The role of survival motor neuron protein (SMN) in protein homeostasis

Helena Chaytow¹,2 · Yu-Ting Huang¹,2 · Thomas H. Gillingwater¹,2 · Kiterie M. E. Faller¹,2,3

Received: 26 April 2018 / Revised: 30 May 2018 / Accepted: 31 May 2018 / Published online: 5 June 2018 © The Author(s) 2018

Abstract

Ever since loss of survival motor neuron (SMN) protein was identified as the direct cause of the childhood inherited neurodegenerative disorder spinal muscular atrophy, significant efforts have been made to reveal the molecular functions of this ubiquitously expressed protein. Resulting research demonstrated that SMN plays important roles in multiple fundamental cellular homeostatic pathways, including a well-characterised role in the assembly of the spliceosome and biogenesis of ribonucleoproteins. More recent studies have shown that SMN is also involved in other housekeeping processes, including mRNA trafficking and local translation, cytoskeletal dynamics, endocytosis and autophagy. Moreover, SMN has been shown to influence mitochondria and bioenergetic pathways as well as regulate function of the ubiquitin–proteasome system. In this review, we summarise these diverse functions of SMN, confirming its key role in maintenance of the homeostatic environment of the cell.

Keywords Spinal muscular atrophy · Ribonucleoprotein · Translation · Cytoskeleton · Ubiquitin · Bioenergetic pathway

Introduction

The survival motor neuron (SMN) protein was first highlighted as a protein of interest when mutations in its coding gene, SMN1, were linked to the neuromuscular disease spinal muscular atrophy (SMA) [1], a leading genetic cause of infant mortality. SMA presents in a range of severities with the most severe form, Type 1, being fatal within the first 2 years of life. Patients show degeneration of α-motor neurons in the lower spinal cord leading to progressive muscle weakness. The clear importance of SMN protein to the motor system, alongside findings that knockout of Smn in mice was embryonically lethal [2], led to it being named “survival motor neuron”, despite subsequent research showing that it is a ubiquitously expressed protein, required by all cells and tissue types, not just neurons [3]. Over the past three decades, significant research efforts have sought to better understand the mechanisms through which SMN acts [3]. Most of the resulting knowledge has been generated from animal models of SMA, where reduced expression of SMN reveals its role in several important intracellular processes, which we will discuss in this review.

The full-length—294 amino acids, 38 kDa—human isoform of SMN (also known as FL-SMN, referred to as SMN hereafter) is mainly transcribed from the telomeric SMN1 gene, located on chromosome 5q13. SMN1 contains nine exons, 1, 2a, 2b, 3, 4, 5, 6, 7 and 8, with exon 8 remaining untranslated (Table 1). An inverted duplication in the region of SMN1 resulted in a second centromeric copy of the gene, termed SMN2, an evolutionarily recent event unique to Homo sapiens [4]. SMN2 differs from SMN1 at 5 bases, and a C-to-T transition in exon 7 of SMN2 favours skipping of exon 7 during splicing, resulting in the majority of SMN2 products being a truncated isoform referred as SMNΔ7 [1, 5]. However, limited amounts of SMN can still be produced from the SMN2 gene and it is known that the copy number of SMN2 is inversely correlated with SMA disease severity [6]. Patients with homozygous null mutations of SMN1 carrying
RNA in vitro and in vivo [13–16]. The Tudor domain is a
exon 2 and has been found to interact with Gemin2 and
and a YG box. The basic/lysine-rich region is encoded by
lysine-rich domain, a Tudor domain, a proline-rich domain
including, moving from N-terminus to C-terminus, a basic/
line stretches encoded by exons 4–6 are responsible for the
binding of profilins, key proteins in the regulation of actin
dynamics [34, 35]. A tyrosine/glycine-rich region in the
C-terminus of SMN, termed the YG box, is found to facili-
tate oligomerisation of SMN by formation of the glycine-
zipper structure [36]. Mutations found in the YG box count

four or more copies of SMN2 show a less severe phenotype,
later age onset, and can have a normal lifespan [7]. SMNΔ7
is highly unstable and quickly subjected to the ubiquitin–pro-
teasome pathway for degradation [8, 9]. Phylogenetic studies
further highlighted the importance of SMN, since it is highly
conserved throughout evolution and there are even multiple
copies of SMN1 in the chimpanzee genome [4]. Other SMN
isoforms have been found in various tissues (Table 1). An
“SMN6B” protein can be translated from both the SMN1 and
SMN2 genes by the inclusion of an intronic Alu sequence
as an alternative exon following exon 6 [10]. SMN6B is
present both in the nucleus and cytosol, and is twofold more
stable than SMNΔ7 but twofold less stable than full-length
SMN. SMN6B is able to interact with Gemin2, although its
physiological function is not fully understood [10]. mRNA
transcripts of another isoform, SMNΔ5 (with the exclusion
of exon 5), can be found in muscle and the central nervous
system (CNS) although, again, whether it has a physiologi-
cal function is not clear [11]. An axonal-SMN (a-SMN) has
also been proposed, being produced from intron 3 retention
during splicing. Due to an in-frame stop codon in intron 3,
a-SMN mRNA is much shorter and encodes a protein of
19 kDa. a-SMN is reported to be localised to the axon, and
its expression is enhanced in the spinal cord and the brain
during development and declines in the adulthood, with a
hypothesised role in axonogenesis [12].

The SMN protein contains several functional motifs
including, moving from N-terminus to C-terminus, a basic/
lysine-rich domain, a Tudor domain, a proline-rich domain
and a YG box. The basic/lysine-rich region is encoded by
exon 2 and has been found to interact with Gemin2 and
RNA in vitro and in vivo [13–16]. The Tudor domain is a
highly conserved motif with a function in protein–protein
interactions [17, 18]. The SMN Tudor domain binds to the
C-terminal arginine- and glycine-rich tails of Sm proteins
which contain symmetrical dimethylated arginine residues,
thereby facilitating the assembly of spliceosomes as dis-
cussed later [18–24]. Mutations in this domain, which dis-
rupt the interaction of SMN and Smith core (Sm) proteins,
are often found in SMA patients [18, 25–27].

The Tudor domain of SMN is also responsible for an
interaction with coilin, a marker of Cajal bodies (CBs) [28].
Liu and Dreyfuss originally described the localisation of
SMN to nuclear bodies which they termed “gems” [29],
and which are coilin negative as opposed to CBs. Gems are
composed of SMN complex proteins, whereas CBs are more
complex nuclear structures to which SMN also localises,
and the presence of SMN in these nuclear bodies increases
during neuronal differentiation [30]. CBs are enriched with
small nuclear RNAs (snRNAs) and small nucleolar RNAs
(snoRNAs), and are essential for the biogenesis of the small
nuclear ribonucleoproteins (snRNP) complex [31]. Interest-
ingly, motor neurons from a Type I SMA patient showed a
reduced number of CBs and defects in recruitment of SMN
and snRNP for spliceosomal maturation [32]. Tapia et al.
[33] also demonstrated that SMN has a SUMO-interacting
motif (SIM) in the Tudor domain, which is required for Sm
protein binding and the assembly of CBs. Three polypro-
line stretches encoded by exons 4–6 are responsible for the
binding of profilins, key proteins in the regulation of actin
dynamics [34, 35]. A tyrosine/glycine-rich region in the
C-terminus of SMN, termed the YG box, is found to facili-
tate oligomerisation of SMN by formation of the glycine-
zipper structure [36]. Mutations found in the YG box count

![Springer]
for nearly half of missense mutations in SMA patients and this motif was shown to be essential for survival in chick cells under conditions of SMN depletion [37, 38]. The YG box is required for SMN self-oligomerisation and proteins with mutations found in this motif, as seen in the Type I SMA patients, severely impair this association [39]. A recent study demonstrated that a phosphor degron within the YG box is exposed to SCFSmn ubiquitin E3 ligase when SMN is monomeric, implying that the YG box plays a role in SMN stability and indicating the importance of SMN oligomerisation [9]. Post-translational modifications to the SMN protein discern its localisation and function. As well as SUMOylation via the SIM regulating Sm protein binding, and ubiquitination of SMN (discussed later), the protein may also be acetylated, which promotes a cytoplasmic localisation and increases its half-life [40], or phosphorylated on certain serine/threonine residues to promote its localisation to CBs. Mutations of three tyrosine residues in the Tudor domain greatly affect its enrichment in CBs via disrupted interaction with coillin [41, 42].

Several model organisms have been utilised to study the SMN protein and its role in SMA (Table 2). Although the protein product of \textit{SMN2} is truncated and unstable, its expression is crucial for survival once \textit{SMN1} expression has been lost. As \textit{SMN2} is specific to humans, most of the commonly used mouse models have undergone genetic manipulation to generate an endogenous Smn null mutation with concurrent overexpression of the human \textit{SMN2} gene, a cDNA copy of \textit{SMN2} lacking exon 7 or other variants of the \textit{SMN} genes [43–45] (reviewed in [46]). Another widely used animal model is the zebrafish (\textit{Danio rerio}). Having the advantages of well-characterised motor neurons and neuromuscular junctions, easy manipulation of gene overexpression or knockdown by injection of in vitro-transcribed RNA or antisense oligonucleotides, respectively, and a transparent body for imaging applications, zebrafish are becoming increasingly popular for translational SMA research projects [47–50]. Fruit flies (\textit{Drosophila melanogaster}) have also been used to study SMN biology. They possess one copy of an \textit{Smn} gene ortholog or \textit{DmSMN} and can also be easily genetically manipulated. Each of the models referred to in this review are summarised in Table 2, with more comprehensive reviews of SMA models available elsewhere [51–54].

The selective cell death of motor neurons is a key feature of the disease, but the reasons behind this selectivity are still poorly understood. A recent study demonstrated that there were heterogeneous and surprisingly diverse expression levels of SMN in SMA-patient-derived iPSC motor neurons. Moreover, motor neurons with lower levels of SMN protein were more susceptible to cell death from toxic compounds, whilst overexpression of SMN in motor neurons was protective [55]. SMN, therefore, clearly plays a major role in SMA pathology and the specific vulnerability to motor neurons in this disease. To understand why SMN is so vital for healthy cell maintenance, we must understand

Species	Endogenous SMN orthologue	Modelling strategy and/or genotype	References
Caenorhabditis elegans	CeSMN	Knockdown of expression through RNAi	[209]
Drosophila melanogaster	DmSMN	Point mutations or transposon insertions for knockout or knockdown studies	[210, 211]
Danio rerio	Smn	Knockdown of expression through antisense oligonucleotides	[47]
Mus musculus	Smn		
	Smn knockout	\textit{Smm}-/-	
	Taiwanese mice	\textit{Smm}RT/RT; \textit{SMN2Hung}tg/-	
	SMNΔ7	\textit{Smm}2A/2A; \textit{SMN2}200g/200g; \textit{SMN}Δ7200g/200g	
	Smm2B	\textit{Smm}2B/2B	
	Burghes severe model	\textit{Smm}-/-; \textit{SMN2}200g/200g	

For a comprehensive review of animal models of SMA, see Edens et al. [51]
its role under normal, as well as disease, conditions. In this review, we describe the role of the SMN protein in regulating protein homeostasis. Protein homeostasis within cells can be regulated by two major pathways, production and clearance, which reach a dynamic balance to support and maintain physiological status. Production pathways incorporate protein translation, folding, modification and assembly, while protein clearance pathways are centred around protein disassembly and degradation. We discuss known functions of the SMN protein, starting with its first-described role in RNA splicing and spliceosomal assembly, followed by more recently discovered functions in regulating mitochondrial homeostasis, endocytosis and the cytoskeleton, ubiquitination and autophagy, and RNA transportation, thus giving a broad picture of the many ways in which SMN plays a key role in regulating protein homeostasis.

SMN and ribonucleoprotein assembly

Although it is now clear that the SMN protein contributes to numerous cellular processes and pathways, the first identified and most studied function of SMN is its role in snRNP assembly. The spliceosome is a complex machine, which catalyses the removal of introns from pre-mRNA transcripts (see [56] for a detailed review). The biogenesis of an snRNP starts in the nucleus by the transcription of uridine-rich snRNAs (U1, U2, U4, U5, U6, U11, U12, U4atac, U6atac), which are then exported to the cytoplasm. Each snRNA is then bound to accompanying proteins and—with the exception of U6 and U6atac—to a set of seven Sm proteins. Whilst Sm proteins can spontaneously associate in vitro with almost any single short-stranded uridine-rich RNA forming a thermodynamically stable heptamer [57], this process lacks specificity regarding RNA substrates. The role of the SMN protein, tightly associated with eight other proteins (Gemin 2–8 and Unrip) in a large macromolecular SMN complex, is to chaperone the biogenesis of snRNPs from snRNAs and Sm proteins in the cytoplasm, and subsequent snRNP trafficking to the nucleus [14, 29, 58–66]. First, the SMN complex enforces specificity during the snRNPs’ assembly with the direct and specific binding of Gemin5 to the cytoplasmic snRNAs [67–71]. The Sm core is then loaded onto the snRNA in an ATP-dependent process with Gemin2 playing a key architectural role in this assembly. Finally, the snRNA undergoes hypermethylation of its m7G-cap by TGS1 (trimethylguanosine synthetase 1), leading to the formation of a trimethylguanosine (TMG) cap and trimming of its 3’ end before it can be imported back into the nucleus. The TMG cap and Sm core operate as nuclear localisation signals [72, 73]. Importation to the nucleus also necessitates the binding of the nuclear import complex (snurportin and nuclear import receptor importin-β) to the TMG cap [72, 74–77]. In that process, SMN has been shown to have a direct interaction with importin-β facilitated by WRAP 53 [78, 79]. WRAP 53 also plays a fundamental role in the trafficking of SMN towards CBs by facilitating the interaction between SMN and collin [80]. The snRNA then dissociates from the SMN complex and undergoes its final maturation steps within the CB. Studies of splicing activity in cells from SMA patients or mouse models confirm the fundamental role of SMN in snRNP assembly with a correlation between the reduction in snRNPs levels and disease severity [81–83]. A recent study has also identified an alternative assembly pathway, whereby the U1-specific RNA-binding protein (RBP) U1-70K can directly interact with the SMN-Gemin2 complex, independently of Gemin5. This U1-specific Sm core-assembly pathway not only contributes to U1 overabundance, but it was also proposed that SMN-Gemin2 could play a role as a hub, where various RBPs and their RNA cargos congregate, hence promoting ribonucleoprotein exchange [84].

The SMN complex is also involved in the biogenesis of U7 snRNPs, a specific subgroup of snRNPs which are involved in processing the 3’ stem loop of histone mRNAs by endonucleolytic cleavage of the pre-mRNA sequence which immediately follows the hairpin [85]. The assembly of U7 snRNPs is overall analogous to that of the spliceosome snRNPs, with the exception of the slightly degenerate Sm-binding site of the U7 snRNA and the replacement of two of the Sm proteins in the Sm core (SmD1 and SmD2) by two U7-specific Sm-like proteins (Lsm10 and Lsm11). Similar to spliceosome assembly, the SMN complex is a specificity chaperone that is necessary to precisely recognise and combine U7 snRNA with the Sm heptamers containing Lsm10 and Lsm11, without which the U7 snRNPs cannot function in histone RNA processing [86–88].

Although less extensively studied, the SMN complex is suspected to be involved in the assembly and metabolism of other ribonucleotide complexes, including small nucleolar ribonucleoproteins (snoRNPs), associated with the post-transcriptional processing and modification of ribosomal RNA in the nucleolus (methylation and pseudouridylation) [89]. Indeed, SMN has been shown to directly interact with fibrillarin and GAR1, two markers of snoRNPs, and expression of a dominant-negative mutant of SMN results in abnormal accumulation of snoRNPs in large aggregates outside of the nucleolus [90]. Furthermore, in SMA-patient-derived cells, a decreased localisation in CBs of the snoRNP chaperone Nopp140 was observed, which correlated with disease severity [91]. In addition, SMN may be involved with telomerase, a large RNP complex that adds repeat sequences at the chromosomal ends. It comprises a telomerase reverse transcriptase (TERT), the telomerase RNA and other associated proteins (for a review on telomerase RNA, see [92]). The telomerase RNP belongs to the H/ACA snoRNP class.
The role of survival motor neuron protein (SMN) in protein homeostasis

and it is suspected that SMN plays a role in telomerase biogenesis, ensuring specificity of assembly and correct trafficking [93, 94]. As snRNP assembly and splicing occurs in all cells, including neurons, why do low levels of SMN in SMA particularly affect motor neurons [95]? This remains a major question challenging the SMN and SMA research field. As previously noted, the reduction in snRNP biogenesis correlates with the degree of clinical severity in SMA [81]. However, SMN deficiency seems to preferentially disrupt the formation of minor snRNPs, such as those responsible for the removal of U12-containing intron genes [81, 83, 96]. Amongst these, the gene coding for a transmembrane protein, stasimon, has been identified as being aberrantly spliced in a Drosophila model of SMA [97]. Upregulation of stasimon rescued deficient neuromuscular junction (NMJ) transmission in SMN-deficient Drosophila and improved neuronal development in SMN-deficient zebrafish [97]. Other genes, not all containing U12-introns, such as chondrolectin, agrin and neurexin2 have also been identified as being abnormally spliced and could, therefore, play a role in the pathophysiology of the disease [98–100]. It could consequently be the case that defects in splicing have a larger effect on a specific subset of neuronal genes, thereby rendering motor neurons particularly vulnerable. However, despite this evidence for mis-splicing in the SMA disease pathway, other studies have suggested that wide-spread splicing defects mainly occur during the late stage of the disease [101], supporting the theory that alternative roles of SMN may play an equally important part in cell function.

SMN and trafficking

The first indications that SMN played a role aside from its canonical functions in the spliceosome came when electron microscopy revealed localisation of SMN in the dendrites and axons of motor neurons in the developing rat spinal cord [102]. It has been suggested that there is a progressive shift in SMN protein localisation from mainly nuclear during development to a more cytoplasmic and axonal localisation in the mature neuron [103]. SMN was also found to be present at the growth cones of cultured motor neurons, and live cell imaging showed puncta positive for SMN being actively transported bi-directionally along axons [104]. SMN co-localises with some elements of the SMN complex in the axon, such as Geminin2, but Sm proteins show very low abundance in distal neurites, and most axonally located SMN granules lack Sm proteins [105]. The neuron-specific protein neurochondrin is required for the correct localisation of SMN in the cytoplasm, and neurochondrin was found not to co-localise with snRNPs, further indicating that SMN is involved in activities other than splicing [106].

Recent studies have identified that SMN can bind to the α-COP subunit of the COPI vesicle [107]. The COPI system, a Golgi-derived vesicular transport system, is involved in intracellular trafficking in neurites, necessary for the maturation of neuronal cell processes [108]. Knocking down α-COP was found to disrupt SMN localisation within growth cones, resulting in its accumulation within the trans-golgi network [109]. Depletion of α-COP reduced neurite formation in NSC-34 cells and primary cortical neurons, with shortening of both map2-positive dendrites and tau-positive axons [110], and both α-COP and SMN are required for correct neurite formation [111]. This indicates a role for SMN in trafficking for the purposes of neuronal outgrowth and formation of the axonal and synaptic cytoskeleton (see below).

In keeping with this potential role for SMN, Rossoll and colleagues discovered an interaction between SMN and the RBP hnRNP-R [112]. SMN and hnRNP-R were found to co-localise in the cytoplasm of primary cultured motor neurons, and in motor neurons cultures from Smn−/− mice, there was a large reduction in β-actin mRNA localisation in axons and growth cones. Primary motor neurons cultured from Taiwanese SMA mice showed growth cones with a threefold reduction in size compared to healthy controls, as well as reduced staining for β-actin mRNA with no overall change in protein expression [112]. Since these initial findings, fluorescence in situ hybridisation experiments against the polyA tails of mRNA revealed a more than 50% reduction in localisation of mRNA transcripts along the axon of primary motor neurons following SMN knockdown [113]. In addition, further co-localisation studies have shown SMN to associate with a number of RBPs via its Tudor domain, including KSRP [114], FMRP [115], HuD [113, 116], FUS [117] and IMP1 [118]. The association between SMN and other RBPs has linked it to another motor neuron disease, amyotrophic lateral sclerosis (ALS). RBPs associated with ALS, FUS and TDP-43 have been shown to co-localise in nuclear gems with SMN and mutations in either of their genes in ALS patient fibroblasts show reduced gem formation leading to abnormal accumulation of snRNAs in the nucleus [119, 120]. This highlights an interesting mechanistic link between ALS and SMA.

SMN acts as a molecular chaperone for the binding of RBPs to mRNA transcripts as well the RBPs’ binding to the cytoskeleton and subsequent localisation, as evidenced by disruption of these processes in SMN deficiency [121]. Both IMP1 and HuD have been shown to influence the localisation and translation of β-actin and GAP-43 mRNA transcripts, which are in turn both necessary for correct axonal growth [113, 118, 122]. Indeed, SMN knockdown leads to a reduction of HuD in the axonal compartment [113], while knockdown of HuD in zebrafish leads to a similar phenotype to SMN knockdown of shorter axons [122]. Further experiments using FLAG-tagged SMN in NSC-34 cells [123]
identified SMN as a binding partner for several species of non-coding RNAs, including snRNAs, snoRNAs and ribosomal RNAs, which were expected due to SMN’s known role in RNA processing, as well as miRNAs and tRNAs. The majority of RNAs identified were mRNA, with many being part of ribosomal and/or metabolic pathways. When compared to mRNAs known to localise to neuronal axons, the study’s authors identified 75 axonally localised SMN-associated mRNAs, including RNA transcripts of several ribosomal proteins and Ubb, the transcript of the protein ubiquitin [123]. However, it should be noted that this group of mRNAs is unlikely to be comprehensive, as it does not include the known RNA transcripts regulated by SMN including β-actin, GAP43, tau and neuritin [112, 116, 124].

SMN and translation

While SMN plays an integral role in the transport of RNA transcripts along axons and dendrites, it also appears to be involved in the local translation of proteins. The transportation of mRNA transcripts along the axon allows for rapid protein turnover in distal regions of the neuron in response to, for example, activity [125]. Dysregulation of local translation has been associated with several other neurodegenerative disorders, including Alzheimer’s disease and amyotrophic lateral sclerosis (reviewed in [126]).

Recent evidence has pointed to a role for SMN in the local translation of mRNA transcripts, as well as their localisation. Early on, it was reported that loss of SMN changed the expression of plastin-3 in a zebrafish model of SMA [127]. Although, at the time of this discovery, the mechanisms behind changes in protein expression were not clear, more recent studies suggest that SMN affects the local translatome through several mechanisms. Translation within the axon was found to be dysregulated in primary neurons derived from SMN−/− mice in vitro, with no corresponding change in somatic translation, and axonal defects could be rescued by overexpression of the RNA binding proteins HuD and IMP1 [128], suggesting a link between the role of SMN in mRNA trafficking and translation. Furthermore, ultrafractionation of cell extracts from a motor neuron-like cell line revealed an association of the SMN protein with polyribosomes, whilst treatment with RNase displaced RBPs associated with the polyribosomes such as SMN, but also other known binding proteins such as FMRP [129]. When SMN was introduced into an in vitro translation system, there was a dose-dependent reduction in translation efficiency, with no change in translation when incubated with the SMNΔ7 fragment [129].

Alongside its direct interaction with ribosomes, suggesting a possible direct role in translational control, SMN may also influence protein translation through micro-RNAs. MicroRNAs miR-183, miR-96 and miR-182 are transcribed in a cluster and are associated with increased cell proliferation via the mTOR pathway [130]. Primary motor neurons with a 50% knockdown of SMN protein showed increased expression of miR-183 in neurites whereas there was no change in expression in the cell body, along with downregulation of proteins in the mTOR pathway [131]. It is possible that SMN regulates the mTOR pathway and, therefore, protein translation through miR-183, since motor neurons in the Taiwanese mouse model and SMA-patient-derived fibroblasts both showed reduced levels of de novo protein synthesis, and a knockdown of miR-183 in Taiwanese mice produced a mild rescue of the phenotype with improved survival and increased body weight [131]. Another indication that SMN interacts with the mTOR pathway came from studies examining the effect of manipulating the PTEN pathway on primary motor neurons of SMNΔ7 mice. PTEN is a negative regulator of the mTOR pathway, and in SMN-depleted primary motor neurons where axonal growth was defective, decrease of PTEN/activation of mTOR rescued the SMA phenotype [132].

Most of the work detailed above was performed in vitro, where primary cultures allow analysis of changes in axonal growth and the ability to isolate axonal compartments relatively easily. However, in vivo evidence is important to determine the role of SMN in these mechanisms. A recent study examined translational pathways in vivo and found SMN associating with ribosomes in control tissue, as well as a shift in residual SMN levels to non-ribosomal fractions and an overall reduction in the number of ribosomes associated with polysomes in Taiwanese SMA mice [133]. This study also compared the whole transcriptome to the translatome using next-generation sequencing, and confirmed significant deficiencies in translation following reduced SMN expression in vivo [133], including results that point to defects in the biogenesis of ribosomes, suggesting a possible explanation for translational defects that occur upon SMN depletion.

Taken together, the studies detailed above strongly suggest that SMN plays an important role in regulating protein translation through several mechanisms. First, through subcellular localisation of mRNAs along the axon; second, through association with ribosomes themselves regulating the availability of ribosomal units for local translation and finally, through regulation of the mTOR pathway. In this way, SMN is well positioned to play a role in the developmental polarisation of motor neurons, as well as control their growth, maturation and proper function. This crucial role, alongside the expansive physical size of motor neurons, may partly explain why motor neurons are particularly susceptible to loss of SMN, as opposed to other more ubiquitous roles that the protein plays in the cell.
SMN and the cytoskeleton

The cytoskeleton—incorporating key components such as microtubules, neurofilaments and actin protein—plays a fundamental role in regulating neuronal architecture and function. It is crucial for signalling and trafficking of various molecules, but also for the formation of growth cones during neuronal development. Therefore, it is perhaps not surprising that defects in the cytoskeleton have been linked to several neurodegenerative disorders, including SMA (for reviews on the neuronal cytoskeleton see [134, 135]).

The observation that SMN localised to neurites and growth cones [102, 105, 136–138] and that SMN modulated the localisation of β-actin within growth cones [112] provided the first hints of a possible role for SMN in regulating cytoskeletal dynamics. At the same time, knocking down SMN in zebrafish was found to result in motor axonal growth. In the Taiwanese mouse model and in iPSC-derived motor neurons from SMA patients, PlexinD1 resulted in the dysregulation of the actin cytoskeleton by interfering with PlexinD1. PlexinD1 is a receptor for class 3 semaphorins and acts as a signalling factor to guide axonal growth. In the Taiwanese mouse model and in iPSC-derived motor neurons from SMA patients, PlexinD1 was shown to be cleaved by metalloproteases, resulting in its functional change from being an attractant to a repellant signalling factor, thereby contributing to growth cone collapse [145]. In the same study, cleaved PlexinD1 was found to be enriched in actin rods, a pathological structure of elongated actin aggregates also found in some age-related neurodegenerative diseases but not in control cells.

Interestingly, by studying discordant families where siblings of SMA patients were asymptomatic despite carrying the same SMN1 and SMN2 alleles as their affected siblings, Oprea et al. [146] were able to identify the first protective genetic modifier of SMA: plastin 3 (PLS3). PLS3 is involved in axonogenesis by bundling F-actin and stabilising growth cones. Its overexpression was able to rescue the axon outgrowth defects in SMN-deficient zebrafish and increase the life span of the intermediate Smn2B model [146, 147]. Other studies have suggested additional roles for SMN in regulating microtubule formation, required for transporting mRNAs, proteins and organelles to or from the nucleus to distal regions of the neuron (reviewed in [148]). Stathmin, a protein known to promote microtubule depolymerisation [149] was found to be upregulated in the spinal cord in Taiwanese mice and also in SMN-depleted NSC-34 cells leading to defects in the structure of axons and reduced mitochondrial transport along the axons [150]. In SMN-deficient cells, microtubules failed to re-polymerise following treatment with the microtubule-depolymerisation agent nocodazole, an effect which could be rescued by knocking down stathmin [150]. However, the detailed mechanisms linking SMN to these pathways, and whether or not they are indeed separate from SMN’s involvement in the mRNA trafficking of components of the cytoskeleton such as GAP-43 and β-actin, remains to be determined.

SMN and endocytosis

Endocytosis is a basic cellular process, essential for neuronal signalling, axonal and dendritic growth (reviewed in [151]). It plays a particularly important role at synapses (including at neuromuscular junction synapses formed by motor neurons), facilitating synaptic vesicle recycling necessary for repeated rounds of neurotransmitter release. A bioinformatics analysis carried out on two different species (Caenorhabditis elegans and D. melanogaster) identified the endocytic pathway, along with mRNA regulation, as potential modifiers of SMN loss [152], with numerous individual genes being highlighted. In another study, SMN depletion resulted in a marked impairment of endocytic function in multiple tissues of C. elegans [153]. The neuromuscular junction was particularly affected, with structural and functional changes being reported. A reduction in the number of pre-synaptic docked vesicles was observed, accompanied by unusually large cisternae suggestive of arrested endocytic vesicle
maturation [153]. This was associated with a decreased activity of, and disruption to, the NMJ (a key feature of SMA [154–156]): synaptic transmission was reduced, likely secondary to an impairment in synaptic vesicle recycling.

In this model, endosomal defects were noted not only at the level of the NMJ, but also in non-neural tissue as endocytic activity in coelomocyte cells was lower. The importance of SMN for NMJ homeostasis was further demonstrated in the
Taiwanese model of SMA, where pre-synaptic uptake of FM1-43 dye by endocytosis was significantly reduced upon electrical stimulation. Interestingly, this disturbance was restored by PLS3 overexpression. The fact that PLS3 overexpression could improve the endocytic defect was perhaps not surprising, however, as the actin cytoskeleton is required for this process [157] and yeast cells lacking Sac6p, the PLS3 ortholog, are defective for the internalisation step of endocytosis [158]. Moreover, another F-actin binding and bundling protein, coronin 1C (CORO1C), has been shown to interact with PLS3 and its overexpression rescued endocytosis in SMN-deficient cells and improved the axonal phenotype in Smn-deficient zebrafish [159]. The importance of SMN for endocytic processes has also been confirmed in SMA-patient-derived cells, which proved resistant to infection by a clathrin endocytosis-dependent virus [153] (see Fig. 1 for a summary of the role of SMN in endocytosis).

Using the same approach that led to the discovery of PLS3 as a modifier of SMA, a second modifier, neuronal calcium sense protein neurocalcin delta (NCALD) was recently reported [160]. Contrary to PLS3 which acts as a positive regulator of endocytosis, NCALD is a negative regulator of endocytosis and axonal growth. Knockdown of NCALD restored neurite outgrowth in SMN-deficient cells and improved axonal growth and NMJ function in a zebrafish model of SMA. An enhanced neuromuscular function in C. elegans and murine models of SMA was also observed following NCALD depletion [160]. In the absence of calcium or at low calcium levels, NCALD, which localises to growth cones and pre-synaptic sites at the NMJ, interacts with clathrin, which mediates the endocytosis needed for fast recycling at axon terminals. Low SMN levels have been shown to lead to a reduction of voltage-activated Ca$^{2+}$ influx [98, 160], and it is possibly through this mechanism that endocytosis and vesicle recycling was impaired. It was postulated that, in normal motor neurons, the high local Ca$^{2+}$ concentration observed following neurotransmitter release led to the dissociation of NCALD from clathrin, therefore “freeing” clathrin to perform its endocytic function. In SMA, due to low Ca$^{2+}$ concentrations, dissociation did not occur and the clathrin was, therefore, not available for coating of the vesicles. Moreover, disturbed calcium homeostasis would also be predicted to affect the function of actin-bundling proteins PLS3 and CORO1C, giving further strength to the hypothesis that low calcium levels secondary to SMN deficiency play an important role in endocytosis impairment [158].

SMN and autophagy

Autophagy is a highly conserved catabolic process utilised by cells to break down unwanted macromolecules such as aggregated proteins or cellular organelles (reviewed in [161]). Autophagy involves a double-membrane bound structure engulfing target proteins and organelles to form an autophagosome. The autophagosome later fuses with lysosomes to become an autolysosome, in which the proteins and organelles are degraded (reviewed in [162]). Autophagy is a finely balanced mechanism: a decrease in expression of autophagy-related genes may lead to the accumulation of unwanted proteins whereas over-active autophagy leads to increased numbers of autophagosomes, possibly leading to cell death [163, 164]. Both of these outcomes have been described in various models of SMN depletion, indicating a role for SMN in the regulation of autophagy.

It is debatable whether an increase in amount of autophagosomes is protective or deleterious to the cell. Through measuring expression of LC3-II, a marker of autophagosomes, it has been shown that autophagosome number is increased in primary motor neurons following lentiviral SMN knockdown [165] and in spinal cords of the Taiwanese mouse model [166] and the SMNΔ7 mouse model [167]. Another way of measuring autophagic activity is through autophagic flux indicated by the level of p62/SQSTM1 protein [168–170]. Again, the p62 protein level was found to be upregulated in the spinal cord of Burghes severe SMA mice compared to their control littermates [171], as well as in an NSC-34 cell line following lentiviral SMN knockdown, and in the spinal cord of Taiwanese SMA mice [166], indicating a reduction in autophagic flux. Inconsistent with data from the Taiwanese mouse model, autophagic flux did not appear to increase in the spinal cord of SMNΔ7 mice [166, 167]. Inhibition of lysosomal proteolysis with Bafilomycin A1 (BafA1) resulted in an accumulation of LC3-II in cultured motor neurons from the Burghes severe SMA model, suggesting that SMN deficiency can activate autophagy [171].

Conversely, autophagy modulators can alter SMN protein levels. Treating cultured motor neurons isolated from wild-type mice with mTORC1 inhibitor rapamycin, which is believed to enhance the activity of autophagy [172, 173], showed increased SMN levels, whilst in BafA1-treated motor neurons SMN levels were decreased [171]. A recent study has indicated that SMN may be partially degraded through the autophagy pathway, since a knockdown of p62 in stem cell-derived motor neurons from SMNΔ7 mice increased SMN protein levels [174]. A role for SMN in autophagy is also supported by the finding that overexpression of the SMN-binding partner α-COP, normally involved in cytoskeletal growth [110], partially restored autophagic flux in SMN-depleted cells [166], although the mechanism involved remains unclear. Moreover, injection of the autophagy inhibitor 3-methyladenine (3-MA) into SMNΔ7 mice at P3 greatly reduced autophagic activity and protected motor neurons from degeneration, possibly via inhibition of the apoptotic pathway as shown by reduced expression...
of apoptotic markers [167]. On the other hand, rapamycin failed to influence the loss of motor neurons, but reduced survival significantly in SMNΔ7 mice [167]. These conflicting findings show that further work is still required to fully elucidate the interaction between SMN and autophagy pathways.

SMN, mitochondrial homeostasis and bioenergetics pathways

SMN deficiency has been linked to changes in oxidative stress, mitochondrial dysfunction and impairment of bioenergetic pathways. Acsadi et al. [175] showed that knocking down SMN levels by ~66% in NSC-34 cells resulted in a marked reduction in ATP levels. This was associated with an increase in cytochrome c oxidase activity and mitochondrial membrane potential, resulting in increased free radical production. This increase in oxidative stress in SMN-deficient cells was further confirmed in spinal motor neurons derived from human embryonic stem cells (hESCs). Interestingly, mitochondrial superoxide production was only increased in the SMN-knockdown hESCs which were made to differentiate into spinal motor neurons, but not in the cells differentiated into forebrain neurons [176].

Further analysis of mitochondrial dysfunction was performed by the same group using two models of SMN-deficient cells, SMA Type 1 patient-specific-induced pluripotent stem cells (iPSCs) and SMN-knockdown hESCs, both differentiated into spinal motor neurons [177]. Impaired mitochondrial axonal transport and a reduction in axonal mitochondrial number and area were noted at early stages of cell culture. Partial rescue by the anti-oxidant N-acetylcysteine provides evidence to support the hypothesis that oxidative stress plays an important role in neuronal degeneration in SMN-deficient motor neurons. However, experiments on SMA patient iPSCs led to conflicting results as, in this model, no oxidative stress was detected [178]. These inconsistencies could be secondary to differences in the way the stem cells were differentiated and highlight the limitations of studying cell type-specific pathological processes in cell cultures. More recently, studies in SMNΔ7 and Taiwanese mouse models confirmed marked mitochondrial dysfunction in spinal motor neurons, with decreased basal and maximal mitochondrial respiration, impaired mitochondrial membrane potential, impaired mitochondrial mobility, increased oxidative stress level and increased fragmentation [179]. Interestingly, mitochondrial defects in SMA are not thought to be limited to motor neurons in vivo, as they have also been identified in SMA patient muscle associated with a downregulation of mitochondrial biogenesis regulatory factors [180].

Mitochondrial oxidative phosphorylation is a core part of bioenergetic pathways. Mitochondrial electron transport chain function relies on a supply of electrons from the carriers NADH and FADH2 through upstream reactions (mainly glycolysis and TCA cycle). Proteomics studies identified that bioenergetics pathways were affected by SMN deficiency, more specifically GAPDH, an enzyme of the glycolysis pathway, was downregulated in SMA models [181]. Interestingly, gene expression studies of affected and disease-resistant motor neuron pools in mice revealed that susceptible neurons had lower basal expression not only of specifically mitochondria-related genes but also of genes involved in more generic bioenergetic pathways. Specifically, the expression of PGK1, a key enzyme of the glycolytic pathway, was significantly elevated in motor neurons that are intrinsically resistant to low levels of SMN, with experimental elevation/activation of PGK1 sufficient to rescue motor axon defects and loss of neuromuscular function in a zebrafish model of SMA [182].

Taken together, these studies highlight that SMN deficiency leads to impairment in mitochondria and bioenergetics pathways. However, the precise mechanisms involved in these interactions remain unclear. Studies in various cell types have shown that SMN does not localise to mitochondria [175, 183]. Therefore, it has been postulated that the effects of SMN on mitochondrial function could be indirect, possibly by affecting preferentially the splicing, translation or mRNA transport of genes fundamental to mitochondrial homeostasis [175, 177]. As previously mentioned, cytoskeletal changes can also lead to decreased mitochondrial transport, particularly within long axons [150]. Therefore, further studies are required to better understand how SMN affects these energetic pathways, fundamental for cellular homeostasis.

SMN and ubiquitin pathways

Another key mechanism required for protein homeostasis is the protein degradation pathway. There are two major routes of protein degradation in eukaryotes: the ubiquitin–proteasome system (UPS) and lysosomal proteolysis, or autophagy (see above). The mammalian ubiquitin pathway is initiated by activation of the E1 ubiquitin-activating enzyme UBA1, which then transfers ubiquitin onto one of around 40 E2 conjugating enzymes. E2 ligases control whether a substrate is mono- or polyubiquitinated [184]. E3 ligases (of which there are several hundred) collect the substrate protein and form a complex between it and the ubiquitinated E2 ligase, where the ubiquitin is transferred onto the protein substrate. Ubiquitination is a dynamic process, and proteins can be stripped of their ubiquitin by deubiquitinating enzymes.
SMN has been shown to be ubiquitinated and ultimately degraded via the ubiquitin–proteasome system, with a protein half-life of between 6 and 10 h depending on the cell line analysed [185, 186]. Inhibition of the proteasome in SMA-patient-derived fibroblasts increased the intracellular abundance of SMN, both in terms of the amount of SMN protein and the number of nuclear gems [187]. Monoubiquitination, as opposed to polyubiquitination, serves other functions in the cell instead of degradation including protein trafficking and intracellular localisation (reviewed in [188]) and SMN is known to be monoubiquitinated [186]. Indeed, preventing the monoubiquitination of SMN changed the localisation of the protein from the cytoplasm to the nucleus, and also prevented its co-localisation with Sm proteins [189]. Meanwhile, the SMNΔ7 fragment is polyubiquitinated and quickly degraded [186]. Pharmacological inhibition of ubiquitination of SMN, such as with the small molecule ML372, increased SMN protein levels and slowed disease progression of SMNΔ7 mice leading to longer survival, increased motor neuron size and less muscle atrophy [190]. When SMA-patient-derived fibroblasts were treated with salbutamol, the β2-adrenergic receptor agonist, there was also an increase in levels of SMN protein, possibly acting via activation of protein kinase A, thereby preventing SMN ubiquitination [191]. SMA patients treated with salbutamol also showed an increase in SMN levels in the blood [192].

Through proteomic analysis, SMN has been found to interact with several components of the ubiquitin pathway, including UBA1 and several E3 ligases, as summarised in Fig. 2 [9, 193]. Mutations in the UBA1 gene cause the disease X-linked SMA [194], a rare condition with similar symptoms to classical SMA but with no mutations in the SMN1 gene, suggesting a link between UBA1 and SMN which, when lost, leads to SMA-like phenotypes. Mutations in the Drosophila homologue of UBA1 cause motor defects, indicating that the motor system is particularly susceptible to the loss of UBA1 despite its ubiquitous expression [195]. Proteomic analysis of hippocampal synaptosomes from Burghes severe SMA mice showed decreased levels of UBA1 compared to controls, with decreased expression also reported in spinal cord and skeletal muscle [196]. The Taiwanese SMA mouse model similarly showed tissue-wide lower levels of UBA1, along with changes in splicing of the UBA1 transcript, which may account (at least in part) for the altered protein expression. Experimental suppression of UBA1 in wild-type zebrafish was sufficient to phenocopy SMA-like motor axon defects. Likewise, in the zebrafish SMA model UBA1 expression was reduced by 70%, whilst increasing UBA1 expression rescued the SMN-knockdown

![Diagram](https://example.com/diagram.png)

Fig. 2 Diagrammatic representation of the ubiquitin pathway and the components, where SMN interacts. SMN is both ubiquitinated via the UPS pathway and an interacting protein influencing several steps of the process. SMN directly interacts with the UBA1 enzyme, which transfers ubiquitin to the E2 ligases. Ubiquitinated E2 ligases then form a complex with E3 ligases bound to protein substrates. SMN has been shown to interact with several E3 ligases, including Mindbomb 1, Itch and TRAF6. Ubiquitin is then transferred to the protein substrate and the complex dissociates. Monoubiquitinated substrates continue on to other intracellular processes, whereas polyubiquitinated substrates are targeted for proteasome degradation. SMN has also been shown to interact with deubiquitinating enzymes, which remove ubiquitin from protein substrates.
may have an effect on cell-wide ubiquitination as well as that SMN is regulated at several levels of the UPS, which increase in ubiquitinated SMN \[186\]. It, therefore, appears ubiquitination levels, where a loss of Usp9x impairs SMN binding enzyme known to interact with SMN, also influences its levels of ubiquitination \[204\]. Usp9x, another deubiquitinating enzyme specifically expressed in neuronal tissue, and its downregulation has been associated with Parkinson’s and Alzheimer’s diseases \[200–202\]. Following knockdown of UCHL1 in cell culture, there was a concordant increase in SMN expression \[203\]. Conversely, in Taiwanese mice, there was an increase in UCHL1 expression. However, inhibition of UCHL1 expression in Taiwanese mice failed to increase SMN levels and did not have an effect on survival or phenotype of the SMA model, with evidence suggesting that an increase in UCHL1 levels in the absence of SMN may be a compensatory response to restore levels of ubiquitination \[204\]. Usp9x, another deubiquitinating enzyme known to interact with SMN, also influences its ubiquitination levels, where a loss of Usp9x impairs SMN nuclear gem formation while overexpression leads to an increase in ubiquitinated SMN \[186\]. It, therefore, appears that SMN is regulated at several levels of the UPS, which may have an effect on cell-wide ubiquitination as well as regulation of the SMN protein itself.

Concluding remarks and future perspectives

SMN, originally discovered due to its association with the neurodegenerative disorder spinal muscular atrophy, is in fact a ubiquitous protein with numerous roles within the cell. Although its first-identified and most-described function is in the biogenesis of ribonucleoproteins, it is now evident that SMN plays a more general housekeeping role. With this in mind, here we have discussed various areas of intracellular homeostasis in which SMN has been shown to interact: its well-known role as part of the ribonucleoprotein complex, but also other stages of RNA processing such as transport and local translation, important neuronal functions such as cytoskeletal dynamics and endocytosis, protein turnover processes of autophagy and ubiquitin–proteasome pathway and regulation of mitochondrial activity. Through tradition and necessity, the majority of current research into the function of SMN comes from SMA models of SMN deficiency. However, as this review has highlighted, SMN function is involved in so many aspects of normal intracellular activity that future SMN research should move beyond its association with disease to better understand its role in maintaining the homeostatic environment of the cell. Two major questions need answering in terms of the function of SMN. First, to what extent is SMN involved in the regulation of processes discussed in this review. While some areas have been researched extensively, such as ribonucleoprotein production, other areas of SMN involvement are a relatively new discovery, such as the association of SMN with mitochondrial function and ubiquitin degradation, and so further exploration is needed. Secondly, the particular vulnerability of motor neurons in SMA patients cannot be ignored. Although the idea that SMA is in fact a systemic disease, with defects seen across tissue types, is gaining acceptance in the research community, a better understanding of the multiplicity of SMN functions could serve to highlight areas of particular susceptibility in motor neurons which lead to their cell death in SMA. As SMN is at the cornerstone of so many molecular pathways, fundamental research into these cellular homeostasis processes is crucial to the better understanding of cellular biology.

Acknowledgements

We would like to thank Dr. Ewout Groen for helpful comments on the manuscript, and all the members of the lab for ongoing discussions and advice. Research in the Gillingwater laboratory relevant to this review is funded by the UK SMA Research Consortium (SMA Trust), MND Scotland and SMA Europe.

Conflict of interest

THG is Chair of the Scientific and Clinical Advisory Board of the SMA Trust.

Open Access

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
The role of survival motor neuron protein (SMN) in protein homeostasis

References

1. Lefebvre S et al (1995) Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80:155–165
2. Schrank B, Götz R, Gunnersen JM, Ure JM, Toyka KV, Smith AG, Sendtner M (1997) Inactivation of the survival motor neuron gene, a candidate gene for human spinal muscular atrophy, leads to massive cell death in early mouse embryos. Proc Natl Acad Sci USA 94:9920–9925
3. Groen EJN, Talbot K, Gillingwater TH (2018) Advances in therapy for spinal muscular atrophy: promises and challenges. Nat Rev Neurol 14:214–224
4. Rochette CF, Gilbert N, Simard LR (2001) SMN gene duplication and the emergence of the SMN2 gene occurred in distinct hominids: SMN2 is unique to Homo sapiens. Hum Genet 108:255–266
5. Lorson CL, Hahnen E, Androphy EJ, Wirth B (1999) A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc Natl Acad Sci USA 96:6307–6311
6. Feldkötter M, Schwarzer V, Wirth R, Wienker TF, Wirth B (2002) Quantitative analyses of SMN1 and SMN2 based on real-time lightCycler PCR: fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy. Am J Hum Genet 70:358–368
7. Talbot K, Tizzano EF (2017) The clinical landscape for SMA in a new therapeutic era. Gene Ther 24:529–533
8. Vitte J et al (2007) Refined characterization of the expression and functionality of survival motor neuron protein isoforms by sequestering an SCF(Slmb) degron. Mol Biol Cell 29:96–110
9. Gray KM et al (2018) Self-oligomerization regulates stability of survival motor neuron protein isoforms by sequestering an SCF(Slimb) degron. Mol Biol Cell 29:96–110
10. Seo J, Singh NN, Ottesen EW, Lee BM, Singh RN (2016) A novel human-specific splice isoform alters the critical C-terminus of Survival Motor Neuron protein. Sci Rep 6:30778
11. Gennarelli M, Lucarelli M, Capon F, Pizzuti A, Merlini L, Angelini C, Novelli G, Dallapiccola B (1995) Survival motor neuron gene transcript analysis in muscles from spinal muscular atrophy patients. Biochem Biophys Res Commun 213:342–348
12. Setola V, Terao M, Locatelli D, Bassanini S, Garattini E, Battaglia G (2007) Axonal-SMN (a-SMN), a protein isoform of the survival motor neuron gene, is specifically involved in axonogenesis. Proc Natl Acad Sci USA 104:1959–1964
13. Young JF, Jensen KT, Burger LR, Pintel DJ, Lorson CL (2002) Minute virus of mice NS1 interacts with the SMN protein, and its associated protein SmD1 and coilin interacts and to Cajal body biogenesis. J Cell Sci 117:657–667
14. Liu Q, Dreyfuss G (1996) A novel nuclear structure containing the survival of motor neurons protein. EMBO J 15:3555–3565
15. Navascues J, Berciano MT, Tucker KE, Lafarga M, Matera AG (2004) Targeting SMN to Cajal bodies and nuclear gems during neuritogenesis. Chromosoma 112:398–409
16. Machyna Y, Heyn P, Neugebauer KM (2013) Cajal bodys: where form meets function. Wiley Interdiscip Rev RNA 4:17–34
17. Tapia O, Bengoechea R, Palanca A, Arteaga R, Val-Bernal JF, Tizzano EF, Berciano MT, Lafarga M (2012) Reorganization of Cajal bodies and nucleolar targeting of coilin in motor neurons of type I spinal muscular atrophy. Histochem Cell Biol 137:657–667
18. Tapia O, Lafarga V, Bengoechea R, Palanca, A, Lafarga M, Berciano MT (2014) The SMN Tudor SIM-like domain is key to SmD1 and coilin interactions and to Cajal body biogenesis. J Cell Sci 127:939–946
19. Meister G, Fischer U (2002) Assisted RNP assembly: SMN and PRMT5 complexes cooperate in the formation of spliceosomal UsnRNPs. EMBO J 21:5853–5863
20. Paushkin S, Gubitz AK, Massenet S, Dreyfuss G (2002) The SMN complex, an assemblyosome of ribonucleoproteins. Curr Opin Cell Biol 14:305–312
21. Hebert MD, Shapargel KB, Ospina JK, Tucker KE, Matera AG (2002) Colin methylation regulates nuclear body formation. Dev Cell 3:329–337
22. Sprangers R, Groves MR, Sinning I, Sattler M (2003) High-resolution X-ray and NMR structures of the SMN Tudor domain: conformational variation in the binding site for symmetrically dimethylated arginine residues. J Mol Biol 327:507–520
23. Coté J, Richard S (2005) Tudor domains bind symmetrical dimethylated arginines. J Biol Chem 280:28476–28483
24. Meister G, Eggert C, Fischer U (2002) SMN-mediated assembly of RNPs: a complex story. Trends Cell Biol 12:472–478
25. Bühler D, Raker V, Lührmann R, Fischer U (1999) Essential role for the tudor domain of SMN in spliceosomal U snRNP assembly: implications for spinal muscular atrophy. Hum Mol Genet 8:2351–2357
26. Kotani T et al (2007) A novel mutation at the N-terminal of SMN Tudor domain inhibits its interaction with target proteins. J Neuro 254:624–630
27. Cusco I, Barceló MJ, del Río E, Baiget M, Tizzano EF (2004) Detection of novel mutations in the SMN Tudor domain in type I SMA patients. Neurology 63:146–149
28. Hebert MD, Szymczyk PW, Shapargel KB, Matera AG (2001) Coilin forms the bridge between Cajal bodies and SMN, the spinal muscular atrophy protein. Genes Dev 15:2720–2729
29. Liu Q, Dreyfuss G (1996) A novel nuclear structure containing the survival of motor neurons protein. EMBO J 15:3555–3565
30. Martin R, Gupta K, Ninan NS, Perry K, Van Duyne GD (2012) Dimethylarginine-dependent Gemin2–SMN interaction. Hum Mol Genet 8:775–782
31. Machyna Y, Heyn P, Neugebauer KM (2013) Cajal bodies: where form meets function. Wiley Interdiscip Rev RNA 4:17–34
32. Tapia O, Bengoechea R, Palanca A, Arteaga R, Val-Bernal JF, Tizzano EF, Berciano MT, Lafarga M (2012) Reorganization of Cajal bodies and nucleolar targeting of coilin in motor neurons of type I spinal muscular atrophy. Histochem Cell Biol 137:657–667
33. Tapia O, Lafarga V, Bengoechea R, Palanca, A, Lafarga M, Berciano MT (2014) The SMN Tudor SIM-like domain is key to SmD1 and coilin interactions and to Cajal body biogenesis. J Cell Sci 127:939–946
34. Giesemann T, Rathke-Hartlieb S, Rothkegel M, Bartsch JW, Schrickel JF, Tizzano EF, Berciano MT, Lafarga M, Matera AG (2004) Targeting SMN to Cajal bodies and nuclear gems during neuritogenesis. Chromosoma 112:398–409
35. Nölle A et al (2011) The spinal muscular atrophy disease protein SMN interacts with the UsnRNPs. EMBO J 21:5853–5863
36. Martin R, Gupta K, Ninan NS, Perry K, Van Duyne GD (2012) Dimethylarginine-dependent Gemin2–SMN interaction. Hum Mol Genet 8:775–782
37. Burghes AH, Beattie CE (2009) Spinal muscular atrophy: why do levels of survival of motor neuron protein make motor neurons sick? Nat Rev Neurosci 10:597–609
38. Wang J, Dreyfuss G (2001) A cell system with targeted disruption of the SMN gene: functional conservation of the SMN protein and dependence of Gemin2 on SMN. J Biol Chem 276:9599–9605
39. Lorson CL et al (1998) SMN oligomerization defect correlates with spinal muscular atrophy severity. Nat Genet 19:63–66
40. Lafarga V, Tapia O, Sharma S, Bengoechea R, Stoceklin G, Lafarga M, Berciano MT (2018) CBP-mediated SMN acetylation modulates Cajal body biogenesis and the cytoplasmic targeting of SMN. Cell Mol Life Sci 75:527–546
41. Husedzinovic A, Oppermann F, Draeger-Meurer S, Chari A, Fischer U, Daub H, Gruss OJ (2014) Phosphoregulation of the human SMN complex. Eur J Cell Biol 93:106–117
42. Hebert MD, Poole AR (2017) Towards an understanding of regulating Cajal body activity by protein modification. RNA Biol 14:761–778
43. Hsieh-Li HM, Chang JG, Jong YJ, Wu MH, Wang NM, Tsai CH, Li H (2000) A mouse model for spinal muscular atrophy. Nat Genet 24:66–70
44. Monani UR et al (2000) The human centromeric survival motor neuron gene (SMN2) rescues embryonic lethality in Smn^{+/−} mice and results in a mouse with spinal muscular atrophy. Hum Mol Genet 9:333–339
45. Le TT et al (2005) SMNDelta7, the major product of the centromeric survival motor neuron (SMN2) gene, extends survival in mice with spinal muscular atrophy and associates with full-length SMN. Hum Mol Genet 14:845–857
46. Bebee TW, Dominguez CE, Chandler DS (2012) Mouse models of SMA: tools for disease characterization and therapeutic development. Hum Genet 131:1277–1293
47. McWhorter ML, Monani UR, Burghes AH, Beattie CE (2003) Knockdown of the survival motor neuron (Smn) protein in zebrafish causes defects in motor axon outgrowth and pathfinding. J Cell Biol 162:919–931
48. Hsieh-Li HM, Chang JG, Jong YJ, Wu MH, Wang NM, Tsai CH, Li H (2000) A mouse model for spinal muscular atrophy. Nat Genet 24:66–70
49. Ciura S, Lattante S, Le Ber I, Latouche M, Tostivint H, Brice A, Kabashi E (2013) Loss of function of C9orf72 causes motor neuron diseases: advantages and limitations. Prog Neurobiol 118:36–58
50. Babin PJ, Goizet C, Raldúa D (2014) Zebrafish models of human motor neuron disease. Semin Cell Dev Biol 32:22–29
51. Pellizzoni L (2007) Chaperoning ribonucleoprotein biogenesis in health and disease. EMBO Rep 8:340–345
52. Pellizzoni L, Baccon J, Rappsilber J, Mann M, Dreyfuss G (2002) Purification of native survival of motor neurons complexes and identification of Gemin6 as a novel component. J Cell Biol 277:7540–7545
53. Battle DJ, Lau CK, Wan L, Deng H, Lotti F, Dreyfuss G (2006) The Gemin5 protein of the SMN complex identifies snRNAs. Mol Cell 23:273–279
54. Pellizzoni L, Yong J, Dreyfuss G (2002) Essential role for the SMN complex in the specificity of snRNP assembly. Science 298:1775–1779
55. Yong J, Golembé TJ, Battle DJ, Pellizzoni L, Dreyfuss G (2004) snRNAs contain specific SMN-binding domains that are essential for snRNP assembly. Mol Cell Biol 24:2747–2756
56. Yong J, Kasim M, Bachorik JL, Wan L, Dreyfuss G (2010) Gemin5 delivers snRNA precursors to the SMN complex for snRNP biogenesis. Mol Cell 38:551–562
57. Yong J, Pellizzoni L, Dreyfuss G (2002) Sequence-specific interaction of U1 snRNA with the SMN complex. EMBO J 21:1188–1196
58. Fischer U, Luhrmann R (1990) An essential signaling role for the m3G cap in the transport of U1 snRNP to the nucleus. Science 249:786–790
59. Mouaikel J, Narayanan U, Verheggen C, Matera AG, Bertrand E, Tazi J, Bordonne R (2003) Interaction between the small-nuclear-RNA cap hypermethylase and the spinal muscular atrophy protein, survival of motor neuron. EMBO Rep 4:616–622
60. Narayanan U, Ospina JK, Frey MR, Hebert MD, Matera AG (2002) SMN, the spinal muscular atrophy protein, forms a pre-import snRNP complex with snurportin1 and importin beta. Hum Mol Genet 11:1785–1795
61. Fischer U, Sumpter V, Sekine M, Satoh T, Luhrmann R (1993) Nucleo-cytoplasmic transport of U snRNPs: definition of a nuclear location signal in the Sm core domain that binds a transport receptor independently of the m3G cap. EMBO J 12:573–583
62. Huber J, Cronshage U, Kadokura M, Marshallsay C, Wada T, Sekine M, Luhrmann R (1998) Snurportin1, an m3G-cap-specific nuclear import receptor with a novel domain structure. EMBO J 17:4114–4126
63. Palacios I, Hetzer M, Adam SA, Mattaj IW (1997) Nuclear import of U snRNPs requires importin beta. EMBO J 16:6783–6792
64. Mahmoudi S, Henriksson S, Weibrecht I, Smith S, Soderberg O, Stromblad S, Wiman KG, Farnebo M (2010) WRAP53 is essential for Cajal body formation and for targeting the survival of motor neuron complex to Cajal bodies. PLoS Biol 8:e1000521
The role of survival motor neuron protein (SMN) in protein homeostasis

97. See K et al (2014) SMN deficiency alters Nrxn2 expression and splicing in zebrafish and mouse models of spinal muscular atrophy. Hum Mol Genet 23:1754–1770

98. Sleigh JN, Barreiro-Iglesias A, Oliver PL, Biba A, Becker T, Davies KE, Becker CG, Talbot K (2014) Chondrolectin affects cell survival and neuronal outgrowth in vitro and in vivo models of spinal muscular atrophy. Hum Mol Genet 23:855–869

99. Zhang Z et al (2013) Dysregulation of synaptogenesis genes antecedes motor neuron pathology in spinal muscular atrophy. Proc Natl Acad Sci USA 110:19348–19353

100. Baumer D et al (2009) Alternative splicing events are a late feature of pathology in a mouse model of spinal muscular atrophy. PLoS Genet 5:e1000773

101. Pagliardini S, Giavazzi A, Setola V, Lizzi C, Di Luca M, DeBiasi S, Battaglia G (2000) Subcellular localization and axonal transport of the survival motor neuron (SMN) protein in the developing rat spinal cord. Hum Mol Genet 9:47–56

102. Giavazzi A, Setola V, Simonati A, Battaglia G (2006) Neuronal-specific roles of the survival motor neuron protein: evidence from survival motor neuron expression patterns in the developing human central nervous system. J Neuropathol Exp Neurol 65:267–277

103. Zhang HL, Pan F, Hong D, Shenoy SM, Singer RH, Bassell GJ (2003) Active transport of the survival motor neuron protein and the role of exon-7 in cytoplasmic localization. J Neurosci 23:6627–6637

104. Zhang X, Xing L, Rossoll W, Wichterle H, Singer RH, Bassell GJ (2006) Multiprotein complexes of the survival of motor neuron protein SMN with Gemini traffic to neuronal processes and growth cones of motor neurons. J Neurosci 26:8622–8632

105. Thompson LW, Morrison KD, Shirran SL, Groen EJN, Gillingwater TH, Botting CH, Sleeman JE (2018) Neurochondrin interacts with the SMN protein suggesting a novel mechanism for spinal muscular atrophy pathology. J Cell Sci. https://doi.org/10.1242/jcs.211482

106. Peter CJ et al (2011) The COPI vesicle complex binds and moves with survival motor neuron within axons. Hum Mol Genet 20:1701–1711

107. Todd AG, Lin H, Ebert AD, Liu Y, Androphy EJ (2013) COPI transport complexes bind to specific RNAs in neuronal cells. Hum Mol Genet 22:729–736

108. Ting CH, Wen HL, Liu IC, Hsieh-Li HM, Li H, Lin-Chao S (2012) The spinal muscular atrophy disease protein SMN is linked to the Golgi network. PLoS One 7:e51826

109. Li H, Custer SK, Gilson T, Hao LT, Beattie CE, Androphy EJ (2015) α-COP binding to the survival motor neuron protein SMN is required for neuronal process outgrowth. Hum Mol Genet 24:7295–7307

110. Custer SK, Todd AG, Singh NN, Androphy EJ (2013) Dily-sine motifs in exon 2b of SMN protein mediate binding to the COPI vesicle protein α-COP and neurite outgrowth in a cell culture model of spinal muscular atrophy. Hum Mol Genet 22:4043–4052

111. Rossoll W, Jablonka S, Andreassi C, Kroning AK, Karle K, Monani UR, Sendtner M (2003) Smn, the spinal muscular atrophy-determining gene product, modulates axon growth and localization of beta-actin mRNA in growth cones of motoneurons. J Cell Biol 163:801–812

112. Fallini C, Zhang H, Su Y, Silani V, Singer RH, Rossoll W, Bassell GJ (2011) The survival of motor neuron (SMN) protein interacts with the mRNA-binding protein HuD and regulates localization of poly(A) mRNA in primary motor neuron axons. J Neurosci 31:3914–3925

113. Tadesse H, Deschenes-Furry J, Boisvenue S, Cote J (2008) KH-type splicing regulatory protein interacts with survival motor...
neuron protein and is misregulated in spinal muscular atrophy. Hum Mol Genet 17:506–524
115. Piazzon N, Rage F, Schlottke F, Moine H, Branlant C, Massenet S (2008) In vitro and in cellulo evidences for association of the survival of motor neuron complex with the fragile X mental retardation protein. J Biol Chem 283:5598–5610
116. Hubers L, Valderrama-Carvajal H, Laframboise J, Timbers J, Sanchez G, Cote J (2011) HuD interacts with survival motor neuron protein and can rescue spinal muscular atrophy-like neuronal defects. Hum Mol Genet 20:553–579
117. Groen EJ et al (2013) ALS-associated mutations in FUS disrupt the axonal distribution and function of SMN. Hum Mol Genet 22:3690–3704
118. Fallini C, Rouanet JP, Donlin-Asp PG, Guo P, Zhang H, Singer RH, Rossoll W, Bassell GJ (2014) Dynamics of survival of motor neuron (SMN) protein interaction with the mRNA-binding protein IMP1 facilitates its trafficking into motor neuron axons. Dev Neurobiol 74:319–332
119. Yamazaki T et al (2012) FUS-MSM protein interactions link the motor neuron diseases ALS and SMA. Cell Rep 2:799–806
120. Tsuji H et al (2013) Spliceosome integrity is defective in the motor neuron diseases ALS and SMA. EMBO Mol Med 5:221–234
121. Donlin-Asp PG, Fallini C, Campos J, Chou CC, Merritt ME, Pan H, Bassell GJ, Rossoll W (2017) The survival of motor neuron protein acts as a molecular chaperone for mRNA assembly. Cell Rep 18:1660–1673
122. le Hao T, Duy PQ, An M, Talbot J, Iyer CC, Wolman M, Beattie CE (2017) HuD and the survival motor neuron protein interact in motorneurons and are essential for motorneuron development, function, and mRNA regulation. J Neurosci 37:11559–11571
123. Rage F, Boulisfane N, Rihan K, Neel H, Gostan T, Bertrand E, Bordonne R, Soret J (2013) Genome-wide identification of mRNAs associated with the protein SMN whose depletion decreases their axonal localization. RNA 19:1755–1766
124. Akten B et al (2011) Interaction of survival of motor neuron (SMN) and HuD proteins with mRNA cpg15 rescues motor neuron axonal deficits. Proc Natl Acad Sci USA 108:10337–10342
125. Glock C, Heumüller M, Schuman EM (2017) mRNA transport and local translation in neurons. Curr Opin Neurobiol 45:169–177
126. Donlin-Asp PG, Rossoll W, Bassell GJ (2017) Spatially and temporally regulating translation via mRNA-binding proteins in cellular and neuronal function. FEBS Lett 591:1508–1525
127. le Hao T, Wolman M, Granato M, Beattie CE (2012) Survival motor neuron affects plastin 3 protein levels leading to motor defects. J Neurosci 32:5074–5084
128. Fallini C, Donlin-Asp PG, Rouanet JP, Bassell GJ, Rossoll W (2016) Deficiency of the survival of motor neuron protein impairs mRNA localization and local translation in the growth cone of motor neurons. J Neurosci 36:3811–3820
129. Sanchez G et al (2013) A novel function for the survival motor-neuron protein as a translational regulator. Hum Mol Genet 22:668–684
130. Weeraratne SD et al (2012) Pleiotropic effects of miR-183~96~182 converge to regulate cell survival, proliferation and migration in medulloblastoma. Acta Neuropathol 123:539–552
131. Kye MJ et al (2014) SMN regulates axonal local translation via miR-183/mTOR pathway. Hum Mol Genet 23:6318–6331
132. Ning K et al (2010) PTEN depletion rescues axonal growth defect and improves survival in SMN-deficient motor neurons. Hum Mol Genet 19:3159–3168
133. Bernabo P et al (2017) In vivo translome profiling in spinal muscular atrophy reveals a role for SMN protein in ribosome biology. Cell Rep 21:953–965
134. Leterrier C, Dubey P, Roy S (2017) The nano-architecture of the axonal cytoskeleton. Nat Rev Neurosci 18:713–726
135. Kevenaar JT, Hoogenraad CC (2015) The axonal cytoskeleton: from organization to function. Front Mol Neurosci 8:44
136. Béchade C, Rostaing P, Cisterni C, Kalisch R, La Bella V, Pettmann B, Triller A (1999) Subcellular distribution of survival motor neuron (SMN) protein: possible involvement in nucleocytoplasmic and dendritic transport. Eur J Neurosci 11:293–304
137. Francis JW, Sandrock AW, Bhide PG, Vonsattel JP, Brown RH (1998) Heterogeneity of subcellular localization and electrophoretic mobility of survival motor neuron (SMN) protein in mammalian neural cells and tissues. Proc Natl Acad Sci USA 95:6492–6497
138. Fang L, Simard LR (2002) Survival motor neuron (SMN) protein: role in neurite outgrowth and neuromuscular maturation during neuronal differentiation and development. Hum Mol Genet 11:1605–1614
139. van Bergeijk J, Rydel-Könecke K, Grothe C, Claus P (2007) The spinal muscular atrophy gene product regulates neurite outgrowth: importance of the C terminus. FASEB J 21:1492–1502
140. Locatelli D et al (2012) Human axonal survival of motor neuron (a-SMN) protein stimulates axon growth, cell motility, C-C motif ligand 2 (CCL2), and insulin-like growth factor-1 (IGF1) production. J Biol Chem 287:25782–25794
141. Sharma A, Lambrechts A, Hao LT, Le TT, Sewry CA, Ampe C, Burghes AH, Morris GE (2005) A role for complexes of survival of motor neurons (SMN) protein with geminis and profilin in neurite-like cytoplasmic extensions of cultured nerve cells. Exp Cell Res 309:185–197
142. Schmandke A, Strittmatter SM (2007) ROCK and Rhoc: biochemistry and neuronal functions of Rho-associated protein kinases. Neuroscientist 13:454–469
143. Bowerman M, Shahey D, Kothary R (2007) Smn depletion alters profilin II expression and leads to upregulation of the RhoA/ROCK pathway and defects in neuronal integrity. J Mol Neurosci 32:120–131
144. Bowerman M, Beauvais A, Anderson CL, Kothary R (2010) Rho-kinase inactivation prolongs survival of an intermediate SMA mouse model. Hum Mol Genet 19:1468–1478
145. Rademacher S et al (2017) Metalloprotease-mediated cleavage of PlexinD1 and its sequestration to actin rods in the motoneuron disease spinal muscular atrophy (SMA). Hum Mol Genet 26:3946–3959
146. Oprea GE et al (2008) Plastin 3 is a protective modifier of autosomal recessive spinal muscular atrophy. Science 320:524–527
147. Kaifer KA, Villalón E, Osman EY, Glascock JJ, Arnold LL, Cornelison DD, Lorson CL (2017) Plastin-3 extends survival and reduces severity in mouse models of spinal muscular atrophy. JCI Insight 2:e89970
148. Prokop A (2013) The intricate relationship between microtubules and their associated motor proteins during axon growth and maintenance. Neural Dev 8:17
149. Belmont LD, Mitchison TJ (1996) Identification of a protein that interacts with tubulin dimers and increases the catastrophe rate of microtubules. Cell 84:623–631
150. Wen HL, Lin YT, Ting CH, Lin-Chao S, Li H, Hsieh-Li HM (2010) Stathmin, a microtubule-destabilizing protein, is dysregulated in spinal muscular atrophy. Hum Mol Genet 19:1766–1778
151. Deinhardt K, Schiavo G (2005) Endocytosis and retrograde axonal traffic in motor neurons. Biochem Soc Symp 72:139–150
152. Dimitriadi M et al (2010) Stathmin, a microtubule-destabilizing protein, is dysregulated in spinal muscular atrophy. Biochem Soc Symp 72:139–150
153. Francis JW, Sandrock AW, Bhide PG, Vonsattel JP, Brown RH (1998) Heterogeneity of subcellular localization and electrophoretic mobility of survival motor neuron (SMN) protein in mammalian neural cells and tissues. Proc Natl Acad Sci USA 95:6492–6497
154. Dimitriadi M et al (2010) Conserved genes act as modifiers of invertebrate SMN loss of function defects. PLoS Genet 6:e1000172
The role of survival motor neuron protein (SMN) in protein homeostasis
192. Tiziano FD et al (2010) Salbutamol increases survival motor neuron (SMN) transcript levels in leucocytes of spinal muscular atrophy (SMA) patients: relevance for clinical trial design. J Med Genet 47:856–858

193. Fuller HR, Mandefro B, Shirran SL, Gross AR, Kaus AS, Bottig CH, Morris GE, Sareen D (2015) Spinal muscular atrophy patient iPSC-derived motor neurons have reduced expression of proteins important in neuronal development. Front Cell Neurosci 9:506

194. Ramser J et al (2008) Rare missense and synonymous variants in UBE1 are associated with X-linked infantile spinal muscular atrophy. Am J Hum Genet 82:188–193

195. Liu HY, Pfleger CM (2013) Mutation in E1, the ubiquitin activating enzyme, reduces Drosophila lifespan and results in motor impairment. PLoS One 8:e32835

196. Wishart TM et al (2014) Dysregulation of ubiquitin homeostasis and beta-catenin signaling promote spinal muscular atrophy. J Clin Investig 124:1821–1834

197. Powis RA et al (2016) Systemic restoration of UBA1 ameliorates disease in spinal muscular atrophy. JCI Insight 1:e87908

198. Kwon DY, Dimitriadi M, Terzic B, Cable C, Hart AC, Chitnis A, Fischbeck KH, Burnett BG (2013) The E3 ubiquitin ligase mind bomb 1 ubiquitinates and promotes the degradation of survival motor neuron protein. Mol Biol Cell 24:1863–1871

199. Kim EK, Choi EJ (2017) SMN1 functions as a novel inhibitor for TRAF6-mediated NF-kappaB signaling. Biochim Biophys Acta 1864:760–770

200. Setsuei R, Wada K (2007) The functions of UCH-L1 and its relation to neurodegenerative diseases. Neurochem Int 51:105–111

201. Choi J, Levey AI, Weintraub ST, Rees HD, Gearing M, Chin LS, Li L (2004) Oxidative modifications and down-regulation of ubiquitin carboxyl-terminal hydrolase L1 associated with idiopathic Parkinson’s and Alzheimer’s diseases. J Biol Chem 279:13256–13264

202. Castegna A et al (2002) Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part I: creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Radic Biol Med 33:562–571

203. Hsu SH et al (2010) Ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) regulates the level of SMN expression through ubiquitination in primary spinal muscular atrophy fibroblasts. Clin Chim Acta 411:1920–1928

204. Powis RA, Mutsaers CA, Wishart TM, Hunter G, Wirth B, Gillingwater TH (2014) Increased levels of UCHL1 are a compensatory response to disrupted ubiquitin homeostasis in spinal muscular atrophy and do not represent a viable therapeutic target. Neuropathol Appl Neurobiol 40:873–887

205. Jablonka S, Sendtner M (2017) Developmental regulation of SMN expression: pathophysiological implications and perspectives for therapy development in spinal muscular atrophy. Gene Ther 24:506–513

206. Cho S, Dreyfuss G (2010) A degron created by SMN2 exon 7 skipping is a principal contributor to spinal muscular atrophy severity. Genes Dev 24:438–442

207. Seo J, Singh NN, Ottesen EW, Sivanesan S, Shishimorova M, Singh RN (2016) Oxidative stress triggers body-wide skipping of multiple exons of the spinal muscular atrophy gene. PLoS One 11:e0154390

208. Singh NN, Seo J, Rahn SJ, Singh RN (2012) A multi-exon-skipping detection assay reveals surprising diversity of splice isoforms of spinal muscular atrophy genes. PLoS One 7:e49595

209. Miguel-Aliaga I, Culetto E, Walker DS, Baylis HA, Sattelle DB, Davies KE (1999) The Caenorhabditis elegans orthologue of the human gene responsible for spinal muscular atrophy is a maternal product critical for germline maturation and embryonic viability. Hum Mol Genet 8:2133–2143

210. Chan YB, Miguel-Aliaga I, Franks C, Thomas N, Trzulsz B, Sattelle DB, Davies KE, van den Heuvel M (2003) Neuromuscular defects in a Drosophila survival motor neuron gene mutant. Hum Mol Genet 12:1376–1376

211. Rajendra TK, Gonsalvez GB, Walker MP, Shpargel KB, Salz HK, Matera AG (2007) A Drosophila melanogaster model of spinal muscular atrophy reveals a function for SMN in striated muscle. J Cell Biol 176:831–841

212. Bowerman M, Murray LM, Beauvais A, Pinheiro B, Kohlery R (2012) A critical smn threshold in mice dictates onset of an intermediate spinal muscular atrophy phenotype associated with a distinct neuromuscular junction pathology. Neuromuscul Disorder 22:263–276