The cinnamyl alcohol dehydrogenase gene family is involved in the response to *Fusarium oxysporum* in resistant and susceptible flax genotypes

R.O. Novakovskiy¹, L.V. Povkhova¹,², G.S. Krasnov³, T.A. Rozhmina¹,³, A.A. Zhuchenko³,⁴, L.P. Kudryvatseva³, E.N. Pushkova¹, P. Kezimana¹,⁵, A.V. Kudryavtseva¹, A.A. Dmitriev¹, N.V. Melnikova¹

¹Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
²Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
³Federal Research Center for Bast Fiber Crops, Torzhek, Russia
⁴All-Russian Horticultural Institute for Breeding, Agrotechnology and Nursery, Moscow, Russia
⁵Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia

E-mail: mnv-4529264@yandex.ru

The Fifth International Scientific Conference PlantGen2019

Flax (*Linum usitatissimum* L.) is used for the production of textile, oils, pharmaceuticals, and composite materials. Fusarium wilt, caused by the fungus *Fusarium oxysporum* f. sp. *lini*, is a very harmful disease that reduces flax production. Flax cultivars that are resistant to Fusarium wilt have been developed, and the genes that are involved in the host response to *F. oxysporum* have been identified. However, the mechanisms underlying resistance to this pathogen remain unclear. In the present study, we used transcriptome sequencing data obtained from susceptible and resistant flax genotypes grown under control conditions or *F. oxysporum* infection. Approximately 250 million reads, generated with an Illumina NextSeq instrument, were analyzed. After filtering to exclude the *F. oxysporum* transcriptome, the remaining reads were mapped to the *L. usitatissimum* genome and quantified. Then, the expression levels of cinnamyl alcohol dehydrogenase (CAD) family genes, which are known to be involved in the response to *F. oxysporum*, were evaluated in resistant and susceptible flax genotypes. Expression alterations in response to the pathogen were detected for all 13 examined CAD genes. The most significant differences in expression between control and infected plants were observed for CAD1B, CAD4A, CAD5A, and CAD5B, with strong upregulation of CAD1B, CAD5A, and CAD5B and strong downregulation of CAD4A. When plants were grown under the same conditions, the expression levels were similar in all studied flax genotypes for most CAD genes, and statistically significant differences in expression between resistant and susceptible genotypes were only observed for CAD1A. Our study indicates the strong involvement of CAD genes in flax response to *F. oxysporum* but brings no evidence of their role as resistance gene candidates. These findings contribute to the understanding of the mechanisms underlying the response of flax to *F. oxysporum* infection and the role of CAD genes in stress resistance.

Key words: flax; *Linum usitatissimum*; resistant cultivars; *Fusarium oxysporum*; RNA-Seq; transcriptome; CAD.

For citation: Novakovskiy R.O., Povkhova L.V., Krasnov G.S., Rozhmina T.A., Zhuchenko A.A., Kudryvatseva L.P., Pushkova E.N., Kezimana P., Kudryavtseva A.V., Dmitriev A.A., Melnikova N.V. The cinnamyl alcohol dehydrogenase gene family is involved in the response to *Fusarium oxysporum* in resistant and susceptible flax genotypes. Vavilovskii Zhurnal Genetiki i Selektssii = Vavilov Journal of Genetics and Breeding. 2019;23(7):896-901. DOI 10.18699/VJ19.564

Семейство генов дегидрогеназ коричного спирта вовлечено в ответ устойчивых и восприимчивых генотипов льна на заражение *Fusarium oxysporum*

Р.О. Новаковский¹, Л.В. Повхова¹,², Г.С. Краснов¹, Т.А. Рожмина¹,³, А.А. Жученко³,⁴, Л.П. Кудрявцева³, Е.Н. Пушкова¹, П. Кезимана¹,⁵, А.В. Кудрявцева¹, А.А. Дмитриев¹, Н.В. Мельникова¹

¹Институт молекулярной биологии им. В.А. Энгельгардта Российской академии наук, Москва, Россия
²Московский физико-технический институт (Национальный исследовательский университет), Долгопрудный, Московская область, Россия
³Федеральный научный центр лубяных культур, Торжок, Россия
⁴Всероссийский селекционно-технологический институт садоводства и питомниководства, Москва, Россия
⁵Российский университет дружбы народов, Москва, Россия

E-mail: mnv-4529264@yandex.ru

Вавиловский журнал генетики и селекции. 2019;23(7):896-901 DOI 10.18699/VJ19.564
Introduction

Flax (Linum usitatissimum L.) is an agricultural crop with numerous uses. High-quality fiber can be obtained from flax stems and is used for the production of textile and fiber-based materials for the healthcare, military, aerospace, and electronics industries (Costa et al., 2018). Flaxseed is also used in the production of pharmaceuticals, functional foods, and other products for human consumption, while linseed is used in paints, varnishes, and animal feed (Singh et al., 2011; Goyal et al., 2014). *Fusarium oxysporum* f. sp. *lini* is a harmful pathogen that reduces flax production and quality (Rashid, 2003). Flax genotypes showing resistance to *Fusarium* wilt have been identified, and cultivars with improved resistance have been bred (Diederichsen et al., 2008; Rozhmina et al., 2017). However, the molecular mechanisms underlying resistance to *Fusarium* wilt remain unclear, and the search for genes involved in the response to *F. oxysporum* is an area of active research. The involvement of pathogenesis-related proteins in the response to *F. oxysporum* infection was demonstrated (Wrobel-Kwiatkowska et al., 2004; Wojtasik et al., 2014; Galindo-Gonzalez, Deyholos, 2016), and the roles of antioxidants, polyamines, and phenolic compounds in response to the pathogen were shown (Lorenc-Kukula et al., 2007, 2009; Boga et al., 2011, 2016; Zeitoun et al., 2014; Wojtasik et al., 2015). Moreover, *F. oxysporum*-infected flax plants show cell wall rearrangements (Wojtasik et al., 2015, 2016; Boga et al., 2016).

Cinnamyl-alcohol dehydrogenases (CADs) are involved in the biosynthesis of lignin, which can function as a barrier against pathogens, and the role of *CAD* genes in the response to *F. oxysporum* was previously shown (Wrobel-Kwiatkowska et al., 2007; Preissner et al., 2014, 2018). Plants with downregulated *CAD* showed reduced (Wrobel-Kwiatkowska et al., 2007) or slightly decreased (Preissner et al., 2014) resistance to *F. oxysporum*. Sixteen *CAD* genes were identified in *L. usitatissimum* and their roles in plant growth and stress responses were examined in the Nike cultivar, which is relatively resistant to *Fusarium* infection (Preissner et al., 2018). In the present study, we evaluated the expression of *CAD* genes in resistant and susceptible flax genotypes under control conditions and *F. oxysporum* infection to determine the general trends in response to the pathogen and genotype-specific alterations in expression.

Materials and methods

Two *F. oxysporum*-susceptible flax cultivars (TOST and AP5), two resistant cultivars (3896 and Dakota), and two resistant BC1F2 populations (3896 × AP5, recurrent parent AP5, and Dakota × AP5, recurrent parent AP5) were used in the present study. Seeds were obtained from the Institute for Flax (Torzhok, Russia) and sterilized, first in 70 % ethanol for 1 min and then in 1 % sodium hypochlorite for 20 min. The plants were grown in 15 ml glass tubes on Murashige–Skoog medium in a growth chamber at 22 °C under a 16/8 h day/night cycle for seven days. Then, half of the plants were inoculated with *Fusarium oxysporum* (pathogenic isolate #39 from the phyto-pathogen collection of the Institute for Flax); the remaining uninoculated plants were used as controls. Forty-eight hours later, the root tips were collected and frozen in liquid nitrogen. In total, the material was obtained from 240 plants.

Total RNA was extracted from the pooled plants (10–12 plants each) using the RNeasy Plant Mini Kit (Qiagen, USA). We obtained 24 RNA samples from the TOST, AP5, 3896, Dakota, 3896 × AP5, and Dakota × AP5 plants under control and infection in duplicate. The quality and concentration of the isolated RNA were evaluated using an Agilent Bioanalyzer (Agilent Technologies, USA) and Qubit 2.0 fluorometer (Life Technologies, USA). The TruSeq Stranded Total RNA Sample Prep Kit (Illumina, USA) was used to prepare the cDNA library. The libraries were sequenced on a NextSeq500 sequencer (Illumina) with 80-nucleotide paired-end reads (SRP119227, Sequence Read Archive).

Reads were trimmed using Trimmomatic (Bolger et al., 2014) and filtered against the *F. oxysporum* reference genome as described in our previous study (Dmitriev et al., 2017). Then, the remaining reads were mapped to the *L. usitatissimum* genome (GenBank assembly: GCA_000224295.2) using STAR (Dobin et al., 2013) and quantified using BEDTools (Quinlan, Hall, 2010). The genome sites where the mapped reads significantly increased were identified in the latest *L. usitatissimum* assembly (GenBank assembly: GCA_000224295.2) using the data of Preissner et al. (2018). Namely, the sequences of the scaffold regions of the old *L. usitatissimum* genome assembly (GenBank: AF5Q0000000.1) that encode *CAD* transcripts were mapped to the latest *L. usitatissimum* ge-
ome assembly (GCA_000224295.2) and new coordinates were identified for the CAD transcripts. The counts per million (CPM) values were determined for 13 CAD genes in each cultivar and population under both control conditions and Fusarium infection, and then the \( \log(CPM\text{ F. oxysporum}/CPM\text{ control}) \) values were calculated for each cultivar and BC3:F3 population. This was performed using the equipment of the Genome Center of Engelhardt Institute of Molecular Biology (http://www.eimb.ru/rus/ckp/ccu_genome_c.php).

**Results**

In our previous study on the response of *L. usitatissimum* to *F. oxysporum*, we used RNA-Seq data for *de novo* transcriptome assembly and annotation and then quantified the expression levels of the identified transcripts (Dmitriev et al., 2017). Unfortunately, we had failed to identify a significant number of CAD family genes in our *de novo* transcriptome assembly. In the present study, we used an improved assembly of the *L. usitatissimum* genome (GCA_000224295.2), in which the scaffolds were mapped to specific chromosomes, as a reference for RNA-Seq read mapping, and CAD gene sequence data (Preisner et al., 2018) were used to identify the genome sites in which the CAD genes are located. This approach enabled us to evaluate the expression levels of all presently identified CAD genes in flax. Unique chromosome locations were determined for CAD1A, CAD1B, CAD2A, CAD2B, CAD3A, CAD3B, CAD4A, CAD4B, CAD5A, CAD5B, CAD6, and CAD7, while CAD8A, CAD8B, CAD8C, and CAD8D were mapped to the same region of chromosome Lu7. Therefore, we performed an expression analysis of CAD1A, CAD1B, CAD2A, CAD2B, CAD3A, CAD3B, CAD4A, CAD4B, CAD5A, CAD5B, CAD6, CAD7, and CAD8 genes.

The expression levels of the 13 CAD family genes in six flax cultivars and populations grown under control conditions or inoculated with a pathogenic isolate of *F. oxysporum* were evaluated based on RNA-Seq data. The results are shown in the

**Expression alterations in the CAD genes of *F. oxysporum* resistant and susceptible flax cultivars and populations**

| Gene  | log(\( \log(CPM\text{ Fusarium}/CPM\text{ control}) \)) values | Susceptible genotypes | Resistant genotypes |
|-------|-------------------------------------------------------------|-----------------------|---------------------|
|       |                                                              | TOST                  | AP5                 |
|       |                                                              | 3896                  | Dakota              |
| CAD1A | 0.42                                                         | 0.36                  | 0.82                |
| CAD1B | 1.86                                                         | 1.91                  | 2.08                |
| CAD2A | –1.28                                                        | –0.38                 | 1.04*               |
| CAD2B | –0.65                                                        | –0.64                 | 0.04                |
| CAD3A | –0.07                                                        | –1.10                 | –1.03               |
| CAD3B | –0.88                                                        | –0.80                 | –1.26               |
| CAD4A | –1.80                                                        | –2.08                 | –1.80               |
| CAD4B | –1.05                                                        | –1.03                 | –1.34               |
| CAD5A | 1.91                                                         | 2.32                  | 3.66                |
| CAD5B | 2.14                                                         | 2.85                  | 3.56                |
| CAD6  | –0.73                                                        | –1.18                 | –0.19               |
| CAD7  | –0.40                                                        | –0.70                 | –0.57               |
| CAD8  | –0.47                                                        | –0.93                 | –0.50               |

* Values were determined for 13 CAD genes in resistant (3896, Dakota, 3896 × AP5, and Dakota × AP5) and susceptible (TOST and AP5) genotypes under control conditions and 48 h after inoculation with *F. oxysporum* in biological replicates. Under both conditions, the expression levels of CAD5A and CAD6 were the highest, and the expression levels of CAD2A, CAD3A, CAD3B, and CAD8 were the lowest. Compared to control conditions, statistically significant alterations in expression under *Fusarium* infection were observed for all 13 genes (\( p < 0.01 \) for all genes except CAD2B, which was \( p < 0.05 \), Mann–Whitney test). The most significant differences in expression between the control and infected plants were observed for CAD1B, CAD4A, CAD5A, and CAD5B; CAD1B, CAD5A, and CAD5B showed strong up-regulation under *F. oxysporum* infection, and CAD4A showed strong downregulation. Under the same conditions, the expression levels were similar in all studied flax genotypes for most CAD genes; however, some exceptions were observed. For example, the expression levels of CAD3A, CAD3B, CAD4A, and CAD4B in the infected plants of the 3896 × AP5 population were higher than those in other infected genotypes.

To identify genotype-specific expression alterations in response to *F. oxysporum* infection, the \( \log(CPM\text{ Fusarium}/CPM\text{ control}) \) values were calculated (see the Table). In all studied genotypes, the most significant (more than 3-fold in average) increases in expression were observed for CAD1B, CAD5A, and CAD5B, while the most significant decreases in expression were observed for CAD4A. For CAD2A, CAD3A, CAD3B, CAD4B, and CAD6, downregulation was observed in the majority of genotypes after *Fusarium* infection. For CAD2B, CAD7, and CAD8, the decrease in expression was only slight, and for some genotypes, no decrease was observed. Statistically significant differences in expression between resistant (3896, Dakota, 3896 × AP5, and Dakota × AP5) and susceptible (TOST and AP5) genotypes were only observed for the CAD1A gene (\( p < 0.05 \), Mann–Whitney test).

* A 3-fold difference between biological replicates was observed for the CAD2A gene in cultivar 3896 under *Fusarium* infection (see the Figure).
Expression of CAD genes in resistant (3896, Dakota, 3896 × AP5, and Dakota × AP5) and susceptible (TOST and AP5) flax genotypes under control conditions (c1 and c2) and 48 h after inoculation with F. oxysporum (f1 and f2) in biological replicates.
The CAD gene family is involved in flax response to *Fusarium oxysporum* infection

**Discussion**

Recent progress in molecular analysis has provided novel opportunities for plant studies (Kage et al., 2015; Poland, 2015). Using high-throughput sequencing, genome and transcriptome sequences for many plant species can be obtained in a short time period and used for further research (Varshney et al., 2009; He et al., 2014). The draft genome sequence for flax was obtained in 2012 (Wang et al., 2012), and in 2018, the genome assembly was improved and chromosome-scale pseudomolecules were obtained using BioNano genome optical mapping (You et al., 2018). Flax transcriptomes and small RNAs obtained from different tissues, development stages, and under biotic and abiotic stresses have been sequenced. Such data has enabled the identification of genes and miRNAs that are expressed in particular organs and in the definite time and could play key roles in plant development, as well as the discovery of genes and miRNAs with altered expression under unfavorable conditions that are likely involved in the response to stress (Yu et al., 2014, 2016; Melnikova et al., 2015, 2016; Dmitriev et al., 2016, 2017, 2019; Galindo-Gonzalez, Deyholos, 2016; Dash et al., 2017; Gorskova et al., 2018; Zyablisin et al., 2018; Gorshkov et al., 2019; Krasnov et al., 2019; Wu et al., 2019).

In the present study, we used RNA-Seq data from *F. oxysporum*-resistant (3896, Dakota, 3896 × AP5, and Dakota × AP5) and susceptible (TOST and AP5) flax genotype grown under control conditions or 48 h after inoculation with *F. oxysporum* to evaluate the expression of CAD1A, CAD1B, CAD2A, CAD2B, CAD3A, CAD3B, CAD4A, CAD4B, CAD5A, CAD5B, CAD6, CAD7, and CAD8 and identified the CAD genes that were involved in the response to the pathogen. The genes showed different expression changes after *F. oxysporum* infection: in most genotypes, CAD1A, CAD1B, CAD5A, and CAD5B were upregulated, while CAD2A, CAD2B, CAD3A, CAD3B, CAD4A, CAD4B, CAD6, CAD7, and CAD8 were downregulated. In the study by Preisner et al. (2018), decreased expression was observed for most CAD genes at 24 and 96 h after *F. oxysporum* infection in the flax cultivar Nike. In the present study, the greatest expression changes in infected plants were observed for CAD1B, CAD4A, CAD5A, and CAD5B; three of these genes were upregulated, while CAD4A was downregulated. Our data for CAD1B, CAD4A, CAD5A, and CAD5B are consistent with the results of the previous study at 24 h after infection (Preisner et al., 2018). However, the changes observed by us were more significant, with a 3–5-fold change for CAD1B, a 2–5-fold change for CAD4A, a 4–13-fold change for CAD5A, and a 4–12-fold change for CAD5B. Based on our results, we suggest that CAD1B, CAD4A, CAD5A, and CAD5B are the most involved in the response of flax to *F. oxysporum*.

Searching for genes with diverse expression alterations in resistant and susceptible genotypes under stress conditions is important for the identification of resistance genes. In our study, statistically significant differences in expression between resistant and susceptible genotypes in response to the pathogen were observed only for CAD1A. Therefore, this gene could be involved in resistance to *F. oxysporum*. However, the changes were not pronounced. Thus, further investigations are necessary.

**Conclusion**

We performed expression analysis of CAD family genes after *F. oxysporum* inoculation based on RNA-Seq data and identified genes with significant up- and down-regulation after pathogen infection. The results of the present study indicate the involvement of CAD genes in response to *Fusarium* infection, but their role as resistance genes in the studied cultivars and populations is questionable. Our data also contribute to the understanding of the role of CAD genes in stress response and resistance.

**References**

Boba A., Kostyn K., Kostyn A., Wojtasik W., Dziafas M., Preissner M., Szopa J., Kulma A. Methyl salicylate level increase in flax after *Fusarium oxysporum* infection is associated with phenylpropanoid pathway activation. Front. Plant Sci. 2016;7:1951. DOI 10.3389/fpls.2016.01951.

Boba A., Kulma A., Kostyn K., Starzycki M., Starzycka E., Szopa J. The influence of carotenoid biosynthesis modification on the Fusarium culmorum and *Fusarium oxysporum* resistance in flax. Physiol. Mol. Plant Pathol. 2011;76(1):39-47. DOI 10.1016/j.pmpp.2011.06.002.

Bolger A.M., Lohse M., Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114-2120. DOI 10.1093/bioinformatics/btu170.

Costa S.M., Ferreira D.P., Ferreira A., Vaz F., Fängeuere R. Multifunctional flax fibres based on the combined effect of silver and zinc oxide (Ag/ZnO) nanostructures. Nanomaterials. 2018;8(12):1069. DOI 10.3390/nano8121069.

Dash PK., Rai R., Mahato A.K., Gaikwad K., Singh N.K. Transcriptome landscape at different developmental stages of a drought tolerant cultivar of *flax (Linum usitatissimum)*. Front. Chem. 2017;5:82. DOI 10.3389/fchem.2017.00082.

Diederichsen A., Rozhmina T.A., Kudrjavceva A., Kostyn M., Kudryavtseva A., Cerdeira J.A., Kostyn M., Kudryavtseva A.V., Melnikova N.V. Differential gene expression in response to *Fusarium oxysporum* infection in resistant and susceptible genotypes of flax (*Linum usitatissimum* L.) genebank accessions based on evaluation for resistance to fusarium wilt, anthracnose and parasporal. Plant Genet. Resour. 2008;6(1):22-32.

Dmitriev A.A., Krasnov G.S., Rozhchina T.A., Kishlyan N.V., Zyabltisn A.V., Shadrinova A.F., Senzhkina A.V., Fedorova M.S., Yurkevich O.Y., Muravkova N.L., Kudryavtsva A.V., Melnikova N.V. Glutathione S-transferases and UDP-glucosyltransferases are involved in response to aluminum stress in flax. Front. Plant Sci. 2016;7:1920. DOI 10.3389/fpls.2016.01920.

Dmitriev A.A., Krasnov G.S., Rozhchina T.A., Novakovsky R.O., Snezhkina A.V., Fedorova M.S., Yurkevich O.Y., Muravkova N.O.V., Bolsheva N.L., Kudryavtseva A.V., Melnikova N.V. Variation patterns within 153 flax (*Linum usitatissimum* L.) genebank accessions based on evaluation for resistance to fusarium wilt, anthracnose and parasporal. Plant Genet. Resour. 2008;6(1):22-32.

Gorshkov A.A., Kostyn K., Starzycki M., Starzycka E., Szopa J. The influence of carotenoid biosynthesis modification on the Fusarium culmorum and *Fusarium oxysporum* resistance in flax. Physiol. Mol. Plant Pathol. 2011;76(1):39-47. DOI 10.1016/j.pmpp.2011.06.002.

Zyablisin et al., 2018; Gorshkov et al., 2019; Krasnov et al., 2019; Wu et al., 2019).
flax stem: integrated analysis of miRNA and mRNA expression profiles. Plants. 2019;8(2). DOI 10.3390/plants8020047.
Gorshkova T., Chernova T., Mokshina N., Gorshkov V., Kozlova L., Gorshkov O. Transcriptome analysis of intrinsically growing flax fibers isolated by laser microdissection. Sci. Rep. 2018;8(1):14570. DOI 10.1038/s41598-018-32869-2.
Goyal A., Sharma V., Upadhyay N., Gill S., Sihag M. Flax and flaxseed oil: an ancient medicine & modern functional food. J. Food Sci. Technol. 2014;59(1):1633-1653. DOI 10.1007/s13197-013-1247-9.
He J., Zhao X., Laroche A., Lu Z.X., Liu H., Li Z. Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Front. Plant Sci. 2014;5:484. DOI 10.3389/fpls.2014.00484.
Kage U., Kumar A., Dhole K., Darre S., Kushalappa A.C. Functional molecular markers for crop improvement. Crit. Rev. Biotechnol. 2013;1-14. DOI 10.1080/07388551.2015.1062743.
Kage U., Leaf A., Smuts A.B., Blackie J.C., Sintenis C., Speranskaya M., Varshney R.K., Nayak S.N., May G.D., Jackson S.A. Next-generation sequencing technologies and their applications for crop genetics and breeding. Trends Biotechnol. 2009;27(9):522-530. DOI 10.1016/j.tibtech.2009.05.006.
Wang Z., Hobson N., Galindo L., Zhu S., Shi D., McDill J., Yang L., Hawkins S., Neutelings G., Datla R., Lambert G., Galbraith D.W., Grassa C.J., Geraldes A., Cron Q.C., Cullis C., Dash P.K., Maru P.A., Clouter S., Sharpe A.G., Wong G.K., Wang J., Deyholos M.K. The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads. Plant J. 2012;72(3):461-473. DOI 10.1111/j.1365-313X.2012.05093.x.
Wojtasik W., Kulma A., Boba A., Szopa J. Oligonucleotide treatment causes flax beta-glucanase up-regulation via changes in gene-body methylation. BMC Plant Biol. 2014;14:261. DOI 10.1186/s12870-014-0261-z.
Wojtasik W., Kulma A., Dymińska L., Hanuza J., Czempil M., Szopa J. Evaluation of the significance of cell wall polymers in flax infected with a pathogenic strain of Fusarium oxysporum. BMC Plant Biol. 2016;16:75. DOI 10.1186/s12870-016-0762-z.
Wojtasik W., Kulma A., Namyls K., Preissner M., Szopa J. Polyamine metabolism in flax in response to treatment with pathogenic and non-pathogenic Fusarium strains. Front. Plant Sci. 2015;6:291. DOI 10.3389/fpls.2015.00291.
Wrobel-Kwiatkowska M., Lorenc-Kukula K., Starzycki M., Oszmianski J., Kepczynska E., Szopa J. Expression of beta-1,3-glucanase in flax causes increased resistance to fungi. Physiol. Mol. Plant Pathol. 2004;65(5):245-256. DOI 10.1016/j.pmpp.2005.02.008.
Wrobel-Kwiatkowska M., Starzycki M., Zebrowski J., Oszmianski J., Szopa J. Lignin deficiency in transgenic flax resulted in plants with improved mechanical properties. J. Biotechnol. 2007;128(4):919-934. DOI 10.1016/j.jbiotec.2006.12.030.
Wu J., Zhao Q., Wu G., Yuan H., Ma Y., Lin H., Han P., Li S., Sun D. Comprehensive analysis of differentially expressed unigenes under NaCl stress in flax (Linum usitatissimum L.) using RNA-Seq. Int. J. Mol. Sci. 2019;20(2). DOI 10.3390/ijms20020369.
You F.M., Xiao J., Li P., Yao Z., Jia G., He L., Zhu T., Luo M.C., Wang X., Deyholos M.K., Clouter S. Chromosome-scale pseudomolecules refined by optical, physical and genetic maps in flax. Plant J. 2018;92(2):371-384. DOI 10.1111/tpj.13944.
Yu Y., Huang W., Chen H., Wu G., Yuan H., Song X., Kang Q., Zhao D., Jiang W., Liu Y., Wu J., Cheng L., Yao Y., Guan F. Identification of differentially expressed genes in flax (Linum usitatissimum L.) under saline-alkaline stress by digital gene expression. Gene. 2014;549(1):113-122. DOI 10.1016/j.gene.2014.07.053.
Yu Y., Wu G., Yuan H., Cheng L., Zhao D., Huang W., Zhang S., Zhang L., Chen H., Zhang J., Guan F. Identification and characterization of miRNAs and targets in flax (Linum usitatissimum) under saline, alkaline, and saline-alkaline stresses. BMC Plant Biol. 2015;16(1):124. DOI 10.1186/s12870-016-0808-2.
Zeitoun A.M., Preissner M., Kulma A., Dyminska L., Hanuza J., Starzycki M., Szopa J. Does biopolymers composition in seeds contribute to the flax resistance against the Fusarium infection? Biotechnol. Prog. 2014;30(5):992-1004. DOI 10.1002/biot.1965.
