‘DMR-NY401’: A New Downy Mildew–resistant Slicing Cucumber

Lauren Brzozowski1, William L. Holdsworth1,2, and Michael Mazourek3
Section of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853

Additional index words. Cucumis sativus, cucurbit downy mildew, Pseudoperonospora cubensis, vegetable breeding, disease resistance, slicing cucumber.

The Cornell University vegetable breeding program has developed cucumbers (Cucumis sativus L.) resistant to a spectrum of diseases, including powdery mildew (Cavatorta et al., 2012; Jahn et al., 2002) and viruses (Munger, 1993). The program has also released a number of cultivars with multiple disease resistances, like the ‘Marketmore’ series (Cavatorta et al., 2007). The most recent release from this breeding program was DMR-NY264, that is resistant to cucumber downy mildew (Holdsworth et al., 2014). Herein, we report the development of a new cucumber cultivar, DMR-NY401, with downy mildew resistance similar to ‘DMR-NY264’, but characterized by earlier maturation and higher yields.

Development of these newest cultivars was initiated in response to the rapid rise of cucurbit downy mildew as one of the greatest worldwide contemporary disease threats to cucumber production. Cucurbit downy mildew is characterized by angular chlorotic foliar lesions that quickly turn necrotic, and often lead to rapid plant death (Savory et al., 2011). Diagnosis is aided by the presence of purplish-black sporangia of the causal oomycete pathogen, Pseudoperonospora cubensis (Berk. and Curt.) Rostov., which are often visible on the abaxial leaf surface. In the United States, sporangia are widely disseminated from overwintering sites in southern Florida to the eastern United States via wind currents (Granke and Hausbeck, 2011; Lebeda and Cohen, 2011; Ojiamo and Holmes, 2011). In recent years, it has been proposed that inoculum could be originating from new sources, like greenhouses in colder locales (Holmes et al., 2015), and new evidence suggests that the pathogen can be seed transmitted through infected plants (Cohen et al., 2014).

Managing this disease on cucumber in the United States became a challenge after the appearance of a new strain of the pathogen in 2004 in the southern United States (Holmes et al., 2015). The pathogen overcame host plant resistance that had lasted for decades, causing devastating yield losses (Colucci et al., 2006; Holmes et al., 2006). The ability of the pathogen to evolve rapidly has also reduced the efficacy of many fungicides, and resistance to a range of fungicides has been reported (Adams and Quesada-Ocampo, 2011; Urbán and Lebeda, 2016; Zhou et al., 2007). Achieving durable control with fungicides is challenging by the recent spread of a new mating type (A2) of the pathogen to four continents within 5 years of its initial appearance (Cohen et al., 2015).

In response to the lack of host plant resistance available in commercially suitable germplasm after 2004 (Call and Wehner, 2010), Cornell University developed and released ‘DMR-NY264’, which built on earlier downy mildew resistance breeding work in the ‘Marketmore’ and ‘Poinsett’ series (Holdsworth et al., 2014). Although the genetic basis of downy mildew resistance is unknown (Cohen et al., 2015), ‘DMRN-Y264’ likely derives its resistance from the additive genetic effects of its moderately downy mildew–resistant (‘DMR’) parents (Holdsworth et al., 2014). Although ‘DMR-NY264’ exhibits exceptional cucurbit downy mildew resistance, it is late to produce fruit, making it most useful in regions where growers are planting in anticipation of severe downy mildew pressure or have sufficient growing degree days to offset this lag. The next step in the breeding process was developing an earlier and more prolific cucumber that retained the resistance of ‘DMR-NY264’ while continuing to improve on fruit type.

To develop this cucumber, ‘DMR-NY264’ was crossed to ‘Dasher II’, an early, green slicing cucumber (Fig. 1). Large F2 populations of progeny from this cross were evaluated in the field under natural cucurbit downy mildew inoculum, harvested regularly, and the top-performing progeny were selected. Cuttings were taken from these selections, and were then intermated in the greenhouse. By opting to not pollinate in the field, many more plants at earlier generations could be observed without bias from fruit load. These intermated progeny were subsequently selfed, and the families were evaluated in, and selected from, the field. After that, selected progeny were selfed for two more generations to increase uniformity. From this process, an earlier and more prolific downy mildew–resistant line, ‘DMR-NY401’, was developed.

Description and Performance

‘DMR-NY401’ is a slicing cucumber, medium long in length (8–10”), with uniform green color and white spines (Fig. 2). The average marketable fruit weight was 0.2 ± 0.05 kg in conventional and 0.19 ± 0.02 kg

Received for publication 8 Apr. 2016. Accepted for publication 13 June 2016.
This research was supported by the U.S. Dept. of Agriculture (USDA) Organic Agriculture Research and Extension Initiative Project No. 2012-51300-20006. Lauren Brzozowski was supported by a Cornell University Presidential Life Sciences Fellowship.
We would like to thank those who lent their time and expertise to this project: Nick Vail, Steve McKay, Maryann Fink, and Maiya Gibbs for greenhouse and field assistance; Chris Smart for advisory support; Emily Rodekohr for photography; and Mary Kreitinger and Kyle LaPlant for thoughtful edits to this manuscript. We would also like to thank Molly Jahn, Martha Munger, and Nancy Munger for their contributions to maintain the vegetable breeding legacy at Cornell University. Any opinions, findings, conclusions, or recommendations expressed in the publication are those of the author(s) and do not necessarily reflect the view of the U.S. Dept. of Agriculture (USDA).
Mention of a trademark, proprietary product, or vendor does not constitute a guarantee or warranty of the product by the U.S. Dept. of Agriculture and does not imply its approval to the exclusion of other products or vendors that also may be suitable.
1These authors contributed equally to this work.
2Current address: Rupp Seeds, Inc., 17919 County Road B, Wauseon, OH 43567.
3Corresponding author. E-mail: mn284@cornell.edu.
Table 1. AUDPC measurements for all trial entries under both organic and conventional management.

Trial entry	Organic trial AUDPC	Conventional trial AUDPC
DMR-NY264	306.8 a	528.3 a
DMR-NY401	473.5 ab	608.5 a
15-402	576.8 ab	550.8 a
15-407	708.2 abc	944.2 a
15-403	826.0 abc	687.0 a
15-404	879.7 bc	673.3 a
15-408	1,131.0 c	618.0 a
15-405	1,754.2 d	1,456.2 b
Marketmore 97	2,449.3 c	1,876.3 bc
SV4719CS (Seminis)	2,558.5 c	2,470.2 d
SV4220CS (Seminis)*	n.d.	2,622.3 de
Darlington (Seminis)	2,595.2 e	2,930.7 def
Dasher II (Seminis)	3,144.3 fg	3,025.2 ef
Centella (Harris)	3,143.3 fg	3,025.2 ef
Straight Eight (Ferry-Morse)	4,196.8 h	3,678.7 g

*Data for all entries are reported as the mean of three replications.
†Trial entry was highly significant in a one-way analysis of variance for both trials (P < 0.0001), and block was significant in the organic trial (P = 0.0027).
§Means in the same column followed by different letters are significantly different as determined by Tukey–Kramer honestly significant difference (P < 0.05) test.
∥SV4220CS‘ was not evaluated in the organic trial.

Table 2. AUDPC measurements for trial entries grown in 2014 under conventional management.

Trial entry	2014 AUDPC
DMR-NY401 progenitor*	156.3 a
DMR-NY264	253.8 a
SV4719CS (Seminis)	730.8 b
Dasher II (Seminis)	835.3 bc
Straight Eight	991.8 c

*Data for all entries are reported as the mean of two replications.
†Trial entry was highly significant in a one-way analysis of variance (P < 0.0001).
§Means in the same column followed by different letters are significantly different as determined by Tukey–Kramer honestly significant difference (P < 0.05) test.
∥‘DMR-NY401’ is a selection of the second selfed generation from the ‘DMR-NY401’ progenitor.

in organic trials. Importantly, ‘DMR-NY401’ retained the disease resistance of ‘DMR-NY264’ while increasing fruit length, yield, and earliness of initial harvest.

Disease resistance and yield were evaluated in conventional and organic trials for ‘DMR-NY401’ alongside Cornell University top early DMR breeding lines (15-402 to 15-408), commercial green slicing cultivars with advertised resistance to the post-2004 strain of the downy mildew pathogen (Table 1), and susceptible and resistant check cultivars, Straight Eight and DMR-NY264, respectively.

Seeds for the organic and conventional trials were sown on 16 July 2015 in Guterman Greenhouse (Ithaca, NY), and transplanted on 31 July 2015 at Freeville Organic Research Farm (Freeville, NY), and 3 Aug. 2015 at Homer C. Thompson Vegetable Research Farm (Freeville, NY), respectively, late in the season after the pathogen was reported in the region. Both trials were transplants of rows planted in black plastic mulch, with 2.7-m spacing between rows, and arranged in a randomized complete block design with three replications of 10 plant plots. Plants were separated by 0.6 m within the plot, and by 1.8 m between plots. In addition, transplants for the conventional trial were treated with imidacloprid (Marathon®, Bayer Environmental Science, Research Triangle Park, NC) to control insect pests, and azoxystrobin (Heritage®, Syngenta Crop Protection, Greensboro, NC) to control fungal diseases, such as powdery mildew, at labeled rates on 27 July 2015.

Downy mildew symptoms were first recorded in both trials on 14 Aug. 2015 (Table 1) and percent foliar disease was then recorded weekly. Other minor foliar diseases, including angular leaf spot (Pseudomonas syringae pv. lachrymans), alternaria leaf blight (Alternaria cucumerina), and powdery mildew (Podosphaera xanthii), were present in the organic trial, but their severity was extremely limited compared with downy mildew, and efforts were made to ensure symptoms due to these diseases were not recorded as percent foliar disease due to downy mildew. Other multistate trials in the eastern United States that included ‘DMR-NY401’ and its progenitors have also not reported significant disease due to downy mildew, and have observed field resistance to powdery mildew (M. Mazourek, unpublished data). Marketable fruits were harvested, counted, and weighed three times weekly beginning 4 Sept. 2015.

Trial data were assessed with a one-way analysis of variance, and the differences between individual trial entries were evaluated with the Tukey–Kramer honestly significant difference test in JMP Pro 11 (JMP®, Version 11; SAS Institute Inc., Cary, NC, 1989–2007).

The downy mildew resistance of ‘DMR-NY401’, measured by area under the disease progress curve (AUDPC), was comparable to that of ‘DMR-NY264’ (Table 1), and these plants continued to grow up until frost (Fig. 3). This is consistent with AUDPC measured in breeding plots of the progenitor of ‘DMR-NY401’ compared with key representative commercial cultivars in the year prior (2014) that were grown under the conventional management regime previously described (Table 2). These data demonstrate consistency of the resistance of ‘DMR-NY401’ in separate downy mildew epidemics. In addition, both days to harvest and yield were improved in two very different open field production systems. The date of first harvest for ‘DMR-NY401’ was significantly shortened by ≈9 d compared with ‘DMR-NY264’ under both management regimes, and not statistically distinguishable from any of the commercial cultivars trialed (Table 3). In addition, ‘DMR-NY401’ had the highest fruit production of both trials—it outperformed commercial counterparts and ‘DMR-NY264’ (Table 3). Overall, ‘DMR-NY401’ has a timely harvest window and good yield while maintaining strong disease resistance.

Availability

Seed of ‘DMR-NY401’ is available by request to Michael Mazourek, Cornell University (mm284@cornell.edu).
Table 3. Date of first marketable fruit harvest and cumulative marketable fruit harvest and yield for all trial entries under both organic and conventional management.

Trial entry	Organic trial	Conventional trial				
	Fruit harvested per plot	Fruit harvested per plot	Date of first harvest			
	(kg)	(kg)	(days after sowing)	(days after sowing)		
DMR-NY401	45.7 a	8.5 a	57 ab	47.7 a	9.6 a	57 ab
15-402	37 ab	6.8 ab	57 ab	30.7 abcd	6.2 abcd	55 ab
15-405	30.7 abc	5.5 abc	54 a	39 ab	6.3 abcd	57 ab
15-403	29.3 abc	5.5 abc	55 ab	43 ab	9 ab	58 ab
15-407	24 abcd	4.9 abcd	56 ab	23.7 bcd	4.7 bcd	61 bc
15-408	22.3 bcd	4.2 bcd	56 ab	34 abcd	7.5 ab	61 bc
DMR-NY264	17 bcd	3.1 bcd	65 c	13.7 de	2.6 de	66 c
SV4719CS (Seminis)	11.3 cde	2.9 cde	53 a	29 abcd	3.9 cde	51 a
SV4220CS (Seminis)	n.d.	n.d.	n.d.	28 abcd	3.8 cde	51 a
Marketmore 97	9.7 cde	1.9 cde	54 a	17 de	2.4 de	55 ab
15-404	9.3 cde	1.8 cde	62 bc	17 de	3.1 cde	61 bc
15-406	5 de	0.7 de	54 a	15 de	2.1 de	56 ab
Centella (Harris)	4.7 de	1 de	54 a	17.7 de	2.3 de	51 a
Dasher II (Seminis)	4.3 de	0.7 de	55 ab	20.7 cde	2.5 de	51 a
Darlington (Seminis)	3.3 de	0.4 e	61 abc	16 de	1.6 de	52 a
Straight Eight (Ferry-Morse)	0 e	0 e	N/A	0 c	0 e	N/A

Data for all entries are reported as the mean of three replications.

Trial entry was highly significant in a one-way analysis of variance for both trials ($P < 0.0001$) for all reported results (number of fruit harvested per plot, fruit yield per plot, and date of first harvest), and block was significant in the organic trial for both cumulative fruit harvest ($P = 0.0021$) and yield ($P = 0.0021$).

Means in the same column followed by different letters are significantly different as determined by Tukey–Kramer honestly significant difference ($P < 0.05$) test.

Averages of “Date of first harvest” for the entry is the mean of two trials rather than three because one plot produced no marketable fruit before plant death.

“SV4220CS” was not evaluated in the organic trial.

Literature Cited

Adams, M.L. and L.M. Quesada-Ocampo. 2014. Evaluation of fungicides for control of downy mildew on cucumber, Kinston 2013. Plant Dis. Mgt. Rpt. 8:V240.

Call, A.C. and T. Wehner. 2010. Search for resistance to the new race of downy mildew in cucumber, p. 112–115. In: Cucurbitaceae 2010 Proceeding. ASHS Press, Alexandria, VA.

Cavatorta, J., G. Morigi, M. Henning, M. Glos, M. Kreitinger, and H.M. Munger. 2007. ‘Marketmore 97’: A monoclonal slicing cucumber inbred with multiple disease and insect resistances. HortScience 42:707–709.

Cavatorta, J., G. Morigi, M. Glos, M. Henning, M. Kreitinger, M. Mazourek, and H. Munger. 2012. ‘Salt and Pepper’: A disease-resistant cucumber inbred. HortScience 47:427–428.

Cohen, Y., A.E. Rubin, M. Galperin, S. Ploch, F. Runge, and M. Thines. 2014. Seed transmission of Pseudoperonospora cubensis. PLoS One 9(10):e109766.

Cohen, Y., K.M. van den Langenberg, T.C. Wehner, P.S. Ojiambo, M. Hausbeck, L.M. Quesada-Ocampo, A. Lebeda, H. Sierotzki, and U. Gisi. 2015. Resurgence of Pseudoperonospora cubensis: The causal agent of cucurbit downy mildew. Phytopathology 105(7):998–1012.

Colucci, S.J., T. Wehner, and G.J. Holmes. 2006. The downy mildew epidemic of 2004 and 2005 in the eastern United States. p. 403–411. In: G.J. Holmes (ed.). Proceedings Cucurbitaceae 2006. Universal Press, Raleigh, NC.

Granke, L. and M. Hausbeck. 2011. Dynamics of Pseudoperonospora cubensis sporangia in commercial cucurbit fields in Michigan. Plant Dis. 95(11):1392–1400.

Holdsworth, W.L., C.F. Summers, M. Glos, C.D. Smart, and M. Mazourek. 2014. Development of downy mildew-resistant cucumbers for late-season production in the northeastern United States. HortScience 49:10–17.

Holmes, G.J., P.S. Ojiambo, M.K. Hausbeck, L. Quesada-Ocampo, and A.P. Keinath. 2015. Resurgence of cucurbit downy mildew in the United States: A watershed event for research and extension. Plant Dis. 99(4):428–441.

Holmes, G.J., T. Wehner, and A. Thornton. 2006. An old enemy re-emerges, p. 14–15. In: American Vegetable Grower (February).

Jahn, M., H.M. Munger, and J.D. McCreight. 2002. Breeding cucurbits for powdery mildew resistance, p. 239–248. In: R.R. Belanger, W.R. Bushnell, A.J. Dik, and T.L.W. Carver (eds.). The powdery mildews: A comprehensive treatise. American Phytopathological Society, St. Paul, MN.

Lebeda, A. and Y. Cohen. 2011. Cucurbit downy mildew (Pseudoperonospora cubensis): Biology, ecology, epidemiology, host-pathogen interaction and control. Eur. J. Plant Pathol. 129(2):157–192.

Munger, H.M. 1993. Breeding for viral disease resistance in cucurbits, p. 44–60. In: M. Kyle (ed.). Resistance to viral diseases of vegetables: Genetics and breeding. Timber Press, Portland, OR.

Ojiambo, P.S. and G.J. Holmes. 2011. Spatiotemporal spread of cucurbit downy mildew in the eastern United States. Phytopathology 101(4):451–461.

Savory, E.A., L.L. Granke, L.M. Quesada-Ocampo, M. Varbanova, M.K. Hausbeck, and B. Day. 2011. Pathogen profile: The cucurbit downy mildew pathogen Pseudoperonospora cubensis. Mol. Plant Pathol. 12(3):217–226.

Urban, J. and A. Lebeda. 2006. Fungicide resistance in cucurbit downy mildew: Methodological, biological and population aspects. Ann. Appl. Biol. 149(1):63–75.

Zhu, S.S., X.L. Liu, Y. Wang, X.H. Wu, P.F. Liu, J.Q. Li, S.K. Yuan, and N.G. Si. 2007. Resistance of Pseudoperonospora cubensis to flumorph on cucumber in plastic houses. Plant Pathol. 56:967–975.