Ontology-Based Skill Description Learning for Flexible Production Systems

Anna Himmelhuber, Stephan Grimm, Thomas Runkler, Sonja Zillner
Siemens AG
Munich, Germany
{anna.himmelhuber, stephan.grimm, thomas.runkler, sonja.zillner}@siemens.com

Abstract—The increasing importance of resource-efficient production entails that manufacturing companies have to create a more dynamic production environment, with flexible manufacturing machines and processes. To fully utilize this potential of dynamic manufacturing through automatic production planning, formal skill descriptions of the machines are essential. However, generating those skill descriptions in a manual fashion is labor-intensive and requires extensive domain-knowledge. In this contribution an ontology-based semi-automatic skill description system that utilizes production logs and industrial ontologies through inductive logic programming is introduced and benefits and drawbacks of the proposed solution are evaluated.

Index Terms—skill description learning, ontology-based, flexible manufacturing, semantic web, inductive logic programming, class expression learning

I. INTRODUCTION

In many of today’s production facilities, manufacturing machines are deterministically programmed allowing to fulfill one or more predefined tasks. This system works for mass production but cannot address requirements related to flexible manufacturing. Within the Industry 4.0 vision of smart factories, cyber-physical systems are promised to bring more flexibility, adaptability and transparency into production, increasing the autonomy of machines [1]. In this context, manufacturing processes rely on formal skill descriptions in combination with formalized description of actions related to the single product production requirements as seen in [2][10]. The term skill refers to the functionalities that a production machine provides. These skill descriptions are the basis for the control functionality of the production process and for fully utilizing the potential of dynamic manufacturing systems [8][9].

To realize cyber-physical systems in production, one approach is to equip machines with explicit digitized skill descriptions, detailing their capabilities. Having these skill description in a digitized format is necessary for further automation steps like skill matching, where explicit descriptions can be compared to production requests for deciding on the producibility of new product orders and assignment of production modules to production tasks. This method can simplify and speed up the production planning and execution. However in some cases, these skill descriptions might not be available at all, e.g. in the case of a legacy module. Even for newer production equipment, skill descriptions, which can contain complex logical structures, might not be available in a digitized format. Without a learning system this has to be done by hand for a variety of existing skill-based approaches as in [4]. Defining and digitalizing the skill descriptions of a production module are therefore typically done manually by a domain expert. The domain expert analyzes and conceptualizes the structure of the production process with the respective production modules. Each production module has a specific set of skills and constraints, which must be documented. This process is very labor-intensive and requires a high expertise by the domain expert in order to fully understand the capabilities of a production module. Automatic skill description learning would minimize the labor time and domain expertise needed to equip production modules with their description.

What is available in most flexible production systems are production logs. These production logs together with industrial ontologies are the basis for and make it possible to learn skill descriptions. Using inductive logic programming (ILP), a sub-field of machine learning that uses first-order logic to represent hypotheses [7] with production logs and ontologies as input, is how we propose to overcome the knowledge acquisition bottleneck for skill descriptions.

The contribution of this paper comprises:

- Application of state-of-the-art class expression learning for industrial skill descriptions.
- Presentation of a skill description learning end-to-end workflow.
- Identification of the potential and challenges of using ILP in the skill description learning context.

The remainder of the paper is structured as follows: in Section 2, we introduce some notions about skill descriptions and the application of class expression learning. Section 3 introduces the concept of ontology-based skill description learning, the problem formulation and the end-to-end workflow and architecture for skill description generation we have developed. In Section 4, we describe and evaluate the results of the experiments we have conducted. Section 5 presents the conclusions of our contribution.

II. STATE OF THE ART

A. Skill Descriptions

Since skill descriptions are crucial to make a dynamic production environment possible, a number of approaches have been proposed for the modelling of functionalities in a manufacturing environment. In literature, concepts for skill
Skill Requirements

Table: Skill Matching

BoM	BoP
1	2
3	4
5	

Fig. 1. Skill Matching

Semantic technologies can provide formal description and semantic processing of data, therefore making the data interpretable with regard to its content and meaning. This explicit knowledge representation of the Semantic Web includes modeling of knowledge and application of formal logics over the knowledge base. One approach are ontologies, which enable the modeling of information and consist of classes, relations and instances [8]. Class expression learning (CEL) is a subfield of inductive logic programming, where a set of positive and negative examples of individuals are given in an ontology. The supervised learning problem consists of finding a new class expression, such that most of the positive examples are instances of that concept, while the negatives examples are not [7]. CEL and ILP will be used interchangeably in this paper.

In literature, a few application of CEL for solving different problems have been proposed. In Sentiment Analysis [14], CEL is introduced as a tool to find the class expression that describes as much of the instances of positive documents as possible. Here, the ontology is focused on inferring knowledge at a syntactic level to determine the orientation of opinion. Another application example is the use of class expression learning for the recognition of activities of daily living in a Smart Environments setting [13].

To the best of our knowledge, class expression learning has not been used for learning skill descriptions in a manufacturing setting.

III. LEARNING ONTOLOGY-BASED SKILL DESCRIPTIONS

A. Production Environment

The type of flexible production system we are looking at consists of one or more production lines with a number of production modules. These production modules or machines, have a set of skills, for which we want to learn descriptions. The production orders consist of a bill of materials (BoM) and a bill of processes which are used for the automatic production planning - production steps are assigned to specific production modules and scheduled for a certain time within a specific production plan. This enables an efficient production process and allocation of resources. Part of this process is skill matching (see Figure 1), where the skill requirements of a certain operation are matched to the skill offers of a production module. For example, manufacturing process step two, requires an intermediate product, created in step one and one more material as seen in the BoM and BoP. These two parts have to be joined which requires a joining skill of a production module. The production module C offers this skill, and the skill requirement and skill offer can be matched. However, this requires the skill offer of module C to be available in a digital format, to make a successful skill
A property of the skill.

where each class expression

Similarly, the skill description

represented in the form of OWL restrictions on properties.

a set of class expression interpreted as a conjunction of the

K

data

I

B

containing machine and product parameters, with instance

step a domain expert can decide which class expressions

Module1. Here, one item or material is assembled onto

another item by the production module Module1. Other skills

that could be looked at include joining, charging dismantling,

recycling, etc. In the ontology we can see:

1) The class hierarchy of all the production modules, mate-

eials, etc. All classes that are relevant to the production

process are modelled here.

2) The example data used by ILP are the instances of

the operation carried out by the module. These are the

production logs, modelled in the ontology.

3) The object properties are the background knowledge

of each single operation instance. These are properties

or constraints of the skill descriptions we want to

learn. The properties are used to assert relationships

between individuals, in this case, the operation instance

I-017573-ex has the object property Position Parameter

PositionParam of "Position 1". Another instance of this

operation has the Position Parameter of "Position 2".

Therefore, our algorithm should find a class expressions,

that expresses that the position parameter of our oper-

ation has Position Parameter "Position 1" or "Position

2".

The ground truth for this skill description for skill As-

sembleItemByModule1 example is comprised of three "class

expression"-like statements or constraints and is generated

manually by a domain expert as OWL constraints:

• Material involved has to be MaterialProductBase or Bot-

tomPart

• Object has Position Parameter Position 1 or Position 2

• Object has Orientation Parameter hundredeighty or zero

B. Description Learning Problem Formulation

We represent log data of the production processes as in-

stance data I and ontologies as modelled background data

B containing machine and product parameters, with instance

data I and background data B constituting knowledge base

K. A_total represents the ground truth skill description and is

a set of class expression interpreted as a conjunction of the

respective constraints and properties of the skill. These are

represented in the form of OWL restrictions on properties.

Similarly, the skill description A_learned is a set of learned

class expressions A_i, with

\[A_{\text{learned}} = \{A_1, \ldots, A_n\} \]

where each class expression A_i represents a constraint or a

property of the skill. A_learned is a subset of C, with C being

a list of all possible class expressions C_i for a production

module created by inductive logic programming. In the next

step a domain expert can decide which class expressions C_i are

most appropriate, based on key indicators. The set of selected

class expressions A_learned constitutes a skill description. For

a complete and concise learned skill description

\[A_{\text{learned}} = A_{\text{total}} \]

should apply. The data used for learning the class expressions

C_i is captured by semantic web technology, more specifi-}

cally by ontologies describing cyber-physical systems. This

background knowledge represent domain knowledge about the

equipment of a production plant, products and their production

requirements, materials and production processes.

C. Workflow and Architecture of end-to-end Skill Description

Generation

The workflow of our skill description learning system can

be subdivided into three building blocks as seen in Figure[3] It

includes the preprocessing, recommender and postprocessing

building blocks:

1) The preprocessing building block contains the prepa-

ration of the example data I, which is resulting from the

log data. Each example I_i is an individual in our

knowledge base K, i.e. an operation carried out by the

specific production module as can be seen in Figure

[4] Information captured by the log data include the

operation ID, the machine carrying out the operation,

the skill name and the operation duration.

In order to achieve meaningful class expressions, the

individuals in the ontology need to be equipped with

background knowledge. An example for background

knowledge would be information detailing the operation

in the production process, such as the material involved

as seen in Figure[5] The learned class expression given

by the class expression learner, has OWL Manchester Syntax:

\[\text{involvesMaterial only (MaterialProductBase or Bot-

tomPart)} \]

The Manchester OWL syntax is a user-friendly syntax

for OWL Description Logics, fundamentally based on

collecting all information about a particular class, prop-

erty, or individual into a single construct [5]. This back-

ground knowledge is modelled in an ontology as seen

in Figure[2] For a successful class expression learning, a

high quality of the ontology is needed. Modelling

errors, i.e. missing or wrongly assigned background

knowledge, can lead to a reduced quality of the final skill

descriptions. For example an operation instance assigned

to the wrong skill name could lead to erroneous class

expressions.

2) The recommender building block contains two steps.

Firstly, the machine learning part of the system. Induc-

tive logic programming is a search process, which takes

operations carried out by the production module we want

to describe as positive examples I and creates and tests

class expressions C against a background knowledge
base B. Secondly, in order to keep our approach efficient, the collection of most fitting class expressions should be found high up on the recommender list, as the domain expert can only go through and evaluate a limited number of suggestions. The ordering of the class expressions is done by predictive accuracy. We have implemented the algorithm within the open-source framework DL-Learner, which can be used to learn classes in OWL ontologies from selected objects. It extends ILP to Descriptions Logics and the Semantic Web [2]. Based on existing instances of an OWL class, the DL-Learner can make suggestions i.e. generate class expressions for class descriptions. In our example in Figure 2, the instances (2) from $Operation1$, subclass to $AssembleItemByModule1$, are the basis for its class description. The standard algorithm for class expression learning, namely $CELOE$, was used.

3) The postprocessing building block involves a domain expert, who selects the class expressions given by the recommender according to a set of predefined key indicators including completeness, accuracy and human-understandability. The final skill description $A_{learned}$ is saved to the knowledge storage and can then be used in further flexible manufacturing processes like skill matching.

The architecture of our approach includes a knowledge storage for ontologies holding the background knowledge and instance data, an execution engine for executing ILP and a user interface for the domain expert to interact with, as can be seen in Figure 3.

IV. Evaluation

In this section we evaluate the results of the recommender building block outlined above, so the quality of the class expressions generated from the DL-Learner with production ontologies as background data and production logs as positive examples for a skill. We limit the DL-Learner results to a list of the top 20 results to uphold the efficiency of the approach. Since the post-processing step includes a domain expert selecting the wanted class expressions, we need to limit the potential choices to a reasonable amount. This is a efficiency versus completeness trade-off, since ground truth class expressions could fall outside of the top 20 results. These are ordered by predictive accuracy since in standard applications of the DL-Learner, the primary purpose is to find a class expression, which can classify unseen individuals, i.e. not belonging to the examples, correctly. Predictive accuracy is measured as the number of correctly classified examples divided by the number of all examples [7]. However, it is not the best choice for this use case since we don’t use the skill descriptions for classification but production planning. The ideal output would be ordered according to a completeness aspect: We want a combination of class expressions that gives us a complete and precise description of a certain production module skill. This means that all constraints and properties of a skill should be described in a concise manner. Therefore, the metrics recall and precision are used for the evaluation.
A. Qualitative Evaluation

In Table I you can see an example of the recommender list result for the AssembleItemByModule1 skill. The class expressions number 1, 2, and 18 are the ground truth (as stated in section III-A) and can all be found in the top 20 results. However, some of the other class expressions have very little or no useful information. For example class expression number 5 involvesMaterial max 1 PartType3 isn’t wrong, in that no material of type PartType3 is used in this skill. But including this class expression in the skill descriptions wouldn’t add any value to a concise and complete description and could diminish skill description understandability. That is why a domain expert is still needed, to discern between the useful and useless class expressions to generate a complete skill description. To do so, the domain expert has to evaluate all 20 class expressions and choose a subset based on their content and style for the final skill description.

B. Quantitative Evaluation

Experiments were carried out for four different skills, which show some variability in terms of constraints and properties: AssembleItemByModule1, AssembleItemByModule2, DisassembleProductByModule3 and ChargeProductBaseByModule4.

In order to evaluate the class expressions results, we define the calculations for the True Positives, False Negatives and False Positives. True Negatives don’t play a role and cannot be calculated, since they are the class expressions that aren’t
Class Expression Recommender List

Class Expression	Pred. Acc.
1. involvesMaterial only (MaterialProductBase or BottomPart)	100.00%
2. hasPositionParam only (pos1 or pos2)	100.00%
3. Thing	40.82%
4. involvesMaterial max 1 Thing	40.82%
5. involvesMaterial max 1 PartType3	40.82%
6. involvesMaterial max 1 PartType2	40.82%
7. involvesMaterial max 1 PartType1	40.82%
8. involvesMaterial max 1 HeadPart	40.82%
9. involvesMaterial max 1 BottomPart	40.82%
10. involvesMaterial max 1 MaterialProductBase	40.82%
11. involvesMaterial max 1 hundredeighty	40.82%
12. involvesMaterial max 1 zero	40.82%
13. involvesMaterial max 1 pos5	40.82%
14. involvesMaterial max 1 pos4	40.82%
15. involvesMaterial max 1 pos3	40.82%
16. involvesMaterial max 1 pos2	40.82%
17. involvesMaterial max 1 hundredeighty	40.82%
18. hasOrientationParam only (hundredeighty or zero)	40.82%
19. pos1 or (involvesMaterial max 1 Thing)	40.82%
20. hundredeighty or (involvesMaterial max 1 Thing)	40.82%

Skill Descriptions Recall and Precision

Skill Description	Recall	Precision
AssembleItemByModule1	1	0.15
AssembleItemByModule2	0.67	0.10
DismantleProductByModule3	1	0.10
ChargeProductByBaseByModule4	1	0.15

V. Conclusion

This contribution describes how class expression learning can be applied to the field of production module skill descriptions. It demonstrates that learning skill descriptions with ILP decreases labor and domain expertise needs, even with low precision scores. However, ILP-based learning should not be seen as an stand-alone approach, but a building block in a workflow which also includes preprocessing and postprocessing building blocks. Disadvantages of the approach include the ontology quality requirements. Errors in the ontology modelings might lead to a reduced quality of class expressions results. However, in setups with fully-automated skill matching, we can assume that ontologies we have to have a certain level of quality as otherwise the skill matching wouldn’t work in the first place. Also, the typically available production logs can be exploited, which helps the preprocessing building block. Since the skill descriptions are generated from the log data, skill descriptions or offers and skill requirements utilize the same semantics, which can facilitate feasibility checks.

As possible future work one can mention an implementation of a more to skill description learning adapted algorithm and ordering, where recall and precision are maximised and therefore the domain expert effort is reduced.
ACKNOWLEDGEMENTS
This work was supported by the German Federal Ministry of Economics and Technology (BMWI) in the project RAKI (no. 01MD19012D).

REFERENCES
[1] Eberhard Abele and Gunther Reinhart. Zukunft der Produktion. Hanser München, 2011.
[2] Lorenz Bühmann, Jens Lehmann, and Patrick Westphal. “DL-Learner—A framework for inductive learning on the Semantic Web”. In: Journal of Web Semantics 39 (2016), pp. 15–24.
[3] Ivan Gocev, Stephan Grimm, and Thomas A Runkler. “Explanation of Action Plans Through Ontologies”. In: OTM Confederated International Conferences” On the Move to Meaningful Internet Systems”. Springer. 2018, pp. 386–403.
[4] Xuan-Luu Hoang, Constantin Hildebrandt, and Alexander Fay. “Product-oriented description of manufacturing resource skills”. In: IFAC-PapersOnLine 51.11 (2018), pp. 90–95.
[5] Matthew Horridge and Peter F Patel-Schneider. “Manchester Syntax for OWL 1.1.” In: OWLED (Spring). Citeseer. 2008.
[6] Eeva Järvenpää, Niko Siltala, and Minna Lanz. “Formal resource and capability descriptions supporting rapid reconfiguration of assembly systems”. In: 2016 IEEE International Symposium on Assembly and Manufacturing (ISAM). IEEE. 2016, pp. 120–125.
[7] Jens Lehmann et al. “Class expression learning for ontology engineering”. In: Journal of Web Semantics 9.1 (2011), pp. 71–81.
[8] Matthias Loskyll et al. “Context-based orchestration for control of resource-efficient manufacturing processes”. In: Future Internet 4.3 (2012), pp. 737–761.
[9] Mark A. Musen. “The protégé project: a look back and a look forward”. In: AI Matters 1.4 (2015), pp. 4–12. DOI: 10.1145/2757001.2757003 URL: https://doi.org/10.1145/2757001.2757003
[10] R Palm and H Fuchs. “Skill Based Robot Control for Flexible Manufacturing Systems”. In: IFAC Proceedings Volumes 23.7 (1990), pp. 189–195.
[11] Julius Pfommer et al. “Plug & produce by modelling skills and service-oriented orchestration of reconfigurable manufacturing systems”. In: Automatisierungstechnik 63.10 (2015), pp. 790–800.
[12] Gustavo Quirós et al. “Automatic Skill Matching for Production Machines”. In: 2018 IEEE 14th International Conference on Automation Science and Engineering (CASE). IEEE. 2018, pp. 534–539.
[13] Alberto G Salguero Hidalgo et al. “Ontology-Based Framework for the Automatic Recognition of Activities of Daily Living Using Class Expression Learning Techniques”. In: (2019).
[14] Alberto Salguero and Macarena Espinilla. “Description logic class expression learning applied to sentiment analysis”. In: Sentiment Analysis and Ontology Engineering. Springer, 2016, pp. 93–111.
[15] P. Zimmermann et al. “Skill-based Engineering and Control on Field-Device-Level with OPC UA”. In: 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). 2019, pp. 1101–1108.