Online Fair Division: analysing a Food Bank problem

Martin Aleksandrov, Haris Aziz, Serge Gaspers
UNSW and NICTA, Kensington 2033, Australia

Toby Walsh
UNSW and NICTA, Kensington 2033, Australia

Abstract

We study an online model of fair division designed to capture features of a real world charity problem. We consider two simple mechanisms for this model in which agents simply declare what items they like. We analyse several axiomatic properties of these mechanisms like strategy-proofness and envy freeness. Finally, we perform a competitive analysis and compute the price of anarchy.

1 Introduction

Resource allocation is a fundamental problem facing society. How do we share scarce and often costly resources between different parties? Due to environmental, economic and technological changes, there is an every increasing pressure on the allocation of resources. The theoretical foundations of resource allocation have been developed using simple abstract models. For example, one simple model for resource allocation is fair division. Fair division problems are typically categorised along several orthogonal dimensions: divisible or indivisible goods, centralised or decentralised mechanisms, cardinal or ordinal preferences, etc. (e.g. Chevaleyre et al., 2006). However, such categories do not capture the richness of many real world fair division problems. This has motivated a call to develop more complex and realistic models and mechanisms [Walsh, 2015]. In this paper, we respond to this call by studying mechanisms for an online fair division problem first proposed in [Walsh, 2014].

2 The Food Bank problem

Unfortunately, even in developed countries, poverty remains a serious problem. For example, the 2012 report “Poverty In Australia” estimated that over 2 million people (12.5% of the population) are within the official definition of poverty (less than half the median income) [Davidson, 2012]. Amongst the young and old, the statistics are even worse (roughly 1 in 6 children, and 1 in 4 pensioners). These people struggle to feed themselves and increasingly call upon food banks to help. Food Bank Australia sees the demand on their services increase by over 10% per annum. For this reason, they are keen to improve the efficiency of their operations.

In cooperation with a social startup, FoodBank Local, we have been helping Food Bank Australia develop technologies to operate more effectively. So far, this has involved building an app to help collect and deliver donated food. This app uses our vehicle routing solver to route their trucks. We are now turning our attention to how the donated food is allocated to different charities. This is an interesting fair division problem. It has many traditional features. We want to allocate food fairly between the different charities that feed different sectors of the community. Goods are mostly indivisible. The allocation does not use money as these are all charities. However, the problem also has other features not traditionally found in the academic literature on fair division. One of the main novelties is that it is online. Food is donated throughout the day and we must start allocating and distributing it almost immediately, before we know what else will be donated. We have therefore formulated an online model of their fair division problem, and studied mechanisms that can fairly and efficiently allocate the donated food.

3 Online fair division

We have k agents. Each agent has some (private) utility for the m items. One of the m items appears at each time step, and the allocation mechanism must assign it to one of the agents. The next item is then revealed. This continues for m steps. To allocate items in this online model, we consider a simple class of bidding mechanisms in which agents merely declare if they like items or not. For instance, the LIKE mechanism allocates the next item uniformly at random between agents that declare that they like the item. An allocation is a possible outcome of the LIKE mechanism if each item is given to an agent that values it, whilst an allocation is the necessary outcome if no two agents like the same item, and each item is given to the agent that values it, or to no one if no agent likes it.

One problem with the LIKE mechanism is that agents can get unlucky. It is possible for them to bid for every item but have every coin toss go against them and not be allocated anything at all. This is highly undesirable in our Food Bank setting. A whole sector of the population will then not be fed that night. We therefore consider a slightly more sophisticated mechanism that helps tackle this problem. The BALANCED LIKE mechanism tries to balance the number of items allocated to agents compared to the LIKE mech-
anism. It allocates the next item uniformly at random between those agents that value it that have so far received the fewest items. The BALANCED LIKE mechanism is less likely to leave agents empty handed than the LIKE mechanism. In particular, an agent is guaranteed to be allocated at least one item for every k items that they like. However, there is no guarantee that it necessarily returns balanced allocations.

Given the order of items, we can compute the actual outcome of both the LIKE and BALANCED LIKE mechanisms efficiently. Each of the m steps takes $O(k)$ time. Supposing agents bid sincerely, computing the probability an agent gets a particular item, as well as their expected utility is more challenging as there are $O(k^m)$ possible outcomes. With the LIKE mechanism, the probability that agent i gets item j is simply $1/q_j$ where q_j is the number of agents who like j. The expected utility is then $\sum_{j=1}^{m} \frac{u_i(j)}{q_j}$ where $u_i(j)$ is the private utility of agent i for item j. With the BALANCED LIKE mechanism, we can compute the probability that an agent gets a particular item using dynamic programming. This exploits the fact that the mechanism is Markovian. It doesn’t care how we get to a particular state, just how many items each agent has at this point. The states represent the number of items allocated to each agent. We can compute the probability that an agent gets a particular item, as well as the expected utility of an agent in $O(mk^2)$ space and time. Note that k is typically smaller than m so $O(m^k)$ is likely better than $O(k^m)$.

4 Strategy-proofness

As is common in the literature, we will consider the axiomatic properties of these mechanisms. For example, we say that a mechanism for online fair division is strategy-proof if and only if, with knowledge of the items still to be revealed, the order in which they will be revealed, and the private utilities of the other agents, an agent cannot increase their expected utility by bidding differently to their true preferences. We might prefer strategy-proof mechanisms as agents cannot manipulate the outcome to improve their utility at the expense of agents who are less sophisticated or knowledgeable.

Theorem 1 The LIKE mechanism is strategy-proof.

With the BALANCED LIKE mechanism, balancing the size of the allocations has an unfortunate side effect: an agent can now manipulate the outcome to increase their expected utility by bidding strategically. In particular, an agent may choose not to bid for an item now in the knowledge that this will bias future allocation rounds in their favour. Such manipulations may decrease the equitability of the final allocation.

Theorem 2 The BALANCED LIKE mechanism is not strategy-proof even when restricted to 0/1 utilities.

Proof. Suppose we are allocating the items a, b and c in this order between agents 1, 2 and 3 with agent 1 having utility 1 for all items, agent 2 for a and c, and agent 3 for b alone. Then bidding sincerely gives agent 1 an expected utility of $\frac{2}{3}$ but this can be increased to $\frac{4}{3}$ if agent 1 strategically bids only for items b and c supposing the other agents bid sincerely. □

It is a strong assumption to suppose that a strategic agent has full knowledge of the items still to be revealed, the order in which they will be revealed, and the private utilities of the agents for these items. In practice, agents may only have partial knowledge. This will greatly limit the willingness of, say, a risk averse agent to be strategic. For instance, if there is a chance that only items that you do not value will arrive in the future, a risk averse agent will always sincerely bid for an item that arrives now which they value. Interestingly, when limited to just two agents and bivalent utilities, the BALANCED LIKE mechanism becomes strategy-proof even under our strong assumption of complete knowledge.

Theorem 3 With only 2 agents and 0/1 utilities, the BALANCED LIKE mechanism is strategy-proof.

Proof. (Sketch) Without loss of generality, it is sufficient to prove that truth-telling is the dominant strategy for agent 1. The general idea of the proof is that we focus on the last item that agent 1 misreported. We show that agent 1 does at least as well or strictly better by expressing a preference in which he does not misreport about this item. By induction, agent 1 does not have an incentive to misreport any item.

Consider any ordering of the items where in each round i, item o_i is allocated to either to agent 1, 2, or neither of them. We want to show that agent 1 has no incentive to be untruthful even if he is aware of the ordering beforehand. We view the allocation process as an allocation tree as follows. A node labelled $(i, (x, y))$ denotes a decision point in the allocation process when the i-th item is allocated, x denotes the number of items already allocated to agent 1 and y denotes the number of items already allocated to agent 2. Depending on what allocation decision is taken from node $(i, (x, y))$, we arrive at child node of $(i, (x, y))$, which is $(i + 1, (x + 1, y))$, $(i + 1, (x, y + 1))$, or $(i + 1, (x, y))$, depending on whether item o_i is allocated to agent 1, agent 2, or neither of them. Let $T(i, (x, y))$ be the allocation sub-tree rooted at i which x items have been allocated to agent 1 and y items have been allocated to agent 2. Let $U_1(T(i, (x, y)))$ be the total expected utility for agent 1 starting from the node $(i, (x, y))$ when agents report truthfully.

Observation 1 The allocation tree has the following memory-less property: if there is a node v labelled $(i, (x, y))$ and a node v' labelled $(i, (x', y'))$ such that $x - y = x' - y'$, then the sub-trees rooted at v and v' are identical, irrespective of how items were allocated previously.

The following lemmas can be proved by analysing the allocation trees. The base cases $i = m$ are trivial. For the inductive step, we prove that if the statement holds for $i + 1$ to m, then it also holds for i.

Lemma 1 For any integers x and y, and for all $i = 1, \ldots, m$, $U_1(T(i, (x, y))) \geq U_1(T(i, (x - 1, y + 1)))$

Lemma 2 For any integers x and y, and for all $i = 1, \ldots, m$, $U_1(T(i, (x, y))) \geq U_1(T(i, (x - 1, y)))$

Lemma 3 For any integers x and y, and for all $i = 1, \ldots, m$, $U_1(T(i, (x, y))) \geq U_1(T(i, (x + 1)))$

Using these lemmas, we can prove that agent 1 has no incentive to misreport any item. Let u'_i denote agent 1’s insincere bid, let o_i denote the last item for which agent 1 does not bid sincerely, and let u_i denote the bid obtained from u'_i by voting sincerely for item o_i. Let us further suppose that we
are at node \((i, (x, y))\) and \(u'_i(o_i) = 1\) whilst \(u_1(o_1) = 0\). By Observation \([1]\) and Lemma \([2]\), there is no incentive for agent 1 to approve an unapproved item. Therefore, assume that agent 1 does not bid for an item he likes: \(u'_1(o_1) = 0\) and \(u_1(o_1) = 1\). We focus on the node \((i, (x, y))\) which leads to different subtrees depending on whether agent 1 reports \(u_1\) or \(u'_1\).

- If agent 2 does not bid for \(o_i\), then agent 1 gets \(o_1\) for sure under \(u_1\) but no one gets \(o_1\) if agent 1 reports \(u'_1\). Under \(u_1\) we arrive at a node labelled \((i+1, (x+1, y))\) whereas under \(u'_1\) we arrive at a node labelled \((i + 1, (x, y))\). By Lemma \([2]\), \(u_1\) yields at least as much utility as \(u'_1\) since \(U_1(T(i + 1, (x + 1, y))) \geq U_1(T(i + 1, (x, y)))\).

- If agent 2 bids for \(o_i\) and \(x < y\), then agent 1 receives item \(i\) under \(u_1\) and agent 2 receives the item under \(u'_1\). Since, by Lemma \([1]\) \(U_1(T(i + 1, (x + 1, y))) \geq U_1(T(i, (x, y + 1)))\), reporting \(u_1\) yields at least as much utility as \(u'_1\) since \(U_1(T(i + 1, (x, y + 1))) \geq U_1(T(i + 1, (x + 1, y)))\) and thus \(u_1\) yields at least as much utility to agent 1 as \(u'_1\).

- If agent 2 bids for \(o_i\) and \(x < y\), then under \(u_1\) there are two children labelled \((i + 1, (x + 1, y))\) and \((i + 1, (x, y + 1))\) of \((i, (x, y))\). But under \(u'_1\), there is only one child \((i + 1, (x, y + 1))\) of \((i, (x, y))\). By Lemma \([2]\) \(U_1(T(i + 1, (x, y + 1))) \geq \frac{1}{k} U_1(T(i + 1, (x, y + 1)))\) and thus \(u_1\) yields at least as much utility to agent 1 as \(u'_1\).

- Finally, if agent 2 bids for \(o_i\) and \(x > y\), then agent 2 receives item \(o_i\), no matter how agent 1 bids. Therefore, agent 1 has no incentive to report \(u'_1\) rather than \(u_1\).

This completes the proof of the theorem. \(\square\)

Intuitively, one might hope that this theorem can be generalized to an arbitrary number of agents where each item is valued by at most 2 agents. However, the example in the proof of Theorem \([2]\) shows this is not possible, even for 3 agents. It is also easy to give examples with more general utilities where the Balanced Like mechanism is not strategy-proof even with 2 agents.

Example 1 Consider 2 agents and 2 items, \(a\) and \(b\). Agent 1 has utility \(\frac{1}{2}\) for both items, and agent 2 has utility \(\frac{1}{4}\) for item \(a\) and \(\frac{3}{4}\) for item \(b\), normalized to sum up to 1. If agents bid sincerely for both items, then agent 2 has an expected utility of \(\frac{1}{2}\). However, by bidding strategically only for item \(b\), agent 2 can increase their expected utility to \(\frac{3}{4}\). Agent 1 has no incentive to bid strategically and receives the optimal utility of \(\frac{1}{2}\) in both cases. In this case, strategic behaviour leaves the egalitarian welfare unchanged, and actually increases the overall utilitarian welfare.

5 Impact on welfare

Strategic play can have both a positive or negative effect on welfare. We consider pure Nash equilibria in which no agent can get strictly greater expected utility by changing their strategy. Although the Like mechanism is strategy-proof, there are pure Nash equilibria that have much smaller egalitarian and utilitarian welfare than sincere play for both mechanisms.

Theorem 4 There are instances with 0/1 utilities and \(k\) agents, where the egalitarian and utilitarian welfare of sincere play in the Like and Balanced Like is \(k\) times the corresponding welfare at least one pure Nash equilibrium.

Proof. Consider an instance with \(k\) agents and \(k\) items. For each \(i \in \{1, \ldots, k\}\), agent \(i\) values item \(i\) and no other item. For sincere play, item \(i\) is assigned to agent \(i\) in both the Like and Balanced Like mechanisms, giving an egalitarian utility of 1 and a utilitarian utility of \(k\). Let us now consider the pure Nash equilibrium where each agent bids for all items. In the Like mechanism, with these bids, each agent is allocated each item with probability \(1/k\). Since each agent values exactly one item, this gives an expected egalitarian welfare of \(1/k\) and an expected utilitarian welfare of 1. In the Balanced Like mechanism, each agent is allocated exactly one item. The probability that this item is the one she likes is \(1/k\), giving again an expected egalitarian welfare of \(1/k\) and an expected utilitarian welfare of 1. \(\square\)

In the Like mechanism, a pure Nash equilibrium cannot lead to greater egalitarian or utilitarian welfare than sincere play as no player has an incentive to not bid for an item she likes. The example in the last proof has many agents that bid for items for which they have no value. Such bids do not hurt an individual’s (expected) utility but neither do they help. We will consider a subset of pure Nash equilibria by supposing a small utility cost to liking (or taking delivery of) an item. We call these *simple* pure Nash equilibria. Note that sincere play is the only simple pure Nash equilibria for the Like mechanism, and therefore, there is no difference in welfare between sincere play and simple pure Nash equilibria.

For the Balanced Like mechanism, simple pure Nash equilibria have the same utilitarian utility as sincere play, as each item is assigned to an agent who likes it. However, we will show that a simple pure Nash equilibrium may have smaller or greater egalitarian utility than sincere play.

Theorem 5 There are instances with 0/1 utilities where the expected egalitarian welfare of sincere play in the Balanced Like mechanism is strictly greater than the expected egalitarian welfare of each simple pure Nash equilibrium.

Proof. The proof of Theorem \([2]\) gives an instance where the unique simple pure Nash equilibrium has less expected egalitarian utility than sincere play. \(\square\)

Theorem 6 There are instances with 0/1 utilities where the expected egalitarian welfare of sincere play in the Balanced Like mechanism is strictly smaller than the expected egalitarian welfare of each simple pure Nash equilibrium.

Proof. Consider the following instance.

	a	b	c	d	e	f
Agent 1	1	1	1	0	0	0
Agent 2	1	0	1	0	1	1
Agent 3	1	1	0	1	0	1

Running the Balanced Like mechanism, one always obtains an allocation with egalitarian welfare 1, except when the items are allocated to the agents according to the sequence of agents \((2, 1, 1, 3, 2, 3)\), in which case the egalitarian welfare is 2. By analysing the allocation tree of the Balanced Like mechanism, one can see that the instance has a unique simple pure Nash equilibrium, which favours this allocation.
We also consider a weaker notion. An agent has free ex post/ex ante of their allocation. We say that a mechanism is bounded if each agent receives this item in their expected utility of the other agent's allocation is at most their utility of their allocation. A mechanism is bounded envy free ex post/ex ante if each agent has bounded envy ex ante and bounded envy free ex post.

To show that the LIKE mechanism is bounded envy free ex post, we perform induction on the number of items. In the base case, we have no items and consider fairness notions both ex post (with respect to the actual allocation achieved in a particular world) and ex ante (with respect to the expected utility over all possible worlds).

One notion of fairness commonly considered in the fair division literature is envy freeness [Brans and Taylor, 1996]. An agent envies ex post another agent if their utility of the other agent's allocation is greater than the utility of their allocation. Similarly, an agent envies ex ante another agent if their expected utility of the other agent's allocation is greater than their expected utility of their allocation. A mechanism is envy free ex post/ex ante if no agent envies another agent's allocation. We also consider a weaker notion. An agent has bounded envy ex post of another agent if there exists a constant r such that in every case their utility of the other agent’s allocation is at most r greater than their utility of their allocation. Similarly, an agent has bounded envy ex ante of another agent if there exists a constant r such that their expected utility of the other agent’s allocation is at most r greater than their expected utility of their allocation. We say that a mechanism is bounded envy free ex post/ex ante if each agent has bounded envy ex post/ex ante of every other agent.

If a mechanism is envy free ex post/ex ante then it is bounded envy free ex post/ex ante, whilst if a mechanism is bounded envy free ex post then it is bounded envy free ex ante. It is easy to show that no mechanism for indivisible items that allocates all items can be envy free ex post: suppose we have one indivisible item and two or more agents who value it. Regarding the other envy free properties, we prove the following results.

Theorem 7 Supposing agents act sincerely then the LIKE mechanism is envy free ex ante. It is not bounded envy free ex post, even with 0/1 utilities and 2 agents.

Proof. To prove envy freeness ex ante, we perform induction over the number of items. In the base case, we have no items to allocate, each agent receives an expected utility of 0, and no agent envies another agent's allocation. For the induction step, we suppose the allocation of the first $m-1$ items is envy free ex ante, and consider the mth item which is allocated. Suppose j ($\leq k$) agents have non-zero utility for the mth item. Then each agent receives this item in $\frac{1}{m}$ of the possible worlds. This means that the new allocation remains envy free ex ante.

To show that the LIKE mechanism is not bounded envy free ex post even with 0/1 utilities, suppose 2 agents have utility 1 for all m items. There is one outcome in which the first agent gets lucky and is assigned every item. However, in this case, the other agent assigns a utility m greater to the first agent’s allocation than to their own (empty) allocation. \(\square\)

As the LIKE mechanism is strategy-proof, it seems reasonable to suppose agents act sincerely. By comparison, when limited to 0/1 utilities, the BALANCED LIKE mechanism is both envy free ex ante, and bounded envy free ex post.

Theorem 8 Supposing agents act sincerely and all utilities are 0 or 1, the BALANCED LIKE mechanism is envy free ex ante and bounded envy free ex post.

Proof sketch. Both proofs use induction on the number of items. For envy freeness ex ante, the induction step uses case analysis to show that the expected increase in utility for an agent is at least as large as their expected increase in utility for the allocation of any other agent. For bounded envy freeness ex post, the induction step again uses case analysis to show that the envy is at most 1 unit. \(\square\)

It is not hard to show that with general utilities, the BALANCED LIKE mechanism is no longer envy free ex ante, or bounded envy free ex post (or even, ex ante). Balancing the allocation of items may prevent an agent who values an item greatly from being allocated it.

Example 2 Consider 2 agents and 2 items, a and b. Suppose agent 1 has utility 0 for a and p for b, but agent 2 has utility 1 for item a and $p-1$ for item b where $p > 0$. Note that both agents have the same sum of utilities for the two items. If agents bid sincerely then agent 2 gets an expected utility of just 1 and envious agent 1’s allocation which gives agent 2 an expected utility of $p-1$. As p is unbounded, agent 2 does not have bounded envy ex post or ex ante of agent 1.

To conclude, on the basis of envy freeness, provided utilities are 0/1 (or close to this), we might consider the BALANCED LIKE mechanism to be somewhat more fair than the LIKE mechanism. On the other hand, when utilities are not 0/1 (or close to this), we might consider the BALANCED LIKE mechanism to be somewhat less fair than the LIKE mechanism.

7 Competitive analysis

A powerful technique to study online mechanisms is competitive analysis [Sleator and Tarjan, 1985]. This identifies the loss in efficiency due to the data arriving in an online fashion. We say that a randomized mechanism M for online fair division is c-competitive from an egalitarian/utilitarian perspective iff there exists a constant c such that whatever the input sequence of items π:

\[
SW_{OPT}(\pi) \leq c \cdot E[SW_M(\pi)] + a
\]

where $E[SW_M(\pi)]$ is the expected egalitarian/utilitarian social welfare of the mechanism on π, and $SW_{OPT}(\pi)$ is the optimal egalitarian/utilitarian social welfare of an (offline) assignment. We suppose agents bid sincerely. In the next section, we consider the price of anarchy, which is essentially the competitive ratio when agents bid strategically. The following results hold irrespective of the model of the adversary (oblivious, or adaptive offline).

The LIKE mechanism is competitive when the number of agents is bounded, even with general utilities.

Theorem 9 With k agents, the LIKE mechanism is k-competitive from an egalitarian or utilitarian perspective.
Proof. With the LIKE mechanism, the worst case for every agent is that every other agent bids against them. Hence, the worst case is that their expected social welfare is \(\frac{1}{k} \) the smallest sum of utilities. By comparison, the best case for an agent is that they receive the sum of their utilities. Hence, the competitive ratio from an egalitarian or utilitarian perspective is at worst \(k \). From an egalitarian perspective, this bound is met even when utilities are just 0 or 1. Consider \(k^2 \) items being divided between \(k \) agents. The first agent has utility of 1 for the first \(k \) items and 0 for all remaining items. The other agents have utility 1 for all items. The optimal offline allocation achieves egalitarian social welfare of \(k \) units, but expected egalitarian social welfare of the LIKE mechanism is just 1 unit. From a utilitarian perspective, this bound is met even with just \(k \) items. Suppose the \(i \)th agent has an utility of \(1 - (k - i)\epsilon \) for the \(i \)th item, and \(\epsilon \) for all other items where \(\epsilon \) is a small non-zero constant. Note that the sum of the utilities for any agent is normalized to 1 unit. The optimal utilitarian offline allocation achieves social welfare of \(k \) units, but expected utilitarian social welfare of the LIKE mechanism is just 1 unit. From a utilitarian perspective, this bound is met even with just \(k \) items. Suppose the \(i \)th agent has an utility of \(1 - (k - i)\epsilon \) for the \(i \)th item, and \(\epsilon \) for all other items where \(\epsilon \) is a small non-zero constant. Note that the sum of the utilities for any agent is normalized to 1 unit. The optimal utilitarian offline allocation achieves social welfare of \(k \) units, but expected utilitarian social welfare of the LIKE mechanism is just 1 unit. □

On the other hand, the BALANCED LIKE mechanism is not competitive even with just 2 agents.

Theorem 10 With general utilities and 2 agents, the BALANCED LIKE mechanism is not \(c \)-competitive from an egalitarian or utilitarian perspective for any constant \(c \).

Proof. Consider the fair division of 4 items with the following utilities, where \(\epsilon > 0 \) is a small positive constant.

Agent	\(a \)	\(b \)	\(c \)	\(d \)
Agent 1	\(\epsilon \)	\(1 - 2\epsilon \)	\(0 \)	\(\epsilon \)
Agent 2	\(0 \)	\(\epsilon \)	\(\epsilon \)	\(1 - 2\epsilon \)

Note that the sum of the utilities for any agent is normalized to 1 unit. Then the optimal egalitarian (utilitarian) offline allocation gives items 1 and 2 to the first agent and items 3 and 4 to the second agent. This has an egalitarian (utilitarian) social welfare of \(1 - \epsilon \) unit (2 - \(\epsilon \) units). On the other hand, the BALANCED LIKE mechanism results in an egalitarian (utilitarian) social welfare of just 2\(\epsilon \) (4\(\epsilon \)), allocating items 1 and 4 to agent 1 and the other two items to agent 2. □

Finally, when restricted to 0/1 utilities, every allocation of the LIKE or BALANCED LIKE mechanism achieves the utilitarian social welfare of the optimal offline allocation. The is because items only go to agents that value them.

8 Price of anarchy

The price of anarchy is closely related to the competitive ratio but also takes into account agents acting strategically. The price of anarchy measures how the efficiency of a decentralized system degrades due to selfish behavior of its agents compared to imposing a centralized solution based on sincere preferences [Papadimitriou, 2001]. From an egalitarian (utilitarian) perspective, the price of anarchy of an online fair division mechanism is the ratio between the optimal egalitarian (utilitarian) social welfare, and the smallest egalitarian (utilitarian) social welfare of any equilibrium strategy. We consider simple pure Nash equilibria (defined in Section 5).

Theorem 11 With \(k \) agents, the price of anarchy of the LIKE mechanism is \(k \) for egalitarian welfare, and for utilitarian welfare it is at most \(k \) and greater than \(k - \epsilon \) for any \(\epsilon > 0 \).

Proof. Note that we consider general utilities, and the LIKE mechanism is not strategy-proof in this case. Consider the equilibrium strategy with least expected egalitarian (utilitarian) social welfare. Suppose an agent bids for an item with non-zero utility. The worst case is when every other agent bids against them. This gives an expected utility which is \(\frac{1}{k} \) of the sum of their utilities. By comparison, the best case is that they receive the sum of their utilities.

From an egalitarian perspective, this bound is achieved when \(k^2 \) items are divided between \(k \) agents, the first agent has utility 1 for the first \(k \) items, zero for the rest, and every other agent has utility 1 for every item. Then it is a dominant strategy for the first agent to bid for the first \(k \) items, and for all other agents to bid for every item. This gives an expected egalitarian social welfare of 1, compared to the optimal egalitarian social welfare of \(k \) units.

For the utilitarian case, select \(\epsilon' \) such that \(0 < \epsilon' < \frac{1}{k(k-1)} \). The bound is achieved when \(k \) items are divided between \(k \) agents, the \(i \)th agent has utility \(1 - (k - i)\epsilon' \) for the \(i \)th item and \(\epsilon' \) for the rest. The dominant strategy is for every agent to bid for every item. In this case, the optimal utilitarian social welfare is \(k \cdot (1 - (k - 1)\epsilon') > k \cdot (1 - (k - 1)\epsilon) = k - \epsilon \) whilst the expected utilitarian social welfare of the LIKE mechanism is 1. □

For the BALANCED LIKE mechanism, we have the following lower bounds on the price of anarchy.

Theorem 12 With 0/1 utilities and \(k \) agents, the price of anarchy of the BALANCED LIKE mechanism from an egalitarian perspective is at least \(k \).

Proof. Consider \(k^2 \) items being divided between \(k \) agents. The first agent has utility 1 for the first \(k \) items and 0 for all remaining items. The other agents have utility 1 for all items. The optimal egalitarian offline allocation gives the first \(k \) items to the first agent, and \(k \) of the other items to each of the other agents. This has an egalitarian social welfare of \(k \) units. On the other hand, a dominant strategy with the BALANCED LIKE mechanism is sincerity. This gives an expected egalitarian social welfare of 1. □

Theorem 13 With general utilities and \(k \) agents, the price of anarchy of the BALANCED LIKE mechanism from a utilitarian perspective is greater than \(k - \epsilon \), for any \(\epsilon > 0 \).

Proof. Consider an instance with \(k \) items. Select \(\epsilon' \) such that \(0 < \epsilon' < \frac{1}{k(k-1)} \). For each \(i \in \{1, \ldots, k\} \), agent \(i \) has utility \(1 - (k - i)\epsilon' \) for item \(i \) and utility \(\epsilon' \) for all other items. In the BALANCED LIKE mechanism, sincere play is the dominant strategy, allocating one item to each agent. The probability that agent \(i \) receives item \(i \) is \(\frac{k-1}{k} \cdot \frac{k-2}{k-1} \cdot \ldots \cdot \frac{1}{k-1} = 1/k \). Thus, the expected utilitarian welfare is \(1 - (k - 1)\epsilon' + (k - 1)\epsilon' = 1 \). The optimal offline strategy simply allocates item \(i \) to agent \(i \), for an utilitarian welfare of \(k \cdot (1 - (k - 1)\epsilon') > k \cdot (1 - (k - 1)\epsilon) = k - \epsilon \). □

Finally, with 0/1 utilities and either mechanism, it is a dominant strategy for agents only to bid for (a subset of) the items...
for which they have utility. Hence, both mechanisms achieve the optimal utilitarian social welfare. Thus, there is no price of anarchy from an utilitarian perspective in these cases.

9 Experiments
To determine the impact on social welfare of these mechanisms and to determine if BALANCED LIKE outperforms LIKE in practice, we ran some experiments. We used a wide range of problem instances: random 0/1 utilities, random Borda utilities, correlated 0/1 and Borda utilities generated with the Polya-Eggenberger model, as well as 0/1 and Borda utilities from PrefLib.org [Mattei and Walsh, 2013]. For reasons of space, we report here just results with random 0/1 utilities. We observed similar trends with the other classes.

Figure 1: Egalitarian price of anarchy, and competitive ratio of BALANCED LIKE and LIKE mechanisms. (left) varying items for 5 agents, (right) varying agents for 10 items.

We varied the number of agents from 2 to 5, and the number of items from 2 to 10. We sampled 100 instances at each data point, computing the optimal (offline) allocation, and all simple pure Nash equilibria by brute force. In Figure 1, we plot (1) the competitive ratios (“like” and “balanced”), (2) the prices of anarchy (“balanced−”) and (3) the ratio between the egalitarian welfare of the best simple pure Nash equilibria and the optimal allocation (“balanced+”). As these are ratios, we plot geometric means. Arithmetic means are similar. We note that the BALANCED LIKE mechanism (“balanced−”) improves the egalitarian welfare compared to the LIKE mechanism (“like”) supposing sincere or strategic play of the agents. Indeed, strategic play of the agents often increases social welfare even in the worst case (“balanced−” compared to “balanced”), though the effect is small. With Borda utilities, strategic play is less helpful and can result in lower social welfare. Nevertheless, BALANCED LIKE remained superior in all our experiments to the LIKE mechanism.

10 Related work
There is a large literature on the fair division of divisible and indivisible goods. Almost all studies assume that all the goods are present initially. There are, however, a few exceptions. Walsh [2011] has proposed an online model of cake cutting. However, in this model the agents arrive over time (not the items), and the goods are divisible (not indivisible). Kash, Procaccia and Shah [2014] have proposed a related model in which agents again arrive over time, but there are now multiple, homogeneous divisible goods (and not a single heterogeneous divisible good as in [Walsh, 2011], or multiple, heterogeneous indivisible goods as here). Bounded envy-freeness is closely related to the “single-unit utility difference” property that Budish, Che, Kojima and Milgrom [2013] prove can be achieved in offline fair division with any randomized allocation mechanism that is envy free ex ante.

The LIKE and BALANCED LIKE mechanisms take an item-centric view of allocation. They iterate over the items, allocating them in turn to agents. By comparison, there are agent-centric mechanisms like the sequential allocation procedure which iterate over the agents, allocating items to them in turn [Brams and Taylor, 1999]. These mechanisms have attracted considerable attention in the AI literature recently (e.g. [Bouveret and Lang, 2011], [Kalinowski et al., 2013], [Kalinowski et al., 2013]). As our matching problem is one-sided (agents have preferences over items, but not vice-versa), we cannot immediately map results from there to here. There are also randomized mechanisms like random serial dictator [Zhou, 1990], and the probabilistic serial mechanism [Bogomolnaia and Moulin, 2001] which again take an agent-centric view of allocation. It would be interesting future work to consider how such agent-centric mechanisms could be modified to work with online fair division problems.

11 Conclusions
Motivated by our work with a local Food Bank charity, we have studied a simple online model of fair division, as well as two simple mechanisms for this problem. To help decide what mechanism to use in practice, we have studied the axiomatic properties of these mechanisms like strategy-proofness and envy-freeness. In addition, we have undertaken a competitive analysis, and computed their price of anarchy. A summary of our results is given in Table 1.

Table 1: Overview of results for k agents. (e) = egalitarian, (u) = utilitarian.

Strategy-proof-envy-free (ex ante)	LIKE mechanism	BALANCED LIKE mechanism
envy free (ex post)	√	×, √ for k=2 & 0/1 utilities
even for k = 2 & 0/1 utilities	×	√ for 0/1 utilities
competitive price of anarchy (e)	√	×, even for k=2 and 0/1 utilities
price of anarchy (u)	k, 1 for 0/1 utilities	≥ k, 1 for 0/1 utilities

One possible take home message from this table is that we might consider the BALANCED LIKE mechanism if the items can be packaged together so that agents have similar utility for all packages, and that we should otherwise prefer the LIKE mechanism when this is not possible. In future work, we plan to take into account other important features of this real world allocation problem. For example, as the charities have different abilities to feed their clients, we need a model of online fair division in which the agents have different entitlements. Our mechanisms can be easily adapted to take this feature into account. We will need to consider the impact this has on axiomatic properties like strategy-proofness and fairness. We will then be in a position to implement and field a mechanism for online fair division in the field.
References

[Bogomolnaia and Moulin, 2001] A. Bogomolnaia and H. Moulin. A new solution to the random assignment problem. *Journal of Economic Theory*, 100(2):295 – 328, 2001.

[Bouveret and Lang, 2011] S. Bouveret and J. Lang. A general elicitation-free protocol for allocating indivisible goods. In Toby Walsh, editor, *Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI 2011)*, pages 73–78. IJCAI/AAAI, 2011.

[Brams and Taylor, 1996] S.J. Brams and A.D. Taylor. *Fair Division: From cake-cutting to dispute resolution*. Cambridge University Press, Cambridge, 1996.

[Brams and Taylor, 1999] S.J. Brams and A.D. Taylor. *The Win-Win Solution: Guaranteeing Fair Shares to Everybody*. Norton, New York and London, 1999.

[Budish et al., 2013] E. Budish, Y.-K. Che, F. Kojima, and P. Milgrom. Designing random allocation mechanisms: Theory and applications. *American Economic Review*, 103(2):585–623, 2013.

[Chevaleyre et al., 2006] Y. Chevaleyre, P.E. Dunne, U. Endriss, J. Lang, M. Lemaître, N. Maudet, J.A. Padget, S. Phelps, J.A. Rodriguez-Aguilar, and P. Sousa. Issues in multiagent resource allocation. *Informatica (Slovenia)*, 30(1):3–31, 2006.

[Davidson, 2012] P. Davidson. *Poverty in Australia*. 2012. ISBN 978085871082.

[Kalinowski et al., 2013] T. Kalinowski, N. Naroditska, T. Walsh, and L. Xia. Strategic behavior when allocating indivisible goods sequentially. In *Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence (AAAI 2013)*. AAAI Press, 2013.

[Kash et al., 2014] I. Kash, A.D. Procaccia, and N. Shah. No agent left behind: Dynamic fair division of multiple resources. *Journal of Artificial Intelligence Research*, 51:579–603, 2014.

[Mattei and Walsh, 2013] N. Mattei and T. Walsh. PrefLib: A library of preference data. In *Algorithmic Decision Theory, Third International Conference, (ADT 2013)*, Lecture Notes in Artificial Intelligence. Springer, 2013.

[Papadimitriou, 2001] C.H. Papadimitriou. Algorithms, games, and the internet. In *Proceedings on 33rd Annual ACM Symposium on Theory of Computing*, pages 749–753, 2001.

[Sleator and Tarjan, 1985] D.D. Sleator and R.E. Tarjan. Amortized efficiency of list update and paging rules. *Communications of the ACM*, 28(2):202–208, February 1985.

[Walsh, 2011] T. Walsh. Online cake cutting. In *Algorithmic Decision Theory, Second International Conference, ADT 2011. Proceedings*, Lecture Notes in Computer Science. Springer, 2011.

[Walsh, 2014] T. Walsh. Allocation in practice. In *Proceedings of 37th German Conference on Artificial Intelligence (KI-2014)*, Lecture Notes in Artificial Intelligence, pages 13–24. Springer, 2014.

[Walsh, 2015] T. Walsh. Challenges in resource and cost allocation. In *Proceedings of the 29th AAAI Conference on AI*. Association for Advancement of Artificial Intelligence, 2015.

[Zhou, 1990] L. Zhou. On a conjecture by Gale about one-sided matching problems. *Journal of Economic Theory*, 52(1):123 – 135, 1990.