GLOBAL EXISTENCE AND DECAY ESTIMATE OF CLASSICAL SOLUTIONS TO THE COMPRESSIBLE VISCOELASTIC FLOWS WITH SELF-GRAVITATING

YINXIA WANG
School of Mathematics and Statistics
North China University of Water Resources and Electric Power, Zhengzhou, 450011, China

HENGYUN ZHAO
College of Sciences, Henan University of Engineering, Zhengzhou, 451191, China

(Communicated by Stefano Bianchini)

Abstract. In this paper, we consider the initial value problem for the compressible viscoelastic flows with self-gravitating in \mathbb{R}^n ($n \geq 3$). Global existence and decay rates of classical solutions are established. The corresponding linear equations becomes two similar equations by using Hodge decomposition and then the solutions operator is derived. The proof is mainly based on the decay properties of the solutions operator and energy method. The decay properties of the solutions operator may be derived from the pointwise estimate of the solution operator to two linear wave equations.

1. Introduction. The compressible viscoelastic flows with self-gravitating in multi-dimensional space is governed by

$$
\begin{align*}
\partial_t \rho + \nabla \cdot (\rho u) &= 0, \\
\partial_t (\rho u) + \nabla \cdot (\rho u \otimes u) + \nabla P(\rho) &= \mu_1 \Delta u + \mu_2 \nabla (\nabla \cdot u) + \nabla \cdot (\rho FF^T) + \rho \nabla \Phi, \\
\partial_t F + u \cdot \nabla F &= \nabla u F, \\
\Delta \Phi &= \rho - \bar{\rho}, \quad \lim_{|x| \to \infty} \Phi = 0
\end{align*}
$$

(1)

The variables are the density ρ, the velocity u, the deformation tensor F and the electrostatic potential Φ. Furthermore, $P = P(\rho)$ is the pressure function satisfying $P'(\rho) > 0$ for $\rho > 0$. The viscosity coefficients satisfy $\mu_1 > 0$, $2\mu_1 + n\mu_2 > 0$.

The compressible viscoelastic flows with self-gravitating have strong physical background, we may refer to [20]. For instance in semiconductor devices, it can be used to simulate the transport of charged particles under the electric field of electrostatic potential force. When $\mu_1 = \mu_2 = 0$, (1) reduce to self-gravitating Hookean elastodynamics. The three dimension Hookean elastodynamics has been studied and global classical solutions have been established by Hu [2]. The compressible viscoelastic flows with self-gravitating may be viewed as the compressible viscoelastic equations coupled with the self-consistent Poisson equation. Since the 80's of the last century, the local existence, global existence and asymptotic behavior

2000 Mathematics Subject Classification. Primary: 35B40; Secondary: 76N15.

Key words and phrases. Compressible viscoelastic flows with self-gravitating, global classical solution, decay rates.

YXW is supported by NNSF grant No.11101144.
of solutions to the initial value problem for the compressible viscoelastic equations have been investigated extensively, we refer to [3, 4, 5, 6, 7, 8, 19, 26]. The global existence with initial data close to an equilibrium state has been established in Besov spaces by Hu and Wang [4]. Several important estimates are also achieved, including a smoothing effect on the velocity, and the L^1-decay of the density and deformation gradient. The existence and uniqueness of the local strong solutions near the equilibrium have been established in [5]. We also refer to [3] for local large solutions. Local well-posedness of solutions in critical spaces has been obtained by Qian and Zhang [19], provided that the initial density is bounded away from zero. Moreover, global solutions for small data were also established. Recently, Hu and Guo [7] established global existence and optimal decay rates of solutions.

When the density is constant, the compressible viscoelastic equations is reduced to the incompressible viscoelastic equations. Many mathematican’s investigated the incompressible viscoelastic equations and lots of interesting results have been established, we may refer to [1, 9, 10, 11, 12, 13, 14, 15, 17, 16, 18, 27]. Local existence with large initial data and global existence with small initial data were established in [1, 12, 18]. To obtain global solutions, some important relations are also used to prove that some linear terms are in fact high order terms. Lei, Liu and Zhou [13] find $E = F - I$ satisfies the relation

$$\nabla_k E^{ij} - \nabla_j E^{ik} = E^{lj} \nabla_l E^{ik} - E^{lk} \nabla_l E^{ij},$$

which implies $\nabla \times E$ is a high order term.

Let $m = \rho u$ be the momentum, the compressible elastodynamics equations (1) may be written as

$$\begin{align*}
\partial_t \rho + \nabla \cdot m &= 0, \\
\partial_t m + \nabla \cdot (\frac{m \otimes m}{\rho}) + \nabla P(\rho) &= \mu_1 \Delta (\frac{m}{\rho}) + \mu_2 \nabla \cdot \left(\frac{m}{\rho} \right) + \nabla \cdot (\rho F F^T) + \rho \nabla \Phi, \\
\partial_t F + \frac{m}{\rho} \cdot \nabla F &= \nabla \left(\frac{m}{\rho} \right) F, \\
\Delta \Phi &= \rho - \bar{\rho}, \quad \lim_{|x| \to \infty} \Phi = 0
\end{align*}$$

(2)

In this paper, we investigate global existence and optimal decay of classical solutions to (2) with the following initial value

$$t=0: \rho = \partial x_1 \rho_0(x), \quad m = m_0(x), \quad F = F_0(x), \quad x \in \mathbb{R}^n$$

(3)

Our main goals of this paper are to prove global existence and the optimal decay estimate of solutions to the initial value problem (2), (3). By introducing the Hodge decomposition, (2) may be written as the system (13) whose linear system are decoupled. By the decay estimate of solution operator to (13) and energy method, global existence and the optimal decay estimate of solutions are established. For the details, please refer to Theorem 4.2, 5.1 and Remark 1, 2.

There are also two-folds in our present paper: firstly, it is very difficult to obtain the solutions operator to (2) since (2) has $n^2 + n + 1$ equations and the unknown functions are coupled. To overcome this difficulty, we introduce the Hodge decomposition and use some special relations (8), (9), then (2) may be written as the system (13) whose linear system are decoupled; Secondly, we clarify the decay property of the solutions operator by investigating the solutions operator to two linear wave equation in (15) and (20). The advantage of this method in the paper is avoiding the complex calculation by using Taylor formula.
The paper is organized as follows. We make rearrangement for the problem by using the Hodge decomposition and some relations in Section 2. In Section 3, we discuss the decay properties of solution operator to (13). Section 4 is devoted to establishing global existence and asymptotic behavior of solutions in odd space dimensions, while Section 5 is devoted to global existence and asymptotic behavior of solutions in even space dimensions.

2. Rearrangement of (2). Without loss of generality, we assume $\bar{\rho} = 1$ and $P'(1) = 1$. Let $\sigma = \rho - \bar{\rho} = \rho - 1$ and $E = F - I$, then (2) may be transformed into

$$\begin{cases}
\partial_t \sigma + \nabla \cdot m = 0, \\
\partial_t m + \nabla \sigma - \nabla \Phi = \mu_1 \Delta m + \mu_2 \nabla(\nabla \cdot m) + \nabla \cdot E + f, \\
\partial_t E - \nabla m = g, \\
\Delta \Phi = \sigma, \quad \lim_{|x| \to \infty} \Phi = 0.
\end{cases}$$

Here

$$f = -\mu_1 \Delta\left(\frac{\sigma m}{\sigma + 1}\right) - \mu_2 \nabla\left(\frac{\sigma m}{\sigma + 1}\right) - \nabla \cdot \left(\frac{m \otimes m}{\sigma + 1}\right) - \nabla (P(\sigma + 1) - 1 - \sigma) + \sigma \nabla \Phi + \nabla \cdot (\sigma EE^T + EE^T + \sigma E)$$

and

$$g = \nabla\left(\frac{m}{\sigma + 1}\right)E - \nabla\left(\frac{\sigma m}{\sigma + 1}\right) - \frac{1}{\sigma + 1} m \cdot \nabla E.$$

Instituting the last equation in (4) into the second equation in (4), we arrive at

$$\begin{cases}
\partial_t \sigma + \nabla \cdot m = 0, \\
\partial_t m + \nabla \sigma - \nabla (-\Delta)^{-1} \sigma = \mu_1 \Delta m + \mu_2 \nabla(\nabla \cdot m) + \nabla \cdot E + f, \\
\partial_t E - \nabla m = g.
\end{cases}$$

The following results have been established in [4] and [19].

Lemma 2.1. Assume that (ρ, u, F, Φ) is a solution to (1). Then the following identity

$$\nabla \cdot (\rho F) = 0$$

and

$$F^{ik} \nabla_i F^{ij} = F^{ij} \nabla_i F^{ik}$$

hold for all time $t > 0$ if it initially satisfies (7).

(7) implies for all $t > 0$

$$\nabla_k E^{ij} + E^{ik} \nabla_i E^{ij} = \nabla_j E^{ik} + E^{lj} \nabla_l E^{ik}.$$

Thus we have

$$\begin{align*}
\nabla_j \nabla_k E^{ik} - \nabla_i \nabla_k E^{ik} &= \nabla_j \nabla_k E^{ik} - \nabla_k \nabla_i E^{jk} \\
&= \nabla_k \nabla_k E^{ij} - \nabla_k \nabla_k E^{kj} + \nabla_k (E^{ik} \nabla_i E^{ij} - E^{ij} \nabla_i E^{ik}) \\
&- \nabla_k (E^{ik} \nabla_i E^{ij} - E^{ij} \nabla_i E^{jk}) \\
&= \Delta (E^{ij} - E^{ji}) + \nabla_k (E^{ik} \nabla_i E^{ij} - E^{ij} \nabla_i E^{ik}) \\
&- \nabla_k (E^{ik} \nabla_i E^{ij} - E^{ij} \nabla_i E^{jk}).
\end{align*}$$
By (6), we have
\[\nabla \cdot (\nabla \cdot E) = \nabla \cdot (\nabla \cdot E^T) = \nabla \cdot \left[(\sigma + 1)(E + I)^T \right] - \nabla \cdot (\sigma I + \sigma E^T) = -\Delta \sigma - \nabla \cdot (\sigma E). \] (10)

Owing to (9) and (10), we get
\[\Delta \nabla \cdot E = -\Delta \nabla \sigma - \nabla \nabla \cdot (\sigma E) + \Delta \nabla \cdot (E - E^T) + \nabla \cdot \mathcal{L}, \] (11)
where \(\mathcal{L} \) is antisymmetric matrix, which is defined by
\[\mathcal{L}^{ij} = \nabla_k (E^{ik} \nabla_i E^{jk} - E^{ik} \nabla_i E^{jk}) - \nabla_k (E^{ik} \nabla_i E^{jk} - E^{ik} \nabla_i E^{jk}). \] (12)

Let
\[\Lambda^s v = \mathcal{F}^{-1}(|\xi|^s \hat{v}), \quad \Omega = \Lambda^{-1}(\nabla \cdot m), \quad \Gamma = \Lambda^{-1}(\nabla \times m). \]

Then using (9) and (10), (5) may be transformed into
\[\begin{cases}
\partial_t \sigma + \Lambda \Omega = 0, \\
\partial_t \Omega - (\mu_1 + \mu_2) \Delta \Omega - 2\Lambda \sigma - \Lambda^{-1} \sigma = \Lambda^{-1} \nabla \cdot \left(f - \nabla \cdot (\sigma E) \right), \\
\partial_t \Gamma - \mu_1 \Delta \Gamma + \Lambda (E - E^T) = \Lambda^{-1} (\mathcal{L} + \nabla \times f), \\
\partial_t (E - E^T) + \Lambda \Gamma = g_1 - g_1^T - \frac{1}{\sigma + 1} m \cdot (E - E^T),
\end{cases} \] (13)
where \(\mathcal{L} \) is antisymmetric matrix, which is given by (12) and
\[g_1 = \nabla \left(\frac{m}{\sigma + 1} E \right) - \nabla \left(\frac{\sigma m}{\sigma + 1} \right). \]

The following Lemma comes from [7].

Lemma 2.2. Assume that \(\| (\sigma, m, E, \nabla \Phi) \|_{H^s} \) is suitably small, then we have
\[\| \partial_x^l E(t) \|_{L^2} \leq C \| \partial_x^l (\sigma, E - E^T)(t) \|_{L^2} \]
for \(1 \leq l \leq s \).

3. ** Decay properties of solution operator to (13).** This section is devoted to study the decay properties of solution operator to (13). To do so, we first consider the linear equations of (13)
\[\begin{cases}
\partial_t \sigma + \Lambda \Omega = 0, \\
\partial_t \Omega - (\mu_1 + \mu_2) \Delta \Omega - 2\Lambda \sigma - \Lambda^{-1} \sigma = 0, \\
\partial_t \Gamma - \mu_1 \Delta \Gamma + \Lambda (E - E^T) = 0, \\
\partial_t (E - E^T) + \Lambda \Gamma = 0.
\end{cases} \] (14)

Noting that the first equation and second equation in (14) is coupled, \(\sigma \) satisfies the following problem
\[\begin{cases}
\sigma_{tt} - (\mu_1 + \mu_2) \Delta \sigma_t + 2\Lambda^2 \sigma + \sigma = 0, \\
t = 0: \quad \sigma = \sigma_0, \quad \sigma_t = -\Delta \Omega_0.
\end{cases} \] (15)

By Fourier transform, we have
\[\hat{\sigma} = -\mathcal{G}(\xi, t) \hat{\xi} \hat{\Omega}_0 + \hat{\mathbb{H}}(\xi, t) \hat{\sigma}_0, \] (16)
where
\[\mathcal{G}(\xi, t) = \frac{e^{\lambda_+ t} - e^{\lambda_- t}}{\lambda_+ - \lambda_-}, \quad \mathbb{H}(\xi, t) = \frac{\lambda_+ e^{\lambda_- t} - \lambda_- e^{\lambda_+ t}}{\lambda_+ - \lambda_-} \] (17)
and
\[\lambda_{\pm} = \frac{-(\mu_1 + \mu_2)|\xi|^2 \pm \sqrt{(\mu_1 + \mu_2)^2|\xi|^4 - 4(2|\xi|^2 + 1)}}{2}. \]

\(\Omega\) satisfies the following problem
\[\begin{cases} \Omega_{tt} - (\mu_1 + \mu_2)\Delta \Omega_t + 2\lambda^2 \Omega + \Omega = 0, \\ t = 0 : \Omega = \Omega_0, \quad \Omega_t = (\mu_1 + \mu_2)\Delta \Omega_0 + 2\lambda \sigma_0 + \Delta^{-1} \sigma_0. \end{cases} \]
(18)

Similarly, we arrive at
\[\hat{\Omega} = \hat{G}(\xi, t) \left(2|\xi| + \frac{1}{|\xi|}\right)\hat{\sigma}_0 + \left(\hat{H}(\xi, t) - (\mu_1 + \mu_2)|\xi|^2 \hat{G}(\xi, t)\right)\hat{\Omega}_0. \]
(19)

\(\Gamma\) satisfies the following problem
\[\begin{cases} \Gamma_{tt} - \mu_1 \Delta \Gamma_t + \Lambda^2 \Gamma = 0, \\ t = 0 : \Gamma = \Gamma_0, \quad \Gamma_t = \mu_1 \Delta \Gamma_0 + \Lambda (E_t - E_0^T). \end{cases} \]
(20)

By Fourier transform, we have
\[\hat{\Gamma} = \hat{G}(\xi, t)|\xi|(\hat{E}_0 - \hat{E}_0^T) + \left(\hat{H}(\xi, t) - \mu_1 |\xi|^2 \hat{G}(\xi, t)\right)\hat{\Gamma}_0, \]
(21)

where
\[\hat{G}(\xi, t) = \frac{e^{\lambda_+ t} - e^{\lambda_- t}}{\lambda_+ - \lambda_-}, \quad \hat{H}(\xi, t) = \frac{\lambda_+ e^{\lambda_+ t} - \lambda_- e^{\lambda_- t}}{\lambda_+ - \lambda_-}. \]
(22)

and
\[\lambda_{\pm} = \frac{-\mu_1 |\xi|^2 \pm \sqrt{\mu^2 |\xi|^4 - 4|\xi|^2}}{2}. \]

\(E - E^T\) satisfies the following problem
\[\begin{cases} (E - E^T)_{tt} - \mu_1 \Delta (E - E^T)_t + \Lambda^2 (E - E^T) = 0, \\ t = 0 : E - E^T = E_0 - E_0^T, \quad (E - E^T)_t = -\Delta \Gamma_0. \end{cases} \]
(23)

By Fourier transform, we have
\[\hat{E} - \hat{E}^T = -\hat{G}(\xi, t)|\xi|\hat{\Gamma}_0 + \hat{H}(\xi, t)(\hat{E}_0 - \hat{E}_0^T). \]
(24)

Owing to (16), (19), (21) and (24), we have
\[\begin{pmatrix} \dot{\hat{\Omega}} \\ \hat{\Omega}_0 \\ \hat{\Gamma} \\ \hat{E} - \hat{E}^T \end{pmatrix} = \hat{G}(\xi, t) \begin{pmatrix} \hat{\sigma}_0 \\ \Omega_0 \\ \hat{\Gamma}_0 \\ \hat{E}_0 - \hat{E}_0^T \end{pmatrix} = \begin{pmatrix} \hat{G}_{11} & \hat{G}_{12} & 0 & 0 \\ \hat{G}_{21} & \hat{G}_{22} & 0 & 0 \\ 0 & 0 & \hat{G}_{33} & \hat{G}_{34} \\ 0 & 0 & \hat{G}_{43} & \hat{G}_{44} \end{pmatrix} \begin{pmatrix} \hat{\sigma}_0 \\ \Omega_0 \\ \Gamma_0 \\ \hat{E}_0 - \hat{E}_0^T \end{pmatrix}, \]
(25)

where
\[\hat{G}_{11} = \hat{H}, \quad \hat{G}_{12} = -|\xi| \hat{G}, \quad \hat{G}_{21} = (2|\xi| + \frac{1}{|\xi|}) \hat{G}, \quad \hat{G}_{22} = \hat{H} - (\mu_1 + \mu_2)|\xi|^2 \hat{G}, \]
\[\hat{G}_{33} = \hat{H}, \quad \hat{G}_{34} = -|\xi| \hat{G}, \quad \hat{G}_{43} = |\xi| \hat{G}, \quad \hat{G}_{44} = \hat{H} - \mu_1 |\xi|^2 \hat{G}. \]
(26)

Taking \(\mathcal{F}^{-1}\) to (25), we arrive at
\[\begin{pmatrix} \sigma \\ \Omega \\ \Gamma \\ E - E^T \end{pmatrix} = \mathcal{F}(t) \begin{pmatrix} \sigma_0 \\ \Omega_0 \\ \Gamma_0 \\ E_0 - E_0^T \end{pmatrix}, \]
(27)

where
\[\mathcal{F}(t) = \mathcal{F}^{-1}(\hat{G}(\xi, t)). \]
In order to study the decay properties of solution operator \(G \), it is suffice to study the decay properties of \(G, H, \hat{G} \) and \(H \) since the solution operator \(\mathcal{G} \) is given in term of \(G, H, \hat{G} \) and \(H \). Therefore, we firstly study the decay properties of \(G \) and \(H \). Taking Fourier transform of (15), we have

\[
\begin{cases}
\hat{\sigma}_{tt} + (\mu_1 + \mu_2)|\xi|^2\hat{\sigma} + 2|\xi|^2\hat{\sigma} + \hat{\sigma} = 0. & t = 0; \hat{\sigma} = \hat{\sigma}_0, \hat{\sigma}_t = -|\xi|^2(t) \hat{\sigma}_0.
\end{cases}
\]

(28)

Lemma 3.1. Let \(\sigma \) be the solution to the problem (15). Then its Fourier image \(\hat{\sigma} \) verifies the pointwise estimate

\[
|\hat{\sigma}(\xi, t)|^2 + (1 + |\xi|^2)2|\hat{\sigma}(\xi, t)|^2 \leq C e^{-c \omega(\xi)t}(|\xi|^2\hat{\Omega}_0|^2 + (1 + |\xi|^2)|\hat{\sigma}_0|^2),
\]

for \(\xi \in \mathbb{R}^n \) and \(t \geq 0 \), where \(\omega(\xi) = \frac{|\xi|^2}{1 + |\xi|^2} \).

Proof. The proof may be found in [23]. Here we omit the details. \(\Box \)

By the method in [21] and [22], the pointwise estimate (29) together with the solution formula ((16)) to the problem (28) give the corresponding pointwise estimates for \(\hat{G} \) and \(\hat{H} \). The result is stated as follows.

Lemma 3.2. Let \(\hat{G} \) and \(\hat{H} \) be the fundamental solutions of (15) in the Fourier space, which are given explicitly in (17). Then we have the pointwise estimates

\[
|\hat{G}(\xi, t)| \leq C (1 + |\xi|^2)^{-1} e^{-c \omega(\xi)t},
\]

\[
|\hat{H}(\xi, t)| \leq C e^{-c \omega(\xi)t},
\]

(30)

for \(\xi \in \mathbb{R}^n \) and \(t \geq 0 \), where \(\omega(\xi) = \frac{|\xi|^2}{1 + |\xi|^2} \).

Lemma 3.3. Let \(e = E - E^T \) be the solution to the problem (23). Then its Fourier image \(\hat{e} \) verifies the pointwise estimate

\[
|\hat{e}(\xi, t)|^2 + |\xi|^2(1 + |\xi|^2)|\hat{e}(\xi, t)|^2 \leq C e^{-c \omega(\xi)t}(|\xi|^2|\hat{\Gamma}_0|^2 + |\xi|^2(1 + |\xi|^2)|\hat{E}_0 - \hat{E}_0^T|^2),
\]

(31)

for \(\xi \in \mathbb{R}^n \) and \(t \geq 0 \), where \(\omega(\xi) = \frac{|\xi|^2}{1 + |\xi|^2} \).

Proof. The proof may be found in [24]. Here we omit the details. \(\Box \)

Similar to the proof of Lemma 3.2, by Lemma 3.3, it is not difficult to get

Lemma 3.4. Let \(\hat{G} \) and \(\hat{H} \) be the fundamental solutions to (23) in the Fourier space, which are given explicitly in (22). Then we have the pointwise estimates of \(\hat{G} \) and \(\hat{H} \)

\[
|\hat{G}(\xi, t)| \leq C |\xi|^{-1}(1 + |\xi|^2)^{-\frac{1}{2}} e^{-c \omega(\xi)t},
\]

\[
|\hat{H}(\xi, t)| \leq C e^{-c \omega(\xi)t},
\]

(32)

for \(\xi \in \mathbb{R}^n \) and \(t \geq 0 \), where \(\omega(\xi) = \frac{|\xi|^2}{1 + |\xi|^2} \).

Lemma 3.5. Let \(1 \leq p \leq 2 \), and let \(k, j \) and \(l \) be nonnegative integers. Assume that \(\varphi \in W^{j,p} \cap H^{k+l+2} \). Then we have

\[
\|\partial_x^k G(t) \ast \varphi\|_{L^2} \leq C (1 + t)^{-\frac{k}{2}(\frac{1}{p} - \frac{1}{2}) - \frac{k+2}{2}} \|\partial_x^j \varphi\|_{L^p} + C e^{-ct} \|\partial_x^{k+l+2} \varphi\|_{L^2},
\]

\[
\|\partial_x^k H(t) \ast \varphi\|_{L^2} \leq C (1 + t)^{-\frac{k}{2}(\frac{1}{p} - \frac{1}{2}) - \frac{k+2}{2}} \|\partial_x^j \varphi\|_{L^p} + C e^{-ct} \|\partial_x^{k+l+2} \varphi\|_{L^2}
\]

(33)
\[\|\partial^k_z G(t) * \phi\|_{L^2} \leq C(1 + t)^{-\frac{q}{2}(\frac{1}{2} - \frac{1}{q})} \|\partial^2_z \phi\|_{L^p} + Ce^{-ct}\|\partial^{k+l-2}_x \varphi\|_{L^2}, \quad (35) \]

\[\|\partial^k_z \mathcal{H}(t) * \phi\|_{L^2} \leq C(1 + t)^{-\frac{q}{2}(\frac{1}{2} - \frac{1}{q})} \|\partial^2_z \phi\|_{L^p} + Ce^{-ct}\|\partial^{k+l}_x \varphi\|_{L^2} \quad (36) \]

for \(0 \leq j \leq k\) in (33), (34) and (36), \(0 \leq j \leq k - 1\) in (35), where \(k + l - 2 \geq 0\) in (33) and (35).

Next we state the decay property of solution operator \(\mathcal{G} \) to (13). By Lemma 3.5 and (26), it is not difficult to derive the following decay estimate for solution operator \(\mathcal{G} \).

Lemma 3.6. Let \(1 \leq p \leq 2 \), and let \(k, j \) and \(l \) be nonnegative integers. Assume that all norms appearing on the right-hand side of the following inequalities are bounded. Then we have

\[\|\partial^k_z \mathcal{G}_{11}(t) * \partial_x \phi\|_{L^2} \leq C(1 + t)^{-\frac{q}{2}(\frac{1}{2} - \frac{1}{q})} \|\partial^2_z \phi\|_{L^p} + Ce^{-ct}\|\partial^{k+l}_x \phi\|_{L^2} \quad (37) \]

\[\|\partial^k_z \mathcal{G}_{12}(t) * \psi\|_{L^2} \leq C(1 + t)^{-\frac{q}{2}(\frac{1}{2} - \frac{1}{q})} \|\partial^2_z \psi\|_{L^p} + Ce^{-ct}\|\partial^{k+l-1}_x \psi\|_{L^2} \quad (38) \]

\[\|\partial^k_z \mathcal{G}_{21}(t) * \partial_x \phi\|_{L^2} \leq C(1 + t)^{-\frac{q}{2}(\frac{1}{2} - \frac{1}{q})} \|\partial^2_z \phi\|_{L^p} + Ce^{-ct}\|\partial^{k+l-1}_x \phi\|_{L^2} \quad (39) \]

\[\|\partial^k_z \mathcal{G}_{22}(t) * \psi\|_{L^2} \leq C(1 + t)^{-\frac{q}{2}(\frac{1}{2} - \frac{1}{q})} \|\partial^2_z \psi\|_{L^p} + Ce^{-ct}\|\partial^{k+l-1}_x \psi\|_{L^2} \quad (40) \]

\[\|\partial^k_z \mathcal{G}_{33}(t) * \tilde{\phi}\|_{L^2} \leq C(1 + t)^{-\frac{q}{2}(\frac{1}{2} - \frac{1}{q})} \|\partial^2_z \tilde{\phi}\|_{L^p} + Ce^{-ct}\|\partial^{k+l}_x \tilde{\phi}\|_{L^2} \quad (41) \]

\[\|\partial^k_z \mathcal{G}_{34}(t) * \psi\|_{L^2} \leq C(1 + t)^{-\frac{q}{2}(\frac{1}{2} - \frac{1}{q})} \|\partial^2_z \psi\|_{L^p} + Ce^{-ct}\|\partial^{k+l-1}_x \psi\|_{L^2} \quad (42) \]

\[\|\partial^k_z \mathcal{G}_{43}(t) * \tilde{\phi}\|_{L^2} \leq C(1 + t)^{-\frac{q}{2}(\frac{1}{2} - \frac{1}{q})} \|\partial^2_z \tilde{\phi}\|_{L^p} + Ce^{-ct}\|\partial^{k+l}_x \tilde{\phi}\|_{L^2} \quad (43) \]

\[\|\partial^k_z \mathcal{G}_{44}(t) * \tilde{\psi}\|_{L^2} \leq C(1 + t)^{-\frac{q}{2}(\frac{1}{2} - \frac{1}{q})} \|\partial^2_z \tilde{\psi}\|_{L^p} + Ce^{-ct}\|\partial^{k+l}_x \tilde{\psi}\|_{L^2} \quad (44) \]

for \(0 \leq j \leq k + 1\) in (37), (38), \(0 \leq j \leq k\) in (39)-(44).

4. **Asymptotic behavior of solutions in odd space dimensions.** The purpose of this section is to prove global existence and asymptotic decay of solutions to the initial value problem (2), (3) in odd space dimensions. We need the following lemma for composite functions, which can be found in Lemma 5.2.6 on pp188 of [25].

Lemma 4.1. Suppose that \(f = f(v) \) is smooth, where \(v = (v_1, \ldots, v_N) \) is a vector function. Assume that \(f(v) = O(|v|^{1+\sigma}) \) for \(|v| \to 0 \), where \(\sigma \geq 1 \) is an integer. Let \(v \in L^\infty \) and \(\|v\|_{L^\infty} \leq M_0 \) for a positive constant \(M_0 \). Let \(1 \leq p, q, r \leq +\infty \) and \(\frac{1}{p} + \frac{1}{q} = \frac{1}{r} \), and let \(k \geq 0 \) be an integer. Then we have

\[\|\partial^k_z f(v)\|_{L^p} \leq C\|v\|_{L^q}^{1-1}\|v\|_{L^r}\|\partial^k_z v\|_{L^r} \]

where \(C = C(M_0) \) is a constant depending on \(M_0 \).

Therefore, the solutions to the problem (2), (3) have the form

\[
\begin{pmatrix}
\sigma \\
\Omega \\
\Gamma \\
E - ET^T
\end{pmatrix}
= \mathcal{G}(t) \ast
\begin{pmatrix}
\sigma_0 \\
\Omega_0 \\
\Gamma_0 \\
E_0 - E_0^T
\end{pmatrix}
+ \int_0^t \mathcal{G}(t - \tau) \ast
\begin{pmatrix}
\Lambda^{-1} \nabla \cdot (f - \nabla \cdot (\sigma E)) \\
\Lambda^{-1}(\mathcal{L} + \nabla \times f) \\
g_1 - g_1 - \frac{1}{\sigma + 1} m \cdot \nabla (E - ET^T)
\end{pmatrix}(\tau) d\tau, \quad (45)
\]
where $\sigma_0(x) = \rho_0(x, 0) - 1 = \partial_{x_1}(\rho_0(x) - x_1)$.

(45) is rewritten as

$$
\begin{align*}
\sigma(t) &= G_{11}(t) \ast \sigma + G_{12}(t) \ast \Omega_0 + \int_0^t G_{12}(t - \tau) \ast \Lambda^{-1} \nabla \cdot \left(f - \nabla \cdot (\sigma E) \right)(\tau) d\tau, \\
\Omega(t) &= G_{21}(t) \ast \sigma + G_{22}(t) \ast \Omega_0 + \int_0^t G_{22}(t - \tau) \ast \Lambda^{-1} \nabla \cdot \left(f - \nabla \cdot (\sigma E) \right)(\tau) d\tau, \\
\Gamma(t) &= G_{33}(t) \ast \Gamma_0 + G_{34}(t) \ast (E_0 - E_0^T) + \int_0^t G_{33}(t - \tau) \ast \Lambda^{-1} (\mathcal{L} + \nabla \times f)(\tau) d\tau \\
&+ \int_0^t G_{34}(t - \tau) \ast \left(g_1 - g_1^T - \frac{1}{\sigma + 1} m \cdot \nabla (E - E^T) \right)(\tau) d\tau, \\
(E - E^T)(t) &= G_{43}(t) \ast \Gamma_0 + G_{44}(t) \ast (E_0 - E_0^T) \\
&+ \int_0^t G_{43}(t - \tau) \ast \Lambda^{-1} (\mathcal{L} + \nabla \times f)(\tau) d\tau \\
&+ \int_0^t G_{44}(t - \tau) \ast \left(g_1 - g_1^T - \frac{1}{\sigma + 1} m \cdot \nabla (E - E^T) \right)(\tau) d\tau.
\end{align*}
$$

(46)

where

$$
\begin{align*}
f &= -\nabla \cdot (\nabla (-\Delta)^{-1}\sigma \otimes \nabla (-\Delta)^{-1}\sigma) + \frac{1}{2} \nabla (|\nabla (-\Delta)^{-1}\sigma|^2 I_{n \times n}) \\
&+ \nabla (P(\sigma + 1) - P(1) - P'(1)\sigma) - \text{div}(m \otimes \frac{m}{\sigma + 1}) \\
&- \mu_1 \Delta(\frac{\sigma m}{\sigma + 1}) - \mu_2 \nabla \cdot (\frac{\sigma m}{\sigma + 1}).
\end{align*}
$$

(47)

When $|U| = |(\sigma, m, F - I, \nabla \Phi)|$ is small enough, we may write

$$
f = \sum_i \partial_{x_i} f_1 + \sum_{i, j} \partial_{x_i x_j} f_2
$$

with

$$
f_1 = O(|U|^2), \quad f_2 = O(|U|^2).
$$

(48)

Theorem 4.2. Let $n \geq 3$ be an odd integer and $s \geq \frac{1}{2}(n + 5)$. Let $p \in [1, \frac{2n}{n + 2})$. Suppose that $(\rho_0 - x_1, F_0 - I, m_0) \in L^p$, $(\partial_{x_1}(\rho_0 - x_1), F_0 - I, m_0) \in H^s$ and put $E_0 = ||(\rho_0 - x_1, F_0 - I, m_0)||_{L^p} + ||(\partial_{x_1}(\rho_0 - x_1), F_0 - I, m_0)||_{H^s}$. Then there is a positive constant δ_0 such that if $E_0 \leq \delta_0$, then the problem (2), (3) has a unique global solution $(\rho - 1, m, F - I, \nabla \Phi)$ with $(\rho - 1, m, F - I, \nabla \Phi) \in C^0([0, +\infty); H^s \times H^s \times H^{s+1})$. For $i \leq \frac{n + 1}{2}$, the solution verifies the decay estimates

$$
\|\partial_x^i (\rho - 1)(t)\|_{L^2} \leq CE_0(1 + t)^{-\frac{n - 1}{2} + \frac{i - 1}{4}}, \quad \|\partial_x^i (m, F - I, \nabla \Phi)(t)\|_{L^2} \leq CE_0(1 + t)^{-\frac{n - 1}{2} + \frac{i - 1}{4}}.
$$

(49)

Moreover, for $\frac{n + 1}{2} \leq k \leq s - 2$, we have

$$
\|\partial_x^k (\rho - 1, m, F - I, \nabla \Phi)(t)\|_{L^2} \leq CE_0(1 + t)^{-\frac{n - 1}{2} + \frac{k - 1}{4}}.
$$

(50)

Remark 1. Under the same assumptions of Theorem 4.2, for $2 \leq q \leq 2n$, by Gagliardo-Nirenberg inequality, L^q decay estimate

$$
\|\rho - 1\|_{L^q} \leq CE_0(1 + t)^{-\frac{n - 1}{2} + \frac{q - 1}{2}}, \quad \|m, F - I, \nabla \Phi\|_{L^q} \leq CE_0(1 + t)^{-\frac{n - 1}{2} + \frac{q - 1}{2}}
$$

(51)

hold.

Proof. The local existence of classical solutions to the problem (2), (3) can be established by applying the contracting map argument. To prove global classical solution to the problem (2), (3) and the decay estimate (49), (50), we need to
establish the uniform a priori estimates and obtain the decay estimate of the solution to (46). To do so, we introduce the following quantity

\[X(t) = \sum_{i \leq \frac{n+1}{2}} \sup_{0 \leq \tau \leq t} \left\{ (1 + \tau)^{\frac{n}{p} - \frac{3}{2}} + \frac{3}{2} \right\} \left\langle \partial^k_x \sigma(\tau) \right\rangle_{L^2} \]

\[+ (1 + \tau)^{\frac{n}{p} - \frac{3}{2}} \left\langle \partial^k_x (m, E, \nabla \Phi)(\tau) \right\rangle_{L^2} \]

\[+ \sum_{\frac{n+1}{2} \leq k \leq s - 2} \sup_{0 \leq \tau \leq t} \left\langle \partial^k_x \sigma(\tau) \right\rangle_{L^2} \]

\[+ \sum_{n = s - 1} \sup_{0 \leq \tau \leq t} \left\langle \partial^k_x (m, E, \nabla \Phi)(\tau) \right\rangle_{L^2}. \]

(52)

Differentiating the first equality in (46) \(k(\frac{n+1}{2} \leq k \leq s - 2) \) times with respect to \(x \) and taking the \(L^2 \) norm, we have

\[\left\langle \partial^k_x \sigma(t) \right\rangle_{L^2} \leq \left\langle \partial^k_x \Phi_1(t) * \sigma_0 \right\rangle_{L^2} + \left\langle \partial^k_x \Phi_2(t) * \Omega_0 \right\rangle_{L^2} \]

\[+ \int_0^t \left\langle \partial^k_x \Phi_2(t - \tau) * \Lambda^{-1} \nabla \cdot (f - \nabla \cdot (\sigma E)) \right\rangle_{L^2} d\tau \]

\[=: I_1 + I_2 + I_3. \]

(54)

We apply (37) with \(j = 0, l = 0 \) to \(I_1 \), it yields

\[I_1 \leq C(1 + t)^{-\frac{3}{2} (\frac{1}{p} - \frac{1}{2}) - \frac{n+1}{p}} \left\| \rho_0 - x_1 \right\|_{L^p} + C e^{-ct} \left\| \partial^k_x \partial_x (\rho_0 - x_1) \right\|_{L^2} \]

\[\leq C(1 + t)^{-\frac{3}{2} (\frac{1}{p} - \frac{1}{2}) - \frac{n+1}{p}} E_0. \]

(55)

By using (38) with \(j = 0, l = 1 \) to \(I_2 \), it yields

\[I_2 \leq C(1 + t)^{-\frac{3}{2} (\frac{1}{p} - \frac{1}{2}) - \frac{n+1}{p}} \left\| \Omega_0 \right\|_{L^p} + C e^{-ct} \left\| \partial^k_x \Omega_0 \right\|_{L^2} \]

\[\leq C(1 + t)^{-\frac{3}{2} (\frac{1}{p} - \frac{1}{2}) - \frac{n+1}{p}} E_0. \]

(56)

Gagliardo-Nirenberg inequality and (52) give

\[\left\| \sigma(\tau) \right\|_{L^\infty} \leq C \left\| \partial^\frac{n+1}{2} \sigma(\tau) \right\|_{L^2}^{\frac{1}{2}} \left\| \partial^\frac{n+1}{2} \sigma(\tau) \right\|_{L^2}^{\frac{1}{2}} \leq C X(t)(1 + \tau)^{-\frac{3}{2} (\frac{1}{p} - \frac{1}{2}) - \frac{n+1}{p}}, \]

\[\left\| m(\tau) \right\|_{L^\infty} \leq C \left\| \partial^\frac{n+1}{2} m(\tau) \right\|_{L^2}^{\frac{1}{2}} \left\| \partial^\frac{n+1}{2} m(\tau) \right\|_{L^2}^{\frac{1}{2}} \leq C X(t)(1 + \tau)^{-\frac{3}{2} (\frac{1}{p} - \frac{1}{2}) - \frac{n+1}{p}}, \]

\[\left\| E(\tau) \right\|_{L^\infty} \leq C \left\| \partial^\frac{n+1}{2} E(\tau) \right\|_{L^2}^{\frac{1}{2}} \left\| \partial^\frac{n+1}{2} E(\tau) \right\|_{L^2}^{\frac{1}{2}} \leq C X(t)(1 + \tau)^{-\frac{3}{2} (\frac{1}{p} - \frac{1}{2}) - \frac{n+1}{p}}, \]

\[\left\| \nabla \Phi(\tau) \right\|_{L^\infty} \leq C \left\| \partial^\frac{n+1}{2} \nabla \Phi(\tau) \right\|_{L^2}^{\frac{1}{2}} \left\| \partial^\frac{n+1}{2} \nabla \Phi(\tau) \right\|_{L^2}^{\frac{1}{2}} \leq C X(t)(1 + \tau)^{-\frac{3}{2} (\frac{1}{p} - \frac{1}{2}) - \frac{n+1}{p}}. \]

(57)

We estimate the nonlinear term \(I_3 \). We divide \(I_3 \) into two parts and write \(I_3 = I_{31} + I_{32} \), where \(I_{31} \) and \(I_{32} \) are corresponding to the time intervals \([0, t/2]\) and \([t/2, t]\), respectively. For the term \(I_{31} \), we apply (38) with \(j = 0 \) and \(l = 0 \). This yields

\[I_{31} \leq C \int_0^{t/2} (1 + t - \tau)^{-\frac{3}{2} (\frac{1}{p} - \frac{1}{2}) - \frac{n+1}{p}} \left\| U^2(\tau) \right\|_{L^p} d\tau \]

\[+ C \int_0^{t/2} e^{-c(t-\tau)} \left(\left\| \partial^k_x |U|^2(\tau) \right\|_{L^2} + \left\| \partial^{k+1} |U|^2(\tau) \right\|_{L^2} \right) d\tau. \]

(58)
It follows from Lemma 4.1 and (57), (52) that

\[\| U \|^2 (\tau) \|_{L^p} \leq C \| U (\tau) \|^2 \|_{L^\infty} \leq C \| U (\tau) \|^2 \|_{L^2} \]
\[\leq CX^2 (t) (1 + \tau)^{-n (\frac{1}{p} - \frac{1}{2}) - \frac{(n - 1)(p - 1)}{2p}}, \]
\[\| \partial_x^k |U|^2 (\tau) \|_{L^2} \leq C \| U (\tau) \|_{L^\infty} \| \partial_x^k U (\tau) \|_{L^2} \leq CX^2 (t) (1 + \tau)^{-n (\frac{1}{p} - \frac{1}{2}) - \frac{n - 1}{4}}, \]
\[\| \partial_x^{k+1} |U|^2 (\tau) \|_{L^2} \leq C \| U (\tau) \|_{L^\infty} \| \partial_x^{k+1} U (\tau) \|_{L^2} \leq CX^2 (t) (1 + \tau)^{- \frac{3}{4} (\frac{1}{p} - \frac{1}{2}) - \frac{n - 1}{4}}, \]
\[\| \partial_x^{k+2} |U|^2 (\tau) \|_{L^2} \leq C \| U (\tau) \|_{L^\infty} \| \partial_x^{k+2} U \|_{L^2} \leq CX^2 (t) (1 + \tau)^{- \frac{3}{4} (\frac{1}{p} - \frac{1}{2}) - \frac{n - 1}{4}}. \]

Inserting the estimate (59) into (58) and noting \(p \in [1, \frac{2n}{n+2}) \), we obtain

\[I_{31} \leq CX^2 (t) \int_0^\frac{1}{t} \left(1 + t - \tau \right)^{- \frac{n}{2} (\frac{1}{p} - \frac{1}{2}) - \frac{3k}{2} (1 + \tau)^{- n (\frac{1}{p} - \frac{1}{2}) - \frac{(n - 1)(p - 1)}{2p}} d\tau \]
\[+ CX^2 (t) \int_0^\frac{1}{t} e^{-c(t-\tau)} (1 + \tau)^{-n (\frac{1}{p} - \frac{1}{2}) - \frac{n - 1}{4}} d\tau \]
\[+ CX^2 (t) \int_0^\frac{1}{t} e^{-c(t-\tau)} (1 + \tau)^{- \frac{3}{4} (\frac{1}{p} - \frac{1}{2}) - \frac{n - 1}{4}} d\tau \]
\[\leq CX^2 (t) (1 + t)^{- \frac{3}{4} (\frac{1}{p} - \frac{1}{2}) - \frac{n - 1}{4}}. \]

For the term \(I_{32} \), we apply (38) with \(p = 2, j = k \) and \(l = 0 \). This yields

\[I_{32} \leq C \int_0^t (1 + t - \tau)^{-1} \| \partial_x^k |U|^2 (\tau) \|_{L^2} d\tau \]
\[+ C \int_0^t e^{-c(t-\tau)} \left(\| \partial_x^k |U|^2 (\tau) \|_{L^2} + \| \partial_x^{k+1} |U|^2 (\tau) \|_{L^2} \right) d\tau \]
\[\leq CX^2 (t) \int_0^t (1 + t - \tau)^{-1} (1 + \tau)^{- n (\frac{1}{p} - \frac{1}{2}) - \frac{n - 1}{4}} d\tau \]
\[+ CX^2 (t) \int_0^t e^{-c(t-\tau)} (1 + \tau)^{- \frac{3}{4} (\frac{1}{p} - \frac{1}{2}) - \frac{n - 1}{4}} d\tau \]
\[+ CX^2 (t) \int_0^t e^{-c(t-\tau)} (1 + \tau)^{- \frac{3}{4} (\frac{1}{p} - \frac{1}{2}) - \frac{n - 1}{4}} d\tau \]
\[\leq CX^2 (t) (1 + t)^{- \frac{3}{4} (\frac{1}{p} - \frac{1}{2}) - \frac{n - 1}{4}}. \]

where we have used (59).

We apply \(\partial_x^k (\frac{n+1}{2}) \leq k \leq s - 2 \) to the second equality in (46) and take the \(L^2 \) norm, it gives

\[\| \partial_x^k \Omega (t) \|_{L^2} \leq \| \partial_x^k \mathcal{G}_{21} (t) * \sigma_0 \|_{L^2} + \| \partial_x^k \mathcal{G}_{22} (t) * \Omega_0 \|_{L^2} \]
\[+ \int_0^t \| \partial_x^k \mathcal{G}_{22} (t - \tau) \Lambda^{-1} \nabla \cdot (f - \nabla \cdot (\sigma E))(\tau) \|_{L^2} d\tau \]
\[=: J_1 + J_2 + J_3. \]
Making use of (39) with $j = 0$, $l = 1$ to J_1, it yields

$$J_1 \leq C(1 + t)^{-\frac{5}{2}(\frac{1}{2} - \frac{1}{2})} \|\partial_x \phi\|_{L^p} + C e^{-ct} \|\partial_x^k \phi\|_{L^2}$$

$$\leq C(1 + t)^{-\frac{5}{2}(\frac{1}{2} - \frac{1}{2}) - \frac{n+1}{4}} E_0.$$ (63)

We obtain from (40) with $j = 0$, $l = 0$

$$J_2 \leq C(1 + t)^{-\frac{5}{2}(\frac{1}{2} - \frac{1}{2})} \|\Omega_0\|_{L^p} + C e^{-ct} \|\partial_x^k \Omega_0\|_{L^2}$$

$$\leq C(1 + t)^{-\frac{5}{2}(\frac{1}{2} - \frac{1}{2}) - \frac{n+1}{4}} E_0.$$ (64)

Similar to I_3, we write $J_3 = J_{31} + J_{32}$. We estimate the term J_{31} by using (40) with $j = 0$, $l = 0$, (59) and $p \in [1, \frac{2n}{n+2})$

$$J_{31} \leq C \int_0^T (1 + t - \tau)^{-\frac{5}{2}(\frac{1}{2} - \frac{1}{2})} \|U_\tau^2(\tau)\|_{L^p} d\tau$$

$$+ C \int_0^T e^{-c(t-\tau)} \|\partial_x^{k+1} U^2(\tau)\|_{L^2} + \|\partial_x^{k+2} U^2(\tau)\|_{L^2} d\tau$$

$$\leq C X^2(t) \int_0^T (1 + t - \tau)^{-\frac{5}{2}(\frac{1}{2} - \frac{1}{2}) - \frac{k+1}{4}} (1 + \tau)^{-n(\frac{1}{2} - \frac{1}{2}) - \frac{(n+1)(p-1)}{2p}} d\tau$$

$$\leq C X^2(t)(1 + t)^{-\frac{5}{2}(\frac{1}{2} - \frac{1}{2}) - \frac{n+1}{4}}.$$ (65)

By applying (40) with $p = 2$, $j = k$, $l = 0$ and (59) to the term J_{32}, we arrive at

$$J_{32} \leq C \int_0^T (1 + t - \tau)^{-\frac{5}{2}} \|\partial_x^k U^2(\tau)\|_{L^2} d\tau$$

$$+ C \int_0^T e^{-c(t-\tau)} \|\partial_x^{k+1} U^2(\tau)\|_{L^2} + \|\partial_x^{k+2} U^2(\tau)\|_{L^2} d\tau$$

$$\leq C X^2(t) \int_0^T (1 + t - \tau)^{-\frac{5}{2}} (1 + \tau)^{-n(\frac{1}{2} - \frac{1}{2}) - \frac{n+1}{4}} d\tau$$

$$\leq C X^2(t)(1 + t)^{-\frac{5}{2}(\frac{1}{2} - \frac{1}{2}) - \frac{n+1}{4}}.$$ (66)

We apply $\partial_x^k (\frac{n+1}{2}) \leq k \leq s - 2$ to the third equality in (66) and take the L^2 norm, it gives

$$\|\partial_x^k \Gamma(t)\|_{L^2} \leq \|\partial_x^k \mathcal{G}_{33}(t) * \Gamma_0\|_{L^2} + \|\partial_x^k \mathcal{G}_{34}(t) * (E_0 - E_0^T)\|_{L^2}$$

$$+ \int_0^t \|\partial_x^k \mathcal{G}_{33}(t - \tau) * \Lambda^{-1} (\mathcal{L} + V \times f)(\tau)\|_{L^2} d\tau$$

$$+ \int_0^t \|\partial_x^k \mathcal{G}_{34}(t - \tau) * (g - g^T)(\tau)\|_{L^2} d\tau$$

$$= H_1 + H_2 + H_3 + H_4.$$ (67)
Making use of (41) with \(j = 0, \ l = 0 \) to \(H_1 \), it yields

\[
H_1 \leq C(1 + t)^{-\frac{\alpha}{2} \left(\frac{1}{p} - \frac{1}{2} \right) - \frac{1}{2}} \| \Gamma_0 \|_{L^p} + C e^{-ct} \| \partial_x^k \Gamma_0 \|_{L^2} \\
\leq C(1 + t)^{-\frac{\alpha}{2} \left(\frac{1}{p} - \frac{1}{2} \right) - \frac{n - 1}{2p}} E_0.
\]

(68)

We obtain from (42) with \(j = 0, \ l = 1 \)

\[
H_2 \leq C(1 + t)^{-\frac{\alpha}{2} \left(\frac{1}{p} - \frac{1}{2} \right) - \frac{1}{2}} \| E_0 - E_0^T \|_{L^p} + C e^{-ct} \| \partial_x^k (E_0 - E_0^T) \|_{L^2} \\
\leq C(1 + t)^{-\frac{\alpha}{2} \left(\frac{1}{p} - \frac{1}{2} \right) - \frac{n - 1}{2p}} E_0.
\]

(69)

Similarly, we write \(H_3 = H_{31} + H_{32} \). We estimate the term \(H_{31} \) by using (41) with \(j = 0, \ l = 0, (59) \) and \(p \in [1, \frac{2n}{n+2}] \)

\[
H_{31} \leq C \int_0^\tau (1 + t - \tau)^{-\frac{\alpha}{2} \left(\frac{1}{p} - \frac{1}{2} \right) - \frac{k+1}{2}} || U \|_{L^p}^2 \| d\tau \\
+ C \int_0^\tau (1 + t - \tau)^{-\frac{\alpha}{2} \left(\frac{1}{p} - \frac{1}{2} \right) - \frac{1}{2}} || \nabla U \|_{L^p}^2 \| d\tau \\
+ C \int_0^\tau e^{-c(1 - \tau)} (|| \partial_x^{k+1} U \|_{L^p}^2 + || \partial_x^{k+2} U \|_{L^p}^2) d\tau \\
+ C \int_0^\tau e^{-c(1 - \tau)} || \partial_x^{k} (\nabla U) \|_{L^2} \| d\tau \\
\leq CX^2(t) \int_0^\tau (1 + t - \tau)^{-\frac{\alpha}{2} \left(\frac{1}{p} - \frac{1}{2} \right) - \frac{k+1}{2}} (1 + \tau)^{-n \left(\frac{1}{2} - \frac{1}{q} \right) - \frac{(n-1)(p-1)}{2p}} d\tau
\]

(70)

\[
+ CX^2(t) \int_0^\tau (1 + t - \tau)^{-\frac{\alpha}{2} \left(\frac{1}{p} - \frac{1}{2} \right) - \frac{k+1}{2}} (1 + \tau)^{-n \left(\frac{1}{p} - \frac{1}{2} \right) - \frac{(n-1)(p-1)}{2p}} d\tau
\]

\[
+ CX^2(t) \int_0^\tau e^{-c(1 - \tau)} (1 + t - \tau)^{-\frac{\alpha}{2} \left(\frac{1}{p} - \frac{1}{2} \right) - \frac{k+1}{2}} d\tau
\]

\[
+ CX^2(t) \int_0^\tau e^{-c(1 - \tau)} (1 + t - \tau)^{-\frac{\alpha}{2} \left(\frac{1}{p} - \frac{1}{2} \right) - \frac{k+1}{2}} d\tau
\]

\[
\leq CX^2(t)(1 + t)^{-\frac{\alpha}{2} \left(\frac{1}{p} - \frac{1}{2} \right) - \frac{k+1}{2}}.
\]

Here we have used

\[
|| \nabla U \|_{L^p} \leq || U \|_{L^\frac{2p}{2p-2}} || \nabla U \|_{L^2} \leq C || U \|_{L^\infty}^{\frac{2p-2}{2p}} || U \|_{L^2} \| \nabla U \|_{L^2} \leq CX^2(t)(1 + t)^{-n \left(\frac{1}{2} - \frac{1}{q} \right) - \frac{(n-1)(p-1)}{2p}}
\]

(71)

and

\[
|| \partial_x^{k} (\nabla U) \|_{L^2} \leq C (|| U \|_{L^\infty} \| \partial_x^{k+1} U \|_{L^2} + || \nabla U \|_{L^\infty} \| \partial_x^{k} U \|_{L^2})
\]

\[
\leq CX^2(t) \left((1 + t)^{-\frac{\alpha}{2} \left(\frac{1}{p} - \frac{1}{2} \right) - \frac{n - 1}{2p}} + (1 + t)^{-\frac{\alpha}{2} \left(\frac{1}{p} - \frac{1}{2} \right) - \frac{n - 1}{2p}} \right).
\]

(72)
By applying (41) with \(p = 2, l = 0 \) and (59) to the term \(H_{32} \), we arrive at

\[
H_{32} \leq C \int_0^t (1 + t - \tau)^{-\frac{1}{2}} \| \partial_x^k |U|^2(\tau) \|_{L^2} d\tau \\
+ C \int_0^t (1 + t - \tau)^{-\frac{2}{2} + \frac{1}{2} - \frac{k}{2}} \| U \nabla U(\tau) \|_{L^p} d\tau \\
+ C \int_0^t e^{-c(t-\tau)} (\| \partial_x^{k+1} |U|^2(\tau) \|_{L^2} + \| \partial_x^{k+2} |U|^2(\tau) \|_{L^2}) d\tau \\
+ C \int_0^t e^{-c(t-\tau)} \| \partial_x^k (U \nabla U)(\tau) \|_{L^2} d\tau \\
\leq C X^2(t) \int_0^t (1 + t - \tau)^{-\frac{1}{2}} (1 + \tau)^{-n(\frac{1}{2} - \frac{1}{2}) - \frac{n-1}{4p}} d\tau \\
+ C X^2(t) \int_0^t (1 + t - \tau)^{-\frac{2}{2} + \frac{1}{2} - \frac{k}{2}} (1 + \tau)^{-n(\frac{1}{2} - \frac{1}{2}) - \frac{n-1}{4p}} d\tau \\
+ C X^2(t) \int_0^t e^{-c(t-\tau)} (1 + \tau)^{-\frac{2}{2} + \frac{1}{2} - \frac{k}{2}} d\tau \\
+ C X^2(t) \int_0^t e^{-c(t-\tau)} (1 + \tau)^{-n(\frac{1}{2} - \frac{1}{2}) - \frac{n-1}{4p}} d\tau \\
\leq C X^2(t)(1 + t)^{-\frac{2}{2} + \frac{1}{2} - \frac{k}{2}}.
\] (73)

We also write \(H_4 = H_{41} + H_{42} \). We estimate the term \(H_{41} \) by using (42) with \(j = 0, l = 0, (59) \) and \(p \in [1, \frac{2n}{n+2}] \)

\[
H_{41} \leq C \int_0^t (1 + t - \tau)^{-\frac{2}{2} + \frac{1}{2} - \frac{k}{2}} \| U \nabla U(\tau) \|_{L^p} d\tau \\
+ C \int_0^t (1 + t - \tau)^{-\frac{2}{2} + \frac{1}{2} - \frac{k}{2}} \| \partial_x^k (U \nabla U)(\tau) \|_{L^2} d\tau \\
+ C \int_0^t e^{-c(t-\tau)} (\| \partial_x^{k+1} |U|^2(\tau) \|_{L^2} + \| \partial_x^{k+2} |U|^2(\tau) \|_{L^2}) d\tau \\
\leq C X^2(t) \int_0^t (1 + t - \tau)^{-\frac{2}{2} + \frac{1}{2} - \frac{k}{2}} (1 + \tau)^{-n(\frac{1}{2} - \frac{1}{2}) - \frac{n-1}{4p}} d\tau \\
+ C X^2(t) \int_0^t e^{-c(t-\tau)} (1 + \tau)^{-\frac{2}{2} + \frac{1}{2} - \frac{k}{2}} d\tau \\
+ C X^2(t) \int_0^t e^{-c(t-\tau)} (1 + \tau)^{-n(\frac{1}{2} - \frac{1}{2}) - \frac{n-1}{4p}} d\tau \\
\leq C X^2(t)(1 + t)^{-\frac{2}{2} + \frac{1}{2} - \frac{k}{2}}.
\] (74)
By applying (42) and (59) to the term H_{42}, we obtain

\[
H_{42} \leq C \int_{\frac{t}{2}}^{t} (1 + t - \tau)^{-\frac{1}{2}} \| \partial_x^k |U|^2(\tau) \|_{L^2} d\tau \\
+ C \int_{\frac{t}{2}}^{t} (1 + t - \tau)^{-\frac{3}{2}(\frac{1}{p} - \frac{1}{2}) - \frac{1}{2}} \| \nabla U(\tau) \|_{L^p} d\tau \\
+ C \int_{\frac{t}{2}}^{t} e^{-c(t-\tau)} \| \partial_x^k |U|^2(\tau) \|_{L^2} d\tau + C \int_{\frac{t}{2}}^{t} e^{-c(t-\tau)} \| \partial_x^k (U \nabla U)(\tau) \|_{L^2} d\tau \\
\leq CX^2(t) \int_{\frac{t}{2}}^{t} (1 + t - \tau)^{-\frac{1}{2}} (1 + \tau)^{-\frac{n}{2} - \frac{1}{2}} \frac{n-1}{2} - \frac{1}{2} d\tau
\]

\[
(75)
\]

We apply $\partial_x^k (\frac{n}{2} + 1 \leq k \leq s - 2)$ to the last equality in (46) and take the L^2 norm, it gives

\[
\| \partial_x^k (E - E^T)(t) \|_{L^2} \leq \| \partial_x^k \mathcal{G}_{43}(t) \ast \Gamma_0 \|_{L^2} + \| \partial_x^k \mathcal{G}_{44}(t) \ast (E_0 - E_0^T) \|_{L^2}
\\
+ \int_{0}^{1} \| \partial_x^k \mathcal{G}_{43}(t - \tau) \ast \Lambda^{-1}(\mathcal{L} + \nabla \times f)(\tau) \|_{L^2} d\tau
\\
+ \int_{0}^{1} \| \partial_x^k \mathcal{G}_{44}(t - \tau) \ast (g - g^T)(\tau) \|_{L^2} d\tau
\\
=: + K_1 + K_2 + K_3 + K_4.
\]

Making use of (43) with $j = 0, l = 1$ to K_1, it yields

\[
K_1 \leq C (1 + t)^{-\frac{n}{2}(\frac{1}{p} - \frac{1}{2}) - \frac{k}{2}} \| \Gamma_0 \|_{L^p} + C e^{-ct} \| \partial_x^k \Gamma_0 \|_{L^2}
\\
\leq C (1 + t)^{-\frac{n}{2}(\frac{1}{p} - \frac{1}{2}) - \frac{k}{2}} E_0.
\]

\[
(77)
\]

We obtain from (44) with $j = 0, l = 0$

\[
K_2 \leq C (1 + t)^{-\frac{n}{2}(\frac{1}{p} - \frac{1}{2}) - \frac{k}{2}} \| E_0 - E_0^T \|_{L^p} + C e^{-ct} \| \partial_x^k (E_0 - E_0^T) \|_{L^2}
\\
\leq C (1 + t)^{-\frac{n}{2}(\frac{1}{p} - \frac{1}{2}) - \frac{k}{2}} E_0.
\]

\[
(78)
\]
We also write K_3 into two parts and writing $K_3 = K_{31} + K_{32}$. We estimate the term K_{31} by using (43) with $j = 0, l = 0, (59), (71), (72)$ and $p \in [1, \frac{2n}{n+2})$

\[
K_{31} \leq C \int_0^t (1 + t - \tau)^{-\frac{3}{2}(\frac{1}{p} - \frac{1}{2}) - \frac{k+1}{2}} \|U|^2(\tau)\|_{L^p} d\tau \\
+ C \int_0^t (1 + t - \tau)^{-\frac{3}{2}(\frac{1}{p} - \frac{1}{2}) - \frac{k+1}{2}} \|U\nabla U(\tau)\|_{L^p} d\tau \\
+ C \int_0^t e^{-c(t-\tau)} \|\partial_x^k [U]^2(\tau)\|_{L^2} d\tau + C \int_0^t e^{-c(t-\tau)} \|\partial_x^k (U\nabla U)(\tau))\|_{L^2} d\tau \\
\leq CX^2(t) \int_0^t (1 + t - \tau)^{-\frac{3}{2}(\frac{1}{p} - \frac{1}{2}) - \frac{k+1}{2}} (1 + \tau)^{-(n(\frac{1}{p} - \frac{1}{2}) - \frac{1}{2} - \frac{(n-1)(p-1)}{2p})} d\tau \\
+ CX^2(t) \int_0^t e^{-c(t-\tau)} (1 + \tau)^{-(n(\frac{1}{p} - \frac{1}{2}) - \frac{1}{2} - \frac{(n-1)(p-1)}{2p})} d\tau \\
+ CX^2(t) \int_0^t e^{-c(t-\tau)} (1 + \tau)^{-(\frac{1}{p} - \frac{1}{2}) - \frac{1}{2}} d\tau \\
\leq CX^2(t)(1 + t)^{-\frac{3}{2}(\frac{1}{p} - \frac{1}{2}) - \frac{n+1}{2}} \quad (79)
\]

By applying (43) and (59), (71), (72) to the term K_{32}, we arrive at

\[
K_{32} \leq C \int_0^t (1 + t - \tau)^{-\frac{3}{2}} \|\partial_x^k [U]^2(\tau)\|_{L^2} d\tau \\
+ C \int_0^t (1 + t - \tau)^{-\frac{3}{2}(\frac{1}{p} - \frac{1}{2}) - \frac{k+1}{2}} \|U\nabla U(\tau)\|_{L^p} d\tau \\
+ C \int_0^t e^{-c(t-\tau)} \|\partial_x^k [U]^2(\tau)\|_{L^2} d\tau + C \int_0^t e^{-c(t-\tau)} \|\partial_x^k (U\nabla U)(\tau))\|_{L^2} d\tau \\
\leq CX^2(t) \int_0^t (1 + t - \tau)^{-\frac{3}{2}} (1 + \tau)^{-(n(\frac{1}{p} - \frac{1}{2}) - \frac{n+1}{2})} d\tau \\
+ CX^2(t) \int_0^t (1 + t - \tau)^{-\frac{3}{2}(\frac{1}{p} - \frac{1}{2}) - \frac{k+1}{2}} (1 + \tau)^{-(n(\frac{1}{p} - \frac{1}{2}) - \frac{1}{2} - \frac{(n-1)(p-1)}{2p})} d\tau \\
+ CX^2(t) \int_0^t e^{-c(t-\tau)} (1 + \tau)^{-(n(\frac{1}{p} - \frac{1}{2}) - \frac{1}{2} - \frac{(n-1)(p-1)}{2p})} d\tau \\
+ CX^2(t) \int_0^t e^{-c(t-\tau)} (1 + \tau)^{-(\frac{1}{p} - \frac{1}{2}) - \frac{1}{2}} d\tau \\
\leq CX^2(t)(1 + t)^{-\frac{3}{2}(\frac{1}{p} - \frac{1}{2}) - \frac{n+1}{2}} \quad (80)
\]

In the same way, we write K_4 into two parts and writing $K_4 = K_{41} + K_{42}$. We estimate the term K_{41} by using (44) with $j = 0, l = 0, (59), (71), (72)$ and
\[p \in [1, \frac{2n}{n+2}) \]

\[K_{41} \leq C \int_{\frac{t}{2}}^{t} (1 + t - \tau)^{-\frac{2}{n}(\frac{1}{p} - \frac{1}{2}) - \frac{1}{2} + \frac{1}{p} + \frac{1}{2}} \|U\|^2(\tau)\|_{L^p} d\tau + C \int_{\frac{t}{2}}^{t} (1 + t - \tau)^{-\frac{2}{n}(\frac{1}{p} - \frac{1}{2}) - \frac{1}{2} + \frac{1}{p} + \frac{1}{2}} \|U\|^2(\tau)\|_{L^p} d\tau
\]

By applying (44) with \(p = 2, j = 0, l = 0 \) and (59), (71), (72) to the term \(K_{42} \), we arrive at

\[K_{42} \leq C \int_{\frac{t}{2}}^{t} (1 + t - \tau)^{-\frac{1}{2}(1 + \tau) - \frac{n}{2} + \frac{1}{2}} \|\partial_x^k U\|^2(\tau)\|_{L^2} d\tau
\]

\[+ C \int_{\frac{t}{2}}^{t} (1 + t - \tau)^{-\frac{1}{2}(1 + \tau) - \frac{n}{2} + \frac{1}{2}} \|U\|_{L^p} d\tau + C \int_{\frac{t}{2}}^{t} e^{-c(t-\tau)} \|\partial_x^k (U \nabla U)\|_{L^2} d\tau + C \int_{\frac{t}{2}}^{t} e^{-c(t-\tau)} \|\partial_x^k (U \nabla U)\|_{L^2} d\tau
\]

\[\leq C X^2(t) \int_{\frac{t}{2}}^{t} (1 + t - \tau)^{-\frac{1}{2}(1 + \tau) - \frac{n}{2} + \frac{1}{2}} d\tau
\]

\[+ C X^2(t) \int_{\frac{t}{2}}^{t} e^{-c(t-\tau)} (1 + \tau)^{-\frac{n}{2} - \frac{1}{2}} d\tau
\]

\[+ C X^2(t) \int_{\frac{t}{2}}^{t} e^{-c(t-\tau)} (1 + \tau)^{-\frac{n}{2} - \frac{1}{2}} d\tau
\]

\[\leq C X^2(t) (1 + t)^{-\frac{1}{2}(1 + \tau) - \frac{n}{2} + \frac{1}{2}}. \]
In (54), we replace k by $l(t < \frac{n-1}{2})$, it gives

\[
\|\partial_x^l \sigma(t)\|_{L^2} \leq \|\partial_x^l \mathcal{G}_1(t) \ast \sigma_0\|_{L^2} + \|\partial_x^l \mathcal{G}_2(t) \ast \Omega_0\|_{L^2} \\
+ \int_0^t \|\partial_x^l \mathcal{G}_3(t-\tau) \ast \Lambda^{-1} \nabla \cdot (f - \nabla \cdot (\sigma E))(\tau)\|_{L^2} d\tau
\]

(83)

\[
=:L_1 + L_2 + L_3.
\]

For the term L_1, thanks to (37) with $j = 0$, $l = 0$, we have

\[
L_1 \leq C(1 + t)^{-\frac{3}{2}(\frac{1}{p} - \frac{1}{2}) - \frac{n-2}{2}} \|\mathcal{G}_1\|_{L^p} + C e^{-ct} \|\partial_x \mathcal{G}_1(\rho_0 - x_1)\|_{L^2} \\
\leq C(1 + t)^{-\frac{3}{2}(\frac{1}{p} - \frac{1}{2}) - \frac{n-2}{2}} E_0.
\]

(84)

By exploiting (38) with $j = 0$, $l = 1$, it yields

\[
L_2 \leq C(1 + t)^{-\frac{3}{2}(\frac{1}{p} - \frac{1}{2}) - \frac{n-2}{2}} \|\mathcal{G}_2\|_{L^p} + C e^{-ct} \|\partial_x \mathcal{G}_2(\Omega_0)\|_{L^2} \leq C(1 + t)^{-\frac{3}{2}(\frac{1}{p} - \frac{1}{2}) - \frac{n-2}{2}} E_0.
\]

(85)

As before, dividing L into two parts and writing $L_3 = L_{31} + L_{32}$. By (38) with $j = 0$, $l = 0$ and noting $p \in [1, \frac{2n}{n+2}]$, it deduces that

\[
L_{31} \leq C \int_0^t (1 + t - \tau)^{-\frac{3}{2}(\frac{1}{p} - \frac{1}{2}) - \frac{n-2}{2}} \|U(\tau)\|_{L^p} d\tau \\
+ C \int_0^t e^{-c(t-\tau)} (\|\partial_x^l U(\tau)\|_{L^2} + \|\partial_x^{l+1} U(\tau)\|_{L^2}) d\tau \\
\leq C X^2(t) \int_0^t (1 + t - \tau)^{-\frac{3}{2}(\frac{1}{p} - \frac{1}{2}) - \frac{n-2}{2}} (1 + \tau)^{-n(\frac{1}{p} - \frac{1}{2}) - \frac{n-1}{4}} d\tau \\
+ C X^2(t) \int_0^t e^{-c(t-\tau)} (1 + \tau)^{-n(\frac{1}{p} - \frac{1}{2}) - \frac{n-1}{4}} d\tau \\
+ C X^2(t) \int_0^t e^{-c(t-\tau)} (1 + \tau)^{-n(\frac{1}{p} - \frac{1}{2}) - \frac{n-1}{4}} d\tau \\
\leq C X^2(t)(1 + t)^{-\frac{3}{2}(\frac{1}{p} - \frac{1}{2}) - \frac{n-2}{2}},
\]

where we have used

\[
\|U^2(\tau)\|_{L^p} \leq C \|U(\tau)\|_{L^p}^{\frac{2p-1}{p-1}} \|U(\tau)\|_{L^2}^{\frac{p-1}{p-1}} \\
\leq C X^2(t)(1 + \tau)^{-n(\frac{1}{p} - \frac{1}{2}) - \frac{n-1}{4}}(p-1),
\]

\[
\|\partial_x U^2(\tau)\|_{L^2} \leq C \|U(\tau)\|_{L^p} \|\partial_x U(\tau)\|_{L^2} \leq C X^2(t)(1 + \tau)^{-n(\frac{1}{p} - \frac{1}{2}) - \frac{n-1}{4}},
\]

\[
\|\partial_x^{l+1} U^2(\tau)\|_{L^2} \leq C \|U(\tau)\|_{L^p} \|\partial_x^{l+1} U(\tau)\|_{L^2} \leq C X^2(t)(1 + \tau)^{-n(\frac{1}{p} - \frac{1}{2}) - \frac{n-1}{4}}.
\]

(87)

Noting that $\nu + 1 \leq s - 2$, theses estimates may be derived from Lemma 4.1 and (57), (52).
In what follows, we estimate L_{32}. (38) with $p = 2$, $j = l$, $l = 0$ and (87) give
\[
L_{32} \leq C \int_{\frac{1}{2}}^{t} (1 + t - \tau)^{-1} \| \partial_x^2 \| \mathcal{U}^2(\tau) \|_{L^2} d\tau \\
+ C \int_{\frac{1}{2}}^{t} e^{-c(t - \tau)} \left(\| \partial_x^1 \| \mathcal{U}^2(\tau) \|_{L^2} + \| \partial_x^2 \| \mathcal{U}^2(\tau) \|_{L^2} \right) d\tau \\
\leq CX^2(t) \int_{\frac{1}{2}}^{t} (1 + t - \tau)^{-1} (1 + \tau)^{-n(\frac{1}{2} - \frac{1}{2} - \frac{n}{2} - \frac{1}{2} - \frac{n}{2})} d\tau \\
+ CX^2(t) \int_{\frac{1}{2}}^{t} e^{-c(t - \tau)} (1 + \tau)^{-n(\frac{1}{2} - \frac{1}{2} - \frac{n}{2} - \frac{1}{2} - \frac{n}{2})} d\tau \\
+ CX^2(t) \int_{\frac{1}{2}}^{t} e^{-c(t - \tau)} (1 + \tau)^{-n(\frac{1}{2} - \frac{1}{2} - \frac{n}{2} - \frac{1}{2} - \frac{n}{2})} d\tau \\
\leq CX^2(t) (1 + t)^{-\frac{n}{2} (\frac{1}{2} - \frac{1}{2} - \frac{n}{2} - \frac{1}{2} - \frac{n}{2})}.
\]
Replacing k by $i \leq \frac{n-1}{2}$ in (62), we have
\[
\| \partial_x^2 \mathcal{O}(t) \|_{L^2} \leq \| \partial_x^2 \mathcal{G}_1(t) * \mathcal{G}_0 \|_{L^2} + \| \partial_x^2 \mathcal{G}_2(t) * m_0 \|_{L^2} \\
+ \int_{0}^{t} \| \partial_x^2 \mathcal{G}_2(t - \tau) * \Lambda^{-1} \nabla \cdot (f - \nabla \cdot (\sigma E))(\tau) \|_{L^2} d\tau \\
= M_1 + M_2 + M_3.
\]
We apply (39) with $j = 0$, $l = 1$ to M_1, it yields
\[
M_1 \leq C(1 + t)^{-\frac{n}{2} (\frac{1}{2} - \frac{1}{2} - \frac{n}{2} - \frac{1}{2} - \frac{n}{2})} \| \rho_0 - x_1 \|_{L^p} + C e^{-c t} \| \partial_x^2 \mathcal{O}_1(t) \|_{L^2} \\
\leq C(1 + t)^{-\frac{n}{2} (\frac{1}{2} - \frac{1}{2} - \frac{n}{2} - \frac{1}{2} - \frac{n}{2})} E_0.
\]
By using (40) with $j = 0$, $l = 0$ to M_2, we deduce that
\[
M_2 \leq C(1 + t)^{-\frac{n}{2} (\frac{1}{2} - \frac{1}{2} - \frac{n}{2} - \frac{1}{2} - \frac{n}{2})} \| \mathcal{O}_0 \|_{L^p} + C e^{-c t} \| \partial_x^2 \mathcal{O}_0 \|_{L^2} \leq C(1 + t)^{-\frac{n}{2} (\frac{1}{2} - \frac{1}{2} - \frac{n}{2} - \frac{1}{2} - \frac{n}{2})} E_0.
\]
We write M_3 as $M_3 = M_{31} + M_{32}$. From (40) with $j = 0$, $l = 0$ and $p \in [1, \frac{2n}{n+2})$, we have
\[
M_{31} \leq C \int_{0}^{\frac{1}{2}} (1 + t - \tau)^{-\frac{n}{2} (\frac{1}{2} - \frac{1}{2} - \frac{n}{2} - \frac{1}{2} - \frac{n}{2})} \| \mathcal{U}^2(\tau) \|_{L^2} d\tau \\
+ C \int_{0}^{\frac{1}{2}} e^{-c(t - \tau)} \left(\| \partial_x^1 \mathcal{U}^2(\tau) \|_{L^2} + \| \partial_x^2 \mathcal{U}^2(\tau) \|_{L^2} \right) d\tau \\
\leq CX^2(t) \int_{0}^{\frac{1}{2}} (1 + t - \tau)^{-\frac{n}{2} (\frac{1}{2} - \frac{1}{2} - \frac{n}{2} - \frac{1}{2} - \frac{n}{2})} (1 + \tau)^{-n(\frac{1}{2} - \frac{1}{2} - \frac{n}{2} - \frac{1}{2} - \frac{n}{2})} d\tau \\
+ CX^2(t) \int_{0}^{\frac{1}{2}} e^{-c(t - \tau)} (1 + \tau)^{-n(\frac{1}{2} - \frac{1}{2} - \frac{n}{2} - \frac{1}{2} - \frac{n}{2})} d\tau \\
+ CX^2(t) \int_{0}^{\frac{1}{2}} e^{-c(t - \tau)} (1 + \tau)^{-\frac{n}{2} (\frac{1}{2} - \frac{1}{2} - \frac{n}{2} - \frac{1}{2} - \frac{n}{2})} d\tau \\
\leq CX^2(t) (1 + t)^{-\frac{n}{2} (\frac{1}{2} - \frac{1}{2} - \frac{n}{2} - \frac{1}{2} - \frac{n}{2})}.
\]
where we have used the first and third inequalities in 87 and
\[
\| \partial_x^2 \mathcal{U}^2(\tau) \|_{L^2} \leq C \| \mathcal{U}(\tau) \|_{L^\infty} \| \partial_x^2 \mathcal{U}(\tau) \|_{L^2} \leq CX^2(t) (1 + \tau)^{-\frac{n}{2} (\frac{1}{2} - \frac{1}{2} - \frac{n}{2} - \frac{1}{2} - \frac{n}{2})}.
\]
For the term M_{32}, we apply (40) with $p = 2, j = \iota, l = 0$ and (87), (93). This yields

$$M_{32} \leq C \int_t^{t_2} (1 + t - \tau)^{-\frac{1}{2}} \| \partial_x^l |U|^2(\tau) \|_{L^2} d\tau$$

$$+ C \int_t^{t_2} e^{-c(t-\tau)}(\| \partial_x^{l+1} |U|^2(\tau) \|_{L^2} + \| \partial_x^{l+2} |U|^2(\tau) \|_{L^2}) d\tau$$

$$\leq C X^2(t) \int_t^{t_2} (1 + t - \tau)^{-\frac{1}{2}} (1 + \tau)^{-n(\frac{1}{p} - \frac{1}{2}) - \frac{n+1}{4} - \frac{\iota}{2}} d\tau$$

$$+ C X^2(t) \int_t^{t_2} e^{-c(t-\tau)} (1 + \tau)^{-n(\frac{1}{p} - \frac{1}{2}) - \frac{n+1}{4} - \frac{\iota}{2}} d\tau$$

$$+ C X^2(t) \int_t^{t_2} e^{-c(t-\tau)} (1 + \tau)^{-\frac{1}{2}(\frac{1}{p} - \frac{1}{2}) - \frac{n+1}{4} - \frac{\iota}{2}} d\tau$$

$$\leq C X^2(t) (1 + t)^{-\frac{n}{2}(\frac{1}{p} - \frac{1}{2}) - \frac{\iota}{2}}. \quad (94)$$

We apply $\partial_x^l (t \leq \frac{n-1}{2})$ to the third equality in (46) and take the L^2 norm, it gives

$$\| \partial_x^l \Gamma(t) \|_{L^2} \leq \| \partial_x^l \mathcal{G}_{33}(t) * \Gamma_0 \|_{L^2} + \| \partial_x^l \mathcal{G}_{34}(t) * (E_0 - E_0^T) \|_{L^2}$$

$$+ \int_0^t \| \partial_x^l \mathcal{G}_{33}(t - \tau) * \mathcal{L} + \nabla \times f \|_{L^2} d\tau$$

$$+ \int_0^t \| \partial_x^l \mathcal{G}_{34}(t - \tau) * (g - g^T) \|_{L^2} d\tau +$$

$$= : N_1 + N_2 + N_3 + N_4. \quad (95)$$

Making use of (41) with $j = 0, l = 0$ to K_1, it yields

$$N_1 \leq C (1 + t)^{-\frac{n}{2}(\frac{1}{p} - \frac{1}{2}) - \frac{\iota}{2}} E_0. \quad (96)$$

We obtain from (42) with $j = 0, l = 1$

$$N_2 \leq C (1 + t)^{-\frac{n}{2}(\frac{1}{p} - \frac{1}{2}) - \frac{\iota}{2}} E_0. \quad (97)$$
We also write \(N_3 = N_{31} + N_{32} \). We estimate the term \(N_{31} \) by using (41) with \(j = 0, l = 0, (71), (72), (87), (93) \) and \(p \in \left[1, \frac{2n}{n+2} \right) \):

\[
N_{31} \leq C \int_0^\frac{t}{2} (1 + t - \tau)^{-\frac{n}{2} \left(\frac{1}{p} - \frac{1}{4} \right)} \frac{1}{\| U^2(\tau) \|_{L^p}} d\tau
\]

\[
+ C \int_0^\frac{t}{2} (1 + t - \tau)^{-\frac{n}{2} \left(\frac{1}{p} - \frac{1}{4} \right)} \| U \nabla U(\tau) \|_{L^p} d\tau
\]

\[
+ C \int_0^\frac{t}{2} e^{-c(t-\tau)} \left(\| \partial_x^{p+1} U^2(\tau) \|_{L^2} + \| \partial_x^{p+2} U^2(\tau) \|_{L^2} \right) d\tau
\]

\[
+ C \int_0^\frac{t}{2} e^{-c(t-\tau)} \| \partial_x(U \nabla U)(\tau) \|_{L^2} d\tau
\]

\[
\leq C X^2(t) \int_0^\frac{t}{2} (1 + t - \tau)^{-\frac{n}{2} \left(\frac{1}{p} - \frac{1}{4} \right)} \frac{1}{\| U \nabla U(\tau) \|_{L^p}} d\tau
\]

\[
+ C X^2(t) \int_0^\frac{t}{2} e^{-c(t-\tau)} \left(\| \partial_x^{p+1} U^2(\tau) \|_{L^2} + \| \partial_x^{p+2} U^2(\tau) \|_{L^2} \right) d\tau
\]

\[
+ C X^2(t) \int_0^\frac{t}{2} e^{-c(t-\tau)} \| \partial_x(U \nabla U)(\tau) \|_{L^2} d\tau
\]

\[
\leq C X^2(t) \int_0^\frac{t}{2} (1 + t - \tau)^{-\frac{n}{2} \left(\frac{1}{p} - \frac{1}{4} \right) - \frac{1}{2}} d\tau
\] \(\text{(98)} \)

By applying (41) and (71), (72), (87), (93) to the term \(J_{32} \), we arrive at

\[
N_{32} \leq C \int_\frac{t}{2}^t (1 + t - \tau)^{-\frac{n}{2} \left(\frac{1}{p} - \frac{1}{4} \right) - \frac{1}{2}} \| \partial_x U^2(\tau) \|_{L^p} d\tau
\]

\[
+ C \int_\frac{t}{2}^t (1 + t - \tau)^{-\frac{n}{2} \left(\frac{1}{p} - \frac{1}{4} \right) - \frac{1}{2}} \| U \nabla U(\tau) \|_{L^p} d\tau
\]

\[
+ C \int_\frac{t}{2}^t e^{-c(t-\tau)} \left(\| \partial_x^{p+1} U^2(\tau) \|_{L^2} + \| \partial_x^{p+2} U^2(\tau) \|_{L^2} \right) d\tau
\]

\[
+ C \int_\frac{t}{2}^t e^{-c(t-\tau)} \| \partial_x(U \nabla U)(\tau) \|_{L^2} d\tau
\]

\[
\leq C X^2(t) \int_\frac{t}{2}^t (1 + t - \tau)^{-\frac{n}{2} \left(\frac{1}{p} - \frac{1}{4} \right) - \frac{1}{2}} d\tau
\] \(\text{(99)} \)
Similarly, we divide N_4 into two parts and writing $N_4 = N_{41} + N_{42}$. We estimate the term N_{41} by using (42) with $j = 0$, $l = 0$, (71), (72), (87) and $p \in [1, \frac{2n}{n+2})$

\[
N_{41} \leq C \int_0^{\frac{t}{2}} (1 + t - \tau)^{-\frac{n}{2} \left(\frac{1}{p} - \frac{1}{2} \right)} \left\| |U|^2(\tau) \right\|_{L^p} d\tau
+ C \int_0^{\frac{t}{2}} (1 + t - \tau)^{-\frac{n}{2} \left(\frac{1}{p} - \frac{1}{2} \right)} \left\| U \nabla U(\tau) \right\|_{L^p} d\tau
+ C \int_0^{\frac{t}{2}} e^{-c(t-\tau)} \left\| \partial_x^2 |U|^2(\tau) \right\|_{L^2} d\tau + C \int_0^{\frac{t}{2}} e^{-c(t-\tau)} \left\| \partial_x^2 (U \nabla U)(\tau) \right\|_{L^2} d\tau
\leq CX^2(t) \int_0^{\frac{t}{2}} (1 + t - \tau)^{-\frac{n}{2} \left(\frac{1}{p} - \frac{1}{2} \right)} \left(1 + \tau \right)^{-n(\frac{1}{p} - \frac{1}{2}) - \frac{2}{p} - \frac{n-1}{2}} d\tau
+ CX^2(t) \int_0^{\frac{t}{2}} e^{-c(t-\tau)} (1 + \tau)^{-n(\frac{1}{p} - \frac{1}{2}) - \frac{2}{p} - \frac{n-1}{2} d\tau
+ CX^2(t) \int_0^{\frac{t}{2}} e^{-c(t-\tau)} (1 + \tau)^{-\frac{n}{2} \left(\frac{1}{p} - \frac{1}{2} \right)} d\tau
\leq CX^2(t)(1 + t)^{-\frac{n}{2} \left(\frac{1}{p} - \frac{1}{2} \right)}
\]

By applying (42), (71), (72), (87) to the term K_{32}, we arrive at

\[
N_{42} \leq C \int_0^{\frac{t}{2}} (1 + t - \tau)^{-\frac{n}{2} \left(\frac{1}{p} - \frac{1}{2} \right)} \left\| \partial_x^2 |U|^2(\tau) \right\|_{L^2} d\tau
+ C \int_0^{\frac{t}{2}} (1 + t - \tau)^{-\frac{n}{2} \left(\frac{1}{p} - \frac{1}{2} \right)} \left\| U \nabla U(\tau) \right\|_{L^p} d\tau
+ C \int_0^{\frac{t}{2}} e^{-c(t-\tau)} \left\| \partial_x^2 |U|^2(\tau) \right\|_{L^2} d\tau + C \int_0^{\frac{t}{2}} e^{-c(t-\tau)} \left\| \partial_x^2 (U \nabla U)(\tau) \right\|_{L^2} d\tau
\leq CX^2(t) \int_0^{\frac{t}{2}} (1 + t - \tau)^{-\frac{n}{2} \left(\frac{1}{p} - \frac{1}{2} \right)} \left(1 + \tau \right)^{-n(\frac{1}{p} - \frac{1}{2}) - \frac{2}{p} - \frac{n-1}{2}} d\tau
+ CX^2(t) \int_0^{\frac{t}{2}} e^{-c(t-\tau)} (1 + \tau)^{-n(\frac{1}{p} - \frac{1}{2}) - \frac{2}{p} - \frac{n-1}{2} d\tau
+ CX^2(t) \int_0^{\frac{t}{2}} e^{-c(t-\tau)} (1 + \tau)^{-\frac{n}{2} \left(\frac{1}{p} - \frac{1}{2} \right)} d\tau
\leq CX^2(t)(1 + t)^{-\frac{n}{2} \left(\frac{1}{p} - \frac{1}{2} \right)}
\]
We apply $\partial_x^k (t \leq \frac{n-1}{2})$ to the last equality in (46) and take the L^2 norm, it gives

$$\|\partial_x^k (E - E^T) (t)\|_{L^2} \leq \|\partial_x^k \mathcal{G}_{43} (t) * \Gamma_0 \|_{L^2} + \|\partial_x^k \mathcal{G}_{44} (t) * (E_0 - E_0^T)\|_{L^2}$$

$$+ \int_0^t \|\partial_x^k \mathcal{G}_{43} (t - \tau) * \Lambda^{-1} (\mathcal{L} + \nabla \times f) (\tau)\|_{L^2} d\tau$$

$$+ \int_0^t \|\partial_x^k \mathcal{G}_{44} (t - \tau) * (g - g^T) (\tau)\|_{L^2} d\tau +$$

$$=: O_1 + O_2 + O_3 + O_4.$$ \(\tag{102}\)

Making use of (43) with $j = 0, l = 1$ to O_1, it yields

$$O_1 \leq C (1 + t)^{-\frac{\alpha}{2} - \frac{1}{2}} E_0. \quad \text{(103)}$$

We obtain from (44) with $j = 0, l = 0$

$$O_2 \leq C (1 + t)^{-\frac{\alpha}{2} - \frac{1}{2}} E_0. \quad \text{(104)}$$

As before, O_3 may be written as $O_3 = O_{31} + O_{32}$. We estimate the term O_{31} by using (43) with $j = 0, l = 0, (71), (72), (87)$ and $p \in [1, \frac{2n}{n+2}]$

$$O_{31} \leq C \int_0^t \frac{1}{2} (1 + t - \tau)^{-\frac{\alpha}{2} - \frac{1}{2} - \frac{n+1}{p}} \|U \|_{L^p} \| \mathcal{U} \|_{L^p} d\tau$$

$$+ C \int_0^t \frac{1}{2} (1 + t - \tau)^{-\frac{\alpha}{2} - \frac{1}{2} - \frac{n+1}{p}} \| U \nabla U \|_{L^p} d\tau$$

$$+ C \int_0^t e^{-c (t - \tau)} (\| \partial_x^k U \|_{L^2} + \| \partial_x^{k+1} U \|_{L^2}) d\tau$$

$$+ C \int_0^t e^{-c (t - \tau)} \| \partial_x^k (U \nabla U) \|_{L^2} d\tau$$

$$\leq C X^2 (t) \int_0^t \frac{1}{2} (1 + t - \tau)^{-\frac{\alpha}{2} - \frac{1}{2} - \frac{n+1}{p}} (1 + \tau)^{-n \left(\frac{1}{2} - \frac{1}{p}\right)} d\tau$$

$$+ C X^2 (t) \int_0^t \frac{1}{2} (1 + t - \tau)^{-\frac{\alpha}{2} - \frac{1}{2} - \frac{n+1}{p}} (1 + \tau)^{-n \left(\frac{1}{2} - \frac{1}{p}\right) - \frac{n+1}{2p}} d\tau$$

$$+ C X^2 (t) \int_0^t e^{-c (t - \tau)} \left\{ (1 + \tau)^{-n \left(\frac{1}{2} - \frac{1}{p}\right) - \frac{n+1}{2p}} + (1 + \tau)^{-n \left(\frac{1}{2} - \frac{1}{p}\right) - \frac{n+1}{2p} - \frac{1}{p}} \right\} d\tau$$

$$+ C X^2 (t) \int_0^t e^{-c (t - \tau)} (1 + \tau)^{-\frac{\alpha}{2} - \frac{1}{2} - \frac{n+1}{p}} d\tau$$

$$\leq C X^2 (t) (1 + t)^{-\frac{\alpha}{2} - \frac{1}{2} - \frac{n+1}{p}} \quad \text{(105)}$$
By applying (43), (71), (72), (87) to the term O_{32}, we arrive at

$$O_{32} \leq C \int_{\frac{t}{2}}^{t} (1 + t - \tau)^{-\frac{3}{4}} \| \partial_x^4 |U|^2(\tau) \|_{L^2} d\tau$$

$$+ C \int_{\frac{t}{2}}^{t} (1 + t - \tau)^{-\frac{3}{4} (\frac{1}{p} - \frac{1}{2})} \| U \nabla U(\tau) \|_{L^p} d\tau$$

$$+ C \int_{\frac{t}{2}}^{t} e^{-c(t-\tau)} \left(\| \partial_x^4 |U|^2(\tau) \|_{L^2} + \| \partial_x^{l+1} |U|^2(\tau) \|_{L^2} \right) d\tau$$

$$+ C \int_{\frac{t}{2}}^{t} e^{-c(t-\tau)} \| \partial_x^3 (U \nabla U)(\tau) \|_{L^2} d\tau$$

$$\leq C X^2(t) \int_{\frac{t}{2}}^{t} (1 + t - \tau)^{-\frac{3}{4} (1 + \tau)^{-n(\frac{1}{p} - \frac{1}{2}) - \frac{n-1}{2p}} - \frac{n-1}{2} d\tau$$

$$+ C X^2(t) \int_{\frac{t}{2}}^{t} e^{-c(t-\tau)} \left(\| \partial_x^{l+1} |U|^2(\tau) \|_{L^2} + \| \partial_x^{l+1} (U \nabla U)(\tau) \|_{L^2} \right) d\tau$$

$$\leq C X^2(t)(1 + t)^{-\frac{n}{2}(\frac{1}{p} - \frac{1}{2}) - \frac{3}{4}}.$$

(106)

Likewise, we also write $O_{41} = O_{411} + O_{412}$. We estimate the term O_{41} by using (44) with $j = 0$, $l = 0$, (71), (72), (87) and $p \in [1, \frac{2n}{n+2})$

$$O_{41} \leq C \int_{0}^{\frac{t}{2}} (1 + t - \tau)^{-\frac{3}{4} (\frac{1}{p} - \frac{1}{2})} \| |U|^2(\tau) \|_{L^p} d\tau$$

$$+ C \int_{0}^{\frac{t}{2}} (1 + t - \tau)^{-\frac{3}{4} (\frac{1}{p} - \frac{1}{2})} \| U \nabla U(\tau) \|_{L^p} d\tau$$

$$+ C \int_{0}^{\frac{t}{2}} e^{-c(t-\tau)} \| \partial_x^{l+1} |U|^2(\tau) \|_{L^2} d\tau + C \int_{0}^{\frac{t}{2}} e^{-c(t-\tau)} \| \partial_x^{l+1} (U \nabla U)(\tau) \|_{L^2} d\tau$$

$$\leq C X^2(t) \int_{0}^{\frac{t}{2}} (1 + t - \tau)^{-\frac{3}{4} (\frac{1}{p} - \frac{1}{2})} \| |U|^2(\tau) \|_{L^p} d\tau$$

$$+ C X^2(t) \int_{0}^{\frac{t}{2}} e^{-c(t-\tau)} \| \partial_x^{l+1} |U|^2(\tau) \|_{L^2} d\tau$$

$$+ C X^2(t) \int_{0}^{\frac{t}{2}} e^{-c(t-\tau)} \| \partial_x^{l+1} (U \nabla U)(\tau) \|_{L^2} d\tau$$

$$\leq C X^2(t)(1 + t)^{-\frac{n}{2}(\frac{1}{p} - \frac{1}{2}) - \frac{3}{4}}.$$

(107)
By applying (44) with $p = 2, j = 0, l = 0$ and (71), (72), (87) to the term O_{42}, we arrive at

$$O_{42} \leq C \int_{\tau}^{t}(1 + t - \tau)^{-\frac{1}{2}} \|\partial_x^k U\|^2(\tau)\|_{L^2}d\tau$$

$$+ C \int_{\tau}^{t}(1 + t - \tau)^{-\frac{1}{2}(\frac{1}{p} - \frac{1}{2}) - \frac{1}{2}}\|U\nabla U(\tau)\|_{L^p}d\tau$$

$$+ C \int_{\tau}^{t}e^{c(t-\tau)}\|\partial_x^k U|U|^2(\tau)\|_{L^2}d\tau + C \int_{\tau}^{t}e^{c(t-\tau)}\|\partial_x^k (U\nabla U)(\tau)\|_{L^2}d\tau$$

$$\leq CX^2(t) \int_{\tau}^{t}(1 + t - \tau)^{-\frac{1}{2}}(1 + \tau)^{-n(\frac{1}{p} - \frac{1}{2}) - \frac{n-1}{2}}\|\partial_x^k U\|^2(\tau)\|_{L^2}d\tau$$

$$+ CX^2(t) \int_{\tau}^{t}(1 + t - \tau)^{-\frac{1}{2}(\frac{1}{p} - \frac{1}{2}) - \frac{1}{2}}(1 + \tau)^{-n(\frac{1}{p} - \frac{1}{2}) - \frac{n-1}{2}}\|\partial_x^k (U\nabla U)(\tau)\|_{L^2}d\tau$$

$$+ CX^2(t) \int_{\tau}^{t}e^{c(t-\tau)(1 + \tau)^{-n(\frac{1}{p} - \frac{1}{2}) - \frac{n-1}{2}}}d\tau$$

$$+ CX^2(t) \int_{\tau}^{t}e^{c(t-\tau)}(1 + \tau)^{-\frac{1}{2}(\frac{1}{p} - \frac{1}{2}) - \frac{1}{2}}d\tau$$

$$\leq CX^2(t)(1 + t)^{-\frac{1}{2}(\frac{1}{p} - \frac{1}{2}) - \frac{1}{2}}. \quad (108)$$

Finally, we note

$$\|\partial_x^k \nabla \Phi(t)\|_{L^2} = \|\partial_x^{k-1} \Phi(t)\|_{L^2}. \quad (109)$$

On one hand, noting that

$$m = - \Lambda^{-1} \nabla \Omega + \Lambda^{-1} \nabla \Gamma,$$

then

$$\|\partial_x^k m(t)\|_{L^2} \leq \|\partial_x^k \Omega(t)\|_{L^2} + \|\partial_x^k \Gamma(t)\|_{L^2}. \quad (110)$$

We arrive at from (8)

$$\|\Lambda^{-1} \nabla \times E(t)\|_{L^2} \leq C \|\Lambda^{-1} (E \nabla E)(t)\|_{L^2} \leq C \|E \nabla E(t)\|_{L^2}$$

$$\leq C \|E(t)\|_{L^\infty} \|\nabla E(t)\|_{L^\frac{2p}{p+2}}$$

$$\leq CX^2(t)(1 + t)^{-\frac{1}{2}(\frac{1}{p} - \frac{1}{2})}. \quad (111)$$

It follows from (11) and (103)-(108) that

$$\|\Lambda^{-1} \nabla \cdot E(t)\|_{L^2} \leq C \|\Lambda^{-1} \nabla \cdot E(t)\|_{L^2} + C \|\sigma E(t)\|_{L^2} + \|\Lambda^{-2} \mathcal{L}\|_{L^2}$$

$$\leq CE_0 + CX^2(t)(1 + t)^{-\frac{1}{2}(\frac{1}{p} - \frac{1}{2})}.$$
integrating with respect to \(x \), using integration by parts, we have

\[
\frac{1}{2} \frac{d}{dt} (\| \sigma(t) \|^2_{L^2} + \| m(t) \|^2_{L^2} + \| E(t) \|^2_{L^2} + \| \nabla \Phi(t) \|^2_{L^2} + \mu_1 \| \nabla m \|^2_{L^2} + \mu_2 \| \nabla \cdot m \|^2_{L^2})
\]

\[
= \int_{\mathbb{R}^n} (f \cdot m + g \cdot E) dx.
\]

(112)

Thanks to integration by parts and (57), we arrive at

\[
\int_{\mathbb{R}^n} (f \cdot m + g \cdot E) dx \leq C(1 + t)^{-\frac{3}{2}(\frac{1}{p} - \frac{1}{2}) - \frac{n-1}{4}} X(t) \| \sigma \|, \ m, \ E, \ \nabla \Phi, \nabla m \|_{L^2}^2
\]

(113)

Substituting (113) into (112) yields

\[
\frac{1}{2} \frac{d}{dt} (\| \sigma(t) \|^2_{L^2} + \| m(t) \|^2_{L^2} + \| \nabla \Phi(t) \|^2_{L^2} + \mu_1 \| \nabla m \|^2_{L^2} + \mu_2 \| \nabla \cdot m \|^2_{L^2})
\]

\[
\leq C(1 + t)^{-\frac{3}{2}(\frac{1}{p} - \frac{1}{2}) - \frac{n-1}{4}} X(t) \| \sigma \|, \ m, \ E, \ \nabla \Phi, \nabla m \|_{L^2}^2.
\]

(114)

Similarly, we obtain

\[
\frac{1}{2} \frac{d}{dt} (\| \nabla^k \sigma(t) \|^2_{L^2} + \| \nabla^k m(t) \|^2_{L^2} + \| \nabla^{k+1} \Phi(t) \|^2_{L^2} + \mu_1 \| \nabla^{k+1} m \|^2_{L^2} + \mu_2 \| \nabla \cdot \nabla^{k} m \|^2_{L^2})
\]

\[
\leq C(1 + t)^{-\frac{3}{2}(\frac{1}{p} - \frac{1}{2}) - \frac{n-1}{4}} X(t) \| \nabla^k \sigma \|, \ \nabla^k m, \ \nabla^k E, \ \nabla^{k+1} \Phi, \nabla^{k+1} m \|^2_{L^2}
\]

(115)

for \(k = 0, \ldots, s \).

We claim that for any \(t \in [0, T] \), it holds

\[
X(t) \leq CE_0,
\]

(116)

provided \(E_0 \) is small enough.

Let

\[
Y(t) = \| \sigma(t) \|^2_{H^k} + \| m(t) \|^2_{H^k} + \| E(t) \|^2_{H^k} + \| \nabla \Phi(t) \|^2_{H^k}, \ k = 0, \cdots, s.
\]

(117)

From (115) - (117), we infer that

\[
\frac{d}{dt} Y(t) + \| \nabla m \|^2_{H^k} + \| \nabla \cdot m \|^2_{H^k} \leq C(1 + t)^{-\frac{3}{2}(\frac{1}{p} - \frac{1}{2}) - \frac{n-1}{4}} X(t) Y(t).
\]

Gronwall inequality gives

\[
Y(t) \leq (\| \sigma_0 \|^2_{H^k} + \| m_0 \|^2_{H^k} + \| E_0 \|^2_{H^k} + \| \nabla \Phi(0) \|^2_{H^k}) C^2 \int_0^t (1 + \tau)^{-\frac{3}{2}(\frac{1}{p} - \frac{1}{2}) - \frac{n-1}{4}} X(\tau) d\tau.
\]

(118)

Noting that \(\frac{3}{2}(\frac{1}{p} - \frac{1}{2}) + \frac{n-1}{4} > 1 \), then from (118) and the a priori assumption (116) we have

\[
Y(t) \leq CE_0.
\]

(119)

Combining (54)-(56), (60)-(70), (73)-(86) and (88)-(92), (94)-(111), (119), we arrive at

\[
X(t) \leq CE_0 + C X^2(t),
\]

(120)

from which we can deduce \(X(t) \leq CE_0 \), provided that \(E_0 \) is suitably small. Thus, we complete the proof of the claim (116). So, by the local existence and the closure of the a priori estimate, the global existence of smooth solution to the problem (2), (3) follows from the standard continuity argument. Meanwhile, we also prove the decay estimate (49) and (50). Therefore, Theorem 4.2 is proved.
5. Asymptotic behavior of solutions in odd space dimensions. The purpose of this section is to prove global existence and asymptotic decay of solutions to the initial value problem (2), (3) in even space dimensions. We state our result as follows:

Theorem 5.1. Let \(n \geq 4 \) be an even integer and \(s \geq \frac{n}{2} + 3 \). Let \(p \in [1, \frac{2n}{n+2}) \) Suppose that \((\rho_0 - x_1, F_0 - I, m_0) \in L^p, (\partial x_1(\rho_0 - x_1), F_0 - I, m_0) \in H^s \) and put \(E_1 = \| (\rho_0 - x_1, F_0 - I, m_0) \|_{L^p} + \| (\partial x_1(\rho_0 - x_1), F_0 - I, m_0) \|_{H^s} \). Then there is a positive constant \(\delta_1 \) such that if \(E_1 \leq \delta_1 \), then the problem (2), (3) has a unique global solution \((\rho - 1, m, F - I, \nabla \Phi)\) with \((\rho - 1, m, F - I, \nabla \Phi) \in C^0([0, +\infty); H^s \times H^s \times H^s \times H^{s+1})\). For \(t \leq \frac{n+2}{2} \), the solution verifies the decay estimates

\[
\| \partial_x^j (\rho - 1)(t) \|_{L^2} \leq CE_1(1 + t)^{-\frac{n}{2}(\frac{1}{p} - \frac{1}{2}) - \frac{n+2}{2}}, \tag{121}
\]

\[
\| \partial_x^j (m, F - I, \nabla \Phi)(t) \|_{L^2} \leq CE_1(1 + t)^{-\frac{n}{2}(\frac{1}{p} - \frac{1}{2}) - \frac{n+2}{2}}. \tag{122}
\]

Moreover, for \(\frac{n}{2} \leq k \leq s - 2 \), we have

\[
\| \partial_x^k (\rho - 1, m, F - I, \nabla \Phi)(t) \|_{L^2} \leq CE_1(1 + t)^{-\frac{n}{2}(\frac{1}{p} - \frac{1}{2}) - \frac{n+2}{2}}. \tag{123}
\]

Remark 2. Under the same assumptions of Theorem 5.1, for \(2 \leq q \leq n \), by Gagliardo-Nirenberg inequality, \(L^q \) decay estimate

\[
\| (\rho - 1)(t) \|_{L^q} \leq CE_1(1 + t)^{-\frac{n}{2}(\frac{1}{p} - \frac{1}{2}) - \frac{n+2}{2}}, \tag{124}
\]

\[
\| m, F - I, \nabla \Phi(t) \|_{L^q} \leq CE_1(1 + t)^{-\frac{n}{2}(\frac{1}{p} - \frac{1}{2}) - \frac{n+2}{2}}. \tag{125}
\]

Proof. We may extend local solutions to global solutions and prove decay estimate of solutions to the problem (2), (3) by establishing the uniform a priori estimates. To do so, we define the following norm

\[
X(t) = \sum \sup \{ (1 + \tau)^{\frac{n+2}{2}\left(\frac{1}{p} - \frac{1}{2}\right) + \frac{n+2}{2}\| \partial_x^2 \sigma(\tau) \|_{L^2} + (1 + \tau)^{\frac{n+2}{2}\left(\frac{1}{p} - \frac{1}{2}\right) + \frac{n+2}{2}\| \partial_x^2 (m, E, \nabla \Phi)(\tau) \|_{L^2} + \sum \sup (1 + \tau)^{\frac{n+2}{2}\left(\frac{1}{p} - \frac{1}{2}\right) + \frac{n+2}{2}\| \partial_x^2(\sigma, m, E, \nabla \Phi)(\tau) \|_{L^2} + \sum \sup (1 + \tau)^{\frac{n+2}{2}\left(\frac{1}{p} - \frac{1}{2}\right) + \frac{n+2}{2}\| \partial_x^2(\sigma, m, E, \nabla \Phi)(\tau) \|_{L^2}.
\]

The proof of Theorem 5.1 is similar to the proof of Theorem 4.2, it only need replace (57) by the following Gagliardo-Nirenberg inequalities

\[
\| \sigma(\tau) \|_{L^\infty} \leq C \| \partial_x^{\frac{n+2}{2}} \sigma(\tau) \|_{L^2} + \| \partial_x^{\frac{n+2}{2}} \sigma(\tau) \|_{L^2} \leq CX(t)(1 + \tau)^{-\frac{n}{2}(\frac{1}{p} - \frac{1}{2}) - \frac{n+2}{2}}, \tag{126}
\]

\[
\| m(\tau) \|_{L^\infty} \leq C \| \partial_x^{\frac{n+2}{2}} m(\tau) \|_{L^2} + \| \partial_x^{\frac{n+2}{2}} m(\tau) \|_{L^2} \leq CX(t)(1 + \tau)^{-\frac{n}{2}(\frac{1}{p} - \frac{1}{2}) - \frac{n+2}{2}}, \tag{127}
\]

\[
\| E(\tau) \|_{L^\infty} \leq C \| \partial_x^{\frac{n+2}{2}} m(\tau) \|_{L^2} + \| \partial_x^{\frac{n+2}{2}} m(\tau) \|_{L^2} \leq CX(t)(1 + \tau)^{-\frac{n}{2}(\frac{1}{p} - \frac{1}{2}) - \frac{n+2}{2}}, \tag{128}
\]

\[
\| \nabla \Phi(\tau) \|_{L^\infty} \leq C \| \partial_x^{\frac{n+2}{2}} \nabla \Phi(\tau) \|_{L^2} + \| \partial_x^{\frac{n+2}{2}} \nabla \Phi(\tau) \|_{L^2} \leq CX(t)(1 + \tau)^{-\frac{n}{2}(\frac{1}{p} - \frac{1}{2}) - \frac{n+2}{2}}. \tag{129}
\]

We omit the details. The proof is completed. \(\square\)
Acknowledgments. Y. Wang was supported in part by the NNSF of China (Grant No.11101144) and Sponsored by Plan For Scientific Innovation Talent of Henan Province(Grant No. 154100510012).

REFERENCES

[1] Y. Chen and P. Zhang, The global existence of small solutions to the incompressible viscoelastic fluid system in 2 ane 3 space dimensions, Comm. Partial Differential Equations, 31 (2006), 1793–1810.
[2] X. Hu, Wellposedness of self-gravitating Hookean elastodynamics, preprint.
[3] X. Hu and D. Wang, Local strong solution to the compressible viscoelastic flow with large data, J. Differential Equations, 249 (2010), 1179–1198.
[4] X. Hu and D. Wang, Global existence for the multi-dimensional compressible viscoelastic fluids, J. Differential Equations, 250 (2011), 1200–1231.
[5] X. Hu and D. Wang, Strong solutions to the three-dimensional compressible viscoelastic fluids, J. Differential Equations, 252 (2012), 4027–4067.
[6] X. Hu and D. Wang, The initial-boundary value problem for the compressible viscoelastic flows, Discrete Contin. Dyn. Syst., 35 (2015), 917–934.
[7] X. Hu and C. Wu, Global existence and optimal decay rates for three-dimensional compressible viscoelastic flows, SIAM J. Math. Anal., 45 (2013), 2815–2833.
[8] X. Hu and F. Lin, Scaling limit for compressible viscoelastic fluids, Frontiers in Differential Geometry, Partial Differential Equations and Mathematical Physics, 243-269, World Sci. Publ., Hackensack, NJ, 2014.
[9] X. Hu and F. Lin, Global solutions of two-dimensional incompressible viscoelastic flows with discontinuous initial data, Comm. Pure Appl. Math., 69 (2016), 372–404.
[10] B. Han, Global strong solution for the density dependent incompressible viscoelastic fluids in the critical L^p framework, Nonlinear Anal., 132 (2016), 337–358.
[11] Z. Lei, C. Liu and Y. Zhou, Global existence for a 2D incompressible viscoelastic model with small strain, Commun. Math. Sci., 5 (2007), 595–616.
[12] Z. Lei, C. Liu and Y. Zhou, Global solutions of incompressible viscoelastic fluids, Arch. Ration. Mech. Anal., 188 (2008), 371–398.
[13] Z. Lei, On 2D viscoelasticity with small strain, Arch. Ration. Mech. Anal., 198 (2010), 13–37.
[14] Z. Lei, Rotation-strain decomposition for the incompressible viscoelasticity in two dimensions, Discrete Contin. Dyn. Syst., 34 (2014), 2801–2871.
[15] Z. Lei and F. Wang, Uniform bound of the highest energy for the three dimensional incompressible elastodynamics, Arch. Ration. Mech. Anal., 216 (2015), 593–622.
[16] Z. Lei, Global well-posedness of incompressible elastodynamics in two dimensions, Comm. Pure Appl. Math., DOI: 10.1002/cpa.21633.
[17] F. Lin, C. Liu and P. Zhang, On hydrodynamics of viscoelastic fluids, Comm. Pure Appl. Math., 58 (2005), 1437–1471.
[18] J. Qian and Z. Zhang, Global well-posedness for compressible viscoelastic fluids near equilibrium, Arch. Rational Mech. Anal., 198 (2010), 835–868.
[19] P. A. Markowich, C. A. Ringhofer and C. Schmeiser, Semiconductor Equations, Springer-Verlag, New York, 1990.
[20] Y.-Z. Wang, F. C. Liu and Y. Z. Zhang, Global existence and asymptotic of solutions for a semi-linear wave equation, J. Math. Anal. Appl., 385 (2012), 836–853.
[21] Y.-Z. Wang and K. Y. Wang, Long time behavior of solutions to the nonlinear pseudoparabolic equation, J. Math. Anal. Appl., 417 (2014), 272–292.
[22] Y.-Z. Wang and K. Y. Wang, Asymptotic behavior of classical solutions to the compressible Navier-Stokes-Poisson equations in three and higher dimensions, J. Differential Equations, 259 (2015), 25–47.
[23] Y.-Z. Wang and K. Y. Wang, Long time behavior of solutions to the compressible MHD system in multi-dimensions, J. Math. Anal. Appl., 429 (2015), 1033–1058.
[24] F. Xu, X. Zhang, Y. Wu and L. Liu, The optimal convergence rates for the multi-dimensional compressible viscoelastic flows, Z. Angew. Math. Mech., 96 (2016), 1490–1504.
[27] T. Zhang and D. Fang, Global existence of strong solution for equations related to the incompressible viscoelastic fluids in the critical L^p framework, SIAM J. Math. Anal., 44 (2012), 2266–2288.

Received February 2017; revised April 2017.

E-mail address: yinxia117@126.com
E-mail address: hengjunzhao@163.com