Optimal codes for correcting a single (wrap-around) burst of erasures

Henk D.L. Hollmann and Ludo M.G.M. Tolhuizen *

February 2, 2008

Abstract

In 2007, Martinian and Trott presented codes for correcting a burst of erasures with a minimum decoding delay. Their construction employs \([n, k]\) codes that can correct any burst of erasures (including wrap-around bursts) of length \(n - k\). They raised the question if such \([n, k]\) codes exist for all integers \(k\) and \(n\) with \(1 \leq k \leq n\) and all fields (in particular, for the binary field). In this note, we answer this question affirmatively by giving two recursive constructions and a direct one.

*The authors are with Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands; e-mail: \{henk.d.l.hollmann,ludo.tolhuizen\}@philips.com
1 Introduction

In [1], Martinian and Trott present codes for correcting a burst of erasures with a minimum decoding delay. Their construction employs \([n, k]\) codes that can correct any burst of erasures (including wrap-around bursts) of length \(n - k\). Examples of such codes are MDS codes and cyclic codes. The question is raised in [1] if such \([n, k]\) codes exist for all integers \(k\) and \(n\) with \(1 \leq k \leq n\) and all fields (in particular, over the binary field). In this note, we answer this question affirmatively by giving two recursive constructions and a direct one.

Throughout this note, all matrices and codes are over the (fixed but arbitrary) finite field \(F\), and we restrict ourselves to linear codes. Obviously, a code of length \(n\) can correct a pattern \(E\) of erasures if and only if any codeword can be uniquely recovered from its values in the \((n - |E|)\) positions outside \(E\). As a consequence, if an \([n, k]\) code can correct a pattern \(E\) of erasures, then \(n - |E| \geq k\), i.e., \(|E| \leq n - k\). We call an \([n, k]\) code optimal if it can correct any burst of erasures (including wrap-around bursts) of length \(n - k\). Equivalently, an \([n, k]\) code is optimal if knowledge of any \(k\) (cyclically) consecutive symbols from a codeword allows one to uniquely recover that codeword, or, in coding parlance, if each of the \(n\) sets of \(k\) (cyclically) consecutive codeword positions forms an information set. We call a \(k \times n\) matrix good if any \(k\) cyclically consecutive columns of \(G\) are independent. It is easy to see that a code is optimal if and only if it has a good generator matrix.

Throughout this note, we denote with \(I_k\) the \(k \times k\) identity matrix, and with \(X^T\) the transpose of the matrix \(X\).

2 A recursive construction of optimal codes

In this section, we give a recursive construction of good matrices, and hence of optimal codes. We start with a simple duality result.

Lemma 2.1 Let \(C\) be an \([n, k]\) code, and let \(C^\perp\) be its dual. If \(I \subset \{1, \ldots, n\}\) has size \(k\) and is an information set for \(C\), then \(I^* = \{1, \ldots, n\} \setminus I\) is an information set for \(C^\perp\).

Proof: By contradiction. Suppose that \(I^*\) is not an information set for \(C^\perp\). Then there is a non-zero word \(x\) in \(C^\perp\) that is zero in the positions indexed by \(I^*\). As \(x\) is in \(C^\perp\), for any word \(c \in C\) we have that

\[0 = \sum_{i=1}^{n} x_i c_i = \sum_{i \in I} x_i c_i.\]

\footnote{A more precise terminology would be "optimal for the correction of a single (wrap-around) burst of erasures", but we opted for just "optimal" for notational convenience.}
As a consequence, there are k-tuples that do not occur in I in any word of C, a contradiction. We conclude that I^* is an information set for C^\perp. \hfill \square

As a consequence, we have the following.

Corollary 2.2 A linear code is optimal if and only if its dual is optimal.

Our first theorem shows how to construct a good $k \times (k + n)$ matrix from a good $k \times n$ matrix.

Theorem 2.3 Let $G = (I_k P)$ be a good $k \times n$ matrix. Then $G' = (I_k I_k P)$ is a good $k \times (k + n)$ matrix.

Proof: Any k cyclically consecutive columns in G' either are k different unit vectors, or k cyclically consecutive columns of G. \hfill \square

Our next theorem shows how to construct a good $n \times (2n - k)$ matrix from a good $k \times n$ matrix.

Theorem 2.4 Let $G = (I_k P)$ be a good $k \times n$ matrix. The following $n \times (2n - k)$ matrix G' is good:

$$G' = \begin{pmatrix} I_{n-k} & 0 & I_{n-k} \\ 0 & I_k & P \end{pmatrix}. $$

Proof: As G is good, Corollary 2.2 implies that the generator matrix $(-PT \ I_{n-k})$ of the dual of the code generated by G is good. By cyclically shifting the columns of this matrix over $(n - k)$ positions to the right, we obtain the good matrix $(I_{n-k} - PT)$. Theorem 1 implies that $(I_{n-k} I_{n-k} - PT)$ is good, and so the matrix $H = (I_{n-k} - PT \ I_{n-k})$ obtained by cyclically shifting the columns of the former matrix over n positions, is good. Clearly, after multiplying the columns of a good matrix with non-zero field elements, we obtain a good matrix; as a consequence, $H' = (-I_{n-k} - PT \ I_{n-k})$ is good. As H' is a good full-rank parity check matrix of the code generated by G', this latter matrix is good. \hfill \square

Remark The construction from Theorem 2.4 also occurs in the proof of [1, Thm.1].

The construction from Theorem 2.3 increases the code length and fixes its dimension; the construction from Theorem 2.4 also increases the code length, but fixes its redundancy. These constructions can be combined to give a recursive construction of optimal $[n, k]$ code for all k and n. The following definition is instrumental in making this explicit.

Definition 2.5 For positive integers r and k, we recursively define the $k \times r$ matrix $P_{k,r}$ as follows:

$$P_{k,r} = \begin{cases}
I_r & \text{if } 1 \leq r < k, \\
(P_{k-r,r}) & \text{if } r = k, \\
I_k & \text{if } r > k.
\end{cases}$$
Theorem 2.6 For each positive integer k, the matrix I_k is good.
For all integers k and n with $1 \leq k < n$, the $k \times n$ matrix $(I_k \ P_{k,n-k})$ is good.

Proof: The first statement is obvious.
The second statement will be proved by induction on $k+n$. It is easily verified that it is true for $k+n = 3$. Now assume that the statement is true for all integers a, b with $1 \leq a \leq b$ and $a + b < k+n$. We consider three cases.
If $2k < n$, then by induction hypothesis $(I_k \ P_{k,n-2k})$ is good. By Theorem 2.3, $(I_k \ I_k \ P_{k,n-2k}) = (I_k \ P_{k,n-k})$ is also good.
If $2k = n$, then $(I_k \ P_{n-k}) = (I_k \ P_{k,k}) = (I_k \ I_k)$, which obviously is a good matrix. If $k < n$ and $2k > n$, the induction hypothesis implies that $(I_{2k-n} \ P_{2k-n,n-k})$ is a good $(2k-n) \times k$ matrix. By Theorem 2.4, $(I_n \ I_n) \ P_{2k-n,n-k} = (I_k \ P_{k,n-k})$ is also good.

Example 2.7 Theorem 2.6 implies that $(I_{28} \ P_{28,17})$ is a good 28×45 matrix.

According to the definition, $P_{28,17} = (I_{17} \ P_{11,17})$.

Again according to the definition, $P_{11,17} = (I_{11} \ P_{11,6})$.

Continuing in this fashion, $P_{11,6} = (I_6 \ P_{5,6})$.

Finally, $P_{5,6} = (I_5 \ P_{5,1})$, and, as can be readily seen by induction on k, $P_{k,1}$ is the all-one vector of height k.

Putting this altogether, we find that the following 28×45 matrix G is good:

$$
G = \begin{pmatrix}
I_6 & 0 & 0 & 0 & 0 & 0 & I_6 & 0 & 0 \\
0 & I_5 & 0 & 0 & 0 & 0 & I_5 & 0 & 0 \\
0 & 0 & I_6 & 0 & 0 & 0 & I_6 & 0 & 0 \\
0 & 0 & 0 & I_6 & 0 & I_5 & 0 & I_5 & P_{5,6} \\
0 & 0 & 0 & 0 & I_5 & 0 & I_5 & P_{5,6} & 0
\end{pmatrix},
$$

where $P_{5,6} = (I_5 \ I_1)$, where I_1 denotes the all-one column vector.

To close this section, we remark that with an induction argument it can be shown that for all positive integers k and r, we have $P_{k,r} = P_{r,k}^T$.

3 Adding one column to a good matrix

In Theorem 2.3 we added k columns to a good $k \times n$ matrix to obtain a good $k \times (k+n)$ matrix. In this section, we will show that it is always possible to add a single column to
a good $k \times n$ matrix in such a way that the resulting $k \times (n + 1)$ matrix is good; we also show that the in the binary case, there is a unique column that can be added. The desired result is a direct consequence of the following observation, which may be of independent interest.

Lemma 3.1 Let F be any field, and let $a_1, a_2, \ldots, a_{2k-2}$ be a sequence of vectors in F^k such that $a_i, a_{i+1}, \ldots, a_{i+k-1}$ are independent over F for $i = 1, \ldots, k - 1$. For $i = 1, \ldots, k$, let b_i be a nonzero vector orthogonal to $a_i, a_{i+1}, \ldots, a_{i+k-2}$. Then b_1, \ldots, b_k are independent over F.

Proof: For $i = 1, \ldots, k$, we define

$$V_i := \text{span}\{a_i, \ldots, a_{i+k-2}\}.$$

For an interval $[i + 1, i + s] := \{i + 1, i + 2, \ldots, i + s\}$, with $0 \leq i < i + s \leq k$, we let

$$V_{[i+1,i+s]} = V_{i+1} \cap \cdots \cap V_{i+s}$$

denote the intersection of V_{i+1}, \ldots, V_{i+s}. Note that by definition

$$V_{[i,i]} = V_{i} = b_i^\perp.$$

We claim that

$$V_{[i+1,i+s]} = \text{span}\{a_{i+s}, \ldots, a_{i+k-1}\}.$$

This is easily proven by induction on s: obviously, the claim is true for $s = 1$; if it holds for all $s' \leq s$, then

$$V_{[i+1,i+s+1]} = V_{[i+1,i+s]} \cap V_{i+s+1} = \text{span}\{a_{i+s}, \ldots, a_{i+k-1}\} \cap \text{span}\{a_{i+s+1}, \ldots, a_{i+s+k-1}\},$$

hence $V_{[i+1,i+s]}$ certainly contains $a_{i+s+1}, \ldots, a_{i+k-1}$ and does not contain a_{i+s}, since by assumption $a_{i+s} \notin \text{span}\{a_{i+s+1}, \ldots, a_{i+s+k-1}\}$.

So by our claim it follows that

$$\{0\} = V_{[1,k]} = V_1 \cap \cdots \cap V_k = b_1^\perp \cap \cdots \cap b_k^\perp,$$

hence b_1, \ldots, b_k are independent. \hfill \Box

As an immediate consequence, we have the following.

Theorem 3.2 Let M be a good $k \times n$ matrix over $GF(q)$. There are precisely $(q - 1)^k$ vectors $x \in GF(q)^k$ such that the matrix (Mx) is good.
Proof: Let $M = (m_0, m_1, \ldots, m_{n-1})$ have columns $m_0, \ldots, m_{n-1} \in GF(q)^k$. We want to find all vectors $x \in GF(q)^k$ with the property that the k vectors

$$m_{n-i}, \ldots, m_{n-1}, x, m_0, \ldots, m_{k-i-2}$$

are independent, for all $i = k-1, k-2, \ldots, 0$. So, for $i = k-1, k-2, \ldots, 0$, let b_i be a nonzero vector orthogonal to $m_{n-i}, \ldots, m_{n-1}, m_0, \ldots, m_{k-i-2}$; since M is good, the $k-1$ vectors $m_{n-i}, \ldots, m_{n-1}, m_0, \ldots, m_{k-i-2}$ are independent, and hence the vectors in (1) are independent if and only if $(x, b_i) = \lambda_i \neq 0$. Again since M is good, the $2k-2$ vectors

$$m_{n-k+1}, \ldots, m_{n-1}, m_0, \ldots, m_{k-2}$$

satisfy the conditions in Lemma 3.1 hence the vectors b_0, \ldots, b_{k-1} are independent. So for each choice of $\lambda = (\lambda_0, \ldots, \lambda_{k-1})$ with $\lambda_i \neq 0$ for each i, there is a unique vector x for which $(x, b_i) = \lambda_i$, and these vectors x are precisely the ones for which (Mx) is good. \qed

4 Explicit construction of good matrices

By starting with the $k \times k$ identity matrix, and repeatedly applying Theorem 3.2 we find that for each field F and all positive integers k and n with $n \geq k$, there exists a $k \times n$ matrix G such that

(1) the k leftmost columns of G form the $k \times k$ identity matrix, and

(2) for each j, $k \leq j \leq n$, the j leftmost columns of G form a good $k \times j$ matrix.

Note that Theorem 3.2 implies that for the binary field, these matrices are unique. It turned out that they have a simple recursive structure, which inspired our general construction.

In this section, we give, for all positive integers k and n with $k \leq n$, an explicit construction of $k \times n$ matrices over \mathbb{Z}_p, the field of integers modulo p, that satisfy the above properties (1) and (2). Note that such matrices also satisfy (1) and (2) for extension fields of \mathbb{Z}_p.

We start with describing the result for $p = 2$. Let M_1 be the matrix

$$M_1 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix},$$

and for $m \geq 1$, let M_{m+1} be the given as

$$M_{m+1} = \begin{pmatrix} M_m & 0 \\ M_m & M_m \end{pmatrix}.$$
Theorem 4.1 Let k and r be two positive integers, and let m be the smallest integer such that $2^m \geq k$ and $2^m \geq r$. Let Q be the $k \times r$ matrix residing in the lower left corner of M_m. Then for each integer j for which $k \leq j \leq k + r$, the j leftmost columns of the matrix $(I_k Q)$ form a good binary $k \times j$ matrix.

Theorem 4.1 is a consequence from our results for the general case in the remainder of this section.

We now define the matrices that are relevant for constructing good matrices over \mathbb{Z}_p.

Definition 4.2 Let p be a prime number, and let k, r be positive integers. Let m be the smallest integer such that $p^m \geq r$ and $p^m \geq k$. The $k \times r$ matrix $Q_{k,r}$ is defined as

$$Q_{k,r}(i, j) = \left(\frac{p^m - k + i - 1}{j - 1}\right)$$

for $1 \leq i \leq k, 1 \leq j \leq r$.

In Theorem 4.8 we will show that the matrix $(I_k Q_{k,r})$ is good over \mathbb{Z}_p. But first, we derive a recursive property of the Q-matrices. To this aim, we need some well-known results on binomial coefficients modulo p.

Lemma 4.3 Let p be a prime number, and let m be a positive integer. For any integer i with $1 \leq i \leq p^m - 1$, we have that $\binom{p^m}{i} \equiv 0 \mod p$.

Proof: The following proof was pointed out to us by our colleague Ronald Rietman. Let $1 \leq i \leq p^m - 1$. We have that

$$\binom{p^m}{i} = \binom{i}{i-1} \cdot \frac{p^m}{i}.$$

In the above representation of $\binom{p^m}{i}$, the nominator contains at least m factors p, while the denominator contains at most $m - 1$ factors p. \hfill \square.

Lemma 4.4 Let p be a prime number, and let m be a positive integer. Moreover, let i, j, k, ℓ be integers such that $0 \leq i, k \leq p - 1$ and $0 \leq j, \ell \leq p^m - 1$. Then we have that

$$\binom{ip^m + j}{kp^m + \ell} \equiv \binom{i}{k} \binom{j}{\ell} \mod p.$$

Proof: This is a direct consequence of Lucas’ theorem (see for example [2, Thm. 13.3.3]). We give a short direct proof. Clearly, $\binom{ip^m + j}{kp^m + \ell}$ is the coefficient of $z^{kp^m + \ell}$ in $(1 + z)^{ip^m + j}$. Now we note that

$$(1 + z)^{ip^m + j} = (1 + z)^{ip^m}(1 + z)^j = [(1 + z)^{p^m}]^i (1 + z)^j.$$

It follows from Lemma 4.3 that $(1 + z)^{p^m} \equiv 1 + z^{p^m} \mod p$, and so

$$(1 + z)^{ip^m + j} \equiv (1 + z^{p^m})^i (1 + z)^j \mod p.$$

Hence, modulo p, the coefficient of $z^{kp^m + \ell}$ in $(1 + z)^{ip^m + j}$ equals $\binom{i}{k} \binom{j}{\ell}$. \hfill \square.

6
Corollary 4.5
Let \(p \) be a prime, and let \(m \) be a positive integer. Let \(a, b, c, d \) be integers such that \(0 \leq a, c \leq p - 1 \) and \(1 \leq b, d \leq p^m \). Then we have

\[
Q_{p^{m+1},p^{m+1}}(ap^m + b, cp^m + d) \equiv \begin{pmatrix} a \\ c \end{pmatrix} Q_{p^m,p^m}(b, d) \mod p.
\]

Proof: According to the definition of \(Q_{p^{m+1},p^{m+1}} \), we have that

\[
Q_{p^{m+1},p^{m+1}}(ap^m + b, cp^m + d) = \begin{pmatrix} ap^m + b - 1 \\ cp^m + d - 1 \end{pmatrix}, \quad \text{and} \quad Q_{p^m,p^m}(b, d) = \begin{pmatrix} b - 1 \\ d - 1 \end{pmatrix}.
\]

The corollary is now obtained by application of Lemma 4.4. \(\square \)

In words, Theorem 4.5 states that \(Q_{p^{m+1},p^{m+1}} \) can be considered as a \(p \times p \) block matrix, for which each block is a multiple of \(Q_{p^m,p^m} \). For example, for \(p = 3 \), we obtain

\[
Q_{3^{n+1},3^{n+1}} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} \times Q_{3^1,3^1} = \begin{pmatrix} Q_{3^1,3^1} & 0 & 0 \\ Q_{3^1,3^1} & Q_{3^1,3^1} & 0 \\ Q_{3^1,3^1} & 2Q_{3^1,3^1} & Q_{3^1,3^1} \end{pmatrix}.
\]

For \(p = 2 \), we obtain the relation in (3).

Taking \(a = p - 1 \) and \(c = 0 \) in Theorem 4.5, we see that over \(\mathbb{Z}_p \), the \(p^m \times p^m \) block in the lower left hand corner of \(Q_{p^{m+1},p^{m+1}} \) equals \(Q_{p^m,p^m} \). Definition 4.2 implies \(Q_{k,r} \) is the \(k \times r \) matrix residing in the lower left hand corner of \(Q_{p^m,p^m} \), where \(m \) is the smallest integer that such that \(p^m \geq k \) and \(p^m \geq r \). The above observations imply that whenever \(k' \geq k \) and \(r' \geq r \), then over \(\mathbb{Z}_p \), the matrix \(Q_{k,r} \) is the \(k \times r \) submatrix in the lower left hand corner of \(Q_{k',r'} \). In particular, \(Q_{k,r+1} \) can be obtained by adding a column to \(Q_{k,r} \).

We now state and prove results on the invertibility in \(\mathbb{Z}_p \) of certain submatrices of \(Q_{k,r} \), that will be used to prove our main result in Theorem 4.8.

Lemma 4.6 Let \(n \geq 0 \) and \(b \geq 1 \). The \(b \times b \) matrix \(V_b \) with \(V_b(i,j) = \binom{n+i-1}{j-1} \) for \(1 \leq i, j \leq b \) has an integer inverse.

Proof: By induction on \(b \). For \(b = 1 \), this is obvious.

Next, let \(b \geq 2 \). Let \(S \) be the \(b \times b \) matrix with

\[
S(i,j) = \begin{cases}
1 & \text{if } i = j, \\
-1 & \text{if } i \geq 2 \text{ and } i = j + 1, \\
0 & \text{otherwise}.
\end{cases}
\]

The matrix \(S \) has an integer inverse: it is easy to check that \(S^{-1}(i,j) = 1 \) if \(i \geq j \), and 0 otherwise. We have that

\[
(SV_b)(1,j) = V_b(1,j) = \binom{n}{j-1},
\]

and
\((SV_b)(i,j) = V_b(i,j) - V_b(i-1,j) = \left(\begin{array}{c} n + i - 1 \\ j - 1 \end{array}\right) - \left(\begin{array}{c} n + i - 2 \\ j - 1 \end{array}\right) = \left(\begin{array}{c} n + i - 2 \\ j - 2 \end{array}\right)\) for \(2 \leq j \leq b\).

In other words, \(SV_b\) is of the form

\[SV_b = \begin{pmatrix} 1 & A \\ 0 & V_{b-1} \end{pmatrix}.

By induction hypothesis, \(V_{b-1}\) has an integer inverse, and so \(V_b S\) has an integer inverse (namely the matrix \(\begin{pmatrix} 1 & -AV_{b-1}^- \\ 0 & V_{b-1}^- \end{pmatrix}\)). As \(S\) has an integer inverse, we conclude that \(V_b\) has an integer inverse.

Lemma 4.7 Let \(p\) be a prime number, and let \(a \geq 0\) and \(b \geq 1\) be integers such that \(a + b \leq p^m\). The \(b \times b\) matrix \(W_b\) with \(W_b(i,j) = \left(\begin{array}{c} p^{m-1+i-j} \\ a+j-1 \end{array}\right)\) for \(1 \leq i,j \leq b\) is invertible over \(\mathbb{Z}_p\).

Proof: Similarly to the proof of Lemma 4.6, we apply induction on \(b\).

For \(b = 1\), the we have the 1x1 matrix with entry \(\left(\begin{array}{c} p^{m-1} \\ a \end{array}\right)\). By induction on \(i\), using that \(\left(\begin{array}{c} p^{m-1} \\ i \end{array}\right) = \left(\begin{array}{c} p^m \\ i \end{array}\right) - \left(\begin{array}{c} p^{m-1} \\ i-1 \end{array}\right)\) and employing Lemma 4.3 we readily find that \(\left(\begin{array}{c} p^{m-1} \\ i \end{array}\right) \equiv (-1)^i \mod p\) for \(0 \leq i \leq p^m - 1\). As a consequence, the lemma is true for \(b = 1\).

Now let \(b \geq 2\). We define the \(b \times b\) matrix \(T\) by

\[T(i,j) = \begin{cases} 1 & \text{if } i = j \\ 1 & \text{if } j \geq 2 \text{ and } i = j - 1 \\ 0 & \text{otherwise} \end{cases}\]

It is easy to check \(T\) has an integer inverse, and that \(T^{-1}(i,j) = (-1)^{i-j}\) if \(i \leq j\) and 0 otherwise. In order to show that \(W_b\) is invertible in \(\mathbb{Z}_p\), it is thus sufficient to show that \(W_b T\) is invertible in \(\mathbb{Z}_p\). By direct computation, we have that \((W_b T)(i,1) = W_b(i,1)\), and

\((W_b T)(i,j) = W_b(i,j) + W_b(i,j-1) = \left(\begin{array}{c} p^m - 1 + i - b \\ a + j - 1 \end{array}\right) + \left(\begin{array}{c} p^m - 1 + i - b \\ a + j - 2 \end{array}\right) = \left(\begin{array}{c} p^m + i - b \\ a + j - 1 \end{array}\right)\).

In particular, \((W_b T)(b,1) = \left(\begin{array}{c} p^{m-1} \\ a \end{array}\right) \equiv (-1)^a \mod p\), and for \(2 \leq j \leq b\), we have that \((W_b T)(b,j) = \left(\begin{array}{c} p^m \\ a+j-1 \end{array}\right) \equiv 0 \mod p\). We thus have that

\[W_b T \equiv \begin{pmatrix} A & W_{b-1}^- \\ (-1)^a & 0 \end{pmatrix} \mod p.

As \(W_{b-1}\) is invertible over \(\mathbb{Z}_p\), the matrix \(W_b T\) (and hence the matrix \(W_b\)) is invertible over \(\mathbb{Z}_p\). \hfill \Box

Remark The matrix in Lemma 4.7 need not have an integer inverse. For example, take \(p = 2\), \(m = 2\), \(a = 1\) and \(b = 2\). The matrix \(W_2\) equals

\[
\begin{pmatrix}
\begin{pmatrix}
2 \\
1
\end{pmatrix} &
\begin{pmatrix}
3 \\
1
\end{pmatrix}
\end{pmatrix} =
\begin{pmatrix}
2 & 3 \\
1 & 3
\end{pmatrix},
\]

8
and so $W_2^{-1} = \left(\begin{array}{cc} -1 & -1 \\ -\frac{1}{3} & \frac{2}{3} \end{array} \right)$. Note that modulo 2, W_2 equals $\left(\begin{array}{cc} 0 & 1 \\ 1 & 1 \end{array} \right)$, confirming that W_2 does have an inverse in the integers modulo $p = 2$.

We are now in a position to prove the main result of this section.

Theorem 4.8 Let k and r be positive integers. For $j = k, k + 1, \ldots, k + r$, the matrix consisting of the j leftmost columns of the matrix $(I_k \ Q_{k,r})$ is good over \mathbb{Z}_p.

Proof: We denote the matrix $(I_k \ Q_{k,r})$ by G, and the i-th column of G by g_i. Let $k \leq j \leq k + r$. To show that the matrix consisting of the columns 1,2,\ldots, j of G is good, we show that for $1 \leq i \leq j$, the vectors $g_i, g_{i+1}, \ldots, g_{i+k-1}$ are independent over \mathbb{Z}_p, where the indices are counted modulo j. This is obvious if $j = k$ and if $i = 1$, so we assume that $j \geq k + 1$ and $i \geq 2$. We distinguish between two cases.

(1) $2 \leq i \leq k$.

The vectors to consider are $e_i, \ldots, e_k, g_{k+1}, \ldots, g_{i+k-1}$ (if $i + k - 1 \leq j$), or $e_i, \ldots, e_k, g_{k+1}, \ldots, g_j, e_1, \ldots, e_{k-j+i-1}$ (if $i + k - 1 \geq j + 1$). We define $b := \min(i - 1, j - k)$. The vectors under consideration are independent if the $b \times b$ matrix consisting of the b leftmost columns of $Q_{k,r}$, restricted to rows $i - b, i - b + 1, \ldots, i = 1$, is invertible in \mathbb{Z}_p. This follows from Lemma 4.6.

(2) $i \geq k + 1$.

The vectors to consider are g_i, \ldots, g_{i+k-1} (if $i + k - 1 \leq j$), or $g_i, \ldots, g_j, e_1, \ldots, e_{k-j+i-1}$ (if $i + k - 1 \geq j + 1$). We define $b := \min(k, j - i + 1)$. The vectors under consideration are independent if the $b \times b$ matrix consisting of the b bottom entries of the columns $i - k + 1, i - k + 2, \ldots, i - k + b$ of $Q_{k,r}$ is invertible in \mathbb{Z}_p. This follows from Lemma 4.7.

\[\square\]

References

[1] E. Martinian and M. Trott, ”Delay-Optimal Burst Erasure Code Construction”, ISIT 2007, Nice, France, June 24-29, 2007, pp. 1006–1010.

[2] R.E. Blahut, *Theory and Practice of Error Control Codes*, Addison Wesley, 1983.