Accuracy Level of Backpropagation Algorithm to Predict Livestock Population of Simalungun Regency in Indonesia

Indri Sriwahyuni Purba, Anjar Wanto, Reza Muhammad Riansah, Yogi Ahmad, Sandy Putra Siregar, Riki Winanjaya, Mhd Julham, Hotmalina Silitonga

1 STIKOM Tunas Bangsa, Sudirman Street Pematangsiantar, Medan – Indonesia
2 AMIK Tunas Bangsa, Sudirman Street Pematangsiantar, Medan – Indonesia

Abstract. The development of livestock agribusiness includes all activities that begin with the procurement and regulation of production and marketing suggestions. With the many types of livestock found in Simalungun Regency, Indonesia should be able to increase the potential for livestock agribusiness development. In this study, the authors will analyze the best architecture that can be used to predict the number of livestock populations according to the type of livestock in Simalungun District Indonesia so that certain parties can make improvements to the development of livestock agribusiness in Simalungun District Indonesia. In this study, there are five 5 architectural models namely, 3-5-1 architecture, 3-6-1, 3-7-1, 3-8-1, and 3-9-1. Of the five architectural models, the best architectural model is 3-7-1 with 75% accuracy and 1693 epochs. While the error rate is 0.001-0.01. It is expected that this architectural model can help academics in the process of predicting the number of livestock populations in Simalungun Regency in the coming year.

1. Introduction

Facing the era of global competition, development must be able to realize advanced, efficient and resilient farms, where existing resources (capital, nature, labor, and technology) can be utilized optimally so that the products produced can meet market demands both regionally and globally [1]. Farming that uses the concept of agribusiness must pay attention to two critical things. First, trying to strengthen subsystems in a system that is vertically integrated into management unity. Second, creating efficient agribusiness companies in each subsystem, so that if this can be achieved the livestock products, namely: meat, eggs, and milk will increase their competitiveness, especially in the face of global markets [2]. Livestock agribusiness includes all activities that begin with the procurement and distribution of production facilities, livestock business production, and marketing of livestock business products or their processed products [3].

Simalungun Regency Indonesia is one of the areas producing various types of livestock in North Sumatra Indonesia. Based on the kind of animals provided, Simalungun Regency should be able to improve the development of livestock-based agribusiness adequately. Increasing the results of livestock populations with aspects that have been determined can achieve commercial goals, namely the benefits for the perpetrators of activities. Based on data obtained through the Central Statistics Agency Simalungun, there are 8 livestock results produced, namely: Cows, buffaloes, horses, dairy cows, goats, sheep, pigs, and rabbits. With an unstable amount with each other.
In this study, the author will analyze the best architecture and the level of accuracy that can be used to predict the number of livestock populations in Simalungun District Indonesia by using the backpropagation algorithm method. Backpropagation is one method in Artificial Neural Networks that is quite reliable in solving problems [4], moreover, backpropagation has been many and thriving in various applications, such as pattern recognition, forecasting, site selection, and job evaluation [5]–[7]. In the manufacturing phase, the backpropagation algorithm passes through two (2) processes, namely the training process and the testing process [8][9].

2. Methodology

2.1. Data Used

The data used in this study is the data of livestock population according to the type of livestock in Simalungun District of Indonesia in 2011-2015 (Table 1). Data obtained from the Simalungun Indonesia Central Statistics Agency.

No	Livestock	2011	2012	2013	2014	2015
1	Cow	98335	99515	99603	100798	139100
2	Buffalo	7453	7542	7631	7723	8109
3	Horse	226	89	231	234	241
4	Dairy cows	37	37	37	37	47
5	Goat	63510	64272	65043	65824	75824
6	Sheep	10190	10312	10435	10560	11230
7	Pork	105341	106605	107881	109176	124176
8	Rabbit	3602	3646	3689	3733	3845

Source: Simalungun Indonesia Central Statistics Agency

2.2. Research Steps

The first thing to do is to collect data on livestock populations according to the type of livestock obtained from the Simalungun Statistical Center in 2011-2015. After the data is received, it will identify the problem [10]. In conducting research, the authors need references as reference material obtained from the books of Artificial Neural Networks and journals and other writings. After that, the data was tested using Matlab R2011b software. And until the final stage, which is evaluating the data that aims at whether the results obtained are as expected.

2.3. Normalization Data

Before being processed, the data is normalized first using the Sigmoid function (never reaches 0 or 1), then the data transformation is carried out at smaller intervals, namely [0.1; 0.9]. Data normalization aims to adjust the value of the data range with the range log sigmoid threshold function in the backpropagation system [11]–[13]. Normalization formula used:

\[
x' = \frac{0.8(x - a)}{b - a} + 0.1
\]

Explanation:

\[x':\] Transformed data
\[x: \] The data will be normalized
\[a: \] Minimum data
\[b: \] Maximum data
Livestock population data is divided into two parts, namely training data and testing data. The training data uses 2011-2013 with the 2014 target, and data testing uses 2012-2014 with the 2015 target.

Table 2. Normalization of Training Data (2011-2013) / Target (2014)

No.	Livestock	2011	2012	2013	Target
1	Cow	0.82053	0.82918	0.82983	0.83859
2	Buffalo	0.15436	0.15501	0.15566	0.15634
3	Horse	0.10139	0.10038	0.10142	0.10144
4	Dairy cows	0.10000	0.10000	0.10000	0.10000
5	Goat	0.56526	0.57085	0.57650	0.58223
6	Sheep	0.17442	0.17532	0.17622	0.17713
7	Pork	0.87189	0.88115	0.89051	0.90000
8	Rabbit	0.12613	0.12645	0.12677	0.12709

Table 3. Normalization of Data Testing (2012-2014) / Target (2015)

No.	Livestock	2012	2013	2014	Target
1	Cow	0.67228	0.67278	0.67966	0.90000
2	Buffalo	0.14317	0.14369	0.14422	0.14644
3	Horse	0.10030	0.10112	0.10113	0.10117
4	Dairy cows	0.10000	0.10000	0.10000	0.10006
5	Goat	0.46953	0.47397	0.47846	0.53599
6	Sheep	0.15911	0.15982	0.16054	0.16439
7	Pork	0.71306	0.72040	0.72785	0.81415
8	Rabbit	0.12076	0.12101	0.12126	0.12191

3. Results And Discussion

This study uses 5 architectures, 3-5-1 (3 are input layers, 5 are hidden layer neurons and 1 is the output layer), 3-6-1 (3 is the input layer, 6 is the hidden layer neuron and 1 is the output layer), 3-7-1 (3 is the input layer, 7 are hidden layer neurons and 1 is the output layer), 3-8-1 (3 is the input layer, 8 are hidden layer neurons and 1 is the output layer) and 3-9-1 (3 is the input layer, 9 is the hidden layer neuron and 1 is the output layer). From these five architectural models, one of the best architectural models is obtained, with 75% accuracy, namely the 3-7-1 architectural model.
From Figure 1 it can be explained that the 3-7-1 architectural model is the best architecture with an epoch occurring 1693 iterations in 24 seconds.

Table 4. Best Architectural Results with Models 3-7-1

No	Data Training	Data Testing							
	Target	Output	Error	SSE	Target	Output	Error	SSE	Results
1	0.83859	0.84230	-0.00371	0.00001376	0.90000	0.79990	0.10010	0.01002001	0
2	0.15634	0.15210	0.00424	0.00001798	0.14644	0.13960	0.00684	0.00004679	1
3	0.10144	0.09940	0.00204	0.00000416	0.10117	0.10000	0.00117	0.00000137	1
4	0.10000	0.09960	0.00040	0.00000016	0.10006	0.09960	0.00046	0.00000021	1
5	0.58223	0.64740	-0.06517	0.00042713	0.53599	0.40580	0.13019	0.01694944	0
6	0.17713	0.17660	0.00053	0.00000028	0.16439	0.15770	0.00669	0.00004476	1
7	0.90000	0.83930	0.06070	0.00368449	0.81415	0.81150	0.00265	0.00000702	1
8	0.12709	0.12220	0.00489	0.00002391	0.12191	0.11710	0.00481	0.00002314	1

SSE 0.00799188
MSE 0.00199797

Table 5. Comparative Results of Accuracy of Backpropagation Algorithm

No	Architecture	Training	Testing			
	Epoch	Time	MSE	MSE	Accuracy	
1	1058	0:21	0.00099767	0.000997672	37.5 %	
2	5579	1:18	0.00099854	0.035200352	37.5 %	
3	1693	0:24	0.00012482	0.003386591	75.0 %	
4	2600	0:42	0.00001560	0.014848462	62.5 %	
No	Architecture	Training	Testing			
----	--------------	----------	---------			
		Epoch	Time	MSE	MSE	Accuracy
5	3 - 9 - 1	2619	0:36	0.00000195	0.008281126	37.5 %

Based on Table 5, it was concluded that the five architectures above obtained the best architecture, namely 3-7-1 architecture with epoch which occurred 1693 iterations in 24 seconds, MSE 0.00440004 with 75% accuracy.

4. Conclusion
The conclusions that can be drawn from this research are:
a. Of the five architectural models used for training, one of the best architectures is the 3-7-1 architectural model with an accuracy rate of 75%.
b. The 3-7-1 architecture model is also the fastest compared to the other 4 models because it only takes 24 seconds.
c. However, the MSE level with the 3-7-1 architectural model is not too small, there is still a smaller 3-5-1 architectural model with an MSE level of 0.000997672.

References
[1] I. Colantone and P. Stanig, “Global Competition and Brexit,” *American Political Science Review*, pp. 1–18, 2018.
[2] H. Luhmann and L. Theuvsen, “Corporate Social Responsibility in Agribusiness: Literature Review and Future Research Directions,” *Journal of Agricultural and Environmental Ethics*, vol. 29, no. 4, pp. 673–696, 2016.
[3] D. A. Iyai, D. T. R. Saragih, and F. P. Rumbiak, “Effect of Traditional Cattle Farming Systems on Farmer Knowledge, Cattle Performances and Agribusiness Potential in West New Guinea-Papua Barat Province, Indonesia,” *Journal Science PG*, vol. 4, no. 1, pp. 5–10, 2016.
[4] S. Sumijan, A. Windarto, A. Muhammad, and B. Budiharjo, “Implementation of Neural Networks in Predicting the Understanding Level of Students Subject,” *International Journal of Software Engineering and Its Applications*, vol. 10, no. 10, pp. 189–204, 2016.
[5] A. Wanto *et al.*, “Levenberg-Marquardt Algorithm Combined with Bipolar Sigmoid Function to Measure Open Unemployment Rate in Indonesia,” 2018, pp. 1–7.
[6] B. Febriadi, Z. Zamzami, Y. Yunefri, and A. Wanto, “Bipolar function in backpropagation algorithm in predicting Indonesia’s coal exports by major destination countries,” *IOP Conference Series: Materials Science and Engineering*, vol. 420, no. 12089, pp. 1–9, 2018.
[7] A. Wanto *et al.*, “Analysis of Standard Gradient Descent with GD Momentum And Adaptive LR for SPR Prediction,” 2018, pp. 1–9.
[8] A. Wanto, A. P. Windarto, D. Hartama, and I. Parlina, “Use of Binary Sigmoid Function And Linear Identity In Artificial Neural Networks For Forecasting Population Density,” *International Journal Of Information System & Technology*, vol. 1, no. 1, pp. 43–54, 2017.
[9] S. P. Siregar and A. Wanto, “Analysis of Artificial Neural Network Accuracy Using Backpropagation Algorithm In Predicting Process (Forecasting),” *International Journal Of Information System & Technology*, vol. 1, no. 1, pp. 34–42, 2017.
[10] S. Sudirman, A. P. Windarto, and A. Wanto, “Data Mining Tools | RapidMiner : K-Means Method on Clustering of Rice Crops by Province as Efforts to Stabilize Food Crops In
Indonesia,” *IOP Conference Series: Materials Science and Engineering*, vol. 420, no. 12089, pp. 1–8, 2018.

[11] M. Fauzan *et al.*, “Epoch Analysis and Accuracy 3 ANN Algorithm Using Consumer Price Index Data in Indonesia,” 2018, pp. 1–7.

[12] N. Nasution, A. Zamsuri, L. Lisnawita, and A. Wanto, “Polak-Ribiere updates analysis with binary and linear function in determining coffee exports in Indonesia,” *IOP Conference Series: Materials Science and Engineering*, vol. 420, no. 12089, pp. 1–9, 2018.

[13] A. Wanto, M. Zarlis, Sawaluddin, and D. Hartama, “Analysis of Artificial Neural Network Backpropagation Using Conjugate Gradient Fletcher Reeves in the Predicting Process,” *Journal of Physics: Conference Series*, vol. 930, no. 1, pp. 1–7, 2017.