Reinvestment process modelling problem solution for business activities in tourist destination

Yelena Yu Lukyanova¹, Anatoliy N Kazak¹, Nelli P Shamayeva² and Armen Darbinyan³

¹ V.I. Vernadsky Crimean Federal University, Prospekt Vernadskogo 4, Simferopol, Republic of Crimea, 295007, Russia
² Udmurt State University, Universitetskaya St. 1, Izhevsk, 426034, Russia
³ Russian-Armenian University, 123 Hovsep Emin str., Yerevan, 0051, Armenia

E-mail: lukianovahy@ukr.net

Abstract. Economic units of resort and spa (recreational) sphere are budget-forming ones for southern region of Russian Federation. Development prospects for business activity investment at the mentioned area are determined by various factors that must be taken into account in modelling process either conditions of resort and spa sphere year-round functioning. Analytical estimation can be based on multivariate modelling of different investment and reinvestment decisions with differential equations applying.

1. Introduction
The importance of using information systems in touristy destinations activities modeling is obvious. Upon receipt of reliable information through constructed model, effectiveness of business management increases. In this case, correctly selected mathematical and software tools are needed.

It is necessary to mention that nowadays resort and spa sphere economic units are budget-forming ones for southern areas of Russian Federation. These business entities are profitable thence they are operands for investments and applying of new projects. But their development is under variable factors impact that also need to be taken into account. Economical estimation for these factors influence is very important, and it can be made with multivariate modelling for investment and reinvestment solutions.

There are two basic problems in modelling of business activities for investment and reinvestment processes that must be taken into account at mathematical models:

- monetary investments (costs, outflows, etc.);
- analysis on investment activity efficiency (return on investments, input flows, etc.).

2. Materials and methods
There were several materials and methods that were used for research which results are disclosed in this paper. Materials included theoretical and practical information on project management, financing, business improving and economical modelling that were given at sources of authors Arora M., Baronokian H. [1], Asmussen S., Glynn P.W. [2], Bala B.K., Arshad F.M., Noh K.M. [3], Basu R. [4], Bible M., Bivins S. [5], Birta L.G., Arbez G. [6], Bodmer E. [7], Bolat H.B., Temur G.T. [8],
Dobson M.S. [9], Finnerty J.D. [10], Gatti S. [11], Goodpasture J. [12], Gosavi A. [13], Grimsey D., Lewis M.K. [14], Haas P.J. [15], Harris E. [16], Ireland L.R. [17], Kuehn U. [18], Levin G., Wyzalek J. [19], Lukhaus S. [20], Rowe S. [22], Scheck B. [25], Taylor J. [26], Weber B., Staub-Bisang M., Alfen H.W. [27], Wickham L., Wilcock J. [28], Yescombe E.R. [29].

Methods were content and economic analysis, mathematical modelling, techno-economic, system and structural analysis, expert estimation.

3. The study of touristy destination business activities reinvestment processes modelling problem’s solution

The one of investment and reinvestment processes modelling main problems is invested funds useful effect estimation and evaluation of reinvested funds proportion and frequency. It is necessary to determine evaluation period time frames, then divide it into the stages that differ with content, costs and revenues amount and project efficiency qualitative parameters.

It is required to take into account a random parameters set that are impacted by various socio-economical, cultural, political, geographical and other factors. During tourism business activities investment processes mathematical models creation, it is very important to define and evaluate certain delay lag. The models disclose supply and demand trends for touristy and spa (recreational) services and business products, also their distribution according to existing and potential touristy destinations, price dynamics, demand elasticity according to the price level for hotel and spa services and other mentioned factors that affect touristy flows intensity. Economic processes regulation specifics, market liberalization, and state participation influence to model choice either.

Russian southern regions touristy economic unit’s investment and reinvestment policy specific objectives are:

- tourism services market segments diversification requirement;
- winter, inter-season and year-round tourism development emphasis including event, medical, spa, active ones, etc.;
- active advertising campaign implementation for touristy services target regions-consumers;
- bringing customer services level to the EU, UNWTO generally accepted standards and tourists’ expectations.

The range of tourism industry potential investment solutions is reduced to a set of unified models that can be transformed and adapted to specific situations.

Touristy economic unit’s investment and reinvestment processes modelling is difficult task because tourism industry sector is complex system with simultaneous deterministic and random processes with multiple correlations.

Having peculiar data that describe customer flows quantitative characteristics, average level of costs that they spend for their vacation, it is possible to determine demands total capacity for all quality levels. Based on this information it is possible to make forecasts of resort and spa business economic units’ throughput capacity growth dynamics for serving incoming tourist flows.

Certain investor needs to take into account information on tourist suppliers number, demand and future period profits prospects (also return on investments), tourist services efficiency level, taxes, production factors prices. Touristy services market is characterized by capacity, supply and demand balance level and sale conditions.

Various models can be applied to develop and make decisions on touristy economic unit’s investment processes (for investing to specific program or project). In this paper are suggested models that based on differential equations.

In the model that is suggested below $Q(t)$ is resort and spa sector economic unit’s services cost capacity in man-days and it was reached at time t. One man-day average cost is $P(t)$. Sold services cost is multiplication $P(t)Q(t)$, it’s peculiar part is invested into production process:
\[I(t) = mP(t)Q(t) \]

(1).

In equation (1) \(I \) is investment, \(m : 0 < m < 1 \) is investment rate. Services sales increase is proportional to investments:

\[\frac{dQ}{dt} = \gamma I = \gamma mP(t)Q(t) \]

(2).

In equation (2) \(\gamma \) is proportionality coefficient. There is equation (2) solution (3):

\[\int_{Q(0)}^{Q(t)} \frac{dQ}{Q} = \gamma \int_{0}^{t} P(\theta) d\theta = \ln Q(t) \]

(3)

or:

\[Q(t) = e^{\gamma m \int_{0}^{t} P(\theta) d\theta} \]

(4).

Provided services total value depends on price dynamics. In market regulation conditions its dynamics is determined by supply and demand balance (L. Walras’s equation):

\[\frac{dP}{dt} = \alpha \left(D(p) - S(p) \right) \]

(5).

\(D(p) \) is demand function, \(S(p) \) is supply function, \(\alpha \) is proportionality coefficient between price growth and unbalanced demand. Supply and demand interaction forms customers behavior in touristy services market. Touristy services demand is function of client’s travel trend. It was approximated supply and demand by functions:

\[A \leq D(p) \leq Bp, \quad S(p) = BP \]

in this equation \(A \) and \(B \) are approximation coefficients. These variables were substituted in equation (5), and it was obtained equation (6):

\[\frac{dp}{dt} = -\alpha \left(\frac{A}{p} - Bp \right) . \]

(6).

By equation (6) left and right sides multiplication it was obtained:

\[P \frac{dp}{dt} = \alpha \left(A - Bp^2 \right) = \frac{1}{2} \frac{d}{dt} p^2 \]

(7).

Equation (7) was reduced to (8):

\[\frac{dx}{dt} = 2\alpha (A - Bx) \]

(8).

The solution of equation (8) is:

\[\int_{x(0)}^{x(t)} \frac{dx}{A - Bx} = 2\alpha t, \]

(9)

or:

\[\int_{x(0)}^{x(t)} \frac{-Bdx}{A - Bx} = -2\alpha Bt = \ln \frac{A - Bx(t)}{A - Bx(0)}. \]
that becomes:

\[
\left[A - Bx(0) \right] e^{-2\alpha t},
\]

or:

\[
x(t) = \frac{A}{B} - x(0) \left(B - x(0) \right) e^{-2\alpha t} = p^2
\]

that is transformed to:

\[
P(t) = \sqrt{\frac{A}{B} - \frac{A}{B} - p^2(0)e^{-2\alpha B}}
\]

Substituting price dynamics equation (10) into provided services total value equation (4) it was obtained:

\[
Q(t) = \exp(\gamma m \int_0^t \left[\frac{A}{B} - x(0) \right] e^{-2\alpha t} dt)Q(0)
\]

The profit of given economic unit \(Y \) over a period of time \(t \) is:

\[
Y = \int_0^t P(t)Q(t) dt = \int_0^t \frac{1}{\gamma m} dQ dt = \int_0^t (Q(t) - Q(0)) dt
\]

(12).

The information system of touristy destination filled out according to approach of differential equations given above can be interpreted with using Matlab tool.

4. Conclusion
Resort and spa (recreational) destinations economic unit’s investment and reinvestment activity processes modelling analysis is represented the followings. Solving investment problems only with applying of differential equations is important for reflection of tourism industry specifics but for stochastic conditions it should be added by other modelling tools that is going to be presented in author’s further researches.

Acknowledgements
This work is made in frames of grant of Russian Foundation for Basic Research 19-410-910010 (2019) “Modeling areas to improve the efficiency of year-round functioning of the resort and recreational sphere of the Crimean region”. Authors thanks committee of conference for participation possibility.

References
[1] Arora M and Baronokian H 2013 Leadership in Project Management: Leading People and Projects to Success (Winston Salem: Leadership Publishing House)
[2] Asmussen S and Glynn P W 2007 Stochastic Simulation: Algorithms and Analysis Stochastic Modelling and Applied Probability 57 (100)
[3] Bala B K, Arshad F M and Noh K M 2017 System Dynamics: Modelling and Simulation
Springer Texts in Business and Economics
[4] Basu R 2012 Managing Project Supply Chains (Aldershot: Gower)
[5] Bible M and Bivins S 2011 Mastering Project Portfolio Management: A Systems Approach to Achieving Strategic Objectives (Florida Plantation: J. Ross Publishing)
[6] Birta L G and Arbez G 2013 Modelling and Simulation: Exploring Dynamic System Behaviour (Berlin: Springer)
[7] Bodmer E 2014 Corporate and Project Finance Modeling: Theory and Practice (New York: Wiley)
[8] Bolat H B and Temur G T 2019 Agile Approaches for Successfully Managing and Executing Projects in the Fourth Industrial Revolution (Hershey: IGI Global)
[9] Dobson M S 2004 The Triple Constraints in Project Management (Oakland: Berrett-Koehler Publishers)
[10] Finnerty J D 2015 Project Financing: Asset-Based Financial Engineering (New York: Wiley)
[11] Gatti S 2018 Project Finance in Theory and Practice: Designing, Structuring, and Financing Private and Public Projects (New York: Academic Press)
[12] Goodpasture J 2015 Project Management the Agile Way, Second Edition: Making it Work in the Enterprise (Florida Plantation: J. Ross Publishing)
[13] Gosavi A 2015 Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning (Berlin: Springer)
[14] Grimsey D and Lewis M K Public Private Partnerships: The Worldwide Revolution in Infrastructure Provision and Project Finance (Northampton: Edward Elgar Publishing)
[15] Haas P J 2010 Stochastic Petri Nets: Modelling, Stability, Simulation (Springer Series in Operations Research and Financial Engineering) (Berlin: Springer)
[16] Harris E 2012 Strategic Project Risk Appraisal and Management (Advances in Project Management) (Aldershot: Gower)
[17] Ireland L R 1991 Quality Management for Projects and Programs (Newtown: Project Management Institute)
[18] Kuehn U 2010 Integrated Cost and Schedule Control in Project Management (Oakland: Berrett-Koehler Publishers)
[19] Levin G and Wyzalek J 2014 Portfolio Management: A Strategic Approach (Best Practices in Portfolio, Program, and Project Management) (London: Auerbach Publications)
[20] Lukhaus S 2016 Cost Estimation in Agile Software Development: Utilizing Functional Size Measurement Methods (London: tredition)
[21] Romano L 2017 Project Portfolio Management Strategies for Effective Organizational Operations (Advances in IT Personnel and Project Management) (Hershey: IGI Global)
[22] Rowe S 2015 Project Management for Small Projects (Oakland: Berrett-Koehler Publishers)
[23] Skiadas C H and Skiados Ch 2019 Chaotic Modelling and Simulation: Analysis of Chaotic Models, Attractors and Forms (Boca Raton: CRC)
[24] Sokolowsky J A and Banks C M 2011 Principles of Modeling and Simulation: A Multidisciplinary Approach (New York: Wiley)
[25] Spiess-Knafl W and Scheck B 2017 Impact Investing: Instruments, Mechanisms and Actors (Palgrave Studies in Impact Finance) (London: Palgrave Macmillan)
[26] Taylor J 2007 Project Scheduling and Cost Control: Planning, Monitoring and Controlling the Baseline (Florida Plantation: J. Ross Publishing)
[27] Weber B, Staub-Bisang M and Alfen H W 2016 Infrastructure as an Asset Class: Investment Strategy, Sustainability, Project Finance and PPP (New York: Wiley)
[28] Wickham L and Wilcock J 2016 Management Consulting 5th edn: Delivering an Effective Project (Harlow: Pearson)
[29] Yescombe E R 2013 Principles of Project Finance (New York: Academic Press)