From the quantum Jacobi-Trudi and Giambelli formula to a nonlinear integral equation for thermodynamics of the higher spin Heisenberg model

Zengo Tsuboi *

Institute for Solid State Physics, University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba, 277-8581, Japan

Abstract

We propose a nonlinear integral equation (NLIE) with only one unknown function, which gives the free energy of the integrable one dimensional Heisenberg model with arbitrary spin. In deriving the NLIE, the quantum Jacobi-Trudi and Giambelli formula (Bazhanov-Reshetikhin formula), which gives the solution of the T-system, plays an important role. In addition, we also calculate the high temperature expansion of the specific heat and the magnetic susceptibility.

Short title: Nonlinear integral equation

MSC: 82B23; 45G15; 82B20; 17B80

PACS2001: 02.30.Rz; 02.30.Ik; 05.50.+q; 05.70.-a

Key words: nonlinear integral equation; higher spin Heisenberg model; quantum transfer matrix; Jacobi-Trudi and Giambelli formula; thermodynamic Bethe ansatz; T-system

to appear in J. Phys.A: Math. Gen.

1 Introduction

Thermodynamic Bethe ansatz (TBA) equations have been used to analyze thermodynamics of various kind of solvable lattice models \[\Xi \]. However it

*E-mail address: tsuboi@issp.u-tokyo.ac.jp
is not always easy to treat TBA equations since in general they contain an infinite number of unknown functions. So there are several attempts to simplify the TBA equations. In particular for the 1D spin $\frac{1}{2}$ Heisenberg model, Klümper proposed nonlinear integral equations (NLIE) [2] which contain a finite number of unknown functions from the point of view of the quantum transfer matrix (QTM) approach [3, 4, 5, 6]. There is also a similar NLIE by Destri and de Vega [8].

Another type of NLIE for the spin $\frac{1}{2}$ XXZ model, which contains only one unknown function, was discovered by Takahashi [9] to simplify the TBA equation. Later, this NLIE was rederived [10] from the T-system [11, 12] of the QTM. Moreover this NLIE for the spin $\frac{1}{2}$ XXX model was also rederived from a fugacity expansion formula [13]. We derived this type of NLIE for the $osp(1|2s)$ model [14] and the $sl(r+1)$ Uimin-Sutherland model [15] for arbitrary rank. The number of the unknown functions of these NLIE coincides with the rank of the underlying algebras. All of them are NLIE for fundamental representations of underlying algebras. So it is desirable to derive NLIE for tensor representations, i.e. NLIE for higher spin models. The purpose of this paper is to derive NLIE for the Heisenberg spin chain with arbitrary spin $\frac{s}{2}$ [16].

Thermodynamics of the higher spin Heisenberg model was firstly investigated [16] by the TBA equations, which contain an infinite number of unknown functions. Later a set of NLIE with $s + 1$ unknown functions for this model was derived [17] by the QTM approach. This NLIE is an extension of the Klümper’s type of NLIE [2]. On the other hand, our new NLIE contains only one unknown function for arbitrary s. Thus, as far as the number of the unknown functions, our new NLIE is a further simplification of the TBA equations.

In section 2, we introduce the higher spin Heisenberg model and define the T-system of the QTM. As a solution of the T-system, we introduce the quantum Jacobi-Trudi and Giambelli formula (Bazhanov-Reshetikhin formula [18]) (2.18), which plays an essential role in the derivation of the NLIE. This formula expresses an eigenvalue formula of the transfer matrix for the tensor representation in the auxiliary space in a determinant form. In the representation theoretical context, it may be viewed as a Yangian analogue of classical Jacobi-Trudi and Giambelli formula on Schur functions [19, 18]. In section 3, we derive the NLIE (3.9), which is our main result. The T-system which we have to use here is not the standard one [12] (2.15) but an old one [11] (2.20), (2.21). Due to the quantum Jacobi-Trudi and Giambelli formula, determinants appear in our new NLIE. These novel situations contrast with the fundamental representation cases [9, 10, 14, 15]. Using our new NLIE (3.9), we also calculate the high temperature expansion of the specific heat.
and the magnetic susceptibility in section 4. It will be difficult to obtain the same result by the traditional TBA equations. Section 5 is devoted to concluding remarks.

2 QTM method, \(T \)-system, quantum Jacobi-Trudi and Giambelli formula

We introduce the higher spin Heisenberg model, and define the QTM, the \(T \)-system and the quantum Jacobi-Trudi and Giambelli formula for this model. A more detailed explanation of the QTM analysis for this model can be found in [17].

The Hamiltonian of the spin \(s \) Heisenberg model is given as follows [16].

\[
H_0 = J \sum_{j=1}^{L} Q_s(S_j S_{j+1}),
\]

where \(S_j = (S_j^x, S_j^y, S_j^z) \) is the spin \(s \) operator acting on the \(j \)-th site, and \(S_j S_{j+1} = S_j^x S_{j+1}^x + S_j^y S_{j+1}^y + S_j^z S_{j+1}^z \). \(J \) is a real coupling constant (\(J > 0 \) (resp. \(J < 0 \)) corresponds to the anti-ferromagnetic (resp. ferromagnetic) regime) and \(L \) is the number of the lattice sites. We assume the periodic boundary condition \(S_{L+1} = S_1 \). \(Q_s(x) \) is defined as

\[
Q_s(x) = -2 \sum_{j=0}^{s-1} \sum_{k=j+1}^{s} \frac{1}{k} \prod_{p=0(p\neq j)}^{s} \frac{x - x_p}{x_j - x_p},
\]

where \(x_p = \frac{1}{2}(p(p + 1) - s(\frac{s}{2} + 1)) \). For \(s = 1 \) and \(s = 2 \) case, (2.1) becomes

\[
H_0 = 2J \sum_{j=1}^{L} \{S_j S_{j+1} - \frac{1}{4}\}, \quad H_0 = \frac{J}{2} \sum_{j=1}^{L} \{S_j S_{j+1} - (S_j S_{j+1})^2\},
\]

respectively. The \(R \)-matrix [20, 21] of the classical counter part of the spin \(\frac{s}{2} \) Heisenberg model is defined as

\[
R(v) = \prod_{j=0}^{s} \left(\prod_{k=j+1}^{s} \frac{v - k}{v + k} \right) P^j,
\]

where \(P^j \) is the projector onto \(j + 1 \) dimensional irreducible \(sl(2) \) module. \(P^j \) can be expressed as

\[
P^j = \prod_{p=0(p\neq j)}^{s} \frac{S \otimes S - x_p}{x_j - x_p},
\]
where $\mathbf{S} = (S^x, S^y, S^z)$ is the spin $\frac{1}{2}$ operator, and $\mathbf{S} \otimes \mathbf{S} = S^x \otimes S^x + S^y \otimes S^y + S^z \otimes S^z$. In our normalization of the R-matrix, $R(\infty)$ is an identity operator. The row to row transfer matrix is defined as

$$t(v) = t_{00} R_{01}(v) \cdots R_{02}(v) R_{01}(v),$$

(2.6)

where $R_{0j}(v)$ is the R-matrix (2.4) acting on the auxiliary space and the j-th site of the quantum space. This transfer matrix is connected to the hamiltonian (2.1) as

$$H_0 = \frac{J}{d} \log t(v)|_{v=0}.$$

(2.7)

One can add an external field term $H_{ex} = -2h \sum_j S_j^z$ in the hamiltonian (2.1) without breaking the integrability as $H = H_0 + H_{ex}$. The QTM is defined as

$$t_{\text{QTM}}(v) = tr_0 e^{2\frac{h}{T} \tilde{R}_{N0}(u - iv) R_{N-1 0}(u + iv) \cdots \tilde{R}_{20}(u - iv) R_{10}(u + iv)},$$

(2.8)

where $\tilde{R}_{jk}(v)$ is defined by ‘90° rotation’ of $R_{kj}(v)$, i.e., $\tilde{R}_{jk}(v) = t_k R_{kj}(v) \big(t_k : \text{the transposition of } R_{kj}(v) \text{ in the } k\text{-th space})$; N is the Trotter number and assumed to be even; $u = -\frac{J}{TN} \big(T \text{ is a temperature})$; the Boltzmann constant is set to 1. The free energy per site is expressed in terms of the largest eigenvalue $\tilde{T}_s(v)$ of the QTM (2.8) at $v = 0$:

$$f = -T \lim_{N \to \infty} \log \tilde{T}_s(0).$$

(2.9)

We can embed $\tilde{T}_s(v)$ into the eigenvalue formulae $\{\tilde{T}_m(v)\}_{m \in \mathbb{Z} \geq 0}$ for the fusion hierarchy of the QTM, i.e. a Yang-Baxterization of the character of the m-th symmetric tensor representation of $sl(2)$:

$$\tilde{T}_m(v) = T_m(v)/N_m(v),$$

(2.10)

where

$$T_m(v) = \sum_{1 \leq d_1 \leq d_2 \leq \cdots \leq d_m \leq 2} m \prod_{j=1}^{m} z(d_j; v + \frac{i}{2}(m - 2j + 1)),$$

$$= \sum_{k=0}^{m} e^{\frac{(m-k)u_1 + k u_2}{2}} \prod_{j=1}^{m-k} \phi_-(v + \frac{m - s - 2j}{2} i)\phi_+(v + \frac{m - s - 2j + 2}{2} i) \times \prod_{j=m-k+1}^{m} \phi_-(v + \frac{m + s - 2j}{2} i)\phi_+(v + \frac{m + s - 2j + 2}{2} i) \times \frac{Q(v + \frac{m + 2k}{2} i)Q(v - \frac{m + 2k}{2} i)}{Q(v - \frac{m - 2k + 2}{2} i)Q(v - \frac{m - 2k + 2}{2} i)}.$$

(2.11)
\[N_m(v) = \prod_{k=1}^{m} \phi_-(v + \frac{m - 2k - s}{2}i)\phi_+(v + \frac{m - 2k + s + 2}{2}i); \]

(2.12)

\[\phi_\pm(v) = (v \pm i\mu)^{\frac{1}{2}}; \quad Q(v) = \prod_{j=1}^{M} (v - v_j) \quad (M \in \mathbb{Z}_{\geq 0}); \]

\[\mu_1 \text{ and } \mu_2 \text{ are chemical potentials (in our case, } \mu_1 = h, \mu_2 = -h); \]

\[z(1; v) = e^{\mu_1} \phi_-(v - \frac{s + 1}{2}i)\phi_+(v - \frac{s - 1}{2}i) \frac{Q(v + \frac{i}{2})}{Q(v - \frac{i}{2})}, \]

\[z(2; v) = e^{\mu_2} \phi_-(v + \frac{s - 1}{2}i)\phi_+(v + \frac{s + 1}{2}i) \frac{Q(v - \frac{3i}{2})}{Q(v - \frac{i}{2})}. \]

(2.13)

Here we adopt a convention \(\prod_{j=1}^{0}(\cdots) = \prod_{j=m+1}(\cdots) = 1. \) \(v_j \) is a solution of the Bethe ansatz equation

\[-\frac{\phi_-(v_k - \frac{3i}{2})\phi_+(v_k - \frac{3i}{2} + \frac{3i}{2})}{\phi_-(v_k + \frac{1i}{2})\phi_+(v_k + \frac{3i}{2} + \frac{1i}{2})} = e^{\mu_1 - \mu_2} \frac{Q(v_k - i)}{Q(v_k + i)}, \quad k \in \{1, 2, \ldots, M\}. \]

(2.14)

where \(g = 2 \) \(T_m(v) \) (2.11) is free of poles under the Bethe ansatz equation (2.14). One can show that the function \(\tilde{T}_m(v) \) (2.10) satisfies the following \(T \)-system [12].

\[\tilde{T}_m(v - \frac{i}{2})\tilde{T}_m(v + \frac{i}{2}) = \tilde{T}_{m-1}(v)\tilde{T}_{m+1}(v) + \tilde{g}_m(v), \quad m \in \mathbb{Z}_{\geq 1}, \]

(2.15)

where

\[\tilde{T}_0(v) = 1, \]

(2.16)

\[\tilde{g}_m(v) = e^{\mu_1 + \mu_2} \prod_{k=1}^{m(s_{\min} - s)} \frac{\phi_-(v + \frac{m+s+1-2k}{2}i)\phi_+(v - \frac{m+s+1-2k}{2}i)}{\phi_-(v - \frac{m+s+1-2k}{2}i)\phi_+(v + \frac{m+s+1-2k}{2}i)}. \]

(2.17)

The solution of the \(T \)-system (2.13) is given by the following quantum Jacobi-Trudi and Giambelli formula (Bazhanov-Reshetikhin formula [18]).

\[\tilde{T}_m(v) = \det_{1 \leq j, k \leq m} \left(\tilde{f}^{j+k} \left(v - \frac{j+k+m-1}{2}i \right) \right), \]

(2.18)

where the matrix elements are given as follows

\[\tilde{f}^a(v) = \begin{cases}
1 & a = 0 \\
\tilde{T}_1(v) & a = 1 \\
\tilde{g}_1(v) & a = 2 \\
0 & a > 2 \text{ or } a < 0.
\end{cases} \]

(2.19)
The following functional relations [11] are equivalent to the T-system (2.15).

\[\tilde{T}_1(v)\tilde{T}_{m-1}(v - \frac{m}{2}) = \tilde{T}_m(v - \frac{m-1}{2}) + \tilde{g}_1(v - i\frac{m}{2})\tilde{T}_{m-2}(v - \frac{m+1}{2}), \quad m \in \mathbb{Z}_{\geq 1}. \] (2.20)

\[\tilde{T}_1(v)\tilde{T}_{m-1}(v + \frac{m}{2}) = \tilde{T}_m(v + \frac{m-1}{2}) + \tilde{g}_1(v + i\frac{m}{2})\tilde{T}_{m-2}(v + \frac{m+1}{2}), \quad m \in \mathbb{Z}_{\geq 1}. \] (2.21)

(2.20) follows from an expansion of the determinant (2.18) down the first row. (2.21) follows from an expansion of the determinant (2.18) down the last column.

3 A new nonlinear integral equation

Suzuki had [17] the following observation from numerics.

For the largest eigenvalue sector of \(\tilde{T}_s(v) \), the corresponding root of the BAE (2.14) forms s-strings. In this case, imaginary parts of the zeros \(\{\tilde{z}_m\} \) of \(\tilde{T}_m(v) \) (\(m = 1, 2, \ldots, s \)) are located near the lines \(\text{Im} v = \pm \frac{1}{2}(s + m - 2j) \), \(j = 0, 1, \ldots, m - 1 \).

Following Suzuki’s calculations for the spin \(\frac{s}{2} = 1 \) case, we have plotted roots of the BAE (2.14) in the sector \(M = N \) and zeros of \(\tilde{T}_m(v) \) (\(m = 1, 2 \)) (Figure 1 and Figure 2). Admitting Suzuki’s observation, we shall derive the NLIE for the largest eigenvalue sector of \(\tilde{T}_s(v) \) from now on. \(\tilde{T}_m(v) \) has poles \(^1\) at \(v = \pm \tilde{\beta}_m : \tilde{\beta}_m = \left(\frac{m+s}{2} + u \right)i, \left(\frac{m+s-2}{2} + u \right)i, \ldots, \left(\frac{m+s+2-2\min(m,s)}{2} + u \right)i \), whose order is at most \(N^2 \). Moreover

\[\mathcal{Q}_m := \lim_{|v| \to \infty} \tilde{T}_m(v) = \sum_{k=0}^{m} e^{(m-k)\mu_1 + k\mu_2} = \sum_{k=0}^{m} e^{h(m-2k)} \] (3.1)

is a finite number. This is a solution of the Q-system [22, 23]

\[(Q_m)^2 = Q_{m-1}Q_{m+1} + Q_m^{(2)}, \quad m \in \mathbb{Z}_{\geq 1}, \] (3.2)

where \(Q_m^{(2)} = e^{\mu_1+\mu_2} = 1 \) and \(Q_0 = 1 \). So we must put

\[\tilde{T}_1(v) = Q_1 + \sum_{j=1}^{\frac{s}{2}} \left\{ \frac{b_j}{(v - \tilde{\beta}_1)^j} + \frac{\tilde{b}_j}{(v + \tilde{\beta}_1)^j} \right\}, \] (3.3)

\(^1\)Note that these poles are known ones, which we need not solve the BAE (2.14) to get.
Figure 1: Location of the roots of the BAE (2.14) for the spin $\frac{\Delta}{2} = 1$ case ($N = 12, u = -0.05, J = 1, h = 0, 1, 2$), which will give the largest eigenvalue for $\tilde{T}_2(v)$ at $v = 0$. The root forms 2-strings at least for $h = 0$.
Figure 2: Location of the zeros of $\tilde{T}_m(v)$ ($m = 1, 2$) for the roots in Figure 1. The zeros are located outside of the physical strip $\text{Im} v \in [-\frac{1}{2}, \frac{1}{2}]$.
where \(\tilde{\beta}_1 = (\frac{1+s}{2} + u)i \). Here the coefficients are given as follows.

\[
b_j = \oint_C \frac{dv}{2\pi i} \tilde{T}_1(v)(v - \tilde{\beta}_1)^{j-1}, \quad \tilde{b}_j = \oint_{\tilde{C}} \frac{dv}{2\pi i} \tilde{T}_1(v)(v + \tilde{\beta}_1)^{j-1}, \tag{3.4}
\]

where the contour \(C \) (resp. \(\tilde{C} \)) is a counterclockwise closed loop around \(\tilde{\beta}_1 \) (resp. \(-\tilde{\beta}_1\)) that does not surround \(-\tilde{\beta}_1\) (resp. \(\tilde{\beta}_1\)). Substituting (3.4) into (3.3), and using (2.20) and (2.21), we obtain

\[
\tilde{T}_1(v) = Q_1 + \oint_C \frac{dy}{2\pi i} \frac{1 - \left(\frac{v}{y - \tilde{\beta}_1} \right)}{v - y - \tilde{\beta}_1} \left\{ \frac{\tilde{T}_m(y + \tilde{\beta}_1 - \frac{m-1}{2}i)}{\tilde{T}_{m-1}(y + \tilde{\beta}_1 - \frac{m}{2}i)} \right. \\
+ \left. \frac{\tilde{g}_1(y + \tilde{\beta}_1 - \frac{i}{2})\tilde{T}_{m-2}(y + \tilde{\beta}_1 - \frac{m+1}{2}i)}{\tilde{T}_{m-1}(y + \tilde{\beta}_1 - \frac{m}{2}i)} \right\} + \oint_{\tilde{C}} \frac{dy}{2\pi i} \frac{1 - \left(\frac{v}{y + \tilde{\beta}_1} \right)}{v - y + \tilde{\beta}_1} \left\{ \frac{\tilde{T}_m(y - \tilde{\beta}_1 + \frac{m-1}{2}i)}{\tilde{T}_{m-1}(y - \tilde{\beta}_1 + \frac{m}{2}i)} \right. \\
+ \left. \frac{\tilde{g}_1(y - \tilde{\beta}_1 + \frac{i}{2})\tilde{T}_{m-2}(y - \tilde{\beta}_1 + \frac{m+1}{2}i)}{\tilde{T}_{m-1}(y - \tilde{\beta}_1 + \frac{m}{2}i)} \right\} \tag{3.5}
\]

where the contour \(C \) (resp. \(\tilde{C} \)) is a counterclockwise closed loop around 0 that does not surround \(-2\tilde{\beta}_1\) (resp. \(2\tilde{\beta}_1\)). The first term and the second term in the first bracket \{\ldots\} in (3.5) have a common pole at 0. However this common pole of the first term disappears if \(m \geq s + 1 \). Therefore, for \(m \geq s + 1 \) the first term vanishes after the integration as long as the contour \(C \) does not surround the pole at \(\tilde{z}_{m-1} - \tilde{\beta}_1 + \frac{m}{2}i \). Similarly, for \(m \geq s + 1 \), the first term in the second bracket \{\ldots\} vanishes after the integration as long as the contour \(\tilde{C} \) does not surround the pole at \(\tilde{z}_{m-1} + \tilde{\beta}_1 - \frac{m}{2}i \). Thus, for \(m \geq s + 1 \), we obtain

\[
\tilde{T}_1(v) = Q_1 + \oint_C \frac{dy}{2\pi i} \frac{\tilde{g}_1(y + \tilde{\beta}_1 - \frac{i}{2})\tilde{T}_{m-2}(y + \tilde{\beta}_1 - \frac{m+1}{2}i)}{(v - y - \tilde{\beta}_1)\tilde{T}_{m-1}(y + \tilde{\beta}_1 - \frac{m}{2}i)} \\
+ \oint_{\tilde{C}} \frac{dy}{2\pi i} \frac{\tilde{g}_1(y - \tilde{\beta}_1 + \frac{i}{2})\tilde{T}_{m-2}(y - \tilde{\beta}_1 + \frac{m+1}{2}i)}{(v - y + \tilde{\beta}_1)\tilde{T}_{m-1}(y - \tilde{\beta}_1 + \frac{m}{2}i)}. \tag{3.6}
\]

Here we omit the terms which contain \(y^\frac{N}{2} \) since these terms cancel the poles.
of \tilde{g}_1. We can take the Trotter limit $N \to \infty$.

$$T_1(v) = Q_1 + \oint_{C} \frac{dy}{2\pi i} \frac{g_1(y + \beta_1 - \frac{i}{2})T_{m-2}(y + \beta_1 - \frac{m+1}{2}i)}{(v - y - \beta_1)T_{m-1}(y + \beta_1 - \frac{m}{2}i)} + \oint_{\bar{C}} \frac{dy}{2\pi i} \frac{g_1(y - \beta_1 + \frac{i}{2})T_{m-2}(y - \beta_1 + \frac{m+1}{2}i)}{(v - y + \beta_1)T_{m-1}(y - \beta_1 + \frac{m}{2}i)},$$

(3.7)

where $\beta_1 = \lim_{N \to \infty} \tilde{\beta}_1 = \frac{1+s}{2} i$, $T_m(v) = \lim_{N \to \infty} \tilde{T}_m(v)$ and

$$g_1(v) = \exp \left(\frac{1}{T} \left\{ \frac{JS}{(v^2 + \frac{s^2}{4})} + \mu_1 + \mu_2 \right\} \right) = Q_1^{(2)} \exp \left(\frac{JS}{(v^2 + \frac{s^2}{4})T} \right).$$

(3.8)

In particular, (3.7) for $m = s + 1$ is the simplest.

$$T_1(v) = Q_1 + \oint_{C} \frac{dy}{2\pi i} \frac{g_1(y + \frac{s}{2}i)T_{s-1}(y - \frac{i}{2})}{(v - y - \frac{s+1}{2}i)T_s(y)} + \oint_{\bar{C}} \frac{dy}{2\pi i} \frac{g_1(y - \frac{s}{2}i)T_{s-1}(y + \frac{i}{2})}{(v - y + \frac{s+1}{2}i)T_s(y)},$$

(3.9)

where the contour C (resp. \bar{C}) is a counterclockwise closed loop around 0 that does not surround $-(1+s)i$ (resp. $(1+s)i$) and z_s. (3.9) contains only one unknown function $T_1(v)$ since $T_s(v)$ and $T_{s-1}(v)$ can be expressed by $T_1(v)$ through (2.18) in the Trotter limit. The free energy per site is given by $f = -T \log T_s(0)$. For $s = 1$, (3.9) reduces to the Takahashi’s NLIE for the XXX spin chain [9]. Although we only consider the largest eigenvalue of $\tilde{T}_s(v)$ in the limit $N \to \infty$, other eigenvalues also satisfy the NLIE (3.9) if above conditions for the integral contours are satisfied. In usual, such eigenvalues have zeros in the physical strip $Imv \in [-\frac{1}{2}, \frac{1}{2}]$. Thus to exclude the eigenvalues other than the largest one, one may take the integral contours on the line $Imv = \pm \frac{1}{2}$.

4 High temperature expansion

In this section, we shall calculate the high temperature expansion of the free energy from our new NLIE (3.9). The calculation is not easier than $s = 1$ case [24] due to the determinants in (3.9). However it is easier than to use the traditional TBA equation. For small J/T, we shall put

$$T_m(v) = \exp \left(\sum_{n=0}^{\infty} b_{m,n}(v) \left(\frac{J}{T} \right)^n \right),$$

(4.1)
where $b_{m,0}(v) = \log Q_m$. Due to (2.18) in the limit $N \to \infty$, one can express $b_{m,n}(v)$ in terms of fundamental ones $\{b_{1,k}(v)\}_{0 \leq k \leq n}$, $Q_1^{(2)}$ and $b(v) = s/(v^2 + \frac{s^2}{4})$. For example, we have

$$b_{2,1}(v) = \left((Q_1)^2 b_{1,1}(v - \frac{i}{2}) + (Q_1)^2 b_{1,1}(v + \frac{i}{2}) - Q_1^{(2)} b(v) \right) / Q_2, \quad (4.2)$$

where $Q_2 = (Q_1)^2 - Q_1^{(2)}$. Taking note on the relations like (4.2), substitute (4.1) into (3.9), we obtain the coefficients $\{b_{m,n}(v)\}$. For example, $\{b_{1,n}(v)\}$ for $s = 2, n = 1, 2, 3$ are as follows.

$$b_{1,1}(v) = \frac{12Q_1^{(2)}}{(9 + 4v^2) \left((Q_1)^2 - Q_1^{(2)} \right)},$$

$$b_{1,2}(v) = 2Q_1^{(2)} \left\{ (45 + 4v^2) (Q_1)^4 + (-99 + 4v^2) (Q_1)^2 Q_1^{(2)}
\quad - 4 (27 + 20v^2) (Q_1^{(2)})^2 \right\} / \left\{ (9 + 4v^2)^2 \left((Q_1)^2 - Q_1^{(2)} \right)^3 \right\},$$

$$b_{1,3}(v) = \left\{ Q_1^{(2)} \left((477 + 120v^2 + 16v^4) (Q_1)^8 + 9 (-179 + 56v^2 + 16v^4) (Q_1)^6 Q_1^{(2)}
\quad - 6 (1101 + 1536v^2 + 304v^4) (Q_1)^4 (Q_1^{(2)})^2
\quad + 4 (5553 + 5028v^2 + 896v^4) (Q_1^2)^2 (Q_1^{(2)})^3
\quad + 48 (63 + 84v^2 + 32v^4) (Q_1^{(2)})^4 \right\} \right\} / \left\{ (9 + 4v^2)^3 \left((Q_1)^2 - Q_1^{(2)} \right)^3 \right\}. \quad (4.3)$$

We can calculate the specific heat $C = -T \frac{\partial^2 f}{\partial T^2}$ and the magnetic susceptibility $\chi = -\frac{\partial^2 f}{\partial h^2}|_{h=0}$. In this case, we only use $\{b_{m,k}(v)\}$ for $v = 0$ due to the definition of the free energy (2.9). Note that the h-dependence of the free energy enters only through $Q_1 = e^h + e^{-h}$ since $Q_1^{(2)} = 1$. Let us put $t = J/T$.

11
\[s = 2 \text{ case:} \]
\[
C = \frac{8}{9} t^2 + \frac{34}{27} t^3 - \frac{5}{54} t^4 - \frac{580}{243} t^5 - \frac{27629}{11664} t^6 + \frac{165529}{116640} t^7 + \frac{4087527}{839808} t^8 + O(t^{12})
\]
\[
\chi_T = 8 - \frac{t}{3} + 14 t^3 - 205 t^4 + 97 t^5 - 32627 t^6 - \frac{290839 t^7}{48988} + \frac{2993083 t^8}{10241456} + O(t^{18}). \tag{4.4}
\]

\[s = 3 \text{ case:} \]
\[
C = \frac{15 t^2}{16} + \frac{145 t^3}{96} + \frac{1385 t^4}{2304} - \frac{13445 t^5}{6912} - \frac{1203755 t^6}{331776} - \frac{7458199 t^7}{5971968} + O(t^{16}), \tag{4.6}
\]
\[
\chi_T = 5 - \frac{5}{3} t + 35 t^3 - 2725 t^4 + 3383 t^5 - 173425 t^6 + \frac{7164095 t^7}{5878656} - \frac{13785996387509 t^{11}}{20113468784640} + O(t^{14}). \tag{4.7}
\]
\[s = 4 \text{ case:} \]
\[
C = \frac{24 t^2}{25} + \frac{619 t^3}{375} + \frac{49159 t^4}{45000} - \frac{900239 t^5}{675000} - \frac{257362861 t^6}{64800000} \\
- \frac{190318307851 t^7}{58320000000} + \frac{1061704692647 t^8}{518400000000} + \frac{33531890711924393 t^9}{44089920000000000} \\
+ \frac{1369897367333096069 t^{10}}{2116316160000000000} - \frac{4091902458911705383 t^{11}}{136048896000000000000} \\
- \frac{176704404495234905869283 t^{12}}{137137287168000000000000000} + O(t^{13}), \quad (4.8)
\]

\[
\chi T = 8 - 8 t + \frac{101 t^3}{135} + \frac{9337 t^4}{6480} + \frac{209797 t^5}{16200} - \frac{7464779 t^6}{116640000} \\
- \frac{234988285877 t^7}{146966400000000} - \frac{3029100708947 t^8}{38093690880000000} \\
+ \frac{43037896881783183 t^{10}}{2285621452800000000} + \frac{278589255303992797247 t^{11}}{12570917990400000000000} + O(t^{12}). \quad (4.9)
\]

We have plotted \(^2\) the high temperature expansion of the specific heat and the magnetic susceptibility in Figure 3 - Figure 5. According to the Figure 3 the position of the peak of the specific heat seems not change drastically when \(s\) changes. In particular, \(s = 2, 3\) cases agree with the result from another NLIE for large \(T\) (see Figure 6 in [17]). This indicates the validity of our new NLIE.

5 Concluding remarks

In this paper, we have derived a NLIE with only one unknown function. This type of the NLIE for higher spin Heisenberg model with arbitrary spin is derived for the first time. In particular, a remarkable connection between the NLIE and the quantum Jacobi-Trudi and Giambelli formula is firstly found.

Now that the NLIE is given, the next important task is to search the solutions of it. The zero-th order of the high temperature expansion \([4, 1]\)

\(^{2}\)Here we have used the Padé approximation. The \([L, M]\) Padé approximation of a function \(g(t)\) of \(t\) is the ratio of a polynomial of degree \(L\) and \(M\): \(g(t) = \frac{p_0 + p_1 t + \cdots + p_L t^L}{1 + q_1 t + q_2 t^2 + \cdots + q_M t^M} + O(t^{L+M+1})\). It provides approximately an analytically continued function of \(g(t)\) for outside of the radius of convergence of \(g(t)\). Thus the Padé approximation is expected to provide better results for small \(T\) than original plain series. For more detail, see for example, [25].
Figure 3: Temperature dependence of the high temperature expansion of the specific heat C for $J = 1$ at $h = 0$: broken lines denote plain series and smooth lines denote their Pade approximation for $s = 1, 2, 3, 4$ from the bottom to the top. Their orders are $(n$: plain series $O(1/T^n)$, Pade$) = (52, [26,26]), (21, [10,10]), (15, [7,7]), (12, [6,6])$ respectively. Their peak positions and peaks are (peak position, peak)=$(0.961, 0.350), (0.963, 0.589), (0.956, 0.780), (0.949, 0.942)$ respectively. The case for $s = 1$ was calculated in ref. [24].
Figure 4: Temperature dependence of the high temperature expansion of the specific heat C for $J = 1, s = 2$: broken lines denote plain series and smooth lines denote their Pade approximation for $h = 0, 2, 4$ from the bottom to the top on the right side. Their order is $(n: \text{plain series } O(1/T^n), \text{Pade})=(17, [8,8])$. Their peak positions and peaks are (peak position, peak) = (0.964, 0.589), (1.365, 0.520), (3.452, 0.612) respectively.
Figure 5: Temperature dependence of the high temperature expansion of the magnetic susceptibility χ for $J = 1$ at $h = 0$: broken lines denote plain series and smooth lines denote their Pade approximation for $s = 1, 2, 3, 4$ from the bottom to the top on the right side. Their orders are $(n$: plain series $O(1/T^n)$, Pade$)=(28, [13,13]), (18, [8,8]), (14, [7,7]), (12, [6,6])$ respectively. Their first peak positions from the right and the peaks are (peak position, peak)$=(1.282, 0.294), (1.454, 0.748), (1.555, 1.367), (1.624, 2.153)$ respectively. The case for $s = 1$ was calculated in ref. [23].
is a solution of the Q-system. Thus this task is to incorporate the spectral parameter into a solution of the Q-system, namely to find a solution of the T-system. The solution of the Q-system is a kind of a generalization of the hypergeometric function (cf. [26]). Thus we expect that the final answer will be a further generalization of the hypergeometric function. If a hypergeometric series solution is found, one should consider an integral representation of it; then one may be able to treat the low temperature region where the plain series does not converge by an analytic continuation.

Finally, we note that we can also derive a NLIE similar to (3.9) for the row to row transfer matrix.

Acknowledgments

The author would like to thank M. Shiroishi and K. Sakai for useful comments on the calculation of the high temperature expansion.

References

[1] M. Takahashi, Thermodynamics of One-Dimensional Solvable models, (Cambridge University Press, Cambridge, 1999).

[2] A. Klümper, *Z. Phys. B* 91 (1993) 507–519.

[3] M. Suzuki, *Phys. Rev. B* 31 (1985) 2957–2965.

[4] M. Suzuki and M. Inoue, *Prog. Theor. Phys. B* 78 (1987) 787–799.

[5] T. Koma, *Prog. Theor. Phys. B* 78 (1987) 1213–1218.

[6] J. Suzuki, Y. Akutsu and M. Wadati, *J. Phys. Soc. Jpn. B* 59 (1990) 2667–2680.

[7] A. Klümper, *Ann. Physik* 1 (1992) 540–553.

[8] C. Destri and H. J. de Vega, *Phys. Rev. Lett.* 69 (1992) 2313–2317.

[9] M. Takahashi, in Physics and Combinatorics, eds. A. N. Kirillov and N. Liskova, (2001) 299–304 (World Scientific, Singapore); cond-mat/0010486

[10] M. Takahashi, M. Shiroishi and A. Klümper, *J. Phys. A: Math. Gen.* 34 (2001) L187–L194; cond-mat/0102027
[11] A. N. Kirillov and N. Yu. Reshetikhin, *J. Phys. A: Math. Gen.* **20** (1987) 1565–1585.

[12] A. Klümper and P. A. Pearce, *Physica* **A183** (1992) 304–350.

[13] G. Kato and M. Wadati, *J. Math. Phys.* **43** (2002) 5060–5078; cond-mat/0212325

[14] Z. Tsuboi, *Phys. Lett.* **B544** (2002) 222–230; math-ph/0209024

[15] Z. Tsuboi, *J. Phys. A: Math. Gen.* **36** (2003) 1493–1507; cond-mat/0212280

[16] H. M. Babujian, *Nucl. Phys.* **B215** [FS7] (1983) 317–336.

[17] J. Suzuki, *J. Phys. A: Math. Gen.* **32** (1999) 2341–2359; cond-mat/9807076

[18] V. V. Bazhanov and N. Reshetikhin, *J. Phys. A Math. Gen.* **23** (1990) 1477–1492.

[19] A. Kuniba, Y. Ohta and J. Suzuki, *J. Phys. A: Math. Gen.* **28** (1995) 6211–6226; hep-th/9506167

[20] P. P. Kulish, N. Yu. Reshetikhin and E. K. Sklyanin, *Lett. Math. Phys.* **5** (1981) 393–403.

[21] K. Sogo, Y. Akutsu and T. Abe, *Prog. Theor. Phys.* **70** (1983) 730–738.

[22] A. N. Kirillov, *J. Sov. Math.* **47** (1989) 2450–2459.

[23] A. N. Kirillov and N. Yu. Reshetikhin, *J. Sov. Math.* **52** (1990) 3156–3164.

[24] M. Shiroishi and M. Takahashi, *Phys. Rev. Lett.* **89** (2002) 117201; cond-mat/0205180

[25] C. Domb and M. S. Green (ed), *Phase Transitions and Critical Phenomena* Vol. 3 (1974) Academic Press.

[26] A. Kuniba, T. Nakanishi and Z. Tsuboi, *Commun. Math. Phys.* **227** (2002) 155–190; math.QA/0105145