Multiple cutaneous leiomyomas leading to discovery of novel splice mutation in *Fumarate Hydratase gene* associated with HLRCC

Short Running Title: Cutaneous Leiomyomas & HLRCC

(Word count: 970 words)

Authors:

Dr Rachel Yi Ping TAN (corresponding author)
Department of Genetic Medicine, Royal Melbourne Hospital, Parkville 3050 Australia

Phone number: 03 9342 7151
Fax number: 03 9342 4267

This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/ajd.12605

This article is protected by copyright. All rights reserved
Email address: racheltyp@gmail.com

Dr Maie WALSH
Department of Genetic Medicine, Royal Melbourne Hospital, Parkville 3050 Australia
Phone number: 03 9342 7151
Fax number: 03 9342 4267
Email address: Maie.Walsh@mh.org.au

Dr Anne HOWARD
16 Eleanor Street, Footscray, VIC 3011 Australia
Department of Dermatology, Western Health, Melbourne, Victoria Australia
Email address: annehoward@mac.com

Dr Ingrid WINSHIP
Department of Medicine, RMH, The University of Melbourne, Parkville, Victoria 3052 Australia
Phone number: 03 9342 7151
Fax number: 03 9342 4267
Email address: Ingrid.Winship@mh.org.au
(i) ABSTRACT & KEYWORDS
Hereditary Leiomyomatosis and Renal Cell Cancer (HLRCC) is a rare autosomal dominant condition, which manifests as cutaneous leiomyomas (CL), uterine fibroids and renal cell cancer (RCC). We describe the case of a 53-year-old woman who presented with multiple cutaneous leiomyomas with a novel heterozygous canonical splice site mutation in intron 9 of the Fumarate Hydratase (FH) gene IVS 9-1 G>C (NM_000143.3:c 1391-1 G>C) that was not detected on initial screening of a mutation hotspot but picked up on sequencing the remaining exons and splice site junctions. This report highlights the importance of clinical suspicion in the diagnosis of HLRCC in the absence of a family or personal history of cancer and despite initial genetic testing being negative.

Keywords: Cutaneous Leiomyomas (CL), Renal Cell Cancer (RCC), Hereditary Leiomyomatosis and Renal Cell Cancer (HLRCC), Fumarate hydratase (FH), splice site mutation

(ii) TEXT
INTRODUCTION
Cutaneous leiomyomas (CL), also known as piloleiomyomas, are benign smooth muscle tumours arising from arrector pili muscle of hair follicles. Isolated leiomyomas are usually sporadic but where there is more than one lesion they most often occur as part of a syndrome known as Hereditary Leiomyomatosis and Renal Cell Cancer (HLRCC) (OMIM. 150800).1 HLRCC is a rare autosomal dominant condition with approximately 300 families reported in the medical literature. It manifests as CL, uterine fibroids and a 15% lifetime risk of developing papillary type II RCC.2-3 It is caused by germline heterozygous mutations in FH located at chromosome 1q42.1. FH encodes for the Krebs cycle enzyme responsible for converting fumarate to malate and it is also thought to act as a tumor suppressor gene.1-2,4 To date, 150 distinct FH germline mutations have been identified, with more
than 50% being missense mutations. There is no evidence to suggest a genotype-phenotype relationship for FH mutations.

We present the case of a 53 year old woman with multiple CL which led to the diagnosis of HLRCC, highlighting the importance of cutaneous manifestations in the diagnosis of this condition.

CASE REPORT

A 53 year old Caucasian woman was investigated because of a clinical suspicion of HLRCC. She had multiple skin papules on her back, bilateral arms and legs (Figure 1A and 1B). She complained of intermittent allodynia provoked by contact of her clothes on these lesions. She also had menorrhagia secondary to uterine fibroids. There was no significant family history of malignancy and in particular no one had been affected by RCC.

On examination, she had multiple small, non-pigmented papules predominantly on her back and upper arms. They ranged from 3-10 mm in diameter and were tender on palpation. She was non-dysmorphic and did not have any neurocutaneous stigmata.

Histology from previous biopsies of these lesions reported proliferation of bundles of smooth muscle fibers consistent with CL. She had a pelvic ultrasound which confirmed the presence of multiple uterine fibroids.

A clinical diagnosis of HLRCC was made and with genetic testing requested for confirmation. Genomic DNA was obtained from the patient’s blood leucocytes and was sent to GeneDX Laboratories, an accredited laboratory. Initial testing, known as Tier 1 analysis, involved sequencing a mutation “hotspot” in exon 5 and its flanking splice site regions. The test revealed no mutation and had a quote mutation detection rate of 34%. Our strong clinical suspicion led us to request sequencing the remaining exons and their splice site junctions, so called Tier 2 analysis. This revealed a heterozygous intronic variant, NM_000143.3:c 1391-1 G>C. This variant results in a single base substitution one nucleotide before the 5’ end of exon 10 thus disrupting the AG splice acceptor site (Figure 2A and 2B). This canonical splice site variant is predicted to lead to either the loss of exon 10 or absence of the gene product by lack of transcription or nonsense-mediated mRNA decay. Loss of function has been shown to be disease causing. Furthermore, as FH functions as a homo-tetramer, it may also be susceptible to dominant-negative effects in heterozygous mutations as well.
mutation is novel and specific to the patient’s phenotype. According to the ACMG Guidelines, this variant is classified as pathogenic.7

The patient was counseled on her risk of developing RCC and referred to a urologist for surveillance. \textit{FH} predictive testing was offered for all her first-degree relatives.

\textbf{DISCUSSION}

The coexistence of skin and uterine features was first recognised by Reed in 1973.8 Launonen et al described the association with RCC in 2001.9 RCC associated with HLRCC tend to be aggressive and metastasise even if the primary tumour is small. 10-16\% of patients with HLRCC are found to have kidney tumours at the time of diagnosis.2,5 Toro et al found that two thirds of \textit{FH} mutation carriers who had renal cell cancer died within 5 years with metastatic disease.2 There is no evidence for a lower RCC risk in individuals with a negative family history for RCC.4 Early detection and management of RCC in people with HLRCC is important in order to maximise the chance of survival. There is debate about optimal screening for HLRCC, however accepted recommendations such as the EviQ guidelines propose annual renal MRIs, annual gynaecology review for symptomatic fibroids and skin examinations for CL.3

The presence of multiple CL should raise the suspicion of HLRCC and are found in the majority of patients who are FH mutation positive.2,10 In one study, CL was found in all affected patients over the age of 40.10 Smit et al have proposed clinical and histopathologic criteria based on the clinical features of 35 \textit{FH} mutations carriers. Multiple CL with at least one histologically proven lesion confirms the diagnosis. In patients who do not have CL, at least 2 minor criteria are required for the diagnosis of HLRCC (Table 1).10

\textbf{CONCLUSION}

HLRCC is a rare disorder associated with a significantly increased risk of RCC. Our case demonstrates the important role of dermatologists in identifying people with the condition. A definitive diagnosis of HLRCC allows for early detection and treatment of RCC and provides testing to identify at risk family members.

\textit{(iii) REFERENCES}
1. Tomlinson IP, Alam NA, Rowan AJ et al. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyoma and papillary renal cell cancer. Nat. Genet. 2002; 30: 406–410.

2. Toro JR, Nickerson ML, Wei MH et al. Mutations in the fumarate hydratase gene cause hereditary leiomyomatosis and renal cell cancer in families in North America. Am. J. Hum. Genet. 2003; 73: 95–106.

3. EviQ Guidelines, Risk Management for Hereditary Leiomyoma Renal Cell Carcinoma (FH gene), accessed 14 April 2016, <https://www.eviq.org.au/Protocol/tabid/66/categoryid/66/id/1657/Risk+Management+for+Hereditary+Leiomyoma+Renal+Cell+Carcinoma+(FH+gene).aspx#ReferencesList>

4. Wei MH, Toure O, Glenn GM et al. Novel mutations in FH and expansion of the spectrum of phenotypes expressed in families with hereditary leiomyomatosis and renal cell cancer. J. Med. Genet. 2006; 43: 18–27. Alam NA, Barclay E, Rowan AJ et al. Clinical features of multiple cutaneous and uterine leiomyomatosis: an underdiagnosed tumor syndrome. Arch Dermatol 2005; 141:199–206

5. Alam, N. A., Rowan, A. J., Wortham, N. C., Pollard, P. J., Mitchell, M., Tyrer, J. P., Barclay, E., Calonje, E., Manek, S., Adams, S. J., Bowers, P. W., Burrows, N. P., and 18 others. Genetic and functional analyses of FH mutations in multiple cutaneous and uterine leiomyomatosis, hereditary leiomyomatosis and renal cancer, and fumarate hydratase deficiency. Hum. Molec. 2003; 12: 1241-1252

6. Richards, S et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetic Med 17(5): 405-423.

7. Reed WB, Walker R, Horowitz R. Cutaneous leiomyomata with uterine leiomyomata. Acta. Derm. Venereol 1973: 53: 409–416.

8. Launonen V, Vierimaa O, Kiuru M, et al. Inherited susceptibility to uterine leiomyomas and renal cell cancer. Proc Natl Acad Sci USA. 2001;98(6):3387–92. Smit DL, Mensenkamp AR, Badeloe S et al. Hereditary leiomyomatosis and renal cell cancer in families referred for fumarate hydratase germline mutation analysis. Clin. Genet. 2011; 79: 49-59

(iv) FIGURE LEGENDS

Figure 1A: Right upper arm
Figure 1B: Close up of cutaneous leiomyomas on right lateral forearm

Figure 2A: Schematic diagram of FH with the location of the variant found in our patient marked with a red arrow. This variant is predicted to disrupt the AG splice acceptor site and is predicted to lead to either the loss of exon 10 or absence of the gene product by lack of transcription or nonsense-mediated mRNA decay.

Figure 2B: Chromatogram of the novel heterozygous FH mutation with the G > C transversion (indicated by arrow) compared to the normal control. This was performed through direct sequencing of the FH gene using DNA extracted from patient’s blood sample. (Courtesy of GeneDX Laboratories)

Table 1: Proposed Clinical & Histopathologic Criteria for HLRCC by Smit et al10
Major Criteria
1) Multiple cutaneous leiomyomas, at least one histologically confirmed lesion
Multiple cutaneous leiomyomas leading to discovery of novel splice mutation in the fumarate hydratase gene associated with HLRCC

2017-11-01

Tan, R. Y. P., Walsh, M., Howard, A. & Winship, I. (2017). Multiple cutaneous leiomyomas leading to discovery of novel splice mutation in the fumarate hydratase gene associated with HLRCC. AUSTRALASIAN JOURNAL OF DERMATOLOGY, 58 (4), pp.E246-E248. https://doi.org/10.1111/ajd.12605.

http://hdl.handle.net/11343/292615