Solutions for a Nonhomogeneous Nonlinear Schrödinger Equation with Double Power Nonlinearity

M.Ghimenti ∗, A.M.Micheletti †

Abstract

We consider the problem $-\Delta u + V(x)u = f'(u) + g(x)$ in \mathbb{R}^N, under the assumption $\lim_{x \to \infty} V(x) = 0$, and with the nonlinear term f with a double power behavior. We prove the existence two solutions when g is sufficiently small and $V < 0$.

Keywords: Nonlinear Equations, Variational Methods, Orlicz Spaces

1 Perturbation of NSE

We consider the existence of solutions of the following nonhomogeneous problem

\[
\begin{align*}
-\Delta u + V(x)u &= f'(u) + g(x), \quad x \in \mathbb{R}^N; \\
E_g^V(u) &< \infty.
\end{align*}
\]

where the energy functional is defined by

\[
E_g(u) = E_g^V(u) = \frac{1}{2} \int_{\mathbb{R}^N} |\nabla u|^2 + V(x)u^2(x)dx - \int_{\mathbb{R}^N} f(u)dx - \int_{\mathbb{R}^N} g(x)u(x)dx.
\]

The nonlinearity is given by a function f of double power type that is an even function $f \in C^3(\mathbb{R}, \mathbb{R})$ with $f(0) = f'(0) = f''(0) = 0$ satisfying the following requirements:

\footnotesize
\begin{itemize}
 \item[\ast] Dipartimento di Matematica Applicata, Università di Pisa, via Buonarroti 1c, 56127, Pisa, Italy
 \item[\dagger] Dipartimento di Matematica Applicata, Università di Pisa, via Buonarroti 1c, 56127, Pisa, Italy
\end{itemize}

\normalsize
1. there exist positive numbers c_0, c_2, p, q with $2 < p < 2^* < q$ such that

\[
\begin{cases}
 c_0|s|^p \leq f(s) & \text{for } |s| \geq 1; \\
 c_0|s|^q < f(s) & \text{for } |s| \leq 1;
\end{cases}
\]

\[(f_0) \]

\[
\begin{cases}
 |f''(s)| \leq c_2|s|^{p-2} & \text{for } |s| \geq 1; \\
 |f''(s)| \leq c_2|s|^{q-2} & \text{for } |s| \leq 1;
\end{cases}
\]

\[(f_2) \]

2. there exists $\mu_1 > 2$ and $\mu_2 > 1$ such that, for all $s \neq 0$

\[
0 < \mu_1 f(s) \leq f'(s)s, \quad \mu_2 f'(s)s < f''(s)s^2, \quad f'''(s)s^3 > 0; \]

\[(f_\mu) \]

3. for any $u \in D^{1,2}$ we have

\[
f'''(u)u^3 \in L^1. \]

\[(f_3) \]

For example the required assumptions are satisfied by $f(s) = \frac{|s|^q}{1+|s|^{q-p}}$ with $q-p$ small enough, as shown in the appendix.

We assume $V \in L^{N/2}(\mathbb{R}^N) \cap L^t$, for some $t > N/2$ and

\[
||V||_{L^{N/2}} < S := \inf_{u \in D^{1,2}} \left(\frac{\int_{\mathbb{R}^N} |\nabla u|^2}{\left(\int_{\mathbb{R}^N} |u|^{2^*/2} \right)^{2^*/2}} \right). \]

\[(1) \]

Moreover, we want $V \leq 0$ and $V < 0$ on a set of positive measure.

In [18] the existence of two positive solutions $u_1, u_2 \in H^1(\mathbb{R}^N)$ of the equation $-\Delta u + u = |u|^{p-2}u + g$ is proved when $g \in L^2$ satisfies $0 \leq g \leq C \exp(-(1+\varepsilon)|x|)$, $g \neq 0$.

Recently, in [17], a similar problem for the p-laplacian is studied. Namely, the author proves, with variational techniques, that the problem $-\Delta u + c|u|^{p-2}u = |u|^{p-2}u + f(x, u) + h(x)$ in \mathbb{R}^N, where $2 \leq p < N$, $c > 0$, $h \in W^{-1,p'}(\mathbb{R}^N)$ and f a is continuous superlinear function such that $f(x, 0) = 0$ and $f(x, u) = o(|u|^{p-1})$ as $|u| \to \infty$, admits two positive solutions $u_1, u_2 \in H^1(\mathbb{R}^N)$.

The existence of a positive solution of the problem $-\Delta u + u = |u|^{p-1}u + g$ on \mathbb{R}^N, $u(x) \to 0$ for $|x| \to \infty$, was proven in [10] when $p > \frac{N}{N-2}$ and $g \in C^{0,\alpha}(\mathbb{R}^N)$, $g \geq 0$, $g \neq 0$ and $g(x) \leq \frac{C}{(1+|x|^2)^{p-1}}$ for some $C > 0$. In [3] there is a result of multiplicity for this problem.

In [16] the author shows that the Dirichlet problem on a bounded domain $\Omega \subset \mathbb{R}^N$ in the critical case $-\Delta u = |u|^{2^*-2}u + g$ has two solutions $u_0, u_1 \in$
$H^1_0(\Omega)$, for g satisfying a suitable condition, and if $g \geq 0$ then $u_0 \geq 0$ and $u_1 \geq 0$.

We are interested in studying the problem with double power nonlinearity.

In pioneering work Berestycki and Lions [7, 8] showed the existence of a positive solution in the case $V \equiv 0$ when $f''(0) = 0$, f has a supercritical growth near the origin and subcritical at infinity.

More recently in the papers [2, 5, 6, 14] the double-power growth condition has been used to obtain the existence of positive solutions for different problems of the type (P). In particular, in [5], the authors proved that in the same hypothesis on V the homogeneous problem

$$- \Delta u + Vu = f'(u)$$

has a ground state solution (i.e. least energy nontrivial solution). Other results on similar problems with the double power nonlinearity can be found in [1, 2, 12].

In this paper we prove the following theorem

Theorem 1. If $g \in L^{\frac{2N}{N+2}} \cap L^s$, for some $s > \frac{2N}{N+2}$, and if $||g||_{\frac{2N}{N+2}}$ is sufficiently small there exist two solutions of problem (P) in $D^{1,2}$. The first solution is close to 0; if also $||g||_{L^{p'} \cap L^{q'}}$ is small enough, the critical value of the second solution is close to the least energy level m_V of the homogeneous problem (P).

Furthermore, if $g \geq 0$ the two solutions are non negative.

Remark 2. Indeed the hypothesis on the sign of V is used only to find the second solution, but we prefer a more compact claim for the theorem. Anyway, in the proofs we focus out when we use any hypothesis.

To get the solutions of (P) we look for critical points of the functional E^V_g constrained on the Nehari manifold

$$\mathcal{N}^V_g = \mathcal{N}_g = \{ u \in D^{1,2} : \langle \nabla E_g(u), u \rangle = 0, u \neq 0 \} = \left\{ u \in D^{1,2} \setminus 0 : \int_{\mathbb{R}^N} |\nabla u|^2 + \int_{\mathbb{R}^N} Vu^2 - \int_{\mathbb{R}^N} f'(u)u - \int_{\mathbb{R}^N} gu = 0 \right\}.$$

The study of the structure of the Nehari manifold will be a fundamental part of this paper.

This paper is organized as follows: in section 2, we recall some technical results concerning the appropriate function space required by the growth properties of the nonlinearity f. Moreover, we study the geometry and the properties of the Nehari manifold. In section 3, we prove a Splitting Lemma necessary to overcome the lack of compactness. This lemma is a variant for a well known result of [15]. In section 4 we prove the existence of two distinct critical points of the functional on the Nehari manifold.
2 Notations and preliminary result

We will use the following notations

- $D^{1,2} = D^{1,2}(\mathbb{R}^N) = \text{completion of } C_c^\infty(\mathbb{R}^N)$ with respect to the norm
 $$||u|| = \left(\int_{\mathbb{R}^N} |\nabla u|^2\right)^{1/2};$$

- $||u||_V^2 = \int_{\mathbb{R}^N} |\nabla u|^2 + \int_{\mathbb{R}^N} Vu^2$; notice that, by (1), we have that $||u||_V$ is a norm in $D^{1,2}$ equivalent to the usual one;

- $2^* = \frac{2N}{N-2}$;

- $m_g = \inf_{u \in \mathcal{N}_g} E^V_g(u)$;

- $m_{1,g} = \inf_{u \in \mathcal{N}_g} E^V_g(u)$;

- $m_0 = \inf_{u \in \mathcal{N}_0^0} E^V_0(u)$; we call ω the minimizer of E^V_0 on \mathcal{N}_0^0 radially symmetric;

- $m_V = \inf_{u \in \mathcal{N}_V^0} E^V_0(u)$; we call \bar{u} the minimizer of E^V_0 on \mathcal{N}_V^0;

- $\Gamma_u = \{x \in \mathbb{R}^N : |u(x)| > 1\}$;

- $|A|$ = the Lebesgue measure of the subset $A \subset \mathbb{R}^N$;

- $B_R = \{x \in \mathbb{R}^N : |x| \leq R\}$;

- $B_R^C = \mathbb{R}^N \setminus B_R$;

- $u_y(x) = u(x+y)$.

In order to study the properties of the functional E^V_g and its Nehari manifold, we consider some suitable Orlicz space $L^p + L^q$, where $2 < p < 2^* < q$, related to the double power growth behavior of the function f. We recall some properties of these spaces to get the smoothness of the functional E^V_g.

Given $p \neq q$, we consider the space $L^p + L^q$ made up of the functions $v : \mathbb{R}^N \to \mathbb{R}$ such that

$$v = v_1 + v_2 \text{ with } v_1 \in L^p, v_2 \in L^q. \tag{3}$$
The space $L^p + L^q$ is a Banach space equipped with the norm:

$$||v||_{L^p + L^q} = \inf \{ ||v_1||_{L^p} + ||v_2||_{L^q} : v_1 \in L^p, v_2 \in L^q, v_1 + v_2 = v \}. \quad (4)$$

It is well known (see, for example [9]) that $L^p + L^q$ coincides with the dual of $L^{p'} \cap L^{q'}$. Then:

$$L^p + L^q = (L^{p'} \cap L^{q'})' \quad \text{with} \quad p' = \frac{p}{p-1}, \quad q' = \frac{q}{q-1}, \quad (5)$$

and we can introduce the following norm equivalent to the previous one

$$||v||_{L^p + L^q} = \inf_{\varphi \neq 0} \frac{\int v \varphi}{||\varphi||_{L^{p'}} + ||\varphi||_{L^{q'}}}. \quad (6)$$

Hereafter we recall some results useful for this paper contained in [4, 6].

Lemma 3. We have

1. if $v \in L^p + L^q$, the following inequalities hold:

$$\max \left(||v||_{L^{p}(\mathbb{R}^N \setminus \Gamma_v)} - 1, \frac{1}{1 + |\Gamma_v|^{\frac{1}{\tau}}} ||v||_{L^p(\Gamma_v)} \right) \leq ||v||_{L^p + L^q} \leq \max(||v||_{L^p(\mathbb{R}^N \setminus \Gamma_v)}, ||v||_{L^p(\Gamma_v)})$$

when $\tau = \frac{p-1}{q-p}$;

2. let $\{v_n\} \subset L^p + L^q$. Then $\{v_n\}$ is bounded in $L^p + L^q$ if and only if the sequences $\{|\Gamma_{v_n}|\}$ and $\{|||v||_{L^p(\mathbb{R}^N \setminus \Gamma_{v_n})} + ||v||_{L^p(\Gamma_{v_n})}\}$ are bounded.

3. f' is a bounded map from $L^p + L^q$ into $L^{p-1} \cap L^{q-1}$.

Remark 4. By the previous lemma we have $L^{2^*} \subset L^p + L^q$ when $2 < p < 2^* < q$. Then, by Sobolev inequality, we get the continuous embedding

$$D^{1,2}(\mathbb{R}^N) \subset L^p + L^q.$$

In order to prove the C^2 regularity of the functional E^V_{θ}, we need the following lemmas proved in [9]

Lemma 5. If f satisfies the hypothesis $[f_0]$ and $[f_2]$, we have that

1. if θ, u are bounded in $L^p + L^q$, then $f''(\theta)u$ is bounded in $L^{p'} \cap L^{q'}$;
2. \(f'' \) is a bounded map from \(L^p + L^q \) into \(L^{p/p - 2} \cap L^{q/q - 2} \);

3. \(f'' \) is a continuous map from \(L^p + L^q \) into \(L^{p/p - 2} \cap L^{q/q - 2} \);

4. the map \((u, v) \mapsto uv \) from \((L^p + L^q)^2 \) in \(L^{p/2} + L^{q/2} \) is bounded.

Lemma 6. The functional \(E^V_g \) is of class \(C^2 \) and it holds

\[
E'_g(u)[v] = \langle \nabla E^V_g(u), v \rangle = \int_{\mathbb{R}^N} \nabla u \nabla v + V uv - f'(u)v - gv; \quad (7)
\]

\[
E''_g(u)[v, w] = \int_{\mathbb{R}^N} \nabla v \nabla w + V vw - f''(u)vw. \quad (8)
\]

Moreover the Nehari manifold defined as

\[
\mathcal{N}^V_g = \left\{ u \in D^{1,2} : \int_{\mathbb{R}^N} |\nabla u|^2 + Vu^2 - f'(u)u dx - gu = 0 \right\} \quad (9)
\]

is of class \(C^1 \) and its tangent space at the point \(u \) is

\[
T_u \mathcal{N}^V_g = \left\{ v \in D^{1,2} : \int_{\mathbb{R}^N} 2 \nabla u \nabla v + 2V uv - f'(u)v dx - f''(u)uv - gv = 0 \right\}.
\]

At last, we introduce the functions

\[
\phi^0(t) = \phi_0(t) := E^V_0(tu) = \int_{\mathbb{R}^N} \frac{t^2}{2} (|\nabla u|^2 + Vu^2) - f(tu); \quad (10)
\]

\[
\phi^u(t) = \phi_g(t) := E^V_g(tu) = \phi_0(t) - t \int_{\mathbb{R}^N} gu. \quad (11)
\]

We have that

\[
\phi'_g(t) = t ||u||^2_V - \int_{\mathbb{R}^N} f'(tu)u - \int_{\mathbb{R}^N} gu; \quad (12)
\]

\[
\phi''_g(t) = ||u||^2_V - \int_{\mathbb{R}^N} f''(tu)u^2; \quad (13)
\]

\[
\phi'''_g(t) = - \int_{\mathbb{R}^N} f'''(tu)u^3. \quad (14)
\]

Notice that the conditions on \(f \) assure that also \(\phi'''_g(t) \) exists. Furthermore, if \(\frac{d}{dt} \phi_g(t) = 0 \), then \(\langle \nabla E(tu), u \rangle = 0 \), so \(tu \in \mathcal{N}^V_g \), and vice versa, so we want to find the critical points of \(\phi_g(t) \).

To study the manifold \(\mathcal{N}^V_g \) it is useful to consider the following manifold:

\[
\mathcal{V} = \left\{ w \neq 0 : G(w) := ||w||^2_V - \int_{\mathbb{R}^N} f''(w)w^2 = 0 \right\}. \quad (15)
\]
Lemma 7. We have that for all \(u \in \mathcal{D}^{1,2} \) there exists an unique \(T_u > 0 \) such that \(T_u u \in \mathcal{V} \).

Proof. We have that, using \((f_t)\) and \((f_0)\),

\[
\varphi'_0(t) = t||u||_V^2 - \int_{\mathbb{R}^N} f'(tu)u \leq t||u||_V^2 - \frac{\mu_1}{t} \int_{\mathbb{R}^N} f(tu) \leq t||u||_V^2 - t^{q-1}c_0\mu_1 \int_{|u|<1} |u|^q - t^{p-1}c_0\mu_1 \int_{|u|\geq1} |u|^p \leq (16)
\]

because \(p > 2 \). Furthermore we have that \(\varphi'_0(t) \) is strictly concave when \(t \neq 0 \), and that \(\varphi''_0(0) > 0 \), so, for every \(u \in \mathcal{D}^{1,2} \) there exist an unique maximum point \(T_u > 0 \) for the function \(\varphi'_0(t) \). Thus

\[
0 = T_u^2 \varphi''_0(T_u) = ||T_u u||_V^2 - \int_{\mathbb{R}^N} f''(T_u u)(T_u u)^2.
\]

\[
\square
\]

Proposition 8. We have that \(\inf_{w \in \mathcal{V}} ||w||_V^2 > 0 \).

Proof. By contradiction, we suppose that there exists a sequence \(\{w_n\}_n \subset \mathcal{V} \) such that \(||w_n||_V^2 \) converges to 0. We set \(t_n = ||w_n||_V \), hence we can write \(w_n = t_n v_n \) where \(||v_n||_V = 1 \). Remark \[4\] the sequence is bounded in \(L^p + L^q \). Since \(w_n \in \mathcal{V} \) and \(t_n \) converges to 0, we have

\[
1 = ||v_n||_V^2 = \frac{||w_n||_V^2}{t_n^2} = \frac{1}{t_n^2} \int_{\mathbb{R}^N} f''(t_n v_n)v_n^2 \leq c_2 t_n^{q-2} \int_{\mathbb{R}^N \setminus \Gamma_{v_n}} |v_n|^q + c_2 t_n^{p-2} \int_{\Gamma_{v_n}} |v_n|^p \leq c_2 t_n^{q-2} \int_{\mathbb{R}^N \setminus \Gamma_{v_n}} |v_n|^q + c_2 t_n^{p-2} \int_{\Gamma_{v_n}} |v_n|^p \leq c_2 t_n^{q-2} \int_{\mathbb{R}^N \setminus \Gamma_{v_n}} |v_n|^q + c_2 t_n^{p-2} \int_{\Gamma_{v_n}} |v_n|^p \leq c_2 t_n^{q-2} \int_{\mathbb{R}^N \setminus \Gamma_{v_n}} |v_n|^q + c_2 t_n^{p-2} \int_{\Gamma_{v_n}} \frac{|v_n|^p}{t_n^{p-1}} + c_2 t_n^{p-2} \int_{\Gamma_{v_n}} |v_n|^p \leq c_2 t_n^{q-2} \int_{\mathbb{R}^N \setminus \Gamma_{v_n}} |v_n|^q + 2c_2 t_n^{p-2} \int_{\Gamma_{v_n}} |v_n|^p.
\]
Hence we get
\[1 \leq c_2 t_n^{q-2} \int_{\mathbb{R}^N \setminus \Gamma_{v_n}} |v_n|^q + 2c_2 t_n^{p-2} \int_{\Gamma_{v_n}} |v_n|^p \]
and by claim 2 of Remark 3 we get the contradiction. \(\square \)

Lemma 9. Let \(u \in D^{1,2} \) and let \(T_u \) the unique positive number such that \(T_u u \in \mathcal{V} \). Then
\[L = \inf_{||u||_V = 1} T_u - \int_{\mathbb{R}^N} f'(T_u u) u > 0. \]

Proof. By contradiction, suppose that there exists a minimizing sequence \(u_n \), with \(||u_n||_V = 1 \) such that \(T_{u_n} - \int f'(T_{u_n} u_n) u_n := \sigma_n \to 0 \). Let \(w_n = T_{u_n} u_n \).

We have that
\[T_{u_n}^2 = ||w_n||_V^2 = \int f''(w_n) w_n^2, \]
because \(w_n \in \mathcal{V} \). Furthermore, by hypothesis, we have
\[||w_n||_V = \int f'(w_n) \frac{w_n}{||w_n||_V} + \sigma_n. \]

Thus, by (16)
\[\mu_2 ||w_n||_V^2 = \mu_2 \int f'(w_n) w_n + \mu_2 \sigma_n ||w_n||_V < \]
\[< \int f''(w_n) w_n^2 + \mu_2 \sigma_n ||w_n||_V = \]
\[= ||w_n||_V^2 + \mu_2 \sigma_n ||w_n||_V. \]

So, because \(\mu_2 > 1 \) we have that
\[0 < (\mu_2 - 1)||w_n||_V < \mu_2 \sigma_n \to 0, \]
that is a contradiction. \(\square \)

Remark 10. Obviously, by Lemma 8 we have also
\[B := \inf_{||u||_V = 1} T_u > 0, \]
and \(B \) does not depend on \(g \).

At last we can give the following characterization of the Nehari manifold.

Proposition 11. Let \(||g||_{L^{\frac{2N}{N-2}}} \), sufficiently small, and let \(u \in D^{1,2} \) with \(||u||_V = 1 \). Then
1. If \(\int gu < 0 \), then there exists an unique \(t_1^u \) such that \(t_1^u u \in \mathcal{N}_g^V \) and \(t_0^u < t_1^u \), where \(t_0^u \) is the unique value for which \(t_0^u \in \mathcal{N}_0^V \).

2. If \(\int gu = 0 \), then there exists an unique \(t_1^u \) such that \(t_1^u u \in \mathcal{N}_g^V \) and \(t_0^u = t_1^u \).

3. If \(\int gu > 0 \), then there exist two positive numbers \(t_1^u \) and \(t_2^u \) such that \(t_1^u u \in \mathcal{N}_g^V \) and \(t_2^u < T_u < t_1^u < t_0^u \), where \(T_u \) is the unique value for which \(T_u u \in \mathcal{N}_V \).

4. \(t_1^u \) and \(t_2^u \) depend \(C^1 \) on \(g \in L^{\frac{2N}{N+2}} \) and on \(u \in D^{1,2} \setminus \{0\} \). Furthermore, fixed \(u \), we have \(t_1^u \to t_0^u \), when \(||g||_{L^{\frac{2N}{N+2}}} \to 0 \).

Proof. 1. If \(\varphi_g'(\bar{t}) = 0 \), with \(\bar{t} \neq 0 \), by \([f_g] \), we have that

\[
\bar{t}^2 \varphi_g''(\bar{t}) = \bar{t} \int gu + \int [\bar{t} u f'(\bar{t} u) - \bar{t}^2 u^2 f''(\bar{t} u)] < 0, \tag{19}
\]

so \(\bar{t} \) is a maximum point for \(\varphi_g \). Furthermore, we have that \(\varphi_g(0) = 0 \), \(\varphi'_g(0) > 0 \) and \(\varphi''_g(0) > 0 \).

Using \([F_g] \) and \([\mathcal{F}_g] \), we have

\[
\varphi_g(t) = \frac{t^2}{2}||u||^2_V - \int_{\mathbb{R}^N} f(t u) - t \int_{\mathbb{R}^N} gu \leq \frac{t^2}{2}||u||^2_V - t \int_{\mathbb{R}^N} gu - c_0 t^q \int_{|u|<1} |u|^q - c_0 t^p \int_{|u|\geq1} |u|^p \leq 0 \tag{20}
\]

because \(p > 2 \). This proves that there is exactly one \(t_1^u \) such that \(t_1^u u \in \mathcal{N}_g \); it is easy to see that \(t_0^u < t_1^u \).

2. In this case, we can prove, as in (20) that \(\varphi_g(t) \to -\infty \) when \(t \to \infty \) and that if \(\bar{t} \neq 0 \) is a critical point of \(\varphi_g \) then (19) holds. At last, consider 0 = \(\varphi_g(0) = \varphi'_g(0) < \varphi''_g(0) \), and so 0 is a local minimum for \(\varphi_g \), and we can conclude.

3. We have just proved that, for any \(u \in D^{1,2} \), we have an unique maximum point \(T_u \) of \(\varphi_g(t) \). So, if we prove that \(\int gu < \varphi_g(T_u) \) we have that there exist two numbers \(t_1^u \) and \(t_2^u \) such that \(\varphi'_g(t_1^u) = 0 \). Set \(L \) as in Lemma 9 and consider that

\[
\int gu \leq ||g||_{L^{\frac{2N}{N+2}}} ||u||_{L^{2^*}} \leq C_1 ||g||_{L^{\frac{2N}{N+2}}} ||u||_{D^{1,2}} \leq C_2 ||g||_{L^{\frac{2N}{N+2}}} ||u||_V \tag{21}
\]
Recalling that \(|u|_V = 1\), if \(|g|_{L^{2\infty}} < L\), we have exactly two positive numbers \(t_1^u\) and \(t_2^u\) such that \(\varphi_g'(t_j^u) = 0\), and \(t_1^u\) and \(t_2^u\) are respectively the maximum and the minimum point of \(\varphi_g\).

4. For Simplicity we only prove that \(t_1^u(g)\) is a \(C^1\) function. The other case is straightforward. Let us define a function \(G : \mathbb{R}^+ \times D^{1,2} \setminus \{0\} \times L^{2\infty} \rightarrow \mathbb{R}\),

\[
G : (t, u, g) \mapsto \frac{d}{dt} \varphi_g^u(t) = t||u||_V^2 - \int f'(tu)u - \int gu.
\]

We have that \(G\) is a \(C^1\) function. Let \(\bar{t}, \bar{u}, \bar{g}\) be such that \(G(\bar{t}, \bar{u}, \bar{g}) = 0\). We know that \(\frac{\partial}{\partial t} G(\bar{t}, \bar{u}, \bar{g}) = \frac{d^2}{dt^2} \varphi_g^u(\bar{t}) < 0\), thus, by the implicit function theorem there is a \(C^1\) function \(t(u, g) = t_1^u(g)\) such that \(G(t(u, g), u, g) = 0\). We have then the claimed result.

The Nehari manifold so can be described as:

\[
\mathcal{N}_g^V = \mathcal{N}_g^{+} \cup \mathcal{N}_g^{-},
\]

where

\[
\mathcal{N}_g^{+} = \mathcal{N}_g^{+;V} := \{u \in \mathcal{N}_g^V : E_g'(u)u = 0, E_g''(u)u^2 > 0\};
\]

\[
\mathcal{N}_g^{-} = \mathcal{N}_g^{-;V} := \{u \in \mathcal{N}_g^V : E_g'(u)u = 0, E_g''(u)u^2 < 0\}.
\]

We have also that \(E_g^V > 0\) on \(\mathcal{N}_g^{-}\) and \(E_g^V < 0\) on \(\mathcal{N}_g^{+}\). Furthermore, because \(\mathcal{N}_0^V\) and \(\mathcal{V}\) are bounded away from 0, we have also that \(\inf_{u \in \mathcal{N}_0^V} ||u|| > 0\). The geometry of \(\mathcal{N}_g^V\) is represented in the following picture.
Remark 12. There exists $M > 0$ such that
\[||u||_V \leq M||g||_{\frac{2N}{N+2}} \text{ for any } u \in \mathcal{N}_g^+, \] (23)
indeed, by (fµ) we have
\[\frac{1}{2}||u||_V^2 < \int f(u) + \int gu \leq \frac{1}{\mu_1} \int f'(u)u + \int gu = \frac{1}{\mu_1}||u||_V^2 + \left(1 - \frac{1}{\mu_1}\right) \int gu, \]
so
\[\left(\frac{1}{2} - \frac{1}{\mu_1}\right)||u||_V^2 < \left(1 - \frac{1}{\mu_1}\right) \int gu. \]

3 The Splitting Lemma

We recall that a sequence \(\{u_n\}_n \in \mathcal{D}^{1,2} \) such that \(E^V_g(u) \to c \), and \(\nabla E^V_g(u) \to 0 \) is a Palais-Smale sequence at level \(c \) for \(E^V_g \).

In the same way we say that \(\{u_n\}_n \in \mathcal{N}_g^V \) such that \(E^V_g(u) \to c \), and there exists a sequence \(\varepsilon_n \to 0 \) s.t. \(|\langle \nabla E^V_g(u_n), \varphi \rangle| \leq \varepsilon_n||\varphi|| \), for all \(\varphi \in T_{u_n} \mathcal{N}_g^V \cap \mathcal{D}^{1,2} \) is a Palais-Smale sequence at level \(c \) for \(E^V_g \) restricted to \(\mathcal{N}_g^V \).

A functional \(f \) satisfies the \((PS)_c\) condition if all the Palais-Smale sequences at level \(c \) converge.

Unfortunately the functional \(E^V_g \) on \(\mathcal{N}_g^V \) does not satisfy the PS condition in all the energy range. In this section by the splitting lemma we get a description of the PS sequences for the functional \(E^V_g \).

Lemma 13. Let \(u_n \in \mathcal{N}_g \) and let \(E^V_g(u_n) \to c \). Then \(||u_n||_V \) is bounded.

Proof. We have that
\[||u_n||_V^2 = \int f'(u_n)u_n + \int gu_n \] (24)
because \(u_n \in \mathcal{N}_g^V \). Furthermore, for \((f\mu)\) we have
\begin{align*}
E^V_g(u_n) &= \frac{1}{2}||u_n||_V^2 - \int f(u_n) - \int gu_n \\
&\geq \frac{1}{2}||u_n||_V^2 - \frac{1}{\mu_1} \int f'(u_n)u_n - \int gu_n = \\
&= \frac{1}{2}||u_n||_V^2 - \frac{1}{\mu_1}||u_n||_V^2 + \frac{1}{\mu_1} \int gu_n - \int gu_n = \\
&= \left(\frac{1}{2} - \frac{1}{\mu_1}\right)||u_n||_V^2 - \left(1 - \frac{1}{\mu_1}\right) \int gu_n = \\
&= ||u_n||_V^2 \left[\left(\frac{1}{2} - \frac{1}{\mu_1}\right) - \left(1 - \frac{1}{\mu_1}\right) \int g\frac{u_n}{||u_n||_V^2}\right].
\end{align*}
If $\|u_n\|_V \to \infty$ we have that
\[
\left| \int g \frac{u_n}{\|u_n\|_V^2} \right| \leq \|g\|_{L^{\frac{2N}{N+2}}} \frac{\|u\|_{L^2}}{2N} \frac{1}{\|u_n\|_V} \to 0. \tag{26}
\]
So we will have
\[
C_1 > E_g^V(u_n) \geq C_2 \|u_n\|_V^2 \to \infty \tag{27}
\]
that is a contradiction.

Lemma 14. Let $\{u_n\} \subset N_g$, and let $E_g^V(u_n) \to c$. Then, up to subsequence $u_n \to u_0$ in $D^{1,2}$. Furthermore, setting $\psi_n = u_n - u_0$ we have

1. $\|\psi_n\|_V^2 = \|u_n\|_V^2 - \|u_0\|_V^2 + o(1)$;
2. $E_g^V(\psi_n) = E_g^V(u_n) - E_g^V(u_0) + o(1)$.

Proof. By the previous lemma we have that $\|u_n\|_{D^{1,2}}$ is bounded. Then $u_n \to u_0$ and we have that
\[
\|\psi_n\|_V^2 = \|u_n\|_V^2 - \|u_0\|_V^2 + o(1).
\]
Furthermore, we have that
\[
\int f(\psi_n) = \int f(u_n) - \int f(u_0) + o(1). \tag{28}
\]
Indeed, we have the following equation, where $\tau, \theta, \sigma \in (0, 1)$
\[
\int f(u_n) - \int f(u_0) - \int f(\psi_n) = \\
= \int_{B_R} f(u_0 + \psi_n) - f(u_0) - \int_{B_R} f(\psi_n) + \\
+ \int_{B_R} f(u_0 + \psi_n) - f(\psi_n) - \int_{B_R} f(\psi_n) = \\
= \int_{B_R} f'(u_0 + \tau \psi_n) \psi_n - \int_{B_R} f(u_0) + \int_{B_R} f'((\theta u_0 + \psi_n) u_0 - \int_{B_R} f'(\sigma \psi_n) \psi_n.
\]
Using Lemma 3 we have that the terms in B_R^C are arbitrarily small when R is sufficiently large. Furthermore, since $\psi_n \to 0$ in $L^p(\Omega)$ for all $\Omega \subset \mathbb{R}^N$ bounded and for all $p < 2^*$, we get that
\[
\int f(u_n) - \int f(u_0) - \int f(\psi_n) \to 0.
\]
The proof follows easily. \qed
Lemma 15. Suppose that $\psi_n \to 0$ in $\mathcal{D}^{1,2}$. Then we have

$$\int V \psi_n^2 \to 0 \quad (29)$$

$$\int g \psi_n \to 0 \quad (30)$$

Proof. Again we use that $\psi_n \to 0$ in $L^p(\Omega)$ for all $\Omega \subset \mathbb{R}^N$ bounded and for all $p < 2^*$. We have that

$$\int V \psi_n^2 = \int_{B_R} V \psi_n^2 + \int_{\mathbb{R}^N \setminus B_R} V \psi_n^2 \leq ||V||_{L^r(B_R)} ||\psi_n||_{L^{2r'}(B_R)}^2 + ||V||_{L^{N/2}(\mathbb{R}^N \setminus B_R)} ||\psi_n||_{L^{2^*}(\mathbb{R}^N \setminus B_R)}^2 \to 0,$$

and that

$$\int g \psi_n = \int_{B_R} g \psi_n + \int_{\mathbb{R}^N \setminus B_R} g \psi_n \leq ||g||_{L^r(B_R)} ||\psi_n||_{L^{r'}(B_R)} + ||g||_{L^{N/2}(\mathbb{R}^N \setminus B_R)} ||\psi_n||_{L^{2^*}(\mathbb{R}^N \setminus B_R)} \to 0.$$

Lemma 16. Let $\{u_n\}_n$ a PS sequence at level c for the functional E^V_g restricted to the manifold \mathcal{N}^V_g. Then, up to a subsequence, there exist k sequences of points $\{y_n^j\}_n$, $j = 1,\ldots,k$, with $|y_n^j| \to \infty$, a solution u^0 of the problem $-\Delta u + Vu = f'(u) + g$, and k solutions u^j, $j = 1,\ldots,k$, of the problem $-\Delta u = f'(u)$ such that

$$u_n(x) = u^0(x) + \sum_{j=1}^k u^j(x - y_n^j) + o(1); \quad (31)$$

$$E^V_g(u_n) = E^V_g(u^0) + \sum_{j=1}^k E^V_0(u^j) + o(1). \quad (32)$$

Proof. Since u_n is a PS sequence for the functional E^V_g restricted to the manifold \mathcal{N}^V_g, then u_n is a PS sequence for the functional E^V_g. By the Lemma 14 we have that u_n converges to u^0 weakly in $\mathcal{D}^{1,2}$ (up to subsequence), so, given $\varphi \in C_0^{\infty}(\mathbb{R}^N)$,

$$\lim_{n \to \infty} \int \nabla u_n \cdot \nabla \varphi + Vu_n \varphi - f'(u_n) \varphi - g \varphi = 0. \quad (33)$$
It is easy to see that

\[\int \nabla u_n \nabla \varphi + Vu_n \varphi \rightarrow \int \nabla u^0 \nabla \varphi + V u^0 \varphi. \]

Arguing as in Step 1 of [5, Lemma 3.3] we get also that, for some \(0 < \theta < 1\),

\[\int [f'(u_n) - f'(u^0)] \varphi = \int_{\text{supp} \varphi} f''(\theta u_n + (1 - \theta) u^0)(u_n - u^0) \varphi \rightarrow 0, \quad (34) \]

as \(n \rightarrow 0\), because \(u_n - u^0 \rightarrow 0\) in \(L^p(\Omega)\), with \(\Omega\) bounded and \(p < 2^*\). So we have proved that \(u^0\) solves \(-\Delta u + Vu = f'(u) + g\).

Now we set

\[\psi_n(x) = u_n(x) - u^0(x). \]

Then \(\psi_n \rightharpoonup 0\) weakly in \(D^{1,2}\). If \(\psi_n \nrightarrow 0\) strongly in \(D^{1,2}\), for Step 3 of [5, Lemma 3.3] we have that there exists a sequence \(\{y_n\} \subset \mathbb{R}^N\) with \(|y_n| \rightarrow \infty\) such that \(\psi_n(x + y_n) \rightarrow u^1\) in \(D^{1,2}\), and \(u^1 \neq 0\).

Because \(u^0\) is a weak solution of \((P)\) and \(u_n\) is a PS sequence for \(E^V_g\) we have that, for any \(\varphi \in C^\infty_c(\mathbb{R}^N)\),

\[\int \nabla u_n \nabla \varphi + Vu_n \varphi - f'(u_n) \varphi - g \varphi \rightarrow 0; \]

\[\int \nabla u^0 \nabla \varphi + V u^0 \varphi - f'(u^0) \varphi - g \varphi = 0. \]

So

\[\int \nabla \psi_n \nabla \varphi + V \psi_n \varphi - f'(u_n) - f'(u^0) \varphi \rightarrow 0. \quad (35) \]

Using [34] we have that \(\psi_n\) is a PS sequence for the functional \(E^V_0\). Thus, for any \(\varphi \in C^\infty_c(\mathbb{R}^N)\) we have

\[\int \nabla \psi_n(x + y_n) \nabla \varphi(x) - f'(\psi_n(x + y_n)) \varphi(x) dx = \]

\[\int \nabla \psi_n(x) \nabla \varphi(x - y_n) - f'(\psi_n(x)) \varphi(x - y_n) dx = \]

\[\int [f'(u_n) - f'(u^0) - f'(\psi_n)] \varphi(x - y_n) - \int V(x) \psi_n(x) \varphi(x - y_n) + o(1). \]

Using the same argument of Lemma [15] we can prove that

\[\int V(x) \psi_n(x) v(x - y_n) \leq C \varepsilon_n ||\varphi||_{D^{1,2}}, \text{ with } \varepsilon_n \rightarrow 0; \]
We set

\[m_g = \inf_{u \in \mathcal{N}_g} E_g^V(u) \text{ and } m_{1,g} = \inf_{u \in \mathcal{N}_g} E_g^V(u). \]
We show that there exist a solution with critical value m_g and another solution with critical value $m_{1,g}$.

We set also

$$m_0 = \inf_{u \in \mathcal{N}_0^g} E_0^g(u)$$ \hspace{1cm} (37)

and we recall that there exists a positive radially symmetric function $\omega \in \mathcal{N}_0^g$ such that

$$E_0^g(\omega) = m_0 > 0.$$ \hspace{1cm} (38)

Finally, we set

$$m_V = \inf_{u \in \mathcal{N}_0^V} E_v^g(u)$$ \hspace{1cm} (39)

We know, by [5], that for any $V \leq 0$ and $V < 0$ on a set of positive measure there exists a function $\bar{u} \in \mathcal{N}_0^V$ such that

$$E_v^g(\bar{u}) = m_V$$ \hspace{1cm} (40)

and

$$0 < m_V < m_0.$$ \hspace{1cm} (41)

We prove the following results.

Theorem 17. There exist a $u_g \in \mathcal{N}_g^+$ such that $E_v^g(u_g) = m_g$. Furthermore, when $||g||_{L^{2N\infty}}$ is small, u_g is unique.

Proof. By definition of \mathcal{N}_g^+ we have that $m_g = \inf_{u \in \mathcal{N}_g^+} E_v^g(u)$, and that $m_g < 0$.

At first we prove that $m_g > -\infty$. By contradiction, suppose that there exist a sequence $t_n > 0$ and a sequence $\{v_n\}_n \subset D^{1,2}$ with $||v_n||_V = 1$ and $t_nv_n \in \mathcal{N}_g^+$ such that

$$E_v^g(t_nv_n) = \frac{t_n^2}{2} - \int f(t_nv_n) - t_n \int gv_n \rightarrow -\infty.$$ \hspace{1cm} (42)

We have also that $t_n^2 - \int f'(t_nv_n)t_nv_n - t_n \int gv_n = 0$. So, if t_n is bounded, we have

$$E_v^g(t_nv_n) = \frac{t_n^2}{2} + \int f'(t_nv_n)t_nv_n - t_n \int f(t_nv_n) \geq$$

$$\geq \frac{t_n^2}{2} + \left(1 - \frac{1}{\mu_1}\right) \int f'(t_nv_n)t_nv_n$$

that is bounded by Lemma 3. Thus we have that, up to subsequence, $t_n \rightarrow +\infty$. Finally, arguing as in (25) we have that

$$E_v^g(t_nv_n) \geq \left(1 - \frac{1}{\mu_1}\right) \frac{t_n^2}{2} - \left(1 - \frac{1}{\mu_1}\right) t_n \int gv_n \rightarrow +\infty,$$ \hspace{1cm} (43)
that is a contradiction.

Now, let \(u_n \) a minimizing sequence. For the Ekeland variational principle, we can suppose \(u_n \) be a PS sequence. For the splitting lemma there exists a \(u_g \in \mathcal{N}_g^- \) and \(k \) functions \(w^j \), \(1 \leq j \leq k \) such that

\[
E_g^V(u_n) - E_g^V(u_g) + \sum_{j=1}^{k} E_0^0(w^j) = m_g < 0. \tag{44}
\]

We know that \(E_0^0(w^j) \geq m_0 > 0 \) for all \(j \). So, if \(k > 0 \) we will have \(E_g^V(u_n) \rightarrow m_g + \delta \) for some \(\delta > 0 \) and this is a contradiction.

So, we have

\[
u_n \rightarrow u_g \text{ in } D^{1,2}. \tag{45}
\]

Furthermore, we have \(E_g^V(u_g) = m_g < 0 \), so \(u_g \in \mathcal{N}_g^- \), and this concludes the proof of the existence.

To prove uniqueness, we argue by contradiction. If \(u_1, u_2 \) are minimizers of \(E_g^V \) on \(\mathcal{N}_g^- \), both \(u_1 \) and \(u_2 \) solve \((P)\), so we have

\[
||u_1 - u_2||_V^2 = \int (f'(u_1) - f'(u_2))(u_1 - u_2) = \int f''(\theta u_1 + (1-\theta)u_2)(u_1 - u_2)^2
\]

with \(0 < \theta < 1 \). So

\[
||u_1 - u_2||_{L^{2^*}}^2 \leq C ||u_1 - u_2||_V^2 \leq C ||u_1 - u_2||_{L^{2^*}}^2 ||f''(\theta u_1 + (1-\theta)u_2)||_{L^{\frac{2^*}{2^*-2}}}. \tag{46}
\]

By Remark 12 we have that, if \(g \rightarrow 0 \) in \(L^{\frac{2N}{N+2}} \), then both \(u_1 \) and \(u_2 \) are small in \(L^p + L^q \), so we have that \(f''(\theta u_1 + (1-\theta)u_2) \rightarrow 0 \) in \(L^{p/p-2} \cap L^{q/q-2} \) by Lemma 5 and, by interpolation,

\[
||f''(\theta u_1 + (1-\theta)u_2)||_{L^{\frac{2^*}{2^*-2}}} \rightarrow 0,
\]

that is a contradiction. \(\square \)

Proposition 18. Suppose that \(g \geq 0 \). Then there exists an \(u_g \geq 0 \) in \(\mathcal{N}_g^- \) such that \(E_g^V(u_g) = m_g \).

Proof. Take \(u_g \) as in Theorem 17. Because \(u_g \in \mathcal{N}_g^- \) we have that \(\int gu_g > 0 \). If \(u_g \) changes sign, or \(u_g \) negative, we have that

\[
0 < \int gu_g \leq \int g|u_g| \tag{47}
\]
So, reminding that f is even we have

$$E_V^g(|u_g|) = \frac{1}{2}||u_g||_V^2 - \int f(|u_g|) - \int g|u_g| \leq$$

$$\leq \frac{1}{2}||u_g||_V^2 - \int f(u_g) - \int g u_g = E_V^g(u_g).$$

We know that there exists a τ such that $\tau|u_g| \in \mathcal{N}_g^+$. Furthermore we know, by the study of $\varphi_{g|u_g}$ that τ is a local minimizer of $\varphi_{g|u_g}$, in fact, $\varphi_{g|u_g}(\tau) \leq \varphi_{g|u_g}(t)$ for all $t \in [0, \tau]$. We have

$$\frac{d}{dt}\varphi_{g|u_g}(1) = \frac{d}{dt}E_V^g(t|u_g|)_{t=1} = ||u_g||_V^2 - \int f'(|u_g|)|u_g| - \int g|u_g| \leq$$

$$\leq ||u_g||_V^2 - \int f'(u_g)u_g - \int g u_g = \frac{d}{dt}E_V^g(t u_g)_{t=1} = 0,$$

and

$$\frac{d^2}{dt^2}\varphi_{g|u_g}(1) = \frac{d^2}{dt^2}E_V^g(t|u_g|)_{t=1} = ||u_g||_V^2 - \int f''(|u_g|)|u_g|^2 =$$

$$= ||u_g||_V^2 - \int f''(u_g)u_g^2 = \frac{d^2}{dt^2}E_V^g(t u_g)_{t=1} > 0.$$

Thus $\tau \geq 1$ and

$$E_V^g(\tau|u_g|) \leq E_V^g(|u_g|) \leq E_V^g(u_g) = m_g,$$

that concludes the proof.

We want to prove that, under suitable hypothesis on g, f and V, there exists another solution of \mathcal{P} by minimizing the functional E_V^g on \mathcal{N}_g^-. In order to prove that a minimizing sequence converges we will show that, for g small,

$$m_{1,g} := \inf_{u \in \mathcal{N}_g^-} E_V^g(u) < m_g + m_0;$$

$$\text{(49)}$$

Lemma 19. Suppose that $V \leq 0$ and $V < 0$ on a set of positive measure. If $||g||_{L^{\frac{N}{N-2}}} \text{ sufficiently small, then there exist a } \delta > 0 \text{ such that}$

$$m_{1,g} := \inf_{u \in \mathcal{N}_g^-} E_V^g(u) < m_0 - \delta.$$

$$\text{(50)}$$

Moreover,

$$\limsup_{||g||_{L^{\frac{N}{N-2}}} \to 0} m_{1,g} \leq m_V$$

$$\text{(51)}$$
Proof. By [5] Lemma 4.4(a) and [5] Theorem 1.1 we know that there exists a $\bar{u} \in \mathcal{N}_{0}^{V}$ such that

$$E_{0}^{V}(\bar{u}) = \inf_{u \in \mathcal{N}_{0}^{V}} E_{0}^{V}(u) = m_{V} < m_{0}.$$

We set $v = \frac{\bar{u}}{||\bar{u}||_{V}}$, so $\bar{u} = t_{0}^{*}v$. We know that there exists $t_{1}^{*} = t_{1}^{*}(g)$ such that $t_{1}^{*}v \in \mathcal{N}_{g}^{-}$ by Proposition \[11\]. Furthermore, by Proposition \[11\] we have that $t_{1}^{*} \rightarrow t_{0}^{*}$ when $||g||_{L_{\frac{2N}{\alpha+2}}} \rightarrow 0$, and so

$$m_{1,g} \leq E_{g}^{V}(t_{1}^{*}v) \rightarrow E_{0}^{V}(\bar{u}) = m_{V} < m_{0} \text{ for } ||g||_{L_{\frac{2N}{\alpha+2}}} \rightarrow 0,$$

that concludes the proof. \qed

Theorem 20. For $||g||_{L_{\frac{2N}{\alpha+2}}} \rightarrow 0$ there exist $u_{1,g} \in \mathcal{N}_{g}^{-}$ a solution of (\mathcal{P}). Furthermore, if $g \geq 0$ the solution $u_{1,g}$ can be chosen positive.

Proof. By the splitting lemma, to obtain the result it is enough to show that $m_{1,g} < m_{g} + m_{0}$. In the previous lemma, we have proved that there exists a $\delta > 0$ such that $m_{1,g} < m_{0} - \delta$ for $||g||_{L_{\frac{2N}{\alpha+2}}}$ sufficiently small. By Remark \[11\] we have also that $m_{g} \rightarrow 0$ when $g \rightarrow 0$ in $L_{\frac{2N}{\alpha+2}}$. So there exists $u_{1,g} \in \mathcal{N}_{g}^{V}$ a solution of (\mathcal{P}). Moreover $E_{g}^{V}(u_{1,g})$ is positive, so $u_{1,g} \in \mathcal{N}_{g}^{-}$.

To prove the last claim, consider that $E_{g}^{V}(|u_{1,g}|) \leq E_{g}^{V}(u_{1,g})$. Also, there exists a \tilde{t} such that $\tilde{t}|u_{1,g}| \in \mathcal{N}_{g}^{-}$. Then we have

$$m_{1,g} = E_{g}^{V}(u_{1,g}) = \max_{t} E_{g}^{V}(tu_{1,g}) \geq E_{g}^{V}(\tilde{t}u_{1,g}) \geq E_{g}^{V}(\tilde{t}|u_{1,g}|).$$

So if $u_{1,g}$ is a solution, also $\tilde{t}|u_{1,g}| \in \mathcal{N}_{g}^{-}$ is a solution of (\mathcal{P}). \qed

Proposition 21. If $||g||_{L^{p} \cap L^{q}} \rightarrow 0$, then $m_{1,g} \rightarrow m_{V}$.

Proof. We take a sequence of $g_{n} \rightarrow 0$ in $L^{p'} \cap L^{q'}$. We know that for any g_n there exists u_{1,g_n} such that $E_{g_{n}}^{V}(u_{1,g_{n}}) = m_{1,g_n}$. For simplicity we call $u_n = u_{1,g_n}$. Also, we set $v_n = \frac{u_n}{||u_n||_{L^{p} \cap L^{q}}}$, and $u_n = t_n v_n$. We have

$$E_{g_{n}}^{V}(u_{n}) = t_n \left[\frac{1}{2} \int f'(t_n v_n) v_n - \int \frac{f(t_n v_n)}{t_n} - \frac{1}{2} \int g_n v_n, \right]$$

and we have that there exist a $\delta > 0$ such that $0 \leq E_{g_{n}}^{V}(u_{n}) \leq m_{V} + \delta$. Now, suppose, by contradiction, that $t_n \rightarrow \infty$. Then,

$$\frac{1}{2} \int f'(t_n v_n) v_n - \int \frac{f(t_n v_n)}{t_n} - \frac{1}{2} \int g_n v_n \rightarrow 0,$$

19
and so
\[\frac{1}{2} \int f'(t_n v_n) v_n - \int \frac{f(t_n v_n)}{t_n} \to 0. \tag{56} \]

By \((f)_\mu\), we have that
\[\int f'(t_n v_n) v_n - 2 \int \frac{f(t_n v_n)}{t_n} = \int f'(t_n v_n) v_n - \mu_1 \int \frac{f(t_n v_n)}{t_n} + (\mu_1 - 2) \int \frac{f(t_n v_n)}{t_n} \geq (\mu_1 - 2) \int \frac{f(t_n v_n)}{t_n}. \]

So \(\int \frac{f(t_n v_n)}{t_n} \to 0 \). Now the hypothesis on \(f \)
\[0 \leq c_0 t_n^{-p-1} \left[\int_{|v_n| > 1} |v_n|^p + \int_{|v_n| < 1} |v_n|^q \right] \leq \int \frac{f(t_n v_n)}{t_n} \to 0, \tag{57} \]
so we have that both \(\int_{|v_n| > 1} |v_n|^p \) and \(\int_{|v_n| < 1} |v_n|^q \) vanish when \(n \to \infty \), and so
\[1 = ||v_n||_{L^p + L^q} \leq \max \left\{ \int_{|v_n| > 1} |v_n|^p, \int_{|v_n| < 1} |v_n|^q \right\} \to 0 \quad \tag{58} \]
that is a contradiction. Furthermore, by Proposition 11, we have \(t_n \) bounded away from 0. So, we have that there exists two positive constants \(c_1 \) and \(c_2 \) such that
\[0 < c_1 \leq t_n = ||u_n||_{L^p + L^q} \leq c_2 < \infty. \tag{59} \]

Now, let \(\tau_n \) such that \(\tau_n u_n \in \mathcal{N}_0^V \). We can show that \(\tau_n \to 1 \) when \(n \to \infty \). The main idea is that
\[\frac{d}{dt} \phi_{g_n}(\tau_n) - \frac{d}{dt} \phi_{0}(\tau_n) = \int g_n u_n \to 0. \tag{60} \]
because \(||u_n||_{L^p + L^q} \) is bounded and \(g_n \to 0 \) in \(L^p \cap L^q \). The details are omitted for the sake of simplicity.

Now we have that
\[E_0^V(\tau_n u_n) - E_0^V(u_n) \to 0. \tag{61} \]
We have that $E_{g_n}^V(u_n)$ is bounded, so, up to subsequences, there exists a d such that $E_{g_n}^V(u_n) \to d$ when $n \to \infty$, and, because u_n is bounded in $L^p + L^q$, also $E_{d_n}^V(u_n) \to d$, and, by (61), $E_{\tau_n u_n}^V \to d$.

So, $d \geq m_V$. By Lemma 19 we know also that $d \leq m_V$ so we get the claim.

Proof of Theorem 1. By theorems 17 and 20, we have that there exists a $u_g \in N^+_g$ and $u_{1,g} \in N^-_g$ that solve (P). Furthermore, by Theorem 20 and Proposition 18 the solution can be chosen nonnegative. At least, by Remark 12 we have that $u_g \to 0$ in $D^{1,2}$ and by Proposition 21 that $m_{1,g} \to m_V$ when $g \to 0$.

A The Hypothesis on f

We want to prove that there exists a function that satisfies all the conditions required in the introduction.

We take the function

$$f(s) = \frac{|s|^q}{1 + |s|^{q-p}}.$$ (62)

This function is even, and it satisfies (f_0). We have that, for $s > 0$

$$f'(s) = \frac{qs^{q-1} + ps^{2q-p-1}}{(1 + s^{q-p})^2},$$

$$f''(s) = \frac{s^{q-2}}{(1 + s^{q-p})^2} \left\{ q(q-1) + p(2q-p-1)s^{q-p} - \frac{2(q-p)(q + ps^{q-p})s^{q-p}}{1 + s^{q-p}} \right\}.$$

It’s easy to see that f satisfies (f_2) and the first part of (f_0). We set $\mu_2 = 1 + \varepsilon > 1$; then the inequality $(1 + \varepsilon)f'(s)s < f''(s)s^2$ becomes

$$(q^2 - 2q - \varepsilon q) + p(2q - p - 2 - \varepsilon)\gamma - \frac{2(q-p)(q + p\gamma)\gamma}{1 + \gamma} > 0,$$

where $\gamma = s^{q-p}$. So, we have to prove that

$$q(q - 2 - \varepsilon) + [p(2q - p - 2 - \varepsilon) + q(2p - q - 2 - \varepsilon)]\gamma + p(p - 2 + \varepsilon)^2 > 0.$$

Obviously we can choose ε such that $q(q - 2 - \varepsilon) > 0$ and $p(p - 2 + \varepsilon) > 0$. Furthermore, we choose $q - p$ sufficiently small such that also $2q - p - 2 - \varepsilon$ and $2p - q - 2 - \varepsilon$ are positive, so the second part of (f_0) is proved.
At last we prove \([f_d]\) and that \(f''(s)s^3 > 0\). We have that, for \(s > 0\),

\[
f''(s) = \frac{6(p - q)^3s^{4q-3p-3}}{(1 + s^{p-q})^4} - \frac{6(1 + p - 2q)(p - q)^2s^{3q-2p-3}}{(1 + s^{q-p})^3} + \frac{(2p + 3p^2 + p^3 - 2q - 12pq - 6p^2q + 9q^2 + 12pq^2 - 7q^3)s^{2q-p-3}}{(1 + s^{q-p})^2} + \frac{q(2 - 3q + q^2)s^{q-3}}{1 + s^{q-p}}.
\]

We obtain that

\[
f''(s)s^3 = \frac{As^q}{1 + s^{q-p}} + \frac{Bs^{2q-p}}{(1 + s^{p-q})^2} + \frac{Cs^{3q-2p}}{(1 + s^{q-p})^3} + \frac{Ds^{4q-3p}}{(1 + s^{q-p})^4},
\]

were

\[A = q(q - 2)(q - 1); \quad B = (p - q)(2 + 3p + p^2 - 9q - 5pq + 7q^2); \quad C = 6(p - q)^2(2q - p - 1); \quad D = 6(p - q)^3.\]

We can choose \(q - p\) sufficiently small, in order to have \(B, C, D << A\). Now, set as above \(\gamma = s^{q-p}\), we have

\[
f''(s)s^3 = \frac{s^q[A + (3A + B)\gamma + (3A + 2B + C)\gamma^2 + (A + B + C + D)\gamma^3]}{(1 + s^{q-p})^4},
\]

that is positive for all \(s > 0\). So \([f_d]\) is completely proved.

Furthermore, we have that

\[
\lim_{s \to 0^+} \frac{f''(s)}{s^{q-3}} = A = q(q - 1)(q - 2) > 0, \quad (63)
\]

and

\[
\lim_{s \to +\infty} \frac{f''(s)}{s^{p-3}} = A + B + C + D = p(p - 1)(p - 2) > 0. \quad (64)
\]

So, there exists a \(c_3 > 0\) such that

\[
\begin{cases}
|f''(s)| \leq c_3|s|^{p-3} & \text{for } |s| \geq 1; \\
|f''(s)| \leq c_3|s|^{q-3} & \text{for } |s| \leq 1.
\end{cases} \quad (65)
\]

Now, let \(\Gamma = \{x \in \mathbb{R}^N : |u(x)| > 1\}\) and \(\Delta = \mathbb{R}^N \setminus \Gamma\). We have that

\[
\int_{\Gamma} f''(u)u^3 \leq \int_{\Gamma} f''(u)u^3 + \int_{\Delta} f''(u)u^3 \leq c_3 \int_{\Gamma} |u|^p + c_3 \int_{\Delta} |u|^q \leq C_1 + C_2 |u|_{L^p + L^q} \leq C_3 + C_4 |u|_{D^{1,2}} < \infty,
\]

and this proves \([f_d]\).
References

[1] Antonio Azzollini and Alessio Pomponio, Compactness result and applications to some “zero mass” elliptic problems, ArXiv preprint.

[2] Marino Badiale and Sergio Rolando, Elliptic problems with singular potential and double-power nonlinearity, Mediterr. J. Math. 2 (2005), no. 4, 417–436.

[3] Soohyun Bae and Wei-Ming Ni, Existence and infinite multiplicity for an inhomogeneous semilinear elliptic equation on \mathbb{R}^n, Math. Ann. 320 (2001), no. 1, 191–210.

[4] Vieri Benci and Donato Fortunato, Towards a unified field theory for classical electrodynamics, Arch. Ration. Mech. Anal. 173 (2004), no. 3, 379–414.

[5] Vieri Benci, Carlo R. Grisanti, and Anna Maria Micheletti, Existence and non existence of the ground state solution for the nonlinear schroedinger equations with $V(\infty) = 0$, Topol. Methods Nonlinear Anal. 26 (2005), 203–219.

[6] Vieri Benci and Anna Maria Micheletti, Solutions in exterior domains of null mass nonlinear field equations, Advanced nonlinear studies 6 (2006), no. 2, 171–198.

[7] Henry Berestycki and Pierre-Louis Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal. 82 (1983), no. 4, 313–345.

[8] Henry Berestycki and Pierre-Louis Lions, Nonlinear scalar field equations. II. Existence of infinitely many solutions, Arch. Rational Mech. Anal. 82 (1983), no. 4, 347–375.

[9] Jöran Bergh and Jörgen Löfström, Interpolation spaces. An introduction, Springer-Verlag, Berlin, 1976, Grundlehren der Mathematischen Wissenschaften, No. 223.

[10] Guy Bernard, An inhomogeneous semilinear equation in entire space, J. Differential Equations 125 (1996), no. 1, 184–214.

[11] Haim Brezis and Louis Nirenberg, A minimization problem with critical exponent and non zero data, Symmetry in Nature, Scuola Normale Superiore, Pisa, 1989, pp. 129–140.
[12] Marco Ghimenti and Anna Maria Micheletti, *Existence of minimal nodal solutions for the nonlinear Schrödinger equations with $V(\infty) = 0*, Adv. Differential Equations 11 (2006), no. 12, 1375–1396.

[13] Zeev Nehari, *On a class of nonlinear second-order differential equations*, Trans. Amer. Math. Soc. 95 (1960), 101–123.

[14] Lorenzo Pisani, *Remark on the sum of lebesgue spaces*, Preprint of the University of Bari.

[15] Michael Struwe, *A global compactness result for elliptic boundary value problems involving limiting nonlinearities*, Math. Z. 187 (1984), no. 4, 511–517.

[16] G. Tarantello, *On nonhomogeneous elliptic equations involving critical Sobolev exponent*, Ann. Inst. H. Poincaré Anal. Non Linéaire 9 (1992), no. 3, 281–304.

[17] Huan-Song Zhou, *Solutions for a quasilinear elliptic equation with critical Sobolev exponent and perturbations on \mathbb{R}^N*, Differential Integral Equations 13 (2000), no. 4-6, 595–612.

[18] Xi Ping Zhu, *A perturbation result on positive entire solutions of a semilinear elliptic equation*, J. Differential Equations 92 (1991), no. 2, 163–178.