Regio- and Enantioselective Catalytic Monoepoxidation of Conjugated Dienes: Synthesis of Chiral Allylic cis-Epoxides

Jawahar L. Jat, Saroj Ranjan De, Ganesh Kumar, Adeniyi Michael Adebesin, Shyam K. Gandham, and John R. Falck*

Division of Chemistry, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States

Supporting Information

ABSTRACT: Ti(IV)-salan 4 catalyzes the diastereo- and enantioselective monoepoxidation of conjugated dienes using 30% H₂O₂ at rt or below even in the presence of other olefins and adjacent stereocenters. Its enantiomer, ent-4, provides access to the opposite diastereomer or enantiomer. The resultant chiral allylic epoxides, and the triols derived from them, are versatile synthetic intermediates as well as substructures present in many bioactive natural products. The epoxidation is highly specific for Z-olefins. For 1-acyl(silyl)oxypenta-2,4-dienes, epoxidation of the distal olefin is generally favored in contrast to the adjacent regioselectivity characteristic of Sharpless, peracid, and other directed epoxidations of hydroxylated dienes.

Allylic epoxides display a facile and diverse reaction manifold that arises from the juxtaposition of the inherently strained three-membered epoxide with an olefinic π-system.¹ The rate of nucleophilic addition, for instance, can be up to 10⁴ times faster than that for an isolated epoxide, proceeding via S₂ or S_N² pathways.² Due to their considerable synthetic appeal,³ a variety of procedures have been introduced for the preparation of allylic epoxides.⁴ One of the most popular and economic approaches is catalytic monoepoxidation of 1,3-conjugated dienes,⁵ including a smaller subset of asymmetric versions.⁶ However, utilization of most extant protocols is constrained by one or more restrictions including modest yields,⁷ inadequate enantioselectivity,⁸ polyoxidation,⁹ stereoisomerization,¹⁰ poor cis-/trans-discrimination,¹¹ and/or decomposition of the product under the reaction conditions.¹² A noteworthy exception is the Shi fructose-based dioxirane reagents,¹³ although the strict reaction regimen and catalyst availability are potential deterrents to its use.

The application of the catalytic monoepoxidation method to the special case of 2,4-pentadiene-1-ols has been an area of longstanding interest.¹⁴ The resultant allylic epoxides are versatile synthetic building blocks¹⁵ as well as key subunits,¹⁶ along with their chemically or enzymatically derived triols, in numerous bioactive natural products (Figure 1).¹² Functional group directed epoxidations, e.g., Sharpless,¹³ peracid,¹⁴ and others,¹⁵ have played a prominent role in achieving an acceptable level of regio- and stereoccontrol for substrates containing the 2,4-pentadien-1-ol moiety. In most instances, however, epoxidation occurs at the olefin adjacent to the hydroxyl and not the distal olefin (eq 1).¹³−¹⁶ Our objective, consequently, was the development of an operationally simple, catalytic, distal-selective epoxidation of conjugated buta-1,3-dienes and penta-2,4-dien-1-ols and to validate the utility of this method as a key transformation in a biogenetically inspired¹⁷ total synthesis¹⁸ of the potent antimitotic marine natural products nigricanosides A/B¹⁹ and clinically useful mimetics.

An assortment of catalysts and oxidants were examined for distal-selective epoxidation (Table 1). Diene 1 (R = H) was selected as the model substrate because (i) it is readily prepared in high stereochemical purity via multigram incubation²⁰ of linoleic acid with commercial soybean lipoxygenase, (ii) both diastereomeric distal epoxide diastereomers 2 and 3 are available,²¹ and (iii) it offers a stereochemical point of reference and mechanistic probe of the reaction course.²² Initially, epoxidations were conducted with the C(13)-hydroxyl unprotected; in many cases, however, complex product mixtures were obtained. Hence, most subsequent studies were conducted with the hydroxyl blocked as the acetate, i.e., 1 (R = Ac).

Received: January 28, 2015
Published: February 10, 2015
Many well established transition metal epoxidation catalysts\(^\text{23,24}\) provided little, if any, of the desired epoxide 2 or 3 (entries a and b). Despite their utility with styrenes, chiral complexes of Zr (entry c),\(^\text{25}\) Mo (entry d),\(^\text{26}\) and Fe (entry e)\(^\text{27}\) proved ineffective with 1 as the substrate. Ruthenium (entry f),\(^\text{28}\) tungsten (entry g),\(^\text{29}\) and bis-iron (entry h)\(^\text{30}\) salts displayed more encouraging distal regioselectivities and, in some cases, afforded good yields of distal epoxides. While a variety of reaction conditions were evaluated using these catalysts, mixtures of 2 and 3 were always obtained,\(^\text{31}\) evidently, the chiral center had scant influence upon the diastereoselectivities. Manganese (entry i)\(^\text{31}\) and iron (entry j)\(^\text{31}\) coordinated by chiral tetradentate N\(_2\)P\(_2\) platforms were likewise marginally diastereoselective, but did give acceptable yields. The Shi reagent (entry k)\(^\text{32}\) led to a complex product mixture consisting of 2 and 3 (3:2 ratio) and an equal amount of the 11,12-monoepoxides (3:2 ratio) when 1 was protected as the silyl ether. The second generation oxazolidinone reagent (entry l),\(^\text{33}\) developed by Shi for diene applications, performed much better when applied to 1 (R = Ac) and afforded only 2 and 3 (4:1 ratio). This is likely due, in part, to the inductive deactivation of the adjacent olefin by the acetoxy group; inductive deactivation of these reagents has been observed previously.\(^\text{6,9}\) Titanium, sequestered within the salan-type ligands pioneered by Katsuki and colleagues,\(^\text{34a}\) afforded both high yield and excellent control of diastereoselectivity (entry m). The yield and selectivity toward \textit{erythro}-epoxide 2 was further boosted using (R,R)-Ti(salan) 4, created by introduction of an \textit{ortho}-methoxy onto the pendant phenyl (entry n).\(^\text{34b}\)

When treating 1 (R = Ac) with 4 and 30% H\(_2\)O\(_2\), yields of 2 were optimum in CH\(_2\)Cl\(_2\) (92%) and trended progressively lower in THF (75%), Cl(CH\(_2\))\(_2\)Cl (70%), CH\(_2\)CN (65%), EtOAc (60%), toluene (60%), DME (55%), and CH\(_3\)NO\(_2\) (<10%). Reaction rates were faster with 50% or 90% H\(_2\)O\(_2\), but 30% H\(_2\)O\(_2\) (1.5–2 equiv) was our preference for reasons of safety, cost, and availability. Attempts to accelerate the rate by using a large excess of 30% H\(_2\)O\(_2\) (>6 equiv) were usually accompanied by minor, yet noticeable, amounts (5–10%) of triol from hydrolysis of 2. For convenience, most reactions with 4 were conducted at or near room temperature.

To elucidate the scope of monooxepoxide mediated by 4 (and its enantiomer, \textit{ent}-4), a panel of representative 2,4-pentadien-1-ols and buta-1,3-dienes were oxidized under the standard reaction conditions (Table 2). As with many other reagents, epoxidation of 1 (R = H) with an unprotected hydroxyl eroded the yield and diastereoselectivity (entry 1); however, the regioselectivity was still entirely distal in sharp contrast to the adjacent selectivity characteristic of Sharpless-type processes. The corresponding benzy1 ether 5, benzoate 7, pivaloate 9, carbonate 11, and silyl ether 13, on the other hand, were all well behaved and afforded the anticipated distal, \textit{erythro}-allylic epoxides in good yields and dr (entries 2, 3, 4, 5, and 6, respectively). The nature of the hydroxyl protecting group (i.e., ether, ester, silyl ether) made no difference in the stereochemical outcome (cf., Table 1, entries k and l). Despite having an additional \textit{cis}-olefin, linolate-derived trienes 15 and 17 preferentially furnished 16 (entry 7) and 18 (entry 8), respectively, and only minor amounts of additional epoxidation at the Δ\(^{15,16}\)-olefin, i.e., \textit{bis}-epoxide, were detected. Significantly, epoxidation of 17 mediated by \textit{ent}-4 gave rise to allylic epoxide 19 (entry 9), the \textit{thro}-diastereomer of 18, demonstrating that the existing chiral center adjacent to the diene does not influence epoxidation enantioselectivity. Triene 20 (entry 10), whose olefinic pattern differs from 17, was also suitable as was the short chain diene 22 from which 23 (entry 11) was obtained in excellent yield and dr. An increase in the substitution level at the acyloxy carbon, e.g., 24 \rightarrow 25 (entry 12), had no effect on the transformation, but it did for the distal olefin, e.g., 26 \rightarrow 27 (entry 13), as revealed by a small decrease in the dr. For dienes 28, 30, and 32 without an existing stereocenter, it was reassuring to find epoxides 29 (entry 14), 31 (entry 15), and 33 (entry 16) were generated with a high level of enantiointo choice. Exposure of cholesta-4,6-diene 34 to \textit{ent}-4 and 30% H\(_2\)O\(_2\) under the usual conditions culminated in α-epoxide 35 as the sole product (entry 17), yet 34 was completely immune to 4 even after prolonged reaction times and was recovered unchanged. The epoxidation of 36, the methyl ester of natural conjugated linoleic acid (CLA), was instructive (entry 18). Even absent the inductive influence of an allylic oxygen substituent, epoxidation of the \textit{cis}-olefin to give 37 predominated. While it might be tempting to attribute the distal regioselectivity in the preceding examples to an inductive deactivation of the adjacent olefin by the oxygen substituent, thus redirecting epoxidation to the distal olefin, this example cogently dispels this conjecture. This is an especially challenging example since there is no functional group located closely enough to guide

\begin{table}[h]
\centering
\caption{Survey of Catalytic Systems for Asymmetric, Distal-Selective Epoxidation of 1}
\begin{tabular}{|l|l|l|l|l|l|}
\hline
entry & catalyst\(^a\) & additive & oxidant & solvent & R yield (\%) \(2^{33}\) \\
\hline
a & MnSO\(_4\) & NaHCO\(_3\) & 30% H\(_2\)O\(_2\) & CH\(_2\)Cl\(_2\) & H no < 5 n/a \\
b & Ti(OTf)\(_4\) & & C\(_6\)H\(_5\)COOH & CH\(_2\)Cl\(_2\) & < 5 n/a \\
c & Zr(OtBu\(_4\)) & & C\(_6\)H\(_5\)COOH & CH\(_2\)Cl\(_2\) & < 5 n/a \\
d & MoO\(_4\)(acac\(_3\)) & & C\(_6\)H\(_5\)COOH & CH\(_2\)Cl\(_2\) & > 5 n/a \\
e & FeCl\(_3\) & & C\(_6\)H\(_5\)COOH & CH\(_2\)Cl\(_2\) & < 5 n/a \\
f & MeReO\(_3\) & pyridine & 30% H\(_2\)O\(_2\) & CH\(_2\)Cl\(_2\) & 80 3:2 \\
g & (R=W(N(SiMe\(_3\))(CF\(_3\))\(_2\))\(_2\))\(_2\)Fe & & C\(_6\)H\(_5\)COOH & CH\(_2\)Cl\(_2\) & 80 1:1 \\
h & & & & & \\
i & & & & & \\
j & & & & & \\
k & K\(_2\)CO\(_3\) & oxide & DMF/MeOH & TBDPs & 35 3:2 \\
l & K\(_2\)CO\(_3\) & oxide & DMF/MeOH & 6ac & 40 4:1 \\
m & & & & & \\
n & & & & & \\
\hline
\end{tabular}
\end{table}

\(^{a}\)Epoxidation procedures: entry a (ref 23), entry b (ref 24), entry c (ref 25), entry d (ref 26), entry e (ref 27), entry f (ref 28), entry g (ref 29), entry h (ref 30), entry i (ref 32), entry j (ref 33), entry k (ref 6a), entry l (ref 9), entries m and n (ref 34). bCombined, isolated yield. cDetermined by chiral HPLC. dHa = not applicable or not available. eMainly recovered diene. fObtained as a 1:1 mixture with the 11,12-monoepoxide regioisomers.
and there was no reaction in the absence of some kind of oxidant. No enantiomeric catalyst was ratios of 3:1 or 4:1, but the total lack of reactivity with the alcohol and peroxo-Ti intermediate could explain the erosion of diastereoselectivity.

In summary, the Ti(IV)-salan catalyst 4 in combination with environmentally friendly 30% H₂O₂ is an efficient, room temperature catalytic system for the diastereo- and enantioselective epoxidation of conjugated dienes even in the presence of other olefins. Notably, the regioselectivity in some systems, e.g., 2,4-pentadien-1-ols, is complementary to that achievable using Sharpless and other directed epoxidations. There is a strong preference for Z- vs E-olefins. Progress in the development of a catalyst suitable for E,E-dienes will be reported elsewhere.

REFERENCES

(1) (a) He, J.; Ling, J.; Chiu, P. Chem. Rev. 2014, 114, 8037. (b) Childers, M. I.; Longo, J. M.; Van Zee, N. J.; LaPointe, A. M.; Coates, G. W. Chem. Rev. 2014, 114, 8129.

(2) (a) Ross, W. C. J. J. Chem. Soc. 1950, 2257. (b) Addy, J. K.; Parker, R. E. J. Chem. Soc. 1965, 644.

(3) (a) Marshall, J. A. Chem. Rev. 1989, 89, 1503. (b) Yudin, A. K. In Aziridines and Epoxides in Organic Synthesis; Yudin, A. K., Ed.; Wiley-VCH: Weinheim, 2006. (c) Das, B.; Damodor, K. In Heterocycles in Natural Product Synthesis; Majumdar, K. C., Chattopadhyay, S. K., Ed.; Wiley-VCH: Weinheim, 2011; Chapter 3, pp 63–95.

(4) (a) Sun, X.-L.; Tang, Y. Acc. Chem. Res. 2008, 41, 937. (b) Pineschi, M.; Bertolini, F.; Di Bussolo, V.; Crotti, P. Adv. Org. Synth. 2013, 5, 101. (c) Pineschi, M.; Bertolini, F.; Di Bussolo, V.; Crotti, P. Curr. Org. Synth. 2009, 6, 290.

(5) (a) Sheng, M. N.; Zajacek, J. G. J. Org. Chem. 1970, 35, 1839. (b) Ledon, H. J.; Varescon, F. Inorg. Chem. 1940, 23, 2735. (c) Thomsen, D. S.; Schiott, B.; Jørgensen, K. A. J. Chem. Soc., Chem. Commun. 1992, 1072. (d) Rasmussen, K. G.; Thomsen, D. S.; Jørgensen, K. A. J. Chem. Soc., Perkin Trans. 1 1995, 2009. (e) Lee, N. L.; Jacobsen, E. N. Tetrahedron Lett. 1991, 32, 6533. (f) Chang, S.; Lee, N. H.; Jacobsen, E. N. J. Org. Chem. 1993, 58, 6939. (g) Baumstark, A.; Vasquez, P. C.; Michl-Jenett-Eberle, E.; Chen, H.-H. Heterocycl. Commun. 2012, 18, 75.

(6) (a) Fredin, M.; Dalkiewicz, M.; Ts, Y.; Wang, Z.-X.; Shi, Y. J. Org. Chem. 1998, 63, 2948. (b) Zhu, Y.; Wang, Q.; Cornwall, R. G.; Shi, Y. Chem. Res. 2014, 114, 8199.

(7) Insights into mechanistic factors influencing yields; see: Chen, K.; Costas, M.; Kim, J.; Tipton, A. K.; Que, J. J. Am. Chem. Soc. 2002, 124, 3026.

ACKNOWLEDGMENTS

Financial support provided by the Robert A. Welch Foundation (I-0011) and USPHS NIH (HL11392, DK38226, HL034300). Dr. Elaine R. Fogel (Tiferet Israel) and Prof. Mats Hamberg (Karolinska Institutet) are thanked for guidance. Analyses provided by the Shimadzu Center for Advanced Analytical Chemistry at Univ. Texas-Arlington. Dedicated to the accomplishments of Prof. Tsutomu Katsuki.

ASSOCIATED CONTENT

Supporting Information
The preparation and spectral characterization (¹H/¹³C NMR) of all new compounds and HPLC chromatograms. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author
E-mail: j.falck@utsouthwestern.edu.

Notes
The authors declare no competing financial interest.
(8) (a) Kühn, F. E.; Zhao, J.; Herrmann, W. A. Tetrahedron Asymmetry. 2005, 16, 3469. (b) Chang, S.; Heid, R. M.; Jacobsen, E. N. Tetrahedron Lett. 1994, 35, 669.

(9) Burke, C. P.; Shi, Y. Angew. Chem., Int. Ed. 2006, 45, 4475.

(10) Select examples: (a) Hager, A.; Mazunin, D.; Mayer, P.; Trauner, D. Org. Lett. 2011, 13, 1386. (b) Ueki, T.; Kinoshita, T. Org. Biomol. Chem. 2004, 2, 2777. (c) Gao, X.; Snider, B. B. J. Org. Chem. 2004, 69, 5517. (d) Smith, A. B., III; Frohn, M. Org. Lett. 2001, 3, 3979. (e) Kobayashi, Y.; Asano, M.; Yoshida, S.; Takeuchi, A. Org. Lett. 2005, 8, 1533. (f) Dix, T. A.; Marnett, L. J. J. Am. Chem. Soc. 1983, 105, 7001. (g) Mercier, J.; Agoh, B. Chem. Phys. Lipids 1974, 12, 232. (h) Weiss, R. H.; Arnold, J. L.; Estabrook, R. W. Arch. Biochem. Biophys. 1987, 252, 334. (i) Jie, M. S. F. L. L.; Lam, C. N. W.; Ho, J. C. M.; Lau, M. M. L. Eur. J. Lipid Sci. Technol. 2003, 105, 391.

(11) The formation of allylic E- or Z-epoxides via rearrangement of fatty acid hydroperoxides is an important source of autoxids. (a) Mammals: Lederer, M. O.; Schuler, A.; Ohmehausen, M. J. Agr. Food Chem. 1999, 47, 4611. (b) Plants: Kato, T.; Yamaguchi, Y.; Okumura, S.; Uyehara, T.; Namai, T.; Kodama, M.; Shiobara, Y. J. Chem. Soc., Chem. Commun. 1986, 743. (c) Marine organisms: Piomelli, D.; Shapiro, E.; Zipkin, R.; Schwartz, J. H.; Feinmark, S. J. Proc. Natl. Acad. Sci. U.S.A. 1989, 86, 1721. (d) Microorganisms: Hamberg, M. Biochem. Biophys. Acta 1986, 876, 688.

(12) Stagonolide D: (a) Vadhidarya, P. M.; Puranik, V. G.; Ramana, C. V. J. Org. Chem. 2012, 77, 2169. (b) Fostriecin: Reddy, Y. K.; Falck, J. R. Org. Lett. 2002, 4, 969. (c) Agiomyicine B: Xu, L.; He, Z.; Xue, J.; Chen, X.; Wei, X. J. Nat. Prod. 2010, 73, 885. (d) Mueggelone: Motoyoshi, H.; Ishigami, K.; Kitahara, T. Tetrahedron 2001, 57, 3899. (e) Palmerolide A: Lisboa, M. P.; Dudley, G. B. Chem.—Eur. J. 2013, 19, 16146. (f) Hepoaulin A: Yu, Z.; Schneider, C.; Boeglindsay, W. E.; Marnett, L. J.; Brass, A. R. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 9162. (g) (13) (a) Katsuki, T.; Martin, V. S. Org. React. 1996, 48, 1. (b) Falck, J. R.; Manna, S.; Siddhanta, A. K.; Capdevila, J.; Buynak, J. D. Tetrahedron Lett. 1983, 24, 5715. (c) Falck, J. R.; Manna, S.; Capdevila, J.; Buynak, J. D. Tetrahedron Lett. 1983, 24, 5719. (d) Omar, M. N.; Moynihan, H. A.; Hamilton, R. J. Eur. J. Lipid Sci. Technol. 2003, 105, 43.

(14) Omar, M. N. B.; Hamilton, R. J.; Moynihan, H. A. ARKIVOC 2003, vii, 190.

(15) (a) Matsumoto, K.; Katsuki, T.; Arends, I. W. C. E. In Stereoselective Synthesis I: Stereoselective Reactions of Carbon—Carbon Double Bonds; De Vries, J. G., Molander, G. A., Evans, P. A., Eds.; Science of Synthesis, Stereoselective Synthesis; Thieme: New York, NY, 2011; pp 69–121. (b) Davies, S. G.; Fletcher, A. M.; Thomson, J. E. Org. Biomol. Chem. 2014, 12, 4544. (c) Adam, W.; Zhang, A. Synlett 2005, 1047.

(16) Pentadienols functionalized with bulky esters are an exception: Lederer, M. O.; Schuler, A.; Ohmehausen, M. J. Agric. Food Chem. 1999, 47, 4611.

(17) For a retrosynthetic summary, see: De, S. R.; Kumar, G.; Jat, J. L.; Birudaraju, S.; Lu, B.; Manne, R.; Pul, N.; Adebesin, A. M.; Falck, J. R. J. Org. Chem. 2014, 79, 1032.

(18) For an alternative approach to this class, see: (a) Tortosa, M. Angew. Chem., Int. Ed. 2011, 50, 3950. (b) Kurashina, Y.; Kuwahara, S. Biosci. Biotechnol. Biochem. 2012, 76, 605.

(19) Williams, D. E.; Sturgeon, C. M.; Roberge, M.; Andersen, R. J. J. Am. Chem. Soc. 2007, 129, 5822.

(20) Dienol 1 was obtained by replacing linoleic acid for arachidonic acid: Baldwin, J. E.; Davies, D. I.; Hughes, L.; Gutteridge, N. J. J. Chem. Soc., Perkin Trans. 1 1979, 115.

(21) Diastereomeric mixtures (1:1–3:2) were prepared by catalytic MTO/H2O2 distal epoxidation of the corresponding 1-acetyl(silyl)-oxygenated-2,4-dienes as described in ref 17.

(22) Adam, W.; Stegmann, V. R.; Saha-Möller, C. R. J. Am. Chem. Soc. 1999, 121, 1879.

(23) Lane, B. S.; Burgess, K. J. Am. Chem. Soc. 2001, 123, 2933.

(24) Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 5974.

(25) Okuchi, T.; Muraki, N.; Onaka, M. Org. Lett. 2003, 5, 85.

(26) Barlan, A. U.; Basak, A.; Yamamoto, H. Angew. Chem., Int. Ed. 2006, 45, 5849.

(27) Gelalcha, F. G.; Bitterlich, B.; Anilkumar, G.; Tse, M. N.; Beller, M. Angew. Chem., Int. Ed. 2007, 46, 7293.

(28) Rudolph, J.; Reddy, L. K.; Chiang, J. P.; Sharpless, K. B. J. Am. Chem. Soc. 1997, 119, 6189.

(29) Kamata, K.; Hirano, T.; Kuzuya, S.; Mizuno, N. J. Am. Chem. Soc. 2009, 131, 6997.

(30) Dubois, G.; Murphy, A.; Stack, T. D. Org. Lett. 2003, 5, 2469.

(31) A 4:1 mixture of methyl 9(R),10(S)- and methyl 9(S),10(R)-epoxy-13(S)-hydroxy-11(E)-octadecenoate was prepared enzymatically and acetylated to give 2 and 3, respectively. Hamberg, M.; Hamberg, G. Arch. Biochem. Biophys. 1990, 283, 409. Additionally, an authentic sample of methyl 9(S),10(R)-epoxy-13(S)-hydroxy-11(E)-octadecenoate was purchased from Larodan Fine Chemicals AB, Malmö, Sweden. The mixture of 2 and 3 was deacetylated using K2CO3 in MeOH, and the structures of the C(13)-alcohols were confirmed via HPLC.

(32) (a) Wu, M.; Wang, B.; Wang, S.; Xia, C.; Sun, W. Org. Lett. 2009, 11, 3622. (b) Maity, N. C.; Kumar Bera, P.; Ghosh, D.; Abdi, S. H. R.; Kureshy, R. L.; Khan, N.-u. H.; Bajaj, H. C.; Suresh, E. Catal.: Sci. Technol. 2014, 4, 208.

(33) (a) Catalytic system: White, M. C.; Doyle, A. G.; Jacobsen, E. N. J. Am. Chem. Soc. 2001, 123, 7194. (b) BPBP ligand: Suzuki, K.; Oldenberg, P. D.; Que, L. J. Angew. Chem., Int. Ed. 2008, 47, 1887.

(34) (a) Matsumoto, K.; Sawada, Y.; Katsuki, T. Pure Appl. Chem. 2008, 80, 1071. (b) Sawada, Y.; Matsumoto, K.; Kondo, S.; Watanabe, H.; Ozawa, T.; Suzuki, K.; Saito, B.; Katsuki, T. Angew. Chem., Int. Ed. 2006, 45, 3478.