E.M. Ovsiyuk*, V.M. Red’kov†

On simulating a medium with special reflecting properties
by Lobachevsky geometry
(One exactly solvable electromagnetic problem)

September 2, 2011

Lobachevsky geometry simulates a medium with special constitutive relations, $D^i = \epsilon_0 \epsilon^{ik} E^k$, $B^i = \mu_0 \mu^{ik} H^k$, where two matrices coincide: $\epsilon^{ik}(x) = \mu^{ik}(x)$. The situation is specified in quasi-cartesian coordinates (x, y, z). Exact solutions of the Maxwell equations in complex 3-vector $E + iB$ form, extended to curved space models within the tetrad formalism, have been found in Lobachevsky space. The problem reduces to a second order differential equation which can be associated with an 1-dimensional Schrödinger problem for a particle in external potential field $U(z) = U_0 e^{2z}$. In quantum mechanics, curved geometry acts as an effective potential barrier with reflection coefficient $R = 1$; in electrodynamic context results similar to quantum-mechanical ones arise: the Lobachevsky geometry simulates a medium that effectively acts as an ideal mirror. Penetration of the electromagnetic field into the effective medium, depends on the parameters of an electromagnetic wave, frequency ω, $k_1^2 + k_2^2$, and the curvature radius ρ.

1 Introduction

An aim of the present paper is to obtain exact solutions of the Maxwell equations in 3-dimensional Lobachevsky space H_3. A coordinate system used is one from the list given by Olevsky [1], which generalizes Cartesian coordinate in flat Euclidean space.

To treat Maxwell equations we make use of complex representation of these according to the known approach by Riemann–Silberstein–Oppenheimer–Majorana [2, 3, 4, 5] (see also in [6 – 30]), extended to curved space-time models in the frames of tetrad formalism of Tetrode–Weyl–Fock–Ivanenko [31, 32, 33]; see also in [34]). On the base of this technique, new exact solutions of the type of extended plane wave in Lobachevsky space have been constructed explicitly. These may be interesting in the cosmological sense; besides, they may be interesting in the context of geometric simulating electromagnetic field in a special medium [35], [34].

* e.ovsiyuk@mail.ru
† redkov@dragon.bas-net.by
2 Cartezian coordinates in Lobachevsky space

In Olevsky paper [1], under the number 2 the following coordinate system in Lobachevsky space \(H_3\) is specified

\[x^a = (t, x, y, z) , \quad dS^2 = dt^2 - e^{-2z}(dx^2 + dy^2) - dz^2 , \quad (1) \]

the element of volume is given by

\[dV = \sqrt{-g} \, dx \, dy \, dz = e^{-2z} \, dx \, dy \, dz , \quad x, y, z \in (-\infty, +\infty) ; \]

the magnitude and sign of the \(z\) are substantial, in particular, when dealing with localization, for example, the energy of the field

\[dW = \frac{1}{2} (E^2 + B^2) dV = \frac{1}{2} (E^2 + B^2) \, e^{-2z} \, dx \, dy \, dz . \quad (2) \]

It is helpful to have at hand some detail of the parametrization of the model \(H_3\) by \(x, y, z\).

It is known that this model can be identified with a branch of hyperboloid in 4-dimension flat space

\[u_0^2 - u_1^2 - u_2^2 - u_3^2 = \rho^2 , \quad u_0 = +\sqrt{\rho^2 + u_1^2} . \quad (3) \]

Coordinate in use, \(x, y, z\), are referred to \(u_a\) by relations

\[u_1 = xe^{-z} , \quad u_2 = ye^{-z} , \]

\[u_3 = \frac{1}{2} [(e^z - e^{-z}) + (x^2 + y^2)e^{-z}] , \]

\[u_0 = \frac{1}{2} [(e^z + e^{-z}) + (x^2 + y^2)e^{-z}] . \quad (3) \]

It is convenient to employ 3-dimensional Poincaré realization for Lobachevsky space as inside part of 3-sphere

\[q_i = \frac{u_i}{u_0} = \frac{u_i}{\sqrt{\rho^2 + u_1^2 + u_2^2 + u_3^2}} , \quad q_i q_i < +1 . \quad (4) \]

Quasi-Cartesian coordinates \((x, y, z)\) are referred to \(q_i\) as follows

\[q_1 = \frac{2x}{x^2 + y^2 + e^{2z} + 1} , \]

\[q_2 = \frac{2y}{x^2 + y^2 + e^{2z} + 1} , \]

\[q_3 = \frac{x^2 + y^2 + e^{2z} - 1}{x^2 + y^2 + e^{2z} + 1} ; \quad (5) \]

Inverses to (5) relations are

\[x = \frac{q_1}{1 - q_3} , \quad y = \frac{q_2}{1 - q_3} , \quad e^z = \frac{\sqrt{1 - q_2^2}}{1 - q_3} . \quad (6) \]
In particular, note that on the axis \(q_1 = 0, q_2 = 0, q \in (-1, +1) \) relations (6) assume the form

\[
x = 0, \quad y = 0, \quad e^z = \sqrt{\frac{1 + q_3}{1 - q_3}}.
\]

that is

\[
q_3 \rightarrow +1, \quad e^z \rightarrow +\infty, \quad z \rightarrow +\infty;
\]

\[
q_3 \rightarrow -1, \quad e^z \rightarrow +0, \quad z \rightarrow -\infty.
\]

Solutions of the Maxwell equation, constructed below, can be of interest in the context of description of electromagnetic waves in special media, because the Lobachevsky geometry simulates effectively a definite special medium [36], inhomogeneous along the axis \(z \). Effective electric permittivity tensor \(\epsilon^{ik}(x) \) is given by

\[
\epsilon^{ik}(x) = -\sqrt{-g} g^{00}(x) g^{ik}(x) = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{-2z} \end{vmatrix},
\]

whereas the corresponding effective magnetic permittivity tensor is

\[
(\mu^{-1})^{ik}(x) = \sqrt{-g} \begin{vmatrix} g^{22} g^{33} & 0 & 0 \\ 0 & g^{33} g^{11} & 0 \\ 0 & 0 & g^{11} g^{22} \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{2z} \end{vmatrix}.
\]

In explicit form, effective constitutive relations (the system SI is used) are

\[
D^i = \epsilon_0 e^{ik} E_k, \quad B_i = \mu_0 \mu^{ik} H_k,
\]

note that two matrices coincide: \(e^{ik}(x) = \mu^{ik}(x) \).

3 Tetrads and Maxwell equations in complex form

In the coordinate (11), let us introduce a tetrad

\[
\epsilon_{(a)}^\beta = \begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & e^2 & 0 & 0 \\ 0 & 0 & e^2 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix}, \quad \epsilon_{(a)}^{(\beta)} = \begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & -e^{-z} & 0 & 0 \\ 0 & 0 & -e^{-z} & 0 \\ 0 & 0 & 0 & -1 \end{vmatrix}.
\]

One should find Christoffel symbols; some of them evidently vanish: \(\Gamma^0_{\beta\sigma} = 0, \Gamma^i_{00} = 0, \Gamma^i_{0j} = 0 \), remaining ones are determined by relations

\[
\Gamma^x_{jk} = \begin{vmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{vmatrix}, \quad \Gamma^y_{jk} = \begin{vmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{vmatrix}, \quad \Gamma^z_{jk} = \begin{vmatrix} e^{-2z} & 0 & 0 \\ 0 & e^{-2z} & 0 \\ 0 & 0 & 0 \end{vmatrix}.
\]
Ricci rotation coefficients are (only not vanishing ones are written down)

$$\gamma_{311} = -1, \quad \gamma_{232} = 1.$$

Using the notation [34]

$$e^\rho_{(0)} \partial_\rho = \partial_0 = \partial_t, \quad e^\rho_{(1)} \partial_\rho = \partial_1 = e^x \partial_x,$$

$$e^\rho_{(2)} \partial_\rho = \partial_2 = e^y \partial_y, \quad e^\rho_{(3)} \partial_\rho = \partial_3 = e_z \partial_z,$$

$$v_0 = (\gamma_{010}, \gamma_{020}, \gamma_{030}) \equiv 0, \quad v_1 = (\gamma_{011}, \gamma_{021}, \gamma_{031}) \equiv 0,$$

$$v_2 = (\gamma_{012}, \gamma_{022}, \gamma_{032}) \equiv 0, \quad v_3 = (\gamma_{013}, \gamma_{023}, \gamma_{033}) \equiv 0,$$

$$p_0 = (\gamma_{230}, \gamma_{310}, \gamma_{120}) = 0, \quad p_1 = (\gamma_{231}, \gamma_{311}, \gamma_{121}) = (0, -1, 0),$$

$$p_2 = (\gamma_{232}, \gamma_{312}, \gamma_{122}) = (1, 0, 0), \quad p_3 = (\gamma_{233}, \gamma_{313}, \gamma_{123}) = 0;$$

the Maxwell equations in the complex matrix form [34] read

$$\begin{bmatrix} \alpha^k \partial_k + sv_0 + \alpha^k sp_k - i(\partial_0 + sp_0 - \alpha^k sv_k) \end{bmatrix} \begin{bmatrix} 0 \\ E + iB \end{bmatrix} = 0; \quad (12)$$

in the used retraed it assumes the form

$$\begin{bmatrix} -i\partial_t + \alpha^1 e^x \partial_x + \alpha^2 e^y \partial_y + \alpha^3 \partial_z - \alpha^1 s_2 + \alpha^2 s_1 \end{bmatrix} \begin{bmatrix} 0 \\ E + iB \end{bmatrix} = 0. \quad (13)$$

Matrices involved in [13] are

$$\alpha^1 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \quad \alpha^2 = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix},$$

$$\alpha^3 = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{bmatrix}, \quad s^1 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \quad s^2 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix}.$$

4 Separation of the variables

Let us use the substitution

$$\begin{bmatrix} 0 \\ E + iB \end{bmatrix} = e^{-i\omega t} e^{ik_1 x} e^{ik_2 y} \begin{bmatrix} 0 \\ f(z) \end{bmatrix}. \quad (14)$$

correspondingly eq. [14] gives

$$\begin{bmatrix} -\omega + \alpha^1 e^x ik_1 + \alpha^2 e^y ik_2 + \alpha^3 \frac{d}{dz} - \alpha^1 s_2 + \alpha^2 s_1 \end{bmatrix} \begin{bmatrix} f_1(z) \\ f_2(z) \\ f_3(z) \end{bmatrix} = 0. \quad (15)$$
After simple calculation, we derive a first order system for \(f_i \):

\[
ik_1 e^z f_1 + ik_2 e^z f_2 + \left(\frac{d}{dz} - 2 \right) f_3 = 0 , \\
-\omega f_1 - \left(\frac{d}{dz} - 1 \right) f_2 + ik_2 e^z f_3 = 0 , \\
-\omega f_2 + \left(\frac{d}{dz} - 1 \right) f_1 - ik_1 e^z f_3 = 0 , \\
-\omega f_3 - e^z ik_2 f_1 + ik_1 e^z f_2 = 0 .
\] (16)

Allowing three last equations in the first one, we get an identity 0 = 0. So, there exist only three independent equations (below the notation \(k_1 = a, k_2 = b \) is used):

\[
\omega f_3 = -ib e^z f_1 + ia e^z f_2 , \\
\omega f_1 = -(\frac{d}{dz} - 1) f_2 + ib e^z f_3 , \\
\omega f_2 = +(\frac{d}{dz} - 1) f_1 - ia e^z f_3 ,
\] (17)

With substitutions \(f_1 = e^z F_1(z) \), \(f_2 = e^z F_2(z) \), eqs. (17) give

\[
\omega F_3 = -ib e^z F_1 + ia e^z F_2 , \\
\omega F_1 = -\frac{d}{dz} F_2 + ib f_3 , \\
\omega F_2 = +\frac{d}{dz} F_1 - ia f_3 .
\] (18)

There exist a particular case readily treatable, when \(a = 0, b = 0, f_3 = 0 \):

\[
\omega F_1 = -\frac{d}{dz} F_2 , \quad \omega F_2 = +\frac{d}{dz} F_1 \implies \\
F_1(z) = e^{\pm i\omega z} , \quad F_2 = \pm i e^{\pm i\omega z} ,
\] (19)

which gives

\[
\Phi^\pm = \begin{vmatrix} 0 & 0 \\ E + iB & e^{\pm i\omega z} \end{vmatrix} = e^{\pm i\omega z} \\
E - iB & \pm i e^{\pm i\omega z}
\] (20)

or (let it be \(\varphi(\pm) = \omega t \mp \omega z \))

\[
E_1^{(\pm)} + i B_1^{(\pm)} = \cos(\omega t \mp \omega z) - i \sin(\omega t \mp \omega z) , \\
E_2^{(\pm)} + i B_2^{(\pm)} = \pm \sin(\omega t \mp \omega z) \pm i \cos(\omega t \mp \omega z) .
\] (21)

It is easily checked the known presupposed property \(E^{(\pm)} \times B^{(\pm)} = \pm e_z \).

Let us turn back to the generale case (18), from the first equation it follows

\[
f_3 = \frac{-ib}{\omega} e^{2z} F_1 + \frac{ia}{\omega} e^{2z} F_2 ,
\] (22)
and further we get a system for F_1 and F_2

\[
\begin{align*}
\left(\frac{d}{dz} + \frac{ab e^{2z}}{\omega} \right) F_2 &= \frac{b^2 e^{2z} - \omega^2}{\omega} F_1, \\
\left(\frac{d}{dz} - \frac{ab e^{2z}}{\omega} \right) F_1 &= \frac{\omega^2 - a^2 e^{2z}}{\omega} F_2.
\end{align*}
\] (23)

With the help of a new variable $e^z = \sqrt{\omega} Z$, two last are written as

\[
\begin{align*}
Z \left(\frac{d}{dZ} + ab Z \right) F_2 &= +\left(b^2 Z^2 - \omega \right) F_1, \\
Z \left(\frac{d}{dZ} - ab Z \right) F_1 &= -\left(a^2 Z^2 - \omega \right) F_2.
\end{align*}
\] (24)

This system can be solved straightforwardly in terms if Heun confluent functions. Indeed, from (24) it follows a second order differential equation for F_1

\[
\frac{d^2 F_1}{dZ^2} - \frac{a^2 Z^2 + \omega}{Z(a^2 Z^2 - \omega)} \frac{dF_1}{dZ} + \left[\frac{\omega^2}{Z^2} + \frac{2ab \omega}{a^2 Z^2 - \omega} - (a^2 + b^2) \omega \right] F_1 = 0,
\] (25)

here we note additional singular point at $Z = \pm \sqrt{\omega}/a$. With the new variable, we get

\[
\begin{align*}
y &= \frac{a^2 Z^2}{\omega}, \quad \frac{d^2 F_1}{dy^2} + \left[\frac{1}{y} - \frac{1}{y-1} \right] \frac{dF_1}{dy} \\
&+ \left[\frac{\omega^2}{4 y^2} - \frac{2ab \omega + (a^2 + b^2) \omega^2}{4 a^2 y} + \frac{b \omega}{2a(y-1)} \right] F_1 = 0.
\end{align*}
\] (26)

from whence or with the substitution $F_1(y) = y^c g_1(y)$ we arrive at

\[
\begin{align*}
\frac{d^2 g_1}{dy^2} + \left[\frac{2c + 1}{y} - \frac{1}{y-1} \right] \frac{dg_1}{dy} + \left[\frac{\omega^2/4 + c^2}{y^2} + \frac{2c - \omega^2/2 - b \omega/a - b^2 \omega^2/(2a^2)}{2y} + \frac{-2c + b \omega/a}{2(y-1)} \right] g_1 &= 0.
\end{align*}
\] (27)

When $c = \pm i \omega/2$, eq. (27) is simplified

\[
\begin{align*}
\frac{d^2 g_1}{dy^2} + \left[\frac{2c + 1}{y} - \frac{1}{y-1} \right] \frac{dg_1}{dy} \\
+ \left[\frac{2c - \omega^2/2 - b \omega/a - b^2 \omega^2/(2a^2)}{2y} + \frac{-2c + b \omega/a}{2(y-1)} \right] g_1 &= 0
\end{align*}
\]

which can be identified with confluent Heun function

\[
H(\alpha, \beta, \gamma, \delta, \eta, z), \quad \frac{d^2 H}{dz^2} + \left[\alpha + \frac{1 + \beta}{z} + \frac{1 + \gamma}{z-1} \right] \frac{dH}{dz} \\
+ \left[\frac{1}{2} \frac{\alpha + \alpha \beta - \beta \gamma - \beta - \gamma - 2 \eta}{z} + \frac{1}{2} \frac{\alpha \gamma + \beta + \alpha + 2 \eta + 2 \delta + \beta \gamma + \gamma}{z-1} \right] H = 0
\] (28)
with parameters
\[\alpha = 0, \quad \beta = 2c, \quad \gamma = -2, \quad \delta = -\frac{1}{4} \frac{(a^2 + b^2) \omega^2}{a^2}, \]
\[\eta = \frac{1}{4} \frac{2a b \omega + (a^2 + b^2) \omega^2 + 4a^2}{a^2}, \quad F_1 = y^{\pm \omega/2} H(\alpha, \beta, \gamma, \delta, \eta, y). \] (29)

Below we will develop a method that makes possible to construct solutions of the system (23) in more simple functions, solution of the Bessel equation.

5 Additional studying of the system

Let us perform a special transformation in (23) (suppose \(\alpha n - \beta m = 1 \))
\[F_1 = \alpha G_1 + \beta G_2, \quad F_2 = m G_1 + n G_2; \]
\[G_1 = n F_1 - \beta F_2, \quad G_2 = -m F_1 + \alpha F_2. \] (30)

Combining equations from (23), we get
\[n Z \left(\frac{d}{dZ} - ab Z \right) F_1 - \beta Z \left(\frac{d}{dZ} + ab Z \right) F_2 = -n (a^2 Z^2 - \omega) F_2 - \beta (b^2 Z^2 - \omega) F_1, \]
\[-m Z \left(\frac{d}{dZ} - ab Z \right) F_1 + \alpha Z \left(\frac{d}{dZ} + ab Z \right) F_2 = m (a^2 Z^2 - \omega) F_2 + \alpha (b^2 Z^2 - \omega) F_1, \]
from whence it follows
\[Z \frac{d}{dZ} G_1 - Z^2 ab (n F_1 + \beta F_2) = -Z^2 (n a^2 F_2 + \beta b^2 F_1) + \omega (n F_2 + \beta F_1), \]
\[Z \frac{d}{dZ} G_2 + Z^2 ab (m F_1 + \alpha F_2) = Z^2 (m a^2 F_2 + \alpha b^2 F_1) - \omega (m F_2 + \alpha F_1). \] (31)

Taking into account (30), eqs. (31) reduce to
\[\left[Z \frac{d}{dZ} - Z^2 ab (n \alpha + \beta m) + Z^2 (a^2 mn + b^2 \alpha \beta) - \omega (nm + \alpha \beta) \right] G_1 \]
\[= \left[-Z^2 (an - b\beta)^2 + \omega (n^2 + \beta^2) \right] G_2, \]
\[\left[Z \frac{d}{dZ} + Z^2 ab (n \beta + m \alpha) - Z^2 (a^2 mn + b^2 \alpha \beta) + \omega (nm + \alpha \beta) \right] G_2 \]
\[= \left[Z^2 (am - b\alpha)^2 - \omega (m^2 + \alpha^2) \right] G_1. \] (32)

Let us impose additional restriction (there exist two possibilities): \(an - b\beta = 0 \quad \implies \quad \beta = \frac{a}{n}, \)
\[\left[Z \frac{d}{dZ} - Z^2 ab (n \alpha + \beta m) + Z^2 (a^2 mn + b^2 \alpha \beta) - \omega (nm + \alpha \beta) \right] G_1 \]
\[= +\omega (n^2 + \beta^2) G_2, \]
\[\left[Z \frac{d}{dZ} + Z^2 ab (m \beta + n \alpha) - Z^2 (a^2 mn + b^2 \alpha \beta) + \omega (nm + \alpha \beta) \right] G_2 \]
\[= \left[Z^2 (am - b\alpha)^2 - \omega (m^2 + \alpha^2) \right] G_1. \] (33)
or

\[am - b; \alpha = 0 \implies \frac{\alpha}{m} = \frac{a}{b}, \]

\[
\begin{align*}
Z \frac{d}{dZ} - Z^2 ab(n\alpha + \beta m) + Z^2 (a^2 mn + b^2 \alpha \beta) - \omega (nm + \alpha \beta) \big] G_1 \\
&= \big[-Z^2 (an - b\beta)^2 + \omega (n^2 + \beta^2) \big] G_2, \\
\end{align*}
\]

\[
\begin{align*}
Z \frac{d}{dZ} + Z^2 ab(m\beta + n\alpha) - Z^2 (a^2 mn + b^2 \alpha \beta) + \omega (nm + \alpha \beta) \big] G_2 \\
&= -\omega (m^2 + \alpha^2) G_1.
\end{align*}
\]

The two variant are equivalent each other, for definiteness we will use the variant (33). It can be presented in more symmetrical form

\[
F_1 = \alpha G_1 + \beta G_2 = + \frac{b}{\sqrt{a^2 + b^2}} G_1 + \frac{a}{\sqrt{a^2 + b^2}} G_2,
\]

\[
F_2 = m G_1 + n G_2 = - \frac{a}{\sqrt{a^2 + b^2}} G_1 + \frac{b}{\sqrt{a^2 + b^2}} G_2;
\]

at this eqs. (18) assume the form

\[
\begin{align*}
Z \frac{d}{dZ} - Z^2 ab b^2 - a^2 + Z^2 ab b^2 - a^2 - \omega (\frac{ab}{a^2 + b^2} + \frac{ab}{a^2 + b^2}) \big] G_1 \\
&= +\omega (\frac{b^2}{a^2 + b^2} + \frac{a^2}{a^2 + b^2}) G_2, \\
\end{align*}
\]

\[
\begin{align*}
Z \frac{d}{dZ} + Z^2 ab b^2 - a^2 - Z^2 ab b^2 - a^2 + \omega (\frac{ab}{a^2 + b^2} + \frac{ab}{a^2 + b^2}) \big] G_2 \\
&= \big[Z^2 (\frac{a^2}{\sqrt{a^2 + b^2}} - \frac{b^2}{\sqrt{a^2 + b^2}})^2 - \omega (\frac{a^2}{a^2 + b^2} + \frac{b^2}{a^2 + b^2}) \big] G_1,
\end{align*}
\]

that is

\[
Z \frac{d}{dZ} G_1 = \omega G_2, \quad Z \frac{d}{dZ} G_2 = \big[Z^2 (a^2 + b^2) - \omega \big] G_1. \tag{36}
\]

From (36) we derive a second order equation for \(G_1\)

\[
\left(Z^2 \frac{d^2}{dZ^2} + Z \frac{d}{dZ} + \omega^2 - \omega (a^2 + b^2) Z^2 \right) G_1 = 0. \tag{37}
\]

To understand better the physical meaning of the equation (37), it is convenient to translate the equation to variable \(z\), then it reads

\[
e^z = \sqrt{\omega} Z, \quad \left(\frac{d^2}{dz^2} + \omega^2 - (a^2 + b^2) e^{2z} \right) G_1 = 0. \tag{38}
\]
It can be associated with the Schrödinger equation

\[
\left(\frac{d^2}{dz^2} + \epsilon - U(z) \right) \varphi(z) = 0 \quad (39)
\]

with potential function \(U(z) = (a^2 + b^2)e^{2z} \), and an effective force acting on the left \(F_z = -2(a^2 + b^2)e^{2z} \). Note that when \(a = k_1 = 0, b = k_2 = 0 \), the effective force vanishes. The corresponding quantum-mechanical system can be illustrated by Fig.1.

![Figure 1: Effective potential curve](image)

Therefore, we should expect properties of the electromagnetic solutions similar to those existing in the associated quantum-mechanical problem.

Let us turn back to eq. (37) – in the variable

\[
x = i \sqrt{\omega(a^2 + b^2)} \quad Z = i \sqrt{a^2 + b^2} e^z
\]

it assumes the form of the Bessel equation

\[
\left(\frac{d^2}{dx^2} + \frac{1}{x} \frac{d}{dx} + 1 + \frac{\omega^2}{x^2} \right) G_1 = 0 . \quad (40)
\]

The first order system \((36)\) in variable \(x \) takes the form

\[
x \frac{d}{dx} G_1 = \omega G_2, \quad x \frac{d}{dx} G_2 = -\frac{\omega^2 + x^2}{\omega} G_1 . \quad (41)
\]

A second order equation for \(G_2 \) reads

\[
\left[\frac{d^2}{dx^2} + \left(\frac{1}{x} - \frac{2x}{\omega^2 + x^2} \right) \frac{d}{dx} + \frac{x^2 + \omega^2}{x^2} \right] G_2 = 0 . \quad (42)
\]

Note that substituting \((35)\) into \((22)\), we get

\[
F_1 = \frac{b}{\sqrt{a^2 + b^2}} G_1 + \frac{a}{\sqrt{a^2 + b^2}} G_2, \quad F_2 = -\frac{a}{\sqrt{a^2 + b^2}} G_1 + \frac{b}{\sqrt{a^2 + b^2}} G_2
\]

into \((22)\), we get

\[
f_3 = \frac{e^{2z}}{\omega} (-ib \ F_1 + ia \ F_2) = \frac{\sqrt{a^2 + b^2}}{i \ \omega} G_1 . \quad (43)
\]
6 Asymptotic behavior of solutions

Mostly used for Bessel equation [37] are solutions

\[G^I_1(x) = J_{+i\omega}(x) \quad \text{and} \quad G^{II}_1(x) = J_{-i\omega}(x) ; \quad (44) \]

\[G^I_1(x) = H^{(1)}_{i\omega}(x) \quad \text{and} \quad G^{II}_1(x) = H^{(2)}_{i\omega}(x) , \]

\[G^I_1(x) = H^{(1)}_{-i\omega}(x) \quad \text{and} \quad G^{II}_1(x) = H^{(2)}_{-i\omega}(x) ; \quad (45) \]

\[G^I_1(x) = N_{+i\omega}(x) , \quad G^{II}_1(x) = N_{-i\omega}(x) . \quad (46) \]

For shortness, below the notation \(+\sqrt{a^2 + b^2} = 2\sigma \) is used. First, let us consider solutions in Bessel’s functions [37] when

\[z \to -\infty, \quad x = i\sigma e^z \to i0 , \]

\[G^I_1(x) = J_{+i\omega}(x) = \frac{1}{\Gamma(1 + i\omega)} (\frac{x}{2})^{i\omega} = \frac{(i\sigma)^{i\omega}}{\Gamma(1 + i\omega)} e^{i\omega z} , \]

\[G^{II}_1(x) = J_{-i\omega}(x) = \frac{1}{\Gamma(1 - i\omega)} (\frac{x}{2})^{-i\omega} = \frac{(i\sigma)^{-i\omega}}{\Gamma(1 - i\omega)} e^{-i\omega z} . \quad (47) \]

In the region \(z \to +\infty, \quad (x = i\sigma e^z = iX \to i\infty) \), using the knows asymptotic formula [37]

\[J_{i\omega}(x) \sim \sqrt{\frac{2}{\pi x}} \cos \left(x - (i\omega + \frac{1}{2})\frac{\pi}{2} \right) , \]

we get

\[G^I_1(z \to \infty) = J_{+i\omega}(z \to \infty) \sim e^{i\pi/4} \sqrt{\frac{1}{2\pi i X}} e^{-\omega\pi/2} e^{+X} , \]

\[G^{II}_1(z \to \infty) = J_{-i\omega}(z \to \infty) \sim e^{i\pi/4} \sqrt{\frac{1}{2\pi i X}} e^{+\omega\pi/2} e^{+X} . \quad (48) \]

Let us consider solutions in Hankel’s functions [37], determined in terms of \(J_{\pm i\omega}(x) \) as follows

\[H^{(1)}_{i\omega}(x) = +\frac{i}{\sin(i\omega\pi)} \left(e^{i\omega x} J_{+i\omega}(x) - J_{-i\omega}(x) \right) , \]

\[H^{(2)}_{i\omega}(x) = -\frac{i}{\sin(i\omega\pi)} \left(e^{-i\omega x} J_{+i\omega}(x) - J_{-i\omega}(x) \right) . \quad (49) \]
so that \(z \to -\infty, \ x \to i0 \),

\[
G_I^I(x) = H_{i\omega}^{(1)}(x) = \frac{i}{\sin(i\omega \pi)} \left(e^{+\omega \pi} \frac{(i \sigma)^{i\omega}}{\Gamma(1 + i\omega)} e^{+i\omega z} - \frac{(i \sigma)^{-i\omega}}{\Gamma(1 - i\omega)} e^{-i\omega z} \right),
\]

\[
G_{II}^I(x) = H_{i\omega}^{(2)}(x) = -\frac{i}{\sin(i\omega \pi)} \left(e^{-\omega \pi} \frac{(i \sigma)^{i\omega}}{\Gamma(1 + i\omega)} e^{+i\omega z} - \frac{(i \sigma)^{-i\omega}}{\Gamma(1 - i\omega)} e^{-i\omega z} \right).
\]

(50)

Behavior of them when \(z \to +\infty \) is governed the known relation [37]

\[
H_{i\omega}^{(1)}(x) \sim \sqrt{\frac{2}{\pi x}} \exp \left[+i \left(x - \frac{\pi}{2} (i\omega + \frac{1}{2}) \right) \right],
\]

\[
H_{i\omega}^{(2)}(x) \sim \sqrt{\frac{2}{\pi x}} \exp \left[-i \left(x - \frac{\pi}{2} (i\omega + \frac{1}{2}) \right) \right];
\]

from whence it follows

\[
z \to +\infty, \ x = iX \to i\infty,
\]

\[
G_I^I(x) = H_{i\omega}^{(1)}(x) \sim e^{-i\pi/4} \sqrt{\frac{2}{i\pi X}} e^{+\omega \pi/2} e^{-X},
\]

\[
G_{II}^I(x) = H_{i\omega}^{(2)}(x) \sim e^{+i\pi/4} \sqrt{\frac{2}{i\pi X}} e^{-\omega \pi/2} e^{+X}.
\]

(51)

Let us consider interpretation of the first type solution: this wave goes from the left, then it is partly reflected and partly goes forward through an effective potential barrier but gradually damping as \(z \) rises. The corresponding reflection coefficient is determined as follows

\[
G(z) \sim M_+ e^{+i\omega z} + M_- e^{-i\omega z}, \quad R = \frac{|M_+|^2}{|M_+|^2}. \quad (52)
\]

Taking into account identities

\[
(i\sigma)^{+i\omega} = (e^{i\pi/2} e^{\ln\sigma})^{+i\omega} = e^{-\omega \pi/2} e^{+i\omega \ln\sigma},
\]

\[
(i\sigma)^{-i\omega} = (e^{i\pi/2} e^{\ln\sigma})^{-i\omega} = e^{+\omega \pi/2} e^{-i\omega \ln\sigma}; \quad (53)
\]

we derive

\[
|M_+|^2 = \frac{1}{\sin(i\omega \pi) \sin(-i\omega \pi)} \frac{e^{+\omega \pi}}{\Gamma(1 - i\omega) \Gamma(1 + i\omega)}, \quad \frac{e^{+\omega \pi}}{\Gamma(1 - i\omega) \Gamma(1 + i\omega)},
\]

\[
|M_-|^2 = \frac{1}{\sin(i\omega \pi) \sin(-i\omega \pi)} \frac{e^{+\omega \pi}}{\Gamma(1 - i\omega) \Gamma(1 + i\omega)}. \quad (54)
\]

This means that for all solutions of that type the reflection coefficient always equals to 1:

\[
R = 1. \quad (55)
\]

11
Solutions of the second type, rising to infinity as \(z \to +\infty \), are characterized by
\[
M^I_\omega e^{i\omega z} + M^I_{-\omega} e^{-i\omega z}, \quad R = \frac{|M^I_\omega|^2}{|M^I_{-\omega}|^2} = e^{4\omega \pi} > 1.
\]

Finally, let us specify asymptotic behavior of solutions in terms of Neyman functions. They functions are defined by \[37\]
\[
N_{i\omega}(x) = \cos(i\omega \pi) J_{i\omega}(x) - J_{-i\omega}(x), \quad N_{-i\omega}(x) = J_{i\omega}(x) - \cos(i\omega \pi) J_{-i\omega}(x).
\]

In the region \(z \to +\infty \), \((x = iX \to i\infty)\), with the use of the known relation \[37\]
\[
N_{i\omega}(x) \sim \sqrt{\frac{2}{i\pi X}} \sin \left(iX - (i\omega + \frac{1}{2}) \frac{\pi}{2} \right),
\]
we get
\[
G^I_1(x) = N_{i\omega}(x) \sim ie^{i\pi/4} \sqrt{\frac{1}{2i\pi X}} e^{-\omega \pi/2} e^{X},
\]
\[
G^I_2(x) = N_{-i\omega}(x) \sim +ie^{i\pi/4} \sqrt{\frac{1}{2i\pi X}} e^{\omega \pi/2} e^{X}.
\]

In the region \(z \to -\infty \) their behavior is given by
\[
G^I(z) = \frac{\cos(i\omega \pi)}{\sin(i\omega \pi)} \frac{(i\sigma)^{i\omega}}{\Gamma(1 + i\omega)} e^{+i\omega z} - \frac{1}{\sin(i\omega \pi)} \frac{(i\sigma)^{-i\omega}}{\Gamma(1 - i\omega)} e^{-i\omega z},
\]
\[
G^{II}(z) = \frac{1}{\sin(i\omega \pi)} \frac{(i\sigma)^{i\omega}}{\Gamma(1 + i\omega)} e^{+i\omega z} - \frac{\cos(i\omega \pi)}{\sin(i\omega \pi)} \frac{(i\sigma)^{-i\omega}}{\Gamma(1 - i\omega)} e^{-i\omega z}.
\]

For these solutions we have respectively
\[
R^I = \frac{e^{2\omega \pi}}{(e^{2\omega \pi} + e^{-2\omega \pi})/4} = \frac{4}{1 + e^{-4\omega \pi}},
\]
\[
R^{II} = e^{2\omega \pi} \frac{(e^{2\omega \pi} + e^{-2\omega \pi})/4}{4} = \frac{1 + e^{4\omega \pi}}{4}.
\]

7 On explicit form of the function \(G_2 \)

The function \(G_1(x) \) satisfies the Bessel equation
\[
\left(\frac{d^2}{dx^2} + \frac{1}{x} \frac{d}{dx} + 1 + \frac{\omega^2}{x^2} \right) G_1 = 0;
\]
the second function \(G_2(x) \) is determined by
\[
G_2 = \frac{x}{\omega} \frac{d}{dx} G_1.
\]
Solutions of the Bessel equation obey the following recurrent formulas [37]

\[x \frac{d}{dx} F_{i\omega} = i\omega F_{i\omega} - x F_{i\omega+1}, \]
\[x \frac{d}{dx} F_{-i\omega} = +i\omega F_{-i\omega}(x) + x F_{-i\omega-1}, \]

(63)

where \(F_{\pm\nu} \) stands for \(J_{\pm\nu}(x) \), \(H^{(1)}_{\pm\nu}(x) \), \(H^{(2)}_{\pm\nu}(x) \), \(N_{\pm\nu}(x) \).

Therefore, with the help of (63), one can express \(G_2 \) in terms of the known \(G_1 \). For instance,

\[G^I_1(x) = H^{(1)}_{+i\omega}(x), \quad G^I_2(x) = i H^{(1)}_{+i\omega}(x) - \frac{x}{\omega} H^{(1)}_{i\omega+1}(x), \]
\[G^{II}_1(x) = H^{(2)}_{+i\omega}(x), \quad G^{II}_2(x) = i H^{(2)}_{+i\omega}(x) - \frac{x}{\omega} H^{(2)}_{i\omega+1}(x). \]

(64)

Remember that

\[F^I_1 = \frac{b}{\sqrt{a^2 + b^2}} G_1 + \frac{a}{\sqrt{a^2 + b^2}} G_2, \]
\[F^I_2 = -\frac{a}{\sqrt{a^2 + b^2}} G_1 + \frac{b}{\sqrt{a^2 + b^2}} G_2, \]
\[f^I_3 = \frac{e^{2z}}{\omega} (-ib F^I_1 + ia F^I_2) = \frac{\sqrt{a^2 + b^2}}{i \omega} G_1. \]

(65)

Let us examine asymptotic behavior of \(G_2 \). Starting with

\[H^{(1)}_{i\omega}(x) = +\frac{i}{\sin(i\omega \pi)} (e^{i\omega\pi} J_{+i\omega}(x) - J_{-i\omega}(x)), \]
\[H^{(2)}_{i\omega}(x) = -\frac{i}{\sin(i\omega \pi)} (e^{-i\omega\pi} J_{+i\omega}(x) - J_{-i\omega}(x)), \]
\[H^{(1)}_{i\omega+1}(x) = +\frac{i}{\sin(i\omega + 1)\pi} (e^{-i(\omega+1)\pi} J_{+i\omega+1}(x) - J_{-(\omega+1)}(x)), \]
\[H^{(2)}_{i\omega+1}(x) = -\frac{i}{\sin(i\omega + 1)\pi} (e^{i(\omega+1)\pi} J_{+i\omega+1}(x) - J_{-(\omega+1)}(x)), \]

(66)

with the help of relations

\[z \to -\infty, \ x \to i0, \]

\[J_{+i\omega}(x) \sim \frac{(i \sigma)^{i\omega}}{\Gamma(1 + i\omega)} e^{+i\omega z}, \quad J_{-i\omega}(x) \sim \frac{(i \sigma)^{-i\omega}}{\Gamma(1 - i\omega)} e^{-i\omega z}. \]

we get

\[z \to -\infty, \ x \to i0, \]

\[H^{(1)}_{i\omega} \sim +\frac{i}{\sin(i\omega \pi)} \left(e^{+\omega\pi} \frac{(i \sigma)^{i\omega}}{\Gamma(1 + i\omega)} e^{+i\omega z} - \frac{(i \sigma)^{-i\omega}}{\Gamma(1 - i\omega)} e^{-i\omega z} \right), \]
\[H^{(2)}_{i\omega} \sim -\frac{i}{\sin(i\omega \pi)} \left(e^{-\omega\pi} \frac{(i \sigma)^{i\omega}}{\Gamma(1 + i\omega)} e^{+i\omega z} - \frac{(i \sigma)^{-i\omega}}{\Gamma(1 - i\omega)} e^{-i\omega z} \right), \]
\[H^{(1)}_{\omega+1} \sim \frac{i}{\sin(\omega + 1)\pi} \left(e^{-i(\omega+1)\pi} \frac{(i\sigma)^{\omega+1}}{\Gamma(2 + i\omega)} e^{i\omega z} e^z - \frac{(i\sigma)^{-\omega-1}}{\Gamma(-i\omega)} e^{-i\omega z} e^{-z} \right) \]
\[\sim \frac{i}{\sin(\omega + 1)\pi} \frac{(i\sigma)^{-\omega-1}}{\Gamma(-i\omega)} e^{-i\omega z} e^{-z}, \]

\[H^{(2)}_{\omega+1}(x) \sim \frac{-i}{\sin(\omega + 1)\pi} \left(e^{i(\omega+1)\pi} \frac{(i\sigma)^{\omega+1}}{\Gamma(2 + i\omega)} e^{i\omega z} e^z - \frac{(i\sigma)^{-\omega-1}}{\Gamma(-i\omega)} e^{-i\omega z} e^{-z} \right) \]
\[\sim \frac{i}{\sin(\omega + 1)\pi} \frac{(i\sigma)^{-\omega-1}}{\Gamma(-i\omega)} e^{-i\omega z} e^{-z}. \]

So we get
\[G_I^2(x) = -\frac{1}{\sin(i\omega\pi)} \left(e^{+\omega\pi} \frac{(i\sigma)^{\omega}}{\Gamma(1 + i\omega)} e^{+i\omega z} e^z - \frac{(i\sigma)^{-\omega}}{\Gamma(1 - i\omega)} e^{-i\omega z} \right) \]
\[-\frac{2\sigma}{\omega} \frac{1}{\sin(i\omega\pi)} \frac{(i\sigma)^{-\omega-1}}{\Gamma(-i\omega)} e^{-i\omega z}. \] (67)

Taking into consideration an identity
\[= \frac{2\sigma}{\omega} \frac{1}{\sin(i\omega\pi)} \frac{(i\sigma)^{-\omega}(-i\omega)}{\Gamma(1 - i\omega)} e^{-i\omega z} = -2 \frac{1}{\sin(i\omega\pi)} \frac{(i\sigma)^{-\omega}}{\Gamma(1 - i\omega)} e^{-i\omega z} \] (68)

one reduces the above relation to the form
\[G_I^2(x) = -\frac{1}{\sin(i\omega\pi)} \left(e^{+\omega\pi} \frac{(i\sigma)^{\omega}}{\Gamma(1 + i\omega)} e^{+i\omega z} e^z + \frac{(i\sigma)^{-\omega}}{\Gamma(1 - i\omega)} e^{-i\omega z} \right). \] (70)

In similar manner one can treat the case
\[G_{II}^1 = \frac{1}{\sin(i\omega\pi)} \left(e^{-\omega\pi} \frac{(i\sigma)^{\omega}}{\Gamma(1 + i\omega)} e^{+i\omega z} e^z - \frac{(i\sigma)^{-\omega}}{\Gamma(1 - i\omega)} e^{-i\omega z} \right) \]
\[+ \frac{2\sigma}{\omega} \frac{1}{\sin(i\omega\pi)} \frac{(i\sigma)^{-\omega-1}}{\Gamma(-i\omega)} e^{-i\omega z} \]
\[= \frac{1}{\sin(i\omega\pi)} \left(e^{-\omega\pi} \frac{(i\sigma)^{\omega}}{\Gamma(1 + i\omega)} e^{+i\omega z} e^z + \frac{(i\sigma)^{-\omega}}{\Gamma(1 - i\omega)} e^{-i\omega z} \right). \] (71)

Behavior of these solutions when \(z \to +\infty \) is governed the relation
\[H^{(1)}_{\omega}(x) \sim \sqrt{\frac{2}{\pi x}} \exp \left[+i \left(x - \frac{\pi}{2}(i\omega + \frac{1}{2}) \right) \right], \]
\[H^{(2)}_{\omega}(x) \sim \sqrt{\frac{2}{\pi x}} \exp \left[-i \left(x - \frac{\pi}{2}(i\omega + \frac{1}{2}) \right) \right]; \]
from whence it follows

\[H_{i\omega}^{(1)}(x) \sim e^{-i\pi/4} \sqrt{\frac{2}{i\pi X}} e^{+\omega\pi/2} e^{-X}, \]

\[H_{i\omega}^{(2)}(x) \sim e^{+i\pi/4} \sqrt{\frac{2}{i\pi X}} e^{-\omega\pi/2} e^{+X}, \]

\[H_{i\omega+1}^{(1)}(x) \sim \sqrt{\frac{2}{i\pi X}} \exp \left[+i \left(iX - \frac{\pi}{2} (i\omega + 1 + \frac{1}{2}) \right) \right] \]

\[\sim -i e^{-i\pi/4} \sqrt{\frac{2}{i\pi X}} e^{+\omega\pi/2} e^{-X}, \]

\[H_{i\omega+1}^{(2)}(x) \sim \sqrt{\frac{2}{i\pi X}} \exp \left[-i \left(iX - \frac{\pi}{2} (i\omega + 1 + \frac{1}{2}) \right) \right] \]

\[\sim i e^{+i\pi/4} \sqrt{\frac{2}{i\pi X}} e^{-\omega\pi/2} e^{+X}. \] (72)

Therefore, we arrive at the formulas

\[G_{I}^{(1)}(x) = i \frac{1}{\omega} \frac{d}{dz} h_{i\omega}(x) - \frac{x}{\omega} H_{i\omega+1}^{(1)}(x) \]

\[\sim ie^{-i\pi/4} \sqrt{\frac{2}{i\pi X}} e^{+\omega\pi/2} e^{-X} - \frac{X}{\omega} e^{-i\pi/4} \sqrt{\frac{2}{i\pi X}} e^{+\omega\pi/2} e^{-X}, \]

\[G_{I}^{(2)} = i \frac{1}{\omega} \frac{d}{dz} h_{i\omega}(x) - \frac{x}{\omega} H_{i\omega+1}^{(2)}(x) \]

\[\sim ie^{+i\pi/4} \sqrt{\frac{2}{i\pi X}} e^{-\omega\pi/2} e^{+X} + \frac{X}{\omega} e^{+i\pi/4} \sqrt{\frac{2}{i\pi X}} e^{-\omega\pi/2} e^{+X}. \] (73)

Evidently, to find asymptotic for \(G_{2} \), it is sufficient to make use of the known asymptotic for \(G_{1} \). For instance,

\[G_{2} \sim \frac{1}{i\omega} \frac{d}{dz} \left(\frac{i}{\sin(i\omega\pi)} \left(e^{+\omega\pi} \frac{(i\sigma)^{i\omega}}{\Gamma(1+i\omega)} e^{+i\omega z} - \frac{(i\sigma)^{-i\omega}}{\Gamma(1-i\omega)} e^{-i\omega z} \right) \right) \]

\[= -\frac{1}{\sin(i\omega\pi)} \left(e^{+\omega\pi} \frac{(i\sigma)^{i\omega}}{\Gamma(1+i\omega)} e^{+i\omega z} + \frac{(i\sigma)^{-i\omega}}{\Gamma(1-i\omega)} e^{-i\omega z} \right); \] (74)

which coincides with (70). It is a superposition of two plane waves with reflection coefficient \(R = 1 \).

8 Concluding remarks

In accordance with (39), an equation below

\[\omega^2 = U(z) \quad \omega^2 = (a^2 + b^2) e^{2z_0} \] (75)

determines a critical point \(z_0 \) in which behavior of the function \(G_{1}(x) \) must change dramatically. To such a point \(z_0 \) there corresponds

\[x_0 = i\sqrt{a^2 + b^2} e^{z_0} = i\omega. \] (76)
In order to examine behavior of solutions in vicinity of \(x_0 \), it is convenient to introduce a new coordinate

\[
x = x_0 + i\omega \ u = i\omega (1 + u) , \quad \frac{d}{dx} = \frac{1}{i\omega} \frac{d}{du} ;
\]

(77)
eq. (40) for \(G_1(x) \) assumes the form

\[
\left(\frac{d^2}{du^2} + \frac{1}{1 + u} \frac{d}{du} - \frac{1}{(1 + u)^2} \right) G_1 = 0 .
\]

(78)

Close to \(u = 0 \), we have

\[
\left(\frac{d^2}{du^2} + \frac{d}{du} \right) G_1 = 0 .
\]

(79)

that is

\[
G_1 = e^{Bu}, \quad B^2 + B = 0, \quad B = 0, -1 ;
\]

physically interesting is the choice \(B = -1 \).

To such a critical value \(x_0 = i\omega \), there correspond

\[
\omega = \sqrt{k_1^2 + k_2^2} e^{z_0} \implies z_0 = \ln \frac{\omega}{\sqrt{k_1^2 + k_2^2}} ;
\]

(80)
in usual units, this relation reads

\[
z_0 = \rho \ln \frac{\omega}{c \sqrt{k_1^2 + k_2^2}} ,
\]

(81)

where \(\rho \) is a curvature radius of the Lobachevsky space.

Let us summarize results.

Lobachevsky geometry simulates a medium with special constitutive relations. The situation is specified in quasi-cartesian coordinates \((x, y, z)\). Exact solutions of the Maxwell equations in complex 3-vector \(E + iB \) form, extended to curved space models within the tetrad formalism, have been found in Lobachevsky space. The problem reduces to a second order differential equation which can be associated with an 1-dimensional Schrödinger problem for a particle in external potential field \(U(z) = U_0 e^{2z} \).

In quantum mechanics, curved geometry acts as an effective potential barrier with reflection coefficient \(R = 1 \); in electrodynamic context results similar to quantum-mechanical ones arise: the Lobachevsky geometry simulates a medium that effectively acts as an ideal mirror. Penetration of the electromagnetic field into the effective medium, depends on the parameters of an electromagnetic wave, frequency \(\omega \), \(k_1^2 + k_2^2 \), and the curvature radius \(\rho \) – see (81). See illustrations in Fig. 2,3.
Figure 2: $\text{Im} H^{(1)}_{+i\omega}, \omega = 10$

Figure 3: $\text{Im} H^{(1)}_{+i\omega}, \omega = 20$

9 Acknowledgement

Authors are grateful to Dr. G.G. Krylov for help and advices. This work was supported by the Fund for Basic Researches of Belarus, Grant F11M-152.
References

[1] M.N. Olevsky. Three-orthogonal coordinate systems in spaces of constant curvature, in which equation $\Delta_2 U + \lambda U = 0$ permits the full separation of variables. Mathematical collection. 1950. Vol. 27. P. 379 – 426.

[2] Weber H. Die partiellen Differential-Gleichungen der mathematischen Physik nach Riemann’s Vorlesungen. Friedrich Vieweg und Sohn. Braunschweig. 1901. P. 348.

[3] Silberstein L. Elektromagnetische Grundgleichungen in bivectorieller Behandlung. // Ann. Phys. 1907. Bd. 22. S. 579 – 586.

[4] Oppenheimer J. Note on light Quanta and the electromagnetic field // Phys. Rev. 1931. Vol. 38. P. 725 – 746.

[5] Majorana E. Scientific Papers. Unpublished. Deposited at the ”Domus Galileana”. Pisa, quaderno 2, p. 101/1; 3, p. 11, 160; 15, p. 16; 17, p. 83, 159.

[6] Marcolongo R. Les transformations de Lorentz et les équations de l’électrodynamique // Annales de la Faculté des Sciences de Toulouse. 1914. Vol. 4. P. 429 – 468.

[7] Bateman H., The Mathematical analysis of electrical and Optical wave-Motion on the basis of Maxwells equations. Cambridge University Press, 1915.

[8] Tonnelat M. Sur la théorie du photon dans un espace de Riemann // Ann. Phys. N.Y. 1941. Vol. 15. P. 144.

[9] Borgardt. Wave equations for a phiton. // JETP. 158. 34 (1958) 1323-1325.

[10] Kuohsien T. Sur les theories matricielles du photon // C. R Acad. Sci. Paris. 1857. Vol. 245. P. 141 – 144.

[11] Lomont J. Dirac-like wave equations for particles of zero rest mass and their quantization // Phys. Rev. 1958. Vol. 11. P. 1710 – 1716.

[12] Sachs M., Schwebel S. On covariant formulations of the Maxwell-Lorentz theory of electromagnetism // J. Math. Phys. 1962. Vol. 3. P. 843 – 848.

[13] Ellis J. Maxwell’s equations and theories of Maxwell form // Ph.D. thesis. University of London. 1964. 417 p.

[14] Mignani R., Recami E., Baldo M., About a Dirac-like equation for the photon, according to E. Majorana // Lett. Nuovo Cimento. 1974. Vol. 11. P. 568 – 572.

[15] Edmonds J. Comment on the Dirac-like equation for the photon // Nuovo Cim. Lett. 1975. Vol. 13. P. 185 – 186.

[16] Da Silveira A. Invariance algebras of the Dirac and Maxwell equations // Nouvo Cim. A. 1980. Vol. 56. P. 385 – 395.

[17] Chow T. A Dirac-like equation for the photon // J. Phys. A. 1981. Vol. 14. P. 2173 – 2174.
[18] Fushchich V.I. Nikitin A.G. Symmetries of Maxwell’s equations. Kluwer. Dordrecht. 1987.

[19] Cook R. Photon dynamics // Phys. Rev. A. 1982. Vol. 25. P. 2164 – 2167; Lorentz covariance of photon dynamics // Phys. Rev. A. 1982. Vol. 26. P. 2754 – 2760.

[20] Recami E. Possible physical meaning of the photon wave-function, according to Ettore Majorana // Hadronic Mechanics and Non-Potential Interactions. New York, 1990. P. 231 – 238.

[21] Inagaki T. Quantum-mechanical approach to a free photon // Phys. Rev. A. 1994. Vol. 49. P. 2839 – 2843.

[22] Bialynicki-Birula I. On the wave function of the photon // Acta Phys. Polon. 1994. Vol. 86. P. 97 – 116; Photon wave function // Progress in Optics. 1996. Vol. 36. P. 248 – 294; arXiv:quant-ph/050820.

[23] Bialynicki-Birula I., Bialynicka-Birula Z. Beams of electromagnetic radiation carrying angular momentum: The Riemann – Silberstein vector and the classical-quantum correspondence // arXiv:quant-ph/0511011.

[24] Sipe J. Photon wave functions// Phys. Rev. A. 1995. Vol. 52. P. 1875 – 1883.

[25] Gersten A. Maxwell equations as the one-photon quantum equation // Found. of Phys. Lett. 1998. Vol. 12. P. 291 – 298; arXiv:quant-ph/9911049.

[26] Esposito S. Covariant Majorana formulation of electrodynamics // Found. Phys. 1998. Vol. 28. P. 231 – 244; arXiv:hep-th/9704144.

[27] Dvoeglazov V. Historical note on relativistic theories of electromagnetism // Apeiron. 1998. Vol. 5. P. 69 – 88.

[28] Ivezić T. Lorentz invariant Majorana formulation of the field equations and Dirac-like Equation for the Free Photon // EJTP. 2006. Vol. 3. P. 131 – 142.

[29] Varlamov V. About algebraic foundations of Majorana – Oppenheimer quantum electrodynamics and de Broglie – Jordan neutrino theory of light // Ann. Fond. L. de Broglie. 2003. Vol. 27. P. 273 – 286.

[30] Khan S. Maxwell optics: I. An exact matrix representation of the Maxwell equations in a medium // arXiv:physics/0205083; Maxwell optics: II. An exact formalism // arXiv:physics/0205084; Maxwell Optics: III. Applications // arXiv:physics/0205085.

[31] Tetrode H. Allgemein relativistische Quantentheorie des Elektrons // Zeit. Phys. 1928. Bd. 50. S. 336.

[32] Weyl H. Gravitation and the electron // Proc. Nat. Acad. Sci. Amer. 1929. Vol. 15. P. 323 – 334; Gravitation and the electron // Rice Inst. Pamphlet. 1929. Vol. 16. P. 280 – 295; Elektron und Gravitation // Zeit. Phys. 1929. Bd. 56. S. 330 – 352.
[33] Fock V., Ivanenko D. Über eine mögliche geometrische Deutung der relativistischen Quantentheorie // Zeit. Phys., 1929. Bd. 54. S. 798 – 802; Géométrie quantique linéaire et déplacement parallèle // C. R. Acad. Sci. Paris. 1929. Vol. 188. P. 1470 – 1472; Fock V. Geometrisierung der Diracschen Theorie des Elektrons // Zeit. Phys. 1929. Bd. 57. S. 261 – 277.

[34] V.M. Red'kov. Fields in Riemannian space and the Lorentz group. Publishing House "Belarusian Science", Minsk, 2009 (in Russian).

[35] L.D. Landau, E.M. Lifshitz. The theory of the field. Moskow, 1973 (in Russian).

[36] V.M. Red'kov, N.G. Tokarevskaya, E.M. Ovsiyuk, George J. Spix. Maxwell equations in Riemannian space-time, geometry effect on material equations in media. NPCS, 2009. Vol. 12. No 3. P. 232–250.

[37] A. Kratzer, W. Franz. Transcendent functions. Mockow, 1963 (in Russian).