TRANSPORTAL VERSUS TRANSTIBIAL FEMORAL TUNNELING TECHNIQUES FOR ACL RECONSTRUCTION

Sandip Patil, Sapan Vora

Department of Orthopedics, Krishna Institute of Medical Sciences, Deemed University, Karad, Maharashtra-415539, India

ABSTRACT

Purpose of study was to look at the practical and clinical results of transportal and transtibial approaches for penetrating of femoral passage in arthroscopic ACL reconstruction. The prospective study which was conducted at department of orthopedics. All patients worked with arthroscopic ACL age were screened using the thought and shirking measures, instructed consent was taken and the willing patients were fused. Total eighty patients who were operated were remembered for this examination. The mean age of the patients was 26.0 years in bundle I and 24.3 years in pack II. Average time of patients were 26 in the transportal gathering and 24.3 in the transtibial gathering. The majority of males i.e. 90% males in transportal group and 86.6% males in the transtibial group. Majority of ACL tears were on the right side 58% in both the groups. In both the groups’ medial meniscus injury was more commonly related with ACL tear as compared to lateral meniscus tear, 30% in the transtibial group and 23.3% in the transportal group. The average IKDC score, Lysholm knee score, pain on VAS score of transportal patients was basically higher than transtibial patients at a half year improvement. Complication of frailty was progressively ordinary in transtibial patients, 11(36.7%), when stood out from transportal patients, 9(30%), in any case this differentiation was not imperative [P=0.58]. Arthroscopic ACL Reconstruction using transportal and transtibial methods of femoral tunneling are both amazing modalities of treatment in patients with ACL lacking knees.

INTRODUCTION

The auto graft or allograft single bundle (SB) technique is viewed as the best quality level for arthroscopic front cruciate tendon (ACL) reproduction (Alentorn-Geli et al., 2010).

Initially the most popular method for infiltrating of femoral entry in arthroscopic ACL diversion was the transportal or two-incision technique in which a second incision is made anteromedially for the anteromedial portal and the tunnel drilled from this incision. Later on, the transtibial or one-incision technique for femoral drilling was introduced wherein the femoral entry is drilled genuinely through tibial section. The transtibial approach was believed to have the advantages of omitting the need of a second incision and reducing surgical time and morbidity (Williams et al., 2004).

Starting late, in any case, it has been suggested that the transtibial approach puts the join in a less anatomical position (Arnold et al., 2001). It is the belief of numerous authors that one of the principle purposes behind an ACL graft failure is not rec-
ommended femoral placement (Kaseta et al., 2008), more-so, than improper tibial tunnel placement due to greater proximity of femoral tunnel to the centre of axis of knee motion (Weinstein and Buckwalter, 2005).

Placing a graft too much anteriorly on the femur realizes a vertically orchestrated join (Castoldi et al., 2008). According to studies this could lead to over the top weight in the join on flexion thereby leading to graft failure (Zavras et al., 2005). Furthermore, the vertical placement of the graft fails to reproduce the normal oblique positioning of ACL and this could limit the limit of join to restore the normal kinematics of the ACL (Lee et al., 2007).

The transtibial approach has the shortcoming of the tibial section coordinating the circumstance of the femoral entry while the transportal approach gives greater chance to the authority to exhaust the femoral section in order to put the join together (Bottoni et al., 1998).

Purpose of study was to look at the practical and clinical delayed consequences of transportal and transtibial approaches for penetrating of femoral segment in arthroscopic ACL changing.

MATERIALS AND METHODS

This study was conducted at department of orthopedics. All patients worked with arthroscopic ACL redoing were screened using the fuse and restriction models, instructed consent was taken and the willing patients were joined. Patients were picked for either study gathering (transportal and transtibial social occasions). 40 patients associated with the transportal social occasion and 40 patients in the transtibial gathering.

Sample size

It is a hospital based study of total 80 patients. 40 patients in transtibial moreover, 40 in transportal bundle who were fulfilling the Inclusion measures.

Method of data collection

They were examined clinically with special tests and the findings were recorded including any associated meniscal injuries.

Intraoperative the patients were either operated with the transtibial method All patients were given practically identical post-usable recuperation programs and were called for ensuing meet-ups at about a month and an a large portion of, a half year and 1 year from the clinical methodology. At all these ensuing visits they were eventually evaluated clinically for feebleness with lachman’s test and for pragmatic outcome with lysholm knee score, IKDC score and pain VAS score.

Analysis: SPSS version 18.0 were used for Statistical analysis.

RESULTS AND DISCUSSION

Table 1 shows that furthermore, 40 in transportal bunch who were satisfying the Inclusion measures.

groups.

Table 2 shows that the normal age of the patients who experienced ACL tears in our examination was in the mid-twenties for example 26.0 in the transportal gathering and 24.3 in the transtibial group.

Comparison of gender distribution in transportal and transtibial groups

The gender distribution in our study leant towards a majority of males i.e. 90.0% males in the transportal gathering and 86.6% guys in the transtibial gathering. Majority of the injuries were on the right side [58%] in both groups.

Comparison of average IKDC scores in transportal and transtibial groups

The normal IKDC score of Transportal patients was essentially higher than transtibial patients at a half year development [P=0.001].

Comparison of average Pain on VAS in transportal and transtibial groups

The average Pain on VAS scores of Transportal patients was significantly lower than transtibial patients at 6 months follow up [P<0.001].

Comparison of Complications between the groups

Complication of Instability was more common in transtibial patients 11(36.7%) when compare to Transportal patients 9(30%), however this difference was not significant.

The common injuries dealt by orthopedicians is Anterior Cruciate Ligament rupture. ACL reconstruction is extremely significant as it attempts to restore the typical knee kinematics and stability thereby delaying the onset of osteoarthritic changes. Arthroscopic ACL reconstruction has almost obsoleted the open knee surgery. Out of Various grafts that have been used over time in the reconstruction of the ACL it is said that the Bone-Patellar Tendon-Bone (B TB) is the highest quality level in wording of strength and stability but another expert option is the hamstring graft. The most common and traditional transtibial single-group procedure for ACL remaking has been considered as highest quality level throughout the previous 20 years, bringing about great to brilliant results in 69% to 95% of
cases (Behrendt and Richter, 2010). Markus, concluded that transtibial penetrating of femoral passage during arthroscopic ACL reconstruction failed to recreate an anatomical tunnel and that femoral pointing gadgets for use through tibial passage focus on an isometric arrangement of femoral passage rather than an anatomical position of graft (Arnold et al., 2001). Markolf in a biomechanical cadaveric study observed that the more anteriorly the femoral tunnel is placed; more is the resulting laxity and graft forces (Markolf et al., 2002), Gill concluded that the two incision technique (using anteromedial portal) for femoral tunnel drilling resulted in more anatomical graft placement than that achieved with transtibial technique (Gill and Steadman, 2002). Loh, in a cadaveric study, came to the conclusion that the 10 o clock position for femoral tunnel placement was superior the 11 o clock position for in terms of better rotator stability but also stated that neither of them was at par with an intact ACL (Loh et al., 2003). Peter stated that using the AMP had advantages over TT technique in achieving a more anatomically placed graft (Cha et al., 2005). Musahl et al., concluded that neither AMP nor TT technique achieved normal knee kinematics but stated that the more anatomical the placement of the graft, the closer to normal knee we can achieve (Musahl et al., 2005). Heming, accepted that the transtibial method can pass on burrows focused in the head cruciate tendon impressions, in any case a beginning stage near the tibial joint line is required which in this way would achieve a tolerably short tibial entry (Heming et al., 2007). Eiji Kondo radiographically evaluated the angles formed by the tibial and femoral tunnels following a transtibial approach to drilling during a double- bundle ACL reconstruction (Kondo et al., 2007). Koji Nishimoto et al found that anatomic twofold pack ACL recreations a far anteromedial entryway procedure adds to an increasingly unfeeling bowing point at the femoral passage gap as compared to transtibial tunnel thereby reducing the stress at that given point (Nishimoto et al., 2009). Castoldi studied the use of Rigidfix femoral fixation device in ACL reconstruction and concluded that the transtibial technique for femoral drilling is superior to using anteromedial portal in terms of chondral injuries (Castoldi et al., 2008). Another investigation reasoned that ACL remaking procedure through the anteromedial gateway is progressively precise contrasted with the transtibial strategy (Gavrilidis et al., 2008). Kaseta et al., inferred that an increasingly anatomic position of femoral passage may help decrease the rate of joint disappointment and might forestall the drawn out degenerative changes saw after ACL reproduction and furthermore proposed this is accomplished better utilizing an anteromedial entry for femoral passage boring (Kaseta et al., 2008). Steiner wrote an article stating that the femoral tunnel should be created as close to the normal anatomical knee as possible but he did not mention which technique if drilling was better in achieving the same (Steiner, 2009). Bedi assumed that the anteromedial gateway technique considers imperceptibly progressively conspicuous femoral section obliquity differentiated and transtibial exhausting anyway with a liberally extended threat of essentially short entries and back entry divider triumph when a customary equalization oversee is used (Bedi et al., 2010). Hantes, in a study of post reconstruction MRIs concluded that the Femoral Graft Angle (FGA) using AMP was more oblique than that using the TT approach but neither was equal to the normal ACL angle (Hantes et al., 2009). Lubowitz in a technical note concluded that although the learning curve for the AM portal technique is steeper than that of the Transtibial technique it has the advantages of not having a constrained femoral socket position which helps in performing an all-inside procedure or a double-bundle surgery (Lubowitz, 2009).

At any rate fundamentally after this level of progress,
a creating assortment of composing have tended to whether this methodology satisfactorily re-makes the existence frameworks and limit of the nearby ACL (Jepsen et al., 2007) the primary concern of the approach being the difficulty in achieving an anatomical femoral tunnel when drilling through the tibial tunnel. These non-anatomical techniques have led to more vertical tunnels than required (Zaffagnini et al., 2008). The newer experimental studies have shown that grafts placed more centrally in the tibia and femoral footprints have ended up being more anatomically precise and have come closer to the normal kinematics of the knee. And one more advantage of having an anatomically placed graft is the lower chance of impingement of the graft on the notch roof or the PCL. It is observed that the transtibial technique of tunnel drilling ultimately leads to the restriction of freedom of femoral tunnel drilling according to the tibial tunnel position. The technique is advantageous in reducing the operative time but leads to a more vertical femoral tunnel which compromises on rotational stability. Some studies claim that the anatomical femoral footprint can be reached by the transtibial method but this leads to eccentrically placed tunnel which could lead to failure. Thus despite the documented advantages of the anteromedial approach it has been observed that it leads to a shorter femoral tunnel which causes suspensory fixation to be more difficult. Another disadvantage is that this approach requires the knee to be hyper flexed when drilling which could lead to spatial disorientation. Hence it is technically more difficult.

Risks in Anteromedial section technique also are tunnel back divider triumph, normal condyle tendon injury, deficient femoral entry length, an undeniably irksome instrument introduction when the knee is hyper flexed, a leave reason for the pin from the thigh which could be dangerous for peroneal nerve, and significant flexion of the knee is required, that is difficult to get particularly in huge patients (Kim et al., 2011; Behrendt and Richter, 2010). Instability in 20 cases (11 in Group Transtibial and 9 in Group Transportal). This difference was not significant statistically. Similar comparative studies were conducted by (Mardani-Kivi et al., 2012; Franceschi et al., 2013) Mohsen concentrated on 124 patients (60 patients were in the transtibial gathering and 64 patients were in the antero-normal portal social event) and Francesco on 88 patients (46 patients were in the transtibial gathering and 42 patients were in the antero-normal gateway gathering). In the two examinations transportal bundle should result furthermore genuinely gigantic.

CONCLUSIONS

Arthroscopic ACL Reconstruction utilizing transtibial and trans entry systems for femoral burrowing are both stunning modalities of treatment in patients with ACL lacking knees. The transportal strategy gives overpowering outcomes comparatively as knee IKDC, Lysholm and Pain on VAS scores. The transportal technique has a predominant supportive result than the transtibial procedure.

Funding Sources

KIMSDU KARAD

Conflict of Interest

None to Disclose

REFERENCES

Alentorn-Geli, E., Samitier, G., Álvarez, P., Steinbacher, G., Cugat, R. 2010. Anteromedial portal versus transtibial drilling techniques in ACL reconstruction: a blinded cross-sectional study at two to five-year follow-up. International Orthopaedics, 34(5):747–754.

Arnold, M. P., Kooiloos, J., Kampen, A. 2001. Single-incision technique misses the anatomical femoral anterior cruciate ligament insertion: a cadaver study. Knee Surgery, Sports Traumatology, Arthroscopy, 9(4):194–199.

Bedi, A., Raphael, B., Maderazo, A., Pavlov, H., Williams, R. J. 2010. Transtibial Versus Anteromedial Portal Drilling for Anterior Cruciate Ligament Reconstruction: A Cadaveric Study of Femoral Tunnel Length and Obliquity. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 26(3):342–350.

Behrendt, S., Richter, J. 2010. Anterior cruciate ligament reconstruction: drilling a femoral postero-lateral tunnel cannot be accomplished using an over-the-top step-off drill guide. Knee Surgery, Sports Traumatology, Arthroscopy, 18(9):1252–1256.

Bottoni, C. R., Rooney, R. C., Harpstrite, J. K., Kan, D. M. 1998. Ensuring accurate femoral guide pin placement in anterior cruciate ligament reconstruction. American journal of orthopedics, (11):764–766.

Castoldi, F., Bonasia, D. E., Marmotti, A., Dettoni, F., Rossi, R. 2008. ACL reconstruction using the Rigidfix femoral fixation device via the anteromedial portal: a cadaver study to evaluate chondral injuries. Knee Surgery, Sports Traumatology, Arthroscopy, 16(3):275–278.

Cha, P. S., Chhabra, A., Harner, C. D. 2005. Single-
bundle anterior cruciate ligament reconstruction using the medial portal technique. *Operative Techniques in Orthopaedics*, 15(2):89–95.

Franceschini, F., Papalia, R., Rizzello, G., Buono, A. D., Maffulli, N., Denaro, V. 2013. Anteromedial Portal Versus Transtibial Drilling Techniques in Anterior Cruciate Ligament Reconstruction: Any Clinical Relevance? A Retrospective Comparative Study. *Arthroscopy: The Journal of Arthroscopic & Related Surgery*, 29(8):1330–1337.

Gavrilidis, I., Motsis, E. K., Pakos, E. E., Georgoulis, A. D., Mitsionis, G., Xenakis, T. A. 2008. Transtibial versus anteromedial portal of the femoral tunnel in ACL reconstruction: A cadaveric study. *The Knee*, 15(5):364–367.

Gill, T. J., Steadman, J. R. 2002. Anterior cruciate ligament reconstruction.

Hantes, M. E., Zachos, V. C., Liantsis, A., Venouziou, A., Karantanas, A. H., Malizos, K. N. 2009. Differences in graft orientation using the transtibial and anteromedial portal technique in anterior cruciate ligament reconstruction: a magnetic resonance imaging study. *Knee Surgery, Sports Traumatology, Arthroscopy*, 17(8):880–886.

Heming, J. F., Rand, J., Steiner, M. E. 2007. Anatomical Limitations of Transtibial Drilling in Anterior Cruciate Ligament Reconstruction. *The American Journal of Sports Medicine*, 35(10):1708–1715.

Jepsen, C. F., Lundberg-Jensen, A. K., Faunoe, P. 2007. Does the Position of the Femoral Tunnel Affect the Laxity or Clinical Outcome of the Anterior Cruciate Ligament-Reconstructed Knee? A Clinical, Prospective, Randomized, Double-Blind Study. *Arthroscopy: The Journal of Arthroscopic & Related Surgery*, 23(12):1326–1333.

Kaseta, M. K., DeFrate, L. E., Charnock, B. L., Sullivan, R. T., Garrett, W. E. 2008. Reconstruction Technique Affects Femoral Tunnel Placement in ACL Reconstruction. *Clinical Orthopaedics and Related Research*, 466(6):1467–1474.

Kim, M. K., Lee, B. C., Park, J. H. 2011. Anatomic Single Bundle Anterior Cruciate Ligament Reconstruction by the Two Anteromedial Portal Method: The Comparison of Transportal and Transtibial Techniques. *Knee Surgery & Related Research*, 23(4):213–219.

Kondo, E., Yasuda, K., Ichiyama, H., Azuma, C., Tohyama, H. 2007. Radiologic Evaluation of Femoral and Tibial Tunnels Created With the Transtibial Tunnel Technique for Anatomic Double-Bundle Anterior Cruciate Ligament Reconstruction. *Arthroscopy: The Journal of Arthroscopic & Related Surgery*, 23(8):869–876.

Lee, M. C., Seong, S. C., Lee, S., Chang, C. B., Park, Y. K., Jo, H., Kim, C. H. 2007. Vertical Femoral Tunnel Placement Results in Rotational Knee Laxity After Anterior Cruciate Ligament Reconstruction. *Arthroscopy: The Journal of Arthroscopic & Related Surgery*, 23(7):771–778.

Loh, J. C., Fukuda, Y., Tsuda, E., Steadman, R. J., Fu, F. H., Woo, S. L.-Y. 2003. Knee stability and graft function following anterior cruciate ligament reconstruction: Comparison between 11 o’clock and 10 o’clock femoral tunnel placement. *Arthroscopy: The Journal of Arthroscopic & Related Surgery*, 19(3):297–304.

Lubowitz, J. H. 2009. Anteromedial Portal Technique for the Anterior Cruciate Ligament Femoral Socket: Pitfalls and Solutions. *Arthroscopy: The Journal of Arthroscopic & Related Surgery*, 25(1):95–101.

Mardani-Kivi, M., Madadi, F., Keyhani, S., Karim-Mobarake, M., Hashemi-Motlagh, K., Saheb-Ekhtiari, K. 2012. Antero-medial portal vs. transtibial techniques for drilling femoral tunnel in ACL reconstruction using 4-strand hamstring tendon: A cross-sectional study with 1-year follow-up. *Medical Science Monitor*, 18(11):CR674–CR679.

Markolf, K. L., Hame, S., Hunter, D. M., Oakes, D. A., Zoric, B., Gause, P., Finerman, G. A. M. 2002. Effects of femoral tunnel placement on knee laxity and forces in an anterior cruciate ligament graft. *Journal of Orthopaedic Research*, 20(5):1016–1024.

Musahl, V., Plakseychuk, A., Vansycoc, A., Sasaki, T., Debski, R. E., Mcmahon, P. J., Fu, F. H. 2005. Varying Femoral Tunnels between the Anatomical Footprint and Isometric Positions. *The American Journal of Sports Medicine*, 33(5):712–718.

Nishimoto, K., Kuroda, R., Mizuno, K., Hoshino, Y., Nagamune, K., Kubo, S., Yagi, M., Yamaguchi, M., Yoshiya, S., Kuroskaka, M. 2009. Analysis of the graft bending angle at the femoral tunnel aperture in anatomic double bundle anterior cruciate ligament reconstruction: a comparison of the transtibial and the far anteromedial portal technique. *Knee Surgery, Sports Traumatology, Arthroscopy*, 17(3):270–276.

Steiner, M. E. 2009. Surgical management of anterior cruciate ligament injuries. In *Knee arthroscopy*, pages 129–151. Springer.

Weinstein, S. L., Buckwalter 2005. *Turek's orthopaedics: principles and their application.*

Williams, R. J., Hyman, J., Petrigliano, F., Rozental, T., Wickiewicz, T. L. 2004. Anterior Cruciate Lig-
ament Reconstruction with a Four-Strand Ham-string Tendon Autograft. *The Journal of Bone & Joint Surgery*, 86(2):225–232.

Zaffagnini, S., Bruni, D., Martelli, S., Imakiire, N., Marcacci, M., Russo, A. 2008. Double-bundle ACL reconstruction: influence of femoral tunnel orientation in knee laxity analysed with a navigation system – an in-vitro biomechanical study. *BMC Musculoskeletal Disorders*, 9(1).

Zavras, T. D., Race, A., Amis, A. A. 2005. The effect of femoral attachment location on anterior cruciate ligament reconstruction: graft tension patterns and restoration of normal anterior?posterior laxity patterns. *Knee Surgery, Sports Traumatology, Arthroscopy*, 13(2):92–100.