Intern. Journ. Pure and Appl. Math., 55, N4, (2009). 13-16.
Boundary integral equation for electromagnetic wave scattering by a homogeneous body of arbitrary shape

A G Ramm
Department of Mathematics
Kansas State University, Manhattan, KS 66506-2602, USA
ramm@math.ksu.edu

Abstract
Boundary integral equation is derived for the problem of scattering of electromagnetic waves by 3D homogeneous body of arbitrary shape.

MSC: 45B05, 78A40, 78A45
PACS: 03.50.De
Key words: electromagnetic waves; wave scattering.

1 Introduction

Let \(D \subset \mathbb{R}^3 \) be a bounded domain with a smooth connected boundary \(S \). The exterior domain \(D' = \mathbb{R}^3 \setminus D \) is filled with a homogeneous material with parameters \((\epsilon_0, \sigma = 0, \mu_0)\), \(D \) is filled with a material with parameters \((\epsilon, \sigma, \mu_0)\), \(\epsilon, \epsilon_0, \sigma, \mu_0 \) are constants. Let \(\epsilon' = \begin{cases} \epsilon + \frac{i\omega}{\mu}, & \text{in } D, \\ \epsilon_0, & \text{in } D'. \end{cases} \) Here \(\omega \) is the frequency, \(\mu_0 \) is magnetic parameter, \(\epsilon, \epsilon_0 \) are dielectric parameters, \(\sigma \geq 0 \) is conductivity.

The governing equations in \(\mathbb{R}^3 \) are

\[
\nabla \times E = i\omega \mu_0 H, \quad \nabla \times H = -i\omega \epsilon' E.
\]

The boundary conditions on \(S \) are continuity of the tangential components of \(E \) and normal components of \(\epsilon' E \) across \(S \):

\[
[N, E^+] = [N, E^-],
\]
and
\[N \cdot (\epsilon' E^+) = N \cdot (\epsilon_0 E^-). \] \hfill (3)

Here \(N \) is the unit normal to \(S \), pointing into \(D' \), \([N, E] (E \cdot N)\) is the cross (dot) product of vectors, and \(E^+ (E^-) \) is the limiting value of \(E \) as \(x \to s \in S, x \in D(D') \).

We assume that the incident field \((E_0, H_0)\) satisfies equations (1) in \(\mathbb{R}^3 \) with \(\epsilon' \) replaced by \(\epsilon_0 \). For example one may take the incident field to be a plane wave: \(E_0 = e_1 e^{ikx_3} \), where \(e_i \cdot e_j = \delta_{ij} \), \(\{e_j\}_{j=1}^3 \) is the standard Euclidean basis, \(\delta_{ij} = \begin{cases} 1, & \text{if } i = j, \\ 0, & \text{if } i \neq j. \end{cases} \)

If \(E \) is found then
\[H = (i\omega\mu_0)^{-1} \nabla \times E. \] \hfill (4)

From (1) one gets
\[\nabla \times \nabla \times E - K^2 E = 0 \quad \text{in } \mathbb{R}^3, \] \hfill (5)

where
\[K^2 = \begin{cases} K^2 \text{ in } D, \quad K^2 = \omega^2 \epsilon' \mu_0, \\ k^2 \text{ in } D', \quad k^2 = \omega^2 \epsilon_0 \mu_0. \end{cases} \] \hfill (6)

The scattering problem consists of finding the solution of equations (5), (2), (3), such that
\[E = E_0 + V, \] \hfill (7)
\[V_r - ikV = o \left(\frac{1}{r} \right), \quad r := |x| \to \infty. \] \hfill (8)

Assumption (8) means that \(V \) satisfies the radiation condition.

2 Derivation of the boundary integral equations

Let us look for the solution to (5), (2), (3), (7), (8), of the form:
\[E = \begin{cases} \nabla \times \int_S G(x, t)J(t)dt, & x \in D, \\ \nabla \times \int_S g(x, t)j(t)dt + E_0(x), & x \in D', \end{cases} \] \hfill (9)

where
\[g(x, y) = \frac{e^{ik|x-y|}}{4\pi|x-y|}, \quad G(x, y) = \frac{e^{iK|x-y|}}{4\pi|x-y|}. \] \hfill (10)

The currents \(j \) and \(J \) are vector fields tangential to \(S \).

Thus, there are four scalar unknowns: the two unknown vector fields \(j \) and \(J \), tangential to \(S \).
For any \(j \) and \(J \) vector \(E \) solves equation (5) in \(D \) and in \(D' \) and satisfies conditions (7) and (8) because \(g \) satisfies the radiation condition (8). Thus, (10) is the solution to the scattering problem if \(j \) and \(J \) can be chosen so that the boundary conditions (2), (3) are satisfied.

Condition (2) is a vector equation, which is equivalent to three scalar equations, and equation (3) is a scalar equation. Therefore equations (2) and (3) together are equivalent to four scalar equations for four unknown scalar functions, the coordinates of the tangential to \(S \) vector fields \(j \) and \(J \).

Equation (2) can be written as a Fredholm-type integral equation. We have

\[
\int_S [N_x, [\nabla_x G(x, t), J]]|_{x \to s, x \in D} = -\frac{A^+ J + J}{2} + \int_S \nabla_s G(s, t) N_s \cdot J(t) dt,
\]

(11)

where the known formula for the limiting value of the normal derivative of the single-layer potential was used (see, e.g., [2]).

Since \(J(s) \cdot N_s = 0 \) (because \(J(s) \) is a tangential vector field) and \(J(s) \) is assumed Lipschitz, the last integral in (11) converges absolutely. Since we assume the surface sufficiently smooth, e.g., \(S \in C^{1, a} a > 0 \), and the incident field is smooth, the currents \(j \) and \(J \) are as smooth as the data, in particular, they are Lipschitz. The class of surfaces, satisfying the condition \(S \in C^{1, a} \), consists of surfaces whose graph in local coordinates is differentiable and its derivative satisfies the H"older condition with the exponent \(a \in (0, 1] \).

The operator \(A^+ \) in (11) is defined as

\[
A^+ J = \int_S \frac{\partial}{\partial N_s} g(s, t) J(t) dt.
\]

(12)

Thus, equation (2) can be written as:

\[
-\frac{A^+ J + J}{2} + \int_S \nabla_s G(s, t) N_s \cdot J(t) dt = -\frac{A^- j + j}{2} + \int_S \nabla_s g(s, t) N_s \cdot j(t) dt + [N, E_0],
\]

(13)

where

\[
A^- j = \int_S \frac{\partial}{\partial N_s} g(s, t) j(t) dt.
\]

(14)
Equation (13) is of Fredholm type: the integral operators in (13) are compact in $C(S)$ and in $L^2(S)$. Equation (3) yields:

$$N_s \cdot \int_S [\nabla_x G(x, t), J(t)]_{x \to s, x \in D} dt = N_s \int_S [\nabla_x g(x, t), j(t)]_{x \to s, x \in D'} dt + N_s \cdot E_0.$$ \hfill (15)

Equation (15) is singular.

Claim: The integrals in (15) exist as Cauchy principal values.

Let us verify this claim. One has

$$N_s \cdot [\nabla_x G(x, t), J(t)]_{x \to D, x \in D} = N_s \cdot \left[e^{iK \frac{r_{ts}}{r_{st}}} - \frac{1}{r_{st}} \right] r_{ts}^0, J(s) \right]$$

$$+ O \left(\frac{1}{r_{st}} \right), \quad r_{ts}^0 := \frac{r_{ts}}{r_{st}}, \quad r_{st} = |\vec{r}_{ts}|,$$ \hfill (16)

because $|J(s) - J(t)| \leq c|s - t|$.

The singular term in (16) is

$$\frac{1}{4\pi r_{st}^2} N_s \cdot [r_{ts}^0, J(s)] = \frac{|J(s)|}{4\pi r_{st}^2} \sin \theta,$$ \hfill (17)

where $\theta = \theta(s, t)$ is the angle between the x-axis and the vector \vec{r}_{ts}. We choose the x-axis in the plane tangential to S at the point s so that it is directed along the vector $J(s)$.

Since

$$\int_0^\pi \sin \theta d\phi = 0, \quad t = e^{i\phi}, \quad 0 \leq \phi < 2\pi,$$

the **Claim** follows from Theorem 1.1 on p. 221 in [1]. This theorem says that a singular integral $\int_{\mathbb{R}^m} \frac{f(x, \theta)}{|x - y|^m} u(y) dy$ exists as a Cauchy principal value if

$$\int_{S^{m-1}} f(x, \theta) ds = 0, \quad \theta = \frac{y - x}{|y - x|}.$$

Numerical methods for solving Fredholm equations and singular integral equations are well developed ([1]). They are not discussed here.

References

[1] S. Mikhlin, S. Prössdorf, Singular integrals; operators, Springer-Verlag, Berlin, 1986.

[2] C. Müller, Foundations of the mathematical theory of electromagnetic waves, Springer-Verlag, Berlin, 1969.