Maximally Modulated Singular Integral Operators and their Applications to Pseudodifferential Operators on Banach Function Spaces

Alexei Yu. Karlovich

Abstract. We prove that if the Hardy-Littlewood maximal operator is bounded on a separable Banach function space $X(\mathbb{R}^n)$ and on its associate space $X'(\mathbb{R}^n)$ and a maximally modulated Calderón-Zygmund singular integral operator T_Φ is of weak type (r, r) for all $r \in (1, \infty)$, then T_Φ extends to a bounded operator on $X(\mathbb{R}^n)$. This theorem implies the boundedness of the maximally modulated Hilbert transform on variable Lebesgue spaces $L^p(\cdot) (\mathbb{R})$ under natural assumptions on the variable exponent $p : \mathbb{R} \to (1, \infty)$. Applications of the above result to the boundedness and compactness of pseudodifferential operators with $L^\infty(\mathbb{R}, V(\mathbb{R}))$-symbols on variable Lebesgue spaces $L^{p(\cdot)} (\mathbb{R})$ are considered. Here the Banach algebra $L^\infty(\mathbb{R}, V(\mathbb{R}))$ consists of all bounded measurable $V(\mathbb{R})$-valued functions on \mathbb{R} where $V(\mathbb{R})$ is the Banach algebra of all functions of bounded total variation.

1. Introduction

In this paper we will be concerned with the boundedness of maximally modulated Calderón-Zygmund singular integral operators and its applications to the boundedness of pseudodifferential operators with non-regular symbols on separable Banach function spaces.

Let us define the main operators we are dealing with. Let $L^\infty_0(\mathbb{R}^n)$ and $C^\infty_0(\mathbb{R}^n)$ denote the sets of all bounded functions with compact support and all infinitely differentiable functions with compact support, respectively. A Calderón-Zygmund operator is a linear operator T which is bounded on $L^2(\mathbb{R}^n)$ such that for every $f \in L^\infty_0(\mathbb{R}^n)$,

$$(Tf)(x) := \int_{\mathbb{R}^n} K(x, y)f(y) \, dy \quad \text{for a.e.} \quad x \in \mathbb{R}^n \setminus \text{supp} \, f,$$

2010 Mathematics Subject Classification. Primary 42B20, 47G30; Secondary 46E30, 42B25.

Key words and phrases. Maximally modulated singular integral operator, Calderón-Zygmund operator, Hilbert transform, pseudodifferential operator with non-regular symbol, Banach function space, variable Lebesgue space.

This work was partially supported by the Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) through the projects PEst-OE/MAT/UI0297/2014 (Centro de Matemática e Aplicações) and EXPL/MAT-CAL/0840/2013 (Problemas Variacionais em Espaços de Sobolev de Expoente Variável).
where supp f denotes the support of f. The kernel

$$K : \mathbb{R}^n \times \mathbb{R}^n \setminus \{(x,x) : x \in \mathbb{R}^n\} \rightarrow \mathbb{C}$$

is assumed to satisfy the following standard conditions:

$$|K(x,y)| \leq \frac{c_0}{|x-y|^n} \quad \text{for } x \neq y$$

and

$$|K(x,y) - K(x,y')| + |K(y,x) - K(y',x)| \leq \frac{c_0|y-y'|^\tau}{|x-y'|^{n+\tau}}$$

for $|x-y| > 2|y-y'|$, where c_0 and τ are some positive constants independent of $x,y,y' \in \mathbb{R}^n$ (see, e.g., [G09 Section 8.1.1]). The most prominent example of Calderón-Zygmund operators is the Hilbert transform defined for $f \in L_0^\infty(\mathbb{R})$ by

$$(Hf)(x) := \frac{1}{\pi} \text{v.p.} \int_{\mathbb{R}} \frac{f(y)}{x-y} \, dy = \lim_{\varepsilon \to 0} \frac{1}{\pi} \int_{\mathbb{R}\setminus I(x,\varepsilon)} \frac{f(y)}{x-y} \, dy, \quad x \in \mathbb{R},$$

where $I(x,\varepsilon) := (x-\varepsilon, x+\varepsilon)$.

Suppose $\Phi = \{\phi_\alpha\}_{\alpha \in \mathcal{A}}$ is a family of measurable real-valued functions indexed by an arbitrary set \mathcal{A}. Then for every $\phi_\alpha \in \mathcal{A}$, the modulation operator is defined by

$$(\mathcal{M}^{\phi_\alpha} f)(x) := e^{-i\phi_\alpha(x)} f(x), \quad x \in \mathbb{R}^n.$$

Following [GMS05] (see also [DPL13]), the maximally modulated singular integral operator T^Φ of the Calderón-Zygmund operator T with respect to the family Φ is defined for $f \in L_0^\infty(\mathbb{R}^n)$ by

$$(T^\Phi f)(x) := \sup_{\alpha \in \mathcal{A}} |T(\mathcal{M}^{\phi_\alpha} f)(x)|, \quad x \in \mathbb{R}^n.$$

This definition is motivated by the fact that the maximally modulated Hilbert transform

$$(C f)(x) := (H^\Psi f)(x) \quad \text{with } \Psi := \{\psi_\alpha(x) = \alpha x : \alpha, x \in \mathbb{R}\}$$

is closely related to the continuous version of the celebrated Carleson-Hunt theorem on the a.e. convergence of Fourier series (see, e.g., [D91 Chap. 2, Section 2.2], [G09 Chap. 11], and [MS13 Chap. 7]). In [GMS05, DPL13] the operator C is called the Carleson operator, however in [G09 Section 11.1] and in [MS13 Section 7.1] this term is used for two different from C and each other operators.

For $f \in C_0^\infty(\mathbb{R})$, consider the maximal singular integral operator given by

$$(1.1) \quad (S_* f)(x) := \sup_{-\infty < a < b < \infty} |(S_{(a,b)} f)(x)|, \quad x \in \mathbb{R},$$

where $S_{(a,b)} f$ is the integral analogue of the partial sum of the Fourier series given by

$$S_{(a,b)} f (x) := \frac{1}{2\pi} \int_a^b \hat{f}(\lambda) e^{ix\lambda} \, d\lambda, \quad x \in \mathbb{R},$$

and

$$\hat{f}(\lambda) := (\mathcal{F} f)(\lambda) := \int_{\mathbb{R}} f(x) e^{-ix\lambda} \, dx, \quad \lambda \in \mathbb{R},$$

is the Fourier transform of f. It is not difficult to see that if $f \in C_0^\infty(\mathbb{R})$, then

$$(1.2) \quad (S_* f)(x) \leq (C f)(x) \quad \text{for a.e. } x \in \mathbb{R}.$$
For a suitable function \(a \) on \(\mathbb{R} \times \mathbb{R} \), a pseudodifferential operator \(a(x, D) \) is defined for a function \(f \in C_0^\infty(\mathbb{R}) \) by the iterated integral
\[
(a(x, D)f)(x) := \frac{1}{2\pi} \int_{\mathbb{R}} \int_{\mathbb{R}} a(x, \lambda)e^{i(x-y)\lambda} f(y) \, dy, \quad x \in \mathbb{R}.
\]
(1.3)

The function \(a \) is called the symbol of the pseudodifferential operator \(a(x, D) \).

Our results on the above mentioned operators will be formulated in terms of the Hardy-Littlewood maximal function, which we define next. Let \(1 \leq r < \infty \). Given \(f \in L^r_{\text{loc}}(\mathbb{R}^n) \), the \(r \)-th maximal operator is defined by
\[
(M_r f)(x) := \sup_{Q \ni x} \left(\frac{1}{|Q|} \int_Q |f(y)|^r \, dy \right)^{1/r}, \quad x \in \mathbb{R}^n,
\]
where the supremum is taken over all cubes \(Q \) containing \(x \). Here, and throughout, all cubes will be assumed to have their sides parallel to the coordinate axes and \(|Q| \) will denote the volume of \(Q \). For \(r = 1 \) this is the usual Hardy-Littlewood maximal operator, which will be denoted by \(M \).

Let \(f \in L^1_{\text{loc}}(\mathbb{R}^n) \). For a cube \(Q \subset \mathbb{R}^n \), put
\[
f_Q := \frac{1}{|Q|} \int_Q f(x) \, dx.
\]
The Fefferman-Stein sharp maximal operator \(f \mapsto M\# f \) is defined by
\[
(M\# f)(x) := \sup_{Q \ni x} \frac{1}{|Q|} \int_Q |f(x) - f_Q| \, dx, \quad x \in \mathbb{R}^n,
\]
where the supremum is taken over all cubes \(Q \) containing \(x \).

Banach function spaces \(X(\mathbb{R}^n) \) will be defined in Section 2. This is a wide class of spaces including rearrangement-invariant (r.i.) Lebesgue, Orlicz, and Lorentz spaces, as well as non-r.i. variable Lebesgue spaces \(L^{p(.)}(\mathbb{R}^n) \). The main feature of these spaces is the so-called lattice property: if \(|f(x)| \leq |g(x)| \) for a.e. \(x \in \mathbb{R}^n \), then \(\|f\|_{X(\mathbb{R}^n)} \leq \|g\|_{X(\mathbb{R}^n)} \). In Section 2 we collect preliminaries prepare the proof of main results given in Section 3. Let us briefly describe them.

The boundedness of maximally modulated Calderón-Zygmund operators \(T^\Phi \) on weighted Lebesgue spaces was studied by Grafakos, Martell, and Soria [GMS05]. A quantitative version of their results was obtained recently by Di Plinio and Lerner [DPL13]. We show that a pointwise inequality for the sharp maximal function of \(T^\Phi \) obtained in [GMS05] Proposition 4.1, combined with the Fefferman-Stein inequality for Banach function spaces due to Lerner [L10] Corollary 4.2, and with the self-improving property of the Hardy-Littlewood maximal function on Banach function spaces obtained by Lerner and Pérez [LP07] Corollary 1.3, imply the boundedness of \(T^\Phi \) on a separable Banach function space \(X(\mathbb{R}^n) \) under the natural assumptions that \(M \) is bounded on \(X(\mathbb{R}^n) \), \(M \) is bounded on its associate space \(X'(\mathbb{R}^n) \), and \(T^\Phi \) is of weak type \((r, r)\) for all \(r \in (1, \infty) \) (see Theorem 3.1). Notice that the latter hypothesis is satisfied for the maximally modulated Hilbert transform \(\mathcal{H} \). This gives the boundedness of \(\mathcal{H} \) on \(X(\mathbb{R}) \) (see Corollary 3.3). From here and the pointwise estimate \([1.2]\) we also get the boundedness of the operator \(S_\mathcal{H} \) on separable Banach functions spaces such that \(M \) is bounded on \(X(\mathbb{R}) \) and on \(X'(\mathbb{R}) \) (see Lemma 4.2).

Section 4 is devoted to applications of the above results to the boundedness of pseudodifferential operators with non-regular symbols on Banach function...
spaces. Note that the boundedness of $a(x, D)$ with smooth (regular) symbols in Hörmander’s and Miyachi’s classes on separable Banach function spaces was studied in [K-A14] (see also [KS13]). On the other hand, Yu. Karlovich [K-Yu07] introduced the class $L^\infty(\mathbb{R}, V(\mathbb{R}))$ of bounded measurable $V(\mathbb{R})$-valued functions on \mathbb{R} where $V(\mathbb{R})$ is the Banach algebra of all functions of bounded total variation. Symbols in $L^\infty(\mathbb{R}, V(\mathbb{R}))$ may have jump discontinuities in both variables. By using the boundedness of the operator S_* on $L^p(\mathbb{R})$ for $1 < p < \infty$, Yu. Karlovich [K-Yu07] Theorem 3.1 proved the boundedness of $a(x, D)$ with $a \in L^\infty(\mathbb{R}, V(\mathbb{R}))$ on $L^p(\mathbb{R})$ for $1 < p < \infty$. Later on he extended this result to weighted Lebesgue spaces $L^p(\mathbb{R}, w)$ with Muckenhoupt weights w (see [K-Yu12] Theorem 4.1). One of the important ingredients of those proofs is the pointwise inequality

$$|(a(x, D)f)(x)| \leq 2(S_* f)(x)\|a(x, \cdot)\|_V, \quad x \in \mathbb{R},$$

for $f \in C_0^0(\mathbb{R})$. From this inequality and the boundedness of S_* we obtain the boundedness of $a(x, D)$ on separable Banach function spaces $X(\mathbb{R})$ under the assumption that M is bounded on $X(\mathbb{R})$ and $X'(\mathbb{R})$ (see Theorem 1.3).

In Section 5 we specify the above results to the case of variable Lebesgue spaces $L^{p(\cdot)}(\mathbb{R}^n)$. If the variable exponent $p : \mathbb{R}^n \to [1, \infty]$ is bounded away from one and infinity, then in view of Diening’s theorem [D05] Theorem 8.1, the boundedness of M is equivalent to the boundedness of M on its associate space. Hence all above results have simpler formulations in the case of variable Lebesgue spaces (see Section 5).

We conclude the paper with a sufficient condition for the compactness of pseudodifferential operators $a(x, D)$ with $L^\infty(\mathbb{R}, V(\mathbb{R}))$-symbols on variable Lebesgue spaces $L^{p(\cdot)}(\mathbb{R})$ (see Corollary 6.3). This result is obtained from Yu. Karlovich’s result [K-Yu07] Theorem 4.1 for standard Lebesgue spaces by transferring the compactness property from standard to variable Lebesgue spaces with the aid of the Krasnosel’skii-type interpolation theorem (see Section 5.2).

2. Preliminaries

2.1. Banach function spaces. The set of all Lebesgue measurable complex-valued functions on \mathbb{R}^n is denoted by \mathcal{M}. Let \mathcal{M}^+ be the subset of functions in \mathcal{M} whose values lie in $[0, \infty]$. The characteristic function of a measurable set $E \subset \mathbb{R}^n$ is denoted by χ_E and the Lebesgue measure of E is denoted by $|E|$.

Definition 2.1 ([BS88] Chap. 1, Definition 1.1). A mapping $\rho : \mathcal{M}^+ \to [0, \infty]$ is called a *Banach function norm* if, for all functions $f, g, f_n (n \in \mathbb{N})$ in \mathcal{M}^+, for all constants $a \geq 0$, and for all measurable subsets E of \mathbb{R}^n, the following properties hold:

(A1) \(\rho(f) = 0 \iff f = 0 \text{ a.e.} \), \(\rho(af) = a\rho(f) \), \(\rho(f + g) \leq \rho(f) + \rho(g) \),

(A2) \(0 \leq g \leq f \text{ a.e.} \implies \rho(g) \leq \rho(f) \) (the lattice property),

(A3) \(0 \leq f_n \uparrow f \text{ a.e.} \implies \rho(f_n) \uparrow \rho(f) \) (the Fatou property),

(A4) \(|E| < \infty \implies \rho(\chi_E) < \infty \),

(A5) \(|E| < \infty \implies \int_E f(x) \, dx \leq C_E \rho(f) \)

with $C_E \in (0, \infty)$ which may depend on E and ρ but is independent of f.

When functions differing only on a set of measure zero are identified, the set \(X(\mathbb{R}^n) \) of all functions \(f \in \mathcal{M} \) for which \(\rho(|f|) < \infty \) is called a Banach function space. For each \(f \in X(\mathbb{R}^n) \), the norm of \(f \) is defined by
\[
\|f\|_{X(\mathbb{R}^n)} := \rho(|f|).
\]

The set \(X(\mathbb{R}^n) \) under the natural linear space operations and under this norm becomes a Banach space (see [BS88, Chap. 1, Theorems 1.4 and 1.6]).

The norm of a bounded sublinear operator \(A \) on a Banach function space \(X(\mathbb{R}^n) \) will be denoted by \(\|A\|_{B(X(\mathbb{R}^n))} \).

If \(\rho \) is a Banach function norm, its associate norm \(\rho' \) is defined on \(\mathcal{M}^+ \) by
\[
\rho'(g) := \sup \left\{ \int_{\mathbb{R}^n} f(x)g(x) \, dx : f \in \mathcal{M}^+, \rho(f) \leq 1 \right\}, \quad g \in \mathcal{M}^+.
\]

It is a Banach function norm itself [BS88, Chap. 1, Theorem 2.2]. The Banach function space \(X'(\mathbb{R}^n) \) determined by the Banach function norm \(\rho' \) is called the associate space (Köthe dual) of \(X(\mathbb{R}^n) \). The Lebesgue space \(L^p(\mathbb{R}^n) \), \(1 \leq p \leq \infty \), are the archetypical example of Banach function spaces. Other classical examples of Banach function spaces are Orlicz spaces, rearrangement-invariant spaces, and variable Lebesgue spaces \(L^{p(\cdot)}(\mathbb{R}^n) \).

2.2. Density of bounded and smooth compactly supported functions in separable Banach function spaces.

The proof of the following fact is standard. For details, see [KS14, Lemma 2.10(b)], where it was proved for \(n = 1 \). The proof for arbitrary \(n \) is a minor modification of that one.

Lemma 2.2. The sets \(L_0^\infty(\mathbb{R}^n) \) and \(C_0^\infty(\mathbb{R}^n) \) are dense in a separable Banach function space \(X(\mathbb{R}^n) \).

2.3. Nonnegative sublinear operators on Banach function spaces.

The operators \(T_k^\delta, C, \text{ and } S_{a,b} \) although nonlinear, are examples of sublinear operators that assume only nonnegative values. Let us give a precise definition of this class of operators. Let \(D \) be a linear subspace of \(\mathcal{M} \). An operator \(T : D \to \mathcal{M} \) is said to be nonnegative sublinear (cf. [BS88, p. 230]) if
\[
0 \leq T(f + g) \leq Tf + Tg, \quad T(\lambda f) = |\lambda|Tf \quad \text{a.e. on } \mathbb{R}^n
\]
for all \(f, g \in D \) and all constants \(\lambda \in \mathbb{C} \). The following result is well known for linear operators. With the property
\[
|Tf - Tg| \leq |T(f - g)| = T(f - g), \quad f, g \in D,
\]
which is an immediate consequence of (2.1), essentially the same proof establishes the result also for nonnegative sublinear operators.

Lemma 2.3. Let \(D \) be a dense linear subspace of a Banach function space \(X(\mathbb{R}^n) \) and \(T : D \to \mathcal{M} \) be a nonnegative sublinear operator. If there exists a positive constant \(C \) such that
\[
\|Tf\|_{X(\mathbb{R}^n)} \leq C\|f\|_{X(\mathbb{R}^n)} \quad \text{for all } f \in D,
\]
then \(T \) has a unique extension to a nonnegative sublinear operator \(\tilde{T} : X(\mathbb{R}^n) \to \mathcal{M} \) such that
\[
\|\tilde{T}f\|_{X(\mathbb{R}^n)} \leq C\|f\|_{X(\mathbb{R}^n)} \quad \text{for all } f \in X(\mathbb{R}^n).
\]

In what follows we will use the same notation for an operator defined on a dense subspace and for its bounded extension to the whole space.
2.4. Self-improving property of maximal operators on Banach function spaces. If $1 < q < \infty$, then from the Hölder inequality one can immediately get that
\[
(Mf)(x) \leq (M_r f)(x) \quad \text{for a.e. } x \in \mathbb{R}^n.
\]
Thus, the boundedness of any M_r, $1 < r < \infty$, on a Banach function space $X(\mathbb{R}^n)$ immediately implies the boundedness of M. A partial converse of this fact, called a self-improving property of the Hardy-Littlewood maximal operator, is also true. It was proved by Lerner and Pérez [LP07] (see also [LO10] for another proof) in a more general setting of quasi-Banach function spaces.

Theorem 2.4 ([LP07] Corollary 1.3]). Let $X(\mathbb{R}^n)$ be a Banach function space. Then M is bounded on $X(\mathbb{R}^n)$ if and only if M_r is bounded on $X(\mathbb{R}^n)$ for some $r \in (1, \infty)$.

2.5. The Fefferman-Stein inequality for Banach function spaces. It is obvious that $M^# f$ is pointwise dominated by Mf. Hence, by Axiom (A2),
\[
\|M^# f\|_{X(\mathbb{R}^n)} \leq \text{const} \|f\|_{X(\mathbb{R}^n)} \quad \text{for } f \in X(\mathbb{R}^n)
\]
whenever M is bounded on $X(\mathbb{R}^n)$. The converse inequality for Lebesgue spaces $L^p(\mathbb{R}^n)$, $1 < p < \infty$, was proved by Fefferman and Stein (see [FS72] Theorem 5) and also [S93] Chap. IV, Section 2.2). The following extension of the Fefferman-Stein inequality to Banach function spaces was proved by Lerner [L10].

Let $S_0(\mathbb{R}^n)$ be the space of all measurable functions f on \mathbb{R}^n such that
\[
\{|x \in \mathbb{R}^n : |f(x)| > \lambda| < \infty \quad \text{for all} \quad \lambda > 0.
\]

Theorem 2.5 ([L10] Corollary 4.2]). Let M be bounded on a Banach function space $X(\mathbb{R}^n)$. Then M is bounded on its associate space $X'(\mathbb{R}^n)$ if and only if there exists a constant $C_\# > 0$ such that, for all $f \in S_0(\mathbb{R}^n)$,
\[
\|f\|_{X(\mathbb{R}^n)} \leq C_\# \|M^# f\|_{X(\mathbb{R}^n)}.
\]

2.6. Pointwise inequality for the sharp maximal function of T^Φ. Let $1 \leq r < \infty$. Recall that a sublinear operator $A : \mathbb{L}^r(\mathbb{R}^n) \to \mathcal{M}$ is said to be of weak type (r, r) if
\[
\{|x \in \mathbb{R}^n : |(Af)(x)| > \lambda\| \leq \frac{C_r}{\lambda^r} \int_{\mathbb{R}^n} |f(y)|^r dy
\]
for all $f \in \mathbb{L}^r(\mathbb{R}^n)$ and $\lambda > 0$, where C is a positive constant independent of f and λ. It is well known that if A is bounded on the standard Lebesgue space $\mathbb{L}^r(\mathbb{R}^n)$, then it is of weak type (r, r).

Grafakos, Martell, and Soria [GMS05] developed two alternative approaches to weighted L^r estimates for maximally modulated Calderón-Zygmund singular integral operators T^{Φ}. One is based on good-λ inequalities, another rests on the following pointwise estimate for the sharp maximal function of T^{Φ}.

Lemma 2.6 ([GMS05 Proposition 4.1]). Suppose T is a Calderón-Zygmund operator and $\Phi = \{\phi_a\}_{a \in A}$ is a family of measurable real-valued functions indexed by an arbitrary set A. If T^{Φ} is of weak type (r, r) for some $r \in (1, \infty)$, then there is a positive constant C_r such that for every $f \in \mathbb{L}^\infty(\mathbb{R}^n)$,
\[
M^#(T^\Phi f)(x) \leq C_r M_r f(x) \quad \text{for a.e. } x \in \mathbb{R}^n.
\]
3. Maximally modulated singular integrals on Banach function spaces

3.1. Boundedness of maximally modulated Calderón-Zygmund singular integral operators on Banach function spaces. We are in a position to prove the main result of the paper.

Theorem 3.1. Let \(X(\mathbb{R}^n) \) be a separable Banach function space. Suppose the Hardy-Littlewood maximal operator \(M \) is bounded on \(X(\mathbb{R}^n) \) and on its associate space \(X'(\mathbb{R}^n) \). Suppose \(T \) is a Calderón-Zygmund operator and \(\Phi = \{ \phi_\alpha \}_{\alpha \in A} \) is a family of measurable real-valued functions indexed by an arbitrary set \(A \). If \(T^\Phi \) is of weak type \((r,r) \) for all \(r \in (1,\infty) \), then \(T^\Phi \) extends to a bounded operator on the space \(X(\mathbb{R}^n) \).

Proof. We argue as in the proof of [K-A14 Theorem 1.2]. Since \(M \) is bounded on \(X(\mathbb{R}^n) \), by Theorem 2.3, there is an \(r \in (1,\infty) \) such that the maximal function \(M_r \) is bounded on \(X(\mathbb{R}^n) \), that is, there is a positive constant \(C \) such that

\[
\| (M_r \varphi) \|_{X(\mathbb{R}^n)} \leq C \| \varphi \|_{X(\mathbb{R}^n)} \quad \text{for all} \quad \varphi \in X(\mathbb{R}^n).
\]

Assume that \(f \in C_0^\infty(\mathbb{R}^n) \). By the hypothesis, \(T^\Phi \) is of weak type \((r,r) \) and \(M \) is bounded on \(X'(\mathbb{R}^n) \). Therefore, \(T^\Phi f \in S_0(\mathbb{R}^n) \). Moreover, by Theorem 2.6 there exists a positive constant \(C_\# \) such that

\[
\| T^\Phi f \|_{X(\mathbb{R}^n)} \leq C_\# \| M^\#(T^\Phi f) \|_{X(\mathbb{R}^n)} \quad \text{for all} \quad f \in C_0^\infty(\mathbb{R}^n).
\]

From Lemma 2.6 and Axioms (A1)–(A2) we conclude that there exists a positive constant \(C_r \) such that

\[
\| M^\#(T^\Phi f) \|_{X(\mathbb{R}^n)} \leq C_r \| M_r f \|_{X(\mathbb{R}^n)} \quad \text{for all} \quad f \in C_0^\infty(\mathbb{R}^n).
\]

Combining inequalities (3.1)–(3.3), we arrive at

\[
\| T^\Phi f \|_{X(\mathbb{R}^n)} \leq C C_\# C_r \| f \|_{X(\mathbb{R}^n)} \quad \text{for all} \quad f \in C_0^\infty(\mathbb{R}^n).
\]

To conclude the proof, it remains to recall that \(C_0^\infty(\mathbb{R}^n) \) is dense in the separable Banach function space \(X(\mathbb{R}^n) \) in view of Lemma 2.2 and apply Lemma 2.3. \(\square \)

3.2. Boundedness of the maximally modulated Hilbert transform on standard Lebesgue spaces. Fix \(f \in L^1_{loc}(\mathbb{R}) \). Let \(H_* \) be the maximal Hilbert transform given by

\[
(H_* f)(x) := \sup_{\varepsilon > 0} \left| \frac{1}{\pi} \int_{\mathbb{R} \setminus I(x,\varepsilon)} \frac{f(y)}{x-y} \, dy \right|,
\]

where \(I(x,\varepsilon) = (x-\varepsilon,x+\varepsilon) \). Further, let \(C_* \) be the maximally modulated maximal Carleson operator defined by

\[
(C_* f)(x) := \sup_{a \in \mathbb{R}} (H_*(M^\psi_a f))(x) \quad \text{with} \quad \psi_a(x) = ax, \quad a, x \in \mathbb{R}.
\]

It is easy to see that

\[
(C f)(x) \leq (C_* f)(x), \quad x \in \mathbb{R}.
\]

The boundedness of the operator \(C_* \) on the standard Lebesgue spaces \(L^r(\mathbb{R}) \) is proved, e.g., in [G09 Theorem 11.3.3] (see also [K-Yu12 Theorem 2.7]). From this observation and [3.1] we get the following result (see also [D91 Theorem 2.1] and [K-Yu12 Theorem 2.8]).
Lemma 3.2. The maximally modulated Hilbert transform \mathcal{H} is bounded on every standard Lebesgue space $L^r(\mathbb{R})$ for $1 < r < \infty$.

3.3. Boundedness of the maximally modulated Hilbert transform on separable Banach function spaces. From Theorem 3.1 and Lemma 3.2 we immediately get the following.

Corollary 3.3. Let $X(\mathbb{R})$ be a separable Banach function space. Suppose the Hardy-Littlewood maximal operator M is bounded on $X(\mathbb{R})$ and on its associate space $X'(\mathbb{R})$. Then the maximally modulated Hilbert transform \mathcal{H} extends to a bounded operator on $X(\mathbb{R})$.

4. Boundedness of pseudodifferential operators with non-regular symbols on Banach function spaces

4.1. Functions of bounded total variation. Let a be a complex-valued function of bounded total variation $V(a)$ on \mathbb{R} where

$$V(a) := \sup \left\{ \sum_{k=1}^{n} |a(x_k) - a(x_{k-1})| : -\infty < x_0 < x_1 < \cdots < x_n < +\infty, n \in \mathbb{N} \right\}$$

Hence at every point $x \in \mathbb{R} := \mathbb{R} \cup \{\infty\}$ the one-sided limits $a(x \pm 0) = \lim_{t \to x \pm} a(t)$ exist, where $a(\pm \infty) = a(\infty \mp 0)$, and the set of discontinuities of a is at most countable (see, e.g., [N55] Chap. VIII, Sections 3 and 9). Without loss of generality we will assume that functions of bounded total variation are continuous from the left at every discontinuity point $x \in \mathbb{R}$. The set $V(\mathbb{R})$ of all continuous from the left functions of bounded total variation on \mathbb{R} is a unital non-separable Banach algebra with the norm

$$\|a\|_V := \|a\|_{L^\infty(\mathbb{R})} + V(a).$$

By analogy with $V(a) = V_{-\infty}^+(a)$, one can define the total variations $V_{c}^d(a)$, $V_{-\infty}^c(a)$, and $V_{d}^{+\infty}(a)$ of a function $a : \mathbb{R} \to \mathbb{C}$ on $[c, d]$, $(-\infty, c]$, and $[d, +\infty)$, taking, respectively, the partitions

$$c = x_0 < x_1 < \cdots < x_n = d, \quad -\infty < x_0 < x_1 < \cdots < x_n = c,$$

and $d = x_0 < x_1 < \cdots < x_n < +\infty$.

4.2. Non-regular symbols of pseudodifferential operators. Following [K-Yu07, K-Yu12], we denote by $L^\infty(\mathbb{R}, V(\mathbb{R}))$ the set of functions $a : \mathbb{R} \times \mathbb{R} \to \mathbb{C}$ such that $\tilde{a} : x \mapsto a(x, \cdot)$ is a bounded measurable $V(\mathbb{R})$-valued function on \mathbb{R}. Note that in view of non-separability of the Banach space $V(\mathbb{R})$, the measurability of \tilde{a} means that the map $\tilde{a} : \mathbb{R} \to V(\mathbb{R})$ possesses the Luzin property: for any compact set $K \subset \mathbb{R}$ and any δ there is a compact set $K_\delta \subset K$ such that $|K \setminus K_\delta| < \delta$ and \tilde{a} is continuous on K_δ (see, e.g., [S67] Chap. IV, Section 4, p. 487). This implies that the function $x \mapsto a(x, \lambda \pm 0)$ for all $\lambda \in \mathbb{R}$ and the function $x \mapsto \|a(x, \cdot)\|_V$ are measurable on \mathbb{R} as well. Note that for almost all $x \in \mathbb{R}$ the limits $a(x, \lambda \pm 0)$ the limits exist for all $\lambda \in \mathbb{R}$, $a(x, \lambda) = a(x, \lambda - 0)$ for all $\lambda \in \mathbb{R}$ and we put

$$a(x, \pm \infty) := \lim_{\lambda \to \pm \infty} a(x, \lambda).$$
Therefore, the functions \(a(\cdot, \lambda \pm 0) \) for every \(\lambda \in \mathbb{R} \) and the function \(x \mapsto \| a(x, \cdot) \|_V \), where
\[
\| a(x, \cdot) \|_V := \| a(x, \cdot) \|_{L^\infty(\mathbb{R})} + V(a(x, \cdot)),
\]
belong to \(L^\infty(\mathbb{R}) \). Clearly, \(L^\infty(\mathbb{R}, V(\mathbb{R})) \) is a unital Banach algebra with the norm
\[
\| a \|_{L^\infty(\mathbb{R}, V(\mathbb{R}))} = \text{ess sup}_{x \in \mathbb{R}} \| a(x, \cdot) \|_V.
\]

4.3. Pointwise inequality for pseudodifferential operators. The following pointwise estimate was obtained by Yuri Karlovich in the proof of [K-Yu07, Theorem 3.1] and [K-Yu12, Theorem 4.1].

Lemma 4.1. If \(a \in L^\infty(\mathbb{R}, V(\mathbb{R})) \) and \(f \in C^\infty_0(\mathbb{R}) \), then
\[
| (a(x, D)f)(x) | \leq 2 | S_a f(x) | a(x, \cdot) \|_V \text{ for a.e. } x \in \mathbb{R}.
\]

4.4. Boundedness of the maximal singular integral operator \(S_* \) on separable Banach function spaces. We continue with the following result on the boundedness of the maximal singular integral operator \(S_* \) initially defined for \(f \in C^\infty_0(\mathbb{R}) \) by (1.1).

Lemma 4.2. Let \(X(\mathbb{R}) \) be a separable Banach function space. Suppose the Hardy-Littlewood maximal operator \(M \) is bounded on \(X(\mathbb{R}) \) and on its associate space \(X'(\mathbb{R}) \). Then the operator \(S_* \), defined for the functions \(f \in C^\infty_0(\mathbb{R}) \) by (1.3), extends to a bounded operator on the space \(X(\mathbb{R}) \).

Proof. Fix \(f \in C^\infty_0(\mathbb{R}) \). It is not difficult to check (see, e.g., [D91, Chap. 2, Section 2.2] and also [G09, p. 475]) that
\[
(S_{a,b} f)(x) = \frac{1}{2} \left\{ M^{-\psi_a}(H(M^{\psi_a} f))(x) - M^{-\psi_b}(H(M^{\psi_b} f))(x) \right\}, \quad x \in \mathbb{R},
\]
where \(\psi_a(x) = ax, \psi_b(x) = bx \) and \(-\infty < a < b < +\infty \). Therefore,
\[
(S_* f)(x) = \sup_{-\infty < a < b < +\infty} |(S_{a,b} f)(x)|
\]
\[
\leq \frac{1}{2} \sup_{a \in \mathbb{R}} |(H(M^{\psi_a} f))(x)| + \frac{1}{2} \sup_{b \in \mathbb{R}} |(H(M^{\psi_b} f))(x)|
\]
\[
= (C f)(x), \quad x \in \mathbb{R}.
\]
From this inequality, Axioms (A1)-(A2), and Corollary 4.3, we get
\[
\| S_* f \|_{X(\mathbb{R})} \leq \| C f \|_{X(\mathbb{R})} \leq \| C \|_{B(X(\mathbb{R}))} \| f \|_{X(\mathbb{R})} \text{ for } f \in C^\infty_0(\mathbb{R}).
\]
It remains to apply Lemma 2.2. \(\square \)

4.5. Boundedness of pseudodifferential operators with \(L^\infty(\mathbb{R}, V(\mathbb{R})) \) symbols on Banach function spaces. We are ready to prove the boundedness result for pseudodifferential operators with non-regular symbols on separable Banach function spaces.

Theorem 4.3. Let \(X(\mathbb{R}) \) be a separable Banach function space. Suppose the Hardy-Littlewood maximal operator \(M \) is bounded on \(X(\mathbb{R}) \) and on its associate space \(X'(\mathbb{R}) \). If \(a \in L^\infty(\mathbb{R}, V(\mathbb{R})) \), then the pseudodifferential operator \(a(x, D) \), defined for the functions \(f \in C^\infty_0(\mathbb{R}) \) by the iterated integral (1.3), extends to a bounded linear operator on the space \(X(\mathbb{R}) \) and
\[
\| a(x, D) \|_{B(X(\mathbb{R}))} \leq 2 \| S_* \|_{B(X(\mathbb{R}))} \| a \|_{L^\infty(\mathbb{R}, V(\mathbb{R}))}.
\]
Proof. From Lemma \[2.1\] axioms (A1)-(A2), and Lemma \[1.2\] we obtain for $f \in C_0^\infty(\mathbb{R})$,

$$
\|a(x,D)f\|_{X(\mathbb{R})} \leq 2\|S_a f\|_{X(\mathbb{R})} \|a(x,\cdot)\|_V \\
\leq 2\|S_a\|_{\mathcal{B}(X(\mathbb{R}))}\|a\|_{L^\infty(\mathbb{R},V(\mathbb{R}))}\|f\|_{X(\mathbb{R})}.
$$

Since $C_0^\infty(\mathbb{R})$ is dense in the space $X(\mathbb{R})$ in view of Lemma \[2.2\] from the above estimate we arrive immediately at the desired conclusion. \qed

5. Boundedness of maximally modulated Calderón-Zygmund operators and pseudodifferential operators with non-regular symbols on variable Lebesgue spaces

5.1. Variable Lebesgue spaces. Let $p : \mathbb{R}^n \to [1, \infty]$ be a measurable a.e. finite function. By $L^{p(\cdot)}(\mathbb{R}^n)$ we denote the set of all complex-valued functions f on \mathbb{R} such that

$$
I_{p(\cdot)}(f/\lambda) := \int_{\mathbb{R}^n} |f(x)/\lambda|^{p(x)} dx < \infty
$$

for some $\lambda > 0$. This set becomes a Banach function space when equipped with the norm

$$
\|f\|_{p(\cdot)} := \inf \{ \lambda > 0 : I_{p(\cdot)}(f/\lambda) \leq 1 \}.
$$

It is easy to see that if p is constant, then $L^{p(\cdot)}(\mathbb{R}^n)$ is nothing but the standard Lebesgue space $L^p(\mathbb{R}^n)$. The space $L^{p(\cdot)}(\mathbb{R}^n)$ is referred to as a variable Lebesgue space.

We will always suppose that

$$
1 < p_- := \essinf_{x \in \mathbb{R}^n} p(x), \quad \esssup_{x \in \mathbb{R}^n} p(x) =: p_+ < \infty.
$$

Under these conditions, the space $L^{p(\cdot)}(\mathbb{R}^n)$ is separable and reflexive, and its associate space is isomorphic to $L^{p'\cdot}(\mathbb{R}^n)$, where

$$
1/p(x) + 1/p'(x) = 1 \quad \text{for a.e.} \quad x \in \mathbb{R}^n
$$

(see e.g. \[CF13\] Chap. 2 or \[DHHR11\] Chap. 3).

5.2. The Hardy-Littlewood maximal function on variable Lebesgue spaces. By $\mathcal{B}_M(\mathbb{R}^n)$ denote the set of all measurable functions $p : \mathbb{R}^n \to [1, \infty]$ such that \[5.1\] holds and the Hardy-Littlewood maximal operator is bounded on the variable Lebesgue space $L^{p(\cdot)}(\mathbb{R}^n)$.

To provide a simple sufficient conditions guaranteeing that $p \in \mathcal{B}_M(\mathbb{R}^n)$, we need the following definition. Given a function $r : \mathbb{R}^n \to \mathbb{R}$, one says that r is locally log-Hölder continuous if there exists a constant $C_0 > 0$ such that

$$
|r(x) - r(y)| \leq \frac{C_0}{-\log |x - y|}
$$

for all $x, y \in \mathbb{R}^n$ such that $|x - y| < 1/2$. One says that $r : \mathbb{R}^n \to \mathbb{R}$ is log-Hölder continuous at infinity if there exist constants C_{∞} and r_{∞} such that for all $x \in \mathbb{R}^n$,

$$
|r(x) - r_{\infty}| \leq \frac{C_{\infty}}{\log(e + |x|)}.
$$

The class of functions $r : \mathbb{R}^n \to \mathbb{R}$ that are simultaneously locally log-Hölder continuous and log-Hölder continuous at infinity is denoted by $LH(\mathbb{R}^n)$. From \[CF13\] Proposition 2.3 and Theorem 3.16] we extract the following.
Theorem 5.1. Let $p \in LH(\mathbb{R}^n)$ satisfy (5.1). Then $p \in B_M(\mathbb{R}^n)$.

Although the latter result provides a nice sufficient condition for the boundedness of the Hardy-Littlewood maximal operator on the variable Lebesgue space $L^{p(\cdot)}(\mathbb{R}^n)$, it is not necessary. Notice that all functions in $L^1(\mathbb{R}^n)$ are continuous and have limits at infinity. Lerner [L05] (see also [CF13, Example 4.68]) proved that if $p_0 > 1$ and $\mu \in \mathbb{R}$ is sufficiently close to zero, then the following variable exponent

$$p(x) = p_0 + \mu \sin(\log \log(1 + \max\{|x|, 1/|x|\})), \quad x \neq 0,$$

belongs to $B_M(\mathbb{R})$. It is clear that the function p does not have limits at zero or infinity. We refer to the recent monographs [CF13, DHHR11] for further discussions concerning the fascinating and still mysterious class $B_M(\mathbb{R}^n)$.

We will need the following remarkable result proved by Diening [D05, Theorem 5.7.2] (see also [CF13, Corollary 4.64]).

Theorem 5.2. We have $p \in B_M(\mathbb{R}^n)$ if and only if $p' \in B_M(\mathbb{R}^n)$.

5.3. Boundedness of maximally modulated Calderón-Zygmund singular integral operators on variable Lebesgue spaces. From Theorems 3.1 and 5.2 we immediately get the following.

Corollary 5.3. Let $p \in B_M(\mathbb{R}^n)$. Suppose T is a Calderón-Zygmund operator and $\Phi = \{\phi_\alpha\}_{\alpha \in \mathcal{A}}$ is a family of measurable real-valued functions indexed by an arbitrary set \mathcal{A}. If T^Φ is of weak type (r,r) for all $r \in (1,\infty)$, then T^Φ extends to a bounded operator on the variable Lebesgue space $L^{p(\cdot)}(\mathbb{R}^n)$.

In turn, Corollary 5.3 and Lemma 3.2 yield the following.

Corollary 5.4. If $p \in B_M(\mathbb{R})$, then the maximally modulated Hilbert transform C extends to a bounded operator on the variable Lebesgue space $L^{p(\cdot)}(\mathbb{R})$.

5.4. Boundedness of pseudodifferential operators with $L^{\infty}(\mathbb{R}, V(\mathbb{R}))$ symbols on variable Lebesgue spaces. Combining Lemma 4.2 with Theorem 5.2 we arrive at the following.

Corollary 5.5. Suppose $p \in B_M(\mathbb{R})$. Then the operator S_\ast, defined for the functions $f \in C^\infty_0(\mathbb{R})$ by (1.1), extends to a bounded operator on the variable Lebesgue space $L^{p(\cdot)}(\mathbb{R})$.

From Theorems 4.3 and 5.2 taking into account Corollary 5.5 we get the following.

Corollary 5.6. If $p \in B_M(\mathbb{R})$ and $a \in L^{\infty}(\mathbb{R}, V(\mathbb{R}))$, then the pseudodifferential operator $a(x, D)$, defined for the functions $f \in C^\infty_0(\mathbb{R})$ by the iterated integral (1.3), extends to a bounded linear operator on the space $L^{p(\cdot)}(\mathbb{R})$ and

$$\|a(x, D)\|_{B(L^{p(\cdot)}(\mathbb{R}))} \leq 2\|S_\ast\|_{B(L^{p(\cdot)}(\mathbb{R}))}\|a\|_{L^{\infty}(\mathbb{R}, V(\mathbb{R}))}.$$

6. Compactness of pseudodifferential operators with non-regular symbols on variable Lebesgue spaces

6.1. Compactness of pseudodifferential operators with $L^{\infty}(\mathbb{R}, V(\mathbb{R}))$ symbols on standard Lebesgue spaces. We start with the case of constant exponents.
THEOREM 6.1 ([K-Yu07 Theorem 4.1]). Let $1 < r < \infty$. If $a \in L^\infty(\mathbb{R}, V(\mathbb{R}))$ and

(a) $a(x, \pm \infty) = 0$ for almost all $x \in \mathbb{R}$;
(b) $\lim_{|x| \to \infty} V(a(x, \cdot)) = 0$;
(c) for every $N > 0$,

$$\lim_{L \to +\infty} \text{ess sup}_{|x| \leq N} \left(V_{-L}^-(a(x, \cdot)) + V_{+L}^+(a(x, \cdot)) \right) = 0;$$

then the pseudodifferential operator $a(x, D)$ is compact on the standard Lebesgue space $L^r(\mathbb{R})$.

6.2. Transferring the compactness property from standard Lebesgue spaces to variable Lebesgue spaces. For a Banach space E, let $\mathcal{L}(E)$ and $\mathcal{K}(E)$ denote the Banach algebra of all bounded linear operators and its ideal of all compact operators on E, respectively.

THEOREM 6.2. Let $p_j : \mathbb{R}^n \to [1, \infty]$, $j = 0, 1$, be a.e. finite measurable functions, and let $p_0 : \mathbb{R}^n \to [1, \infty]$ be defined for $\theta \in [0, 1]$ by

$$\frac{1}{p_0(x)} = \frac{\theta}{p_0(x)} + \frac{1 - \theta}{p_1(x)}, \quad x \in \mathbb{R}^n.$$

Suppose A is a linear operator defined on $L^{p_0(\cdot)}(\mathbb{R}^n) + L^{p_1(\cdot)}(\mathbb{R}^n)$.

(a) If $A \in \mathcal{L}(L^{p_0(\cdot)}(\mathbb{R}^n))$ for $j = 0, 1$, then $A \in \mathcal{L}(L^{p_0(\cdot)}(\mathbb{R}^n))$ for all $\theta \in [0, 1]$ and

$$\|A\|_{\mathcal{L}(L^{p_0(\cdot)}(\mathbb{R}^n))} \leq 4\|A\|_{\mathcal{L}(L^{p_0(\cdot)}(\mathbb{R}^n))}^{\theta} \|A\|_{\mathcal{L}(L^{p_1(\cdot)}(\mathbb{R}^n))}^{1 - \theta};$$

(b) If $A \in \mathcal{K}(L^{p_0(\cdot)}(\mathbb{R}^n))$ and $A \in \mathcal{L}(L^{p_1(\cdot)}(\mathbb{R}^n))$, then $A \in \mathcal{K}(L^{p_0(\cdot)}(\mathbb{R}^n))$ for all $\theta \in (0, 1)$.

Part (a) is proved in [DHHR11 Corollary 7.1.4] under the more general assumption that p_j may take infinite values on sets of positive measure (and in the setting of arbitrary measure spaces). Part (b) follows from a general interpolation theorem by Cobos, Kühn, and Schonbeck [CKS92 Theorem 3.2] for the complex interpolation method for Banach lattices satisfying the Fatou property. Indeed, the complex interpolation space $[L^{p_0(\cdot)}(\mathbb{R}^n), L^{p_1(\cdot)}(\mathbb{R}^n)]_{1-\theta}$ is isomorphic to the variable Lebesgue space $L^{p_0(\cdot)}(\mathbb{R}^n)$ (see [DHHR11 Theorem 7.1.2]), and $L^{p_j(\cdot)}(\mathbb{R}^n)$ have the Fatou property (see [DHHR11 p. 77]).

The following characterization of the class $\mathcal{B}_M(\mathbb{R}^n)$ was communicated to the authors of [KS13] by Diening.

THEOREM 6.3 ([KS13 Theorem 4.1]). If $p \in \mathcal{B}_M(\mathbb{R}^n)$, then there exist constants $p_0 \in (1, \infty)$, $\theta \in (0, 1)$, and a variable exponent $p_1 \in \mathcal{B}_M(\mathbb{R}^n)$ such that

$$\frac{1}{p(x)} = \frac{\theta}{p_0(x)} + \frac{1 - \theta}{p_1(x)}, \quad x \in \mathbb{R}^n.$$

From the above two theorems we obtain the following result, which allows us to transfer the compactness property from standard Lebesgue spaces to variable Lebesgue spaces.

LEMMA 6.4. Let $A \in \mathcal{L}(L^{p_j(\cdot)}(\mathbb{R}^n))$ for all $p \in \mathcal{B}_M(\mathbb{R}^n)$. If $A \in \mathcal{K}(L^r(\mathbb{R}^n))$ for some $r \in (1, \infty)$, then $A \in \mathcal{K}(L^{p_j(\cdot)}(\mathbb{R}^n))$ for all $p \in \mathcal{B}_M(\mathbb{R}^n)$.
Proof. By the hypothesis, the operator A is bounded on all standard Lebesgue spaces $L^r(\mathbb{R}^n)$ with $1 < r < \infty$. From the classical Krasnosel’skii interpolation theorem (Theorem 6.2(b) with constant exponents) it follows that $A \in \mathcal{K}(L^r(\mathbb{R}^n))$ for all $1 < r < \infty$. If $p \in \mathcal{B}_M(\mathbb{R}^n)$, then in view of Theorem 5.2 there exist $p_0 \in (1, \infty)$, $\theta \in (0, 1)$, and a variable exponent $p_1 \in \mathcal{B}_M(\mathbb{R}^n)$ such that (6.1) holds. Since $A \in \mathcal{L}(L^{p_0}(\mathbb{R}^n))$ and $A \in \mathcal{K}(L^{p_1}(\mathbb{R}^n))$, from Theorem 6.2(b) we obtain $A \in \mathcal{K}(L^{p}(\mathbb{R}^n))$. \hfill \Box

6.3. Compactness of pseudodifferential operators with $L^\infty(\mathbb{R}, V(\mathbb{R}))$ symbols on variable Lebesgue spaces. Combining Corollary 6.5 and Theorem 6.1 with Lemma 6.4 we arrive at our last result.

Corollary 6.5. Suppose $p \in \mathcal{B}_M(\mathbb{R})$. If $a \in L^\infty(\mathbb{R}, V(\mathbb{R}))$ satisfies the hypotheses (a)–(c) of Theorem 6.1, then the pseudodifferential operator $a(x, D)$ is compact on the variable Lebesgue space $L^{p}(\mathbb{R})$.

References

[BBS88] C. Bennett and R. Sharpley, Interpolation of Operators. Academic Press, New York, 1988.
[CKS92] F. Cobos, T. Kühn, and T. Schonbek, One-sided compactness results for Aronszajn-Gagliardo functors. J. Funct. Analysis 106 (1992), 274–313.
[CF13] F. Cobos, T. Kühn, and T. Schonbek, One-sided compactness results for Aronszajn-Gagliardo functors. J. Funct. Analysis 106 (1992), 274–313.
[CGS05] L. Diening, P. Harjulehto, P. Hästö, and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics 2017. Springer, Berlin, 2011.
[DYN91] E. M. Dyn’kin, Methods of the theory of singular integrals (the Hilbert transform and Calderon-Zygmund theory). In “Commutative Harmonic Analysis I”, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 15, VINITI, Moscow (1987), 197-292 (in Russian). English translation: Commutative harmonic analysis I. General survey. Classical aspects, Encycl. Math. Sci. 15 (1991), 167–259.
[FSY72] Ch. Fefferman and E. M. Stein, H^p spaces of several variables. Acta Math. 129 (1972), 137–193.
[G09] L. Grafakos, Modern Fourier Analysis. 2nd ed. Graduate Texts in Mathematics 250. New York, Springer, 2009.
[GMS05] L. Grafakos, J. M. Martell, and F. Soria, Weighted norm inequalities for maximally modulated singular integral operators. Math. Ann. 331 (2005), 359–394.
[K-A14] A. Yu. Karlovich, Boundedness of pseudodifferential operators on Banach function spaces. In: “Operator Theory, Operator Algebras and Applications”. Operator Theory: Advances and Applications 242 (2014), 185–197.
[KS13] A. Yu. Karlovich and I. M. Spitkovsky, Pseudodifferential operators on variable Lebesgue spaces. In: “Operator Theory, Pseudo-Differential Equations, and Mathematical Physics. The Vladimir Rabinovich Anniversary Volume”. Operator Theory: Advances and Applications 228 (2013), 173–183.
[KS14] A. Yu. Karlovich and I. M. Spitkovsky, The Cauchy singular integral operator on weighted variable Lebesgue spaces. In: “Concrete Operators, Spectral Theory, Operators in Harmonic Analysis and Approximation”. Operator Theory: Advances and Applications 236 (2014), 275–291.
[K-Yu07] Yu. I. Karlovich, Algebras of pseudo-differential operators with discontinuous symbols. In: “Modern Trends in Pseudo-Differential Operators”. Operator Theory: Advances and Applications 172 (2007), 207–233.
[K-Yu12] Yu. I. Karlovich, Boundedness and compactness of pseudodifferential operators with non-regular symbols on weighted Lebesgue spaces. Integr. Equ. Oper. Theor. 73 (2012), 217–254.
A. K. Lerner, Some remarks on the Hardy-Littlewood maximal function on variable L^p spaces. Math. Z. 251 (2005), 509-521.

A. K. Lerner, Some remarks on the Fefferman-Stein inequality. J. Anal. Math. 112 (2010), 329-349.

A. K. Lerner and S. Ombrosi, A boundedness criterion for general maximal operators. Publ. Mat. 54 (2010), 53-71.

A. K. Lerner and C. Pérez, A new characterization of the Muckenhoupt A_p weights through an extension of the Lorentz-Shimogaki theorem. Indiana Univ. Math. J. 56 (2007), 2697-2722.

C. Muscalu and W. Schlag, Classical and Multilinear Harmonic Analysis. Vol. II. Cambridge Studies in Advanced Mathematics 138. Cambridge University Press, Cambridge, 2013.

I. P. Natanson, Theory of Functions of a Real Variable. Frederick Ungar Publishing Co., New York, 1955.

E. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton, NJ, 1993.

L. Schwartz, Analyse Mathématique. Cours I. Hermann, Paris, 1967.

Centro de Matemática e Aplicações (CMA) and Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829–516 Caparica, Portugal.

E-mail address: oyk@fct.unl.pt