Improving the modelling of redshift-space distortions - II. A pairwise velocity model covering large and small scales

Davide Bianchi, Will J. Percival, and Julien Bel

1 Institute of Cosmology & Gravitation, Dennis Scama Building, University of Portsmouth, Portsmouth, PO1 3FX, UK
2 Aix Marseille Univ, Univ Toulon, CNRS, CPT, Marseille, France
3 INAF – Osservatorio Astronomico di Brera, via Emilio Bianchi 46, I-23807 Merate, Italy

ABSTRACT
We develop a model for the redshift-space correlation function, valid for both dark matter particles and halos on scales $> 5h^{-1}$Mpc. In its simplest formulation, the model requires the knowledge of the first three moments of the line-of-sight pairwise velocity distribution plus two well-defined dimensionless parameters. The model is obtained by extending the Gaussian-Gaussianity prescription for the velocity distribution, developed in a previous paper, to a more general concept allowing for local skewness, which is required to match simulations. We compare the model with the well known Gaussian streaming model and the more recent Edgeworth streaming model. Using N-body simulations as a reference, we show that our model gives a precise description of the redshift-space clustering over a wider range of scales. We do not discuss the theoretical prescription for the evaluation of the velocity moments, leaving this topic to further investigation.

Key words: cosmology: large-scale structure of the Universe, dark energy, theory.

1 INTRODUCTION
The large-scale structure (LSS) of the universe is the result of a continuous infall process in which the peculiar velocity flows induced by gravitational instability drive matter towards denser regions, thus amplifying primordial density fluctuations. Peculiar velocities leave a characteristic imprint, known as “redshift space distortions” (RSD, Kaiser 1987), on the galaxy clustering pattern measured by redshift surveys (see Hamilton 1998, for a review). If properly modelled, measurements of RSD provide a powerful way to constrain fundamental cosmological parameters in the ΛCDM paradigm or to search for evidences of deviations from this standard scenario.

The effects of RSD on the observed galaxy correlation function can be summarised as follows. On large scales the dominant contribution is given by the coherent movement of galaxies towards overdense regions, such as clusters, walls and filaments, and away from voids. This “squashes” the iso-correlation contours along the line of sight. As we move to smaller scales, the disordered motion of galaxies inside those formed structures becomes increasingly important, resulting in elongated iso-contours along the line of sight, usually referred to as “fingers of God” (Jackson 1972).

Since the 1987 seminal work by Kaiser, significant efforts have been made to model the redshift-space large-scale profile of the correlation function and its Fourier counterpart, the power spectrum (e.g. Matsubara 2008; Taruya et al. 2010; Reid & White 2011; Seljak & McDonald 2011; Ullmann et al. 2015). The standard approach is to use perturbation theory (PT), to compute the density and velocity field to higher order (see e.g. Bernardeau et al. 2002, for a review).

Less explored is the small-scale behaviour of RSD where the density contrast becomes comparable to unity, causing the breakdown of any perturbative-expansion scheme. As a way around this issue, a few alternative approaches have been suggested, spanning from analytic (e.g. Sheth 1996) to hybrid techniques in which N-body simulations are used to tune fitting functions (e.g. Tinker 2007; Kwan et al. 2012) or as a reference realisation of the redshift-space clustering, in which small departures from the assumed ΛCDM cosmology can be mimicked by varying appropriate halo-occupation-distribution (HOD) parameters (Reid et al. 2014). A good understanding of this small-scale limit is desirable for two main reasons: (i) It is rich in cosmological information, in particular if our goal is to discriminate between different gravity model. Specifically, it has been shown that modified gravity strongly affects the pairwise velocity dispersion on these scales (Fontanot et al. 2013; Hellwing et al. 2014). (ii) The smaller the separation the higher the signal-to-noise ratio and the less the cosmic variance, i.e. smaller statis-
tical error. Thus understanding this process allows us to push measurements of the structure growth effects to smaller scales.

With this work we provide a framework in which these large- and small-scale RSD processes can both be included, so that all available information can be coherently extracted. We start from the “streaming model” (Davis & Peebles 1983; Fisher 1995; Scoccimarro 2004), which describes how the redshift-space correlation function \(\xi_z(s_1, s_2) \) is modified with respect to its isotropic real-space counterpart \(\xi_r(r) \):

\[
1 + \xi_z(s_1, s_2) = \int dr \left[1 + \xi_r(r) \right] \mathcal{P}(r) - s_1 | s_2 | , \tag{1}
\]

where we have ignored wide-angle effects. Here \(r^2 = r_{\perp}^2 + r_{\parallel}^2 \) and \(r_{\perp} = s_{\perp} \). The effect of the velocity flows on the observed clustering is encoded in the pairwise line-of-sight velocity distribution function \(\mathcal{P}(v_{\parallel} | r) = \mathcal{P}(r_{\perp} - s_{\parallel} | r) \), which has a non trivial dependence on the separation \(r \). Clearly, a proper modelling of this PDF is the key ingredient in the description. Starting from this consideration, in Bianchi et al. (2015), hereafter Paper I, we modelled the velocity PDF by introducing the concept of Gaussian Quasiany (GG), in which the overall PDF is interpreted as a superposition of local Gaussian distributions, whose mean and standard deviation are, in turn, jointly distributed according to a bivariate Gaussian. Here we extend that line of research by introducing the more general concept of Gaussian Quasiany (GGG) and making explicit the dependence of the velocity PDF on quantities that can be predicted by theory, namely its first three moments. We do not discuss which theoretical scheme should be preferred for their evaluation, but rather we directly measure these quantities from N-body simulations. Our analysis matches simulations over a large portion of the parameter space, including redshifts from \(z = 0 \) to \(z = 1 \), dark matter (DM) particles, halos with mass down to \(10^{12} h^{-1} M_{\odot} \), and scales down to \(0.1 h^{-1} \text{Mpc} \). For all these configurations, we compare the performance of our model with two different implementations of the streaming model: the well known Gaussian streaming model (GSM), in which a univariate-Gaussian profile is assumed for the velocity PDF (Reid & White 2011); the more recent Edge worth streaming model (ESM, Uhlemann et al. 2015), in which the skewness is added to this simple Gaussian picture by means of an Edgeworth expansion (see e.g. Blinnikov & Moessner 1998). We showed that, under the GGG assumption, a more precise description of the redshift-space clustering is obtained.

The paper is organised as follows. In Sec. 2 we introduce our model. As this work is the second in a series, the derivation we present follows the “historical process” that led us to introduce GGG. In sections 2.1 - 2.4 we first review how to build a model based on GG, introduced in Paper I, and then show the (unexpected) limitations of such approach. In the remainder of Sec. 2 we show how to overcome this issue. Our final model is based on a few assumptions, which are referred as ansatze throughout the manuscript. Given this, the model we are proposing should be considered a functional form for the velocity PDF that, irregardless of its derivation, incorporates all the fundamental features observed in both simulations and galaxy surveys, including exponential tails and skewness. If required this GGG distribution can be exactly shaped into a Gaussian, which means that, by construction, the resulting streaming model is a generalisation of the widely used Gaussian streaming model. Furthermore, we show that this PDF has the nontrivial property of being expressible as a function of its first three moments, thus providing an explicit link to perturbation theory. We believe that such a distribution would have been interesting to be studied even if it were unmotivated from a physical point of view, as sometimes happens in the literature. This is of course not the case with GGG, which is explicitly derived based on considerations on how the overall PDF can be decomposed in local PDFs, with the spirit of keeping only the features of these latter that are relevant for RSD. Using N-body simulations as a reference, in Sec. 3 we compare the performance of our model with that of GSM and ESM. The primary purpose of this comparison is to show that, once the first three moments are given, the remaining degrees of freedom can be effectively absorbed in two numbers, the \(\kappa \) parameters (see Sec. 2.6). Our results are summarised in Sec. 4. Details on how we measure physical quantities from the simulations are reported in the appendices. Also in the appendices we discuss ideas for further developments.

2 MODELLING

2.1 GG distribution

In paper I, we proposed a functional form for the line-of-sight pairwise velocity distribution,

\[
\mathcal{P}(v_{\parallel}) = \int d\mu \; d\sigma \; \mathcal{G}(v_{\parallel} | \mu, \sigma) \; \mathcal{F}(\mu, \sigma) , \tag{2}
\]

where

\[
\mathcal{G}(v_{\parallel} | \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp \left[-\frac{(v_{\parallel} - \mu)^2}{2\sigma^2} \right] , \tag{3}
\]

\[
\mathcal{F}(\mu, \sigma) = \frac{1}{2\pi \sqrt{\det(C)}} \exp \left[-\frac{1}{2} \Delta^2 C^{-1} \right] , \tag{4}
\]

\[
\Delta = \left[\frac{\mu - M_{\mu}}{\sigma - M_{\sigma}} \right] , \quad C = \left[\begin{array}{cc} C_{\mu\mu} & C_{\mu\sigma} \\ C_{\mu\sigma} & C_{\sigma\sigma} \end{array} \right] . \tag{5}
\]

The interpretation of Eq. (2) is straightforward: at any given separation \((s_{\perp}, r)\), the overall velocity distribution can be approximated by a superposition of univariate Gaussians whose mean \(\mu \) and standard deviation \(\sigma \) are, in turn, jointly distributed as a bivariate Gaussian. \(M_{\mu} \) and \(M_{\sigma} \) represent the mean of \(\mu \) and \(\sigma \), respectively, whereas \(C \) is their covariance matrix. We showed in paper I that the simple picture in which these univariate Gaussians represent local velocity distributions gives a good match to N-body simulations. Note that hereafter we write \(\mathcal{P}(v_{\parallel}) = \mathcal{F}(v_{\parallel} | r) \), where the dependence on the separation is omitted for brevity, but still present in our model. Specifically, it is encoded in how the parameters \(M_{\mu} = M_{\mu}(r) \), \(M_{\sigma} = M_{\sigma}(r) \) and \(C = C(r) \) vary with the separation.

Strictly speaking, the above modelling is physically meaningful only if \(M_{\sigma} \gtrsim 3 \sqrt{C_{\sigma\sigma}} \), i.e. only if the whole power of the bivariate Gaussian is limited to the positive \(\sigma \) plane. To ensure that the expression is well behaved for \(M_{\sigma} \to 0 \), we adopt for \(\mathcal{F} \) the normalisation factor \(\sqrt{2\pi\sigma^2} \) rather than
the fundamental properties of P_B moments of P_B.

Comparison between M_B and σ_B, μ_B, can write

$$\mathcal{P}(v_1) = \int_{-\infty}^{+\infty} d\mu \left(\int_{-\infty}^{+\infty} d\sigma \int_{-\infty}^{+\infty} d\sigma' \right)$$

where we have defined

$$\mathcal{B}(\mu, \sigma) \equiv \mathcal{P}(\mu, \sigma)$$

Eq. (6) generalises Eq. (2) in a natural way, such that all the fundamental properties of \mathcal{P} are conserved. In particular the relation between moments of \mathcal{P} and \mathcal{B}, presented in the first column of Tab. 2, remains valid in this more general formulation. Still, it is appropriate to note that the moments of \mathcal{B} differ from those of \mathcal{P}, and they coincide in the limiting case in which $M_{\sigma} > 3\sqrt{C_{\sigma\sigma}}$. See Tab. 1 for the definitions of the moments. In Fig. 1 we show the comparison between \mathcal{B} and \mathcal{B}^\pm for a few selected cuts in μ.

Although the physical meaning of the GG distribution is well described by Eq. (6), it is important to note that μ

\[\mathcal{M}_\sigma = 0 \]
\[\mathcal{M}_\sigma = \sqrt{C_{\sigma\sigma}} \]
\[\mathcal{M}_\sigma = 2\sqrt{C_{\sigma\sigma}} \]
\[\mathcal{M}_\sigma = 3\sqrt{C_{\sigma\sigma}} \]

\(\mathcal{P}(v_1) = \int d\sigma \frac{1}{2\pi\sigma} \exp \left(-\frac{\Sigma_{n=0}^{\infty} \frac{1}{n!} (v_1 - M_\mu)^n}{2\sigma^2} \right) \),

where

\[\sigma^2 = C_{\mu\mu} \sigma^2 + C_{\mu\sigma} C_{\sigma\sigma} - C_{\mu\sigma}^2 \]
\[\sigma \mathcal{M}_\sigma = 0 \]
\[\sigma \mathcal{M}_\sigma = \sqrt{C_{\sigma\sigma}} \]
\[\sigma \mathcal{M}_\sigma = 2\sqrt{C_{\sigma\sigma}} \]
\[\sigma \mathcal{M}_\sigma = 3\sqrt{C_{\sigma\sigma}} \]

This result is particularly useful from a numerical point of view since, for any given set of parameters $(M_\mu, M_\sigma, \mu_\mu, C_{\mu\mu}, C_{\mu\sigma}, C_{\sigma\sigma})$, it allows us to compute \mathcal{P} via a simple, i.e. fast, 1-dimensional integration.

Following standard practice, we define the moment generating function (MGF) as

$$\mathcal{M}(t) = \langle e^{t\mathcal{P}} \rangle = \int dv_1 \langle e^{t\mathcal{P}} \rangle$$

One important property of the MGF is that it allows us to compute the moments iteratively at any order,

$$m^{(n)} = \frac{d^n \mathcal{M}}{dt^n} \bigg|_{t=0}$$

For the GG distribution we get

$$\mathcal{M}(t) = \frac{1}{\sqrt{1 - t^2 C_{\sigma\sigma}}} \exp \left(i t M_\mu + \frac{1}{2} t^2 M_{\sigma}^2 + \Theta(t) \right)$$

where

$$\Theta(t) = \frac{1}{2} \frac{1}{1 - t^2 C_{\sigma\sigma}} \left(M_{\mu}^2 + 2 M_{\mu} M_{\sigma} C_{\mu\sigma} + M_{\sigma}^2 C_{\sigma\sigma} - \ln \left(1 - t^2 C_{\sigma\sigma} \right) \right)$$

Similarly, we can define define the cumulant generating function, $\mathcal{V}(t) = \log(\mathcal{M}(t))$, which, for the GG distribution, takes the form

$$\mathcal{V}(t) = t M_\mu + \frac{1}{2} t^2 M_{\sigma}^2 + \Theta(t) - \frac{1}{2} \ln \left(1 - t^2 C_{\sigma\sigma} \right)$$

In the following we briefly discuss a few cases of interest corresponding to particular combinations of the parameters of the bivariate Gaussian.

(i) If $C_{\sigma\sigma} = C_{\mu\sigma} = 0$ we get

$$\mathcal{M}(t) = \exp \left(i \frac{1}{2} t M_{\sigma}^2 + C_{\mu\mu} \right)$$

which is the MGF of a Gaussian with mean M_μ and variance $M_{\sigma}^2 + C_{\mu\mu}$. In other words, the superposition of fixed-variance Gaussians (i.e. $C_{\sigma\sigma} = 0$) is, in turn, a Gaussian. We now consider the two limiting cases, $C_{\mu\sigma} = 0$ and $M_\sigma = 0$. From a physical point of view, $C_{\mu\sigma} = 0$ corresponds to a scenario in which at any position in the Universe we measure the same pairwise velocity PDF, which is clearly what we expect in the large scale limit. On the other hand, the

\[C_{\mu\mu} = C_{\mu\sigma} = C_{\sigma\sigma} = 0 \]

More in general, \mathcal{B} and \mathcal{B}^\pm share by construction all the even non-central moments $M_{\sigma}^{(2n)}$.
limit $M_\sigma = 0$ represents a superposition of Dirac deltas whose mean is Gaussian distributed. Such a scenario is not compatible with any reasonable pairwise velocity PDF, although it might be useful for different applications, e.g. when describing the time evolution of the 1-particle velocity PDF.

More explicitly, in the phase-space formalism, it is commonly assumed that, at any position, the 1-particle velocity density (more precisely the momentum density) is well approximated by a Dirac delta (the so called single-flow approximation). After shell crossing this assumption is no longer valid and we have to resort to distributions with a broader profile, e.g. Gaussians. Whether the evolution of these distributions can be captured by a bivariate Gaussian description of their mean and variance, or, in other words whether the statistics of a fluid can be described by a GG distribution is an interesting question that we will try to answer in a further work.

(ii) In the very-small-scale limit the statistics are dominated by virialized regions, which implies negligible local infall velocity, i.e. $M_\mu = C_{\mu\mu} = C_{\mu\sigma} = 0$. The corresponding MGF is

$$
\mathcal{M}(t) = \frac{1}{\sqrt{1 - t^2 C_{\sigma\sigma}}} \exp \left(\frac{\frac{1}{2} t^2 M_\sigma^2}{1 - t^2 C_{\sigma\sigma}} \right).
$$

As shown in appendix B, when $M_\sigma^2 = 2C_{\sigma\sigma}$ this latter approximates the MGF of an exponential distribution. It is well known from simulations and observations (e.g. Zurek et al. 1994; Davis & Peebles 1983) that the small-scale velocity PDF is nearly exponential and is therefore important that this limit is included in our description, although we will not explicitly use it in our modelling (but see App. D).

Finally, it is worth mentioning two potentially relevant applications of the GG-distribution MGF:

(i) It can be used to compute the velocity PDF via a simple fast Fourier transform, which is computationally attractive.

(ii) It allows us to directly model the redshift-space power spectrum, see e.g. Eq. (13) in Scoccimarro (2004).

2.2 Strategy

If we assume that the true velocity PDF is well approximated by the GG distribution, Eq. (2), or equivalently Eq. (6), we can think of using this model to extract cosmological information from galaxy redshift surveys via RSD.

Since the five scale-dependent parameters M_μ, M_σ, $C_{\mu\mu}$, $C_{\sigma\sigma}$ and $C_{\mu\sigma}$ on which the distribution depends have a clear interpretation, we can think of directly predicting them. One intriguing aspect of such an approach is that it allows us to reason in terms of local distributions, suggesting the possibility of naturally including a multi-stream description. In general, such an issue is expected to become more and more important as we want to describe the small-scale nonlinear regime. Roughly speaking, an extension form single- to multi-flow scenario could be obtained by using Gaussians instead of Dirac delta distributions for the local 1-particle velocity PDF (more properly for the momentum part of the phase-space distribution function). The resulting local pairwise velocity distribution will then be Gaussian as well and, as a consequence, the overall pairwise velocity PDF will be compatible with the GG prescription. We leave these considerations to further work.

Instead, we follow the conceptual spirit of the Gaussian streaming model, as implemented by Reid & White (2011). The Gaussian streaming model (GSM) relies on the assumption that, at a given separation (r_1, r_2), the overall line-of-sight pairwise velocity PDF is well approximated by an univariate Gaussian, whose mean and variance were obtained by Reid & White (2011) via PT. This approach can be extended to include more general and realistic distributions, with more than two free moments. The n-th moment of the line-of-sight pairwise velocity distribution $\mathcal{P}(v_1)$ is

$$
m^{(n)} = \frac{\langle (1 + \delta_1)(1 + \delta_2) v_1^n \rangle}{\langle (1 + \delta_1)(1 + \delta_2) \rangle},
$$

where $\delta = \delta(x)$, with δ being the usual density contrast. Similarly, the central moments are defined as

$$
c^{(n)} = \frac{\langle (1 + \delta_1)(1 + \delta_2)(v_1 - m^{(1)})^n \rangle}{\langle (1 + \delta_1)(1 + \delta_2) \rangle}.
$$

In principle, these quantities can be predicted by PT even for $n > 2$ (e.g. Juszkiewicz et al. 1998; Uhlmann et al. 2015).
see also App. D for a simple example of how these moments can be predicted on nonlinear scales). The GG distribution includes the Gaussian distribution as a limiting case.

By inverting the system in the lefthand column of Tab. 2 we can write the bivariate Gaussian \(\mathcal{B} \) as a function of the first five moments of \(\mathcal{P}(v_i) \), namely \(m^{(1)}, c^{(2)}, c^{(3)}, c^{(4)}, c^{(5)} \). Explicit expressions for the resulting \(M_\mu, M_\sigma, C_{\mu\mu}, C_{\sigma\sigma} \) and \(C_{\mu\sigma} \) are reported in the righthand column of Tab. 2. The inversion is well defined as long as \(c^{(3)} \neq 0 \). Formally, if \(c^{(3)} = 0 \) (which implies that all the odd central moments disappear as well), in order to have a one-to-one correspondence between \(\mathcal{P} \) and \(\mathcal{B} \) we need to include the 6th moment in the analysis. We will see that this is not relevant in our modelling.

Although in principle the first five moments can be obtained via PT, in practice the complexity of the calculations grows rapidly with the order of both moment and perturbative expansion. We therefore decide to adopt an hybrid approach in which we assume that the first three moments can be directly predicted, whilst 4th and 5th moment (and in general all higher order moments) are implicitly modelled as functions of a set of physically-meaningful dimensionless parameters, which arise naturally by general considerations about the properties of the GG distribution itself. The amplitude of these parameters is then obtained by comparisons with N-body simulations.

2.3 Parameterisation

The expression for the first three moments of \(\mathcal{P} \) as a function of the moments of \(\mathcal{B} \) is

\[
m^{(1)} = M_\mu \\
c^{(2)} = M_\sigma^2 + C_{\mu\mu} + C_{\sigma\sigma} \\
c^{(3)} = 6M_\sigma C_{\mu\sigma} \\
(22)
\]

It is clear that the GG parameters \(\{M_\mu, M_\sigma, C_{\mu\mu}, C_{\sigma\sigma}, C_{\mu\sigma}\} \) are uniquely defined once we specify \(m^{(1)}, c^{(2)}, c^{(3)} \) plus a prescription on how to split \(c^{(2)} \) into the three summands \(M_\sigma^2, C_{\mu\mu} \) and \(C_{\sigma\sigma} \), i.e. a prescription for their relative weight. We then rewrite Eq. (23) in terms of dimensionless quantities,

\[
1 = M_\mu^2 M_\sigma^{-4} C_{\mu\mu} c^{(2)} + C_{\sigma\sigma} c^{(3)} = \Phi_{\sigma\sigma} + \Phi_{\mu\mu} + \Phi_{\mu\sigma} \\
(25)
\]

Due to isotropy, \(\mathcal{P}(v_i | r_1, r_2) \) can be seen as the projection of a 2-dimensional distribution \(\mathcal{P}(v_i, v_j | r) \), where the subscripts \(r \) and \(t \) stand for parallel and perpendicular to the pair separation, see App. A. As a consequence \(c^{(2)} \) is in general characterised by the following symmetry,

\[
c^{(2)}(r, \mu_\theta) = c^{(2)}(r, \mu_\theta^2 + c^{(2)}(1 - \mu_\theta^2) \\
(26)
\]

It is then convenient to define

\[
1 = \Phi^{(r)}_\sigma(r) + \Phi^{(r)}_{\mu\mu}(r) + \Phi^{(r)}_{\mu\sigma}(r) \\
(27)
\]

\[
1 = \Phi^{(r)}_\sigma(r) + \Phi^{(r)}_{\mu\mu}(r) + \Phi^{(r)}_{\mu\sigma}(r) \\
(28)
\]

so that instead of three 2-dimensional functions we have to deal with six 1-dimensional functions.

Clearly, given the above equations, the functions we need to model are actually only four. A simple ansatz is then

\[
\Phi^{(r)}_{\mu\mu}(r) = \kappa^{(r)}_{\mu}(\rho) g(r/r_\rho) \\
\Phi^{(r)}_{\mu\sigma}(r) = \kappa^{(r)}_{\mu\sigma}(\rho) g(r/r_\rho) \\
\Phi^{(r)}_{\mu\sigma}(r) = 1 - \Phi^{(r)}_{\mu\mu}(r) - \Phi^{(r)}_{\mu\sigma}(r) \\
\Phi^{(r)}_{\mu\sigma}(r) = \kappa^{(r)}_{\mu}(\rho) g(r/r_\rho) \\
\Phi^{(r)}_{\mu\sigma}(r) = \kappa^{(r)}_{\mu\sigma}(\rho) g(r/r_\rho) \\
\Phi^{(r)}_{\mu\sigma}(r) = 1 - \Phi^{(r)}_{\mu\mu}(r) - \Phi^{(r)}_{\mu\sigma}(r) \\
(29)
\]

where \(g \) can be any monotonic regular function such that

\[
g(r) \rightarrow \begin{cases} 0 & r \rightarrow \infty \\
1 & r \rightarrow 0 \\
\end{cases} \\
(30)
\]

\[g(r/r_\rho) = \frac{1}{1 + (r/r_\rho)^2}. \]

By construction \(r_\rho \) represents the scale above which the Gaussian limit is recovered, whereas \(\kappa^{(r)}_{\mu}(\rho), \kappa^{(r)}_{\mu\sigma}(\rho), \kappa^{(r)}_{\mu\sigma}(\rho) \) represent the amplitudes of the corresponding \(\Phi \) functions at \(r = 0 \).

2.4 The skewness problem

Independently of the functional form chosen for \(\Phi_{\mu\sigma}, \Phi_{\mu\mu} \) and \(\Phi_{\sigma\sigma} \), from Eqs. (24) and (25) we can write

\[
c^{(3)} = \mathcal{O}(2^{3/2}) \rho \sqrt{\Phi_{\mu\sigma} \Phi_{\mu\mu} \Phi_{\sigma\sigma}} \\
(31)
\]

where \(\rho \equiv \sqrt{C_{\mu\sigma} C_{\mu\mu} C_{\sigma\sigma}} \) is the correlation coefficient of the bivariate Gaussian. Since in general \(|\rho| < 1 \), for any given \(c^{(2)} \) Eq. (30) provides us with an upper bound for \(\left| c^{(3)} \right| \),

\[
\left| c^{(3)} \right| < \frac{2}{\sqrt{3}} c^{(2)} \\
(32)
\]

corresponding to \(\rho = \pm 1 \) and \(\Phi_{\mu\sigma} = \Phi_{\mu\mu} = \Phi_{\sigma\sigma} = 1/3 \). By explicitly defining the skewness, \(\gamma \equiv c^{(3)}/c^{(2)^{3/2}} \), we have

\[
|\gamma| < 2/\sqrt{3} \sim 1.155. \]

In Fig. 2 we show that this limit is reached for dark matter at \(z = 0 \) at \(r \sim 5h^{-1}\text{Mpc} \), \(\mu \rho \sim 0 \), and is exceeded at higher redshift. For halo catalogues, not shown in the figure for simplicity, this behaviour is even more marked. Thus we see that the GG model is unable to match the observed level of skewness and requires further generalisation as described in the next section (but see also App. C for an alternative approach).

2.5 Gaussian (local) quasi-Gaussianity

To overcome this problem we generalize GG by introducing the concept of Gaussian (local) quasi-Gaussianity (GQG).

\[
c^{(2)} \text{ but also individually to each of its three building blocks, i.e.} \\
C_{\sigma\sigma}(r, \mu_\theta) = C_{\sigma\sigma}^{(r)}(\mu_\theta) + C_{\sigma\sigma}(r)(1 - \mu_\theta^2), \text{ and similarly for } M_\mu \text{ and } C_{\mu\mu}. \]

\[\Phi \] functions can be explicitly defined as \(\Phi^{(r)}_{\mu\mu} = \Phi^{(r)}_{\sigma\sigma} \), and \(\Phi^{(r)}_{\mu\sigma} = C_{\mu\sigma}^{(r)}(1 - \mu_\theta^2) \). In Paper I this issue did not arise because only DM particles at \(z = 0 \) were considered.
Table 2. Moments of the line-of-sight velocity distribution \mathcal{P} as a function of the moments of the bivariate Gaussian \mathcal{B} (left column) and vice versa (right column).

$$m^{(1)} = M_\mu$$
$$\rho = m^{(1)}$$

$$\epsilon^{(2)} = M_\sigma^2 + C_{\mu\mu} + C_{\sigma\sigma}$$
$$C_{\sigma\sigma} = \frac{1}{20} \epsilon^{(2)} - \frac{1}{4} \epsilon^{(2)}$$

$$\epsilon^{(3)} = 6 M_\sigma C_{\mu\sigma}$$
$$M_\sigma^2 = \frac{\epsilon^{(4)} - 3 \epsilon^{(2)} + 4 \epsilon^{(2)} - 4 \epsilon^{(2)} - 10 \epsilon^{(2)} \sigma^2}{24 \epsilon^{(2)}}$$

$$\epsilon^{(4)} = 3 (M_\sigma^2 + C_{\mu\mu})^2 + 6 (C_{\sigma\sigma} (3 M_\sigma^2 + C_{\mu\mu}) + 2 C_{\mu\mu}^2) + 9 C_{\sigma\sigma}^2$$
$$C_{\mu\mu} = \epsilon^{(2)} - M_\sigma^2 - C_{\sigma\sigma}$$

$$\epsilon^{(5)} = 60 M_\sigma C_{\mu\sigma} (M_\sigma^2 + C_{\mu\mu} + 3 C_{\sigma\sigma})$$
$$C_{\mu\sigma} = \frac{1}{15} \epsilon^{(2)}$$

We can account for a small deviation from local Gaussianity by Edgeworth-expanding the local distributions,

$$\mathcal{P}(v_1) = \int d\mu \, d\sigma \, \mathcal{E}(v_1 | \mu, \sigma) \mathcal{B}(\mu, \sigma),$$

where

$$\mathcal{E}(v_1 | \mu, \sigma) = \mathcal{E}(v_1 | \mu, \sigma) \left[1 + \frac{\gamma}{6} H_3 \left(\frac{v_1 - \mu}{\sigma} \right) \right],$$

$$\gamma = \frac{\epsilon^{(3)}}{\sigma^3},$$

$$H_3(\chi) = \chi^3 - 3 \chi.$$

$\epsilon^{(3)}$ is the third central moment of the local distribution \mathcal{E} (hence γ is the local skewness) and H_3 is the third probabilistic Hermite polynomial. It should be noted that, since the integral in Eq. (38) formally includes negative values of σ, from Eqs. (39) and (41) it follows that both positively and negatively skewed (quasi) Gaussians contribute to the overall PDF. This guarantees that the net contribution of the local to the overall skewness vanishes for $\sigma \to 0$, a desirable property if we want to avoid the nonsense of skewed Dirac deltas. It is nonetheless useful to say that, although the formulation of GQG clearly follows from the idea of allowing for a small skewness correction on local distributions, in a more general picture it can also be seen just as a generalised Edgeworth expansion, i.e. a practical way to control the skewness of a distribution without changing its first two moments. In the perspective of using the model for a Monte Carlo estimation of cosmological parameters in which second and third moments are free to vary, it is important to have removed a potential source of artefacts such those that would arise from exceeding the upper limit of Eq. (37). As in the simpler case of the GG distribution, it is possible to integrate Eq. (38) with respect to μ,

$$\mathcal{P}(v_1) = \int d\sigma \left\{ \frac{1}{2 \pi \sigma^2} \exp \left[-\frac{\sum_{n=0}^{\infty} \gamma_n (v_1 - \mu_\sigma)^n}{2 \sigma^2} \right] \right\} \left[1 + \frac{\mathcal{E}}{6 \sigma^2} \sum_{k=0}^{3} \gamma_k (v_1 - \mu_\sigma)^k \right],$$

where γ and γ_n are defined in section 2.1, and

$$\mathcal{E} = \frac{\gamma}{6}, \frac{\sigma^3}{6},$$

$$\gamma_2 = C_{\sigma\sigma}^3,$$

$$\gamma_3 = -3 C_{\mu\mu} C_{\sigma\sigma}^2 (\sigma - \sigma_\sigma),$$

$$\gamma_4 = 3 C_{\sigma\sigma}^2 (M_\sigma^2 + C_{\mu\mu}^2 (2 - 2 \sigma)) + C_{\mu\mu}^2 (\sigma^2 + C_{\sigma\sigma}^2) - C_{\sigma\sigma} (\sigma^2 + C_{\mu\mu}^2) + 3 C_{\mu\mu} C_{\sigma\sigma}^2 (\sigma^2 + C_{\mu\mu}^2),$$

$$\gamma_0 = C_{\mu\mu}^3 (3 C_{\sigma\sigma} (M_\sigma^2 - \sigma_\sigma) - (\sigma - \sigma_\sigma)^3) + 3 C_{\mu\mu} C_{\sigma\sigma}^2 (\sigma^2 + C_{\mu\mu}^2) + 3 C_{\mu\mu} C_{\sigma\sigma}^2 (\sigma^2 + C_{\mu\mu}^2) (M_\sigma^2 + 3 C_{\sigma\sigma}).$$

The first three moments of the GQG distribution are

$$m^{(1)} = M_\mu,$$

$$\epsilon^{(2)} = M_\sigma^2 + C_{\mu\mu} + C_{\sigma\sigma},$$

$$\epsilon^{(3)} = 6 M_\sigma C_{\mu\sigma} + \gamma_0 M_\sigma (M_\sigma^2 + 3 C_{\sigma\sigma}).$$

These are the same as the GG distribution apart for the $\gamma_0 M_\sigma (M_\sigma^2 + 3 C_{\sigma\sigma})$ term which accounts for the excess skewness. Keeping in mind that $\epsilon^{(3)}$ is given and that Eq. (50) can be written as

$$\epsilon^{(3)} = 6 \rho \sqrt{M_\sigma^2 C_{\mu\mu} C_{\sigma\sigma} + \gamma_0 M_\sigma (M_\sigma^2 + 3 C_{\sigma\sigma})},$$

there are (at least) two practical ways to use the GQG prescription.

(i) We can define

$$\rho = \frac{\epsilon^{(3)}}{6 \sqrt{M_\sigma^2 C_{\mu\mu} C_{\sigma\sigma}},}$$

and adopt the following prescription,

$$\begin{bmatrix} \rho \\ \gamma \end{bmatrix} = \begin{bmatrix} \rho \\ 0 \end{bmatrix},$$

MNRAS 000, 1–17 (2016)
Formally for $|\rho| = 1$ a bivariate Gaussian is not well defined, therefore for any practical application we have to modify Eq. (53) with $\rho = \frac{\rho_0}{|\rho_0|} - \varepsilon$, where $\varepsilon \ll 1$. The alternative is to use

$$
\begin{bmatrix}
\rho \\
\eta
\end{bmatrix} = \begin{bmatrix}
\alpha - \frac{c^{(i)}}{6\sqrt{M_c C_{\mu\tau} C_{\sigma\tau}}} \\
(1 - \alpha) - \frac{c^{(i)}}{6\sqrt{M_c (M_c^2 + 3C_{\sigma\tau})}}
\end{bmatrix},
$$

where, by construction, $\alpha \in (0, 1)$ controls the ratio between the skewness created by the covariance $C_{\mu\sigma}$ and the local skewness. In practice, rather then α we prefer to use the parameter $\tau \in (0, +\infty)$, defined as follows,

$$
\alpha = \left(\frac{\phi_{C\mu\tau}^{(i)}}{\phi_{C\sigma\tau}^{(i)}} \right)^\tau,
$$

which is just a simple power-law ansatz, guaranteeing that when $\phi_{C\mu\tau}^{(i)} = 0$ or $\phi_{C\sigma\tau}^{(i)} = 0$ the global skewness comes from the local one alone, i.e. $\alpha = 0$, without introducing further parameters. This is somehow required by the fact that when $\phi_{C\mu\tau}^{(i)} = 0$ or $\phi_{C\sigma\tau}^{(i)} = 0$ the covariance is not well defined\footnote{In general, Eq. (55) would require more investigation but, in practice, hereafter we model $\phi_{C\mu\tau}^{(i)}$ and $\phi_{C\sigma\tau}^{(i)}$ as constant functions and the relation between α and τ becomes trivial.}. The same argument does not apply for $\phi_{C\mu\mu}^{(i)}$ and $\phi_{C\sigma\sigma}^{(i)}$ because, for $\mu_\tau = 0$, the skewness disappears by symmetry. Clearly, in terms of pros and cons, this second approach is exactly the opposite of the first one.

Having tested both of the above solutions, we implement approach (ii). The reason behind this choice is that the profile of the redshift-space correlation function obtained via approach (i) is affected by the presence of wiggles on small scales, which might induce an artificial scale dependence, e.g. when fitting for cosmological parameters. Likely, these undesired features are a direct consequence of the non-smooth behaviour discussed above. As for the amplitude of the local skewness, we can roughly estimate $\gamma_1 \in (-0.3, 0)$. Note, however, that this is an indirect measurement, obtained by assuming the model introduced in Sec. 2.6, and as such it should be intended as a consistency test to ensure that the deviations from local Gaussianity are not too large.

2.6 Simplest possible ansatz

For a model to be useful it is important to keep it as simple as possible (but no simpler). With this in mind, we discuss here the simplest possible ansatz for the parameters $\phi_{C\mu\mu}^{(i)}$, $\phi_{C\sigma\sigma}^{(i)}$, $\phi_{C\mu\sigma}^{(i)}$, r_\perp and τ.

(i) Although the univariate-Gaussian assumption has been proved successful in describing the large scale behaviour of massive halos from N-body simulations, we know that the true velocity PDF never really reaches the Gaussian limit (e.g. Scoccimarro 2004). In fact, even in linear theory, the multivariate Gaussian joint distribution of density and velocity field does not yield a Gaussian line-of-sight pairwise velocity PDF (Fisher 1995). Furthermore, we expect the higher order moments of the velocity PDF to become important only on relatively small scales where the correlation function is steeper, see e.g. Eq. (15) in Paper I, or, in other words, we expect the shape of the velocity PDF not to be particularly relevant on large scales. This suggest that we adopt $r_\perp = +\infty$.

(ii) The alternative to using GQG as an empirical correction for GG, to be "switched on" only when required by the third moment. The benefit of this approach is that it does not require any additional parameter, the downside is that is not guaranteed that the shape of the velocity PDF varies smoothly with (r_\perp, r_\parallel).
In this final model, \(\tau = 1/4 \) corresponds to \(\alpha \sim 0.6 \). As a reference, \(\tau = 0 \) corresponds to \(\alpha = 1 \) (i.e. GG is recovered), whereas \(\tau > 1 \) corresponds to \(\alpha \sim 0 \) (i.e. the global skewness is sourced by the local skewness alone). We tested the performance of the model for 0.4 \(\leq \alpha \leq 0.8 \), and we concluded that, within this range, variations in \(\alpha \) can be effectively absorbed in small changes of the free parameters \(\kappa_\mu^{(r)} \) and \(\kappa_\sigma^{(r)} \).

(ii) We evaluate the scale-dependent GQG parameters as:

\[
M_\mu = m_\mu^{(1)}(r) \mu_\theta \quad (56)
\]

\[
C_{\mu\mu}^{(r)} = \frac{1}{3} c_\mu^{(2)}(r) \mu_\theta \quad (57)
\]

\[
C_{\sigma\sigma} = \frac{1}{3} c_\sigma^{(2)}(r) \mu_\theta \quad (58)
\]

\[
M_\sigma^2 = c_\sigma^{(2)}(r) \mu_\theta + c_\mu^{(2)}(r) (1 - \mu_\theta) - \mu_\mu - C_{\sigma\sigma} \quad (59)
\]

\[
C_{\mu\sigma} = \frac{1}{\sqrt{3}} \left[c_\sigma^{(3)}(r) \mu_\theta + c_\mu^{(3)}(r) (1 - \mu_\theta) \right] \mu_\theta \quad (60)
\]

\[
\eta_\mu = \left(1 - \frac{1}{\sqrt{3}} \right) \left[c_\sigma^{(3)}(r) \mu_\theta + c_\mu^{(3)}(r) (1 - \mu_\theta) \right] \mu_\theta \quad (61)
\]

where \(\kappa_\mu^{(r)}, \kappa_\sigma^{(r)} \in (0, 1) \), with \(\kappa_\mu^{(r)} + \kappa_\sigma^{(r)} \leq 1 \), are scale-independent dimensionless parameters, which, in the simplest scenario, can be used as nuisance parameters or tuned to simulations.

(iii) We use the GQG parameters to compute the scale-dependent velocity distribution, \(\mathcal{P} \), via Eq. (42). The procedure is self consistent, i.e. the second moment of the so obtained distribution is exactly \(c^{(2)} = c^{(2)}(r) \mu_\theta + c^{(2)}(r) (1 - \mu_\theta) \), regardless of the amplitude of \(\kappa_\mu^{(r)} \) and \(\kappa_\sigma^{(r)} \), and similarly for \(m^{(1)} \) and \(c^{(3)} \).

(iv) We use \(\mathcal{P} \) and the real-space correlation function \(\xi_\mathcal{P} \) to obtain the redshift-space correlation function \(\xi_\mathcal{S} \) via Eq. (1), where \(\xi_\mathcal{S} \) is assumed to be predicted by theory or measured from data (e.g. Saunders et al. 1992).

The above equations refer to the “simplest possible ansatz” discussed in Sec. 2.6, but the generalisation to a more complex scenario is straightforward.

3 COMPARISON WITH SIMULATIONS

For our investigation we use the data from the MultiDark MDR1 run (Prada et al. 2012), which follows the dynamics of 2048\(^3\) particles over a cubical volume of (1000h\(^{-1}\)Mpc)\(^3\). The set of cosmological parameters assumed for this simulation is compatible with WMAP5 and WMAP7 data, \(\Omega_m, \Omega_\Lambda, \Omega_b, \sigma_8, n_s \} = \{ 0.27, 0.73, 0.047, 0.82, 0.95 \} \). We consider three different redshifts, \(z = 0, z = 0.5 \) and \(z = 1 \). For each redshift we consider dark matter particles and two mass-selected halo catalogues, 10\(^{12} < M/M_\odot < 10^{13} \) and \(M > 10^{13} M_\odot \). The halos are identified via a friend-of-friend algorithm, with linking length 0.17.

Since we assume that the first three moments \(m^{(1)}, c^{(2)} \) and \(c^{(3)} \) are known, as well as the real-space correlation function \(\xi_\mathcal{P} \), we directly measure them from the simulation. We also estimate from the simulation the overall line-of-sight pairwise velocity PDF \(\mathcal{P} \), which we use as a reference for model comparison. The procedures adopted for all these measurements are reported in App. A.

In Fig. 3 we present the redshift-space 2-dimensional correlation function \(\xi_\mathcal{S}(s_{\parallel}, s_{\perp}) \) obtained via the streaming model, Eq. (1), with various assumptions, and compare these with the measured velocity PDF (see App. E for the correspondent fractional deviations). The lines represent:

(i) direct measure of the velocity PDF from the simulations, black dashed;
(ii) direct measure of the first three moments from the simulations plus GQG assumption for the velocity PDF, red solid;
(iii) direct measure of the first three moments from the simulations plus Edgeworth expansion for the velocity PDF, blue solid;
(iv) direct measure of the first two moments from the simulations plus univariate Gaussian assumption for the velocity PDF, green solid.

Since for each of the above we use the same "true" real-space correlation function $\xi_r(s)$, any difference in the corresponding $\xi_l(s_1, s_2)$ can be attributed to the impact of different assumptions on the shape of the velocity PDF. As discussed in Sec. 2.2, the GQG distribution requires additional knowledge of the functions φ. These latter, under the simplest possible ansatz, can be parametrised by κ^{μ} and κ^σ, Sec. 2.6. We fit these parameters to simulations. Since on large scales all the models perform well, here we focus on small-to-intermediate scales. As can be seen from the figure, for any tracer and redshift considered, the GQG prescription improves on the Edgeworth streaming model (ESM), which in turn improves on the Gaussian streaming model. This is somewhat expected, given the different number of degrees of freedom of the different models (nonetheless, we note that on the smallest scales the ESM seems to perform slightly better than the ESM even though it has fewer degrees of freedom). Specifically, the smaller the mass of the tracer the larger the improvement provided by GQG with respect to ESM and GSM, which is also expected, since the velocity PDF becomes less and less Gaussian going from massive to less massive halos and then to DM.

In Figs. 4, 5 and 6 we plot the first three even Legendre multipoles of the redshift-space correlation function, namely the monopole $\xi_0(s)$, the quadrupole $\xi_2(s)$ and the hexadecapole $\xi_4(s)$. In general, Legendre multipoles are preferred with respect to the full 2-dimensional correlation function when fitting models to the data because it is easier to estimate the correspondent covariance matrix. Monopole and quadrupole moments have been recently used for estimation of the cosmological parameters via the GSM (e.g. Samushia et al. 2014). The monopole, Fig. 4, is quite accurate for all the three models considered, with a small deviation of ESM and GSM from the expected amplitude on small scales in the DM case. This small-scale inaccuracy becomes more important when we consider the quadrupole, Fig. 5. Specifically, the ESM is biased for scales $\lesssim 10 - 15h^{-1}$ Mpc, depending on tracer and redshift, whilst the GSM starts failing on $\sim 10h^{-1}$ Mpc larger scales. On the other hand, as already noted, on the smallest scales the deviation from the expected amplitude is more severe for the ESM. The GQG distribution is instead in good agreement with the direct measurements on all scales. A similar behaviour is found for the hexadecapole, Fig. 6. In this case the ESM fails on scales $\lesssim 15 - 30h^{-1}$ Mpc, depending on tracer and redshift, whilst the GSM is biased on all the scales considered. The GQG prescription recovers the correct amplitude on all scales, except for a deviation on small scales in the DM case. We attribute this deviation to the simplistic form we have assumed for the functions φ. Very likely, it would be possible to improve on this by allowing for more general functional forms (see appendix D for a more realistic description of the small-scale behaviour), nonetheless, since the issue appears in the DM case only, in this work we prefer not to further complicate the model.

For completeness, in Fig. 7 we show the multipoles of the correlation function for the $10^{12} \lesssim (M/M_\odot) < 10^{13}$ halo catalogue over a broader range of separations. As anticipated, on large scales all the three models tend to match the expected amplitude. We note however that the GSM is wrong even on moderate scales for the hexadecapole.

4 DISCUSSION AND CONCLUSIONS

It is well known that a percent-level understanding of the anisotropy of the redshift-space galaxy clustering is needed to accurately recover cosmological information from the RSD signal in order to shed light on the issue of dark energy vs. modified gravity. From a statistical point of view, the source of the anisotropy is the galaxy line-of-sight pairwise velocity distribution. It is therefore important to adopt a realistic functional form for this velocity PDF when fitting models to the data. To this purpose, in paper I we introduced the GG prescription for the velocity PDF. In this work we have continued the development of this model by making explicit the dependence of the GG distribution on quantities predictable by theory, namely its first three moments, and extending it to the more general concept of GQG. To keep the model as simple as possible, we have proposed an ansatz with two free dimensionless parameters that describe how infall velocity and velocity dispersion vary when moving from one place to another in our Universe. Since their interpretation is clear, these parameters can be theoretically predicted or, assuming a more pragmatic approach, tuned to simulations or used as nuisance parameters. State-of-the-art PT has proven successful in predicting the large-scale behaviour of the velocity PDF and the correspondent monopole and quadrupole of the redshift-space correlation function (e.g. Reid & White 2011; Wang et al. 2014), at least for massive halos, $M \sim 10^{13} M_\odot$. Unfortunately, by definition, any PT breaks down for small separations. Consequently, alternative approaches have been suggested in the literature, spanning from purely theoretical (e.g. Sheth 1996) to hybrid techniques in which N-body simulations plus a halo occupation distribution (HOD) are employed to deal with the issue of non linearities (e.g. Tinker 2007; Reid et al. 2014). One of the main results from our work is to provide a framework in which perturbation and small-scale theories are smoothly joined, so that all available RSD information can be coherently extracted from redshift surveys. A fundamental requirement for a redshift-space model is that it must be precise on all scales interest, and it should inform the user of the scales on which the model can be trusted. We have compared to N-body simulations the well known GSM (Reid & White 2011), the more recent ESM (Uhlemann et al.
Figure 3. Redshift-space correlation function as a function of the redshift-space separation parallel and perpendicular to the line of sight, s_\parallel and s_\perp, respectively, for different tracers and redshifts as labeled in the figure. The iso-correlation contours are obtained via the streaming model with different assumptions for the line-of-sight velocity PDF, specifically: direct measure from the simulations, black dashed; direct measure of the first three moments from the simulations plus GQG assumption, red solid; direct measure of the first three moments from the simulations plus Edgeworth expansion, blue solid; direct measure of the first two moments from the simulations plus univariate Gaussian assumption, green solid.

We have concluded that, among the three, QGQ is the only model capable of providing a precise redshift-space correlation function on scales down to $\sim 5h^{-1}\text{Mpc}$ over the range of redshifts covered by future surveys. Keeping in mind that the range of validity of the models depends on tracer, redshift and order of the Legendre multipoles we are interested in, for finiteness, we can say that all the models converge to the aspected amplitude on scales $\gtrsim 30h^{-1}\text{Mpc}$, at least.
for multipole and quadrupole. Since these scales roughly coincide with the range of validity of state-of-the-art PTs, if we rely only on PT and if we are not interested in higher order multipoles, the most natural choice is the simplest model among the three, i.e. the GSM. As for the ESM, we have found it to be unbiased down to smaller scales and for higher order multipoles than the GSM, thus confirming the results by Uhlemann et al. (2015), but, on the other hand, it seems to behave even worse than the GSM on the smallest scales. We can therefore think of it as a natural extension of the GSM in the perspective of further PT developments. In particular, a better prediction of the third moment of the velocity PDF is required before the ESM can be applied to data on smaller scales. Formally, the same argument holds for the GQG model, nonetheless, since this latter is meant to include nonlinear scales, it could be possible to obtain a prediction for the third moment by interpolating between these peaks and their large-scale limit, which is trivially 0.

For the above reasons, we have not tested here the performance of the of the models in recovering cosmological parameters, the growth rate f in particular. This important topic will be explored in a further work in which a prescription for the small-scale limit will be discussed. Also left for further work is an extensive test of the model on realistic mock galaxy catalogues, which very likely will give results somewhere in between those obtained for DM and halos.

Another interesting question to be answered is whether the GQG distribution can play a role in the interpretation of the data coming from direct measurements of the velocity of galaxies (e.g. Springob et al. 2007; Tully et al. 2013), or, conversely, whether these data can be helpful in tuning the GQG parameters.

The moments of the velocity PDF on small scales are extremely sensitive to deviations from GR (e.g. Fontanot et al. 2013; Hellwing et al. 2014). Constraining these quantities is therefore of particular interest in understanding gravity. Although we have tested our model against ΛCDM simulations only, at no stage of its derivation have we assumed GR. Further investigation is clearly needed into this topic, but we do not see any obvious reason for the model not to be compatible with modified-gravity velocity PDFs and clustering.

Figure 4. Legendre monopole of the redshift-space correlation function $\xi_0(s)$ as a function of the redshift-space separation s, for different tracers and redshifts as labeled in the figure. Following common practice, on the y axis we report $s^2 \xi_0(s)$, in order to help in the visualisation of the large-scale behaviour. The lines correspond to the same models as in Fig. 3, with the same colour coding, except for the direct measurement of the velocity PDF, which is here represented by open circles.
Similarly, we do not expect baryonic physics to invalidate the GQG description, but, obviously, taking into account the impact of baryons makes the theoretical prediction of the very small scales more challenging.

Finally, we note that we have defined and analysed a very general probability distribution function, the GG distribution, which could prove useful in completely different fields. As a generalisation, we have also introduced the GQG distributions, which is formally a pseudo distribution, since for extreme values of the local skewness it can assume negative amplitude. It is nonetheless important to note that, at variance with what we have found for the standard Edgeworth expansion, in our measurements this unphysical situation never occurs.

ACKNOWLEDGEMENTS

DB and WJP are grateful for support from the European Research Council through the grant 614030 “Darksurvey”. WJP is also grateful for support from the UK Science and Technology Facilities Research Council through the grant ST/I001204/1. JB acknowledges support of the European Research Council through the Darklight ERC Advanced Research Grant (#291521).

REFERENCES

Bernardeau F., Colombi S., Gaztañaga E., Scoccimarro R., 2002, Phys. Rep., 367, 1
Bianchi D., Chiesa M., Guzzo L., 2015, MNRAS, 446, 75
Blinnikov S., Moessner R., 1998, A&AS, 130, 193
Davis M., Peebles P. J. E., 1983, ApJ, 267, 465
Fisher K. B., 1995, ApJ, 448, 494
Fontanot F., Puchwein E., Springel V., Bianchi D., 2013, MNRAS, 436, 2672
Hamilton A. J. S., 1998, in D. Hamilton ed., Astrophysics and Space Science Library Vol. 231, The Evolving Universe. pp 185–
Hellwing W. A., Barreira A., Frenk C. S., Li B., Cole S., 2014, Physical Review Letters, 112, 221102
Jackson J. C., 1972, MNRAS, 156, 1P
Juszkiewicz R., Fisher K. B., Szapudi I., 1998, ApJ, 504, L1
Kaiser N., 1987, MNRAS, 227, 1
Kwan J., Lewis G. F., Linder E. V., 2012, ApJ, 748, 78
Matsubara T., 2008, Phys. Rev. D, 78, 083519
Prada F., Klypin A. A., Cuesta A. J., Betancort-Rijo J. E., Primack J., 2012, MNRAS, 423, 3018
Reid B. A., White M., 2011, MNRAS, 417, 1913
Reid B. A., Seo H.-J., Leauthaud A., Tinker J. L., White M., 2014, MNRAS, arXiv preprint, 1404.3742
Samushia L., et al., 2014, preprint, 439, 3504 (arXiv:1312.4899)
Saunders W., Rowan-Robinson M., Lawrence A., 1992, MNRAS, 258, 134
Scoccimarro R., 2004, Phys. Rev. D, 70, 083007
Seljak U., McDonald P., 2011, J. Cosmology Astropart. Phys., 11,

MNRAS 000, 1–17 (2016)
Pairwise velocity model covering large and small scales

APPENDIX A: MEASUREMENTS OF VELOCITY PDF, MOMENTS AND CORRELATION FUNCTION FROM SIMULATIONS

Ignoring wide-angle effects, the line-of-sight pairwise velocity distribution \(\mathcal{P}(v_{\parallel}|r_{\perp}, r_{\parallel}) \) is obtained by projecting along the line of sight the 2-dimensional pairwise velocity distribution \(\mathcal{P}(v_{\parallel}, v_{\perp}|r) \). This latter is the joint distribution of the parallel \(v_{\parallel} \) and perpendicular \(v_{\perp} \) components of the pairwise velocity with respect to the pair separation \(r \). Due to isotropy it depends only on the length \(r \) of the separation vector. Although measurements of \(\mathcal{P} \) and \(\mathcal{P}_{r} \) are formally equivalent, we prefer to adopt the second approach since it allows us to take advantage of all possible symmetries, thus minimising statistical noise and cosmic variance (in essence, we do not need to choose a line of sight).

Similarly, the moments of the pairwise-velocity PDF can be decomposed as follows (e.g. Uhlmann et al. 2015),

\[
m^{(1)}(r, \mu_{\theta}) = m^{(1)}_{\parallel}(r) \mu_{\theta} \tag{A1}
\]

\[
c^{(2)}(r, \mu_{\theta}) = c^{(2)}_{\parallel}(r) \mu_{\theta}^2 + c^{(2)}_{\perp}(r) \left(1 - \mu_{\theta}^2\right) \tag{A2}
\]

\[
c^{(3)}(r, \mu_{\theta}) = \left[c^{(3)}_{\parallel}(r) \mu_{\theta}^2 + c^{(3)}_{\perp}(r) \left(1 - \mu_{\theta}^2\right) \right] \mu_{\theta} \tag{A3}
\]

where \(r = \sqrt{r_{\perp}^2 + r_{\parallel}^2}, \mu_{\theta} = r_{\parallel}/r \) and we have used the fact that, because of isotropy, the only non-vanishing correlators between the radial and tangential component of the pairwise velocity are those involving even powers (i.e. the modulus) of the tangential component. Here, for self consistency and to minimise the statistical noise, it is convenient to follow a scheme that is somehow opposite to what we do for the PDF: from \(\mathcal{P} \) we measure the left-hand term of these equations, but our model requires as an input the radial-dependent functions on the right-hand side, which is what is usually predicted in PT. We then need to invert this set of equations. From Eq. (A1) we get

\[
m^{(1)}_{\parallel}(r) = \frac{1}{\Delta \mu_{\theta}} \int_{-\mu_{\theta}}^{\mu_{\theta}} d\mu_{\theta} \frac{m^{(1)}(r, \mu_{\theta})}{\mu_{\theta}}, \tag{A4}
\]

where the integral can in principle be performed over any arbitrary interval \(\Delta \mu_{\theta} = \mu_{\theta}^{\text{max}} - \mu_{\theta}^{\text{min}} \), with \(0 < \mu_{\theta}^{\text{min}} < \mu_{\theta}^{\text{max}} < 1 \).
Finally, from Eq. (A3) we obtain
\[
c_i(r) = \frac{1}{\Delta \mu_0} \int_{\Delta \mu_0} d\mu_0 \left[\frac{1}{\mu_0(2\mu_0^2 - 1)} c_i^3(r, \mu_0) - \frac{4(1 - \mu_0^2)}{2\mu_0^2 - 1} c_i^3 \right] (A8)
\]
\[
c_i^3(r) = \frac{1}{\Delta \mu_0} \int_{\Delta \mu_0} d\mu_0 \left[\frac{1}{\mu_0(1 - 2\mu_0^2)} c_i^3(r, \mu_0) - \frac{4\mu_0^2}{1 - 2\mu_0^2} c_i^3 \right] , (A9)
\]
where
\[
\epsilon_i^3(r) = \int_0^1 d\mu_0 c_i^3(r, \mu_0) . (A10)
\]

Clearly, the larger \(\Delta \mu_0 \) the more information we include in our analysis, nonetheless two potential issues have to be considered.

(i) For \(\mu_0 = 1 \) the integrals might diverge. This problem is naturally solved by the fact that the moments are measured in bins of \(\mu_0 \), which means that the largest available \(\mu_0^{\text{max}} \) is always smaller than 1.

(ii) Since the old moments vanish for \(\mu_0 \to 0 \) [Eqs. (A1) and (A3)], including small values of \(\mu_0 \) in our analysis only add instability. For these moments we then safely adopt \(\mu_0^{\text{min}} = 0.5 \).

In the left upper panel of Fig. A1 we compare the direct measurement from \(\xi \) of the first moment \(m_0^{(1)} \) (solid lines) with that obtained by estimating \(m_0^{(1)} \) via Eq. (A4) and then multiplying by \(\mu_0 \) (dashed lines). In other words we test the validity of our approach by comparing left- with right-hand side of Eq. (A1). We do the same for the less trivial measurements of \(c_2 \) and \(c_3 \), central and right upper panel, respectively. Only contours from the DM catalogue at \(z = 0 \) are shown but all tracers and redshift considered yield similar results. We also report in the lower panels the underlying decomposition of the moments. Given the good match seen in the figures, we can conclude that our procedure to decompose the moments works properly and will not introduce any kind of bias in our final results.

For the estimation of correlation function we adopt the natural estimator \(\xi = DD - RR \), where \(DD \) and \(RR \) represent the number of data and random pairs at a given separation, respectively. This is the most natural choice when dealing with periodical boxes, in which there are no border effects and \(RR \) can be computed analytically.

For all the measurements in this work we adopt linear bins of 1h^{-1}Mpc size [note that, since we use the standard \(\mathcal{H}^{-1} \) rescaling (see e.g. Scoccimarro 2004), the velocities are measured in unit of length].

APPENDIX B: DETAILS ON THE MOMENT GENERATING FUNCTION

For the sake of completeness, in table B1 we report the MGF of the GG distribution for a few specific combinations of the parameter set \(\{M_\mu, M_\sigma, C_\mu, C_\sigma, C_{\mu \sigma} \} \). Specifically, from top to bottom we show:

MNRAS 000, 1–17 (2016)
imised, we assumed this limit for parameters the conversion of covariance in skewness is maximised, we assumed this limit for $\mu_0 \to 1$. Note however that, in order to match simulations, we have to correct for the skewness by using GG, Sec. 2.4.

(iv) The Gaussian limit, $C_{\mu \sigma} = 0$. This limit has been discussed in Sec. 2.1. When the further condition $C_{\mu \sigma} = 0$ is added, we obtain a very natural large scale limit.

(v) The small-scale limit, $C_{\mu \mu} = C_{\mu \sigma} = 0$. As discussed in Sec. 2.1 and, more extensively, in App. D, this is the behaviour we expect at very small separations, where the infall velocity disappears.

(vi) The quasi-exponential limit, $C_{\mu \mu} = C_{\mu \sigma} = 0$ and $M_\sigma^2 = 2C_{\mu \sigma}$. The MGF of an exponential is $\exp(\mu t)/(1 - \frac{1}{2} \sigma^2 t^2)$, where μ is the mean and σ^2 the variance, which clearly differs from what is reported in the table. Nonetheless we show in Fig. B1 that for this combination of the parameters the MGFs of the two distributions behave in a very similar way.

(vii) The combination $M_\sigma = C_{\mu \mu} = C_{\mu \sigma} = 0$, which, formally, is another sub case of the small-scale limit. Although we have not explicitly used such combinations it in this work, it is by itself interesting to see how simple becomes the MGF under this condition. As far as we know, this do not correspond to the MGF of any common distribution but it helps us in showing how wide is the parameter space spanned by the GG distribution, see Fig. B1.

In Fig. B1 we show the MGF of the GG distribution for the combination of parameters discussed above (coloured solid). For comparison we also report the MGF of Gaussian and exponential distribution (black dot-dashed and black dashed, respectively). All the functions have zero mean, unitary variance and zero skewness. It is clear from the figure that the GG distribution efficiently covers the space between Gaussian and exponential distribution and beyond.

APPENDIX C: BIVARIATE DISTRIBUTION OF μ AND $\sqrt{\sigma}$ AS AN ALTERNATIVE WAY TO ALLOW FOR MORE SKEWNESS

Most of the calculations presented in this paper can be easily extended to the case in which the jointly distributed variables are μ and $\sqrt{\sigma}$, with $n \in N$, rather than μ and σ. Here we discuss the specific scenario in which $n = 1$, i.e. μ and $\psi = \sqrt{\sigma}$ are jointly distributed according to a bivariate Gaussian. Since, as shown in the following, the resulting upper limit for the skewness of the velocity PDF is higher than that of a standard GG distribution, this approach potentially represents a viable alternative to GQG in solving the skewness issue, Sec. 2.4.

The integration over μ still gives Eq. (8) but, obviously,
C is considered, i.e.
A with different expressions for curves are standardised, i.e. zero mean and unit variance. All the contributions, black dot-dashed and black dashed, respectively. All the
Table B1. Moment generating function of the GG distribution (central column) for different assumptions on the parameters \(M_\mu\), \(M_\sigma\), \(C_\mu\), \(C_\sigma\) and \(C_\mu_\sigma\) (left column). In the right column is reported the number of free parameters.

As for the first three moments, we obtain

\[
m^{(1)} = M_\mu \\
\xi^{(2)} = M_\psi^4 + C_{\mu\mu} + 6M_\psi^2C_{\psi\psi} + 3C_{\psi\psi}^2 \\
\xi^{(3)} = 12(M_\psi^3 + 3M_\psi C_{\psi\psi})C_{\mu\psi} \\
\]

We can express Eq. (C7) in terms of the correlation coefficient \(\rho = C_{\mu\psi}/\sqrt{C_{\mu\mu}C_{\psi\psi}}\).

\[
c^{(3)} = 12\rho \sqrt{(M_\psi^3 + 3M_\psi C_{\psi\psi})^2C_{\mu\mu}C_{\psi\psi}} \\
\]

In analogy to what we have done in Sec 2.3, we define

\[
\Phi_{\mu\psi} \equiv \frac{M_\psi^2}{\sqrt{c^{(2)}}}, \Phi_{\psi\psi} \equiv \sqrt{\frac{3}{c^{(2)}}} C_{\psi\psi}, \Phi_{\mu\mu} \equiv \frac{C_{\mu\mu}}{c^{(2)}}, \\
\]

for which holds the relation

\[
\Phi_{\mu\mu} + \Phi_{\mu\psi}^2 + 2\sqrt{3}\Phi_{\mu\psi}\Phi_{\psi\psi} + \Phi_{\psi\psi} = 1. \\
\]

We then rewrite Eq. (C8) as

\[
c^{(3)} = 4\left(\sqrt{3}c^{(2)}\right)^{3/2} \rho \left(\Phi_{\psi\psi} + \sqrt{3}\Phi_{\psi\psi}\Phi_{\mu\mu}\right)\sqrt{\Phi_{\mu\mu}\Phi_{\psi\psi}\Phi_{\mu\psi}}. \\
\]

Since by construction \(|\rho| < 1\), form Eqs. (C10) and (C11) we can assess the upper limit for the skewness \(\gamma = \xi^{(3)}/c^{(3)}\).

Specifically, we obtain \(|\gamma| \lesssim 1.85\), which is \(\sim 60\%\) larger than what we get for a standard GG distribution, Sec. 2.4.

APPENDIX D: SMALL SCALE LIMIT

For very small separations, \(r \to 0\), the velocity statistics is dominated by pairs inside virialized region, therefore expect the local infall velocity to disappear, which implies \(M_\mu = C_{\mu\mu} = 0\). Note that the latter equality requires \(C_{\mu\sigma} = 0\) as well. By substituting in Eq. (8) we find

\[
\psi = \int d\sigma \frac{\psi}{\sqrt{2\pi\sigma^2}} \exp \left(-\frac{\psi^2}{2\sigma^2} \right), \\
\]

with different expressions for \(\sigma^2\) and \(\mathcal{X}_i\),

\[
\sigma^2 = C_{\psi\psi}\psi^2 + C_{\mu\mu}C_{\psi\psi} - C_{\mu\psi}^2 \\
\mathcal{X}_2 = C_{\psi\psi} \\
\mathcal{X}_1 = -2C_{\mu\psi}(\psi - M_\psi) \\
\mathcal{X}_0 = \left(\psi^2 + C_{\mu\mu}\right)(\psi - M_\psi)^2. \\
\]
where

\[\Psi \equiv \frac{1}{\sqrt{2\pi c}} \exp \left[-\frac{(\sigma - M_{\sigma})^2}{2c_{\sigma}} \right]. \tag{D2} \]

Following the same reasoning behind Eqs. (6) and (7), we define

\[\Psi^\pm (\sigma) \equiv \Psi (-\sigma) + \Psi (\sigma) = \sqrt{\frac{2}{\pi c_{\sigma}}} \exp \left(-\frac{\sigma^2 + M_{\sigma}^2}{2c_{\sigma}} \right) \cosh \left(\frac{M_{\sigma} \sigma}{c_{\sigma}} \right), \tag{D3} \]

so that we can rewrite Eq. (D1) as an integral over a non-negative range,

\[\Psi = \int_0^{\pm \infty} d\sigma \, \Psi^\pm (\sigma) = \frac{\sqrt{2}}{\sqrt{\pi c^2}} \exp \left(-\frac{\sigma^2}{2c^2} \right). \tag{D4} \]

In this small-scale scenario, at any given position in the universe, the pairs contributing to the corresponding local velocity PDF all belong to the same halo. We can therefore infer the variance \(\sigma^2 \), which is the only remaining local parameter, from consideration on the physical properties of a single isolated halo. A useful discussion about this topic can be found in Sheth (1996), in which, under the assumption that halos are virialized and isothermal systems, an expression for \(\sigma = \sigma (M) \) is derived, where \(M \) is the mass of the halo.

If we compare Eq. (D4) with the corresponding expression for the small-scale velocity PDF derived by Sheth, his equation (5), we realize that \(\Psi^\pm \) is essentially the probability \(\mathcal{T} (M) \) that a pair with separation \(r \) belongs to an halo of mass \(M \). More specifically, for any fixed (small) separation \(r \), Sheth (1996) comes to the following integral,

\[\Psi = \int_0^{\pm \infty} dM \frac{\theta (M - M_{\text{min}}) \mathcal{T} (M)}{\sqrt{2\pi\sigma(M)^2}} \exp \left(-\frac{\nu^2}{2\sigma(M)^2} \right) \tag{D5} \]

where \(\theta \) is a step function and \(M_{\text{min}} \) is the minimum halo mass compatible with the separation \(r \). From Eqs. (D4) and (D5) it follows that \(\Psi^\pm \) can be seen as a two-parameter ansatz for the function \(|dM/d\sigma| \theta[M(\sigma) - M_{\text{min}}] \mathcal{T} (M(\sigma)) \). As shown by Sheth (1996), under reasonable physical assumptions, this latter can be computed once a mass function is provided.

A straightforward procedure to include this theoretical prediction for the small-scale limit in our model can be obtained as follows. From Tab. 2 it is easy to see that in the small-scale limit \(\mathcal{P} \) can be expressed as a function of its first two even central moments \(c^{(2)} \) and \(c^{(4)} \),

\[M_{\sigma}^2 = \sqrt{\frac{3}{2} c^{(2)} - \frac{1}{6} c^{(4)}}, \tag{D6} \]

\[c_{\sigma} = c^{(2)} - M_{\sigma}^2. \tag{D7} \]

We then need a theoretical prediction of these two moments. Form Eq. (D5), it follows

\[c^{(n)} = \int_{M_{\text{min}}}^{\pm \infty} dM \, 3^{\frac{n-2}{2}} \sigma(M)^n \mathcal{T} (M) \tag{D8} \]

for \(n = 2, 4 \), which completes the modelling.

It should be noted that if we want to adapt the model introduced in section 2.2 to the small-scale limit just discussed, a decreasing (or even flat, as proposed in Sec. 2.6) profile for the function \(\Phi_{\mu \mu} \) is no longer acceptable. More explicitly, a decreasing profile implies that if \(\lim_{r \to 0} C_{\mu \mu} = 0 \), then \(C_{\mu \mu} = 0 \) at any separation, which means \(C_{\mu \sigma} = 0 \) at any separation as well. A more general profile for the functions \(\Phi \) is then required. The simplest possible improvement is to define a scale \(r_3 \) below which \(\Phi_{\mu \mu} \), more precisely its parallel and perpendicular components, is damped. Since, based on the discussion in Sec. 2.4, we expect this scale to roughly correspond the skewness maximum, from the right panels of Fig. 1A we can argue that \(r_3 \sim 5 h^{-1}\text{Mpc} \).

APPENDIX E: PRECISION OF THE MODEL

For completeness, in Fig. E1 we explicitly show the ratio between the \(\xi(s_1, s_2) \) corresponding to the three models discussed in this work, GQG, GSM and ESM (red, green and blue solid lines in Fig. 3), with respect to the reference one obtained by measuring the velocity PDF directly from the simulations (black dashed lines in Fig. 3). Only \(z = 0 \) is considered, but different redshifts yield similar results. As expected, GQG outperforms GSM and ESM, being percent accurate almost everywhere. The residual small-scale discrepancies can in principle be removed by improving the modelling of the \(\Phi \) functions. We leave this topic to further work.

This paper has been typeset from a TeX/LATEX file prepared by the author.
Figure E1. Colour map of the ratio, at $z = 0$, between the two-dimensional correlation function obtained via GQG (left panels), GSM (central panels) and ESM (right panels) with respect to that obtained by measuring the velocity PDF directly from the simulations, for different tracers as labeled in the figure.