Research Article
Effect of Double-Side Curved Baffle on Reducing Sloshing in Tanks under Surge and Pitch Excitations

Aimeng Zhu,1,2 Mi-An Xue,1,2 Xiaoli Yuan,3 Feng Zhang,4 and Wei Zhang2

1Key Laboratory of Ministry of Education for Coastal Disaster and Protection, Hohai University, Nanjing 210024, China
2College of Harbour Coastal and Offshore Engineering, Hohai University, Nanjing 210024, China
3College of Science, Hohai University, Nanjing 210024, China
4National Key Laboratory on Ship Vibration & Noise, China Ship Scientific Research Center, Wuxi 214082, China

Correspondence should be addressed to Mi-An Xue; mi-anxue@163.com

Received 25 November 2020; Revised 3 February 2021; Accepted 9 February 2021; Published 26 February 2021

1. Introduction

Liquid sloshing means severe motion of a free surface liquid inside a partially filled container, which is an unsteady and highly nonlinear phenomenon with frequency jump, shift in resonant frequency, super-harmonic resonance, responses at higher harmonics, and fractional harmonics of forcing frequency and thus difficult to describe in full detail [1]. Any liquid storage containers may produce sloshing in a certain condition in addition to the fully filled liquid storage tank or no liquid tank. All kinds of numerical methods are employed to study sloshing. Wu et al. [2] analyzed the liquid sloshing in a 3D tank by using the finite element method (FEM) based on the fully nonlinear wave potential theory. Kim [3] simulated sloshing in the 2D/3D liquid containers by using the finite difference method (FDM). Celebi and Akyildiz [4] used the volume of fluid (VOF) techniques to track the free surface of the fluid and studied the nonlinear sloshing phenomenon of the liquid in the partially filled rectangular tank. Chen and Xue [5] and Xue et al. [6] performed a series of numerical simulation by using OpenFOAM to investigate the influences of filling levels, external excitation frequency, amplitude, and tank shape on liquid sloshing. Zang et al. [7] derived an axisymmetric boundary element method based on the assumptions of inviscid, irrotational, incompressible liquid, and small amplitude by using the weighted residual method and Green’s theorem. Zang et al. [8] firstly proposed an isogeometric boundary element method based on the nonuniform rational B-splines (NURBS) to study the liquid sloshing in the tank with porous baffles.

The slamming induced by sloshing may result in the deformation of the tank wall and even damage. Lots of investigations were conducted to find ways to inhibit liquid sloshing and reduce impact loads. Installing the baffles inside the liquid tanks is considered to be a simple and effective method in mitigating sloshing [9–11]. Abramson [12] first predicted the dynamic pressure on internal baffles and tank walls induced by liquid sloshing. Akyildiz and Unal [13]
experimentally studied the pressure distribution of a three-dimensional (3D) rectangular tank under different water depths, baffles, and external excitation frequencies and concluded that the baffles can significantly reduce fluid motion. Xue et al. [14] numerically studied the seiche oscillations of layered fluids in a closed rectangular tank and concluded that the vertical baffle accelerated the wave decay for both free surface wave and interfacial wave and also affected the dominant response frequencies of the seiche oscillations. Liu and Lin [15] developed a 3D two-phase fluid flow model to simulate liquid sloshing in a tank with vertical baffles. Their results indicated that vertical baffles have a significant effect on reducing the impact pressure. Wang et al. [16] concluded that the baffles with relatively large length have significant effects on suppressing sloshing force. Meanwhile, they thought that circular arc angle instead of right angle may slightly increase the sloshing force acting on the rectangular annular tank. Xue and Lin [17] investigated the damping mechanism of the ring baffle in reducing sloshing in a rectangular tank by using an in-house NEWTANK model. Akylidiz [18] and Jung et al. [19] studied the effect of vertical baffle height on liquid sloshing by changing the ratio of vertical baffle height to the initial liquid depth. Jin et al. [20] studied experimentally effect of different horizontal porous baffles on liquid sloshing under different external excitation frequencies and amplitudes. Cho et al. [21] studied sloshing with porous baffle by considering two porous baffle positions, namely, one at the center of the rectangular tank and the other at both walls of the tank. Xue et al. [22] studied experimentally the effectiveness of immersed bottom-mounted vertical baffles, vertical baffles flushing with free surface, surface-piercing bottom-mounted vertical baffles, and perforated vertical baffles in suppressing sloshing pressure. Chu et al. [23] investigated the characteristics of liquid sloshing with multiple vertical baffles installed on the bottom of the rectangular tank by varying the external excitation frequency, baffle number, and height. Ünal et al. [24] studied numerically the liquid sloshing in a closed and partially filled two-dimensional (2D) rectangular tank with T-type baffle under rotating excitation. Effect of the factors such as rotation angles, filling levels, and baffle heights on hydrodynamic pressure on tank walls and free surface wave elevations was analyzed. Yu et al. [25] experimentally studied effect of suppressing sloshing by using two perforated floating baffles under different solidity ratios, filling levels, and excitations. Zheng et al. [26] experimentally studied wave interaction with coral reef-flat that can be seen as porous media in a wave basin. Xue et al. [27] numerically studied effects of porous media layer on mitigating sloshing in a membrane LNG tank.

To the authors’ best knowledge, the double-side curved baffle has ever been seldom proposed to evaluate its effectiveness in mitigating sloshing. The objective of this research is to discuss the effects of double-side curved baffle and T-type baffle on sloshing mitigation under surge and pitch excitations. Automatic dynamic incremental nonlinear analysis (ADINA) software has been widely used to study sloshing problem. Eswaran et al. [28] studied the sloshing in cubic tanks with ring baffle and horizontal-cum-vertical baffle by using ADINA software. Cheng et al. [29] used ADINA to simulate three different volumes of storage tanks having different liquid height under the earthquake. Wang et al. [30, 31] used ADINA to simulate the characteristic of liquid sloshing in a rigid cylindrical tank with multiple rigid annual baffles internal. This study would be also performed with the aid of the well-known finite element software ADINA and the hexapod motion platform sloshing tests.

This study is organized as follows. In Section 2 and Section 3, the sloshing experimental platform and numerical model ADINA are introduced briefly. A series of laboratory experiments are carried out in a rectangular tank installed with vertical baffle and T-type baffle, respectively. Both baffles are located at the bottom center of the tank with the same height. The effects of two baffles on suppressing sloshing under the same submerged water depth are discussed by changing the tank movement style and excitation frequencies. In Section 4, the ADINA is employed to simulate sloshing in the rectangular tank with T-type baffle and double-side curved baffle, respectively. The simulation results are compared with the experimental data obtained in Section 3 for validating the accuracy of ADINA in simulating sloshing problems. In Section 5, effects of radians of double-side curved baffles on suppressing sloshing in the rectangular tank are analyzed numerically. Finally, the main conclusions are summarized.

2. Experimental Set Up and Procedure

2.1. Experimental Description. The experiments were conducted in Laboratory of Vibration Test and Liquid Sloshing at Hohai University of China. A hexapod motion platform, which is able to perform six degrees of freedom (DOF) harmonic and random motions according to a predesigned input, is utilized to generate the forced motions of the liquid tank, as shown in Figure 1. The rectangular tank, which is 0.6 m in length, 0.65 m in height, and 0.3 m in width, was fixed on the center of the experimental platform, as shown in Figure 2. A laser displacement sensor was used to record the movement of the platform and the tank, and an angular displacement sensor was fixed in the middle of the platform to record the rotation angle of the platform and the tank. Two capacitive wave probes, which are 0.02 m away from the left and right tank wall, respectively, were installed inside the rectangular tank. Five pressure sensors were located on central line of the left side tank wall. The distance between each pressure sensor was 0.04 m, and the distance between the pressure sensors and the tank bottom is \(P_1 = 0.03 \) m, \(P_2 = 0.07 \) m, \(P_3 = 0.11 \) m, \(P_4 = 0.15 \) m, and \(P_5 = 0.19 \) m, respectively. The range of the wave probe and pressure sensor was 60 cm with a precision of \(\pm 0.5\% \) F-S and 50 KPa with a precision of \(\pm 0.1\% \) F-S, respectively. The time series of free surface elevation and pressure was recorded by a SDA3000 sensor data acquisition system at an optional sampling rate of 100 Hz or 1000 Hz. Two types of the baffles including vertical baffle (Case1) and T-type baffle (Case2) were installed in the middle of the tank bottom, respectively, as shown in Figure 2. The ratio
0.43 of water depth to tank length, namely, a finite water depth of 0.258m was considered in experiments. The first-order resonant frequency of the tank with different baffle was obtained by the response curve of the maximum wave elevation to the corresponding external excitation frequencies, as shown in Table 1.

The motion of the tank was subjected to the following sinusoidal function, namely, the surge excitation with \(x = A \sin 2\pi ft \) and pitch excitation with \(\theta = \theta_0 \sin 2\pi ft \), where the amplitude is \(A = 0.002m \) and \(\theta_0 = 1° \), respectively. The coupled motions under surge and pitch excitation were also conducted by using \(x = A \sin 2\pi ft + \theta_0 \sin 2\pi ft \) with the same amplitude 0.002m and 1°. The experimental parameters are summarized in Table 2.

2.2. Instruments Calibration. In this study, the real horizontal and rotational motion displacement of the hexapod motion platform is recorded by a laser displacement sensor and an angular displacement sensor. To verify the accuracy of the platform movement, the predesigned theoretical displacement was compared with the experimental measurement data by the sensors, as shown in Figure 3, and good agreement is obtained.

3. Effects of Motion Style on the Maximum Wave Amplitude Response to Frequencies under Different Baffles

3.1. Surge Excitation. The maximum wave amplitude of sloshing in the tank with vertical baffle and T-type baffle under surge excitation was obtained experimentally. The tank movement is with \(A = 0.002m \). Figure 4 shows comparisons of the maximum wave amplitude response frequencies between Case 1 and Case 2 under surge excitation. It observed that the maximum wave amplitude of Case 1 is smaller than that of Case 2 when the external excitation frequencies \(f \) are smaller than 0.99\(f_0 \) (\(f_0 \) is the first-order resonant frequency). When \(f \) is equal to \(f_0 \), the maximum wave amplitude of Case 1 has a huge jump, and the maximum wave amplitude of Case 1 is larger than that of Case 2 with the increasing of \(f \). The effect of T-type baffle on reducing sloshing is better than that of vertical baffle under surge excitation in proximity of resonant frequency.

3.2. Pitch Excitation. Figure 5 shows that the maximum wave amplitude comparison of Case 1 and Case 2 under pitch excitation, which was subjected to the following
sinusoidal function, $y = \theta \sin 2\pi ft$, where θ was the amplitude of the pitch excitation and $\theta = 1^\circ$. From Figure 5, it can be seen that the change of the maximum wave amplitude under different frequencies of Case 1 and Case 2 is opposite to the change of the maximum wave amplitude under surge excitation. The maximum wave amplitude of Case 1 is larger than that of Case 2 when f is smaller than f_0, and situation becomes totally different when f is larger than f_0. However, the peak of the maximum wave amplitude does not occur at f_0, no matter Case 1 or Case 2. For Case 1, the peak of the maximum wave amplitude occurs at 0.96f_0 and the peak of the maximum wave amplitude occurs at 1.05f_0 for Case 2. In terms of the maximum wave amplitude change, the damping effect of the tank with vertical baffle and T-type baffle is similar.

3.3. Coupled Excitation of Surge and Pitch

Figure 6 shows the maximum wave amplitude comparison of Case 1 and Case 2 at different frequencies under coupled excitation of surge and pitch. The excitation was subjected to the function, $y = A \sin 2\pi ft + \theta \sin 2\pi ft$. The trend of change is roughly the same as that of the maximum wave amplitude under pitch excitation. However, the value of maximum

Table 1: The first-order resonant frequency of the tank with different baffles.

First-order resonant frequency (Hz)	Case 1	Case 2
	0.8	0.77

Table 2: Experimental parameters.

Case	Water depth (m)	Excitation amplitude	Excitation frequency f (Hz)
1	0.258	$A = 0.002 \text{ m}, \theta = 1^\circ$	0.76–0.84, 0.72, 0.88
2	0.258	$A = 0.002 \text{ m}, \theta = 1^\circ$	0.73–0.81, 0.69, 0.85

Notes: a indicates that the frequency interval is 0.01 Hz.
wave amplitude is smaller than that under pitch excitation; it is because the initial motion direction of surge and pitch excitation is opposite under the coupling state set in this study. Besides, the peak of the maximum wave amplitude which occurs near the resonant frequency is $0.98f_0$ for Case 1 and is $1.00f_0$ for Case 2.

In summary, when the external excitation is surge, the maximum wave amplitude varies dramatically for Case 1; when the external excitation frequency f is equal to the resonant frequency f_0, the maximum free surface elevation has a jump. For Case 2, the maximum free surface elevation changes gently. The damping effect of the vertical baffle is better than that of the T-type baffle when f is less than $0.98f_0$; however, the damping effect of the T-type baffle is better than that of the vertical baffle when f ranges from $0.98f_0$ to $1.1f_0$. When the external excitation is pitch excitation and coupled excitation of surge and pitch, the damping effect of the T-type baffle is better than that of the vertical baffle when f is less than f_0, and the damping effect of the vertical baffle is better than that of the T-type baffle when f is larger than f_0. Therefore, the T-type baffle is a better tool in reducing sloshing when f is less than f_0 under surge and pitch excitations.

Since the liquid sloshing is violent in the range of $0.95f_0$ to $1.05f_0$, the statistical analysis on the impact pressure data in the range of $0.95f_0$ to $1.05f_0$ is carried out in this study. The impact pressure response curve to external excitation at different pressure sensors positions is shown in Figure 7. The curve in (i) represents the impact pressure of the tank with the vertical baffle at different positions under a range of external excitation, and the curve in (ii) represents that of the tank with the T-type baffle. Figure 7(a) shows the comparison of the tank with the vertical baffle and with the T-type baffle under surge excitation of $A = 0.002$m. Figure 7(b) shows that under the pitch excitation of $\theta = 1^\circ$, and Figure 7(c) shows that under the coupled excitation of surge and pitch of $A = 0.002$m and $\theta = 1^\circ$. Findings show that the impact pressure reaches the maximum near the resonant frequency, no matter what kind of baffle, which pressure measuring points. The pressure at p5 is generally greater than the pressure at any other positions. The reason is that the location of p5 is close to the top of the baffle, where the baffle has little inhibition effect on sloshing, and the
liquid sloshing intensity at p5 is greater than that at other measuring points. In addition, the impact pressure at each measuring point of the tank with T-type baffle at different external excitation frequencies is smaller than that at each corresponding measuring point of the tank with vertical baffle at different frequencies. The sloshing mitigation effect of the T-type baffle is found to be better than that of the vertical baffle in this study.

4. Sloshing Mitigation Effect of Double-Side Curved Baffle

The sloshing mitigation effect of the double-side curved baffle is rarely reported. In this study, the double-side curved baffle was proposed to study its effect in reducing sloshing. The double-side curved baffle was placed in the middle of the tank bottom. The top and bottom width of this baffle is 0.1 m,
the middle waist width of the baffle is 0.006 m, and the radius of the arc is 0.136 m, as shown in Figure 8. Considering that the experiment is time-consuming and expensive, the software ADINA was adopted to carry out numerical studies. The sloshing mitigation effect of the double-side curved baffle under surge excitation with external excitation amplitude \(A = 0.002 \) m, pitch excitation with external excitation amplitude \(\theta = 1^\circ \), coupled excitation of surge and pitch with \(A = 0.002 \) m and \(\theta = 1^\circ \) as well as the external excitation frequency is 0.73 Hz are studied, respectively. For comparison, T-type baffle was also studied together.

4.1. Introduction of ADINA. The Arbitrary Lagrange Euler (ALE) method is adopted to solve the fluid-structure coupling problem in ADINA software. By tracking the true position of the free surface, the ALE method can realize the analysis of the fluid-structure coupling problem by the interaction between solid and liquid being transferred to each other through the coupling surface [32]. The basic equation is as follows:

\[
f = \frac{\partial f}{\partial t} + \frac{\partial f}{\partial x_i} c_i = \frac{df}{dt} + c \nabla f,
\]

where \(f \) is the convection velocity described by a certain physical quantity and \(c_i \) is the convection velocity described by the Euler method, \(c_i = u_i - \omega_i \), where \(u_i \) is the material velocity of the fluid particle, \(\omega_i \) is the velocity of the grid in the reference coordinate system, and \(x \) is the reference coordinate in the reference coordinate system.

The Navier–Stokes equations for the incompressible viscous fluid described by the ALE method are derived as follows:

\[
\text{Equation of continuity: } \frac{\partial u_i}{\partial x_i} = 0,
\]

\[
\text{Equation of motion: } \frac{du_i}{dt} + c_j \frac{\partial u_j}{\partial x_j} = \frac{\partial \sigma_{ij}}{\partial x_j} + f_i,
\]

\[
\text{Equation of constitutive: } \sigma_{ij} = \frac{\partial \sigma_{ij}}{\partial x_j} + \nu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right),
\]

\[
\begin{aligned}
\text{The boundary conditions: } & \sigma_{ij} m_j = \bar{\sigma}_{ij}, \quad \text{on } S_w, \\
& u_i = \bar{u}_i, \quad \text{on } S_w,
\end{aligned}
\]

\[
\begin{aligned}
\text{The initial conditions: } & u(x,0) = u_0(x), \\
& p(x,0) = p_0(x),
\end{aligned}
\]

where \(S_w \) and \(S_f \) are wet wall surface and free surface; \(\rho, p, \) and \(\nu \) are fluid density, pressure, and kinematic viscosity coefficients; \(f \) is the volume force; and \(m_i \) is the normal vector components outside the boundary.

According to the kinematics relation, the only constraint condition of grid point velocity on the free liquid surface is as follows:

\[
u, m_i = w_i m_i.
\]

In ADINA, flow-condition-based interpolation (FCBI) is a special case in the finite volume method, which locally satisfies the conservation of mass and momentum, and satisfies the windward condition by interpolation of velocity. The following is the process of solving Navier–Stokes equations using FCBI unit. Considering the incompressible fluid in a two-dimensional region, satisfying the essential and natural boundary conditions, the velocity \(v(x,t) \in V \) and the pressure \(p(x,t) \in P \) are required to make the following:

\[
\nabla \cdot (\rho v) = 0, \quad (x,t) \in \Omega \times [0,T],
\]

\[
\frac{\partial p}{\partial t} + \nabla \cdot (\rho v - \tau) = 0, \quad (x,t) \in \Omega \times [0,T].
\]

Initial conditions and boundary conditions are as follows:

\[
\begin{aligned}
v(x,t) &= \nu(x,t), \\
p(x,t) &= \nu(x,t), \\
\tau \cdot n &= f^3, \\
v &\in V_h, \quad (x,t) \in S_f \times (0,T],
\end{aligned}
\]

where \(\tau = \tau(v,p) = -p I + \mu [v v + (v v)^T] \), \(\rho \) is the liquid density, \(\mu \) is the viscosity coefficient, the boundary of region \(\Omega \in i^2 \) is \(S = S_w \cup S_f (S_w \cap S_f = \phi) \), \(T \) is the time range under consideration, \(v^i \) is the given velocity on the boundary \(S_w \), \(f^3 \) is the given normal force on the boundary \(S_f \), and \(n \) is the unit normal vector on the boundary.

The Petrov–Galerkin variable formula was used for the subspace \(V_h, U_h, W_h \) of \(V \) and \(P_h, Q_h \) of \(P \). Find \(v \in V_h, u \in U_h, p \in P_h \) so that for any \(w \in W_h, q \in Q_h \) has
\[\int \Omega \left[\frac{\partial}{\partial t} u + \nabla \cdot (\rho u v - \tau(u, \rho)) \right] d\Omega = 0, \]
\[\int \Omega q \nabla \cdot (\rho u) d\Omega = 0. \]

To define the space, Figure 9 shows the grid cells in a natural coordinate system. In order to obtain the matrix corresponding to the usual two-dimensional geometric model, isoparametric transformation is used. Figure 9 shows a typical set of 9-node elements (Figure 9(a)) and subelements (Figure 9(b)), which are defined by the four nodes in the 9-node element for speed interpolation. Each 9-node cell can be thought as consisting of four 4-node cells.

For the definition of space \(U_h \), subunits are considered. The temptation function in \(U_h \) is defined as

\[\begin{bmatrix} h^1_l & h^2_l \\ h^3_l & h^4_l \end{bmatrix} = h(\xi)h^T(\eta), \]

where \(h^T(\eta) = [1 - y, y], (y = \xi, \eta, 0 \leq \xi, \eta \leq 1) \).

Similarly, the unit in space \(P_h \) (Figure 9(a)) is considered.

\[\begin{bmatrix} h^1_p & h^2_p \\ h^3_p & h^4_p \end{bmatrix} = h(t)h^T(s), \quad 0 \leq t, s \leq 1. \]

The temptation function in \(V_h \) is defined by the flow conditions at each boundary of the subunits. For the flux passing through ab edge, the test function is

\[\begin{bmatrix} h^1_l & h^2_l \\ h^3_l & h^4_l \end{bmatrix} = \begin{bmatrix} h(x^1), h^T(x^2) \end{bmatrix} h(\eta)h^T(\eta), \]

where \(x^k = (e^k \xi - 1/e^k - 1) \) and \(a^k = (\rho u^k \cdot x^k/\mu) \).

The location of each stress measuring point is shown in Figure 13. The external excitation is \(f = 0.69Hz \). The results are compared in Figures 14 and 15.

4.3. Sloshing Mitigation Effects of Double-Side Curved and T-type Baffle under Different Excitation Styles. Figure 12 shows the comparisons of time history of wave height under different excitation styles. The external excitation frequency of 0.73Hz, the surge excitation amplitude of 0.002m, and the pitch excitation amplitude of 1° are kept the same. The black line represents the wave height time history of the tank with T-type baffle, and the red line represents that of the tank with double-side curved baffle. Figure 12 shows that the change of free surface wave elevation of the tank with T-type baffle, and the tank with double-side curved baffle is very similar under different motion style. Besides, the variation trend of free surface wave amplitude under the coupled excitation of surge and pitch is similar to that under pitch excitation. The reason is that the surge excitation amplitude is small, which make the influence of surge excitation be almost nonexistent.

In order to further compare the effects of T-type baffle and double-side curved baffle on reducing liquid sloshing, several stress measuring points are selected on baffles, and the effective stress of the corresponding stress measuring points on the two types of baffles is compared. At the top of baffles, four stress measuring points are selected along the width of the baffles, which are named as \(p_{11}, p_{12}, p_{13}, \) and \(p_{14} \) respectively. Six stress measuring points are selected along the height direction of the baffles, which are named as \(p_{15}, p_{16}, p_{17}, p_{18}, p_{19}, \) and \(p_{10} \) respectively. The location of each stress measuring point is shown in Figure 13. The external excitation is surge, and the amplitude is 0.002m, and the frequency is 0.69Hz. The results are compared in Figures 14 and 15.
Table 3: The comparison of 1st resonant frequency obtained by ADINA and experiments.

Case	Water depth (m)	$f_{1st,ADINA}$ (Hz)	$f_{1st,Experiment}$ (Hz)
1	0.258	0.820	0.800
2	0.258	0.775	0.770

Figure 9: (a) 9-node element; (b) subelement.

Figure 10: Comparisons of the free surface elevations of the experimental data and ADINA simulation under surge excitation: (a) Case 1: $f = 0.72$ Hz, $A = 0.002$ m; (b) Case 2: $f = 0.69$ Hz, $A = 0.002$ m.

Figure 11: Evolution of free surface profile at (a) $t = 2s$; (b) $t = 3.1s$; (c) $t = 3.5s$; (d) $t = 4.3s$.
Figure 12: Comparisons of time history of wave height under different motion styles of the tank with T-type baffle and double-side curved baffle and $f = 0.73$ Hz: (a) surge excitation with $A = 0.002$ m; (b) pitch excitation with $\theta = 1^\circ$; (c) coupled excitation of surge and pitch with $A = 0.002$ m and $\theta = 1^\circ$.

Figure 13: Layout of stress measurement points (unit: m).
point p_{19} is the largest and then followed by p_{18} and p_{17}. The largest effective stress of double-side curved baffle is in p_{18}, and p_{19} and p_{17} are then followed. In addition, the effective stress distribution of each stress measuring point of the T-type baffle is much larger than that of the corresponding measuring point of the double-side curved baffle. From stress distribution of measuring points along the width of baffles, the effective stress of each measuring point of the T-type baffle is roughly the same, while the effective stress of each measuring point of the double-side curved baffle increases with the increase in the distance between the measuring point and the edge of the baffle.

Figure 16 shows the evolution of velocity fields installed with double-side curved baffle under different motion styles. The baffle installed in the tank changed the moving direction of the fluid when sloshing occurred. The liquid hits the baffle, and the double-side curved baffle leads the liquid to move along the arc of the baffle. It can be seen from Figure 16 that vortices are formed on both sides of the flange of the baffle. All of these contribute to the dissipation of the energy when liquid sloshing. The existence of the baffle separates the liquid from the left and right sides of the rectangular tank and restricts the sloshing of the liquid. Therefore, the velocity amplitude of the liquid is very small in the water depth below 0.206 m, which is the height range of the baffle, and sloshing is also not violent. The maximum velocity occurs at the junction between the liquid and the top of the baffle, and it may be that as the height rises, the liquid is less and less restricted by the baffle, and as the water depth gets closer and even more than 0.206 m, the sloshing becomes more and more violent. In addition, the liquid moves along the arc of the double-side curved baffle and passes over the baffle when moved to the top of it, and then the slamming happens.

From Figures 12(b), 12(c), 16(b), and 16(c), it can be seen that there is almost no influence of the surge excitation on sloshing, and the liquid mainly exhibits the characteristics of the sloshing under pitch excitation when the coupled excitation amplitude is $A = 0.002$ m and $\theta = 1^\circ$. In order to analyze the effect of coupling excitation on liquid sloshing, the amplitude of surge excitation is increased to 0.01 m, and the characteristics of liquid sloshing under the coupled excitation of surge and pitch are analyzed.
Figure 16: Evolution of velocity field under (a) surge excitation; (b) pitch excitation; (c) coupled excitation of surge and pitch.
Figure 17 shows the comparisons of time history of free surface wave under surge excitation and coupled excitations of surge and pitch when the surge excitation amplitude increases to 0.01 m. Since the initial direction of liquid movement is opposite under the excitation of surge and pitch, the wave generated under surge excitation and wave generated under pitch excitation will overlap and collide with each other, which caused sloshing wave energy dissipation and then suppressed the liquid sloshing.

Figure 18: Evolution of velocity field under coupled excitations of surge and pitch, A = 0.01 m and θ = 1°.

Figure 17: Comparisons of time history of free surface wave under (a) surge excitation; (b) coupled excitations of surge and pitch.

Figure 18 shows the comparisons of time history of free surface wave under surge excitation and coupled excitations of surge and pitch when the surge excitation amplitude increases to 0.01 m. Since the initial direction of liquid movement is opposite under the excitation of surge and pitch, the wave generated under surge excitation and wave generated under pitch excitation will overlap and collide with each other, which caused sloshing wave energy dissipation and then suppressed the liquid sloshing.

The velocity field shown in Figure 16(c) has different characteristics comparing with that shown in Figure 18. When the external excitation amplitude is $A = 0.002$ m and $\theta = 1^\circ$, the maximum flow velocity occurs at the interface between the liquid and the top of the double-side curved baffle (as shown in Figure 16(c)). When the external excitation amplitude is $A = 0.01$ m and $\theta = 1^\circ$, the maximum flow velocity occurs not only at the interface between the liquid and the top of the double-side curved baffle but also at the edges of the baffle and the wall of the rectangular tank (as shown in Figure 18). It may be that wave generated by the surge excitation and wave generated by pitch excitation meet and counteract in the middle position of the liquid, while the wave near the wall of the rectangular tank and the edge of baffle do not. Therefore, the flow velocity in the liquid decreases, while the flow velocity at the edge increases.

5. Effect of Radian on the Damping Effect

In order to find out whether the radian of the double-side curved baffle has an effect on reducing sloshing, four kinds of double-side curved baffle with different radians are proposed in Figure 19. The height and the top width of the baffle remain the same, only the radians of the baffle are changed, and the radians are 0.132 m, 0.136 m, 0.140 m, and 0.153 m, respectively. Eleven stress measuring points are arranged on baffle, four of which are distributed on the top of the baffle, and the rest are distributed along the curved edge of the baffle, as shown in Figure 20.

The ADINA is used to simulate the liquid sloshing of these four different radian baffles when water depth is 0.258 m, the surge excitation amplitude is 0.002 m, and the external excitation frequency is 0.69 Hz. The time history of free surface wave elevation for four kinds of double-side curved baffle with different radians is shown in Figure 21. The change of the radian of the double-side curved baffle has little influence on the wave elevation. Figures 22 and 23 show
Figure 19: Double-side curved baffle with different radians (unit: m).

Figure 20: Layout of stress measurement points (m).

Figure 21: Contrast of wave heights on free surface of different radian baffles.
Figure 22: Comparison of effective stress in the vertical direction of different radian baffles: (a) $r = 0.132$ m, (b) $r = 0.136$ m, (c) $r = 0.140$ m, and (d) $r = 0.153$ m.

Figure 23: Continued.
comparison of the effective stress at different measuring points distributed along the curved edge of the baffle and comparison of the effective stress at different measuring points distributed at the top of the baffle with different radians. It can be seen from Figure 22 that the effective stress corresponding to \(p_{31}, p_{41}, p_{51}, p_{61}, \) and \(p_{71} \) under different radians gradually decreases with the increasing of radians. When the radian is equal to 0.132 m, the effective stress at measuring point \(p_{31} \) is the largest and then followed by \(p_{41}, p_{51}, p_{61}, \) and \(p_{71} \). When the radian is equal to 0.153 m, the situation becomes exactly the opposite. In addition, the difference between the maximum and minimum values of the effective stress obtained by each stress measuring point (\(p_{41}, p_{51}, p_{61}, \) and \(p_{71} \)) also decreases with the increasing radian. It can be seen from Figure 23 that the effective stress at measuring point \(p_{11} \) increases slightly with the increasing radians, while the effective stress at other measuring points remained basically unchanged. On the whole, sloshing mitigation effect increases with increasing the radian of the double-side curved baffle.

6. Conclusions

Sloshing mitigation effects of the vertical baffle, the T-type baffle, and the double-side curved baffle are investigated in this study by comparing the maximum wave amplitude, effective stress distribution, and evolution of velocity field under different excitation parameters. Some conclusions have been drawn as follows.

It was proved to be in this study that the damping effect of the T-type baffle is better than that of vertical baffle. From the perspective of the maximum wave amplitude changing with the external excitation frequency, when the tank is excited by surge excitation, the antisloshing effect of the T-type baffle is better than that of the vertical, and when the tank is excited by pitch excitation and coupled excitation of surge and pitch, the damping effect of this two kings baffles is about the same. According the hydrodynamic pressure on the tank wall under resonant frequency, when the tank is fitted with T-type baffle, the hydrodynamic pressure at all measuring points in the tank wall is lower than that when the vertical baffle is installed.

As for the dimension of the baffles set in this study, there is almost no difference in the free surface elevation of T-type baffle and double-side curved baffle under the same sloshing condition. However, when the external excitation is surge excitation and the amplitude of excitation is 0.002 m, the frequency of excitation is 0.69 Hz and the effective stress at the double-side curved baffle along the height direction of the baffle is much smaller than that at the T-type baffle. And, the effective stress at the double-side curved baffle along the width of the baffle is larger than that at the T-type baffle.

By changing the radian of the double-side curved baffle, it was found that the effective stress on the baffle tends to decrease with the increase in the radian on the whole.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The work was supported by the Fundamental Research Funds for the Central Universities (B200202055), the National Natural Science Foundation of China (51679079 and 51520105014), and the Key Laboratory of Ministry of Education for Coastal Disaster and Protection, Hohai University (202005).

References

[1] S. Gurusamy and D. Kumar, “Experimental study on nonlinear sloshing frequency in shallow water tanks under the effects of excitation amplitude and dispersion parameter,”*Ocean Engineering*, vol. 213, Article ID 107761, 2020.
[2] G. X. Wu, Q. W. Ma, and R. Eatock Taylor, "Numerical simulation of sloshing waves in a 3D tank based on a finite element method," Applied Ocean Research, vol. 20, no. 6, pp. 337–355, 1998.

[3] Y. Kim, "Numerical simulation of sloshing flows with impact load," Applied Ocean Research, vol. 23, no. 1, pp. 53–62, 2001.

[4] M. S. Celebi and H. Akylidiz, "Nonlinear modeling of liquid sloshing in a moving rectangular tank," Ocean Engineering, vol. 29, no. 12, pp. 1527–1533, 2002.

[5] Y. Chen and M.-A. Xue, "Numerical simulation of liquid sloshing with different filling levels using OpenFOAM and experimental validation," Water, vol. 10, no. 12, p. 1752, 2018.

[6] M.-A. Xue, Y. C. Chen, J. H. Zheng, L. Qian, and X. L. Yuan, "Fluid dynamics analysis of sloshing pressure distribution in storage vessels of different shapes," Ocean Engineering, vol. 192, pp. 1–14, Article ID 106582, 2019.

[7] Q. Zang, J. Liu, L. Yu, and G. Lin, "Boundary element analysis of liquid sloshing characteristics in axisymmetric tanks with various porous baffles," Applied Ocean Research, vol. 93, Article ID 101963, 2019.

[8] Q. Zang, J. Liu, L. Lu, and G. Lin, "A NURBS-based isogeometric boundary element method for analysis of liquid sloshing in axisymmetric tanks with various porous baffles," European Journal of Mechanics - B/Fluids, vol. 81, pp. 129–150, 2020.

[9] M.-A. Xue, J. Zheng, and P. Lin, "Numerical simulation of sloshing phenomena in cubic tank with multiple baffles," Journal of Applied Mathematics, vol. 2012, Article ID 245702, 21 pages, 2012.

[10] M.-A. Xue, P.-Z. Lin, J.-H. Zheng, Y.-X. Ma, X.-L. Yuan, and V.-T. Nguyen, "Effects of perforated baffle on reducing sloshing in rectangular tank: experimental and numerical study," China Ocean Engineering, vol. 27, no. 5, pp. 615–628, 2013.

[11] M.-A. Xue, J. Zheng, P. Lin, and Z. Xiao, "Violent transient sloshing-wave interaction with a baffle in a three-dimensional numerical tank," Journal of Ocean University of China, vol. 16, no. 4, pp. 661–673, 2017.

[12] H. N. Abramson, "The dynamic behavior of liquids in moving containers," NASA Special Publication, vol. 106, 1966.

[13] H. Akylidiz and E. Ünal, "Experimental investigation of pressure distribution on a rectangular tank due to the liquid sloshing," Ocean Engineering, vol. 32, no. 11-12, pp. 1503–1516, 2005.

[14] M.-A. Xue, O. Kargbo, and J. Zheng, "Seiche oscillations of layered fluids in a closed rectangular tank with wave damping mechanism," Ocean Engineering, vol. 196, Article ID 106842, 2020.

[15] D. Liu and P. Lin, "Three-dimensional liquid sloshing in a tank with baffles," Ocean Engineering, vol. 36, no. 2, pp. 202–212, 2009.

[16] W. Wang, Q. Zang, Z. Wei, and Z. Guo, "An isogeometric boundary element method for liquid sloshing in the horizontal eccentric annular tanks with multiple porous baffles," Ocean Engineering, vol. 189, Article ID 106367, 2019.

[17] M.-A. Xue and P. Lin, "Numerical study of ring baffle effects on reducing violent liquid sloshing," Computers & Fluids, vol. 52, pp. 116–129, 2011.

[18] H. Akylidiz, "A numerical study of the effects of the vertical baffle on liquid sloshing in two-dimensional rectangular tank," Journal of Sound and Vibration, vol. 331, no. 1, pp. 41–52, 2012.

[19] J. H. Jung, H. S. Yoon, C. Y. Lee, and S. C. Shin, "Effect of the vertical baffle height on the liquid sloshing in a three-dimensional rectangular tank," Ocean Engineering, vol. 44, pp. 79–89, 2012.

[20] H. Jin, Y. Liu, and H.-J. Li, "Experimental study on sloshing in a tank with an inner horizontal perforated plate," Ocean Engineering, vol. 82, pp. 75–84, 2014.

[21] I. H. Cho, J.-S. Choi, and M. H. Kim, "Sloshing reduction in a swaying rectangular tank by an horizontal porous baffle," Ocean Engineering, vol. 138, pp. 23–34, 2017.

[22] M.-A. Xue, J. Zheng, P. Lin, and X. Yuan, "Experimental study on vertical baffles of different configurations in suppressing sloshing pressure," Ocean Engineering, vol. 136, pp. 178–189, 2017.

[23] C.-R. Chu, Y.-R. Wu, T.-R. Wu, and C.-Y. Wang, "Slosh-induced hydrodynamic force in a water tank with multiple baffles," Ocean Engineering, vol. 167, pp. 282–292, 2018.

[24] U. O. Ünal, G. Bilici, and H. Akylidiz, "Liquid sloshing in a two-dimensional rectangular tank: a numerical investigation with a T-shaped baffle," Ocean Engineering, vol. 187, Article ID 106183, 2019.

[25] Y. M. Yu, N. Ma, S. M. Fan, and X. C. Gu, "Experimental studies of suppressing effectiveness on sloshing with two perforated floating plates," International Journal of Naval Architecture and Ocean Engineering, vol. 11, pp. 258–293, 2019.

[26] J. Zheng, Y. Yao, S. Chen, S. Chen, and Q. Zhang, "Laboratory study on wave-induced setup and wave-driven current in a 2DH reef-lagoon-channel system," Coastal Engineering, vol. 162, Article ID 103772, 2020.

[27] M.-A. Xue, Z. Y. Jiang, Y. A. Hu, and X. L. Yuan, "Numerical study of porous material layer effects on mitigating sloshing in a membrane LNG tank," Ocean Engineering, vol. 218, pp. 1–20, Article ID 108240, 2020.

[28] M. Eswaran, U. K. Saha, and D. Maity, "Effect of baffles on a partially filled cubic tank: numerical simulation and experimental validation," Computers & Structures, vol. 87, no. 3–4, pp. 198–205, 2009.

[29] X. D. Cheng, J. J. Hu, and L. M. Zhao, "Dynamic response analysis of vertical cylindrical storage tanks based on ADINA," Applied Mechanics and Materials, vol. 90–93, pp. 1482–1485, 2011.

[30] J. D. Wang, S. H. Lo, and D. Zhou, "Sloshing of liquid in rigid cylindrical container with multiple rigid annular baffles: lateral excitations," Journal of Fluids and Structures, vol. 42, pp. 421–436, 2013.

[31] J. Wang, C. Wang, and J. Liu, "Sloshing reduction in a pitching circular cylindrical container by multiple rigid annular baffles," Ocean Engineering, vol. 171, pp. 241–249, 2019.

[32] W. H. Wang and L. J. Zhang, "Application of ADINA to analysis of earthquake response of gravity dam," Water Conservancy Science and Technology and Economy, vol. 14, pp. 26–28, 2008, in Chinese.