1. Introduction.

In the paper [15] we formulated certain conjectures about algebraic flows on abelian varieties and proved certain cases of these conjectures. The purpose of this paper is two-fold. We first prove the ‘logarithmic Ax-Lindemann theorem’ (see details below). We then prove a result analogous to one of the main results of [15] in the hyperbolic (Shimura) case about the topological closure of the images of totally geodesic subvarieties of the symmetric spaces uniformising Shimura varieties.

Let (G, X) be a Shimura datum and X^+ be a connected component of X. Recall from [16], section 2.1 that a realisation \mathcal{X} of X^+ is a complex quasi-projective variety \mathcal{X} with a transitive holomorphic action of $G(\mathbb{R})^+$ such that for any $x_0 \in \mathcal{X}$, the orbit map $\psi_{x_0} : G(\mathbb{R})^+ \to \mathcal{X}$ mapping g to gx_0 is semi-algebraic. There is a natural notion of a morphism of realisations. By [16], lemma 2.1, any realisation of X^+ has a canonical semi-algebraic structure and any morphism of realisations is semi-algebraic.
In what follows we fix a realisation X of X^+ and by a slight abuse of language still call this realisation X^+. It is an immediate consequence of Lemma 2.1 of [16] that all the conjectures and statements that follow are independent of the chosen realisation.

In view of the lemma B1 of [7], we may define an algebraic subset Y of X^+ to be a closed analytic, semi-algebraic subset of X^+. Given an irreducible analytic subset $\Theta \subset X^+$, we define the Zariski closure of Θ to be the analytic component containing Θ of the smallest algebraic subset of X^+ containing Θ.

We can now state some results and conjectures.

The classical formulation of the hyperbolic Ax-Lindemann theorem is as follows:

Theorem 1.1 (Hyperbolic Ax-Lindemann theorem). Let S be a Shimura variety and $\pi: X^+ \rightarrow S$ be the uniformisation map. Let Z be an algebraic subvariety of S and Y a maximal algebraic subvariety of $\pi^{-1}(Z)$. Then $\pi(Y)$ is a weakly special subvariety of S.

We will see (see proposition 5.1) that this is equivalent to:

Theorem 1.2 (Hyperbolic Ax-Lindemann theorem, version 2.). Let Z be any irreducible algebraic subvariety of X^+ then the Zariski closure of $\pi(Z)$ is weakly special.

The hyperbolic Ax-Lindemann conjecture has been proven in full generality in [7].

In the second section we define a notion of a weakly special subvariety of X^+. This is a complex analytic subset Θ of X^+ such that there exists a semi-simple algebraic subgroup F of $G(\mathbb{R})^+$ and a point $x \in X^+$ satisfying certain conditions such that $\Theta = F \cdot x$.

In Section 3 of this paper we prove a ‘logarithmic’ Ax-Lindemann theorem (a question asked by D. Bertrand).

Theorem 1.3 (Logarithmic Ax-Lindemann). Let $\pi: X^+ \rightarrow S$ be the uniformisation map. Let Y be an algebraic subvariety of S and let Y' be an analytic component of $\pi^{-1}(Y)$. The Zariski closure of Y' is a weakly special subvariety.

In [15], we formulated two conjectures on algebraic flows on abelian varieties and proved partial results towards these conjectures. An attempt to formulate conjectures of this type in the context of Shimura varieties displays new phenomena that we intend to investigate in the future. We however prove a result which may be seen as a generalisation in the context of Shimura varieties of one of the main results of [15]. To state our result we need to introduce a few notations.
Consider an algebraic subset Θ of X^+. In general, instead of (as in the hyperbolic Ax-Lindemann case) being interested in the Zariski closure of $\pi(\Theta)$, we look at the usual topological closure $\pi(\Theta)$. We define a notion of \textit{real weakly special} subvariety roughly as the image of $H(\mathbb{R}) \cdot x$ where H is a semisimple subgroup of G satisfying certain conditions and x is a point of X^+. Let K_x be the stabiliser of x in $G(\mathbb{R})^+$. In the case where $H(\mathbb{R})^+ \cap K_x$ is a maximal compact subgroup, a real weakly special subvariety of S is a \textit{real} totally geodesic subvariety of S. Notice that in this case the homogeneous space $H(\mathbb{R})^+/H(\mathbb{R})^+ \cap K_x$ is a real symmetric space. In the case where x viewed as a morphism from S to $G(\mathbb{R})$ factors through $H(\mathbb{R})$, the corresponding real weakly special subvariety has Hermitian structure and in fact is a weakly special subvariety in the usual sense. We also note that given a real weakly special subvariety Z of S, there is a canonical probability measure μ_Z attached to Z which is the pushforward of the Haar measure on $H(\mathbb{R})^+$, suitably normalised to make it a probability measure.

In this paper we prove the following theorem.

Theorem 1.4. Let Θ be a complex totally geodesic subvariety of X. Then the components of the topological closure $\pi(\Theta)$ are real weakly special subvarieties.

Recall that a complex totally geodesic subvariety of X^+ is of the form $F \cdot x$ where F is a semisimple real Lie group subject to certain conditions and x is a point of X such that $F \cap K_x$ is a maximal compact subgroup of F.

In certain cases, for example when the centraliser of F in $G(\mathbb{R})$ is trivial, we are able to show that $\pi(\Theta)$ is actually a (complex) weakly special subvariety. This condition is satisfied in many cases. For example in the case of $\text{SL}_2(\mathbb{R})$ diagonally embedded into a product of copies of $\text{SL}_2(\mathbb{R})$. In particular this answers in the affirmative the question of Jonathan Pila which was the following. Consider the subset Z of $\mathbb{H} \times \mathbb{H}$ which is

$$Z = \{ (\tau, g\tau) : \tau \in \mathbb{H} \}$$

where $g \in \text{SL}_2(\mathbb{R}) \setminus \text{SL}_2(\mathbb{Q})$. Is the image of Z dense in $\mathbb{C} \times \mathbb{C}$?

The proof of Theorem 1.4 relies on the results of Ratner (see [13]) on closure of unioptent one parameter subgroups in homogeneous spaces.

Acknowledgements.

We thank Jonathan Pila for discussions around the topic of the second part of this paper. We also thank Daniel Bertrand who raised the
question of Logarithmic Ax-Lindemann theorem. We are very grateful to Ngaiming Mok for many stimulations discussions.

2. Weakly special subvarieties and monodromy.

2.1. Monodromy. Let \((G, X)\) be a Shimura datum. Recall that \(G\) is a reductive group over \(\mathbb{Q}\) such that \(G^{ad}\) has no \(\mathbb{Q}\)-simple factor whose real points are compact and \(X\) is a \(G(\mathbb{R})\)-conjugacy class of a morphism \(x: S \rightarrow G_{\mathbb{R}}\) where \(S = \text{Res}_{\mathbb{C}/\mathbb{R}} \mathbb{G}_{m,\mathbb{C}}\). The morphism \(x\) is required to satisfy Deligne’s conditions which imply that components of \(X\) are Hermitian symmetric domains. There is a natural notion of morphisms of Shimura data. We fix a connected component \(X^+\) of \(X\) and we let \(\Gamma = G(\mathbb{Q})^+ \cap K\) where \(G(\mathbb{Q})^+\) is the stabiliser of \(X^+\) in \(G(\mathbb{Q})\). Let \(S\) be \(\Gamma \backslash X^+\) and \(\pi: X^+ \rightarrow S\) be the natural morphism.

To \((G, X)\), one associates the adjoint Shimura datum \((G^{ad}, X^{ad})\) with a natural morphism \((G, X) \rightarrow (G^{ad}, X^{ad})\) induced by the natural map \(G \rightarrow G^{ad}\). Notice that the this map identifies \(X^+\) with a connected component of \(X^{ad}\). We have the following description of weakly special (or totally geodesic) subvarieties (see Moonen [10]):

Theorem 2.1. A subvariety \(Z\) of \(S\) is totally geodesic if and only if there exists a sub-datum \((M, X_M)\) of \((G, X)\) and a product decomposition

\[
(M^{ad}, X^{ad}_M) = (M_1, X_1) \times (M_2, X_2)
\]

and a point \(y_2\) of \(X_2\) such that \(Z = \pi(X_1^+ \times y_2)\) for a component \(X_1^+\) of \(X_1\).

Note that \(X^{ad, +}_M = X_1^+ \times X_2^+\) (with a suitable choice of connected components) is a subspace of \(X^+\).

We can without loss of any generality assume the group \(\Gamma\) to be neat, i.e. the stabiliser of each point of \(X^+\) in \(\Gamma\) to be trivial (replacing \(\Gamma\) by a subgroup of finite index changes nothing to the property of a subvariety to be weakly special). Fix a point \(x\) of the smooth locus \(Z^{sm}\) and \(\bar{x} \in \pi^{-1}(x) \cap Z^{sm}\). This gives rise to the monodromy representation

\[
\rho^m: \pi_1(Z^{sm}, x) \rightarrow \Gamma
\]

whose image we denote by \(\Gamma^m\). By Theorem 1.4 (due to Deligne and André) of [10], we have \(\Gamma^m \subset M^{der}(\mathbb{Q}) \cap \Gamma\).

This can all be summarised in the following theorem.

Theorem 2.2. Let \((G, X)\) be Shimura datum, \(K\) a compact open subgroup of \(G(\mathbb{A}_f)\) and \(\Gamma := G(\mathbb{Q})^+ \cap K\) (assumed neat).
Let $S = \Gamma \backslash X^+$ and Z an irreducible subvariety of S. Let M be the generic Mumford-Tate group on Z and X_M the $M(\mathbb{R})$-conjugacy class of x.

Let $\Gamma^m \subset M^{der}(\mathbb{Q}) \cap \Gamma$ be the monodromy group attached to Z as described above.

Let $(M^{ad}, X^{ad}_M) = (M_1, X_1) \times (M_2, X_2)$ as in Theorem 4.3 of [10]. In particular M_1 is the image of the neutral component of the Zariski closure of Γ^m in M^{ad}.

Let $S_M \subset S$ be a connected component of the image of $Sh_{M(\mathbb{A}) \cap K}(M, X_M)$ in S containing Z.

Let $S_i (i = 1, 2)$ be appropriate components of $Sh_{K_i}(M_i, X_i)$ and $S_M \rightarrow S_1 \times S_2$ be the natural map.

The image of Z in $S_1 \times S_2$ is of the form $Z_1 \times \{z\}$ (see Theorem 4.3 of [10]) where Z_1 is a subvariety of S_1 whose monodromy is Zariski dense in M_1 and z is a point of S_2.

2.2. Weakly special subvarieties of X^+. In this section we give a precise description of totally geodesic (weakly special) subvarieties of X^+.

Let (G, X) be a Shimura datum and X^+ a connected component of X. For the purposes of this section, we can without loss of generality assume that G is a semi-simple group of adjoint type. This is because there is a natural identification between connected components of X^+ and a connected component of X^{ad}. We will now describe totally geodesic subvarieties of X^+ (that we will naturally call weakly special).

The group G has no \mathbb{Q}-simple factors whose real points are compact and there is a morphism $x_0 : S \rightarrow G_{\mathbb{R}}$ satisfying the following Deligne’s conditions such that $X^+ = G(\mathbb{R})^+.x_0$.

(D1) The adjoint representation $\text{Lie}(G_{\mathbb{R}})$ is of type $\{(-1, 1), (0, 0), (1, -1)\}$.

In particular $x(G_{m, \mathbb{R}})$ is trivial.

(D2) The involution $x(\sqrt{-1})$ of $G_{\mathbb{R}}$ is a Cartan involution.

This is a consequence of [3] 1.1.17.

We have the following:

Proposition 2.3. Let Z be a totally geodesic complex subvariety of X^+. There exists a semi-simple real algebraic subgroup F of $G_{\mathbb{R}}$ without compact factors and some $x \in X$ such that x factors through $FZ_G(F)^0$ such that $Z = F(\mathbb{R})^+.x$. Conversely, let F be a semi-simple real algebraic subgroup of $G_{\mathbb{R}}$ without compact factors and let $x \in X$ such
that x factors through $FZ_G(F)^0$. Then $F(\mathbb{R})^+.x$ is a totally geodesic subvariety of X^+.

Proof. Let F be a semi-simple real algebraic subgroup of $G_\mathbb{R}$ without compact factors and let $x \in X$ such that x factors through $H := FZ_G(F)^0$. Then

$$Z_G(H(\mathbb{R})) \subset Z_G(x(\sqrt{-1})).$$

As $Z_G(x(\sqrt{-1}))$ is a compact subgroup of $G(\mathbb{R})$ so is $Z_G(H(\mathbb{R}))$. By using [17] lemma 3.13 we see that H is reductive.

Then the proof of [17] lemma 3.3 shows that $X_H := H(\mathbb{R})^+.x$ is an hermitian symmetric subspace of X^+. We give the arguments to be as self contained as possible.

As $\text{Lie}(H_\mathbb{R})$ is a sub vector space of $\text{Lie}(G_\mathbb{R})$ the Hodge weights of $\text{Lie}(H_\mathbb{R})$ are $\{(−1,1),(0,0),(1,−1)\}$. Then using Deligne [5] 1.1.17 we just need to prove that $x(\sqrt{-1})$ induces a Cartan involution of H^{ad}. As the square of $x(\sqrt{-1})$ is in the centre of $H(\mathbb{R})$, by Deligne [5] 1.1.15, it’s enough to check that $H_\mathbb{R}$ admits a faithful real $x(\sqrt{-1})$-polarizable representation (V, ρ). We may take $V = \text{Lie}G_\mathbb{R}$ for the adjoint representation and the $x(\sqrt{-1})$-polarization induced from the Killing form $B(X,Y)$.

Then $H_\mathbb{R}$ is the almost direct product $H_\mathbb{R} \simeq FF_1^{nc}F_1^c$ where F_1 is either trivial or semi-simple without compact factors and F_1^c is reductive with $F_1^{nc}(\mathbb{R})$ compact. If F_1^{nc} is trivial $X_F^+ = X_H^+$ is hermitian symmetric. If F_1^{nc} is not trivial, we have a decomposition $X_H^+ = X_F^+ \times X_{F^{nc}}^+$ is a product of hermitian subspaces and we have the natural identification of X_F^+ with $X_F^{\text{ad}} = X_1^+ \times \{x_1\}$ where x_1 is the projection of x on $X_{F^{nc}}$. In any case X_F^+ is hermitian symmetric and totally geodesic in X^+.

Conversely a totally geodesic subvariety of X^+ is of the form $X_F^+ = F(\mathbb{R})^+.x$ for a semi-simple subgroup $F_\mathbb{R}$ of $G_\mathbb{R}$ without compact factors. Let $T_x(X_F^+) \subset T_x(X^+)$ be the tangent space of X_F^+ at x. Let $U^1 \subset \mathbb{S}$ be the unit circle. The complex structure on $T_x(X^+)$ is given by the adjoint action of $x(U^1)$. If X_F is a complex subvariety, then $T_x(X_F^+)$ is stable by $x(U^1)$. Using Cartan decomposition we see that $x(U^1) = x(\mathbb{S})$ normalizes F. Let $F_1^c = x(\mathbb{S})F$, then F_1^c is reductive and is contained in $FZ_G(F)^0$. It follows that x factors through $FZ_G(F)^0$.

\[\square\]

Definition 2.4. An algebraic group H over \mathbb{Q} is said to be of type \mathcal{H} if its radical is unipotent and if $H/R_u(H)$ is an almost direct product of \mathbb{Q} simple factors H_i with $H_i(\mathbb{R})$ non-compact. Furthermore we assume that at least one of those factors not to be trivial.
Let $H \subset G$ be a subgroup of type H and let us assume that G is of adjoint type. We will now explain how to attach a hermitian symmetric space X_H to a group of type H and explain that X_H is independent of the choice of a Levi subgroup in H.

The domain X^+ is the set of maximal compact subgroups of $G(\mathbb{R})^+$. Let $x \in X^+$, we denote by K_x the associated maximal compact subgroup of $G(\mathbb{R})^+$. Let H be a subgroup of type H and let L be a Levi subgroup of H. We have a Levi decomposition $H = R_u(H).L$. Assume that $K_x \cap L(\mathbb{R})^+$ is a maximal compact subgroup of $L(\mathbb{R})^+$. Then $X_L^+ = L(\mathbb{R})^+.x \subset X^+$ is the symmetric space associated to L and is independent of the choice of $x \in X^+$ such that $K_x \cap L(\mathbb{R})^+$ is a maximal compact subgroup of $L(\mathbb{R})^+$. Let $X_H^+ := R_u(H)X_L(\mathbb{R})^+$, then X_H^+ is independent of the chosen Levi decomposition of H. This can be seen as follows. The Levi subgroups of H are conjugate by an element of $R_u(H)$. Let L' be a Levi of H and $w \in R_u(H)$ such that $L' = wLw^{-1}$. Let $x' = w.x$. Then $K_{x'}$ is a maximal compact subgroup of $G(\mathbb{R})^+$ such that $K_{x'} \cap L'(\mathbb{R})^+$ is a maximal compact subgroup of $L'(\mathbb{R})^+$ and

$$R_u(H).X_L^+ = R_u(H).L'(\mathbb{R})^+.x' = R_u(H).wL(\mathbb{R})^+.x = R_u(H).X_L^+.$$

This shows that the space X_H^+ is independent of the choice of the Levi.

Definition 2.5. A real weakly special subvariety of S is a real analytic subset of S of the form

$$Z = \Gamma \cap H(\mathbb{R})^+ \backslash H(\mathbb{R})^+.x$$

where H is an algebraic subgroup of G of type H and $x \in X^+$.

In the case where $K_x \cap L(\mathbb{R})^+$ is a maximal compact subgroup of $L(\mathbb{R})^+$ for some Levi subgroup of H, $H(\mathbb{R})^+/K_x \cap H(\mathbb{R})^+$ is a real symmetric space.

We have the following proposition.

Proposition 2.6. Let Z be a real weakly special subvariety of S. Then the Zariski closure Z^{Zar} of Z is weakly special.

Proof. By definition, Z is of the form $Z = H(\mathbb{R})^+.x$ where H is a group of type H. Let S_M be as in Theorem 2.2 the smallest special subvariety containing Z^{Zar}.

Let $S_1 \times S_2$ be the product of Shimura varieties as in Theorem 2.2 such that the image of Z^{Zar} in $S_1 \times S_2$ is of the form $Z_1 \times \{z\}$ where Z_1 is a subvariety of S_1 whose monodromy Γ_1^m is Zariski dense in M_1 and z is a Hodge generic point of S_2.

To prove that Z^{Zar} is weakly special, it is enough to show that $Z_1 = S_1$. In what follows, we replace S by S_1 and Z by Z_1.

For any \(q \in H(\mathbb{Q})^+ \), we have that \(Z \subset T_q Z \), therefore
\[
Z \subset Z_{\text{Zar}} \cap T_q(Z_{\text{Zar}}).
\]
Since \(Z_{\text{Zar}} \cap T_q(Z_{\text{Zar}}) \) is algebraic, we have
\[
Z_{\text{Zar}} \subset Z_{\text{Zar}} \cap T_q(Z_{\text{Zar}})
\]
and therefore, for each \(q \in H(\mathbb{Q}) \) we have
\[
Z_{\text{Zar}} \subset T_q(Z_{\text{Zar}}).
\]
Let \(T \) be a non-trivial subtorus of \(H \). We define the Nori constant \(C(Z_{\text{Zar}}) \) of \(Z_{\text{Zar}} \) as in [19], section 4. Let \(p > C(Z_{\text{Zar}}) \) and \(q \in T(\mathbb{Q}) \) given by Lemma 6.1 of [19]. Then \(T_q(Z_{\text{Zar}}) \) is irreducible and the orbits of \(T_q + T_q^{-1} \) are dense in \(S \). This implies that \(Z_{\text{Zar}} = S \) as required. \(\square \)

3. Logarithmic Ax-Lindemann.

Let \(S = \Gamma \backslash X^+ \) as before and consider a realisation \(X^+ \subset \mathbb{C}^n \) (in the sense of [17]). In particular \(X^+ \) is a semi-algebraic set and the action of \(G(\mathbb{R})^+ \) is semi-algebraic.

Let \(\tilde{Y} \) be a complex analytic subset of \(X^+ \). Then the Zariski closure \(\overline{\tilde{Y}}_{\text{Zar}} \) in \(\mathbb{C}^n \) is an algebraic subset of \(\mathbb{C}^n \) and \(\overline{\tilde{Y}}_{\text{Zar}} \cap X^+ \) has finitely many analytic components. By slight abuse of notation, we refer to \(\overline{\tilde{Y}}_{\text{Zar}} \cap X^+ \) as Zariski closure of \(\tilde{Y} \). These components are algebraic in the sense of the definition given in the Appendix B of [7].

Theorem 3.1 (Logarithmic Ax-Lindemann). Let \(\pi: X^+ \longrightarrow S \) be the uniformisation map. Let \(Y \) be an algebraic subvariety of \(S \) and let \(Y' \) be an analytic component of \(\pi^{-1}(Y) \). The Zariski closure of \(Y' \) is a weakly special subvariety.

Proof. Let \(\tilde{Y} \) be an analytic component of \(Y' \). As in the previous section we can replace \(S \) by \(S_1 \) and \(Y \) by \(Y_1 \) given by the Proposition 2.2. In doing this we attach the monodromy to a point \(y \in Y_{\text{sm}} \) and \(\tilde{y} \in Y' \). Let \(\Gamma_Y \) be the monodromy group attached to \(Y \). Notice that \(\Gamma_Y \) is the stabiliser of \(Y' \) in \(\Gamma \). Then, with our assumptions, \(\Gamma_Y \) is Zariski dense in \(G \).

Let \(\alpha \in \Gamma_Y \). We have
\[
\alpha Y' = Y'
\]
Therefore,
\[
(\alpha Y')_{\text{Zar}} = Y'_{\text{Zar}}
\]
We also have
\[
\alpha Y'_{\text{Zar}} \supset \alpha Y'
\]
and since $\alpha Y'_{\text{Zar}}$ is algebraic, we have

$$\alpha Y'_{\text{Zar}} \supset \alpha Y'_{\text{Zar}}$$

The same argument with α^{-1} instead of α shows that the reverse inclusion holds and therefore

$$\alpha Y'_{\text{Zar}} = \alpha Y'_{\text{Zar}} = Y_{\text{Zar}}$$

It follows that Y'_{Zar} is stabilised by $\Gamma Y'$.

Consider the stabiliser G_Y of Y'_{Zar} in $G(\mathbb{R})$. Since Y'_{Zar} is semi-algebraic and the action of $G(\mathbb{R})^+$ on X^+ is semi-algebraic, G_Y is semi-algebraic. Furthermore, G_Y is analytically closed and hence is a real algebraic group. Since G_Y contains $\Gamma Y'$ which is Zariski dense in $G(\mathbb{R})$, we see that $G_Y = G(\mathbb{R})^+$. It follows that $Y'_{\text{Zar}} = S$ as required. \qed

4. Facts from ergodic theory: Ratner’s theory.

In this section we recall some results from ergodic theory of homogeneous varieties to be used in the next section. The contents of this section are mainly taken from Section 3 of [3]. We present results in the way they are presented in [16].

Let G be a semi-simple algebraic group over \mathbb{Q}. We assume that G has no \mathbb{Q}-simple simple factors that are anisotropic over \mathbb{R}. This condition is satisfied by all groups defining Shimura data.

Let Γ be an arithmetic lattice in $G(\mathbb{R})^+$ and let $\Omega = \Gamma \setminus G(\mathbb{R})^+$. We have already defined a subgroup $H \subset G$ of type \mathcal{H}, we now define a group of type \mathcal{K}.

Definition 4.1. Let $F \subset G(\mathbb{R})$ be a closed connected Lie subgroup. We say that F is of type \mathcal{K} if

1. $F \cap \Gamma$ is a lattice in F. In particular $F \cap \Gamma \setminus F$ is closed in $\Gamma \setminus G(\mathbb{R})^+$. We denote by μ_F the F-invariant normalised measure on $\Gamma \setminus G(\mathbb{R})^+$.

2. The subgroup $L(F)$ generated by one-parameter unipotent subgroups of F acts ergodically on $F \cap \Gamma \setminus F$ with respect to μ_F.

For the purposes of this section, we in addition assume F to be semisimple.

The relation between types \mathcal{K} and \mathcal{H} is as follows (see [2], lemme 3.1 and 3.2):

Lemma 4.2.

1. If H is of type \mathcal{H}, then $H(\mathbb{R})^+$ is of type \mathcal{K}.
2. If F is a closed Lie subgroup of $G(\mathbb{R})^+$ of type \mathcal{K}, then there exists a \mathbb{Q} subgroup $F_\mathbb{Q}$ of G of type \mathcal{H} such that $F = F(\mathbb{R})^+$.

For a subset E of $G(\mathbb{R})$, we define the Mumford-Tate group $MT(E)$ of E as the smallest \mathbb{Q}-subgroup of G whose \mathbb{R}-points contain E. If F is a Lie subgroup of $G(\mathbb{R})^+$ of type \mathcal{K}, then by (2) of the above lemma, $MT(F) = F_\mathbb{Q}$ and it is of type \mathcal{H}.

We will make use of the following lemma, which is Lemma 2.4 of [16].

Lemma 4.3. Let H be a \mathbb{Q}-algebraic subgroup of G with H^0 almost simple. Let L be an almost simple factor of $H^0_{\mathbb{R}}$. Then

$$MT(L) = H^0$$

Let $\Omega = \Gamma \backslash G(\mathbb{R})^+$. Note that Ω carries a natural probability measure, the pushforward of the Haar measure on $G(\mathbb{R})^+$, normalised to be a probability measure (the volume of Ω is finite). For each F of type \mathcal{K}, there is a natural probability measure μ_F attached to F.

The following theorem is a consequence of results of Ratner.

Theorem 4.4. Let $F = F(\mathbb{R})^+$ be a subgroup of $G(\mathbb{R})^+$ be a semi-simple group without compact factors.

Let H be $MT(F)$. The closure of $\Gamma \backslash \Gamma F$ in Ω is

$$\Gamma \backslash \Gamma H(\mathbb{R})^+ = \Gamma \cap H(\mathbb{R})^+ \backslash H(\mathbb{R})^+$$

Proof. By a result of Cartan ([14], Proposition 7.6) the group F is generated by its one-parameter unipotent subgroups.

A result of Ratner (see [13], Theorem 3), implies that the closure of $\Gamma \backslash \Gamma F$ in Ω is homogeneous i.e. there exists a Lie group H of type \mathcal{K} such that

$$\overline{\Gamma \backslash \Gamma F} = \Gamma \backslash \Gamma H$$

By Lemme 2.1(c) of [2], there exists a \mathbb{Q}-algebraic subgroup $H_{\mathbb{Q}} \subset G$ such that

$$H(\mathbb{R})^+ = H$$

Since $F \subset H$, we have that $MT(F) \subset H$. On the other hand, by Lemme 2.2 of [2] (due to Shah), the radical of $MT(F)$ is unipotent which implies that $MT(F)$ is of type \mathcal{H}. It follows that $H_{\mathbb{Q}} = MT(F)$ which finishes the proof. \Box

5. **Algebraic flows on Shimura varieties.**

5.1. **Reformulation of the hyperbolic Ax-Lindemann theorem.**

Let (G, X) be a Shimura datum. Let K be a compact open subgroup of $G(\mathbb{A}_f)$, $\Gamma = G(\mathbb{Q})^+ \cap G(\mathbb{A}_f)$ and $S = \Gamma \backslash X^+$. Let $\pi : X^+ \to S$ be the uniformizing map. Without loss of any generality, in this section we assume that the group G is semisimple of adjoint type.
We first give a reformulation of the hyperbolic Ax-Lindemmann conjecture in terms of algebraic flows.

Proposition 5.1. The hyperbolic Ax-Lindemmann conjecture is equivalent to the following statement. Let Z be any irreducible algebraic subvariety of X^+ then the Zariski closure of $\pi(Z)$ is weakly special.

Proof. Let us assume that the hyperbolic Ax-Lindemmann conjecture holds true. Let A be an irreducible algebraic subvariety of X^+ and V be the Zariski closure of $\pi(A)$. Let A' be a maximal irreducible algebraic subvariety of $\pi^{-1}(V)$ containing A. By the hyperbolic Ax-Lindemmann conjecture $\pi(A')$ is a weakly special subvariety of V. As $A \subset \pi(A') \subset V$ and as $\pi(A')$ is irreducible algebraic we have $V = \pi(A')$. Therefore V is weakly special.

Let us assume that the statement of the proposition holds true. Let V be an irreducible algebraic subvariety of S. Let Y be a maximal irreducible algebraic subvariety of $\pi^{-1}(V)$. Then the Zariski closure V' of $\pi(Y)$ is weakly special. Moreover $V' \subset V$. Let W be an analytic component of $\pi^{-1}(V')$ containing Y. As V' is weakly special, W is irreducible algebraic. By maximality of Y we have $Y = W$. Therefore $\pi(Y) = V'$ is weakly special.

\[\square \]

5.2. **Application of Ratner’s theory.** Let (G, X) be a Shimura datum and X^+ a connected component of X. We assume that G is semi-simple of adjoint type, which we do.

We now consider a totally geodesic (weakly special) subvariety Z of X^+. Recall that there exists a semi-simple subgroup $F(\mathbb{R})^+$ of G without almost simple compact factors and a point x such that x factors through $FZ_G(F)^0$.

Let α be the natural map $G(\mathbb{R})^+ \to \Gamma \backslash G(\mathbb{R})^+$ and π_x be the map $\Gamma \backslash G(\mathbb{R})^+ \to \Gamma \backslash X^+$ sending x to gx. Recall that $\pi: X^+ \to \Gamma \backslash X^+$ is the uniformisation map. We have

\[\overline{\pi(Z)} = \overline{\pi_x \circ \alpha(F(\mathbb{R})^+)} \]

We let H be the Mumford-Tate group of $F(\mathbb{R})^+$. Recall that it is defined to be the smallest connected subgroup of G (hence defined over \mathbb{Q}) whose extension to \mathbb{R} contains $F(\mathbb{R})^+$.

By [14], Prop 7.6, the group $F(\mathbb{R})^+$ is generated by its one-parameter unipotent subgroups.

By Theorem 4.4, we conclude the following:

Proposition 5.2. The closure of $\alpha(F(\mathbb{R})^+)$ in $\Gamma \backslash G(\mathbb{R})^+$ is $\Gamma \cap H(\mathbb{R})^+ \backslash H(\mathbb{R})^+$.
5.3. Closure in S. From the fact that the map π_x is proper and Proposition 5.2, we immediately deduce the following

Theorem 5.3. The closure of $\pi(Z)$ in S is V, the image of $H(\mathbb{R})^+ \cdot x$ i.e. it is a real weakly special subvariety.

In this section we examine cases where we can actually make a stronger conclusion, namely:

1. The variety V from Theorem 5.3 is locally symmetric and hence real totally geodesic.
2. It has a Hermitian structure i.e. is a weakly special subvariety.

Theorem 5.4. Assume $Z_G(F)$ is compact. Then V is a locally symmetric variety.

Proof. It is enough to show that $H(\mathbb{R})^+ \cap K_x$ is a maximal compact subgroup of $H(\mathbb{R})^+$.

Notice that since $Z_G(F)$ fixes x, we have

$$Z_G(F) \subset K_x$$

We follow Section 3.2 of [16].

Since K_x is a maximal compact subgroup of $G(\mathbb{R})^+$ such that $F(\mathbb{R})^+ \cap K_x$ is a maximal compact subgroup of $F(\mathbb{R})^+$, we have two Cartan decompositions:

$$G(\mathbb{R})^+ = P_x K_x \text{ and } F = (P_x \cap F) \cdot (K_x \cap F)$$

for a suitable parabolic subgroup P_x of $G(\mathbb{R})^+$.

We now apply Proposition 3.10 of [16] in our situation. We have a connected semi-simple group H such that $F \subset H_{\mathbb{R}}$. According to Proposition 3.10 of [16], there exists a Cartan decomposition

$$H(\mathbb{R}) = (P_x \cap H(\mathbb{R})) \cdot (K_x \cap H(\mathbb{R}))$$

This, in particular implies that $K_x \cap H(\mathbb{R})$ is a maximal compact subgroup of $H(\mathbb{R})^+$ as required. \square

Theorem 5.5. Assume that $Z_G(F)$ is trivial. Then V is a weakly special subvariety.

Proof. In this case, x factors through F and therefore through $H_{\mathbb{R}}$. Let X_H be the $H(\mathbb{R})$-orbit of x. By lemma 3.3 of [16], (H, X_H) is a Shimura subdatum of (G, X) and therefore V is a weakly special subvariety. \square

Example 5.6. We give examples where $Z_G(F)$ is neither trivial nor compact, but the closure of $\pi(Z)$ is nevertheless hermitian.
Let G be an almost simple group over \mathbb{Q}. A typical example is $G = \text{Res}_{K/\mathbb{Q}} \text{SL}_2, K$ where K is a totally real field of degree n. Let F be an \mathbb{R}-simple factor of $G_\mathbb{R}$. In the above case F could be for example $\text{SL}_2(\mathbb{R})$ embedded as $\text{SL}_2(\mathbb{R}) \times \{1\} \times \cdots \times \{1\}$. Then the centraliser of F is not compact. However, by Lemma 2.4 of [16], the Mumford-Tate group of F is G and for any point x of X^+, the image of $F \cdot x$ in S is G.

Example 5.7 (Products of two modular curves). Consider $G = \text{SL}_2 \times \text{SL}_2$, $X^+ = \mathbb{H} \times \mathbb{H}$ and

$$Z = \{(\tau, g\tau), \tau \in \mathbb{H}\}.$$

Let $\Gamma = \text{SL}_2(\mathbb{Z}) \times \text{SL}_2(\mathbb{Z})$ and $\pi: \mathbb{H} \times \mathbb{H} \longrightarrow \Gamma \backslash X^+$.

Then, if $g \in G(\mathbb{Q})$, then the closure of $\pi(Z)$ is a special subvariety. It is the modular curve $Y_0(n)$ for some n.

If $g \notin G(\mathbb{Q})$, then $\pi(Z)$ is dense in $\Gamma \backslash X^+$. In this case the group $F(\mathbb{R})^+$ is $(h, ghg^{-1}) \subset \text{SL}_2(\mathbb{R}) \times \text{SL}_2(\mathbb{R})$.

Example 5.8 (Rank one groups). Here is another quite general example where $Z_G(F)$ is trivial and hence the closure of the image of $F(\mathbb{R})^+ \cdot x$ is a weakly special subvariety.

Suppose that the groups G is $U(n, 1)$. In this case X^+ is an open ball in \mathbb{C}^n. The real rank of G is one. Let F be the subgroup $U(m, 1)$ of $U(n, 1)$ (with $m \leq n$). Then the centraliser $Z_G(F)$ is trivial. Indeed, as the split torus is already contained in F, the centraliser must be compact.

Bibliography.

[1] A. Borel Introduction aux groupes arithmétiques. Hermann, Paris (1969).
[2] L. Clozel, E. Ullmo Equidistribution de sous-variétés spéciales. Annals of Math., 161 (2005), 1571-1588.
[3] L. Clozel, E. Ullmo, Equidistribution de mesures algébriques. Compositio Mathematica 141 (2005), 1255-1309.
[4] L. Clozel, E. Ullmo Equidistribution adélique des tores et équidistribution des points CM. Doc. Math. 2006, Extra Vol., 233-260.
[5] P. Deligne Variétés de Shimura: interprétation modulaire et techniques de construction de modèles canoniques, dans Automorphic Forms, Representations, and L-functions part 2; Editeurs: A. Borel et W Casselman; Proc. of Symp. in Pure Math. 33, American Mathematical Society, (1979), p. 247-290.
[6] A. Eskin, S. Mozes, N. Shah, Non divergence of translates of certain algebraic measures. GAFA vol 7 (1997) 48-80.
[7] B. Klingler, E. Ullmo, A. Yafaev The Hyperbolic Ax-Lindemann-Weierstrass conjecture. Publications Mathématiques de l’IHES, to appear.
[8] B. Klingler, A. Yafaev The André-Oort conjecture. Annals of Mathematics (2), 180, 2014, n.3, 867-825.
[9] N. Mok, Metric Rigidity Theorems on Hermitian Locally Symmetric Manifolds Series in Pure Math. 6, World Scientific (1989).
[10] B. Moonen *Linearity properties of Shimura varieties*. I. J. Algebraic Geom. 7 (1998), 539-567.
[11] V. Platonov, A. Rapinchuk *Algebraic groups and number theory*. Academic Press, Pure and Applied Mathematics, 139.
[12] J. Pila, U. Zannier *Rational points in periodic analytic sets and the Manin-Mumford conjecture*. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 19 (2008), no. 2, 149-162.
[13] M. Ratner *Interaction between Ergodic theory, Lie groups and Number theory*. Proceedings of ICM 1994 (Zurich), Vol 1, Birkhouser (1995), p. 157-182.
[14] V. Platonov, A. Rapinchuk *Algebraic groups and number theory*. Academic Press, 1994.
[15] E. Ullmo, A. Yafaev *Algebraic flows on abelian varieties*. to appear in J. reine und angewandte Mathematik.
[16] E. Ullmo *Equidistribution des sous-variétés spéciales II*. J. reine angew. Math. (2006), 1-24.
[17] E. Ullmo *Applications du théorème d’Ax-Lindemann hyperbolique*. Compositio Mathematica, 150, n.2, 2014, 175-190.
[18] E. Ullmo, A. Yafaev *A characterisation of special subvarieties*. Mathematika 57 (2011), no. 2, 263-273.
[19] E. Ullmo, A. Yafaev *The hyperbolic Ax-Lindemann conjecture in the co-compact case*. Duke Math Journal, 163, 2014, n.2, 433-463.

Andrei Yafaev
University College London, Department of Mathematics.
Gower street, WC1E 6BT, London, UK
email : yafaev@math.ucl.ac.uk

Emmanuel Ullmo
Université de Paris-Sud and IHES
Département de Mathématiques, Université Paris-Sud, Bât. 425, F-91405 Orsay Cedex ,France
email : Emmanuel.Ullmo@math.u-psud.fr