Effect of Solvent on the Phytochemical Extraction and GC-MS Analysis of Gymnema sylvestre

Sundarapandian Subramanian¹, Mohammed Junaid Hussain Dowlath¹, Sathish Kumar Karuppannan¹, Saravanan M², Kantha Devi Arunachalam¹,*

¹Center for Environmental Nuclear Research Research, Directorate of Research, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, INDIA, ²Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, INDIA.

ABSTRACT

The medicinal plant Gymnema sylvestre found in the Indian subcontinent and Srilanka is known for its anti-diabetic, diuretic, anti-obesity, anti-cancer, antimicrobial, anti-inflammatory properties. The current study is focused on the phyto compound extraction efficiency of different solvents like ethanol, methanol, ethyl acetate, hexane, benzene and chloroform by gas chromatography–mass spectrometry analysis of Gymnema sylvestre. From the results, it is concluded that G. sylvestre leaves extracts contains more than 38 phyto compounds with natural antioxidants potential. Further analysis of the extract will help in identifying the effective compounds which can be of potent use in the pharmacological field.

Key words: Gymnema sylvestre, Medicinal plants, chromatography, plant constituents, Cold maceration.

INTRODUCTION

Since time immemorial, various parts of the plants such as leaves, roots, stem etc. are being used to treat number of diseases and infections. India is blessed with and is a source for variety of herbal plants with medicinal properties. Gymnema sylvestre is a woody climber shrub from the family of Apocynaceae. Gymnema genus has 50 species in the genus. It is native to India, Australia, Africa and China. It is found to be grown well in the tropical regions. Gymnema sylvestre is an important plant with medicinal properties. In local languages of India, it is called as Sakkarai koll which literally means “destroyer of sugar”¹. Because of the medicinal importance, this plant is used in the preparation of formulated medicine for treating various health ailments. In Indian Ayurvedic medicine system, G.sylvestre is used for treating diabetes. Therapeutically, crude extract of this plant is used as a diuretic, to cure stomachic, eye complaints, asthma, chronic cough, cardiopathy, constipation, piles etc. Apart from these, various pharmacological and biological activities such as antibacterial, antiviral, antifungal, anti-inflammatory, anticancer has been reported²⁻⁵.

Due to the side effects associated with allopathic medicines, in recent years, research interests have turned towards plant-based phytochemicals in treating various diseases⁶. Phytochemicals from medicinal plants are used in formulations of various healthcare nutraceuticals and cosmetics products. The phytochemicals of G. sylvestre have been effective in controlling diabetes⁷. The phytochemical compounds like phenols, flavonoids, terpenoids, saponins, tannins of the plants are the base for modern day allopathic medicines. The active components of allopathic drugs constitute about 25 – 40% of plant-based origins⁸. The literature survey revealed that no work has been done to compare the effect of solvents on biochemical constituents of G.sylvestre plant extracts. To the best of our knowledge, no study has been conducted to study the effect of agroclimatic location on the antioxidant activity of G. sylvestre leaves. In this study, the plant samples collected from different regions of Tamil Nadu were evaluated for their antioxidant activities and the sample showing high level of antioxidant activity was extracted with six different solvents like ethyl acetate, ethanol, methanol, chloroform, hexane and benzene. The phytochemical constituents of the crude extracts of G. sylvestre of the different solvents were characterized by GCMS analysis. This study will reveal the relationship between the effect of sampling locations to the quantity and quality of the phytochemicals and its antioxidant activities of the plant sample and also the effect of solvents on the phytochemical availability in the crude extract. This will help to select the suitable solvent based on the actual application of the extract.

MATERIAL AND METHODS

Chemicals

All the chemical used in the study were of analytical grade and are purchased from Sisco Research Laboratories, India. The DPPH was purchased from Sigma, India.

Plant sample

G. sylvestre leaves collected during the month of November 2016. The collected plant samples were identified and authenticated by Dr. G.V.S. Murthy, Botanical Survey of India (Ref No: BSI/ SRC/5/23/2016/tech/215). The leaves were washed with running tap water, distilled water and shade dried at room temperature. The dried leaves were ground by using a laboratory blender. The pulverized samples were stored in cold storage for further usage.

Cite this article: Subramanian S, Dowlath MJH, Karuppannan SK, Saravanan M, Arunachalam KD. Effect of Solvent on the Phytochemical Extraction and GC-MS Analysis of Gymnema sylvestre. Pharmacogn J. 2020;12(4):749-61.
For the present study, during the same month, the *G. sylvestre* plants were collected from seven different locations of Tamil Nadu (Figures 1 & 2) such as

1. Shenbagadevi falls at Courtrallam on the Western Ghats in Tirunelveli District
2. Thirunel, Kottamalai at Padavedu, Thiruvannamalai District
3. Irulars Tribal Women’s Welfare Society at Chengalpattu District
4. Muniyankudisai Village at Arni, Tiruvannamalai District
5. Velliangiri Hills at the Western Ghats border of Coimbatore District
6. Anthyodhaya sangham at Trichy
7. Gandhi gram Trust at Dindigul district

Effect of sampling location on antioxidant activity

The effect of locations on antioxidant activity of *G. sylvestre* plants was estimated by DPPH method following the method of Blois, 1958. The

![Figure 1: Shows the *G. sylvestre* collection spot (at column width).](image1)

![Figure 2: *Gymnema sylvestre* collection spots around Tamil Nadu (at column width).](image2)
reaction mixture (0.1 mM DPPH and extract) was vortexed, incubated and its absorbance was measured at 517 nm. The scavenging ability of the plant extracts was calculated using the following equation (1)

\[
\text{DPPH scavenging Activity (\%)} = \left(\frac{A_{\text{control}} - A_{\text{sample}}}{A_{\text{control}}} \right) \times 100 \tag{1}
\]

Where, \(A_{\text{control}} \) is the absorbance of DPPH without sample; \(A_{\text{sample}} \) is the absorbance of DPPH with sample[10] Cieśla et al.

Extraction procedure

The plant sample obtained from Courtallam is used for extraction. *G. sylvestre* leaf powder 50g was extracted with 500ml ethanol by cold maceration method for 72h. After extraction, it was filtered using Whatman N0. 41 filter paper to obtain solid particle free extract and the solvent was evaporated to dryness under vacuum using a rotary evaporator. The crude extract obtained was stored at 4 °C for further usage. The same procedure was followed for all other solvents like methanol, benzene, hexane, ethyl acetate and chloroform.

Estimation of chemical constituents by GC-MS

To determine the various volatile bioactive compounds present in each solvent extract, GC-MS analysis was conducted using SHIMADZU, QP2010 PLUS following the injecting temperature at 250°C, column temperature at 50 °C, pressure at 29.7 kPa and column flow rate at 0.72 ml/min. The total running time for the sample was 50 minutes. Based on the retention time the phytochemical compounds in various solvent extracts were identified by matching MS with available standards using NIST and Willey library.

RESULTS

DPPH radical scavenging activity

The influence of source of plant collection on the antioxidant activity was studied by DPPH method. The antioxidant activity % is presented in the Table 1. Significant influence of the location on antioxidant activity was found. Variation in the activity was witnessed with highest activity observed in the plants collected from Shenbagadevi falls at Courtallam on the Western Ghats in Tirunelveli District with 73.40% followed by Anthyodhaya sangham at Trichy 66.10%. The plants collected from Gandhigram Trust at Dindigul district showed the least activity of 36.70%.

Chemical constituents of various extracts

The leaves obtained from courtallam is used for the extraction and identification of phytochemicals using different solvents such as hexane, benzene, chloroform, ethyl acetate, methanol and ethanol. The results pertaining to GC-MS analysis (Figure 3) of the hexane crude extract of *G. sylvestre* leaves was analysed using GC-MS which lead to the identification of 36 different organic compounds is listed in the Table 2 with Phytol (10.294 %), Squalene (10.282 %), Tetratriacontane (>14 %) at various time intervals, n-Hexadecanoic acid (5.186 %), Eicosane (>10 %) at various time intervals, Stigmasterol (2.484 %), Phthalic acid, di(2-propylpentyl) ester (2.417 %), 7,9-Di-tert-butyl-1-oxaspiro (4,5) deca-6,9-diene-2,8-dione (1.804 %), Benzoic acid, 3,5-dicyclohexyl-4-hydroxy-, methyl ester (1.787 %) comprising major area.

Table 1: Antioxidant Activity of *G. sylvestre* from different locations.

S.No	Sampling locations	Antioxidant Activity (%)
1	Shenbagadevi falls (Courtallam)	73.40
2	Anthyodhaya sangham (Trichy)	66.10
3	Vellingiri Hills (Coimbatore)	65.90
4	Muniyankudisai Village (Arni)	60.60
5	Kotta malai (Padavedu)	54.80
6	Irulars Tribal Women's Welfare Society (Chengalpattu)	49.30
7	Gandhi gram Trust (Dindigul)	36.70

Figure 3: Abundance of the chemical constituents present in hexane extract from the *G. sylvestre* leaves.
34 compounds were identified by GC-MS analysis (Figure 4) in the benzene extract of *G. sylvestre*. The compounds which occupied the major percentage in the extract are Eicosane (>20 %), Tetratriacontane (>19 %), Hexadecane, 2,6,11,15-tetramethyl- (5 %), Benzoic acid, 3,3,4,4-tetramethyl- (2.770 %), Tetracosane (2.266 %), Cetene (1.883 %).

The GC-MS analysis (Figure 5) resulted in the presence of 32 compounds in it. The compounds present in the chloroform extract is given in the Table 4. Among the compounds identified Eicosane (>20 %), Phytol (8.667 %), Heptadecane, 2-methyl- (2.788 %), n-Hexadecanoic acid (2.622 %) (Table 3).

The GC-MS analysis (Figure 7) of the ethanolic *G. sylvestre* leaves extract based on the retention time on capillary column fused with silica is listed in the Table 6 with major compounds as 2-Pentanone, 1,1'-[(1-methyl-1,2-ethanediyl) bis(oxy)] bis-(5.218 %), Stigmasterol (5.966 %), Octadecane, 3-ethyl-5- (2-ethylbutyl)- (2.622 %) (Table 3).

The methanol plant extract was analysed using GC-MS (Figure 8). A total of 17 different compounds which is listed in the Table 7 where compounds comprising major percentage are 2-Pentanone, 3,3,4,4-tetramethyl- (6.211 %), Inositol, 1-deoxy- (21.218 %), 2-chloroethyl hexadecyl ester (6.100 %), Tetracosane (>5 %), Eicosane (>3 %), E-15-Heptadecenal (3.801 %), Hexadecane, 2,6,11,15-tetramethyl- (3.582 %), Triacetone, 1-bromo (3.258 %), Ethanol, 2,2-dimethoxy-1,2-diphenyl- (2.964 %), Phenol, 2,4-bis(1,1-dimethylethyl)- (2.770 %), Tetracosane (2.266 %), Cetene (1.883 %).

The Table 2: Chemical composition of *Gymnema sylvestre* from GCMS analysis.

S. No	RT min	Name of compounds	Molecular formula	Molecular weight	% of total
1	11.219	Undecane	C11H24	156	0.350
2	16.480	Benzene, 1,3-bis-(1,1-dimethylethyl)-	C14H22	190	0.770
3	17.040	Dodecane, 2,6,11-trimethyl-	C15H32	212	0.593
4	18.014	Pentadecane	C15H32	212	0.487
5	19.499	Tetradecane	C14H30	198	0.502
6	21.740	Phenol, 2,4-bis-(1,1-dimethylethyl)-	C14H22O2	206	0.448
7	22.263	Tetradecane, 2,6,10-trimethyl-	C17H36	240	0.298
8	23.140	Hexadecane	C16H34	226	1.447
9	23.700	Octadecane, 1-chloro-	C18H37Cl	288	0.307
10	24.784	Heptadecane	C17H36	240	0.301
11	24.918	Tridecane, 2-methyl-	C13H28O2	198	1.735
12	25.600	Hexadecane, 2,6,11,15-tetramethyl-	C20H42O2	282	1.396
13	26.233	1-Decan-2-yl	C16H34O	242	0.613
14	26.915	3,7,11,15-Tetramethyl-2-hexadec-1-enol	C20H40O2	296	0.463
15	27.037	Heptadecane, 2,6,10-tetramethyl-	C21H44	296	0.449
16	27.451	Dibutyl phthalate	C16H22O4	278	0.626
17	27.767	Ethanone, 2,2-dimethoxy-1,2-diphenyl-	C16H16O3	256	0.796
18	28.133	Nonadecane, 2-methyl-	C20H42O2	282	1.656
19	28.206	7,9-Di-tert-butyl-1-oxaspiro(4,5) dec-6,9-diene-2,8-dione	C17H24O3	276	1.804
20	28.814	n-Hexadecanoic acid	C16H32O2	256	5.186
21	29.533	Ethanol, 2-(9-oxadecen-1-yloxy)-(Z)-	C20H40O2	312	0.383
22	30.531	Hexacosane	C21H44	296	0.429
23	30.763	Phytol	C20H40O2	296	1.292
24	31.043	Heptadecane, 2-methyl-	C18H38	254	1.141
25	31.189	Z-(13,14-Epoxy)tetradec-11-en-1-ol acetate	C16H20O3	268	0.929
26	31.469	Octadecane, 3-ethyl-5- (2-ethylbutyl)-	C26H54	366	0.929
27	31.578	Eicosane, 2-methyl-	C20H40O2	296	1.263
28	31.761	n-Tetracosanol-1	C24H52O1	354	1.115
29	33.673	1-Cyclohexylidimethyloxy-3,5-dimethylbenzene	C16H26OSi	262	1.646
30	36.011	Phthalic acid, di(2-propylpentyl) ester	C24H38O4	390	2.147
31	39.274	Squalene	C30H50	410	10.282
32	44.315	Tetratriacontane	C34H70	478	9.570
33	46.336	Lup-2(29)-en-3-one	C30H48O	424	1.420
34	47.079	Tetracosane, 11-decyl-	C34H70	478	1.554
35	48.979	Stigmastanol	C29H48O	412	2.484
36	49.758	Benzoic acid, 3,5-dicyclohexyl-4-hydroxy- , methyl ester	C20H28O3	316	1.787

Pharmacognosy Journal, Vol 12, Issue 4, July-Aug, 2020
Subramanian, et al.: Effect of Solvent on the Phytochemical Extraction and GC-MS Analysis of Gymnema sylvestre

Table 3: Chemical composition of Benzene extract of Gymnema sylvestre from GCMS analysis.

S. No	RT min	Name of compounds	Molecular formula	Molecular weight	% of total
1	4.400	Ethylbenzene	C₈H₁₀	106	3.052
2	4.583	Benzene, 1,3-dimethyl-	C₈H₁₀	106	1.406
3	15.213	Dodecane	C₁₂H₂₆	170	0.478
4	16.504	Benzene, 1,3-bis(1,1-dimethylethyl)-	C₁₄H₃₂	190	1.636
5	16.686	2,4-Dimethyldecane	C₁₄H₃₀	198	0.186
6	17.052	Dodecane, 2,7,10-trimethyl-	C₁₅H₃₂	212	0.648
7	18.026	Dodecane, 2,6,11-trimethyl-	C₁₅H₃₂	212	0.225
8	19.511	Tetradecane	C₁₄H₃₀	198	1.701
9	21.301	Heptadecane	C₁₇H₃₆	240	1.329
10	21.800	Phenol, 2,4-bis(1,1-dimethylethyl)-	C₁₄H₂₂O	206	0.492
11	23.128	Hexadecane	C₁₆H₃₄	226	2.862
12	26.221	E-15-Heptadecenal	C₁₇H₃₂O	252	0.879
13	26.915	3,7,11,15-Tetramethyl-2-hexadecen-1-ol	C₂₀H₄₀	296	0.416
14	27.463	Dibutyl phthalate	C₁₆H₂₂O	278	0.430
15	27.767	Ethanol, 2,2-dimethoxy-1,2-diphenyl-	C₁₆H₁₆O₃	256	1.355
16	27.974	Octadecane, 3-ethyl-5-(2-ethylbutyl)-	C₂₆H₅₄	366	0.429
17	28.132	Hexadecane, 2,6,11,15-tetramethyl-	C₂₀H₄₂	282	2.466
18	28.839	n-Hexadecanoic acid	C₁₆H₃₂O	256	2.622
19	29.119	10-Heneicosene (c,t)	C₂₁H₴₂	294	0.502
20	30.020	Nonadecane, 2-methyl-	C₂₀H₄₂	282	0.555
21	30.543	Heneicosane	C₂₁H₴₄	296	0.956
22	30.762	Phytol	C₂₀H₄₂O	296	2.788
23	31.042	Eicosane, 2-methyl-	C₂₁H₴₂	296	1.902
24	31.469	Eicosane, 7-hexyl-	C₂₆H₅₄	366	0.500
25	31.761	1-Heneicosyl formate	C₂₂H₄₄O	340	1.491
26	33.673	1-Cyclohexyldimethylsilyloxy-3,5-dimethylbenzene	C₁₆H₂₆O₃Si	262	2.367
27	34.245	Tetracosane	C₂₄H₅₀	338	4.803
28	36.023	Heneicosane, 11-(1-ethylpropyl)-	C₂₆H₅₄	366	0.793
29	36.485	Eicosane	C₂₀H₄₂O	282	7.272
30	37.569	Tetraatriacontane	C₃₄H₇₀	478	5.102
31	39.274	Squalene	C₃₀H₅₀	410	4.797
32	47.607	Tetracosane, 11-decyl-	C₃₄H₇₀	478	0.674
33	48.966	Stigmasterol	C₂₉H₄₈O	412	1.101
34	49.782	Benzoic acid, 3,5-dicyclohexyl-4-hydroxy-, methyl ester	C₂₀H₂₈O₃	316	5.515

Figure 4: Abundance of the chemical constituents present in benzene extract from the G. sylvestre leaves.
Subramanian, et al.: Effect of Solvent on the Phytochemical Extraction and GC-MS Analysis of Gymnema sylvestre

Pharmacognosy Journal, Vol 12, Issue 4, July-Aug, 2020

Table 4: Chemical composition of Chloroform extract of Gymnema sylvestre from GCMS analysis.

S. No	RT Min	Name of the compounds	Molecular formula	Molecular weight	% of total
1	16.504	Benzene, 1,3-bis(1,1-dimethylethyl)-	C14H22	190	1.221
2	19.511	Tetradecane	C14H30	198	0.728
3	21.301	Heptadecane, 2,6,10,15-tetramethyl-	C21H44	296	0.934
4	21.788	Phenol, 2,4-bis(1,1-dimethylethyl)-	C14H32	206	0.955
5	22.098	Dodecane, 2,6,11-trimethyl-	C15H32	212	1.095
6	23.110	Hexadecane	C16H34	226	3.781
7	23.700	Benzeneacetic acid, 4-tetradecyl ester	C22H36O2	332	0.555
8	23.931	Benzene, (1-propyloctyl)-	C17H28	232	0.808
9	24.930	Nonadecane, 2-methyl-	C20H42	282	2.383
10	25.271	Benzene, (1-pentylheptyl)-	C18H30	246	0.534
11	25.612	Heptadecane, 2,6,10,15-tetramethyl-	C21H44	296	2.091
12	27.049	1-Chloroeicosane	C20H41Cl	316	0.866
13	27.450	Phthalic acid, hex-3-y1 isobutyl ester	C18H26O4	306	3.439
14	27.767	Ethanone, 2,2-dimethoxy-1,2-diphenyl-	C16H16O3	256	1.942
15	28.145	2-methyloctacosane	C29H60	408	1.502
16	28.205	7,9-Di-tert-butyl-1-oxaspiro (4,5) deca-6,9-diene-2,8-dione	C17H24O3	276	5.074
17	28.826	n-Hexadecanoic acid	C16H32O2	256	5.005
18	29.204	Hexadecanoic acid, ethyl ester	C18H36O2	284	2.189
19	30.775	Phytol	C20H40O	296	8.667
20	31.043	Eicosane, 2-methyl-	C21H44	296	1.283
21	31.481	Octadecanoic acid	C18H36O2	284	0.751
22	31.773	1-Decanol, 2-hexyl-	C16H32O2	242	1.016
23	32.808	1-Cyclohexylmethylyloxy-3,5-dimethylbenzene	C16H26O3i	262	0.982
24	33.673	1-Cyclohexylmethylyloxy-3,5-dimethylbenzene	C16H26O3i	262	2.526
25	34.257	Tetracosane	C24H50	338	4.469
26	37.581	Octadecane, 3-ethyl-5-(2-ethylbutyl)-	C26H54	366	2.720
27	39.298	Squalene	C30H50	410	5.441
28	40.309	Heptadecane, 9-hexyl-	C23H48	324	3.933
29	42.009	Octadecanoic acid, 2-(hexadecyloxy)ethyl ester	C36H72O3	552	1.736
30	44.339	Eicosane	C20H42	282	7.575
31	49.015	Stigmasterol	C29H48O	412	3.879
32	50.561	Tetraatriocantane	C34H70	478	3.717
Table 5: Chemical composition of Ethyl acetate extract of *Gymnema sylvestre* from GC-MS analysis.

S. No	RT min	Name of compounds	Molecular formula	Molecular weight	% of total
1	32.808	1-Cyclohexylidimethylsilyloxy-3,5-dimethylbenzene	C16H26OSi	262	0.707
2	26.915	3,7,11,15-Tetramethyl-2-hexadecen-1-ol	C20H40O	296	0.419
3	13.094	4-Piperidine, 2,2,6,6-tetramethyl-	C9H17NO	155	0.447
4	29.119	5-Eicosene, (E)-	C20H40	280	1.708
5	16.492	Benzene, 1,3-bis(1,1-dimethylethyl)-	C14H22	190	0.617
6	49.770	Benzoic acid, 3,5-dicyclohexyl-4-hydroxy-, methyl ester	C20H28O3	316	2.792
7	23.128	Cetone	C16H32	224	1.883
8	23.018	Dodecane, 2,6,11-trimethyl-	C15H32	212	0.729
9	26.221	E-15-Heptadecenal	C17H32O	252	3.801
10	35.390	Eicosane	C20H40	282	1.909
11	28.132	Eicosane, 2-methyl-	C21H44	296	4.922
12	34.172	Eicosane, 7-hexyl-	C26H54	366	1.174
13	27.767	Ethanone, 2,2-dimethoxy-1,2-diphenyl-	C16H16O3	256	2.964
14	33.673	Fumaric acid, 2-chloroethyl hexadecyl ester	C22H39ClO4	402	6.100
15	30.531	Heneicosane	C21H44	296	1.908
16	41.697	Heneicosane, 11-(1-ethylpropyl)-	C26H54	306	0.743
17	24.772	Heptadecane	C17H36	240	0.529
18	21.289	Heptadecane, 2,6,10,15-tetramethyl-	C21H44	296	0.998
19	46.738	Heptadecane, 9-hexyl-	C23H48	324	0.733
20	30.665	Heptadecane, 9-octyl-	C25H52	353	0.658
21	25.052	Hexadecane	C16H34	226	0.465
22	24.918	Hexadecane, 2,6,11,15-tetramethyl-	C20H42	282	3.582
23	34.635	i-Propyl 5,9,19-octacosatrienoate	C31H56O2	460	0.749
24	28.839	n-Hexadecanoic acid	C16H32O2	256	0.662
25	30.020	Nonadecane, 2-methyl-	C20H42	282	1.369
26	31.761	n-Tetracosanol-1	C24H50O	354	6.579
27	29.545	Octadecanal	C18H36O	268	0.857
28	26.306	Octadecane	C18H38	252	1.611
29	27.962	Octadecane, 2-methyl-	C19H40	268	0.606
30	50.525	Octadecane, 3-ethyl-5-(2-ethylbutyl)-	C26H54	366	0.791
31	21.740	Phenol, 2,4-bis(1,1-dimethylethyl)-	C14H22O	206	2.770
32	30.775	Phytol	C20H40O	296	1.883
33	39.274	Squalene	C30H50	410	1.698
34	48.966	Stigmasterol	C29H48O	412	0.784
35	36.486	Tetracosane	C24H50	338	2.266
36	36.025	Tetracosane, 11-decyl-	C34H70	478	2.550
37	19.511	Tetradecane	C14H30	198	0.742
38	27.536	Tetradecane, 2,6,10-trimethyl-	C17H36	240	0.788
39	28.729	Tetradecane, 2-methyl-	C15H32	212	1.499
40	40.285	Tetraatricontane	C34H70	478	0.236
41	36.108	Triaccontane, 1-bromo-	C30H61Br	500	3.258
42	33.064	Tricosane	C23H48	324	0.782
43	24.540	Tridecane, 2-methyl-	C14H30	198	0.596
Table 6: Chemical composition of Ethanol extract of Gymnema sylvestre from GCMS analysis.

S. No	RT min	Name of the compound	Molecular formula	Molecular weight	% of total
1	7.907	1,3-diethoxy-1,1,3,3-tetramethyl-disiloxane	C8H22O3Si2	222	0.174
2	9.113	Tetraethyl silicate	C8H20O4Si	208	2.804
3	12.571	d-Mannitol, 1-decylsulfonyl-	C16H34O7S	370	0.173
4	15.096	3-Dodecane, (E)-	C12H24	168	0.554
5	16.492	Benzene, 1,3-bis(1,1-dimethylethyl)-	C14H22	190	0.256
6	19.353	4-Trifluoroacetoxytetradecane	C16H29F3O2	310	0.389
7	19.499	2-Hexyl-1-hexanol	C14H30O	214	0.830
8	21.289	Tetradecane, 2,6,10-trimethyl-	C17H36	240	0.219
9	21.764	Phenol, 2,4-bis(1,1-dimethylethyl)-	C14H22O	206	0.909
10	22.312	1,2,3,4-Cyclohexanetetrol	C6H12O4	148	3.699
11	22.811	2-Pentanone, 3,3,4,4-tetramethyl-	C9H18O	142	15.885
12	26.221	2-Dodecanol	C12H26O	186	0.531
13	26.902	3,7,11,15-Tetramethyl-2-hexadecen-1-ol	C20H40O	296	1.139
14	28.802	n-Hexadecanoic acid	C16H32O2	256	7.086
15	29.143	Hexadecanoic acid, ethyl ester	C18H36O2	284	3.084
16	30.762	Phytole	C20H40O	296	6.351
17	31.298	trans-13-Octadecenoic acid	C18H34O2	282	4.158
18	31.456	(E)-9-Octadecenoic acid ethyl ester	C20H38O2	310	4.290
19	31.749	Eicosanoic acid	C20H40O2	312	2.859
20	33.052	Octadecane, 3-ethyl-5-(2-ethylbutyl)-	C26H54	366	0.564
21	33.746	9,12,15-Octadecatrienoic acid, 2,3-bis(trimethylsilyl)oxy propyl ester, (Z,Z,Z)-	C27H52O4Si2	496	0.802
22	34.245	Heptadecane, 9-hexyl-	C23H48	324	1.503
23	34.975	N1-Benzyl-N2(1-ethylbenzylamino)-benzamidin	C28H25N3	403	0.971
24	35.389	Docosane, 11-butyl-	C26H54	366	1.003
25	36.485	Tetracosane, 11-decyl-	C34H70	478	1.178
26	36.814	Cholesterol	C27H46O	386	5.966
27	39.274	Squalene	C30H50	410	15.075
28	44.303	Octadecane, 1,1’-[1-methyl-1,2-ethanediyl]bis(oxy)]bis-	C39H80O2	580	5.218
29	48.954	Stigmasterol	C29H48O	412	4.314

Figure 6: Abundance of the chemical constituents present in ethyl acetate extract from the G.sylvestre leaves.
Table 7: Chemical composition of Methanol extract of Gymnema sylvestre from GCMS analysis.

S. No	RT min	Name of compounds	Molecular formula	Molecular weight	% of total
1	9.088	Decane	C10H22	142	0.294
2	12.547	Undecane	C11H24	156	0.237
3	21.533	1,2,3,4-Cyclohexanetetrol	C6H12O4	148	3.768
4	23.883	2-Pentanone, 3,3,4,4-tetramethyl-	C9H18O	142	61.218
5	26.209	Inositol, 1-deoxy-	C6H12O5	164	21.218
6	26.903	3,7,11,15-Tetramethyl-2-hexadecen-1-ol	C20H40O	296	0.912
7	28.181	Hexadecanoic acid, methyl ester	C17H34O2	270	0.195
8	28.766	n-Hexadecanoic acid	C16H32O2	256	3.616
9	30.592	10-Octadecenoic acid, methyl ester	C19H36O2	296	0.187
10	30.763	Phytol	C20H40O	296	1.693
11	31.201	9,12,15-Octadecatrienoic acid, (Z,Z,Z)-	C18H30O2	278	2.521
12	31.444	Octadecanoic acid	C18H36O2	284	0.148
13	33.356	2-Pyrrolidinone, 1-(9-octadecenyl)-hexadecanoic acid, 1-(hydroxymethyl)-1,2-ethanediyl ester	C22H41NO	335	0.214
14	35.645	Phthalic acid, di(2-propylpentyl) ester	C24H38O4	390	0.128
15	36.011	Phytol	C30H50	410	1.782
16	39.274	Squalene	C29H48O	412	0.860

Figure 7: Abundance of the chemical constituents present in ethanol extract from the G.sylvestre leaves.

Figure 8: Abundance of the chemical constituents present in methanol extract from the G.sylvestre leaves.
Discussion

In the current study, out of various locations (Districts of Tamilnadu), the plant samples collected from Shenbaga Devi falls, Courtallam showed maximum antioxidant activity and it was found to be in the order of Courtallam > Thirunelveli > Trichy > Coimbatore > Arni (Thiruvannamalai) > Padavedu (Thiruvannamalai) > Chengalpattu > Dindigul. Significant variations in the antioxidant activities with respect to the sampling locations were observed. The dynamics of variation in the antioxidant content is possibly associated with the expression of variety of genes during various developmental stages of the plant or because of the environmental factors arising from seasonal variations. In general, environmental factors like variations in the altitude, temperature, precipitation, etc varies rapidly. The sampling locations of this study falls between 36 to 1778m elevations representing diverse climatic conditions, which is associated with antioxidant activity. Literature review also suggests that antioxidant activity is influenced by various species of compounds. This implies that the intake of antioxidant compounds by the *G. sylvestre* plants will have vital impact on the antioxidant activity of the plant samples collected from diverse locations. The variation of intake depends on the texture of the soil and the seasonal conditions. It is noteworthy that the observed antioxidant activity is much superior to that of the total leaf extract reported recently.

The compounds identified in the crude extracts of *G. sylvestre* are mostly belongs to terpenes, alcohols, hydrocarbons, alkaloids and its derivatives. From the literature search, these compounds are found to be known for their therapeutic properties and are previously reported in many different medicinal plants. Some of these compounds are separately isolated in extracts and are used as antimicrobial and radical scavenging agents in medicine formulations. This study shows that the chemical compounds isolated in different crude extracts of *G. sylvestre* could be used as a vital source of antioxidant for food and pharmaceutical industry.

The crude extracts from the *G. sylvestre* leaves were subjected for GCMS analysis for identifying compounds. Various studies using GCMS has revealed the influence of different solvents in isolating the phytochemical constituents with medicinal values from crude extracts of medicinal plants. The major chemical compounds identified in the *G. sylvestre* crude extracts such as Inositol, 1-deoxy- found in methanol extract, 2-Pentanone, 3,3,4,4-tetramethyl found in methanol and ethanolic extracts, Tetratriacontane and Hexadecane found in benzene, chloroform, ethyl acetate and hexane extracts, Eicosane form benzene, chloroform and ethyl acetate extracts, Heneicosane found in benzene, ethyl acetate and hexane extracts, Phthalic acid, di(2-propylpentyl) ester found in hexane and methanol extracts, Squalene, Phytol, n-Hexadecanoic acid and Stigmasterol found in all the extracts are chemically or biologically active compounds (Table 8).

Table 8: Therapeutic activity of compounds identified in the leaves of *G. sylvestre*.

S. No.	Compound Name	Structure	Nature and Therapeutic activity
1	Inositol, 1-deoxy-	![Inositol](image)	Improves sensitivity to insulin and some anxiety disorders
2	2-Pentanone, 3,3,4,4-tetramethyl-	![2-Pentanone](image)	Non-central analgesic, antipyretic or antiinflammatory agents, antirheumatic agents
3	Squalene	![Squalene](image)	LDP which protects skin and is an adjunctive to cancer therapy
4	Phytol	![Phytol](image)	Acyclic diterpene used in making synthetic forms of vitamin E and vitamin K1
5	Tetraatriacontane	![Tetraatriacontane](image)	Antiasthmatics, Drugs for disorders of the urinary system
6	Eicosane	![Eicosane](image)	Bronchodilators, Drug for throat disorders
CONCLUSION
The present study revealed a number of compounds isolated in different solvents and its efficiency. Also, the effect of locations on the antioxidant activity exhibited by the plant was revealed. The whole plant can be used as a good source of antioxidant. Future research will be taken up for the isolation and characterization of individual compounds from the crude extracts of Gymnema sylvestre and tested for in-vivo studies for further understanding the activities of plant compounds.

ACKNOWLEDGEMENT
The Authors would like to thank Nanotechnology Research Centre (NRC), SRM IST for providing facilities.

REFERENCES
1. Yeh GY, Eisenberg DM, Kaptchuk TJ, Phillips RS. Systematic review of herbs and dietary supplements for glycemic control in diabetes. Diabetes Care. 2003;26(4):1277-94.
2. Satdive RK, Abhilash P, Fulzele DP. Antimicrobial activity of Gymnema sylvestre leaf extract. Fitoterapia (Milano). 2003;74(7-8):699-701.
3. Arunachalam KD, Arun LB, Annamalai SK, Arunachalam AM. Potential anticancer properties of bioactive compounds of Gymnema sylvestre and its biofunctionalized silver nanoparticles. International Journal of Nanomedicine. 2015;10:31.
4. Sinhimer JE, Rao GS, McIlhenny HM, Smith RV, Maassab HF, Cochran KW. Isolation and antiviral activity of the gymnemic acids. Experientia. 1968;24(3):302-3.
5. Subashini MS, Rajendran P. In vitro screening of anti HBV and anti HIV properties of Gymnema sylvestre R. Br leaves from Kolli Hills, Tamilnadu, India. Int J Curr Microbiol Appl Sci. 2015;4:542-7.
6. Rates SM. Plants as source of drugs. Toxicon. 2001;39(5):603-13.
7. Thakur GS, Sharma R, Sanodiya BS, Pandey M, Prasad GB, Bisen PS. Gymnema sylvestre: an alternative therapeutic agent for management of diabetes. Journal of Applied Pharmaceutical Science. 2012;2(12):1-6.
8. Butler MS, Robertson AA, Cooper MA. Natural product and natural product derived drugs in clinical trials. Natural Product Reports. 2014;31(11):1612-61.
9. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature. 1958;181(4617):1199-200.
10. Cieśla Ł, Kryszen J, Stochmal A, Oleszek W, Wałkowszuk-Czajka-Hajnos M. Approach to develop a standardized TLC-DPPH test for assessing free radical scavenging properties of selected phenolic compounds. Journal of Pharmaceutical and Biomedical Analysis. 2012;70:126-35.
11. Kumari R, Singh S, Agrawal SB. Effects of supplemental ultraviolet-B radiation on growth and physiology of Acorus calamus L.(sweet flag). Acta Biol Cracoviensia Ser Bot. 2009;51:19-27.
12. Kondakova V, Tsvetkov I, Batchvarova R, Bajdakov I, Dzhambazova T, Slavov S. Phenol compounds—qualitative index in small fruits. Biotecnologia & Biotechnological Equipment. 2009;23(4):144-8.
13. Li HY, Hao ZB, Wang XL, Huang L, Li JP. Antioxidant activities of extracts and fractions from Lysimachia foenum-graecum Hance. Bioresource Technology. 2009;100(2):970-4.
14. Sati, P., Pandey, A., Rawat, S. and Rani, A. Phytochemicals and antioxidants in leaf extracts of Ginkgo biloba with reference to location, seasonal variation and solvent system. Journal of Pharmacy Research. 2013;7:479-90.
15. Iqbal S, Bhanger MI. Effect of season and production location on antioxidant activity of Moringa oleifera leaves grown in Pakistan. Journal of food Composition and Analysis. 2006;19(6-7):544-51.
16. Naik D, Dandge C, Rupanar S. Chemical Examination and Evaluation of Antioxidant and Antimicrobial Activities of Essential Oil from Gymnema sylvestre. Journal of Essential Oil Research. 2011;23:12-20.
17. Al Hashmi LS, Hossain MA, Weli AM, Al-Riyami Q, Al-Sabahi JN. Gas chromatography-mass spectrometry analysis of different organic crude extracts from the local medicinal plant of Thymus vulgaris L. Asian Pacific Journal of Tropical Biomedicine. 2013;3(1):69.
Subramanian, et al.: Effect of Solvent on the Phytochemical Extraction and GC-MS Analysis of Gymnema sylvestre

GRAPHICAL ABSTRACT

Effect of Sampling: Antioxidant activity by DPPH radical scavenging

Solvent Extraction: Sample with high scavenging activity was extracted using 6 different solvents by cold maceration method

Effect of solvent: Estimation of chemical constituents by GCMS

ABOUT AUTHORS

PROF. (MRS.) KANTHA DEVI ARUNACHALAM
She is the Dean for the Center for Environmental Nuclear Research, SRM Institute of Science and Technology, Tamil Nadu. She completed her Doctoral degree in Microbial toxicology at Madurai Kamaraj University. She got specialization in Environmental Engineering from Memorial University of Newfoundland, Canada. She has vast teaching and research experience of 40 years both in Canada and India. 13 students under her guidance have been awarded doctoral degrees and the count still goes on. She has attracted research funds from both Government and private sectors and is a possessor of various awards of excellence issued by various Scientific Societies from India and abroad. She has a total of 79 publications with a cumulative impact factor of 114.

DR. S. SUNDARPANDIAN
He is a medical doctor with masters specialization in Anatomy. He is working at SRM Medical College and research Centre, Chennai. Currently he is doing his Ph.D degree under the guidance of Prof. Kantha D. Arunachalam from Center for Environmental Nuclear Research, SRM Institute of Science and Technology, Tamil Nadu. With a total of 37 publications in various reputed journals, he also has teaching experience of 26 years and is handling courses for medical college students of various disciplines. He has received various awards from medical societies and for his par excellence in the field of teaching.
Subramanian, et al.: Effect of Solvent on the Phytochemical Extraction and GC-MS Analysis of Gymnema sylvestre

MOHAMMED JUNAID HUSSAIN. D
He is a research scholar under the guidance of Prof. Kantha D. Arunachalam at Center for Environmental Nuclear Research, SRM Institute of Science and Technology, Tamil Nadu. He completed his Master's degree in Biotechnology at University of Madras, Chennai. He did internship and masters dissertation project at Department of Biotechnology, CSIR-CLRI under the guidance of Dr. N.R. Kamini. With the core subject of his project being enzymology, he has a technical knowledge in bioprocessing and enzymology and has experience in handling relevant instruments. Currently he is working on mitigation studies for the effects of radiation using plant based bioactive compounds.

SATHISH KUMAR. K
He is a research scholar under the guidance of Prof. Kantha D. Arunachalam at Center for Environmental Nuclear Research, SRM Institute of Science and Technology, Tamil Nadu. He completed his Master's degree in Biotechnology at Bharathiyar University, Coimbatore. He has 2 years of work experience in the quality control at Biocon Limited. He is expertise in microbiological practices and his current research focuses on the fabrication of biofunctionalized electrospun nanofiber for wound healing applications.

SARAVANAN. M
Saravanan M is a post graduate student from the School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu. He has completed his under graduate degree in Biotechnology from B. S. Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Tamil Nadu. He is an organized researcher with reputed lab experience inclusive of strong background knowledge in Biotechnology. A highly enthusiastic person who is keen to learn the research advancement in the field of life sciences. He has successfully completed his UG project entitled at IITM Research park where he gained practical skills upon life science industry exposure.

Cite this article: Subramanian S, Dowlath MJH, Karuppannan SK, Saravanan M, Arunachalam KD. Effect of Solvent on the Phytochemical Extraction and GC-MS Analysis of Gymnema sylvestre. Pharmacogn J. 2020;12(4):749-61.