Theodosius’ Sphaerica:
A Second Arabic Translation

PAUL KUNITZSCH
Davidstrasse 17
81927 Muenchen, Germany

RICHARD LORCH
10 Nightingale Court, Leam Terrace
Leamington Spa, CV31 1DQ, Great Britain
(richardlorch@btinternet.com)

Abstract: An Arabic translation of the Sphaerica of Theodosius of Bithynia (around 100 B.C.) accompanied by its Latin translation by Gerard of Cremona had been edited by P. Kunitzsch and R. Lorch in 2010. Apart from that, there exists a second Arabic translation of this text in two manuscripts in Hebrew cursive script. For readers interested in the matter, we here edit the text of Book I of the work in this second version and discuss some differences here from the version edited in 2010.

Keywords: Theodosius of Bithynia, his work Sphaerica, anonymous Arabic translation (edited 2010), Qustā ibn Lūqā – second Arabic translation, partly edited and discussed here for comparison.

In 2010, we have edited an Arabic translation of Theodosius’ Sphaerica together with its Latin translation by Gerard of Cremona (Toledo, 12th century AD). The Arabic version of 2010 has been edited from three manuscripts; it remained anonymous, the translator(s) were not mentioned in the

1. Theodosius, Sphaerica, Arabic and Medieval Latin Translations, Edited by Paul KUNITZSCH and Richard LORCH, Stuttgart: Franz Steiner Verlag, 2010 (Series Boethius, Vol.62), 431 pp. In the present article, this will shortly be quoted as: 2010:x (= page number), y (= line number). Literature quoted there (cf. Bibliography pp. 429-431) will here be quoted in the abbreviated form used there. Literature published after 2010 will of course be quoted here with full title etc.
sources (cf. 2010:2f.). In addition, R. Lorch found two manuscripts (in Hebrew cursive script) containing another Arabic version of the *Sphaerica* of which we here edit the text of Book 1, transformed into Arabic script, in order to give interested readers an idea of the form and content of this second version of the text.

This second Arabic translation of the *Sphaerica* has been found in two manuscripts in cursive Hebrew script. In both manuscripts the translation is ascribed to Qusṭā ibn Lūqā (d. ca. 300 H/912-13 AD). The two manuscripts are:

\[F = \text{Florence, Biblioteca Medicea Laurenziana, Orientali 124, 76ff.; and} \]
\[C = \text{Cambridge, University Library, Add. 1220, ff. 1r-50r.} \]

The script, a cursive form of Hebrew, in *F* is rather clearly readable, whereas in *C* the script often appears quite hastily and carelessly made, also it seems that the pens and/or the hands of writers had several times changed. The language is Arabic, but in a very colloquial form (judeo-Arabic?); for our present rendering we transformed it into normal written Arabic (with the deviant colloquial Hebrew variants only shown in the apparatus of Propos. 1, in order to save the space for the rest of the text). So, as it seems, this text was produced around 900AD in Baghdad, then somehow reached al-Andalus, i.e the Arabic-dominated zones of Spain, where in the late period it came into the hands of Jewish inhabitants of the area who then transformed it somehow, perhaps from an Arabic manuscript in the Andalusian-Maghrebi ductus of the Arabic script and with the spoken help of some Arabs (in the colloquial dialect), into their contemporary judeo-Arabic language and writing.

2. Cf. LORCH [1996], p. 164f.; *idem*, The “Second” Arabic translation of Theodosius’ *Sphaerica*, in: *From Alexandria, Through Baghdad. Surveys and Studies... in Honor of J.L. Berggren*, ed. N. Sidoli – G. Van Brummelen, Berlin – Heidelberg: Springer Verlag, 2014, pp. 255-258.
Theodosius’ Sphaerica: A Second Arabic Translation

Some Comments

Generally the mathematical contents and proceedings in the second translation are the same as in 2010, apart from the fact that here often other vocabulary and another style of expression is used. As for the diagrams of the propositions, in our photocopies of F and C they were mostly not clearly visible, but we received coloured scans of C in which the diagrams were well visible. The letters in the diagrams here (in Book I) reach from A to N (following the Greek alphabet, and in Arabic the abjad series, omitting U and J). In the following some differences in FC from 2010 will shortly be mentioned. But not all such differences must be due to the translation or transmission of the second Arabic version, it could well be that its translator Qustā ibn Lūqā used a Greek source that itself offered readings etc. different from those in the source of the translation of 2010.

Propos. I, 4: In 2010: 23-27 both in the diagram and in the corresponding mathematical text 9 diagram letters are used, A – L, with the omission of H. The same is the case in the second translation, but here one more letter is omitted: T, also both in the diagram and in the text, i.e. altogether only 8 and not 9 letters.

Propos. I, 6, lines 35-36: The sentence between the pointed brackets (wa-khatt KN… ilā muḥīṭihā) is omitted in FC; it has been added from 2010: 34,45-46 (= Latin p. 35, 58-59), because there and in the Greek text it continues and completes the preceding sentence about line TL.

Propos. I, 7: The order of the six letters, A – Z, and accordingly the mathematical discussion in 2010 and in the second translation are somewhat different, but the mathematical results of the two are equal.

Propos. I, 13, lines 7 and 9: The diagram and the text of this proposition contain 9 diagram letters, A – K in the normal alphabetical order (so in the Greek text and in 2010, line 8: khatt HK, and lines 11 and 12, i.e. twice, the same); here the second translation has in all places instead of K the letter L (lines 7 and 9 — here twice).

3. We use this moment to express our gratitude to Prof. M. Folkerts (Munich), Prof. Dj. Paunić (Novi Sad), Dr. B. van Dalen (Munich) and Dr. Sonja Brentjes (Berlin), who helped us to obtain the scans of manuscript C from Cambridge and to transform the edition into the Suhayl format.

4. Cf. the table in 2010: 8.
Propos. 1, 14, line 10: ‘amūd HT, here the Greek text and 2010: 56,10 have the letters TA. From line 11 on the two versions, 2010 and the second translation, show several differences in the text, but use the same letters in the argumentation and at the end arrive at the same result. The arrangement of the diagrams and their letters in the two versions is also slightly different, but indicates the same mathematical effect.

Propositions 1, 15 and 16: The diagrams of these two propositions are identical with the diagram of Propos. 14, both in 2010 and in the second translation.

Propos. 1, 17: The diagram of this proposition has the same form in both versions. But of the six letters in that diagram the positions of two letters were exchanged: the place of A in 2010 is taken by B in the second translation, and the place of B in 2010 by A in the second translation. The text of the proof is nearly identical in the two versions and arrives at the same result.

Propos. 1, 18: In this proposition, the difference of both diagram and text in the two versions is remarkably greater. The diagram (and the text) in 2010 have only 5 letters, A – E, whereas the second translation has in both instances 6 letters, A – Z (there is no Z in 2010). The way of the proof is similar in the two versions until line 8 (second translation)/ 2010: 68,9; hereafter they differ in general and in details, the second translation then introducing the additional letter Z. At the end, the final conclusion sounds almost identical in both versions.

Propos. 1, 20: This proposition contains the diagram in two parts: the larger part shows two circles, marked with 5 letters, A, B, G, D, K, and separately a smaller detail of that diagram, with 4 letters, E, Z, H, T (so in the Greek text and in 2010: 72-76). The second translation has mainly the same forms of the diagrams and the same mathematical descriptions with one exception: both at the lower end of the diameter of circle ABD in the bigger diagram and in the pertaining text (in lines 9, 10, 11, 14 and 20) instead of the letter K in 2010 etc. it has T, a second time beside its proper place in the smaller diagram, there together with E, Z and H. So the second translation uses T also in the bigger diagram, in combination with its letters A, B, G and D. Nevertheless, the proof of the second translation comes to the same result as 2010: 20-21, that line AK (AT) is equal to line ET, and line AK (AT) is the diameter of the sphere, and therefore line ET is equal to the diameter of the known sphere. The reason for using T a second time
(instead of \(K\)) in the two manuscripts of the second translation could be a simple misunderstanding of an Arabic source manuscript in the Andalusian-Maghrebi ductus: in that style of writing these two letters can look quite similar, and when written a bit carelessly and then read and reproduced also somewhat carelessly and without precise knowledge of the matter and the background, such a confusion between \(T\) and \(K\) might easily happen.

Propos. 1, 21: The figure of the diagram in this proposition is differently formed in the Greek text, in 2010 and here in the second translation. In the Greek text and in 2010 it has 8 letters, \(A – T\); in the second translation it has only 6 letters, \(A, B, G, D, E\) and \(T\); \(Z\) and \(H\) are here missing, both in the diagram and in the mathematical text. Therefore the mathematical description in the two versions is only partially identical: from 2010: 78,8 = second translation line 6 on it has a different argumentation using the different letters.

So far our comments on the differences in Theodosius’ \textit{Sphaerica} between the edition of 2010 and the second Arabic translation. As already said, we have transformed the colloquial judeo-Arabic dialect into standard written Arabic form (citing the colloquial variants in the apparatus only in Propos. 1). Further, in the course of the text, we have only quoted variants from the manuscripts when they might influence the technical meaning of a sentence. In any way, of historical importance was “2010”, the (first) Arabic version circulating and being widely cited in the Orient, and in the same also in the Latin West through Gerard of Cremona’s Latin translation of the 12th century. This present edition is only meant to give interested readers an idea of what there was further produced, in addition to the well-known “standard version” edited in 2010.
كتاب ثاودوسيوس في الكورة ترجمة قسطا بن لوقا

المقالة الأولى

الكرة هي شكل عمود يحيط به سطح واحد فقط في وسطه نقطة جميع الخطوط الخارجية منها إلى سطحه متساوية، وتلك النقطة هي مركز الكرة.

قطر الكرة هو خط مستقيم يمر على المركز وينتهي إلى جهتين الكرة عند سطحها.

والكرة تتحرك عليه وهو ثابت، قطب الكرة هما نهابا القطر، وقطع الدائرة على الكرة هي نقطة على سطح الكرة جميع الخطوط الخارجية منها إلى تلك الدائرة متساوية.

الدوائر التي تقتط على الكرة يقال بعدها من المركز سواء إذا كانت الأعمدة الخارجية من المركز إلى سطحها متساوية والأبعد من المركز هو الذي العمود الخارجي من المركز إلى سطحها أطول.

والسطح يقال إنه منحرف على السطح إذا كانت الخطوط الخارجية في السطحين جميعاً من نقطة واحدة في فصلهما المشتركة لها قائمة ليس تحيط بزاوية قائمة.

السطح المنحرف على سطح يقال إنه منحرف على السطح اكراهًا مشابهًا لأكراه.

سطح ما على سطح آخر إذا كانت الخطوط الخارجية في كل السطوح من نقطتين من فصلهما قائمة عليها بزاوية متساوية والسطحان اللذان زواياهما غيرمتوايا اكراهًا أحدهما على الآخر أعظم.

1] إذا كان يفصل سطحا ما بسيطة فإن فصلة الذي يكون في بسيطة الكرة هو يحيط

بدارة.

 melhorada
فليكن يفصل بسط كرة سطح ما ويكون فصلها في بسطها رأجً، فأقول إن
أب ج يحيط دائرة ، يرهان فإنه كان السطح الفعال بسطكرة قد جاز على
المركز فمن البين أن أب ج يحيط دائرة من قبل أن كل واحد من الخطوط الخارجة
منها إلي أعني من مركز الكرة إلى الفصل متساوية وأن مركز الكرة أيضاً هو مركز
dائرة وأيضاً يجعل السطح الذي يقطع الكرة ليس يمر على المركز ونتوهم مركز
الكرة نقطة د وخرج من نقطة د إلى سطح أب ج عموداً ويكون د د يكون يلامي
السطح على نقطة ه وخرج خطي ه ب ه كيف ما اتفق ونصل د د فمن قبل
أن نقطة د فرضت مركز الكرة فمربع خط دب متساوٍ لربع خط دب وربع خط
دب مساوٍ لruby با دب لأن زاوية دب قائمة وربع خط دب مساوٍ لruby با
خط دب مربع دب لأن زاوية دب قائمة فإذا ما اتفق ونصل د د فمن قبل
مربعاً لruby با خطي دب وإذا أسقطنا مربع دب المشترك يبقى مربع خطي هب
مساوٍ لربع خط دب فإذا خطي هب مساوٍ لربع خط دب ويبعد ذلك يتيت أن جميع
الخطوط الخارجة من نقطة ه إلى أب ج مساوٍ لخط هب فإذا أب ج يحيط دائرة
مركها نقطة ح.

وهناك استبان أن إذا أخرج من مركز الكرة إلى سطح الدائرة من الدوائر التي عليها
خط مستقيم عمود عليها فإنه يقع على مركز تلك الدائرة.
نريد أن نجد مركز كرة مفروضة.

فلنتوهم الكرة المفروضة التي نريد أن نجد مركزها فمثلاً سطح ما فصله يكون دائرة ونفرض دائرة \overline{AB} فإن كان السطح الفاصل قد جاز على مركز الكرة فننفرض أن مركز الدائرة هو مركز الكرة وقد علمنا كيف نجد مركز الدائرة وأيضاً فإننا نفرض أن السطح الفاصل ليس يجوز على مركز الكرة ونخرج عن دائرة \overline{AB} ونكون نقطة C ونخرج من نقطة C خطناً مستقيماً عمداً على سطح دائرة \overline{AB} ونقوم على بسيط الكرة في الجهين جميعاً ونعلم عندما يتقيان بسيط الكرة عالمتى D ونقسم خط ده بنصفين على نقطة ال \overline{D}، فأقول إن نقطة D هي مركز الكرة، برهانه أنه لا يمكن غيره فإن أمكن فليكن مركز الكرة نقطة H ونخرج من نقطة H خطناً يكون عمداً على دائرة \overline{AB} ونعلم موضع التقائه سطح \overline{AB} نقطة E فإذا أن نقطة E من دائرة \overline{AB} فإنها أيضاً عالمتياً impartialية ونفرض مركزها E لب، ليست علامتياً ال \overline{E} مركز الكرة ونعمل ذلك يبين أن ليس يمكن أن يكون مركز الكرة نقطة أخرى غير نقطة ال \overline{E} إذا نال نقطة ال \overline{E} مركز الكرة، وذلك ما أردنا أن نبين.
إذا ماست كرة سطحاً ما وليس يفصلها فإنها لا تماس إلا على نقطة واحدة.

\[3\] فإن أمكن أقول إنها تماس سطحاً على نقطتي آ ب وخرج على نقطتي آ ب سطحاً يفصل الكرة ففصلها يكون إما في سبسط الكرة فإن حيط دائرة وأما في السطح أعلاً الفصل الذي يحدث في السطح المسس فإنه خط مستقيم وتكون الدائرة التي في سبسط الكرة دائرة أدب والخط الذي في السطح هو خط دابز فمن قبل أن

السطح ليس يفصل الكرة خط دابز ليس يفصل دائرة أدب ومن قبل أنه قد

فرض على حيط دائرة أدب نقطتان وهما نقطتان آ ب خط أدب يفصل الدائرة وقد بان

أن ليس يفصلها فإذا خط دابز يفصل الدائرة ولا يفصلها فهذا خلاف فإذا الكرة

ليس تماس لسطح أكثر من نقطة واحدة ، وذلك ما أردنا .

[4] إذا ماست كرة سطحاً ما وليس يفصلها فإن الخط الخارج من مركز الكرة إلى نقطة

المشاركة يكون عموداً على السطح المسس.

\[6\] فإذا د خ دب كط C add. C
مثال ذلك نتوهم كرمة سطحًا ما وليس يفصلها والماسة على نقطة A ومركز الكرة نقطة B ونصل نقطة A إلى B، فأقول إن خط BA عمود على السطح الماس، يرهشه أنا خرج على خط AB سطحاً واحداً يفصل الكرة وفصله إما في سطح الكرة فإنه يحيط بدائرته وإذا في السطح فإنه جسم مستقيم ونفترض الدائرة دائرة أ ونفترض الخط المستقيم خط دار وأيضاً خرج على خط AB سطحاً آخر يقطع الكرة وفصله إما في سطح الكرة فإنه يحيط بدائرته وأما في السطح فإنه جسم مستقيم ونفترض الدائرة دائرة أ ونفترض الخط المستقيم خط دار فنقبل أن السطح بياس الكرة خط دار بياس دائرة أ ومن قبل أن خط داز بياس دائرة أ على نقطة ال A وقد خرج من نقطة ال A إلى مركزها خط مستقيم وهو خط AB خطأ عمود على خط داز و بذلك يبين أن خط AB عمود على خط داز ومن قبل أن خط AB عمود على خط داز هل فإنه عمود على السطح الذي فا فيه والسطح الذي فيه خطأ داز هل هو السطح الماس للكرة فإذا خرج AB هو عمود على السطح الماس للكرة، وذلك ما أردنا أن نبين.

إذا ماست كرمة سطحًا وليس يفصلها وخرج من نقطة الماسة خط مستقيم عمود على السطح فإن مركز الكرة على ذلك الخط الخارج.

مثال ذلك نتوهم أن ماست كرمة سطحًا ما وليس يفصلها وتكون نقطة الماسة على نقطة ال A وخرج من نقطة ال A خطًا يكون عمودًا على السطح الماس وهو خط 7-9 repet. F 10 [ومن قبل ... دائرة A] repet. et del. F 12 [خط DLA] MSS
اب ـ، فأقول إن مركز الكرة على خط آب ـ، برئاه أن ليس يمكن غيره فإن أمكن فلكل من مركز الكرة نقطة ـ ونصل خط جا ـ فمن قبل أن الكرة قد ماست السطح وليس يفصلها على نقطة الـ آ ـ وقد خرج من مركز الكرة إلى نقطة الفساحة خط جا ـ خط جا ـ عمود على السطح الماس إذا قد خرج من نقطة واحدة وهي نقطة الـ آ ـ حطان في جهة واحدة هما عمودان على سطح واحد وهما خط آب أب ـ.

وذلك غير ممكن، وذلك ما أردنا أن نبين.

الدوائر التي على الكرة ما كان منها على مركز الكرة هي دوائر عظام وما كان منها على غير مركز الكرة فما كان بعدها من المركز بعداً وأحداً متساوية فإنها متساوية وما كان منها أكثر بعداً من المركز فإنها أصغر.

مثلاً أنا نفرض دوائر آب جد ـ ونكن دائرة جد ـ جائزة على مركز الكرة ودارة ـ، فأقول إن دارئة جد ـ دارئة جد ـ عظيمة، برئاه أنا نفرض مركز الكرة نقطة ـ فإذا نقطة ـ مركز دائرة جد ـ أيضًا وتخرج من نقطة ـ إلى سطح دائرتي آب ـ دارئة جد ـ خطين يكونان عمودين على اتفهما وهمة ـ ونقطة ـ في سطح دائرية آب ونقطة ـ في سطح دارئة ـ ونكون نقطتي ـ دارئة دائرتي آب ـ ونخرج من نقطة ـ ح ـ ـ إلى محيط دوارتي آب ـ عمود على سطح دائرية آب فإن عمود على جميع الخطوط التي تماسه في ذلك السطح ونحبس معه زاوية قائمة والخط الذي يماسه في هذا السطح هو خط طال ـ إذا زاوية لطح قائمة وبمثل ذلك يتبين أن زاوية ح ـ أنقى وأيضاً من قبل أن زاوية لطح

131
Paul Kunitzsch, Richard Lorch

A list if its various lines is: 16. If a line is shorter than 25

And if a line is longer than 25

15

If a line is shorter than 25

20

And if a line is longer than 25

25

If a line is shorter than 25

30

And if a line is longer than 25

35

If a line is shorter than 25

14

om. C

16

MSS

14

om. F

F

25–26

1 om. F

14

om. C
بعدها من المركز بعدها سواء فهي متساوية وما كان بعدها أكثر فهي أصغر، وذلك ما أردنا أن نبين.

إذا كانت دائرة على كرة وأخرج من مركز الكرة إلى مركز الدائرة خط مستقيم يصل فيما بينهما فذلك الخط عمود على سطح الدائرة.

مثال ذلك أن نفرض الدائرة على الكرة وهي دائرة ومركز الكرة نقطة 5 ومركز الدائرة نقطة 6 ونصل نقطتين 7，则 ، فأقول إن خط 8 عمود قائم على سطح دائرة 9 و 10، يرهانه أن نخرج خطين يمران على مركز الدائرة وهم خطاءโรงแรม 11 و 12 من قبل أن خط 13 مساوٍ خط 14 و 15 مشترك يكون خط 16 و 17 من قبل أن خط 18 عمود على دائرة 19 و 20.

ومن ذلك يتبين أنه عمود على حافة من قبل أن خط 21 عمود على خط 22 متلاقياً وخروج من نقطة تقاطعاً وهنا خط عمود على السطح الذي فيه حافة من تقاطعاً، وستكون الدائرة الذي فيه حافة من تقاطعاً هي دائرة في إذا 23، وذلك ما أردنا أن نبين.

\[\text{om. C} \]
إذا كانت دائرة على كرة وأخرج من مركز الكرة إلى سطح الدائرة عموداً ومر في الجبين جمعاً إلى بسيط الكرة فإنه يقع على قطب تلك الدائرة.

مثال ذلك أنا نفرض دائرة على كرة وهي دائرة \(\overline{AB} \) ونفرض مركز الكرة على نقطة \(D \) ونخرج من نقطة \(D \) خطاً على سطح دائرة \(\overline{AB} \) عموداً وهو خط \(DD \) وكون نقطة النقطة \(Z \) مركزة الدائرة ونخرج خط \(DZ \) في الجبين جمعاً ونعلم موضع التقائها بسيط الكرة نقطة \(Z \) ، فقول إن نقطة \(Z \) هما قطب دائرة \(\overline{AB} \) ، برهانه أن نخرج خطي \(\overline{AD} \) ونصل آز \(\overline{ZD} \) ونصل خط \(\overline{AB} \) حج حج من قبل أن خطي قائم على سطح دائرة \(\overline{AB} \) وحيط مع جميع الخطوط التي في سطحها بزاوية قائمة فإذا كل واحدة من زوايا \(Z \) زه \(\overline{ZD} \) زه خط \(\overline{DZ} \) قائم على زاوية قائمة مشتركت لها فقاعدة أز مساوية لقاعدة \(\overline{ZD} \) ويمثل ذلك بعين أن كل الخطوط الخارجية من نقطة \(Z \) إلى دائرة \(\overline{AB} \) متساوية فإذا نقطة \(Z \) قطب دائرة \(\overline{AB} \) ويمثل ذلك نبين أن ح قطب دائرة \(\overline{AB} \) ، وذلك ما أردنا أن نبين.

إذا كانت دائرة على كرة وأخرج من واحد قطبيها خط إلى مركز الدائرة كان ذلك الخط عموداً عليها.

والعمل في بيان ذلك الشكل كالأعمال في بيان الشكل الذي قبل ذلك ، وذلك ما أردنا أن نبين.
إذا كانت دائرة على كرة وأخرج من أحد قطبيها خط مستقيم عموداً عليها فإن ذلك الخط يكون عموداً على مركزها وإن أخرج الخط إلى جهته الأخرى فإنه يقع على قطبها الآخر.

مثال ذلك أنا نفرض دائرة على كرة وهي دائرة أب ج وخرج من أحد قطبيها وهو نقطة د إلى سطحها عموداً وهو خط دد نفرض التقاءه لسطح الدائرة على نقطة ت وخرج خط دد في الجهة الأخرى إلى بسيط الكعبة ويكون التقاءه لبسيط الكعبة على نقطة ز. فأقول إن نقطة ت مركز دائرة أب ج و ز قطبها الآخر، برهانه أنا أخرج من نقطة ت خطى دا هب ونصل آد دب آز رب فمن قبل أن خط دد قائم على سطح دائرة أب ج ويتصل به خط أه دب فإذاً مربعاً أه دد مساواه لربع دد إذاً أسطعنا مربع دد المشترك يبقى مربع أه مساواه لربع دب الباقى فخط أه مساو لخط دب ونلم ذلك يتبن أن الخطوط الخارجية من نقطة ت إلى محيط دائرة أب ج متساوية فنقطة د مركز دائرة أب ج. وأقول إن نقطة ز قطب دائرة أب ج الآخر، برهن من قبل أن خط أه مساو خط دب وخط ده قائم عليها مشترك له نقاعدتة مساوية لقاعدة زب ونلم ذلك يتبن أن الخطوط الخارجية من نقطة ت إلى دائرة أب ج متساوية فنقطة ز هو قطب دائرة أب ج الآخر وقد تبن أن نقطة د مركز دائرة أب ج نقطة د مركز الدائرة ونقطة ز قطبها الآخر، وذلك ما أردنا أن نبين.

إذا كانت دائرة على كرة وأجز من قطبيها خط مستقيم فإن ذلك الخط يكون عموداً عليها ويرع على مركزها ومركز الكرة.

135
مثال ذلك نفرض دائرة على الكرة وهي دائرة
أَب جَد وقِطَباها هز ونصل نقطتي هز، فأقول إن خط هز عمود على سطح دائرة أَب جَد ويمر على مركزها ومركز الكرة، برهانه أن نفرض خط دوز قد لاقِي سطح دائرة أَب جَد على نقطة ح.

وخترق خطياً أَح جَب د ونصل خطوط دوز دوز ببه فمن قبل أن خط ببه مساوٍ خط دوز وخط دوز مشترك خطياً هب دوز مساوياً خطياً زه دوز كل واحد لنظرية وقاعدة هب مساوياً لقاعدة زد فزواية هب مساوياً لزاوية دوز وأيضاً فمن قبل أن خط ببه مساوٍ خط دوز وخط دوز مشترك خطياً هب دوز مساوياً خطياً دوز كل واحد لنظرية وقاعدة هب مساوياً لقاعدة زد فزواية هب مساوياً لزاوية دوز وقاعدة بح مساوياً لقاعدة بح فتوجه مساوياً لزاوية دوز وقاعدة بح مساوياً لزاوية دوز فتوجه عمود على ب للإضلاع المتساوية فإذا زاوية دوز مساوياً لزاوية بح فتوجه عمود على ب.

ويعمل ذلك يتبين أنه عمود على خط لأَي إذا هو عمود على خط دب أَي وإذا كان خط عموداً على خطين في سطح واحد فإنه عمود على ذلك السطح.

وأقول إنه يمر على مركز دائرة أَب جَد وعلى مركز الكرة جميعاً، برهانه فمن قبل أن على الكرة دائرة أَب جَد وقَد خرج من نقطة ح الذي هو أحد نقطتين إليها عمود دوز فإنه يجوز على مركز دائرة أَب جَد، وأقول أيضاً إنه يجوز على مركز الكرة، برهانه فمن قبل أن على الكرة دائرة أَب جَد وقد قام على سطحها من نقطة مركزها عمود دوز فإنه يجوز على مركز دائرة أَب جَد وقَد قام على مركز الكرة فقد بين أن خط دوز زأَي دوز على دائرة أَب جَد ويجبوز على مركزها ومركز الكرة، وذلك ما أردنا.

\[11\] MSS, hic et saepius
\[12\] F C [خطي 13]
\[13\] F F
\[14\] F F
إلا إنه عمود على خطين في سطح واحد false add. F
إذا كانت على كره دوائر عظماً فإنها تنفصل بنصفين.

 فإذا أن نفرض على كره دوائر عظماً وهمندائر متزلاج، فنقول إن دائرتي \overline{AB} نفصل بنصفين، بهرهنا أن نفرض مركزهما على نقطة Z نقطة ح جْـكِـرُتْ كِرْه نفصل خط \overline{HZ} فإن قبل أن نقطة H في سطحي دائري \overline{AB} نقطة Z وعلى الخط المشترك للسطحان الذي تنقاطع عليه والفصل المشترك للسطحين هو خط مستقيم \overline{HZ} مستقيم ونقبل أن نقطة H مركز دائرة \overline{NZ} خط \overline{HZ} نقطة إذا كل واحدة من قوسى دائرى \overline{NZ} نصف دائرة وكذلك من قبل أن نقطة H هو مركز دائرة \overline{NZ} خط \overline{HZ} نقطة وكل واحدة من قوسى زجة \overline{NZ} نصف دائرة فإذا دائرتا \overline{AB} نفصل بنصفين، وذلك ما أردنا أن نبنه.

إذا كانت على كره ما دوائر تنفصل بنصفين فإنها عظماً.

هذا ذلك أن نفرض دائرتي \overline{AB} نفصل على كره بنصفين على نقطة Z، فنقول إن دائرتي \overline{AB} عظماً، بهرهنا أن نفرض فصولهما المشترك خط \overline{HZ}، هو قطر دائرية \overline{AB} جد ونقسم خط \overline{HZ} بنصفين على نقطة H تكون نقطة ح مركز الدائرتين، وأقول إن نقطة H مركز الكره وخرج من نقطة \overline{HZ} عمداً على

Prop. 13 [marg. F]
سطح دائرة جد ونفرضه خط حط وخرج من نقطة ح أيضاً عموداً على سطح دائرة أب ونفرضه خط حل فلنقول أن على الكرة دائرة جد وقد خرج من مركزها عموداً على سطحها وهو خط حط مركز الكرة على خط حط ويمثل ذلك ينبغي أن مركز الكرة على خط حل نقطة تقاطع خط حط حل هو مركز الكرة لكن تقاطعهما هو نقطة ح نقطة ح هو مركز الكرة والدوائر التي في الكرة ما كان منها على مركز الكرة هما عظام دائرتنا أب جد دوائر عظام، وذلك ما أردنا أن نبين.

إذا كانت على الكرة دائرة عظيمة وفصلت دائرة أخرى على الكرة على زوايا قائمة فإنها تفصلها بنصفين وتجوز على قطبين.

مثال ذلك أنا نفرض دائرة عظيمة على الكرة وهي دائرة أب جد تفصل دائرة أخرى على الكرة على زوايا قائمة وهي دائرة بح دجز، فأنول إنها تفصلها بنصفين وتمر

\[17321_Suhayl_16-17.indd 138
29/5/19 9:37\]
على قطبيهما، برهانه أنّ فصلهما المشترك بخط
نمّحى بين نقطة الّدح إلى مركز الكرّة ونخرج من نقطة الّدح إلى خط
بده من قسمة عمودها على بده ونفرضه خط حسط ويجزوه في الجهتين جميعاً ونعلم في
الموضع الذي يلاقى بسيط الكرّة علاّمتى أرّج، فمن قبل أن سطح دائري أبِجَد
هبهُد أطهاراً قائمة على الآخر وقد قام على فصلهما المشترك لهما الذي هو خط
بده عمود حسط وهو في سطح دائرة أبِجَد خط أجمود على سطح دائرة بذه
وقد أخرج من مركز الكرّة إلى سطح الدائرة عمود حسط ولاقياً سطح دائرة بذه
وهو على خط بده فقيّرها فانها كلمة من قوسى بده بذه نصف دائرة
 دائرة أبِجَد تقطع دائرة بذه بنصفين، وأقول إنّها تجزوه على قطبيهما،
برهانه فمن قيل أن على الكرّة دائرة بذه وقد أخرج من مركز الكرّة إلى سطحها
 عمود حسط وجزا في الجهتين جميعاً فإنه يقع على قطبي الدائرة فنقطتها أرّجها قطبا
 دائرة بذه وقد كان بين أنها قطعتها بنصفين دائرة أبِجَد تقطع دائرة بذه
بنصفين وتجوز على قطبيهما، وذلك ما أردنا أن نبين.

[10] إذا كانت على الكرّة دائرة عظيمة تقطع دائرة أخرى على الكرّة غير عظيمة بنصفين
فإنما تقطعها على زوايا قائمة وتجوز على قطبيها.

مثال ذلك أنّ نفرض دائرة عظيمة على الكرّة وهي دائرة أبِجَد تقطع دائرة أخرى
على الكرّة غير عظيمة وهي دائرة بذه بنصفين، فأقول إنّها تقطعها على زوايا

خطاً٢٨٠ | om. C ١١ | marg. C: in textu false habet: ١٧٣٢١
وقد أخرج... دائرة بذه ١٨٨٢١
١٨٨٢١ [أخرى ٣ add. MSS ١٨٨٢٢ [أخرى ٣ add. MSS]
قائمة وتحور على قطبيها ، بررهانه أن نفرض فصولهما المشترك للما خط بد فم قبل
أن دائرة أبجد تقطع دائرة هبزد بينتينن لكل واحدة من قوسية هبزد نصف دائرة بزد ونقم خط بد بتصفين على نقطة ط نقطة مركز دائرة هبزد ومركز دائرة أبجد نقطة ح فنقطة ح مركز الكرة ونصل نقطتين ح ط بخط ح وخرجه في الجهتين جميعًا ونعل دموضع الثقاق بسينة الكرة نقطتين أ ح فن
قبل أن تكون الكرة دائرة هبزد وقد أخرج من مركز الكرة إلى مركزها خط ح فخط ح عمود على سطح دائرة هبزد فإذا السطوح الخارجية على خط ح قائمة على دائرة هبزد وسطح دائرة أبجد هو أحد السطوح الخارجية على خط ح فدارة أبجد دائمة على دائرة بزد فدارة أبجد تقطع دائرة هبزد
على زوايا قائمة ،
وأخبر إنها كجزء على قطبيها ، بررهانه أن قبل أن تكون الكرة دائرة هبزد وقد
أخرج من مركز الكرة إلى سطحها عمود ح وفاز في الجهتين معا إلى بسيط الكرة ولاتي بسيط الكرة على نقطتين أ ح فنقطتي أ ح هما قطببا دائرة هبزد لكن نقطتي أ ح هما على بسيط دائرة أبجد فدارة أبجد تجوز على قطبي دائرة هبزد وقد
تبين أنها تقطعها على زوايا قائمة دائرة أبجد تقطع دائرة هبزد على زوايا
قائمة وتحور على قطبيها ، وذلك ما أردنا أن نبين .
إذا كانت على كرة دائرة عظيمة تقطع دائرة أخرى على الكرة وترم على قطبيها فإنها
tonفصلها بتصفين وعلى زاوية قائمة .
مثال ذلك أن نفرض دائرة عظيمة على كرة وهي دائرة أبجد تقطع دائرة أخرى
على الكرة غير عظيمة وهي دائرة هبزد وترم على قطبيها ، فأخبر إنها تقطعها
بتصفين وعلى زاوية قائمة ، بررهانه أن نفرض قطبي دائرة هبزد نقطتي أ ح وهو
ظاهرة أن نقطتي أ ح على دائرة أبجد من قبل أن دائرة أبجد تقطع دائرة
هبزد وتحور على قطبيها ونصل أن ح فن قبل أن تكون الكرة دائرة هبزد وقد

5 om. C
6 add. MSS
71 احول 17321_Suhayl_16-17.indd 140
29/5/19 9:37
وصل فيما بين قطبيها خط آج وإذًا كانت دائرة على كرة فإن الخط الذي يصل بين قطبيها هو عمود عليها وهو يجوز على مركزها ومركز الكرة فخط آج هو على سطح دائرة ب، زد على زاوية قائمة وأحد السطور المرجحة على خط آج هو سطح دائرة آب، جد، دائرة أب، جد، دائرة على دائرة ب، زد وتقطعها بنصفين من قبل أنها تقطعها على زاوية قائمة فدائرة ه، زد تنطوق بنصفين وقد تبين أنها تقطعها على زاوية قائمة، وذلك ما أردنا أن نبين.

[17] إذا كانت دائرة عظيمة على كرة فخط الخارج من قطبيها إلى محيطها مساو لضلع المربع المخطوط فيها.

مثال ذلك أنا نفرض دائرة عظيمة على كرة وهي دائرة آب، جد، فأقول إن الخط الخارج من قطبيها إلى محيطها مساو لضلع المربع المخطوط فيها، فنخرج لدائرة

repet. et del. F
إذا كانت دائرة على كرات الخط الخارج من قطبة إلى محيطها مساويا لضلع المربع المخطط فيها فإن تلك الدائرة هي عظيمة.

إذًا فإن نفرض دائرة أب كون نقطة د ويكون الخط الخارج من قطبة إلى محيطها خط دج يكون خط دج مساويا لضلع المربع المخطط فيها،
Theodosius’ Sphaerica: A Second Arabic Translation

فأقول إن دائرة أَبَجَ عظيمة، برهانه أنا نفرض على خط دَجَ وعلي مركز الكرة

سطحًا يفصل الكرة وفصله يكون في سبيكة الكرة دائرة عظيمة ونفرض فصله دائرة

دَجَ ويجدر بنا المشتركت على خط دَجَ ونصل خط دَجَ ويجدر بنا المشتركت على خط دَجَ ونصل خط دَجَ ومساواةً خط دَجَ فلمن أن خط دَجَ مساوًا خط دَجَ وخط دَجَ مشتركت على المراعي فكل واحد من حضين دَجَ دَجَ مشتركت على نقطة دَجَ يمر بمركز الكرة

وبتقسيم الدائرة فإنه يكون عموداً على سطح الدائرة فقط، إذا لم يوجد على سطح دائرة

أَبَجَ وخط جب في هذا السطح خط بَزَ ونصل عمود على خط جب وبد

خط المراعي يكون مربع ضعف بَزَ وبد مساواث لربع بَزَ مثل مربع زد خط فزاوية

بد جاذبة فقس بَزَ نصف دائرة وخط جُب دائر مفصل بين نقطة وأَبَجَ تتقسيم الدائرة في نصفين ومن قبل أن على الكرة دائرة عظيمة وهي دائرة

دَجَ تتقسيم دائرة أخرى على الكرة وهي دائرة أَبَجَ وتمزق على قطينها فإنا تفصلها بنصفين والدواي التي تفصل إحداهما الأخرى بنصفين فإنها كلها عظام، وذلك ما أردنا أن نبين.

9

5

15

14

3
لقلد دائرة أبج، برده نثوهم قلدر دائرة أبج خط أط وصل خطوط أب
بجأج خط فمن قبل أن كل خط أب بج مساو خط أط ده ذكل واحد منه
لنظيره وقاعة مساو لقاعة در فراوية أبج مساو لزاوية در وزاوية
أبج مساو لزاوية أطج من أجل أن الزاويتين على قطعة واحدة من الدائرة وهي
قطعٌ أطج فراوية در مساو لزاوية أطج من قبل أن زاويتين در ح دُحر قائمتان
ف نقط دآ ح تجوز فيها دائرة فراوية أطج مساو لزاوية أطج وزاوية
القائمة مساو لزاوية أطج القائمة فثليط أطج دُحر زاويتان من أهدهما وهم
زاويتان أطج مساو زاويتان من الآخر وهما دُحر زدكل واحدة لنظيرها
وضع أهدما وهو أطج مساو لضلع من الآخر وهو دُحر وحنا الضلعان
مدوران لزاويتين متساويتين فالباقي من الأضلاع من الواحد من المثلتين مساو للباقي
من الأضلاع من المثل الآخر فإذا خط أط مساو خط دُحر وخط أط هو قطر دائرة
أبج دُحر مساو قطر دائرة أبج، وذلك ما أردن أن نبين.

[10] نريد أن نجد قطر كرة مفردة.
فلنثوهم الكرة التي نريد أن نجد قطرها كة أبج وندير على مركز أ وعوب أب
دائرة بأج وصل خط زج مساو قطر دائرة بج ونعمل مثلث يكون ضلماً
من أضلاع مساويين للخطين الذين يصلان فيما بين نقطة أ ب أ د وهم الخطان
12 F
14 C
17 C
17 F
17 C
17 F
17 C
MSS
الخارجان من قطب دائرة بجد إلى محيطها والآخر مساوٍ لقطرها ونفرض مثلث

\[\text{ذرخ ونفرض الخطين اللذين كل واحد منها مساوٍ للخط الذي من القطب إلى} \]

المحيط ضلعي دز دح فاخط إذا المساوٍ للقطر هو خط زرح ونخرج من نقطتى زرح

\[\text{خط زرح حط عمودين على خط دز دح ونصل خط دز ،} \]

فأقول إن خط دز مساوٍ لقطر الكرة ، برهانه أن نتوهم قطر الكرة خط أط

\[\text{وخرج على خط أط سطحاً يفصل الكرة ويكون فصله في بسيط الكرة دائرة} \]

عظيمة ونفرضها دائرة أدت دث ولنصل بد دث وب دث هو قطر دائرة أط

\[\text{المساوٍ لخط زرح فمن قبل أن خطى أب بد مساويان لخطي حز زرح كل واحد} \]

لنظيره وقاعدة أد مساوية لقاعدة حز فازويه أد مساوية لزاوية أط

\[\text{بين زاوية أد مساوية لزاوية حز مساوية لزاوية أط وزاوية أط القائمة} \]

\[\text{مساوية لزاوية أط القائمة ويكون مثلثاً أط و حز و زاوية من أخذها وما} \]

زاويتين أد مساويتين لزاويتين من المثل الآخر وما زاوية أط ضاحه كل

\[\text{واحدة لنظيرها وضاحه أخذها وما أط مساوٍ لضضع من الآخر وهو خط دح وهما} \]

الضلاعان هو متوتران زاويتين متساويتين فإذا الباقى من الأضلاع من الواحد من

\[\text{الثقلين مساوٍ للباقي من الأضلاع من المثلث الآخر كل واحد لنظيره خط أط مساوٍ} \]

\[\text{خط دز وخط أط فرض قطر الكرة خط دز مساوٍ لقطر الكرة المفروضة ، وذلك ما} \]

\[\text{أردنا أن نبين .} \]

\[\text{om. C} \]

18-19
 предложения المعلومتان نقاطه أ ب ونريد أن نخط على نقطة أ ب دائرة عظيمة . فأقول إن كانت نقطة أ ب واحدة منهما مقابلة لغيرها على قطعة الكرة فمن بين أن نحوز عليها دوائر عظام بلا نهاية في الكرة ونفرض نقطة أ ب في طرف الكرة ونخط على مركز أ ب وبعد ضلع الربع المخطوط في دائرة عظيمة واقعة في الكرة دائرة د ب د دائرة عظيمة وأيضاً نخط على قطب أ ب وبعد ضلع الربع المخطوط في دائرة عظيمة واقعة في الكرة دائرة د أ د دائرة عظيمة.

وكل واحد من خطى الدائرة المخطوطة على قطب أ ب وبعد د ب نحوز على نقطة أ د \[\text{في الكرة إذا} \] د دائرة المخطوطة على قطب أ ب وبعد د ب نحوز على نقطة أ د وهي دائرة د ب د وهي عظيمة من قبل أن الخط الخارج من نقطة أ ب على نقطة أ د الدائرة المخطوطة في دائرة عظيمة واقعة في الكرة فقد خطتنا على نقاط معلومتاهما نقاط أ ب على سطح الكرة دائرة عظيمة وهي دائرة د ب د . وذلك ما أردنا .
ففرض الدائرة المعلومة التي على الكرة دائرة آ ب ج فنصل على محيطها نقطة أ كيف ما اتقق ونفصل من المحيط قوسين متساويين فنفرضهما قوسا آ أ وقوس دومية لقوس آ أ فتكون عظيمة وأ لا عظيمة وتصنف فإنها تفصل على نقاطا أ ز المروفتين دائرة عظيمة وهي دائرة أ ر أ فن قلب أن قوس أ د مساوية لقوس أ أ وقوس د مساوية لقوس أ أ فإن دائرته أ ر أ ففصلت دائرة أ ب ج بنصفين فإنها تفصلها على زاوية قائمة ويبين عظيمة وتصنف على نقاط ح فن نقطة ح هو قطب دائرة أ ب ج وأ لا تكون دائرة أ ب ج عظيمة فمثلا ما عملنا يثبت أن قوس أ د مساوية لقوس أ أ وقوس د مساوية بنصفين على نقطة أ ر ونفصل قوس أ د بنصفين على نقطة أ ز ونفصل قوس أ د بنصفين على نقطة أ ب ج ونفصل أن نقطة قلب أنها مقبلة لنقطة A ونفصلها ونفصل دائرة أ ر عظيمة في دائرة عظيمة ومن قبل أن نقطة ج قطب دائرة A ر عظيمة فإن ج أ ج تصل دائرة A ر عظيمة ويبين على قطبين فإنها كانت دائرة عظيمة على كره تفصل دائرة أخرى على الكرة ويبين على قطبين فإنها تفصل بنصفين وعلى زاوية قائمة ويبين على قطبين فإنها تفصل بنصفين وعلى زاوية قائمة ويبين على C D E F G H I J K L M N O P Q R S T U V W X Y Z

17321_Suhayl_16-17.indd 147
29/5/19 9:37
الكرة وهي دائرة آبـقـ على زاوية قائمة فإنها تفصل نصفين ومحور على قطبيها

فدارة أطـقـ تفصل دائرة آبـقـ بنصفين ومحور على قطبيها وتقع قوس راً بنصفين
على نقطة الـحـ فنقطة الـحـ قطب دائرة آبـقـ ، وذلك ما أردنا أن نبين .

21 كملت المقالة الأولى [21] add. C