Valid gene expression normalization by RT-qPCR in studies on hPDL fibroblasts with focus on orthodontic tooth movement and periodontitis

Christian Kirschneck¹, Sarah Batschkus², Peter Proff¹, Josef Köstler³, Gerrit Spanier⁴, and Agnes Schröder¹

¹Department of Orthodontics, University Medical Centre of Regensburg, Regensburg, D-93053, Germany
²Department of Orthodontics, University of Goettingen, Goettingen, D-37075, Germany
³Institute of Microbiology and Hygiene, University Medical Centre of Regensburg, Regensburg, D-93053, Germany
⁴Department of Cranial and Maxillo-Facial Surgery, University Medical Centre of Regensburg, Regensburg, D-93053, Germany
*christian.kirschneck@ukr.de; Tel.: +49 941 944 6093; Fac.: +49 941 944 6169

Supplementary Information
Contents

Table/Figure/Supplementary Data	Page
Supplementary Table 1 – MIQE checklist	3
Supplementary Table 2 – RNA quantity and quality	10
Supplementary Table 3 – Raw C_q values of RT-qPCR	11
Supplementary Table 4 – Gene stability ranking for individual experimental groups	12
Supplementary Table 5 – Marker genes, primers and amplicons used for hPDL characterization	13
Supplementary Figure 1 – Characterisation of hPDL fibroblasts	14
Supplementary Figure 2 – Uncropped original gel of RT-qPCR products (amplification specifity)	15
Supplementary Data 1 – Splice variants and secondary structure analysis of amplicons and primers	16
Supplementary Data 2 – RNA integrity	60
Supplementary Data 3 – Amplification plot and Melting curve analysis (RT-qPCR)	86
Supplementary Data 4 – qPCR primer efficiency	92
Supplementary Data 5 – TUBB RT-qPCR, specifity and efficiency	101
Supplementary Table 1. MIQE checklist for authors, reviewers and editors. E = essential information; D = desirable information.

Item to check	Importance	Description how item was addressed in study / article
Experimental design		
Definition of experimental and control groups	E	Control group: untreated hPDL fibroblasts (physiological conditions); Experimental groups: hPDL fibroblasts treated with compressive orthodontic force (model for orthodontic tooth movement) or bacterial lysate of Aggregatibacter actinomycetemcomitans (Agac, model for bacterial periodontitis) for 24h. For details see materials and methods and Figure 5.
Number within each group	E	n = 6
Assay carried out by the core or investigator’s	D	All assays were carried out in investigators’ laboratory.
laboratory?		
Acknowledgment of authors’ contributions	D	C.K. conceived the idea of the study/study design as well as designed/validated the used primer pairs. S.B., P.P. and A.S. contributed to discussion and study design. A.S. and C.K. conducted the experiments. A.S., C.K. and S.B. analysed the results. J.K. produced and contributed the Agac bacterial lysate. G.S. provided the primary hPDL fibroblasts. C.K. and A.S. wrote the manuscript and created the figures, tables and the supplementary material. All authors reviewed the manuscript.
Sample		
Description	E	Primary human periodontal ligament fibroblasts (hPDL) were cultivated from periodontal connective tissue isolated from the middle root section of human teeth free of decay, which had been freshly extracted for medical reasons. A pool of hPDL cell lines from four different patients was used (1 male, 3 female, age: 16-23 years). Cells were identified by means of hPDL-specific marker gene expression and their spindle-shaped morphology (Supplementary Table 5 and Supplementary Figure). Ethical consent was obtained from the local ethics committee (12-170-0150).
Volume/mass of sample processed	D	Varying size of tissue sample / number of hPDL fibroblasts extracted. 70,000 cells were finally seeded per well / biological replicate for the experiments.
Microdissection or macrodissection	E	Microdissection
Processing procedure	E	Tissue samples were grown in 6-well cell culture plates until proliferation of adherently growing hPDL under normal cell culture conditions (37°C, 5% CO₂, water-saturated) in full media, then trypsinized and further cultivated and passaged until the 6th passage.
If frozen, how and how quickly?	E	Until use hPDL fibroblasts were frozen in liquid nitrogen (90% FCS, 10% DMSO, freezing 1°C/minute in cryo-box with isopropanol).
If fixed, with what and how quickly?	E	Not fixed.
Sample storage conditions and duration | E | Samples were directly isolated and cultivated under cell culture conditions in cell culture flasks and plates (37°C, 5% CO₂, water-saturated) in full media consisting of DMEM high glucose (D5796, Sigma–Aldrich®, S4438, St. Louis, MI, USA), 10% FCS (P30-3306, PAN-Biotech, Aidenbach, Germany), 1% L-glutamine (SH30034.01, GE Healthcare Europe, Munich, Germany), 100 µM ascorbic acid (A8960, Sigma–Aldrich, Munich, Germany) and 1% antibiotics/antimycotics (A5955, Sigma–Aldrich®, S4438).

Nucleic acid extraction

Procedure and/or instrumentation | E | After washing the cells twice with sterile phosphate-buffered saline, total RNA from hPDL cells was extracted by applying peqGOLD TriFast™ and further processing according to the manufacturer’s instructions. We eluted the resulting RNA pellet in nuclease-free water (25µl) with immediate ice-cooling.

Name of kit and details of any modifications | E | peqGOLD TriFast™ (1 ml / well, PEQLAB Biotechnology GmbH, Erlangen, Germany). We followed the manufacturer’s protocol exactly.

Source of additional reagents used | D | Chloroform (EMSURE®, 1.02445.1000; Merck KGaA, Darmstadt, Germany), 2-Propanol (20842.330, VWR International GmbH, Darmstadt, Germany), Ethanol (32205, Sigma–Aldrich, Munich, Germany); RNase-free water (T143, Bioscience-Grade, Carl Roth GmbH & Co. KG, Karlsruhe, Germany).

Details of DNase or RNase treatment | E | 1 µg of RNA was treated with 40 U of RNase inhibitor (EO0381, Life Technologies) in a 22 µl final volume for cDNA synthesis. No DNase treatment was performed.

Contamination assessment (DNA or RNA) | E | For each primer pair and qPCR run we also tested a no-template-control (NTC) without cDNA and a -RT control (cDNA synthesis without enzyme reverse transcriptase added) on the same plate to exclude possible bias by primer dimers, contaminating or genomic DNA.

Nucleic acid quantification | E | RNA concentration was determined by measuring the absorbance at 260 nm UV light with 1 OD₂₆₀nm equalling 40 ng/µl total RNA. OD = optical density

Instrument and method | E | NanoDrop ND-2000 UV spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA)

Purity (A260/A280) | D | RNA purity was determined by measuring the absorbance ratio OD₂₆₀nm/280nm as well as OD₂₆₀nm/230nm. An OD₂₆₀nm/280nm ratio of >1.8 was considered protein-free RNA, and an OD₂₆₀nm/230nm ratio of >2.0 phenol-/ethanol-free RNA (Supplementary Table 2).

Yield | D | RNA yield was calculated as the amount of RNA obtained (µg) per well. Mean yield: 358.2 ng/µl x 2000 µl/well = 716.4 µg/well; Min./Max. yield: 218.6 / 495.4 ng/µl x 2000 µl/well = 437.2 / 990.8 µg/well (Supplementary Table 2).

RNA integrity: method/instrument | E | RNA integrity was determined with an Agilent 2100 Bioanalyzer (Agilent Technologies Inc. Santa Clara, CA, USA) according to the manufacturer’s protocol (Supplementary Data 2).

RIN/RQI or C₉ of 3´ and 5´ transcripts | E | RIN values ranged from 9.5 to 10 (mean 9.85, SD 0.15), indicating an absence of RNA degradation (Supplementary Data 2).

Electrophoresis traces | D | Electrophoresis traces were determined with an Agilent 2100 Bioanalyzer (Agilent Technologies Inc. Santa Clara, CA, USA) according to the manufacturer’s protocol (Supplementary Data 2).
Inhibition testing (C_q dilutions, spike, or other)

For evaluation of qPCR and primer efficiency as well as absence of inhibitors a log_{10} serial dilution series of a random cDNA sample from the untreated group was amplified in triplet for each candidate reference gene and the limit of detection (LOD) as the highest dilution, at which 95% (all three) of the technical replicates are detectable (C_q values), was determined. A standard curve was created by linear regression of the resulting C_q values with the relative dilution within the linear dynamic range (LDR) and the coefficient of determination r^2 as well as qPCR reaction efficiencies (E) with 95% confidence intervals were determined from the slope of the standard curve: E = (10^{1/slope} -1) x 100%. Only primer pairs with a linear relation between C_q and log-transformed cDNA copy number (r^2>0.98) were considered as possible valid reference gene candidates. In addition, only efficiencies E within the range of 90-110% were deemed acceptable. (Table 2, Supplementary Data 4)

Reverse transcription

To synthesize cDNA, we transcribed a standardized quantity of 1µg RNA per sample using a random hexamer primer (0.1 nmol, 1 µl, SO142, Life Technologies), an oligo-dT18 primer (0.1 nmol, 1 µl, SO131, Life Technologies, Thermo Fisher Scientific Inc.), 5× M-MLV-buffer (4 µl, M1705, Promega, Fitchburg, WI, USA) and dNTP mix (40 nmol, 1 µl, 10 nmol/dNTP, Roti®-Mix PCR3, L785.2) ad 20 µl nuclease-free H_2O (Roth BioScience Grade T143, Carl Roth GmbH & Co. KG). After incubation for 3 min at 70°C the mixture was quickly cooled on ice (RNA denaturation). We then added reverse transcriptase (200 U, 1 µl, M1705, Promega) and an RNase inhibitor (40 U, 1 µl, EO0381, Life Technologies), continued incubation at 37°C for 60 min and inactivated the reverse transcriptase by heat (95°C, 2 min). To minimize experimental variations, synthesis of cDNA, which was stored at −20°C until use, was performed concurrently for all samples.

Amount of RNA and reaction volume

Amount of RNA: 1 µg; Reaction volume: 22 µl

Priming oligonucleotide (if using GSP) and concentration

0.1 nmol random hexamer primer; 0.1 nmol oligo-dT18 primer

Reverse transcriptase and concentration

Reverse transcriptase (200 U, 1 µl, M1705, Promega) in a final concentration of 9.1 U/µl (200 U / 22 µl)

Temperature and time

3 min at 70°C; 60 min at 37°C; 2 min at 95°C

Manufacturer of reagents and catalogue numbers

Specified in “Complete reaction conditions”.

C_q with → without reverse transcription

The signal of the amplification plot without reverse transcriptase was very late and there was a high C_q value difference between the -RT control and all cDNA samples.
GAPDH: 15→29; **PPIB:** 16→34; **YWHAZ:** 22→32; **POLR2A:** 21→none; **TBP:** 23→35; **EEF1A1:** 14→27; **RPLP0:** 17→32; **RNA18S5:** 9→30; **RPL22:** 18→30

Storage conditions of cDNA

-20°C

qPCR protocol

For qPCR amplification we used a Mastercycler® ep realplex-S thermocycler (Eppendorf AG, Hamburg, Germany) in conjunction with 96 well PCR plates (TW-MT, 712282, Biozym Scientific GmbH, Hessisch Oldendorf, Germany) and BZO Seal Filmcover sheeting (712350, Biozym Scientific GmbH). Into each well SYBR®Green JumpStart™ Taq ReadyMix™ (7.5 µl, Sigma–Aldrich®, S4438, St. Louis, MI, USA), consisting of Tris–HCl (20 mM, pH 8.3), KCl (100 mM), MgCl_2 (7 mM), dNTPs (0.4 mM per dATP, dCTP, dGTP, and dTTP),
dCTP, dGTP, dTTP), stabilizers, Taq-DNA-polymerase (0.05 U/µl), JumpStart Taq antibody and SYBR Green I, as well as the respective cDNA-solution (1.5 µl, dilution 1:10) and the respective primer pair (7.5 pmol, 0.75 µl - 3.75 pmol/primer) were pipetted ad 15 µl nuclease-free H2O (BioScience Grade T143, Carl Roth GmbH & Co. KG). A master-mix of all components except the cDNA solution was created to minimize technical errors during manual pipetting. We then amplified the cDNA in triplets (technical replicates) per candidate reference gene in 45 cycles (initial heat activation 95°C/5 min, per cycle 95°C/10 s denaturation, 60°C/8 s annealing, 72°C/8 s extension). At the end of each extension step SYBR Green I fluorescence was measured at 521 nm. For each biological replicate all genes were amplified in triplet on the same qPCR plate to minimize biasing effects of possible inter-run variations on relative reference gene stability assessment.

Reaction volume and amount of cDNA/DNA	E	**Reaction volume**: 15 µl; **Amount of cDNA**: 1.5 µl of an 1:10 dilution of the cDNA stock solution
Primer, (probe), Mg2+, and dNTP concentrations	E	3.75 pmol/primer; 3.5 mM MgCl2; 0.2 mM dNTP; 50 mM KCl
Polymerase identity and concentration	E	Taq-DNA polymerase in a final concentration of 0.025 U/µl (SYBR®Green JumpStart™ Taq ReadyMix™, Sigma–Aldrich®, S4438, St. Louis, MI, USA)
Buffer/kit identity and manufacturer	E	SYBR®Green JumpStart™ Taq ReadyMix™ (Sigma–Aldrich®, S4438, St. Louis, MI, USA)
Exact chemical composition of the buffer	D	20 mM Tris–HCl, pH 8.3, final concentration 10 mM
Additives (SYBR Green I, DMSO, and so forth)	E	SYBR Green I, stabilizers, JumpStart Taq antibody, KCl , MgCl2
Manufacturer of plates/tubes and catalogue number	D	96 well PCR plates (TW-MT, 712282, Biozym Scientific GmbH, Hessisch Oldendorf, Germany) in combination with BZO Seal Filmcover sheeting (712350, Biozym Scientific GmbH)
Complete thermocycling parameters	E	Initial heat activation 95°C/5min; per cycle 95°C/10s denaturation, 60°C/8s annealing, 72°C/8s extension
Reaction setup (manual/robotic)	D	manual
Manufacturer of qPCR instrument	D	Mastercycler® ep realplex-S thermocycler (Eppendorf AG, Hamburg, Germany)

qPCR validation

| Evidence of optimization | D | Primer optimization is evidenced by melting curve analysis and agarose gel electrophoresis (specificity), qPCR efficiency, technical reliability and in silico secondary structure analysis of primers and amplicons. Melting temperatures Tm of primers as validated by the manufacturer Eurofins MWG Operon LLC (Huntsville, AL, USA; High Purity Salt Free Purification HPSF®) are provided in Table 1. |
| Specificity (gel, sequence, melt or digest) | E | Specific amplification of target reference genes was assessed by agarose gel electrophoreses (single band, correct size) and a specific peak in melting curve analysis (95°C for 15s, 60°C for 15s, then continuous temperature increase to 95°C and fluorescence measurement for 20 min). For each primer pair and qPCR run we also tested a no-template-control (NTC) without cDNA and a -RT control (cDNA synthesis without enzyme reverse transcriptase added) on the same plate to exclude possible bias by unspecific amplification (primer dimers, contaminating or genomic DNA). (Figure 1, Supplementary Data 3). |
Results for NTCs

LOD for all genes (primer pairs)	E	The signal of the amplification plot during efficiency analysis for standard curve generation was very late and there was a high Cq value difference between the negative control and all cDNA dilutions. GAPDH: 40; PPIB: 36; YWHAZ: none; POLR2A: 37; TBP: none; EEF1A1: none; RPLP0: 40; RNA18S5: 35; RPL22: none. (Supplementary Data 4)

Calibration curves with slope and y intercept

Calibration curves with slope and y intercept	E	GAPDH: y=1E+9e^{-0.655x}, slope: -3.480; PPIB: y=5E+9e^{-0.651x}, slope: -3.508; YWHAZ: y=6E+9e^{-0.651x}, slope: -3.468; POLR2A: y=4E+10e^{-0.648x}, slope: -3.520; TBP: y=3E+12e^{-0.649x}, slope: -3.538; EEF1A1: y=7E+9e^{-0.665x}, slope: -3.315; RPLP0: y=2E+9e^{-0.646x}, slope: -3.509; RNA18S5: y=2E+6e^{-0.677x}, slope: -3.319; RPL22: y=1E+10e^{-0.674x}, slope: -3.403. (Supplementary Data 4)

PCR efficiency calculated from slope

PCR efficiency calculated from slope	E	GAPDH: 93.8%; PPIB: 92.8%; YWHAZ: 93.5%; POLR2A: 92.3%; TBP: 91.7%; EEF1A1: 100.3%; RPLP0: 92.7%; RNA18S5: 100.1%; RPL22: 96.7%. (Table 2, Supplementary Data 4)

CIs for PCR efficiency or SE

CIs for PCR efficiency or SE	D	CIs of qPCR efficiencies E were calculated for all genes tested and are given in Supplementary Data 4.

R² of calibration curve

R² of calibration curve	E	GAPDH: 0.9998; PPIB: 0.9996; YWHAZ: 0.9993; POLR2A: 0.9984; TBP: 0.9974; EEF1A1: 0.9951; RPLP0: 0.9992; RNA18S5: 0.9974; RPL22: 0.9949. (Table 2, Supplementary Data 4)

Linear dynamic range (LDR)

Linear dynamic range (LDR)	E	The linear dynamic range (LDR) included the used 1:10 cDNA dilution in all cases and ranged from 3x log₁₀ (cDNA stock dilution 1:10 – 1:10⁶) to 6x log₁₀ (cDNA stock dilution 1:10 – 1:10⁶) for the individual genes (primer pairs), see Supplementary Data 4. Standard curves were calculated only considering dilutions within the LDR. (Supplementary Data 4)

Cq variation at LOD

Cq variation at LOD	E	GAPDH: SD=0.952; PPIB: SD=1.77; YWHAZ: SD=1.696; POLR2A: SD=1.004; TBP: SD=0.561; EEF1A1: SD=0.405; RPLP0: SD=0.176; RNA18S5: SD=0.000; RPL22: SD=0.202. (Supplementary Data 4)

CIs throughout range

CIs throughout range	D	CIs of Cq were calculated throughout the dilution range for all genes tested and are given in Supplementary Data 4.

Evidence for LOD

Evidence for LOD	E	Not detectable Cq value for ≥ 1 of the technical replicates (triplet) at the corresponding cDNA dilution level indicates LOD at the previous, more concentrated dilution level. LOD for all genes (primer pairs) detected at a cDNA quantity equivalent to ≤1 pg RNA, except for TBP with an LOD of 100 pg RNA equivalent (weak signal at 10 pg and 1 pg). (Supplementary Data 4)

If multiplex, efficiency and LOD of each assay

If multiplex, efficiency and LOD of each assay	E	Not applicable.

Data analysis

Data analysis	E	Mastercycler ep realplex software, version 2.2 (Eppendorf AG, Hamburg, Germany)

qPCR analysis program (source, version)	E	Second derivative maximum method (CalqPlex algorithm, Automatic Baseline, Drift Correction On)

Method of Cq determination	E	Second derivative maximum method (CalqPlex algorithm, Automatic Baseline, Drift Correction On)

Outlier identification and disposition	E	For analysis none of the Cq values was discarded.

Results for NTCs	E	The signal of the amplification plot was very late and there was a high Cq value difference between the negative control and all cDNA samples. GAPDH: 33; PPIB: 35; YWHAZ: 36; POLR2A: 36; TBP: none; EEF1A1: 35; RPLP0: none; RNA18S5: 35; RPL22: none.
Justification of number and choice of reference genes

Aim of this study - identification of optimal number and choice of reference genes for hPDL fibroblasts under physiological conditions, in a model for orthodontic tooth movement and a model for bacterial periodontitis.

Description of normalization method

Samples were not normalized, since apart from the reference genes no target genes were quantified.

Number and concordance of biological replicates

N = 1 (pool of hPDL fibroblasts from 4 different patients); n = 6 (pool cells seeded in 6 different wells per experimental group as biological replicates).

Number and stage (RT or qPCR) of technical replicates

qPCR reactions were performed in triplets (technical replicates n = 3).

Repeatability (intraassay variation)

The maximum SD (of the mean) across all biological replicates (n=18) of the means of C_q from the three technical replicates was ≤0.553 in all instances.

\[\text{GAPDH: 0.24; PPIB: 0.29; YWHAZ: 0.32; POLR2A: 0.35; TBP: 0.27; EEF1A1: 0.53; RPLP0: 0.36; RNA18S5: 0.20; RPL22: 0.33. (Table 2)} \]

Reproducibility (interassay variation, CV)

High biological reproducibility was achieved as evidenced by the low SD of raw C_q values for all genes and experimental groups tested (see Figure 2, Supplementary Table 3).

Power analysis

The number of biological replicates (n = 6) was based on previous studies and corresponds to the number of replicates generally used in cell culture RT-qPCR experiments.

Statistical methods for results significance

All biological samples (n = 6) were measured in triplicate (n = 3) and an arithmetic mean of each C_q tripllett used for further analysis. The stability of each candidate was calculated with four different mathematical algorithms: geNorm, NormFinder, BestKeeper and the comparative ΔC_q method. Stability calculations were done with the official Microsoft-Excel-based software applets for geNorm, NormFinder and BestKeeper according to developers’ instructions. For the comparative ΔC_q method manual calculations were performed. The geNorm and NormFinder algorithms require the transformation of the raw C_q data to linear scale expression quantities Q corresponding to the qPCR efficiency (E) of each gene:

\[Q = E^{-(C_q_{\text{min}} - C_q_{\text{sample}})} \]

with the lowest C_q value corresponding to a quantity of 1 for each candidate reference gene. The genes were ranked according to their stability values (geNorm: M, NormFinder: \(\rho_{\text{ig}}/\sigma_{\text{i}} \), deltaCT: mean SD of \(\Delta C_q \); BestKeeper: Pearson’s r) for each algorithm and each experimental condition as well as combined experimental conditions (no treatment + compressive force, no treatment + Agac) and a rank sum of all algorithms calculated per gene for final stability assessment with the smallest rank sum indicating the most stable reference gene. Also a pooled overall ranking for all experimental conditions was calculated. The geNorm algorithm was used to calculate the ideal number of reference genes for reliable RT-qPCR normalization. If pairwise variation \((\text{V}_n/\text{V}_{n+1}) \) between two sets of reference genes with one set including an additional reference gene was ≤0.15, this additional gene was deemed unnecessary for normalization. To assess ranking variations between the algorithms, we used IBM SPSS Statistics® 23 (IBM, Armonk, NY, USA) to create a correlation matrix of bivariate correlations (Pearson’s correlation coefficient r, normality confirmed by Shapiro-Wilk tests and histogram evaluation) of the overall pooled stability values as calculated by two respective algorithms. (see Figures 3 and 4, Table 3, Supplementary Table 4).

Software (source, version)

Microsoft Excel 2010 (Microsoft Corporation, Redmond, USA); IBM SPSS Statistics® 23 (IBM, Armonk, NY, USA)
qPCR or raw data submission	D	Raw C_{q} values are provided in Figure 2 and Supplementary Table 3.
qPCR target information		Provided in Table 1. We based our primer design on the officially registered target gene nucleotide sequences from the NCBI Nucleotide database (GeneBank, access: http://www.ncbi.nlm.nih.gov/nuccore).
Gene symbol	E	Provided in Table 1. We based our primer design on the officially registered target gene nucleotide sequences from the NCBI Nucleotide database (GeneBank, access: http://www.ncbi.nlm.nih.gov/nuccore).
Sequence accession number	E	Provided in Table 1. We based our primer design on the officially registered target gene nucleotide sequences from the NCBI Nucleotide database (GeneBank, access: http://www.ncbi.nlm.nih.gov/nuccore).
Location of amplicon	D	Provided in Table 1. Target amplicon sequences were chosen to range from 60 to 150 bp with a GC content of 35–65%.
Amplicon length	E	Provided in Table 1. Target amplicon sequences were chosen to range from 60 to 150 bp with a GC content of 35–65%.
In silico specificity screen (BLAST, and so on)	E	Provided in Table 1. In-silico specify of constructed primers was ensured by PrimerBLAST (National Center for Biotechnology Information, Bethesda MD, USA, https://www.ncbi.nlm.nih.gov/tools/primer-blast; RefSeq mRNA, Splice variants allowed, Max. Product Size: 4000) and cross-checked using the UCSC in-silico-PCR Genome Browser (Dec. 2013 GRCh38/hg38; UCSC Genes; Max. Product Size: 4000; Min. Perfect Match: 15; Min. Good Match: 15; Jim Kent, http://genome-mirror.genomedk.au.dk/cgi-bin/hgPcr). Intron-flanking primer pairs were designed to prevent a co-amplification of genomic DNA and checked in silico for sufficient absence of hairpin structures and dimer formation at annealing temperature ($\Delta G \geq -3.5$ kcal/mol, BeaconDesigner™ Free Edition, Premier BioSoft International, Palo Alto, CA, USA, http://www.premierbiosoft.com/qOligo/Oligo.jsp?PID=1).
Pseudogenes, retropseudogenes or other homologs	D	Sequence alignment, possible splicing and targeted transcript variants as well as absence of targeted pseudogenes, retropseudogenes or other homologs were assessed upon primer construction by NCBI PrimerBLAST (National Center for Biotechnology Information, Bethesda MD, USA, https://www.ncbi.nlm.nih.gov/tools/primer-blast) and PrimerCheck (SpliceCenter der Genomics and Bioinformatics Group, LMP, CCR, NCI, http://projects.insilico.us/SpliceCenter/PrimerCheck.jsp).
Sequence alignment	D	Provided in Supplementary Data 1. No secondary structures present at annealing temperature (60°C) were detected as determined in silico by UNAFold (http://eu.idtdna.com/UNAFold?, Suboptimality 50%; Integrated DNA Technologies Inc., Coralville, IA, USA).
Secondary structure analysis of amplicon	D	Provided in Supplementary Data 1. No secondary structures present at annealing temperature (60°C) were detected as determined in silico by UNAFold (http://eu.idtdna.com/UNAFold?, Suboptimality 50%; Integrated DNA Technologies Inc., Coralville, IA, USA).
Location of each primer by exon or intron	E	Provided in Table 1. Also see Supplementary Data 1.
What splice variants are targeted	E	Provided in Table 1. Also see Supplementary Data 1.

qPCR oligonucleotides

Primer sequences	E	Provided in Table 1.
RTouchDB identification number	D	Not applicable, primers were constructed and validated by the authors.
Probe sequences	D	Not applicable.
Location and identity of any modifications	E	Primers received no terminal or other modifications.
Manufacturer of oligonucleotides	D	Primers were synthesized by Eurofins MWG Operon LLC (Huntsville, AL, USA).
Purification method	D	Primers were purified by High Purity Salt Free Purification HPSF® (Eurofins MWG Operon LLC).
Supplementary Table 2. Yield (quantity) and quality of extracted total RNA per biological replicate (well).

Sample ID	Nucleic Acid Concentration	Unit	A260	A280	A260/A280	Sample Type	Factor
Control K7	450.8 ng/µl		11.269	5.757	1.96	RNA	40
Control K8	495.4 ng/µl		12.385	6.415	1.93	RNA	40
Control K9	488.2 ng/µl		12.206	6.494	1.88	RNA	40
Control K10	486.2 ng/µl		12.156	6.407	1.9	RNA	40
Control K11	444.4 ng/µl		11.11	5.793	1.92	RNA	40
Control K12	472.8 ng/µl		11.82	6.125	1.93	RNA	40
Compression D7	295.1 ng/µl		7.377	3.922	1.88	RNA	40
Compression D8	291.6 ng/µl		7.29	3.826	1.91	RNA	40
Compression D9	225.2 ng/µl		5.631	3.002	1.88	RNA	40
Compression D10	225.9 ng/µl		5.647	3.098	1.82	RNA	40
Compression D11	218.6 ng/µl		5.464	2.934	1.86	RNA	40
Compression D12	298.9 ng/µl		7.473	3.952	1.89	RNA	40
Agac7	441 ng/µl		11.026	5.873	1.88	RNA	40
Agac8	245.5 ng/µl		6.138	3.262	1.88	RNA	40
Agac9	303 ng/µl		7.575	3.935	1.93	RNA	40
Agac10	456.7 ng/µl		11.417	6.052	1.89	RNA	40
Agac11	295.2 ng/µl		7.38	3.902	1.89	RNA	40
Agac12	312.6 ng/µl		7.814	4.149	1.88	RNA	40

A = absorbance = optical density (OD) at 260nm and 280nm; A260/A280 = absorbance ratio.
Factor = ng/µl total RNA per 1 unit OD_{260nm}.
Supplementary Table 3. Raw C_q values of RT-qPCR (triplet means) for 3 experimental groups and 9 candidate reference genes.

RAW C_q values	Gene									
Sample	Group	GAPDH	PPIB	YWHAZ	POLR2A	TBP	RPL22	RPLP0	EEF1A1	RNA18S5
Control K7	1	15.04	16.43	21.81	20.96	23.35	18.22	16.34	14.17	8.67
Control K8	1	15.14	16.40	21.73	21.03	23.29	18.13	16.18	14.14	8.42
Control K9	1	15.14	16.36	21.51	20.77	23.30	18.00	16.33	14.09	7.91
Control K10	1	15.26	16.51	21.60	20.83	23.47	18.21	16.24	14.12	8.33
Control K11	1	15.04	16.30	21.21	21.00	23.46	17.95	16.06	14.02	8.41
Control K12	1	15.09	16.36	21.00	20.60	23.12	17.93	16.22	14.06	7.81
Compression D7	2	15.13	16.98	22.57	21.78	24.08	18.39	16.37	14.26	8.97
Compression D8	2	14.85	16.75	22.14	21.50	23.72	18.19	16.26	13.91	8.57
Compression D9	2	14.70	16.80	21.74	21.66	23.75	18.26	16.42	13.97	8.52
Compression D10	2	15.05	16.74	21.11	21.45	23.50	18.20	16.46	13.97	8.08
Compression D11	2	15.11	16.52	21.01	21.51	23.64	17.95	16.26	13.75	8.27
Compression D12	2	14.85	16.71	21.28	21.57	23.67	18.21	16.06	13.85	8.05
Agac7	3	15.58	16.43	21.84	21.07	23.32	17.82	16.19	14.15	8.76
Agac8	3	15.41	16.63	21.46	21.45	23.67	18.36	16.55	14.44	8.46
Agac9	3	15.27	16.48	20.97	21.18	23.46	18.21	16.42	14.41	7.99
Agac10	3	15.37	16.48	21.03	21.15	23.43	18.36	16.43	14.37	8.02
Agac11	3	15.58	16.71	21.04	21.36	23.69	18.41	16.83	14.57	8.32
Agac12	3	15.40	16.66	20.89	21.09	23.50	18.35	16.65	14.46	7.91

C_q SD										
Control	1	0.08	0.07	0.31	0.16	0.13	0.13	0.10	0.05	0.33
Compression	2	0.17	0.15	0.62	0.12	0.19	0.14	0.15	0.17	0.35
Agac	3	0.12	0.12	0.37	0.15	0.14	0.22	0.22	0.14	0.33

C_q = quantification cycle; SD = standard deviation of group mean. Gene symbols see Table 1. Agac = Aggregatibacter actinomycetemcomitans (periodontitis)
Supplementary Table 4. Gene stability ranking for individual experimental groups of the nine analysed candidate reference genes according to their expression stability as calculated by the algorithms geNorm, NormFinder, comparative ΔC_q and BestKeeper.

Rank	(of 4 methods)	geNorm	NormFinder	comparative ΔC_q	BestKeeper								
	Total	Order	Stability	Order	Stability	Rank	Stability	SD	CV				
	of 4 methods		value (M)		value								
					mean ΔC_q								
Untreated control (physiological conditions)													
1.)	RPL22	7	EEF1A1	0.138	RPL22	0.005	0.082	EEF1A1	0.146	RNA18S5	0.915	0.066	3.216
2.)	EEF1A1	9	PPIB	0.142	EEF1A1	0.045	0.024	RPL22	0.147	RNA18S5	0.903	0.113	0.627
3.)	PPIB	14	RPL22	0.144	PPIB	0.055	0.025	PPIB	0.168	YWHAZ	0.892	0.248	1.154
4.)	TBP	20	GAPDH	0.168	TBP	0.106	0.078	GAPDH	0.173	POLR2A	0.771	0.132	0.631
5.)	GAPDH	23	TBP	0.165	POLR2A	0.173	0.029	TBP	0.177	EEFC1A1	0.735	0.043	0.307
6.)	POLR2A	23	RPLP0	0.175	GAPDH	0.086	0.032	RPLP0	0.182	BNP	0.621	0.095	0.407
7.)	RPLP0	27	POLR2A	0.178	RPLP0	0.091	0.033	POLR2A	0.188	PPIB	0.579	0.053	0.325
8.)	YWHAZ	27	YWHAZ	0.248	YWHAZ	0.148	0.049	YWHAZ	0.266	RPLP0	0.186	0.075	0.462
9.)	RNA18S5	28	RNA18S5	0.290	RNA18S5	0.187	0.061	RNA18S5	0.290	GAPDH	0.127	0.062	0.408
Compressive orthodontic force (model for orthodontic tooth movement)													
1.)	EEF1A1	9	PPIB	0.178	EEF1A1	0.012	0.072	PPIB	0.185	RNA18S5	0.958	0.277	3.290
2.)	PPIB	10	EEF1A1	0.161	EEF1A1	0.021	0.045	EEF1A1	0.187	RPL22	0.938	0.508	2.349
3.)	TBP	15	POLR2A	0.190	PPIB	0.036	0.034	RPL22	0.200	YWHAZ	0.913	0.126	0.529
4.)	POLR2A	17	RPL22	0.190	POLR2A	0.065	0.033	POLR2A	0.201	POLR2A	0.905	0.115	0.824
5.)	RPL22	18	TBP	0.194	RPL22	0.067	0.034	TBP	0.203	EEFC1A1	0.672	0.093	0.557
6.)	RNA18S5	28	RPLP0	0.246	RPLP0	0.131	0.047	RPLP0	0.258	TBP	0.804	0.094	0.438
7.)	RPLP0	26	GAPDH	0.276	RNA18S5	0.140	0.050	RNA18S5	0.286	PPIB	0.752	0.087	0.476
8.)	YWHAZ	29	RNA18S5	0.283	GAPDH	0.166	0.057	RNA18S5	0.296	RPLP0	0.390	0.112	0.685
9.)	GAPDH	32	YWHAZ	0.474	YWHAZ	0.324	0.103	YWHAZ	0.515	GAPDH	0.177	0.148	0.992
Bacterial lysate of Aggregatibacter actinomycetemcomitans (Agac, model for bacterial periodontitis)													
1.)	TBP	7	TBP	0.175	TBP	0.035	0.035	TBP	0.184	POLR2A	0.742	0.126	0.592
2.)	POLR2A	10	PPIB	0.186	POLR2A	0.038	0.034	PPIB	0.187	GAPDH	0.715	0.097	0.626
3.)	PPIB	11	POLR2A	0.192	PPIB	0.038	0.033	EEF1A1	0.199	RNA18S5	0.691	0.270	3.275
4.)	GAPDH	16	EEF1A1	0.194	GAPDH	0.055	0.032	POLR2A	0.203	TBP	0.650	0.112	0.477
5.)	EEF1A1	20	GAPDH	0.218	EEF1A1	0.090	0.037	GAPDH	0.227	PPIB	0.537	0.102	0.614
6.)	RPLP0	25	RPLP0	0.223	RPLP0	0.124	0.045	RPLP0	0.236	YWHAZ	0.483	0.297	1.399
7.)	RNA18S5	27	RPL22	0.249	RPL22	0.155	0.054	RPL22	0.260	RPLP0	0.379	0.165	0.999
8.)	RPL22	30	RNA18S5	0.346	RNA18S5	0.224	0.073	RNA18S5	0.354	EEF1A1	0.222	0.093	0.648
9.)	YWHAZ	33	YWHAZ	0.386	YWHAZ	0.255	0.083	YWHAZ	0.410	RPL22	0.078	0.158	0.864

C_q = quantification cycle; SD = standard deviation; CV = coefficient of variation; r = Pearson’s correlation coefficient.
Supplementary Table 5. Marker genes, primers and amplicons used for characterization of hPDL fibroblasts.

Gene symbol	Gene name (Homo sapiens)	Accession number (NCBI GenBank)	Chromosomal location (length)	5'-forward primer-3' (length / Tm / %GC / max. ΔG Hauppin &Self-Dimer / Self-Comp. / Self-3’-Comp.)	5'-reverse primer-3' (length / Tm / %GC / max. ΔG Hauppin &Self-Dimer / Self-Comp. / Self-3’-Comp.)	Primer location (max. ΔG Cross-Dimer)	Amplicon (length, %GC, Tm, SSAT)	Amplicon location (bp of Start/Stop)	Intron flanking (length)	In silico qPCR specificity	Variants targeted (Transcript / Splice)
VIM	vimentin	NM_003380.3	10p13 (215bp)	CTGAGGTCTACCTCCCTCTGGTG (22bp / 62.1°C / 54.6% / -1.3 / 5 / 0)	CTTGATGTCCGAAATGGTCTCGTG (23bp / 60.6°C / 47.8% / -0.6 / 1 / 4 / 0)	exon 8/9 (-2.6)	106bp 43.4% 82.3% no SSAT	1695/1800	Yes (850bp)	Yes	
P4HA1	prolipoproteinase, alpha polyepitope 1	NM_000917.3	10q22.1 (2860bp)	GCTTCTGCTGATGAAATCTCT (23bp / 60.6°C / 47.8% / 0.0 / 2 / 2)	GTGAAGTCAATGGGGGTTCTG (22bp / 58.4°C / 45.3% / -3.4 / 4 / 0)	exon 13/14 (-0.9)	146bp 41.1% 82.2% no SSAT	1396/1541	Yes (1373bp)	Yes	
FN1	fibronectin	NM_212426.1	2q34 (8813bp)	GCAAGTCATTCAACAGATTCTCTCTC (24bp / 62.7°C / 50.0% / -0.3 / 4 / 2)	GCTGTTCCTTCTGGTAAAGAG (23bp / 60.6°C / 47.8% / -2.5 / 4 / 1)	exon 45/46 (-3.0)	150bp 42.7% 83.1°C no SSAT	7579/7728	Yes (342bp)	Yes	
COL1A2	collagen, type I, alpha 2	NM_000089.3	7q22.1 (5411bp)	AGAACAACGTCTGTCTAGAG (21bp / 59.8°C / 52.4% / -3.3 / 4 / 2)	GACTGAGGCCAGTTGGTTAG (21bp / 59.8°C / 52.4% / -2.3 / 4 / 5)	exon 50/51 (-0.7)	105bp 44.8% 83.3°C no SSAT	4139/4243	Yes (710bp)	Yes	
FMOD	fibromodulin	NM_002023.4	1q32 (3271bp)	AGTCAACACCAACCTTGAAC (22bp / 60.3°C / 50.0% / -1.5 / 3 / 0)	GAAGTTCAACGCTCACCAC (21bp / 61.8°C / 57.1% / -6.5 / 6 / 3)	exon 2/3 (-2.8)	97bp 51.6% 85.7°C no SSAT	1334/1430	Yes (4797bp)	Yes	
TNFRSF1B (OPG)	tumor necrosis factor receptor superfamily, member 11b (osteoprotegerin)	NM_002546.3	8q24 (2354bp)	TTTGTTTGTGCTTCGCTCACT (23bp / 60.6°C / 47.8% / 0.0 / 2 / 2)	CCTGAAAGATCTGCTCTCACC (22bp / 62.1°C / 54.5% / -0.9 / 4 / 0)	exon 3/4 (-1.8)	124bp 42.7% 83.1°C no SSAT	824/947	Yes (2018bp)	Yes	
POSTN	peristin	NM_006475.2	13q13.3 (3390bp)	AGACACACCGTGGGAAAG (19bp / 58.8°C / 35.9% / -1.3 / 4 / 0)	GTTGACGGTTAGCTGAGGGT (24bp / 61.0°C / 45.8% / -2.6 / 4 / 2)	exon 23/24 (-3.4)	136bp 39.4% 81.9°C no SSAT	2548/2683	Yes (1148bp)	Yes	
RUNX2	runt related transcription factor 2	NM_001024630.3	6p21 (5533bp)	CAGTATAGGGACCTGGAAC (21bp / 61.8°C / 57.1% / 0.0 / 0 / 3 / 0)	TGGGGGCTAGAGGACAAAC (21bp / 59.8°C / 52.4% / -0.9 / 1 / 3)	exon 5/6 (-3.1)	81bp 50.6% 83.7°C no SSAT	869/949	Yes (5388bp)	Yes	
SMAD1	SMAD family member 1	NM_005900.3	4q31 (3056bp)	AGACAGACCTACCTCCACCTC (20bp / 61.4°C / 60.0% / 0.0 / 3 / 0)	CTTGAGGAGCCGATCACCAG (21bp / 61.8°C / 57.1% / -0.5 / 1 / 3)	exon 4/5 (-2.9)	97bp 60.8% 90.4°C no SSAT	1014/1110	Yes (2520bp)	Yes	
ALPL	alkaline phosphatase, liver/bone/kidney	NM_000478.4	1p36.12 (2060bp)	ACAAGCACTCCTCCATCTCTG (22bp / 60.3°C / 50.0% / -0.5 / 3 / 2)	GCTGCCATGCTGTTCTCGT (20bp / 61.4°C / 60.0% / -0.3 / 3 / 1)	exon 7/8 (-2.1)	132bp 56.1% 89.5°C no SSAT	1045/1176	Yes (3290bp)	Yes	
SCX	scleraxis BHLL transcription factor	NM_001080514.2	8q24.3 (1027bp)	CCAGGCCCCAACAGATGGTGCAC (21bp / 61.8°C / 57.1% / -7.9 / 8 / 2)	TGGCGATCTCTGCTTCTCAG (20bp / 63.0°C / 50.0% / -4.2 / 7 / 2)	exon 1/2 (-3.8)	83bp 54.2% 86.6°C no SSAT	575/657	Yes (923bp)	Yes	
S100A4	S100 calcium binding protein A4	NM_002961.2	1q21 (5129bp)	TCTCTACACCTCTCCTCGAG (23bp / 62.4°C / 52.2% / 0.0 / 3 / 3)	GGAAGTGGAGACCTACATC (21bp / 62.1°C / 54.5% / -2.8 / 1 / 1)	exon 1/3 (-1.5)	103bp 54.1% 87.8°C no SSAT	11/118	Yes (943bp)	Yes	
NCAM1	neural cell adhesion molecule 1 (NCAM1)	NM_000615.6	11q23.1 (5977bp)	GCTCCACACCAACATACATG (21bp / 61.8°C / 57.1% / -1.5 / 3 / 2)	CAGAGTTCTGCTCCACACG (20bp / 61.4°C / 60.0% / -1.3 / 6 / 2)	exon 4/5 (-1.3)	150bp 49.3% 86.6°C no SSAT	799/948	Yes (376bp)	Yes	

\(T_m = \text{melting temperature of primer-specific qPCR product (amplicon)} \)

\(%\text{GC} = \text{guanine/cytosine content} \)

bp = base pairs

Comp. = Complementarity

SSAT = secondary structure at annealing temperature
Supplementary Figure 1. Characterization of human PDL fibroblasts. (a) Cell morphology of isolated hPDL cells. All cells show a spindle-shaped cell morphology. (b) Specific gene expression profile of hPDL markers (western blot of PCR products): untreated control samples of individual patients and of final hPDL cell pool (experimental groups). Abbreviations see Supplementary Table 5.

Individual hPDL donors	VIM	P4HA1	FN1	COL1A2	FMOD	OPG	POSTN	RUNX2	SMAD1	ALPL	SCX	S100A4	NCAM1
Patient 4 *1992 male													
Patient 7 *1995 female													
Patient 8 *1991 female													
Patient 16 *1989 female													
Untreated													
hPDL pool (n = 4)													

*Agac lysate (periodontitis)
Supplementary Figure 2. Uncropped original gel of RT-qPCR products (amplification specificity). For each candidate reference gene / primer pair we found a single fluorescent band at the expected amplicon size. bp = base pairs. Gene names see Table 1. All RT-qPCR products were run concurrently and adjacently on the same gel, which was recorded with the gel documentation system Genoplex 2 (VWR International GmbH, Darmstadt, Germany) and its software GenoCapture (version 7.01, Synoptics Ltd., Cambridge, UK - automatic exposure, exposure time 80 ms, no binning, transillumination) as secure gel data (*.sgd) and exported as TIF image, which was inverted and cropped to encompass the relevant gel area.
Supplementary Data 1. Splice variants and secondary structure analysis of amplicons and primers of the nine evaluated candidate reference genes.

GAPDH PrimerBLAST (National Center for Biotechnology Information, Bethesda MD, USA, https://www.ncbi.nlm.nih.gov/tools/primer-blast)

Primer pair 1	Sequence 5'→3'	Length	Start	Stop	Tm	GC%	Self complementarity	Self 3' complementarity
Forward primer	TGCCCTAACGACACITTG	29	1091	1110	63.28	50.00	3.00	2.00
Reverse primer	CCACACACCTGGTGGCTTGA	Minus	20	1154	1145	63.08	60.00	4.00
Product length	74							
Total intron size	164 (between pos. 657096 and 6628101 on NT_009759.17)							

Products on intended target

Product length	Forward primer	Reverse primer	Template
74	TGCCCTAACGACACCTTGG	CCACACACCTGGTGGCTTGA	1091
74	TGCCCTAACGACACCTTGG	CCACACACCTGGTGGCTTGA	1077
74	TGCCCTAACGACACCTTGG	CCACACACCTGGTGGCTTGA	1150
74	TGCCCTAACGACACCTTGG	CCACACACCTGGTGGCTTGA	1123
74	TGCCCTAACGACACCTTGG	CCACACACCTGGTGGCTTGA	1123
74	TGCCCTAACGACACCTTGG	CCACACACCTGGTGGCTTGA	1144

Products on allowed transcript variants

Product length	Forward primer	Reverse primer	Template
74	TGCCCTAACGACACCTTGG	CCACACACCTGGTGGCTTGA	1096
74	TGCCCTAACGACACCTTGG	CCACACACCTGGTGGCTTGA	1106
74	TGCCCTAACGACACCTTGG	CCACACACCTGGTGGCTTGA	1131
74	TGCCCTAACGACACCTTGG	CCACACACCTGGTGGCTTGA	1202
74	TGCCCTAACGACACCTTGG	CCACACACCTGGTGGCTTGA	1237
74	TGCCCTAACGACACCTTGG	CCACACACCTGGTGGCTTGA	1144
GAPDH PrimerCheck (SpliceCenter der Genomics and Bioinformatics Group, LMP, CCR, NCI, http://projects.insilico.us/SpliceCenter/PrimerCheck.jsp)
GAPDH UNAFold (Integrated DNA Technologies Inc., Coralville, IA, USA, http://eu.idtdna.com/UNAFold? , Suboptimality 50%)

GAPDH Amplicon Sequence

5' TGCCCTCAACGACCACTTTGTCAGCTCATTCTTCTGGTTATGACAACGAATTGGCTACAGCAGCAACAGGGTGTTGGG 3'

Structures	Image	ΔG (kcal.mole⁻¹)	Tₘ (°C)	ΔH (kcal.mole⁻¹)	ΔS (cal.K⁻¹.mole⁻¹)	Output
1		1.04	47	-25.6	-79.96	Ct Det
2		1.33	49.9	-42.7	-132.17	Ct Det
3		1.49	41.3	-25	-79.51	Ct Det
4		1.58	47.1	-39.2	-122.4	Ct Det
5		1.66	41.2	-27.8	-68.44	Ct Det
6		1.82	30.4	-4.9	-20.19	Ct Det
7		1.92	-26.6	-5.3	-21.67	Ct Det
8		1.98	34.3	-23.6	-76.77	Ct Det
UCSC In-silico PCR

The sequences and coordinates shown below are from UCSC Genes, not from the genome assembly. The links lead to the Genome Browser at the position of the entire target sequence.
GAPDH BeaconDesigner™ Free Edition (Premier BioSoft International, Palo Alto, CA, USA, http://www.premierbiosoft.com/qOligo/Oligo.jsp?PID=1)

Secondary Structures for Sense Primer

Dimer:

5’ GCCCTGAGACACGACCTTTG 3’

3’ GTCCTGACACGACCTTTG 5’

-0.7

Hairpin:

/CAGACCTTTG 3’

| | | | | |
\CAGACCTTTG 3’

-0.7

Secondary Structures for Anti-sense Primer

Dimer:

Not Found

Hairpin:

Not Found

Cross Dimer between Sense Primer and Anti-sense Primer:

5’ GCCCTGAGACACGACCTTTG 3’

| | | | | |
3’ GATCTGAGACACGACCTTTG 5’

-2.4
PPIB PrimerBLAST (National Center for Biotechnology Information, Bethesda MD, USA, https://www.ncbi.nlm.nih.gov/tools/primer-blast)

PPIB PrimerCheck (SpliceCenter der Genomics and Bioinformatics Group, LMP, CCR, NCI, http://projects.insilico.us/SpliceCenter/PrimerCheck.jsp)
PPIB UCSC In-silico-PCR Genome Browser (Dec. 2013 GRCh38/hg38; UCSC Genes; Max. Product Size: 4000; Min. Perfect Match: 15; Min. Good Match: 15; Jim Kent, http://genome-mirror.genomedk.au.dk/cgi-bin/hgPcr)

UCSC In-Silico PCR
The sequences and coordinates shown below are from UCSC Genes, not from the genome assembly. The links lead to the Genome Browser at the position of the entire target sequence.

>pp002and_3 PPIB:446-533 55bp TTCCATCGTGTAATCAAGGACTTCATGATCCAGGGCGGAGACTTCACCAGGGGAGATGGCACAGGAGGAAAGAGCATCTACGGTGAGC

PPIB UNAFold (Integrated DNA Technologies Inc., Coralville, IA, USA, http://eu.idtdna.com/UNAFold?, Suboptimality 50%)

PPIB Amplicon Sequence 5' TTCCATCGTGTAATCAAGGACTTCATGATCCAGGGCGGAGACTTCACCAGGGGAGATGGCACAGGAGGAAAGAGCATCTACGGTGAGC 3'

Structures

Structure Name	Image	ΔG (kcal.mole⁻¹)	T_M (°C)	ΔH (kcal.mole⁻¹)	ΔS (cal.K⁻¹.mole⁻¹)	Output
1	![Image](image1.png)	0.45	49	-13.1	-40.66	Ct, Det
2	![Image](image2.png)	0.64	47.3	-16.1	-50.24	Ct, Det
3	![Image](image3.png)	0.66	41.5	-11.2	-35.6	Ct, Det
4	![Image](image4.png)	1.25	49	-36.6	-113.6	Ct, Det
5	![Image](image5.png)	1.32	35.1	-16.4	-53.2	Ct, Det
PPIB BeaconDesigner™ Free Edition (Premier BioSoft International, Palo Alto, CA, USA, http://www.premierbiosoft.com/qOligo/Oligo.jsp?PID=1)

Secondary Structures for Sense Primer

Dimer:-

5' TTCCATCGTGCATAGGCTCTC 3'
 |||| ||| ||
3' CTTCTCTGAGAGCCACTCG 5'
 1.3

Hairpin:-

/CTTCTCTGAGAGCCACTCG 5'
7 : : ||||
\CTTCTCTGAGAGCCACTCG 3'
 -1.3

Secondary Structures for Anti-sense Primer

Dimer:-

5' CTCTCTGAGAGCCACTCG 3'
 |||| ||| ||
3' CTTCTGATGAGCAGGCTCTC 5'
 0.7

Hairpin:-

/CTTCTGATGAGCAGGCTCTC 5'
0 : : ||||
\CTTCTCTGAGAGCCACTCG 3'
 -0.7

Cross Dimer between Sense Primer and Anti-sense Primer:-

5' TTCCATCGTGCATAGGCTCTC 3'
 |||| ||| ||
3' CTTCTCTGAGAGCCACTCG 5'
 2.1

5' CTCTCTGAGAGCCACTCG 3'
 |||| ||| ||
3' CTTCTGATGAGCAGGCTCTC 5'
 1.3

5' TTCCATCGTGCATAGGCTCTC 3'
 |||| ||| ||
3' CTTCTGATGAGCAGGCTCTC 5'
 -0.5

5' TTCCATCGTGCATAGGCTCTC 3'
 |||| ||| ||
3' CTTCTGATGAGCAGGCTCTC 5'
 -0.4
YWHAZ PrimerBLAST (National Center for Biotechnology Information, Bethesda MD, USA, https://www.ncbi.nlm.nih.gov/tools/primer-blast)

Primer pair 1	Sequence (5’→3’)	Template strand	Length	Start	Stop	Tm	GC%	Self complementarity	Self 3’ complementarity
Forward primer	AGGAGGATCTACGGTACTTGGC	Plus	24	504	527	62.43	45.83	4.00	2.00
Reverse primer	AGCTTCTGTAGCTGTGGTGTG	Minus	23	594	572	62.24	43.48	4.00	0.00
Product length	91								
Total intron size	617 (between pos. 15210694 and 15210706 on NT_000046.17)								

Products on intended target

>**NM_003430.3** Homo sapiens tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta (YWHAZ), transcript variant 1, mRNA

- **product length = 91**
 - **Forward primer 1** AGGAGGATCTACGGTACTTGGC 24
 - **Template** 504 527
 - **Reverse primer 1** AGCTTCTGTAGCTGTGGTGTG 23
 - **Template** 594 572

Products on allowed transcript variants

>**XM_01157289.1** PREDICTED: Homo sapiens tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta (YWHAZ), transcript variant X4, mRNA

- **product length = 91**
 - **Forward primer 1** AGGAGGATCTACGGTACTTGGC 24
 - **Template** 809 832
 - **Reverse primer 1** AGCTTCTGTAGCTGTGGTGTG 23
 - **Template** 899 877

>**XM_005251063.2** PREDICTED: Homo sapiens tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta (YWHAZ), transcript variant X3, mRNA

- **product length = 91**
 - **Forward primer 1** AGGAGGATCTACGGTACTTGGC 24
 - **Template** 663 686
 - **Reverse primer 1** AGCTTCTGTAGCTGTGGTGTG 23
 - **Template** 753 731

>**XM_005251062.2** PREDICTED: Homo sapiens tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta (YWHAZ), transcript variant X2, mRNA

- **product length = 91**
 - **Forward primer 1** AGGAGGATCTACGGTACTTGGC 24
 - **Template** 676 699
 - **Reverse primer 1** AGCTTCTGTAGCTGTGGTGTG 23
 - **Template** 766 744
| Accession | Description | Forward Primer | Template | Reverse Primer | Template |
|-----------|--|----------------|----------|----------------|----------|
| XM_005251061.2 | Homo sapiens tyrosine 3-monoxygenase/tryptophan 5-monoxygenase activation protein, zeta (YWHAZ), transcript variant X1, mRNA | AGGAGATTACTACCTGAGACCTTG 24 | 901 | AGCTTCCTGGCTAGCTGTGGTG 23 | 991 |
| NM_001135702.1 | Homo sapiens tyrosine 3-monoxygenase/tryptophan 5-monoxygenase activation protein, zeta (YWHAZ), transcript variant 6, mRNA | AGGAGATTACTACCTGAGACCTTG 24 | 543 | AGCTTCCTGGCTAGCTGTGGTG 23 | 611 |
| NM_001135701.1 | Homo sapiens tyrosine 3-monoxygenase/tryptophan 5-monoxygenase activation protein, zeta (YWHAZ), transcript variant 5, mRNA | AGGAGATTACTACCTGAGACCTTG 24 | 524 | AGCTTCCTGGCTAGCTGTGGTG 23 | 592 |
| NM_001135700.1 | Homo sapiens tyrosine 3-monoxygenase/tryptophan 5-monoxygenase activation protein, zeta (YWHAZ), transcript variant 4, mRNA | AGGAGATTACTACCTGAGACCTTG 24 | 475 | AGCTTCCTGGCTAGCTGTGGTG 23 | 543 |
| NM_001135699.1 | Homo sapiens tyrosine 3-monoxygenase/tryptophan 5-monoxygenase activation protein, zeta (YWHAZ), transcript variant 3, mRNA | AGGAGATTACTACCTGAGACCTTG 24 | 521 | AGCTTCCTGGCTAGCTGTGGTG 23 | 589 |
| NM_145690.2 | Homo sapiens tyrosine 3-monoxygenase/tryptophan 5-monoxygenase activation protein, zeta (YWHAZ), transcript variant 2, mRNA | AGGAGATTACTACCTGAGACCTTG 24 | 578 | AGCTTCCTGGCTAGCTGTGGTG 23 | 646 |
YWHAZ PrimerCheck (SpliceCenter der Genomics and Bioinformatics Group, LMP, CCR, NCI, http://projects.insilico.us/SpliceCenter/PrimerCheck.jsp)
YWHAZ UCSC In-silico-PCR Genome Browser (Dec. 2013 GRCh38/hg38; UCSC Genes; Max. Product Size: 4000; Min. Perfect Match: 15; Min. Good Match: 15; Jim Kent, http://genome-mirror.genomedk.au.dk/cgi-bin/hgPcr)

UCSC In-Silico PCR

The sequences and coordinates shown below are from UCSC Genes, not from the genome assembly. The links lead to the Genome Browser at the position of the entire target sequence.

Gene	Chrm	Start	End	Sequence 1	Sequence 2
uc0111p1.1_YWHAZ:543+633	91bp	AGGAGATIATACGGTTACTTGGC AGCTTCCTGATGCTGTTG	AGGAGATIATACGGTTACTTGGC Tgagtgtccgtgtgatcgaaga		
uc0111h1.1_YWHAZ:524+614	91bp	AGGAGATIATACGGTTACTTGGC AGCTTCCTGATGCTGTTG	AGGAGATIATACGGTTACTTGGC Tgagtgtccgtgtgatcgaaga		
uc0111h1.1_YWHAZ:273+363	91bp	AGGAGATIATACGGTTACTTGGC AGCTTCCTGATGCTGTTG	AGGAGATIATACGGTTACTTGGC Tgagtgtccgtgtgatcgaaga		
uc003iy2.1_YWHAZ:475+565	91bp	AGGAGATIATACGGTTACTTGGC AGCTTCCTGATGCTGTTG	AGGAGATIATACGGTTACTTGGC Tgagtgtccgtgtgatcgaaga		
uc010mbo.1_YWHAZ:410+500	91bp	AGGAGATIATACGGTTACTTGGC AGCTTCCTGATGCTGTTG	AGGAGATIATACGGTTACTTGGC Tgagtgtccgtgtgatcgaaga		
uc003iy2.1_YWHAZ:578+668	91bp	AGGAGATIATACGGTTACTTGGC AGCTTCCTGATGCTGTTG	AGGAGATIATACGGTTACTTGGC Tgagtgtccgtgtgatcgaaga		
uc010mbo.2_YWHAZ:521+611	91bp	AGGAGATIATACGGTTACTTGGC AGCTTCCTGATGCTGTTG	AGGAGATIATACGGTTACTTGGC Tgagtgtccgtgtgatcgaaga		
uc003iy2.2_YWHAZ:504+594	91bp	AGGAGATIATACGGTTACTTGGC AGCTTCCTGATGCTGTTG	AGGAGATIATACGGTTACTTGGC Tgagtgtccgtgtgatcgaaga		
YWHAZ UNAFold (Integrated DNA Technologies Inc., Coralville, IA, USA, http://eu.idtdna.com/UNAFold, Suboptimality 50%)

YWHAZ Amplicon Sequence

5' AGGAGATTACTACCGTGACGGGACCCGCTGGATGACAAGAAAGGGATTGTCGATCAGTCA
CAACAAGCATACCAAGAAGCT
3'

| Structures | | | | | | |
|---|---|---|---|---|---|
| Structure Name | Image | ΔG (kcal.mole$^{-1}$) | T_M (°C) | ΔH (kcal.mole$^{-1}$) | ΔS (cal.K$^{-1}$mole$^{-1}$) | Output |
| 1 | | 0.98 | 32.5 | -10.9 | -35.66 | Ct Det |
| 2 | | 1.03 | 41.9 | -18 | -57.14 | Ct Det |
| 3 | | 1.06 | 46.6 | -25.3 | -79.13 | Ct Det |
| 4 | | 1.3 | 41.4 | -22 | -69.94 | Ct Det |
| 5 | | 1.47 | 35.7 | -18.6 | -60.23 | Ct Det |
| 6 | | 1.52 | 26 | -13.4 | -44.79 | Ct Det |
| 7 | | 1.57 | 39 | -23.3 | -74.64 | Ct Det |
| 8 | | 1.74 | 41.1 | -28.9 | -91.96 | Ct Det |
| 9 | | 1.88 | 18.8 | -13.3 | -45.56 | Ct Det |
YWHAZ BeaconDesigner™ Free Edition (Premier BioSoft International, Palo Alto, CA, USA, http://www.premierbiosoft.com/qOligo/Oligo.jsp?PID=1)

Secondary Structures for Sense Primer

Dimer:

Not Found

Hairpin:

Not Found

Secondary Structures for Antisense Primer

Dimer:

Primer	Secondary Structure	Stability
5' ACCTCCCTGGATATCCCTGG 3'		
3' GCTTGGCTGATATCCCTGG 5'		
5' ACCTCCCTGGATATCCCTGG 3'		
3' GCTTGGCTGATATCCCTGG 5'		

Hairpin:

Primer	Secondary Structure	Stability
5' GCTTGGCTGATATCCCTGG 3'		
3' GCTTGGCTGATATCCCTGG 5'		

Cross Dimer:

Cross Dimer between Sense Primer and Antisense Primer:

Primer	Secondary Structure	Stability
5' AGGAGTTACCTACCTAGGCC 3'		
3' GCTTGGCTGATATCCCTGG 5'		-3.0
5' AGGAGTTACCTACCTAGGCC 3'		
3' GCTTGGCTGATATCCCTGG 5'		-2.2
5' AGGAGTTACCTACCTAGGCC 3'		
3' GCTTGGCTGATATCCCTGG 5'		-0.7
5' AGGAGTTACCTACCTAGGCC 3'		
3' GCTTGGCTGATATCCCTGG 5'		-5.5

Primer	Secondary Structure	Stability
5' AGGAGTTACCTACCTAGGCC 3'		
3' GCTTGGCTGATATCCCTGG 5'		-0.3
POLR2A PrimerBLAST (National Center for Biotechnology Information, Bethesda MD, USA, https://www.ncbi.nlm.nih.gov/tools/primer-blast)

Primer pair 1	Sequence (5'->3')	Template strand	Length	Start	Stop	Tm	GC%	Self complementarity	Self 3' complementarity
Forward primer	TGGCTTACTGTCTTCCGTGTTG	Plus	22	3798	3819	62.77	50.00	3.00	0.00
Reverse primer	TGTGTGGGCACTCACAATTC	Minus	20	3065	3086	62.95	55.00	3.00	3.00

Product length: 108

Total intron size: 668 (between pos. 7019488 and 7019557 on [NT_010718.17](https://www.ncbi.nlm.nih.gov/nuccore/NT_010718.17))

Products on intended target

>NM_000537.4 Homo sapiens polymerase (RNA) II (DNA directed) polypeptide A, 220kDa (POLR2A), mRNA

product length = 108

Forward primer	TGGCTTACTGTCTTCCGTGTTG	22
Template	3798 	3819
Reverse primer	TGTGTGGGCACTCACAATTC	20
Template	3905 	3886

POLR2A PrimerCheck (SpliceCenter der Genomics and Bioinformatics Group, LMP, CCR, NCI, http://projects.insilico.us/SpliceCenter/PrimerCheck.jsp)
POLR2A UCSC In-silico-PCR Genome Browser (Dec. 2013 GRCh38/hg38; UCSC Genes; Max. Product Size: 4000; Min. Perfect Match: 15; Min. Good Match: 15; Jim Kent, http://genome-mirror.genomedk.au.dk/cgi-bin/hgPcr)

The sequences and coordinates shown below are from UCSC Genes, not from the genome assembly. The links lead to the Genome Browser at the position of the entire target sequence.

```
>yeO32esq.1    POLR2A:379643008  108bp TCAGCTACTGTCTCTCTCTGCCC  TGGTGTGGAGAGCACACCTCC
TCAGCTACTGTCTCTCTCTGCCC  TGGTGTGGAGAGCACACCTCC
5'caagatatctgtgctctggtgcatataaagttggtggtaggagtGACTGCTTCATAGTGGCAACACTGCGCCAGCTAGGCTGGT
3'                                           CCAACACA
```

POLR2A UNAFold (Integrated DNA Technologies Inc., Coralville, IA, USA, http://eu.idtdna.com/UNAFold, Suboptimality 50%)

POLR2A Amplicon Sequence

5' TCGCTTACTGTCTTCATTGGGCCAGTCCGCTCGAGATGCTGAGAGAGCCAAGGATATTCTGTGCCGCTTGAGCATACAAACGTGAGGAAGTTGAGTTGACTGCTTCATAGTGGCAACACTGCGCCAGCTAGGCTGGT
3'

Structures

Structure Name	Image	ΔG (kcal.mole⁻¹)	Tm (°C)	ΔH (kcal.mole⁻¹)	ΔS (cal.K⁻¹.mole⁻¹)	Output
1	![Structure Image]	0.11	58.7	-28	-84.38	Ct Det
2	![Structure Image]	0.63	48.7	-18.1	-56.23	Ct Det
3	![Structure Image]	0.64	50.7	-22.2	-68.55	Ct Det
4	![Structure Image]	0.83	49.9	-26.6	-82.35	Ct Det
POLR2A BeaconDesigner™ Free Edition (Premier BioSoft International, Palo Alto, CA, USA, http://www.premierbiosoft.com/qOligo/Oligo.jsp?PID=1)

Secondary Structures for Sense Primer

Dimer:

Not Found

Hairpin:

Not Found

Secondary Structures for Anti-sense Primer

Dimer:

5' TGTGGCTGCACTACCGCTGCTGCTTG 3'
||| ||| |||
3' CCTCCCAGCTGACCGTGTGTG 5'
-1.3

Cross Dimer

5' TCGCTACTGCTCTCTCTTGG 3'
||| ||| |||
3' CCTCCCAGCTGACCGTGTGTG 5'
-2.5

Cross Dimer between Sense Primer and Anti-sense Primer:

5' TCGCTACTGCTCTCTCTTGG 3'
||| |||
3' CCTCCCAGCTGACCGTGTGTG 5'
-1.1

5' TGTGGCTGCACTACCGCTGCTGCTTG 3'
||| ||| |||
3' CCTCCCAGCTGACCGTGTGTG 5'
-1.3
TBP PrimerBLAST (National Center for Biotechnology Information, Bethesda MD, USA, https://www.ncbi.nlm.nih.gov/tools/primer-blast)

Primer pair 1	Sequence (5’->3’)	Template strand	Length	Start	Stop	Tm	GC%	Self complementarity	Self 3’ complementarity
Forward primer	CGGCTGTAAACTGCGTTCC	Plus	21	79	99	62.54	52.38	5.00	0.00
Reverse primer	TGGTTTATCTTCACACGCAAG	Minus	22	164	143	63.37	50.00	3.00	2.00
Product length	86								
Total intron size	2418 (between pos. 110324529 and 110326948 on NT_025741.16)								

Products on intended target
>NM_003194.4 Homo sapiens TATA box binding protein (TBP), transcript variant 1, mRNA
product length = 86
Forward primer 1 GGGCTGTAAACTGCGTTCC 21
Template 79 99
Reverse primer 1 TGGTTTATCTTCACACGCAAG 22
Template 164 143

TBP UCSC In-silico-PCR Genome Browser (Dec. 2013 GRCh38/hg38; UCSC Genes; Max. Product Size: 4000; Min. Perfect Match: 15; Min. Good Match: 15; Jim Kent, http://genome-mirror.genomedk.au.dk/cgi-bin/hgPcr)

UCSC In-Silico PCR

The sequences and coordinates shown below are from UCSC Genes, not from the genome assembly. The links lead to the Genome Browser at the position of the entire target sequence.

>uc003qwu.3_TBP:79+164 86bp CGGCTGTAAACTGCGTTCC TGGTTTATCTTCACACGCAAG
CGGCTGTAAACTGCGTTCCGcggcccatagcttttgcagtgacc
cacgcatcactgtttCTTGCCGTGTGAAGATAACCCA

>uc003qxt.3_TBP:79+167 89bp CGGCTGTAAACTGCGTTCC TGGTTTATCTTCACACGCAAG
CGGCTGTAAACTGCGTTCCGtggcccatagcttttgcagtgacc
cacgcatcactgtttCTTGCCGTGTGAAGATAACCCA
TBP PrimerCheck (SpliceCenter der Genomics and Bioinformatics Group, LMP, CCR, NCI, http://projects.insilico.us/SpliceCenter/PrimerCheck.jsp)
TBP UNAFold (Integrated DNA Technologies Inc., Coralville, IA, USA, http://eu.idtdna.com/UNAFold, Suboptimality 50%)

TBP Amplicon Sequence

5’ CGGCTGTTTAACCTTGCTTCCGGCCATAGTGATCTTTGCGATGACCAGCATCAGTGTGTCTTTGGCCTGGTGAAGATAACCCA 3’

Structures

Structure Name	Image	ΔG (kcal.mole⁻¹)	Tm (°C)	ΔH (kcal.mole⁻¹)	ΔS (cal.K⁻¹.mole⁻¹)	Output
1	![Image](image1.png)	0.26	58.1	-46.1	-139.15	Ct Det
2	![Image](image2.png)	0.69	53.2	-42.5	-130.23	Ct Det
3	![Image](image3.png)	1.15	44.4	-23.5	-74	Ct Det

![Graphs](image4.png)
TBP BeaconDesigner™ Free Edition (Premier BioSoft International, Palo Alto, CA, USA, http://www.premierbiosoft.com/qOligo/Oligo.jsp?PID=1)

Secondary Structures for Sense Primer

Dimer:

3' CGCGCTTTTAACCTCGCTCC 3'

3' CGACCGCAACTCTTATTTGGGT 5'

5' CGCGCTTTTAACCTCGCTCC 3'

5' CGACCGCAACTCTTATTTGGGT 5'

Hairpin:

Not Found

Secondary Structures for Anti-sense Primer

Dimer:

5' CGCGCTTTTAACCTCGCTCC 3'

5' CGACCGCAACTCTTATTTGGGT 5'

3' CGCGCTTTTAACCTCGCTCC 3'

3' CGACCGCAACTCTTATTTGGGT 5'

Hairpin:

/TATTTTATTTT/ 5'

/TATTTTATTTT/ 3'

/AATTATTATTATT/ 5'

/AATTATTATTATT/ 3'

Cross Dimer

Cross Dimer between Sense Primer and Anti-sense Primer:

5' CGCGCTTTTAACCTCGCTCC 3'

5' CGCGCTTTTAACCTCGCTCC 3'

3' CGACCGCAACTCTTATTTGGGT 5'

3' CGACCGCAACTCTTATTTGGGT 5'

Secondary Structures for Cross Dimer

5' CGCGCTTTTAACCTCGCTCC 3'

3' CGACCGCAACTCTTATTTGGGT 5'

Hairpin:

Not Found

Secondary Structures for Hairpin

/TATTTTATTTT/ 5'

/TATTTTATTTT/ 3'

/AATTATTATTATT/ 5'

/AATTATTATTATT/ 3'

RPL22 PrimerBLAST (National Center for Biotechnology Information, Bethesda MD, USA, https://www.ncbi.nlm.nih.gov/tools/primer-blast)

Primer pair 1	Sequence (5'→3')	Template strand	Length	Start	Stop	Tm	GC%	Self complementarity	Self 3' complementarity
Forward primer	TGATGCCACCCACCTGTAG	Plus	20	115	134	62.18	55.00	4.00	2.00
Reverse primer	GGTCCCCAGCTTTCCGTTT	Minus	20	212	193	61.84	55.00	4.00	0.00
Product length	98								
Total intron size	4597 (between pos. 5611664 and 5607066 on NT_032977.10)								

Products on intended target

>NM_000983.3 Homo sapiens ribosomal protein L22 (RPL22), mRNA

Product length	98	
Forward primer	TGATGCCACCCACCTGTAG	20
Template	115	134
Reverse primer	GGTCCCCAGCTTTCCGTTT	20
Template	212	193

RPL22 UCSC In-silico-PCR Genome Browser (Dec. 2013 GRCh38/hg38; UCSC Genes; Max. Product Size: 4000; Min. Perfect Match: 15; Min. Good Match: 15; Jim Kent, http://genome-mirror.genomedk.au.dk/cgi-bin/hgPcr).

UCSC In-Silico PCR

The sequences and coordinates shown below are from UCSC Genes, not from the genome assembly. The links lead to the Genome Browser at the position of the entire target sequence.

> prod1b4_a3_chr22:115:212 99bp TGGATGCCAAGCTTGTAG GGTCCCCAGCTTTCCGTTT
TGGATGCCAAGCTTGTAG actgacttatgtagactgactattttttt
acgtttttttacagtgaaggttcctcaaggtgacactgacccgaacaagtgggagacc
> prod1b4_a3_chr22:115:212 99bp TGGATGCCAAGCTTGTAG GGTCCCCAGCTTTCCGTTT
TGGATGCCAAGCTTGTAG actgacttatgtagactgactattttttt
acgtttttttacagtgaaggttcctcaaggtgacactgacccgaacaagtgggagacc
RPL22 PrimerCheck (SpliceCenter der Genomics and Bioinformatics Group, LMP, CCR, NCI, http://projects.insilico.us/SpliceCenter/PrimerCheck.jsp)

Exons

Exon	Primer 1	Primer 2
BC035566		
BC058687		
CR458573		
D17652		
NM_000963	Primer 1	Primer 2

RPL22 UNAFold (Integrated DNA Technologies Inc., Coralville, IA, USA, http://eu.idtdna.com/UNAFold?, Suboptimality 50%)

RPL22 Amplicon Sequence

5' TGATTGCACCACCCTGTAGAAGATGGATGTGCTGCAATTTTGTAGCAGTTTTTGCAAGAAAGGATCAAAGTGAACGGAAAAGCTGGGAACC 3'

Structures

Structure Name	Image	ΔG (kcal mol$^{-1}$)	T_M (°C)	ΔH (kcal mol$^{-1}$)	ΔS (cal K$^{-1}$ mol$^{-1}$)	Output
1	![Image](image1.png)	0.34	56.4	-30.8	-90.47	Ct Det
2	![Image](image2.png)	0.34	52.5	-14.9	-45.75	Ct Det
3	![Image](image3.png)	0.68	52.9	-31	-95.09	Ct Det
4	![Image](image4.png)	1.17	44.3	-23.8	-74.97	Ct Det
Secondary Structures for Sense Primer

Dimer: -

5' TGAATTGCACCCACCGCTTAG 3'
 || ||| |||
3' GATGCTCCCACCCACCGTTAG 5'

Hairpin: -
Not Found

Secondary Structures for Anti-sense Primer

Dimer: -

5' CTTGCCCTTCGGACCCCTGG 3'
 ||||
3' CTGGCCCTTTCGGACCCCTGG 5'

Cross Dimer

Cross Dimer between Sense Primer and Anti-sense Primer: -

5' TGAATTGCACCCACCGCTTAG 3'
 || ||| |||
3' CTGGCCCTTTCGGACCCCTGG 5'

5' TGAATTGCACCCACCGCTTAG 3'
 ||||
3' CTGGCCCTTTCGGACCCCTGG 5'

Hairpin: -
Not Found

RPL22 BeaconDesigner™ Free Edition (Premier BioSoft International, Palo Alto, CA, USA, http://www.premierbiosoft.com/qOligo/Oligo.jsp?PID=1)
EEF1A1 PrimerBLAST (National Center for Biotechnology Information, Bethesda MD, USA, https://www.ncbi.nlm.nih.gov/tools/primer-blast)

Primer pair 1	Sequence (5'-3')	Template strand	Length	Start	Stop	Tm	GC%	Self complementarity	Self 3' complementarity
Forward	CTGGGTCTCAGGATGTTCTAC	Plus	22	604	825	64.13	59.09	5.00	2.00
Reverse	GGAGAACGGATGCTCAGCATC	Minus	22	908	887	63.70	54.55	6.00	2.00
Product length	105								
Total intron size	87 (between pos. 12388604 and 12388670 on NT_025741.16)								

Products on intended target

NM_001492.5 Homo sapiens eukaryotic translation elongation factor 1 alpha 1 (EEF1A1), mRNA

product length = 105

Forward primer 1: CTGGGTCTCAGGATGTTCTAC 22

Template

Product	Sequence (5'-3')	Template strand	Length	Start	Stop	Tm	GC%	Self complementarity	Self 3' complementarity
1	GGAGAACGGATGCTCAGCATC	Minus	22	908	887	63.70	54.55	6.00	2.00

Products on allowed transcript variants

XM_011325514.1 PREDICTED: Homo sapiens eukaryotic translation elongation factor 1 alpha 1 (EEF1A1), transcript variant X1, mRNA

product length = 105

Forward primer 1: CTGGGTCTCAGGATGTTCTAC 22

Template

Product	Sequence (5'-3')	Template strand	Length	Start	Stop	Tm	GC%	Self complementarity	Self 3' complementarity
1	GGAGAACGGATGCTCAGCATC	Minus	22	908	887	63.70	54.55	6.00	2.00

UCSF In-silico-PCR Genome Browser (Dec. 2013 GRCh38/hg38; UCSC Genes; Max. Product Size: 4000; Min. Perfect Match: 15; Min. Good Match: 15; Jim Kent, http://genome-mirror.genomedk.au.dk/cgi-bin/hgPcr)

UCSF In-Silico PCR

The sequences and coordinates shown below are from UCSC Genes, not from the genome assembly. The links lead to the Genome Browser at the position of the entire target sequence.

[Sequence links]

46
EEF1A1 PrimerCheck (SpliceCenter der Genomics and Bioinformatics Group, LMP, CCR, NCI, http://projects.insilico.us/SpliceCenter/PrimerCheck.jsp)
EEF1A1 UNAFold (Integrated DNA Technologies Inc., Coralville, IA, USA, http://eu.idtdna.com/UNAFold, Suboptimality 50%)

EEF1A1 Amplicon Sequence

5' CCTGCCTCTCCAGGATGTCTACAAAAATTTGGTGATTTGTACTGTCTCTGTTGGCCGAGTGAGACTGTGTTCCTCAAACCCGTTATGTTGTCACCTTTGCTCC 3'

Structures

Structure Name	Image	\(\Delta G\) (kcal mole\(^{-1}\))	\(T_m\) (°C)	\(\Delta H\) (kcal mole\(^{-1}\))	\(\Delta S\) (cal. K\(^{-1}\) mole\(^{-1}\))	Output
1	![Image](image1.png)	0.5	54.3	-28.9	-88.25	Ct Det
2	![Image](image2.png)	0.59	49.7	-18.5	-57.3	Ct Det
3	![Image](image3.png)	0.63	48.7	-18.1	-56.23	Ct Det
4	![Image](image4.png)	0.84	45.1	-18	-56.56	Ct Det
5	![Image](image5.png)	0.67	51.3	-32.5	-100.19	Ct Det
6	![Image](image6.png)	1.12	40.6	-18.2	-58.01	Ct Det
7	![Image](image7.png)	1.33	43.5	-25.4	-80.22	Ct Det
8	![Image](image8.png)	1.39	18.4	-9.7	-33.29	Ct Det
9	![Image](image9.png)	1.44	15.8	-9.4	-32.53	Ct Det
Cross Dimer between Sense Primer and Anti-sense Primer:

5' CCTGCTCTCCAGGATGCTCTAC 3'
 ||||| 3' CATACCACASTGGGAAACGAGG 5'
-2.9

5' CCTGCTCTCTCCAGGATGCTCTAC 3'
 ||||| 3' CATACCACASTGGGAAACGAGG 5'
-2.0

5' CCTGCTCTCCAGGATGCTCTAC 3'
 ||||| 3' CATACCACASTGGGAAACGAGG 5'
-1.3

5' CCTGCTCTCTCCAGGATGCTCTAC 3'
 ||||| 3' CATACCACASTGGGAAACGAGG 5'
-1.3

5' CCTGCTCTCCAGGATGCTCTAC 3'
 ||||| 3' CATACCACASTGGGAAACGAGG 5'
-1.3

5' CCTGCTCTCCAGGATGCTCTAC 3'
 ||||| 3' CATACCACASTGGGAAACGAGG 5'
-1.1

5' CCTGCTCTCCAGGATGCTCTAC 3'
 ||||| 3' CATACCACASTGGGAAACGAGG 5'
-1.0

5' CCTGCTCTCTCCAGGATGCTCTAC 3'
 ||||| 3' CATACCACASTGGGAAACGAGG 5'
-0.5
RPLP0 PrimerBLAST (National Center for Biotechnology Information, Bethesda MD, USA, https://www.ncbi.nlm.nih.gov/tools/primer-blast)

Primer pair 1	Sequence (5’→3’)	Template strand	Length	Start	Stop	Tm	GC%	Self complementarity	Self 3’ complementarity	
Forward primer	GAAACTCCTGATCTGCTGCC	Plus	22	802	823	62	34	50.00	4.00	0.00
Reverse primer	GACCTGTTGATCCCCGTGAAG	Minus	22	921	900	62	01	50.00	4.00	0.00
Product length	120									
Total intron size	1091 (between pos. 82903362 and 82902921 on NT_029416.13)									

Products on intended target

>NM_001602.3 Homo sapiens ribosomal protein, large P0 (RPLP0), transcript variant 1, mRNA
product length = 120
Forward primer 1 | GAAACTCCTGATCTGCTGCC | 22
Template | 802 | 823
Reverse primer 1 | GACCTGTTGATCCCCGTGAAG | 22
Template | 921 | 900

Products on allowed transcript variants

>NM_003757.3 Homo sapiens ribosomal protein, large P0 (RPLP0), transcript variant 2, mRNA
product length = 120
Forward primer 1 | GAAACTCCTGATCTGCTGCC | 22
Template | 862 | 883
Reverse primer 1 | GACCTGTTGATCCCCGTGAAG | 22
Template | 981 | 960

RPLP0 UCSC In-silico-PCR Genome Browser (Dec. 2013 GRCh38/hg38; UCSC Genes; Max. Product Size: 4000; Min. Perfect Match: 15; Min. Good Match: 15; Jim Kent, http://genome-mirror.genomediak.au.dk/cgi-bin/hgPcr)

UCSC In-Silico PCR

The sequences and coordinates shown below are from UCSC Genes, not from the genome assembly. The links lead to the Genome Browser at the position of the entire target sequence.

http://genome-mirror.genomediak.au.dk/cgi-bin/hgPcr

52
RPLP0 PrimerCheck (SpliceCenter der Genomics and Bioinformatics Group, LMP, CCR, NCI, http://projects.insilico.us/SpliceCenter/PrimerCheck.jsp)

RPLP0
RPLP0 UNAFold

(Integrated DNA Technologies Inc., Coralville, IA, USA, http://eu.idtdna.com/UNAFold, Suboptimality 50%)

RPLP0 Amplicon Sequence

5' GAAACTCTGATTCTCCTGCTGAGGGGTGTCGCCAGTGTCTGCAGATTGGGTACCCACTGTTGCATCGATCCCCATTCTATCATCAACGGGTACAAACGAGTC 3'

Structures

Structure Name	Image	ΔG (kcal.mole⁻¹)	T_M (°C)	ΔH (kcal.mole⁻¹)	ΔS (cal.K⁻¹.mole⁻¹)	Output
1	![Image](image1.png)	0.15	59	-51	-153.54	Ct Det
2	![Image](image2.png)	0.67	52.1	-27.6	-84.86	Ct Det
3	![Image](image3.png)	0.69	52.3	-29.1	-99.41	Ct Det
4	![Image](image4.png)	0.76	50.8	-26.9	-83.03	Ct Det
5	![Image](image5.png)	0.85	49.4	-25.9	-80.29	Ct Det
6	![Image](image6.png)	0.95	55.1	-63.5	-193.46	Ct Det
7	![Image](image7.png)	1.12	42.1	-19.7	-62.49	Ct Det
Secondary Structures for Sense Primer

Dimer:

```
5' GAAACTCTGTACATCTGCTCC 3' 
| | | |  |
3' GTAGTGGCCATGTGCTGTCG 5' 
```

Hairpin:

```
/CTCTCAAGS 5' 
|  
\TCTCTAGG 3' 
```

Cross Dimer

Cross Dimer between Sense Primer and Anti-sense Primer:

```
5' GAAACTCTGTACATCTGCTCC 3' 
| | | |  |
3' GTAGTGGCCATGTGCTGTCG 5' 
```

Secondary Structures for Anti-sense Primer

Dimer:

```
5' GTAGTGGCCATGTGCTGTCG 3' 
| | | |  |
3' GAAACTCTGTACATCTGCTCC 5' 
```

Hairpin:

```
Not Found 
```
RNA18S5 PrimerBLAST (National Center for Biotechnology Information, Bethesda MD, USA, https://www.ncbi.nlm.nih.gov/tools/primer-blast)

Primer pair 1	Sequence (5’→3’)	Template strand	Length	Start	Stop	Tm	GC%	Self complementarity	Self 3’ complementarity
Forward primer	AACTGGGAATGGCTCATAAATC	Plus	23	84	106	60.55	39.13	6.00	3.00
Reverse primer	GCCCGTCGCCATGTATTAG	Minus	10	186	186	60.86	57.89	5.00	1.00
Product length	103								

RNA18S5 UCSC In-silico-PCR Genome Browser (Dec. 2013 GRCh38/hg38; UCSC Genes; Max. Product Size: 4000; Min. Perfect Match: 15; Min. Good Match: 15; Jim Kent, http://genome-mirror.genomedk.au.dk/cgi-bin/hgPcr).
RNA18S5-UNAFold (Integrated DNA Technologies Inc., Coralville, IA, USA, http://eu.idtdna.com/UNAFold?, Suboptimality 50%)

RNA18S5 Amplicon Sequence

5' AACTGCGAATGGCTCATTAATCAGTTATGGTTTCTTTGCTGCTGCTCCTCTCCTACTTTGATATCGTGAATTCTAGAGCTAATACATGCACAGGACGGCGG 3'

Structures					Output		
Structure Name	Image	ΔG (kcal.mole⁻¹)	Tm (°C)	ΔH (kcal.mole⁻¹)	ΔS (cal.K⁻¹.mole⁻¹)		
1		0.06	59.9	-25.6	-77.09	Ct	Det
2		0.77	47.2	-19.4	-60.55	Ct	Det
3		0.99	46.1	-22.8	-71.42	Ct	Det
RNA18S5 BeaconDesigner™ Free Edition (Premier BioSoft International, Palo Alto, USA, http://www.premierbiosoft.com/qOligo/Oligo.jsp?PID=1)

Cross Dimer

Cross Dimer between Sense Primer and Anti-sense Primer:

Dimer	Sequence 1	Sequence 2	Energy
1.7	5' AACTGGGCTTCATTAAAATC 3'		
	3' GATTATGACGCGCTGCCCG 5'	-2.4	

Cross Dimer between Anti-sense Primer and Anti-sense Primer:

Dimer	Sequence 1	Sequence 2	Energy
1.7	5' AACTGGGCTTCATTAAAATC 3'		
	3' GATTATGACGCGCTGCCCG 5'	-2.4	

Cross Dimer between Sense Primer and Sense Primer:

Dimer	Sequence 1	Sequence 2	Energy
2.4	5' AACTGGGCTTCATTAAAATC 3'		
	3' GATTATGACGCGCTGCCCG 5'	-0.5	

Cross Dimer between Anti-sense Primer and Sense Primer:

Dimer	Sequence 1	Sequence 2	Energy
2.4	5' AACTGGGCTTCATTAAAATC 3'		
	3' GATTATGACGCGCTGCCCG 5'	-2.4	

Cross Dimer between Anti-sense Primer and Sense Primer:

Dimer	Sequence 1	Sequence 2	Energy
0.0	5' AACTGGGCTTCATTAAAATC 3'		
	3' GATTATGACGCGCTGCCCG 5'	0.0	

Cross Dimer between Anti-sense Primer and Anti-sense Primer:

Dimer	Sequence 1	Sequence 2	Energy
0.0	5' AACTGGGCTTCATTAAAATC 3'		
	3' GATTATGACGCGCTGCCCG 5'	0.0	

Cross Dimer between Sense Primer and Sense Primer:

Dimer	Sequence 1	Sequence 2	Energy
0.3	5' AACTGGGCTTCATTAAAATC 3'		
	3' GATTATGACGCGCTGCCCG 5'	0.3	
Supplementary Data 2. RNA integrity analysis. Experimental groups: K7-K12 = control; D7-D12 = compressive orthodontic force; Agac7-Agac12 = bacterial lysate (periodontitis).
Electrophoresis File Run Summary (Chip Summary)

Sample Name	Sample Comment	Status	Result Label	Result Color
58 Z2 K		✔️	RIN:10	
58 Z2 D		✔️	RIN:10	
60 Z2 K		✔️	RIN: 9.70	
60 Z2 D		✔️	RIN: 9.60	
62 Z2 K		✔️	RIN:10	
62 Z2 D		✔️	RIN: 9.80	
K7		✔️	RIN:10	
K8		✔️	RIN: 9.90	
K9		✔️	RIN:10	
K10		✔️	RIN:10	
K11		✔️	RIN: 9.90	
K12		✔️	RIN: 9.90	
Ladder		✔️	All Other Samples	

Chip Comments:

-

Assay Class: Eukaryote Total RNA Nano
Data Path: E:\...Eukaryote Total RNA Nano_DE72901710_2017-03-08_10-01-40.xad
Created: 08.03.2017 10:01:40
Modified: 08.03.2017 10:25:31

© Copyright 2003 - 2009 Agilent Technologies, Inc.

Printed: 08.03.2017 10:13:43
Electrophoresis Assay Details

General Analysis Settings
Number of Available Sample and Ladder Wells (Max.) : 13
Minimum Visible Range [s] : 17
Maximum Visible Range [s] : 70
Start Analysis Time Range [s] : 19
End Analysis Time Range [s] : 69
Ladder Concentration (ng/µl) : 150
Lower Marker Concentration (ng/µl) : 0
Upper Marker Concentration (ng/µl) : 0
Used Lower Marker for Quantitation
Standard Curve Fit is Logarithmic
Show Data Aligned to Lower Marker

Integrator Settings
Integration Start Time [s] : 19
Integration End Time [s] : 69
Slope Threshold : 0.6
Height Threshold [FU] : 0.5
Area Threshold : 0.2
Width Threshold [s] : 0.5
Baseline Plateau [s] : 6

Filter Settings
Filter Width [s] : 0.5
Polynomial Order : 4

Ladder

Ladder Peak	Size
1	25
2	200
3	500
4	1000
5	2000
6	4000
Electropherogram Summary Continued ...

Overall Results for sample 7: **K7**

- RNA Area: 1.347.6
- RNA Integrity Number (RIN): 10 (B.02.08)
- RNA Concentration: 471 ng/μl
- Result Flagging Color: **RIN:10**
- Result Flagging Label: **RIN:10**
- rRNA Ratio (28s / 18s): 1.8

Fragment table for sample 7: **K7**

Name	Start Time [s]	End Time [s]	Area	% of total Area
18S	41.44	42.97	298.3	22.1
28S	47.40	50.59	547.4	40.6
Overall Results for sample 8: K8

- **RNA Area:** 1,892,6
- **RNA Integrity Number (RIN):** 9.9 (B.02.08)
- **RNA Concentration:** 661 ng/µl
- **rRNA Ratio [28s / 18s]:** 1.8
- **Result Flagging Color:**
- **Result Flagging Label:** RIN: 9.90

Fragment table for sample 8: K8

Name	Start Time [s]	End Time [s]	Area	% of total Area
18S	41,39	42,92	424,1	22.4
28S	47,31	50,51	757,6	40.0
Overall Results for sample 9: **K9**

- RNA Area: 1.413.9
- RNA Integrity Number (RIN): 10 (B.02.08)
- RNA Concentration: 494 ng/μl
- rRNA Ratio [28s / 18s]: 1.8

Result Flagging Color: [Color representation]
Result Flagging Label: RIN:10

Fragment table for sample 9: **K9**

Name	Start Time [s]	End Time [s]	Area	% of total Area
18S	41,34	42,87	312,2	22,1
28S	47,23	50,47	568,9	40,2
Electropherogram Summary Continued ...

Overall Results for sample 10 : K10

- RNA Area: 1,661,9
- RNA Concentration: 581 ng/ul
- rRNA Ratio [28s / 18s]: 1,8
- RNA Integrity Number (RIN): 10 (B.02.08)
- Result Flagging Color: [Gray]
- Result Flagging Label: RIN:10

Fragment table for sample 10 : K10

Name	Start Time [s]	End Time [s]	Area	% of total Area
18S	41,27	42,76	358,9	21,6
28S	47,14	50,36	652,4	39,3
Overall Results for sample 11: **K11**

Parameter	Value
RNA Area	1.426.2
RNA Integrity Number (RIN)	9.9 (B.02.08)
RNA Concentration	499 ng/μl
rRNA Ratio [28s / 18s]	1.8

Result Flagging Label: RIN: 9.90

Fragment table for sample 11: **K11**

Name	Start Time [s]	End Time [s]	Area	% of total Area
18S	41,26	42,75	306,4	21,5
28S	47,15	50,19	555,1	38,9
Overall Results for sample 12 : **K12**

RNA Area:	1,415,8	RNA Integrity Number (RIN):	9.9 (B.02.08)
RNA Concentration:	495 ng/μl	Result Flagging Color:	
rRNA Ratio [28s / 18s]:	1,7	Result Flagging Label:	RIN: 9.90

Fragment table for sample 12 : **K12**

Name	Start Time [s]	End Time [s]	Area	% of total Area
18S	40,54	42,93	318,9	22,5
28S	47,21	50,50	528,1	37,3
Electrophoresis File Run Summary (Chip Summary)

Sample Name	Sample Comment	Status	Result Label	Result Color
D7		✔	RIN: 9.50	
D8		✔	RIN: 9.80	
D9		✔	RIN:10	
D10		✔	RIN: 9.80	
D11		✔	RIN: 9.80	
D12		✔	RIN: 9.80	
Agac7		✔	RIN: 9.90	
Agac8		✔	RIN:10	
Agac9		✔	RIN: 9.80	
Agac10		✔	RIN: 9.80	
Agac11		✔	RIN: 9.50	
Agac12		✔	RIN: 9.90	
Ladder		✔	All Other Samples	

Chip Lot #

Reagent Kit Lot #

Chip Comments:
Assay Class: Eukaryote Total RNA Nano
Data Path: E:\..\Eukaryote Total RNA Nano_DE72901710_2017-03-08_10-30-01.xad

Electrophoresis Assay Details

General Analysis Settings
Number of Available Sample and Ladder Wells (Max.): 13
Minimum Visible Range [s]: 17
Maximum Visible Range [s]: 70
Start Analysis Time Range [s]: 19
End Analysis Time Range [s]: 69
Ladder Concentration [ng/μl]: 150
Lower Marker Concentration [ng/μl]: 0
Upper Marker Concentration [ng/μl]: 0
Used Lower Marker for Quantitation
Standard Curve Fit is Logarithmic
Show Data Aligned to Lower Marker

Integrator Settings
Integration Start Time [s]: 19
Integration End Time [s]: 69
Slope Threshold: 0.6
Height Threshold [FU]: 0.5
Area Threshold: 0.2
Width Threshold [s]: 0.5
Baseline Plateau [s]: 6

Filter Settings
Filter Width [s]: 0.5
Polynomial Order: 4

Ladder

Ladder Peak	Size
1	25
2	200
3	500
4	1000
5	2000
6	4000
Electropherogram Summary

Overall Results for sample 1:

RNA Area: 479.7
RNA Concentration: 201 ng/μl
rRNA Ratio [28s / 18s]: 1.6

RNA Integrity Number (RIN): 9.5 (B.02.08)
Result Flagging Color:
Result Flagging Label: RIN: 9.50

Fragment table for sample 1:

Name	Start Time [s]	End Time [s]	Area	% of total Area
18S	40,71	42,91	97,1	20,2
28S	47,39	50,41	156,1	32,5
Overall Results for sample 2:

RNA Area: 718.9
RNA Concentration: 302 ng/μl
rRNA Ratio [28s / 18s]: 1.7

RNA Integrity Number (RIN): 9.8 (B.02.08)
Result Flagging Color:
Result Flagging Label: RIN: 9.80

Fragment table for sample 2:

Name	Start Time [s]	End Time [s]	Area	% of total Area
18S	41.32	42.92	153.6	21.4
28S	47.13	50.61	267.8	37.2
Electropherogram Summary Continued...

Overall Results for sample 3: **D9**

Parameter	Value
RNA Area	520.9
RNA Integrity Number (RIN)	10
RNA Concentration	219 ng/µl
rRNA Ratio 28s / 18s	1.6

Fragment table for sample 3: **D9**

Name	Start Time [s]	End Time [s]	Area	% of total Area
18S	40.72	42.93	120.5	23.1
28S	47.60	50.58	196.5	37.7
Electropherogram Summary Continued ...

Overall Results for sample 4 : **D10**

Parameter	Value
RNA Area	534.3
RNA Integrity Number (RIN)	9.8 (B.02.08)
RNA Concentration	224 ng/μl
rRNA Ratio [28s / 18s]	1.6

Result Flagging Color: [Blank]
Result Flagging Label: RIN: 9.80

Fragment table for sample 4 : **D10**

Name	Start Time [s]	End Time [s]	Area	% of total Area
18S	40.84	43.04	122.9	23.0
28S	47.35	50.60	197.5	37.0
Electropherogram Summary Continued ...

Overall Results for sample 5 :

- D11

RNA Area: 687.2
RNA Concentration: 289 ng/µl
rRNA Ratio [28s / 18s]: 1.6

RNA Integrity Number (RIN): 9.8
Result Flagging Color: [Red]
Result Flagging Label: RIN 9.80

Fragment table for sample 5 :

Name	Start Time [s]	End Time [s]	Area	% of total Area
18S	40,69	43,09	156,2	22,7
28S	47,39	50,65	247,1	36,0
Overall Results for sample 6 :

D12

- RNA Area: 942.6
- RNA Concentration: 396 ng/µl
- RNA Integrity Number (RIN): 9.8 (B.02.08)
- Result Flagging Color:
- Result Flagging Label: RIN: 9.80

Fragment table for sample 6 :

D12

Name	Start Time [s]	End Time [s]	Area	% of total Area
18S	41.31	42.89	207.1	22.0
28S	47.15	50.55	357.4	37.9
Electropherogram Summary Continued ...

Overall Results for sample 7: *Agac7*
- RNA Area: 1,665,2
- RNA Integrity Number (RIN): 9.9 (B.02.08)
- RNA Concentration: 657 ng/µl
- rRNA Ratio [28s / 18s]: 1.7
- Result Flagging Color: [Color Swatch]
- Result Flagging Label: RIN: 9.90

Fragment table for sample 7: *Agac7*

Name	Start Time [s]	End Time [s]	Area	% of total Area
18S	41.26	42.79	341.8	21.8
28S	47.01	50.37	595.8	38.1
Electropherogram Summary Continued...

Overall Results for sample 8: **Agac8**

Parameter	Value
RNA Area:	713.4
RNA Integrity Number (RIN):	10 (B.02.08)
RNA Concentration:	300 ng/μl
rRNA Ratio [28s / 18s]:	1.6
Result Flagging Color:	RIN:10
Result Flagging Label:	

Fragment table for sample 8: **Agac8**

Name	Start Time [s]	End Time [s]	Area	% of total Area
18S	41.25	42.84	147.8	20.7
28S	47.36	50.34	267.2	37.7
Overall Results for sample 9:
Agac9

- **RNA Area:** 944.4
- **RNA Concentration:** 397 ng/µl
- **rRNA Ratio [28s / 18s]:** 1.8
- **RNA Integrity Number (RIN):** 9.8 (B.02.08)
- **Result Flagging Color:**
 - **Result Flagging Label:** RIN: 9.80

Fragment table for sample 9:
Agac9

Name	Start Time [s]	End Time [s]	Area	% of total Area
18S	41,23	42,73	186.9	19.8
28S	46,98	50,21	333.0	35.3
Overall Results for sample 10: **Agac10**

RNA Area:	1.401.0	RNA Integrity Number (RIN):	9.8 (B.02.08)
RNA Concentration:	588 ng/µl	Result Flagging Color:	-
rRNA Ratio [28s / 18s]:	1.8	Result Flagging Label:	RIN: 9.80

Fragment table for sample 10: **Agac10**

Name	Start Time [s]	End Time [s]	Area	% of total Area
18S	41,12	42,62	294,2	21,0
28S	46,21	50,14	527,0	37,6
Electropherogram Summary Continued ...

Overall Results for sample 11 : **Agac11**
- RNA Area: 705,5
- RNA Concentration: 296 ng/μl
- rRNA Ratio [28s / 18s]: 1,6
- RNA Integrity Number (RIN): 9.5 (B.02.08)
- Result Flagging Color:
- Result Flagging Label: RIN: 9.50

Fragment table for sample 11 : **Agac11**

Name	Start Time [s]	End Time [s]	Area	% of total Area
18S	40,32	42,76	133,9	19,0
28S	47,14	50,36	218,9	31,0
Overall Results for sample 12: **Agac12**

- RNA Area: 985.1
- RNA Concentration: 414 ng/ul
- rRNA Ratio [28s / 18s]: 1.6

RNA Integrity Number (RIN): 9.9 (B.02.08)

Result Flagging Color:
- **Result Flagging Label:** RIN: 9.90

Fragment table for sample 12: **Agac12**

Name	Start Time [s]	End Time [s]	Area	% of total Area
18S	40.52	42.71	216.0	21.9
28S	47.09	50.26	354.0	35.9
Supplementary Data 3. Amplification plot and Melting curve analysis (RT-qPCR).

qPCR program (used in all qPCR runs)

![qPCR program diagram](image)

GAPDH (main qPCR)

Amplification plot

Melting curve

PPIB (main qPCR)

Amplification plot

Melting curve

YWHAZ (main qPCR)

Amplification plot

Melting curve
POLR2A (main qPCR)

Amplification plot

Melting curve

TBP (main qPCR)

Amplification plot

Melting curve

RPL22 (main qPCR)

Amplification plot

Melting curve
EEF1A1 (main qPCR)

Amplification plot

Melting curve

RPLP0 (main qPCR)

Amplification plot

Melting curve

RNA18S5 (main qPCR)

Amplification plot

Melting curve
GAPDH (efficiency qPCR – standard curve)

Amplification plot

Melting curve

PPIB (efficiency qPCR – standard curve)

Amplification plot

Melting curve

YWHAZ (efficiency qPCR – standard curve)

Amplification plot

Melting curve
POLR2A (efficiency qPCR – standard curve)

Amplification plot

Melting curve

TBP (efficiency qPCR – standard curve)

Amplification plot

Melting curve

RPL22 (efficiency qPCR – standard curve)

Amplification plot

Melting curve
EEF1A1 (efficiency qPCR – standard curve)

Amplification plot

Melting curve

RPLP0 (efficiency qPCR – standard curve)

Amplification plot

Melting curve

RNA18S5 (efficiency qPCR – standard curve)

Amplification plot

Melting curve
Supplementary Data 4. Evaluation of qPCR primer efficiency (factor-specific). Log_{10} serial dilution of cDNA stock solution (1,000,000 pg RNA equivalent) was performed in triplets. From the resulting C_q values a standard curve was created by linear regression.

GAPDH (factor-specific primer efficiency)

Gene	RNA equivalent [pg]	C_q Triplet	C_q 95%CI	C_q Mean	C_q SD	cDNA dilution
GAPDH	100000	14.60	14.56/14.69	14.62	0.025	1:10
GAPDH	100000	14.65	14.63	14.67	0.025	1:10
GAPDH	100000	17.91	17.74/18.15	17.94	0.081	1:10^2
GAPDH	100000	17.89	18.04	18.05	0.081	1:10^2
GAPDH	100000	21.56	21.11/21.76	21.43	0.130	1:10^3
GAPDH	100000	21.30	21.44	21.47	0.130	1:10^3
GAPDH	100000	24.90	24.74/25.29	25.01	0.111	1:10^4
GAPDH	100000	25.03	25.12	25.18	0.111	1:10^4
GAPDH	100000	28.27	27.95/29.14	28.55	0.240	1:10^5
GAPDH	100000	28.69	28.68	28.74	0.240	1:10^5
GAPDH	100000	33.26	29.80/34.53	32.16	0.952	1:10^6
GAPDH	100000	31.55	31.68	31.68	0.952	1:10^6
GAPDH	100000	31.68	31.68	31.68	0.952	1:10^6
GAPDH	NTC	39.62				

- **y = 1E+09e^{0.659x}**
- **R² = 0.9998**

SD = standard deviation; NTC = no-template control; LDR = linear dynamic range; LOD = limit of detection; R² = coefficient of determination; CI = confidence interval
PPIB (factor-specific primer efficiency)

Gene	RNA equivalent [pg]	C_q	C_q 95%CI	C_q Mean	C_q SD	cDNA dilution
PPIB	100000	16.91	16.88/16.92	16.900	0.010	1:10
PPIB	100000	16.90	16.89	16.900	0.010	1:10
PPIB	100000	16.89		16.900	0.010	1:10
PPIB	10000	20.21	20.00/20.29	20.143	0.058	1:10²
PPIB	10000	20.11	20.00	20.143	0.058	1:10²
PPIB	10000	20.11		20.143	0.058	1:10²
PPIB	1000	23.72	23.60/23.90	23.750	0.061	1:10⁵
PPIB	1000	23.71	23.60	23.750	0.061	1:10⁵
PPIB	1000	23.71		23.750	0.061	1:10⁵
PPIB	100	27.19	26.90/27.94	27.420	0.210	1:10⁴
PPIB	100	27.47	26.90	27.420	0.210	1:10⁴
PPIB	100	27.61		27.420	0.210	1:10⁴
PPIB	10	31.14	30.21/31.66	30.933	0.291	1:10⁵
PPIB	10	30.60	30.21	30.933	0.291	1:10⁵
PPIB	10	31.06		30.933	0.291	1:10⁵
PPIB	1	33.62	31.18/39.97	35.573	1.770	1:10⁶
PPIB	1	36.03	31.18	35.573	1.770	1:10⁶
PPIB	1	37.07		35.573	1.770	1:10⁶
PPIB	NTC	35.92				

SD = standard deviation; NTC = no-template control; LDR = linear dynamic range; LOD = limit of detection; R² = coefficient of determination; CI = confidence interval

y = 5E+09e\(^{-0.651x}\)
R² = 0.9996

Slope [95% CI] = -3.509 [-3.808/-3.209]
% Efficiency [95% CI] = 92.7 [83.1/104.9]
LDR (dilution range) = 1:10 – 1:10⁵
LOD (dilution) ≤ 1:10⁶
YWHAZ (factor-specific primer efficiency)

Gene	RNA equivalent [pg]	cDNA dilution	C_q Triplet	C_q 95%CI	C_q Mean	C_q SD	Slope [95% CI]	% Efficiency [95% CI]	LDR (dilution range)	LOD (dilution)
YWHAZ	1000000	1:10	17.20	16.85/17.35	17.100	0.100	-3.488/-3.062	93.5	1:10 – 1:10^5	≤1:10^6
YWHAZ	100000	1:10	17.10	16.26/16.39	17.000	0.036	-3.07/1.18	99.5	1:10 – 1:10^3	≤1:10^3
YWHAZ	10000	1:10	17.00	16.21/16.39	17.000	0.036	-3.07/1.18	99.5	1:10 – 1:10^3	≤1:10^3
YWHAZ	1000	1:10	20.33	20.21/20.39	20.000	0.036	-3.07/1.18	99.5	1:10 – 1:10^3	≤1:10^3
YWHAZ	100	1:10	20.26	20.00/20.39	20.000	0.036	-3.07/1.18	99.5	1:10 – 1:10^3	≤1:10^3
YWHAZ	100	1:10	20.31	20.00/20.39	20.000	0.036	-3.07/1.18	99.5	1:10 – 1:10^3	≤1:10^3
YWHAZ	NTCP	-	-	-	-	-	-	-	-	-

SD = standard deviation; NTC = no-template control; LDR = linear dynamic range; LOD = limit of detection; R² = coefficient of determination; CI = confidence interval
POLR2A (factor-specific primer efficiency)

Gene	RNA equivalent [pg]	C_q Triplet	C_q 95%CI	C_q Mean	C_q SD	cDNA dilution
POLR2A	100000	20.01	19.93/20.13	20.033	0.040	1:10
	100000	20.08				
	100000	20.01				
POLR2A	10000	23.11	23.01/23.37	23.193	0.072	1:10²
	10000	23.23				
	10000	23.24				
POLR2A	1000	26.72	26.31/26.71	26.810	0.201	1:10³
	1000	27.04				
	1000	26.67				
POLR2A	100	30.51	29.72/30.98	30.593	0.352	1:10⁴
	100	30.29				
	100	30.98				
POLR2A	10	36.85	34.35/34.98	36.993	1.004	1:10⁶
	10	32.99				
	10	34.64				
POLR2A	1	37.83	34.50/34.99	36.993	1.004	1:10⁶
	1	35.88				
	1	37.27				
POLR2A	NTC	37.11				

SD = standard deviation; NTC = no-template control; LDR = linear dynamic range; LOD = limit of detection; R² = coefficient of determination; CI = confidence interval
TBP (factor-specific primer efficiency)

Gene	RNA equivalent [pg]	\(C_q\) Triplet	\(95\%\) CI	\(C_q\) Mean	\(C_q\) SD	cDNA dilution
TBP	100000	26.53	26.46/26.64	26.550	0.035	1:10
TBP	100000	26.53	26.46/26.64	26.550	0.035	1:10
TBP	100000	26.59	26.46/26.64	26.550	0.035	1:10
TBP	100000	26.59	26.46/26.64	26.550	0.035	1:10
TBP	100000	29.80	29.72/29.83	29.773	0.023	1:10^2
TBP	100000	29.76	29.72/29.83	29.773	0.023	1:10^2
TBP	100000	29.76	29.72/29.83	29.773	0.023	1:10^2
TBP	100000	29.76	29.72/29.83	29.773	0.023	1:10^2
TBP	100000	33.35	32.96/34.30	33.627	0.270	1:10^3
TBP	100000	33.64	32.96/34.30	33.627	0.270	1:10^3
TBP	100000	33.64	32.96/34.30	33.627	0.270	1:10^3
TBP	100000	33.64	32.96/34.30	33.627	0.270	1:10^3
TBP	100000	35.19	34.28/37.07	35.677	0.561	1:10^4
TBP	100000	35.55	34.28/37.07	35.677	0.561	1:10^4
TBP	100000	35.55	34.28/37.07	35.677	0.561	1:10^4
TBP	100000	35.55	34.28/37.07	35.677	0.561	1:10^4
TBP	100000	35.55	34.28/37.07	35.677	0.561	1:10^4
TBP	100000	35.55	34.28/37.07	35.677	0.561	1:10^4
TBP	100000	35.55	34.28/37.07	35.677	0.561	1:10^4
TBP	100000	35.55	34.28/37.07	35.677	0.561	1:10^4
TBP	100000	35.55	34.28/37.07	35.677	0.561	1:10^4
TBP	100000	35.55	34.28/37.07	35.677	0.561	1:10^4
TBP	100000	35.55	34.28/37.07	35.677	0.561	1:10^4
TBP	100000	35.55	34.28/37.07	35.677	0.561	1:10^4
TBP	100000	35.55	34.28/37.07	35.677	0.561	1:10^4
TBP	100000	35.55	34.28/37.07	35.677	0.561	1:10^4
TBP	100000	35.55	34.28/37.07	35.677	0.561	1:10^4
TBP	100000	35.55	34.28/37.07	35.677	0.561	1:10^4
TBP	100000	35.55	34.28/37.07	35.677	0.561	1:10^4
TBP	100000	35.55	34.28/37.07	35.677	0.561	1:10^4
TBP	100000	35.55	34.28/37.07	35.677	0.561	1:10^4
TBP	100000	35.55	34.28/37.07	35.677	0.561	1:10^4

SD = standard deviation; NTC = no-template control; LDR = linear dynamic range; LOD = limit of detection; \(R^2\) = coefficient of determination; CI = confidence interval

![Graph showing the relationship between TBP RNA equivalent and qC](chart.png)

\[
y = 3E+12e^{-0.649x} \\
R^2 = 0.9974
\]

Slope

-3.538 [95% CI]

Efficiency

91.7 [95% CI]

LDR (dilution range)

1:10 - 1:10^3

LOD (dilution)

1:10^4

[-7.540/0.465]
RPL22 (factor-specific primer efficiency)

Gene	RNA equivalent [pg]	C_q Triplet	C_q 95%CI	C_q Mean	C_q SD	cDNA dilution
RPL22	100000	18.09	17.88/18.19	18.037	0.061	1:10
RPL22	100000	20.86	20.77/20.91	20.840	0.026	1:10²
RPL22	10000	24.37	24.33/24.40	24.367	0.015	1:10³
RPL22	1000	28.18	28.04/28.45	28.247	0.083	1:10⁴
RPL22	100	32.68	31.59/33.24	32.413	0.333	1:10⁵
RPL22	10	34.16	-	34.160	0.000	1:10⁶
RPL22	NTC	-	-	-	-	-

SD = standard deviation; NTC = no-template control; LDR = linear dynamic range; LOD = limit of detection; R² = coefficient of determination; CI = confidence interval

![Graph showing the relationship between RNA equivalent and C_q for RPL22, with a linear equation and R² value provided.]
EEF1A1 (factor-specific primer efficiency)

Gene	RNA equivalent [pg]	C_q Triplet	C_q 95%CI	C_q Mean	C_q SD	cDNA dilution
EEF1A1	100000	16.72	16.25/17.20	16.727	0.190	1:10
EEF1A1	100000	16.92	16.54/17.20	16.727	0.190	1:10
EEF1A1	100000	16.54	16.25/17.20	16.727	0.190	1:10
EEF1A1	100000	19.16	18.76/19.61	19.187	0.172	1:10^2
EEF1A1	100000	19.37	19.03/19.61	19.187	0.172	1:10^2
EEF1A1	100000	19.03	18.76/19.61	19.187	0.172	1:10^2
EEF1A1	100000	22.54	22.21/23.44	22.820	0.248	1:10^3
EEF1A1	100000	23.01	22.21/23.44	22.820	0.248	1:10^3
EEF1A1	100000	22.91	22.21/23.44	22.820	0.248	1:10^3
EEF1A1	100000	25.53	24.81/27.44	26.127	0.529	1:10^4
EEF1A1	100000	26.31	24.81/27.44	26.127	0.529	1:10^4
EEF1A1	100000	26.54	24.81/27.44	26.127	0.529	1:10^4
EEF1A1	100000	30.23	29.38/30.60	29.987	0.245	1:10^5
EEF1A1	100000	29.74	29.38/30.60	29.987	0.245	1:10^5
EEF1A1	100000	29.99	29.38/30.60	29.987	0.245	1:10^5
EEF1A1	100000	33.03	31.70/33.71	32.703	0.405	1:10^6
EEF1A1	100000	32.83	31.70/33.71	32.703	0.405	1:10^6
EEF1A1	100000	32.25	31.70/33.71	32.703	0.405	1:10^6
EEF1A1	100000	-	-	-	-	-

SD = standard deviation; NTC = no-template control; LDR = linear dynamic range; LOD = limit of detection; R² = coefficient of determination; CI = confidence interval

\[
y = 7E+09e^{0.685x}
\]

\[
R^2 = 0.9951
\]

slope

-3.315 [95% CI -4.291/-2.339]

efficiency

100.3 [95% CI 71.0/167.6]

LDR (dilution range)

1:10 – 1:10^5

LOD (dilution)

\(\leq 1:10^6\)
RPLP0 (factor-specific primer efficiency)

Gene	RNA equivalent [pg]	C_q Triplet	C_q 95%CI	C_q Mean	C_q SD	cDNA dilution
RPLP0	100000	15.15	15.35	15.45		
	100000	14.94	/15.70	15.317	0.153	1:10
RPLP0	100000	18.52	18.40	18.60		
	100000	18.26	/18.76	18.507	0.101	1:10²
RPLP0	100000	22.30	22.34	22.25		
	100000	22.18	/22.41	22.297	0.045	1:10³
RPLP0	100000	25.61	26.20	26.27		
	100000	25.13	/26.93	26.027	0.363	1:10⁴
RPLP0	100000	29.30	29.22	29.54		
	100000	28.94	/29.77	29.353	0.167	1:10⁵
RPLP0	100000	32.49	32.16	32.22		
	100000	31.85	/32.73	32.290	0.176	1:10⁶
RPLP0	100000	39.62				

SD = standard deviation; NTC = no-template control; LDR = linear dynamic range; LOD = limit of detection; \(R^2 \) = coefficient of determination; CI = confidence interval
RNA18S5 (factor-specific primer efficiency)

Gene	RNA equivalent [pg]	C_q Triplet	C_q 95%CI	C_q Mean	C_q SD	cDNA dilution
RNA18S	100000	4.65	4.66/4.71	4.57	0.026	1:10
RNA18S	100000	4.66	4.61	4.60	0.026	1:10
RNA18S	100000	4.66	4.61	4.60	0.026	1:10
RNA18S	7.06	7.09/7.13	7.063	0.025	1:10^2	
RNA18S	7.04	7.09/7.13	7.063	0.025	1:10^2	
RNA18S	10.68	10.54/10.95	10.747	0.083	1:10^3	
RNA18S	10.72	10.54/10.95	10.747	0.083	1:10^3	
RNA18S	14.23	13.98/14.88	14.433	0.182	1:10^4	
RNA18S	14.49	13.98/14.88	14.433	0.182	1:10^4	
RNA18S	14.58	13.98/14.88	14.433	0.182	1:10^4	
RNA18S	17.66	17.50/18.05	17.777	0.111	1:10^5	
RNA18S	17.88	17.50/18.05	17.777	0.111	1:10^5	
RNA18S	17.79	17.50/18.05	17.777	0.111	1:10^5	
RNA18S	21.00	20.73/21.74	21.233	0.202	1:10^6	
RNA18S	21.35	20.73/21.74	21.233	0.202	1:10^6	
RNA18S	21.35	20.73/21.74	21.233	0.202	1:10^6	
RNA18S	NTC	35.26				

SD = standard deviation; NTC = no-template control; LDR = linear dynamic range; LOD = limit of detection; R² = coefficient of determination; CI = confidence interval

y = 2E+06e^(-0.677x)
R² = 0.9974

Slope [95% CI]	% Efficiency [95% CI]	LDR (dilution range)	LOD (dilution)
-3.319 [-3.967/-2.670] | 100.1 [78.7/136.9] | 1:10 – 1:10^6 | ≤1:10^6 |
Supplementary Data 5. Evaluation of a commercially available primer pair for TUBB (Qiagen, PPH17836A). Primer specificity was evaluated and confirmed by melting curve analysis (a,b) and agarose gel electrophoresis (c). d To calculate primer efficiency E_p, which was within the pre-specified acceptable range, a serial log$_{10}$ dilution of cDNA stock solution (1,000,000 pg RNA equivalent) was performed in triplets. From the resulting C$_q$ values a standard curve was created by linear regression. The 1:10 dilution used for qPCR for all genes/primers, however, was beyond the linear dynamic range LDR. e Amplification efficiency E_A was calculated with LinRegPCR and within the pre-specified acceptable range. f Raw qPCR C$_q$ values for TUBB (triplet means). g Reference gene stability rankings including TUBB as 10th candidate reference gene indicate low intergroup expression stability in hPDL experiments on orthodontic tooth movement and periodontitis.
(d) TUBB Primer efficiency (factor-specific)

Gene	RNA equivalent [pg]	C_q Triplet	C_q Mean	C_q SD	cDNA dilution
TUBB	1000000	19.65/19.79	19.583	0.083	1:10
TUBB	1000000	19.49/19.61	19.38/19.79	0.631	1:10²
TUBB	1000000	19.45/19.20	18.777	0.175	1:10³
TUBB	1000000	21.67/21.51	21.500	0.046	1:10⁴
TUBB	1000000	24.87/24.96	24.920	0.270	1:10⁵
TUBB	1000000	28.16/28.67	28.467	0.379	1:10⁶
TUBB	1000000	30.40/30.87	30.807	0.379	
TUBB	NTC	42.23/32.31			

SD = standard deviation; NTC = no-template control; -RT = control without reverse transcriptase; LDR = linear dynamic range; LOD = limit of detection; R² = coefficient of determination; CI = confidence interval
(e) Primer efficiency (factor-specific) and coefficients of determination derived from a standard curve for TUBB (6x log_{10} dilution of cDNA stock solution, random untreated sample) as well as technical repeatability (intraassay reliability, n = 18) and amplification efficiency (sample-specific), calculated using LinRegPCR software (http://LinRegPCR.HFRC.nl; n = 18 in triplets).

* of three technical replicates (triplet) among all biological replicates (n = 18). CI = confidence interval

Gene symbol	Slope	Primer efficiency E_P [%] (2^{E_P/100%})	Coefficient of determination R^2	Intraassay reliability SD of mean of C_q* (mean, min./max.)	Amplification Efficiency E_A [%] (2^{E_A/100%})
TUBB	-3.230	104.0 (2.056)	0.9965	0.26	91.3

* of three technical replicates (triplet) among all biological replicates (n = 18). CI = confidence interval

(f) Raw C_q values (triplet means) of TUBB RT-qPCR for the three experimental groups.

Sample	Group	Gene
Control K7	1	20.10
Control K8	1	20.71
Control K9	1	19.58
Control K10	1	19.53
Control K11	1	19.54
Control K12	1	19.30
Compression D7	2	18.84
Compression D8	2	19.06
Compression D9	2	19.88
Compression D10	2	19.10
Compression D11	2	18.55
Compression D12	2	19.50
Agac7	3	19.30
Agac8	3	18.49
Agac9	3	18.29
Agac10	3	18.53
Agac11	3	19.19
Agac12	3	18.38

C_q = quantification cycle; SD = standard deviation of group mean.
Agac = Aggregatibacter actinomycetemcomitans (periodontitis)
(g) Reference gene stability ranking including TUBB for hPDL experiments on orthodontic tooth movement (compressive orthodontic force vs. untreated control), experiments on periodontitis (Agc, toxins/bacterial lystate vs. untreated control) and pooled/overall experimental conditions as calculated by the algorithms geNorm, NormFinder, comparative ΔCq and BestKeeper. A higher rank denotes lower expression stability.

Rank	Total (of 4 methods)	geNorm	NormFinder	comparative deltaCq	BestKeeper						
	Rank	Rank	Stability value (M)	Stability value (pM)	Standard error	Ranking	Stability value (mean SD of mean ΔCq)	Ranking	Stability value (r)	SD (+/- Cq)	CV (Cq)
hPDL untreated + compressive orthodontic force (experiments on orthodontic tooth movement, n = 12)											
1.	RPL22	6	RPL22	0.263	RPL22	0.043	0.033	RPL22	0.271	RNA18S5	0.910
2.	PPIB	13	PPIB	0.286	EEFF1A1	0.092	0.031	PPIB	0.296	YWHAZ	0.905
3.	RPLP0	17	RPLP0	0.296	RPLP0	0.097	0.031	RPLP0	0.307	RPL22	0.856
4.	TBP	18	TBP	0.299	PPIB	0.099	0.031	EEFF1A1	0.311	TBP	0.657
5.	EEFF1A1	18	EEFF1A1	0.302	TBP	0.121	0.034	TBP	0.314		
6.	RNA18S5	19	RNA18S5	0.347	RNA18S5	0.152	0.039	RNA18S5	0.365	POLR2A	0.533
7.	YWHAZ	20	YWHAZ	0.350	GAPDH	0.166	0.041	POLR2A	0.475	YWHAZ	0.805
8.	POLR2A	30	POLR2A	0.399	POLR2A	0.230	0.053	POLR2A	0.423	RPLP0	0.364
9.	GAPDH	31	GAPDH	0.424	YWHAZ	0.234	0.054	YWHAZ	0.449	TUBB	0.187
10.	TUBB	39	TUBB	0.678	TUBB	0.449	0.097	TUBB	0.664	GAPDH	-0.154
hPDL untreated + Agc toxins/bacterial lystate (experiments on periodontis, n = 12)											
1.	PPIB	8	PPIB	0.250	PPIB	0.066	0.031	PPIB	0.255	RNA18S5	0.815
2.	TBP	10	TBP	0.259	TBP	0.077	0.031	PPIB	0.265	POLR2A	0.599
3.	POLR2A	18	EEFF1A1	0.269	GAPDH	0.116	0.034	EEFF1A1	0.270	YWHAZ	0.567
4.	RPL22	20	RPL22	0.284	RPL22	0.122	0.035	RPL22	0.290	TBP	0.514
5.	EEFF1A1	21	POLR2A	0.286	POLR2A	0.128	0.036	POLR2A	0.296	GAPDH	0.400
6.	GAPDH	21	GAPDH	0.286	RPLP0	0.092	0.031	RPLP0	0.307	YWHAZ	0.427
7.	RNA18S5	25	GAPDH	0.287	RPLP0	0.140	0.038	RPLP0	0.307	TUBB	0.324
8.	RPLP0	29	RNA18S5	0.380	RNA18S5	0.166	0.042	RNA18S5	0.381	TUBB	0.138
9.	YWHAZ	30	YWHAZ	0.420	YWHAZ	0.203	0.049	YWHAZ	0.493	EEFF1A1	0.313
10.	TUBB	38	TUBB	0.815	TUBB	0.554	0.119	TUBB	0.792	RPLP0	0.291
hPDL pooled/overall (experiments on orthodontic tooth movement and periodontitis n = 18)											
1.	PPIB	7	PPIB	0.296	PPIB	0.076	0.026	PPIB	0.306	RNA18S5	0.859
2.	TBP	12	TBP	0.304	TBP	0.093	0.026	RPL22	0.313	YWHAZ	0.759
3.	RPL22	12	RPL22	0.304	TBP	0.100	0.026	TBP	0.316	TBP	0.625
4.	RPLP0	19	RPLP0	0.326	RPLP0	0.135	0.030	RPLP0	0.338	PPIB	0.587
5.	RNA18S5	19	RNA18S5	0.357	RNA18S5	0.159	0.033	RNA18S5	0.362	POLR2A	0.526
6.	EEFF1A1	24	POLR2A	0.373	EEFF1A1	0.171	0.035	RNA18S5	0.383	RPL22	0.485
7.	POLR2A	25	POLR2A	0.379	POLR2A	0.184	0.037	POLR2A	0.391	RPLP0	0.262
8.	YWHAZ	29	YWHAZ	0.465	YWHAZ	0.253	0.047	YWHAZ	0.491	TUBB	0.236
9.	GAPDH	34	YWHAZ	0.465	YWHAZ	0.253	0.047	YWHAZ	0.491	TUBB	0.236
10.	TUBB	39	TUBB	0.744	TUBB	0.491	0.085	TUBB	0.726	GAPDH	0.057

Cq = quantification cycle; SD = standard deviation; CV = coefficient of variation; r = Pearson’s correlation coefficient