Stable Production of Transgenic Pepper Plants Mediated by Agrobacterium tumefaciens

Moon Kyung Ko and Hyunchul Soh
Kumho Life & Environmental Science Laboratory (KLESU), Chonnam National University, 1 Oryong-dong, Buk-gu, Gwangju 500-712, Republic of Korea

Kyung-Moon Kim and Young Soon Kim
Kumho Life & Environmental Science Laboratory (KLESU), Chonnam National University, 1 Oryong-dong, Buk-gu, Gwangju 500-712, Republic of Korea; and Agricultural Plant Stress Research Center (APSRC), Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwangju 500-757, Republic of Korea

Kyunghoan Im
Department of Biology, University of Incheon, 177 Dohwa-dong, Nam-gu, Incheon 402-749, Republic of Korea

Additional index words. Agrobacterium-mediated, cotyledon, GUS, genetic stability, progeny

Abstract. The aim of this study was to establish a stable transformation method for hot pepper using the hygromycin phosphotransferase (hpt)/hygromycin selection strategy. Explants from aseptic pepper seedlings were inoculated with Agrobacterium tumefaciens carrying pCAMBIA1301. A number of calli were developed on the medium containing hygromycin to discriminate the induction of “false-positive buds,” and then shoots were successfully regenerated from the hygromycin-resistant calli. Southern and Northern hybridization analysis indicated that the hpt gene was integrated and expressed in the transgenic pepper plants (T₀) and transmitted to the progeny (T₁) without genetic modification. Most T₁ progenies derived from self-pollination revealed a 3:1 segregation ratio for hygromycin resistance, indicating that one copy of the T-DNA was integrated into the respective transgenic lines. Both uidA and hpt genes were stably expressed in the T₁ generation and coherinated in the progenies. Finally, homozygous progenies were identified in the T₁ generation of the transgenic peppers, and the homozygous state was maintained in all progenies tested (T₂). The results show the reliability and stability of the hpt/hygromycin selection protocol for pepper transformation.

Peppers are important horticultural crops worldwide, and a hot pepper is cultivated extensively in Northeast Asia. Agronomically important traits have been introduced into the pepper by conventional breeding, but the application is currently limited by the lack of genetic resources or by sexual incompatibility between species. Genetic transformation of the plant has become an important alternative for both basic and commercial plant breeding programs. However, genetic engineering of hot pepper has been hindered by the difficulty in transforming pepper plants. Only a few papers on Agrobacterium-mediated transformation systems have been published (Cai et al., 2002; Lee et al., 2004; Shin et al., 2002; Zhu et al., 1996), and there have been few reports on the reliable inheritance of transformed genes. Therefore, development of more efficient procedures for Agrobacterium-mediated transformation could facilitate routine production of transgenic pepper lines.

In relation to tissue culture of pepper, initial efforts were concentrated on antherogenesis and adventitious regeneration through organogenesis (Dumas de Vaulx et al., 1981; Ebida and Hu, 1993; Phillips and Hubstenberger, 1985). The somatic embryogenesis system was also used for in vitro regeneration in peppers but failed to develop further in some Capsicum varieties (Binzel et al., 1996; Steinitz et al., 2003). In organogenesis, highly morphogenic tissues from seedlings exhibit a higher bud induction response, but shoot elongation was often problematic in whole-plant regeneration (Gunay and Rao, 1978). Multiple shoots could develop directly from the explant surface or indirectly through callus derived from explant tissues (Agrawal et al., 1989). However, direct shoots were often laterally fused into leaf-like structures rather than organized into a shoot bud so that the structure was unable to elongate into a normal shoot (Liu et al., 1990; Wolf et al., 2001). Lee et al. (2004) reported that none of the regenerants from direct shooting turned out to be true transgenic plants. In indirect regeneration, shoot development from callus tissues has rarely occurred. So, despite numerous reports on tissue culture, plant regeneration from cultured pepper explants has been hampered, especially in the genetic engineering of pepper.

In transforming the pepper plant, the use of a suitable selectable marker is very important for the efficient selection of transformed event. The neomycin phosphotransferase II (nptII) gene has been previously used as a selection marker for pepper transformation (Cai et al., 2003; Zhu et al., 1996). However, pepper explants show some intrinsic resistance to kanamycin, as shown in some other crops (Mihalka et al., 2000). This causes poor selection of transformed cells, which results in extremely low transformation efficiency. Therefore, an alternative strategy for strict selection of transformed pepper cells is needed to avoid the growth of untransformed escapes. The hygromycin phosphotransferase (hpt) gene has been used in crop transformation as a marker to allow stringent selection of the transformed event (Van den Elzen et al., 1985). Thus, in the present study, the reliability of the use of hygromycin as a selection agent was examined and assessed for its efficacy in pepper transformation.

Once transgenic plants have been established, the transgenes should be stably integrated and expressed over generations. However, the expression level and patterns of transgene inheritance vary widely among transformed plants. Factors responsible for transgene instability include the site of integration in the genome, the transgene copy number, transgene rearrangement, transformation system (Agrobacterium-mediated, microprojectile bombardment, or PEG, and so on), the selection strategy, and the plant tissue culture system (Birch, 1997; Walden and Wingender, 1995).

In the present study, we used the hpt gene in pepper transformation as a selectable marker for the first time. Fertile transgenic plants were regenerated from hygromycin-resistant callus transformed by Agrobacterium-mediated method. Gene expression and stable inheritance of hpt and uidA genes were also analyzed in advanced generations of transgenic progenies.

Materials and Methods

Plant material. Seeds of a hot pepper (Capsicum annuum L. cv. Nockkwang) were obtained from a commercial source (Heung-gong Seed Co. Ltd., Ansung, Korea). The seeds were surface-sterilized in 70% EtOH
was homogenized in 1 mL extraction buffer containing 50 mM NaPO₄ (pH 7.0), 10 µM β-mercaptoethanol, 10 mM EDTA, 0.1% sarcosyl, and 0.1% Triton X-100. Five microliters of supernantant was reacted in the extraction buffer containing 1 mM of 4-methyl-β-D-unibelliferyl glucuronic acid. The enzymatic reaction was measured by a fluorometer TD-700 (Turner Designs, Sunnyvale, CA) with excitation at 365 nm and emission at 455 nm. The concentration of protein was determined by the Bradford method (Bradford, 1976).

Results and Discussion

Selection of selectable marker gene and plant explant. To find a suitable selectable marker gene/agent for pepper transformation, the regenerability of cotyledons was compared on medium containing various concentrations of kanamycin and hygromycin (Table 1). The explants were highly resistant to kanamycin; even 150 mg L⁻¹ did not inhibit callus induction, and, at 100 mg L⁻¹ kanamycin, over 80% of cotyledonal explants developed shoot buds. In contrast, the explants were highly sensitive to hygromycin with complete inhibition of callus induction and bud regeneration at 10 mg L⁻¹ and 5 mg L⁻¹, respectively.

Several crops are known to be resistant to kanamycin so the spI1/kanamycin system is not applicable for the selection of the pepper explants. A 100 mg of plant tissue

Table 1. Determination of antibiotic sensitivity on the growth and shoot development of pepper explants on various concentration of antibiotics.

Kanamycin (mg L⁻¹)	Cytodogen (%)	Hypocotyl (%)
0	25 (100)	25 (100)
50	23 (92)	21 (84)
100	22 (88)	14 (56)
150	12 (48)	7 (28)
200	0 (0)	0 (0)
250	0 (0)	0 (0)

Hygromycin (mg L⁻¹)	Cotyledogen (%)	Hypocotyl (%)
0	25 (100)	25 (100)
5	21 (84)	17 (68)
10	0 (0)	0 (0)
20	0 (0)	0 (0)
50	0 (0)	0 (0)

*Twenty-five explants were tested on MS medium supplemented with indoleacetic acid (0.2 mg L⁻¹) and BAP (2.0 mg L⁻¹) in each experiment.

*Number of explants survived (%).

*Number of explants regenerated (%).
transformed cells. In pepper, despite the report that the system resulted in an unacceptably high proportion of escapes (Mihalka et al., 2000), the \textit{nptII} gene has been mainly used as a selection marker to screen transgenic pepper cells (Lee et al., 2004; Li et al., 2003; Ochoa-Alejo and Ramirez-Malagon., 2001). Our results also show that pepper cells exhibit an intrinsic resistance to kanamycin. Thus, application of kanamycin might not be enough to screen pepper cells carrying the \textit{nptII} gene during the transformation procedure.

The \textit{hpt}/hygromycin system has allowed stringent selection of transformed events in cassava (Zhang et al., 2000), sweetpotato (Kimura et al., 2001), cotton (Rajasekaran et al., 2000), and cucumber (Nishibayashi et al., 1996). Therefore, the \textit{hpt}/hygromycin selection strategy was chosen for pepper transformation in a further experiment. On the basis of the present study, 20 mg L\(^{-1}\) hygromycin was used at the callus induction stage and 10 mg L\(^{-1}\) at the regeneration stage, respectively, to select transformed callus and regenerate transgenic shoots.

Transformation of pepper explants. Cotyledonary explants were infected with \textit{Agrobacterium} cells harboring pCAMBIA1301 (Fig. 1A). After three to four subcultures of explants onto callus induction medium containing hygromycin, the hygromycin-resistant calli were clearly identified (Fig. 1B) and the rate of callus induction was \(\approx 20\%\). The explant of the wild type was highly sensitive to hygromycin so that it was necrotized and finally died within three continuous subcultures. Only green calli survived on hygromycin were transferred to the regeneration medium containing hygromycin and within three to four continuous subcultures, adventitious buds developed from green sectors of the calli (Fig. 1D). The hygromycin-resistant shoots were transferred to rooting medium; 1 month later in the rooting medium, nine independent plants were produced (Fig. 1E).

In the greenhouse, these plants were phenotypically normal (Fig. 1F) and seeds were obtained by self-pollination. The time required from infection to transfer of plants to the green house was 5 to 7 months. With nine transgenic plants from \(\approx 1500\) infected explants, the transformation frequency was \(\approx 0.6\%\). Although the timeframe was similar to that reported by Lee et al. (2004), this transformation frequency with \textit{hpt}/hygromycin is higher than the \(0.03\%\) to \(0.19\%\) reported for \textit{nptII}/kanamycin in that experiment. We found that the higher transformation frequency is attributable to the use of a stringent selection system resulting in the growth of transformed cells from the early stage. Thus, a pepper transformation system using the \textit{hpt}/hygromycin selection strategy has the potential to allow fewer escapes and require less effort in terms of time, cost, and labor. Further studies are under progress to increase transformation efficiency of pepper in combination with the \textit{hpt}/hygromycin selection system. Development of an advanced propagation technology such as somatic embryogenesis will assist in more efficient genetic transformation of hot pepper for biotechnological purpose.

\textit{GUS} expression in the transgenic peppers. GUS activity was measured histochemically as well as quantitatively in the primary transgenic pepper plants. Histochemical analysis showed that the \textit{uidA} gene was constitutively expressed in the primary transgenic event (Fig. 1C) and in all organs, including leaves, floral organ, root, and fruit at different levels (Fig. 2A). This was also supported by fluorometric GUS assays that measured quantitatively in flower, shoot

Fig. 1. Steps for the development of transgenic pepper plants. (A) Cotyledonary explants cocultivated with \textit{A. tumefaciens} containing pCAMBIA 1301; (B) development of calli from the cutting edge of the infected explant on medium containing hygromycin \((20 \text{ mg L}^{-1})\); (C) localization of histochemical GUS activity in developing calli and regenerated shoot; (D) shoot regenerated from the callus; (E) rooting of the regenerated pepper shoot; (F) pepper plants acclimated in pots.

Fig. 2. GUS activity in the primary transgenic peppers. Quantitative assays for GUS-specific activity conducted (A) in situ or (B) in extracts of various tissues from a transgenic pepper that carry the \textit{uidA} reporter gene. (a) Flower; (b) plantlet with root; (c) leaves; (d) fruit.
apex, leaves, stem, and root (Fig. 2B). The results indicate that the uidA gene was stably expressed in the transgenic pepper.

To observe the GUS activity in the progenies, 21 seeds obtained from a T0 transgenic pepper (no. 2) and the wild type were germinated on MS medium containing 20 mg L\(^{-1}\) hygromycin. After 2 weeks, all seedlings were evaluated and stained in X-gluc solution for GUS activity. In the transgenic line, 15 of 21 seedlings exhibited resistance to the hygromycin as well as GUS activity, whereas six seedlings did not show either hygromycin resistance or GUS activity (Fig. 3). Wild-type seedlings showed severely retarded growth in the selection medium and eventually died. This result represented that both uidA and hpt genes are transmitted to the next generation and expressed in the progeny.

Segregation analysis of transgenic pepper lines. To determine whether the transgenes were stably inherited in the next generation, self-pollinated seeds harvested from nine primary transgenic pepper lines were evaluated for the resistance to 20 mg L\(^{-1}\) hygromycin (Table 2). Hygromycin-resistant and susceptible seedlings were clearly identified within 1 week. A segregation ratio of 3:1 was observed in seven of the nine lines, representing a single functional hpt gene locus in the pepper genome. \(\chi^2\) analysis indicated a 3:1 segregation for the hpt gene, a ratio that suggested Mendelian segregation of a single dominant gene. The results indicate that transgenic pepper plants produced by Agrobacterium-mediated transformation were genetically and phenotypically stable in advanced generations. However, a non-Mendelian inheritance pattern was also observed in lines 6 and 7, of which the segregation ratio between resistant and sensitive was 10:54 and 82:12, respectively. For line 6, seed development might not be uniform or the introduced transgene might not be functionally expressed. Although we did not carry out Southern blot analysis with line 7, the introduced transgene might be integrated at more than two transgenic loci in the pepper genome. However, this phenomenon is commonly observed in plant transformation research (Christou et al., 1989; De Block et al., 1984).

Molecular characterization of transgenic plants. Stable integration of the transgenes was further investigated in the primary and T1 progeny of transgenic peppers. Southern blot analysis was conducted with the genomic DNA isolated from the primary transgenic lines 2 and 3, their progenies, and the wild type as a negative control. The genomic DNAs were digested with HindIII and hybridized with a probe consisting of the hpt gene. DNA from the wild-type (nontransformed) plant showed no hybridization signal to the probe DNA (Fig. 4A). Each primary transgenic line showed a single band with a different band pattern, indicating that these two lines represented independent events. Their respective T1 progeny showed a single band with the same band mobility as the progeny of the wild type, indicating that the introduced transgene had been successfully transmitted to the progeny without modification. Because the T-DNA of pCAMBIA1301 has a unique dIII site, the result also represents that a single copy of the transgene was integrated into the pepper genome.

To confirm that the introduced transgene was stably expressed in the transgenic peppers, Northern blot analysis was carried out with the primary transgenic lines 2 and 3, their progeny, and the wild type. The isolated total RNA was hybridized with hpt probe DNA. At the mRNA level, the introduced transgene was transcriptionally expressed in the two primary transgenic lines as well as their T1 progenies, whereas no signal was detected in the wild type (Fig. 4B). This indicates that the introduced transgenes were stably expressed in the progeny. In general, a single copy of T-DNA insertion results in high levels of transgene expression, whereas multiple copies of transgene expressions may lead to suppression of the chimeric gene in some cases (Van der Krol et al., 1990).

Inheritance of transgenes in an advanced generation (T2). PCR analysis was performed on the two independent T1 plants and their progenies (Fig. 5). Both the uidA and hpt genes introduced to the pepper genome were revealed in the T1 and T2 generations of transgenic lines 2 and 3, indicating that the transgenes were stably transmitted.

We investigated whether both of the introduced transgenes, hpt and uidA, were expressed in the T2 generation without segregating or silencing (Table 3). Twenty T2 seeds from lines 2 and 3 were germinated on hygromycin-containing medium and the seedlings were transplanted into pots. Leaf discs were incubated in 100 mg L\(^{-1}\) hygromycin to test for hygromycin resistance and in X-gluc for histochemical assay of uidA gene expression. All T2 progenies were functionally resistant to hygromycin, whereas nontransgenic plants were

Table 2. Segregation of hygromycin resistance in the progeny of primary transgenic peppers.

Line	No. germinated	Resistant (%)	Sensitive (%)	\(\chi^2\)	Ratio
WT	60	0 (0.0)	60 (100)		
1	82	64 (78.0)	18 (22.0)	0.40	3:1
2	99	76 (76.7)	23 (23.2)	0.01	3:1
3	111	81 (72.9)	30 (27.1)	0.24	3:1
4	62	48 (77.4)	14 (22.6)	0.19	3:1
5	62	50 (80.6)	12 (19.4)	1.05	3:1
6	64	10 (15.6)	54 (84.4)	120.0	—
7	94	82 (87.2)	12 (12.8)	7.5	3:1
8	62	48 (77.4)	14 (22.6)	0.19	3:1
9	80	58 (72.5)	22 (27.5)	0.26	3:1

*Seeds were germinated on MS medium containing 20 mg L\(^{-1}\) hygromycin; germination rate >97%.
*Seedlings [no. (%)] survived on medium containing hygromycin (20 mg L\(^{-1}\)).
*Seedlings [no. (%)] sensitive on medium containing hygromycin (20 mg L\(^{-1}\)).
*Significantly different at the 5% level.
*Ratio of resistant versus sensitive seedlings on hygromycin.

Fig. 4. Southern and Northern blot analyses. (A) Southern blot analysis of two T0 transgenic lines and their T1 progenies. DNA samples from two transgenic lines and an untransformed pepper plant (WT) were digested with HindIII, and the resulting fragments were resolved by electrophoresis and transferred to a membrane. The membrane was hybridized with a \(^{32}\)P-labeled probe DNA corresponding with the hpt coding region. (B) Northern blot analysis of two transgenic pepper lines. WT, wild type; lane 2, line 2 plants (T0); lanes 3–6, T1 progenies from line 2; lane 7, line 3 plants (T0); lanes 8–11, T1 progenies from line 3. The membrane was hybridized with a \(^{32}\)P-labeled hpt.
bleached or necrotized. In the histochemical GUS assay, leaf samples from all T2 progenies, which had hygromycin resistance in the progenies.

To examine the reliability of hpt/hygromycin system in pepper transformation, the sensitivity of pepper explants to hygromycin was compared in transgenic and nontransgenic plants by measuring fresh weight of hypocotyl explants (Fig. 6). With an increasing hygromycin concentration, the fresh weight of hypocotyl explants was dramatically reduced in wild type. Although untransformed pepper cells were highly sensitive to hygromycin, calli with developing buds were induced in transgenic explants. At over 10 mg L⁻¹ hygromycin, adventitious healthy shoots were produced only in hypocotyl explants from transgenic plants.

In conclusion, we report the development of a reliable protocol for production of transgenic pepper plants with the hpt/hygromycin selection strategy. The selection strategy is critical for improving transformation efficiency of pepper. Although the nptII gene was successfully implemented in Agrobacterium-mediated transformation, the nptII/kanamycin selection strategy requires an extended culture in vitro and labor/cost to screen the escapes of nontransformed events. The hpt/hygromycin selection system allows stringent selection of transgenic pepper plants to eliminate or reduce the escape of untransformed or silenced transgenic pepper plants. Using hpt/hygromycin selection strategy, we confirmed stable inheritance of the introduced transgenes into subsequent generations and stable expression of the transgenes in the progenies. Therefore, the hpt marker system described in this study demonstrates its use for an effective transformation of pepper.

Literature Cited

Agrawal, S., N. Chandra, and S.L. Kothari. 1989. Plant regeneration in tissue cultures of pepper (Capsicum annum L. cv Mathania). Plant Cell Tiss. Org. Cult. 16:47–55.

Binzel, M.L., N. Sankhla, S. Joshi, and D. Sankhla. 1996. Induction of somatic embryogenesis and plant regeneration in pepper (Capsicum annum L.). Plant Cell Rep. 15:536–540.

Birch, R.G. 1997. Plant transformation: Problems and strategies for practical application. Ann. Rev. Plant Physiol. Plant Mol. Biol. 48:297–326.

Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.

Cai, W.Q., R.-X. Fang, H.-S. Shang, X. Wang, F.-L. Zhang, Y.-R. Li, J.-C. Zhang, X.-Y. Cheng, G.-L. Wang, and K.-Q. Mang. 2003. Development of CMV- and TMV-resistant chili pepper: Field performance and biosafety assessment. Mol. Breed. 11:25–35.

Cai, W.Q., R.X. Fang, F.L. Zhang, J.C. Xiang, Z. Chen, G.L. Wang, K.Q. Mang, H.S. Shang, X. Wang, and Y.R. Li. 2002. Virus-resistant chili pepper produced by Agrobacterium species-mediated transformation, p. 563–578. In: Khachatourians, G., A. McHughen, R. Scorza, W.-K. Nip, and Y.H. Hui (eds). Transgenic plants and crops. Marcel Dekker, New York.

Christou, P., W.F. Swain, N.S. Yang, and D.E. McCabe. 1989. Inheritance and expression of foreign genes in transgenic soybean plants. Proc. Natl. Acad. Sci. USA 86:7500–7504.

De Block, M., L. Herrera-Estrella, M. Van Montagu, J. Schell, and P. Zambrayski. 1984. Expression of foreign genes in regenerated plants and their progeny. EMBO J. 3:1631–1689.

Dumas de Vaulx, R., D. Chambronnet, and E. Pochard. 1981. In vitro culture of pepper (Capsicum annum L.) anther: High rate plant production from different genotype by +35°C treatment. Agronomie 1:859–864.

Ebihara, A. and C. Hu. 1993. In vitro morphogenetic responses and plant regeneration from pepper (Capsicum annum L. cv Early California Wonder) seedling explants. Plant Cell Rep. 13:107–110.

Gunay, A.L. and P.S. Rao. 1978. In vitro plant regeneration from hypocotyls and cotyledon explants of red pepper (Capsicum). Plant Sci. Lett. 11:365–372.

Jefferson, R.A. 1987. Assaying chimeric genes in plants: The GUS gene fusion system. Plant Mol. Biol. Rep. 5:387–405.

Kimura, T., M. Otani, T. Noda, O. Ideta, T. Shimada, and A. Saito. 2001. Absence of amylose in sweet potato [Ipomoea batatas (L.) Lam.] following the introduction of granule-bound starch synthase I cDNA. Plant Cell Rep. 20:663–669.

Lee, Y.H., H.S. Kim, J.Y. Kim, M. Jung, Y.S. Park, J.S. Lee, S.H. Choi, N.H. Her, J.H. Lee, N.I. Hyung, C.H. Lee, S.G. Yang, and C.H. Harn. 2004. A new selection method for pepper transformation: Callus-mediated shoot formation. Plant Cell Rep. 23:50–58.

Li, D., K. Zhao, B. Xie, B. Zhang, and K. Luo. 2003. Establishment of a highly efficient transformation system for pepper (Capsicum annum L.). Plant Cell Rep. 21:785–788.

Liu, W., W.A. Parrott, D.F. Hildebrand, G.B. Collins, and E.G. Williams. 1990. Agrobacterium-induced gall formation in bell pepper (Capsicum annum L.) and formation of shoot like structures expressing introduced genes. Plant Cell Rep. 9:360–364.

Table 3. Inheritance and functional activity of transgenes (hpt and uidA) in homozygous transgenic plants.

Line	Homozygositya	Functional activity	PCRb
WT	S	GUSc (+) hpt/uidA	
2-1	NS	R (+)	++
2-1-1	NS	R (+)	++
2-1-2	NS	R (+)	++
2-1-5	NS	R (+)	++
2-1-6	NS	R (+)	++
2-2-2	NS	R (+)	++
2-3-2	NS	R (+)	++
2-3-3	NS	R (+)	++
2-3-8	NS	R (+)	++
2-3-9	NS	R (+)	++
2-3-10	NS	R (+)	++

Table 3 continued...

1Heterogeneity of hygromycin resistance of seedlings on hygromycin (20 mg L⁻¹); NS, no segregation of hygromycin resistance in the progenies.

2Leaf discs tested for the resistance to hygromycin (100 mg L⁻¹) in distilled water; S, sensitive; R, resistant.

3Leaf discs tested for GUS activity by histochemical staining.

4Transgene inheritance in transgenic progenies was investigated by polymerase chain reaction (PCR) with hpt and uidA primer sets.

Fig. 5. Transmission of uidA (upper) and hpt (lower) genes to T2 progenies determined by polymerase chain reaction analysis in two independent transgenic pepper lines. 2-1, T1 transgenic pepper; 2-1-1, 2, 5, 6, T2 transgenic progenies from transgenic line 2-1; 3-2, T1 transgenic pepper; 3-2-2, 3, 8, 9, T2 transgenic progenies from transgenic line 3-2; WT, nontransgenic pepper as a negative control; P, pCAMBIA1301 as a positive control.

Fig. 6. Growth of hypocotyl explants from nontransformed (WT) and transformed (T) peppers carrying the hpt gene on medium containing 0 to 50 mg L⁻¹ hygromycin. (A) Callus and shoot formation. (B) Average of fresh weight of 60 explants after 3 weeks of incubation. The bars indicate se.
Mihalka, V., M. Fari, A. Szasz, E. Balazs, and I. Nagy. 2000. Optimized protocols for efficient regeneration and gene transfer in pepper (Capsicum annuum L.). J. Plant Biotechnol. 2:143–149.

Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol. Plant. 5:473–479.

Nishibayashi, S., H. Kaneko, and T. Hayakawa. 1996. Transformation of cucumber (Cucumis sativus L.) plants using Agrobacterium tumefaciens and regeneration from hypocotyl explants. Plant Cell Rep. 15:809–814.

Ochoa-Alejo, N. and R. Ramirez-Malagon. 2001. In vitro chili pepper biotechnology. In Vitro Cell. Dev. Biol. Plant 37:701–729.

Phillips, G.C. and J.F. Hubstenberger. 1985. Organogenesis in pepper tissue cultures. Plant Cell Tiss. Org. Cult. 4:261–269.

Rajasekaran, K., R.L. Hudspeth, J.W. Cary, D.M. Anderson, and T.E. Cleveland. 2000. High-frequency stable transformation of cotton (Gossypium hirsutum L.) by particle bombardment of embryogenic cell suspension cultures. Plant Cell Rep. 19:539–545.

Shin, R., J.-H. Han, G.-J. Lee, and K.-H. Peak. 2002. The potential use of a viral coat protein gene as a transgene screening marker and multiple virus resistance of pepper plants coexpressing coat proteins of cucumber mosaic virus and tomato mosaic virus. Transgenic Res. 11:215–219.

Steinitz, B., S. Kusek, Y. Tabib, I. Paran, and A. Zelcer. 2003. Pepper (Capsicum annuum L.) regenerants obtained by direct somatic embryogenesis fail to develop a shoot. In Vitro Cell. Dev. Biol. Plant 39:296–303.

Van den Elzen, P., J. Townsend, K.Y. Lee, and J. Bedbrook. 1985. A chimeric hygromycin resistance gene as a selectable marker in plant cells. Plant Mol. Biol. 5:299–302.

Van der Krol, A.R., L.A. Mur, M. Beld, J.N.M. Mol, and A.R. Stuitje. 1990. Flavonoid genes in petunia: Addition of a limited number of gene copies may lead to a suppression of a gene expression. Plant Cell 2:291–299.

Walden, R. and R. Wingender. 1995. Gene-transfer and plant-regeneration techniques. Trend. Biotechnol. 13:324–331.

Wolf, D., T. Matzevitch, B. Steinitz, and A. Zelcer. 2001. Why is it difficult to obtain transgenic pepper plants? Acta Hort. 560:229–234.

Zhang, P., I. Potrykus, and J. Puonti-Kaerlas. 2000. Efficient production of transgenic cassava using negative and positive selection. Transgenic Res. 9:405–415.

Zhu, Y., W. Ou-Yang, Y. Zhang, and Z. Chen. 1996. Transgenic sweet pepper plants from Agrobacterium mediated transformation. Plant Cell Rep. 16:71–75.