Fluorogenic and bioorthogonal modification of RNA using photoclick chemistry

Katja Krell and Hans-Achim Wagenknecht

Supplementary Information

Institute of Organic Chemistry
Karlsruhe Institute of Technology (KIT)
Fritz-Haber-Weg 6
76131 Karlsruhe, Germany

E-Mail: Wagenknecht@kit.edu

Table of Contents
1. 1H/13C NMR spectra and MS analyses ... 2
2. Optical Spectroscopy .. 25
3. MALDI spectra of RNA strands .. 31
4. Determination of yields ... 40
5. Calculation of extinction coefficients .. 44
6. References ... 44
1. 1H/13C NMR spectra and MS analyses

Compound 2

Figure S1. 1H NMR spectrum (400 MHz) of 2. Spectrum contains traces of dichloromethane ($\delta=5.76$ ppm).
Figure S2. 13C NMR spectrum (101 MHz) of 2. Spectrum contains traces of dichloromethane ($\delta=54.8$ ppm).
Figure S3. MS (FAB) analysis of 2.

Figure S4. HR-MS (FAB) analysis of 2.
Figure S5. 1H NMR spectrum (400 MHz) of 3. Spectrum contains traces of dichloromethane ($\delta=5.76$ ppm).
Figure S6. 13C NMR spectrum (101 MHz) of 3. Spectrum contains traces of dichloromethane (δ=54.8 ppm).
Figure S7. MS (FAB) analysis of 3.

Figure S8. HR-MS (FAB) analysis of 3.
Figure S9. 1H NMR spectrum (400 MHz) of 4. Spectrum contains traces of toluene ($\delta=7.25$ ppm, 7.18 ppm, 2.30 ppm), dichloromethane ($\delta = 5.76$ ppm) and ethyl acetate ($\delta = 1.17$ ppm, 4.03 ppm, 1.99 ppm).
Figure S10. 13C NMR spectrum (101 MHz) of 4. Spectrum contains traces of toluene ($\delta = 137.4$ ppm, 128.9 ppm, 128.2 ppm, 125.3 ppm, 21.0 ppm), dichloromethane ($\delta = 54.9$ ppm) and ethyl acetate ($\delta=170.3$ ppm, 59.8 ppm, 20.7 ppm, 14.1 ppm).
Figure S11. MS (FAB) analysis of 4.

Figure S12. HR-MS (FAB) analysis of 4.
Compound 5

Figure S13. 1H NMR spectrum (400 MHz) of 5. Spectrum contains traces of dichloromethane ($\delta=5.76$ ppm).
Figure S14. 13C NMR spectrum (101 MHz) of 5.
Figure S15. MS (FAB) analysis of 5.

Figure S16. HR-MS (FAB) analysis of 5.
Compound 6

Figure S17. 1H NMR spectrum (500 MHz) of 6. The spectrum contains traces of methanol ($\delta=4.01$ ppm, 3.16 ppm).
Figure S18. 13C NMR spectrum (126 MHz) of 6. The spectrum contains traces of methanol ($\delta=48.6$ ppm).
Figure S19. MS (FAB) analysis of 6.

Figure S20. HR-MS (FAB) analysis of 6.
Figure S21. 1H NMR spectrum (500 MHz) of 7. Spectrum contains traces of dichloromethane ($\delta=5.76$ ppm).
Figure S22. 13C NMR spectrum (126 MHz) of 7. Spectrum contains traces of dichloromethane ($\delta=54.9$ ppm).
Figure S23. MS (MALDI-TOF) analysis of 7.
Figure S24. 1H NMR spectrum (500 MHz) of 8. Spectrum contains traces of dichloromethane ($\delta=5.76$ ppm).
Figure S25. 13C NMR spectrum (126 MHz) of 8. Spectrum contains traces of dichloromethane ($\delta=54.9$ ppm).
Figure S26. MS (FAB) analysis of 8.

Figure S27. HR-MS (FAB) analysis of 8.
Compound 9

Figure S28. 31P NMR spectrum (202 MHz) of 9.
Figure S29. MS (MALDI-TOF) analysis of 9.
2. Optical Spectroscopy

![Graph showing UV/Vis absorbance of RNA1 and RNA2](image)

Figure S30. UV/Vis absorbance of RNA1 and RNA2 (2.5 μM) in 10 mM Na-P buffer, 250 mM NaCl, pH 7. The spectra were normalized to evaluate the relative tetrazole absorbances.

![Graph showing UV/Vis absorbance recorded during reaction](image)

Figure S31. UV/Vis absorbance recorded during reaction of RNA1 (2.5 μM) with Cy3-maleimide (3.75 μM, 1.50 equiv.), irradiated at 300 nm (LED) in 10 mM Na-P buffer, 250 mM NaCl, pH 7.
Figure S32. Fluorescence recorded during reaction of RNA1 (2.5 μM) with Cy3-maleimide (3.75 μM, (1.50 equiv.), irradiated at 300 nm (LED) in 10 mM Na-Pi buffer, 250 mM NaCl, pH 7. Fluorescence excitation at 358 nm.

Figure S33. Fluorescence recorded during reaction of RNA1 (2.5 μM) with AF555-maleimide (3.75 μM, (1.50 equiv.), irradiated at 300 nm (LED) in 10 mM Na-Pi buffer, 250 mM NaCl, pH 7. Fluorescence excitation at 358 nm.
Figure S34. UV/Vis absorbance recorded during reaction of RNA1 (2.5 μM) with AF647-maleimide (3.75 μM, 1.50 equiv.), irradiated at 300 nm (LED) in 10 mM Na-Pi buffer, 250 mM NaCl, pH 7.

Figure S35. Fluorescence recorded during reaction of RNA1 (2.5 μM) with AF647-maleimide (3.75 μM, 1.50 eq), irradiated at 300 nm (LED) in 10 mM Na-Pi buffer, 250 mM NaCl, pH 7. Fluorescence excitation at 358 nm.
Figure S36. UV/vis absorbance recorded during reaction of RNA2 (2.5 μM) with Cy3-maleimide (3.75 μM, 1.50 equiv.), irradiated at 300 nm (LED) in 10 mM Na-Pi buffer, 250 mM NaCl, pH 7.

Figure S37. Fluorescence recorded during reaction of RNA2 (2.5 μM) with Cy3-maleimide (3.75 μM, 1.50 equiv.), irradiated at 300 nm (LED) in 10 mM Na-Pi buffer, 250 mM NaCl, pH 7. Fluorescence excitation at 358 nm.
Figure S38. UV/Vis absorbance recorded during reaction of RNA2 (2.5 μM) with AF555-maleimide (3.75 μM, 1.50 equiv.), irradiated at 300 nm (LED) in 10 mM Na-Pi buffer, 250 mM NaCl, pH 7.

Figure S39. Fluorescence recorded during reaction of RNA2 (2.5 μM) with AF555-maleimide (3.75 μM, 1.50 equiv.), irradiated at 300 nm (LED) in 10 mM Na-Pi buffer, 250 mM NaCl, pH 7. Fluorescence excitation at 358 nm.
Figure S40. UV/Vis absorbance recorded during reaction of RNA2 (2.5 μM) with AF647-maleimide (3.75 μM, 1.50 equiv.), irradiated at 300 nm (LED) in 10 mM Na-Pi buffer, 250 mM NaCl, pH 7.

Figure S41. Fluorescence recorded during reaction of RNA2 (2.5 μM) with AF647-maleimide (3.75 μM, 1.50 equiv.), irradiated at 300 nm (LED) in 10 mM Na-Pi buffer, 250 mM NaCl at pH 7. Fluorescence excitation at 358 nm.
3. MALDI spectra of RNA strands

RNA1

Figure S42. MS (MALDI-TOF) analysis of RNA1. Calculated mass [M⁺]: 5544.6; m/z=5546.99 [M⁺], 5584.98 [M+K⁺].
Figure S43. MS (MALDI-TOF) analysis of RNA1-Cy3 adduct. Calculated mass [M⁺]: 6253.9; m/z=5523.65 [RNA1-N₂⁺], 5541.82 [RNA1-N₂+H₂O⁺], 6261.44 [M⁺].
Figure S44. MS (MALDI-TOF) analysis of RNA1-AF555 adduct. Calculated mass: 6485.9 [M$^+$]; m/z=5518.14 [RNA1-N$_2$$^+$], 5536.19 [RNA1-N$_2$+H$_2O^+$], 6486.22 [M$^+$]. The molecular mass of AF555-maleimide was reported in literature and verified by MS (MALDI-TOF) analysis.1
Figure S45. Zoomed area of MS (MALDI-TOF) analysis (Figure S44) of RNA1-AF555 adduct.
Figure S46. MS (MALDI-TOF) analysis of RNA1-AF647 adduct. Calculated Mass [M⁺]: 6497.9; m/z=5519.49 [RNA1-N₂⁺], 5537.50 [RNA1-N₂+H₂O⁺], 6499.90 [M⁺]. The molecular mass of AF647-maleimide was reported in literature and verified by MS (MALDI-TOF) analysis.¹
Figure S47. Zoomed area of MS (MALDI-TOF) analysis (Figure S46) of RNA1-AF647 adduct.
Figure S48. MS (MALDI-TOF) analysis of RNA2. Calculated mass [M⁺]: 5544.6; m/z= 5546.50 [M⁺], 5584.48 [M+K⁺], 5622.49 [M+2K⁺], 5659.92 [M+3K⁺].
Figure S49. MS (MALDI-TOF) analysis of RNA2-Cy3 adduct. Calculated mass [M⁺]: 6253.9; m/z=5516.65 [RNA2-N₂⁺], 5534.67 [RNA2-N₂+H₂O⁺], 6254.67 [M⁺].

Figure S50. MS (MALDI-TOF) analysis of RNA2-AF555 adduct. Calculated Mass [M⁺]: 6485.9; m/z=5519.45 [RNA2-N₂⁺], 5537.50 [RNA2-N₂+H₂O⁺], 6485.06 [M⁺]. The molecular mass AF555-maleimide was reported in literature and verified by MS (MALDI-TOF) analysis.¹
Figure S51. Zoomed area of MS (MALDI-TOF) analysis (Figure S50) of RNA2-AF555 adduct.
Figure S52. MS (MALDI-TOF) analysis of RNA2-AF647 adduct. Calculated mass [M⁺]: 6497.9; m/z=5519.01 [RNA2-N₂⁺], 5537.02 [RNA2-N₂+H₂O⁺], 6499.74 [M⁺]. The molecular mass AF647-maleimide was reported in literature and verified by MS (MALDI-TOF) analysis.¹

Figure S53. Zoomed area of MS (MALDI-TOF) analysis (Figure S53) of RNA2-AF647 adduct.

4. Determination of yields

A solution of RNA (2.5 µM) and of the dye (3.75 µM) in 10 mM Na-Pi buffer, 250 mM NaCl, pH 7, with a total volume of 500 µL was irradiated at 300 nm (LED) in a 10 mm quartz glass cuvette for 30 minutes. To remove the excess dye, the solution was purified via illustra™ NAP-5 columns (GE Healthcare) using the standard protocol. The eluted sample was lyophilized and redissolved in water (500 µL). The concentration was calculated spectrophotometrically by Lambert-Beer-Law using the extinction coefficient provided by the manufacturers of the clicked dye: ε₅₄₈ (Cy3) = 162 000 L mol⁻¹ cm⁻¹ (Lumiprobe); ε₅₅₅ (AF555) = 158 000 L mol⁻¹ cm⁻¹ (JenaBioscience); ε₆₄₈ (AF647) = 270 000 L mol⁻¹ cm⁻¹ (JenaBioscience).
Figure S54. UV/vis absorbance of “photoclicked” RNA1 dye adducts (reaction with 1.50 equiv. dye-maleimide) strands after purification. \(c_{\text{AF647}} = 1.19 \, \mu \text{M} \equiv 48\% \text{ yield}, \ c_{\text{AF555}} = 1.96 \, \mu \text{M} \equiv 78\% \text{ yield}, \ c_{\text{Cy3}} = 0.67 \, \mu \text{M} \equiv 27\% \text{ yield}.

Figure S55. Fluorescence of “photoclicked” RNA1 dye adducts (reaction with 1.50 equiv. dye-maleimide) after purification. \(c_{\text{AF647}} = 1.19 \, \mu \text{M}, \ c_{\text{AF555}} = 1.96 \, \mu \text{M}, \ c_{\text{Cy3}} = 0.67 \, \mu \text{M} \).
Figure S56. UV/vis absorbance of “photoclicked” RNA2 dye adducts (reaction with 1.50 equiv. dye-maleimide) after purification. c_{AF647}=1.20 μM \pm 48% yield, c_{AF555}=2.10 μM \pm 84% yield, c_{Cy3}=0.77 μM \pm 31% yield.

Figure S57. Fluorescence of “photoclicked” RNA2 dye adducts (after reaction with 1.50 equiv. dye-maleimide) after purification. c_{AF647}=1.20 μM, c_{AF555}=2.10 μM, c_{Cy3}=0.77 μM.
Figure S58. UV/vis absorbance of “photoclicked” RNA1-Cy3 adduct (reaction with 10.0 equiv. Cy3-maleimide) after purification. $c_{\text{Cy3}}=1.76 \, \mu M \pm 70\%$ yield.

Figure S59. Fluorescence spectrum of “photoclicked” RNA2-Cy3 adduct (reaction with 10.0 equiv. Cy3-maleimide) after purification. $c_{\text{Cy3}}=1.76 \, \mu M$.
5. Calculation of extinction coefficients

![Graph showing absorbance vs. wavelength for adenosine, cytidine, guanosine, uridine, and an artificial nucleoside 6.]

Figure S60. UV/vis absorbance of A, C, G, U and 6 in comparison.

The molar extinction coefficient ε_{300} were calculated for the natural nucleosides and the artificial building block 6 using the ε_{260} values and the recorded UV/vis absorbances (Figure S60) using the Lambert-Beer-Law.

Table S1. Molar extinction coefficients of the natural bases and the artificial nucleoside 6.

nucleoside	ε_{260} [L mol$^{-1}$ cm$^{-1}$]	concentration [µmol L$^{-1}$]	ε_{300} [L mol$^{-1}$ cm$^{-1}$]
Adenosine	15,400	52.6	\approx60
Cytidine	7,400	70.9	\approx260
Guanosine	11 500	42.8	\approx110
Uridine	8,700	42.9	\approx90
6	13,800	18.4	20,300

6. References

1. Tridgett, M.; Moore-Kelly, C.; Duprey, J.-L. H. A.; Iturbe, L. O.; Tsang, Chi W.; Little, H. A.; Sandhu, S. K.; Hicks, M. R.; Dafforn, T. R.; Rodger, A., Linear dichroism of visible-region chromophores using M13 bacteriophage as an alignment scaffold. *RSC Adv.* **2018**, *8* (52), 29535-29543.