Light Dark Matter at Neutrino Experiments

Filippo Sala
DESY Hamburg
Sub-GeV Dark Matter: Why?

~ unconstrained by current experiments

but lots of new ideas to test it!

US cosmic visions 1707.04591

Neutrino coherent scattering

GeV
Sub-GeV Dark Matter: Why?

~ unconstrained by current experiments

but lots of new ideas to test it!

US cosmic visions 1707.04591

Connection with observed anomalies

e.g. in B decays and/or in muon g-2

e.g. FS Straub 1704.06188, 1809.11061
Sub-GeV Dark Matter: Why?

~ unconstrained by current experiments

but lots of new ideas to test it!

US cosmic visions 1707.04591

Connection with observed anomalies

e.g. in B decays and/or in muon g-2

e.g. FS Straub 1704.06188, 1809.11061

First considered in Boehm Fayet 2003

Lots of proposals for DM abundance, e.g. SIMPs

Hochberg+ 1402.5143,…

Connection with Hierarchy Problem (Relaxion DM)

Leptogenesis

Falkowski+ 1712.07652

Fonseca Morgante 1809.04534
Banerjee Kim Perez 1810.01889
Challenges to Direct Detection

“Standard” Direct Detection challenged by low DM masses

$\nu_{\text{DM}}^{\text{halo}} \approx 10^{-3} c$

$E_{\text{NR}} = \frac{q^2}{2m_N} \leq \frac{2\mu_{XN}^2 v_X^2}{m_N} \lesssim 190 \text{ eV} \times \left(\frac{m_X}{500 \text{ MeV}} \right)^2 \left(\frac{16 \text{ GeV}}{m_N} \right)$

“Standard” way-out: go to materials and concepts sensitive to smaller recoils

See e.g. US cosmic visions 1707.04591

Semiconductors
Superconductors
Superfluid Helium

....
A New Idea for Direct Detection

DM interacts with SM by assumption

High-velocity DM component *unavoidably* generated by *Cosmic-ray scatterings*!
A New Idea for Direct Detection

DM interacts with SM by assumption

High-velocity DM component *unavoidably* generated by Cosmic-ray scatterings!
A New Idea for Direct Detection

DM interacts with SM by assumption

High-velocity DM component *unavoidably* generated by Cosmic-ray scatterings!

First use of this interaction: Cappiello Ng Beacom 1810.07705 (looked at modifications in CR spectra)
A New Idea for Direct Detection

DM interacts with SM by assumption

High-velocity DM component unavoidably generated by Cosmic-ray scatterings!
A New Idea for Direct Detection

DM interacts with SM by assumption

High-velocity DM component *unavoidably* generated by Cosmic-ray scatterings!

Electron flux

Boschini+ 1801.04059
Induced Recoils on Earth

Energy thresholds above MeV become OK → go to biggest existing detectors!

σ_e = 10^{-30} \text{ cm}^2, \quad N_e \equiv \int dV n_e = 7.5 \times 10^{33} \text{ (i.e. } N_e \text{ at SK)}

\begin{align*}
K_e(\frac{dN_{DM}}{dK_e}) [\text{year}^{-1}] & \\
\sigma_e = 10^{-30} \text{ cm}^2, \quad N_e = \int dV n_e = 7.5 \times 10^{33} \text{ (i.e. } N_e \text{ at SK)}
\end{align*}

see Bringmann Pospelov 1810.10543 for analogous idea w/DM-nucleon interactions
Existing Useful Data

We **repurposed** data in “Search for **Boosted Dark Matter Interacting With Electrons** in **Super-K**”

Super-K collaboration, PRL 120 (2018), 1711.05278

2 DM particles $m_A > m_B$

B interacts with electrons

Agashe+ 1405.7370
Existing Useful Data

We repurposed data in “Search for Boosted Dark Matter Interacting With Electrons in Super-K”
Super-K collaboration, PRL 120 (2018), 1711.05278

2 DM particles $m_A > m_B$

B interacts with electrons

Detection of this DM independent of acceleration mechanism can use published analysis!

100 MeV $< E_{vis} < 1.33$ GeV	1.33 GeV $< E_{vis} < 20$ GeV	$E_{vis} > 20$ GeV
Data ν-MC ϵ_{sig} (0.5 GeV) Data ν-MC ϵ_{sig} (5 GeV) Data ν-MC ϵ_{sig} (50 GeV)		
FCFV 15206 14858.1 97.7% 4908 5109.7 93.8% 118 107.5 84.9%		
& single ring 11367 10997.4 95.8% 2868 3161.8 93.3% 71 68.2 82.2%		
& e-like 5655 5571.5 94.7% 1514 1644.2 93.0% 71 68.1 82.2%		
& 0 decay-e 5049 5013.8 94.7% 1065 1207.2 93.0% 13 15.7 82.2%		
& 0 neutrons 4042 3992.9 93.0% 658 772.6 91.3% 3 7.4 81.1%		

TABLE I. Number of events over the entire sky passing each cut in 2628.1 days of SK4 data, simulated ν-MC background expectation, and signal efficiency at representative energy after each cut.
We repurposed data in “Search for Boosted Dark Matter Interacting With Electrons in Super-K”

Super-K collaboration, PRL 120 (2018), 1711.05278

2 DM particles $m_A > m_B$

B interacts with electrons

Detection of this DM independent of acceleration mechanism can use published analysis!

100 MeV $< E_{vis} < 1.33$ GeV	1.33 GeV $< E_{vis} < 20$ GeV	$E_{vis} > 20$ GeV							
Data	ν-MC	$\epsilon_{sig}(0.5$ GeV)	Data	ν-MC	$\epsilon_{sig}(5$ GeV)	Data	ν-MC	$\epsilon_{sig}(50$ GeV)	
FCFV	15206	14858.1	97.7%	4908	5109.7	93.8%	118	107.5	84.9%
& single ring	11367	10997.4	95.8%	2868	3161.8	93.3%	71	68.2	82.2%
& e-like	5655	5571.5	94.7%	1514	1644.2	93.0%	71	68.1	82.2%
& 0 decay-e	5049	5013.8	94.7%	1065	1207.2	93.0%	13	15.7	82.2%
& 0 neutrons	4042	3992.9	93.0%	658	772.6	91.3%	3	7.4	81.1%

TABLE I. Number of events over the entire sky passing each cut in 2628.1 days of SK4 data, simulated ν-MC background expectation, and signal efficiency at representative energy after each cut.

~ Analogous procedure for MiniBooNE (1807.06137) and DUNE (1610.03486)
Our New Limits
Beyond the Vanilla Case

We assumed: i) constant σ_e

ii) Unspecified Dark Sector
Beyond the Vanilla Case

We assumed: i) constant σ_e

ii) Unspecified Dark Sector

If instead:

σ_e grows at low energies (like low-mass mediator) → our limit rel. weaker than grey ones

σ_e grows at high energies (like for SM neutrinos) → our limit rel. stronger than grey ones

\gtrsim keV splitting in the dark sector (“like” Higgsinos) → gray limits evaporate, our stays!

[see e.g. Darmé+ 1710.08430, 1807.10314]
Beyond the Vanilla Case

We assumed: i) constant σ_e
 ii) Unspecified Dark Sector

If instead:

σ_e grows at low energies (like low-mass mediator) \rightarrow our limit rel. weaker than grey ones

σ_e grows at high energies (like for SM neutrinos) \rightarrow our limit rel. stronger than grey ones

\gtrsim keV splitting in the dark sector ("like" Higgsinos) \rightarrow gray limits evaporate, our stays!

[see e.g. Darmé+ 1710.08430, 1807.10314]

In concrete models other limits may play a role (especially at $M_{DM} \lesssim \text{MeV}$)

e.g. BBN, Star Cooling,…(many again evaded if small splitting in dark sector)

In progress Ema FS Sato

In progress Ema FS Sato
Models with Mass Splitting

χ_1 Dark Matter

χ_2 DM heavier partner

A Mediator

Cosmic ray electrons

Electrons in detector
Models with Mass Splitting

\(\chi_1 \) Dark Matter

\(\chi_2 \) DM heavier partner

A Mediator

WANTED:

few 10's MeV \(\gtrsim m_2 - m_1 \gtrsim \) keV

otherwise not enough flux of DM (too few energetic CR electrons)

Evade other DD techniques

Cosmic ray electrons

Electrons in detector
Few 10's MeV \gtrsim m_2 - m_1 \gtrsim \text{keV}

m_2 \gtrsim 10 \text{ MeV}

m_1 \gtrsim 0.5 \text{ MeV}
Cosmology

BBN

few 10’s MeV \(\gtrsim m_2 - m_1 \gtrsim \text{keV} \)

\[m_2 \gtrsim 10 \text{ MeV} \]

\[m_1 \gtrsim 0.5 \text{ MeV} \]

\[m_2 \gtrsim m_A \]

DM abundance

Case \(m_2 \gtrsim m_A \)

\[m_A > m_1 \gtrsim m_A / 3 \]

“Forbidden” DM scenario

D’Agnolo Ruderman 1505.07107

Allows for correct abundance w/large couplings
CRs DD vs Other Constraints

Let us first make the most of the splitting can make signal distinguishable from atmospheric ν background at Super-K, Hyper-K,…

[Kim Park Shin 1612.06867 for boosted DM]

Memo: few $10^{\prime}s$ MeV $\gtrsim m_2 - m_1 \gtrsim$ keV $m_2 \gtrsim 10$ MeV $m_1 \gtrsim 0.5$ MeV $m_2 \gtrsim m_A > m_1 \gtrsim m_A/3$

$m_{X_1} = 0.8m_A$, $m_{X_2} = 1.6m_A$, $\alpha_X = 0.5$
Outlook

More on models - include CR proton acceleration

Go to even larger volumes? **IceCube**

“We can go to GeV thresholds, maybe even lower”
Marek Kowaski

Go to lower electron energy thresholds?

see Zhu Li Beacom+ 1811.07912 for exploration in the case of DUNE
Back up
Case $m_A \gtrsim m_2$

DM abundance

$$T_{FO} \approx m_2/20$$

$$m_1 \lesssim T_{FO}/3 \quad \text{DM rel at FO} \quad \rightarrow \quad \text{Hot DM!}$$

But: dilution via entropy injection after FO can rescue

[e.g. via decays of Higgs field that dominated energy budget]

This should happen after FO and before BBN

$$T_{FO} > T_{BBN} \approx 3 \text{ MeV} \quad \Rightarrow \quad m_2 \gtrsim 100 \text{ MeV}$$

So only high energy CRs work…(maybe protons?)

$$m_1 \gtrsim T_{FO}/3 \quad \text{DM non-rel at FO}$$

Beam dump etc win over CR DD
Distribution of Accelerated DM Component

\[\sigma_e = 10^{-30} \text{ cm}^2 \]

\[M_{\text{DM}} = 0.1 \text{ MeV} \]

\[M_{\text{DM}} = 0.1 \text{ keV} \]
Earth Attenuation

\[\sigma_e = 10^{-30} \text{ cm}^2 \]

Approximate but conservative treatment
For numerical one see e.g. Emken Kouvaris 1802.04764
A new light particle in B decays?

\[2m_\mu < m_V < m_B \]

\[\mathcal{L} = \left[(g_{bs} \bar{s}_L \gamma_\nu b_L + \text{h.c.}) + g_{\mu V} \bar{\mu} \gamma_\nu \mu + g_{\mu A} \bar{\mu} \gamma_\nu \gamma_5 \mu + g_{\chi} \bar{\chi} \gamma_\nu \chi \right] V^\nu \]

Resonance interferes with SM prediction

Choose signs to have dip and then peak in \(q^2 = m_{\mu\mu}^2 \)

\[m_V^2 \gtrsim 6 \text{ GeV}^2 \]

Where to hide the resonance?

If broad enough, it can be hidden in charmonium region, where SM poorly known

\[H = -N \sum_i C_i O_i \]

\[O_9 = (\bar{s} \gamma_\nu P_L b)(\bar{\mu} \gamma_\nu \mu) \]

\[C_{9,10}^V = \frac{g_{bs} g_{\mu V,A} / N}{q^2 - m_V^2 + i m_V \Gamma_V} \]

Testable as soon as they measure higher \(q^2 \)
A new light particle in B decays?

$$2m_\mu < m_V \lesssim m_B$$

$$\mathcal{L} = \left[(g_{bs} \bar{s}_L \gamma_\nu b_L + \text{h.c.)} + g_{\mu V} \bar{\mu} \gamma_\nu \mu + g_{\mu A} \bar{\mu} \gamma_\nu \gamma_5 \mu + g_{\chi} \bar{\chi} \gamma_\nu \chi \right] V^\nu$$

Resonance interferes with SM prediction

Choose signs to have dip and then peak in $q^2 = m_{\mu\mu}^2$

$$m_V^2 \gtrsim 6 \text{ GeV}^2$$

$$\mathcal{H} = -N \sum_i C_i \mathcal{O}_i$$

Could be Light Dark Matter Candidate!

Either Asymmetric or Thermal

Testable as soon as they measure higher q^2