Analysis on economic carrying capacity index of pig breeding in China

Bi-Bin Leng, Jia-Ling Liu & Yue-Feng Xu
Jiangxi Science & Technology Normal University, Nanchang, China

Abstract: In this paper, factor analysis method was employed to analyze and calculate the Gross Domestic Product (GDP) per capita in the last decade, the proportion of research and experiment development (R&D) expenditure equivalent to GDP, urban and rural residents’ pork consumption and explored the scale of Chinese pig breeding on economic carrying capacity index. The result showed that the growth of GDP had led to better techniques and higher field investment, and stronger support like science and technology from the government provided good conditions for large scale of pig breeding. Besides, the substantial increase of pork consumption between rural and urban residents has contributed to the pig breeding in large scale. As a result, the economic carrying capacity index in Chinese pig farming is on the rise.

1. Introduction
During the Twelfth Five-year Plan period, Chen Yao, the chief scientist of national pig breeding industry technology system and professor from the Life Science School of Sun Yat-sun University, concluded, “The scale of pig breeding grows rapidly, the price fluctuates, and hog cycle still exists. Life efficiency increases steadily and requirements for market access continues to be higher and higher.” In recent years pork price has fluctuated greatly and people have made profits by pig breeding in a large scale. There appeared a hog cycle with profit in one year, a balance in two years but deficit in three years. Under this circumstance, massive cultivation came into its appearance.

2. Confirmation and Calculation of Indicators
With the broad application of carrying capacity and its extension in environmental, economic and social fields, many kinds of capacity appeared, which means the maximum bearing power of a thing and a phenomenon. In this paper, the economic carrying capacity of pig scale breeding refers to the society’s demand for pig breeding and the supporting role of economy and science and technology in pig breeding. GDP, R&D expenditure and urban and rural residents’ pork consumption were used to promote this analysis. Through the data study, dimensionless process was conducted to avoid different dimensions. This study was presented with a relatively treatment method.

According to per capita GDP(C1), R&D expenditure equivalent to GDP(C2) and urban and rural residents’ pork consumption from 2006 to 2015, the following table was presented.
Table 1. Standardization of Evaluation Index of Economic Carrying Capacity of Pig Scale Breeding

Time	Per capita GDP with dimensionless process (C11)	R&D expenditure/GDP with dimensionless process (C22)	Urban and residents’ pork consumption dimensionless process (C33)
2006	0.3348	0.6860	0.8821
2007	0.4102	0.7198	0.7856
2008	0.4825	0.7440	0.7938
2009	0.5245	0.8213	0.8572
2010	0.6176	0.8502	0.8739
2011	0.7282	0.8599	0.8719
2012	0.8003	0.8889	0.9112
2013	0.8772	0.9565	0.9826
2014	0.9442	0.9758	0.9950
2015	1.0000	1.0000	1.0000

Data Source: *China Statistical Yearbook*

From the above table we can see that China’s per capita GDP shows a trend of increase year by year; the economy develops much faster; the proportion R&D expenditure accounting for GDP is growing in a row. With the development of economy, more funds are invested in science and technology. Moreover, residents’ growing income has contributed to the larger pork consumption between rural and urban people.

3. Calculation of Index of Economic Carrying of Scale Pig Breeding
We use SPSS software to evaluate the economic carrying capacity of Chinese pig scale farming. On the basis of the correlation test, we obtained the common factor variance of the original variable. The data showed that the principal component contained more than 80% of the original variables, and then the contribution rate of common factor variance is as followed.

Table 2 Contribution Rate of Common Factor Variance

Component	Initial Eigenvalues	Square extraction & loading	Square rotation & loading
	Summation Variance %	Summation Variance %	Summation Variance %
	Accumulation %	Accumulation %	Accumulation %
1	2.813	93.769	93.769
	.171	5.691	99.460
3	.016	.540	100.000
	1.732	57.742	57.742
	1.252	41.719	99.460
The high factor variance showed the factor extracted can best explain the three indexes. The variance contribution rates of factor one and factor two were 93.769% and 5.691% respectively, and the characteristic values were 2.813 and 0.171 respectively. These two indexes explained 99.460% (more than 80%) of variance, therefore we extracted the first two components as the first and second component. Furthermore, factor score coefficient matrix is as follows.

Table 3 Factor Score Coefficient Matrix

	Component 1	Component 2
C11	.926	-.568
C22	.837	-.459
C33	-1.024	1.753

Factor expression:

\[F1 = 0.926C11 + 0.837C22 - 1.024C33 \]
\[F2 = -0.568C11 - 0.459C22 + 1.753C33 \]

The first two contribution rates were normalized and we obtained two statistics, 94.28% and 5.72%. Considering the variance contribution rate as the weight, we got the expression of economic carrying capacity index \(A \):

\[A = 94.28\% \times F1 + 5.72\% \times F2 \]

The index of economic carrying capacity of China's pig farming scale from 2006 to 2015 is as follows:

Chart 1 Economic Carrying Capacity Index

The data showed that with the economic and social development, the improvement of living standards, the increase of consumption capacity and demand, the country’s science and technology investment is also increasing, which provides economic support for pig breeding. The economic carrying capacity of pig farming is on the rise.

4. Conclusion and Outlook

In this paper, we use the SPSS analysis software to evaluate the economic carrying capacity index of China’s pig scale breeding from the data of the past decade. The results show that the progress of society, the increase of people’s income and consumption demand contribute to the development of overall economy. The state invests more in science and technology, which promotes the large-scale
breeding of live pigs and the economic carrying capacity is still increasing. Therefore, there exists a large market in Chinese pork consumption and large scale breeding is likely to further expand. However, expanding the scale of farming may do harm to environment, which is worth our vigilance.

Acknowledgement
We gratefully acknowledge the grant of project Scale Pig Breeding Ecological Energy System Stability Feedback Simulation Study (71501085) supported by National Natural Science Foundation of China and the Planning Project of Jiangxi Social Science "13th Five-Year" (2016) (16YJ09)

Reference
[1] China Statistical Yearbook. Beijing, China Statistics Press, 2016.
[2] Chinese Animal Husbandry Statistical Yearbook. Beijing, China Agriculture press, 2016.
[3] Duan Na,Ling Cong,Liu Xiaodong, etc. Using biogas as the energy analysis of ecological village circulation link.[J] Journal of Agricultural Engineering,2015,31(Suppl 1):2611-268.
[4] Elton C S. The ecology of invasions by animals and plants [J].Methuen, London, England, 1958.
[5] Feng Yaozong. The concept and index of the stability of artificial ecosystem[J] Ecology Magazine,2002,21(5) :58-60.
[6] Griffin.R C.,Bromley D W. Agricultural Runoff as a Nonpoint Externality: A Theoretical Development[J].American Journal of Agricultural Economics,1983,70:37-49.
[7] Hu Qichun,Tang Xiaoyu,Ling Ruiting, etc. Analysis of the current situation of China biogas project construction with the development of the pig industry[J] Agricultural Engineering Journal,2015,31(8) 1-6.
[8] Jia Renan,Ding Ronghua. System Dynamics Feedback dynamic complexity analysis[M] Beijing: Higher Education Press,2002.
[9] Jia Renan,Xu Nansun,Wu Fuming,etc. Embedding Operator for Fundamental RATE variable in tree and Prevailing Structured Feedback Model[J] System engineering Theory and Practice,1999,(07): 69-76.
[10] Junichi Fujino, Akihiro Morita, Yasunari Matsuoka, Shigeki Sawayama. Vision for utilization of livestock residue as bioenergy Resource in Japan[J].Biomass and bioenergy 2005(29):367-374.
[11] Ma Shijun,Wang Rusong.Social economic natural complex ecosystem[J] Ecological Journal,1984,4(1):1-9.
[12] Ma.Angeles.O.Catelo,Moise A.Dorado,ElPidio Agbisit. Backyard and commercial Piggeries in the Philippines:environmental consequences and Pollution control options.EEPSEA Research Reports,2001.
[13] MacArthur R H. Fluctuations of animal populations and a measure of community stability[J].Ecology, 1955, 36: 533-536.
[14] Nauyen Quoe Chinh. Dairy cattle development:environmental consequences and Pollution control option in Hanoi Province,north Vietnam. EEPSEA Research Reports,2005.
[15] Segerson K. Uncertainty and Incentives for NonPoint Pollution Control[J].Journal of Environmental Economies and Management,1988,15:88-98.
[16] Sheng Jing,Sun Guofeng,Zheng Jianchu, Study on the scale allocation of farm animal husbandry combined with scale pig farm in typical manure treatment mode[J] Chinese Journal of ecological agriculture,2015,23(2):199-206.
[17] Shortle J S.,Dunn J W. The Relative Efficiency of Agricultural Source Water Pollution Control Policies [J].American Journal of Agricultural Economics,1986,68:668-677.
[18] Tu Guoping,Jia Renan,Wang Cuixia, etc. Theory and application research on construction of planting and livestock breeding biomass energy industry based on system dynamics.[J] System engineering Theory and Practice,2009,29(03):1-9.
[19] Volker Grimm,Christian Wissel.Babel or the ecological stability discussions:An inventory and analysis of terminology and aguide for avoiding confusion[J].Oecologia,1997,109:323 -334.
[20] Wang Cuixia. System dynamics simulation analysis of the scale management strategy of
ecological agriculture[J] System engineering Theory and Practice,2014,34(8):3171-3181.

[21] Weibull. Evolutionary Game Theory[M] Wang Yongqin. Shanghai. Shanghai people's Publishing House.2006.

[22] Weng Boqi . To prevent and control the pollution of livestock and poultry [J] Agricultural environmental protection. 2002,06:288.

[23] Wu Genyi, Liao Xindi, He Dechun ,etc, Current situation and Countermeasures of pollution control in livestock and poultry breeding in China[J] Journal of Agricultural Environmental Science,2014,33(7):1261-1264.

[24] Yang Jin,Chen Bin,Liu Gengyuan. Comprehensive evaluation of sustainable development level of biogas agro ecosystem based on energy value---Taking Gongcheng County as an example[J] Chinese Journal of Ecology.2012,32(13):4008-4016.

[25] Zhang Mingkui, Mode and technology of recycling and utilization of livestock and poultry manure resources.[J] Modern agricultural technology,2010,14:280-283.

[26] Zhang Xiaolan , Lv Wenkui , Yang Qian ,etc. Experience and Inspiration of pollution prevention and control of livestock and poultry breeding in Holland.[J] Environmental protection,2014,15:71-73.

[27] Zhang Xiaoyan. Comprehensive prevention and control of pollution of livestock and poultry in rural areas.[J] Sichuan Environment,2014,33(2):98-102