Renal Data from Asia–Africa

Intradialytic Hypotension and Associated Factors among Patients on Maintenance Hemodialysis: A Single-Center Study in Cameroon

Marie Patrice Halle, Djantio Hilaire, Kaze F. Francois, Teuwafeu Denis, Fouda Hermine, Ashuntantang E. Gloria

1Department of Clinical Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, 2Department of Internal Medicine, Douala General Hospital, Douala, 3Department of Clinical Sciences, Higher Institute of Health Sciences, Université des Montagnes, Bangangte, 4Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaounde I, 5Department of Internal Medicine, Yaounde Teaching Hospital, Yaounde, 6Department of Internal Medicine, Faculty of Health Sciences, University of Buea, Buea, 7Department of Internal Medicine, Yaounde General Hospital, Yaounde, Cameroon

ABSTRACT. Intradialytic hypotension (IDH), one of the most frequent acute complications of hemodialysis (HD), is associated with increased patient’s morbidity and mortality. The aim of this study was to determine its prevalence and associated factors among patients on maintenance HD in Cameroon. This was a prospective longitudinal study carried out from June 20, to July 30, 2016 (5 weeks), including adult patients on HD ≥3 months at a tertiary hospital in Douala. During this period, patients were followed up at each HD session, and their blood pressure and occurrence of clinical events possibly related to IDH were recorded. In this study, IDH was defined as a decrease in systolic BP by ≥20 mm Hg or a decrease in mean arterial pressure by ≥10 mm Hg, associated to a clinical event. Logistic regression analysis was used to determine associated factors. We included 104 patients (69 males) with a mean age of 50.74 ± 15.18 years and a median duration on HD of 30.5 (interquartile range: 12.25–58.75) years. Hypertension 99/104 (95.2%) and diabetes 32/104 (30.8%) were the main comorbidities encountered. A total of 1032 HD sessions were followed up with an average of 9.88 ± 1.57 sessions per patient. IDH occurred in 11.6% of HD sessions. Associated factors were age, female sex, HIV infection, feeding during dialysis, and use of antihypertensive drug during or within 2 h before dialysis. The prevalence of IDH in our study was low. Associated factors were mainly related to patient’s characteristics and comorbidities.

Introduction

Hemodialysis (HD) is the most commonly used renal replacement therapy of end-stage kidney disease (ESKD). Despite all the progresses, this therapy is associated with various acute complications, of which some can have
life-threatening outcomes. Intradialytic hypotension (IDH) is one of the most frequent complications of HD, and it occurs in 5%–32.5% of HD sessions. No consensus definition of IDH exists, but three main criteria are used to define it, of which only the first one is constant: lowering of systolic blood pressure (SBP) or mean arterial pressure (MAP) during dialysis, presence of clinical event, need for therapeutic intervention. The mechanism of IDH is multifactorial; it is caused by an imbalance between decrease in plasma volume during HD and the counter regulatory cardiovascular mechanisms. Plasma volume change during HD is determined by the interplay of ultrafiltration rate, decrease in plasma osmolality, and the rate of plasma refill from the interstitium. Factors that impair cardiovascular counter regulatory response such as decrease in vascular and left-ventricular compliance, failure to sufficiently increase cardiac output, and peripheral vascular resistance may all contribute to IDH. Therefore, besides factors directly related to the dialysis procedure, several patient-related characteristics and comorbidities such as age, presence of diabetes, ischemic heart disease, left ventricular hypertrophy, and autonomic neuropathy increase the risk of IDH. IDH alters patient’s quality of life and induces ischemic brain injury and myocardial stunning in dialyzed population. Other consequences include volume overload and inadequate clearance due to suboptimal ultrafiltration and interruption of dialysis. For all these reasons, IDH has a strong association with mortality. In sub-Saharan Africa (SSA), ESKD mainly affects young adults, predominantly men. Due to lack of infrastructure and financial constraints, majority of the patients receive only two HD sessions per week, and the reported prevalence of IDH varies from 8.5% to 11.1% of HD sessions. Little is known about the predictive factors of IDH in this population. The aim of this study was, therefore, to determine the prevalence and associated factors of IDH among patients on maintenance HD in Cameroon.

Materials and Methods

Study setting and participants
This was a prospective longitudinal study carried out from June 20 to July 30, 2016 (5 weeks) in the HD unit of the Douala General Hospital, a tertiary referral hospital in Cameroon. The unit operated at the time of the study with 18 HD generators (Fresenius® 4008S Fresenius Medical Care Germany, Bad Homburg, Germany). Synthetic polysulfone membrane dialysis and bicarbonate buffer were used. Dialysate temperature was kept constant at 36.5°C during the study period for all patients. The dialysate composition was as follows: sodium 138 mmol/L, potassium 2.0 mmol/L, calcium 1.75 mmol/L, magnesium 0.5 mmol/L, chloride 109.5 mmol/L, bicarbonate 32 mmol/L, acetate 3 mmol/L, and glucose 1.0 g/L. The center operated from Monday to Saturday from 6 a.m. to midnight, with four shifts of dialysis a day. All consenting patients aged 18 years and above on maintenance HD for more than three months were included in the study. At the center, the majority of patients received two HD sessions of 4-h duration each per week. The center was staffed with two nephrologists and 12 nurses. Dry weight was evaluated clinically (peripheral edema, signs of pulmonary congestion, pre- and post-dialytic BP, and muscle cramps) and also based on the cardiopulmonary aspect on chest X-ray.

Data collection
Information on general characteristics (age, gender, dialysis vintage, and dry weight) and comorbid conditions [diabetes, hypertension (HTN), and heart failure] were obtained from medical records. Dialysis-related characteristics [pre-, intra-, and post-dialysis blood pressures, pre- and post-dialysis weight, intradialytic weight gain (IDWG), ultrafiltration rate, occurrence of clinical events possibly related to intradialytic hypotension (IDH), and nursing interventions] were collected at each dialysis session. BP was measured with an automatic oscillometric monitor integrated in the dialysis generator at standardized intervals: 5 min
before HD and every hour until the end of the HD session (5 measures per dialysis).

Definitions
IDH was primarily defined according to the Kidney Disease Outcomes Quality Initiative (KDOQI) as a decrease in SBP ≥ 20 mm Hg or a decrease in MAP by ≥ 10 mm Hg associated with a clinical event.\(^{13}\) In order to compare our prevalence to other study, we additionally used the definition of the European Best Practice Guideline on hemodynamic instability (EBPG): decrease in SBP ≥ 20 mm Hg or in MAP ≥ 10 mm Hg associated with a clinical event and the need for nursing intervention.\(^{14}\)

Clinical events were defined as fatigue, cramps, nausea, vomiting, dizziness, loss of consciousness, abdominal pain, and headache, occurring during the dialysis session.

Patients were considered as having frequent IDH if it occurred in $\geq 30\%$ of dialysis sessions.

Statistical Analysis

Data analysis was done with the aid of the software IBM SPSS Statistics version 23.0. (IBM Corp., Armonk, NY, USA). Categorical variables were reported as frequency and percentages and compared with Chi-square test or Fisher’s exact test, when appropriate. Continuous variables with normal distribution were reported as mean ± standard deviation, and skewed data were reported as median with 25\(^{th}\) and 75\(^{th}\) percentiles (interquartile range). Logistic regression models were used to determine the predictive factors of IDH. The basic models included each candidate predictor of interest. Multivariate regression model included all significant variables in basic models. $P <0.05$ was considered statistically significant.

| Table 1. Baseline characteristic of the population. |
|------------------|------------------|
| **Characteristics** | **n (%)** |
| **Gender** |
Female	35 (33.7)
Male	69 (66.3)
Age (years) mean±SD	50.74±15.18
Comorbidities n (%)	
Hypertension	99 (95.2)
Diabetes	32 (30.8)
Heart failure	13 (12.5)
HIV infection	6 (5.8)
Hypertension, n=99	
Duration (years), median (IQR)	7 (4–15)
Use of antihypertensive drugs	82 (82.8)
Class of antihypertensive drugs	
Calcium channel blockers	71 (71.7)
ACEI/ARB	50 (50.5)
Central-acting agents	18 (18.2)
Beta-blockers	17 (17.2)
Vascular access n (%)	
Arteriovenous fistulae	100 (96.2)
Central venous catheter	4 (3.8)
Number of dialysis/week n (%)	
2	99 (95.2)
3	5 (4.8)
Duration on dialysis (month) Median (IQR)	30.5 (12.25–58.75)

SD: Standard deviation, HIV: Human immunodeficiency virus, IQR: Interquartile range, ACEIs: Angiotensin-converting enzyme inhibitors, ARB: Angiotensin receptor blocker.
Results

Baseline characteristics

Baseline characteristics of the participants are reported in Table 1. A total of 104 patients were included, with 69/104 (66.3%) male. The mean age was 50.74 ± 15.18 years. The median duration on HD was 30.5 (12.25–58.75) months, and arteriovenous fistula (96.2%) was the main vascular access. HTN 99/104 (95.2%) and diabetes 32/104 (30.8%) were the main comorbidities encountered. Among patients with HTN, 82/99 (82.8%) were on antihypertensive drugs, with calcium channel blockers (71.7%) and renin–angiotensin–aldosterone system inhibitors (50.5%) been the main class of drugs used.

Dialysis parameters

As reported in Table 2, the median inter-

Table 2. Dialysis parameters.
Interdialytic interval (days), median (IQR)
Dry weight (kg), mean±SD
Weight before dialysis, mean±SD
Weight after dialysis, mean±SD
IDWG (kg), mean±SD
Ultrafiltration rate (mL/h), mean±SD
Ultrafiltration rate (mL/kg/h), mean±SD
Ultrafiltration rate> 1000 mL/h, n (%)
Ultrafiltration volume (mL), mean±SD

IQR: Interquartile range, SD: Standard deviation, IDWG: Interdialytic weight gain.

Figure 1. Course of systolic, diastolic, mean, and pulse blood pressure during the 1032 hemodialysis sessions.

IDH: Intradialytic hypotension.
Dialytic interval was two days, with an average IDWG of 3.14 ± 1.33 kg. The average ultrafiltration rate was 807.05 ± 251.33 mL/h. The average course of BP during HD is shown in Figure 1. The curves highlight a rapid fall of blood pressure, from the 1st hour of dialysis during the sessions complicated with IDH.

Prevalence of blood pressure drop, clinical event, and intervention in all dialysis sessions

A total of 1032 HD sessions were followed up with an average of 9.88 ± 1.57 sessions per patient. Of these sessions, 597 (57.8%) were complicated with a decrease of SBP ≥20 mmHg or in MAP ≥10 mm Hg (Table 3). Of these 597 sessions, 120 (11.6%) were complicated with a clinical event related to BP drop. Therefore, according to the KDOQI definition, the prevalence of IDH was 11.6% (120/1032 dialysis sessions) and 7.2% (74/1032) using the EBPG definition. During the five weeks of follow-up, a total of 43/104 (41.3%) patients had at least one episode, 26/104 (25%) patients had 1%–30%, and 17/104 (16.3%) had more than 30% of their dialysis sessions complicated by IDH, with a range of 0%–90% (Table 3).

Predictive factors of intradialytic hypotension according to the Kidney Disease Outcomes Quality Initiative definition

On multivariate logistic regression analysis (Table 4), independent predictive factors of IDH where age [odds ratio (OR): 1.027; 95% confidence interval (CI): 1.008–1.047; \(P = 0.006 \)], female sex (OR: 2.443; 95% CI: 1.525–3.913; \(P < 0.001 \)), HIV infection (OR: 2.593; 95% CI: 1.107–6.073; \(P = 0.028 \)), feeding during dialysis (OR: 1.947; 95% CI: 1.208–3.137; \(P = 0.006 \)), and antihypertensive drug during/within 2 h before dialysis (OR: 1.253; 95% CI: 1.065–1.475; \(P = 0.007 \)).

Discussion

The aim of this study was to determine the prevalence and predictive factors of IDH among patients on maintenance HD in a resource-limited country in SSA, where most of the patients

Decrease of SBP ≥20 mmHg or in MAP ≥10 mm Hg	Number of dialysis session (%)
Clinical events	
Any clinical event	154 (14.9)
Fatigue	63 (6.1)
Cramps	48 (4.7)
Dizziness	43 (4.2)
Headache	22 (2.1)
Nausea	8 (0.8)
Vomiting	7 (0.7)
Abdominal pain	6 (0.6)
Loss of consciousness	2 (0.2)
Nursing interventions	
Any intervention	137 (13.3)
Trendelenburg	57 (5.5)
Administration of isotonic saline	32 (3.1)
Increase in sodium concentration in dialysate	22 (2.1)
Decrease/stop of ultrafiltration	23 (2.2)
Interruption of dialysis session	13 (1.3)
KDOQI definition	120 (11.6)
Full EBPG definition	74 (7.2)

SBP: Systolic blood pressure, MAP: Mean arterial pressure, KDOQI: Kidney Disease Outcomes Quality Initiative, EBPG: European Best Practice Guideline for hemodynamic instability.
Table 4. Predictive factors of intradialytic hypotension.

	Univariate analysis		Multivariate analysis	
	OR (95% CI)	P	aOR (95% CI)	P
Age (per year increase)	1.029 (1.015–1.044)	<0.001	1.027 (1.008–1.047)	0.006
Female	1.669 (1.135–2.454)	0.009	2.443 (1.525–3.913)	<0.001
Diabetes	1.764 (1.990–2.594)	0.004	1.030 (0.620–1.711)	0.909
Heart failure	0.963 (0.533–1.740)	0.901		
HIV infection	2.325 (1.215–4.449)	0.011	2.593 (1.107–6.073)	0.028
Dialysis vintage	1.000 (0.995–1.006)	0.975		
Body mass index (kg/m^2)	1.091 (1.038–1.146)	0.001	1.040 (0.980–1.104)	0.193
Three dialysis/week vs two	2.101 (1.150–3.839)	0.016	1.468 (0.753–2.860)	0.259
Interdialytic interval (days)	0.992 (0.814–1.210)	0.939		
Dry weight (kg)	0.993 (0.978–1.009)	0.361		
Intradialytic weight gain (kg)	0.899 (0.777–1.040)	0.152		
Ultrafiltration rate (mL/kg/h)	1.036 (0.986–1.089)	0.161		
Blood flow rate (mL/h)	0.998 (0.990–1.005)	0.529		
Predialysis systolic BP (mm Hg)	1.001 (0.992–1.009)	0.893		
Predialysis diastolic BP (mm Hg)	0.991 (0.979–1.003)	0.126		
Feeding during dialysis	1.614 (1.045–2.493)	0.031	1.947 (1.208–3.137)	0.006
Antihypertensive drug during/within 2 h before dialysis	1.842 (1.180–2.877)	0.007	1.253 (1.065–1.475)	0.007

OR: Odds ratio, CI: Confidence interval, aOR: Adjusted odds ratio, HIV: Human immunodeficiency virus, BP: Blood pressure.
receive fewer than the recommended HD sessions per week. In our study, IDH occurred in 11.6% of HD sessions. Age, female sex, HIV infection, feeding during dialysis, and antihypertensive drug during or within 2 h before dialysis were independent associated factors.

Various studies reported a prevalence of IDH ranging from 5% to 32.5% depending on the definition used. In our study, using the EBPG definition, we found a prevalence of 7.1%. This is similar with the findings of Akhmouch et al and Kuipers et al, who reported a prevalence of 5% and 6.7%, respectively. Using the KDOQI definition which does not include the notion of nursing intervention, the prevalence of IDH in the present study was 11.6%, in the range with studies reported in the SSA. Kaze et al, Amira et al, and Okoye et al reported a prevalence of 11.1%, 8.5%, and 8.6%, respectively, in Cameroon and Nigeria. Our result is lower to the prevalence of 20%–30% found in developed countries. This difference could be explained by the fact that in many SSA countries, due to lack of infrastructure and financial constraints, patients receive only two HD sessions per week. Indeed, Lei et al reported that the risk of IDH is higher in patients receiving three-weekly dialysis than in those receiving two. Another explanation could be the profile of patients; our patients are relatively younger and may present less cardiovascular diseases (CVDs), a potential risk factor of IDH that is known to increase with aging. Factors independently associated with IDH were age, female sex, HIV infection, feeding during dialysis session, antihypertensive drug during/within 2 h before dialysis. Similarly, studies reported age as an associated factor of IDH. This could be explained by the increasing frequency of CVDs with aging. Moreover, an alteration of vascular response to plasma volume decrease related to arterial stiffness or vascular calcification may be involved. In addition, female sex is found to be associated with IDH. Several mechanisms could be involved such as a direct vaso-
dilator effect of estrogen on vascular smooth muscles and lower mean resting muscle sympathetic nerve activity in women compared with men that leads to lower peripheral resistance. Feeding less than 2 h or during dialysis could lead to IDH by the decrease in cardiac output and vascular resistance secondary to splanchnic sequestration and vasodilatation. It is easy to conceive that taking antihypertensive medication close before HD start can lead to hypotension. The association between HIV infection and IDH was unexpected and to the best of our knowledge not previously described. HIV infection itself may increase cardiovascular risk. In addition, increase in arterial stiffness that has been associated with HIV infection could be involved. In contradiction with various study, factors related to HD (IDWG and ultrafiltration) were not associated with the occurrence of IDH in this study.

Limitations

We acknowledge some limitations to this study. Data were collected from a single center, which could raise issues regarding the generalization of the findings.

Conclusion

The prevalence of IDH according to KDOQI in our study is relatively low. Associated factors are mainly related to patient’s characteristics and comorbidities. This first result can serve as a basis for further studies with a large sample and longer follow-up period.

Acknowledgments

We thank all the staff and the patients of the HD unit of the Douala General Hospital.

Ethics Approval and Consent to Participate

Ethical approval was obtained from the University of Mountains, and consent for participation was obtained from each patient.
Conflict of interest: None declared.

References

1. Liyanage T, Ninomiya T, Jha V, Neal B, Patrice HM, Okpechi I, et al. Worldwide access to treatment for end-stage kidney disease: A systematic review. Lancet 2015;385:1975-82.
2. Kaze FF, Ashuntantang G, Beng MK, Hassan A, Halle MP, Muna W. Acute hemodialysis complications in end-stage renal disease patients: The burden and implications for the under-resourced Sub-Saharan African health systems. Hemodial Int 2012;16:526-31.
3. Agrawal RK, Khakurel S, Hada R, Shrestha D, Baral A. Acute intradialytic complications in end stage renal disease on maintenance hemodialysis. J Nepal Med Assoc 2012;52:118-21.
4. Stefnisson BV, Brunelli SM, Cabrera C, et al. Intradialytic hypotension and risk of cardiovascular disease. Clin J Am Soc Nephrol 2014;9:2124-32.
5. Amira CO, Braimoh RW, Bello BT. Pattern of intradialytic complications at the Lagos University Teaching Hospital. Afr J Med Sci 2012;41:411-6.
6. Flythe JE, Xue H, Lynch KE, Curhan GC, Brunelli SM. Association of mortality risk with various definitions of intradialytic hypotension. J Am Soc Nephrol 2015;26:724-34.
7. Kuipers J, Oosterhuis JK, Krijnen WP, et al. Prevalence of intradialytic hypotension, clinical symptoms and nursing interventions – A three-months, prospective study of 3818 haemodialysis sessions. BMC Nephrol 2016; 17:21.
8. Akhmouch I, Bahadi A, Zajjari Y, et al. Characteristics of intradialytic hypotension: Experience of Agadir Center-Morocco. Saudi J Kidney Dis Transpl 2010;21:756-61.
9. Tai DJ, Conley J, Ravani P, Hemmelgarn BR, MacRae JM. Hemodialysis prescription education decreases intradialytic hypotension. J Nephrol 2013;26:315-22.
10. Sands JJ, Usvyat LA, Sullivan T, et al. Intradialytic hypotension: Frequency, sources of variation and correlation with clinical outcome. Hemodial Int 2014;18:415-22.
11. Rocha A, Sousa C, Teles P, Coelho A, Xavier E. Effect of Dialysis Day on Intradialytic Hypotension Risk. Kidney Blood Press Res 2016;41:168-74.
12. Pavan M, Ranganath R, Chaudhari AP, Aiyangar A, Upadhayaya KL, Mehta HJ. Incidence and Measures to Prevent Intradialytic Hypotension in Patients on Maintenance Hemodialysis in a Tertiary Care Centre in India. J Nephrol Ther 2011;1:1.
13. K/DOQI Workgroup. K/DOQI clinical practice guidelines for cardiovascular disease in dialysis patients. Am J Kidney Dis 2005;45:S1-153.
14. Kooman J, Basci A, Pizzarelli F, et al. EBPG guideline on haemodynamic instability. Nephrol Dial Transplant 2007;22 Suppl 2:i22-44.
15. Nette RW, van den Dorpel MA, Krepl HP, et al. Hypotension during hemodialysis results from an impairment of arteriolar tone and left ventricular function. Clin Nephrol 2005;63:276-83.
16. Barbero SH, Misocami M, Pecoits-Filho R. Association between left atrium enlargement and intradialytic hypotension: Role of diastolic dysfunction in the hemodynamic complications during hemodialysis. Echocardiography 2009; 26:767-71.
17. Assimom MM, Flythe JE. Intradialytic Blood Pressure Abnormalities: The Highs, The Lows and All That Lies Between. Am J Nephrol 2015; 42:337-50.
18. Dubin R, Owens C, Gasper W, Ganz P, Johansen K. Associations of endothelial dysfunction and arterial stiffness with intradialytic hypotension and hypertension. Hemodial Int 2011;15:350-8.
19. Mizumasa T, Hikata H, Yoshimitsu T, et al. Dialysis-related hypotension as a cause of progressive frontal lobe atrophy in chronic hemodialysis patients: A 3-year prospective study. Nephron Clin Pract 2004;97:e23-30.
20. McIntyre CW, Goldsmith DJ. Ischemic brain injury in hemodialysis patients: Which is more dangerous, hypertension or intradialytic hypotension? Kidney Int 2015;87:1109-15.
21. Chou JA, Kalantar-Zadeh K, Mathew AT. A brief review of intradialytic hypotension with a focus on survival. Semin Dial 2017;30:473-80.
22. Tislér A, Akócsi K, Borbás B, et al. The effect of frequent or occasional dialysis-associated hypotension on survival of patients on maintenance haemodialysis. Nephrol Dial Transplant 2003;18:2601-5.
23. Naicker S. End-stage renal disease in sub-Saharan Africa. Ethn Dis 2009;19:S1-13.
24. Halle MP, Takongue C, Kenge AP, Kaze FF, Ngu KB. Epidemiological profile of patients with end stage renal disease in a referral hospital in Cameroon. BMC Nephrol 2015;16:59.
25. Bamgboye EL. End-stage renal disease in sub-Saharan Africa. Ethn Dis 2006;16:S2-9.
26. Stanifer JW, Jing B, Tolan S, et al. The epidemiology of chronic kidney disease in sub-Saharan Africa: A systematic review and meta-analysis. Lancet Glob Health 2014;2:e174-81.
27. Ashuntantang G, Osafo C, Olowu WA, et al. Outcomes in adults and children with end-stage kidney disease requiring dialysis in sub-Saharan Africa: A systematic review. Lancet Glob Health 2017;5:e408-17.
28. Barsoum RS, Khalil SS, Arogundade FA. Fifty years of dialysis in Africa: Challenges and progress. Am J Kidney Dis 2015;65:502-12.
29. Okoye OC, Slater HE, Rajora N. Prevalence and risk factors of intradialytic hypotension: A 5 year retrospective report from a single Nigerian Centre. Pan Afr Med J 2017;28:62.
30. Rocha A, Sousa C, Teles P, Coelho A, Xavier E. Frequency of intradialytic hypotensive episodes: Old problem, new insights. J Am Soc Hypertens 2015;9:763-8.
31. Lei G, Li X, Tu W, Xu C, Duan Z, Wu X. Risk of intradialytic hypotension in patients on thrice-weekly versus twice-weekly hemodialysis. J Am Soc Kidney Dis 2014;17:821-3.
32. Foley R, Parfrey P, Sarnak M. Epidemiology of cardiovascular disease in chronic renal disease. J Am Soc Nephrol 1998;9:16-23.
33. Sánchez-Perales C, Vázquez-Ruíz de Castroviejo E, Segura-Torres P, et al. Incidence of acute myocardial infarction in the evolution of dialysis patients. Nefrologia 2012;32:597-604.
34. Harnett JD, Foley RN, Kent GM, Barre PE, Murray D, Parfrey PS. Congestive heart failure in dialysis patients: Prevalence, incidence, prognosis and risk factors. Kidney Int 1995;47:884-90.
35. Kim SY, Hong YA, Yoon HE, et al. Vascular calcification and intradialytic hypotension in hemodialysis patients: Clinical relevance and impact on morbidity and mortality. Int J Cardiol 2016;217:156-60.
36. Sudhir K, Elser MD, Jennings GL, Komesaroff PA. Estrogen supplementation decreases norepinephrine-induced vasoconstriction and total body norepinephrine spillover in perimenopausal women. Hypertension 1997;30:1538-43.
37. Volterrani M, Rosano G, Coats A, Beale C, Collins P. Estrogen acutely increases peripheral blood flow in postmenopausal women. Am J Med 1995;99:119-22.
38. Gilligan DM, Badar DM, Panza JA, Quyyumi AA, Cannon RO 3rd. Acute vascular effects of estrogen in postmenopausal women. Circulation 1994;90:786-91.
39. Hart EC, Charkoudian N, Wallin BG, Curry TB, Eisenach JH, Joyner MJ. Sex differences in sympathetic neural-hemodynamic balance: Implications for human blood pressure regulation. Hypertension 2009;53:571-6.
40. Barakat MM, Nawab ZM, Yu AW, Lau AH, Ing TS, Daugirdas JT. Hemodynamic effects of intradialytic food ingestion and the effects of caffeine. J Am Soc Nephrol 1993;3:1813-8.
41. Dubé MP, Lipshultz SE, Fichtenbaum CJ, et al. Effects of HIV infection and antiretroviral therapy on the heart and vasculature. Circulation 2008;118:e36-40.
42. Aberg JA. Cardiovascular complications in HIV management: Past, present, and future. J Acquir Immune Defic Syndr 2009;50:54-64.
43. Awotedu KO, Longo-Mberza B, Awotedu AA, Ekpebegh C. Arterial Stiffness in HIV Patients in a Semi Urban Area of South Africa. Clin Microbiol 2015;4:3.
44. Rider OJ, Asaad M, Ntusi N, et al. HIV is an independent predictor of aortic stiffness. J Cardiovasc Magn Reson 2014;16:57.

Date of manuscript receipt: 4 March 2019.
Date of final acceptance: 11 April 2019.