Imaging pancreatobiliary ductal system with optical coherence tomography: A review

Mohammad S Mahmud, Gray R May, Mohammad M Kamal, Ahmed S Khwaja, Carry Sun, Alex Vitkin, Victor XD Yang

Abstract

An accurate, noninvasive and cost-effective method of in situ tissue evaluation during endoscopy would be highly advantageous for the detection of dysplasia or early cancer and for identifying different disease stages. Optical coherence tomography (OCT) is a noninvasive, high-resolution (1-10 µm) emerging optical imaging method with potential for identifying microscopic subsurface features in the pancreatic and biliary ductal system. Tissue microstructure of pancreatobiliary ductal system has been successfully imaged by inserting an OCT probe through a standard endoscope operative channel. High-resolution OCT images and the technique's endoscopic compatibility have allowed for the microstructural diagnostic of the pancreatobiliary diseases. In this review, we discussed currently available pancreatobiliary ductal imaging systems to assess the pancreatobiliary tissue microstructure and to evaluate varieties of pancreatobiliary disorders and diseases. Results show that OCT can improve the quality of images of pancreatobiliary system during endoscopic retrograde cholangiopancreateography procedure, which may be important in distinguishing between the neoplastic and non-neoplastic lesions.

© 2013 Baishideng Publishing Group Co., Limited. All rights reserved.

Key words: Optical coherence tomography; Endoscopy; Common bile duct; Main pancreatic duct; Sphincter of Oddi; Benign and malignant strictures

Core tip: Optical coherence tomography is a high-resolution diagnostic tool for pancreatobiliary system during endoscopic retrograde cholangiopancreateography procedure.

INTRODUCTION

Outstand from various existing diagnosis methods such as, endoscopic retrograde cholangiopancreateography (ERCP), percutaneous transhepatic cholangiography (PTC), magnetic resonance cholangiopancreatography (MRCP), computed tomographic cholangiography (CTC), endoscopic ultrasound guided fine-needle aspiration (EUS-FNA), available for the assessment of pancreatic...
and biliary disorders; optical coherence tomography (OCT) shows great potential for identifying dysplastic or early malignant epithelial changes and for differentiating between neoplastic and non-neoplastic lesions. This is because ERCP and PTC are not risk free and in some cases, patients must undergo subsequent surgical or percutaneous procedures. Additionally, diagnosis accuracy of ERCP-based tissue sampling (brush cytology and/or forceps biopsy) is relatively low (less than 70%) and highly variable. Sometimes, tissue specimens collected with forceps biopsy and/or brushes may contain superficial tissue layers that are inherently insensitive to diagnosis and prone to false-negative results. MRCP method is noninvasive, and is apparently less operator-dependent and its diagnostic accuracy is comparable (or slightly less) to ERCP. However, MRCP is expensive which requires additional tests for data analysis and diagnose diseases. Computed tomography may provide better diagnostic information, but usually should be avoided due to the radiation exposures and contrast materials.

EUS-FNA is used for diagnosing cholangiocarcinoma and/or tumors in the biliary duct, especially in patients with negative brush cytology and forceps biopsy findings. The technique shows diagnosis accuracy over 80%, however, the performance is hindered by system resolution; additionally expensive equipments are required during procedure. Intraductal ultrasonography (IDUS) is another safe and effective method performed during ERCP to diagnose localized stenosis and early malignant changes in main pancreatic duct and to identify malignant biliary structures. During IDUS, a high-frequency ultrasound probe is placed into the pancreaticobiliary duct under ERCP guidance. IDUS shows diagnosis accuracy over 90% in patients with biliary strictures. The major drawbacks of IDUS are the impossibility of tissue sampling and IDUS findings that might have showed limited reproducibility. Therefore, more reliable and adequately sensitive diagnostic procedure is on demand for early detection of pancreatic and biliary diseases.

OCT an optical modality shows great potential for identifying dysplastic or early malignant epithelial changes and for differential diagnosis between neoplastic and non-neoplastic lesions. OCT is a noninvasive, high-resolution, cross-sectional in vivo imaging method based on the principle of low-coherence interferometry. This technology has been widely used in various clinical and pathological applications, such as, in the field of ophthalmology, cardiology, gastroenterology, oncology, respiratory airways and oral cavity disorders. Main limitation OCT is its shallow penetration depth (2-3 mm) of imaging which depends upon the tissue structure, depth of focus of the probe used and absorption and/or scattering properties of the tissue sample.

General criteria (accuracy, sensitivity and specificity, positive and negative predictive values) of various imaging methods used to diagnose biliary duct strictures (malignant and benign) are summarized in Table 1. The advantages and disadvantages of these imaging modalities are listed in Table 2.

In this review, we focused on the feasibility of OCT approach that improves the diagnostic accuracy of the ductal epithelial changes, with a potential to diagnose neoplastic and non-neoplastic lesions as well as pancreatic cysts. We discussed the mechanism of an OCT imaging system and then image pancreaticobiliary ductal system with OCT. The images of pancreaticobiliary ductal system are divided into two categories: normal pancreatico-biliary ductal system and pathological (neoplastic) ductal structure. Various pancreatic cysts with OCT are also discussed at the end of this review.

OCT IMAGING OF THE PANCREATOBLIARY DUCTAL SYSTEM

Introduction to OCT imaging system

Figure 1 shows the schematic diagram of an endoscopic
OCT system. Light generated from a low coherence infrared light source spits into two parts: the sample and reference arms. The back-reflected light from the tissue interferes with the reference signal which then fed to a detector and then sent the signal to a computer for visualization. OCT is analogous to the ultrasound imaging, but uses light waves rather than ultrasound waves. Therefore, OCT provides high resolution (1-10 µm) which is at least ten times better than the currently available high-frequency ultrasound imaging system. For investigating the epithelial layers of the main pancreatic duct (MPD), common bile duct (CBD) and sphincter of Oddi (SOD) an OCT probe (guide wire) is inserted through the working channel of an endoscopic catheter (Figure 1). The outer diameter of this endoscopic catheter can be made as small as 1.2 mm. Repeated frames are taken by the “pull-back” technique while connecting the catheter with a rotator, giving a large number of transitional-rotational images. Diagnoses of the intraductal pathology of the pancreaticobiliary system, such as biliary and/or pancreatic stricture, are improved with OCT method where the conventional biopsy is technically difficult and is associated with risk[6,7]. After the targeted tissue is identified with a conventional endoscopy, a narrow-diameter (about 1.2 mm) OCT probe is inserted through the operating channel of the endoscope and positioned on the site of interest. No special patient preparation is required during OCT imaging and images can be acquired within several minutes (5-10 min). Three different types of OCT systems are wildly used in various research and clinical applications (Table 3). Companies currently produce OCT systems: Novacam, Biophtigen, Heidelberg Engineering, Alcon/Lensx, Canon/Optopol, Volcano Crop, Optovue, Thorlabs, Topcon, Ivalux, Nidek, Tomey, Schwind, Watsonphotonics, OptiMedica, Optos/OTT, Volcano Crop, LightLab Imaging, Shenzhen Moptim Imaging, Techno-

Table 2 Comparison of various imaging modalities

Imaging modality	PTC	ERCP	MRCP	US/HFUS/EUS/IDUS	CT	OCT
Projection/tomograph	Projection	Projection	Projection or tomographic	Tomographic	Tomographic	Projection or tomographic
Resolution	1-2 mm	1-2 mm	Fairly poor	US/EUS: 100-250 µm	300-500 µm	Fairly high
Imaging depth	1-5 mm	5-60 mm	Entire biliary	US/EUS: 5-10 cm	HFUS/IDUS: 1-3 cm	1-10 µm
Tissue sampling	++	++	-	US +	-	+
Portability	-	+	-	US +	-	+
Therapy	++	++	-	US	-	-
System cost	++	++	+	US	++	+
Operator dependence	High	High	Low	US/HFUS/IDUS	Very high	Low
Staging of malignancy	-	-	+	US/EUS +	+	-
Safety	-	+	++	US/EUS	++	+
Experiment duration	2-4 h	30-120 min	10-30 min	20-40 min	15-30 s	5-10 min
Complications	++	+	-	Risk (1%) of failure rate, bleeding and perforation	Rare allergic reaction (<1%) to iodinated agents	No complication
Comments pros	+ Diagnosis and therapeutic procedure	+ Diagnosis and treatment procedure	+ Non-invasive radiation	Usually non-invasive (sedation) + Diagnosis tool combined with tissue and/or lesion sampling	Non-invasive + Faster method + High resolution + Operator-independent	Non-invasive + No ionizing radiation + High resolution + Operator-independent
	+ Invasive ionizing radiation	+ Invasive ionizing radiation	+ Expensive poor resolution	Operator dependent	Ionizing radiation	+ High resolution + Faster method + Operator-independent
	Operator dependent	Operator dependent	Motion sensitive	Motion sensitive	Motion sensitive	Motion sensitive

PTC: Percutaneous transhepatic cholangiography; ERCP: Endoscopic retrograde cholangiopancreateography; MRCP: Magnetic resonance cholangiopancreateography; US: Ultrasound; EUS: Endoscopic ultrasound; HFUS: High frequency ultrasound (> 10 MHz); IDUS: Intraductal ultrasonography; CT: Computed tomography; OCT: Optical coherence tomography.
las Perfect Vision, and Carl Zeiss Meditec. Cost of an OCT system varies with imaging engines (consisting of an interferometer, light source, and detector) and imaging devices (or OCT probes) and ranges from $20000-$80000. The cost per correct diagnosis (or procedure cost) is approximately $100 (100-200).

Normal pancreatobiliary ductal system
Visualization of epithelium layer structure of main pancreatic duct has been obtained from post-mortem [56] and \textit{ex vivo} in humans [57-60], while \textit{in vivo}, it comes from single study in animals [61] and another in humans [62]. Normal biliary ductal system was investigated in humans, \textit{ex vivo} in a study [56,60], post-mortem [56] and \textit{in vivo} and \textit{ex vivo} in animals [56,63] and \textit{in vivo} in ERCP-based OCT studies [2,64,65]. The SOD structure was investigated in normal and pathological conditions either in \textit{ex vivo} or \textit{in vivo} studies [56,60,65].

Human pancreatobiliary duct studies: Tearney et al. [56] first performed \textit{ex vivo} OCT imaging from the post-mortem cadaveric pancreatobiliary tissue. OCT images obtained from CBD-wall were able to identify layered structures and could resolve the submucosa-muscularis and muscularis- adventitia boundaries. Mucosa, submucosa, muscularis propria and adventitial layers, serosa in the gallbladder and biliary duct were visualized due to different back-

Figure 1 Schematic diagram of an endoscopic optical coherence tomography system. The endoscopic probe is connected to the sample arm (Color online). Light generated from a low coherence laser source splits into two parts, the sample arm and reference arm. Both back-reflected lights from sample and reference arms recombine in a fiber coupler (10:90). If both back-reflected reference and sample light travels the same distance (optical) then interference will occur and the interference signal will feed to a detector (D). Magnified region of interest in the second image is the endoscopic probe head, consisting primarily of an optical fiber (OCT probe), catheter channel, elevator, video camera and aiming light [55]. Scale bar: 10 mm.

Table 3 Comparison of different types of optical coherence tomography systems

Parameters	TD-OCT	SD-OCT	SS-OCT/OFDI
Mechanism	Interference signals are detected as a function of optical time delay between obj. and ref. arm.	Interference signals are detected with a camera as a function of optical frequency	Spectral fringes are mapped to time domain by use of a swept laser and are measured with a detector as a function of time
Major components	Broadband laser, optical delay line and a detector	Broadband laser, spectrometer and camera	Tunable laser, digitizer and a balanced detector
Spectrum	800 nm, 1000 nm, 1300 nm	800 nm, 1000 nm, 1300 nm	800 nm, 1000 nm, 1300 nm
Imaging depth	1-3 mm	1-3 mm	1-3 mm
Imaging speed (axial scan rate)	\(\geq 10 \mu m\)	\(\geq 10 \mu m\)	1-10 \(\mu m\)
SNR	Low	High	High
Image quality	Moderate	Fairly high	High
Sensitivity	Low (70-90 dB)	High (85-105 dB)	High (> 100 dB)
Phase stability	Low	High	Moderate
Portability	Yes	Yes	Moderate
System cost	Low	High	Moderate

SNR: Signal-to-noise ratio; dB: Decibel; TD-OCT: Time domain OCT; SD-OCT: Spectral-domain OCT; ODFI: Optical frequency domain imaging; SS-OCT: Swept source OCT.
scattering characteristics within each layer. For example, submucosa and/or muscularis layers showed higher intensities and regular scattering pattern than the adventitial layer, most likely due to the presence of adipose tissue into the adventitial layer. The tissue microstructure, such as secretions within individual glands (glandular structure), and cross-sectional imaging of islets Langherans cells were visualized. The pancreatic duct appeared as a highly backscattering band near the lumen of the tissue and the pancreatic stroma was seen beneath the pancreatic duct.

Testoni et al further studied in vivo MPD, CBD and SOD wall structures with OCT. Three different layers (Figures 2-4) were recognized from the surface of the duct to a depth of about 1 mm. The inner layer defined from the surface to the lumen, consisting of single layers of epithelial cells. The intermediate layer is homogeneous, consisting of connective fibro-muscular layer surrounding the epithelium. The outer layer is less definite and corresponds to the smooth muscular structure within a connective tissue in the CBD and at the level of the SOD, and connective-acinar structure in the MPD.

The inner hypo-reflective layer showed a mean thickness of 500 µm (range: 400-800 µm). Layer thickness, surface roughness and reflectance of inner layer were not substantially differing in CBD, MPD and SOD. Thickness of the intermediate hyper-reflective layer (about 400 µm) is substantially similar to MPD and CBD, whereas it reduces by 25% at the level of SOD. Tiny, multiple, nonreflective areas can be appeared within the intermediate and outer layer, vessels could be visualized (marked with arrows) as nonreflecting areas. The boundaries between the intermediate and outer layers are not clearly recognizable due to irregular distribution of the connective and muscular structure. White scale bar: 150 µm.
pronounced in SOD than in CBD. Furthermore, OCT images can identify veins, arteries and/or secondary pancreatic ducts which were characterized by hypo- or non-reflective, well delimited areas.

All of these layers showed linear, regular surface and each layer had a homogeneous back-scattered signal in every frame. However, the differentiation between outer and intermediate layer appeared more difficult than that of between inner and intermediate layer. The muscular and connective-acinar structure was visible until the focus distance (about 1 mm) of the OCT probe into the tissue.

Other biliary ductal studies: Singh et al. reported *in vivo* OCT images of animal (dog) pancreatic biliary ducts. Hwang et al. observed the normal structures of an *ex vivo* pig pancreas including small pancreatic ducts and pancreatic acini. OCT image identified biliary duct wall structure, features within lamina propria and some of the surrounding fibrous tissue. But OCT could not identify the nuclei or subcellular structures and/or adjacent structures such as blood vessels. A thin, low-scattering superficial layer appeared on the majority of the images, corresponding to the cuboidal epithelium. The lamina propria appeared as highly reflecting layer underneath the mucosal surface. Irregular reflections from layers underlying the lamina propria were from the dense connective tissue. Low reflected peribiliary glands were viewed as large open spaces with a single layer epithelium. The pancreatic duct in dogs has a flat mucosal layer composed of cuboidal epithelium and virtually has no lamina propria. OCT was able to image wall of the pancreatic duct but not the surrounding parenchyma. The pancreatic duct images were homogeneous and moderately reflective.

Pathological (dysplastic/neoplastic) pancreatobiliary ductal system

Imaging pathological pancreatic ductal system with OCT was first investigated by Testoni et al. in humans in two *ex vivo* studies. MPD chronic inflammatory changes showed a conserved, three-layer architecture. However, the inner hypo-reflective layer was slightly larger than the normal tissue layer and the intermediate layer was more hyper-reflective than normal condition. Additionally back-scattered signal from each layer is more heterogeneous than the normal layer condition.

In the presence of dysplasia, OCT showed thickened, strongly hypo-reflective and hetero-geneous inner layer of MPD (Figure 5C). Irregular surfaces were observed between the inner and intermediate layers. The intermediate layer is strongly hyper-reflectance, particularly close to the inner layer. The outer layer was homogeneously hypo-reflective and did not differ from normal condition. The agreement between OCT and histology in chronic pancreatitis and dysplasia were 62% in these cases. Overall, approximately one-third sections of normal wall structure and chronic inflammatory/low-grade dysplastic changes were not distinguishable with OCT.

In the presence of adenocarcinoma, MPD wall structure with OCT is shown in Figure 5D. All three layer structures and their linear, regular surface were not recognizable. No clear identifiable margin was seen between connective fibro-muscular layer and acinar tissue. The back-scattered signal was strongly heterogeneous with multiple nonreflective areas in the disorganized pancreatic microstructure. The OCT and histology were 100% concordant for sections with adenocarcinoma. OCT images from sections of MPD with normal tissue, tumor-associated chronic inflammation, low-grade dysplasia, and adenocarcinoma are shown in Figure 5.

OCT can differentiate three-layer architecture in either normal MPD or chronic pancreatitis; however, in a neoplastic lesion the layer architecture is totally subverted with heterogeneous light back-scattering. In addition, OCT can distinguish non-neoplastic from neoplastic lesions of MPD and can gave 100% accuracy for...
In the presence of Adenocarcinoma (neoplasia), optical coherence tomography (OCT) patterns showed distorted common bile duct (CBD) wall structure (Color online). All three-layer architecture and their linear and regular surface, normally giving a homogeneous back-scattered signal, are not recognizable. OCT image shows heterogeneous back-scattered signal with minute, multiple, nonreflective areas (necrotic areas) in the highly disorganized CBD microstructure. Therefore, epithelial structure and various biliary disorders in early-stage of cancer can be distinguishable with OCT.

Detection of neoplastic tissue compared with 66.7% for brush cytology. MPD layer architectures derived from different back-scattered signals from each layer were confirmed as a reliable OCT parameter for distinguishing non-neoplastic from neoplastic tissue. However, this technology is unable to discriminate between a normal MPD structure and other MPD benign lesions. Further studies are necessary which might improve the diagnostic accuracy of OCT in this challenging imaging scenario.

OCT imaging during ERCP can identify CBD layer structure and diagnose neoplastic lesions and/or adenocarcinoma at early stages which is usually missed by cytology and X-ray imaging. The normal CBD wall shows three recognizable layers, with a linear, regular surface and different homogeneous back-scattering of the light. These inner to outer layers are: epithelium, connective-fibromuscular, and muscular layer in normal CBD wall (Figure 2). However, with the presence of neoplastic tissue, OCT patterns showed distorted CBD wall structure with heterogeneous light back-scattering (Figure 6). Therefore, epithelial structure and various biliary disorders in early-stage of cancer can be distinguishable with OCT.

Arvanitakis et al. conducted biliary intraductal OCT during ERCP studies in thirty-seven patients with biliary strictures and assess the potential of this method for improving the diagnosis accuracy of the malignant biliary strictures. This study concluded to satisfactory accuracy levels regarding distinction between malignant and benign strictures, especially when combined to biopsies. Based on OCT images, two malignancy criteria were considered: (1) disorganized and subverted layer architecture and (2) presence of large nonreflective areas compatible with tumor vessels. Figure 7A shows the cross-sectional OCT image of a patient with a benign stricture. The probe is surrounded by ERCP catheter (marked with arrow). The three-layered structure of the biliary wall is recognizable. Figure 7B-D show images of the malignant bile duct strictures. Disorganized layer architecture of the stricture wall which is one of the criteria for malignancy is shown in Figure 7B. Large, nonreflective, surface of at least 0.03 mm² tumor vessels were observed in Figure 7C. Malignant stricture due to hilar metastases of an esophageal squamous carcinoma was observed in Figure 7D.

Studies of pancreatic cysts with OCT

OCT modality shows great potential to reveal specific morphologic features of pancreatic cysts and thus to differentiate between the interior structures of low risk (i.e., serous cyst adenomas) and high risk (i.e., mucinous cystic neoplasms and intraductal papillary mucinous neoplasms) pancreatic cysts with over 95% sensitivity and specificity. Fresh pancreatic specimens (pancreatic cysts) from patients were made available immediately after the surgery and then examined with OCT. An OCT probe was inserted into the cut surface of the pancreatic cysts. The main characteristics of each type of cystic lesion are shown in Figure 8.

Based on OCT images, the cysts were prospectively divided into two groups: mucinous (i.e., Mucinous Cystic Neoplasms and Intraductal Papillary Mucinous Neoplasms) and non-mucinous (i.e., Serous Cysts Adenomas and others). Multiple tiny cysts with well-defined outlines are seen in low-risk (i.e., Serous Cysts Adenomas) of pancreatic cystic lesions. Thin septae between cysts create honeycomb appearance. The cyst content usually appears as dark due to lack of the scattering effect. Focal intra-luminal scattering can be found in some cysts which usually correspond to hemorrhage. In high-risk (i.e., Mucinous Cystic Neoplasms, Intraductal Papillary Mucinous Neoplasms) pancreatic cyst multiple small cysts present (marked with white arrow), which may sometime surround the main cystic cavity (marked with red arrow). The cystic content may show some scattering due to presence of dead epithelial cells.

The above criteria mainly based on the visual appearance of the cystic wall morphology and on the scattering properties of the cystic fluid. Although relatively simple, they provide a very good discrimination between serous and mucinous pancreatic cysts. This ex vivo study suggests that OCT could be used by clinicians in future to more reliably differentiate between benign and malignant pancreatic cysts.

CONCLUSION

Limitations of standard endoscopic practices are addressed by the OCT technology described in this review. OCT identified layer structures of common bile duct, main pancreatic duct and sphincter of Oddi and could resolve the submucosa-muscularis and muscularis-adven-
Figure 7 Optical coherence tomography image of a patient with a benign stricture. The three-layered structure of the biliary wall is recognizable (Color online). A-D shows images of malignant bile duct strictures. B: Disorganized layered structure with unidentifiable margins and a strongly heterogeneous back-scattering signal; C: Large, nonreflective areas in the intermediate layer suggesting the tumor vessels; D: Malignant stricture due to hilar metastases of an esophageal squamous carcinoma showing nonreflective areas and disorganized layer architecture.

Figure 8 Optical coherence tomography image. A, B: Diagnostic criteria for high-risk (i.e., Mucinous Cystic Neoplasms, Intraductal Papillary Mucinous Neoplasms); C: Low risk (i.e., Serous Cysts Adenomas) pancreatic cysts. Multiple small cysts are marked with yellow arrow, while surrounded main cystic cavity is marked with red arrow. Scale bar = 500 μm. OCT: Optical coherence tomography.
tia boundaries. Layers of these biliary ducts showed linear, homogeneous and regular surface; however, the difference between hypo-reflective intermediate and hyporeflective outer layer appeared more difficult than that of between the hypo-reflective inner and intermediate layer. Potentially, OCT shows real-time, high-resolution, cross-sectional images, or “optical biopsies” for detecting the early stages of pancreaticobiliary diseases. OCT can improve the quality of images obtained during ERCP, which may be important in distinguishing between the neoplastic and non-neoplastic lesions. Further studies are necessary for the proper clinical applications of this promising method in the pancreaticobiliary duct system and diagnosis of pancreatic cysts.

ACKNOWLEDGMENTS

Authors thank Dr. Khwaja, Mr. Vuong, Dr. Cheng and Ms. Cirocco for their useful discussions. Authors thank Prof. Testoni (Vita-Salute San Raffaele Univ, Italy) for his permission to use the pancreatobiliary ductal endoscopic OCT images in this review.

REFERENCES

1. Das A, Sivak MV, Chak A, Wong RC, Westphal V, Rollins AM, Willis J, Isenberg G, Izzat JA. High-resolution endoscopic imaging of the GI tract: a comparative study of optical coherence tomography versus high-frequency catheter probe EUS. Gastroint Endosc 2001; 54: 219-224 [PMID: 11474394 DOI: 10.1067/mge.2001.116109]

2. Arvanitakis M, Hooke L, Tessier G, Demetter P, Nagy N, Stellke A, De Maertelaer V, Devière J, Le Moine O. Intraductal optical coherence tomography during endoscopic retrograde cholangiopancreatography for investigation of biliary strictures. Endoscopy 2009; 41: 696-701 [PMID: 19618343 DOI: 10.1055/s-0029-1214950]

3. Chen VK, Arguedas MR, Kilgore ML, Eloubeidi MA. Cost-minimization analysis of alternative strategies in diagnosing pancreatic cancer. Am J Gastroenterol 2004; 99: 2223-2234 [PMID: 15555006 DOI: 10.1111/j.1572-0241.2004.40042.x]

4. Neuhäusler H, Feussner H, Ungeheuer A, Hoffmann W, Sievert JR, Classen M. Prospective evaluation of the use of endoscopic retrograde cholangiography prior to laparoscopic cholecystectomy. Endoscopy 1992; 24: 745-749 [PMID: 1468389 DOI: 10.1055/s-2007-1015756]

5. Zeman RK, Rurrell ML, Dobbins J, Jaffe MH, Choyke PL. Postcholecystectomy syndrome: evaluation using biliary scintigraphy and endoscopic retrograde cholangiopancreatography. Radiology 1985; 156: 787-792 [PMID: 20423244]

6. Vanderhoort J, Soetinko RM, Montes H, Lichtenstein DR, Van Dam J, Ruymann FW, Cibas ES, Carr-Locke DL. Accuracy and complicity rate of brush cytology from bile duct versus pancreatic duct. Gastroint Endosc 1999; 49: 322-327 [PMID: 10049415 DOI: 10.1016/S0016-5107(99)07008-8]

7. Selvaggi SM. Biliary brushing cytology. Cytopathology 2004; 15: 74-79 [PMID: 15056666 DOI: 10.1111/j.1365-2303.2004.00133.x]

8. Pugliese V, Pujic N, Saccomanno S, Gatteschi B, Pera C, Aste R, Ferrara GB, Nicolò G. Pancreatic intraductal sampling during ERCP in patients with chronic pancreatitis and pancreatic cancer: cyto logic studies and evaluation of 12 molecular analysis in 47 cases. Gastroint Endosc 2001; 54: 595-599 [PMID: 11677475 DOI: 10.1067/mge.2001.119220]

9. Rösch T, Hofrichter K, Frümberger E, Meining A, Born P, Weigert N, Allescher HD, Classen M, Barbur M, Schenk U, Werner M. ERCP or EUS for tissue diagnosis of biliary strictures? A prospective comparative study. Gastroint Endosc 2004; 60: 390-396 [PMID: 15332029 DOI: 10.1016/S0016-5107(04)01732-8]

10. de Groen PC, Gores GJ, LaRusso NF, Gunderson LL, Na gorney DM. Biliary tract cancers. N Engl J Med 1999; 341: 1368-1378 [PMID: 10536130]

11. de Bellis M, Sherman S, Fogel EL, Cramer H, Chappo J, McHenry L, Watkins JL, Lehman G.A. Tissue sampling at ERCP in suspected malignant biliary strictures (Part 2). Gastroint Endosc 2002; 56: 720-730 [PMID: 12397282 DOI: 10.1067/mge.2002.129219]

12. Georgopoulos SK, Schwartz LH, Jarnagin WR, Gerdes H, Breite I, Fong Y, Blumgart LH, Kurtz RC. Comparison of magnetic resonance and endoscopic retrograde cholangio pancreatography in malignant pancreaticobiliary obstruction. Arch Surg 1999; 134: 1002-1007 [PMID: 10485797 DOI: 10.1010/archsurg.134.9.1002]

13. Fulcher AS, Turner MA. Benign diseases of the biliary tract: evaluation with MR cholangiography. Semin Ultrasound CT MR 1999; 20: 294-303 [PMID: 10527135 DOI: 10.1053/s0887-2171(99)00601-6]

14. Hussain SZ, Bloom DA, Tolia V. Caroli’s disease diagnosed in a child by MRCP. Clin Imaging 2000; 24: 289-291 [PMID: 11331159 DOI: 10.1006/sori.2000.0215-1]

15. Soto JA. Bile duct stones: diagnosis with MR cholangiography and helical CT. Semin Ultrasound CT MR 1999; 20: 304-316 [PMID: 10527136 DOI: 10.1053/s0887-2171(99)00602-8]

16. Kinney TP, Freeman ML. Pancreatic imaging: current state of the art. Gastroenterology 2009; 136: 776-779 [PMID: 1916064 DOI: 10.1016/j.gastro.2009.01.023]

17. Rösch T, Meining A, Frühmorgen S, Zillinger C, Schubsdziarra V, Hellerhoff K, Classen M, Helmberger H. A prospective comparison of the diagnostic accuracy of ERCP, MRCP, CT, and EUS in biliary strictures. Gastroint Endosc 2002; 55: 870-876 [PMID: 12042143 DOI: 10.1016/S0016-5107(02)024206]

18. Stabile Ianora AA, Memeo M, Scardapane A, Rotondo A, Angellini G. Oral contrast-enhanced three-dimensional helical-CT cholangiography: clinical applications. Eur Radiol 2003; 13: 867-873 [PMID: 12664128 DOI: 10.1007/s00239-002-1536-6]

19. Giovannini M, Seitz JF, Monges G, Perrier H, Rabbia I. Fine-needle aspiration cytology guided by endoscopic ultrasonography: results in 141 patients. Endoscopy 1995; 27: 171-177 [PMID: 7601050 DOI: 10.1055/s-2007-1005657]

20. Anand D, Barroeta JE, Gupta PK, Kochman M, Baloch ZW. Endoscopic ultrasonography guided fine needle aspiration of non-pancreatic lesions: an institutional experience. J Clin Pathol 2007; 60: 1254-1262 [PMID: 17220205 DOI: 10.1136/jcp.2006.049555]

21. Erickson RA. EUS-guided FNA. Gastroint Endosc 2004; 60: 267-279 [PMID: 15278063 DOI: 10.1016/S0016-5107(04)01529-9]

22. Itoi T, Itokawa F, Sofuni A, Kirihara T, Tsuichiya T, Ishii K, Tsuji S, Ikeuchi N, Moriyasu F. Endoscopic ultrasound-guided choledochoduodenostomy in patients with failed endoscopic retrograde cholangiopancreatography. World J Gastroenterol 2008; 14: 6078-6082 [PMID: 18932289 DOI: 10.3748/wjg.v14.i46.6078]

23. Ross WA, Wasan SM, Evans DB, Wolff RA, Trapani LV, Staerkel GA, Prindiville T, Lee JH. Combined EUS with FNA and ERCP for the evaluation of patients with obstructive jaundice from presumed pancreatic malignancy. Gastroint Endosc 2008; 68: 461-466 [PMID: 18384778 DOI: 10.1016/j.gie.2007.11.033]

24. Sakamoto H, Kitanou M, Kamata K, El-Maary M, Kudo M. Diagnosis of pancreatic tumors by endoscopic ultrasonography. World J Radiol 2010; 2: 122-134 [PMID: 21160578 DOI: 10.4329/wjr.v2.i14.122]

25. Lee KH, Lee JK. Interventional endoscopic ultrasonography: present and future. Clin Endosc 2011; 44: 6-12 [PMID: 22741106 DOI: 10.5969/cie.2011.44.1.6]
duct strictures: a prospective study. *Gut* 2002; 51: 240-244 [PMID: 12117887 DOI: 10.1136/gut.51.2.240]

55 *Testoni PA, Mangiavillano B, Mariani A.* Optical coherence tomography for investigation of the pancreatico-biliary system: still experimental? *JOP* 2007; 8: 156-165 [PMID: 17356238]

56 *Teearney GJ, Brezinski ME, Southern JF, Bouma BE, Boppart SA, Fujimoto JG.* Optical biopsy in human pancreatobiliary tissue using optical coherence tomography. *Dig Dis Sci* 1998; 43: 1193-1199 [PMID: 9635607]

57 *Teearney GJ, Brezinski ME, Southern JF, Bouma BE, Boppart SA, Fujimoto JG.* Optical biopsy in human pancreatobiliary tissue using optical coherence tomography. *Dig Dis Sci* 1998; 43: 1193-1199 [PMID: 9635607 DOI: 10.1023/A:1018891304453]

58 *Testoni PA, Mariani A, Mangiavillano B, Albarello L, Arcidiacono PG, Masci E, Doglioni C.* Main pancreatic duct, common bile duct and sphincter of Oddi structure visualized by optical coherence tomography: An ex vivo study compared with histology. *Dig Liver Dis* 2006; 38: 409-414 [PMID: 16586931 DOI: 10.1016/j.dld.2006.02.014]

59 *Testoni PA, Mangiavillano B, Albarello L, Mariani A, Arcidiacono PG, Masci E, Doglioni C.* Optical coherence tomography compared with histology of the main pancreatic duct structure in normal and pathological conditions: an ‘ex vivo study’. *Dig Liver Dis* 2006; 38: 688-695 [PMID: 16807151 DOI: 10.1016/j.dld.2006.05.019]

60 *Testoni PA, Mangiavillano B, Albarello L, Arcidiacono PG, Mariani A, Masci E, Doglioni C.* Optical coherence tomography to detect epithelial lesions of the main pancreatic duct: an Ex Vivo study. *Am J Gastroenterol* 2005; 100: 2777-2783 [PMID: 16393235 DOI: 10.1111/j.1572-0241.2005.00326.x]

61 *Singh P, Chak A, Willis JE, Rollins A, Sivak MV.* In vivo optical coherence tomography imaging of the pancreatic and biliary ductal system. *Gastrointest Endosc* 2005; 62: 970-974 [PMID: 16301046 DOI: 10.1016/j.gie.2005.06.054]

62 *Testoni PA, Mariani A, Mangiavillano B, Arcidiacono PG, Di Pietro S, Masci E.* Intraductal optical coherence tomography for investigating main pancreatic duct strictures. *Am J Gastroenterol* 2007; 102: 269-274 [PMID: 1700970 DOI: 10.1111/j.1572-0241.2006.00940.x]

63 *Hwang JH, Cobb MJ, Kimney MB, Li X.* Optical coherence tomography imaging of the pancreas: a needle-based approach. *Clin Gastroenterol Hepatol* 2005; 3: 549-552 [PMID: 16012997 DOI: 10.1016/S1542-3565(05)00259-4]

64 *Seitz U, Freund J, Jaekclle S, Feldchtein F, Bohnacker S, Thonke F, Gladkova N, Brand B, Schröder S, Soehendra N.* First in vivo optical coherence tomography in the human bile duct. *Endoscopy* 2001; 33: 1018-1021 [PMID: 11740643 DOI: 10.1055/s-2001-18934]

65 *Poneros JM, Teearney GJ, Shiskov M, Kelsey PB, Lauwers GY, Nishioka NS, Bouma BE.* Optical coherence tomography of the biliary tree during ERCP. *Gastrointest Endosc* 2002; 55: 84-88 [PMID: 11756925 DOI: 10.1016/j.gie.2002.12.008]

66 *Testoni PA, Mangiavillano B.* Optical coherence tomography in detection of dysplasia and cancer of the gastrointestinal tract and biliary-pancreatic ductal system. *World J Gastroenterol* 2008; 14: 6444-6452 [PMID: 19030194 DOI: 10.3748/wjg.14.6444]

67 *Mangiavillano B, Mariani A A, Petrone MC.* An intrapancreatic cholangiocarcinoma detected with optical coherence tomography during endoscopic retrograde cholangiopancreatography. *Clin Gastroenterol Hepatol* 2008; 6: A30 [PMID: 18407794 DOI: 10.1016/j.cgh.2008.02.004]

68 *Cizginer S, Deshpande V, Iftimia N, Karaca B, Brugge WR.* Optical Coherence Tomography (OCT) Imaging Can Detect Fine Morphologic Features of Pancreatic Cystic Neoplasms and Differentiate Between Mucinous and Non-Mucinous Cysts. *Gastroenterology* 2009; 136: 45 [DOI: 10.1016/S0016-5085(09)60204-3]

69 *Iftimia N, Cizginer S, Deshpande V, Pitman M, Tatlı S, Iftimia NA, Hammer DX, Mujat M, Ustun T, Ferguson RD, Brugge WR.* Differentiation of pancreatic cysts with optical coherence tomography (OCT) imaging: an ex vivo pilot study. *Biomed Opt Express* 2011; 2: 2372-2382 [PMID: 21853374 DOI: 10.1364/BOE.2.002572]

P- Reviewers: Triantafyllou K, Tham TCK S- Editor: Qi Y L- Editor: A E- Editor: Wu HL
