Optimized structural parameters and heat extraction capacity of a mixing device for constant pressure CO₂ mineralization using alkaline waste

Wei Lu¹² · Yang Yuan¹ · Xiangming Hu¹ · Guansheng Qi¹ · Lulu Sun¹ · Maoyuan Zhang¹ · MingJun Wang¹ · Min He¹

Received: 13 March 2022 / Accepted: 20 June 2022 / Published online: 29 June 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Alkaline waste such as calcium carbide slack is an ideal material for mineralizing CO₂ and promoting atmospheric carbon reduction. In this study, the structural parameters of a mixing device and a thermal extraction method for the high-efficiency mineralization of CO₂ using alkaline waste were optimized. First, the influence of structural parameters was studied by means of numerical simulation, and it was found that when the length–diameter ratio, blade angle, spacing, and diameter of the mixing device were 3, 15, 6 cm, and 14 cm respectively, 2.14 t CO₂ can be mineralized within 1 h. The amount of heat extracted from mineralization of 1 t CO₂ reached 189.60 MJ. In addition, the winding configuration of the heat pipe, which is beneficial for extracting more reaction heat, was optimal, and a model of the relationship between the heat pipe outlet water temperature and flow velocity at the outlet of the heat pipe was established. This study provides theoretical guidance for the field application of alkaline waste for high-efficiency mineralization of CO₂, which can accelerate the realization of peak CO₂ emissions and carbon neutrality.

Keywords Alkaline waste · CO₂ mineralization · Mixing device · Structural parameters · Reaction heat extraction

Introduction
Mixing technology is widely used in the desalination of seawater, chemical and metallurgical processing, and other industrial processes (Mauro et al. 2010; Li and Xu 2017). With the increasing industrial demand for ethylene production and coal and iron resource mining, a large amount of alkaline waste is produced, such as calcium carbide slack and fly ash (Miao et al. 2022; Wu et al. 2021a). At the same time, many of the alkaline components in these wastes can mineralize and sequester large amounts of CO₂ (Mayoral et al. 2013; Yang et al. 2019; Wang et al. 2021). A mixing device that can ensure that the alkaline waste mineralizes and absorbs a large amount of CO₂ and that can efficiently extract a large amount of reaction heat can accelerate the realization of peak CO₂ emissions and carbon neutrality (Nazari et al. 2018a; Pan et al. 2020).

Improving the efficiency of the mixing device is imperative for the efficient mineralization of CO₂ using alkaline waste, where the structural parameters of the mixing device are known to affect its efficiency (Geng et al. 2021). Methods of achieving efficient mass and heat transfer in mixing devices have been widely studied in scholastic settings. For example, Moradkhani et al. (2017) studied the influence of five impeller structures and three different aeration flow rates on the mass transfer coefficient based on the “k-ε” Reynolds-averaged Navier-Stokes (RANS) model. They found that a stirring speed of 300–800 rpm provided the most effective rate of oxygen mass transfer in a two-phase distribution bioreactor. Tatterson and Morrison (1987) studied the length–diameter ratio of the agitator in a mixing device and found that when the length–diameter ratio was greater than 4, the hydrodynamics of the fluid near the blade was close to solid rotation. Ranade and Joshi (1989) studied the influence of the blade inclination on the flow pattern in a mixing device and determined that the blade inclination has a
significant effect on the flow characteristics. Ameer (2016) found that the stirring power increases with an increase in the blade inclination angle. Wu et al. (2021b) studied the heat transfer performance of a rotating fluidized bed using the Euler-Lagrangian hybrid method. It was found that the heat transfer coefficient of the bed wall increased by 20% when the blade inclination angle was changed from 45 to 12°.

Kumaresan and Joshi (2016) obtained a higher average shear rate, average normal stress, and turbulent kinetic energy of a downflow impeller by studying the influence of the blade inclination angle on the power. Zuo et al. (2020) studied the effect of different blade numbers on the mixing efficiency of an agitator using the discrete element method and found that increasing the blade number can promote the mixing efficiency. Bao et al. (2020) used the discrete element method to study the effect of the impeller structure on particle flow and mixing. The results showed that the mixing efficiency and axial diffusion coefficient increased with an increase in the blade diameter.

We found by reviewing the literature that heat pipes are widely used in the field of heat exchange. Many scholars have studied the effect of heat pipe structure parameters on the efficiency of heat exchange. For example, Jouhara et al. (2017) manufactured and tested a flat heat pipe heat exchanger with a heat recovery rate of about 5 kW and verified through experiments that the heat recovery rate was basically consistent with the theoretical value. Deng et al. (2020) used heat pipe to recycle underground heat resources, and the heat extracted is used to heat water for regional heating. Nazari et al. (2018b) added surfactant into pure water to improve the thermal performance of pulsating heat pipe. Ramezanizadeh et al. (2019) carried out a lot of research on the heat transfer performance of pulsating heat pipe by adding different materials to water. The results show that pulsating heat pipe has superior heat transfer performance when applied to cooling equipment and heat exchanger, and the maximum heat transfer performance can reach 100%.

Different from previous studies (Yuan et al. 2022), this paper mainly studies the effect of mixing devices with different structural parameters on thermal extraction efficiency. In addition, heat extraction by the heat pipe using different winding configurations is studied. The heat extraction ability of the heat pipe at different fluid velocities is analyzed. Despite numerous studies on the structural parameters of mixing devices, there are few studies of the influence of the length–diameter ratio, blade inclination angle, blade diameter, and blade spacing on the reaction heat transfer and heat transfer efficiency. In order to realize high efficiency and maximize the mineralization and storage of CO2 using waste, it is urgent to develop a device for the rapid mineralization of CO2. Therefore, in this study, the influence of various factors, including the length–diameter ratio of the mixing device, inclination angle, spacing, and diameter of the blades, on the degree of CO2 mineralization using carbide slag (where the mineralization degree refers to the ratio of the mass of carbide slag participating in the CO2 mineralization reaction to the total mass of carbide slag filled into the mixing device) and reaction heat extraction during the mineralization process is investigated through experiments and numerical simulations. The relationship between the heat pipe outlet water temperature and fluid velocity at the outlet of the heat pipe is analyzed by numerical simulation.

This research is of great significance for the early realization of peak CO2 emissions and carbon neutrality and enhances the extraction and utilization of reaction heat during the mineralization process. In the “Mechanism of CO2 mineralization and mathematical model” section, the mechanism of CO2 mineralization with carbide slag is analyzed, and a mathematical model of CO2 mineralization with carbide slag slurry under constant pressure is established and verified. In the “Numerical simulation of CO2 mineralization in mixing devices” section, a mixing device model with different structural parameters is established and the effects of different structural parameters on the degree of mineralization and reaction heat extraction under constant-pressure and continuous-feed conditions are studied by numerical simulation. A model of the relationship between the heat pipe outlet water temperature and flow velocity at the outlet of the heat pipe is established.

Mechanism of CO2 mineralization and mathematical model

The total reaction during CO2 absorption by the carbide slag slurry can be expressed as Eq. (1) (Meng et al. 2022; Liu et al. 2021):

\[Ca(OH)_2(s) + CO_2(g) = Ca(CO)_3(s) + H_2O(l) \] (1)

Figure 1 shows a schematic of the instantaneous mass transfer near the gas-slurry interface of the carbide slag slurry.

When the pH is greater than 11, reactions (1) are expected to occur at a high rate (Gupta and Fan, 2002). Therefore, the process of CO2 absorption by calcium carbide slag slurry can be replaced by reaction (1) (Rigopoulos and Jones, 2003).

The validity of the mathematical model used in this paper has been verified in the previously published articles (Yuan et al. 2022). In this mathematical model, turbulence, component transport and other models are used to realize the chemical reaction and the source phase is established to ensure that the CO2 inside the mixing device is in a constant pressure state. This mathematical model is independent of
the structural parameters of the mixing device (Heydarifard et al. 2020; Liu et al. 2020; Malakhov et al. 2020, and it is feasible to apply the mathematical model to the study of the structural parameters of the mixing device on the mineralization degree and the extraction temperature of the heat pipe (Wu et al. 2018; Xuan et al. 2016). The maximum error between the numerical simulation results and the experimental results is less than 10%, which shows that the mathematical model is effective in simulating the CO2 mineralization process of carbide slag. Therefore, next, the CO2 mineralization process of mixing devices with different structural parameters is studied.

Numerical simulation of CO2 mineralization process in a mixing device

Numerical simulation of CO2 mineralization using calcium carbide slag and optimum process parameters

The mass transfer and heat pipe outlet water temperature for CO2 mineralization with calcium carbide slag were studied by controlling the length-to-diameter ratio (A), blade inclination angle (B), blade spacing (C), and blade diameter (D) in the device. The numerical simulation was carried out by designing orthogonal experiments, and the gradient was divided, as shown in Table 1. The 3D physical model of the mixing device centered on (0,0,0) was established using Solidworks software (Fig. 2). The model includes a slurry inlet and outlet, a CO2 source phase, and a heat pipe (screw thread spacing of 10 cm); the function of the middle heat pipe in the mixing device is to extract the reaction heat released by the mineralization reaction, so as to reduce the heat loss and the mineralization cost. The data from domestic and foreign studies on the degree of mineralization promoted by different factors were summarized, from which the rotational speed, pressure, solid–liquid ratio, and slurry

Table 1 Gradients in the orthogonal simulation

Group	Factor			
A	B	C	D	
1	1.5	15°	3 cm	11 cm
2	2	25°	4 cm	12 cm
3	2.5	35°	5 cm	13 cm
4	3	45°	6 cm	14 cm

Note: The inlet speed of the heat pipe (water temperature 300 K) was 2 m/s.
entry speed were set to 2000 rpm, 5 Mpa, 0.25, and 0.8 m/s, respectively.

The length–diameter ratio, blade angle, spacing, and diameter of the mixing device are 1.5–3, 15–45°, 3–6 cm, and 11–14 cm, respectively, and were equally divided into four gradients for orthogonal numerical simulation. The gradient was divided as shown in Table 1.

The degree of mineralization and the heat pipe outlet water temperature were calculated when the mass of the CaCO₃ outlet was stable. Sixteen groups of mineralization degree data and heat pipe outlet water temperature were obtained by orthogonal simulation, as shown in Table 2.

The range of R_j reflects the influence of this factor on the degree of mineralization or temperature rise. The greater the R_j value, the greater the influence of this factor on the results. As can be seen from Table 2, for the degree of mineralization, R_j follows the order $A > D > B > C$. For the heat pipe outlet water temperature, R_j follows the order $A > D > C > B$. Therefore, factor A has the greatest influence on both the degree of mineralization and the heat pipe outlet water temperature.

Combined with the data in Tables 3 and 4, the analysis of variance shows that when the mineralization degree is an objective function (Wu et al. 2020), the F_{ratio} for factors A, B, and D (3.54, 0.08, and 0.37, respectively) is greater.

Table 2: Mineralization degree and water temperature after orthogonal simulation

Group	Factor	Result A (%)	Result T (K)			
1	1.5	15	3	11	41.79	307.66
2	2	15	4	12	54.59	304.65
3	2.5	15	5	13	68.76	315.42
4	3	15	6	14	78.19	319.21
5	2	25	3	13	61.32	311.62
6	1.5	25	4	14	44.89	308.02
7	3	25	5	11	64.40	316.57
8	2.5	25	6	12	61.12	315.82
9	2.5	35	3	14	66.89	316.23
10	3	35	4	13	74.37	317.49
11	1.5	35	5	12	42.01	307.66
12	2	35	6	11	48.32	309.31
13	3	45	3	12	67.19	315.91
14	2.5	45	4	11	60.24	313.53
15	2	45	5	14	57.39	311.63
16	1.5	45	6	0.8	41.04	308.35

Note: A is the mineralization degree, and T is the water temperature. K_{ij} represents the average mineralization degree and outlet temperature rise corresponding to level i in column j. R_j stands for $k_{max} - k_{min}$ in column j.

Table 3: Numerical simulation—analysis of variance for mineralization degree

Sum of squared deviation	Degree of freedom	Fratio F_{ratio}	$F_{critical (0.05)}$	Significant
1831.33	3.00	3.54	3.49	Significant
40.31	3.00	0.08	3.49	Significant
9.41	3.00	0.25	3.49	Significant
190.16	3.00	0.37	3.49	Significant

Note: F_{ratio} represents F value; $F_{critical (0.05)}$ represents significance level 0.05.
than that when the heat pipe outlet water temperature is the objective function (0.02). Therefore, C₄ was selected as the objective function for the heat pipe outlet water temperature. The optimal combination is A₄B₁C₄D₄, that is, the length-to-diameter ratio of the mixing device is 3, and the angle, spacing, and diameter of the blade are 15°, 6 cm, and 14 cm, respectively, which is the fourth group of sixteen orthogonal simulations.

Numerical simulation of CO₂ mineralization and quantification of heat extraction for mixing device

The length-to-diameter ratio of the mixing device has the greatest influence on the mineralization capacity and the heat pipe outlet water temperature. To a certain extent, increasing the length of the mixing device can increase the contact time between the calcium carbide slag and CO₂, leading to greater reaction, a longer heat exchange time between the heat pipe, and the high-temperature slurry in the mixing device, and improve heat exchange efficiency. Group 4 of the numerical simulation data was imported into TECPLOT post-processing software, and the nephograms of the CaCO₃ concentration and temperature distribution (after the mass of CaCO₃ at the outlet stabilized) were obtained (Fig. 3).

The nephograms of the CaCO₃ concentration and temperature distribution show that the CaCO₃ concentration and temperature were high near the entrance and low near the exit. This is because a large amount of heat is released after the reaction of Ca(OH)₂ and CO₂ to form CaCO₃, which increases the temperature of the slurry containing CaCO₃, resulting in a similar CaCO₃ concentration distribution and temperature distribution. Table 2 shows that after the mass of CaCO₃ at the outlet stabilized, the degree of mineralization and the temperature of the outlet reached 78% and 319.21 K, respectively. The calculation indicates that the mixing device with the A₄B₁C₄D₄ structure parameters can mineralize about 2.14 t of CO₂ and consume 4.53 t carbide slag within 1 h, which is equivalent to the CO₂ released by complete combustion of 0.957 t coal. In addition, 2.35 m³ of water can be heated from 300 to 319.21 K for the mineralization of 1 t CO₂, where the amount of heat extracted reached 189.60 MJ.

Effect of heat pipe configuration on heat extraction capacity

As shown in Table 2, the simulated mineralization capacity and the heat pipe outlet water temperature were the highest in the fourth group. Therefore, the structural parameters from the fourth group simulation were used; that is, the length–diameter ratio, blade angle, spacing, and diameter of the mixing device were 3, 15, 6, and 14 cm, respectively. The influence of the winding density of the heat pipe on the heat extraction capacity was investigated. The distance between the outlet and the inlet of the heat pipe in the mixing device was 120 cm, which was divided into a, b, and c regions on average, and the pitch of the three areas was changed from 10 to 5 cm to encrypt the heat pipe in the corresponding area, after which the calculation was carried out. The heat pipe outlet water temperatures with different winding densities are shown in Fig. 4.

Figure 4 shows that the heat pipe outlet water temperature was highest when the winding density corresponded to a. Combined with Fig. 4b, it can be seen that the reaction heat produced by the reaction of Ca(OH)₂ and CO₂ was mainly concentrated in the area of the mixing device. When the winding number of the heat pipe was increased, the heat exchange area increased, and the outlet water temperature decreased. The mass of CaCO₃ at the outlet stabilized is shown in Table 2.
pipe in this area is increased, the heat exchange time between the water inside the heat pipe and the high-temperature slurry outside the heat pipe can be increased, allowing the water inside the heat pipe to absorb more heat, thus increasing the heat pipe outlet water temperature and improving the heat exchange efficiency. Therefore, the winding configuration of the heat pipe (Fig. 4a) was employed in studying the effect of the flow velocity of the internal liquid on the heat extraction capacity.

Effect of flow rate on thermal extraction ability

In this section, the variation of the heat pipe outlet water temperature at flow velocities of 0.2–4 m/s in the heat pipe (where the flow velocity refers to the flow velocity in the heat pipe) was studied. After locally encrypting the density of the heat pipe, there were 16 turns of the heat tube in the mixing device. To monitor the real-time change in the heat pipe outlet water temperature, four points a (5.24, −60, 30.69), b (0, 50, 21), c (0, −22.5, −21), and d (0, −55, 21) were set up at lap 2, lap 8.5, lap 15, and at the outlet of the heat pipe when the water enters the mixing device. The temperature change at each point was determined after the mass of CaCO$_3$ at the outlet stabilized. The curve t represents the temporal evolution of water flow from the inlet of the heat pipe to the outlet, and the data in curve b corresponds to $T_b = 12$ K.

As shown in Fig. 5, the slope of curve t decreased gradually overall. As the flow velocity increased, the time for water to flow from the heat pipe inlet to the outlet decreased. The time required for heat exchange between water in the heat pipe and high-temperature calcium carbide slag slurry decreased with an increase in the flow velocity, leading to a less pronounced decrease in the heat exchange capacity. Therefore, the temperature of points a, b, c, and d decreased slowly with an increase in the flow velocity, and the extent of the decrease gradually became smaller.

The values $A = 6.77$, $t = 2.67$, and $y_0 = 315.91$ were obtained for the exponential decay by using the Expdecl model ($y = A\exp(x/t) + y_0$) in Origin software to analyze the data in curve a. The functional relationship between the heat pipe outlet water temperature and flow velocity at the outlet of the heat pipe is represented by Eq. (2).

$$T = 6.77 \times \exp \left(-\frac{V_H}{2.67}\right) + 315.91$$ \hspace{1cm} (2)

The amount of heat extracted from the water in the heat pipe in 1 h is related to the increase in the heat pipe outlet water temperature. Therefore, the function Q describing the relationship between the amount of heat extracted and the flow velocity can be obtained from Eq. (3).

$$Q = \left[T(v_H) - 300\right] \times \pi r^2 \times v_H \times c$$ \hspace{1cm} (3)

Here, r is the radius of the heat pipe, t is time, and c is the specific heat capacity of water (4.2×10^3 J/(kg·K)).

From Fig. 6, when the flow velocity is 1 m/s, the heat pipe outlet water temperature is 320.56 K, the heat extraction is
Conclusions

The effects of the length–diameter ratio, blade inclination angle, spacing, and diameter on the CO₂ mineralization degree and extraction of the reaction heat using alkaline waste were studied in constant-pressure and continuous-feed systems through experiments and numerical simulations.

(1) Orthogonal numerical simulation showed that when mineralizing CO₂ in the constant-pressure and continuous-feed systems, the influence of the length–diameter ratio, blade inclination angle, spacing, and diameter on the mineralization degree follows the order: length–diameter ratio of mixing device > blade diameter > blade inclination angle > blade spacing. The influence on the heat pipe outlet water temperature follows the order: length–diameter ratio > blade diameter > blade spacing > blade inclination angle.

(2) When the length–diameter ratio, blade inclination angle, spacing, and diameter of the mixing device are 3, 15°, 6 cm, and 14 cm, respectively, the amount of heat extracted from CO₂ mineralization using alkaline waste calcium carbide slag and a heat pipe is optimal; that is, 2.14 t CO₂ can be mineralized at most in 1 h, and 4.53 t carbide slag is consumed at the same time.

The amount of heat extracted from mineralization of 1 t CO₂ reached 189.60 MJ. The study shows that increasing the length-to-diameter ratio of the blade in the mixing device can further improve the degree of mineralization and the thermal extraction ability.

(3) The relationship between the winding mode, flow velocity, and water temperature at the heat pipe outlet was evaluated through numerical simulations, showing that when the left area of the heat pipe was encrypted, more reaction heat could be extracted for utilization. On this basis, a model of the relationship between the water temperature and flow velocity was established. When the flow velocity was 1–2 m/s, the heat extraction reached 97.66–181.50 MJ, which provides a theoretical basis for the application of the reaction heat extraction in the field.

Nomenclature t: time, s; α_j: volume fraction of jth phase; j: jth phase; ρ: density, kg/m³; τ: velocity vector, m/s; m_j: mass transfer rate from phase j to phase l; G: gravitational constant, (m·s⁻²); σ: stress tensor, N/m²; M_j: the interphase momentum exchange between phase j and other Phase; h: total energy per unit mass, (Nm/kg); p: pressure, MPa; ρ: interphase heat exchange, (J/(s·m³)); S: source term in the species balance equation, (kg/s·m³); μ: viscosity, kg/(m·s); I: ionic concentration, (kmol·m⁻³); f: mass fraction; i: substance i in the phase j; D: mass diffusion coefficient of matter; D: net production rate of chemical reaction, (kg/(s·m³)); R: the rate constant; A: Pre-exponential factor, (unit time⁻¹); T: temperature, K; β: temperature index; c: natural logarithm; E_a: activation energy, (j/(kg·mol)); R: gas constant, J/(mol·K); v_{in}: inlet velocity of heat pipe water, m/s; r: heat pipe radius, m; c: specific heat capacity, 4.2 × 10³ J/(kg·K)

Acknowledgements We would like to acknowledge the support of the State Key Laboratory of Strata intelligent Control and Green Mining co-founded by the Shandong Province and the Ministry of Science and Technology.

Author’s specific contributions

Author’s name	Term	Definition
Wei Lu	1. Investigation	1. Conducting a research and investigation process, specifically performing the experiments, or data/evidence collection
	2. Writing—original draft	2. Verification, whether as a part of the activity or separate, of the overall replication/reproducibility of results/experiments and other research outputs
	3. Writing—review&editing	3. Writing—review& editing
Yang Yuan	1. Investigation	1. Conducting a research and investigation process, specifically performing the experiments, or data/evidence collection
	2. Visualization	2. Preparation, creation and/or presentation of the published work, specifically writing the initial draft
	3. Writing—review&editing	3. Writing—review& editing
Author’s name	Term	Definition
---	---	---
Xiangming Hu	1. Investigation	1. Provision of study materials, reagents, materials, laboratory samples, animals, instrumentation, computing resources, or other analysis tools
Guansheng Qi	1. Resources	1. Acquisition of the financial support for the project leading to this publication
2. Funding acquisition	2. Provision of study materials, reagents, materials, laboratory samples, animals, instrumentation, computing resources, or other analysis tools	
3. Project administration	3. Management and coordination responsibility for the research activity planning and execution	
Lulu Sun	1. Investigation	1. Conducting a research and investigation process, specifically performing the experiments, or data/evidence collection
Maoyuan Zhang	1. Investigation	1. Conducting a research and investigation process, specifically performing the experiments, or data/evidence collection
2. Resources	2. Provision of study materials, reagents, materials, laboratory samples, animals, instrumentation, computing resources, or other analysis tools	
MingJun Wang	1. Investigation	1. Conducting a research and investigation process, specifically performing the experiments, or data/evidence collection
Min He	1. Investigation	1. Conducting a research and investigation process
2. Resources	2. Provision of study materials, reagents, materials, laboratory samples, animals, instrumentation, computing resources, or other analysis tools	

Availability of data and materials We guarantee the authenticity and reliability of the data.

Author contribution All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Wei Lu, Xiangming Hu, Guansheng Qi, Lulu Sun, Maoyuan Zhang, MingJun Wang, and Min He. The first draft of the manuscript was written by Yang Yuan, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. The following are the author’s specific contributions.

Funding This work was supported by the National Natural Science Foundation of China (51804185, 51974178) and the Natural Science Foundation of Shandong Province (ZR2019BEE041).

Declarations

Ethical approval We guarantee that our work is original and has not been submitted to other journals.

Consent to participate Not applicable.

Consent to for publication We guarantee that all authors have known and agreed to publish this article in the Journal of environmental science and pollution research.

Competing interests The authors declare no competing interests.

References

Amur H (2016) Mixing of complex fluids with flat and pitched bladed impellers: effect of blade attack angle and shear-thinning behaviour. Food Bioprod Process 99:71–77
Bao YY, Li TC, Wang DF, Cai ZQ, Gao ZM (2020) Discrete element method study of effects of the impeller configuration and operating conditions on particle mixing in a cylindrical mixer. Particuology 49:146–158
Deng JC, Zhou FB, Shi BB, Torerod J, Qi HN, Liu P, Ge SK, Wang ZY, Chen C (2020) Waste heat recovery, utilization and evaluation of coalfield fire applying heat pipe combined thermoelectric generator in Xinjiang, China. Energy, 207:118303
Geng SJ, Mao ZS, Huang QS, Chao Y (2021) Process intensification in pneumatically agitated slurry reactors. Engineering 7:304–325
Gupta H, Fan LS (2002) Carbonation-calcination cycle using high reactivity calcium oxide for carbon dioxide separation from flue gas. Ind Eng Chem Res 41:4035–4042
Heydarifard M, Ghaemi A, Shrivani M (2020) Numerical simulation of CO2 chemical absorption in a gas-liquid bubble column using the space-time CESE method. J Environ Chem Eng 8:104111
Kumaresan T, Joshi J (2016) Effect of impeller design on the flow pattern and mixing in stirred tanks. Chem Eng J 115:173–193
Li LC, Xu B (2017) CFD simulation of local and global mixing time in an agitated tank. Chin J Mech Eng-En 30:118–126
Liu MS, Hohenshil A, Gadiokta G (2021) Integrated CO2 capture and removal via carbon mineralization with inherent regeneration of aqueous solvents. Energy Fuel 35:9
Liu J, Luo FH, Lin XY, Ye T (2020) CFD Prediction with Eulerian/Eulerian approach of SO2 absorption from flue gases in bubble-dispersion tower. Arab J Scieng 45:7621–7634
Jouhara H, Almamoud S, Chaoua A, Delpech B, Bianchi G, Tassou S, Llera R, Lago F, Arribas J (2017) Experimental and theoretical investigation of a flat heat pipe heat exchanger for waste heat recovery in the steel industry. Energy, 141:1928–1939
Malakhov AA, Toit MH, Preez SP, Avdeenkov AV, Bessarabov DG (2020) Temperature profile mapping over a catalytic unit of a hydrogen passive autocatalytic recombiner: an experimental and computational fluid dynamics study. Energy Fuel 34:11637–11649
Mauro C, Massimo B, Marianna M, Guido B, Paolo C, Andrea CS (2010) Formulation design for optimal high-shear wet granulation using on-line torque measurements. Int J Pharm 387:48–55
Mayoral MC, Andres JM, Gimeno MP (2013) Optimization of mineral carbonation process for CO2 sequestration by lime-rich coal ashes. Fuel. 106:448–454
Meng W, Sui FG, Hao XF, Zhang SP, Jiang Y, Wu SB, Zhang TJ, Feng YL (2022) Thermodynamic characteristics and mineral dissolution model of the H2O-CO2-CaCO3-Albite-SiO2 system in sedimentary basins. Fuel. 308:121992
Miao ED, Xi Z, Xiong Z, Zhao YC, Zhang JY (2022) Kinetic modeling of direct aqueous mineral carbonation using carbide slag in a stirred tank reactor. Fuel. 315:122837

Moradkhani H, Izadkhah M, Navideh A (2017) Experimental and CFD-PBM study of oxygen mass transfer coefficient in different impeller configurations and operational conditions of a two-phase partitioning bioreactor. Appl Biochem Biotechnol 181:710–724

Nazari MA, Ahmadi MH, Ghasempour R, Shafii MB, Mahian O, Kalogirou S, Wongwises S (2018a) A review on pulsating heat pipes: from solar to cryogenic applications. Appl Energy 222:475–484

Nazari MA, Ghasempour R, Shafii MB, Ahmadi MH (2018b) Experimental investigation of Triton X-100 solution on pulsating heat pipe thermal performance. J Thermophys Heat Tr 32:806–812

Niu YS, Wang JX (2012) Study on waste heat recovery and utilization experiment of cooling water from auxiliaries in coal mine electric power plant. Coal Sci Technol 40:125–128

Pan SY, Chen YH, Fan LS, Kim H, Gao X, Ling TC, Chiang PC, Pei SL, Gu GW (2020) CO₂ mineralization and utilization by alkaline solid wastes for potential carbon reduction. Nat Sustain 3:399–405

Ranade VV, Joshi JB (1989) Flow generated by pitched blade turbines I: measurements using laser doppler anemometer. Chem Eng Commun 81:197–224

Ramezanizadeh M, Nazari MA, Ahmadi MH, Chau KW (2019) Experimental and numerical analysis of a nanofluidic thermosyphon heat exchanger. Eng Appl Comp Fluid 13:40–47

Rigopoulos S, Jones A (2003) Modeling of semibatch agglomerative gas-liquid precipitation of CaCO₃ in a bubble column reactor. Ind Eng Chem Res 42:6567–6575

Tatterson GB, Morrison GL (1987) Effect of tank to impeller diameter ratio on flooding transition for disc turbines. AICHE J 33:1751–1753

Wang JY, Zhong M, Wu PF, Wen SK, Huang LP, Ning P (2021) A review of the application of steel slag in CO₂ fixation. Chem Rev 8:189–199

Wu YF, Zhao HX, Zhang CQ, Wang L, Han JT (2018) Optimization analysis of structure parameters of steam ejector based on CFD and orthogonal test. Energy. 151:79–93

Wu Q, Wang S, Zhang K, He Y (2021b) Assessment of heat transfer performance in a swirling fluidized bed with binary mixture. Appl Therm Eng 194:117128

Wu MY, Hu XM, Zhang, Q, Lu W, Zhao YY, He ZL. Study on preparation and properties of environmentally-friendly dust suppressant with semi-interpenetrating network structure, J Clean Prod 2020; 259: 120870.

Wu MY, Liang YT, Zhao YT, Wang W, Hu XM, Tian FC, He ZL, Li YS, Liu TY (2021a) Preparation of new gel foam and evaluation of its fire extinguishing performance. Coll Surf A Physicochem Eng Asp 629:127443

Xuan WW, Guan QL, Zhang JS (2016) Kinetic model and CFD simulation for an entrained flow coal gasifier and influence of structural parameters. Int J Hydrogen Energ 41:20023–20035

Yang J, Ma LP, Liu HP, Wei Y, Keomounlath B, Dai QX. Thermo-dynamics and kinetics analysis of Ca-looping for CO₂ capture: application of carbide slag. Fuel. 2019; 242: 1–11.

Yuan Y, Lu W, Cheng WM, Qi GS, Hu XM, Su H, Wang MJ, Zhang MY, Liang YT (2022) Method for rapid mineralization of CO₂ with carbide slag in the constant-pressure and continuous-feed way and its reaction heat. Powder Technol 398:117148

Zuo ZJ, Gong SG, Xie G (2020) Numerical investigation of granular mixing in an intensive mixer: effect of process and structural parameters on mixing performance and power consumption. Chin J Chem Eng 32:1004–1954

We guarantee that our work is original and has not been submitted to other journals.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.