Higher Dimensional Multiparameter Unitary and Nonunitary Braid Matrices: Even Dimensions

B. Abdesselama,1, A. Chakrabartib,2, V.K. Dobrevc,d,3 and S.G. Mihovc,4

a Laboratoire de Physique Quantique de la Matière et de Modélisations Mathématiques, Centre Universitaire de Mascara, 29000-Mascara, Algérie
and
Laboratoire de Physique Théorique, Université d’Oran Es-Sénia, 31100-Oran, Algérie
b Centre de Physique Théorique, Ecole Polytechnique, 91128 Palaiseau Cedex, France.
c Institute of Nuclear Research and Nuclear Energy Bulgarian Academy of Sciences 72
Tsarigradsko Chaussee, 1784 Sofia, Bulgaria
d Abdus Salam International Center for Theoretical Physics Strada Costiera 11, 34100
Trieste, Italy

Abstract

A class of $(2n)^2 \times (2n)^2$ multiparameter braid matrices are presented for all n ($n \geq 1$).
Apart from the spectral parameter θ, they depend on $2n^2$ free parameters $m_{ij}^{(\pm)}$, $i, j = 1, \ldots, n$.
For real parameters the matrices $R(\theta)$ are nonunitary. For purely imaginary parameters they became unitary.
Thus a unification is achieved with odd dimensional multiparameter solutions presented before.

1 Introduction

Higher dimensional unitary braid matrices have been studied in two recent papers \cite{1,2}.
Their simultaneous relevance to topological and quantum entanglements (as discussed, for example, in Ref. \cite{3}) was a major motivation. In Ref. \cite{2} quite different classes were presented for odd and even dimensional matrices.
There, the even dimensional $(2n)^2 \times (2n)^2$ braid matrices have no free parameter (apart from the spectral parameter θ after Baxterization) where as the $(2n+1)^2 \times (2n+1)^2$ matrices have $2n (n+2)$ free parameters $\left(m_{ij}^{(\pm)}\right)$. Here we unify the two cases by presenting multiparameter solutions

1Email: boucif@cpht.polytechnique.fr and boucif@yahoo.fr
2Email: chakra@cpht.polytechnique.fr
3Email: dobrev@inrne.bas.bg
4Email: smikhov@inrne.bas.bg
for even dimensions. We obtain first the general case for this class and then show how to implement unitarity.

2 Constructions (Even dimensions)

The braid equation is, in standard notations, in presence of a spectral parameter θ,

$$
\hat{R}_{12} (\theta) \hat{R}_{23} (\theta + \theta') \hat{R}_{12} (\theta') = \hat{R}_{23} (\theta') \hat{R}_{12} (\theta + \theta') \hat{R}_{23} (\theta),
$$

(2.1)

where $\hat{R}_{12} = \hat{R} \otimes I$ and $\hat{R}_{23} = I \otimes \hat{R}$. We present below a simple class of multiparameter solutions for $(2n)^2 \times (2n)^2$ ($n \geq 1$) braid matrices $\hat{R} (\theta)$. They are analogous to the odd dimensional solutions presented before [4]. Unitarity constraints can be implemented as in sec. 5 of Ref. [2]. Thus, for this class, one obtains a unified approach for multiparameter odd and even dimensional solutions.

Define the projectors

$$
P^{(\epsilon)}_{ij} = \frac{1}{2} \left\{ (ii) \otimes (jj) + (\bar{i}i) \otimes (\bar{j}j) + \epsilon [(ii) \otimes (\bar{j}j) + (\bar{i}i) \otimes (jj)] \right\},
$$

(2.2)

where $i, j \in \{1, \ldots, n\}$, $\bar{i} = 2n + 1 - i$, $\bar{j} = 2n + 1 - j$ and $\epsilon = \pm$. They provide a complete basis satisfying

$$
P^{(\epsilon)}_{ij} P^{(\epsilon')}_{kl} = \delta_{ik} \delta_{jl} \delta_{\epsilon \epsilon'} P^{(\epsilon)}_{ij}, \quad \sum_{\epsilon = \pm} \sum_{i,j=1}^{n} P^{(\epsilon)}_{ij} = I_{(2n)^2 \times (2n)^2}.
$$

(2.3)

Anticipating the basic constraints essential for odd dimension [4] we directly postulate the form

$$
\hat{R} (\theta) = \sum_{\epsilon = \pm} \sum_{i,j=1}^{n} e^{m^{(\epsilon)}_{ij} \theta} \left(P^{(\epsilon)}_{ij} + P^{(\epsilon)}_{\bar{i} \bar{j}} \right).
$$

(2.4)

The proof that it satisfies the braid equation (2.1) proceeds in close analogy to the equations from (A9) to (A17) of Ref. [4]. Here we have directly implemented the constraint

$$
m^{(\epsilon)}_{ij} = m^{(\epsilon)}_{\bar{i} \bar{j}}.
$$

(2.5)

It is instructive to study explicitly the simplest cases.

Case 1: $N = 2$ ($n = 1$) (Here $i = 1$, $\bar{i} = 2$ and similarly for j).

$$
\begin{bmatrix}
a_+ & 0 & 0 & a_-
0 & a_+ & a_- & 0
0 & a_- & a_+ & 0
a_- & 0 & 0 & a_+
\end{bmatrix},
$$

(2.6)

with

$$
a_{\pm} = \frac{1}{2} \left(e^{m^{(\epsilon)}_{i1} \theta} \pm e^{m^{(\epsilon)}_{i\bar{1}} \theta} \right).
$$

(2.7)
Case 2: $N = 4$ ($n = 2$) (Here $i = 1, 2$, $i = 3, 4$). In terms of 4×4 blocks (D_{ij}, A_{ij} on the diag. and anti-diag. respectively)

\[
\begin{pmatrix}
D_{11} & 0 & 0 & A_{11} \\
0 & D_{22} & A_{22} & 0 \\
0 & A_{22} & D_{22} & 0 \\
A_{11} & 0 & 0 & D_{11}
\end{pmatrix},
\]

(2.8)

with

\[
D_{11} = D_{11} = \begin{pmatrix}
a_+ & 0 & 0 & 0 \\
0 & b_+ & 0 & 0 \\
0 & 0 & b_+ & 0 \\
0 & 0 & 0 & a_+
\end{pmatrix}, \quad D_{22} = D_{22} = \begin{pmatrix}
c_+ & 0 & 0 & 0 \\
0 & d_+ & 0 & 0 \\
0 & 0 & d_+ & 0 \\
0 & 0 & 0 & c_+
\end{pmatrix},
\]

(2.9)

and

\[
a_\pm = \frac{1}{2} \left(e^{m_{11}^{(+)} \theta} \pm e^{m_{11}^{(-)} \theta} \right), \quad b_\pm = \frac{1}{2} \left(e^{m_{12}^{(+)} \theta} \pm e^{m_{12}^{(-)} \theta} \right),
\]

\[
c_\pm = \frac{1}{2} \left(e^{m_{21}^{(+)} \theta} \pm e^{m_{21}^{(-)} \theta} \right), \quad d_\pm = \frac{1}{2} \left(e^{m_{22}^{(+)} \theta} \pm e^{m_{22}^{(-)} \theta} \right)
\]

(2.10)

We have verified, using a program, the braid equation (2.1) by inserting (2.4) for $N = 2, 4, 6, 8$. These provide direct checks for the argument indicated below (2.4). As compared to $\frac{1}{2} (N + 3)(N - 1)$ free parameters for odd [4], here for even N we obtain $\frac{1}{2} N^2$ free parameters $m_{ij}^{(\pm)}$.

Let us just note that the odd dimensional solutions of Ref. [4] and the even dimensional solutions presented here can be regrouped in a single expression given by

\[
\hat{R} (\theta) = \frac{1}{2} \sum_{\varepsilon = \pm} \sum_{i,j=1}^{N} e^{m_{ij}^{(\varepsilon) \theta}} \left[(ii) \otimes (jj) + \varepsilon (\bar{i}i) \otimes (\bar{j}j) \right],
\]

(2.11)

where

\[
m_{ij}^{(\varepsilon)} = m_{ij}^{(\varepsilon)} = m_{ij}^{(\varepsilon)} = m_{ij}^{(\varepsilon)}, \quad i, j = 1, \ldots, N \text{ and } \varepsilon = \pm 1,
\]

\[
n + 1 = n + 1 \text{ and } m_{n+1,n+1}^{(\varepsilon)} = 0 \quad (\forall \varepsilon) \quad \text{If } N \text{ is odd, i.e. } N = 2n + 1
\]

(2.12)

3 Unitarity

For all parameter real, $\hat{R} (\theta)$ is real but not unitary. Exactly as for N odd, making each exponent purely imaginary, namely $\exp \left(m_{ij}^{(\pm) \theta} \right) \rightarrow \exp \left(i m_{ij}^{(\pm) \theta} \right)$, where on the right
\(m^{(\pm)}_{ij} \theta \) is now real with a coefficient \(i (i^2 = -1) \), one obtains unitarity. Now, due to the symmetry of the projectors

\[
\hat{R}(\theta)^+ = \hat{R}(-\theta) = \hat{R}(\theta)^{-1}, \quad \hat{R}(\theta)^+ \hat{R}(\theta) = I_{(2n)^2 \times (2n)^2}.
\]

(3.1)

In general, one can demonstrate that our multiparameter odd and even dimensional solutions one has a simple factorization

\[
\hat{R}(\theta_1 \pm \theta_2) = \hat{R}(\theta_1) \hat{R}(\theta_2) = \hat{R}(\theta_2) \hat{R}(\theta_1)^{\pm 1}.
\]

(3.2)

This evidently, holds for real or imaginary parameters, i.e. for nonunitary and unitary solutions. Correspondingly, the \(RTT \) relations can be expressed as follows:

\[
\left(\hat{R}(\theta) (T(\theta') \otimes I) \right) \left((I \otimes T(\theta')) \hat{R}(\theta') \right) = \left(\hat{R}(\theta') (T(\theta') \otimes I) \right) \left((I \otimes T(\theta)) \hat{R}(\theta) \right).
\]

(3.3)

For comparison one may note that the real unitary braid matrix for all \(N = 2n \) presented in [2] can be written as

\[
\hat{R}(z) = \left(\frac{1 - iz}{1 + iz} \right)^{1/2} P_+ + \left(\frac{1 + iz}{1 - iz} \right)^{1/2} P_-,
\]

(3.4)

where

\[
z = \tanh(\theta), \quad \left(\frac{1 \mp iz}{1 \pm iz} \right)^{1/2} \equiv e^{\pm i\phi},
\]

(3.5)

say, giving phases for the coefficients and

\[
P_\pm = \frac{1}{2} (I \otimes I \pm iK \otimes J).
\]

(3.6)

\(K, J \) being given by (2.2) of Ref. [2]. \(P_\pm \) can be expressed as sums of the projectors of the type

\[
Q^{(\epsilon)}_{ij} = \frac{1}{2} \left\{ (ii) \otimes (jj) + (\bar{i}i) \otimes (\bar{j}j) + e\cdot(-1)\bar{j} [(ii) \otimes (\bar{j}j) - (\bar{i}i) \otimes (jj)] \right\}
\]

(3.7)

defining analogously \(Q^{(\epsilon)}_{ij} \) (with \(j \rightarrow \bar{j}, \bar{j} \rightarrow j \) in \(Q^{(\epsilon)}_{ij} \)). The imaginary factor \(i \) in \(Q^{(\epsilon)}_{ij} \), \(Q^{(\epsilon)}_{ij} \) and the phases cancel giving a real \(\hat{R}(z) \),

\[
\hat{R}(z) = I \otimes I + zK \otimes J.
\]

(3.8)

Due to the summing up of \(Q^{(\epsilon)}_{ij} \) into \(P_\pm \) the effective number of projectors does not increase with \(N \), nor the number of parameters. Here we have presented a class of solutions where the number of free parameters increase as \(N^2 \). For this case, one can prove that

\[
\hat{R}(z_1) \hat{R}(z_2) = \hat{R}(z_3),
\]

(3.9)

where

\[
z_3 = \frac{z_1 + z_2}{1 - z_1 z_2} \neq \tanh (\theta_1 + \theta_2), \quad (z_1 z_2 \neq 1).
\]

(3.10)
4 \(\theta \)-Expansion

In section 5 of Ref. [4] exponentiation and \(\theta \)-expansion of \(\hat{R}(\theta) \) was presented for odd dimension. We present below a brief analogous treatment for even dimensions. One have

\[
e^{m_{ij}^{(e)} \theta} \left(P_{ij}^{(e)} + P_{ij}^{(e)} \right) = \left(P_{ij}^{(e)} + P_{ij}^{(e)} \right) + \sum_{k=1}^{\infty} \frac{1}{k!} \left(m_{ij}^{(e)} \left(P_{ij}^{(e)} + P_{ij}^{(e)} \right) \right)^{k} \theta^{k}. \tag{4.1}
\]

Defining

\[
X = \sum_{\epsilon=\pm} \sum_{i,j=1}^{n} m_{ij}^{(e)} \left(P_{ij}^{(e)} + P_{ij}^{(e)} \right) \implies X^{n} = \sum_{\epsilon=\pm} \sum_{i,j=1}^{n} \left(m_{ij}^{(e)} \right)^{n} \left(P_{ij}^{(e)} + P_{ij}^{(e)} \right) \tag{4.2}
\]
due to the orthogonality of the projectors \(\left(P_{ij}^{(e)} + P_{ij}^{(e)} \right) \) for different sets of indices. Now from (2.4), due to the completeness (2.3),

\[
\hat{R}(\theta) = \sum_{\epsilon=\pm} \sum_{i,j=1}^{n} e^{m_{ij}^{(e)} \theta} \left(P_{ij}^{(e)} + P_{ij}^{(e)} \right) = I + \sum_{k=1}^{\infty} \frac{1}{k!} X^{k} \theta^{k} = e^{\theta X}. \tag{4.3}
\]

Hence the braid equation (2.1) reduces to

\[
e^{\theta X_{12} e^{(\theta + \theta') X_{23}} e^{\theta' X_{12}}} = e^{\theta' X_{23} e^{(\theta + \theta') X_{12}}} e^{\theta X_{23}}, \tag{4.4}
\]

where \(X_{12} = X \otimes I \) and \(X_{23} = I \otimes X \). Expanding both sides and comparing coefficients of \(\theta^{a} (\theta + \theta')^{b} \theta^{c} \) one obtains a sequence of relations involving \(X_{12}, X_{23} \). Some have been pointed out in section 5 of Ref. [4]. There would be parallel features here.

After implementing unitarity as in section 3 one can define (with \(i \) as above (3.1))

\[
X = i \sum_{i,j,\epsilon} m_{ij}^{(e)} \left(P_{ij}^{(e)} + P_{ij}^{(e)} \right). \tag{4.5}
\]

One then proceeds as above.

We have started with multiparameter case. For

\[
\hat{R}(z) = I \otimes I + zK \otimes J = \left(\frac{1 - i z}{1 + i z} \right)^{1/2} P_{+} + \left(\frac{1 + i z}{1 - i z} \right)^{1/2} P_{-} \equiv e^{i \phi} P_{+} + e^{-i \phi} P_{-}. \tag{4.6}
\]

(see the discussion following (3.3))

\[
X = i (P_{+} - P_{-}) = -K \otimes J \tag{4.7}
\]

and

\[
\hat{R}(z) = \hat{R}(\varphi) = e^{i \phi X}, \tag{4.8}
\]

where \(e^{i \varphi} = \left(\frac{1 - \tanh \theta}{1 + \tanh \theta} \right)^{1/2} \). By inserting this \(X \) in (4.4), one can develop in \(\varphi \) as explained before.
5 Discussion

For the multiparameter solutions presented in sections 2 and 3 one can study \hat{R}TT relations, transfer matrices, Hamiltonians and factorizable S-matrices in a closely analogous fashion to that for odd dimensions [5]. They are beyond the scope of this paper, limited essentially to construction of multiparameter $(2n)^2 \times (2n)^2$ braid matrices (nonunitary and unitary).

Beyond the unification presented there is a basic difference between odd and even dimensional cases. For the $(2n+1)^2 \times (2n+1)^2$ braid matrices with a basis of our ”nested sequence” of projectors our multiparameter solutions are the most general ones. The presence of the central element 1 in $\hat{R}(\theta)$ imposes the simple exponential solutions for the coefficients of all other projectors. This has been emphasized in appendix A of Ref. [4], ("Solving the braid equation"). But for even dimension this not the case. The class of solutions presented here is only one possibility. Already for the 4×4 case the intensively studied 6- and 8-vertex solutions can be canonically expressed on our basis (sections 6 and 7 of Ref. [6]). The multidimensional generalization of the 6-vertex matrix presented in Ref. [7] (citing previous sources) remains restricted to a single parameter γ. Are there authentic multiparameter generalizations of 6- and 8-vertex solutions to $(2n)^2 \times (2n)^2$ matrices for $n > 1$? We intend to explore such possibilities elsewhere.

We point out moreover that a pure imaginary spectral parameter ($\theta \rightarrow i\theta$) renders the 6-vertex and 8-vertex braid matrices unitary. This particularly evident form the respective canonical forms ((6.5) for 6-vertex and (7.2) with (7.6), (7.7) for 8-vertex of Ref. [6]) where the normalization factors are also suitably adapted. The coefficient of each real symmetric projector is evidently inverted under conjugation ($i\theta \rightarrow -i\theta$). Hence

$$\hat{R}^+(\theta) \hat{R}(\theta) = \hat{R}(-\theta) \hat{R}(\theta) = I.$$ \hspace{1cm} (5.1)

Now one no longer has statistical models with real, non-negative Boltzmann weights. But the unitary matrices become relevant concerning entanglement. Such parametrizations of entangled states will be studied in a following paper.

The unitary $(2n)^2 \times (2n)^2$ braid matrices generate entangled quantum states with one difference as compared to the odd dimensional case. In the last section of Ref. [2] it was pointed out that the product of pure states $|0\rangle |0\rangle$ conserved its status under action of $(2n+1)^2 \times (2n+1)^2$ unitary matrix. For the present case there is no such exceptional state.

As already pointed out for odd dimensions (see section 5, Ref. [2]), even dimensional, unitary, multiparameter braid matrices are also periodic or quasiperiodic in θ accordingly as the m’s are mutually commensurate or not.

Acknowledgments: One of us (BA) wants to thank Pierre Collet and Paul Sorba for precious help. The work of VKD and SGM was supported in part by the Bulgarian National Council for scientific Research, grant F-1205/02 and the European RTN ‘Force-universe’, contract MRTN-CT-2004-005104, and by the Alexander Von Humboldt Foundation in framework of the Clausthal-Leipzig-Sofia cooperation.
References

[1] Y. Zhang and M.L. Ge, *GHZ States, Almost-Complex Structure and Yang–Baxter Equation (I)*, quant-ph/0701244.

[2] B. Abdesselam, A. Chakrabarti, V.K. Dobrev and S.G. Mihov, *Higher Dimensional Unitary Braid Matrices: Construction, Associated Structures and Entanglements*, Jour. Math. Phys. 48 (2007) 053508.

[3] L.H. Kauffman and S.J. Lomonaco Jr., *Braiding operators are universal quantum gates*, New. J. Phys. 6 (2004) 34. quant-ph/0401094.

[4] A. Chakrabarti, *A nested sequence of projectors and corresponding braid matrices \(\hat{R}(\theta) \): (1) Odd dimensions*, Jour. Math. Phys. 46 (2005) 063508. math.QA/0401207.

[5] B. Abdesselam and A. Chakrabarti, *A nested sequence of projectors: (2) Multiparameter multistate statistical models, Hamiltonians, S-matrices*, Jour. Math. Phys. 47(2006) 053508. math.QA/0601584

[6] A. Chakrabarti, *Canonical factorization and diagonalization of Baxterized braid matrices: Explicit constructions and applications*, Jour. Math. Phys. 44 (2003) 5320.

[7] H.J. De Vega, *Yang-Baxter algebras, integrable theories and quantum groups*, Int. Jour. Mod. Phys. A vol. 4 (1989) 2371.