Paraunitary matrices*
Barry Hurley† & Ted Hurley‡

Abstract

Design methods for paraunitary matrices from complete orthogonal sets of idempotents and related matrix structures are presented. These include techniques for designing non-separable multidimensional paraunitary matrices. Properties of the structures are obtained and proofs given. Paraunitary matrices play a central role in signal processing, in particular in the areas of filterbanks and wavelets.

1 Introduction

A one-dimensional (1D) paraunitary matrix over \mathbb{C} is a square matrix $U(z)$ satisfying $U(z)U^*(z^{-1}) = 1$. Here $*$ denotes complex conjugate transposed and 1 denotes the identity matrix of the size of $U(z)$. In general a k-dimensional (kD) paraunitary matrix over \mathbb{C} is a matrix $U(z)$ where $z = (z_1, z_2, \ldots, z_k)$ is a vector of (commuting) variables $\{z_1, z_2, \ldots, z_k\}$ such that $U(z)U^*(z^{-1}) = 1$ and $z^{-1} = (z_1^{-1}, z_2^{-1}, \ldots, z_k^{-1})$.

Over fields other than \mathbb{C} a paraunitary matrix is a matrix $U(z)$ satisfying $U(z)U^T(z^{-1}) = 1$.

Paraunitary matrices are important in signal processing and in particular the concept of a paraunitary matrix plays a fundamental role in the research area of multirate filterbanks and wavelets. In the polyphase domain, the synthesis matrix of an orthogonal filter bank is a paraunitary matrix; see for example [5].

Orthogonal filter banks may also be used to construct orthonormal wavelet bases [15, 17]; see also references in [14]. Paraunitary matrices over finite fields have been studied for their own interest and for applications; see for example [16].

Here general methods for constructing and designing such matrices from complete orthogonal sets of idempotents together with related matrix schemes are presented. This includes methods for designing non-separable multidimensional paraunitary matrices. Construction methods for complete orthogonal sets of idempotents are included. Group ring construction methods were the original motivation and from these more general methods evolved. A structure called the tangle of matrices is introduced; this may have independent interest.

In certain cases specialising the variables of the paraunitary matrices allows the construction of series of regular real or complex Hadamard matrices. Walsh-Hadamard matrices, used extensively in the communications’ areas, are examples of such regular Hadamard matrices. Complex Hadamard matrices arise in the study of operator algebras and in the theory of quantum computation.

It is noted that the renowned building blocks for 1D paraunitary matrices over \mathbb{C} due to Belevitch and Vaidyanathan as described in [7] are constructed from $W = \{F_1, F_2\}$ where W is a complete orthogonal set of two idempotents in which F_1 has rank 1 and F_2 has rank $(n - 1)$ with n the size of the matrices under consideration. See section 4.9 below for details on this.

Connections between group rings, matrices and design of codes have been established in [9], [10] and [11]; these are related but independent.

Designing non-separable multidimensional paraunitary matrices is deemed difficult as there is no multidimensional factorisation theorem corresponding to the 1D factorisation theorem of Belevitch and Vaidyanathan ([2]). For the finite impulse response (FIR) case there seems to be only a few examples

*Keywords: Paraunitary matrix, Signal Processing, MSC 2010 Classification: 15B99, 94A12
†National University of Ireland Galway, email: Barry2001@yahoo.co.uk
‡National University of Ireland Galway, email: Ted.Hurley@Nuigalway.ie
such as [13]. See also [14] for background and further discussion. In [13] a factorization of a subclass of 2D paraunitary matrices is obtained; these though involve IIR (infinite impulse response) systems.

In Section 5 results are obtained on the ranks of the idempotents and on the determinants of the paraunitary matrices formed. The concept of a pseudo-paraunitary matrix is introduced in Section 8 and construction methods for these are given. These may also be considered as FIR (finite impulse response) systems.

2 Further Notation

The book [4] is an excellent reference for background material on the algebraic structures used.

Now F denotes a general field, R denotes a general ring, \mathbb{C} denotes the complex numbers, \mathbb{R} denotes the real numbers and \mathbb{Q} denotes the rational numbers. Also \mathbb{F}_q denotes the finite field of q elements, $R_{n \times m}$ denotes the set of $n \times m$ matrices with coefficients from R and $R[z]$ denote the polynomial ring with coefficients from R in commuting variables $z = (z_1, z_2, \ldots, z_n)$. Note that $R[z]_{n \times m} = R_{n \times m}[z]$.

Let R be a ring with identity $1_R = 1$. (In general 1 will denote the identity of the system under consideration.) A complete family of orthogonal idempotents is a set $\{e_1, e_2, \ldots, e_k\}$ in R such that

(i) $e_i \neq 0$ and $e_i^2 = e_i$, $1 \leq i \leq k$;

(ii) If $i \neq j$ then $e_i e_j = 0$;

(iii) $1 = e_1 + e_2 + \ldots + e_k$.

The idempotent e_i is said to be primitive if it cannot be written as $e_i = e'_i + e''_i$ where e'_i, e''_i are idempotents such that $e'_i \neq 0, e''_i \neq 0$ and $e'_i e''_i = 0$. A set of idempotents is said to be primitive if each idempotent in the set is primitive.

Various methods for constructing complete sets of idempotents are derived below. Such sets always exist in FG, the group ring over a field F, when $\text{char } F \nmid |G|$. See [4] for properties of group rings and related definitions. These idempotent sets are related to the representation theory of FG.

A mapping $*: R \to R$ in which $r \mapsto r^*, (r \in R)$ is said to be an involution on R if and only if (i) $r^{**} = r, \forall r \in R$, (ii) $(a + b)^* = a^* + b^*, \forall a, b \in R$, and (iii) $(ab)^* = b^* a^*, \forall a, b \in R$.

We shall be particularly interested in the case where $*$ denotes complex conjugate transpose in the case of matrices over \mathbb{C} and denotes transpose for matrices over other fields. Such a mapping $*$ on group rings is also defined below.

An element $r \in R$ is said to be symmetric (relative to $*$) if $r^* = r$ and a set of elements is said to be symmetric if each element in the set is symmetric.

$Q \otimes R$ denotes the tensor product of the matrices Q, R.

As already noted A^* is used to denote the complex conjugate transpose of a matrix A. Suppose R is a ring with involution $*$. Then $*$ may be extended to matrices over R as follows. Let $M \in R_{n \times m}$ and define M^* to be the matrix with each entry u of M replaced by u^*. Then define $M^* = M^{\text{T}}$. This matrix M^* has size $m \times n$. Let $A(z)$ be a matrix with polynomial in variables z over some ring with involution $*$. Define $A(z)^*$ to be $A^*(z^{-1})$. When A is used for $A(z)$ write A^* to mean $A((z)^*)$. (In other words consider ‘complex conjugate transposed’ of a variable z to be z^{-1}; this is consistent with group/group ring considerations.)

Let R be a ring with involution $*$. For $w(z) \in R[z]$ define $w(z)^* = w^*(z^{-1})$. Say $w(z)$ is a paraunitary element in $R[z]$ (relative to $*$) if and only if $w(z)^* w(z)(z^{-1}) = w(z) w(z)^* = 1$.

Suppose $K = (B_1, B_2, \ldots, B_k)$ and $L = (C_1, C_2, \ldots, C_k)$ are rows of blocks of a matrix P where each block is of the same size. Then define the block inner product of K and L, written $K \cdot L$, to be $K \cdot L = B_1 C_1^* + B_2 C_2^* + \ldots + B_k C_k^*$. This is to include the case when B_i, C_j are polynomial matrices and the C_j^* are defined as above.

3 Paraunitary elements

The building methods using complete sets of orthogonal idempotents for the 1D paraunitary matrices in this section are generalised later in Section 5 below and following. The next Section 4 considers methods for designing such complete sets of orthogonal idempotents.
Proposition 3.1 Let \(I = \{e_1, e_2, \ldots, e_k\} \) be a complete orthogonal set of idempotents in a ring \(R \). Define \(u(z) = \sum_{i=1}^{k} \pm e_i z^{t_i} \). Then \(u(z)u(z^{-1}) = 1 \).

Proof: Since \(\{e_1, e_2, \ldots, e_k\} \) is a complete set of orthogonal idempotents, \(u(z)u(z^{-1}) = e_1^2 + e_2^2 + \ldots + e_k^2 = e_1 + e_2 + \ldots + e_k = 1 \). \(\square \)

Corollary 3.1 If \(I \) is symmetric then \(u(z)u^*(z^{-1}) = 1 \).

Thus \(u(z) \) is a paraunitary element when \(I \) is a symmetric orthogonal complete set of idempotents.

It is not necessary to use primitive idempotents. Note also that if \(S = \{e_1, \ldots, e_k\} \) is a complete set of orthogonal idempotents then \(\{e_i, e_j\}, i \neq j \), may be replaced by \(\{e_i + e_j\} \) in \(S \) and the result is (still) a complete set of orthogonal idempotents. This idea may be used to obtain real paraunitary matrices from (complex) complete orthogonal sets of idempotents in group rings.

We single out the case \(R = F_{n \times n} \) for special mention.

Proposition 3.2 Let \(\{I_1, I_2, \ldots, I_k\} \) be a complete symmetric set of orthogonal idempotents in the ring \(F_{n \times n} \) of \((n \times n) \) matrices over \(F \). Then \(W(z) = \sum_{i=1}^{k} \pm I_i z^{t_i} \) is a paraunitary \(1 \times 1 \) matrix over \(F \) where the \(t_i \) are non-negative integers.

In the group ring case a paraunitary element in \(FG \) with \(|G| = n \) gives a paraunitary matrix in \(F_{n \times n} \) via the embedding of \(FG \) into \(F_{n \times n} \) as given for example in [11].

Suppose \(\{I_1, I_2, \ldots, I_k\} \) is an orthogonal symmetric complete set of idempotents in \(F_{n \times n} \) and that \(P \) is a unitary matrix. Then \(\{P^* I_1 P, P^* I_2 P, \ldots, P^* I_k P\} \) is a symmetric complete orthogonal set of idempotents in \(F_{n \times n} \).

For our purposes say a paraunitary matrix \(P \) is separable if it can be written in the form \(P = QR \) or \(P = Q \otimes R \) where \(Q, R \) are paraunitary with \(Q \neq 1, R \neq 1 \); otherwise say \(P \) is non-separable.

The following standard lemma is included for completeness and is not needed subsequently; the proof is omitted.

Lemma 3.1 Suppose \(A(z) \) is a paraunitary matrix. Then \(A^*(z) \) and \(A^T(z) \) are paraunitary matrices.

3.1 Modulus 1

In Proposition 3.1 the coefficients of the idempotents are \(\pm 1 \) times monomials. This can be extended in \(\mathbb{C} \) to coefficients with modulus 1 times monomials. In \(\mathbb{R} \) and fields of finite characteristic define \(a^* = a \) and then \(\pm 1 \) are the only elements which satisfy \(aa^* = a^2 = 1 \).

Suppose \(\{E_1, E_2, \ldots, E_k\} \) is a complete symmetric orthogonal set of idempotents in \(F_{n \times n} \). Define \(W(z) = \alpha_1 E_1 z^{t_1} + \alpha_2 E_2 z^{t_2} + \ldots + \alpha_k E_k z^{t_k} \) and then \(W^*(z^{-1}) = \alpha_1^* E_1 z^{-t_1} + \alpha_2^* E_2 z^{-t_2} + \ldots + \alpha_k^* E_k z^{-t_k} \). Here if \(a \in \mathbb{C} \), then \(a^* = \overline{a} \), the complex conjugate of \(a \), and for other fields \(a^* = a \). Use \(|a|^2 \) to mean \(aa^* \) for any field.

Therefore \(W(z)W^*(z^{-1}) = W(z)W(z)^* = |\alpha_1|^2 E_1 + |\alpha_2|^2 E_2 + \ldots + |\alpha_k|^2 E_k \) \((**). \)

Proposition 3.3 \(W(z) \) is a paraunitary matrix if and only if \(|\alpha_i|^2 = 1 \) for each \(i \).

Proof: If each \(|\alpha_i|^2 = 1 \) then from \((** \) \) \(W(z)W^*(z^{-1}) = 1 \). If on the other hand \(W(z)W^*(z^{-1}) = 1 \) then multiplying \((** \) \) through (on right) by \(E_i \) gives \(|\alpha_i|^2 E_i = E_i \) from which it follows that \(|\alpha_i|^2 = 1 \). \(\square \)

Thus Proposition 3.1 may be generalised as follows:

Proposition 3.4 Let \(\{E_1, E_2, \ldots, E_k\} \) be a complete symmetric orthogonal set of idempotents and \(W(z) = \alpha_1 E_1 z^{t_1} + \alpha_2 E_2 z^{t_2} + \ldots + \alpha_k E_k z^{t_k} \), with \(t_j \geq 0 \) and \(|\alpha_j|^2 = 1 \) for each \(j \). Then \(W(z) \) is a paraunitary matrix.

Now in \(\mathbb{C} \), \(|\alpha|^2 = 1 \) if and only if \(\alpha = e^{i\theta} \) for real \(\theta \) with \(i = \sqrt{-1} \) and in \(\mathbb{R} \), \(|\alpha|^2 = 1 \) if and only if \(\alpha = \pm 1 \). In a field of characteristic \(p \), \(|\alpha|^2 = \alpha^2 = 1 \) if and only if \(\alpha = 1 \) or \(\alpha = -1 = p - 1 \).
As expected unitary matrices are built from complete symmetric orthogonal sets of matrices as per Proposition 3.4.

Proposition 3.5 U is a unitary n × n matrix over C if and only if \(U = \alpha_1 v_1^* v_1 + \alpha_2 v_2^* v_1 + \ldots + \alpha_n v_n^* v_n \) where \(\{v_1, v_2, \ldots, v_n\} \) is an orthonormal basis for \(\mathbb{C}_n \) and \(\alpha_i \in \mathbb{C} \), \(|\alpha_i| = 1 \), \(\forall i \). Further the \(\alpha_i \) are the eigenvalues of \(U \).

Proof: Suppose \(U = \alpha_1 v_1^* v_1 + \alpha_2 v_2^* v_1 + \ldots + \alpha_n v_n^* v_n \) with \(\{v_1, v_2, \ldots, v_n\} \) an orthonormal basis and \(|\alpha_i| = 1 \). Then \(U v_i^* = \alpha_i v_i^* \) and so the \(\alpha_i \) are the eigenvalues of \(U \). It follows from Proposition 3.4 that \(U \) is unitary since \(\{v_1^* v_1, v_2^* v_2, \ldots, v_n^* v_n\} \) is a complete symmetric orthogonal set of idempotents.

Suppose then \(U \) is a unitary matrix. It is known that there exists a unitary matrix \(P \) such that \(U = P^* D P \) where \(D \) is diagonal with entries of modulus 1. Then \(P = \begin{pmatrix} v_1 & v_2 & \ldots & v_n \end{pmatrix} \) where \(\{v_1, v_2, \ldots, v_n\} \) is an orthonormal basis (of row vectors) for \(\mathbb{C}_n \) and \(D = \text{diag}(\alpha_1, \alpha_2, \ldots, \alpha_n) \) with \(|\alpha_i| = 1 \) and the \(\alpha_i \) are the eigenvalues of \(U \). Then

\[
U = P^* D P = (v_1^*, v_2^*, \ldots, v_n^*) \begin{pmatrix} \alpha_1 & 0 & \ldots & 0 \\ 0 & \alpha_2 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & \alpha_n \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} = (\alpha_1 v_1^*, \alpha_2 v_2^*, \ldots, \alpha_n v_n^*) \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} = \alpha_1 v_1^* v_1 + \alpha_2 v_2^* v_2 + \ldots + \alpha_n v_n^* v_n.
\]

Thus unitary matrices are generated by complete symmetric orthogonal sets of idempotents formed from the diagonalising unitary matrix. Notice that the \(\alpha_i \) are the eigenvalues of \(U \).

For example consider the real orthogonal/unitary matrix \(U = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \). This has eigenvalues \(e^{i\theta}, e^{-i\theta} \) and \(P = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 & -i \\ 1 & 1 \end{pmatrix} \) is a diagonalising unitary matrix. Take the rows \(v_1 = \frac{1}{\sqrt{2}} (-1, -i) \), \(v_2 = \frac{1}{\sqrt{2}} (i, 1) \) of \(P \) and consider the complete orthogonal symmetric set of idempotents \(\{P_1 = v_1^* v_1 = \frac{1}{2} \begin{pmatrix} -1 & -i \\ -i & 1 \end{pmatrix}, P_2 = v_2^* v_2 = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ -i & -i \end{pmatrix} \} \).

Then applying Proposition 3.5 gives \(U = e^{i\theta} P_1 + e^{-i\theta} P_2 = \frac{1}{2} e^{i\theta} \begin{pmatrix} -1 & -i \\ 1 & 1 \end{pmatrix} + \frac{1}{2} e^{-i\theta} \begin{pmatrix} 1 & 1 \\ -i & -i \end{pmatrix} \), which may be checked independently.

3.2 Products

A product of paraunitary matrices and the tensor product of paraunitary matrices are also paraunitary matrices. Thus further paraunitary matrices may be designed using these products from those already constructed.

4 Complete orthogonal sets of idempotents

Paraunitary matrices are designed from complete symmetric sets of orthogonal idempotents in section 3 and also in later sections. Here we concentrate on how such sets may be constructed.

4.1 Systems from orthonormal bases

Let \(V = F^n \). Assume \(F^n \) has an inner product so that the notion of orthonormal basis exists in \(V \) and its subspaces. In \(\mathbb{R}^n \) and \(\mathbb{C}^n \) the inner product is \(v w^* \) for row vectors \(v, u \) where \(^* \) denotes complex conjugate transpose; in \(\mathbb{R}^n \), \(w^* = w^T \), the transpose of \(w \).
Suppose now \(V = V_1 \oplus V_2 \oplus \ldots \oplus V_k \) is any direct decomposition of \(V \). Let \(P_i \) denote the projection of \(V \) to \(V_i \). Then \(P_i \) is a linear transformation on \(V \) and (i) \(P_i = P_i + \ldots + P_k \); (ii) \(P_i^2 = P_i \); (iii) \(P_i P_j = 0, i \neq j \).

Thus \(\{ P_1, P_2, \ldots, P_k \} \) is complete orthogonal set of idempotents. If each \(P_i \) is an orthogonal projection then this set is a complete symmetric orthogonal set of idempotents.

The matrix of \(P_i \) may be obtained as follows when \(P_i \) is an orthogonal projection. Let \(\{ w_1, w_2, \ldots, w_n \} \) be an orthonormal basis for \(V_i \) and consider \(w \in V \). Then \(w = v + \tilde{w} \) where \(\tilde{w} \in V_1 \oplus V_2 \oplus \ldots \oplus V_{i-1} \oplus V_{i+1} \oplus \ldots \oplus V_k \) and \(v_i \in V_i \). Here \(V_i \) means omitting that term. Then \(P_i : V \rightarrow V_i \) is given by \(w \mapsto v \). Now \(v_i = \alpha_1 w_1 + \alpha_2 w_2 + \ldots + \alpha_k w_k \). Take the inner product with \(w_j \) to get \(\alpha_j = \langle v_1, w_j \rangle = \langle w_j, w_i \rangle \). Hence \(P_i : w \mapsto w_1 w_i w_1 + w_2 w_i w_2 + \ldots + w_n w_i w_n \). Thus the matrix of \(P_i \) is \(w_1 w_i w_1 + w_2 w_i w_2 + \ldots + w_n w_i w_n \).

On the other hand suppose \(\{ P_1, P_2, \ldots, P_k \} \) is a complete symmetric orthogonal set of idempotents in \(F_{n \times n} \). Then \(P_i \) defines a linear map \(V \rightarrow V_i \) by \(v \mapsto v P_i \). Let \(V_i \) denote the image of \(P_i \). Then it is easy to check that \(V = V_1 \oplus V_2 \oplus \ldots \oplus V_k \).

The case when each \(V_i \) has dimension 1 is worth looking at separately. Suppose \(\{ o_1, o_2, \ldots, o_n \} \) is an orthonormal basis for \(F^n \). Such bases come up naturally in unitary matrices. Let \(P_i \) denote the projection of \(F^n \) to the space generated by \(o_i \). Then \(P = \{ P_1, P_2, \ldots, P_n \} \) is an orthogonal symmetric complete set of idempotents in the space of linear transformations of \(F^n \). It is easy to obtain the matrices of \(P_i \). The matrices \(P_i \) may be combined and the resulting set is (still) a complete symmetric orthogonal sets of idempotents. For example \((P_i + P_j) (i \neq j) \) is still idempotent and is the projection of \(F^n \) to the space generated by \(\{ o_i, o_j \} \); replace \(\{ P_i, P_j \} \) by \((P_i + P_j) \) in \(P \) and the new set is (still) an orthogonal symmetric complete set of idempotents. Then \(\text{rank}(P_i + P_j) = \text{rank}(P_i) + \text{rank}(P_j) \) also – see Lemma 9.1 below.

For example \(\{ v_1 = \frac{1}{3}(2, 1, 2), v_2 = \frac{1}{3}(1, 2, -2), v_3 = \frac{1}{3}(2, -2, -1) \} \) is an orthonormal basis for \(\mathbb{R}^3 \).

The projection matrices are respectively \(P_1 = v_1^T v_1 = \frac{1}{3} \left(\begin{array}{ccc} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{array} \right) \), \(P_2 = v_2^T v_2 = \frac{1}{3} \left(\begin{array}{ccc} 2 & -2 & -2 \\ -2 & 2 & -2 \\ -2 & -2 & 2 \end{array} \right) \), \(P_3 = v_3^T v_3 = \frac{1}{3} \left(\begin{array}{ccc} 4 & 4 & -2 \\ 4 & 4 & -2 \\ -2 & -2 & 4 \end{array} \right) \).

Thus \(\{ P_1, P_2, P_3 \} \) is a complete symmetric orthogonal set of idempotents and each \(P_i \) has rank 1. Set \(P_2 = P_3 + P_3 \) and then \(\{ P_1, P_2 \} \) is a complete symmetric orthogonal set of idempotents also and \(\text{rank}(P_2) = 2 \).

Note that the inner product in \(\mathbb{C}^n \) is \(vu^* \) for row vectors \(v, u \) where \(^* \) denotes complex conjugate transposed. For example \(\{ \frac{1}{\sqrt{2}}(-i, 1), \frac{1}{\sqrt{2}}(i, 1) \} \) is an orthonormal basis for \(\mathbb{C}^2 \). Projecting then gives the complete orthogonal symmetric set of idempotents \(\{ P_1 = \frac{1}{2} \left(\begin{array}{cc} 1 & -1 \\ -1 & 1 \end{array} \right), P_2 = \frac{1}{2} \left(\begin{array}{cc} 1 & i \\ -i & 1 \end{array} \right) \} \).

4.2 Orthogonal idempotents systems from unitary/paraunitary

Let \(U \) be a unitary or paraunitary \(n \times n \) matrix in variables \(z \) say over \(R \). Then the rows \(\{ v_1, v_2, \ldots, v_n \} \) of \(U \) satisfy \(v_i v_j^* = 1, v_i v_j^* = 0, i \neq j \).

Define \(P_i = v_i^* v_i \) for \(i = 1, 2, \ldots, n \). Then \(P_i \) is an \(n \times n \) matrix of rank 1.

Proposition 4.1 \(\{ P_1, P_2, \ldots, P_n \} \) is a complete symmetric orthogonal set of idempotents in \(R_{n \times n}[z, z^{-1}] \).

Proof: It is easy to check that \(P_i^* = P_i, P_i P_j = P_j, P_i P_j = 0, i \neq j \). It is necessary to show that the set is complete.

Let \(A = P_1 + P_2 + \ldots + P_n \). Note that \(P_i v_i^* = v_i^* P_i v_j^* = 0, i \neq j \). Then \(Av_i^* = v_i^* \). Thus \(A \) has \(n \) linearly independent eigenvectors corresponding to the eigenvalue 1. Hence \(A = I_n \).

4.2.1 Diagonals

In \(R_{n \times n} \) let \(E_{ij} \) denote the matrix with \(1 = 1_R \) on the (diagonal) \((i, i)\) position and 0 elsewhere. Then \(W = \{ E_{11}, E_{22}, \ldots, E_{nn} \} \) is a complete symmetric orthogonal set of idempotent matrices. This is a special case of section 4.1 but is worth mentioning separately; paraunitary matrices have been designed from \(W \) which, although not generally useful in themselves directly, may be combined with other designed paraunitary matrices with which they do not commute in general.
4.3 Group rings

Group rings are a neat way with which to obtain complete orthogonal symmetric sets of idempotents. These systems have nice structures from which properties of the paraunitary matrices designed may be deduced. Let \(w = \sum_{g \in G} \alpha_g g \) be an element in the group ring \(FG \) and \(W \) denotes the matrix of \(w \) as defined in \([11]\) and \([9]\). This matrix \(W \) depends on the listing of the elements of \(G \) and relative to this listing \(\phi : w \mapsto W \) is an embedding of \(FG \) into the ring of \(n \times n \) matrices, \(F_{n \times n} \), over \(F \) where \(n = |G| \). The transpose, \(w^T \), of \(w \) is \(w^T = \sum_{g \in G} \alpha_g g^{-1} \). Note that the matrix of \(w^T \) is then \(W^T \).

Over \(\mathbb{C} \) define \(w^* = \sum_{g \in G} \alpha_g g^{-1} \) where \(w \) denotes complex conjugate. Note that for a group ring element \(w \) with corresponding matrix \(W \) the matrix of \(w^* \) is indeed \(W^* \).

Say an element \(w(z) \in FG[z] \) is a paraunitary group ring element if and only if \(w(z)w^*(z^{-1}) = 1 \) and this happens if and only if the corresponding \(W(z) \in F_{n \times n}[z] \) is a paraunitary matrix (where \(n = |G| \)). The \(W(z) \) obtained from \(w(z) \) in this case is termed a group ring paraunitary matrix.

Group rings are a rich source of complete sets of orthogonal idempotents and group rings have a rich structure within which properties of the paraunitary matrices so designed may be obtained.

The theory brings representation theory and character theory in group rings into play. The orthogonal idempotents are obtained from the conjugacy classes and character tables, see e.g. \([4]\). The orthogonal sets of idempotents depend on the field under consideration and classes of paraunitary matrices over different fields such as \(\mathbb{Q}, \mathbb{R} \) or finite fields are also obtainable.

The primitive central idempotents of the group algebra \(CG \) are given by \(e(\chi) = \frac{[G]}{|\chi|} \sum_{g \in G} \chi(g^{-1})g \) where \(\chi \) runs through the irreducible (complex) characters \(\chi \) of \(G \), see \([4]\), Theorem 5.1.11 page 185, where the \(e_i \) are expressed as \(e_i = \frac{[G]}{|\chi_i|} \sum_{g \in G} \chi_i(g^{-1})g \).

The idempotents from group rings are automatically symmetric.

Theorem 4.1 For the group idempotents \(e_i, e_i^* = e_i \).

Proof: This is a matter of showing that the coefficients \(g \) and \(g^{-1} \) in each \(e_i \) are complex conjugates of one another. But this is immediate as it is well-known that \(\chi(g^{-1}) = \overline{\chi(g)} \), and thus the result follows from the expression for \(e_i \) given above. \(\square \)

Let \(E_i \) denote the matrix of \(e_i \) as per an embedding of the group ring into the ring of matrices as for example in \([11]\).

Corollary 4.1 Let \(\{e_1, e_2, \ldots, e_k\} \) be a complete set of orthogonal idempotents in a group ring and define \(U(z) = \sum_{i=1}^{k} \pm E_i z^{t_i} \) where the \(t_i \) are non-negative integers. Then \(U(z) \) is a paraunitary matrix.

Corollary 4.2 Let \(\{e_1, e_2, \ldots, e_k\} \) be a complete set of orthogonal idempotents in a group ring over \(\mathbb{C} \) and define \(U(z) = \sum_{i=1}^{k} \alpha_i E_i z^{t_i} \) where the \(t_i \) are non-negative integers and \(|\alpha_i| = 1 \). Then \(U(z) \) is a paraunitary matrix.

The formula for the \(\{e_i\} \) as given above (taken from \([4]\)) may be used to construct complete orthogonal sets of idempotents. The Computer Algebra packages GAP and Magma can construct character tables and conjugacy classes from which complete sets of orthogonal idempotents in group rings may be obtained. The literature contains other numerous methods for finding complete (symmetric) orthogonal sets of idempotents in group rings.

In general the paraunitary matrices designed using orthogonal sets of idempotents in the group ring over \(\mathbb{C} \) have complex coefficients but specialising and combining idempotents allows the design so that the coefficients may be in \(\mathbb{R} \), the real numbers, or in \(\mathbb{Q} \), the rational numbers. When the group ring of the symmetric group \(S_n \) is used the paraunitary matrices derived by these methods all have coefficients automatically in \(\mathbb{Q} \) and when the group ring of dihedral group \(D_{2n} \) is used the coefficients are in \(\mathbb{R} \). In general idempotents occur in complex conjugate pairs and these may be combined to give real coefficients resulting in paraunitary matrices with real coefficients.

Most of the results hold in the case when the characteristic of \(F \) does not divide the order of \(G \); in this case this means that the characteristic of \(F \) does not divide the size \(n \) of the \((n \times n)\) matrices under
consideration. In these cases also it may be necessary to extend the field to include roots of certain polynomials.

4.4 Tensor products

It is easy to check that the tensor product of paraunitary matrices is also a paraunitary matrix. If \(P = QR, S = TV \) then \(P \otimes S = (QT) \otimes (RS) \) when the products \(QT, RS \) can be formed.

Complete orthogonal sets of idempotents may be designed using products of these sets. Suppose \(\{e_0, e_2, \ldots, e_k\} \) is a complete orthogonal set of idempotents in \(F_{n \times n} \) and \(\{f_0, f_1, \ldots, f_s\} \) is a complete orthogonal set of idempotents in \(F_{k \times k} \). Then \(\{e_i \otimes f_j | 0 \leq i \leq k, 1 \leq j \leq s\} \) is a complete orthogonal set of idempotents in \(F_{nk \times nk} \). Here \(\otimes \) denotes tensor product. If both \(\{e_0, e_2, \ldots, e_k\} \) and \(\{f_0, f_1, \ldots, f_s\} \) are symmetric then so is the resulting tensor product set. The details are omitted.

If \(\{e_i | 1 \leq i \leq k\} \) and \(\{f_j | 1 \leq j \leq s\} \) are complete orthogonal sets of idempotents within group rings \(FG, FH \) respectively then \(\{e_i f_j | 1 \leq i \leq k, 1 \leq j \leq s\} \) is a complete orthogonal set of matrices in \(F(G \times H) \). Suppose \(e_i \mapsto E_i, f_j \mapsto F_j \) gives an embedding into matrices, then \(e_i f_j \mapsto E_i \otimes F_j \) gives an embedding into \(F(G \times H) \); this may be deduced from [11] and details are omitted.

4.5 Examples of paraunitary matrix from orthonormal bases

1. The complete orthogonal symmetric systems of idempotents \(P_1 = \frac{1}{2} \begin{pmatrix} 1 & 2 & 4 \\ 4 & 2 & 1 \\ 2 & 4 & 1 \end{pmatrix} \), \(P_2 = \frac{1}{2} \begin{pmatrix} 1 & 1 & 0 \\ 2 & 4 & -2 \\ 2 & 4 & -2 \end{pmatrix} \), \(P_3 = \frac{1}{2} \begin{pmatrix} -4 & -2 & 0 \\ 2 & 4 & 2 \\ 1 & 1 & 1 \end{pmatrix} \) were obtained in section 4.1. Then \(W(z) = P_1 z^2 + P_2 z + P_3 z^3 \) is a paraunitary matrix.

2. Let \(z = e^{i\theta} \) in \(W \) in 1. gives a unitary matrix, \(T \) say. The rows of \(T \) form an orthonormal basis for \(\mathbb{C}^3 \). These rows may then be used to form a complete symmetric orthogonal set of idempotents from which paraunitary matrices may be constructed. This process could be continued.

3. In \(CC_3 \), where \(C_3 \) is the cyclic group of order 3, the orthogonal complete set of idempotents formed are \(Q_1 = \frac{1}{2} \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \), \(Q_2 = \frac{1}{2} \begin{pmatrix} 1 + z &\omega &\omega^2 \\ \omega & 1 + z &\omega \\ \omega^2 &\omega & 1 + z \end{pmatrix} \), \(Q_3 = \frac{1}{2} \begin{pmatrix} 1 + z &\omega &\omega^2 \\ \omega & 1 + z &\omega \\ \omega^2 &\omega & 1 + z \end{pmatrix} \) where \(\omega \) is a primitive 3rd root of unity.

Then \(Q(z) = Q_1 + Q_2 z^3 + Q_3 z^2 \) is a paraunitary matrix.

4. Give values of modulus 1 to \(z \) in \(Q(z) \) above and get a unitary matrix \(R \). Use the rows of \(R \) to form a further complete symmetric set of idempotents from which paraunitary matrices may be formed.

5. Combine \(Q(z) \) in 3. with \(W(z) \) in 1. to give for example the paraunitary matrix \(Q(z)W(z)Q(z) \).

We give some examples from orthogonal sets of idempotents derived from group rings. The group ring idea is used later as a prototype in which to extend the method for the design of non-separable paraunitary matrices. The complete orthogonal sets of idempotents obtained from group rings are automatically symmetric as noted in Theorem 4.1.

Recall that \(\text{circ}(a_0, a_1, \ldots, a_{n-1}) \) denotes the circulant \(n \times n \) matrix with first row \((a_0, a_1, \ldots, a_{n-1}) \). Consider \(CC_n \) where \(C_n \) is a cyclic group of order \(n \).

1. When \(n = 2 \) the (primitive) orthogonal set of idempotents consists of \(\{e_0 = 1/2(1+g), e_1 = 1/2(1-g)\} \), where \(g \) generates \(C_2 \). Thus paraunitary matrices may be formed from \(E_0 = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \) and \(E_1 = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \) giving for example \(\frac{1}{2} \begin{pmatrix} 1+z & 1-z \\ 1-z & 1+z \end{pmatrix} \). (Looks familiar?)

2. These may be combined with paraunitary matrices formed from \(E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, E_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \).

Note that \(E_{11}, E_{22} \) do not commute with \(E_0, E_1 \). For example the following is a paraunitary matrix:
\[
\begin{pmatrix}
1 & 0 \\
0 & z
\end{pmatrix}
\frac{1}{2}
\begin{pmatrix}
z + z^2 & z - z^2 \\
z - z^2 & z + z^2
\end{pmatrix}
\frac{1}{2}
\begin{pmatrix}
z^2 + z^3 & z^2 - z^3 \\
z^2 - z^3 & z^2 + z^3
\end{pmatrix}
\]

They may also be combined with paraunitary matrices formed from orthonormal bases as in section 4.1, such as \(P_1 = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \), \(P_2 = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \).

The determinant of these matrices which are powers of \(z \) may be obtained from Theorem 9.2 below.

3. The primitive orthogonal idempotents for a cyclic group are related to the Fourier Matrix.

4. In \(\mathbb{C}C_4 \), for example, the orthogonal primitive idempotents are \(e_1 = \frac{1}{4}(1 + a + a^2 + a^3), e_2 = \frac{1}{4}(1 + \omega + \omega^2a + \omega^3a^3) \), \(e_3 = \frac{1}{4}(1 - a + a^2 - a^3) \), \(e_4 = \frac{1}{4}(1 + \omega^3a + \omega^2a^2 + \omega a^3) \) from which 4 \(\times \) 4 paraunitary matrices may be constructed. Here \(\omega \) is a primitive 4th root of unity and in this case \(\omega^2 = -1 \).

Notice that \(e_1 = \overline{e_1}^T \) as could be deduced from Theorem 4.1.

5. Combine the \(e_i \) to get real sets of orthogonal idempotents. Note that it is simply enough to combine the conjugacy classes of \(g \) and \(g^{-1} \). In this case then we get
\[
\hat{e}_1 = e_1 = \frac{1}{4}(1 + a + a^2 + a^3), \hat{e}_2 = e_2 + e_4 = \frac{1}{4}(1 - a^2), \hat{e}_3 = e_3 = \frac{1}{4}(1 - a + a^2 - a^3),
\]
which can then be used to construct real paraunitary 4 \(\times \) 4 matrices.

6. Using \(C_2 \times C_2 \) gives different paraunitary matrices. Here the set of primitive orthogonal idempotents consists of \(f_1 = \frac{1}{4}(1 + a + b + ab), f_2 = \frac{1}{4}(1 - a + b - ab), f_3 = \frac{1}{4}(1 - a - b + ab), f_4 = \frac{1}{4}(1 + a - b - ab) \) and the paraunitary matrices derived are all real.

7. The paraunitary matrices produced from \(C_4 \) from \(C_2 \times C_2 \) and from \(E_{11}, E_{22}, E_{33}, E_{44} \) may then be combined to produce further (4 \(\times \) 4) paraunitary matrices. So for example the following 4 \(\times \) 4 is a paraunitary matrix:
\[
(E_1 + E_2 z + E_3 z^3 + E_4 z^2)(E_{11} + E_{22} z + E_{33} z^3 + E_{44} z^2)(F_1 z + F_2 z^2 + F_3 z^3 + F_4 z^4)
\]
Again the determinant of the matrix may be obtained from Theorem 9.2.

The \(E_i, F_j \) are derived from the \(e_i, f_j \) (as per [11]) so for example \(E_2 = \frac{1}{4} \text{circ}(1, \omega, \omega^2, \omega^3), F_3 = \frac{1}{4} \left(\frac{1}{4} \begin{pmatrix} 1 & -1 & -1 & 1 \\ -1 & 1 & 1 & -1 \\ 1 & -1 & 1 & -1 \\ -1 & 1 & -1 & 1 \end{pmatrix} \right) \).

4.6 Get real

By combining complex conjugate idempotents in a complete orthogonal sets of complex idempotents, real paraunitary matrices may be obtained. We illustrate this with an example.

Suppose \(\{e_0, e_1, e_2, e_3, e_4, e_5, e_6\} \) is the complete set of primitive idempotents in \(\mathbb{C}C_6 \). Here then \(e_i = \frac{1}{8}(1 + \omega^i g + \omega^{2i}g^2 + \omega^{3i} g^3 + \omega^{4i} g^4 + \omega^{5i} g^5) \) where \(\omega = e^{2i \pi / 6} \) is a primitive 6th root of unity and \(C_6 \) is generated by \(g \).

Then \(\overline{e_0} = e_0, \overline{e_1} = e_5, \overline{e_2} = e_4, \overline{e_3} = e_3 \).

Let \(\theta = 2 \pi / 6 \). Note that \(\cos(\theta) = \cos(5\theta), \cos(2\theta) = \cos(4\theta) \). Now combine \(e_1 \) with \(e_5 \) and \(e_2 \) with \(e_4 \) to get \(\hat{e}_1 = \hat{e}_2 = \frac{1}{8}(1 + \cos(\theta)g + \cos(2\theta) g^2 + \cos(3\theta) g^3 + \cos(4\theta) g^4 + \cos(5\theta) g^5) \) and \(\hat{e}_2 = \frac{1}{8}(1 + \cos(2\theta) g + \cos(2\theta) g^2 + \cos(2\theta) g^3 + \cos(2\theta) g^4 + \cos(2\theta) g^5) \). This gives the real orthogonal complete set of idempotents \(\{e_0, e_1, e_2, e_3\} \) from which real paraunitary matrices may be constructed. The ranks of the idempotents and determinants of the paraunitary matrices formed may be deduced from Lemma 9.7 and Theorem 9.2.

4.7 Symmetric, dihedral groups

Let \(D_{2n} \) denote the dihedral group of order \(2n \). As every element in \(D_{2n} \) is conjugate to its inverse, the complex characters of \(D_{2n} \) are real. Thus the paraunitary matrices obtained directly from the complete
orthogonal set of idempotents in $\mathbb{C}D_{2n}$ have real coefficients. The characters D_{2n} are contained in an extension of \mathbb{Q} of degree $\phi(n)/2$ and this is \mathbb{Q} only for $2n \leq 6$.

Let S_n denote the symmetric group of order n. Representations and orthogonal idempotents of the symmetric group are known; see for example [3]. The characters of S_n are rational and thus the paraunitary matrices produced directly from the complete orthogonal set of idempotents in $\mathbb{C}S_n$ have rational coefficients.

The paraunitary matrices formed from different group rings (with same size group) may be combined to form further paraunitary matrices; these in general will not commute.

We present an example here from S_3, the symmetric group on 3 letters. (Note that $S_3 = D_6$.)

Now $S_3 = \{1, (1,2), (1,3), (2,3), (1,2,3), (1,3,2)\}$ where these are cycles. We also use this listing of S_3 when constructing matrices.

There are three conjugacy classes: $K_1 = \{1\}$; $K_2 = \{(1,2),(1,3)\}, (2,3); K_3 = \{(1,2,3),(1,3,2)\}$.

Define

$\hat{e}_1 = 1 + (1,2) + (1,3) + (2,3) + (1,2,3) + (1,3,2)$,

$\hat{e}_2 = 1 - \{(1,2) + (1,3) + (2,3)\} + (1,2,3) + (1,3,2)$,

$\hat{e}_3 = 2 - \{(1,2,3) + (1,3,2)\}$,

and $e_1 = \frac{1}{6} \hat{e}_1; e_2 = \frac{1}{6} \hat{e}_2; e_3 = \frac{1}{6} \hat{e}_3$. Then $\{e_1, e_2, e_3\}$ form a complete orthogonal set of idempotents and may be used to construct paraunitary matrices.

The G-matrix of S_3 (see [11]) is

\[
\begin{pmatrix}
1 & (12) & (13) & (23) & (123) & (132) \\
(12) & 1 & (132) & (123) & (23) & (13) \\
(13) & (123) & 1 & (132) & (12) & (23) \\
(23) & (132) & (12) & 1 & (13) & (12) \\
(132) & (123) & (12) & (13) & 1 & (123) \\
(123) & (13) & (23) & (21) & (132) & 1
\end{pmatrix}
\]

Thus the matrices of e_1, e_2, e_3 are respectively

\[
E_1 = \frac{1}{6} \begin{pmatrix}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1
\end{pmatrix},
E_2 = \frac{1}{6} \begin{pmatrix}
1 & -1 & -1 & -1 & 1 & 1 \\
1 & 1 & 1 & 1 & -1 & -1 \\
1 & -1 & 1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1 & 1 & -1 \\
1 & -1 & -1 & -1 & 1 & 1 \\
1 & -1 & -1 & -1 & -1 & 1
\end{pmatrix},
E_3 = \frac{1}{3} \begin{pmatrix}
2 & 0 & 0 & 0 & -1 & -1 \\
0 & -1 & 2 & -1 & 0 & 0 \\
0 & -1 & -1 & 2 & 0 & 0 \\
-1 & 0 & 0 & 0 & -2 & -1 \\
-1 & 0 & 0 & 0 & -1 & 2
\end{pmatrix}.
\]

Note that E_1, E_2 have rank 1 and that E_3 has rank 4; the proof for the ranks of these E_i in general is contained in Lemma 9.11.

Thus for example the following are paraunitary matrices:

$E_2 + E_1 z + E_3 z^2$, $E_3 + (E_1 + E_2) z$, $E_1 + E_2 + E_3 z^2$.

The paraunitary matrices formed from these idempotent matrices may then be combined with paraunitary matrices formed using complete orthogonal idempotents obtained from $\mathbb{C}C_6$ and ones using $\{E_{11}, E_{22}, E_{33}, E_{44}, E_{55}, E_{66}\}$.

Let $\{f_1, \ldots, f_6\}$ be the orthogonal idempotents from $\mathbb{C}C_6$. Let $w_1 = \sum_{i=1}^3 E_i z^i, w_2 = \sum_{j=1}^6 E_{1j} z^j, w_3 = \sum_{i=1}^6 F_i z^i$. (F$_i$ is the matrix of f$_i$.) Then products of w_1, w_2, w_3 are paraunitary matrices. Note that the w_i do not commute.

4.8 Finite fields

Here we consider constructing examples of complete symmetric sets of orthogonal idempotents over finite fields.

Suppose $\{v_1, v_2, \ldots, v_k\}$ is a orthogonal basis for F^k under $(u, v) = u^T v$. Thus $v_i v_j^T = 0$ for $i \neq j$.

Suppose also $(v_i, v_i) = t_i \neq 0$. Define $P_i = t_i^{-1} v_i v_i^T$, which is a $k \times k$ matrix. Then $P_i P_j^T = t_i^{-1} v_i v_j^T v_i^T v_j = t_i^{-1} v_i^T v_i t_j^{-1} v_j v_j^T v_i = P_i$ and $P_i P_j = t_i^{-1} v_i v_i^T v_i t_j^{-1} v_j v_j^T v_i = 0$ for $i \neq j$.

It also follows that $\sum_{j=1}^k P_j = 1$. To see this consider $A = P_1 + P_2 + \ldots + P_k$. Then $v_i A = v_i P_i = v_i$ as $v_i P_j = 0$ for $i \neq j$ and $v_i P_i = v_i t_i^{-1} v_i^T v_i = v_i$. Hence $v_i A = v_i$. Let $Q = \begin{pmatrix} v_1 & v_2 & \vdots & v_k \end{pmatrix}$. Then Q is non-singular
as \{v_1, v_2, \ldots, v_k\} is linearly independent. Then \(QA = Q\) and hence \(A = I\).

Note that in the above we do not need to take the square root of elements.

Another way could be to construct such sets over \(\mathbb{Q}\) and when the denominators do not involve a prime dividing the order of the field it is then possible to derive complete symmetric orthogonal sets of idempotents over the finite field.

For example the complete orthogonal symmetric systems of idempotents \(P_1 = \frac{1}{9} \begin{pmatrix} 3 & 3 & 3 \\ 3 & 3 & 3 \\ 3 & 3 & 3 \end{pmatrix}, P_2 = \frac{1}{9} \begin{pmatrix} 4 & -4 & 2 \\ -2 & 4 & -4 \\ -2 & 4 & -4 \end{pmatrix}\) were obtained in section 4.1.

Over a field of characteristic 2 these come to the trivial set \(\{ (\begin{smallmatrix} 1 & 1 \\ -1 & -1 \end{smallmatrix}), (\begin{smallmatrix} 1 & 1 \\ -1 & -1 \end{smallmatrix}) \}\) of symmetric complete orthogonal set of idempotents.

Over the field \(\mathbb{F}_3\) of 5 elements they become (note that here \(9^{-1} = 4\)): \(\{ (\begin{smallmatrix} 3 & 1 \\ 1 & 3 \end{smallmatrix}), (\begin{smallmatrix} 1 & 3 \\ 3 & 1 \end{smallmatrix}) \}\).

This is a complete symmetric orthogonal set of idempotents in \(\mathbb{F}_3\), which may be checked independently.

The following are complete symmetric orthogonal sets of idempotents over \(\mathbb{F}_7\):

\[
\{ (\begin{smallmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{smallmatrix}), (\begin{smallmatrix} 5 & 5 \\ 5 & 5 \\ 5 & 5 \end{smallmatrix}) \}, \{ (\begin{smallmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{smallmatrix}) \}.
\]

These different sets may be used to construct paraunitary matrices over \(\mathbb{F}_7\) and in a later section are used to show how to construct as an example a non-separable paraunitary matrix over a finite field.

4.9 1D building blocks

The great factorisation theorem of Belevitch and Vaidyanathan, see [2] (pp. 302-322), is that matrices of the form \(H(z) = 1 - vv^* + zv v^*\), where \(v\) is any unit column vector (\(v^* v = 1\)), are the building blocks for 1D paraunitary matrices over \(C\).

Consider \(F_1 = vv^*\) where \(v\) is a unit column vector and so \(v^* v = 1\). Thus \(F_1 F_1 = vv^* vv^* = vv^* = F_1\) and so \(F_1\) is an idempotent. Hence \(\{F_1 = vv^*, F_2 = 1 - F_1 = 1 - vv^*\}\) is a complete symmetric orthogonal set of these (two) idempotents with rank \(F_1 = 1\) and rank \(F_2 = (n - 1)\) where the matrices have size \(n \times n\); see Theorem 4.1 below for rank result. Then \(H(z) = F_2 + zF_1\) and hence the paraunitary 1D matrices are built from complete symmetric orthogonal sets of two idempotents, one of which has rank 1 and the other has rank \((n - 1)\).

Proposition 4.2 Let \(F\) be a field in which every element has a square root. Suppose also an involution * is defined on the set of matrices over \(F\). Then \(P\) is a symmetric (with respect to *) idempotent of rank 1 in \(F_{n \times n}\) if and only if \(P = vv^*\) where \(v\) is a column vector such that \(v^* v = 1\).

(Note that ‘symmetric with respect to *’ in the case of \(C\) in which * denotes complex conjugate transposed is normally termed ‘Hermitian’.)

Proof: If \(P = vv^*\) with \(v^* v = 1\) then \(P\) is a symmetric idempotent of rank 1.

Suppose \(P\) is a symmetric idempotent of rank 1 in \(F_{n \times n}\). Since \(P\) has rank 1 each row is a multiple of any non-zero row. Suppose the first row is non-zero and that the first entry of this row is non-zero.

Proofs for other cases are similar. Since \(P\) is symmetric it has the form

\[
P = \begin{pmatrix} b_1 & b_2 & \ldots & b_n \\ b_2 b_2^* / b_1 & b_2 b_2^* / b_1 & \ldots & b_2 b_2^* / b_1 \\ \vdots & \vdots & \ddots & \vdots \\ b_n b_n^* / b_1 & b_n b_n^* / b_1 & \ldots & b_n b_n^* / b_1 \end{pmatrix}
\]

with \(b_1^* = b_1\).

Since \(P\) is idempotent it follows that \(b_1^2 + |b_2|^2 + \ldots + |b_n|^2 = b_1\).

Let \(v = \frac{1}{\sqrt{b_1}}(b_1, b_2, \ldots, b_n)^*\). Then \(v^* v = \frac{1}{b_1}(b_1^2 + |b_2|^2 + \ldots + |b_n|^2) = 1\)

and \(vv^* = \frac{1}{b_1} \begin{pmatrix} b_1 b_1 & b_1 b_2 & \ldots & b_1 b_n \\ b_2 b_1 & b_2 b_2 & \ldots & b_2 b_n \\ \vdots & \vdots & \ddots & \vdots \\ b_n b_1 & b_n b_2 & \ldots & b_n b_n \end{pmatrix} = P. \)
It is necessary that square roots exist in the field. For example \(P = (\frac{1}{2}, \frac{1}{2}) \) over \(\mathbb{F}_3 \) is a symmetric idempotent matrix of rank 1 but cannot be written in the form \(vv^T \); however 2 does not have a square root in \(\mathbb{F}_3 \). Note that \(P_1 = 1 - P = (\frac{1}{2}, \frac{1}{2}) \) and that \(\{P, P_1\} \) is a complete orthogonal set of idempotents in \(\mathbb{F}_3 \).

Over \(\mathbb{F}_3 \) the following complete symmetric sets of idempotents are the building blocks for \(2 \times 2 \) matrices: \(\{ (\frac{1}{2}, \frac{1}{2}), (\frac{1}{2}, \frac{1}{2}) \}, \{ (1, 0), (0, 1) \} \). Thus the paraunitary matrices \(2 \times 2 \) matrices over \(\mathbb{F}_3 \) are built from these sets using Proposition 3.4 and products. These sets are not of Belevitch and Vaidyanathan form and their result does not apply here.

The 1D building block result of Belevitch and Vaidyanathan cannot be extended to multidimensions.

Group ring 1D paraunitary matrices and other 1D paraunitary matrices over \(\mathbb{C} \) constructed here can in theory then be obtained from this characterisation. Group rings have special features and paraunitary matrices from these have nice structures.

5 Multidimensional

5.1 kD with idempotent sets

Proposition 5.1 Let \(\{E_1, E_2, \ldots, E_t\} \) be a complete symmetric orthogonal set of idempotents and define products of non-negative powers of variables by \(w_i(z) = \pm \prod_{j=1}^{z} z_{i,j} \) for \(i = 1, 2, \ldots, t \) where \(z = (z_1, z_2, \ldots, z_t) \) and \(t_{i,j} \) are non-negative integers. Define \(W(z) = \sum_{i=1}^{t} w_i(z)E_i \). Then \(W(z) \) is a \(k \)-dimensional paraunitary element.

Proof: Since \(\{E_1, E_2, \ldots, E_t\} \) is a complete symmetric orthogonal set of idempotents, \(W(z)W(z)^∗ = E_1 + E_2 + \ldots + E_t = E_1 + E_2 + \ldots + E_t = 1 \). \(\square \)

As before for \(a \in \mathbb{C} \) define \(a^∗ = \overline{a} \), the complex conjugate of \(a \), and for other fields define \(a^∗ = a \).

Define \(|a|^2 = aa^∗ \) in all cases.

Proposition 5.2 Let \(\{E_1, E_2, \ldots, E_t\} \) be a complete symmetric orthogonal set of idempotents and define products of non-negative powers of the variables by \(w_i(z) = \alpha_i \prod_{j=1}^{z} z_{i,j} \) for \(i = 1, 2, \ldots, t \) where \(z = (z_1, z_2, \ldots, z_k) \) and \(t_{i,j} \) are non-negative integers and \(|\alpha_i|^2 = 1 \). Define \(W(z) = \sum_{i=1}^{t} w_i(z)E_i \) and then \(W(z) \) is a paraunitary matrix.

The \(W(z) \) so formed can be combined using products of matrices, or tensor products of matrices when appropriate, to form further paraunitary matrices.

Such paraunitary matrices formed from Propositions 5.1 and 5.2 can however be shown to be separable but have uses of their own and will be used later to form (constituents of) non-separable paraunitary matrices.

5.2 Examples of 2D paraunitary

Recall that if \(u \) is a group ring element of \(FG \) with \(|G| = n \) then \(U \) (capital letter equivalent) denotes the matrix of \(u \) under the embedding of \(FG \) into the ring \(F_{n \times n} \) of \(n \times n \) matrices over \(F \), see 11.

Let \(\{e_0, e_1, e_2\} \) be a (primitive) orthogonal complete set of idempotents in \(\mathbb{C}C_3 \), and thus \(\{E_0, E_1, E_2\} \) is an orthogonal complete symmetric set of idempotents in \(\mathbb{C}C_3 \). Let \(\{f_0, f_1, f_2, f_3\} \) be an orthogonal complete set of idempotents in \(\mathbb{C}C_4 \). Define \(u(z, y) = (e_0 + e_1z + e_2z^2)f_0 + (e_0 + e_1z + e_2z^2)f_1y + (e_0 + e_1z + e_2z^2)f_2y^2 + (e_0 + e_1z + e_2z^2)f_3y^3 \) and let \(U(z, y) \) be obtained from \(u(z, y) \) by replacing each \(e_i \) by \(E_i \) and each \(f_i \) by \(F_i \).

Then \(U(z, y) \) is a paraunitary matrix. However here \(u(z, y) = (e_0 + e_1z + e_2z^2)(f_0 + f_1y + f_2y^2 + f_3y^3) \) and so \(U(z, y) \) is separable.

Let \(u(z, y) = (e_0 + e_1z + e_2z^2)f_0 + (e_0 + e_1z^2 + e_2z)f_1y + (e_0z + e_1z^2 + e_2z)f_2y^2 + (e_0z + e_1z^3 + e_2z^2)f_3y^3 \). Then \(U(z, y) \) is a paraunitary matrix.
6 Matrices of idempotents

Paraunitary matrices may also be constructed from matrices with blocks of complete orthogonal sets of idempotents.

Consider the following example. Let \(E_0 = \frac{1}{2} \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right) \), \(E_1 = \frac{1}{2} \left(\begin{array}{cc} 1 & -1 \\ 1 & i \end{array} \right) \).

Define \(W = \left(\begin{array}{c} xE_0 \\ yE_1 \\ zE_0 + tE_1 \end{array} \right) = \frac{1}{2} \left(\begin{array}{ccc} x & x & y \\ x & x & -y \\ z & -z & t \\ -z & z & t \end{array} \right). \)

Then \(WW^* = I_4 \) as \(\{ E_0, E_1 \} \) is an orthogonal symmetric complete set of idempotents. However \(W \) is separable as
\[
W = \left(\begin{array}{cc} xE_0 + E_1 & 0 \\ 0 & tE_0 + E_1 \end{array} \right) \left(\begin{array}{cc} E_0 & yE_1 \\ zE_1 & E_0 \end{array} \right). \] (**) and each of the matrices on the right in (**) is separable into 1D paraunitary matrices.

Here if we let \(x = 1 = t \) then (**) is a trivial product as the first matrix on the right is then the identity. If further \(y = 1 = t \) this produces the matrix
\[
H = \frac{1}{4} \left(\begin{array}{cccc} 1 & 1 & 1 & -1 \\ 1 & -1 & 1 & 1 \\ -1 & 1 & 1 & 1 \\ -1 & -1 & -1 & 1 \end{array} \right) \]
which is a common matrix used in quantum theory as non-separable. (This matrix \(H \) with fraction omitted is a Hadamard regular matrix.) Thus non-separability of a paraunitary matrix is a stronger condition by comparison.

Let \(Q_0 = \frac{1}{2} \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right), Q_1 = \frac{1}{2} \left(\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array} \right). \) \(W = \left(\begin{array}{c} xQ_0 \\ yQ_1 \\ zQ_1 + tQ_0 \end{array} \right). \)

Then \(W \) is a paraunitary matrix. Now letting the variables have complex values of modulus 1 gives rise to complex Hadamard regular matrices as for example \(\left(\begin{array}{ccc} 1 & 1 & 1 \\ 1 & -1 & -1 \\ i & i & i \end{array} \right) \).

Let \(\{ E_0, E_1, E_2 \} \) be an orthogonal symmetric complete set of idempotents in \(\mathbb{F}_{3 \times 3} \).

Define \(W = \left(\begin{array}{ccc} xE_0 & yE_1 & zE_2 \\ pE_2 & qE_0 & rE_1 \\ sE_1 & tE_2 & vE_0 \end{array} \right). \)

The variables of \(W \) are \(x, y, z, p, q, r, s, t, v \) which need not necessarily be distinct. Then \(WW^* = I_9 \).

For example in section [11] the following complete set of symmetric idempotents was constructed in \(\mathbb{Q}_{3 \times 3} \):

\[
P_1 = v_1^T v_1 = \frac{1}{9} \left(\begin{array}{ccc} 4 & 2 & 4 \\ 2 & 4 & -2 \\ 2 & -2 & 4 \end{array} \right), P_2 = v_2^T v_2 = \frac{1}{9} \left(\begin{array}{ccc} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{array} \right), P_3 = v_3^T v_3 = \frac{1}{9} \left(\begin{array}{ccc} 1 & -1 & 1 \\ 1 & 1 & -1 \\ -1 & -1 & 1 \end{array} \right).
\]

Then \(W = \left(\begin{array}{ccc} xP_1 & yP_2 & zP_3 \\ pP_3 & qP_1 & rP_2 \\ sP_2 & tP_3 & vP_1 \end{array} \right) \) is a paraunitary matrix.

6.1 General construction

Let \(\{ E_0, E_1, \ldots, E_k \} \) be a complete symmetric orthogonal set of idempotents in \(F_{n \times n} \). Arrange these into a \(k \times k \) block matrix of with each row of blocks containing one of the blocks \(\{ E_0, E_1, \ldots, E_k \} \) exactly once. Now attach monomials to each \(E_i \); the same monomial need not be used with each \(E_i \) that appears. Let \(W \) be the resulting matrix.

Theorem 6.1 \(W \) is a paraunitary matrix.

Proof: Take the block inner product of two different rows of blocks. The \(E_i \) are orthogonal to one another so the result is 0. Take the block inner product of any row of blocks with itself. This gives \(E_1^2 + E_2^2 + \ldots + E_k^2 = E_1 + E_2 + \ldots + E_k = I_n \) (see example [11]). Hence \(WW^* = I_{nk} \). \(\square \)

The \(W \) is a paraunitary matrix in the union of the variables of the monomials.

The condition that each row and column block contains each \(E_i \) once and once only can be obtained by using the group ring matrix of any group of order \(k \); see for example [11]. So for example the \(E_i \) could be arranged as a circulant block of matrices. Different arrangements will in general give inequivalent
paraunitary matrices.

(Modifications in the construction of W by attaching elements of modulus 1 as coefficients will give paraunitary matrices but further conditions are necessary on these elements. These modifications are not included here.)

These are nice constructions for paraunitary matrices but can be shown to be separable. However they have uses in themselves and will prove useful later as parts of constructions of non-separable paraunitary matrices. They may also be used to construct special and regular types of Hadamard real and complex matrices. These are illustrated in the following sections 6.2 and 6.3

6.2 Monomials and Hadamard regular matrices

Although the matrices of idempotents as constructed in sections 6 and 6.1 produce separable paraunitary matrices these can be useful structures in themselves; they may also be used in certain cases to produce ‘regular’ Hadamard matrices. (Walsh-Hadamard matrices are regular Hadamard matrices which have been used extensively in communications’ theory.) If in a paraunitary matrix the entries are ± 1 times monomials in the variables then substituting ± 1 for the variable gives a Hadamard matrix. If a paraunitary matrix the entries are ω times monomials where ω is a complex number of modulus 1 then substituting each variable by a complex number of modulus 1 gives a complex Hadamard matrix.

For example use $P_0 = \text{circ}(1, 1, 1), P_1 = \text{circ}(1, \omega, \omega^2), P_2 = \text{circ}(1, \omega^2, \omega)$ where ω is a primitive third root of unity gives the following matrix:

$$
\begin{pmatrix}
 xP_0 & yP_1 & zP_2 \\
 zP_2 & xP_0 & yP_1 \\
 yP_1 & zP_2 & xP_0
\end{pmatrix}
$$

Substituting a complex number of modulus 1 for each of x, y, z gives a complex Hadamard matrix.

Butson-type Hadamard matrices $H(q, n)$ are complex Hadamard $n \times n$ matrices with entries which are q^{th} roots of unity.

With the above example substituting a third root of unity for the variables gives a Hadamard $H(3, 9)$ matrix, that is a matrix H with entries which are third roots of unity so that $HH^* = 9$. These matrices could then be used to produce Hadamard $H(3, 36)$ matrices.

This can be extended to $q \times q$ matrices using the complete orthogonal set of idempotents for the cyclic group of order q: this will involve q^{th} roots of unity and is related to the representation theory of the finite cyclic group. From this Hadamard $H(q, q^2)$ matrices can be produced and from these Hadamard $H(q, (2q)^2)$ matrices can be produced and so on.

6.3 Mixing

It is noted that interchanging rows and/or columns in a paraunitary matrix results in a paraunitary matrix and thus interchanging blocks of rows and/or columns results in a paraunitary matrix. When using complete orthogonal sets of idempotents the blocks of row and/or columns of idempotents can be interchanged in the construction stage. The resulting paraunitary matrices can take a regular form. In certain cases the variables can be specialised to form regular Hadamard matrices. Here examples are given but details of the constructions are omitted.

Let $\{E_0, E_1\}$ be a complete symmetric orthogonal set of idempotents in $\mathbb{C}_{n \times n}$. For example in $\mathbb{C}_{2 \times 2}$ these could be $E_0 = \frac{1}{2} \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right), E_1 = \frac{1}{2} \left(\begin{array}{cc} 1 & -1 \\ -1 & 1 \end{array} \right)$.

Define

$$
W = \frac{1}{4} \begin{pmatrix}
 xE_0 & yE_1 & zE_0 & tE_1 \\
 -uE_1 & vE_0 & wE_1 & pE_0 \\
 zE_0 & -tE_1 & xE_0 & yE_1 \\
 -wE_1 & pE_0 & -uE_1 & vE_0
\end{pmatrix}
$$

Then W is a paraunitary matrix in the variables $\{x, y, z, t, u, v, w, p\}$.

Interchanging blocks of rows and/or columns in W will also give a paraunitary matrix which is equivalent to W. By varying the signs other constructions of paraunitary matrices are obtained and these are not generally equivalent to one another.
They may seem to be non-separable but by interchanging blocks of rows and blocks of columns it can be shown that they are separable. However they are interesting in themselves with interesting properties and can also be used to construct Hadamard matrices of regular types.

Examples may also be interpreted as coming from the structure of group rings of various groups. Then giving the values ±1 to the variables can result in regular Hadamard matrices or giving the values $e^{i\pi}$ to the variables can result in Hadamard complex matrices. Hadamard matrices with entries which are roots of unity may also be obtained from these constructions.

The following is an example of this type.

\[
w(x, y, z, t) = \frac{1}{4} \left(\begin{array}{cccc}
 x & x & y & -y \\
 x & -x & y & y \\
 -y & x & -x & y \\
 -y & -x & -y & x \\
 z & t & t & t \\
 z & -t & t & t \\
 x & y & z & z \\
 x & -y & -z & -z \\
 t & t & t & t \\
 -t & -t & -t & -t \\
 -t & t & -t & t \\
 -t & t & -t & -t \\
 z & z & z & z \\
 t & -t & t & -t \\
 -t & z & z & z \\
 -t & -t & z & z \\
 x & x & y & y \\
 x & -x & y & -y \\
 y & y & z & z \\
 y & -y & -z & -z \\
 z & z & z & z \\
 t & -t & -t & -t \\
 -t & t & t & -t \\
 -t & -t & -t & t \\
 z & z & z & z \\
 t & -t & -t & -t \\
 -t & t & t & t \\
 -t & -t & -t & t \\
 x & x & y & y \\
 x & -x & y & -y \\
 y & y & z & z \\
 y & -y & -z & -z \\
 z & z & z & z \\
 t & -t & -t & -t \\
 -t & t & t & -t \\
 -t & -t & -t & t \\
 z & z & z & z \\
 t & -t & -t & -t \\
 -t & t & t & t \\
 -t & -t & -t & t \\
 x & x & y & y \\
 x & -x & y & -y \\
 y & y & z & z \\
 y & -y & -z & -z \\
 z & z & z & z \\
 t & -t & -t & -t \\
 -t & t & t & -t \\
 -t & -t & -t & t \\
 z & z & z & z \\
 t & -t & -t & -t \\
 -t & t & t & t \\
 -t & -t & -t & t \\
 x & x & y & y \\
 x & -x & y & -y \\
 y & y & z & z \\
 y & -y & -z & -z \\
 z & z & z & z \\
 t & -t & -t & -t \\
 -t & t & t & -t \\
 -t & -t & -t & t
\end{array} \right)
\]

This matrix has the form \(\begin{pmatrix} P & Q \\ Q & P \end{pmatrix} \) where \(PQ^* = 0 = Q^*P \) and has the structure of the group ring of \(C_8 \times C_2 \).

It is clear that \(x, y, z, t \) may each be replaced by a monomial times a complex number of modulus 1 in \(W \) and a paraunitary matrix is obtained.

Values of ±1 may be given to the variables in \(W \) and with the fraction omitted this gives a regular real Hadamard matrix. Values of modulus 1 may be given to the variables in \(W \) and with the fraction omitted a regular complex Hadamard matrix is obtained. Other group ring structures can also arise in this manner.

Walsh-Hadamard matrices have the structure of the group ring of \(C_2^n \). These examples may also be extended in a similar way. So for example constructions with the structure of the group ring \(C_8 \times C_2 \times G \) may be made if paraunitary matrices with the structure of \(G \) can be formed such as when \(G = C_4^n \) or when \(G = (C_2 \times C_2)^n \) and others.

7 Non-separable constructions

Several methods have now been developed for constructing multidimensional paraunitary methods from complete orthogonal sets of matrices. The matrices produced are useful in many ways but are found to be separable although not appearing so initially. The methods use just one complete orthogonal set of idempotents in the various constructions.

Thus we are led to consider different complete orthogonal sets of variables and to ‘tangle’ them up in order to construct non-separable paraunitary matrices.

7.1 A general construction

Proposition 7.1 Let \(A, B \) be paraunitary matrices of the same size but not necessarily with the same variables over a field in which 2 has a square root. Then \(W = \frac{1}{\sqrt{2}} \begin{pmatrix} A & B \\ A & -B \end{pmatrix} \) and \(Q = \frac{1}{\sqrt{2}} \begin{pmatrix} A & A \\ B & -B \end{pmatrix} \) are paraunitary matrices in the union of the variables in \(A, B \).
Proof: Suppose A, B are $n \times n$ matrices. Then

$$WW^* = \frac{1}{2} \begin{pmatrix} A & B \\ A & -B \end{pmatrix} \begin{pmatrix} A^* & B^* \\ A^* & -B^* \end{pmatrix}$$

$$= \frac{1}{2} \begin{pmatrix} AA^* + BB^* & AA^* - BB^* \\ AA^* - BB^* & AA^* + BB^* \end{pmatrix}$$

$$= \frac{1}{2} \begin{pmatrix} I_{2n} + I_{2n} & I_{n} - I_{n} \\ I_{n} - I_{n} & I_{n} + I_{n} \end{pmatrix} = I_{2n}$$

The case for Q can be considered similarly or it follows from Lemma 3.1 since Q is the transpose of W. □

Paraunitary matrices constructed by methods of previous sections may be used as input to Proposition 7.1 to construct paraunitary matrices. Matrices constructed using the Proposition can then also be used as input.

The methods are fairly general and it is easy to produce examples for input using various complete orthogonal sets of idempotents. The result holds in general over any field which contains the square root of 2.

If $A = B$ then W in Proposition 7.1 is the tensor product $A \otimes J$ where $J = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$. If A and B are formed using the same complete symmetric orthogonal set of idempotents as in 5 or 6 then W can be shown to be separable.

It would appear initially that Proposition 7.1 could/should be generalised to $W = \frac{1}{\sqrt{2}} \begin{pmatrix} pA & qB \\ pA & -qB \end{pmatrix}$ where p, q are monomials or in the case of C where p, q are monomials times a complex number of modulus 1. However then W is separable as a product $W = \frac{1}{\sqrt{2}} \begin{pmatrix} A & B \\ A & -B \end{pmatrix} \begin{pmatrix} pl & 0 \\ 0 & qI \end{pmatrix}$.

If $W = \begin{pmatrix} X & Y \\ Z & T \end{pmatrix}$ where X, Y, Z, T are matrices of the same size then X, Y, Z, T are referred to as the blocks of W and (X, Y) and (Z, T) are the row blocks of W. Similarly column blocks of W are defined.

Suppose A, B are matrices of the same size. Then a tangle of $\{A, B\}$ is one of

1. $W = \frac{1}{\sqrt{2}} \begin{pmatrix} A & B \\ A & -B \end{pmatrix}$.
2. A matrix obtained from 1. by interchanging rows of blocks and/or columns of blocks.
3. The transpose of any matrix obtained in 1. or 2.

A tangle of $\{A, B\}$ is not the same as, and is not necessarily equivalent to, a tangle of $\{B, A\}$. Note that interchanging any rows and/or columns of a paraunitary matrix results in an (equivalent) paraunitary matrix. Thus in particular interchanging rows and/or columns of blocks also results in equivalent paraunitary matrices; thus item 2. gives equivalent paraunitary matrices to item 1. The negative of a paraunitary matrix is a paraunitary matrix as is the * of a paraunitary matrix.

For example

$$\frac{1}{\sqrt{2}} \begin{pmatrix} A & B \\ A & -B \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} A & B \\ A & B \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} A & A \\ B & -B \end{pmatrix} \text{ are tangles of } \{A, B\}$$

and

$$\frac{1}{\sqrt{2}} \begin{pmatrix} B & A \\ B & -A \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} B & A \\ B & A \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} B & B \\ A & -A \end{pmatrix} \text{ are tangles of } \{B, A\}.$$

Proposition 7.2 may be generalised as follows.

Proposition 7.2 Let A, B be paraunitary matrices of the same size but not necessarily with the same variables. Then a tangle of $\{A, B\}$ or $\{B, A\}$ is a paraunitary matrix.

Use the expression ‘A is tangled with B’ to mean that a tangle of $\{A, B\}$ or $\{B, A\}$ is formed.
7.2 Examples

1. (a) Construct $A = (x)$ and $B = (y)$.
(b) Construct $W = \left(\begin{array}{c} A \\ B \end{array} \right) = \left(\begin{array}{c} x \\ y \\ -x \\ -y \end{array} \right)$. Then W is a paraunitary matrix.
(c) Similarly construct $Q = \left(\begin{array}{c} z \\ -t \end{array} \right)$.
(d) Tangle W and Q to produce for example the paraunitary matrix $T = \left(\begin{array}{cccc} x & y & z & t \\ y & -x & z & -t \\ z & y & -x & -z \\ -t & t & z & -x \end{array} \right)$.
(e) The process can be continued: Matrices produced from (d), with different variables, can be input to form further paraunitary matrices.

2. (a) Construct as in 7.2.8 the following complete symmetric sets of idempotents in 3 × 3 matrices over \mathbb{F}_7:
 $\{P_0 = \left(\begin{array}{ccc} 1 & 1 & 2 \\ 1 & 1 & 2 \\ 1 & 1 & 2 \end{array} \right), P_1 = \left(\begin{array}{ccc} 4 & 1 & 6 \\ 4 & 1 & 6 \\ 4 & 1 & 6 \end{array} \right), \{Q_0 = \left(\begin{array}{ccc} 0 & 5 & 6 \\ 0 & 5 & 6 \\ 0 & 5 & 6 \end{array} \right), Q_1 = \left(\begin{array}{ccc} 2 & 5 & 5 \\ 2 & 5 & 5 \\ 2 & 5 & 5 \end{array} \right), Q_2 = \left(\begin{array}{ccc} 4 & 0 & 3 \\ 4 & 0 & 3 \\ 4 & 0 & 3 \end{array} \right)\}$.
(b) Form $A = xP_0 + yP_1 + zP_2, B = tQ_0 + rQ_1 + sQ_2$.
(c) Tangle A, B to form for example the paraunitary matrix over \mathbb{F}_7: $(\begin{array}{cc} A & B \\ B & -A \end{array})$.

3. (a) Construct, in $\mathbb{C}_{2 \times 2}$, the following complete symmetric (different) sets of orthogonal idempotents $\{E_0, E_1\}$ and $\{Q_0, Q_1\}$ where:
 $E_0 = \frac{1}{2} \left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array} \right), E_1 = \frac{1}{2} \left(\begin{array}{cc} 1 & -1 \\ -1 & 1 \end{array} \right), Q_0 = \frac{1}{2} \left(\begin{array}{cc} 1 & 1 \\ -1 & -1 \end{array} \right), Q_1 = \frac{1}{2} \left(\begin{array}{cc} 1 & -1 \\ 1 & -1 \end{array} \right)$.
(b) Construct $A = xE_0 + yE_1, B = zQ_0 + tQ_1$.
(c) Construct $W = \frac{1}{\sqrt{2}} \left(\begin{array}{cc} A & B \\ A & -B \end{array} \right)$. Then W is a paraunitary matrix of size 4 × 4 with variables $\{x, y, z, t\}$.

4. (a) Construct different $\{E_0, E_1\}$ and $\{Q_0, Q_1\}$ complete symmetric orthogonal sets of idempotents in $\mathbb{C}_{n \times n}$.
(b) Construct $W = \frac{1}{\sqrt{2}} \left(\begin{array}{cccc} xe_0 & ye_1 & uq_0 & vq_1 \\ xe_0 & ye_1 & -uq_0 & -vq_1 \\ re_1 & pe_0 & zq_0 & tq_0 \\ re_1 & pe_0 & -zq_0 & -tq_0 \end{array} \right)$. Then W is a paraunitary matrix.
 It is essential that $\{E_0, E_1\}$ and $\{Q_0, Q_1\}$ are different complete orthogonal sets of idempotents in order for W to be non-separable although the construction does not depend on this.
 (c) Clearly also the roles of $\{E_0, E_1\}$ and $\{Q_0, Q_1\}$ can be interchanged in W and a paraunitary matrix is still obtained. Changing the ± signs in such a way that the block inner product of any two rows of blocks is 0 will give a different inequivalent paraunitary matrix. Thus for example W could be replaced by the following:
 (d) Construct $W = \frac{1}{\sqrt{2}} \left(\begin{array}{cccc} xe_0 & ye_1 & uq_0 & vq_1 \\ re_1 & pe_0 & -zq_0 & -tq_0 \\ -xe_0 & ye_1 & uq_0 & vq_1 \\ re_1 & pe_0 & zq_0 & tq_0 \end{array} \right)$. Then this W is also a paraunitary matrix.

5. (a) See section 7.3 for methods for constructing complete orthogonal symmetric sets of idempotents. Examples of such sets in $\mathbb{C}_{2 \times 2}$ are $\{E_0, E_1\}, \{Q_0, Q_1\}$ where these are given as in Example 2 above.
(b) Another complete symmetric orthogonal set of idempotents in $\mathbb{C}_{2 \times 2}$ is the following:
 $\{P_0 = \frac{1}{2} \left(\begin{array}{cc} 1 & -i \\ i & 1 \end{array} \right), P_1 = \frac{1}{2} \left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array} \right)\}$.
(c) In example 2, $\{E_0, E_1\}$ is ‘tangled’ with $\{Q_0, Q_1\}$. $\{P_0, P_1\}$ may similarly be combined (‘tangled’) with either $\{E_0, E_1\}$ or $\{Q_0, Q_1\}$ to construct paraunitary matrices.
(d) Using $\{P_0, P_1\}$ with $\{E_0, E_1\}$ produces paraunitary matrices of the form $\mathbb{F}P$ where the entries of P are $\pm 1, \pm i$ with $i = \sqrt{-1}$. By specialising the variables, complex Hadamard matrices may be obtained.
roots of unity. Butson-type 4, special types of complex Hadamard matrices which are called quantum computation.

(i) For example the following is a paraunitary matrix: $$\begin{pmatrix} x & x & y & -y & u & -iu & v & iv \\ x & x & -y & y & u & -iu & -v & -iv \\ r & -r & p & p & iz & z & it & -it \\ x & x & -y & -y & u & -iu & -v & -iv \\ r & -r & p & p & -z & -iz & -iv & -iv \\ r & -r & p & p & iz & z & -it & it \end{pmatrix}.$$

(f) By giving values of modulus 1 to the variables, complex Hadamard matrices are obtained. For example letting all the variables have the value +1 gives the following complex Hadamard matrix:

$$\begin{pmatrix} 1 & 1 & -1 & 1 & i & -i & 1 & i \\ 1 & 1 & -1 & 1 & i & -i & 1 & i \\ -1 & 1 & 1 & 1 & i & 1 & i & i \\ 1 & 1 & -1 & 1 & -i & 1 & -i & -i \\ 1 & 1 & 1 & -1 & 1 & 1 & i & i \\ 1 & -1 & 1 & 1 & 1 & 1 & -1 & -1 \end{pmatrix}.$$

6. (a) Construct $P_0 = \frac{1}{\sqrt{2}} \begin{pmatrix} 2 & 4 & 2 & 4 \\ 4 & 2 & -2 & -4 \\ 2 & 4 & -2 & -4 \\ 4 & 2 & 2 & 2 \end{pmatrix}$, $P_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 2 & 2 & -2 \\ 2 & 4 & -2 & 0 \\ 2 & -4 & 0 & 2 \\ -2 & 0 & 2 & 0 \end{pmatrix}$, $P_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 4 & -4 & -2 & -2 \\ -4 & 4 & -2 & 2 \\ -2 & -2 & 4 & 4 \\ -2 & 2 & -4 & 4 \end{pmatrix}$.

(b) Construct the complete symmetric orthogonal set of idempotents obtained from the group ring $\mathbb{C}C_6$ of the cyclic group of order 3: $Q_0 = \text{circ}(1,1,1), Q_1 = \text{circ}(1,\omega,\omega^2), Q_2 = \text{circ}(1,\omega^2,\omega)$ where ω is a primitive 6th root of unity.

(c) Construct $A = \begin{pmatrix} xP_0 & yP_1 & zP_2 \\ pP_2 & qP_0 & rP_1 \\ sP_1 & tP_2 & vP_0 \end{pmatrix}$ and $B = \begin{pmatrix} aQ_0 & bQ_1 & cQ_2 \\ dQ_2 & eQ_0 & fQ_1 \\ gQ_1 & hQ_2 & kQ_0 \end{pmatrix}$.

(d) Construct $W = \frac{1}{\sqrt{2}} \begin{pmatrix} A & B \\ A & -B \end{pmatrix}$. Then W is a paraunitary matrix. It has size 18×18 and 18 variables; variables can be equated.

W in the above could for example be replaced by $W = \frac{1}{\sqrt{2}} \begin{pmatrix} ipA & qB \\ ipA & -qB \end{pmatrix}$ where p, q are variables and $i = \sqrt{-1}$ but as pointed out this is separable and may be constructed as a product.

A complex Hadamard matrix is a matrix H of size $n \times n$ with entries of modulus 1 and satisfying $HH^* = nI_n$. Complex Hadamard matrices arise in the study of operator algebras and the theory of quantum computation.

By giving values which are k^{th} of unity to the variables, with k divisible by 4, in the above example 4, special types of complex Hadamard matrices which are called Butson-type are obtained. A Butson type Hadamard $H(q,n)$ matrix is a complex Hadamard matrix of size $n \times n$ all of whose entries are q^{th} roots of unity.

Here is another example which uses group rings:

1. Construct the complete symmetric set of orthogonal idempotents $\{P_i|i = 0,1,\ldots,5\}$ from the group ring $\mathbb{C}C_6$ of the cyclic group C_6 of order 6. This gives $P_i = \text{circ}(1,\omega^i,\omega^{2i},\omega^{3i},\omega^{4i},\omega^{5i})$ where ω is a primitive 6th root of unity.

2. Define $Q_0 = P_0, Q_1 = P_1 + P_3, Q_2 = P_2 + P_4$. Note that Q_0, Q_1, Q_2 are real.

3. Let

$$E_1 = \frac{1}{6} \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}, E_2 = \frac{1}{6} \begin{pmatrix} 1 & -1 & -1 & 1 & 1 & 1 \\ -1 & 1 & 1 & -1 & -1 & 1 \\ -1 & 1 & 1 & -1 & -1 & 1 \end{pmatrix}, E_3 = \frac{1}{3} \begin{pmatrix} 2 & 0 & 0 & 0 & -1 & -1 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & -1 & 2 & 0 & 0 & 0 \end{pmatrix}.$$

be the complete symmetric set of orthogonal idempotents obtained from the group ring of $S_3(= D_6)$ as in section 4.

4. Define $A = \begin{pmatrix} xE_0 & yE_1 & zE_2 \\ pE_2 & qE_0 & rE_1 \\ sE_1 & tE_2 & vE_0 \end{pmatrix}$ and $B = \begin{pmatrix} aQ_0 & bQ_1 & cQ_2 \\ dQ_2 & eQ_0 & fQ_1 \\ gQ_1 & hQ_2 & kQ_0 \end{pmatrix}$.
5. Construct \(W = \frac{1}{\sqrt{2}} \begin{pmatrix} A & B \\ A & -B \end{pmatrix} \).

Then \(W \) is a paraunitary matrix which is real. It is a \(36 \times 36 \) matrix with 18 variables.

7.3 An Algorithm

1. Construct different sets \(\{P_0, P_2, \ldots, P_k\} \) and \(\{Q_0, Q_1, \ldots, Q_k\} \) of complete orthogonal symmetric of idempotents by the methods of section 4.1 or section 4.3 (or otherwise) in \(F_{n \times n} \). \(F \) is usually \(\mathbb{C} \) but other fields can also be used.

2. Construct a paraunitary matrix from \(\{P_0, P_2, \ldots, P_k\} \) by either the methods of section 5 or the methods of section 6. Call this matrix \(A \).

3. Construct a paraunitary matrix from \(\{Q_0, Q_1, \ldots, Q_k\} \) by either the methods of section 5 or the methods of section 6. Call this matrix \(B \). The variables in \(A, B \) can be different.

4. Construct a tangle of \(\{A, B\} \) or \(\{B, A\} \).

An example:

1. Construct \(\{P_0, P_1, P_2, P_3\} \) and \(\{Q_0, Q_1, Q_2, Q_3\} \) in \(\mathbb{C}_{4 \times 4} \) where the \(P_i \) and \(Q_j \) are obtained by construction methods of 4.1, 4.3.

2. Form \(\begin{pmatrix} P_0 & P_1 & P_2 & P_3 \\ P_3 & P_0 & P_1 & P_2 \\ P_2 & P_3 & P_0 & P_1 \\ P_1 & P_2 & P_3 & P_0 \end{pmatrix} \). (Here the structure of \(C_4 \) is used and a circulant structure is obtained.)

3. Form \(\begin{pmatrix} x_{01}P_0 & x_{11}P_1 & x_{21}P_2 & x_{31}P_3 \\ x_{02}P_3 & x_{12}P_0 & x_{22}P_1 & x_{32}P_2 \\ x_{03}P_2 & x_{13}P_3 & x_{23}P_0 & x_{33}P_1 \\ x_{04}P_1 & x_{14}P_2 & x_{24}P_3 & x_{34}P_0 \end{pmatrix} \).

4. Let the matrix in 3. be denoted by \(A \).

5. Form \(\begin{pmatrix} Q_0 & Q_1 & Q_2 & Q_3 \\ Q_1 & Q_0 & Q_3 & Q_2 \\ Q_2 & Q_3 & Q_0 & Q_1 \\ Q_3 & Q_2 & Q_1 & Q_0 \end{pmatrix} \). (Here the structure of \(C_2 \times C_2 \) is used.)

6. Form \(\begin{pmatrix} y_{01}Q_0 & y_{11}Q_1 & x_{21}Q_2 & x_{31}Q_3 \\ y_{02}Q_1 & y_{12}Q_0 & y_{22}Q_3 & y_{32}Q_2 \\ y_{03}Q_2 & y_{13}Q_3 & y_{23}Q_0 & y_{33}Q_1 \\ y_{04}Q_3 & y_{14}Q_2 & y_{24}Q_1 & y_{34}Q_0 \end{pmatrix} \).

7. Let the matrix in 6. be denoted by \(B \).

8. Form \(W = \begin{pmatrix} A & B \\ A & -B \end{pmatrix} \).

7.4 Further algorithm

1. Input paraunitary matrices \(A, B \) of the same size but not necessarily with the same variables. These may be formed from method of section 7.3 or from this algorithm.

2. Form a tangled product of \(\{A, B\} \) or \(\{B, A\} \).
7.5 Further constructions

The non-separable paraunitary matrices and separable paraunitary matrices can be combined when appropriate as products or as tensor products to construct further paraunitary matrices. These may then be input to algorithm of section 7.4.

8 Pseudo-paraunitary

Let P be a paraunitary $n \times n$ matrix with variables z over a field F. Then the rows $\{v_1, v_2, \ldots, v_n\}$ of P satisfy $v_i^* v_i^T = 1$ and $v_i^* v_j^T = 0$ for $i \neq j$. Note that v^* means transpose conjugate over \mathbb{C}, and transpose over other fields, with the understanding that $z^* = z^{-1}$, $\{z^{-1}\}^* = z$ for a variable z.

Let $P_1 = v_i^* v_i$ which are $n \times n$ matrices of rank 1 and involve the variables $\{z, z^{-1}\}$. Then $\{P_1, P_2, \ldots, P_n\}$ is a complete orthogonal symmetric set of idempotents in the polynomial ring $F_{n \times n}[z, z^{-1}]$. Hence by the methods of Sections 4, 5, 6 and 7 paraunitary-type matrices may be formed; for the method of Section 7 two such sets must be constructed. For example $W = w_1 P_1 + w_2 P_2 + \ldots + w_n P_n$ in variables $w = (w_1, w_2, \ldots, w_n)$ satisfies $WW^* = 1$. Now W is a matrix in the variables $\{z, z^{-1}, w\}$ but cannot be termed paraunitary. Call such a matrix a pseudo-paraunitary matrix. Having constructed W its rows may then be used to construct further pseudo-paraunitary matrices and so on.

Thus say $W(z, z^{-1}) \in F_{n \times n}[z, z^{-1}]$ is a pseudo-paraunitary matrix if $WW^* = 1$. Pseudo-paraunitary matrices may be constructed from paraunitary matrices and from pseudo-paraunitary matrices.

Here’s an example.

1. Form $E_0 = \frac{1}{z} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $E_1 = \frac{1}{z} \begin{pmatrix} -1 & 1 \end{pmatrix}$.
2. Form $P = xE_0 + yE_1 = \frac{1}{z} \begin{pmatrix} x+y & y-x \\ y-x & x+y \end{pmatrix}$
3. Let $v_1 = \frac{1}{z}(x+y, x-y)$, $v_2 = \frac{1}{z}(x-y, x+y)$.
4. Form $P_1 = v_1^* v_1 = \frac{1}{z} \begin{pmatrix} 2x & y-x \\ y-x & 2x \end{pmatrix}$, $P_2 = v_2^* v_2 = \frac{1}{z} \begin{pmatrix} 2y & x+y \\ x+y & 2y \end{pmatrix}$.
5. $P_1 P_1 = P_1, P_1 P_2 = 0$ and $P_1 + P_2 = 1$. Form $W = zP_1 + tP_2$.
6. $W = W(x, y, x^{-1}, y^{-1}, z, t)$, and $WW^* = 1$.
7. The rows of W can be used to form further pseudo-paraunitary matrices.

Consider P_1, P_2 as in this example above. Define $Q_1 = xyP_1, Q_2 = xyP_2$. Define $Q = zQ_1 + tQ_2$. Then $Q \in F_{2 \times 2}[x, y, x, t]$, and is a polynomial with $QQ^* = x^2 y^2 I_2$.

Say $W \in F_{n \times n}[z]$ is a pseudo-paraunitary matrix over $F_{n \times n}[z]$ if $WW^* = pI_n$ where p is a monomial in z. A pseudo-paraunitary matrix over $F_{n \times n}[z, z^{-1}]$ may be used to construct a pseudo-paraunitary matrix over $F_{n \times n}[z]$ and vice versa.

Pseudo-paraunitary matrices in general may be constructed from paraunitary matrices and from pseudo-paraunitary matrices.

9 Determinants and rank

Here we consider properties of complete sets of idempotent matrices and ranks of the idempotents.

Lemma 9.1 Suppose $\{E_1, E_2, \ldots, E_s\}$ is a set of orthogonal idempotent matrices. Then $\text{rank}(E_1 + E_2 + \ldots + E_s) = \text{tr}(E_1 + E_2 + \ldots + E_s) = \text{tr}E_1 + \text{tr}E_2 + \ldots + \text{tr}E_s = \text{rank}E_1 + \text{rank}E_2 + \ldots + \text{rank}E_s$.

Proof: It is known that $\text{rank}A = \text{tr}A$ for an idempotent matrix, see for example [2], and so $\text{rank}E_i = \text{tr}E_i$ for each i. If $\{E, F, G\}$ is a set an orthogonal idempotent matrices so is $\{E + F, G\}$. From this it follows that $\text{rank}(E_1 + E_2 + \ldots + E_s) = \text{tr}(E_1 + E_2 + \ldots + E_s) = \text{tr}E_1 + \text{tr}E_2 + \ldots + \text{tr}E_s = \text{rank}E_1 + \text{rank}E_2 + \ldots + \text{rank}E_s$. □
Corollary 9.1 \(\text{rank}(E_{i_1} + E_{i_2} + \ldots + E_{i_k}) = \text{rank} E_{i_1} + \text{rank} E_{i_2} + \ldots + \text{rank} E_{i_k} \) for \(i_j \in \{1, 2, \ldots, s\} \), and \(i_j \neq i_l \) for \(j \neq l \).

Let \(\{e_1, e_2, \ldots, e_k\} \) be a complete orthogonal set of idempotents in a vector space over \(F \).

Theorem 9.1 Let \(w = \alpha_1 e_1 + \alpha_2 e_2 + \ldots + \alpha_k e_k \) with \(\alpha_i \in F \). Then \(w \) is invertible if and only if each \(\alpha_i \neq 0 \) and in this case \(w^{-1} = \frac{1}{\alpha_1} e_1 + \frac{1}{\alpha_2} e_2 + \ldots + \frac{1}{\alpha_k} e_k \).

Proof: Suppose each \(\alpha_i \neq 0 \). Then \(w(\frac{1}{\alpha_1} e_0 + \frac{1}{\alpha_2} e_1 + \ldots + \frac{1}{\alpha_k} e_k) = c_0^2 + c_1^2 + \ldots + c_k^2 = 0 \) for \(c \neq 0 \) and \(+ \ldots + e_k = 1 \).

Suppose \(w \) is invertible and that some \(\alpha_i = 0 \). Then \(w e_i = 0 \) and so \(w \) is a (non-zero) zero-divisor and is not invertible.

We now specialise the \(e_i \) to be \(n \times n \) matrices and in this case use capital letters and let \(E_i = E_i \).

Let \(A = a_1 E_1 + a_2 E_2 + \ldots + a_k E_k \). Then \(A \) is invertible if and only if each \(a_i \neq 0 \) and in this case \(A^{-1} = \frac{1}{a_1} E_1 + \frac{1}{a_2} E_2 + \ldots + \frac{1}{a_k} E_k \).

Theorem 9.2 Suppose \(E_1, E_2, \ldots, E_k \) is a complete symmetric orthogonal set of idempotents in \(F_{n \times n} \).

Let \(A = a_1 E_1 + a_2 E_2 + \ldots + a_k E_k \) with \(a_i \in F \). Then the determinant of \(A \) is \(|A| = a_1^{\text{rank } E_1} a_2^{\text{rank } E_2} \ldots a_k^{\text{rank } E_k} \).

Proof: Now \(A E_j = a_i E^2_i = a_i E_i \). Thus each column of \(E_i \) is an eigenvector of \(A \) corresponding to the eigenvalue \(a_i \). Thus there are at least \(E_i \) linearly independent eigenvectors corresponding to the eigenvalue \(a_i \).

Since \(\text{rank} E_1 + \ldots + \text{rank} E_k = n \), there are exactly \(r = \text{rank} E_i \) linearly independent eigenvectors corresponding to the eigenvalue \(a_i \). Let \(r_i = \text{rank} E_i \). Let these \(r_i \) linearly independent eigenvectors corresponding to \(a_i \) be denoted by \(v_{i, 1}, v_{i, 2}, \ldots, v_{i, r_i} \). Do this for each \(i \).

Any column of \(E_i \) is perpendicular to any column of \(E_j \) for \(i \neq j \) as \(E_i^2 = 0 \).

Suppose now \(\sum_{j=1}^{r_1} a_{1, j} v_{1, r_1} + \sum_{j=1}^{r_2} a_{2, j} v_{2, r_2} + \ldots + \sum_{j=1}^{r_k} a_{k, j} v_{k, r_k} = 0 \).

Multiply through by \(E_s \) for \(1 \leq s \leq k \). This gives \(\sum_{j=1}^{r_k} a_{k, j} v_{k, r_k} = 0 \) from which it follows that \(a_{k, j} = 0 \) for \(j = 1, 2, \ldots, r_k \).

Thus the set of vectors \(S = \{ v_{1, 1}, v_{1, 2}, \ldots, v_{1, r_1}, v_{2, 1}, v_{2, 2}, \ldots, v_{2, r_2}, \ldots, v_{k, 1}, v_{k, 2}, \ldots, v_{k, r_k} \} \) is linearly independent and form a basis for \(F^n \) - remember that \(\text{rank}(E_1 + E_2 + \ldots + E_k) = n \). Hence \(A \) can be diagonalised by the matrix of these vectors and thus there is a non-singular matrix \(P \) such that \(P^{-1} A P = D \) where \(D \) is a diagonal matrix consisting of the \(a_i \) repeated \(r_i \) times for each \(i = 1, 2, \ldots, k \).

Hence \(|A| = |D| = a_1^{r_1} a_2^{r_2} \ldots a_k^{r_k} \). \(\square \)

References

[1] M. N. Do and M. Vetterli, “The contourlet transform: an efficient directional multiresolution image representation”, IEEE Trans. on Image Processing, 14, no. 12, 2091-2106, 2005.

[2] Oskar M. Baksalary, Dennis S. Bernstein, Gtz Trenkler, “On the equality between rank and trace of an idempotent matrix”, Applied Mathematics and Computation, 217, 4076-4080, 2010.

[3] Andreas Klappenecker, “On Multirate Filter Bank Structures”, In Transforms and Filter Banks, Proc. of Second International Workshop on Transforms and Filter Banks, R. Creutzburg, J. Astola (Eds.), TICSP 4, pages 175-188, 2000.

[4] César Milies & Sudarshan Sehgal, An introduction to Group Rings, Kluwer, 2002.

[5] Gilbert Strang and Truong Nguyen, Wavelets and Filter Banks, Wesley-Cambridge Press, 1997.

[6] Xiqi Gao, Truong Nguyen, Gilbert Strang, “On Factorization of M-Channel Paraunitary Filterbanks”, IEEE Trans. on Signal processing, 49, no. 7, 1433-1446, 2001.

[7] P. P. Vaidyanathan, Multirate Systems and Filterbanks, Prentice-Hall, 1993.

[8] C. W. Curtis and I. Reiner, Representation theory of finite groups and associative Algebras, Interscience, New York, 1962.
[9] Paul Hurley and Ted Hurley, “Codes from zero-divisors and units in group rings”, Int. J. Inform. and Coding Theory, 1, 57-87, 2009.

[10] Paul Hurley and Ted Hurley, “Block codes from matrix and group rings”, Chapter 5, 159-194, in Selected Topics in Information and Coding Theory, eds. I. Woungang, S. Misra, S.C. Misma, World Scientific 2010.

[11] Ted Hurley, “Group rings and rings of matrices”, Inter. J. Pure & Appl. Math., 31, no.3, 2006, 319-335.

[12] M. N. Do and Y. M. Lu, Multidimensional Filter Banks and Multiscale Geometric Representations, Submitted, 2011. Available on-line.

[13] F. Delgosa, F. Fekri, “Results on the factorization of multidimensional matrices for paraunitary filterbanks over the complex field”, IEEE Trans. on Signal Processing, 52, no.5, 1289-1303, 2004.

[14] Jianping Zhou, Minh N. Do, and Jelena Kovačević, “Special Paraunitary Matrices, Cayley Transform and Multidimensional Orthogonal Filter Banks”, IEEE Trans. on Image Processing, 15, no. 2, 511-519, 2006.

[15] I. Daubechies, “Orthonormal bases of compactly supported wavelets”, Comm. on Pure and Appl. Math., vol. 41, pp. 909996, 1988.

[16] F. Fekri, R.M. Mersereau, R.W. Schafer. “Theory of Paraunitary Filter Banks over fields of characteristic 2”, IEEE Trans. on Information Theory, 48, no. 11, 2964-2979, 2002.

[17] A. Cohen and I. Daubechies, “Nonseparable bidimensional wavelet bases”, Rev. Mat. Iberoamericana, vol. 9, no. 1, pp. 51137, 1993.

[18] J. Kovačević and M. Vetterli, “Nonseparable multidimensional perfect reconstruction filter banks and wavelet bases for R^n”, IEEE Trans. on Information Theory, Special Issue on Wavelet Transforms and Multiresolution Signal Analysis, vol. 38, no. 2, 533-555, 1992.