GC MS Analysis of One Ayurvedic Preparation ‘Aswagandharishtam’

M. Kotteswari¹, M.R.K. Rao²*, Siva Kumar³, K. Prabhu⁴, R. Lakshmi Sundaram⁵ and Shruthi Dinakar⁶

¹Department of Anatomy, Madha Dental College, Chennai, India.
²Department of Industrial Biotechnology, Bharath Institute of Higher Education and Research, Chennai, India.
³Department of Oral Pathalogy, Madha Dental College, Chennai, India.
⁴Department of Anatomy, Sree Balaji Medical College and Hospital, Channai, India.
⁵Central Research facility, Sri Ramachandra Medical College and Research Institute, Porur, Chennai - 600116, India.
⁶Ayurvedic Practitioner, Kottakkal Arya Vaidya Sala, Chennai, India.

*Corresponding author E mail: mrkrao1455@gmail.com

http://dx.doi.org/10.13005/bpj/1467

(Received: 07 April 2018; accepted: 04 June 2018)

Aswagandharishtam is classical medicine for diseases pertaining to nervous system and digestive system prepared by a number of plants and plant parts. The present work is to know the types of biomolecules present in it by GC MS analysis. Aswagandharishtam was procured from standard Ayurvedic outlet and was subjected to Gas Chromatography Mass Spectrometry after due processing. The GC MS analysis of Aswagandharishtam has shown some promising molecules like Prostaglandin A2, Cholesterol, Piperine, Gentamicin a, d-Mannose, Eugenol, Pipradrol among others, which have activities similar to that of Aswagadharistham. This is a preliminary report where some clue about the various types of biomolecules present in Aswagandharishtam was obtained. Further work is on to prove the efficacy of this medicine by other parameters.

Keywords: Aswagandharishtam, GC MS, Piperine, Eugenol, Cholesterol, d-Mannose.

Aswagandharishta or Aswagandharishtam is a liquid Ayurveda medicine used in the treatment of feeling tired all the time, psychiatric conditions, dullness, loss of memory, sluggishness, epilepsy, stomach problems like low digestion power, emaciation, Piles and Vata imbalance diseases. This increases ojas, nourishes all dhatu. It is also used as a nervine tonic. Sexual disorders, depression etc. Ashwagandharishta contains about 5 – 10% of self generated natural alcohol in it acts as a media to deliver water and alcohol soluble the active herbal components to the body. The dosage of this medicine in usually 12-24 ml twice daily after food or as advised by the physician. Not much scientific data of validation of this medicine is available. The present work undertakes the GC
MS analysis of this medicine to throw some light on the type of molecules present in Ashwagandha and their medicinal role. This is a first step in the direction of understanding the medicinal efficacy of Aswagandharistam. This Arishtam is made of the following ingredients and the following paragraphs indicate the medicinal role of each of the ingredients briefly. The ingredients are divided into two sections: Kwatha dravyaas and Prakshepa dravyaas.

The coarse powder of Kwatha dravyaas are added with water, boiled and reduced to 12.288 liters, filtered. It is added with honey and Prakshepa Dravyaa powders are added and kept in an air tight container for one month for fermentation. After a month time, it is filtered and preserved. The manufactures of this medicine are Baidyanath, Dabur, AVN, AVP, Vaidik Herbs and Kottakkal Arya Vaidya Sala.

Ashwagandharishtam ingredients:

- Ashwagandha (Withania somnifera) – Root – 2.4 kg
- Mushali (Chlorophytum tuberosum) – Root – 960 g
- Manjishta (Rubia cordifolia) – Root – 480 g
- Haritaki (Terminalia chebula) – Fruit – 480 g
- Nisha – Turmeric – (Curcuma longa) rhizome – 480 g
- Daruharidra (Berberis aristata) – Stem – 480 g
- Yashhtimadhu – Licorice – (Glycerrhiza glabra) Root – 480 g
- Rasna (Plucheaa lanceolata) – Root / leaf – 480 g
- Vidari (Pueraria tuberosa) – Root – 480 g
- Arjuna (Terminalia arjuna) – stem bark – 480 g
- Mustaka (Cyperus rotundus) – Rhizome – 480 g
- Trivrit (Ipomoea turpethum) – Root – 480 g
- Sariva (Indian sarsaparilla – Hemidesmus indicus) – Root – 384 g
- Krishna Sariva (Cryptolepis buchanani) – Root – 384 g
- Shweta Candana (Santalum album) – heart wood – 384 g
- Rakta Candana (Pterocarpus santalinus) – heart wood – 384 g
- Vacha (Acorus calamus) – Rhizome – 384 g
- Chitraka (Plumbago zeylanica) – Root – 384 g
- water for decoction – 98.304 liters
- Boiled and reduced to 12.288 liters.
- Madhu – Honey – 14.4 kg
- Prakshepa – Dravyas

Ashwagandha – Winter cherry/ Indian Ginseng (root) – Withania somnifera (L.) Dunal

This plant has medicinal values such as immuno-modulator, aphrodisiac, antitumor, anti-inflammatory, anti stress, antioxidant, sleep inducing, effective in memory related conditions, and cardiopulmonary systems (Uddin et al, 2012) (1). The phyto-constituents present in this plant like Withanoside IV or VI produced dendritic outgrowth in normal cortical neurons of isolated rat cells, whereas axonal outgrowth was observed in the treatment with withanolide A in normal cortical neurons (2). The crude extract of the plant containing the steroidal substances sitoinodosides VII–X and withaferin A augmented learning acquisition and memory in both young and old rats (3).

Mushali (Chlorophytum tuberosum Baker)

The tuberous roots are medicinally important and are known commonly as safed musali. Safed musali is used as an aphrodisiac and galactagogue as well as for its nutritive, health promoting properties and immune-enhancing, hepatoprotective and antioxidants activities (4-6). The tubers are also used in fever and leucorrhoea.

Bhandi (Rubia cordifolia)

This plant is reported to have medicinal properties like anti-acne, anti-inflammatory, antibacterial and antioxidant (7-12).
protective, anti-inflammatory and anti arthritic, anti mutagenic, anti proliferative, radio protective, cardio protective, hypo lipidemic, antispasmodic, Immuno-modulatory and antiviral activities (13).

Nisha – Turmeric- Curcuma longa

Turmeric is another important medicinal plant with its wide application as food, medicine and as preservative. Many workers have worked on this plant on various aspects. Turmeric is anti-inflammatory, antimicrobial, preservative, antifungal, anticancer, cardio protective, hypoglycemic and anti diabetic (14, 15).

Daruharidra (Berberis aristata)

Berberis aristata is ethno botanically important herb that is used from time immemorial by mankind for the treatment of various ailments. Sharma et al, 2011 has reviewed this plant’s therapeutic role such as hepato-protective, hypoglycemic, anticancer, antimicrobial, anti-inflammatory, antioxidant etc. among many other medicinal values (16).

Yashti – Licorice – Glycerrhiza glabra

Glycerrhiza glabra is known for its medicinal properties such as anti-tussive & expectorant, antioxidant and antibacterial, anti-inflammatory, antiviral, memory enhancer, antifungal, antibacterial, anti- hyperglycemic, immune-stimulatory, hepato-protective, anticancer and anticoagulant (17).

Rasna (Pluchea lanceolata)

This plant is used as antirheumatic, antiarthritic and as anti-inflammatory (18).

Vidari (Pueraria tuberosa)

Various *in vitro* experimental models earlier have established its anti-oxidant and anti-inflammatory property (19, 21). Some of its other documented biological properties are anti- hyperglycemic, anti-hyperlipidemic, anti-fertility in male rats, and hepatoprotective (22-25). The tubers are rich in isoflavonoids and terpenes with daidzein, puerarin, putuberosanol, and tuberosin as bioactive phytochemicals (26).

Arjuna- Terminalia arjuna

Terminalia arjuna is one of the most versatile medicinal plants having a wide spectrum of biological activity. The Hypocholesterolaemic effects of *Terminalia arjuna* tree bark was reported by Ram et al, 2001 (28). The bark of *T. arjuna* is anti-dysenteric, antipyretic, astringent, cardiotonic, litho-triptic, anticoagulant, hypolipidemic, antimicrobial and antiuemic agent (29-31). Many useful phytoconstituents have been isolated from *T. arjuna* which included triterpenoids for cardiovascular properties, tannins and flavonoids for its anticancer, antimicrobial properties and so on (32). In studies on mice, its leaves have been shown to have analgesic and anti-inflammatory properties (33).

Mushtaka - Cyperus rotundus

According to the Ayurveda, *C. rotundus* rhizomes are considered astringent, diaphoretic, diuretic, analgesic, antispasmodic, aromatic, carminative, antitussive, emmenagogue, litholytic, sedative, stimulant, stomachic, vermifuge, tonic and antibacterial. It is also useful for dietary management of psychotic diseases and metabolic disorders (Sivapalan, 2013) (34) They are used in treatment of nausea and vomiting, dyspepsia, colic, flatulence, diarrhoea, dysentery, intestinal parasites, fever, malaria, cough, bronchitis, renal and vesical calculi, urinary tenesmus, skin diseases, wounds, amenorrhoea, dysmenorrhoea, deficient lactation, loss of memory, insect bites, food poisoning, indigestion, nausea, dysuria, bronchitis, infertility, cervical cancer and menstrual disorders, and the aromatic oils are made of perfumes and splash (35, 36).

Trivrit – Operculina turpethum

Kohli et al, 2010 have given an exhaustive review on the medicinal importance of *Operculina turpethum* (37).This plant has activities such as antisecretory, ulcer protective and anti-inflammatory, hepatoprotective, antibacterial activity, antioxidant and cytotoxic (38-41).

Shweta and Krishnasariva – Indian Sarsaparila – Hemidesmus indicus

This plant is a very rich medicinal resource having activities like antiarthritic, anticancerous, antimicrobial, anti diarrhreal, anti-inflammatory, antioxidant, hepatoprotective, nootropic and antileprotic (41).

Krishna Sariva - Cryptolepis buchanani

Hanprasertpong et al, 2014, have reported that *Cryptolepis buchanani* Roem. & Schult. (Asclepiadaceae) has been used for treating inflammatory conditions such as muscle and joint pain, stiffness of tendon, and arthritis (43).
Chandana - *Santalum album*

Sandal is an age old medicinal plant and it is used for many diseases. It has curative roles such as anti hyperglycemic and anti hyper lipidemic, cardio protective, as a brain tonic and anti ulcerogenic (44, 45).

Rakta Chandana (*Pterocarpus santalinus*)

This plant is one of the oldest medicinals having properties like hepato protective, gastro protective, anticancer, antioxidant, anti diabetic and apoptotic (46).

Vacha - *Acorus calamus*

The medicinal properties of *A. calamus* were reported by Kumar and Vandana, 2012 (47). This plant has activities like antiulcer and cyto - protective, analgesic, antispasmodic, anti-inflammatory, anticonvulsant and antibacterial.

Chitraka - *Plumbago zeylanica*

This plant has medicinal roles such as antimicrobial, anti ulcer, anti obesity, anti-inflammatory, hypo cholesterolemic, hepato protective, wound healing, cytotoxic, anticancer and antiproliferative (48).

Dhataki - *Woodfordia fruticosa*

It was reported by Dubey et al, 2014 that the presence of therapeutically potent antimicrobial compounds against MDR bacteria in *Woodfordia fruticosa* and the crude leaf extract had no host toxicity on human lymphocytes (49). n-butanol fraction of the extract was the most suitable bioactive fraction. The terpenes isolated were, phenol, 5-methyl-2-(1-methylethyl)-, phenol, 2-methoxy-4-(2-propenyl)-, 2, 6-octadien-1-ol, 3, 7-dimethyl-(E)-, 2, 6-octadienal, 3, 7-dimethyl-, cyclohexanol, and 2-methylene-5-(1-methylethenyl). The leaves have sedative properties and the juice of its fresh flowers, when applied on the head, supposed to reduce headache. The curative properties of *Woodfordia* are due to the presence of secondary metabolites like alkaloids, flavonoids, glycosides, phenols, saponins, sterols etc. Grover and Patni, 2013 have identified 21 compounds in the GC MS analysis of *Woodfordia* leaf extracts with important medicinal properties (50).

Sunthi - *Zingiber officinalis)*

Ginger is also one of the household medicines used against common cold, cough and indigestion. Its medicinal values are well documented. Adel and Prakash, 2014, have reported its antioxidant properties. Ginger controls vomiting and nausea during pregnancy. It controls blood pressure by blocking calcium channels (51).

Magadhi - *Piper longum*

Kumar *et al*, 2011 have reviewed the various health benefits of *Piper longum*. with many important medicinal values such as anticancer, antioxidant, hepato protective, anti-inflammatory, immunomodulatory, antimicrobial, antihyperlipidemic, analgesic, antidepressant, anti amoebic, vasodialtory, bioavailability enhancer due the presence of piperine in it, anti obesity activity, radio protective, cardioprotective and antifungal activities (52).

Pepper - *Piper nigrum*

Pepper plays a great role in digestions, useful for low appetite, sluggish digestion, abdominal pain, toxins and borborygmus (53). Its anthelmentic qualities help remove worms. The drug stimulates the thermal receptors and increases secretion of salvia and gastric mucous. It has antimicrobial effect. It influences liver and metabolic function, and has insecticidal effect. It has other pharmacological activities like antioxidant, anticonvulsant, sedative, muscle relaxant, antipyretic, anti-inflammatory, antifungal, hepatoprotective, antimicrobial, antiulcer and lipolytic (54, 55). Meghwal and Goswami, 2012 have reviewed the chemical and physiological aspects of pepper (56). The dried or fried seeds are used for various culinary and medicinal use. In Ayurveda it is known as Kapha virodhini (works against Phlegm). The decoction of Pepper is used for treating cough.

Twak – *Cinnamon – Cinnamomum zeylanicum*

Almost every part of the cinnamon tree has some medicinal or culinary use. Ranasinghe *et al* 2013 and Jayaprakasha et al, 2011, have reviewed the medicinal properties of Cinnamon (57, 58).

Ela - *Cardamom – Elettaria cardamomum*

Cardamom is another important culinary ingredient used for its characteristic aroma. Apart from the aroma it has medicinal value. Verma *et al*, 2009, have reported blood pressure lowering, fibrinolysis enhancing and antioxidant activities of Cardamom (59). Khan *et al*, 2011 have shown the pharmacological basis of cardamom as medicine for asthma (60).

Patra - *Cinnamomum tamala* (Buch.-Ham.)

Its leaf and bark is used widely as
flavouring agent in various culinary preparations. This tree is valued for its antioxidant, antimicrobial, antibacterial and antidiabetic activities (61).

Priyangu - *Callicarpa macrophylla*

The Ayurvedic Pharmacopeia of India describes the fruits of *Callicarpa macrophylla* Vahl as an essential component of several ayurvedic formulations (62, 63). The plant has been reported to have various medicinal properties. The bark is used to heal cuts and wounds. Seeds and roots are used for digestion and leaves are used for rheumatism. The fruits are used for blisters and boils. The antimicrobial and anti-inflammatory activities of this plant have already been proved (64). As many as 20 species from *Callicarpa* have reported ethnomedical uses, and several members among these are well known in the traditional medical systems of China and South Asia. Ethnomedical reports indicate their use in the treatment disorders like hepatitis, rheumatism, fever, headache, indigestion, and other ailments (65). The plant is already reported to have antibacterial, antidiabetic, analgesic and antipyretic, antifungal, anti-inflammatory and anti-arthritis activity (66).

Nagakesara - *Mesua ferrea* L.

This medicinal role of this plant was reviewed by Chahar *et al*, 2013 (67). It has medicinal activities like antioxidant and hepatoprotective, analgesic, antispasmodic, anti-venom, cancer chemotherapeutic, Immuno-modulatory, anti-neoplastic, anti-convulsant, anti-inflammatory, anti-ulcer and anti-microbial (68-79).

MATERIAL AND METHODS

The medicine which is available in liquid form was subjected to GC MS analysis after necessary procedure.

The metabolites in the samples were identified using a P2010 gas chromatography with thermal desorption system TD20 coupled with mass spectroscopy (Shimadzu). The ionization voltage 70ev and GC was conducted in the temperature programming mode with a Restek column (0.25mm, 60m, XTI-5). The temperature in the initial column was 80°C for 1 min, and then increased linearly to 70°C to 220°C held for 3 min followed by linear increased temperature 100° C up to 290°C and held for 10min. The injection port temperature was 290°C and the GC/MS interface was maintained at 29°C, the samples were introduced via an all glass injector working in the split mode with helium carrier gas low rate with 1.2 ml per minute. The identification of metabolites was accomplished by comparison of retention time and fragmentation pattern with mass spectra in the NIST spectral library stored in the computer software (version 1.10 beta, Shimadzu) of the GC-MS. The relative percentage of each extract constituent was expressed with peak area normalization.

RESULTS AND DISCUSSION

The GC MS analysis graph is presented in Figure 1. Table 1 represents the retention time, percentage peak values, molecular formulae, molecular weights of possible types of compounds present in the GC MS analysis.

The possible medicinal roles of each of the compounds represented in the GC MS are mentioned below referring Dr.Duke’s Phytochemical and Ethnobotanical Data base and others.

1. 1,1'-(1-Methyl-1,2-ethanediylidene) bis(cyanoacetohydrazide): Catechol-O-methyl-Transferae – Inhibitor and Methyl donar.
2. Propanenitrile, 3-chloro: Not Known.
3. Dichloroacetic acid, allyl ester: Acidifier, Arachidonic acid inhibitor, Increase aromatic amino acid decarboxylase activity, inhibit uric acid production
4. Pyridine, 2,3,4,5-tetrahydro- Not Known
5. E-2-Octadecadecen-1-ol: Oligosaccharide provider, anticancer, antitumor, Cytochrome-P450 2E1-Inhibitor, Decrease Epinephrine Production.
6. Pyrrolidine, 1-(3-chloro-4,4,4-trifluoro-2-phenyl-2-butyl)- antiulcer, anti-tuberculosis and herbicidal activity.
7. Tramadol: It is opioid pain medicine used for moderate to severe pain.
8. Acetamide, N-(2-cyano-4,5-dimethoxyphenyl)-2-(pyrrolidin-1-yl)- Not known
9. Cyclopropanecarboxylic acid, isobornyl ester: Acidifier, Arachidonic acid inhibitor, Increase aromatic amino acid decarboxylase activity, inhibits uric acid production
10. R-lavandulyl acetate: anti-inflammatory
11. Geranyl vinyl ether: anti-microbial, anticancer
12. 4-Amino-1, 5-pentandioic acid: Acidifier, Arachidonic acid inhibitor, Increase aromatic amino acid decarboxylase activity, inhibit uric acid production
13. Ethyl hydrogen succinate: Hydrogen Peroxide Inhibitor, Succinate dehydrogenase inhibitor
14. Dichloroacetic acid, allyl ester: Acidifier, Arachidonic acid inhibitor, Increase aromatic amino acid decarboxylase activity, inhibit uric acid production.
15. 1-(3-Acetamidophenyl)-3-(2,2,2-trichloro-1-isovaleramidoethyl)-2-thiourea: Not known
16. 3-Methyl-2-butenoic acid, propyl ester: Acidifier, Arachidonic acid inhibitor, Increase aromatic amino acid decarboxylase activity, inhibit uric acid production.
17. 3-Phenylpropanol: Antibacterial
18. Furan-2-one, 3,4-dihydroxy-5-[1-hydroxy-2-fluoroethyl]- 17-Beta-hydroxysteroid – dehydrogenase inhibitor, Testosterone Hydroxylase inhibitor.
19. Pipradrol: Psychotic activity, anticonvulsant
20. Formyl glutamine: Amino acid derivative
21. Eugenol or Phenol, 2-methoxy-3-(2-propenyl): Synthetic Eugenol has been reported to have many important medicinal properties as is described by many reporters. It has medicinal roles such as antifungal, antioxidant, anticonvulsant and local anaesthetic, antistress and bacteriostatic, bactericidal, Anticarcinogenic, depresses activity of central nervous depressant, anti radiation, antiviral, induces apoptosis in melanoma cells and HL-60 leukemia cells (80-86).
22. d-Mannose: 17-beta- hydroxysteroid dehydrogenase inhibitor, Anticancer (Duodenum), Circulatory depressant, CNS- Depressant, Coronary dilator, Cyclin-D1-Inhibitor, Decongestant, Decrease endothelial Platelet adhesion
23. Desulphomigrin: Not known
24. L-Glucose: Glucode-6-Phosphate Inhibitor, Anti LDL, Decrease lactate, 12-Lipoxygenase-Inhibitor
25. Asarone: is a known antifungal (87).
26. Folic Acid: Acidifier, Arachidonic acid inhibitor, Increase aromatic amino acid decarboxylase activity, inhibit uric acid production.
27. Pyrrolizin-1, 7-dione-6-carboxylic acid, methyl(ester): Acidifier, Arachidonic acid inhibitor, Increase aromatic amino acid decarboxylase activity, inhibit uric acid production.
28. Gentamicin a: 5-Alpha Reductase inhibitor, Acetylene cholín anatagonist, AChE Inhibitor, Adaptogetn
29. Tricyclo[4.4.0.0(2,7)]dec-8-ene-3-methanol, ã,á,6,8-tetramethyl-, stereoisomer
30. (-)-Spathulenol Antioxidant and anti-inflammatory activities
31. 1H-Cycloprop[a]azulen-7-ol, decahydro-1,1,7-trimethyl-4-methylen-, [1ar-(1aà,4aà,7á,7aa,7bà)]: Antiobesity
32. Cyclopropanebutanoic acid, 2-[[2-[[2-[[2-(pentylecyclpropyl)methyl][cyclopropyl][methyl] cyclopropyl]m: Antioxidant and anti diabetic,
32. ethyl- methyl ester; Catechol-O-Methyl Transferase Inhibitor, Methyl Donor, Methyl Guanidine inhibitor
34. Methyl 9-methyltetradecanoate: Catechol-O-Methyl-Transferase Inhibitor, Methyl-Donor.
35. Hexadecanoic acid, 14-methyl-, methyl ester: Catechol-O-Methyl-Transferase Inhibitor, Methyl-Donor.

Fig. 1. The GC MS profile of Aswagandharishtam.
Table 1. Represents the retention time, percentage peak values, molecular formula, molecular weights of possible types of compounds present in the GC MS analysis

S.No	Retention Time	%Peak Value	Name	Formula	Mol. Weight
1	4.327	0.564	Chloromethanesulfonyl chloride	CH3ClO2S5	184
			1,1’-(1-Methyl-1,2-ethenediyldimethylene)bis(cyanooacetamide)	C9H10N6	234
			Propanenitrile, 3-chloro-	C3H4ClN	89
2	4.695	0.181	Phenyethyl Alcohol	C8H10O	122
3	4.975	0.056	Dichloroacetic acid, allyl ester	C5H5ClO2	168
			Pyridine, 2,3,4,5-tetrahydro-	C5H5N	83
			E-2-Octodecenedioic acid	C18H36O	268
4	5.249	0.416	Pyrrolidine, 1-(3-chloro-4,4,4-trifluoro-2-phenyl-2-butenyl)-	C14H15ClF3N	289
			Tramadol	C19H19NO2	263
			Aceaminide, N-[2-cyano-4,5-dimethoxyphenyl]-2-[pyrrolidin-1-yl]	C21H19NO3	307
5	5.745	0.012	Cyclopropeneacetylsilane, isobomyl ester	C14H12O2	222
			Flavonol	C12H20O2	196
			Geranyl vinyl ether	C20H32O	218
6	6.084	0.571	4-Amino-1,5-pentadiolic acid	C7H13NO4	175
			Ethyl hydrogen succinate	C6H12O4	146
7	6.320	0.397	Dichloroacetic acid, allyl ester	C5H6ClO2	168
			1-[3-Acetamidophenyl]-2-[3-[1,2-dichloro-1-	C16H17ClNO2S	493
			isovaleramidoethyl]-2-thioura		
			3-Methyl-2-butenic acid, propyl ester	C8H14O2	142
8	6.311	2.757	3-Phenylpropanol	C9H12O	136
9	6.877	0.423	Furin-2-one, 3,4-dihydroxy-5-[1-hydroxy-2-fluoroethyl]-	C6H7O3	173
			Pipradrol	C13H21NO	267
			Formyl glutamine	C9H14NO2	230
10	7.846	1.118	Phenol, 2-methoxy-3-[2-propanyl]-	C10H12O2	164
			Eugenol	C10H12O2	164
11	10.653	0.545	d-Mannose	C6H12O6	180
			Desulfosinigrin	C10H17NO6	279
			L-Glucose	C6H12O6	180
12	10.939	0.483	Asarone	C11H16O3	208
13	11.779	0.494	Folic Acid	C19H19N7O5	441
			Gentamicin a	C13H16N4O10	468
14	13.979	1.579	Tricyclo[4.4.0.0(2,7)]dec-8-ene-3-methan, &à,6,8-tetramethyl-	C15H24O	220
			1-[5-Phenyl]	C15H24O	220
			1H-cycloprop[e]azulen-7-ol, decahydro-1,1,7-trimethyl-4-	C16H24O	220
			methylene-1	C16H24O	220
15	14.190	0.524	cyclopropeneuronic acid, z-[2-[[2-[(2-penylklypropyl)methy]cyclopropyl]methyl]cyclopropyl]methyl ester	C21H42O2	374
			Methyl 9-methylnitradecanoate	C10H32O2	259
			Hexadecanoyl acid, 14-methyl-, methyl ester	C18H36O2	284
16	14.778	7.380	&hexadecanoyl acid	C10H32O2	259
17	16.396	4.219	oleic acid	C18H34O2	282
			Oleic acid	C18H34O2	282
18	16.396	7.380	Octadecanoic acid	C18H36O2	284
19	21.413	1.012	Squatone	C20H40	410
20	22.148	0.354	Pipiric acid	C17H19NO3	285
21	23.479	2.175	Cholesterol	C27H46O	386
			17-[4,5-Dimethyloxazol-2-yl]-10,13-dimethyl-2,4,7,9,10,11,13,	C21H32O4	386
			14,15,16,17-tetradecahydro-1H-tetralopant[5,8]	C21H32O4	386
			alphanthrene-2-ol	C21H32O4	386
22	25.356	0.426	Prostaglandin A2	C20H30O4	334
			7,9-di-tert-buty1-1-oxa-[4,5]deca-6,9-diene-2,8-dione	C17H24O3	276
			Pregn-5-ene-3-one, 20-hydroxy-, (20R)	C21H32O	316
36. -Hexadecanoic acid: Hexadecanoic acid is reported to have activities like antioxidant, hypocholesterolemic, nematicide, antiandrogenic, as flavoring agents, hemolytic, antibacterial and cytotoxic and as 5-alpha reductase inhibitor (88, 89).
37. cis-Vaccenic acid: Acidifier, Arachidonic acid inhibitor, Increase aromatic amino acid decarboxylase activity, inhibit uric acid production
38. Oleic Acid: Antiinflammatory, Antiandrogenic, cancer preventive, hypercholesterolemic, 5-alpha reductase inhibitor (90).
39. trans-13-Octadecenoic acid: Acidifier, Arachidonic acid inhibitor, Increase aromatic amino acid decarboxylase activity, inhibit uric acid production
40. Octadecanoic acid: Octadecanoic acid esters are reported to be antiviral, antibacterial and antioxidant activities (91).
41. Squalene: Antibacterial, Antioxidant, Pesticide, Antitumor, Cancer preventive, Immunosuppressant, Lipoxygenase-inhibitor (92).
42. Piperine: Piperine has diverse biological and supportive therapeutic activities like radioprotective, immunomodulatory and anti tumor activities, antidepressant, anticonvulsant, antinociceptive, and anti-arthritic. It helps in the absorption of selenium, vitamin B and Beta carotene as well as other nutrients. Among the various properties of piperine, the most important is that it facilitates the bioavailability of medicines by depressing the activity of drug metabolizing enzymes(93). Dendrite elongation inhibition activity was reported by Rao et al., 2012 (94).
43. Cholesterol: Cholesterol is precursor for steroid synthesis and is a very important biomolecule.
44. 17-(1,5-Dimethylhexyl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1Hcyclopenta[al]phenanthren-3-ol: Not known
45. Prostaglandin A2: Prostaglandin-Synthetase-Inhibitor, Prostaglandin Secretor, Inhibit AA-series- Prostaglandin synthesis
46. 7,9-Di-tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione: Decalcifier, Decarboxylase inhibitor, DOPA decarboxylase inhibitor, Histidine decarboxylase inhibitor, Coronary dilator.
47. Pregn-4-en-3-one, 20-hydroxy-, (20R) -Antibiotic.

CONCLUSIONS

The GC MS analysis of Aswagandharishtam has shown some promising molecules like prostaglandin A2, Cholesterol, Piperine, Gentamicin a, d-Mannose, Eugenol, Pipradrol etc. which have a activities similar to that of Aswagadhartham. This is a preliminary report and further work is on to prove the efficacy of this medicine by other parameters.

ACKNOWLEDGEMENTS

The authors are indebted to all who have directly or indirectly helped in this work.

REFERENCES

1. Uddin Q, Samiulla L, Singh VK, Jamil SS. Phytochemical and pharmacological profile of Withania somnifera Dunal: A review. J of Applied Pharmaceutical Sciences, 2(1): 170-175 (2012).
2. Tohda C, Kuboyama T, Komatsu K. Search for natural products related to regeneration of the neuronal network. Neurosignals, 14: 34–45 (2005).
3. Ghosal S, Lal J, Srivastava R, Bhattacharya SK, Upadhyay SN, Jaiswal AK, Chattopadhyay U. Immunomodulatory and CNS effects of sitoindosides IX and X, two new glycowithanolides from Withania somnifera. Phytother Res, 3: 201–206 (1989).
4. Patil VN, Deokule SS. Pharmacognostic study of Chlorophyllum tuberosum Baker. Int J Ayurveda Res, 1(4): 237–242 (2010).
5. Govindarajan R, Vijayakumar M, Pushpangadan P. Antioxidant approach to disease management and the role of 2 Rasayana2 herbs of Ayurveda. J Ethnopharmacol, 99(2): 165–78 (2005).
6. Dhuley JN. Effect of some Indian herbs on macrophase functions in Ochratoxin A treated mice. J Ethnopharmacol., 58: 5–20 (1997).
7. Meena V, Chaudhary AK, Manjistha (Rubia cordifolia) - A helping herb in cure of acne. Jour. of Ayurveda & Holistic Medicine, III(II): 11-17 (2015).
8. Gorle AM, Patil SS. Evaluation of antioxidant and antiacne property of Rubia cordifolia. Der Pharmacia Sinica., 1(3): 59-63 (2013).
9. Khan N, Karodi R, Siddiqui A, Thube S, Rub R. Development of anti-acne gel formulation of anthraquinones rich fraction from Rubia cordifolia (Rubiaceae). Int J Applied Res Natl
Products., 4: 28-36 (2012).

10. Antarkar SS, Chinwalla T, Bhatt N. Anti-inflammatory activity of Rubia cordifolia Linn. in rats. Indian J Pharmocol, 15: 185-188 (1983).

11. Mariselvam R, Ranjitsingh AJA, Nanthini AUR. Preparation and characterization of silver nanoparticles using Rubia cordifolia plant root extract and their microbial properties. Int J Adv Res, 1: 56-61 (2013).

12. Lodia S, Kansala L. Antioxidant activity of Rubia cordifolia against Lead toxicity. Int J Pharm Sci Res, 3: 2224-2322 (2012).

13. Bag A, Bhattacharya SK, Chattopadhyay RR. The development of Terminalia chebula Retz. (Combretaceae) in clinical research. Asian Pac J Tropical Biomed, 3(3): 244 (2013).

14. Singh K, Harini A, Hegde PL. Pharmacological activities of wild turmeric (Curcumum aromatica Salisb): a review. Journal of Pharmacognosy and Phytochemistry, 3(5):1-4 (2015).

15. Liu B, Gao YQ, Wang XM, Wang YC, Fu LQ. Germacrone inhibits the proliferation of glioma cells by promoting apoptosis and inducing cell cycle arrest. Mol Med Rep, 10(2):1046-1050 (2014).

16. Sharma K, Bairwa R, Chauhan N, Srivastava B, Saini NK. Berberis aristata and anti-inflammatory activities of Terminalia arjuna leaf. J Ethnopharmacol, 3(12): 960–966 (2013).

17. Pandey N, Chaurasia JK, Tiwari OP, Tripathi YB. Anti-inflammatory effect of Pueraria tuberosa extracts through improvement in activity of red blood cell anti-oxidant enzymes. Ayu, 3: 297–301 (2013).

18. Tripathi YB, Nagwani S, Mishra P, Jha A, Rai SP. Protective effect of Pueraria tuberosa DC. embedded biscuit on cisplatin-induced nephrotoxicity in mice. J Nat Med, 66: 109–118 (2012).

19. Panwar YS, Goyal S, Ramawat KG. Hypolipidemic effects of tubers of Indian Kudzu (Pueraria tuberosa). J Herb Med Toxicol, 2: 21–25 (2008).

20. Gupta RS, Sharma R, Sharma A. Anti-fertility effects of Pueraria tuberosa root extract in male rats. Pharm Biol., 42: 3–9 (2004).

21. Handa SS, Kaul MK. Recent development of some natural products. In: Handa SS, Kaul MK, editors. Supplement to Cultivation and Utilization of Medical Plants. Jammu-Tawi: CSIR, RPL; 53–96 (1996).

22. Khan RA, Agarwal PK, Kapil RS. Puertuberosanol an epoxychalcon from Pueraria tuberosa. Phytochemistry, 42: 42–44 (1996).

23. Ram A, Laura P, Gupta R, Kumar P, Sharma VN. Hypocholesterolaemic effects of Terminalia arjuna tree bark. J Ethnopharmacol, 55(3): 165-169 (1997).

24. Gupta R, Singhal S, Goyle A, Sharma VN, Antioxidant and hypocholesterolemic effects of Terminalia arjuna tree bark powder: a randomised placebo-controlled trial. J Assoc Physicians India, 49: 23-23 (2001).

25. Mandal A, Das K, Nandi DK. In vitro bioactivity study of bark extract of Terminalia arjuna on probiotics, commercially available probiotic formulation. Int J Phytopharmacol, 1(2): 109–113 (2010).

26. Mandal S, Patra A, Samanta A, Roy S, Mandal A, Das Mahapatra T, Pradhan S, Das K, Nandi DK. Analysis of phytochemical profile of Terminalia arjuna bark extract with antioxidative and antimicrobial properties. Asian Pac J Trop Biomed, 3(12): 960–966 (2013).

27. Das K, Chakraborty PP, Ghosh D, Nandi DK. Protective effect of aqueous extract of Terminalia arjuna against dehydrating induced oxidative stress and uremia in male rat. Iran J Pharm Res, 9(2): 153–161 (2010).

28. Sivapalan SR. Medicinal uses and Pharmacological activities of Cyperus rotundus Linn – A Review. International Journal of Scientific and Research Publications, 3(5): 1-8 (2013).

29. Duke JA, Ayensu ES. Medicinal Plants of China Reference Publications, Inc. 1985 ISBN 0-917256-20-4
36. Chopra RN, Nayar SL, Chopra IC. Glossary of Indian Medicinal Plants (Including the Supplement). Council of Scientific and Industrial Research, New Delhi. (1986).
37. Kohli KR, Nipanikar SU, Kadkhane KP. A comprehensive review on Trivrit (Operculina turpethum syn. Ipomoea turpethum]. International Journal of Pharma and Bio Sciences, 1(4): 443-452 (2010).
38. Suresh Kumar SV, Sujatha C, Shymala J, Nagasudha B, Mishra SH. Protective effect of Root Extract of Operculina terpethum Linn. Against Paracetamol induced Hepatotoxicity in Rats. Indian Journal of Pharmaceutical Sciences, 68 (1): 32-35 (2006).
39. Md. Harun-or-Rashid, Gafur MA, Md. Golam Sadik, Md., Aziz Abdur Rahman. Antibacterial and Cytotoxic Activities of Extracts and Isolated Compounds of Ipomoea turpethum. Pakistan Journal of Biological Sciences, 5(5): 597-599 (2002).
40. Anbuselvam C, Vijayavel K, Balsubramaniyan MP. Protective effect of Operculina turpethum against 1, 2 dimethylbenz(a)anthracene induced oxidative stress with reference to breast cancer in experimental rats. Chemico- Biological Interactions, 168: 229-236 (2007).
41. Krishnaraju AV, Rao TVN, Sundararaju D, Vanisree M, Hsin Sheng Tsay, Subbaraju GV. Assessment of Bioactivity of Indian Medicinal Plants Using Brine Shrimp (Artemia salina) Lethality Assay. International Journal of Applied Science and Engineering, 3(2): 125-34 (2005).
42. Chatterjee S, Banerjee A, Chandra I. Hemidesmus indicus: A Rich Source of Herbal Medicine. Med Aromat Plants; 3-4 (2014).
43. Hanpraserthpong N, Teekachunhatean S, Chaiwongsa R, Ongchai S, Kunanusorn T, Sangdee C, Panthong A, Bunteang S, Chaiwongsa R, Ongchai S, Kunanusorn T. Protective effect of Operculina turpethum against 7, 12 dimethylbenz(a)anthracene induced oxidative stress with reference to breast cancer in experimental rats. Chemico- Biological Interactions, 168: 229-236 (2007).
44. Khan MS, Singh M, Khan MA, Sayeed Ahmad. Protective effect of Santalum album on doxorubicin induced cardiotoxicity in rats. World Journal of Pharmaceutical Research, 3(2): 2760-2771 (2014).
45. Ahmad N, Khan MSA, Jais AMM, Mohtaruddin N, Ranjbar M, Amjad SM, Nagaraju B, Pathan M. Anti-ulcer Activity of Sandalwood (Santalum album L.) Stem Hydroalcoholic Extract in Three Gastric-Ulceration Models of Wistar Rats. Bol Latinoam Caribe Plant Med Aromat, 12(1): 81-91 (2013).
46. Azamthulla M, Balasubramanian R, Kavimani S. A review on Pterocarpus santalinus linn. World Journal of Pharmaceutical Research, 4(2): 282-292 (2015).
47. Kumar A, Vandana. Medicinal properties of Acorus calamus. Journal of Drug Delivery & Therapeutics, 3(3): 143-144 (2013).
48. Sharma A, Singh N. International Journal of Current Research, New Delhi. (1986).
49. Adel PRS, Prakash J. Chemical composition and antioxidant properties of ginger root (Zingiber officinalis). Journal of Medicinal Plants Research, 4(24): 2674-2679 (2010).
50. Kumar S, Kamboj J, Suman, Sharma S. Overview for various aspects of the health benefits of Piper longum Linn. fruit. J of Acupuncture and Meridian Studies, 4(2): 134-140 (2011).
51. Adel PRS, Prakash J. Chemical composition and antioxidant properties of ginger root (Zingiber officinalis). Journal of Medicinal Plants Research, 4(24): 2674-2679 (2010).
52. Shamkuwar PB, Shahi SR, JadHAV ST. Evaluation of anti diarrheal effect of Black pepper (Piper nigrum L.). Asian Journal of Plant Science and Research, 2(1): 48-53 (2012).
53. Gruenwald J. Medicines PDR for Herbal. 1st Ed. Physicians Desk Reference Inc., Montvale, New Jersey, 850-852 (1998).
54. Sharma P.C., et al., Medicinal Plants Used in Ayurveda. Central Council of Ayurveda and Siddha, New Delhi, India. (2002).
55. Meghwal M, Goswami TK. Chemical Composition, Nutritional, Medicinal and Functional Properties of Black Pepper: A Review. 1; 2012: 172. doi:10.4172/scientificreports.17
56. Ranasinghe P, Pigera S, Sirimal GA, Galappaththy PP, Constantine GR, Prasad K. Medicinal properties of ‘true’ cinnamon (Cinnamomum zeylanicum): a systematic review. BMC Complementary and Alternative Medicine, 13: 275 (2013).
57. Jayaprakasha GK, Rao LJ. Chemistry, biogenesis, and biological activities of Cinnamomum zeylanicum. Crit Rev Food Sci Nutr, 51: 547–562 (2011).
59. Verma SK, Jain V, Katewa SS. Blood pressure lowering, fibrinolysis enhancing and antioxidant activities of cardamom (Elettaria cardamomum). *Indian Journal of Biochemistry and Biophysics*, 46(6): 503-506 (2009).

60. Khan A, Khan QJ, Giliani A. Pharmacological basis for the medicinal use of cardamom in asthma. *Bangladesh J Pharmocol*, 6: 34-37 (2011).

61. Preety A, Sharma S. A Brief Review on *Cinnamomum tamala* (Buch.-Ham.) Nees & Eberm.: An Important Medicinal Tree. *International Journal of Research in Biological Sciences*, 6(2): 26-31 (2016).

62. Jayaraman S, Variyar EJ. Evaluation of immunomodulatory and antioxidant activities of polysaccharides isolated from *Callicarpa macrophylla* Vahl. *Int J Pharm Pharm Sci*, 5(2 Suppl 1): 15–32 (2015).

63. Verma VK, Siddiqui NU, Mohammad Aslam. Isolation of 3α, 16β, 17-trihydroxyphyllolocladane from leaves of *Callicarpa macrophylla* Vahl. *Nair Prod Med Preliminary* (3 Suppl 5): 1-3 (2011).

64. Yadav V, Jayalakshmi S, Singla RK, Patra A, Khan S. Assessment of anti-inflammatory and analgesic activities of *Callicarpa macrophylla* Vahl. roots extract. *Webmed Central Pharmacol*, 3(5 Supp 5): 1-7 (2012).

65. William P, Jonesand A, Kinghorn D. Biologically active natural products of the genus *Callicarpa*. *Curr Bioact Compd*, 4(Suppl 1): 15–32 (2008).

66. Soni RK, Dixit V, Irchhaiya R, Alok S. *Callicarpa macrophylla*: a review update on its botany, ethnobotany, Phytochemistry and Pharmacology. *IJP*, 1: 87-94 (2014).

67. Chahar K, Kumar SDS, Geetha L, Lokesh T, Manohara KP. *Mesua ferrea* L.: A review of the medical evidence for its phytochemistry and pharmacological actions. *African Journal of Pharmacy and Pharmacology*, 7(6): 211-219 (2013).

68. Jayanthi G, Kamalraj S, Kaman Karthikeyan, Muthumary J. Antimicrobial and antioxidant activity of the endophytic fungus *Phomopsis* sp. GJMJ07 isolated from *Mesua ferrea*. *Int J Curr Sci*, 1: 85-90 (2011).

69. Garg S, Kameshwar S, Rajeev R, Pankaj A, Parshuram M. In vivo Antioxidant activity and hepatoprotective effects of methanolic extracts of *Mesua ferrea* L. *Int. J. Pharmatechnol Res*, 1: 1692-1696 (2009).

70. Hassan TM, Ali MS, Alimuzzaman M, Raihan SZ. Analgesic activity of *Mesua ferrea* Linn. *Dhaka Univ J Pharm Sci*, 5: 73-75 (2006).

71. Prasad DN, Basu SP, Srivastava AK. Antispasmodic activity of the crude and purified oil of *Mesua ferrea* seed. *Anc Sci Life*, 19: 74- 75 (1999).

72. Uawonggul N, Chaveerach N, Thammasirirak N, Arkaravichien T, Chuachan C, Daduang S. Screening of plants acting against *Heterometrus laoticus* scorpion venom activity on fibroblast cell lysis. *J Ethnopharmacol*, 103: 201-207 (2006).

73. Saxena A, Dixit S, Aggarwal S, Seenu V, Prashad R, Bhushan SM, Tranikanti V, Misra MC, Srivastava A. An ayurvedic Herbal compound to reduce toxicity to Cancer chemotherapy: A randomized controlled trial. *Indian J Med Paediad Oncol*, 29: 11-18 (2008).

74. Chahar MK, Sanjaya Kumar DS, Lokesh T, Manohara KP. In vivo antioxidant and immunomodulatory activity of mesuol isolated from *Mesua ferrea* L. seed oil. *Int Immunopharmacol*, 13: 386-391 (2012).

75. Mahovarasirikul W, Viyantan V, Chaijaroenkul W, Itharat A, NaBangchang K. Cytotoxic activity of Thai medicinal plants against human cholangiocarcinoma, laryngeal and hepatocarcinoma cells in vitro. *BMC Compl Altern Med*, 10: 55 (2010).

76. Tiwari PK, Irchhaiya R, Jain SK. Evaluation of anticonvulsant activity of *Mesua ferrea* Linn. ethanolic flower extract. *Int J Pharm Life Sci*, 23: 1507-1509 (2012).

77. Gopalakrishnan C, Shankarnarayanan D, Naziumdeen SK, Viswanathan S, Kameswaran L. Anti-inflammatory and CNS depressant activities of xanthones from *Calophyllum inophyllum* and *Mesua ferrea*. *Ind J Pharmaco*, 12: 181-191 (1980).

78. Jalalpure SS, Yuvaraj D, Mandavkar, Pallavi R, Khaled, Gulab S, Shinde, Pournima A, Shela, Amol S, Shah. Antiarthritic activity of various extracts of *Mesua ferrea* L. seed. *J Ethnopharmacol*, 138: 700-704 (2011).

79. Mazumder R, Sujata G. Dastidar, Basu SP, Avijit Mazumder, Singh SK. Antibacterial Potentiality of *Mesua ferrea* Linn. flowers. *Phytother Res*, 18: 824-826 (2004).

80. Lee SJ, Han JI, Le GS, Park MJ, Ghoi IG, Na KJ, Jeung EB. Antifungal effect of engenol and nerolidol against *Microsporum gypseum* in a guinea pig model. *Biol Pharm Bull*, 30: 184-188 (2007).

81. Gulcin I. Antioxidant activity of eugenol: A structure–activity relationship study. *Journal of Medicinal Food*, 14(9): 975-985 (2011).

82. Dallmeier K, Carlini CA. Anesthetic, Hypothermic, myo-relaxant and anticonvulsant effects of synthetic eugenol derivatives and...
natural analogues. *Pharmacology, 22*: 113-127 (1981).
83. Zheng GQ, Kenney PM, Lam LK. Sesquiterpenes from clove (*Eugenia caryophyllata*) as potential antitumorogenic agents. *J Nat Prod, 55*: 999-1003 (1992).
84. Brodin P, Roed A. Effects of eugenol on rat phrenic nerve and phrenic nerve-diaphragm preparations. *Arch Oral Biol, 61*: 611-615 (1984).
85. Pandey BN, Lathika KM, Mishra KP. Modification of radiation induced oxidative damage in liposomal and microsomal membrane by eugenol. *Rad Physics Chem, 75*: 384-391 (2006).
86. Okada N, Hirata A, Murakami Y, Shoji M, Sakagami H, Fujisawa S. Anticancer Res., 25*: 3263-3270 (2005).
87. Yun B, Hwang BK. Antifungal activity of â-Asarone from rhizomes of *Acorus gramineus*. *J Agric Food Chem, 52*(4): 776-78 (2004).
88. Kumar G, Kumar R. GC-MS evaluation of bioactive molecules from the methanolic leaf extract of *Azadirachta indica* (A.JUSS). *Asian J of Pharmaceutical Science & Tech, 5*(2): 64 (2015).
89. Rajeswari G, Murugan M, Mohan VR. GC-MS analysis of bioactive components of *Hugonia mystax* L. bark (Linaceae). *J Pharm Biomed Sci., 29*: 818-824 (2013).
90. Gopalakrishna S. GC MS analysis of some bioactive constituents of *Mussaenda frondosa* Linn. *Int J of Pharma and Bio Sciences, 2*(1): 313-320 (2011).
91. Sudharsan S, Saravanan, Shanmugam A, Vairamani S, Mohan Kumar R, Menaga S, Ramesh N. Isolation and Characterization of Octadecanoic Acid from the Ethyl Acetate Root Extract of *Trigonella foneum graecum* L. by Using Hydroponics Method. *J Bioterr Biodef, 2*: 105 (2010). doi: 10.4172/2157-2526.1000105.
92. Sermakkani M., Thangapandian V. GC-MS Analysis of *Cassia italica* leaf methanol extract. *Asian Journal of Pharmaceutical and Clinical Research, 5*(2): 90-94 (2012).
93. Demirayak S, Karaburun AC, Beis R. 2004. Some pyrrole substituted aryl pyridazinone and phthalazinone derivatives and their antihypertensive activities. *Eur J Med Chem, 39*: 1089–1095 (2004).
94. Rao GV, Rao KS, Mukhopadhyay T, Madhavi MSL. Alkamides and their biological activity from *Piper longum* Linn. *Journal of Pharmacy Research, 5*(1): 165-168 (2012).