Brief Communications

Aβ Inhibition of Ionic Conductance in Mouse Basal Forebrain Neurons Is Dependent upon the Cellular Prion Protein PrP^C

Kwai Alier,* Li Ma,* Jing Yang, David Westaway, and Jack H. Jhamandas

1Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta T6G 2S2, Canada, and 2Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta T6G 2M8 Canada

Current therapies for Alzheimer’s disease (AD) address a loss of cholinergic neurons, while accumulation of neurotoxic amyloid β (Aβ) peptide assemblies is thought central to molecular pathogenesis. Overlaps may exist between prionopathies and AD wherein Aβ oligomers bind to the cellular prion protein PrP^C and inhibit synaptic plasticity in the hippocampus (Laureán et al., 2009). Here we applied oligomeric Aβ to neurons with different PrP (Prnp) gene dosage. Whole-cell recordings were obtained from dissociated neurons of the diagonal band of Broca (DBB), a cholinergic basal forebrain nucleus. In wild-type (wt) mice, Aβ42–42 evoked a concentration-dependent reduction of whole-cell outward currents in a voltage range between −30 and +30 mV; reduction occurred through a combined modulation of a suite of potassium conductances including the delayed rectifier (I_K), the transient outward (I_{to}), and the iberiotoxin-sensitive (calcium-activated potassium, I_C) currents. Inhibition was not seen with Aβ42–41 peptide, while Aβ42–42-induced responses were reduced by application of anti-PrP antibody, attenuated in cells from Prnp^0/0 hemizygotes, and absent in Prnp^0/0 homozygotes. Similarly, amyloidogenic amylin peptide depressed DBB whole-cell currents in DBB cells from wt mice, but not Prnp^0/0 homozygotes. While prior studies give broad support for a neuroprotective function for PrP^C, our data define a latent pro-pathogenic role in the presence of amyloid assemblies.

Introduction

Alzheimer’s disease (AD) is the most common neurodegenerative disease and is characterized by loss of cognitive function leading to frank dementia. Amyloid β (Aβ), a secreted peptide cleavage product of amyloid precursor protein (APP), is thought to be important in mediating synaptic dysfunction, neuronal dysfunction, and cell death (Walsh et al., 2002; Palop and Mucke, 2010). Intermediate-sized, soluble assemblies of Aβ are implicated in synaptotoxicity more so than large fibrillar assemblies or plaques (Bitan et al., 2003; Kirkitatze and Kowalska, 2005; Teplov et al., 2006). For prion diseases, the cellular prion protein PrP^C precursor, encoded by the Prnp gene, is a membrane-anchored glycoprotein that is remodeled to a β-sheet-enriched isoform, PrP^Sc (Prusiner, 1991). Recently, soluble forms of Aβ have been reported to bind PrP^C, resulting in suppression of synaptic plasticity in hippocampal slices (Laureán et al., 2009). Further, transgenic (Tg) mice expressing familial AD-associated mutant forms of βAPP (TgAPP mice) are rescued from memory impairment and early death following ablation of PrP^C (Gimbel et al., 2010). While some other studies are in broad accord with these notions (Barry et al., 2011; Freir et al., 2011), others have disputed an obligatory role for PrP^C in Aβ-induced impairment of synaptic structure and function, and in AD-related behavioral endpoints (Balducci et al., 2010; Calella et al., 2010; Kessels et al., 2010; Cissé et al., 2011) yet have confirmed physical interactions between Aβ and PrP (Balducci et al., 2010; Chen et al., 2010; Bate and Williams, 2011). We investigated this provocative area. Our prior studies have defined neuronal excitability-modifying properties of PrP (Alier et al., 2010) focusing on the 105–125 region (mouse PrP numbering) immediately adjacent to a putative 95–105 Aβ binding site. Here we measured the actions of oligomeric Aβ and human amylin—another amyloidogenic peptide that shares some biophysical and neurotoxic properties with Aβ—on forebrain neurons from the nucleus of the diagonal band of Broca (DBB). Using mice of different Prnp genotypes, our data implicate a requirement for PrP^C in Aβ and amylin depression of specific potassium conductances.

Materials and Methods

Mouse strains. All procedures were complied with Canadian Council for Animal Care guidelines. Congenic Prnp^0/+/ mice (Zrch 1 allele, 17 back-
crosses to C57BL/6 stock, Taconic) were intercrossed to yield Prnp^{0/0}, Prnp^{0/+}, and wild-type (wt) genotypes (of either sex), with additional wt mice purchased for some experiments (Taconic Farms, “C57BL/6Tac”). (Janus et al., 2000; Chistihi et al., 2001).

Acute dystrophic cells and whole-cell recordings. These procedures were as described previously (Jhamandas et al., 2001, 2011). Data are presented as mean ± SE. Student’s two-tailed t test (paired when appropriate) was used for determining significance of effect in electrophysiological measurements.

Reagents. Oligomeric form of Aβ_{1–42} peptide (rPeptide), Aβ_{12−1}, and human amylin (American Peptide) were prepared as described previously (Stine et al., 2003, 2011; Jhamandas et al., 2011). Peptides were diluted in external perfusion medium just before application. PrP antibody Sha31 (Medicorp) was diluted to a concentration of 300 ng/ml before use. All drugs and chemicals were applied via bath perfusion (3–5 ml/min), which allowed complete exchange in less than half a minute.

Results

Recordings from DBB neurons

Dissociated neurons from the DBB contain a variety of potassium conductances: transient outward (I_h), delayed rectifier (I_K), and calcium-activated potassium (I_KC). The effect of Aβ on this ionic conductance was investigated in mice of different Prnp genotypes. Average membrane capacitance (C_m) was estimated on an Axopatch-1D amplifier: wt mice had a C_m of 8.75 ± 0.59 pF (n = 8; C57BL/6) or 9.75 ± 0.56 pF (n = 10; C57BL/6Tac), while Prnp^{0/0} mice and Prnp^{0/+} mice had C_m values of 12 ± 0.76 pF (n = 9) and 8 ± 0.60 pF (n = 10), respectively. Under control conditions without drug, the average input conductance measured from the slope of the current–voltage (I–V) relationships between −60 and −110 mV was 1.05 ± 0.22 nS (C57BL/6), 0.93 ± 0.12 nS (C57BL/6Tac), 0.93 ± 0.19 nS (Prnp^{0/+}), and 0.77 ± 0.18 nS (Prnp^{0/0}). Application of 1 μM oligomeric Aβ_{1–42} (Stine et al., 2003, 2011) had no significant effect on conductance in this voltage range compared to that under control conditions (1.34 ± 0.22 nS, p > 0.05, n = 8, C57BL/6; 0.94 ± 0.13 nS, p > 0.05, n = 10, C57 BL/6Tac; 0.91 ± 0.13 nS, p > 0.05, n = 9, Prnp^{0/+}; 1.07 ± 0.28 nS, p > 0.05, n = 10, Prnp^{0/0}).

Effects of oligomeric Aβ_{1–42} on the whole-cell currents

Whole-cell currents (WCC) were investigated in Prnp^{+/+}, Prnp^{0/+}, and Prnp^{0/0} cells under control conditions and in the presence of Aβ_{1–42} (1 μM). Aβ_{1–42} inhibited whole-cell currents in the range −30 to +30 mV. In C57BL/6Tac wt mice, Aβ_{1–42} significantly reduced WCC (control = 5.60 ± 0.26 nA, Aβ_{1–42} = 4.84 ± 0.28 nA at +30 mV, *p < 0.05, n = 8) (Fig. 1A). Aβ_{1–42} inhibited peak whole-cell currents of DBB neurons in a dose-dependent manner (Fig. 1C). Inverse Aβ, Aβ_{12−1}, peptide (1 μM) had no effect on WCC (control = 4.76 ± 0.51 nA, Aβ_{12−1} = 4.51 ± 0.47 nA at +30 mV, p = 0.36, n = 6) (Fig. 1B). In the C57BL/6 wt mice at +30 mV, application of Aβ_{1–42} significantly decreased WCC from 3.72 ± 0.27 nA to 3.08 ± 0.27 nA, a reduction of 15.21 ± 1.29%, *p < 0.05, n = 8) (Fig. 2A). Aβ_{1–42} had no significant effect on the WCC of Prnp^{0/+} (control = 3.94 ± 0.27 nA, Aβ_{1–42} = 3.63 ± 0.26 nA at +30 mV, p = 0.19, n = 9) (Fig. 2B) and Prnp^{0/0} mice (control = 3.65 ± 0.44 nA, Aβ_{1–42} = 3.57 ± 0.42 nA at +30 mV, p = 0.41, n = 10) (Fig. 2C). We also investigated whether the anti-PrP^C antibody (Sha31) is able to inhibit the Aβ_{1–42}-evoked reduction of WCC on the DBB neurons in Prnp^{0/+}/mice. Seventy-five percent (6 of 8 cells) of DBB neurons responded to Aβ_{1–42} in the usual manner. However, in the presence of anti-PrP^C antibody Sha31, Aβ_{1–42} (1 μM)-evoked depression of WCC in wt DBB neurons was markedly reduced, compared to control conditions (Fig. 2D).

Figure 1. Effects of Aβ_{1–42} on DBB WCC in wt mice. A, Aβ_{1–42} (1 μM) significantly depresses WCC (*p < 0.05, n = 8 at +30 mV), inset shows the voltage ramp protocol applied for 10 s. B, Reversed oligomers Aβ_{12−1} (1 μM) peptide had no effect on WCC (p = 0.36 n = 6 at +30 mV). C, Dose–response relationship for Aβ_{1–42} evoked inhibition of peak WCC at +30 mV (n = 5 at each dose).

Outward potassium currents in DBB neurons are a mixture of calcium and non-calcium-activated components (Jhamandas et al., 2001). The non-calcium-activated component consists primarily of the I_K and the I_A currents, while the calcium-dependent component of potassium currents includes voltage-sensitive conductances, I_K (BK channels). The effects of oligomeric Aβ_{1–42} on these conductances were further investigated in wt (i.e., Prnp^{0/+}) mice.

Effects of Aβ_{1–42} on I_A and the I_K potassium currents in wt mice

Both I_A and I_K currents are voltage sensitive, and their activation and inactivation are strongly voltage dependent. I_A requires the holding potential to be relatively hyperpolarized (approximately −110 mV) for removal of its inactivation, whereas it is inactivated at −40 mV. On the other hand, I_K is not inactivated at −40 mV. Hence, the difference in the biophysical properties of I_A and I_K was used to isolate these two currents. Application of a conditioning pulse to −40 mV will activate I_K without any significant
evoked following a conditioning pulse to -120 mV provide an estimate of I_A. The currents were recorded from a neuron with a conditioning pulse to -40 mV for 150 ms, representing mainly I_K, under control conditions, and in the presence of oligomeric $A\beta_{1-42}$ (1 μm). $A\beta_{1-42}$ reduced I_K by $20.08 \pm 1.86\%$ compared to the control (control = 4.82 ± 0.29 nA, $A\beta_{1-42}$ = 3.66 ± 0.18 nA, at $+30$ mV, $p < 0.05$, $n = 5$) (Fig. 3A). Figure 2B shows difference currents recorded from the same neuron representing mainly I_A, under control conditions, and in the presence of $A\beta_{1-42}$. $A\beta_{1-42}$ significantly reduced I_K by $20.4 \pm 4.6\%$ compared to control (control = 1.90 ± 0.10 nA, $A\beta_{1-42}$ = 1.44 ± 0.10 nA, at $+30$ mV, $p < 0.05$, $n = 4$).

Effects of $A\beta_{1-42}$ oligomers on calcium-activated potassium currents in wt mice

Calcium-activated currents include the voltage-sensitive conductances called maxiK(Ca) (I_C or BK) and the voltage-insensitive ones that underlie action potential afterhyperpolarization (I_{AP}. Of the two main Ca$^{2+}$-activated potassium currents, under whole-cell recording conditions from DBB neurons, the amain-sensitive slow I_{AP} (SK) makes little contribution, and the majority of the currents flow through I_C channels (Jhamandas et al., 2001). Indeed, as in rat DBB neurons (Jassar et al., 1999), we observed no amain-sensitive currents in DBB cells from C57BL/6Tac wt mice (data not shown). To determine the degree to which $A\beta_{1-42}$ oligomer (1 μm) effects are mediated via I_C, we examined actions of $A\beta_{1-42}$ under conditions where cells from C57BL/6Tac mice were perfused with iberiotoxin (IBTX), a specific blocker of $K(Ca)$ ($I_{K(Ca)}$) and the voltage-insensitive I_{BK} and $I_{{	ext{BK}}}$ (Jhamandas et al., 2001). Indeed, as in rat DBB neurons (Jassar et al., 1999), we observed no amain-sensitive currents in DBB cells from C57BL/6Tac wt mice (data not shown). To determine the degree to which $A\beta_{1-42}$ oligomer (1 μm) effects are mediated via I_C, we examined actions of $A\beta_{1-42}$ under conditions where cells from C57BL/6Tac mice were perfused with iberiotoxin (IBTX), a specific blocker of I_C channels. Figure 3C shows the current–voltage relationships obtained from six neurons under control conditions, in the presence of IBTX (50 nM) alone, and upon application $A\beta_{1-42}$ in the presence of IBTX. IBTX applied alone reduced outward currents. Application of $A\beta_{1-42}$ in the presence of IBTX resulted in an additional, but smaller, reduction of the currents than evoked by $A\beta_{1-42}$ alone (control = 5.18 ± 0.19 nA, IBTX = 4.55 ± 0.25 nA, IBTX and $A\beta_{1-42}$ = 4.42 ± 0.26 nA at $+30$ mV, $p < 0.05$ compared to control, $n = 6$). Thus, $A\beta$ effects on I_C-type K$^+$ channels contribute to the overall reduction in whole-cell currents that is observed in peptide-treated DBB neurons.

Human amylin peptide reduces whole-cell currents in wt DBB neurons

Effects of human amylin on WCC were examined on DBB neurons from wt and $Prnp^{+/-}$ mice. Application of human amylin (1 μm) in DBB neurons from C57BL/6Tac wt mice resulted in a significant reduction in WCC in the voltage range -30 to $+30$ mV (control = 6.83 ± 0.09 nA, human amylin = 5.77 ± 0.78 nA at $+30$ mV, $p < 0.05$, $n = 7$) (Fig. 4A). Human amylin had no significant effect on the WCC of $Prnp^{+/-}$ mice (control = 5.02 ± 0.40 nA, human amylin = 4.81 ± 0.35 nA at $+30$ mV, $p = 0.7$, $n = 5$) (Fig. 4B, inset).

Discussion

Using $A\beta_{1-42}$ multimeric assemblies—visualized as spheroidal structures by electron microscopy (Jhamandas et al., 2005, 2011)—we have documented inhibition of a suite of potassium conductances, i.e., I_K, I_A, and I_C. The effect was observed in dissociated neurons derived from the DDB, a cholinergic forebrain nucleus (Jhamandas et al., 2001). In heterozygous mice, there was an insignificant suppression of whole-cell currents, while in the homozygous null $Prnp^{+/-}$ mice, there was no suppression. To confirm that these effects upon $A\beta_{1-42}$ action were mediated directly by PrPC protein, rather than reflecting a secondary ge-

![Figure 2](image-url)
netic mechanism (for example, a functional polymorphism in linkage disequilibrium with the Zrch1 Prnp null allele), we also examined the effects of Aβ/H92521–42 on DBB neurons from wt mice in the presence of a PrP antibody. For this purpose, we used the monoclonal antibody reagent Sha31. No significant reduction in WCC was identified following perfusion of DBB neurons with Sha31, thus supporting the notion that Aβ/H92521–42 effects require PrPC.

In wt mice, Aβ/H92521–42 preparations induced a decrease in whole-cell currents that was nearly abolished by iberiotoxin, a specific blocker of IC. This supports an involvement of calcium-activated potassium channels in mediating, in part, the cellular effects of Aβ/H92521–42 on DBB neurons. IC currents have been shown to be responsible for the repolarization phase of the action potential and, hence, play a role in the process of spike frequency adaptation (accommodation) (Vergara et al., 1998; Kim and Hoffman, 2008). The effect of Aβ/H92521–42 on depressing outward currents through IC channels could result in an increased excitation of DBB neurons. Functionally, IK channels augment action potential repolarization, and therefore Aβ/H92521–42 reduction of IK currents, in wt mice, would also be expected to result in an increase in the action potential width, potentially playing a role in regulation of cell excitability. Physiologically, IA produces its effect by increasing the rate of both action potential repolarization and accommodation (Viana et al., 1993; Zhang and McBain, 1995; Gu et al., 2007). Blockage of IK by Aβ could lead to increased duration of depolarization during an action potential and consequently increase Ca2+ influx into DBB neurons. We have previously observed that Aβ and human amylin demonstrate identical
electrophysiological effects on cholinergic neurons of the DBB, and moreover share a similar profile of neurotoxicity on primary cultures of neurons from this basal forebrain nucleus (Jhamandas et al., 2001, 2003; Jhamandas and MacTavish, 2004). A recent report also suggest that PrP^- may also serve as a target for the expression of biological effects of amyloidogenic peptides besides Aβ (Resenberger et al., 2011). We therefore examined the electrophysiological effects of human amylin on DBB neurons from wt and Prnp^o/o mice, where we observed that human amylin effects were markedly bluntly in Prnp^o/o cells in a manner akin to oligomeric Aβ. While the mechanism tying Aβ- or human amylin-docked PrP^- to potassium conductances remains to be established, Aβ binding sites have been mapped to distinct N-terminal regions within PrP^- (Laurén et al., 2009; Balducci et al., 2010; Chen et al., 2010; Freir et al., 2011), but a functional effect of antibodies binding to the α-helical C-terminal region is not without precedent. Thus ICSM18 antibody binds to helix 1 residues 146-159 (White et al., 2003) and had efficacy on hippocampal cells when administered at a concentration of 2 μg/ml (Freir et al., 2011), whereas Sha31 used here binds to residues 145-152 (Féraudet et al., 2005) and had efficacy on DBC cells at 0.3 μg/ml (Fig. 2D). These “distal” effects are compatible with the notion that PrP undergoes interactions in cis- between the flexible N-terminal region and the globular C-terminal domain (Qin et al., 2000), and clues as to how PrP^- might impact potassium channels may lie within an intercome derived from the adult mouse brain (Schmitt-Ulms et al., 2004).

In addition to variable results emerging from different laboratories (see Introduction), the pro-pathogenic response of PrP^- to amyloid assemblies seems at odds with neuroprotective activity. Go-forward studies to reconcile these issues will need to focus upon reliable trait present within a spectrum of phenotypically divergent TgAPP mice (Phinney et al., 2003; Ashe and Zahs, 2010; Wisniewski and Sigurdsson, 2010) and avoid the diverse effects that can be driven by different types of Aβ assemblies (Sakono and Zako, 2010). Divergent target cell populations under study (e.g., hippocampus vs basal forebrain) also need to be considered. When these variables are isolated, the protective and pathogenic properties of PrP^- may be discerned reliably. In turn, it may be possible to test the hypothesis that pro-pathogenic effects of PrP^- reflect a subverted physiological function that is poorly adapted to deal with chronic exposure to amyloid assemblies, as would be found in AD. If the basal neuroprotective activity of PrP^- can be separated in dose–response properties from pro-pathogenic effects, then PrP^- directed anti-amyloid therapies may warrant closer consideration.

References

Aller K, Li Z, Mactavish D, Westaway D, Jhamandas JH (2010) Ionic mechanisms of action of prion protein fragment PrP(106–126) in rat basal forebrain neurons. J Neurosci Res 88:2217–2227.

Ashe KH, Zahs KR (2010) Probing the biology of Alzheimer’s disease in mice. Neuron 66:631–645.

Balducci C, Beeg M, Stravalaci M, Bastone A, Scip A, Biasini E, Tapella L, Connor JA, Stevens CF (1971) Voltage clamp studies of a transient outward membrane current in gastropod neural somata. J Physiol 213:21–30.

Barry AE, Klyubin I, Mc Donald JM, Mably AJ, Farrell MA, Scott M, Walsh DM, Rowan MJ (2011) Alzheimer’s disease brain-derived amyloid-β-mediated inhibition of LTP in vivo is prevented by immunotargeting cellular prion protein. J Neurosci 31:7259–7263.

Bege C, Williams A (2011) Amyloid-β-induced synapse damage is mediated via cross-linkage of the cellular prion protein. J Biol Chem. Advance online publication. Retrieved September 16, 2011. doi:10.1074/jbc.M111.248724.

Bitan G, Kirkland JE, Lonakian A, Voller SS, Benedek GB, Teplow DB (2003) Amyloid beta-protein (Abeta) assembly: Abeta 40 and Abeta 42 oligomerize through distinct pathways. Proc Natl Acad Sci U S A 100:330–335.

Calella AM, Farinelli M, Nuvolone M, Mirante O, Moors R, Falsig J, Mansuy IM, Aguzzi A (2010) Prion protein and Abeta-related synaptic toxicity impairment. EMBO Mol Med 2:306–314.

Chen S, Yadav SP, Sureswitz WK (2010) Interaction between human prion protein and amyloid-beta (Abeta) oligomers: role of N-terminal residues. J Biol Chem 285:26377–26383.

Chisti MA, Yang DS, Janus C, Shelton RL, Horne P, Pearson J, Strome R, Zaker N, Loukides J, French J, Turner S, Lozza G, Grilli M, Kunicki S, Maugeri C, Paquette J, Gervais F, Bergeron C, Fraser PE, Carlson GA, et al. (2001) Early-onset amyloid deposition and cognitive deficits in transgenic mice expressing a double mutant form of amyloid precursor protein 695. J Biol Chem 276:21562–21570.

Cisse M, Sanchez PE, Kim DH, Ho KY, Qu GQ, Huck M (2011) Ablation of cellular prion protein does not ameliorate abnormal neural network activity or cognitive dysfunction in the J20 line of human amyloid precursor protein transgenic mice. J Neurosci 31:10427–10431.

Connor JA, Stevens CF (1971) Voltage clamp studies of a transient outward membrane current in gastropod neural somata. J Physiol 213:21–30.

Féraudet C, Morel N, Simon S, Volland H, Frobert Y, Crémoinon C, Villette D, Lehnmann S, Grassi J (2005) Screening of 145 anti-PrP monoclonal antibodies for their capacity to inhibit PrPSc replication in infected cells. J Biol Chem 280:11247–11258.

Freir DB, Nicoll AJ, Klyubin I, Panicco S, Mc Donald JM, Risse E, Asante EA, Farrow MA, Sessions RB, Saibil HR, Clarke AR, Rowan MJ, Walsh DM, Collinge J (2011) Interaction between prion protein and toxic amyloid beta assemblies can be therapeutically targeted at multiple sites. Nat Commun 2:336.

Gimbel DA, Nygaard HB, Coffey EE, Gunther EC, Laurén J, Gimbel ZA, Strittmatter SM (2010) Memory impairment in transgenic Alzheimer mice requires cellular prion protein. J Neurosci 30:6367–6374.

Gu N, Vertraeke K, Storm JP (2007) BK potassium channels facilitate high-frequency firing and cause early spike frequency adaptation in rat CA1 hippocampal pyramidal cells. J Physiol 580:859–882.

Janus C, Pearson J, McLaurin J, Mathews PM, Jiang Y, Schmidt SD, Chisti MA, Horne P, Heslin D, French J, Mount HT, Nixon RA, Mercken M, Bergeron C, Fraser PE, St George-Hyslop P, Westaway D (2000) A beta peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer’s disease. Nature 408:979–982.

Jassar BS, Harris KH, Ostasewski PM, Jhamandas JH (1999) Ionic mechanisms of action of neurotoxin in acutely dissociated neurons from the diagonal band of Broca of the rat. J Neurophysiol 81:234–246.

Jhamandas JH, MacTavish D (2004) Antagonist of the amylin receptor blocks β-amyloid toxicity in rat cholinergic basal forebrain neurons. J Neurosci 24:5579–5584.

Jhamandas JH, Cho C, Jassar B, Harris K, MacTavish D, Easaw J (2001) Cellular mechanisms for amyloid beta-protein activation of rat cholinergic basal forebrain neurons. J Neurophysiol 86:1312–1320.

Jhamandas JH, Harris KH, Cho C, Fu W, MacTavish D (2003) Human amylin actions on rat cholinergic basal forebrain neurons: antagonism of beta-amyloid effects. J Neurophysiol 89:2923–2930.

Jhamandas JH, Wie MB, Harris K, MacTavish D, Kar S (2005) Fucoidan inhibits cellular and neurotoxic effects of beta-amyloid (A beta) in rat cholinergic basal forebrain neurons. Eur J Neurosci 21:2649–2659.

Jhamandas JH, Li Z, Westaway D, Yang J, Jassar S, MacTavish D (2011) Actions of beta-amyloid protein on human neurons are expressed through the amylin receptor. Am J Pathol 178:140–149.

Kessels HW, Nguyen LN, Nabavi S, Malinow R (2010) The prion protein as a receptor for amyloid-beta. Nature 466:E3–E4; discussion E4–E5.

Kim J, Hoffman DA (2008) Potassium channels: newly found players in synaptic plasticity. Neuroscientist 14:276–286.

Kirkland JE, Kowalska A (2005) Molecular mechanisms initiating amyloid beta-fibril formation in Alzheimer’s disease. Acta Biochim Pol 52:417–423.

Laurén J, Gimbel DA, Nygaard HB, Gilbert JW, Strittmatter SM (2009) Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature 457:1128–1132.
Palop JJ, Mucke L (2010) Amyloid-beta-induced neuronal dysfunction in Alzheimer’s disease: from synapses toward neural networks. Nat Neurosci 13:812–818.

Phinney AL, Horne P, Yang J, Janus C, Bergeron C, Westaway D (2003) Mouse models of Alzheimer’s disease: the long and filamentous road. Neur Res 25:590–600.

Prusiner SB (1991) Molecular biology of prion diseases. Science 252:1515–1522.

Qin K, Yang DS, Yang Y, Chishti MA, Meng IJ, Kretzschmar HA, Yip CM, Fraser PE, Westaway D (2000) Copper(II)-induced conformational changes and protease resistance in recombinant and cellular PrP. Effect of protein age and deamidation. J Biol Chem 275:19121–19131.

Resenberger UK, Harmeier A, Woerner AC, Goodman JL, Müller V, Krishnan R, Vabalas RM, Kretzschmar HA, Lindquist S, Hartl FU, Multhaup G, Winklhofer KF, Tatzelt J (2011) The cellular prion protein mediates neurotoxic signalling of beta-sheet-rich conformers independent of prion replication. EMBO J 30:2057–2070.

Sakono M, Zako T (2010) Amyloid oligomers: formation and toxicity of Abeta oligomers. FEBS J 277:1348–1358.

Schmitt-Ulms G, Hansen K, Liu J, Cowdrey C, Yang J, DeArmond SJ, Cohen FE, Prusiner SB, Baldwin MA (2004) Time-controlled transcardiac perfusion cross-linking for the study of protein interactions in complex tissues. Nat Biotechnol 22:724–731.

Stine WB Jr, Dahlgren KN, Krafft GA, LaDu MJ (2003) In vitro characterization of conditions for amylloid-beta peptide oligomerization and fibrillogenesis. J Biol Chem 278:11612–11622.

Stine WB, Jungbauer L, Yu C, LaDu MJ (2011) Preparing synthetic Abeta in different aggregation states. Methods Mol Biol 670:13–32.

Teplow DB, Lazo ND, Bitan G, Bernstein S, Wyttenbach T, Bowers MT, Baumketner A, Shea JE, Urbanc B, Cruz L, Borreguero J, Stanley HE (2006) Elucidating amyloid beta-protein folding and assembly: a multidisciplinary approach. Acc Chem Res 39:635–645.

Vergara C, Latorre R, Marrion NV, Adelman JP (1998) Calcium-activated potassium channels. Curr Opin Neurobiol 8:321–329.

Viana F, Bayliss DA, Berger AJ (1993) Multiple potassium conductances and their role in action potential repolarization and repetitive firing behavior of neonatal rat hypoglossal motoneurons. J Neurophysiol 69:2150–2163.

Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:535–539.

White AR, Enever P, Tayebi M, Mushens R, Linehan J, Brandner S, Anstee D, Collinge J, Hawke S (2003) Monoclonal antibodies inhibit prion replication and delay the development of prion disease. Nature 422:80–83.

Wisniewski T, Sigurdsson EM (2010) Murine models of Alzheimer’s disease and their use in developing immunotherapies. Biochim Biophys Acta 1802:847–859.

Zhang L, McBain CJ (1995) Potassium conductances underlying repolarization and after-hyperpolarization in rat CA1 hippocampal interneurons. J Physiol 488:661–672.