Triangular-Grid Billiards and Plabic Graphs

Colin Defant
Harvard

Based on joint work with Pakawut (Pro) Jiradilok.

FPSAC
July 20, 2023
The billiards permutation π of this polygon P is

$$(1 \ 3 \ 32 \ 26 \ 6 \ 30 \ 2 \ 33 \ 25 \ 12 \ 14 \ 9 \ 21 \ 19 \ 29 \ 28 \ 4 \ 31)(5 \ 24 \ 13 \ 10 \ 20 \ 27)(7 \ 22 \ 23 \ 15 \ 17)(8 \ 11 \ 18 \ 16).$$
The billiards permutation π of this polygon P is

$$(1 \ 3 \ 32 \ 26 \ 6 \ 30 \ 2 \ 33 \ 25 \ 12 \ 14 \ 9 \ 21 \ 19 \ 29 \ 28 \ 4 \ 31)(5 \ 24 \ 13 \ 10 \ 20 \ 27)(7 \ 22 \ 23 \ 15 \ 17)(8 \ 11 \ 18 \ 16).$$
The billiards permutation π of this polygon P is

$$(1 \ 3 \ 32 \ 26 \ 6 \ 30 \ 2 \ 33 \ 25 \ 12 \ 14 \ 9 \ 21 \ 19 \ 29 \ 28 \ 4 \ 31)(5 \ 24 \ 13 \ 10 \ 20 \ 27)(7 \ 22 \ 23 \ 15 \ 17)(8 \ 11 \ 18 \ 16).$$
Triangular-Grid Billiards

The billiards permutation π_P of this polygon P is

$$(1\ 3\ 32\ 26\ 6\ 30\ 2\ 33\ 25\ 12\ 14\ 9\ 21\ 19\ 29\ 28\ 4\ 31)(5\ 24\ 13\ 10\ 20\ 27)(7\ 22\ 23\ 15\ 17)(8\ 11\ 18\ 16).$$
The billiards permutation π of this polygon P is $(1 3 32 26 6 30 2 33 25 12 14 9 21 19 29 28 4 31)(5 24 13 10 20 27)(7 22 23 15 17)(8 11 18 16)$.
The billiards permutation π_P of this polygon P is

$$(1\ 3\ 32\ 26\ 6\ 30\ 2\ 33\ 25\ 12\ 14\ 9\ 21\ 19\ 29\ 28\ 4\ 31)(5\ 24\ 13\ 10\ 20\ 27)(7\ 22\ 23\ 15\ 17)(8\ 11\ 18\ 16).$$
The billiards permutation π_P of this polygon P is

$$(1 \ 3 \ 32 \ 26 \ 6 \ 30 \ 2 \ 33 \ 25 \ 12 \ 14 \ 9 \ 21 \ 19 \ 29 \ 28 \ 4 \ 31)(5 \ 24 \ 13 \ 10 \ 20 \ 27)(7 \ 22 \ 23 \ 15 \ 17)(8 \ 11 \ 18 \ 16).$$
Main Theorem

Throughout this talk, \(P \) is a polygon in the triangular grid.

Theorem (D.–Jiradilok, 2023)

\[
\text{area}(P) \geq 6 \text{cyc}(P) - 6
\]

and

\[
\text{perim}(P) \geq 7\frac{2}{2} \text{cyc}(P) - 3\frac{2}{2}.
\]

Also,

\[
\text{area}(P) = 6 \text{cyc}(P) - 6
\]

if and only if \(P \) is a “tree of unit hexagons.”

Conjecture (D.–Jiradilok, 2023)

We have

\[
\text{perim}(P) \geq 4 \text{cyc}(P) - 2.
\]
Throughout this talk, P is a polygon in the triangular grid.

Theorem (D.–Jiradilok, 2023)

We have $\text{area}(P) \geq 6 \cyc(P) - 6$ and $\text{perim}(P) \geq \frac{7}{2} \cyc(P) - \frac{3}{2}$. Also, $\text{area}(P) = 6 \cyc(P) - 6$ if and only if P is a “tree of unit hexagons.”
Main Theorem

Throughout this talk, P is a polygon in the triangular grid.

Theorem (D.–Jiradilok, 2023)

We have $\text{area}(P) \geq 6 \cdot \text{cyc}(P) - 6$ and $\text{perim}(P) \geq \frac{7}{2} \cdot \text{cyc}(P) - \frac{3}{2}$. Also, $\text{area}(P) = 6 \cdot \text{cyc}(P) - 6$ if and only if P is a “tree of unit hexagons.”

Conjecture (D.–Jiradilok, 2023)

We have $\text{perim}(P) \geq 4 \cdot \text{cyc}(P) - 2$.
Theorem (Honglin Zhu, last Friday++)

We have

\[\text{perim}(P) \geq 4 \text{cyc}(P) - 2 \]
Theorem (Honglin Zhu, last Friday++)

We have $\text{perim}(P) \geq 4 \cdot \text{cyc}(P) - 2$.
A plabic graph is a planar graph embedded in a disc such that each vertex is colored either black or white.

The trip permutation of this plabic graph is the cycle $(1\ 3\ 5\ 2\ 4)$.

Colin Defant

Triangular-Grid Billiards
A *plabic graph* is a planar graph embedded in a disc such that each vertex is colored either black or white.
A *plabic graph* is a planar graph embedded in a disc such that each vertex is colored either black or white.
A *plabic graph* is a planar graph embedded in a disc such that each vertex is colored either black or white.

![Diagram of a plabic graph](image-url)
A *plabic graph* is a planar graph embedded in a disc such that each vertex is colored either black or white.

The *trip permutation* of this plabic graph is the cycle \((1 \ 3 \ 5 \ 2 \ 4)\).

![Plabic Graph Diagram](image-url)
Plabic Graphs from Grid Polygons

Colin Defant

Triangular-Grid Billiards
Membranes are certain triangulated surfaces in Euclidean space defined by Lam and Postnikov.
Membranes are certain triangulated surfaces in Euclidean space defined by Lam and Postnikov.

There is a surjective map
\[\phi : \{ \text{membranes} \} \to \{ \text{reduced plabic graphs} \}. \]

Lam and Postnikov showed that if \(G \) has \(n \) marked boundary points, then its essential dimension is at most \(n - 1 \).

Connected reduced plabic graphs with essential dimension 2 are exactly those coming from triangular-grid polygons.
Membranes are certain triangulated surfaces in Euclidean space defined by Lam and Postnikov.

There is a surjective map
\[\varphi : \{ \text{membranes} \} \to \{ \text{reduced plabic graphs} \}. \]

The essential dimension of a reduced plabic graph \(G \) is the smallest \(d \) such that there exists a membrane \(M \subseteq \mathbb{R}^d \) with \(\varphi(M) = G \).

Lam and Postnikov showed that if \(G \) has \(n \) marked boundary points, then its essential dimension is at most \(n - 1 \).

Connected reduced plabic graphs with essential dimension 2 are exactly those coming from triangular-grid polygons.
Membranes are certain triangulated surfaces in Euclidean space defined by Lam and Postnikov.

There is a surjective map \(\varphi : \{\text{membranes}\} \rightarrow \{\text{reduced plabic graphs}\} \).

The essential dimension of a reduced plabic graph \(G \) is the smallest \(d \) such that there exists a membrane \(M \subseteq \mathbb{R}^d \) with \(\varphi(M) = G \).

Lam and Postnikov showed that if \(G \) has \(n \) marked boundary points, then its essential dimension is at most \(n - 1 \).
Membranes are certain triangulated surfaces in Euclidean space defined by Lam and Postnikov.

There is a surjective map
\[\varphi : \{ \text{membranes} \} \rightarrow \{ \text{reduced plabic graphs} \}. \]

The essential dimension of a reduced plabic graph \(G \) is the smallest \(d \) such that there exists a membrane \(M \subseteq \mathbb{R}^d \) with \(\varphi(M) = G \).

Lam and Postnikov showed that if \(G \) has \(n \) marked boundary points, then its essential dimension is at most \(n - 1 \).

Connected reduced plabic graphs with essential dimension 2 are exactly those coming from triangular-grid polygons.
Reformulation of Main Theorem

Let G be a connected reduced plabic graph with essential dimension 2. Suppose G has n marked boundary points and v vertices, and let c be the number of cycles in the trip permutation π^G.

Corollary (D.–Jiradilok, 2023)
We have $v \geq 6c - 6$ and $n \geq \frac{7}{2}c - \frac{3}{2}$.

Corollary (Honglin Zhu, last Friday++)
We have $n \geq 4c - 2$.

Colin Defant
Triangular-Grid Billiards
Let G be a connected reduced plabic graph with essential dimension 2. Suppose G has n marked boundary points and v vertices, and let c be the number of cycles in the trip permutation π_G.

Corollary (D.–Jiradilok, 2023)

We have

\[v \geq 6c - 6 \quad \text{and} \quad n \geq \frac{7}{2}c - \frac{3}{2}. \]

Corollary (Honglin Zhu, last Friday++)

We have

\[n \geq 4c - 2. \]
Let G be a connected reduced plabic graph with n marked boundary points, v vertices, and c cycles in its trip permutation.

Problem (D.–Jiradilok, 2023)

Find inequalities relating n and v to c when G is taken from some "interesting" family of plabic graphs.
Let G be a connected reduced plabic graph with n marked boundary points, v vertices, and c cycles in its trip permutation.

Problem (D.–Jiradilok, 2023)

Find inequalities relating n and v to c when G is taken from some “interesting” family of plabic graphs.
Problem (D.–Jiradilok, 2023)
Obtain analogues of our results for billiards systems in triangular-grid polygons with holes cut out.
Future Directions: Random Polygons

Question (D.–Jiradilok, 2023)

What can one say about $cyc(P)$ when P is a large random triangular-grid polygon?
Question (D.–Jiradilok, 2023)

What can one say about $\text{cyc}(P)$ when P is a large random triangular-grid polygon?
Future Directions: Unitrajectorial Polygons

Question (D.–Jiradilok, 2023)

What can one say about the triangular-grid polygons P such that $\text{cyc}(P) = 1$?

Colin Defant
Triangular-Grid Billiards
Question (D.–Jiradilok, 2023)

What can one say about the triangular-grid polygons P such that $\text{cyc}(P) = 1$?
Fix a finite set P of alcoves of the affine Coxeter arrangement of type \tilde{A}_d.

Colin Defant
Triangular-Grid Billiards
Fix a finite set P of alcoves of the affine Coxeter arrangement of type \tilde{A}_d.

Let s_0, \ldots, s_d be the set of simple reflections.
Fix a finite set P of alcoves of the affine Coxeter arrangement of type \tilde{A}_d.

Let s_0, \ldots, s_d be the set of simple reflections.

For $w \in P$ and $j \in \mathbb{Z}/(d + 1)\mathbb{Z}$, let
\[
\tau_j(w) = \begin{cases}
 s_jw & \text{if } s_jw \in P \\
 w & \text{if } s_jw \not\in P.
\end{cases}
\]
Fix a finite set P of alcoves of the affine Coxeter arrangement of type \tilde{A}_d.

Let s_0, \ldots, s_d be the set of simple reflections.

For $w \in P$ and $j \in \mathbb{Z}/(d + 1)\mathbb{Z}$, let

$$\tau_j(w) = \begin{cases} s_j w & \text{if } s_j w \in P \\ w & \text{if } s_j w \notin P. \end{cases}$$

Start at an alcove in P and apply the sequence

$$\tau_0, \tau_1, \tau_2, \ldots, \tau_d, \tau_0, \tau_1, \tau_2, \ldots, \tau_d, \tau_0, \tau_1, \tau_2, \ldots, \tau_d, \ldots.$$
Other Future Directions: Higher Dimensions

Problem (D.–Jiradilok, 2023)

Compare the number of trajectories in P with $|P|$.
Other Future Directions: Higher Dimensions

Problem (D.–Jiradilok, 2023)

Compare the number of trajectories in P with $|P|$.

Colin Defant
Triangular-Grid Billiards
THANKS!