Probabilistic Inductive Constraint Logic

Fabrizio Riguzzi1 Elena Bellodi2 Riccardo Zese2
Giuseppe Cota2 Evelina Lamma2

Dipartimento di Matematica e Informatica – University of Ferrara
Dipartimento di Ingegneria – University of Ferrara

\{fabrizio.riguzzi, elena.bellodi, evelina.lamma, riccardo.zese, giuseppe.cota\}@unife.it

ILP 2015
Probabilistic Logics

- Probabilistic logic models have successful application in a variety of fields
- However, inference and learning is expensive
- Proposals such as Tractable Markov Logic [Domingos, Webb, AAAI 2012], Tractable Probabilistic Knowledge Bases [Webb, Domingos, StarAI 2013][Niepert, Domingos, StarAI 2014] and fragments of probabilistic logics [van den Broeck, NIPS 2011][Niepert, van den Broeck, AAAI 2014] strive to achieve tractability by limiting the form of sentences.
- In ILP, the learning from interpretation settings [De Raedt, Dzeroski, AI 1994][Blockeel et al, 1999] offers advantages in terms of tractability: learning first-order clausal theories is tractable [De Raedt, Dzeroski, AI 1994], examples in learning from interpretations can be considered in isolation [Blockeel et al, 1999].
Motivation

Objectives

- Inductive Constraint Logic (ICL) [De Raedt, Van Laer, ALT 1995]: performs discriminative learning from interpretations
- Models are sets of integrity constraints
- We want to consider a probabilistic version of the sets of integrity constraints with a semantics in the style of the distribution semantics [Sato, ICLP 1995]
 - Each integrity constraint is annotated with a probability and a model assigns a probability of being positive to interpretations
 - This probability can be computed in linear time given the number of groundings of the constraints.
ICL [De Raedt, Van Laer, ALT 1995] performs discriminative learning from interpretations.

Constraint Logic Theory: a set of Integrity Constraints of the form

\[L_1, \ldots, L_b \rightarrow A_1; \ldots; A_h \] \hspace{1cm} (1)

- \(B \): a background knowledge
- A CLT \(T \) classifies an interpretation \(I \) as positive given a background knowledge \(B \) if \(M(B \cup I) \models T \)
- range-restricted clause: all the variables that appear in the head also appear in the body.
- If \(T \) is range-restricted, \(M(B \cup I) \models T \) can be tested by asking the goal

\[? - Body(C), \neg Head(C). \]

against a Prolog database containing \(I \) and \(B \). If the query fails, \(C \) is true in \(I \) given \(B \), otherwise \(C \) is false in \(I \) given \(B \).
Example: Bongard Problems

- Discriminate between positive and negative pictures containing geometric shapes.

Each picture can be described by an interpretation

\[I_l = \{ \text{triangle}(0), \text{large}(0), \text{square}(1), \text{small}(1), \text{inside}(1, 0), \]
\[\text{triangle}(2), \text{inside}(2, 1) \} \]
\[(2) \]
\[\text{triangle}(2), \text{inside}(2, 1) \} \]
\[(3) \]

- \[B = \{ \text{in}(A, B) \leftarrow \text{inside}(A, B). \]
\[\text{in}(A, D) \leftarrow \text{inside}(A, C), \text{in}(C, D). \]
\[M(B \cup I_l) \supseteq \{ \text{in}(1, 0), \text{in}(2, 1), \text{in}(2, 0) \} \]

- \[C_1 = \text{triangle}(T), \text{square}(S), \text{in}(T, S) \rightarrow \text{false} \] is false in \(I_l \) given \(B \)

- In the central picture instead \(C_1 \) is true given \(B \)
ICL uses a covering loop on the negative examples
- It starts from an empty theory and adds one IC at a time
- After the addition of the IC, the set of negative examples that are ruled out by the IC are removed from the overall set of negative examples
- The loop ends when no more ICs can be generated or when the set of negative examples becomes empty
- The IC to be added is found by beam search with $P(\neg|\neg C)$ as the heuristic function (the precision on negative examples)
A Probabilistic Constraint Logic Theory (PCLT) is a set of probabilistic integrity constraints (PICs)

\[p_i \::\: L_1, \ldots, L_b \rightarrow A_1; \ldots; A_h \]

A PCLT \(T \) defines a probability distribution on ground constraint logic theories called worlds: for each grounding of each IC, we include the IC in a world with probability \(p_i \) and we assume all groundings to be independent.

Constraint \(C_i \) has \(n_i \) groundings called \(C_{i_1}, \ldots, C_{i_{n_i}} \).

The probability of a world \(w \) is given by the product:

\[
P(w) = \prod_{i=1}^{n} \prod_{C_{ij} \in w} p_i \prod_{C_{ij} \notin w} (1 - p_i).
\]
The probability $P(\oplus|w, I)$ of the positive class given an interpretation I, a background knowledge B and a world w is 1 if $M(B \cup I) \models w$ and 0 otherwise.

The probability $P(\oplus|I)$ of the positive class given an interpretation I and a background B is the probability of a PCLT T satisfying I.

$P(\oplus|I)$ is given by

$$P(\oplus|I) = \sum_{w \in W} P(\oplus, w|I) = \sum_{w \in W} P(\oplus|w, I) P(w|I) = \sum_{w \in W, M(B \cup I) \models w} P(w)$$

(5)

$$P(\ominus|I) = 1 - P(\oplus|I).$$

(6)
There is an exponential number of worlds

We can associate a Boolean random variable X_{ij} to each instantiated constraint C_{ij}. Let X be the set of the X_{ij} variables. These variables are all mutually independent.

We must keep only the worlds where $\overline{X_{ij}}$ holds for all ground constraints C_{ij} violated in I.

I satisfies all the worlds where the formula

$$\phi = \bigwedge_{i=1}^{n} \bigwedge_{M(B \cup I) \not\models C_{ij}} \overline{X_{ij}}$$

is true

$$P(\oplus | I) = P(\phi) = \prod_{i=1}^{n} (1 - p_i)^{m_i} \quad (7)$$

where m_i is the number of instantiations of C_i that are not satisfied in I
Consider the PCLT
\[
\{ C_1 = 0.5 \::\: triangle(T), square(S), in(T, S) \rightarrow false \}
\]

In the left picture the body of \(C_1 \) is true for the single substitution \(T/2 \) and \(S/1 \) thus \(m_1 = 1 \) and \(P(\oplus|l_i) = 0.5 \).

In the right picture the body of \(C_1 \) is true for three couples (triangle, square) thus \(m_1 = 3 \) and \(P(\oplus|l_r) = 0.125 \).
Learning Probabilistic Constraint Logic Theories

Given
- a set $\mathcal{I}^+ = \{I_1, \ldots, I_Q\}$ of positive interpretations
- a set $\mathcal{I}^- = \{I_{Q+1}, \ldots, I_R\}$ of negative interpretations
- a normal logic program B (background knowledge)

Find: a PCLT T such that the likelihood

$$L = \prod_{q=1}^{Q} P(\oplus|I_q) \prod_{r=Q+1}^{R} P(\ominus|I_r)$$

is maximized.

The likelihood can be unfolded to

$$L = \prod_{q=1}^{Q} \prod_{l=1}^{n} (1 - p_l)^{m_{iq}} \prod_{r=Q+1}^{R} \left(1 - \prod_{l=1}^{n} (1 - p_l)^{m_{ir}}\right)$$

(8)

where m_{iq} (m_{ir}) is the number of instantiations of C_i that are false in I_q (I_r) and n is the number of ICs.
Let us compute the derivative of the likelihood with respect to the parameter p_i

$$\frac{\partial L}{\partial p_i} = \frac{L}{1 - p_i} \left(\sum_{r=Q+1}^{R} m_{ir} \frac{P(\oplus|l_r)}{P(\ominus|l_r)} - m_{i+} \right)$$

where $m_{i+} = \sum_{q=1}^{Q} m_{iq}$

The equation $\frac{\partial L}{\partial p_i} = 0$ does not admit a closed form solution so we must use optimization to find the maximum of L

We can optimize the likelihood with Limited-memory BFGS (L-BFGS) [Nocedal, MathComp 1980]

L-BFGS requires the computation of L and of its derivative at various points.
Structure Learning

- First search for good candidate ICs, then search for a theory guided by the LL of the data.
- Search for ICs: bottom-up beam search. The revisions are scored by the log likelihood (LL) resulting from parameter learning.
- The refinement operator adds literals from a top IC obtained by saturation as in Progol using mode declarations.
- A fixed-size list with the best ICs found so far is kept.
Structure Learning

- Search for a theory: greedy search in the space of theories by iteratively adding an IC Cl from the list of best clauses ordered by LL.
- The IC is kept if the log likelihood LL after parameter learning improves.
Related Work

- Similarity with the distribution semantics
- Inference in the DS is $\#P$ in the number of variables
- On the contrary, computing the probability of the positive class given an interpretation in a PCLT is linear in the number of variables.
- 1BC [Flach, Lachiche, ML 2004] induces first-order features in the form of conjunctions of literals and combines them using naive Bayes in order to classify examples.
- First-order features are similar to integrity constraints with an empty head.
- The probability of a feature is computed by relative frequency in 1BC.
- This can lead to suboptimal results if compared to PASCAL, where the probabilities are optimized to maximize the likelihood.
Experiments

- PASCAL has been implemented in SWI-Prolog.
- For performing L-BFGS we ported the YAP-LBFGS library developed by Bernd Gutmann to SWI-Prolog. This library is based on libLBFGS.
- Hardware: machines with an Intel Xeon Haswell E5-2630 v3 (2.40GHz) CPU and 128 GB RAM.
- Comparison with DPML [Lamma et al, ILP 2007] (similar to ICL).
- Process mining dataset [Bellodi et al, KSEM 2010]: careers of students enrolled at the University of Ferrara.
- 776 interpretations each corresponding to a different student career.
- Students who graduated: positive interpretations; student who did not finish their studies: negative interpretations.
Experiments

Five-fold cross validation

System	LL	AUCROC	AUCPR	Accuracy	Time(s)
PASCAL	-302.664	0.923	0.851	0.889	568.509
DPML	-440.254	0.707	0.53	0.656	280.594
Conclusions and Future Work

Conclusions
- Tractable inference
- Parameter optimization by L-BFGS
- Good initial results

Future work
- Test on more datasets
- Distributed learning
THANKS FOR LISTENING AND ANY QUESTIONS?