Resurgent Analysis of the Witten Laplacian in One Dimension

Alexander GETMANENKO

Department of Mathematics, Northwestern University, Evanston IL, U.S.A.;
Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany;
Institute for the Physics and Mathematics of the Universe,
The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, 277-8568, Japan;
Alexander.Getmanenko@ipmu.jp

April 29, 2010

Abstract

The Witten Laplacian corresponding to a Morse function on the circle is studied using methods of complex WKB and resurgent analysis. It is shown that under certain assumptions the low-lying eigenvalues of the Witten Laplacian are resurgent.

I Introduction

The goal of this paper is to study the Witten Laplacian corresponding to a function f on a circle S^1 using the methods of resurgent analysis and complex WKB.

The motivation of this work comes from three sources. Firstly, there is a number of examples in the literature of computing the spectral asymptotics for different Schrödinger equations using the complex WKB method; we are presenting here one more. This example is different in two ways from those described in the literature: namely, the symbol of the Schrödinger operator (as an h-differential operator) contains more that just a principal part, and instead of considering wave functions on the whole \mathbb{R}^1 vanishing at $\pm\infty$, we study periodic boundary conditions.

Secondly, we believe that methods of resurgent analysis can be helpful in precise formulation and proof of the conjecture about the products of solutions of different Witten Laplacians that motivate the study of disc instantons and ultimately of the Fukaya category (see [14 §5.2]). In his next paper the author hopes to calculate hyperasymptotic expansions of the elements of the Witten complex and to see very explicitly how the product of elements of Witten complexes corresponding to two different functions is expressed via contributions from disc instantons.
Thirdly, we want to obtain a connection between WKB and disc instantons in as algebraic way as possible, namely, we want the Planck constant h to be a variable or an asymptotic parameter, not a real number constrained to a small interval. If we succeed in our future research to make an appropriate deformation quantization algebra act on resurgent WKB expansions (perhaps in the spirit of exact deformation quantization, see [4]), we will come closer to understanding of the Fukaya category in terms of modules over some deformation quantization algebra, which is a project of [25]. It is this reason that determined our choice of resurgent analysis as a method of investigation.

Literature review. (Without any ambition of historical accuracy.) Already in the XIXth century Stokes [29] noticed that asymptotic representations of a solution of an ODE in a complex domain are not uniform with respect to the coordinate, or rather, can be made uniform only in certain regions in the complex plane, called later on *Stokes regions.*

In 1970s these ideas found their application in quantum mechanics (e.g., [1, 2]) when the WKB method was extended into the complex domain and asymptotic solutions of the Schrödinger equation were sought in terms of “complex classical trajectories”. This naturally involved taking the inverse Laplace transform of the wave function.

Apparent discontinuity in the asymptotic expansions of solutions of differential equations is known as *Stokes phenomenon*, and the problem of quantitative calculation of this discontinuity as a *connection problem*. See [13] for a clean statement and books on special functions of Olver [26] and Dingle [6] for solutions of connection problems. Malgrange [22] and Sibuya [28] have applied this to irregular singular ODEs.

Finally, it has been noticed (see Écalle [11]) that the asymptotic expansions, although divergent, can be Borel resummed.

These three ideas were nicely (if not completely rigorously) explained and developed in [30] to study the spectrum of a Schrödinger equation precisely enough to catch potentially all exponentially small contributions. Alternative methods of Helffer and Sjöstrand (earlier work) [17] only give estimates of the instanton effect in the spectrum or calculate it to the leading exponential order as in [16]; a similar comment applies to the Maslov’s complex germ method [23].

A machinery for solutions of the spectral problem in 1D using resurgent analysis is explained and illustrated with many examples in [8]. Note also the paper [20] where some resurgent-analytic study of the supersymmetric double-well Schrödinger equation has been done.

It should be noted that in the literature different kind of asymptotic solutions of differential equations are studied: asymptotics with respect to the coordinate as we move farther away from the singular point of a singular differential equation, and asymptotics with respect to a small parameter h singularly perturbing the equation. Ideas in these two setups are similar, but the details of proofs are, to our knowledge, not directly transferable. We are interested in the latter setup.

Let us mention books [27, 5] as systematic texts on resurgent analysis.

The relationship between the Witten, or Fokker-Planck, Laplacian and the
Morse theory was introduced in [34] and made precise in [17]. These authors explain that a Morse function on a compact Riemannian manifold \(M \) defines Laplacians
\[
P^{(k)} = -h^2 \Delta + |\nabla f|^2 + h(\mathcal{L}_f + \mathcal{L}_f^*)
\]
on the space of exterior forms \(\Omega^k(M) \), define spaces \(W^{(k)} \subset \Omega^k(M) \) spanned by eigenfunctions corresponding to its low-lying, i.e. \(O(e^{-c/h}) \) for \(h \to 0^+ \), eigenvalues, and prove that \(W^{(k)} \) together with the de Rham differential form a complex (the Witten complex) isomorphic to the Morse complex of the manifold \(M \) and the function \(f \).

In the one-dimensional case studied here one takes a standard Riemann metric on the circle, identifies \(\Omega^1(S^1) \) with functions on \(S^1 \) and obtains
\[
P^{(0)} = -h^2 \frac{d^2}{dq^2} + (f')^2 - hf''
\]
\[
P^{(1)} = -h^2 \frac{d^2}{dq^2} + (f')^2 + hf''
\]

Fukaya [14] gives intuition to motivate that there should be an \(A_\infty \)-category structure on Witten complexes corresponding to different Morse functions. In its simplest form the conjecture can be stated as follows:

Conjecture I.1. Consider functions \(f_i \) on a manifold \(M \) and Lagrangian submanifolds \(L_i = \text{graph} \ df_i \) in \(T^*M \), \(i = 1, 2, 3 \). Let \(p_{ij} \) be an intersection point of \(L_i \) and \(L_j \) and let \(\psi_{ij} \) be a linear combination of eigenfunctions with small enough eigenvalues of the Witten Laplacian on \(k \)-forms \(P^{(k)} \) corresponding to \(f_i - f_j \) and localized around \(p_{ij} \). Then
\[
\langle \psi_{12} \wedge \psi_{23}, \psi_{31} \rangle_{L^2} \sim \sum e^{-\frac{1}{h} f_\omega} ||\psi_{12}|| ||\psi_{23}|| ||\psi_{31}||
\]
where the integrals are taken over pseudoholomorphic triangles ("disc instantons") as above with vertices \(p_{ij} \).

There has been a substantial effort to understand the Fukaya category in terms of microlocal invariants – note especially [24]. The main difficulty of approaching the Fukaya category through semiclassical analysis has been, in our opinion, the fact that on the right hand side of (1) there appear exponentials \(e^{-c/h} \) with different \(c \in \mathbb{R} \) and that it requires methods of hyperasymptotic analysis to even define what the formula (1) precisely means. We believe that the methods of resurgent analysis, possibly together with related ideas of [10], are a good toolbox to address this difficulty.

It is natural to expect that our WKB approach and the constructible sheaf approach are related by an analog of a Riemann-Hilbert correspondence, yet to be discovered.

Main result. The main result of this chapter will be the following:

Theorem I.2. Given a generic enough Morse function \(f(q) \) in the circle \(S^1 = \mathbb{R}/\mathbb{Z} \) representable as a polynomial in \(\sin 2\pi q \) and \(\cos 2\pi q \) with \(n \) local minima and \(n \) local maxima, then the Witten Laplacian
\[
P = -h^2 \partial_q^2 + |f'(q)|^2 - hf''(q)
\]
with periodic boundary conditions has \(n \) resurgent eigenvalues \(\leq O(h^2) \) corresponding to eigenfunctions that are resurgent in \(h \) except possibly for \(q \in (f')^{-1}(0) \).

The plan of the proof will be explained in section IV after we have discussed the generalities of resurgent analysis in section II and its applications to differential equations in section III.

A couple of comments are due.

The assumption that \(f(q) \) is a generic enough trigonometric polynomial does not seem to be essential to the matter, but simplifies the proofs. We believe that a similar statement holds for any \(f \) satisfying \(f(q) = f(q + 1) \) that can be analytically continued to the whole complex plane. The precise requirement on how generic \(f \) should be taken is formulated in terms of the Newton polygon corresponding to the quantization condition, see Section IX.1.

It is the word “resurgent” in this theorem that constitutes the new result. We are proving that the eigenvalues and eigenfunctions that can be constructed by methods of [17] and were calculated to the first exponential order by [16] in fact possess good enough hyperasymptotic expansions. These expansions will be made explicit in our subsequent work.

The eigenfunctions are claimed to be resurgent with respect to \(h \) everywhere except for \(q \in (f')^{-1}(0) \). Of course, they will be analytic with respect to \(q \) on the whole complex plane, but we do not know if the general theory of resurgent functions (see section III.1) proves resurgence of eigenfunctions for the values of \(q \) where \(f'(q) = 0 \). This, however, does not seem to be any more that an aesthetic setback.

Resurgent functions are formal objects with respect to \(h \), they are in fact classes of functions modulo those that decay faster than any \(e^{-c/h} \) for \(h \to 0^+ \) and \(c \in \mathbb{R} \), so all equalities between resurgent functions must be understood modulo summands of subexponential decay. We believe that the statements made in this chapter can be promoted to the level of actual functions, but do not address this point.

The contribution of this paper is, in our understanding, the following. The Introduction contains a novel research proposal connecting several different ideas in Mathematical Physics. The sections II and III are expository, and their main purpose it to propose terminology that is halfway between those of [5] and [27] and that is relevant for our project. Sections IV, V, VI contain the standard set-up of the complex WKB method for our specific equation. The section VII goes over the derivation of connection formulae given in [9] to make sure that the arguments given by those authors apply equally well in our case; we hope that we were able to explain this derivation more transparently. Sections VIII and X contain a new discussion of the structure and solutions of the quantization conditions obtained for the Witten Laplacian. The example in section XI makes it clear that together with the proof of resurgence of low-lying eigenvalues we have presented a way for effectively calculating them. The method of finding solutions of a quantization condition presented in IX and of proving that these solutions are resurgent is also new and may be used to
improve the level of rigor of other works in resurgent analysis, e.g. [8].

II Preliminaries from Resurgent Analysis

We need to combine the setup of [5] (the resurgence is with respect to the semiclassical parameter \(h \) rather than the coordinate \(q \)) and mathematical clarity of [27] and therefore have to mix their terminology. Also, we are somewhat changing their notation to make sure that typographical peculiarities of fonts do not interfere with clear understanding of symbols. We make sure to build the concepts in such a way that sums of exponents such as \(e^{-1/h} + e^{-2/h} \) as well as expressions involving logarithms, e.g. \(h^k \ln h \), can be treated as resurgent functions.

II.1 Laplace transform and its inverse. Definition of a resurgent function.

Morally speaking, we will be studying analytic functions \(\varphi(h) \) admitting asymptotic expansions \(e^{-c/h}(a_0 + a_1 h + a_2 h^2 + \ldots) \) for \(h \to 0 \) and \(\arg h \) constrained to lie in an arc \(A \) of the circle of directions on the complex plane; respectively, the inverse asymptotic parameter \(x = 1/h \) will tend to infinity and \(\arg x \) will belong to the complex conjugate arc \(A^\ast \). Such functions can be represented as Laplace transforms of functions \(\Phi(\xi) \) where the complex variable \(\xi \) is Laplace-dual to \(x = 1/h \) and \(\Phi(\xi) \) is analytic in \(\xi \) for \(|\xi| \) large enough and \(\arg \xi \in A^\ast \), the copolar arc to \(A \). The concept of a resurgent function will be defined by imposing conditions on analytic behavior of \(\Phi \).

II.1.1 ”Strict” Laplace isomorphism

For details see [5 Pré I.2].

Let \(A \) be a small (i.e. of aperture < \(\pi \)) arc in the circle of directions \(S^1 \). Denote by \(\hat{A} \) its copolar arc, \(\hat{A} = \cup_{\alpha \in A} \hat{\alpha} \), where where \(\hat{\alpha} \) is the open arc of length \(\pi \) consisting of directions forming an obtuse angle with \(\alpha \).

Denote by \(\mathcal{O}^\infty(A) \) the space of sectorial germs at infinity in direction \(A \) of holomorphic functions and by \(\mathcal{E}(A) \) the subspace of those that are of exponential type in the direction \(A \), i.e. bounded by \(e^{K|t|} \) as the complex argument \(t \) goes to infinity in the direction \(A \).

We want to construct the isomorphism

\[
\mathcal{L} : \frac{\mathcal{E}(\hat{A})}{\mathcal{O}(\mathbb{C})^{exp}} \leftrightarrow \mathcal{E}(A^\ast) : \hat{\mathcal{L}},
\]

where \(\mathcal{O}(\mathbb{C})^{exp} \) denotes the space of functions of exponential type in all directions.

Construction of \(\mathcal{L} \). Let \(\Phi \) be a function holomorphic in a sectorial neighborhood \(\Omega \) of infinity in direction \(\hat{A} \). For any small arc \(A' \subset \subset A \) we can choose
ξ_0 such that Ω contains a sector ξ_0 A' with the vertex ξ_0 and opening in the direction A'. Define the Laplace transform

\[\Phi_\gamma(x) := \int_\gamma e^{-x\xi} \Phi(\xi) d\xi \]

with \(\gamma = -\partial(\xi_0 A') \). Then \(\Phi_\gamma \) is holomorphic of exponential type in a sectorial neighborhood of infinity in direction \(A^* \). Cauchy theorem shows that if \(\Phi \) is entire of exponential type, then \(\Phi_\gamma = 0 \), which allows us to define

\[\mathcal{L}(\Phi \mod O(\mathbb{C})^{\exp}) = \Phi_\gamma. \]

The construction of \(\mathcal{L} = \mathcal{L}^{-1} \) will not be used in this paper.

II.1.2 "Large" Laplace isomorphism

The Laplace transform \(\mathcal{L} \) defined in the previous subsection can be applied only to a function \(\Phi(\xi) \) satisfying a growth condition at infinity. At a price of changing the target space of \(\mathcal{L} \) this restriction can be removed as follows. For details see [5, Pré I.3].

Let \(\tilde{A} = (\alpha_0, \alpha_1) \) be the copolar of a small arc, where \(\alpha_0, \alpha_1 \in S^1 \) are two directions in the complex plane, and let \(\gamma : \mathbb{R} \to \mathbb{C} \) be an endless continuous path. We will say that \(\gamma \) is adapted to \(\tilde{A} \) if \(\lim_{t \to -\infty} \gamma(t)/|\gamma(t)| = \alpha_0 \), \(\lim_{t \to +\infty} \gamma(t)/|\gamma(t)| = \alpha_1 \), and if the length of the part of \(\gamma \) contained in a ring \(\{ z : R \leq |z| \leq R + 1 \} \) is bounded by a constant independent of \(R \).

Let us now construct for a small arc \(A \) two mutually inverse isomorphisms

\[\mathcal{L} : O^\infty(\tilde{A})/O(\mathbb{C}) \longleftrightarrow \mathcal{E}(A^*)/\mathcal{E}^{-\infty}(A^*) : \mathcal{L}, \]

where \(\mathcal{E}^{-\infty}(A^*) \) is the set of sectorial germs at infinity that decay faster than any function of exponential type (cf. [5, Pré I.0]).

Construction of \(\mathcal{L} \). Let \(\Psi \) be holomorphic in \(\Omega \), a sectorial neighborhood of infinity of direction \(\tilde{A} \). Let \(\gamma \) be a path adapted to \(\tilde{A} \) in \(\Omega \). It is known that there is a function \(\Phi \) bounded on \(\gamma \) such that \(\Phi - \Psi \in O(\mathbb{C}) \); define

\[\mathcal{L}(\Psi \mod O(\mathbb{C})) := \int_\gamma e^{-x\xi} \Phi(\xi) d\xi \mod \mathcal{E}^{-\infty}(A^*) \]

Definition. Any of the functions \(\Psi(\xi) \) satisfying \(\mathcal{L}(\Psi \mod O(\mathbb{C})) = \psi(x) \) is called a major of the function \(\psi(x) \).

An equivalence class of functions defined on a subset of \(\mathbb{C} \) modulo adding an entire function is also called an integrality class.

The map \(\mathcal{L} \) respects linear combinations and transforms products of resurgent functions into appropriately defined convolutions of majors.
II.1.3 Resurgent functions.

Resurgent functions are usually understood to be functions of a large parameter x. For brevity we will speak of resurgent functions of h to mean resurgent functions of $1/h$.

Definition. A germ $f(\xi) \in \mathcal{O}_{\xi_0}$ is **endlessly continuable** if for any $L > 0$ there is a finite set $\Omega_L \subset \mathbb{C}$ such that $f(\xi)$ has an analytic continuation along any path of length $< L$ avoiding Ω_L.

Definition. (cf. [27, p.122]) Let $A \subset S^1 \subset \mathbb{C}$ be a small arc and let A^* be obtained from A by complex conjugation. A **resurgent function** $f(x)$ (of the variable $x \to \infty$) in direction A^* is an element of $\mathcal{E}(A^*)/\mathcal{E}^{-\infty}$ such that its major $(\mathcal{L}f)(\xi)$ is endlessly continuable.

Remark. [5] calls the same kind of object an ”extended resurgent function”.

Let (cf. [5, Rés I]) $\mathcal{R}(A)$ denote the set of endlessly continuable sectorial germs of analytic functions $\Phi(\xi)$ defined in a neighborhood of infinity in the direction \tilde{A}. Then a resurgent function of x in the direction A^* has a major in $\mathcal{R}(A)$. When we mean a resurgent function $g(h)$ of a variable $h \to 0$, under the correspondence $x = 1/h$ the sectorial neighborhood of infinity in the direction A^* becomes a sectorial neighborhood of the origin in the direction A, and we will talk about a resurgent function $g(h)$ (for $h \to 0$) in the direction A.

II.1.4 Examples of resurgent functions.

Example 1. h^α

The major corresponding to h^ν for $\nu \neq 1, 2, 3, ..$ is $\frac{-1}{2i \nu \sin(\pi \nu)} (-\xi)^{\nu-1}$ and $\xi^{\nu-1} \frac{\ln \xi}{2\pi i \nu}$ for $\nu = 1, 2,$

Example 2. $\ln h$.

Example 3. $\Phi(h) := e^{1/h}$, $\Phi(h) := e^{-1/\sqrt{h}}$. ([5 Rés II.3.4])

Example 4. e^{-1/h^2} is zero as a resurgent function on the arc $(-\pi/4, \pi/4)$, but does not give a resurgent function on any larger arc because there it is no longer bounded by any function $e^{c/h}$ for $c \in \mathbb{R}$.

II.2 Decomposition theorem for a resurgent function

Making rigorous sense of a formula of the type

$$\phi(h) \sim \sum_k e^{-ca_k/h}(a_{k,0} + a_{k,1}h + a_{k,2}h^2 + ...), \quad h \to 0,$$

may be done by explicitly writing an estimate of an error that occurs if we truncate the k-th power series on the right at the N_k-th term. Resurgent analysis
offers the following attractive alternative: if \(\phi(h) \) is resurgent, then the numbers \(c_k \) can be seen as locations of the first sheet singularities of the major \(\Phi(\xi) \), which is expressed in terms of a decomposition of \(\Phi(\xi) \) in a formal sum of microfunctions that we are going to discuss now. Microfunctions, or the singularities of \(\Phi(\xi) \) at \(c_k \) are related to power series \(a_{k,0} + a_{k,1}h + a_{k,2}h^2 + ... \) through the concept of Borel summation, see section [II.3].

II.2.1 Microfunctions and resurgent symbols

Definition. (see [5, Pré II.1]) A microfunction at \(\omega \in \mathbb{C} \) in the direction \(\mathring{A} \subset S^1 \) is the datum of a sectorial germ at \(\omega \) in direction \(\mathring{A} \) modulo holomorphic germs in \(\omega \); the set of such microfunctions is denoted by \(C^\omega(A) = \mathring{O}(A)/O_\omega \).

A microfunction is said to be resurgent if it has an endlessly continuable representative. The set of resurgent microfunctions at \(\omega \) in direction \(\mathring{A} \) is denoted \(\mathcal{R}^\omega(A) \) ([5, Rés I.3.0, p.178]).

Definition. ([5, Rés I.3.3, p.183]) A resurgent symbol in direction \(\mathring{A} \) is a collection \(\dot{\phi} = (\dot{\phi}^\omega)_{\omega \in \mathcal{R}^\omega(A)} \) such that \(\dot{\phi}^\omega \) is nonzero only for \(\omega \) in a discrete subset \(\Omega \subset \mathbb{C} \) called the support of \(\dot{\phi} \), and for any \(\alpha \in A \) the set \(C \setminus \Omega_\alpha \) is a sectorial neighborhood of infinity in direction \(\mathring{A} \).

The set of such resurgent symbols is denoted \(\mathcal{R}(A) \), and resurgent symbols themselves can be written as \(\dot{\phi} = (\dot{\phi}^\omega)_{\omega \in \Omega} \in \mathcal{R}(A) \) or as \(\phi = \sum_{\omega \in \Omega} \dot{\phi}^\omega \in \mathcal{R}(A) \).

Definition. A resurgent symbol is elementary if its support \(\Omega \) consists of one point. It is elementary simple if that point is the origin.

II.2.2 Decomposition isomorphism.

The correspondence between resurgent symbols in the direction \(A \) and majors of resurgent functions in direction \(A \) depends on a resummation direction \(\alpha \in A \), which we will fix once and for all. The direction \(\alpha \) can more concretely be thought of as \(\arg h \) or as the the direction of the cuts in the \(\xi \)-plane that we are going to draw.

Let \(\dot{\phi} = (\dot{\phi}^\omega)_{\omega \in \Omega} \in \mathcal{R}(A) \) be a resurgent symbol with the singular support \(\Omega \), and \(\alpha \in A \). Let \(\Omega_\alpha = \bigcup_{\omega \in \Omega} \omega_\alpha \) be the union of rays in the direction \(\alpha \) emanating from the points of \(\Omega \):

Suppose ([5, p.182-183]) \(\Omega \) is a discrete set (of singularities) in the complement of a sectorial neighborhood of infinity in direction \(\mathring{A} \), and a holomorphic function \(\Phi \) is defined on \(C \setminus \Omega_\alpha \) and is endlessly continuable. Take \(\omega \in \Omega_\alpha \). Let \(D_\omega \) be a small disc centered at \(\omega \). Its diameter in the direction \(\alpha \) cuts \(D_\omega \) into the left and right open half-discs \(D^\omega_- \) and \(D^\omega_+ \) (or top and bottom if \(\alpha = \mathbb{R}_+ \)). If \(D_\omega \) is small enough, the function \(\Phi|_{D^\omega_-} \), resp \(\Phi|_{D^\omega_+} \), can be analytically continued to the whole split disc \(D_\omega \setminus \omega_\alpha \). Denote by \(\text{sing}_{\omega_+}^\omega \Phi \), resp. \(\text{sing}_{\omega_-}^\omega \Phi \), the microfunction at \(\omega \) of direction \(\alpha \) defined by the class modulo \(O_\omega \) of this analytic continuation.
Theorem II.1. There is a function $\Phi \in \mathcal{O}(\mathbb{C}\setminus \Omega\alpha)$, endlessly continuable, such that

$$\text{sing}_{\alpha+}^\omega \Phi = \begin{cases} \omega^\omega & \text{if } \omega \in \Omega \\ 0 & \text{if not} \end{cases}.$$

In this case we write

$$\Phi = s_{\alpha+} \dot{\phi}$$

and call the inverse map $(s_{\alpha+})^{-1}$ the decomposition isomorphism.

An endlessly continuable function $s_{\alpha-} \dot{\phi}$ can be defined analogously.

The maps $s_{\alpha+}, s_{\alpha-}$ respect sums and convolution products (cf. [5, p.185, Rés I, section 4]).

If a resurgent function $\varphi(h) = \varphi(h,t)$ and its major $\Phi(\xi) = \Phi(\xi,t)$ depend, say, continuously in some appropriate sense, on an auxiliary parameter t, the decompositon into microfuctions $(s_{\alpha+})^{-1}\Phi$ will depend on t “discontinuously” – an effect referred to as Stokes phenomenon.

II.2.3 ”Homomorphisme de passage”

The intuitive difference between $s_{\alpha+}$ and $s_{\alpha-}$ is the following: given a major Φ with several singularities on the same ray in the direction α, as on Fig. 2.

Take the “left-most” singularity ω_0 on this ray and draw a cut from it in the direction α. We have a choice how to let this cut encircle the other singularities on the ray $\omega_0\alpha$: either in the clockwise or in the counterclockwise direction.

Depending on this choice, in general, different singularities will be visible on the first sheet. The first, resp., second choice gives the formal sum of microfunctions corresponding to $(s_{\alpha+})^{-1}\Phi$, resp., $(s_{\alpha-})^{-1}\Phi$.

Following [5] p.188, Rés I, but changing their notation, consider the map

$$\mathcal{O}_\alpha := s_{\alpha+} \circ (s_{\alpha-})^{-1} : \mathfrak{R}(A) \to \mathfrak{R}(A)$$

called the “homorphisme de passage”. The map \mathcal{O}_α is determined by its values on elementary resurgent symbols, respects sums and convolution products of majors.
Figure 2: Difference between s_{α^+} and s_{α^-}, where \(\alpha \) is a positive real direction: a) two additional singularities around the horizontal cut; b) and c) the singularities that appear in the formal sum obtained by applying \((s_{\alpha^+})^{-1}\) and \((s_{\alpha^-})^{-1}\), respectively.

Denote, further, \(S_\alpha = \mathcal{O}_\alpha - 1 \). The alien derivative is defined as \(\Delta_\alpha = \ln(\mathcal{O}_\alpha) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}(S_\alpha)^n \). There is an obvious decomposition

\[
\Delta_\alpha = \sum_{\omega \in \mathbb{C}} \hat{\Delta}_\omega,
\]

where \(\hat{\Delta}_\omega \) associates to a resurgent symbol \(\hat{\phi} \) the microfunction centered at \(\omega \) contained in the decomposition of \(\Delta_\alpha \phi \) and the index \(\alpha \) is suppressed on the right hand side. By shifting its argument, we can make this microfunction centered at zero,

\[
(\hat{\Delta}_\omega \phi)(\xi) = (\Delta_\omega \phi)(\xi - \omega),
\]
or, abusing notation, \(\hat{\Delta}_\omega = e^{-\hat{\xi}} \Delta_\omega \).

If \(\phi^\omega \) is a microfunction centered at \(\omega \in \mathbb{C} \), then the support of the formal resurgent symbol \(\Delta_\alpha \phi^\omega \) lies entirely on the ray emanating from \(\omega \) in the direction \(\alpha \).

Equations involving alien derivatives – so-called “alien differential equations” – will be used in section VII.4.

II.2.4 Mittag-Leffler sum

The concept of a Mittag-Leffler sum formalizes the idea of an infinite sum of resurgent functions \(\sum_j \varphi_j(h) \) where \(\varphi_j(h) \) have smaller and smaller exponential type, e.g., \(\varphi = O(e^{-c_j/h}) \) for \(c_j \to \infty \) as \(j \to \infty \).

Following [5, Pr. I.4.1], let \(\Phi_j, j = 1, 2, ... \), be endlessly continuible holomorphic functions, \(\Phi_j \in \mathcal{O}(\Omega_j) \), where \(\Omega_j \) are sectorial neighborhoods of infinity satisfying \(\Omega_j \subset \Omega_{j+1} \) and \(\bigcup_j \Omega_j = \mathbb{C} \). Then [5] show that there is a function \(\Phi \in \Omega_1 \) such that

\[
\Phi - \sum_{j=1}^{n} \Phi_j \in \mathcal{O}(\Omega_{n+1}), \quad n = 1, 2, ...
\]
In this case we will call Φ the **Mittag-Leffler sum** of Φ_1, Φ_2, \ldots.

II.3 Borel summation. Resurgent asymptotic expansions.

Definition. A **resurgent hyperasymptotic expansion** is a formal sum

$$\sum_k e^{-c_k/h}(a_{k,0} + a_{k,1}h + a_{k,2}h^2 + \ldots),$$

where:

i) c_k form a discrete subset in \mathbb{C} in the complement to some sectorial neighborhood of infinity in direction \tilde{A};

ii) the power series of every summand satisfies the Gevrey condition, and

iii) each infinite sum $a_{k,0} + a_{k,1}h + a_{k,2}h^2 + \ldots$ defines, under formal Borel transform

$$B: e^{-c_k/h} \mapsto \frac{\log(\xi - c_k)}{2\pi i(\xi - c_k)},$$

an endlessly continuable microfunction centered at c_k.

The authors of [5] denote by $\mathcal{R}(A)$ (regular, as opposed to the bold-faced, \mathcal{R}) the algebra of resurgent hyperasymptotic expansions.

The right and left summations of resurgent asymptotic expansions are defined in [9] or [5] as follows. Given a Gevrey power series $\sum_{k=1}^{\infty} a_k h^k$, replace it by a function (the corresponding “minor”) $f(\xi) = \sum_{k=1}^{\infty} \frac{a_k}{(k-1)!} \xi^{k-1}$, assume that $f(\xi)$ has only a discrete set of singularities, and consider the Laplace integrals

$$\int_{[0, \alpha]} e^{-\xi/h} f(\xi) d\xi$$

along a ray from 0 to infinity in the direction α deformed to avoid the singularities from the right or from the left, as on the figure [3].

![Integration paths for the left and right summation.](image)

Figure 3: Integration paths for the left and right summation.

After some technical discussion, this procedure defines a resurgent function of h which [5] denote $S_{\alpha, \pm} (\sum_{k=1}^{\infty} a_k h^k)$ and we, for typographical reasons, will denote $\mathcal{B}_{\alpha, \pm} (\sum_{k=1}^{\infty} a_k h^k)$. Comparing the results of the left and right resumptions lead to the notion of the “homomorphisme de passage” discussed earlier.
Proposition II.2. If a resurgent microfunction is given by an asymptotic expansion in integer powers of h, then it defines a resurgent function for all $\arg h$.

Figure 4: Logical relationship of different concepts in resurgent analysis.

II.4 Small resurgent functions.

Definition. (Pré II.4, p.157]) A microfunction $\varphi \in \mathcal{C}(A)$ is said to be a small microfunction if it has a representative Φ such that $\Phi = o\left(\frac{1}{|\zeta|}\right)$ uniformly in any sectorial neighborhood of direction \hat{A} for $A' \subset \subset A$.

For example, h^α for $\alpha > 0$ satisfies that property.

The following definition has been somewhat modified compared to (Rés II.3.2, p.219]).

Definition. For a given arc of direction A, a small resurgent function is such a resurgent function that all singularities of its major ω_α satisfy $\Re \omega_\alpha > 0$, except maybe for one $\omega_0 = 0$, and if $\omega_0 = 0$ then the corresponding microfunction is small in the direction of a large (i.e. $> 2\pi$) arc B with $\hat{B} \supset A$, see figure 5.

Figure 5: Arcs in the definition of a small resurgent microfunction.

For example, $h^\alpha e^{-c/h}$ defines a small resurgent function for any α and $c > 0$.
Lemma II.3. \((\text{[15]})\) A small resurgent function can be represented by a major that is \(o(1/|\xi|)\) around the origin.

We refer to \([15]\) for a proof that if \(g(t)\) is a holomorphic function in the neighborhood of the origin and \(\varphi(h)\) is a small resurgent function, then \(g(\varphi(h))\) is again resurgent. In particular, in this case the function \(1/(c+\varphi(h))\) is resurgent for \(0 \neq c \in \mathbb{C}\), and therefore functions representable by resurgent asymptotic expansions \(B \{ e^{-c/h}(a_0 + a_1 h + a_2 h^2 + ...) \} \) with \(a_0 \neq 0\) have a resurgent inverse. We do not know if an arbitrary nonzero resurgent function has a resurgent inverse.

III Resurgent solutions of a differential equation.

III.1 Existence problem

The book \([27]\) discusses the resurgence properties of solutions of an equation

\[h^m \frac{\partial^m \psi}{\partial q^m} + h^{m-1} P_{m-1}(q) \frac{\partial^{m-1} \psi}{\partial q^{m-1}} + ... + P_0(q) \psi = 0, \tag{2} \]

where \(P_j(q)\) are entire functions on \(\mathbb{C}\); or, equivalently, one discusses why the Laplace transformed equation

\[\left(\frac{\partial}{\partial \xi} \right)^m \frac{\partial^m \Psi}{\partial q^m} + P_{m-1}(q) \left(\frac{\partial}{\partial \xi} \right)^{m-1} \frac{\partial^{m-1} \Psi}{\partial q^{m-1}} + ... + P_0(q) \Psi = 0 \tag{3} \]

has \(m\) linearly independent multivalued endlessly continuable solutions \(\Psi_j(q, \xi)\) giving resurgent solutions of \((2)\) via \(\psi_j(q, h) = L \Psi_j(q, \xi)\).

The author has been unable to verify certain claims in the proof in \([27]\) but believes that their result is correct. We are also aware of existence of the preprint \([12]\), addressing similar questions. The author hopes to offer a further exposition of this background material in his future work.

The methods of \([27]\) should equally well work to prove the existence result in the case when \(P_0, ..., P_{m-1}\) are analytic with respect to \(q\) in the whole complex plane and depend polynomially on \(h\). This covers the equations of the form

\[[-h^2 \partial_q^2 + V_0(q) + hV_1(q)] \psi = E \psi, \tag{4} \]

where either \(E\) is a complex number (“energy level”), or \(E = hE_r\) and \(E_r\) is a complex number (“rescaled energy”). In these cases we expect that the major of \(\psi(E, q, h)\), resp., \(\psi(E_r, q, h)\) can be chosen to holomorphically depend on \(E\), respectively, on \(E_r\), and on \(q\).

We proved in \([15]\) that this would imply that the equation \((4)\) also has resurgent solutions when \(E = h\varphi(h)\) and \(\varphi(h)\) is a small resurgent function.
III.2 Towards the notion of a parameter-dependent resurgent function.

Solutions of equations of type (2) should provide examples of parameter-dependent resurgent functions. An ultimate treatment of this notion should perhaps wait until all the details in [27]'s or other authors' approach to (3) have been clarified and we precisely know the properties of functions Ψ(ξ, q), therefore we will restrict ourselves here to some preliminary remarks.

First of all, resurgent functions were defined in section II.1.3 as equivalence classes of true functions modulo functions of sub-exponential decay for h → 0. If we want to introduce a function ψ(q, h) which is, say, analytic with respect to q and resurgent with respect to h, we can either:
1) require that for any fixed value of q the function ψ(q, h) mod $E^{-\infty}$ is resurgent in h, that ψ(q, h) analytically depends on q as a true function of h, and not assume that majors Ψ(q, ξ) have anything to do with each other for different values of q, or
2) require that there exist a choice of majors Ψ(q, ξ) (as true functions of ξ, not as classes modulo entire functions) which analytically depend on q for q in some open set in C and ξ on a Riemann surface where all corresponding Ψ(q, ξ) are simultaneously defined.

We prefer the latter concept, as it allows us to define a derivative of a resurgent function with respect to a parameter easily, and we hope that this property will eventually be established for solutions of (3) as functions of q and of the coefficients of the equation (3). Working with the former concept is probably more difficult because differentiation with respect to q does not a priori preserve the $E^{-\infty}$-condition with respect to h.

The next issue is substitution of a resurgent function φ(h) into a parameter E of a resurgent function ψ(E, h) whose major Ψ(E, ξ) analytically depends on E. The choice of E in this notation should be suggestive of the main example – when E is a parameter in the Schrödinger equation, say, (6); we will for the moment suppress the dependence on q. Substitution of $E = \phi(h) = E_r h$ where E_r is a complex number is routinely done in [8] and [9], and we will not discuss it here. It is important, however, that locations of singularities of majors $\Psi_r(E_r, \xi)$ of $\psi_r(E_r, h) = \psi(E_r h, h)$ do not depend on E_r, and it is expected from the general theory that majors $\Psi_r(E_r, \xi)$ are analytic with respect to E_r. In [15] we have proven that for a small resurgent function φ(h) the composite function $\psi_r(\phi(h), h)$ is again resurgent and has a hyperasymptotic expansion that one would expect from formal manipulation with hyperasymptotic expansions of φ and ψ_r.

14
III.3 Formal resurgent symbol solutions of the Schrödinger equation.

Given now an h-differential operator $P(q,h\partial_q,h)$, one can consider “actual” solutions of $P\varphi = 0$ that are resurgent with respect to q. On the other hand, we have formal solutions of this equation:

Definition. $\phi(q) = e^{S(q)/h}(a_0(q) + ha_1(q) + ...) $ is called an elementary formal resurgent (WKB) solution of $P\phi$ if $\phi(q)$ defines a resurgent microfunction for any q and if $a_0(q) + ha_1(q) + ...$ satisfies the equation $e^{S(q)/h}P e^{-S(q)/h}$ in the sense of formal power series in h, and the Borel sum of the series defines a resurgent microfunction for every q in an appropriate domain;

A formal resurgent symbol solution, or, for brevity, formal solution, is a formal sum of elementary formal solutions which defines, via decomposition theorem, a resurgent function for every value of q in the considered domain.

Now let us specialize to a Schrödinger-type equation

$$P\psi(q,h) := -h^2q''\psi(q,h) + V(q,h)\psi(q,h) = 0,$$

where $V(q,h) = V_0(q) + hV_1(q)$. Define a turning point of P as a q_* such that $V_0(q_*) = 0$. A turning point is called simple, double, etc., depending on the multiplicity of this zero.

We will define the classical momentum by $p(q) = \sqrt{-V_0(q)}$; two determinations of this square root define a two-sheeted ramified cover of the complex plane of the variable q, which is customarily referred to as the Riemann surface of the classical momentum. Fixing a point q_0 on the Riemann surface of $p(q)$, we further consider a classical action $S(q,h) = \int_{q_0}^q p(q')dq'$ which is defined on the universal cover of \mathbb{C} with the turning points removed.

In a neighborhood of every $q \in \mathbb{C}$ that is not a turning point, there are two linearly independent formal solutions of (5) of the form

$$\phi(q,h) = e^{i\frac{S(q)}{h}}(a_0(q) + a_1(q)h + a_2(q)h^2 + ...).$$

We will say that ϕ corresponds to the first or to the second sheet of the Riemann surface of $p(q)$ depending in whether $dS(q)/dq$ coincides with first or the second sheet value of $p(q)$.

Once the result about existence of resurgent solutions for (5) is established, resurgence of formal solutions $\phi(q,h)$ will follow as well.

The correspondence between actual and formal solutions of a differential equations is not straightforward is the subject of the next subsection.

III.4 Stokes Phenomenon.

Assume $\psi(q,h) = \int_0^q \Psi(q,\xi)e^{-\xi/h}d\xi$ be a Laplace integral representing a q-dependent resurgent function ψ and Ψ and ψ both depend analytically on q in a

1 The word “actual” is put here in the quotation marks because resurgent solutions are still formal objects defined mod $\mathcal{E}^{-\infty}$, and they solve the differential equation hyperasymptotically, i.e. mod $\mathcal{E}^{-\infty}$.

suitable sense. Then we expect that locations of singularities of Ψ move continuously with respect to q, which may result in that the collection of singularities visible on the first sheet will start changing and this result in an apparent discontinuity of the hyperasymptotic expansion with respect to h; see example on figure 6.

Not every time, however, when $c_2(q)$ crosses the cut starting at $c_1(q)$ the hyperasymptotic expansion has to change. It is also possible that the singularity that disappears from the first sheet equals the singularity that simultaneously appears on the first sheet, figure 7. In this situation [30] says that the singularities at $c_1(q)$ and $c_2(q)$ are decoupled and that there is no Stokes phenomenon.

According to [30], for an equation of type (5) the Stokes phenomenon can only happen when q crosses one of at most countably many curves on the complex plane of q. More specifically, let us give the following

Definition. A **Stokes curve** corresponding to P and to resummation direction α is a curve on the Riemann surface of the classical momentum given by $\arg[iS(q) - iS(q_0)] = \alpha$, where $S(q)$ is the classical action.

Stokes curves either go from a turning point to infinity, or end in another turning point. In the last case we call them **double**, or bounded Stokes curves. Stokes curves split the complex plane of q into **Stokes zones** or **Stokes regions**.

The **canonical length** of an unbounded Stokes curve is defined to be infinite, and that of a bounded Stokes curve is taken to be the absolute value of $\int p(q')dq'$ along this curve.

Fix a Stokes zone A. It is explained in [30] that if $\psi_+(q,h), \psi_-(q,h)$ are elementary formal resurgent solutions of (5) corresponding to different determinations of the classical momentum and if $\psi(q,h)$ is an “actual” resurgent solution of (5), then there are resurgent symbols A_+, A_- (which we will by
Figure 7: Two equal singularities at \(c_2(q) \): one appearing on and the other disappearing from the first sheet; \(c_1 \) is drawn as independent of \(q \) for simplicity.

abuse of notation write as if they were functions of \(h \)) such that a hyperasymptotic expansion

\[
\psi(q, h) \sim A_+(h)\psi_+(q, h) + A_-(h)\psi_-(q, h)
\]

holds for all \(q \) inside \(A \). In the resurgent literature this idea is usually expressed by saying that away from the Stokes curves analytic continuation of formal solutions of a differential equation corresponds to analytic continuation of actual solutions.

Given two Stokes zones \(A \) and \(B \) and two hyperasymptotic expansions of the same “actual” resurgent solution \(\psi(q, h) \sim A_+(h)\psi_+(q, h) + A_-(h)\psi_-(q, h) \) and \(\psi(q, h) \sim B_+(h)\psi_+(q, h) + B_-(h)\psi_-(q, h) \) valid in \(A \) and \(B \) respectively, the connection problem consists in finding a \(2 \times 2 \) matrix of resurgent symbols such that

\[
\begin{pmatrix} B_+ \\ B_- \end{pmatrix} = \begin{pmatrix} c_{++} & c_{+-} \\ c_{-+} & c_{--} \end{pmatrix} \begin{pmatrix} A_+ \\ A_- \end{pmatrix}.
\]

This matrix is called a connection matrix.

Typically one solves the connection problem for neighboring Stokes zones first. The basic result is the following:

Theorem III.1. (see [30]) Suppose \(q_1 \) is a simple turning point, and \(L \) is an unbounded Stokes curve emanating from \(q_1 \). Consider two elementary formal WKB solutions \(\psi_- \), \(\psi_+ \) corresponding to two opposite determinations of classical momentum and normalized to be \(1 \) at a point \(q_0 \) in the Stokes region \(A \). Let \(\psi_+ \) be exponentially growing, and \(\psi_- \) exponentially decreasing away from \(q_1 \) along
L. Then a solution representable by a formal resurgent symbol $A_+ \psi_+ + A_- \psi_-$ in the Stokes region A will be representable by a formal resurgent symbol $A_+ \psi_+ + (A_- + C A_+) \psi_-$ in the Stokes region B, where C is the monodromy of the formal solution ψ_+ along the path σ, see figure 8.

Figure 8: The path used in the calculation of the connection coefficient in Theorem III.1. As q_ℓ is a branch point of the classical momentum $p(q)$, we drew a corresponding branch cut.

The equation (6) that will occupy us in this article has double turning points, and the derivation of connection formulae for that case from Theorem III.1 is the subject of section VII.

If a differential equation (5) admits two linearly independent solutions representable (away from the turning points) by resurgent hyperasymptotic power series expansions with respect to h, then its connection coefficients between different Stokes regions will be automatically resurgent. Indeed, calculation of these connection coefficients involves splitting a major of a resurgent solution $\psi(q,h)$ into resurgent microfunctions and dividing those microfunctions by resurgent microfunctions of the type $B(e^{S(q)/h}(a_0(q) + a_1(q)h + ...)$ representing formal WKB solutions of (5) and having resurgent inverses by section II.4.

IV Plan of the proof of the main result.

In order to solve the eigenvalue problem for the equation

$$-h^2 \frac{d^2}{dq^2} + (f')^2 - hf'' \right) \psi(q,h) = E \psi(q,h), \quad E = O(e^{-\text{const}/h}),$$

and to prove theorem I.2 we start by studying in section V its formal solutions. Unlike actual solutions of (6), its formal solutions are not in general univalued functions of q, and they can have monodromies around various loops in the q-plane, discussed in subsection V.3.

In order to pass from formal to actual solutions of (6), we need to study the geometry of its Stokes curves in section VI. For $E = hE_r = O(e^{-\text{const}/h})$, the turning points of (6) will be double, and the derivation of relevant connection formulas will be given in section VII.
In section VIII.1 we will define a transfer matrix F dependent on E_r which is basically the product of connection matrices across the double turning points. It is in terms of F that we will write the quantization condition (20) – the condition on E_r that (6) has an actual solution satisfying $\psi(q) = \psi(q + 1)$.

In section VIII.2 we will rewrite the quantization condition as a polynomial in terms of quantities μ_j and τ_j that are, morally, $const \cdot E_r$ and $const \cdot E_r e^{-\frac{\text{imag}}{h}}$.

The section IX deals with the question how to solve an equation of such form for E_r. We will draw a Newton polygon of the equation by plotting a term $E_j e^{k/h}$ as a point with coordinates (j, k) and present an iterative procedure to recursively obtain smaller and smaller $e^{-\frac{\text{imag}}{h}}$-order terms in the hyperasymptotic expansion of E_r. The outcome of the section IX is that the quantization condition that we set up treating E_r as a complex number, can be solved for E_r and the solution will be a resurgent function in h if all the ingredients μ_j and τ_j of the quantization condition are resurgent (plus some additional technical conditions). Note that we can substitute small resurgent functions for E_r in the equation (6) for $E = hE_r$, as we discussed in detail in [15].

We finish the proof by plotting in section X the Newton polygon corresponding to the quantization condition (21) and concluding that this quantization condition has a correct number of exponentially small solutions.

V Formal WKB solutions and formal monodromies

From now on we let the function $f(q)$ be a polynomial in $\sin 2\pi q$ and $\cos 2\pi q$, real for real q, we let f have n real local minima $q_1, ..., q_{2n-1}$ and n real local maxima $q_2, ..., q_{2n}$ on the period, where $0 < q_1 < q_2 < ... < q_{2n-1} < q_{2n} < 1$. We require $f''(q_j) \neq 0$.

A monodromy of an elementary formal WKB solution along some path $\rho(t)$ on a universal cover \tilde{C} of $\mathbb{C}\{\text{turning pts}\}$ is defined as $\psi(\rho(1))/\psi(\rho(0))$ and will be denoted $\exp[2\pi is]\rho$. Since this expression is a quotient of two resurgent microfunctions representable in the form $e^{S(q)/h}(\text{const} + O(h))$, it is a resurgent microfunction and therefore the power series in h representing s is resurgent.

We are going to calculate various monodromy exponents s_γ, s_δ, etc. as a resurgent symbol, and therefore we do not therefore care about Stokes phenomena in this section.

V.1 Cuts, signs and branches.

In this section we will discuss formal WKB solutions of

$$P\psi := \left[-h^2\frac{\partial^2}{\partial q^2} + (f')^2 - hf''\right]\psi = E\psi,$$ \hspace{1cm} (7)

where E is a complex number.

For $E \neq 0$ and $|E|$ sufficiently small, the classical momentum $p(q) = \sqrt{E - (f'(q))^2}$ is defined on a two sheeted cover of the complex plane of q. For $E = 0$, the two determinations of $p(q)$ are $\pm f'(q)$, and one can think of the Riemann surface of $p(q)$ as of two separate sheets having contact at points q_j where $f'(q_j) = 0$.

19
The formulas related to formal solutions of the equation can be established, for definiteness, for \(E > 0 \), and then analytically continued to other values of \(E \), whenever appropriate.

When \(E > 0 \) and \(|E|\) is sufficiently small, the double turning points \(q_j \) on the real axis for \(E = 0 \) split into pairs \(q_j^- < q_j < q_j^+ (\leq q_{j+1}) \) of simple turning points still on the real axis. The Riemann surface of \(\sqrt{E - (f')^2} \) will be described as the plane with cut connecting \(q_j^- \) to \(q_j^+ \) and going a little below the real axis. To specify the determination of \(p(q, E) \) on the first sheet, we define \(\text{Arg} \left(\frac{E - (f')^2}{2} \right) \) for real values of \(q \) on figure 9.

As \(E \to 0 \), on the first sheet \(ip(q, E) \to f'(q) \).

Figure 9: Choice of \(\text{Arg} \left(E - (f')^2 \right) \)

V.2 Formal solutions.

In order to find a formal WKB solution of \((7) \), we will be looking for a series

\[
y(h, q) = y_0(q) + hy_1(q) + h^2y_2(q) + ...
\]

solving

\[
(P - E) \left\{ \exp \left\{ \int_{q}^{q'} \frac{i}{h} \sqrt{E - (f')^2} + y(q')dq' \right\} \right\} = 0.
\]

We arrive at the Riccati equation

\[
-2y(q)i\sqrt{E - (f')^2} - hy(q)^2 + i \frac{f'f''}{\sqrt{E - (f')^2}} - hy'(q) - f'' = 0,
\]

that allows to calculate \(y_j \)'s recursively:

\[
y_0(q) = \frac{f'f''}{2(E - (f')^2)} - \frac{f''}{2i\sqrt{E - (f')^2}},
\]

etc.

There is a following way to repackage this series in \(h \). Let us argue more generally for an equation

\[
-h^2\partial_q^2\psi + V(q)\psi = E\psi
\]

where \(E \in \mathbb{C} \) and \(V(q) = V_0(q) + hV_1(q) \).
Proposition V.1. There is a power series
\[\tilde{y}(q) = \tilde{y}_0(q) + \hbar \tilde{y}_1(q) + \hbar^2 \tilde{y}_2(q) + \ldots \]
such that
\[\psi = \frac{1}{\sqrt{\sqrt{E - V(q)} + \hbar \tilde{y}}} \exp \left(\frac{i}{\hbar} \int_0^q \left\{ \sqrt{E - V(q)} + \hbar \tilde{y} \right\} dq \right) \]
(9)
is a formal solution of (3). Moreover:
1) Changing the determination of \(\sqrt{E - V(q)} \) changes the sign of \(\tilde{y} \);
2) \(\tilde{y} \) contains only odd powers of \(\hbar \), starting from \(\hbar^1 \), i.e. \(\tilde{y}_{2k} = 0 \).

Proof. Solving a Riccati equation corresponding to (8), e.g. \([21, \S 2.1]\), we can obtain a power series
\[y(q) = y_0 + y_1 \hbar + \ldots \]
such that
\[\exp \left[\int dq \left\{ \frac{i}{\hbar} \sqrt{E - V(q)} + y(q) \right\} \right] \]
is a formal WKB solution of (8). Knowing \(y(q) \) and the relation
\[y(q) = \frac{i}{\hbar} \left\{ \sqrt{E - V(q)} - \sqrt{E - V_0(q)} + \hbar \tilde{y} \right\} - \frac{1}{2} d \ln \left\{ \sqrt{E - V(q)} + \hbar \tilde{y} \right\}, \]
we can obtain a recursive relation for \(\tilde{y}_j \)'s.

To prove the first property, substitute (9) into (8) and obtain after simplification:
\[-\hbar^2 \partial_q \left[-\frac{1}{2} \partial_q \left(\frac{1}{\sqrt{E - V(q) + \hbar \tilde{y}}} \right) \right] + \left(\frac{\sqrt{E - V(q) + \hbar \tilde{y}}}{\sqrt{E - V(q) + \hbar \tilde{y}}} \right)^2 + \frac{V(q) - E}{\sqrt{E - V(q) + \hbar \tilde{y}}} = 0. \]

It is obvious that simultaneous change of the determination of \(\sqrt{E - V(q)} \) and of the sign of \(\tilde{y} \) preserves this equality.

This equality will also be preserved if we simultaneously change the sign of \(\hbar \) and the sign of \(\tilde{y} \), therefore \(\tilde{y} \) contains only odd powers of \(\hbar \). ∎

V.3 Calculation of monodromy exponents.

Given a formal WKB solution \(\psi(q, \hbar) \) of our differential equation and a path \(\rho(t) \), \(0 \leq t \leq 1 \), on the Riemann surface of the classical momentum, we will define the formal monodromy of \(\psi \) along the path \(\rho \) as \(e^{2\pi i s_\rho} = \psi(\rho(1), \hbar) / \psi(\rho(0), \hbar) \) and call \(s_\rho \) the monodromy exponent. In case \(\psi(q, \hbar) \) is representable by a product \(e^{S(q)/\hbar} \) times a resurgent power series in \(\hbar \), the formal monodromy and the monodromy exponent will be resurgent as well. One can think of \(s_\rho \) and \(e^{2\pi i s_\rho} \) as of resurgent asymptotic expansions in \(\hbar \) or as of corresponding microfunctions; we will be suppressing this distinction.

As before, let \(\gamma_k \) (resp., \(\gamma_k' \)) be a counterclockwise loop around the pair of turning points \(q_k, q_k' \) on the first (resp., second) sheet of the Riemann surface of the momentum, and denote \(e^{2\pi i s_{\gamma_k}} \) and \(e^{2\pi i s_{\gamma'_k}} \) the corresponding monodromies of formal WKB solutions along these loops. Analogously, let \(e^{2\pi i s_{\gamma_k}} \) and \(e^{2\pi i s_{\gamma'_k}} \)
be the monodromies of formal solutions along the figure-eight loops shown on the Figure 10.

It is elementary to calculate directly the leading powers of \hbar in the power series representing resurgent symbols s_{γ_k}. In order to derive the corresponding expansions of s_{γ_k}', s_{δ_k}, s_{δ_k}', one argues as follows for γ_k', and similarly for δ_k and δ_k'.

Lemma V.2. We have $s_{\gamma_k} + s_{\gamma_k}' = -1$.

Proof. Denote $V(q) = (f'(q))^2 - hf''(q)$ and use proposition V.1. If we multiply two formal solutions corresponding to different sheets, we will get $-\frac{1}{\sqrt{E - V(q) + h\bar{y}}}$. Since $h\bar{y}$ can be disregarded for the sake of this argument, and $E - V(q)$ has two zeros inside the contour, the argument of this fraction turns by -2π as we run around γ_k. Hence the lemma. □

Summarizing,

Proposition V.3. The monodromy exponents satisfy the formulas listed on the Figure 10, where the sign \approx means $\mod O(E^2/h) + O(h)$.

![Figure 10: Various formal monodromy exponents](image)

![Figure 11: Paths σ_k and σ_k'](image)
We easily obtain:

Lemma V.4. $e^{-2\pi is\sigma_k} = -e^{2\pi is\sigma'_k}$.

Yet another elementary calculation shows that:

Proposition V.5. We have for k odd

$$
\int_{\sigma_k'} \left[-\frac{f''}{2i\sqrt{E - (f')^2}} \right] dq = \ln \left[-\frac{2f(q_k - \varepsilon)}{\sqrt{E}} \right] (1 + O(E)),
$$

and for k even

$$
\int_{\sigma_k} \left[-\frac{f''}{2i\sqrt{E - (f')^2}} \right] dq = -\ln \left[\frac{2f(q_k - \varepsilon)}{\sqrt{E}} \right] (1 + O(E)).
$$

Here the branch of the logarithm is real for $q_k - \varepsilon$ on the real line to the left of q_k.

Finally, we will define paths σ''_k and $\bar{\sigma}_k$ as on figure 12.

By deforming integration contours one immediately sees that

$$
\begin{align*}
\quad s_{\sigma''_k} &= -s_{\sigma_k} + s_{\delta'_k}; \\
\quad s_{\bar{\sigma}_k} &= -s_{\sigma'_k} + s_{\delta_k}.
\end{align*}
$$

(10)

VI Stokes pattern and the connection problem.

We are interested in the spectrum of the Witten Laplacian

$$
P = -h^2\partial_q^2 + (f')^2 - hf''
$$

with periodic f and periodic boundary conditions on the eigenfunctions. According to the usual philosophy (see, e.g., [8]), we will take the formal WKB solutions of this equation, consider the Stokes curves and the Stokes regions and solve the connection problems between different Stokes regions.

If $\text{arg } h = 0$, the Stokes pattern (i.e. the picture formed by all Stokes curves) for the equation

$$
(-h^2\partial^2_q + (f')^2 - hf'')\psi(q, h) = hE\psi(q, h)
$$

(11)
is as shown on figure 13. Namely, from every real turning point there will emanate four perpendicular Stokes curves two of which will go along the real line and connect nearby real turning points.

As is made clear in [9], it is easier to solve the connection problems when all Stokes curves are simple. Since there are only finitely many turning points inside a period $0 \leq \text{Re } q < 1$, there is a number $\alpha_0 > 0$ that for $0 < \arg h < \alpha_0$ there are no double Stokes curves. Then, by continuity considerations customary in resurgent analysis, for these values of $\arg h$ the decomposition of solutions into microfunctions is the same as for $\arg h = 0^+$. Therefore from now on we shall fix such $\arg h > 0$; the Stokes pattern will deform as shown on figure 14. We will further choose ε so that $q_j - \varepsilon$ lie between Stokes curves. These points will be used in the calculation of the connection matrices across the double turning points.
VI.1 Properties of the Stokes pattern

The fact that for a polynomial \(f \) the Stokes pattern does not have any pathologies, is almost obvious and well known. Our \(f \) is not a polynomial, but instead a trigonometric polynomial \(f(q) = P(\sin 2\pi q, \cos 2\pi q) \). Still, this is enough to have a nice Stokes pattern (without, e.g., dense families of Stokes curves), as we will now demonstrate. The condition that \(f \) is a trigonometric polynomial in this paper is imposed in order to be able to prove these lemmas.

Lemma VI.1. If \(f(q) = P(\sin 2\pi q, \cos 2\pi q) \), \(P \) a polynomial, then for \(0 \leq \Re q < 1 \) there are only finitely many critical points.

Proof. Indeed, by passing to \(t = \sin 2\pi q \), one can find an algebraic equation satisfied by sines of all critical points of \(f \). □

Lemma VI.2. Under above assumptions, all the Stokes curves are contained in the union of finitely many real curves given by algebraic equations on \(\Re \) and \(\Im \) of \(\sin 2\pi q \).

Proof. The condition for a point \(q \) to lie on a Stokes curve emanating from a turning point \(q_j \) (real or not), \(\arg[f(q) - f(q_j)] = \alpha \) can be translated into \(\Re [f(q) - f(q_j)] = k\Im [f(q) - f(q_j)] \), which in turn implies an algebraic equation on \(\Re \) and \(\Im \) of \(\sin 2\pi q \). Since there are finitely many critical points \(q_j \), and every real algebraic curve has finitely many connected components ([33 Th.3]), the lemma follows. □

Lemma VI.3. Under above assumptions there is \(0 < \theta_0 \ll 1 \) such that for \(0 < |\arg h| < \theta_0 \) there are no double Stokes curves.

Proof follows from the finiteness of the set

\[\{ \arg[f(q_i) - f(q_j)] \mid q_i, q_j \text{ turning pts} \} \]

□

VII Connection formulae for a double turning point.

Consider the equation

\[[-h^2 \partial_q^2 + (f')^2 - hf''] \psi = E \psi. \] (12)

For \(E \in \mathbb{C} \) and \(0 < |E| \ll 1 \), the equation (12) pairs of simple turning points \(q_i^- \) and \(q_i^+ \), dependent on \(E \), which coalesce to double turning points \(q_j \) when \(E \) becomes zero or \(hE_r \) for \(E_r \in \mathbb{C} \) or \(E_r \) a small resurgent function of \(h \). We are going to imitate [9 section 4.1]’s method of passing to the limit \(E \to 0 \) and deriving connection formulae across Stokes curves emanating from \(q_j \) for \(E = hE_r \) based on connection formulas across Stokes curves emanating from
q_j^+, q_j^- for $E \neq 0$. We will see that [9]’s argument does not change significantly, but a detailed discussion of [9]’s method will stay outside of the scope of this article.

To simplify notation, we will argue in this section for double turning points q_1 where $f''(q_1) > 0$ and q_2 where $f''(q_2) < 0$; similar connection formulae hold true for other double turning points q_j as well.

Take a point q_1 for which $f'(q_1) = 0$. Consider the basis $\psi_-(q, E, h)$, $\psi_+(q, E, h)$ of formal resurgent WKB solutions of (12) normalized to be 1 at some point $q_1 - \varepsilon$ near q_1. For E near 0, the geometry Stokes curves will vary, but the Stokes zones R and R'', figure 15, will remain well-defined.

Let the resurgent symbol $c(E, \zeta)$ be one of the connection coefficient between the Stokes zones R and R'' for different values of E with $|E|$ small enough, given in the basis $\psi_-(q, E)$, $\psi_+(q, E)$.

Figure 15: Deformation of a double turning point into a pair of simple turning points

Although $c(E, \zeta)$ (or, by abuse of notation $c(E, h)$) is discontinuous with respect to E, the corresponding resurgent function defined for $E > 0$ as $C(E, h) = \mathcal{L}[\arg h + c(E, \zeta)]$ and analytically continued for other values of E, is a holomorphic function of E (for $E \in U \subset \mathbb{C}$), i.e. has a representative (as a sectorial germ $\mod E^{-\infty}$) that is holomorphic with respect to E. This follows by the same argument as given in [9, p.60, section 4.1]. This will allow to calculate $c(E, \zeta)$ for $E > 0$, pass to $C(E, h)$, analytically continue the result to the case $E = E_r h$ and pass again to a resurgent symbol $c(E_r h, \zeta)$.

We will obtain a formula for the hyperasymptotic expansion of $C(E, h)$ for E a positive real number, but this hyperasymptotic expansion will look singular for $E \to 0$, and so there is no hope of naively substituting hE_r for E in that expression. When $E \to 0$, the behavior of the microfunction decomposition of $C(E, h)$ resembles the behavior of a WKB asymptotic wave function near a turning point. Namely, $C(E, h)$ is a resurgent function of h for any E, but when $E \in \mathbb{C}\{0\}$ and orbits around the origin, the decomposition of $C(E, h)$ into microfunction undergoes Stokes phenomena, as we shall see shortly. When one analyzes the behavior of a WKB wave function near a simple turning point, one compares it to the Airy function; we will see that $C(E, h)$ for $E \to 0$ should be compared with an expression involving Gamma function.
Figure 16: The Stokes pattern for (12) near \(q_1 \) and the "connection paths" on the first sheet (left) and on the second sheet (right).

Notation. Following [9] and others, denote \(a^\rho = e^{2\pi i \rho} \) the monodromy of a formal WKB solution along a contour (or even any path) \(\rho \) on the Riemann surface of the classical momentum.

VII.1 Connection paths for nonsingular \(E \)

Let us assume \(0 < E << 1 \) and study the "deformed" equation (12), its Stokes pattern and its connection problem.

VII.1.1 Case when \(f \) has a local minimum

Consider the complex plane of \(q \) near the point \(q_1 \) where \(f(q) \) has a local minimum. The equation (12) for \(0 < E << 1 \) will have two turning points \(q_1^- \) and \(q_1^+ \); the Stokes curves and the Stokes zones \(R, R'' \) are shown on fig.16.

Let us consider two formal solutions \(\psi_+(q, h) \) and \(\psi_-(q, h) \) of (12) corresponding to the first and to the second sheets of the Riemann surface of the classical momentum and normalized in such a way that \(\psi_+(q_1^- - \varepsilon) = \psi_-(q_1^- - \varepsilon) = 1 \).

In order to make them univalued functions of \(q \), introduce additional "vertical" cuts on both sheets as shown on fig.16.

For \(E \to 0 \) the formal solution \(\psi_+ \), resp. \(\psi_- \), will behave like \(e^{f(q) - f(q_1^- - \varepsilon)} \), resp. \(e^{-f(q) - f(q_1^- - \varepsilon)} \), and so \(\psi_+ \) and \(\psi_- \) will be dominant (exponentially growing) or recessive (exponentially decreasing) in the direction away from the turning point along the Stokes curves marked by dom or rec on fig.16.

Following [8] and using Theorem [II.1] an actual solution representable by a formal WKB solution \(\psi_+ \) in the Stokes zone \(R \) is representable in the zone...
R'' as the sum of analytic continuations of that formal solution along the paths 1 and 2', fig.16 left, and the path 2' is homotopic to the path 1' of analytic continuation of the formal solution ψ_- from R to R'' concatenated with σ_1.

Similarly, an actual solution representable by the formal solution ψ_- in R is representable by the sum of analytic continuations of ψ_- along the paths 1', 2, 3, fig.16 right, and the paths 2 and 3 are homotopic to the path 1 of analytic continuation of the formal solution ψ_+ from R to R'' concatenated with the path reverse to σ_1 and with the path σ_1', respectively.

Paths 1, 1', 2, 2', 3 are called connection paths in the literature on resurgent analysis. Paths γ_j, σ_j, etc. have been defined on fig.10, 11, and 12.

We see that

$$C(q_1) = \left(\begin{array}{cc} c_{++} & c_{++} \\ c_{+-} & c_{+-} \end{array} \right) = \left(\begin{array}{cc} 1 & (a_{\sigma_1}^{-1} + a_{\sigma_1'}^{-1}) \\ a_{\sigma_1} & 1 \end{array} \right) = \left(\begin{array}{cc} 1 & (a_{\sigma_1}^{-1} (1 + e^{\delta_1})) \\ a_{\sigma_1} & 1 \end{array} \right),$$

where we have used (10).

The monodromies $a^{\delta_1}, a^{\delta_2}$ are analytic in E when $E \to 0$, the limiting behavior of s_{σ_1} will be studied in more details the next subsection.

VII.1.2 Case when f has a local maximum.

Around q_2 which splits for $E > 0$ into two simple turning points q_2^\pm, the horizontal Stokes curves on the first sheet will be recessive.

Let us consider two formal solutions $\psi_+(q, h)$ and $\psi_-(q, h)$ of (12) corresponding to the first and to the second sheets of the Riemann surface of the classical momentum and normalized in such a way that $\psi_+(q_2 - \epsilon) = \psi_-(q_2 - \epsilon) = 1$.

In order to make them univalued functions of q, introduce additional "vertical" cuts on both sheets as shown on fig.17.

In all of the considerations of the q_1 case reverse the roles of the upper and the lower sheets and obtain:

$$C(q_2) = \left(\begin{array}{cc} 1 & a_{\sigma_2}^{\delta_2} \\ (a_{\sigma_2}^{\delta_2})^{-1} + a_{\sigma_2} & 1 \end{array} \right) = \left(\begin{array}{cc} 1 & a_{\sigma_2}^{\delta_2} \\ (a_{\sigma_2}^{\delta_2})^{-1}(1 + a_{\sigma_2}^{\delta_2}) & 1 \end{array} \right),$$

Figure 17: Domain of definition of ψ_+ (left) and ψ_- (right) near q_2
\[
\left(\frac{1}{(a^\sigma' - 1)(a^\gamma')^{-1}} \right).
\]

VII.2 Asymptotic representation of \(C \)

Throughout this subsection \(E \) is a number \(0 < |E| << 1 \) such that all turning points are simple. Let \(q_1^- (E) \) and \(q_1^+ (E) \) be simple turning points near \(q_1 \).

Earlier we have have associated to a connection coefficient \(c(E, h) := c_{-} (E, h) = \exp(2\pi is_\alpha) \) (which is a resurgent symbol) a resurgent function \(C(E, h) \) that is representable by \(c(E, h) \) for \(E > 0 \) and has (as a class mod \(E^{-\infty} \)) a representative holomorphic with respect to \(E \) in a full complex neighborhood of the origin.

Definition. (cf. [9, def.0.6.3]) A parameter-dependent resurgent function \(\varphi(u, h) \) is said to depend regularly on \(u \) near \(u_0 \), its major has the origin as its only singularity in a small disc \(|\xi| < \varepsilon \), independent of \(u \) near \(u_0 \).

Let, further, \(\Phi(u, \xi) \) be a major of a parameter dependent resurgent function \(\varphi(u, h) \). As \(u \to u_0 \), some singularities on the Riemann surface of \(\Phi(u, \xi) \), say, \(\xi = s_1(u) \) and \(\xi = s_2(u) \) may collide, \(s_1(u_0) = s_2(u_0) \), in which case they are called confluent singularities for \(u \to u_0 \), as opposed to other singularities which are isolated for \(u \to u_0 \).

A parameter-dependent microfunction centered at \(\omega(u) \) is called a local resurgence constant, if it has a representative \(\varphi(u, \xi) \) without singularities on the first sheet confluent with \(\omega(u) \) for \(u \to u_0 \). Equivalently, we require that \(\Delta_\omega \varphi = 0 \) for every \(\omega \) in some neighborhood of \(u_0 \) independent of \(u \).

These concepts apply to our situation with \(u \) equal to \(E \) and \(u_0 = 0 \).

Theorem VII.1. (Compare [9, Th.4.1.1, p.61].) We have

\[
C(E, h) = \exp\left(\frac{2\pi i (s_{\delta_1}(E) - s_{\delta_1}(E_0))}{\Gamma(s_{\delta_1} + \frac{1}{2})} \right) C^{\text{red}}(E, h),
\]

where \(s_{\delta_1} = s_{\delta_1}(E, h) \) is the monodromy exponent along \(\delta_1 \), whereas \(C^{\text{red}}(E, h) \) is an invertible holomorphic function of \(E \), resurgent with respect to \(h \) and corresponding to an elementary simple resurgent symbol, depending regularly on \(E \) in a neighborhood of 0.

Remark. One can see from the integral representations given in [3] that the function \(\frac{h^{-s_{\delta_1}}}{\Gamma(s_{\delta_1} + \frac{1}{2})} \) is resurgent with respect to \(h \) and has a representative (as a class modulo \(E^{-\infty} \)) that is holomorphic with respect to \(E \). However, the function \(h^{-s_{\delta_1}} \) and \(\Gamma(s_{\delta_1} + \frac{1}{2}) \) are not resurgent by themselves because they do not satisfy the growth conditions for \(h \to 0^+ \).

A more precise calculation of \(C^{\text{red}} \) is carried out below by using the exact matching method.

Proof of the theorem.
In the subsection VII.4 we will give a proof (compare [9, p.58]) that \(c \) satisfies the following local resurgence equation (see section II.2.3 for notation)
\[
\tilde{\Delta}_{-in\omega_{\gamma_1}} c = \frac{(-1)^{n-1}}{n} a^{-n\delta_1} c \quad (n \in \mathbb{Z}\setminus\{0\})
\] (14)
and its minor has no other confluent singularities than the integral multiples of \(\omega_{\gamma_1} = \int_{\gamma_1} i \sqrt{E - [f'(q)]^2} dq \).

To write a general solution of that resurgence equation, recall that [5, Pro I.4.3] states (up to rescaling of \(x = 1/h \)) that if for a microfunction \(a \)
\[
\tilde{\Delta}_{2\pi in\omega} a = \frac{(-1)^{n-1}}{n} e^{-2\pi inx} a \quad \text{for} \quad n \in \mathbb{Z}^* = \mathbb{Z}\setminus\{0\},
\]
\[\Delta_\omega a = 0 \quad \text{for} \quad \omega \notin 2\pi i \mathbb{Z}^*, \]
then
\[
(sa)(x) = (x/e)^x \sqrt{2\pi} / \Gamma(x + 1/2)(sb),
\] (15)
where \(\Delta_\omega b = 0 \) for all \(\omega \in \mathbb{C} \) close enough to the center of the microfunction \(b \). Note also [3] for an excellent exposition of resurgence properties of the gamma function.

Take \(s_{\delta_1} \) as a new resurgent variable instead of \(x = 1/h \); then the resurgence equation found earlier becomes
\[
\tilde{\Delta}_{2\pi in\omega} \left(s_{\delta_1}\right) c = \frac{(-1)^{n-1}}{n} e^{-2\pi ins_{\delta_1}} c,
\]

hence, by (15),
\[
(sc)(E, h) = (s_{\delta_1}e^{-s_{\delta_1}}) \sqrt{2\pi} \frac{\Gamma(s_{\delta_1} + 1/2)}{\Gamma(s_{\delta_1} + 1/2)} s(c'(E, h)),
\]
for a local resurgence constant \(c' \).

Since \((h s_{\delta_1})^{-s_{\delta_1}}\) is a local resurgence constant as well, we can absorb it in \(C' \) and obtain a new local resurgent constant \(C^{red} \) whose resurgent symbol is \(c^{red}(E, h) \):
\[
C(E, h) = \sqrt{2\pi h^{-s_{\delta_1}}} \frac{\Gamma(s_{\delta_1} + 1/2)}{\Gamma(s_{\delta_1} + 1/2)} s(c^{red}(E, h))
\] (16)
The facts that \(C^{red} \) is holomorphic in \(E \) and invertible and that the symbol \(c^{red} \) is elementary and simple for all \(0 \neq E \in \mathbb{C} \) can be shown as in [9].

The contributions to the connection coefficients \(C(E, h) \) due to the turning points far away are of the exponential order negative the length of some double Stokes curves for appropriate arg \(h \). This is what some authors probably mean when they say that different turning points are “decoupled”.

It is clear that analogous statements will hold for the formal monodromy along \(\sigma'_2 \).

\[\footnote{This equation is a local resurgence equation in the following sense: the statement about the alien derivative should hold for \(|E|\) small enough (how small, depends on \(n \)), and the equality is true only modulo microfunctions whose supports are separated from zero for \(E \to 0 \).} \]
VII.3 Calculation of C^{red} by the exact matching method.

In this section we will take the formula (13) for the connection coefficient and pass to the limit when E stops being a positive real number and becomes hE_r.

We will use the fact that hE_r can be substituted into the fraction $\frac{\hbar^{-s\delta_1}}{\sqrt{(s\delta_1 + \frac{1}{2})}}$ easily. Thus, the real task will be to calculate $c^{\text{red}}(E, h)$ for E replaced by hE_r.

We are studying the connection problem across the double turning point q_k, $k = 1, 2, ..., 2n$, for the differential equation

$$\left[-\hbar^2 \partial_q^2 + V(q) + hV_1(q)\right] \psi = hE_r \psi,$$

where in our case $V(q) = [f'(q)]^2$ and $V_1(q) = -f''(q)$.

The exact matching method given in [9, §5.1.1, p.74] for the Schrödinger equation without the $hV_1(q)$ term and the argument justifying it applies equally well to our case. It would be perhaps desirable to give a more detailed treatment of this method and its proof, as we plan to do elsewhere.

For odd j, we will denote by c'_j the limit of the monodromy $\exp(-2\pi i s\delta_1)$ of formal solutions of (12) when a positive real number E is replaced by hE_r, and for even j let c_j denote the corresponding limit of $e^{2\pi i s\delta_1}$.

To simplify notation, we are going to treat two representative double turning points q_1 and q_2, where $f(q)$ has a local minimum and a local maximum, respectively; the analogous formulas will hold for other q_j as well.

VII.3.1 Exact matching method around q_1.

Instead of calculating the monodromies of formal solutions of (17), we will calculate them for the equation

$$\left[-\hbar^2 \partial_q^2 + V(q) + h(V_1(q) - V_1(q_1))\right] \psi = h(E_r - V_1(q_1)) \psi = hE'_r \psi \quad (18)$$

and then substitute $E'_r = E_r - V_1(q_1)$ in the answer. Denote by \tilde{c}^{red}, $\tilde{s}\delta_1$ etc. the objects defined from the equation (18) similarly to c^{red}, $s\delta_1$ etc. for (17).

We will calculate the asymptotic expansion in \hbar representing $\tilde{c}^{red}(E, h)$ for $0 < E << 1$ from the formula

$$s(\tilde{c}^{red}(E, h)) = \exp(2\pi i \tilde{s}\delta_1) \left[\frac{\sqrt{2\pi \hbar^{-\tilde{s}\delta_1}}}{\Gamma(\tilde{s}\delta_1 + \frac{1}{2})} \right]^{-1},$$

and then substitute hE'_r for E into this power series.

Easy algebra shows that

$$\exp(2\pi i \tilde{s}\delta_1) = -i \exp \left(\frac{i}{\hbar} \Delta S + \Delta R + O(h) \right),$$

where

$$\Delta S(E, q_0) = \int_{q_1} \sqrt{E - (f')^2} dq', \quad \Delta R = \int_{q_1} \frac{f'' - f''(q_1)}{2i \sqrt{E - (f')^2}} dq.$$
with determinations of the square root given as on figure 9

The Stirling formula (applied for \(|h| \to 0\) with \(E\) fixed) together with the property \(\tilde{s}_\delta + \frac{1}{2} = -\tilde{s}_\gamma\) and the definition \(\omega_\gamma = \int_{\gamma} \sqrt{E - |f'(q)|^2} dq\) yield

\[
\frac{\sqrt{2\pi h^{-\tilde{s}_\delta}}}{\Gamma(\tilde{s}_\delta + \frac{1}{2})} = \exp \left(\frac{1}{h} \left(-\frac{\omega_\gamma}{2\pi} + \frac{\omega_\gamma}{2\pi} \ln \left[-\frac{\omega_\gamma}{2\pi} \right] \right) \right) (1 + O(h)).
\]

Therefore

\[
\tilde{c}^{\text{red}}(E, h) = -i \exp \left\{ \frac{1}{h} \left[i \Delta S + \frac{\omega_\gamma}{2\pi} \ln \left[-\frac{\omega_\gamma}{2\pi} \right] + \Delta R \right] \right\} (1 + O(h)).
\]

An elementary but lengthy calculation shows that \(i \Delta S + \frac{\omega_\gamma}{2\pi} \ln \left[-\frac{\omega_\gamma}{2\pi} \right]\) is analytic with respect to \(E\) for \(E\) near zero, and

\[
i \Delta S + \frac{\omega_\gamma}{2\pi} \ln \left[-\frac{\omega_\gamma}{2\pi} \right] = 2[f(q_1) - f(q_1 - \varepsilon)] - \int_{q_1} \frac{E dq}{2i \sqrt{E - f'(q)^2}} - \frac{\omega_\gamma}{2\pi} \ln \left[-\frac{\omega_\gamma}{2\pi} \right] + O(E^2).
\]

Using results of section V.3 we have

\[
\int_{q_1} \frac{dq}{2i \sqrt{E - f'(q)^2}} = \frac{1}{f''(q_1)} \int_{q_1} \frac{f''(q) dq}{2i \sqrt{E - f'(q)^2}} - \frac{1}{f''(q_1)} \int_{q_1} \frac{f''(q) - f''(q_1) dq}{2i \sqrt{E - f'(q)^2}} = - \frac{1}{f''(q_1)} \ln \left[-\frac{2f'(q_1 - \varepsilon)}{\sqrt{E}} \right] (1 + O(E)) - \frac{1}{f''(q_1)} \Delta R,
\]

and also

\[
-E \int_{q_1} \frac{dq}{2i \sqrt{E - f'(q)^2}} - \frac{\omega_\gamma}{2\pi} \ln \left[-\frac{\omega_\gamma(E)}{2\pi} \right] = E \left\{ \frac{1}{f''(q_1)} \ln \left[-\frac{2f'(q_1 - \varepsilon)}{\sqrt{E}} \right] + \frac{1}{2f''(q_1)} \ln \left(\frac{E}{2f''(q_1)} \right) \right\} + o(E) = \frac{E}{f''(q_1)} \ln \left[-\frac{2f'(q_1 - \varepsilon)}{\sqrt{2f''(q_1)}} \right] + o(E).
\]

Now we can substitute \(E = hE'_r\) in the above expression and calculate the connection coefficient for the equation (18) (up to a factor \((1 + O(h) + O(E)))

\[
\exp \left[\frac{E_r'}{f''(q_1)} \ln \left[-\frac{2f'(q_1 - \varepsilon)}{\sqrt{2f''(q_1)}} \right] + \left(\frac{E_r'}{f''(q_1)} - 1 \right) \Delta R \right],
\]

or

32
where it is important that ΔR as a function of E is bounded for $E \to 0$. Inserting $E'_r = E_r + f''(q_1)$, obtain:

$$e^{2\pi is_1} \bigg|_{E=hE_r} \approx - \frac{i\sqrt{2\pi h}}{\Gamma\left(\frac{E_r + f''(q_1)}{2f''(q_1)} + \frac{1}{2}\right)} \exp\left[\frac{E_r + f''(q_1)}{f''(q_1)} \ln \left[- \frac{2f'(q_1 - \varepsilon)}{\sqrt{2f''(q_1)}}\right]\right] \times$$

$$\times \exp\left(\frac{E_r}{f''(q_1)} \Delta R + \frac{2[f(q_1) - f(q_1 - \varepsilon)]}{h}\right).$$

We will need this result for E_r not a complex number, but a resurgent function of negative exponential type, in which case we can simplify:

$$c'_1\bigg|_{E_r=O(h)} = e^{2\pi is_1} \bigg|_{E=hE_r=O(h^2)} \approx \frac{2i\sqrt{\pi} f'(q_1 - \varepsilon)}{\sqrt{h} f''(q_1)} e^{-2[f(q_1) - f(q_1 - \varepsilon)]/\hbar},$$

where \approx means that an equality holds up to a factor $1 + O(h)$.

VII.3.2 Exact matching method around q_2.

Following the same line of thought for the situation around the turning point q_2, we conclude

$$c_2 \approx -E_r \frac{i\sqrt{\pi h}}{2\sqrt{|f''(q_2)|} f'(q_2 - \varepsilon)} e^{-2[f(q_2) - f(q_2 - \varepsilon)]/\hbar},$$

where \approx stand for an equality up to a factor $(1 + O(h))$.

VII.4 Alien differential equation for the connection coefficient.

We will derive here an alien differential equation of a connection coefficient $c = e^{2\pi is_1}$, where $q_1 \in \mathbb{R}$ is a local minimum of the function f. Up to small details, a similar argument can be repeated for a local maximum of f as well.

The main theoretical ingredient is the following:

Theorem VII.2. (7) Let γ be a path on the Riemann surface of the momentum (closed or not). Let a^γ the monodromy of the formal solution along γ. Fix a resummation direction, or arg h, to be α. Then:

1) If γ intersects no Stokes curves in direction α, then $\Delta_\alpha a^\gamma = 0$;

2) same if γ intersects a simple Stokes curve;

3) if γ intersects a double Stokes curve in the direction α with a period cycle ρ, then $\sigma_{\alpha} a^\gamma = (1 \pm a^\rho) a^\gamma$.

The period cycle of a double Stokes curve is a closed path ρ encircling both ends of the double Stokes curve and oriented in such a way that the exponential type of a^ρ is negative, figure 18.
Figure 18: A period cycle of a double Stokes curve

We will consider the equation (12) for $0 < E << 1$, but for all possible values of $\arg h$. As we know, the Stokes curves depend on the resummation direction $\arg h$. In particular, for $\arg h = \pm \pi/2$ there will be a short double Stokes curve connecting q_1^- and q_1^+, and for $\arg h$ close to these two values the Stokes pattern will “bifurcate” as shown on figures 19 and 21.

Figure 19: Bifurcation of the Stokes pattern around q_1 for $\arg h = \pi/2 \pm 0$.

Consider the connection problem for resurgent solutions of (12) from a neighborhood of the point a to the neighborhood of b shown on fig. 19. Let ψ_+ and ψ_- be, as usual, formal WKB solutions such that $\psi_+(a) = \psi_-(a) = 1$. They will be univalued functions of q once we make a cut between q_1^- and q_1^+ and a horizontal cut (dashed line) to the right of q_1^+.

For $\arg h = \pi/2 + 0$ the actual solution of (12) represented by ψ_+ at a is represented by $\psi_+ + (a^{\ell_1} + a^{\ell_2}) \psi_-$ at b; for $\arg h = \pi/2 - 0$ the representation at b is $\psi_+ + (a^{\ell_1})\psi_-$. Since $\psi_-(b)$ is a resurgence constant, we obtain

\[
\sigma_{\pi/2} a^{\ell_1} = a^{\ell_1}(1 + \sigma_{\pi/2} a^{\delta_1})^{-1}
\]

Using the definition of the alien derivative as $\text{Ln} (\sigma_\alpha)$, obtain (14) for positive n.

34
Now let us study a similar bifurcation of the Stokes pattern for $\text{Arg } h = -\frac{\pi}{2} \pm 0$.

For $\text{Arg } h = -\pi/2 + 0$ the solution represented by ψ_+ at a is represented by $\psi_+ + (a^{l_1'} + a^{l_2'})\psi_-$ at b; for $\text{Arg } h = -\pi/2 - 0$ the representation at b is $\psi_+ + (a^{l_1'})\psi_-$.

Since $\psi_+(b)$ is a resurgence constant, therefore

$$s_{-\pi/2+0}(a^{l_1'} + a^{l_2'}) = s_{-\pi/2-0} a^{l_1'};$$

$$\sigma_{-\pi/2}(a^{l_1'} + a^{l_2'}) = a^{l_1'}.$$

Using the fact that σ is a multiplicative homomorphism get:

$$\sigma_{-\pi/2}(a^{l_1'} (a^{l_1} + a^{l_2})) = a^{l_1} \sigma_{-\pi/2} a^{l_1};$$

$$(a^{l_1'})^{-1} \sigma_{-\pi/2}(-1 + a^{l_1} a^{l_2'}) = \sigma_{-\pi/2} a^{l_1};$$

$$a^{l_1} \sigma_{-\pi/2} (1 - (a^{l_1})^{-1}) = \sigma_{-\pi/2} a^{l_1}.$$
We will now use the equality \(\sigma_{-\pi/2}(1 - (a^n)^{-1}) = 1 - (a^n)^{-1} + r \), where the exponential type of \(r \) is estimated by the canonical length of the Stokes curves for \(\arg h = \pi/2 \) starting at \(q_1^2 \). Modulo terms of that exponential type, obtain:

\[
\sigma_{-\pi/2}a^{\ell_1} \approx a^{\ell_1}(1 + a^{\delta_1}),
\]

and taking the logarithm of \(\sigma_\alpha \), obtain the part of \([14]\) for negative \(n \).

VIII Transfer matrix and quantization condition.

In this section we are studying the quantization condition for the Witten Laplacian with the superpotential \(f \) having \(n \) local minima and \(n \) local maxima. The eigenvalue of the Witten Laplacian in this section will be written as \(hE_r \), \(E_r \in \mathbb{C} \).

Let \(\phi_+, \phi_- \) be the formal resurgent solutions of

\[
(-h^2 \partial_x^2 + [f']^2 - hf'')\phi = hE_r \phi
\]

(19)
corresponding to the first and second sheet of the Riemann surface, normalized in such a way that \(\psi_+(q_0) = \psi_-(q_0) = 1 \) and defined on the domains (complex plane with vertical cuts starting at \(q_j \)) shown on fig.22.

![Figure 22: Domains of \(\phi_+ \) and \(\phi_- \).](image)

VIII.1 The transfer matrix.

We would like to write down a condition that for a given \(E_r \) our equation [19] has a periodic solution, \(\varphi(q, h) = \varphi(q+1, h) \). After that, the eigenvalue problem for [19] will reduce to solving that condition with respect to \(E_r \).

The following definition of the transfer matrix \(F \) will in spirit resemble the definition of the connection matrices between two Stokes zones. Suppose an actual solution \(\varphi(q, h) \) is representable as \(A_- \psi_- + A_+ \psi_+ \) around \(q_0 \), where \(A_- \) and \(A_+ \) are some constant resurgent symbols and \(\psi_- \) and \(\psi_+ \) the elementary formal solutions of our differential equation with, to fix ideas, \(\psi_-(q_0) = \psi_+(q_0) = 1 \),
and, as we assume the statements of section III.1, \(q_0 \in \mathbb{C}\) can be chosen arbitrarily so that \(f'(q_0) \neq 0\). Since the coefficients of (19) are periodic, the function \(\varphi(q+1)\) will also be its solution, and therefore representable as \(B_\varphi \psi_- + B_+ \psi_+\).

We will define the transfer matrix \(F\) by the relation

\[
\begin{pmatrix}
B_- \\
B_+
\end{pmatrix} = F \begin{pmatrix}
B_- \\
B_+
\end{pmatrix}.
\]

This matrix \(F\) is obtained as a composition of analytic continuations of formal solutions inside the Stokes regions and connection matrices between different Stokes regions, as explained below.

The entries of the matrix \(F\) are formal resurgent symbols dependent on \(E_r\).

It is clear that \(E_r\) is an eigenvalue of the Witten Laplacian if and only if it is a solution of the following quantization condition:

\[
\det(F(E_r) - \text{Id}) = 0.
\]

In fact, we will presume that \(E_r\) is a number to set up this equation, then solve it and find its resurgent solutions, then by [15] one can substitute \(E_r\) into the original equation and obtain its resurgent solutions satisfying the periodic boundary conditions.

VIII.2 From connection matrices to quantization condition

If in the basis \(\psi_+, \psi_-\) of formal WKB solutions such that \(\psi_+(q_1 - \varepsilon) = \psi_-(q_1 - \varepsilon) = 1\) the connection matrix across the turning point \(q_1\) equals \(C\), then in the basis \(\phi_+, \phi_-\) of formal WKB solutions such that \(\phi_+(q_0) = \phi_-(q_0) = 1\) the corresponding matrix will be written as

\[
\begin{pmatrix}
\phi_+(q_1 - \varepsilon) & 0 \\
0 & \phi_-(q_1 - \varepsilon)
\end{pmatrix}^{-1} C \begin{pmatrix}
\phi_+(q_1 - \varepsilon) & 0 \\
0 & \phi_-(q_1 - \varepsilon)
\end{pmatrix}.
\]

Composing connection matrices from the Stokes zone containing \(q_1 - \varepsilon\) (cf. fig. [14]) to the zone containing \(q_2 - \varepsilon\), from the zone containing \(q_2 - \varepsilon\) to the zone containing \(q_3 - \varepsilon\), etc, to the zone containing \((q_1 - \varepsilon) + 1\), obtain:

Proposition VIII.1. In the basis \(\phi_+, \phi_-\) the transfer matrix \(F\) equals

\[
F = \left(\begin{array}{cc}
\phi_+(1) & 0 \\
0 & \phi_-(1)
\end{array}\right) C^{(q_2 - \varepsilon)} \left(\begin{array}{cc}
\phi_+(q_2 - \varepsilon) & 0 \\
0 & \phi_-(q_2 - \varepsilon)
\end{array}\right) \times \ldots
\]

\[
\ldots \times \left(\begin{array}{cc}
\phi_+(q_1 - \varepsilon) & 0 \\
0 & \phi_-(q_1 - \varepsilon)
\end{array}\right) C^{(q_1 - \varepsilon)} \left(\begin{array}{cc}
\phi_+(q_1 - \varepsilon) & 0 \\
0 & \phi_-(q_1 - \varepsilon)
\end{array}\right).
\]

Here \(C^{(q_j - \varepsilon)}\) is a connection matrix across a double turning point \(q_j\) in the basis of formal WKB solutions normalized to 1 at \(q_j - \varepsilon\), as in section VII.
The product of the matrices in proposition VIII.1 has the structure

$$F = \left(\begin{array}{cc} B_{2n} & B'_{2n} \\ B'_{2n} & B_{2n} \end{array} \right) \left(\begin{array}{cc} 1 & c_{2n} \\ c'_{2n} & 1 \end{array} \right) \left(\begin{array}{cc} A_{2n-1} & A'_{2n-1} \\ A'_{2n-1} & A_{2n-1} \end{array} \right) \left(\begin{array}{cc} 1 & c_{2n-1} \\ c'_{2n-1} & 1 \end{array} \right) \times \ldots \times$$

$$\times \left(\begin{array}{cc} A_2 & A_2' \\ A_2' & A_2 \end{array} \right) \left(\begin{array}{cc} 1 & c_2 \\ c'_2 & 1 \end{array} \right) \left(\begin{array}{cc} A_1 & A_1' \end{array} \begin{array}{c} 1 \\ c'_1 \end{array} \right) \left(\begin{array}{cc} 1 & c_1 \\ c'_1 & 1 \end{array} \right) \left(\begin{array}{cc} B_0 & B_0' \\ B_0' & B_0 \end{array} \right).$$

Put

$$F' = \left(\begin{array}{cc} B_0 & B_0' \\ B_0' & B_0 \end{array} \right) F \left(\begin{array}{cc} B_0 & B_0' \\ B_0' & B_0 \end{array} \right)^{-1}$$

and put $A_{2n} := B_{2n}B_0$, then

$$F' = \left(\begin{array}{cc} A_{2n} & A_{2n}c_{2n} \\ A_{2n}c'_{2n} & A_{2n}' \end{array} \right) \left(\begin{array}{cc} A_{2n-1} & A_{2n-1}c_{2n-1} \\ A_{2n-1}c'_{2n-1} & A_{2n-1}' \end{array} \right) \times \ldots \times$$

$$\times \left(\begin{array}{cc} A_2 & A_2c_2 \\ A_2c'_2 & A_2' \end{array} \right) \left(\begin{array}{cc} A_1 & A_1c_1 \\ A_1c'_1 & A_1' \end{array} \right).$$

$$F' = \left(\begin{array}{cc} A_{2n}A_{2n-1} + A_{2n}c_{2n}A_{2n-1}c'_{2n-1} & A_{2n}A_{2n-1}c_{2n-1} + A_{2n}c_{2n}A_{2n-1}' \\ A_{2n}c_{2n}A_{2n-1}' + A_{2n}c_{2n}A_{2n-1}c'_{2n-1} & A_{2n}c_{2n}A_{2n-1}' + A_{2n}c_{2n}A_{2n-1}' \end{array} \right) \ldots$$

$$\ldots \left(\begin{array}{cc} A_2A_1 + A_2c_2A_1c'_1 & A_2A_1c_1 + A_2c_2A_1' \\ A_2c_2A_1 + A_2c_2A_1c'_1 & A_2c_2A_1c_1 + A_2c_2A_1' \end{array} \right).$$

Let $\mu_k = c_k c'_k$ and consider what [R] call monodromies along the tunneling cycles:

$$\tau_{2k-1} = c'_{2k-1}A_{2k-1}^{-1}c_{2k}A_{2k-1}^{-1}c_{2k}A_{2k}^{-1}c_{2k+1}A_{2k},$$

where $k = 1, \ldots, n$ and $c_{2n+1} = c_1$.

$$F' = \left(\begin{array}{cc} c_{2n} & 1 \\ 1 & \end{array} \right) \times$$

$$\times \left(\begin{array}{cc} A_{2n}A_{2n-1}c_{2n-1}^{-1} + A_{2n}A_{2n-1}c_{2n-1}^{-1} & A_{2n}A_{2n-1}c_{2n-1}^{-1} + A_{2n}A_{2n-1}c_{2n-1}^{-1} \\ A_{2n}A_{2n-1}c_{2n-1}^{-1} + A_{2n}A_{2n-1}c_{2n-1}^{-1} & A_{2n}A_{2n-1}c_{2n-1}^{-1} + A_{2n}A_{2n-1}c_{2n-1}^{-1} \end{array} \right) \times \ldots$$

$$\ldots \times \left(\begin{array}{cc} c_2 & 1 \\ 1 & \end{array} \right) \left(\begin{array}{cc} A_2A_1c_2^{-1} + A_2A_1'c_2' & A_2A_1c_1c_2^{-1} + A_2A_1' \\ A_2A_1c_2 + A_2A_1'c_2' & A_2A_1c_1c_2 + A_2A_1' \end{array} \right).$$

After some calculations, get

$$F' = \left(\begin{array}{cc} c_{2n}A_{2n}(A_{2n})^{-1} & 1 \\ 1 & \end{array} \right) \left(\begin{array}{cc} \tau_{2n-1}^{-1} + 1 & \mu_{2n-1}\tau_{2n-1}^{-1} + 1 \\ \mu_{2n-1}\tau_{2n-1}^{-1} + 1 & \mu_{2n-1}\mu_{2n}\tau_{2n-1}^{-1} + 1 \end{array} \right) \left(\begin{array}{cc} c_{2n-1} & 1 \\ 1 & \end{array} \right) \times \ldots$$

$$\times \left(\begin{array}{cc} c_2A_2(A_2')^{-1} & 1 \\ 1 & \end{array} \right) \left(\begin{array}{cc} \tau_1^{-1} + 1 & \mu_1\tau_1^{-1} + 1 \\ \mu_1\tau_1^{-1} + 1 & \mu_1\mu_2\tau_1^{-1} + 1 \end{array} \right) \left(\begin{array}{cc} c_1 & 1 \\ 1 & \end{array} \right) A_1' A_2'A_3' \ldots A_{2n-1}' A_{2n}.$$

Define the matrix G by

$$\left(\begin{array}{cc} c'_1 & 1 \\ 1 & \end{array} \right) F' = G \left(\begin{array}{cc} c'_1 & 1 \\ 1 & \end{array} \right),$$

38
then

\[
G = \left(c_{2n+1} A_{2n} (A_{2n}')^{-1} \right)^{-1} \left(\begin{array}{cc} \tau_{2n-1}^{-1} + 1 & \mu_{2n-1} \tau_{2n-1}^{-1} + 1 \\ \mu_{2n-1} \tau_{2n-1}^{-1} + 1 & \mu_{2n-1} \mu_{2n} \tau_{2n-1} + 1 \end{array} \right) \times \ldots
\]

\[
\times \left(c_{2n} A_{2n} (A_{2n}')^{-1} \right)^{-1} \left(\begin{array}{cc} \tau_{2n-1}^{-1} + 1 & \mu_{2n-1} \tau_{2n-1}^{-1} + 1 \\ \mu_{2n-1} \tau_{2n-1}^{-1} + 1 & \mu_{2n-1} \mu_{2n} \tau_{2n-1} + 1 \end{array} \right) A_1 A_2 A_3 \ldots A_{2n-1} A_{2n}.
\]

Let \(k \) be such that \(A_1 A_2 A_3 \ldots A_{2n} = 1 + E_r k \); more precisely:

Lemma VIII.2. For every \(E_r \in \mathbb{C} \) small enough, there exists a resurgent symbol \(k = k(E_r, h) = a_0(E_r) + a_1(E_r) h + a_2(E_r) h^2 + \) such that

\[
A_1 A_2 A_3 \ldots A_{2n} = 1 + E_r k
\]

and \(k \) is holomorphic with respect to \(E_r \).

Remark that the coefficients \(a_j(E_r) \) are also holomorphic with respect to \(E \), as immediately follows from the iterative procedure of calculating them.

Proof of the Lemma. Recall that \(A_j' = \frac{\phi_j(q)}{\phi_j(q - \varepsilon)} \), where \(\phi_j(q, h) \) is the formal solution corresponding to the lower sheet of \(p(q) \). This means that the product \(A_1 A_2 A_3 \ldots A_{2n} \) is the formal monodromy around the loop from \(q_0 \) to \(q_0 + 1 \) of the formal solution corresponding to the second sheet. But for \(E_r = 0 \) this solution can be taken as \(\exp[-(q - q(0)) / h] \) with the trivial monodromy, hence the lemma. \(\square \)

Introduce a new matrix \(G_0 \) by \(G_0 = (1 + E_r k)^{-1} G \).

Lemma VIII.3. The matrix \(G_0 \) can be written in the form

\[
G_0 = \left(\begin{array}{cc} 1 + Eg_{11} & Eg_{12} \\ Eg_{21} & 1 + Eg_{22} \end{array} \right),
\]

where \(g_{ij} \) are resurgent symbols holomorphically dependent on \(E_r \).

Proof. Easily shown by induction. It is true for \(n = 1 \) and a product of two such matrices is again of this form. \(\square \)

The quantization condition can now be rewritten as \(\det(G - I) = 0 \), i.e.

\[
\left(\frac{1}{1 + E_r k} \right)^2 - \text{Tr} G_0 \left(\frac{1}{1 + E_r k} \right) + \det G_0 = 0.
\]
VIII.3 Ingredients of the quantization condition

In order to solve the quantization condition (21) for E_r, it is important to understand the determinant and the trace of the matrix G_0.

Lemma VIII.4. We have

$$\det G_0 = \tau_1 \tau_2 \cdots \tau_{2n-1} \tau_{2n} (1 - \mu_1)(1 - \mu_2) \cdots (1 - \mu_{2n}) = 1 + E_r d,$$

where d depends holomorphically on E_r.

Proof. For the first equality, use multiplicativity of \det and the case $n = 1$. The second equality follows from the expressions for τ_j and μ_j established below. □

To simplify notation, we will calculate τ_j for $j = 1, 2$; the similar formulae will hold for other j’s.

Calculation of τ_1. We know from VII.3.1 that

$$c'_1 = \frac{2 i \sqrt{\pi} f'(q_1) - \varepsilon}{\sqrt{h f''(q_1)}} e^{2 i \{f(q_1) - f(q_1 - \varepsilon)\}/h} (1 + O(h) + O(E_r)),$$

$$c_2 = -E_r \frac{i \sqrt{\pi h}}{2 \sqrt{|f''(q_2)| f'(q_2 - \varepsilon)}} e^{-2 i \{f(q_2) - f(q_2 - \varepsilon)\}/h} (1 + O(h) + O(E_r)),$$

and we are going to calculate that

$$A^{-1}_1 A'_1 = e^{-2 i \{f(q_2 - \varepsilon) - f(q_1 - \varepsilon)\}/h} \frac{f'(q_2 - \varepsilon)}{f'(q_1 - \varepsilon)} (1 + O(h) + O(E_r)).$$

Together, this will yield

$$\tau_1 = c'_1 c_2 A^{-1}_1 A'_1 =$$

$$= E_r \frac{\pi}{\sqrt{f''(q_1) f''(q_2)}} e^{-2 i \{f(q_2) - f(q_1)\}/h} (1 + O(h) + O(E_r)).$$

This is how $A^{-1}_1 A'_1$ is calculated: A_1 and A'_1 are formal monodromies along the contours shown on figure 23.

Figure 23: Integration contours defining A_1 and A'_1.

The exponent is obvious. To find the $O(1)$ term, calculate

$$\int_{q_1 - \varepsilon}^{q_2 - \varepsilon} \left[\frac{f'}{2(E - (f')^2)} - \frac{f''}{2i \sqrt{E - (f')^2}} \right] dq,$$
where the path of integration is chosen on the first sheet.

First summand: When we calculate the difference of \(\int_{q_1 - \varepsilon}^{q_2 - \varepsilon} \frac{f''(f')}{2 \sqrt{E - (f')^2}} dq \) along the paths on the first and on the second sheets, since the function does not change on the first and on the second sheet, we can reduce the question to calculating \(\int_{\gamma_1} f''(f') \frac{dq}{2 \sqrt{E - (f')^2}} \) and this integral is \(-\pi i\).

For the second summand: Notice that the integral on the first sheet from \(q_1 - \varepsilon\) to \(q_2 - \varepsilon\) is

\[
\int_{q_1 - \varepsilon}^{q_2 - \varepsilon} \frac{f''}{2i \sqrt{E - (f')^2}} dq = \int_{q_1 - \varepsilon}^{q_2 - \varepsilon} \frac{f''}{2f'} dq + O(E) =
\]

\[
= \frac{1}{2} \log \left(\frac{f'(q_2 - \varepsilon)}{|f'(q_1 - \varepsilon)|} \right) + \frac{\pi i}{2} + O(E).
\]

A similar calculation works for the second sheet and yields

\[
\int_{q_1 - \varepsilon}^{q_2 - \varepsilon} \frac{f''}{2i \sqrt{E - (f')^2}} dq = -\frac{1}{2} \log \left(\frac{f'(q_2 - \varepsilon)}{|f'(q_1 - \varepsilon)|} \right) + \frac{\pi i}{2} + O(E),
\]

so we get

\[
A_1^{-1} A_1' = e^{-2i\int_{q_2}^{q_1} f'(q - \varepsilon) \frac{dq}{f'(q_1 - \varepsilon)}} f'(q_2 - \varepsilon) f'(q_1 - \varepsilon)^{-1} (1 + O(E)).
\]

Calculation of \(\tau_2 \): yields analogously

\[
\tau_2 = c_2 c'_3 A_2 (A'_2)^{-1} = E_r \pi \frac{\pi}{\sqrt{|f''(q_2)| f''(q_3)|}} e^{-2i\int_{q_2}^{q_1} f'(q - \varepsilon) \frac{dq}{f'(q_1 - \varepsilon)}} (1 + O(h) + O(E_r)).
\]

Remark. Further terms in the asymptotic expansion of \(\tau_j \) can perhaps be calculated similarly to [9, p.82-83].

Calculation of \(\mu_j \): We defined \(\mu_j \) as the products of off-diagonal elements in the connection matrices \(C^{(q_j)} \) obtained in subsection [VII.1]. We have for odd \(j \):

\[
\mu_j = 1 + e^{2\pi i s_j} = 2\pi i (s_j - \frac{1}{2}) (1 + O(E_r) + O(h)) = E_r \pi i \frac{\pi}{f''(q_j)} (1 + O(h) + O(E_r)),
\]

and similarly for even \(j \):

\[
\mu_j = 1 + e^{2\pi i s_j} = E_r \frac{\pi i}{|f''(q_j)|} (1 + O(h) + O(E_r)).
\]

IX Resurgent Solutions of a Resurgent Transcendental Equation

The quantization condition will be an equation on \(E_r \) whose left hand side can be written as a polynomial in \(E_r \), plus a correction that is exponentially small for \(h \to 0^+ \). More precisely, the quantization condition will satisfy the assumptions of the following:
Lemma IX.1. If we have an “approximately” polynomial equation on E_r

\[f_n(E_r, h)E_r^n + a_{n-1}f_{n-1}(E_r, h)E_r^{n-1} + \ldots + a_1f_1(E_r, h)E_r + a_0f_0(E_r, h) = 0 \quad (22) \]

with $|a_k| \leq \left[Ce^{-c/h} \right]^{n-k}$ and $f_k(E_r, h) = 1 + O(E_r) + O(h)$, then its solutions are of exponential type $\leq Ce^{-c/h}$.

Proof is obvious. □

IX.1 Newton polygon

Given an equation of the form (22), for every term $E^j_r (1 + O(E_r)) e^{k/h}$ on its left hand side plot a point with the coordinates (j, k) on the plane and a quadrant with its vertex there and opening in the direction down and to the right. The convex hull of the union of these quadrants will be called the **Newton polygon** of our equation.

E.g., the equation

\[3 + (2 + h)E_r e^{3/h} + h^2E_r e^{4/h} + E^2_r e^{5/h} \]

produces a Newton polygon shown on figure 24.

\[\begin{align*}
E^3_re^{3/h} & \quad E^4_re^{4/h} \\
E^2re^{5/h} & \quad E^3re^{3/h} \\
e & \quad e^{2/h} \\
e^{1/h} & \quad e^{4/h} \\
e^{5/h} & \quad \text{Powers of } E_r \\
1 & \quad \text{Powers of } e^{1/h}
\end{align*} \]

Figure 24: An example of a Newton polygon.

If the equation (22) represents a quantization condition for the Witten Laplacian, it will satisfy the following additional properties:

Property 1. All terms corresponding to the vertices on the boundary of the Newton polygon will be of the form $e^{-c/h}$ times a resurgent (micro)function representable as $g(E_r) + (small)$ and that microfunction has representatives holomorphic with respect to E_r. This follows essentially from the connection formulae and from the properties of a major of a resurgent solution of a differential equation constructed in [27].

Property 2. Singular exponents, i.e. the numbers c in the $e^{-c/h}$-factors of the terms of (22), do not depend on E_r, since the classical action $S(q)$ of the Witten
Laplacian does not depend on \(E_r \). Therefore we can decompose the LHS of (22) into a sum of resurgent microfunctions corresponding to the hyperasymptotic representation \(\sum c_i e^{c_i/h}(...) \) with \(c_i \) independent of \(E_r \).

It will also be important to keep in mind that the construction of a major for substitution of a small resurgent function \(r(h) \) for a holomorphic parameter \(E \) of \(g(E, h) \) implies that the Newton polygon of a composite function can be obtained from the Newton polygons of \(g(E, h) \) and of \(r(h) \) in exactly the same way as expected from formal manipulations with the formulas.

IX.2 Algebraic equation corresponding to an edge of the Newton polygon

Consider an equation \(\mathcal{F}(E_r, h) = 0 \) of type (22) and its corresponding Newton polygon. It is clear that if the exponential type of a resurgent symbol \(\phi(h) \) is not equal to the slope of an edge of the Newton polygon, then such resurgent symbol cannot be a solution of the equation.

Suppose there is an edge of the Newton polygon on the line \(y = kx + b, k > 0 \), and the two extreme vertices on this edge are \(E^{k\ell + b} \) and \(E^{k\ell + n} \). Let us find all resurgent solutions of the equation \(\mathcal{F}(E_r, h) = 0 \) of exponential type \(k \).

A substitution \(E_r = e^{-k/h} E_0 \) performs a shearing transformation on the Newton polygon. If we plot all the terms of the equation \(f_0(E_0, h) = 0 \), where \(f_0(E_0, h) = e^{-b/h} E^{-\ell} \mathcal{F}(e^{-k/h} E_0, h) \), in the axes corresponding to powers of \(E_0 \) and of \(e^{1/h} \) (figure 25), we will see terms on the horizontal axis between \(E_0^0 \) and \(E_0^n \), and all other terms will be below the horizontal axis. We are interested now in finding all resurgent solutions of \(f_0(E_0, h) = 0 \) of zero exponential type; let us show now that in our situation the number of these solutions equals the length \(n \) of the edge.

A substitution \(E_r = e^{-k/h} E_0 \) performs a shearing transformation on the Newton polygon. If we plot all the terms of the equation \(f_0(E_0, h) = 0 \), where \(f_0(E_0, h) = e^{-b/h} E^{-\ell} \mathcal{F}(e^{-k/h} E_0, h) \), in the axes corresponding to powers of \(E_0 \) and of \(e^{1/h} \) (figure 25), we will see terms on the horizontal axis between \(E_0^0 \) and \(E_0^n \), and all other terms will be below the horizontal axis. We are interested now in finding all resurgent solutions of \(f_0(E_0, h) = 0 \) of zero exponential type; let us show now that in our situation the number of these solutions equals the length \(n \) of the edge.

Suppose the algebraic equation corresponding to the upper horizontal edge of the polygon on figure 25 is of the form

\[
A_0 + A_1 E_0 + ... + A_n E_0^n = 0, \quad (23)
\]
where $A_k = a_k + b_k$, where a_k are complex numbers such that the equation $a_0 + a_1 x + ... + a_n x^n$ has only simple roots and b_k are small resurgent functions. This will be our nondegeneracy condition for the superpotential in the Witten Laplacian.

Since A_n is invertible, we can assume $A_n = 1$. Let r be a simple root of this equation modulo $O(h)$, then it is resurgent. Indeed, roots of a polynomial equation analytically depend on the coefficients outside of the discriminant locus. Then, if the coefficients are of the form $\text{const}(\neq 0) + O(h)$, we can use the theorem on resurgence of composition of a holomorphic function and a small resurgent function (\[15\]) to conclude that roots will be resurgent.

The question of whether more degenerate polynomial equations with resurgent coefficients have resurgent roots will be studied elsewhere. Note that the appropriate generality should include resurgent coefficients given by resurgent power series expansions not simply in h, but also in $\ln h$, since this is the form of the tunnel cycle monodromies τ_j.

IX.2.1 Exponentially small corrections – the second Newton polygon

Viète’s formula shows that every one of resurgent roots $r_1, ..., r_n$ of \[23\] has a resurgent inverse; indeed, $r_1...r_n = (-1)^n A_0 / A_n$, so $r_j = (-1)^n A_0 / \prod_{j \neq j'} r_j'$ and every factor of this product is resurgent. Now we replace every $E_0^k e^{-\ell h}$, $k \in \mathbb{Z}$ by $(r + E_1)^k e^{-\ell h}$ and get a new Newton polygon with respect to E_1 and we will look for solutions of the new equation with respect to E_1 which we will require to be exponentially small. That Newton polygon will have E_1^1 as its leading term because it follows from our assumptions that r is multiplicity one.

Write our equation in the form

$$A_0 + A_1 E_0 + ... + A_{n-1} E_0^{n-1} + E_0^n + \sum a_{kl} E_0^k e^{-c \ell / h} = 0,$$

where k is also allowed to be negative. If r is the root of the polynomial part $A_0 + A_1 E_0 + ... + A_n E_0^n = 0$, use an ansatz $E_0 = r + E_1$. Expanding $(r + E_1)^k$ in powers of E_1, obtain

$$B_1 E_1 + ... + B_{n-1} E_1^{n-1} + E_1^n + \sum_{k \geq 0, \ell} e^{-c_\ell / h} b_{kl} E_1^k,$$

where b_{kl} are elementary simple resurgent symbols and with $B_1 = (\text{const} \neq 0) + \phi(h)$ for a small resurgent microfunction ϕ.

The Newton polygon for this new equation now looks like the one on figure \[26\] and it is clear that we get only one exponentially small (or zero) solution.

In case there are term of degree zero in E, there is an upper left edge of the Newton polygon; using its slope, find an ansatz $E_1 = e^{-k/h} E_2$, obtain a Newton polygon for E_2 with the horizontal edge of length one, see figure \[27\].

Let r_1 be the solution of the corresponding linear equation on E_2, and use the ansatz $E_2 = r_1 + E_3$ where E_3 will be required to stay exponentially small.
Again we get a Newton polygon of the same kind. Etc., we keep obtaining exponentially small corrections of smaller and smaller exponential type. On the j-th step we are getting solutions modulo \mathcal{E}^{-N_j}, where N_j is a sum of positive numbers $2|f(q_\nu) - f(q_\nu')|$, where f is the function appearing in (19) and q_ν are its real zeros. Therefore the exponents N_j form a discrete subset of \mathbb{R} and therefore the Mittag-Leffler sum of corrections that we obtain on successive step of the procedure described in this section is a resurgent function.

IX.3 Remarks on justification of the above procedure.

The terms of the quantization conditions, or of the equation that we have been solving, will be shown in the next section to be polynomials in resurgent symbols τ_j and μ_j, as will be derived and explained in the next section. There arises the following

Terminology issue: $\mu(E_r,h)$ is not a function of h, it is a resurgent symbol.

It would be more appropriate to denote it $\mu(E_r,\zeta)$ and reserve $\mu(E_r,h)$ for $\mathcal{LS}_r\mu(E_r,\zeta)$. It is shown in [15] that for E_r a number $\mu(E_r,\zeta)$ is holomorphic for $(E_r,\zeta) \in D_\rho \times S_\mu$ for some disc $D_\rho \subset \mathbb{C}$ and an endlessly continuable Riemann surface S_μ. The same is true for microfunctions τ defined on Riemann surfaces S_r.

Further, we know that μ and τ are essentially made of (convolution) quotients of microfunctions corresponding to singularities on the Riemann surface
of the major of a resurgent solution. As that major can be chosen to analyti-
cally depend on \(E_r \), so can representatives for \(\mu_j \) and \(\tau_j \) and also the majors for \(s_0 \mu_j \) and \(s_0 \mu_j \) (cf. [15]). Conclude that the left hand side of our quanti-
tization condition \(f(E_r, h) = 0 \), which is a polynomial in \(\mu_j \) and \(\tau_j \), has a major that holomorphically depends on \(E_r \) and defined on the Riemann surface

\[\infty S_{\mu} \ast \ldots \ast \infty S_{\tau_n}. \]

By construction of a major for \(f(E_r(h), h) \) for \(E_r(h) \) a small resurgent func-
tion carried out in [15] and valid just the same for \(E_r(E_1(h), h) \) for \(E_r(E_1(h), h) \) representable by a major holomorphically dependent on \(E_1 \), one can see that the Newton polygon for \(f(E_r(E_1, h), h) \) (with respect to the powers of \(E_1 \) now) will be what is expected from the formal manipulation with symbols.

X Solving the quantization condition.

We think it is helpful at this point to consider

Special case \(n = 1 \), in which

\[
G_0 = \begin{pmatrix}
\tau_2 \tau_1^{-1} + \tau_2 & \tau_2 \mu_1 \tau_1^{-1} + \tau_2 \\
\mu_2 \tau_1^{-1} + 1 & \mu_1 \mu_2 \tau_1^{-1} + 1
\end{pmatrix},
\]

\[
\text{Tr} G_0 = \tau_2 \tau_1^{-1} + \tau_2 + \mu_1 \mu_2 \tau_1^{-1} + 1, \quad \det G_0 = \tau_1^{-1} \tau_2 (1 - \mu_1)(1 - \mu_2).
\]

The Witten Laplacian in this case has an eigenvalue \(E_r = 0 \) corresponding to the eigenfunction \(e^{-f(q)/h} \); let us see what it means for the Newton polygon (figure 29) of the quantization condition (21).

For \(E_r = 0 \) the condition (21) reduces to

\[
1 - \text{Tr} G_0 + \det G_0 = 0,
\]

or

\[
-\tau_2 - \mu_1 \mu_2 \tau_1^{-1} + \tau_1^{-1} \tau_2 (-\mu_1 - \mu_2 + \mu_1 \mu_2) = 0,
\]

where every term on the left hand side vanishes for \(E_r = 0 \).

We see therefore that all the terms corresponding to the degree \((0,0)\) vertex on figure 29 cancel each other, so the Newton polygon will be the hashed subset
without edges of positive slope, and hence the quantization condition \(21\) has no nonzero exponentially small solutions.

Newton polygon of the quantization condition in the general case.
For each entry of the matrix \(G_0\) one can draw a Newton polygon with respect to powers of \(E_r\) and \(e^{1/h}\), as prescribed in section \(X.1\). In case \(n = 1\) and \(n = 2\) the Newton polygons are shown on figure 30 and 31. For drawing these figures as well for the rest of the section we are using that \(\tau_j\)'s are exponentially small for all \(j\).

Given a resurgent symbol \(g\) dependent on \(E_r\) and subject to appropriate conditions, its Newton polygon will have several edges of positive slope; take the right end of the rightmost edge of positive slope and call it the **leading term** of the symbol \(g\) and denote it by \(\text{L.T.}g\). Clearly, \(\text{L.T.}(g_1g_2) = \text{L.T.}g_1\text{L.T.}g_2\).

Lemma X.1. The leading term of the Newton polygon of (the left hand side
Figure 31: Newton polygons for entries of G_0 when $n = 2$. In case of $(G_0)_{12}$, resp., $(G_0)_{31}$, resp., $(G_0)_{22}$, only terms $\mu_1 \tau_2 \tau_1^{-1} \tau_4 \tau_3^{-1}$ and $\mu_3 \tau_4 \tau_3^{-1}$, resp., $\mu_4 \tau_3^{-1} \tau_2 \tau_1^{-1}$ and $\mu_2 \tau_1^{-1}$, resp., $\mu_3 \mu_4 \tau_3^{-1}$, $\mu_1 \mu_2 \tau_1^{-1}$, and $\mu_1 \mu_4 \tau_1^{-1} \tau_2 \tau_3^{-1}$ contribute to the vertex of the Newton polygon of degree 1, resp., 0, resp. 1, with respect to E_r, unless their contributions cancel in which case the corresponding vertex may be absent or lie lower.
of) the equation (21) is \(\mu_1\mu_2\cdots\mu_{2n}\tau_1^{-1}\tau_3^{-1}\cdots\tau_{2n-1}^{-1}\) and has degree \(n\) in \(E_r\).

Proof. We need to look at the terms of \(\text{Tr } G_0\) only, because all other terms give contributions of the form \(cE^k\) with \(c\) of exponential type zero.

By the L.T. of a matrix we will denote the matrix of leading terms of each of its entries.

One shows by induction on \(n\) that

\[
\text{L.T.}G_0 = \mu_1\mu_2\cdots\mu_{2n}\tau_1^{-1}\tau_3^{-1}\cdots\tau_{2n-1}^{-1}\left(\frac{\mu_1^{-1}}{\mu_1} \frac{\mu_2^{-1}}{1} \frac{\mu_3^{-1}}{\mu_3} \cdots \frac{\mu_{2n}^{-1}}{1}\right),
\]

from which the statement of the lemma follows. □

This finishes the proof of the main result of this paper, theorem I.2.

XI Example.

Take as the superpotential

\[
f = \frac{1}{2\pi} \left[\sin 2\pi(q + \frac{1}{8}) + \cos 4\pi(q + \frac{1}{8})\right],
\]

\[
f' = \cos 2\pi(q + \frac{1}{8}) - 2\sin 4\pi(q + \frac{1}{8}).
\]

The critical points of \(f\) are all real in this case:

\[
q_1 = \frac{1}{8}, \quad f(q_1) = 0, \quad f''(q_1) = 6\pi,
\]

\[
q_2 = \frac{3}{8} - \frac{1}{2\pi} \arcsin \frac{1}{4}, \quad f(q_2) = \frac{9}{16\pi}, \quad f''(q_2) = -7.5\pi,
\]

\[
q_3 = \frac{5}{8}, \quad f(q_3) = -\frac{1}{16\pi}, \quad f''(q_3) = 10\pi,
\]

\[
q_4 = \frac{7}{8} + \frac{1}{2\pi} \arcsin \frac{1}{4}, \quad f(q_4) = -\frac{9}{16\pi}, \quad f''(q_4) = -7.5\pi.
\]

The study of the equation (21) tells us that the Witten Laplacian corresponding to the function \(f\) will have two low-lying eigenvalues: the zero and one nonzero exponentially small eigenvalue that will be expressible in terms of \(\mu s\) and \(\tau s\). The Newton polygon corresponding to the equation (21) will have a vertex corresponding to the leading term of degree 2 in \(E_r\) that can be obtained by looking at the summand \(\mu_1\mu_2\mu_3\mu_4\tau_1^{-1}\tau_3^{-1}\). Our present task is to find the vertex of the Newton polygon corresponding to term of degree 1 with respect to \(E_r\).

We get (using the formulas for \(\tau_k\))

\[
\tau_1 \approx e^{-\frac{9}{8\pi} \frac{E_r}{\sqrt{6\times7.5}}}, \quad \tau_2 \approx e^{-\frac{25}{8\pi} \frac{E_r}{\sqrt{10\times7.5}}}, \quad \tau_3 \approx e^{-\frac{25}{8\pi} \frac{E_r}{\sqrt{10\times7.5}}}, \quad \tau_4 \approx e^{-\frac{9}{8\pi} \frac{E_r}{\sqrt{6\times7.5}}},
\]

\[
\mu_1 \approx i \frac{E_r}{8}, \mu_2 \approx i \frac{E_r}{10}, \mu_3 \approx i \frac{E_r}{6\times7.5}, \mu_4 \approx i \frac{E_r}{6\times7.5}.
\]
We have seen in the picture that there are four terms in the equation that can produce the vertex of \(\deg E_r = 1 \), and they are:

\[
\begin{align*}
\mu_2 \mu_3 \tau_1^{-1} \tau_2 \tau_3^{-1} & \approx -E_r \frac{1}{\sqrt{10 \times 7.5}} e^{25}, \\
\mu_3 \mu_4 \tau_3^{-1} & \approx -E_r \frac{1}{\sqrt{10 \times 7.5}} e^{25}, \\
\mu_1 \mu_2 \tau_1^{-1} & \approx -E_r \frac{1}{\sqrt{6 \times 7.5}} e^{9}, \\
\mu_1 \mu_4 \tau_1^{-1} \tau_2 \tau_3^{-1} & \approx -E_r \frac{1}{\sqrt{6 \times 7.5}} e^{9}.
\end{align*}
\]

Therefore the corresponding vertex comes as a sum of contributions of the first two summands and is located at \(E_r e^{\frac{17}{10}} \).

The leading term in the Newton polygon is

\[
\mu_1 \mu_2 \mu_3 \mu_4 \tau_1^{-1} \tau_3^{-1} \approx E_r^2 \frac{1}{\sqrt{6 \times 7.5 \times 10 \times 7.5}} e^{\frac{25+9}{10}}.
\]

Hence

\[
E_r \approx 2 \frac{\frac{1}{\sqrt{10 \times 7.5}} e^{25}}{\sqrt{6 \times 7.5 \times 10 \times 7.5}} \approx 2 \sqrt{6} e^{-\frac{9}{10}}.
\]

Remark 1. In a more general case, since \(\mu_j \in i\mathbb{R}^+ \) and \(\tau_j \in \mathbb{R}^+ \) for \(E > 0, h > 0 \), conclude that the term in the numerator cannot cancel.

Remark 2. The result is clearly what one would expect from [16], but our case does not satisfy their nondegeneracy conditions.

Acknowledgements

The author would like to thank his advisor Boris Tsygan for a wonderful graduate experience and his dissertation committee members Dmitry Tamarkin and Jared Wunsch for their constant support in his study and research.

Valuable comments and suggestions were also made by M.Aldi, J.E.Andersen, K.Burns, K.Costello, E.Delabaere, S.Garoufalidis, E.Getzler, B.Helffer, A.Karabegov, S.Koshkin, Yu.I.Manin, G.Masbaum, D.Nadler, W.Richter, K.Vilonen, F.Wang, E.Zaslow, M.Zworski, and by anonymous referees.

This work was partially supported by the NSF grant DMS-0306624 and the Northwestern University WCAS Dissertation and Research Fellowship.

References

[1] R.Balian, C.Bloch, *Solution of the Schrödinger Equation in Terms of Classical Paths* Ann. Physics 85 (1974), 514–545

[2] M.V.Berry, K.E.Mount, *Semiclassical approximations in wave mechanics*, Rep. Prog. Phys, 35 (1972), p.315-397.
[3] W.G.Boyd, *Gamma function asymptotics by an extension of the method of steepest descents*, Proc.R.Soc.Lond. A (1994), 447, p.609-630.

[4] A.Connes, M.Marcolli, *A walk in the noncommutative garden*. Arxiv preprint [math.QA/0601054] 2006

[5] B.Candelelperger, J.-C. Nosmas, F.Pham. *Approche de la résurgence*. Actualités Mathématiques. Hermann, Paris, 1993.

[6] R.B.Dingle, *Asymptotic expansions: their derivation and interpretation*. Academic Press London-New York, 1973.

[7] Delabaere, Dillinger, Pham. *Résurgence de Voros et périodes des courbes hyperelliptiques*. Ann. Inst. Fourier, t.43, no.1 (1993) , p.163-199.

[8] Delabaere, Dillinger, Pham. *Exact semiclassical expansions for one-dimensional quantum oscillators*. J.Math.Phys, 38 (1997), p.6126-6184.

[9] Delabaere, Pham. *Resurgent methods in semi-classical asymptotics*. Ann. Inst. Poincaré Phys. Théor. 77 (1999), p.1-94.

[10] G.Dito, P.Schapira, *An algebra of deformation quantization for star-exponentials on complex symplectic manifolds*. Comm. Math. Phys. 273 (2007), no. 2, 395–414.

[11] J.Écalle, *Les fonctions résurgentes*. Publications Math. d’Orsay, preprint, 1981

[12] J. Écalle, *Cinq applications des fonctions résurgentes*. Preprint 84T62 (Orsay).

[13] M.A.Evgrafov, M.V.Fedoryuk. *Asymptotic behavior as \(\lambda \to \infty \) of the solution of the equation \(w''(z) - p(z, \lambda)w(z) = 0 \) in the complex \(z \)-plane*. Russian Math. Surveys 21 (1966), no. 1, 1–48

[14] K.Fukaya, *Multivalued Morse theory, Asymptotic Analysis, and Mirror Symmetry*. Graphs and patterns in mathematics and theoretical physics, p.205–278, Proc. Sympos. Pure Math., 73, Amer. Math. Soc., Providence, RI, 2005.

[15] A.Getmanenko, *On eigenfunctions corresponding to a small resurgent eigenvalue*. [arXiv:0809.0439v3]

[16] B.Helffer, M.Klein, F. Nier, *Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach*. Mat. Contemp. 26 (2004), 41–85.

[17] B.Helffer, J.Sjöstrand. *Puits multiples en mechanique semi-classique IV. Etude du complexe de Witten*. Comm. in PDE, 10(3), 245-340 (1985)

[18] E.Hille, *Ordinary differential equations in the complex domain*. Dover, 1997.
[19] A.O. Jidoumou, *Réurgence paramétrique: fonctions d’Airy et cylindre-paraboloques*. J. Math. Pures Appl., 73 (1994), p. 111-190.

[20] U. Jentschura, J. Zinn-Justin, *Instantons in Quantum Mechanics and Resurgent Expansions*. Phys. Lett. B 596 (2004), no. 1-2, 138–144.

[21] Kawai T., Takei Y., *Algebraic Analysis of Singular Perturbation Theory*. Translations of Mathematical Monographs, 227. AMS, Providence, RI, 2005.

[22] B. Malgrange, *Équations différentielles à coefficients polynomiaux*. Progress in Mathematics, 96. Birkhäuser Boston, Inc., Boston, MA, 1991.

[23] V.P. Maslov, *The complex WKB method for nonlinear equations. I. Linear theory*. Progress in Physics, 16. Birkhäuser Verlag, Basel, 1994.

[24] D. Nadler, E. Zaslow. *Constructible Sheaves and the Fukaya Category*. Arxiv preprint math/0604379, 2006

[25] R. Nest, B. Tsygan, *Remarks on modules over the deformation quantization algebra*. Mosc. Math. J. 4 (2004), no. 4, 911–940, 982.

[26] F. Olver, *Asymptotics and Special Functions*, A K Peters, Ltd., 1997.

[27] V.E. Shatalov, B. Yu. Sternin, *Borel-Laplace transform and asymptotic theory. Introduction to resurgent analysis*. CRC Press, Boca Raton, FL, 1996.

[28] Y. Sibuya, *Linear differential equations in the complex domain: problems of analytic continuation*. Translations of Mathematical Monographs, 82. AMS, Providence, RI, 1990.

[29] G.G. Stokes, *On the numerical calculation of a class of definite integrals and infinite series*, Camb. Phil. Trans, vol. IX, (1847), 379-407.

[30] A. Voros, *Return of the quartic oscillator. The complex WKB method*. Ann. Inst. H. Poincaré Phys. Théor. 39 (1983), no. 3, 211–338.

[31] Wang Z.X., Guo D.R., *Special Functions*. World Scientific, Teaneck, NJ, 1989.

[32] W. Wasow, *Linear turning point theory*. (Applied mathematical sciences, vol. 54), Springer, 1985.

[33] H. Whitney, *Elementary Structure of Real Algebraic Varieties*, Annals of Math., 2nd Ser., Vol.66, No.3 (1957) p.545–556.

[34] E. Witten, *Supersymmetry and Morse theory*. J. Differential Geom. 17 (1982), no. 4, 661–692 (1983).