Time trends in the prevalence of diagnosed sialolithiasis from Taiwanese nationwide health insurance dental dataset

Yu-Hsun Wang a, Yi-Tzu Chen b, Yu-Wei Chiu b, Hui-Chieh Yu c, Yu-Chao Chang a,c,*

a Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
b Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
c School of Dentistry, Chung Shan Medical University, Taichung, Taiwan

Received 31 March 2019; Final revision received 25 April 2019
Available online 28 May 2019

Abstract Background/Purpose: Sialolithiasis, the so-called salivary gland stone, is a condition forming salivary calculi within a salivary gland or ducts. Little is known about the epidemiological survey of sialolithiasis in Taiwanese population. In this study, we conducted an age-period-cohort (APC) analysis evaluating the prevalence of sialolithiasis.

Materials and methods: A retrospective study was conducted to analyze the registered database compiled by the Taiwanese National Health Insurance Research Database from 1996 to 2013. The APC analysis was performed to investigate the effects of age, diagnosis period, and birth cohort with sialolithiasis.

Results: We found that the prevalence of sialolithiasis varied from 1.4 (10^5) to 2.3 (10^5). The mean age ± standard deviation with sialolithiasis from 1996 to 2013 was 37.7 ± 18.5 and 46.2 ± 18.6 years old, respectively. The prevalence was higher among male than female (RR: 1.10; 95% CI: 1.05–1.15, p < 0.001). The age > 65 group had higher risk compared to age < 40 group (RR: 2.27; 95% CI: 2.13–2.43, p < 0.001). The relative risk for sialolithiasis demonstrated significant age effect (p < 0.001). The relative risk for sialolithiasis did not show the significant period effect (p = 0.742). The relative risk for sialolithiasis demonstrated significant cohort effect (p = 0.01). The relative risk for sialolithiasis demonstrated significant APC effect (p = 0.002).

Conclusion: From this nationwide population-based database, the prevalence of sialolithiasis occurs more frequently in male than in female. In addition, the relative risk for sialolithiasis demonstrated the significant APC effects.

* Corresponding author. School of Dentistry, Chung Shan Medical University, 110, Sec. 1, Chien-Kuo N. Rd., Taichung, Taiwan. Fax: +886 4 24759065.
E-mail address: cyc@csmu.edu.tw (Y.-C. Chang).

https://doi.org/10.1016/j.jds.2019.04.003
1991-7902/© 2019 Association for Dental Sciences of the Republic of China. Publishing services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Sialolithiasis is characterized by a calcified mass within a salivary gland or duct mainly in major salivary gland and very rare in minor salivary glands. This condition usually leads to the obstruction of salivary duct and subsequently results in increased risk of bacterial infections. The symptoms are swelling, inflammation, and pain caused by the obstruction of physiological salivary flow and commonly meal related.2,3

The prevalence of sialolithiasis was between 1 and 2\%.4 From the literature review, the incidence rate of sialolithiasis was found about 2.9 and 5.5 per 100,000 person-years based on selected hospital data.5–7 Recently, the incidence rate of symptomatic sialolithiasis in Denmark was between 7.3 and 14.1 per 100,000 person-years.8

Little is known about the status of sialolithiasis in Taiwan. In this study, the prevalence of sialolithiasis was investigated by using National Health Insurance Research Database (NHIRD) from 1996 to 2013. The age-period-cohort (APC) analysis was performed to investigate the effects of age, diagnosis period, and birth cohort on sialolithiasis.

Materials and methods

Data source and ethical consideration

This study was approved by the Ethics Review Board at the Chung Shan Medical University Hospital. Dental dataset (DN),9 dental original claim data for ambulatory care expenditures by dental visit, was used for this retrospective study. Due to this dataset was analyzed anonymously, no informed consent from participants was required. This DN has been used for the epidemiology survey for dental diseases10,11 and even the conditions of emergency dental visits.12

Patient identification and measurements

The diagnosis of sialolithiasis was identified according to the International Classification of Disease, Ninth revision (ICD-9), code of 527.5. In this study, we identified dental visit patients with diagnosed sialolithiasis during the period between January 1, 1996 and December 31, 2013 for annual prevalence rate of sialolithiasis from DN.

APC analysis was performed to investigate the effects of age, diagnosis period, and birth cohort with sialolithiasis as described by Yu et al.13 Cases of sialolithiasis were categorized into 17 age groups (0–4 to 80–84), 3 period groups (1999–2004, 2005–2009, and 2010–2013), and 19 birth cohort groups (1918–2008) with a corresponding 5-year interval. Several models such as age alone, period alone, cohort alone, and age-period-cohort were generated. The goodness of fit for the specified model was evaluated by the deviance/degree of freedom (DF).

Statistical analysis

The relative risk of sialolithiasis from 1996 to 2013 after adjusting for year, age, and gender was evaluated by multivariate Poisson regression. Relative risk (RR), percent per year (PPY), and 95% confidence interval (CI) of sialolithiasis by APC analysis were calculated. All statistical analyses were performed with the SPSS version 18 (SPSS, Chicago, IL, USA).

Results

The sex-specific annual prevalence of sialolithiasis from 1996 to 2013 is presented in Table 1. The prevalence of sialolithiasis was ranged from 1.4 (per 10\(^5\)) to 2.3 (per 10\(^5\)). The average annual prevalence was 1.918 (per 10\(^5\)). As shown in Fig. 1, the mean age of patients with sialolithiasis was 46.24 years old. The prevalence of sialolithiasis stratified by age was shown in Fig. 2. The relative risk for sialolithiasis after APC analysis were calculated. All statistical analyses were performed with the SPSS version 18 (SPSS, Chicago, IL, USA).

In summary, the age and cohort effect were associated with the risk for sialolithiasis. As shown in Table 3, the relative risk for sialolithiasis demonstrated significant age effect (\(p < 0.001\)). In the period effect, there was not significant difference in the relative risk of sialolithiasis in different eras (Fig. 3B). As shown in Table 3, the relative risk for sialolithiasis did not show the significant period effect (\(p = 0.742\)).

In the cohort effect, the results demonstrated a significant higher sialolithiasis risk than the generation from 1978 to 2003 as compared with 1963 as a reference generation (Fig. 3C). As shown in Table 3, the relative risk for sialolithiasis demonstrated significant cohort effect (\(p = 0.01\)).

In summary, the age and cohort effect were associated with the risk for sialolithiasis. As shown in Table 3, the relative risk for sialolithiasis demonstrated significant APC effect (\(p = 0.002\)).
Discussion

In this study, the average annual prevalence of sialolithiasis was 1.918 (per 10^5) in Taiwan. The nationwide incidence of hospital-admitted sialolithiasis have been evaluated in Denmark based on ICD10 diagnosis.7,8 However, this is the first nationwide population based study to investigate the prevalence of sialolithiasis.

In this study, male had higher risk suffering from sialolithiasis than female. Similar results were found by Sigismund et al.3 in Germany, and Stelmach et al.14 in Poland. There was no significant gender difference in a University Hospital, San Francisco, USA. However, Schrøder SA et al.8

Table 1 Prevalence of sialolithiasis by gender.

Year	Total	Male	Female		
N	No. of Sialolithiasis P	N	No. of Sialolithiasis P	N	No. of Sialolithiasis P
1996	21,525,433 380	1.8 11,065,798 198	1.8 10,459,635 181	1.7 1.1	
1997	21,742,815 502	2.3 11,163,764 248	2.2 10,579,051 253	2.4 1.0	
1998	21,928,591 507	2.3 11,243,408 270	2.4 10,685,183 237	2.2 1.1	
1999	22,092,387 355	1.6 11,312,728 179	1.6 10,779,659 176	1.6 1.0	
2000	22,276,672 336	1.5 11,392,050 200	1.8 10,884,622 135	1.2 1.5	
2001	22,405,568 376	1.7 11,441,651 215	1.9 10,963,917 158	1.4 1.4	
2002	22,520,776 370	1.6 11,485,409 221	1.9 11,035,367 148	1.3 1.5	
2003	22,604,550 327	1.4 11,515,062 192	1.4 11,089,488 166	1.5 1.0	
2004	22,689,122 348	1.5 11,541,585 192	1.7 11,147,537 156	1.4 1.2	
2005	22,770,383 372	1.6 11,562,440 199	1.7 11,207,943 173	1.5 1.2	
2006	22,876,527 447	2.0 11,591,707 236	2.0 11,284,820 211	1.9 1.1	
2007	22,958,360 396	1.7 11,608,767 196	1.7 11,349,593 200	1.8 1.0	
2008	23,037,031 417	1.8 11,626,351 229	2.0 11,410,680 188	1.6 1.2	
2009	23,119,772 443	1.9 11,636,734 221	1.9 11,483,038 222	1.9 1.0	
2010	23,162,123 433	1.9 11,635,225 220	1.9 11,526,898 213	1.8 1.0	
2011	23,224,912 460	2.0 11,645,674 225	1.9 11,579,238 235	2.0 1.0	
2012	23,315,822 474	2.0 11,673,319 261	2.2 11,642,503 213	1.8 1.2	
2013	23,373,517 470	2.0 11,684,674 245	2.1 11,688,843 225	1.9 1.1	

P: prevalence rate per 100,000 population.

Table 2 Relative risk (RR) of sialolithiasis by multivariate Poisson regression.

RR	95% C.I.	p value			
Year (per 1 year)	1.00	0.99	1.00	0.281	
Age (ref: <40)	1.76	1.68	1.85	<0.001	
≥65	2.27	2.13	2.43	<0.001	
Gender (ref: female)	Male	1.10	1.05	1.15	<0.001

a Adjusted for year, age and gender.

Table 3 The results of age-period-cohort model for sialolithiasis.

Model	DF	Deviance	Deviance/DF	P-Value
Age	15	118.49	7.90	<0.001
Period	1	0.11	0.11	0.742
Cohort	17	33.53	1.97	0.01
Age-Period-Cohort	1	9.57	9.57	0.002

DF: degree of freedom.

Figure 1 Time trends for the mean age of patients with sialolithiasis from 1996 to 2013.

Figure 2 Age-specific group in the prevalence of sialolithiasis in Taiwan from 1996 to 2013.
who reported female had higher risk suffering from sialolithiasis than male in Denmark. The reason is not quite clear. There may be due to different race, geography region, and the contents of drinking water.

APC model is as a parametric statistical model widely used in epidemiology research to estimate the independent effect of age, time period and birth cohort rates of a particular event. Age effects are associated with the outcome of time. Period effects can affect all ages simultaneously over time. Birth cohort effects involve changes across groups with the same birth year who presented the same outcome during the same period. APC provides important clues for social, historical, and environmental factors that impacts disease morbidity or mortality. To the best of our knowledge, this is the first APC analysis of sialolithiasis in the world. The relative risk for sialolithiasis demonstrated significant APC effect.

The strength of this study was the use of same methodology to investigate the prevalence of sialolithiasis in data available from cross-sectional analysis conducted from 1996 to 2013. The use of a nationwide population-based database can provide sufficient sample size, generalizability, and statistical power to assess the status of sialolithiasis in Taiwan.

Birth cohort effects involve the changes across groups with the same birth year who presented the same outcome during the same period. The birth cohorts showed the highest ratio of sialolithiasis from 1998 to 2003. The reason may explain as following. In Taiwan, the National Health Insurance (NHI) program launched in 1995. Therefore, it is speculated that the NHI system has successfully improved the early diagnosis and the treatment demand of this disease. Taken together, this result can be a reference for developing the relevant oral health policies or promoting the prevention of sialolithiasis in specific age groups. It may assist in treatment strategies in this national dental care system for sialolithiasis.

However, there are still some limitations in this study. First, the prevalence of sialolithiasis might be underestimated by using DN database. It would miss to collect the diagnosis of sialolithiasis from medical doctors, especially the specialty on ear, nose, and throat. However, DN is the records of all dental visit per year from 1996 to 2013. This could provide the long-term monitor of diagnosed sialolithiasis from dental treatment. Second, the diagnosis of sialolithiasis was based on ICD-9 code. It could not obtain the actual locations of sialolithiasis form which salivary glands, either major or minor. Third, sialolithiasis can be difficult to diagnose because the sialolith is not always possible to visualize and the variation in the severity of symptoms. Therefore, further studies are required to identify the histopathological, examination with X-ray or sialography to improve the accurate diagnosis of sialolithiasis. Finally, one of the proposed factors is tobacco smoking. The DN dataset without the status of smoking should be noted.
Although the above limitations raise that may need future investigations, this study still remains valuable because it provides the first nationwide population-based survey in Taiwan currently. Our study revealed the prevalence of sialolithiasis occurs more frequently in male than in female. The relative risk for sialolithiasis demonstrated significant APC effects.

Conflicts of interest

The authors declare no conflict of interest.

References

1. Wang WC, Chen CY, Hsu HJ, Kuo JH, Lin LM, Chen YK. Sialolithiasis of minor salivary glands: a review of 17 cases. J Dent Sci 2016;11:152–5.
2. Lustmann J, Regev E, Melamed Y. Sialolithiasis: a survey on 245 patients and a review of the literature. Int J Oral Maxillofac Surg 1990;19:135–8.
3. Sigismund PE, Zenk J, Koch M, Schaper M, Rudes M, Iro H. Nearly 3000 salivary stones: some clinical and epidemiologic aspects. The Laryngoscope 2015;125:1879–82.
4. Rauch S, Gorlin RJ. Disease of the salivary glands. In: Gorlin RJ, Goldmann HM, eds. Oral pathology. St Louis, MO: Mosby, 1970: 997–1003.
5. Sherman JA, McGurk M. Lack of correlation between water hardness and salivary calculi in England. Br J Oral Maxillofac Surg 2000;38:50–3.
6. Escudier MP, McGurk M. Symptomatic sialoadenitis and sialolithiasis in the English population, an estimate of the cost of hospital treatment. Br Dent J 1999;186:463–6.
7. Schroder S, Homoe P, Wagner N, Vataire AL, Lundager Madsen HE, Bardow A. Does drinking water influence hospital admitted sialolithiasis on an epidemiological level in Denmark? BMJ Open 2015;5:e007385.
8. Schroeder SA, Andersson M, Wohlfahrt J, Wagner N, Bardow A, Homoe P. Incidence of sialolithiasis in Denmark: a nationwide population-based register study. Eur Arch Oto-Rhino-Laryngol 2017;274:1975–81.
9. National Health Insurance Administration, Ministry of Health and welfare, Taiwan, R.O.C. National health insurance research database. Data subsets. Assessed from nhird.nhri.org.tw/en.
10. Yang SF, Wang YH, Su NY, et al. Changes in prevalence of precancerous oral submucous fibrosis from 1996–2013 in Taiwan: a nationwide population-based retrospective study. J Formos Med Assoc 2018;117:147–52.
11. Chen YT, Wang YH, Yu HC, Yu CH, Chang YC. Time trend in the prevalence of oral lichen planus based on Taiwanese National Health Insurance Research Database 1996-2013. J Dent Sci 2018;13:274–80.
12. Huang SM, Huang JY, Yu HC, Su NY, Chang YC. Trends, demographics, and conditions of emergency dental visits in Taiwan 1997-2013: a nationwide population-based retrospective study. J Formos Med Assoc 2019;118:582–7.
13. Yu HC, Su NY, Huang JY, Lee SS, Chang YC. Trends in the prevalence of periodontitis in Taiwan from 1997 to 2013: a nationwide population-based retrospective study. Medicine 2017;96:e5858.
14. Stelmach R, Pawłowski M, Klimek L, Janas A. Biochemical structure, symptoms, location and treatment of sialoliths. J Dent Sci 2016;11:299–303.
15. Holford TR. Understanding the effects of age, period and cohort on incidence and mortality rates. Annu Rev Public Health 1991;12:425–57.
16. Keyes KM, Li G. A multiphase method for estimating cohort effects in age-period contingency table data. Ann Epidemiol 2010;20:779–85.
17. Williams MF. Sialolithiasis. Otolaryngol Clin 1999;32:819–34.