Auditory mechanics of the frog basilar papilla
Schoffelen, Richard Leonard Maria

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2009

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Schoffelen, R. L. M. (2009). Auditory mechanics of the frog basilar papilla. s.n.
References

Ashmore, J. F., Attwell, D., December 1985. Models for electrical tuning in hair cells. P Roy Soc B-Biol Sci 226 (1244), 325–344.

Auer, M., Koster, A. J., Ziese, U., Bajaj, C., Volkmann, N., Wang, D. N., Hudspeth, A. J., 2008. Three-dimensional architecture of hair-bundle linkages revealed by electron-microscopic tomography. J Assoc Res Oto 9 (2), 215–224.

Bell, A., Maddess, T., 2009. Tilt of the outer hair cell lattice: origin of dual tuning tips and cochlear bandwidth. In: Cooper, N. P., Kemp, D. T. (Eds.), Concepts and challenges in the biophysics of hearing. World Scientific, Singapore, pp. 310–318.

Benedix, Jr., J. H., Pedemonte, M., Velluti, R., Narins, P. M., 1994. Temperature dependence of two-tone rate suppression in the northern leopard frog, Rana pipiens pipiens. J Acoust Soc Am 96, 2738–2745.

Bergeijk, W. A. V., Witschi, E., 1957. The basilar papilla of the anuran ear. Acta anatomica 30, 81 – 91.

Bozovic, D., Hudspeth, A. J., 2003. Hair-bundle movements elicited by transepithelial electrical stimulation of hair cells in the sacculus of the bullfrog. Proc Natl Acad Sci USA 100 (3), 958–963.

Brownell, W. E., Bader, C. R., Bertrand, D., de Ribaupierre, Y., 1985. Evoked mechanical responses of isolated cochlear outer hair cells. Science 227 (4683), 194–196.

Capranica, R. R., Moffat, A. J. M., 1975. Selectivity of the peripheral auditory system of spadefoot toads (scaphiopus couchi) for sounds of biological significance. J Comp Physiol A 100 (3), 231–249.

Capranica, R. R., Moffat, A. J. M., 1980. Nonlinear properties of the peripheral auditory system of anurans. In: Popper, A. N., Fay, R. R. (Eds.), Comparative Studies of Hearing in Vertebrates. Springer, Berlin (Germany), pp. 139–165.

Capranica, R. R., Moffat, A. J. M., 1983. Neurobehavioral correlates of sound communication in anurans. In: Ewer, J. P., Capranica, R. R., Ingle, D. J. (Eds.), Advances in vertebrate neuroethology. Plenum, New York (NY, USA), pp. 701–730.

Caston, J., Precht, W., Blanks, R. H. I., 1977. Response characteristics of frog’s lagena afferents to natural stimulation. J Comp Physiol A 118 (3), 273–289.

Dallos, P., 2003. Organ of corti kinematics. J Assoc Res Oto 4 (3), 416–421.

Davis, C., Freeman, D., 1998. Using a light microscope to measure motions with nanometer accuracy. Opt Eng 37, 1299–1304.
Ehret, G., Capranica, R. R., 1980. Masking patterns and filter characteristics of auditory nerve fibers in the green treefrog (Hyla cinerea). J Comp Physiol 141, 1–12.

Evans, E. F., 1975a. Frequency selectivity at high signal levels of single units in cochlear nerve and nucleus. In: Keidel, W. D., Neff, W. D. (Eds.), Handbook of sensory physiology. Vol. V/2. Springer-Verlag, Berlin (Germany), pp. 1–108.

Evans, E. F., 1975b. The sharpening of cochlear frequency selectivity in the normal and abnormal cochlea. Audiology 14 (5-6), 419–442.

Fay, R. R., Popper, A. N., 1999. Hearing in fishes and amphibians: An introduction. In: Fay, R. R., Popper, A. N. (Eds.), Comparative hearing: fish and amphibians. Vol. 11 of Springer Handbook of Auditory Research. Springer Verlag New York, Inc, New York (NY, USA), pp. 1–15.

Feng, A. S., Narins, P. M., Capranica, R. R., 1975. Three populations of primary auditory fibers in the bullfrog (Rana catesbeiana): Their peripheral origins and frequency sensitivities. J Comp Physiol A 100 (3), 221–229.

Feng, A. S., Narins, P. M., Xu, C.-H., Lin, W.-Y., Yu, Z.-L., Qiu, Q., Xu, Z.-M., Shen, J.-X., 2006. Ultrasonic communication in frogs. Nature 440 (7082), 333–336.

Fettiplace, R., 2006. Active hair bundle movements in auditory hair cells. J Physiol 576 (1), 29–36.

Freeman, D. M., Masaki, K., McAllister, A. R., Wei, J. L., Weiss, T. F., 2003. Static material properties of the tectorial membrane: a summary. Hear Res 180 (1-2), 11–27.

Freeman, D. M., Weiss, T. F., 1990. Hydrodynamic analysis of a two-dimensional model for micromechanical resonance of free-standing hair bundles. Hear Res 48 (1-2), 37–67.

Frishkopf, L. S., Flock, A., 1974. Ultrastructure of the basilar papilla, an auditory organ in the bullfrog. Acta Oto-laryngol 77 (3), 176–184.

Geisler, C. D., van Bergeijk, W. A., Frishkopf, L. S., 1964. The inner ear of the bullfrog. J Morphol 114 (1), 43–57.

Hetherington, T. E., 1988. Biomechanics of vibration reception in the bullfrog, Rana catesbeiana. J Comp Physiol A 163 (1), 43–52.

Hetherington, T. E., Lindquist, E. D., 1999. Lung-based hearing in an "earless" anuran amphibian. J Comp Physiol A 184, 395–401.

Horn, B. K. P., E. J. Weldon, J., 1988. Direct methods for recovering motion. Int J Comput Vision 2, 51–76.

Hudspeth, A., 1997. Mechanical amplification of stimuli by hair cells. Curr Opin Neurobiol 7 (4), 480–486.

Hudspeth, A. J., 2008. Making an effort to listen: mechanical amplification in the ear. Neuron 59 (4), 530–545.

Jaslow, A. P., Hetherington, T. E., Lombard, R. E., 1988. Structure and function of the amphibian middle ear. In: Fritzsch, B., Ryan, M. J., Wilczynski, W., Hetherington, T. E., Walkowiak, W. (Eds.), The Evolution of the Amphibian Auditory System. John Wiley & Sons, New York (NY, USA), pp. 69–91.

Johnstone, B. M., Patuzzi, R., Yates, G. K., 1986. Basilar membrane measurements and the travelling wave. Hear Res 22, 147–153.
Jongebloed, W. L., Kalicharan, D., Vissink, A., Konings, A. T. W., 1992. Application of the OTOTO noncoating technique; comparison of LM, TEM and SEM. Microsc Anal 28, 31–33.

Jørgensen, M., Kanneworff, M., 1998. Middle ear transmission in the grass frog, Rana temporaria. J Comp Physiol A 182, 59–64.

Keen, E. C., Hudspeth, A. J., 2006. Transfer characteristics of the hair cell’s afferent synapse. Proc Natl Acad Sci USA 103 (14), 5537–5542.

Lewis, E., Li, C., 1975. Hair cells types and distributions in the otolithic and auditory organs of the bullfrog. Brain Res 83, 35–50.

Lewis, E. R., 1976. Surface morphology of the bullfrog amphibian papilla. Brain Behav Evolut 13 (2-3), 196–215.

Lewis, E. R., 1977. Comparative scanning electron microscopy study of the anuran basilar papilla. In: Bailey, G. (Ed.), 35th Ann. Proc. Electron Microsc. Soc. Amer. pp. 632–633.

Lewis, E. R., 1981. Suggested evolution of tonotopic organization in the frog amphibian papilla. Neurosci Lett 21 (2), 131–136.

Lewis, E. R., 1984. On the frog amphibian papilla. Scan Electron Microsc (4), 1899–913.

Lewis, E. R., Leverenz, E. L., Bialek, W. S., 1985. The vertebrate inner ear. CRC Press, Inc., Boca Raton (FL, USA).

Lewis, E. R., Leverenz, E. L., Koyama, H., 1982. The tonotopic organization of the bullfrog amphibian papilla, an auditory organ lacking a basilar membrane. J Comp Physiol 145, 437–445.

Lewis, E. R., Narins, P. M., 1999. The acoustic periphery of amphibians; anatomy and physiology. In: Fay, R. R., Popper, A. N. (Eds.), Comparative hearing: Fish and Amphibians. Vol. 11 of Springer Handbook of Auditory Research. Springer Verlag New York, Inc, New York (NY, USA), pp. 101–154.

Lewis, E. R., Van Dijk, P., 2004. New variations on the derivation of spectro-temporal receptive fields for primary auditory afferent axons. Hear Res 189, 120–136.

Liberman, M. C., Gao, J., He, D. Z. Z., Wu, X., Jia, S., Zuo, J., 2002. Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier. Nature 419 (6904), 300–304.

Lindquist, E. D., Hetherington, T. E., Volman, S. F., 1998. Biomechanical and neurophysiological studies on audition in eared and earless harlequin frogs (atelopus). J Comp Physiol A 183 (2), 265–271.

Long, G. R., Van Dijk, P., Wit, H. P., 1996. Temperature dependence of spontaneous otoacoustic emissions in the edible frog (Rana esculenta). Hear Res 98 (1-2), 22–28.

Malick, L. E., Wilson, R. B., 1975. Modified thiocarbohydrazide procedure for scanning electron microscopy: routine use for normal, pathological, or experimental tissues. Stain Technol 50 (4), 265–269.

Manley, G. A., 2000. Cochlear mechanisms from a phylogenetic viewpoint. Proc Natl Acad Sci USA 97 (22), 11736–11743.

Manley, G. A., 2006. Spontaneous otoacoustic emissions from free-standing stereovillar bundles of ten species of lizard with small papillae. Hear Res 212 (1-2), 33–47.
Manley, G. A., Clack, J. A., 2003. An outline of the evolution of vertebrate hearing organs. In: Manley, G. A., Popper, A. N., Fay, R. R. (Eds.), Evolution of the vertebrate auditory system. Vol. 22 of Springer Handbook of Auditory Research. Springer Verlag New York, LLC, New York (NY, USA), pp. 1 – 26.

Manley, G. A., Köppl, C., 2008. What have lizard ears taught us about auditory physiology? Hear Res 238 (1-2), 3 – 11.

Manley, G. A., Yates, G. K., Köppl, C., 1988. Auditory peripheral tuning: evidence for a simple resonance phenomenon in the lizard tiliqua. Hear Res 33 (2), 181–189.

Martin, P., Bozovic, D., Choe, Y., Hudspeth, A. J., 2003. Spontaneous oscillation by hair bundles of the bullfrog’s sacculus. J Neurosci 23 (11), 4533–4548.

Martin, P., Hudspeth, A. J., 1999. Active hair-bundle movements can amplify a hair cell’s response to oscillatory mechanical stimuli. Proc Natl Acad Sci USA 96 (25), 14306–14311.

Mason, M., Narins, P., 2002a. Vibrometric studies of the middle ear of the bullfrog Rana catesbeiana I. the extrastapes. J Exp Biol 205, 3153–3165.

Mason, M. J., Narins, P. M., 2002b. Vibrometric studies of the middle ear of the bullfrog Rana catesbeiana II. the operculum. J Exp Biol 205, 3167–3176.

Meenderink, S. W. F., 2005. Distortion product otoacoustic emissions from the anuran inner ear. Ph.D. thesis, University of Maastricht, The Netherlands.

Meenderink, S. W. F., Narins, P. M., 2006. Stimulus frequency otoacoustic emissions in the northern leopard frog, Rana pipiens pipiens: implications for inner ear mechanics. Hear Res 220 (1-2), 67–75.

Meenderink, S. W. F., Narins, P. M., 2007. Suppression of distortion product otoacoustic emissions in the anuran ear. J Acoust Soc Am 121 (1), 344–351.

Meenderink, S. W. F., Narins, P. M., Van Dijk, P., 2005a. Detailed f1, f2 area study of distortion product otoacoustic emissions in the frog. J Assoc Res Oto 6 (1), 37–47.

Meenderink, S. W. F., Van Dijk, P., 2004. Level dependence of distortion product otoacoustic emissions in the leopard frog, Rana pipiens pipiens. Hear Res 192, 107–118.

Meenderink, S. W. F., Van Dijk, P., 2005. Characteristics of distortion product otoacoustic emissions in the frog from L1,L2 maps. J Acoust Soc Am 118 (1), 279–286.

Meenderink, S. W. F., Van Dijk, P., 2006. Temperature dependence of anuran distortion product otoacoustic emissions. J Assoc Res Oto 7 (3), 246–252.

Meenderink, S. W. F., Van Dijk, P., Narins, P. M., 2005b. Comparison between distortion product otoacoustic emissions and nerve fiber responses from the basilar papilla of the frog. J Acoust Soc Am 117 (5), 3165–3173.

Narayan, S. S., Temchin, A. N., Recio, A., Ruggero, M. A., 1998. Frequency tuning of basilar membrane and auditory nerve fibers in the same cochlea. Science 282, 1882–1884.

Narins, P., Ehret, G., Tautz, J., 1988. Accessory pathway for sound transfer in a neotropical frog. Proc Natl Acad Sci USA 85, 1508–1512.

Narins, P. M., 1990. Seismic communication in anuran amphibians. BioScience 40 (4), 267.

Narins, P. M., Capranica, R. R., 1976. Sexual differences in the auditory system of the tree frog Eleutherodactylus coqui. Science 192 (4237), 378–380.
Narins, P. M., Capranica, R. R., 1980. Neural adaptations for processing the two-note call of the Puerto Rican treefrog, Eleutherodactylus coqui. Brain Behav Evol 17 (1), 48–66.

Nowotny, M., Gunmer, A. W., 2006. Nanomechanics of the subsectorial space caused by electromechanics of cochlear outer hair cells. Proc Natl Acad Sci USA 103 (7), 2120–2125.

Palmer, A. R., Wilson, J., 1982. Spontaneous and evoked otoacoustic emissions in the frog Rana esculenta. J Physiol 324, 66P.

Pickles, J. O., 1988. An introduction to the physiology of hearing, 2nd Edition. Academic Press, London (Great Britain).

Pitchford, S., Ashmore, J. F., 1987. An electrical resonance in hair cells of the amphibian papilla of the frog Rana temporaria. Hear Res 27, 75–83.

Probst, R., Lonsbury-Martin, B. L., Martin, G. K., 1991. A review of otoacoustic emissions. J Acoust Soc Am 89, 2027–2067.

Purgue, A. P., Narins, P. M., 2000a. Mechanics of the inner ear of the bullfrog (Rana catesbeiana): the contact membranes and the periotic canal. J Comp Physiol A 186, 481–488.

Purgue, A. P., Narins, P. M., 2000b. A model for energy flow in the inner ear of the bullfrog (Rana catesbeiana). J Comp Physiol A 186, 489–495.

Ren, T., Nuttall, A., 2001. Basilar membrane vibration in the basal turn of the sensitive gerbil cochlea. Hear Res 151, 48–60.

Robbins, R. G., Bauknight, R. S., Honrubia, V., 1967. Anatomical distribution of efferent fibers in the 8th cranial nerve of the bullfrog (rana catesbeiana). Acta Oto-laryngol 64 (5), 436–448.

Robles, L., Ruggero, M. A., 2001. Mechanics of the mammalian cochlea. Physiol Rev 81 (3), 1305–1352.

Ronken, D. A., 1990. Basic properties of auditory-nerve responses from a ‘simple’ ear: the basilar papilla of the frog. Hear Res 47, 63–82.

Ronken, D. A., 1991. Spike discharge properties that are related to the characteristic frequency of single units in the frog auditory nerve. J Acoust Soc Am 90, 2428–2440.

Ruggero, M. A., Rich, N. C., 1991. Furosemide alters organ of corti mechanics: evidence for feedback of outer hair cells upon the basilar membrane. J Neurosci 11 (4), 1057–1067.

Ruggero, M. A., Robles, L., Rich, N. C., Recio, A., 1992. Basilar membrane responses to two-tone and broadband stimuli. Philos Trans R Soc B-Biol Sci 336 (1278), 307–315.

Schoffelen, R. L. M., Segenhout, J. M., Van Dijk, P., 2007. Motion of the tectorial membrane in the basilar papilla of the northern leopard frog, Rana pipiens. In: Abstracts of the thirtieth annual midwinter research meeting. Assoc Res Oto, p. 171.

Schoffelen, R. L. M., Segenhout, J. M., van Dijk, P., 2008. Mechanics of the exceptional anuran ear. J Comp Physiol A 194 (5), 417–428.

Schoffelen, R. L. M., Segenhout, J. M., Van Dijk, P., 2009a. Input-output characteristics of the tectorial membrane in the frog basilar papilla. submitted for publication, April 2009.

Schoffelen, R. L. M., Segenhout, J. M., van Dijk, P., 2009b. Tuning of the tectorial membrane in the basilar papilla of the northern leopard frog. J Assoc Res Otolaryngol 10 (3), 309–320.
Shofner, W. P., Feng, A. S., 1981. Post-metamorphic development of the frequency selectivities and sensitivities of the peripheral auditory system of the bullfrog, *Rana catesbeiana*. J Exp Biol 93 (1), 181–196.

Shofner, W. P., Feng, A. S., 1983. A quantitative light microscopic study of the bullfrog amphibian papilla tectorium: correlation with the tonotopic organization. Hear Res 11 (1), 103–116.

Simmons, D., Meenderink, S., Vassilakis, P., 2007. Physiology, and function of auditory end-organs in the frog inner ear. In: Narins, P. M., Feng, A. S., Fay, R. R., Popper, A. N. (Eds.), Hearing and sound communication in Amphibians. Vol. 28 of Springer Handbook of Auditory Research. Springer Science+Business Media, LLC, New York (NY, USA), pp. 184 – 220.

Smotherman, M. S., Narins, P. M., 1999a. The electrical properties of auditory hair cells in the frog amphibian papilla. J Neurosci 19, 5275–5292.

Smotherman, M. S., Narins, P. M., 1999b. Potassium currents in auditory hair cells of the frog basilar papilla. Hear Res 132 (1-2), 117–130.

Smotherman, M. S., Narins, P. M., 2000. Hair cells, hearing and hopping: a field guide to hair cell physiology in the frog. J Exp Biol 203, 2237–2246.

Smotherman, M. S., Narins, P. M., 2003. Evolution of the amphibian ear. In: Manley, G. A., Popper, A. N., Fay, R. R. (Eds.), Evolution of the vertebrate auditory system. Vol. 22 of Springer Handbook of Auditory Research. Springer Verlag New York, LLC, New York (NY, USA), pp. 164 – 199.

Stiebeler, I. B., Narins, P. M., 1990. Temperature-dependence of auditory nerve response properties in the frog. Hear Res 46 (1-2), 63–81.

Van Bergeijk, W. A., 1957. Observations on models of the basilar papilla of the frog’s ear. J Acoust Soc Am 29 (11), 1159–1162.

Van Dijk, P., Lewis, E. R., Wit, H. P., 1990. Temperature effects on auditory nerve fiber response in the american bullfrog. Hear Res 44 (2-3), 231–240.

Van Dijk, P., Maat, A., Wit, H. P., 1997a. Wiener kernel analysis of a noise-evoked otoacoustic emissions. Br J Audiol 31, 473–477.

Van Dijk, P., Manley, G. A., 2001. Distortion product otoacoustic emissions in the tree frog *Hyla cinerea*. Hear Res 153 (1-2), 14–22.

Van Dijk, P., Mason, M. J., Narins, P. M., 2002. Distortion product otoacoustic emissions in frogs: correlation with middle and inner ear properties. Hear Res 173 (1-2), 100–108.

Van Dijk, P., Meenderink, S., 2006. Distortion product otoacoustic emissions in the amphibian ear. In: Nuttall, A. L., Ren, T., Gillespie, P., Grosh, K., de Boer, E. (Eds.), Auditory Mechanisms, Processes and Models. World Scientific, Singapore, pp. 332–338.

Van Dijk, P., Narins, P. M., Mason, M. J., 2003. Physiological vulnerability of distortion product otoacoustic emissions from the amphibian ear. J Acoust Soc Am 114, 2044–2048.

Van Dijk, P., Narins, P. M., Wang, J., 1996. Spontaneous otoacoustic emissions in seven frog species. Hear Res 101, 102–112.

Van Dijk, P., Wit, H. P., Segenhout, J. M., 1989. Spontaneous otoacoustic emissions in the European edible frog (*Rana esculenta*): Spectral details and temperature dependence. Hear Res 42, 273–282.
Van Dijk, P., Wit, H. P., Segenhout, J. M., 1997b. Dissecting the frog inner ear with gaussian noise. i. application of high-order wiener-kernel analysis. Hear Res 114 (1-2), 229–242.

Van Dijk, P., Wit, H. P., Segenhout, J. M., Tubis, A., 1994. Wiener kernel analysis of inner ear function in the american bullfrog. J Acoust Soc Am 95 (2), 904–919.

Vassilakis, P. N., Meenderink, S. W. F., Narins, P. M., 2004. Distortion product otoacoustic emissions provide clues hearing mechanisms in the frog ear. J Acoust Soc Am 116 (6), 3713–3726.

Von Békésy, G., 1960. Experiments in Hearing. McGraw-Hill Book Company, Inc., New York (NY, USA).

Walkowiak, W., 1988. Two auditory filter systems determine the calling behavior of the fire-bellied toad: a behavioral and neurophysiological characterization. J Comp Physiol A 164 (1), 31–41.

Werner, Y. L., 2003. Mechanical leverage in the middle ear of the american bullfrog, Rana catesbeiana. Hear Res 175 (1-2), 54–65.

Wever, E. G., 1985. The amphibian ear. Princeton University Press, Princeton (NJ, USA).

Wilczynski, W., Rand, A. S., Ryan, M. J., 2001. Evolution of calls and auditory tuning in the physalaemus pustulosus species group. Brain Behav Evol 58 (3), 137–151.

Yano, J., Sugai, T., Sugitani, M., Ooyama, H., 1990. Observations of the sensing and the tectorial membrane in bullfrog amphibian papilla: their possible functional roles. Hear Res 50 (1-2), 237–243.

Yost, W. A., 2000. Fundamentals of hearing, an introduction, 4th Edition. Academic Press, San Diego (CA, USA).

Yu, X., Lewis, E. R., Feld, D., 1991. Seismic and auditory tuning curves from bullfrog saccular and amphibian papular axons. J Comp Physiol A 169, 241–248.

Zheng, J., Shen, W., He, D. Z., Long, K. B., Madison, L. D., Dallos, P., 2000. Prestin is the motor protein of cochlear outer hair cells. Nature 405 (6783), 149–155.
