Engineering spectrally unentangled photon pairs from nonlinear microring resonators through pump manipulation

J. B. Christensen, J. G. Koefoed, K. Rottwitt, and C. J. McKinstrie

1Department of Photonics Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.

The future of integrated quantum photonics relies heavily on the ability to engineer refined methods for preparing the quantum states needed to implement various quantum protocols. An important example of such states are quantum-correlated photon pairs, which can be efficiently generated using spontaneous nonlinear processes in integrated microring-resonator structures. In this work, we propose a method for generating spectrally unentangled photon pairs from a standard microring resonator. The method utilizes interference between a primary and a delayed secondary pump pulse to effectively increase the pump spectral width inside the cavity. This enables on-chip generation of heralded single photons with state purities in excess of 99% without spectral filtering.

Introduction.—The integration of photonics functionalities on chip renders possible a wide range of potential applications such as signal routing [1], small-scale low-threshold lasers [2], optical interconnects [3] and sensing [4]. A vital photonic-chip component is the microring resonator (MRR), which is a photonic waveguide folded onto itself and sidecoupled to one or multiple accompanying bus waveguides. MRRs have been demonstrated to enable drop-filtering capabilities, biochemical-sensing, and frequency-comb generation, and have been fabricated on a wide variety of material platforms including silicon [5], lithium niobate [6], aluminum gallium arsenide [7], and silicon nitride [8].

In recent years, MRRs have also become a hot research topic in the context of integrated quantum photonics [9–19]. Material platforms such as silicon exhibit a strong third-order nonlinearity, which, together with the resonantly enhanced fields inside the MRR, offer a scalable and energy-efficient method for generating quantum-correlated photon pairs through spontaneous four-wave mixing (SFWM) [20]. In SFWM, two pump photons at a resonance of the microring are converted into a signal and an idler photon in symmetrically surrounding resonances, obeying energy conservation. Interestingly, the photon pair can be coherently distributed over multiple resonances, which has stimulated work on quantum frequency combs for high-dimensional quantum information processing in the frequency-mode basis [21]. Multiple groups have recently demonstrated coherent processing of such high-dimensional frequency-bin entangled quantum states [22, 23].

Photon pairs originating from a single pair of microring resonances may exhibit either weak or strong spectral correlation depending on the quality factor of the resonator and the duration of the pump pulse used for excitation [24]. It is often desired to generate the photon pairs such that there is no spectral correlation between paired resonances. This feature enables both high-visibility information processing of quantum frequency combs and facilitates quantum interference between single photons heralded from different photon-pair sources. Notably, such quantum interference has recently been demonstrated using heralded single photons from two silicon MRRs [25, 26]. However, even with a broadband pump, the visibility of quantum interference between heralded photons from different MRRs is currently bounded to values below ∼92% without narrow spectral filtering [24]. Such visibility values ultimately prevents upscaling of quantum optics experiments and applications based on quantum interference. A recent proposal based on interferometrically coupling the MRR [28], permits a broadening of the pump resonance relative to the sideband resonances, nearly eliminating spectral correlations [27]. However, such interferometric coupling complicates the MRR structure, and has limited use for quantum-frequency-comb generation, which requires many identical sideband resonances.

In this Letter, we propose an alternative method for generating spectrally unentangled photon pairs. Our scheme works for standard MRRs and relies only on pumping the ring with a superposition of two phase-shifted and temporally displaced Gaussian pulses. We show that this enables a broader in-resonator pump spectrum, that increases the heralded single-photon purity beyond the usual 92% bound.

Theory and model.—Third-order nonlinear MRRs driven on resonance by a coherent pump (p) enables growth of quantum-correlated signal (s) and idler (i) fields in the surrounding resonances, with angular frequencies constrained by 2ωp = ωs + ωi. While pairs of so-called ‘twin beams’ may appear in multiple resonances symmetrically around the pump resonance, we limit ourselves to considering only a single signal-idler pair, and note that the extension to multiple resonances is possible [24]. Furthermore, we consider the case where the pump is spectrally overlapping with only a single resonance, which we shall refer to as the pump resonance. Consequently, we are in the non-transient regime, in which the pump-pulse duration is much longer than the round-trip time of the MRR.

For low pump powers, only single pairs of signal and
In the context of resonator-based sources of photon pairs using SFWM, the JSA takes the form (omitting a proportionality factor unimportant for our analysis) [24]

\[A(\omega_1, \omega_s) \propto F_p(\omega_1 + \omega_s) l_i(\omega_1) l_s(\omega_s), \]

in which \(F_p \) is the convolution

\[F_p(\omega) = \int d\omega' \alpha_p(\omega - \omega') l_j(\omega, \omega') \alpha_p(\omega', l_p(\omega'), \]

where the Lorentzian factor \(l_j(\omega) = |\omega_{j0}/(2Q_j) + i\omega|^{-1} \). Here, \(\omega_{j0} \) and \(Q_j \) are the center frequency and the loaded quality factor of the \(j \)th resonance, respectively. Moreover, \(\alpha_p \) is the spectral envelope of the pump pulse prior to coupling into the MRR, and, as for the resonance linewidths \(l_j \), the argument \(\omega \) represents an angular frequency relative to \(\omega_{j0} \).

As seen from Eq. (4), the spectral correlation in the JSA is solely contained in \(F_p(\omega_1 + \omega_s) \). Therefore, if \(F_p \) varies slowly in comparison to \(l_{j\alpha} \), the JSA is nearly factorable. However, by virtue of Eq. (5), \(F_p \) is itself spectrally limited by its corresponding Lorentzian resonance \(l_p \) prohibiting an arbitrary spectral width for a Gaussian input pulse. This imposes an upper limit of \(P \approx 0.92 \) for a Gaussian-shaped pump, which is spectrally much broader than the corresponding resonance linewidth [24]. However, consider instead an incident pump spectrum of the form \(\alpha_p^{(\text{tar})}(\omega) = l_p^{-1}(\omega) \exp(-\omega^2/2\sigma^2) \). In this case, we obtain \(F_p(\omega) \propto \exp(-\omega^2/4\sigma^2) \), which results in a factorable JSA for \(\sigma \gg \omega_p/Q_p = \Omega \). We therefore refer to this pump spectrum as the ‘target’ spectrum.

An approximation to the ‘target’ spectrum is attained by superimposing two Gaussian pulses having a relative phase shift of \(\pi \). Such a dual-pulse superposition is expressed by the spectral form

\[\alpha_p(\omega) = \sqrt{\eta} - \exp(-i\Delta\tau\omega) \sqrt{1-\eta} \exp\left(-\frac{\tau^2}{2\sigma^2}\right), \]

where \(\tau_p \) is the (common) pulse duration, \(\Delta\tau \) is the inter-pulse temporal separation, and \(\eta \) is the relative pulse weight. To see that such a dual-pulse superposition provides an excellent qualitative approximation (for certain values of \(\eta, \Delta\tau \), and \(\tau_p \)) to the target pump spectrum, Figs. 1(a) and (b) illustrate the close resemblance, in both absolute value and phase, obtained for the parameters \(\eta = 0.55, \tau_p \Omega = 0.1, \Delta\tau \Omega = 0.2 \), and \(\sigma\tau_p = 1 \). The spectra are significantly broader than the corresponding resonance linewidth, and they both exhibit a spectral dip coinciding with the resonance. The effect of this is seen in Fig. 1(c) which shows the in-resonator pump field \(A_p(\omega) = \alpha_p(\omega) l_p(\omega) \) for the single-pulse case \(\eta = 1 \) in
Eq. (6) and for the dual-pulse case parametrized as in Figs. 1(a) and (b) (here, both spectra are normalized with respect to their respective in-resonator pulse energies). Whereas the single-pulse spectrum is limited by the resonator, the dual-pulse spectrum is much broader than the corresponding resonance linewidth. This broadening effect is perhaps intuitively easier to understand from a time-domain argument. As the delayed pulse encounters the coupling region between the bus waveguide and the MRR, it interferes with part of the early pulse still inside the resonator. Due to the relative phase shift of π between the pulses, this interference is destructive into the resonator and constructive into the bus channel waveguide. Thus, rather than being limited by the resonator lifetime, pump light can be coupled in and subsequently out of the resonator on a time scale comparable to Δτ. This is illustrated in Fig. 1(d) showing the stark contrast between an exponential decay and an interferometrically-induced outcoupling. The shorter lifetime effectively amounts to a smaller resonator quality factor for the pump resonance, and hence a broader pump spectrum inside the resonator, as was already shown in Fig. 1(c).

Results.—Using Eqs. (4)–(6), we now demonstrate that the dual-pulse superposition can be used to eliminate the spectral correlation between the signal and idler photons. Figures 2(a) and (b) illustrate normalized joint spectral intensities (JSI), given as |A(ωs,ωi)|², for the single- and dual-pulse case, respectively, and using the same parameters as for Fig. 1. Even though the pump pulse is spectrally much broader than the resonance linewidth, the JSI obtained in the single-pulse case exhibits anti-correlation between the relative signal- and idler frequencies. As a result of this anti-correlation, the heralded single-photon purity, which is calculated using Eq. (3) and displayed in the inset, is near the asymptotic limit of 0.92 for the single-pump case. In contrast, the JSI for the dual-pulse case displays no apparent correlation between the relative signal- and idler frequencies, and shows an improvement to a near-unit purity.

Figure 2 demonstrates the advantage of our dual-pulse scheme for a particular parameter set (η, Δτ) from Eq. (6). In the following, we investigate how the purity depends on these two parameters. Figure 3 shows P(η, Δτ) for the case of τpΩ = 1/5. We note that it is qualitatively similar for other values of τpΩ, and that the purity is mirror symmetric in the sense that P(η, Δτ) = P(1 − η, −Δτ) as is evident from Eq. (6). Promisingly, a large subset of the (η, Δτ)-parameter space results in P > 0.92, which is an improvement in comparison to the single-pump case recovered in the extremes η = 0 or η = 1. Furthermore, Fig. 3 reveals a large area in the (η, Δτ)-parameter space for which P > 0.99. Such robustness is vital to the experimental feasibility of the scheme.

The increase in purity allowed by our dual-pulse scheme, comes at the cost of having less pump power in the resonator, and hence a lower generation rate R. This dependence is illustrated by the contours in Fig. 3, which represent different generation rates R relative to the single-pump case, for which we denote the rate R0. These contours show how the generation rate increases as we move away from the point (η = 1/2, Δτ = 0), for which R = 0 [see Eq. (6)]. In practice, given an MRR with quality factor Q and a laser-pulse duration τp, the purity should be optimized under some constraint on the desired generation rate R. Figure 4 shows the maximal purity as a function of τp under different generation-rate constraints. The bottom (blue) curve shows the single-pulse case, which saturates at 0.92 for pump pulses that are spectrally much broader than the resonance linewidth. For each value of τp, we denote the corresponding generation rate R0, permitting us to evaluate the penalty in generation rate when using the dual-pulse scheme. The remaining curves were obtained by numerically maximizing P(η, Δτ) (see Fig. 3) subject to the

FIG. 2. Normalized joint spectral intensity for (a) the single-pulse case, and (b) the dual-pulse case. Axes are normalized with respect to the resonance linewidth Ω. For parameters, see text.

FIG. 3. Purity P, as a function of the dual-pulse splitting ratio η and temporal separation Δτ, in the case of τpΩ = 1/5.
The developed method requires an input pump spectrum attainable by using two pulses which are slightly separated in time with a \(\pi \)-relative phase shift. Such a pump configuration enables a broadened in-resonator pump spectrum, which is necessary for completely eliminating signal-idler spectral correlations. We further show that the proposed scheme is highly robust with respect to realistic experimental parameter uncertainties, making it a promising candidate for future on-chip implementation of high-purity heralded single photons.

ACKNOWLEDGMENTS

The authors were supported by: DFF Sapere Aude Adv. Grant NANO-SPECs; DFF (Grant No. 4184-00433); and the DNRF Research Centre of Excellence, SPOC (ref. DNRF123).

[1] B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, IEEE Photonics Technol. Lett. 20, 767 (2008).
[2] S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, et al., Nat. Photonics 10, 307 (2016).
[3] D. A. Miller, Proceedings of the IEEE 97, 1166 (2009).
[4] K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, Opt. Express 15, 7610 (2007).
[5] W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, Laser Photon. Rev. 6, 47 (2012).
[6] A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, Nat. Photonics 1, 407 (2007).
[7] M. Pu, L. Ottaviano, E. Semenova, and K. Yvind, Optica 3, 823 (2016).
[8] A. Gondarenko, J. S. Levy, and M. Lipson, Opt. Express 17, 11366 (2009).
[9] A. Politi, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, IEEE J. Sel. Top. Quantum Electron. 15, 1673 (2009).
[10] J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, Nat. Commun. 6 (2015).
[11] N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, Phys. Rev. X 4, 041047 (2014).
[12] A. Dutt, K. Luke, S. Manipatruni, A. L. Gaeta, P. Nussenzveig, and M. Lipson, Phys. Rev. Applied 3, 044005 (2015).
[13] C. Reimer, L. Caspani, M. Clerici, M. Ferrera, M. Kues, M. Peccianti, A. Pasquazi, L. Razzari, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, Opt. Express 22, 6535 (2014).
[14] S. F. Preble, M. L. Fanto, J. A. Steidle, C. C. Tison, G. A. Howland, Z. Wang, and P. M. Alsing, Phys. Rev. Applied 4, 021001 (2015).
[15] D. Grassani, S. Azzini, M. Liscidini, M. Galli, M. J. Strain, M. Sorel, J. E. Sipe, and D. Bajoni, Optica 2, 88 (2015).
[16] Z. Vernon and J. Sipe, Phys. Rev. A 91, 053802 (2015).
[17] X. Guo, C.-L. Zou, H. Jung, and H. X. Tang, Phys. Rev. Lett 117, 123902 (2016).
[18] J. W. Silverstone, D. Bonneau, J. L. O’Brien, and M. G. Thompson, IEEE J. Sel. Top. Quantum Electron. 22, 390 (2016).
[19] P. Roztocki, M. Kues, C. Reimer, B. Wetzel, S. Sciara, Y. Zhang, A. Cino, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, Opt. Express 25, 18940 (2017).
[20] S. Clemmen, K. P. Huy, W. Bogaerts, R. G. Baets, P. Emplit, and S. Massar, Opt. Express 17, 16558 (2009).
[21] C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, Science 351, 1176 (2016).
[22] M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, et al., Nature 546, 622 (2017).
[23] P. Imany, J. A. Jaramillo-Villegas, O. D. Odele, K. Han, D. E. Leaird, M. Qi, and A. M. Weiner, ArXiv e-prints (2017), arXiv:1707.02276 [quant-ph].
[24] L. G. Helt, Z. Yang, M. Liscidini, and J. E. Sipe, Opt. Lett. 35, 3006 (2010).
[25] I. I. Faruque, G. F. Sinclair, D. Bonneau, J. G. Rarity, and M. G. Thompson, ArXiv e-prints (2017), arXiv:1705.01029 [quant-ph].
[26] I. I. Faruque, D. Bonneau, G. F. Sinclair, and M. G. Thompson, in Conference on Lasers and Electro-Optics (Optical Society of America, 2017) p. JTh3E.3.
[27] Z. Vernon, M. Menotti, C. C. Tison, J. A. Steidle, M. L. Fanto, P. M. Thomas, S. F. Preble, A. M. Smith, P. M. Alsing, M. Liscidini, and J. E. Sipe, Opt. Lett. 42, 3638 (2017).
[28] C. C. Tison, J. A. Steidle, M. L. Fanto, Z. Wang, N. A. Mogent, A. Rizzo, S. F. Preble, and P. M. Alsing, ArXiv e-prints (2017), arXiv:1703.08368 [quant-ph].
[29] A. B. U’Ren, C. Silberhorn, R. Erdmann, K. Banaszek, W. P. Grice, I. A. Walmsley, and M. G. Raymer, Laser Phys. 15, 146 (2005).
[30] M. Liscidini and J. Sipe, Phys. Rev. Lett. 111, 193602 (2013).
[31] D. Grassani, A. Simbula, S. Pirotta, M. Galli, M. Menotti, N. C. Harris, T. Baehr-Jones, M. Hochberg, C. Galland, M. Liscidini, et al., Sci. Rep. 6, 23564 (2016).