Probing BFKL dynamics in Mueller-Navelet jet production at the LHC

B. Ducloué1,2, L. Szymanowski3, S. Wallon4,5

1Department of Physics, University of Jyväskylä, P.O. Box 35, 40014 University of Jyväskylä, Finland
2Helsinki Institute of Physics, P.O. Box 64, 00014 University of Helsinki, Finland
3National Centre for Nuclear Research, Hoża 69, 00-681 Warsaw, Poland
4Laboratoire de Physique Théorique, UMR 8627, CNRS, Univ. Paris Sud, Université Paris-Saclay, 91405 Orsay, France
5UPMC Univ. Paris 06, Faculté de Physique, 4 place Jussieu, 75252 Paris Cedex 05, France

June 3, 2022

Abstract

We review the results of our studies on the production of two jets with a large interval of rapidity at hadron colliders, which was proposed by Mueller and Navelet as a possible test of the high energy dynamics of QCD, within the next-to-leading logarithm framework. The application of the Brodsky-Lepage-Mackenzie procedure to fix the renormalization scale leads to a very good description of the available CMS data at the LHC for the azimuthal correlations of the jets. We show that the inclusion of next-to-leading order
corrections to the jet vertex significantly reduces the importance of energy-
momentum non-conservation which is inherent to the BFKL approach, for an
asymmetric jet configuration.

One of the most famous testing grounds for BFKL physics \cite{1} are the Mueller
Navelet jets \cite{2}, illustrated in Fig. 1. Besides the cross section also a more exclusive
observable within this process drew the attention, namely the azimuthal correlation
between these jets. Considering hadron-hadron scattering in the common parton
model to describe two jet production at LO, one deals with a back-to-back reaction
and expects the azimuthal angles of the two jets always to be π and hence completely
correlated. This corresponds in Fig. 1 to $\phi_{J,1} = \phi_{J,2} - \pi$. But when we increase
the rapidity difference between these jets, the phase space allows for more and more
emissions leading to an angular decorrelation between the jets.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig1}
\caption{Mueller Navelet jets production.}
\end{figure}

The production of two jets of transverse momenta $k_{J,1}$, $k_{J,2}$ and rapidities $y_{J,1}$,
$y_{J,2}$ is described by the differential cross-section

\begin{equation}
\frac{d\sigma}{d|k_{J,1}| d|k_{J,2}| dy_{J,1} dy_{J,2}} =
\sum_{a,b} \int_0^1 dx_1 \int_0^1 dx_2 f_a(x_1) f_b(x_2) \frac{d\hat{\sigma}_{ab}}{d|k_{J,1}| d|k_{J,2}| dy_{J,1} dy_{J,2}},
\end{equation}

where $f_{a,b}$ are the usual collinear partonic distributions (PDF). In the BFKL frame-
work, the partonic cross-section reads

\begin{equation}
\frac{d\hat{\sigma}_{ab}}{d|k_{J,1}| d|k_{J,2}| dy_{J,1} dy_{J,2}} =
\end{equation}
\[\int d\phi_{J,1} d\phi_{J,2} \int d^2k_1 d^2k_2 V_a(-k_1,x_1) G(k_1,k_2,\hat{s}) V_b(k_2,x_2). \]

where \(V_a, V_b \) and \(G \) are respectively the jet vertices and the BFKL Green's function. At present, they are known with the next-to-leading logarithm accuracy [3, 4, 5, 6, 7].

The cross sections (1, 2) are the basic blocks of the calculations presented in [9, 10, 11] of the decorrelation coefficients \(\langle \cos m(\pi - \Delta \phi) \rangle, \Delta \phi = \phi_{J,1} - \phi_{J,2}, m \in N \), which are observables which can be measured at experiments performed at the LHC. At present the measurements of the CMS collaboration are done for the so called the symmetric configuration of produced jets, i.e. jets in which the lower limit on transverse momentum is the same for both jets.

The theoretical estimates obtained in this case for \(\langle \cos m(\pi - \Delta \phi) \rangle \) with the use of the Brodsky-Lepage-Mackenzie method to fix the renormalization scale [12], turns out to be in good agreement with the measurement reported recently by the CMS collaboration [8]. This fact is clearly illustrated in Fig. 2 and the left panel of Fig. 3 shown in Ref. [8], which also shows the comparison of measurements with various Monte Carlo simulations. The observables which are more robust against theoretical uncertainties, in particular which are more stable against a choice of renormalization and factorization scales, are the ratios of decorrelation coefficients. Fig. 4 shows a good agreement of results of calculation with the CMS data. The CMS collaboration also measured the azimuthal distribution of the jets, defined as

\[\frac{1}{\sigma} \frac{d\sigma}{d\phi} = \frac{1}{2\pi} \left\{ 1 + 2 \sum_{n=1}^{\infty} \cos(n\phi) \langle \cos(n\varphi) \rangle \right\}, \quad \varphi = \Delta \phi - \pi. \]

The good agreement between theoretical estimates of [11] and measurements of this observable is shown in the right panel of Fig. 3.

Up to now we discussed production of jets in the symmetric configuration. From theoretical point of view the Monte Carlo simulations suffer in this case from insta-
Figure 3: The comparison of theoretical calculation of Ref. [11] for $\langle \cos 3(\pi - \Delta \phi) \rangle$ (left panel) and $\frac{1}{2} \frac{d\sigma}{d\phi}$ (right panel), with the measurements by CMS@LHC presented in [8].
Figure 4: The comparison of theoretical predictions of Ref. [11] for the ratio $\cos 2\phi$ (left panel) and the ratio $\cos 3\phi \cos 2\phi$ (right panel), with the measurements by CMS@LHC presented in [8].

obtained for production of jets in asymmetric configuration should not be affected by violation of energy-momentum conservation.

This work is partly supported by grant No 2015/17/B/ST2/01838 of the National Science Center in Poland, by the French grant ANR PARTONS (Grant No. ANR-12-MONU-0008-01), by the Academy of Finland, project 273464, by the COPIN-IN2P3 agreement, by the Labex P2IO and by the Polish-French collaboration agreement Polonium.

References

[1] V.S. Fadin, E. Kuraev, L. Lipatov, Phys. Lett. B60, 50 (1975); Sov. Phys. JETP 44, 443 (1976); E. Kuraev, L. Lipatov, V.S. Fadin, Sov. Phys. JETP 45, 199 (1977); I. Balitsky, L. Lipatov, Sov. J. Nucl. Phys. 28, 822 (1978)

[2] A.H. Mueller, H. Navelet, Nucl. Phys. B282, 727 (1987)

[3] V.S. Fadin, L.N. Lipatov, Phys. Lett. B429, 127 (1998), hep-ph/9802290

[4] M. Ciafaloni, G. Camici, Phys. Lett. B430, 349 (1998), hep-ph/9803389

[5] J. Bartels, D. Colferai, G.P. Vacca, Eur. Phys. J. C24, 83 (2002), hep-ph/0112283

[6] J. Bartels, D. Colferai, G.P. Vacca, Eur. Phys. J. C29, 235 (2003), hep-ph/0206290

[7] F. Caporale, D. Y. Ivanov, B. Murdaca, A. Papa and A. Perri, JHEP 1202 (2012) 101, hep-ph/1112.3752
Figure 5: Asymmetric configuration. Variation of $\langle \cos \varphi \rangle$ and $\langle \cos 2\varphi \rangle$ as a function of rapidity difference Y at NLL accuracy compared with a fixed order treatment.

[8] V. Khachatryan et al. [CMS Collaboration], JHEP 1608 (2016) 139, hep-ex/1601.06713

[9] D. Colferai, F. Schwennsen, L. Szymanowski, S. Wallon, JHEP 1012, 026 (2010), 1002.1365

[10] B. Ducloué, L. Szymanowski, S. Wallon, JHEP 1305, 096 (2013), 1302.7012

[11] B. Ducloué, L. Szymanowski, S. Wallon, Phys. Rev. Lett. 112, 082003 (2014), 1309.3229

[12] S.J. Brodsky, G.P. Lepage, P.B. Mackenzie, Phys. Rev. D28, 228 (1983)

[13] P. Aurenche, R. Basu, M. Fontannaz, Eur. Phys. J. C57, 681 (2008), 0807.2133

[14] B. Ducloué, L. Szymanowski, S. Wallon, Phys. Lett. B738, 311 (2014), 1407.6693

[15] V. Del Duca, C.R. Schmidt, Phys. Rev. D51, 2150 (1995), hep-ph/9407359
Figure 6: Left panel: Asymmetric configuration. Variation of the ratio $\langle \cos 2\varphi \rangle / \langle \cos \varphi \rangle$ as a function of rapidity difference Y at NLL accuracy compared with a fixed order treatment. Right panel: Variation of the ratio Y_{eff}/Y as a function of jet momentum $k_{J,2}$ for fixed $k_{J,1} = 35 \text{ GeV}$ for $Y = 8$ and $s = 7 \text{ TeV}$ at leading logarithmic (blue) and next-to-leading logarithmic (brown) accuracy.