THE MATCHING RAMSEY NUMBER OF HYPERGRAPHS, REVISITED

MEYSAM ALISHAHI AND SAEED SHAEBANI

ABSTRACT. For positive integers \(r \) and \(t \), the hypergraph matching Ramsey number \(R_r(s_1, \ldots, s_t) \) is the least integer \(n \) such that for any \(t \)-hyperedge coloring of complete \(r \)-uniform hypergraph \(K_n^r \), there exists at least one \(j \in \{1, 2, \ldots, t\} \) such that the subhypergraph of all hyperedges receiving color \(j \) contains at least one matching of size \(s_j \). This parameter was completely determined by Alon, Frankl, and Lovász in 1986.

In 2015, the first present author and Hossein Hajibabalahassan found a sharp lower bound for the chromatic number of general Kneser hypergraphs by means of the notion of alternation number of hypergraphs. In this paper, as our first result, we establish a theory to give a development of this result. Doing so, as our second result, we resolve the problem of characterizing \(R_r(s_1,s_2,\ldots, s_t) \). Our final result is introducing a generalization of \(\mathbb{Z}_p \)-Tucker Lemma together with an application of this generalized lemma in determining the matching Ramsey number \(R_r(s_1, s_2, \ldots, s_t) \).

Keywords: Ramsey Number, Chromatic Number, General Kneser Hypergraph.
Mathematics Subject Classification: 05C15

1. Introduction

A hypergraph \(\mathcal{H} \) is an ordered pair \(\mathcal{H} = (V, E) \), where \(V \) is a set (called the vertex set of \(\mathcal{H} \)) and \(E \) is a set of some nonempty subsets of \(V \) (called the hyperedge set of \(\mathcal{H} \)). By a proper vertex coloring of \(\mathcal{H} \), we mean a function \(c : V(\mathcal{H}) \rightarrow C \) such that for each \(S \in E(\mathcal{H}) \) with \(|S| \geq 2 \) we have \(|\{c(v) : v \in S\}| \geq 2 \). Such a set \(C \) is called the set of colors. By a singleton hyperedge of \(\mathcal{H} \), we mean a hyperedge \(e \) with \(|e| = 1 \). Whenever \(\mathcal{H} \) has no singleton hyperedges, we define the chromatic number of \(\mathcal{H} \), denoted by \(\chi(\mathcal{H}) \), as the minimum cardinality of a set \(C \) such that a proper vertex coloring \(f : V(\mathcal{H}) \rightarrow C \) exists. If \(\mathcal{H} \) has some singleton hyperedges, then we define \(\chi(\mathcal{H}) = +\infty \).

For any nonnegative integer \(n \), let the symbols \([n] \) denote the set \(\{1, \ldots, n\} \). Also, for a positive integer \(r \geq 2 \), let \(\mathbb{Z}_r = \{\omega, \omega^2, \ldots, \omega^r\} \) be a cyclic group of order \(r \) with generator \(\omega \). For a vector \(X = (x_1, x_2, \ldots, x_n) \in (\mathbb{Z}_r \cup \{0\})^n \setminus \{0\} \), a subsequence of nonzero terms of \(X \) is called alternating if each two consecutive terms of this subsequence are different. The length of the longest alternating subsequence of \(X \) is denoted by \(\text{alt}(X) \). For example, if we set \(r = 3, n = 6 \), and \(X = (\omega^2, 0, \omega^2, \omega^3, 0, \omega^3) \), then \(\text{alt}(X) = 3 \). Also, we define \(\text{alt}(0, \ldots, 0) \) to be zero. For an \(X = (x_1, x_2, \ldots, x_n) \in (\mathbb{Z}_r \cup \{0\})^n \) and \(\epsilon \in \mathbb{Z}_r \), we define \(X^\epsilon \subset [n] \) to be the set of all indices \(j \) such that \(x_j = \epsilon \), i.e., \(X^\epsilon = \{j : x_j = \epsilon\} \). By abuse of language, we can write \(X = (X^\epsilon)_{\epsilon \in \mathbb{Z}_r} \).

Let \(\mathcal{H} \) be a hypergraph with \(n \) vertices and \(\sigma : [n] \rightarrow V(\mathcal{H}) \) be an injective mapping. We define \(\text{alt}_r(\mathcal{H}, \sigma) \) to be the maximum possible value of \(\text{alt}(X) \) for \(X = (X^\epsilon)_{\epsilon \in \mathbb{Z}_r} \in (\mathbb{Z}_r \cup \{0\})^n \) such that none of \(\sigma(X^\epsilon) \) contains any hyperedge of \(\mathcal{H} \). In other words,

\[
\text{alt}_r(\mathcal{H}, \sigma) = \max \{\text{alt}(X) : X \in (\mathbb{Z}_r \cup \{0\})^n \text{ and for each } \epsilon \in \mathbb{Z}_r, \text{ we have } E(\mathcal{H}[\sigma(X^\epsilon)]) = \emptyset\}.
\]

The alternation number of \(\mathcal{H} \), \(\text{alt}_r(\mathcal{H}) \), is the minimum possible value for \(\text{alt}_r(\mathcal{H}, \sigma) \) where the minimum is taken over all injective mappings \(\sigma : [n] \rightarrow V(\mathcal{H}) \).

The general Kneser hypergraph \(KG_r(\mathcal{H}) \) is an \(r \)-uniform hypergraph which has \(E(\mathcal{H}) \) as vertex set and whose hyperedges are formed by \(r \) pairwise disjoint hyperedges of \(\mathcal{H} \), i.e.,

\[
E(KG_r(\mathcal{H})) = \{\{e_1, \ldots, e_r\} : e_i \cap e_j = \emptyset \text{ for all } i \neq j\}.
\]
Alishahi and Hajiabolhassan [3] presented a lower bound for the chromatic number of general Kneser hypergraphs $KG^r(\mathcal{H})$ in terms of n and $\text{alt}_r(\mathcal{H})$.

Theorem 1. ([3]) For an integer $r \geq 2$ and a hypergraph \mathcal{H}, we have
\[\chi (KG^r(\mathcal{H})) \geq \left\lceil \frac{|V(\mathcal{H})| - \text{alt}_r(\mathcal{H})}{r-1} \right\rceil. \]

Theorem 1 was applied on various families of graphs to compute their chromatic numbers or investigating their coloring properties; see [1, 2, 4, 5, 6, 10, 14].

For two positive integers n and r, the symbol $[n]^r$ denotes the set of all r-subsets of $[n]$. The **complete r-uniform hypergraph** K_n^r is a hypergraph with vertex set $[n]$ and the hyperedge set $[n]^r$. A set consisting of m pairwise disjoint hyperedges of a hypergraph is called an m-*matching*. For positive integers r and t, the (r,t)-hypergraph matching Ramsey number, $R_r(s_1, s_2, \ldots, s_t)$, is the least integer n such that for any t-hyperedge coloring of K_n^r, say $c : [n]^r \to [t]$, there exists at least one $j \in [t]$ and at least one matching of size s_j such that each hyperedge of this matching receives j as its color.

The hypergraph matching Ramsey number was studied in different languages in the literature, see [7, 8, 11, 12], and it was completely characterized by Alon, Frankl, and Lovász [7], as follows.

Theorem 2. ([7]) Let s_1, s_2, \ldots, s_t, and r be positive integers with $s_1 \leq s_2 \leq \cdots \leq s_t$. Then
\[R_r(s_1, s_2, \ldots, s_t) = 1 + \sum_{i=1}^{t} s_i + s_t(r-1) - t. \]

Outline of The Paper. In the rest, first we establish a development of Theorem 1 in Section 2. Then, based on the results of Section 2, we resolve Theorem 2 in Section 3. Finally, in Section 4, we give a generalization of \mathbb{Z}_p-Tucker Lemma together with an application of this generalized lemma in determining the matching Ramsey number $R_r(s_1, s_2, \ldots, s_t)$.

2. Matching Coloring of Hypergraphs

Let \mathcal{H} be a hypergraph with n vertices and r be a positive integer. A mapping $\tau : \mathbb{N} \to \{0, 1, \ldots, r-1\}$ is called a color-frequency mapping. For a subset A of \mathbb{N}, an (A, τ)-matching coloring of \mathcal{H} is a mapping $c : E(\mathcal{H}) \to A$ such that for each $a \in A$, the hypergraph induced by the hyperedges receiving a as their color has no matching of size $\tau(a) + 1$. In other words, there is no a-monochromatic $(\tau(a) + 1)$-matching. The **τ-matching chromatic number** of \mathcal{H}, denoted by $\chi_M(\tau, \mathcal{H})$, is the least possible cardinality of a finite subset A of \mathbb{N} such that \mathcal{H} admits an (A, τ)-matching coloring. If there exists no such finite subset A, then we define $\chi_M(\tau, \mathcal{H})$ to be infinite.

The following theorem provides a sharp lower bound for the τ-matching chromatic number of hypergraphs.

Theorem 3. Let $r \geq 2$ be an integer and $\tau : \mathbb{N} \to \{0, 1, \ldots, r-1\}$ be a color-frequency mapping. Then, for any hypergraph \mathcal{H}, we have
\[\chi_M(\tau, \mathcal{H}) \geq \min \left(\left\{ |A| : A \subset \mathbb{N}, \ A \text{ is finite, and } \sum_{a \in A} \tau(a) \geq |V(\mathcal{H})| - \text{alt}_r(\mathcal{H}) \right\} \cup \{+\infty\} \right). \]

Note that Theorem 3 is a generalization of Theorem 1. To see this, consider the color-frequency mapping $\tau : \mathbb{N} \to \{0, 1, \ldots, r-1\}$ such that $\tau(a) = r-1$ for each $a \in \mathbb{N}$. Now, it is clear that
\[\chi_M(\tau, \mathcal{H}) = \chi(KG^r(\mathcal{H})) \] and
\[\min \left\{ |A| : A \subseteq \mathbb{N} \text{ and } \sum_{a \in A} \tau(a) \geq |V(\mathcal{H})| - \text{alt}_r(\mathcal{H}) \right\} = \left\lceil \frac{|V(\mathcal{H})| - \text{alt}_r(\mathcal{H})}{r-1} \right\rceil. \]

Proof of Theorem 3. Let \(\mathcal{H} \) be a hypergraph. If there is no finite subset \(A \subseteq \mathbb{N} \) such that \(\mathcal{H} \) admits an \((A, \tau)\)-matching coloring, then \(\chi_M(\tau, \mathcal{H}) = +\infty \) and there is nothing to prove.

Let \(A \) be a finite subset of \(\mathbb{N} \). Our procedure is to show that if \(\mathcal{H} \) admits an \((A, \tau)\)-matching coloring \(c : E(\mathcal{H}) \to A \), then we have \(\sum_{a \in A} \tau(a) \geq |V(\mathcal{H})| - \text{alt}_r(\mathcal{H}) \). In this regard, for each \(a \) in \(\mathcal{H} \) with \(\tau(a) < r-1 \), we add \(r - 1 - \tau(a) \) additional vertices \(x_1^{(a)}, x_2^{(a)}, \ldots, x_{r-1-\tau(a)}^{(a)} \) to \(\mathcal{H} \) together with adding all additional singleton hyperedges \(\{x_1^{(a)}\}, \{x_2^{(a)}\}, \ldots, \{x_{r-1-\tau(a)}^{(a)}\} \) to \(E(\mathcal{H}) \) in order to obtain a new hypergraph \(\mathcal{H} \). Also, we extend the hyperedge coloring \(c : E(\mathcal{H}) \to A \) to a hyperedge coloring of \(\mathcal{H} \), say \(\tilde{c} : E(\mathcal{H}) \to A \), in such a way that for each \(a \) in \(\mathcal{H} \) with \(\tau(a) < r-1 \), all additional singleton hyperedges \(\{x_1^{(a)}\}, \{x_2^{(a)}\}, \ldots, \{x_{r-1-\tau(a)}^{(a)}\} \) are colored by \(a \). On one hand, since \(c : E(\mathcal{H}) \to A \) is an \((A, \tau)\)-matching coloring of \(\mathcal{H} \), for each \(a \) in \(A \), the size of each matching in \(E(\mathcal{H}) \) whose hyperedges are colored by \(a \) is less than or equal to \(\tau(a) \). On the other hand, there are exactly \(r - 1 - \tau(a) \) hyperedges in \(E(\mathcal{H}) - E(\mathcal{H}) \) that are colored by \(a \) under \(\tilde{c} : E(\mathcal{H}) \to A \). We conclude that for each \(a \) in \(A \), the size of any matching in \(E(\mathcal{H}) \) whose hyperedges are colored by \(a \) is at most \(r - 1 \). Therefore, \(\tilde{c} : E(\mathcal{H}) \to A \) is a proper vertex coloring of \(KG^r(\mathcal{H}) \). So, we have
\[|A| \geq \chi(KG^r(\mathcal{H})) \geq \frac{|V(\mathcal{H})| - \text{alt}_r(\mathcal{H})}{r-1}; \]
and therefore,
\[(r - 1)|A| \geq |V(\mathcal{H})| - \text{alt}_r(\mathcal{H}). \]

Since \((r - 1)|A| = \left(\sum_{a \in A} \tau(a) \right) + |V(\mathcal{H})| - |V(\mathcal{H})| \) and \(\text{alt}_r(\mathcal{H}) = \text{alt}_r(\mathcal{H}) \), we have
\[\left(\sum_{a \in A} \tau(a) \right) + |V(\mathcal{H})| - |V(\mathcal{H})| \geq |V(\mathcal{H})| - \text{alt}_r(\mathcal{H}); \]
and therefore, \(\sum_{a \in A} \tau(a) \geq |V(\mathcal{H})| - \text{alt}_r(\mathcal{H}) \); as desired.

In the proof of Theorem 3, the procedure is showing that for every finite subset \(A \) of \(\mathbb{N} \) that an \((A, \tau)\)-matching coloring exists, we have
\[\sum_{a \in A} \tau(a) \geq |V(\mathcal{H})| - \text{alt}_r(\mathcal{H}). \]

If \(\mathcal{H} \) has at least one hyperedge, then every \((A, \tau)\)-matching coloring of \(\mathcal{H} \) satisfies \(A \neq \emptyset \). So, we can rewrite Theorem 3 as follows.
Theorem 4. Let \(r \geq 2 \) be an integer and \(\tau : \mathbb{N} \rightarrow \{0,1,\ldots,r-1\} \) be a color-frequency mapping. Then, for any hypergraph \(H \) with \(E(H) \neq \emptyset \), we have

\[
\chi_M(\tau,H) \geq \min \left(\left\{ |A| : \emptyset \neq A \subset \mathbb{N}, A \text{ is finite, and } \sum_{a \in A} \tau(a) \geq |V(H)| - \text{alt}_r(H) \right\} \cup \{+\infty\} \right).
\]

In the rest of this section, we are concerned with showing that the lower bounds in Theorems 3 and 4 are sharp.

Proposition 1. Let \(n, k, \) and \(r \) be positive integers with \(r \geq 2 \) and \(n \geq k \) and \(n - r(k-1) \geq 0 \). Also, let \(\tau : \mathbb{N} \rightarrow \{0,1,\ldots,r-1\} \) be a color-frequency mapping such that \(r - 1 \in \tau(\mathbb{N}) \). We have

\[
\chi_M(\tau,K^k_n) \leq \min \left(\left\{ |A| : \emptyset \neq A \subset \mathbb{N}, A \text{ is finite, and } \sum_{a \in A} \tau(a) \geq n - r(k-1) \right\} \cup \{+\infty\} \right).
\]

Proof. If there is no nonempty finite subset \(A \) of \(\mathbb{N} \) such that \(\sum_{a \in A} \tau(a) \geq n - r(k-1) \), then the right-hand side of the inequality is \(+\infty\) and the proof is completed. So, let us suppose that there exists a nonempty finite subset \(A := \{a_1,a_2,\ldots,a_t\} \) of \(\mathbb{N} \) with \(\tau(a_1) \leq \tau(a_2) \leq \cdots \leq \tau(a_t) \) and \(\sum_{a \in A} \tau(a) \geq n - r(k-1) \). Our aim is to show that for each such \(A \), there exists some subset \(B \) of \(\mathbb{N} \) such that \(|B| = |A| \) and \(r - 1 \in \tau(B) \) and \(\sum_{b \in B} \tau(b) \geq \sum_{a \in A} \tau(a) \geq n - r(k-1) \) for which \(K^k_n \) admits a \((B,\tau)\)-matching coloring.

If \(\tau(a_t) = r - 1 \), then we set \(B = A \). Otherwise, if \(\tau(a_t) \neq r - 1 \), then due to \(r - 1 \in \tau(\mathbb{N}) \), we consider a positive integer \(x \) with \(\tau(x) = r - 1 \) and put \(B := (A - \{a_t\}) \cup \{x\} \). So, in both cases, we have \(|B| = |A|\) and \(r - 1 \in \tau(B) \) and \(\sum_{b \in B} \tau(b) \geq \sum_{a \in A} \tau(a) \geq n - r(k-1) \). For the sake of simplicity of symbols, put \(B = \{b_1,b_2,\ldots,b_t\} \) with \(\tau(b_t) = r - 1 \).

We consider \(t \) pairwise disjoint sets \(S_1,S_2,\ldots,S_t \) such that the following three conditions are hold:

- \(\bigcup_{i=1}^{t} S_i = [n] \),
- For each \(i \) in \(\{1,2,\ldots,t-1\} \) we have \(|S_i| \leq \tau(b_i) \),
- \(|S_t| \leq r(k-1) + \tau(b_t) = r(k-1) + r - 1 = rk - 1 \).

Define \(c : E(K^k_n) \rightarrow B \) such that each \(e \in E(K^k_n) = \binom{[n]}{k} \) is mapped to \(c(e) := \min\{i : e \cap S_i \neq \emptyset\} \). The mapping \(c \) is a \((B,\tau)\)-matching coloring of \(\binom{[n]}{k} \); and therefore, the assertion follows. \(\square \)

In Proposition 1, if we assume \(n \geq rk \) instead of \(n \geq r(k-1) \), we obtain the following proposition.

Proposition 2. Let \(n, k, \) and \(r \) be positive integers with \(r \geq 2 \) and \(n \geq rk \). Also, let \(\tau : \mathbb{N} \rightarrow \{0,1,\ldots,r-1\} \) be a color-frequency mapping such that \(r - 1 \in \tau(\mathbb{N}) \). We have

\[
\chi_M(\tau,K^k_n) \leq \min \left(\left\{ |A| : A \subset \mathbb{N}, A \text{ is finite, and } \sum_{a \in A} \tau(a) \geq n - r(k-1) \right\} \cup \{+\infty\} \right).
\]

It is worth pointing out that if \(n \geq r(k-1) \), then \(\text{alt}_r(K^k_n) = r(k-1) \). Therefore, combining Theorem 3 and Proposition 2, leads to the following corollary to show that the lower bound in Theorem 3 is sharp.
Corollary 1. Let n, k, and r be positive integers such that $r \geq 2$ and $n \geq rk$. For any color-
frequency mapping $\tau : \mathbb{N} \rightarrow \{0, 1, \ldots, r - 1\}$ with $r - 1 \in \tau(\mathbb{N})$, the τ-matching chromatic number
of K_n^k, say $\chi_M(\tau, K_n^k)$, is equal to

$$\min \left(\left\{ |A| : A \subset \mathbb{N}, A \text{ is finite, and } \sum_{a \in A} \tau(a) \geq \left| V \left(K_n^k \right) \right| - alt_r \left(K_n^k \right) \right\} \bigcup \{+\infty\} \right).$$

Also, combining Theorem 4 and Proposition 1, leads to the following corollary to show that the lower bound in Theorem 4 is sharp.

Corollary 2. Let n, k, and r be positive integers with $r \geq 2$ and $n \geq k$ and $n - r(k - 1) \geq 0$. Also, let $\tau : \mathbb{N} \rightarrow \{0, 1, \ldots, r - 1\}$ be a color-frequency mapping such that $r - 1 \in \tau(\mathbb{N})$. Then, $\chi_M(\tau, K_n^k)$ equals

$$\min \left(\left\{ |A| : \emptyset \neq A \subset \mathbb{N}, A \text{ is finite, and } \sum_{a \in A} \tau(a) \geq \left| V \left(K_n^k \right) \right| - alt_r \left(K_n^k \right) \right\} \bigcup \{+\infty\} \right).$$

3. Resolving Alon-Frankl-Lovász’s Theorem

The aim of this Section is presenting another proof of Theorem 2, as follows.

Another proof of Theorem 2. If $r = 1$ or $t = 1$ or $s_t = 1$, then the assertion follows. Therefore, we may assume that $r \geq 2$ and $t \geq 2$ and $s_t \geq 2$.

Define a color-frequency mapping $\tau : \mathbb{N} \rightarrow \{0, 1, \ldots, s_t - 1\}$ such that for each $i \in \mathbb{N}$,

$$\tau(i) = \begin{cases}
 s_i - 1 & \text{if } i \in [t] \\
 0 & \text{otherwise}.
\end{cases}$$

In view of Theorem 3, if $\sum_{a \in \mathbb{N}} \tau(a) = \sum_{i=1}^{t} (s_i - 1) < n - alt_s(K_n^r)$, then there is no (A, τ)-matching
coloring of K_n^r for each finite set $A \subset \mathbb{N}$. This implies that since $alt_s(K_n^r) \leq s_t(r - 1)$, for each
$n \geq 1 + \sum_{i=1}^{t} (s_i - 1) + s_t(r - 1)$ and any t-hyperedge coloring $c : \binom{[n]}{r} \rightarrow [t]$, there are $j \in [t]
and s_j$ pairwise disjoint hyperedges $e_1, e_2, \ldots, e_{s_j} \in E(K_n^r)$ such that $c(e_1) = \cdots = c(e_{s_j}) = j$. In
other words, there is a matching M of size s_j whose hyperedges are colored with the same color j. Consequently, we have

$$R_r(s_1, s_2, \ldots, s_t) \leq 1 + \sum_{i=1}^{t} s_i + s_t(r - 1) - t.$$

So, it suffices to show that

$$R_r(s_1, s_2, \ldots, s_t) \geq 1 + \sum_{i=1}^{t} s_i + s_t(r - 1) - t.$$

In this regard, we consider t pairwise disjoint sets S_1, S_2, \ldots, S_t such that the following three conditions are hold :

- $\bigcup_{i=1}^{t} S_i = \left[\sum_{i=1}^{t} s_i + s_t(r - 1) - t \right]$,
- For each i in \{1, 2, \ldots, t - 1\} we have $|S_i| = s_i - 1$,
- $|S_t| = s_t(r - 1) + s_t - 1 = s_tr - 1$.

5
For the sake of simplicity, put \(\Lambda := \sum_{i=1}^{t} s_i + s_t(r - 1) - t \). Define a \textit{bad} \(t \)-hyperedge coloring \(C_{\text{bad}} : E(K_1^n) \to [t] \) such that each \(e \in E(K_1^n) = \left(\frac{[\Lambda]}{r} \right) \) is mapped to \(C_{\text{bad}}(e) := \min \{ i : e \cap S_i \neq \emptyset \} \). Since for each \(i \) in \([t]\) there are not any matchings of size \(s_t \) whose all hyperedges are colored by \(i \), we conclude that

\[
R_r(s_1, s_2, \ldots, s_t) \geq 1 + \sum_{i=1}^{t} s_i + s_t(r - 1) - t;
\]

which is desired. \(\Box \)

4. The \(Z_p \)-Tucker Lemma : A Generalization

This section is devoted to present a generalization of \(Z_p \)-Tucker Lemma.

The \(Z_p \)-Tucker Lemma is a development of the celebrated Tucker’s Lemma (which is equivalent to the famous Borsuk-Ulam Theorem). There are various important and surprising applications of Tucker’s Lemma. For a very detailed discussion in this matter, one can see the interesting reference [13].

First, we present the \(Z_p \)-Tucker Lemma. In this regard, we should note that for \(X_1 \) and \(X_2 \) in \((\mathbb{Z}_p \cup \{0\})^n\), we write \(X_1 \subset X_2 \) whenever for each \(\epsilon \in \mathbb{Z}_p \) we have \(X_1^\epsilon \subseteq X_2^\epsilon \).

Lemma 1. ([15, 16]) \((\mathbb{Z}_p \)-Tucker Lemma) Let \(m \) and \(n \) be positive integers, \(p \) be a prime number, and \(\alpha \) be nonnegative integer with \(0 \leq \alpha \leq m \). Also, let

\[
\lambda : (\mathbb{Z}_p \cup \{0\})^n \setminus \{0\} \to \mathbb{Z}_p \times [m]
\]

be a mapping that satisfies all of the following three properties simultaneously:

1. The mapping \(\lambda \) is a \(\mathbb{Z}_p \)-equivariant mapping, that is, for each \(\omega \in \mathbb{Z}_p \), we have
 \[
 \lambda_1(\omega^j X) = \omega^j \lambda_1(X) \text{ and } \lambda_2(\omega^j X) = \lambda_2(X).
 \]
2. For all \(X_1 \subset X_2 \in (\mathbb{Z}_p \cup \{0\})^n \setminus \{0\} \), the condition \(\lambda_2(X_1) = \lambda_2(X_2) \leq \alpha \) implies \(\lambda_1(X_1) = \lambda_1(X_2) \).
3. For all \(X_1 \subset X_2 \subset \cdots \subset X_p \in (\mathbb{Z}_p \cup \{0\})^n \setminus \{0\} \), if \(\lambda_2(X_1) = \lambda_2(X_2) = \cdots = \lambda_2(X_p) \geq \alpha + 1 \), then
 \[
 |\{\lambda_1(X_1), \lambda_1(X_2), \ldots, \lambda_1(X_p)\}| \leq p - 1.
 \]

Then, we have

\[
\alpha + (m - \alpha)(p - 1) \geq n.
\]

The next lemma is a generalization of \(\mathbb{Z}_p \)-Tucker Lemma. The proof is similar to the one by Meunier [15].

Lemma 2. Let \(p \) be a prime number and let \(\gamma_1, \gamma_2, \ldots, \gamma_m \in [p - 1] \). Also, let

\[
\lambda : (\mathbb{Z}_p \cup \{0\})^n \setminus \{0\} \to \mathbb{Z}_p \times [m]
\]

be a \(\mathbb{Z}_p \)-equivariant mapping such that for each \(i \in [m] \) and for each chain \(X_1 \subset X_2 \subset \cdots \subset X_i \in (\mathbb{Z}_p \cup \{0\})^n \setminus \{0\} \), if \(\lambda_2(X_1) = \lambda_2(X_2) = \cdots = \lambda_2(X_i) = i \), then

\[
|\{\lambda_1(X_1), \lambda_1(X_2), \ldots, \lambda_1(X_i)\}| \leq \gamma_i.
\]

Then, we have

\[
\sum_{i=1}^{m} \gamma_i \geq n.
\]
Proof. Clearly, the mapping λ can be considered as a \mathbb{Z}_p-equivariant simplicial mapping from $\mathrm{sd} (\mathbb{Z}_p^n)$ to

$$C = \left(\sigma_{y_1-1}^{p-1} \right) \ast \cdots \ast \left(\sigma_{y_m-1}^{p-1} \right).$$

Therefore, by Dold’s Theorem [9, 13], the dimension of C must be strictly larger than the connectivity of $\mathrm{sd} (\mathbb{Z}_p^n)$; which implies

$$\sum_{i=1}^{t} \gamma_i - 1 > n - 2;$$

as desired. \hfill \square

One can observe that Lemma 2 is a development of \mathbb{Z}_p-Tucker Lemma by regarding

$$\gamma_1 = \gamma_2 = \cdots = \gamma_\alpha = 1, \text{ and } \gamma_{\alpha+1} = \gamma_{\alpha+2} = \cdots = \gamma_m = p - 1.$$

The following proposition is a special case of Theorem 3; nevertheless, its proof shows an explicit application of Lemma 2.

Proposition 3. Let p be a prime number and $\tau : \mathbb{N} \rightarrow \{0, 1, \ldots, p - 1\}$ be a color-frequency mapping. Then, for any hypergraph \mathcal{H}, we have

$$\chi_M (\tau, \mathcal{H}) \geq \min \left(\left\{ |A| : A \subset \mathbb{N}, \text{ A is finite, and } \sum_{a \in A} \tau(a) \geq |V(\mathcal{H})| - \mathrm{alt}_p(\mathcal{H}) \right\} \right).$$

Proof of Proposition 3 by means of Lemma 2. Let $|V(\mathcal{H})| = n$ and consider a bijection $\sigma : [n] \rightarrow V(\mathcal{H})$ such that $\mathrm{alt}_p (\mathcal{H}, \sigma) = \mathrm{alt}_p (\mathcal{H})$. First note that if there is no finite subset $A \subset \mathbb{N}$ such that \mathcal{H} admits an (A, τ)-matching coloring, then $\chi_M (\tau, \mathcal{H}) = +\infty$ and there is nothing to prove. Therefore, we can assume that $\chi_M (\tau, \mathcal{H}) = t$ is finite. If $t = 0$, then \mathcal{H} has not any hyperedges; and therefore, $\mathrm{alt}_p (\mathcal{H}) = |V(\mathcal{H})|$. Hence, the empty set satisfies $\sum_{a \in \emptyset} \tau(a) = |V(\mathcal{H})| - \mathrm{alt}_p (\mathcal{H}) = 0$; and we are done. So, we may assume that t is a positive integer. Let $c : E(\mathcal{H}) \rightarrow A$ be an (A, τ)-matching coloring of \mathcal{H} where $A = \{a_1, a_2, \ldots, a_t\}$ and $a_1 < a_2 < \cdots < a_t$. To prove the assertion, we need to show that $n \leq \mathrm{alt}_p (\mathcal{H}) + \sum_{a \in A} \tau(a)$.

Let $m = \mathrm{alt}_p (\mathcal{H}) + t$. For each $i \in [m]$, define

$$\gamma_i = \begin{cases} 1 & \text{if } i \leq \mathrm{alt}_p (\mathcal{H}) \\ \tau(a_{i-\mathrm{alt}_p (\mathcal{H})}) & \text{if } i \geq \mathrm{alt}_p (\mathcal{H}) + 1. \end{cases}$$

Now, we consider a mapping

$$\lambda : (\mathbb{Z}_p \cup \{0\})^n \setminus \{0\} \rightarrow \mathbb{Z}_p \times [m]$$

in order to apply Lemma 2. We endow $2^{[n]}$ with an arbitrary total ordering \leq.

- If $X \in (\mathbb{Z}_p \cup \{0\})^n \setminus \{0\}$ satisfies $\mathrm{alt}(X) \leq \mathrm{alt}_p (\mathcal{H}, \sigma)$, then set $\lambda_1 (X)$ to be the first nonzero component of X and put $\lambda_2 (X) = \mathrm{alt}_p (X)$.
- If $X \in (\mathbb{Z}_p \cup \{0\})^n \setminus \{0\}$ satisfies $\mathrm{alt}(X) > \mathrm{alt}_p (\mathcal{H}, \sigma)$, then there exists some $\epsilon \in \mathbb{Z}_p$ such that $\sigma(X')$ is a superset of at least one hyperedge e of \mathcal{H}, i.e., $e \subseteq \sigma(X')$. We define $\zeta(X)$ as the maximum positive integer j for which there exists an $\epsilon \in \mathbb{Z}_p$ and some hyperedge $e \in E(\mathcal{H})$ such that $e \subseteq \sigma(X')$ and $c(e) = a_j$. Set $\lambda_2 (X) = \zeta(X) + \mathrm{alt}_p (\mathcal{H})$. For determining $\lambda_1 (X)$, put $\zeta(X) = j$ and choose $X^{\lambda_1 (X)}$ as the maximum X' with respect to the ordering \leq such that $\sigma(X')$ is a superset of some hyperedge e with $c(e) = a_j$.
Since the mapping λ satisfies the condition of Lemma 2 with respect to prior presented γ_i‘s, we conclude that

$$n \leq \sum_{i=1}^{m} \gamma_i$$

$$= \text{alt}_p(H) + \sum_{a \in A} \tau(a);$$

as desired. \hfill \Box

Using the previous proposition, we can prove the following proposition, which shows an application of Lemma 2 in determining $R_r(s_1, s_2, \ldots, s_t)$ for some special cases.

Proposition 4. Let s_1, s_2, \ldots, s_t, p, and r be positive integers, where p is a prime number and $s_1 \leq s_2 \leq \cdots \leq s_t \leq p$. Then

$$1 + \sum_{i=1}^{t} s_i + s_t(r - 1) - t \leq R_r(s_1, s_2, \ldots, s_t) \leq 1 + \sum_{i=1}^{t} s_i + p(r - 1) - t.$$

In particular, we have

$$R_r(s_1, s_2, \ldots, s_t) = 1 + \sum_{i=1}^{t} s_i + s_t(r - 1) - t,$$

provided that s_t is a prime number.

Remark. In a forthcoming paper, the second author extends the familiar results for all variations of colorability defect and equitable colorability defects of hypergraphs and multihypergraphs.

Acknowledgement

The authors wish to express their gratitude to Professor Hossein Hajiabolhassan for many stimulating conversations.

References

[1] M. Alishahi and H. Hajiabolhassan. A Note on Altermatic Number. *ArXiv e-prints*, October 2015.

[2] Meysam Alishahi and Hossein Hajiabolhassan. On the chromatic number of matching Kneser graphs. *Combinatorics, Probability and Computing*, page 1–21.

[3] Meysam Alishahi and Hossein Hajiabolhassan. On the chromatic number of general Kneser hypergraphs. *Journal of Combinatorial Theory, Series B*, 115:186 – 209, 2015.

[4] Meysam Alishahi and Hossein Hajiabolhassan. Chromatic number via Turán number. *Discrete Mathematics*, 340(10):2366 – 2377, 2017.

[5] Meysam Alishahi and Hossein Hajiabolhassan. Altermatic number of categorical product of graphs. *Discrete Mathematics*, 341(5):1316 – 1324, 2018.

[6] Meysam Alishahi and Hossein Hajiabolhassan. On chromatic number and minimum cut. *Journal of Combinatorial Theory, Series B*, 139:27 – 46, 2019.

[7] N. Alon, P. Frankl, and L. Lovász. The chromatic number of Kneser hypergraphs. *Trans. Amer. Math. Soc.*, 298(1):359–370, 1986.

[8] E. J. Cockayne and P. J. Lorimer. The Ramsey number for stripes. *Journal of the Australian Mathematical Society*, 19(2):252–256, 1975.

8
[9] Albrecht Dold. Simple proofs of some Borsuk-Ulam results. In Proceedings of the Northwestern Homotopy Theory Conference (Evanston, Ill., 1982), volume 19 of Contemp. Math., pages 65–69. Amer. Math. Soc., Providence, RI, 1983.

[10] Hossein Hajiabolhassan and Frédéric Meunier. Hedetniemi’s conjecture for Kneser hypergraphs. Journal of Combinatorial Theory, Series A, 143:42–55, 2016.

[11] M. Kneser. Ein Satz über abelsche Gruppen mit Anwendungen auf die Geometrie der Zahlen. Math. Z., 61:429–434, 1955.

[12] L. Lovász. Kneser’s conjecture, chromatic number, and homotopy. J. Combin. Theory Ser. A, 25(3):319–324, 1978.

[13] Jiří Matoušek. Using the Borsuk-Ulam theorem. Universitext. Springer-Verlag, Berlin, 2003.

[14] F. Meunier. Colorful Subhypergraphs in Kneser Hypergraphs. Electron. J. Combin., 21(1): Research Paper #P1.8, 13 pp. (electronic), 2014.

[15] Frédéric Meunier. The chromatic number of almost stable Kneser hypergraphs. J. Combin. Theory Ser. A, 118(6):1820–1828, 2011.

[16] Günter M. Ziegler. Generalized Kneser coloring theorems with combinatorial proofs. Invent. Math., 147(3):671–691, 2002.

M. Alishahi, Faculty of Mathematical Sciences, Shahrood University of Technology, Shahrood, Iran
Email address: meysam_alishahi@shahroodut.ac.ir

S. Shaebani, School of Mathematics and Computer Science, Damghan University, P.O. Box 36716-41167, Damghan, Iran
Email address: shaebani@du.ac.ir