INTRODUCTION

Tuberculosis (TB) is a global public health problem and among top ten causes of mortality in worldwide\(^1\,2\). According to WHO, in 2016, there were about 6.3 million new TB cases in the world, of which extra-pulmonary TB accounted for about 15\%\(^1\). In Vietnam, the incidence of extrapulmonary TB was 17.4-18.9\% of all TB cases from 2005 to 2008. TB ascites is the sixth common type of extrapulmonary TB\(^3\). Currently, some diagnostic methods are available to identify TB ascites, of which results from culture of ascitic fluid/peritoneum is considered a gold standard\(^4\). However, it is a time-consuming approach when requiring several weeks for obtaining the accurate results. Meanwhile, other methods such as acid-fast-stained smears or histological detection has limitations such as insufficient sensitivity, invasive procedure, or not available in every hospital due to lack of resources or complicated techniques\(^5,6\). Identifying other simple manners without invasion is important for improving the diagnosis of TB ascites.

Previously, Adenosine deaminase (ADA) has been demonstrated that is highly sensitive and specific in the diagnosis of extrapulmonary TB\(^7-9\). Several studies found that ADA in ascites can be used to detect TB peritonitis with 100% sensitivity and 92%-100% specificity\(^10-12\). A systematic review of Lin Tao et al. indicated that ADA has 93% sensitivity and 94% specificity in diagnosing TB ascites\(^13\). However, other studies ADA has a limited diagnostic capacity in identifying TB peritonitis or among patients with other diseases such as liver cirrhosis\(^14-16\). Moreover, the threshold for...
diagnosis, sensitivity, and specificity of ADA depends on the age and prevalence of tuberculosis in each region. Given the diversity of findings across nations, we performed this study to test the diagnostic values of ADA in detecting TB ascites.

MATERIALS AND METHODS

Study design and sampling method

Cross-sectional data of 43 patients with ascites treated at Central Lung Hospital, Hanoi Lung Hospital and Bach Mai Hospital from January 2019 to August 2019 were used for analysis. They were included if they (1) were confirmedly diagnosed to have TB; (2) Age ≥ 16 years old; and (3) Agreed and gave their written informed consents. Patients were excluded if they were (1) under 16 years old, and (2) had blood diseases or autoimmune diseases. Fifty patients were conveniently recruited, of which 43 patients agreed to participate (response rate 86%). The study protocol was approved by the Institutional Review Board of the Hanoi Department of Science and Technology (Code: 4528/QD-UBND).

Measurement

ADA activity measurement technique: The activity of the ADA enzyme in a patient’s blood is determined by an enzyme kinetic method based on the reaction as following (Figure 1):

ADA tests used chemicals from Biosystem, ADA calibrator and control. AU680 Backman Coulter automatic biochemical system was used to test the ADA. There were two types of reagents for testing. The reagent A included 4 × 8 milliliters (mL) Tris 125 mmol/L; 2-oxoglutarate 1.1 mmol / L; adenosine 6.5 mmol / L; glutamate dehydrogenase >100 U/L; sodium azide 0.95 g/L; with pH 6.8. Meanwhile, the reagent B consisted of 1 × 10 mL NADH 1.5 mmol/ L and sodium azide 9.5 g/L. Two reagents were mixed in the ratio 4:1: 4 mL of reagent A + 1 mL of reagent B. The reagent was kept being stable for 30 days at 2-8°C. After opening the reagent, it was kept in the cooler of the analyzer for 12 days. The standardized ADA was from cattle with Tris 50 mmol/L.

Other tests: acid-fast bacilli (AFB) smear microscopy and culture (BATEC MGIT) as well as histological tests were performed according to the standard procedures at Central Lung Hospital, Hanoi Lung Hospital and Bach Mai Hospital. Moreover, ascitic fluid and blood tests were performed to measure lactate dehydrogenase-LDH, protein, total cell, % lymphocytes (in ascitic fluid), and white blood cell and C-reactive protein (in blood). Other diseases such as pneumonia, malignancy, or cirrhosis was diagnosed according to the standards of the Ministry of Health.

Statistical analysis

Data were analyzed using SPSS software version 20.0. Chi-squared and Mann-Whitney tests were used to compare demographic and clinical characteristics between TB ascites and non-TB ascites groups. Sensitivity, specificity, negative predictive value (NPV), positive predictive value (PPV), receiver operating characteristic (ROC) and area under the curve of ADA in diagnosing TB ascites were estimated. P-value of less than 0.05 was statistical significance.

RESULTS

Among 43 TB patients, 17 patients (39.5%) had TB ascites. There was no difference in age and gender between TB ascites and non-TB ascites patients (p > 0.05) (Table 1).

Table 2 indicated that the ADA activity level, LDH, protein, the number of cells and % lymphocytes were significantly higher in TB ascites group compared to non-TB ascites group (p < 0.05).

The area under the curve (AUC) of ascitic fluid ADA in diagnosis of TB ascites was 0.937 with p < 0.001. The optimal cut-off value was 30.2 U/L with high sensitivity (100%) and specificity (88.5%) (Figure 2).

Table 3 indicated that that the cut-off point of 30.2 U/L of ADA provided a high diagnostic value of TB ascites with 100% sensitivity, 88.5% specificity, 85% PPV and 100% NPV. There were 3 cases of false positives which were peritoneal metastases. Meanwhile, AFB method had only 8.3% sensitivity, MGIT method had 41.2% sensitivity with ascitic fluid, and 47.0% with all specimens. Histological procedure had 88.9% sensitivity.

DISCUSSION

This study contributes to the current literature that ascitic fluid ADA assay was a good tool for diagnosing TB ascites. The diagnostic values of this indicator were also better than AFB or MGIT approaches.

In our study, the mean ADA concentration in patients with TB ascites was significantly higher than that of other diseases. The AUC of ascitic fluid ADA assay was 0.937 (95%CI: 0.851-1.000), suggesting that ADA was very valuable in the diagnosis of TB ascites. Our result differed from findings from other previous studies,[17,18,20] which might be due to the heterogeneity in patient selection, time of testing, or methods to measure ADA. A prior literature indicated that in coun-

Table 1 Age and gender characteristics.

Characteristics	TB ascites	Non-TB ascites	p
Total	17 (39.5%)	26 (60.5%)	
Male	12 (70.6%)	17 (65.4%)	0.7
Female	5 (29.4%)	9 (34.6%)	
Age (years), Median (IQR)	54 (33.5-61)	55 (45.5-61.25)	0.4
Nguyen HM et al. Ascites in diagnosing Tuberculous Ascites

Table 2 Results of Pleural perfusion fluid tests and Blood tests.

Tests	TB ascites	Non-TB ascites	P			
	n	Median (IQR)	n	Median (IQR)		
Ascutic fluid	ADA	17	65.07 (53.84-83.4)	26	16.6 (13.18-26.26)	<0.001
	LDH (U/L)	11	214 (121-373)	16	60.5 (46.3-160.8)	0.044
	Protein (g/L)	17	55.2 (43.5-65.4)	26	21.4 (7.8-36.7)	<0.001
	Cells (cells/mm³)	17	2080 (1165-4560)	26	370 (200-870)	<0.001
	% lymphocytes	17	70 (64-80)	26	55 (30-70)	0.021
Blood tests	WBC (G/L)	17	6.24 (5.68-8.23)	26	7.87 (4.88-13.3)	0.371
	CRP (mg/L)	15	56.8 (12.9-84.4)	17	15 (2.7-60.3)	0.146

IQR: interquartile range; LDH: lactate dehydrogenase; ADA: adenosine deaminase; WBC: white blood cell; CRP: C-reactive protein

Table 3 Values of some tests in the diagnosis of TB ascites.

Test	Specimen	n	Group	TB ascites (n)	Non-TB ascites (n)	Sens (%)	Spec (%)	PPV (%)	NPV (%)	Acc (%)
ADA (U/L)	Ascutic fluid	43	≥ 30.2	17	3	100	88.5	85	100	86.9
	Ascutic fluid	43	< 30.2	12	1	8.3	91.7	50	47.8	48
AFB	Sputum	25	(+)	1	1	100	98.6	90	79.3	92.4
	Sputum	25	(-)	12	11	9.7	90.3	90	79.3	92.4
MGIT	Ascutic fluid	43	(+)	7	0	41.2	100	100	72.2	76.7
	Ascutic fluid	43	(-)	10	26	84.6	100	100	72.2	76.7
	Sputum	25	(+)	1	1	100	100	100	89.9	99.9
	Sputum	25	(-)	9	25	89.9	100	100	89.9	99.9
Histological procedure	Biopsy tissue	17	(+)	8	0	88.9	100	100	88.9	94.1
	Biopsy tissue	17	(-)	1	8	88.9	100	100	88.9	94.1

ADA: adenosine deaminase; AFB: acid-fast bacilli; MGIT: smear microscopy and culture; Se: sensitivity; Sp: specificity; PPV: positive predictive value; NPV: negative predictive value; Acc: Accuracy of of diagnostic method). *1 case of tuberculosis pulmonary with AFB (+) and MGIT (+) in sputum.

with peritoneal effusion, diagnostic bacteria tests also have a high specificity and PPV (100%). However, the positive rate of these tests is still low. AFB could detect 1/13 positive cases, with 8.3% sensitivity. Histological biopsy could identify 8/9 positive cases with typical tuberculous lesions, indicating 88.9% sensitivity. These findings were somewhat similar to previous studies in South Africa and Egypt.[27,28] The diagnostic value of ascitic fluid ADA assay is further confirmed in patients who have not found bacteriological evidence. The cut-off threshold of 30.2 U/L had 100% NPV, or in other word, this threshold could indicate that risk of TB ascites was not existed. A study in South Africa showed that there were 13 cases of false positive (ADA ≥ 30 U/L) including: cancer, systemic lupus erythematosus, heart failure, nephrotic syndrome, renal failure, and cirrhosis. There is only 1 case of false negative (ADA = 18 U/L). This patient was diagnosed with tuberculosis by histopathological findings of peritoneal biopsy.[27]

CONCLUSION

Ascitic fluid ADA assay is a useful diagnostic tool to detect TB ascites. As a low-cost test compared to other diagnostic tools, ascitic fluid ADA assay should be selected as a preferred choice in resource-constrained settings.

Future Perspective: Ascitic fluid ADA assay is not used as a standard procedure to detect TB ascites in clinical settings. It is believed that this tool can be applied widely in the future for TB ascites prognosis and diagnosis.

Summary Points: (1) Adenosine deaminase (ADA) has been demonstrated that is highly sensitive and specific in the diagnosis of extrapulmonary TB. (2) Diagnostic values of Ascitic fluid ADA assay vary across settings. (3) This study found Ascitic fluid ADA assay is a useful diagnostic tool to detect TB ascites.
ACKNOWLEDGMENTS

The authors would like to thank all patients who participated in this study. Author Contribution: All authors participated in study design, data collection and analysis, writing and editing manuscript.

REFERENCES

1. Organization WH. Global tuberculosis report 2017. (2017).
2. Aston NO. Abdominal tuberculosis. World J Surg. 1997 Jun; 21(5): 492-9. [PMID: 9204736]; [DOI: 10.1007/p00012275]
3. Sharma M, Bhatia V. Abdominal tuberculosis. Indian J Med Res. 2004 Oct; 120(4): 305-15. [PMID: 15520484]
4. Reddy KR, Diprima RE, Raskin JB, Jeffers LJ, Phillips RS, Manten HD, Schiff ER. Tuberculous peritonitis: laparoscopic diagnosis of an uncommon disease in the United States. Gastrointest Endosc. 1988 Sep-Oct; 34(5): 422-6. [PMID: 2972585]; [DOI: 10.1016/0016-5107(88)71410-8]
5. Vardareli E, Kebapçı M, Saricam T, Pasaoglu Ö, Acikalin M. Tuberculous peritonitis of the wet ascitic type: clinical features and diagnostic value of image-guided peritoneal biopsy. Dig Liver Dis. 2004 Mar; 36(3): 199-204. [PMID: 15046190]; [DOI: 10.1016/j.dld.2003.10.016]
6. Chow KM, Chow VCY, Hung LCT, Wong SM, Szeto CC. Tuberculous peritonitis-associated mortality is high among patients waiting for the results of mycobacterial cultures of ascitic fluid samples. Clin Infect Dis. 2002 Aug 15; 35(4): 409-13. [PMID: 12145724]; [DOI: 10.1086/341898]
7. Arroyo M, Soberman JE. Adenosine deaminase in the diagnosis of tuberculous pericardial effusion. Am J Med Sci. 2008 Mar; 335(3): 227-9. [PMID: 18344697]; [DOI: 10.1097/MAJ.0b013e3180cab71a]
8. Vila LM, Pereira S, Rodriguez-Martinez D. Ascites adenosine deaminase activity is decreased in tuberculous ascites with low protein content. Am J Gastroenterol. 1991 Oct; 86(10): 1500-3. [PMID: 1928045]
9. Greco S, Girardi E, Mascalci A, Capoccetta G, Salitina C. Adenosine deaminase and interferon gamma measurements for the diagnosis of tuberculous pleurisy: a meta-analysis. Int J Tuberc Lung Dis. 2003 Aug; 7(8): 777-86. [PMID: 12921155]
10. Dwivedi M, Misra S, Misra V, Kumar R. Value of adenosine deaminase estimation in the diagnosis of tuberculous ascites. Am J Gastroenterol. 1990 Sep; 85(9): 1123-5. [PMID: 2389724]
11. Fernandez-Rodriguez CM, Perez-Arguelles BS, Ledo L, Garcia-Vila LM, Pereira S, Rodriguez-Martinez D. Ascites adenosine deaminase activity is decreased in tuberculous ascites with low protein content. Am J Gastroenterol. 1991 Oct; 86(10): 1500-3. [PMID: 1928045]
12. Voigt M, Trey C, Lombard C, Kalvaria I, Berman P, Kirsch R. Diagnostic value of ascites adenosine deaminase in tuberculous peritonitis. The Lancet 1989; 333(8641): 751-754. [DOI: 10.1016/0140-6736(89)92574-9]
13. Tao L, Ning H-J, Nie H-M, Guo X-Y, Qin S-Y, Jiang H-X. Diagnostic value of adenosine deaminase in ascites for tuberculosis ascites: a meta-analysis. Diagn Microbiol Infect Dis. 2014 May; 79(1): 102-7. [PMID: 24629577]; [DOI: 10.1016/j.diagmicrobio.2013.12.010]
14. Martinez-Vazquez J, Ocaña I, Ribera E, Segura RM, Pascual C. Adenosine deaminase activity in the diagnosis of tuberculous peritonitis. World J Gastroenterol. 2012 Oct 7; 18(37): 5260-5. [PMID: 23066321]; [PMCID: PMC3468859]; [DOI: 10.3748/wjg.v18.i37.5260]
15. Hillebrand DJ, Runyon BA, Yasmineh WG, Rynders GP. Ascitic fluid adenosine deaminase insensitivity in detecting tuberculous peritonitis in the United States. Hepatology. 1996 Dec; 24(6): 1408-12. [PMID: 8938171]; [DOI: 10.1002/hep.510240617]
16. Sathar M, Simjee A, Coovadia Y, Soni P, Moola S, Insam B, Makumbi F. Ascitic fluid gamma interferon concentrations and adenosine deaminase activity in tuberculous peritonitis. Gut. 1995 Mar; 36(3): 419-21. [PMID: 7698702]; [PMCID: PMC1382457]; [DOI: 10.1136/gut.36.3.419]
17. Burgess LJ, Swanepoel CG, Taljaard JJ. The use of adenosine deaminase as a diagnostic tool for peritoneal tuberculosis. Tuberculosis (Edinb). 2001; 81(3): 243-8. [PMID: 11466036]; [DOI: 10.1054/tube.2001.0289]
18. Sharma SK, Tahir M, Mohan A, Smith-Rohrberg D, Mishra HK, Pandey RM. Diagnostic accuracy of ascitic fluid IFN-gamma and adenosine deaminase assays in the diagnosis of tuberculous ascites. J Interferon Cytokine Res. 2006 Jul; 26(7): 484-8. [PMID: 16800878]; [DOI: 10.1089/jir.2006.26.484]
19. Kang SJ, Kim JW, Baek JH, Kim SH, Kim BG, Lee KL, Jeong JB, Jung YJ, Kim JS, Jung HC, Song IS. Role of ascites adenosine deaminase in differentiating between tuberculous peritonitis and peritoneal carcinomatosis. World J Gastroenterol. 2012 Jun 14; 18(22): 2837-43. [PMID: 22719194]; [PMCID: PMC3374989]; [DOI: 10.3748/wjg.v18.i22.2837]
20. Saleh MA, Hammad E, Ramadan MM, Abd El-Rahman A, Enein AF. Use of adenosine deaminase measurements and QuantiFERON in the rapid diagnosis of tuberculous peritonitis. J Med Microbiol. 2012 Apr; 61(4): 514-9. [PMID: 22174374]; [DOI: 10.1099/jmm.0.035121-0]