Menstrual and Reproductive Factors and Risk of Pancreatic Cancer in Women

Sahar Masoudi1, Zahra Momayez Sanat2, Altun Mahmud Saleh3, Neda Nozari2, Neda Ghamarzad1, Akram Pourshams1,2,*

ABSTRACT

BACKGROUND
Pancreatic cancer (PC) is a deadly disease with a 5-year survival of less than 5%. Worldwide PC incidence rates are lower among women than men. While this suggests a protective role for steroid hormones in PC risk, results from epidemiological studies are not consistent.

METHODS
153 new incident PC cases and 202 controls were recruited from a prospective case–control study, running in a referral center for endoscopic ultrasonography during 2011-2017. A structured valid and reliable questionnaire was used for data collection by a few trained interviewers. Odds ratios and 95% confidence intervals for reproductive factors and PC were estimated using logistic regression methods.

RESULTS
Mean age (SD) of the cases and the controls were 63.18 (11.4) and 63.37 (12.0) years, respectively. Age at menarche, age at menopause, number of parity, gravidity, and abortion were not associated with PC risk.

CONCLUSION
This study does not support the hypothesis that menstrual and reproductive factors are associated with PC risk.

KEYWORDS:
Pancreas cancer, Women, Reproductive History

INTRODUCTION
Exocrine pancreatic cancer (PC) is the 12th most common cancer in the world with 338,000 new cases diagnosed in 2012.1 The incidence of PC is approximately 30% to 50% higher in men than in women.1 PC has the highest mortality to incidence ratio among all cancers, with a 5-year survival rate of less than 5%.1 Although about 35% of cases could be attributed to tobacco, obesity, heavy alcohol drinking, diabetes, and chronic pancreatitis2,3, the etiology of this deadly cancer is largely unknown. Several epidemiological studies have suggested an inverse association between female reproductive factors and the risk of PC but the findings are not conclusive.4,5 Estrogen and progesterone receptors both have been found in normal and cancerous pancreatic tissue inconsistently6,7 and the role of androgen is not recognized very well.8 Thus, we tested the
association between menstrual and reproductive factors and PC by conducting a case-control study.

MATERIALS AND METHODS

This case-control study was approved by the Institutional Review Board of Digestive Disease Research Center, Tehran University of Medical Sciences (IRB number: IRB00001641, Federal wide Assurance number: FWA00015916). The methods of cases and controls recruitment were extensively explained before and are briefly described here. Cases (those with pathology proven pancreatic adenocarcinoma) and controls (those with normal pancreas and no other cancer) were selected from the patients who referred for endoscopic ultrasonography (EUS) to a university affiliated hospital (Shariati Hospital) in Tehran, Iran, from January 2011 to January 2017. A structured valid and reliable questionnaire was used for data collection by a few trained interviewers. Weight and height were measured and body mass index (BMI) was calculated, using the weight before involuntary weight loss. BMI was categorized according to the WHO classification to: underweight (BMI < 18.5), normal (BMI: 18.5 - 24.9), overweight (BMI: 25 - 29.9), and obese (BMI over 30).

The American Joint Committee on Cancer (AJCC) TNM staging system was used for PC staging by EUS and other imaging that the patients already had. Data are expressed as mean ± SD or frequency and percentage, as appropriate. Differences in frequencies between the cases and controls were evaluated by simple contingency table analysis (Fisher exact test probability test and χ² test) using the STATA software, version 12.0 (Stata Corp, College Station, TX, USA). Unconditional logistic regression models were computed to test associations between cancer status and reproductive factors. Contingency tables were constructed yielding χ² P values, Fisher exact P values, crude odds ratio (OR), and 95% confidence interval (95% CI). Multiple logistic regression models were analyzed with cancer status as the dependent variable and other variables as the covariates to test for confounding and effect modification.

RESULTS

153 new incident PC cases and 202 controls were recruited in the study. Mean age (SD) of cases and controls were 63.18 (11.4) and 63.37 (12.0) years respectively. Table 1 compares the potential risk factors of pancreatic cancer for cases and controls.

Table 1: Comparison of the cases and controls for age, diabetes-related conditions, body mass index, and cigarette smoking

Characteristics	Case (N=153)	Control (N=202)	P-value	OR (CI 95%)
Age at diagnosis (Mean±SD)	63.18±11.44	63.37±12.08	0.885	0.99 (0.98-1.01)
Body mass index (N [%])	Normal 37 (24.18%)	81 (40.10%)	0.001	1.09 (0.63-1.89)
	Overweight 38 (24.83%)	76 (37.62%)	0.001	3.79 (2.22-6.47)
	Obese 78 (50.99%)	45 (22.28%)	<0.001	1.00
Diabetes (N [%])	No 114 (74.51%)	168 (83.17%)	0.046	1.00
	Yes, diagnosed 2+ years ago 39 (25.49%)	34 (16.83%)	0.046	2.04 (1.25-3.32)
Cigarette smoking (N [%])	Never 143 (93.46%)	184 (91.9%)	1.00	1.00
	Ever 10 (6.54%)	18 (8.91%)	0.883	1.06 (0.45-2.46)
Opium (N [%])	Never 152 (99.35%)	198 (98.02%)	1.00	1.00
	Ever 1 (0.65%)	4 (1.98%)	-*	-*
Alcohol (N [%])	No 152 (99.35%)	202 (100%)	1.00	1.00
	Yes 1 (0.65%)	0 (0.00%)	-*	-*

* Not calculable

Only one of the cases had ever used opium and alcohol. So we did not include these risk factors of PC in our analysis. Overall, 10 cases (6.54%) compared with 18 controls (8.9%) had ever smoked cigarette, resulting in an OR: 1.06 (95% CI: 0.45 - 2.46).

78 cases (50.99%) and 45 (22.28%) controls had...
obesity resulting in OR: 3.79 (95% CI; 2.22 - 6.47). 39 (25.49%) cases and 34 (16.83%) controls had two years or longer duration of diabetes, prior to pancreatic cancer diagnosis resulting in OR: 0.046 (95% CI; 1.25 - 3.32).

Table 2 shows adjusted and unadjusted results for no association between menstrual and reproductive factors and PC.

Table 3 shows that about 75% of PCs were located in the head of pancreas and most PCs were diagnosed in advance stages.

DISCUSSION
The risk of developing PC increases with age. The average age at the time of PC diagnosis is 70 and most PCs are diagnosed at advance stage. Our results are comparable with worldwide data in these regards. A pooled analysis of multiple cohort studies, has shown a higher risk of PC among current smokers compared with never smokers (OR: 1.77, 95% CI 1.38 - 2.26). The risk is increased significantly with greater intensity, duration, and cumulative smoking dose. Although smoking is one of the most important risk factors for PC, cigarette smoking was not associated with an increased risk for PC in our population as we showed in our previous study.

The present study supports the notion that having diabetes mellitus (more than two years prior to the diagnosis of PC) and obesity are significantly associated with increased incidence of PC. Female steroid hormones are hypothesized to play a protective role in PC risk. Menstrual and reproductive factors, including age at menarche and menopause and parity, were not associated with PC risk in The California Teachers cohort study. Combined data from two Italian case-control studies (285 cases and 713 controls) showed an OR: 0.46 (95% CI = 0.26 - 0.85) for women with four or more births compared with nulliparous. But other factors, including age at menarche and menopause, and abortion were not associated with PC risk. In a cohort of Norwegian women (449 PC cases), age at menopause showed a mild positive association with the risk of PC, but parity did not have such an associations.

A meta-analysis in 2013 suggested that higher parity was associated with a decreased risk of PC. A recent study on
data from the Women’s Health Initiative (1003 cases of PC) shows that being parous vs. nulliparous is associated with reduced risk (HR = 0.84, 95% CI 0.70 - 1.00), and women who had one to four births are at decreased risk compared with nulliparous women, whereas women who have more than five births have no decrease in risk. Other reproductive factors and exogenous hormone use were not associated with PC risk in that study.13 Our results suggest that menstrual, reproductive, and hormonal exposures are unlikely to play a role in the risk for PC.

CONFLICT OF INTEREST

The authors declare no conflict of interest related to this work.

REFERENCES

1. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015; 136: E359-86. doi: 10.1002/ijc.29210.

2. Yeo TP, Lowenfels AB. Demographics and epidemiology of pancreatic cancer. Cancer J 2012; 18:477-84. doi: 10.1097/PPO.0b013e3182756803.

3. Klein AP, Lindström S, Mendelsohn JB, Steplowski E, Arslan AA, Bueno-de-Mesquita HB, et al. An absolute risk model to identify individuals at elevated risk for pancreatic cancer in the general population. PLoS One 2013; 8:e72311. doi: 10.1371/journal.pone.0072311.

4. Lee E, Horn-Ross PL, Rull RP, Neuhausen SL, Anton-Culver H, Ursin G, et al. Reproductive factors, exogenous hormones, and pancreatic cancer risk in the CPS. Am J Epidemiol 2013; 178:1403-13. doi: 10.1093/aje/kwt154.

5. Lucenteforte E, Zucchetto A, Bosetti C, Talamini R, Negri E, Serraino D, et al. Reproductive and hormonal factors and pancreatic cancer risk in women. Pancreas 2011; 40:460-3. doi: 10.1097/MPA.0b013e31820b986.

6. Robles-Diaz G, Duarte-Rojo A. Pancreas: a sex steroid-dependent tissue. Isr Med Assoc J 2001; 3:364-8.

7. Satake M, Sawai H, Go VLW, Satake K, Reber HA, Hines OJ, et al. Estrogen receptors in pancreatic tumors. Pancreas 2006; 33:119-27.

8. Georgiadou D, Sergentanis TN, Sakellariou S, Vlachodimитropoulos D, Psaltopoulou T, Lazaris AC, et al. Prognostic role of sex steroid receptors in pancreatic adenocarcinoma. Pathol Res Pract 2016; 212:38-43. doi: 10.1016/j.prp.2015.11.007.

9. Shakeri R, Kamangar F, Mohamadnejad M, Tabrizi R, Zamani F, Mohammadhkani A, et al. Opium use, cigarette smoking, and alcohol consumption in relation to pancreatic cancer. Medicine (Baltimore) 2016; 95:3922. doi: 10.1001/MD.000000000003922.

10. Farrokhzad S, Nedjat S, Kamangar F, Kamali M, Malekzadeh R, Pourshams A. Validity and reliability of a questionnaire designed to assess risk factors of pancreatic cancer in Iran. Arch Iran Med 2014; 17:102-5. doi: 014172/AIM.003.

11. WHO.int. BMI classification. Geneva: World health organization; 2006. [Updated 01/12/2012];Available from: http://apps.who.int/bmi/index.jsp?introPage = intro_3.html

12. The American Joint Committee on Cancer (AJCC) TNM staging system available from :https://www.cancer.org/cancer/pancreatic-cancer/detection-diagnosis-staging/staging.html.

13. Lynch SM, Vrielin A, Lubin JH, Kraft P, Mendelsohn JB, HartgePetal. Cigarette smoking and pancreatic cancer: a pooled analysis from the pancreatic cancer cohort consortium. Am J Epidemiol 2009; 170:403-13. doi: 10.1093/aje/kwp134.

14. Pang Y, Kartsonaki C, Guo Y, Bragg F, Yang L, Bian Z, et al. Diabetes, plasma glucose and incidence of pancreatic cancer: A prospective study of 0.5 million Chinese adults and a meta-analysis of 22 cohort studies. Int J Cancer 2017; 140:1781-88. doi: 10.1002/ijc.30599.

15. Michaud DS. Obesity and Pancreatic Cancer. Recent Results Cancer Res 2016; 208:95-10.

16. Heuch I, Jacobsen BK, Albrehtsen G, Kvale G. Reproductive factors and pancreatic cancer risk: a Norwegian cohort study. Br J Cancer 2008; 98:189-93.

17. Zhu B, Zou L, Han J, Chen W, Shen N, Zhong R, et al. Parity and pancreatic cancer risk: evidence from a meta-analysis of twenty epidemiologic studies. Sci Rep 2014; 4:5313. doi: 10.1038/srep05313.

18. Kabat GC, Kamensky V, Rohan TE.Reproductive factors, exogenous hormone use, and risk of pancreatic cancer in postmenopausal women. Cancer Epidemiol 2017; 49:1-7. doi: 10.1016/j.canep.2017.05.002.