Predicting the Molecular Mechanism of Sini Jia Renshen Decoction in Treating Severe COVID-19 Patients Based on Network Pharmacology and Molecular Docking

Yi Wen Liu1*, Ai Xia Yang2*, Li Lu1 and Tie Hua Huang2

Abstract
Objective: To explore the potential mechanism of Sini jia Renshen Decoction (SJRD) in the treatment of COVID-19 based on network pharmacology and molecular docking.

Methods: The active compounds and potential therapeutic targets of SJRD were collected through the Traditional Chinese Medicine Systems Pharmacology Database (TCMSP). Then a string database was used to build a protein–protein interactions (PPI) network between proteins, and use the David database to perform gene ontology (GO) function enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis on core targets. Then we used Cytoscape software to construct an active ingredients-core target-signaling pathway network, and finally the active ingredients of SJRD were molecularly docked with the core targets to predict the mechanism of SJRD in the treatment of COVID-19.

Results: A total of 136 active compounds, 51 core targets and 93 signaling pathways were selected. Molecular docking results revealed that quercetin, 3,22-dihydroxy-11-oxo-delta(12)-oleanene-27-alpha-methoxycarbonyl-29-oic acid, 18α-hydroxyglycyrrhetic acid, gomisin B and ignavine had considerable binding ability with ADRB2, PRKACA, DPP4, PIK3CG and IL6.

Conclusions: This study preliminarily explored the mechanism of multiple components, multiple targets, and multiple pathways of SJRD in the treatment of COVID-19 by network pharmacology.

Keywords
sini jia renshen decoction, network pharmacology, COVID-19, molecular docking

Received: August 31st, 2021; Accepted: October 22nd, 2021.

Introduction
In December 2019, coronavirus disease 2019 (COVID-19) caused by the SARS-CoV-2 virus broke out in Wuhan, China, and then quickly spread all over the world. SARS-CoV-2 is highly contagious and infectious and belongs to the β genus of coronaviruses, infecting all age groups, but particularly the elderly. The clinical symptoms are mainly fever, dry cough, fatigue, and dyspnea. Severe cases exhibit complications manifested as acute respiratory distress syndrome due to cytokine storm. At present, there is no specific medicine for this disease, but, in China, we use traditional Chinese medicine to treat COVID-19. Chinese medicine accounted for 91.5% of the total treatment, and its total effective rate reached over 90%. Traditional Chinese Medicine (TCM) has shown its unique advantages in being able to participate in the prevention, treatment, and rehabilitation of COVID-19 patients.

Sini Jia Renshen Decoction (SJRD) comes from “Treatise on Febrile Diseases”, which is composed of Radix Aconiti Lateralis Praeparata (Fuzi), Radix Ginseng (Renshen), Rhizoma Zingiberis (Ganjiang), and Radix Glycyrrhizae (Gancao). Among them, Radix Aconiti Lateralis Praeparata is the principal drug, being pungent and sweet in flavor and very hot and toxic in nature, being good at supporting the congenital true fire of Ming Men, promoting the circulation of Qi and blood.

1 School of Pharmacy, Huabei University of Chinese Medicine, Wuhan, China
2 Department of Pharmacy, Wuhan No.1 Hospital, Wuhan, China
* These authors made equal contribution to this work.

Corresponding Author:
Yi Wen Liu, School of Pharmacy, Huabei University of Chinese Medicine, Wuhan 430065, China.
Email 835578516@qq.com
throughout the twelve regular channels, used raw to act on the whole body rapidly to warm up Yang-Qi and dispel cold. Radix Ginseng is powerfully reinforcing original qi, tonifying zang-organ qi, promoting the generation of body fluid to alleviate thirst. Rhizoma Zingiberis warming the Yang-Qi of the middle-jiao to remove cold in the interior, assisting Radix Aconiti Lateralis Praeparata in promoting the generation of Yang-Qi, and Radix Glycyrrhizae detoxicating and relieving the drastic and pungent nature of Rhizoma Zingiberis and Radix Aconiti Lateralis Praeparata. The combination of all medicines has the effect of regaining yang and saving yin, promoting body fluid and nourishing qi, warming the kidney and dispelling cold. Therefore, it has been recommended by many provincial programs and used in the treatment of severe COVID-19 patients and achieved good results.

With the in-depth study of modern pharmacology, many effective ingredients of Chinese medicine have been discovered. Radix Aconiti Lateralis Praeparata contains a large number of monoester alkaloids, which have anti-inflammatory, analgesic, cardiac, anti-shock, and anti-anoxia effects, and have good effects in cardiovascular diseases. Rhizoma Zingiberis has the effects of strengthening the heart, lowering lipids, is anti-inflammatory, analgesic, and antioxidant, containing various chemical components, among which the volatile oil has good curative effects in cerebral ischemia, coagulation, and thrombosis. Radix Glycyrrhizae has obvious adrenal cortex hormone-like effects, can lower blood pressure, is anti-inflammatory, and can enhance immunity; the drug contains triterpene saponins. Radix Ginseng can increase the excitability of the nervous system, increase the brain’s oxygen intake, increase myocardial contractility, protect myocardial function, adjust the state of arrhythmia, and expand blood vessels; the plant material contains ginsenosides and a small amount of volatile oil. Radix Ginseng has a good effect in cardiovascular diseases. A combination of various drugs can invigorate qi and blood, warm the spleen and stomach, nourish the heart and calm the nerves, restore yang and yin, and effectively improve the symptoms of heart rate disorders, chest tightness and shortness of breath. However, its current mechanism of action in the treatment of COVID-19 is not very clear. The motivation of this study was to use network pharmacology to analyze the ingredients and mechanism of action of SJRD, which has been clinically proved to have a therapeutic effect on COVID-19, and to confirm the relevant results by molecular docking. This not only provides a further theoretical basis for the SJRD treatment of COVID-19, but also contributes to the development of new drugs.

Network pharmacology includes the technology and content of multiple disciplines such as systems biology, multi-directional pharmacology and computational biology. It can explore the connection between drugs and diseases from the overall perspective. The holistic, systematic and comprehensive nature of network pharmacology fits well with the characteristics of multiple components, multiple targets, and multiple pathways of traditional Chinese medicine. Therefore, network pharmacology is used to study the mechanism of action of traditional Chinese medicinal compounds. This study uses network pharmacology and molecular docking technology to understand the molecular mechanism of SJRD in treating convalescent COVID-19, to explore the core targets, pathways and active ingredients of SJRD in the treatment of COVID-19, and provide new ideas for the prevention and treatment of COVID-19 by TCM. The specific process is shown in Figure 1.

2. Materials and Methods

2.1 Screening for Drug Targets of SJRD

We used the TCMSP database (http://tcmspw.com/tcmsp.php) to retrieve the chemical constituents of Radix Ginseng, Radix Aconiti Lateralis Praeparata, Rhizoma Zingiberis, and Radix Glycyrrhizae in SJRD. Then these active ingredients were screened by the two ADME attribute values: oral bioavailability (OB) ≥ 30%, and drug-likeness (DL) ≥ 0.185. The next step was to summarize the protein targets of these active ingredients. For some active ingredients whose target is not recorded in TCMSP, we used Swiss Target Prediction (http://www.swisstargetprediction.ch/) to predict their protein targets. The obtained protein targets were normalized in the Uniprot database (https://www.uniprot.org). Finally, we summarized and deduplicated the drug targets of SJRD.

2.2 Acquired Targets for COVID-19

With COVID-19 as the key word, and using DisGeNET (https://www.disgenet.org/), TTD (http://db.idrblab.net/tdt/), OMIM (http://www.omim.org), Genecards (https://www.genecards.org/), and DRUGBANK (https://www.drugbank.ca/) databases, we respectively queried the targets of COVID-19. We then intersected the drug targets and the disease targets by R language, and drew the Venn diagram. Next, the core targets were submitted to the STRING database (https://string-db.org/). We selected multiple protein analyses and set the organism to Homo sapiens. By setting the minimum required interaction score to medium confidence (0.400), a PPI network was established about SJRD and COVID-19 target proteins. We then imported it into Cytoscape 3.8.0 for visualization.
2.4 Gene Ontology and KEGG Pathway Enrichment Analysis

Through the DAVID database (https://david.ncifcrf.gov/), the core targets acquired in the previous step underwent GO function enrichment analysis and KEGG pathway enrichment analysis\(^{17,18}\). We used Omicshare tool (http://www.omicshare.com) to draw the bubble chart of the KEGG pathway and GO enrichment analysis bar chart.

2.5 Construction of Active Ingredients-Disease Target-KEGG Pathway Network

In order to clarify the relationship between the active ingredients of SJRD, the targets of COVID-19, and the pathway of action, Cytoscape 3.8.0 was used to establish a network of active ingredients of SJRD-targets of COVID-19-action pathways. In this network diagram, the point (Node) represents the components, targets and pathways, and the edge (Edge) represents the connection between them. Then we analyzed the network topology parameters of the active ingredients and disease targets. Using Degree, Betweenness and Closeness as referenced indicators, we chose these parameters to determine the core targets and the main active ingredients that play a role\(^{19}\).

2.6 Molecular Docking Verification

The RSCB PDB database (http://www.rcsb.org/) was used to find the PDB structure of the core targets\(^{20}\), and TCMSP was used to search for the MOL2 structure of the active ingredients. We used the DISCOVERY STUDIO platform for online molecular docking. The binding strength between the
core targets of COVID-19 and the active ingredients of SJRD were judged by the Dockscore21.

3. Results

3.1 Active Ingredients of SJRD and Their Corresponding Targets

After screening by the two restrictive conditions of oral bioavailability (OB) and drug-likeness (DL), Radix Aconiti Lateralis Praeparata had 21 active ingredients, Rhizoma Zingiberis 5, Radix Ginseng 22, and Radix Glycyrrhizae 92. We summed up the active ingredients of the four medicines in which 136 active ingredients were obtained after removing the duplication. At the same time, we acquired 650 drug targets after removing the duplication. Detailed information of some of the active compounds are shown in Table 1.

3.2 Targets of COVID-19

In the Genecards database, the highest score for a target was 54, and the lowest was 1. Therefore, a score of ≥ 10 was set as the disease target of COVID-19. Next, the disease targets collected in the four databases were summarized and deduplicated. Finally, we obtained 142 disease targets.

3.3 Construction of PPI Network of Target Proteins of SJRD for the Treatment of COVID-19

We took the intersection between the targets of the active ingredients and the targets of COVID-19, and used the R language to draw the Venn diagram (Figure 2). We obtained 51 core targets. When these were visually analyzed by Cytoscape 3.8.0, the calculation rules of this software were used to analyze the degrees of nodes. The degree is the most direct measure of node centrality in network analysis. The greater the degree of a node, the higher its degree of centrality, and the more important the node is in the network. The results are shown in Figure 3.

3.4 GO Function Enrichment Analysis and KEGG Pathway Enrichment Analysis

Through GO function enrichment analysis, 289 GO entries were obtained with the threshold of $P < .05$. Among them, there were 235 biological process (BP) entries, 19 cellular component (CC) entries, and 35 molecular function (MF) entries. The first 10 of these were drawn into a bar graph, as shown in Figure 4. The larger the bubble in the figure, the greater the number of genes enriched in this pathway. The higher the ranking, the more likely it is being the main biological function and mechanism of SJRD in the treatment of COVID-19. BP mainly includes inflammatory response, cellular response to lipopolysaccharide, positive regulation of the nitric oxide biosynthetic process and immune response. CC mainly includes extracellular space, the external side of the plasma membrane, lysosome, and extracellular region. MF mainly includes cytokine activity, norepinephrine binding, receptor binding and epinephrine binding.

KEGG pathway analysis showed that there were 93 pathways ($P < .05$), including those in measles, Chagas disease (American trypanosomiasis), amoebiasis, Toll-like receptor signaling pathway, malaria, chemokine signaling pathway, HIF-1 signaling pathway, Jak-STAT signaling pathway, cytokine-cytokine receptor interaction, and others. It was not difficult to find that they were mainly involved in such important pathological processes as virus infection, immune cell differentiation, and signal transduction pathways. The importance of these processes in COVID-19 is self-evident, and many studies have confirmed the correlation between these pathways and the corresponding symptoms of COVID-19. A bubble plot of the 20 most significant KEGG pathways are shown in Figure 5. Among them, the color depth in the bubble chart represents the P value, the darker and smaller, the more important.

3.5 Construction of “Components-Targets-Pathways” Network

Using Cytoscape 3.8.0, 40 potential components, 51 candidate targets, and the top 20 KEGG pathways were collected to construct a “C-T-P” network. As shown in Figure 6, purple nodes represent KEGG pathways, red nodes represent candidate, and purplish red nodes represent target components. The first 10 components with higher Degrees, Betweenness and Closeness were selected as the important ligands in the subsequent analysis. The top 10 components were quercetin, celabenzine, 3,22-dihydroxy-11-o xo-delta (12)-oleanene-27-alpha-methoxycarbonyl-29-oic acid, gomisin B, ignavine, 18alpha-hydroxyglycyrrhetic acid, ginsenoside Rg5_qt, (R)-norcoelaurine, kaempferol, and frutinone A. It is generally believed that the importance of the role of a target between components and pathways are positively associated with its degree. Therefore, according to the ranking of the targets’ degrees, the top 10 targets were selected. These were ADRB2, PRKACA, DPP4, F2, PIK3CG, TNF, PIK3CD, IL6, TLR4 and IFNG. Their specific network topology parameters are shown in Table 2 and Table 3.

3.6 Results of Molecular Docking Between Active Ingredients and Core Targets

The core targets were molecularly docked with the main active ingredients. The likelihood of the ligand interacting with the receptor is determined by the DockScore between them. The results of molecular docking are shown in Table 4, and the details in Figure 7. The bigger the DockScore, the more stable is the binding between the ligand and the receptor, and the greater the
Drug	Active ingredient	OB(%)	DL	Coenzyme	
Fuzi	MOL002211 11,14-Eicosadienoic acid	39.99	0.2	FZ1	
	MOL002392 Delphin	57.66	0.57	FZ2	
	MOL002394 Demethyldelavaine A	34.52	0.64	FZ4	
	MOL002395 Demethyldelavaine B	34.52	0.64	FZ5	
	MOL002396 Deoxyandrographolide	56.38	0.31	FZ6	
	MOL002397 Karakoline	51.73	0.73	FZ7	
	MOL002398 Karanjin	51.73	0.73	FZ8	
	MOL002399 Neokadsuranic acid B	43.11	0.85	FZ9	
	MOL002400 2,7-Dideacetyl-2,7-dibenzoyl-taxayunnanine F	39.43	0.38	FZ10	
	MOL002401 Benzoylnapelline	34.06	0.53	FZ11	
	MOL002402 6-Demethyldesoline	51.87	0.66	FZ12	
	MOL002403 Deoxyaconitine	30.96	0.24	FZ13	
	MOL002404 (R)-Norcoclaurine	82.54	0.21	FZ14	
	MOL002405 Ignavine	84.08	0.25	FZ15	
	MOL002406 Isotalatizidine	50.82	0.73	FZ16	
	MOL002407 Jesaconitine	33.41	0.19	FZ17	
	MOL002408 (3R,8S,9R,10R,13S,14R,17S)-3-Hydroxy-4,4,9,13,14-pentamethyl-17-[(E,2R)-6-methyl-7-[(2R,3R,4S,5S,6R)-34,5-trihydroxy-6-[(2R,3R,4S,5S,6R)-34,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxyhept-5-en-2-yl-1,2,3,7,8,10,12,15,16,17-decahydr	41.52	0.22	FZ18	
	MOL002409 Carnosin B	38.16	0.78	A	
	MOL000358 Sitosterol	36.91	0.75	A	
	MOL002411 Mairin	55.38	0.78	GC3	
	MOL000239 Jaranol	50.83	0.29	GC5	
	MOL002565 Medicarpin	49.22	0.34	GC6	
	MOL000354 Isorhamnetin	49.60	0.31	GC7	
	MOL003656 Lupiwighteone	51.64	0.37	GC8	
	MOL003896 7-Methoxy-2-methyl isoavone	42.56	0.2	GC9	
	MOL000392 Formononetin	69.67	0.21	GC10	
	MOL000417 Calycosin	47.75	0.24	GC11	
	MOL000422 Kaempferol	41.88	0.24	B	
	MOL004328 Naringenin	59.29	0.21	GC12	
	MOL004805 (2S)-2-[4-Hydroxy-3-(3-methylbut-2-enyl)phenyl]-8,8-dimethyl-2,3-dihydropyrano[2,3-f]chromen-4-one	31.79	0.4	GC13	
	MOL004806 Euchrenone	30.29	0.57	GC14	
	MOL004808 Glyasperin B	65.22	0.54	GC15	
	MOL004810 Glyasperin F	75.84	0.54	GC16	
	MOL004811 Glyasperin C	45.56	0.34	GC17	
	MOL004814 Isotrifoliol	31.94	0.42	GC18	
	MOL004815 (E)-1-(2,4-Dihydroxyphenyl)-3-(2,2-dimethylchromen-6-yl)prop-2-en-1-one	39.62	0.35	GC19	
	MOL004820 Kanzonols W	50.48	0.52	GC20	
	MOL004824 (2S)-6-(2,4-Dihydroxyphenyl)-2-(2-hydroxypropan-2-yl)-4-methoxy-2,3-dihydrofuro[3,2-g]chromen-1-one	60.25	0.53	GC21	
	MOL004827 Semilicoisoflavone B	44.72	0.55	GC22	
	MOL004828 Glepidotin A	64.46	0.56	GC23	
	MOL004829 Glepidotin B	64.30	0.56	GC24	
	MOL004833 Phaseolinisoflavone	32.01	0.45	GC25	
	MOL004835 Glypallichalcone	61.6	0.19	GC26	
Drug Code	Active Ingredient	OB (%)	DL (%)	Codename	
-----------	------------------	--------	--------	----------	
MOL004838	8-(6-Hydroxy-2-benzofuranyl)-2,2-dimethyl-5-chromenol	58.44	0.38	GC27	
MOL004841	Licochalcone B	76.76	0.19	GC28	
MOL004848	Licochalcone G	69.52	0.47	GC29	
MOL004849	3-(2,4-Dihydroxyphenyl)-8-(1,1-dimethylprop-2-enyl)-7-hydroxy-5-methoxy-coumarin	59.62	0.43	GC30	
MOL004855	Licoricone	63.58	0.47	GC31	
MOL004856	Gancaonin A	51.08	0.40	GC32	
MOL004857	Gancaonin B	48.79	0.45	GC33	
MOL004860	Licorice glycoside E	32.89	0.27	GC34	
MOL004863	3-(3,4-Dihydroxyphenyl)-5,7-dihydroxy-8-(3-methylbut-2-enyl)chromone	66.37	0.41	GC35	
MOL004864	5,7-Dihydroxy-3-(4-methoxyphenyl)-8-(3-methylbut-2-enyl)chromone	30.49	0.41	GC36	
MOL004866	2-(3,4-Dihydroxyphenyl)-5,7-dihydroxy-6-(3-methylbut-2-enyl)chromone	44.15	0.41	GC37	
MOL004879	Glycyrin	52.61	0.47	GC38	
MOL004882	Licocoumarone	33.21	0.36	GC39	
MOL004883	Licoisoflavone	41.61	0.42	GC40	
MOL004884	Licoisoflavone B	38.93	0.55	GC41	
MOL004885	Licoisoflavanone	52.47	0.54	GC42	
MOL004891	Shinpterocarpin	80.30	0.73	GC43	
MOL004903	Liquiritin	65.69	0.74	GC44	
MOL004905	3,22-Dihydroxy-11-oxo-delta(12)-oleanene-27-alpha-methoxycarbonyl-29-oic acid	34.32	0.55	GC45	
MOL004907	Glyzaglabrin	61.07	0.35	GC46	
MOL004908	Glabridin	53.25	0.35	GC47	
MOL004910	Glabranin	53.25	0.31	GC48	
MOL004911	Glabrene	53.25	0.31	GC49	
MOL004912	Glabrone	53.25	0.31	GC50	
MOL004913	1,3-Dihydroxy-9-methoxy-6-benzofurano[3,2-c]chromenone	48.14	0.43	GC51	
MOL004914	1,3-Dihydroxy-8,9-dimethoxy-6-benzofurano[3,2-c]chromenone	62.90	0.53	GC52	
MOL004915	Eurycarpin A	43.28	0.37	GC53	
MOL004916	Glycyroside	16.76	0.79	GC54	
MOL004917	(-)-Medicocarpin	40.99	0.95	GC55	
MOL004918	2,3,4,7-Tetrahydroxy-3-methoxy-5-(3-methylbut-2-enyl)chroman-4-one	36.57	0.32	GC56	
MOL004919	Isoglycyrol	44.70	0.84	GC57	
MOL004920	Isolicoflavonol	45.11	0.42	GC58	
MOL004923	HMO	38.37	0.21	GC59	
MOL004924	1-Methoxyphaseollidin	69.98	0.64	GC60	
MOL004925	Quercetin	46.45	0.37	GC61	
MOL004926	3′-Hydroxy-4′-O-Methylglabridin	43.71	0.57	GC62	
MOL004927	3,4-Dihydroxy-5-(3-methylbut-2-enyl)chroman-4-one	46.70	0.30	GC63	
MOL004928	6-Prenylated eriodictyol	39.22	0.41	GC64	
MOL004929	7,2′,4′-Trihydroxy-5-methoxy-3-arylcoumarin	83.71	0.27	GC65	
MOL004930	3′-Methoxyglabridin	46.16	0.57	GC66	
MOL004932	2-[3(R)-8,8-Dimethyl-3,4-dihydro-2H-pyrano[6,5-f]chromen-3-yl]-5-methoxyphenol	36.21	0.52	GC67	
MOL004933	Inflacoumarin A	39.71	0.33	GC68	
MOL004934	Icos-5-enoic acid	30.70	0.2	GC69	
MOL004935	Icos-5-enoic acid	30.70	0.2	GC70	
MOL004936	Kanzonol F	32.47	0.89	GC71	
MOL004937	6-Prenylated eriodictyol	39.22	0.41	GC72	
MOL004938	7,3,4-Trihydroxy-5-methoxy-3-arylcoumarin	83.71	0.27	GC73	
Drug	MOLID	Active ingredient	OB(%)	DL	Codename
-------	--------	--	-------	-----	----------
MOL04991	7-Acetoxy-2-methylisorflavone	38.92	0.26	GC75	
MOL04993	8-Prenylated eriodictyol	53.79	0.4	GC76	
MOL04996	Gadebic acid	50.7	0.2	GC77	
MOL05000	Vestitol	74.66	0.21	GC78	
MOL05001	Garaconin G	60.44	0.39	GC79	
MOL05003	Licoagrocarpin	50.1	0.78	GC80	
MOL05007	Glyasperins M	58.81	0.58	GC81	
MOL05008	Glycyrrhiza flavonol A	72.67	0.59	GC82	
MOL05012	Licoagrosoflavone	41.28	0.6	GC83	
MOL05013	18α-Hydroxyglycyrrhetic acid	57.28	0.49	GC84	
MOL05016	Odoratin	41.16	0.71	GC85	
MOL05017	Phaseol	49.95	0.3	GC86	
MOL05018	Xambiona	78.77	0.58	GC87	
MOL05020	Dehydroglyasperins C	54.85	0.87	GC88	
MOL05098	Quercetin	53.82	0.37	GC89	
MOL02464	1-Monoholokin	46.43	0.28	GC90	
MOL02501	[[(1S)-3-[(E)-But-2-enyl]-2-methyl-4-oxo-1-cyclopent-2-enyl]	37.18	0.3	GJ1	
MOL02514	Sexanguererin	62.86	0.3	GJ3	
MOL00358	Beta-sitosterol	36.91	0.75	C	
MOL00359	Sitosterol	36.91	0.75	A	
MOL00379	Diop	43.59	0.39	RS1	
MOL00449	Stigmasterol	43.83	0.76	RS2	
MOL00358	Beta-sitosterol	36.91	0.75	C	
MOL03648	Inermin	65.83	0.54	RS3	
MOL00422	Kaempferol	41.88	0.24	B	
MOL04492	Chrysanthenaxanthin	38.72	0.58	RS4	
MOL05308	Aposiopolamine	66.65	0.22	RS5	
MOL05314	Celabenzine	101.88	0.49	RS6	
MOL05317	Deoxyharringtonine	39.27	0.81	RS7	
MOL05318	Dianthramine	40.45	0.2	RS8	
MOL05320	Arachidonate	45.57	0.2	RS9	
MOL05321	Frutinone A	65.9	0.34	RS10	
MOL05344	Ginsenoside rh2	36.32	0.56	RS11	
MOL05348	Ginsenoside-Rh4_qt	31.11	0.78	RS12	
MOL05356	Girinimbin	61.22	0.31	RS13	
MOL05357	Gomisin B	31.99	0.83	RS14	
MOL05360	Malkangunin	57.71	0.63	RS15	
MOL05376	Panaxadiol	33.09	0.79	RS16	
MOL05384	Suchalactone	57.52	0.56	RS17	
MOL05399	Alchorin_aq	36.91	0.75	RS18	
MOL05401	Ginsenoside Rg5_qt	39.56	0.79	RS19	
MOL00787	Fumarine	59.26	0.83	RS20	
Quercetin, gomisin B, 18α-hydroxyglycyrrhetic acid, ignavine and 3,22-dihydroxy-11-oxo-delta(12)-oleanene-27-alpha-methoxycarbonyl-29-oic acid all had stable binding abilities with IL6, DPP4, PIK3CG, PRKACA and ADRB2.

4. Discussion

COVID-19 belongs to the category of “epidemic” in traditional Chinese medicine. It is highly infectious, and easy to spread. SARS-CoV-2 is the pathogen that causes COVID-1922-24. It is an enveloped, single-stranded RNA virus25, which can enter cells through at least two different ways, one of which is induced by TMPRSS2 on the cell surface, and the other which is mediated by the ACE2 receptor pathway26. Symptoms vary greatly after the host is infected, ranging from asymptomatic to multiple organ failure27,28. A variety of studies have shown that29,30 SARS-COV-2 can make the virus actively replicate after entering the cell, triggering a storm of cellular inflammatory factors, such as IL-6, TNF, IL-2, IL-7 and other inflammations. The factors work together to destroy alveolar type II epithelial cells, damage lung tissue and destroy the blood barrier, eventually leading to respiratory failure and
damage to multiple organs. Traditional Chinese medicine has the unique advantages of holistic treatment and multi-target intervention.

In treatment, great attention should be paid to the connection between the lungs and other organs. Studies have shown that SJRD has a better effect on respiratory diseases with impaired lung function.

This study used the “component-target-pathway” network to explore the potential active components, targets and anti-COVID-19 mechanisms of SJRD; 9 active ingredients were significantly related to COVID-19. Quercetin has anti-inflammatory, antioxidant, antiviral, and protective effects on liver, kidney, and heart, and some studies have shown that it may regulate multiple signaling pathways by inhibiting the activity of recombinant human angiotensin-converting enzyme 2 (ACE2), and then play a therapeutic effect on COVID-19\(^3\). Some studies demonstrated that quercetin can interfere with various stages of the coronavirus entry and replication cycle such as PLpro, 3CLpro and NTPase/helicase\(^3\). It can also down-regulate the Jak-STAT signal pathway to improve the gas exchange function of the lungs, reduce the release of inflammatory mediators, and reduce lung injury. This is consistent with the results of the enrichment analysis of the KEGG pathway in our study\(^35\). At the same time, quercetin has a high affinity for 3-chymotrypsin-like protease (3CLpro), which is the receptor protein of SARS-CoV-2 like ACE2\(^36\). Ginsenoside Rg5 ameliorates lung inflammation in mice by inhibiting the binding of LPS to toll-like receptor-4 on macrophages\(^37\). Kaempferol is a flavonoid that has various pharmacological effects such as anti-cancer, anti-oxidation, anti-virus, anti-inflammatory, anti-bacterial, and immune enhancement\(^38\). The anti-inflammatory activity of kaempferol may be mediated by several mechanisms of action. The activation of nuclear factor kappa B (NF-kB) increases the expression of pro-inflammatory cytokines, chemokines and enzymes (e. g. TNF-\(\alpha\), IL-1, IL-6, IL8, COX-2, iNOS)\(^39\). Gomisin B has a variety of pharmacological effects, such as anti-asthma, anti-infection, protection of liver and heart, and can also

Figure 4. GO enrichment analysis of SJRD in the treatment of COVID-19.
Figure 5. KEGG pathway enrichment analysis of SJRD in the treatment of COVID-19.

Figure 6. SJRD-COVID-19 disease target-action pathway.
reduce the inflammatory response of lung injury \(^\text{40}\). The above evidence suggests that various components in SJRD may play anti-inflammatory and anti-virus roles by inhibiting the binding of SARS-CoV-2 to receptor proteins.

Through PPI network analysis, we found that IL4, IL6, IL10, IL-1\(\beta\), and TNF were the main targets of SJRD in the treatment of COVID-19. IL4, IL6, IL10 and IL-1\(\beta\) belong to the interleukin (IL) family. Interleukin −4 (IL-4), a pro-inflammatory cytokine, has been found to use the receptor IL-4R and is seen to activate quite common pathways in signaling. The use of Janus kinase (JAKs) by IL-4 has also been seen. A variety of other different signaling molecules were found to be activated, which play an essential role in regulating the proliferation induced by IL-4\(^\text{41}\). IL-6 is an emerging biomarker for COVID-19. In the study by Chen et al.\(^\text{52}\), 52% (51/99) of patients had elevated IL-6 levels at admission\(^\text{42}\). Increased IL-6 levels have been associated with increased risk of death\(^\text{43}\), and a gradual increase during hospitalization has been reported in non-survivors\(^\text{44}\). The national version of the diagnosis and treatment plan (eighth edition) also mentioned that the early warning indicators of severely/critically ill patients’ condition were deteriorated and progressively lower peripheral blood lymphocyte counts, or gradually increasing levels of peripheral blood inflammatory markers such as interleukin (IL)-6, C reactive protein (CRP), and ferritin. It is recommended to use cytokine monitoring equipment to monitor the treatment of patients to improve the cure rate and reduce the mortality rate\(^\text{45}\). A reduction in IL-1\(\beta\) activity would reduce IL-6 production\(^\text{46}\). IL-10 might constitute a potential target to reduce COVID-19 mortality by attempting to block its pathological proinflammatory function\(^\text{47}\). TNF is the main cytokine that mediates inflammation and innate immunity. Overexpression causes cytokine storm, dysfunction of cytokines, and disrupts the immune balance\(^\text{48}\).

GO analysis shows that the targets of SJRD in the treatment of COVID –19 are mainly involved in inflammatory response, cellular response to lipopolysaccharide, positive regulation of the nitric oxide biosynthetic process, immune response, neutrophil chemotaxis, response to drug, and other immune-related biological processes. KEGG analysis results show that these targets are mainly enriched in cytokine-cytokine receptor interaction, JAK-STAT signaling pathway, chemokine signaling...
pathway, influenza A, measles, malaria, Toll-like receptor signaling pathway, TNF signaling pathway and HIF-1 signaling pathway. Cytokines are a class of small molecular proteins with a wide range of biological activities synthesized and secreted by a variety of tissue cells. They usually bind to corresponding receptors to regulate cell-cell interactions, thereby regulating the host of innate or adaptive immune responses, defense procedures and biological processes, such as cell growth and differentiation 49-51. JAK-STAT is a signal transduction pathway stimulated by cytokines, which mainly plays an important role in cell proliferation, differentiation, apoptosis and immune regulation. Luo 52 explored the potential and mechanism of action of targeting the JAK-STAT signaling pathway in COVID-19, and believed that JAK inhibitors have considerable theoretical advantages for the treatment of CRS in COVID-19. The main function of chemokines is to recruit white blood cells to the site of infection, trigger an inflammatory immune response, and resist the infection of the body by microorganisms 53. The chemokine signaling pathway mainly regulates the body’s immune response by activating downstream JAK-STAT, PI3-Akt and other signaling pathways 54.

For molecular docking, corresponding protein structures were obtained from the PDB database. Then, the 3-dimensional (3D) structure of the target proteins and the components were subjected to molecular docking using the Discovery Studio 2016 client. From the protein structure file, the water molecules, hydrogen bonds, and proto-ligands were omitted. Specific details, including the docking fraction, are presented in Table 4. Two dimensional and 3D views of the protein and the docking component are shown in Figure 7. To assess the quality of docking between the component and protein, a Dock Score of >70 was considered as effective binding. Among these, ADRB2 and ignavine exhibited the strongest binding, having a Dock Score of 118.335. Overall, the corresponding docking scores suggest effective binding between the active components and key targets. They also suggest that the prediction results of network pharmacology are reliable and accurate.

Traditional Chinese medicine plays an important role in COVID-19 treatment. However, because of too many ingredients in TCM and the low content of some effective medicinal substances, the short-term efficacy of TCM is limited, which also limits its global acceptance. With the current research on TCM, it is difficult to determine a manner in which TCM can be adapted for local conditions, find TCM prescriptions for symptomatic treatment, and to discover the specific active substances to form a reasonable combination of multicomponents. At present, the best solution for this stubborn epidemic is early protection, early diagnosis, early isolation, and early treatment. Rational use of TCM, and COVID-19 treatment with a combination of TCM and Western medicine may be the most effective measure, and may also become an effective method to control the epidemic quickly.

Table 4. The Docking Results of the Main Active in Ingredients and the Main Core Target Molecules.

GENE	Ingredient	DockScore
ADRB2(2R4S)	Quercetin	87.8028
ADRB2(2R4S)	18ε-Hydroxyglycyrrhetic acid	112.32
ADRB2(2R4S)	3,22-Dihydroxy-11-oxo-delta(12)-oleanene-27-alpha-methoxycarbonyl-29-oic acid	114.338
ADRB2(2R4S)	Gomisin B	72.9776
ADRB2(2R4S)	Ignavine	118.335
PRKACA(4WB6)	Quercetin	109.587
PRKACA(4WB6)	18ε-Hydroxyglycyrrhetic acid	98.9555
PRKACA(4WB6)	3,22-Dihydroxy-11-oxo-delta(12)-oleanene-27-alpha-methoxycarbonyl-29-oic acid	108.004
PRKACA(4WB6)	Gomisin B	77.168
PRKACA(4WB6)	Ignavine	123.489
DPP4(3Q8 W)	Quercetin	107.949
DPP4(3Q8 W)	18ε-Hydroxyglycyrrhetic acid	88.3508
DPP4(3Q8 W)	3,22-Dihydroxy-11-oxo-delta(12)-oleanene-27-alpha-methoxycarbonyl-29-oic acid	108.914
DPP4(3Q8 W)	Gomisin B	74.503
DPP4(3Q8 W)	Ignavine	129.893
PIK3CG(7JWZ)	Quercetin	107.933
PIK3CG(7JWZ)	18ε-Hydroxyglycyrrhetic acid	93.7842
PIK3CG(7JWZ)	3,22-Dihydroxy-11-oxo-delta(12)-oleanene-27-alpha-methoxycarbonyl-29-oic acid	103.599
PIK3CG(7JWZ)	Gomisin B	74.7507
PIK3CG(7JWZ)	Ignavine	126.29
IL6(4O9H)	Quercetin	102.569
IL6(4O9H)	18ε-Hydroxyglycyrrhetic acid	99.0245
IL6(4O9H)	3,22-Dihydroxy-11-oxo-delta(12)-oleanene-27-alpha-methoxycarbonyl-29-oic acid	100.665
IL6(4O9H)	Gomisin B	72.2342
IL6(4O9H)	Ignavine	117.362
Figure 7. Detailed view of molecular docking.

A. ADRB2 protein—18α-Hydroxyglycyrrhetic acid
B. PRKACA protein—Quercetin
C. DPP4 protein—3,22-Dihydroxy-11-oxo-delta(12)-oleanene-27-alpha-methoxyxycarbonyl-29-oic acid
D. PKCδG protein—Gomisin B
E. IL-6 protein—Igmatine
pharmacology and molecular docking. From the research results, it can be seen that SJRD can exert its curative effect through the synergistic effect of multicomponents, multitargets, and multi-pathways in the treatment of diseases. However, network pharmacology is still in the early stages of development and has many problems. First, appropriate computing software has not been developed for network pharmacology. Further, screening, integration, and processing of data is another problem. The data on various drugs, genes, proteins, and others, are not comprehensive. The databases on Chinese herbal medicines, proprietary Chinese medicines, and TCM are incomplete, and their accuracy and integrity have not been verified. Network pharmacology uses computer network screening to achieve target selection, and many results do not have enough experimental data support. The known compound targets do not completely correspond to the complex mechanism of TCM formulae. Because of the limitations of network pharmacology and molecular docking, experimental studies can be performed with regard to material basis, pharmacodynamics, and pathway verification at later stages to provide the theoretical and experimental basis for the use of SJRD in the treatment of COVID-19. In addition, future studies can be conducted with regard to drug development and the use of SJRD as a reference for dealing with invasions of other stubborn viruses.

5. Conclusion

COVID-19 seriously threatens people’s health and reduces the quality of life. This study used the “component-target-pathway” network to analyze the active ingredients of SJRD against COVID-19 and to understand its pharmacological mechanism. SJRD may be able to treat the new type of coronavirus pneumonia by acting on the above pathways and targets, but it needs to be further confirmed by animal experiments. The results of this study provide a strong theoretical basis for further systematic experimental research on the anti-COVID-19 effect of SJRD, and provide theoretical guidance for its clinical application.

Conflict of Interests

The authors declare that they have no competing interests.

Availability of Data and Materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Ethical Approval

Ethical Approval is not applicable for this article.

Statement of Human and Animal Rights

This article does not contain any studies with human or animal subjects.

Statement of Informed Consent

There are no human subjects in this article and informed consent is not applicable.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the Health Commission of Hubei Province (grant number ZY2019Z011).

ORCID iDs

Yi Wen Liu https://orcid.org/0000-0001-8264-5934
Li Lu https://orcid.org/0000-0003-2520-6390

Trial Registration

Not applicable, because this article does not contain any clinical trials.

References

1. Chang L, Yan Y, Wang L. Coronavirus disease 2019: coronaviruses and blood safety. Trans R Soc Trop Med Hyg. 2020;114(2):141-143. doi:10.1093/trstmh/trz304
2. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet. 2020;395(10223):497-506. doi:10.1016/S0140-6736(20)30183-5
3. Huang M, Yang FW, Zhang JH, et al. ZHANG Boli: some experiences and reflections on the anti-epidemic process of traditional Chinese medicine. Tianjin J Tradit Chin Med. 2020;37(07):722-725
4. Yu MK, Cai QY, Liang CH, et al. An analysis of the traditional Chinese medicine intervention for COVID-19. J Tradit Chin Med. 2020;61(05):383-387.
5. Li S, Zhang B. Traditional Chinese medicine network pharmacology: theory, methodology and application. Chin J Nat Med. 2013;11(2):110-120. doi:10.1016/s1875-5364(13)60037-0
6. Zhou Z, Chen B, Chen S, et al. Applications of network pharmacology in traditional Chinese medicine research. Evid Based Complement Alternat Med. 2020;2020:1646905. doi:10.1155/2020/1646905
7. Ru J, Li P, Wang J, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform. 2014;6(13). doi:10.1186/1758-2946-6-13
8. Tian S, Li Y, Wang J, et al. 2019-nCoV. Evidence-based analysis of traditional Chinese medicine: prediction of drug-likeness using machine learning approaches. Mol Pharm. Jun 2012;9(6):2875-2886. doi:10.1021/mp300444g
9. Tian S, Wang J, Li Y, et al. Drug-likeness analysis of traditional Chinese medicine using machine learning approaches. Mol Pharm. Oct 1 2012;9(10):2875-2886. doi:10.1021/mp300198d
10. Daina A, Michelin O, Zoete V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. Jul 2 2019;47(W1):W357-W364. doi:10.1093/nar/gkz382

11. UniProt C. Uniprot: a worldwide hub of protein knowledge. Nucleic Acids Res. Jan 8 2019;47(D1):D506-D515. doi:10.1093/nar/gky1049

12. Amberger JS, Bocchini CA, Schiettecatte F, et al. OMIM.Org: online mendelian inheritance in Man (OMIM[R]), an online catalog of human genes and genetic disorders. Nucleic Acids Res. Jan 2015;43(Database issue):D789-D798. doi:10.1093/nar/gku1205

13. Pinero J, Bravo A, Queralt-Rosinach N, et al. DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. Jan 4 2017;45(D1):D833-D839. doi:10.1093/nar/gkw943

14. Stelzer G, Rosen N, Plaschkes I, et al. The GeneCards suite: from gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics. Jun 20 2016;54:1.30.1-1.30.33. doi:10.1002/cpbi.5

15. Wang Y, Zhang S, Li F, et al. Therapeutic target database 2020: enriched resource for facilitating research and early development of targeted therapeutics. Nucleic Acids Res. Jan 8 2020;48(D1):D1031-D1041. doi:10.1093/nar/gkaa981

16. Wishart DS, Feunang YD, Guo AC, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. Jan 4 2018;46(D1):D1074-D1082. doi:10.1093/nar/gkx1037

17. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44-57. doi:10.1038/nprot.2008.211

18. Huang da W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. Jan 2009;37(1):1-13. doi:10.1093/nar/gkn923

19. Tao Q, Du J, Li X, et al. Network pharmacology and molecular docking analysis on molecular targets and mechanisms of Huashi Baidu formula in the treatment of COVID-19. Drug Dev Ind Pharm. Aug 2020;46(8):1345-1353. doi:10.1080/03639045.2020.1788070

20. Burley SK, Berman HM, Bhikadiya C, et al. RCSB Protein data bank: biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy. Nucleic Acids Res. Jan 8 2019;47(D1):D464-D474. doi:10.1093/nar/gky1004

21. Zhang Q, Li R, Peng W, et al. Identification of the active constituents and significant pathways of Guizhi-Shaoyao-Zhimu decoction for the treatment of diabetes mellitus based on molecular docking and network pharmacology. Comb Chem High Throughput Screen. 2019;22(9):584-598. doi:10.2174/1386207322666191022101613

22. Valencia DN. Brief review on COVID-19: the 2020 pandemic caused by SARS-CoV-2. Curr Rev. Mar 24 2020;12(3):e7386. doi:10.7759/currevus.7386

23. Tohaqy M, Qashqary M, Al-Dahery S, et al. Therapeutic management of patients with COVID-19: a systematic review. Infect Prev Proct. Sep 2020;2(3):100061. doi:10.1016/j.ipip.2020.100061

24. Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. Feb 20 2020;382(8):727-733. doi:10.1056/NEJMoa2001017

25. Kim JS, Jang JH, Kim JM, et al. Genome-wide identification and characterization of point mutations in the SARS-CoV-2 genome. Osong Public Health Res Perspect. Jun 2020;11(3):101-111. doi:10.24171/j.phrp.2020.11.305

26. Mahmoud IS, Jarrar YB, Alsheer W, et al. SARS-CoV-2 entry in host cells-multiple targets for treatment and prevention. Biochimie. Aug 2020;175:93-98. doi:10.1016/j.bicho.2020.05.012

27. Vellingiri B, Jayaramayya K, Iyer M, et al. COVID-19: a promising cure for the global panic. Sci Total Environ. Jul 10 2020;725:138277. doi:10.1016/j.scitotenv.2020.138277

28. Xu J, Zhao S, Teng T, et al. Systematic comparison of two animal-to-human transmitted human coronaviruses: sARS-CoV-2 and SARS-CoV. Viruses. Feb 22 2020;12(2). doi:10.3390/v12020244

29. Tay MZ, Poh CM, Renia L, et al. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. Jun 2020;20(6):363-374. doi:10.1038/s41577-020-0311-8

30. Tisoncik JR, Korth MJ, Simmons CP, et al. Into the eye of the cytokine storm. Microbiol Mol Biol Rev. Mar 2012;76(1):16-32. doi:10.1128/MMBR.05015-11

31. Liu X, Raghuvanshi R, Ceylan FD, et al. Quercetin and its metabolites inhibit R recombinant human angiotensin-converting enzyme 2 (ACE2) activity. J Agric Food Chem. Nov 25 2020;68(47):13982-13989. doi:10.1021/acs.jafc.0c05064

32. Li Y, Yao J, Han C, et al. Quercetin and vitamin C: an experimental, synergistic therapy for the prevention and treatment of SARS-CoV-2 related disease (COVID-19). Front Immunol. 2020;11:1451. doi:10.3389/fimmu.2020.01451

33. Colunga Biancatelli RML, Berrill M, Catravas JD, Marik PE. Quercetin and vitamin C: an experimental, synergistic therapy for the prevention and treatment of SARS-CoV-2 related disease (COVID-19). Front Immunol. 2020;11:1451. doi:10.3389/fimmu.2020.01451

34. Agrawal PK, Agrawal C, Blunden G. Quercetin: antiviral significance and possible COVID-19 integrative considerations. Nat Prod Commun. 2020;15(12):1-10. doi:10.1177/1934578X20976293

35. Aryappalli P, Shabbiri K, Masad RJ, et al. Inhibition of tyrosine-phosphorylated STAT3 in human breast and lung cancer cells by quercetin and vitamin C: an experimental, synergistic therapy for the prevention and treatment of SARS-CoV-2 related disease (COVID-19). Front Immunol. 2020;11:1451. doi:10.3389/fimmu.2020.01451

36. Derosa G, Maffioli P, D’Angelo A, et al. A role for quercetin in coronavirus disease 2019 (COVID-19). Phytother Res. Mar 2021;35(3):1230-1236. doi:10.1002/ptr.6887

37. Kim TW, Joh EH, Kim B, et al. Ginsenoside Rg5 ameliorates lung inflammation in mice by inhibiting the binding of LPS to toll-like receptor-4 on macrophages. Int Immunopharmacol. Jan 2020;121(1):110-116. doi:10.1016/j.intimp.2020.10.023

38. Calderón-Montaño JM, Burgos-Morón E, Pérez-Guerrero C, et al. A review on the dietary flavonoid kaempferol. Med Chem. 2011;11:298-344. doi:10.2174/138955711795305335
39. Park MJ, Lee EK, Heo HS, et al. The anti-inflammatory effect of kaempferol in aged kidney tissues: the involvement of nuclear factor-kappaB via nuclear factor-inducing kinase/IkappaB kinase and mitogen-activated protein kinase pathways. J Med Food. Apr 2009;12(2):351-358. doi:10.1089/jmf.2008.0006

40. Szopa A, Dziurka M, Warzecha A, et al. Targeted lignan profiling and anti-inflammatory properties of Schisandra rubriflora and Schisandra chinensis extracts. Molecules. Nov 27 2018;23(12):3103. doi:10.3390/molecules23123103

41. Jiang H, Harris MB, Rothman P. IL-4/IL-13 signaling beyond JAK/STAT. J Allergy Clin Immunol. Jun 2000;105(6 Pt 1):1063-1070. doi:10.1067/mai.2000.107604

42. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet. 2020;395(10223):507-513. doi:10.1016/s0140-6736(20)30211-7

43. Eastin C, Eastin T. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. J Emerg Med. 2020;58(4):713-714. doi:10.1016/j.jemeremed.2020.04.007

44. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet. 2020;395(10229):1054-1062. doi:10.1016/s0140-6736(20)30566-3

45. Wang QT, Wu S, Zhao R. Finding therapeutic drugs from cytokine storm induced by SARS-CoV-2. Chin J New Drugs Clin Rem. 2021;40(4):251-256. doi:10.14109/j.cnki.xycy.2021.04.03

46. Dinarello CA. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood. Apr 7 2011;117(14):3720-3732. doi:10.1182/blood-2010-07-273417

47. Lu L, Zhang H, Dauphars DJ, et al. A potential role of interleukin 10 in COVID-19 pathogenesis. Trends Immunol. Jan 2021;42(1):3-5. doi:10.1016/j.it.2020.10.012

48. Fara A, Mitrev Z, Rosalia RA, et al. Cytokine storm and COVID-19: a chronicle of pro-inflammatory cytokines. Open Biol. Sep 2020;10(9):200160. doi:10.1098/rsob.200160

49. Huang C, Lokugamage KG, Rozovics JM, et al. Alphacoronavirus transmissible gastroenteritis virus nsp1 protein suppresses protein translation in mammalian cells and in cell-free HeLa cell extracts but not in rabbit reticulocyte lysate. J Virol. Jan 2011;85(1):638-643. doi:10.1128/JVI.01806-10

50. Narayanan K, Huang C, Lokugamage K, et al. Severe acute respiratory syndrome coronavirus nsp1 suppresses host gene expression, including that of type I interferon, in infected cells. J Virol. May 2008;82(9):4471-4479. doi:10.1128/JVI.02472-07

51. An PJ, Zhu YZ, Yang JP. Biochemical indicators of coronavirus disease 2019 exacerbation and the clinical implications. Pharmacol Res. Sep 2020;159:104946. doi:10.1016/j.phrs.2020.104946

52. Luo W, Li YX, Jiang LJ, et al. Targeting JAK-STAT signaling to control cytokine release syndrome in COVID-19. Trends Pharmacol Sci. Aug 2020;41(8):531-543. doi:10.1016/j.tips.2020.06.007

53. Olson TS, Ley K. Chemokines and chemokine receptors in leukocyte trafficking. Am J Physiol Regulatory Integrative Comp Physiol. Jul 2002;283(1):R7-R28. doi:10.1152/ajpregu.00738.2001

54. Mark MW, Fish EN. Chemokines: attractive mediators of the immune response. Semin Immunol. Feb 2003;15(1):5-14. doi: 10.1016/s0899-1716(03)00123-9