Higher ambient nitrogen dioxide is associated with an elevated risk of hospital-acquired acute kidney injury

Pinghong He1,2,*, Ruixuan Chen1,*, Liping Zhou1,*, Yanqin Li1, Licong Su1, Jin Dong1, Yan Zha2, Yuxin Lin1, Sheng Nie1, Fan Fan Hou1 and Xin Xu1, on behalf of the EACH study investigators

1Renal Division, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangzhou, China and 2Renal Division, Department of Medicine, Guizhou Provincial People’s Hospital, Guizhou Provincial Institute of Nephritic and Urinary Disease, Guiyang, China

*These authors contributed equally to this work.
Correspondence to: Xin Xu and Fan Fan Hou; E-mail: xux007@163.com and ffhouguangzhou@163.com

ABSTRACT

Background. Previous studies have suggested that long-term exposure to air pollution increases the risk of chronic kidney disease and its progression. However, the effect of air pollution on the risk of acute kidney injury (AKI) has not been studied. We aim to evaluate the transient effect of air pollution on the risk of hospital-acquired AKI (HA-AKI).

Methods. We selected from the Epidemiology of AKI in Chinese Hospitalized patients cohort AKI cases in which the onset date could be unambiguously determined. We obtained city-specific daily averages of the ambient level of particulate matter (2.5 \(\mu m \) and 10 \(\mu m \)), carbon monoxide, nitrogen dioxide (NO\(_2\)), sulfur dioxide (SO\(_2\)) and ozone (O\(_3\)) from the Ministry of Environmental Protection of China. We used the time-stratified case-crossover approach to examine the association between the ambient level of air pollutants and the risk of HA-AKI in the selected cases.

Results. A total of 11,293 AKI cases that met the inclusion and exclusion criteria were selected. In univariable analysis, the ambient levels of NO\(_2\) and SO\(_2\) were significantly associated with the risk of HA-AKI. In the multivariable analysis that incorporated all six pollutants in the same model, NO\(_2\) was the sole pollutant whose level remained associated with the risk of AKI (\(P < 0.001 \)). The relationship between the level of NO\(_2\) and the risk of HA-AKI appeared to be linear, with an estimated odds ratio of 1.063 (95% confidence interval 1.026–1.101) for each increment of 1 median absolute deviation in the exposure. The association was consistent across the subgroups stratified by age, gender, baseline estimated glomerular filtration rate, AKI severity, need for intensive care and season.

Conclusions. Higher ambient levels of NO\(_2\) are associated with an increased risk of HA-AKI in hospitalized adults in China.

Keywords: air pollution, case-crossover, hospital-acquired acute kidney injury, nitrogen dioxide
INTRODUCTION

The burden of disease and death attributable to air pollution is becoming a public health challenge worldwide, especially in developing countries [1, 2]. Numerous experimental and epidemiological studies have demonstrated that air pollution adversely affects respiratory and cardiovascular health [3–5]. Recently, long-term exposure to air pollution has also been linked to an increased risk of chronic kidney disease (CKD) in different populations [6–8]. However, the transient effect of air pollution on acute kidney diseases has not been fully studied in humans.

Acute kidney injury (AKI), characterized by an abrupt loss of kidney function, is a common and serious complication observed in hospitalized patients and is associated with increased mortality and adverse outcomes, including development and progression of CKD [9–12]. Maladaptive repairs after repeated AKIs have been recognized as a major pathological cause for CKD [13, 14]. Thus we hypothesized that exposure to air pollution may also increase the risk of hospital-acquired AKI (HA-AKI). Case-crossover is a design for investigating the transient effects of an exposure on the onset of acute outcomes [15] and is frequently used in studying the acute adverse effects of air pollution on health [16, 17]. A key feature of this design is that it requires only cases and each case serves as its own control, thus eliminating confounding by subject characteristics such as overall health status and presence of risk factors.

In this study we used a time-stratified case-crossover design to study the association between the ambient level of air pollutants, including particulate matter (2.5 μm (PM2.5) and 10 μm (PM10)), nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon monoxide (CO) and ozone (O3) and AKI in 11,293 AKI cases identified from the Epidemiology of AKI in Chinese Hospitalized patients (EACH) study [18, 19].

MATERIALS AND METHODS

Study population

The study population was drawn from the EACH study, a retrospective cohort of 30,442 hospitalized adult inpatients admitted from 2013 to 2015 at 25 tertiary academic medical centers across China [18, 19]. We obtained patient-level data from the electronic hospitalization databases and laboratory databases from the participating centers. The hospitalization records consisted of the patients’ age, sex, date of admission, diagnosis at admission, date of discharge, operational procedures, total cost incurred during the hospitalization and survival status at discharge. The laboratory data included the values and time of serum creatinine tests. The current study included 11,293 hospitalized adults with AKI whose onset dates of AKI could be unambiguously determined. The flowchart of the study population and the patients selected for subsequent analyses is presented in Supplementary data, Figure S1. The study was conducted in accordance with the Declaration of Helsinki (as revised in 2013). The study was approved by the Medical Ethics Committee of Nanfang Hospital (NFEC-2014-098) and individual consent for this retrospective analysis was waived.

Identification of AKI cases and determination of the onset dates

Assessment of the transient effect of air pollution on HA-AKI requires accurate determination of the onset date of AKI, which is only possible when serum creatinine is measured daily. In many AKI cases, the onset date cannot be accurately determined due to long intervals between serum creatinine tests. We screened patients’ creatinine data for HA-AKI events of which the onset date could be determined within ±1 day. Specifically, the creatinine data of every qualified event met the following criteria: having three consecutive creatinine tests, with values of c1, c2 and c3 and testing times of t2, t3 and t4, respectively; the time interval was <30 days between the first two tests (t2 – t1 ≤ 30 days) and ≤48 h between the second and third test (t3 – t2 ≤ 48 h); there was no evidence of AKI between t1 and t3, indicated by c2 < 26.5 μmol/L and c3/c2 < 1.5 and c1/c3 < 1.5; and there was evidence of AKI between t3 and t4, indicated by c3 – c2 ≥ 26.5 μmol/L or c4/c3 ≥ 1.5. The onset date of AKI was defined as the midpoint between the second and third test (t3 and t4). Since the true onset time of these AKI cases was bounded by t3 and t4 and the time interval between t3 and t4 was <48 h, the estimated onset time (midpoint between t3 and t4) should be within 1 day of the true onset time. For patients with multiple qualified events, only the earliest one was selected.

Exposure to air pollution

We obtained air pollution data for each city from 1 January 2014 to 31 December 2015, including daily average concentrations of PM2.5, PM10, NO2, CO, SO2 and O3 from the Ministry of Environmental Protection of China (http://zhb.gov.cn/hjzl/). Since daily air pollution data before 1 January 2014 were not available for most cities, we only included HA-AKI cases with onset dates within 2014–2015 in the analysis. We used the daily average of each air pollutant in the city where the hospital resided as the exposure of the inpatients. We also obtained the daily average temperature data of each city over the same period from the Chinese weather website (http://www.tianqi.com).

We staged AKI using the peak creatinine level within 14 days after the onset date, according to the Kidney Disease: Improving Global Outcomes (KDIGO) criteria, and classified Stages 2 and 3 AKI as severe AKI.

Statistical analysis

We used the time-stratified case-crossover approach [15] to examine the association between the daily average of each air pollutant (PM2.5, PM10, NO2, SO2, CO and O3) and HA-AKI in the selected AKI cases. In the analysis, we excluded the AKI cases that fell into one of the following categories: age <18 or ≥100 years, baseline estimated glomerular filtration rate (eGFR) <30 ml/min per 1.73 m2 and extremely low baseline creatinine values (<40 μmol/L). We used the onset dates of AKI to index the case days and selected the days that matched the onset dates by the year, the month and the day of the week as controls. We performed conditional Poisson regression analyses to estimate the effects of each air pollutant on AKI with different lag times (Lag0, 1, 2 or 3 days) and with adjustment for the daily temperature (single-pollutant models). We used these values of lag time to accommodate the possible lags between the time of exposure and AKI onset. We standardized the estimated effect size using the median absolute deviation (MAD) of each air pollutant, because the distributions of air pollutants were far from normal and MAD is a more robust statistic for the spread of distribution than standard deviation. We plotted the smoothed curves of the ambient level of each air pollutant and the risk of HA-AKI. We also performed analyses that included the six air pollutants in a single regression model (six-pollutant model).
The distributions of the exposure level in the study population, measured as the daily average concentration of the air pollutants, are summarized in Table 2. The correlations were high between PM$_{2.5}$ and PM$_{10}$ (r = 0.91); intermediate among PM, NO$_2$, SO$_2$ and CO (r = 0.5–0.7); and low between O$_3$ and other pollutants (r < 0.2) (Supplementary data, Table S1).

In the analyses of single-pollutant models, daily average levels of NO$_2$ and SO$_2$ were significantly associated with the risk of HA-AKI (Table 3). The association was the strongest when the lag time was 1–2 days and substantially attenuated with increased lag time. PM$_{2.5}$, PM$_{10}$, CO and O$_3$ were not significantly associated with the risk of HA-AKI regardless of the lag time. In the analysis that included all six pollutants in a single model, NO$_2$ was the sole pollutant whose concentration remained to be associated with the risk of HA-AKI, with an estimated relative risk (RR) of 1.063 [95% confidence interval (CI) 1.026–1.101] for each increment of one MAD in the exposure (P < 0.001). The relationship between the level of NO$_2$ and the risk of HA-AKI appeared to be linear (Figure 1).

In the subgroup analyses, the effect of exposure to NO$_2$ on the risk of HA-AKI did not significantly differ among the subgroups stratified by age (<60 years), gender, baseline eGFR (<60 mL/min/1.73 m2), AKI severity (mild and severe), need for intensive care and season (quarter of the year).

We further performed analyses to examine possible modifications of the effects of the air pollutant by age (>60 years and ≤60 years), gender (male and female), baseline eGFR (>60 and ≤60 mL/min/1.73 m2), AKI severity (mild and severe), need for intensive care and season (quarter of the year).

We performed all statistical analyses using R software, version 3.6.1 with package gnm version 1.1-1 (R Foundation for Statistical Computing, Vienna, Austria). All statistical tests were two-sided and P-values <0.05 were considered statistically significant.

RESULTS

We screened the serum creatinine data in inpatients of the EACH cohort and identified a total of 16 886 HA-AKI cases with unambiguous onset time (±1 day) according to the KDIGO criteria. We excluded the AKI cases with any of the following conditions: age <18 or ≥100 years, baseline eGFR <30 mL/min/1.73 m2 or baseline creatinine ≤40 µmol/L (Supplementary data, Figure S1). A total of 11 293 cases that met the inclusion and exclusion criteria were selected and their characteristics were summarized in Table 1. Among these, 3175 (28.1%) were severe AKI (Stage 2 or 3). The median age was 61.6 years, 67.5% were males, the median eGFR at baseline was 82 mL/min/1.73 m2 and 32.3% required intensive care during hospitalization. The number of HA-AKI cases distributed evenly among the four quarters of the year.

The distributions of the exposure level in the study population, measured as the daily average concentration of the air pollutants, are summarized in Table 2. The correlations were high between PM$_{2.5}$ and PM$_{10}$ (r = 0.91); intermediate among PM, NO$_2$, SO$_2$ and CO (r = 0.5–0.7); and low between O$_3$ and other pollutants (r < 0.2) (Supplementary data, Table S1).

In the analyses of single-pollutant models, daily average levels of NO$_2$ and SO$_2$ were significantly associated with the risk of HA-AKI (Table 3). The association was the strongest when the lag time was 1–2 days and substantially attenuated with increased lag time. PM$_{2.5}$, PM$_{10}$, CO and O$_3$ were not significantly associated with the risk of HA-AKI regardless of the lag time. In the analysis that included all six pollutants in a single model, NO$_2$ was the sole pollutant whose concentration remained to be associated with the risk of HA-AKI, with an estimated relative risk (RR) of 1.063 [95% confidence interval (CI) 1.026–1.101] for each increment of one MAD in the exposure (P < 0.001). The relationship between the level of NO$_2$ and the risk of HA-AKI appeared to be linear (Figure 1).

In the subgroup analyses, the effect of exposure to NO$_2$ on the risk of HA-AKI did not significantly differ among the subgroups stratified by age (<60 years), gender, baseline eGFR (<60 mL/min/1.73 m2), AKI severity (mild and severe), need for intensive care and season (Table 4).

DISCUSSION

To the best of our knowledge, this is the first population study to evaluate the transient effect of air pollution on the risk of HA-AKI. We observed a linear relationship between the ambient level of NO$_2$ and the risk of AKI. Every MAD increase in ambient NO$_2$ was associated with a 6.3% increase in the risk of AKI. The association was consistent across the subgroups stratified by age, gender, baseline eGFR, AKI severity, need for intensive care and season. The ambient level of SO$_2$ was also associated with the risk of AKI in the single-pollutant analysis. However, the association disappeared after adjusting for the level of NO$_2$.

More than 90% of the AKI events are attributed to ischemic injuries [20]. Previous studies have shown that exposure to air pollution increases the risk of ischemic cardiocerebral vascular disease, such as acute myocardial infarction (AMI) and stroke [21, 22]. Similar to what we observed in the cases of HA-AKI, a recent retrospective analysis found that moderate to high levels of NO$_2$ were significantly associated with a higher risk of AKI hospitalization, while O$_3$ was not shown to be a risk factor for AKI [23]. A large study in Alberta, Canada [24] found that a higher ambient level of NO$_2$, but not CO, NO, O$_3$ or PM$_{2.5}$, was associated with an elevated risk of AMI, and the association was the strongest with a 1-day lag. Meanwhile, the ambient level of...
Table 3. RRs of HA-AKI by a 1 MAD increase in the ambient level of air pollutants

Pollutant	RR (95% CI) from single-pollutant models*	RR (95% CI) from six-pollutant model with 1-day lag			
	No lag	1-day lag	2-day lag	3-day lag	1-day lag
PM_{2.5}	1.000 (0.981, 1.020)	1.008 (0.987, 1.028)	1.006 (0.986, 1.026)	1.006 (0.986, 1.026)	0.963 (0.922, 1.007)
PM₁₀	1.009 (0.986, 1.032)	1.022 (0.999, 1.047)	1.018 (0.994, 1.042)	1.023 (0.999, 1.047)	1.029 (0.980, 1.082)
NO₂	1.042 (1.016, 1.067)	1.051 (1.025, 1.077)	1.046 (1.020, 1.072)	1.036 (1.011, 1.062)	1.063 (1.026, 1.101)
SO₂	1.021 (1.001, 1.041)	1.022 (1.002, 1.043)	1.030 (1.010, 1.051)	1.017 (0.997, 1.038)	1.000 (0.975, 1.026)
CO	1.009 (0.987, 1.031)	1.014 (0.992, 1.036)	1.009 (0.987, 1.032)	1.008 (0.986, 1.030)	0.996 (0.964, 1.029)
O₃	1.003 (0.971, 1.036)	0.997 (0.965, 1.030)	1.031 (0.998, 1.065)	1.012 (0.979, 1.046)	0.988 (0.955, 1.022)

*RRs (95% CIs) were estimated from the conditional Poisson regression models with adjustment for ambient temperature and scaled by 1 MAD of the daily concentration of the air pollutant. Since a 1-day lag produced the strongest association in the single-pollutant models, the six-pollutant model was analyzed with a 1-day lag only.

FIGURE 1: The smooth curves of the ambient levels of air pollutants and the RR of HA-AKI. (A) The effect of the daily average of each air pollutant on the risk of HA-AKI was estimated from single-pollutant models. (B) The effect of the daily average of each air pollutant on the risk of HA-AKI was estimated from the six-pollutant model that included all six air pollutants in a single regression model. The 95% CIs of the estimates are given by the shaded areas.
NO₂ has also been linked to the risk of ischemic stroke [25] and vascular dementia [26]. In animal models, there is a dose-response effect of exposure to NO₂ on endothelial dysfunction and inflammatory response [27]. We speculate that ischemic AKI, together with AMI and ischemic stroke, share similar etiological pathways in acute response to changes in ambient NO₂. It is worth noting that an elevated ambient level of NO₂ may not directly cause AKI, but rather increases an individual’s susceptibility to AKI when a causative factor is present.

Previous studies have implicated long-term exposure to air pollution in the development and progression of CKD [6, 7]. Repeated AKIs have been recognized as an important cause in the etiology of CKD. Thus it is plausible that the observed effect of air pollution on the risk of CKD may be partially mediated by the increased risk of AKI as a result of elevated exposure. Among the six pollutants examined in our study, only the ambient NO₂ level appeared to be independently associated with the risk of AKI. In comparison, the associated patterns between air pollution and the risk of CKD are more complex, as multiple pollutants, including PM₂.₅, PM₁₀, NOₓ, and CO, are implicated. Further studies are needed to fully understand these differences and the underlying mechanisms.

Our study has several strengths. First, accurate determination of the onset time of AKI is crucial for estimating the transient effect of air pollution on AKI. The large size of the EACH cohort with time-stamped serum creatinine data allowed us to identify a sufficient number of AKI cases with well-defined onset dates. Second, we used a time-stratified case-crossover design in the association analysis, which is robust to possible confounding by the characteristics of the patients, such as overall health status and the presence of risk factors. Our study also has limitations. First, since all AKI cases occurred during hospitalization, use of the exposure level at the exact locations of the participating hospitals would be desirable. Instead, we used the average levels of the air pollutants in the cities where the participating hospitals were located as surrogates for the exposure. This may result in an underestimation of the effect of air pollution. Second, our study cohort was from China, where the level of air pollution is much higher than in many developed countries. Whether our findings can be generalized to other populations needs further investigation.

In summary, higher ambient levels of NO₂ were significantly associated with an increased risk of AKI in hospitalized patients in China. Ambient NO₂ is mainly derived from traffic and industrial fuel combustion and has been recognized as an important driver of increasing greenhouse gas emissions globally [28, 29]. Our findings call for more awareness among policymakers, industries, medical researchers and the public of the adverse effects of air pollution on kidney health.

SUPPLEMENTARY MATERIAL

Supplementary data are available at ckj online.

FUNDING

This work was supported by the National Natural Science Foundation of China (Key Program 82030022), National Natural Science Foundation of China (81770683, 81970586 and 81900626), Major International (Regional) Joint Research Project (81620108003), Guangzhou Regenerative Medicine and Health–Guangdong Laboratory Research Grant (2018GZRA021003) and Major Scientific and Technological Planning Project of Guangzhou (201607020004).

CONFLICT OF INTEREST STATEMENT

None declared.

DATA AVAILABILITY STATEMENT

The data underlying this article will be shared on reasonable request to the corresponding author.

ACKNOWLEDGEMENTS

The authors thank the staff and participant centers of the EACH study for their important contributions. Participant centers: Nanfang Hospital, Southern Medical University, Guangzhou, China; First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; West China Second University Hospital, Sichuan University, Chengdu, China; Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China; Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China; Children’s Hospital of Chongqing Medical University, Chongqing, China;
REFERENCES

1. Xu X, Nie S, Ding H et al. Environmental pollution and kidney diseases. Nat Rev Nephrol 2018; 14: 313–324
2. GBD 2015 Mortality and Causes of Death Collaborators. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016; 388: 1459–1544
3. Bourdrel T, Bind MA, Béjot Y et al. Cardiovascular effects of air pollution. Arch Cardiovasc Dis 2017; 110: 634–642
4. Manisalidis I, Stavropoulou E, Stavropoulos A et al. Environmental and health impacts of air pollution: a review. Front Public Health 2020; 8: 1–14
5. Burney P, Amaraal AFS. Air pollution and chronic airway disease: is the evidence always clear? Lancet 2019; 394: 2198–2200
6. Xu X, Wang G, Chen N et al. Long-term exposure to air pollution and increased risk of membranous nephropathy in China. J Am Soc Nephrol 2016; 27: 3739–3746
7. Bowe B, Xie Y, Li T et al. Particulate matter air pollution and the risk of incident CKD and progression to ESRD. J Am Soc Nephrol 2018; 29: 218–230
8. Bowe B, Xie Y, Li T et al. Associations of ambient coarse particulate matter, nitrogen dioxide, and carbon monoxide with the risk of kidney disease: a cohort study. Lancet Planet Health 2017; 1: e267–e276
9. Ostro B, Malig B, Broadwin R et al. Chronic PM2.5 exposure and inflammation: determining sensitive subgroups in middle-aged women. Environ Res 2014; 132: 168–175
10. Sørensen M, Daneshvar B, Hansen M et al. Personal PM2.5 exposure and markers of oxidative stress in blood. Environ Health Perspect 2003; 111: 161–166
11. Atkinson RW, Carey IM, Kent AJ et al. Long-term exposure to outdoor air pollution and incidence of cardiovascular diseases. Epidemiology 2013; 24: 44–53
12. Madrigano J, Kloog I, Goldberg R et al. Long-term exposure to PM2.5 and incidence of acute myocardial infarction. Environ Health Perspect 2013; 121: 192–196
13. Fiorentino M, Grandaliano G, Gasuladio L et al. Acute kidney injury to chronic kidney disease transition. Contrib Nephrol 2018; 193: 45–54
14. Ferenbach DA, Bonventre JV. Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD. Nat Rev Nephrol 2015; 11: 264–276
15. Maclure M. The case-crossover design: a method for studying transient effects on the risk of acute events. Am J Epidemiol 1991; 133: 144–153
16. Peters A, Dockery DW, Muller JE et al. Increased particulate air pollution and the triggering of myocardial infarction. Circulation 2001; 103: 2810–2815
17. Peters A, Von Klot S, Heier M et al. Cooperative health research in the region of Augsburg study group: exposure to traffic and the onset of myocardial infarction. N Engl J Med 2004; 351: 1721–1730
18. Xu X, Nie S, Liu Z et al. Epidemiology and clinical correlates of AKI in Chinese hospitalized adults. Clin J Am Soc Nephrol 2015; 10: 1510–1518
19. Xu X, Nie S, Zhang A et al. A new criterion for pediatric AKI based on the reference change value of serum creatinine. J Am Soc Nephrol 2018; 29: 2432–2442
20. Colvin R, Anthony C. Diagnostic Pathology: Kidney Diseases, 2nd edn. Amsterdam: Elsevier Health Sciences, 2015
21. Wang Z, Peng J, Liu P et al. Association between short-term exposure to air pollution and ischemic stroke onset: a time-stratified case-crossover analysis using a distributed lag nonlinear model in Shenzhen, China. Environ Health 2020; 19: 1
22. Ishii M, Seki T, Kaikita K et al. Short-term exposure to desert dust and the risk of acute myocardial infarction in Japan: a time-stratified case-crossover study. Eur J Epidemiol 2020; 35: 455–464
23. Mohammad KN, Chan EYY, Lau SY et al. Relationship between acute kidney injury, seasonal influenza, and environmental factors: a 14-year retrospective analysis. Environ Int 2021; 153: 106521
24. Wang X, Kindzierski W, Kaul P. Air pollution and acute myocardial infarction hospital admission in Alberta, Canada: a three-step procedure case-crossover study. PLoS One 2015; 10: e0132769
25. Zhu N, Li H, Han M et al. Environmental nitrogen dioxide (NO2) exposure influences development and progression of ischemic stroke. Toxicol Lett 2012; 214: 120–130
26. Li H, Xin X. Nitrogen dioxide (NO2) pollution as a potential risk factor for developing vascular dementia and its synaptic mechanisms. Chemosphere 2013; 92: 52–58
27. Mirowsky JE, Dailey LA, Devlin RB. Differential expression of pro-inflammatory and oxidative stress mediators induced by nitrogen dioxide and ozone in primary human bronchial epithelial cells. Inhal Toxicol 2016; 28: 374–382
28. Levy I, Mihele C, Lu G et al. Evaluating multipollutant exposure and urban air quality: pollutant interrelationships, neighborhood variability, and nitrogen dioxide as a proxy pollutant. Environ Health Perspect 2014; 122: 65–72
29. Intergovernmental Panel on Climate Change. Climate Change 2014: Mitigation of Climate Change—Working Group III Contribution to the IPCC Fifth Assessment Report. Cambridge: Cambridge University Press, 2015: 351–412