A note on an extension of Gelfond’s constant

ARJUN K. RATHIEa AND RICHARD B. PARISb

a Department of Mathematics, Vedant College of Engineering and Technology
(Rajasthan Technical University), Bundi, 323021, Rajasthan, India
E-Mail: arjunkumarrathie@gmail.com

b Division of Computing and Mathematics,
Abertay University, Dundee DD1 1HG, UK
E-Mail: r.paris@abertay.ac.uk

Abstract

The aim of this note is to provide a natural extension of Gelfond’s constant \(e^\pi \) using a hypergeometric function approach. An extension is also found for the square root of this constant. A few interesting special cases are presented.

Mathematics Subject Classification: 11Y60, 33B10, 33C05, 33C20

Keywords: Gelfond’s constant, hypergeometric function, Gauss summation theorem.

1. Introduction

In mathematics, Gelfond’s constant, which is named after Aleksandr Gelfond, is given by \(e^\pi \). Like both \(e \) and \(\pi \), this constant is a transcendental number. The decimal expansion of Gelfond’s constant is

\[e^\pi = 23.140692632779 \ldots \]

and its continued fraction representation is given in [4, A039661].

This number has a connection to the Ramanujan constant \(e^{\pi \sqrt{163}} = (e^\pi)^{\sqrt{163}} \). It is worth noting that this last number is almost an integer:

\[e^{\pi \sqrt{163}} \simeq 640320^3 + 744. \]

A geometrical occurrence of Gelfond’s constant arises in the sum of even-dimension unit spheres with volume \(V_{2n} = \pi^n/n! \). Then

\[\sum_{n=0}^{\infty} V_{2n} = e^\pi. \]

There are several ways of expressing Gelfond’s constant, some of which are enumerated below:

\[e^\pi = (i^\frac{1}{2})^{-2} \quad (i = \sqrt{-1}); \]
\[e^\pi = \left(\sum_{k=0}^{\infty} \frac{(-1)^k}{k!} \right)^{-4s}, \quad s = \sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1}; \]
\[e^\pi = \left(\prod_{k=1}^{\infty} k^{-\mu(k)/k} \right)^{\sigma}, \quad \sigma = \sqrt{6} \text{Li}_2(1), \]
where \(\mu(k) \) is the Möbius function and \(\text{Li}_n(x) \) is the polylogarithm function;

\[e^\pi = aF_1(-; \frac{1}{2}; \pi^2/4) + \pi aF_1(-; \frac{3}{2}; \pi^2/4), \]
where \(aF_1(-; a; z) \) is a generalised hypergeometric function that can be expressed in terms of modified \(I \)-Bessel functions of order \(\pm \frac{1}{2} \); and finally

\[e^\pi = 2F_1(i, -i; \frac{1}{2}, 1) + 2 \cdot 2F_1(\frac{1}{2} + i, \frac{1}{2} - i; \frac{3}{2}, 1), \] (1.1)
where \(2F_1(a, b; c; z) \) is the well-known Gauss hypergeometric function [2, p. 384].

The result (1.1) can be easily established by making use of the classical Gauss summation theorem

\[2F_1(a, b; c; 1) = \frac{\Gamma(c)\Gamma(c - a - b)}{\Gamma(c - a)\Gamma(c - b)} \] (1.2)
provided \(\Re(c - a - b) > 0. \)

The natural extension of the summation theorem (1.2) to the \(3F_2 \) hypergeometric series is available in the literature [3], which we shall write in the following manner:

\[3F_2 \left(\begin{array}{c} a, b, d+1 \\ c+1, d \end{array} ; 1 \right) = \frac{\Gamma(c+1)\Gamma(c - a - b)}{\Gamma(c - a + 1)\Gamma(c - b + 1)} \left(c - a - b + \frac{ab}{d} \right) \] (1.3)
provided \(d \neq 0, -1, -2, \ldots \) and \(\Re(c - a - b) > 0. \) The aim of this note is to provide a natural extension of Gelfond’s constant (1.1), and also its square root, with the help of the result (1.3). A few interesting results closely related to Gelfond’s constant and its square root are also given.

2. Extension of Gelfond’s constant

The natural extension of Gelfond’s constant to be established here is given in the following theorem.

Theorem 1 For \(d_1, d_2 \neq 0, -1, -2, \ldots \), the following result holds true:

\[e^\pi \left(\frac{1}{5d_1} + \frac{15}{32d_2} + \frac{23}{80} \right) + e^{-\pi} \left(\frac{1}{5d_1} - \frac{15}{32d_2} - \frac{7}{80} \right) \]
\[= 3F_2 \left(\begin{array}{c} i, -i, d_1 + 1 \\ \frac{3}{2}, d_1 \end{array} ; 1 \right) + 2 \cdot 3F_2 \left(\begin{array}{c} \frac{1}{2} + i, \frac{1}{2} - i, d_2 + 1 \\ \frac{3}{2}, d_2 \end{array} ; 1 \right). \] (2.1)

Proof. The derivation of (2.1) follows from application of the summation formula (1.3). We have

\[3F_2 \left(\begin{array}{c} i, -i, d_1 + 1 \\ \frac{3}{2}, d_1 \end{array} ; 1 \right) = (e^\pi + e^{-\pi}) \left(\frac{1}{10} + \frac{1}{5d_1} \right) \]
and
\[3F_2\left(\frac{1}{2} + i, \frac{1}{2} - i, d_2 + 1 ; 1 \right) = (e^\pi - e^{-\pi}) \left(\frac{3}{32} + \frac{15}{64d_2} \right). \]

Insertion of these summations into the right-hand side of (2.1) then yields the result asserted by the theorem. □

3. Corollaries

In this section, we mention some interesting special cases of our main result in (2.1).

Corollary 1 In (2.1), if we take \(d_1 = 2/(5n - 1) \) and \(d_2 = 15/(2(8n - 3)) \) for positive integer \(n \), then we obtain after a little calculation the following result:

\[ne^\pi = 3F_2\left(\frac{i}{2}, -i, \frac{5n+1}{2}, \frac{2}{5n-1} ; 1 \right) + 2 \times 3F_2\left(\frac{1}{2} + i, \frac{1}{2} - i, \frac{16n+9}{2(8n-3)} ; 1 \right). \] (3.1)

In particular, when \(n = 1 \) we recover Gelfond’s constant (1.1). For \(n = 2, 3 \) we find respectively the following results related to (1.1):

\[2e^\pi = 3F_2\left(\frac{i}{2}, -i, \frac{11}{2}, \frac{9}{2} ; 1 \right) + 2 \times 3F_2\left(\frac{1}{2} + i, \frac{1}{2} - i, \frac{41}{20} ; 1 \right) \] (3.2)

and

\[3e^\pi = 3F_2\left(\frac{i}{2}, -i, \frac{8}{2}, \frac{1}{2} ; 1 \right) + 2 \times 3F_2\left(\frac{1}{2} + i, \frac{1}{2} - i, \frac{14}{11} ; 1 \right). \] (3.3)

Corollary 2 In (2.1), if we take \(d_1 = 2/(5n - 1) \) and \(d_2 = -15/(2(8n + 3)) \) for positive integer \(n \), then we obtain after a little calculation the following result:

\[ne^{-\pi} = 3F_2\left(\frac{i}{2}, -i, \frac{5n+1}{2}, \frac{2}{5n-1} ; 1 \right) + 2 \times 3F_2\left(\frac{1}{2} + i, \frac{1}{2} - i, \frac{16n-9}{2(8n+3)} ; 1 \right). \] (3.4)

In particular, for \(n = 1, 2, 3 \) we find respectively the following results:

\[e^{-\pi} = 2F_1\left(\frac{i}{2}, -i, \frac{1}{2}, 1 ; 1 \right) \] (3.5)

\[2e^{-\pi} = 3F_2\left(\frac{i}{2}, -i, \frac{1}{2}, \frac{9}{2} ; 1 \right) + 2 \times 3F_2\left(\frac{1}{2} + i, \frac{1}{2} - i, \frac{43}{38} ; 1 \right) \] (3.6)

and

\[3e^{-\pi} = 3F_2\left(\frac{i}{2}, -i, \frac{1}{2}, \frac{1}{2} ; 1 \right) + 2 \times 3F_2\left(\frac{1}{2} + i, \frac{1}{2} - i, \frac{13}{18} ; 1 \right). \] (3.7)
Corollary 3 In (2.1), if we take \(d_1 = 1/(2(10n - 1)) \) and \(d_2 = -5/2 \) for positive integer \(n \), then we obtain after a little calculation the following result:

\[
n(e^\pi + e^{-\pi}) = 3F_2\left(\frac{i, -i, \frac{2n-1}{2(10n-1)}}{2}; \frac{1}{2}, 1 \right) + 2 \cdot 3F_2\left(\frac{1}{2} + i, \frac{1}{2} - i, -\frac{3}{2}; \frac{1}{2}, 1 \right).
\]

(3.8)

In particular, for \(n = 1, 2, 3 \) we find respectively the following results:

\[
e^\pi + e^{-\pi} = 3F_2\left(\frac{i, -i, \frac{19}{18}}{3}; \frac{1}{2}, 1 \right) + 2 \cdot 3F_2\left(\frac{1}{2} + i, \frac{1}{2} - i, -\frac{3}{2}; \frac{1}{2}, 1 \right),
\]

(3.9)

\[
2(e^\pi + e^{-\pi}) = 3F_2\left(\frac{i, -i, \frac{39}{38}}{3}; \frac{1}{2}, 1 \right) + 2 \cdot 3F_2\left(\frac{1}{2} + i, \frac{1}{2} - i, -\frac{3}{2}; \frac{1}{2}, 1 \right)
\]

(3.10)

and

\[
3(e^\pi + e^{-\pi}) = 3F_2\left(\frac{i, -i, \frac{59}{38}}{3}; \frac{1}{2}, 1 \right) + 2 \cdot 3F_2\left(\frac{1}{2} + i, \frac{1}{2} - i, -\frac{3}{2}; \frac{1}{2}, 1 \right).
\]

(3.11)

Similarly other results can be obtained.

4. The square root of Gelfond’s constant: \(e^{\pi/2} \)

Expressions for the square root of Gelfond’s constant are:

\[e^{\pi/2} = i^{-i}; \]

\[
e^{\pi/2} = \left(\sum_{k=0}^{\infty} \frac{(-1)^k}{k!} \right)^{-2s}, \quad s = \sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1};
\]

\[
e^{\pi/2} = _2F_1\left(i, -i, \frac{1}{2}; \frac{1}{2} \right) + \sqrt{2} _2F_1\left(\frac{1}{2} + i, \frac{1}{2} - i, \frac{1}{2}; \frac{1}{2} \right)
\]

(4.1)

together with the inverse expression

\[
e^{-\pi/2} = _2F_1\left(i, -i, \frac{1}{2}; \frac{1}{2} \right) - \sqrt{2} _2F_1\left(\frac{1}{2} + i, \frac{1}{2} - i, \frac{1}{2}; \frac{1}{2} \right).
\]

(4.2)

The results in (4.1) and (4.2) can be obtained by evaluating the first hypergeometric function by the second Gauss theorem and the second hypergeometric function by Bailey’s theorem viz.

\[
_2F_1\left(\frac{a}{2}, \frac{b}{2}; \frac{1}{2}(a+b+1); \frac{1}{2} \right) = \frac{\Gamma\left(\frac{1}{2}\right)\Gamma\left(\frac{1}{2}+\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}\right)}{\Gamma\left(\frac{1}{2}a+\frac{1}{2}\right)\Gamma\left(\frac{1}{2}b+\frac{1}{2}\right)}.
\]

\[
_2F_1\left(\frac{a-1}{2}, \frac{1}{2}; \frac{1}{2}c+\frac{1}{2}; \frac{1}{2} \right) = \frac{\Gamma\left(\frac{1}{2}c\right)\Gamma\left(\frac{1}{2}+\frac{1}{2}\right)}{\Gamma\left(\frac{1}{2}c+\frac{1}{2}\right)\Gamma\left(\frac{1}{2}a+\frac{1}{2}\right)}.
\]

We now derive the analogue of Theorem 1 by making use of the extension of the second Gauss and Bailey’s theorems applied to \(3F_2 \) series. These are given by [1]:

\[
_3F_2\left(\frac{a, b, d+1}{2}, \frac{d}{2}(a+b+3), d; \frac{1}{2} \right) = \frac{\Gamma\left(\frac{1}{2}\right)\Gamma\left(\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}\right)\Gamma\left(\frac{1}{2}a-\frac{1}{2}b-\frac{1}{2}\right)}{\Gamma\left(\frac{1}{2}a-\frac{1}{2}b+\frac{1}{2}\right)}.
\]
When n and d are provided

For Theorem 2

Corollary 4

\[
\begin{aligned}
\text{If in (4.5) we take } &\left[\begin{array}{c}
\frac{1}{2} (a+b-1)-ab/d \\
\Gamma\left(\frac{1}{2}a+\frac{1}{2}\right) \Gamma\left(\frac{1}{2}b+\frac{1}{2}\right)
\end{array}\right] + \frac{(a+b+1)/d-2}{\Gamma\left(\frac{1}{2}a\right) \Gamma\left(\frac{1}{2}b\right)} \\
\text{and}
\end{aligned}
\]

\[
\begin{aligned}
3F2\left(a, 1-a, d+1 \\
c+1, d
\end{aligned} : \frac{1}{2}\right) = 2^{-c} \Gamma\left(\frac{1}{2}c\right) \Gamma\left(c+1\right)
\]

\[
\begin{aligned}
\times \left\{\frac{2/d}{\Gamma\left(\frac{1}{2}c+\frac{1}{2}d\right) \Gamma\left(\frac{1}{2}c-\frac{1}{2}d+\frac{1}{2}\right)} + \frac{1-(c/d)}{\Gamma\left(\frac{1}{2}c+\frac{1}{2}d+\frac{1}{2}\right) \Gamma\left(\frac{1}{2}c-\frac{1}{2}d+\frac{1}{2}\right)} \right\},
\end{aligned}
\]

provided $d \neq 0, -1, -2, \ldots$. Then we have the following theorem:

Theorem 2 For $d_1, d_2 \neq 0, -1, -2, \ldots$, the following result holds true:

\[
e^{\pi/2} \left(\frac{1}{10d_1} + \frac{3}{16d_2} + \frac{27}{40}\right) + e^{-\pi/2} \left(\frac{3}{10d_1} - \frac{21}{16d_2} + \frac{11}{40}\right)
\]

\[
= 3F2\left(i, -i, \frac{d_1}{3}, \frac{1}{2} \right) + \sqrt{2} \times 3F2\left(\frac{1}{2} + i, \frac{1}{2}, -i, \frac{d_2}{3}, \frac{1}{2}\right). \quad (4.5)
\]

Proof. In the first $3F2$ series use (4.3) and in the second $3F2$ series use (4.4) together with standard properties of the gamma function. □

Corollary 4 If in (4.5) we take $d_1 = 1/(7n-5)$ and $d_2 = 15/(24n-14)$ for positive integer n then we find

\[
ne^{\pi/2} = 3F2\left(i, -i, \frac{7n-4}{3}, \frac{1}{2} \right) + \sqrt{2} \times 3F2\left(\frac{1}{2} + i, \frac{1}{2}, -i, \frac{24n+1}{24n-14}, \frac{1}{2}\right). \quad (4.6)
\]

When $n = 1$ we recover (4.1). For $n = 2, 3$ we find respectively the following results:

\[
\begin{aligned}
2e^{\pi/2} &= 3F2\left(i, -i, \frac{10}{3}, \frac{1}{2} \right) + \sqrt{2} \times 3F2\left(\frac{1}{2} + i, \frac{1}{2}, -i, \frac{49}{153}, \frac{1}{2}\right) \quad (4.7)
\end{aligned}
\]

and

\[
3e^{\pi/2} = 3F2\left(i, -i, \frac{17}{3}, \frac{1}{2} \right) + \sqrt{2} \times 3F2\left(\frac{1}{2} + i, \frac{1}{2}, -i, \frac{27}{80}, \frac{1}{2}\right). \quad (4.8)
\]

Similarly other results can be obtained.

References

[1] Y.S. Kim, M.A. Rakha and A.K. Rathie, Extensions of certain classical summation theorems for the series $2F1, 3F2$ and $4F3$ with applications in Ramanujan’s summations, Int. J. Math. Sci., Article ID 309503, 26 pages, 2010.

[2] F.W.J. Olver, D.W. Lozier, R.F. Boisvert and C.W. Clark (eds.), *NIST Handbook of Mathematical Functions*, Cambridge University Press, Cambridge, 2010.

[3] A.P. Prudnikov, Yu.A. Brychkov and O.I. Marichev, *Integrals and Series: Special Functions*, Vol. 3, Gordon and Breach, New York, 1988.

[4] N.J.A. Sloane, On-line Encyclopedia of Integer Sequences, 2008.