One dimensional s-wave holographic superconductor with supercurrent

Hua-Bi Zeng a,b

aSchool of Mathematics and Physics, Bohai University
JinZhou 121000, China
bDepartment of Physics, Nanjing University
Nanjing 210093, China
Email: zenghbi@gmail.com

Abstract: We study the one dimensional s-wave holographic superconductor by turning on the vector potential A_x in the bulk, which behaves as $A_x = A_x^{(0)} \ln z + A_x^{(1)}$ on the boundary. By solving the model with fixed $A_x^{(0)}$, we find that if we identify the $A_x^{(0)}$ with the supercurrent j_x of the holographic superconductor, the results agree with the Ginzburg-Landau theory. For example, $A_x^{(0)}$ will break the superconductivity, and the critical value of $A_x^{(0)}$ is proportional to $(T_c - T)^{3/2}$.

Keywords: Holography, Superconductivity, AdS$_3$/CFT$_2$.
1. Introduction

The AdS/CFT correspondence [1–4] has been taken as a very useful method to study strongly coupled phenomena now. A successful application of the AdS/CFT correspondence to condensed matter physics is to study the superconductors. The strategy to build a holographic superconductor is to couple an AdS black hole with some charged field and the $U(1)$ gauge fields. The black hole will have hair when the temperature of the black hole is low enough. The charged hair breaks the $U(1)$ gauge symmetry in the bulk and the black hole is superconducting [5]. By putting a charged scalar field coupled to the $U(1)$ gauge field in AdS$_3$ black hole, one can get the s-wave holographic superconductor in which the order parameter is a scalar [6, 7]. By putting a pure $SU(2)$ gauge field in the bulk theory, one can get the p-wave holographic superconductor with a vector order parameter [8–12]. In order to build a d-wave holographic superconductor we need a charged tensor field coupled to a $U(1)$ gauge field in the bulk that leads to a tensor order parameter [13–15].

Most of the studies on holographic superconductors have focused on the $(2 + 1)$ dimensional systems by using AdS$_3$/CFT$_3$. The $(3 + 1)$ dimensional holographic superconductor shows similar properties as the $(2 + 1)$ dimensional superconductors, as studied in [16] by using AdS$_5$/CFT$_4$. The $(1 + 1)$ dimensional s-wave and p-wave holographic superconductors were explored in [17] and [18] respectively by using AdS$_3$/CFT$_2$. Due to the logarithm behavior of A_x on the boundary, we have to realize that the AdS$_3$ realization of holographic superconductor is an honest superconductor with a dynamic gauge field on
the boundary, in which the local boundary symmetry is spontaneously broken [18]. The holographic superconductors with dynamic gauge fields in higher dimensions were studied in [19–22]. A holographic quantum liquid in (1+1) dimensions from a probe D3 brane in the AdS Schwarzschild planar black hole background was studied in [23].

In this paper, we studied the one dimensional s-wave holographic superconductor by switching on the vector potential A_x in the bulk theory. A_x behaves as $A_x = A_x^{(0)} \ln z + A_x^{(1)}$ on the AdS$_3$ boundary. By solving the model with fixed $A_x^{(0)}$, we find that $A_x^{(0)}$ plays the role of supercurrent in a superconductor. If we identify $A_x^{(0)}$ with the supercurrent j_x and $-A_x^{(1)}$ as the superfluid velocity v_x, the results agree with the Ginzburg-Landau (G-L) theory for a superconductor with supercurrent. For example, $A_x^{(0)}$ will break the superconductivity, the critical value of $A_x^{(0)}$ being proportional to $(T_c - T)^{3/2}$. These results indicate that we can interpret the source term $A_x^{(0)}$ as the supercurrent j_x while $-A_x^{(1)}$ as the superfluid velocity v_x. The G-L theory results we found in (1+1) dimensional s-wave holographic superconductors have also been founded in the (2 + 1) dimensional holographic superconductors with supercurrent [24]. In analogy, for the scalar potential $A_t = A_t^{(0)} \ln z + A_t^{(1)}$ on the boundary, $-A_t^{(0)}$ can be interpreted as the charge density ρ while $A_t^{(1)}$ as the chemical potential μ.

The organization of this paper is as follows. In Section 2 we first introduce the Einstein-Maxwell-charged scalar system in AdS$_3$ black hole, and then confirm that there is a continuous phase transition when $A_x = 0$ by free energy calculations. In Section 3 we solve the system with fixed value of $A_x^{(0)}$ and we find that $A_x^{(0)}$ should be the supercurrent of the holographic superconductor. We also try to solve the system with fixed value of $A_x^{(1)}$ in Section 4. Discussions and conclusions are given in Section 5.

2. The condensed phase with $A_x = 0$

In this section we firstly review the results in [17]. We also compute the free energy to confirm the existence of the continuous superconducting phase transition.

2.1 The Einstein-Maxwell-charged scalar system in AdS_3 black hole

The Lagrangian of the Einstein-Maxwell-charged scalar system reads

$$\mathcal{L} = -\frac{1}{4} F^{ab} F_{ab} - \frac{1}{2} m^2 |\Psi|^2 - |(\partial \mu - i A_\mu)\Psi|^2.$$

(2.1)

The neutral AdS$_3$ black hole background in Poincaré coordinates is given by [17]

$$ds^2 = \frac{L^2}{z^2} \left(-f(z)dt^2 + dx^2 + \frac{dz^2}{f(z)}\right),$$

(2.2)

in which $f(z) = 1 - z^2$, $z = r_+/r$, and r_+ is the horizon of the black hole. We set $L = 1$ and $r_+ = 1$. The black hole temperature is given by

$$T = \frac{r_+}{2\pi}.$$

(2.3)
With the ansatz
\[\Psi = \Psi(r), \Phi = \Phi(r), A_x = A_x(r), \]
we have the equations of motion (EOMs) for the three fields,
\[
\begin{align*}
\Psi'' - \frac{2z}{1-z^2} \Psi' - \frac{1}{z} \Psi' + \frac{\Phi^2 \Psi}{(1-z)^2} - \frac{A_x^2 \Psi}{1-z^2} & = 0, \\
\Phi'' + \frac{1}{z} \Phi' - \frac{2\Phi \Psi^2}{z^2(1-z^2)} & = 0, \\
A_x'' - \frac{2z}{1-z^2} A_x' + \frac{A_x'}{z} - \frac{2A_x \Psi^2}{z^2(1-z^2)} & = 0.
\end{align*}
\]

The boundary behavior for the two Maxwell fields \(\Phi \) and \(A_x \) at \(z = 0 \) are
\[
\begin{align*}
\Phi & = \Phi^{(0)} \ln(\Lambda z) + \Phi^{(1)} + \cdots, \\
A_x & = A_x^{(0)} \ln(\Lambda z) + A_x^{(1)} + \cdots,
\end{align*}
\]
where \(\Lambda \) is the renormalization scale included in the logarithm. We set \(\Lambda \) to be 1 without loss of generality. It has been found that there is only one way to quantize the theory (alternative quantization) by defining the coefficients of the logarithmic terms to be the sources [25–27].

As for the scalar field \(\Psi \), we can only consider the case of \(m^2 = 0 \), since the results for other values of \(m^2 \) are similar [17]. The asymptotic behavior of \(\Psi \) near the boundary for \(m^2 = 0 \) reads
\[
\Psi = \tilde{\Psi}^{(1)} + \tilde{\Psi}^{(2)} z^2 + \cdots.
\]

Figure 1: The condensate versus temperature when \(A_x \) is zero.
We can only choose the scalar operator as \(\langle O_2 \rangle = \tilde{\Psi}^{(2)} \), with the boundary condition \(\tilde{\Psi}^{(1)} = 0 \) \cite{17}. \(\langle O_2 \rangle \) is the order parameter of the superconductor. On the horizon, regularity requires \(\Phi = 0 \), with the other two fields \(\Psi \) and \(A_x \) being finite. In this section we set \(A_x = 0 \) and solve the two EOMs Eq. (2.5) and Eq. (2.6) for \(\Phi \) and \(\Psi \) with vanishing \(A_x \).

2.2 Phase diagram and the free energy analysis

The phase diagram of the superconductor with \(A_x = 0 \) is plotted in Fig. 1. It is clear that there is a continuous phase transition at \(T_c \). After computing the free energy density we will confirm the result further.

According to the AdS/CFT dictionary, the free energy of the dual field theory is related to the on-shell action of the classical gravity theory,

\[
\mathcal{F} = -TS_{os} + \ldots
\]

(2.11)

where the ellipsis denotes boundary terms we may need. Employing the equations of motion, the on-shell action can be written as

\[
S_{os} = \int dx^2 \left(\frac{z}{2} \Phi \Phi' - \frac{z f}{2} A_x A_x' - \frac{f}{z} \Psi \Psi' \right) |_{z=0} + \int dx^3 \left(\frac{A_x^2 \Psi^2}{z} - \frac{A_x^2 \Psi^2}{zf} \right).
\]

(2.12)

By plugging in the asymptotic behaviors of \(\Phi, A_x \) and \(\Psi \) we get

\[
S_{os} = \int dx^2 \left(\frac{1}{2} \Phi^{(0)} (\Phi^{(1)} + \Phi^{(0)} \ln z) - \frac{1}{2} A_x^{(0)} (A_x^{(1)} + A_x^{(0)} \ln z) \right) |_{z=0} + \int dx^3 \left(\frac{A_x^2 \Psi^2}{z} - \frac{A_x^2 \Psi^2}{zf} \right).
\]

(2.13)

In order work in the ensemble with fixed \(A_x^{(0)} \), we need to add the boundary \cite{25, 26}

\[
S_{bdy} = \frac{1}{2} \int dt dx \left(\sqrt{-h} A_\mu F^{zt} \right) |_{z=0},
\]

(2.14)

where \(h \) is the induced metric of the boundary. We can see \(S_{os} + S_{bdy} \) which is divergent. In order to cancel the divergence, we add the counter term \cite{26}

\[
S_{CT} = \int dx^2 (\sqrt{-h} F_{zt} F^{zt} \ln z + \sqrt{-h} F_{xx} F^{xx} \ln z) |_{z=0},
\]

(2.15)

Finally, the free energy density for the superconductor reads

\[
F = \frac{\mathcal{F}}{l} = -\Phi^{(0)} \Phi^{(1)} + A_x^{(0)} A_x^{(1)} - \int dz \left(\frac{A_x^2 \Psi^2}{z} - \frac{A_x^2 \Psi^2}{zf} \right),
\]

(2.16)

where \(l \) is the length of the superconducting wire. The superconductor is uniform since the order parameter is independent of \(x \).

In Fig. 2 we plot the free energy density difference between the superconducting and normal states. It can be seen that the superconducting state is more stable than the normal state when \(T < T_c \).
3. The superconductor with fixed $A_x^{(0)}$

In AdS$_4$ setup of holographic superconductor, $A_x = A_x^{(0)} + A_x^{(1)} z$ on the boundary. It is clear now we can interpret $-A_x^{(0)}$ as the superfluid velocity and $A_x^{(1)}$ as the supercurrent. There are two kinds of quantizations for A_x, which means that we can fix the value of $A_x^{(0)}$ and let $A_x^{(1)}$ free to fluctuate, or fix the value of $A_x^{(1)}$ and let $A_x^{(0)}$ free to fluctuate. The two methods to solve the problem correspond to experiments where the current, or the superfluid velocity is kept fixed. It has been shown [24, 28–30] that by fixing $A_x^{(0)}$ or $A_x^{(1)}$ on the boundary, the AdS$_4$ black hole holographic superconductors (both s-wave and p-wave holographic superconductors) with fixed supercurrent or fixed superfluidity velocity have the same results as G-L theory.

However, since the gauge fields behave much differently on AdS$_3$ boundary, it is very interesting to ask what will happen when the superconducting black hole has non-vanishing vector potential A_x. In this section we solve the EOMs with fixed value of $A_x^{(0)}$ in Eq. (2.9). In the next section we also try to solve the EOMs with fixed value of $A_x^{(1)}$ in Eq. (2.9).

3.1 The condensate versus temperature

The first important problem to study is how the order parameter changes with the temperature for this holographic superconductor with fixed $A_x^{(0)}$. From now on we suppose $A_x^{(0)}$ is the supercurrent j_x and $A_x^{(1)}$ is the superfluid velocity $-v_x$. From Fig. 3 it can be seen that when the supercurrent is not zero, there are two solutions of the order parameter corresponding to a fixed temperature. We also show that the solution with lower value of the order parameter takes a larger free energy than the solution with larger values of the order parameter and therefore it is unfavorable. In Fig. 4 we present the free energy of a fixed current $j_x = 1/100$ for the two branches of solution. It can be obviously seen that the solution with a larger value of the order parameter has a lower free energy. The critical temperature decreases when the current increases, which indicates that there
should exist a critical current above which there is no superconductivity. When one lowers the temperature from above the critical temperature, the order of phase transition at the critical temperature for a fixed current should be of first order, since the order parameter jumps from zero to a finite value at the critical temperature. Such a jump will certainly change the energy and so requires some latent heat, which implies that the phase transition should be of first order. This conclusion is the same as the one we shall give by observing the curve of the current \(j_x \) versus the superfluid velocity \(v_x \) at a fixed temperature soon.

For the AdS\(_4\) s-wave holographic superconductor with current, the order parameter is also bivalued, and the states with lower value of the condensate have a larger free energy than their counterparts with larger values of the condensate at the same temperature. [24]

3.2 Results that agree with the G-L theory

In this section we give more evidences that \(A_x^{(0)} \) behaves the same as a supercurrent in a superconductor. These results indicate that we should interpret \(A_x^{(0)} \) as the supercurrent \(j_x \) in the boundary theory.
Figure 4: The free energy of the two branches of solution when $j_x = 1/100$, the upper dotted line corresponds to the points with a lower value of the condensate at a given temperature. The left panel shows the corresponding plot of the condensation versus T. It can be seen that the lower branch solution corresponds indeed to states with larger free energy and is thus metastable.

Figure 5: Plots of the current j_x versus the superfluid velocity v_x at a fixed temperature. The two panels above correspond to $T/T_c = 0.745385, 0.946225$ (from left to right), at which the critical currents j_c are $1/10$ and $1/100$, respectively. It is clear that the v_x and j_x have a linear relationship when j_x is not very large.

3.2.1 Current via the superfluid velocity

Another physical property by which one can compare the difference between the gravity model of superconductor and the G-L theory is the relation between the current and the superfluidity velocity at a fixed temperature. From this relation we can also get the information of the phase transition at the critical current.

The two plots in Fig. 5 correspond to the two temperatures $T/T_c = 0.745385$ and 0.946225. For these two temperatures the critical currents are $j_c = 1/10$ and $j_c = 1/100$, respectively. It can be clearly seen that at the temperatures close to T_c, where the G-L theory works very well, the plots of j_x versus v_x are the same as that of G-L theory, in which the j_x and v_x have a linear relationship when j_x is much smaller than j_c. From these plots we can also infer the order of the phase transitions at critical current or critical
velocity. For the two plots, the maximal velocity corresponds to a vanishing current, which means that the phase transitions at critical velocities the $v_c = 0.65$ and $v_c = 0.25$ are of second order. However, the maximal current corresponds to a non-vanishing velocity, which means that the phase transitions at critical currents $j_c = 1/10$ and $j_c = 1/100$ are of first order.

3.2.2 The critical current via temperature

In this subsection we study the critical current j_c for different T near T_c to compare the results with those of the G-L theory. As predicted by G-L theory, j_c is proportional to $(T_c - T)^{3/2}$ when the temperature is close to T_c. As illustrated in Fig. 6, this scaling behavior is indeed obeyed by holographic superconductors for temperatures close to T_c, which is also the case in the $(2 + 1)$ dimensional s-wave model [24]. Another prediction of the G-L theory is that, at any fixed temperature, the norm of the condensate decreases monotonically with respect to the velocity from its maximal value. And the maximal value $\sqrt{\langle O_2 \rangle_\infty}$ corresponds to zero velocity and zero current. As shown in Fig. 5, the critical current is reached before the velocity reaches its maximal value. The norm of the condensate has an intermediate value $\sqrt{\langle O_2 \rangle_c}$ at the maximal current. The G-L theory tells us that the ratio of $\sqrt{\langle O_2 \rangle_c}$ to $\sqrt{\langle O_2 \rangle_\infty}$ is exactly 2/3. From Fig. 7 it can be seen that this is indeed the case for the $(1 + 1)$ dimensional s-wave holographic superconductor.

4. The superconductor with fixed $A_x^{(1)}$

Before we give the results when we solve the EOMs with fixed $A_x^{(1)}$. We would like to emphasis that there is only one kind of quantization of the theory, we can only take $A_x^{(0)}$ is the source. However, fixing $A_x^{(1)}$ does not contradict the statement in [25], we are simply in another ensemble which can be changed to the ensemble in last section with fixed $A_x^{(1)}$ by a Legendre transformation [26]. From the numerical computation we find that to solve the
Figure 7: Plot of the ratio \(\left(\langle O_2 \rangle_c / \sqrt{\langle O_2 \rangle_\infty} \right)^2 \) versus the temperature. The solid line corresponds to the value of \(2/3 \) predicted by the G-L theory and it also appears in the AdS\(_4\) s-wave model.

![Figure 7](image)

Figure 8: Plot of the order parameter versus the temperature for different fixed values of velocity (The \(-A_x^{(1)}\)). We show three different plots of order parameter versus the temperature for \(-A_x^{(1)}=1/10, 1/2\) (from the left to the right). It can be seen that the phase transition is of second order. (The dark blue plots are the condensate with fixed \(A_x^{(0)}\), the dark red plots represent the condensate without \(A_x\).)

![Figure 8](image)

EOMs with fixed \(A_x^{(0)}\) is indeed much more difficult numerically, it will take very long time for the shooting method to give a solution. In Fig. 7 we give two samples of solutions for fixed \(A_x^{(1)} = -0.1\) and \(-0.5\) respectively. It can be seen that the phase transition with the small values of velocity is of second order, which confirms our discussion in section 3.2.1.

5. Conclusion

With the fact the Maxwell gauge fields \(A_t\) and \(A_x\) behave as in Eq. (2.8) and Eq. (2.9) on the AdS\(_3\) boundary, and an important question arises as how to interpret the coefficients \(A_i^{(0)}\) and \(A_i^{(1)}\). Formally, this question was already answered in [18, 25, 26], the source term
$A_t^{(0)}$ is the charge density and $A_t^{(0)}$ is the chemical potential. In this paper we have confirm the conclusion given in [18, 25, 26] by studying the properties of the $(1 + 1)$ dimensional holographic superconductor with nonzero A_x. By solving the EOMs we found that if we interpret $A_x^{(0)}$ and $-A_x^{(1)}$ in Eq. (2.9) as the supercurrent j_x and the superfluid velocity v_x respectively, the results near the critical temperature agree qualitatively with several properties of the Ginzburg-Landau theory:

- The phase transition with supercurrent is of first order
- The critical supercurrent j_c is proportional to $((T_c - T)^{3/2})$
- The relation between velocity and supercurrent is linear almost all the way up to a given maximum velocity
- The squared ratio of the maximal condensate to the minimal condensate is equal to two thirds

Furthermore, the $\Phi^{(0)}$ in Eq. (2.8) is the charge density and $\Phi^{(1)}$ is the chemical potential. We summarize these results as

$$\Phi = \mu - \rho \ln z,$$

(5.1)

and

$$A_x = -v_x + j_x \ln z$$

(5.2)
on the boundary, where μ is the chemical potential, ρ is the charge density, v_x is the superfluid velocity and j_x is the supercurrent.

We state that there should be a supercurrent in the $(1 + 1)$ dimensional holographic superconductor when we include A_x in the bulk theory, which corresponds to the coefficient of the logarithmic term on the boundary (see Eq. (2.9)). The existence of supercurrent in a holographic superconductor means there should also be superconducting tunneling effect by building a holographic Josephson Junction. [31–34] Then another way to confirm the conclusion that $A_x^{(0)}$ is the supercurrent is to find the holographic Josephson Junction in the AdS_3 setup of superconductors. We leave this for future work.

Acknowledgements

It is a pleasure to thank Xin Gao, Matthias Kaminski, Hai-Qing Zhang and Zhe-Yong Fan for valuable discussions. H. B. Zeng is supported by the Fundamental Research Funds for the Central Universities (Grant No. 1107020117) and the China Postdoctoral Science Foundation (Grant No. 20100481120).

References

[1] J. M. Maldacena, “The large N limit of superconformal field theories and supergravity,” Adv. Theor. Math. Phys. 2 (1998) 231 [arXiv:hep-th/9711200].

[2] S. S. Gubser, I. R. Klebanov and A. M. Polyakov, “Gauge Theory Correlators from Non-Critical String Theory,” Phys. Lett. B 428 (1998) 105 [arXiv:hep-th/9802109].
[3] E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2 (1998) 253 [arXiv:hep-th/9802150].

[4] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and Y. Oz, “Large N Field Theories, String Theory and Gravity,” Phys. Rept. 323 (2000) 183 [arXiv:hep-th/9905111].

[5] S. S. Gubser, “Breaking an Abelian gauge symmetry near a black hole horizon,” Phys. Rev. D 78 (2008) 065034.

[6] S. A. Hartnoll, C. P. Herzog and G. T. Horowitz, “Building a Holographic Superconductor,” Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295].

[7] S. A. Hartnoll, C. P. Herzog and G. T. Horowitz, “Holographic Superconductors,” JHEP 12 (2008) 015 [arXiv:0810.1563 [hep-th]].

[8] S. S. Gubser, “Colorful horizons with charge in anti-de Sitter space,” Phys. Rev. Lett. 101 (2008) 191601.

[9] S. S. Gubser and S. S. Pufu, “The gravity dual of a p-wave superconductor,” JHEP 11 (2008) 033 [arXiv:0805.2960].

[10] M. M. Roberts and S. A. Hartnoll, “Pseudogap and time reversal breaking in a holographic superconductor,” JHEP 08 (2008) 035 [arXiv:0805.3898].

[11] M. Ammon, J. Erdmenger, M. Kaminski and P. Kerner, “Superconductivity from gauge/gravity duality with flavor,” Phys. Lett. B 680 (2009) 516 [arXiv:0810.2316].

[12] M. Ammon, J. Erdmenger, M. Kaminski and P. Kerner, “Flavor Superconductivity from Gauge/Gravity Duality,” JHEP 10 (2009) 067 [arXiv:0903.1864].

[13] Jiunn-Wei Chen, Ying-Jer Kao, Debaprasad Maity, Wen-Yu Wen, Chen-Pin Yeh, “Towards A Holographic Model of D-Wave Superconductors ,” Phys. Rev. D 81 (2010) 106008.

[14] Francesco Benini, Christopher P. Herzog, and Amos Yarom, “Holographic Fermi arcs and a d-wave gap,” Phys. Lett. B 701 (2011) 626 [arXiv:1006.0731v1].

[15] Francesco Benini, Christopher P. Herzog, Rakibur Rahman, Amos Yarom, “Gauge gravity duality for d-wave superconductors: prospects and challenges ” JHEP 11 (2010) 137 [arXiv:1007.1981].

[16] G. T. Horowitz and M. M. Roberts, “Holographic Superconductors with Various Condensates,” Phys. Rev. D 78 (2008) 126008 [arXiv:hep-th/0810.1077].

[17] Jie Ren “One-dimensional holographic superconductor from AdS3/CFT2 correspondence,” JHEP 11 (2010)055 [arXiv:1008.3904v3].

[18] Xin Gao, M. Kaminski, H. B. Zeng and H. Q. Zhang “Non-Equilibrium Field Dynamics of an Honest Holographic Superconductor ,” [arXiv:1204.3103].

[19] O. Domenech, M. Montull, A. Pomarol, A. Salvio, and P. J. Silva, Emergent Gauge Fields in Holographic Superconductors, JHEP 08 (2010) 033, [arXiv:1005.1776].

[20] M. Montull, O. Pujolas, A. Salvio, and P. J. Silva, Magnetic Response in the Holographic Insulator/Superconductor Transition, [arXiv:1202.0006].

[21] P. J. Silva, Dynamical gauge fields in holographic superconductors, Fortsch.Phys. 59 (2011) 756C761.
[22] M. Montull, O. Pujolas, A. Salvio, and P. J. Silva, “Flux Periodicities and Quantum Hair on Holographic Superconductors,” Phys. Rev. Lett. 107 (2011) 181601, [arXiv:1105.5392].

[23] L.-Y. Hung and A. Sinha, “Holographic quantum liquids in 1+1 dimensions,” JHEP 01 (2010) 114, [arXiv:0909.3526].

[24] Daniel Arean, Matteo Bertolini, Jarah Evslin, Tomas Prochazka, “On Holographic Superconductors with DC Current,” [arXiv:1003.5661].

[25] D. Marolf and S. Ross, “Boundary conditions and dualities: vector fields in AdS/CFT,” JHEP 11 (2006) 085 [arXiv:hep-th/0606113].

[26] Kristan Jensen, “Chiral anomalies and AdS/CMT in two dimensions,” JHEP 01 (2011) 109 [arXiv:1012.4831v1].

[27] T. Andrade, J. I. Jottar, and R. G. Leigh, “Boundary Conditions and Unitarity: the Maxwell-Chern-Simons System in AdS/CFT²,” [arXiv:1111.5054].

[28] C. P. Herzog, P. K. Kovtun and D. T. Son, “Holographic model of superfluidity,” Phys. Rev. D 79 (2009) 066002 [arXiv:0809.4870].

[29] Pallab Basu, Anindya Mukherjee, Hsien-Hang Shieh, “Supercurrent: Vector Hair for an AdS Black Hole,” Phys. Rev. D 79 (2009) 045010 [arXiv:0809.449].

[30] H. B. Zeng, W. M. Sun, H. S. Zong, “Supercurrent in p-wave Holographic Superconductor,” Phys. Rev. D 83 (2011) 046010 [arXiv:1010.5039].

[31] Gary T. Horowitz, Jorge E. Santos, Benson Way, “A Holographic Josephson Junction,” Phys. Rev. Lett 106 (2011) 221601 [arXiv:1101.3326v4].

[32] Yong-Qiang Wang, Yu-Xiao Liu, Zhen-Hua Zhao, “Holographic p-wave Josephson junction,” [arXiv:1109.4426].

[33] Yong-Qiang Wang, Yu-Xiao Liu, Zhen-Hua Zhao, “Holographic Josephson Junction in 3+1 dimensions,” [arXiv:1104.4303].

[34] Elias Kiritsis, Vasilis Niarchos, “Josephson Junctions and AdS/CFT Networks,” JHEP 07 (2011) 112 [arXiv:1105.6100].