Abstract

Hereditary factor X (FX) deficiency is a rare bleeding disorder more prevalent in countries with high rates of consanguineous marriage. In a prospective, open-label, multicenter phase 3 study, 25 IU/kg plasma-derived factor X (pdFX) was administered as on-demand treatment or short-term prophylaxis for 6 months to 2 years. In Turkish subjects (n=6), 60.7% of bleeds were minor. A mean of 1.03 infusions were used to treat each bleed, and mean total dose per bleed was 25.38 IU/kg. Turkish subjects rated pdFX efficacy as excellent or good for all 84 assessable bleeds; investigators judged overall pdFX efficacy to be excellent or good for all subjects. Turkish subjects had 51 adverse events; 96% with known severity were mild/moderate, and 1 (infusion-site pain) was possibly pdFX-related. These results demonstrate that 25 IU/kg pdFX is safe and effective in this Turkish cohort (ClinicalTrials.gov identifier: NCT00930176).

Keywords: Clinical trial, Clotting factor concentrate, Efficacy, Factor X deficiency, Orphan drug, Safety

Introduction

Hereditary factor X (FX) deficiency (FXD) is a rare, autosomal recessive coagulation disorder most prevalent in countries with high rates of consanguineous marriage [1,2,3,4,5,6,7,8]. Patients with severe FXD commonly present with bleeding into joints, muscles, or mucous membranes [1,3]. Hereditary FXD is often treated with fresh-frozen plasma (FFP) or prothrombin complex concentrates (PCCs) [9,10], but single-factor concentrates, when available, are recommended for treatment of rare bleeding disorders [11].

A high-purity, high-potency, plasma-derived FX concentrate (pdFX; Bio Products Laboratory Ltd., Elstree, UK) is approved in
the USA and the EU for on-demand treatment and bleeding episode control in subjects aged ≥12 years with hereditary FXD [12]. pdFX efficacy and safety were demonstrated in 5 subjects with hereditary FXD undergoing surgery [13] and in 16 subjects with hereditary FXD in a phase 3 trial conducted in the USA, the UK, Spain, Germany, and Turkey [14].

This analysis evaluated pdFX use in the Turkish cohort (a homogeneous subgroup in terms of the F10 mutation) from the phase 3 trial [14].

Materials and Methods

This was a post hoc analysis of 6 Turkish subjects enrolled in a prospective, open-label, multicenter, nonrandomized phase 3 study (ClinicalTrials.gov identifier, NCT00930176; EudraCT identifier, 2009 0111145-18) [14] with independent ethics committee approval for each study center, conducted in accordance with good clinical practice guidelines [15]. All subjects provided written informed consent.

As reported previously [14], enrolled subjects were aged ≥12 years with moderate or severe hereditary FXD (FX activity [FX:C] <5 IU/dL) with ≥1 spontaneous/menorrhagic bleed in the previous 12 months treated with FFP, PCCs, or a factor IX/X concentrate. Subjects received on-demand pdFX at 25 IU/kg for 6 months to 2 years until ≥1 bleed had been treated; pdFX was also used as short-term preventative therapy and presurgical prophylaxis [13].

Assessments

pdFX efficacy, pharmacokinetics (PK), and safety were assessed for the Turkish cohort as previously described for the overall cohort [14,16]; optional F10 genotyping was also performed [17]. Subjects evaluated treatment efficacy for each bleed, and investigators evaluated treatment efficacy for each subject. Bleeds were categorized as menorrhagic, covert, or overt, and pdFX efficacy for each bleed was categorized as “excellent,” “good,” “poor,” or “unassessable” [14]. An independent data review committee evaluated each bleed for assessability and severity.

PK assessments were performed at baseline and 6 months or after ≥1 bleed had been treated with pdFX as described previously [16]. Plasma FX:C levels were measured via a one-stage clotting assay, and incremental recovery and half-life were calculated.

Safety and tolerability assessments included adverse events (AEs), infusion-site reactions, thrombogenicity markers, and viral serology. FX inhibitor development was analyzed using activated partial thromboplastin time-based inhibitor screens and the Nijmegen-Bethesda assay.

Results

The Turkish cohort (Table 1) had a history of severe bleeds treated using FFP or PCCs; one subject (17%) and 3 subjects (50%, including the only subject with moderate FXD) had received >150 days of exposure to FFP and PCCs, respectively. All 6 subjects had the same homozygous missense mutation in the F10 gene (p.Gly262Asp), including 3 who were known relatives.

Hemostatic Efficacy

Table 1. Subjects’ demographics and clinical characteristics (Turkish cohort; n=6).

Subject number	Age	Sex	Basal FX:C (IU/dL)*	Joint	Muscle	Menorrhagia	Other*
Severe FX deficiency (plasma FX:C <1 IU/dL)							
1	20	M	<1	N	Y	NA	Y
2	19	F	<1	N	N	Y	Y
3	14	F	<1	Y	Y	Y	Y
4	17	F	<1	N	N	Y	Y
5	17	F	<1	N	N	Y	N
Moderate FX deficiency (plasma FX:C ≥1 but <5 IU/dL)							
6	12	M	1	Y	N	NA	Y

*Lowest level recorded in subject’s lifetime (including during the study), †Includes all bleeds within the year prior to study entry and all significant bleeds in the subject’s lifetime, ‡Includes gastrointestinal, mucosal (not menorrhagia), pelvic, and unknown, §This subject was documented as having a history of heavy menstrual bleeding; this had previously been reported as “no” due to lack of specific bleed details within the past year or in the subject’s lifetime. FX: Factor X, FX:C: factor X activity, N: no; Y: yes; NA: not applicable.
A total of 95 pdFX infusions (94 exposure days) were administered (mean total dose, 22,596 IU or 389 IU/kg) to treat a bleed (n=94) or for short-term preventative use (n=1) (Table 3). A mean of 1.03 infusions were used to treat each bleed, and mean total dose per bleed was 25.38 IU/kg. All 6 Turkish subjects completed the study and then received on-demand pdFX compassionate use for 1 year. During this time, 1 subject experienced a subdural hematoma successfully treated with pdFX, followed by weekly pdFX prophylaxis (2000 IU; ~30.8 IU/kg).

Subject-rated efficacy was “excellent” or “good” for each of the 84 pdFX-treated assessable bleeds. Investigators rated pdFX efficacy (on-demand, preventative, or surgical) as “excellent” in 4 subjects (67%) and “good” for 2 subjects (33%).

FX:C PK parameters following single intravenous pdFX doses did not differ significantly between baseline and repeat PK assessment visits. Mean pdFX incremental recovery was slightly lower in the Turkish cohort than the overall cohort (1.77 vs. 2.00 IU/dL per IU/kg, respectively), while the mean terminal half-life was similar (29.7 vs. 29.4 h, respectively).

Safety and Tolerability

Of 51 AEs reported by the Turkish subjects, 44 of 46 (96%) with known severity were mild or moderate. The most frequently reported AE was upper respiratory tract infection (9 events in 4 subjects, none of which were considered by the investigators to be related to pdFX). Of the 51 AEs, 1 event in 1 subject (mild infusion-site pain) was considered possibly pdFX-related; no AEs were considered probably or very likely pdFX-related, and no AEs resulted in death.

There were no inhibitors to FX, viral seroconversions, or hypersensitivity reactions to pdFX. No evidence of thrombotic events or clinical signs of thrombogenicity were observed.
During the year of compassionate use, no product-related AEs were reported. One pdFX infusion was given to treat bleeding due to a urinary tract infection during pregnancy, with no adverse effect on the baby.

Discussion

This post hoc analysis demonstrated the efficacy, PK, and safety of pdFX in Turkish subjects with moderate or severe hereditary FXD. One subject with moderate FXD (FX:C 1 IU/dL) nonetheless had severe bleeding diathesis based on his bleeding and treatment history.

The Turkish cohort required fewer infusions to treat each bleed than the overall study cohort [14] (mean, 1.03 vs. 1.21 doses) and consequently a lower total dose per bleed (mean, 25.38 vs. 31.00 IU/kg). The percentage of minor bleeds was higher in the Turkish cohort than in the overall study population (60.7% vs. 47.1%), and preventative use was much lower (mean, 0.06 vs. 1.64 infusions per month). The slightly lower mean pdFX incremental recovery among Turkish subjects versus the overall study population [16] may derive from the small sample size. Across 94 exposure days, only 1 AE in 1 subject was considered by the investigators to be possibly treatment-related.

All Turkish subjects had a homozygous F10 mutation (p.Gly262Asp) resulting in an identical amino acid substitution. A recent study of 12 Turkish patients with severe FXD identified p.Gly262Asp in 11 of 12 patients (92%), this mutation being associated with severe bleeding symptoms, suggesting the potential value of mutational screening analysis in Turkey and certain areas of Iran [18]. Other regional studies have also suggested a correlation between genotype and clinical manifestations of hereditary FXD [9,19]; additional studies are needed, however, to confirm these findings.

Conclusion

In conclusion, pdFX is the first highly purified FX concentrate developed for patients with hereditary FXD. The treatment success rate observed in Turkish subjects (100%) was comparable with that in the overall study population (98.4%) [14]. As hereditary FXD is a rare disorder, this post hoc analysis is limited by a small sample size. Nevertheless, these results demonstrate that 25 IU/kg pdFX was safe and effective in Turkish patients with moderate or severe hereditary FXD for on-demand treatment of bleeding episodes.

Acknowledgments

Fiona Fernando, PhD, and Alexandra W. Davis (Ashfield Healthcare Communications, Middletown, CT, USA) drafted and revised the manuscript based on input from authors, and Dena McWain (Ashfield Healthcare Communications) copyedited and styled the manuscript per journal requirements. The authors would like to thank the data review committee (Drs. Jørgen Ingerslev [Aarhus University Hospital, Shejby, Denmark], Carol Kasper [University of Southern California School of Medicine, Los Angeles, CA, USA], and John Hanley [Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK]) for their role in the study.

Table 3. Summary of plasma-derived FX infusions (Turkish cohort).

Infusions (n)	Total dose (IU)	Total dose (IU/kg)
Total use		
Mean	15.8	22,596
Median (range)	16.0 (12–19)	25,457 (12,312–31,308)
Use per month		
Mean	0.95	NC
Median (range)	0.98 (0.7–1.1)	NC (NC)
Treatments of bleeds		
Mean	15.7	22,444
Median (range)	16 (12–19)	25,001 (12,312–31,308)
Preventative use		
Mean	1.0	912
Use per month		
Mean	0.06	NC

*Data refer to a single infusion; therefore, medians and ranges are not presented. The single preventative dose was given following an injury to the subject's leg, prior to the appearance of swelling.
NC: Not calculated.
Ethics

Ethics Committee Approval: Ege University Medical Faculty Clinical Trials Ethics Committee (approval number: 10-11.1/14).

Informed Consent: All subjects provided written informed consent.

Authorship Contributions

Surgical and Medical Practices: A.F.Ö., T.C., Ç.T., K.K.; Concept: M.N.; Design: M.N.; Data Collection or Processing: A.F.Ö., T.C., Ç.T., M.N., K.K.; Analysis or Interpretation: M.N., K.K.; Literature Search: M.N.; Writing: M.N.

Conflict of Interest: M.N. is an employee of Bio Products Laboratory Ltd. K.K. has received investigational support from Bio Products Laboratory Ltd. Other authors of this paper have no conflicts of interest, including specific financial interests, relationships, and/or affiliations relevant to the subject matter or materials included.

Financial Disclosure: Bio Products Laboratory (Elstree, UK) provided support for this study and funding for medical writing and editorial support in the development of this manuscript. A.F.Ö.: Received educational support from Pfizer. M.N.: Employee of Bio Products Laboratory. K.K.: Advisory board member for Bayer, Novo Nordisk, Pfizer, and Shire; received educational and investigational support from Bayer, Bio Products Laboratory, CSL Behring, Novo Nordisk, Octapharma, Pfizer, and Shire.

References

1. Brown DL, Kouides PA. Diagnosis and treatment of inherited factor X deficiency. Haemophilia 2008;14:1176–1182.
2. Khair K, Kumar P, Mathias M, Efford J, Liesner R. Successful use of BPL factor X concentrate in a child with severe factor X deficiency. J Haem Pract 2014;1:8-10.
3. Peyvandi F, Mannucci PM, Lak M, Abdoullahi M, Zeinali S, Sharifian R, Perry D. Congenital factor X deficiency: spectrum of bleeding symptoms in 32 Iranian patients. Br J Haematol 1998;102:626–628.
4. Tunçbilek E, Koc I. Consanguineous marriage in Turkey and its impact on fertility and mortality. Ann Hum Genet 1994;58:321–329.
5. Güz K, Dedeoğlu N, Lüleci G. The frequency and medical effects of consanguineous marriages in Antalya, Turkey. Hereditas 1989;111:79–83.
6. Mannucci PM, Duga S, Peyvandi F. Recessively inherited coagulation disorders. Blood 2004;104:1243–1252.
7. Figgin T, Balkan C, Celkan T, Kiüş Y, Türker M, Timur Ç, Gürsel T, Kürekçi E, Duru F, Küpésiz A, Olcay L, Yilmaz Ş, Özgen Ü, Ünüvar A, Ören H, Kavaklı K. Rare coagulation disorders: a retrospective analysis of 156 patients in Turkey. Turk J Hematol 2012;29:48–54.
8. Menegatti M, Peyvandi F. Factor X deficiency. Semin Thromb Hemost 2009;35:407–415.
9. Karimi M, Vafaifar A, Haghighan S, Payande M, Eshghi P, Hoofar H, Afrasiabi A, Gerdabi J, Ardeshiri R, Menegatti M, Peyvandi F. Efficacy of prophylaxis and genotype-phenotype correlation in patients with severe Factor X deficiency in Iran. Haemophilia 2012;18:211–215.
10. Mumford AD, Ackroyd S, Alikhan R, Bowles I, Chowdary P, Grainger J, Mainwaring J, Mathias M, O’Connell N; BCSH Committee. Guidance for the diagnosis and management of the rare coagulation disorders: a United Kingdom Haemophilia Centre Doctors’ Organization guideline on behalf of the British Committee for Standards in Haematology. Br J Haematol 2014;167:304–326.
11. Giangrande P, Seitz R, Behr-Gross ME, Berger K, Hilger A, Klein H, Schramm W, Mannucci PM. Kreutz III: European consensus proposals for treatment of haemophilia with coagulation factor concentrates. Haemophilia 2014;20:322–325.
12. Bio Products Laboratory. Coagadex® Prescribing Information. Available online at http://www.coagadex.com/download/Coagadex_PI_10–2015.pdf. Accessed 17 October 2017.
13. Escobar MA, Auerwald G, Austin S, Huang JN, Norton M, Millar CM. Experience of a new high-purity factor X concentrate in subjects with hereditary factor X deficiency undergoing surgery. Haemophilia 2016;22:713–720.
14. Austin SK, Kavaklı K, Norton M, Peyvandi F, Shapiro A; FX Investigators Group. Efficacy, safety, and pharmacokinetics of a new high-purity factor X concentrate in subjects with hereditary factor X deficiency. Haemophilia 2016;22:419–425.
15. Dixon JR Jr. The International Conference on Harmonization Good Clinical Practice Guideline. Qual Assur 1998;6:65–74.
16. Austin SK, Brindley C, Kavaklı K, Norton M, Shapiro A; FX Investigators Group. Pharmacokinetics of a high-purity plasma-derived factor X concentrate in subjects with moderate or severe hereditary factor X deficiency. Haemophilia 2016;22:426–432.
17. Mitchell M, Kavaklı K, Norton M, Austin S. Genotype analysis of patients with hereditary factor X deficiency enrolled in two phase 3 studies of pdFX, a new high-purity factor X concentrate [abstract]. Blood 2015;126:3511.
18. Ecpcan S, Menegatti M, Akbayram S, Cairo A, Peyvandi F, Onar AF. Frequency of the p.Gly262Asp mutation in congenital Factor X deficiency. Eur J Clin Invest 2015;45:1087–1091.
19. Herrmann FH, Auerwald G, Ruiz-Saez A, Navarrete M, Pollmann H, Lopaciuk S, Batorova A, Wulff K; Greifswald Factor X Deficiency Study Group. Factor X deficiency: clinical manifestation of 102 subjects from Europe and Latin America with mutations in the factor 10 gene. Haemophilia 2006;12:479–489.