Some remarks on nonnil-coherent rings and ϕ-IF rings

Wei Qia, Xiaolei Zhangb,

a School of Mathematical Sciences, Sichuan Normal University, Chengdu 610068, China

b Department of Basic Courses, Chengdu Aeronautic Polytechnic, Chengdu 610100, China

E-mail: zxlrghj@163.com

Abstract

Let R be a commutative ring. If the nilpotent radical $\text{Nil}(R)$ of R is a divided prime ideal, then R is called a ϕ-ring. In this paper, we first distinguish the classes of nonnil-coherent rings and ϕ-coherent rings introduced by Bacem and Ali [10], and then characterize nonnil-coherent rings in terms of ϕ-flat modules, nonnil-injective modules and nonnil-FP-injective modules. A ϕ-ring R is called a ϕ-IF ring if any nonnil-injective module is ϕ-flat. We obtain some module-theoretic characterizations of ϕ-IF rings. Two examples are given to distinguish ϕ-IF rings and IF ϕ-rings.

Key Words: nonnil-coherent rings; ϕ-IF rings; ϕ-flat modules; nonnil-injective modules; nonnil-FP-injective modules.

2020 Mathematics Subject Classification: Primary: 13A15; Secondary: 13F05.

Throughout this paper, all rings are commutative with identity and all modules are unital. Recall from [6] that a ring R is called an NP-ring provided that $\text{Nil}(R)$ is a prime ideal, and a ZN-ring provided that $\text{Z}(R) = \text{Nil}(R)$ where $\text{Z}(R)$ is the set of all zero-divisors of R. A prime ideal P of R is called divided prime if $P \subseteq (x)$, for every $x \in R - P$. A ring R is called a ϕ-ring, denoted by $R \in \mathcal{H}$, if $\text{Nil}(R)$ is a divided prime ideal of R. A ϕ-ring is called a strongly ϕ-ring if it is also a ZN-ring. Recall from [2] that for a ϕ-ring R with total quotient ring $\text{T}(R)$, the map $\phi : T(R) \to R_{\text{Nil}(R)}$ such that $\phi(\frac{a}{b}) = \frac{a}{b}$ is a ring homomorphism, and the image of R, denoted by $\phi(R)$, is a strongly ϕ-ring. The classes of ϕ-rings and strongly ϕ-rings are good extensions of integral domains to commutative rings with zero-divisors.

In 2002, Badawi [8] generalized the concept of Noetherian rings to that of nonnil-Noetherian rings in which all nonnil ideals are finitely generated. They showed that a ϕ-ring R is nonnil-Noetherian if and only if $\phi(R)$ is nonnil-Noetherian, if and only if $R/\text{Nil}(R)$ is a Noetherian domain. Generalizations of Dedekind domains, Prüfer domains, Bezout domains, Pseudo-valuation domains and Krull domains to
the context of rings that are in the class \mathcal{H} are also introduced and studied (see [2, 3, 7, 9]).

In 2016, Bacem and Ali [10] introduced two versions of coherent rings that are in the class \mathcal{H}. A ϕ-ring R is called nonnil-coherent provided that each finitely generated nonnil ideal of R is finitely presented, and R is called ϕ-coherent provided that $\phi(R)$ is a nonnil-coherent ring. However, they neither showed these two versions of coherent rings coincide for all ϕ-rings nor presented any example to distinguish them. In Section 1 of this article, we show that any nonnil-coherent ring is ϕ-coherent (see Proposition 1.3), and give an example to show the converse does not hold (see Example 1.5). Bacem and Ali [10] obtained the Chase Theorem for nonnil-coherent rings using ϕ-flat modules. We continue to characterize nonnil-coherent rings in terms of nonnil-injective modules and nonnil-FP-injective modules. Actually, we generalized Stenström’s, Dai-Ding’s and Chen’s results on coherent rings to these of nonnil-coherent rings (see Theorem 1.11 and Theorem 1.12).

Recall from [20] that a ring R is called an IF ring (also is called semi-regular in [1, 23]) if any injective R-module is flat. The class of IF rings can be seen as a natural extension of that of QF rings to coherent rings and has many module-theoretic characterizations (see [15, 22, 23]). Recently, Wang and Kim [28] introduced and studied a new version of IF rings under w-operations. In Section 2 of this article, we generalize the class of IF rings to that of rings in \mathcal{H}. A ϕ-ring R is called a ϕ-IF ring if any nonnil-injective R-module is ϕ-flat. We obtain that a ϕ-ring R is a ϕ-IF ring if and only if R is nonnil-coherent and R_m is a ϕ-IF ring for any $m \in \text{Max}(R)$, if and only if the class of ϕ-flat modules is equal to that of nonnil-FP-injective modules, if and only if any ϕ-torsion R-module is ϕ-copure flat, if and only if $R/\text{Nil}(R)$ is a field (see Theorem 2.5). We show that IF rings are ϕ-IF rings for all strongly ϕ-rings (see Proposition 2.6) and give two examples to distinguish IF ϕ-rings and ϕ-IF rings (see Example 2.7 and Example 2.8). Finally, we give an analogue of Matlis’ result to characterize ϕ-Prüfer rings (see Corollary 2.9).

1. ON NONNIL-COHERENT RINGS

Recall that a ring R is coherent if any finitely generated ideal is finitely presented. Bacem and Ali [10] generalized the notion of coherent rings to two classes of rings in \mathcal{H}: nonnil-coherent rings and ϕ-coherent rings. Let R be a ϕ-ring. Then

(1) R is called nonnil-coherent, provided that any finitely generated nonnil ideal of R is finitely presented.

(2) R is called ϕ-coherent, provided that $\phi(R)$ is nonnil-coherent.
Obviously, if a \(\phi \)-ring \(R \) is coherent then \(R \) is nonnil-coherent, and a strongly \(\phi \)-ring is nonnil-coherent if and only if it is \(\phi \)-coherent.

Proposition 1.1. Let \(R \) be a \(\phi \)-ring, then the following assertions are equivalent:

1. \(R \) is nonnil-coherent;
2. \((0 :_R r)\) is a finitely generated ideal for any non-nilpotent element \(r \in R \), and the intersection of two finitely generated nonnil ideals of \(R \) is a finitely generated nonnil ideal of \(R \);
3. \((I :_R b)\) is a finitely generated ideal for any non-nilpotent element \(b \in R \) and any finitely generated ideal \(I \) of \(R \).

Proof. (1) \(\iff \) (2): See [10, Theorem 2.1].

(1) \(\implies \) (3): Let \(I \) be a finitely generated ideal of \(R \) and \(b \) a non-nilpotent element in \(R \). Consider the following pull-back diagram:

\[
0 \longrightarrow (I :_R b) \longrightarrow R \longrightarrow (Rb + I)/I \longrightarrow 0
\]

\[
0 \longrightarrow I \longrightarrow Rb + I \longrightarrow (Rb + I)/I \longrightarrow 0.
\]

Since \(R \) is nonnil-coherent, \(Rb + I \) is finitely presented. Since \(I \) is finitely generated, \((Rb + I)/I\) is finitely presented by [17, Theorem 2.1.2(2)]. Thus \((I :_R b)\) is finitely generated by [17, Theorem 2.1.2(3)].

(3) \(\implies \) (1): Let \(I \) be a finitely generated nonnil ideal of \(R \) generated by \(\{a_1, \ldots, a_n\} \) where each \(a_i \) is non-nilpotent. We will show \(I \) is finitely presented by induction on \(n \). The case \(n = 1 \) follows from the exact sequence \(0 \to (0 :_R a_1) \to R \to Ra_1 \to 0 \).

For \(n \geq 2 \), let \(L = \langle a_1, \ldots, a_{n-1} \rangle \). Consider the exact sequence \(0 \to (L :_R a_n) \to R \to (Ra_n + L)/L \to 0 \). Then \((Ra_n + L)/L = I/L\) is finitely presented by (3) and [17, Theorem 2.1.2(2)]. Consider the exact sequence \(0 \to L \to I \to I/L \to 0 \). Since \(L \) is finitely presented by induction and \(I/L \) is finitely presented, \(I \) is also finitely presented by [17, Theorem 2.1.2(1)]. \(\square \)

Proposition 1.2. [10, Corollary 3.1] Let \(R \) be a \(\phi \)-ring, then \(R \) is \(\phi \)-coherent if and only if \(R/\text{Nil}(R) \) is a coherent domain.

Proposition 1.3. A \(\phi \)-ring \(R \) is nonnil-coherent if and only if \(R \) is \(\phi \)-coherent and \((0 :_R r)\) is a finitely generated ideal for any non-nilpotent element \(r \in R \).

Proof. Let \(R \) be a nonnil-coherent ring and \(r \) a non-nilpotent element in \(R \), then \((0 :_R r)\) is finitely generated by Proposition [11]. Let \(I/\text{Nil}(R) \) and \(J/\text{Nil}(R) \) be finitely generated non-zero ideals of \(R/\text{Nil}(R) \). By [2, Lemma 2.4], \(I \) and \(J \) are finitely generated nonnil ideals of \(R \). Thus by Proposition [11] \(I \cap J \) is a finitely generated
nonnil ideal. By [2, Lemma 2.4] again, \(I/\text{Nil}(R) \cap J/\text{Nil}(R) = (I \cap J)/\text{Nil}(R) \) is a finitely generated non-zero ideal of \(R/\text{Nil}(R) \). Then \(R/\text{Nil}(R) \) is a coherent domain by [27, Theorem 3.7.6]. Thus \(R \) is \(\phi \)-coherent by Proposition 1.2.

On the other hand, suppose \(R \) is a \(\phi \)-coherent ring. Then \(R/\text{Nil}(R) \) is a coherent domain. Let \(I \) and \(J \) be finitely generated nonnil ideals of \(R \). Then \(I/\text{Nil}(R) \) and \(J/\text{Nil}(R) \) are finitely generated non-zero ideals of \(R/\text{Nil}(R) \). Thus \((I \cap J)/\text{Nil}(R) = I/\text{Nil}(R) \cap J/\text{Nil}(R) \) is a finitely generated non-zero ideal of \(R/\text{Nil}(R) \). Consequently, \(I \cap J \) is a finitely generated nonnil ideal of \(R \) by [2, Lemma 2.4]. Since \((0 :_R r)\) is a finitely generated ideal for any non-nilpotent element \(r \in R \), \(R \) is nonnil-coherent by Proposition 1.1.

□

By Proposition 1.3, any nonnil-coherent ring is \(\phi \)-coherent. In order to give a \(\phi \)-coherent ring that is not nonnil-coherent, we recall from [19] the idealization construction \(R(+)M \) where \(M \) is an \(R \)-module. Let \(R(+)M = R \oplus M \) as an \(R \)-module, and define

\[
\begin{align*}
(1) \quad (r, m) + (s, n) &= (r + s, m + n), \\
(2) \quad (r, m)(s, n) &= (rs, sm + rn).
\end{align*}
\]

Under this construction, \(R(+)M \) becomes a commutative ring with identity \((1, 0)\).

Lemma 1.4. Let \(R(+)M \) be the idealization construction defined as above, \(N \) an \(R \)-submodule of \(M \). Then \(0(+)N \) is an ideal of \(R(+)M \). Moreover, \(0(+)N \) is a finitely generated ideal of \(R(+)M \) if and only if \(N \) is finitely generated over \(R \).

Proof. It follows from [4, Theorem 3.1] that \(0(+)N \) is an ideal of \(R(+)M \). It is easy to verify that the \(R(+)M \)-ideal \(0(+)N \) is generated by \(\{(0, n_1), ..., (0, n_t)\} \) if and only if \(N \) is generated by \(\{n_1, ..., n_t\} \) over \(R \). □

The following example shows that the condition “\((0 :_R r)\) is a finitely generated ideal for any non-nilpotent element \(r \in R \)” in Proposition 1.3 cannot be removed.

Example 1.5. Let \(D \) be a coherent domain not a field, \(Q \) its quotient field and \(E = \bigoplus_{i=1}^{\infty} Q/D \). Let \(R = D(+)E \) be the idealization construction. Since \(E \) is divisible and \(\text{Nil}(R) = 0(+)E \) is a prime ideal, \(R \) is a \(\phi \)-ring by [4, Corollary 3.4]. Note that \(R/\text{Nil}(R) \cong D \), and thus \(R \) is \(\phi \)-coherent by Proposition 1.2. Let \(d \) be a non-zero non-unit element of \(D \). Then \((d, 0)\) is a non-nilpotent element in \(R \). Then one can easily check that \((0 :_R (d, 0)) = 0(+)\text{Ann}_E d \), where \(\text{Ann}_E d = \bigoplus_{i=1}^{\infty} (\frac{1}{d} + D) \). Since \(\text{Ann}_E d \) is an infinitely generated \(D \)-module, \((0 :_R (d, 0)) \) is an infinitely generated \(R \)-ideal by Lemma 1.4. Thus \(R \) is not nonnil-coherent by Proposition 1.3.
Remark 1.6. Following from Badawi [8], a ϕ-ring R is called a nonnil-Noetherian ring provided that each nonnil ideal of R is finitely generated. They showed that a ϕ-ring R is nonnil-Noetherian if and only if $\phi(R)$ is nonnil-Noetherian (see [8, Theorem 2.4]). However, Example 1.5 shows the analogue of Badawi’s result is not true for nonnil-coherent. By Proposition 1.2, any nonnil-Noetherian ring is ϕ-coherent. However, nonnil-Noetherian rings are not always nonnil-coherent. Indeed, let D be a Noetherian domain not a field in Example 1.5, then R is a nonnil-Noetherian ring but not nonnil-coherent.

Let R be an NP-ring and M an R-module. Set
\[\phi\text{-tor}(M) = \{ x \in M \mid Ix = 0 \text{ for some nonnil ideal } I \text{ of } R \} . \]

An R-module M is said to be ϕ-torsion (resp., ϕ-torsion free) provided that $\phi\text{-tor}(M) = M$ (resp., $\phi\text{-tor}(M) = 0$). The classes of ϕ-torsion modules and ϕ-torsion free modules constitute a hereditary torsion theory of finite type (see [26]). The rest of this section will give some module-theoretic characterization of nonnil-coherent rings. Recall that an R-module M is called ϕ-flat provided that $\text{Tor}_1^R(T, M) = 0$ for any ϕ-torsion module T (see [35]), and is called nonnil-injective provided that $\text{Ext}_R^1(T, M) = 0$ for any ϕ-torsion module T (see [36]). Certainly, the class of ϕ-flat modules is closed under pure sub-modules, extensions and direct limits; the class of nonnil-injective modules is closed under direct products and extensions.

Definition 1.7. Let R be an NP-ring. An R-module M is called nonnil-FP-injective provided that $\text{Ext}_R^1(T, M) = 0$ for any finitely presented ϕ-torsion module T.

Note that the class of nonnil-FP-injective modules is closed under direct sums, direct products, extensions and pure sub-modules.

Proposition 1.8. Let R be an NP-ring, then the following assertions are equivalent:

1. M is ϕ-flat;
2. $\text{Hom}_R(M, E)$ is nonnil-injective for any injective module E;
3. $\text{Hom}_R(M, E)$ is nonnil-FP-injective for any injective module E;
4. if E is an injective cogenerator, then $\text{Hom}_R(M, E)$ is nonnil-injective.
5. if E is an injective cogenerator, then $\text{Hom}_R(M, E)$ is nonnil-FP-injective.

Proof. (1) \Rightarrow (2): Let T be a ϕ-torsion R-module and E an injective R-module. Since M is ϕ-flat, $\text{Ext}_R^1(T, \text{Hom}_R(M, E)) \cong \text{Hom}_R(\text{Tor}_R^1(T, M), E) = 0$. Thus $\text{Hom}_R(M, E)$ is nonnil-injective.

(2) \Rightarrow (3) \Rightarrow (5) and (2) \Rightarrow (4) \Rightarrow (5): Trivial.

(5) \Rightarrow (1): Let I be a finitely generated nonnil ideal of R and E an injective cogenerator. Since $\text{Hom}_R(M, E)$ is nonnil-FP-injective, $\text{Hom}_R(\text{Tor}_R^1(R/I, M), E) \cong \text{Hom}_R(M, E)$.
Ext$_R^1(R/I, \text{Hom}_R(M, E)) = 0$. Since E is an injective cogenerator, Tor$_1^R(R/I, M) = 0$. Thus M is ϕ-flat by [35, Theorem 3.2].

Bacem and Ali [10] generalized the Chase Theorem for coherent rings to that for nonnil-coherent rings.

Theorem 1.9. [10, Theorem 2.4] Let R be a ϕ-ring. The following statements are equivalent:

1. R is nonnil-coherent;
2. any direct product of ϕ-flat R-modules is ϕ-flat;
3. for any indexing set I, any R-module R^I is ϕ-flat.

Lemma 1.10. Let R be a nonnil-coherent ring. Let T be a finitely presented ϕ-torsion module generated by $\{t_1, ..., t_k, t_{k+1}\}$ with $k \geq 1$ and T_k the submodule of T generated by $\{t_1, ..., t_k\}$. Then T_k is finitely presented.

Proof. Note $T/T_k = (T_k + Rt_k)/T_k \cong Rt_k/(T_k \cap Rt_k) \cong R/I$ where $I = (0 :_R t_k + T_k \cap Rt_k)$ is an ideal of R. Since T is finitely presented ϕ-torsion and T_k is finitely generated, then I is a finitely generated nonnil ideal of R by [17, Theorem 2.1.2]. Since R is nonnil-coherent, then I is finitely presented. Consider the following Pull-back diagram:

\[
\begin{array}{ccccccccc}
0 & 0 \\
\downarrow & & \downarrow \\
K & & K \\
\downarrow & & \downarrow \\
0 & X & F & R/I & 0 \\
\downarrow & & & & \downarrow \\
0 & T_k & T & R/I & 0 \\
\downarrow & & & & \downarrow \\
0 & 0 & 0 \\
\end{array}
\]

where F is finitely generated free. Then K is finitely generated by [17, Theorem 2.1.2(3)]. Since I is finitely presented, X is finitely presented by [17, Theorem 2.1.2(3)] again. Thus T_k is finitely presented by [17, Theorem 2.1.2(2)].

In 1970, Stenström [25] obtained that a ring R is coherent if and only if any direct limit of FP-injective modules is FP-injective. In 2008, Pinzon [24] showed that if R is coherent, the class of FP-injective modules is (pre)covering. Recently, Dai and Ding [13, 14] showed that the converse of Pinzon’s result also hold. The next result generalizes these results to nonnil-coherent rings.
Theorem 1.11. Let R be a ϕ-ring. The following statements are equivalent:

(1) R is nonnil-coherent.
(2) The class of nonnil-FP-injective R-modules is closed under pure quotients.
(3) The class of nonnil-FP-injective R-modules is closed under direct limits.
(4) The class of nonnil-FP-injective R-modules is precovering.
(5) The class of nonnil-FP-injective R-modules is covering.

Proof. (1) \Rightarrow (3): Let $\{M_i\}_{i \in \Gamma}$ be a direct system of nonnil-FP-injective R-modules. Let T be a finitely presented ϕ-torsion module generated by n elements $\{t_1, ..., t_n\}$. We will prove $\text{Ext}^1_R(T, \lim_{\rightarrow} M_i) = 0$ by induction on n. Denote $M = \lim_{\rightarrow} M_i$. If $n = 1$, $T = R t_1$. Then there exists an exact sequence $0 \to (0 : R t_1) \to R \to R t_1 \to 0$. Since T is finitely presented ϕ-torsion, then $(0 : R t_1)$ is a finitely generated nonnil-ideal of R. Consider the following commutative diagrams with exact rows.

\[
\begin{array}{ccc}
\lim_{\rightarrow} \text{Hom}_R(R, M_i) & \longrightarrow & \lim_{\rightarrow} \text{Hom}_R((0 : R t_1), M_i) \\
\varphi_R & & \varphi_{(0 : R t_1)} \\
\text{Hom}_R(R, \lim_{\rightarrow} M_i) & \longrightarrow & \lim_{\rightarrow} \text{Ext}^1_R(R t_1, M_i) \\
\varphi_{R t_1} & & 0
\end{array}
\]

Since R is nonnil-coherent, $(0 : R t_1)$ is finitely presented. Then $\varphi_{(0 : R t_1)}$ is an isomorphism, and thus $\varphi_{R t_1}$ is an isomorphism as φ_R is an isomorphism. Consequently, $\text{Ext}^1_R(R t_1, \lim_{\rightarrow} M_i) = 0$. Let T be a finitely presented ϕ-torsion module generated by $\{t_1, ..., t_k, t_{k+1}\}$ and T_k the ϕ-torsion submodule of T generated by $\{t_1, ..., t_k\}$. Then T_k is finitely presented ϕ-torsion by Lemma 1.10. Consider the exact sequence $0 \to T_k \to T \to R/I \to 0$ where $I = (0 : R t_k + T_k \cap R t_k)$. By the proof of Lemma 1.10, R/I is finitely presented ϕ-torsion. We have a long exact sequence

\[
\text{Ext}^1_R(R/I, \lim_{\rightarrow} M_i) \to \text{Ext}^1_R(T, \lim_{\rightarrow} M_i) \to \text{Ext}^1_R(T_k, \lim_{\rightarrow} M_i).
\]

By induction, $\text{Ext}^1_R(T_k, \lim_{\rightarrow} M_i) = \text{Ext}^1_R(R/I, \lim_{\rightarrow} M_i) = 0$, thus $\text{Ext}^1_R(T, \lim_{\rightarrow} M_i) = 0$. Consequently, $\lim_{\rightarrow} M_i$ is nonnil-FP-injective.

(3) \Rightarrow (1): Let I be a finitely generated nonnil ideal, $\{M_i\}_{i \in \Gamma}$ a direct system of R-modules. Let $\alpha : I \to \lim_{\rightarrow} M_i$ be a homomorphism. For any $i \in \Gamma$, $E(M_i)$ is the injective envelope of M_i. Then $E(M_i)$ is nonnil-FP-injective. By (3), there exists an
\(R \)-homomorphism \(\beta : R \to \lim E(M_i) \) such that the following diagram commutes:

\[
\begin{array}{cccccc}
0 & \rightarrow & I & \rightarrow & R & \rightarrow & R/I & \rightarrow & 0 \\
\downarrow & & \alpha & & & & \downarrow & & \\
0 & \rightarrow & \lim M_i & \rightarrow & \lim E(M_i) & \rightarrow & \lim E(M_i)/M_i & \rightarrow & 0.
\end{array}
\]

Thus, by [18, Lemma 2.13], there exists \(j \in \Gamma \), such that \(\beta \) can factor through \(R \xrightarrow{\beta_j} E(M_j) \). Consider the following commutative diagram:

\[
\begin{array}{cccccc}
0 & \rightarrow & I & \rightarrow & R & \rightarrow & R/I & \rightarrow & 0 \\
\downarrow & & \alpha_j & & & & \downarrow & & \\
0 & \rightarrow & M_j & \rightarrow & E(M_j) & \rightarrow & E(M_j)/M_j & \rightarrow & 0.
\end{array}
\]

Since the composition \(I \to R \to E(M_j) \to E(M_j)/M_j \) becomes to be 0 in the direct limit, we can assume \(I \to R \to E(M_j) \) can factor through some \(I \xrightarrow{\alpha_j} M_j \). Thus \(\alpha \) can factor through \(M_j \). Consequently, the natural homomorphism \(\lim \text{Hom}_R(I, M_i) \xrightarrow{\phi} \text{Hom}_R(I, \lim M_i) \) is an epimorphism. Now suppose \(\{M_i\}_{i \in \Gamma} \) is a direct system of finitely generated \(R \)-modules such that \(\lim M_i = I \). Then there exists \(f \in \text{Hom}_R(I, M_j) \) with \(j \in \Gamma \) such that the identity map \(\text{Id}_I = \phi(u_j(f)) \) where \(u_j \) is the natural homomorphism \(\text{Hom}_R(I, M_j) \to \lim \text{Hom}_R(I, M_i) \). Then \(I \) is a direct summand of \(M_j \), and thus \(I \) is finitely generated. It follows from [29, Section 24.9, Section 24.10] that \(I \) is finitely presented.

(2) \(\iff \) (3) \(\iff \) (4) \(\iff \) (5): Follows from [30, Lemma 3.4]. \(\square \)

In 1993, Chen and Ding in [12] showed that a ring \(R \) is coherent if and only if \(\text{Hom}_R(M, E) \) is flat for any absolutely pure \(R \)-module \(M \) and injective \(R \)-module \(E \) if and only if \(\text{Hom}_R(M, E) \) is flat for any injective \(R \)-modules \(M \) and \(E \). We also generalize this result to nonnil-coherent rings.

Theorem 1.12. Let \(R \) be a \(\phi \)-ring. The following statements are equivalent:

1. \(R \) is nonnil-coherent;
2. \(\text{Hom}_R(M, E) \) is \(\phi \)-flat for any nonnil-FP-injective module \(M \) and any injective module \(E \);
3. \(\text{Hom}_R(M, E) \) is \(\phi \)-flat for any nonnil-injective module \(M \) and any injective module \(E \);
4. \(\text{Hom}_R(\text{Hom}_R(M, E_1), E_2) \) is \(\phi \)-flat for any \(\phi \)-flat module \(M \) and any injective modules \(E_1, E_2 \);
5. if \(E_1 \) and \(E_2 \) are injective cogenerators, then \(\text{Hom}_R(\text{Hom}_R(M, E_1), E_2) \) is \(\phi \)-flat for any \(\phi \)-flat module \(M \).
Proof. (2) ⇒ (3) and (4) ⇒ (5): Trivial.
(3) ⇔ (4): Follows from Proposition 1.8.
(1) ⇒ (2): Let I be a finitely generated nonnil ideal of R. Consider the following commutative diagram with exact rows:

\[
\begin{array}{ccccccccc}
0 & \longrightarrow & \text{Tor}_1^R((M, E), R/I) & \longrightarrow & (M, E) \otimes_R I & \longrightarrow & (M, E) \otimes_R R & \longrightarrow & (M, E) \otimes_R R/I & \longrightarrow & 0 \\
& & \downarrow \psi_{R/I} & & \downarrow \psi_I & & \downarrow \psi_R & & \downarrow \psi_{R/I} & \\
0 & \longrightarrow & \text{Ext}_1^R(R/I, M) & \longrightarrow & ((I, M), E) & \longrightarrow & ((R, M), E) & \longrightarrow & ((R/I, M), E) & \longrightarrow & 0.
\end{array}
\]

Since I and R are finitely presented, then ψ_I and ψ_R are isomorphisms by [5, Proposition 8.14(1)] and [21, Theorem 2]. Thus $\psi_{R/I}$ is an isomorphism by the Five Lemma.

Since M is nonnil-FP-injective, $\text{Ext}_1^R(R/I, M) = 0$. Then $\text{Tor}_1^R(\text{Hom}_R(M, E), R/I) = 0$, and thus $\text{Hom}_R(M, E)$ is ϕ-flat.

(5) ⇒ (1): Let $\{M_i\}_{i \in \Gamma}$ be a family of ϕ-flat modules and E_1 and E_2 be injective cogenerators. Then $\bigoplus_{i \in \Gamma} M_i$ is ϕ-flat. Then

\[
\text{Hom}_R(\text{Hom}_R(\bigoplus_{i \in \Gamma} M_i, E_1), E_2) \cong \text{Hom}_R(\prod_{i \in \Gamma} \text{Hom}_R(M_i, E_1), E_2)
\]

is ϕ-flat by (5). Note that $\bigoplus_{i \in \Gamma} \text{Hom}_R(M_i, E_1)$ is the pure submodule of $\prod_{i \in \Gamma} \text{Hom}_R(M_i, E_1)$ by [11, Lemma 1(1)]. Thus the natural epimorphism

\[
\text{Hom}_R(\prod_{i \in \Gamma} \text{Hom}_R(M_i, E_1), E_2) \twoheadrightarrow \text{Hom}_R(\bigoplus_{i \in \Gamma} \text{Hom}_R(M_i, E_1), E_2)
\]

splits by [18, Lemma 2.19]. It follows that

\[
\prod_{i \in \Gamma} \text{Hom}_R(\text{Hom}_R(M_i, E_1), E_2) \cong \text{Hom}_R(\bigoplus_{i \in \Gamma} \text{Hom}_R(M_i, E_1), E_2)
\]

is ϕ-flat. By [18, Corollary 2.21], $\prod_{i \in \Gamma} M_i$ is the pure submodule of $\prod_{i \in \Gamma} \text{Hom}_R(\text{Hom}_R(M_i, E_1), E_2)$. Thus $\prod_{i \in \Gamma} M_i$ is ϕ-flat. By Theorem 1.9 R is nonnil-coherent. \qed

2. ON ϕ-IF RINGS

Recall from [20] that a ring R is called an IF ring if any injective R-module is flat. We generalize the concept of IF rings to that of rings in H using nonnil-injective modules and ϕ-flat modules.

Definition 2.1. Let R be a ϕ-ring. Then R is said to be a ϕ-IF ring provided that any nonnil-injective R-module is ϕ-flat.

Lemma 2.2. Let R be a ϕ-IF ring, then R is nonnil-coherent.
Proof. Let M be a nonnil-injective R-module and E an injective R-module. Then M is ϕ-flat as R is a ϕ-IF ring. Thus $\text{Hom}_R(M, E)$ is nonnil-injective by Proposition 1.8. Consequently, R is nonnil-coherent by Theorem 1.12. □

Proposition 2.3. Let R be a nonnil-coherent ring, M an R-module. Suppose T is a finitely presented ϕ-torsion module and E is an injective R-module. Then

$$\text{Tor}^1_R(T, \text{Hom}_R(M, E)) \cong \text{Hom}_R(\text{Ext}^1_R(T, M), E).$$

Proof. Suppose T is generated by n elements, then there is a exact sequence $0 \to K \to P \to T \to 0$ with $P = R^n$ and K finitely generated. We will show K is finitely presented by induction on n. If $n = 1$, then K is a finitely generated nonnil ideal of R. Thus K is finitely presented as R is nonnil-coherent. Suppose $n = k + 1$, then there is commutative diagram:

\[
\begin{array}{ccccccccc}
0 & \to & K \cap R^k & \to & R^k & \to & R^k/K \cap R^k & \to & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & \to & K & \to & R^{k+1} & \to & R^{k+1}/K & \to & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & \to & I & \to & R & \to & R/I & \to & 0 \\
\end{array}
\]

where $I = K/K \cap R^k$ is an ideal of R. Since $T = R^{k+1}/K$ is finitely presented ϕ-torsion, then $R^k/K \cap R^k$ is finitely presented ϕ-torsion by Lemma 1.10. Thus R/I is finitely presented ϕ-torsion by [17, Theorem 2.1.2(2)]. Since $R^k/K \cap R^k$ is generated by k elements, $K \cap R^k$ and I are finitely presented by induction. Thus K is finitely presented by [17, Theorem 2.1.2(1)].

Let F be a ϕ-flat R-module and E a injective R-module. Then there is a commutative diagram with exact rows((\ldots, \ldots) is instead of $\text{Hom}_R(\ldots, \ldots)$):

\[
\begin{array}{ccccccccc}
0 & \to & \text{Tor}^1_R(T, (F, E)) & \to & (F, E) \otimes_R K & \to & (F, E) \otimes_R P & \to & (F, E) \otimes_R T & \to & 0 \\
\downarrow & & \psi_T & & \psi_K \cong & & \psi_P \cong & & \psi_T \cong & & \downarrow \\
0 & \to & ((\text{Ext}^1_R(T, F), E)) & \to & ((K, F), E) & \to & ((P, M), E) & \to & ((T, M), E) & \to & 0.
\end{array}
\]

Since K, F and T are finitely presented, ψ_K, ψ_P and ψ_T are isomorphisms by [27, Theorem 2.6.13(2)]. Thus ψ_T is isomorphism by the Five Lemma. □

Let M be an R-module and N a submodule of M. Then $N \hookrightarrow M$ is said to be a ϕ-embedding map provided that M/N is a ϕ-torsion module. Let M be an R-module, then there is a nonnil-injective envelope, denoted by $E_{\phi}(M)$, of M (see [36, Theorem 2.7]). Note that $M \hookrightarrow E_{\phi}(M)$ is a ϕ-embedding map (see [36, Theorem 2.14]).
Recall from [22] that an R-module M is said to be copure flat if $\text{Tor}_1^R(E, M) = 0$ for any injective module E. It was proved that a ring R is an IF ring if and only if any R-module is copure flat (see [22, Proposition 2.14]). The following concepts give a “strong” version of copure flat modules.

Definition 2.4. Let R be an NP-ring. An R-module M is called ϕ-copure flat provided that $\text{Tor}_1^R(E, M) = 0$ for any nonnil-injective module E.

Theorem 2.5. Let R be a ϕ-ring. The following statements are equivalent:

1. R is a ϕ-IF ring;
2. R is a nonnil-coherent ring and R_p is a ϕ-IF ring for any $p \in \text{Spec}(R)$;
3. R is a nonnil-coherent ring and R_m is a ϕ-IF ring for any $m \in \text{Max}(R)$;
4. any R-module can be ϕ-embedded into a ϕ-flat module.
5. any nonnil-FP-injective module is ϕ-flat;
6. R is nonnil-coherent and any ϕ-flat module is nonnil-FP-injective;
7. any R-module M is ϕ-flat if and only if M is nonnil-FP-injective;
8. any ϕ-torsion R-module is ϕ-copure flat.
9. $R/\text{Nil}(R)$ is a field.

Proof. (1) \Rightarrow (4): Let M be an R-module, $M \hookrightarrow E_\phi(M)$ the ϕ-embedding of M into $E_\phi(M)$. Since $E_\phi(M)$ is a ϕ-flat module by (1), then (4) holds naturally.

(4) \Rightarrow (1): Let M be a nonnil-injective and $M \subseteq F$ be the ϕ-embedding of M into a ϕ-flat module F. Since F/M is ϕ-torsion, $\text{Ext}_1^R(F/M, M) = 0$. Then M is a direct summand of the ϕ-flat module F, and thus M is ϕ-flat.

(1) + (4) \Rightarrow (2): By Lemma 2.2, R is a nonnil-coherent ring. Let p be a prime ideal of R, A an R_p-module and F a ϕ-flat R-module containing A such that F/A is ϕ-torsion. Then $A \cong A_p \subseteq F_p$. Note that F_p/A_p is a ϕ-torsion R_p-module (see [31 Proposition 2.12]) and F_p is a ϕ-flat R_p-module (see [35 Theorem 3.5]). Thus R_p is a ϕ-IF ring by (4).

(2) \Rightarrow (3): Trivial.

(1) \Rightarrow (6): Let R be a ϕ-IF ring, then R is nonnil-coherent by Lemma 2.2. Suppose T is a finitely presented ϕ-torsion module. Let F be a ϕ-flat R-module and E an injective R-module. By Proposition 2.3

$$\text{Tor}_1^R(T, \text{Hom}_R(F, E)) \cong \text{Hom}_R(\text{Ext}_1^R(T, F), E).$$

By Proposition 1.8, $\text{Hom}_R(F, E)$ is nonnil-injective. Since R is a ϕ-IF ring, $\text{Hom}_R(F, E)$ is ϕ-flat. Since T is finitely presented ϕ-torsion, then $\text{Tor}_1^R(T, \text{Hom}_R(F, E)) = 0$, and thus $\text{Hom}_R(\text{Ext}_1^R(T, F), E) = 0$. It follows that $\text{Ext}_1^R(T, F) = 0$. Consequently, F is nonnil-FP-injective.
(6) ⇒ (7): Let M be a nonnil-FP-injective R-module and E an injective cogenerator over R. Let T be a finitely presented ϕ-torsion module, then

$$\text{Hom}(\text{Tor}_1^R(T, M), E) \cong \text{Ext}_R^1(T, \text{Hom}_R(M, E)).$$

Since R is nonnil-coherent, $\text{Hom}_R(M, E)$ is ϕ-flat by Theorem 1.12. Then $\text{Hom}_R(M, E)$ is nonnil-FP-injective by (6). It follows that $\text{Ext}_R^1(T, \text{Hom}_R(M, E)) = 0$, and thus $\text{Hom}(\text{Tor}_1^R(T, M), E) = 0$. Consequently, $\text{Tor}_1^R(T, M) = 0$. So M is ϕ-flat.

(7) ⇒ (1): Note that nonnil-injective modules are nonnil-FP-injective. Thus any nonnil-injective module is ϕ-flat by (7).

(1) ⇒ (8): Let M be a nonnil-injective R-module and T a ϕ-torsion module. Then M is ϕ-flat, and thus $\text{Tor}_1^R(T, M) = 0$. Consequently, T is ϕ-copure flat.

(8) ⇒ (1): Let M be a nonnil-injective R-module and T a ϕ-torsion module. Since T is ϕ-copure flat, then $\text{Tor}_1^R(T, M) = 0$. Thus M is ϕ-flat.

(3) + (1) ⇒ (6): Let M be a ϕ-flat module, then M_m is a ϕ-flat R_m-module for any maximal ideal m of R. Thus M_m is a nonnil-FP-injective R_m-module by (1) ⇒ (6) for the ϕ-IF ring R_m. Let T be a finitely presented ϕ-torsion module. Then, by [27, Theorem 2.6.16], $\text{Ext}_R(T, M)_m \cong \text{Ext}_{R_m}^1(T_m, M_m) = 0$ as T_m is a finitely presented ϕ-torsion R_m-module by [31, Proposition 2.12]. Thus $\text{Ext}_R^1(T, M) = 0$. So M is nonnil-FP-injective.

(7) ⇒ (5) ⇒ (1): Trivial.

(9) ⇒ (1): If $R/\text{Nil}(R)$ is a field, then any R-module is ϕ-flat and nonnil-injective by [31, Theorem 1.7]. Thus R is a ϕ-IF ring.

(1) ⇒ (9): Suppose R is a ϕ-IF ring. Let E be an injective $R/\text{Nil}(R)$-module, then E is a nonnil-injective R-module by [31, Proposition 1.4]. Thus E is ϕ-flat over R. It follows from [32, Proposition 1.7] that E is flat over $R/\text{Nil}(R)$. Consequently, $R/\text{Nil}(R)$ is an IF domain, and thus is a field by [20, Proposition 3.1].

Proposition 2.6. Let R be a strongly ϕ-ring. If R is an IF ring, then R is a ϕ-IF ring.

Proof. Since R is a strongly ϕ-ring, any non-nilpotent element is regular. Because R is an IF ring, any regular element is invertible by [23, Proposition 2.1(1)]. Then the Krull dimension of R is 0, and thus $R/\text{Nil}(R)$ is a field. Consequently, R is a ϕ-IF ring by Theorem 2.5.

Note that every IF ring is not ϕ-IF. For example, let R be a von Neumann regular ring not a field. Then R is an IF ring. Since $\text{Nil}(R) = 0$ is not a prime ideal, then R is not a ϕ-ring, and thus not a ϕ-IF ring. The following example shows that IF rings are also not necessary ϕ-IF rings for ϕ-rings.
Example 2.7. Let D be a Prufer domain not a field, and Q its quotient field. Let $R = D(+)Q/D$ be the idealization construction. Then $\text{Nil}(R) = 0(+)Q/D$ is a prime ideal of R. Thus R is a ϕ-ring by [4, Corollary 3.4]. By [1, Example 2.12(1)] R is an IF ring. However $R/\text{Nil}(R) \cong D$ is not a field. Thus R is not a ϕ-IF ring by Theorem 2.5.

It is also showed that ϕ-IF rings are not necessary IF rings.

Example 2.8. Let K be a field and $V = \bigoplus_{i=1}^{\infty} K$ an infinite dimensional vector space over K. Let $R = K(+)V$ be the idealization construction. Obviously, R is a ϕ-ring. Note that $\text{Nil}(R) = 0(+)V$. Since $K \cong R/\text{Nil}(R)$ is a field, R is a ϕ-IF ring by Theorem 2.5. Let v be a vector in V with each component equal to 1. Then \((0 :_{R} (0,v)) = 0(+)V\). Since V is an infinite dimensional K-vector space, $0(+)V$ is not a finitely generated R-ideal by Lemma 1.4. Then R is not coherent by [17, Theorem 2.3.2]. Thus R is not an IF ring by [23, Proposition 3.3].

Recall from [2] that a ϕ-ring R is said to be a ϕ-Pr"ufer ring if any finitely generated nonnil ideal of R is ϕ-invertible. They showed that a ϕ-ring R is a ϕ-Pr"ufer ring if and only if $\phi(R)$ is a Prufer ring, if and only if $R/\text{Nil}(R)$ is a Prufer domain(see [2, Theorem 2.2, Theorem 2.6]). Matlis [23] obtained that an integral domain R is a Prufer domain if and only if R/I is an IF ring for any non-zero finitely generated I of R. Now we give an analogue of Matlis’ result for ϕ-rings.

Corollary 2.9. Let R be a ϕ-ring. Then R is a ϕ-Pr"ufer ring if and only if R/I is an IF ring for any finitely generated nonnil ideal I of R.

Proof. Let R be a ϕ-Pr"ufer ring and I a finitely generated nonnil ideal of R. Then $R/\text{Nil}(R)$ is a Prufer domain. Since $I/\text{Nil}(R)$ is a finitely generated non-zero ideal of $R/\text{Nil}(R)$ by [2, Lemma 2.4], we have $R/I = \frac{R/\text{Nil}(R)}{I/\text{Nil}(R)}$ is an IF ring.

Let $I/\text{Nil}(R)$ be a finitely generated nonzero ideal of $R/\text{Nil}(R)$. Then I is a finitely generated nonnil ideal of R by [2, Lemma 2.4] again. Thus $\frac{R/\text{Nil}(R)}{I/\text{Nil}(R)} = R/I$ is an IF ring. Consequently, $R/\text{Nil}(R)$ is a Prufer domain. It follows that R is a ϕ-Pr"ufer ring.

Acknowledgement.

The second author was supported by the Natural Science Foundation of Chengdu Aeronautic Polytechnic (No. 062026) and the National Natural Science Foundation of China (No. 12061001).
References

[1] K. Adarbeh and S. Kabbaj, Matlis semi-regular in trivial ring extensions issued from integral domains, Colloq. Math. 150 (2017), no. 2, 229-241.

[2] D. F. Anderson, A. Badawi, On ϕ-Prüfer rings and ϕ-Bezout rings, Houston J. Math. 30 (2004), 331-343.

[3] D. F. Anderson, A. Badawi, On ϕ-Dedekind rings and ϕ-Krull rings, Houston J. Math. 31 (2005), 1007-1022.

[4] D. D. Anderson, M. Winders, Idealization of a module, J. Commut. Algebra 1 (2009), 3-56.

[5] L. Angeleri Hügel, D. Herbera, Mittag-Leffler conditions on modules, Indiana Univ. Math. J. 57 (2008), 2459-2517.

[6] A. Badawi, On divided commutative rings, Commun. Algebra 27 (1999), 1465-1474.

[7] A. Badawi, On ϕ-chained rings and ϕ-pseudo-valuation rings, Houston J. Math. 27 (2001), 725-736.

[8] A. Badawi, On Nonnil-Noetherian rings, Commun. Algebra 31 (2003), no. 4, 1669-1677.

[9] A. Badawi, T. Lucas, On ϕ-Mori rings, Houston J. Math. 32 (2006), 1-32.

[10] K. Bacem, B. Ali, Nonnil-coherent rings, Beitr. Algebra Geom. 57 (2016), no. 2, 297-305.

[11] T. J. Cheatham, D. R. Stone, Flat and projective character modules, Proc. Amer. Math. Soc. 81 (1981), no. 2, 175-175.

[12] J. L. Chen, Ding, N. Q. The weak global dimension of commutative coherent rings, Commun. Algebra 21 (1993), no. 10, 3521-3528.

[13] G. C. Dai, N. Q. Ding, Coherent rings and absolutely pure covers, Commun. Algebra 46 (2018), no. 3, 1267-1271.

[14] G. C. Dai, N. Q. Ding, Coherent rings and absolutely pure precovers, Commun. Algebra 47 (2019), no. 11, 4743-4748.

[15] X. H. Fu, N. Q. Ding, On strongly copure flat modules and copure flat dimensions, Commun. Algebra 38 (2010), 4531-4544.

[16] L. Fuchs, L. Salce, Modules over non-Noetherian domains, Mathematical Surveys and Monographs 84, AMS, 2001.

[17] S. Glaz, Commutative Coherent Rings, Lecture Notes in Mathematics, vol. 1371, Berlin: Springer-Verlag, 1989.

[18] R. Gobel, J. Trlifaj, Approximations and endomorphism algebras of modules, De Gruyter Exp. Math., vol. 41, Berlin: Walter de Gruyter GmbH & Co. KG, 2012.

[19] J. A. Huckaba, Commutative Rings with Zero Divisors. Monographs and Textbooks in Pure and Applied Mathematics, 117, Marcel Dekker, Inc., New York, 1988.

[20] S. Jain, Flat and FP-injective, Proc. Amer. Math. Soc. 41 (1973), 437-442.

[21] E. Lenzing, Endlich präsentierbare Moduln, Archiv Der Mathematik 20 (1969), no. 3, 262-266.

[22] L. X. Mao, N. Q. Ding, Relative copure injective and copure flat modules, J. Pure Appl. Algebra 208 (2007), 635-646.

[23] E. Matlis, Commutative semi-coherent and semi-regular rings, J. Algebra 95 (1985), 343-372.

[24] K. R. Pinzon, Absolutely pure covers, Commun. Algebra 36 (2008), 2186-2194.

[25] B. Stenström, Coherent rings and FP-injective modules, J. London Math. Soc. 2 (1970), 323-329.
[26] B. Stenström, *Rings of quotients*, Die Grundlehren Der Mathematischen Wissenschaften, Berlin: Springer-verlag, 1975.

[27] F. G. Wang, H. Kim, *Foundations of Commutative rings and Their Modules*, Singapore: Springer, 2016.

[28] F. G. Wang, H. Kim, *Relative FP-injective modules and relative IF rings*, Commun. Algebra (2021), accepted, DOI: 10.1080/00927872.2021.1900861.

[29] R. Wisbauer, *Foundations of Module and Ring Theory*, Algebra, Logic and Applications, Vol 3, Amsterdam: Gordon and Breach, 1991.

[30] X. L. Zhang, F. G. Wang, W. Qi, *On Characterizations of w-Coherent rings*, Commun. Algebra 48 (2020), no. 11, 4681-4697.

[31] X. L. Zhang, W. Qi, *Some Remarks on φ-Dedekind rings and φ-Prüfer rings*, arXiv:2103.08278v1.

[32] X. L. Zhang, W. Zhao, *On w-φ-flat modules and their homological dimensions*, Bull. Korean Math. Soc., accepted.

[33] W. Zhao, *On φ-flat modules and φ-Prüfer rings*, J. Korean Math. Soc. 55 (2018), no. 5, 1221-1233.

[34] W. Zhao, F. G. Wang, X. L. Zhang, *On φ-projective modules and φ-Prüfer rings*, Commun. Algebra 48 (2020), no. 7, 3079-3090.

[35] W. Zhao, F. G. Wang, G. H. Tang, *On φ-von Neumann regular rings*, J. Korean Math. Soc. 50 (2013), no. 1, 219-229.

[36] W. Zhao, X. L. Zhang, *On Nonnil-injective modules*, J. Sichuan Normal Univ. 42 (2019), no. 6, 808-815.