Clustering, Encoding and Diameter Computation Algorithms for Multidimensional Data
Mugurel Ionut Andreica, Eliana-Dina Tirsa

To cite this version:
Mugurel Ionut Andreica, Eliana-Dina Tirsa. Clustering, Encoding and Diameter Computation Algorithms for Multidimensional Data. Proceedings of the IEEE International Conference on Automation, Quality and Testing, Robotics (THETA 2017) (AQTR) - Student Forum, 2010. (ISBN: 978-973-662-574-9), May 2010, Cluj-Napoca, Romania. hal-00519263

HAL Id: hal-00519263
https://hal.archives-ouvertes.fr/hal-00519263
Submitted on 19 Sep 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Clustering, Encoding and Diameter Computation Algorithms for Multidimensional Data

Mugurel Ionuș Andreica, Eliana-Dina Tirșa
Politehnica University of Bucharest, Computer Science Department, {mugurel.andreica, eliana.tirs}@cs.pub.ro

Abstract—In this paper we present novel algorithms for several multidimensional data processing problems. We consider problems related to the computation of restricted clusters and of the diameter of a set of points using a new distance function. We also consider two string (1D data) processing problems, regarding an optimal encoding method and the computation of the number of occurrences of a substring within a string generated by a grammar. The algorithms have been thoroughly analyzed from a theoretical point of view and some of them have also been evaluated experimentally.

I. INTRODUCTION

In this paper we consider several multidimensional data processing problems, for which we present novel algorithmic techniques. Two important problems in processing multidimensional sets of points are: clustering and the computation of the diameter with respect to a distance function. An efficient clustering method has two advantages: it provides information about the structure of the set of points and can be used for providing a more compact representation of the set of points (by describing just the clusters and not the individual points). Computing the diameter of a set of points is important particularly in association with other metrics. It can provide relevant information regarding the distribution of the points in space.

One-dimensional data (e.g. textual data) is a particular case of multidimensional data which is of a high practical interest. Computing optimal encodings and analyzing large amounts of data (given explicitly or implicitly) are important in many practical fields. In this paper we propose a new algorithm for computing an optimal encoding with respect to several rules, and a solution for computing the number of occurrences of a substring in a large string (implicitly generated by a grammar).

The rest of this paper is structured as follows. In Section II we present related work. In Section III we discuss the problem of covering a set of points by using at most \(kh\) (restricted) hyper-rectangles. A hyper-rectangle is the simplest way of representing a multi-dimensional cluster. The fact that the hyper-rectangles need not be non-overlapping implies that the clusters need not be disjoint. In Section IV we present a new algorithm for computing the diameter of a set of points, using a new distance function. In Section V we discuss two string processing problems, regarding the optimal encoding and the analysis of text data. In Section VI we conclude and discuss future work.

II. RELATED WORK

Geometric K-center problems (related to the hyper-rectangle covering problem from Section III) were presented in [1]. Efficient algorithms for geometric optimization problems similar to those introduced in this paper were given in [2]. Multidimensional data structures like the range tree or multidimensional versions of 2D data structures like the segment tree were presented in [3, 4, 5]. A similar model for partitioning the dimensions into groups as the one we use in Section III, but applied to a multidimensional range minimum query problem, was mentioned in [5]. Related 2D data structures and related problems in multiple dimensions in the OLAP domain were considered in [6, 7].

III. HYPER-RECTANGLE COVERING

A. Problem Description and Algorithmic Solutions

We consider the following problem. We are given a set of \(r\) points \((xc(i,1),..., xc(i,d))\) \((1 \leq i \leq r)\) in a \(d\)-dimensional space. We want to cover all of the points with at most \(kh\) hyper-rectangles having the following properties. A hyper-rectangle is defined by \(d\) intervals \([a_1, b_1],..., [a_d, b_d]\) and contains all the points \((x_1, ..., x_d)\) for which \(a_\leq x \leq b_\) \((1 \leq i \leq d)\). The side length \(l(i)\) of a hyper-rectangle in dimension \(i\) is \(b_i-a_i\). We consider the \(d\) dimensions as being classified into \(e\) \(d\)-groups. Let \(g(i)\) be the group to which the dimension \(i\) belongs \((1 \leq g(i) \leq e; 1 \leq d)\). The side lengths of the hyper-rectangles we want to place in each dimension \(i\) must satisfy the constraint: \(l(i) = f(i) \cdot l(g(i))\). Thus, the side lengths of each hyper-rectangle are uniquely defined by the values \(l(j)\) \((1 \leq j \leq e)\). Moreover, for each group \(j\) we have a lower bound \(lmin(j)\) and an upper bound \(lmax(j)\), meaning that \(lmin(j) \leq l(j) \leq lmax(j)\).

A hyper-rectangle can be placed anywhere in space and a point is covered by the (at most) \(kh\) hyper-rectangles if it is contained within at least one of the hyper-rectangles. We want to place the (at most) \(kh\) hyper-rectangles such that an aggregate function \(aggf\) of their costs is minimized (e.g. \(aggf=x\)). The cost of a hyper-rectangle can be any non-negative value which depends on the side lengths of the hyper-rectangle and, possibly, on the points contained within it, but must not depend on the actual coordinates of the hyper-rectangle. The cost function should be non-decreasing with respect to each side length. The aggregate value must be computed using a commutative function of the hyper-rectangles’ costs, which must be non-decreasing with respect to the “addition” of the cost of a new hyper-rectangle.

We will present several solutions for this problem, each of them successively improving the previous one. We will start by sorting the coordinates of the points in each dimension. Let \(xo(i,1) \leq xo(i,2) \leq ... \leq xo(i,r)\) be the order of the points in the dimension \(i\). We will remove the duplicates in the ordering (maintaining only one coordinate with a given value) and we obtain the ordering: \(xp(i,1) < xp(i,2) < ... < xp(i,m(i))\), where \(m(i)\) is the number of distinct coordinates in the dimension \(i\). We
will denote by \(n = \max\{m(i) | 1 \leq i \leq d\} \). We will use the value of \(n \) when analyzing the time complexity of our solutions, because it will be easier than using the values \(m(i) \) explicitly. If the point set is sparse, then we may have \(n = O(r) \). If the point set is dense, then we may have \(n = O(r^{1/d}) \).

The first step in each of the presented solutions is to compute the minimum bounding hyper-rectangle (MBR) of the \(r \) points. This hyper-rectangle \([x_{\text{min}}(i), x_{\text{max}}(i)] \) (1 \(\leq i \leq d \)) has the minimum (hyper-)volume possible and still contains all the \(r \) points inside. For simplicity, we will assume that the parameters of all the hyper-rectangles will be expressed in terms of indices into the sorted arrays \(x_p(*) \), i.e. \(a_i = j, b_i = k \) means that the side of the hyper-rectangle is \([x_p(i,1), x_p(i,m(i))] \).

The first presented solution is a generic, yet naïve, solution and is described in the following pseudo-code:

```plaintext
hrcover(S, HRMBR, kh):
    if (|S|=0) then return 0
    if (kh=1) then {
        xmin(j)=x_p(j,HRMBR.a_j) : xmax(j)=x_p(j,HRMBR.b_j) (1 \( \leq i \leq d \))
        l(j)=lmin(j) (1 \( \leq i \leq d \))
        for i=1 to d do l(i)=max{l(i), x(i)-min(j)/f(i)}
        if (l(i)>lmax(j) for some 1 \( \leq i \leq d \) then return +\(\infty\)
        xmax(j)=x(i)+f(i)·l(j) (1 \( \leq i \leq d \))
        return cost([xmin(j), xmax(j)] (1 \( \leq i \leq d \), S))
    } else {
        C_{min} = +\(\infty\)
        for each HR in generateHyperRectangles(HRMBR, kh) do {
            U={p in S | HR.xmin(j)\leq x(j)\leq HR.xmax(j) for every 1 \( \leq i \leq d \)}
            C=cost([HR.xmin(j), HR.xmax(j)] (1 \( \leq i \leq d \), U)
            MBR=computeMBR(S')
            C_{min}=min[C_{min}, aggFC(S, hrcover(S', MBR', kh-1))]
        }
        return C_{min}
    }
```

```
generateHyperRectangles(HRMBR, kh):
    HRList = []
    for each tuple (c_1,...,c_d) such that HRMBR.a\(_i\)\leq c_i\leq HRMBR.b_i (1 \( \leq i \leq d \))
        xmin(j)=x_p(j,c_j)
        let diffSet(g)=\{x_p(j,a)-x_p(j,c) | a\geq c; \ g(j)=g; \ 1 \leq j \leq d \}
        let diffMax(g)=max{diff \in diffSet(g)} (1 \leq g \leq d)
        for each tuple (l(1),...,l(e)) such that l\(_{\text{min}}\)\(\leq l(j)\leq l_{\text{max}}(j)\)
        and (l(j) in diffSet()) or (l(j)=lmin(j)+diffMax(j)) (1 \( \leq i \leq d \) do {
            xmax(j)=x(p(j)+f(j)·l(j)) (1 \( \leq i \leq d \))
            HRList.add([xmin(j), xmax(j)] (1 \( \leq i \leq d \}))
        }
    return HRList
```

The parameters of the \(hrcover \) algorithm are \(S \) the set of newly uncovered points, \(HRMBR \) the minimum bounding hyper-rectangle of the points in \(S \) (expressed in terms of indices in the sorted arrays \(x_p(*) \)) and \(kh \) the number of remaining hyper-rectangles. The \(cost \) function takes as arguments the current hyper-rectangle and the set of points \(U \) located inside it. If the cost function does not depend on the set \(U \), then it can be computed in \(O(1) \) time; otherwise, its time complexity may be higher (depending on the actual function). We will denote by \(CC(r) \) the time complexity of computing the cost function when \(|U|=O(r) \). \(generateHyperRectangles(HRMBR, kh) \) generates a list of possible placements for the current hyper-rectangle. \(computeMBR(S') \) computes the minimum bounding hyper-rectangle \(MBR' \) of the points from the set \(S' \). The parameters of \(MBR' \) will also be expressed in terms of indices into the arrays \(x_p(*) \). In order to compute these indices, we will store for each point \(i \) and dimension \(j \) the index \(idstr(i,j) \) such that \(x_p(j)=x_t(i,j) \) (this index can be computed during the initial sorting of the coordinates along each dimension). Thus, \(MBR' \) can be computed in \(O(|S'|·d) \) time (we will maintain the point with the minimum and maximum coordinate in each dimension and then compute the result using the values \(idstr(*,*) \)).

For each of the \(kh \) hyper-rectangles, the algorithm considers each possible value of their left and right coordinates in each dimension. For each assignment of the coordinates, the algorithm computes the set of points outside of the hyper-rectangle and their minimum bounding hyper-rectangle. This takes \(O(r·d·n^{2d}) \) time for each of the first \(kh \) hyper-rectangles. The final time complexity is \(O(r^{kh-1}·d^{kh-1}·n^{2·d}·O(r·d·log(r))) \). This analysis is correct only if the cost function can be computed in \(O(1) \) time. Otherwise, we need to include the time complexity of computing the cost function within the time complexity equation. For the general case, we will denote by \(T(r,n,kh) \) the time complexity for computing an optimal cover of \(O(r) \) points with at most \(n \) distinct coordinates in each dimension and using at most \(kh \) hyper-rectangles. \(T(r,n,1)\geq O(d+C(r)) \). \(T(r,n,kh)\geq2 \cdot O((r+d+CC(r))·n) \). We must also add the initial \(O(r·d·log(r)) \) factor for sorting the coordinates and computing the initial minimum bounding hyper-rectangle.

The presented algorithm can be optimized in two directions. First, we can generate fewer potential hyper-rectangles. Second, we can compute in a more efficient manner the minimum bounding hyper-rectangle of the points not contained in any of the hyper-rectangles that were placed so far.

The first optimization is based on the following observation. The MBR of a set of points has \(2·d \) sides (it is defined by \(2·d \) parameters). If we want to cover the points by using \(kh \) hyper-rectangles, then some of the parameters of these hyper-rectangles will need to coincide with the parameters of the MBR (or exceed them in the corresponding direction). Using Dirichlet’s principle, there must be at least one hyper-rectangle with \(q=2·d/kh \) (rounded up) common parameters with the MBR. This hyper-rectangle will be placed next. We will consider all the combinations of \(q \) common parameters and choose the remaining \(2·d-q \) parameters as before. The pseudocode of the optimized \(generateHyperRectangles \) function is below:

```plaintext
generateHyperRectangles(HRMBR, kh):
    HRList = []
    q = \( \lceil \frac{2·d}{kh} \rceil \)
    for each subset \( S'O \) with \( q \) elements of the set \{-1, -2, ... , d, +1, +2, ... , d\} do {
        for each tuple (ha_1, ..., ha_q, hb_1, ..., hb_d) such that HRMBR.a_1 \leq ha_1 \leq HRMBR.b_1 (1 \leq i \leq d) \) and (if -i is in \( S'O \) then ha_i=HRMBR.a_i else true (1 \leq i \leq d)) \) and (if +i is in \( S'O \) then hb_i=HRMBR.b_i else true (1 \leq i \leq d)) do {
            xmin(j)=x_p(j,ha_j) (1 \leq i \leq d) : xmax(j)=x_p(j,hb_j) (1 \leq i \leq d)
        }
    }
```

...

for \(i = 1 \) to \(d \) do \(\ell(i) = \max(\ell(i)), \{\text{max}(i)-\text{min}(i)\}f(i) \) if \((\ell(i)) \leq \text{max}(i) \) (for some \(1 \leq i \leq d \)) then continue

\[
\text{max}(j) = \text{min}(j) + f(j) \ell(j) (1 \leq j \leq d) \\
\text{HRList} = \text{add}([\text{min}(j), \text{max}(j)] (1 \leq j \leq d)) \\
\text{return HRList}
\]

The time complexity of the algorithm using the optimized generateHyperRectangles function can be analyzed as follows. At each function call with \(kh \geq 2 \), \(C(2,d,q) \) sets \(SQ \) are considered \((C(a,b)\text{-combinations of a elements taken b at a time). For each set \(SQ \), \(O(\min(n^x,n^2d^q)) \) hyper-rectangles are considered. Thus, the total number of hyper-rectangles considered at each step may decrease significantly.

The second improvement consists of the way the MBR \([a',b',r'](1 \leq d)\) of the points from the set \(S' \) is computed. So far, we computed the MBR in \(O(|S|) \) time. However, we can do even better. We will insert all the points from the set \(S \) into several data structures \(DS_{i,k} \). Then, after choosing the parameters \(\{\text{min}(j),\text{max}(j)\} (1 \leq j \leq d) \) of the current hyper-rectangle, we will proceed as follows. We need to compute \(a' = \min_{i=1}^{d} \{\text{id}(x,i) | 1 \leq i \leq d \} \) in \(x(i,j) < \text{min}(k) \) (for some value of \(k \); \(1 \leq i \leq d \)) or \(x(i,j) > \text{max}(k) \) (for some value of \(k \); \(1 \leq i \leq d \)) and \(b' = \max_{i=1}^{d} \{\text{id}(x,i) | 1 \leq i \leq d \} \). Each possibility \(x(i,j) < \text{min}(k) \) or \(x(i,j) > \text{max}(k) \) defines an orthogonal half-space. We need to query \(DS_{i,k} \) with respect to such a half-space. This is a special case of orthogonal range query.

We will construct \(d \) data structures \(DS_{i,k} (1 \leq d) \) into which every point \(i \) from \(S \) is inserted, with a weight equal to \(\text{id}(x,i) \). Then, we need to answer orthogonal range minimum and maximum queries over these data structures. An orthogonal range min (max) query returns the minimum (maximum) weight of a point located in the query range. Then, \(a' = \min_{i=1}^{d} \{\text{id}(x,i) | 1 \leq i \leq d \} \) and \(b' = \max_{i=1}^{d} \{\text{id}(x,i) | 1 \leq i \leq d \} \). Let \(r' = |S'| \). The \(DS_{i,k} \) data structure simply sorts the points according to their \(x(i,j) \) coordinates, obtaining an ordering \(x(p_{i,1}(j)) \leq \ldots \leq x(p_{i,r'}(j)) \). We will also have \(x(p_{i,0}(j)) = -\infty \) and \(x(p_{i,r'}(j)) = +\infty \). Then, we compute a prefix minimum \(\text{min}(i) \) and a prefix maximum \(\text{max}(i) \). For each possible value \(j \) \(1 \leq j \leq d \), we can sort the points according to their \(x(i,j) \) coordinate and return \(\text{prefix min}(i) \) \(\text{prefix max}(i) \). Similarly, we compute a suffix minimum and maximum, \(\text{min}(i-1) \) and \(\text{max}(i-1) \). The queries for the minimum (maximum) value \(x(i,j) \) from \(x(p_{i,0}(j)) \) \(x(p_{i,r'}(j)) \) are answered by using the data structure \(DS_{i,k} \). We binary search the maximum position \(\text{pos} \) (for \(S' \)) such that \(x(p_{i,0}(\text{pos})) < \text{min}(j) \) [the minimum position \(\text{pos} \) (for \(S' \)) such that \(x(p_{i,0}(\text{pos})) < \text{max}(j) \) and return \(\text{min}(i) \) \(\text{max}(i) \). If the values \(\min(j) \) \(\max(j) \) which can be used as query parameters are known in advance and their number is not too large, then we can sort all the possible values and, for each such value, precompute the corresponding value \(\text{pos} \); we traverse the set of sorted values in ascending (descending) order and, when searching for the corresponding value \(\text{pos} \), we start from the value \(\text{pos} \) found for the previously considered value and increase (decrease) it as long as the required condition holds; for the first considered value we start with \(\text{pos} = 0 \) \(\text{pos} = r' + 1 \). Then, we insert into a hash table \(H \) (for each possible value \(x(i,j) \) \(x(i,j) \) together with its corresponding \(\text{pos} \) value and, when a query with parameter \(x(i,j) \) \(x(i,j) \) is asked, we simply retrieve the value \(\text{pos} \) from the hash table in \(O(1) \) time.

Answering such queries takes \(O(\log(|S|)) \) per query (or \(O(1) \) if we can use the hash tables). Thus, computing the MBR takes \(O(d^2 \log(|S|)) \) time (or only \(O(d^2) \) time). Constructing the data structures takes \(O(d^2 \log(|r|)) \) time overall. However, since the points can be sorted in the beginning according to each dimension, we can construct each data structure in \(O(d^2) \) time (by considering the corresponding sorted order and maintaining only those points which are still in \(S \)).

If the set of points is dense, then the number of distinct coordinates in each dimension is small. In this case, we can sort the points according to each dimension \(j \) using a variation of count-sort. For each possible value \(q \) of the coordinates in dimension \(j \), we maintain a list \(L(q) \) in which all the points \(o \) with the coordinate \(x(o,j) = q \) are inserted (each insertion is performed in \(O(1) \) time). Then, in order to obtain the final order of the points according to the dimension \(j \), we simply concatenate the lists \(L(q) \) in increasing order of the coordinate values \(q \). This way, the sorting of the points in the dimension \(j \) takes \(O(n+r) \) time. We can use the same procedure for sorting the possible query parameters \(\min(j) \) \(\max(j) \) of the data structures \(DS_{i,k} \) when they are known in advance and their number is not too large.

The improvement regarding the use of data structures makes sense mostly when \(kh = 2 \), because in this case we do not need to also compute the set \(S' \) (since the obtained MBR is used directly at \(kh = 1 \)). If we also need to compute the set \(S' \), then we will first compute the set \(S' \) and only afterwards will we compute the MBR, in \(O(|S'|) \) time, by considering every point from \(S' \) (i.e. in the normal manner). However, if \(|S'| \) is significantly smaller than \(|S| \), we could proceed as follows. We could insert (initially) all the points from \(S \) into a range tree \(RT \). Then, the set \(S' \) can be computed by reporting (rather than counting) all the points from \(RT \) which are within a union of orthogonal query ranges. There are \(3^d - 1 \) such ranges. The interval of each dimension \(j \) is split into 3 ranges: \([-\infty, \text{HR}(\min(j))] \) \([\text{HR}(\min(j)), \text{HR}(\max(j))] \) and \([\text{HR}(\max(j)), +\infty] \), thus obtaining a division of the space into \(3^d \) disjoint orthogonal regions. The only region we are not interested in is the “middle” region (i.e. the one corresponding to the current hyper-rectangle: \([\text{HR}(\min(j)), \text{HR}(\max(j))] \) \(1 \leq j \leq d \)). With these improvements, the time complexity of the algorithm decreases significantly.

Note that the idea of dividing the space into \(3^d \) regions can also be used for computing the MBR. Instead of the \(DS_{i,k} \) data structures, we will use \(d \)-dimensional range trees \(RTD_{i,k} (1 \leq k \leq d) \). In each range tree \(RTD_{i,k} \) we will insert all the points \(i \) from \(S \) and we associate to them a weight equal to \(\text{id}(x,i) \) \(1 \leq j \leq d \). Then, when computing the MBR, we need the following values: \(a' = \min_{i \leq d} \text{rangeMin} \text{reg}(reg) \) \(1 \leq reg \leq d \) and \(\text{RTD}_{i,k} \text{rangeMin} \text{reg}(reg) \) returns the minimum weight of a point.
located in the (orthogonal) region \(r \leq d \). Similarly, we have \(b' := \max(\text{RTDS}_0, \text{rangeMax}(\text{reg})) \) if \(\text{reg} \) is one of the \(3^d \)-1 regions (i.e. not the middle region) and \(\text{RTDS}_0, \text{rangeMax}(\text{reg}) \) returns the maximum weight of a point located in the (orthogonal) region \(r \leq d \). In this case, computing the MBR takes \(O(d \cdot 3^{\lfloor d/2 \rfloor}) \) time, which is worse than the previous solution based on the DS, \(\ast \) data structures.

Algorithm 1: hcoverOpt(S, HRMBR, kh)

- **if** \((|S|)=0\) **then return** 0
- **if** \((kh=1)\) **then**
 - \(\text{min}(j) := \text{xp}(j, \text{HRMBR}._a) \)
 - \(\text{max}(j) := \text{xp}(j, \text{HRMBR}._b) \) (1 \(\leq d \))
 - \(l(j) := \text{min}(j) \text{ and } \max((\text{max}(i)-\min(i))(i) \text{ if } g(i)=j, \text{ 1} \leq i \leq d)\) (1 \(\leq se)\)
 - **if** \((l(j)) > \text{max}(j)\) (for some 1 \(\leq i \leq se)\) **then return** +\(\infty \)
 - \(\text{return} \text{cost}[(\text{min}(j), \text{max}(j))(1 \leq j \leq d), S] \)
 - **else**
 - \(C_{\min} := +\infty \)
 - **insert** all the points from \(S \) in a \(d \)-dimensional range tree \(\text{RT} \) construct the DS, \(\ast \) data structures
 - **for each** \(HR \) in generateHyperRectangles(\(\text{HRMBR}, \text{kh} \) do)
 - **if** the cost function does not depend on the points located inside the hyper-rectangle then
 - **if** \((kh>2)\) **then construct** \(S' \) as the union of \(3^d \)-1 range reporting queries in \(\text{RT} \) \((\ast)\)
 - **else** \(S' := \text{any non-empty set of points} \text{ (e.g. just 1 point)} \)
 - \(C := \text{cost}[(\text{HR}._\text{min}(j), \text{HR}._\text{max}(j))(1 \leq j \leq d), \ast] \)
 - **else**
 - \(U[=\{ \text{in } \text{SR} \text{.min}(j) \leq x(p,j) \leq \text{SR} \text{.max}(j) \text{ for every } 1 \leq j \leq d\} \)
 - \(S' := \text{null} \)
 - \(C := \text{cost}[(\text{HR}._\text{min}(j), \text{HR}._\text{max}(j))(1 \leq j \leq d), U] \)
 - \(\text{MBR} := \text{compute MBR of the set } S' \text{ using the data structures } \text{DS}, \ast \)
 - \(C_{\min} := \min(C_{\min}, \text{avg} \text{ff}(C, \text{hcoverOpt}(S', \text{MBR} \ast, \text{kh}-1))) \)
 - \(\text{return } C_{\min} \)

The lines marked with \((\ast)\) could be replaced by their “normal” counter-parts (i.e. the range tree \(\text{RT} \) could be ignored, in which case the set \(S' \) would be constructed as in the previous two solutions, or the MBR could be computed in \(O(|S'|) \) time). We may first count the number of points in \(S' \) (by summing the answers to the range count queries in \(\text{RT} \) for each of the \(3^d \)-1 regions) in order to decide how \(S' \) should be computed.

The two types of improvements we presented (fixing \(q \) of the parameters of the current hyper-rectangle to be identical to the MBR of the uncovered points and efficiently computing the MBR of the remaining uncovered points) are orthogonal to each other and can be used together or separately.

B. Experimental Evaluation

We randomly generated 80 dense point sets with \(d = 3 \): 40 of them had \(n = 14 \), and 40 of them had \(n = 40 \). The number of points \(r \) varied from 0.1% to 10% of the value \(n \). We considered \(kh=2 \), each dimension belonged to a separate group and we considered no bounds on the side lengths in each dimension. The cost function was the volume of a hyper-rectangle. We evaluated four algorithms: A: unoptimized hyper-rectangle generation and unoptimized MBR computation; B: optimized hyper-rectangle generation and unoptimized MBR computation; C: unoptimized hyper-rectangle generation and optimized MBR computation; D: optimized hyper-rectangle generation and optimized MBR computation. The theoretical time complexities (for our test settings) of the four algorithms are: A: \(O(n^d) \), B: \(O(n^d) \), C: \(O(n^d) \), D: \(O(n^d) \). The algorithms were implemented in C++, compiled using the Visual Studio 2008 C++ compiler and were run on a 2 GHz processor running Windows Vista. The sums of running times (over the 40 test cases with the same value of \(n \)) are presented in Table 1.

IV. DISTRIBUTION OF NODES IN A GEOMETRIC SPACE

In this section we make a proposal for a peer-to-peer message routing system, whose node identifiers are mapped into a metric space. Each node \(q \) of the system has an identifier which is a point \((x(q,1),...,x(q,d))\) in a \(d \)-dimensional Euclidean space and is connected to at most \(2k \cdot d \) other peers (for each dimension \(i \), \(1 \leq i \leq d \), the peer \(q \) is connected to the \(k \) peers \(q' \) with the smallest \(i \)-coordinates \(x(q,i) \) larger than or equal to \(x(q,i) \) and the \(k \) peers with the largest \(i \)-coordinates smaller than \(x(q,i) \)). In order to route a message from a source \(s \) to a destination \(d \), the peers use the distance of the metric space of their identifiers and they forward the message to a neighboring peer which decreases the distance from the current peer to \(d \) (or minimizes it). Such a system poses many challenges which have to be analyzed, like scalability, fault tolerance, resistance to churn and appropriate distribution of the node identifiers in the metric space. We will consider the distribution problem in this section, using the following “distance” function: \(\text{dist}((x(p,1),...,x(p,d)), (x(q,1),...,x(q,d))) := \min(|x(p,i)-x(q,i)|) \) \(1 \leq i \leq d \). We want to compute the largest distance between any pair of points, which offers important information about the distribution of points in the metric space. Because the number of nodes in a peer-to-peer system can be quite large, we need an efficient solution (better than the trivial \(O(n^2) \) solution which considers every pair of points).

We will binary search the maximum distance and we will perform a feasibility test on every candidate value \(D_{cand} \) chosen by the binary search. If \(D_{cand} \) is feasible, we will test a larger distance; otherwise, we will test a smaller one. For each point \(i \) \((x(i,1),...,x(i,d))\), we will compute the number of points \(np(i) \) located at distance at most \(D_{cand} \) from it (including point \(i \) itself). If \(np(i)<n \) for some \(i \), \(D_{cand} \) is a feasible distance. We will preprocess the points into a \(d \)-dimensional range tree which can answer orthogonal range counting queries in \(O(\log^2(n)) \) time (using fractional cascading). The number of points located at a distance \(d \leq D_{cand} \) from a point \(i \) is obtained by using the inclusion-exclusion principle on the answers to \(2^d \)-1 range count queries. A query \(\text{rcount}(p,S) \) is defined by a set \(S \) of dimensions for which the range is not unbounded (i.e. \([\infty, +\infty])\); for each dimension \(i \) in \(S \), the range is \([x(p,i)-D_{cand}, x(p,i)+D_{cand}] \) and for the other dimensions not in \(S \) the range is unbounded. There are \(2^d-1 \) sets \(S \) (we exclude the empty set). \(np(i) \) is equal to the sum of \((-1)^{S \cup \text{rcount}(i,S)} \text{rcount}(i,S) \) the answer to
the range query defined by the set S and the point i). For \(d=2 \),
\[
np(i)=\text{count}(-\infty, x(i,2);D_{\text{cand}}), \{+\infty, x(i,2);D_{\text{cand}}\} + \\
\text{count}(x(i,1);D_{\text{cand}};+\infty, x(i,1)+D_{\text{cand}}) - \\
\text{count}(x(i,1);D_{\text{cand}};+\infty, x(i,1)+D_{\text{cand}}) - \\
\text{count}(x(i,1);D_{\text{cand}}), \{x(i,2);D_{\text{cand}}\}. \\
\text{count}(x_a,y_a,\{x_b,y_b\}) returns the number of points (x_a, y_a) with \\
x_a \leq x_b \text{ and } y_a \leq y_b. Thus, we can perform the feasibility \\
test in \(O(n \log^d(n)) \) time. The overall memory consumption of \\
the range tree is \(O(n \log^d(n)) \).

We can also use the following algorithm, which we will de-
note by \(\text{Sol}(d) \), where \(d \) is the number of dimensions of
the space. If \(d=1 \) then we only need to sort all the points according
to their first (and only) coordinate and obtain an ordering
\(x(p(1),1) \leq \ldots \leq x(p(n),1) \). Then, we can compute the value
\(\text{rcount}(i,\{j\}) \) either by binary searching the values \(x(i,1)+D_{\text{cand}} \)
and \(x(i,1)+D_{\text{cand}} \) around the position \(pos(i) \) of the point \(i \) in the
sorted order (i.e. \(p(pos(i))=i \)), or by using a sweeping technique
which will be described next for the more general case.

For \(d \geq 2 \) we proceed as follows. Let’s notice first that the values
\(\text{rcount}(*,S) \) can be computed by sorting all the points
according to their coordinates in the dimension \(j \) and then
sorting the set \(S \) according to the coordinate \(pos(i) \) of the point \(i \) in the
sorted order (i.e. \(p(pos(i))=i \)), or by using a sweeping technique
which will be described next for the more general case.

We consider a string \(S \) composed of \(N \) characters: \(S(1), \ldots,
S(N) \). We want to encode the string \(S \) by using the consecutive
contiguous repetitions that occur within \(S \). The only operation
that we can perform is to replace a sequence of consecutive
characters from \(S \), of the type \(u^k \) (i.e. which is composed of the
string \(u \) repeated \(k \) times) by the sequence \(\text{Codif}(k) \)
\(= u \cdot \text{Codif}(k) \), where by \(A:B \) we denote the concatenation of \(A
\) and \(B \). \(\text{Codif}(k) \) and \(\text{Codif}(k) \) are two strings marking the be-
ning and the end of the encoded sequence and they do not contain characters which exist in \(S \) initially. For instance, the sequence “abcababc” could be replaced by \(\{3, (abc) \} \), if \(Codify(3) = “3”, and Codify(\(j\)) = “j” \). The operation of replacing a contiguous subsequence of \(S \) can be applied repeatedly, including upon some sequences containing previously encoded subsequences; however, a previously encoded subsequence must be fully included in one of the sequences \(u \) of the \(u^* \) subsequence being replaced. We want to find a minimum length encoding of \(S \).

In order to solve the problem we will use a dynamic programming approach. We will compute a table \(L\min(i,j) \) the minimum length of encoding the contiguous subsequence of \(S \) starting at the position \(i \) and ending at the position \(j \). We will compute the values \(L\min(i,j) \) in ascending order of the length of the subsequence (i.e. in increasing order of \(j-i+1 \)). We have \(L\min(i,i) = 1 \). Then, we iterate with a variable \(L \) from 2 to \(N \) and, for every value of \(L \), we will first compute all the divisors of \(L \) and then we will consider every possible value of \(j (1 \leq j \leq N-L+1) \). Once we considered the value \(i \), the value of \(j \) is equal to \(i+L-1 \). We will initialize \(L\min(i,j) = j-i+1 \). Then, we will consider all the divisors \(k \) of \(L \) and we will verify if the contiguous subsequence \(S(i)S(i+1)...S(j) \) has the structure \(u' \). The verification can be performed in linear time: we will consider every position \(p \) from \(i+L/k \) to \(j \) and, if \(S(p) \neq S(p-L/k) \) (for at least one position \(p \)), then the considered subsequence does not have the structure \(u' \); otherwise, it has this structure. If the subsequence has the desired structure, then we will set \(L\min(i,j) = \min \{ L\min(i,j), len(Codify(k)) + len(Codify(f(k))) + L\min(i,i+L/k-1) \} \). The overall time complexity is \(O(N^{1.5}) \).

B. Counting the Number of Occurrences of a Substring in a String Generated by a Grammar

We consider a grammar consisting of a set of terminal symbols \(T \) and \(N \) non-terminal symbols, numbered from \(1 \) to \(N \). Each non-terminal symbol \(X \) is specified as a sequence consisting of \(L(X) \) symbols: \(R(X,1), ..., R(X,L(X)) \). Each symbol is either a terminal symbol or a non-terminal symbol \(Y \) (\(1 \leq Y \leq Y \leq L \)). Let’s consider the string \(Exp(N) \), obtained by expanding the non-terminal \(N \) (i.e. a string consisting of terminal symbols only). We are given a string \(S \) and we want to compute the number of occurrences of \(S \) in \(Exp(N) \). Two occurrences of \(S \) may partially overlap.

Computing the string \(Exp(N) \) and then searching for the string \(S \) in \(Exp(N) \) (in \(O(\min(\log N, |Exp(N)|)) \) time) is not possible, because the string \(Exp(N) \) may be exponentially large. Instead, we need an approach which does not compute \(Exp(N) \).

We will start by computing the (KMP) prefix function for the string \(S \). Let \(S(1), ..., S(LS) \) be the characters of the string \(S \) (\(LS \) the length of the string \(S \)). Let \(P(i) \) be the prefix function value for the prefix \(S(1), ..., i \). We can compute the prefix function in \(O(LS) \) time. Then, we define by \(Pexp(i,k) \) the string obtained by expanding the sequence composed of the symbols \(R(i,k), ..., R(i,L(i)) \) (\(1 \leq i \leq N; 1 \leq L(i) \leq L(i)+1 \)). We will compute the values \(C(i,j,k) \) the number of occurrences of \(S \) in \(Pexp(i,k) \), if we consider that the first \(j \) characters of \(S \) are already “matched” before the occurrence \(Pexp(i,k) \). Thus, when \(Pexp(i,k) \) begins, the prefix of length \(j \) of the string \(S \) is already matched over the \(j \) characters which are located right before \(Pexp(i,k) \) in the final string. We will also compute \(Suf(i,j,k) \) the longest (incomplete) prefix of \(S \) which matches the end of the string \(Pexp(i,k) \), under the same conditions as above (i.e. the first \(j \) characters of \(S \) match the \(j \) characters located right before the start of \(Pexp(i,k) \)).

We will consider the non-terminal symbols in increasing order: \(i = 1, ..., N \). We have \(C(i,L(i)+1) = 0 \) and \(Suf(i,j,L(i)+1) = j \) \((0 \leq j \leq LS-1) \). We will then consider the positions \(k \), in decreasing order, starting from \(L(i) \) and ending with the position \(i \) \((k=L(i), L(i)-1, ..., 1) \). If \(R(i,k) = q \), where \(q \) is a non-terminal symbol, then we will proceed as follows: (1) we initialize \(ne=Suf(q,j,1) \); (2) we set \(C(i,j,k) = C(q,j,1) + C(i,ne,k+1) \); (3) \(Suf(i,j,k) = Suf(i,ne,k+1) \). If \(R(i,k) \) is a terminal symbol, then let \(ne=j \). While \(ne=0 \) and \((S(ne+1) \neq R(i,k)) \) we set \(ne=P(ne) \). At the exit of the while loop, if \(S(ne+1) = R(i,k) \), then we increment \(ne \) by 1. If \(ne=LS \), then we set \(caux=1 \) and \(ne=P(ne) \); otherwise, we set \(caux=0 \). Then we will have \(C(i,j,k) = caux + C(i,ne,k+1) \) and \(Suf(i,j,k) = Suf(i,ne,k+1) \). The final answer is \(C(N,0,1) \).

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented novel algorithmic techniques for several multidimensional (and 1D) data processing problems, related to clustering, encoding and the computation of the diameter using a new distance function. All the presented algorithms were thoroughly analyzed from a theoretical point of view, and some of them even from a practical point of view.

All the presented problems are interesting from the point of view of multidimensional data analysis, while some of them have applications in the field of distributed computing (e.g. the problem presented in Section III).

As future work, we intend to implement and evaluate all the proposed solutions (so far, only some of them have full implementations) and continue the study of multidimensional data processing problems in need of novel efficient algorithmic techniques.

REFERENCES

[1] K.-W. Lee, B.-J. Ko, and S. Calo, “Adaptive Server Selection for Large Scale Interactive Online Games”, Computer Networks, vol. 49 (1), pp. 84-102, 2005.
[2] M. I. Andreica, E.-D. Tissa, C. T. Andreica, R. Andreica, and M. A. Ungureanu, “Optimal Geometric Partitions, Covers and K-Centers”, Proc. of the 9th WSEAS Intl. Conf. on Mathematics and Computers in Business and Economics, pp. 173-178, 2008.
[3] M. I. Andreica and N. Tăpăs, “Efficient Data Structures for Online QoS-Constrained Data Transfer Scheduling”, Proc. of the IEEE Intl. Symp. on Par. and Distr. Comp., pp. 285-292, 2008.
[4] J. L. Bentley and J. H. Friedman, “Data Structures for Range Searching”, ACM Computing Surveys, vol. 11, no. 4, pp. 397-409, 1979.
[5] M. E. Andreica, M. I. Andreica and N. Catănîuciu, “Multidimensional Data Structures and Techniques for Efficient Decision Making”, Proc. of the 10th WSEAS Intl. Conf. on Mathematics and Computers in Business and Economics, pp. 249-254, 2009.
[6] C.-T. Ho, R. Agrawal, N. Megiddo and R. Srikant, “Range Queries in OLAP Data Cubes”, ACM SIGMOD Record, vol. 26, no. 2, pp. 73-88, 1997.
[7] P. M. Fenwick, “A New Data Structure for Cumulative Frequency Tables”, Software – Practice and Experience, vol. 24, no. 3, pp. 327-336, 1994.