The *Saccharomyces cerevisiae* SEC14 Gene Encodes a Cytosolic Factor That Is Required for Transport of Secretory Proteins from the Yeast Golgi Complex

Vytas A. Bankaitis,* David E. Malehorn,* Scott D. Emr, and Robert Greene*

*Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; and †Division of Biology, California Institute of Technology, Pasadena, California 91125

Abstract. We have obtained and characterized a genomic clone of SEC14, a *Saccharomyces cerevisiae* gene whose product is required for export of yeast secretory proteins from the Golgi complex. Gene disruption experiments indicated that SEC14 is an essential gene for yeast vegetative growth. Nucleotide sequence analysis revealed the presence of an intron within the SEC14 structural gene, and predicted the synthesis of a hydrophilic polypeptide of 35 kD in molecular mass. In confirmation, immunoprecipitation experiments demonstrated SEC14p to be an unglycosylated polypeptide, with an apparent molecular mass of some 37 kD, that behaved predominantly as a cytosolic protein in subcellular fractionation experiments. These data were consistent with the notion that SEC14p is a cytosolic factor that promotes protein export from yeast Golgi. Additional radiolabeling experiments also revealed the presence of SEC14p-related polypeptides in extracts prepared from the yeasts *Kluyveromyces lactis* and *Schizosaccharomyces pombe*. Furthermore, the *K. lactis* SEC14p was able to functionally complement *S. cerevisiae* sec14p defects. These data suggested a degree of conservation of SEC14p structure and function in these yeast species.

The Golgi complex is common to all eukaryotic cells. This organelle is of fundamental importance in the regulation of intracellular protein traffic that transits the later stages of the secretory pathway, the recycling of membrane from the cell surface, and communication with aspects of the endocytic pathway (14). Morphological studies have indicated a conservation of basic Golgi structure throughout the eukaryotic kingdom. The Golgi complex displays a segmented structure consisting of a set of four, or more, membraneous cisternae with flattened centers and dilated rims (9). This structural motif coincides with a compartmentalized biochemical organization that is apparent at several experimental levels. In an effort to identify the Golgi components that mediate protein transport across this organelle, Rothman and colleagues (1, 2, 26, 27) have devised an assay with which vesicular stomatitis virus G protein transport through the Golgi can be followed in vivo and in vitro. These studies have indicated that intercisternal Golgi transport is mediated by vesicles and that cytosolic proteins and ATP are required. There are also indications that fatty acylation reactions and GTP-binding proteins may be involved in this process as well (12, 21).

We have chosen to approach the problem of protein exit from the Golgi from a genetic perspective using the yeast *Saccharomyces cerevisiae* as a model system. The reasons for this are twofold. First, the basic scheme of the yeast secretory pathway is the same as that for mammals. This has been established by the isolation and characterization of yeast sec mutants that exhibit conditional defects at specific stages of the secretory pathway (23). Second, Dunphy et al. (6) have obtained evidence suggesting a measure of functional conservation between yeast and mammals with respect to the cytosolic factors that participate in driving Golgi transport functions in vitro. The yeast sec mutant collection identifies two nuclear genes, *SEC7* and *SEC14*, whose products appear to play crucial roles in protein transport through the Golgi (23).

Here we report that invertase secretion was rapidly blocked upon shift of a sec14p strain to the nonpermissive temperature, suggesting a direct role for SEC14p in facilitating protein transport through yeast Golgi; and identifying *SEC14* as a reasonable candidate for detailed molecular analysis. As an initial step toward this goal, we present a characterization of the *SEC14* gene. We show that *SEC14* is an essential gene that belongs to the category of rare *S. cerevisiae* genes that contain introns, and that SEC14p is a rather abundant yeast polypeptide that exhibits no glycosylation modification. Moreover, subcellular fractionation experiments demonstrated SEC14p to behave as a cytoplasmic species, although some association with particulate fractions was also observed. These data are consistent with SEC14p being a cytosolic factor that promotes protein transport through the yeast Golgi complex. Finally, we present evidence to indicate a structural and functional conservation of SEC14p across several yeast species.
We propose that the elucidation of SEC14p function in S. cerevisiae will contribute to a general understanding of how proteins exit from the Golgi complex.

Materials and Methods

Bacterial and Yeast Strains

Escherichia coli strains MC1061 (5) and K22186, F' traD36 lacZ2A15 mucA4 B' Δ (lac-pro) supE thi rpsL endA sbcB15 hisD4, were used for plasmid maintenance. Yeast haploid strains included YP54 (MATa ade2-101 ura3-52 his3-200 leu2-801 trp1 his4) and its isogenic MATa derivative, YP52, from R. Davis, and SP292-2A (MATa sec34-3 gal2 maI) from R. Schekman (University of California). The prototypic sec3 strain used in the studies was CTY11A (MATa ade2-101 ura3-52 his3-200 leu2-801 sec14-3), a meiotic segregant from SP292-2A × YP54 (this study). Strain CTY182 is the isogenic SEC4 derivative of CTY11A. Yeast diploid strains CTYDI and CTYD38 were generated by crossing CTY11A × YP54 and YP52 × YP54, respectively. Diploid strain CTYD2 is isogenic to CTYDI and was generated by recombining sec14Δ::HIS3 (see text) into the SEC4 allelic of CTYDI. All strains were constructed by standard genetic techniques (35). Gene disruption technology has been described in principle by Rothstein (28). Schizosaccharomyces pombe and Kluyveromyces lactis strains SP255 (h+ ade-6-210) and MW98-8C (MATa arg lys ura) were obtained from Jo Anne Wise (University of Illinois) and Stephen Johnston (Duke University), respectively.

Media and Reagents

YP, yeast minimal, and defined minimal media have been described (35). Minimal media for K. lactis and S. pombe have also been described (22, 25). Standard E. coli media were employed (20). All reagents for invertebrate assays, concanavalin A-Sepharose, protein A-Sepharose, and all protease inhibitors were obtained from Sigma Chemical Co. (St. Louis, MO). Restriction enzymes and nucleic acid modifying enzymes were from Bethesda Research Laboratories (Gaithersburg, MD) and Pharmacia Fine Chemicals (Piscataway, NJ). Reagents for SDS-PAGE, agarose gel electrophoresis, and electrophoresis of DNA sequencing reactions were from Bio-Rad Laboratories (Indianapolis, IN). Trans-Label (>1,000 Ci/mmol) was from ICN Radiochemicals (Irvine, CA). α-32P-dATP (800 Ci/mmol) was obtained from Amersham Corp. (Arlington Heights, IL).

Invertase Secretion

Strain CTY11A was grown to mid-logarithmic phase in YP (2%) glucose medium at 30°C with shaking. Cells were pelleted (2,000 g, 1 min), washed with 2 vol of water, and resuspended in 2 vol of glucose (0.1%) YP medium. The culture was split and incubated as before at 30°C for 30 min. After such time, one culture was shifted to 36°C; the other was kept at 30°C. Samples (500 μl) were taken from each culture at 0, 15, 30, 45, and 60 min postshift, immediately adjusted to 10 mM NaN3, and kept on ice. The samples were washed twice with 1 ml of cold 10 mM Na3HPO4, and resuspended in 500 μl of the same. Each sample was subsequently split. For each, the nonmembrane-labeled sample was adjusted to 500 μl with 250 μl of 10 mM Na3HPO4. The samples to be permeabilized were similarly adjusted with 10 mM Na3HPO4, 0.2% Triton X-100 and subjected to one cycle of freeze-thaw. These samples were used to measure external and total invertase activities, respectively, using the assay of Goldstein and Lampen (13). The optical densities of the engineered polypeptide represent SEC14p primary sequence. Bodies were raised by primary injection of 500 μg of hybrid protein into polyclonal lymph nodes of New Zealand White female rabbits. After a 6-wk rest, 500 μg boost injections were administered intramuscularly every 2 wk until a satisfactory response was obtained.

Immunoprecipitation of SEC14 and CPY

Strain CTY182 was grown to an early logarithmic growth stage (OD600 = 0.5) in 2% glucose yeast minimal medium lacking methionine and cysteine. A 2-ml aliquot of the culture was radiolabeled with Trans-Label (150 μCi/ml) for 30 min at 30°C. Incorporation of label was terminated by the addition of NaCl to 10 mM and the culture was split into five equal aliquots. Protein was TCA precipitated from all samples, followed by cell lysis with glass beads, boiling in 1% SDS buffer, clarification of extract by centrifugation, and dilution of extract in immunoprecipitation buffer that had 0.5% Tween 20 substituted for 2% Triton X-100 (34). Four of these yeast extracts were treated with CPY antiserum and either (a) preimmune SEC14p serum, (b) immune SEC14p antiserum, (c) SEC14p antiserum plus 50 μl of cell-free extract prepared from E. coli MC1061 (pRE43) not induced for T4 lysozyme-SEC14p fusion protein synthesis, and (d) SEC14p antiserum plus 50 μl of extract derived from MC1061 (pRE43) cells induced for lysozyme-SEC14p fusion protein synthesis. These E. coli extracts represented protein obtained from two OD600 units of cells. The remaining yeast extract was treated with 30 μl packed beads of concanavalin A-Sepharose and separated into bound and soluble fractions (34). Each fraction was treated with CPY and SEC14p antiserum, and resolution of the immunoprecipitates was achieved by SDS-PAGE and autoradiography as described (34). CPY and SEC14p antibodies were added in a 1:10,000 dilution whereas the preimmune serum was added in a 1:500 final dilution.

Detection of SEC14p Cross-Reacting Species

S. cerevisiae CTY11A (MATa ura3-52, C. pombe SP255, and S. cerevisiae CTY11A/pKL12 (see text) were grown to an OD600 of 0.5 in their respective glucose minimal media, to which appropriate nutritional supplements had been added (22, 25, 35) at 30°C with shaking. One OD600 unit
of cells from each yeast culture was radiolabeled with Trans-Label (150 μCi) for 30 min at 30°C. Recovery of immunoprecipitates from clarified extracts of TCA precipitates with SEC14p antiserum and preimmune serum were performed exactly as described above.

Fractionation of SEC14p

Strain CTY182 was grown to an OD₆₀₀ of 0.5 in glucose defined minimal medium with shaking at 22°C. Some five OD₆₀₀ units of cells were radiolabeled with 50 μCi of Trans-Label per OD₆₀₀ cells for 20 min at 22°C. Incorporation of label was terminated by the addition of NaN₃ to 10 mM. Conversion of yeast cells to spheroplasts. Spheroplasts were pelleted by a 2-min spin at 500 g, and resuspended in 1.5 ml of lysis buffer (10 mM Mops pH 7.5, 1.4 M sorbitol, 50 mM β-mercaptoethanol, 10 mM NaN₃), addition of 2.5 μg/OD₆₀₀ cells of oxalyticase (Enzogenetics, Corvallis, OR), and incubation at 30°C for 15 min. This treatment resulted in virtually quantitative conversion of yeast cells to spheroplasts. Spheroplasts were pelleted by a 2-min spin at 500 g, and resuspended in 1.5 ml of lysis buffer (10 mM Mops pH 7.5, 0.3 M sorbitol, 2 μg/ml chymostatin, leupeptin and pepstatin A, 1 mM PMSE, 0.1 mM EGTA, 3 mM benzamidine, 30 U/ml aprotinin, and 100 μg/ml BSA). 500 μl of the lysate were removed and saved as the whole cell extract. The remaining 1.0 ml was first centrifuged for 3 min at 500 g to remove intact cells and other large debris, yielding the low speed pellet, and the resulting supernatant was spun at 12,000 g for 30 min at 4°C. The low speed and 12,000 g pellets were solubilized in 150 μl of boiling buffer (50 mM Tris, pH 7.5, 1% SDS, 1 mM EDTA). The 12,000 g supernatant fraction was centrifuged for 1 h at 100,000 g in a rotor (model SW 50.1; Beckman Instruments, Inc., Palo Alto, CA) and an ultracentrifuge (model L8-70 M; Beckman Instruments, Inc.) to generate the high speed supernatant and high speed pellet fractions. The high speed pellet was solubilized in 150 μl of boiling buffer. TCA was used to precipitate protein from the high speed supernatant and the whole cell fractions and the precipitates were also solubilized in 150 μl of boiling buffer. Samples (15 μl) of clarified extracts derived from the whole cell, low speed pellet, 12,000 g pellet, high speed supernatant, and 100,000 g pellet fractions were treated with CPY, SEC14p, or invertase antibodies. Precipitates were analyzed by SDS-PAGE and autoradiography as described above.

Results

Invertase Secretion Responds Rapidly to Loss of SEC14p Function

The classification of sec14p mutants as being conditionally defective in Golgi transport processes is based upon the observation that such yeast exhibit a marked exaggeration of Golgi-related structures (Berkeley bodies) under nonpermissive conditions, and that the intracellular invertase pool that accumulates under such restrictive conditions consists of enzyme that exhibits fully matured outer glycosyl chains (8, 23). Previous analyses of the secretion competence of sec14p yeast incubated under nonpermissive conditions involved the measurement of intracellular invertase and acid phosphatase accumulation after a rather long exposure of the cells to the restrictive temperature (23). To assess the rate at which the sec14p secretory block is imposed, we adopted an experimental approach described by Salminen and Novick (32) that allowed us to compare the efficiency of invertase secretion in sec14p yeast to the differential rate of invertase synthesis. CTY1-IA (sec14p, SUC2) cells were grown at 30°C in YP medium containing a final glucose concentration of 2% and incubated at 30°C for 30 min to allow for induction of secretory invertase synthesis. The culture was subsequently split into two equal portions, with one portion incubated at 30°C and the other at 36°C. Samples were collected at various times post-shift from each, and total and extracellular invertase activities were determined (see Materials and Methods). As is evident from the data shown in Fig. 1, CTY1-IA cells incubated at the permissive temperature (30°C) exhibited an extracellular distribution for essentially all of the invertase that was synthesized after shift (i.e., t = 0). This point is indicated by the observation that the total invertase activity, measured for Triton X-100 permeabilized yeast, was entirely accounted for by the cell surface invertase measured in parallel yeast samples that had not been permeabilized. Different results were obtained for CTY1-IA cultures incubated at 36°C. Even at the early 15-min time point essentially all of the invertase synthesized postshift was detected in a latent form. This result was also observed for the 30-, 45-, and 60-min time points. Parallel experiments with the isogenic SEC14 strain, CTY 182, indicated the absence of any significant intracellular accumulation of invertase at 30 or 36°C (not shown). These data indicated that invertase secretion was rapidly blocked upon shift of the sec14p strain to the restrictive temperature.

Isolation of the SEC14 Gene

The recessive nature of sec14p allowed recovery of SEC14 clones from existing DNA libraries by complementation.
Strain CTY1-IA (MATa, ura3-52, Δh1s3-200 lys2-801, sec14A1::HIS3) was transformed with a yeast genomic DNA library maintained in YCP50, a shuttle plasmid carrying a yeast centromere and the URA3 gene. The desired transformants were obtained by simultaneous selection for uracil prototrophy and temperature resistance (see Materials and Methods). From an estimated 2 × 10^6 potential Ura^+ transformants, 20 were recovered that were also Ts^+. Linkage of the Ts^+ character to the plasmid was tested by curing each of the candidate transformants of their resident YCP50 plasmids by selecting for five fluoroorotic acid–resistant derivatives (3). Six of the candidate transformants yielded Ts^+ derivatives upon such curing events and, by this criterion, the original six Ura^+ Ts^+ transformants were considered to identify putative SEC14 clones. The cognate plasmids were recovered from these candidates and purified. Retransformation of these purified plasmids back into CTY1-IA, selecting for Ura^+, confirmed the acquisition of Ts^+ as an unselected marker in all cases. Restriction mapping experiments demonstrated that all six complementing plasmids contained overlapping segments of the yeast genome. A detailed physical characterization of one such plasmid insert (pCTY3) was performed (Fig. 2). By a combination of deletion mapping and subcloning analyses, the complementing activity of the pCTY3 insert was localized to a 2.0-kb Mlu I–Eco RV restriction fragment. Such experiments also indicated that the Kpn I, Hpa I, and Pvu II sites were all internal to the sec14Δ+ complementing gene; as were the two Bam HI sites (Fig. 2). Various internal regions of the presumed SEC14 gene were employed as templates from which radiolabeled RNAs of known polarity were generated by run-off transcription in vitro, and used to probe total and polyadenylated yeast RNA fractions. These Northern analyses revealed a unique hybridizing RNA species of some 1.2 kb in length that was observed in both total and poly A+ RNA fractions, and was transcribed in the direction of Mlu I towards Bam HI. This mRNA was found to be approximately as abundant as the TRPL transcript at the steady state level (Cleves, A., and V. Bankaitis, unpublished data).

To prove that the complementing activity of pCTY3 represented the authentic SEC14 gene, two independent genetic criteria were employed. In the first case, a 3.6-kb Bam HI fragment that lies adjacent to SEC14 (see Fig. 2) was subcloned into the integrating vector YIp5 (4). Integration of the recombinant plasmid (pCTY14) into the genomic homolog of the 3.6-kb Bam HI fragment was directed by linearization of pCTY14 at the unique Mlu I site of the insert and subsequent transformation of CTY1-IA (sec14Δ+) to Ura+. The resultant haploid strain (CTY175) was verified to have experienced the expected integration event as judged by meiotic segregation analysis of URA3 and by Southern analysis of genomic DNA prepared from it (data not shown). CTY175 was mated to YP54 (MATa, ura3-52, SEC14), the resultant diploid was induced to sporulate, and the meiotic progeny were examined by standard tetrad analysis. For the total of 30 asci that were dissected, all tetrad were found to yield four viable spores and to exhibit an absolute cosegregation of sec14Δ+ and the YIp5-borne URA3 marker. These data indicated that the complementing gene of pCTY3 originated from a region of the yeast genome that is homologous to the SEC14 locus. The second criterion demanded that recombination of an in vitro–generated disruption of the complementing gene into the yeast genome result in a disruption of SEC14. To construct such a disruption, a 5.5-kb Eco RI–Xba I restriction fragment was subcloned from pCTY3 (Fig. 2) into the corresponding sites of pUC18 (38). The yeast HIS3 gene was then used to replace a 168-bp Bam HI fragment lying within the Eco RI–Xba I insert, resulting in a disruption of the complementing gene by deletion and insertion mutagenesis. The purified Eco RI–Xba I fragment was used to transform a diploid strain, CTYD1 (MATα/MATα, Δhis3-200/Δhis3-200, sec14Δ+/SEC14), to His+. Of 200 His+ transformants examined, 97 were found to exhibit the recessive sec14Δ+ phenotype. The simplest explanation for these data was that a SEC14 disruption had been recombined into the wild-type SEC14 allele of the diploid test strain. Southern analysis of genomic DNA prepared from several representative His+Ts^− transformants verified that the expected recombination events had occurred. These results, when coupled with the integrative mapping data, proved the authenticity of the cloned SEC14 gene. The particular disruption allele that we have described here is designated sec14Δ1::HIS3. As described below, sec14Δ1::HIS3 represents a deletion of sequences encoding the carboxy-terminal end of the SEC14 protein.

SEC14 Encodes an Essential Function

The conditional phenotype of sec14Δ+ yeast may result from synthesis of a temperature-sensitive gene product or, alternatively, might describe a sec14Δ null phenotype. To distinguish these possibilities sec14Δ1::HIS3 was recombined into the

Figure 2. Physical map of the yeast SEC14 gene. The ~13-kb genomic insert of the sec14Δ+ complementing plasmid pCTY3 (see text) is given. The SEC14 coding region is defined by the heavy arrow, which also indicates the direction of SEC14 transcription (see text). Restriction site abbreviations are as follows: Eco RI (E), Bgl II (Bg), Bam HI (B), Pvu II (Pv), Mlu I (M), Xba I (Xb), Eco RV (R), Hpa I (Hp), Kpn I (K), and Sal I (S). The 3.5-kb Bam HI fragment that was used for the integrative genetic mapping experiments is indicated by the hatched bar (see text).
SEC14 gene of the yeast diploid strain CTYD1 (see above). The resultant diploid (CTYD2) was then subjected to tetrad analysis. Dissection of a total of 113 tetrads revealed three classes of asci. The predominant class consisted of 109 tetrads that uniformly yielded two viable spores and two inviable spores. The other classes were each represented by two asci that yielded three viable spores and one inviable spore per ascus, and one viable and three inviable spores per ascus, respectively. All 226 viable haploid progeny were phenotypically His+ and, therefore, received **sec14** and not **sec14Δ1::HIS3**. No His+ progeny were obtained, suggesting that **SEC14** is an essential yeast gene. The minority tetrad classes provided strong support for this conclusion as these presumably identified gene conversion events at the **SEC14** locus and strengthened the correlation between **sec14Δ1::HIS3** and lethality. The parental diploid (CTYD1) exhibited excellent spore viabilities upon tetrad analysis.

To further verify that the lethal consequences of receiving **sec14Δ1::HIS3** were not due to some trivial aspect of the specific construction, a second disruption of **SEC14** was constructed. This was accomplished by inserting **HIS3** into the unique Hpa I site that resides within the **SEC14** structural gene, resulting in preservation of only the amino-terminal one-third of the **SEC14** protein (see below). The new disruption was recombined into one of the **SEC14** alleles of a diploid yeast strain (CTYD38) that is homozygous for **Δhis3-200** and **SEC14**. Analysis of 30 tetrads from the **SEC14::HIS3/SEC14** derivative showed that all 30 asci yielded two viable spore progeny apiece and that all of these 60 surviving haploid segregants were His+ . These results were in agreement with those obtained from the first cross, and confirmed the essential nature of **SEC14**.

Microscopic visualization of the inviable spores obtained from the first cross indicated that the spores had all germinated. In most cases, the null mutants completed one to two rounds of cell division before cessation of growth. Thus, we concluded that **SEC14** encodes a function that is essential for yeast vegetative growth.

SEC14 Nucleotide Sequence

The localization of **SEC14** to a 2.0-kb Mlu I–Eco RV restriction fragment, coupled with the identification of marker restriction sites within the **SEC14** gene (Fig. 2), facilitated determination of the **SEC14** nucleotide sequence (Fig. 3). We interpreted the sequence data to indicate that **SEC14** encodes a polypeptide of 304 residues (Mr = 35,032) that is terminated by a unique Hpa I site that resides within the **SEC14** coding region and that the next available in-frame AUG corresponded to a functional **SEC14** gene. The corresponding mRNA that encodes the extreme amino terminus of the gene product. As illustrated in Fig. 3, a consensus 5’-splice site (5’CTATGT3’; reference 24) immediately followed what we indicated as the third **SEC14** codon. This was followed by a second canonical splicing sequence (5’TACTAAC-3’) that was observed 105 nucleotides downstream from the consensus 5’-splice site. The TACTAAC box is known to participate in the formation of the lariat splicing intermediate (37). Normally, the 3’-splice site is defined by the first AG encountered that is at least nine nucleotides downstream from TACTAAC. For **SEC14**, the first AG was encountered only eight nucleotides downstream from TACTAAC, and a second AG was observed 36 nucleotides downstream from TACTAAC. If the latter AG marked the 3’-end of the intron, the predicted splicing event would preserve the reading frame defined by the indicated initiator codon (Fig. 3). This reading frame would then extend through the restriction sites that have been genetically defined to reside within **SEC14** (e.g., Kpn I, Hpa I, Pvu II, and the two Bam HI sites). Sequence analysis of a **SEC14** cDNA clone confirmed the authenticity of the intron, and that the second AG defined the 3′-splice junction (Malehorn, D. E., and V. A. Bankaitis, unpublished data). We noted that this was the only open reading frame of significant length that was revealed by the sequence analysis, and that the next available in-frame AUG corresponded to MET75. We also noted that the Bam HI sites lay at the extreme 3′-end of the **SEC14** coding region and that the Hpa I site sat about one-third of the way into the **SEC14** coding sequence. As described above, interruption of **SEC14** sequence at either of these regions resulted in lethal dysfunction of **SEC14p**. Comparisons of the **SEC14** nucleotide sequence, and inferred primary sequence to the GenBank and Protein Information Resource Bank data bases failed to reveal homologies of obvious significance.

Identification of SEC14p

Our interpretation of the **SEC14** nucleotide sequence data predicted a molecular mass of 35 kD for the gene product. Furthermore, the data indicated that **SEC14p** would not exhibit asparagine-linked glycosyl modifications. To subject these predictions to the most direct test, a 20-kD fragment of **SEC14p** was engineered for high-level production in *E. coli*, partially purified, and used as a source of antigen against which a polyclonal antiserum was raised in rabbits (see Materials and Methods). This antiserum was then used to specifically precipitate **SEC14p** from radiolabeled yeast extracts for analysis. To visualize **SEC14p**, strain CTY182 (**SEC14** was radiolabeled for 30 min with [35S]methionine and [35S]cysteine. Incorporation of label was terminated with NaN3 and TCA, and **SEC14p** was precipitated from clarified extracts and Con A-Sepharose bound and unbound fractions derived from such extracts. **CPY** was also precipitated in these experiments for two purposes. First, it served as a reference to which **SEC14p** levels could be normalized. Second, it served as a control glycoprotein for Con A binding experiments. The immunoprecipitates were evaluated by SDS-PAGE and autoradiography.

As the data in lane B of Fig. 5 indicate, treatment of radiolabeled CTY182 extracts with both **CPY** and **SEC14p** antiserum precipitated two major radiolabeled species; the 61-kD m**CPY** and a polypeptide of some 37 kD in molecular mass. Trace amounts of the **CPY** precursor forms were also ob-
served. The 37-kD species was not apparent when preimmune serum was substituted for SEC14p antiserum in the precipitation reaction (lane A). Furthermore, precipitation of this polypeptide was not competed by the inclusion of unlabeled extract from E. coli cells that were not induced for synthesis of the 21-kD SEC14p antigen (lane E), but was effectively competed by inclusion of the data obtained from E. coli cells that were induced for such antigen synthesis (lane F). This competition experiment, when coupled with the data obtained with the preimmune serum, identified the 37-kD polypeptide as the yeast SEC14p. Pulse-chase experiments have indicated SEC14p to be as stable as mCPY in yeast cultures undergoing logarithmic growth (manuscript in preparation).

Thus, densitometric estimations of the relative levels of SEC14p and mCPY suggested that these species were present at similar intracellular concentrations (within a factor of two; data not shown).

As shown in Fig. 5, lane C, the Con A bound fraction from CTY182 extracts yielded only the CPY immunoreactive species. No SEC14p was recovered from this fraction. The 37-kD SEC14p was quantitatively recovered from the Con A supernatant fraction (lane D) and, as expected, no CPY species were recovered from this soluble fraction. Taken together, these data demonstrated SEC14p to be a rather abundant and hydrophilic character and suggested a cytoplasmic location for SEC14p as the yeast SEC14p.

Figure 3. Nucleotide sequence of SEC14. The DNA sequence of the SEC14 coding strand and the predicted primary sequence of its product are shown. The intron is bounded by the hash marks and is indicated by the dotted underline. Hallmark restriction sites that are referred to in the text are shown.
plasmic compartments (see Materials and Methods). The presence of SEC14p in these various fractions was determined by quantitative immunoprecipitation analysis of each fraction with SEC14p antiserum. The osmotic lysis procedure we employed was very similar to those previously reported (10, 29), and it was expected that membrane-enclosed organelles would remain intact upon cell lysis. The conditions of radiolabeling were designed to reveal the CPY as the pl and p2 forms of the enzyme. These precursor forms of CPY were employed as lumenal markers of ER and early Golgi complex, and late Golgi complex, respectively (36). The constitutively expressed form of invertase was employed as a cytoplasmic marker.

From the data shown in Fig. 6, it is clear that the pl and p2 CPY sedimented quantitatively with the 12,000 g and

![Figure 4. Hydropathy analysis of SEC14p. The inferred SEC14p amino acid sequence was used to generate a hydrophathy profile by the method of Kyte and Doolittle (18). A scanning window of seven residues was used. Amino acid residues are numbered along the horizontal axis while net hydrophobicity values are indicated on the vertical axis. Hydrophilic values lie below the horizontal axis while hydrophobic values lie above.](image)

![Figure 5. Identification of SEC14p. Strain CTY182 (SEC14) was grown in glucose (2%) yeast minimal medium and allowed to incorporate radiolabel for 30 min at 30°C. Clarified extracts were recovered and immunoprecipitations performed with CPY antiserum and variable SEC14p sera: lane A, CPY antiserum and preimmune SEC14p serum; lane B, CPY antiserum and immune SEC14p serum. Lanes C and D represent precipitations of CPY and SEC14p from Con A bound and Con A supernatant fractions derived from the clarified extract, respectively. Lanes E and F indicate the profiles obtained when the same clarified extract was treated with CPY and SEC14p antibodies either in the presence of E. coli extract derived from cells not induced for SEC14p antigen synthesis (lane E), or in the presence of E. coli extract obtained from cells induced for high-level synthesis of the SEC14p antigen against which the polyclonal SEC14p antiserum was raised (lane F). The precursor and mature forms of the glycoprotein CPY are indicated at left, as is the SEC14p.](image)
100,000 g pellet fractions and exhibited an ~60 and 40% distribution of material between these two pellet fractions, respectively. The virtual absence of soluble pl and p2 CPY indicated that the integrity of ER and Golgi complex had been satisfactorily maintained by the lysis procedure. In contrast, radiolabeled invertase was recovered exclusively from the 100,000 g supernatant fraction, as expected for a soluble and not membrane enclosed species. An identical fractionation profile was observed for phosphoglycerate kinase, another cytoplasmic species (data not shown). We also noted the significant absence of cytoplasmic invertase and luminal proCPY forms in the low speed pellet fraction, suggesting that quantitative lysis of spheroplasts had been achieved.

SEC14p exhibited a fractionation profile that was most similar to that of cytoplasmic invertase. In the experiment shown, some 65% of the radiolabeled SEC14p was recovered from the 100,000 g supernatant fraction. However, some 35% of the total, radiolabeled SEC14p cosedimented with material that pelleted at 500, 12,000, and 100,000 g (Fig. 6). The proportion of SEC14p that was observed to sediment in the pellet fractions varied somewhat with the method of cell lysis and from experiment to experiment (not shown). We have reproducibly observed a range of 20–40%. The significance of these associations with pellet are presently unclear as we cannot exclude the possibility that the sedimentable SEC14p is artifically retained in these fractions. We note that essentially no invertase or phosphoglycerate kinase was observed to pellet under either of these conditions. The conclusion derived from these data is that the predominant fraction of SEC14p was localized to the yeast cytosol.

SEC14 Epitopes Are Conserved in Widely Divergent Yeasts

Dunphy et al. (6) have obtained compelling evidence indicating that S. cerevisiae and mammals employ functionally interchangeable cytosolic factors to drive intercisternal Golgi transport in vitro. These data suggest that elements of structural conservation may exist between eukaryotic components involved in essential Golgi functions. To test whether SEC14p exhibits such a structural conservation in widely divergent organisms, the polyclonal SEC14p antiserum was employed as a species-specific probe for the presence of SEC14p homologs in extracts prepared from other yeast species. These included the budding yeast Kluyveromyces lactis and the fission yeast Schizosaccharomyces pombe. S. cerevisiae CTY182, K. lactis MW98-8C, and S. pombe SP255 were radiolabeled and incorporation of label was terminated with TCA. Clarified extracts from each yeast strain were prepared and split into two equal aliquots. One aliquot was treated with preimmune serum while the other was mixed with SEC14p antiserum. The antibody complexes were washed under stringent conditions and evaluated by SDS-PAGE and autoradiography.

As shown in Fig. 7, treatment of the yeast extracts with preimmune serum failed to precipitate any radiolabeled species. Although only the relevant portion of the autoradiogram is shown, the preimmune serum lanes were blank in all three cases. However, the SEC14p antiserum did precipitate a single protein from all three yeast extracts. Not only was the expected 37-kD polypeptide recovered from S. cerevisiae extracts, but a 39-kD immunoreactive species was detected in K. lactis extracts, and a 35-kD protein was precipitated from S. pombe extracts. The K. lactis and S. pombe SEC14p immunoreactive polypeptides were specifically recognized by the SEC14p antibodies since, in both cases, this binding was quantitatively competed by the 21-kD T4 lysosome-SEC14p fusion protein against which the SEC14p antiserum was raised (data not shown). We noted that K. lactis and S. pombe incorporated only one-third and one-seventh of the total radiolabel that was incorporated by S. cerevisiae strain CTY182, respectively. Sample loadings were normalized on the basis of such incorporation values. We emphasize that, by this criterion, the S. pombe extract was underrepresented by a factor of two with respect to the S. cerevisiae and K. lactis extracts used in the immunoprecipitation experiment shown in Fig. 7. Consequently, the SEC14p antiserum appeared to recognize the K. lactis and S. pombe polypeptides with approximately equal efficiencies. These data demonstrated that both K. lactis and S. pombe exhibited polypeptides that were authentically related to the S. cerevisiae SEC14. Since these yeasts span evolutionary distances that are as great between S. cerevisiae and S. pombe as those between either of these yeasts and mammals (30), it is clear that SEC14p epitopes are conserved across wide phylogenetic boundaries.

Do the elements of structural conservation of SEC14p underly a functional conservation as well? In an initial effort to address this question, attempts were made to isolate genomic clones of K. lactis and S. pombe genes that could complement, or suppress, the sec14-3 mutation of CTY1-1A. We were immediately successful in isolating several such clones from a K. lactis genomic library propagated in the yeast shuttle vector YEp24 (generously provided by J. Salmeron and S. Johnston; references 28, 31). The details will be described elsewhere. Radiolabeling of CTY1-1A bearing a representative complementing K. lactis clone (pKL12), followed by precipitation of SEC14p immunoreactive materials from cell-free extracts and resolution of the products by SDS-PAGE and autoradiography, yielded the profile shown in Fig. 7. Clearly, two major SEC14p species and a minor SEC14p species were observed. The SEC14p of lowest apparent molecular mass, a major species, migrated in a fashion that identified it as the S. cerevisiae SEC14p. The doublet migrating at 39–40 kD in apparent molecular mass represented the SEC14p antigenic homolog from K. lactis. We do not know why this doublet was observed when the K. lactis SEC14p was expressed in S. cerevisiae but, apparently, not in K. lactis. We noted that synthesis of the K. lactis SEC14p as a doublet was common to all three independent sec14Δ complementing clones that have been obtained (not shown). These results suggested that, at least in the case of K. lactis, the structural conservation of SEC14p epitopes underlies some conservation of protein function as well, and that the K. lactis SEC14p could substitute for that of S. cerevisiae.

A trivial explanation for functional rescue of the sec14Δ defect could be imagined in a situation where the K. lactis SEC14p and the S. cerevisiae Sec14pΔ interact. Such an interaction might then make the defective Sec14pΔ more efficient. If this were the case, one would not expect the K. lactis SEC14 to overcame the haploid lethal phenotype of an S. cerevisiae sec14 null mutation. To test this directly, pKL12 was transformed into CTYD2 (MATa/MATα, ura3-52/ura3-52, Δhis3-200/Δhis3-200, sec14Δ/sec14Δ::HIS3) by linear transformation to Ura+. The resultant diploid was then subjected to tetrad analysis. Of the 10 tetrads analyzed, we found seven
to yield four viable Ura+ haploid progeny. Each of these seven tetrads also exhibited a 2 His+/2 His- segregation pattern (data not shown). As we have established that sec14-A1::HIS3 is a haploid lethal mutation (see above), these data demonstrated that pKL12 suppressed the sec14 disruption allele. Further confirmation for this conclusion was obtained by fractionation experiments where haploid S. cerevisiae strains carrying pKL12 were shown to successfully receive sec14Δ::HIS3 or SEC14::HIS3 (see above) by linear transformation, and execute proper replacement of SEC14 with these null alleles. Taken together, these data demonstrated directly that the K. lactis SEC14p was functionally homologous to the S. cerevisiae SEC14p.

Discussion

The classification of sec14Δ mutants as being defective in Golgi transport function is based on both cytological and biochemical data (8, 23). These include the observation that sec14Δ yeast exhibit a marked exaggeration of Golgi-derived structures under nonpermissive conditions, and that the intracellular pool of secretory glycoprotein that accumulates under such conditions consists of polypeptides that exhibit fully matured outer chain glycosyl modifications. Although such data constitute persuasive evidence for an involvement of SEC14p in yeast Golgi function, these data do not allow one to distinguish whether the involvement is of a direct or an indirect nature.

We have obtained evidence to support a direct participation of SEC14p in yeast secretory processes. Invertase secretion was demonstrated to have been dramatically blocked upon shift of sec14Δ yeast to restrictive conditions. Furthermore, this secretory block was imposed with rapid kinetics (Fig. 1). A rapid and marked inhibition of invertase secretion seems more likely to represent a primary defect in yeast secretory function, rather than the manifestation of some secondary effect resulting from a more general metabolic difficulty. Secondary effects might reasonably have been expected to exhibit a longer course of onset, and a less specific phenotype in terms of organelle exaggeration.

To gain some insight into the role of SEC14p in yeast secretory metabolism, we have isolated and characterized the SEC14 gene from a S. cerevisiae genomic library. Genetic proof for the authenticity of the clone was obtained from integrative mapping and gene disruption experiments. The gene disruption experiments also indicated SEC14p to be an essential gene. Nucleotide sequence analysis of SEC14 identified a 1,071-bp structural gene with the potential of encoding a 304-amino acid polypeptide of mol wt = 35,032 (Fig. 3). This was in good agreement with Northern blot analyses that sized the SEC14 mRNA at ~1.2 kb. An interesting feature of the SEC14 sequence was the clear presence of a 156-bp intron at the extreme 5′-end of the structural gene. Very few of the S. cerevisiae genes whose nucleotide sequences have been determined exhibit introns. Those that do, with a single exception, exhibit only one intron and it is found at the extreme 5′-end of the gene (11). In this respect, the SEC14 intron was typical. Examination of the inferred SEC14p primary sequence revealed an acidic polypeptide of hydrophilic character that lacked any obvious signals for membrane insertion or entry into the yeast secretory pathway (Fig. 4). Comparisons of the SEC14 nucleotide sequence and inferred SEC14p sequence to the GenBank and PIR data bases failed to reveal any homologies of obvious significance that might have provided some clue as to the biochemical nature of SEC14p function.

Some general insight as to possible functions for SEC14p are provided by fractionation experiments. We have identified the S. cerevisiae SEC14p to be an unglycosylated polypeptide of some 37 kD in apparent molecular mass (Fig. 5). These determinations were in excellent agreement with those predicted by the nucleotide sequence. Furthermore, the S. cerevisiae SEC14p was found to be quite an abundant intracellular species; approximately as abundant as the vacuolar CPY. Fractionation of radiolabeled yeast lysates indicated SEC14p to primarily reside in the 100,000 g supernatant fraction (Fig. 6). As a result, models requiring a lumenal or integral membrane disposition for SEC14p are rejected. The present data suggest that SEC14p represents a cytosolic factor that is involved either in promoting intercisternal transport of secretory polypeptides through the Golgi Complex or, alternatively, in facilitating the packaging of secretory protein into the appropriate vesicle carrier for final delivery. The requirement for cytosolic factors in driving vesicle-mediated transport of protein through the Golgi complex is well-documented (1, 2, 6, 26, 27). The significance of the pelletable forms of SEC14p remains to be determined.
Although the precise biochemical mechanism for SEC14p function remains elusive, we have obtained evidence to suggest a conservation of SEC14p structure. Such evidence was derived from experiments where polyclonal antisera directed against S. cerevisiae SEC14p were employed as probes for homologs in widely divergent yeast species. Immunoprecipitations of SEC14p cross-reactive materials from K. lactis and S. pombe extracts have identified polypeptides of 39 and 35 kD in apparent molecular mass, respectively, that behaved as authentic homologs of the S. cerevisiae SEC14p (Fig. 7). This is a rather remarkable result considering the wide divergence between S. cerevisiae and S. pombe (30). At least in the case of K. lactis, the observed antigenic homology underlay a functional homology as well. We demonstrated that genomic clones of K. lactis DNA that complemented the S. cerevisiae sec14Δ defect directed the synthesis of the K. lactis SEC14 (Fig. 7). Since the S. pombe SEC14p did not appear to be any less cross-reactive with S. cerevisiae SEC14p than was the K. lactis homolog, we predict that the S. pombe SEC14p will also prove to be functionally homologous. Experiments are currently underway to test this hypothesis.

Is a measure of structural and functional conservation of SEC14p likely to be observed only among divergent yeasts? Preliminary Southern blot analyses of mammalian and fish genomic DNAs have identified potential SEC14-related nucleic acid sequences in these organisms as well as in S. pombe (not shown), a yeast for which we have already demonstrated the existence of an antigenic homolog (Fig. 7). Although we have, to this point, failed to unequivocally demonstrate a SEC14p cross-reactive polypeptide in mammalian Vero cell extracts (data not shown), these data are intriguing in light of the work of Dunphy et al. (6) who showed a functional interchangeability between S. cerevisiae and mammals with respect to the cytosolic factors that are required to drive intercisternal Golgi transport in vitro. We have generated conditions where it is possible to remove functional SEC14p activity from yeast lysates. With the in vitro transport assays firmly in place, such SEC14p-depleted cytosolic fractions can now be tested for Golgi transport–promoting activity, with the hope of obtaining direct evidence for SEC14p involvement as a cytosolic, Golgi transport–promoting factor. We believe that continued genetic and biochemical analysis of SEC14p function will reveal important insights as to how intracellular protein traffic proceeds through the later stages of the eukaryotic secretory pathway.

We wish to thank Bill Bedzyk for expert assistance in the raising of SEC14p antisera; Tom Stevens, Joel Rothman, and Dan Klionyms for generous gifts of antisera and plasmids; Kurt Eakle for helpful discussions concerning fractionation methods; and Randy Schekman, Eric Pishizky, Jo Anne Wise, and Stephen Johnston for yeast strains. We are particularly grateful to Randy Schekman for helpful discussions throughout the work, and to John Cronan for critical comments on the manuscript. Special thanks are also extended to Angela Cox for expert preparation of the manuscript. These studies were supported by a grant from the National Science Foundation (DCB-8620076) and the Arnold Beckman Scholar Award to V. A. Bankaitis.

Received for publication 9 November 1988 and in revised form 15 December 1988.

References

1. Balch, W. E., W. G. Dunphy, W. A. Braell, and J. E. Rothman. 1984. Reconstitution of the transport of protein between successive compart-
ments of the Golgi measured by the coupled incorporation of N-acetylgalactosamine. Cell. 39:405-416.

2. Biggs, W. E., B. S. Glick, and J. E. Rothman. 1984. Sequential intermediates in the pathway of intercompartmental transport in a cell-free system. Cell. 39:525-536.

3. Boecke, J. D., F. D. LaCroute, and O. R. Fink. 1984. A positive selection for mutants lacking cholinergic GTPase-like activity in yeast: 5-fluoro-oroic acid resistance. Mol. & Gen. Genet. 197:345-346.

4. Botstein, D., S. C. Falco, S. Stewart, M. Brennan, S. Scherer, D. I. Stinchcomb, K. Struhl, and R. Davis. 1979. Sterile host yeast (SHY): a eukaryotic system of biological containment for recombinant DNA experiments. Gene. 8:17-24.

5. Casadaban, M. J., and S. N. Cohen. 1980. Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J. Mol. Biol. 138:179-207.

6. Dunphy, W. G., S. R. Pfeffer, B. W. Wattenberg, B. S. Glick, and J. E. Rothman. 1986. Yeast and mammalian utilize similar cytosolic components to drive protein transport through the Golgi complex. Proc. Natl. Acad. Sci. USA. 83:1622-1626.

7. Enz, S. D., A. Vassarotti, J. Garrett, B. L. Geller, M. Takeda, and M. G. Douglas. 1986. The amino terminus of the yeast F1-ATPase β-subunit precursor functions as a mitochondrial import signal. J. Cell Biol. 102:253-253.

8. Emson, B., P. Novick, and R. Schekman. 1981. Componential assembly of oligosaccharides on exported glycoproteins in yeast. Cell. 25:451-460.

9. Feramisco, J. R., and M. G. 1981. Membrane recycling in secretory cell implications for traffic of products and specialized membranes within the Golgi complex. Methods Cell Biol. 23:399-427.

10. Feldman, R. R., M. Bernstein, and R. Schekman. 1987. Product of SEC53 is required for folding and glycosylation of secretory proteins in the lumen of the yeast endoplasmic reticulum. J. Biol. Chem. 262:9332-9339.

11. Fink, G. 1987. Pseudogenes in yeast. Cell. 49:5-6.

12. Glick, B. S., and J. E. Rothman. 1987. Possible role for fatty acylation enzyme in intracellular protein transport. Nature (Lond.). 326:309-312.

13. Goldstein, A., and J. O. Lampen. 1979. D-P-D-fructosamide fructohydrolase from yeast. Methods Enzymol. 42:504-511.

14. Griffiths, G., and K. Simons. 1986. The trans Golgi network: sorting at the exit site of the Golgi complex. Science (Wash. DC). 234:438-443.

15. Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163-168.

16. Kleid, D. G., D. Yansura, B. Small, D. Dowbenko, D. M. Moore, M. J. Grubman, P. D. McKercher, D. O. Morgan, P. H. Robertson, and H. L. Bachrach. 1981. Chloroquine-resistance protein vaccine for foot and mouth disease: responses in cattle and swine. Science (Wash. DC). 214:1125-1129.

17. Kuo, C., and J. Campbell. 1983. Cloning of Saccharomyces cerevisiae RNA replication genes: Isolation of the CDC24 gene and two genes that compensate for the cdc8-2 mutation. Mol. Cell Biol. 3:1730-1737.

18. Kyte, J., and R. F. Doolittle. 1982. A method for displaying the hydrophobic character of a protein. J. Mol. Biol. 157:105-132.

19. Lipman, D., and W. Pearson. 1988. Rapid and sensitive protein similarity searches. Science (Wash. DC). 227:1435-1441.

20. Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York. 545 pp.

21. Melancon, P., B. S. Glick, V. Malhotra, J. P. Weidman, T. Serafini, M. L. Gleason, L. Orci, and J. E. Rothman. 1987. Involvement of GTP-binding "G" proteins in transport through the Golgi stack. Cell. 51:1053-1062.

22. Mitchison, J. M. 1970. Physiological and cytological methods of Schizosaccharomyces pombe. Methods Cell Physiol. 1:131-150.

23. Novick, P., C. Field, and R. Schekman. 1980. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell. 21:205-215.

24. Pikelney, C. J., J. L. Teem, and M. Rosbash. 1983. Evidence for the biochemical role of an internal sequence of yeast nuclear mRNA introns: implications for U1 RNA and metazoa RNA splicing. Cell. 34:395-403.

25. Riley, M. I., and R. C. Dickson. 1984. Genetic and biochemical characterization of the galactose gene cluster in Kluyveromyces lactis. J. Bacteriol. 158:705-712.

26. Rothman, J. E., R. L. Miller, and L. J. Urban. 1984. Intercellular transport in the Golgi is a dissociative process: facile transfer of membrane protein between Golgi populations. J. Cell Biol. 99:262-271.

27. Rothman, J. E., L. J. Urban, and R. Brands. 1984. Transport of protein between cytoplasmic membranes of fused cells: Correspondence to processes reconstituted in a cell-free system. J. Cell Biol. 99:248-259.

28. Rothstein, R. J. 1983. One-step gene disruption in yeast. Methods Enzymol. 101:202-211.

29. Ruohola, H., and F. Ferro-Novick. 1987. Sec53, a protein required for an early step in secretory protein processing and transport in yeast, interacts with the cytoplasmic surface of the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA. 84:8468-8472.

30. Russell, P., and P. Nurse. 1986. Schizosaccharomyces pombe and Saccharomyces cerevisiae: a look at yeasts divided. Cell. 45:781-782.

31. Salmeron, J. M., Jr., and S. A. Johnston. 1986. Analysis of the Kluyveromyces lactis positive regulatory gene LAC9 reveals functional homology to, but sequence divergence from, the Saccharomyces cerevisiae
32. Salminen, A., and P. J. Novick. 1987. A ras-like protein is required for a post-Golgi event in yeast secretion. Cell. 49:527-538.

33. Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain terminating inhibitors. Proc. Natl. Acad. Sci. USA. 74:5463-5467.

34. Schauer, I., S. Emr, C. Gross, and R. Schekman. 1985. Invertase signal and mature sequence substitutions that delay intercompartmental transport of active enzyme. J. Cell Biol. 100:1664-1675.

35. Sherman, F., G. R. Fink, and J. B. Hicks. 1983. Methods in Yeast Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York. 120 pp.

36. Stevens, T., B. Esmon, and R. Schekman. 1982. Early stages in the yeast secretory pathway are required for transport of carboxypeptidase to the vacuole. Cell. 30:439-448.

37. Teem, J. L., N. Abovich, N. F. Käufer, W. F. Schwindinger, J. R. Warner, A. Levy, J. Woolford, R. J. Leer, M. M. C. van Raamsdonk-Duin, W. H. Mager, R. J. Planta, L. Schultz, J. D. Friesen, H. Fried, and M. Rosbash. 1984. A comparison of yeast ribosomal protein gene DNA sequences. Nucleic Acids Res. 12:8295-8312.

38. Yanisch-Perron, C., J. Vieira, and J. Messing. 1985. Improved M13 phage cloning vectors and host strains: Nucleotide sequences of the M13 mp18 and pUC19 vectors. Gene. 33:103-119.