We present squareplus, an activation function that resembles softplus, but which can be computed using only algebraic operations: addition, multiplication, and square-root. Because squareplus is $\sim 6\times$ faster to evaluate than softplus on a CPU and does not require access to transcendental functions, it may have practical value in resource-limited deep learning applications.

Activation functions are a central building block of deep learning architectures. The specific non-linearity applied at each layer of a neural network influences training dynamics and test-time accuracy, and is a critical tool when designing architectures whose outputs must lie within some range. When constraining a layer’s output to be non-negative, a ubiquitous practice is to apply a ReLU activation:

$$\text{relu}(x) = \max(x, 0)$$ \hspace{0.5cm} (1)

Though ReLU ensures a non-negative output, it has two potential shortcomings: its gradient is zero when $x \leq 0$, and is discontinuous at $x = 0$. If smooth or non-zero gradients are desired, a softplus is often used in place of ReLU:

$$\text{softplus}(x) = \log(\exp(x) + 1)$$ \hspace{0.5cm} (2)

Softplus is an upper bound on ReLU that approaches ReLU when $|x|$ is large but, unlike ReLU, is C^∞ continuous. Though softplus is an effective tool, it too has some potential shortcomings: 1) it is non-trivial to compute efficiently, as it requires the evaluation of two transcendental functions, and 2) a naïve implementation of softplus is numerically unstable when x is large (a problem which can be straightforwardly ameliorated by returning x as the output of softplus(x) when $x \gg 0$). Here we present an alternative to softplus that does not have these two shortcomings, which we dub “squareplus”:

$$\text{squareplus}(x, b) = \frac{1}{2} \left(x + \sqrt{x^2 + b^2} \right)$$ \hspace{0.5cm} (3)

Squareplus is defined with a hyperparameter $b \geq 0$ that determines the “size” of the curved region near $x = 0$. See Figure 1 for a visualization of squareplus (and its first and second derivatives) for different values of b, alongside softplus. Squareplus shares many properties with softplus: its output is non-negative, it is an upper bound on ReLU that approaches ReLU as $|x|$ grows, and it is C^∞ continuous. However, squareplus can be computed using only algebraic operations, making it well-suited for settings where computational resources or instruction sets are limited. Additionally, squareplus requires no special consideration to ensure numerical stability when x is large.

Figure 1. A visualization of softplus and two instances of squareplus with different values of the b hyperparameter, as well as their first and second derivatives. Squareplus approximates softplus when $b = 4 \ln^2 2$, and approximates its second derivative when $b = 4$.

Jonathan T. Barron
barron@google.com
The first and second derivatives of squareplus are:

\[
\frac{d}{dx} \text{squareplus}(x, b) = \frac{1}{2} \left(1 + \frac{x}{\sqrt{x^2 + b}} \right) \tag{4}
\]

\[
\frac{d^2}{dx^2} \text{squareplus}(x, b) = \frac{1}{2} \left(\frac{b}{(x^2 + b)^{1/2}} \right) \tag{5}
\]

Like squareplus itself, these derivatives are algebraic and straightforward to compute efficiently. Analogously to how the derivative of a softplus is the classic logistic sigmoid function, the derivative of a squareplus is the “algebraic sigmoid” function \(x / \sqrt{x^2 + 1} \) (scaled and shifted accordingly). And analogously to how the second derivative of a softplus is the PDF of a logistic distribution, the second derivative of a squareplus (with \(b = 2 \)) is the PDF of Student’s t-distribution (with \(\nu = 2 \)).

Specific values of the \(b \) hyperparameter yield certain properties. When \(b = 0 \), squareplus reduces to ReLU:

\[
\text{squareplus}(x, 0) = \frac{x + |x|}{2} = \text{relu}(x) \tag{6}
\]

By setting \(b = 4 \ln^2 2 \) we can approximate the shape of softplus near the origin:

\[
\text{squareplus}(0, 4 \ln^2 2) = \text{softplus}(0) \tag{7}
\]

This is also the lowest value of \(b \) where squareplus’ output is always guaranteed to be larger than softplus’ output:

\[
\forall b \geq 4 \ln^2 2 \quad \text{squareplus}(x, b) \geq \text{softplus}(x) \tag{8}
\]

Setting \(b = 4 \) causes squareplus’ second derivative to approximate softplus’ near the origin, and gives an output of 1 at the origin (which the user may find intuitive):

\[
\frac{d^2}{dx^2} \text{squareplus}(0, 4) = \frac{d^2}{dx^2} \text{softplus}(0) = \frac{1}{4} \tag{9}
\]

\[
\text{squareplus}(0, 4) = 1 \tag{10}
\]

For all valid values of \(b \), the first derivative of squareplus is \(1/2 \) at the origin, just as in softplus:

\[
\forall b \geq 0 \quad \frac{d}{dx} \text{squareplus}(0, b) = \frac{d}{dx} \text{softplus}(0) = \frac{1}{2} \tag{11}
\]

The \(b \) hyperparameter can be thought of as a scale parameter, analogously to how the offset in Charbonnier/pseudo-Huber loss can be parameterized as a scale parameter \(\sigma \).

As such, the same activation can be produced by scaling \(x \) (and un-scaling the activation output) or by changing \(b \):

\[
\forall a > 0 \quad \frac{\text{squareplus}(ax, b)}{a} = \text{squareplus} \left(x, \frac{b}{a^2} \right) \tag{12}
\]

Though squareplus superficially resembles softplus, when \(|x| \) grows large squareplus approaches ReLU at a significantly slower rate than softplus. This is visualized in Figure 2, where we plot the difference between squareplus/softplus and ReLU. This figure also demonstrates the numerical instability of softplus on large inputs, which is why most softplus implementations return \(x \) when \(x \gg 0 \).

Similarly to this slow asymptotic behavior of the function itself, the gradient of squareplus approaches zero more slowly than that of softplus when \(x \ll 0 \). This property may be useful in practice, as “dying” gradients are often undesirable, but presumably this is task-dependent.

As shown in Table 1, on a CPU squareplus is \(\sim 6 \times \) faster than softplus, and is comparable to ReLU. On a GPU, squareplus is only 10% faster than softplus, likely because all rectifiers are limited by memory bandwidth rather than computation in this setting. This suggests that squareplus may only be a desirable alternative to softplus in situations in which compute resources are limited, or when a softplus cannot be used — perhaps because \(\exp \) and \(\log \) are not supported by the hardware platform.

Acknowledgements: Thanks to the Twitter community for their helpful feedback to https://twitter.com/jon_barron/status/1387167648669048833

	CPU	GPU
Softplus [5] (JAX impl.)	3.777 ms 1.120 ms	
Softplus [5] (naive impl.)	2.836 ms 1.118 ms	
ELU [4]	2.040 ms 1.120 ms	
Swish/SiLU [6][2][11]	1.234 ms 1.113 ms	
ReLU [7][8][10]	0.598 ms 1.069 ms	
Squareplus	0.631 ms 1.074 ms	

Table 1. Runtimes on a CPU (for 1 million inputs) and a GPU (for 100 MM inputs) using JAX [2]. The “naive implementation” of softplus omits the special-casing necessary for softplus to produce finite values when \(x \) is large.
References

[1] Jonathan T. Barron. A general and adaptive robust loss function. CVPR, 2019.
[2] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018.
[3] P. Charbonnier, L. Blanc-Feraud, G. Aubert, and M. Barlaud. Two deterministic half-quadratic regularization algorithms for computed imaging. ICIP, 1994.
[4] Djork-Arne Clevert, Thomas Unterthiner, and S. Hochreiter. Fast and accurate deep network learning by exponential linear units (ELUs). ICLR, 2016.
[5] Charles Dugas, Yoshua Bengio, François Bélisle, Claude Nadeau, and René Garcia. Incorporating second-order functional knowledge for better option pricing. NIPS, 2000.
[6] Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network function approximation in reinforcement learning. Neural Networks, 2018. Special issue on deep reinforcement learning.
[7] K. Fukushima. Visual feature extraction by a multilayered network of analog threshold elements. IEEE Trans. Syst. Sci. Cybern., 1969.
[8] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. NIPS, 2011.
[9] Dan Hendrycks and Kevin Gimpel. Bridging nonlinearities and stochastic regularizers with gaussian error linear units. CoRR, abs/1606.08415, 2016.
[10] Jitendra Malik and Pietro Perona. Preattentive texture discrimination with early vision mechanisms. JOSA-A, 1990.
[11] Prajit Ramachandran, Barret Zoph, and Quoc V. Le. Searching for activation functions. CoRR, abs/1710.05941, 2017.