Functionally additive fixed positive and negative charges in the CFTR channel pore control anion binding and conductance

Paul Linsdell*, Christina L. Irving, and Elizabeth A. Cowley
From the Department of Physiology & Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada

Received for publication, October 26, 2021, and in revised form, January 14, 2022 Published, Papers in Press, January 29, 2022, https://doi.org/10.1016/j.jbc.2022.101659

© 2022 THE AUTHORS. Published by Elsevier Inc on behalf of American Society for Biochemistry and Molecular Biology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Ion channels use charged amino-acid residues to attract oppositely charged permeant ions into the channel pore. In the cystic fibrosis transmembrane conductance regulator (CFTR) Cl− channel, a number of arginine and lysine residues have been shown to be important for Cl− permeation. Among these, two in close proximity in the pore—Lys95 and Arg134—are indispensable for anion binding and high Cl− conductance, suggesting that high positive charge density is required for pore function. Here we used mutagenesis and functional characterization to show that a nearby pore-lining negatively charged residue (Glu92) plays a functionally additive role with these two positive charges. While neutralization of this negative charge had little effect on anion binding or Cl− conductance, such neutralization was able to reverse the detrimental effects of removing the positive charge at either Lys95 or Arg134, as well as the similar effects of introducing a negative charge at a neighboring residue (Ser1141). Furthermore, neutralization of Glu92 greatly increased the susceptibility of the channel to blockage by divalent S2O32− anions, mimicking the effect of introducing additional positive charge in this region; this effect was reversed by concurrent neutralization of either Lys95 or Arg134. Across a panel of mutant channels that introduced or removed fixed charges at these four positions, we found that many pore properties are dependent on the overall charge or charge density. We propose that the CFTR pore uses a combination of positively and negatively charged residues to optimize the anion binding and Cl− conductance properties of the channel.

Cystic fibrosis (CF) is caused by loss-of-function mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), an epithelial cell Cl− channel (1). Both functional (1, 2) and structural data (3, 4) have highlighted the important role of positively charged amino acid side chains in Cl− permeation through the channel pore (Fig. 1). Several positively charged side chains are clustered around the internal and external mouths of the pore (3, 4) (Fig. 1). Neutralization of these positive charges reduces Cl− conductance (5–9), most likely because these charges are important in attracting Cl− to the pore (2, 9). Within the pore, an uncharged, narrow extracellular region forms both the selectivity filter and the channel gate and also plays a major role in determining overall Cl− conductance (1, 2). This narrow region is connected to the cytoplasm via a relatively wide inner vestibule (Fig. 1) that is thought to be an important region for anion binding (1, 2). Within this inner vestibule, two positively charged side chains—Lys95 and Arg134—have been shown to play particularly important, analogous roles in Cl− conductance and anion binding (10, 11). Thus, neutralization of either of these positive charges results in a drastic (≥90%) reduction in Cl− conductance (11–13). Removal of either of these charges also greatly reduces the binding affinity of both permeant anions (10–12) and large anions that act as open-channel blockers by lodging within the inner vestibule (11, 13, 14). Additionally, neutralization of either practically abolishes the normal permeant anion conductance selectivity sequence, in which lyotropic permeant anions (such as SCN−) normally show a lower conductance than Cl− (11, 15). This suggests that permeant anion binding close to these positive charges is a major determinant of conductance selectivity (11, 15). Molecular dynamics simulations also suggest that both Lys95 and Arg134 contribute to an important Cl− binding site in the inner vestibule (16).

In spite of their important functional roles, the absolute positioning of the positive charges at these two sites, in the first (Lys95) and second (Arg134) of CFTR’s 12 transmembrane α-helices (TM6), does not appear essential. Thus, mutagenesis can be used to “transplant” either of these positive charges to other nearby sites in the inner vestibule, such as Ile344 and Val345 (TM6) or Ser1141 (TM12) (11, 13, 17). The observation that such charge-transplanted channels show well-restored, wild-type-like Cl− conductance, anion binding, and conductance selectivity properties (10, 11, 13, 17) suggests that these other sites are permissive hosts for these functionally important charges. However, introduction of additional, ectopic positive charge (by mutagenesis of these permissive sites in the presence of endogenous charges at both Lys95 and Arg134) does not appear drastically to alter anion conductance or anion-binding properties (10, 13, 17). Instead, the major functional effect of introducing extra positive charge in the inner vestibule appears to be a drastic increase in the binding
affinity of divalent anions (10, 13, 17, 19) (in spite of little change in binding affinity of monovalent anions, including Cl⁻ itself (10)). This finding has been used to suggest that the number (or density) of fixed positive charges in the inner vestibule of the wild-type CFTR pore is well optimized to select for monovalent over divalent anions (19).

One puzzle is: why should two fixed positive charges in this region result in a monovalent-selective anion channel, whereas adding a third favors binding of divalent anions? The present work investigates the role of a nearby pore-lining negative charge—of Glu92 in TM1 (Fig. 1)—in acting in an additive way with the positive charges of Lys95 and Arg134 to determine CFTR anion binding and conductance.

Results
Expression of Glu92-mutant CFTR
Previous work has indicated difficulty in obtaining functional expression of Glu92-mutant forms of CFTR in mammalian cells (20, 21). Western blot analysis showed that several different Glu92 mutants were able to generate mature, complex glycosylated (Band C) protein when expressed in baby hamster kidney (BHK) cells (Fig. 2), implying that at least some protein should be trafficked to the cell membrane. However, the relative abundance of this mature protein form appeared sensitive to the charge of the side chain at position 92: negative charge (wild-type, E92D) produced mostly mature protein, neutral charge (E92N, E92Q) significantly less, and positive charge (E92K, E92R) almost no detectable Band C protein (Fig. 2). One deviation from this apparent pattern was E92T, which also produced almost no Band C protein (Fig. 2). To test for possible interactions with nearby native positive charges, we also introduced E92K into backgrounds where these charges were neutralized (K95Q, R134Q) or reversed (K95E, R134E). Of these, only K95E was able to reverse the apparent effects of E92K on protein processing, leading to the appearance of significant amounts of Band C protein (Fig. 2). Mutation of Lys95 alone had little apparent effect on CFTR protein
Figure 2. Protein expression of different CFTR variants expressed in BHK cells. A and B, representative Western blots for CFTR using protein from BHK cells transfected with the named CFTR variants. C, abundance of Band C protein (as a percentage of total) as determined by densitometric analysis. Tests of significance were carried out using one-way ANOVA with Bonferroni correction. Asterisks indicate a significant difference from wild-type ($p < 0.001$), while for double-mutant proteins daggers indicate a significant difference from E92K ($p < 0.001$). Each point represents data from an independent transfection. Bars represent mean ± SD from $n = 8$ (wild-type), 3 (E92D), 6 (E92K), 6 (E92N), 5 (E92Q), 6 (E92R), 6 (E92T), 6 (E92K/K95E), 3 (E92K/K95Q), 6 (E92K/R134E), and 4 (E92K/R134Q) independent transfections. CFTR, cystic fibrosis transmembrane conductance regulator.

processing (see Supporting information). Recently, we showed that R134E and R134Q also had only moderate effects on CFTR protein processing under identical conditions (11).

Negative charge in the pore moderates block by divalent anions

A characteristic effect of the introduction of ectopic fixed positive charge in the inner vestibule of the pore is a drastic strengthening of block by intracellular divalent anions (10, 17–19, 22). Similar effects were observed following removal of the negative charge at position 92, as illustrated by the effect of different mutations on block by $S_2O_3^{2−}$ (Fig. 3). Thus, in E92N and E92Q (E1371Q background)—see Experimental procedures—but not in charge-conservative E92D/E1371Q—this divalent anion caused a strong, highly voltage-dependent block that is practically absent in control E1371Q-CFTR channels (Fig. 3). At the most negative voltages studied, $S_2O_3^{2−}$ blocked E92N/E1371Q and E92Q/E1371Q with K_D of ~ 1 mM (Fig. 3, C–E), more than an order of magnitude lower than for E1371Q (Fig. 3B). A similar strong blocking effect was also observed in E92T/E1371Q (Fig. 4B), although this mutant gave only very small macroscopic currents that precluded detailed analysis. E92K/E1371Q and E92R/E1371Q expression produced no noticeable current under these conditions, consistent with the Western blot results (Fig. 2).

Strong block by $S_2O_3^{2−}$ suggests that the functional effect of removing a fixed negative charge in the pore may be similar to that of introducing a fixed positive charge (19). To test this, mutagenesis was used to alter the fixed charge at two sites simultaneously. The strong blocking effect of $S_2O_3^{2−}$ on E92Q/E1371Q was effectively reversed by mutations that either remove a positive charge (K95Q, R134Q) or introduce an ectopic negative charge at a nearby site (S1141E) (Fig. 4). These results suggest that the balance between positive and negative charges in this part of the pore determines the binding affinity for intracellular divalent anions. In support of this idea, the double pore-mutant E92K/K95E (E1371Q background)—which effectively reverses the positions of negatively and positively charged side chains in TM1—showed similar $S_2O_3^{2−}$ block as E1371Q (Fig. 4B). E92K/K95Q/E1371Q, E92K/R134E/E1371Q, and E92K/R134Q/E1371Q failed to generate any current under these conditions, again consistent with Western blot results (Fig. 2).

Positive and negative charges control unitary conductance

The positive charges at Lys95 and Arg134 play key roles in maximizing unitary conductance in CFTR (see the start of the text); mutations that remove either of these positive charges reduce conductance by ≥90% (11–13) (Fig. 5, A, B, and E). In contrast, mutagenesis of Glu92 (E92D, E92N, E92Q, E92T) had no significant effect on conductance (Fig. 5, A and E). However, neutralization of this negative charge (in E92Q) was able to partially reverse the effects of K95Q and R134Q on conductance (Fig. 5, A, B, D, and E). Whereas the conductance of K95Q was only 9.8 ± 0.5% ($n = 5$) of wild-type, this was increased to 87 ± 2% ($n = 5$) of wild-type in E92Q/K95Q ($p < 0.001$) (Fig. 5, A, B, D, and E). The conductance of R134Q is too low to be quantified using single-channel recording (11); however, E92Q/R134Q channels had a conductance 52 ± 2% ($n = 4$) of wild-type (Fig. 5, D and E). Introduction of an extra negative charge (in S1141E) was highly disruptive to channel function, leading to a reduction in conductance to below the limits of resolution, similar to the effects of removing the

Charge titration at an anion-binding site

A characteristic effect of the introduction of ectopic fixed negative charge at a nearby site (S1141E) (Fig. 4). These results suggest that the balance between positive and negative charges in this part of the pore determines the binding affinity for intracellular divalent anions. In support of this idea, the double pore-mutant E92K/K95E (E1371Q background)—which effectively reverses the positions of negatively and positively charged side chains in TM1—showed similar $S_2O_3^{2−}$ block as E1371Q (Fig. 4B). E92K/K95Q/E1371Q, E92K/R134E/E1371Q, and E92K/R134Q/E1371Q failed to generate any current under these conditions, again consistent with Western blot results (Fig. 2).

Positive and negative charges control unitary conductance

The positive charges at Lys95 and Arg134 play key roles in maximizing unitary conductance in CFTR (see the start of the text); mutations that remove either of these positive charges reduce conductance by ≥90% (11–13) (Fig. 5, A, B, and E). In contrast, mutagenesis of Glu92 (E92D, E92N, E92Q, E92T) had no significant effect on conductance (Fig. 5, A and E). However, neutralization of this negative charge (in E92Q) was able to partially reverse the effects of K95Q and R134Q on conductance (Fig. 5, A, B, D, and E). Whereas the conductance of K95Q was only 9.8 ± 0.5% ($n = 5$) of wild-type, this was increased to 87 ± 2% ($n = 5$) of wild-type in E92Q/K95Q ($p < 0.001$) (Fig. 5, A, B, D, and E). The conductance of R134Q is too low to be quantified using single-channel recording (11); however, E92Q/R134Q channels had a conductance 52 ± 2% ($n = 4$) of wild-type (Fig. 5, D and E). Introduction of an extra negative charge (in S1141E) was highly disruptive to channel function, leading to a reduction in conductance to below the limits of resolution, similar to the effects of removing the

Charge titration at an anion-binding site

A characteristic effect of the introduction of ectopic fixed negative charge at a nearby site (S1141E) (Fig. 4). These results suggest that the balance between positive and negative charges in this part of the pore determines the binding affinity for intracellular divalent anions. In support of this idea, the double pore-mutant E92K/K95E (E1371Q background)—which effectively reverses the positions of negatively and positively charged side chains in TM1—showed similar $S_2O_3^{2−}$ block as E1371Q (Fig. 4B). E92K/K95Q/E1371Q, E92K/R134E/E1371Q, and E92K/R134Q/E1371Q failed to generate any current under these conditions, again consistent with Western blot results (Fig. 2).

Positive and negative charges control unitary conductance

The positive charges at Lys95 and Arg134 play key roles in maximizing unitary conductance in CFTR (see the start of the text); mutations that remove either of these positive charges reduce conductance by ≥90% (11–13) (Fig. 5, A, B, and E). In contrast, mutagenesis of Glu92 (E92D, E92N, E92Q, E92T) had no significant effect on conductance (Fig. 5, A and E). However, neutralization of this negative charge (in E92Q) was able to partially reverse the effects of K95Q and R134Q on conductance (Fig. 5, A, B, D, and E). Whereas the conductance of K95Q was only 9.8 ± 0.5% ($n = 5$) of wild-type, this was increased to 87 ± 2% ($n = 5$) of wild-type in E92Q/K95Q ($p < 0.001$) (Fig. 5, A, B, D, and E). The conductance of R134Q is too low to be quantified using single-channel recording (11); however, E92Q/R134Q channels had a conductance 52 ± 2% ($n = 4$) of wild-type (Fig. 5, D and E). Introduction of an extra negative charge (in S1141E) was highly disruptive to channel function, leading to a reduction in conductance to below the limits of resolution, similar to the effects of removing the
positive charges of Lys95 or Arg134 (Fig. 5E). This dramatic reduction in conductance was partly reversed by the E92Q mutation (i.e., in E92Q/S1141E) that effectively “moves” the negative charge from TM1 (Glu92) to TM12 (Ser1141), although the conductance of E92Q/S1141E (26 ± 2\% (n = 6) of wild-type) was noticeably lower than either E92Q/K95Q or E92Q/R134Q (see above) (Fig. 5, D and E). These results are consistent with the overall charge at positions 92, 95, 134, and 1141 controlling conductance (Fig. 5D). Consistent with this idea, the charge-switching E92K/K95E mutant showed retained channel function, with a conductance 60 ± 1\% (n = 7) of wild-type (Fig. 5, A, C and E).

Positive and negative charges control anion binding

The positive charges of Lys95 and Arg134 are also important for anion binding in the inner vestibule, and neutralization of these charges affects the binding affinity of permeant and blocking anions (see the start of the text). Block of Cl− permeation by intracellular permeant Au(CN)\textsubscript{2}− ions was slightly weakened in E92Q-mutant channels (mean K_D at −40 mV) increased from 40.0 ± 8.5 μM (n = 8) in E1371Q to 123 ± 32 μM (n = 6) in E92Q/E1371Q) (Fig. 6, A–C), consistent with the moderate effects of mutations that increase the number of positive charges (Q98K, I344K, V345K, S1141K (10)). Addition of negative charge (in S1141E/E1371Q) drastically weakened Au(CN)\textsubscript{2}− binding (mean K_D (−40 mV) 5990 ± 870 μM (n = 4)) (Fig. 6, A–C), to an even greater extent than removal of endogenous positive charge (K95Q/E1371Q, R134Q/E1371Q; Fig. 6, D and E) (10, 11)).

Figure 3. Strong block of Glu92-mutant CFTR by intracellular S\textsubscript{2}O\textsubscript{3}2−. A, example I–V relationships for E1371Q and Glu92-mutant CFTR (E1371Q background) recorded before (black lines) and after addition of 10 mM S\textsubscript{2}O\textsubscript{3}2− to the intracellular solution (red lines). B, direct comparison of the voltage-dependent effects of 10 mM S\textsubscript{2}O\textsubscript{3}2− on these channel variants (E1371Q background). Data points represent mean ± SD from n = 5 (E1371Q), 4 (E92D/E1371Q), 4 (E92N/E1371Q) and 5 (E92Q/E1371Q) patches. C and D, concentration-dependent effects of S\textsubscript{2}O\textsubscript{3}2− on E92N/E1371Q (C) and E92Q/E1371Q (D), quantified at membrane potentials of −100 mV (●) and 0 mV (□). Data points represent mean ± SD from four patches in each condition and have been fitted as described under “Experimental procedures” (Equation 1), giving D_s values of 0.72 ± 0.16 (n = 8) in E1371Q (Fig. 5, A) and 2.06 mM (0 mV) for E92N/E1371Q and 0.89 mM (−100 mV) and 12.2 mM (0 mV) for E92Q/E1371Q. E, mean K_D values (±SD) for E92N/E1371Q (●) (n = 6) and E92Q/E1371Q (□) (n = 8) obtained from such fits as a function of membrane potential. The slope of this relationship at negative voltages allows quantification of blocker effective valence (δ) as described under “Experimental procedures” (Equation 2), giving mean δ values of −0.72 ± 0.16 (n = 6) for E92N/E1371Q and −0.83 ± 0.10 (n = 8) for E92Q/E1371Q. These δ values are somewhat lower than was recently reported for I344K/E1371Q and S1141K/E1371Q under identical conditions (19). CFTR, cystic fibrosis transmembrane conductance regulator.

Figure 6. Charge titration at an anion-binding site A-D, experimental procedures
R134Q, and S1141E, resulting in similar overall block as in
E1371Q (Fig. 7B). Block of E92K/K95E/E1371Q was not
significantly different from E1371Q (Fig. 7B).

Another apparent manifestation of anion binding in the
inner vestibule is the relative conductance of different per-
meant anions (11, 15). Thus, mutations that remove positive
charge (K95Q, R134Q) have been reported to disrupt the
normal anion conductance selectivity of the channel and in
particular to increase the normally very low relative conduc-
tance of lyotropic SCN$^-$ ions (11, 15) (Fig. 8). E92Q/E1371Q
showed a slightly elevated relative SCN$^-$ conductance ($G_{SCN}/
G_{Cl}$) compared with E1371Q (Fig. 8). In S1141E/E1371Q,
SCN$^-$ showed a considerably higher conductance than Cl$^-$
(Fig. 8), similar to previous findings with K95Q/E1371Q and
R134Q/E1371Q (11, 15) (Fig. 8). The elevated G_{SCN}/G_{Cl} seen
in each of S1141E, K95Q and R134Q (E1371Q background)
was effectively reversed by the comutation E92Q, restoring the
wild-type pattern of low relative SCN$^-$ conductance (Fig. 8).
E92K/K95E/E1371Q also showed low G_{SCN}/G_{Cl} (Fig. 8B).

Discussion

Considering only the effects of single mutations, Glu92 does
not appear to play a major role in Cl$^-$ permeation in CFTR.

Three different mutations that neutralize this negative charge—along with the charge-conserving E92D—failed to
significantly alter single-channel conductance (Fig. 5),
consistent with an earlier report that E92C has a similar conductance to wild-type (21). Furthermore, the charge-
neutralizing E92Q mutant had only a moderate impact on
permeant anion binding (assessed by Au(CN)$_2^-$ block of Cl$^-$
permeation; Fig. 6), no effect on NPPB block (Fig. 7), and led
to only a moderate weakening of Cl$^-$/SCN$^-$ conductance
selectivity (Fig. 8). The only hint that this negative charge
might play a role in controlling pore properties is the very
strong block of charge-neutralizing E92N, E92Q, and E92T
(but not charge-conserving E92D) by intracellular S$_2$O$_3^{2-}$
ions (Fig. 3). This dramatic strengthening of S$_2$O$_3^{2-}$ block is highly
reminiscent of the effect of mutations that introduce an
ectopic positive charge within the inner vestibule of the pore,
I344K and S1141K (19), and also consistent with strong open-
channel block by another divalent anion, Pt(NO$_2$)$_2^{2-}$, when
positive charge is introduced at these and other nearby pore-
lining sites (10, 17–19, 22). In fact, these mutants bearing
additional positive charge have also been reported to have
only minor impacts on Cl$^-$ conductance, Au(CN)$_2^-$ block, and
NPPB block (10, 13, 17), as well as anion conductance selec-
tivity (11). However, ectopic positive charge has been shown

Figure 4. Reversal of strong S$_2$O$_3^{2-}$ block of E92Q-containing channels by second-site mutations. A, example I-V relationships for the named mutants recorded before (black lines) and after addition of 10 mM S$_2$O$_3^{2-}$ to the intracellular solution (red lines). B, effect of 10 mM S$_2$O$_3^{2-}$ on different channel variants (E1371Q background) at −100 mV. Tests of significance were carried out using one-way ANOVA with Bonferroni correction. Asterisks indicate a significant difference from E1371Q (*p < 0.005; **p < 0.001), while for E92Q-containing double pore mutant channels daggers indicate a significant difference from E92Q/E1371Q (p < 0.001). Bars represent mean ± SD from $n = 5$ (E1371Q), 4 (E92D/E1371Q), 4 (E92N/E1371Q), 5 (E92Q/E1371Q), 3 (E92T/ E1371Q), 4 (E92Q/K95Q/E1371Q), 4 (E92Q/R134Q/E1371Q), 4 (E92Q/S1141E/E1371Q), 4 (S1141E/E1371Q), and 4 (E92K/K95E/E1371Q) patches.

to be able to restore the very low conductance, weak anion binding, and disrupted anion conductance selectivity associated with mutations that remove important positive charges in the inner vestibule—Lys95 and Arg134 (10, 11, 13, 17, 18). This has been interpreted as “transplantation” of functionally important positive charge from one site lining the inner vestibule to another (10, 11, 13). However, this ability to rescue the disrupted pore function of K95Q and R134Q is also shared by E92Q, leading to relatively normal wild-type (or E1371Q)-like single-channel conductance (Fig. 5), Au(CN)2− block (Fig. 6), NPPB block (Fig. 7), and GSCN/GCl (Fig. 8) in both E92Q/K95Q and E92Q/R134Q mutated channels. Conversely, K95Q and R134Q are able to reverse the effects of E92Q on S2O32− block (Fig. 4). Thus, rather than the absolute number of positive charges lining the inner vestibule, it appears that the overall balance between fixed positive and negative charges controls anion binding in this region and thereby affects Cl− conductance. Consistent with this, the double mutant E92K/K95E—which reverses the location of positive and negative charges—has functional properties quite similar to the wild-type/E1371Q pore (Figs. 4–8).

Anion binding in the inner vestibule is not the sole determinant of Cl− conductance (see the start of the text). The uncharged, narrow region is thought to be a major barrier to anion conductance (10, 23), as well as the most important determinant of permeability selectivity (1, 2). Positively
charged side chains at both the outer and inner mouths of the pore influence both anion binding (7–9, 24, 25) and Cl⁻ conductance (5–29); in some cases, these fixed positive charges may also interact with nearby negative charges (26, 27). Whether these more distant regions of the pore also affect the localized charge balance within the inner vestibule remains to be investigated.

As described previously (10–15), removal of a positive charge from the inner vestibule (as in K95Q and R134Q) is highly disruptive to Cl⁻ conductance (Fig. 5) and
anion-binding properties (Figs. 6–8). These effects were mimicked—and in some cases exceeded—by introducing an additional negative charge in the inner vestibule, in S1141E mutant channels. Thus, S1141E reduced Cl$^-$ conductance below the limit of resolution (Fig. 5), drastically weakened block of Cl$^-$ permeation by both Au(CN)$_2^-$ (Fig. 6) and NPPB (Fig. 7), and reversed Cl$^-$:SCN$^-$ conductance selectivity (Fig. 8).

It is perhaps not surprising that introducing a pore-lining negative charge should be disruptive to the function of an anion channel (although this is what nature has done in placing Glu92 close to an important anion-binding site in the CFTR pore). We hypothesize that the strong disruption of pore function observed in S1141E-mutant channels may reflect the important position of this amino acid close to an important anion-binding site involving Lys95 and Arg134 (Fig. 1), although we have not investigated the effects of introducing a negative charge at other sites in the inner vestibule. Importantly, all of the functional effects of S1141E can be “rescued” to some extent by the comutation E92Q (Figs. 5–8), and conversely, the strong block of E92Q/E1371Q by S$_2$O$_3^{2-}$ can be reversed by S1141E (Fig. 4). In effect, in E92Q/S1141E-mutant channels, a negative charge has been “transplanted” from TM1 to TM12 (Fig. 1), generally preserving pore conductance and anion-binding properties.

The nearby residues mutated in the present study—Glu92 (TM1), Lys95 (TM1), Arg134 (TM2), and Ser1141 (TM12) (Fig. 1)—contribute two fixed positive charges and one fixed negative charge to the inner vestibule of the pore. Mutations that decrease the “positivity” in this region—either by removing positive charges (K95Q, R134Q) or adding negative charge (S1141E) —drastically decrease conductance (by >90%) (Fig. 9A). Mutations that increase positivity—by adding positive charge (S1141K) or removing negative charge (E92N, E92Q, E92T)—have almost no effect on conductance (Fig. 9A). Mutations that retain the balance between positive and negative charge—either by conservative substitution (E92D), or by “moving” charges around different sites (E92Q/S1141E, E92K/K95E, K95S/S1141K, R134Q/S1141K), or by removing both negative and positive charges (E92Q/K95Q, E92Q/R134Q) retain conductance (between 52 and 101% of wild-type conductance) (Fig. 9A), with the exception of E92Q/S1141E, which has a conductance 26 ± 2% of wild-type ($n = 4$); as discussed above, this may reflect the highly detrimental effects of having a negatively charged side chain at position 1141. We...
propose that it is the balance between positive and negative charges—rather than the number of charges—that controls conductance (Fig. 9A); an excess of positive charges is necessary for normal conductance, but increasing the excess from +1 to +2 causes little or no increase in conductance. Nevertheless, even for channels with one excess positive charge, there is a large variation of conductance (Fig. 9A). This may reflect that the exact position of the positive and negative charges within the inner vestibule has some influence on conductance; for instance, maximal conductance is obtained with positive charge at positions 95 and 134 and a negative charge at position 92 (wild-type, E92D), and other positions may be suboptimal “hosts” for these charges. Alternatively, unstudied factors other than charge may also be at play within the inner vestibule to modulate conductance.

Similarly to conductance, an excess of positive charge—achieved by any combination of positively and negatively charged side chains that has been investigated—is clearly required for high-affinity Au(CN)2− binding (Fig. 9B), for NPPB block (Fig. 9C), and for Cl−:SCN− conductance selectivity (Fig. 9D). Since each of these parameters likely reflects aspects of anion binding in the inner vestibule (see the start of the text), it appears that an excess of positive charge is required to form a functional anion-binding site in the inner vestibule. Increasing the excess of positive charge (as in E92Q and S1141K) has practically no impact on these anion-binding parameters (or conductance, see above) (Fig. 9), but does lead to a drastic increase in the binding of the test divalent anion S2O32− (Fig. 3; (19)). As discussed previously, strong binding of cytoplasmic divalent anions is likely to be detrimental to overall channel function (13, 19). The apparent lack of strong position dependence in the functional role of these charges is consistent with an electrostatic effect rather than, for example, structural changes due to charge-dependent interactions with other TMs.

Mutation of Glu92 also appears to have charge-dependent effects on the production of mature, complex-glycosylated CFTR protein (Fig. 2), suggesting that the presence of a negative charge at this position is important for CFTR protein folding and/or trafficking to the membrane. E92K is a CF-causing mutation (CFTR2 database, https://cftr2.org) that has previously been shown to have very low function and plasma membrane expression using other techniques (28). Mistrafficking of E92K was reversed by the comutation K95E.
which restores the overall balance of negative and positive side chains to TM1 (Fig. 2). While we have not studied the effect of mutations on CFTR protein processing in detail, one possibility is that this charge balance is important for the correct α-helical configuration of TM1 and/or its proper interaction with other TMs.

Our investigation is not the first example of an ion channel pore incorporating the “wrong” fixed charge in an ion-binding site. For example, voltage-gated Na⁺ channels have both negative and positive charges surrounding their selectivity filters (the well-known “DEKA” locus); the positively charged lysine is thought to be important for high Na⁺:K⁺ selectivity (29–31). Among anion channels, CICs have a conserved negatively charged glutamate side chain that can move to occupy a Cl⁻ binding site in the pore, which is thought to be important in permeation and gating in these channels (32, 33). However, in these examples, charged side chains make specific interactions with bound permeating ions, unlike the situation we describe in the CFTR pore, where it appears that the pore uses a combination of positive and negative charges to titrate the valence selectivity of a permeant ion-binding site. Is there any advantage to having an anion-binding site formed by a combination of two positive and one negative charges (as is apparently the case for wild-type CFTR), when a channel with one positive and no negative charges (such as E92Q/K95Q or E92Q/R134Q) is also able to sustain relatively high Cl⁻ conductance (Fig. 5)? We can only speculate that, since wild-type has a (slightly) higher conductance than other channel variants studied here (Fig. 5), this arrangement of positive and negative charges may be well suited for optimizing conductance without allowing detrimental strong binding of divalent anions (as is observed in E92N and E92Q). The wild-type pore also appears well optimized for tight binding of permeant anions (as quantified using Au(CN)₂⁻ block) (Fig. 6), which has recently been proposed as being important in maximizing pore occupancy and thereby increasing conductance (10). Thus, the somewhat counterintuitive presence of a negatively charged side chain in an anion-binding site appears, in this case at least, to confer optimal anion binding and conductance properties to the channel.
Experimental procedures

Experiments were carried out on BHK cells transiently transfected with CFTR, as described previously (13). Additional mutations were introduced using the QuikChange site-directed mutagenesis system (Agilent Technologies) and verified by DNA sequencing. Mutations were introduced at four pore-lining sites that are predicted to be in close proximity in the inner vestibule of the pore—Glu92 (TM1), Lys95 (TM1), Arg134 (TM2), and Ser1411 (TM12) (Fig. 1). Previous work has suggested that the positive charges of both Lys95 and Arg134 can be “transplanted” to Ser1411 (by comutagenesis) with little disruption of pore function, leading to the suggestion that these neighboring residues are in functionally analogous positions in the pore (11, 13). All macroscopic current recordings (Figs. 3, 4 and 6–8) were carried out on very high open probability channels bearing the E1371Q mutation that effectively isolates effects on Cl− permeation (10, 13, 15).

Western blotting for CFTR was carried out as described recently (11). Briefly, immunoblotting was performed on total cellular protein (5–30 μg, depending on the transfection) with monoclonal mouse anti-CFTR antibody (M3A7, Sigma-Aldrich) (1:2000 dilution) followed by secondary horseradish peroxidase-conjugated goat anti-mouse (Abcam Inc) (1:20,000 dilution). Relative expression of mature, complex glycosylated CFTR protein (“Band C,” ~175 kDa) and immature, core glycosylated protein (“Band B,” ~150 kDa) was assessed by densitometry analysis of scanned Western blot images using ImageJ (Version 1.48, National Institutes of Health).

Functional characterization of CFTR channels was carried out using single channel and macroscopic patch clamp recordings from inside-out membrane patches, as described in detail previously (13). For most experiments, the extracellular (pipette) solution contained (mM): 150 Na glutonate, 2 MgCl2, 10 Na-tris[hydroxymethyl]methyl-2-aminoethanesulfonate (TES), pH 7.4, and the intracellular (bath) solution contained (mM): 150 NaCl, 2 MgCl2, 10 TES, pH 7.4, to generate an outwardly-directed [Cl−] gradient. To quantify the relative conductance of Cl− and SCN− ions (Fig. 8), the intracellular face of inside-out patches was perfused with the intracellular solution described above, or (mM): 154 NaSCN, 2 Mg(OH)2, 10 TES, pH 7.4. In all experiments, activity of constitutively active E1371Q-containing channels was sustained using a low concentration of intracellular ATP (50 μM) to obviate ATP block (10, 13). Single channel activity was stimulated by exposure to protein kinase A catalytic subunit (PKA; 1–5 nM) plus 50 μM ATP in the intracellular solution. Current traces were filtered at 150 Hz (for macroscopic currents) or 50 Hz (for single channel currents) using an eight-pole Bessel filter, digitized at 1 kHz, and analyzed using pCLAMP10 software (Molecular Devices). Measurement of single channel and macroscopic current amplitudes and construction of leak-subtracted current–voltage (I–V) relationships were carried out as described previously (13). Membrane voltages were corrected for liquid junction potentials calculated using pCLAMP software.

Block of Cl− permeation by intracellular S2O32−, Au(CN)2−, and NPPB was investigated by direct application of these substances to the intracellular face of inside-out patches from high-concentration stocks made up in normal intracellular solution, as described recently (10, 11, 19). For S2O32− and Au(CN)2−, concentration–inhibition relationships were fitted by the equation:

\[\text{Fractional unblocked current} = 1 / (1 + (\text{[B]} / K_D)) \] \hspace{1cm} (1)

Where [B] is blocker (S2O32− or Au(CN)2−) concentration, and \(K_D \) is the apparent blocker dissociation constant. Open-channel block of wild-type CFTR by Au(CN)2− has a complex voltage dependence (10) (Fig. 6C), and the \(K_{D,8} \) of different variants are compared at ~40 mV, the voltage at which block of wild-type is strongest (10) (Fig. 6C).

For S2O32−, the relationship between \(K_D \) and membrane potential (V) was fitted by the equation:

\[K_D(V) = K_D(0) \exp(-z\delta VF / RT) \] \hspace{1cm} (2)

where \(z\delta \) is the measured effective valence of the blocking ion (actual valence (z) multiplied by the fraction of the transmembrane electric field apparently experienced during the blocking reaction (δ)), and \(F, R, \) and \(T \) have their usual thermodynamic meanings.

Relative conductance of SCN− and Cl− ions (\(G_{SCN}/G_{Cl} \)) was estimated by perfusion of the intracellular face of inside-out patches containing constitutively active E1371Q-CFTR channels with solutions containing high concentrations of these two anions (see above), as described previously (11, 15). Relative conductance was quantified by measuring the slope conductance of the relatively linear part of the current–voltage relationship between −100 and 0 mV.

Experiments were carried out at room temperature, 21 to 24 °C. Where shown, mean values are presented ± standard deviation (SD). For graphical presentation of mean values, error bars represent SD, and where no error bars are visible, SD is smaller than the size of the symbol. In some cases (Figs. 2C, 4B, 5E, 6E, 7B and 8B), individual data points are shown together with bars showing mean ± SD. Tests of significance were carried out using one-way ANOVA with Bonferroni correction, with \(p < 0.05 \) being considered statistically significant. Unless otherwise stated, chemicals were from Sigma-Aldrich except for KAu(CN)2 (Strem Chemicals) and PKA (Promega).

Data availability

Original data generated or analyzed during this study are available from the corresponding author, Dr Paul Linsdell (paul.linsdell@dal.ca) upon reasonable request.

Supporting information—This article contains supporting information.

Author contributions—P. L. conceptualization; P. L. and C. L. I. formal analysis; P. L. and C. L. I. investigation; E. A. C. project administration; E. A. C. supervision; P. L. writing—original draft.
Charge titration at an anion-binding site

Funding and additional information—This work was supported by a grant from the Natural Sciences and Engineering Research Council of Canada (RGPIN/05124-2017) to P. L.

Conflict of interest—The authors declare that they have no conflicts of interest with the contents of this article.

Abbreviations—The abbreviations used are: BHK, baby hamster kidney; CF, cystic fibrosis; CFTR, cystic fibrosis transmembrane conductance regulator; MSD, membrane-spanning domain; NBD, nucleotide-binding domain; NPPB, 5-nitro-2-(3-phenylpropyl)aminoethanesulfonate; TM, transmembrane α-helix.

References

1. Csanády, L., Vergani, P., and Gadsby, D. C. (2019) Structure, gating, and regulation of the CFTR anion channel. *Physiol. Rev.* **99**, 707–738
2. Linsdell, P. (2017) Architecture and functional properties of the CFTR channel pore. *Cell. Mol. Life Sci.* **74**, 67–83
3. Liu, F., Zhang, Z., Csanády, L., Gadsby, D. C., and Chen, J. (2017) Molecular structure of the human CFTR ion channel. *Cell* **169**, 85–95
4. Zhang, Z., Liu, F., and Chen, J. (2018) Molecular structure of the ATP-bound, phosphorylated human CFTR. *Proc. Natl. Acad. Sci. U. S. A.* **115**, 12757–12762
5. Smith, S. S., Liu, X., Zhang, Z.-R., Sun, F., Kriewall, T. E., McCarty, N. A., and Dawson, D. C. (2001) CFTR: Covalent and noncovalent modifications suggest a role for fixed charges in anion conduction. *J. Gen. Physiol.* **118**, 407–431
6. Gong, X., and Linsdell, P. (2003) Molecular determinants and role of an anion binding site in the external mouth of the CFTR chloride channel pore. *J. Physiol.* **549**, 387–397
7. Zhou, J.-J., Fatehi, M., and Linsdell, P. (2008) Identification of positive charges situated at the outer mouth of the CFTR chloride channel pore. *Pflügers Arch.* **457**, 351–360
8. Linsdell, P. (2015) Functional architecture of the cytoplasmic entrance to the cystic fibrosis transmembrane conductance regulator chloride channel pore. *J. Biol. Chem.* **290**, 15855–15865
9. Li, M.-S., Cowley, E. A., El Hiani, Y., and Linsdell, P. (2018) Functional organization of cytoplasmic portals controlling access to the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel pore. *J. Biol. Chem.* **293**, 5649–5658
10. Linsdell, P. (2021) On the relationship between anion binding and chloride conductance in the CFTR anion channel. *Biochim. Biophys. Acta* **1863**, 183558
11. Linsdell, P., Irving, C. L., Cowley, E. A., and El Hiani, Y. (2021) Two positively charged amino acid side-chains in the inner vestibule of the CFTR channel pore play analogous roles in controlling anion binding and anion conductance. *Cell. Mol. Life Sci.* **78**, 5213–5223
12. Ge, N., Muise, C. N., Gong, X., and Linsdell, P. (2004) Direct comparison of the functional roles played by different transmembrane regions in the cystic fibrosis transmembrane conductance regulator chloride channel pore. *J. Biol. Chem.* **279**, 55283–55289
13. Zhou, J.-J., Li, M.-S., Qi, J., and Linsdell, P. (2010) Regulation of conductance by the number of fixed positive charges in the intracellular vestibule of the CFTR chloride channel pore. *J. Gen. Physiol.* **135**, 229–245
14. Linsdell, P. (2005) Location of a common inhibitor binding site in the cytoplasmic vestibule of the cystic fibrosis transmembrane conductance regulator chloride channel pore. *J. Biol. Chem.* **280**, 8945–8950
15. Linsdell, P. (2016) Anion conductance selectivity mechanism of the CFTR chloride channel. *Biochim. Biophys. Acta* **1858**, 740–747
16. Farkas, B., Tordai, H., Padányi, R., Tordai, A., Gera, J., Paragi, G., and Hegedüs, T. (2020) Discovering the chloride pathway in the CFTR channel. *Cell. Mol. Life Sci.* **77**, 765–778
17. El Hiani, Y., and Linsdell, P. (2012) Tuning of CFTR chloride channel function by location of positive charges within the pore. *Biophys. J.* **103**, 1719–1726
18. Linsdell, P. (2015) Interactions between permeant and blocking anions inside the CFTR chloride channel pore. *Biochim. Biophys. Acta* **1848**, 1573–1590
19. Linsdell, P. (2021) Monovalent: Divalent anion selectivity in the CFTR Channel Pore. *Cell Biochem. Biophys.* **79**, 863–871
20. Wang, W., El Hiani, Y., and Linsdell, P. (2011) Alignment of transmembrane regions in the cystic fibrosis transmembrane conductance regulator chloride channel pore. *J. Gen. Physiol.* **138**, 165–178
21. Gao, X., Bai, Y., and Hwang, T.-C. (2013) Cysteine scanning of CFTR’s first transmembrane segment reveals its plausible roles in gating and permeation. *Biophys. J.* **104**, 786–797
22. Linsdell, P. (2014) State-dependent blocker interactions with the CFTR chloride channel: Implications for gating the pore. *Pflügers Arch.* **466**, 2243–2255
23. Fatehi, M., St Aubin, C. N., and Linsdell, P. (2007) On the origin of asymmetric interactions between permeant anions and the cystic fibrosis transmembrane conductance regulator chloride channel pore. *Biophys. J.* **92**, 1241–1253
24. St Aubin, C. N., Zhou, J.-J., and Linsdell, P. (2007) Identification of a second blocker binding site at the cystic acid mouth of the cystic fibrosis transmembrane conductance regulator chloride channel pore. *Mol. Pharmacol.* **71**, 1360–1368
25. Zhou, J.-J., Fatehi, M., and Linsdell, P. (2007) Direct and indirect effects of mutations at the outer mouth of the cystic fibrosis transmembrane conductance regulator chloride channel pore. *J. Membr. Biol.* **216**, 129–142
26. Rahman, K. S., Cui, G., Harvey, S. C., and McCarty, N. A. (2013) Modeling the conformational changes underlying channel opening in CFTR. *PLoS One* **8**, e74574
27. Wang, G., Linsley, R., and Norimatsu, Y. (2016) External Zn2+ binding to cysteine-substituted cystic fibrosis transmembrane conductance regulator constructs regulates channel gating and curcumin potentiation. *FEBS J.* **283**, 2458–2475
28. Prins, S., Langron, E., Hastings, C., Hill, E. J., Stefan, A. C., Griffin, L. D., and Vergani, P. (2020) Fluorescence assay for simultaneous quantification of CFTR ion-channel function and plasma membrane proximity. *J. Biol. Chem.* **295**, 16529–16544
29. Lipkind, G. M., and Fozzard, H. A. (2008) Voltage-gated Na channel selectivity: The role of the conserved domain III lysine residue. *J. Gen. Physiol.* **131**, 523–529
30. Li, Y., Liu, H., Xia, M., and Gong, H. (2016) Lysine and the Na+K+ selectivity in mammalian voltage-gated sodium channels. *PLoS One* **11**, e0162413
31. Boiteaux, C., Flood, E., and Allen, T. W. (2018) Comparison of permeation mechanisms in sodium-selective ion channels. *Neurosci. Lett.* **700**, 3–8
32. Accardi, A. (2015) Structure and gating of CLC channels and exchangers. *J. Physiol.* **593**, 4129–4138
33. Jentsch, T. J., and Pusch, M. (2018) CLC chloride channels and transporters: Structure, function, physiology, and disease. *Physiol. Rev.* **98**, 1493–1590
34. Linsdell, P. (2018) Cystic fibrosis transmembrane conductance regulator (CFTR): Making an ion channel out of an active transporter structure. *Channels* **12**, 284–290