Techniques used in Evaluating Performance of Solar Air Heater (SAH) Comprised of Winglet Type Roughness- A Review

Abstract – There are multiple resource of energies but if we talk about renewable energy then solar energy is one of the renewable energy which is in demand because it is feasible and cheap. Flat plate solar air heaters (SAHs) are simplistic and stylish, and their heating pathway of implementation requires care and support. Increasing Room temperature, elimination of moist from farm commodities, increasing temperature of industrialized goods, hardening of wood or timber, and other uses for SAHs are frequent. Well there are several issues in SAH, but the biggest issues with the SAH is its ineffectiveness, which is caused by atmosphere's lower heat transferring ability. We present introduces on the work performed by a lot of scientists to boost the effectiveness of solar air heaters (SAHs) with various kinds of roughness area in this research article.

Keywords: SAH, types of roughness, winglet type roughness

I. INTRODUCTION

Energy is critical to a country's economic development. The planet's supply of fossil fuels is finite. Given the increasing fossil fuels usage, it is important to create efficient systems relying on optional energy sources. Solar energy is one of the most ample and tidy forms of renewable sources of energy on the planet. The solar energy can be used in 2 directions: passive and active. Sunlight is directly used within passive usage of solar energy the requirement for any hardware, whereas in active solar energy usage, sunlight is not used straightly and machine or hardware is required to transform energy from sun into different energy forms. Solar air heaters are part of an active solar energy usage system design classification.

Persons are becoming much more power reliant in modern environment as electricity usage rises. Advancements in Solar Energy tech will meet the needs of the upcoming years. During the preceding decades of this century, abnormal rugged of different shapes has been used in numerous studies to improve the rate of heat transmission in collectors of solar energy. Various degrees of ruggedness result in varying degrees of friction component and heat transmission expansion. In terms of heat transfer coefficient, an increase of approx. two times those of a smooth solar collector has been discovered, whereas the friction factor has increased.

For V-rib rugged collectors of solar energy, friction aspect and heat transmission connections were discovered. In the existing environment, energy accessible has become a major issue in daily life. Due to the obvious exhaustion of conventional energy sources and the environ - mental way they affect, a quantifiable strategy is essential to forecast accessible energy resources. Energy from the sun is a low-cost and viable optional energy source which can keep up with the rising demand for energy.

Authors have found methodological approaches to address the aforementioned concerns. Adding ribs to the absorber surface to boost the heat transmission coefficient is perhaps the most feasible, passive technique between these. To achieve maximum, the convective rate of heat transmission inside Solar Air Heater, a variety of rib structures, notably transverse rib patterns, have been investigated. In the current era, the requirement of thermal energy in homes or in domestic sector as well as in industrialized sector is now the high priority.

One of the key standard to determine that solar energy is preferable to certain other sources of energy is the performance of the gadgets used throughout the solar to heat transformation procedure. The significant aspect of an expense-effective SAH is the architecture. Even though a range of methodologies have been suggested to boost the effectiveness of SAH using various turbulence influencers, none of them can guarantee a cost-effective compromise.

Absorber Plate - In the sun based air-warming gatherer, safeguard plate is principle part, which gathers the sun powered energy as hotness and moves this energy to
streaming air. Because of low hotness limit and low warm conductivity of streaming air, the convective hotness move coefficient between safeguard plate and the air is low, and consequently the significant issue to build the worth of hotness move coefficient and along these lines the hotness move rate. This target can be accomplished by utilizing broadened surfaces on the safeguard plate on wind stream side, counterfeit unpleasantness on wind current side, and permeable hotness retaining materials in the wind stream conduit. The trial concentrate just as the logical review followed by the computational procedures, requires a great deal of time to show up at an exact outcome because of broad PC codes that lead to enormous programming calculations particularly when the arrangement of intricate differential conditions are involved. The utilization of Machine learning strategies, then again, saves time and furthermore gives key data designs in a multi-dimensional data area and, subsequently, this method has been turning out to be progressively famous in Science and Engineering, particularly in Thermal Engineering applications lately.

Turbulatrors of various shapes, for example, rectangular and three-sided calculations are bonded to the safeguard surface, developed vortexes get captured in upper-ward and downward stream edges prompting the arrangement of nearby areas of interest, which at last outcomes in diminished hotness move rate. Also, expansion in unpleasantness stature makes expansion in the erosion factor due the vortexes arrangement in the isolated locale. This outcome in expanded by and large fractional strain loss or contact aspect. These impacts can be limited by adjusting safeguard surface itself to exaggerated, sinusoidal waveform kind, groove kind which is additionally a creative strategy.

Solar Air Heaters have been used in a variety of implementations to save energy, particularly in applications which require minimum to moderate air temperatures. They're also useful for room heating, textiles, marine products, solar process water, and removing water from crops, among other things. SAHs have a number of benefits over fluid heating systems, including the avoidance of cold or stagnant growth, leakage, harm, and the threat of an atmospheric and healthcare dangers from the heating medium.

Solar Air Heaters can be categorized as individual or dual pass, both with or without Heating-energy store, depending on the number of air passes. A single-passage air solar heater, air circulates from the side from where air is fed to exit during one of dual ways: upwards or downwards the absorbing plate, as shown by the Fig. 1.

An air circulation pipe and an absorbing plate are the main components of Solar Air Heaters. To minimize the losses of heat from side walls and bottom area of air heater low heat conductive thermal exchanger is employed. An increased transmitting ability and reduced absorbent glass shield protects the top surface of heater. It is possible to use a solitary or double glass shield. Numerous researchers designed extensive experimental rigs to investigate the effects of changes that could be made to the core aspects of solar air heater.

By making the air flow more turbulent, a highest value of heat transfer coefficient can be attained. However, as fluctuation rises, so does the pumping strength required to achieve frictions. As a result, turbulence can only be generated in the laminar sublayer zone to avoid disrupting the flowing is trend. It can be accomplished by making the duct aspect greater than the roughness component’s altitude.

Roughness shapes and trends are determined by a variety of design variables. Square-shaped ribs, circle-shaped, semicircle shaped, axial or angled ribs, or V-shaped roughness aspects are all possible. Artificial rough surface on the absorbing plate in the pattern of protrusions or dimples is a new practice that incorporates no particularly unique production methodologies or the addition of any additional content to the absorbing surface.

Dimple type roughness –

Trying to make the roughness around the exchanger surface has become one of the alternative techniques of raising the rate of transferring heat. The dimple structure of heat exchanger extends the range while also disrupting the local circulation. (Perwez & Kumar, 2019) at International Institute of Technology (ISM) Dhanbad (23.79°N), India, to compare the heat exchanging enactment of a spherically dimple-shaped surface SAH (SDPSAH) and a flat-surface solar air heater (FSAH) under varying situations. Aluminum is the ore metal used for making absorbing plate dimensionally plate will be 1.202 meters in perpendicular lengths 0.495 meters in width, and 0.006 meters in thickness. Black color is used for painting so that the absorption capacity of plates and the max to max quantity of absorption takes place. In the flow path, 10×2 collections of a spherical-shaped dimple with a dimple diameter (dd) of 0.02 m, a longitude area of 0.06 m, a transverse pitch of 0.05 m, a dimple depth (dh) of 0.004 m, and a dh to dd ratio of 0.2
within the Solar Air Heater (SAH). The heating temperature of the absorbing plate is directly sensed by a K-type thermocouple that has been modified. Diagrams depict the absorbing plate hooked up to thermocouples, including the accurate placements of the K-type thermos-couple from both plain and dimple absorbing plates. The Solar Air Heater's wetted floor with spherical dimple roughness is or thereabouts 1.02 times the corresponding FPSAH. Heat transfer has a low rate of temperature rise and a large change in temperature loss.

The SDPSAH has a superior thermal enactment as matched to FPSAH. SDPSAH has an everyday effectiveness of 27.47–33.79 percent higher than the commensurate FPSAH. The SDPSAH collector effectiveness aspect and high temperature extraction aspect are both higher than the FPSAH counterparts.

Delta winglet - Back to back circulation and catching up of fluid were witnessed on the rear portion of the transverse rib cage, leading to bad heat exchange. Several studies have used winglets to dispel trapped flow near the rib region. On the basic principle of experimentations by (Kumar et al., 2021), three main types of absorptive plates were customized and assessed for DPSAHs: the first is V-corrugated with explosion attacking, the second is V-corrugated with shot blasting and a 4-3 winglet type trend, and the third type is V-corrugation including shot blasting as well as a 3-2 winglet type trend. Perhaps the most essential elements of the Solar-Air-Heater framework are the V-corrugated absorbing plate with winglet, feeding and exit fragments, air management system, assisting architectural style, and movement speed, ambient temperature, and rapidity test equipment.

Analyses are carried out in two scenarios: with winglets in DPSAHs and without winglets in DPSAHs, in order to assess the thermal performance and pressure loss in DP solar air heaters. As previously stated, three different types of absorption plates were tested and their performance

The PT-100 RTD sensors are used to monitor the temperature changes of the absorptive plate, as well as the intake and exhaust temps. Sun rays are quantified using an LP02 pyranometer (Hukseflux), and temperature of the air and wind velocity are quantified using WatchDog-2000 weather station sequence data. PT-100 RTD sensors were used in conjunction with a temperature displayer, and the temperature was recorded over a half an hour of period.
especially in comparison, with V-corrugated included 4-3 winglets demonstrating the highest heat conductivity and pressure loss of 49.5 percent and 230 Pa, respectively, at a bulk movement rate of 0.02 m/s.

II. Literature review

(Kumar et al., 2021) A DPSAH including explosion attacking and winglets shapes in the passageway of air is a unique concept keeping expenses in mind, for improving thermal efficiency. Three different absorption plate designs were tested for DPSAHs: at first number V-corrugation including shot blasting, in second number V-corrugation including shot blasting and a 4-3 winglet structure, and third one is V-corrugation including explosion attacking and a 3-2 winglet shaped sequence. Additionally, the DPSAH absorption plate was connected with aluminum winglets to enhance heat exchange productivity by improving path turbulence. The abovementioned types of absorption plates on comparing researcher found that the V-corrugation including 4-3 winglets had the highest heat efficiency and pressure losses of 49.5 percent and 230 Pa, respectively, at a bulk movement rate of 0.02 m/s. When compared to a V-corrugated air heater, the V-corrugated including 4-3 winglets can achieve a 7 percent overall effectiveness. The pressure loss expanded 1.22 times for the V-corrugated as well as 1.3 times for the V-corrugation including 4-3 winglets whenever the mass movement degree has risen from 0.01 kg/s to 0.02 kg/s.

(Jain et al., 2019) The present study contains straightforward information on various types of V-structured roughness configurations used throughout Solar Air Heaters to enhance efficiency, including investigational, methodical, mathematical, and computational fluid dynamics (CFD) approaches. This document cites 124 peer-reviewed studies that provide a thorough analysis and comparison of the effects of multiple design variables and various V-shaped roughness styles on SAH performance. Researchers discovered a link among heat transmission and friction aspect, which is discussed in this article.

(Dezan et al., 2020) The best thermal and hydraulic effectiveness of SAHs channel-type including rectangle shaped winglet combinations assembled in the absorbing surface was identified through optimization which rely on Surrogation in this research. It was assumed that the flow seemed to be 3D, volatile, boundary conditions, and stable. Three combinations of rectangle shaped winglets were organized in downward-flow and Upward-flow sequences in absorption surface. A n isotropic Kriging utilized to produce response areas for two flowing scenarios (Reynolds numbers of 5000 and 10,000). In abovementioned two conditions: periodic and non-periodic frameworks, optimization technique which is bi-objective was employed to ensure maximum Nusselt number whereas limiting friction aspect of flow. The thermal and hydraulic performance evaluation requirement (THPE) applied as metric to choose the optimal models on Pareto frontiers as a workable compromise.

(Promvonge & Skullong, 2020) At a stationary angle of attack, ideal comparative pitch, and altitude, 2 categories of PWs: punching delta- and elliptical shaped-winglets (P-DW and P-EW) involve four punching-hole dimensions have been evaluated. For comparing, information from hard delta- and elliptical shaped winglets (DW and EW) were incorporated. The P-DW has a maximum thermal-performance improving parameters as compared to the P-EW, according to the research. Whereas excluding punch from DW & EW provides maximum thermal transfer and achieves maximum heat transfer so friction losses, the PWs attains better thermal transfer as compared to solid. Small dimension of hole in P-DW achieves maximum transfer of heat and also the loss of friction about 5.7 and 40 times over even vessel. While the best heat transfer of value 2.17 with the given dimensions of hole as well as heat transfer is 5-8% more than the solid winglets.

(Maithani et al., 2019) In this work, a trial study has been completed to pause down the impact of curly delta winglets happening Nusselt amount (Nu) and rubbing aspect (f) in sun powered air section for a predefined scope of framework and working boundaries. The mathematical boundaries well-thought-out are the quantity of waves (ϕ)=3 to 7, the general longitudinal pitch (P/H)=3 to 6, and the approach (α)=30° to 75°. A decent upsides of relative winglet harmony length (c/H = 1.4) and relative obstacle tallness (b/H = 0.5) are reflected in the current review. For various blends of arithmetical and stream limits, trial data for Nusselt number and erosion feature is generated, as well as connections for Nusselt number and rubbing factor. In addition, the generated interactions are sent to be parametrically enhanced based on high productivity.

(Koolnapadol et al., 2020) The article discusses an exploratory program of heat transmission and movement rigidity in a solar air warmer (SAH) duct with rectangle shaped-wing vortex originators (RWVGs) on the absorbing surface to improve SAH system efficiency. The experiments are conducted in an experimental duct with a 10 aspect ratio (AR) for Reynolds number (Re) and a hydraulic duct diameter varying from 5290 to 22,700. The implementations of RWVGs has a huge impact on vortex generators in the duct, resulting in increased Nu and f. The peak of heat transfer rate for implementing RWVG is around 5.79 times above the flat-plate duct while the peak of f is about 43.97 times at α = 60° and PR = 1.0. For performance evaluation, the highest TEF at about 1.95 is for α = 30° and PR = 1.5 and Re = 5290. Thus, the RWVG non-natural roughness is a auspicious scheme for performance improvement of a SAH system.

(Arunkumar et al., 2020) The impacts of multiple shaped turbulators employed by numerous investigators in enhancing the thermal achievement of air heaters is discussed in this paper. Concerns for layout, shapes utilised, flow characteristics and their influence on turbulence, heat
transmission rate, absorption temperature, and the thermo-hydraulic improving aspect have all been explained clearly.

(Sawhney et al., 2017) The heat allocation and roughness properties of a Solar Air Heater duct grained texture through wavy-up delta winglet vortex generators mounted on a solar collector with a consistent shear temperature gradient are investigated systematically. Obviously it depends on the hydraulic diameter of the channel, the Reynolds number in this research varies from 4000 to 17,300. The Nusselt number is inversely proportional to the comparative longitudinal area. By implementing modern assortments of wavy winglets on the absorber area, the Nusselt number reduces with expanding comparative longitudinal pitch, i.e. it is maximum for comparative longitudinal pitch of 3 and smallest for 6.

(Skullong et al., 2017) In a solar air heater stream, the thermo-physical characteristics of wavy grooves completely embedded with pairings of trapezoidal-winglets (TW) situated on the absorber area were explored. By controlling the air-circulation rate, the experiment fluid, air, methodology the work piece with an uniform heat flux on the absorbing area, with Reynolds numbers varying from 4500 to 22,000 obtained. At a 45-degree independent danger angle, the TW features are multiple comparative winglet pitches (PR) and 5 comparative winglet tallness or stoppage ratios (BR), whereas the curly rectangle numerous elements are three relative groove-pitch lengths (PR), and that are definitely to the TW particular scenario though at a consistent horizontal and vertical directions. The TW, once coupled the with groove, represents a substantial improved performance in heat exchange and over smooth channel, according to the research. The groove offers greater so little pressure loss than the TW by itself, but the TW offers substantially so much heat transfer.

(Skullong et al., 2018) The article presents an analytical and simulation study of tumultuous heat transfer rate in a solar air heater duct with winglet-type vortex generators (WVGs) on the absorber surface. The experiment fluid, air, inserts the duct through the topmost wall or the buffer layer, which has an uniform surface heat-flux applicable with a Reynolds number ranging from 4100 to 25,500. In order to generate numerous vortex flows along of the duct, two types of WVGs are invented: rectangular (RWVG) and trapezoidal (TWVG). WVGs, P-WVGs can cause inlet jets on the wall (absorber plate), that also encourage quicker fluid blending in between temperate fairly close fluid and the chillier lowest part fluid areas. The VI consequence, or alternate flow, seems to to slow the progression of the flow separation. As a result, compared to plain duct on its own, significant heat transfer efficiency can be enhanced. WVGs can significantly improve heat transfer in the SAH duct, considering the large friction loss; the losses are minimized by using P-WVGs. Both Nu and f boost as hole/pore diameter decreases for a provided Re. The NuR as well as fR of the 30° P-RWVG with d=1mm are around 6.78 and 84.32 times, respectively.

Table 1 Comparison table of various researchers and their work

Researchers	Work done	Results
Kumar et al., 2021	DPSAH efficiency was increased by using 3 distinct absorption plates.	V-corrugation including 4-3 winglets is better performed.
Jain et al., 2019	Review on different types of V-shaped roughness structures	Thermal transfer and friction factor have a relationship.
Dezan et al., 2020	Surrogate-based optimization	Heating and hydraulic performance can be evaluated.
(Promvonge & Skullong, 2020)	PWs with multiple punched-hole dimensions were evaluated, including punched delta- as well as elliptical shaped-winglets (P-DW and P-EW).	P-DW yields higher thermal-performance.
Maithani et al., 2019	The impact of wavy type delta winglets upon the Nusselt number (Nu) and also the friction factor was explored.	On the basis of effective performance, the best roughness parameters are determined.
Koolnapadol et al., 2020	A solar air heater (SAH) duct involving rectangular shaped-wing vortex generators was studied for heat transfer and flow conditions.	A promising method for performance improvement.
(Skullong et al., 2017)	Including the pairs of trapezoidal-winglets (TW), thermal properties are improved.	The groove, in combination with TW, offers a great enhancement in heat transfer over the streamlined channel.

III. CONCLUSION

In this research article, we present an overview of the work done by a number of scientists to enhance the proficiency of solar air heaters (SAHs) with various types of roughness. There are numerous sources of energy, but when it comes to renewable energy, solar energy is one of the most popular because it is both feasible and affordable. SAHs (solar air heaters) with flat plates are simple and stylish, but their heating pathway requires care and support. SAHs are frequently used for expanding room temperature, removing moisture from farm commodities, raising the temperature of industrialized goods, hardening wood or timber, and other
purposes. SAH has a number of issues, but the most serious one is its ineffectiveness, which is caused by the atmosphere's lower heat transfer ability. Furthermore, a comparative table is also discussed which in short provides the work done by investigators and their results.

REFERENCES

[1] Kumar, P. G., Sakthivadivel, D., Balaji, K., Salman, M., & Kim, S. C. (2021). Performance enhancement of a double-pass solar air heater with a shot-blasted absorber plate and winglets. Journal of Mechanical Science and Technology, 35(6), 2743–2753. https://doi.org/10.1007/s12206-021-0544-x

[2] Jain, S. K., Agrawal, G. Das, & Misra, R. (2019). A detailed review on various V-shaped ribs roughened solar air heater. Heat and Mass Transfer/Waerme- Und Stoffuebertragung, 55(12), 3369–3412. https://doi.org/10.1007/s00231-019-02656-4

[3] Dezan, D. J., Rocha, A. D., Salviano, L. O., & Ferreira, W. G. (2020). Thermo-hydraulic optimization of a solar air heater duct with non-periodic rows of rectangular winglet pairs. Solar Energy, 207(April), 1172–1190. https://doi.org/10.1016/j.solener.2020.06.112

[4] Promvonge, P., & Skullong, S. (2020). Enhanced heat transfer in rectangular duct with punched winglets. Chinese Journal of Chemical Engineering, 28(3), 660–671. https://doi.org/10.1016/j.cjche.2019.09.012

[5] Maithani, R., Chamoli, S., Kumar, A., & Gupta, A. (2019). Solar air heater duct roughened with wavy delta winglets: correlations development and parametric optimization. Heat and Mass Transfer/Waerme- Und Stoffuebertragung, 55(12), 3473–3491. https://doi.org/10.1007/s00231-019-02651-9

[6] Koolnapadol, N., Promvonge, P., & Skullong, S. (2020). Performance evaluation of solar receiver heat exchanger with rectangular-wing vortex generators. International Journal of Mechanical Engineering and Robotics Research, 9(1), 130–135. https://doi.org/10.18178/ijmerr.9.1.130-135

[7] Arunkumar, H. S., Vasudeva Karanth, K., & Kumar, S. (2020). Review on the design modifications of a solar air heater for improvement in the thermal performance. Sustainable Energy Technologies and Assessments, 39(March), 100685. https://doi.org/10.1016/j.seta.2020.100685

[8] Sawhney, J. S., Maithani, R., & Chamoli, S. (2017). Experimental investigation of heat transfer and friction factor characteristics of solar air heater using wavy delta winglets. Applied Thermal Engineering, 117, 740–751. https://doi.org/10.1016/j.applthermaleng.2017.01.113

[9] Skullong, S., Promvonge, P., Thianpong, C., Jayranaiwachira, N., & Pimsarn, M. (2017). Heat transfer augmentation in a solar air heater channel with combined winglets and wavy grooves on absorber plate. Applied Thermal Engineering, 122, 268–284. https://doi.org/10.1016/j.applthermaleng.2017.04.158

[10] Skullong, S., Promthaisong, P., Promvonge, P., Thianpong, C., & Pimsarn, M. (2018). Thermal performance in solar air heater with perforated-winglet-type vortex generator. Solar Energy, 170(August 2017), 1101–1117. https://doi.org/10.1016/j.solener.2018.05.093

[11] Perwez, A., & Kumar, R. (2019). Thermal performance investigation of the flat and spherical dimple absorber plate solar air heaters. Solar Energy, 193(September), 309–323. https://doi.org/10.1016/j.solener.2019.09.066