Evaluation of inflammation by level of Interleukin 4 in exhaled breath condensate in patients affected by bronchial asthma treated according to GINA guidelines

Giuseppe Valerio, Pierluigi Bracciale, Fabio Valerio
Divisione di Pneumologia Antonio Blasi, Ospedale Ninetto Melli, Brindisi, Italy

Abstract

GINA guidelines suggest that optimal asthma control can be gained by regular monitoring of symptoms, rescue medication use, airways obstruction and variability upon time of airways flows. Our aim was to check if therapy according to GINA rules is able to lower airways inflammation, measured by the level of IL4 in expired breath condensate (EBC). One hundred patients affected by bronchial asthma in different levels were recruited as they come to the ambulatory ward. They were cured according to GINA guidelines for one year, using inhaled fluticasone as inhaled steroid. Symptoms were monitored by asthma control test score (ACT), airways obstruction by FEV1, bronchial reactivity by PD20, airways inflammation by IL4 in EBC. ACT showed control in the first three GINA levels, improving incompletely in the GINA level 4 (from 20±2 to 21±12; from 17±2 to 22±2; from 14±4 to 18±3; from 10±3 to 14±3 units respectively in the first to fourth levels of asthma). FEV1 improved, but both baseline and after therapy levels were worst in severe persistent asthma (74±6 to 83±8; from 45±10 to 60±5% of normal standards respectively from the 1st to 4th level). PD20 and IL4 were fairly normalized by therapy in the s and third levels, improved in the last one (PD20 from 437±329 to 460±269, from 364±308 to >1600, from 436±252 to 890±220; from 45±25 to 60±40 mcg respectively, IL4 in EBC from 60±6 to 40±12, from 65±10 to 41±9, from 72±8 to 45±6, from 78±20 to 52±5 respectively). IL4 and PD20 were significantly related. Experimental data allowed the assessment of the correlation of inflammation with bronchial reactivity and the relevance of addressing therapy upon IL4. Severe persistent asthma behave as a different entity with worst baseline inflammation, partially refractory asthma and persistent inflammation, needing specific immunologic weapons. Bronchial inflammation was fairly reduced but not normalized after one year of therapy.

Introduction

In the therapy of bronchial asthma (BA), current GINA guidelines assign a specific level of gravity according to symptoms, airways obstruction and peak flow (PEF) variability. GINA levels suggest the appropriate intensity of therapy necessary for the treatment to achieve good asthma control. Thereafter changes of therapy depends on routine follow-up and reassessment to determine if a patient is well-controlled, partly controlled or uncontrolled. BA is characterized by persistent inflammation, reversible obstruction, and bronchial hyper-reactivity,1,3 weakly related with symptoms FEV1 and PEF variability. Improvement of knowledge about underlying inflammation can be obtained using the bronchial hyperreactivity as a monitor.4,5 However, the goals of therapy would be better achieved by addressing the therapy using a direct marker of bronchial inflammation.

Within allergic inflammation IL4 is an appropriate marker since it plays a major role in priming naive T lymphocytes to Th2 with activation of the cascade IL4, IL5, IL9, IL13,6,7 while IL5 is mainly responsible of eosinophils recruitment and both IL9 and IL13 for bronchial hyperreactivity. The less invasive, most reproducible and most effective way to measure bronchial inflammation is to perform the dosage of IL4 inExpired Breath Condensate (EBC), as already shown in other studies.3,7-10 Our aim is to assess if long term therapy, conducted according GINA guidelines in compliant BA patients of different severity is able to lower and normalize bronchial inflammation assessed by means of IL4 in EBC.

Materials and Methods

One hundred non smoking caucasian patients which never smoked but were affected by allergic bronchial asthma, according to GINA guidelines, were enrolled as they consecutively referred to the outpatient clinic of the respiratory disease division. They were symptom free without bronchial airways infection in the previous month. Informed consent was obtained. Compliance and motivation were obtained through effective information and periodic calls and it was checked by careful observation of drug consumption (weighting the canisters and counting the prescriptions). Only patients compliant to the assigned therapy were studied. A group of 20 healthy subjects were submitted to the same procedures as control group. For ethical reasons it was not possible to compare the results to a set of patients kept without therapy for one year. After the assessment of allergy by prick tests and IgE level, a wash out period lasting one month was allowed, to avoid the effects of previous drugs, treating the airways obstruction by salbutamol inhalation only at needing. Symptoms control, airways obstruction, degree of airways reactivity, level of IL4 in EBC were assessed and the patient was assigned to a specific GINA level. Therapy was administered according to GINA rules and the measurements were repeated after one year of therapy. During the period of therapy, evaluation of adherence to therapy was determined by periodic visits and detailed information. Patients affected by bronchial intermittent asthma were treated by inhalation of salbutamol spray as needed. Patients with persistent asthma were treated by fluticasone propionate (FP) and salmeterol (25 mg+250 umg twice/day). In case of moderate asthma, montelukast (10 mg/day) was assigned in addition; theophylline (20 mg/24/day) was prescribed only as needed. In the last step zarflukast (20 mgx2/day) plus salmeterol-fluticasone (25 mg+250 mcg twice a day) association, theophylline and prednisolone (5 mg/day) were used (Table 1). Within one year some patients experienced seasonal relapses due to allergenic load and were treated according to GINA guidelines. During measurement they were free of seasonal allergen load.

The Asthma Control Test (ACT) was administered according to literature11,12 to check for the control of symptoms. Skin prick tests were performed (according the EAACI suggestion) by a panel of allergen extracts (ALK-Abello, etc.)...
three months from collection. A double sand-plastic tube and kept at a -70°C in Eppendorf condensate (average 2cc) was collected in a secretion contamination. The volume of the allowed the exclusion of samples with mouth expiration line and the dosage of amylase breathing valve. A saliva trap was put in the and tidal volume through a two way non re min, using a nose clip at normal breathing rate Germany), while patients breathed for ten patients. The paper was approved by the Institutional Review Board (IRB).

Table 1. Features of patients and therapy used.

	Healthy controls	Intermittent	Mild persistent	Moderate persistent	Severe persistent	Units
Age	35±15	28±13	35±15	41±15	52±14	Years old
Gender	10:10	11:12	20:20	9:12	7:9	M:F
Height	168±5	170±5	170±7	168±5	165±6	Cm
BMI	26±7	25±6	28±7	24±5	24±4	Cm²/kg
FVC	110±7	98±2	97±2	85±4	75±10	%pred±sd
FEV1	105±4	96±5	92±6	74±6	45±10	%pred±sd
IgE	70±30	389±510	254±300	291±400	419±475	U/l
Eos	120±25	372±194	325±208	352±224	415±442	Cell/cc
Salbut. rescue	40±10		20±20	40±20	40±20	Mg/day
Salmeterol	50	50	50	50	50	Mg/day
Fluticasone	250	500	500	500	500	Mcg/day
Montelukast	10				10	Mg/day
Zarfilukast					60	Mg/day
Theophylline	400±100	400±100		400±100	400±100	Mg/day
Prednisolone					7±7	Mg/day

Results

The majority of the 100 patients referred for asthma care to our clinic were found to be GINA levels 1-3. The average age of patients increased in the consecutive steps from 28 years in the first level to 52 years in severe persistent asthma. Biometry was similar. Forced Vital Capacity (FVC) was significantly lower in severe persistent asthma. Airways obstruction (FEV1) was significantly impaired on mild and severe persistent asthma. Atopy, assessed by IgE and blood eosinophils, showed the highest values in severe persistent asthma.

ACT scores decreased in the successive levels; moderate persistent and severe persistent asthma scores were significantly lower than under intermittent. After therapy ACT scores showed a fairly constant and significant increase in each level, but the difference between severe persistent and the other levels was still significant (from 29±2 to 21±12; from 17±2 to 22±2; from 14±4 to 18±3; from 10±3 to 14±3 units respectively in the first to fourth levels of asthma). After therapy the control of symptoms (ACT) was almost completely achieved in the first two levels of severity, quite satisfactory in the third one and improved but not completely controlled in the last one.

Airways bronchial obstruction (FEV1) was significantly worse in moderate and severe persistent asthma before therapy. The treatment significantly increased FEV1 in severe persistent asthma. The comparison within the different levels after therapy showed a persistent airways obstruction in severe persistent asthma (from 96±5% to 96±4%; from 92±6% to 93±3%; from 74±6 to 83±8%; from 45±10 to 60±5% of normal standards respectively from the 1st to the 4th level).

Airways obstruction (FEV1) improved in persistent asthma, but the difference between severe persistent and the other levels was still significant.

The bronchial hyperreactivity (PD20) showed a significant difference between each level, worsening progressively. Therapy did not improve PD20 in the first level, but significantly improved in the other three consecutive levels, although the PD20 still remained significantly lower in severe persistent asthma (PD20 from 437±329 to 460±269, from 364±308 to >1600, from 436±252 to 890±220;
from 45±25 to 60±40 mcg respectively). IL4 in EBC was significantly increased in severe persistent asthma (IL4 in EBC from 60±6 to 40±12, from 65±10 to 41±9, from 72±8 to 45±6, from 78±20 to 52±5 pg/mL respectively). Allergic inflammation, according to IL4 levels, is fairly reduced in the first three levels, but it was still active in the level four. Allergic inflammation and bronchial hyperreactivity showed a reciprocal trend.

Discussion

The current study demonstrated that conventional therapy conducted according to GINA guidelines in compliant patients is able to control bronchial inflammation in the first three asthma levels with a trend toward normalization. The last level requires additional therapeutic weapons.

Several investigative tools have been proposed for the assessment of the degree of inflammation in bronchial asthma such as the levels of Nitric Oxide (NO) and Carbon Monoxide (CO) in the expired gas, the examination of induced sputum (IS) for assay of interleukins and mediators as well as the count of eosinophils, the examination of Broncho-Aleolar Lavage (BAL) and bronchial biopsy. We disagree with the use of IS since the inhalation of hypertonic solutions for induction of secretions determines bronchospasm; expired gas analysis seems almost limited, while EBC looks suitable because it is well tolerated and easily reproducible, despite technological problems, currently under standardization and solution.23

Within the different monitors of inflammation we chose IL4 because it plays a pivotal role in the allergic response. It determines the prevalence of allergy through the genic polymorphism and through the ratio between the IL4 receptor (active upon the cells surface) and the soluble IL4 receptor (inefficient). IL4 regulates an immunologic network influencing mastocytes function (increasing IgE affinity), B lymphocytes (decreasing (?IgE affinity), T lymphocytes (priming T0 into Th2), fibroblasts (it regulates the secretion of pro-collagen I) and endothelial cells (up-regulation of vascular cell adhesion molecule-1 (VCAM-1)).2,3,14-20 IL4 is over expressed in the bronchial biopsy in patients affected by asthma and allergic rhinitis and in the blood during the acute phase and after bronchial provocation, while it is reduced during therapy.1,20 The current experience aims to assess whether the effect of therapy, conducted according to GINA guidelines, using FP as ICS, upon a long time span and in all levels of asthma, is able to lower airways inflammation. According to our results, the first three levels of asthma are under satisfactory control, adopting GINA guidelines: both symptoms and bronchial hyperreactivity and allergic inflammation are significantly reduced by therapy in GINA levels 2 and 3, with a fair concordance with literature data,21 confirming as well the significant relationship between inflammation (IL4) and hyperreactivity (PD20).

Conclusions

The therapy conducted according to GINA guidelines, over one year lasting time span, allows reducing bronchial inflammation in mild and moderate levels. The diminution of inflammation is related to the improvement of bronchial hyperreactivity. After one year of therapy the inflammation is not completely overcome and it is necessary to avoid loss of adherence to the therapy, due to disappearance of symptoms, possibly leading to early withdrawal and relapse of the disease. Severe persistent asthma behave as a different entity with the higher baseline inflammation, raised IL4 levels, marked bronchial hyperreactivity, limited improvement after therapy according to GINA guidelines, requesting a precise identification of the phenotype of asthma and the use of more complex and specific weapons to reduce airways inflammation such as anti IgE antibodies.

Table 2. Effect of therapy lasting twelve months in asthmatic patients.

	Healthy controls	Intermittent mild persistent	Moderate persistent	Severe persistent	Units
ACT	23±2	20±2	17±2	14±4	U
ACT th	22±2	21±2	22±2	18±3	14±3
P	n.s.	n.s.	*	°	*
FEVI	113±12	96±5	92±6	74±6	45±10
FEVI th	110±15	96±4	93±3	83±8	60±5
P	n.s.	n.s.	n.s.	n.s.	°
PD20	>1600	437±329	364±308	438±325	45±25
PD20 th	>1600	460±269	>1600	890±220	60±40
P	n.s.	n.s.	°	°	n.s.
IL4EBC	30±15	60±6	65±10	72±8	78±20
IL4EBC th	33±13	60±12	41±9	45±6	52±5
P	n.s.	n.s.	°	°	n.s.

ACT, asthma control test score; th, results after twelve month of therapy; P, probability of significance; °P<.05; °°P<.01; IL4EBC, levels of IL4 in expired breath condensate; PD20, provocative dose causing a 20% fall of FEVI; n.s., not significant.
References

1. National Heart, Lung and Blood Institute, National Institutes of Health. Global initiative for asthma. Global strategy for asthma management and prevention. Updated from: NHLBI/WHO Workshop Report Issued January, 1995. Bethesda, MD. US Department of Health and Human Services: NIH Publication, No. 02-3659; 2003.

2. Tsoumakidou N, Tzanakis N, Kyriakou D, et al. Inflammatory cell profiles and T lymphocyte subsets in COPD and severe persistent asthma. Clin Exp Allergy 2004;34: 234-40.

3. Carpagnano GE, Foschino Barbaro MP, Resta O, et al. Exhaled markers in the monitoring of airways inflammation and its response to steroids’s treatment in mild persistent asthma. Eur J Pharmacol 2005; 519:175-81.

4. Sont JK, Willems LN, Sterk PJ, et al. Clinical control and histopathologic outcome of asthma when using airway hyper-responsiveness as an additional guide to long term treatment. The AMPUL Study Group. Am J Respi Crit Care Med 1999:159: 1043-51.

5. Nuijsink M, Hop WC, Sterk PJ, et al. Long term asthma treatment guided by airway hyper-responsiveness in children: a randomised controlled trial. Eur Respir J 2007;30:457-66.

6. Tosca MA, Cosentino C, Pallestrini E, et al. Medical treatment reverses cytokine pattern in allergic and nonallergic chronic rhinosinusitis in asthmatic children. Pediatr Allergy Immunol 2003;14:238-41.

7. Carpagnano GE, Resta O, Ventura MT, et al. Airway inflammation in subjects with gastro-esophageal reflux and gastro-esophageal reflux related asthma. J Int Med 2006;259:323-31.

8. Matsunaga K, Yanagisawa S, Ichikawa T, et al. Airway cytokine expression measured by means of protein array in exhaled breath condensate: correlation with physiologic properties in asthmatic patients. J Allergy Clin Immunol 2006;118:84-90.

9. O’Byrne PM. Cytokines or their antagonists for the treatment of asthma. Chest 2006;130:244-50.

10. Simpson JI, Wood LG, Gibson PG. Inflammatory mediators in exhaled breath, induced sputum and saliva. Clin Exp Allergy 2005;35:1180-5.

11. Nathan RA, Sorkness CA, Kosinski M, et al. Development of the asthma control test: A survey for assessing asthma control. J Allergy Clin Immunol 2004;113:59-65.

12. Bateman ED, Boushey HA, Bousquet J, et al. Can guideline-defined asthma control be achieved? The Gaining Optimal Asthma Control Study. Am J Resp Crit Care Med 2004;170:836-44.

13. Borrisl ZI, Roy K, Singh D. Exhaled breath condensate biomarkers in COPD. Eur Respir J 2008;32:472-86.

14. Isidoro-Garcia M, Davila I, Laffond E, et al. Interleukin-4 (IL4) and Interleukin-4 receptor (IL4RA) polymorphism in asthma: a case control study. Clin Mol Allergy 2005;29;3:15.

15. Beghè B, Barton S, Rotke S, et al. Polymorphisms in the interleukin-4 and interleukin-4 receptor (ILR4) polymorphism in asthma; a case control study. Clin Mol Allergy 2003;12:1111-7.

16. Plante S, Semiali A, Joubert P, et al. Mast cell regulate procollagen I (alpha 1) production by bronchial fibroblasts derived from subjects with asthma through IL-4/IL-4 delta 2 ratio. J Allergy Clin Immunol 2006;117:1321-7.

17. Stankievitz W, Dabrowski MP, Chcialowski A, Plusa T. Cellular and cytokine immunoregulation in patients with COPD and bronchial asthma. Mediators Inflamm 2002;11:307-12.

18. Webb DC, Mc Kenzie AN. Integrated signals between IL-13, IL-14 and IL-15 regulate airways hyppereactivity. J Immunol 2000;165:108-13.

19. Woodruff PG, Khasheyr R, Fahji V. Relationship between hyperresponsiveness and obstruction in asthma. J Allergy Clin Immunol 2001;108:753-8.

20. Choy DK, Ko F, Li ST, et al. Effects of theophylline, dexamethasone and salbutamol on cytokine gene expression in human peripheral blood CD4+ T cells. Eur Respir J 1999;14:1106-12.

21. Shashid SK, Kharithonov SA, Wilson NM, et al. Increased interleukin 4 and decreased interferon gamma in exhaled breath condensate of children with asthma. Am J Resp Crit Care Med 2002;165: 1290-3.

22. Barnes PJ. Cytokine modulators as novel therapies for airways disease. Eur Repir J Suppl 2001;34:67s-77s.

23. Oga T, Nishimura K, Tsukino M, et al. Changes in indices of airway hyperresponsiveness during one year of treatment with inhaled steroids in patients with asthma. J Asthma 2001;38:133-9.

24. Vrugt B, Wilson S, Underwood J, et al. Mucosal inflammation in severe glucocorticoid dependent asthma. Eur Respir J 1999; 13:1245-52.