Phytochemical analysis and antimicrobial activity of Aframomum chrysanthum seed extracts

Gloria Ihuoma Ndukwe, Oshiozuwenose Irekhafe Iyemeaikere and Joshua Lelesi Konne

DOI: https://doi.org/10.22271/chemi.2021.v9.i1a.11447

Abstract

Three extracts of Aframomum chrysanthum seeds were investigated for antimicrobial activity using disc diffusion method. Varied concentration-dependent antimicrobial activities were exhibited by n-hexane and ethylacetate extracts against the investigated pathogenic microorganisms especially Staphylococcus aureus. Susceptibility testing conducted on all the extracts showed that n-hexane extract had moderate antimicrobial activity at 200 mg/ml against Staphylococcus aureus, Candida albicans and Trichophyton rubrum. All the isolates were observed to be resistant to the methanol extract. n-Hexane extract displayed potent antimicrobial activity against Trichophyton rubrum when compared to the standard antifungal drug (fungisol) used in the investigation. Phytochemical analysis carried out on the n-hexane extract of Aframomum chrysanthum seed, revealed the presence of eighty-one (81) compounds made up of phytosterols, alkaloids, anthraquinone, phospholipids and fatty acids. The presence of these phytochemicals is an indication that the plant could be used as antimicrobial agent.

Keywords: Aframomum chrysanthum, antimicrobial activity, seed, microorganism, phytochemical analysis

Introduction

The appearance of drugs resistant microorganisms in medical and healthcare environment requires continuous investigation and identification of new effective natural products with potential of solving the problem. In recent years, there has been a renewed focus on herbs and natural product to derive medicines, both for public health and other uses. One of the medicinal plants that has served several traditional therapeutic purposes is Aframomum chrysanthum J. M. Lock. Aframomum chrysanthum J. M. Lock belongs to the genus Aframomum. Aframomum has over seventy species including chrysanthum. Aframomum chrysanthum is a member of the family Zingiberaceae which is also known as ‘the ginger family’ [1]. Aframomum is the common name of A. chrysanthum. In Nigeria, it is commonly called ‘Banga spice’. Aframomum chrysanthum is a perennial plant that is commonly found in tropical African forests and savannah, where they could be found as dense clumps. Wildlife animals such as elephants and gorillas feed on the leaves and shoots of the plant. The plant is essentially used as spice in drinks and foods. Extracts from A. chrysanthum seeds (Figure 1) have been found to be useful antidiarrhea supplements [2]. The reported presence of phenols in the seed of A. chrysanthum suggests that the plant could be an antimicrobial agent because phenolic compounds have been widely used as disinfectants and standards for comparison of bactericides [3]. Very few works on A. chrysanthum have been reported unlike A. melegueta which is a more popular member of the Aframomum class. This study evaluated the antimicrobial activities of n-hexane, ethylacetate and methanol extracts of Aframomum chrysanthum seeds against selected pathogenic microorganisms and the phytochemicals of n-hexane extract of the seed.
Materials and Methods

Solvents

Solvents used for extraction (n-hexane, ethylacetate and methanol) were redistilled before use. Analytical grade (Sigma-Aldrich) of dimethyl sulphoxide (DMSO) was used as dissolving and diluting solvent for antimicrobial analysis.

Preparation of extracts

Dry seeds of *A. chrysanthum* were bought from Mile One market in Port Harcourt, Rivers State, Nigeria. Mechanical grinding machine was used to pulverize the seeds. Maceration method of extraction was used to prevent denaturation of thermo-labile phytochemicals in the plant [4], n-Hexane (950 ml) was added to the pulverized seeds (797.8 g) and the resulting mixture was stirred repeatedly and then allowed to stay for 48 hours. The dark-coloured mixture was filtered to obtain n-hexane extract which was further concentrated using a rotatory evaporator at 36–40 °C. This process was repeated 4 times. The combined concentrated n-hexane extract was kept at room temperature to dry and a weight of 21.7 g (2.72% yield) was obtained. The colour of the oily extract was dark brown. The process described above was repeated on the residue using ethylacetate and methanol sequentially. The extracts obtained were 54.88 g (6.88% yield) and 27.76 g (3.48% yield) solids.

Susceptibility testing

Pathogenic microorganisms used for the susceptibility testing included two Gram-positive bacteria (*Bacillus cereus* and *Staphylococcus aureus*), two Gram-negative bacteria (*Pseudomonas aeruginosa* and *Shigella dysenteriae*), a yeast (*Candida albicans*), and a fungus (*Trichophyton rubrum*). The identity of the microorganisms was confirmed through macroscopic and microscopic examinations (catalase, oxidase, motility, citrate utilization, salt tolerance, starch hydrolysis, indole production, Methyl Red-Vogues Proskauer (MRVP) and blood haemolysis). All the microorganisms used were isolated and identified at the Department of Microbiology, Rivers State University, Nigeria.

Susceptibility of the microorganisms to *A. chrysanthum* seed extracts and selected standard antimicrobial drugs (as positive control) was determined using the disc diffusion method [5, 6]. The disc diffusion method was adopted in the research work due to its ease of application and the dependability of its results. Broth cultures of the bacteria were prepared by inoculating a colony of each microorganism, separately, into 10 ml sterile nutrient broth tubes. Broth cultures of the yeast and fungus were prepared by inoculating a colony of the yeast and colonial material of the fungus into separate potato dextrose broth (PDB) tubes. Inoculated PDB and nutrient broth tubes were incubated at 37 °C for about 24 hours. After incubation, the broth cultures of the bacteria were swab plated, separately, unto sterile nutrient agar plates. This process was also done for *C. albicans* and *T. rubrum*. The Sabouraud dextrose agar plates used corresponded to the number of the investigated extracts, the number of microorganisms involved in the testing and the number of positive controls used.

Filter paper discs impregnated separately with the test extracts (200 mg/ml) and standard antimicrobial drugs respectively, were placed on the swab inoculated plates with the aid of sterile forceps. The plates were incubated at 37 °C for 24 - 48 hours, after which the zones of inhibition around the discs were measured and recorded. This was done by using a meter rule to measure their diameters in millimeter (mm).

The extracts of *A. chrysanthum* seed having zone of inhibition against the microorganisms were noted. Different concentrations of the bioactive extracts were prepared and used for further susceptibility testing against the susceptible microorganisms. Various concentrations of each of the extract (200, 100, 50, 25, 12.5 and 6.25 mg/ml) were prepared by dissolving 1 g of each extract in 5 ml of DMSO to give a standard solution of 200 mg/ml which was serially diluted to appropriate concentrations of 100, 50, 25, 12.5 and 6.25 mg/ml.

Bioactive extracts selected for the second round of testing were n-hexane and ethylacetate extracts. Pathogenic microorganisms used for the second round of testing were *S. aureus*, *C. albicans* and *T. rubrum*. Susceptibility testing was done in triplicates for each investigated extract concentration, and zone of inhibition readings taken. The recorded zone of inhibition is the mean of three readings plus the standard deviation. The minimum inhibitory concentration (MIC) which is the lowest concentration of the extracts that inhibited the growth of the microbe was also noted.

Phytochemical analysis

Phospholipids analysis

The modified method employed in n-hexane extract phospholipids content determination was taken from Raheja et al. [7]. A stream of nitrogen gas was passed through the test tube containing 10 mg of n-hexane extract to completely remove any leftover solvent in order to ensure complete dryness of the extract for the phospholipids analysis. Then 0.40 ml of chloroform and 0.10 ml of chromogenic substance was added to a test tube and heated to 100 °C in a water bath for 80 secs. n-Hexane (5 ml) was added to the content after it was allowed to cool at room temperature. The content was gently shaken repeatedly and left for a while for the aqueous and solvent layers to separate. Gas chromatography and pulse flame photometric detector was employed in the chromatographic analysis of the recovered n-hexane extract which was concentrated to 1 ml.

Phytosterols analysis

n-Hexane extract (0.5 g) was dried by passing nitrogen stream through it. The extract was put into a screw-capped test tube and saponified at 95 °C for 30 mins using 3 ml of 10% KOH in ethanol to which 0.2 ml of benzene (to make sure miscibility occurred) and 3 ml of deionized water was added.
n-Hexane (2 ml) was utilized in removing non-saponifiable materials. n-Hexane (2 ml each) was used to carry out three extractions for 1 hour, 30 mins and 40 mins respectively to achieve complete extraction of the sterols. The combined n-hexane extracts were concentrated to 2 ml and poured into Agilent vial which was used for gas chromatographic analysis [8].

Fatty acid methyl esters analysis

About 50 mg of n-hexane extract was esterified at 95 °C for 5 mins with 3.4 ml of 0.5 M KOH in dry methanol. HCL (0.7 M) was used to neutralize the mixture and 3 ml of 14% boron trifluoride in methanol was added. The mixture was heated at 90 °C for 5 mins to reach complete methylation. n-Hexane was used to extract the fatty acid methyl esters three times from the mixture. The extract was concentrated to 1 ml for gas chromatography analysis and 1 µl was introduced into the injection port of a gas chromatograph [8].

Alkaloids analysis

n-Hexane extract was refrigerated at >4 °C before the analysis. The extract was added to 10 ml of 70% methanol in a borosilicate beaker and extraction done on the mixture at room temperature for 20 mins in an ultrasonic bath. The mixture was later centrifuged at 10000 rpm for 10 mins twice and the supernatant collected and filtered with a 0.22 µm membrane filter. Standards of different concentrations were made ready for introduction into a high-performance liquid chromatography (HPLC) system for calibration and correlation coefficient establishment; after which the sample was fed into the HPLC system following similar procedure used for the standard mixtures [8].

Anthraquinones analysis

Analysis of anthraquinones of the n-hexane extract of A. chrysanthum seed was performed using gas chromatography -mass spectrometer (GC-MS) HP 5890 model powered with HP Chem Station Rev. A 09.01 (1206) Software. The carrier gas used was nitrogen with inlet temperature of 250 °C and column dimension of 30 m × 0.25 mm × 0.25 µm. n-Hexane extract of A. chrysanthum seed (0.01 g) was put in a test tube. A stream of nitrogen gas was passed through the sample to dry it completely before analysis. Chloroform (0.40 ml) and 0.10 ml of chromogenic solution was added to the sample in the test tube and it was heated to 100 °C in water bath for 2 mins. The sample was then allowed to cool to room temperature and 6 ml of n-hexane was added and stirred for 5 mins. The n-hexane layer was collected after cooling and concentrated to 0.2 ml for gas chromatography analysis using pulse flame photometric detector [8].

Results and Discussion

The n-hexane extract showed antimicrobial activities against Gram-positive bacterium - *S. aureus*, yeast - *C. albicans*, and fungus - *T. rubrum* (Table 1). Zones of inhibition of the extract against *S. aureus*, *C. albicans*, and *T. rubrum* were 17.33±1.70, 10.67±0.47 and 10.67±1.63 mm, respectively. Zero inhibition was observed for the extract against Gram-positive bacterium - *B. cereus*, Gram-negative bacteria - *P. aeruginosa* and *S. dysenteriae*. Ethylacetate extract was active against *S. aureus* only. The zone of inhibition of the extract against *S. aureus* was 11.33±0.47 mm. It can be observed that the methanol extract was not active against any of the microorganisms. Thus, all the microbes were resistant to the methanol extract (Table 1).

A comparison of the susceptibility of the pathogenic microorganisms to the investigated extracts and the standard drugs revealed that the microorganisms were more resistant to the extracts than the standard drug used; except for n-hexane extract which had slightly higher inhibition than the standard drug on *T. rubrum*.

S. aureus has many strains. Some strains produce toxins that can cause staphylococcus food poisoning, toxic shock syndrome or scalded skin syndrome. Many strains of *S. aureus* are resistant to antibiotics [9]. Table 2 shows the susceptibility of *S. aureus* to n-hexane and ethylacetate extracts when different concentrations were used. n-Hexane extract at 200 to 6.25 mg/ml had average zone of inhibition range of 19.00±0.25 to 8.00±0.47 mm. Ethylacetate extract at 200, 100 and 50 mg/ml had zones of inhibition of 12.0±0.141, 11.0±0.82 and 9.00±0.47 mm respectively, while the organism was observed to be resistant to the extract at 25, 12.5 and 6.25 mg/ml. Minimum inhibitory concentrations were 6.25 and 50 mg/ml for n-hexane and ethylacetate extracts, respectively. From Table 3, it can be observed that the n-hexane extract at 200 mg/ml had 10.67±0.47 mm average zone of inhibition while the extract at 100, 50, 25, 12.5 and 6.25 mg/ml had average zones of inhibition of less than 10 mm against *C. albicans*.

Antifungal activities of various concentrations of n-hexane extract to the pathogenic fungi, *T. rubrum*, were quite marginal (Table 4). Zone of inhibition observed for the extract at 200 mg/ml was 10.67±0.47 mm while the extract at lower concentrations of 100, 50, 25, 12.5 and 6.25 mg/ml had inhibition zones of about 8 mm. *T. rubrum* was found to be resistant to ethylacetate extract at all concentrations. Based on the result of the antimicrobial activity of *A. chrysanthum* seed extracts against *S. aureus*, *C. albicans* and *T. rubrum*, it can be deduced that the seeds of *A. chrysanthum* have potential as antimicrobial agent, especially with the emergence of multidrug-resistant microorganisms.

Microorganisms	Zone of inhabitation (mm)					
	B. cereus	S. aureus	P. aeruginosa	S. dysenteriae	C. albicans	T. rubrum
n-Hexane extract	10±0	11.33±0.47	11.0±0.47	12.5±1.63	11.33±0.47	10.67±1.63
Ethyl acetate extract	NI	NI	NI	NI	10±0	10±0
Methanol extract	NI	24±0 (Rf)	22±0 (Sm)	30±0 (Cp)	22±0 (Cp)	18±0 (Ny)
Standard drugs	DMSO	NI	NI	NI	NI	NI

Table 1: Susceptibility of pathogenic microorganisms to *A. chrysanthum* seed extracts at 200 mg/ml

Key: NI - No Inhibition, Rf - Rifampicin (10 µg/ml), Sm – Streptomycin (30 µg/ml), Cp – Ciprofloxacin (10 µg/ml), Ny – Nystatin (100 µg/ml), Fg – Fungisol (200 mg/ml), DMSO - Negative control

Concentration (mg/ml)	Zone of inhibition (mm)	
	n-Hexane extract	Ethylacetate extract
200 mg/ml	19.00±0.82	12.0±1.41
100 mg/ml	12.33±0.47	11.0±0.82

Table 2: Susceptibility of *S. aureus* to *A. chrysanthum* seed extracts
Table 3: Susceptibility of C. albicans to A. chrysanthum seed extracts

Concentration (mg/ml)	Zone of inhibition (mm)	n-Hexane extract	Ethylacetate extract
200	10.67±0.47	NI	NI
100	9.67±0.47	NI	NI
50	8.33±0.47	NI	NI
25	8.33±0.47	NI	NI
12.5	8.00±0.00	NI	NI
6.25	8.00±0.00	NI	NI
NC	NI	NI	NI

Key: NC - Negative Control (DMSO), NI - No Inhibition

Table 4: Susceptibility of T. rubrum to extracts of A. chrysanthum seed extracts

Concentration (mg/ml)	Zone of inhibition (mm)	n-Hexane extract	Ethylacetate extract
200	10.67±0.47	NI	NI
100	9.67±0.47	NI	NI
50	8.33±0.47	NI	NI
25	8.00±0.00	NI	NI
12.5	8.00±0.00	NI	NI
6.25	8.00±0.00	NI	NI
NC	NI	NI	NI

Key: NC - Negative Control (DMSO), NI - No Inhibition

Table 5: Phospholipids of n-hexane extract of A. chrysanthum seeds

S/N	Compound	Retention time (min)	Concentration (mg/100 g)
1	Phosphatidylethanolamine	14.175	89.98375
2	Phosphatidylcholine	15.405	186.98584
3	Phosphatidylserine	16.568	26.90626
4	Lyso phosphatidylcholine	17.665	4.76927
5	Phosphatidylinositol	18.709	182.81293
6	Phosphatidic acid	19.665	5.18250

Table 6: Phytosterols of n-Hexane extract of A. chrysanthum seeds

S/N	Compound	Retention time (min)	Concentration (mg/100 g)
1	Cholesterol	19.502	6.70148e-1
2	Cholesterol	20.586	9.12747e-4
3	Ergosterol	21.418	6.62632e-4
4	Campesterol	22.394	12.93549
5	Stigmasterol	23.239	14.33356
6	Savenasterol	24.040	10.98555
7	β-Sitosterol	25.067	175.90816

Table 7: Fatty acid and methyl esters of n-Hexane extract of A. chrysanthum seeds

S/N	Compound	Retention time (min)	Concentration (mg/100 g)
1	Caprylic acid methyl ester	8.921	0.000000
2	Capric acid methyl ester	11.064	0.000000
3	Lauric acid methyl ester	12.830	0.000000
4	Myristic acid methyl ester	14.440	2.17149e-7
5	Palmitic acid methyl ester	16.044	2.07287e-5
6	Palmitoleic acid methyl ester	16.677	3.71098e-7
7	Margaric acid methyl ester	17.367	3.82330e-8
8	Stearic acid methyl ester	18.059	2.55130e-6
9	Oleic acid methyl ester	18.939	1.44534e-5
10	Linoleic acid methyl ester	19.526	2.44802e-5
11	Linolenic acid methyl ester	20.795	2.85790e-6
Theophylline
Theobromine
dimethoxy heemanthamine
dimethoxycrinane
Oxoassanine
Crinamidine
Trigonelline
Mitraphylin
Voacangine
Echitamine
Colchicine
Emetine
Emetine
Epoxyambelline
Nitidine
Ambelline
Lupanine
Choline
Epoxy
-1
2
3
4
5
6
7
8
9
-1
-1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A. chrysanthum
A. chrysanthum

The study revealed that the seed extracts of *A. chrysanthum* inhibited the growth of some of the investigated microbes. From the obtained result (Table 1–4) of susceptibility studies, n-hexane extract showed the highest antimicrobial activity while the ethylacetate extract exhibited marginal antimicrobial property. The methanol extract showed no antimicrobial activity against the investigated microbes and may not have therapeutic and prophylactic effects against any disease caused by the tested microorganisms. In all the antimicrobial analysis carried out, *A. chrysanthum* seed extracts showed zero antimicrobial effect against *B. cereus*, *P. aeruginosa* and *S. dysentriae*. The inability of some of the extracts used to diffuse through the nutrient agar medium could be the reason for the observed poor activity [3].

Table 8: Alkaloids of n-Hexane extract of A. chrysanthum seeds

S/N	Compound	Concentration (mg/100 g)
1	Choline	6.935
2	Trigonelline	7.650
3	Theobromine	7.793
4	Theophylline	7.964
5	Caffein	8.424
6	Angustifoline	8.578
7	Sparteine	9.079
8	Ellipticine	9.687
9	Lupanine	11.026
10	13-α-hydroxybom-boline	11.302
11	9-Octodecanamide	12.905
12	Dihydro-oxo-dimethoxy heemanthamine	14.060
13	Augustamine	14.871
14	Oxoassanine	14.927
15	Crinine-3-α-ol	15.387
16	Cinchonidine	16.382
17	Cinchonine	16.446
18	Buphanidrine	16.543
19	Indicine-N-oxide	17.764
20	Powelline	18.677
21	Undulatine	18.774
22	Ambelline	19.728
23	6-Hydroxybuphanidrine	20.604
24	Acronycine	21.255
25	Monocotarine	21.305
26	6-Hydroxypowelline	21.802
27	Nitidine	22.375
28	Crinamidine	24.022
29	1β, 2β-Epoxyambelline	24.702
30	6-Hydroxundulatine	24.782
31	Epoxy-3, 7-dimethoxy Erinane-11-one	25.545
32	Akuamidine	26.896
33	Echitamidine	26.957
34	Voacangine	27.014
35	Mitraphylin	27.622
36	Camptothecin	28.218
37	Echitamine	28.565
38	Colchicine	28.979
39	Emetine	29.640
40	Tetrandrine	29.689
41	Thalicarpin	30.071
42	Paclitaxel	32.221

Table 8: Anthraquinones of n-Hexane extract of Aframomum chrysanthum seeds

S/N	Compound	Concentration (mg/100 g)
1	2,6-Dimethoxybenzenoquinone	16.041
2	6-Methoxyquinoline-1-oxide	18.056
3	Ziganin	18.936
4	1,4,5-Trihydroxanthraquinone	19.106
5	Emodin	19.523
6	Soranjidiol	19.794
7	Damnacanthal	20.792
8	Damnacanthol	22.241
9	Rhein methyl ester	22.699
10	Citreorosein	23.969
impairment in drug diffusion is a major drawback in the investigation of plant extracts when agar diffusion method is used [5, 11, 12, 13]. n-Hexane extract displayed good inhibitory property as an antimicrobial agent because it exhibited slightly greater effect against *T. rubrum* compared to fungisol (standard drug) used in the investigation (Table 4). It was also observed that for all the susceptibility testing carried out, the antimicrobial activities depended largely on concentration of the extract used; thus, higher concentrations resulted to wider zones of inhibition. This relationship between plant extract concentration and zone of inhibition has also been reported by other researchers [1, 14, 15]. From the results obtained,Gram-positive bacteria were more susceptible to the active extracts than the Gram-negative ones. Gram-negative bacteria have a largely impermeable cell wall which makes them more resistant to antibiotics when compared to Gram-positive bacteria [16].

The antimicrobial activities of *A. chrysanthum* seed extracts could be attributed to the phytochemicals contained in them. *A. chrysanthum* seed contains phytochemicals such as phospholipids, phytosterols, fatty acids, alkaloids and anthraquinones (Tables 5-9). These secondary metabolites have been proven to be responsible for the antimicrobial abilities of a lot of medicinal plants [11, 17, 18]. Results from the phytochemical analysis of the n-hexane extract (which was the most bioactive of all the investigated extracts) showed that *A. chrysanthum* seeds contain compounds which are most likely responsible for the antimicrobial qualities observed in the susceptibility tests. Studies have shown that phospholipids have antimicrobial activity against pathogenic microorganisms [19], β-sitosterol, stigmasterol and campesterol (which are all phytosterols) have been shown to have strong antimicrobial properties against a variety of bacterial and fungal strains [20]. The antifungal and bactericidal properties of fatty acids are well known [21]. Alkaloids are secondary metabolites of plants which have been known to have strong antimicrobial properties. They have other great uses in pharmacology such as anti-hypertensive, antimalaria and analgesics [22]. Alkaloids have been known to inhibit bacteria growth with similar effects as ampicillin, a standard antibiotic [23]. Anthraquinones and their derivatives have shown potential applications as antibacterial, antivirus and antioxidant agents. Healthcare industries and medicine have utilized both natural and synthetic anthraquinones in treatment of diverse diseases and ailments caused by pathogenic microorganisms [24].

Conclusion

It can be concluded from this study that the n-hexane and ethylacetate extracts of the seed of *Aframomum chrysanthum* showed antimicrobial activity against some of the tested microorganisms. This probably justifies the use of the plant as an antimicrobial agent. The seed of *Aframomum chrysanthum* can be of great application in medicine due to the antimicrobial properties of its chemical components. Health care delivery systems will find the seed of this plant essential in treatment of diseases and ailments caused by some bacteria and fungi.

References

1. Doherty VF, Olaniran OO, Kanife UC. Antimicrobial activities of *Aframomum meleguetea* (alligator pepper). International Journal of Biology 2010;2(2):126-131.
2. Nwachoko N, Essien EB, Ayalogu EO. Anti diarrhoea activities of aqueous extract of *Aframomum chrysanthum* seed in albino rats. International Journal of Original Research Resource 2016;2(3):172-177.
3. Okwu DE. Improving nutritive value of cassava tapioca meal with local spices. Journal of Nutraceutical, Functional and Medicinal Foods 2001;3:43-51.
4. Ndukwe GI, Ojinnaka CM, Oyedeye AO. Novel bioactive triterpenoid saponin from the fruits of *Napoleonea imperialis* P. Beavu (*Lecythidaceae*). International Journal of Chemical Studies 2016;4(5):80-87.
5. Ndukwe GI, Ojinnaka CM, Oyedeye AO, Nxsanana N, Apalata T. Antibacterial activity of the fruit of *Napoleonea imperialis* P. BEAVU. Journal of Innovation and Research in Health Sciences & Biotechnology 2015;1(1):1-11.
6. Kiehbauch JA, Hennett GE, Salfinger M, Archinal WC, Monserrat C, Carlyn C. Use of the national committee for clinical laboratory standards guidelines for disk diffusion susceptibility testing in New York state laboratories. Journal of Clinical Microbiology 2000;38(9):3341-3348.
7. Raheja RK, Kaur C, Singh A, Bhatia G. New calorimeter method for the quantitative estimation of phospholipids without acid digestion. Journal of Lipid Research 1973;14(6):693-697.
8. Adesina AJ, Adefemi SO. Lipid composition of *Basella alba* and *Basella rubra* leaves consumed in south-west Nigeria: Nutritional implication. Bangladesh Journal of Science Industrial Resource 2017;52(2):125-134.
9. Tong SYC, Davis JS, Eichenberger E, Holland TL, Fowler Jr VG. *Staphylococcus aureus* infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clinical Microbiology Review 2015;3:297-305.
10. Schlierf G, Oster P, Heuck CC, Raetzer HB, Schellenberg B. Sistosterol in juvenile type II hyperlipoproteinemia: Atherosclerosis. Elsevier 1978;30(4):245-248.
11. Esimone CO, Iroha IR, Ibezim EC, Okeh CO, Okpama EM. *In vitro* evaluation of the interaction between tea extracts and Penicillin G against *Staphylococcus aureus*. African Journal Biotechnology 2008;5:1082-1086.
12. Adwan G, Mhamma M. Synergistic effects of plant extracts and antibiotics on *Staphylococcus aureus* strains isolated from clinical specimens. Middle-East Journal of Science 2008;3(3):134-139.
13. Magaldi S, Mata-Essayag S, Hartungde Capriles C, Perez C, Colell MT, Olaizole N. Well diffusion for antifungal susceptibility testing. International Journal of Infectious Diseases 2004;8(1):39-45.
14. Ndukwe GI, Clark PD, Jack IR. *In vitro* antioxidant and antimicrobial potentials of three extracts of *Amaranthus hybridus* L. leaf and their phytochemicals. European Chemical Bulletin 2020;9(7):164-173.
15. Jack IR, Clark PD, Ndukwe GI. Evaluation of phytochemical, antimicrobial and antioxidant capacities of *Pennisetum purpureum* (Schumach) extracts. Chemical Science International Journal 2020;29(4):1-14.
16. Breijyeh Z, Jubeh B, Karaman R. Resistance of Gram-negative bacteria to current antibacterial agents and approaches to resolve it. Molecules 2020;25(6):1340.
17. Cowan MM. Plant products as antimicrobial agents. Clinical Microbiology Reviews 1999;12:564-582.
18. Adejumobi JA, Ogundiya MO, Kolapo KA, Okunade MB. Phytochemical composition and in vitro antimicrobial activity of *Anogeissus leiocarpus* on some
common oral pathogens. Journal of Medicinal Plants Resource 2008;2:93-196.

19. Kazim AR, Alden SB. Antimicrobial effect of phospholipid produced from Bacillus subtilis. World Journal of Experimental Biosciences 2014;2:59-63.

20. Bhardwaj R, Yadav A, Sharma P, Sharma RA. In vitro and in vivo GC-MS profile and antimicrobial activity of phytosterols of Datura stramonium. Research Journal of Medicinal Plants 2014;8:112-120.

21. Sati A, Sati SC, Sati N, Sati OP. Chemical composition and antimicrobial activity of fatty acid methyl ester of Quercus leucotrichophora fruits. Journal of Natural Product Research 2017;31(6):713-717.

22. Ugwoke C, Oriji J, Anze S, Ildibia C. Qualitative phytochemical analysis and antimicrobial potential of the ethanol and aqueous extracts of the leaf, stem and root of Chromeleana odorata. International Journal of Pharmacology 2017;9(2):207-214.

23. Mabhiza D, Chitemerere T, Makangayama S. Antibacterial properties of alkaloid extracts from Callistemon citrinus and Vernonia adoensis against Staphylococcus aureus and Pseudomonas aeruginosa. International Journal of Medicinal Chemistry 2016;2:7.

24. Malmir M, Serrano R, Silva O. Anthraquinones as potential antimicrobial agents - A review. Antimicrobial research: Novel bioknowledge and educational programs (55-61). Lisbon, Portugal: Formatex 2017.