In its 16 years of scientific measurements, the Spitzer Space Telescope performed a number of groundbreaking and key infrared measurements of Solar System objects near and far. In this second of two Review Articles, we describe results from Spitzer observations of asteroids, dust rings and planets that provide new insight into the formation and evolution of our Solar System. The key Spitzer results presented here can be grouped into three broad classes: characterizing the physical properties of asteroids, notably including a large survey of near-Earth objects; detection and characterization of several dust/debris disks in the Solar System; and comprehensive characterization of ice giant (Uranus and Neptune) atmospheres. Many of these observations provide critical foundations for future infrared space-based observations.

Two key questions in planetary science concern the formation and evolution of our Solar System, and understanding the processes that drive the functioning of the major planets. Both provide context for understanding exoplanetary systems as well as comprehending the history of our own planetary system. To understand the formation of our Solar System, its many small bodies—asteroids, comets and the like—provide the clearest view, as these objects act as cosmochemical and dynamical tracers of the processes that have sculpted our planetary system. Complementary studies of the highly dynamic major planets provide the opportunity to study the entire history of the Solar System, from formation to present day, by observing the Solar System as it is now.

As with most science fields, advances in our understanding are driven by technological progress, and the advent of space-based infrared astronomy in the 1970s provided a new view of the Universe. The enormous potential of a cooled infrared telescope in space, which later became the Spitzer Space Telescope, was recognized by the Solar System science community at an early stage in its development. Although the initiative for the project came from NASA’s Astrophysics Division, early design features included the ability to track objects moving against the fixed background sky. In order to promote the project, then called the Space Infrared Telescope Facility (SIRTF), within the planetary science community, presentations were made at conferences and papers were published in journals and books. In addition, a workshop held in 1999 brought more than 60 people together to explore the prospects for the study of the Solar System and circumstellar disks with SIRTF. A substantial program that surveyed a wide variety of Solar System bodies was included in the first year of operations in space, and the resulting archived data continue to be studied. Numerous additional programs relevant to planetary science were proposed and executed throughout both the cold (2003–2009) and warm phases (2009–2020) of the operation of Spitzer, and a complete listing is available.

This Review Article is the second part of our presentation of the Spitzer Solar System legacy science results. In the first part, we presented a picture of the current paradigm for Solar System formation along with a review of Spitzer’s scientific results from studying outer Solar System planetesimals and dwarf planets. In this paper, we briefly describe Spitzer’s results for asteroids, dust/debris rings and the ice giants Uranus and Neptune.

Asteroids
There are close to one million known asteroids, and the physical properties of these small rocky bodies act as chemical and dynamical tracers of the formation and evolution of the Solar System. Spitzer observations of several sub-populations of asteroids provided new information that has increased our understanding of the processes that drive the history and present conditions of our planetary system.

Near-Earth objects. Near-Earth objects (NEOs) constitute the largest population of Solar System bodies observed by Spitzer. NEOs escaped from their source regions—generally in the main asteroid belt—via the Yarkovsky effect and planetary scattering, and therefore act as dynamical and composition tracers of small
bodies throughout the Solar System. Some 3,000 NEOs were observed by Spitzer, primarily in a series of large warm Spitzer programs, observed after the onboard cryogen was exhausted. NEOs have surface equilibrium temperatures in the range 200–400 K, so in most cases the measured flux at 4.5 μm is dominated by thermal emission. Therefore, 4.5 μm fluxes can be used, in combination with absolute magnitudes in the optical, and the near-Earth asteroid thermal model (NEATM), to derive the diameter and albedo of NEOs. The beaming parameter, η, a critical part of the thermal model, can only be fitted if at least two thermal flux measurements are available; otherwise a value for η has to be assumed, as is the case for almost all Spitzer-observed NEOs.

The sizes and albedos are fundamental physical properties of Solar System bodies. The size distributions of populations are controlled by the conditions of formation as well as collisional evolution. Comparisons among populations can lead to genetic relationships of separate populations and their reservoirs. Albedo, or average surface reflectance, is linked to composition. Linking size distributions and albedos from NEOs to their source regions provides a link into the evolution of small-body populations throughout the Solar System.

The composite result of the Spitzer NEO surveys is shown in Fig. 1: the diameter and albedo of 2,204 unique NEOs. Overall, the uncertainty on any given solution of diameter and albedo is relatively large (±20% and up to ±50%, respectively), but the size and albedo distribution properties of the NEO population as a whole can be derived given the large number statistics. There is a clear bias against the smallest, darkest (that is, lowest albedo) NEOs, because the observed samples were chosen from optically detected NEOs.

and optical observations. Albedos and diameters are inversely correlated for any individual asteroid solution, so a bad (high, low) solution in one corresponds to a poor (low, high) solution in the other.

For a large number of NEOs, time-series photometry exists. These data sets have been used to derive the rotation periods, shapes and intrinsic strengths for 38 individual objects and the average shape of sub-kilometre NEOs. Sub-kilometre NEOs appear to be more elongated than main-belt asteroids that are larger than 1 km (ref. 12); an answer to whether this is a size effect or an effect of their dynamical environment will have to await forthcoming large surveys of sub-kilometre main-belt asteroids.

Spitzer observed several individual NEOs of interest. One is (3552) Don Quixote, an NEO with a comet-like orbit, which was not previously known to exhibit comet-like behaviour (that is, a tail and/or coma). Observations at 4.5 μm showed the presence of a tail and coma, which was interpreted as evidence for CO or CO2 emission. Subsequent observations have further shown activity in both optical and radio wavelengths. NEOs 2009 BD and 2011 MD were both observed as part of a campaign to characterize potential targets for NASA’s Asteroid Redirect Mission. Although this mission has since been cancelled, the Spitzer results retain their scientific importance. For 2009 BD, the most probable solution is high thermal inertia and relatively low density, implying a collection of boulders and significant void space. For 2011 MD, the density is also probably low, again implying significant porosity (in this case, more than 65%) (ref. 13). 2011 MD is the smallest individual object detected during the entire Spitzer mission (diameter around six metres).

Asteroid (101955) Bennu has recently been visited by NASA’s OSIRIS-REx mission, and asteroid (162173) Ryugu was visited by JAXA’s Hayabusa2 mission. Both asteroids were observed by Spitzer prior to spacecraft arrivals. For Bennu, Spitzer photometry and spectroscopy were used to measure a thermal inertia of 310 ± 70 J m−2 K−1 s−0.5, a value that is in quite good agreement with the spacecraft measurement, although the distribution of grain sizes on the surface of the asteroid has turned out to be very different than the prediction based on Spitzer data. For Ryugu, a lower limit of 150 J m−2 K−1 s−0.5 was allowed by modelling, depending on the pole orientation adopted; separately, a value of 150–300 J m−2 K−1 s−0.5 was determined, in good agreement with the value measured by the spacecraft after arrival. Finally, the sizes and albedos of 65 potential future spacecraft target asteroids were obtained, based on observations taken during the ExploreNEOs survey.

Main-belt asteroids. Main-belt asteroid families provide insight into the collisional evolution of the belt; family members are thought to be fragments from an initial collision in which the parent asteroid was shattered or subjected to a large impact. Dynamical studies enable family members to be identified by searching for associations in proper orbital elements. Spitzer data have formed the basis of a number of spectroscopic and photometric studies of members of main-belt asteroid families in order to probe their compositions and physical properties.

The thermal continua of 17 Karin cluster asteroids were measured in order to make the first direct measurements of their sizes and albedos and study the physical properties of their surfaces. The targets were among the smallest main-belt asteroids observed at the time in the mid-infrared. NEATM-based diameters were derived ranging from 17 km for (832) Karin to 1.5 km for the smallest asteroid, with typical uncertainties of 10%. The mean albedo (p_v, which is the albedo p at V band (0.55 μm)) was found to be p_v = 0.215 ± 0.015, very similar to that for (832) Karin itself, consistent with the view that the young Karin asteroids are closely related physically as well as dynamically. The mean albedo is lower than expected for young, fresh rocky S-type surfaces, suggesting
that space weathering can darken main-belt asteroid surfaces on <6 Myr timescales. The results are consistent with models of the formation of the Karin cluster via a single catastrophic collision only 5.8 ± 0.2 Myr ago 25.

One of the largest and oldest families in the main belt is the Themis family. In contrast to the Karin cluster, the Themis family consists of primitive low-albedo asteroids with high carbon content.

Spectra from 5–14 μm were obtained for eight Themis-family asteroids in order to constrain their composition and thermal properties 36. Using NEATM, the authors derived a mean albedo of \(\rho_v = 0.07 \pm 0.02\), with a mean \(\eta\) value close to unity, implying that the thermal inertia is probably low. Five of the targets were found to display a 9–12 μm emission plateau suggestive of fine-grained ferromagnesian olivine and pyroxene silicates, similar to features seen in cometary coma dust spectra. Figure reproduced with permission from ref. 36, Elsevier.

The main-belt asteroids (2867) Steins and (21) Lutetia, fly-by targets of the Rosetta Mission, were observed 29 using the Spitzer Infrared Spectrograph (IRS) 30. Lutetia was found to have thermal emissivity similarities with carbonaceous chondrite meteorites, difficult to reconcile with its moderate albedo and M-type classification. For the E-type asteroid Steins, on the other hand, the similarities of its emissivity to enstatite meteorites could be confirmed.

Finally, archival data were used to study the albedo and size distribution of main-belt asteroids using data that were obtained to map the Galactic plane and a star-formation region at 24 μm (ref. 31). The results included a broad albedo distribution and a size distribution that deviate from a constant power law at sizes less than 10 km.

Jupiter’s Trojan asteroids. Jupiter has millions of planetesimals co-rotating about the Sun with it in its L4 and L5 Lagrange points. Dubbed the Greeks (L4 population) and the Trojans (L5 population), it is debated as to whether these are objects formed nearby in the protoplanetary disk and trapped within the first ~100 Myr of the Solar System’s existence, or if they were injected from the Kuiper belt into the Lagrange points 500–700 Myr later during the Jupiter–Saturn 2:1 resonance crossing of the Late Heavy Bombardment 32.

Archival data for 62 members of the Hilda family were analysed to find that small (<10 km) Hildas have a higher mean albedo, and a larger albedo dispersion, than large (>10 km) Hildas, suggesting that some of this difference may be due to delivery of outer Solar System material to the Hilda family early in the Solar System’s history 38.

The main-belt asteroids (2867) Steins and (21) Lutetia, fly-by targets of the Rosetta Mission, were observed 29 using the Spitzer Infrared Spectrograph (IRS) 30. Lutetia was found to have thermal emissivity similarities with carbonaceous chondrite meteorites, difficult to reconcile with its moderate albedo and M-type classification. For the E-type asteroid Steins, on the other hand, the similarities of its emissivity to enstatite meteorites could be confirmed.

Finally, archival data were used to study the albedo and size distribution of main-belt asteroids using data that were obtained to map the Galactic plane and a star-formation region at 24 μm (ref. 31). The results included a broad albedo distribution and a size distribution that deviate from a constant power law at sizes less than 10 km.

Jupiter’s Trojan asteroids. Jupiter has millions of planetesimals co-rotating about the Sun with it in its L4 and L5 Lagrange points. Dubbed the Greeks (L4 population) and the Trojans (L5 population), it is debated as to whether these are objects formed nearby in the protoplanetary disk and trapped within the first ~100 Myr of the Solar System’s existence, or if they were injected from the Kuiper belt into the Lagrange points 500–700 Myr later during the Jupiter–Saturn 2:1 resonance crossing of the Late Heavy Bombardment 32.

Archival data for 62 members of the Hilda family were analysed to find that small (<10 km) Hildas have a higher mean albedo, and a larger albedo dispersion, than large (>10 km) Hildas, suggesting that some of this difference may be due to delivery of outer Solar System material to the Hilda family early in the Solar System’s history 38.

The main-belt asteroids (2867) Steins and (21) Lutetia, fly-by targets of the Rosetta Mission, were observed 29 using the Spitzer Infrared Spectrograph (IRS) 30. Lutetia was found to have thermal emissivity similarities with carbonaceous chondrite meteorites, difficult to reconcile with its moderate albedo and M-type classification. For the E-type asteroid Steins, on the other hand, the similarities of its emissivity to enstatite meteorites could be confirmed.

Finally, archival data were used to study the albedo and size distribution of main-belt asteroids using data that were obtained to map the Galactic plane and a star-formation region at 24 μm (ref. 31). The results included a broad albedo distribution and a size distribution that deviate from a constant power law at sizes less than 10 km.
The first mid-infrared spectra of Trojans were taken using Spitzer/IRS (Fig. 2). Three of the spectra (of Trojan asteroids (624) Hektor, (911) Agamemnon and (1172) Aneas) surprisingly revealed silicate features at 9–12 μm and 18–25 μm indicative of fine-grained silicates similar to those found in cometary dust spectra but not in solid silicate laboratory specimens. This led to the suggestion that these objects are covered in a unique ‘fairy-castle’-like structure on the surface; others have argued for dense dust ‘comae’ filling these objects’ Hill spheres. Photometric light curves of the binary Trojan system Patroclus–Menoetius, one of the targets of NASA’s Lucy mission, during its mutual occultation were used to determine that the thermal inertia in the system is quite low, suggesting fine-grained material on the surface. The density of the system was found to be around 1 g cm–3, which has significant implications for both the formation of these bodies and the design of the upcoming Lucy mission.

Dust and rings in the Solar System

The existence and structure of dust rings in the Solar System provide strong constraints on dynamics as well as sources and sinks of those dust populations. Dust rings can be difficult to detect because of small particle size, low optical depth, and, in some cases, difficult viewing geometries. Spitzer made two important contributions to the study of Solar System dust rings, as follows.

Earth’s resonant dust ring. Asteroid–asteroid collisions and dust released from cometary sublimation create the interplanetary (or zodiacal) dust cloud. Once released, the dust orbits decay due to Poynting–Robertson drag until they fall into the Sun or assume escape trajectories as beta-meteoroids, but on the way in they can be trapped into metastable gravitational resonances with the planets. Theory predicts that the shape of the cloud of resonant particles depends on the sizes of the particles; small particles that are dominated by radiation pressure effects pass through quickly and are not trapped. Larger particles can be trapped for much longer and are predicted to show a pronounced trailing clump where Poynting–Robertson drag counters a planet’s gravitational attraction. In 2007, Spitzer passed through the structure of the Earth’s resonant dust ring, verifying the leading/trailing zodiacal light flux asymmetries known since the 1983 Infrared Astronomical Satellite (IRAS) all-sky infrared survey (Fig. 3). Comparing the dynamical predictions to Spitzer observations showed that the zodiacal light particles trapped in the Earth’s resonant ring have radii of at least 10 μm.

The zodiacal dust cloud. Spitzer observed long strips through the ecliptic plane in order to resolve the structures of the Solar System’s zodiacal dust in detail and search for changes in structure over the nearly 20 year time difference between IRAS and Spitzer. Two ‘orphan’ dust trails were identified, unassociated with any known comet and containing more surface area than all comet trails combined. Those trails were linked back to orphan trails that had previously been discovered by IRAS, allowing a crude orbit determination showing that the particles may have been produced by asteroid collisions within the past 100,000 years. Larger-scale dust bands spreading across most longitudes were measured in new detail, allowing an association to be made with collisional debris associated with part of the Themis family and implying significant temporal variability in debris disks due to spikes in debris production after asteroid collisions.

Saturn’s Phoebe ring. Phoebe is a large, irregularly shaped outer satellite of Saturn that is thought to be a captured Kuiper belt object because of its retrograde orbit. Using its Multiband Imaging Photometer (MIPS) at 24 μm and 70 μm, Spitzer discovered the Solar System’s largest planetary ring: Saturn’s Phoebe ring (Fig. 4). Most planetary rings lie within a few radii of their host body; source satellites continuously supply this dust, which is then lost in collisions or by radial transport. But Saturn’s Phoebe ring is unique in both its size and orientation. The Phoebe ring extends from at least 100Rₚ to an astonishing 270Rₚ (where Rₚ denotes Saturn’s radius: 60,330 km) and the ring has a vertical thickness, 40Rₚ, matching the vertical range of motion of Saturn’s outer moon, Phoebe. Therefore, unlike all other known rings, the Phoebe ring is centred on Saturn’s orbital plane rather than its equator. (Another spacecraft, WISE, observed Saturn at 22 μm in 2010 and revealed, for the first time, the full radial extent of the Phoebe ring.) Phoebe ring particles smaller than the centimetre scale in diameter slowly migrate inward, presumably on retrograde orbits like that of Phoebe.

Iapetus orbits Saturn interior to Phoebe, with a rotation period that is synchronous with its prograde orbital period of 79.3 days. Phoebe particles that drift inward are swept up by Iapetus,
preferentially on its leading hemisphere in a symmetrical pattern centred on the apex of the satellite’s orbital motion. This explains the observation that the visible albedo of the leading hemisphere of Iapetus is ten times less than that of the trailing hemisphere. Spitzer’s discovery of the Phoebe ring explained the origin of Iapetus’s unusual appearance and thereby solved one of planetary science’s long-standing mysteries. Further cementing this link, the unusual brightness of Uranus’s mid-infrared emission varies considerably as the planet rotates. Subsequent analysis of Spitzer data (N.R.-G. et al., manuscript in preparation) has revealed that this was due to stratospheric temperature varying with longitude due to some previously unexpected dynamical influence, leading to hydrocarbon brightness variability as large as 15% (Fig. 5). Spatially resolving the stratospheric features responsible for this longitudinal variability (for example, waves and vortices) will be a key goal for future observatories, including the James Webb Space Telescope.

The Uranus data were combined to create a disk-averaged spectrum with a high signal-to-noise ratio (Fig. 6). Despite the short-term variability (Fig. 5), there was no compelling evidence for significant temporal variations in globally averaged hydrocarbon abundances over the decade between Infrared Space Observatory and Spitzer observations, though we cannot preclude a possible large increase in the C2H2 abundance since the Voyager era. These results have implications with respect to the influx rate of exogenic oxygen species (for example, from comet impacts), as well as for the production rate of stratospheric hazes on Uranus.

Vertical temperature profiles were derived from Spitzer Uranus data, and those remain the most detailed characterization of tropospheric and stratospheric properties to date. They are compatible with the stratospheric temperatures derived from the Voyager ultraviolet occultation measurements, but incompatible with hot stratospheric temperatures derived from the same data. The Spitzer data also suggest that an additional absorber such as H2S...
provides excess absorption seen above H₂ collision-induced absorption opacity (that is, at 0.8–3.3 μm).

Like Uranus, Neptune’s atmosphere is primarily composed of hydrogen, helium and methane. However, Neptune spectroscopy prior to Spitzer revealed many higher-order hydrocarbons, products of reactions that are initiated by the photodissociation of CH₄; C₂H₆, C₂H₂, and tentative evidence for CH₄D and C₂H₄ (refs. 54–57); HCN (ref. 58); C₃H₄ (ref. 59); and the CH₃ radical (ref. 60).

Hydrocarbon compounds provide crucial constraints for photochemical models of Neptune’s atmosphere⁶¹. Such models seek to explain and predict species abundances via the balance between chemical production and destruction rates, as well as loss to the lower atmosphere by condensation and eddy diffusion⁶²/⁶³. The first observations of Neptune by Spitzer in 2004 produced the first discovery of methylacetylene (CH₃C₂H) and diacetylene (C₃H₂) in the planet’s atmosphere, with derived 0.1 mbar volume mixing ratios of (1.2 ± 0.1) × 10⁻⁸ and (3 ± 1) × 10⁻₁², respectively⁶⁴. Unlike the case for Uranus, Neptune’s spectrum did not show significant evidence for rotational infrared variability.

Finally, Spitzer observations of both Uranus and Neptune were also the first to reveal the existence of hydrogen dimers (two H₂ molecules bound by van der Waals forces) on both planets. This manifests as spectral structure surrounding the well-known hydrocarbon quadrupole lines, which required the development of new quantum mechanical ab initio models to explain⁶⁵.

Conclusions

The contributions of Spitzer to Solar System science during its 16 year mission were many and varied. It is, of course, impossible to list all of Spitzer’s Solar System observations and results in this short Review Article. Spitzer’s contributions to planetary science are still ongoing and expanding today, due to the utilization of the science data archive⁶⁶. Many different investigations will serve as foundational for future telescopic studies from the ground and space as well as future spacecraft explorations of our Solar System. The legacy of Spitzer’s observations of bodies in the Solar System will continue even though the active mission has ended.

Received: 23 April 2020; Accepted: 28 August 2020; Published online: 8 October 2020

References

1. Cruikshank, D. P., Werner, M. W. & Backman, D. E. SIRTF: capabilities for planetary science. Adv. Space Res. 12, 187–193 (1992).
2. Cruikshank, D. P. & Werner, M. W. in Planets Beyond the Solar System and the Next Generation of Space Missions (ed. Soderblom, D.) 223–244 (Astronomical Society of the Pacific, 1997).
3. List of Spitzer Approved Programs (IRSA, 2020); https://go.nature.com/362Lq1B
4. Lisse, C. et al. Spitzer’s Solar System studies of comets, centaurs and Kuiper belt objects. Nat. Astron. https://doi.org/10.1038/s41550-020-2191-6 (2020).
5. Granvik, M. et al. Debiased orbit and absolute-magnitude distributions for near-Earth objects. Icarus 312, 181–207 (2018).
6. Harris, A. W. A thermal model for near-Earth asteroids. Icarus 131, 291–301 (1998).
7. Harris, A. W. et al. ExploreNEOs. II: the accuracy of the warm Spitzer near-Earth object survey. J. Astron. 141, 147 (2011).
8. Trilling, D. E. et al. NEOSurvey 1: initial results from the warm Spitzer exploration science survey of near-Earth object properties. Astron. J. 152, 172 (2016).
9. Momert, M. et al. ExploreNEOs. VIII. Dormant short-period comets in the near-Earth asteroid population. Astron. J. 150, 106 (2015).
10. Gustafsson, A. et al. Spitzer albedos of near-Earth objects. Astron. J. 158, 67 (2019).
11. Hora, J. L. et al. Infrared light curves of near-Earth objects. Astrophys. J. Suppl. 238, 22 (2018).
12. McNeill, A., Hora, J. L., Gustafsson, A., Trilling, D. E. & Momert, M. Constraining the shape distribution of near-Earth objects from partial light curves. Astron. J. 157, 164 (2019).
13. Momert, M. et al. The discovery of cometary activity in near-Earth asteroid (3552) Don Quixote. Astrophys. J. 781, 25 (2014).
49. Burgdorf, M., Orton, G., van Cleve, J., Meadows, V. & Houck, J. Detection of new hydrocarbons in Uranus' atmosphere by infrared spectroscopy. *Icarus* 184, 634–637 (2006).

50. Orton, G. S. et al. Mid-infrared spectroscopy of Uranus from the Spitzer infrared spectrometer: 2. Determination of the mean composition of the upper troposphere and stratosphere. *Icarus* 243, 471–493 (2014).

51. Orton, G. S. et al. Mid-infrared spectroscopy of Uranus from the Spitzer infrared spectrometer: 1. Determination of the mean temperature structure of the upper troposphere and stratosphere. *Icarus* 243, 494–513 (2014).

52. Herbert, F. et al. The upper atmosphere of Uranus: EUV occultations observed by Voyager 2. *J. Geophys. Res.* 92, 15093–15109 (1987).

53. Stevens, M. H., Strobel, D. F. & Herbert, F. H. An analysis of the Voyager 2 Ultraviolet Spectrometer occultation data at Uranus: inferring heat sources and model atmospheres. *Icarus* 101, 45–63 (1993).

54. Orton, G. S. et al. The spectra of Uranus and Neptune at 8–14 and 17–23 μm. *Icarus* 70, 1–12 (1987).

55. Conrath, B. J. et al. Infrared observations of the Neptunian system. *Science* 246, 1454–1459 (1989).

56. Bezard, B., Romani, P. N., Conrath, B. J. & Maguire, W. C. Hydrocarbons in Neptune's stratosphere from Voyager infrared observations. *J. Geophys. Res.* 96, 18961–18975 (1991).

57. Bishop, J. et al. in *Neptune and Triton* (ed. Cruikshank, D. P.) 427–487 (Univ. of Arizona Press, 1995).

58. Marten, A. et al. First observations of CO and HCN on Neptune and Uranus at millimeter wavelengths and their implications for atmospheric chemistry. *Astrophys. J.* 406, 285–297 (1993).

59. Schulz, B. et al. Detection of C2H4 in Neptune from ISO/PHT-S observations. *Astron. Astrophys.* 350, L13–L17 (1999).

60. Bezard, B., Romani, P. N., Feuchtgruber, H. & Encrenaz, T. Detection of the methyl radical on Neptune. *Astrophys. J.* 515, 868–872 (1999).

61. Moses, J. I., Fletcher, L. N., Greathouse, T. K., Orton, G. S. & Hue, V. Seasonal stratospheric photochemistry on Uranus and Neptune. *Icarus* 307, 124–145 (2018).

62. Moses, J. I. et al. Photochemistry and diffusion in Jupiter's stratosphere: constraints from ISO observations and comparisons with other giant planets. *J. Geophys. Res.* 110, E08001 (2005).

63. Meadows, V. S. et al. First Spitzer observations of Neptune: detection of new hydrocarbons. *Icarus* 197, 585–589 (2008).

64. Fletcher, L. N., Gustafsson, M. & Orton, G. S. Hydrogen dimers in giant-planet infrared spectra. *Astrophys. J. Suppl.* 235, 24 (2018).

65. Spitzer Heritage Archive (IRSA, 2020); https://irsa.ipac.caltech.edu/data/SPITZER/docs/spitzerdataarchives/

66. Kelley, M. S. P., Woodward, C. E., Gehrz, R. D., Reach, W. T. & Harker, D. E. Mid-infrared spectra of comet nuclei. *Icarus* 284, 344–358 (2017).

Acknowledgements
The authors would like to thank the Spitzer project, without which none of the science described above would have been possible. The dedication, competence and excellence with which the staff of the Spitzer Science Center carried out their mission, and in particular observations of Solar System objects, is greatly appreciated, and has produced a scientific foundation that will last for decades. This work is based on observations made with the Spitzer Space Telescope, which was operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Support for this work was provided by NASA, in some cases through an award issued by JPL/Caltech. Y.F. acknowledges support of a SIRTF/Spitzer Fellowship.

Author contributions
D.E.T., C.L., D.P.C., Y.F., L.N.F., D.P.H., H.B.H., A.W.H., M.M., G.S.O., Y.J.P., W.R., M.S., N.R.G., and A.V. carried out scientific analysis and wrote parts of this paper. J.P.E. contributed scientific analysis that is presented in this paper.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence should be addressed to D.E.T.

Peer review information Nature Astronomy thanks Nancy Chanover and Elisabetta Dotto for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© Springer Nature Limited 2020