Targeting DNA damage response in cancer therapy

Noriko Hosoya and Kiyoshi Miyagawa

Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan

Key words
Cancer therapy, DNA damage response, DNA repair, PARP inhibitors, synthetic lethality

Mechanism of DNA Damage Response

The genome DNA is constantly exposed to various genotoxic insults. Among the variety of types of DNA damage, the most deleterious is the DNA double-strand break (DSB). Double-strand breaks can be generated by endogenous sources such as reactive oxygen species produced during cellular metabolic processes and replication-associated errors, as well as by exogenous sources including ionizing radiation and chemotherapeutic agents. Double-strand breaks are also generated in a programmed manner during meiosis and during the V(D)J recombination and class switch recombination required for the development of lymphocytes. If left unpaired, DSBs can result in cell death. If accurately repaired, DSBs can result in survival of cells with no adverse effects. If insufficiently or inaccurately repaired, DSBs can result in survival of cells showing genomic alterations that may contribute to tumor development. In order to maintain genomic integrity, cells have evolved a well coordinated network of signaling cascades, termed the DNA damage response, to sense and transmit the damage signals to effector proteins, and induce cellular responses including cell cycle arrest, activation of DNA repair pathways, and cell death (Fig. 1).

Cancer chemotherapeutic agents and radiotherapy exert their cytotoxic effects by inducing DNA DSBs. As cancer cells often have specific abnormalities in the DNA damage response, therapeutic strategies based on such properties of cancer cells have been developed. Several inhibitors that block specific DNA damage responses or repair proteins have been tried not only as sensitizing agents in combination with DNA-damaging agents but also as single agents against cancers with defects in particular DNA repair pathways. The most prominent example of the latter is the killing effect of poly(ADP-ribose) polymerase (PARP) inhibitors on BRCA1- or BRCA2-defective tumors, which takes advantage of the defects in DNA repair in cancer cells.

In this review, we will first outline the mechanism of the DNA damage response. Next, we will describe the aberrations in DNA damage responses in human cancers. Finally, we will explain how different DNA damage response pathways can be targeted for cancer therapy.

Cancer chemotherapy and radiotherapy are designed to kill cancer cells mostly by inducing DNA damage. DNA damage is normally recognized and repaired by the intrinsic DNA damage response machinery. If the damaged lesions are successfully repaired, the cells will survive. In order to specifically and effectively kill cancer cells by therapies that induce DNA damage, it is important to take advantage of specific abnormalities in the DNA damage response machinery that are present in cancer cells but not in normal cells. Such properties of cancer cells can provide biomarkers or targets for sensitization. For example, defects or upregulation of the specific pathways that recognize or repair specific types of DNA damage can serve as biomarkers of favorable or poor response to therapies that induce such types of DNA damage. Inhibition of a DNA damage response pathway may enhance the therapeutic effects in combination with the DNA-damaging agents. Moreover, it may also be useful as a monotherapy when it achieves synthetic lethality, in which inhibition of a complementary DNA damage response pathway selectively kills cancer cells that have a defect in a particular DNA repair pathway. The most striking application of this strategy is the treatment of cancers deficient in homologous recombination by poly(ADP-ribose) polymerase inhibitors. In this review, we describe the impact of targeting the cancer-specific aberrations in the DNA damage response by explaining how these treatment strategies are currently being evaluated in preclinical or clinical trials.

Mechanism of DNA Damage Response

DNA-damaging agents induce various types of DNA damage including modification of bases, intrastrand crosslinks, interstrand crosslinks (ICL), DNA–protein crosslinks, single-strand breaks (SSBs), and DSBs. Each type of DNA damage is recognized and processed by proteins involved in the DNA damage response (Fig. 1).

In response to DSBs, the MRE11–RAD50–NBS1 (MRN) complex senses and binds to DSB sites, and recruits and activates the ataxia telangiectasia mutated (ATM) kinase through its autophosphorylation. Once activated, ATM

© 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
phosphorylates a large number of downstream proteins. (6) Phosphorylation of Chk2 induces phosphorylation of the protein phosphatase CDC25A, leading to cell cycle arrest. Phosphorylation of BRCA1 leads to DSB repair as well as cell cycle arrest in the S phase, whereas activation of p53 triggers cell cycle arrest in the G1 phase or cell death. In the initiation of the response to SSBs or DNA replication fork collapse, the ataxia telangiectasia and Rad3-related (ATR) kinase is activated and recruited to the sites of DNA damage. (7) ATR phosphorylates and activates Chk1, (8) which plays a role in the S and G2/M cell checkpoints by regulating the stability of the CDC25 phosphatases. Activation of the 53BP1 protein, a mediator of the DNA damage response, contributes to the choice of the DSB repair pathways by promoting non-homologous end joining (NHEJ). (9)

The DNA repair pathways can either work independently or coordinately to repair different types of DNA damage (Fig. 1). Double-strand breaks are predominantly repaired by either NHEJ or homologous recombination (HR). (10) Non-homologous end joining is an error-prone repair pathway that is mediated by the direct joining of the two broken ends. (10) Factors involved in NHEJ include the Ku70/Ku80 complex, DNA-PK catalytic subunit (DNA-PKcs), the Artemis nuclease, XLF, XRCC4, and DNA ligase IV. Homologous recombination is an error-free repair pathway that requires a non-damaged sister chromatid to serve as a template for repair (Fig. 2). (10) Factors involved in HR include the MRN complex, CtIP, replication protein A (RPA), BRCA1, PALB2, BRCA2, and RAD51. In addition to NHEJ and HR, an alternative form of NHEJ, namely, alt-NHEJ, is also involved in DSB repair. (11) It exhibits a slower process than the classical NHEJ and can catalyze the joining of unrelated DNA molecules, leading to the formation of translocations as well as large deletions and other sequence alterations at the junction. Factors involved in this pathway include PARP-1, XRCC1, DNA ligase IIIα, polynucleotide kinase, and Flap endonuclease 1.

Single-strand breaks and subtle changes to DNAs are repaired using base-excision repair (BER) proteins, (12) which include PARP-1, XRCC1, DNA ligase IIIα, and apurinic/apyrimidinic endonuclease (APE1). Bulky DNA lesions such as pyrimidine dimers caused by UV irradiation are processed by the nucleotide excision repair (NER) pathway, (13) which requires the excision repair cross-complementing protein 1 (ERCC1). Base mismatches arising as a result of replication errors can be repaired by the mismatch repair pathway. (14) In the repair of ICL, ubiquitin-mediated activation of the Fanconi anemia (FA) pathway plays a key role. (15) The FA pathway is constituted by at least 15 FA gene products, whose germ-line defects result in FA, a cancer predisposition syndrome.
Activation of the FA core complex, which is comprised of eight FA proteins (FANCA/B/C/E/F/G/L/M) and associated proteins, leads to monoubiquitination of FANC D2 and FANCD1, which subsequently coordinates three critical DNA repair processes, including nucleolytic incision by XPF-ERCC1 and SLX4 endonucleases, translesion DNA synthesis, and HR.

Aberrations in DNA Damage Responses in Human Cancers

In sporadic cancers, both activation and inactivation of the DNA damage response are found in various cancers, reported. DNA-PK catalytic subunit is reported to be upregulated in radiation-resistant tumors or in tumors with poor survival. Overexpression of RAD51, BRCA1, ERCC1, APE1, and PARP1 is also observed in various cancers and is associated with resistance to chemotherapy.

However, inactivation of DNA damage response proteins is also observed in various cancers. The p53 gene is one of the most frequently mutated genes in human sporadic cancers. Although the reported frequencies of p53 mutation vary among the types of cancer, it is estimated that more than half of cancers might have inactivated p53 due to mutations, deletion, loss of heterozygosity of the gene, or decreased expression. Although inactivating mutations in ATM, BRCA1, or BRCA2 are less frequent than those in the p53 gene, decreased expression of ATM, the MRN complex, Chk2, RAD51, BRCA1, BRCA2, and ERCC1 is frequently observed, suggesting that aberration of the DNA damage response is common in sporadic cancers.

Promoter hypermethylation of the BRCA1 gene is frequently observed and may be one of the predominant mechanisms for deregulation of the BRCA1 gene. Furthermore, our group reported the functional inactivation of BRCA2 in cancer cells aberrantly expressing SYCP3, a cancer-testis antigen. Disruption of the FA pathway resulting from mutations or decreases or loss of expression due to promoter hypermethylation has been also described in various cancers.

As described above, both activation and inactivation of the DNA damage response are observed in cancers, and are expected to determine important properties of the DNA damage response machinery present in each cancer. The status of BRCA has been adopted as an important condition factor in current clinical trials, however, the status of other DNA damage response proteins have not yet been translated into clinical trials. In the next section, we will introduce various approaches for taking advantage of these cancer-specific properties of the DNA damage response in cancer therapy.

How Can Different DNA Damage Response Pathways be Targeted for Cancer Therapy?

Because the efficacy of cancer chemotheraphy and radiotherapy relies on generation of DNA damage that will be recognized and repaired by intrinsic DNA repair pathways, aberrant expression of a particular DNA damage response protein should be a biomarker of resistance or favorable response to therapies that induce the corresponding types of DNA damage. For example, patients with surgically treated non-small-cell lung cancer whose tumors lacked expression of ERCC1 were shown to benefit from cisplatin-based adjuvant chemotherapy in a clinical study. Another example is the case of RAD51, whose expression can serve as a marker of cisplatin resistance in non-small-cell lung cancer, which is consistent with the role of HR in the repair of ICL.

In contrast, many inhibitors of the DNA damage response have been developed and some of them have been tested for their potential to enhance DNA damage-induced tumor cell killing in preclinical studies and clinical trials. **Inhibitors of ATM/ATR and the MRN complex.** As ATM and the MRN complex play central roles as sensors or mediators in the DNA damage response machinery present in each cancer. The status of BRCA has been adopted as an important condition factor in current clinical trials, however, the status of other DNA damage response proteins have not yet been translated into clinical trials. In the next section, we will introduce various approaches for taking advantage of these cancer-specific properties of the DNA damage response in cancer therapy.
Table 1. Examples of aberrations in DNA damage responses in human sporadic cancers

Molecule	Activation or inactivation	Type of aberrations	Type(s) of cancer	Frequency	Phenotypes	Reference(s)
ATM	Activation	Increased autophosphorylation	Bladder, breast cancers	30–68%	Cancer barrier function	(16,18)
ATM	Activation	Increased copy number	Prostate cancers	~2%		(51)
ATM	Inactivation	Mutation	Pancreatic, lung, colon, endometrial, prostate, skin, kidney, breast, central nervous system, ovarian cancers	1–7%		(49,50)
ATM	Inactivation	Loss of heterozygosity, loss of copy number	Hematopoietic and lymphoid malignancies	~11%		(49)
ATM	Inactivation	Decreased expression	Prostate cancers	~5%		(51)
ATM	Inactivation	Decreased expression	Pancreatic cancers	5%		(51)
MRE11	Inactivation	Decreased expression	Breast cancer	7–31%		(19,54,56)
MRE11	Inactivation	Decreased expression	Colorectal, gastric, pancreatic cancers with microsatellite instability	67–100%	Poor prognosis	(19)
RAD50	Activation	Increased expression	Colorectal cancers	~24%		(21)
RAD50	Inactivation	Decreased expression	Breast cancers	3–28%		(19,54,56)
RAD50	Inactivation	Decreased expression	Colorectal, gastric cancers with microsatellite instability	28–71%		(19)
NBS1	Activation	Increased expression	Esophageal, head and neck, non-small-cell lung cancers, hepatomas	40–52%	Poor prognosis	(19,20)
Chk1	Inactivation	Decreased expression	Breast cancers	10–46%		(19,54,56)
Chk1	Activation	Increased phosphorylation	Cervical cancers	~25%	Resistance to chemotherapy, poor prognosis	(22–27)
Chk1	Activation	Increased expression	Lung, liver, breast, colorectal, ovarian, cervical cancers	46–100%		(22–27)
Chk1	Inactivation	Decreased expression	Lung, ovarian cancers, hepatocellular carcinomas	9–32%		(22,23,26)
Chk2	Activation	Increased phosphorylation	Bladder, colon, lung cancers, melanomas	30–50%	Cancer barrier function	(16,17)
Chk2	Inactivation	Increased expression	Ovarian cancers	~37%		(26)
Chk2	Inactivation	Decreased expression	Breast, non-small cell lung cancers	28–47%		(57,58)
p53	Inactivation	Mutation	Solid tumors	~50%		(47)
p53	Inactivation	Decreased expression	Hematopoietic malignancies	~10%	Resistance to chemotherapy, poor prognosis	(47)
p53	Inactivation	Decreased expression	Solid and hematopoietic tumors	~50%		(48)
CDC25A	Activation	Increased expression	Thyroid, breast, ovarian, liver, colorectal, laryngeal, esophageal cancers, non-Hodgkin’s lymphomas	17–70%		(28)
CDC25B	Activation	Increased expression	Thyroid, breast, ovarian, liver, colorectal, laryngeal, esophageal, endometrial, prostate cancers, gliomas, non-Hodgkin’s lymphomas	20–79%		(28)
CDC25C	Activation	Increased expression	Colorectal, endometrial cancers, non-Hodgkin’s lymphomas	13–27%		(28)
DNA-PKcs	Activation	Increased expression	Glioblastoma, prostate cancers	~49%	Poor survival	(29,30)
topoisomerase inhibitors. KU60019, an improved analog of KU55933, inhibits the DNA damage response and effectively radiosensitizes human glioma cells. Mirin is an inhibitor of the MRN complex, which prevents MRN-dependent activation of ATM without affecting ATM protein kinase activity and inhibits MRE11-associated exonuclease activity. Telomelysin is another inhibitor that inhibits the MRN complex through the adenoviral E1B-55 kDa protein. The therapeutic outcomes of these agents remain to be tested in clinical trials. Although the long search for selective inhibitors of ATR has not yet paid off, schisandrin B was recently identified as a modulator of ATR activity. Although the long search for selective inhibitors of ATR has not yet paid off, schisandrin B was recently identified as a modulator of ATR activity.

Inhibitors of Chk1/Chk2 and CDC25. As the triggering of cell cycle checkpoints is crucial in the DNA damage response, these checkpoints have also been widely investigated as a potential target for cancer therapy (Table 3). Among the inhibitors for Chk1 and/or Chk2, UCN-01 was the first to enter clinical trials, but it was discontinued due to toxicities such as symptomatic hypotension and neutropenia and a lack of convincing efficacy after phase II trials. Other Chk1/Chk2 inhibitors with improved specificities, including XL844 and AZD7762, also entered clinical trials but failed to achieve a good response. The selective Chk1 inhibitor SCH900776 has been used in phase I trials for acute leukemia in combination with cytarabine and for solid tumors in combination with gemcitabine, and showed some partial responses and stable disease. The Chk1 inhibitor LY2603618 and the dual Chk1/Chk2 inhibitor LY2606368 are also currently being tested in early clinical trials. CDC25 phosphatases, the key factors in cyclin-dependent kinase regulation crucial for cell cycle regulation, are also considered to represent promising novel targets in cancer therapy. CDC25 inhibitors have also been developed, and some have entered into clinical trials, although the clinical data is limited.

Inhibition of NHEJ by DNA-PK inhibitors. Regarding NHEJ, inhibitors of DNA-PK, including NU7026 and NU7441, were found to induce extreme sensitivity to ionizing radiation as

Table 1. (continued)

Molecule	Activation or inactivation	Type of aberrations	Type(s) of cancer	Frequency	Phenotypes	Reference(s)
RADS1	Activation	Increased expression	Breast, head and neck, non-small-cell lung cancer, pancreatic cancers, soft tissue sarcomas	24-66%	Resistance to platinum agents, poor outcome	(31-35)
BRCA1	Inactivation	Decreased expression	Breast, colorectal cancers, lung cancers	~10%	Resistance to chemotherapy	(52,53)
	Activation	Increased expression	Breast, ovarian cancer	~30%	Resistance to chemotherapy	(52,53)
BRCA2	Inactivation	Decreased expression	Breast, ovarian cancer, lung cancer	~9-30%	Resistance to chemotherapy	(60-62)
ERCC1	Activation	Increased expression	Colorectal, ovarian, gastric, head and neck, non-small-cell lung cancer	14-70%	Resistance to platinum agents	(31,37-43)
	Inactivation	Decreased expression	Colorectal, gastric, non-small-cell lung cancer	30-77%	Resistance to chemotherapy	(37,38,42,43)
APE1	Activation	Increased expression	Bladder, breast, cervical, head and neck, liver, non-small-cell lung cancer, ovarian cancer, medulloblastomas, gliomas, osteosarcomas, germ cell tumors	19-99%	Resistance to chemotherapy and/or radiation	(44)
PARP	Activation	Increased expression	Breast cancers, germ cell tumors	5-47%	Resistance to chemotherapy	(45,46)
FANCA	Inactivation	Decreased expression	Acute myelogenous leukemias	~4-40%	Resistance to chemotherapy and/or radiation	(64,65)
	Mutation	Loss of expression	Acute myelogenous leukemias	~4-40%	Resistance to chemotherapy and/or radiation	(64,65)
FANCC	Inactivation	Mutation, loss of heterozygosity	Pancreatic cancers	~7.6%	Resistance to chemotherapy and/or radiation	(64)
FANCF	Inactivation	Decreased expression	Breast, cervical, head and neck, non-small-cell lung, ovarian cancers, acute myelogenous leukemias, germ cell tumors	6.7-30%	Resistance to chemotherapy and/or radiation	(64,65)
FANCG	Inactivation	Loss of expression	Acute myelogenous leukemias	27%	Resistance to chemotherapy and/or radiation	(65)

Expression has been confirmed at mRNA and/or protein levels. Studies using cultured cancer cells are excluded.
well as DNA-damaging agents in preclinical studies (Table 2). However, the therapeutic efficacy of DNA-PK inhibitors depends on the expression levels of DNA-PK in cancer cells versus normal cells, and their clinical application is currently restricted because of their toxicity to normal cells. The dual mTOR and DNA-PKcs inhibitor CC-115 is undergoing early clinical evaluation (Table 3). KU-0060648 is a potent dual inhibitor of DNA-PK and PI-3K, which has recently been reported to enhance etoposide and doxorubicin cytotoxicity (Table 2).

Inhibition of NHEJ or alt-NHEJ by DNA ligase inhibitors. DNA ligases are required for both NHEJ and alt-NHEJ pathways as well as other DNA repair pathways such as BER and NER. Small molecule inhibitors of human DNA ligases have been identified and shown to be cytotoxic and also to enhance the cytotoxicity of DNA-damaging agents. SCR7 is an inhibitor of DNA ligase IV, which is involved in the NHEJ pathway. SCR7 reduces cell proliferation in a DNA ligase IV-dependent manner and increases the tumor-inhibitory effects of agents that cause DSBs. L67 is an inhibitor of DNA ligases I and IIIα, which are involved in the alt-NHEJ pathway as well as BER and NER. The levels of the alt-NHEJ proteins such as DNA ligase IIIα and WRN are reported to be elevated in BCR-ABL-positive CML cell lines, so inhibition of alt-NHEJ factors may be an additional therapeutic approach in BCR-ABL-positive CML, which is usually treated by tyrosine kinase inhibitors. Indeed, CML cell lines with increased alt-NHEJ-positive CML, which is usually treated by tyrosine kinase inhibitors, may be an additional therapeutic approach in enhancing sensitivity to DNA crosslinking agents and ionizing radiation in cancer cells. Furthermore, targeting RAD51 was shown to overcome imatinib resistance in CML cells.

Inhibitors of histone deacetylases, heat shock protein 90, and DSB repair. Histone deacetylases (HDACs) are powerful regulators of the stability of the genome, and many HDAC inhibitors are shown to downregulate multiple components of the DNA damage response and repair, including HR, NHEJ, the MRN complex, and ATM. Thus, the use of HDAC inhibitors in combination with DNA-damaging agents may be an area of great interest with potential clinical utility. The HDAC inhibitor PCI-24781 caused increased apoptosis by inhibiting RAD51-mediated HR when used in combination with the PARP inhibitor PJ34 in a preclinical study. The inhibitor of heat shock protein 90, 17-allylamino-17-demethoxygeldanamycin, radiosensitizes human tumor cell lines by inhibiting RAD51-mediated HR. Curcumin is a natural product that has been tested for its chemosensitizing potential, and sensitizes cancer cells to PARP inhibitors by inhibiting NHEJ, HR, and the DNA damage checkpoint.

Inhibitors of PARP and APE1 in combination with DNA-damaging agents. Inhibitors of PARP, which inhibit the BER and SSB repair pathways, are the most advanced and promising drugs that target DNA repair. A number of clinical trials using PARP inhibitors are currently underway (Table 3). Inhibitors of PARP were first tried in combination with DNA-damaging agents. Some clinical responses were observed in the phase I and II trials of the PARP inhibitor rucaparib in combination with temozolomide. Further clinical trials of PARP inhibitors have been carried out in combination with various DNA-damaging agents and/or ionizing radiation (Table 3). Inhibitors of another BER protein APE1 are also being tested in combination with DNA-damaging agents in clinical trials (Table 3).

Using PARP inhibitors as single agents in BRCA-deficient cancers based on the principle of synthetic lethality. In 2005, PARP inhibitors were shown to selectively inhibit the growth of cells with defects in either the BRCA1 or BRCA2 genes, suggesting a new use of PARP inhibitors as single agents. A possible explanation for this lethality is as follows. The cancer cells with defects in the BRCA gene are defective in HR, as the wild-type BRCA allele is absolutely lost. However, HR is intact in normal cells of the same patients who carry one wild-type BRCA allele and one mutant BRCA allele. Inhibition of PARP1 results in the accumulation of SSBs, which are converted to lethal DSBs that require HR for their repair.

Table 2. Examples of DNA damage response inhibitors in preclinical studies

Pathway	Target(s)	Name(s)	Preclinical evidence
DNA damage sensors and mediators	MRE11	Mirin, telomelysin	Sensitization to ionizing radiation
	ATM	KU59933, KU60019, CP466722	Sensitization to ionizing radiation and topoisomerase inhibitors
	ATR	Schisandrin B	Sensitization to UV treatment
		NU6027, VE-821	Sensitization to ionizing radiation and a variety of chemotherapy
		SAR-020106	Sensitization to irinotecan and gemcitabine
		VRX0466617	Sensitization to ionizing radiation
		NU7026, NU7441	Sensitization to ionizing radiation and topoisomerase II inhibitors
	DNA-PK and PI3K	KU-0060648	Sensitization to etoposide and doxorubicin
	DNA ligase IV	SCR7	Sensitization to ionizing radiation and etoposide
Alternative non-homologous end joining	DNA ligases	L67	Sensitization to ionizing radiation and methyl methanesulfonate
Homologous recombination (HR)	RADS1	B02, A03, A10	Identified by high-throughput screenings of RADS1 inhibitors
Table 3. Examples of DNA damage response inhibitors in clinical trials

Pathway	Target(s)	Name	Combination	Type of cancer	Clinical trial number	Stage	Trial periods
Cell cycle checkpoints	Chk1	UCN-01	Combination therapy	Advanced solid tumor Metastatic or unresectable solid tumor, triple negative breast cancer	NCT00036777, NCT00031681	Phase I	Completed, Completed
			Carboplatin				
			Irinotecan				
			Cytarabine	Refractory or relapsed acute myelogenous leukemia, myelodysplastic syndrome	NCT00004263	Phase I	Completed
			Perifosine	Relapsed or refractory acute leukemia, chronic myelogenous leukemia, high risk myelodysplastic syndrome	NCT00301938	Phase I	Completed
			Gemcitabine	Unresectable or metastatic pancreatic cancer	NCT00039403	Phase I	Completed
			Topotecan				
			Cisplatin				
			Fluorouracil				
			Prednisone				
			Irinotecan				
			Fluorouracil,				
			leucovorin				
			Topotecan				
			Fludarabine				
			Fluorouracil				
			Cisplatin				
			Topotecan				
			Fludarabine				
			Monotherapy				
SCH900776			Combination therapy	Relapsed or refractory T-cell lymphoma	NCT00082017	Phase II	Completed
			Cytarabine		NCT0072189, NCT0001444	Phase I	Completed, Completed
			Metastatic melanoma				
			Breast cancer, lymphoma, prostatic neoplasm				
			Leukemia/lymphoma / unspecified adult solid tumor				
			Advanced or metastatic kidney cancer		NCT00030888	Phase II	Active, not recruiting
			Hydroxyurea	Advanced solid tumors	NCT00779584, NCT01521299	Phase I	Completed, Withdrawn
Pathway	Target(s)	Name	Combination	Type of cancer	Clinical trial number	Stage	Trial periods
-------------------------------	--------------------	---------------------	-------------	---	-----------------------	---------------------	-----------------------------------
LY2603618		Combination therapy	Desipramine, pemetrexed, gemcitabine	Cancer	NCT01358968	Phase I	Completed
			Pemetrexed, gemcitabine	Advanced or metastatic solid tumor	NCT01296568	Phase I	Completed
			Pemetrexed, cisplatin	NSCLC	NCT01139775	Phase I, II	Until March, 2014
			Gemcitabine	Pancreatic cancer	NCT00839332	Phase I, II	Completed
			Gemcitabine	Solid tumor	NCT01341457	Phase I	Until December, 2014
			Pemetrexed	Cancer	NCT00415636	Phase I	Completed
			Pemetrexed	NSCLC	NCT00988858	Phase II	Until April, 2014
Chk1 and Chk2		Combination therapy	Gemcitabine	Advanced cancer, lymphoma	NCT00475917	Phase I	Terminated
			Monotherapy	Advanced cancer, lymphoma	NCT00475917	Phase I	Terminated
				Chronic lymphocytic leukemia	NCT00234481	Phase I	Terminated
AZD7762		Combination therapy	Gemcitabine	Solid tumor	NCT00413686	Phase I	Completed
			Gemcitabine	Solid tumor	NCT00937664	Phase I	Terminated
			Irinotecan	Solid tumor	NCT00473616	Phase I	Terminated
PF-00477736		Combination therapy	Gemcitabine	Advanced solid tumor	NCT00437203	Phase I	Terminated
Non-homologous end joining	DNA-PK and mTOR	CC-115	Monotherapy	Multiple myeloma, non-Hodgkin’s lymphoma, glioblastoma, squamous cell carcinoma of head and neck, prostate cancer, Ewing’s osteosarcoma, chronic lymphocytic leukemia	NCT01353625	Phase I	Until April, 2015
Base excision repair	APE1	TRC102	Combination therapy	Neoplasm	NCT00692159	Phase I	Completed
			Pemetrexed	Lymphoma, solid tumor	NCT01851369	Phase I	Until February, 2015
			Temozolomide and Fludarabine	Relapsed or refractory hematologic malignancy	NCT01658319	Phase I	Until January, 2015
			Lumactantone	Combination therapy	NCT02014545	Phase II	Until December, 2017
			Radiotherapy	Brain metastases from NSCLC	NCT01587144	Phase II	Terminated
			Temozolomide and radiation	Glioblastoma multiforme	NCT01074970	Phase II	Until May, 2014
			Combination therapy	Triple negative breast cancer	NCT01009190	Phase I	Until December, 2013
			Rucaparib (AG014688)	Platinum-sensitive, relapsed, high-grade epithelial ovarian, fallopian tube, or	NCT01891344	Phase II	Until December, 2015

Table 3. (continued)

© 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.
Table 3. (continued)

Pathway	Target(s)	Name	Combination	Type of cancer	Clinical trial number	Stage	Trial periods
				primary peritoneal cancer			
				Solid tumor (Phase I), ovarian cancer with germline BRCA mutations (Phase II)	NCT01482715	Phase I, II	Until March, 2014
				Platinum-sensitive, high-grade serous or endometrioid epithelial ovarian, primary peritoneal or fallopion tube cancer	NCT01968213	Phase III	Until November, 2016
				BRCA-mutated locally advanced or metastatic breast cancer or advanced ovarian cancer	NCT00664781	Phase II	Until September, 2014
Olaparib (AZD2281)	Combination therapy	Cediranib		Recurrent ovarian, fallopian tube, peritoneal cancer or recurrent triple-negative breast cancer	NCT01116648	Phase I, II	Until May, 2014
				Metastatic castration-resistant prostate cancer	NCT01972217	Phase II	Until July, 2018
				Recurrent triple-negative breast cancer or recurrent high-grade serous ovarian cancer	NCT01623349	Phase I	Until Dec, 2014
		Radiotherapy		Esophageal cancer	NCT01460888	Phase I	Until August, 2018 Completed
		Paclitaxel		Recurrent or metastatic gastric cancer	NCT01063517	Phase II	
		Radiotherapy with or without cisplatin	Irinotecan, cisplatin, mitomycin C	locally advanced NSCLC	NCT01562210	Phase I	Until March, 2015
		Temozolomide		Advanced pancreatic cancer	NCT01296763	Phase I, II	Until January, 2016
		Paclitaxel		Relapsed glioblastoma	NCT01390571	Phase I	Until September, 2015
		Carboplatin and paclitaxel	Stage III, stage IV relapsed ovarian cancer or uterine cancer	Advanced squamous cell carcinoma of the head/neck with heavy smoking histories	NCT01650376	Phase I, II	Until February, 2015
		Radiation therapy and cetuximab			NCT01758731	Phase I	Until July, 2016
		Gefitinib		EGFR mutation-positive advanced NSCLC	NCT01513174	Phase I, II	Until June, 2015
		Temozolomide		Advanced Ewing's sarcoma	NCT01858168	Phase I	Until July, 2017
		Carboplatin		Mixed muellerian cancer, cervical cancer, ovarian cancer, breast cancer, primary peritoneal cancer, fallopian tube cancer, endometrial cancer, carcinosarcoma	NCT01237067	Phase I	Until September, 2014
		Carboplatin and paclitaxel	Advanced ovarian cancer		NCT01081951	Phase II	Until June, 2013
		Cisplatin-based chemoradiotherapy	Locally advanced squamous cell carcinoma of the head and neck		NCT01491139	Phase I	Withdrawn
Pathway	Target(s)	Name	Combination	Type of cancer	Clinical trial number	Stage	Trial periods
-------------------------------	--	--	--	---	------------------------	-----------	-----------------------------------
Carboptatin and/or paclitaxel	Irinotecan	Tripe-negative metastatic breast cancer, advanced ovarian cancer	NCT00516724 Phase I Until December, 2014				
		Locally advanced or metastatic colorectal cancer	NCT00535353 Phase I Until December, 2013				
	Dacarbazine	Advanced melanoma	NCT00516802 Phase I Completed				
	Paclitaxel	Metastatic triple negative breast cancer	NCT00707707 Phase I Until December, 2012				
	Liposomal doxorubicin	Advanced solid tumor	NCT00819221 Phase I Until August, 2013				
	Topotecan	Advanced solid tumor	NCT00516438 Phase I Completed				
	Gemcitabine	Pancreatic cancer	NCT00515866 Phase I Completed				
	Bevacizumab	Advanced solid tumor	NCT00710268 Phase I Completed				
	Cisplatin	Advanced solid tumor	NCT00782574 Phase I Until December, 2014				
	Carboplatin	Breast and ovarian cancer with BRCA mutations or family histories	NCT01445418 Phase I Recruiting				
		Advanced solid tumor with normal or impaired liver function	NCT01894256 Phase I Until December, 2015				
		Metastatic breast cancer with germline BRCA1/2 mutations	NCT02000622 Phase III Until February, 2021				
		Advanced castration-resistant prostate cancer	NCT01682772 Phase II Until July, 2015				
		Advanced solid tumor BRCA-mutated ovarian cancer after a complete or partial response following platinum-based chemotherapy	NCT01813474 Phase I III Until November, 2014				
		BRCA-mutated advanced cancer	NCT01078662 Phase II Until December, 2013				
		BRCA-mutated advanced ovarian cancer following first line platinum based chemotherapy	NCT01844986 Phase III Until January, 2022				
		Advanced Ewing’s sarcoma	NCT01583543 Phase II Completed				
		Stage IV colorectal cancer with microsatellite instability	NCT00912743 Phase II Completed				
		BRCA-deficient ovarian, peritoneal, fallopian tube cancer	NCT01661868 Phase II Withdrawn				
		Advanced NSCLC	NCT01788332 Phase II Until May, 2015				
		BRCA-positive advanced breast cancer	NCT00494234 Phase II Until December, 2013				
		BRCA-positive advanced ovarian cancer	NCT00494442 Phase II Until December, 2013				
		Platinum-sensitive relapsed serous ovarian cancer	NCT00753545 Phase II Completed				
		Advanced solid tumor	NCT00572364 Phase I Completed				

© 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.
Pathway	Target(s)	Name	Combination	Type of cancer	Clinical trial number	Stage	Trial periods
Advanced or metastatic solid tumor	Ovarian cancer			NCT00633269	Phase I	Completed	
Advanced solid tumor	High grade ovarian cancer, triple-negative breast cancer, BRCA-mutated breast cancer or ovarian cancer			NCT00516373, NCT00777582, NCT00679783	Phase I, Phase I, Phase II	Until December, 2014, Until March, 2014, Until December, 2012	
BRCA-positive advanced ovarian cancer				NCT00628251	Phase II	Until December, 2013	

Veliparib (ABT-888) | Combination therapy | Gemcitabine, cisplatin | Locally advanced or metastatic pancreatic cancer with BRCA or PALB2 mutations | NCT01585805 | Phase II | Until July, 2017 |
Temozolomide or combination with carboplatin and paclitaxel	Radiotherapy and temozolomide	Newly diagnosed childhood diffuse pontine glioma	NCT01514201	Phase I, II	Until August, 2019
Radiotherapy	Advanced solid malignancies with peritoneal carcinomatosis	NCT01264432	Phase I	Until April, 2014	
Bendamustine, rituximab	Advanced lymphoma, multiple myeloma, or solid tumors	NCT01326702	Phase I, II	Until November, 2015	
Topotecan	Relapsed epithelial ovarian, primary fallopian tube, or primary peritoneal cancer with negative or unknown BRCA status	NCT01690598	Phase I, II	Until April, 2015	
Gemcitabine and radiotherapy	Locally advanced, unresectable pancreatic cancer	NCT01908478	Phase I	Until July, 2019	
Dinaciclib with or without carboplatin	Advanced solid tumors with BRCA mutations	NCT01434316	Phase I	Until January, 2016	
Radiotherapy, carboplatin, paclitaxel	Stage III NSCLC that cannot be removed by surgery	NCT01386385	Phase I, II	Until December, 2016	
Doxorubicin, carboplatin, bevacizumab	Recurrent ovarian cancer, primary peritoneal cancer, or fallopian tube cancer	NCT01459380	Phase I	Until August, 2015	
Cisplatin, gemcitabine	Advanced biliary, pancreatic, urothelial, NSCLC	NCT01282333	Phase I	Terminated	
Cisplatin, vinorelbine	Recurrent and/or metastatic breast cancer with BRCA mutations, triple-negative breast cancer	NCT01104259	Phase I	Until September, 2014	
Mitomycin C	Metastatic, unresectable, or recurrent solid tumor	NCT01017640	Phase I	Until June, 2014	
Capecitabine, radiotherapy	Locally advanced rectal cancer	NCT01589419	Phase I	Until June, 2015	
Cyclophosphamide	Locally advanced or metastatic HER2-negative breast cancer	NCT01351909	Phase I, II	Until May, 2015	
Pathway	Target(s)	Name	Combination	Type of cancer	Clinical trial number	Stage	Trial periods	
Docetaxel, cisplatin, fluorouracil, radiotherapy, hydroxyurea, paclitaxel				Stage IV head and neck cancer	NCT01711541	Phase I, II	Until October, 2014	
Temozolomide	Cisplatin, etoposide			Solid tumor	NCT01193140; NCT01642251	Phase II	Completed	Until January, 2018
				Extensive stage small-cell lung cancer, metastatic large cell neuroendocrine NSCLC, small-cell carcinoma of unknown primary or extrapulmonary origin				
Paclitaxel, carboplatin				Metastatic, unresectable solid tumor with liver or kidney dysfunction	NCT01366144	Phase I	Until July, 2015	
Oxaliplatin, capecitabine				BRCA-related malignancy, metastatic colorectal cancer, metastatic ovarian cancer, metastatic gastrointestinal malignancies in which oxaliplatin has shown some activity	NCT01233505	Phase I	Until July, 2014	
Carboplatin				Stage III or stage IV breast cancer with BRCA mutations	NCT01149083	Phase II	Until June, 2014	
Temozolomide				Acute leukemia	NCT01139970	Phase I	Until October, 2013	
Carboptin	Carboplatin	paclitaxel	Topotecan	Solid tumor	NCT016317928	Phase I	Completed	Until June, 2018
				Recurrent ovarian epithelial cancer, primary peritoneal cavity cancer, unspecified solid tumor	NCT01012817	Phase I, II		
Carboplatin, paclitaxel				Advanced NSCLC	NCT01560104	Phase II	Until September, 2014	
				HER2-negative metastatic or locally advanced breast cancer	NCT01251874	Phase I	Until September, 2013	
Paclitaxel, cisplatin				Advanced, persistent, or recurrent cervical cancer	NCT01281852	Phase I, II	Until March, 2020	
Topotecan with or without carboplatin				Relapsed or refractory acute leukemia, high-risk myelodysplasia, or aggressive myeloproliferative disorders	NCT00588991	Phase I	Until December, 2012	
Abiraterone, prednisone				Metastatic hormone-resistant prostate cancer	NCT01576172	Phase II	Until February, 2014	
Topotecan and filgrastim or pegfilgrastim				Persistent or recurrent cervical cancer	NCT01266447	Phase II	Until November, 2016	
Gemcitabine			Modified FOLFOX6	Solid tumor	NCT01154426	Phase I	Until October, 2013	
				Metastatic pancreatic cancer	NCT01489865	Phase I, II	Until December, 2014	
FOLFIRI	Temozolomide			Advanced gastric cancer	NCT01123876	Phase I	Until December, 2014	
				Recurrent or refractory childhood central nervous system tumor	NCT00946335	Phase I	Until October, 2011	
Temozolomide	Carboplatin, paclitaxel, doxorubicin, cyclophosphamide			Hepatocellular carcinoma	NCT01205828	Phase II	Until December, 2013	
				Advanced solid tumor	NCT012881150	Phase I	Until December, 2013	
				Stage Iib-Ilic triple-negative breast cancer	NCT01818063	Phase II	Until April, 2018	
Pathway	Target(s)	Name	Combination	Type of cancer	Clinical trial number	Stage	Trial periods	
-------------------------	---	---	-----------------------------------	---	------------------------	---------------------	---------------------	
Floxuridine			Metastatic epithelial ovarian, primary peritoneal cavity, or fallopian tube cancer	NCT01749397	Phase I	Until March, 2016		
Liposomal doxorubicin			Recurrent ovarian cancer, fallopian tube cancer, or primary peritoneal cancer or metastatic triple-negative breast cancer	NCT01145430	Phase I	Until March, 2014		
Bortezomib, dexamethasone	Temozolomide		Relapsed refractory multiple myeloma	NCT01495351	Phase I	Until October, 2013		
			Recurrent small-cell lung cancer	NCT01638546	Phase II	Until June, 2017		
Cyclophosphamide, doxorubicin			Metastatic or unresectable solid tumor, non-Hodgkin's lymphoma	NCT00740805	Phase I	Until December, 2013		
Whole brain radiation			Brain metastases from NSCLC	NCT01657799	Phase II	Until November, 2014		
Temozolomide			Recurrent high grade serous ovarian, fallopian tube, or primary peritoneal cancer	NCT01113957	Phase II	Completed		
Temozolomide			Metastatic or locally advanced breast cancer and BRCA1/2-associated breast cancer	NCT01009788	Phase II	Until December, 2014		
Carboplatin, paclitaxel			Advanced cancer with liver or kidney problems	NCT01419548	Phase I	Withdrawn		
Whole brain radiation			Cancer with brain metastases	NCT00649207	Phase I	Completed		
Radiotherapy			Inflammatory or locally recurrent breast cancer	NCT01477489	Phase I	Until December, 2016		
Carboplatin, paclitaxel, bevacizumab			Newly diagnosed ovarian epithelial cancer, fallopian tube cancer, or primary peritoneal cancer	NCT00989651	Phase I	Until July, 2014		
Carboplatin, paclitaxel			Advanced solid tumor or BRCA1/2-associated advanced solid tumor	NCT00535119	Phase I	Until October, 2012		
Temozolomide	Cyclophosphamide		Refractory BRCA-positive ovarian, primary peritoneal or ovarian high-grade serous carcinoma, fallopian tube cancer, triple-negative breast cancer, and low-grade non-Hodgkin's lymphoma	NCT01051596, NCT01306032	Phase II	Until December, 2013		
			Metastatic or unresectable solid tumor, lymphoma	NCT00576654	Phase I	Until December, 2013		
Temozolomide			Recurrent or refractory childhood central nervous system tumor	NCT00994071	Phase I	Completed		
Cyclophosphamide			Refractory solid tumor or lymphoma	NCT01445522	Phase I	Completed		
Temozolomide			Recurrent high-grade glioma	NCT01026493	Phase I, II	Until February, 2014		
Pathway	Target(s)	Name	Combination	Type of cancer	Clinical trial number	Stage	Trial periods	
-------------------------	---	-----------------------------	------------------------------	--	-----------------------	------------------------------	--------------------------------	
Cyclophosphamide		Solid tumor or lymphoma	NCT00810966	Phase I	Active, not recruiting			
Radiotherapy,		Grade IV astrocytoma	NCT00770471	Phase I, II	Completed			
Temozolomide		Metastatic prostate cancer	NCT01085422	Phase I	Completed			
Temozolomide		Advanced non-hematologic	NCT00526617	Phase I	Completed			
Topotecan		Refractory solid tumor or	NCT00553189	Phase I	Completed			
Temozolomide		Metastatic melanoma	NCT00804908	Phase II	Until March, 2014			
Carboplatin, gemcitabine		Advanced solid tumor	NCT01063816	Phase I	Until September, 2014			
Radiotherapy		Breast cancer	NCT01618357	Phase I	Until April, 2016			
Monotherapy		Solid tumor	NCT01199224	Phase I	Completed			
		Locally advanced or	NCT01585805	Phase II	Until July, 2017			
		metastatic pancreatic						
		cancer						
		Metastatic, unresectable,	NCT01017640	Phase I	Until June, 2014			
		or recurrent solid tumors						
		Stage III or Stage IV	NCT01149083	Phase II	Until June, 2014			
		breast cancer with BRCA						
		mutations						
		BRCA-mutated metastatic	NCT01853306	Phase I	Until January, 2015			
		or unresectable malignancy,						
		high grade serous ovarian,						
		fallopian tube, or						
		peritoneal cancer						
		BRCA-mutated epithelial	NCT01540565	Phase II	Until April, 2014			
		ovarian, fallopian tube, or						
		primary peritoneal cancer						
		Advanced solid tumor	NCT02009631	Phase I	Until December, 2014			
		BRCA-related malignancy,	NCT00892736	Phase I	Until December, 2013			
		platinum-refractory ovarian,						
		fallopian tube, or						
		primary peritoneal cancer						
		or basal-like breast cancer,						
		advanced solid tumor						
		Relapsed epithelial ovarian,	NCT01472783	Phase I, II	Until December, 2015			
		ovarian, primary fallopian						
		or primary peritoneal cancer						
		with BRCA mutations						
		Chronic lymphocytic	NCT00387608	Phase I	Completed			
		leukemia, follicular						
		lymphoma, unspecified						
		solid tumor						
		Invasive breast cancer	NCT01042379	Phase II	Until November, 2014			
		Advanced solid tumor	NCT01827384	Phase II	Until March, 2017			
INO-1001	Combination therapy	Unresectable melanoma	NCT00272415	Phase I	Terminated			
MK4827	Combination therapy	Advanced solid tumor,	NCT01227941	Phase I	Terminated			
		platinum-resistant high						
		grade serous ovarian cancer						
		Advanced solid tumor	NCT01294735	Phase I	Completed			
Although such lesions would be repaired by HR in normal cells, they are not repaired in BRCA1- or BRCA2-deficient cancer cells because these cells are defective in HR repair, and thus the tumor cells are led to death. This concept is termed synthetic lethality, namely, the process by which defects in two different genes or pathways together result in cell death while defects in one of the two different genes or pathways do not affect viability (Fig. 3). This attractive new therapeutic strategy based on the principle of synthetic lethality relies on the frequent defects in the DNA damage response observed in cancer as summarized in the previous chapter and Table 1, in which alternative DNA damage response pathways may be activated to allow cancer cells to survive in the presence of genotoxic stress. Because this strategy targets the cancer-specific aberrations in the DNA damage response, it will cause few or no toxicities on normal cells. The first report of a clinical trial of a PARP inhibitor as a single agent in patients with BRCA mutations was the phase I study of the oral PARP inhibitor olaparib. It established the safety of olaparib as a single agent, and good responses were observed in patients with BRCA-mutated breast, ovarian, or prostate tumors. In subsequent phase II studies, approximately one-third of the patients with breast or ovarian cancer with germline BRCA mutations showed a favorable response to the drug with no severe toxicities. Several other PARP inhibitors are currently being investigated in patients with germline BRCA mutations as single agents (Table 3). It is likely that PARP inhibitors have significant benefit to at least a subpopulation of cancer patients with defects in BRCA-mediated HR pathways. Using PARP inhibitors as single agents in cancers with no BRCA mutations. The potential for PARP inhibitors as single agents has also been tested in clinical trials of cancers with no germline BRCA mutations, such as high-grade serous ovarian cancers and triple-negative breast cancers. Inhibitors of PARP were also effective in a subset of cancers with no germline BRCA mutations, suggesting that there may be a subset of sporadic cancers that show features of “BRCAness,” which may show good response to PARP inhibitors. Indeed, cancer cells expressing the cancer-testis antigen SYCP3, in which BRCA2 is functionally inactivated, as described above, show extreme hypersensitivity to a PARP inhibitor. Defects in other HR-related proteins such as RAD51, RAD54, and RPA also confer selective sensitivity to PARP inhibition. Moreover, defects in the DNA damage response proteins, such as NBS1, MRE11, ATR, ATM,
BRCA1, and PALB2. This lethal effect may be due to the hyperdependence of the FA pathway-deficient cells on the FA pathway. (a) In the absence of the pathway B inhibitor, cancer cells can survive, because the defect in pathway A is compensated by the alternative pathway B. (b) When the cells are treated with the pathway B inhibitor, both pathways will be blocked in cancer cells, which will result in cell death. However, normal cells will not be affected, because inhibition of pathway B will be compensated by pathway A.

Exploitation of other synthetic lethalities by DNA damage response. Taking advantage of the dysregulated DNA damage response in cancer using the synthetic lethality approach may be one of the most promising prospects for the future of cancer treatment. From this point of view, many efforts have been made to identify defects of two different DNA damage response genes or pathways that are synthetically lethal when combined. For example, ATM inhibition is shown to be synthetically lethal with FA pathway deficiency. The suggested explanation for this lethality is as follows. The FA pathway-deficient cancer cells are defective in the repair of DNA replication fork stalling, which is normally repaired by ATR and the FA pathway. In FA pathway-deficient conditions, the stalled fork will collapse and form a DSB that will alternatively activate an ATM-dependent DNA damage response. Inhibition of ATM in such FA pathway-deficient cells will leave no alternative mechanism for repair, leading to cell death. The FA pathway-deficient cells are also hypersensitive to Chk1 silencing, which may be explained by the hyperdependence of the FA pathway-deficient cells on G2/M checkpoint activation mediated by Chk1 for viability. Because defects in the FA pathway are frequently observed in a number of different types of cancer (Table 1), the use of ATM inhibitors or Chk1 inhibitors in FA pathway-deficient tumors will be a promising approach that should be evaluated in clinical trials in the future. In another example, RAD54B deficiency is shown to be synthetically lethal in cells with reduced Flap endonuclease 1 expression, but the mechanisms of this lethality remain to be elucidated. Recently, inhibition of APE1 was shown to be synthetically lethal in BRCA- and ATM-deficient cells, presenting a novel model for APE inhibition as a synthetic lethal strategy in cells deficient in DSB repair. Briefly, APE1 inhibition leads to AP site accumulation and results in indirect generation of SSBs that are eventually converted to toxic DSBs, which cannot be repaired in cells deficient in DSB repair. The APE1 inhibitors are being tested in combination with DNA-damaging agents in current clinical trials, and they may be evaluated further as a synthetic lethal strategy. More recently, inactivation of the HR protein RAD52 was shown to be synthetically lethal with deficiencies in BRCA2, BRCA1, and PALB2. This lethal effect may be due to the loss of RAD51-dependent HR function mediated by the BRCA1–PALB2–BRCA2 complex, because human RAD52 is suggested to function in an independent and alternative repair pathway of RAD51-dependent HR when deficiencies exist in BRCA1, PALB2, or BRCA2. As no inactivating mutations of RAD52 have been documented in human sporadic cancers, inhibition of RAD52 could be an attractive strategy for improving cancer therapy in the BRCA- or PALB2-defective subgroup of cancers. Although no inhibitors of RAD52 have been developed yet, it would be of great interest to assess the effects of inhibition of RAD52 on cancer-specific killing of the cancers with "BRCAneness" profiles and compare them with those of PARP inhibitors in future clinical trials. There might be additional synthetic lethalities to be discovered and exploited in future.

Current Limitations and Future Perspectives

Although the data from clinical trials of the inhibitors of DNA damage response, including PARP inhibitors, seem encouraging, we should note that the use of PARP inhibitors also faces significant limitations.

The first limitation is the evolution of resistance. In the case of using PARP inhibitors in cancer cells carrying mutations in BRCA1 or BRCA2, the drug resistance can be caused by secondary mutations in the BRCA1 or BRCA2 gene that restore the open reading frame of the gene and enable the generation of functional BRCA proteins possessing the ability to repair DNA damage caused by PARP inhibitors. Other suggested mechanisms underlying the resistance to PARP inhibitors include the loss of 53BP1 expression in BRCA-deficient cells and the upregulation of genes that encode P-glycoprotein efflux pumps, although the importance of these factors in clinical resistance to PARP inhibitors has not been elucidated. In future clinical trials, it would be desirable to periodically monitor the sequences of BRCA1 and BRCA2 and the expression levels of the key proteins such as 53BP1 or P-glycoprotein efflux pumps.

The second limitation is the lack of reliable biomarkers of response or resistance to the inhibitors. There is a pressing need to identify biomarkers to predict the response to the inhibitors. Regarding the sensitivities to PARP inhibitors, elevated levels of PARP and CDK12 deficiency are suggested to be possible biomarkers for favorable responses. We should also keep in mind that many factors might affect the DNA damage response and take into account the complexity of the networks regulating DNA repair. For instance, most cancer cells grow under hypoxia, a condition that activates hypoxia inducible factor-1 (HIF-1). Because HIF-1 contributes to therapy resistance, it is considered an attractive target molecule for cancer therapy. Diverse functional interactions occur between HIF-1 and PARP1, and these interactions have been shown to be crucial for the survival of cancer cells. It has been suggested that HIF-1 might act as a synthetic lethal partner with PARP1 in cancer cells, which might explain the synergistic effect of PARP inhibitors and HIF-1 inhibitors in cancer treatment. Further studies are needed to clarify the role of HIF-1 in the resistance to PARP inhibitors and to identify new biomarkers that can predict the response to these drugs.
between HIF-1 and the DNA damage response have also been described,\(^{113}\) so the efficacy of the combination of HIF-1 inhibitors and inhibitors of the DNA damage response proteins should be examined in the future.

Conclusions

Defects or upregulation of the proteins involved in DNA damage response and repair are common in cancers, and may be induced by both genetic and epigenetic causes. Inhibition of the DNA damage response proteins can be used to enhance chemotherapy and radiotherapy, and also to selectively kill cancer cells showing deficiencies in particular DNA repair pathway(s) based on the principle of synthetic lethality. Inhibition of PARP in BRCA-defective cancers seemed effective in early clinical trials. Better understanding of the basic biology underlying the DNA damage response and the mechanisms responsible for its dysregulation in cancer will provide exciting opportunities for new and efficient cancer therapy targeting the DNA damage response.

Acknowledgments

This work was supported by the Japan Society for the Promotion of Science (Kakenhi) (grant nos. 23591836 and 25125705, to N. Hosoya) and by grants from the Takeda Science Foundation and from the Naito Foundation (to N. Hosoya).

Disclosure Statement

The authors have no conflict of interest.

References

1. Ciccia A, Elledge SJ. The DNA damage response: making it safe to play with knives. *Mol Cell* 2010; 40: 179–204.
2. Hoeijmakers JHJ. DNA damage, aging, and cancer. *N Engl J Med* 2009; 361: 1475–85.
3. Ashworth A. A synthetic lethal therapeutic approach: poly(ADP) ribose polymerase inhibitors for the treatment of cancers deficient in DNA double-strand break repair. *J Clin Oncol* 2008; 26: 3785–90.
4. Lee JH, Paull TT. ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. *Science* 2005; 308: 551–4.
5. Bakkenist CJ, Kastan MB. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. *Nature* 2003; 421: 499–506.
6. Matsuzaka S, Ballif BA, Smogorzewska A et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. *Science* 2007; 316: 1160–6.
7. Zou L, Elledge SJ. Sensing DNA damage through ATRIP recognition of RPA:ssDNA complexes. *Science* 2003; 300: 1542–8.
8. Zhao H, Piwnica-Worms H. ATR-mediated checkpoint pathways regulate phosphorylation and activation of human Chk1. *Mol Cell Biol* 2001; 21: 4129–39.
9. Zimmermann M, de Lange T. 53BP1: pro choice in DNA repair. *Cell Biol Phys* 2011; 24: 108–17.
10. Hartlerode AJ, Scully R. Mechanisms of double-strand break repair in somatic mammalian cells. *Biochem J* 2009; 423: 157–68.
11. Rapp R, Lijaki G. Alternative pathways of non-homologous end joining (NHEJ) in genomic instability and cancer. *Transl Cancer Res* 2013; 2: 163–77.
12. D’Amato GL, Hubsher U. Mammalian base excision repair: the forgotten archangel. *Nucleic Acids Res* 2013; 41: 3483–90.
13. Kamelari I, Karkasilioti I, Garinis GA. Nucleotide excision repair: new tricks with old bricks. *Trends Genet* 2012; 28: 566–73.
14. Hsieh P, Yanane K. DNA mismatch repair: molecular mechanism, cancer, and aging. *Mech Ageing Dev* 2008; 129: 391–407.
15. Kim H, D’Andrea AD. Regulation of DNA cross-link repair by the Fanconi anemia/BRCAn pathway. *Genes Dev* 2012; 26: 1393–408.
16. Bartkova J, Horejsi Z, Koed K et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. *Nature* 2005; 434: 864–70.
17. Gorgoulis VG, Vassiliou LV, Karakaidos P et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. *Nature* 2005; 434: 907–13.
18. Sun M, Guo X, Qian X et al. Activation of the ATM-Snail pathway promotes breast cancer metastasis. *J Mol Cell Biol* 2012; 4: 304–15.
19. Dzikiewicz-Krawczyk A. The importance of making ends meet: mutations in genes and altered expression of proteins of the MRN complex and cancer. *Mutat Res* 2008; 659: 262–73.
20. Yang M-H, Chiang W-C, Chou T-Y et al. Increased NBS1 expression is a marker of aggressive head and neck cancer and overexpression of NBS1 contributes to transformation. *Clin Cancer Res* 2006; 12: 507–15.
21. Gao J, Zhang H, Armban G, Sun XF. The different roles of hRAD50 in microsatellite stable and unstable colorectal cancers. *Dis Markers* 2008; 24: 127–34.
22. Grabauskiene S, Bergeron EJ, Chen G et al. CHK1 levels correlate with sensitization to pemetrexed by CHK1 inhibitors in non-small cell lung cancer cells. *Lung Cancer* 2013; 82: 477–84.
23. Hong J, Hu K, Yuan Y et al. CHK1 targets spleen tyrosine kinase (L) for proteolysis in hepatocellular carcinoma. *J Clin Invest* 2012; 122: 2165–75.
24. Madoz-Gurpide J, Canamero M, Sanchez L, Solano J, Alfonso P, Casal JI. A proteomics analysis of cell signaling alterations in colorectal cancer. *Mol Cell Proteomics* 2007; 6: 2150–64.
25. Verlinden L, Van den Bent M, Eelen G et al. The E2F-regulated gene Chkl is highly expressed in triple-negative estrogen receptor/progesterone receptor/HER-2 breast carcinomas. *Cancer Res* 2007; 67: 6574–81.
26. Ehlen A, Nodin B, Rexhepaj E et al. RBM3-regulated genes promote DNA integrity and affect clinical outcome in epithelial ovarian cancer. *Transl Oncol* 2011; 4: 212–21.
27. Xu J, Li Y, Wang F et al. Suppressed miR-424 expression via upregulation of target gene Chkl contributes to the progression of cervical cancer. *Oncogene* 2013; 32: 976–87.
28. Boutros R, Lobjoys V, Ducoman B. CDC25 phosphatases in cancer cells: key players? Good targets? *Nat Rev Cancer* 2007; 7: 495–507.
29. Kase M, Vardja M, Lipping A, Asser T, Jaa J. Impact of PARP-1 and DNA-PK expression on survival in patients with glioblastoma multiforme. *Radiother Oncol* 2011; 101: 127–31.
30. Bouchaert P, Gueuri C, Debais C, Iriani J, Fromont G. DNA-PKcs expression predicts response to radiotherapy in prostate cancer. *Int J Radiat Oncol Biol Phys* 2012; 84: 1179–85.
31. Takenaka T, Yoshino I, Kousu H et al. Combined evaluation of Rad51 and ERCC1 expressions for sensitivity to platinum agents in non-small cell lung cancer. *Int J Cancer* 2007; 121: 895–900.
32. Maacke H, Jost K, Opitz S et al. DNA repair and recombination factor Rad51 is over-expressed in human pancreatic adenocarcinoma. *Oncogene* 2000; 19: 2791–5.
33. Hannay JAF, Liu J, Zhu Q-S et al. Rad51 overexpression contributes to chemoresistance in human soft tissue sarcoma cells: a role for p53/activator protein 2 transcriptional regulation. *Mol Cancer Ther* 2007; 6: 1650–66.
34. Maacke H, Opitz S, Jost K et al. Over-expression of wild-type RAD51 correlates with histological grading of invasive ductal breast cancer. *Int J Cancer* 2000; 88: 907–13.
35. Connell PP, Jayathilaka K, Haraf DJ, Weichselbaum RR, Vokes EE, Lingen MW. Pilot study examining tumor expression of RAD51 and clinical outcomes in human head cancers. *Int J Oncol* 2006; 28: 1113–9.
36. Taron M, Roseli R, Felip E et al. BRCA1 mRNA expression levels as an indicator of chemoresistance in lung cancer. *Hum Mol Genet* 2004; 13: 2443–9.
37. Squires MH III, Fisher SB, Fisher KE et al. Differential expression and prognostic value of ERCC1 and thymidylate synthase in resected gastric adenocarcinoma. *Cancer* 2013; 119: 3242–50.
38. Olausson KA, Dunant A, Fouret P et al. DNA repair by ERCC1 in non-small-cell lung cancer and cisplatin-based adjuvant chemotherapy. *N Engl J Med* 2006; 355: 983–91.
39. Dahlbokar M, Bostick-Brunton F, Weber C, Bohr VA, Ewgwaug C, Reed E. ERCC1 and ERCC2 expression in malignant tissues from ovarian cancer patients. *J Natl Cancer Inst* 1992; 84: 1512–7.
53 Banerjee S, Kaye S. PARP inhibitors in BRCA gene-mutated ovarian cancer and beyond. Cancer Treat Rev 2010; 36: 325–35.

54 Angele S, Treilleux I, Bremond A, Taniere P, Hall J. Altered expression of the MRE11-RAD50-NBS1 DNA damage sensor complex in human breast cancer. Br J Cancer 2010; 103: 150–6.

55 Ai L, Vo QN, Zuo C et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature 2012; 487: 239–43.

56 Mego M, Cierna Z, Svetlovska D et al. PARP inhibitors in germ cell tumours. J Clin Pathol 2013; 66: 607–12.

57 Brosh R, Rotter V. When mutants gain new powers: news from the mutant p53 field. Nat Rev Cancer 2009; 9: 701–13.

58 Matsunaga G, Yamanaka S, Okazaki S et al. Identification and evaluation of a novel small molecule RAD51 inactivator overcomes imatinib-resistance in chronic myeloid leukaemia. EMBO Mol Med 2013; 5: 353–65.

59 Galamb O, Sipos F, Dinya E, Spisak S, Tulassay Z, Molnar B. mRNA expression, functional profiling and multivariate classification of colon biopsy specimens by cDNA overall glass microarray. World J Gastroenterol 2006; 12: 6998–7006.

60 Yoshikawa K, Ogawa T, Baer R et al. Abnormal expression of BRCA1 and BRCA1-interactive DNA-repair proteins in breast carcinomas. Int J Cancer 2000; 88: 28–36.

61 Hjeltn IL, Geisler JP, Rathe JA et al. Inactivation of BRCA1 and BRCA2 in ovarian cancer. J Natl Cancer Inst 2002; 94: 1396–406.

62 Catteau A, Morris JR. BRCA1 methylation: a significant role in tumour development? Semin Cancer Biol 2002; 12: 359–71.

63 Yoshino N, Okajima M, Kinomura A et al. Syntagomem complex protein SYCP3 impairs mitotic recombination by interfering with BRCA2. EMBO Rep 2012; 13: 44–51.

64 Taniguchi T, D’Andrea AD. Molecular pathogenesis of Fanconi anaemia: recent progress. Blood 2006; 107: 4223–33.

65 Xie Y, de Winter JP, Wassifsz Q et al. Aberrant Fanconi anaemia protein fibre in acute myeloid leukaemia cells. Br J Haematol 2000; 111: 1057–64.

66 Bouwman P, Jonkers J. The effects of deregulated DNA damage signalling on cancer chemotherapy response and resistance. Nat Rev Cancer 2012; 12: 587–98.

67 Kuroda S, Urata Y, Fujiwara T. Ataxia-telangiectasia mutated and the Mre11-Rad50-Nbs1 complex: promising targets for radiosensitization. Acta Med Okayama 2012; 66: 83–92.

68 Golding SE, Rosenberg E, Adams BR et al. Dynamic inhibition of ATM kinase provides a strategy for glioblastoma multiforme radiosensitization and growth control. Cell Cycle 2012; 11: 1167–73.

69 Nishida H, Tatewaki N, Nakajima Y et al. Inhibition of ATR protein kinase activity by schisandrin B in DNA damage response. Nucleic Acids Res 2009; 37: 5678–89.

70 Peasland A, Wang LZ, Rowling E et al. Identification and evaluation of a potent novel ATR inhibitor, NU6027, in breast and ovarian cancer cell lines. Br J Cancer 2011; 104: 313–22.

71 Prevo R, Fokas E, Harper PM et al. The novel ATR inhibitor VE-821 increases sensitivity of pancreatic cancer cells to radiation and chemotherapy. Cancer Biol Ther 2012; 13: 1072–81.

72 Garrett MD, Collins I. Anticancer therapy with checkpoint inhibitors: where, when and why? Trends Pharmacol Sci 2011; 32: 308–16.

73 Lavecchia A, Di Giovanni C, Novellino E. CDC25 phosphatases: an update. Mini Rev Med Chem 2012; 12: 62–73.

74 Davidson D, Amrein L, Panasci L, Aloyz R. Small molecules, inhibitors of DNA-PK, targeting DNA repair, and beyond. Front Pharmacol 2013; 4: 5.

75 Mouly V, Batey MA, Lemoine N et al. Chemosensitization of cancer cells by KY-0060648, a dual inhibitor of DNA-PK and PI-3K. Mol Cancer Ther 2012; 11: 1789–98.

76 Srivastava M, Nambiar M, Sharma S et al. An inhibitor of nonhomologous end-joining abrogates double-strand break repair and impedes cancer progression. Cell 2012; 151: 1474–87.

77 Klawe ML, Hoogerbrugge N, Budczies J et al. Higher cytoplasmic and nuclear poly(ADP-ribose) polymerase expression in familial than in sporadic breast cancer. Virchows Arch 2012; 461: 425–31.

78 Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 2012; 490: 61–70.

79 Rouleau M, Patel A, Hendzel MJ, Kaufmann SH, Poirier GG. PARP inhibitor, Rucaparib (PF-01367338, AG014699), with temozolomide (Me-temozolomide) in combination with temozolomide. J Clin Oncol Rep 2013; 6: 402–6.

806.}

81 Groessl B, Sharma NL, Hamdy FC, Kerr M, Kittie AE. Histone deacety- lase inhibitors as radiosensitisers: effects on DNA damage signalling and repair. Br J Cancer 2008; 100: 748–54.

82 Adimoolam S, Sirisawad M, Chen J, Thiemann P, Ford JM, Buggy JJ. HDAC inhibitor PCI-24781 decreases RAD51 expression and inhibits homologous recombination. Proc Natl Acad Sci USA 2007; 104: 19482–7.

83 Noguchi M, Yu D, Hriyamaya R et al. Inhibition of homologous recombination in irradiated breast cancer cells pretreated with Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin. Biochem Biophys Res Commun 2006; 351: 658–63.

84 Ogawa H, U, Iashitani B, Zou L, Yüasui A, Kohno T. Curcumin suppresses multiple DNA damage response pathways and has potency as a sensitizer to PARP inhibitor, Carino gene-2013; 34: 2486–97.

85 Rouleau M, Patel A, Hendzel MJ, Kauffmann SH, Potier GG. PARP inhi- bition: PARP1 and beyond. Nature Rev Cancer 2010; 10: 293–301.

86 Plummer R, Jones C, Middleton M et al. Phase I study of the poly(ADP- ribose) polymerase inhibitor, AG014699, in combination with temozolo- mide in patients with advanced solid tumors. Clin Cancer Res 2008; 14: 7917–23.

87 Plummer R, Lorigan P, Steven N et al. A phase II study of the potent PARP inhibitor, Rucaparib (PF-03167338, AG014699), with temozolomide in patients with metastatic melanoma demonstrating evidence of chemosensitization in patients receiving temozolomide. J Natl Cancer Inst 2013; 105: 233–41.

88 Ormsby RE, Hiesinger J, Prats G, Tischler AS, Gorelick F. Specific killing of BRCA2-deficient tumours in vitro. Cancer Cell 2003; 3: 229–39.

89 Plummer R, Lorigan P, Steven N et al. A phase II study of the potent PARP inhibitor, Rucaparib (PF-03167338, AG014699), with temozolomide in patients with metastatic melanoma demonstrating evidence of chemosensitization in patients receiving temozolomide. J Natl Cancer Inst 2005; 97: 913–7.

90 Farmer H, McCabe N, Lord CJ et al. Targeting the DNA repair defect in BRCA mutation carriers with the PARP inhibitor, veliparib (ABT-888), in combination with platinum-based chemotherapy. Nature Rev Cancer 2007; 7: 150–6.

91 Kuroda S, Urata Y, Fujiwara T. Ataxia-telangiectasia mutated and the Mre11-Rad50-Nbs1 complex: promising targets for radiosensitization. Acta Med Okayama 2012; 66: 83–92.

92 Farmer H, McCabe N, Lord CJ et al. Targeting the DNA repair defect in BRCA mutation carriers with the PARP inhibitor, veliparib (ABT-888), in combination with platinum-based chemotherapy. Nature Rev Cancer 2007; 7: 150–6.

93 Fong PC, Boss DS, Yap TA et al. Inhibition of poly(ADP-ribose) poly- merase in tumors from BRCA mutation carriers. N Engl J Med 2009; 361: 323–34.

94 Audie MW, Carmichael J, Penso RT et al. Oral poly(ADP-ribose) poly- merase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet 2010; 376: 245–51.

95 Gelmon KA, Tischkowitz M, Mackay H et al. Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or...
triple-negative breast cancer: a phase 2, multicentre, open-label, non-randomised study. *Lancet Oncol* 2011; **12**: 852–61.

96 Turner N, Tutt A, Ashworth A. Hallmarks of “BRCAness” in sporadic cancers. *Nat Rev Cancer* 2004; **4**: 814–9.

97 McCabe N, Turner NC, Lord CJ et al. Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. *Cancer Res* 2006; **66**: 8109–15.

98 Postel-Vinay S, Bajrami I, Friboulet L et al. A high-throughput screen identifies PARP1/2 inhibitors as a potential therapy for ERCC1-deficient non-small cell lung cancer. *Oncogene* 2013; **32**: 5377–87.

99 Kennedy RD, Chen CC, Sidi S et al. CHK1 inhibition as a strategy for targeting Fanconi anemia deficiency in BRCA1-deficient tumors. *Mol Cancer* 2009; **8**: 24.

100 Chen CC, Kennedy RD, Sidi S et al. CHK1 inhibition as a strategy for targeting Fanconi anemia (FA) DNA repair pathway deficient tumors. *Mol Cancer* 2009; **8**: 24.

101 McManus KJ, Barrett IJ, Nouhi Y, Hieter P. Specific synthetic lethal killing of RAD54B-deficient human colorectal cancer cells by FEN1 silencing. *Proc Natl Acad Sci USA* 2009; **106**: 3276–81.

102 Sultana R, McNeill DR, Abbotts R et al. Synthetic lethal targeting of DNA double-strand break repair deficient cells by human apurinic/apyrimidinic endonuclease inhibitors. *Int J Cancer* 2012; **131**: 2433–44.

103 Feng Z, Scott SP, Bussen W et al. Rad52 inactivation is synthetically lethal with BRCA2 deficiency. *Proc Natl Acad Sci USA* 2011; **108**: 686–91.

104 Lok BH, Carley AC, Tchang B, Powell SN. Rad52 inactivation is synthetically lethal with deficiencies in BRCA1 and PALB2 in addition to BRCA2 through RAD51-mediated homologous recombination. *Oncogene* 2013; **32**: 3552–8.

105 Edwards SL, Brough R, Lord CJ et al. Resistance to therapy caused by intragenic deletion in BRCA2. *Nature* 2008; **451**: 1111–5.

106 Sakai W, Swisher EM, Karlan BY et al. Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers. *Nature* 2008; **451**: 1116–20.

107 Swisher EM, Sakai W, Karlan BY et al. Secondary BRCA1 mutations in BRCA1-mutated ovarian carcinomas with platinum resistance. *Cancer Res* 2008; **68**: 2581–6.

108 Bunting SF, Callén E, Wong N et al. 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. *Cell* 2010; **141**: 243–54.

109 Bouwman P, Aly A, Escandell JM et al. 53BP1 loss rescues BRCA1 deficiency and is associated with triple-negative and BRCA-mutated breast cancers. *Nature Struct Mol Biol* 2010; **17**: 688–95.

110 Jaspers JE, Kersbergen A, Boon U et al. Loss of 53BP1 causes PARP inhibitor resistance in Brca1-mutated mouse mammary tumors. *Cancer Discov* 2013; **3**: 68–81.

111 Rottenberg S, Jaspers JE, Kersbergen A et al. High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. *Proc Natl Acad Sci USA* 2008; **105**: 17079–84.

112 Bajrami I, Frankum JR, Konde A et al. Genome-wide profiling of genetic synthetic lethality identifies CDK12 as a novel determinant of PARP1/2 inhibitor sensitivity. *Cancer Res* 2014; **74**: 287–97.

113 Rohwer N, Zasadz A, Kempa S, Cramer T. The growing complexity of HIF-1α’s role in tumorigenesis: DNA repair and beyond. *Oncogene* 2013; **32**: 3569–76.