Effects of computer gaming on cognition, brain structure, and function: a critical reflection on existing literature

Simone Kühn, PhD; Jürgen Gallinat, MD; Anna Mascherek, PhD

Video gaming as a popular form of leisure activity and its effect on cognition, brain function, and structure has come into focus in the field of neuroscience. Visuospatial cognition and attention seem to benefit the most, whereas for executive functions, memory, and general cognition, the results are contradictory. The particular characteristics of video games driving these effects remain poorly understood. We critically discuss major challenges for the existing research, namely, the lack of precise definitions of video gaming, the lack of distinct choice of cognitive ability under study, and the lack of standardized study protocols. Less research exists on neural changes in addition to cognitive changes due to video gaming. Existing studies reveal evidence for the involvement of sim ilar brain regions in functional and structural changes. There seems to be a predominance in the hippocampal, prefrontal, and parietal brain regions; however, studies differ immensely, which makes a meta-analytic interpretation vulnerable. We conclude that theoretical work is urgently needed.

Keywords: experimental video gaming; cognition; brain structure; brain function; critical reflection; challenge; plasticity

Video gaming and cognition

Video gaming, as a popular, generally cognitively demanding form of leisure activity, has received attention in recent years in search of effective, yet affordable interventions to maintain or enhance cognitive abilities in individuals in different contexts. The increasing scientific interest in video gaming as a training instrument may be driven by an inherent playfulness of video games in contrast to classical training programs, as well as substantial effects on brain structure and function within short training periods. This is the reason for reviewing the preexisting and quite heterogeneous literature on this new interventional instrument. In this article we, first, critically discuss existing methodological challenges in the field when it comes to drawing general conclusions about video gaming and cognition. We are aiming less at summarizing existing findings on the basis of existing meta-analyses and reviews once again, but rather at addressing the complex challenges when effects of video gaming are assessed in experimental setups. To learn more about specific results in detail we would like to refer the reader to existing excellent review and meta-analytic literature.

To start with a summary, it generally has been established that video gaming has beneficial effects on cognition, eg,
Video gaming has beneficial effects on cognition, but the underlying mechanisms are not truly understood

A major critical point in evaluating possible effects of video gaming on cognition lies in the definition of “video gaming” itself. Here, studies as well as meta-analyses and reviews do not draw on a consistent definition. “Video gaming” is only defined and subdivided into different processes, according to Miyake et al 2019, with effects on updating memory. In the study by Powers et al, executive functioning batteries resulting in negligible effects. Similar, while Sala and Gobet argue that no effect can be found for general cognition, Stanmore et al report a positive effect of exergames on general cognition, which is corroborated by Wang et al, however, in a meta-analysis including only action video games. In yet another review, Cardoso-Leite and Bavelier try to extract the effect of video games.
Experimental video gaming and cognition - Kühn et al

Video gaming and cognition at a brain structural and functional level

The reported potential improvements in cognitive domains after training with video games are accompanied by underlying changes in brain function and structure. However, at present, even less research has been conducted focusing on neural changes in addition to cognitive changes due to video game play. Only a single review on this topic has recently been published. This review (in total covering n = 116 articles) includes both cross-sectional designs in which habitual gamers are compared with participants who never or only seldom play video games and longitudinal intervention designs in which a randomized group is trained with a given video game and a control group is not. Moreover, it includes studies on video game addiction. Here again, the challenge of the chosen control group becomes evident as effects cannot be

Original article

Experimental video gaming and cognition - Kühn et al

A third major challenge is inherent in the design of those studies and was raised by Green et al. In an experimental setting, effects are evaluated in comparison with a specific control group. It is design-immanent that effects are found and conditionally interpreted based on the (null)effects of the control group. However, depending on the control group chosen, a range of results are possible. There is no standardized approach which is generally applied. Reviews and meta-analyses differ in which studies they include as reference. Bediou et al exclusively focused on studies that contrasted their action-game training group against an active control group, playing commercially available non-action games. Mansor et al. on the other hand, explicitly excluded studies with an active gaming control group, resulting in a completely different selection of studies, yet both aiming at analyzing the effects of video gaming on cognition. In yet another meta-analysis, Wang et al. only excluded studies with no control group at all. Although all meta-analyses report an overall moderate positive effect of gaming on cognition, infences across studies contributing to understanding the underlying mechanism of how and why effects are found are not warranted, as this would be like comparing apples and oranges. No one-fits-all solution exists for the choice of a control group; pro and con arguments can be found depending on the specific research question. However, coming full circle, with a basically non-action games and longitudinal intervention designs in which a randomized group is trained with a given video game and a control group is not. Moreover, it includes studies on video game addiction. Here again, the challenge of the chosen control group becomes evident as effects cannot be
attributed causally due to the tremendous heterogeneity of references chosen. The general conclusion might be along the lines of “video gaming has an effect on brain structure and function,” although the underlying mechanisms that drive these effects might not be inferred. To start with, including studies in reviews differing in design does have its place, but needs to be supplemented by studies or reviews allowing for more causal inferences on the long run. Nevertheless, it seems that in brain regions particularly related to attention and to visual spatial skills, an improvement in terms of brain function and brain structure due to video game training can be observed.

In the present review we would like to focus on longitudinal intervention studies, as causal effects of video gaming can only be inferred from designs in which brain function or structure is compared before and after a randomly assigned training intervention. Moreover, we would like to exclude studies on problem gamers or video game addiction, since our first goal is to understand the effects of video game exposure in the healthy population and in response to a moderate dosage of game play. We also excluded studies in which the immediate effects of acute video game exposure were investigated, that is, where participants were asked to play for a time frame of minutes to hours until changes were assessed. Based on these criteria we included 22 studies (Table I). However, it should be noted that multiple studies draw on the same sample of participants (eg, refs 29, 32, 36) all resulting from one study. All (n=8) but one study on brain structural changes over time showed increases in different brain regions, with a clustering of results on growth in prefrontal and temporal brain regions (especially hippocampus). The exception is a very recent paper showing that, generally, increases in hippocampus can be observed after training with a 3D platformer game, however, with differential results being found after training with action video games, depending on the navigation strategy of the participants (with response learners showing decreases of hippocampal volume, whereas spatial learners show increases). In contrast, of the 15 studies focusing on brain functional changes, report exclusive increases in brain function, be it measured at rest or during a task-based design; the other studies report only or also decreases in brain function. Results are inconsistent or even contradictory, however. Due to differences in study design and chosen intervention, the results cannot be interpreted

STUDY	N	AGE	SAMPLE	VIDEO GAME GENRE	COMMERCIAL/CUSTOM-MADE
Anguera et al, 2013	46	67	Healthy older adults	Racing	Custom-made (goal: train multitasking)
Bailey & West, 2013	31	22	Healthy adults	Action, First Person Shooter, Puzzle, Brain Training	Commercial
Colom et al, 2012	20	19	Healthy young adults	Puzzle, brain training (Prof Layton)	Commercial
Diarra et al, 2019	33	68	Healthy older adults	3D platform (Super Mario)	Commercial
Eggenberger et al, 2016	33	75	Healthy older adults	Exergame	Commercial

Table I (continued overleaf). Selected studies (n = 22) included in the present review on effects on brain structural and functional changes. Studies are listed in alphabetical order. Upward arrows indicate increases, downward arrows indicate decreases. DTI, diffusion tensor imaging; EEG, electroencephalography; fMRI, functional MRI; fNIRS, functional near infrared spectroscopy; MRI, magnetic resonance imaging.

322 • DIALOGUES IN CLINICAL NEUROSCIENCE • Vol 21 • No. 3 • 2019
and integrated across studies with final conclusions drawn from them. There seems to be a strong preponderance of reported decreases of brain function in studies in which the task performed during measurement was closely related to the video game that was actually trained (n=6).34,35,37,40 The direction of these results – namely decreases in brain activity due to training when the trained task is performed – are in line with previous studies on classical cognitive training in which the training tasks consist of adaptations of neuropsychological test batteries and where brain activity was measured before and after a considerable interval of training in exactly the trained task.46-48 However, also in the later field some studies only report increases.49 These inconsistencies could be due to the fact that the training duration and intensity differs across studies. Additionally, gains, measured by means of performance, and brain functional or structural changes are most likely not linear therefore this research field requires more studies with multiple measurement occasions so that the nonlinear trajectories of change can be observed. We have recently gathered evidence that not only may brain functional changes over the course of training show an inverted U-shape pattern,46 but also brain structure (in this case examined during a motor training intervention),50 showing initial increases after short-term training but decreases over longer training intervals. These first results once again strengthen the call for a theoretical framework, in which trajectories might be outlined and can then be tested in a strictly standardized research protocol.

In general, the existing studies on video game training-related brain changes that measure and report functional and structural brain data at the same time seem to reveal evidence for the involvement of similar brain regions in functional and structural changes.29,30 However, it is difficult to conclude from the existing pool of studies whether brain changes observed across different studies occur at comparable locations in the brain. There seems to be a precedence of change observed in hippocampus, prefrontal, and parietal brain regions; however, the studies use very different genres of video games for training, which makes a meta-analytic interpretation of the brain regions that reveal changes very vulnerable. Since multiple studies use the video games Space Fortress or a 3D version of Super Mario for training, a continuous focus on these games is warranted and may then soon allow formal quantitative meta-analyses on the resulting brain changes.

TECHNIQUE	NEURAL CHANGE	TRAINING DURATION
EEG	Task-related (game play):	4 weeks
	- midline frontal theta power	
	- frontal-posterior theta coherence	
EEG	Task-related (emotional faces):	2 weeks
	- P300 amplitude	
MRI/DTI	Grey matter:	4 weeks
	- PFC	
	- small temporal and parietal regions	
	White matter:	
	- HC cingulum	
	- ILF	
MRI	Frontal eye fields	6 months
fMRI/MRI	Task-related (while walking):	8 weeks
	- PFC (associated with improved cognitive performance)	

DIALOGUES IN CLINICAL NEUROSCIENCE • Vol 21 • No. 3 • 2019 • 323
Table I (continued). Selected studies (n = 22) included in the present review on effects on brain structural and functional changes. Studies are listed in alphabetical order. Upward arrows indicate increases, downward arrows indicate decreases.

STUDY	N	AGE	SAMPLE	VIDEO GAME GENRE	COMMERCIAL/CUSTOM-MADE
Gleich et al, 2017	48	24	Healthy young adults	3D platform (Super Mario)	Commercial
Haier et al, 2011	26	13	Adolescents	Puzzle	Commercial
Han et al, 2011	19	21	Healthy young adults	First person shooter	Commercial
Kral et al, 2018	47	13	Adolescents	Empathy training	Custom-made (goal: train empathy)
Kühn et al, 2014	48	24	Healthy young adults	3D platform (Super Mario)	Commercial
Kühn et al, 2017	53	69	Healthy older adults	?	Custom-made (goal: train self-control)
Lee et al, 2012	75	22	Healthy young adults	Action, shooter (Space Fortress)	Commercial
Lorenz et al, 2015	48	24	Healthy young adults	3D platform (Super Mario)	Commercial
Maclin et al, 2011	39	(19-29)	Healthy young adults	Action, shooter (Space Fortress)	Commercial

DTI, diffusion tensor imaging; EEG, electroencephalography; fMRI, functional MRI; fNIRS, functional near infrared spectroscopy; MRI, magnetic resonance imaging.
Experimental video gaming and cognition - Kühn et al

TECHNIQUE	NEURAL CHANGE	TRAINING DURATION
fMRI	Task-related (Passive win > loss game play viewing)	8 weeks
	▲ PFC	
	▲ HC	
fMRI/MRI	Grey matter	3 month
	▲ PFC	
	▲ temporal gyrus	
	Task-based: (during active Tetris game play)	
	▲ PFC	
	▲ parietal	
	▲ ACC	
fMRI	Task-based (passive viewing of game scenes those who played more showed):	10 days
	▲ PFC	
	▲ parietal	
fMRI	Task-based (empathic accuracy):	2 weeks
	▲ right temporo-parietal junction	
	Resting state:	
	▲ posterior cingulate–medial PFC	
MRI	▲ PFC	8 weeks
	▲ HC	
	▲ Cerebellum	
MRI/MRI	Grey matter	8 weeks
	▲ PFC: right IFG	
	Task-based (stop signal task):	
	▲ PFC: right IFG	
fMRI	Task-based (game play):	8 weeks
	▲ intracalcarine cortex	
	▲ lingual gyrus	
	▲ lateral occipital cortex	
fMRI	Post vs pretest control group (reward task):	8 weeks
	▲ ventral striatum	
EEG	Task-based	20 hours
	(Video game hits):	
	▲ P300 amplitude	
	▲ Delta power	
	▲ Alpha power	
	(Video game enemies):	
	▲ P300 amplitude	
	(Oddball tones):	
	▲ P300 amplitude	
	▲ Delta power	
Table I (continued). Selected studies (n = 22) included in the present review on effects on brain structural and functional changes. Studies are listed in alphabetical order. Upward arrows indicate increases, downward arrows indicate decreases. DTI, diffusion tensor imaging; EEG, electroencephalography; fMRI, functional MRI; fNIRS, functional near infrared spectroscopy; MRI, magnetic resonance imaging.

STUDY	N	AGE	SAMPLE	VIDEO GAME GENRE	COMMERCIAL/CUSTOM-MADE
Martinez et al, 2013	20	19	Healthy young adults	Puzzle, Brain training (Prof. Layton)	Commercial
Nikolaidis et al, 2014	45	22	Healthy young adults	Action, shooter (Space Fortress)	Commercial
Prakash et al, 2012	66	22	Healthy young adults	Action, shooter (Space Fortress)	Commercial
Strenziok et al, 2014	42	69	Healthy older adults	Action, shooter, real time strategy, Puzzle, Brain training	Commercial
Szabo et al, 2014	56	37	Healthy adults	Action, 3D platformer (Super Mario)	Commercial
Voss et al, 2011	29	22	Healthy young adults	Action, shooter (Space Fortress)	Commercial
West et al, 2017	21	68	Healthy older adults	Action, 3D platformer (Super Mario)	Commercial
West et al, 2018	43	23	Healthy young adults	Action, 3D platformer (Super Mario) & shooter	Commercial
Experimental video gaming and cognition - Kühn et al

TECHNIQUE	NEURAL CHANGE	TRAINING DURATION
fMRI Resting state:	parieto-frontal correlated activity	4 weeks (16 hours)
fMRI Task-based (video game play)	Predictors of WM performance	30 hours (15 sessions)
Superior parietal lobule		
Post central gyrus		
Posterior cingulate cortex		
fMRI Task-based (video game play)	Post vs pre (all groups also controls):	30 hours (15 sessions)
MFG		
SFG		
vmPFC		
HVT vs Controls:		
MFG		
SFG		
MRI (DTI) Across all groups:	lingual gyrus	6 weeks
thalamus		
MRI After video game intervention	hippocampus (right)	8 weeks
fMRI Resting state:	Variable priority post > pre	20 hours, 2-4 weeks
fron-to-parietal network increases in connectivity		
MRI	hippocampus (left)	6 months
cerebellum		
MRI Action video game	hippocampus (right)	90 hours
Response learners:		
Action video game		
Spatial learners:	hippocampus	
3D platformer:	hippocampus	
Spatial learners:		
entorhinal cortex		
Role playing video game (all)	hippocampus	
Role playing video game	hippocampus	
Response learners:	hippocampus	
Role playing video game spatial learners:	hippocampus	
Experimental video gaming and cognition - Kühn et al

Moreover, the field desperately needs studies contrasting the behavioral and neural effects of video game training between different game genres. A first study to undertake this approach with a focus on brain structural alterations in the hippocampus compared the genres 3D platformer, action, and role play video games. The authors report increases in hippocampal volume in response to 3D platformer training and decreases in response to role play game training, but most importantly they identify differential effects in particular for action video game vs when considering interindividual differences in navigation strategy. That is, depending on the individual’s navigation strategy applied in the video game, effects are either positive or negative with respect to hippocampal volume. This study paves the way to more targeted studies on the effects of video games, focusing on the exact working mechanisms. For the purpose of recommendations to the general public on which video game one may be beneficial or detrimental in terms of brain health a comparison of different video game genres may be of interest. In order to identify and understand the exact game elements that cause specific neural changes more systematic studies are required. Here it would be helpful to compare training effects of several video games from a single genre with systematic variation of its separate elements (e.g., 2D vs 3D navigation, first-person vs third-person perspective, presence vs absence of reward schedules). However, for this purpose either existing commercial video games would need to be adapted, or the focus would have to be put onto custom-made video games. When looking at the studies conducted on brain structural and/or functional changes, it becomes evident that meta-analytic inferences that causally link brain structure and function to specific cognitive abilities that are all affected by specific video game training intervention is not possible according to the multitude of current studies, however well-conducted each and every one might be. Important first steps have been made in order to understand the effects of video gaming; however, future research is needed to unravel the secret of the true underlying mechanisms and relations.

Conclusions

Based on the discussion of the results and studies above, we conclude that inferences will continue to alternate between the general notion of an effect of video gaming on cognition and related brain structure and function, and the inability to make specific recommendations in the field of specific therapeutic use or detailed analyses of underlying mechanisms, structures, and processes in the brain. Although disappointing for some, for the sake of accuracy, to date there seems to be no other option than being specific. This is especially important in practical settings, in which video gaming is used therapeutically. To date, therapeutic use of video games has not been based on strong scientific evidence besides the general notion that som e video games have some beneficial effects on cognition in some individuals. Also, transferring exact experimental settings with clinical samples into real patient treatment must be waivered - however, not on the basis of truly understanding the underlying mechanisms, but rather replicating a finding on descriptive level. Put that way, the need for standardized research protocols and theoretical frameworks against which hypotheses can be tested becomes clearly evident, analogous to the idea that a statement like “diseases can be cured” as a guiding principle for specific medical treatment ent may work - however, not on the basis of this aspiration is fully met, recommendations concerning specific practical use in clinical settings or general application must be waivered. As a closing remark we would like to draw attention to the fact that, besides criticizing the lack of knowledge concerning the underlying mechanisms, we state that video gaming has beneficial effects on cognition that are reflected in brain structure and function. However, even this must be considered differentially and with caution until underlying mechanisms are truly and causally understood. Cognition, nevertheless, is only one aspect of well-being that needs to be considered when looking at “the big picture.” Possible other consequences on social, emotional, or physical well-being remain unconsidered in the present article. Nevertheless, they are important aspects to be taken into account when evaluating the overall value of video gaming.

Disclosure/Acknowledgements: The authors declare that they have no conflict of interest. SK has been funded by two grants from the German Science Foundation (DFG KU 3322/1-1, SFB 936/C7), the European Union (ERC-2016-StG-Self-Control-677804), and a Fellowship from the Jacobs Foundation (JRF 2016-2018).
References

1. Boot WR, Cham pion M, Blakely DP, Wright T, Souders DJ, Charness N. Video games as a m eans to reduce age-related cognitive decline: attitudes, compliance, and effectiveness. Front Psychol. 2013;4:31.

2. Kueide AM, Parisi JM, Gross AL, Rebek GW. Com puterized cognitive training with old er adults: a system atic review. PLoS One. 2012; 7(7):e40588.

3. Lohse K, Shiraz N, Verster A, Hodges N, Van der Loos HF. Video games and rehabilitation: using design principles to enhance engagement in physical therapy. J Neuropl Phys Ther. 2013; 37(4):166-175.

4. Pallavicini F, Ferrari A, Mantovani F. Video game as for well-being: A systemic atic review on the application of computer games for cognitive and emotional training in the adult population. Front Psychol. 2018;9:2127.

5. Bediou B, Adam s SM, Mayer RE, Tipton E, Green CS, Bavelier D. Meta-analysis of action video game impact on perceptual, atten tional, and cognitive skills. Psychol Bull. 2018;144(1):77-110.

6. Cardoso-Leite P, Bavelier D. Video game e play, attention, and learning: how to shape the develop - ment of attention and influence learning? Curr Opin Neurol. 2014;27(2):185-191.

7. Wang P, Liu HH, Zhu XT, Meng T, Li HJ, Zuo XN. Action video game training for healthy adults: A meta-analytic study. Curr Opin Neurol. 2016;27(2):185-191.

8. Pallavicini F, Ferrari A, Mantovani F. Video game as for well-being: A systemic atic review on the application of computer games for cognitive and emotional training in the adult population. Front Psychol. 2018;9:2127.

9. Bisoglio J, Michaels TI, Mervis JE, Ashinoff S, Zuo XN. Action video game training for healthy adults: A meta-analytic study. Curr Opin Neurol. 2016;27(2):185-191.

10. Mansor NS, Chow CM, Halaki M. Cognitive training strategy-induced change in brain function during a complex video game. J Clin Neurosci. 2019;26:20-36.

11. Strahler Rivero T, Herrera Nunez LM, Uhara Pires E, Am odo Bueno OF. ADHD rehabilitation through video game ing: A system atic review using PRISMA guidelines of the current findings and the associated risk of bias. Front Psychiatry. 2015;6:151.

12. Lampit A, Hallock H, Valenzuela M. Computerized cognitive training in cognitively healthy older adults: A system atic review and meta-analysis of effect m odifiers. PLoS Med. 2014;11(11):e1001756.

13. Verheijen Klom pstra L, Jaarsma a T, Strom berg A. Exergaming in older adults: a scoping review and im plem entation potential for pa tients with hearing loss. Eur J Cardiovasc Nurs. 2014;13(5):388-398.

14. Sala G, Gobet F. Cognitive training does not enhance general cognition. Trends Cogn Sci. 2019;23(1):9-20.

15. Stann ore E, Stubb s B, Vancam port D, de Bruin ED, Firth J. The effect of active video games on cognitive functioning in clinical and non-clinical populations: A systematic analysis of ran domized controlled trials. Neurosci Biobehav Rev. 2017;78:34-43.

16. Miyake A, Friedman EP, Emerson MJ, Witzki AH, Howert er A, Wager TD. The unity and diver sity of executive functions and their contributions to com plex “Frontal Lobe” tasks: a latent variable analysis. Cogn Psychol. 2000;41(1):49-100.

17. Green CS, Strobach T, Schubert T. On methodological standards in training and transfer exper iments. Psychol Res. 2014;78(6):756-772.

18. Green SC, Bavelier D, Kram er AF, et al. Improving methodological standards in behavioral interventions for cognitive enhancement. J Cogn Enhancement. 2019;3(1):2-29.

19. Palmaus M, Marron EM, Viejo-Sobera R, Redol ar-Ripoll D. Neural basis of video game playing: A system atic review. Front Hum Neurosci. 2017;11:248.

20. Anguera JA, Anguera JA, Boccanfuso J, et al. Video game training enhances cognitive control in older adults. Nature. 2013;97-101.

21. Bailey K, West R. The effects of an action video game on visual and affective information processing. Brain Res. 2013;1504:35-46.

22. Colom R, Quiroga MA, Solana AB, et al. Structural changes after videogame practice related to a brain network associated with intelli gence. Intelligence. 2012;40(5):479-489.

23. Diarra M, Zende BR, Benady-Chorney J, et al. Playing Super Mario increases oculomotor inhibition and frontal eye field grey m atter in older adults. Exp Brain Res. 2019;237(3):723-733.

24. Eggenberger P, Wolf M, Schumann M, de Bruin ED. Exergame e and balance training m odulate prefrontal brain activity during walking and enhance executive function in older adults. Front Aging Neurosci. 2016;8:66.

25. Gleich T, Lorenz RC, Gallinat J, Kuhn S. Functional changes in the reward circuit in re sponse to game ing-related cues after training with a commercial video game. NeuroImage. 2017;152:467-475.

26. Haier RJ, Karam a S, Leyba L, Jung RE. MRI assessment of corticospatial and functional activity changes in adolescent girls following three m onths of practice on a visual-spatial task. BMC Res Notes. 2009;2:174.

27. Han DH, Bolo N, Dan iels MA, Arenella L, Lyoo IK, Renshaw PF. Brain activity and desire for Internet video game play. Compr Psychiatry. 2011;52(1):88-95.

28. Kühn S, Green S, Kühn S, Green S, Kühn S, Green S, Kühn S. Video game training strategy-induced change in brain function during a complex video game. Hum Brain Mapp. 2011;52(1):88-95.

29. Klara T, Stodola DE, Birn RM, et al. Neural correlates of video game empathy training in adolescents: a randomized trial. NPJ Sci Learn. 2018;3:13.

30. Kühn S, Lorenz RC, Weichenberger M, et al. Taking control! Structural and behavioural plasticity in response to game e-based in hibition training in older adults. NeuroImage. 2017;156:199-206.

31. Lee H, Voss MW, Prakash RS, et al. Videogame e training strategy: induced change in brain function during a complex visuo-spatial task. PLoS One. 2012;3(2):348-357.

32. Lorenz RC, Gleich T, Gallinat J, Kuhn S. Video game training and the reward system Front Hum Neurosci. 2015;9:40.

33. Macln CL, Mathewson KE, Low KA, et al. Learning to multitask: effects of video game practice on electrophysiological indices of attention and resource allocation. Psychophysiology. 2011;48(9):1173-1183.

34. Martinez K, Solana AB, Burgeita M, et al. Changes in resting-state functionally connected parieto-frontal networks after video game practice. Hum Brain Mapp. 2013;34(12):3143-3157.

35. Nikolaidis A, Voss MW, Lee H, Vo LT, Kram er AF. Parietal plasticity after training with a complex video game is associated with individual ual differences in improvements in an untrained working m emory task. Front Hum Neurosci. 2014;8:169.

36. Prakash RS, De Leon AA, Mouri nay L, et al. Exam ining neural correlates of skill acquisition in a complex video game on visual and affective information process ing. Brain Res. 2015;68:20-36.

37. Colom R, Quiroga MA, Solana AB, et al. Structural changes after videogame practice related to a brain network associated with intelligence. Intelligence. 2012;40(5):479-489.

38. Diarra M, Zende BR, Benady-Chorney J, et al. Playing Super Mario increases oculomotor inhibition and frontal eye field grey matter in older adults. Exp Brain Res. 2019;237(3):723-733.

39. Eggenberger P, Wolf M, Schumann M, de Bruin ED. Exergame and balance training modulate prefrontal brain activity during walking and enhance executive function in older adults. Front Aging Neurosci. 2016;8:66.

40. Gleich T, Lorenz RC, Gallinat J, Kuhn S. Functional changes in the reward circuit in response to game ing-related cues after training with a commercial video game. NeuroImage. 2017;152:467-475.

41. Voss MW, Prakash RS, Erickson KI, et al. Effects of training strategies implemented in a complex video game on functional connectivity
of attentional networks. NeuroImage. 2012;59:138-148.
42. Strenziok M, Parasuraman R, Clarke E, Cisler DS, Thompson JC, Greenwood PM. Neurocognitive enhancement in older adults: comparison of three cognitive training tasks to test a hypothesis of training transfer in brain connectivity. NeuroImage. 2014;85 Pt 3:1027-1039.
43. Szabo C, Kelemen O, Keri S. Low-grade inflammation disrupts structural plasticity in the human brain. Neuroscience. Sep 5 2014;275:81-88.
44. West GL, Konishi K, Diarra M, et al. Impact of video games on plasticity of the hippocampus. Mol Psychiatry. 2018;23(7):1566-1574.
45. West GL, Zendel BR, Konishi K, et al. Playing Super Mario 64 increases hippocampal grey matter in older adults. PLoS One. 2017;12(12):e0187779.
46. Kühn S, Schmiedek F, Nauk H, et al. The dynamics of change in striatal activity following updating training. Hum Brain Mapping. 2013;34:1530-1541.
47. Kühn S, Schmiedek F, Schott B, et al. Brain areas consistently linked to individual differences in perceptual decision-making in younger as well as older adults before and after training. J Cognitive Neurosci. 2011;23:2147-2158.
48. Hempen A, Giesel FL, Garcia Caraballo NM, et al. Plasticity of cortical activation related to working memory during training. Am J Psychiatry. 2004;161(4):745-747.
49. Olesen PJ, Westerberg H, Klingberg T. Increased prefrontal and parietal activity after training of working memory. Nat Neurosci. 2004;7(1):75-79.
50. Wenger E, Kühn S, Verrel J, et al. Repeated structural imaging reveals nonlinear progression of experience-dependent volume changes in human motor cortex. Cereb Cortex. 2017;27(5):2911-2925.
51. Chung T, Sum S, Chan M. Time to call for a global public health approach in prevention of the onset and progression of problematic gaming. J Behav Addict. 2018;7(3):548-552.
52. Achab S, Nicolier M, Mauny F, et al. Massively multiplayer online role-playing games: comparing characteristics of addict vs non-addict online recruited gamers in a French adult population. BMC Psychiatry. 2011;11:144.
53. Holtz P, Appel M. Internet use and video gaming predict problem behavior in early adolescence. J Adolesc. 2011;34(1):49-58.
54. Turel O, Romashkin A, Morrison KM. Health outcomes of information system use lifestyles among adolescents: videogame addiction, sleep curtailment and cardio-metabolic deficiencies. PLoS One. 2016;11(5):e0154764.