MINIREVIEWS

6 Dolichocolon revisited: An inborn anatomic variant with redundancies causing constipation and volvulus
 Raahave D

ORIGINAL ARTICLE

Clinical Trials Study

13 Transcutaneous electroacupuncture alleviates postoperative ileus after gastrectomy: A randomized clinical trial
 Chen KB, Lu YQ, Chen JD, Shi DK, Huang ZH, Zheng YX, Jin XL, Wang ZF, Zhang WD, Huang Y, Wu ZW, Zhang GP,
 Zhang H, Jiang YH, Chen L

Observational Study

21 Perioperative liver and spleen elastography in patients without chronic liver disease
 Eriksson S, Borsiin H, Öberg CF, Brange H, Mijovic Z, Sturesson C
ABOUT COVER

Editorial Board Member of World Journal of Gastrointestinal Surgery, Hans G Beger, MD, Professor, Department of Visceralchirurgie, University of Ulm, Ulm 89075, Germany

AIM AND SCOPE

World Journal of Gastrointestinal Surgery (World J Gastrointest Surg, WJGS, online ISSN 1948-9366, DOI: 10.4240) is a peer-reviewed open access academic journal that aims to guide clinical practice and improve diagnostic and therapeutic skills of clinicians.

WJGS covers topics concerning micro-invasive surgery; laparoscopy; hepatic, biliary, pancreatic and splenic surgery; surgical nutrition; portal hypertension, as well as associated subjects. The current columns of WJGS include editorial, frontier, diagnostic advances, therapeutic advances, field of vision, mini-reviews, review, topic highlight, medical ethics, original articles, case report, clinical case conference (Clinicopathological conference), and autobiography. Priority publication will be given to articles concerning diagnosis and treatment of gastrointestinal surgery diseases. The following aspects are covered: Clinical diagnosis, laboratory diagnosis, differential diagnosis, imaging tests, pathological diagnosis, molecular biological diagnosis, immunological diagnosis, genetic diagnosis, functional diagnostics, and physical diagnosis; and comprehensive therapy, drug therapy, surgical therapy, interventional treatment, minimally invasive therapy, and robot-assisted therapy.

We encourage authors to submit their manuscripts to WJGS. We will give priority to manuscripts that are supported by major national and international foundations and those that are of great basic and clinical significance.

INDEXING/ABSTRACTING

World Journal of Gastrointestinal Surgery is now indexed in Emerging Sources Citation Index (Web of Science), PubMed, and PubMed Central.

EDITORS FOR THIS ISSUE

World Journal of Gastrointestinal Surgery
Baihaideng Publishing Group Inc
8226 Regency Drive, Pleasanton, CA 94588, USA
Telephone: +1-925-2238242
Fax: +1-925-2238243
E-mail: editorialoffice@wjgnet.com
Help Desk: http://www.wjgnet.com/esps/helpdesk.aspx
http://www.wjgnet.com

负责编辑：Xiang Li
负责电子编辑：Jin-Li Yan
校对编辑总监：Xiu-Xia Song

COPYRIGHT
© 2018 Baihaideng Publishing Group Inc. All articles published by this Open-Access journal are distributed under the terms of the Creative Commons Attribution Non-commercial License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited, the use is non-commercial and is otherwise in compliance with the license.

SPECIAL STATEMENT
All articles published in journals owned by the Baihaideng Publishing Group (BPG) represent the views and opinions of their authors, and not the views, opinions or policies of the BPG, except where otherwise explicitly indicated.

INSTRUCTIONS TO AUTHORS
http://www.wjgnet.com/bpg/gtinfo/204

ONLINE SUBMISSION
http://www.wjgnet.com/esps/
Perioperative liver and spleen elastography in patients without chronic liver disease

Sam Eriksson, Hanna Borsiin, Carl-Fredrik Öberg, Hannes Brange, Zoran Mijovic, Christian Sturesson

AIM
To investigate changes in hepatic and splenic stiffness in patients without chronic liver disease during liver resection for hepatic tumors.

METHODS
Patients scheduled for liver resection for hepatic tumors were considered for enrollment. Tissue stiffness measurements on liver and spleen were conducted before and two days after liver resection using point shear-wave elastography. Histological analysis of the resected liver specimen was conducted in all patients and patients with marked liver fibrosis were excluded from further study analysis. Patients were divided into groups depending on size of resection and whether they had received preoperative chemotherapy or not. The relation between tissue stiffness and postoperative biochemistry was investigated.

RESULTS
Results are presented as median (interquartile range). 35 patients were included. The liver stiffness increased in patients undergoing a major resection from 1.41 (1.24-1.63) m/s to 2.20 (1.72-2.44) m/s (P = 0.001). No change in liver stiffness in patients undergoing a minor resection was found [1.31 (1.15-1.52) m/s ≠ 1.37]
applied to a region of interest within the tissue under standard ultrasound equipment, an acoustic pulse is generated. The pulse will cause small displacements of the tissue and generate shear waves perpendicular to the original pulse. The shear wave propagation velocity will differ depending on the elastic properties, i.e., stiffness, of the tissue. High shear wave velocity denotes a stiffer tissue. In relation to surgical resection of liver tumors, a high preoperative liver stiffness has been shown to increase the risk of postoperative liver failure after resection of hepatocellular carcinoma in patients with chronic liver disease.

Changes in perioperative liver stiffness in patients without chronic liver disease undergoing liver resection for tumors have not been previously investigated. Surgical resection offers a potential cure for both primary liver tumors and liver metastasis. The risk of postoperative liver failure is the most important factor for postoperative mortality limiting the size of the resection. An otherwise healthy liver can withstand a larger resection than a liver with parenchymal damage, which requires a larger remnant to ensure a sufficient postoperative liver function. Parenchymal damage can be due to chronic liver disease because of hepatitis or alcohol abuse but also occurs in non-alcoholic fatty liver disease or because of chemotherapy. Chemotherapy associated parenchymal damage include steatosis, steatohepatitis and sinusoidal obstruction syndrome which all have been suggested to increase postoperative morbidity or mortality.

The current study aimed to investigate changes in hepatic and splenic stiffness during liver resection for hepatic tumors in patients without chronic liver disease, effects of preoperative chemotherapy on tissue stiffness and its relation to early postoperative biochemical with the aim to detect postoperative liver failure.

INTRODUCTION

Liver elastography implies reporting metrics related to the mechanical stiffness of the liver, using either ultrasound or magnetic resonance techniques[1]. Ultrasound-based techniques include virtual touch tissue quantification (VTTQ) (Siemens, Erlangen, Germany) which is a software based on point shear-wave elastography (SWE) technology, used to measure tissue elasticity[2-4]. Using standard ultrasound equipment, an acoustic pulse is applied to a region of interest within the tissue under investigation[5]. The pulse will cause small displacements.
using a Siemens ACUSON S2000 ultrasound system (Siemens Medical Solutions Inc., Mountain View, CA, United States) accompanied by the VTTQ software package. A 4Ct transducer (Siemens Medical Solutions Inc., Mountain View, CA, United States) was used. Patients were fasting 4 h before examination. To decrease movement artefacts patients were asked to hold their breath during the seconds of measurement. Measurements were conducted before and after liver resection.

Preoperative measurements were conducted in both the right and the left liver lobe as well as in the spleen. A region of interest within the respective parenchyma was chosen at a depth of 3-6 cm from the transducer[3]. The regions were chosen so that major blood vessels and bile ducts were avoided. For measurements in the right liver lobe intercostal transducer placement was used. Each region was measured 10 times and a median of the 10 measurements was calculated. Comparison between the pre- and postoperative measurements were made on the spleen and the remnant liver lobe, e.g., on the right liver lobe if the patient was undergoing a left hemihepatectomy. Tissue stiffness data was presented as the shear wave velocity (m/s).

Table 1 Patient characteristics

No resection	Minor resection	Major resection	
No. of patients	4	16	15
Gender (male:female)	1:3	8:8	8:7
Age (yr)	69 (56-76)	75 (66-79)	66 (50-74)
BMI (kg/m²)	23.5 (21.4-28.6)	24.7 (21.8-26.8)	26.8 (25.2-28.7)
Weight (kg)	64 (53-86)	72 (63-83)	78 (70-90)
ASA physical status (1/2:3/4)	3:1	10.6	10.5
Preoperative bilirubin (µmol/L)	5 (4-7)	6 (5-10)	7 (6-11)
Preoperative INR	1.0 (0.9-1.0)	1.0 (0.9-1.1)	1.0 (1.0-1.1)
Diagnosis			
Colorectal metastases	3	13	11
Other malignant tumors	0	2	3
Benign tumors	1	1	1
Number of hepatic tumors	5 (1-7)	1 (1-2)	2 (2-6)
Largest hepatic tumor (mm)	42 (17-57)	30 (10-45)	30 (25-51)
Preoperative chemotherapy	2	6	12
Oxaliplatin-based therapy	2	4	2
Liver lobe operated (right lobe:left lobe:both lobes)	-	7:4:5	7:1:1:6:8:3
Operating time (h)	2.5 (2-3)	3 (3-5.5)	6 (4.5-7)
Operative bleeding (mL)	125 (100-150)	275 (150-500)	650 (400-1100)
Length of hospital stay (d)	3 (2-6)	6 (3-9)	6 (5-7)
Liver parenchyma damage			
Steatosis	-	0	1
Steatohepatitis	-	0	0
SOS	-	0	0

Data are presented as number or median (interquartile range). BMI: Body mass index; ASA: American Society of Anesthesiologists; INR: International normalized ratio; SOS: Sinusoidal obstruction syndrome.

Histological analyses
Histological analysis of the resected liver specimen was conducted in all patients. The pathologist was blinded to stiffness results. Steatosis was graded (0-3), steatohepatitis (0-8) and fibrosis (0-4), according to the non-alcoholic fatty liver disease activity score, NAS[18]. A steatosis grade ≥ 2 was defined as steatosis. A NAS ≥ 5 was defined as steatohepatitis and fibrosis > 2 was defined as marked fibrosis. Sinusoidal obstruction syndrome was defined as a sinusoidal dilatation grade ≥ 2 according to Rubbia-Brandt et al[11].

Statistical analysis
Statistical analysis was performed using IBM SPSS Statistics version 23 (IBM, Armonk, NY, United States). The statistical methods were reviewed by a biomedical statistician. To compare continuous data the Mann-Whitney U-test or the Wilcoxon test for paired samples was used. Categorical data was compared with a χ² test. Correlations were made using linear regression analysis and by calculating a Pearson’s correlation coefficient, r. A P-value < 0.05 was considered statistically significant. All results are presented as median (interquartile range) if not stated otherwise.

RESULTS
Patient enrollment and preoperative measurements
Forty-seven patients were enrolled in the study. Nine patients failed to complete the study protocol and were excluded from the study; 6 patients declined to participate after enrollment, mostly due to postoperative pain and 3 patients were transferred to a different hospital before the second measurement. In addition, 3 patients were excluded from study analysis because of marked fibrosis on histological analysis of the liver specimen, leaving 35 patients included for study analysis.
Tissue stiffness in minor vs major resection

Liver and spleen stiffness measurements for the minor and major resection groups are presented in Table 2. There were no differences between groups regarding gender ratio, body mass index, American Society of Anesthesiologists (ASA) physical status classification or diagnosis. However, patients who underwent a minor resection were older than patients undergoing a major resection (75 (66-79) vs 66 (50-74) years, \(P = 0.033\)) and did not undergo preoperative chemotherapy as frequent as the patients who underwent a major resection (6 vs 12 patients, \(P = 0.017\)).

The stiffness of the liver remnant increased in patients undergoing a major resection (\(P = 0.001\)) as compared to preoperative measurements. There was no difference for patients undergoing a minor resection (\(P = 0.438\)).

Chemotherapy

Patients who underwent preoperative chemoradiotherapy (n = 20) did not differ from others in preoperative right liver lobe (1.31 (1.16-1.50) vs 1.38 (1.12-1.56) m/s, \(P = 0.569\)) or spleen (2.79 (2.33-3.11) vs 2.71 (2.37-2.86) m/s, \(P = 0.515\)) stiffness.

There was no difference between patients preoperatively treated with oxaliplatin (n = 15) compared to others in preoperative right liver (1.31 (1.16-1.50) vs 1.38 (1.14-1.61) m/s, \(P = 0.670\)) or spleen (2.76 (2.34-2.97) vs 2.76 (2.37-3.07) m/s, \(P = 0.892\)) stiffness.

DISCUSSION

The current study presents data on changes in liver and spleen stiffness after liver resection for hepatic tumors in patients without chronic liver disease. In patients who underwent a major resection, the stiffness of the liver remnant increased by 42% as measured with point SWE. No change in liver stiffness was found in patients who underwent a minor resection. The spleen stiffness increased by 16% after a major resection, more than after a minor resection (Table 2).

Liver elastography is most frequently used to non-invasively quantify the degree of liver fibrosis in patients with chronic liver disease\(^{[2]}\). As patients with liver fibrosis were excluded in the present study, the reasons for increase in liver stiffness found must be unrelated to histological fibrosis. The increase in tissue stiffness may be explained by a postoperative increase in portal pressure which causes a congestion in the smaller liver remnant\(^{[19]}\). In comparison, an elevated liver stiffness has been shown in patients with acute decompensated heart failure\(^{[25]}\) and also in patients with extrahepatic biliary obstruction\(^{[21]}\). No comparative measurements of portal pressure were conducted in the current study. In animal models, increase in hepatic perfusion in small-for-size liver grafts has shown to be of importance in both liver regeneration and liver damage\(^{[22]}\). However, the significance of liver stiffness on liver regeneration is yet to be investigated. A postoperative increase in liver stiffness has previously been demonstrated after liver resection for living donor transplantation\(^{[19]}\).

Mean shear wave velocity in healthy livers range about 0.8-1.7 m/s\(^{[5]}\). The present preoperative measurements are in alignment with these values. In addition, there was
a significant difference between measurements in the right and left liver lobes. This has been observed previously[23], and may be due to the smaller volume of the left lobe or its close position to the heart, causing movement artefacts. The same authors have suggested that more reliable measurements are obtained at a greater depth than superficial measurements. For that reason measurements in the current study were conducted at a depth of 3-6 cm from the transducer[23].

Point SWE measurements allow fast and non-invasive measurements of tissue stiffness. Compared to transient elastography with Fibroscan®, another ultrasound-based tissue stiffness diagnostic technique, point SWE can be made using standard ultrasound equipment, without the need for an extra examination and a region of interest within the tissue can easily be defined by the operator using a real-time conventional B-mode image[5,24].

Measurements were done on the second postoperative day as earlier measurements were found difficult to make due to postoperative pain.

No differences in liver or spleen stiffness were found in patients undergoing preoperative chemotherapy. Chemotherapy-induced liver parenchyma damage could worsen outcome after a liver resection[12,14,15] and perioperative identification of parenchymal damage would be desirable. Oxaliplatin, often included in preoperative treatment of colorectal liver metastasis, has previously been shown to induce splenic enlargement[25], proposed as a result of induced sinusoidal obstruction syndrome[26]. In the present study, no differences were found in preoperative splenic or liver stiffness in patients who received oxaliplatin. However, only one patient showed histological signs of steatosis and none presented with sinusoidal obstruction syndrome or steatohepatitis, which is a considerably lower frequency than previously reported[11-13]. One limitation of the current study is the relative small number of patients included, which may explain the differences.

Postoperative liver failure has high morbidity and mortality rates and early detection is of great interest to rapidly initiate treatment measures[27]. There is currently no good method for its early diagnosis and signs of liver failure are first detected several days after surgery when patients develop high bilirubin and INR values[28]. The present measurements on the second postoperative day showed weak but significant correlations with maximum postoperative increase in bilirubin and INR, as shown in Figure 1. A study on living liver donors have presented similar results on maximum bilirubin[19]. In a small report on 3 patients with acute liver failure due to intoxication, liver stiffness was suggested to be higher than healthy controls but similar to patients with liver cirrhosis[29]. Point SWE measurements may play a role in the early detection of liver failure, however further study is needed on the dynamics of normal and pathological liver stiffness after liver resection.

In conclusion, liver and spleen stiffness changes after liver resection for hepatic tumors using point SWE measurements have been presented. The size of resection matters to the dynamics of liver stiffness. The potential of point SWE in the detection of chemotherapy induced liver damage and postoperative liver failure needs further investigation.

ARTICLE HIGHLIGHTS

Research background

Surgical resection offers a potential cure for both primary liver tumors and liver metastases. The risk of postoperative liver failure is the most important factor for postoperative mortality and limits the size of the resection. An otherwise healthy liver can withstand a larger resection than a liver with parenchymal damage, which requires a larger liver remnant to ensure sufficient postoperative liver function. Liver elastography implies reporting metrics related to the mechanical stiffness of the liver. Liver elastography is most frequently used to non-invasively quantify the degree of liver fibrosis in patients with chronic liver disease. Changes in perioperative liver stiffness in patients without chronic liver disease undergoing liver resection for tumors have not been investigated.
Research motivation
Postoperative liver failure has high morbidity and mortality rates and early detection is of great interest to rapidly initiate treatment measures. There is currently no good method for its early diagnosis and signs of liver failure are first detected several days after surgery when patients develop high bilirubin and international normalized ratio values.

Research objectives
The current study aimed to investigate the changes in hepatic and splenic stiffness during liver resection for hepatic tumors in patients without chronic liver disease; and to investigate effects of preoperative chemotherapy on tissue stiffness and its relation to early postoperative biochemistry with the aim to detect postoperative liver failure.

Research methods
Tissue stiffness measurements on liver and spleen were conducted before and two days after liver resection for hepatic tumors using point shear-wave elastography (SWE). Patients were divided into groups depending on size of resection and whether they had received preoperative chemotherapy or not.

Research results
The stiffness of the liver remnant increased by 42% as measured with point SWE in patients who underwent a major resection. In patients who underwent a minor resection, no change in liver stiffness was found. The spleen stiffness increased by 16% after a major resection, more than after a minor resection. In patients undergoing preoperative chemotherapy, no differences in liver or spleen stiffness were found. Remnant liver stiffness on the second postoperative day did not show strong correlations with maximum postoperative increase in bilirubin and international normalized ratio.

Research conclusions
Liver and spleen stiffness increase after a major liver resection for hepatic tumors in patients without chronic liver disease. The potential of point SWE in the detection of chemotherapy induced liver damage and postoperative liver failure needs further investigation.

Research perspectives
Point SWE measurements may play a role in the early detection of liver failure; however, further study is needed on the dynamics of normal and pathological liver stiffness after liver resection.

REFERENCES
1. Tang A, Cloutier G, Szeverenyi NM, Sirlin CB. Ultrasound Elastography and MR Elastography for Assessing Liver Fibrosis: Part 1, Principles and Techniques. AJR Am J Roentgenol 2015; 205: 22-32 [PMID: 25905647 DOI: 10.2214/AJR.15.14552]
2. Toshima T, Shirabe K, Takeishi K, Motomura T, Mano Y, Uchiyama H, Yoshizumi T, Soejima Y, Taketomi A, Maehara Y. New method for assessing liver fibrosis based on acoustic radiation force impulse: a special reference to the difference between right and left liver. J Gastroenterol 2011; 46: 705-711 [PMID: 21264479 DOI: 10.1007/s00535-010-0365-7]
3. Karlas T, Pfrepper C, Wiegand J, Wittekind C, Neuschulz M, Mösner J, Berg T, Tröltzsch M, Keim V. Acoustic radiation force impulse image (ARFI) for non-invasive detection of liver fibrosis: examination standards and evaluation of interlabor differences in healthy subjects and chronic liver disease. Scand J Gastroenterol 2011; 46: 1458-1467 [PMID: 21916815 DOI: 10.3109/03005652.2011.610004]
4. Friedrich-Rust M, Wunder K, Kriener S, Sotoudeh F, Richter S, Bojanga J, Herrmann E, Poynard T, Dietrich CF, Vernemoh J, Zeuzem S, Sarrazin C. Liver fibrosis in viral hepatitis: noninvasive assessment with acoustic radiation force impulse imaging versus transient elastography. Radiology 2009; 252: 595-604 [PMID: 19703889 DOI: 10.1148/radiol.2523081928]
5. D’Onofrio M, Cosara S, De Robertis R, Canestrisi S, Demoizi E, Gallotti A, Pozzi Mucelli R. Acoustic radiation force impulse force of the liver. World J Gastroenterol 2013; 19: 4841-4849 [PMID: 23946588 DOI: 10.3748/wjg.v19.i30.4841]
6. Nightingale K, Soo MS, Nightingale R, Tracy G. Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility. Ultrasound Med Biol 2002; 28: 227-235 [PMID: 11937286 DOI: 10.1016/S0301-5629(01)00499-0]
7. Cescon M, Colecchia A, Cuccttichi A, Peri E, Montrone L, Ercolani G, Festi D, Pinna AD. Value of transient elastography measured with FibroScan in predicting the outcome of hepatic resection for hepatocellular carcinoma. Ann Surg 2012; 256: 706-712; discussion 712-713 [PMID: 23095613 DOI: 10.1097/ SLA.0b013e3182724ce8]
8. Adams RB, Aloia TA, Loyer E, Pawlik TM, Taubli B, Vauthy JJN; Americas Hepato-Pancreato-Biliary Association; Society of Surgical Oncology; Society for Surgery of the Alimentary Tract. Selection for hepatic resection of colorectal liver metastases: expert consensus statement. HPB (Oxford) 2013; 15: 91-103 [PMID: 23297779 DOI: 10.1111/j.1477-2579.2012.00557.x]
9. Poon RT, Fan ST, Lo CM, Liu CL, Wong J. Long-term survival and pattern of recurrence after resection of small hepatocellular carcinoma in patients with preserved liver function: implications for a strategy of salvage transplantation. Ann Surg 2002; 235: 373-382 [PMID: 11882759 DOI: 10.1097/00000658-200203000-00009]
10. Rahbari NN, Garden OJ, Padbury R, Brooke-Smith M, Crawford M, Adam R, Koch M, Makuuchi M, Dematteo RP, Christofo C, Banting S, Usatoff V, Nagino M, Muddern G, Hugh TJ, Vauthy JJN, Greig P, Rees M, Yokoyama Y, Fan ST, Nimura Y, Figueras J, Capsosetti L, Büchler MW, Weitz J. Posthepatectomy liver failure: a definition and grading by the International Study Group of Liver Surgery (ISGLS). Surgery 2011; 149: 713-724 [PMID: 21236455 DOI: 10.1016/j.surg.2010.10.001]
11. Rubbia-Brandt L, Audard V, Sartoretti P, Roth AD, Brezault C, Le Charpentier M, Dousset B, Morel P, Soubrane O, Chaussade S, Mentha G, Terris B. Severe hepatic sinusoidal obstruction syndrome (SOS) associated with oxaliplatin-based chemotherapy in patients with metastatic colorectal cancer. Ann Oncol 2004; 15: 460-466 [PMID: 14998849 DOI: 10.1093/annonc/mdh095]
12. Vauthy JJN, Pawlik TM, Ribero D, Wu TT, Zorzi D, Hoff PM, Xiong HQ, Eng C, Lauwers GY, Mino-Kenudson M, Risio M, Muratore A, Capsosetti L, Curley SA, Abdalla EA. Chemotherapy regimen predicts steatohepatitis and an increase in 90-day mortality after surgery for hepatic colorectal metastases. J Clin Oncol 2006; 24: 2065-2072 [PMID: 16648507 DOI: 10.1200/jco.2005.05.3074]
13. Peppercorn PD, Reznik RH, Wilson P, Slevin ML, Gupta RK. Demonstration of hepatic steatosis by computerized tomography in patients receiving 5-fluorouracil-based therapy for advanced colorectal cancer. Br J Cancer 1998; 77: 2008-2011 [PMID: 9667683 DOI: 10.1038/bjc.1998.333]
14. Tamandl D, Klinger M, Eipelauer S, Herberger B, Kacizrek K,
Gruenberger B, Gruenberger T. Sinusoidal obstruction syndrome impairs long-term outcome of colorectal liver metastases treated with resection after neoadjuvant chemotherapy. *Ann Surg Oncol* 2011; 18: 421-430 [PMID: 20844968 DOI: 10.1245/s10434-010-1317-4]

15 Gomez D, Malik HZ, Bonney GK, Wong V, Toogood GJ, Lodge JP, Prasad KR. Steatosis predicts postoperative morbidity following hepatic resection for colorectal metastasis. *Br J Surg* 2007; 94: 1395-1402 [PMID: 17670770 DOI: 10.1002/bjs.5820]

16 Blind PJ, Andersson B, Tingstedt B, Bergenfeldt M, Andersson R, Lindell G, Sturesson C. Fast-track program for liver resection—factors prolonging length of stay. *Hepatogastroenterology* 2014; 61: 2340-2344 [PMID: 25690379]

17 Sturesson C, Nilsson J, Eriksson J, Spelt L, Andersson R. Limiting factors for liver regeneration after a major hepatic resection for colorectal cancer metastases. *HPB* (Oxford) 2013; 15: 646-652 [PMID: 23458360 DOI: 10.1111/hpb.12040]

18 Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, Ferrell LD, Liu YC, Torbenson MS, Ualp-Arida A, Yeh M, McCullough AJ, Sanyal AJ. Nonalcoholic Steatohepatitis Clinical Research Network. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. *Hepatology* 2005; 41: 1313-1321 [PMID: 15915461 DOI: 10.1002/hep.20701]

19 Ninomiya M, Shiraibe K, Iiichi H, Toshima T, Harada N, Uchiyama H, Taketomi A, Yoshizumi T, Machara Y. Temporal changes in the stiffness of the remnant liver and spleen after donor hepatectomy as assessed by acoustic radiation force impulse: A preliminary study. *J Hepatol* 2011; 54: 579-586 [PMID: 21561532 DOI: 10.10111/jhep.20111]

20 Colli A, Pozzoni P, Berzuini A, Gerosa A, Canovi C, Molteni EE, Barbamarin M, Bonino F, Prati D. Decompensated chronic heart failure: increased liver stiffness measured by means of transient elastography. *Radiology* 2010; 257: 872-878 [PMID: 20935077 DOI: 10.1148/radiol.10100013]

21 Millionig G, Reimann FM, Friedrich S, Fonouni H, Mehrabi A, Büchler MW, Seitz HK, Mueller S. Extrahepatic cholestasis increases liver stiffness (FibroScan) irrespective of fibrosis. *Hepatology* 2008; 48: 1718-1723 [PMID: 18836992 DOI: 10.1002/hep.22577]

22 Fondevila C, Hessheimer AJ, Taurá P, Sánchez O, Calatayud D, de Riva N, Muñoz J, Fuster J, Rímola A, García-Valdecasas JC. Portal hyperperfusion: mechanism of injury and stimulus for regeneration in porcine small-for-size transplantation. *Liver Transpl* 2010; 16: 364-374 [PMID: 20209596 DOI: 10.1002/lt.21989]

23 D’Onofrio M, Gallotti A, Mucelli RP. Tissue quantification with acoustic radiation force impulse imaging: Measurement repeatability and normal values in the healthy liver. *AJR Am J Roentgenol* 2010; 195: 132-136 [PMID: 20566806 DOI: 10.2214/AJR.09.3923]

24 Crespo G, Fernández-Varo G, Mariño Z, Casals G, Miquel R, Martínez SM, Gilabert R, Forns X, Jiménez W, Navasa M, ARFI, FibroScan, ELF, and their combinations in the assessment of liver fibrosis: a prospective study. *J Hepatol* 2012; 57: 281-287 [PMID: 22521355 DOI: 10.1016/j.jhep.2012.03.016]

25 Jung EJ, Ryu CG, Kim G, Kim SR, Park HS, Kim YJ, Hwang DY. Splenomegaly during oxaliplatin-based chemotherapy for colorectal carcinoma. *Anticancer Res* 2012; 32: 3357-3362 [PMID: 22843915]

26 Park S, Kim HY, Kim H, Park JH, Kim JH, Kim KH, Kim W, Choi IS, Jung YJ, Kim IS. Changes in Noninvasive Liver Fibrosis Indices and Spleen Size During Chemotherapy: Potential Markers for Oxaliplatin-Induced Sinusoidal Obstruction Syndrome. *Medicine* (Baltimore) 2016; 95: e2454 [PMID: 26765438 DOI: 10.1097/md.0000000000002454]

27 Jin S, Fu Q, Wuyan G, Wuyan T. Management of post-hepatectomy complications. *World J Gastroenterol* 2013; 19: 7983-7991 [PMID: 24307791 DOI: 10.3748/wjg.v19.i44.7983]

28 Balzan S, Belghit J, Farges O, Ogata S, Sauvanet A, Delefosse D, Durand F. The "50-50 criteria" on postoperative day 5: an accurate predictor of liver failure and death after hepatectomy. *Ann Surg* 2005; 242: 824-828; discussion 828-829 [PMID: 16327492]

29 Karlas TF, Pfrepper C, Rosendahl J, Benckert C, Wittekind C, Jonas S, Moessner J, Tröltzsch M, Tillmann HL, Berg T, Keim V, Wiegand J. Acoustic radiation force impulse (ARFI) elastography in acute liver failure: necrosis mimics cirrhosis. *Z Gastroenterol* 2011; 49: 443-448 [PMID: 21476180 DOI: 10.1055/s-0029-1245690]

P- Reviewer: Aoki H, Memeo R, Yu WB S- Editor: Wang JL L- Editor: A E- Editor: Yan JL
