Receptor for Hyaluronic Acid-Mediated Motility is Associated with Poor Survival in Pancreatic Ductal Adenocarcinoma

Xiao-Bo Cheng1, 2, Norihiro Sato1, Shiro Kohi1, Atsuhiro Koga1, Keiji Hirata1

1. Department of Surgery 1, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
2. Department of Breast Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China

Corresponding author: Xiao-Bo Cheng, MD, Department of Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahata-nishi-ku, Kitakyushu-shi, Fukuoka 807-8555, Japan, Department of Breast Surgery, The Fourth Affiliated Hospital of China Medical University, No. 4 East Chongshan Road, Huanggu-ku, Shenyang, Liaoning 110032, China, Tel.: +81-93-691-7441&+86-24-62043436; Fax: +81-93-603-2361; E-mail: c13840564883@163.com & chengxiaobo@med.uoeh-u.ac.jp

© 2015 Ivyspring International Publisher. Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited. See http://ivyspring.com/terms for terms and conditions.

Received: 2015.06.19; Accepted: 2015.08.09; Published: 2015.09.03

Abstract

Receptor for hyaluronic acid (HA)-mediated motility (RHAMM) is a nonintegral cell surface receptor involved in the aggressive phenotype in a wide spectrum of human malignancies, but the significance of RHAMM in pancreatic ductal adenocarcinoma (PDAC) remains unknown. In this study, we investigated the expression of RHAMM and its clinical relevance in PDAC. RHAMM mRNA expression was examined in 8 PDAC cell lines and in primary pancreatic cancer and adjacent non-tumor tissues from 14 patients using real-time RT-PCR. Western blotting was carried out to analyze the expression of RHAMM protein in PDAC cell lines. We also investigated the expression patterns of RHAMM protein in tissue samples from 70 PDAC patients using immunohistochemistry. The RHAMM mRNA expression was increased in some PDAC cell lines as compared to a non-tumorous pancreatic epithelial cell line HPDE. The RHAMM mRNA expression was significantly higher in PDAC tissues as compared to corresponding non-tumorous pancreatic tissues (P < 0.0001). The RHAMM protein expression was higher in the vast majority of PDAC cell lines relative to the expression in HPDE. The immunohistochemical analysis revealed strong expression of RHAMM in 52 (74%) PDAC tissues. Strong expression of RHAMM was significantly associated with a shorter survival time (P = 0.038). In multivariate analysis, tumor stage (P = 0.039), residual tumor (P = 0.015), and strong RHAMM expression (P = 0.034) were independent factors predicting poor survival. Strong expression of RHAMM may predict poor survival in PDAC patients and may provide prognostic and, possibly, therapeutic value.

Key words: Receptor for hyaluronic acid-mediated motility, pancreatic ductal adenocarcinoma, prognostic factor, poor survival

Introduction

HA is a large glycosaminoglycan composed of repeating β-1,4-linked D-glucuronic acid and β-1,3-N-acetyl-D-glucosamine disaccharide units that accumulates in the extracellular matrix (ECM) [1]. In cancerous tissue, HA is secreted from stromal fibroblasts in response to humoral factors derived from tumor cells [2], promoting tumor transformation, metastasis [3, 4], and cell motility and migration [5-8].

In our previous study [9], we demonstrated a relationship between increased expression of HA and poor prognosis in patients with PDAC. Recently, HA receptors have been detected on tumor cells.

One of the HA receptors, RHAMM, was first described by Turley [10]; this receptor was originally identified as part of a multimeric complex (HARC) that regulates HA-induced motility of
H-ras-transformed fibroblasts [8] and is a peptide in the supernatants from proliferative fibroblasts [5] with many intracellular and extracellular functions. On the cell surface, RHAMM binds with CD44, and HA binding to this complex stimulates downstream signaling that activates RhoA-activated protein kinase and the MAPK/extracellular signal regulated protein kinase (ERK) 1/2 pathway, which results in the expressions of genes that are required for motility and invasion in various cancers [11-13]. RHAMM, which is a cancer-associated antigen, alone or in complex with CD44, osteopontin, and integrins is involved in tumorigenesis, progression, invasion and metastasis through interactions with signaling cascades related to ERK1/2, breast cancer 1 (BRCA1), BRCA1-associated RING domain 1, tyrosine and serine/threonine kinases, PDGF receptor, Src and Erk MAP kinases [6, 14-22]. Intracellular RHAMM, which is expressed in a cell cycle-dependent manner, has been described as an actin- and microtubule-associated protein that forms a complex with the dynein molecular motor that localizes to the centrosome to maintain spindle integrity [23-26].

In vitro, RHAMM is expressed in many mammalian cell types, including fibroblasts, smooth muscle cells, endothelial cells, macrophages, sperm, nerve cells, and several tumor cell types [27]. Clinically, RHAMM expression has been detected in patients with glioma, breast cancer, urinary bladder carcinoma, endometrial carcinoma, PDAC, hepatocellular carcinoma, colorectal cancer, prostate cancer, gastric cancer, lung cancer, and aggressive fibromatosis (i.e., desmoid tumor) [19, 28-37]. In this study, we attempted to investigate the mRNA and protein expression levels of RHAMM in PDAC cell lines and tissues.

Materials and methods

Cell culture

Eight PDAC cell lines were used: AsPC-1, BxPC-3, Panc-1, Capan-2, and CFPAC1 (ATCC, Manassas, VA, USA); SUIT-2 and KP-2 (JCRB Cell Bank, Osaka, Japan); and NOR-P1 (RIKEN BRC Cell Bank, Tsukuba, Ibaraki, Japan). An immortalized cell line derived from human pancreatic duct, HPDE, was a kind gift from Dr. M.S. Tsao (Univ. of Toronto, Canada). All PDAC cell lines were maintained in RPMI-1640 medium with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin and HPDE was maintained in HuMedia-KG2 (KURABO, Osaka, Japan) at 37°C in a humidified atmosphere with 5% CO₂.

Patients

Archival tissue specimens were collected from 70 PDAC patients who underwent surgical resection between 1982 and 2011 in our department. Clinico-pathological characteristics of these patients have been described previously [9]. The study was approved by the ethical committee of the university of occupational and environmental health, and written informed consent was obtained from all patients.

Real-time RT-PCR

Total RNA was isolated from all cells and from 14 matched pairs of primary pancreatic tumor and adjacent non-tumor tissues using the RNeasy Mini Kit (Qiagen, Hilden, Germany). Single-stranded cDNA was synthesized from 1.0μg of total RNA. Real-time mRNA expression analysis of RHAMM (Hs00234864_m1) and a housekeeping gene GAPDH (Hs02758991_g1) for control was performed using TaqMan® Gene Expression Assays and Step One Plus real-time PCR instrument (Applied Biosystems, Foster, CA, USA) according to the manufacture’s instruction.

Western blotting

Cultured PDAC and HPDE cells were rinsed once with cold PBS and scrapped in 400μl of PRO-PREP protein extraction solution (iNiRON Biotechnology, Gyeonggi-do, South Korea) at -20°C for 30 min. After centrifugation at 13000rpm for 5 min at 4°C, the protein concentrations were quantified with a BCA (bicinchoninic acid) protein assay kit (Pierce, Rockford, IL, USA). Proteins were then denatured in 6xSDS-PAGE sample buffer solution without reducing reagent (Nacalai Tesque, Kyoto, Japan) for 5 min at 95°C. The same amounts of proteins were subjected to electrophoresis in a 10% Mini-PROTEAN Precast Gel (Bio-Rad, Philadelphia, PA, USA) and transferred onto a poly vinylidene difluoride (PVDF) membrane (ATTO, Tokyo, Japan). The membranes were blocked with 5 % non-fat dried milk in Tris-buffered saline-Tween (10 mM Tris-HCl, pH 7.4, 150 mM NaCl, and 0.1 % Tween 20) for 1 h at room temperature and incubated with a primary antibody against RHAMM (1:1000; LifeSpan Biosciences, Seattle, WA, USA) or β-actin (1:2000; Sigma-Aldrich, St Louis, MO, USA) overnight at 4°C or for 1 h at room temperature, followed by incubation with an anti-rabbit IgG, horseradish peroxidase-linked species-specific whole antibody (1:1000; GE Healthcare, Little Chalfont, Buckinghamshire, UK) or an anti-mouse IgG, horseradish peroxidase-linked species-specific whole antibody (1:2000; GE Healthcare) for 1 h at room temperature after repeated washing with Tris-buffered saline-Tween. The immunopositive bands were detected by chemiluminescence using the ECL prime western blotting detection reagent (GE Healthcare) and quan-
Immunohistochemistry and scoring

The PDAC tissues were incubated with anti-RHAMM IgG (Abcam, Cambridge, MA, USA) at a 1:100 dilution for 2 h at room temperature. The sections were incubated for 10 min with biotinylated anti-rabbit antibody for RHAMM according to the manufacturer’s instruction of Histofine SAB-PO (R) kit (Nichirei Biosciences Inc, Tokyo, Japan). The positive control was archival tissue from a normal human testis. The scoring method, which combined intensity and the percentage of positivity, was previously described [9]. The slides were scored by two individual researchers (N.S. and X.C.) on a blinded basis. The extent and intensity measures for each score were combined to identify “weak” expression or “strong” expression.

Statistical analysis

The statistical analyses were performed with SPSS statistical software (version 21.0; SPSS, Inc., Chicago, IL, USA). The data are expressed as the mean ± SD. The differences in the RHAMM mRNA levels among the pancreatic tissues (normal versus cancer) were compared using the Wilcoxon signed rank test. The survival curves were constructed according to the Kaplan-Meier method and were compared using the log-rank test. Cox proportional hazards regression analysis was used to evaluate independent prognostic factors associated with survival. Statistical significance was accepted when \(P < 0.05 \). All \(p \) values are two-tailed. The experiments performed in this study were repeated three independent times.

Results

RHAMM mRNA expression in cell lines and tissues

We investigated mRNA expression of RHAMM in a panel of 8 PDAC cell lines and HPDE as a control. The RHAMM mRNA expression was higher in 4 (50%) of 8 PDAC cell lines as compared to HPDE (Fig. 1). We also analyzed the RHAMM mRNA expression levels in tissues from 14 PDAC patients. The RHAMM mRNA expression was significantly higher in PDAC tissues as compared to adjacent non-tumorous pancreatic tissues (median, 4.7-fold; range, 0.8- to 16.9-fold; \(P < 0.0001 \)) (Fig. 2).

RHAMM protein expression in cell lines

We then used western blotting to examine the protein expression of RHAMM in PDAC cell lines and HPDE. The RHAMM protein expression was higher in the vast majority of PDAC cell lines relative to the expression in HPDE (median, 3.8-fold; range, 1.0- to 10.7-fold) (Fig. 3).

Immunohistochemical analysis of RHAMM in PDAC tissues

The RHAMM protein expression pattern was investigated in tissue samples from 70 PDAC patients who underwent surgical resection using immunohistochemistry. Staining of RHAMM was found predominantly in the cytomembrane and cytoplasm of tumor cells. Of 70 patients who were evaluable for RHAMM staining, 52 (74%) patients were classified as having strong RHAMM expression, and the remaining 18 (26%) patients were classified as having weak expression, according to the intensity score (Fig. 4).

Correlation between RHAMM expression and prognosis in PDAC patients

We explored the correlations between the RHAMM expression pattern and patient prognosis by
comparing the survival of patients between the strong and weak expression groups. As shown in Fig. 5, strong expression of RHAMM was significantly associated with a shorter survival time after surgery (log rank = 4.284, \(P = 0.038 \)).

Finally, we used Cox proportional hazard model to analyze the prognostic significance of RHAMM expression. Univariate analysis showed tumor stage (\(P = 0.009 \)), residual tumor (\(P = 0.003 \)), and RHAMM expression (\(P = 0.043 \)) correlated significantly with survival. Multivariate analysis revealed tumor stage (\(P = 0.039 \)), residual tumor (\(P = 0.015 \)), and RHAMM expression (\(P = 0.034 \)) were independent factors, which affected survival (Table 1).

Table 1. Cox multivariate analysis of clinicopathological parameters for survival

Variables	Univariate P value	Multivariate HR (95% CI)	P value
UICC stage	0.009	1.66 (1.03 - 2.68)	0.039
Tumor diameter	0.911		
Histological grade	0.694		
Age (> 75 years)	0.157		
Gender (M)	0.302		
Chemotherapy (+)	0.249		
Residual tumor (+)	0.003	2.32 (1.18 - 4.59)	0.015
Lymph node metastasis (+)	0.438		
Lymphatic invasion (+)	0.261		
Vessel invasion (+)	0.713		
Neural invasion (+)	0.135		
RHAMM expression (strong)	0.043	2.07 (1.06 - 4.07)	0.034

HR hazard ratio, *CI* confidence interval, *UICC* union for international cancer control, *RHAMM* receptor for hyaluronic acid-mediated motility.

Fig. 3. RHAMM protein expression in PDAC cell lines and HPDE cell line was investigated by western blotting. It was higher in most PDAC cells relative to the expression in HPDE cells (median, 3.8-fold; range, 1.0- to 10.7-fold).

Fig. 4. Immunohistochemical stainings of RHAMM in PDAC tissues. Weak and strong RHAMM expression patterns were identified, predominantly in tumor cells. The staining patterns were found in the cytomembrane and cytoplasm (original magnification 50× and 200×).
讨论

几个研究已经确定，RHAMM过度表达与乳腺癌的侵袭、进展和预后差[20, 29, 38]，与子宫内膜癌的病理学级别、侵袭和转移[19]，与胰腺腺癌的侵袭[39]，以及结直肠癌和胃癌的不良预后因素[33, 35]有关。Abetamann V等人通过研究RHAMM mRNA在10个细胞系中的表达，表明RHAMM参与了胰腺腺癌的侵袭。这些作者未能研究PDAC组织中RHAMM mRNA表达和PDAC细胞系中RHAMM蛋白表达，并未能阐明RHAMM表达的临床影响或预后价值。我们的研究是第一个确定RHAMM表达模式与PDAC患者生存率之间关系的报告。

我们使用免疫组化来识别PDAC细胞中的RHAMM蛋白表达，虽然表达未在细胞核中观察到，与观察到的其他肿瘤类型不同。强RHAMM表达在65%的口腔鳞状细胞癌[40]，40%的结直肠癌[41]和28%的胃癌[35]中报道。因此，表达可能取决于肿瘤类型。

RHAMM调节Ras和TGF-β信号通路，并与多种肿瘤实体的预后差相关[20, 38, 42]。RHAMM在PDAC中的表达被发现显著地与生存率相关（log rank = 4.284, P = 0.038）。

我们使用免疫组化来识别PDAC细胞中的RHAMM蛋白表达，虽然表达未在细胞核中观察到，与观察到的其他肿瘤类型不同。强RHAMM表达在65%的口腔鳞状细胞癌[40]，40%的结直肠癌[41]和28%的胃癌[35]中报道。因此，表达可能取决于肿瘤类型。

RHAMM介导Ras和TGF-β信号通路，并且与肿瘤的预后差相关。RHAMM在PDAC中的表达被发现显著地与生存率相关（log rank = 4.284, P = 0.038）。RHAMM表达在PDAC组织中的升高与生存率呈负相关。这与乳腺癌、结直肠癌和胃癌等其他类型肿瘤的发现一致。此外，我们还发现RHAMM mRNA水平在胰腺肿瘤组织中无论肿瘤级别如何都高于正常胰腺组织，这表明RHAMM可以作为一种新型的预后标记用于PDAC患者的临床应用。

经常过度表达RHAMM导致将其作为PDAC靶点的提议。通过靶向其胞外功能，RHAMM在肿瘤进展的生物研究已导致新型肿瘤治疗方案的出现。正在进行的临床前和II期试验正在调查RHAMM衍生肽疫苗的潜在免疫识别和破坏肿瘤的能力，这表明RHAMM可以作为新型的预后标记和PDAC治疗的靶点。
Journal of Cancer 2015, Vol. 6

1098

8. Turley EA, Austen L, Vandelić K, Clary C. Hyaluronan and a cell-associated hyaluronan binding protein regulate the locomotion of ras-transformed cells. J Cell Biol. 1991; 112: 1041-7.

9. Cheng NB, Sato N, Kobi S, Yamaguchi K. Prognostic impact of hyaluronan and its regulators in pancreatic ductal adenocarcinoma. PLoS One. 2013; 8: e80765.

10. Turley EA. Purification of a hyaluronate-binding protein fraction that modifies cell social behavior. Biochem Biophys Res Commun. 1982; 108: 1016-24.

11. Itoh K, Yoshioka K, Akedo H, Uehata M, Ishizaki T, Narumiya S. An essential part for Rho-associated kinase in the transcellular invasion of tumor cells. Nat Med. 1999; 5: 221-5.

12. Somlyo AV, Phelps C, Dipierro C, Eto M, Read P, Barrett M, et al. Rho kinase and protein kinase inhibitors cooperate to inhibit angiogenesis and growth of human prostate cancer xenografts. FASEB J. 2013; 17: 223-34.

13. Bourguignon LY, Singleton PA, Zhu H, Diederich F. Hyaluronan-mediated CD44 interaction with RhoGEF and Rho kinase promotes G2b2-associated breast cancer progression and phosphatidylinositol 3-4,5-bisphosphate signaling leading to cytokine (macrophage-colony stimulating factor) production and breast tumor progression. J Biol Chem. 2003; 278: 29420-34.

14. Greiner J, Ringhoffer M, Taniguchi M, Schmitt A, Kirchner D, Krahm G, et al. Receptor for hyaluronan-acid-mediated motility (RHAMM) is a new immunogen-enriched antigen in acute and chronic myeloid leukemia. Exp Hematol. 2002; 30: 1029-35.

15. Sherman L, Sleezen J, Herrlich P, Ponta H. Hyaluronate receptors: key players in growth, differentiation, migration and tumor progression.Curr Opin Cell Biol. 1994; 6: 726-33.

16. Tolg C, Hamilton SR, Nakrieko KA, Kooshesh F, Walton P, McCarthy JB, et al. Rhamm-/fibroblasts are defective in CD44-mediated defective ERK1,2 mitogenic signaling, leading to defective skin wound repair. J Cell Biol. 2006; 175: 1017-28.

17. Telmer PG, Tolg C, McCarthy JB, Turley EA. How does a protein with dual mitotic spindle and extracellular matrix receptor functions affect tumor susceptibility and progression? Commun Integr Biol. 2011; 4: 182-5.

18. Greiner J, Bundlinger L, Guinn BA, Dohner H, Schmitt A, Kirchner D, et al. RHAMM expression and isoform balance predict aggressive disease and poor survival in multiple myeloma. Blood. 2004; 101: 1151-8.

19. Greiner J, Schmitt A, Giannopoulos K, Rojeski MT, Gotz M, Funk I, et al. High-dose RHAMM-R3 peptide vaccination for patients with acute myeloid leukemia, myelodysplastic syndrome and multiple myeloma. Haematologica. 2010: 95: 1191-7.

20. Schmitt A, Giannopoulos K, Rojeski MT, Gotz M, Funk I, et al. RHAMM-R3 peptide vaccination in patients with acute myeloid leukemia, myelodysplastic syndrome, and multiple myeloma elicits immunologic and clinical responses. Blood. 2008; 111: 1357-65.

21. Tabakiewicz K, Giannopoulos K. Definition of a target for immunotherapy and survival of the first Peptide vaccination study in chronic lymphocytic leukemia. Transplant Proc. 2010; 42: 3293-6.

http://www.jcancer.org