Magnesium Diboride Flexible Flat Cables for Cryogenic Electronics

Chris S. Yung and Brian H. Moekly

Abstract - Magnesium diboride (MgB$_2$) thin films are a potential alternative to low-temperature superconductors (LTS) due to a higher critical temperature (T_c) of approximately 39 K. The reactive evaporation deposition technique also affords relatively simple growth of MgB$_2$ films on flexible substrates compared to high-temperature superconductors (HTS). We have designed and fabricated a cable architecture consisting of MgB$_2$ traces on flexible yttria-stabilized zirconia (YSZ) compatible with commercially available connectors or direct wirebonds. Key performance metrics such as critical current density (J_c) and T_c are measured and compared. We discuss thermal conductivity and passivation schemes for these cables.

Index Terms - Cryogenic electronics, interconnections, MgB$_2$, superconducting devices, superconducting thin films.

IEEE/CSC & ESAS European Superconductivity News Forum (ESNF), No. 14, October 2010
The published version of this manuscript appeared in IEEE Transactions on Applied Superconductivity 21, Issue 3, 107 - 110 (2011)