SUPPLEMENTARY INFORMATION

Dendrimer-conjugated glutaminase inhibitor selectively targets microglial glutaminase in a mouse model of Rett syndrome

Elizabeth Smith Khoury1,2, Anjali Sharma2, Rajsekhar R Ramireddy2, Ajit G. Thomas3, Jesse Alt3, Amanda Fowler1, Rana Rais3, Takashi Tsukamoto3,4, Mary E. Blue4,5, Barbara Slusher3,4, Sujatha Kannan*1,4,5, Rangaramanujam M. Kannan*2,4,6,7

1Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore MD, 21205
2Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore MD, 21231
3Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore MD, 21205
4Department of Neurology, Johns Hopkins University School of Medicine, Baltimore MD, 21205
5Hugo W. Moser Research Institute at Kennedy-Krieger Inc, Baltimore MD, 21205
6Kennedy Krieger Institute – Johns Hopkins University for Cerebral Palsy Research Excellence, Baltimore, MD 21287
7Departments of Chemical and Biomolecular Engineering, and Materials Science and Engineering, Johns Hopkins University, Baltimore MD, 21218

*Corresponding authors:
Rangaramanujam M. Kannan
Professor of Ophthalmology, Center for Nanomedicine at the Wilmer Eye Institute
400 North Broadway, Baltimore, Maryland 21231, USA
Tel.: +1 443-287-8634; Fax: +1 443-287-8635; e-mail: krangar1@jhmi.edu

Sujatha Kannan, MD

Mailing address: Department of Anesthesiology and Critical Care Medicine,
Charlotte Bloomberg Children's Center 6318D,
1800 Orleans Street Baltimore, MD, 21287
Tel: 410- 955-6412
E-mail: skannan3@jhmi.edu
1. Compound characterization:

Figure S1. 1H NMR of compound 3.
Figure S2. ESI-MS spectrum of compound 3.
Figure S3. 1H NMR of compound 4.
Figure S4. ESI-MS spectrum of compound 4.
Figure S5. 1H NMR of compound 6 (D-JHU29).

Figure S6. HPLC chromatogram of compound 6 (D-JHU29).
Figure S7. The zeta potential distribution of D-JHU29.

Figure S8. Flow cytometry gating scheme. Approximately 8.0×10^4 GFP+ and GFP- cells were collected per sample. Events were processed at a rate of 6,000 events/s and with a threshold count of 16.3×10^6.

Neg = 74,699
Threshold Count = 16.3×10^6
6,000 evts/s
FSC & SSC = 1.0
Figure S9. Non-motor phenotypic assessments in MeCP2-KO mice after twice weekly D-JHU29 treatment. A. Neurobehavioral assessment is significantly greater in MeCP2-KO mice indicating significant phenotypic changes in these mice and there is no significant improvement with treatment. B. The predominant neurobehavior subscore, paw clench also shows no improvement change with D-JHU29 treatment. C. Respiration rate is significantly decreased in MeCP2-KO mice (gray bars) but is not recovered with D-JHU29 administration (blue bars). D. No improvements in novel object recognition were observed at D-JHU29 treatment. Only wild type (WT) mice (white bars) show on average more time spent with the novel object than what would be expected at chance (50%). *p < 0.05, ** p < 0.01
Neurobehavior Rubric:

Neurobehavioral phenotype was scored using the following measures by a blinded observer. All subscores were added to create an overall/composite neurobehavior score.

Subscore:

Mobility
- 0 normal, active
- 1 decreased spontaneous movement
- 2 no spontaneous movement, only moves when prodded
- 3 no movement

Gait
- 0 walks normally
- 1 waddling
- 2 waddling, walks on toes (paws not flat on ground)
- 3 waddling, feet displaced outward, paws clenched when walking

Tremors
- 0 none
- 1 sporadic
- 2 intermittent
- 3 continuous

Paw Clenching
- 0 none
- 1 1-2 paws
- 2 3 paws or both fore limbs/hind limbs
- 3 all paws

Clench time
- 0 none
- 1 sporadic
- 2 intermittent (patterned)
- 3 continuous

Paw wringing
- 0 none
- 1 some front paw
- 2 some front and back paw
- 3 continuous

Respiration
- 0 regular
- 1 irregular
- 2 too fast or too slow
- 3 apnic

Composite Score: addition of all sub-scores