Influences on the Incidence and Pathomorphological Picture of Thyroid Disease
Innocent Emmanuel¹, Mansur Aliyu Ramalan², Abdulazis Longwap³, Ayuba Madachi Dauda¹

ABSTRACT

Background: The thyroid serves the body with important endocrine functions. A variety of influences impinges on the incidence and pathomorphological picture of the thyroid gland. These influences that include: iodine deficiency; iodine sufficiency; gender and; imaging technology are elucidated further in this work. We used the Google search engine to search for literature on the subject from the internet. Iodine is associated with increased incidence of nodular goiter and follicular carcinoma. The world over the last few decades had transited from an era of iodine deficiency to its sufficiency leading to an increase in incidence of thyroiditis and papillary thyroid carcinoma. Estrogen and Estrogen receptor discovered in the thyroid is implicated in the increased frequency of thyroid disorders in females. Finally, advancement in thyroid imaging technology and its utilization has led to over-diagnosis and overtreatment of thyroid diseases.

Key words: Thyroid, Iodine, Pathomorphology, Imaging, Incidence

¹Department of Histopathology, University of Jos, Nigeria, and Department of Histopathology, Jos University Teaching Hospital, Jos Nigeria.
²Department of Internal Medicine, Aminu Kano Teaching Hospital, Kano, Nigeria.
³Department of Chemical Pathology, University of Jos, Nigeria.

Corresponding Author:
Dr. Innocent Emmanuel, Department of Histopathology, University of Jos, P.M.B. 2084, Jos, Nigeria, and Department of Histopathology, Jos University Teaching Hospital, P.M.B. 2076, Jos Nigeria. kinapele58@yahoo.com, 2348065386111.

Introduction

The thyroid is an important focus of disease. Thyroid disorders are not uncommon: they have symptoms as a result of glandular enlargement, functional effects of hormone secretion and paraneoplastic syndromes, and distant metastasis. These diseases can be morphological resolved into developmental anomalies, hyperplasia, immune/inflammatory diseases, and neoplasms.¹ A variety of influences impinges on the incidence and pathomorphological picture of these disease conditions affecting the gland. These influences over the years that included: iodine deficiency; iodine sufficiency; gender and; imaging technology are elucidated further in this work.

Iodine Deficiency

The mineral iodine is a trace element essential in the synthesis of thyroid hormones.² An estimated 28.9% (1572 million) people globally were at risk of its’ deficiency.³ It has been documented that 1/3rd of the inhabitants
of the earth are living in areas of iodine deficiency in the year 1998. Also 350 million Africans in 2004 were at the risk of the deficiency of this mineral. In 2010 as much as 180 million people suffered from goiter as a result iodine deficiency. In 1990 and 2013 respectively, this deficiency resulted in the death of 2100, and 2700 people.

An expansive array of risk factors are associated with iodine deficiency and include: age (varies with disease type); female sex; oral contraceptive (protective); pregnancy; living in mountainous area; diet low in iodine; dietary goitrogens; selenium deficiency; perchlorates; thiocyanates; alcohol (protective) and tobacco smoking; and exposure to radiation. Goitrogens acts directly (interfering with iodine uptake, thyroid hormone synthesis and release) or indirectly (interfering with thyroid hormone metabolism) on the thyroid gland. The effect of goitrogen is made manifest only in the phase of low dietary iodine, or prolonged intake of the goitrogen. These goitrogenic agents include: excess inorganic iodine; flavonoids/polyphenols; lithium; organic Sulfurates (e.g disulphides, isothiocyanate and thiocyanate); polybrominated (PBB) biphenyls; polychlorinated (PCB); Polycyclic aromatic hydrocarbons (PAH); Polyhydroxyphenols and phenol derivatives; Polyhydroxyphenols and phenol derivatives; and Organochlorines. These goitrogenic agents are found in some food substances like tubers (e.g cassava and sweet potato), cereals (e.g sorghum and millet), legumes (e.g lima beans and soy/soya beans) and cruciferous vegetables (e.g cabbage and cauliflower). Nutritional deficiencies of minerals-selenium, iron and vitamin A- are also goitrogenic through disparate pathways. The oceans is by far the greatest repository of the earths' iodine deposit, and this is redistributed to the land through the iodine cycle in which elemental iodine is oxidized and volatilize into the atmosphere from the sea water. It combines with rain and is poured down on the soil on land. Hence iodine deficient soil is commoner in mountainous areas, inland locales, and regions rife with flooding. Therefore crops/plants cultivated on this soil would evidently be iodine deficient.

Iodine deficiency is a major problem of public health importance on a global scale. It is the leading cause of the goitre, the enlargement of the thyroid gland. Patel et al. demonstrated this relationship when an increase in thyroid volume was recorded in Fischer rats fed with diet with low dose iodine. Eastman and Zimmermann outlined four arguments supporting the relatedness of iodine deficiency and development of goitre: areas with low iodine deficiency have high incidence of goitre; iodine supplementation reduce incidence of goitre; patients with endemic goitre have iodine metabolism reminiscent of iodine deficiency which is reversible when iodine is replenished; and finally, the similarity in morphological changes in humans and animals with iodine deficiency.

Goitre which is the commonest morphological picture of thyroid disease is a consequence of hyperplasia and hypertrophy of the thyroid epithelial cells. Hyperplasia is succeeded by involution, atrophy, degeneration and repair, occurring in sequence (described as the marine cycle) or in any combination at different foci in the thyroid leads to nodularity of the gland. Pathologic hyperplasia in this case as in many other tissues is a fecund soil for malignant transformation, therefore a sequence of hyperplasia/goitre, adenoma and follicular carcinoma has also been described as a consequence of iodine deficiency. At the heart of the pathogenesis of the morphological picture of thyroid pathologies...
arising from iodine deficiency is the increased activity of thyrotropin/thyroid stimulating hormone (TSH). Lack of iodine leads to decrease synthesis of thyroid hormone with consequent excessive release of TSH. In some cases, the TSH level is fairly normal but there is increased sensitivity of the gland to TSH. Continuous stimulation by TSH results in hyperplasia/hypertrophy of the thyroid epithelial cells and enlargement of the gland. Hypothyroid states with concomitant increased TSH in addition to iodine deficiency including subtotal thyroidectomy and transplantation of TSH secreting tumors have been shown to be tumorigenic. The TSH stimulation is inappropriately high for an index stimulus, owing to increase in the molecules multiple pathways, especially the two major TSH signal transduction pathways (C-AMP and Ca²⁺) leading to sensitization of these cells to TSH stimulation. With increasing TSH stimulation, follicular cells are prodded into and driven through the cell cycle. Follicular stem cell like cells in the thyroid with high proliferative capacity have been hypothesized to be the progenitors of adenomas owing to persistent TSH stimulation.

Indeed, a wide range of mechanistic processes act in isolation or in concert in inducing stimulation and proliferation of follicular cells in the background of iodine deficiency. Prolonged stimulations with attendant increased proliferation leads mutations involving activation of oncogenes and inhibition of tumor suppressor genes. Affected genes inter-alia include: RAS, PIK3CA, PTEN and PAX8. Furthermore, while iodination induce follicular cell production of the growth inhibitory cytokine TGF-β, iodine deficiency does the reverse. Studies have shown that the lack of this inhibitory stimulus in iodine deficiency state might be contributory in follicular cell rapid growth and tumorigenesis.

Iodine Sufficiency

The world over the last few decades had transited from an era of iodine deficiency to its sufficiency. This is as a result of an international program launched by the United Nations to eliminate the deficiency of the trace element, tagged USI (Universal Salt Iodization). The intervention recorded great success (in reducing goitre incidence) and gained the attribute of “a cost effective community health strategy” as adding iodine to salt comes with a negligible financial burden. In addition to salt, iodine was added to many other eatables in areas of its deficiency.

Iodine sufficiency has changed the picture of thyroid malignancy with a switch from the erstwhile predominant follicular carcinoma (associated with iodine deficiency as discussed earlier) to papillary carcinoma which is now the most frequently diagnosed cancer of this gland. This changing pattern was evident on the African continent as documented in an earlier publication. Studies in Africa published between 1952 and 1998 showed follicular carcinoma predominating, while those between 1999 and 2014 had a predominant papillary carcinoma morphology. This trend has been reported across the globe. Papillary thyroid carcinoma(PTC) in the background of iodine sufficiency has been associated with mutation in the BRAF gene. This involves the substitution of valine with glutamic acid in position 600 of the BRAF protein (BRAFV600E). The outcome of this is the constitutive activation of BRAF then RAS which are important proteins in the MAPK (Mitogen Activated Protein Kinase) signal pathway.
transduction pathway.78,79 In China, Guan et al. reported BRAF mutation in 69\% of PTC in regions with high iodine content, compared to 53\% in regions with normal iodination of drinking water.77 Generally, as much as 29-83\% of PTC harbor BRAF mutation, and this mutation is rare in follicular carcinoma.80 In an iodine replete area of Korea, Kim et al reported that 97\% of thyroid cancers were PTC, and 80\% of the PTC have BRAF mutation.81,82 Iodine supplementation has also been implicated in the increase of the proportion of PTC with BRAF mutation from 54.8\% to 70.6\% (\(p = 0.001\)) over time.83 Mohammadi-Asl et al. in Iran established a 71.4\% rate of BRAF mutations in PTC.84

As the space gets widened with the accumulating evidence of a strong association between iodine sufficiency, papillary thyroid carcinoma and BRAF mutation, it is worthwhile to highlight the effect of this on treatment of afflicted patients. Well differentiated PTC in low risk patients has a cure rate of 80\% with a combined treatment of surgery and radioiodine (131I).85 BRAF mutation has been reported to reduce the expression of genes responsible for radioiodine uptake,86 thereby inhibiting this treatment modality. Genes affected in this regard include: AIT (apical iodide transporter), BRAF-mut (BRAF-mutant), NIS (sodium/iodide symporter) and TPO (thyroperoxidase).86 BRAF mutations have been demonstrated to be commoner in PTC recurrence lacking radioiodide uptake than in those showing positivity for uptake.87 Therefore the findings that primary PTC with BRAF mutations tend to be more aggressive, have more recurrence rate and lacks radioiodide uptake.69,88,89 Another importance of BRAF mutation is the contemplated possibility its usage as a tumor marker in areas where its prevalence is high.84 Another pathology that has been associated with Iodine sufficiency is thyroiditis.80 Zois et al. established an increase in the prevalence of autoimmune thyroiditis in Greek Children following the completion of the USI program.90 Slowinska-Klencka et al. reported an increase in cytologically diagnosed thyroiditis in Poland.91 Experimental mice fed iodinated diet developed thyroiditis with dose dependent lymphocytic infiltration.92 In a double blind trial approximately 10\% of participants (adult humans) developed thyroid dysfunction and autoimmunity after iodine supplementation.94 Post partum thyroiditis was demonstrated to have high prevalence in a group of women with high intake of iodine compared to other two groups with relatively lower intake.95

Gender

Thyroid disorders, both non-neoplastic and neoplastic, in all literature reviewed in this study, and to the best of our knowledge are overwhelmingly commoner in women than men. In this gender, the disease has been seen to be more prevalent within the childbearing age group- between puberty and menopause.96,97 Empirically, women are also more responsive to goitrogens.98 This gender imbalance has sparked the need for research for a possible targeted therapy.99-100 To this end, reproductive hormone-estrogen, has been implicated to play a role in the pathogenesis of thyroid disease,100 and many studies undertaken to examine this effect.101-103 In 1981, the expression of estrogen receptor (ER) was first reported in a work by Molteni et al.,104 and a direct action of estrogen on the thyroid has also been described.105 Many studies have shown variable expression of ER on the thyroid,100,106-108 and this has been attributed to methodological differences.133 However, ER and PR
(progesterone receptor) were concluded in a study to be a common findings in thyroid tumor tissue.107 Two isoforms of ER have been described in the thyroid, the alpha (ER-α) and beta (ER-β).100,105,107,108 While ER-α promotes growth of thyroid follicular cells thereby promoting growth and tumorigenesis, ER-β is pro-apoptotic in addition to other inhibitory functions.108,109 The expression differential pattern, distribution and proportion of ER-α to beta ER-β have been shown to be important the proliferation and outcome of thyroid malignancies.100 Also differential expression ER-α in papillary thyroid cancers and nodular goitre has been proposed to be utilizable in the immunohistochemical determination of this malignancy.108

Oestrogen, a lipophilic ligand traverse the cell membrane and binds to ER-an intracellular nuclear receptor of thyroid cells, forming a stable dimer that induce transcription of target genes via the oestrogen response elements (EREs).105 Transcribed genes results in the proliferation and/or differentiation of affected cells.100,105 An important effect is the non-genomic effects of oestrogen mediated by signal transduction through the RTK, MAPK and PI3K pathways.99,100,105 Estrogen has been shown to increase the expression of Cyclin D1 and important regulator of the G1/S restriction point in the cell cycle, thereby favouring increased proliferation.100,105 All these effects of oestrogen are physiological mechanisms exploited by benign and malignant disease conditions of the thyroid gland.

Imaging Technology

There has been significant advancement in thyroid imaging technology, and this has been implicated in improvement in diagnostic ability with attended increased incidence of thyroid cancer.110-117 These techniques include Radionuclide Imaging (RNI) (Positron Emission Tomography-PET and Single-Photon Emission Computed Tomography (SPECT), Ultrasonography (US), Ultrasound Elastography (USE), Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Optical Coherence Tomography (OCT) and Optical Coherence Microscopy (OCM).111,118,119 Areas with low usage of these technologies have not experienced this increase in incidence.120,121 Many of these tumors diagnosed by imaging are tagged as “incidentalomas” owing to the incidental nature of their discovery in the course of investigating for a different indication.111,112 It therefore follows that these lesions are indolent/asymptomatic. A report in 2004 estimated that 30% of the USA population (approximately 900 million people) have an asymptomatic nodule.122 Similarly an autopsy revealed that as much as 38 million were unknowingly living with papillary thyroid carcinoma.117 Also it has been reported that the increased incidence of thyroid cancer has not been associated with increased mortality.113,123,124 Indeed a necropsy study had revealed that a third of people that died from other causes had subclinical papillary thyroid cancers.111 This bring to the fore the concept of “over-diagnosis” and “over-treatment”.112,121 While the former exerts an economic toll, the later increases physical and psychological burden with attendant risk of morbidity and mortality to the patient.112,121 Imaging plays a crucial role in the screening, diagnosis, evaluation, treatment and follow-up of patients with thyroid pathologies.110,120 It guarantees visual representation, characterization and quantification of the tumor.110 It also helps in the detection of residual disease, metastatic deposits and recurrence.120 It is worthy of note that histology of thyroid cancers gives the most important prognostic indicator.111
Another school of thought has attributed the global increase of thyroid cancers to an actual increase in new cancer cases from other etiological factors, than the issue of improvement in imaging technology, it accessibility and increased utilization.112, 121 It therefore confronts the implication that “if doctors just stop looking for thyroid cancer, the epidemic will disappear”.128 Exposure to radiation has been suggested as an important etiological agent to this end.110, 113, 121, 126-135 Iatrogenic radiation via imaging for any indication is an important source of this mutagenic radiation.127-135

Conclusion
There have been perturbations on the incidence and pathomorphologic picture of thyroid disease over the years. Iodine has played significant role in this regard as the world moves past an era of its deficiency to its sufficiency. While the former is associated with increased incidence of nodular goitre and follicular carcinoma, the latter leads to an increase in incidence of thyroiditis and papillary thyroid carcinoma. Also oestrogen and oestrogen receptor discovered in the thyroid is implicated in the increased frequency of thyroid disorders in females. Finally, advancement in thyroid imaging technology and its utilization has led to over diagnosis and overtreatment of thyroid diseases. Ultimately, imaging is associated with radiations that are mutagenic to the gland.

Reference
1. Emmanuel I, Aliyu MA, Ochigbo A, Akpa P, Mandong JB, Mandong MB. Disease of the Thyroid Gland: A Histopathological Perspective. AJRRE 2019; 1(1): 1-9. Article no. AJRRE.46836.
2. Medeiros-Neto MKG. Relevance Of Iodine Intake As A Reputed Predisposing Factor For Thyroid Cancer. Arq Bras Endocrinol Metab 2007; 51(5): 701-712.
3. WHO, UNICEF, and ICCIDD. 1994. Indicators for assessing Iodine Deficiency Disorders and their control through salt iodization. Geneva: WHO publ. WHO/NUT/94.6. 1-55 pp.
4. WHO, UNICEF and ICCIDD. Progress towards elimination of iodine deficiency disorders (IDD). WHO, Geneva; 1999.
5. World Health Organization. Iodine status worldwide: WHO Global database on Iodine deficiency. Geneva: WHO. 2004; 1-58. Available:www.whqlibdoc.who.int/publications/2004/9241592001.pdf (Retrieved on 10/01/2016)
6. Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C, Ezzati M, et al. (Dec 15, 2012). Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012; 380 (9859): 2163–96. doi:10.1016/S0140-6736(12)61729-2. PMC 6350784.
7. GBD 2013 Mortality and Causes of Death, Collaborators (17 December 2014). Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2014: 385(9963): 117–71. doi:10.1016/S0140-6736(14)61682-2. PMC 4340604.
8. Knudsen N, Laurberg P, Perrild H, Bülow I, Ovesen L, Jørgensen T. Risk factors for goiter and thyroid nodules. Thyroid 2002: 12 (10): 879–88. doi:10.1089/105072502761016502. PMID 12487770.
9. Eastman CJ, Zimmermann MB. The Iodine Deficiency Disorders. Revised 6 25 17.
10. Assey VD, Greiner T, Mzee RK, et al. Iodine deficiency persists in the Zanzibar Islands of Tanzania. Food Nutr Bull 2006; 27: 292–9.

11. Gaitan, E. 1980. Goitrogens in the etiology of endemic goiter. In Endemic goiter and endemic cretinism. Iodine nutrition in health and disease. J.B. Stanbury, and B.S. Hetzel, editors. New York: John Wiley publ, 219-36.

12. Gaitan, E. 1989. Environmental goitrogenesis. Boca Raton: CRC Press publ. 1-250 pp.

13. Van Wyk JJ, Arnold MB, Wynn J, Pepper F. The effect of a soybean production on thyroid function in humans. Pediatrics 1959; 24: 752-60.

14. World Health Organization/International Council for the Control of the Iodine Deficiency Disorders/United Nations Children’s Fund (WHO/ICCIDD/UNICEF). Assessment of the iodine deficiency disorders and monitoring their elimination. Geneva: World Health Organization, 2007.

15. Triggiani V, Tafaro E, Giagulli VA, Sabba C, Resta F, Licchelli B, Guastamacchia E. Role of iodine, selenium and other micronutrients in thyroid function and disorders. EndocrMetab Immune Disord Drug Targets 2009; 9(3): 277-94.

16. Wijeyarante CN, Jayasinghe A, de Silva DGH, Parkes AB, Lazarus JH, Premawardhana LD. Iodine prophylaxis, goiter and thyroid autoimmunity in Sri Lanka. Ceylon Med J 2005; 50(1): 20-3.

17. Tsengaye B, Egrete W. Histopathological pattern of thyroid diseases. East Afr Med J 2003; 80(10):525-8.

18. Patel VA, Hill DJ, Sheppard MC, Wang JF, Logam A, Eggo MC. Apoptosis during goitre involution- the role of BCL2. JEndocrinol 2000; 164: 323-30.

19. Maitra M. The endocrine system. In, Kumar V, Abbas AK, Fausto N, Editors. Pathologic Basis of Disease. 8th Ed. Philadelphia: Saunders and Elsevier. 2010; 1082-105.

20. Marine, D. The pathogenesis and prevention of simple or endemic goiter. JAMA 1935; 104: 23-34.

21. Kumar V, Abbas KA, Aster JC, Editors. Robins and cotran pathologic basis of disease. Ninth edition. Elsevier and Saunders, Philadelphia; 34-8.

22. Fortner JG, George PA, Sternberg SS. Induced and spontaneous thyroid cancer in the Syrian (golden) hamster. Endocrinology 1960; 66: 364-76.

23. Schaller RT, Stevenson JK. Development of carcinoma of the thyroid in iodine-deficient mice. Cancer 1966; 19:1063-80.

24. Williams ED. TSH and thyroid cancer. HormMetab Res Suppl 1990; 23: 72-5.

25. Laurberg P, Nohr SB, Pedersen KM, Hreidarsson AB, Andersen S, Bulow Pedersen I, et al. Thyroid disorders in mild iodine deficiency. Thyroid 2000; 10:951-63.

26. Knobel M, Medeiros-Neto G. Relevance of iodine intake as a reputed predisposing factor for thyroid cancer. Arq Bras EndocrinolMetab 2007; 51(5):701-12. Available:http://dx.doi.org/10.1590/S004-27302007000500007.

27. Dent JN, Godsden EL, Furth J. Further studies on induction and growth of thyrotropic pituitary tumors in mice. CancerRes 1956; 16: 171-4.

28. Haran-Guera N, Pullar P, Furth J. Induction of thyrotropindependent thyroid tumours by thyrotropes. J Endocrinol1960; 66: 694-701.

29. Sinha D, Pascal R, Furth J. Transplantable thyroid carcinoma induced by thyrotropin. Arch Pathol 1965; 79: 192-8.
30. Roger PP, Dumont JE. Factors controlling proliferation and differentiation of canine thyroid cells cultured in reduced severe conditions: effects of thyrotropin, cyclic AMP and growth factors. Mol Cell Endocrinol 1984; 36: 79-93.

31. Roger PP, Dumont JE. Factors controlling proliferation and differentiation of canine thyroid cells cultured in reduced severe conditions: effects of thyrotropin, cyclic AMP and growth factors. Mol Cell Endocrinol 1984; 36: 79-93.

32. Dumont JE, Lamy F, Roger P, Maenhaut C. Physiological and pathological regulation of thyroid cell proliferation and differentiation by thyrotropin and other factors. Physiol Rev 1992; 72: 667-97.

33. Smeds S, Peter HJ, Jortso E, Gerber H, Studer H. Naturally occurring clones of cells with high intrinsic proliferation potential within the follicular epithelium of mouse thyroids. Cancer Res 1987; 47: 1646-51.

34. Groch KM, Clifton KH. The plateau phase rat goiter contains a sub-population of TSH-responsive follicular cells capable of proliferation following transplantation. Acta Endocrinol 1992; 126: 85-96.

35. World Health Organization, United Nations Children’s Fund and International Council for Control of Iodine Deficiency Disorders; Elimination of iodine deficiency disorder (IDD) in Central and Eastern Europe, the Commonwealth of Independent States and the Baltic States. Proceedings of a conference held in Munich, Germany, 3-6 September 1997. WHO/Euro/NUT/98.1.

36. Williams ED. Mechanisms and pathogenesis of thyroid cancer in animals and man. Mutat Res 1995; 333: 123-9.

37. Cohen SM, Ellwein LB. Cell proliferation in carcinogenesis. Science 1990; 249: 1007-11.

38. Jasani B, Wyllie FS, Wright PA, Lemoine NR, Williams ED, Wynford-Thomas D. Immunocytochemically detectable TGFβ associated with malignancy in thyroid epithelial neoplasia. Growth Factors 1990; 2: 149-55.

39. Lazzereschi D, Ranieri A, Mincione G, Taccogna S, Nardi F, Colletta G. Human malignant thyroid tumors displayed reduced levels of transforming growth factor β receptor type II messenger RNA and protein. Cancer Res 1997; 57: 2071-6.

40. Sustainable elimination of iodine deficiency: Progress since the 1990 world summit for children. New York: United Nations Children’s Fund. Available: http://childreninfo.org/files/iddsustainable_elimination.pdf (Accessed 10/01/2016)

41. Pearce EN, Anderson M, Zimmerson MD. Global iodine nutrition: Where do we stand in 2013? Thyroid. 2013; 23:523-8.

42. Grimaldi A, Kakande B, Narayana K, Sebalta E, Trucco G, Mirabel M, et al. Neck mass in Rural Africa. Clinical communication to the editor. Am J Med. 2015; 128(2): e3-4. doi: 10.1016/j.ajmmed.

43. Zhao W, Hanc C, Shi X, Xiong C, Sun J, Shan Z, et al. Prevalence of goitre and thyroid nodules before and after implementation of the universal iodization program in mainland China from 1985 to 2014: A systematic review and meta-analysis. PLOS ONE. 2014;9(10): e109549. doi: 10.1371/journal.pone.0109549

44. Yadau S, Gupta SK, Godbole MM, Jain M, Singh U, Pavithran VP, et al. Persistence of severe iodine-deficiency disorders despite universal salt iodization in an iodine deficient area in Northern India. Public Health Nutr. 2010; 13: 424-9.

45. McNeil DG (Jr). In Raising the World’s I.Q., the Secret’s in the Salt. The New York
Influences on the Incidence and Pathomorphological Picture of Thyroid Disease

Times, December 16, 2006. https://www.nytimes.com/2006/12/16/health/16iodine.html

46. Ershow AG, Skeaff SA, Merkel JM, Pehrsson PR. Development of Databases on Iodine in Foods and Dietary Supplements. Nutrients. 2018; 10(1): 100. doi:10.3390/nu10010100.

47. Dong W, Zhang H, Zhang P, Li X, He L, Wang Z, Liu Y. The changing incidence of thyroid carcinoma in Shenyang, China before and after universal salt iodization. Med Sci Monit 2013; 19: 49-53.

48. Emmanuel I, Ramalan MA, Ochigbo A, Akpa P, Yakubu D, Mandong JB, Mandong BM. Malignant thyroid lesions: A histopathological perspective. JAMMR 2019; 29(12): 1-10.

49. Selzer G, Kahn LB, Albertyn L. Primary malignant tumors of the thyroid gland: A clinicopathologic study of 254 cases. Cancer. 1977; 40: 1501-10.

50. Olurin EO, Itayemi SO, Oluwasanmi JO, Ajayi OO. The pattern of thyroid gland disease in Ibadan. Nig Med J. 1973; 3: 58-65

51. Thomas JO, Ogunbiyi JO. Thyroid cancers in Ibadan, Nigeria. East Afr Med J. 1995; 72: 231-3.

52. Gitau W. An analysis of thyroid diseases seen at Kenyatta National Hospital. East Afr Med J. 1975; 52: 564-70.

53. Bakiri F, Djemli FK, Mokrane LA, Djidel FK. The relative roles of endemic goiter and socioeconomic development status in the prognosis of thyroid carcinoma. Cancer. 1998; 82: 1146-53

54. Omran M, Ahmed ME. Carcinoma of the thyroid in Khartoum. East Afr Med J. 1993; 70: 159-62.

55. Lawal O, Agbakwuru A, Olayinka OS, Adelusola K. Thyroid malignancy in endemic nodular goitres: Prevalence, pattern and treatment. Eur J Surg Oncol 2001; 27: 157-61.

56. Nkanza NK. Carcinoma of the thyroid at harare histopathology laboratory (Zimbabwe). Cent Afr J Med. 1990; 36(2): 34-6.

57. Tsegaye B, Ergete W. Histopathologic pattern of thyroid disease. East Afr Med J. 2003; 80: 525-8.

58. Mulaudzi TV, Ramdial PK, Madiba TE, Callaghan RA. Thyroid carcinoma at King Edward VIII Hospital, Durban, South Africa. East Afr Med J. 2001; 78(5): 242-5.

59. Hill AG, Mwangi I, Wagana L. Thyroid disease in a Rural Kenyan Hospital. East Afr J Med. 2004; 81(12): 631-3.

60. Ijomone EA, Duduyemi BM, Udoye E, Nwosu SO. Histopathological review of thyroid diseases in southern Nigeria-a ten year retrospective study. Journal of Medicine and Medical Sciences. 2014; 5(6): 127-32. doi:http://dx.doi.org/10.14303/jmms.2014.084

61. Ukekwe FI, Olusina DB, Okere PCN. Patterns of thyroid cancers in Southeastern Nigeria: A 15 year histopathologic review (2000-2014). J ClinDiagn Res. 2017;11(8):EC16–EC19. doi:10.7860/JCDR/2017/26971.10418

62. Der EM, QuaysonSE , Clegg-Lamptey JN, Wiredu EK, Ephraim RKD, Gyasi RK. Thyroid disorders in Accra, Ghana: A retrospective histopathological study at the Korle-Bu Teaching Hospital. 2013; 2(1):1–7.

63. Salami BA, Oduan O, Ebili HO, Akintola PA. Spectrum and prevalence of thyroid diseases seen at a tertiary health facility in Sagamu, South-West Nigeria. Niger Postgrad Med J. 2016;23: 137-40
64. Raheem N, Ahmed SA, Samaila MO. Histopathological pattern of thyroid diseases in Zaria: A 10-year review. Niger Postgrad Med J. 2018; 25: 37-42.

65. Dodiyi-Manuel A, Dodiyi-Manuel ST. Spectrum of thyroid diseases in South South, Nigeria. The Nigerian Health Journal. 2016; 16(2): 1-9. ISSN 1597-4292.

66. Rahman MA, Biswas MA, Siddika ST, Sikder AM, Talukder SI, Alamgir MH. Histopathological pattern of thyroid lesion. Dinajpur Med Col J. 2013; 6(2): 134-40.

67. Chalya PL, Ramba UP, Mabula JB, Kanumba SE, Godfrey G, Chandika AB, et al. Patterns and outcome of surgical management of goiters at Bugando Medical Centre in northwestern Tanzania. Tanzania Journal of Health Research. 2011; 13(3): 1-9.

68. Guidoum M, Kherfi-Kadi H, Benharkat-Boughaba O, Djemaa-Bendjazia A, Keghouche S, Abedi-Ardekani B, et al. Patterns of Benign and Malignant Lesions of the Thyroid in Two Wilayahs of Northeastern Algeria. Journal of Cancer Epidemiology; 2015; Article ID 849416: 5 pages.

69. Schneider DF, Chen H. New developments in the diagnosis and treatment of thyroid cancer. CA Cancer J Clin 2013; 63(6): 374-94. doi:10.3322/caac.21195.

70. Heitz P, Moser H, Staub JJ. Thyroid cancer: a study of 573 thyroid tumors and 161 autopsy cases observed over a thirty-year period. Cancer. 1976; 37: 2329-37.

71. Bubenkofer R, Hedinger C. [Thyroid neoplasms before and after the prophylactic supplementation of table salt with iodine]. Schweiz Med Wochenschr. 1977; 107: 733-41.

72. Bacher-Stier C, Riccabona G, Totsch M, Kemmler G, Oberaigner W, Moncayo R. Incidence and clinical characteristics of thyroid carcinoma after iodine prophylaxis in an endemic goiter country. Thyroid. 1997; 7: 733-41.

73. Farahati J, Geling M, Mader U, Mortl M, Luster M, Muller JG, et al. Changing trends of incidence and prognosis of thyroid carcinoma in lower Franconia, Germany, from 1981–1995. Thyroid. 2004; 14: 141-7.

74. Harach HR, Ceballos GA. Thyroid cancer, thyroiditis and dietary iodine: a review based on the Salta, Argentina Model. EndocrPathol. 2008; 19: 209-20

75. Ceresini G, Corcione L, Michiara M, Sgargi P, Teresi G, Gilli A, et al. Thyroid cancer incidence by histological type and related variants in a mildly iodine-deficient area of Northern Italy, 1998 to 2009. Cancer. 2012; 118: 5473-80.

76. Dong W, Zhang H, Zhang P, Li X, He L, Wang Z, et al. The changing incidence of thyroid carcinoma in Shenyang, China before and after universal salt iodization. Med SciMonit. 2013; 19: 49-53.

77. Guan H, Ji M, Bao R, Yu H, Wang Y, Hou P. Association of High Iodine Intake with the T1799A BRAF Mutation in Papillary Thyroid Cancer. J ClinEndocrinolMetab. 2009; 94: 1612-7.

78. Xing M. BRAF mutation in papillary thyroid cancer: pathogenic role, molecular bases, and clinical implications. Endocr Rev. 2007; 28: 742-62.

79. Kimura ET, Nikiforova MN, Zhu ZW, Knauf JA, Nikiforov YE, Fagin JA. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res. 2003; 63: 1454-7.

80. Liu XH, Chen GG, Vlantis AC, van Hasselt CA. Iodine mediated mechanisms and
81. Kim HJ, Park HK, Byun DW, Suh K, Yoo MH, Min YK, Kim SW, Chung JH. Iodine intake as a risk factor for BRAF mutations in papillary thyroid cancer patients from an iodine-replete area. Eur J Nutr 2018; 57(2): 809-15. doi: 10.1007/s00394-016-1370-2.

82. Kim S.W, Lee JI, Kim JW, Ki CS, Oh YL, Choi YL, et al. BRAFV600E mutation analysis in fine-needle aspiration cytology specimens for evaluation of thyroid nodule: A large series in a BRAFV600E-Prevalent Population. J Clin Endocrinol Metab 2010; 95: 3693-700. doi:10.1210/jc.2009-2795.

83. Kowalska A, Walczyk A, Kowalik A, Palyga I, Trybek T, Kopczynski J, Kajor M, Chrapek M, Pieciak L, Chlopek M, et al. Increase in papillary thyroid cancer incidence is accompanied by changes in the frequency of the brafv600e mutation: Single-Institution Study. Thyroid 2016; 26: 543-51 DOI: 10.1089/thy.2015.0352.

84. Mohammadi-Asl J, Larijani B, Khorgami Z, Tavangar SM, Haghpanah V, Mahdipour P. Prevalence of BRAFV600E mutation in Iranian patients with papillary thyroid carcinoma: A single center study. J Applied Sc. 2009; 9(19): 3593-7.

85. Pacini F, Schlumberger M, Dralle H, Elisei R, Smit JW, Wiersinga W, et al. European consensus for the management of patients with differentiated thyroid carcinoma of the follicular epithelium. Eur J Endocrinol. 2006; 154:787-803. doi:10.1530/eje.1.02158.

86. Durante C, Puxeddu E, Ferretti E, Morisi R, Moretti S, Bruno R, et al. Brief report BRAF mutations in papillary thyroid carcinomas inhibit genes involved in iodine metabolism. J Clin Endocrinol Metab 2007; 92:2840-3.
endemic goiter. J Clin Endocrinol Metab 1997; 82: 4049-53.

95. Guan H, Li C, Li Y, Fan C, Teng Y, Shan Z, Teng W. High iodine intake is a risk factor of post-partum thyroiditis: result of a survey from Shenyang, China. J Endocrinol Invest 2005; 28:876-81.

96. Vanderpump MPJ. The epidemiology of thyroid disease. Br Med Bull 2011; 99: 39-51.

97. Vanderpump MPJ, Tunbridge WMG, French JM, Appleton D, Bates D, Clark F, etal. The incidence of thyroid disorders in the community: a twenty-year follow-up of the Whickham Survey. Clin Endocrinol 1995; 43(1): 55–68.

98. Laurberg P, Pedersen KM, Hreidarsson A, Sigfusson N, Iversen E, Knudsen PR. Iodine intake and the pattern of thyroid disorders: a comparative epidemiological study of thyroid abnormalities in the elderly in Iceland and in Jutland, Denmark. J Clin Endocrinol Metab 1998; 83(3): 765–9.

99. Zane M, Catalano V, Scavo E, Bonanno M, Pelizzo MR, Todaro M, Stassi G. Estrogens and stem cells in thyroid cancer. Thyroid Endocrinol 2014; 5. Article 124. doi:10.3389/fendo.2014.00124

100. Santin PA, Furlanetto WT. Review Article Role of Estrogen in Thyroid Function and Growth Regulation. Journal of Thyroid Research 2011. Article ID 875125, 7pages. doi:10.4061/2011/875125.

101. Zeng Q, Chen GG, Vlantis AC, van Hasselt CA: Oestrogen mediates the growth of human thyroid carcinoma cells via an oestrogen receptor-ERK pathway. Cell Prolif 2007; 40: 921–35.

102. Zeng Q, Chen G, Vlantis A, Tse G, van Hasselt C: The contributions of oestrogen receptor isofoms to the development of papillary and anaplastic thyroid carcinomas. J Pathol 2008; 214: 425–33.

103. Dong W, Zhang H, Li J, Guan H, He L, Wang Z, Shan Z, Teng W: Estrogen induces meta-static potential of papillary thyroid cancer cells through estrogen receptor α and β. Int J Endocrinol 2013; 2013: 941568. doi: 10.1155/2013/941568.

104. Molteni A, Warpeha RL, Brizio-Molteni L, Fors EM. Estradiol receptor-binding protein in head and neck neoplastic and normal tissue. Arch Surg. 1981; 116(2): 207–10.

105. Manole D, Schildknecht B, Gosnell B, Adams E, Derwahl M. Estrogen promotes growth of human thyroid tumor cells by different molecular mechanisms. J Clin Endocrinol Metab 2001; 86(3): 1072–7.

106. Gown AM. Current issues in ER and HER2 testing by IHCin breast cancer. Mod Pathol 2008; 21(2): S8–S15.

107. Stourniolo G, Zafon C, Moleti M, Castellvi J, Vermiglio F, Mesa J. Immunohistochemical expression of estrogen receptor-α and progesterone receptor in patients with papillary thyroid cancer. Eur Thyroid J 2016;5:224–230. doi: 10.1159/000452488.

108. Huang Y, Dong W, Li J, Zhang H, Shan Z, Teng W. Differential expression patterns and clinical significance of estrogen receptor-α and β in papillary thyroid carcinoma. BMC Cancer 2014;14: 383. doi:10.1186/1471-2407-14-383.

109. Chen GC, Vlantis AC, Zeng Q, VanHasselt CA. Regulation of cell growth by estrogensignaling and potential targets in thyroid cancer. Current Cancer Drug Targets 2008; 8(5): 367–77.

110. Chen AY, Jemal A, Ward EM. Increasing incidence of differentiated thyroid cancer in the United States, 1988–2005. Cancer 2009; 115(16): 3801–7.

111. Brito JP, Morris JC, Montori VM. Thyroid cancer: zealous imaging has
increased detection and treatment of low risk tumours. BMJ 2013; 347(f4706):18-21.

112. Grogan RH, Aschebrook-Kilfoy B, White MG, Kaplan E L, Angelos P. Thyroid incidentalomas and the overdiagnosis conundrum. IntJ Endo Oncol 2016; 3(3): 193-6.

113. Davies L, Welch HG. Increasing incidence of thyroid cancer in the United States, 1973-2002. JAMA 2006; 295(18): 2164-7.

114. Grodski, S, Brown T, Sidhu S, Gill A, Robinson B, Learoyd D, et al. Increasing incidence of thyroid cancer is due to increased pathologic detection. Surgery 2008;144 (6):1038-43.

115. Ahn HS, Kim HJ, Welch HG. Korea’s thyroid-cancer epidemic—screening and overdiagnosis. N Engl J Med 2014; 371: 1765-7.

116. Topstad D, Dickinson JA. CMAJ Open 2017; 5(3). E12-E16. doi:10.9778/cmajo.20160162

117. Shah PJ. Thyroid carcinoma: epidemiology, histology, and diagnosis. ClinAdvHematolOncol. 2015;13(4 Suppl 4):3–6.

118. Baker LC, Atlas SW, Afendulis CC. Expanded use of imaging technology and the challenge of measuring value. Health Aff (Millwood) 2008; 27: 1467-78.

119. Chaudhary V, Bano S. Imaging of the thyroid: Recent advances. Indian J EndocrinolMetab 2012; 16(3): 371–376. doi: 10.4103/2230-8210.95674.

120. van den Brueletal.Francart J, Dubois C, et al. Regional Variation in Thyroid Cancer Incidence in Belgium Is Associated With Variation in Thyroid Imaging and Thyroid Disease Management. J ClinEndocrinolMetab 2013; 98(10): 4063-71.doi: 10.1210/jc.2013-1705.

121. Pellegriti G, Frasca F, Regalbuto C, Squatrito S, Vignero R. Worldwide Increasing Incidence of Thyroid Cancer: Update on Epidemiology and Risk Factors. J Cancer Epid 2013; Article ID 965212: 10pageshttp://dx.doi.org/10.1155/2013/ 965212.

122. Reiners C, Wegscheider K, Schicha H etal. Prevalence of thyroid disorders in the working population of Germany: ultrasonography screening in 96,278 unselected employees. Thyroid 2004; 14(11): 926-32.

123. Wiltshire JJ, Drake TM, Uttley L, Balasubramanian SP. Systematic Review of Trends in the Incidence Rates of Thyroid Cancer. Thyroid 2016; 26(11) https://doi.org/10.1089/thy.2016.0100

124. Brito JP, Nofal AA, Montori VM, Hay ID, Morris JC. The impact of subclinical disease and mechanism of detection on the rise in thyroid cancer incidence: a population-based study in olmsted county, minnesota during 1935 through 2012. Thyroid 2015; 25(9):https://doi.org/10.1089/thy.2014.0594

125. Hoang JK, Nguyen XV, Davies L. Overdiagnosis of thyroid cancer. AcadRadiol 2015; 22 (8): 1024 –1029.

126. Nikiforov YE. Is ionizing radiation responsible for the increasing incidence of thyroid cancer? Cancer. 2010; 116(7): 1626–8. doi:10.1002/cncr.24889.

127. Williams D. Radiation carcinogenesis: lessons from Cher-nobyl. Oncogene 2008; 27(supplement 2): S9–S18.

128. Pearce MS, Salotti JA, Little MP, McHugh K, Lee C, Kim KP, et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. The Lancet 2012; 380(9840): 499–505.
129. Mazonakis M, Tzedakis A, Damilakis J, Gourtsoyiannis N. Thyroid dose from common head and neck CT examinations in children: is there an excess risk for thyroid cancer induction? EurRadiol 2007; 17(5): 1352–7.

130. Berrington de Gonzalez A, Mahesh M, Kim KP, Bhargavan M, Lewis R, Mettler F, et al. Projected cancer risks from computed tomographic scans performed in the United States in 2007. Arch Int Med 2009; 169(22): 2071–2077.

131. Ron E, Lubin JH, Shore RE, Mabuchi K, Modan B, Pottern LM, et al. Thyroid cancer after exposure to external radiation: a pooled analysis of seven studies. Rad Res 1995; 141(3): 259–77.

132. Richardson DB. Exposure to ionizing radiation in adulthood and thyroid cancer incidence. Epid 2009; 20(2): 181–7.

133. Memon A, Godward S, Williams D, Siddique I, Al-Saleh K. Dental x-rays and the risk of thyroid cancer: a case-control study. Acta Oncologica 2010; 49(4): 447–453.

134. Metso S, Auvinen A, Huhtala H, Salmi J, Oksala H, Jaatinen P. Increased cancer incidence after radioiodine treatment for hyperthyroidism. Cancer 2001; 109(10): 1972–9.

135. Black P, Straaten A, Gutjahr P. Secondary thyroid carcinoma after treatment for childhood cancer. Med Pediatr Oncol 1998; 31(2): 91–5.

Cite this Article as: Emmanuel I, Ramalan MA, Longwap A, Dauda AM. Influences on the Incidence and Pathomorphological Picture of Thyroid Disease. Bo Med J 2020;17(2):1-14
Source of Support: Nil, Conflict of Interest: None declared