Evaluation of Improved Milk Churner in Butter Making Efficiency in Dawuro Zone and Konta Special Woreda of Southern Nations, Nationalities, and Peoples’ Region

Endrias Dako Keshamo

Department of Livestock Food Science and Post-Harvest Technology, Southern Agricultural Research Institute, Areka, Ethiopia

Email address: endriasd@yahoo.com

To cite this article:
Endrias Dako Keshamo. Evaluation of Improved Milk Churner in Butter Making Efficiency in Dawuro Zone and Konta Special Woreda of Southern Nations, Nationalities, and Peoples’ Region. Journal of Chemical, Environmental and Biological Engineering. Vol. 3, No. 1, 2019, pp. 13-18. doi: 10.11648/j.jcebe.20190301.13

Received: May 4, 2019; Accepted: June 28, 2019; Published: October 14, 2019

Abstract: In this study traditional and improved milk processing equipment in butter making efficiency in Dawuro zone and Konta special woreda of Southern Nations Nationalities, and Peoples’ Region were evaluated. Improved milk churners with capacity 20 liter and 15liter were used in this experiment by comparing with traditional milk churner. Both training and experimental work were conducted. The result of this study shows that improved milk churner is more efficient in butter making and churning time-saving than traditional milk churner in both study areas. Longer churning time was required and a higher amount of butter yield was obtained in both traditional and improved milk churners in Tocha woreda than that of Konta special woreda. The difference in churning times and butter yield in Tocha and Konta special woreda could be attributed by the difference in churning temperatures, the volume of the churners and fat content of the milk type used. Milk and butter produced in traditional milk churner are more preferred by consumers however, both products produced in both churners were in acceptable rage by consumers. This higher sensory attribute scoring for traditional milk churner products could be familiarization of the consumers to products. Finally, improved milk churner should be encouraged for dairy farmers who are using traditional milk churner for butter making.

Keywords: Milk, Traditional Milk Churner, Improved Milk Churner, Milk Processing

1. Introduction

Ethiopia has great potential for dairy development due to its large livestock population and the favorable climate for livestock. Milk and milk products contribute considerably to the household and national economy through income and employment generation. Thus, the dairy sector is one of the potential livestock sectors that contributes to poverty alleviation and improves household nutrition in the country [9].

The milk sector in Ethiopia is expected to continue contributing to the local and national economy due to the large potential for milk development in the country, overall economic growth in the country, increased urbanization and improved policy environment [5]. However, a postharvest loss is one of the major problems on the milk of the dairy sector in the country. In Ethiopia, the milk production system accounts for about 97% of the total milk production in the country where it is difficult to transport the raw milk to the market areas or the processing plants due to poor infrastructure [11]. Only 5% reaches the terminal market area, and the rest is processed at the farm gate into different dairy products [9].

Also, there are post-harvest losses associated with poor handling and contamination, low level of technology applied in the market [4]. Efficient processing apart from extending the shelf-life of milk, add value to products increases income leading to better welfare of dairy producers. In the study area, collecting and processing milk and milk products are mainly carried out by traditional equipment, tools, and methods that take long hours. Therefore, this study was conducted to evaluate the churning efficiency of milk churners in butter making in selected areas of Southern Nations, Nationalities, and Peoples’ Region.
2. Materials

2.1. Description of the Study Area

This study was done in Dawuro zone, Tocha woreda and Konta special woreda. In Tocha Woreda Medanealem and Ediget kebeles were used and in Konta special woreda Amaya 02 and Amaya 03 kebeles were selected in their potential dairy products. Stockholders were selected purposely and trained how to operate improved milk churner during processing with comparing to the local milk churner. Forty female farmers, four woreda livestock experts and leaders, eight kebele livestock experts and leaders participated. Twenty improved milk churners (ten from Melkasa agricultural research center and ten from Soddo rural technology) were provided for forty female farmers who have potential lactating cows in two areas. Then evaluation work was done as follows: collected milk sample divided into two portions, one part churned in traditional milk churner, and another was churned in improved milk churner. Then butter making efficiency of both milk churners was evaluated. Sensory attributes of the products were analyzed by using 9-point category scales [8].

2.2. Data Analysis

The data collected were analyzed using SPSS (version 20) software. Descriptive statistics such as mean and percentages were used to summarize data as required. Probability (P) value less than 0.05 was used to determine the level of significance.

3. Results and Discussion

3.1. Evaluation of Improved Milk Churner in Butter Making Efficiency

Ten improved milk churner were purchased from the enterprise that established at Adama under Melkasa Agricultural Research Center with capacity 20 liters and based on dairy farmers preference other ten improved milk churner with capacity 15 liters were purchased from Soddo Rural Technology development are shown in figures 1a and 1b.
3.2. Comparison of Milk Churners in Butter Making Efficiency

Milk churning process and efficiency of butter yield and churning time of traditional and improved milk churners are shown in figures 3a and 3b and table 1, respectively.

The fresh milk sample was collected from selected farmers and then fermented. The fermented milk sample was divided into two equal parts. One portion was churned in improved milk churner, and another was churned in traditional milk churner (Figures 3a and 3b). The butter yield obtained in both milk churners was weighed using a digital balance as shown in Figures 4 and 5.
The average churning time of improved milk churner in Tocha woreda (35min) was shorter than the average churning time of traditional milk churner (80 min). The average churning time of improved milk churner in Konta special woreda (30 min) was shorter than the average churning time of traditional milk churner (65 min). In the current study, the churning efficiency of improved milk churner is almost twice than the churning performance of traditional milk churner in both Tocha and Konta special woreda. The average churning time required by improved milk churner and traditional milk churner in Tocha woreda is higher than that of Konta special woreda.

The average butter yield of improved milk churner in Tocha woreda (83.3g/l) was higher than the average butter yield of traditional milk churner (66.7g/l). The average butter yield of improved milk churner in Konta special woreda (76.5g/l) was higher than that of the average butter yield of traditional milk churner (58g/l). In the current study, the average butter yield obtained by improved milk churner and traditional milk churner in Tocha woreda was higher than that of Konta special woreda. The difference in churning times and butter yield in Tocha and Konta special woreda could be attributed to the difference in churning temperatures, the volume of the churners & fat content of the milk. This finding is consistent with the finding of [1] who reported that high fat content (88.3 %) was achieved at lower temperature (8°C) and optimum fat content (82.7 %) was obtained at churning temperature of 10°C dairying gives more opportunities for females to be closely involved in the daily management than other family members.

Table 1. Churning efficiency of two churners in two woredas.

Parameters	Tocha (n=6)	Konta (n=6)
Effect of churner on time of churning		
Churning time of traditional churner (minute)	80 ± 2.8^b	65 ± 7.1^a
Churning time of improved churner (minute)	35 ± 1.4^a	30 ± 4.2^a
Effect of churner on butter yield		
Butter yield in traditional churner (g/L)	66.7 ± 1.2^b	58 ± 1.6^b
Butter yield in improved churner (g/L)	83.3 ± 3.7^a	76.5 ± 6.4^a

Reported values are the mean ±SE (n=6). Means with different letters in the same column are significantly different (P<0.05)

3.3. Sensory Analysis of Processed Products

Sensory evaluation is one of the criterions for quality assessment in new product development and to meet the consumer requirements. Any new product must give satisfaction and pleasure to the consumers if it has to be a part of their eating habit [7]. Sensory evaluation such as appearance, aroma, taste and overall acceptance of milk and butter processed in traditional and improved milk churners in Tocha and Konta special woreda are shown in Figure 6 and table 3, respectively.
The appearance, aroma, taste and overall acceptance of milk and butter processed in traditional milk churner in both Tocha and Konta special woredas are more preferred by the panelists than that of milk and butter processed in improved milk churner. Milk and butter produced in traditional milk churner are more preferred by consumers however, both products produced in both milk churners are in acceptable rage by consumers. This higher sensory attribute scoring for traditional milk churner products compared with improved milk churner could be familiarization of the consumers to products. This result is agreed with previous works of [6, 10, 12, 2, 3].

4. Conclusion and Recommendations

In the current study, two milk churners in butter making efficiency in Tocha and Konta special woredas were evaluated. The result of this study shows that improved milk churner is more efficient in butter making and churning time-saving than traditional milk churner in both study areas. Using improved milk churner less churning time is required, and more amount of butter yield is obtained in both areas. Longer churning time was consumed, and higher amount of butter yield was obtained in both traditional and improved milk churners in Tocha woreda than that of Konta special woreda. The difference in churning times and butter yield in Tocha and Konta special woreda could be attributed to the difference in churning temperatures, the volume of the churners & fat content of the milk. Milk and butter produced in traditional milk churner are more preferred by consumers however, both products produced in both churners were in acceptable rage by consumers. This higher sensory attribute scoring for traditional milk churner products compared with improved milk churner could be familiarization of the consumers to the products. Hence, improved milk churner should be encouraged for dairy farmers who are using traditional milk churner for butter making.

References

[1] Adarsh M., Kalla C., Sahu A. K., Agrawal P., Bisen B. B., Chavhan, and Geetesh Sinha (2016). Development and performance evaluation of frustum cone shaped churn for small scale production of butter. J Food Sci Technol. 53 (5): 2219–2226.
[2] Aniedu, C. and Agugo, U. A. (2010). Acceptability of bread produced from hausa-potato and sweet potato composite flours. Journal of Agriculture and Social Research, 10 (2): 162-166.
[3] Endrias D, Negussie R., & Gulelat D., (2016). Effect of Blending on Selected Sweet Potato Flour with Wheat Flour on Nutritional, Anti-Nutritional and Sensory Qualities of Bread. Global Journal of Science Frontier Research: D Agriculture and Veterinary. 16 (4).
[4] Felleke G., (2003). A review of the small-scale dairy sector in Ethiopia, in milk and dairy products, postharvest losses and food safety in sub-Sahara Africa and the near East. FAO (Food and Agricultural Organization) Prevention of food losses programme.
[5] Getachew F., and G. Gashaw, (2001). The Ethiopia dairy development, a draft policy document, MOA/FAO, Addis Ababa, Ethiopia.
[6] Greene, J. L. and Bovell-Benjamin A. C. (2004). Macroscopic and sensory evaluation of bread supplemented with sweet potato flour. Journal of Food Science, 69 (4): 1-8.
[7] Masood S. B., Javaid I., Ambreen, N., Faiza, S. and Almar J., (2011). Effect of flour blending on bread characteristics, Internet Journal of Food Safety, 13: 142-149.
[8] Mepba, H. D., Lucy, E. and Nwaogijiga, S. U. (2007). Chemical composition, functional and baking properties of wheat-plantain composite flours. African Journal of Food Agriculture Nutrition and Development, 7 (1): 1-23.
[9] Mohamed A. M., Simeon E., and Yemesrach A., (2004). Dairy development in Ethiopia EPTD discussion paper No. 123. International Food Policy Research Institute, Washington, DC20006 U.S.A.

[10] Olaoye, O. A, Onilude, A. A and Idowe, O. A. (2006). Quality Characteristics of Bread Produced from Composite Flours of Wheat, Plantain and Soybeans. African Journal of Biotechnology, 5 (11): 1102-1106.

[11] Staal, S. J. and Shapiro, B. I. (1996): The economic impact of public policy on smallholder peri-urban dairy production in and around Addis Ababa. ESAP (Ethiopian Society of Animal Production), Addis Ababa, Ethiopia ESAP Publication No. 2, Pp 64.

[12] Sukhcharn, S., Riar, C. S. and Saxena, D. C. (2008). Effect of incorporating sweet potato flour to wheat flour on the quality characteristics of cookies. African Journal of Food Science, 2: 65-72.