STUDY PROTOCOL

REVISED The evidence for interventions in early childhood allergy prevention – towards a living systematic review: protocol [version 2; peer review: 1 approved, 2 approved with reservations]

Uwe Matterne1, Christina Tischer2, Jiancong Wang1, Helge Knüttel3, Jon Genuneit4, Michael Perkin5, Christian Apfelbacher1,6

1 Institute of Social Medicine and Health Systems Research, Otto von Guericke University Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany
2 Institute for Health Resort Medicine and Health Promotion, State Institute of Health, Bavarian Health and Food Safety Authority, Prinzregentenstraße 6, Bad Kissingen, 97688, Germany
3 University Library, University of Regensburg, Universitätsstraße 31, Regensburg, 93053, Germany
4 Pediatric Epidemiology, Department of Pediatrics, Medical Faculty, Leipzig University, Liebigstraße 20a, Leipzig, 04103, Germany
5 Population Health Research Institute, St George’s, University of London, Cranmer Terrace, London, SW17 0RE, UK
6 Family Medicine and Primary Care, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, 308232, Singapore

Abstract

Background: Research in early childhood allergy prevention (ECAP) is flourishing and new intervention strategies have proven to be promising. Due to the dynamic nature of ECAP, gaps between what is known and how guidelines inform practice are likely. A living systematic review (LSR) can narrow this gap by incorporating new evidence as it becomes available. No efficacy comparisons across various ECAP interventions for similar outcomes have been carried out. Networks of randomised clinical trials can be evaluated in the context of a network meta-analysis (NMA). We aim to establish a LSR on the efficacy and safety of any intervention investigated in randomised controlled trials (RCT) to prevent the occurrence of allergic sensitisation (AS), symptoms or diagnoses of allergic diseases in infancy and early childhood (0-3 years).

Methods: A baseline SR will synthesise the evidence from existing SRs of RCTs as well as RCTs not yet considered in these. After completion of the baseline SR we propose to conduct a LSR. Using this methodology, we aim to undertake constant evidence surveillance, three-monthly search updates, and review updates every three months, should new evidence emerge.

Conclusions: The ECAP evidence landscape has undergone dramatic
transformations and this process is likely to continue. As a response to this, a LSR offers the potential to allow more timely synthesis of new evidence as it emerges. Long gaps between updates of SRs makes it harder for guidelines and recommendations to be up to date. Users of information, such as parents, may be confused if they encounter new evidence that is not part of a trusted guideline. A LSR approach allows us to continuously search the literature and update the evidence-base of existing ECAP interventions resulting in a decreased timespan from evidence accrual to informing clinical practice.

Keywords
Early childhood allergy prevention, randomised controlled trial, living systematic review

This article is included in the [Living Evidence](#) collection.
Introduction

Rationale

Allergy in children is common. Frequent food allergies (FA) in children include hen’s egg, cow’s milk and peanut.\(^1\) Around 10% of children are affected by FA and the incidence is still rising in developing countries.\(^1\) Food allergy impacts quality of life.\(^2\)–\(^4\) Allergic diseases (eczema,\(^5\)–\(^7\) asthma and hay fever/allergic rhinitis)\(^8\),\(^9\) are also highly prevalent and associated with decreased health-related quality of life (HRQOL).\(^10\)

To counteract the large number of allergies and reduce their burden, a major shift from merely managing manifest allergy to preventing its occurrence has taken place. Previous prevention efforts revolved around avoidance of potential allergens (particularly in at risk individuals), while more recently a new paradigm has been embraced whose focus is on early allergen exposure to induce immune tolerance. This new paradigm has been informing study designs for food allergy prevention. So far it has been established that oral tolerance induction is allergen specific and efficacious in single introduction trials of peanut and egg.\(^1\)

There is also research activity revolving around environmentally derived prevention paradigms (i.e. exposure to rural environments, cowshed pill, or unpasteurised milk).\(^12\) However, one trial found no evidence that an orally applied bacterial lysate affected allergy development in at risk infants.\(^13\) It is however, expected that more research in this field will emerge soon.

In general, the design of preventive strategies has been informed by several hypotheses regarding the aetiology of allergy and allergic disease. The original hygiene hypothesis states that lack of exposure to common infections causes allergy.\(^14\) However, not all infections protect from allergy, resulting in criticism of the hypothesis.\(^15\) Further research has led to modifications of this hypothesis, suggesting that exposure to specific pathogens, commensals and symbionts protects against development of allergy.\(^16\),\(^17\) The dual-allergen-exposure hypothesis proposes that exposure to food allergens through the skin leads to allergy, while early consumption of these foods induces tolerance.\(^18\) While in the past it was advocated that avoidance of allergenic food would reduce the onset of allergy\(^19\) several recent trials have lent support to the dual-allergen-exposure hypothesis.\(^20\)–\(^22\) The vitamin D hypothesis suggests that low vitamin D levels increase the risk of developing food allergy.\(^23\),\(^24\) There are, however, conflicting data on the relationship between vitamin D and the development of food allergy.\(^25\)

Research in early childhood allergy prevention (ECAP) is flourishing and more than 50 systematic reviews (SR) that exclusively or partly reviewed RCTs\(^25\)–\(^81\) have been published, some of which provide useful insights. However, not all include a standardised evaluation of the quality of the evidence (e.g. Grading of Recommendations Assessment, Development and Evaluation (GRADE))\(^82\) for randomised controlled trials (RCT).\(^83\) Risk of bias (RoB) assessment was done by a variety of different tools. Some used the National Institute for Health and Care Excellence (NICE) methodological checklist\(^84\) or the Strength of Recommendation Taxonomy (SORT)\(^85\) criteria. Thus, a homogenous RoB assessment and consistent evidence grading approach for each study type would be desirable.

Research challenges

As intervention effects may vary depending on whether at risk, not at-risk or children with manifest allergy are investigated, studies will be grouped accordingly. ECAP in the latter would still be considered primary prevention, rather than secondary or tertiary prevention, since we would look only at the prevention of new allergies.

Many of the above SRs included observational studies as well as clinical trials. Studies examining the effect of breastfeeding versus no breastfeeding on allergy development cannot use an RCT design; however, for most other ECAP strategies, there are no ethical or other constraints that prevent the use of the gold standard RCT. Hence, we will only consider RCTs in our SR.
Not all ECAP findings may yet be part of allergy prevention guidelines. As outlined above, due to the wealth of studies and new ECAP paradigms, more than 50 SRs have attempted to synthesise the evidence accumulated within the various approaches to ECAP. It is likely that there are gaps between what we know from the best available research and what happens in healthcare practice due to the dynamic nature of ECAP research. The incorporation of new findings into existing reviews or their updates is time-consuming and not always feasible. Hence, adapting prevention guidelines in light of new findings and providing health care providers and other information users with up-to-date evidence may be impeded. Recent advances in the presentation of systematically reviewed (qualitative and meta-analytic) data have led to the concept of a living systematic review (LSR). A LSR is defined as “a systematic review that is continually updated, incorporating relevant new evidence as it becomes available”.

Furthermore, no efficacy comparisons across various ECAP strategies for similar outcomes have been carried out. Networks of randomised clinical trials can be evaluated in the context of a network meta-analysis (NMA). NMA refers to a procedure that allows inferences about the comparative effectiveness of interventions that may or may not have been evaluated directly against each other.87–89

Objective
We aim to establish an LSR on the efficacy and safety of any intervention to prevent the occurrence of allergic sensitisation (AS), symptoms or diagnoses of allergic diseases in infancy and early childhood (0-3 years).

The specific objectives are:

1. To identify all individual-level interventions using the oral, skin, environmental or pharmaceutical route for the prevention of allergy in allergy-free children or the prevention of new allergies in children with manifest allergy

2. To identify all community-level interventions (such as community programmes promoting dietary and environmental diversity in early life) which have thus far been investigated in RCTs to prevent the occurrence of allergy in infancy.

3. To summarise the evidence regarding the effects (efficacy and safety) of these interventions in preventing the occurrence of allergy in infancy and early childhood.

4. To judge the quality of this evidence.

5. To provide a corresponding plain language summary (PLS) accessible for consumers.

6. To develop a workflow for an LSR, which ensures that the evidence synthesis is continuously kept up-to-date.

Methods
The review will be undertaken according to the methods outlined in the Cochrane Handbook for Systematic Reviews of Interventions,90 PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)91 and its extension for application to NMA.92 A protocol registration will be made at PROSPERO.93 Any updates to the protocol will be made through PROSPERO. The protocol was developed closely considering the Prisma-P94 checklist.95 A baseline SR will synthesise the evidence available so far and then transformed into a LSR by regular updates.

Eligibility criteria
Studies will be eligible for inclusion in the review should they meet the following (PICO) criteria:

- Date of publication: 1980 onward

- Types of study: Randomised controlled trials,

- Population: expectant and/or breastfeeding mothers of and/or children 0 - 3 years (at time of intervention), at risk children (0 - 3 years) (at least one parent with known allergic disease), not at risk children (0-3 years) (no parental allergic disease), children (0-3 years) with manifest allergy (only if intervention aims at preventing a new allergy or study reports this outcome)

- Interventions: any aimed at the individual or community level at preventing the onset of new allergy or allergic disease or allergic sensitisation
- Oral route (supplements (e.g. vitamins, minerals, pro-, pre-, symbiotic, gut bacteria), time and presence of allergenic food introduction (e.g. peanut, egg protein, cow’s milk, fish), variation in condition (raw, cooked, pasteurised, fermented) and/or amount of complimentary food introduction, avoidance of potential allergens

- Skin route (e.g. emollients, treated water for washing)

- Environmental interventions (exposure to natural outdoor environments, green space, outdoor spaces, exposure to farm environments (cow- and other animal-shed bacteria, farming associated bacteria and microbes, bacterial lysate, acinetobacter, microbiome, mucous membrane, microbiota), avoidance of chemicals or allergens (e.g. mattress protector (mites))

- Pharmaceutical prevention (e.g. allergen-immuno-therapy (AIT), Bacillus Calmette-Guérin (BCG) vaccination)

- Comparator: inactive comparator such as placebo, no intervention or usual care

- Primary outcomes:

 - Physician-diagnosed or parent-reported incidence of allergic asthma (AA), allergic rhinitis (AR), atopic eczema (AE), food allergy (FA)

 - Physician-diagnosed or parent-reported recurrent symptoms of sneeze, wheeze, cough, itch, flexural eczema, or FA

- Secondary outcomes:

 - incidence of AS measured by in-vivo tests such as skin-prick test (SPT)

 - incidence of AS measured by in-vitro tests such as fluorescently labelled anti-IgE antibody, enzyme-linked immunosorbent assay (ELISA), or Radio-Allergo-Sorbent-Test (RAST)

 - adverse events (AE), severe adverse events (SAE), withdrawals

ECAP has revolved around antenatal and postnatal strategies targeting the mother and strategies targeting the child after birth (often during a critical period). Strategies that have been explored in RCTs are illustrated in Table 1.

Table 1. Overview of primary ECAP strategies investigated thus far or in progress in RCTs

Intervention route	Example	Mother	Infant/Child			
		Prenatal	If breastfeeding postnatal	At risk	Not at risk	One or more AS, AD
Oral route	Diet/nutrient supplementation	✓109	✓40	✓110	✓67	✓111
	Diet/nutrient avoidance	✓112	✓112	✓113	✓110	✓111
	Early allergenic food introduction	n.a.	n.a.	✓20	✓108	✓22
Skin route	Skincare	n.a.	n.a.	✓39	✓39	✓114
Environmental route	House dust mite avoidance	n.a.	n.a.	✓31	None found	✓22
Pharmaceutical route	Allergen immunotherapy (AIT)	n.a.	n.a.	✓115	None found	✓115
	BCG vaccination	n.a.	n.a.	✓117	✓118	✓119
	Oral H1-antihistamines	n.a.	n.a.	n.a.	n.a.	n.a.

ECAP: early childhood allergy prevention, RCT, randomised controlled trial, AD: allergic disease, AS: allergic sensitisation, superscript numbers indicate an example reference.
Exclusion criteria
Any observational research (cross-sectional, case-control, case-series, prospective/retrospective cohort studies) or quasi-experimental studies (matched controlled designs) will be excluded. We will not consider interventions aimed at treating allergy unless the intervention is also hypothesised to reduce the onset of a new allergic manifestation.

Search methods
We will use five approaches for the identification of studies for the baseline SR:

1) Topic-based searches in databases and registries

We will search for all relevant RCTs regardless of publication status (published, unpublished, in press, or ongoing) in the following bibliographic databases: MEDLINE (Ovid), Embase (Ovid), CENTRAL (Cochrane Library), Science Citation Index Expanded & Social Sciences Citation Index (Web of Science), Cochrane Skin Group Specialized Register, GREAT (The Global Resource of EczemA Trials, Centre of Evidence Based Dermatology), in clinical trial registries (U.S. National Institutes of Health ClinicalTrials.gov, ISRCTN registry, Australian New Zealand Clinical Trials Registry, World Health Organization International Clinical Trials Registry Platform, EU Clinical Trials Register).

We will search the conference proceedings (European Academy of Dermatology and Venereology (EADV), European Academy of Allergy and Clinical Immunology (EAACI), American Academy of Dermatology (AAD), American Academy of Allergy, Asthma & Immunology (AAAAI), Asia Pacific Association of Allergy, Asthma and Clinical Immunology (APAAACI) and Asia Pacific Association of Pediatric Allergy, Respiriology & Immunology (APAPARI), World Allergy Organisation (WAO)) and Sociedad Latinoamericana de Alergia, Asma e Inmunología, Asunción (SLAAI). Additionally, we will review published documents from health technology assessment agencies (e.g. NICE, IQWIG). No restriction on status or year of publication will be applied. The search will be restricted to publications in English, German, French, Italian or Spanish. An initial draft search strategy for MEDLINE was developed by a medical librarian experienced in comprehensive searches for systematic reviews (Box 1). The performance of his strategy will be checked against the growing set of known relevant records. The final search strategy will be peer reviewed. The search strategy is composed of the components Population, Intervention, Outcome and Study filter that will be intersected with the Boolean AND operator. For each of the components relevant terms from text fields and controlled vocabulary were used in order to achieve high sensitivity. This strategy will be adapted to the other databases as appropriate.

2) Searches by trial registry numbers

Registry numbers of eligible trials will be collected to be used in follow-up searches with the aim to identify additional trial reports.

Box 1: Initial draft search strategy for MEDLINE

1 exp infant/ or Child, Preschool/ or (child or children).ti,ab,kf. or (pre-school$ or preschool$).ti,ab,kf. or Nurseries/ or (nursery or nurseries).ti,ab,kf. or exp Parents/ or (parent or parents or mother or mothers).ti,ab,kf. or (infant or infants).ti,ab,kf. or infancy.ti,ab,kf. or toddler?.ti,ab,kf. or (baby or babies).ti,ab,kf. or newborn$.ti,ab,kf. or neonat$.ti,ab,kf. or Pediatrics/ or (pediatric$ or paediatric$).ti,ab,kf. or early childhood.ti,ab,kf. or (Pregnant Women/ or Pregnancy/ or Prenatal Nutritional Physiological Phenomena/) or pregnant$.ti,ab,kf. or Prenatal Exposure Delayed Effects/or Maternal Exposure/or ((maternal or prenatal) adj1 exposure$).ti,ab,kf. or (fetus or fetuses or fetal or fœtuses or foetal).ti,ab,kf. or Fetus/ (Population)

2 exp Preventive Health Services/ or Preventive Medicine/or "prevention control".fs. or prevent$.ti,ab,kf. or prophyla$.ti,ab,kf. or Infant Formula/or (formula or supplement$).ti,ab,kf. or ((risk or protect$ or development or avoidance or exposure or introduction) adj6 (allerg$ or hypersensitivit$ or atopy or atopic or dermatitis or neurodermatitis or asthma)).ti,ab,kf. (Intervention)

3 exp Hypersensitivity/ or Allergens/ or allerg$.ti,ab,kf. or hypersensitivit$.ti,ab,kf. or prick test$.ti,ab,kf. or exp asthma/ or Dyspnea/or (asthma$ or dyspnea or wheezing).ti,ab,kf. or (difficult$ adj1 breathing).ti,ab,kf. or (rhinoconjunctivitis).ti,ab,kf. or (atopic adj1 (dermatitis$ or neurodermatitis$ or eczema or disease)).ti,ab,kf. or Diaper Rash/or ((infant or infantile or diaper) adj1 (rash or rashes or eczema or dermatitis)).ti,ab,kf. or Disseminated Neurodermatitis$_.ti,ab,kf. (Outcome)

4 ((randomized controlled trial or controlled clinical trial).pt. or randomized.ab. or placebo.ab. or drug therapy.fs. or randomly.ab. or trial.ab. or groups.ab.) not (exp animals/not humans.sh.) (Cochrane Highly Sensitive Search Strategy for identifying randomized trials in MEDLINE: sensitivity-maximizing version (2008 revision))

5 1 and 2 and 3 (Combined concepts: Patients AND Intervention AND Outcome)

6 5 and 4 (Combined concepts: Patients AND Intervention AND Outcome AND RCTs)
3) Trials included in relevant SRs

We will search for relevant SRs in order to identify additional trials in these SRs.

4) Reference lists of included trials

We will screen the reference lists of all included study reports. To aid in this process the reference lists will be downloaded from Web of Science when available.

5) Existing systematic reviews

For the creation of the baseline SR previous SRs on ECAP will be systematically searched for.

Study selection, data extraction, analyses and syntheses

Database search results will be imported into EppiReviewer (version 4.11.5.3) for deduplication and study selection. Assessment of eligibility, data extraction, risk of bias (RoB) evaluation and quality of the evidence assessment will be carried out by at least two researchers independently. The latter will be done according to the GRADE recommendations.

The following data will be extracted:

- **Study characteristics**: Author, year of publication, geographical region, study design, type of intervention, type of control, number of participants in intervention group and control group, study duration, time points of assessment, follow-up period, type of primary and secondary outcomes and safety indicators.

- **Participant characteristics**: Person in whom intervention took place (mother (prenatal, postnatal), child, both), age, sex, ethnicity, allergic risk status, parental atopy, presence of allergic sensitisation and/or condition.

- **Study outcomes**: Efficacy outcomes (unadjusted/adjusted): Incidence of allergic sensitization and/or allergic disease; safety outcomes: proportions of AEs, SAEs, withdrawal due to AEs

Existing systematic reviews will be incorporated into the baseline SR. Assessment of the quality of these will be carried out by A MeaSurement Tool to Assess systematic Reviews-2 (AMSTAR-2). AMSTAR-2 is a critical appraisal tool for SRs that include randomised or non-randomised studies of healthcare interventions, or both. RoB assessment will be done by the use of A Risk of Bias Assessment Tool for Systematic Reviews (ROBIS). Findings of SRs whose quality has been judged adequate will be summarised. We intend to publish the results in one or several overviews (umbrella reviews). Conduct of these overviews will follow the methods outlined in chapter 5 of the Cochrane Handbook for Systematic Reviews. Only studies of the same intervention and outcome not considered in these SRs and summarised in the overviews will be individually assessed for RoB and quality of the evidence for the baseline SR.

Meta-analyses and network-meta-analysis (NMA)

If no obvious qualitative heterogeneity within studies exists, we will perform meta-analyses across similar applications of interventions. Pair-wise meta-analyses between two intervention conditions (provided at least two eligible studies exist that are not too heterogeneous) for each different endpoint/outcome (FA, AS, AE, asthma, AR) will be conducted. These are to be updated in the LSR as relevant new studies emerge. To guard against potential type I error inflation and occurrence of type II errors which are a function of the number of analyses done with the same data (as new data is incorporated with each update) we will follow the recommendations outlined by Simmonds et al.

Pairwise meta-analysis is a statistical technique for quantitatively synthesising similar studies in a systematic review. Useful in its own right, it is, however, limited in that it can only compare two interventions simultaneously, and only those evaluated directly in head-to-head trials. Pairwise meta-analysis allows for comparisons between pairs of interventions (an experimental intervention and a comparator intervention) for a specific outcome in a particular population or setting. It is, however, often the case that a variety of different interventions are available for any given condition. A single SR that includes all relevant interventions and presents their comparative effectiveness and potential for harm would help people to decide between alternative interventions. NMA affords an analysis option for such a review. A network of interventions consists of any set of studies that links three or more interventions via direct comparisons. Within a network, there can be numerous ways to make indirect comparisons between interventions. They refer to comparisons that have not been made directly within studies. Mathematical combinations of the available direct intervention effect
sizes are used to estimate indirect effects. In NMA direct and indirect estimates across a network of interventions are combined in a single analysis.88

We also aim to conduct NMA to compare different interventions for the same endpoint/outcome (PO, SO and AE), should assumptions for NMA be met. We will also perform a full evaluation of the confidence in the results from NMA by using the web application CINeMA (Confidence in Network Meta-Analysis).99 This web application simplifies the evaluation of confidence in the findings from NMA and has evolved out of the GRADE approach. The GRADE82 approach offers an assessment of the confidence in the results from systematic reviews and meta-analyses. Many organisations, for example the World Health Organisation, have adopted the GRADE approach.100 Based on GRADE, two systems have been proposed to evaluate the credibility of results from NMAs,101,102 but the complexity of the methods and lack of suitable software have limited their wide adoption.103 CINeMA is based on six domains: within-study bias (referring to the impact of RoB in the included studies), across-studies bias (publication or reporting bias), indirectness (relevance to the research question and transitivity), imprecision (comparing the range of treatment included in the 95\% confidence interval with the range of equivalence), heterogeneity (predictive intervals), and incoherence (if estimates from direct and indirect evidence disagree).111 Judgements across the six domains are then summarised to obtain four levels of confidence for each relative treatment, corresponding to the usual GRADE82 approach: very low, low, moderate or high.

If possible, we will also perform subgroup analysis (sex, atopic predisposition as a marker of high risk to develop allergic sensitization or allergic disease). Prior to this, sources of heterogeneity across studies will be investigated and the impact of inclusion of studies at various risk of bias in meta-analyses will be examined.

Transformation into a LSR
This review will continuously evaluate the role of interventions for the prevention in early childhood (ECAP). A living systematic review is a cumulative synthesis that is updated regularly as new evidence becomes available.86 According to Cochrane’s Living Evidence Network104 transformation into a LSR is justified when the review question is a particular priority for decision-making, there is an important level of uncertainty in the existing evidence and there is likely to be emerging evidence that will affect the conclusions of the LSR. The review question is of particular priority for decision making because one SR on ECAP105 is among the Cochrane Priority Reviews and the rate of publications on ECAP interventions has substantially increased over the past years (Figure 1) and is expected to continue so. The level of uncertainty remains an issue. A recent SR on interventions for pregnant or breastfeeding women and/or infants concluded that while dietary avoidance of food allergens, vitamin supplements, fish oil, probiotics, prebiotics, synbiotics, and emollients may have little to no effect on preventing food allergy, the evidence was judged as very uncertain.43 New evidence is expected to emerge on variations of the induction of tolerance paradigm as paved by previous trials such as EAT20 or LEAP.22,106

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Number of publications derived from Web of Science Core Collection (allergy AND prevention AND childhood) per year since 2002 (performed 26/02/2021).}
\end{figure}
An artificial intelligence algorithm for automated searches will be developed in collaboration with information specialists and software engineers. We will gradually incorporate more and more intelligent software tools for eligibility tests, data extraction, and analysis and synthesis presentation as they prove to be reliable in the subsequent update processes.

This evolving search algorithm is to be run at three-monthly intervals and will be set up to notify the author team about studies with a high likelihood of being eligible. At the same interval manual searches will be conducted until the automated search algorithm is sufficiently reliable. The author team will review the search results, decide upon inclusion, and update the living SR’s web version after a new evidence synthesis is deemed necessary every three months. At the same time references of included studies and the corresponding tables and figures will be updated. Every three months the date of each subsequent search, the number of new included studies, and new summary of findings tables will be published on the LSR’s website along with an updated plain language summary.

Discontinuation of the ‘living’ aspect of the LSR
The LSR will be maintained in its ‘living’ form until no new evidence is likely to arise and/or so long as the certainty of the evidence for particular ECAP interventions remains unsettled. The necessary future funding will be sought.

Dissemination of findings
The baseline SR will be published in a peer-reviewed journal and indexed publication platform that allows the linkage of review updates through versioning of the review publication. A plain language summary will be provided on a project website. This website is intended to also contain graphical and other information for health care providers and the public.

For the LSR, we will consider resubmission to the journal in which the baseline SR is published should the direction of the effect on the critical outcomes change or a substantial modification to the evidence’s certainty occur.

Study status
At submission of this protocol the final search strategy is being peer-reviewed.

Discussion
The prevention of allergy in early childhood is important given the high personal burden and societal costs of allergic diseases. The ECAP evidence landscape has undergone dramatic transformations and this process is likely to continue. As a response to this, a LSR offers the potential to undertake a more timely synthesis of new evidence as it emerges. Long gaps in between updates of SRs may make it harder for guidelines and recommendations to be current and up to date. Users of information, such as parents may be confused if they encounter new evidence that is not part of a trusted guideline. A LSR approach allows us to continuously search the literature and update the evidence-base of existing ECAP interventions resulting in a decreased timespan from evidence accrual to informing clinical practice.

It is also crucially important to assess whether an ECAP intervention is associated with harm. For instance, there is evidence suggesting that early egg white powder introduction at 4 to 6 months of age for the prevention of egg allergy in children from the general population may increase the occurrence of allergy.108

Further, a consistent assessment of the certainty of the evidence in line with the GRADE recommendation will be carried out across all included studies. This will allow a high level of concordance between the certainty of the evidence and future guideline recommendations.

Whilst our approach of including all interventions for the prevention of all allergies in early childhood may seem ambitious, none of the individual systematic reviews being undertaken at present (e.g.33,34) will be able to conduct a comparison of multiple interventions (network meta-analysis). The latter provides information regarding the relative treatment effect and the ranking order for multiple treatments for a particular outcome irrespective of whether they were conducted in the same or different trials.

Research, clinical and policy implications
The baseline and subsequent LSR will identify research gaps needing to be addressed by future research. The clinical implications of the LSR will be the provision of up-to-date information that can dynamically inform national, international clinical and public health guidelines and influence the practice of allergists, paediatricians, ENT specialists, other primary care providers and public health authorities in terms of evidence-based ECAP strategies. The provision of a regularly updated plain language summary will benefit parents as they can easily access a widely visible website with
information provided in lay terms. The LSR will have include research evidence from across the world and we hope will have a multinational benefit.

Data availability
Underlying data
No underlying data are associated with this article.

Reporting guidelines
Figsare: PRISMA-P checklist for “The evidence for interventions in early childhood allergy prevention – towards a living systematic review: protocol” https://doi.org/10.6084/m9.figshare.14135450.v1.95

Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).

References

1. Leh W, Tang MLK: The Epidemiology of Food Allergy in the Global Context. Int J Environ Res Public Health. 2018; 15. PubMed Abstract | Publisher Full Text | Free Full Text
2. Dunn Galvin A, Dubois AE, Fokkstra-de Blok BM, et al.: The effects of food allergy on quality of life. Chem Immunol Allergy. 2015; 101: 235-52. PubMed Abstract | Publisher Full Text
3. Warren CM, Otto AK, Walkner MM, et al.: Quality of Life Among Food Allergic Patients and Their Caregivers. Curr Allergy Asthma Rep. 2016; 16: 38. PubMed Abstract | Publisher Full Text
4. Dunn Galvin A, Hourihane JO: Health-related quality of life in food allergy: Impact, correlates, and predictors. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2016; 59: 841-8. PubMed Abstract | Publisher Full Text
5. Decker JA, McLean S, Linssen S, Mommers M, et al.: Investigating international time trends in the incidence and prevalence of atopic eczema 1990-2010: a systematic review of epidemiological studies. PloS One. 2012; 7: e39803. PubMed Abstract | Publisher Full Text | Free Full Text
6. Garg N, Silverberg J: Epidemiology of childhood atopic dermatitis. Clin Dermatol. 2015; 33: 281-8. PubMed Abstract | Publisher Full Text
7. Odhiambo JA, Williams HC, Clayton TO, et al.: Global variations in prevalence of eczema symptoms in children from ISAAC Phase Three. J Allergy Clin Immunol. 2009; 124: 1251-8. e23. PubMed Abstract | Publisher Full Text
8. McNeill G, Tagiyeva N, Acott L, et al.: Changes in the prevalence of asthma, eczema and hay fever in pre-pubertal children: a 40-year perspective. Paediatr Perinat Epidemiol. 2009; 23: 506-12. PubMed Abstract | Publisher Full Text
9. Small P, Keith PK, Kim H: Allergic rhinitis. Allergy Asthma Clin Immunol. 2018; 14: 51. PubMed Abstract | Publisher Full Text | Free Full Text
10. Matterne U, Schmitz T, Diepen GN, et al.: Children and adolescents health-related quality of life in relation to eczema, asthma and hay fever: results from a population-based cross-sectional study. Qual Life Res. 2011; 20: 1295-306. PubMed Abstract | Publisher Full Text
11. Krawiec M, Fisher H, DuToit G, et al.: Overview of oral tolerance induction for prevention of food allergy - where are we now? Allergy. 2021. PubMed Abstract | Publisher Full Text
12. Peichlivian S, von Mutius E: Effect of Farming on Asthma. Acta Med Acad. 2020; 49: 144-55. PubMed Abstract | Publisher Full Text
13. Rollberg S, Keller T, Icke K, et al.: Orally applied bacterial lysate in infants at risk for atopy does not prevent atopic dermatitis, allergic rhinitis, asthma or allergic sensitization at school age: Follow-up of a randomized trial. Allergy. 2020. PubMed Abstract | Publisher Full Text
14. Strachan DP: Hay fever, hygiene, and household size. BMJ. 1989; 299: 1259-60. PubMed Abstract | Publisher Full Text | Free Full Text
15. Lambrecht BN, Hammad H: The immunology of the allergy epidemic and the hygiene hypothesis. Nat Immunol. 2017; 18: 1076-83. PubMed Abstract | Publisher Full Text
16. Ege MJ: The hygiene hypothesis in the Age of the Microbiome. Ann Am Thorac Soc. 2017; 14: 5348-5353. PubMed Abstract | Publisher Full Text
17. Bach J-F: The hygiene hypothesis in autoimmunity: the role of pathogens and commensals. Nat Rev Immunol. 2018; 18: 195-20. PubMed Abstract | Publisher Full Text
18. Lack G: Update on risk factors for food allergy, J Allergy Clin Immunol. 2012; 129: 1187-97. PubMed Abstract | Publisher Full Text
19. Prescott SL, Bouygue GR, Videoy D, et al.: Avoidance or exposure to foods in prevention and treatment of food allergy? Curr Opin Allergy Clin Immunol. 2010; 10: 258-66. PubMed Abstract | Publisher Full Text
20. Perkin MR, Logan K, Bahnsen HT, et al.: Efficacy of the Enquiring About Tolerance (EAT) study among infants at high risk of developing food allergy. J Allergy Clin Immunol. 2019; 144: 1606-1614. e2. PubMed Abstract | Publisher Full Text | Free Full Text
21. Tan JWL, Valerio C, Barnes EH, et al.: A randomized trial of egg introduction from 4 months of age in infants at risk for egg allergy. J Allergy Clin Immunol. 2019: 139: 1621–1628. e8. PubMed Abstract | Publisher Full Text
22. Du Toit G, Roberts G, Sayre PH, et al.: Randomized trial of peanut consumption in infants at risk for peanut allergy. N Engl J Med. 2015; 372: 803-13. PubMed Abstract | Publisher Full Text | Free Full Text
23. Du Toit G, Faoro R-X, Lack G: Prevention of food allergy - Early dietary interventions. Allergol Int. 2016; 65: 370-7. PubMed Abstract | Publisher Full Text
24. Camargo CA JR, Clark S, Kaplan MS, et al.: Regional differences in EpiPen prescriptions in the United States: the potential role of vitamin D. J Allergy Clin Immunol. 2007; 120: 131-6. PubMed Abstract | Publisher Full Text
25. Giannetti A, Bernardini L, Cangemi J, et al.: The prevalence of atopic dermatitis in the 2018 ISAAC Phase 3 Regional Surveys. Allergy. 2019; 74: 364-71. PubMed Abstract | Publisher Full Text
26. Al-Saadi B, Sigurdardottir ST: Early Introduction of Egg and the Development of Egg Allergy in Children: A Systematic Review and Meta-Analysis. 2018; 177: 350-9. PubMed Abstract | Publisher Full Text
27. Azad MB, Coneys JG, Kozyskyj AL, et al.: Probiotic supplementation during pregnancy or infancy for the prevention of asthma and wheeze: systematic review and meta-analysis. 2020; 347: 6471. PubMed Abstract | Publisher Full Text | Free Full Text
28. Barfield A, Brown H, Perrell P, et al.: Effectiveness of Emollient Therapy in Pediatric Patients With Atopic Dermatitis. J Dermatol Nurs Assoc. 2017; 9: 123–8. PubMed Abstract | Publisher Full Text
29. Best KP, Gold M, Kennedy D, et al.: Omega-3 long-chain PUFAs intake during pregnancy and allergic disease outcomes in the
Infant formulas containing hydrolysed protein for prevention of allergic disease. Cochrane Database Syst Rev. 2019; 11: CD010085.

Infant milk-feeding and food allergy and sensitization: A systematic review and meta-analysis. Clin Exp Allergy. 2019; 49: 752–66.

Effect of probiotic supplementation in pregnant women: a meta-analysis of randomised controlled trials. Br J Nutr. 2020; 123: 870–80.

Introducing Allergenic Food into Infants’ Diets: Systematic Review. Pediatr Allergy Immunol. 2014; 25 Suppl 7: 1–826.

Comparative probiotic strain efficacy in the prevention of eczema in infants and children: a systematic review and meta-analysis. Mil Med. 2014; 179: 580–92.

Effect of perinatal omega-3 fatty acid supplementation on inflammatory markers and allergic diseases: a systematic review. J Allergy Clin Immunol. 2011; 127: 246–53, e1–21.

Breastfeeding and atopic dermatitis risk: a meta-analysis of randomized controlled trials. Pediatr Allergy Immunol. 2014; 25 Suppl 7: 1–826.

Effect of omega 3 and 6 oils for primary prevention of atopic dermatitis: A meta-analysis of interventions used to reduce exposure to house dust and their effect on the development and severity of asthma. Cen Saude Colet. 2006; 13: 1907–15.

Omega 3 and 6 oils for primary prevention of allergy: A systematic review and meta-analysis of randomized controlled trials. Allergy. 2019; 74: 1425–42.

The effect of perinatal omega-3 fatty acid supplementation on inflammatory markers and allergic diseases: a systematic review. J Allergy Clin Immunol. 2011; 127: 246–53, e1–21.

The effect of perinatal omega-3 fatty acid supplementation on inflammatory markers and allergic diseases: a systematic review. J Allergy Clin Immunol. 2011; 127: 246–53, e1–21.

Hydrolysed formula and food allergy and sensitization: A systematic review and meta-analysis. Clin Exp Allergy. 2019; 49: 752–66.

Infant milk-feeding and food allergy and sensitization: A systematic review and meta-analysis. Clin Exp Allergy. 2019; 49: 752–66.

Hydrolysed formula and food allergy and sensitization: A systematic review and meta-analysis. Clin Exp Allergy. 2019; 49: 752–66.

Breastfeeding and atopic dermatitis risk: a meta-analysis of randomized controlled trials. Pediatr Allergy Immunol. 2014; 25 Suppl 7: 1–826.
110. Cabana MD, Sayre PH, Roberts G, et al.: Allergen specificity of early peanut consumption and effect on development of allergic disease in the Learning Early About Peanut Allergy study cohort. J Allergy Clin Immunol. 2018; 141: 1343-53. PubMed Abstract | Publisher Full Text | Free Full Text

107. Schmidt L, Olorisade BK, McGuinness LA, et al.: Data extraction methods for systematic review (semi)automation: A living review protocol. F1000Res 2020; 9: 210. PubMed Abstract | Publisher Full Text | Free Full Text

108. Bellach J, Schwarz V, Ahrens B, et al.: Randomized placebo-controlled trial of hen’s egg consumption for primary prevention in infants. J Allergy Clin Immunol. 2017; 139: 1591-1599. e2. PubMed Abstract | Publisher Full Text

109. Litonjua AA, Carey VJ, Laranjo N, et al.: Effect of Prenatal Supplementation With Vitamin D on Asthma or Recurrent Wheezing in Offspring by Age 3 Years: The VDAART Randomized Clinical Trial. JAMA. 2016; 315: 362-70. PubMed Abstract | Publisher Full Text | Free Full Text

110. Calbana MD, McKean M, Caughey AB, et al.: Early Probiotic Supplementation for Eczema and Asthma Prevention: A Randomized Controlled Trial. Pediatrics. 2017; 140. PubMed Abstract | Publisher Full Text | Free Full Text

107. Gore C, Custovic A, Tannock GW, et al.: Treatment and secondary prophylaxis: effects of the probiotics Lactobacillus paracasei or Bifidobacterium lactis on early infant eczema: randomized controlled trial with follow-up until age 3 years. Clin Exp Allergy. 2012; 42: 112-22. PubMed Abstract | Publisher Full Text

112. Zeiger RS, Heller S: The development and prediction of atopy in high-risk children: follow-up at age seven years in a prospective randomized study of combined maternal and infant food allergen avoidance. J Allergy Clin Immunol. 1995; 95: 1179-90. PubMed Abstract | Publisher Full Text

113. Tachimoto H, Imanari E, Mezawa H, et al.: Effect of Avoiding Cow’s Milk Formula at Birth on Prevention of Asthma or Recurrent Wheeze Among Young Children: Extended Follow-up From the ABC Randomized Clinical Trial. JAMA Netw Open. 2020; 3: e2018534. PubMed Abstract | Publisher Full Text | Free Full Text

114. Yamamoto-Hanada K, Kobayashi T, Williams HC, et al.: Early aggressive intervention for infantile atopic dermatitis to prevent development of food allergy: a multicenter, investigator-blinded, randomized, parallel group controlled trial (PACE Study)-protocol for a randomized controlled trial. Clin Transl Allergy. 2018; 8: 47. PubMed Abstract | Publisher Full Text | Free Full Text

115. Zolkhipi Z, Roberts G, Cornelius V, et al.: Randomized controlled trial of primary prevention of atopy using house dust mite allergen oral immunotherapy in early childhood. J Allergy Clin Immunol. 2015; 136: 1541–1547. e11. PubMed Abstract | Publisher Full Text

116. Valovirta E, Petersen TH, Piotrowska T, et al.: Results from the 5-year SQ grass sublingual immunotherapy tablet asthma prevention (GAP) trial in children with grass pollen allergy. J Allergy Clin Immunol. 2018; 141: 529–538. e13. PubMed Abstract | Publisher Full Text

117. Steenhuis Tj, van Alderen WMC, Bloksma N, et al.: Bacille-Calmette-Guerin vaccination and the development of allergic disease in children: a randomized, prospective, single-blind study. Clin Exp Allergy. 2008; 38: 79-85. PubMed Abstract | Publisher Full Text

118. Thøstesen LM, Kjaer HF, Pihl GT, et al.: Neonatal BCG has no effect on allergic sensitization and suspected food allergy until 13 months. Pediatr Allergy Immunol. 2017; 28: 588-96. PubMed Abstract | Publisher Full Text

119. Warner JO: A double-blinded, randomized, placebo-controlled trial of cetirizine in preventing the onset of asthma in children with atopic dermatitis: 18 months’ treatment and 18 months’ posttreatment follow-up. J Allergy Clin Immunol. 2001; 108: 929–37. PubMed Abstract | Publisher Full Text

120. Whiting P, Savović J, Higgins JPT, et al.: ROBIS: A new tool to assess risk of bias in systematic reviews was developed. J Clin Epidemiol. 2016; 69: 225–34. PubMed Full Text
Open Peer Review

Current Peer Review Status: ? ✓ ?

Version 2

Reviewer Report 29 July 2022

https://doi.org/10.5256/f1000research.58562.r136277

© 2022 Lack G. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Gideon Lack
Department of Paediatric Allergy, King’s College London and Guy’s and St. Thomas’ NHS Foundation Trust, London, UK

This is an interesting approach.

I have a few questions:

1. Network meta-analysis (NMA). It is interesting that comparative efficacy of interventions that have not been evaluated directed against each other can be compared. I think more information is required about this approach. Very simply, is it about comparing the efficacy of a prevention against placebo (or non-intervention) in two different trials showing for example that one intervention is twice as effective as another? More information should be provided about this interesting approach. Does it look at population heterogeneity from the two studies being compared, and how are different levels of risk in different populations adjusted for?

2. Timing of an intervention for prevention in early infancy may be critical. Different studies will intervene at different time points, e.g. at birth, 3 months, and 6 months, and these few months can be critical. How will the NMA take these differences into account?

3. Why is the LSR conducted every 3 months? Is this not too frequent? Most professional bodies will update their guidelines every 3-4 years. Is 3 months really necessary? Would once a year not be sufficient? Can the authors provide any evidence or compelling arguments that systematic reviews conducted at 3-monthly intervals are more valuable than those conducted at annual intervals?

4. Why does the objective only study allergies during the first 3 years of life when most respiratory allergies develop at a later time point, and when food pollen syndrome develops at a later time point? Moreover, early interventions could potentially prevent allergies in the first 3 years of life and these preventative effects may disappear at later time points in life. I would strongly argue that any follow-on studies that go on beyond the first 3 years of life are taken into account. Such a long-term approach is well accepted in studies aiming to
prevent cardiovascular events and I would recommend longer term follow up beyond the age of 3 where individual RCTs continue to follow the original population.

Is the rationale for, and objectives of, the study clearly described?
Yes

Is the study design appropriate for the research question?
Yes

Are sufficient details of the methods provided to allow replication by others?
Partly

Are the datasets clearly presented in a useable and accessible format?
Not applicable

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Food allergy

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Mirjana Turkalj
Faculty of Medicine, Srebrnjak Children’s Hospital, J. J. Strossmayer University of Osijek, Zagreb, Croatia

In the study "The evidence for interventions in early childhood allergy prevention - towards a living systematic review: protocol" the authors propose a new, better and more objective intervention concept in early childhood allergy prevention (ECAP). The authors present concrete and objective methodology and metrics. In fact, living systematic review (LSR) requires regular and continuous updates with the implementation of new knowledge in guidelines and clinical practice.
- However, there are several drawbacks to this concept; confusing and contradictory messages for
the clinician in practice, as well as for patients (parents of children), giving guidelines for treatment that may not be applicable to every patient.

It is therefore important to emphasize that evidence for interventions in early childhood allergy prevention, in fact, only "current guidelines" that can be changed or modified, and that they are not applicable to every patient. It is important for the authors to emphasize that personalized approach is still crucial in prevention strategy.

References
1. Havaš Auguštin D, Šarac J, Lovrić M, Živković J, et al.: Adherence to Mediterranean Diet and Maternal Lifestyle during Pregnancy: Island-Mainland Differentiation in the CRIBS Birth Cohort. *Nutrients*. 2020; 12 (8). PubMed Abstract | Publisher Full Text

Is the rationale for, and objectives of, the study clearly described?
Yes

Is the study design appropriate for the research question?
Yes

Are sufficient details of the methods provided to allow replication by others?
Yes

Are the datasets clearly presented in a useable and accessible format?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: allergen immunotherapy, environment and allergy development

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 02 June 2021

https://doi.org/10.5256/f1000research.54665.r84078

© 2021 Caffarelli C. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Carlo Caffarelli
Department of Medicine and Surgery, University of Parma, Parma, Italy

The present manuscript describes a project on future systematic reviews for interventions in early childhood allergy prevention. This is an interesting issue. However, some important points need to be clarified.
Introduction:
- The rationale of the study is focused on dual-allergen-exposure hypothesis. It should be underlined that several strategies have been proposed to reduce the burden of allergic diseases as depicted in Table 1. For example, a multifaceted intervention that reduces exposure to allergens has been shown to be effective in preventing allergy onset. On the other hand, the list of “more than 50 systematic reviews” on early childhood allergy prevention is incomplete. For example see Mastrorilli et al. (2020).

Study selection:
- It seems that systematic reviews can only be useful for retrieving papers that have not been identified with other means. It is therefore difficult to understand why you should incorporate and assess existing systematic reviews. This point needs to be discussed and it should be providing possible explanations since it is not an objective of the current project.

Meta-analysis:
- It should be clarified whether a meta-analysis will be done when it results that heterogeneous studies with different design and outcome have been included. It seems that sometimes, this frequent limitation is not considered by meta-analysis. So, a statement on this issue is warranted.

References
1. Mastrorilli C, Santoro A, Caffarelli C: Primary Prevention of Allergic Diseases: The Role of Early Exposure to Cow's Milk Formula. Front Pediatr. 2020; 8: 420 PubMed Abstract | Publisher Full Text

Is the rationale for, and objectives of, the study clearly described?
Partly

Is the study design appropriate for the research question?
Partly

Are sufficient details of the methods provided to allow replication by others?
Yes

Are the datasets clearly presented in a useable and accessible format?
Not applicable

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Author Response 08 Jul 2021
Uwe Matterne, Otto von Guericke University, Leipziger Str. 44, Magdeburg, Germany
We thank the reviewer very much for having taken the time to critically review our manuscript. We have revised the manuscript taking your suggestions into account and hope to have improved the manuscript sufficiently.

Introduction:
- The rationale of the study is focused on dual-allergen-exposure hypothesis. It should be underlined that several strategies have been proposed to reduce the burden of allergic diseases as depicted in Table 1. For example, a multifaceted intervention that reduces exposure to allergens has been shown to be effective in preventing allergy onset. On the other hand, the list of “more than 50 systematic reviews” on early childhood allergy prevention is incomplete. For example see Mastrorilli et al. (2020).

Thank you for this valuable comment. We agree with the reviewer, that there are several strategies within each route of administration. Table 1 lists the main routes of administration along with one illustrative example. Table 1 is not meant to be fully comprehensive of all strategies but instead meant to provide an indication of the hitherto used routes of intervention with an accompanying example. We would like to highlight, though, that for the purposes of the manuscript we had not intended to do a systematic search of all potentially relevant reviews. Thus, there may still be other reviews having examined randomised controlled trials of ECAP that are not listed in the manuscript. The suggested example by Mastrorilli et al., though a review, is not a systematic review.

Study selection:
- It seems that systematic reviews can only be useful for retrieving papers that have not been identified with other means. It is therefore difficult to understand why you should incorporate and assess existing systematic reviews. This point needs to be discussed and it should be providing possible explanations since it is not an objective of the current project.

We appreciate the reviewer's comment very much. The respective section was revised to more fully convey the methodological approach to using existing SRs in the production of the baseline review.

Meta-analysis:
- It should be clarified whether a meta-analysis will be done when it results that heterogeneous studies with different design and outcome have been included. It seems that sometimes, this frequent limitation is not considered by meta-analysis. So, a statement on this issue is warranted.

We are grateful for the reviewer's comment and would like to stress that in the ‘Meta-analyses and network-meta-analysis' section it is said, that only similar interventions (tested in RCTs only) and the same outcome will be considered in meta-analyses. We added another sentence at the end of this section to clarify that we intend to examine the sources of heterogeneity and the impact of inclusion of studies at various risk of bias in meta-analyses.

Competing Interests: No competing interests were disclosed.
The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com