OPEX-Limited 5G RAN Slicing: an Over-Dataset Constrained Deep Learning Approach

Hatim Chergui and Christos Verikoukis, CTTC
Use of AI/ML in Networks Workshop
May 27, 2020
Outline

• 5GSolutions Concept
• Motivations
• Contributions
• C-RAN Setup and Dataset
• Constrained DNN Concept
• Offline Violation Rate-Based OPEX Enforcement
• Results
5GSolutions Concept

• Vertical domains of Factories of the Future, Smart Energy, Smart Cities, Smart Ports, and Media & Entertainment

• Mapped with the eMBB, URLLC and mMTC service classes
Motivations

• Reduce OPEX: Softwarization and virtualization technologies employed in network slicing,
• Joint network slicing OPEX control and resource allocation
• Novel constrained DNN models performing offline learning from datasets.
Contributions

- Joint multi-slice DNN model for resource provisioning based on the traffic per slice,

- Live network key performance indicators (KPIs) datasets,

- Constraints on OPEX violation rate:
 - Dataset-dependent custom non-convex constraints to the DNN output,
 - Use of a two-player non-zero sum game strategy.
• LTE-advanced (LTE-A) dense urban area, covered by 440 LTE-A eNodeBs (eNBs) and 3200 cells.

Entity	Quantity
TRP	3200
eNB	440
BBU datacenters	10 uniformly distributed, with 100 CPU resources compared to a single 4G eNodeB
CRAN Setup and Dataset (2/2)

- Two datasets sources:
 - Dedicated probes—collecting and analyzing the traffic per OTT
 - Key performance indicators collected by the operational support system (OSS) platform at TRP, eNB and vBBU levels.

Feature	Description
TRP	
OTT Traffics per TRP	Includes the hourly traffic for the top OTTs: Apple, Facebook, Facebook Messages, Facebook Video, Instagram, Netflix, HTTPS, QUIC, WhatsApp, and Youtube
CQI	Channel quality indicator reflecting the average quality of the radio link of the TRP
MIMO Full-Rank	Usage of MIMO full-rank spatial multiplexing in %
DLPRB	Number of occupied downlink physical resource blocks
vBBU	
OTT Traffics per eNB	Aggregated OTT traffics per eNB
CPU Load	CPU resource consumption in %
RRC Connected Users	Number of RRC users licenses consumed per eNB
Backhaul	
OTT Traffics per BBU	Aggregated OTT traffics per BBU datacenter
Backhaul capacity	Effective aggregated throughput per BBU datacenter
Constrained DNN Concept

- Minimize DNN loss function subject to data-dependent constraints, expressed in terms of expectations over a data distribution \mathcal{D}:

$$\min_{\mathbf{W}} \mathbb{E}_{\mathbf{x} \sim \mathcal{D}} \ell_0 (\mathbf{x}, \mathbf{W}),$$

$$s.t. \mathbb{E}_{\mathbf{x} \sim \mathcal{D}} \ell_i (\mathbf{x}, \mathbf{W}) \leq 0, i = 1, \ldots, m,$$

- Where \mathbf{W} are the weights of the DNN, \mathbf{x} are the features, while ℓ_0 and ℓ_i stand for the DNN loss function and the m constraints, respectively.
Offline Violation Rate-Based OPEX Enforcement (1/3)

- Pay-per-use strategy RAN resource pricing π:

 $$\pi\left(\hat{r}^{(i)}_{m,n,k}\right) = \gamma_{m,n,k} r^{(i)}_{m,n,k}$$

- Example: Amazon Web Services/Elastic Compute Cloud (EC2)

- Offline approach to train dataset-based DNN models.
 - Directly enforcing an upper bound on the OPEX violation rate:

 $$\min \frac{1}{NB} \sum_{i=1}^{N_B} \ell\left(\hat{r}^{(i)}_{m,n,k}, \hat{r}^{(i)}_{m,n,k} (W_n, b_n, s_n)\right),$$

 s.t. $W_{l,n} \in \mathbb{R}^{N_{l-1} \times N_l}, l = 1, \ldots, L + 1,$

 $b_{l,n} \in \mathbb{R}^{N_l \times 1}, l = 1, \ldots, L + 1,$

 $$\frac{1}{NB} \sum_{i=1}^{N_B} \mathbb{1}\left(\pi\left(\hat{r}^{(i)}_{m,n,k}\right) < \alpha_{m,n,k}\right) \leq \rho_{m,n,k},$$

 $$\frac{1}{NB} \sum_{i=1}^{N_B} \mathbb{1}\left(\pi\left(\hat{r}^{(i)}_{m,n,k}\right) > \beta_{m,n,k}\right) \leq \rho_{m,n,k},$$

- ρ is the target threshold, α and β are the bounds.
• **Problems:**
 - Nonconvex objective and constraint functions.
 - The violation rate constraint is a linear combination of indicators,

\[
\Phi_1(W_n) = \frac{1}{N_B} \sum_{i=1}^{N_B} \left(\pi \left(\hat{r}_{m,n,k}^{(i)} < a_{m,n,k} \right) - \rho_{m,n,k} \right),
\]

\[
\Phi_2(W_n) = \frac{1}{N_B} \sum_{i=1}^{N_B} \left(\pi \left(\hat{r}_{m,n,k}^{(i)} > \beta_{m,n,k} \right) - \rho_{m,n,k} \right),
\]

• **Solution:**
 - Sufficiently-smooth approximations of the constraints

\[
\Psi_1(W_n) = \frac{1}{N_B} \sum_{i=1}^{N_B} \sigma \left(a_{m,n,k}^{(i)} - \pi(\hat{r}_{m,n,k}) \right) - \rho_{m,n,k} \leq 0,
\]

\[
\Psi_2(W_n) = \frac{1}{N_B} \sum_{i=1}^{N_B} \sigma \left(\pi(\hat{r}_{m,n,k}) - \beta_{m,n,k} \right) - \rho_{m,n,k} \leq 0,
\]
• Proxy Lagrangian framework [R1]:

\[\mathcal{L}_{W_n} = \frac{1}{N_B} \sum_{i=1}^{N_B} \ell (r_{m,n,k}^{(i)}, \hat{r}_{m,n,k}^{(i)} (W_n, b_n, s_n)) \]

Lagrangian w.r.t. weights

\[+ \lambda_1 \Psi_1(W_n) + \lambda_2 \Psi_2(W_n), \]

Lagrangian w.r.t. \(\lambda \)

\[\mathcal{L}_\lambda = \lambda_1 \Phi_1(W_n) + \lambda_2 \Phi_2(W_n), \]

• Equivalent to a non-zero-sum two-player game in which the \(W_n \)-player wishes to minimize \(\mathcal{L}_{W_n} \), while the \(\lambda \)-player wishes to maximize \(\mathcal{L}_\lambda \).

• R measures the dependency to the constraints.

[R1] A. Cotter et al., “Training well-generalizing classifiers for fairness metrics and other data-dependent constraints” [Online]. Available: arxiv.org/abs/1807.00028.
Results (1/4)

- **eMBB**: Netflix, Youtube and Facebook Video,

- **Social Media**: Facebook, Facebook Messages, Whatsapp and Instagram,

- **Browsing**: Apple, HTTP and QUIC.

- **Training dataset sizes**:
 - 21417 samples at TRPs
 - 9681 samples at vBBUs levels
 - Batch size $N_B = 100$.
• The achieved violation rate is a decreasing function of R

• To achieve the target violation rate $\rho = 0.005$ for the three considered slices, one should set $R = 0.2$.

![Graph showing DL PRB OPEX violation rate vs. R with specific parameters and target ρ = 0.005.](image)
Results (3/4)

- With $R = 0.2$, the DLPRB OPEX bounds are respected,

- The slices differ in the incurred hourly OPEX due to the difference in the unitary price,

- DL PRBs variation over time is induced by the trend of hourly traffics per slice

- Massive access for Social Media and Browsing
• With $R = 0.2$, the enforced OPEX upper bounds = [2000; 1000; 500] $ are respected.

• eMBB service is presenting the lowest number of users but requires a backhaul capacity comparable to the other slices.

Backhaul capacity and OPEX distribution per slice, with $\alpha = [0, 0, 0]$ and $\beta = [2000, 1000, 500]$ $, \gamma = [5, 2, 1], \rho = 0.005$ and $R = 0.2$.
