Standards of the Polish Ultrasound Society – update. Sonography of the lower extremity veins

Grzegorz Malek¹, Andrzej Nowicki²

¹ Laboratory of Vascular Ultrasound and Echocardiography, Department of Radiology, Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
² Department of Ultrasound, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland

Correspondence: Professor Grzegorz Malek, MD, PHD, Laboratory of Vascular Ultrasound and Echocardiography, Department of Radiology, Institute of Tuberculosis and Lung Diseases, Warsaw, Płocka 26, 01-134 Warsaw, Poland, e-mail: malekg@wp.pl

DOI: 10.15557/JoU.2014.0029

Abstract

This article has been prepared on the basis of the Ultrasonography Standards of the Polish Ultrasound Society (2011) and updated based on the latest findings and reports. Ultrasound examination of the lower extremity veins is relatively easy and commonly used to confirm or rule out venous thrombosis. However, a relatively easy compression test frequently requires experience, particularly in situations when imaging is difficult.
Wprowadzenie

Ultrasonografia w skali szarości (2D) w połączeniu z obrazowaniem w kolorze (color Doppler) i zapisem widma (PW Doppler) pozostaje podstawową techniką oceny zmian w każdym lozysku naczyniowym.

Diagnostyka zakrzepicy żył kończyn dolnych, a także przygotowanie pacjenta do operacji ultradźwiękowej. Flebografię rezerwuje się dla szczególnie trudnych lub wątpliwych przypadków.

Aparatura

Aparat ultrasonograficzny musi posiadać opcję dopplera impulsowego i kolorowego, z elektronicznym pochylanym wiązki ultradźwiękowej. Wielkość bramki pomiarowej dopplera impulsowego powinna być także regulowana. Konieczna jest również opcja duplex lub/i triplex, które pozwalają na żywo, w trakcie przesuwania głowicy, oceniać widmo przepływu lub/i wypełnienie naczynia kolorem.

Najlepsze do badania naczyń żylnych kończyn są głowice 5 MHz, 7,5 MHz lub szerokopasowe o częstotliwościach 4–7 MHz, 5–10 MHz. Można stosować także głowice szerokopasowe o wyższym zakresie częstotliwości, jak np. 5–12 MHz, jednocześnie ograniczeniem w ich stosowaniu, z uwagi na mniejszą penetrację wiązki, może być większa grubość tkanki. Czoło głowicy powinno mieć długość ok. 35–50 mm, co pozwala na jej swobodne przemieszczanie. W ocenie żył biodrowych i głównej dolnej stosuje się głowice convex 3,5 MHz.

Aparat ultradźwiękowy musi posiadać opcję pochylania wiązki fali ultradźwiękowej, co jest konieczne do użytkowania kolorowego obrazu przepływu oraz rejestracji widma przepływu. Optymalny kąt pochylenia to do ok. 20°. Dynamika elektroniki aparatu powinna być jak najwyższa, by ułatwić obrazowanie w takich sytuacjach jak duża grubość tkanki czy obrzęk chłonny, kiedy morfologiczna ocena naczyń jest znacznie utrudniona. Wskazane są także:

Introduction

Gray-scale sonography (2D) in combination with color imaging (color Doppler) and spectral registration (PW Doppler) is still the basic technique in assessing lesions in every vascular bed.

The diagnosis of venous thrombosis in the lower extremities as well as preparation of patients for procedures to treat varicose veins of the lower limbs is based on ultrasound imaging. Phlebography is reserved for particularly difficult or doubtful cases.

Equipment

The ultrasound scanner must be equipped with the pulsed and color Doppler options with electronic ultrasound beam steering. The size of the Doppler sampling gate should also be adjustable. Duplex and triplex options, which enable assessment of flow spectrum and/or filling of the vessel with color in real time as the transducer moves, are also needed.

To exam peripheral venous vessels we use the transducers of 5 MHz, 7,5 MHz or broadband transducers with the frequency of 4–7 MHz or 5–10 MHz. Broadband probes with higher frequency range (5–12 MHz) can also be used, but thickness of tissues may limit their usage due to lower penetration of the ultrasound beam. The front of the transducer should be approximately 35–50 mm long, which enables its free movement. Convex 3,5 MHz transducers are used for the assessment of the iliac veins and inferior vena cava.

The US system must have the option of ultrasound beam steering, which is essential to obtain the image of blood flow in color and to record the spectrum of flow. The optimal inclination angle is approximately 20°. The dynamic range of the electronics should be as high as possible to get proper imaging when tissues are thick or lymphedema is present, i.e. when morphological assessment of the vessels is more difficult. The following are also recommended:
Ustawienia aparatu

• Dobór głowicy:

Do oceny żył w obrębie kończyny stosuje się głowicę liniową (wybieramy preset żylny), a dla oceny żył w jamie brzusznej – głowicę convex (preset brzuszny; modyfikacja ustawień w zależności od uzyskanego obrazu).

• Ustawienie ogniska:

Ogniskowanie powinno być na poziomie lub nieco powyżej miejsca badanego.

• Ustawienie wzmacnienia i dynamiki obrazu:

Dynamika obrazu 2D w badaniach naczyniowych jest ustawiona niżej niż w badaniach ogólnych (na poziomie 45–55 dB), co powoduje, że w warunkach prawidłowych światło naczyń charakteryzuje się bezechowością.

• Ustawienie zapisu widma:

Wybieramy preset żylny i w zależności od potrzeby modyfikujemy skalę prędkości oraz szybkość zapisu widma.

• Ustawienie koloru:

Wybieramy preset żylny i w zależności od potrzeby modyfikujemy skalę prędkości (wybieramy niższe wartości).

Przygotowanie do badania

Część badania dotyczy oceny naczyń w jamie brzusznej, dlatego pacjent powinien być na czczo przynajmniej 6–8 godzin lub po bardzo lekkim posiłku. Jest to konieczne przy ocenie żył biodrowych i żyły głównej dolnej.

Anatomia

Występuje bardzo duża zmienność osobnicza pod względem liczby żył powierzchownych, jak i ich przebiegu. Na podudziu liczba żył głębokich towarzyszujących tętnicom także jest zmienna. Dokładny opis obowiązującego mianownictwa zawarty został w standardach Polskiego Towarzystwa Chirurgii Naczyniowej (PTChN) i Polskiego Towarzystwa Flebologicznego (PTF)(3).

Scanner settings

• Selection of transducers:

An examination of the veins in the extremities should be performed with a linear transducer (venous preset should be selected). The veins in the abdominal cavity should be assessed with a convex probe (abdominal preset; adjusting settings depending on the image obtained).

• Focus settings:

The focus should be at the level of or slightly above the examined site.

• Image enhancement and dynamics settings:

The dynamics range in 2D examinations of vessels is lower than in general examinations (at the level of 45–55 dB). In normal conditions, this renders the lumen anechoic.

• Spectrum registration settings:

The venous preset should be selected and the velocity range as well as the velocity of spectrum registration should be modified, if needed.

• Color settings:

The venous preset should be selected and the velocity range should be modified, if needed (lower values should be selected).

One should also remember about the Wall Filter settings. This filter removes the frequencies (velocities) from Doppler trace according to the examiner’s choice. When set to higher frequencies, it may remove lower velocities that are frequently seen in venous flow.

Preparation for examination

A part of the examination involves assessment of the abdominal vessels; therefore the patient should not eat for at least 6–8 hours prior to the examination or should have only a very light meal. This is essential when the iliac veins and inferior vena cava are assessed.

Anatomy

We observe a considerable individual variability in terms of the number and course of the superficial veins. In the calf, the number of the deep veins that accompany arteries is also variable. The complete description of the current nomenclature can be found in the standards of the Polish Society for Vascular Surgery and Polish Society of Phlebology(1).
• Żyły głębokie – dzielimy je na trzy odcinki:
 • odcinek biodrowy (żyła główna dolna i żyły biodrowe wspólne, wewnętrzne i zewnętrzne);
 • odcinek proksymalny (żyła udowa wspólna, żyła udowa głęboka, żyła udowa, żyła podkolanowa);
 • odcinek dystalny (żyły piskzelowe tylne, piskzelowe przednie, żyły strzałkowe oraz śródmięśniowe).

• Żyły powierzchniowe:
 • Żyła odpiszczelowa (great saphenous vein, GSV) – jej średnica w pachwinie dochodzi do 8,8 mm; na podudziu – 3–5 mm. Biegnie od pachwiny do kostki przyśrodkowej. Istotne jest zlokalizowanie jej spływu do żyły udowej wspólnej na poziomie pachwiny (połączenie odpiszczelowo-udowe). Żyła ta powinna biec pomiędzy dwiema powięźciami w tzw. oku tłuszczowym. W pachwinie widoczne są także żyły: sromowa zewnętrzna, nabrzuszna powierzchnia, okalająca biodro powierzchnia. Od żyły odpiszczelowej odchodzi w okolicy pachwiny żyła odpiszczelowa dodatkowa przednia i żyła odpiszczelowa dodatkowa tylna (przechodzić może na podudzie jako żyła Leonarda – tynk lub żylny).
 • Żyła odstrzałkowa (small saphenous vein, SSV) – średnica wynosi około 4 mm. W dolne podkolanowo jej ujście może przybierać jedną z trzech postaci:
 1) najczęściej łączy się z żyłą podkolanową;
 2) przechodzi na udo jako przedłużenie udowe SSV lub jako żyła Giacomini i oddaje spływy do żyły podkolanowej;
 3) brak połączenia z żyłą podkolanową.

Na goleni oddaje typowe bocznice i perforator do głowy przyśrodkowej mieśnia brzuchatego. Może łączyć się jedną lub dwoma gałęziami dochodzącymi do żyły odpiszczelowej podudzia.

• Żyły przesywające – ich liczba jest trudna do ustalenia. Proponuje się nieużywanie nazw do opisu perforatorów. Najlepiej podawać ich lokalizację w centymetrach od pięt, a gdy nie ma możliwości pomiaru, mniej precyzyjnie – 1/3 dalsza, 1/3 środkowa lub 1/3 bliższa podudzia.

Technika badania

Morfologiczna ocena żył

Badanie wymaga prześledzenia wszystkich odcinków żylnych na całej ich długości. Każde naczynie ocenia się morfologicznie w prezentacji 2D, w projekcji poprzecznej oraz – gdy trzeba – w podłużnej. Ocenia się echogeniczność światła żył (czy są zwłóknienia, skrzepliny, zjawisko rulonizacji). Wykonać należy ultrasonograficzną próbę uciskową.

The deep veins are divided into three sections:
 • iliac section (inferior vena cava and common, internal and external iliac veins);
 • proximal section (common femoral vein, deep femoral vein, femoral vein and popliteal vein);
 • distal section (posterior and anterior tibial veins, fibular veins and intramuscular veins).

Superficial veins:
 • Great saphenous vein (GSV) – its diameter reaches 8.8 mm in the inguinal region and in the calf – 3–5 mm. It runs from the groin down to the medial malleolus. The localization of its drainage to the common femoral vein at the level of the groin (the sapheno-femoral junction) is significant. The vein should run between two fasciae in the saphenous opening. The external pudendal vein, superficial epigastric vein and superficial circumflex iliac vein are also visible in the inguinal region. The great saphenous vein in the inguinal region devides into the accessory anterior and accessory posterior saphenous vein (this accessory posterior vein may run to the calf as the Leonardo’s vein or posterior arch vein).
 • Small saphenous vein (SSV) – its diameter is approximately 4 mm. In the popliteal fossa, it presents one of three draining forms: 1) the vein usually communicates with the popliteal vein; 2) it runs to the thigh as a femoral extension of the SSV or as the Giacomini vein and drains in the popliteal vein; 3) it does not communicate with the popliteal vein.

At the calf, it gives off typical branches and a perforator to the medial head of the gastrocnemius muscle. It may communicate with the great saphenous vein via one or two branches.

Perforator veins – their number is difficult to determine. It is proposed that no names should be used to describe perforators. It is best to provide their localization in centimeters above the sole of the foot, and if measurements cannot be performed, they should be described less precisely as 1/3 of the distal, 1/3 of the medial and 1/3 of the proximal calf.

Scanning technique

Morphological evaluation of the veins

During the examination, it is essential to trace all venous sections on their entire length. Each vessel is assessed morphologically in a 2D image in a transverse or, if needed, longitudinal views. The examination involves assessment of echogenicity of the lumen (presence of fibrosis, clots, rulonisation effect). Ultrasound compression test should be performed.
Ultrasound compression test

The ultrasound compression test is used for assessment of thrombi (fibrosis) in the deep and superficial veins. It is the basic method to diagnose thrombosis (fig. 1)(2–5). When performing the compression test, the following must be remembered:

• the venous vessel must be positioned centrally in the field of view of the ultrasound probe;
• focusing should be set at the level of the examined vessel;
• compression should be applied until complete collapsing and subsequently, the pressure should be released;
• we should move by 1 cm peripherally and apply repeated compression until complete collapsing;
• compression should not be applied when free-floating thrombus is detected – color options should be applied to confirm its presence.

Attention should be directed to the echogenicity of clots – low echogenicity means recent thrombosis.

Assessment of vessels using the color mode

Color can be applied as a technique that facilitates assessment of the lumen only in some situations. It indicates the direction of blood flow and therefore may be an additional technique to visualize reflux. Nevertheless, measurement of retrograde flow duration on the spectrum remains the standard technique.

Spectrum of blood flow and reflux duration measurement

The spectrum is recorded by placing the transducer longitudinally along the vessel. The Doppler gate should be set centrally in the lumen of the vessel.

Zwracamy uwagę na echogeniczność skrzeplin – niska świadczy o świeżej zakrzepicy.

Ocena naczyń przy zastosowaniu koloru

Kolor ma zastosowanie jako technika wspomagająca ocenę światła naczynia tylko w niektórych sytuacjach. Wskazuje on kierunek przepływu, pomocniczo może więc wskazywać refluk, jednak standardem oceny refluku jest pomiar czasu refluku na zapisie widma.

Zapis widma przepływu i pomiary czasu refluku

Zapisu widma dokonujemy przy podłużnym ustawieniu głowicy wzdułu naczynia. Bramka dopplerowska powinna być ustawiona centralnie w świetle naczynia.

Ultrasoundographic test

Do oceny obecności skrzeplin (zwłóknięć) w żyłach głębokich i powierzchownych stosuje się ultrasztosograficzną próbę uciskową – jest to podstawowa metoda oceny w kierunku zakrzepicy (ryc. 1)(2–5). Podczas próby uciskowej trzeba pamiętać, by:

• naczynie żylne ustawione było centralnie w polu widzenia głowicy;
• ogniskowanie było ustawione na poziomie badanego naczynia;
• uciskać aż do pełnego zapadnięcia się – następnie puszczać ucisk;
• przenieszczać się 1 cm obwodowo i ponownie uciskać aż do pełnego zapadnięcia się;
• nie uciskać, gdy widzimy balotującą skrzeplinę – wykorzystujemy kolor dla potwierdzenia jej obecności.

Zwracamy uwagę na echogeniczność skrzeplin – niska świadczy o świeżej zakrzepicy.

Ocena naczyń przy zastosowaniu koloru

Kolor ma zastosowanie jako technika wspomagająca ocenę światła naczynia tylko w niektórych sytuacjach. Wskazuje on kierunek przepływu, pomocniczo może więc wskazywać refluk, jednak standardem oceny refluku jest pomiar czasu refluku na zapisie widma.

Zapis widma przepływu i pomiary czasu refluku

Zapisu widma dokonujemy przy podłużnym ustawieniu głowicy wzdułu naczynia. Bramka dopplerowska powinna być ustawiona centralnie w świetle naczynia.
W obrębie żył udowych dla oceny refluku w pozycji leżącej wykorzystujemy próbę Valsalvy (masaż obwodowy jest mało wiarygodny), a w pozycji stojącej – masaż obwodowy.

W żyłach podkolanowej (pozycja pionowa/siedząca pacjenta) stosujemy masaż obwodowy.

W żyłach odpiszczeniowej (pozycja pionowa/siedząca pacjenta) – masaż obwodowy i próbę Valsalvy, a w żyłach odstrzałkowej – masaż obwodowy.

W wielu podręcznikach anglościskich zaleca się stosowanie pompowanych mankietów uciskowych, jako najbardziej obiektywnej i porównywalnej metody wzmocnienia przepływu (gdy mankiet znajduje się poniżej badanego poziomu) lub wstecznego wymuszenia refluku (gdy mankiet znajduje się powyżej badanego poziomu). Mankiet jest nadmuchiwany przez mniej więcej 3 sekundy i opróżniany w 0,3 sekundy.

Ocena czasu refluku

Normy zaproponowane przez Labropoulosa(6) przedstawiono w tab. 1. Większe żyły mają mniej zasterek, dlatego oczekiwany czas zamknięcia jest dłuższy niż w żyłach mniejszych.

Norma według Zaleceń Polskiego Towarzystwa Chirurgii Naczyniowej i Polskiego Towarzystwa Flebologicznego(1) ujęta została w tab. 2. Do rozpoznania refluku upoważnia przepływ wsteczny trwający powyżej 0,5 sekundy.

Wydaje się, że najrozsądniejszym rozwiązaniem jest podawanie przez badającego bezwzględnej wartości czasu refluku – dla oceny klinicysty według przyjętych przez niego norm (ryc. 2).

In the region of the femoral veins, reflux should be assessed with the patient in a supine position with the use of the Valsalva maneuver (peripheral massage is relatively unreliable). Peripheral massage should be applied in the upright position.

In the case of the popliteal vein, peripheral massage should be used (vertical/sitting position).

In the case of the great saphenous vein, one should perform peripheral massage and Valsalva maneuver, and in the small saphenous vein – peripheral massage should be conducted (vertical/sitting position).

In Anglo-Saxon textbooks, the usage of inflatable compression sleeves is recommended as the most objective and comparable method to enhance blood flow (when the sleeve is placed below the examined level) or to elicit retrograde reflux (when the sleeve is placed above the examined level). The sleeve is inflated in approximately 3 seconds and emptied in 0.3 seconds.

Reflux duration evaluation

The normal values proposed by Labropoulos(6) are presented in tab. 1. Larger veins have fewer valves, therefore the expected closure time is longer than in smaller veins.

The standard according to the recommendations of the Polish Society for Vascular Surgery and Polish Society of Phlebology(1) is presented in tab. 2. Reflux can be diagnosed when retrograde flow duration exceeds 0.5 seconds.

It occurs that the best solution is to provide an absolute value of reflux duration – so that the clinician can interpret the results according to the norms that he or she uses (fig. 2).
How to position the patient? Examination tactics

A venous ultrasound examination is performed for various reasons (e.g. suspicion of thrombosis, assessment of varicose veins, differential diagnosis of edema or pain in the extremities etc.). Irrespective of the purpose of the examination, the first basic problem is ruling out thrombotic/post-thrombotic lesions in the deep veins. The presence of such lesions considerably limits the surgeon who intends to treat varicose veins in surgery. In fact, it prevents his or her actions. In order to rule out these lesions, one should assess: the iliac veins in the abdominal cavity, the veins in the thigh (common femoral, deep femoral and femoral vein) and the calf veins (popliteal, intramuscular, tibial and fibular veins). The iliac veins cannot be examined in the upright position. The deep calf veins must be well filled with blood to be examined (i.e. the patient must remain in a vertical position – sitting or standing). The veins in the thigh can be assessed with the patient in a supine position or standing (which is slightly less favorable). When standing, patients involuntarily tighten their muscles, even in the extremity on which they do not support (the examined extremity should be relaxed). This may result in insufficient filling of the veins in the muscles thereby preventing thorough evaluation for which relaxed muscles are needed.

Safety of the patient is a significant aspect. The patient may not be able to stand without movement for 20–30 minutes. This problem is eliminated in the sitting position with lowered extremities. The assessment of varicose veins is always performed in a vertical position. The sitting position with lowered extremities is a vertical position – varicose veins do not disappear in this position. If there are doubts regarding the assessment of the superficial vessels, it is always possible to change the position to standing for a while.

The physician should decide about the standing or sitting position of the patient based on their condition, age, cooperation etc. [7-10] The authors suggest the following positions for given cases:

- deep calf veins – sitting position with lowered crus or standing position (which is preferred in the assessment of the superficial veins);
- valve sufficiency assessment – vertical position, but if it is uncertain whether the patient is able to stand – the sitting position.

The textbook entitled The Vascular System [8] recommends as follows:

- examining the deep veins – the reverse Trendelenburg position (supine position with elevated head and torso);
- examining the superficial veins – standing or sitting position with lowered legs (sitting when: there are evident varicose veins and reflux, patient may collapse, feels dizzy or experiences discomfort while standing, or when the patient is disabled to a certain degree).
Zakres badania przed operacją żylaków

Przy szczegółowej ocenie żylaków w celu wykonania niektórych pomiarów (np. wydolność perforatorów) często potrzebna jest pomoc drugiej osoby.

The above mentioned indications suggest that the physician should decide about the way of the examination to enable assessment of all essential elements in a safe way.

A significant element of the examination is the presence of a platform or a bed with adjustable height. The platform should have handrails for the stability of the patient.

Range of the examination to diagnose thrombosis

Numerous authors suggest that the examination should always be performed in both extremities. However, it is admissible to examine only one symptomatic extremity. A complete examination consists of several stages:

1. The first stage involves the examination of the inferior vena cava and iliac veins in terms of thrombosis. The assessment is conducted in a supine position with the use of a convex probe with the frequency of 3.5 MHz. Following morphological visualization of the vessels in 2D, we use color and assess the degree to which it fills the vessels. The velocity scale (10 cm/s for the iliac veins) and enhancement should be selected adequately (color cannot go beyond the wall of the vessel).

2. The next stage involves assessment of the deep veins in the lower extremities in terms of thrombosis. The examination of the femoral section is performed with the patient in supine position with abduction and slight rotation of the examined extremity. The sufficiency of the femoral veins should be assessed.

3. In order to examine the calf, the patient should be placed in a sitting position, or when they cannot sit, it can be attempted to lower the crus beyond the bed so that blood could also fill the intramuscular veins. The examination of the femoral and calf sections in the upright position does not usually allow proper compression test to be conducted every 1 cm in all vessels. Moreover, the deep vessels of the thigh are not as easily accessed.

The sufficiency of the popliteal vein should be evaluated.

4. The next stage involves assessment of the superficial veins in terms of the presence of thrombi. The examination is performed in the sitting position, and when there are doubts concerning the lesions detected or when the patient can stand safely with no risk of collapsing – in the standing position.

5. The sufficiency of the valves of the femoral and popliteal veins as well as the main trunks of the superficial veins should be assessed (when there is no thrombosis). If varicose veins are present, their localization, origin of supply and the presence of thrombi should be described. It is also important to assess the patency of the perforators. A more detailed examination of varicose veins is not necessary in this situation.

Zakres badania w kierunku zakrzepicy

Wielu autorów sugeruje, by badanie zawsze dotyczyło obu kończyn dolnych. Dopuszcza się jednak sytuacje, gdy zakres badania obejmuje tylko kończynę objawową. Pełne badanie jest wieloetapowe:

1. W pierwszej części badania dokonuje się oceny żyły głównej dolnej i żyły biodrowych w kierunku zakrzepicy. Badanie przeprowadza się w pozycji leżącej, wykorzystując głowicę convex 3,5 MHz. Po morfologicznym uwidocznieniu naczyń w 2D stosujemy kolor i oceniamy stopień wypełnienia naczyń, odpowiednio dobierając skalę prędkości koloru (10 cm/s dla żył biodrowych) i wzmocnienie (kolor nie może wychodzić poza ściną naczyń).

2. Następny etap to ocena żył głębokich kończyn dolnych pod kątem zmian zakrzepowych. Badanie odcinka udowego wykonujemy w pozycji leżącej z odwiedzeniem niewielkim zrotowaniem badanej kończyny. Oceniamy wydolność żył udowych.

3. Do badania podudzia (goleń) pacjent znajduje się w pozycji siedzącej, a gdy nie może siedzieć – można próbować opuścić podudzie poza zarys lózka, tak by krew zalegała także w żyłach śródmieśniowych. Badanie odcinka udowego i podudzia w pozycji stojącej z reguły nie pozwala na prawidłowe wykonanie prób uciskowej co do stwardniających zmian lub gdy pacjent może swobodnie stać bez ryzyka upadku – w pozycji stojącej.

4. Kolejny etap to ocena żył powierzchownych pod kątem obecności skrzelin. Badanie wykonujemy w pozycji siedzącej, a gdy istnieje wątpliwość co do stwardniających zmian lub gdy pacjent może swobodnie stać bez ryzyka upadku – w pozycji stojącej.

5. Oceniamy wydolność zastawek żył udowych i podkolanowych oraz głównych pni żył powierzchownych (gdy nie ma zakrzepicy). W przypadku występowania żylaków opisujemy ich lokalizację, z jakiego łożyska są zasilane, czy zawierają skrzeliny. Istotna jest też ocena drożności widocznych perforatorów. Bardziej szczegółowe badanie żylaków w tej sytuacji nie jest konieczne.
Przygotowanie pacjenta do zabiegu wymaga wykluczenia zmian w układzie żylnym głębokim oraz szczegółowego opisu zmian w układzie żylnym powierzchnym. Wielu autorów sugeruje, by badanie zawsze dotyczyło obu kończyn dolnych. Dopuszcza się zakres badania obejmujący tylko kończynę przygotowywaną do zabiegu.

Etapy 1, 2, 3 są takie same jak w przypadku badania w kierunku zakrzepicy. Istotnym elementem badania żył powierzchnych jest ocena typów anatomicznych żyły odpiszczołowej i odstrzałkowej.

4. Ocena żył powierzchnich

- Żyła odpiszczołowa (GSV) – podajemy jej średnicę w pachwinie i na udzie oraz na podudziu. Na udzie oce- niamy: wydolność spływu do żyły udowej wspólnej oraz wydolność odcinka obwodowego. Na podudziu także oceniamy wydolność na dwóch poziomach (odcinek bliż- szy, odcinek dalszy). W wyniku podajemy zakres stwierdza- ną sfugosję refłusu. Istotne jest opisanie anatomii żyły odpiszczołowej i jej gałęzi na udzie. Opisujemy posze- rzone bocznicze oraz ich połączenia.
- Żyła odstrzałkowa (SSV) – opisujemy typ ujęcia żyły odstrzałkowej w dole podkolanowym. Oceniamy jej wydolność, a gdy występuje refluk, podajemy jego zakres.
- Perforatory – opisujemy lokalizację uwidocznionych perforatorów na udzie i goleni. Na goleni najlepszym sposobem lokalizacji jest podanie odległości od pięty w centymetrach. Mniej precyzyjny sposób to podział na: 1/3 dalszą, 1/3 środkową i 1/3 bliższą podudziel. Oceniamy wydolność perforatorów (czas refluku), podajemy ich średnicę (nie przesądzając ona jednoznacznie o wydolności, ale gdy >4 mm – niewydolność jest bardzo prawdopodobna)[6,11].
- Inne – oceniamy także zakres i typ zmian w tkance podskórnej. Zwracamy uwagę, czy są inne patologie mogące naśladować zakrzepicę żylną (obrączki chłonny tkanki podskórnej, torbiele, rozerwanie mięśni, krwiak itp.).

Opis badania

Na wynik składają się dwa elementy: opis oraz dokumentacja zdjęciowa. Dokumentacja zdjęciowa powinna zawie- rać imię i nazwisko badanego, wiek, datę badania i nazwę pracowni. Opis musi uwzględniać te dane oraz na końcu także dane lekarza badającego. Należy w opisie uwzględnić nazwę aparatu oraz rodzaj stosowanej głowicy. Dla czytel- ności opisu zaleca się:

- oddzielenie opisu żył głębokich od powierzchnich;
- oddzielne opisywanie żył powierzchnich lewej i pra- wej kończyny dolnej w przypadku stwierdzonych zmian.

Nawet gdy wynik jest prawidłowy, w treści opisu należy wymienić zbadane naczynia oraz podać informację na temat ich stanu (prawidłowa/znieniona). W przypadku stwierdzenia zakrzepicy szczegółowo opisuje się loko- lizację zmian oraz ich zakres. Dobrym zwyczajem jest

Range of examination prior to varicose vein surgery

In order to thoroughly assess varicose veins and perform certain measurements (e.g. perforator sufficiency), assis- tance of another person is frequently necessary.

The preparation for the patient for a procedure requires ruling out lesions in the deep veins and detailed description of lesions in the superficial veins. Numerous authors suggest that the examination should always be performed in both extremities. However, it is admissible to examine only the extremity that is being prepared for the procedure.

The stages 1, 2 and 3 are the same as in examining the patient to diagnose thrombosis. An essential element of superficial vein examination is assessment of anatomic types of the great and small saphenous veins.

4. Assessment of the superficial veins

- Great saphenous vein (GSV) – its diameter in the ingui- nal region, thigh and calf should be measured. In the thigh, the following should be assessed: sufficiency of the drainagé to the common femoral vein and sufficiency of the peripheral section. In the calf, we should also assess sufficiency at two levels (proximal and distal level). The results should include the range of reflux. It is important to describe the anatomy of the great saphenous vein and its femoral branches. Dilated branches and their junc- tions ought to be described.
- Small saphenous vein (SSV) – we should describe the type of drainage in the popliteal fossa. Its sufficiency should be assessed and the range of reflux should be noted, if applicable.
- Perforators – we should describe the localization of the visualized perforators in the thigh and calf. The best way to describe their localization in the calf is to provide their distance from sole of the foot in centimetres. A less pre- cise manner is the division into: 1/3 of the distal, 1/3 of the medial and 1/3 of the proximal crus. We should also assess the sufficiency of the perforators (reflux duration) and measure their diameters (the diameter does not unequivocally determine sufficiency, but when it is >4 mm – insufficiency is highly probable)[6,11].
- Others – we should also assess the range and type of other lesions in the subcutaneous tissue. Attention should be paid to pathologies that might mimic venous thrombosis (lymphedema of the subcutaneous tissue, cysts, muscle tears, hemato ma etc.).

Report

The results should include two elements: description and photographic documentation. The photographic docu- mentation should include the name and surname of the patient, their age, date of the examination and name of the labora- tory. The description must include these data as well as the details of the examining physician. Moreover, the name of the scanner and type of the probe used should also be
pomiar średnicy zakrzepniętych żył przed uciskiem i po, co pozwala na ocenę dynamiki zmian w czasie kilku kolejnych badań. Powinno się także na podstawie echogeniczności próbować oszacować wiek skrzeplin.

W przypadku opisu żyłaków podaje się szczegóły dotyczące wydolności/niewydolności zastawek i zasięgu tego zjawiska w żyłe odpiszczełowej oraz odstrzałkowej. Należy opisać perforatory – tak jak przedstawiono w punkcie odnośnie do zakresu badania.

Opisujemy również stwierdzone w trakcie badania inne zmiany (obrącz chłonny tkanki podskórnej, torbiele, rozeczenie mięśni, krwiak itp.).

Wynik powinien kończyć się wnioskiem podsumowującym stwierdzone patologie oraz zaleceniami dotyczącymi badań kontrolnych i konsultacji. W przypadku ścieżki zakrzepicy konieczne jest pilne skierowanie pacjenta do klinicysty mogącego wdrożyć leczenie.

Piśmiennictwo/References

1. Hawro P, Gabriel M, Madycki G et al.: Zalecenia dotyczące wykonywania ultrasonograficznego badania dopplerowskiego żył kończyn dolnych Polskiego Towarzystwa Chirurgii Naczyniowej i Polskiego Towarzystwa Flebologicznego. Acta Angiol 2013; 19: 99–117.
2. Zierler RE: Strandness. Obrazowanie dopplerowskie w chorobach naczyń. Medipage, Warszawa 2013.
3. Allan PL, Dubbins PA, McDicken WN et al.: Ultrasonografia dopplerowska – zastosowania kliniczne. Tom I, II. Elsevier Urban & Partner, Wrocław 2006.
4. Malek G: Ultrasonografia dopplerowska. Zastosowania kliniczne. Tom I, II. Medipage, Warszawa 2003.
5. Kawecki P: Ultrasonografia żył kończyn dolnych. Medipage, Warszawa 2013.
6. Labropoulos N, Tiongson J, Pyyor L et al.: Definition of venous reflux in lower-extremity veins. J Vasc Surg 2003; 38: 793–798.
7. Cronenwett JL, Johnston KW (eds.): Rutherford’s Vascular Surgery. Saunders Elsevier, Philadelphia 2010.
8. Kupinski AM: Ultrasound evaluation and mapping of the superficial venous system. In: Kupinski AM: The Vascular System. Wolters Kluwer/ Lippincott Williams & Wilkins 2013: 243–258.
9. Kupinski AM: Venous vascular insufficiency testing. In: Kupinski AM: The Vascular System. Wolters Kluwer/Lippincott Williams & Wilkins 2013: 259–276.
10. Labropoulos N, Mansour MA, Kang SS et al.: New insights into perforator vein incompetence. Eur J Vasc Endovasc Surg 1999; 18: 228–234.
11. Vascular laboratory: venous duplex scanning. In: Cronenwett JL, Johnston KW (eds.): Rutherford’s Vascular Surgery. Saunders Elsevier, Philadelphia 2010: 265–284.