Whole-genome sequencing of follicular thyroid carcinomas reveal recurrent mutations in microRNA processing subunit DGCR8

Johan O. Paulsson1*, MD, Nima Rafati2, PhD, Sebastian DiLorenzo3, PhD, Yi Chen1, MD, Felix Haglund1,4, MD, PhD, Jan Zedenius5,6, MD, PhD, and C. Christofer Juhlin1,4, MD, PhD.

1. Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
2. National Bioinformatics Infrastructure Sweden, Uppsala University, SciLifeLab, Department of Medical Biochemistry and Microbiology, Uppsala, Sweden
3. National Bioinformatics Infrastructure Sweden, Uppsala University, SciLifeLab, Department of Cell and Molecular Biology, Uppsala, Sweden
4. Department of Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
5. Department of Breast, Endocrine Tumors and Sarcoma, Karolinska University Hospital, Stockholm, Sweden
6. Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden

Corresponding author: Johan O. Paulsson, MD, Department of Oncology-Pathology, BioClinicum J6:20, Karolinska Institutet, 171 64, Solna, Sweden. Email: johan.paulsson@ki.se. Phone: +46-8-51770000.

© The Author(s) 2021. Published by Oxford University Press on behalf of the Endocrine Society.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
Email addresses:

Johan O. Paulsson, MD: johan.paulsson@ki.se

Nima Rafati, PhD: nima.rafati@nbis.se

Sebastian DiLorenzo, PhD: sebastian.dilorenzo@nbis.se

Yi Chen, MD: yi.chen@ki.se

Felix Haglund, MD, PhD: felix.haglund@ki.se

Jan Zedenius, MD, PhD: jan.zedenius@ki.se

C. Christofer Juhlin, MD, PhD: christofer.juhlin@ki.se

Author disclosure statements

The authors have nothing to disclose.
Abstract

Background

The genomic and transcriptomic landscape of widely invasive follicular thyroid carcinomas (wiFTCs) and Hürthle cell carcinoma (HCC) are poorly characterized and subsets of these tumors lack information on genetic driver events. The aim of this study was to bridge this gap.

Methods

We performed whole-genome and RNA sequencing and subsequent bioinformatic analyses of 11 wiFTCs and 2 HCCs with a particularly poor prognosis, and matched normal tissue.

Results

All wiFTCs exhibited one or several mutations in established thyroid cancer genes, including TERT (n=4), NRAS (n=3), HRAS, KRAS, AKT, PTEN, PIK3CA, MUTYH, TSHR and MEN1 (n=1 each). MutSig2CV analysis revealed recurrent somatic mutations in FAM72D (n=3, in two wiFTCs and in a single HCC), TP53 (n=3, in two wiFTCs and a single HCC) and EIF1AX (n=3), with DGCR8 (n=2) as borderline significant. The DGCR8 mutations were recurrent p.E518K missense alterations, known to cause familial multinodular goiter via disruption of microRNA processing. Expression analyses showed reduced DGCR8 mRNA expression in FTCs in general, and the two DGCR8 mutants displayed a distinct miRNA profile compared to DGCR8 wildtypes. Copy number analyses revealed recurrent gains on chromosomes 4, 6 and 10, and fusiongene analyses revealed 27 high-quality events. Both HCCs displayed hyperploidy, which was fairly unusual in the FTC cohort. Based on the transcriptome data tumors amassed in two principal clusters.

Conclusion
We describe the genomic and transcriptomic landscape in wiFTCs and HCCs and identify novel recurrent mutations and copy number alterations with possible driver properties and lay the foundation for future studies.

Keywords: follicular, thyroid, carcinoma, cancer, mutation, whole-genome
Introduction

Thyroid cancer is the most common malignancy in endocrine organs and the eleventh most common malignancy worldwide. Remarkably, thyroid cancer has shown a steep increase in incidence for the last few decades (1,2). Although the prognosis of thyroid cancer in general is quite favorable, the second most common type, follicular thyroid carcinoma (FTC) shows a 5-year survival of around 90% and drops to 80% after 10 years (3). In 2017, the World Health Organization revised the sub-classifications of FTC based on the grade of capsular and vascular invasion where the widely invasive FTC (wiFTC) is the most aggressive form, which is reflected in its poor prognosis (4,5). FTCs with > 75% oncocytic features were also separated into a distinct tumor entity denoted Hürthle cell carcinoma (HCC) (5). FTCs and HCCs rarely metastasize to neck lymph-nodes but predominantly spread to lungs and bone, causing significant morbidity (6).

The diagnostic procedure includes a fine-needle aspiration biopsy (FNAB) from the tumor, however, a preoperative diagnosis cannot solely rely on this procedure since it is morphologically impossible to distinguish FTC and HCC cells from its benign counterpart follicular thyroid adenoma (FTA) and Hürthle cell adenoma (HA), respectively (5). Therefore, a diagnostic hemithyroidectomy is performed for a conclusive histopathological diagnosis, and if the specimen fulfils the criteria of an FTC or HCC (capsular or vascular invasion) the patient undergoes a completion thyroidectomy, where the other lobe is removed, providing conditions for a more successful subsequent treatment and follow-up (7). The treatment regimen is based on surgery, radioiodine therapy and subsequent TSH suppression with thyroxine, where the dose of radioiodine and the length of suppression is based on clinicopathological variables (7). Thus, so far, no molecular alterations have been widely implemented in the diagnostic, predictive and prognostic work-up.
Most FTCs are characterized either by point mutations in the RAS gene family or by PAX8-PPARγ rearrangements, and they appear to occur mutually exclusive (8). The frequency of RAS gene family mutations and PAX8-PPARγ rearrangements in FTC is ranging from 30-60% and 10-60%, respectively (9). Other genetic alterations that include activation of the PI3K/AKT pathway are also common in FTC, and are together with the RAS gene family mutations and PAX8-PPARγ rearrangements the only widely accepted cancer driver events in sporadic FTC, despite also being present to a lesser extent in FTA (9-15). Mechanisms involving TERT alterations, including point mutations in the TERT promoter (TERTp), have frequently been reported in FTCs and are associated with a worse clinical outcome. However, although they contribute to thyroid cancer progression, it is unclear whether the activating TERTp mutations can act as a cancer driver alone (16-21). Despite these advances in surveying follicular thyroid tumorigenesis, a substantial proportion of FTCs lacks an identifiable driver. HCCs (previously known as “oxyphilic follicular thyroid carcinomas”) show mutations affecting the MAPK pathway, PI3/Akt pathway, TERT promoter and PAX8-PPARγ rearrangements but to a lesser extent than FTCs (5). In contrast to FTCs, HCCs display mitochondrial DNA mutations possibly related to its mitochondrial rich cytoplasm (5).

A few recent attempts have been made to further elucidate possible cancer drivers and prognostic markers in FTC by utilizing various next-generation sequencing (NGS) methods. These studies have been using either whole-exome sequencing (WES) or targeted NGS. However, very few novel recurrent genetic events have been identified, especially in wFTC (22-27). Furthermore, to our knowledge, no study has evaluated HCCs using pan-genomic sequencing. Whole-genome sequencing (WGS) provides a comprehensive insight into all types of genomic alterations, including an unbiased detection of somatic mutations and a superiority over WES in detecting copy number alterations (CNA) (28). In this study, our aim was to characterize the genomic and transcriptomic landscape in
wiFTC and HCC with a particularly poor prognosis. We first characterized the somatic genomic landscape by applying the Sarek (29) workflow using whole-genome sequencing data from 11 wiFTCs and 2 HCCs with matched adjacent normal thyroid tissue, and the transcriptional profile from RNA sequencing of the 13 tumors and 2 unrelated normal thyroid tissues.

Materials and Methods

Clinical characteristics of the follicular thyroid carcinomas and Hürthle cell carcinomas

The clinicopathological characteristics of the 11 wiFTC and 2 HCC patients are summarized in Table 1 and visualized in Fig. 1. Detailed information is available as Supplementary data (30). The cohort consisted of 11 wiFTCs and 2 HCCs retrieved through a thyroid lobectomy and subsequently diagnosed by histopathological examination at the Department of Pathology and Cytology, Karolinska University Hospital in Stockholm, Sweden. All tumors were assessed using the most recent World Health Organization criteria (5), all tumors were large, grossly invasive tumors displaying multiple foci with both capsular and vascular invasion. All cases were also reviewed for the so-called Turin criteria (solid, trabecular and/or insular growth, increased mitotic count and/or the presence of tumor necrosis), in order to exclude the presence of a poorly differentiated thyroid carcinoma (PDTC). We deliberately aimed to include fresh-frozen tumors from patients with adverse clinical parameters, such as metastasized disease (n=8) and/or disease-specific fatal outcomes (n=5), and for the remaining non-metastasized cases we selectively collected larger tumors (>40 mm, n = 5). As matched constitutional tissues for the pan-genomic analysis, we used histologically normal thyroid tissue.
Tissue representativity testing

To verify adequate and representative cell contents for all tumors and normal thyroid specimen subsequently submitted for nucleic acid extraction, a small piece of the tissue was dissected using a sterile scalpel, fixated in formalin, embedded in paraffin, cut at 4 μm, mounted on slides and stained with hematoxylin-eosin. An endocrine pathologist (CCJ) verified high tumor cell percentages (>90%) for all included tumors and histologically normal thyroid tissue for the constitutional DNA extractions (data not shown).

DNA and RNA extraction

For all included samples, genomic DNA was extracted from fresh-frozen tissue using the DNeasy Blood and Tissue kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. Total RNA was extracted using the RNeasy mini kit (Qiagen) according manufacturer’s instructions. MicroRNA was extracted using the mirVana miRNA isolation kit (Thermo Fisher Scientific, Waltham, MA, USA) according to the manufacturer’s instructions.

WGS and an overview of the associated bioinformatics

WGS was performed at the National Genomics Infrastructure Sweden (SciLifeLab, Stockholm, Sweden). Library preparation was performed using Illumina TruSeq PCR-free libraries (350 bp) from 13 tumors and 13 corresponding normal samples. Subsequent sequencing was performed using the Illumina HighSeq X with a coverage of 60x for tumors and 30x for normal samples. The library preparation, sequencing and data processing are validated methods under ISO accreditation 17025:2005. WGS bioinformatics processing and analysis was performed at the National Bioinformatics Infrastructure Sweden (NBIS) by two of the authors (NR, SDL). Briefly, WGS data of 13
matched tumor/control samples were analyzed. The reads were realigned to reference genome GRCh38 before analysis, and the subsequent analyses were divided into two parts: small variant analyses and large variant analyses. For the small variant analyses, a panel of normal and selected high quality variants were generated for downstream analyses. The identified variants were then annotated for their functional effect on genes. Results were compared with other publicly available databases such as TCGA (accessed 2019-10-16) and COSMIC (accessed 2019-10-16). For large structural variation analyses, the genome was screened for CNA and gene fusions.

Analyses of somatic DNA alterations

Following quality controls, GATK best practices were followed as implemented in the Sarek pipeline, version 2.3, developed at NBIS and NGI (29). Sarek uses nextflow DSL, in this study version 19.03.0-SNAPSHOT, as a computational framework. In this project, the following steps were performed: aligning the reads with BWA (31), marking duplicate reads with GATK4 MarkDuplicates, base quality recalibration with GATK4 BQSR, calling germline small variants with GATK4 HaplotypeCaller (32), calling somatic small variants with GATK4 Mutect2 (33), calling somatic structural variation with Manta (34), somatic CNA and ploidy with ASCAT (35), annotation of both small variants and structural variants with snpEff (36) and VEP (37) and quality control with MultiQC (38).

To extract high-quality small somatic variants (SNV and INDELs), we created a panel of normals (PON) based on the Mutect2 recommendations. The PON was used to remove additional normal variations, and the remaining variants were used for downstream analyses. To identify significantly mutated genes, we used MutSig2CV version 3.11 (39). As this tool is hard coded to hg19, the VCF files for each sample were lifted over to the hg19 genome reference using picard LiftOverVCF, version 2.10.3. The variants were filtered in two additional steps before MutSig2CV analysis, first
using the GATK4 FilterMutectCalls version 4.1.0.0, which became standard best practice for somatic short mutation calling after the Sarek pipeline was run, and secondly using the R software version 3.5 to apply custom filters. In the second filtering step using R, filters were inspected and customized. The filters were as follows: 1. Filter intergenic region and unknown gene variants; 2. Filter by the population database gnomAD (>=1%); 3. Filter out low impact variants; 4. Filter out variants deemed benign by both PolyPhen and SIFT annotations; 5. Filter out low coverage variants (< 10x in tumor); 6. Filter out upstream and downstream gene variants; 7. Filter out intronic variants (non-regulatory regions like splice sites excluded); 8. Filter out custom clustered variant regions with several low AF variants. All code and supplementary plots of which variants were affected are available upon request.

Structural genomic variations

To analyse somatic CNAs, calls from ASCAT were used to identify gain and loss events across the genome. We calculated gain and loss using reported ploidy by ASCAT based on following formula:

Gain = \#copies > ploidy + 0.6, Loss = \#copies < ploidy + 0.6, Deletion = 0 \#copies is the sum of major and minor allele reported by ASCAT. For visualization, we summarized the events along each chromosome based on their location in cytobands and their size, filtering away CNA’s less than 1 kb. For some cytobands, we observed more than one CNA event and selected the largest CNA per region.

Genomic rearrangements

For genomic rearrangements, we extracted the gene_fusion term from snpEff annotation of structural variation detected by Manta. We selected events passing the filtering step (only PASS) and classified them based on reported rearrangement by Manta (translocation, inversion, duplication,
and deletion). The filtered list was then visualized by the circlize R package (40). We parsed the data and visualized them using R.

RNA sequencing

The transcriptome of 13 tumor samples and 2 normal thyroid samples were sequenced. Library construction was performed with the Illumina TruSeq Stranded mRNA kit, followed by Poly-A selection and clustering using 'cBot'. Libraries were sequenced on HiSeq2500 (HiSeq Control Software 2.2.58/RTA 1.18.64) with a 2x126 setup using 'HiSeq SBS Kit v4' chemistry. The Bcl to FastQ conversion was performed using bcl2fastq_v2.19.1.403 from the CASAVA software suite. The quality scale used was Sanger / phred33 / Illumina 1.8+. Reads were aligned using STAR (41) and gene counts were generated with featureCounts (42). NGI performed read alignment and extracted read counts by using nextflow/rnaseq pipeline (available in the GitHub repository https://github.com/nf-core/rnaseq).

Differential expression analysis and gene set enrichment analysis

For gene set enrichment analysis (GSEA) in R, normalized counts were used to identify gene sets significantly associated with patient survival, tumor metastasis and TERTp mutations. Individual genes in the significantly enriched pathways were visualized using pheatmap package in R. Next, differential expression with an individual false discovery rate (FDR) of < 0.01 was calculated between normal and tumors using the DESeq2 (43) package in R. Differentially expressed genes were visualized in a heatmap and samples were clustered using unsupervised hierarchal clustering and visualized with pheatmap and the Enhanced volcanoplot package (v 1.8.0, Blighe, 2020) in R. Up-regulated genes from the differential expression analysis were analyzed for gene ontology using Enrichr (v 2.1, Jawaid, 2019).
Expression of genes in minimal region of amplification

Canonical genes in the cytoband 10q11.21 were extracted using the BioMart tool through Ensembl. Tumors with gain and neutral/loss in the minimal region of amplification (MRA) were analyzed for differential expression using DESeq2.

Sanger sequencing validation

The NGS cohort of 13 tumors and an additional 120 thyroid carcinomas (37 HCCs, 33 minimally invasive FTCs (miFTCs), 26 wiFTCs, 20 PDTCs and 7 encapsulated angioinvasive FTCs (eaiFTCs) were sequenced to validate and screen for the selected mutation in the DGCR8 gene. Exon 7 of the DGCR8 gene was amplified using F primer 5'- TGTGATGTGTTGAGGGCATG and R primer 5'- CCTTTCCTCCGGGTTCAGT and Sanger sequenced in both directions. Mutational calling including visual inspection of each chromatogram was performed using CodonCode Aligner (CodonCode Cooperation, MA, USA).

Quantitative real-time PCR

Total messenger RNA was used for cDNA synthesis using High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, California, United States). Quantitative real-time PCR (qRT-PCR) was performed in 65 FTCs using Quantstudio 6 Real-Time PCR system (Thermo Fisher Scientific, Waltham, Massachusetts, United States) with TaqMan Gene expression assay (Hs00377897_m1) to investigate DGCR8 expression. The 18S rRNA expression was used as an endogenous reference (Hs99999901_s1). A total of 42 FTAs served as controls. Relative expression was calculated as $2^{-\Delta\Delta ct}$.
MicroRNA profiling

In total, 100 ng of total RNA from fresh frozen tissue was used for miRNA profiling using the direct molecular barcoding with digital detection method NanoString nCounter platform (NanoString Technologies, Seattle, WA, USA). The panel includes expression of 827 human miRNAs and 6 positive mRNA controls, 8 negative mRNA controls, 3 ligation positive miRNA controls, 3 ligation negative miRNA controls, 5 mRNA reference controls and 5 spike-in controls. Samples were hybridized with probes containing unique barcodes and counted using the nCounter platform. The data was analyzed with nSolver v.4 (NanoString Technologies) and Rosalind (Rosalind Inc. https://rosalind.onramp.bio/). Normalization, fold changes and p values were calculated using criteria provided by NanoString. Background was subtracted based on POS A probe correction factors. Normalization was performed by calculating the geometric mean from positive controls and code set mRNA housekeeping genes. An unsupervised clustering heatmap was generated as part of the QC step including the top 50 most variable miRNAs. Differential expression between $DGCR8$ mutated (n=2) FTC and $DGCR8$ wildtype (n=9) FTC cases was performed with fold change as 1.5 and adjusted p value threshold set to 0.05.
Results

Patient characteristics and sequencing quality parameters

The clinical characteristics of the included patients are summarized in Table 1 and detailed in Supplementary Table S1 (30). In total, 26 samples were successfully sequenced using WGS and the Illumina HiSeq X platform, including 11 primary wFTCs, 2 primary HCCs and corresponding constitutional tissues. The average genome coverage for tumor and normal was 68.4x and 34.0x respectively and the average alignment to reference human genome was 98.0% and 98.6% respectively. The aggregated percentage of bases that had quality score higher than Q30 was 90% on average, ranging from 87.06%–92.19%. Q30 is equal to an inferred base call accuracy of 99.9%.

Somatic mutational overview

By using the above described Sarek workflow, we found a total of 63,855 genomic, SNVs and INDELs in 17,184 genes. These alterations are schematically depicted in Supplementary Fig. S1 (30). After extensive filtering (as outlined in Materials and Methods), 889 SNVs remained for subsequent analysis with MutSig2CV. The mutational burden and main events are illustrated in Fig. 1. The complete list of somatic SNVs in all tumors and the final MutSig2CV input list are available as Supplementary Table S2 and Supplementary Table S3, with MutSig2CV genes ranked by p value in Supplementary Table S4 (30).

Mutations in thyroid cancer-associated genes

To highlight mutational events in established thyroid cancer genes, we compared our complete list of somatic mutations with the top 20 genes mutated in FTCs as reported by the Catalogue of
Somatic Mutations in Cancer (COSMIC) database (Fig. 1, Table 2). All wiFTCs exhibited one or several mutations with predicted functional impact in established genes ranked as the top 20 mutated in FTC, including the TERTp (n=4), NRAS (n=3), HRAS, KRAS, AKT, PTEN, PIK3CA, TSHR, MUTYH and MEN1 (n=1 each) (Table 2). The two HCCs did not display any coding mutations among the top 20 thyroid related mutated genes (Table 2, case id 202 and 208), but several alterations in other cancer-related genes not commonly associated with thyroid cancer (Fig. 1).

Novel genes of interest

In addition, a separate analysis using MutSig2CV was performed (Fig. 1). From the 889 SNVs that remained after initial filtering, 564 were run in MutSig2CV. In-depth analyses of these variants discovered somatic mutations in three genes annotated as significant according to MutSig2CV with a q value < 0.1; FAM72D (4 mutations in 3 cases), TP53 (3 cases) and EIF1AX (3 cases), with DGCR8 (2 cases) as borderline significant (Fig. 1). The properties of these mutations are detailed in Table 3. Of these genes, TP53 and EIF1AX have previously been reported as recurrently mutated in follicular thyroid carcinoma, whereas FAM72D and DGCR8 mutations are unusual in this context (with a prevalence of 0.67% and 0.29% in unspecified thyroid cancer specimen respectively when consulting the COSMIC database). The TP53 and EIF1AX mutations were distinct from each other. In three patients, a deletion insertion (c.295_296delinsGA) in FAM72D caused an amino acid change at codon 99 (p.Arg99Glu) and the two samples with DGCR8 mutation exhibited an identical c.1552G>A (p.Glu518Lys) missense alteration. The FAM72D mutation p.Arg99Glu has not been reported in the COSMIC database (accessed December 2020), and was considered as benign using in silico analyses, with low/no impact of protein structure and function (PolyPhen2 score of 0.001). The DGCR8 mutation p.Glu518Lys however, was considered probably damaging (PolyPhen2 score of 1).
Gene ontology of top mutated genes

Since most of the top genes in the MutSig2CV analysis are unknown in thyroid and most are not curated cancer census gene we performed a gene ontology analysis using Enrichr. The top MutSig2CV genes showed a significant enrichment in the GO Cellular components “RNAi effector complex” and “RISC complex”, p value 0.008519 for both (data not shown). Both GO Cellular components are essential components in the miRNA machinery and downstream effects.

Copy number landscape and overall ploidy

One of the benefits of using WGS as opposed to the more common whole-exome sequencing (WES) is that it also contains non-coding regions, which allows for a more detailed interrogation of global copy number alterations. By analyzing our data with ASCAT, we present the genomic copy number landscape in wiFTCs and HCCs, and depict recurrent loci displaying gain and loss events (Fig. 2). A subset of tumors was particularly amassed in terms of CNA events: sample 202, 203, 204 and 207, but without any clear correlation to underlying genetics or patient outcome (Fig. 1, Supplementary Table S1) (30). When consulting loci with recurrent CNAs, chromosomes 4, 6 and 10 were particularly enriched for copy number gains. The MRA was pinpointed to regions 4p11, 6p21.32 and 10q11.21, in which gain was noted in 12, 11 and 10 samples respectively out of the 13 tumors interrogated. Candidate genes for all three loci and their implications for cancer in general are detailed in Supplementary Table S5 (30). Of particular interest, chromosome 4p11 harbors TEC, SLAIN2, FRYL and OCIAD1, all of which have been associated with cancer development. Chromosome 6p21.32 contains DAXX, a well-established cancer-associated gene with tumor suppressive and oncogenic properties, while chromosome 10q11.21 harbor the thyroid oncogene RET.
For 12 out of 13 tumors, the ploidy could be safely estimated, and these results are detailed in Supplementary Table S6 (30). In short, 8 informative samples were denoted as diploid, whereas 2 cases are assumed to be triploid (case 202; an HCC, and case 207; a wiFTC) and 2 cases were tetraploid (case 203; a wiFTC 203 and case 208; an HCC). Three out of the hyperploid samples were among the four tumors displaying markedly increased copy number gains as compared to remaining samples.

Genomic rearrangements

To analyze structural variants, we selected fusion events from the snpEff output corresponding to high quality events reported by Manta(34). In total, we identified 268 structural events, of which 27 were denoted as high-confidence events resulting in *bona fide* gene fusions as shown in Fig. 3. Samples FTC 105 and and HCC 208 had the highest number of rearrangements resulting in gene fusions (n=4 each). When manually scrutinizing these 28 high-confidence events, two tumors (case FTC 204 and FTC 205) were found to exhibit the established *PAX8-PPARγ* fusion (Fig. 1 and Fig. 3). All high-confidence fusion events are detailed in Supplementary Table S7 (30).

DGCR8 loss of heterozygosity (LOH) analyses

Following the identification of a recurrent p.E518K *DGCR8* mutation in 2 out of 13 tumors, we further investigated this gene. A total of 5 tumors displayed LOH at the *DGCR8* locus, including the two *DGCR8* mutated cases, an additional two FTCs and one HCC. Following this finding, the transcriptome data was analyzed to investigate the expression pattern of *DGCR8* in relation to LOH status. After normalizing the expression values using edgeR (44), a pairwise comparison between samples with and without LOH was performed, revealing no significant expression difference between tumors with or without LOH of the *DGCR8* locus (p=0.13, Supplementary Fig. S2) (30).
Targeted DGCR8 analyses

Direct sequencing of the p.E518 region of *DGCR8* in 123 thyroid carcinomas (7 eaiFTC, 37 HCC, 33 miFTC, 26 wiFTC and 20 PDTC) was performed. All FTCs and HCCs were successfully sequenced. Seventeen out of 20 PDTC were successfully sequenced whereas 3 gave no product, possibly due to loss of genetic material. No additional mutations were found. In all, the frequency of this recurrent mutation in FTCs would correspond to 8% in wiFTC and less or non-existent in other subtypes and PDTC. Moreover, by qRT-PCR, *DGCR8* mRNA expression was analyzed in 107 follicular thyroid tumors (65 FTCs, 42 FTAs). In general, FTAs displayed a significantly higher expression than FTCs ($p < 0.0001$, Fig. 4).

Transcriptome profiling

The aggregated percentage of bases that had quality score more than the Q30 value was 91.8%. DESeq2 identified 184 differentially expressed genes between tumor and normal samples, as visualized by a heatmap (Fig. 5A). Unsupervised clustering revealed three main clusters: the two normal samples clustered together with a single FTC (case 105), whereas the remaining tumors aggregated in two different clusters; 4 wiFTCs and both HCCs in one cluster and 6 wiFTCs in the other. Three out of four samples with *TERTp* mutation (102, 201 and 203) clustered together. One of the two clusters (containing the *TERTp* mutated cases) was defined by more pronounced expression in the significantly up-regulated genes (Fig. 5B). Gene ontology (GO) analysis showed significant enrichment in the GO Biological Processes mitochondrial transmembrane transport, carnitine shuttle and fatty acid transmembrane transport (Fig. 5C). The complete list of differentially expressed genes is available as Supplementary Table S8 (30). The first main tumor cluster showed a tendency to shorter survival compared with the second cluster, however not significant (Overall Survival,
Disease-Specific Survival and Disease-free Survival with p=0.277, p=0.277 and p=0.642, respectively) (data not shown). Our data suggest that wiFTCs and HCCs adhere to two principal clusters. Furthermore, a DESeq2 analysis was also performed in the DGCR8 mutated tumors, and compares to the wildtype cases. Despite the low number of cases, four genes were significantly downregulated with enrichment in GO cellular component “bicellular tight junctions” (data not shown).

Sample 105 clustered with the two normal thyroid tissues. This tumor has been histologically confirmed to exhibit a tumor purity of 90%, making contamination with normal tissue highly unlikely. Moreover, this case exhibited somatic MEN1 and TSHR gene mutations (Fig. 1), and furthermore displayed copy number alterations on par with many other FTCs in this series (Fig. 2), supporting the tumorous nature of this sample.

MicroRNA profiling

After the identification of missense mutation and LOH of the DGCR8 gene we sought to explore the consequences on miRNA expression. The eleven wiFTCs from the genomic and transcriptomic analyses (two harboring the DGCR8 p.E518K mutation and nine DGCR8 p.E518 wildtype) were successfully profiled for 827 miRNAs (NanoString Human v3 miRNA assay). The two DGCR8 mutated cases clustered together in the unsupervised clustering analysis of the top 50 most variable miRNAs (Fig. 6A). An additional two cases showed similar general downregulation of miRNAs and clustered in close proximity to the mutated cases. These case (105 and 106) displayed low DGCR8 mRNA expression in the transcriptomic analysis (Supplementary Fig. S2). Case 102 showed remarkably higher miRNA expression compared to the other cases. This case displayed the highest level of DGCR8 mRNA expression, similar to the levels in normal tissue (Supplementary Fig. S2). Differential expression analysis of the DGCR8 mutated cases compared to the wildtype cases revealed that only 12 miRNAs were significantly differentially expressed (Fig. 6B).
10q11.21 cytoband gene expression

Given the detection of recurrent gain at chromosome 10q11.21, we specifically analyzed the gene expression of genes in the MRA (10q11.21) in gain versus neutral/loss tumors (n=10 and n=3, respectively). In this cytoband, \textit{RASSF4}, \textit{TMEM72} and \textit{OR13A1} were significantly up-regulated (Fig. 7).

Sub-analysis of TERTp mutated cases

Given the established role of \textit{TERTp} mutations in FTCs with exceptionally poor outcome, we also analyzed the transcriptome of \textit{TERTp} mutated wiFTCs (cases 102, 201, 203 and 206) as compared to that of the \textit{TERTp} wildtype cases using gene set enrichment analysis (GSEA) in hallmark pathways. We found that \textit{TERTp} mutated cases had significant (normalized \(p\) value < 0.01 and FDR < 0.1) enrichment in gene sets associated with adipogenesis, genes responding to androgens and genes encoding the peroxisome (Supplementary Fig. S3) (30). These differences suggest that \textit{TERTp} mutation may be associated with an altered metabolic activity.
Discussion

Although recent efforts with focused NGS panels as well as exome-wide analyses have helped elucidate the mutational landscape of FTCs, few have tried to tackle this tumor entity via comprehensive whole-genome sequencing. By selecting FTCs and HCCs with histological and clinical features coupled to aggressiveness, the aim of this study was to characterize unchartered mutational, gross chromosomal and transcriptome events to identify novel markers of prognostic and therapeutic significance in poor-prognosis cases.

We identified a recurrent, heterozygous and somatic p.E518K mutation in the miRNA master processor DGRC8 in 2 out of 13 tumors. The specific p.E518K variant in combination with LOH of the WT DGCR8 allele was recently proposed as causing a familial syndrome characterized by multinodular goitre and schwannoma (45). This combination of a p.E518K mutation and LOH of the WT DGCR8 allele has also been demonstrated in approximately 2-3% of Wilms tumors (46). The mutation has also been demonstrated in thyroid cancer, however, only in a small subset of PTCs (and follicular variant PTCs) – but not previously reported in FTCs (47). The mutation also led to loss of function in the miRNA processing causing downregulation of canonical miRNAs (45) – a phenomenon that has been shown to enhance cellular transformation and tumorigenesis (48). This is in line with our results wherein the DGCR8 mutated cases appeared in the same cluster from the global miRNA profiling (Fig. 6). Of particular interest from a thyroid perspective, miR139-5p is reported as aberrantly expressed in thyroid cancer, and this miRNA was also significantly dysregulated in the two DGRC8 mutants compared to DGCR8 wildtype cases (49,50). Moreover, two DGCR8 wildtype cases displayed a similar global miRNA expression pattern as the two mutants. Both these cases displayed low DGCR8 mRNA expression, suggesting that not only mutations but also mRNA downregulation potentially could alter the miRNA machinery. The cause of DGCR8 downregulation in our tumor cohort (Fig. 4) is unknown. We have previously shown that DICER1,
another essential component in the miRNA machinery is downregulated in FTC and is downregulated by the transcription factor GABPA (51). However, if epigenetic dysregulation is at play also at the DGRC8 locus remains to be established. For example, the transcription factor YY1 has been found to influence DGCR8 gene output in vitro, and YY1 has been found expressed exclusively at invasive fronts of follicular thyroid carcinomas (52,53).

In our data, the gene expression pattern of the DGCR8 mutated cases showed an enrichment of downregulated genes in bicellular tight junctions. The miRNA processing RISC complex where DGCR8 is included have recently been shown to associate to epithelial cell junctions in colon cancer and, when lost, by various mechanisms might promote cell transformation (54). Also, knock-down of DGCR8 in breast cancer cells increase the expression of the invasion-essential urokinase-type plasminogen activator (uPA) (55). Dysregulation of the miRNA machinery and a possible activation of such enzymes could thus play a role in thyroid cancer invasion. Indeed, previous results have observed a marked increase in expression of the uPA receptor, especially in FTC (56). The finding of DGCR8 mutations is also of immediate interest given the established association between FTCs and inactivating mutations in DICER1 and DROSHA, two master miRNA processing genes (51,57). Our findings thus strengthen the association between abnormal miRNA processing and the development of follicular thyroid carcinoma and underline a central mechanism in which subsets of these tumors probably arise as a direct consequence of aborted miRNA maturation (Fig. 8). However, the driver properties of the p.E518K DGCR8 mutation in thyroid cancer remain to be established, as the two cases with this mutation also carried a somatic HRAS and PIK3CA mutation respectively. Therefore, it is possible that the DGCR8 mutation found in these tumors influenced the tumor progression or invasive behavior without driving the tumor formation per se. However, recent studies have found recurrent DICER1 mutations in various forms of thyroid cancer, of which most cases did not display
established driver gene alterations, vaguely suggesting that aberrant miRNA expressional patterns could be at play even at the level of tumor initiation (58,59).

We did not observe the mutation in an extended material of 103 FTCs and 17 PDTCs, suggesting that the variant is rarely seen overall. However, when analyzing DGCR8 expression in an extended panel, we observed significant downregulation in FTCs when compared to FTAs, suggesting the importance of DGCR8 in FTC development. The gene ontology for the top MutSig2CV genes in the WGS cohort were significantly associated with the GO cellular component “RISC complex” which further strengthens the hypothesis that the miRNA machinery plays a vital role in these tumors. In all, future studies might help elucidate whether downregulation of DGCR8 in any way orchestrates invasive behavior in follicular thyroid neoplasms.

Two additional wiFTCs and one HCC carried a recurrent somatic alteration in the Family With Sequence Similarity 72 Member D (FAM72D) gene. Located on chromosome 1q21.1, this gene encompasses a region frequently amplified in myeloma (60), and FAM72 paralogs are upregulated in glioblastoma (61). The former study also suggests that FAM72D interact with the FOXM1 transcription factor network controlling cell proliferation (60), but little is known regarding its putative function in the thyroid gland. The mutation detected in this study was not believed to alter the protein function, and the putative roles of this alteration will need to be functionally linked to a cellular phenotype before they can be considered of importance in the development of FTC and HCC. Moreover, two out of three cases with a FAM72D mutation already exhibited established genetic events (case 203; mutations in KRAS and the TERTp, case 204; MUTYH mutation and PAX8-PPARY fusion) – thereby somewhat diminishing the chance of the FAM72D alteration being a true driver. From a clinical standpoint, all three tumors with this aberration were relapse-free, but no clear-cut associations to other clinical parameters could be made.
Moreover, we highlighted a set of novel high-confidence fusions in our cohort, although only the established \textit{PAX8-PPARγ} fusion was present in two cases (case 204 and 205). It is also interesting to note that both HCCs displayed hyperploidy, and one of the two HCC cases also displayed among the highest number of structural variants in the entire cohort. As both HCCs did not carry pathogenic mutational events in \textit{bona fide} thyroid related genes, the notion that gross chromosomal alterations was overrepresented in these cases compared to conventional FTCs might indicate an association worthy of future exploration. Strikingly in terms of structural alterations, recurrent gains at chromosomes 4p11, 6p21.32 and 10q11.21 were observed across our cohort. To our knowledge, these regions have not been previously reported as recurrently amplified in FTCs, and this could be due to the fact that we use high-resolution WGS as opposed to more blunt technology such as PCR of microsatellite markers or comparative genomic hybridization. The regions discussed above contain multiple genes with associations to cancer development, of which several could be of great interest for further studies. Most notably, chromosome 10q11.21 harbour the thyroid oncogene \textit{RET}, which is mutated on the somatic and constitutional level in medullary thyroid carcinoma (MTC) and fusions involving this gene is a recurrent feature in papillary thyroid carcinoma (PTC), but there is no known association to any of these genetic aberrancies and FTCs. By our analyses, \textit{RET} gene expression was not associated to gain of this gene locus when consulting RNA sequencing data (Fig. 7). Instead, we found that \textit{RASSF4}, \textit{TMEM72} and \textit{OR13A1} were the only three genes in the region with a significant overexpression. Although not all genes within a region of gain will be overexpressed, we lack functional evidence linking the observed overexpression with the actual chromosomal gain, and our results are therefore merely observational in nature.

This study cohort is overrepresented in terms of poor-prognosis cases (large tumors, history of tumor recurrences, and several have succumbed to disease). Therefore, it comes as little surprise
that 4/13 cases (31%) exhibited TERTp mutations, as this genetic event is tightly coupled to adverse clinical outcome in patients with thyroid cancer. The roles of TERT in thyroid cancer is only partly understood, but the mutations themselves are not considered driver alterations – which is mirrored by the fact that 3/4 wiFTCs in our cohort with a TERTp mutation also exhibited driver gene mutations in NRAS (n=2) or KRAS (n=1) (Fig. 1). To elucidate how TERT affects the transcriptome profile output in wiFTCs and HCC, we analyzed the RNA sequencing data stratified with regards to TERTp mutations, and found remarkable differences in expression of genes responsible for metabolic pathways, such as adipogenesis, androgen response and peroxisome-related pathways. This was also true when performing an unsupervised clustering of all tumors included, in which the majority of TERTp mutants aggregated (Fig. 5). It is tempting to speculate that one or several of these metabolic pathways are crucial for the metastatic potential or disseminate growth so often seen in this tumor cohort, and will be a highly relevant topic for future studies.

We conclude that subsets of FTCs display recurrent DGCR8 mutations, adding yet another player to the growing palette of miRNA related gene mutations in this disease. Moreover, we identified recurrent gain of chromosome 10q11.21, and identified overexpression of RASSF4, TMEM72 and OR13A1 as potential candidates for further studies. Finally, we identified two principal expressional clusters by global RNA sequencing, which differed in terms of TERTp mutations and metabolic pathway gene expression. Future analyses in extended series will possibly help elucidate if these clusters exhibit differences in clinical outcomes.

Acknowledgements

The authors would like to acknowledge support from Science for Life Laboratory, the National Genomics Infrastructure, UPPMAX and SNIC for providing assistance in massive parallel sequencing
and computational infrastructure. The authors also acknowledge the support from the Knut and Alice Wallenberg Foundation and the Swedish Research Council. The authors would also like to acknowledge the KI Gene core facility at Karolinska Institutet for providing assistance with the NanoString analysis.

Author contribution statement

C. Christofer Juhlin and Jan Zedenius conceived and supervised the project. Johan O. Paulsson and C. Christofer Juhlin designed and performed the research. Nima Rafati and Sebastian DiLorenzo performed genomic bioinformatic analyses and parts of the transcriptomic analyses. Yi Chen, Felix Haglund and Johan O. Paulsson performed transcriptomic analyses. Johan O. Paulsson performed the miRNA analysis and subsequent bioinformatics. Jan Zedenius and Johan O. Paulsson extracted clinical information from patients’ medical charts. Johan O. Paulsson performed molecular wet lab analyses. Johan O. Paulsson and C. Christofer Juhlin compiled the data and wrote the manuscript with input and consent from all authors.

Funding

The authors are indebted to the financial support provided by the Swedish Cancer Society, the Swedish Society for Medical Research, the Cancer Research Funds of Radiumhemmet, the Swedish Society of Medicine, the Lisa and Johan Grönberg Foundation, the Stockholm City Council and Karolinska Institutet.

Data availability
The datasets analyzed during the current study are available to a variable extent. Gene expression datasets will be available in a suitable repository. Genomic datasets will not be publicly available but are available from the corresponding author upon reasonable request. All supplementary materials including complete mutect2 list and figures are located in a digital repository https://doi.org/10.5878/6fcv-1795. The codes for the genomic analyses are available at GitHub https://github.com/NBISweden/SMS_4472_19_Thy_Cancer.
1. Kitahara CM, Sosa JA. The changing incidence of thyroid cancer. *Nature Reviews Endocrinology*. 2016;12(11):646-653.

2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA Cancer J Clin*. 2018;68(6):394-424.

3. James BC, Aschebrook-Kilfoy B, Cipriani N, Kaplan EL, Angelos P, Grogan RH. The Incidence and Survival of Rare Cancers of the Thyroid, Parathyroid, Adrenal, and Pancreas. *Ann Surg Oncol*. 2016;23(2):424-433.

4. Jin M, Kim ES, Kim BH, Kim HK, Yi HS, Jeon MJ, Kim TY, Kang HC, Kim WB, Shong YK, Kim M, Kim WG. Clinical Implication of World Health Organization Classification in Patients with Follicular Thyroid Carcinoma in South Korea: A Multicenter Cohort Study. *Endocrinol Metab (Seoul)*. 2020;35(3):618-627.

5. Lloyd RV OR, Klöppel G, Rosai J. WHO Classification of Tumours of Endocrine Organs. 2017;WHO/IARC Classification of Tumours, 4th Edition, Volume 10.

6. Ruegemer JJ, Hay ID, Bergstralh EJ, Ryan JJ, Offord KP, Gorman CA. Distant metastases in differentiated thyroid carcinoma: a multivariate analysis of prognostic variables. *J Clin Endocrinol Metab*. 1988;67(3):501-508.

7. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, Pacini F, Randolph GW, Sawka AM, Schlumberger M, Schuff KG, Sherman SI, Sosa JA, Steward DL, Tuttle RM, Warshawsky L. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. *Thyroid*. 2016;26(1):1-133.

8. Nikiforova MN, Lynch RA, Biddinger PW, Alexander EK, Dorn GW, Tallini G, Kroll TG, Nikiforov YE. RAS point mutations and PAX8-PPAR gamma rearrangement in thyroid tumors: Evidence for distinct molecular pathways in thyroid follicular carcinoma. *J Clin Endocrinol Metab*. 2003;88(5):2318-2326.

9. Jeong SH, Hong HS, Kwak JJ, Lee EH. Analysis of RAS mutation and PAX8/PPAR gamma rearrangement in follicular-derived thyroid neoplasms in a Korean population: frequency and ultrasound findings. *J Endocrinol Invest*. 2015;38(8):849-857.

10. Hou P, Liu D, Shan Y, Hu S, Studeman K, Condouris S, Wang Y, Trink A, El-Naggar AK, Tallini G, Vasko V, Xing M. Genetic alterations and their relationship in the phosphatidylinositol 3-kinase/Akt pathway in thyroid cancer. *Clin Cancer Res*. 2007;13(4):1161-1170.

11. Kim CS, Vasko VV, Kato Y, Kruhlak M, Saji M, Cheng SY, Ringel MD. AKT activation promotes metastasis in a mouse model of follicular thyroid carcinoma. *Endocrinology*. 2005;146(10):4456-4463.

12. Saito J, Kohn AD, Roth RA, Noguchi Y, Tatsumo I, Hirai A, Suzuki K, Kohn LD, Saji M, Ringel MD. Regulation of FRTL-5 thyroid cell growth by phosphatidylinositol (OH) 3 kinase-dependent Akt-mediated signaling. *Thyroid*. 2001;11(4):339-351.

13. Lemoine NR, Mayall ES, Wyllie FS, Williams ED, Goyns M, Stringer B, Wynford-Thomas D. High frequency of ras oncogene activation in all stages of human thyroid tumorigenesis. *Oncogene*. 1989;4(2):159-164.
14. Namba H, Rubin SA, Fagin JA. Point mutations of ras oncogenes are an early event in thyroid tumorigenesis. *Mol Endocrinol*. 1990;4(10):1474-1479.

15. Nikiforov YE, Carty SE, Chiosea SI, Coyne C, Duvvuri U, Ferris RL, Gooding WE, LeBeau SO, Ohori NP, Seethala RR, Tublin ME, Yip L, Nikiforova MN. Impact of the Multi-Gene ThyroSeq Next-Generation Sequencing Assay on Cancer Diagnosis in Thyroid Nodules with Atypia of Undetermined Significance/Follicular Lesion of Undetermined Significance Cytology. *Thyroid*. 2015;25(11):1217-1223.

16. Liu R, Xing M. TERT promoter mutations in thyroid cancer. *Endocr Relat Cancer*. 2016;23(3):R143-155.

17. Liu T, Wang N, Cao J, Sofiadis A, Dinets A, Zedenius J, Larsson C, Xu D. The age- and shorter telomere-dependent TERT promoter mutation in follicular thyroid cell-derived carcinomas. *Oncogene*. 2014;33(42):4978-4984.

18. Melo M, da Rocha AG, Vinagre J, Batista R, Peixoto J, Tavares C, Celestino R, Almeida A, Salgado C, Eloy C, Castro P, Prazeres H, Lima J, Amaro T, Lobo C, Martins MJ, Moura M, Cavaco B, Leite V, Cameselle-Teijeiro JM, Carrilho F, Carvalheiro M, Maximo V, Sobrinho-Simoes M, Soares P. TERT promoter mutations are a major indicator of poor outcome in differentiated thyroid carcinomas. *J Clin Endocrinol Metab*. 2014;99(5):E754-765.

19. Paulsson JO, Mu N, Shabo I, Wang N, Zedenius J, Larsson C, Juhlin CC. TERT aberrancies: a screening tool for malignancy in follicular thyroid tumours. *Endocr Relat Cancer*. 2018;25(7):723-733.

20. Wang N, Liu T, Sofiadis A, Juhlin CC, Zedenius J, Hoog A, Larsson C, Xu D. TERT promoter mutation as an early genetic event activating telomerase in follicular thyroid adenoma (FTA) and atypical FTA. *Cancer*. 2014;120(19):2965-2979.

21. Borah S, Xi L, Zaug AJ, Powell NM, Dancik GM, Cohen SB, Costello JC, Theodorescu D, Cech TR. Cancer. TERT promoter mutations and telomerase reactivation in urothelial cancer. *Science*. 2015;347(6225):1006-1010.

22. Nicolson NG, Murtha TD, Dong W, Paulsson JO, Choi J, Barbieri AL, Brown TC, Kunstman JW, Larsson C, Prasad ML, Korah R, Lifton RP, Juhlin CC, Carling T. Comprehensive Genetic Analysis of Follicular Thyroid Carcinoma Predicts Prognosis Independent of Histology. *J Clin Endocrinol Metab*. 2018;103(7):2640-2650.

23. Yoo SK, Lee S, Kim SJ, Jee HG, Kim BA, Cho H, Song YS, Cho SW, Won JK, Shin JY, Park do J, Kim JI, Lee KE, Park YJ, Seo JS. Comprehensive Analysis of the Transcriptional and Mutational Landscape of Follicular and Papillary Thyroid Cancers. *PLoS Genet*. 2016;12(8):e1006239.

24. Yoo SK, Song YS, Lee EK, Hong J, Kim HH, Jung G, Kim YA, Kim SJ, Cho SW, Won JK, Chung EJ, Shin JY, Lee KE, Kim JI, Park YJ, Seo JS. Integrative analysis of genomic and transcriptomic characteristics associated with progression of aggressive thyroid cancer. *Nat Commun*. 2019;10(1):2764.

25. Swierniak M, Pfeifer A, Stokowy T, Rusinek D, Chekan M, Lange D, Krajewska J, Oczko-Wojciechowska M, Czarniecka A, Jarzab M, Jarzab B, Wojtas B. Somatic mutation profiling of follicular thyroid cancer by next generation sequencing. *Mol Cell Endocrinol*. 2016;433:130-137.

26. Duan H, Liu X, Ren X, Zhang H, Wu H, Liang Z. Mutation profiles of follicular thyroid tumors by targeted sequencing. *Diagn Pathol*. 2019;14(1):39.

27. Borowczyk M, Szczepanek-Parulski E, Debrick S, Budny B, Verburg FA, Filipowicz D, Wieckowska B, Janicka-Jedynska M, Gil L, Ziembicka K, Ruchala M. Differences in Mutational Profile between Follicular Thyroid Carcinoma and Follicular Thyroid Adenoma Identified Using Next Generation Sequencing. *Int J Mol Sci*. 2019;20(13).
28. Wang X, Li X, Cheng Y, Sun X, Sun X, Self S, Kooperberg C, Dai JY. Copy number alterations detected by whole-exome and whole-genome sequencing of esophageal adenocarcinoma. *Hum Genomics*. 2015;9:22.

29. Garcia M, Juhos S, Larsson M, Olason PI, Martin M, Eisfeldt J, DiLorenzo S, Sandgren J, Diaz De Stahl T, Ewels P, Wirta V, Nister M, Kaller M, Nystedt B. Sarek: A portable workflow for whole-genome sequencing analysis of germline and somatic variants. *F1000Res*. 2020;9:63.

30. Paulsson J. Supplementary data from: Whole-genome and transcriptome sequencing of widely invasive follicular thyroid carcinomas reveal recurrent mutations of the microRNA regulator DGCR8, Swedish National Data Service (SND), Dataset, https://doi.org/10.5878/6fcv-1795. 2021.

31. Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. *Bioinformatics*. 2010;26(5):589-595.

32. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. *Genome Res*. 2010;20(9):1297-1303.

33. Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, Sougnez C, Gabriel S, Meyerson M, Lander ES, Getz G. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. *Nat Biotechnol*. 2013;31(3):213-219.

34. Chen X, Schulz-Trieglaff O, Shaw R, Barnes B, Schlesinger F, Kallberg M, Cox AJ, Kruglyak S, Saunders CT. Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. *Bioinformatics*. 2016;32(8):1220-1222.

35. Van Loo P, Nordgard SH, Lingjaerde OC, Russnes HG, Rye IH, Sun W, Weigman VJ, Marynen P, Zetterberg A, Naume B, Borresen-Dale AL, Kristensen VN. Allele-specific copy number analysis of tumors. *Proc Natl Acad Sci U S A*. 2010;107(39):16910-16915.

36. Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. *Fly (Austin)*. 2012;6(2):80-92.

37. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thomann A, Fliceck P, Cunningham F. The Ensembl Variant Effect Predictor. *Genome Biol*. 2016;17(1):122.

38. Ewels P, Magnusson M, Lundin S, Kaller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. *Bioinformatics*. 2016;32(19):3047-3048.

39. Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, Carter SL, Stewart C, Mermel C, Roberts SA, Kiezun A, Hammerman PS, McKenna A, Drier Y, Zou L, Ramos AH, Pugh TJ, Stranksy N, Helman E, Kim J, Sougnez C, Ambrogiio L, Nickerson E, Shefler E, Cortes ML, Auclair D, Saksena G, Voet D, Noble M, DiCara D, Lin P, Lichtenstein L, Heiman DI, Fennell T, Imlielinski M, Hernandez B, Hodis E, Baca S, Dulak AM, Lohr J, Landau DA, Wu CJ, Melendez-Zajgla J, Hidalgo-Miranda A, Koren A, McCarroll SA, Mora J, Crompton B, Onofrio R, Parkin M, Winckler W, Ardlie K, Gabriel SB, Roberts CWM, Biegel JA, Stegmaier K, Bass AJ, Garraway LA, Meyerson M, Golub TR, Gordenin DA, Sunyaev S, Lander ES, Getz G. Mutational heterogeneity in cancer and the search for new cancer-associated genes. *Nature*. 2013;499(7457):214-218.

40. Gu Z, Gu L, Eils R, Schlesner M, Brors B. circlize Implements and enhances circular visualization in R. *Bioinformatics*. 2014;30(19):2811-2812.

31
41. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15-21.

42. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30(7):923-930.

43. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.

44. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139-140.

45. Rivera B, Nadaf J, Fahiminiya S, Apellaniz-Ruiz M, Sasin K, Chong AS, Sharma S, Wagener R, Revil T, Condello V, Harra Z, Hamel N, Saggabian N, Muchantef K, Thomas C, de Kock L, Hebert-Blouin MN, Bassendien AV, Rabenstein H, Mete O, Paschke R, Pusztaszeri MP, Paulus W, Berghuis A, Ragoussis J, Nikiforov YE, Siebert R, Albrecht S, Turcotte R, Hasselblatt M, Fabian MR, Foulkes WD. DGCR8 microprocessor defect characterizes familial multinodular goiter with schwannomatosis. J Clin Invest. 2020;130(3):1479-1490.

46. Gadd S, Huff V, Walz AL, Ooms A, Armstrong AE, Gerhard DS, Smith MA, Auivil JMG, Meerman D, Chen QR, Hsu CH, Yan C, Nguyen C, Hu Y, Hermida LC, Davidsen T, Gesuwan P, Ma Y, Zong Z, Mungall AJ, Moore RA, Marra MA, Dome JS, Mullighan CG, Ma J, Wheeler DA, Hampton OA, Ross N, Gastier-Foster JM, Arold ST, Perlman EJ. A Children's Oncology Group and TARGET initiative exploring the genetic landscape of Wilms tumor. Nat Genet. 2017;49(10):1487-1494.

47. Cancer Genome Atlas Research N. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159(3):676-690.

48. Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet. 2007;39(5):673-677.

49. Chi J, Zheng X, Gao M, Zhao J, Li D, Li J, Dong L, Ruan X. Integrated microRNA-mRNA analyses of distinct expression profiles in follicular thyroid tumors. Oncol Lett. 2017;14(6):7153-7160.

50. Montero-Conde C, Grana-Castro O, Martin-Serrano G, Martinez-Montes AM, Zarzuela E, Munoz J, Torres-Perez R, Pita G, Cordero-Barreal A, Leandro-Garcia LJ, Leton R, Lopez de Salianes I, Guadalix S, Perez-Barrios A, Hawkins F, Guerrero-Alvarez A, Alvarez-Escola C, Regojo-Zapata RM, Calsina B, Remacha L, Rollan-Romero JM, Santos M, Lanillos J, Jorda M, Riesco-Eizaguirre G, Zafon C, Gonzalez-Neira A, Blasco MA, Al-Shahrou F, Rodriguez-Antona C, Cascon A, Robledo M. Hsa-miR-139-5p is a prognostic thyroid cancer marker involved in HNRNP-F-mediated alternative splicing. Int J Cancer. 2020;146(2):521-530.

51. Paulsson JO, Wang N, Gao J, Stenman A, Zedenius J, Mu N, Lui WO, Larsson C, Juhlin CC. GABPA-dependent down-regulation of DICER1 in follicular thyroid tumors. Endocr Relat Cancer. 2020;27(5):295-308.

52. Shan X, Ren M, Chen K, Huang A, Tang H. Regulation of the microRNA processor DGCR8 by hepatitis B virus proteins via the transcription factor YY1. Arch Virol. 2015;160(3):795-803.

53. Nicolson NG, Paulsson JO, Juhlin CC, Carling T, Korah R. Transcription Factor Profiling Identifies Spatially Heterogenous Mediators of Follicular Thyroid Cancer Invasion. Endocr Pathol. 2020;31(4):367-376.

54. Nair-Menon J, Daulagala AC, Connor DM, Rutledge L, Penix T, Bridges MC, Wellslager B, Spyropoulos DD, Timmers CD, Broome AM, Kourtidis A.
Predominant Distribution of the RNAi Machinery at Apical Adherens Junctions in Colonic Epithelia Is Disrupted in Cancer. *Int J Mol Sci.* 2020;21(7).

55. Noh H, Hong S, Dong Z, Pan ZK, Jing Q, Huang S. Impaired MicroRNA Processing Facilitates Breast Cancer Cell Invasion by Upregulating Urokinase-Type Plasminogen Activator Expression. *Genes Cancer.* 2011;2(2):140-150.

56. Kim SJ, Shiba E, Taguchi T, Tsukamoto F, Miyoshi Y, Tanji Y, Takai S, Noguchi S. uPA receptor expression in benign and malignant thyroid tumors. *Anticancer Res.* 2002;22(1A):387-393.

57. Paulsson JO, Backman S, Wang N, Stenman A, Crona J, Thutkawkorapin J, Ghaderi M, Tham E, Stalberg P, Zedenius J, Juhlin CC. Whole-genome sequencing of synchronous thyroid carcinomas identifies aberrant DNA repair in thyroid cancer dedifferentiation. *J Pathol.* 2020;250(2):183-194.

58. Juhlin CC, Stenman A, Zedenius J. Macrofollicular variant follicular thyroid tumors are DICER1 mutated and exhibit distinct histological features. *Histopathology.* 2021.

59. Chong AS, Nikiforov YE, Condello V, Wald AI, Nikiforova MN, Foulkes WD, Rivera B. Prevalence and Spectrum of DICER1 Mutations in Adult-onset Thyroid Nodules with Indeterminate Cytology. *J Clin Endocrinol Metab.* 2021;106(4):968-977.

60. Chatonnet F, Pignarre A, Serandour AA, Caron G, Avner S, Robert N, Kassambara A, Laurent A, Bizot M, Agirre X, Prosper F, Martin-Subero JJ, Moreaux J, Fest T, Salbert G. The hydroxymethylome of multiple myeloma identifies FAM72D as a 1q21 marker linked to proliferation. *Haematologica.* 2020;105(3):774-783.

61. Rahane CS, Kutzner A, Heese K. A cancer tissue-specific FAM72 expression profile defines a novel glioblastoma multiform (GBM) gene-mutation signature. *J Neurooncol.* 2019;141(1):57-70.
Table 1. Clinicopathologic characteristics of the 11 Follicular Thyroid Carcinomas and 2 Hürthlecell carcinomas examined by whole-genome and RNA sequencing.

Parameter	FTC, Case ids 101, 102, 201, 104, 105, 106, 203, 204, 205, 206 and 207	HCC, Case ids 202 and 208
	n (%)	n (%)
Age (years)		
≥55	8 (73%)	1 (50%)
<55	3 (27%)	1 (50%)
Sex	Female	Female
	7 (63%)	1 (50%)
	Male	1 (50%)
Recurrence/Metastasis	No	No
	7 (63%)	1 (50%)
	Yes	Yes
	4 (37%)	1 (50%)
AJCC Staging*	I	
	4 (36%)	
	II	
	6 (55%)	
	III	
	0 (0%)	
	IVA	
	0 (0%)	
	IVB	
	1 (9%)	
Tumor size (mm)	50 (35-100)	
Ki-67 index (%)	2 (1-11)	
AJCC Staging*	Count	
--------------	-------	
I	1 (50%)	
II	1 (50%)	
III	0 (0%)	
IVA	0 (0%)	
IVB	0 (0%)	

Parameter	Median (Min-Max)
Tumor size (mm)	45.5 (45-46)
Ki-67 index (%)	4 (4)

*AJCC 8th edition
Table 2. List of top 20 thyroid related mutated genes (COSMIC) present in the WGS cohort.

Gene symbol	Location (GRCh37)	Transcript	HGVSc	HGVSnp	Mutation classification	Hot spot (COSMIC)	Case id	Allele frequency (%)
NRAS	Chr1:115256529	ENST00000369535	c.182A>G	p.Gln61Arg	Missense	Yes	102	39
	Chr1:115256530	ENST00000369535	c.181C>A	p.Gln61Lys	Missense	Yes	206	30
HRAS	Chr11:533874	ENST00000451590	c.182A>G	p.Gln61Arg	Missense	Yes	104	42
KRAS	Chr12:25380276	ENST00000256078	c.182A>G	p.Gln61Arg	Missense	Yes	203	39
AKT1	Chr14:105246551	ENST00000554581	c.49G>A	p.Glu17Lys	Missense	Yes	102	46
PTEN	Chr10:89624274	ENST00000371953	c.49dup	p.Gln17ProfsTer27	Frameshift	No	207	86
PIK3CA	Chr3:178952085	ENST00000263967	c.3140A>G	p.His1047Arg	Missense	Yes	101	20
TSHR	Chr14:81609860	ENST00000541158	c.1458C>G	p.Ile486Met	Missense	No	105	42
MUTYH	Chr1:45332926	ENST00000450313	c.496T>C	p.Ser166Pro	Missense	No	204	5
MEN1	Chr11:64574544	ENST00000337652	c.866C>A	p.Ala289Glu	Missense	No	105	53
Table 3. List of top MutSig2CV somatic mutations in the WGS cohort of 13 wiFTC.

Gene	p value / q value	Location (GRCh37)	Transcript	HGVSc	HGVS p	Mutation classification	Hot spot (COSMIC)	Case id	Allele frequency (%)
TERT		Chr5:1295228	ENST00000310581	Upstream	Yes			102	61
								201	56
								203	43
								206	58
Gene	p-value	Chr	ENST	Amino Acid Change	Type	Reported			
--------	-------------	---------	----------	-------------------	---------------	----------			
TP53	<0.001 / 0.032	Chr17:7675070	ENST000004008	c.295_296delins	p.Arg99Glu	Missense	Not reported		
			ENST000006352	c.425G>A	p.Arg142His	Missense	No		
			ENST000002693	c.783-1G>T	p.X261_split	Splice acceptor	No		
			ENST000002693	c.818G>T	p.Arg273Le	Missense	Yes		
EIF1AX	<0.001 / 0.032	Chr23:20148726	ENST000003796	c.338-1G>T	p.X113_split	Splice acceptor	No		
			ENST000003796	c.429+1G>A	p.X143_split	Splice donor	No		
DGCR8	<0.001 / 0.802	Chr22:20079439	ENST000003519	c.1552G>A	p.Glu518Lys	Missense	Yes		

TP53 gene mutation is associated with a p.Arg142His missense change, not reported. Other mutations include p.Arg99Glu, p.X261_split, p.Arg273Le, p.Glu518Lys, etc., with reported status varying.
ENST000003519
Chr22:20079439 89 c.1552G>A p.Glu518Lys Missense Yes 104 48

*The genomic coordinates in the MutSig2CV analysis are based on hg19 and the genomic coordinates in the heatmap (Figure 1) are based on hg38.
Figure 1 Heatmap of the somatic mutational landscape across the whole-genome sequenced tumor cohort. Each column represents one patient/tumor. Each row represents a mutated gene and the color code represents the mutation type. The top grid displays thyroid-related genes (top 20 COSMIC mutated genes) while the bottom grid displays top mutations called by MutSigCV2 sorted by \(p \) value. Cases 202 and 208 are Hürthle cell carcinomas, the remaining 11 cases are widely invasive follicular thyroid carcinomas (wiFTCs).
Figure 2 The landscape of copy number alterations (CNA) in the whole-genome sequenced cohort. Summarized gain and loss events across the genome (columns represent cytobands) for each patient/tumor (rows). The bar plot on top shows total number of CNA across each chromosome. Note the frequent gain of regions 4p11, 6p21.32 and 10q11.21 across the cohort. Cases 202 and 208 are Hürthle cell carcinomas, the remaining 11 cases are widely invasive follicular thyroid carcinomas (wiFTCs).
Figure 3 Gene fusion events across the tumor genome. Lines represent the location of gene fusion and colors correspond to structural variation type. 28 high-confidence events were observed. Case 204 and 205 were found to exhibit the established PAX8-PPARγ fusion (between chromosomes 2q13 and 3p25).
Figure 4 DGCR8 mRNA expression in an extended follicular tumor cohort. The DGCR8 mRNA expression is significantly lower in FTC compared to FTA. The DGCR8 mutated cases are marked with blue color. These cases displayed near median expression.
Figure 5 Transcriptome analyses of follicular thyroid carcinoma, Hürthle cell carcinoma and normal thyroid tissue. a Unsupervised cluster analysis of tumor and normal (N) tissue. Three main clusters are seen; the two normal samples clustered together with a single FTC (case 105), whereas the remaining tumors aggregated in two principal clusters. Three out of four samples with TERTp mutation (102, 201 and 203) clustered together. The two Hürthlecell carcinomas (case 202 and 208) appeared in the same cluster as four wiFTCs. b Volcano plot displaying significantly up- and downregulated genes. Genes labelled with red dots show fold change > 1 and p value < 0.01 One of the two tumor clusters (containing the majority of the TERTp mutated cases) was defined by more pronounced expression in the significantly up-regulated genes. c Enrichment analysis of up-regulated genes revealed associations to genes associated with mitochondrial transmembrane transport, carnitine shuttle and fatty acid transmembrane transport.
Figure 6 miRNA profiling in follicular thyroid carcinoma (FTC). a Unsupervised clustering of the top 50 most variable miRNAs in FTC (n=11). The annotation on top indicates the *DGCR8* p.E518K mutated cases which clustered together and show a general downregulation of miRNA. Nearby cases, 105 and 106 both showed low *DGCR8* mRNA expression levels from the transcriptomic data. Case 201 display augmented upregulation compared to other cases. This case showed *DGCR8* mRNA expression levels similar to that of normal thyroid tissues. b Differential expression analysis in *DGCR8* p.E518K mutated cases (n=2) compared to *DGCR8* p.E518 wildtype cases (n=9). Only 12 miRNAs were differentially expressed between groups, possibly because of a general downregulation of miRNA in case 105 and 106. Fold change cut-off was set to -1.5 and 1.5 and the threshold for adjusted \(p \) value was set to 0.05.
Figure 7 Tumors with gain vs no gain in the 10q11.21 cytoband were analyzed for differentially expressed genes in the same cytoband. RASSF4, TMEM72 and OR13A1 were all significantly upregulated in the tumor cohort when analyzing RNA sequencing data, suggesting that the augmented expression of one or several of these genes might be associated to recurrent 10q11.21 gains observed in the cohort.
Figure 8 Schematic overview of micro-RNA regulators in wildtype thyrocytes and mutated FTCs. The left aspect depicts normal micro-RNA processing, in which miRNAs are transcribed, forming a pri-miRNA which is subsequently targeted by Drosha and DGCR8. This molecular complex cleaves the pri-miRNA into pre-miRNA. The pre-miRNA is transported to the nucleus, where it is processed into mature miRNA by DICER. This mature miRNA sequence interacts with the RNA-induced silencing complex (RISC) and inhibits translation of target mRNAs, thereby regulating gene expression. The right aspect displays the potential functional consequences of *DROSHA*, *DGCR8* and *DICER1* mutations in FTCs. As the mutations in theory lead to the inactivation of the corresponding proteins, a defect miRNA processing would affect gene expression output. Image created using BioRender.com.
Fig. 1

The figure illustrates the distribution of mutation variants, status (dead or alive), and metastasis (yes or no) across different cases. The x-axis represents the number of cases, while the y-axis shows the percentage of mutation variants. The bars are color-coded to represent different classes: Splice donor, Splice acceptor, Missense/Framed shift/Stop gained, Missense/Upstream, Stop gained, Missense, Synonymous, Frameshift, Upstream, and Other.

The status of each case is also indicated, with red for dead of disease, green for alive with disease, and blue for alive without disease. Metastasis cases are marked with a yellow background.

Genes such as NRAS, HRAS, KRAST, AKT1, PTEN, PIKCA, T5R4, RB1, GNA4, KDM1, TARAP, RET, APC, MIVITY, RBM10, ALK, CDK421, CDH1, MEK1, TERT, and PAK3 are highlighted to show their significance in the context of mutation status and metastasis.
Fig. 3

High quality chromosomal re-arrangements resulting into gene fusion
Fig. 4

DGCR8 gene expression

<0.0001

mRNA expression

FTC (n=65) FTA (n=42)

DGCR8 mutation
Fig. 5

A

B

C

GO Biological Process

- Mitochondrial transmembrane transport (GO:0005883): 1.59e-04
- Carbohydrate metabolism (GO:0006629): 3.74e-04
- Fatty acid transmembrane transport (GO:0006629): 5.79e-04
- Intracellular lipid transfer (GO:0008239): 1.34e-03
- Skeletal muscle contraction (GO:0006950): 1.55e-03
- Long chain fatty acid transfer (GO:0019294): 3.06e-03
- Regulation of lipid biosynthetic process (GO:0044558): 3.84e-03

Cellular response to oxygen-containing compounds (GO:0017703): 1.23e-02
- Skeletal muscle contraction (GO:0007264): 1.13e-02
- Regulation of biosynthesis process (GO:0006995): 1.36e-02
Fig. 8

Micro-RNA (miRNA) processing in the normal thyrocyte

- miRNA gene transcription
- pri-miRNA formation

- pri-miRNA is cleaved into pre-miRNA
- G cap
- DROSHA
- DGC8

- pre-miRNA is processed into mature miRNA by DICER

- RISC-mediated inhibition of translation

Aberrant miRNA processing in follicular thyroid carcinoma

- miRNA gene transcription
- pri-miRNA formation

- pri-miRNA is not further processed into pre-miRNA
- G cap
- AAA
- Mutated DROSHA

- pre-miRNA is not further processed into mature miRNA

- Reduced inhibition of translation

- RISC

- Protein synthesis