Pressão Arterial e Adaptações Hemodinâmicas após Programa de Treinamento em Jovens com Síndrome de Down

Blood Pressure and Hemodynamic Adaptations after a Training Program in Young Individuals with Down Syndrome

Bruna Barboza Seron, Karla Fabiana Goessler, Everaldo Lambert Modesto, Eloise Werle Almeida, Márcia Greguol
Universidade Estadual de Londrina, Londrina, PR – Brasil

Resumo

Fundamento: As doenças cardiovasculares atingem as pessoas em todo o mundo. Pessoas com Síndrome de Down (SD) apresentam um risco até dezesseis vezes maior de mortalidade por doenças cardiovasculares.

Objetivo: Avaliar os efeitos do exercício aeróbio e resistido na pressão arterial e variáveis hemodinâmicas de jovens com SD.

Método: Participaram do estudo 29 jovens com SD, divididos em dois grupos: (TA) Treinamento Aeróbio (n = 14) e (TR) Treinamento Resistido (n = 15), idade 15,7 ± 2,82 anos. O programa de treinamento teve doze semanas, frequência de três vezes por semana para TA, e duas vezes, para TR. TA foi realizado com esteira/bicicleta, intensidade entre 50%-70% da FC de reserva. TR teve nove exercícios com três séries de doze repetições máximas. Avaliações de Pressão Arterial Sistólica (PAS), Pressão Arterial Diastólica (PAD), Pressão Arterial Média (PAM) e variáveis hemodinâmicas foram realizadas batimento a batimento por meio do Finometer antes/após o programa de treinamento. Foram usados estatística descritiva, teste de Shapiro-Wilk para verificação da normalidade dos dados e teste ANOVA two-way para medidas repetidas para a comparação das variáveis pré e pós-treinamento. Para correlacionar as variáveis hemodinâmicas, foi calculado o coeficiente de correlação de Pearson. Utilizou-se o programa estatístico SPSS versão 18.0, adotando nível de significância (p < 0,05).

Resultados: Após doze semanas de treinamento, aeróbio e/ou resistido, ocorreram reduções significativas pós-intervenção nas variáveis de PAS, PAD e PAM.

Conclusão: Sugere um efeito hipotensivo crônico do exercício aeróbio e resistido moderado em jovens com SD.

Palavras-chave: Pressão Arterial / fisiologia, Hemodinâmica / fisiologia, Síndrome de Down, Cardiopatias Congênitas, Adolescente, Exercício, Treinamento de Resistência.

Abstract

Background: Cardiovascular diseases affect people worldwide. Individuals with Down Syndrome (DS) have an up to sixteen-time greater risk of mortality from cardiovascular diseases.

Objective: To evaluate the effects of aerobic and resistance exercises on blood pressure and hemodynamic variables of young individuals with DS.

Methods: A total of 29 young individuals with DS participated in the study. They were divided into two groups: aerobic training (AT) (n = 14), and resistance training (RT) (n = 15), mean age was 15.7 ± 2.82 years. The training program lasted 12 weeks, and had a frequency of three times a week for AT and twice a week for RT. AT was performed in treadmill/bicycle ergometer, at an intensity between 50%-70% of the HR reserve. RT comprised nine exercises with three sets of 12 repetition-maximum. Systolic blood pressure (SBP), diastolic blood pressure (DBP), mean blood pressure (MBP) and hemodynamic variables were assessed beat-to-beat using the Finometer device before/after the training program. Descriptive analysis, the Shapiro-Wilk test to check the normality of data, and the two-way ANOVA for repeated measures were used to compare pre- and post-training variables. The Pearson’s correlation coefficient was calculated to correlate hemodynamic variables. The SPSS version 18.0 was used with the significance level set at p < 0.05.

Results: After twelve weeks of aerobic and/or resistance training, significant reductions in variables SBP, DBP and MBP were observed.

Conclusion: This study suggests a chronic hypotensive effect of moderate aerobic and resistance exercises on young individuals with DS.

Keywords: Arterial Pressure / physiology; Hemodynamic / physiology; Heart Defects / congenital; Down Syndrome; Adolescent; Resistance Training.
Introdução

A doença cardiovascular é a principal causa de mortalidade mundial e, apesar de os eventos cardiovasculares serem mais frequentes após a quinta década de vida, existem evidências de que os precursores dessa doença ocorrem na infância1. Pessoas com Síndrome de Down (SD) apresentam um risco até dezesseis vezes maior de mortalidade em decorrência de doenças cardiovasculares2. Enquanto a incidência da doença congênita cardíaca na população geral corresponde a 0,8%, em indivíduos com SD aproximadamente 40%-65% desenvolvem a doença3. O desenvolvimento da doença congênita cardíaca tem causa multifatorial, as quais sofrem interferências de sinais moleculares e morfológicos. Adicionalmente, a incidência de má formação do seio atriocorônico e ventricular corresponde a 45% e 35% em pacientes com SD1. Além disso, o risco de incidência de hipertensão persistente pulmonar em neonatos é de 5,2% maior para crianças com SD comparado à população geral3,4.

Entre os principais fatores de risco cardiovasculares, destacam-se a Pressão Arterial (PA) elevada e o sedentarismo. Alguns estudos têm comprovado que ambos os fatores de risco apresentam forte tracking da infância até a vida adulta5-8, o que sugere o incentivo à sua redução já em idades precoces.

O controle da PA está relacionado com mudanças do estilo de vida, as quais incluem o aumento da prática de exercícios físicos8. Existem poucos estudos que relacionem o efeito do treinamento físico nas respostas cardiovasculares de pessoas com SD, portanto é preciso verificar com cautela as especificidades do exercício físico para essa população. Em uma meta-análise realizada por Kelley e cols.10, envolvendo crianças e adolescentes sem deficiência, foi demonstrado que o exercício físico de curto prazo não provocou redução na PAS e na PAD de repouso.

Ainda assim, McDonnell e cols.11 demonstraram que o exercício físico regular está associado à melhora do perfil vascular, a qual é explicada por uma menor rigidez arterial em pessoas de mais idade, enquanto nos jovens isso se deve a uma menor resistência vascular periférica.

A literatura evidencia os benefícios de um estilo de vida ativo para a população em geral. No entanto, a população com SD exibe um estilo de vida menos ativo que pessoas sem essa deficiência. Esse fato pode trazer prejuízos à saúde e à autonomia dessa população12,13.

O aumento da expectativa de vida dessa população faz com que a prevenção de doenças secundárias torne-se cada vez mais importante. Dessa forma, temos como hipótese que o treinamento físico (aeróbico e resistido) poderá reduzir os valores de pressão arterial, e assim melhorar e/ou prevenir o surgimento de doenças cardiovasculares para indivíduos com SD. Assim, sabendo da importância de um estilo de vida fisicamente ativo para o controle da PA e para a prevenção de doenças cardiovasculares, o objetivo deste estudo foi investigar os efeitos do exercício aeróbico e resistido sobre os valores PA e de variáveis hemodinâmicas em jovens com SD após o período de treinamento.

Método

Participants

Vinte e nove jovens com SD (15,7 ± 2,82 anos) de ambos os sexos (20 meninos e 9 meninas) fizeram parte do estudo. A seleção dos sujeitos se deu por meio de convite a todos os jovens com SD com idade entre 12 e 20 anos de três instituições de Londrina/PR/Brasil que atendem pessoas com deficiência intelectual. Foram excluídos do estudo os indivíduos que apresentassem comprometimentos ortopédicos ou cardíacos, que fizessem uso de medicamentos que alterassem a frequência cardíaca e apresentassem deficiência intelectual severa ou profunda que impedisse a compreensão e/ou realização dos procedimentos. Depois de esclarecidos sobre as condições da pesquisa, seus pais e/ou responsáveis legais assinaram um Termo de Consentimento Livre e Esclarecido. O estudo obteve aprovação do Comitê de Ética em Pesquisa com Seres Humanos da Universidade Estadual de Londrina, com parecer número 93.680/2012.

Os participantes foram divididos em dois grupos, de acordo com a disponibilidade de comparecimento ao programa de exercícios físicos: grupo treinamento aeróbio (n = 14, sendo 4 meninas e 10 meninos); e grupo treinamento resistido (n = 15, sendo 5 meninas e 10 meninos).

Inicialmente houve presença do grupo controle, entretanto os jovens desse grupo não compareceram na segunda avaliação, sendo o grupo controle, portanto, excluído da análise.

Programas de treinamento

Os programas de treinamento aeróbio e resistido consistiram de doze semanas com duração de 50 minutos para cada sessão. O treinamento aeróbio foi realizado três vezes por semana em esteira e bicicleta ergométrica (15 minutos cada), com intensidade entre 50% e 70% da FC de reserva durante 30 minutos, precedido de 10 minutos de aquecimento (articulare e alongamento) e sucedido de mais 10 minutos de recuperação (alongamento). A intensidade foi monitorada por meio do uso de monitor de frequência cardíaca da marca Polar FT2. A FCmáx utilizada para o cálculo da FC de reserva foi obtida por meio de um teste de esforço máximo validado para pessoas com SD14. Esse teste consistiu de uma velocidade inicial de 4 km/h com 0% de inclinação por dois minutos. A cada dois minutos houve um acréscimo de 2,5% da elevação da doce até atingir uma elevação de 12,5%. A partir desse momento, a velocidade foi aumentada 1,6 km/h a cada minuto até a exaustão. O teste foi realizado em esteira (INBRAMED, modelo 10.200) como uso do ergoespirômetro portátil (Cosmed K4b², Italy).

O treinamento resistido foi composto de nove exercícios realizados em três séries de doze repetições máximas, com intervalo de um minuto entre as séries e de três minutos entre os exercícios. Foi proposta a seguinte série de exercícios: supino máquina; cadeira extensora; puxada aberta frontal; bíceps cabo; flexora em pé com caneleira; tríceps cabo; panturrilha com caneleira; elevação frontal com halter e abdominais. As duas sessões iniciais foram de...
adaptação ao exercício com cargas leves e, a partir daí, a carga utilizada foi estimada observando-se a capacidade de realização do exercício em doze repetições. A progressão da carga foi espontânea, sendo aumentada à medida que o indivíduo conseguisse realizar as três séries com doze repetições completas.

Para a participação no estudo, os participantes apresentaram atestado de liberação médica para a prática de exercícios físicos. Além disso, todos os participantes tiveram taxa de aderência de no mínimo 75% no programa, e portanto, não houve perda de participantes ao longo do programa de treinamento, e todos eles participaram das duas avaliações propostas.

Pressão arterial
A monitorização da pressão arterial foi realizada com o monitor Finometer® (Finapres Medical System, BV Holanda) antes e após o programa de treinamento. Foi realizada monitorização contínua eletrocardiográfica digital e hemodinâmica cardiovascular não invasiva, por fotopletismografia infravermelha digital durante 15 minutos com o indivíduo sentado.

Para a aquisição das curvas de pressão, foi colocado um pequeno sensor circundando a falange média do dedo indicador da mão esquerda e considerados a idade, a massa corporal, a estatura e o gênero do participante. A Massa Corporal (MC) foi mensurada em quilogramas e aferida em balança digital com precisão de 100 gramas; a estatura em metros foi aferida em estadiômetro com precisão de 0,1 centímetro, e para a medida da Circunferência Abdominal (CA) utilizou-se trena flexível de dois metros. Para as análises foram consideradas as variáveis hemodinâmicas: Pressão Arterial Sistólica (PAS), Pressão Arterial Diastólica (PAD), Frequência Cardíaca (FC), Débito Cardíaco (DC), Resistência Vascular Periférica (RVP) e Volume Sistólico (VS), sendo esta última obtida por meio da fórmula VS = DC/FC. A avaliação e a análise das variáveis foram realizadas pelo pesquisador cegado para os grupos.

Análises estatísticas
Os dados estão apresentados em média e desvio padrão da média. Para a verificação da normalidade dos dados foi aplicado o teste de Shapiro-Wilk. Para a comparação das variáveis antropométricas e de medidas hemodinâmicas pré e pós-treinamento resistido ou aeróbio foi realizado o teste ANOVA two-way para variáveis hemodinâmicas pré e pós-treinamento aeróbico e resistido. Não foi observada interação entre o fator tempo e grupo para as variáveis de PAS (P = 0,20), PAD (P = 0,53) e PAM (P = 0,58).

Na tabela 3 estão apresentados os dados de frequência cardíaca, volume sistólico, débito cardíaco e resistência vascular periférica. Não foram encontradas diferenças significativas para essas variáveis entre os momentos pré e pós-exercício em ambos os grupos.

Por fim, ao se realizar o teste de correlação de Pearson entre as variáveis antropométricas e de medidas hemodinâmicas e de pressão arterial, não foram encontrados valores significativos para nenhum dos dois grupos pesquisados.

Discussão
O principal resultado do presente estudo sugere um efeito hipotensivo crônico do exercício aeróbio e resistido em jovens com SD. No entanto, os resultados encontrados no presente estudo estão de acordo com as diversas pesquisas que investigam o efeito do exercício na pressão arterial em pessoas sem deficiência que, em geral, apontam para redução da PA após o treinamento físico, principalmente do tipo aeróbio. Para o exercício do tipo resistido, os poucos estudos realizados, mesmo que de maneira menos consistente comparado ao aeróbio, também apontam para um efeito de redução de PA.

Apesar da carência de pesquisas que investiguem o efeito do exercício sobre a pressão arterial em pessoas com SD, a literatura apresenta alguns estudos que abordam aspectos da pressão arterial e do sistema vascular dessa população. Segundo Rodrigues e cols., apesar de pessoas com SD apresentarem envelhecimento precoce em vários sistemas orgânicos, não foi observada diferença na rigidez arterial

Tabela 1 – Dados antropométricos dos participantes

	Treinamento aeróbio (n = 14)	Treinamento resistido (n = 15)
Massa Corporal (kg)	61,43 ± 11,8	52,7 ± 10,0
Estatura (cm)	151,7 ± 6,11	150,4 ± 7,0
IMC (kg/m²)	26,61 ± 4,36	23,3 ± 4,3
Circunferência abdominal (cm)	86,8 ± 11,1	77,5 ± 9,2¥

¥ Diferença significativa entre os grupos – p < 0,05.
Artigo Original

Tabela 2 – Valores de pressão arterial antes e após o treinamento

Variáveis	Grupo de Treinamento Aeróbio	Grupo de Treinamento Resistido							
	Pré	Pós	∆	Pré	Pós	∆	Tempo p	Tempo x grupo p	Grupo p
PAS (mmHg)	119,6 ± 11,46	110,4 ± 11,7*	-9,2 ± 8,8	113,19 ± 13,04	107,04 ± 10,41*	-6,2 ± 12,0	0,001	0,05	0,03
PAD (mmHg)	77,27 ± 4,73	72,66 ± 6,69*	-4,6 ± 6,9	76,98 ± 8,10	72,23 ± 8,30*	-4,8 ± 10,2	0,03	0,53	0,98
PAM (mmHg)	92,58 ± 5,40	88,35 ± 7,37*	-4,2 ± 7,3	91,74 ± 8,74	86,75 ± 8,38*	-5,0 ± 9,7	0,01	0,58	0,74

PAS: pressão arterial sistólica; PAD: pressão arterial diastólica; PAM: pressão arterial média. * diferença significativa entre os momentos pré-treinamento e pós-treinamento – p < 0,05.

Tabela 3 – Valores de variáveis hemodinâmicas antes e após treinamento

Variáveis	Grupo de Treinamento Aeróbio	Grupo de Treinamento Resistido							
	Pré	Pós	∆	Pré	Pós	∆	Tempo p	Tempo x grupo p	Grupo p
FC (bpm/min)	2,97 ± 0,71	3,80 ± 0,81	0,83 ± 1,02	3,32 ± 1,05	0,60	0,98	0,20		
RVP (mmHg.min.l)	32,91 ± 6,54	24,07 ± 4,48	8,84 ± 10,92	28,56 ± 9,64	0,22	0,93	0,07		
VS (ml)	81 ± 11	82 ± 11	1 ± 10,04	84 ± 9,34	0,93	0,58	0,31		

DC: débito cardíaco; RVP: resistência vascular periférica; FC: frequência cardíaca; VS: volume sistólico.

aórtica, que está relacionada a vários fatores de risco para as DCV incluindo a PA, dos indivíduos com SD em comparação com indivíduos sem deficiência.

Alguns estudos observaram que pessoas com SD apresentam hipotensão crônica, ou seja, menor pressão arterial do que pessoas normotensas sem deficiência. Todavia, há evidências de que as mortes relacionadas a doenças cardiovasculares são mais frequentes em indivíduos com SD do que na população em geral.

No presente estudo, apesar de não ter havido comparações dos valores de PA de pessoas com e sem SD, a média de PAS e PAD encontrada para os jovens participantes do estudo foi considerada dentro do padrão de normalidade. Além disso, os valores iniciais de PAS, PAD e PAM foram semelhantes para ambos os grupos.

As recomendações sugerem que o aumento da prática de atividade física contribui para a prevenção primária e secundária da hipertensão arterial. Entretanto, de acordo com Cornelissen e Smart, o efeito do treinamento na magnitude de redução da PA pode variar de acordo com a modalidade de exercício (aeróbico ou resistido), duração, intensidade e frequência do treino. Nossos resultados corroboram com as recomendações de exercícios físicos para o controle da PA, as quais consideram que o exercício aeróbico é eficiente em reduzir a PA, assim como o exercício resistido, que apesar de apresentar menores reduções em magnitude, quando comparado ao exercício físico aeróbico, também apresenta um importante papel no controle da PA. Dessa forma, para essa população o treinamento resistido apresentou importantes valores de reduções na pressão (PAS = -6,2 mmHg; PAD = -4,8 mmHg; PAM = -4,2 mmHg). No entanto, além de promover benefícios às respostas de pressão arterial, o treinamento resistido tem sido recomendado como seguro em pessoas com SD, por melhorar a força, o equilíbrio e a composição corporal.

Em relação aos mecanismos anti-hipertensivos crônicos do exercício, Pescatello e cols. apontam a redução da resistência vascular periférica como principal mecanismo para esse fato, que é possivelmente mediada por adaptações neuro-humorais e estruturais. A redução de vasoconstritores, como a endotolina-1, e o aumento de vasodilatadores, como o óxido nítrico, têm sido apontados como adaptações neuro-humorais ao exercício físico.

Apesar de serem apontados inúmeros mecanismos e adaptações hemodinâmicas em resposta aos efeitos crônicos do treinamento aeróbico e do treinamento resistido sobre a PA, Cornelissen e Fagard demonstraram em uma meta-análise que os mecanismos hemodinâmicos em resposta ao treinamento aeróbico ocorreram por uma significativa redução da Resistência Vascular Periférica (RVP), sem mudanças no Débito Cardíaco (DC), que pode ser explicada pelo aumento do VS que é contrabalanceado pela diminuição da FC.

No presente estudo, nenhum dos grupos (treinamento aeróbico e resistido) foram observadas alterações significativas para a resistência vascular periférica após as doze semanas de treinamento.

As adaptações na pressão arterial encontradas no presente estudo podem ser importantes para indivíduos com SD, pois, como sugere Hu e cols., esses indivíduos podem ter maior incidência de risco cardiovascular, como baixa capacidade cardiorrespiratória e obesidade. Nesse contexto, muitos estudos têm avançado em relação à influência do exercício na aptidão física de jovens com SD, e em geral apresentam resultados positivos na aptidão cardiorrespiratória.
força e composição corporal. Portanto, os resultados encontrados neste estudo em relação à redução crônica da pressão arterial após um programa de intervenção contribuem com mais informações sobre os benefícios potenciais do exercício físico para essa população.

Embora o programa de treinamento físico tenha apresentado importantes adaptações à pressão arterial, há algumas limitações que precisam ser destacadas. Primeiramente, o número de indivíduos em cada grupo foi pequeno, o que pode dificultar algumas análises. Ainda, a divisão não aleatorizada dos grupos de intervenção pode interferir nos resultados. Apesar disso, os dados aqui levantados oferecem subsídios que podem colaborar para a melhor compreensão das adaptações fisiológicas de jovens com SD ao exercício físico, além de reforçar a importância dessa prática para a saúde dessa população.

Conclusão

Por meio das intervenções realizadas, o presente estudo verificou que doze semanas de treinamento, seja ele aeróbico, seja resistido, provocou redução significativa na PAS, na PAD e na PAM de jovens com SD. Acredita-se que essas adaptações encontradas auxiliam de maneira significativa no controle da PA e na prevenção de risco no desenvolvimento de doenças cardiovasculares.

Sugere-se, portanto, a implantação de programas de treinamento e a prática de exercícios físicos, tanto aeróbico quanto resistido, para jovens com SD, como forma de prevenção de riscos cardiovasculares. Para esses indivíduos, a manutenção de um estilo de vida fisicamente ativo deve ser vista como uma estratégia que pode contribuir de forma significativa para a diminuição do sedentarismo e a obtenção de vários benefícios para a saúde.

Contribuição dos autores

Concepção e desenho da pesquisa: Seron BB, Goessler KF, Modesto EL, Gregou M. Obtenção de dados: Seron BB, Goessler KF, Modesto EL, Almeida EW, Gregou M. Análise e interpretação dos dados: Seron BB, Goessler KF, Modesto EL, Almeida EW, Gregou M. Análise estatística: Goessler KF. Redação do manuscrito: Seron BB. Revisão crítica do manuscrito quanto ao conteúdo intelectual importante: Seron BB, Goessler KF, Gregou M.

Potencial conflito de interesse

Declaro não haver conflito de interesses pertinentes.

Fontes de financiamento

O presente estudo não teve fontes de financiamento externas.

Vinculação acadêmica

Este artigo é parte de Dissertação de Mestrado de Bruna Barboza Seron pela Universidade Estadual de Londrina.

Referências

1. Jonatan RR, Ortega FB. Physical activity and cardiovascular disease risk factors in children and adolescents. Curr Cardiovasc Risk Rep. 2009;3:281-7.

2. Hill DA, Gridley G, Cnattingius S, Mellenkjaer L, Linet M, Adami HO, et al. Mortality and cancer incidence among individuals with Down syndrome. Arch Intern Med. 2003;163(6):705-11.

3. Al-Bitagi MA. Echocardiography in children with Down syndrome. World J Clin Pediatr. 2013;2(4):36-45.

4. Weijerman ME, Van Furth AM, Van der Mooren MD, Van Weissenbruch MM, Rammeloo L, Broers CJ, et al. Prevalence of congenital heart defects and persistent pulmonary hypertension of the neonate with Down syndrome. Eur J Pediatr. 2010;169(10):1195-9.

5. Pate RR, Baranowski T, Dow M, Trost SG. Tracking of physical activity in young children. Med Sci Sports Exerc. 1996;28(1):92-6.

6. Mokdad AH, Serdula MK, Dietz WH, Bowman BA, Marks JS, Koplan JP. The continuing epidemic of obesity in the United States. JAMA. 2000;284(13):1609-15.

7. Telama R, Yang X, Viikari J, Valimaki I, Wanne O, Railakari O. Physical activity from child hood to adult hood: a 21-year tracking study. Am J Prev Med. 2005;28(3):267-73.

8. Chen X, Wang Y. Tracking of blood pressure from childhood to adulthood: a systematic review and meta-regression analysis. Circulation. 2008;117(25):3171-80.

9. Blumenthal JA, Siegel WC, Appelbaum M. Failure of exercise to reduce blood pressure in patients with mild hypertension: results of a randomized controlled trial. JAMA. 1991;266(15):2098-104.

10. Kelley GA, Kelley KS, Tran ZY. The effects of exercise on resting blood pressure in children and adolescents: a meta-analysis of randomized controlled trials. Prev Cardiol. 2003;6(1):8-16.

11. McDonnell BJ, Maki-Petaja MK, Munnery M, Yasmin, Wilkinson IB, Cockcroft JR, et al. Habitual exercise and blood pressure: age dependency and underlying mechanisms. Am J Hypertens. 2013;26(3):334-41.

12. Balic MG, Mateos EC, Blasco CG, Fernhall B. Physical fitness levels of physically active and sedentary adults with Down syndrome. Adapt Phys Activity Quarterly. 2000;17:310-21.

13. Dodd KJ, Shields N. A systematic review of the outcomes of cardiovascular exercise programs for people with Down syndrome. Arch Phys Med Rehabil. 2005;86(10):2051-8.

14. Fernhall B, Millar AL, Tymeson SJ. Maximal exercise testing of mentally retarded adolescents and adults. Arch Phys Med Rehabil. 2003;84(13):1650-1.

15. Mokdad AH, Serdula MK, Dietz WH, Bowman BA, Marks JS, Koplan JP. The continuing epidemic of obesity in the United States. JAMA. 2000;284(13):1609-15.

16. Telama R, Yang X, Viikari J, Valimaki I, Wanne O, Railakari O. Physical activity from child hood to adult hood: a 21-year tracking study. Am J Prev Med. 2005;28(3):267-73.

17. Chen X, Wang Y. Tracking of blood pressure from childhood to adulthood: a systematic review and meta-regression analysis. Circulation. 2008;117(25):3171-80.

18. Blumenthal JA, Siegel WC, Appelbaum M. Failure of exercise to reduce blood pressure in patients with mild hypertension: results of a randomized controlled trial. JAMA. 1991;266(15):2098-104.
19. Rodrigues AN, Coelho LC, Gonçalves WI, Gouvêa SA, Vasconcellos MJ, Cunha RS, et al. Stiffness of the large arteries in individuals with and without Down syndrome. Vasc Health Risk Manag. 2011;7:375-81.

20. Richards BW, Enver F. Blood pressure in Down’s syndrome. J Ment Defic Res. 1979;23(2):123-35.

21. Morrison RA, McGrath A, Davidson G, Brown JJ, Murray GD, Lever AF. Low blood pressure in Down’s syndrome: a link with Alzheimer’s disease? Hypertension. 1996;28(4):569-75.

22. Day SM, Strauss DJ, Shavelle RM, Reynolds RJ. Mortality and causes of death in persons with Down syndrome in California. Dev Med Child Neurol. 2005;47(3):171-6.

23. World Health Organization (WHO). A Global brief on hypertension: silent killer, Global public health crisis [Online]. [Accessed on 2014 June 10]. Available from: http://apps.who.int/isis/bitstream/10665/79059/who_dco.

24. Modesto EL, Greguol M. Influência do treinamento resistido em pessoas com síndrome de Down – uma revisão sistemática. Rev Bras Ativ Fís e Saúde Pelotas/RS. 2014;9(2):153-67.

25. Pescatello LS, Franklin BA, Fagard R, Farquhar WB, Kelley GA, Ray CA; American College of Sports Medicine. American College of Sports Medicine position stand: exercise and hypertension. Med Sci Sports Exerc. 2004;36(3):533-53.

26. Kingwell BA, Sherrard B, Jennings GL, Dart AM. Four weeks of cycle training increases basal production of nitric oxide from the forearm. Am J Physiol. 1997;272(3 Pt 2):H1070-7.

27. Maeda S, Miyachi T, Kakiyama T, Sugawara J, Iemitsu M, Irukayama-Tomobe Y, et al. Effects of exercise training of 8 weeks and detraining on plasma levels of endothelium-derived factors, endothelin-1 and nitric oxide, in healthy young humans. Life Sci. 2001;69(9):1005-16.

28. Cornelissen VA, Fagard RH. Effects of endurance training on blood pressure, blood pressure–regulating mechanisms, and cardiovascular risk factors. Hypertension. 2005;46(4):667-75.

29. Hu M, Yan H, Ranadive SM, Agiosklatis S, Faks CA, Atiq M, et al. Arterial stiffness response to exercise in persons with and without Down syndrome. Res Dev Disabil. 2013;34(10):3139-47.

30. Shields N, Taylor NF, Wee E, Wollersheim D, O’Shea SD, Fernhall B. A community-based strength training programme increases muscle strength and physical activity in young people with Down syndrome: a randomised controlled trial. Res Dev Disabil. 2013;34(12):4385-94.

31. Casajus J, Pueyo D, Vicente-Rodríguez G, González-Agüero A. Mejoras de la condición cardiorespiratoria en jóvenes con síndrome de Down mediante entrenamiento aeróbico: estudio longitudinal. Apunts Med Esport. 2012;47(174):49-54.

32. Lin HC, Wang YP. Strength and agility training in adolescents with Down syndrome: a randomized controlled trial. Res Dev Disabil. 2012;33(6):2236-44.

33. Gupta S, Rao BK, Kumaran SD. Effect of strength and balance training in children with Down’s syndrome: a randomized controlled trial. Clin Rehabil. 2011;25(5):425-32.

34. Ordonez FJ, Rosety M, Rosety-Rodriguez M. Influence of 12-week exercise training on fat mass percentage in adolescents with Down syndrome. Med Sci Monit. 2006;12(10):CR416-9.