Construction of microRNA and transcription factor regulatory network based on gene expression data in cardiomyopathy

Lei Wang*, Jihua Hu, Haijian Xing, Min Sun, Juanli Wang, Qiang Jian and Hua Yang

Abstract

Background: Cardiomyopathy is a progressive myocardial disorder. Here, we attempted to reveal the possible mechanism of cardiomyopathy at the transcription level with the roles of microRNAs (miRNAs) and transcription factors (TFs) taken into account.

Method: We firstly identified differentially expressed genes (DEGs) between cardiomyopathy patients and controls with data from the gene expression omnibus (GEO) database. DEGs were associated with the canonical pathways, molecular and cellular functions, physiological system development and function in the Ingenuity Knowledge Base by using the Ingenuity Pathway Analysis (IPA) software. TFs and miRNAs that DEGs significantly enriched were identified and a double-factor regulatory network was constructed.

Results: A total of 1,680 DEGs were identified. The DEGs were enriched for various pathways, with glucocorticoid receptor signaling as the most significant. A double-factor regulatory network was constructed, including seven TFs and two miRNAs. A subnetwork under the regulation of MEF2C and SRF was also constructed to illustrate their regulatory effects on cardiac functions.

Conclusion: Our results may provide new understanding of cardiomyopathy and may facilitate further therapeutic studies.

Keywords: Cardiomyopathy, Transcription factors, miRNAs, Gene expression

Background

Cardiomyopathy is a progressive myocardial disorder, usually leading to cardiovascular death or heart failure-related disability [1]. It develops at any age, in either sex, and in any population [2,3]. The etiology of cardiomyopathy is highly complex and improving its treatments has become a research hotspot.

Using bioinformatics combined with gene expression data to identify potential therapeutic targets has shown great application prospects. The majority of the previous studies mainly focused on the analyses of differentially expressed genes (DEGs), without considering microRNAs (miRNAs) and transcription factors (TFs) that regulate the expression of DEGs. miRNAs are small non-coding RNAs that control various biological processes through affecting the stability and translation of target mRNAs. Previous studies have proposed several miRNAs as being involved in the pathogenesis of cardiomyopathy, such as miR-1 [4] and miR-21 [5]. TFs can regulate gene expression through binding to the cis-elements in target genes’ promoter regions. TFs, such as MEF2, have been reported to be associated with cardiomyopathy [6]. Considering the important regulatory roles of miRNAs and TFs in the pathogenesis of cardiomyopathy, identification of miRNAs and TFs that enriched with target DEGs and construction of a double-factor regulatory network may provide new understanding of the molecular mechanism of cardiomyopathy.

In the current study, based on gene expression data from the Gene Expression Omnibus (GEO) database, we acquired DEGs, miRNAs and TFs that enriched with target DEGs and constructed a double-factor regulatory network.
Our results may reveal the possible mechanism of cardiomyopathy at the transcription level.

Methods

Ethics Statement

This study was approved by the institutional review board of the Xi’an Children’s Hospital (20140518). Written informed consent was obtained from all patients for the publication of this report and any accompanying images.

Microarray data

The gene expression profile GSE5406 from the GEO database was used. This dataset includes transcription

Figure 1 Ingenuity Pathway Analysis results. The significant canonical pathways in which differently expressed genes (DEGs) were enriched are shown.
profiles of 210 left ventricular myocardial tissue samples, 194 of which were from patients with advanced cardiomyopathy and 16 of which were from healthy donors. All patients had New York Heart Association class 3 to 4 symptoms and left ventricular systolic dysfunction, with ejection fraction of 14 ± 8% (mean ± SD). Patients suffered from heart failure due to ischemic (n = 86) or idiopathic dilated (n = 108) cardiomyopathy. Control samples had normal left ventricular function with ejection fraction of 56 ± 7% (P = 0.0001 versus patients). None of the subjects received mechanical support with left ventricular assist devices. Myocardial tissue samples were obtained from patients undergoing heart transplantation and from controls deemed unsuitable for transplantation. Whole hearts were removed after preservation in cold cardioplegia at the time of transplantation or donor harvest. Then, segments of noninfarcted left ventricular free wall were snap-frozen in liquid nitrogen. For each sample, RNA was isolated by using Trizol reagent (Invitrogen, Carlsbad, CA, USA). The dataset was generated by using the (HG-U133A) Affymetrix Human Genome U133A Array (Affymetrix, Santa Clara, CA, USA).

Identification of differentially expressed genes (DEGs)
Raw data from all arrays were normalized using Robust Multi-array Analysis (RMA) [7] in the R software (version 3.0.0). The resulting expression values were used to identify DEGs with the limma package (3.12.1) in R. DEGs were detected by using t-tests and multiple test corrections were carried out with the Benjamini-Hochberg method [8]. The threshold for significance was set as P < 0.01.

Enrichment analysis
To explore the functions and pathways of DEGs, DEGs were associated with the canonical pathways, molecular and cellular functions, physiological system development and function in the Ingenuity Knowledge Base by using the Ingenuity Pathway Analysis (IPA) software (Ingenuity Systems, http://www.ingenuity.com).

Table 1 Ingenuity Pathway Analysis: functions related to differentially expressed genes

Name	P-value	Number of molecules
Molecular and Cellular Functions		
Cell Death and Survival	2.53 × 10^{-24} to 1.36 × 10^{-3}	405
Cellular Growth and Proliferation	3.37 × 10^{-24} to 1.36 × 10^{-3}	414
Cellular Movement	5.41 × 10^{-13} to 1.36 × 10^{-3}	236
Gene Expression	8.14 × 10^{-11} to 1.20 × 10^{-3}	247
Cellular Development	1.13 × 10^{-10} to 1.36 × 10^{-3}	328
Physiological System Development and Function		
Cardiovascular System Development and Function	4.17 × 10^{-12} to 1.20 × 10^{-3}	125
Organismal Development	3.96 × 10^{-11} to 1.22 × 10^{-3}	92
Tissue Development	3.68 × 10^{-9} to 1.22 × 10^{-3}	165
Tumor Morphology	3.84 × 10^{-7} to 1.20 × 10^{-3}	117
Connective Tissue Development and Function	8.52 × 10^{-8} to 1.24 × 10^{-3}	40
The results of miRNA and TF enrichment analysis are listed in Table 2. A network was constructed to illustrate the regulatory relationships (Figure 2). Considering the important role of SRF and MEF2C in the progression of cardiomyopathy, a subnetwork under their regulation was constructed and the biological functions they may affect were also indicated (Figure 3).

Discussion

In the current study, based on GSE5406 from the GEO database, 1,680 DEGs were identified between advanced cardiomyopathy patients and healthy controls. DEGs were mapped into the Ingenuity Knowledge Base and several canonical pathways were screened out, with glucocorticoid receptor signaling as the most significant. Glucocorticoid receptors are involved in cardiovascular homeostasis [12] and glucocorticoid could protect rodent hearts from ischemia/reperfusion injury [13]. Our results confirmed the essential roles of this pathway in the pathogenesis of cardiomyopathy. Molecular and cellular functions analysis revealed

Name	P-value
MicroRNA	
miR-30c-5p (and other miRNAs w/seed GUAAACA)	3.12×10^{-4}
miR-125b-5p (and other miRNAs w/seed CCCUGAG)	2.15×10^{-3}
Transcription factors	
MEF2C	5.65×10^{-6}
GATA1	6.11×10^{-5}
SRF	1.53×10^{-4}
NUPR1	4.18×10^{-4}
ATF4	7.25×10^{-4}
RELA	9.35×10^{-3}
GLI2	1.42×10^{-2}

![Figure 2](image_url) The microRNA (miRNA) and transcription factor (TF) regulatory network. TFs are shown with ellipse and miRNAs are shown with semicircle. Up-regulated genes are shown in red and down-regulated genes are shown in green.
that ‘Cell Death and Survival’ \((P = 2.53 \times 10^{-24} \text{ to } 1.36 \times 10^{-23}) \) was the top molecular function affected by DEGs, suggesting that dysregulation of the cell function may contribute to the progressive heart failure induced by cardiomyopathy.

TFs or miRNAs that DEGs significantly enriched were identified and a double-factor regulatory network was constructed, including seven TFs and two miRNAs (Figure 2). All these miRNAs and TFs have previously been implicated in cardiomyogenesis or cardiac function. Considering their important regulatory roles in controlling various biological processes, these miRNAs and TFs may provide new avenues for the therapeutic strategies of cardiomyopathy. In addition, since all these miRNAs and TFs were detected in patients suffered from New York Heart Association class 3 to 4 symptoms, they may also be considered as prognosis markers in clinical practice. A subnetwork under the regulation of SRF and MEF2C was also constructed and the functions they may affect were also indicated (Figure 3) considering the considerable evidence in support of their involvement in cardiomyopathy [14-17]. As shown in Figure 3, both SRF and MEF2C may inhibit the expression of MYH6 and CNN1. MYH6 is a famous cardiac muscle myosin gene and mutations of this gene are implicated in cardiomyopathy in various studies [18]. Inhibition of CNN1 expression may disrupt its suppression of cardiomyopathy through the ePKC pathway [19]. In addition, both SRF and MEF2C may regulate the expression of NPPA, which was overexpressed in patients in our results. This gene is involved in many cardiac dysfunctions (Figure 3), including myocardial infarction, heart failure, and high ventricular pressure [20,21].
Conclusion
In summary, with DEGs identified by gene chip data generated by high-throughput technologies from the GEO database, we constructed a cardiomyopathy double-factor regulatory network and revealed the possible mechanism on regulation level. A subnetwork under the regulation of SRF and MEF2C was also constructed to illustrate their possible regulatory roles. Our results may facilitate further therapeutic studies of cardiomyopathy.

Abbreviations
DEG: differentially expressed genes; GEO: Gene Expression Omnibus; IPA: Ingenuity Pathway Analysis; miRNAs: microRNAs; RMA: Robust Multi-array Analysis; TF: transcription factor; UCSC: University of California Santa Cruz.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
LW conceived of the study and drafted the manuscript. JH, HK and MS performed the statistical analysis. JW, QJ and HY revised the manuscript. All authors read and approved the final manuscript.

Acknowledgement
This study is supported by Provincial Natural Science Basic Research Foundation of Shaanxi (2014JM4152) and the Science and Technology Project of Xi’an Municipal Health Bureau (Number 20130208).

Received: 31 July 2014 Accepted: 14 October 2014
Published online: 24 October 2014

References
1. Maron BJ, Towbin JA, Thiene G, Antzelevitch C, Corrado D, Arnett D, Moss AJ, Seidman CE, Young JB, American Heart Association; Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; Council on Epidemiology and Prevention; Contemporary definitions and classification of the cardiomyopathies: an American Heart Association scientific statement from the council on clinical cardiology, heart failure and transplantation committee; quality of care and outcomes research and functional genomics and translational biology interdisciplinary working groups; and council on epidemiology and prevention. Circulation 2006, 113:1807–1816.
2. Towbin JA, Lowe AM, Colan SD, Sleeper LA, Orav EJ, Clunie S, Messere J, Thiene G, Maron BJ: Clinical and molecular causes of cardiomyopathy in patients with dilated cardiomyopathy. JAMA 2006, 296:1876–1877.
3. Taylor MR, Camiel E, Mestroni L: Cardiomyopathy, familial dilated. Orphanet J Rare Dis 2006, 1:27.
4. Ferreira LR, Frade AF, Santos RH, Teixeira PC, Baron MA, Navarro IC, Benvenuti LA, Fiorelli AJ, Bocchi EA, Stolf NA, Chevillard C, Kall J, Cunha-Neto E: MicroRNAs miR-1, miR-133a, miR-133b, miR-208a and miR-208b are dysregulated in chronic Chagas disease cardiomyopathy. Int J Cardiol 2014, 175:409–417.
5. Xu HF, Ding YJ, Zhang ZX, Wang ZF, Luo CL, Li BX, Shen WM, Tao LY, Zhao ZQ: MicroRNA21 regulation of the progression of viral myocarditis to dilated cardiomyopathy. Mol Med Rep 2014, 10:161–168.
6. Hannenhalli S, Putt ME, Gilmore JM, Wang J, Parmacek MS, Epstein JA, Morrissey EE, Margulies KB, Cappolla TP: Transcriptional genomics associates FOX transcription factors with human heart failure. Circulation 2006, 114:1269–1276.
7. Irrizary RA, Hobbis B, Collins F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP: Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003, 4:249–264.
8. Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 1995, 57:289–300.
9. Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP: MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 2007, 27:91–105.
10. John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS: Human MicroRNA targets. PLoS Biol 2004, 2:e363.
11. Kortens M, Lovino N, Unnerstall U, Gaul U, Segal E: The role of site accessibility in microRNA target recognition. Nat Genet 2007, 39:1278–1284.
12. Rickard AJ, Funder JW, Morgan J, Fuller PJ, Young MJ: Does glucocorticoid receptor blockade exacerbate tissue damage after mineralocorticoid/salt administration? Endocrinology 2007, 148:4829–4835.
13. Tokudome S, Sano M, Shinmura K, Matsumura T, Morzante S, Moriya H, Taniaki K, Hayashida K, Nakashino H, Yoshikawa N, Shimizu N, Endo J, Kiyatake T, Murata M, Yusa S, Kaneda R, Tomita K, Eguchi N, Urade Y, Asano K, Utsunomiya Y, Suzuki T, Taguchi R, Tanaka H, Fukuda K: Glucocorticoid protects rodent hearts from ischaemia/reperfusion injury by activating lipocalin-type prostaglandin D synthase-derived PGD2 biosynthesis. J Clin Invest 2009, 119:1477–1488.
14. Alonso-Montes C, Naves-Diaz M, Fernandez-Martin JL, Rodriguez-Reguero J, Moris C, Coto E, Cannata-Andia JB, Rodriguez I: New polymorphisms in human MEF2C gene as potential modifier of hypertrophic cardiomyopathy. Mol Biol Rep 2012, 39:8777–8785.
15. Xu J, Gong NL, Bodi I, Aronow BJ, Backx PH, Molkentin JD: Myocyte enhancer factors 2A and 2C induce dilated cardiomyopathy in transgenic mice. J Biol Chem 2006, 281:9152–9162.
16. Dasgupta T, Stiwallagon SJ, Ladd AH: Gene expression analyses implicate an alternative splicing program in regulating contractile gene expression and serum response factor activity in mice. PLoS One 2013, 8:e56590.
17. Trousch E, Mallat Y, Lefebvre F, Diquet N, Escoubet B, Blanc J, De Windt LJ, Catculi O, Vandecasteele G, Li Z, Mercissey M: An SRF/miR-1 axis regulates NCX1 and annexin A5 protein levels in the normal and failing heart. Cardiovasc Res 2013, 98:372–380.
18. Jiang J, Wakimoto H, Seidman JG, Seidman CE: Allele-specific silencing of mutant Myh6 transcripts in mice suppresses hypertrophic cardiomyopathy. Science 2013, 342:111–114.
19. Li D, Zhang L, Bao D, Lu Y, Yang X, Liu N, Ge W, Gao X, Li H, Zhang L: Galponin1 inhibits dilated cardiomyopathy development in mice through the epsilonPKC pathway. Int J Cardiol 2014, 173:146–153.
20. Asanuma H, Kitarake M, Carpenterite and adipopectin - how are they connected each other to benefit acute compensated heart failure? Circ J 2009, 73:2206–2207. http://www.ncbi.nlm.nih.gov/pubmed/19940369.
21. Tarazon E, Rosello-Lleti E, Rivera M, Ortega A, Molina-Navaaro MM, Trivino JC, Lago F, Gonzalez-Juanatey JR, Orosa P, Montero JA, Salvador A, Portolés M: RNA sequencing analysis and atrial natriuretic peptide production in patients with dilated and ischemic cardiomyopathy. PLoS One 2014, 9:e90157.

Cite this article as: Wang et al.: Construction of microRNA and transcription factor regulatory network based on gene expression data in cardiomyopathy. European Journal of Medical Research 2014 19:57.