserved quantities. For the time step t, from the boundary condition, there exists two integers M_t, N_t such that $U^{t}_n = V^{t}_n = U^{t+1}_n = 0$ for $n \leq M_t - 1$ and $N_t + 1 \leq n \ (U^{t}_n = U^{t+1}_n = M (n \leq M_t + 1, \ N_t \leq n)).$ Furthermore we impose the following conditions on them:

\[
N_t - M_t \equiv 0 \pmod{2},
\]

\[
M_t - M_0 \equiv t \pmod{2},
\]

\[
N_t - N_0 \equiv t \pmod{2}.
\]

At each times step t, we consider the boxes with indices from M_t to N_t. In other words, we neglect all the balls in the boxes $n < M_t$ and $n > N_t$. Then, as in the case of the BBS with box capacity one, we draw arclines from balls to vacancies to determine the values of the conserved quantities.

- Draw an arcline from one of the leftmost balls to one of its nearest right vacancies.
- Draw an arcline from one of the leftmost balls which are located on the right of the vacancy we have drawn the arcline to one of its nearest right vacancies.
- Repeat the above procedure until one has drawn arclines between all the pairs of balls and vacancies. Note that if we drew an arcline to a vacancy at nth box, then the ball from which we draw an arcline in the next step is located in the box whose index is greater than n, and that there must be no arcline starting from a ball in the last box due to condition (iii). Let $\tilde{q}_1(t)$ be the number of arclines drawn in this step.
- Then neglecting all the boxes and vacancies which are connected by arclines, repeat the above procedure and let $\tilde{q}_2(t)$ be the number of arclines drawn in the second step.
- Repeat the above procedure until all the balls but those in the Nth box are connected and let $\tilde{q}_t(j) (j = 3, 4, \ldots)$ be the number of arclines drawn in the jth steps.
- Let $q_j := \tilde{q}_j(t) - \frac{1}{2}(N_t - M_t)$ $(j = 1, 2, \ldots, 2M)$ and $q_j := \tilde{q}_j(t)$ $(j = 2M + 1, 2M + 2, \ldots)$.

(See figure 5. We have to choose different sequences of boxes at time step t and $t + 1$. From this figure, we have $\tilde{q}_1(t) = 7, \tilde{q}_2(t) = 5, \tilde{q}_3(t) = 2, \tilde{q}_4(t) = 1, \tilde{q}_5(t) = 1, \tilde{q}_6(t) = 1$ and $\tilde{q}_1(t + 1) = 7, \tilde{q}_2(t + 1) = 5, \tilde{q}_3(t + 1) = 2, \tilde{q}_4(t + 1) = 1, \tilde{q}_5(t + 1) = 1, \tilde{q}_6(t + 1) = 1$. Since $M = 1, N_t - M_t = 14$ and $N_{t+1} - M_{t+1} = 14$, we obtain $q_1 = 7 - \frac{14}{2} = 0, q_2 = 5 - \frac{14}{2} = -2, q_3 = 2, q_4 = q_5 = q_6 = 1$ in both steps.) Note that we obtain the updated state of the BBS with carrier capacity C if we exchange the balls with the vacancies connected to them up to the Cth steps, i.e. if we exchange the first $\sum_{j=1}^{C} \tilde{q}_j$ pairs of balls and vacancies, then we find the following proposition.

Proposition 1. The sequence (q_1, q_2, q_3, \ldots) does not depend on t.

The statement of the proposition is the direct consequence of the fact that $\sum_{i=1}^{k} \tilde{q}_i$ is equal to the number of balls moved by the carrier with capacity k at one time step which is the value of the kth energy function $[11, 12]$. Here we map the system to the BBS with box capacity $2M + 1$ in which the number of balls is finite, that is, the nth box is vacant for $n \leq M_t - 1$ and $N_t \leq n$. Of course we can make another choice. We could impose the condition $N_t - M_t \equiv 1 \pmod{2}$ or the condition that a vacancy in the Nth box is connected by an arcline in the first step. This redundancy is caused by the fact that there are essentially four types of finite systems which are equivalent to this system. Once we determine the type, however, the sequence (q_1, q_2, \ldots)
Figure 5. The scheme to count the conserved quantities of the BBS with larger capacities. The conserved quantities are \(q_1 = 0, \ q_2 = -2, \ q_3 = 2, \ q_4 = q_5 = q_6 = 1 \).

does not depend on \(N_t \) and \(M_t \) as long as they are sufficiently large and, when there is no negative soliton \(q_{2M+1} = \hat{q}_j (j = 1, 2, \ldots) \), where \(\hat{q}_j \) is the \(j \)th conserved quantity defined in the original BBS.

3. Soliton solutions interacting with a background state

For the original BBS where every box capacity is one and only a finite number of balls exist, all the solutions are proved to be constructed by ultradiscretization from the soliton solutions of the discrete KdV equation (6) [16]. Although the ultradiscrete KdV equation (1) over arbitrary integers is shown to be equivalent to the BBS with larger box capacity, the solutions to them cannot be the ultradiscrete limit of soliton solutions to (6), because the boundary condition of the BBS changes such that the number of balls becomes \(M \) for \(|n| \to \infty \). Nevertheless, we shall show that solutions can be constructed from the soliton solutions to (6) through ultradiscretization with an appropriate scaling limit. Here we treat only the case \(M = 1 \). Our method for constructing the solutions is equally applicable to the case \(M \geq 2 \), although the analysis of that case is more elaborate.

The coupled equations for the BBS are explicitly written as

\[
U_{n+1} = \min \left[3 - U_n, V_n \right], \tag{11}
\]

\[
V_{n+1} = U_n + V_n - U_{n+1}. \tag{12}
\]
with the boundary condition
\[\lim_{|n| \to \infty} U_n^t = \lim_{|n| \to \infty} V_n^t = 1. \tag{13} \]

From (2) and (3), if we put \(\delta = e^{-L/\epsilon} \) \((L \in \mathbb{Z}_+)) and assume that
\[\rho_n^t := \lim_{\epsilon \to +0} \epsilon \log \sigma_n^t \]
exists, we find
\[\rho_{n+1}^t + \rho_{n-1}^t = \max \left[\rho_{n+1}^t - \rho_{n-1}^t, -L, \rho_{n+1}^t + \rho_{n-1}^t \right]. \tag{14} \]

From (3), if we put
\[U_n^t = \rho_n^t - \rho_{n-1}^t - \rho_{n+1}^t + \rho_{n+1}^t, \tag{15} \]
\[V_n^t = \rho_{n+1}^t - 2\rho_n^t + \rho_{n-1}^t, \tag{16} \]
it they satisfy (11) and (12) for \(L = 3 \). Hence, we will construct solutions \(\rho_n^t \) of (14) which satisfy the boundary conditions (13).

First let us consider a state where only negative solitons exist. The corresponding solution is called a background solution \([7]\). It is a stationary solution of the form
\[F(k) \]
(\([4, 5]\)). We often denote \([\{\delta_i, \sigma_i, \ldots, N_i, M_i\} \mid i = 1, 2, \ldots, s) \)
\[\left(\begin{array}{c} \sum_{i,j} (-\gamma_i) \left(\frac{1 - p_i}{p_i} \right)^l \left(\frac{p_i + \delta}{1 + \delta - p_i} \right)^n \prod_{i,j \neq l} (1 - p_i - p_j) \prod_{i,j \neq l} \right) \right) = 0. \tag{17} \]

Apparently any background solution \(F(k) \) can be expressed as \(F(k) = \bar{F}(k - a) \) for some integers \(a \), \(\{b_i\} \) and \(\{\delta_i\} \).

The \(N \) soliton solution to (2) is given as
\[\sigma_n^t = 1 + \sum_{i,j=l} \left(\prod_{l \neq j} (-\gamma_i) \left(\frac{1 - p_i}{p_i} \right)^l \left(\frac{p_i + \delta}{1 + \delta - p_i} \right)^n \prod_{i,j \neq l} (1 - p_i - p_j) \right), \tag{18} \]
where \(p_i \in \mathbb{C} \) and \(\gamma_i \in \mathbb{C} \) \((i = 1, 2, \ldots, n) \) are arbitrary but \(p_i \neq p_j \) for \(i \neq j \) \([4, 5]\). We often denote \([k] \) := \([1, 2, 3, \ldots, k] \) for a positive integer \(k \). To take the ultradiscrete limit, let \(\delta = e^{-L/\epsilon}, p_i = N_i e^{-P_i/\epsilon}, -\gamma_i = M_i e^{-C_i/\epsilon} \) \((i = 1, 2, \ldots, N) \) where \(C_i \in \mathbb{R}, \ L, P_i, N_i, M_i > 0 \) and \(N_i \neq N_j, M_i \neq M_j \) for \(i \neq j \). Then taking the limit \(\lim_{\epsilon \to +0} \epsilon \log \sigma_n^t = \rho_n^t \), we have
\[\rho_n^t = \max \left\{ 0, \max_{1 \leq l \leq n} \left[\sum_{i,j \neq l} (C_i + t P_i - n \min[P_i, L]) - \sum_{i,j \neq l} \min[P_i, P_j] \right] \right\}. \tag{19} \]

For \(L = 1 \), we find that \(U_n^t \) and \(V_n^t \) satisfy (7) and (8), and hence (1). In particular, if \(P_i \in \mathbb{Z}_+, \ C_i \in \mathbb{Z}_+ \), (19) gives an \(N \) soliton solution of the original BBS.

We are, however, concerned with equations (11) and (12) with the boundary condition (13). Hereafter, we put \(L = 3 \) and prepare several symbols and notations:
\[l := \sum_{i=1}^{s} \delta_i, \quad \delta_{s+1} \equiv s - l + 1 \quad (\text{mod} \ 2), \quad l' := l + \delta_{s+1}. \]
\[K := l + \sum_{i=1}^{s} b_i, \quad B_i := \sum_{j=0}^{i} b_j, \quad \Delta_i := \sum_{j=0}^{i} \delta_i. \]
We also assume that $\delta_i = 1$ for $i = m_1, m_2, \ldots, m_l$ ($1 \leq m_1 < m_2 < \cdots < m_l \leq s$), and $m_{l+1} := s + 1$. Let us consider an n_∞ soliton solution ($n_\infty \gg 1$) of the form (19). We assume that $P_i = 2$ ($1 \leq i \leq n_\infty - l'$) and $P'_i := P_{i+n_\infty - l'} = 1$ ($1 \leq i \leq l'$). The phases are chosen as

$$C_i = \begin{cases} 1 & (1 \leq i \leq n_0), \\ -2j + 1 & (n_0 + B_{j-1} + 1 \leq i \leq n_0 + B_j \ (j = 1, 2, \ldots, s)), \\ -2s - 1 & (n_0 + B_s + 1 \leq i), \end{cases}$$

$$C'_i \equiv C_{i+n_\infty - l'} := -(m_i - i) \ (i = 1, 2, \ldots, l').$$

Then we find

$$\rho'_n = \max_{\bar{n}_0 \leq \bar{n} \leq \bar{n}_0 + \bar{r} - \bar{n}_0} \left[\sum_{i=1}^{k_1} (C_i - 2(n - t)) + \sum_{i=1}^{k_2} (C'_i - (n - t)) \right] - 2k_1(k_1 - 1) - k_2(k_2 - 1) - 2k_1k_2$$

$$= \max_{-n_0 \leq \bar{n}_0 \leq \bar{n}_0 + \bar{r} - n_0} \left[-2k_1 + k_2\right] \left[(n - t + 2n_0) \right] + \sum_{i=1}^{k_1'} \bar{C}_i + \sum_{i=1}^{k_2'} C'_i - 2k_1(k_1 - 1) - k_2(k_2 - 1) - 2k_1k_2$$

$$- 2n_0(n - t + 2n_0) + 2n_0^2 + 3n_0,$$

where

$$\bar{C}_i \equiv C_{n_0 + i}, \quad \sum_{i=1}^{k_1'} \bar{C}_i := \begin{cases} \sum_{i=1}^{k} \bar{C}_i & (k \geq 1), \\ k & (k \leq 0). \end{cases}$$

It is obvious that if ρ'_n is a solution to (14), $\rho''_n + at + f(n)$ is also a solution for an arbitrary function $f(n)$ and arbitrary values a, b and c. Hence, we find that $\rho'_n = \rho_{n_0,n_\infty}(n - t)$ is a solution to (14), where

$$\rho_{n_0,n_\infty}(x) = \max_{-n_0 \leq \bar{n}_0 \leq \bar{n}_0 + \bar{r} - n_0} \left[-(2k_1 + k_2)x + \sum_{i=1}^{k_1'} \bar{C}_i + \sum_{i=1}^{k_2'} C'_i \right] - 2k_1(k_1 - 1) - k_2(k_2 - 1) - 2k_1k_2.$$
When we rewrite (20) as
\[
\max_{r \in \mathbb{Z}} \left[-rx + \max_{\delta \in \mathbb{Z}} \left(\sum_{i=1}^{k_i} C_i + \ldots \right) \right]
\]
and using the relations such as
\[
a_0 + a_2 \geq 2a_1 \implies \max[-2x + a_2, a_1, a_0] = \max[-2x + a_2, a_0].
\]
Equation (20) can be simplified as shown in proposition 2 below. First let us define some symbols and notations:
\[
C_T := \sum_{j=1}^{l} (2j - 1)b_j + \sum_{j=1}^{l} (m_j - j), \quad Q_0 := C_T + K(K - 1) + (K - l)(K - l - 1)
\]
\[
S_1 := \{m_1, m_2, \ldots, m_l\}, \quad S_0 := [I] \setminus S_1, \quad I := [2K - l] \setminus \bar{I}
\]
\[
\bar{I} := \{m \in [2K - l]|m = 2B_{i_1} + \Delta_{i_1} + 2k, k = 0, 1, \ldots, b_{i_1} - 1, i \in S_0\}.
\]
The quantity \(\Theta_r\) is defined for \(r \in I\) as
\[
\Theta_r := \sum_{i=1}^{l-1} \left((2j - 1)b_j + (j - \sum_{i=1}^{j} \delta_i) \right) + (2i - 1)k
\]
\[
+ (B_{i_1} + k + \Delta_{i_1} - 1)(B_{i_1} + k + \Delta_{i_1} - 1) + (B_{i_1} + k)(B_{i_1} + k - 1);
\]
\[
\Theta_r := \sum_{i=1}^{l-1} \left((2j - 1)b_j + (j - \sum_{i=1}^{j} \delta_i) \right) + (2i - 1)k
\]
\[
+ (B_{i_1} + k + \Delta_{i_1})(B_{i_1} + k + \Delta_{i_1} - 1) + (B_{i_1} + k)(B_{i_1} + k - 1).
\]

Proposition 2.
\[
\rho_F(x) := \max \left\{ \rho_F^{-}(x), \rho_F^{(0)}(x), \rho_F^{(r)}(x) \right\},
\]
where
\[
\rho_F^{-}(x) := \max_{x \in \mathbb{Z}} \left[(2x - 1)k - 2(k + 1) \right],
\]
\[
\rho_F^{(r)}(x) := \begin{cases}
\max_{x \in \mathbb{Z}} \left[-(2K - l + 2q)x - q(2q + 4K - 2l + 2s - 1) - Q_0 \right] & (\delta_{s+1} = 0), \\
\max_{x \in \mathbb{Z}} \left[-(2K - l + q)x - (q - 1)\left(\frac{q}{2} + 2K - l + s \right) - s - Q_0 \right] & (\delta_{s+1} = 1),
\end{cases}
\]
\[
\rho_F^{(0)}(x) := \max_{x \in \mathbb{Z}} \left\{ \rho_F^{(r)}(x) \right\},
\]
and the function \(\rho_F^{(r)}(x)\) is given as
\[
\rho_F^{(r)}(x) := \begin{cases}
-rx - \Theta_r & r \in I, \\
0 & r \notin I.
\end{cases}
\]
From (15), if we define
\[U_F(x) := \rho_F(x + 2) - 2\rho_F(x + 1) + \rho_F(x) , \] (27)
\[U'_t = U_F(n - t) \] gives a solution to (11) and (12). By using the fact that \(\rho_F(x) \) is a continuous and convex piecewise linear function, and by calculating the intersection points of each linear functions appeared as linear pieces in the function \(\rho_F(x) \), we obtain the explicit form of \(U_F(x) \).

Let us define \(t_i(x) \) (\(i = 1, 2, \ldots \)) as
\[t_1(x) := \begin{cases}
 x + 2 & (-2 \leq x \leq -1), \\
 -x & (-1 \leq x \leq 0), \\
 0 & \text{otherwise},
\end{cases} \]
\[t_2(x) := \begin{cases}
 2x + 5 & (-5/2 \leq x \leq -3/2), \\
 -2x - 1 & (-3/2 \leq x \leq -1/2), \\
 0 & \text{otherwise},
\end{cases} \]
\[t_{2k+1}(x) := \sum_{i=0}^{2k} t_1(x + i), \]
\[t_{2k}(x) := \sum_{i=0}^{k-1} t_2(x + 2i). \]

By straightforward but a little tedious calculation, we find
\[U_F(x) = U_F^{-1}(x) + U_F^{0}(x) + U_F^{(s)}(x) , \] (28)
where
\[U_F^{-1}(x) := \sum_{k=1}^{\infty} t_2(x - 2k - 1) , \] (29)
\[U_F^{(s)}(x) := \begin{cases}
 \sum_{k=0}^{\infty} t_2(x + K + s + 2k) & (\delta_{s+1} = 0), \\
 \sum_{k=0}^{\infty} t_1(x + K + s + k) & (\delta_{s+1} = 1),
\end{cases} \] (30)
\[U_F^{(0)}(x) := \sum_{i=1}^{s} t_{2h_i+k_i}(x + 2B_{j-i} + \Delta_{j-i} + i - 1). \] (31)

An example of the function \(U_F(x) \) is shown in figure 6. Comparing these expressions with \(\tilde{F}(k) \), we find
\[U_F(k) = \tilde{F}(k) \] (32)
for \(k \in \mathbb{Z} \).

Furthermore, comparing \(\tilde{F}(k) \) with the conserved quantities \(\{q_j\} \) defined in the previous section, we have the following proposition.

Proposition 3. The number of negative solitons is equal to \(-q_1 - q_2\), i.e. \(s + 1 = -q_1 - q_2 \), and \(q_1 - q_2 \) is the number of solitons with amplitude 1 which is used to construct the background solution, i.e. \(q_1 - q_2 = l' \).

Next we consider the solutions in which \(m \) ordinary solitons exist in a background state. Since \(N \) soliton solutions are given by (19) and the parameters for the background solution are...
Figure 6. An example of $\tilde{F}(x)$ and $U_F(x)$. The parameters are $b_1 = 1$, $\delta_1 = 1$, $b_2 = 2$, $\delta_2 = 0$.

already known, we have only to additional new parameters $\{\hat{P}_i\}_{i=1}^m$ ($\forall \hat{P}_i \geq 3$) and $\{\hat{C}_i\}_{i=1}^m$.

When we denote the set of indices for a background solution B, the solution is given by

$$\rho_t^n = \max_{J_1 \subseteq [m], J_2 \subseteq B} \left[\sum_{i \in J_1} (-3n + \hat{P}_i t + \hat{C}_i) - \sum_{i \neq j, i, j \in J_1} \min[\hat{P}_i, \hat{P}_j] + \sum_{i \in J_2} (-P_i(n - t) + C_i) \right]$$

$$- \sum_{i \neq j, i, j \in J_1} \min[\hat{P}_i, \hat{P}_j] - \sum_{i \neq j, i, j \in J_2} \min[P_i, P_j] - 2 \sum_{j \in J_2} |J_1||P_j|.$$

Here we used the abbreviation

$$\max_{J \subseteq [n]} \left[\cdots \right] = \max_{J \subseteq [n], J \neq \emptyset} \left[\cdots \right].$$

Therefore, we obtain the following theorem.

Theorem 1. The solution to (14) representing the interaction of m soliton solutions with the background given by (23), has the expression:

$$\rho_t^n = \max_{J \subseteq [m]} \left[\sum_{i \in J} (-3n + \hat{P}_i t + \hat{C}_i) - \sum_{i \neq j, i, j \in J} \min[\hat{P}_i, \hat{P}_j] + \rho_F(n - t + 2|J|) \right].$$

The multi-soliton solutions with a background is also given by Nakata in an algebraic form (nested maximization) with the ultradiscrete vertex operators [18]. So far we do not find the exact correspondence between our solution (33) and his formula.

From the term $\rho_F(n - t + 2|J|)$ in (33), we find that the phase shift of negative solitons after collision of an ordinary soliton is -2. (We already know that the phase shift of ordinary solitons...
Figure 7. A solution U^i_n given by (33). The symbol ‘.’ denotes ‘1’. The parameters are $\hat{P}_1 = 4, \hat{C}_1 = -7, \hat{P}_2 = 7, \hat{C}_2 = -5, b_1 = 2, \delta_1 = 0, b_2 = 1, \delta_2 = 1$.

after being collided by a faster ordinary soliton is $\hat{C}_1 = 0$. An example of a time evolution pattern is shown in figure 7. Here $U^i_n = \rho^i_n - \rho^i_{n-1} - \rho^i_{n+1} + \rho^i_{n+2}$. When we make gauge transformation as $U^i_n \rightarrow \hat{U}^i_n$, this time evolution pattern coincides with that of figure 4. Since solution (33) shows that the ordinary solitons move freely for $t \gg 1$ as those in the BBS with box capacity one, comparing with the construction of conserved quantities, we find the following proposition [17].

Proposition 4. For a solution to (1) determined by (33), let Y be the Young diagram corresponding to the partition (q_3, q_4, q_5, \ldots) constituted by the conserved quantities, that is, the length of its ith column of Y is $q_i + 2$. Then, the length of jth row in Y is equal to $\hat{P}_j - 2$.

4. Concluding remarks

We constructed the conserved quantities of the ultradiscrete KdV equation (1) with negative solitons by using the transformation to the BBS with larger box capacities. The solutions to (1) in which negative solitons and ordinary solitons coexist are also obtained as the solutions to this extended BBS. In the BBS with box capacity one, every state is obtained by ultradiscretization of a soliton solution of the discrete KdV equation, and using this fact, initial value problem is solved with elementary combinatorial methods. We conjecture that this fact also holds for the extended BBS and can be used to solve the initial value problems. Investigating this conjecture is a problem we wish to address in the future.

Acknowledgments

The authors wish to thank Professors Atsushi Nagai and Ralph Willox for useful discussions and comments.

References

[1] Takahashi D and Satsuma J 1990 A soliton cellular automaton *J. Phys. Soc. Japan* **59** 3514–9
[2] Takahashi D 1993 On some soliton systems defined by using boxes and balls *Proc. Int. Symp. Nonlinear Theory and its Applications* (NOLTA’93) pp 555–8
[3] Torii M, Takahashi D and Satsuma J 1990 Combinatorial representation of invariants of a soliton cellular automaton *Physica D* **92** 209–20
[4] Tokihiro T, Matsukidaira D Takahashi J and Satsuma J 1996 From soliton equations to integrable cellular automata through a limiting procedure *Phys. Rev. Lett.* **76** 3247–50
[5] Hirota R, Tsujimoto S and Imai T 1992 Difference scheme of soliton equations *Future Directions of Nonlinear Dynamics in Physical and Biological Systems* NATO (Advanced Science Institute, Series B: Physics vol 312) (New York: Plenum) pp 7–15
[6] Hirota R 2009 New solutions to the ultradiscrete soliton equations Stud. Appl. Math. 122 361–76
[7] Willox R, Nakata Y, Satsuma J, Ramani A and Grammaticos B 2010 Solving the ultradiscrete KdV equation J. Phys. A: Math. Theor. 43 482003
[8] Takahashi D and Matsukidaira J 1997 Box and ball system with a carrier and ultradiscrete modified KdV equation J. Phys. A: Math. Gen. 30 L733–739
[9] Murata M, Isojima S, Nobe A and Satsuma J 2006 Exact solutions for discrete and ultradiscrete modified KdV equations and their relation to box–ball systems J. Phys. A: Math. Gen. 39 L27–34
[10] Nakayashiki A and Yamada Y 1997 Kostka polynomials and energy functions in solvable lattice models Sel. Math. New Ser. 3 547–99
[11] Fukuda K, Okado M and Yamada Y 2000 Energy functions in box ball systems Int. J. Mod. Phys. A 15 1379–92
[12] Hatayama G, Hikami K, Inoue R, Kuniba A, Takagi T and Tokihiro T 2001 The $A_M^{(1)}$ automata related to crystals of symmetric tensors J. Math. Phys. 42 274–308
[13] Gilson C, Nagai A and Nimmo J 2010 private communication
[14] Mada J, Izdumi M and Tokihiro T 2005 Path description of conserved quantities of generalized periodic box–ball systems J. Math. Phys. 46 022701
[15] Fukuda K 2004 Box–ball systems and Robinson–Schensted–Knuth correspondence J. Algebraic Combin. 19 67–89
[16] Mada J, Izdumi M and Tokihiro T 2008 The box–ball system and the N-soliton solution of the ultradiscrete KdV equation J. Phys. A: Math. Theor. 41 175207
[17] Yoshihara D, Yura F and Tokihiro T 2003 Fundamental cycle of a periodic box–ball system J. Phys. A: Math. Gen. 36 99–121
[18] Nakata Y 2010 Vertex operators and background solutions for ultradiscrete soliton equations Doctoral Thesis University of Tokyo