Parametrization of the QCD coupling in Hard and Regge processes

B.I. Ermolaev
Ioffe Physico-Technical Institute, 194021 St. Petersburg, Russia

S.I. Troyan
St. Petersburg Institute of Nuclear Physics, 188300 Gatchina, Russia

We examine the parametrization of the QCD coupling in the Bethe-Salpeter equations for the hard and Regge processes and determine the argument of α_s of the factorized gluon. Our analysis shows that for the hard processes $\alpha_s = \alpha_s(k_1^2/(1-\beta))$ where k_1^2 and β are the longitudinal and transverse moment of the soft parton. On the other hand, in the Regge processes $\alpha_s = \alpha_s(k_1^2/\beta)$. We have also shown that the well-known parametrization $\alpha_s = \alpha_s(k_2^2)$ in the DGLAP equations stands only if the lowest integration limit μ^2 over k_2^2 (the starting point of the Q^2-evolution) obeys the relation $\mu \gg \Lambda_{QCD} \exp(\pi/2)$, otherwise the coupling should be replaced by the more complicated expression.

PACS numbers: 12.38.Cy

I. INTRODUCTION

Total resummations of radiative corrections in QCD are often performed with composing and solving evolution equations. Quite often such equations are of the Bethe-Salpeter type, with one gluon (or one ladder rung) being factorized. In particular, both the DGLAP and BFKL equations are of that type. As is well-known, the argument of equations. Quite often such equations are of the Bethe-Salpeter type, with one gluon (or one ladder rung) being factorized. In particular, both the DGLAP and BFKL equations are of that type. As is well-known, the argument of

\begin{equation}
\alpha_s = \alpha_s(k_1^2) \tag{1}
\end{equation}

in each rung of the ladder Feynman graphs. Such a dependence originally was used in analogy to the parametrization of α_s in the hard kinematics according to the results of Refs. [1, 2]. Later, the proof of the parametrization (1) in the DGLAP context was suggested in Ref. [3]. However, that proof was not done accurate enough. In our recent paper Ref. [4] we have revised Ref. [3] and showed that α_s in the Bethe-Salpeter equations, including DGLAP, is basically replaced by the effective coupling α_s^{eff} given by much more complicated expression than Eq. (1):

\begin{equation}
\alpha_s^{\text{eff}} = \alpha_s(\mu^2) + \frac{1}{\pi b} \arctan \left(\frac{\pi [\ln(k_1^2/\beta)^2] - \ln(\mu^2/\Lambda^2)]}{\pi^2 + \ln(k_1^2/\beta^2) \ln(\mu^2/\Lambda^2)} \right) \tag{2}
\end{equation}

where the Sudakov variable β is the fraction of the longitudinal of the ladder parton, $\Lambda = \Lambda_{QCD}$ and $b = [11N - 2n_f]/(12\pi)$. However when μ, the starting point of the Q^2-evolution is chosen large enough, namely when

\begin{equation}
\mu \gg \Lambda_{QCD} \exp(\pi/2), \tag{3}
\end{equation}

Eq. (2) can be simplified down to

\begin{equation}
\alpha_s^{\text{eff}} \approx \alpha_s(k_1^2/\beta). \tag{4}
\end{equation}

When Eq. (2) is applied to the DIS structure functions at $x \sim 1$ and Eq. (3) is also fulfilled, Eqs. (24) can be approximated by the DGLAP expression of Eq. (1).

II. PARAMETRIZATION OF α_s FOR QCD PROCESSES IN THE HARD KINEMATICS

Let us consider the contribution M_t of the Feynman graph depicted in Fig. 1. The cases with u and s-channel gluons factorized can be considered quite similarly. The solid lines in Fig. 1 denote quarks, though the generalization to the case of gluons is obvious. Through the paper we will assume that the lower particles, with momenta p_1, p'_1, have small virtualities $\sim \mu^2$ whereas virtualities of the upper partons, with momenta q, q' are large: $-q^2 \sim -q'^2 \sim Q^2 \gg \mu^2$. Applying the Feynman rules to Fig. 1 we obtain:

\begin{equation}
M_t = \frac{s^2}{4\pi^2} \int d\alpha d\beta dk_1^2 \frac{M(s, Q^2, s\alpha, s\beta, k_1^2)}{s\beta - Q^2 - s\alpha\beta - k_1^2 + i\epsilon}[s\alpha - s\alpha\beta - k_1^2 + i\epsilon](s\alpha\beta + k_1^2 - i\epsilon) \alpha_s(-s\alpha\beta - k_1^2). \tag{5}
\end{equation}
We have used the standard Sudakov variables $k = -\alpha(q + xp) + \beta p + k_\perp$ and we have dropped the color factors as unessential for our analysis. M corresponds to the blob in Fig. 1. In Eq. (3) we have also neglected the virtuality $p^2 = \mu^2$ of the initial parton and denoted $s = 2pq, \; x = Q^2/2pq, \; Q^2 = -q^2$. Amplitude M is unknown, so it is impossible to perform the integration over any of the variables in Eq. (3). However, if we assume the leading logarithmic (LL) accuracy, we can use the QCD generalization of the bremsstrahlung Gribov theorem. According to it, M does not depend on α and β. Integrating over α in Eq. (3) is conventionally performed with closing the integration contour down and taking the residue at $\alpha = (+k^2 / \mu^2)/(1 - \beta)$. It converts Eq. (3) into

$$M_t = -\frac{1}{2\pi} \int_\mu^2 \frac{dk^2}{k^2_\perp} \int_{\beta_0}^1 d\beta \frac{(1 - \beta)}{\beta} M(s, Q^2, k^2_\perp) \alpha_s \left(-\frac{k^2}{1 - \beta}\right)$$

(6)

where $\beta_0 = x + k^2_\perp / s$. Obviously, $\beta_0 \approx x = Q^2/2pq$ when $x \sim 1$ and the upper limit s of the integration over k^2_\perp can be changed for Q^2. The minus sign of the α_s-argument in Eq. (6) indicates explicitly that the argument is space-like and for the space-like argument α_s is given by the well-known expression:

$$\alpha_s \left(-\frac{k^2}{1 - \beta}\right) = \frac{1}{b \ln \left(k^2 / ((1 - \beta)\Lambda^2)\right)}$$

(7)

With the LL accuracy, $k^2/(1 - \beta) \approx k^2_\perp$ and therefore in Eq. (6) $\alpha_s \approx \alpha_s(k^2_\perp)$. The minus sign of the argument of α_s is traditionally dropped, which drives us back to the standard expression of Eq. (1).

III. Parametrization of α_s in the Bethe-Salpeter Equations

In this section we study the parametrization of α_s in the Bethe-Salpeter equation for the forward scattering amplitude A. Let us assume that A obeys the following Bethe-Salpeter equation:

$$A = A_0 + \frac{1}{4\pi^2} \int dk^2_\perp d\beta dm^2 M(s\beta, Q^2, (m^2\beta + k^2_\perp)) \frac{(1 - \beta)k^2_\perp}{(m^2\beta + k^2_\perp - \mu^2)^2} \alpha_s(m^2)$$

(8)

The second term in the rhs of Eq. (6) is depicted in Fig. 2. We have used the standard Sudakov variables: $k = -\alpha(q + xp) + \beta p + k_\perp$. Following Ref. [3], we have replaced the Sudakov variable $\alpha = 2pk/2pq$ by the new variable $m^2 = (p - k)^2$. M in Eq. (6) denotes the upper blob in Fig. 2. It includes both the off-shell amplitude A and a kernel. Now we just notice that Eq. (6) can be solved only after M has been known. A_0 stands for an inhomogeneous term. We focus on integrating over α in Eq. (6) and introduce

$$I = \int_{-\infty}^{\infty} dm^2 M(s\beta, Q^2, (m^2\beta + k^2_\perp)) \frac{(1 - \beta)k^2_\perp}{(m^2\beta + k^2_\perp - \mu^2)^2} \alpha_s(m^2)$$

(9)
The integrand of Eq. (9) has the singularities in m^2. First, there are two poles from the propagators:

$$m^2 = -k^2_\perp / \beta + i\varepsilon$$

and

$$m^2 = 0 - i\varepsilon.$$ \hspace{1cm} (10) \hspace{1cm} (11)

Second, there are two cuts. The first cut is originated by the k^2 -dependence of M. In particular, it can be the logarithmic dependence. The cut begins at

$$m^2 = -k^2_\perp / \beta + i\varepsilon$$

and goes to the left. The second cut is related to α_s. It begins at

$$m^2 = 0 - i\varepsilon$$

and goes to the right. The singularities (10-13) are depicted in Fig. 3. The integration over m^2 in Eq. (9) runs along

\begin{align*}
 \Re m^2 &< m^2 < \Re m^2 \\
 \Im m^2 &< m^2 < \Im m^2
\end{align*}

FIG. 3: Singularities of I given by Eqs. (10-13)

the $\Re m^2$ -axis from $-\infty$ to ∞, so the integral can be calculated with choosing an appropriate closed integration contour C and taking residues. The contour C should include the line $-\infty < m^2 < \infty$ and a semi-circle C_R with radius R. The contour C_R may be situated either in the upper or in the right semi-plane of the m^2 -plane. However, if we choose C_R to be in the upper semi-plane, we should deal with the cut (12) of an unknown amplitude M, which is impossible without making assumptions about M. Alternatively, choosing the contour C_R in the lower semi-plane
involves analysis of the cut (13) of α_s and α_s is known. By this reason, we choose the latter option for C_R. the contour C_{cut} which runs along both sides of the cut (13). According to the Cauchy theorem,

$$I_C \equiv \int_C dm^2 M(s\beta, Q^2, k^2) \frac{(1-\beta)k^2}{(m^2\beta + k^2_\perp - i\epsilon)^2} = -2\pi i \frac{(1-\beta)}{k^2_\perp} M(s\beta, Q^2, -k^2_\perp/(1-\beta))\alpha_s(\mu^2).$$ \(14\)

The rhs of Eq. (14) is the residue at the pole (11) and μ is introduced to regulate the IR singularity for α_s. It should be chosen as large as $\mu >> \Lambda$ to guarantee applicability of the perturbative expression for α_s. When the initial partons are quarks, μ should also obey $\mu \gg$ the quark mass. Obviously,

$$I_C = I + I_{cut} + I_R$$ \(15\)

where I is defined in Eq. (9), I_R stands for the integration over the lower semi-circle and I_{cut} refers to the integration along the cut (13). I_R can be dropped because $I_R \to 0$ when $R \to \infty$. Now we specify I_{cut}:

$$I_{cut} = -2\pi i \int_{\mu^2}^{\infty} dm^2 \frac{(1-\beta)k^2}{(m^2\beta + k^2_\perp - i\epsilon)^2} \frac{\alpha_s(m^2)}{m^2}. \tag{16}$$

The integration in Eq. (16) cannot be done precisely because it involves the unknown amplitude M depending on m^2. Nevertheless, it is possible to estimate I_{cut}. Indeed, the m^2- dependence of M in Eq. (16) can be neglected in the region $m^2 \ll k^2_\perp/\beta$. Doing so, we obtain the following estimate of I:

$$I \approx -2\pi i \frac{(1-\beta)}{k^2_\perp} M(s\beta, Q^2, k^2_\perp) \int_{\mu^2}^{k^2_\perp/\beta} dm^2 \frac{\alpha_s(m^2)}{m^2} = -\frac{2\pi i (1-\beta)}{k^2_\perp} M(s\beta, Q^2, k^2_\perp) \alpha^{eff}_s, \tag{17}$$

with α^{eff}_s given by Eq. (4). When μ is chosen as large that Eq. (3) is fulfilled, we can drop π^2 in Eq. (17) and arrive at the estimate

$$I \approx - \frac{2\pi i (1-\beta)}{k^2_\perp} M(s\beta, Q^2, k^2_\perp) \alpha_s(k^2_\perp/\beta). \tag{18}$$

Finally, we give several estimates of $R = |\alpha^{eff}_s - \alpha_s|/\alpha^{eff}_s$, assuming that $\Lambda \approx 0.1\text{GeV}$: $R = 5\%$ at $\mu^2 \approx 30\text{GeV}^2$; then $R = 10\%$ at $\mu^2 \approx 2.4\text{GeV}^2$ and $R = 50\%$ at $\mu^2 \approx 0.8\text{GeV}^2$.

\section{IV. ACKNOWLEDGMENTS}

The work is partly supported by the EU grant MTKD-CT-2004-510126 in partnership with the CERN Physics Department and Russian State Grant for Scientific School RSGSS-5788.2006.2.

[1] Yu.L. Dokshitzer, D.I. Diakonov, S.I. Troyan. Phys.Rep.58(1980)269.
[2] D. Amati, A. Bassetto, M. Ciafaloni, G. Marchesini, G. Veneziano. Nucl.Phys.B 173 (1980) 429; A. Bassetto, M. Ciafaloni, G. Marchesini. Phys. Rep. C 100 (1983) 201.
[3] Yu.L. Dokshitzer, D.V. Shirkov. Z. Phys. C 67 (1995) 449.
[4] B.I. Ermolaev, S.I. Troyan. Phys.Lett. B 666 (2008) 256.