Title
The Relationship Between Childhood Psychosocial Stressor Level and Telomere Length: A Meta-Analysis.

Permalink
https://escholarship.org/uc/item/8bb3g7r0

Journal
Health psychology research, 5(1)

ISSN
2420-8124

Authors
Hanssen, Louise M
Schutte, Nicola S
Malouff, John M
et al.

Publication Date
2017-05-16

DOI
10.4081/hpr.2017.6378

Peer reviewed
The relationship between childhood psychosocial stressor level and telomere length: a meta-analysis

Louise M. Hanssen, Nicola S. Schutte, John M. Malouff, Elissa S. Epel

Abstract

This meta-analysis examined the association between the level of childhood psychosocial stressors and telomere length, an important health biomarker. The meta-analysis, including 27 samples and 16,238 participants, found a significant association of ~0.08 between a higher level of childhood stressors and shorter telomere length at a mean age of 42 across studies. Moderator analyses showed a trend in the direction of effect sizes being significantly larger with shorter times between the stressors and telomere measurement. Moderator analyses showed significantly higher effect sizes for studies that used a categorical method for assessing child stressor level and for assays completed with qPCR rather than with the Southern blot method. There was no significant moderation of effect size by whether study assayed leukocytes or buccal cells, whether the study assessed child stressor level by memory-based recall versus archival records, and whether the study controlled for age, sex, or additional variables. The results, focused on childhood events, add to prior findings that perceived stress and negative emotions are associated with telomere length.

Introduction

Psychosocial stressors experienced during childhood, such as maltreatment or neglect, predict an increased risk of negative health outcomes across the life span (Felitti et al., 1998; Shonkoff, Boyce, & McEwen, 2009; Shonkoff & Garner, 2012; Wegman & Stetler, 2009). Experiencing high levels of childhood psychosocial stressors is associated with the later development of depression, bipolar disorder, post-traumatic stress disorder, and substance abuse, as well as cardiovascular disease, gastrointestinal disorders, metabolic disorders, and respiratory problems (Green et al., 2010; Wegman & Stetler, 2009). High levels of childhood psychosocial stressors are associated with an increased risk of premature death (Brown et al., 2009). Stressors experienced during early developmental windows may have epigenetic effects and enduring influences on biomarkers and nervous and immune system functioning (Shonkoff & Garner, 2012). For example, high levels of childhood stressors alter physiologic, cellular, and immune stress responses (Drury et al., 2014).

Telomere length may link childhood psychosocial stressors with later health developments. Telomeres are a biomarker associated with various aspects of health (Rode, Nordestgaard, & Bojesen, 2015). Telomeres are the nucleoprotein complexes at the end of chromosomes that preserve genetic information, regulate cellular replicative capacity, and prevent end-to-end fusion (Blackburn, Greider, & Szostak, 2006). Telomere length erosion can occur through repeated cell division and through exposure to oxidative stress and inflammation (O’Donovan et al., 2011). The general trend is for telomeres to shorten with aging; however, telomere biology is dynamic (Blackburn, Epel, & Lin, 2015) and telomeres can lengthen as well as shorten over time (Epel, 2012). Short telomere length is associated with or predicts many of the common diseases of aging, such as cardiovascular disease, stroke, cancer, vascular dementia, osteoporosis, obesity and diabetes (Blackburn et al., 2015; Rode et al., 2015), and all-cause mortality (Rode et al., 2015).

Systematic reviews (Niess & Kirkengen, 2015; Oliveira, et al., 2016) of studies of stressors and telomere length suggest that greater exposure to stressors may be associated with shorter telomeres. However, the evidence is mixed, with not all studies finding a significant relationship between exposure to stressors and telomere length. Exposure to stressors, which are events, may lead to greater perceived stress, a psychological phenomenon. Meta-analyses of effect sizes of the relationship across studies of perceived stress and telomere length reported a significant meta-analytic association (Schutte & Malouff, 2014; Mathur et al., 2016). To date no meta-analysis of effect sizes of the relationship between childhood psychosocial stressors and telomere length across studies has been published. Such a meta-analytic investigation could provide an overall effect size of relationship between...
chose these potential moderators because virtually every study not feasible to examine specific measures as potential moderators. These moderator variables included (1) type of tissue assayed, (2) whether the level of stressors was measured as categorical or continuous, (3) what type of assay was used, (4) whether childhood stressor level was based retrospectively on memory of events or not, whether (5) age and (6) sex were controlled, (7) whether additional variables were controlled, and (8) whether telomere length was log-transformed due to non-normal distribution of data.

Literature Search
We systematically searched PsychINFO, Pubmed, EMBASE, CINAHL Complete, Cochrane Central, Research Gate, and Google Scholar to identify all articles, completed at any time, reporting on childhood psychosocial stressors and telomere length. The search included high as well as low status and did not focus on children in very low SES families. Thus, SES was not a pure measure of psychosocial stress level. We also excluded reports that provided the same results as a report we included in the meta-analysis; Brody, Yu, Beach & Philibert (2015) and Révész, Milaneschi, Terpstra & Penninx (2016). Three studies fit the inclusion criteria but did not provide the data needed for meta-analysis (Zhang et al., 2014; Robles, Carroll, Bai, Reynolds, Esquivel, & Repetti, 2016; Theall et al., 2013). We attempted unsuccessfully to obtain the needed information from the corresponding authors.

Coding process
Coding involved recording three types of information relating to effect size: r or some other statistic that indicates effect size, N for the key analysis, and the direction of the association between stressor level and telomere length. Coding also included entering data for each study about the possible moderators of effect size. When studies reported results for more than one measure of level of childhood stressors, we calculated the average effect size across the measures.

Two of us completed the initial coding together. Then a third...
member of our research group independently coded the effect sizes and moderators. A comparison of the independent coding showed agreement on 95% of the decisions. For all disagreements regarding coding, we made final decisions by consensus.

Relevant studies identified

The literature search retrieved 2,122 potentially relevant articles. Figure 1 shows the study selection process that resulted in the 27 samples that met all inclusion criteria.

Meta-analytic methods

We report effect sizes below as r. When studies reported standardized beta weights with other variables included in the regression, we used the results that controlled for sex and age and as few other variables as possible. It is sensible to include age and sex controlled effect sizes because studies have found that women tend to have longer telomeres (Gardner et al., 2014) and that younger individuals tend to have longer telomeres (Marioni et al., 2016). Most of the studies did control for those variables, either statistically or by comparing high and low stressor groups that were very similar with regard to the variables.

The Comprehensive Meta-Analysis Program (Borenstein, Hedges, Higgins & Rothstein, 2014) calculated the overall weighted effect size. We used a random effects model in order to allow for between-studies variation. The Q statistic assessed effect-size homogeneity across studies. Finally, trim and fill method and fail-safe N assessed the impact of possibly missing studies.

Results

Table 1 shows the key characteristics of each included sample. Figure 2 shows graphically the effect size for each sample. The overall meta-analytic association between level of childhood psychosocial stressors and telomere length, with 27 samples, including 16,238 total participants, was $r=-0.082$ (95%CI -0.122, -0.042), $P<0.001$. There was a significant level of heterogeneity among effect sizes, $Q(26)=109$, $P<0.001$, $I^2=76$, suggesting the possibility of finding moderators of effect size.

The fail-safe N was 338, indicating that 338 studies with 0 effect size would be needed to reduce the overall effect size to a nonsignificant level. Duval and Tweedie’s trim-and-fill statistic indicated that the overall effect size was not significantly affected by the results of small N studies and that no adjustment in effect size was needed. See Figure 3 for the funnel plot of effect sizes.

The mean age at telomere measurement in the studies was 42 years. The only directional hypothesis regarding potential moderators of effect size, that the younger the participants at measurement of telomere length, the higher the effect size, showed a trend towards significance, slope estimate $=0.002$ (95%CI 0.000, 0.004),
Table 1. Descriptive data, including effect size, for studies in the meta-analysis.

Author	Childhood psychosocial stressor/s	No.	Mean age at telomere collection	Memory-based retrospective assessment of stressor	TL cell type	TL assay type	Categorical stressor	Age controlled	Sex controlled	Other variables controlled for	Log transformed	r
Asok et al. (2015)	Neglect, family violence etc	89	4.9	No	Buccal mucosa	PCR	Yes	No	Yes	Yes	No	-0.22*
Beach et al. (2014)	Life stress	183	21.8	Yes	Leukocyte	PCR	No	No	No	No	No	-0.04
Bersani et al. (2016)	Abuse, general trauma	76	34.6	Yes	Leukocyte	PCR	No	Yes	Yes	All same sex	No	-0.43**
Chen et al. (2014)	Abuse, neglect etc	20	35.9	Yes	Leukocyte	PCR	No	Yes	Yes	No	No	-0.13
Chen et al. (2014)	Abuse, neglect etc	20	35.9	Yes	Leukocyte	PCR	No	Yes	Yes	No	No	-0.61*
Drury et al. (2012)	In institutional care	100	8.4	No	Buccal mucosa	PCR	No	Yes	Yes	Yes	No	-0.05
Drury et al. (2014)	Adverse events	80	10.2	Yes	Buccal mucosa	PCR	Yes	Yes	Yes	Yes	No	-0.28**
Glass et al. (2010)	Physical abuse, sexual abuse	1090	47.8	Yes	Leukocyte Southern blot		Yes	No	No	No	Yes	.002
Jockzik et al. (2014)	Interparent violence, physical abuse etc	677	29.0	Yes	Leukocyte	PCR	No	All same age	Yes	Yes	No	-0.01
Kananen et al. (2010)	Parental substance abuse/mental illness etc	974	40.8	Yes	Leukocyte	PCR	No	Yes	Yes	Yes	No	-0.09*
Kiecolt-Glaser et al. (2011)	Abnormality	132	65.9	Yes	Leukocyte Southern blot		Yes	Yes	Yes	Yes	No	-0.06
Koffer et al. (2016)	Abuse, neglect etc	58	71.9	Yes	Buccal mucosa	PCR	No	Yes	Yes	No	No	0.21
Koffer et al. (2016)	Abuse, neglect etc	62	76.2	Yes	Buccal mucosa	PCR	No	Yes	Yes	No	No	0.12
Lewandowski et al. (2010)	Childhood adversity	87	28.6	Yes	Blood	PCR	Yes	No	All same sex	No	No	-0.41**
Mason et al. (2015)	Physical abuse, sexual abuse	1130	45.5	Yes	Leukocyte	PCR	No	Yes	All same sex	No	Yes	-0.01
O’Donovan et al. (2011)	Physical abuse, physical neglect etc	41	30.2	Yes	Leukocyte	PCR	No	Yes	No	No	No	-0.42*
Ostert et al. (2016)	Parental illness/loss, separated from home etc	324	57.0	Yes	Leukocyte	PCR	No	All same age	All same sex	No	No	-0.02
Sarlahinen et al. (2014)	Absent parent	1406	61.5	No	Leukocyte	PCR	Yes	Yes	Yes	Yes	Yes	-0.05

Continue on next page.
P=0.068, two-tailed. The association would be significant at P=0.034 with a one-tailed test. The other moderator analyses were all categorical comparisons. Table 2 shows the results. Two variables showed significant moderation of effect size: Studies that compared groups, e.g., being abused or not, showed higher associations between level of childhood stressor and telomere length than studies that treated stressor level as a continuous variable. Also, studies that used qPCR had higher effect sizes than studies that used Southern Blot. If we apply a Bonferroni correction to control for alpha inflation in the analyses of the eight categorical variables, these findings would not meet the adjusted P standard of 0.05/8 or 0.006.

Table 1. Continued from previous page.

Author	Childhood psychosocial stressor/s	No.	Mean age at telomere collection	Memory-based retrospective assessment of stressor	TL cell type	TL assay type	Categorical stressor	Age controlled	Sex controlled	Other variables controlled for	Log transformed	r	
Schaaks et al. (2015)	Adverse events, trauma	496	70.6	Yes	Leukocyte	PCR	Yes for adverse events; No for trauma	Yes	Yes	Yes	Yes	No	0.32**
Shale et al. (2013)	Family violence, physical abuse etc	236	10.0	No	Buccal mucosa	PCR	Yes	All same age	Yes	Yes	Yes	No	-0.05
Surtees et al. (2011)	Emotional abuse, 444I physical abuse etc	62.0	Yes	Leukocyte	PCR	No	Yes	No	No	No	Yes	No	-0.01
Tyrka et al. (2010)	Physical neglect, emotional neglect	31	26.9	Yes	Leukocyte	PCR	Yes	No	No	No	Yes	No	-0.31
Tyrka et al. (2015)	Parental loss, separation from family	179	31.0	Yes	Leukocyte	PCR	Yes	No	Yes	Yes	Yes	No	-0.09
van Ockenburg et al. (2015)	Parental loss, separation etc	445	55.5	Yes	Leukocyte	PCR	Yes	No	Yes	Yes	Yes	Yes	-0.00
Verhoeven et al. (2015)	Emotional neglect, emotional abuse etc	296	41.8	Yes	Leukocyte	PCR	Yes	Yes	Yes	No	Yes	No	-0.02
Zalli et al. (2014)	Parental loss, separation, household substance use etc	434	63.2	Yes	Leukocyte	PCR	Yes	Yes	Yes	Yes	Yes	No	-0.01

*Effect size based on both abused and neglected. **Effect size based on age-adjusted results. * Used sociodemographic adjustment results. ** Used sociodemographic adjustment results for emotinal neglect, emotional abuse, physical abuse, sexual abuse. *P<0.05, **P<0.001.

Figure 2. Graphical representation of effect size for each sample.
Discussion and Conclusions

The meta-analysis found a small but significant association (-0.08) between level of childhood psychosocial stressors and telomere length, across 27 samples that included 16,238 participants. The association was significant regardless of whether stressor level was based on recall or more objective documentation, and regardless of whether the cells assayed for telomere length were leukocytes or buccal. Childhood stressors can have a long-term impact on telomere length, as indicated by the significant association between exposure to childhood stressors and telomere length at a mean age of 42 years for participants included in the present meta-analysis.

The results provide a possible mediational explanation for the finding that psychosocial stressors experienced during childhood predict negative health outcomes in adulthood (Felitti et al., 1998; Shonkoff & Garner, 2012; Wegman & Stetler, 2009). There are a number of biological and behavioural pathways that early trauma affects, such as inflammation and changes in health behaviours, and these also interact with telomere length; thus the causal factors linking early trauma and later disease are likely due to a variety of inter-related factors. (Danese & McEwens, 2012). Telomere length appears to be one of the causal factors, as recent mendelian genetic studies of telomere length have shown direct prediction of earlier onset of certain diseases of aging (Codd et al., 2013; Zhan et al., 2015).

The findings of the present meta-analysis extend findings of previous research on psychological states and telomere length in focusing on the relationship between actual events experienced in childhood and later telomere length. Prior meta-analyses reported significant associations between perceived stress and telomere length (Mathur et al., 2016; Schutte & Malouff, 2014). Prior meta-analyses also found significant associations between anxiety levels and telomere length (Malouf & Schutte, in press) and between depression and telomere length (Schutte & Malouff, 2015).

Childhood psychosocial stressors predict telomere shortening, and negative psychological states (perceived stress, anxiety, and depression) may operate as mediators linking stressors and telomere shortening. Some studies have found that recent psychosocial stressors in adults are also associated with shorter telomeres (e.g., Schaeck et al., 2015). Telomere functioning is dynamic (Blackburn et al., 2015) and shortened telomeres may recover as time passes after exposure to a stressor (Verhoeven et al., 2015), and thus we predicted that time would moderate effect size. We found a moderation trend consistent with this view. However, remarkably, childhood stressors were still significantly associated with shortened telomeres decades later. It is unknown whether childhood psychosocial stressors are more or less associated with telomere length than stressors experienced by adults, but it is possible that childhood stressors have more impact because childhood is a critical period of development of biological systems (Shonkoff & Garner, 2012) or because of the limited coping ability of children. Studies have found exposure to other environmental factors, such as pesticides, to be associated with telomere length (Hou et al., 2013). The present findings add meta-analytic results for early-life psychosocial environmental factors. One interesting meta-anal-

Table 2. Categorical moderator analysis.

Moderator	k	r	CI 95%	Homogeneity Analysis				
	Lower	Upper	P	Q	df	P		
Memory-based retrospective assessment of stressor								
No	4	-0.06	-0.1	0.01	0.02	2.57	3	0.46
Yes	22	-0.09	-0.14	-0.04	<0.001	105.96	21	<0.001
TL cell type	0.04, P=0.84							
Buccal	6	-0.06	-0.19	0.07	0.39	12.55	5	0.03
Leukocyte	20	-0.07	-0.11	-0.03	<0.001	81.97	19	<0.001
TL assay type, Q(1)=4.49, P=0.03								
Southern blot	2	0.01	-0.07	0.08	0.90	0.64	1	0.42
qPCR	25	-0.10	-0.13	-0.05	<0.001	106.77	24	<0.001
Categorical stressor Q(1)=4.39, P=0.04								
Yes	11	-0.14	-0.23	-0.06	<0.001	57.19	10	<0.001
No	16	-0.04	-0.08	-0.00	0.04	38.59	15	0.001
Age controlled Q(2)=4.95, P=0.08								
All same age	4	-0.02	-0.07	0.03	0.34	0.35	3	0.95
No	6	-0.15	-0.28	-0.02	0.03	21.00	5	<0.001
Yes	17	-0.09	-0.14	-0.03	<0.001	85.81	16	<0.001
Sex controlled Q(1)=0.32, P=0.85								
All same sex	6	-0.10	-0.18	-0.01	0.02	30.19	5	<0.001
No	5	-0.11	-0.23	0.02	0.10	11.34	4	0.02
Yes	16	-0.08	-0.13	-0.02	0.01	63.91	15	<0.001
Other variables controlled for Q(1)=0.89, P=0.35								
No	15	-0.06	-0.12	-0.01	0.02	44.62	14	<0.001
Yes	12	-0.10	-0.17	-0.04	<0.001	61.35	11	<0.001
Log transformed Q(1)=3.39, P=0.07								
Yes	4	-0.04	-0.08	0.00	0.03	4.29	3	0.23
No	23	-0.10	-0.15	-0.05	<0.001	104.67	22	<0.001

1Shales et al. (2014) excluded because study used mixed methods; 2Levandowski et al. (2016) excluded because study used "blood."
lytic moderator finding involved the significantly greater effect size for comparison of extreme groups on level of childhood stressors than for correlational studies with various levels of stressors. Similarly, a meta-analysis of the association between anxiety level and telomere length found that analyses of extreme groups showed much greater effect sizes than correlational studies, although the difference was not significant (Malouff & Schutte, 2016). It could be that only extreme levels of childhood psychosocial stressors have long-term effects on telomere length.

Studies that used qPCR assays had significantly higher effect sizes than Southern blot studies. Because only two studies in the meta-analysis used Southern blot, that finding may be a statistical fluke.

The moderator results are best viewed as suggestive. First, with only 27 samples included, the moderator analyses had limited power to identify significant differences. Second, moderator analyses are always quasi-experimental — no one randomly assigned some studies to use one method and other studies to use another. Third, the statistical significance of some moderators in this meta-analysis varies with how conservative one wants to be regarding using one-tailed tests and controlling for alpha inflation.

Future research on child psychosocial stressors and telomere length might systematically compare different types of psychosocial stressors and examine the role of possible mediators and moderators, including potential buffers such as social support. In addition, it will be important to examine in more depth the characteristics of the stressors and symptoms of distress. This type of research will help identify both predictors of vulnerability and resilience to the lifelong effects of severe childhood stressors.

Figure 3. Funnel plot of standard error by effect size (Fisher’s Z).

References
Adams, J., Martin-Ruiz, C., Pearce, M.S., White, M., Parker, L., & von Zglinicki, T. (2007). No association between socio-economic status and white blood cell telomere length. *Aging Cell, 6*, 125-128.
Blackburn, E.H., Epel, E.S., & Lin, J. (2015). Human telomere biology: a contributory and interactive factor in aging, disease risks, and protection. *Science, 350*(6265), 1193-1198. doi:10.1126/science.aab3389
Borenstein, M., Hedges, L., Higgins, J., & Rothstein, H. (2014). Comprehensive meta-analysis (Version 3) [computer software]. Englewood, NJ: Biostat.
Brody, G.H., Yu, T., Beach, S.R., & Philibert, R.A. (2015). Prevention effects ameliorate the prospective association between nonsupportive parenting and diminished telomere length. *Society for Prevention Research, 16*, 171-180. doi:10.1007/s11121-014-0474-2
Brown, D.W., Anda, R.F., Tiemeier, H., Felitti, V.J., Edwards, V.J., Croft, J.B., & Giles, W.H. (2009). Adverse childhood experiences and the risk of premature mortality. *American Journal of Preventive Medicine, 37*, 389-396. doi:10.1016/j.amepre.2009.06.021
Carroll, J.E., Diez-Roux, A.V., Adler, N.E., & Seeman, T.E. (2013). Socioeconomic factors and leukocyte telomere length in a multi-ethnic sample: Findings from The Multi-Ethnic Study of Atherosclerosis (MESA). *Brain, Behavior and Immunity, 28*, 108-114. doi:10.1016/j.bbi.2012.10.024
Chen, S.H., Epel, E.S., Mellon, S.H., Lin, J., Reus, V.I., Rosser, R., . . . Wolkowitz, O.M. (2014). Adverse childhood experiences and leukocyte telomere maintenance in depressed and healthy adults. *Journal of Affective Disorders, 169*, 86-90.
Levandowski, M.L., Tractenberg, S.G., de Azeredo, L.A., Dernari, T., Rovaris, D.L., Bau, C.H., . . . & Grassi-Oliveira, R. (2016). Crack cocaine addiction, early life stress and accelerated cellular aging among women. *Progress in Neuro-Psychopharmacology and Biological Psychiatry*, 71, 83-89. doi:10.1016/j.pnpbp.2016.06.009

Malouff, J.M., & Schutte, N.S. (in press). A meta-analysis of the relationship between anxiety and telomere length. *Anxiety, Stress, & Coping*.

Marioni, R.E., Harris, S.E., Shah, S., McRae, A.F., von Zglinicki, T., Martin-Ruiz, C., . . . & Deary, I.J. (2016). The epigenetic clock and telomere length are independently associated with chronological age and mortality. *International Journal of Epidemiology*, 45, 424-432, doi: 10.1093ije/dyw041

Mason, S.M., Prescott, J., Tworoger, S.S., DeVivo, I., & Rich-Edwards, J.W. (2015). Childhood physical and sexual abuse history and leukocyte telomere length among women in middle adulthood. *PLoS ONE*, 10, e0124493. doi:10.1371/journal.pone.0124493

Mathur, M.B., Epel, E., Kind, S., Desai, M., Parks, C.G., Sandler, D.P., & Khazeni, N. (2016). Perceived stress and telomere length: A systematic review, meta-analysis, and methodologic considerations for advancing the field. *Brain, Behavior, and Immunity*, 54, 158-169. doi:10.1016/j.bbi.2016.02.002

Mitchell, C., Hobcraft, J., McLanahan, S.S., Siegel, S.R., Berg, A., Brooks-Gunn, J., . . . & Notterman, D. (2014). Social disadvantage, genetic sensitivity, and children’s telomere length. *Proceedings of the National Academy of Sciences*, 111, 5944-5949. doi: 10.1073/pnas.140429311

Ness, A.B., & Kirkengen, A.L. (2015). Is childhood stress associated with shorter telomeres?. *Tidsskrift for den Norske laegeforening: tidsskrift for praktisk medicin, ny raekke*, 135, 1356-1360. doi: 10.4045/tidsskr.14.1194

Needham, B.L., Fernandez, J.R., Lin, J., Epel, E.S., & Blackburn, E.H. (2012). Socioeconomic status and cell aging in children. *Social Science & Medicine*, 74, 1948-1951. doi:10.1016/j.socscimed.2012.02.019

O’Donovan, A., Epel, E., Lin, J., Wolkwitz, O., Cohen, B., Maguen, S., . . ., Neylan, T.C. (2011). Childhood trauma associated with short leukocyte telomere length in post-traumatic stress disorder. *Biological Psychiatry*, 70, 465-471. doi:10.1016/j.biopsych.2011.01.035

Oliveira, B.S., Zunzunegui, M.V., Quinlan, J., Fahmi, H., Tu, M.T., & Guerra, R.O. (2016). Systematic review of the association between chronic social stress and telomere length: a life course perspective. *Ageing Research Reviews*, 26, 37-52. doi: org/10.1016/j.arr.2015.12.006

Osler, M., Bendix, L., Rask, L., Rod, N.H. (in press). Stressful life events and leukocyte telomere length: do lifestyle factors, somatic and mental health, or low grade inflammation mediate this relationship? Results from a cohort of Danish men born in 1953. *Brain, Behaviour, and Immunity*. doi:10.1016/j.bbi.2016.07.154

Révész, D., Milanesci, Y., Terpstra, E.M., & Penninx, B.W.J.H. (2016). Baseline psychosocial determinants of telomere length and 6-year attrition rate. *Psychoneuroendocrinology*, 67, 153-162. doi:10.1016/j.psyneuen.2016.02.007

Rode, L., Nordestgaard, B.G., & Bojesen, S.E. (2015). Peripheral blood leukocyte telomere length and mortality among 64 637 individuals from the general population. *Journal of the National Cancer Institute*, 107, djv074. doi: 10.1093/jnci/djv074

Robertson, T., Batty, G.D., Der, G., Green, M.J., McGlynn, L. M., McIntyre, A., . . ., Benzeval, M. (2012). Is telomere length socially patterned? Evidence from the West of Scotland.
Robles, T.F., Carroll, J.E., Bai, S., Reynolds, B.M., Esquivel, S., & Repetti, R.L. (2016). Emotions and family interactions in childhood: association with leukocyte telomere length. *Psychoneuroendocrinology*, 63, 343-350. doi:10.1016/j.psyneuen.2015.10.018

Savolainen, K., Eriksson, J.G., Kananean, L., Kajantie, E., Pesonen, A., Heinonen, K., & Räikkönen, K. (2014). Associations between early life stress, self-reported traumatic experiences across the lifespan and leukocyte telomere length in elderly adults. *Biological Psychology*, 97, 35-42. doi:10.1016/j.biopsycho.2014.02.002

Schutte, N.S., & Malouff, J.M. (2015). The association between depression and leukocyte telomere length: a meta-analysis. *Depression and Anxiety*, 32, 229-238.

Schutte, N.S., & Malouff, J.M. (2016). The relationship between perceived stress and telomere length: a meta-analysis. *Stress and Health*, 32, 313-319. doi: 10.1002/smi.2607

Shalev, I., Moffitt, T.E., Braithwaite, A.W., Danese, A., Fleming, N.I., Goldman-Mellor, S., ..., Caspi, A. (2014). Internalizing disorders and leukocyte telomere erosion: a prospective study of depression, generalized anxiety disorder and post-traumatic stress disorder. *Molecular Psychiatry*, 19, 1163-1170. doi:10.1038/mp.2013.183

Shalev, I., Moffitt, T.E., Sugden, K., Williams, B., Houts, R.M., Danese, A., ..., Caspi, A. (2013). Exposure to violence during childhood is associated with telomere erosion from 5 to 10 years of age - A longitudinal study. *Molecular Psychiatry*, 18, 576-581. doi:10.1038/mp.2012.32

Shonkoff, J.P., Bolen, W.T., & McEwen, B.S. (2009). Neuroscience, molecular biology, and the childhood roots of health disparities: building a new framework for health promotion and disease prevention. *JAMA*, 301, 2252-2259. doi:10.1001/jama.2009.754

Shonkoff, J.P., & Garner, A.S. (2012). Committee on Psychosocial Aspects of Child and Family Health; Committee on Early Childhood, Adoption, and Dependent Care; Section on Developmental and Behavioral Pediatrics. The lifelong effects of early childhood adversity and toxic stress. *Pediatrics*, 129, e232-e236. doi:10.1542/peds.2011-2663

Surtees, P.G., Wainwright, N.J.W., Pooley, K.A., Luben, R.N., Khaw, K., Easton, D.F., & Dunning, A.M. (2011). Life stress, emotional health, and mean telomere length in the European Prospective Investigation into Cancer (EPIC)-Norfolk population study. *The Journals of Gerontology Series A: Biological Sciences and Medical Sciences*, 66A, 1152-1162. doi:10.1093/gerona/glr112

Theall, K.P., Brett, Z.H., Shirtcliff, E.A., Dunn, E.C., & Drury, S.S. (2013). Neighborhood disorder and telomeres: Connecting children’s exposure to community level stress and cellular response. *Social Science & Medicine*, 85, 50-58. doi:10.1016/j.socscimed.2013.02.030

Tyrka, A.R., Parade, S.H., Price, L.H., Kao, H.T., Porton, B., Philip, N.S., ..., Carpenter, L.L. (2015). Alterations of mitochondrial DNA copy number and telomere length with early adversity and psychopathology. *Biological Psychiatry*, 79, 78-86. doi:10.1016/j.biopsych.2014.12.025

Tyrka, A.R., Price, L.H., Kao, H., Porton, B., Marsella, S.A., & Carpenter, L.L. (2010). Childhood maltreatment and telomere shortening: Preliminary support for an effect of early stress on cellular aging. *Biological Psychiatry*, 67, 531-534. doi:10.1016/j.biopsych.2009.08.014

van Oosten, S.L., Bos, E.H., de Jonge, P., van der Harst, P., Gans, R.O.B., & Rosmalen, J.G.M. (2015). Stressful life events and leukocyte telomere attrition in adulthood: a prospective population based cohort study. *Psychological Medicine*, 45, 2975-2984. doi:10.1017/S0033291715000914

Verhoeven, J.E., van Oppen, P., Puterman, E., Elzinga, B., & Penninx, B.W.J.H. (2015). The association of early and recent psychosocial life stress with leukocyte telomere length. *Psychosomatic Medicine*, 77, 882-891. doi:10.1097/PSY.0000000000002226

Wegman, H.L., & Stetler, C. (2009). A meta-analytic review of the effects of childhood abuse on medical outcomes in adulthood. *Psychosomatic Medicine*, 71, 805-812. doi:10.1097/PSY.0b013e3181bb2b46

Zalli, A., Carvalho, L.A., Lin, J., Hamer, M., Erusalimsky, J.D., Blackburn, E.H., & Steptoe, A. (2014). Shorter telomeres with high telomerase activity are associated with raised allostatic load and impoverished psychosocial resources. *PNAS*, 111, 4519-4524. doi:10.1073/pnas.1322145111

Zhan, Y., Song, C., Karlsson, R., Tillander, A., Reynolds, C.A., Pedersen, N.L., & Hägg, S. (2015). Telomere length shortening and Alzheimer disease: a Mendelian randomization study. *JAMA Neurology*, 72, 1202-1203. doi: 10.1001/jamaneurol.2015.1513

Zhang, L., Hu, X-Z., Benedek, D.M., Fullerton, C.S., Forsten, R.D., Naifeh, J.A., ..., Ursano, R.J. (2014). The interaction between stressful life events and leukocyte telomere length is associated with PTSD. *Molecular Psychiatry*, 19, 855-856. doi:10.1038/mp.2013.141