Clinical Effectiveness of Intravenous Peramivir Compared with Oseltamivir in Patients with Severe Influenza A with Primary Viral Pneumonia: A Randomized Controlled Study

Hong-dou Chen1,2, Xu Wang1,2, Shu-le Yu1,2, Yue-hui Ding1,2, Meng-lei Wang1,2, and Jin-na Wang1,2*

1 Suqian People’s Hospital of Nanjing Drum-Tower Hospital Group, Suqian 223800, China
2 The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian 223800, China

Corresponding author information
Full Name: Jinna Wang
No.138 Huanghe South Road, Sucheng District, Suqian, Jiangsu, China
Telephone number: +8615751514806
email address: 593372527@qq.com

Alternate author information
Full Name: Hongdou Chen
No.138 Huanghe South Road, Sucheng District, Suqian, Jiangsu, China
Telephone number: +8613365252813
email address: chenhongdou2000@aliyun.com

The Clinical Study registration number: ChiCTR1900021135
ABSTRACT

Background: High-quality evidence confirm the clinical efficacy of peramivir in severe influenza patients with primary viral pneumonia is lacking. To optimize clinical medication, we evaluate the different efficacy between peramivir and oseltamivir in the treatment of severe influenza A with primary viral pneumonia.

Methods: A single-center, randomized, controlled trial was conducted during the Chinese influenza season from December 2018 to April 2019 in patients with severe influenza A with primary viral pneumonia. A total of 40 inpatients were enrolled and treated with either intravenous peramivir (300 mg, once daily for 5 days) or oral oseltamivir (75 mg, twice daily for 5 days).

Results: The durations of influenza virus nucleic acid positivity in the oseltamivir group and the peramivir group were 2.95 days and 2.80 days, respectively. The remission times of clinical symptoms in the oseltamivir group and the peramivir group were 3.90 days and 3.25 days, respectively. In addition, the remission time of cough symptoms in the peramivir group (63.89 hours) was shorter than that in the oseltamivir group (75.53 hours). There was no significant difference between these values (P>0.05). The remission time of fever symptoms in the oseltamivir group was 23.67 hours, which was significantly longer than that in the peramivir group (12.32 hours) (P=0.034).

Conclusions: Peramivir is no less effective than oseltamivir in the treatment of severe influenza A with primary viral pneumonia, and patients treated with peramivir had significantly shorter remission times of fever symptoms than those treated with oseltamivir.

Keywords: peramivir; influenza A; pneumonia; oseltamivir.
Introduction

Influenza is an acute respiratory disease caused by influenza virus, which has the characteristics of rapid transmission and strong infectivity. In a typical influenza season, influenza viruses can cause infection in 5-10% of the population. According to the World Health Organization's Global Burden of Disease Study, influenza viruses currently cause more than 650,000 deaths worldwide. The global epidemic of influenza has caused serious public health and economic problems [1-4]. In recent years, successive outbreaks of influenza in China have led to a large number of severe cases and even deaths. Influenza is a self-limited disease in the absence of complications. The most common clinical features are fever, cough, headache, muscle ache, general discomfort, etc. However, some patients, such as the elderly, young children, obese people, pregnant women and individuals with chronic underlying diseases or even the general population, may develop a severe case due to the occurrence of complications, such as pneumonia, nervous system injury, and cardiac injury. A small number of critically ill patients progress rapidly and die from these complications [5-7]. In fact, influenza is usually accompanied by primary viral pneumonia. Therefore, an increasing number of scholars have focused on the study of severe influenza combined with primary viral pneumonia recently [8].

According to the influenza diagnosis and treatment program (2019 edition) issued by the National Health Commission of the People's Republic of China, the three classes of anti-influenza drugs currently on the market in China are M2 proton channel blockers, hemagglutinin inhibitors and neuraminidase inhibitors. The representative M2 proton channel blockers are amantadine and rimantadine. However, M2 ion channel blockers are effective only for influenza A, and all influenza A strains are resistant to older drugs, so those drugs are no longer recommended. The representative hemagglutinin inhibitor is abidol. But its clinical application is limited in China, so its efficacy and adverse reactions need further attention [9-13]. At present, neuraminidase inhibitors are the most widely used anti-influenza drugs. Representative neuraminidase inhibitors include oseltamivir,
zanamivir, and peramivir. Neuraminidase, also known as sialidase, is a glycoprotein on the surface of influenza virus that can catalyze the hydrolysis of glycosidic bonds between the end of sialic acid and adjacent oligosaccharides, promoting detachment of mature influenza virions from host cells to allow infection of new cells and eventually leading to the spread of the virus in the human body.

Neuraminidase inhibitors selectively inhibit neuraminidase, thereby affecting viral replication and spread [14-15]. The neuraminidase inhibitors currently on the market include oseltamivir phosphate capsules, oseltamivir phosphate granules, zanamivir inhalation powder aerosol, and peramivir sodium chloride injection. Oseltamivir is an oral preparation, and zanamivir is an inhalant that is not convenient for severe patients. In 2009, the marketing of peramivir sodium chloride injection created a convenient method of administration for severe and critical influenza patients [16].

Peramivir, is a cyclopentane derivative containing a guanidine group and a lipophilic side chain [17-18]. As a novel intravenously administered anti-influenza drug, peramivir has a plasma half-life of 6-8 hours and a high blood concentration and can bind to three sites on the amino acid residues of the neuraminidase active site; thus, peramivir is a fast-acting, long-lasting, potent anti-influenza drug [19-21]. In fact, there are many domestic and international studies verifying the effectiveness of peramivir. For example, the results of cell experiments and animal experiments established by Boltza et al. [22] showed that peramivir had a strong inhibitory effect on influenza virus strains and that parenteral administration of peramivir could improve the survival rates of animals. Since then, phase I-III clinical studies conducted in the United States have confirmed that intravenous peramivir treatment has strong inhibitory activity against influenza virus and better efficacy than oral oseltamivir [23]. The Japanese study by Komeda et al. [24] collected data from 1,309 influenza patients using peramivir between 2010 and 2012 to evaluate the clinical efficacy of peramivir. This trial concluded that the median time for peramivir in treating influenza to relieve influenza symptoms and fever was 3 days, and the efficacy of peramivir in treating influenza was good.

However, there are no reports on the effectiveness of peramivir in the treatment of severe influenza complicated with primary viral pneumonia domestically or globally. Only animal studies conducted
by Tanaka et al. [25] in 2015 demonstrated effective treatment of secondary pneumococcal pneumonia established with lethal viruses and influenza viruses by intravenous peramivir infection.

However, high-quality evidence from randomized, controlled clinical trials to confirm the clinical efficacy of peramivir in severe influenza patients with primary viral pneumonia is lacking.

This study provides comparative data on the use of different neuraminidase inhibitors in the treatment of severe influenza patients with primary viral pneumonia. We assessed the duration of influenza virus nucleic acid positivity (primary indicator), time to remission of clinical symptoms (primary indicator), time to remission of fever symptoms (secondary indicator), and time to remission of cough symptoms (secondary indicator). The aim of this study was to prove the peramivir was not less effective than oseltamivir in the treatment of severe influenza complicated with primary viral pneumonia.

Methods and patients

Diagnostic criteria

Our study was a randomized, controlled clinical trial and was conducted in accordance with the ethical standards of the Helsinki Declaration (1964, amended most recently in 2008) of the World Medical Association. This research was approved by the Ethics Committee of the Affiliated Suqian Hospital of Xuzhou Medical University. All participants gave their written informed consent. A clinical research registration number was awarded by the China Clinical Trial Registration Center (ChiCTR1900021135). During the Chinese influenza season from December 2018 to April 2019, this study was performed at the Affiliated Suqian Hospital of Xuzhou Medical University. The patients enrolled in this study were diagnosed with severe influenza A with primary viral pneumonia, which met the diagnostic criteria for the 2019 version of the “Influenza Diagnosis and Treatment Program”. First, throat swabs were collected for all patients for reverse transcription polymerase chain reaction. The results showed that the patients were positive for influenza A virus. Second, imaging
examination of a patient showed a ground-glass shadow and patch shadow in the lungs, and the patient's sputum culture showed no bacterial growth or only viridans streptococcus and a CRP level <20 mg/L. Third, according to the 2019 version of the "Influenza Diagnosis and Treatment Plan", one of the following symptoms indicates a severe case: (1) persistent high fever > 3 days, accompanied by severe cough, purulent sputum, bloody sputum, or chest pain; (2) fast breathing frequency, difficulty breathing, and cyanosis of the lips; (3) neurological changes: slow response, lethargy, restlessness, convulsions, etc.; (4) severe vomiting, diarrhea, and dehydration; (5) combination with pneumonia; (6) significant worsening of original underlying diseases; and (7) other clinical conditions requiring hospitalization. The patients enrolled in this study had primary viral pneumonia, which met the severe criteria defined in the "Influenza Diagnosis and Treatment Program". Satisfying the above three conditions at the same time results in diagnosis of severe influenza A with primary viral pneumonia.

Patients and groups

The target number of patients with severe influenza A with primary viral pneumonia was 22 based on the result demonstrating non-inferiority of intravenous peramivir compared with oseltamivir in influenza patients [26]. Considering that the study period was an influenza epidemic with a large number of patients, the sample size was finally set at 40. A total of 40 patients were included in this study. The inclusion criteria were as follows: (1) confirmed severe influenza A combined with primary viral pneumonia; (2) aged ≥ 18 years; and (3) the time from the onset of influenza symptoms to the start of treatment administration was within 48 hours. The exclusion criteria were as follows: (1) exclusion of bacterial, fungal, and atypical pathogen infections; (2) vaccination against influenza within six months and administration of M2 ion channel blockers and neuraminidase inhibitors within one month; and (3) allergy to neuraminidase inhibitors. In this study, SPSS 21.0 software was used to generate random numbers, and participants were randomly divided into peramivir and oseltamivir groups according to the results.
Dosing regimen

The patients in the peramivir group received intravenous infusion of 300 mg peramivir sodium chloride injection (Ranbaxy, Guangzhou China) once a day, and critical patients could receive 600 mg each time. The course of treatment was five days. The course of treatment for severe patients could be appropriately extended. The patients in the oseltamivir group were given 75 mg oseltamivir capsules (Roche, Spanish) twice daily. The course of treatment was five days. The course of treatment for severe patients could be appropriately extended.

Evaluation indicators

A doctor recorded each patient’s basic information (including name, sex, age, etc.) and recorded the remission of influenza symptoms (including fever, cough, etc.) in detail three times a day. Pharyngeal swabs were collected daily after the patients were enrolled, and the time and results were recorded by the doctor. A nurse measured each patient’s temperature every four hours using a mercury thermometer and recorded it. All information must be registered daily until the patient was discharged.

The duration of influenza virus nucleic acid positivity refers to a change in the influenza virus nucleic acid result from positive to negative that is maintained for more than 24 hours. The remission time of clinical symptoms refers to whether all influenza symptoms disappear or a patient shows only mild influenza symptoms that remain for more than 24 hours. Fever relief refers to the temperature dropping to 37.5°C and remaining constant for more than 24 hours, while cough relief refers to no or slight cough that is maintained for more than 24 hours.
Statistical analysis

The categorical variables in this study are expressed as percentages, and differences between groups were evaluated using the chi-square test or Fisher’s exact test. Measurement data with a normal distribution are expressed as the mean ± standard deviation, measurement data with a nonnormal distribution are expressed as the median (interquartile range). The comparison among groups of continuous variables are tested by Student’s t test. All data in this study were processed using SPSS 21.0 software, and p<0.05 was considered significant.

Results

A total of 40 patients diagnosed with severe influenza A with primary viral pneumonia were enrolled in this study between December 2018 and April 2019. Then, they were randomly divided into peramivir and oseltamivir groups of equal size. All patients successfully completed the study (Figure 1). All patients met the inclusion and exclusion criteria, and the first dosing time was within 48 hours of the onset of influenza. The background information of the patients is shown in Table 1. After analysis by the statistical software SPSS, the basic data of the two groups of patients were not significantly different.

The clinical efficacies of peramivir and oseltamivir in the treatment of severe influenza A combined with primary pneumonia were evaluated. The main evaluation indicator selected in this study was the duration of influenza virus nucleic acid positivity. The secondary indicators were the remission time of fever symptoms and the remission time of cough symptoms.

If infected with influenza virus, patients will develop fever, headache, muscle ache, fatigue, cough and other symptoms. In this study, the clinical symptoms of all enrolled patients are shown in Table 2. After the chi-square test was performed, there were no significant differences in clinical symptoms between the two groups. As shown in Table 2, fever and cough were among the top two clinical symptoms. Therefore, this study used the remission time of clinical symptoms, the fever
symptom relief time and the cough symptom relief time as secondary indicators to evaluate the clinical efficacy of peramivir in the treatment of patients with severe influenza with primary viral pneumonia.

As shown in Table 3 and Figure 2A, the durations of influenza virus nucleic acid positivity in the oseltamivir group and the peramivir group were 2.95 days and 2.80 days, respectively. A t-test showed the difference between the two groups was not significant (P>0.05). The remission times of clinical symptoms in the oseltamivir group and the peramivir group were 3.90 days and 3.25 days, respectively, as shown in Table 3 and Figure 2B. There was also no significant difference between these values (P>0.05). In addition, the remission time of cough symptoms in the peramivir group (63.89 hours) was shorter than that in the oseltamivir group (75.53 hours). However, the difference between the two groups was not significant (Table 3 and Figure 2C). The remission time of fever symptoms was one of the secondary indicators used to evaluate the clinical efficacies of peramivir and oseltamivir in the treatment of severe influenza A combined with primary pneumonia. Table 3 shows that the remission time of fever symptoms in the oseltamivir group was 23.67 hours, which was significantly longer than that in the peramivir group (12.32 hours) (P=0.034). As shown in Figure 2D, the proportions of patients with fever in the oseltamivir group after 24, 48 and 72 hours of treatment were 46.67%, 13.33% and 6.67%, respectively. The proportions of patients with fever after 24, 48 and 72 hours of treatment in the peramivir group were 10.53%, 5.26% and 0%, respectively. Thus, the proportion of patients with fever after drug treatment was significantly lower in the peramivir group than in the oseltamivir group.

Discussion

Peramivir has achieved good clinical anti-influenza results since it was launched on the market. There have been reports of peramivir administration in the treatment of adults and high-risk groups (including children, the elderly, obese patients, patients with chronic underlying diseases, etc.). However, there are few reports on the treatment of severe influenza A with primary viral
pneumonia with peramivir. Our study selected a prospective control method to evaluate the clinical efficacy of peramivir in the treatment of severe influenza complicated with primary viral pneumonia. Assessment indicators included the duration of influenza virus nucleic acid positivity, remission time of clinical symptoms, remission time of fever symptoms and remission time of cough symptoms.

After the patients were enrolled, they were treated with peramivir or oseltamivir. The patient’s body temperature, respiratory symptoms (such as cough, expectoration, pharyngalgia, and nasal obstruction) and general symptoms (such as general muscle soreness, chills, and fatigue) were recorded four times a day. The sampling time and test results of throat swabs were recorded daily. After analyzing the statistical results, it was found that there was no significant difference in the time to conversion to influenza virus negativity between patients taking peramivir and those taking oseltamivir. In a multicenter, randomized, controlled trial conducted by Nakamura S et al. [5] in 2013, there was no significant difference in the viral titer change in influenza A patients with high-risk factors following administration of peramivir or oseltamivir. This result indicated that the duration of viral positivity was similar in both groups. This result is close to that of our study, which indicates that the ability of peramivir to promote the conversion to influenza virus negativity in severe influenza A patients with primary viral pneumonia is comparable to that of oseltamivir. A phase III, randomized, double-blinded study conducted by Kohno S et al. [27] in 2011 compared the clinical efficacy of intravenous peramivir with that of oral oseltamivir in the treatment of seasonal influenza. The results showed that the median durations of influenza symptoms were 78.0 and 81.8 hours in the peramivir and oseltamivir groups, respectively. There was no significant difference in the remission time of clinical symptoms between the two groups, which was consistent with the results of our study. This suggests that peramivir is equivalent to oseltamivir in improving the clinical symptoms of influenza in patients with severe influenza combined with primary viral pneumonia. In addition, there was no significant difference in the relief time of cough symptoms between the two groups after intravenous administration of peramivir or oral administration of oseltamivir in this study, which indicated that the effect of peramivir on improving cough symptoms in severe influenza
patients with primary viral pneumonia was not different from that of oseltamivir. A randomized, controlled trial on the cost and effectiveness of peramivir versus those of oseltamivir in the treatment of influenza virus pneumonia in children conducted by Chen SJ et al. [28] in 2019 confirmed that patients treated with peramivir had a shorter time to disappearance of their cough symptoms than those treated with oseltamivir. This is different from the results of our study. This may be attributed to the stronger absorption of gastrointestinal drugs in adults than in children, so there was no difference in the time to relieve cough symptoms between intravenous peramivir and oral oseltamivir in this study. Finally, the results of this study showed that the fever remission time (12.32 hours) of patients treated with peramivir was significantly less than that of patients treated with oseltamivir (23.67 hours). According to a meta-analysis by Lee J et al. [29] in 2017, patients treated with intravenous peramivir for influenza had a shorter fever time than those treated with oral oseltamivir treatment. This result is consistent with the results of our study. Therefore, this study indicates that intravenous peramivir can restore the body temperature to normal faster than oral oseltamivir in severe influenza patients with primary viral pneumonia.

In addition, we should recognize the shortcomings of this study. Firstly, the indicators of this study were the duration of influenza virus nucleic acid positivity, the time to clinical symptom remission, the time to fever symptom remission and the time to cough symptom remission. However, including outcome measures such as mortality, length of hospital stay, or an influenza ordinal recovery scale would be equally as useful in hospitalised patients. Secondly, this is a single-center study rather than a multicenter study. A total of 40 patients were included in this study, so the sample size was small. This was because the target of this study was severe influenza A combined with primary viral pneumonia, and relatively few patients met the inclusion criteria. So the results of this study may be not equate with that in the true population due to the small sample size. However, only few clinical prospective, randomized-controlled trials on peramivir for treating severe influenza A with primary viral pneumonia have been published. In addition, a multicenter, large-sample research is being
conducted by our research group. We expect that more meaningful data and results will be obtained.

Conclusion

In this study, we evaluated the efficacies of peramivir and oseltamivir in the treatment of severe influenza A patients with primary viral pneumonia by comparing the duration of influenza virus nucleic acid positivity, the time to clinical symptom remission, the time to fever symptom remission and the time to cough symptom remission. There was no significant difference in the durations of influenza virus nucleic acid positivity, the remission times of clinical symptoms and the remission time of cough symptoms between the oseltamivir group and the peramivir group. The remission time of fever symptoms in the oseltamivir group was significantly longer than that in the peramivir group. Based on these data, we conclude that peramivir is no less effective than oseltamivir in the treatment of severe influenza A and primary viral pneumonia and that patients who receive peramivir intravenously have significantly shorter remission times of fever symptoms than those treated with oral oseltamivir.
Acknowledgments

We gratefully thank all the participants in the completion of this study.

Funding. This study was supported by Science and technology information network in Suqian City (No. Z2018188).

Conflict of interests. The authors declare no conflict of interest.

Patient Consent Statement

a. All participants in this study gave their written informed consent.

b. This research was approved by the Ethics Committee of the Affiliated Suqian Hospital of Xuzhou Medical University.
References

1. Liu Y, Huang Y, Wei BL, et al. “Efficacy and Safety of Clearing Heat and Detoxifying Injection in the Treatment of Influenza: A Randomized, Double-Blinded, Placebo-Controlled Trial,” Evidence-Based Complementary and Alternative Medicine, 2014;2014:151235.

2. Cox NJ and Subbarao K, “Influenza,” The Lancet, 1999 Oct 9;354(9186): 1277-82.

3. WHO. “Vaccines against influenza WHO position paper—November 2012,” Wkly Epidemiol Rec, 2012 Nov 23;87(47): 461-76.

4. Lee J, Park JH, Jwa H, Kim YH. “Comparison of Efficacy of Intravenous Peramivir and Oral Oseltamivir for the Treatment of Influenza: Systematic Review and Meta-Analysis,” Yonsei Med J, 2017 Jul;58(4):778-785.

5. Nakamura S, Miyazaki T, Izumikawa K, et al. “Efficacy and Safety of Intravenous Peramivir Compared With Oseltamivir in High-Risk Patients Infected With Influenza A and B Viruses: A Multicenter Randomized Controlled Study,” Open Forum Infect Dis, 2017 Jun 19;4(3):ofx129.

6. Ishiguro N, Koseki N, Kaiho M, et al. “Clinical effectiveness of four neuraminidase inhibitors (oseltamivir, zanamivir, laninamivir, and peramivir) for children with influenza A and B in the 2014-2015 to 2016-2017 influenza seasons in Japan,” J Infect Chemother, 2018 Jun;24(6):449-457.

7. Komeda T, Ishii S, Itoh Y, et al. “Post-marketing safety evaluation of the intravenous anti-influenza neuraminidase inhibitor peramivir: A drug-use investigation in patients with high risk factors,” J Infect Chemother, 2016 Oct;22(10):677-84.

8. Wang JN, Wang X, Yu SL, et al. “A Retrospective Analysis of Three Antiviral Regimens of Peramivir in the Treatment of Severe Influenza A with Primary Viral Pneumonia,” Can Respir J, 2019 Apr 30;2019:3859230.

9. Kadam RU, Wilson IA. “Structural basis of influenza virus fusion inhibition by the antiviral drug Arbidol,” Proc Natl Acad Sci U S A, 2017 Jan 10;114(2):206-214.

10. Wang Y, Ding Y, Yang C et al. “Inhibition of the infectivity and inflammatory response of
influenza virus by Arbidol hydrochloride in vitro and in vivo (mice and ferret),” *Biomed Pharmacother*, 2017 Jul;91:393-401.

11. Li Y, Zhao L. “Research status on pharmacological actions and in vitro and in vivo effects of arbidol against respiratory viruses,” *Chin J Clin Pharmacol*, 2019, 35(17):1964-1968.

12. Titova ON, Petrova MA, Shklyarevich NA, et al. “Efficacy of Arbidol in the prevention of virus-induced exacerbations of bronchial asthma and chronic obstructive pulmonary disease,” *Ter Arkh*, 2018, 90(8):48-52.

13. Leneva IA, Falynskova IN, Makhmudova NR, et al. “Umifenovir susceptibility monitoring and characterization of influenza viruses isolated during ARBITR clinical study,” *J Med Virol*, 2019, 91(4):588-597.

14. Lackenby A, Besselaar TG, Daniels RS, et al. “Global update on the susceptibility of human influenza viruses to neuraminidase inhibitors and status of novel antivirals, 2016-2017,” *Antiviral Res*, 2018 Sep;157:38-46.

15. Mawatari M, Saito R, Hibino A, et al. “Effectiveness of four types of neuraminidase inhibitors approved in Japan for the treatment of influenza,” *PLoS One*, 2019 Nov 7;14(11):e0224683.

16. Li JH, Lin FF, Du JY, et al. “Antiviral effects of baicalin combined with peramivir against pandemic 2009 H1N1 virus in vitro and in vivo,” *Chinese Pharmacological Bulletin*, 2013, 29(05):617-621.

17. Beard KR, Brendish NJ, Clark TW, et al. “Treatment of influenza with neuraminidase inhibitors,” *Curr Opin Infect Dis*, 2018 Dec; 31(6): 514-519.

18. Wang H, Wang MY, Zhou YP, et al. “Peramivir-a neuraminidase inhibitor,” *Journal of Jilin Medical University*, 2016, 37(04):307-308.

19. Bantia S, Arnold CS, Parker CD, et al. “Anti-influenza virus activity of peramivir in mice with single intramuscular injection,” *Antiviral Res*, 2006, Jan;69(1):39-45.

20. De Clercq E. “Antiviral agents active against influenza a viruses,” *Nat Rev Drug Discov*, 2006 Dec;5(12):1015-25.

21. Gu JF. “Research progress on peramivir of novel anti-influenza virus highly potent
neuraminidase inhibitor,” Chinese Journal of New Drugs, 2013, 22(09):989-997.

22. Boltz DA, Ilyushina NA, Arnold CS, et al. “Intramuscularly administered neuraminidase inhibitor peramivir is effective against lethal H5N1 influenza virus in mice,” Antiviral Res, 2008 Nov;80(2):150-7.

23. Alame MM, Elie M, Hassan Z. “Peramivir: A Novel Intravenous Neuraminidase Inhibitor for Treatment of Acute Influenza Infections,” Front Microbiol, 2016 Mar 31;7:450.

24. Komeda T, Ishii S, Itoh Y, et al. “Post-marketing safety and effectiveness evaluation of the intravenous anti-influenza neuraminidase inhibitor peramivir (I): a drug use investigation,” J Infect Chemother, 2014, 20(11):689-695.

25. Tanaka A, Nakamura S, Seki M, et al. “The effect of intravenous peramivir, compared with oral oseltamivir, on the outcome of post-influenza pneumococcal pneumonia in mice,” Antivir Ther, 2015;20(1):11-9.

26. Yoshino Y, Seo K, Koga I, et al. “Clinical efficacy of laninamivir and peramivir in patients with seasonal influenza: a randomized clinical trial,” Infect Dis, 2017, 49(5):417-419.

27. Kohno S, Yen MY, Cheong HJ, et al. “Phase III randomized, double-blind study comparing single-dose intravenous peramivir with oral oseltamivir in patients with seasonal influenza virus infection,” Antimicrob Agents Chemother, 2011 Nov;55(11):5267-76.

28. Chen SJ, Dai FL, Li DD, et al. “Cost-effectiveness analysis of peramivir and oseltamivir in treatment of influenza virus pneumonia in children,” China Medicine, 2019, 14(02):215-218.

29. Lee J, Park JH, Jwa H, et al. “Comparison of Efficacy of Intravenous Peramivir and Oral Oseltamivir for the Treatment of Influenza: Systematic Review and Meta-Analysis,” Yonsei Med J, 2017 Jul;58(4):778-785.
Figure 1. Patient composition.

Figure 2. Kaplan-Meier survival curves for the duration of virus nucleic acid positivity (A), remission time of clinical symptoms (B), time to cough alleviation (C) and time to fever alleviation (D) for the oseltamivir and peramivir groups.
Table 1: General characteristics of the oseltamivir group and peramivir group

Item	Oseltamivir Group	Peramivir Group	p value	
Number of patients	20	20	-	
Age, years	Mean ± SD	39.00 ± 21.11	33.25 ± 15.22	0.46
	Range	18-77	18-85	
Sex	Male/Female	8/12	9/11	0.75
	%	40/60	45/55	
Maximum body temperature, °C	Mean ± SD	38.67 ± 0.48	38.88 ± 0.77	0.35
	Range	37.80-39.40	37.00-39.80	
Virus subtype	Type A H1N1	1	1	1.00
	Type A H3N2	19	19	
	Type B	0	0	
Complication of primary viral pneumonia	Number	20	20	-
Time from onset to administration of drugs	Number	20	20	-
(≤ 48 hours)				
Table 2: Clinical symptoms of the influenza patients in the oseltamivir group and peramivir group

Symptom	Oseltamivir Group	Peramivir Group	p value		
	Number	%	Number	%	
Fever	19	0.95	19	0.95	1.00
Cough	16	0.8	19	0.95	0.15
Expectoration	14	0.7	12	0.6	0.51
Chills	13	0.65	10	0.5	0.34
Weakness	6	0.3	5	0.25	0.72
Headache	3	0.15	3	0.15	1.00
Muscle soreness	3	0.15	2	0.1	0.63
Sore throat	2	0.1	5	0.25	0.21
Chest tightness	2	0.1	3	0.15	0.63
Coryza	2	0.1	1	0.05	0.55
Table 3: Clinical efficacies in the oseltamivir group and peramivir group

Item	Oseltamivir Group	Peramivir Group	p value
Duration of virus nucleic acid positivity, days	2.95 ± 2.01	2.80 ± 0.95	0.76
Remission time of clinical symptoms, days	3.90 ± 2.27	3.25 ± 1.52	0.29
Time to fever alleviation, hours	23.67 ± 19.97	12.32 ± 10.39	0.034
Time to cough alleviation, hours	75.53 ± 65.65	63.89 ± 37.41	0.51
Figure 1

Assessed for eligibility (n=137)

- Excluded (n=97)
 - Not meeting inclusion criteria (n=46)
 - Declined to participate (n=44)
 - Other reasons (n=7)

Randomized (n=40)

20 Patients were assigned to the peramivir group and received peramivir 300mg, once daily.

- Lost to follow-up (n=0)
- Discontinued intervention (n=0)

- Analysed (n=20)
 - Excluded from analysis (n=0)

20 Patients were assigned to the oseltamivir group and received oseltamivir 75mg, twice daily.

- Lost to follow-up (give reasons) (n=0)
- Discontinued intervention (n=0)

- Analysed (n=0)
 - Excluded from analysis (n=0)
Figure 2