Brucella melitensis prosthetic joint infection in a traveller returning to the UK from Thailand: Case report and review of the literature

Joseph M. Lewis a,b,*, Jonathan Folb c, Sanjay Kalra d, S. Bertel Squire a,e, Miriam Taegtmeyer a,e, Nick J. Beeching a,c,e,f

a Tropical and Infectious Disease Unit, Royal Liverpool University Hospital, Liverpool, UK
b Wellcome Trust Liverpool Glasgow Centre for Global Health Research, Liverpool, UK
c Brucella Reference Unit, Liverpool Clinical Laboratories, Royal Liverpool University Hospital, Liverpool, UK
d Department of Orthopaedics, Royal Liverpool University Hospital, Liverpool, UK
e Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
f NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, L69 7BE, UK

Received 16 May 2016; received in revised form 19 August 2016; accepted 23 August 2016
Available online 31 August 2016

KEYWORDS
Brucellosis;
Prosthetic joint infection;
Travel medicine;
Returning traveller

Summary Background: Brucella spp. prosthetic joint infections are infrequently reported in the literature, particularly in returning travellers, and optimal treatment is unknown.
Method: We describe a prosthetic joint infection (PJI) caused by Brucella melitensis in a traveller returning to the UK from Thailand, which we believe to be the first detailed report of brucellosis in a traveller returning from this area. The 23 patients with Brucella-related PJI reported in the literature are summarised, together with our case.
Results: The diagnosis of Brucella-related PJI is difficult to make; only 30% of blood cultures and 75% of joint aspiration cultures were positive in the reported cases. Culture of intraoperative samples provides the best diagnostic yield. In the absence of radiological evidence of joint loosening, combination antimicrobial therapy alone may be appropriate treatment in the first instance; this was successful in 6/7 [86%] of patients, though small numbers of patients and the likelihood of reporting bias warrant caution in drawing any firm conclusions about optimal treatment. Aerosolisation of synovial fluid during joint aspiration procedures and nosocomial infection has been described.

* Corresponding author. Wellcome Trust Liverpool Glasgow Centre for Global Health Research, Block E Royal Infirmary Complex, 70 Pembroke Place, Liverpool, L69 3GF, UK.
E-mail address: joseph.lewis@liverpool.ac.uk (J.M. Lewis).

http://dx.doi.org/10.1016/j.tmaid.2016.08.010
1477-8939/© 2016 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Brucellosis is a zoonotic infection transmitted to humans from fluids of infected animals or through consumption of unpasteurised dairy products [1]. It is caused by Brucella spp., intracellular Gram-negative coccobacilli. Four species cause most cases of human disease, each with a different animal host reservoir: Brucella melitensis (goats, camels) is most common, followed by Brucella abortus (cattle), Brucella suis (pigs) and Brucella canis (dogs). Infections with new species such as Brucella pinnipedialis and Brucella ceti (marine animals) are occasionally recognized [2]. It can cause an acute febrile illness after a usual incubation period of 1–4 weeks, ranging up to 6 months, or chronic infection, which can be without focus or can affect any organ system. Osteoarticular involvement is the most common focal presentation. Diagnosis is usually based on serology, augmented when possible by culture of Brucella organisms from blood, synovial fluid, or bone. Promising molecular methods are in development. Treatment is usually with combination therapy of doxycycline, rifampicin ± an aminoglycoside for 6–12 weeks [1]. Prosthetic joint infections (PJI) caused by Brucella spp. are uncommonly reported in the literature. We describe a PJI caused by B. melitensis in a traveller returning to the UK from Thailand, the first detailed report of brucellosis in a travellr returning from this area; we also present a review of the 24 reported cases of Brucella-related PJI in the literature.

2. Materials and methods

2.1. Case report

A 51-year old UK resident attended our clinic on 5 May 2015 with a 21-day history of daily rigors, profuse sweating attacks and high fever. He had returned from Thailand three months earlier. He also had pain and swelling in his left knee, in which he had an uncomplicated total knee replacement 5 years previously for early onset osteoarthritis following trauma. The only abnormalities on examination were fever of 38.3°C and a small effusion in the symptomatic knee. Blood cultures yielded Gram-negative coccobacilli after 3 days (BioMerieux Bact/ALERT blood culture system), identified as B. melitensis by matrix-assisted laser desorption/ionization/time-of-flight (MALDI-TOF) mass spectrometry (Bruker microflex LT), but not before two laboratory scientists had been exposed to open bacterial culture plates. The organism was confirmed as B. melitensis biotype 3 in the Veterinary Investigation Centre in Weybridge. Standard agglutination tests for brucellosis were suggestive of chronic infection, with IgG titres of >1:2560 and IgM 1:80.

Aspiration of the knee was carried out by the orthopaedic team, equipped with personal protective equipment (PPE) consisting of gown, gloves, apron, visor and filtering face piece-3 (FFP3) respirator. Cloudy fluid was aspirated; this contained over 6000 lymphocytes/mm³ and cultured B. melitensis after 7 days. The patient commenced doxycycline and rifampicin 600 mg daily for 6 months, together with parenteral gentamicin 5 mg/kg/day for the first 14 days, with resolution of his symptoms and preservation of his implant without revision surgery. Twelve months later he has fully recovered with no signs of loosening of the joint prosthesis on plain x-rays. The exposed laboratory personnel were given doxycycline 100 mg twice daily for 21 days as postexposure prophylaxis according to UK guidelines [3].

The patient made frequent visits to Thailand where he had most recently stayed with a friend on his farm in Nakom Pathom province from 11 December 2014 to 8 January 2015. During that time, he helped deliver several parturient goats and handled newly born kids and other products of conception with his bare hands. He had not consumed unpasteurised dairy products and had no contact with cattle or buffaloes. Two farm workers had contemporaneous fevers, only recognised to be due to brucellosis and treated appropriately after our patient was diagnosed.

2.2. Literature review

PubMed and Scopus databases were searched using the search string ((((((prosth*) OR replacement)) OR arthroplasty)) AND (((knee) OR hip) OR joint)) AND brucell*. Studies were reviewed and data extracted by one author (JL), with no restriction on date or language. Prosthetic joint brucellosis was defined as either a) Brucella spp. recovered from prosthetic joint synovial fluid culture OR b) signs and symptoms consistent with PJI AND Brucella spp. recovered from blood OR positive serology (standard agglutination test [SAT] titre > 1:160 OR fourfold rise in titre between acute and convalescent samples).

3. Results and discussion

The search returned 48 results in Scopus and 26 in PubMed. After removal of duplicates, 47 remained. 18

Conclusions: Brucella-related PJI should be considered in the differential of travellers returning from endemic areas with PJI, including Thailand. Personal protective equipment including fit tested filtering face piece-3 (FFP3) mask or equivalent is recommended for personnel carrying out joint aspiration when brucellosis is suspected. Travellers can reduce the risk of brucellosis by avoiding unpasteurised dairy products and animal contact (particularly on farms and abattoirs) in endemic areas and should be counselled regarding these risks as part of their pre-travel assessment.

© 2016 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Reference	Age	Sex	Country of exposure	Traveller Occupation	Prosthetic implant	Time since implantation (months)	Brucella SAT titre	Radiographic changes	Blood cultures positive	Joint aspirate culture positive	Species	Antibiotics used	Antibiotic course length (weeks)	Surgical management	Follow up (months)	Outcome		
Jones et al., 1983 [4]	54	M	USA	Dairy farmer	R THR	6	640	No	No	No	B. abortus	Tetracycline 500 mg QID, Streptomycin 500 mg QID	6 – failed therapy; followed by 52 weeks; Streptomycin first 6 only 76	One-stage revision once medical treatment failed	None	24	Asymptomatic	
Agarwal et al., 1991 [5]	24	F	Saudi Arabia	No NR	Bilateral TKR	2	2560	No	No	Yes	B. melitensis	Rifampicin 100 mg BID, Doxycycline 100 mg BID, Streptomycin 1 g QD	6	Streptomycin first 3 only	None	19	Pain free, flexion 0–90	
Ortí et al., 1997 [6]	60	M	Spain	"Works with goats"	R TKR	14	160	No	No	Yes	B. melitensis	Doxycycline 100 mg BID, Streptomycin 900 mg QD	34	Gentamicin first 1 only	None	8	Symptom free	
Navarro et al., 1997 [7]	54	M	Spain	Shepherd	L. internal fixation of femur	324	160	Loosening	No	NR	B. melitensis	Doxycycline 100 mg BID, Gentamicin 240 mg QD, Streptomycin 1 g QD	20	Streptomycin first 3 only	None	18	Asymptomatic	
Malizos et al., 1997 [8]	74	M	Greece	Shepherd	Bilateral TKR	5	160	No	Yes	Yes	B. melitensis	Doxycycline 100 mg BID, Streptomycin 900 mg QD	12	Streptomycin first 3 only	Two-stage revision	6	“Satisfactory”	
Ortega et al., 2002 [9]	63	M	Spain	Cattle owner	R THR	60	NR	No	NR	No	B. melitensis	Doxycycline 200 mg QD, Rifampicin 600 mg QD, Streptomycin 1 g QD	12	6 prior to surgery, 6 after	Two-stage revision	12	Asymptomatic	
Weil et al., 2003 [10]	38	M	Israel	Artist	L THR	48	1600	Loosening	NR	No	B. melitensis	Doxycycline 200 mg QD, Rifampicin 600 mg QD, Streptomycin 1 g QD	12	6 prior to surgery, 6 after	Two-stage revision	12	Asymptomatic	
Weil et al., 2003 [10]	61	M	Israel	Retired	R TKR	60	1600	Loosening	NR	No	B. melitensis	Doxycycline 200 mg QD, Rifampicin 600 mg QD, Streptomycin 1 g QD	12	6 prior to surgery, 6 after	Two-stage revision	12	Free of joint pain	
Weil et al., 2003 [10]	67	M	Israel	Retired	L TKR	168	1600	Loosening	NR	Yes	B. melitensis	Doxycycline 200 mg QD, Rifampicin 600 mg QD, Streptomycin 1 g QD	12	6 prior to surgery, 6 after	Two-stage revision	12	Free of joint pain	
Kasim et al., 2004 [11]	47	F	Lebanon	No NR	L THR	168	640	Loosening	NR	NR	Brucella spp.	Doxycycline 100 mg BID, Rifampicin 600 mg QD, Streptomycin 1 g QD	20	One-stage revision	48	Symptom free, negative Brucella titres		
Cairo et al., 2006 [12]	50	M	Spain	No NR	L THR	0	320	No	Yes	NR	B. melitensis	Doxycycline 100 mg BID, Streptomycin 1 g QD	104 Streptomycin first 2 only	None	60	Well, negative Brucella titres		
Authors	Gender	Age	Occupation	Site	Stage	Duration (months)	Causes	Treatment	Revision Details	Outcome	Notes							
------------------	--------	------	------------	------	-------	-------------------	--------------	-------------------------------	---	---	--							
Cairo et al.,	M	71	Farmer	R	THR	36	*B. melitensis*	Doxycycline 100 mg BID, Rifampicin 600 mg QD, Streptomycin 750 mg QD	24 Streptomycin first week only, initially one stage revision (infection not suspected)	Initially bone graft and medical therapy—failed—then two-stage revision	Debridement, 60 Asymptomatic							
2006 [12]																		
Cairo et al.,	F	74	No NR L	L	THR	180	*B. melitensis*	Doxycycline 100 mg BID, Rifampicin 300 mg TID, Streptomycin 1 g QD	32 Doxycycline/streptomycin first week, Doxycycline/rifampicin for remainder	Two-stage revision	Satisfactory range of movement 0 -100° knee							
2006 [12]																		
Ruiz-Iban et al.,	F	66	Housewife	THR	36	No NR	*B. abortus*	Doxycycline 200 mg QD, Rifampicin 900 mg QD, Streptomycin 200 mg QD	24 Streptomycin first 6 only, Doxycycline/streptomycin first week	Initially two-stage revision	Asymptomatic							
2006 [13]																		
Ruiz-Iban et al.,	M	71	Agricultural worker	THR	28	640	*B. melitensis*	Doxycycline 200 mg QD, Rifampicin 900 mg QD, Streptomycin 200 mg QD	12 Two-stage revision	None	12 Pain free, walking distance > 1 km							
2006 [13]																		
Marbach et al.,	M	67	Sicily Yes	Bilateral TKR	48	NR	Loosening NR NR	Brucella spp.	Doxycycline 100 mg BID, Rifampicin 450 mg BID, Streptomycin 1 g QD	15 Two-stage revision	Good range of movement							
2007 [14]																		
Tena et al.,	M	56	Farmer	L	THR	60	*B. melitensis*	Doxycycline 100 mg BID, Rifampicin 900 mg QD, Streptomycin 1 g QD	8 Doxycycline/streptomycin first 2 weeks, Doxycycline/rifampicin for remainder	Two-stage revision	Asymptomatic, good joint function							
2007 [15]																		
Tassinari et al.,	M	68	Italy No NR	R TKR	24	800	No loosening NR NR	*B. melitensis*	Doxycycline 100 mg BID, Rifampicin 250 mg QD, Streptomycin 1 g QD	8 None	12 Pain disappeared, no radiographic changes (continued on next page)							
2008 [16]																		
Dauty et al.,	F	65	Portugal Yes	Bilateral TKR	NR	NR	Loosening NR NR	*B. melitensis*	Doxycycline 200 mg QD, Rifampicin 250 mg QD, Streptomycin 1 g QD	12 Two-stage revision	120 Pain free, walking distance > 1 km Free of joint pain, negative serology							
2009 [17]																		
Erdogan et al.,	F	63	Turkey No NR	R TKR	24	160	NR NR NR NR	*B. melitensis*	Doxycycline 200 mg QD, Rifampicin 250 mg QD, Streptomycin 1 g QD	36 One-stage revision	Free of joint pain, negative serology							
2010 [16]																		
Nichols et al.,	F	67	Mexico No NR	THR	24	NR	Loosening NR NR	B. abortus	Doxycycline Rifampicin	12 Two-stage revision	No evidence of infection recurrence							
2014 [19]																		
Lowe et al.,	NR	68	India Yes NR	THR	NR	NR	NR NR NR	B. melitensis	None — lost to follow up	None	0 Unknown							
2015 [20]																		
Reference	Age	Sex	Country of exposure	Traveller	Occupation	Prosthetic implant	Time since implantation (months)	Brucella SAT titre	Radiographic changes	Blood cultures positive	Joint aspirate culture positive	Species	Antibiotics used	Antibiotic course length (weeks)	Surgical management	Follow up (months)	Outcome	
-----------	-----	-----	---------------------	-----------	------------	-------------------	-------------------------------	------------------	-------------------	---------------------	------------------------	---------	----------------	-------------------------------	-----------------	----------------	---------	
Carothers et al., 2015 [21]	67	F	USA or Mexico	No	NR	R THR	24	NR	Loosening	NR	NR	B. abortus	Doxycycline 100 mg BID Rifampicin 300 mg BID	20	Two-stage revision	24	Well, no evidence of infection	
Present case	51	M	Thailand	Yes	Company director	L TKR	60	>2500	No loosening	Yes	Yes	B. melitensis	Gentamicin 200 mg QD Rifampicin 600 mg QD Gentamicin 400 mg QD	24	Gentamicin in first 2 weeks only	None	12	Well, pain free, fully mobile, no radiographic changes

M = male, F = female, L = left, R = right, NR = not reported, SAT = Standard agglutination test, QD = quaque die [once daily], BID = bis in die [twice daily], TID = ter in die [thrice daily], QID = quater in die [four times daily], THR = total hip replacement, TKR = total knee replacement. Where dose and/or dosing interval are given in original report, they are reproduced here.

It is possible to draw several conclusions from these reports. First, Brucella-related prosthetic joint infections are rare but can be serious. Second, Brucella infection can be difficult to diagnose, and patients may present with symptoms similar to those of other joint infections. Third, the effectiveness of treatment varies depending on the stage of infection and the type of bacteria involved. Fourth, surgical intervention may be necessary to remove infected tissue and prevent further spread of the infection. Finally, healthcare workers should follow strict infection control measures when performing joint aspirations or surgeries to prevent the transmission of Brucella bacteria.
Brucellosis is not a diagnosis that would usually be considered in a traveller returning from Thailand [24]. Two cases acquired in Thailand have been mentioned in passing in reviews of children [25] and adult [26] travellers returning to North America and Europe respectively. Foci in China, Mongolia and Central Eurasia are well recognised but the range of other countries newly affected by brucellosis continues to expand [2,27–30]. Human infections are under-reported compared to the patchy knowledge of its increasing incidence in livestock in South Asia [31]. A boy acquired brucellosis from raw goat’s milk in Penang, Malaysia in 2010 and a German visitor acquired brucellosis in Myanmar from drinking lassi [32]. An outbreak of caprine and human brucellosis in Ratchaburi Province in Thailand was investigated in 2003 [33] and there have been sporadic case reports and more recent reviews of emerging brucellosis endemicity in Thailand over the past decade [34–36]. As demonstrated by our patient, the highest risk to humans in Thailand is exposure to parturient goats (B. melitensis) but there is a separate risk of B. abortus transmission from buffaloes. Diagnosis of illness in travellers can highlight the presence of locally unrecognised infections, as shown by this patient and his contacts.

4. Conclusion

In conclusion, we report the first detailed case report of brucellosis in a traveller returning from Thailand. Clinicians should consider brucellosis as well as the more commonly encountered causes of fever in returnees from this area. Brucellosis should be included in the list of possible causes of an infected prosthetic joint in patients who have an appropriate epidemiological risk and PPE, including fit-tested masks, should be used by operators undertaking joint aspiration or surgery in such cases. Though the small number of cases identified in this review warrants caution about drawing any firm conclusions regarding optimal treatment, in the absence of implant loosening, treatment with antibiotics may be appropriate in the first instance. There are no specific strategies for avoidance of Brucella spp. PJIs beyond those needed by all travellers to prevent brucellosis. These include the avoidance of unpasteurised dairy products (including lassi and buffalo milk or cheese) and animal contact (particularly in farms or abattoirs) in endemic areas. Travellers (with or without prosthetic joints) should be made aware of these risks as part of their standard pre-travel assessment.

Conflict of interest

Nil.

Funding

NJB is partially supported by the National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Emerging and Zoonotic Infections, a partnership between the University of Liverpool and Public Health England, in collaboration with the Liverpool School of Tropical Medicine. NJB is based at the Liverpool School of Tropical Medicine. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR, the Department of Health or Public Health England. JML is supported by the Wellcome Trust as a clinical PhD fellow (grant number 109105/Z/15/Z).

Acknowledgments

Preliminary data about this patient were published on-line in May 2015 [32], and reported through the GeoSentinel network (of which LSTM is a contributing centre). We thank the patient for consenting to his details being published.

References

[1] Beeching N, Corbel M. Brucellosis. Chapter 194e. In: Fauci A, Braunwald E, Kasper D, Hauser S, Longo D, Jameson J, et al., editors. Harrison’s principles intern. med. 19th ed. McGraw-Hill; 2015. p. 1–5.
[2] Pappas G. The changing Brucella ecology: novel reservoirs, new threats. Int J Antimicrob Agents 2010;36(Suppl. 1):S8–11.
[3] Brucella Reference Laboratory Public Health England. Procedural Checklist to follow after a laboratory exposure to Brucella spp. Updated 28 March 2013. 2013. https://www.gov.uk/government/publications/brucella-reference-unit-bru-managing-laboratory-exposure (accessed August 1 2016).
[4] Jones RE, Berryhill WH, Smith J, Hofmann A, Rogers D. Secondary infection of a total hip replacement with Brucella abortus. Orthopedics 1983;6:184–6.
[5] Agarwal S, Kadhi SK, Rooney RJ. Brucellosis complicating bilateral total knee arthroplasty. Clin Orthop Relat Res 1991;179–81.
[6] Ortí A, Roig P, Alcalá R, Navarro V, Salavert M, Martín C, et al. Brucellar prosthetic arthritis in a total knee replacement. Eur J Clin Microbiol Infect Dis 1997;16:843–5.
[7] Navarro V, Solera J, Martínez-Alfaro E, Sáez L, Escribano E, Pérez-Flores JC. Brucellar osteomyelitis involving prosthetic extra-articular hardware. J Infect 1997;35:192–4.
[8] Malizos KN, Makris CA, Soucacos PN. Total knee arthroplasties infected by Brucella melitensis: a case report. Am J Orthop Belle Mead NJ 1997;26:283–5.
[9] Ortega-Andreu M, Rodriguez-Merchan EC, Aguera-Gavalda M. Brucellosis as a cause of septic loosening of total hip arthroplasty. J Arthroplast 2002;17:384–7.
[10] Weil Y, Mattan Y, Liebergall M, Rahav G. Brucella prosthetic joint infection: a report of 3 cases and a review of the literature. Clin Infect Dis 2003;36:e81–6.
[11] Kasim RA, Araj GF, Afieche NE, Tabbarah ZA. Brucella infection in total hip replacement: case report and review of the literature. Scand J Infect Dis 2004;36:65–7.
[12] Calró M, Calbo E, Gómez L, Matamala A, Asunción J, Cuchi E, et al. Foreign-body osteoarticular infection by Brucella melitensis: a report of three cases. J Bone Jt Surg Am 2006;88:202–4.
[13] Ruiz-Ibán MA, Crespo P, Díaz-Peletier R, Rozado AM, Lopez-Pardo A. Total hip arthroplasty infected by Brucella: a report of two cases. J Orthop Surg Hong Kong 2006;14:99–103.
[14] Marbach F, Sahai L, Fischer J-F, Huismans J, Cometta A. Prosthetic joint infection of the knee due to Brucella spp. Rev Med Suisse 2007;3:1007–9.
[15] Tena D, Romanillos O, Rodríguez-Zapata M, de la Torre B, Pérez-Pomata MT, Viana R, et al. Prosthetic hip infection due to Brucella melitensis: case report and literature review. Diagn Microbiol Infect Dis 2007;58:481–5.
[16] Tassinari E, Di Motta D, Giardina F, Traina F, De Fine M, Toni A. Brucella infection in total knee arthroplasty. Case report and revision of the literature. Chir Organi Mov 2008;92:55–9.

[17] Dauty M, Dubois C, Coisy M. Bilateral knee arthroplasty infection due to Brucella melitensis: a rare pathology? J Knee Surg Sports Traumatol Arthrosc 2010;18:908–10.

[18] Erdogan H, Cakmak G, Erdogan A, Arslan H. Brucella melitensis infection in total knee arthroplasty: a case report. Knee Surg Sports Traumatol Arthrosc 2010;18:908–10.

[19] Nichols M, Thompson D, Carothers JT, Klauber J, Stoddard RA, Guerra MA, et al. Brucella abortus exposure during an orthopedic surgical procedure in New Mexico, 2010. Infect Control Hosp Epidemiol 2014;35:1072–3.

[20] Lowe CF, Showler AJ, Perera S, McIntyre S, Qureshi R, Patel SN, et al. Hospital-associated transmission of Brucella melitensis outside the laboratory. Emerg Infect Dis 2015;21:150–2.

[21] Carothers JT, Nichols MC, Thompson DL. Failure of total hip arthroplasty secondary to infection caused by Brucella abortus and the risk of transmission to operative staff. Am J Orthop 2015;44:E42–5.

[22] Traxler RM, Lehman MW, Bosserman EA, Guerra MA, Smith TL. A literature review of laboratory-acquired brucellosis. J Clin Microbiol 2013;51:3055–62.

[23] Laboratory-acquired brucellosis—Indiana and Minnesota, 2006. MMWR Morb Mortal Wkly Rep 2008;57:39–42.

[24] Leder K, Torresi J, Libman MD, Cramer JP, Castelli F, Schlagenhaup P, et al. GeoSentinel surveillance of illness in returned travelers, 2007–2011. Ann Intern Med 2013;158:456–68.

[25] Shen MW. Diagnostic and therapeutic challenges of childhood brucellosis in a nonendemic country. Pediatrics 2008;121:e1178–83. http://dx.doi.org/10.1542/peds.2007-1874.

[26] Field V, Gautret P, Schlagenhaup P, Burchard G-D, Caumes E, Jensenius M, et al. Travel and migration associated infectious diseases morbidity in Europe, 2008. BMC Infect Dis 2010;10:330.