How case representations of medical students change during case processing – Results of a qualitative study

Abstract

Objective: Representations are mental summaries of a clinical case and help in understanding a clinical problem. However, it is still largely unknown which clinical information medical students include in their case representations. In this study, therefore, the structure and quality of students’ case representations were examined to better understand the diagnostic process and its relationship to diagnostic accuracy. What information do medical students include in their representations and is there an association between this information and the diagnostic accuracy?

Method: 43 medical students in the fourth and fifth clinical year worked on four clinical cases. During the diagnostic process, they were asked three times per case to write a case representation. 516 representations were qualitatively evaluated using a content-based coding scheme. An analysis was made of the nature and composition of the clinical information. In addition, the association between the general representation structure and the correct case solution was examined.

Results: At the beginning, students include most of the clinical information in their representation (66%), but as the case progresses, they begin to select the information offered (2nd representation 42%, 3rd representation 38%). The length of the representation (number of words) does not correlate with the correct case solution ($r=-0.08-0.31$). The representations do not depend on the case difficulty but have a significant individual component: the representations written by a student are formally very similar in all four cases ($r=0.60-0.86$).

Conclusion: Medical students can select the relevant clinical information and include it in their case representations. Lack of representation does not seem to be a reason for misdiagnosis; Students’ deficits in diagnosis are more likely due to knowledge gaps.

Keywords: diagnostic competence, clinical reasoning, undergraduate medical education

Introduction

Diagnosis is one of the central tasks in everyday clinical practice. A characteristic of the medical expert is the ability to diagnose correctly. The development of expertise has been studied for many years [1], [2]: the illness-script theory is a widely accepted model for explaining the diagnostic behavior of experts [2]. This theory states that an expert has a particular concept of any disease that includes the epidemiology, the symptoms, and the enabling factors of a disease [3]. Representation is a relevant aspect of the diagnostic process. It can be defined as a mental summary of the case by the physician/student. The problem of the case is represented in such a way that the cognitive processes can be used to understand and solve it [4]. Therefore, representation is one of the cognitive steps that correlates with a correct case solution [5]. Charlin et al. distinguish an initial representation, a dynamic representation as well as a final representation in the course of the diagnostic process [6]. A good mental representation of the clinical problem is necessary to activate relevant prior-knowledge and to compare different differential diagnoses so that finally the correct diagnosis can be made. The initial representation of the problem is modified and enriched by new information, so that at the end of the diagnostic process the case is comprehensively represented [7]. Physicians use representations in their everyday clinical routine as part of the diagnostic process, but also in other situations, such as the ward round [8] or handovers [9], [10], [11]. Representations as a key element in the diagnostic process [6], [12] allow the physician to compare his illness script with the current appearance of the patient; and the student, to compare the patient case with his theoretical knowledge. It is expected that experts will evaluate whether the initial representation matches one of their illness
The structural aspects of representations have already been analyzed; semantic and symptom-oriented processes can be distinguished [13]. Representation begins with semantic transformation [14]. The clinical data are transformed with the help of so-called semantic qualifiers, which represent an abstraction of the clinical findings (e.g. last night → acute onset) and contribute to the diagnostic accuracy [15], [16]. It has already been shown that student representations can be improved by encouraging the use of semantic transformations [12]. Therefore, it seems promising to use representations to improve the diagnostic competence of medical students. In a recent study, we found that a prompt to write representations improves, for example, the diagnostic efficiency of students, but not the diagnostic accuracy [17]. So far, there is no empirical data on the information categories of representations and the development of them during the student diagnostic process. It is unclear which concrete information, such as which anamnestic data or results of various examinations, are contained in representations. Moreover, there is no data on how comprehensive the representations are, that is, whether all given information is included or, in fact, merely a selection of the data is in the representations. However, a better understanding is indispensable as a basis for interventions, such as scaffolding in the form of structured reflection or representation. This knowledge can help to control prompts for representations or case summaries and adapt them better to student deficits. These considerations lead to the following research questions:

• Research question 1: How much and what information is included in repeated case representations in simple, intermediate and difficult clinical cases and how does it develop during the diagnostic process?

• Research question 2: Is there an association between information categories and the structure of representations and the correct diagnosis?

Method

Study design, participants and procedure

This article describes the results of a qualitative analysis of an intervention study that examined the influence of representations on the diagnostic competence of medical students and the underlying mechanisms [17], [18]. In the study, a control group and an intervention group, which received representation prompts, were compared in terms of diagnostic accuracy and diagnostic efficiency. In addition, the diagnostic errors of the students were qualitatively evaluated. This article is a secondary partial analysis of the intervention arm of this study. In June 2016, 50 fourth- and fifth-year medical students worked on four clinical cases with the leading symptom dyspnea [17] on the electronic learning platform CASUS [19], [20]. First, participants watched an introductory video explaining the correct editing process: they were asked to put themselves into a ward round situation where they had to introduce a patient to other physicians. In addition, the technical aspects of the learning platform, how the clinical information could be selected, were explained. During the study phase, participants worked on four clinical cases in a given order and were asked to write case presentations during casework. Three times – after the medical history, the physical examination, and the patient record – the students received the following prompt: “Please sum up the case as you would present it to your attending physician.” (see Figure 1). Participants were able to navigate freely through the technical examinations and findings. They were able to collect as much clinical information as they wanted from the patient record, which contained 10 different types of technical examinations for each case, in a freely selectable order. Only the findings of the technical examinations were given (e.g., results of blood gas analysis or the values of a pulmonary function test) without an assessment. Thus, for example, the X-ray images did not include any written report, but the assessment in all examinations had to be made by the students themselves. After processing each case, participants had to write down their suspected diagnosis.

Difficulty of the cases

The difficulty of the cases was tested in a pilot study with ten medical students of different levels of expertise. The four cases had a different degree of difficulty: the case aortic stenosis (#1) was simple and most students were able to solve it. The cases hyperventilation (#2) and uremia (#3) were of moderate difficulty; about half of the students were able to solve the cases correctly. The case AV-node-reentry-tachycardia (AVNRT, #4) was difficult due to this rather rare disease and the more complex electrocardiogram. Also, in the actual study, diagnostic accuracy was clearly different with regard to the different cases: the first case, aortic stenosis, was correctly solved by 80% of the participants; the second case, uremia, was solved by 60%, the third case, hyperventilation, by 56%, and the last case, AVNRT, by 5%. The diagnosis was binary coded (correct = successful and false = unsuccessful) relative to an expert solution of the case. In addition, experts agreed in advance which information was necessary in which case for the correct solution. Diagnostic result and process were evaluated with regard to the expert solution. The expert consensus is based on the assessments and discussions of the case developer (LB) as well as the reviewers of the cases (two advanced internal medicine assistants, a specialist in internal medicine and an attending physician) based on daily clinical practice.
In order to distinguish the different information categories in the representations, we analyzed the data based on Mayring [21]. The students’ representations were coded by assigning the contents to different categories (information levels) found in the literature [22], [23]. All representations were coded by one researcher (LB). A second rater (BL) encoded 10% of the data. The interrater coefficient (Cohen’s kappa) was $k=0.784$. The following categories covered all information provided by the participants: **history** (including gender, age, pre-existing conditions, medication, alcohol and nicotine abuse, history of present illness, progression, symptoms), **physical examination** (vital signs, general and nutritional status, cardiovascular system, pulmonary, abdomen, neuro-status, lymph node status) and **technical examinations** (lab tests, electrocardiogram, chest x-ray, arterial blood gas analysis, lung function test, echocardiogram, urinalysis, abdominal ultrasound, bacteriological testing). It was also coded whether the participants named a diagnosis in their representation and whether they evaluated the information in any way. Two coding-examples are shown in Figure 2 and Figure 3.

Information levels, length and dynamics of representations

Subjects could have reacted to 12 different levels of information in the first representation, 20 in the second and 30 in the third (that is, a total of 62 information levels in each of the four cases). Table 1 lists the absolute and relative amounts of information students included in their representations. The length of the representations (number of words) increases from the first to the third representation in all four cases. The first was on average $M=29$ words long (STD=9), the second $M=34$ (STD=16), while the last representation comprised $M=55$ words (STD=27). Although students continually received more information during case processing, they did not include more information in relation to the amount (see Table 1). Overall, the students enriched their second representation with new clinical information, but especially in the third representation, the students selected the information and included, for example, less physiological findings in the second and third representations. The case aortic stenosis (No. 1, simple) differs slightly: already in the second representation much less clinical information is included.

The students included many anamnestic aspects (see Table 2) in their first representation; however, the amount of anamnestic data decreased in the second and third representations. The temporal aspects are not always mentioned; especially the time line is often omitted. Also, the clinical symptoms are often incomplete. In each case, the patient presented with four different symptoms, but the students tended to name only two or fewer symptoms. For example, in the case uremia the symptoms “vomiting” and “nausea” are often missing in the representations. The findings of the physical examination are presented quite extensively in the second representation; however, they are barely mentioned in the last representation (see Table 2). Of all 10 technical examinations, on average only the results of two are reported (see Table 2).
Figure 2: Example of a representation with incorrect diagnosis and the associated coding

Case 1 (easy)	First Representation	Second Representation	Third Representation	Total
max. items per case	12	20	30	62
Case 2 (intermediate)	8,16 (1.57)	5,53 (2.96)	11,81 (3.70)	25,51 (6.20)
88 %	28 %	39 %	41 %	
Case 3 (intermediate)	8,95 (1.83)	8,63 (3.59)	12,23 (5.02)	29,81 (8.38)
75 %	43 %	41 %	48 %	
Case 4 (difficult)	7,81 (1.55)	9,30 (4.04)	11,67 (4.44)	28,79 (7.92)
65 %	47 %	39 %	46 %	
All four cases	6,86 (1.71)	10,16 (3.90)	10,12 (4.85)	27,14 (8.57)
57 %	51 %	34 %	44 %	

Mean values and standard deviation are shown.

Case 1=Aortic stenosis, Case 2=Uremia, Case 3=Hypertension, Case 4=AV-reentry-tachycardia (AVNRT)
In advance, it was determined in the expert consensus, which information was absolutely necessary for the case resolution. In any case, for example only the results of a single technical investigation would have been really important to solve the case correctly. The third representation would have had to contain only 4-5 items of positive information per case. By contrast, students included significantly more items in their representations (see Table 1). For representation 1 and 2, it was not possible to determine in advance how much information must be contained to reflect a good representation. Especially with regard to the mention of negative information or physiological results, it is unclear whether or not they should be part of the representations at the beginning of the diagnostic process.

In addition, all representations were analyzed whether a diagnosis was made or if the information was evaluated. 51% of the students never mentioned a diagnosis in any of the 12 representations. 30% named a diagnosis once, 14% twice and only 5% gave a diagnosis three times. If the students gave a diagnosis, this was most likely in the case aortic stenosis (#1).

The difficulty of the case affects the representations only slightly. The amount or type of clinical information is not case-dependent, but very similar in all four cases. Thus, the scope of a single representation seems to be a stable personality trait: the length of the representations of a single participant correlates between cases (r=0.60-0.86).

The representations relating to the diagnostic result

In addition, we compared the representations of the successful and unsuccessful diagnostic processes in the cases of moderate difficulty (uremia and hyperventilation). The representations of the other two cases were not compared because these cases were solved by almost all students (aortic stenosis) or very few (AVNRT). The length (number of words) does not correlate with the correct case solution (r=-0.08-0.31). In both cases, there are no differences in the first and second representations regarding the amount or type of clinical information included in the representations.

By contrast, the third representation differs between the students with a successful and those with an unsuccessful diagnostic process: The successful students included more correct information in their representations, such as the results of blood gas analysis in the case of hyperventilation (71% vs. 26%, p=0.004) or information from the history in case of uremia (time line 73% vs. 35%, p=0.015 and vomiting 73% vs. 35%, p=0.015). Furthermore, in successfully solved cases, the representations contained less unimportant or distracting information, such as the medication in the case of hyperventilation (46% vs. 84%, p=0.011) or the results of the lung function test (8% vs. 37%, p=0.024).

Discussion

Purpose and summary of the study

The aim of this study was to analyze the information levels of students’ case representations. First, we tried to answer how much and what information is included in repeated representations and how this changes during the diagnostic process. Second, the relationship between the information included in the representations and the correct case solution was studied. This knowledge can contribute to a more targeted promotion of the clinical reasoning process of students.
The representations against the theoretical background

In this study, the strengths and weaknesses of student representation were revealed. Representations change during the diagnostic process. At first, almost all the information is included, but as the information increases, the participants begin to select and rank the clinical information. In particular, negative results of technical investigations or epidemiological aspects (e.g., alcohol consumption) that turn out to be irrelevant are no longer included in the second and third representations. This fits in with the theoretical concepts of Charlin et al. describing the dynamics of representations [6]. Nonetheless, students include far more information in their representations than would be necessary. On the one hand, the mention of physiological findings can reflect a poor diagnostic process, since the selection of the relevant information is not successful. On the other hand, physiological findings could also be deliberately cited by students (such as oxygen saturation in the case hyperventilation as opposed to the differential diagnosis of asthma attack) to delineate differential diagnoses. Based on the length of the representations, no conclusions can be drawn about the value of the representation.

First and foremost students report the clinical information, but hardly evaluate it and seldom name a diagnosis. This is consistent with other studies [5]. In addition, they have difficulty connecting the symptoms of a patient. Often only one or two symptoms are mentioned, although all four belong together (for example, in the case of uremia, the symptoms “vomiting”, “nausea”, “dyspnea” and “tiredness”). Perhaps students did not know - or did not notice - that these symptoms combined could indicate renal insufficiency. Obviously, some students have difficulty understanding the pathophysiology of a case. In addition, the temporal course of the disease was often absent, although of course this is of great importance. This is one of the reasons why students made a wrong diagnosis: they mentioned for example suspected diagnosises, which have an acute onset, although in the history a chronic course was described.

Interestingly, the representations did not differ significantly between the individual cases, although they differed in the degree of difficulty. However, this result is surprising only at first glance: with increasing clinical experience (e.g., through the number of medical clerkships), students appear to learn e.g. epidemiological information is an obligatory part of case summaries and therefore they are listed in all representations. Regarding Bordage's description of semantic qualifiers as “the appropriate medical jargon” [13], the informational levels of student representations – regardless of the case-resolution accuracy – are very similar: students know what they should include in a representation – they follow that “appropriate medical jargon”. This could be a reason for the small differences between the individual representations. Furthermore, there seems to be an informational maximum that can be contained in a representation. In all four cases, the students mentioned in their last representation 10-12 information levels – in the second representation, the differences between the cases were significantly larger. For a successful case solution, the case-specific medical context seems to be more important than the general representation process, which is actually mastered pretty well by the students.

Strengths and weaknesses

This study has several strengths. We examined a relatively large sample in a laboratory setting with very realistic cases. In addition, to our knowledge, this study is the first to analyze medical information from students’ case representations. Nevertheless, the study has limitations. We have only studied four internist cases with the main symptom of dyspnea and therefore, we cannot make any statements about case representations in other disciplines. In addition, students had to justify their diagnoses at the end of each case. This could have influenced the diagnostic process to an extent that we cannot estimate.

Conclusions and implications for teaching

Student representations are satisfactory and dynamic at the information level. Thereby, they fulfill the required criteria for representations in the diagnostic process. Generally speaking, a representational prompt leads to fairly similar and stable representations and is independent of the difficulty of the case. From this it can be concluded that representation tasks can be mastered well by students. Scaffolds, how a representation is to be done, are not necessary for advanced medical students. Student deficits in diagnosis are more likely due to knowledge gaps. In particular, pathophysiological knowledge seems to be insufficient. Many students fail to connect symptoms or to bring in line different findings. Their knowledge is either not well-structured or retrieving the relevant facts in order to solve the case correctly, does not succeed - or both. Therefore, instructional prompts for explaining the combinations of various symptoms could be a valuable step in improving diagnostic competence.

Competing interests

The authors declare that they have no competing interests.

References

1. Schmidt HG, Rikers RM. How expertise develops in medicine: knowledge encapsulation and illness script formation. Med Educ. 2007;41(12):1133-1139. DOI: 10.1111/j.1365-2923.2007.02915.x
2. Elstein AS, Shulman LS, Sprafka SA. Medical problem solving an analysis of clinical reasoning. Cambridge: Harvard University Press; 1978. DOI: 10.4159/harvard.9780674189089
3. Verkoeijen PP, Rikkers RM, Schmidt HG, van de Wiel MW, Kooman JP. Case representation by medical experts, intermediates and novices for laboratory data presented with or without a clinical context. Med Educ. 2004;38(6):617-627. DOI: 10.1046/j.1365-2923.2004.01797.x
4. Anderson JR. Cognitive psychology and its implications. WH Freeman/Times Books/Henry Holt & Co; 1990.
5. Kiesewetter J, Ebersbach R, Görlitz A, Holzer M, Fischer MR, Schmidmaier R. Cognitive Problem Solving Patterns of Medical Students Correlate with Success in Diagnostic Case Solutions. PloS one. 2013;8(8):e71486. DOI: 10.1371/journal.pone.0071486
6. Charlin B, Lubarsky S, Millette B, Crevier F,Audetat MC, Charbonneau J, Caier Fon N, Hof L, Boudry C. Clinical reasoning processes: unravelling complexity through graphical representation, Med Educ. 2012;46(5):454-463. DOI: 10.1111/j.1365-2923.2012.04242.x
7. Audétat MC, Laurin S, Sanche G, Béique C, Fon NC, Blais JG, Charlin B. Clinical reasoning difficulties: a taxonomy for clinical teachers. Med Teach. 2013;35(3):e984-e989. DOI: 10.3109/0142159X.2012.733041
8. Wolff T, Beltermann E, Lottspeich C, Vietz E, Fischer MR, Schmidmaier R. Medical ward round competence in internal medicine - an interview study towards an interprofessional development of an Entrustable Professional Activity (EPA). BMC Med Educ. 2016;16:174. DOI: 10.1186/s12909-016-0697-y
9. Shafigur-Rehman MS, Ahmed J, Razzaq MH, Khan S, Perry EP. Surgical handover in an era of reduced working hours: an audit of current practice. J Coll Physicians Surg Pak. 2012;22(6):385-388.
10. Kemp CD, Bath JM, Berger J, Bergsman A, Ellison T, Emery K, Garonzik-Wang J, Hui-Chou HG, Mayo SC, Serrano OK, Shiridharani S, Zuberi K, Lipsitt PA, Freischlag JA. The top 10 list for a safe and effective sign-out. Arch Surg. 2008;143(10):1008-1010. DOI: 10.1001/archsurg.143.10.1008
11. Young JQ, van Dijk SM, O'Sullivan PS, Custers EJ, Irby DM, Ten Cate O. Influence of learner knowledge and case complexity on handover accuracy and cognitive load: results from a simulation study. Med Educ. 2016;50(9):969-978. DOI: 10.1111/medu.13107
12. Nendaz MR, Bordage G. Promoting diagnostic problem representation. Med Educ. 2002;36(8):760-766. DOI: 10.1046/j.1365-2923.2002.01279.x
13. Bordage G, Connell KJ, Chang RW, Gecht MR, Sinacore JM. Assessing the semantic content of clinical case presentations: studies of reliability and concurrent validity. Acad Med. 1997;72(10 Suppl 1):S37-39. DOI: 10.1097/00001888-199710001-00013
14. Bordage G. Prototypes and semantic qualifiers: from past to present. Med Educ. 2007;41(12):1117-1121. DOI: 10.1111/j.1365-2923.2007.02919.x
15. Steward D, Bordage G, Lemieux M. Semantic structures and diagnostic thinking of experts and novices. Acad Med. 1991;66(9):S70-S72. DOI: 10.1097/00001888-199109001-00025
16. Chang RW, Bordage G, Connell KJ. COGNITION, CONFIDENCE, AND CLINICAL SKILLS: The Importance of Early Problem Representation during Case Presentations. Acad Med. 1998;73(10):S109-S111. DOI: 10.1097/00001888-199810000-00062
17. Braun LT, Zottmann JM, Adolf C, Lottspeich C, Then C, Wirth S, Fischer MR, Schmidmaier R. Representation scaffolds improve diagnostic efficiency in medical students. Med Educ. 2017;51(11):1118-1126. DOI: 10.1111/medu.13355
18. Braun LT, Zwaan L, Kiesewetter J, Fischer MR, Schmidmaier R. Diagnostic errors by medical students: results of a prospective qualitative study. BMC Med Educ. 2017;17(1):191. DOI: 10.1186/s12909-017-1044-7
19. Fischer MR, Aulinger B, Baehring T. Computer-based-Training (CBT): Fallorientiertes Lernen am PC mit dem CASUS/ProMediWeb-System. Dtsch Med Wochenschr. 1999;124(46):1401. DOI: 10.1055/s-2007-1024550
20. Fischer MR. Problemorientiertes Lernen in der Medizin mit dem CASUS/ProMediWeb-Lernsystem. Intern Kontext. 2001:1116.
21. Mayring P. Combination and integration of qualitative and quantitative analysis. Forum Qual Sozialforsch. 2001.
22. Charlin B, Boshuizen HP, Custers EJ, Feltovich PJ. Scripts and clinical reasoning. Med Educ. 2007;41(12):1173-1184. DOI: 10.1111/j.1365-2923.2007.02924.x
23. Woods NN. Science is fundamental: the role of biomedical knowledge in clinical reasoning. Med Educ. 2007;41(12):1173-1177. DOI: 10.1111/j.1365-2923.2007.02911.x
24. Perneger TV. What’s wrong with Bonferroni adjustments. Br Med J. 1998;316(7139):1236. DOI: 10.1136/bmj.316.7139.1236

Corresponding author:
Leah Theresa Braun
Ludwig-Maximilians-University (LMU), Klinikum der Universität München, Medizinische Klinik und Poliklinik IV, Ziemssenstr. 1, D-80336 Munich, Germany
leahbraun@gmx.de

Please cite as
Braun LT, Lenzer B, Kiesewetter J, Fischer MR, Schmidmaier R. How case representations of medical students change during case processing – Results of a qualitative study. GMS J Med Educ. 2018;35(3):Doc41.

DOI: 10.3205/zma001187, URN: urn:nbn:de:0183-zma0011878

This article is freely available from
http://www.ejgms.de/en/journals/zma/2018-35/zma001187.shtml

Received: 2018-02-22
Revised: 2018-04-24
Accepted: 2018-06-06
Published: 2018-08-15

Copyright ©2018 Braun et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License. See license information at http://creativecommons.org/licenses/by/4.0/.
Dynamische Fallrepräsentationen im Diagnoseprozess Medizinstudierender – Ergebnisse einer qualitativen Studie

Zusammenfassung

Zielsetzung: Repräsentationen sind mentale Zusammenfassungen eines klinischen Falls und helfen beim Verständnis eines klinischen Problems. Es ist bisher allerdings noch weitgehend unbekannt, welche klinischen Informationen Medizinstudierende in ihre Fallrepräsentationen einschließen. In dieser Studie wurden deshalb die Struktur und die Qualität von studentischen Fallrepräsentationen untersucht, um den Diagnoseprozess und seine Beziehung zur Diagnoserichtigkeit besser zu verstehen: Welche Informationen schließen Medizinstudierende in ihre Repräsentationen ein und besteht eine Assoziation zwischen diesen Informationen und der Diagnoserichtigkeit?

Methodik: 43 Medizinstudierende im vierten und fünften klinischen Jahr bearbeiteten vier klinische Fälle. Während des Diagnoseprozesses wurden sie dreimal pro Fall aufgefordert, eine Fallrepräsentation zu schreiben. 516 Repräsentationen wurden mit Hilfe eines inhalts-basierten Codierschemas qualitativ ausgewertet. Es erfolgte eine Analyse der Art und der Zusammensetzung der klinischen Informationen. Außerdem wurde die Assoziation zwischen der allgemeinen Repräsentationsstruktur und der korrekten Falllösung überprüft.

Ergebnisse: Studierende inklinieren zu Beginn die meisten klinischen Informationen in ihre Repräsentation (66%), aber im Fallverlauf beginnen sie, die angebotenen Informationen zu selektieren (2. Repräsentation 42%, 3. Repräsentation 38%). Die Länge der Repräsentation (Anzahl der Wörter) korreliert nicht mit der korrekten Falllösung (r=-0.08–0.31). Die Repräsentationen hängen nicht von der Fallschwierigkeit ab, sondern haben eine signifikante individuelle Komponente: Die Repräsentationen, die von einem Studierenden geschrieben wurden, ähneln sich in allen vier Fällen formal sehr stark (r=0.60–0.86).

Schlussfolgerung: Medizinstudierende können die relevanten klinischen Informationen selektieren und in ihre Fallrepräsentationen einschließen. Mangelnde Repräsentationsfähigkeit scheint kein Grund für Fehldiagnosen zu sein; Studentische Defizite beim Diagnostizieren sind eher auf Wissenslücken zurückzuführen.

Schlüsselwörter: Diagnostische Kompetenz, Klinisches Denken, Studium Medizinische Ausbildung

Einführung

Diagnostizieren ist eine der zentralen Aufgaben im klinischen Alltag. Ein Charakteristikum des medizinischen Experten ist die Fähigkeit, richtig zu diagnostizieren. Die Entwicklung von Expertise wird seit vielen Jahren beforscht [1], [2]: die Illness-script-Theorie ist ein weithin akzeptiertes Modell, um das Diagnoseverhalten von Experten zu erklären [2]. Diese Theorie besagt, dass ein Experte ein bestimmtes Konzept jeder Krankheit hat, in welchem die Epidemiologie, die Symptome und die begünstigenden Faktoren eines Krankheitsbildes enthalten sind [3]. Repräsentation ist ein relevanter Aspekt des Diagnoseprozesses. Diese kann als eine mentale Zusammenfassung des Falls durch den Diagnostizierenden definiert werden. Die Problematik des Falls wird so repräsentiert, dass die kognitiven Prozesse zum Verständnis und zur Lösung des Falls angewandt werden können [4]. Deshalb ist Repräsentation einer der kognitiven Schritte, der mit der richtigen Falllösung korreliert [5]. Charlin et al. unterscheiden eine initiale Repräsentation, die dynamische Repräsentation sowie die finale Repräsentation im Verlauf des Diagnoseprozesses [6]. Eine gute mentale Repräsentation des klinischen Problems ist notwendig, um relevantes Vorwissen zu aktivieren und verschiedene Differentialdiagnosen zu vergleichen, sodass schließlich die richtige Diagnose gestellt werden kann. Die initiale Repräsentation des Problems wird durch neue Informa-
tions modifiziert und angereichert, sodass am Ende des Diagnoseprozesses der Fall umfassend repräsentiert wird [7]. Ärzte nutzen Repräsentationen jeden Tag in ihrem klinischen Alltag als Teil des Diagnoseprozesses, aber auch in anderen Situationen, wie zum Beispiel bei der Visite [8] oder bei Übergaben [9], [10], [11]. Repräsentationen als Schlüsslelement im Diagnoseprozess [6], [12] ermöglichen es dem Arzt, sein Illness-script mit dem aktuellen Erscheinungsbild des Patienten zu vergleichen; und dem Studierenden, den Patientenfall mit seinem theoretischen Wissen zu vergleichen. Es ist davon auszugehen, dass Experten evaluieren, ob die initiale Repräsentation zu einem ihrer illness-scripts passt, was der Ausgangspunkt für weitere (selektive) Datengewinnung und die dynamische Repräsentation im Entscheidungsfindungsprozess ist.

Die strukturellen Aspekte von Repräsentationen wurden bereits analysiert, es lassen sich semantische und Symptom-orientierte Prozesse unterscheiden [13]. Repräsentation beginnt mit der semantischen Transformation [14]. Die klinischen Daten werden mit Hilfe von sogenannten semantic qualifiers transformiert, welche eine Abstraktion der klinischen Befunde (z.B. letzte Nacht → akuter Beginn) darstellen und zur Diagnoserichtigkeit beitragen [15], [16]. Es wurde bereits gezeigt, dass studentische Repräsentationen durch die Aufforderung, semantische Transformationen zu benutzen, verbessert werden können [12]. Daher scheint es vielversprechend, Repräsentationen zur Verbesserung der Diagnosekompetenz von Medizinstudierenden zu nutzen. In einer aktuellen Studie haben wir festgestellt, dass die Aufforderung Repräsentationen zu schreiben beispielsweise die Diagnoseeffizienz von Studierenden verbessern, nicht aber die Diagnoserichtigkeit [17].

Bisher gibt es keine empirischen Daten über die Informationskategorien der Repräsentationen und die Entwicklung derer während des studentischen Diagnoseprozesses. Unklar ist, welche konkreten Informationen, wie zum Beispiel welche anamnestischen Daten oder Ergebnisse von verschiedenen Untersuchungen, in Repräsentationen enthalten sind. Zudem gibt es keine Daten dazu, wie umfassend die Repräsentationen sind, also ob alle gegebenen Informationen eingeschlossen werden oder tatsächlich eine Selektion der Daten in den Repräsentationen erfolgt.

Ein besseres Verständnis ist allerdings unerlässlich als Basis für Interventionen, wie zum Beispiel für instruktioriale Unterstützungen („Scaffolding“) in Form von strukturiertem Reflexion oder Repräsentation. Dieses Wissen kann dazu beitragen, Prompts für Repräsentationen oder Fallzusammenfassungen besser zu steuern und an die studentischen Defizite anzupassen.

Diese Überlegungen ziehen die folgenden Forschungsfragen nach sich:

• Forschungsfrage 1: Wie viele und welche Informationen werden in wiederholten Fallrepräsentationen in einfachen, mittelschweren und schwierigen klinischen Fällen eingeschlossen und wie entwickeln sich diese während des Diagnoseprozesses?
• Forschungsfrage 2: Gibt es eine Assoziation zwischen Informationskategorien und Struktur der Repräsentationen und der korrekten Diagnose?

Methodik

Studiendesign, Probanden und Prozedere

Dieser Artikel beschreibt die Ergebnisse einer qualitativen Analyse einer Interventionstudie, in welchem die Einflüsse von Repräsentationen auf die Diagnosekompetenz von Medizinstudierenden und die zugrundeliegenden Mechanismen untersucht wurden [17], [18]. In der Studie wurden eine Kontrollgruppe und eine Interventionsgruppe, welche Repräsentationsprompts erhalten haben, hinsichtlich Diagnoserichtigkeit und Diagnoseeffizienz miteinander verglichen. Zudem wurden die Diagnosefehler der Studierenden qualitativ ausgewertet. Der vorliegende Artikel ist eine sekundäre Teilanalyse des Interventionsarms dieser Studie.

Im Juni 2016 bearbeiten 50 Medizinstudierende im vierten und fünften Studienjahr vier klinische Fälle mit dem Hauptsymptom Dyspnoe [17] auf der elektronischen Lernplattform CASUS [19], [20]. Zuerst schauten die Probanden ein Einführungsvideo an, in dem die richtige Bearbeitungsweise erklärt wurde: Sie wurden aufgefordert, sich in eine Visitensituation hineinzusetzen, in der sie einen Patienten anderen Ärzten vorstellen müssen. Außerdem wurden die technischen Aspekte der Lernplattform, also wie die klinischen Informationen ausgewählt werden können, erklärt. In der Lernphase bearbeiteten die Probanden vier klinische Fälle in vorgegebener Reihenfolge und wurden aufgefordert, Fallrepräsentationen während der Fallbearbeitung zu schreiben. Dreimal – nach der Anamnese, der körperlichen Untersuchung und der Patientenakte – erhielten die Studierenden den folgenden Prompt: „Bitte fassen Sie den Fall so zusammen, wie Sie ihn Ihrem Oberarzt präsentieren würden.“ (siehe Abbildung 1). Die Probanden konnten frei durch die technischen Untersuchungen und Befunde navigieren. Dabei konnten sie so viele klinische Informationen aus der Patientenakte, welche zehn verschiedene Typen technischer Untersuchungen für jeden Fall enthielten, in frei wählbarer Reihenfolge sammeln, wie sie wollten. Es waren jeweils nur die Befunde der technischen Untersuchungen gegeben (z.B. Ergebnisse einer Blutgasanalyse oder die Werte einer Lungenfunktionsprüfung) ohne eine Bewertung. So wurden beispielsweise auch zu den Röntgenbildern keine Befundung angegeben, sondern die Befundung musste bei allen Untersuchungen von den Studierenden selbst erfolgen. Nach der Bearbeitung eines jeden Falles mussten die Probanden ihre Verdachtsdiagnose aufschreiben.

GMS Journal for Medical Education 2018, Vol. 35(3), ISSN 2366-5017
Schwierigkeitsgrad der Fälle

Die Schwierigkeit der Fälle wurde in einer Pilotstudie mit zehn Medizinstudierenden unterschiedlichen Expertisegrades getestet. Die vier Fälle wiesen einen unterschiedlichen Schwierigkeitsgrad auf: Der Fall Aortenstenose (Nr. 1) war simpel und die meisten Studierenden konnten ihn lösen. Die Fälle Hyperventilation (Nr. 2) und Urämie (Nr. 3) waren von mittlerer Schwierigkeit; etwa die Hälfte der Probanden konnte die Fälle korrekt lösen. Der Fall AV-Knoten-Reentry-Tachykardie (AVNRT, Nr. 4) war schwierig aufgrund dieses eher selteneren Erkrankung und des eher komplexeren Elektrokardiogramms. Auch in der tatsächlichen Studie unterschied sich die Diagnoserichtigkeit bezüglich der unterschiedlichen Fälle deutlich: Der erste Fall, Aortenstenose, wurde von 80 % der Probanden richtig gelöst; der zweite Fall, Urämie, wurde von 60 %, der dritte Fall, Hyperventilation, von 56 %, und der letzte Fall, AVNRT, von 5 % gelöst. Die Diagnoserichtigkeit wurde binär codiert (richtig = erfolgreich und falsch = erfolglos) bezogen auf eine Expertenlösung der Falls. Außerdem war im Vorhinein im Expertenkonsens festgelegt, welche Informationen in welchem Fall zur richtigen Lösung notwendig waren. Diagnoseergebnis und Prozess wurden im Hinblick auf die Expertenlösung bewertet. Der Expertenkonsens beruht auf den Einschätzungen und Diskussionen der Fallentwicklerin (LB) sowie den Reviewern der Fälle (zwei fortgeschrittene Assistenzärzte für Innere Medizin, einem Facharzt für Innere Medizin sowie einem Oberarzt) in Anlehnung an die tägliche klinische Praxis.

Qualitative Analyse und Statistik

Um die verschiedenen Informationskategorien in den Repräsentationen zu unterscheiden, analysierten wir die Daten in Anlehnung an Mayring [21]. Die studentischen Repräsentationen wurden codiert, indem die Inhalte verschiedenen Kategorien (Informationsebenen) zugeordnet wurden, welche in der Literatur zu finden sind [22], [23]. Alle Repräsentationen wurden von einer Forscherin codiert (LB). Ein zweiter Rater (BL) codierte 10 % der Daten. Der Interraterkoeffizient (Cohens kappa) war k=0.784. Die folgenden Kategorien deckten alle von den Probanden genannten Informationen ab: Anamnese (inklusive Geschlecht, Alter, Vorerkrankungen, Medikation, Alkohol- und Nikotinkonsum, aktueller Krankheitsverlauf, Progression, Symptome), körperliche Untersuchung (Vitalparameter, Allgemein- und Ernährungszustand, Kardiovaskuläres System, Pulmo, Abdomen, Neurostatus, Lymphknotenstatus) und technische Untersuchungen (Labore, Elektrodiagramm, Röntgenthorax, arterielle Blutgasanalyse, Lungenfunktionsprüfung, Echokardiogramm, Urinstatus, Abdosonographie, Bakteriologische Testung). Außerdem wurde codiert, ob die Probanden eine Diagnose in ihrer Repräsentation nannten und ob sie die Informationen in irgendeiner Form bewertet/evaluiert haben. Zwei Beispielcodierungen sind in Abbildung 2 und Abbildung 3 gezeigt.

Korrelationen zwischen soziodemographischen Angaben, dem Diagnoseergebnis und den Repräsentationen berechneten wir mit Pearsons Korrelationskoeffizient. Gruppenunterschiede wurden mit t-Tests, Mann-Whitney-Tests oder mit dem Wilcoxon-Test getestet. P-Werte≤.05 wurden als statistisch signifikant gewertet. Aufgrund des explorativen Charakters der Studie berücksichtigten wir multiples Testen nicht [24].

Ergebnisse

43 Studierende (29 Frauen, 14 Männer) bearbeiten alle Fälle; die anderen 7 Datensätze waren unvollständig und wurden aus der Analyse ausgeschlossen. 516 Fallrepräsentationen wurden aufgezeichnet. Alle Repräsentationen wurden mit dem oben genannten Codierschema codiert. Beispiele für Repräsentationen eines Diagnoseprozesses, der zum korrekten Ergebnis führte, und einem, der zu einer falschen Diagnose führte, zeigen Abbildungen 2 und 3. Für alle Ergebnisse gilt, dass sich keine Unterschiede zwischen den Geschlechtern oder den Ausbildungsjahren zeigten.

Abbildung 1: Fallaufbau (identisch in allen vier Fällen)
Informationsebenen, Länge und Dynamik der Repräsentationen

Die Probanden hatten auf 12 verschiedene Informations-ebenen in der ersten Repräsentation eingehen können, auf 20 in der zweiten und auf 30 in der dritten (also auf insgesamt 62 Informationsebenen bei jedem der vier Fälle). In Tabelle 1 werden die absoluten und relativen Informationsmengen, welche die Studierenden in ihre Repräsentationen einschlossen, aufgeführt. Die Länge der Repräsentationen (Anzahl der Wörter) steigt von der ersten bis zur dritten Repräsentation bei allen vier Fällen. Die erste war im Schnitt M=29 Wörter (SD=9) lang, die zweite M=34 (SD=16), während die letzte Repräsentation M=55 (SD=27) Wörter umfasste. Obwohl die Studierenden kontinuierlich mehr Informationen während der Fallbearbeitung erhielten, schlossen sie in Relation zur Menge nicht mehr Informationen ein (siehe Tabelle 1). Insgesamt reicherten die Studierenden ihre zweite Repräsentation mit neuen klinischen Informationen an, das insbesondere in der dritten Repräsentation selektierten die Studierenden die Informationen und schlossen zum Beispiel weniger physiologische Befunde in die zweite und in die dritte Repräsentation ein. Der Fall Aortenstenose (Nr. 1, einfach) weicht davon ein wenig ab: schon in der zweiten Repräsentation werden deutlich weniger klinische Informationen eingeschlossen. Die Studierenden schlossen viele anamnestische Aspekte (siehe Tabelle 2) in ihre erste Repräsentation ein; die Zahl der anamnestischen Angaben nahm in der zweiten und der dritten Repräsentation jedoch ab. Die zeitlichen Aspekte werden nicht immer genannt; vor allem

Abbildung 3: Beispiel für eine Repräsentation bei richtiger Diagnose und die dazugehörige Kodierung

Repräsentation 3, Fall Urämie, falsche Diagnose: Herr Schumacher ist ein 82-jähriger Patient mit bekannter KHK, der sich aufgrund von zunehmender Dyspnoe und Erbrechen vorstellt. In der körperlichen Untersuchung fallen ein deutlich reduzierter AZ, sowie eine Hypertonie, Tachykardie und Tachypnoe auf. Das EKG zeigt keinen Hinweis auf einen Herzinfarkt, trotzdem Tropotrin-nachweis.

A B C D E F G
Geschlecht Alter Vor- erkrankungen Medikation Alkohol-konsum Nikotin-konsum Aktueller Krankheitsbeginn Verlauf Dyspnoe
Herr 82-jähriger bekannter KHK x x x x x x zumindestonmer Dyspnoe

Abbildung 2: Beispiel für eine Repräsentation bei falscher Diagnose und die dazugehörige Kodierung

Repräsentation 3, Fall Urämie, richtige Falllösung: 83-Jähriger Patient mit stark reduziertem AZ und eingeschränkt orientiert. Klagt über seit einigen Wochen bestehende Dyspnoe und Abgeschlagenheit, sowie ausgeprägte Übelkeit. Vorerkrankungen DM II und Hypertonie. Ehemaliger Nikotinabusus (40 pack years), in der KU ausgeprägte Ödeme an der unteren Extremitäten (RE, LV, Zehen und Ulzera). Im Labor auffällige Nierenfunktionsstörung (Krea >4) mit Anzeichen der Retentionsparameter. Herzecho opf.

A B C D E F G
Geschlecht Alter Vorerkrankungen Medikation Alkohol-konsum Nikotin-konsum Aktueller Krankheitsbeginn Verlauf Dyspnoe
Patient 83-jähriger Vorerkrankungen DM II und Hypertonie x x x x x x

Informationsebenen, Länge und Dynamik der Repräsentationen

Die Probanden hätten auf 12 verschiedene Informations-ebenen in der ersten Repräsentation eingehen können, auf 20 in der zweiten und auf 30 in der dritten (also auf insgesamt 62 Informationsebenen bei jedem der vier Fälle). In Tabelle 1 werden die absoluten und relativen Informationsmengen, welche die Studierenden in ihre Repräsentationen einschlossen, aufgeführt. Die Länge der Repräsentationen (Anzahl der Wörter) steigt von der ersten bis zur dritten Repräsentation bei allen vier Fällen. Die erste war im Schnitt M=29 Wörter (SD=9) lang, die zweite M=34 (SD=16), während die letzte Repräsentation M=55 (SD=27) Wörter umfasste. Obwohl die Studierenden kontinuierlich mehr Informationen während der Fallbearbeitung erhielten, schlossen sie in Relation zur Menge nicht mehr Informationen ein (siehe Tabelle 1). Insgesamt reicherten die Studierenden ihre zweite Repräsentation mit neuen klinischen Informationen an, das insbesondere in der dritten Repräsentation selektierten die Studierenden die Informationen und schlossen zum Beispiel weniger physiologische Befunde in die zweite und in die dritte Repräsentation ein. Der Fall Aortenste-
der zeitliche Verlauf wird häufig ausgelassen. Auch die klinischen Symptome sind oft unvollständig. In jedem Fall präsentierte sich der Patient mit vier verschiedenen Symptomen, aber die Studierenden tendierten dazu, nur zwei oder weniger Symptome zu nennen. Beispielsweise fehlten im Fall Urämie häufig die Symptome „Erbrechen“ und „Übelkeit“ in den Repräsentationen. Die Befunde der körperlichen Untersuchung werden ziemlich umfassend in der zweiten Repräsentation dargestellt; in der letzten Repräsentation werden sie hingegen kaum erwähnt (siehe Tabelle 2). Von allen zehn technischen Untersuchungen werden im Schnitt nur die Ergebnisse von zweiern berichtet (siehe Tabelle 2). Im Vorhinein wurde im Expertenkonsens festgelegt, welche Informationen zur Falllösung unbedingt notwendig waren. In jedem Fall wären so z.B. nur die Ergebnisse einer einzigen technischen Untersuchung wirklich wichtig gewesen, um den Fall korrekt zu lösen. Die dritte Repräsentation hätte pro Fall nur 4–5 positive Information enthalten müssen. Die Studierenden schlossen hingegen deutlich mehr Items in ihre Repräsentationen ein (siehe Tabelle 1). Für Repräsentation 1 und 2 ließ sich vorher nicht festlegen, wie viele Informationen enthalten sein müssen, um eine gute Repräsentation widerzuspiegeln. Gerade hinsichtlich der Nennung von negativen Informationen bzw. physiologischen Ergebnissen ist unklar, ob diese zu Beginn des Diagnoseprozesses Teil der Repräsentationen sein sollten oder nicht. Zusätzlich wurde in allen Repräsentationen untersucht, ob eine Diagnose genannt wurde oder andere Bewertungen der Informationen erfolgten. 51% der Studierenden nannten nie eine Diagnose in irgendeiner der insgesamt 12 Repräsentationen. 30% nannten einmalig eine Diagnose, 14% zweimal und nur 5% nannten dreimal eine Diagnose. Wenn die Studierenden eine Diagnose angaben, dann am ehesten in dem Fall Aortenstenose (Nr. 1).
Die Repräsentationen vor dem theoretischen Hintergrund

In dieser Studie wurden die Stärken und Schwächen von studentischen Repräsentationen aufgedeckt. Repräsentationen verändern sich während des Diagnoseprozesses. Zuerst werden fast alle Informationen eingeschlossen, aber mit dem Informationszuwachs fangen die Probanden an, die klinischen Informationen zu selektieren und zu ordnen. Insbesondere negative Ergebnisse der technischen Untersuchungen oder epidemiologische Aspekte (z.B. Alkoholkonsum), welche sich als irrelevant herausstellen, werden nicht mehr in die zweite und dritte Repräsentation eingeschlossen. Dies passt zu den theoretischen Konzepten von Charlin et al., welche die Dynamik von Repräsentationen beschreiben [6]. Nichtsdestotrotz schließen Studierende bei Weitem mehr Informationen in ihre Repräsentationen ein, als notwendig wäre. Die Nennung physiologischer Befunde kann einerseits einen schlechten Diagnoseprozess widerspiegeln, da die Selektion der relevanten Informationen nicht gelingt. Andererseits könnten physiologische Befunde aber auch ganz bewusst von den Studierenden genannt werden (wie z.B. die Sauerstoffsättigung im Fall Hyperventilation in Abgrenzung zur Differentialdiagnose Asthmaanfall), um Differentialdiagnosen abzugrenzen. Deswegen können aufgrund der Länge der Repräsentationen keine Rückschlüsse auf die Wertigkeit der Repräsentation geschlossen werden. Die Probanden berichten in allererster Linie die klinischen Informationen, aber bewerten diese kaum und nennen selten Diagnosen. Dies steht in Einklang mit anderen Studien [5]. Außerdem haben sie Schwierigkeiten, die Symptome eines Patienten miteinander zu verbinden. Oft werden nur ein oder zwei Symptome erwähnt, obwohl alle vier zusammengehören (Beispielsweise im Fall Urämie die Symptome „Erbrechen“, „Übelkeit“, „Dyspnoe“ und „Müdigkeit“). Vielleicht wussten die Studierenden nicht – oder es fiel ihnen nicht auf – dass diese Symptome in ihrer Kombination eine Niereninsuffizienz anzeigen können. Offensichtlich haben einige Studierende Schwierigkeiten, die Pathophysiologie eines Falls zu begreifen. Zudem fehlen oft die zeitlichen Verläufe der Erkrankung, obwohl dies natürlich von großer Wichtigkeit ist. Dies ist einer der Gründe, weshalb die Probanden eine falsche Diagnose stellten: Sie nannten z.B. Verdachtsdiagnosen, die einen akuten Beginn haben, obwohl in der Anamnese ein chronischer Verlauf beschrieben wurde. Interessanterweise unterscheiden sich die Repräsentationen zwischen den einzelnen Fällen nicht signifikant, obwohl sie sich im Schwierigkeitsgrad unterschieden. Dieses Ergebnis ist allerdings nur auf den ersten Blick überraschend: Mit zunehmender klinischer Erfahrung (z.B. durch die Anzahl an Famlulaturen) scheinen Studierende zu lernen, dass z.B. epidemiologische Angaben ein obligater Bestandteil von Fallvorstellungen sind und deswegen werden diese in allen Repräsentationen aufgeführt. In Bezug auf Bordage Beschreibung der semantic qualifiers als „den angemessenen medizinischen Jargon“ [13], sind die Informationsebenen der studentischen
Repräsentationen – unabhängig von der Richtigkeit der Falllösung – sehr ähnlich: Studierende wissen, was sie in eine Repräsentation einschließen sollten – sie folgen dem „angemessenen medizinischen Jargon“. Dies könnte ein Grund für die geringen Unterschiede zwischen den einzelnen Repräsentationen sein.

Deshalb könnten Instruktionsprompts zum Erklären der Falllösung, um den Fall korrekt zu lösen, gelingen nicht – oder beides. In allen vier Fällen gingen die Studierenden in ihrer letzten Repräsentation auf 10 – 12 Informationsebenen ein – dabei waren in der zweiten Repräsentation die Unterschiede zwischen den Fällen deutlich größer. Für eine erfolgreiche Falllösung scheint die fakultative medizinische Kontext wichtiger zu sein als der generelle Repräsentationsprozess, welcher von den Studierenden tatsächlich ziemlich gut gemeistert wird.

Stärken und Schwächen

Diese Studie hat mehrere Stärken. Wir haben eine relativ große Stichprobe in einem Laborsetting mit sehr realitätsnahen Fällen untersucht. Zudem ist diese Studie unseres Wissens nach die erste, in der medizinische Informationen von studentischen Fallrepräsentationen analysiert wurden. Dennoch hat die Studie Limitationen. Wir haben nur vier internistische Fälle mit dem Leitsymptom Dyspnoe untersucht und können deswegen keine Aussagen über Fallrepräsentationen in anderen Fachdisziplinen treffen. Zudem mussten die Studierenden ihre Diagnosen am Ende eines jeden Falls begründen. Dies könnte den Diagnoseprozess in einem von uns nicht einschätzbaren Maß beeinflusst haben.

Schlussfolgerungen und Bedeutung für die Lehre

Studentische Repräsentationen sind auf Informationsebenen zufriedenstellend und dynamisch. Damit erfüllen sie die geforderten Kriterien für Repräsentationen im Diagnoseprozess. Generell gesehen führt ein Repräsentationsprompt zu ziemlich ähnlichen und stabilen Repräsentationen und ist unabhängig von der Fallschwierigkeit. Daraus lässt sich schlussfolgern, dass Repräsentationsaufgaben von Studierenden gut bewältigt werden können. Scaffolds, wie eine Repräsentation erfolgen soll, sind für fortgeschrittene Medizinstudierende nicht nötig. Studentische Defizite beim Diagnostizieren sind eher auf Wissenslücken zurückzuführen. Insbesondere das pathophysiologische Wissen scheint unzureichend zu sein. Viele Studierende schaffen es nicht, Symptome miteinander zu verknüpfen oder verschiedene Befunde miteinander in Einklang zu bringen. Ihr Wissen ist entweder nicht gut strukturiert oder das Abrufen der relevanten Fakten, um den Fall korrekt zu lösen, gelingt nicht – oder beides. Daher könnten Instruktionsschritte zum Erklären der Kombinationen verschiedener Symptome ein wertvoller Schritt zur Verbesserung der Diagnosekompetenz sein.

Interessenkonflikt

Die Autoren erklären, dass sie keine Interessenkonflikte im Zusammenhang mit diesem Artikel haben.

Literatur

1. Schmidt HG, Rikers RM. How expertise develops in medicine: knowledge encapsulation and illness script formation. Med Educ. 2007;41(12):1133-1139. DOI: 10.1111/j.1365-2923.2007.02915.x
2. Elstein AS, Shulman LS, Sprafka SA. Medical problem solving an analysis of clinical reasoning. Cambridge: Harvard University Press; 1978. DOI: 10.4159/harvard.9780674189089
3. Verkoeijen PP, Rikers RM, Schmidt HG, van de Wiel MW, Kooman JP. Case representation by medical experts, intermediates and novices for laboratory data presented with or without a clinical context. Med Educ. 2004;38(6):617-627. DOI: 10.1046/j.1365-2923.2004.01797.x
4. Anderson JR. Cognitive psychology and its implications. WH Freeman/Times Books/Henry Holt & Co; 1990.
5. Kiesewetter J, Ebersbach R, Görlich A, Holzer M, Fischer MR, Schmidmaier R. Cognitive Problem Solving Patterns of Medical Students Correlate with Success in Diagnostic Case Solutions. PloS one. 2013;8(8):e71486. DOI: 10.1371/journal.pone.0071486
6. Charlin B, Lubarsky S, Millette B, Crevier F, Audetat MC, Charbonneau A, Cairet Fon N, Hoff L, Bourdy C. Clinical reasoning processes: unravelling complexity through graphical representation. Med Educ, 2012;46(5):454-463. DOI: 10.1111/j.1365-2923.2012.04242.x
7. Audéat MC, Laurin S, Sanche G, Béliveau C, Fon NC, Blais JG, Charlin B. Clinical reasoning difficulties: a taxonomy for clinical teachers, Med Teach. 2013;35(3):e984-e989. DOI: 10.3109/0142159X.2012.733041
8. Wolfel T, Beltermann E, Lottspeich C, Vietz E, Fischer MR, Schmidmaier R. Medical ward round process in internal medicine - an interview study towards an interprofessional development of an Entrustable Professional Activity (EPA). BMC Med. 2018;16:174. DOI: 10.1186/s12909-016-0697-y
9. Shafiqur-Rehman MS, Ahmed J, Razaq MH, Khan S, Perry EP, Surgical handover in an era of reduced working hours: an audit of current practice. J Coll Physicians Surg Pak. 2012;22(6):385-388.
10. Kemp CD, Bath JM, Berger J, Bergsman A, Ellison T, Emery K, Garonzik-Wang J, Hui-Chou HG, Mayo SC, Serrano OK, Shridharani S, Zuberi K, Lipsett PA, Freischlag JA. The top 10 list for a safe and effective sign-out. Arch Surg. 2008;143(10):1008-1010. DOI: 10.1001/archsurg.143.10.1008
11. Young JQ, van Dijk SM, O’Sullivan PS, Custers EJ, Irby DM, Ten Cate O. Influence of learner knowledge and case complexity on handover accuracy and cognitive load: results from a simulation study. Med Educ. 2016;50(9):969-978. DOI: 10.1111/medu.13107
12. Nendaz MR, Bordage G. Promoting diagnostic problem representation. Med Educ. 2002;36(8):760-766. DOI: 10.1046/j.1365-2923.2002.01279.x
13. Bordage G, Connell KJ, Chang RW, Gecht MR, Sinacore JM. Assessing the semantic content of clinical case presentations: studies of reliability and concurrent validity. Acad Med. 1997;72(10 Suppl 1):S37-39. DOI: 10.1097/00001888-199710001-00013
14. Elstein AS, Shulman LS, Sprafka SA. Medical problem solving – an analysis of clinical reasoning. Cambridge: Harvard University Press; 1978. DOI: 10.4159/harvard.9780674189089
15. Kiesewetter J, Ebersbach R, Görlitz A, Holzer M, Fischer MR, Schmidmaier R. Cognitive Problem Solving Patterns of Medical Students Correlate with Success in Diagnostic Case Solutions. PLoS one. 2013;8(8):e71486. DOI: 10.1371/journal.pone.0071486
14. Bordage G. Prototypes and semantic qualifiers: from past to present. Med Educ. 2007;41(12):1117-1121. DOI: 10.1111/j.1365-2923.2007.02919.x

15. Steward D, Bordage G, Lemieux M. Semantic structures and diagnostic thinking of experts and novices. Acad Med. 1991;66(9):S70-S72. DOI: 10.1097/00001888-199109001-00025

16. Chang RW, Bordage G, Connell KJ. COGNITION, CONFIDENCE, AND CLINICAL SKILLS: The Importance of Early Problem Representation during Case Presentations. Acad Med. 1998;73(10):S109-111. DOI: 10.1097/00001888-199810000-00062

17. Braun LT, Zottmann JM, Adolf C, Lottspeich C, Then C, Wirth S, Fischer MR, Schmidmaier R. Representation scaffolds improve diagnostic efficiency in medical students. Med Educ. 2017;51(11):1118-1126. DOI: 10.1111/medu.13355

18. Braun LT, Zwaan L, Kiesewetter J, Fischer MR, Schmidmaier R. Diagnostic errors by medical students: results of a prospective qualitative study. BMC Med Educ. 2017;17(1):151. DOI: 10.1186/s12909-017-1044-7

19. Fischer MR, Aulinger B, Baehring T. Computer-based-Training (CBT): Fallorientiertes Lernen am PC mit dem CASUS/ProMediWeb-System. Dtsch Med Wochenchr. 1999;124(46):1401. DOI: 10.1055/s-2007-1024550

20. Fischer MR, Problemorientiertes Lernen in der Medizin mit dem CASUS/ProMediWeb-Lernsystem. Intern Kontext. 2001:116.

21. Mayring P. Combination and integration of qualitative and quantitative analysis. Forum Qual Sozialforsch. 2001.

22. Charlin B, Boshuizen HP, Custers EJ, Feltovich PJ. Scripts and clinical reasoning. Med Educ. 2007;41(12):1178-1184. DOI: 10.1111/j.1365-2923.2007.02924.x

23. Woods NN. Science is fundamental: the role of biomedical knowledge in clinical reasoning. Med Educ. 2007;41(12):1173-1177. DOI: 10.1111/j.1365-2923.2007.02911.x

24. Perneger TV. What's wrong with Bonferroni adjustments. Br Med J. 1998;316(7139):1236. DOI: 10.1136/bmj.316.7139.1236

Korrespondenzadresse:
Leah Theresa Braun
Ludwig-Maximilians-Universität (LMU), Klinikum der Universität München, Medizinische Klinik und Poliklinik IV, Ziemssenstr. 1, 80336 München, Deutschland
leahbraun@gmx.de

Bitte zitieren als
Braun LT, Lenzer B, Kiesewetter J, Fischer MR, Schmidmaier R. How case representations of medical students change during case processing – Results of a qualitative study. GMS J Med Educ. 2018;35(3):Doc41. DOI: 10.3205/zma001187, URN: urn:nbn:de:0183-zma0011878

Artikel online frei zugänglich unter
http://www.egms.de/en/journals/zma/2018-35/zma001187.shtml

Eingereicht: 22.02.2018
Überarbeitet: 24.04.2018
Angenommen: 06.06.2018
Veröffentlicht: 15.08.2018

Copyright
©2018 Braun et al. Dieser Artikel ist ein Open-Access-Artikel und steht unter den Lizenzbedingungen der Creative Commons Attribution 4.0 License (Namensnennung). Lizenz-Angaben siehe http://creativecommons.org/licenses/by/4.0/.