Prevalence of Antibiotic Resistance Over Time in a Third-Level University Hospital

Vincenzo Scaglione,1 Mariaconcetta Reale,2 Chiara Davoli,1 Maria Mazzitelli,1 Francesca Serapide,1 Rosaria Lionello,1 Valentina La Gamba,1 Paolo Fusco,1 Andrea Bruni,3 Daniela Procopio,3 Eugenio Garofalo,3 Federico Longhini,3 Nadia Marasco,2 Cinzia Peronace,2 Aida Giancotti,2 Luigia Gallo,2 Giovanni Matera,2 Maria Carla Liberto,2 Bruno Mario Cesana,4 Chiara Costa,5 Enrico Maria Trecarichi,1 Angela Quirino,2,* and Carlo Torti1,*

This study evaluated the spread and possible changes in resistance patterns of ESKAPE bacteria to first-choice antibiotics from 2015 to 2019 at a third-level university hospital after persuasive stewardship measures were implemented. Isolates were divided into three groups (group 1, low drug-resistant; group 2, multidrug/extremely drug-resistant; and group 3, pan-resistant bacteria) and a chi-squared test (χ^2) was applied to determine differences in their distributions. Among the 2,521 isolates, Klebsiella pneumoniae was the most frequently detected (31.1%). From 2015 to 2019, the frequency of isolates in groups 2 and 3 decreased from 70.1% to 48.6% ($\chi^2=63.439; p<0.0001$). Stratifying isolates by bacterial species, for K. pneumoniae, the frequency of PDR isolates decreased from 20% to 1.3% ($\chi^2=15.885; p=0.003$). For Acinetobacter baumanii, a statistically significant decrease was found in groups 2 and 3: from 100% to 83.3% ($\chi^2=27.721; p<0.001$). Also, for Pseudomonas aeruginosa and Enterobacter spp., the frequency of groups 2 and 3 decreased from 100% to 28.3% ($\chi^2=225.287; p<0.001$) and from 75% to 48.7% ($\chi^2=15.408; p=0.003$), respectively. These results indicate that a program consisting of persuasive stewardship measures, which were rolled out during the time frame of our study, may be useful to control drug-resistant bacteria in a hospital setting.

Keywords: antimicrobial resistance, ESKAPE, Southern Italy, hospital units

Introduction

Antimicrobial resistance (AMR) is one of the main threats to public health.1 It has been estimated that more than 670,000 infections occur every year and ~33,000 people die due to bacteria resistant to antibiotics in Europe, with one-third of them in Italy.1 Indeed, the Antibiotic Resistance-Istituto Superiore di Sanità project found that Italy was severely affected by this problem.2 Particularly, bacteria belonging to the ESKAPE group (i.e., Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Enterobacter spp.) represent a frequent cause of nosocomial infection,3 with increasing prevalence of multidrug resistance (MDR) to antibiotics, thereby reducing treatment options and increasing death rates because of treatment failure.4 Patient outcomes could be improved and spreading of MDR strains could be contained only with active monitoring
of AMR and effective programs for antimicrobial stewardship, coupled with infection control. However, in the past years, insufficient attention had been paid to the problem, especially in our country. Therefore, the Ministry of Health set objectives and methods to control this problem, and several national programs have focused on measuring the size of the problem and promoting local actions. At regional levels, a process of finalizing guidelines has been initiated to increase the appropriateness of antimicrobial therapy.

These guidelines should be interpreted as a deliverable of a process already ongoing, the effect of which could have been measured even before their publication. Accordingly, this study aimed to analyze data about epidemiology of resistant bacteria at the “Mater Domini” teaching hospital of Catanzaro (Calabria, Southern Italy). We hypothesized that ongoing interventions could have modified the trend of the relative prevalence of MDR bacteria, with specific reference to the ESKAPE group.

Materials and Methods

Samples

This descriptive, retrospective, longitudinal study analyzed the initial isolates of ESKAPE bacteria from any kind of samples for each patient admitted at the “Mater Domini” teaching hospital of Catanzaro from January 1, 2015, to December 31, 2019. According to the Italian legislation (GU Serie Generale no. 76 31/3/2008), due to the retrospective nature of the study and considering the absence of any demographic and clinical data of the patients, only a notification was due to the Ethical Committee which was sent on March 22, 2019. Samples were collected from urine, blood, wound, respiratory fluid (spumon and bronchoalveolar aspiration fluid), and other specimens; nasal and rectal swabs were excluded from the analysis aiming at reducing the effect of possible colonizations to increase the clinical relevance of the work. Samples were collected from patients admitted to four types of hospital units: medical units, surgical units, cardiac intensive care unit (CICU), and ICU.

Pure bacterial cultures and antibiotic susceptibility testing were performed using an automated VITEK system (BioMérieux), although it is not considered the gold standard for some drugs.

Susceptibility to antibiotics was evaluated based on the breakpoints of the European Committee on Antimicrobial Susceptibility Testing or EUCAST, and the intermediate level of sensitivity to antibiotics was considered resistant according to the European Centre for Disease Prevention and Control (ECDC) definitions.

Setting

The study was conducted at the “Mater Domini” teaching hospital, one of the two main hospitals in Catanzaro Province in the Calabria Region, Southern Italy. This is a third-level hospital in which critical patients from all regions are hospitalized. The number of beds and hospital admissions were 127 and 6,745 in 2015, respectively, and increased modestly over the calendar years (Table 1).

The number of activities of the units increases over time as in-hospital consultations for antimicrobial therapy become

Hospital units	Year	2015	2016	2017	2018	2019
Medical Units						
Number of beds	59	59	87	87	85	
Number of hospital admissions	3,596	3,611	4,398	4,581	4,475	
Surgical Units						
Number of beds	54	54	78	78	78	
Number of hospital admissions	2,452	2,095	2,528	2,843	2,890	
Cardiac Intensive Care Unit						
Number of beds	6	6	12	12	12	
Number of hospital admissions	226	183	83	78	78	
Intensive Care Unit						
Number of beds	8	8	8	8	8	
Number of hospital admissions	471	355	507	502	512	
Total						
Number of beds	127	127	185	185	183	
Number of hospital admissions	6,745	6,244	7,516	8,004	7,955	

Notes: £ indicates the number of admissions; ‡ indicates the number of beds.

Definition of resistance

Bacterial isolates were classified according to the resistance profiles as indicated by the joined expert panel of ECDC and the U.S. Centers for Disease Control and Prevention. Particularly, group 1 (low resistant bacteria) comprised those without resistance to any class or with resistance to one molecule in ≤2 classes; group 2 (highly resistant bacteria) included MDR bacteria with resistance to ≥1 molecule in ≥3 different classes and extensively drug-resistant (XDR) bacteria with resistance to ≥1 molecule in
all, but 2 or fewer classes; and group 3 (pandrug-resistant bacteria, PDR) consisted of those with resistance to all drugs and classes of antibiotics.

Merging MDR and XDR in the same category was applied either to increase statistical significance of the comparison due to the small number of isolates or to provide estimates for the worst-case scenario related to the presence of PDR bacteria. In fact, both MDR and XDR could be more easily treated than PDR bacteria, especially if one considers the availability of new drugs. Also, this classification was applied in our previous work; however, to avoid any bias, a separate descriptive analysis was conducted to consider the relative prevalence of MDR and XDR bacteria as separate categories.

Assessment parameters

According to guidelines, bacterial isolates were stratified according to the following parameters: year, type of hospital unit, organs, and systems. This study evaluated (i) number of isolates per bacterial species; (ii) frequency of bacteria and their distribution in groups (1, 2, or 3); (iii) frequency of Gram-negative isolates (K. pneumoniae, A. baumannii, P. aeruginosa, and Enterobacter spp.) in group 2 or 3, which were resistant to the following first-choice antibiotics: cephalosporins (i.e., ceftazidime), carbapenems, colistin, amikacin, gentamicin, tigecycline, and piperacillin/tazobactam; (iv) frequency of antimicrobial drug resistance in group 2 Gram-positive isolates (S. aureus and E. faecium) to oxacillin, vancomycin, daptomycin, linezolid, and tigecycline for S. aureus, as well as to vancomycin, linezolid, and tigecycline for E. faecium; number and frequency of bacterial isolates in group 1, 2, or 3 by year; (v) hospital units; (vi), or organs and systems (vii); (viii) Gram-negative isolates with resistance to first-choice antibiotics by calendar years.

The resistance of P. aeruginosa to ertapenem or tigecycline was not considered in the analysis even if tested by the automated VITEK system (BioMérieux) method as it was due to intrinsic resistance to these drugs.

Statistical analyses

Statistical analysis for qualitative data was performed using the chi-squared (χ^2) test, and significance was set at $p \leq 0.05$. Statistical analysis was performed between group 1 and groups 2 and 3 bacterial strains. Isolates were also analyzed by hospital units, as well as by organs and systems. To assess the trend of resistance patterns (group 1 and groups 2 and 3) during the five years analyzed, the χ^2 test for trend (Cochrane-Armitage trend test) was applied. The χ^2 test was considered not completely reliable (expected frequency below 1 or expected frequency less than 5 in more than 20% of cells as the condition for relying on the Gaussian approximation) in 44% of cases. Contingency tables of rows \times columns from 2 \times 3 to 2 \times 7 were used.

Results

Bacterial species and patterns of resistance to antimicrobials

During the five study years, 2,521 bacterial isolates (ESKAPE species) were obtained. K. pneumoniae was the most represented species (31.1%), followed by P. aeruginosa (19.8%), S. aureus (18.6%), Enterobacter spp. (13.4%), A. baumannii (13.2%), and E. faecium (3.8%).

Distributions of bacterial species based on calendar years, hospital units, and types of samples are shown in Table 2. The frequency of bacterial isolates in group 1 or groups 2 and 3 differed significantly by species: $\chi^2 = 401.179$; $p < 0.0001$ (Fig. 2). Groups 2 and 3 bacteria were more common in Gram-negative bacteria (66.0%) than in Gram positive (41.1%) ($\chi^2 = 113.653$; $p < 0.0001$).

Among the Gram-negative species in groups 2 and 3, the highest frequency of resistance to carbapenems was observed for K. pneumoniae (74.9%) and A. baumannii (74.4%), and the highest frequency of resistance to colistin was found for K. pneumoniae (43.4%) (Fig. 3). Among the Gram-positive species, no isolate was found in group 3. The highest frequency of isolates in group 2 was found for E. faecium (91%) (Fig. 2). Resistance to vancomycin was
Table 2. Distribution of Bacterial Isolates by Years, Hospital Units, and Samples

Category	Enterococcus faecium	Staphylococcus aureus	Klebsiella pneumoniae	Acinetobacter baumannii	Pseudomonas aeruginosa	Enterobacter spp.	Total							
Year	**N**	**%**												
2015	10	10.3	82	17.4	145	18.5	43	12.9	74	14.9	44	13.0	398	15.8
2016	16	16.5	57	12.1	86	11.0	56	16.8	93	18.7	58	17.1	366	14.5
2017	26	26.8	108	23.0	184	23.5	48	14.4	94	18.9	69	20.5	529	21.0
2018	22	22.7	96	20.4	210	26.7	79	23.6	78	15.6	87	25.7	572	22.7
2019	23	23.7	127	27.1	159	20.3	108	32.3	159	31.9	80	23.7	656	26.0
TOT	97	100	470	100	784	100	334	100	498	100	338	100	2,521	100
Hospital Units														
Medical units	51	52.6	335	71.3	341	43.5	76	22.7	256	51.4	157	46.4	1,216	48.2
Surgical units	23	23.7	58	12.3	151	19.3	51	15.3	87	17.5	49	14.5	419	16.6
CICU	0	0	13	2.8	27	3.4	6	1.8	21	4.2	15	4.4	82	3.3
ICU	23	23.7	64	13.6	265	33.8	201	60.2	134	26.9	117	34.7	804	31.9
TOT	97	100	470	100	784	100	334	100	498	100	338	100	2,521	100
Sample														
Urine	41	42.4	22	4.7	229	29.2	29	8.7	84	16.9	51	15.1	456	18.1
Blood	14	14.4	84	17.9	94	12.0	37	11.1	25	5.0	24	7.1	278	11.0
Intravascular device	1	1	2	0.4	14	1.8	4	1.2	7	1.4	4	1.2	32	1.3
Wound swab	16	16.5	239	50.9	291	37.1	142	42.5	234	47.0	180	53.3	1,102	43.7
Respiratory sample	8	8.2	57	12.1	107	13.6	97	29.0	121	24.3	58	17.1	448	17.8
Other sample	17	17.5	66	14.0	49	6.3	25	7.5	27	5.4	21	6.2	205	8.1
TOT	97	100	470	100	784	100	334	100	498	100	338	100	2,521	100
found in 12.5% of *E. faecium* isolates, and all strains were sensitive to linezolid and tigecycline. Resistance to oxacillin was found in 23% of *S. aureus*.

Resistance patterns by calendar years

Figure 4A shows the numbers and percentages of bacterial isolates in groups 1–3 based on calendar year. From 2015 to 2019, a significant change in the frequency of isolates was observed in both group 1 and groups 2 and 3 ($\chi^2 = 63.439; p < 0.0001$). While the frequency of isolates in group 1 increased, the frequency of isolates in groups 2 and 3 decreased from 70.1% in 2015 to 48.6% in 2019. Overall, the prevalence of Gram-negative isolates in groups 2 and 3 decreased during the study period. In the analysis of bacterial species, a significant reduction in PDR *K. pneumoniae* was observed ($\chi^2 = 15.885; p = 0.003$). As for *A. baumannii*, despite an overall increase in the number of isolates, a significant decrease in its frequency in groups 2 and 3 was observed ($\chi^2 = 27.721; p < 0.001$).

For *P. aeruginosa*, a reduction in the frequency in group 2 was observed ($\chi^2 = 225.287; p < 0.001$). For *Enterobacter* spp., no isolate was included in group 3, and a reduction in its frequency in group 2 was observed ($\chi^2 = 15.408; p = 0.003$). A linear reduction trend was observed for *S. aureus* in group 2, from 40.2% in 2015 to 25.2% in 2019; however, the difference was not statistically significant ($\chi^2 = 6.896; p = 0.141$). Moreover, regarding the proportion of methicillin-resistant *S. aureus* (MRSA), we did not find any statistically significant trend from 2015 to 2019 ($\chi^2 = 3.813; p = 0.431$). For *E. faecium*, the trend was not statistically significant, and the frequency of isolates in groups was stable ($\chi^2 = 5.082; p = 0.278$).

In the analysis in which XDR and MDR were considered separate classes, for Gram-positive bacteria, no isolate was detected in the XDR group. By contrast, for Gram-negative bacteria, the frequency of XDR over MDR, including XDR (group 2), over calendar years was as follows: (i) *K. pneumoniae*, 23/59 (39%) in 2015, 7/25 (28%) in 2016, 5/51 (9.8%) in 2017, 27/78 (34.6%) in 2018, and 44/91 (48.4%) in 2019; (ii) *A. baumannii*, 25/42 (59.5%) in 2015, 36/54 (66.7%) in 2016, 23/45 (51.1%) in 2017, 60/78 (76.9%) in 2018, and 81/86 (94.2%) in 2019; (iii) *P. aeruginosa*, 15/74 (20.3%) in 2015, 22/70 (31.4%) in 2016, 9/87 (10.3%) in 2017, 9/78 (11.5%) in 2018, and 19/44 (43.2%) in 2019; (iv) *Enterobacter* spp., 4/33 (12.1%) in 2015, 2/29 (6.9%) in 2016, 1/42 (2.4%) in 2017, 8/62 (12.9%) in 2018, and 2/39 (5.1%) in 2019.

Resistance patterns by hospital units

Figure 4B shows the number and percentage of bacterial isolates in groups 1–3 based on hospital units. The frequency of isolates in group 1 and groups 2 and 3 differed among hospital units ($\chi^2 = 120.422; p < 0.0001$). Particularly, the frequency of bacterial isolates in groups 2 and 3 was higher in the ICU (76%) than in surgical (65.6%) and medical (48.1%) units. Analysis of the distribution of Gram-negative and Gram-positive bacteria showed that for both frequencies, groups 2 and 3 were higher in the ICU than in other hospital units (Gram-positive bacteria: 56.6%, $\chi^2 = 13.042$; and Gram-negative bacteria: 78.1%, $\chi^2 = 74.301; p < 0.001$).

During the study period, the frequency of isolates in group 1 and groups 2 and 3 differed in ICU ($\chi^2 = 15.236; p = 0.004$), and a biphasic trend was observed with a lower resistance rate in 2019 (69.6%) than in 2015 (81.6%).

Resistance patterns by sites of bacterial isolation (organ and system)

Figure 4C shows the number and percentage of bacterial isolates in groups 1–3 at different sites. The frequency of isolates with resistance to at least one molecule in groups 1–3

FIG. 2. Overall number and frequency of bacterial isolates. Bacterial isolates are divided into three groups by antibiotic resistance patterns: group 1 (low resistant bacteria), group 2 (highly resistant bacteria), and group 3 (pan-resistant bacteria, PDR).

FIG. 3. Overall frequency of antimicrobial drug resistance among MDR, XDR, and PDR isolates (Gram-negative bacteria). (A–D) show susceptibility rates to first-choice antibiotics among *Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa*, and *Enterobacter* spp. isolates, respectively. MDR, multidrug resistance; XDR, extensively drug resistant; PDR, pandrug resistant.
FIG. 4. Number and frequency of bacterial isolates per calendar years (A), hospital units (B), and different sites (C). Bacterial isolates are divided into three groups by antibiotic resistance patterns: group 1 (low resistant bacteria), group 2 (highly resistant bacteria), and group 3 (pan-resistant bacteria, PDR). MU, medical units; SU, surgical units; CICU, cardiac intensive care unit; ICU, intensive care unit; U, urine; B, blood; W, wound swabs; R, respiratory samples; O, other samples (miscellaneous).
differed among organs and systems ($\chi^2 = 19.943; p < 0.001$). Particularly, the percentages of bacterial isolates in groups 2 and 3 were higher in respiratory (66.3%) and blood (66.1%) samples than in other samples (63.9%), wound swabs (57.8%), and urine (55.3%). Analysis of the distribution of Gram-negative and Gram-positive bacteria stratified by organs and systems showed that the frequency of group 2 was higher in urine than in the remaining samples for Gram-positive bacteria (65.1%; $\chi^2 = 29.550; p < 0.001$), while the frequency of groups 2 and 3 was higher in the blood for Gram-negative bacteria (78.0%; $\chi^2 = 47.766; p < 0.001$).

AMR to first-choice antibiotics for Gram-positive and Gram-negative isolates

Gram-positive isolates. Among Gram-positive isolates, very low levels of resistance to vancomycin, daptomycin, tigecycline, and linezolid were observed, and no statistically significant difference was found during the different study years. All isolates analyzed showed no resistance to linezolid, while 2.7% of isolates showed resistance to vancomycin (11/15 isolates were *E. faecium*). Notably, only 0.4% and 0.9% of isolates showed resistance to tigecycline and daptomycin, respectively.

Gram-negative isolates. Figure 5 shows number and frequency of Gram-negative bacterial isolates resistant to first-choice antibiotics by calendar years. Among Gram-negative isolates (excluding *P. aeruginosa* considering its natural resistance), resistance to tigecycline decreased from 2015 (66.7%) to 2018 (42.7%), but a strong increase was observed in 2019 (83.1%) ($\chi^2 = 102.371; p < 0.001$). The frequency of resistance to cephalosporins ($\chi^2 = 24.775$), carbapenems ($\chi^2 = 25.050$), colistin ($\chi^2 = 24.409$), amikacin ($\chi^2 = 17.897$), and gentamicin ($\chi^2 = 27.475$) was significantly different during the study period ($p < 0.001$). For these molecules, a biphasic trend was observed during the study years, but the frequency of resistance was lower in 2019 than in 2015.

Discussion

This study evaluated the trends in AMR from 2015 to 2019 in a large university hospital. It was very frequent to detect MDR strains, but it was rarer to detect strains resistant to all available antibiotics. Interestingly, most bacteria showed a decrease in AMR, while the effect was limited for some bacteria. In contrast, many recent studies have shown an increase in AMR, particularly for Gram-negative bacteria. Since this work aimed to further explore the possible impact of interventions on controlling the spread of MDR bacteria at our setting, as an update of a previous study, the continuing decrease over time in the relative prevalence of MDR bacteria suggests that greater attention to the AMR issue has a positive impact. Consistently, the antibiotic consumption at our institute was lower than that at other hospitals in the Calabria Region, especially for ceftriaxone, meropenem, and piperacillin/tazobactam, even if the effect of reduction in antimicrobial consumption on AMR has been demonstrated to be inconsistent for all drugs and limited in time.

Moreover, future studies should compare AMR in relation to the use of antibiotics across different centers in our setting, since no information is available to support consistently higher MDR rates in hospitals with heavier consumptions of antibiotics. Our data indicate that AMR remains a significant problem, especially in the ICU. Indeed, despite an overall decrease in the relative prevalence of MDR bacteria, AMR in the ICU remains a challenge: over 50% of bacteria were detected in groups 2 and 3 with important consequences in therapy prescription. Moreover, as reported in previous studies, most of the isolated bacteria were Gram negative, were more often MDR than Gram-positive ones (66.0% vs. 41.1%), and often occurred in deep sites (blood/respiratory system).

Among Gram-negative bacteria in the ESKAPE group, *K. pneumoniae* was the most represented species (40.1%), while *A. baumannii* was the species with the highest frequency of MDR isolates (93.4%), including XDR (group 2) and PDR (group 3) (Fig. 2). Indeed, *A. baumannii* represents a challenging clinical problem for the following reasons: (i) although 90% of the isolates are susceptible to colistin, its use is often burdened by kidney and neurotoxicity, and its pharmacokinetic profile is not optimal, especially for pneumonia treatment; and (ii) the number of active drugs is limited, ranging from 25.6% for carbapenems to 50% for tigecycline, a drug whose systemic bioavailability is suboptimal and treatment of pneumonia may require increasing dosages.

Interestingly, however, even for *A. baumannii*, a lower frequency of resistance to carbapenems was observed in the years 2015–2019 (74.4%) compared to the years 2010–2014.

FIG. 5. Number and frequency of Gram-negative bacterial isolates resistant to selected first-choice antibiotics by calendar years.
PREVALENCE OF ANTIBIOTIC RESISTANCE
Authors’ Contributions

C.T. and A.Q. designed this study and contributed equally to its realization; M.R. and V.S. collected the data and wrote the article; M.M. and C.D. wrote the article; L.G., N.M., C.P., and A.G. provided technical support; B.M.C. performed statistical analysis and helped in interpreting the results; F.S., R.L., V.L.G., and P.F. contributed to data conceptualization; M.M., A.B., D.P., E.G., and F.L. revised the final version of the article; C.C., G.M., M.C.L., and E.M.T. provided data support and reviewed the article for important intellectual content.

All authors have read and agreed to the published version of the article.

Data Availability Statement

The data that support the findings of this study are available upon request from the corresponding author. The data are not publicly available because of privacy or ethical restrictions.

Disclosure Statement

No competing financial interests exist.

Funding Information

M.M. was supported as a PhD student by the European Commission (FESR FSE 2014–2020) and Calabria Region (Italy). The European Commission and Calabria Region (FESR FSE 2014–2020) and Calabria Region cannot be held responsible for any use, which may be made of the information contained therein.

References

1. European Centre for Disease Prevention and Control. 2020. Antimicrobial resistance in the EU/EEA (EARS-Net) - Annual Epidemiological Report 2019. ECDC, Stockholm.
2. Bellino, S., S. Iacchini, M. Monaco, et al. 2020. AR-ISS: sorveglianza nazionale dell’Antibiotico-Resistenza. Dati 2019. Rapporti ISS Sorveglianza RIS-1.
3. De Oliveira, D.M.P., B.M. Forde, T.J. Kidd, et al. 2020. Antimicrobial Resistance in ESKAPE Pathogens. Clin. Microbiol. Rev. 33:e00181–19.
4. Zhong, S., and S. He. 2021. Distribution and carbapenem susceptibility of gram-negative ESKAPE pathogens in hospitalized patients from three general hospitals. Clin. Lab. 67:2.
5. Barlam, T.F., S.E. Cosgrove, L.M. Abbo, et al. 2016. Implementing an Antimicrobial Stewardship Program: guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin. Infect. Dis. 62:e51–e77.
6. Salzo, A., G. Ripabelli, M.L. Sammarco, et al. 2021. Healthcare-Associated Infections and Antibiotics Consumption: a Comparison of Point Prevalence Studies and Intervention Strategies. Hosp. Top. 99:140–150.
7. European Centre for Disease Prevention and Control. 2017. ECDC country visit to Italy to discuss antimicrobial resistance issues. ECDC, Stockholm.
8. Boucher, H.W., G.H. Talbot, J.S. Bradley, et al. 2009. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin. Infect. Dis. 48:1–12.
9. Rice, L.B. 2008. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J. Infect. Dis. 197:1079–1081.
10. National Action Plan on Antimicrobial-Resistance (NAPAR) 2017–2020 [in Italian]. Italian Ministry of Health, Rome. Available at https://www.salute.gov.it/imgs/C_17_pubblicazioni_2660_allegato.pdf (accessed December 3, 2021).
11. Moro, M.L., M. Ciofi Degli Atti, C. D’Amore, et al. 2019. [Good practices for the surveillance and control of antimicrobial resistance]. Epidemiol. Prev. 43:185–193.
12. Calabria Region—Act no. 72—07/04/2020—Guidelines for the appropriate use of empirical antibiotic therapy and for the implementation of therapeutic protocols in the hospital setting [in Italian]. Available at https://www.regione.calabria.it/website/portaltemplates/view/view_provedimenti.cfm?32666 (accessed December 3, 2021).
13. Reale, M., A. Strazzulla, A. Quirino, et al. 2017. Patterns of multidrug resistant bacteria at first culture from patients admitted to a third level University hospital in Calabria from 2011 to 2014: implications for empirical therapy and infection control. Infez. Med. 25:98–107.
14. Matuschek, E., J. Ahman, C. Webster, et al. 2018. Antimicrobial susceptibility testing of colistin - evaluation of seven commercial MIC products against standard broth microdilution for Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter spp. Clin. Microbiol. Infect. 24:865–870.
15. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters, version 9.0. 2019. Available at https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_9.0_Breakpoint_Tables.pdf (accessed December 3, 2021).
16. Majiorakos, A.P., A. Srinivasan, R.B. Carey, et al. 2012. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 18:268–281.
17. Bianco, A., A. Quirino, M. Giordano, et al. 2016. Control of carbapenem-resistant Acinetobacter baumannii outbreak in an intensive care unit of a teaching hospital in Southern Italy. BMC Infect. Dis. 16:747.
18. A clean hospital is a safe hospital: how to manage the emergence of infections and bacterial resistance? [in Italian]. Available at https://webuniczit/admin/uploads/2018/09/proamma-30-settembre-aggiornamento-2pdf
19. Prevention and control of antibiotic resistance [in Italian]. Available at https://webuniczit/admin/uploads/2019/06/locandina-la-prevenzione-e-il-controllo-dellantibiotico-resistenza-definitivopdf
20. Larosa, E., R. Zucco, M. Giordano, et al. 2014. Active surveillance of healthcare-associated infections (HAIs) in the Intensive Care Unit: results of 8 months of activity. Acts of XXV Calabrian-Sicilian Interregional Congress of the Italian Society of Hygiene, Preventive Medicine and Public Health [in Italian]. Vibo Valentia, June 19–21, 2014.
21. Zucco, R., F. Lavano, F. Licata, et al. 2018. Knowledge, attitudes and behaviors of healthcare professionals on effective practices for the prevention of surgical site infections (SSI) in surgical wards. Acts of the 51th National Congress of the Italian Society of Hygiene, Preventive Medicine and Public Health [in Italian]. Riva del Garda October 17–20, 2018. Act no. 161.
22. Pascale, R., S. Corcione, L. Bussini, et al. 2021. Non-fermentative gram-negative bloodstream infection in northern Italy: a multicenter cohort study. BMC Infect. Dis. 21:806.
23. Nasser, M., S. Palwe, R.N. Bhargava, et al. 2020. Retrospective Analysis on Antimicrobial Resistance Trends and Prevalence of beta-lactamases in *Escherichia coli* and ES-CAPE Pathogens Isolated from Arabian Patients during 2000–2020. Microorganisms. 8:1626.
24. Carlet, J., V. Jarlier, J. Acar, et al. 2020. Trends in Antibiotic Consumption and Resistance in France Over 20 Years: large and Continuous Efforts but Contrastning Results. Open Forum Infect. Dis. 7:ofaa452.
25. Frattari, A., V. Savini, E. Polilli, et al. 2012. Efficacy of Ceftazidime-Avibactam Salvage Therapy in Patients With Infections Caused by Carbapenemase-producing *Klebsiella pneumoniae*. Infect. Drug Resist. 12:3783–3795.
26. Moni, M., A.S. Sudhir, T.S. Dipu, et al. 2020. Clinical efficacy and pharmacokinetics of colistimethate sodium and colistin in critically ill patients in an Indian hospital with high endemic rates of multidrug-resistant Gram-negative bacterial infections: a prospective observational study. Int. J. Infect. Dis. 100:497–506.
27. De Pascale, G., L. Lisi, G.M.P. Ciotti, et al. 2020. Pharmacokinetics of high-dose tigecycline in critically ill patients with severe infections. Ann. Intensive Care. 10:94.
28. Pournaras, S., V. Koumaki, N. Spathakis, et al. 2016. Current perspectives on tigecycline resistance in Enterobacteriaceae: susceptibility testing issues and mechanisms of resistance. Int. J. Antimicrob. Agents. 48:11–18.
29. Di Tella, D., M. Tamburro, G. Guerriozio, et al. 2019. Molecular Epidemiological Insights into Colistin-Resistant and Carbapenemases-Producing Clinical *Klebsiella pneumoniae* Isolates. Infect. Drug Resist. 12:3783–3795.
30. Tumbarello, M., E.M. Trecarichi, A. Corona, et al. 2019. Efficacy of Ceftazidime-Avibactam Salvage Therapy in Patients With Infections Caused by *Klebsiella pneumoniae* Carbapenemase-producing *K. pneumoniae*. Clin. Infect. Dis. 68:355–364.
31. Trecarichi, E.M., A. Quirino, V. Scaglione, et al. 2019. Successful treatment with cefiderocol for compassionate use in a critically ill patient with XDR *Acinetobacter baumannii* and KPC-producing *Klebsiella pneumoniae*: a case report. J. Antimicrob. Chemother. 74:3399–3401.
32. Paul, M., and L. Leibovici. 2013. Editorial commentary: combination therapy for *Pseudomonas aeruginosa* bacteremia: where do we stand? Clin. Infect. Dis. 57:217–220.
33. Maraolo, A.E., M. Mazzitelli, E.M. Trecarichi, et al. 2020. Ceftolozane/tazobactam for difficult-to-treat *Pseudomonas aeruginosa* infections: a systematic review of its efficacy and safety for off-label indications. Int. J. Antimicrob. Agents. 55:105891.
34. Kadri, S.S., J. Adjemian, Y.L. Lai, et al. 2018. Difficult-to-treat resistance in gram-negative bacteremia at 173 US hospitals: retrospective cohort analysis of prevalence, predictors, and outcome of resistance at all first-line agents. Clin. Infect. Dis. 67:1803–1814.
35. Burnham, J.P, M.A. Lane, and M.H. Kollef. 2015. Impact of sepsis classification and multidrug-resistance status on outcome among patients treated with appropriate therapy. Crit. Care Med. 43:1580–1586.
36. Dimopoulos, G., D. Koulenti, A. Tabah, et al. 2015. Bloodstream infections in ICU with increased resistance: epidemiology and outcomes. Minerva Anestesiol. 81:405–418.
37. Huh, K., D.R. Chung, Y.E. Ha, et al. 2020. Impact of difficult-to-treat resistance in gram-negative bacteremia on mortality: retrospective analysis of nationwide surveillance Data. Clin. Infect. Dis. 71:e487–e496.
38. Kadri, S.S., Y.L.E. Lai, E.E. Ricotta, et al. 2019. External validation of difficult-to-treat resistance prevalence and mortality risk in gram-negative bloodstream infection using electronic health record data from 140 US hospitals. Open Forum Infect. Dis. 6:ofz110.
39. Giannella, M., L. Bussini, R. Pascale, et al. 2019. Prognostic utility of the new definition of difficult-to-treat resistance among patients with gram-negative bloodstream infections. Open Forum Infect. Dis. 6:ofz505.
40. van Belkum, A., T.T. Bachmann, G. Ludke, et al. 2019. Developmental roadmap for antimicrobial susceptibility testing systems. Nat. Rev. Microbiol. 17:51–62.
41. Anderson, D.J., B. Miller, R. Marfatia, et al. 2012. Ability of an antibiogram to predict *Pseudomonas aeruginosa* susceptibility to targeted antimicrobials based on hospital day of isolation. Infect. Control Hosp. Epidemiol. 33:589–593.
42. Rabs, N., S.M. Wiekzorkiewicz, M. Costello, et al. 2014. Development of a urinary-specific antibiogram for gram-negative isolates: impact of patient risk factors on susceptibility. Am. J. Infect. Control. 42:393–400.
43. Hebert, C., J. Ridgway, B. Vekhter, et al. 2012. Demonstration of the weighted-incidence syndromic combination antibiogram: an empiric prescribing decision aid. Infect. Control. Hosp. Epidemiol. 33:381–388.
44. Hsu, A.J., K.C. Carroll, A.M. Milstone, et al. 2015. The use of a combination antibiogram to assist with the selection of appropriate antimicrobial therapy for carbapenemase-producing enterobacteriaceae infections. Infect. Control. Hosp. Epidemiol. 36:1458–1460.
45. Livermore, D.M., T.G. Winstanley, and K.P. Shannon. 2001. Interpretative reading: recognizing the unusual and inferring resistance mechanisms from resistance phenotypes. J. Antimicrob. Chemother. 48 Suppl 1:87–102.
46. Mancini, S., M. Marchesi, F. Imkamp, et al. 2019. Population-based inference of aminoglycoside resistance mechanisms in *Escherichia coli*. EBioMedicine. 46:184–192.
47. Pandey, R., S. Kumar Mishra, and A. Shrestha, 2021. Characterisation of ESKAPE Pathogens with Special Reference to Multidrug Resistance and Biofilm Production in a Nepalese Hospital. Infect. Drug Resist. 14:2201–2212.

Address correspondence to:
Vincenzo Scaglione, MD
Unit of Infectious and Tropical Diseases
Department of Medical and Surgical Sciences
“Magna Graecia” University of Catanzaro
Catanzaro I-88100
Italy

E-mail: vincenzo.scaglione91@gmail.com