Aim: Leukocyte profile has been related to clinical outcome in patients with ST-segment elevation (STE) myocardial infarction (MI). However, whether eosinophil to leukocyte ratio (ELR) predicts clinical outcome in patients who have undergone primary percutaneous coronary intervention (PCI) remains unclear. Therefore, we examined the prognostic value of ELR in this patient population.

Methods: We retrospectively analyzed the data of 331 consecutive patients who underwent primary PCI for STEMI between January 2009 and March 2015. All leukocyte types were counted and ELR was calculated for all patients 24 h after hospital admission. The primary study endpoint was major adverse cardiac events (MACEs) within up to one year of follow-up duration.

Results: MACEs including cardiac deaths in 9.4% of the patients, MI in 1.5%, and target lesion or vessel revascularization in 10.3%, occurred within one year in 68 patients (20.5%). The mean ELR was significantly lower in patients with MACEs than in patients without MACEs (0.20 ± 0.51 vs. 0.49 ± 0.66, respectively; p < 0.001). An ELR < 0.1 at 24 h was identified as the best cut-off value for mortality prediction. Multivariate analysis identified that an ELR < 0.1 (odds ratio [OR] = 0.38; 95% confidence interval [CI] = 0.22–0.67; p < 0.001) and chronic kidney disease (OR = 2.38; CI = 1.33–4.24; p = 0.003) are independent predictors of MACEs.

Conclusion: In primary PCI patients with STEMI, ELR at 24 h was an independent predictor of MACEs in addition to the usual coronary risk factors and commonly used biomarkers.

Key words: Eosinophil to leukocyte ratio, ST-segment elevation myocardial infarction, Percutaneous coronary intervention, Major adverse cardiac event
infarct size and clinical outcomes. We designed the present study to examine the prognostic value of ELR in patients who presented with STEMI and underwent primary PCI.

Methods

Data Collection and Follow-Up

We retrospectively analyzed data from 360 consecutive patients who underwent PCI for STEMI at Hokkaido Cardiovascular Hospital between January 2009 and March 2015. Patients were followed-up for one year. We excluded patients who a) presented with infections, allergic diseases, or malignancies; b) were referred to our hospital over 48 h after the onset of STEMI; or c) died within 24 h after hospital admission. Primary PCI was performed using standard techniques. The use of thrombectomy devices, intravascular ultrasound, pre-dilatation, stent choice, post-dilatation, and the initiation of intra-arterial balloon pump or percutaneous cardiopulmonary support were at the operators’ discretion.

Park et al. suggested that because of delayed response of the patient to the extent of STEMI, the initial leukocyte count obtained in the emergency department might not reliably reflect the inflammatory status. They found that in patients presenting with STEMI, the leukocyte count 24 h after hospital admission is more likely to reflect the severity of inflammation than the leukocyte count at the time of hospital admission. Therefore, in the present study, we chose the 24-h leukocyte count as a predictor of prognosis in STEMI patients who underwent PCI. ELR was calculated as the ratio of the number of eosinophils to the number of leukocytes 24 h after hospital admission. In addition, we evaluated the data from patients presenting with stable angina pectoris (SAP) during the study period. The left ventricular (LV) ejection fraction (EF) was based on measurements of the LV end-diastolic and end-systolic volumes in the apical 4- and 2-chamber views using the modified Simpson method. Informed consent was obtained from patients or their relatives before PCI. The present study protocol was approved by the research ethics committee of the Hokkaido Cardiovascular Hospital.

Study Endpoints and Definitions

Primary endpoints of the present study were major adverse cardiac events (MACEs) at one year defined as death, Q-wave MI, and the need for target lesion revascularization (TLR) or target vessel revascularization (TVR) by coronary artery bypass graft or repeat PCI. Angiographic restenosis was defined as a >50% diameter stenosis of the target lesion on follow-up angiography. Secondary endpoints were inhospital mortality and complications, and LVEF. Diabetes mellitus was defined as a) a ≥ 126 mg/dL fasting plasma glucose level, b) a ≥ 200 mg/dL fasting plasma glucose level 2 h after an oral glucose load, c) a ≥ 6.5% plasma hemoglobin A1C, or d) the prescription of insulin or an oral hypoglycemic agent. Hypertension was defined as a ≥ 140 mmHg systolic or ≥ 90 mmHg diastolic blood pressure or by the prescription of an antihypertensive drug. Dyslipidemia was defined as a ≥ 220 mg/dL total or ≥ 140 mg/dL low-density lipoprotein cholesterol, < 40 mg/dL high-density lipoprotein cholesterol, ≥ 150 mg/dL triglyceride, or the prescription of a blood lipid-lowering drug. Chronic kidney disease (CKD) was defined by an estimated glomerular filtration rate < 60 mL/min/1.73 m². Peak creatine kinase (CK) and peak CK-myocardial band (CK-MB), leukocyte count, neutrophil to lymphocyte ratio, and ELR were measured 24 h after hospital admission.

Statistical Analysis

Data were expressed as the mean ± standard deviation. Between-group differences were analyzed using the Pearson chi-square test or Fisher exact test for categorical variables and the Student t-test or Mann–Whitney U test for continuous variables as appropriate. Receiver-operating characteristic (ROC) curves were constructed to identify the optimal predictor of clinical endpoints. Incidences of clinical events were expressed as Kaplan–Meier estimates and they were compared using the log-rank test. Uni- and multivariable logistic regression analyses were performed to identify the independent predictors of MACEs at one year. Uni- and multivariable logistic regression models including predictors of MACEs identified via univariate analysis were used to define the risk of MACEs. Odds ratio (OR) and 95% confidence interval (CI) were calculated to confirm the significance of between-group differences. A value of p < 0.05 was considered statistically significant. All statistical analyses were performed using the SPSS software version 22.0 (IBM Corporation, Armonk, NY).

Results

Patients and Clinical Characteristics

Among 360 patients who underwent PCI for STEMI, we excluded 13 patients from the analysis because of inflammatory or allergic diseases, six patients because they were admitted > 48 h after the onset of STEMI, five patients because they died within 24 h after hospital admission, two patients because of missing data at 24 h after admission, two
ELR and Prognosis after STEMI

patients because they had active cancers, and one patient because he presented with a spontaneous coronary artery dissection that was pathophysiologically different from a typical STEMI. The final patient population included 331 patients with STEMI who underwent PCI (Fig. 1).

MACEs developed in 68 patients (20.5%) including cardiac deaths in 31 (9.4%), MI in five (1.5%), and TLR or TVR in 34 (10.3%) patients. The baseline patient characteristics are listed in Table 1. The mean age of patients who developed MACEs was higher than that of patients who remained MACE-free (73.1 ± 12.6 years vs. 65.7 ± 12.4 years, respectively; \( p < 0.001 \)). The percentage of women in the MACE group was significantly higher than that in the MACE-free group (37% vs. 21%, respectively; \( p = 0.005 \)). The percentages of CKD (63% vs. 31%; \( p < 0.001 \)) and previous cerebral infarctions (15% vs. 6%; \( p = 0.027 \)) in the MACE group were higher than those in the MACE-free group. The mean LVEF in the MACE group was significantly lower than that in the MACE-free group (50.2 ± 13.6% vs. 54.4 ± 10.5%, respectively; \( p = 0.022 \)). Comparisons of MACE and MACE-free patients showed significantly higher peak CK (3,959 ± 3,458 IU/L vs. 2,669 ± 2,504 IU/L, \( p = 0.005 \)), peak CK-MB (334 ± 282 vs. 228 ± 188 IU/L; \( p = 0.004 \)), leukocyte count (11,634 ± 3,661/μL vs. 10,481 ± 3,356/μL; \( p = 0.021 \)), and neutrophil to lymphocyte ratio (10.8 ± 7.0 vs. 6.6 ± 4.6; \( p < 0.001 \)), and a significantly lower ELR for MACE patients (0.20 ± 0.51 vs. 0.49 ± 0.66; \( p < 0.001 \)) at 24 h after hospital admission. A ROC curve was constructed to identify the best cut-off ELR value that predicted the primary endpoint calculated as an area < 0.1 under ROC curve with sensitivity, specificity, positive and negative predictive values, and diagnostic accuracy of 68, 64, 32, 88 and 64%, respectively (Fig. 2). Similarly, a ROC curve was constructed to determine the best cut-off value for peak CK-MB that predicted the primary study endpoint. The best cut-off value for peak CK-MB was calculated as ≥ 189 with sensitivity, specificity, and positive and negative predictive values of 68, 57, 29, and 87%, respectively, and a diagnostic accuracy of 59%. The ELR of patients with peak CK-MB ≥ 189 IU/L was significantly lower than that of patients with peak CK-MB < 189 IU/L (0.13 ± 0.28 vs. 0.71 ± 0.76; \( p < 0.001 \)). Patients with 24-h ELRs < 0.1 were older, more likely to be women and less likely to be hypertensive, more often suffered from CKD or underwent bare metal stent implantation or simple balloon angioplasty, had lower LVEFs; and higher peak CK, peak CK-MB, leukocyte count, and neutrophil to lymphocyte ratios than patients with 24-h ELRs ≥ 0.1 (Table 2).

Incidence of MACEs in the ELR < 0.1 versus ELR ≥ 0.1 groups

Kaplan–Meier survival analysis (Fig. 3A) showed that patients with 24-h ELRs < 0.1 had significantly higher incidence of MACEs than patients with 24-h ELR ≥ 0.1 (32.4% vs. 11.6%, respectively; \( p < 0.001 \)). On day 30 after PCI (Fig. 3B), patients with 24-h ELRs < 0.1 had significantly higher MACE incidence rates than patients with ELRs ≥ 0.1 (16.9% vs. 1.1%, respectively; \( p < 0.001 \)). However, beyond 30 days, the outcomes were similar (15.5% vs. 10.6%, respectively; \( p = 0.184 \)) in both groups (Fig. 3C).

Independent Predictors of MACEs in Patients with Acute Myocardial Infarction after PCI

Uni- and multivariate logistic regression analyses were performed to identify independent predictors of
Patient age, female sex, CKD, history of cerebral infarction, ELR, and platelet counts were included in the multivariate model. Because the LVEF ($r=0.270$, $r^2=0.073$; $p<0.001$), peak CK ($r=-0.402$, $r^2=0.162$; $p<0.001$), peak CK-MB ($r=-0.370$, $r^2=0.137$; $p<0.001$), leukocyte count ($r=-0.271$, $r^2=0.073$; $p<0.001$), and neutrophil to lymphocyte ratio ($r=-0.450$, $r^2=0.203$; $p<0.001$) were directly or inversely correlated with ELR, they were excluded from the multivariate analysis. Multivariate analysis identified CKD and ELR as independent predictors of MACEs (Table 3). An ELR <0.1 was associated with the risk of MACEs (OR=0.38; 95% CI, 0.22–0.67; $p<0.001$).

### Table 1. Baseline patient characteristics

|                      | Absent $n=263$ | Present $n=68$ | $P$  |
|----------------------|---------------|----------------|------|
| Age, years           | 65.7±12.4     | 73.1±12.6      | <0.001|
| Women                | 54 (21)       | 25 (37)        | 0.005 |
| Anterior myocardial infarction | 127 (48)    | 38 (56)       | 0.276 |
| Body mass index (kg/m²) | 24.3±3.9     | 23.5±4.3       | 0.268 |
| Diabetes mellitus    | 95 (36)       | 25 (37)        | 0.922 |
| Hypertension         | 186 (71)      | 43 (63)        | 0.233 |
| Dyslipidemia         | 219 (84)      | 51 (74)        | 0.065 |
| Chronic kidney disease | 82 (31)     | 43 (63)        | <0.001|
| Current smoker       | 158 (60)      | 35 (51)        | 0.199 |
| Family history of coronary artery disease | 10 (4)        | 4 (6)          | 0.447 |
| Sleep apnea syndrome* | 58 (50)      | 11 (61)        | 0.399 |
| Intima-media thickness (mm)** | 2.4±1.1  | 2.7±1.1       | 0.259 |
| Peripheral artery disease | 36 (14)      | 11 (16)       | 0.600 |

**History of:**
- Percutaneous coronary intervention
- Coronary artery bypass graft
- Cerebral infarction
- Prior aspirin or clopidogrel use
- Prior ACE inhibitor or ARB use
- Prior statin use
- Prior β blockers use
- Door to balloon time (min)
- Admission systolic blood pressure (mmHg)
- Admission diastolic blood pressure (mmHg)
- Use of bare metal stent or simple balloon angioplasty
- Left ventricular ejection fraction (%)
- Peak, (IU/l)
  - Creatine kinase
  - Creatine kinase myocardial-band
  - Hemoglobin (g/dl)
  - White blood cell count (/μl)
  - Neutrophil count (/μl)
  - Lymphocyte count (/μl)
  - Eosinophil count (/μl)
- Ratio
  - Neutrophil to lymphocyte
  - Eosinophil to leukocyte
  - Platelets ($\times10^9$/μl)

Values are means±SD or numbers (%) of observations.

* $n=133$; ** $n=159$
Fig. 2. Diagnostic characteristics of eosinophil to leukocyte ratio (ELR) for the prediction of clinical outcomes

A receiver-operating characteristic (ROC) curve analysis was performed to determine the best cut-off ELR value for predicting the primary endpoints. The best cut-off ELR value was calculated as <0.1. The area under the ROC curve was 0.68 and the sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accuracy were 68%, 64%, 32%, 88%, and 64%, respectively.

Table 2. Baseline characteristics according to eosinophil/leukocyte ratio <0.1

| ELR               | ≥ 0.1 | <0.1 | \( P \) |
|-------------------|-------|------|--------|
| \( n \)           | 189   | 142  |        |
| Age, years        | 65.9±12.7 | 69.1±12.7 | 0.025 |
| Women             | 36 (19) | 43 (30) | 0.018 |
| Anterior myocardial infarction | 92 (49) | 73 (51) | 0.623 |
| Body mass index (kg/m²) | 24.5±3.4 | 23.7±3.9 | 0.069 |
| Diabetes mellitus | 68 (36) | 52 (36) | 0.904 |
| Hypertension      | 139 (74) | 90 (63) | 0.047 |
| Dyslipidemia      | 151 (80) | 119 (84) | 0.364 |
| Chronic kidney disease | 53 (28) | 72 (51) | <0.001 |
| Current smoker    | 118 (62) | 75 (53) | 0.079 |
| Family history of coronary artery disease | 6 (3) | 8 (6) | 0.410 |
| Sleep apnea syndrome* | 51 (56) | 18 (43) | 0.157 |
| Intima-media thickness (mm)** | 2.4±1.1 | 2.5±1.0 | 0.809 |
| Peripheral artery disease | 27 (14) | 20 (14) | 0.959 |
| History of:       |       |      |        |
| Percutaneous coronary intervention | 23 (12) | 13 (9) | 0.383 |
| Coronary artery bypass graft | 1 (1) | 3 (2) | 0.426 |
| Cerebral infarction | 12 (6) | 15 (11) | 0.166 |
| Prior aspirin or clopidogrel use | 35 (19) | 17 (12) | 0.105 |
| Prior ACE inhibitor or ARB use | 33 (17) | 24 (16) | 0.894 |
| Prior statin use  | 22 (12) | 16 (10) | 0.653 |
| Prior \( \beta \) blockers use | 16 (8) | 10 (7) | 0.634 |
| Door to balloon time (min) | 86±40 | 87±39 | 0.795 |
| Admission systolic blood pressure (mmHg) | 128±26 | 128±29 | 0.939 |
| Admission diastolic blood pressure (mmHg) | 76±17 | 77±19 | 0.658 |
| Use of bare metal stent or simple balloon angioplasty | 83 (44) | 89 (63) | <0.001 |
| Left ventricular ejection fraction (%) | 56.2±9.5 | 49.8±12.3 | <0.001 |
| Peak, (IU/l)      |       |      |        |
| Creatine kinase   | 1,843±1,441 | 4,385±3,391 | <0.001 |
| Creatine kinase myocardial-band | 167±124 | 359±257 | <0.001 |
| Hemoglobin (g/dl) | 14.0±2.3 | 13.6±2.3 | 0.134 |
| White blood cell count (\( \mu l \)) | 9,620±2,851 | 12,179±3,634 | <0.001 |
| Neutrophil to lymphocyte ratio | 4.7±2.3 | 11.2±6.1 | <0.001 |
| Platelet count (\( \mu l \)) | 20.6±6.3 | 20.1±6.4 | 0.441 |

Values are means±SD or numbers (%) of observations.
* \( n=133 \); ** \( n=159 \)
Instead of ELR, we included the LVEF, peak CK, peak CK-MB, leukocyte count, and neutrophil to lymphocyte ratio in the multivariate model and found that the peak CK, peak CK-MB, leukocyte count, and neutrophil to lymphocyte ratio were also significant predictors of MACEs (Table 3).

Rates of Cardiac Death, TLR or TVR, and MI according to ELR

The incidence of cardiac death in patients with 24-h ELRs < 0.1 was significantly higher than that in patients with 24-h ELRs ≥ 0.1 (19.7% vs. 1.6%, respectively; \( p < 0.001 \)). However, the rates of MI (2.8 vs. 0.5%; \( p = 0.217 \)) and TLR or TVR (10.6 vs. 10.1%; \( p = 0.880 \)), were similar in both groups. Congestive heart failure (CHF) was the cause of cardiac death in 25 patients, cardiac ruptures (two ventricular septal perforations and three LV free wall ruptures) in five patients, and ventricular fibrillation (VF) in one patient. Death incidences due to CHF (15.5% in 22 patients vs. 1.6% in 3 patients) and cardiac rupture (3.5% in five patients vs. 0% in 0 patients) were significantly higher in patients with 24-h ELRs < 0.1 compared to patients with 24-h ELRs ≥ 0.1 (\( p < 0.001 \) and \( p = 0.032 \), respectively; Fig. 4A and 4B). The incidence of VF \( (n = 1; 0.7\% \text{ vs. } n = 0; 0\%; \ p = 0.886) \) was similar in both groups.

ELR < 0.1 and Secondary Clinical Endpoints

The secondary clinical endpoints are shown in Fig. 5. In-hospital deaths occurred in 23 patients, including 17 deaths due to CHF, five due to cardiac ruptures, and one due to VF. In-hospital mortality (Fig. 5A) was significantly higher among patients with 24-h ELRs < 0.1 compared to patients with 24-h ELRs ≥ 0.1 (15.5% vs. 0.7%, \( p < 0.001 \)). In-hospital complications occurred in 117 patients. The rate of in-hospital complications (Fig. 5B) was significantly higher in patients with 24-h ELRs < 0.1 than in patients with 24-h ELRs ≥ 0.1 (55.6% vs. 20.1%, \( p < 0.001 \)). The in-hospital complications observed are listed in Table 4. The incidences of cardiogenic shock
Table 3. Logistic regression analysis of MACE

|                  | Single variable | Multiple variable |
|------------------|-----------------|-------------------|
|                  | OR (95% CI)     | p                 | OR (95%CI) | p         |
| Age              | 2.78 (1.58-4.88) | <0.001            | 1.61 (0.89-2.92) | 0.116     |
| Female sex       | 2.25 (1.26-4.01) | 0.008             | 1.45 (0.78-2.68) | 0.239     |
| Anterior myocardial infarction | 1.36 (0.79-2.32) | 0.327             |           |           |
| Body mass index  | 0.74 (0.38-1.41) | 0.447             |           |           |
| Diabetes mellitus| 0.99 (0.58-1.73) | 0.891             |           |           |
| Hypertension     | 0.71 (0.41-1.25) | 0.296             |           |           |
| Dyslipidemia     | 0.54 (0.29-1.02) | 0.081             |           |           |
| Chronic kidney disease | 3.80 (2.17-6.63) | <0.001            | 2.38 (1.33-4.24) | 0.003     |
| Current smoker   | 0.70 (0.41-1.20) | 0.252             |           |           |
| Family history of coronary artery disease | 1.58 (0.48-5.21) | 0.673             |           |           |
| Sleep apnea syndrome | 1.54 (0.60-4.26) | 0.556             |           |           |
| History of cerebral infarction | 2.49 (1.09-5.73) | 0.049             | 1.63 (0.68-3.89) | 0.273     |
| Intima-media thickness | 1.20 (0.48-3.01) | 0.877             |           |           |
| Peripheral artery disease | 1.22 (0.58-2.54) | 0.742             |           |           |
| Previous percutaneous coronary intervention | 1.12 (0.49-2.58) | 0.963             |           |           |
| Previous coronary artery bypass grafting | 3.95 (0.55-28.6) | 0.398             |           |           |
| Prior aspirin or clopidogrel use | 1.19 (0.59-2.43) | 0.759             |           |           |
| Prior ACE inhibitor or ARB use | 1.49 (0.77-2.89) | 0.315             |           |           |
| Prior statin use | 0.70 (0.28-1.75) | 0.577             |           |           |
| Prior β blockers use | 1.81 (0.75-4.32) | 0.275             |           |           |
| Door to balloon time | 1.92 (0.95-3.86) | 0.092             |           |           |
| Admission systolic blood pressure | 1.91 (0.93-3.91) | 0.114             |           |           |
| Admission diastolic blood pressure | 1.02 (0.57-1.86) | 0.955             |           |           |
| Use of bare metal stent or simple balloon angioplasty | 0.91 (0.53-1.54) | 0.820             |           |           |
| Left ventricular ejection fraction | 0.47 (0.27-0.81) | 0.009             | 0.60 (0.35-1.05) | 0.073     |
| Peak             |                 |                   |           |           |
| Creatine kinase  | 4.04 (2.31-7.05) | <0.001            | 2.34 (1.34-4.09) | 0.003     |
| Creatine kinase myocardial-band | 2.73 (1.56-4.80) | <0.001            | 2.51 (1.43-4.42) | 0.001     |
| Hemoglobin concentration | 0.69 (0.34-1.39) | 0.397             |           |           |
| White blood cell count | 2.62 (1.49-4.64) | 0.001             | 2.43 (1.38-4.29) | 0.002     |
| Neutrophil to lymphocyte ratio | 4.41 (2.52-7.73) | <0.001            | 3.78 (2.15-6.67) | <0.001    |
| Eosinophil to leukocyte ratio (ELR) | 0.27 (0.16-0.48) | <0.001            | 0.38 (0.22-0.67) | <0.001    |
| Platelet count   | 1.85 (1.04-3.27) | 0.046             | 0.74 (0.41-1.32) | 0.310     |

CI = confidence interval; OR = odd ratio.

(28.2% vs. 9.0%; p < 0.001), CHF (31.7% vs. 6.9%; p < 0.001), continuous hemofiltration (8.5% vs. 1.1%; p = 0.002), tracheal intubation (5.6% vs. 1.1%; p = 0.037), sustained ventricular tachycardia (VT) or VF (12.0% vs. 4.2%; p = 0.008), and blood transfusion (5.6% vs. 0.0%; p = 0.003) were significantly higher in patients with 24-h ELRs < 0.1 than in patients with 24-h ELRs ≥ 0.1, respectively. LVEF (Fig. 5C, Table 2) was significantly lower in patients with a 24-h ELRs < 0.1 than in patients with 24-h ELRs ≥ 0.1 (49.8 ± 12.3% vs. 56.2 ± 9.5%, respectively; p < 0.001).

**ELR in Patients Presenting with STEMI versus Patients with Stable Angina Pectoris**

During the present study, 1,461 patients presenting with SAP underwent PCI, of whom 1,276 patients free from inflammatory or allergic diseases or cancers were included in the analyses. Mean ELR (Supplementary Fig. 1) was significantly lower in patients with STEMI than in patients presenting with SAP (0.4 ± 0.7% vs. 3.8 ± 3.2%, respectively; p < 0.001).

**Discussion**

The main observations of the present study were
1) in patients presenting with STEMI, 24-h ELR, CKD, peak CK, peak CK-MB, leukocyte count, and neutrophil to lymphocyte ratio were independent predictors of MACEs at one-year after PCI; 2) the incidence of MACE at one year was higher in patients with 24-h ELRs $<0.1$ than in patients with ELRs $\geq 0.1$ ($p<0.001$). CHF: congestive heart failure.

B. The incidence of death due to cardiac rupture was significantly higher in patients with ELRs $<0.1$ than in patients with ELRs $\geq 0.1$ ($p=0.032$).

Fig. 4. Comparison of cardiac death in patients with ELRs $<0.1$ and patients with ELRs $\geq 0.1$

A. The incidence of death due to CHF was significantly higher in patients with ELRs $<0.1$ than in patients with ELRs $\geq 0.1$ ($p<0.001$).

B. The incidence of death due to cardiac rupture was significantly higher in patients with ELRs $<0.1$ than in patients with ELRs $\geq 0.1$ ($p=0.032$).

Fig. 5. Comparison of secondary endpoints between patients with ELRs $<0.1$ and patients with ELRs $\geq 0.1$

A. In-hospital mortality was significantly higher in patients with ELRs $<0.1$ than in patients with ELRs $\geq 0.1$.

B. In-hospital complication rate was significantly higher in patients with ELRs $<0.1$ than in patients with ELRs $\geq 0.1$.

C. Mean LVEF was significantly lower in patients with ELRs $<0.1$ than in patients with ELRs $\geq 0.1$. See text for details of individual measurements.

and the LVEF was lower in patients with 24-h ELR $<0.1$ than in patients with 24-h ELRs $\geq 0.1$. The present study adds an important clinical factor to the list of hematological predictors of outcome after PCI in patients presenting with STEMI.

**Relationship between ELR and Cardiac Enzyme Concentration**

After performing PCI in patients with STEMI,
early risk stratification is of utmost importance in the prevention of adverse cardiac events. Several recent studies have shown that the leukocyte profile in patients with acute MI is related to prognosis. Jiang et al. found that the peripheral eosinophil counts were lowest in patients presenting with the largest acute MIs. They observed that patients who presented with troponin I ≥ 20 ng/mL had significantly lower ELRs than patients who presented with troponin I < 20 ng/mL. In the present study, the ELR of patients with peak CK-MB ≥ 189 IU/L was significantly lower than that of patients with peak CK-MB < 189 IU/L. This result appears to be consistent with the results reported by Jiang et al.

**Decreased ELR Reflecting a Large Infarct Size**

The higher one-year cardiac death incidence, and in-hospital mortality and complications in patients with 24-h ELRs < 0.1 might be explained by a larger infarct size compared to that of patients with 24-h ELRs ≥ 0.1. In the present study, LVEF was lower and peak CK and peak CK-MB were higher in patients with 24-h ELRs < 0.1 than in patients with 24-h ELRs ≥ 0.1. An impaired LV function after MI is consistent with a large infarcted area and it is associated with the development of adverse cardiac events. Peak CK and CK-MB are well-known enzymatic markers of infarct size and important predictors of one-year mortality in patients with STEMI. Sustained VT and VF are more likely to develop in patients with extensive myocardial injuries. Therefore, higher prevalences of cardiogenic shock, CHF, and sustained VT and VF were expected in patients with 24-h ELRs < 0.1, who had larger myocardial infarctions and higher in-hospital and one-year cardiac mortalities compared to patients with 24-h ELRs ≥ 0.1, mainly attributable to CHF.

**Mechanisms of Decreased ELR in STEMI**

In patients presenting with STEMI, a decrease in peripheral circulating eosinophils has recently been reported. At least three mechanisms might explain the reduction in ELR in patients presenting with STEMI:

**Eosinophil Adherence to Coronary Thrombi**

Because eosinophils may aggregate to form coronary thrombi in STEMI, their numbers are reduced in the peripheral circulation. A relationship between eosinophils and increased risk of thrombosis was confirmed in patients presenting with hypereosinophilic syndrome. The activity of circulating eosinophils on the endothelium is mediated primarily by P-selectin, while that of the neutrophils is mediated primarily by E-selectin. In patients with acute MI, P-selectin concentrations have been measured to be higher in the infarcted coronary artery than in the circulation. The eosinophil granule proteins, particularly major basic proteins, may contribute to hypercoagulation by inhibiting the thrombomodulin function. The serum concentrations of cortisol predict the infarct size and patient mortality. Sakai et al. examined the histopathology of aspirated thrombi obtained from patients with acute MI and found that the eosinophil count was significantly lower in patients with large infarcts compared to patients with small infarcts.

| Eosinophil/leukocyte ratio | <0.1 | ≥ 0.1 | P |
|---------------------------|------|------|---|
| n = 142                   |      |      |   |
| Cardiogenic shock/need for an intra-aortic balloon pump or percutaneous cardiopulmonary support | 40 (28.2) | 17 (9.0) | <0.001 |
| Congestive heart failure | 45 (31.7) | 13 (6.9) | <0.001 |
| Continuous hemofiltration | 12 (8.5) | 2 (1.1) | 0.002 |
| Tracheal intubation | 8 (5.6) | 2 (1.1) | 0.037 |
| Arrhythmias or temporary pacemaker | 28 (19.7) | 17 (9.0) | 0.005 |
| Sustained ventricular tachycardia, ventricular fibrillation | 17 (12.0) | 8 (4.2) | 0.008 |
| Profound bradycardia/need for temporary pacing | 13 (8.9) | 11 (5.8) | 0.247 |
| Acute or subacute stent thrombosis | 4 (2.8) | 0 | 0.070 |
| Coronary artery bypass graft | 5 (3.5) | 3 (1.6) | 0.440 |
| Cerebral infarction | 2 (1.4) | 0 | 0.358 |
| Blood transfusion | 8 (5.6) | 0 | 0.003 |

Values are numbers (%) of observations.
coronary syndrome and showed that the largest red thrombi were observed in the group with the greatest eosinophilic infiltration into thrombi. The concentration of plasma IL-5, which stimulates the release of eosinophils from the bone marrow, was significantly elevated in patients with acute MI. The half-life of eosinophils in vitro ranges between 8 and 18 h, although IL-5 and IL-3 prolong the survival of eosinophils. Therefore, within 24-h after the onset of STEMI, the peripheral counts of eosinophils may remain low due to the aggregation of eosinophils within thrombi until the cells are fully released from the bone marrow into the peripheral circulation to recover their original concentrations.

**Increased Cortisol Concentrations**

A second potential mechanism is an increase in the cortisol concentration caused by an acute stress response to STEMI, which might lower the peripheral eosinophil counts. Bain et al. observed that the mean serum cortisol concentrations were significantly higher in patients with MI than in patients with angina pectoris, both at the time of admission to the hospital and on the next day. Furthermore, in patients presenting with MI, high cortisol concentrations were significantly associated with poor prognosis. In response to STEMI, the majority of eosinophils tend to migrate to tissues such as the spleen, lymph nodes, peritoneum, gastrointestinal tract, thymus, mammary glands, and uterus.

**Eosinophil Aggregation at the Site of Inflammation**

The third putative mechanism is the migration of peripheral eosinophils to the site of inflammation. In acute, non-infectious inflammatory stimulation, a reduction in eosinophil counts has been observed, which persisted for several days. Since the rupture of atherosclerotic plaques in STEMI is associated with inflammation, some of the eosinophils might adhere to the intravascular plaques and thrombi. The infiltration of eosinophils into the infarcted myocardium occurs during the acute phase of MI, although the presence of eosinophils has been observed in only 24% of the infarcts. Therefore, by compared ELR in STEMI to SAP (Supplementary Fig. 1), one might hypothesize that the circulating eosinophils in the acute phase of STEMI migrate to the coronary thrombi, infarcted myocardium, or other organs such as the spleen, lymph nodes, and peritoneum owing to an increased secretion of cortisol.

**Eosinopenia and Cardiac Rupture**

Peripheral eosinopenia may be a predictor of cardiac rupture. Miyazato et al. reported a case of eosinophil infiltration in a patient who died of ruptured myocardium after acute MI. Similarly, Atkinson et al. observed significantly higher numbers of eosinophils in ruptured hearts than in control infarcted hearts. Eosinophils are potentially collagenolytic and cytotoxic. Their granules contain a variety of substances including a collagenase that cleaves type I and III collagens, peroxidase, major basic protein, acid phosphatase, alkaline phosphatase, aryl sulphatase B that can degrade some glycosaminoglycans and proteoglycans, ribonuclease, and β-glucuronidase. Major basic protein is cytotoxic and it is associated with myocyte injury. Since the specific activity of arylsulfatase B is augmented by acidic conditions, the non-reperfused myocardium accompanied by eosinophil infiltration is susceptible to rupture owing to tissue vulnerability. An eosinophil contains 2.65 times as much peroxidase, 2.44 times as much β-glucuronidase, and approximately twice as much acid β-glycerophosphatase as a neutrophil. In a previous study of eosinophilic myocarditis, eosinophil granule components were detected within degraded collagen. In the present study, patients with 24-h ELRs <0.1 had significantly higher risks of cardiac rupture than patients with 24-h ELRs ≥ 0.1. This observation and those of previous studies support the hypothesis that eosinophils in the peripheral circulation are targeting severely necrotic myocardium, causing further tissue vulnerability. Therefore, the reduction in peripheral eosinophil counts might be more prominent in patients with STEMI complicated by cardiac rupture than in patients without cardiac ruptures. Such high-risk patients should receive more intensive management of blood pressure, including the administration of angiotensin-converting enzyme inhibitors and β-adrenergic blockers, and they should avoid strenuous cardiac rehabilitation that increases the blood pressure.

The ideal marker of mortality should be easily and rapidly measurable, inexpensive, correlate with the severity of prognosis, and predict mortality in the coronary care unit. To the best of our knowledge, the present study is the first to examine whether eosinopenia predicts MACEs after PCI in patients presenting with STEMI, suggesting that ELR is indeed one of the reliable and inexpensive monitoring tools for patients at high risk for MACEs. Early identification of eosinopenia might aid the caregivers in their initial decision-making process, and help identifying patients in need of vigorous diagnostic and therapeutic interventions.

**Limitations of the Present Study**

The present retrospective, observational study,
conducted at a single medical center had a small sample size. The reported findings should be confirmed in a larger prospective multicenter study. Furthermore, because we excluded patients who died within the first 24 h after hospital admission, the data of a few critically ill patients might have been omitted. Irrespective of these limitations, the findings of the present study demonstrated that after PCI for STEMI, eosinopenia is a reliable predictor of higher MACE risk. ELR should contribute to the prevention of MACE through identification of patients with eosinopenia who should receive intensive medical management.

Conclusion
ELR measured 24 h after hospital admission was an independent predictor of MACES in patients with STEMI who underwent primary PCI.

Acknowledgements
We thank Mr. Akira Goto for his contribution to the collection of medical files and clinical data.

Acknowledgement of Grant Support
None.

Disclosure
The authors have no potential conflicts of interest to disclose.

References
1) Horne BD, Anderson JL, John JM, Weaver A, Bair TL, Jensen KR, Renlund DG, Muhlestein JB and Intermountain Heart Collaborative Study G: Which white blood cell subtypes predict increased cardiovascular risk? J Am Coll Cardiol, 2005; 45: 1638-1643
2) Chia S, Nagurney JT, Brown DF, Raffel OC, Bamberg F, Senatore F, Wackers FJ, Jang IK: Association of leukocyte and neutrophil counts with infarct size, left ventricular function and outcomes after percutaneous coronary intervention for ST-elevation myocardial infarction. Am J Cardiol, 2009; 103: 333-337
3) Park JJ, Jang HJ, Oh IY, Yoon CH, Suh JW, Cho YS, Youn TJ, Cho GW, Chae IH, Choi DJ: Prognostic value of neutrophil to lymphocyte ratio in patients presenting with ST-elevation myocardial infarction undergoing primary percutaneous coronary intervention. Am J Cardiol, 2013; 111: 636-642
4) Palmerini T, Mehran R, Dangas G, Nikolsky E, Wittenbichler B, Guagliumi G, Dudek D, Genereux P, Caixeta A, Rabbani L, Weiss G, Parise H, Fahy M, Xu K, Brodie B, Lansky A, Stone GW: Impact of leukocyte count on mortality and bleeding in patients with myocardial infarction undergoing primary percutaneous coronary interventions: analysis from the Harmonizing Outcome with Revascularization and Stent in Acute Myocardial Infarction trial. Circulation, 2011; 123: 2829-2837, 2827 p following 2837
5) He F, Lv P, Zhao X, Wang X, Ma X, Meng W, Meng X, Dong S: Predictive value of circulating miR-328 and miR-134 for acute myocardial infarction. Mol Cell Biochem, 2014; 394: 137-144
6) Wang P, Wang Y, Li H, Wu Y, Chen H: Relationship between the red blood cell distribution width and risk of acute myocardial infarction. J Atheroscler Thromb, 2015; 22: 21-26
7) Pere D, Cohen K, Mosseri M, Berlin T, Stoneberg DM, Ellis M, Ashur-Fabian O: Incidence and Expression of Circulating Cell Free p53-Related Genes in Acute Myocardial Infarction Patients. J Atheroscler Thromb, 2015; 22: 981-998
8) Terradas R, Grau S, Blanch J, Riu M, Saballs P, Castells X, Horcajada JP, Knobel H: Eosinophil count and neutrophil-lymphocyte count ratio as prognostic markers in patients with bacteremia: a retrospective cohort study. PLoS One, 2012; 7: e42860
9) Abidi K, Belayachi J, Derras Y, Khayari ME, Dendane T, Madani N, Khoudri I, Zeggwagh AA, Aboueql R: Eosinopenia, an early marker of increased mortality in critically ill medical patients. Intensive Care Med, 2011; 37: 1136-1142
10) Kaya MG, Akpek M, Lam YY, Yarlioglues M, Celik T, Gunebaktmaz O, Duran M, Ulucan S, Keser A, Oguzhan A, Gibson MC: Prognostic value of neutrophil/lymphocyte ratio in patients with ST-elevated myocardial infarction undergoing primary coronary intervention: a prospective, multicenter study. Int J Cardiol, 2013; 168: 1154-1159
11) Sen N, Afzar B, Ozcan F, Buyukkaya E, Isleyen A, Akcay AB, Yuzgecer H, Kurt M, Karakas MF, Basar N, Hajro E, Kanbay M: The neutrophil to lymphocyte ratio was associated with impaired myocardial perfusion and long term adverse outcome in patients with ST-elevated myocardial infarction undergoing primary coronary intervention. Atherosclerosis, 2013; 228: 203-210
12) Akpek M, Kaya MG, Lam YY, Sahin O, Elcik D, Celik T, Ergin A, Gibson CM: Relation of neutrophil/lymphocyte ratio to coronary flow to in-hospital major adverse cardiac events in patients with ST-elevated myocardial infarction undergoing primary coronary intervention. Am J Cardiol, 2012; 110: 621-627
13) Cho KL, Ann SH, Singh GB, Her AY, Shin ES: Combined Usefulness of the Platelet-to-Lymphocyte Ratio and the Neutrophil-to-Lymphocyte Ratio in Predicting the Long-Term Adverse Events in Patients Who Have Undergone Percutaneous Coronary Intervention with a Drug-Eluting Stent. PLoS One, 2015; 10: e0133934
14) St John Sutton M, Pfeffer MA, Pappert T, Rouleau JL, Moye LA, Dagenais GR, Lamas GA, Klein M, Sussex B, Goldman S, et al.: Quantitative two-dimensional echocardiographic measurements are major predictors of adverse cardiovascular events after acute myocardial infarction. The protective effects of captopril. Circulation, 1994; 89:
68-75

15) Nienhuis MB, Ottervanger JP, de Boer MJ, Dambrink JH, Hoornje JC, Gosselink AT, Suryapranata H, van't Hof AW and Zwolle Myocardial Infarction Study G: Prognostic importance of creatine kinase and creatine kinase-MB after primary percutaneous coronary intervention for ST-elevation myocardial infarction. Am Heart J, 2008; 155: 673-679

16) Halkin A, Stone GW, Grines CL, Cox DA, Rutherford BD, Esente P, Meils CM, Albertsson P, Farah A, Tcheng JE, Lansky AJ, Mehran R: Prognostic implications of creatine kinase elevation after primary percutaneous coronary intervention for acute myocardial infarction. J Am Coll Cardiol, 2006; 47: 951-961

17) Mont L, Cinca J, Blanch P, Blanco J, Figueiras J, Brotons C, Soler-Soler J: Predisposing factors and prognostic value of sustained monomorphous ventricular tachycardia in the early phase of acute myocardial infarction. J Am Coll Cardiol, 1996; 28: 1670-1676

18) Gheeraert PJ, De Buyzere ML, Taeymans YM, Gillebert TC, Henriques JP, De Backer G, De Bacquier D: Risk factors for primary ventricular fibrillation during acute myocardial infarction: a systematic review and meta-analysis. Eur Heart J, 2006; 27: 2499-2510

19) Jiang P, Wang DZ, Ren YL, Cai JP, Chen BX: Significance of eosinophil accumulation in the thrombus and decrease in peripheral blood in patients with acute coronary syndrome. Coron Artery Dis, 2015; 26: 101-106

20) Adams JC, Dal-Bianco JP, Kumar G, Callahan MJ: Hypereosinophilic syndrome with characteristic left ventricular thrombus demonstrated by contrast echocardiography. Neth Heart J, 2009; 17: 169-170

21) Maino A, Rossio R, Cugno M, Marzano AV, Tedeschi A: Hypereosinophilic syndrome, Churg-Strauss syndrome and parasitic diseases: possible links between eosinophilia and thrombosis. Curr Vasc Pharmacol, 2012; 10: 670-675

22) Kanno H, Ouchi N, Sato M, Wada T, Sawai T: Hypereosinophilia with systemic thrombophlebitis. Hum Pathol, 2005; 36: 585-589

23) Symon FA, Walsh GM, Watson SR, Wardlaw AJ: Eosinophil adhesion to nasal polyp endothelium is P-selectin-dependent. J Exp Med, 1994; 180: 371-376

24) Wein M, Sterbinsky SA, Bickel CA, Schleimer RP, Bohrer BS: Comparison of human eosinophil and neutrophil ligands for P-selectin: ligands for P-selectin differ from those for E-selectin. Am J Respir Cell Mol Biol, 1995; 12: 315-319

25) Yip HK, Sun CK, Chang LT, Wu CJ: Strong correlation between serum levels of inflammatory mediators and their distribution in infarct-related coronary artery. Circ J, 2006; 70: 838-845

26) Avramakis G, Papadimitraki E, Papakonstandinou D, Liakou K, Zidianakis M, Dermitzakis A, Mikhailidis DP, Gannotakis ES: Platelets and white blood cell subpopulations among patients with myocardial infarction and unstable angina. Platelets, 2007; 18: 16-23

27) Moosbauer C, Morgenstern E, Cuvelier SL, Manukyan D, Bidzhekov K, Albrecht S, Lohse P, Patel KD, Engelmann B: Eosinophils are a major intravascular location for tissue factor storage and exposure. Blood, 2007; 109: 995-1002

28) Cugno M, Marzano AV, Lorini M, Carbonelli V, Tedeschi A: Enhanced tissue factor expression by blood eosinophils from patients with hypereosinophilia: a possible link with thrombosis. PLoS One, 2014; 9: e111862

29) Mukai HY, Ninomiya H, Ohtani K, Nagasawa T, Abe T: Major basic protein binding to thrombomodulin potentially contributes to the thrombosis in patients with eosinophilia. Br J Haematol, 1995; 90: 892-899

30) Slungaard A, Vercellotti GM, Tran T, Gleich GJ, Key NS: Eosinophil cationic granule proteins impair thrombomodulin function. A potential mechanism for thrombembolism in hypereosinophilic heart disease. J Clin Invest, 1993; 91: 1721-1730

31) Sakai T, Inoue S, Matsuyama TA, Takei M, Ota H, Katagiri T, Koboyashi Y: Eosinophils may be involved in thrombus growth in acute coronary syndrome. Int Heart J, 2009; 50: 267-277

32) Collins PD, Marleau S, Griffiths-Johnson DA, Jose PJ, Williams TJ: Cooperation between interleukin-5 and the chemokine eotaxin to induce eosinophil accumulation in vivo. J Exp Med, 1995; 182: 1169-1174

33) Park YM, Bochner BS: Eosinophil survival and apoptosis in health and disease. Allergy Asthma Immunol Res, 2010; 2: 87-101

34) Vassina EM, Yousefi S, Simon D, Zwicky C, Conus S, Simon HU: cIAP-2 and survivin contribute to cytokine-mediated delayed eosinophil apoptosis. Eur J Immunol, 2006; 36: 1975-1984

35) Bianch SM, Dockrell DH, Renshaw SA, Sabroe I, Whyte MK: Granulocyte apoptosis in the pathogenesis and resolution of lung disease. Clin Sci (Lond), 2006; 110: 293-304

36) Schleimer RP, Bochner BS: The effects of glucocorticoids on human eosinophils. J Allergy Clin Immunol, 1994; 94: 1202-1213

37) Bain RJ, Poopingshaus VJ, Jones GM, Peaston MJ: Cortisol level predicts myocardial infarction in patients with ischaemic chest pain. Int J Cardiol, 1989; 25: 69-72

38) Jutla SK, Yuyun MF, Quinn PA, Ng LL: Plasma cortisol and prognosis of patients with acute myocardial infarction. J Cardiovasc Med (Hagerstown), 2014; 15: 33-41

39) Ohnmacht C, Pullner A, van Rooijen N, Voehringer D: Analysis of eosinophil turnover in vivo reveals their active recruitment to and prolonged survival in the peritoneal cavity. J Immunol, 2007; 179: 4766-4774

40) Basten A, Beeson PB: Mechanism of eosinophilia. II. Role of the lymphocyte. J Exp Med, 1970; 131: 1288-1305

41) Blanchard C, Rothenberg ME: Biology of the eosinophil. Adv Immunol, 2009; 101: 81-121

42) Bass DA: Behavior of eosinophil leukocytes in acute inflammation. II. Eosinophil dynamics during acute inflammation. J Clin Invest, 1975; 56: 870-879

43) Frangogiannis NG: The inflammatory response in myocardial injury, repair, and remodelling. Nat Rev Cardiol, 2014; 11: 255-265

44) de Haan JJ, Smeets MB, Pasterkamp G, Arslan F: Danger signals in the initiation of the inflammatory response after myocardial infarction. Mediators Inflamm, 2013; 2013: 206039

45) Fishbein MC, Maclean D, Maroko PR: The histopathologic evolution of myocardial infarction. Chest, 1978; 73:
46) Cowan MJ, Reichenbach D, Turner P, Thostenson C: Cellular response of the evolving myocardial infarction after therapeutic coronary artery reperfusion. Hum Pathol, 1991; 22: 154-163

47) Miyazato J, Yasuda S, Morii I, Otsuka Y, Kawamura A, Yutani C, Miyazaki S: Eosinophil infiltration in the heart with free-wall rupture following acute myocardial infarction: a case report. J Cardiol, 2002; 40: 65-70

48) Atkinson JB, Robinowitz M, McAllister HA, Virmani R: Association of eosinophils with cardiac rupture. Hum Pathol, 1985; 16: 562-568

49) Tanaka KR, Valentine WN, Fredricks RE: Human leucocyte arylsulphatase activity. Br J Haematol, 1962; 8: 86-92

50) Egesten A, Weller PF, Olsson I: Arylsulfatase B is present in crystalloid-containing granules of human eosinophil granulocytes. Int Arch Allergy Immunol, 1994; 104: 207-210

51) Weller PF, Austen KF: Human eosinophil arylsulfatase B. Structure and activity of the purified tetrameric lysosomal hydrolase. J Clin Invest, 1983; 71: 114-123

52) West BC, Gelb NA, Rosenthal AS: Isolation and partial characterization of human eosinophil granules. Comparison to neutrophils. Am J Pathol, 1975; 81: 575-588

53) Kendell KR, Day JD, Hruban RH, Olson JL, Rosenblum WD, Kasper EK, Baughman KL, Hutchins GM: Intimate association of eosinophils to collagen bundles in eosinophilic myocarditis and ranitidine-induced hypersensitivity myocarditis. Arch Pathol Lab Med, 1995; 119: 1154-1160
Supplementary Fig. 1.
The STEMI group had significantly lower eosinophil percentages than the SAP group (0.4 ± 0.7% vs. 3.8 ± 3.2%, respectively; \( p < 0.001 \)). STEMI: ST-segment elevation myocardial infarction, SAP: stable angina pectoris.