Breaking barriers for people with voice disabilities: Combining virtual keyboards with speech synthesizers, and VoIP applications

Paulo A. Condado and Fernando G. Lobo
Breaking barriers for people with voice disabilities: Combining virtual keyboards with speech synthesizers, and VoIP applications

Paulo A. Condado
UAlg Informatics Lab
DEEI-FCT, University of Algarve
Campus de Gambelas
8000-117 Faro, Portugal
pcondado@ualg.pt

Fernando G. Lobo *
UAlg Informatics Lab
DEEI-FCT, University of Algarve
Campus de Gambelas
8000-117 Faro, Portugal
flobo@ualg.pt

Abstract

Text-to-speech technology has been broadly used to help people with voice disabilities to overcome their difficulties. With text-to-speech, a person types at a keyboard, the text is synthesized, and the sound comes out through the computer speakers.

In recent years, Voice over IP (VoIP) applications have become very popular and have been used by people worldwide. These applications allow people to talk for free over the Internet and also to make traditional calls through the Public-Switched Telephone Network (PSTN) at a small fraction of the cost offered by traditional phone companies.

We have created a system, called EasyVoice, which integrates speech synthesizers with VoIP applications. The result allows a person with motor impairments and voice disabilities to talk with another person located anywhere in the world. The benefits in this case are much stronger than the ones obtained by non-disabled people using VoIP applications. People with motor impairments sometimes can hardly use a regular or mobile phone. Thus, the advantage is not only the reduction in cost, but more important, the ability to talk at all.

1 Introduction

Communication is one of the most important factors for the development of a Human Being. Every person needs to communicate with the surrounding world because each one of us needs to be able to exchange ideas and experiences. The exchange of knowledge is the basis of our society, but unfortunately, many people with physical disabilities are unable to communicate easily with theirs friends, teachers, colleagues, and family members.

Information and communication technologies are becoming an integral part of our society. These new technologies are changing all sectors of our society, and have been used to improve the quality of life of people with physical disabilities. With the advances in computing power, new applications have been developed for helping these people. Voice synthesizers are a good example of these applications. Voice synthesis quality and the associated computational resources have advanced considerably in the last years [3, 7], and have been a key factor for a better integration of people with voice disabilities in society.

People without disabilities can easily make phone calls. However, when we are talking of disabled people, a phone call can be something almost inaccessible. Many times, people with voice disabilities are

*Also a member of IMAR - Centro de Modelação Ecológica.
dependent on a friend, a family member, or a colleague, to communicate with someone that is in another location.

This paper presents the EasyVoice system. EasyVoice is a Text-to-Speech (TTS) interface that provides an easy way for typing the desired messages to be synthesized. The application, when properly used with an external driver and a VoIP application, allows people with disabilities to call anywhere.

The paper is organized as follows. The next section presents background material which motivated the present work: Text-to-speech technology, virtual keyboards, and voice over IP applications. Then, section 3 presents the EasyVoice system, an architecture that combines existing technologies to create a novel functionality for people with voice disabilities. The paper ends with an outline of future work in section 4 and with summary and conclusions in section 5.

2 Background

This section describes background material which constitute the foundations of the present work. We start by briefly describing our past experience with text-to-speech systems. Then, we describe previous research on user interfaces specifically designed to provide people with motor impairments the ability of writing at a reasonable speed in a computer. Finally, we mention briefly mention Voice over IP applications.

2.1 Text-to-Speech technology

Our first experience with text-to-speech occurred a few years ago. At the time, a student with cerebral palsy needed to give a presentation about his final undergraduate project at the University of Algarve. These kind presentations are public, and it is common to have many people in the audience, including colleagues, friends, and family members. Since not many people in the audience could understand the student’s voice, a colleague of ours, Hamid Shahbazkia, thought about using speech synthesis for the presentation. This way, the student could type what he wanted to say and the computer could synthesize the text and deliver the corresponding audio to the audience.

The speech synthesizer that was developed at the time was based on the Mbrola project, a research work developed by Dutoit et al. whose goal was to provide high quality speech synthesizers free of use for non-commercial purposes. We started by studying the Mbrola TTS and tried to adapt it to the Portuguese language. The system can be adapted by creating rules which, in their simplest form, specify how particular sequences of letters are synthesized. In our study we found that about one hundred rules could be successfully applied to achieve a good TTS for the Portuguese language. But more rules could be easily added to improve the overall quality of the system.

A transformation computer program was implemented. It takes as input a complete Portuguese text, transforms it and sends it to the Mbrola system. As an addition to the imposed rules, we also utilized a random pitch making the output sound more human, introducing in this way an unexpected factor, since the vocal human sounds are the result of our lung pressure, glottis tension, and vocal and nasal tracts, among many others. The software initially loads all the imposed rules, reads the input text, transforms the text to lower case (since the Mbrola treats upper and lower case letters in a different way) and searches for the groups of letters, or words, where a rule can be applied. Since the output of each transformation can have another group of letters where another rule can be applied, a loop in the transformation procedure is done. Also, we needed to be careful with rules that generate infinite transformations, and to impose a looping limit.

The rules are based on word context and phonetic duration. The word context is done by checking the surrounding character or characters of the candidate rule. The rule definition file uses the symbol ‘*’ to represent all vowels, ‘+’ to represent all consonants, and ‘-’ to represent a space. As an example, the rule:
Means that the groups of letters 'que' should be changed to 'k@' with duration 100% of the speed (not changing the current output speed), if followed by a space. In fact, the 'k@' sounds much better than the 'que'. As another example, the rule:

\[ x z 60 \text{ a e o u | * } \]

Changes all the 'x' to 'z', with duration 60% of the normal duration, if the x is followed by a vowel and if it is preceded by an 'a' or 'e' or 'o' or 'u'.

Once the prototype system was built, the student with cerebral palsy had the opportunity to practice with it. The system allowed him to either type and get the voice synthesis in real time, or use the system to synthesize a text file previously stored on the computer. The final presentation was a success, with his talk being delivered in a mixed way, sometimes using the voice synthesizer, and sometimes using his own voice.

A person with voice disabilities usually also has motor disabilities. That’s often the case of people with cerebral palsy. In such cases, typing at a regular keyboard can also be a difficult thing to do, and that is an obstacle for a smooth utilization of a speech synthesizer. Because of that, special purpose user interfaces need to be considered.

### 2.2 Virtual keyboards

People with motor disabilities need an easy and accessible interface for computer interaction. For example, many individuals cannot control their hands with enough accuracy to use a regular computer keyboard, and sometimes only have the ability to control a single touch button.

Virtual keyboards are a reasonable solution to solve some of these limitations. Most virtual keyboards have a set of features to accelerate the writing process. Keyboard group scanning function and word prediction systems are among the most common features to achieve that.

With a scanning system, a set of options is presented to the user on the computer screen, and a visual cursor advances through the options, one at a time, at a specified time rate. The user responds by pressing a touch button whenever the cursor is on top of the desired option. Sometimes an option is just a container for more options, in which case the options are organized in a hierarchical fashion. Each container option is often referred to as a *group option*. For example, when a particular group option is selected, the scanning system immediately focuses on the sub-options of that group option, and again, advances the visual cursor through each of them [5, 4].

Word prediction techniques are also used for accelerate the writing process. Most mobile phones have this feature incorporated for allowing people to type text messages faster. When the user types a letter, or a set of letters, the system shows a list of possible words that have those letters as a prefix. The system does that by searching in a built-in dictionary, which can also be updated with new words. This feature allows the user to select the desired word without having to type every single letter of it, decreasing the necessary time for writing a message [2].

We have used these techniques in the past to build a virtual keyboard for our Mbrola based TTS [4]. The resulting keyboard gives the opportunity for people with severe motor disabilities to communicate more easily and faster.

Nevertheless, it is not always the case that people with voice disabilities also have severe motor problems. Sometimes, people only have minor motor problem (or even no motor problems at all). In such cases, they might not want to use the virtual keyboard for TTS, because typing directly on a physical keyboard might be faster in those cases. It is with these ideas in mind that we developed the EasyVoice TTS interface. EasyVoice has a built-in virtual keyboard, but it can be turned on or off according to the user’s preferences.
2.3 Communication with Voice over IP

Voice over IP (VoIP) applications have become very popular during the last few years. VoIP has established a commercial niche after the mid-1990s [13]. The first commercial VoIP product was produced in 1995 and it did not allow calls for regular phones. In subsequent years, however, the commercial VoIP products, as well as the quality of Internet connections, have improved considerably.

VoIP is a useful technology for millions of people worldwide. With VoIP applications such as Skype, MSN, Google Talk, or VoipBuster, people can call each other at a very small fraction of the cost of a regular phone call. The cost reduction is useful on its own, but when we think about people with voice disabilities, there is not only the cost advantage, but more important, there is the advantage of being able to communicate, something that might have not been possible for those with severe motor problems. To many people, the simple task of picking a phone and dialing a number, is something nearly impossible to achieve.

3 The EasyVoice system

We have reviewed various technologies in the previous section. Having this in mind, we thought about integrating a speech synthesizer with VoIP applications, and provide an appropriate user interface for people with motor impairments. We named the system EasyVoice, and its architecture is depicted schematically in Figure 1.

Figure 1 shows how a set of independent applications can work together to do a specific objective. Each application has its own functionality and can work independently of each other. However, they can also work together, creating something that is more than the sum of its parts. In our opinion this is a good example of systems integration and good engineering principles. Rather than building a whole new application from scratch, we combined existing applications in a novel way.

The interaction between these different software systems is as follows:

1. The EasyVoice TTS interface receives text written by a person.
2. The system searches by abbreviation, replaces each abbreviation by the full spelled word, transform the entire text into string readable by the Mbrola’s phonetic Portuguese database, and sends the text to the Mbrola synthesizer.
3. The Mbrola system converts the input text into an audio file.
4. The EasyVoice TTS interface plays the audio file which is intercepted by a virtual audio cable (VAC).
5. VAC allows us to transfer audio (WAV) streams from one application to another. This way, the audio file generated by Mbrola can be played by the EasyVoice interface and sent to a VoIP application in a transparent way.

3.1 The EasyVoice text-to-speech user interface

We have developed EasyVoice, a TTS interface that uses the Mbrola synthesizer [6]. In principle, other synthesizers could be used as well. With EasyVoice, users can choose if they want to write directly on a text box area or to open a virtual keyboard. By making the utilization of the virtual keyboard an optional feature, rather than a mandatory one, the user interface becomes more flexible and useful for a wider audience. Those who have voice disabilities but do not have severe motor problems, can choose to type in the normal way. The virtual keyboard, on the other hand, can be selected for helping users with motor disabilities, or to allow the application to be used in touch screen machines.
Figure 1: The architecture of the EasyVoice system.
The EasyVoice user interface has four main features:

- an archive of recent messages.
- a word prediction system.
- an abbreviation system.
- an optional virtual keyboard.

Figure 2 shows a screenshot of the EasyVoice user interface. There is a text panel on the top part where the user can type. Below the text panel there are two list boxes. The one on the left part is a list of recent messages, and on the right part is a list of possible words given by the word prediction system.

The archive of recent messages is a very important feature because during a conversation it is many times necessary to repeat some words or phrases, because the other person at the end of the line might have not heard the sentence well enough. With the archive in hand, the user does not need to retype the message and can simply pick it from the list again.

The word prediction system that we have implemented is based on a simple algorithm. We have a built-in Portuguese dictionary with 32334 words. The prediction system searches the dictionary for those words that have as a prefix the sequence of letters typed by the user so far. Alternative prediction systems could have also been used instead. For example, rather than having a very large built-in dictionary, with a large fraction of the vocabulary never being utilized, we could have a small dictionary with just 100-200 highly frequent words from the language. Then, the user could insert new words in the dictionary through time. This way, the word prediction system would be tailored to the user. Notice that different people have different writing and talking styles, and may use some words very frequently while other users may not use them at all. A solution like that would increase the efficiency of the prediction system considerably, and it is something that we have in mind for future work.
Another important feature is the abbreviation system. Every person uses abbreviations in their daily life, and it is something that is very popular in instant messaging software, especially among young people. For example, it is common for Portuguese people to type “qq” as an abbreviation for the other “qualquer”. Likewise, in English it is common for people to use “btw” as an abbreviation of “by the way”. Within EasyVoice, the user can define his own abbreviations (see Figure 3). The system will automatically replace each abbreviation by the full spelled word, before sending it to the speech synthesizer.

The last feature of the EasyVoice user interface is a virtual keyboard. When this feature is turned on, a keyboard pops down and the user interface becomes like the one shown in Figure 4.

The keyboard does not have a qwerty format because we believe that an alphabetic order format is more accessible for people with disabilities. The keyboard has a group scanning mechanism like the one described in section 2.2 and which we describe again schematically in Figures 5 and 6.

With the virtual keyboard incorporated, the EasyVoice user interface can be used by people with motor disabilities, and can also be used at Internet kiosks by anyone.

3.2 Voice over IP communications and EasyVoice

The most important concept behind this work is the idea of communication. The idea that people with voice disabilities are not limited to a room, and that they can use voice synthesizers to communicate with entire world. This idea integrates many concepts such as text-to-speech synthesizers, the Internet, VoIP, and user interfaces.

When we are talking of people with disabilities, a phone call can be an inaccessible thing. Fortunately, voice synthesis systems and VoIP programs can be used together for overcoming such limitations. At present time, one of most popular VoIP applications is Skype (http://www.skype.com), which provides VoIP and instant messaging services, and works behind firewalls and Network Address Translators. The integration of TTS synthesizers, like ours, with Skype, or similar programs, can change the life of thousands of people because they can now speak with anyone, anywhere.

The EasyVoice system uses a software called a Virtual Audio Cable (VAC) (see Figure 1) which was developed by Eugene Muzychenko (http://software.muzychenko.net/eng/). VAC is a Microsoft
Figure 4: The EasyVoice user interface with the virtual keyboard option turned on.

Figure 5: An example of the scanning system. There are 5 groups of keys, and the cursor advances through each group at a specified time rate.

Figure 6: In this example, the first group was selected, and now, the scanning system becomes focuses on the keys of that group, with the cursor advancing through each of the 9 letters (A,B,C,D,E,F,G,H,I), one at a time.
Windows multimedia driver allowing us to transfer audio (wave) streams from one application to another. It creates a set of “Virtual Cables” each of them consisting of a pair of the waveform input/output devices. Any application can send audio stream to an output side of a cable, and any other application can receive this stream from an input side. All transfers are made digitally, and there is no sound quality loss.

The EasyVoice user interface, when properly configured to use a driver such as VAC, can directly send the output generated from the speech synthesizer to a VoIP Software.

Communication for people with disabilities are becoming easier with new technologies. Sometimes, existing technologies must be observed from another point of view to evaluate their potential to do other functionalities. Some technologies, such as computers themselves, were originally created for helping human beings in their work and leisure activities. But these technologies can also be used to help people with disabilities to overcome their difficulties. Of course, some specific interfaces need be adapted to provide a pleasant interaction.

In our particular case, the interaction between voice synthesizers and other applications can open a new kind of perspectives for helping people with voice disabilities. A voice system always gives autonomy of speech, but sometimes that autonomy is limited due to physical barriers. These barriers are breaking down when a person with voice disabilities can make a phone call using voice systems. A simple phone call is something that people without voice disabilities take for granted, but that represents a dream to many people with voice disabilities. This dream is becoming a reality with EasyVoice. Thus, every person can communicate with friends, colleagues, and relatives, using an Internet connection, a VoIP software, and a voice system. When the user can use an Internet connection to keep in touch with other people a set of new perspectives appear and a window is open for a new world of communication, learning, and socialization.

Technology, learning, and socialization are very important factors because technology can help people to have a better education, and people with a good education are better integrated in society.

3.3 EasyVoice and learning

Nowadays, communication between students is very important in classrooms because they need to exchange experiences and ideas. Constructionist theories of education, advocated by Seymour Papert, argues that children learn by exploring their world. Children are constructors of their own knowledge, and they learn with their own mistakes [11, 12]. Communication is an important component on that theory, because students are no more “passive” receptors of knowledge. They are “knowledge makers” and information needs to be shared between all students and their teachers.

Technology provides a new kind of education. An education based on Papert’s theories where every student can use computers to investigate any given topic. Collaborative works are a reality on that kind of learning. A student needs to communicate with his/her colleagues even at home. Phone calls are a fantastic way of communication, however a student with voice disabilities is very limited to do that. EasyVoice can break down these limitations and offer the possibility of a full communication.

Distance learning can be an option too for people with disabilities. Many times, people with severe physical disabilities cannot go to school because of their physical barriers. However, they can use video-conference technology to participate in lessons. EasyVoice and VoIP technology can help people with voice disabilities in distance learning. Distance is no more a barrier or an obstacle because disabled people can participate in “regular” lessons from their own homes.

When people with disabilities are well integrated in learning environments, they have a better chance of being well integrated in society. EasyVoice can break down communication barriers and give the same possibility to people with, and without, disabilities. The life quality of these people is improved considerably when communication becomes easier and faster. With EasyVoice TTS interface, they have a tool to communicate with their friends, family, teachers, bosses, and colleagues at anyplace. It is possible because the EasyVoice TTS interface can be used in small and portable computer systems, such as Toshiba Libretto.
EasyVoice can be carried easily.

3.4 EasyVoice and cerebral palsy

Cerebral palsy is a condition that affects motor ability of a person. That motor disability is caused by a non-progressive lesion in the brain [10]. We have conducted experiments in collaboration with “Associação Portuguesa de Paralisia Cerebral” (APPC), the Portuguese Cerebral Palsy Association. Tests conducted with a Voice Touch virtual keyboard have proved that people with disabilities, who cannot speak and have severe motor disorders, are able to communicate using adapted voice synthesizer systems. EasyVoice is a natural evolution of our previous research and it is our intention to conduct further tests with people with cerebral palsy.

Cerebral palsy has been the main concern of our research. Our main objective is to improve their quality of life, and to help them to be integrated in regular schools and learning environments. That integration can be more effective when these people have a good technological support to overcome their limitations.

The EasyVoice system is being developed as a tool for helping people with disabilities and is not limited to those with cerebral palsy. Even people without motor disorders need to have a practical user interface that breaks down the barriers associated with their voice disabilities.

4 Future work

We have much work ahead to improve the EasyVoice system so that its utilization can be widespread worldwide. Some of the issues that we would like to work are listed below.

- Incorporate voice synthesizers for other languages.
- Implement alternative word prediction systems.
- Design alternative user interfaces for people with very severe motor disabilities.

So far, we have only experimented EasyVoice with a voice synthesizer adapted for the Portuguese language. We would like to extend our system to include voice synthesizers for other major languages, especially English, the most widely used language in the world.

The efficiency of our word prediction can be improved as described in section 3.1.

Finally, there are people with motor impairments which are so severe, that they cannot even press a single switch. Some people are only capable of moving their head, and others can only move their eyes. For those people, a user interface like ours is of little use, and we need to investigate alternative interfaces for those cases. Some research has been done in this area [9].

5 Summary and conclusions

This paper presented EasyVoice, a system that combines existing technologies in a novel way for helping people with disabilities. The software is available for download at http://w3.ualg.pt/~pcondado/download.php.

The development of EasyVoice can be seen as a constructionist learning experience. Just as children use LEGO blocks to create new toys, we have joined technologies to create a new tool with a new functionality.

Sometimes, the technology exists and is simply waiting for someone to have new ideas for its utilization. Most of the time, an innovation emerges from the combination of ideas. A good example of that is the creation of the World Wide Web by Tim Berners-Lee. The Web came upon existence by joining two
technologies that already existed for quite some time: (1) the TCP/IP protocol suite, and (2) the notion of Hypertext. The development of TCP/IP, on top of which the Web rides, already happened in the 1970s, providing a general communications infrastructure for linking computers together worldwide. Likewise, the notion of Hypertext, in which the reader is not constrained to read in any particular order, but instead can follow links that point directly to other parts of the document, has also been developed in the 1960s. What Berners-Lee did, according to his own words, was to marry the two notions together [1].

Our invention is nothing compared with the creation of the Web, but it has in itself many things in common with its creation. User interfaces for people with disabilities, speech synthesizers, and VoIP applications, are all technologies that already existed for quite some time. What we did was to marry them together, and by doing that, we believe we have created an innovation, something that did not exist before and that opens a window for a new world of communications, learning, and socialization, for people with voice and motor disabilities.

Acknowledgments

This work was sponsored by the Portuguese Foundation for Science and Technology (FCT/MCES) under grant POCI/CED/62497/2004. Paulo Condado’s work was also sponsored by Fundação Calouste Gulbenkian under grant Proc. 65538.

References

[1] Tim Berners-Lee. Weaving the Web: The Original Design and Ultimate Destiny of the World Wide Web by Its Inventor. Harper San Francisco, 1999.

[2] Philippe Boissiere. An overview of existing writing assistance systems. In Proceedings of the IFRATH Workshop 2003. Paris, France, 2003.

[3] P. Condado, F. Tomaz, H. Shahbazkia, and F. Lobo. Information and communication technologies for special needed people: A case study with a student with cerebral paralysis. In Advances in Technology-Based Education: Towards a Knowledge-Based society, volume 3, pages 1470–1474. Badajoz, Spain, 2003.

[4] P. A. Condado, P. F. Miquelina, S. Norte, N. Castilho, F. G. Lobo, and H. R. Shahbazkia. Information and communication technologies for people with disabilities. In Interactive Computer Aided Learning International Conference. Carinthia Technology Institute, Villach, Austria, 2004.

[5] P. W. Demasco and K. F. Mccoy. Generating text from compressed input: An intelligent interface for people with severe motor impairments. In Communications of the ACM, volume 35. 1992.

[6] T. Dutoit, V. Pagel, N. Pierret, F. Battaille, and O. Van Der Vreken. The mbrola project: Towards a set of high-quality speech synthesizers free of use for non-commercial purposes. In Proc. ICSLP’96, volume 3, pages 1393–1396. 1996.

[7] T. Dutoit and Y. Stylianou. Text-to-speech synthesis. In R. Mitkov, editor, Handbook of Computational Linguistics, chapter 17, pages 323–338. Oxford University Press, 2003.

[8] S. Guha, N. Daswani, and R. Jain. An experimental study of the skype peer-to-peer voip system. In Proceedings of IPTPS’06. Santa Barbara, CA, USA, 2006.
[9] P. Majaranta and Kari-Jouko Räihä. Twenty years of eye typing: systems and design issues. In ETRA '02: Proceedings of the 2002 symposium on Eye tracking research & applications, pages 15–22, New York, NY, USA, 2002. ACM Press.

[10] Freeman Miller. Cerebral Palsy. Springer Science+Business Media, Inc., 233 Spring Street, New York, NY 10013, USA, 2004.

[11] S. Papert. Mindstorms: Children, computers, and powerful ideas. Basic Books, New York, 2nd edition, 1993.

[12] S. Papert. The connected family: Bridging the digital generation gap. Longstreet Press, Inc., 1996.

[13] U. Varshney, A. Snow, M. Mcgivern, and C. Howard. Voice over ip. In Communications of the ACM, volume 45, pages 89–96. 2002.
