NAS-Bench-x11
and the Power of Learning Curves

Shen Yan
Michigan State University

Colin White
Abacus.AI

Yash Savani
Carnegie Mellon University

Frank Hutter
University of Freiburg
Bosch Center for AI
One-slide summary:

- We give a new technique to create surrogate NAS benchmarks with realistic learning curves.
- We create NAS-Bench-111, NAS-Bench-311, and NAS-Bench-NLP11.
- We use these to show popular NAS algorithms can be further improved by adding learning curve extrapolation.
Neural architecture search

- Notoriously challenging to give fair comparisons [Li & Talkwalkar 2019], [Hutter & Lindauer 2020]
 - Computationally intensive
 - No common search spaces
Tabular NAS Benchmarks

Train all architectures in a search space

Used to simulate NAS experiments

- NAS-Bench-101 [Ying et al. 2019]
 - Size 423k
- NAS-Bench-201 [Dong & Yang 2019]
 - Size 15k
Surrogate NAS Benchmarks

- NAS-Bench-301 [Siems et al. 2020]
 - Based on DARTS search space
 - Size 10^{18}

Enables much larger NAS Benchmarks

NAS methods	# eval
RS (Bergstra & Bengio, 2012)	23746
Evolution	
DE (Awad et al., 2020)	7275
RE (Real et al., 2019)	4639
BO	
TPE (Bergstra et al., 2011)	6741
BANANAS (White et al., 2019)	2243
COMBO (Chen et al., 2019)	745
One-Shot	
DARTS (Liu et al., 2019b)	2053
PC-DARTS (Xu et al., 2020)	1588
DrNAS (Chen et al., 2020)	947
GDAS (Dong & Yang, 2019)	234

Table 2: NAS methods used to cover the search space.
NAS Benchmarks

Benchmark	Size	Queryable	Based on	Full train info
NAS-Bench-101	423k	✓		✗
NAS-Bench-201	6k	✓		✓
NAS-Bench-NLP	10^{53}	✗		✗
NAS-Bench-301	10^{18}	✓	DARTS	✗
NAS-Bench-ASR	8k	✓		✓

No learning curves - can only simulate black-box algorithms!
NAS Benchmarks

Benchmark	Size	Queryable	Based on	Full train info
NAS-Bench-101	423k	✓		✓
NAS-Bench-201	6k	✓		✓
NAS-Bench-NLP	10^{53}	✗		✗
NAS-Bench-301	10^{18}	✓		✗
NAS-Bench-ASR	8k	✓	DARTS	✓
NAS-Bench-111	423k	✓	NAS-Bench-101	✓
NAS-Bench-311	10^{18}	✓	DARTS	✓
NAS-Bench-NLP11	10^{53}	✓	NAS-Bench-NLP	✓

No learning curves - *can only simulate black-box algorithms!*
Roadmap

- Motivation
- Generating Learning Curves
- Evaluation
- The Power of Learning Curves
- Conclusion
Generating Learning Curves

We can’t just use a surrogate model to predict the entire learning curve.

Generating **realistic noise** is critical.

This would lead to de-noised learning curves.

Figure 1: Number of architectures used for training the GIN surrogate model vs MAE on the NAS-Bench-101 dataset.
Generating Learning Curves

Goal: given architecture encoding, predict a distribution

Generating **realistic noise** is critical
Two-part technique

(1) Predict mean LC

(2) Predict noise
Predicting the mean learning curve

SVD helps to reduce the noise

Compress the learning curves from the training set

Predict only the top 5 principal components
Predicting the mean learning curves
Compute the residuals, then use a sliding window to approximate STDev’s
Full technique
We create

- **NAS-Bench-111**
 - Created a new training set of size 1500
- **NAS-Bench-311**
 - Used the 60k architectures from NAS-Bench-301
- **NAS-Bench-NLP11**
 - Used the 14k architectures from NAS-Bench-NLP
 - Improved by adding acc’s from first three epochs

API and surrogate benchmarks: https://github.com/automl/NAS-Bench-x11
Evaluation (mean learning curves)

	Avg. R^2	Final R^2	Avg. KT	Final KT
Tabular (1 seed)	0.553	0.778	0.529	0.654
Tabular (2 seeds)	0.672	0.845	0.581	0.709
Tabular (3 seeds)	0.707	0.854	0.602	0.718
Tabular (4 seeds)	0.727	0.870	0.617	0.732
NAS-Bench-311	0.715	0.838	0.628	0.711

Similar rank correlation to a 3-seed tabular benchmark
Evaluation (noise model)

Benchmark	Avg. R^2	Final R^2	Avg. KT	Final KT	Avg. KL	Final KL
NAS-Bench-111	0.529	0.630	0.531	0.645	2.016	1.061
NAS-Bench-111 (w. accs)	0.630	0.853	0.611	0.794	1.710	0.926
NAS-Bench-311	0.779	0.800	0.728	0.788	0.905	0.600
NAS-Bench-NLP11	0.326	0.314	0.505	0.475	-	-
NAS-Bench-NLP11 (w. accs)	0.878	0.895	0.878	0.844	-	-

Spike anomalies

Compare probability of anomalies of surrogates vs. real data
Roadmap

- Motivation
- Generating Learning Curves
- Evaluation
- The Power of Learning Curves
- Conclusion
Learning Curve Extrapolation (LCE)

- Used to speed up black-box NAS algorithms
 - Reg. Evolution, BANANAS, local search, etc

Use LCE to stop training bad architectures early

[Domhan et al. 2015], [Baker et al. 2017]
Algorithm 1 Single-Fidelity Algorithm

1: initialize history
2: while $t < t_{\text{max}}$:
3: arches = gen_candidates(history)
4: accs = train(arches, epoch=E_{max})
5: history.update(arches, accs)
6: Return arch with the highest acc

Algorithm 2 LCE Framework

1: initialize history
2: while $t < t_{\text{max}}$:
3: arches = gen_candidates(history)
4: accs = train(arches, epoch=E_{max})
5: sorted_by_pred = LCE(arches, accs)
6: arches = sorted_by_pred[:top_n]
7: accs = train(arches, epoch=E_{max})
8: history.update(arches, accs)
9: Return arch with the highest acc
Conclusions & Future Work

- New technique: surrogate benchmarks with full training information
 - Learning curves with realistic noise
- NAS-Bench-111, NAS-Bench-311, NAS-Bench-NLP11
- Framework to add LCE to black-box NAS algorithms

Code: https://github.com/automl/NAS-Bench-x11

Thanks!