Improvements to the Method of Dispersion Relations for B Nonleptonic Decays

I. Caprini and L. Micu
National Institute of Physics and Nuclear Engineering POB MG 6, Bucharest, R-76900 Romania

C. Bourrely
Centre de Physique Théorique *, CNRS-Luminy Case 907, F-13288 Marseille Cedex 9 - France

We bring some clarifications and improvements to the method of dispersion relations in the external masses variables, that we proposed recently for investigating the final state interactions in the B nonleptonic decays. We first present arguments for the existence of an additional term in the dispersion representation, which arises from an equal-time commutator in the LSZ formalism and can be approximated by the conventional factorized amplitude. The reality properties of the spectral function and the Goldberger-Treiman procedure to perform the hadronic unitarity sum are analyzed in more detail. We also improve the treatment of the strong interaction part by including the contributions of both t and u-channel trajectories in the Regge amplitudes. Applications to the $B^0 \to \pi^+ \pi^-$ and $B^+ \to \pi^0 K^+$ decays are presented.

PACS number(s): 14.40.Nd, 11.55Fv, 13.25.Hw

I. INTRODUCTION

In a recent paper [1], we discussed the rescattering effects in the nonleptonic B decays into light pseudoscalar mesons, calculated by a method of dispersion relations in terms of the external masses. We recall that the analytic continuation in the external masses was originally investigated in the frame of axiomatic field theory [2]. In [1] we used an approach based on the Lehmann-Symanzik-Zimmermann (LSZ) reduction formalism [3], and we showed that the weak amplitude satisfies a dispersion representation in the mass squared of one final particle, with a spectral function given by the hadronic unitarity sum associated to rescattering effects. We mention that the analyticity domain in this heuristic treatment is much larger than the domain obtained by rigorous techniques. In the present work we discuss in more detail some aspects of the dispersion relations proposed in [1].

II. DISCUSSION OF THE METHOD

Defining the weak decay amplitude $A_{B \to P_1 P_2} = A(m_B^2, m_{P_1}^2, m_{P_2}^2)$, where P_1, P_2 are light pseudoscalar mesons, we considered in [1] the LSZ reduction relation [3, 4]

$$A(m_B^2, k_1^2, m_2^2) = \frac{i}{2\omega_1} \int dx e^{i k_1 x} \theta(x_0) \langle P_2(k_2) | H_w(0) | B(p) \rangle,$$

(1)

*Laboratoire propre au CNRS-UPR 7061
where \(\eta_1(x) = K_x \phi_1(x) \) denotes the source of the meson \(P_1 \). This relation was the starting point for showing that the weak amplitude satisfies a dispersion representation in the mass variable \(k_1^2 \), with a discontinuity given by

\[
{\text{Disc}} A(m_B^2, k_1^2, m_2^2) = \frac{1}{2\sqrt{2\omega_1}} \sum_n \delta(k_1 + k_2 - p_n)\langle P_2(k_2)\eta_1(n)|n\rangle\langle n|H_w|B(p)\rangle.
\]

(2)

In each term of the sum (2) the first matrix element represents the amplitude of the strong transition from the intermediate state \(|n\rangle \) to the final state \(P_1P_2 \), for an off-shell meson \(P_1 \) with an the invariant mass squared \(k_1^2 \), multiplied by the amplitude of the weak transition of \(B \) into the same intermediate state. Therefore, the discontinuity (2) describes the final state rescattering effects in the decay \(B \to P_1P_2 \). Note that all the particles involved in the weak transition are real, on-shell particles.

In Ref. [1] we obtained the whole amplitude from its discontinuity by means of a dispersion relation without subtractions. We note however that the presence of an additional term in the dispersion relations is not excluded, even if the subtractions in the dispersion integral are not necessary. To see the origin of such additional terms we notice that in deriving the relation (1) we retained only the contribution given by the action of the Klein-Gordon operator \(K_x \) on the interpolating field \(\phi_1(x) \), since this was of interest for the analytic continuation. However, in the LSZ formula there are some additional terms produced by the action of \(K_x \) upon the function \(\theta(x_0) \). These terms can be written as a sum of equal time commutators in the form

\[
\frac{i}{\sqrt{2\omega_1}} \int dx e^{ik_1x}\delta(x_0)(P_2(k_2)) - ik_{10}[\phi_1(x), H_w(0)] + [\partial_0 \phi_1(x), H_w(0)|B(p)\rangle.
\]

(3)

As discussed in [1], these terms can contribute only if there is a “direct” connection between the interpolating field \(\phi_1(x) \) and the operator \(H_w(0) \). Let us suppose that we applied the LSZ reduction formula to the final meson which does not contain the spectator quark in the \(B \) decay. Then we can assume that one of the currents entering the expression of \(H_w(0) \), more exactly the current which contains the fields of the quarks going into the final meson \(P_1 \), is related to the interpolating field by

\[
j_{\mu}^{(1)} \approx \partial_\mu \phi_1(x).
\]

For the equal-time commutators we apply the canonical rules, which are satisfied, up to a renormalization constant, by the interpolating fields too [4]. Then the only nonzero term in (3) is given by the commutator

\[
\delta(x_0)[\phi_1(x), H_w(0)] = \delta(x_0)[\phi_1(x), \partial_0 \phi_1(0)] \frac{\delta H_w}{\delta \partial_0 \phi_1} \approx \delta(x) j_0^{(2)},
\]

(4)

where \(j_{\mu}^{(2)} \) is the second current in the weak hamiltonian (for some terms of \(H_w(0) \) the argument applies after a Fierz rearrangement). By including this expression in (3), identifying the normalization constant with the meson decay constant \(f_{P_1} \) and restoring the Lorenz covariance, we notice that the additional term in the dispersion relation can be written in the form

\[
if_{P_1} k_{1\mu} (P_2(k_2)j_{\mu}^{(2)}|B(p)\rangle,
\]

(5)

which is the conventional factorization in terms of a form factor and a meson decay constant. Of course, nonfactorizable corrections might arise if one goes beyond the simple relation, used in deriving (3), between one of the currents in the effective weak hamiltonian and the interpolating field of a final meson.

By combining the new term (3) with the dispersive integral obtained from (1), we propose the following dispersion representation for the weak amplitude:

\[
A(m_B^2, m_1^2, m_2^2) = A^{(0)}(m_B^2, m_1^2, m_2^2) + \frac{1}{\pi} \int_0^{(m_B - m_2)^2} dz \frac{\text{Disc} A(m_B^2, z, m_2^2)}{z - m_1^2 - ie}.
\]

(6)
As discussed above, the first term can be evaluated approximately using conventional factorization, while in the second one the dispersion variable is the mass of the meson which does not contain the spectator quark. The representation (9) gives, when the final state interactions are switched-off, a term which can be approximated by the factorized amplitude (with possible hard scattering corrections), which is a reasonable consistency condition\(^1\). We are aware that we have not given a rigorous proof for the dispersion relation (10), but brought some general arguments, supported by the consistency of the physical picture.

Below, we shall investigate in more detail the evaluation of the above dispersion relation. A first remark is that in the unitarity sum (11) one can use as a complete set of hadronic states \(|n\rangle\) either the “in” or the “out” states. The equivalence of these two sets was used in (10) to prove the reality of the spectral function for \(T\) (or \(CP\)) conserving interactions. Let us consider what happens if the weak hamiltonian contains a \(CP\) violating part. In the standard model the weak hamiltonian \(H_w\) has the general form

\[
H_w = \mathcal{O}_1 + \mathcal{O}_2 e^{i\gamma} + h.c.,
\]

where \(\mathcal{O}_j, j = 1, 2\), are products of vector and axial weak currents involving only real coefficients, and \(\gamma\) is the weak angle of the Cabibbo-Kobayashi-Maskawa (CKM) matrix in the standard parametrization (\(\gamma = \text{Arg}(V_{ub})\)). Then the spectral function defined in Eq. (2) can be written as

\[
\text{Disc} \ A(m_B^2, z, m^2) = \sigma_1(z) + \sigma_2(z) e^{i\gamma},
\]

where \(\sigma_1(z)\) (\(\sigma_2(z)\)) are obtained by replacing \(H_w\) in the r.h.s. of Eq. (2) with \(\mathcal{O}_1\) (\(\mathcal{O}_2\)), respectively (we took for convenience a process involving the weak phase \(\gamma\)). It is easy to show that \(\sigma_1(z)\) and \(\sigma_2(z)\) are real functions. Indeed, let us assume that a complete set \(|n, in\rangle\) is inserted in the unitarity sum of Eq. (3). Following (11), we can express the two matrix elements in this sum as

\[
\langle P_2(k_2)|\eta_1|n,\ in\rangle = \langle P_2(k_2)|(PT)^{-1}(PT)\eta_1(PT)^{-1}(PT)|n,\ in\rangle = \langle P_2(k_2)|\eta_1|n,\ out\rangle^* \tag{8}
\]

and

\[
\langle n,\ in|\mathcal{O}_j|B(p)\rangle = \langle n,\ in|(PT)^{-1}(PT)\mathcal{O}_j(PT)^{-1}(PT)|B(p)\rangle = \langle n,\ out|\mathcal{O}_j|B(p)\rangle^*. \tag{10}
\]

We used here the transformation properties of the \(\mathcal{O}_j\) operators under \(P\) and \(T\) transformations, and the fact that under space-time reversal the particles conserve their momenta, the in (out) states becoming out (in) states, respectively. Moreover, the matrix elements are replaced by their complex conjugates, given the antiunitary character of the operator \(T\). By using the relations (10) and (11) in Eq. (3) we obtain

\[
\sigma_j(z) = \frac{1}{2\sqrt{2}\omega_1} \sum_n \delta(k_1 + k_2 - p_n)\langle P_2(k_2)|\eta_1|n,\ in\rangle\langle n,\ in|\mathcal{O}_j|B(p)\rangle
\]

\[
= \frac{1}{2\sqrt{2}\omega_1} \left[\sum_n \delta(k_1 + k_2 - p_n)\langle P_2(k_2)|\eta_1|n,\ out\rangle\langle n,\ out|\mathcal{O}_j|B(p)\rangle \right]^*
\]

\[
= \sigma_j^*(z), \quad j = 1, 2, \tag{11}
\]

where the equivalence between the complete sets of in and out states in the definition of \(\sigma(z)\) is taken into account. The Eqs. (10) and (11) express in a detailed form the reality properties of the discontinuity, and bring a correction to the relation (16) given in Ref. (1).

\(^1\)We thank M. Beneke for emphasizing this point.
where φ changing the sign of the strong phase, namely,
in Eq. (2) a set of states $|n, \text{in}\rangle$, we obtain for each term the product of the weak amplitudes with the complex conjugates of the strong amplitudes. If the set which is inserted consists of $|n, \text{in}\rangle$ states, then in Eq. (2) the strong amplitudes appear as such, while in the weak amplitudes we must take the complex conjugate of the strong phases (the weak phase multiplying the operator O_2 in (2) is unmodified, since the same part of the weak hamiltonian acts on both in and out states).

As noticed in Ref. [6], it is convenient to write the complete set of states
$$ C_P \left(s \right) $$
$$ = \sum_{a=1}^{4} C_{P_3P_4;P_1P_2}^{*}(z)A_{P_3P_4;P_1P_2}^{*}(z) \ ,$$
where $C_{P_3P_4;P_1P_2}^{*}(z)$ are the complex conjugates of the coefficients
$$ C_{P_3P_4;P_1P_2}(z) = \frac{1}{2} \int \frac{d^3k_3}{(2\pi)^3} \frac{d^3k_4}{(2\pi)^3} \frac{d^3k_1}{(2\pi)^3} \frac{d^3k_2}{(2\pi)^3} \delta(4)(p - k_3 - k_4)M_{P_3P_4;P_1P_2}(s,t) \ ,$$
defined in terms of the strong amplitudes $M_{P_3P_4;P_1P_2}(s,t)$, where s, t and u are the Mandelstam variables. These coefficients depend on the masses of all the particles participating in the rescattering process, in particular, they depend on the dispersive variable $z = k_1^2$.

Similarly, by including in Eq. (2) a set of states $|P_3P_4, \text{in}\rangle$ we obtain
$$ \text{Disc} \ A_{P_3P_4;P_1P_2} = \sum_{\{P_3P_4\}} C_{P_3P_4;P_1P_2}(z)A_{P_3P_4;P_1P_2}(z) \ ,$$
where, according to the above discussion, the amplitude $A_{P_3P_4;P_1P_2}$ is obtained from $A_{P_3P_4}$ by changing the sign of the strong phase, namely,
$$ \tilde{A}_{P_3P_4;P_1P_2} = |A_{P_3P_4}| \ e^{-i\phi} e^{i\phi_w} \ ,$$
where ϕ (ϕ_w) denotes the strong (weak) phase.

Now by performing the symmetric Goldberger-Treiman summation as explained above, we obtain, instead of (12) or (14), the expression
$$ \text{Disc} \ A_{P_3P_4;P_1P_2} = \frac{1}{2} \sum_{\{P_3P_4\}} C_{P_3P_4;P_1P_2}(z)\tilde{A}_{P_3P_4;P_1P_2} + \frac{1}{2} \sum_{\{P_3P_4\}} C_{P_3P_4;P_1P_2}^{*}(z)A_{P_3P_4;P_1P_2} \ .$$

With this discontinuity, the dispersion relation (11) becomes
$$ A_{P_3P_4;P_1P_2} = A_{P_3P_4;P_1P_2}^{(0)} + \frac{1}{2} \sum_{\{P_3P_4\}} \Gamma_{P_3P_4;P_1P_2} \tilde{A}_{P_3P_4;P_1P_2} + \frac{1}{2} \sum_{\{P_3P_4\}} \tilde{A}_{P_3P_4;P_1P_2} A_{P_3P_4;P_1P_2} \ .$$
where \(A^{(0)}_{B \to P_1 P_2} \) can be approximated by the amplitude in the factorization limit, and the coefficients \(\Gamma_{P_3 P_4; P_1 P_2} \) and \(\Gamma_{P_3 P_4; P_1 P_2}^{(0)} \) are defined as

\[
\Gamma_{P_3 P_4; P_1 P_2} = \frac{1}{\pi} \int_0^{(m_B^2-m_2^2)^2} \frac{C_{P_3 P_4; P_1 P_2}(z)}{z-m_1^2-i\epsilon}, \tag{17}
\]

and

\[
\Gamma_{P_3 P_4; P_1 P_2}^{(0)} = \frac{1}{\pi} \int_0^{(m_B^2-m_2^2)^2} \frac{C_{P_3 P_4; P_1 P_2}^{(0)}(z)}{z-m_1^2-i\epsilon}. \tag{18}
\]

The Eqs. (15)-(18) are the result of the Goldberger-Treiman procedure in the presence of \(CP \) violating interactions, replacing the corresponding relations (38) and (39) given in [1].

The strong amplitudes \(\mathcal{M}_{P_3 P_4; P_1 P_2}(s, t) \) entering the expression (13) of the coefficients \(C_{P_3 P_4; P_1 P_2}(z) \) are evaluated at the c.m. energy squared \(s = m_B^2 \), which, as emphasized in [1], is high enough to justify the application of Regge theory [8]. The amplitudes \(\mathcal{M}_{P_3 P_4; P_1 P_2}(s, t) \) can be expressed therefore as sums over Regge exchanges in the crossed channels, more exactly [9]: near the forward direction (small \(t \)) the \(t \)-channel exchanges are taken into account, while near the backward direction (small \(u \)) the \(u \)-channel exchanges are considered. The standard form of a Regge amplitude given by a trajectory exchanged in the \(t \)-channel is

\[
-\gamma(t) \frac{\tau + e^{-i\pi\alpha(t)}(s)}{\sin\pi\alpha(t)} \left(\frac{s}{s_0} \right)^{\alpha(t)}, \tag{19}
\]

where \(\gamma(t) \) is the residue function, \(\tau \) the signature, \(\alpha(t) = \alpha_0 + \alpha' t \) the linear trajectory, and \(s_0 \approx 1 \text{ GeV}^2 \). A Regge trajectory exchanged in the \(u \)-channel gives an expression similar to (19), with \(t \) replaced by \(u \).

Using the signatures \(\tau = 1 \) for \(C = 1 \) trajectories and \(\tau = -1 \) for \(C = -1 \), we express the strong amplitude near the foward direction as [1]

\[
\mathcal{M}_{P_3 P_4; P_1 P_2}(s, t) = -\sum_{V=\rho, K^* \ldots} \gamma_{P_3 P_4; P_1 P_2}(t) e^{-i\frac{\pi\alpha_V(t)}{2}} \left(\frac{s}{s_0} \right)^{\alpha_V(t)} + \sum_{V=\rho, K^* \ldots} i\gamma_{P_3 P_4; P_1 P_2}(t) e^{-i\frac{\pi\alpha_V(t)}{2}} \left(\frac{s}{s_0} \right)^{\alpha_V(t)}, \tag{20}
\]

where the sum extends over the \(t \)-channel poles. The first sum includes the Pomeron (which contributes only to the elastic scattering) and tensor particles, the second sum includes vector particles. In Ref. [1] we used this expression in the integral over the phase space in Eq. (13), which finally reduces to an integral over the c.m. scattering angle \(\theta \). Since the Regge amplitudes (20) decrease exponentially at large \(t \), the dominant contribution in the integral is brought by the forward region. This gives a correct result for amplitudes which are small near the backward direction (for exemple, in processes where the \(u \) channel is exotic), otherwise, it misses in general the contribution due to large angles. As discussed in [3], it is more appropriate to separate the integration over the scattering angle \(\theta \) in two regions, one for small angles using the Regge expression (20), the other for large angles where a similar expression

\[
\mathcal{M}_{P_3 P_4; P_1 P_2}(s, t) = -\sum_{V=\rho, A_2^* \ldots} \gamma_{P_3 P_4; P_1 P_2}(u) e^{-i\frac{\pi\alpha_V(u)}{2}} \left(\frac{s}{s_0} \right)^{\alpha_V(u)}
\]
the denominators in (20) and (21), the integration over the momenta to be constant along the relevant integration ranges, and neglecting also the the expression (21) for \(\cos C \) the scattering angle. The coefficients (22)-(23) improve the corresponding expressions Eqs. (28)-(30) given in Ref. [1].

Following [10], we shall assume that the annihilation, penguin annihilation, electroweak penguin integral (13) we adopt the expression (20) of the amplitude \(M_{P_3P_4;P_1P_2}(s,t) \) for \(\cos \theta > 0 \) and the expression (21) for \(\cos \theta < 0 \). Assuming the residua functions \(\gamma_{P_3P_4;P_1P_2}(t) \) and \(\gamma_{P_3P_4;P_1P_2}(u) \) to be constant along the relevant integration ranges, and neglecting also the \(t(u) \) dependence of the denominators in (21) and (20), the integration over the momenta \(\mathbf{k}_3 \) and \(\mathbf{k}_4 \) in Eq. (13) is straightforward, knowing the kinematic relations between the Mandelstam variables \(t \) and \(u \) and the scattering angle. The coefficients \(C_{P_3P_4;P_1P_2} \) can be expressed as

\[
\left. C_{P_3P_4;P_1P_2}(z) = \sum_{\{V_t\}} \xi_{V_1} \gamma_{P_3P_4;P_1P_2}^{V_1} \sum_{\{V_\alpha\}} \xi_{V_\alpha} \gamma_{P_3P_4;P_1P_2}^{V_\alpha} \left(\sum_{\{V_u\}} \kappa_{P_3P_4;P_1P_2}^{V_u} \right) \right., \tag{22}
\]

where the first (second) sum includes the contribution of the \(t(u) \)-channel trajectories. In Eq. (22), \(\xi_V \) is a numerical factor due to the signature (equal to: −1 for the Pomeron, \(i\sqrt{2} \) for \(C = -1 \) trajectories, and \(-\sqrt{2} \) for \(C = 1 \) physical trajectories). The coefficients \(\kappa_{P_3P_4;P_1P_2}^{V_u}(z) \) appearing in the first sum have the expression

\[
 \kappa_{P_3P_4;P_1P_2}^{V_u}(z) = \frac{k_{34}}{16\pi m_B} R_{V_1}^{-1}(z) \left[e^{R_{V_1}(z)} - 1 \right] \exp \left(\alpha_{0,V_1} + \alpha_{1,V_1} t_0(z) \right) \left(\ln \frac{m_B^2}{s_0} - i \frac{\pi}{2} \right), \tag{23}
\]

obtained by integration over the region \(0 < \cos \theta < 1 \) of the phase space. We used the notation [1]

\[
 R_V(z) = 2\alpha'_{V} k_{12}(z) k_{34} \left(\ln \frac{m_B^2}{s_0} - i \frac{\pi}{2} \right), \tag{24}
\]

where \(k_{12} \) and \(k_{34} \) denote the c.m. three momenta and

\[
 t_0(z) = z + m_3^2 - \frac{(m_B^2 + m_3^2 - m_4^2)(m_B^2 + z - m_4^2)}{2m_B^2}. \tag{25}
\]

As for the coefficients \(\kappa_{P_3P_4;P_1P_2}^{V_u}(z) \) appearing in the second sum of Eq. (22), they are given by the region \(-1 < \cos \theta < 0 \) of the phase space integral, and their expression is similar to (23), with the \(t \)-channel trajectories replaced by the \(u \)-channel trajectories, and \(t_0(z) \) replaced by the variable \(u_0(z) \), which is obtained from (25) by interchanging the places of \(m_3 \) and \(m_4 \). The new relations (22)-(23) improve the corresponding expressions Eqs. (28)-(30) given in Ref. [1].

III. Applications to the \(B^0 \to \pi^+ \pi^- \) and \(B^+ \to \pi^0 K^+ \) Decays

An application of the dispersive formalism to the decay \(B^0 \to \pi^+ \pi^- \) was already discussed in Ref. [1]. In the present work, we reconsider this analysis using the improvements presented above. As intermediate states \(\{P_3P_4\} \) in the dispersion relation (14) we include \(\pi^+ \pi^- \) for the elastic rescattering, and two-particle states responsible for the soft inelastic rescattering. We take into account the contribution of the lowest pseudoscalar mesons: \(\pi^0 \pi^0 \), \(K^+ K^- \), \(K^0 \bar{K}^0 \), \(\eta \eta \), \(\eta \eta \), \(\eta \eta \), and \(\eta \eta \). Here \(\eta \eta \) and \(\eta \) denote the SU(3) octet and singlet, respectively, and we assumed for simplicity that the mixing is negligible (we mention that the singlet \(\eta \) was not included in the previous analysis [1]). Then, assuming SU(3) flavor symmetry, all the \(B \) decay amplitudes entering the dispersion relation can be expressed in terms of a certain set of amplitudes associated to quark diagrams [1]. Following [14], we shall assume that the annihilation, penguin annihilation, electroweak penguin...
and exchange diagrams are negligible. For simplicity, we also neglect in this first step the tree color suppressed amplitude, as in Ref. [11]. Of course, the final state interactions can modify the naive estimates based on quark diagrams [11], therefore, the analysis presented below is only a first approximation to be refined in a future work. With these assumptions $A_{B^0 \to K^+ K^-} = 0$, and the remaining amplitudes entering the dispersion relation have the expressions

$$
A_{B^0 \to \pi^+ \pi^-} = -(A_T e^{i\gamma} + A_P e^{-i\beta}), \quad A_{B^0 \to \pi^0 \pi^0} = \frac{1}{\sqrt{2}} A_P e^{-i\beta},
$$

$$
A_{B^0 \to K^0 K^0} = A_P e^{-i\beta}, \quad A_{B^0 \to \eta \eta} = \frac{1}{3\sqrt{2}} A_P e^{-i\beta},
$$

$$
A_{B^0 \to \eta \eta} = \frac{\sqrt{2}}{3} A_P e^{-i\beta}, \quad A_{B^0 \to \eta \eta} = -\frac{\sqrt{2}}{3} A_P e^{-i\beta},
$$

(26)

the weak phases being defined as $\beta = \text{Arg}(V_{ud}^*)$ and $\gamma = \text{Arg}(V_{ub}^*)$.

The determination of the Regge residua $\gamma^p_{\pi^0 \pi^0; \pi^+ \pi^-}$ and $\gamma^p_{\pi^0 \pi^0; \pi^+ \pi^-}$ which appear in the expression (22) of the coefficients $C_{\pi^0 \pi^0; \pi^+ \pi^-}$ was described in detail in [11]. Using the optical theorem and the usual Regge parametrization of the total hadronic cross sections we obtain the following values

$$
\gamma^p_{\pi^0 \pi^0; \pi^+ \pi^-} = 25.6, \quad \gamma^p_{\pi^0 \pi^0; \pi^+ \pi^-} = 25.6, \quad \gamma^p_{\pi^0 \pi^0; \pi^+ \pi^-} = 1.14, \quad \gamma^p_{\pi^0 \pi^0; \pi^+ \pi^-} = 25.3,
$$

(27)

for the residual of the Pomeron, the ρ and the f mesons, respectively. All the other residua are expressed in terms of the couplings γ^p_2 and γ^p_3 by flavour $SU(3)$ symmetry. For completeness we give their values in Table 1, where we indicate for each trajectory: the result given by the Clebsch-Gordan coefficients, the sign due to the relation between the quark content of the mesons and the $SU(3)$ vector assigned to them (with the convention of Ref. [10]), and the Regge factor ξ_ν defined below Eq. (22). The quantity $\xi_\nu \gamma^p_{\pi^0 \pi^0; \pi^+ \pi^-}$ appearing in (22) is obtained for each trajectory by taking the product of the values in the last three columns of Table 1.

As follows from Table 1, the process $\pi^0 \pi^0 \to \pi^+ \pi^-$ does not contribute actually to the dispersion relation, since the contribution of the ρ trajectory in the t-channel is exactly compensated in the unitarity integral by an equal term given by the u-channel. On the contrary, in the case of the A_2 trajectory, the contributions in the t and u channels are equal and add to each other. We also note that the couplings of the singlet η given in Table 1 are obtained by assuming an exact $U(3)$ symmetry. We took into account in the numerical calculations that deviations from these values are possible due to the $U(1)$ anomaly.

With the input described above one can calculate easily the coefficients (22) and the dispersive integrals (13) giving the coefficients Γ and T. By inserting these coefficients and the explicit expressions (26) of the decay amplitudes in the dispersion relation (13), we derive an algebraic equation involving the complex quantities A_T and A_P. Let us denote $R = |A_P/A_T|$ and $\delta = \delta_T - \delta_P$, where δ_T (δ_P) is the strong phase of A_T (A_P), respectively. Then, after dividing both sides of the relation (13) by $-A_T$ and multiplying by $e^{-i\delta_T}$, we obtain the following equation:

$$
e^{i\gamma} + Re^{i\delta}e^{-i\beta} = \frac{e^{-i\delta_T}}{A_T} \left[A_T^{(0)} e^{i\gamma} + A_P^{(0)} e^{-i\beta} \right]$$

$$- \left[(0.01 + 1.27 i) + (0.75 - 1.01 i) e^{-2i\delta_T} \right] e^{i\gamma}$$

$$+ R \left[-(1.97 + 2.64 i) e^{i\delta} e^{-i\beta} - (1.78 - 1.99 i) e^{-i\delta} e^{-2i\delta_T} \right].$$

(28)

where $A_T^{(0)}$ and $A_P^{(0)}$ are the tree and penguin amplitudes in the factorization approximation. We mention that in Ref. [11] the equation similar to (28) did not contain the factorized amplitude and, due to an improper application of the Goldberger-Treiman technique, the weak phase β appearing in the last term had a wrong sign.
Multiplying both sides of Eq. (28) by $e^{i\beta}$ one notices that the weak angles appear in the combination $\gamma + \beta = \pi - \alpha$, where α is the third angle of the unitarity triangle. Then, solving the complex equation for R and α we derive the expressions

$$R(\delta_T, \delta) = \frac{1.010 + 1.27 i + (0.75 - 1.01 i) e^{-2i\delta_T} - e^{-i\delta_T} A_T^{(0)} A^T P + A^T P^{(0)} e^{-i(\gamma + \beta)} \bigg| - (1.97 + 2.64 i) e^{i\delta} - (1.78 - 1.99 i) e^{-i\delta} e^{-2i\delta_T} \bigg|}{A_T}, \quad (29)$$

and

$$\alpha(\delta_T, \delta) = \pi + \text{Arg} \left[1.01 + 1.27 i + (0.75 - 1.01 i) e^{-2i\delta_T} - \frac{A_T^{(0)}}{A_T} e^{-i\delta_T} \right] - \text{Arg} \left[- (1.97 + 2.64 i) e^{i\delta} - (1.78 - 1.99 i) e^{-i\delta} e^{-2i\delta_T} + \frac{e^{-i\delta_T} A^T P^{(0)}}{R} A_T \right], \quad (30)$$

where in the last equation we use R from Eq. (28). The evaluation of these expressions requires the knowledge of the ratios $A^T P^{(0)}/A_T^{(0)}$ and $A_T^{(0)}/A_T$. We use for illustration $A^T P^{(0)}/A_T^{(0)} = 0.08$ [3], and a reasonable choice $A_T^{(0)}/A_T \approx 0.9$. The expression of R contains also the weak angle $\beta + \gamma$, but the dependence on this parameter is very weak. In Fig. 1 we represent R (Eq. (29)) as a function of the phase difference δ, for two values of δ_T. We recall that the ratio R is expected to be less than one, and such values are obtained for both $\delta_T = 0$ and $\delta_T = \pi/12$. The ratio R is actually a periodic function of δ with a period equal to π, which implies that discrete ambiguities affect the determination of this phase difference for a given value of R.

In Fig. 2 we show α as a function of δ, for $\delta_T = 0$ and $\delta_T = \pi/12$. Since one expects positive values of α, the curves shown in Fig. 2 indicate that negative values of δ are preferred. We have checked that the results are rather stable with respect to the variation of the η couplings. For instance, by varying the corresponding Regge residue from 0 up to a value 2 or 3 times larger than the value given in Table 1, we notice that the curves in Figs. 1 and 2 are slightly shifted, but the general behavior remains the same. Actually, the dominant contribution is given by the elastic channel, more precisely by the Pomeron, as is seen in Fig. 1, where we show the ratio R for $\delta_T = \pi/12$, keeping only the contribution of the Pomeron in the Regge amplitudes (dotted curve).

For comparison, in Ref. [1] the corresponding equation did not contain the amplitude in the factorization limit, and instead of the angles $\beta + \gamma$ and δ, we had the angles γ and $\delta - \beta$, respectively (see the remark below Eq. [28]). The Figs. 1 and 2 given in [1] become therefore meaningful if the arguments are replaced accordingly; they represent in fact R and α as functions of $\beta + \gamma = \pi - \alpha$, neglecting the factorized term. The values of R obtained for $\delta_T = 0$ were larger than one, suggesting that small values of δ_T are excluded. Now, as seen in Fig. 1, the improved dispersion representation proposed in the present work indicates that reasonable values of R are compatible with small values of δ_T.

In a second application we consider the decay $B^+ \to \pi^0 K^+$, taking as intermediate states $P_3 P_4$ the pseudoscalar mesons $\pi^0 K^+$, $\pi^+ K^0$, ηK^+ and $\eta_1 K^+$, allowed by the strong interactions. A model independent analysis based on isospin symmetry done in Ref. [3] gives for the amplitude of $B^+ \to \pi^0 K^+$ decay the expression

$$A_{B^+ \to \pi^0 K^+} = -\frac{P}{\sqrt{2}} \left[1 - \epsilon_a e^{i\gamma} \epsilon^{\eta} - \epsilon_{3/2} e^{i\phi} (\epsilon^{\eta} - \delta_{EW}) \right], \quad (31)$$

where P denotes the dominant penguin amplitude, δ_{EW} is an electroweak correction and $\epsilon_a, \epsilon_{3/2}, \eta$ and ϕ are hadronic parameters ($\phi = \phi_{3/2} - \phi_P$, where $\phi_{3/2}$ is the strong phase of the $I = 3/2$ amplitude and ϕ_P the phase of P). According to [13], the term proportional to ϵ_a, which is due to non dominant penguin and annihilation topologies, is smaller than the last terms appearing in
Eq. (21). Neglecting in a first approximation this term and using flavour SU(3) symmetry for the weak decays \([11]\), we write the amplitudes which contribute to the dispersion relation as

\[
A_{B^+ \to \pi^0 K^+} = -\frac{P}{\sqrt{2}} [1 - r e^{i\phi}], \quad A_{B^+ \to \pi^+ K^0} = P, \quad A_{B^+ \to \eta K^+} = \frac{P}{\sqrt{6}} [1 + r e^{i\phi}], \quad A_{B^+ \to \eta_1 K^+} = -\frac{P}{\sqrt{3}} [2 - r e^{i\phi}],
\]

where

\[
r = \epsilon_{3/2} (e^{i\gamma} - \delta_{EW}).
\]

We need also the amplitude \(A^{(0)}_{B^+ \to \pi^0 K^+}\) in the factorized approximation, which we write as \([14]\)

\[
A^{(0)}_{B^+ \to \pi^0 K^+} \approx -\frac{P^{(0)}}{\sqrt{2}} [1 - 0.35 e^{i\gamma}].
\]

The Regge residua entering the coefficients \([22]\) can be expressed in terms of the same parameters \(\gamma_2^P, \gamma_1^P\) and \(\gamma_2^P\) as defined in \([27]\) by using \(SU(3)\). We fix the Pomeron coupling to the same value as in the \(\pi\pi\) case, and for the other trajectories the values listed in Table 2, where the meaning of the columns is the same as in Table 1.

By inserting the amplitudes \([13]\) and the new coefficients \(\Gamma\) and \(\Gamma\), calculated as above, in the dispersion relation \([14]\), we obtain after simplifying with \(|P|\) a complex equation involving the parameters \(r, \phi_P\) and \(\phi\). From this equation we obtain for \(r\) the expression

\[
r(\phi_P, \phi) = (0.12 + 0.09 i) \frac{(5.48 + 4.05 i) - (6.98 - 4.8 i) e^{2i\phi_P} + i(-3.33 + e^{i\gamma}) A^{(0)} e^{i\phi_P}}{(0.16 + 0.75 i) e^{-i\phi} - e^{i\phi} e^{2i\phi_P}}.
\]

The expression of \(r\) contains also the ratio \(A^{(0)}_P/A_P\) and the weak angle \(\gamma\) (actually the dependence of \(r\) on \(\gamma\) is very weak). In Fig. 3 we show for illustration the real and the imaginary parts of \(r\) as functions of \(\phi\), for \(\phi_P = \pi/6\), using the estimate \(A^{(0)}_P/A_P \approx 0.7\). From the definition \([13]\), calculated with the parameters \(\epsilon_{3/2} = 0.24\) and \(\delta_{EW} = 0.64\) given in Ref. \([13]\), we can extract the weak angle \(\gamma\), defined as \(\gamma = \text{Arg}(r/\epsilon_{3/2} + \delta_{EW})\). In Fig. 4 we show the variation of \(\gamma\) as a function of \(\phi\) for \(\phi_P = \pi/6\).

IV. CONCLUSIONS

In the present work we brought several improvements to the dispersion formalism proposed in Ref. \([1]\) for investigating the hadronic parameters in \(B\) nonleptonic decays. The main modification consists in the discovery of an additional term in the dispersion representation. The new dispersion relation is given by Eq. \([3]\), where the first term can be approximated by the factorized amplitude, and the dispersive variable is the mass of the final meson which does not contain the spectator quark. We mention that \([3]\) is not a subtracted dispersion relation, the origin of the additional term being an equal time commutator in the LSZ formalism. We also treated more carefully the Goldberger-Treiman procedure to perform the unitarity sum, and refined the Regge model by the inclusion of both the \(t\) and \(u\)-channel trajectories. We emphasize that the analytic continuation in the external mass could be kept under control in the present context, since the Regge dynamics is rather universal (as long as the masses are small with respect to the energy).

With the improvements mentioned above we reconsidered the analysis of the \(B^0 \to \pi^+ \pi^-\) decay previously made, and discussed also the process \(B^+ \to \pi^0 K^+\). In the present calculation we
restricted the sum over intermediate states to the lowest pseudoscalar mesons, and invoked flavour symmetry to reduce the number of unknown amplitudes. The credibility of the results relies on the validity of the assumption that the higher states do not contribute in a significant way in the dispersion relation. There are several arguments in favor of this assumption. First, our results show that the dominant contribution is given by the Pomeron. Higher-mass states are suppressed by the phase space integration appearing in Eq. (13), since in our formalism $s = m_B^2$. Finally, one can argue that the effect of the higher states is simulated in a certain sense by the Goldberger-Treiman procedure, since it ensures a reality property of the discontinuity, which is normally valid when the unitarity sum is not truncated.

For simplicity, in the present application of the method we neglected the amplitudes suggested to be small by the quark diagrams, which introduces some model dependence in the final results. A more complete treatment including all the amplitudes is possible, by the simultaneous use of several dispersion relations for weak amplitudes correlated through rescattering effects.

Acknowledgments: One of the authors (I.C.) is grateful to Prof. A. de Rújula and the CERN Theory Division for hospitality. We wish to thank M. Beneke and J. Donoghue for interesting discussions. This work was partly realized in the frame of the Cooperation Agreements between IN2P3 and NIPNE-Bucharest, and between CNRS and the Romanian Academy. I.C. and L.M. express their thanks to the Centre de Physique des Particules de Marseille (CPPM) and the Centre de Physique Théorique (CPT) of Marseille for hospitality.

[1] I. Caprini, L. Micu, and C. Bourrely, Phys. Rev. D 60, 074016 (1999).
[2] G. Källen and A.S. Wightman, Dan. Vid. Selsk. Mat-fys. Skr. 1, no 6 (1958).
[3] H. Lehmann, K. Symanzik, and W. Zimmermann, Nuovo Cimento, 1, 205 (1956); 2, 425 (1957).
[4] G. Barton, Introduction to Dispersion Techniques in Field Theory, (Benjamin, New York, 1965).
[5] M.L. Goldberger and S.B. Treiman, Phys. Rev. 110, 1178 (1958); 111, 354 (1958).
[6] R. Omnès, Nuovo Cimento 8, 316 (1958).
[7] J.F. Donoghue et al., Phys. Rev. Lett. 77, 2178 (1996).
[8] P.D.B. Collins, Introduction to Regge Theory and High Energy Physics (Cambridge University Press, Cambridge, England, 1977).
[9] D. Delépine, J.-M. Gérard, J. Pestreia, and J. Weyers, Phys. Lett. B 429, 106 (1998).
[10] M. Gronau, O.F. Hernandez, D. London, and J.L. Rosner, Phys. Rev. D50, 4529 (1994).
[11] B. Bliok, M. Gronau and J.L. Rosner, Phys. Rev. Lett. 78, 3999 (1997).
[12] M. Beneke, G. Buchalla, M. Neubert, and C.T. Sachrajda, Phys. Rev. Lett. 83, 1914 (1999).
[13] M. Neubert, JHEP 9902:014 (1999).
[14] A.F. Falk, A.L. Kagan, Y. Nir, and A.A. Petrov, Phys. Rev. D 57, 4290 (1998).
TABLE I. Values of the Regge residua of the rescattering amplitudes in $B^0 \rightarrow \pi^+\pi^-$: column II indicates the channel, III the Regge trajectories, IV the coupling given by $SU(3)$ Clebsch-Gordan coefficients, V the additional sign due to the definition of the meson states, and VI the Regge factor ξ_V.

	I	II	III	IV	V	VI
$\pi^+\pi^- \rightarrow \pi^+\pi^-$		t	ρ	γ_1^2	+	$i\sqrt{2}$
		t	f_8	γ_2^2	+	$-\sqrt{2}$
		u	exotic			
$\pi^0\pi^0 \rightarrow \pi^+\pi^-$		t	ρ	γ_1^2	-	$i\sqrt{2}$
		u	ρ	$-\gamma_1^2$	-	$i\sqrt{2}$
$K^0\bar{K}^0 \rightarrow \pi^+\pi^-$		t	exotic			
		u	K^*	$-1/2\gamma_2^2$	-	$i\sqrt{2}$
		u	K^{**}	$3/2\gamma_2^2$	-	$-\sqrt{2}$
$\eta_8\eta_8 \rightarrow \pi^+\pi^-$		t	A_2	γ_2^2	-	$-\sqrt{2}$
		u	A_2	γ_2^2	-	$-\sqrt{2}$
$\eta_1\eta_1 \rightarrow \pi^+\pi^-$		t	A_2	$5\gamma_2^2$	-	$-\sqrt{2}$
		u	A_2	$5\gamma_2^2$	-	$-\sqrt{2}$
$\eta_8\eta_1 \rightarrow \pi^+\pi^-$		t	A_2	$\sqrt{15}\gamma_2^2$	-	$-\sqrt{2}$
		u	A_2	$\sqrt{15}\gamma_2^2$	-	$-\sqrt{2}$
TABLE II. Values of the Regge residua for the rescattering amplitudes in the $B^+ \rightarrow \pi^0 K^+$ case. The meaning of the columns is the same as in Table 1.

I	II	III	IV	V	VI
$\pi^0 K^+ \rightarrow \pi^0 K^+$					
$\pi^+ K^\circ \rightarrow \pi^0 K^+$					
$\eta_8 K^+ \rightarrow \pi^0 K^+$	t	ρ	$-\sqrt{2}/2\gamma_2$	+	$i\sqrt{2}$
	u	K^*	$-\sqrt{2}/4\gamma_2$	-	$i\sqrt{2}$
	u	K^{**}	$-3\sqrt{2}/4\gamma_2$	-	$-\sqrt{2}$

| $\eta_1 K^+ \rightarrow \pi^0 K^+$ | t | A_2 | $-\sqrt{15}/2\gamma_2$ | - | $-\sqrt{2}$ |
| | u | K^{**} | $\sqrt{15}/2\gamma_2$ | + | $-\sqrt{2}$ |
FIG. 1. The ratio $R = |A_P/A_T|$ given by Eq. (29) as a function of the strong phase difference δ, solid curve $\delta_T = \pi/12$, dashed curve $\delta_T = 0$. The dotted curve is obtained for $\delta_T = \pi/12$, by keeping only the contribution of the Pomeron in the Regge amplitudes.
FIG. 2. The weak phase α (Eq. (30)) as a function of the strong phase difference δ, solid curve $\delta_T = \pi/12$, and dashed curve $\delta_T = 0$.
FIG. 3. The real part (solid curve) and the imaginary part (dashed curve) of r defined in (33)-(34), as functions of the strong phase difference ϕ, for $\phi_P = \pi/6$.
FIG. 4. The weak phase $\gamma = \text{Arg}(r/\epsilon_{3/2} + \delta_{EW})$, as a function of the strong phase difference ϕ, for $\phi_p = \pi/6$.

\[\gamma(\text{deg})\]

\[\phi(\text{deg})\]