Neutrino mass and charged lepton flavor violation in an extended left-right symmetric model

Chayan Majumdar, Supriya Senapati, S. Uma Sankar, Urjit A. Yajnik

1Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400 076, India

Abstract

We consider an $U(1)_{L_\mu - L_\tau}$ extended left-right symmetric gauge theory where the neutrino masses are generated through inverse seesaw mechanism. In this model the muon $(g - 2)$ anomaly is accounted for by the mediation of $Z_{\mu\tau}$, the gauge boson of $U(1)_{L_\mu - L_\tau}$ symmetry. The symmetries of the model require the light neutrino mass matrix to have a particular two-zero texture, which leads to non-trivial constraints in the minimum neutrino mass. In addition, the model predicts observable charged lepton flavor violation in $\mu - \tau$ sector.

* chayan@phy.iitb.ac.in
* supriya@phy.iitb.ac.in
* uma@phy.iitb.ac.in
* yajnik@iitb.ac.in
I. INTRODUCTION

The prediction of the anomalous magnetic moment \((g - 2)\) is one of the triumphs of Quantum Field Theory (QFT) \([1, 2]\). The precise measurement of muon \((g - 2)\) \([3]\) revealed a tiny discrepancy with the standard model (SM) prediction. This deviation indicates potential existence of new physics \([4–10]\). The muon \((g - 2)\) anomaly is one of the most compelling reasons for the search for physics beyond the SM. At present, the discrepancy is at the 4.2σ level \([11]\). Extensive studies, both on experimental \([11–20]\) and theoretical \([21–28]\) frontiers, are being carried out with the aim of improving the precision of both the measured value and the SM prediction of muon \((g - 2)\).

The anomalous magnetic moment is characterized by the quantity \(a_\mu = (g - 2)/2\). The present theoretical prediction of \(a_\mu\) from SM is \([29]\)

\[
a_\mu^{\text{SM}} = 116591810(43) \times 10^{-11}. \tag{1}
\]

It is in disagreement with the nearly two decade old Brookhaven muon \((g - 2)\) collaboration (BNL) result \([3]\)

\[
a_\mu^{\text{BNL}} = 116592089(63) \times 10^{-11}, \tag{2}
\]

with \(\Delta a_\mu = (287 \pm 80) \times 10^{-11}\) at 3.7σ discrepancy. The theoretical prediction of \(a_\mu\) in the SM is a sum of contributions coming from Quantum Electrodynamics (QED), electroweak and hadronic sectors:

\[
a_\mu^{\text{SM}} = a_\mu^{\text{QED}} + a_\mu^{\text{electroweak}} + a_\mu^{\text{hadronic}}. \tag{3}
\]

Among these three contributions, the QED and the electroweak contributions have been verified to high precision \([30, 31]\). Therefore, it is possible that the discrepancy arises due some unknown loop contributions to \(a_\mu^{\text{hadronic}}\) \([32, 33]\). Another possibility is that the discrepancy is caused by new physics at TeV scale. Recently, the Fermilab muon \((g - 2)\) collaboration (FNAL) has announced an improved measurement \([11]\)

\[
a_\mu^{\text{FNAL}} = 116592040(54) \times 10^{-11}. \tag{4}
\]

This new result confirms the BNL measurement and increases the extent of discrepancy to 4.2σ level with \(\Delta a_\mu = (251 \pm 59) \times 10^{-11}\). On the theoretical frontier, a proposed experiment MUonE \([35]\), aims to reduce the theoretical uncertainty in \(a_\mu^{\text{hadronic}}\) by directly measuring the hadronic vacuum polarization more precisely. The theoretical studies to account for the muon \((g - 2)\) anomaly can be found in references \([4–8, 10, 36–51]\).

To address this anomaly most of the recent studies \([52–60]\) focus on new physics governed by \(U(1)_{L_\mu - L_\tau}\) symmetry. While the total lepton number, \(L\), is a sum of individual lepton numbers \(L_e\),
L_{μ} and L_{τ}, one can always choose the difference between any pair of the lepton numbers, such as $L_e - L_{\mu}$ or $L_{\mu} - L_{\tau}$ or $L_e - L_{\tau}$, and gauge it to obtain an anomaly free theory. Of these, known phenomenology rules out any but the gauged $U(1)_{L_{\mu} - L_{\tau}}$ symmetry. The parameters associated with the new gauge boson, $Z_{\mu\tau}$, are not constrained by lepton and hadron colliders since it does not couple to electrons and quarks. Many of the new physics scenarios have explored the $U(1)_{L_{\mu} - L_{\tau}}$ extension of the SM in the context of neutrino masses and mixing, muon $(g-2)$ anomaly, dark matter and so on \cite{52-70}. By comparison the $U(1)_{L_{\mu} - L_{\tau}}$ extended left-right symmetric theories have been less explored. The left-right symmetric model (LRSM) \cite{71-78} is one of the successful beyond SM scenarios, which gives an unified answer to the origin of small neutrino masses as well as parity violation in low-energy weak interactions. LRSM naturally hosts a right-handed neutrino and offers rich phenomenological aspects in the context of explaining neutrino mass, lepton number violation (LNV), lepton flavor violation (LFV) and so on.

In this paper, we consider an $U(1)_{L_{\mu} - L_{\tau}}$ extended LRSM described in \cite{79}. We explore the constraints on the small neutrino masses in this model, arising from the new physics which explains the muon $(g-2)$ anomaly. In manifest LRSM the neutrino masses are generated through type-I+II seesaw mechanism, thus providing a very high scale for the right-handed symmetry breaking ($>10^{14}$ GeV) which is far beyond present collider reach. However, addition of extra particles to LRSM allows the generation of neutrino mass at a few TeV scale by low-scale seesaw mechanism such as linear seesaw, inverse seesaw, double seesaw and so on \cite{80-102}. In our previous work, described in \cite{79}, we have considered the LRSM inverse seesaw (LISS) scenario for the generation of neutrino masses. The symmetries of this model impose severe constraints on the structure of the light neutrino mass matrix and restrict the allowed values of the lightest neutrino mass and the CP-violating phase δ. In addition, the model also allows charged lepton flavor violation at a level observable in near future.

The rest of the paper is organised as follows. In section \ref{sec:model} we outline the model of the $U(1)_{L_{\mu} - L_{\tau}}$ extended LRSM. In section \ref{sec:muon} we explore which of the contributions of the model to muon $(g-2)$ can explain the observed anomaly. In section \ref{sec:tau} we study the decay $\tau \to \mu\gamma$ and in section \ref{sec:neutrino} we study the model constraints on light neutrino masses and the CP-violating phase. We present our conclusion in the last section.

\section{The Model} \label{sec:model}

The model is an $U(1)_{L_{\mu} - L_{\tau}}$ extended left-right symmetric theory with the gauge group defined as

\[G_{LR}^{\mu\tau} \equiv U(2)_L \times SU(2)_R \times U(1)_{B-L} \times SU(3)_C \times U(1)_{L_{\mu} - L_{\tau}}. \]

(5)
The particle content of the model is given in table I.

Fields	$SU(2)_L$	$SU(2)_R$	$B - L$	$SU(3)_C$	$U(1)_{L_\mu - L_\tau}$	
Fermions	q_L	2	1	$1/3$	3	0
	q_R	1	2	$1/3$	3	0
	ℓ_{eL}	2	1	-1	1	0
	$\ell_{\mu L}$	2	1	-1	1	1
	ℓ_{eR}	1	2	-1	1	0
	$\ell_{\mu R}$	1	2	-1	1	1
Extra Steriles	S_{eL}	1	1	0	1	0
	$S_{\mu L}$	1	1	0	1	1
	$S_{\tau L}$	1	1	0	1	1
Scalars	Φ	2	2	0	1	0
	H_L	2	1	1	1	0
	H_R	1	2	1	1	0
Extra Scalar	χ	1	1	0	1	1

TABLE I. Particle content of the left-right symmetric theory extended with $U(1)_{L_\mu - L_\tau}$ gauge symmetry. The model contains three sets of extra sterile fermions (S_L) and one extra scalar (χ) along with the usual fermions and scalars present in it.

We have considered a doublet-variant LRSM in this work [79]. Apart from the usual fermions and scalars present in the model, it contains a set of three extra fermions which are sterile and one extra scalar. The extra scalar which is singlet under left-right symmetry is non-trivially charged under $U(1)_{L_\mu - L_\tau}$ and helps to break the $U(1)_{L_\mu - L_\tau}$ symmetry. The extra sterile fermions help to generate the neutrino masses through LISS mechanism. We have termed this scenario as extended LRSM inverse seesaw (ELISS) scenario. More details about the choice and advantages of the model can be found in [79].

In the scheme, the non-zero vev of H_R breaks the left-right symmetry to SM while H_L is required for left-right invariance. Further, the spontaneous symmetry breaking (SSB) of SM to low energy theory occurs when the scalar bidoublet Φ takes a non-zero vev and that generates masses for charged
leptons and quarks. This is as in the usual LRSM. Additionally, the vev of χ accomplishes the SSB of $U(1)_{L_{\mu}-L_{\tau}}$. The vev structure of the Higgs spectrum is as follows:

$$\langle H_R \rangle = \begin{pmatrix} 0 \\ v_R \end{pmatrix}, \quad \langle H_L \rangle = \begin{pmatrix} 0 \\ v_L \end{pmatrix}, \quad \langle \Phi \rangle = \begin{pmatrix} v_1 & 0 \\ 0 & v_2 e^{i\alpha} \end{pmatrix}, \quad \langle \chi \rangle = u,$$

where α is the relative phase between the two vevs of the bidoublet. For the usual particle content of the double-variant LRSM the allowed Yukawa interactions for the leptons are given by,

$$-L_{Yuk} \supset \ell_L e_L \left[Y_{\ell} \Phi + \tilde{Y}_{\ell} \tilde{\Phi} \right] \ell_L + \ell_{\mu L} \left[Y_{\ell} \Phi + \tilde{Y}_{\ell} \tilde{\Phi} \right] \ell_{\mu L} + \ell_{\tau L} \left[Y_{\ell} \Phi + \tilde{Y}_{\ell} \tilde{\Phi} \right] \ell_{\tau L} + \text{h.c.}$$

with $\tilde{\Phi} = \sigma_2 \Phi^* \sigma_2$ where σ’s are the Pauli matrices. Then, after SSB of $SU(2)_R$ and $SU(2)_L$, the masses for charged leptons and the Dirac masses for neutrinos can be expressed as

$$M_\ell \simeq \tilde{Y}_\ell v_1, \quad M'_D = Y_\ell v_1 + \tilde{Y}_\ell v_2 e^{-i\alpha} \simeq v_1 \left(Y_\ell + M_\ell \frac{v_2}{v_1} e^{-i\alpha} \right).$$

with $Y_\ell \ll \tilde{Y}_\ell$, $v_2 \ll v_1$. The $U(1)_{L_{\mu}-L_{\tau}}$ symmetry of our framework constrains Y_ℓ and \tilde{Y}_ℓ to be diagonal [79].

The sterile fermions of the ELISS scenario then provide additional contributions to the neutrino mass matrix. With charge assignments as in table I the relevant $U(1)_{L_{\mu}-L_{\tau}}$ invariant Yukawa interaction Lagrangian in this scheme is given by,

$$-L_{\text{ELISS}} \supset L_{\nu L N R} + L_{N R S L} + L_{S L S L} + L_{\chi}.$$

The neutrino Dirac mass matrix M'_D results from $L_{\nu L N R}$.

The mixing between the fields N_R and S_L arises from

$$L_{N R S L} \supset Y_{R S} \tilde{H}_R S_L = Y_{R S} \langle \tilde{H}_R \rangle \left[\ell_{e L} S_{e L} + \ell_{\mu L} S_{\mu L} + \ell_{\tau L} S_{\tau L} \right].$$

The matrix $Y_{R S} \langle \tilde{H}_R \rangle \equiv M$ is also constrained to be diagonal due to $U(1)_{L_{\mu}-L_{\tau}}$ symmetry.

The bare Majorana mass term for extra steriles S_L is given by,

$$L_{S L S L} = S_L^T \mu_S S_L = \left[\mu_{ee} S_{e L} S_{e L} + \mu_{\mu \tau} S_{\mu L} S_{\tau L} + \mu_{\mu \tau} S_{\tau L} S_{\mu L} \right].$$

where the bare Majorana mass matrix can be expressed as,

$$\mu_S^{\text{bare}} = \begin{pmatrix} \mu_{ee} & 0 & 0 \\ 0 & \mu_{\mu \tau} & 0 \\ 0 & 0 & \mu_{\mu \tau} \end{pmatrix}.$$
The form of μ_{S}^{bare} is dictated by $U(1)_{L_{\mu} - L_{\tau}}$ symmetry. The extra scalar χ, needed for the SSB of $U(1)_{L_{\mu} - L_{\tau}}$, couples to the sterile fields as

$$\mathcal{L}_\chi \supset \mu_{\mu S} S_{L_{\mu}}^T S_{L_{\mu}} \chi^* + \mu_{\tau S} S_{L_{\tau}}^T S_{L_{\tau}} \chi^* + \mu_{\mu S} S_{L_{\mu}}^T S_{L_{\mu}} \chi^* + \mu_{\tau S} S_{L_{\tau}}^T S_{L_{\mu}} \chi.$$ \hspace{1cm} (13)

When χ acquires a vev the above Lagrangian leads to a matrix μ_{S}^{SSB}, which is of the form

$$\mu_{S}^{SSB} = \begin{pmatrix}
0 & \mu_{\mu S} & \mu_{\tau S} \\
\mu_{\mu S} & 0 & 0 \\
\mu_{\tau S} & 0 & 0
\end{pmatrix}. \hspace{1cm} (14)$$

The total μ_{S} matrix, whose elements are in general complex, is given by

$$\mu_{S} = \mu_{S}^{\text{bare}} + \mu_{S}^{SSB} = \begin{pmatrix}
\mu_{ee} & \mu_{\mu S} & \mu_{\tau S} \\
\mu_{\mu S} & 0 & \mu_{\mu \tau} \\
\mu_{\tau S} & \mu_{\mu \tau} & 0
\end{pmatrix}. \hspace{1cm} (15)$$

The complete 9×9 neutral fermion mass matrix in the basis $\{\nu_{L}, \nu_{R}^c, S_{L}\}$ takes the form

$$M = \begin{pmatrix}
0 & M_{D}^\nu & 0 \\
M_{D}^\nu & 0 & M^T \\
0 & M & \mu_{S}
\end{pmatrix}. \hspace{1cm} (16)$$

Thus, for mass hierarchy $M > M_{D}^\nu \gg \mu_{S}$, the light neutrinos masses in ELISS scenario is read as

$$m_{\nu} = M_{D}^\nu M^{-1} \mu_{S} \left(M_{D}^\nu M^{-1}\right)^T. \hspace{1cm} (17)$$

Parametrizing the diagonal matrices M_{D}^ν as $\text{dia}(a, b, c)$ and M as $\text{dia}(M_{11}, M_{22}, M_{33})$, we find

$$m_{\nu} = \begin{pmatrix}
a^2 \mu_{ee} & ab \mu_{\mu S} & ac \mu_{\tau S} \\
ab \mu_{\mu S} & b^2 M_{11} & bc \mu_{\mu \tau} \\
ac \mu_{\tau S} & bc \mu_{\mu \tau} & c^2 M_{33}
\end{pmatrix}. \hspace{1cm} (18)$$

This complex symmetric matrix, when diagonalised by a unitary matrix, gives rise to three non-degenerate eigenvalues. It is possible to have sub-eV scale for these eigenvalues as shown below

$$\frac{m_{\nu}}{0.1 \text{ eV}} = \left(\frac{M_{D}^\nu}{100 \text{ GeV}}\right)^2 \frac{\mu_{S}}{\text{eV}} \left(\frac{M}{100 \text{ GeV}}\right)^{-2}. \hspace{1cm} (19)$$

Indeed the main advantage we derive from this construction is the sizeable light-heavy neutrino mixing ($V_{\nu \xi} = M_{D}^\nu M^{-1} \sim \mathcal{O}(0.1 - 1)$) with M at few GeV scale. This plays an important role in the explanation of the muon anomaly as discussed in the next section. For more details of the neutrino mass structure one can refer to [79].
III. MODEL PREDICTION MUON \((g - 2)\) WITH FNAL DATA

In the model described in the previous section, the contributions to \(\Delta a_\mu\), arise from the interactions of:

- singly charged gauge bosons \((W_L, W_R)\) with heavy neutral lepton,
- neutral vector boson \((Z_R)\) with singly charged leptons,
- singly charged scalars with neutral lepton,
- neutral scalars with muons,
- extra new gauge boson \(Z_{\mu\tau}\) with muons.

In the following we write down the analytic expressions for each of the contributions and study numerically all these contributions to \(\Delta a_\mu\). Details of the analytical calculations and the numerical comparison with the BNL data are given in [79].

(a) Contribution due to heavy gauge boson mediation:

- **W \(_L\) mediation**:
 \[
 \Delta a_\mu(W_L) \simeq 9.06 \times 10^{-9} g_L^2 \sum_{i=1,\ldots,6} |V_{\nu\xi}^{\mu i}|^2, \tag{20}
 \]

- **W \(_R\) mediation**:
 \[
 \Delta a_\mu(W_R) \simeq 2.3 \times 10^{-11} \left(\frac{g_R}{g_L}\right)^2 \left(\frac{1 \text{ TeV}}{m_{W_R}}\right)^2, \tag{21}
 \]

- **Z \(_R\) mediation**:
 \[
 \Delta a_\mu(Z_R) \simeq -\frac{1}{4\pi^2 m_{Z_R}^2} \left[\left(\frac{1}{3}\right) |g_L^\rho|^2 + \left(\frac{5}{3}\right) |g_R^\rho|^2\right]. \tag{22}
 \]

with \(m_{W_L}, m_{W_R}, m_{Z_R} \gg m_\mu\) where \(m_{W_L}, m_{W_R}, m_{Z_R}\) and \(m_\mu\) are the respective masses for \(W_L, W_R, Z_R\) and muon and \(g_L\) and \(g_R\) are the respective gauge couplings of \(SU(2)_L\) and \(SU(2)_R\). In our previous work [79] it was shown that the contribution from Eq. 20 can explain the muon \(g - 2\) anomaly by itself provided the light-heavy neutrino mixing factor, \(V_{\nu\xi}^{\mu i}\), is in the range \(O(0.7 - 1)\). However, such large light-heavy neutrino mixing factors are forbidden by the constraints on the deviation from the unitarity in the mixing of the active flavors [106]. In particular, the constraint on such deviation for muon flavor is very strong \((|V_{\nu\xi}^{\mu}|^2)/2 \equiv |\eta_{\mu\mu}| \leq 8.0 \times 10^{-4}\) [114-117]. Hence, the contribution of heavy gauge boson exchange to muon \(g - 2\) is negligibly small \((< 10^{-11})\).

(b) Contribution due to scalar mediation: the scalar sector contributions of this model are coming
from the Higgs bi-doublet, Φ.

Charged Scalar mediation: $\Delta a_\mu^{(CS)} \simeq -\frac{1}{4\pi^2} \frac{m_\mu^2}{m_{CS}^2} \left[|g_{s1}^\mu|^2 \left(\frac{1}{12} \right) + |g_{p1}^\mu|^2 \left(\frac{1}{12} \right) \right]$, \hspace{1cm} (23)

Neutral Scalar mediation:

$\Delta a_\mu^{(NS)} \simeq \frac{1}{4\pi^2} \frac{m_\mu^2}{m_{NS}^2} \left[|g_{s2}^\mu|^2 \left(-\frac{7}{12} - \log \left(\frac{m_\mu}{m_{NS}} \right) \right) + |g_{p2}^\mu|^2 \left(\frac{11}{12} + \log \left(\frac{m_\mu}{m_{NS}} \right) \right) \right]$, \hspace{1cm} (24)

where m_{CS} and m_{NS} are the masses of the charged and the neutral scalars respectively. The couplings $g_{s1}^\mu, g_{p1}^\mu, g_{s2}^\mu$ and g_{p2}^μ are related to muon Yukawa coupling which is of order $m_\mu/m_W \sim 10^{-3}$. The lower limits on scalar masses are

- $m_{CS} > 1.1$ TeV from direct search [118],
- $m_{NS} > 1870$ GeV through direct search for CP-even scalars [119],
- $m_{NS} > 20$ TeV through FCNC for CP-odd scalars [120].

Given these small couplings and large masses it is straightforward to show that the maximum possible contribution to Δa_μ from scalar exchange is $\mathcal{O}(10^{-16})$.

FIG. 1. Plot showing the contribution coming from new gauge boson $Z_{\mu\tau}$ vs mass of $Z_{\mu\tau}$.

(c) Contribution due to extra gauge boson, $Z_{\mu\tau}$ mediation:

$\Delta a_\mu^{(Z_{\mu\tau})} = \frac{g_{\mu\tau}^2 m_\mu^2}{12\pi^2 m_{Z_{\mu\tau}}^2}$, \hspace{1cm} (25)

where $m_{Z_{\mu\tau}}$ and $g_{\mu\tau}$ are the mass of the $Z_{\mu\tau}$ and coupling between the $Z_{\mu\tau}$ and μ, respectively.
The contributions coming from new gauge boson $Z_{\mu\tau}$ to Δa_μ is presented in figure 1. Both $m_{Z_{\mu\tau}}$ and $g_{\mu\tau}$ are strongly constrained by the measurement of neutrino trident cross section by experiments like CHARM-II \[121\] and CCFR \[122\]. The present limits are $m_{Z_{\mu\tau}}$ in the range $(100 - 200)$ MeV and $g_{\mu\tau} \leq 10^{-3}$. In our numerical analysis we have fixed $g_{\mu\tau} = 8 \times 10^{-4}$ (just below the experimental limit) and varied the $m_{Z_{\mu\tau}}$ in its allowed range. We see that $m_{Z_{\mu\tau}}$ in the range $(140 - 190)$ MeV can account for the entire anomaly. The $Z_{\mu\tau}$ exchange is the mechanism to explain the muon $(g - 2)$ anomaly in our model because the contributions from both the heavy gauge boson exchange and the heavy scalar exchange are negligibly small.

IV. CHARGED LEPTON FLAVOR VIOLATION

Our model predicts observably large charged lepton flavor violation (cLFV) in the $\mu - \tau$ sector. Here we consider the radiative decay $\tau \to \mu\gamma$ whose branching ratio has the upper limit $\text{BR}(\tau \to \mu\gamma)$ is $< 1.5 \times 10^{-8}$ \[123\]. This decay can occur either through W_L and W_R mediation or through charged scalar mediation. The $U(1)_{L_\mu - L_\tau}$ symmetry forbids this decay through both Z_R and $Z_{\mu\tau}$ mediation and through neutral scalar mediation.

![Feynman diagram for $\tau \to \mu\gamma$ process.](image)

The Feynman diagram for $\tau \to \mu\gamma$ through W_L mediation is shown in figure 2. The expression for the branching ratio is given by \[37\]

$$
\text{BR}(\tau \to \mu\gamma) \sim \frac{3(4\pi)^3 \alpha_{em}}{4G_F^2} \left[|A_{\mu\tau}^M|^2 + |A_{\mu\tau}^E|^2 \right],
$$

(26)

where G_F is the Fermi’s constant of weak interactions and α_{em} is the electromagnetic fine structure constant. The quantities $A_{\mu\tau}^M$ and $A_{\mu\tau}^E$ are the magnetic and electric dipole transition amplitudes.
In the W_L mediated diagram we have $m_\xi \simeq M_{W_L} \gg m_\tau$. In this limit, we have

$$A^M_{\mu \tau} = i A^E_{\mu \tau} \simeq -\frac{1}{16\pi^2 M_{W_L}^2} \left(\frac{g^2_L}{2} \right) \left(\frac{17}{12} \right) \frac{\nu^\mu \xi \nu^\mu_\xi}{\nu^\tau_\xi \nu^\mu_\xi} \quad (27)$$

$$\implies \text{BR}(\tau \to \mu \gamma) \simeq 6.43 \times 10^{-6} \left(\frac{1 \text{ TeV}}{M_{W_L}} \right)^4 \left| \nu^\mu_\tau \nu^\mu_\xi \right|^2 \simeq 0.16 \left| \nu^\tau_\xi \nu^\mu_\mu \right|^2. \quad (28)$$

The predicted branching ratio is of the order of the present upper limit if

$$\left| \nu^\tau_\xi \nu^\mu_\mu \right|^2 < 10^{-7}. \quad (29)$$

In the previous section we noted that the experimental bound on the deviation from unitarity in muon sector is $(|V^\mu_\mu|^2) \leq 1.6 \times 10^{-3}$. The corresponding limit in the tau sector is $(|V^\tau_\tau|^2) \leq 5.4 \times 10^{-3}$ \cite{113,114,115,116}. The values of light-heavy neutrino mixing needed to obtain observably large branching ratio of $\tau \to \mu \gamma$, given in Eq. 29, are well within these non-unitarity bounds.

For W_R mediated diagram we will have expressions for $A^M_{\mu \tau}, A^E_{\mu \tau}$ and $\text{BR}(\tau \to \mu \gamma)$ similar to those in Eq. 28 with M_{W_L} replaced by M_{W_R}. Since M_{W_R} is at least an order of magnitude greater than M_{W_L}, this contribution is expected to be very small.

V. ESTIMATION OF NEUTRINO MASSES

In this section, we consider the constraints our model imposes on the parameters of light neutrino sector. In the framework of the LISS mechanism described in section II, the mass matrix for the neutral fermions M_D, given in Eq. 8, and the $N_R - S_L$ coupling matrix M, given in Eq. 10, are diagonal. The explicit form of light neutrino mass matrix m_ν is given in Eq. 18. This matrix is non-diagonal because the matrix μ_S is non-diagonal.

As discussed in section II the $U(1)_{L_\mu-L_\tau}$ symmetry of the model requires

$$(\mu_S)_{\mu \mu} = 0 = (\mu_S)_{\tau \tau} \implies (m_\nu)_{\mu \mu} = 0 = (m_\nu)_{\tau \tau}. \quad (30)$$

That is: the effective masses of ν_μ and ν_τ should vanish in this model. The different textures of neutrino mass matrices, with two zero elements are classified in \cite{121}. The texture with $(m_\nu)_{22} = 0 = (m_\nu)_{33}$ is labelled "C" in that classification. The compatibility of different two zero textures with precision neutrino oscillation data is studied in \cite{122}. The four solutions, shown in table II, give the predictions of their fit for the smallest neutrino mass, sum of light neutrino masses, the effective mass for neutrinoless double beta decay and the phases δ, α_1 and α_2.

We note that in all four cases the sum of light neutrino masses exceeds the cosmological upper bound of 0.11 eV \cite{123}. The violation of the upper bound is much more modest in the case of
IH than in the case of NH. The symmetries of the model impose a particular two-zero texture on the light neutrino mass matrix. The texture constraints, when combined with neutrino oscillation data and the cosmological bound on the sum of light neutrino masses, show a strong preference for inverted hierarchy. They also require δ, the CP violating phase in neutrino oscillations, to be close to maximal.

The neutrino data plus the constraints of the model strongly prefer inverted hierarchy. They also predict a value of δ which leads to a large CP violation in neutrino oscillations.

VI. CONCLUSION

We have studied an $U(1)_{L_\mu - L_\tau}$ extended left-right theory. In this framework the neutrino masses are generated via inverse seesaw scenario. We did a numerical analysis of muon $(g - 2)$ anomaly in this model. Given the stringent constraints on deviation from unitarity on the mixings of active lepton flavors, we found that the muon $(g - 2)$ anomaly cannot be explained through the mediation of either heavy gauge bosons or heavy scalars. However the model contains a neutral light gauge boson $Z_{\mu\tau}$ arising from the gauged $U(1)_{L_\mu - L_\tau}$ symmetry. Both the mass and couplings of this gauge boson are strongly constrained by the neutrino trident cross section. The muon $(g - 2)$ anomaly can fully be accounted for the gauge coupling strength $g_{\mu\tau} = 8 \times 10^{-4}$ and $m_{Z_{\mu\tau}}$ in the range $(140 - 190)$ MeV, both of which are allowed by present data.

The model also predicts observable cLFV in $\mu - \tau$ sector. We studied the decay $\tau \rightarrow \mu \gamma$ in this model and found that an observable branching ratio is possible even while satisfying the stringent constraints on light-heavy neutrino mixing. Other interesting charged lepton flavor violation will be considered in future work.

The $U(1)_{L_\mu - L_\tau}$ symmetry of the model imposes the following constraints on the light neutrino
mass matrix : \((m_\nu)_{\mu\mu} = 0 = (m_\nu)_{\tau\tau}\). These two constraints can be satisfied simultaneously only for some very specific values of light neutrino masses. In the case of NH, the allowed value of the lightest neutrino mass is \(m_1 = 0.16\) eV which leads to a strong violation of the cosmological upper bound on the sum of light neutrino masses. In the case of IH, the allowed value of the lightest neutrino mass are \(m_3 = 0.035\) eV, which leads to a much milder violation of the cosmological upper bound. In the latter case, the combination of model constraints and the neutrino data require the value of \(\delta\) to be in the range which leads to a large CP violation in neutrino oscillations. The Majorana phases \(\alpha_1\) and \(\alpha_2\) are constrained to be close to 180 so that the necessary cancellations in \((m_\nu)_{\mu\mu}\) and \((m_\nu)_{\tau\tau}\) can take place. Thus the model predicts moderate values for the minimum neutrino mass and the effective mass \((m_\nu)_{ee}\) for neutrinoless double beta decay but predicts a very large CP violation in neutrino oscillations.

VII. ACKNOWLEDGEMENT

CM and SS acknowledge Institute Postdoctoral Fellowship of IIT Bombay for financial support.

[1] J. S. Schwinger, “On Quantum electrodynamics and the magnetic moment of the electron,” Phys. Rev. 73 (1948) 416–417.
[2] M. Gell-Mann and M. L. Goldberger, “Scattering of low-energy photons by particles of spin 1/2,” Phys. Rev. 96 (1954) 1433–1438.
[3] Muon g-2 Collaboration, G. W. Bennett et al., “Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL,” Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035].
[4] M. A. Ajaib, I. Gogoladze, Q. Shafi, and C. S. Ün, “Split sfermion families, Yukawa unification and muon \(g - 2\),” JHEP 05 (2014) 079 [1402.4918].
[5] H. Davoudiasl, H.-S. Lee, and W. J. Marciano, “Muon \(g - 2\), rare kaon decays, and parity violation from dark bosons,” Phys. Rev. D89 no. 9, (2014) 095006, [1402.3620].
[6] V. Rentala, W. Shepherd, and S. Su, “A Simplified Model Approach to Same-sign Dilepton Resonances,” Phys. Rev. D84 (2011) 035004 [1105.1379].
[7] C. Kelso, P. R. D. Pinheiro, F. S. Queiroz, and W. Shepherd, “The Muon Anomalous Magnetic Moment in the Reduced Minimal 3-3-1 Model,” Eur. Phys. J. C74 (2014) 2808 [1312.0051].
[8] N. A. Ky, H. N. Long, and D. Van Soa, “Anomalous magnetic moment of muon in 3 3 1 models,” Phys. Lett. B486 (2000) 140–146 [hep-ph/0007010].

[9] C. A. de S. Pires and P. S. Rodrigues da Silva, “Scalar scenarios contributing to (g-2)(muon) with enhanced Yukawa couplings,” Phys. Rev. D 64 (2001) 117701 [hep-ph/0103083].

[10] P. Agrawal, Z. Chacko, and C. B. Verhaaren, “Leptophilic Dark Matter and the Anomalous Magnetic Moment of the Muon,” JHEP 08 (2014) 147 [1402.7369].

[11] Muon g-2 Collaboration, B. Abi et al., “Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm,” Phys. Rev. Lett. 126 no. 14, (2021) 141801 [2104.03281].

[12] Muon g-2 Collaboration, T. Albahri et al., “Beam dynamics corrections to the Run-1 measurement of the muon anomalous magnetic moment at Fermilab,” Phys. Rev. Accel. Beams 24 no. 4, (2021) 044002 [2104.03240].

[13] M. Korostelev et al., “End-to-End Beam Simulations for the New Muon G-2 Experiment at Fermilab,” in Proc. of International Particle Accelerator Conference (IPAC’16), Busan, Korea, May 8-13, 2016, no. 7 in International Particle Accelerator Conference, pp. 2408–2411. JACoW, Geneva, Switzerland, June, 2016. http://jacow.org/ipac2016/papers/wepmw001.pdf. doi:10.18429/JACoW-IPAC2016-WEPMW001.

[14] Muon g-2 Collaboration, F. Gray, “Muon g-2 Experiment at Fermilab,” in 12th Conference on the Intersections of Particle and Nuclear Physics. 10, 2015. [1510.00346].

[15] Fermilab E989 Collaboration, G. Venanzoni, “The New Muon g−2 experiment at Fermilab,” Nucl. Part. Phys. Proc. 273-275 (2016) 584–588 [1411.2555].

[16] Muon g-2 Collaboration, K. Ishida, “Ultra slow muon source for new muon g-2 experiment,” AIP Conf. Proc. 1222 no. 1, (2010) 396–399.

[17] J-PARC muon g-2/EDM Collaboration, H. Iinuma, “New approach to the muon g-2 and EDM experiment at J-PARC,” J. Phys. Conf. Ser. 295 (2011) 012032.

[18] J-PARC g-2/EDM Collaboration, N. Saito, “A novel precision measurement of muon g-2 and EDM at J-PARC,” AIP Conf. Proc. 1467 (2012) 45–56.

[19] M. Eads, “New Experiments to Measure the Muon Anomalous Gyromagnetic Ratio,” PoS FPCP2015 (2015) 046, [1512.07214].

[20] F. Sakuma et al., “Recent Results and Future Prospects of Kaonic Nuclei at J-PARC,” Few Body Syst. 62 no. 4, (2021) 103, [2110.03150].

[21] C. Aubin, T. Blum, M. Golterman, and S. Peris, “Model-independent parametrization of the hadronic vacuum polarization and g-2 for the muon on the lattice,” Phys. Rev. D 86 (2012) 054509.
1205.3695

[22] C. Aubin, T. Blum, M. Golterman, and S. Peris, “Hadronic vacuum polarization with twisted boundary conditions,” *Phys. Rev. D* **88** no. 7, (2013) 074505 [1307.4701].

[23] C. Aubin, T. Blum, M. Golterman, K. Maltman, and S. Peris, “The muon anomalous magnetic moment, a view from the lattice,” *Int. J. Mod. Phys. Conf. Ser.* **35** (2014) 1460418, [1311.5504].

[24] T. Blum, A. Denig, I. Logashenko, E. de Rafael, B. L. Roberts, T. Teubner, and G. Venanzoni, “The Muon (g-2) Theory Value: Present and Future,” [1311.2198].

[25] M. Golterman, K. Maltman, and S. Peris, “Tests of hadronic vacuum polarization fits for the muon anomalous magnetic moment,” *PoS LATTICE2013* (2014) 300 [1310.5928].

[26] F. Jegerlehner, “Application of Chiral Resonance Lagrangian Theories to the Muon g – 2,” *Acta Phys. Polon. B* **44** no. 11, (2013) 2257–2266, [1312.3978].

[27] A. Nyffeler, “Status of hadronic light-by-light scattering in the muon g – 2,” *Nuovo Cim. C* **037** no. 02, (2014) 173–178, [1312.4804].

[28] M. Steinhauser, “Towards analytic (g – 2)µ at four loops,” *Int. J. Mod. Phys. Conf. Ser.* **35** (2014) 1460417, [1312.4688].

[29] T. Aoyama *et al.*, “The anomalous magnetic moment of the muon in the Standard Model,” *Phys. Rept.* **887** (2020) 1–166 [2006.04822].

[30] C. Gnendiger, D. Stöckinger, and H. Stöckinger-Kim, “The electroweak contributions to (g – 2)µ after the Higgs boson mass measurement,” *Phys. Rev. D** **88** (2013) 053005, [1306.5546].

[31] T. Aoyama, T. Kinoshita, and M. Nio, “Revised and Improved Value of the QED Tenth-Order Electron Anomalous Magnetic Moment,” *Phys. Rev. D** **97** no. 3, (2018) 036001, [1712.06060].

[32] M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang, “Reevaluation of the hadronic vacuum polarisation contributions to the Standard Model predictions of the muon g – 2 and α(m_Z^2) using newest hadronic cross-section data,” *Eur. Phys. J.* **C77** no. 12, (2017) 827, [1706.09436].

[33] A. Keshavarzi, D. Nomura, and T. Teubner, “Muon g – 2 and α(M_Z^2): a new data-based analysis,” *Phys. Rev. D** **97** no. 11, (2018) 114025, [1802.02995].

[34] M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang, “A new evaluation of the hadronic vacuum polarisation contributions to the muon anomalous magnetic moment and to α(m_Z^2),” *Eur. Phys. J.* **C80** no. 3, (2020) 241, [1908.00921].

[35] G. Abbiendi *et al.*, “Measuring the leading hadronic contribution to the muon g-2 via μe scattering,” *Eur. Phys. J.* **C77** no. 3, (2017) 139 [1609.08987].

[36] F. Jegerlehner and A. Nyffeler, “The Muon g-2,” *Phys. Rept.* **477** (2009) 1–110, [0902.3360].
[37] M. Lindner, M. Platscher, and F. S. Queiroz, “A Call for New Physics: The Muon Anomalous Magnetic Moment and Lepton Flavor Violation,” *Phys. Rept.* **731** (2018) 1–82, [1610.06587]

[38] C. A. de S. Pires and P. S. Rodrigues da Silva, “Scalar scenarios contributing to (g-2)(muon) with enhanced Yukawa couplings,” *Phys. Rev. D* **64** (2001) 117701, [hep-ph/0103083]

[39] M. Endo, K. Hamaguchi, T. Kitahara, and T. Yoshinaga, “Probing Bino contribution to muon g – 2,” *JHEP* **11** (2013) 013, [1309.3065]

[40] M. Ibe, T. T. Yanagida, and N. Yokozaki, “Muon g-2 and 125 GeV Higgs in Split-Family Supersymmetry,” *JHEP* **08** (2013) 067, [1303.6995]

[41] L. L. Everett, G. L. Kane, S. Rigolin, and L.-T. Wang, “Implications of muon g-2 for supersymmetry and for discovering superpartners directly,” *Phys. Rev. Lett.* **86** (2001) 3484–3487, [hep-ph/0102145]

[42] R. L. Arnowitt, B. Dutta, and B. Hu, “Dark matter, muon g-2 and other SUSY constraints,” in *Beyond the desert. Proceedings, 4th International Conference, Particle physics beyond the standard model, BEYOND 2003, Castle Ringberg, Tegernsee, Germany, June 9-14, 2003*, pp. 25–41. 2003. [hep-ph/0310103]

[43] S. P. Martin and J. D. Wells, “Superconservative Interpretation of Muon G-2 Results Applied to Supersymmetry,” *Phys. Rev. D* **67** (2003) 015002, [hep-ph/0209309]

[44] J. H. Taibi and N. Mebarki, “Muon anomalous magnetic moment in the left-right symmetric model,” *Journal of Physics: Conference Series* **593** (Apr, 2015) 012017, https://doi.org/10.1088%2F1742-6596%2F593%2F1%2F012017

[45] W. Altmannshofer, C.-Y. Chen, P. Bhupal Dev, and A. Soni, “Lepton flavor violating Z’ explanation of the muon anomalous magnetic moment,” *Phys. Lett. B* **762** (2016) 389–398, [1607.06832]

[46] E. Megias, M. Quiros, and L. Salas, “gμ – 2 from Vector-Like Leptons in Warped Space,” *JHEP* **05** (2017) 016, [1701.05072]

[47] S. Jana, V. P. K., and S. Saad, “Resolving electron and muon g – 2 within the 2HDM,” [2003.03386]

[48] M. Yamaguchi and W. Yin, “A novel approach to finely tuned supersymmetric standard models: The case of the non-universal Higgs mass model,” *PTEP* **2018** no. 2, (2018) 023B06, [1606.04953]

[49] W. Yin and N. Yokozaki, “Splitting mass spectra and muon g – 2 in Higgs-anomaly mediation,” *Phys. Lett. B* **762** (2016) 72–79, [1607.05705]

[50] M. Endo and W. Yin, “Explaining electron and muon g – 2 anomaly in SUSY without lepton-flavor mixings,” *JHEP* **08** (2019) 122, [1906.08768]
[51] A. Dev, “Gauged L_μ-L_τ Model with an Inverse Seesaw Mechanism for Neutrino Masses,” [1710.02878].

[52] R. Garani and J. Heeck, “Dark matter interactions with muons in neutron stars,” Phys. Rev. D100 no. 3, (2019) 035039, [1906.10145].

[53] A. Biswas, S. Choubey, and S. Khan, “Neutrino Mass, Dark Matter and Anomalous Magnetic Moment of Muon in a $U(1)_{L_\mu-L_\tau}$ Model,” JHEP 09 (2016) 147, [1608.04194].

[54] A. Biswas, S. Choubey, and S. Khan, “FIMP and Muon $(g-2)$ in a $U(1)_{L_\mu-L_\tau}$ Model,” JHEP 02 (2017) 123, [1612.03067].

[55] T. Kumar Poddar, S. Mohanty, and S. Jana, “Vector gauge boson radiation from compact binary systems in a gauged $L_\mu - L_\tau$ scenario,” Phys. Rev. D100 no. 12, (2019) 123023, [1908.09732].

[56] M. Escudero, D. Hooper, G. Krnjaic, and M. Pierre, “Cosmology with A Very Light $L_\mu - L_\tau$ Gauge Boson,” JHEP 03 (2019) 071, [1901.02010].

[57] J. A. Dror, R. Laha, and T. Opferkuch, “Probing Muonic Forces with Neutron Stars Binaries,” [1909.12845].

[58] J. A. Dror, “Discovering leptonic forces using non-conserved currents,” Phys. Rev. D 101 no. 9, (2020) 095013, [2004.04750].

[59] CMS Collaboration, A. M. Sirunyan et al., “Search for an $L_\mu - L_\tau$ gauge boson using $Z \to 4\mu$ events in proton-proton collisions at $\sqrt{s} = 13$ TeV,” Phys. Lett. B792 (2019) 345–368, [1808.03684].

[60] T. Araki, S. Hoshino, T. Ota, J. Sato, and T. Shimomura, “Detecting the $L_\mu - L_\tau$ gauge boson at Belle II,” Phys. Rev. D95 no. 5, (2017) 055006, [1702.01497].

[61] J. Heeck and W. Rodejohann, “Gauged $L_\mu - L_\tau$ Symmetry at the Electroweak Scale,” Phys. Rev. D 84 (2011) 075007, [1107.5238].

[62] T. Araki, F. Kaneko, Y. Konishi, T. Ota, J. Sato, and T. Shimomura, “Cosmic neutrino spectrum and the muon anomalous magnetic moment in the gauged $L_\mu - L_\tau$ model,” Phys. Rev. D91 no. 3, (2015) 037301, [1409.4180].

[63] J. Heeck and W. Rodejohann, “Gauged $L_\mu - L_\tau$ and different Muon Neutrino and Anti-Neutrino Oscillations: MINOS and beyond,” J. Phys. G 38 (2011) 085005, [1007.2655].

[64] S. Baek, N. Deshpande, X. He, and P. Ko, “Muon anomalous g-2 and gauged $L(\mu)$ - $L(\tau)$ models,” Phys. Rev. D 64 (2001) 055006, [hep-ph/0104141].

[65] S. Gninenko and N. Krasnikov, “The Muon anomalous magnetic moment and a new light gauge boson,” Phys. Lett. B 513 (2001) 119, [hep-ph/0102222].
[66] E. Ma, D. Roy, and S. Roy, “Gauged $L_\mu - L_\tau$ with large muon anomalous magnetic moment and the bimaximal mixing of neutrinos,” *Phys. Lett. B* **525** (2002) 101–106, [hep-ph/0110146](https://arxiv.org/abs/hep-ph/0110146)

[67] S. Choubey and W. Rodejohann, “A Flavor symmetry for quasi-degenerate neutrinos: $L_\mu - L_\tau$,” *Eur. Phys. J. C* **40** (2005) 259–268, [hep-ph/0411190](https://arxiv.org/abs/hep-ph/0411190).

[68] D. Borah, S. Mahapatra, D. Nanda, and N. Sahu, “Inelastic fermion dark matter origin of XENON1T excess with muon $(g-2)$ and light neutrino mass,” *Phys. Lett. B* **811** (2020) 135933, [2007.10754](https://arxiv.org/abs/2007.10754).

[69] D. Borah, M. Dutta, S. Mahapatra, and N. Sahu, “Muon $(g-2)$ and XENON1T excess with boosted dark matter in $L_\mu - L_\tau$ model,” *Phys. Lett. B* **820** (2021) 136577, [2104.05656](https://arxiv.org/abs/2104.05656).

[70] D. Borah, M. Dutta, S. Mahapatra, and N. Sahu, “Lepton anomalous magnetic moment with singlet-doublet fermion dark matter in a scotogenic $U(1)_{L_\mu-L_\tau}$ model,” *Phys. Rev. D* **105** no. 1, (2022) 015029, [2109.02699](https://arxiv.org/abs/2109.02699).

[71] R. N. Mohapatra and J. C. Pati, “A Natural Left-Right Symmetry,” *Phys. Rev. D* **11** (1975) 2558.

[72] J. C. Pati and A. Salam, “Lepton Number as the Fourth Color,” *Phys. Rev. D* **10** (1974) 275–289, [Erratum: Phys. Rev.D11,703(1975)].

[73] G. Senjanovic and R. N. Mohapatra, “Exact Left-Right Symmetry and Spontaneous Violation of Parity,” *Phys. Rev. D* **12** (1975) 1502.

[74] G. Senjanovic, “Spontaneous Breakdown of Parity in a Class of Gauge Theories,” *Nucl. Phys. B153* (1979) 334–364.

[75] R. N. Mohapatra and G. Senjanovic, “Neutrino Mass and Spontaneous Parity Nonconservation,” *Phys. Rev. Lett.* **44** (1980) 912.

[76] R. N. Mohapatra and G. Senjanovic, “Neutrino Masses and Mixings in Gauge Models with Spontaneous Parity Violation,” *Phys. Rev. D* **23** (1981) 165.

[77] J. C. Pati and A. Salam, “Unified Lepton-Hadron Symmetry and a Gauge Theory of the Basic Interactions,” *Phys. Rev. D* **8** (1973) 1240–1251.

[78] J. C. Pati and A. Salam, “Are There Anomalous Lepton-Hadron Interactions?,” *Phys. Rev. Lett.* **32** (1974) 1083.

[79] C. Majumdar, S. Patra, P. Pritimita, S. Senapati, and U. A. Yajnik, “Neutrino mass, mixing and muon g − 2 explanation in $U(1)_{L_\mu-L_\tau}$ extension of left-right theory,” *JHEP* **09** (2020) 010, [2004.14259](https://arxiv.org/abs/2004.14259).

[80] R. Mohapatra and J. Valle, “Neutrino Mass and Baryon Number Nonconservation in Superstring Models,” *Phys. Rev. D* **34** (1986) 1642.
[81] E. K. Akhmedov, M. Lindner, E. Schnapka, and J. Valle, “Dynamical left-right symmetry breaking,” Phys. Rev. D 53 (1996) 2752–2780, [hep-ph/9509255].

[82] E. K. Akhmedov, M. Lindner, E. Schnapka, and J. Valle, “Left-right symmetry breaking in NJL approach,” Phys. Lett. B 368 (1996) 270–280, [hep-ph/9507275].

[83] S. Barr, “A Different seesaw formula for neutrino masses,” Phys. Rev. Lett. 92 (2004) 101601, [hep-ph/0309152].

[84] T. Nomura, H. Okada, and S. Patra, “An Inverse Seesaw model with A4-modular symmetry,” [1912.00379].

[85] M. Sruthilaya, R. Mohanta, and S. Patra, “A4 realization of Linear Seesaw and Neutrino Phenomenology,” Eur. Phys. J. C 78 no. 9, (2018) 719, [1709.01737].

[86] F. F. Deppisch, L. Graf, S. Kulkarni, S. Patra, W. Rodejohann, N. Sahu, and U. Sarkar, “Reconciling the 2 TeV excesses at the LHC in a linear seesaw left-right model,” Phys. Rev. D 93 no. 1, (2016) 013011, [1508.05940].

[87] P. Humbert, M. Lindner, S. Patra, and J. Smirnov, “Lepton Number Violation within the Conformal Inverse Seesaw,” JHEP 09 (2015) 064, [1505.07453].

[88] M. Parida and S. Patra, “Left-right models with light neutrino mass prediction and dominant neutrinoless double beta decay rate,” Phys. Lett. B 718 (2013) 1407–1412, [1211.5000].

[89] V. Tello, M. Nemevsek, F. Nesti, G. Senjanovic, and F. Vissani, “Left-Right Symmetry: from LHC to Neutrinoless Double Beta Decay,” Phys. Rev. Lett. 106 (2011) 151801, [1011.3522].

[90] J. Barry and W. Rodejohann, “Lepton number and flavour violation in TeV-scale left-right symmetric theories with large left-right mixing,” JHEP 09 (2013) 153, [1303.6324].

[91] P. S. Bhupal Dev, S. Goswami, M. Mitra, and W. Rodejohann, “Constraining Neutrino Mass from Neutrinoless Double Beta Decay,” Phys. Rev. D 88 (2013) 091301, [1305.0056].

[92] M. Nemevsek, F. Nesti, G. Senjanovic, and Y. Zhang, “First Limits on Left-Right Symmetry Scale from LHC Data,” Phys. Rev. D 83 (2011) 115014, [1103.1627].

[93] P. S. Bhupal Dev, C.-H. Lee, and R. N. Mohapatra, “Leptogenesis Constraints on the Mass of Right-handed Gauge Bosons,” Phys. Rev. D 90 no. 9, (2014) 095012, [1408.2820].

[94] S. P. Das, F. F. Deppisch, O. Kittel, and J. W. F. Valle, “Heavy Neutrinos and Lepton Flavour Violation in Left-Right Symmetric Models at the LHC,” Phys. Rev. D 86 (2012) 055006, [1206.0256].

[95] S. Bertolini, A. Maiezza, and F. Nesti, “Present and Future K and B Meson Mixing Constraints on TeV Scale Left-Right Symmetry,” Phys. Rev. D 89 no. 9, (2014) 095028, [1403.7112].
[96] D. Borah, S. Patra, and P. Pritimita, “Sub-dominant type-II seesaw as an origin of non-zero θ_{13} in SO(10) model with TeV scale Z' gauge boson,” *Nucl. Phys. B* **B881** (2014) 444–466 [1312.5885]

[97] J. Chakrabortty, H. Z. Devi, S. Goswami, and S. Patra, “Neutrinoless double-β decay in TeV scale Left-Right symmetric models,” *JHEP* **08** (2012) 008 [1204.2527]

[98] C. Majumdar, S. Patra, S. Senapati, and U. A. Yajnik, “$0\nu\beta\beta$ in left-right theories with Higgs doublets and gauge coupling unification,” *Nucl. Phys. B* **B951** (2020) 114875 [1809.10577]

[99] G. Bambhaniya, P. S. B. Dev, S. Goswami, and M. Mitra, “The Scalar Triplet Contribution to Lepton Flavour Violation and Neutrinoless Double Beta Decay in Left-Right Symmetric Model,” *JHEP* **04** (2016) 046 [1512.00440]

[100] P. S. Bhupal Dev, S. Goswami, and M. Mitra, “TeV Scale Left-Right Symmetry and Large Mixing Effects in Neutrinoless Double Beta Decay.” *Phys. Rev. D* **91** no. 11, (2015) 113004 [1405.1399]

[101] K. Ezzat, M. Ashry, and S. Khalil, “Search for a heavy neutral Higgs boson in a left-right model with an inverse seesaw mechanism at the LHC,” *Phys. Rev. D* **104** no. 1, (2021) 015016 [2101.08255]

[102] M. Ashry, K. Ezzat, and S. Khalil, “Combined explanations of muon $g - 2$ and R_{K, K^*} anomalies in left-right model with inverse seesaw,” [2207.05828]

[103] R. Mohapatra, “Mechanism for Understanding Small Neutrino Mass in Superstring Theories,” *Phys. Rev. Lett.* **56** (1986) 561–563.

[104] P. Dev and R. Mohapatra, “TeV Scale Inverse Seesaw in SO(10) and Leptonic Non-Unitarity Effects,” *Phys. Rev. D* **81** (2010) 013001 [0910.3924]

[105] N. Sahu and U. A. Yajnik, “Gauged B - L symmetry and baryogenesis via leptogenesis at TeV scale,” *Phys. Rev. D* **71** (2005) 023507 [hep-ph/0410075]

[106] R. L. Awasthi, M. K. Parida, and S. Patra, “Neutrino masses, dominant neutrinoless double beta decay, and observable lepton flavor violation in left-right models and SO(10) grand unification with low mass W_R, Z_R bosons,” *JHEP* **08** (2013) 122 [1302.0672]

[107] P. Pritimita, N. Dash, and S. Patra, “Neutrinoless Double Beta Decay in LRSM with Natural Type-II seesaw Dominance,” *JHEP* **10** (2016) 147 [1607.07655]

[108] S. K. Majee, M. K. Parida, and A. Raychaudhuri, “Neutrino mass and low-scale leptogenesis in a testable SUSY SO(10) model,” *Phys. Lett. B* **668** (2008) 299–302 [0807.3959]

[109] S. K. Kang and C. Kim, “Extended double seesaw model for neutrino mass spectrum and low scale leptogenesis,” *Phys. Lett. B* **646** (2007) 248–252 [hep-ph/0607072]

[110] J. L. Hewett and T. G. Rizzo, “Low-Energy Phenomenology of Superstring Inspired E(6) Models,” *Phys. Rept.* **183** (1989) 193
[111] S. Blanchet, P. Dev, and R. Mohapatra, “Leptogenesis with TeV Scale Inverse Seesaw in SO(10),” *Phys. Rev. D* **82** (2010) 115025, [1010.1471].

[112] A. Dias, C. de S.Pires, P. Rodrigues da Silva, and A. Sampieri, “A Simple Realization of the Inverse Seesaw Mechanism,” *Phys. Rev. D* **86** (2012) 035007, [1206.2590].

[113] D. Das, K. Ghosh, M. Mitra, and S. Mondal, “Probing sterile neutrinos in the framework of inverse seesaw mechanism through leptoquark productions,” *Phys. Rev. D* **97** no. 1, (2018) 015024, [1708.06206].

[114] S. Antusch, J. P. Baumann, and E. Fernandez-Martinez, “Non-Standard Neutrino Interactions with Matter from Physics Beyond the Standard Model,” *Nucl. Phys. B* **810** (2009) 369–388, [0807.1003].

[115] S. Antusch, M. Blennow, E. Fernandez-Martinez, and J. Lopez-Pavon, “Probing non-unitary mixing and CP-violation at a Neutrino Factory,” *Phys. Rev. D* **80** (2009) 033002, [0903.3986].

[116] S. Antusch, C. Biggio, E. Fernandez-Martinez, M. B. Gavela, and J. Lopez-Pavon, “Unitarity of the Leptonic Mixing Matrix,” *JHEP* **10** (2006) 084, [hep-ph/0607020].

[117] D. V. Forero, S. Morisi, M. Tortola, and J. W. F. Valle, “Lepton flavor violation and non-unitary lepton mixing in low-scale type-I seesaw,” *JHEP* **09** (2011) 142, [1107.6009].

[118] ATLAS Collaboration, M. Aaboud et al., “Search for charged Higgs bosons decaying via $H^\pm \to \tau^\pm \nu_\tau$ in the $\tau+$jets and $\tau+$lepton final states with 36 fb$^{-1}$ of pp collision data recorded at $\sqrt{s} = 13$ TeV with the ATLAS experiment,” *JHEP* **09** (2018) 139, [1807.07915].

[119] CMS Collaboration, A. M. Sirunyan et al., “Search for a heavy Higgs boson decaying to a pair of W bosons in proton-proton collisions at $\sqrt{s} = 13$ TeV,” *JHEP* **03** (2020) 034, [1912.01594].

[120] Y. Zhang, H. An, X. Ji, and R. N. Mohapatra, “General CP Violation in Minimal Left-Right Symmetric Model and Constraints on the Right-Handed Scale,” *Nucl. Phys. B* **802** (2008) 247–279, [0712.4218].

[121] D. G. et. al., “First observation of neutrino trident production,” *Physics Letters B* **245** no. 2, (1990) 271–275, [http://www.sciencedirect.com/science/article/pii/0370269390901456].

[122] S. M. et. al., “Neutrino tridents and w-z interference,” *Phys. Rev. Lett.* **66** (Jun, 1991) 3117–3120, [https://link.aps.org/doi/10.1103/PhysRevLett.66.3117].

[123] BaBar Collaboration, B. Aubert et al., “Searches for Lepton Flavor Violation in the Decays $\tau^+\to e^+\gamma$ and $\tau^+\to \mu^+\gamma$,” *Phys. Rev. Lett.* **104** (2010) 021802, [0908.2381].

[124] P. H. Frampton, S. L. Glashow, and D. Marfatia, “Zeroes of the neutrino mass matrix,” *Phys. Lett. B* **536** (2002) 79–82, [hep-ph/0201008].

20
[125] J. Alcaide, J. Salvado, and A. Santamaria, “Fitting flavour symmetries: the case of two-zero neutrino mass textures,” *JHEP* **07** (2018) 164, [1806.06785].

[126] Planck Collaboration, N. Aghanim et al., “Planck 2018 results. VI. Cosmological parameters,” *Astron. Astrophys.* **641** (2020) A6, [1807.06209] [Erratum: Astron.Astrophys. 652, C4 (2021)].