Original Research Article https://doi.org/10.20546/ijcmas.2020.911.066

Efficacy of Bioresources on *Colletotrichum capsici*, Plant Growth and Yield Turmeric (*Curcuma longa* L.) *in vivo*

Bassi Santosh* and Sobita Simon

Department of Plant Pathology, Naini Agricultural Institute, SHUATS, Prayagraj, Uttar Pradesh, India

Corresponding author

ABSTRACT

Turmeric (*Curcuma longa* L.), is an important and economical medicinal and aromatic crop, prone to many fungal, bacterial, viral and nematode diseases. The most important fungal diseases are leaf spot (*Colletotrichum capsici*), leaf blotch (*Taphrina maculans*), rhizome rot (*Pythium aphanidermatum*) *etc*., A detailed experiment was conducted to study the efficacy of bioresources against *Colletotrichum* leaf spot. Among all the treatments T5 (VC+SMC+NK) reduced disease incidence (%), disease intensity (%), CODEX (%) followed by T6 (MA), T1 (Carbendazim), T3 (VC), T2 (SMC), T4 (NK), T0 (Control). Similarly, among treatments T5 (VC+SMC+NK) maximised yield (gm), plant height (cm), leaf length (cm)& leaf count followed by T3 (VC), T2 (SMC), T6 (MA), T4 (NK), T1 (Carbendazim) and T0 (Control).

Keywords

Leaf spot, Turmeric, Bioresources, *Colletotrichum capsici*, Disease intensity, Disease incidence, CODEX etc.,

Article Info

Accepted: 07 October 2020
Available Online: 10 November 2020

Introduction

Turmeric (*Curcuma longa* L.), a herbaceous monocot plant and important spices of the world belongs to family Zingiberaceae. It is originated from Tropical South Asia, which is also known as ‘hidden Lilly’ or ‘golden spice’ or ‘Haldi’ or ‘Yellow root’ (Herojit *et al*., 2017). India is the world’s largest producer of turmeric and it accounts for more than 80 per cent of the world’s production, followed by China, Indonesia, Bangladesh, and Thailand (Chavan *et al*., 2002). Turmeric is cultivated for its underground rhizomes, which are used in many ways, such as condiment in culinary preparation, colouring agent in textiles, as food, confectionaries and medicinally turmeric powder is used for the treatment of biliary disorders, anorexia, hepatic disorders, rheumatism, and sinusitis. In addition, turmeric also possesses antimicrobial and anticancer properties (Gupta *et al*., 2016). Major turmeric producing states in India are Telangana, Andhra Pradesh, Tamil Nadu,
Karnataka, Orissa, West Bengal and Maharashtra. The area, production and productivity of turmeric in India has been reported to be 223 thousand hectares, 1077 thousand tones and 4830 kg/ha, respectively, during year 2017-18. In Uttar Pradesh, the figures for the area and production of turmeric stand as 1828 ha and 5149 metric tonnes respectively (Mishra and Singh 2019). Turmeric is prone to many fungal, bacterial, viral and nematode diseases. The most important fungal diseases are leaf spot (Colletotrichum capsici), leaf blotch (Taphrina maculans), leaf blight (Alternaria alternata) and rhizome rot (Pythium aphanidermatum). Colletotrichum capsici causing leaf spot is the most important among foliar diseases of turmeric cause severe reduction in yield due to loss of photosynthetic area (Kothikar and Koche, 2017). The losses by leaf spot of turmeric caused by Colletotrichum capsici are always considered to be a limiting factor for quantitative and qualitative losses all over the county (Hudge and Ghugul, 2010). Organic amendments represent a key indicator for soil quality, both for agricultural and Environmental functions and are the main determinant of biological activity. Vermicompost is rich source of macro and micro-nutrients, vitamins, enzymes, antibiotics, growth hormones and micro flora and is found effective against seedling rots, damping off and soil-borne pathogens like Fusarium etc., (Simsek et al., 2014). The properties of neem as insecticide, antifeedant, hormonal, antifungal, antiviral and nematicide properties used in seed treatment, manurial application, increasing nutrient efficiency by which the yield in crops is enhanced and its impact is seen against plant diseases. (Subbalakshmi et al., 2012). Spent mushroom compost use found effective against bacterial disease like bacterial wilt of tomato etc., (Zeeshan et al., 2016), fungal diseases like chickpea wilt etc., (Wasnikar et al., 2019).

Materials and Methods

The present study was carried out at Central Research Field, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Naini, Prayagraj during 2019-20, to study the effect of bioresources on Plant Growth, Yield and Colletotrichum leaf spot of Turmeric (variety ‘Krishna’). Experimental plot of size 4m² was prepared. Organic amendments such as vermicompost (VC), neem cake (NK), spent mushroom compost (SMC) @ 10t/ha and combination VC+SMC+NK half doses of each compost were applied to the soil and irrigated the plots a week prior to sowing of turmeric rhizome. Microalgae @ 7.5 kg/ha was mixed in water and was applied to the rhizosphere area after one week of germination. Similarly, application of organic amendments was repeated at 45, 90 & 135DAS and observations were taken on plant height, leaf length, leaf count, yield, disease incidence, disease intensity and CODEX. Yield data was recorded after final harvest of turmeric crop. The experiment was laid out in Randomized Block Design (RBD) with 3 replications.

Symptoms, host range, epidemiology & characteristics of pathogen

Symptoms appear as brown spots of various sizes on upper surface of the leaves. The spots are irregular in shape, white or grey with acervuli in the centre. Later, spots may coalesce and form an irregular patch covering whole leaf. It has wide host range, crops like sesameum, groundnut, cowpea, soybean, urdbean, chilli, turmeric etc., and weeds like motha, janglichaulai etc., (Yadav et al., 2017). Infected seed material and crop debris as primary source of inoculum. Conidia dispersed by rain splash and wind. Temperature of 22-25°C and relative humidity above 80% is ideal for disease development. Conidiophores are 3-45 to 2-6 micrometer,
hyaline, cylindrical, unicellular or septate. Conidiogenous cells are 6-10 to 2.5-4 micrometer wide hyaline, ellipsoidal to subglobose; conidia are 7-14 to 2.5-3.5 micrometer, one celled, glutulate, hyaline, fusiform with both ends pointed (Agrios, 2005).

Isolation and identification of the pathogen

Freshly infected leaves of turmeric showing typical symptoms of Colletotrichum leaf spot were used to isolate the pathogen from the infected area. The diseased leaf bits along with adjoining healthy portions were surface sterilized with 0.1% mercuric chloride (HgCl₂) solution for one minute and washed thrice with sterilized water taken in watch glasses to remove the traces if any. The diseased pieces were then dried by placing between two sterile filter papers, which were then transferred to sterilized petriplates containing solidified PDA medium in the laminar air flow chamber to avoid contamination. The inoculated petriplates were incubated at a temperature of 25±1°C and observed periodically for the growth of emerging fungus developed from diseased tissues. The hyphal growth of the fungus was then transferred to PDA slants and petriplates and incubated at 25°C±1°C and pure culture thus obtained through hyphal tip was maintained. Then the colony characteristics of the isolated pathogen were studied. The slides were prepared from the culture of isolated plates and also directly from the diseased portion of leaves and were observed under microscope. The acervulus, setae, conidiophore and conidia of the isolated pathogen were observed for identification (Thilagam et al., 2018).

All the observed infected leaves were individually scored on 0-9 scale (Mayee and Datar, 1986) presented in table 1. The data collected were subjected to statistical analysis and the differences exhibited by the treatments were tested for their significance (Gomez and Gomez, 1986).

The percent disease index, incidence & CODEX was calculated by using formula (Wheeler, 1969).

Per cent disease Incidence

The incidence was calculated according to the formula

\[
\text{Per cent disease incidence} = \frac{\text{Number of diseased plants}}{\text{Total number of plants observed}} \times 100
\]

Per cent disease Index

Percent disease index was calculated by the formula

\[
\text{Per cent disease Index} = \frac{\text{Sum of all numerical ratings in plants infected}}{\text{Number of plants observed}} \times 100
\]

Coefficient of disease index (CODEX)

CODEX was calculated by the formula

\[
\text{CODEX} = \frac{\text{Percent disease incidence} \times \text{percent disease index}}{100}
\]

Results and Discussion

Results based on field experiment, the effectiveness of Bio-resources (Vermicompost (VC), Spent Mushroom Compost (SMC), Neem cake (NK), Microalgae (MA), VC+SMC+NK and Carbendazim) on Plant growth parameters significantly increases as compared to control. As shown in Table 2, plant height significantly increased from untreated control T0 (37.06 cm). Maximum plant height was observed in treatment T5 (VC+SMC+NK - 60.86 cm) followed by T3 (VC - 52.30 cm), T2 (SMC - 49.70 cm), T6 (MA - 46.56 cm), T4 (NK - 45.30 cm) and T1 (Carbendazim -
41.83 cm). Effect of bioresources on leaf length of turmeric is maximum leaf length was observed in T5 (VC+SMC+NK -31.66 cm) followed by T3 (VC -29.20 cm), T2 (SMC -27.73 cm), T6 (MA -26.23 cm), T4 (NK -24.70 cm) and T1 (Carbendazim -23.46 cm), while minimum leaf length was observed in untreated Control T0 (21.63 cm). Impact on leaf count of turmeric is maximum count was observed in T5 (VC+SMC+NK -8.06) followed by T3 (VC -7.73), T2 (SMC - 7.53), T6 (MA -7.33), T4 (NK -7.06) and T1 (Carbendazim -6.83), while minimum count was observed in untreated control T0 (6.43). And Yield of turmeric significantly increased from untreated control T0 (478.33 g) (Fig. 1–4).

Table.1 Scale given by Mayee and Datar (1986)

Score	Description
0	No symptoms
1	Spots covering less than 1% leaf area
3	Spots covering 1-10% leaf area
5	Spots covering 11-25% leaf area
7	Spots covering 26-50% leaf area
9	Spots covering more than 51% leaf area

Table.2 Efficacy of bioresources on plant height, leaf length and leaf count of turmeric at different days of interval

Treatment	Mean of Plant Height (cm) of three replicates at	Mean of Leaf length (cm) of three replicates at	Mean of Leaf count of three replicates at	Mean of Yield (g/4m²) of three replicates			
	45DAS	180DAS					
T0	26.50	37.06	16.16	21.63	5.80	6.43	478.33
T1	31.86	41.83	18.50	23.46	6.03	6.83	517.00
T2	35.50	49.70	22.16	27.73	6.60	7.53	755.66
T3	39.40	52.30	23.00	29.20	6.86	7.73	763.66
T4	33.10	45.30	20.16	24.70	6.30	7.06	649.00
T5	47.80	60.86	24.16	31.66	7.26	8.06	842.33
T6	34.30	46.56	21.16	26.23	6.46	7.33	670.00
C.D.	2.54	3.36	0.96	2.40	0.21	0.19	186.04
SE(m)	0.81	1.07	0.43	0.77	0.07	0.06	59.71
SE(d)	1.15	1.52	2.58	1.09	0.09	0.08	84.45
Table 3 Efficacy of bioresources against Colletotrichum leaf spot intensity, incidence & CODEX of turmeric at different days of interval

Treatment	Mean of Percent disease incidence of three replicates at 60DAS	Mean of Percent disease intensity of three replicates at 60DAS	Mean of CODEX of three replicates at 60DAS
T0	33.11	34.07	11.22
T1	24.33	28.41	6.89
T2	32.42	25.51	8.30
T3	27.19	21.18	5.74
T4	32.25	26.07	8.39
T5	16.96	20.87	3.50
T6	20.52	22.05	4.51
C.D.	3.70	2.45	1.11
SE(m)	1.18	0.78	0.35
SE(d)	1.68	1.11	0.50

As shown in Table 3, Percent of disease incidence, Intensity and CODEX of turmeric increased significantly from T5 (VC+SMC+NK) followed by T6 (MA), T1 (Carbendazim), T3 (VC), T2 (SMC), T4 (NK) and T0 (untreated control).

Fig.1 Efficacy of bioresources on plant growth parameters & yield during crop growth period

Fig.2 Efficacy of bioresources against disease incidence, intensity & CODEX of *C. capsici* at 60, 120 & 180DAS
Maximum yield was observed in T5 ((VC+SMC+NK -842.33g) followed by T3 (VC -763.66g), T2 (SMC – 755.66g), T6 (MA -670g), T4 (649g) and T1 (Carbendazim - 517g).

In conclusion the present experimental study clearly indicates that T5 (VC+SMC+NK) shows minimum disease incidence (31.37%), disease intensity (56.82%) & CODEX (17.86%), with highest yield (842.33g), plant height (60.86cm), leaf length (31.66cm). So, using Bioresources can be economical, long lasting and also free from harmful residual side effects.

References

Bonanomi, G., Antignani, V., Pane, C, and Scala, F. (2007). Suppression of Soilborne Fungal Diseases with Organic Amendments, Journal of Plant Pathology, vol-89(3), pp: 311-324.

Bondre, SV., Nagre, PK., Kale, VS., Gupta, NS, and Wagh, AP.(2019). Chemical properties and microbial population of soil as influenced by different organic nutrient sources in turmeric, Journal of Pharmacognosy and Phytochemistry, vol- 8(5), pp: 2150-2153.

Chavan, P.G., Apet, K.T, and Borade, R.S. (2017). Integrated Management of Turmeric Rhizome Rot Caused by Pythium aphanidermatum, Int.J.Curr.Microbiol.App.Sci, vol-6(11), Pp. 5321-5327.

Dhanalakshmi, K., Chitra, K., Manimekalai, R., Balisasikumar, C, and Karthikeyani, V. (2018). Production and Economics of Turmeric Cultivation, Int.J.Curr.Microbiol.App.Sci, vol-7(11), pp: 3496-3502.

Domenico, R., Elisa, B., Katia, P., Domenico, C., Elio, C, and Aldo, T. (2019). Microalgal Biostimulants and Biofertilisers in Crop Productions, Agronomy, Vol-9, pp: 1-22.

George, N. Agrios(2005). Plant pathology,
fifth edition.
Gomez, K.A. and Gomez, A.A. (1986). Statistical procedures for Agricultural Research. 2nd ed. Pp. 680.
Gupta, S., Sanjana, K., Baljinder, S., Vishwakarma, A. and Manoj, K. (2016). Production of Gentisyl Alcohol from Phoma herbarum Endophytic in Curcuma longa L. and Its Antagonistic Activity Towards Leaf Spot Pathogen Colletotrichum gloeosporioides, Appl. Biochem. Biotechnol., pp:1-17.
Haggag, W.M., Hoballah, M.M.E, and Ali, R.R. (2018). Applications of Nano Biotechnological Microalgae Product for Improve Wheat Productivity in Semai Aird Areas, International Journal of Agricultural Technology, Vol. 14(5), pp: 675-692.
Herojit Singh, Y., Bireswar, S., Mamocha Singh, K., Gorvachov Singh, L., Sharma, S.K., Taibangnanbi Chanu, N, and Surjit Singh, T. (2017). Evaluation of Botanicals and Antagonists Against Colletotrichum capsici-Causing Leaf Spot Disease of Turmeric, Trends in Biosciences, vol- 10(44), pp: 9074-9076.
Hudge, B.V. and Ghugul, S.A. (2010). Losses in yield and quality of turmeric due to leaf spot disease caused by Colletotrichum capsici, International Journal of Agricultural Sciences, Vol-6,Iss-1,pp: 43-45.
Jaydeep, K., Kadam, J. J., Sudhir,N, and Agale, R.C.(2014).Epidemiology of Leaf Blight Disease of Turmeric Caused by Colletotrichum gloeosporioides (Penz. and Sacc.)Journal of Agricultural Science, Vol-4(9), pp: 470-475.
Kothikar, R, and Koche, M. (2017). Screening of Fungicides, Botanicals and Bioagents against Colletotrichum dematium In vitro, Journal of Agricultural Science, vol- 3, pp. 1-6.
Mayee, C.D, and Datar, V.V. (1986). Phytopathometry Tech. bulletin-1, pp-94.
Mishra, R.S, and Singh, J.P. (2019). Eco-Friendly Management of Taphrina Leaf Spot Disease of Turmeric, Plant Archives, Vol-19(1), pp. 1175-1178.
Narasimha Rao, S., Ravindra Kumar, K, and Anandaraj, M. (2012). Management of leaf spot of turmeric (Curcuma longa L.) incited by Colletotrichum capsici through fungicides, Journal of Spices and Aromatic Crops, Vol- 21 (2), pp:151–154.
Pethe, U.B., Rathod, R., Suryawanshi, A.P., Khandekar, R.G, and Gondhalekar, C.B. (2019). Varietal Reactions of Turmeric towards Leaf Spot and Rhizome Rot Disease in Konkan Region of Maharashtra, Int.J.Curr.Microbiol. App.Sci., vol-8(10), pp:1735-1741.
Pooja, G, and Sobita, S. (2019). Integrated approaches for management of anthracnose of chilli (Capsicum annuum L), Journal of Pharmacognosy and Phytochemistry; vol-8(1), pp: 422-427.
Radheyshyam, S., Khokhar, M.K., Jat, R.L, and Khandelwal, S.K. (2012).Role of algae and cyanobacteria in sustainable agriculture system, Wudpecker Research Journals, pp: 381-387.
Simsek-Ersahin, Y. (2014). The Use of Vermicompost Products to Control Plant Diseases and Pests, Biology of Earthworms, pp: 191-213.
Somnath, R., Shibu, B., Usha, C, and Bishwanath, C. (2015). Evaluation of Spent Mushroom Substrate as biofertilizer for growth improvement of Capsicum annuum L. Journal of Applied Biology & Biotechnology, Vol. 3 (03), pp:022-027.
Srividyaran.i., Sajjan, S., Balachandra., Naik, K., Shilpa, P., Chowti., Neelamma, R., Kolageri, and Shiny Israel, K. (2018). Growth performance of area, production and productivity of turmeric in India:
An economic analysis, *Journal of Pharmacognosy and Phytochemistry*, pp:351-353.
Subbalakshmi, L., Muthukrishnan, P, and Jeyaraman, S. (2012). Neem products and their agricultural applications, *JBiopast*, Vol-5, PP: 72-76.

Thilagam, R., Kalaivani, G, And Hemalatha, N. (2018). Isolation and Identification of Phytopathogenic Fungi from Infected Plant Parts, *International Journal of Current Pharmaceutical Research*, Vol 10, Iss-1.

Wasnikar, A.R., Riyazuddeen, K., Gyanendra, S, and SuryaPrakash Reddy, M. (2019). Study on efficiency of button spent mushroom for managing chickpea wilt incited by *Fusarium oxysporum f.sp. ciceris*, *International Journal of Chemical Studies*, Vol-7(1), pp: 491-493.

Wheeler, B.E.Z. (1969). An Introduction to Plant Disease and Fungi, *phytopath*, 22, pp-837-845.

Yadav, AL., Ghasolia, RP., Yadav, SL, and Yadav, VK. (2017). Comparative host range and aggressiveness of *Colletotrichum capsici*, *International Journal of Chemical Studies*, Vol 5(4), pp: 1554-1555.

Zeeshan., Musharaf Ahmad., Imran Khan., Bismillah Shah., Ahmad Naeem., Nangial Khan., Waseem Ullah., Muhammad Adnan., Syed Rizwan Ali Shah., Khwaja Junaid, and Mazhar Iqbal. (2016). Study on the management of *Ralstonia solanacearum* (Smith) with spent mushroom compost, *Journal of Entomology and Zoology Studies*, vol-4(3), pp: 114-121.

How to cite this article:

Bassi Santosh and Sobita Simon 2020. Efficacy of Bioresources on *Colletotrichum capsici*, Plant Growth and Yield Turmeric (Curcuma longa L.) in vivo. *Int.J.Curr.Microbiol.App.Sci.* 9(11): 542-549. doi: https://doi.org/10.20546/ijcemas.2020.911.066