Some properties of the inverse error function

Diego Dominici

Abstract. The inverse of the error function, \(\text{inverf}(x) \), has applications in diffusion problems, chemical potentials, ultrasound imaging, etc. We analyze the derivatives \(\frac{d^n}{dz^n} \text{inverf}(z) \big|_{z=0} \), as \(n \to \infty \) using nested derivatives and a discrete ray method. We obtain a very good approximation of \(\text{inverf}(x) \) through a high-order Taylor expansion around \(x = 0 \). We give numerical results showing the accuracy of our formulas.

1. Introduction

The error function \(\text{erf}(z) \), defined by

\[
\text{erf}(z) = \frac{2}{\sqrt{\pi}} \int_0^z \exp(-t^2) \, dt,
\]

occurs widely in almost every branch of applied mathematics and mathematical physics, e.g., probability and statistics [Wal50], data analysis [Her88], heat conduction [Jae46], etc. It plays a fundamental role in asymptotic expansions [Olv97] and exponential asymptotics [Ber89].

Its inverse, which we will denote by \(\text{inverf}(z) \),

\[
\text{inverf}(z) = \text{erf}^{-1}(z),
\]

appears in multiple areas of mathematics and the natural sciences. A few examples include concentration-dependent diffusion problems [Phi55, Sha73], solutions to Einstein’s scalar-field equations [LW95], chemical potentials [TM96], the distribution of lifetimes in coherent-noise models [WM99], diffusion rates in tree-ring chemistry [BKSH99] and 3D freehand ultrasound imaging [SJEMFAL+03].

Although some authors have studied the function \(\text{inverf}(z) \) (see [Dom03b] and references therein), little is known about its analytic properties, the major work having been done in developing algorithms for numerical calculations [Pet74]. Dan Lozier, remarked the need for new techniques in the computation of \(\text{inverf}(z) \) [Loz96].

In this paper, we analyze the asymptotic behavior of the derivatives \(\frac{d^n}{dz^n} \text{inverf}(z) \big|_{z=0} \) for large values of \(n \), using a discrete WKB method [CC96]. In Section 2 we present

1991 Mathematics Subject Classification. Primary 33B20; Secondary 30B10, 34K25.
Key words and phrases. Inverse error function, asymptotic analysis, discrete ray method, differential-difference equations, Taylor series.

This work was partially supported by a Provost Research Award from SUNY New Paltz.
some properties of the derivatives of \(\text{inverf}(z) \) and review our previous work on nested derivatives. In Section 3 we study a family of polynomials \(P_n(x) \) associated with the derivatives of \(\text{inverf}(z) \), which were introduced by L. Carlitz in [Car63]. Theorem 3.3 contains our main result on the asymptotic analysis of \(P_n(x) \). In Section 4 we give asymptotic approximations for \(\frac{d^n}{dz^n} \text{inverf}(z) \) at \(z = 0 \) and some numerical results testing the accuracy of our formulas.

2. Derivatives

Let us denote the function \(\text{inverf}(z) \) by \(I(z) \) and its derivatives by

\[
d_n = \frac{d^n}{dz^n} \text{inverf}(z) \bigg|_{z=0}, \quad n = 0, 1, \ldots.
\]

Since \(\text{erf}(z) \) tends to \(\pm 1 \) as \(z \to \pm \infty \), it is clear that \(\text{inverf}(z) \) is defined in the interval \((-1, 1)\) and has singularities at the end points.

Proposition 2.1. The function \(I(z) \) satisfies the nonlinear differential equation

\[
I''(z) - 2 I'(z)^2 = 0
\]

with initial conditions

\[
I(0) = 0, \quad I'(0) = \frac{\sqrt{\pi}}{2}.
\]

Proof. It is clear that \(I(0) = 0 \), since \(\text{erf}(0) = 0 \). Using the chain rule, we have

\[
I'[\text{erf}(z)] = \frac{1}{\text{erf}'(z)} = \frac{\sqrt{\pi}}{2} \exp \left\{ I^2[\text{erf}(z)] \right\}
\]

and therefore

\[
I' = \frac{\sqrt{\pi}}{2} \exp (I^2).
\]

Setting \(z = 0 \) we get \(I'(0) = \frac{\sqrt{\pi}}{2} \) and taking the logarithmic derivative of \(2.4 \) the result follows. \qed

To compute higher derivatives of \(I(z) \), we begin by establishing the following corollary.

Corollary 2.2. The function \(I(z) \) satisfies the nonlinear differential-integral equation

\[
I'(z) \int_0^z I(t) dt = -\frac{1}{2} + \frac{1}{\sqrt{\pi}} I'(z).
\]

Proof. Rewriting \(2.2 \) as

\[
I = \frac{1}{2} \frac{I''}{(I')^2}
\]

and integrating, we get

\[
\int_0^z I(t) dt = \frac{1}{2} \left[-\frac{1}{I'(z)} + \frac{1}{I'(0)} \right] = \frac{1}{2} \left[-\frac{1}{I'(z)} + \frac{2}{\sqrt{\pi}} \right]
\]

and multiplying by \(I'(z) \) we obtain \(2.3 \). \qed
Proposition 2.3. The derivatives of \(J(z) \) satisfy the nonlinear recurrence

\begin{equation}
(2.6) \quad d_{n+1} = \sqrt{\pi} \sum_{k=0}^{n-1} \binom{n}{k+1} d_k d_{n-k}, \quad n = 1, 2, \ldots
\end{equation}

with \(d_0 = 0 \) and \(d_1 = \frac{\sqrt{\pi}}{2} \).

Proof. Using

\(J(z) = \sum_{n=0}^{\infty} d_n \frac{z^n}{n!} \)

and \(d_1 = \frac{\sqrt{\pi}}{2} \) in (2.5), we have

\[
\left[\frac{\sqrt{\pi}}{2} + \sum_{n=1}^{\infty} d_{n+1} \frac{z^n}{n!} \right] \left[\sum_{n=1}^{\infty} d_{n-1} \frac{z^n}{n!} - \frac{1}{\sqrt{\pi}} \right] = -\frac{1}{2}
\]

or

\[
\frac{\sqrt{\pi}}{2} \sum_{n=1}^{\infty} d_{n-1} \frac{z^n}{n!} + \sum_{n=2}^{\infty} \sum_{k=0}^{n-2} \binom{n}{k+1} d_k d_{n-k} \frac{z^n}{n!} - \frac{1}{\sqrt{\pi}} \sum_{n=1}^{\infty} d_{n+1} \frac{z^n}{n!} = 0.
\]

Comparing powers of \(z^n \), we get

\[
\frac{\sqrt{\pi}}{2} d_{n-1} + \sum_{k=0}^{n-2} \binom{n}{k+1} d_k d_{n-k} - \frac{1}{\sqrt{\pi}} d_{n+1} = 0
\]

or

\[
\sum_{k=0}^{n-1} \binom{n}{k+1} d_k d_{n-k} - \frac{1}{\sqrt{\pi}} d_{n+1} = 0.
\]

\[\square\]

Although one could use (2.6) to compute the higher derivatives of \(\text{inverf}(z) \), the nonlinearity of the recurrence makes it hard to analyze the asymptotic behavior of \(d_n \) as \(n \to \infty \). Instead, we shall use an alternative technique that we developed in [Dom03a] and we called the method of "nested derivatives". The following theorem contains the main result presented in [Dom03a].

Theorem 2.4. Let

\[H(x) = h^{-1}(x), \quad f(x) = \frac{1}{h'(x)}, \quad z_0 = h(x_0), \quad |f(x_0)| \in (0, \infty). \]

Then,

\[H(z) = x_0 + f(x_0) \sum_{n=1}^{\infty} \mathfrak{D}^{n-1} f(x_0) \frac{(z - z_0)^n}{n!}, \]

where we define \(\mathfrak{D}^n f(x) \), the \(n \)th nested derivative of the function \(f(x) \), by \(\mathfrak{D}^0 f(x) = 1 \) and

\begin{equation}
(2.7) \quad \mathfrak{D}^{n+1} f(x) = \frac{d}{dx} \left[f(x) \times \mathfrak{D}^n f(x) \right], \quad n = 0, 1, \ldots.
\end{equation}

The following proposition makes the computation of \(\mathfrak{D}^{n-1} f(x_0) \) easier in some cases.
Proposition 2.5. Let
\[D^n[f](x) = \sum_{k=0}^{\infty} A_k^n (x-x_0)^k/k! , \quad f(x) = \sum_{k=0}^{\infty} B_k (x-x_0)^k/k! . \]
Then,
\[A^{n+1}_k = (k+1) \sum_{j=0}^{k+1} A_{k+1-j}^n B_j . \]

Proof. From (2.8) we have
\[f(x)D^n[f](x) = \sum_{k=0}^{\infty} \alpha^n_k (x-x_0)^k/k! , \]
with
\[\alpha^n_k = \sum_{j=0}^{k} A^n_{k-j} B_j . \]
Using (2.8) and (2.10) in (2.7), we obtain
\[\sum_{k=0}^{\infty} A^{n+1}_k (x-x_0)^k = \frac{d}{dx} \sum_{k=0}^{\infty} \alpha^n_k (x-x_0)^k = \sum_{k=0}^{\infty} (k+1) \alpha^{n+1}_k (x-x_0)^k \]
and the result follows from (2.11). \qed

To obtain a linear relation between successive nested derivatives, we start by establishing the following lemma.

Lemma 2.6. Let
\[g_n(x) = \frac{D^n[f](x)}{f^n(x)} . \]
Then,
\[g_{n+1}(x) = g'_n(x) + (n+1) \frac{f'(x)}{f^n(x)} g_n(x) , \quad n = 0, 1, \ldots . \]

Proof. Using (2.7) in (2.12), we have
\[g_{n+1}(x) = \frac{D^{n+1}[f](x)}{f^{n+1}(x)} = \frac{\frac{d}{dx} [f(x) \times D^n[f](x)]}{f^{n+1}(x)} = \frac{\frac{d}{dx} [g_n(x) f^{n+1}(x)]}{f^{n+1}(x)} = \frac{g'_n(x) f^{n+1}(x) + g_n(x) (n+1) f^n(x) f'(x)}{f^{n+1}(x)} \]
and the result follows. \qed

Corollary 2.7. Let
\[H(x) = h^{-1}(x) , \quad f(x) = \frac{1}{h'(x)} , \quad z_0 = h(x_0) , \quad |f(x_0)| \in (0, \infty) . \]
Then,
\[\frac{d^n H}{dz^n}(z_0) = [f(x_0)]^n g_{n-1}(x_0) , \quad n = 1, 2, \ldots . \]
For the function \(h(x) = \text{erf}(z) \), we have

\[
(2.15) \quad f(x) = \frac{1}{h'(x)} = \frac{\sqrt{\pi}}{2} \exp \left(x^2 \right),
\]

and setting \(x_0 = 0 \) we obtain \(z_0 = \text{erf}(0) = 0 \). Using the Taylor series

\[
\frac{\sqrt{\pi}}{2} \exp \left(x^2 \right) = \frac{\sqrt{\pi}}{2} \sum_{k=0}^{\infty} \frac{x^{2k}}{k!}
\]

in \((2.9) \), we get

\[
A_{n+1}^k = \frac{\sqrt{\pi}}{2} (k + 1) \sum_{j=0}^{\left\lfloor \frac{k+1}{2} \right\rfloor} \frac{A_{n+1-k}^j}{j!},
\]

with \(A_k^p \) defined in \((2.8) \). Using \((2.15) \) in \((2.13) \), we have

\[
(2.16) \quad g_{n+1}(x) = g'_n(x) + 2(n + 1)xg_n(x), \quad n = 0, 1, \ldots,
\]

while \((2.14) \) gives

\[
(2.17) \quad d_n = \left(\frac{\sqrt{\pi}}{2} \right)^n g_{n-1}(0), \quad n = 1, 2, \ldots.
\]

In the next section we shall find an asymptotic approximation for a family of polynomials closely related to \(g_n(x) \).

3. The polynomials \(P_n(x) \)

We define the polynomials \(P_n(x) \) by \(P_0(x) = 1 \) and

\[
P_n(x) = g_n \left(\frac{x}{\sqrt{2}} \right) 2^{-\frac{x}{2}}.
\]

\[
(3.1) \quad P_{n+1}(x) = P'_n(x) + (n + 1)xP_n(x),
\]

The first few \(P_n(x) \) are

\[
P_1(x) = x, \quad P_2(x) = 1 + 2x^2, \quad P_3(x) = 7x + 6x^3, \ldots.
\]

The following propositions describe some properties of \(P_n(x) \).

Proposition 3.1. Let

\[
P_n(x) = \sum_{k=0}^{\left\lfloor \frac{n}{2} \right\rfloor} C_n^k x^{n-2k},
\]

where \(\lfloor \cdot \rfloor \) denotes the integer part function. Then,

\[
C_n^0 = n!
\]

and

\[
C_n^k = n! \sum_{j_k = 0}^{k-1} \sum_{j_{k-1} = 0}^{j_k-1} \cdots \sum_{j_1 = 0}^{j_2-1} \prod_{i=1}^{k} \frac{j_i - 2i + 2}{j_i + 1}, \quad k = 1, \ldots, \left\lfloor \frac{n}{2} \right\rfloor.
\]
Using (3.3) in (3.2) we have
\[
\sum_{0 \leq 2k \leq n+1} C^{n+1}_k x^{n+1-2k} = \sum_{0 \leq 2k \leq n} C^n_k (n-2k) x^{n-2k-1} + \sum_{0 \leq 2k \leq n} (n+1) C^n_k x^{n+1-2k}
\]
\[
= \sum_{2 \leq 2k \leq n+2} C^{n-1}_k (n-2k+2) x^{n+1-2k} + \sum_{0 \leq 2k \leq n} (n+1) C^n_k x^{n+1-2k}.
\]
Comparing coefficients in the equation above, we get

(3.6) \[C^{n+1}_0 = C^n_0, \]

(3.7) \[C^n_k = (n-2k+2) C^{n-1}_k + (n+1) C^n_k, \quad k = 1, \ldots, \left\lfloor \frac{n}{2} \right\rfloor \]
and for \(n = 2m-1, \)
\[C^{2m}_m = C^{2m-1}_{m-2}, \quad m = 1, 2, \ldots. \]
From (3.6) we immediately conclude that \(C^n_0 = n! \), while (3.7) gives

(3.8) \[C^n_k = n! \sum_{j=0}^{n-1} \frac{j-2k+2}{(j+1)!} C^j_{k-1}, \quad n, k \geq 1. \]

Setting \(k = 1 \) in (3.8) and using (3.4), we have

(3.9) \[C^n_1 = n! \sum_{j=0}^{n-1} \frac{j}{(j+1)!} C^j_0 = n! \sum_{j=0}^{n-1} \frac{j}{j+1}. \]

Similarly, setting \(k = 2 \) in (3.8) and using (3.4), we get

\[C^n_2 = n! \sum_{j=0}^{n-1} \frac{j-2}{(j+1)!} \left[\sum_{i=0}^{j-1} \frac{i}{j+1} \right] = n! \sum_{j=0}^{n-1} \sum_{i=0}^{j-1} \frac{j-2}{j+1} i + 1 \]
and continuing this way we obtain (3.5). \(\square \)

Proposition 3.2. The zeros of the polynomials \(P_n(x) \) are purely imaginary for \(n \geq 1. \)

Proof. For \(n = 1 \) the result is obviously true. Assuming that it is true for \(n \) and that \(P_n(x) \) is written in the form

(3.10) \[P_n(x) = n! \prod_{k=1}^{n} (z-z_k), \quad \text{Re}(z_k) = 0, \quad 1 \leq k \leq n, \]
we have two possibilities for \(z^* \), with \(P_{n+1}(z^*) = 0: \)

1. \(z^* = z_k, \) for some \(1 \leq k \leq n. \)
 In this case, \(\text{Re}(z^*) = 0 \) and the proposition is proved.
2. \(z^* \neq z_k, \) for all \(1 \leq k \leq n. \)
 From (3.2) and (3.10) we get
\[
\frac{P_{n+1}(x)}{P_n(x)} = \frac{d}{dx} \ln |P_n(x)| + (n+1)x = \sum_{k=1}^{n} \frac{1}{z-z_k} + (n+1)x.
\]
Evaluating at \(z = z^* \), we obtain
\[
0 = \sum_{k=1}^{n} \frac{1}{z^*-z_k} + (n+1)z^*.
\]
and taking Re(●), we have

\[0 = \text{Re} \left(\sum_{k=1}^{n} \frac{1}{z^* - z_k} + (n + 1)z^* \right) \]

\[= \sum_{k=1}^{n} \frac{\text{Re} (z^* - z_k)}{|z^* - z_k|^2} + (n + 1) \text{Re}(z^*) = \text{Re}(z^*) \left[\sum_{k=1}^{n} \frac{1}{|z^* - z_k|^2} + n + 1 \right] \]

which implies that \(\text{Re}(z^*) = 0 \).

3.1. Asymptotic analysis of \(P_n(x) \). We first consider solutions to (3.2) of the form

\[(3.11) \quad P_n(x) = n!A^{(n+1)}(x), \]

with \(x > 0 \). Replacing (3.11) in (3.2) and simplifying the resulting expression, we obtain

\[A^2(x) = A'(x) + xA(x), \]

with solution

\[(3.12) \quad A(x) = \exp \left(\frac{-x^2}{2} \right) \left[C - \sqrt{\frac{\pi}{2}} \text{erf} \left(\frac{x}{\sqrt{2}} \right) \right]^{-1}, \]

for some constant \(C \). Note that (3.11) is not an exact solution of (3.2), since it does not satisfy the initial condition \(P_0(x) = 1 \). To determine \(C \) in (3.12), we observe from (3.4) that

\[(3.13) \quad P_n(x) \sim n!x^n, \quad x \to \infty. \]

As \(x \to \infty \), we get from (3.12)

\[\ln[A(x)] \sim -\frac{x^2}{2} - \ln \left(C - \sqrt{\frac{\pi}{2}} \right) + \frac{\exp \left(\frac{-x^2}{2} \right)}{(C - \sqrt{\frac{\pi}{2}}) x}, \quad x \to \infty, \]

which is inconsistent with (3.13) unless \(C = \sqrt{\frac{\pi}{2}} \). In this case, we have

\[(3.14) \quad A(x) \sim x + \frac{1}{x}, \quad x \to \infty, \]

matching (3.13). Thus,

\[(3.15) \quad A(x) = \sqrt{\frac{2}{\pi}} \exp \left(-\frac{x^2}{2} \right) \left[1 - \text{erf} \left(\frac{x}{\sqrt{2}} \right) \right]^{-1}. \]

Since (3.11) and (3.14) give

\[P_n(x) \sim n!x^{n+1}, \quad x \to \infty, \]

instead of (3.13), we need to consider

\[(3.16) \quad P_n(x) = n!A^{(n+1)}(x)B(x,n). \]

Replacing (3.16) in (3.2) and simplifying, we get

\[B(x, n + 1) = B(x,n) + \frac{1}{A(x)(n+1)} \frac{\partial B}{\partial x}(x,n). \]
Using the approximation
\[B(x, n + 1) = B(x, n) + \frac{\partial B}{\partial n}(x, n) + \frac{1}{2} \frac{\partial^2 B}{\partial n^2}(x, n) + \cdots, \]
we obtain
\[\frac{\partial B}{\partial n} = \frac{1}{A(x)(n+1)} \frac{\partial B}{\partial x}, \]
whose solution is
\[(3.17) \quad B(x, n) = F \left[\frac{n + 1}{1 - \text{erf} \left(\frac{x}{\sqrt{2}} \right)} \right], \]
for some function \(F(u) \). Matching (3.16) with (3.13) requires
\[(3.18) \quad B(x, n) \sim \frac{1}{x}, \quad x \to \infty. \]
Since in the limit as \(x \to \infty \), with \(n \) fixed we have
\[\ln \left[\frac{n + 1}{1 - \text{erf} \left(\frac{x}{\sqrt{2}} \right)} \right] \sim \frac{x^2}{2}, \]
(3.17)-(3.18) imply
\[F(u) = \frac{1}{\sqrt{2 \ln(u)}}. \]
Therefore, for \(x > 0 \),
\[(3.19) \quad P_n(x) \sim n! \Phi(x, n), \quad n \to \infty, \]
with
\[\Phi(x, n) = \left[\sqrt{\frac{2}{\pi}} \frac{\exp \left(-\frac{x^2}{2} \right)}{1 - \text{erf} \left(\frac{x}{\sqrt{2}} \right)} \right]^{n+1} \left[2 \ln \left(\frac{n + 1}{1 - \text{erf} \left(\frac{x}{\sqrt{2}} \right)} \right) \right]^{-\frac{1}{2}}. \]
From (3.3) we know that the polynomials \(P_n(x) \) satisfy the reflection formula
\[(3.20) \quad P_n(-x) = (-1)^n P_n(x). \]
Using (3.20), we can extend (3.19) to the whole real line and write
\[(3.21) \quad P_n(x) \sim n! \left[\Phi(x, n) + (-1)^n \Phi(-x, n) \right], \quad n \to \infty. \]
In Figure II we compare the values of \(P_{10}(x) \) with the asymptotic approximation (3.21).
We see that the approximation is very good, even for small values of \(n \). We summarize our results of this section in the following theorem.

Theorem 3.3. Let the polynomials \(P_n(x) \) be defined by
\[P_{n+1}(x) = P_n'(x) + (n + 1) x P_n(x), \]
with \(P_0(x) = 1 \). Then, we have
\[(3.22) \quad P_n(x) \sim P_n(x) \sim n! \left[\Phi(x, n) + (-1)^n \Phi(-x, n) \right], \quad n \to \infty, \]
where

\begin{equation}
\Phi (x, n) = \left[\sqrt{\frac{2}{\pi}} \exp \left(-\frac{x^2}{2} \right) \right]^{n+1} \left[2\ln \left(\frac{n+1}{1 - \text{erf} \left(\frac{x}{\sqrt{2}} \right)} \right) \right]^{-\frac{1}{2}}.
\end{equation}

4. Higher derivatives of \(\text{inverf} (z) \)

From (2.17) and (3.1), it follows that

\begin{equation}
d_n = \frac{1}{\sqrt{2}} \left(\sqrt{\frac{\pi}{2}} \right)^n P_{n-1}(0), \quad n = 1, 2, \ldots,
\end{equation}

where \(d_n \) was defined in (2.1). Using Theorem 3.3 in (4.1), we have

\[d_n \sim \frac{1}{\sqrt{2}} \left(\sqrt{\frac{\pi}{2}} \right)^n \Phi (0, n-1) \left[1 + (-1)^{n-1} \right], \]

as \(n \to \infty \). Using (3.23), we obtain

\begin{equation}
\frac{d_n}{n!} \sim \frac{1}{2n \sqrt{\ln(n)}} \left[1 + (-1)^{n-1} \right], \quad n \to \infty.
\end{equation}
Figure 2. A sketch of the exact (ooo) and asymptotic (solid curve) values of $\frac{d_{2k+1}}{(2k+1)!}$.

Setting $n = 2N + 1$ in (4.2), we have

$$(4.3) \quad \frac{d_{2N+1}}{(2N+1)!} \sim \frac{1}{(2N+1) \sqrt{\ln(2N+1)}}, \quad N \to \infty.$$

4.1. Numerical results. In this section we demonstrate the accuracy of the approximation (4.2) and construct a high order Taylor series for inv erf (x). In Figure 2 we compare the logarithm of the exact values of $\frac{d_{2n+1}}{(2n+1)!}$ inv erf (x) $|_{x=0}$ and our asymptotic formula (4.2). We see that there is a very good agreement, even for moderate values of n.

Using (2.6), we compute the exact values

$$d_1 = \frac{1}{2} \pi^{\frac{1}{2}}, \quad d_3 = \frac{1}{4} \pi^{\frac{3}{2}}, \quad d_5 = \frac{7}{8} \pi^{\frac{5}{2}}, \quad d_7 = \frac{127}{16} \pi^{\frac{7}{2}}, \quad d_9 = \frac{4369}{32} \pi^{\frac{9}{2}}$$

and form the polynomial Taylor approximation

$$T_9(x) = \sum_{k=0}^{4} d_{2k+1} \frac{x^{2k+1}}{(2k+1)!}.$$
In Figure 3 we graph $\frac{T_9(x)}{\text{inverf}(x)}$ (solid curve), $\frac{T_9(x) + R_{10}(x)}{\text{inverf}(x)}$ (+++), and $\frac{T_9(x) + R_{20}(x)}{\text{inverf}(x)}$ (ooo).

The functions are virtually identical in most of the interval $(-1, 1)$ except for values close to $x = \pm 1$. We show the differences in detail in Figure 4. Clearly, the additional terms in $R_{20}(x)$ give a far better approximation for $x \approx 1$.

In the table below we compute the exact value of and optimal asymptotic approximation to $\text{inverf}(x)$ for some x:

x	$\text{inverf}(x)$	$T_9(x) + R_N(x)$	N
0.7	.732869	.732751	6
0.8	.906194	.905545	7
0.9	1.16309	1.16274	11
0.99	1.82139	1.82121	57
0.999	2.32675	2.32676	423
0.9999	2.75106	2.75105	3685
Clearly, (4.4) is still valid for $x \to 1$, but at the cost of having to compute many terms in the sum. In this region it is better to use the formula \cite{Dom03b}

$$\text{inverf}(x) \sim \sqrt{\frac{1}{2} \text{LW} \left[\frac{2}{\pi (x-1)^2} \right]}, \quad x \to 1^-,$$

where $\text{LW}(\cdot)$ denotes the Lambert-W function \cite{CGH96}, which satisfies

$$\text{LW}(x) \exp[\text{LW}(x)] = x.$$
[CGH+96] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, On the Lambert W function, Adv. Comput. Math. 5 (1996), no. 4, 329–359. MR MR1414285 (98j:33015)

[Dom03a] Diego Dominici, Nested derivatives: a simple method for computing series expansions of inverse functions, Int. J. Math. Math. Sci. (2003), no. 58, 3699–3715. MR MR2031110 (2005f:41079)

[Dom03b] Diego E. Dominici, The inverse of the cumulative standard normal probability function, Integral Transforms Spec. Funct. 14 (2003), no. 4, 281–292. MR MR1986919 (2004d:60027)

[Fet74] Henry E. Fettis, A stable algorithm for computing the inverse error function in the “tail-end” region, Math. Comp. 28 (1974), 585–587. MR MR0341812 (49 #6558)

[Her88] Gerhard Herden, The role of error-functions in order to obtain relatively optimal classification, Classification and related methods of data analysis (Aachen, 1987), North-Holland, Amsterdam, 1988, pp. 105–111. MR MR999553

[Jae46] J. C. Jaeger, Some applications of the repeated integrals of the error function, Quart. Appl. Math. 4 (1946), 100–103. MR MR0016873 (8,81f)

[Loz96] Daniel W. Lozier, Software needs in special functions, Proceedings of the Sixth International Congress on Computational and Applied Mathematics (Leuven, 1994), vol. 66, 1996, pp. 345–358. MR MR1393742

[Olv97] Frank W. J. Olver, Asymptotics and special functions, AKP Classics, A K Peters Ltd., Wellesley, MA, 1997, Reprint of the 1974 original [Academic Press, New York; MR0435697 (55 #8655)]. MR MR1429619 (97i:41001)

[Phi55] J. R. Philip, Numerical solution of equations of the diffusion type with diffusivity concentration-dependent, Trans. Faraday Soc. 51 (1955), 885–892. MR MR0071876 (17,196f)

[Sha73] L. F. Shampine, Exact solutions for concentration dependent diffusion and the inverse complementary error function, J. Franklin Inst. 295 (1973), 239–247. MR MR0281322 (43 #7040)

[SJEMFal03] Ral San Jos Estpar, Marcos Martin-Fernandez, Carlos Alberola-Lpez, James Ellsmere, Ron Kikinis, and Carl-Fredrik Westin, Freehand ultrasound reconstruction based on ROI prior modeling and normalized convolution, Sixth International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI’03), Lecture Notes in Computer Science 2879 (Montreal, Canada) (R. E. Ellis and T. M. Peters, eds.), Springer Verlag, November 15–18 2003, pp. 382–390.

[TM96] Kudo T. and Hibino M., Consideration on the potential-composition relationships observed with amorphous intercalation systems such as lizw3, Solid State Ionics 84 (1996), no. 1, 65–72. MR MR2166352 (2006c:86006)

[Wal50] Henry Wallman, Transient response and the central limit theorem of probability, Proc. Symposia Appl. Math. 2 (1950), 91. MR MR0034250 (11,564e)

[WM99] Claus O. Wilke and Thomas Martinetz, Lifetimes of agents under external stress, Phys. Rev. E 59 (1999), no. 3, R2512–R2515.

Department of Mathematics, State University of New York at New Paltz, 75 S. Manheim Blvd. Suite 9, New Paltz, NY 12561-2443, USA, Phone: (845) 257-2607, Fax: (845) 257-3571

E-mail address: dominicd@newpaltz.edu