c-Src promotes tumor progression through downregulation of microRNA-129-1-3p

Daisuke Okuzaki1 | Tomoe Yamauchi2 | Fumie Mitani2 | Mamiko Miyata2 | Yuichi Ninomiya2 | Risayo Watanabe2 | Hiroki Akamatsu3 | Chitose Oneyama2

Abstract
MicroRNAs (miRNAs) fine-tune cellular signaling by regulating expression of signaling proteins, and aberrant expression of miRNAs is observed in many cancers. The tyrosine kinase c-Src is upregulated in various human cancers, but the molecular mechanisms underlying c-Src-mediated tumor progression remain unclear. In previous investigations of miRNA-mediated control of c-Src-related oncogenic pathways, we identified miRNAs that were downregulated in association with c-Src transformation and uncovered the signaling networks by predicting their target genes, which might act cooperatively to control tumor progression. Here, to further elucidate the process of cell transformation driven by c-Src, we analyzed the expression profiles of miRNAs in a doxycycline-inducible Src expression system. We found that miRNA (miR)-129-1-3p was downregulated in the early phase of c-Src-induced cell transformation, and that reexpression of miR-129-1-3p disrupted c-Src-induced cell transformation. In addition, miR-129-1-3p downregulation was tightly associated with tumor progression in human colon cancer cells/tissues. Expression of miR-129-1-3p in human colon cancer cells caused morphological changes and suppressed tumor growth, cell adhesion, and invasion. We also identified c-Src and its critical substrate Fer, and c-Yes, a member of the Src family of kinases, as novel targets of miR-129-1-3p. Furthermore, we found that miR-129-1-3p-mediated regulation of c-Src/Fer and c-Yes is important for controlling cell adhesion and invasion. Downregulation of miR-129-1-3p by early activation of c-Src increases expression of these target genes and synergistically promotes c-Src-related oncogenic signaling. Thus, c-Src-miR-129-1-3p circuits serve as critical triggers for tumor progression in many human cancers that harbor upregulation of c-Src.

KEYWORDS
colon cancer, malignancy, microRNA, signaling, Src
1 | INTRODUCTION

c-src, the first protooncogene to be identified, encodes a nonreceptor type tyrosine kinase. c-Src is a pivotal component of multiple signaling pathways, including cell proliferation, survival, cytoskeletal organization, intercellular contact, adhesion, and migration, which are tightly associated with tumor progression. c-Src is frequently overexpressed and activated in a wide range of human cancers, suggesting a crucial role in tumor progression. In normal cells, the kinase activity of c-Src is strictly controlled by the C-terminal Src kinase (Csk); therefore, even when c-Src is abundantly expressed, its oncogenic potential is suppressed. In some cancer cells, the c-src gene is not mutated, but c-Src function is nonetheless upregulated. It is thought that disruption of the strict regulation of c-Src signaling could trigger cancer progression; however, the underlying mechanisms remain unclear. Once activated, c-Src acts as a common relay point for several downstream cascades from extracellular signals, such as growth factors and integrins, to intracellular signaling pathways.

2 | MATERIALS AND METHODS

2.1 | MicroRNA microarray analysis

MicroRNA microarray experiments were carried out using Agilent Mouse miRNA microarrays, catalogued in the Sanger database version 16.0 (design ID 031184). Briefly, 100 ng total RNA was labeled with pCp-Cy3 using the miRNA Labeling Reagent and Hybridization Kit (Agilent Technologies). Images were extracted using Agilent Feature Extraction software (version 10.7.3.1). Agilent GeneSpring GX software (version 14.9.1) was then used to calculate the between-sample fold change by one-way ANOVA (P < .1) with Benjamini-Hochberg correction for multiple testing.

2.2 | Gene expression microarray analysis

Briefly, 500 ng total RNA was reverse transcribed into double-stranded cDNA using AffinityScript multiple temperature reverse transcriptase (Agilent Technologies). The resulting complementary RNAs were labeled with cyanine-3 (Perkin Elmer) using the Low Input Quick-Amp Labeling kit (Agilent Technologies). Hybridizations were undertaken on Agilent SurePrint G3 Mouse GE 8 × 60K Microarrays.
(design ID 028005). Agilent GeneSpring GX software (version 14.9.1) was used to calculate the between-sample fold change (P < .1; two-tailed Student’s t test).

Other methods are described in Document S1.

3 | RESULTS

3.1 | MicroRNA-129-1-3p is downregulated by Src activation

To analyze the processes of cell transformation induced by c-Src upregulation in the early phase of tumor progression, we used a doxycycline (Dox)-inducible expression system in Csk-deficient fibroblasts (Csk−/− MEF/pBKT2-c-Src). Inducible expression of c-Src and its concomitant activation by Dox treatment peaked at 6 hours (Figure 1A). Using these cells, we undertook microarray analysis to compare the expression profiles of miRNAs as c-Src-induced transformation progressed. Following induction of Src activation, miRNAs including previously identified miR-99a, -322, -503, and -542-3p were definitely downregulated at 72 hours, while 5 miRNAs showed a twofold or greater downregulation at 24 hours after Dox induction (Figure S1) were newly identified. Among them, 3 miRNAs including mmu-miR-129-1-3p, -200b, and -149-3p are conserved between humans and mice. MicroRNA-200b has been well studied as an epithelial-mesenchymal transition-related miRNA and miR-149-3p has been reported to be involved in some types of cancers, whereas the role of miR-129-1-3p has not been clearly elucidated. Thus, we focused on miR-129-1-3p. Quantitative real-time PCR (qRT-PCR) analyses confirmed downregulation of miR-129-1-3p in the earlier phase of c-Src-induced transformation (at 24 hours) by Dox treatment (Figure 1B). To verify c-Src-induced repression of miR-129-1-3p, we used dasatinib to inhibit Src family kinases. Quantitative RT-PCR analysis revealed that dasatinib increased miR-129-1-3p expression (Figure 1C). To assess the correlation of miR-129-1-3p expression with c-Src-induced transformation, we removed Dox from the culture medium in c-Src-induced Csk−/− cells, causing c-Src expression to decrease (Figure 1D). Under conditions in which morphological transformation reverted to normal 4 days after removal of Dox, miR-129-1-3p expression was mostly restored (Figure 1D,E), suggesting that c-Src activation accompanied by transformation plays a role in the repression of miR-129-1-3p.

3.2 | MicroRNA-129-1-3p suppresses c-Src-mediated cell transformation

To assess the role of miR-129-1-3p downregulation in the early Src activation, we investigated whether miR-129-1-3p could suppress c-Src-induced transformation (Figure 2A). Soft-agar colony formation assays revealed that reexpression of miR-129-1-3p markedly decreased the colony numbers in c-Src-inducible Csk−/− cells in the presence of Dox (Figure 2B). Reexpression of miR-129-1-3p also suppressed c-Src-induced morphological transformation after Dox treatment (Figure 2C). To determine the physiological relevance of miR-129-1-3p expression, we examined the contribution of epidermal growth factor (EGF) receptor signaling involving c-Src activation. When murine embryonic fibroblasts (MEFs) were stimulated with EGF, c-Src activity was increased (Figure 2D), and the cells underwent morphological transformation (Figure 2E, upper panels). In these EGF-transformed cells, miR-129-1-3p expression was appreciably downregulated by EGF stimulation (Figure 2F). To evaluate the effect of miR-129-1-3p on the EGF-induced cell transformation, we transfected MEFs with miR-129-1-3p and stimulated with EGF. Reexpression of miR-129-1-3p completely blocked EGF-induced morphological transformation. Thus, miR-129-1-3p is downregulated by the Src-induced pathway, and expression of miR-129-1-3p per se suppresses Src-mediated cell transformation.

3.3 | MicroRNA-129-1-3p in human cancer cells

To elucidate the role of miR-129-1-3p in the growth of colon cancer cells in which Src is upregulated, we examined the effects of miR-129-1-3p expression on the tumor growth of HCT116 and HT29 cells (Figure S2A). The qRT-PCR analysis indicated that miR-129-1-3p was greatly reduced in both cell lines compared with those in normal cells (Figure S2B). Expression of miR-129-1-3p suppressed colony-forming activity in these cells (Figure 3A). Tumorigenesis of HT29 cells in nude mice was potently suppressed by miR-129-1-3p expression (Figure 3B), suggesting that miR-129-1-3p plays a crucial role in regulating tumor growth when Src is upregulated. We next examined the impact of miR-129-1-3p expression on the responsiveness of HT29 cells to dasatinib. Colony formation assays revealed that dasatinib suppressed Src activity and colony formation in a dose-dependent manner, and that introduction of miR-129-1-3p significantly sensitized these cells to the suppressive effect of dasatinib (Figure 3C).

Because Src activity is involved in cancer malignancies, we examined the effects of miR-129-1-3p on the morphology, cell adhesion, and invasiveness of HCT116 cells. Introduction of miR-129-1-3p into HCT116 cells induced disruption of stress fibers (F-actin) and suppressed formation of focal adhesions (vinculin; Figure 3D). Furthermore, because focal adhesions are crucial for adhesion, motility, and invasion by cancer cells, we examined the effect of miR-129-1-3p expression on these behaviors in HCT116 cells. Consistent with the changes in cell morphology, adhesion of HCT116 cells to fibronectin-coated dishes was remarkably suppressed by miR-129-1-3p expression (Figure 3E). Conversely, introduction of miR-129-1-3p enhanced adhesion in HCT116 cells, which express a low level of miR-129-1-3p (Figures 3E and S2B). Likewise, introduction of miR-129-1-3p potently suppressed the invasiveness of these cells (Figure 3F). These findings suggest that miR-129-1-3p suppresses tumor growth and malignancies of cancer cells harboring Src upregulation.
MicroRNA-129-1-3p targets c-Src/c-Yes/Fer

To verify the function of miR-129-1-3p, we examined the effect of miR-129-1-3p on Src-related signaling. In HCT116 cells, as well as Src-transformed cells (Csk−/−c-Src), miR-129-1-3p expression suppressed tyrosine phosphorylation of cellular proteins (Figure 4A). Therefore, we searched for potential targets of miR-129-1-3p in Src-related molecules reportedly involved in tumor growth and malignancies with help of TargetScan and miRDB (Figure S3). Consequently, c-Src and c-Yes, which are members of the SFKs, were found to have miR-129-1-3p target sites in their 3′-UTR. Their protein levels or specific activities of c-Src and c-Yes are frequently upregulated in multiple human cancers.5,7 Fer, a nonreceptor kinase and key substrate of c-Src that transduces oncogenic Src signals through autophosphorylation,14 is also identified to have the target site in its ORFs.

To verify the relationship between each candidate and miR-129-1-3p, we validated our findings using luciferase reporter assays in HCT116 cells. The luciferase activities of constructs containing the predicted target sites c-Src, c-Yes, and Fer were significantly reduced in miR-129-1-3p-transfected cells (Figure 4B,C). The miR-129-1-3p-mediated reduction of luciferase activities was abolished by mutation of the recognition sites, confirming that miR-129-1-3p interacts specifically with these target sequences.

We further undertook ribonucleoprotein immunoprecipitation (RIP) assay and proved that c-src, c-yes, and fer mRNA was enriched in RNA-induced silencing complex compared with the IgG control (Figure 4D). Consistent with the results of the luciferase assays and RIP assay, western blot analysis revealed that c-Src, c-Yes, and Fer protein levels were decreased following miR-129-3p treatment of HCT116 cells (Figure 4E, left panels). Conversely, anti-miR-129-1-3p increased the levels of these proteins (Figure 4E, right panels). These findings suggest that miR-129-1-3p suppresses tumor growth and progression by targeting multiple genes related to SFK-related signaling. Consistent with this, in the Dox-inducible Src activation system, the set of 51 genes upregulated by Src activation (P < .01 and fold change greater than 1.4) included c-Src,
c-Yes, and Fer (Figure S4). Interestingly, when we compared the results of the miRNA and mRNA expression profiles, we found that the expression change in each gene was observed simultaneously with, or within 24 hours after, reduced expression of miR-129-1-3p, suggesting that the expression of miR-129-1-3p is linked to expression of c-Src/c-Yes/Fer (Figures S1 and S4).

3.5 MicroRNA-129-1-3p-mediated regulation of c-Src/c-Yes/Fer is important for cell adhesion and invasion

We next examined whether the tumor-suppressive effect of miR-129-1-3p is mediated by the c-Src/c-Yes/Fer pathway. When ORF cDNAs of c-Src, c-Yes, and Fer mutant, which are resistant to miR-129-1-3p, were introduced into miR-129-1-3p-treated HCT116 cells, colony-forming activity was only moderately rescued (Figure 5A,B). These results suggest that c-Src/c-Yes/Fer promote tumor growth of colon cancer cells, but the growth suppressive effect of miR-129-1-3p cannot be solely attributed to downregulation of c-Src/c-Yes/Fer. Because SFK-related signaling is involved in cancer malignancies, we examined the effects of the miR-129-1-3p-c-Src/c-Yes/Fer pathway on the morphology, adhesion, and invasiveness of colon cancer cells. As mentioned above, miR-129-1-3p caused morphological changes and reduced the number of focal adhesions, concomitant with suppression of cell adhesion and invasive activity of HCT116 cells (Figure 3). Expression of c-Src/c-Yes/Fer in miR-129-1-3p-treated cells almost completely re-verted cytoskeletal organization and formation of focal contacts (Figure 5C) and successfully restored the activity of cell adhesion and invasion of HCT116 cells (Figure 5D,E). Taken together, these findings suggest that the miR-129-1-3p-c-Src/c-Yes/Fer circuit plays crucial roles in controlling adhesion and invasive potential in cancer cells.
3.6 | MicroRNA-129-1-3p is downregulated in human cancer tissues

Finally, we examined the role of miR-129-1-3p in human cancers by assessing miR-129-1-3p expression in 10 pairs of primary colon tumors and adjacent noncancerous tissues using qRT-PCR. MicroRNA-129-1-3p was markedly downregulated, relative to the level in adjacent noncancerous tissues, in tumors from 10 of 10 patients examined (Figure 6A). Moreover, western blot analysis of tissue samples showed that activity of SFK (Src pY418) was greatly elevated in 9 of 10 tumor tissues compared to noncancerous tissues (Figure 6B). These observations suggest an inverse correlation between the activity of c-Src and the expression of miR-129-1-3p in human cancer tissues. To further confirm the importance of miR-129-1-3p, we examined Gene Expression Omnibus data. Because the expression level is very low, only a few datasets include expression measurements for miR-129-1-3p. We chose microarray datasets (GSE33125) from among the available miRNA profiles for malignant...
cancer tissues and reanalyzed them (see Materials and Methods). In 9 paired noncancerous/cancer colon tissues, miR-129-1-3p was significantly downregulated relative to paired noncancerous tissues ($P = .02373$) (Figure 6C). These observations suggest that downregulation of miR-129-3p is associated with a wide array of human cancers in which SFK signaling is upregulated.

4 | DISCUSSION

Previously, to elucidate the molecular mechanisms underlying the early phases of c-Src-induced transformation, we established an experimental system using an inducible c-Src expression system in Csk-deficient cells. Here, we used this system to study the potential roles of miRNAs in the early phases of c-Src-induced tumor progression. MicroRNA profiling revealed that the expression of various miRNAs decreased at different times after Src activation. Our previous studies indicated that 7 miRNAs were downregulated in stably c-Src-transformed cells, among which 5 miRNAs are implicated in cancers in which c-Src is upregulated. Because the miRNA species identified in our previous studies, including miR-99a, -322 (-424 in human), -503, and -542-3p, decreased at relatively later phases of c-Src transformation (72 hours after Src activation), we tried to identify miRNAs downregulated at earlier phases of transformation. Of those miRNAs, we focused on miR-129-1-3p, because it was conserved among several species. We showed that reexpression of miR-129-3p suppressed c-Src-induced transformation, including acquisition of anchorage-independent growth and morphological...
Our findings in this study revealed that miR-129-1-3p is a critical mediator of oncogenic potential of c-Src. A schematic model for the miR-129-1-3p-mediated regulation of tumor progression is depicted in Figure 6D. When c-Src is activated by external stimuli such as EGF and ECM, miR-129-1-3p is downregulated. The downregulation of miR-129-1-3p results in upregulation of SFKs such as c-Src and c-Yes and the c-Src substrate Fer, which are required for growth, adhesion, and invasion by cancer cells. These findings suggest that c-Src-induced miR-129-1-3p downregulation initiates a positive feedback loop that activates SFK-mediated oncogenic signaling by inducing expression of SFK and its substrates; this loop might contribute broadly to promotion of cancer malignancy.

Multiple studies reported c-Src upregulation in a broad range of cancer types, including colon, lung, breast, prostate, pancreas, head and neck carcinoma, glioma, and melanoma. Overall, the Src-mediated pathway is activated in 80% of human colon tumors, suggesting that Src activation plays a central role in the initiation and promotion of tumors. We confirmed that the expression of miR-129-1-3p was greatly reduced in colon, lung, and pancreas cancer cells, where c-Src is activated (Figures S2B and S6). Among SFKs, protein levels or specific activities of c-Src and c-Yes are frequently upregulated in a variety of human cancers. Reintroduction of miR-129-1-3p in colon cancer cells downregulated c-Src/c-Yes/Fer expression and suppressed tumorigenesis, cell adhesion, and in vitro invasive activity. In addition, the miR-129-1-3p-mediated downregulation of c-Src/c-Yes/Fer suppressed tyrosine phosphorylation of cellular proteins in human cancer.
cells, suggesting that miR-129-1-3p repression is required for activation of Src-related oncogenic signals. These lines of evidence reveal strong correlations of miR-129-1-3p and c-Src/c-Yes/Fer with human cancers, and suggest that miR-129-1-3p downregulation contributes to cancer progression not only through upregulation of c-Src/c-Yes/Fer themselves, but also through activation of the c-Src-mediated oncogenic pathway. Fer expression is also elevated in some cancers, but the underlying mechanisms remained unclear.15-19 In this study, we provided clear evidence that elevated expression of Fer in various cancers can be explained in some, if not all, cases by frequent downregulation of miR-129-1-3p through Src activation.

In addition to the suppressive effect on tumor growth, expression of miR-129-1-3p induced robust inhibition of integrin-mediated cell adhesion. The expression of c-Src/c-Yes/Fer in miR-129-1-3p-treated cancer cells significantly rescued cell adhesion, but had more moderate effects on tumor growth. Therefore, it is likely that c-Src/c-Yes/Fer are targets of miR-129-1-3p that are preferentially involved in cell adhesion signals. The insufficiency of c-Src/c-Yes/Fer for tumor growth suggests that additional miR-129-1-3p targets exist that are required for complete control of tumor growth. Previous studies showed that miR-129-1-3p targets cyclin-dependent kinase 6 and Glypican-3 and inhibits cell proliferation by inducing cell arrest, suggesting a potential role for miR-129-1-3p in control of human cancer growth.38,44 Further analysis of the contribution of such additional targets will be necessary to elucidate the whole picture of the c-Src-miR-129-1-3p axis.

In this study, we proposed a new mechanism for the upregulation of Src-related oncogenic signals: downregulation of c-Src activation and upregulation of SFKs (c-Src/c-Yes) and its downstream target (Fer) through downregulation of miR-129-1-3p. If this is the case for human cancers, upregulation of the c-Src-mediated pathway observed in various human cancers could be induced through a positive feedback loop involving miR-129-1-3p and c-Src that can be initiated by growth factor and integrin stimuli. Furthermore, recent work showed that c-Src is also activated by Fer, suggesting that c-Src activation is maintained by its substrate.45 Thus, upregulation of c-Src might further amplify the positive feedback loop mediated by direct regulation of c-Src-related protein levels by miR-129-1-3p and regulation of c-Src kinase activity by Fer, thereby promoting tumor malignancy mediated by c-Src activation. These signaling circuits could
account for the frequent upregulation of c-Src in various human cancers. Because the Src-related oncogenic pathway is frequently activated in human cancers, the functional analysis of the c-Src-miR-129-1-3p circuits presents a leap forward in our understanding of cancer etiology. Our study provides insights into the functions of new signaling circuits, and offers new opportunities for therapeutic intervention in a wide array of human cancers.

ACKNOWLEDGMENTS
We are grateful to Dr F. Imamoto and Dr T. Akagi for their generous gifts of reagents. This work was supported by a Grant-in-Aid for Scientific Research (B) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

CONFLICT OF INTEREST
The authors have no conflict of interest.

ORCID
Chitose Oneyama https://orcid.org/0000-0002-5719-9431

REFERENCES
1. Jove R, Hanafusa H. Cell transformation by the viral src oncogene. Annu Rev Cell Biol. 1987;3:31-56.
2. Brown M, Cooper J. Regulation, substrates and functions of src. Biochim Biophys Acta. 1996;1287:121-149.
3. Playford MP, Schaller MD. The interplay between Src and integrins in normal and tumor biology. Oncology. 2004;23(48):7928-7946.
4. Frame M. Src in cancer: deregulation and consequences for cell behaviour. Bioch Biophys Acta. 2002;1602:114-130.
5. Ishizawar R, Parsons S. c-Src and cooperating partners in human cancer. Cancer Cell. 2004;6:209-214.
6. Summy JM, Gallick GE. Src family kinases in tumor progression and metastasis. Cancer Metastasis Rev. 2003;22(4):337-358.
7. Yeatman TJ. A renaissance for SRC. Nat Rev Cancer. 2004;4(6):470-480.
8. Okada M. Regulation of the SRC family kinases by Csk. Int J Biol Sci. 2012;8(10):1385-1397.
9. Irby R, Yeatman T. Role of Src expression and activation in human cancer. Oncogene. 2000;19:5636-5642.
10. Ingle E. Src family kinases: regulation of their activities, levels and identification of new pathways. Biochim Biophys Acta. 2008;1784(1):56-65.
11. Parsons SJ, Parsons JT. Src family kinases, key regulators of signal transduction. Oncogene. 2004;23(48):7906-7909.
12. Oneyama C, Hikita T, Nada S, Okada M. Functional dissection of c-Src and v-Src. Genes Cells. 2008;13(1):1-12.
13. Matsuyama R, Okuzaki D, Okada M, Oneyama C. MicroRNA-27b suppresses tumor progression by regulating ARGEF1 and focal adhesion signaling. Cancer Sci. 2016;107(1):28-35.
14. Oneyama C, Ikeda J, Okuzaki D, et al. MicroRNA-mediated downregulation of mTOR/FGFR3 controls tumor growth induced by Src-related oncogenic pathways. Oncogene. 2011.
15. Oneyama C, Kito Y, Asai R, et al. MiR-424/503-mediated Rictor upregulation promotes tumor progression. PLoS ONE. 2013;8(11):e80300.
16. Oneyama C, Morii E, Okuzaki D, et al. MicroRNA-mediated upregulation of integrin-linked kinase promotes Src-induced tumor progression. Oncogene. 2012;31(13):1623-1635.
17. Oneyama C, Okada M. MicroRNAs as the fine-tuners of Src oncogenic signalling. J Biochem. 2015;157(6):431-438.
18. Koduka R, Watanabe R, Okuzaki D, Akamatsu H, Oneyama C. MicroRNA-137-mediated Src oncogenic signalling promotes cancer progression. Genes Cells. 2018;23(8):688-701.
19. Inoue K, Sone T, Oneyama C, et al. A versatile nonviral vector system for tetracycline-dependent one-step conditional induction of transgene expression. Gene Ther. 2009;16(12):1383-1394.
20. Kajiwarra K, Yamada T, Bamba T, et al. c-Src-induced activation of ceramide metabolism impairs membrane microdomains and promotes malignant progression by facilitating the translocation of c-Src to focal adhesions. Biochem J. 2014;458(1):81-93.
21. Koutski M, Spandios DA, Zaravinos A. Epithelial-mesenchymal transition-associated miRNAs in ovarian carcinoma, with highlight on the miR-200 family: prognostic value and prospective role in ovarian cancer therapeutics. Cancer Lett. 2014;351(2):173-181.
22. Yang D, Du G, Xu A, Xi X, Li D. Expression of miR-149-3p inhibits proliferation, migration, and invasion of bladder cancer by targeting S100A4. Am J Cancer Res. 2017;7(11):2209-2219.
23. Liang Y, Hou L, Li L, et al. Dichloroacetate restores colorectal cancer chemosensitivity through the p53/miR-149-3p/PDK2-mediated glucose metabolic pathway. Oncogene. 2020;39(2):469-485.
24. Yu X, Song H, Xia T, et al. Growth inhibitory effects of three miR-129 family members on gastric cancer. Gene. 2013;532(1):87-93.
39. Wang D, Luo L, Guo J. miR-129-1-3p inhibits cell migration by targeting BDKRB2 in gastric cancer. *Med Oncol*. 2014;31(8):98.

40. Zhang Z, Pan B, Lv S, et al. Integrating microRNA expression profiling studies to systematically evaluate the diagnostic value of microRNAs in pancreatic cancer and validate their prognostic significance with the cancer genome atlas data. *Cell Physiol Biochem*. 2018;49(2):678-695.

41. Cui S, Zhang K, Li C, et al. Methylation-associated silencing of microRNA-129-3p promotes epithelial-mesenchymal transition, invasion and metastasis of hepatocellular cancer by targeting Aurora-A. *Oncotarget*. 2016;7(47):78009-78028.

42. Chen J, Elfiky A, Han M, Chen C, Saif MW. The role of Src in colon cancer and its therapeutic implications. *Clin Colorectal Cancer*. 2014;13(1):5-13.

43. Cartwright CA, Meisler AI, Eckhart W. Activation of the pp60c-src protein kinase is an early event in colonic carcinogenesis. *Proc Natl Acad Sci USA*. 1990;87(2):558-562.

44. Maurel M, Jalvy S, Ladeiro Y, et al. A functional screening identifies five microRNAs controlling glypican-3: role of miR-1271 down-regulation in hepatocellular carcinoma. *Hepatology*. 2013;57(1):195-204.

45. Stanicka J, Rieger L, O’Shea S, et al. FES-related tyrosine kinase activates the insulin-like growth factor-1 receptor at sites of cell adhesion. *Oncogene*. 2018;37(23):3131-3150.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section.

How to cite this article: Okuzaki D, Yamauchi T, Mitani F, et al. c-Src promotes tumor progression through downregulation of microRNA-129-1-3p. *Cancer Sci*. 2020;111:418-428. https://doi.org/10.1111/cas.14269