DELAMINATION DURING BUCKLING OF COMPOSITE CONSTRUCTIONAL ELEMENTS

Antanas Žiliukas

Antanas Gustaitis Aviation Institute of Vilnius Gediminas Technical University,
Rodūnės keliai 30, 02187 Vilnius, Lithuania
E-mail: antanas.ziliukas@vgtu.lt

Received 26 January 2010, accepted 20 May 2010

Abstract. Laminated constructional elements have widespread applications in aerospace. This paper presents the buckling for E-Glass. Design solution based by the criteria of strength materials. The delamination of composite constructional elements is determined by the normal and shear stress. The non-linear strength criterion suggested by the author in case of complex state of stress.

Keywords: delamination, composite, strength, criterion.

1. Introduction

The delamination of composites depends on their matrix and the changed mechanical characteristics of reinforced elements during deformation. In the case of mechanical behaviour of laminated composites during compression the bending moment appears besides axial forces. The fibre experiences normal and shear stresses (Kim et al. 1998; Keller et al. 2004; Barbero et al. 1993; Barbero et al. 1999). Similar work was done while analysing the interfaces of I-beam shelves and walls (Bank et al. 1999), columns (Mosallam et al. 1992), beams (Bank et al. 1994), and cases of bar buckling depending on their geometry (Shu et al. 1993a; Shu et al.1993b; Brewer et al. 1988). J. Brewer and P. Langace, as well as M. Fenske and A. Vizzini, suggested evaluation criteria for delamination. S. S.Wang and C. Hwu et al. tried solving the problems of composite fracture (Wang 1983; Hwu et al. 1995) The investigation of composite delamination remains topical, however, because the investigation and evaluation of fibre remain difficult.

2. Buckling of composite constructional elements

According to Euler’s formula, critical buckling force is written as follows:

\[F_{cr} = \frac{4\pi^2 (EI_f)}{L^2} \]

where \(F_{cr} \) – critical buckling force; \(E \) – modulus of elasticity; \(L \) – length of column; \(I_f \) – minimal moment of inertia.

The important characteristic of material is composite’s modulus of elasticity \(E_C \). It can be calculated in the following way (Bai et al. 2009):

\[E_C = \frac{2(1 - \nu_f)E_f + 2\nu_f E_m + 1/E_f}{1} \]

where \(\nu_f \) is the Poisson’s ratio, \(E_m \) is the modulus of elasticity of the matrix, and \(E_f \) is the modulus of elasticity of the fibre.
where \(t \) – thickness of layer and indexes \(v, m \) and \(f \) mean cover, fiber and filling respectively.

The modulus of elasticity, \(E_c \), is accepted as resin.

The composite’s \(E_c \) is received experimentally.

Limit shear stresses \(\tau_{\text{lim}} \) are calculated in the following way (Bai et al. 2009)

\[
\tau_{\text{lim}} = \frac{1}{2} \sin 2\theta \cdot \sigma_{\text{lv}}
\]

where \(\sigma_{\text{lv}} \) – ultimate strength and \(\theta \) – angle of layers with regard to stretching axis.

Lateral displacement is calculated as follows (Timoshenko et al. 1993)

\[
w = \frac{w_{\text{max}}}{2} \left(\cos \frac{2\pi x}{L} - 1 \right)
\]

where \(w \) – lateral displacement; \(x \) – coordinate in the longitudinal direction of the plate; \(w_{\text{max}} \) – maximal lateral displacement in the middle part of the plate during delamination.

Thus when the plate is compressed by force \(F \), transverse forces \(Q \) will be received in the following way (Timoshenko et al. 1993)

\[
Q = F \sin \theta = F \left(\frac{\tan^2 \theta}{\tan^2 \theta + 1} \right)
\]

where \(\tan \theta = \frac{dw}{dx} \).

3. Strength criteria

In order to evaluate the strength of composites, various criteria are applied. One of the simplest is the Tresca criterion, which evaluates normal stresses and shear stresses (Fenske et al. 2001):

\[
\sqrt{\sigma_x^2 + 4\sigma_{xy}^2} \leq \tau_{\text{lim}},
\]

where \(\sigma_x \) – normal stresses and \(\sigma_{xy} \) – shear stresses.

It has to be noted that normal stresses, \(\sigma_y \), in the direction of \(y \) axis and shear stresses, \(\tau_{yx} \), on the \(yz \) plane are quite small and need not be taken into account.

Then:

\[
\tau_{xy} = \frac{dM}{dx} \frac{E(y)}{bE_{\text{eff}}} = \frac{\int E(y) y dA}{bE_{\text{eff}}},
\]

where \(A \) – area of cross-section; \(M \) – bending moment.

The normal stresses are calculated in the following way:

\[
\sigma_i = \frac{F \cos \theta}{A (V_r + nV_t)},
\]

where \(V_r \) and \(V_t \) are volumes of resin and reinforced elements, and \(n \) is the ratio of elasticity module of reinforcement and matrix.

According to the yield criterion of von Mises (Bai et al. 2009)

\[
\sqrt{\sigma_x^2 + 3\sigma_{xy}^2} = \sigma_y,
\]

where \(\sigma_y \) – yield stress or

\[
\frac{\sqrt{\sigma_x^2 + 3\sigma_{xy}^2}}{2} = \frac{\sigma_y}{2} = \tau_{\text{lim}}.
\]

The main stresses are calculated in the following way:

\[
\sigma_1 = \frac{1}{2} (\sigma_x + \sqrt{\sigma_x^2 + 4\sigma_{xy}^2}),
\]

\[
\sigma_2 = \frac{1}{2} (\sigma_x - \sqrt{\sigma_x^2 + 4\sigma_{xy}^2}).
\]

We shall apply polynomial strength criteria (Vasiliev et al. 2007):

\[
F(\sigma_1, \sigma_2, \tau_{12}) = R_1\sigma_1^2 + R_2\sigma_2^2 + S_1\tau_{12}^2 = 1,
\]

where \(R \) and \(S \) – constants

\[
\tau_{12} = \frac{\sigma_1 - \sigma_2}{2}.
\]

We find the constants \(R \) and \(S \) from the marginal conditions:

\[
F(\sigma_1 = \sigma_2 = 0, \tau_{12} = 0) = 1
\]

\[
F(\sigma_1 = 0, \sigma_2 = \sigma_1, \tau_{12} = 0) = 1
\]

\[
F(\sigma_1 = 0, \sigma_2 = 0, \tau_{12} = \tau_{12}) = 1
\]

Then equation (13) is as follows:

\[
\left(\frac{\sigma_1}{\sigma_1} \right)^2 + \left(\frac{\sigma_2}{\sigma_2} \right)^2 + \left(\frac{\tau_{12}}{\tau_{12}} \right)^2 = 1.
\]

The stresses \(\sigma_1, \sigma_2 \) are received:

\[
\sigma_i = \sigma_i^*, \text{ if } \sigma_i > 0 \text{ or } \sigma_i = \sigma_i^*, \text{ if } \sigma_i < 0
\]

\[
\sigma_j = \sigma_j^*, \text{ if } \sigma_j > 0 \text{ or } \sigma_j = \sigma_j^*, \text{ if } \sigma_j < 0
\]

When the strength criterion is put in this form (Vasiliev et al. 2007):
\[F(\sigma_1, \sigma_2, \tau_{12}) = R_1 \sigma_1 + R_2 \sigma_2 + R_{12} \sigma_1^2 + \\
+ R_{21} \sigma_2^2 + S_{12} \tau_{12} = 1 \]
(17)

the marginal conditions:

\[F\left(\sigma_1 = \sigma^*_1, \sigma_2 = 0, \tau_{12} = 0\right) = 1, \text{ if } \sigma_1 > 0 \]
\[F\left(\sigma_1 = -\sigma^*_1, \sigma_2 = 0, \tau_{12} = 0\right) = 1, \text{ if } \sigma_1 < 0 \]
\[F\left(\sigma_1 = 0, \sigma_2 = \sigma^*_2, \tau_{12} = 0\right) = 1, \text{ if } \sigma_2 < 0 \]
\[F\left(\sigma_1 = 0, \sigma_2 = 0, \tau_{12} = \tau^*_{12}\right) = 1 \]

(18)

Then we write:

\[\sigma_1 \left(\frac{1}{\sigma^*_1} - 1 \sigma_1 \right) + \sigma_2 \left(\frac{1}{\sigma^*_2} - 1 \sigma_2 \right) + \\
+ \frac{\sigma_1^2}{\sigma^*_1} + \frac{\sigma_2^2}{\sigma^*_2} + \left(\frac{\tau_{12}}{\tau^*_{12}} \right)^2 = 1 \]

(19)

According to experimental tests (Vasiliev et al. 2007), strength criterion (19) corresponds to experimental results better than criterion (15) and even more precisely than criteria (7) and (11).

Polynomial strength criteria show formal approximation of experimental data in the coordinates of principal axes, however. These criteria become more complex in other coordinate systems. Tensoric strength criteria are therefore applied. For example, when the orthotropic material moves from principal axes 1 and 2 to turned axes 1’ and 2’, at the angle \(\phi = 45^\circ \), the strength criterion is put in the following way:

\[F \left(\sigma_1, \sigma_2, \tau_{12} \right) = R_1 \sigma_1 + R_2 \sigma_2 + R_{12} \sigma_1^2 + \\
+ R_{21} \sigma_2^2 + S_{12} \tau_{12} = 1 \]

(20)

When the marginal conditions are applied to receive constants, according to the equation (18) we receive:

\[F \left(\sigma_1, \sigma_2, \tau_{12} \right) = \left(\frac{1}{\sigma^*_1} - 1 \sigma_1 \right) \sigma_1 + \\
+ \left(\frac{1}{\sigma^*_2} - 1 \sigma_2 \right) \sigma_2 + \frac{\sigma_1^2}{\sigma^*_1} + \\
+ \frac{\sigma_2^2}{\sigma^*_2} + \left(\frac{\tau_{12}}{\tau^*_{12}} \right)^2 = 1 \]

(21)

This criterion differs from the criterion (19) because new constant \(R_2 \) cannot be received, according to the conditions of equation (18).

Thus, the author suggests a tensoric criterion (Žiliukas 2006), which is put in the following way:

\[m_i \sigma_i + m_{ij} \sigma_j \leq \sigma_{ij,m} \]

(22)

where \(m_i, m_{ij} \) – ultimate material’s; \(\sigma_{ij,m} \) – strength limit at \(\mu \) stress state; \(\sigma_i \) – intensity of stresses (when \(\sigma_i \) is used and \(\tau_{ij} \) in equation (25) are calculated by these equations:

\[\sigma_0 = \frac{\sigma_1 + \sigma_2}{3} = \frac{\sigma_1}{3} \]

Average stress (when \(\sigma_i \) is used and \(\tau_{ij} \)

\[\mu_\sigma = \frac{2\sigma_i - \sigma_1 - \sigma_1}{\sigma_1 - \sigma_1} = \frac{2\sigma_i - \sigma_1}{\sigma_1} = -1 \]

(23)

(24)

(25)

4. Delamination analysis

In order to solve the delamination problem of composite, we should apply strength criterion (25). Taking into account equation (3), \(\tau_{ij} = \frac{1}{2} \sin 2 \theta \sigma_1 \), and (25), the strength criterion is put in the following way:

\[\sigma_1 \left(m_1 + m_4 \right) + \frac{1}{2} m_5 \sin^2 \theta \leq \sigma_{1,\alpha} \]

(26)

When the angle is \(\theta = 45^\circ \), we receive net shear and \(\sigma_1 = \frac{\sigma_{1,\alpha}}{2} \), and when the angle is \(\theta = 0 \), we receive axial compression and \(\sigma_1 = \sigma_{1,\alpha} \). Then the constants \(m_1 \) and \(m_4 \) in equation (25) are calculated by these equations:

\[\begin{cases}
 m_1 + m_4 + \frac{1}{4} m_5 = 2 \\
 m_1 + m_4 = 1
\end{cases} \]

(27)

From where \(m_3 = 4 \); \(m_4 = -3 \).
Thus, strength criterion (26) is put in the following way:

\[\sigma^2_c \left(1 + \sin^2 \theta \right) \leq \sigma_{wc}^2 \]

(28)

or

\[\sigma_c \leq \sqrt{\frac{\sigma_{wc}^2}{1 + \sin^2 \theta}} . \]

(29)

Taking into account formula (9), and after we enter buckling force from formula (1) and do the operations, we receive:

\[\sigma_{cr} = \frac{16 \pi^4 \left(E_{f},c \right)^2 \left(1 + \sin^2 \theta \right) \cos^2 \theta}{A^2 \left(V_f + nV_c \right)^2 \sigma_{wc}^2} \]

(30)

This formula determines the relation between the values of length \(L_{cr} \) and shear angle \(\theta_{cr} \) when a straight bar or plate made from composite is being buckled.

5. Experimental tests

In order to do experimental tests, a 12-mm-thick composite plate was chosen. It is laminated by \(t_c = 0.5 \) mm cover, the thickness of the resin is \(t_m = 2 \) mm, and the thickness of the fiberglass is \(t_f = 7 \) mm. This makes relative volume of filling \(V_f = 0.62 \), and of matrix \(V_m = 0.35 \). The modulus of elasticity are the following: filling – \(E_f = 45 \) GPa, resin – \(E_m = 11 \) GPa, and cover \(E_c = E_m = 11 \) GPa. Thus the total modulus of elasticity received from the formula (2) is \(E = 30.89 \) GPa. \(E_f \) and \(E_m \) proportion is \(n = E_f / E_m = 4.09 \). According to ASTM D 638, the width of the sample is 12.7 mm.

Then the area of cross – section is

\[A = 152.4 \text{ mm}^2 = 152.4 \cdot 10^{-6} \text{ m}^2. \]

Moment of inertia:

\[I_{ef} = I_{min} = \frac{bh^3}{12} = \frac{12 \cdot 10^{-3} \left(12.7 \cdot 10^{-1} \right)^3}{12} = 2.048 \cdot 10^{-9} \text{ m}^4 \]

Strength limit of compression:

\[\sigma_{wc} = 3000 \text{ MPa} = 3 \cdot 10^8 \text{ N/m}^2 \]

and \(EI_{sf} = 63 \text{ N} \cdot \text{m}^2 \)

When we enter the values of experimental and calculated parameters into formula (30), we receive:

\[L_{cr} = 1.28 \sqrt{1 + \sin^2 2\theta_c} \sqrt{\cos \theta_c} \]

(31)

In such a way, if we have various values of critical delamination angle \(\theta_{cr} \), we can calculate the critical length of the plate. The calculation results are presented in table.

No	\(\theta_{cr} \), degrees	\(L_{cr} \), m
1	0	1.28
2	5	1.286
3	10	1.308
4	28	1.3705
5	29	1.3706
6	30	1.39
7	31	1.368
8	32	1.367
9	40	1.103
10	45	1.076
11	90	0

According to table, the maximal critical length of the plates is received when the delamination angle is \(30^\circ \).

6. Conclusions

1. The delamination of composite constructional elements is determined by the normal and shear stresses in the fiber.
2. The strength criteria used to evaluate the strength of composites are too complex because of the large number of constants and the difficulty of determining them.
3. The non-linear strength criterion suggested by the author for a complex state of stresses allows a simple dependency between critical delamination angles and critical lengths of the plate at buckling to be determined.
4. According to experimental and calculation data, the maximal critical length of the plate at buckling is received when the delamination angle is \(30^\circ \).

References

Bai, Y.; Vallee, T.; Keller, T. 2009. Delamination of pultruded glass fiber – reinforced to axial compression, Composite Structures 91: 66–73.

Bank, L. C.; Yin, J. 1999. Failure of web-flange junction in postbuckled pultruded I-beam, Composite Constructions 3 (4): 177–184.

Bank, L. C.; Nadipelli, M.; Gentry, T. R. 1994. Local buckling and failure of pultruded fiber-reinforced plastic beams, Eng. Mater. 116 (7): 233–237.

Barbero, E. J.; Raffoyiamis, I. G. 1993. Local buckling of FRP beams and columns, Mater. Civil. Eng. 5 (3): 339–355.

Barbero, E. J.; Vivo, L. De. 1999. Beam-column design equations for wide-flange pultruded structural shapes, Composite Constructions 3 (4): 185–191.

Brewer, J. C.: Lagace, P. A. 1988. Quadratic stress criterion for initiation of delamination, Composite Materials 22: 1141–1155.
Fenske, M. T.; Vizzini, A. J. 2001. The inclusion of in-plane stresses in delamination criteria, *Composite Materials* 35 (15): 1325–1340.

Hwu, C.; Kao, C. J.; Chang, L. E. 1995. Delamination fracture criteria for composite laminates, *Composite Materials* 29: 1962–1987.

Keller, T.; Schollmayer, M. 2004. Plate bending behavior of a pultruded GFRP bridge deck system, *Composite Structures* 64 (3–4): 285–295.

Kim, J. K.; Mai, Y. W. 1998. *Engineering Interfaces in Fiber Reinforced Composites*. Elsevier Science Ltd.

Mosallam, A. S.; Bank, L. C. 1992. Short-term behavior of pultruded fiber-reinforced plastic frame, *Struct. Eng.* 118 (7): 1937–1954.

Shu, D.; Mai, Y. W. 1993a. Buckling of delamination composites re-examined, *Compos. Sci. Technol.* 47: 35–41.

Shu, D.; Mai, Y. W. 1993b. Delamination buckling with bridging, *Compos. Sci. Technol.* 47: 25–33.

Timoshenko, S. P.; Gere, J. M. 1993. *Theory of Elastic Stability*. 2nd ed., Mcgraw-Hill International Book Company.

Vasiliev, V. V.; Morozov, E. V. 2007. *Advanced Mechanics of Composite Materials*. Elsevier Ltd. 491.

Wang, S. S. 1983. Fracture mechanics for delamination problems in composite materials, *Composite Materials* 17: 210–223.

Žiliukas, A. 2006. *Strength and Fracture Citeria*. Kaunas: Technologija. 208 p. (in Lithuanian).

KOMPOZITINIŲ KONSTRUKCIJŲ ELEMENTŲ ATSISLUOKSNIAVIMAS KLUPDANT

A. Žiliukas

S ant r a u k a

Kompozitinių konstrukcijų elementų atsisluoksniaimas nustatomas remiantis normaliniais ir tangentiniais įtempiais. Autorius siūlo netiesiogiai stiprumo kriterijų, įvertinantį sudėtingą įtempių būvį sprendžiant kompozitų atsisluoksniaimą problemą.

Reikšminiai žodžiai: atsisluoksniaimas, kompozitas, stiprumo kriterijus.