The Relationship between Alu I Polymorphisms in the Calcitonin Receptor Gene and Fluorosis Endemic to Chongqing, China

Miao Jiang, Lihong Mu, Yingxiong Wang, Wei Yan, Yongzhuo Jiao

Department of Epidemiology, Faculty of Public Health and Management and Faculty of Basic Medical Sciences, Chongqing Medical University, and Institution of Endemic Disease Prevention, Center for Disease Control and Prevention in Chongqing, Chongqing, PR China

Key Words
Endemic fluorosis · Calcitonin receptor gene · Alu I polymorphism · Fluoride

Abstract
Objective: This study explored the association between an Alu I polymorphism at position 1,377 of the calcitonin receptor (CTR) gene and endemic fluorosis. Subjects and Methods: A case-control study of 321 participants was conducted in regions with high fluorosis rates (Wushan and Fengjie counties) and those without high fluorosis rates (Yubei Qu county; termed nonfluorosis areas) in Chongqing, China. The participants were divided into three groups: the fluorosis group (FG) from areas with high fluoride exposure (121), the nonfluorosis group (NFG) from areas with high fluoride exposure (130), and a control group (CG) from areas with no excessive fluoride exposure (70). An Alu I polymorphism in the CTR gene was genotyped using polymerase chain reaction-restriction fragment length polymorphism analysis. Results: The genotype distributions within each group were as follows: CC 60.33% (73/121), CT 30.58% (37/121) and TT 9.09% (11/121) for the FG; CC 74.62% (97/130), CT 21.54% (28/130) and TT 3.85% (5/130) for the NFG, and CC 68.57% (48/70), CT 31.43% (22/70) and TT 0% (0/70) for the CG. Significant differences in Alu I genotypes were observed among the groups ($\chi^2 = 12.317, u = 4, p = 0.015$). Allele frequencies of CTR genotypes differed significantly among the groups ($\chi^2 = 8.859, u = 2, p = 0.012$): C 75.62% (183/242) and T 24.38% (59/242) for the FG, C 85.38% (222/260) and T 14.62% (38/260) for the NFG, and C 84.29% (118/140) and T 15.71% (22/140) for the CG. Conclusion: An association between fluorosis and the Alu I polymorphism in the CTR gene was observed in fluoride-exposed populations.

Introduction
Fluorosis is a chronic disease caused by regular consumption of an amount of fluoride exceeding the safety threshold, resulting in major health problems in humans. Fluorosis is prevalent in many countries around the world [1], and a significant positive relationship between fluoride intake in drinking water (Chinese national standard of 1.2 mg/l [2]) and the prevalence of fluorosis has been demonstrated [3]. Excessive fluoride intake can cause damage predominantly in teeth and bones, resulting in dental fluorosis and skeletal fluorosis, respectively [4]. In recent years, the incidence of fluorosis in endemic fluorosis areas in China has tended to decline; currently, about 43 million people have dental fluorosis and 3 million have...
skeletal fluorosis in China [4]. Fluorosis is still a major public health problem and an increasing disease burden for many countries. In Chongqing, a typical coal-burning region of China with a high incidence of endemic fluorosis, data from 2002 to 2004 showed that the prevalence of dental fluorosis was 45.86%, with moderate and severe fluorosis observed in individuals living in the remote mountainous areas (e.g. the prevalence of dental fluorosis in Pengshui has been reported to be as high as 80% [5]).

However, no studies have assessed the relationship between calcitonin receptor (CTR) gene polymorphisms and fluorosis. Therefore, in this manuscript, we present a case-control study conducted in the Chongqing region to investigate the association between CTR gene (Alu I) polymorphisms and dental fluorosis.

Materials and Methods

This study was approved by the Medical Research Ethics Committee, Faculty of Medicine, Chongqing Medical University. Informed consent for all subjects was obtained from participants or their parents or legal guardians.

Location and Subjects

The case group consisted of 100 children (8–12 years of age) with a confirmed diagnosis of dental fluorosis and 21 adult patients randomly selected from Wushan county with skeletal fluorosis, confirmed by clinical criteria and standard X-ray diagnosis [6, 7]. The children were selected using a stratified random method: 5 boys and 5 girls were selected randomly from each age group. Dental fluorosis was assessed in all permanent teeth using Dean’s fluorosis index. The internal control group consisted of 8- to 12-year-olds with no excessive fluoride exposure.

Three further groups: the fluorosis group (FG) from areas with high fluoride exposure; the nonfluorosis group (NFG) from areas with moderate fluoride exposure; the nonfluorosis group (Yubei Qu county) in Chongqing, China. In addition to the three groups detailed above, the subjects (n = 321) were also divided into three further groups: the fluorosis group (FG) from areas with high fluoride exposure; the nonfluorosis group (NFG) from areas with moderate fluoride exposure, and the control group (CG) from areas with no excessive fluoride exposure.

Table 1. Number of patients with specific CTR genotypes in each group and adherence to the Hardy-Weinberg equilibrium

Group	n	CTR genotype	χ²	p
FG	121	CC 73		
		CT 37		
		TT 11		
NFG	130	CC 97		
		CT 28		
		TT 5		
CG	70	CC 48		
		CT 22		
		TT 0		
Total	321	218	16	3.376
		87		0.066

Fig. 1. PCR analysis yielded only a 228-bp band for the CC genotype (wild genotype), two fragments of 120 and 108 bp for the TT genotype (homozygote genotype), and 228, 120 and 108 bp for the CT genotype (heterozygote genotype). CC genotype: 1, 2, 3, 5, 6, 8, 9; TT genotype: 7; CT genotype: 4. M = DL500 marker.

DNA Extraction

Blood samples (5 ml) of all the participants were collected from the brachial vein, immediately transferred into EDTA-coated tubes and stored at −20°C. Genomic DNA was extracted from the blood samples of all participants with a DNA extraction kit (centrifugal column type; BioTeke Corp., Beijing, China).

Polymerase Chain Reaction

Polymerase chain reaction (PCR) analysis of the 1377C/T CTR gene polymorphism was carried out in a total volume of 50 μl containing 25 μl of Premix Taq, 1 μl of each primer (10 μmol/l), 5 μl of genomic DNA, and sterilized ddH2O to the final volume. Primers for the CTR gene polymorphism have been described previously [8], and the length of the amplicon was 228 bp. Mixing, instantaneous centrifugation and PCR amplification were performed using a programmable thermal cycler. The cycling conditions were as follows: 94°C for 5 min, 35 cycles at 94°C for 1 min, 57°C for 30 s, 72°C for 30 s, and a final extension at 72°C for 10 min. The PCR products were subjected to gel electrophoresis (110 V, 72 mA, 40 min) to check for the presence of a 228-bp band. Products were purified using the ethanol/sodium acetate method and digested overnight with Alu I at 37°C, according to a previously published protocol [8]. Reaction mixtures had a final volume of 20 μl containing 2 μl of 10× NEB buffer, 10 μl of amplification product, 0.5 μl of the restriction enzyme Alu I, and 7.5 μl of sterilized ddH2O.

CTR Gene Alu I Polymorphism in Fluorosis
All statistical analyses were performed using SPSS version 17.0. The gene-counting method was used to estimate allele frequencies. Deviation in genotype distribution from the expected Hardy-Weinberg equilibrium was estimated by the χ^2 test ($\alpha = 0.05$). The significance of differences in allele frequencies between groups was also estimated by the χ^2 independence test ($\alpha = 0.01$).

Results

The PCR analysis yielded only a 228-bp band for the CC genotype, two fragments of 120 and 108 bp for the TT genotype, and 228, 120 and 108 bp for the CT genotype (fig. 1). The distribution of genotypes for the Alu I restriction fragment length polymorphism (RFLP) did not deviate from the Hardy-Weinberg equilibrium (table 1; $p > 0.05$). The genotype and allele frequencies of the Alu I RFLP in the CTR gene are shown in table 2 ($\alpha = 0.05$). The observed genotype frequencies of CC, CT and TT were 67.91, 27.1 and 4.98%, respectively, and the frequencies of the C and T alleles were 81 and 19%, respectively. There were statistically significant differences among the three groups with respect to both genotype distribution ($\chi^2 = 12.317$, $p = 0.015$) and allele frequency ($\chi^2 = 8.859$, $p = 0.012$). Moreover, statistically significant differences were observed between the case and control groups with respect to genotype distribution (FG vs. NFG: $\chi^2 = 6.57$, $p = 0.037$; FG vs. CG: $\chi^2 = 6.849$, $p = 0.033$; NFG vs. CG: $\chi^2 = 4.702$, $p = 0.095$) and allele frequency (FG vs. NFG: $\chi^2 = 7.666$, $p = 0.006$, OR = 0.531, 95% CI 0.338–0.843; FG vs. CG: $\chi^2 = 3.986$, $p = 0.046$, OR = 0.578, 95% CI 0.336–0.994; NFG vs. CG: $\chi^2 = 0.086$, $p = 0.769$, OR = 1.089, 95% CI 0.616–1.927).

The genotype and allele frequencies of the Alu I RFLP in the CTR gene are shown in table 3 ($\alpha = 0.01$). The results are similar to data obtained for $\alpha = 0.05$. The two groups (NFG and CG) exhibited the same allelic distribution ($\chi^2 = 0.086$, $p = 0.769$, OR = 1.089, 95% CI 0.616–1.927). Statistically significant differences were observed between the FG and NFG or CG groups with respect to allele frequency distribution (FG vs. NFG: $\chi^2 = 8.786$, $p = 0.003$, OR = 0.547, 95% CI 0.366–0.818).
Discussion

The distribution sequence of the mixed
CTR geno-
type – CC followed by CT and TT – of this study in Chi-
nese subjects is consistent with the CTR genotype fre-
quency distribution in Asians [9, 13], but different from
that in Caucasians [9, 10]. Additionally, the allele fre-
quencies, i.e. the presence of the C allele in 81.46% and
the T allele in 18.54% of individuals, are similar to those
reported for Guangzhou [11], Shanghai [12] and Beijing
[13], but are clearly different from the frequencies ob-
served in Italian populations (for which the T allele was
the most frequent in 49.7%) [14, 15]. Thus, the present
data support the observation that the distribution of
CTR genotypes differs between Chinese and Cauca-
sians.

Considering the distribution of genotypes in the FG,
NFG and CG groups, the TT genotype was more frequent
in the FG than in the NFG group (9.09 vs. 3.85%, respec-
tively), probably because fluorosis may be influenced by
the TT polymorphism of the CTR genotype. Further-
more, the CTR allele frequency distribution of the case
and control groups was different. A possible explana-
tion could be that carrying the C allele reduced the risk of flu-
orosis and, hence, this allele may have a protective effect
against fluorosis. Thus, our data indicated that the T allele
of the Alu I gene polymorphism is associated with an
increased risk of fluorosis. Gene-gene or gene-environment
interactions could lead to the varying genetic effects ob-
served in different populations. Our results further con-
ﬁrmed that there were signiﬁcant differences in the dis-
tribution of alleles among fluorosis patients and control
subjects.

Conclusion

Our data supported the hypothesis that the Alu I poly-
orphism of the CTR gene may be one of the genetic
components associated with ﬂuorosis. Due to the modest
sample size, it is essential to replicate these ﬁndings in dif-
ferent populations with larger sample sizes, and investi-
gation of other related genes will be needed to clarify the
relationship between this polymorphism and ﬂuorosis.

Acknowledgements

This study was supported by a grant (Chongqing Geo-
logical Exploration, 2010–2012) from the Chongqing Geo-
logical Prospecting Development Authority. We thank
the members of the Science and Technology Department of Chongqing Geological
Prospecting Development Authority and the Scientiﬁc Research
Office of Chongqing Medical University. We are also grateful
for the advice provided by the CDC of Chongqing.

Disclosure Statement

The authors have no conﬂicts of interest to disclose.

References

1 Reddy D: Neurology of endemic skeletal fluo-
rosis. Neurol India 2009;57:7–12.

2 Wang C, Gao YH, Wang W, et al: A national
cross-sectional study on effects of fluoride-
safe water supply on the prevalence of fluoro-
sis in China. BMJ Open 2012;2:001564.

3 Wang B, Zheng B, Zhai C, et al: Relationship
between ﬂuorine in drinking water and dental
health of residents in some large cities in Chi-
na. Environ Int 2004;30:1067–1073.

4 Jha SK, Mishra VK, Sharma DK, et al: Fluor-
ide in the environment and its metabolism in
humans. Rev Environ Contam Toxicol 2011;
211:121–142.

5 Xiao BZ, Liao WF, Wu CG, et al: Analysis of
endemic ﬂuorosis of burning coal pollution in
Chongqing. Chin J Endemol 2005;24:547–
556.

6 Ministry of Public Health of China: Clinical
Index Diagnosis Standard of Endemic Skel-
tal Fluorosis WS192–2008. Beijing, China
Standard Press, 2008.

7 Ministry of Public Health of China: X-Ray
Diagnosis Standard of Skeletal Fluorosis
WS192–2008. Beijing, China Standard Press,
2008. http://www.tsinfo.js.cn/inquiry/gbtde-
tail.aspx?A100=WS%202008–2008.

8 Yang Y, Wang SG, Ye ZC, et al: Single nucleo-
tide polymorphism of calcitonin receptor gene
and idiopathic hypercalciuria. Chin J Urol
2006;10:695–698.

9 Nakamura M, Morimoto S, Zhang Z, et al:
Calcitonin receptor gene polymorphism in
Japanese women: correlation with body mass
and bone mineral density. Calcif Tissue Int
2001;68:211–215.

10 Charopoulos I, Trovas G, Stathopoulou M, et
al: Lack of association between vitamin D and
calcitonin receptor gene polymorphisms and
forearm bone values of young Greek males. J
Musculoskelet Neuronal Interact 2008;8:
196–203.

11 Li DF, Wu W, Cai XZ, et al: Association of
calcitonin receptor gene polymorphism with
bone mineral density in postmenopausal women in Guangzhou, South China. Prevent
Med J 2005:31:14.

12 Zhao HY, Liu JM, Ning G, et al: Association
of calcitonin receptor gene polymorphism
with bone mineral density in Shanghai wom-
en (in Chinese). Zhongguo Yi Ke Yuan Xue
Bao 2003;25:258–261.

13 Zhang ZL, Meng XW, Zhou XY, et al: Asso-
ciation of vitamin D receptor gene and calci-
ton receptor gene polymorphisms with
bone mineral density in women of the Han
nationality in Beijing area. Chin J Endocrinol
Metab 2002;18:90–94.

14 Everest ET: Fluoride’s effects on the forma-
tion of teeth and bones, and the influence of
genetics. J Dent Res 2011;90:552–560.

15 Masl I, Becherini L, Colli E, et al: Polymor-
phisms of the calcitonin receptor gene are as-
associated with bone mineral density in post-
menopausal Italian women. Biochem Bio-
phys Res Commun 1998;248:190–195.