Critical dynamics of singlet excitations in a frustrated spin system

Valeri N. Kotov1, Michael E. Zhitomirsky2, and Oleg P. Sushkov2,3

1 Department of Physics, University of Florida, Gainesville, FL 32611-8440, USA
2 Institute for Theoretical Physics, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
3 School of Physics, University of New South Wales, Sydney 2052, Australia

We construct and analyze a frustrated quantum spin model with plaquette order, in which the low-energy dynamics is controlled by spin singlets. At a critical value of frustration the singlet spectrum becomes gapless, indicating a quantum transition to a phase with dimer order. The magnetic susceptibility has an activated form throughout the phase diagram, whereas the specific heat exhibits a rich structure and a power law dependence on temperature at the quantum critical point. This generic behavior can be relevant to quantum antiferromagnets on Kagomé and pyrochlore lattices where (almost) all low-energy excitations are spin singlets, as well as to the Ca\textsubscript{3}V\textsubscript{4}O\textsubscript{9} lattice and the strongly frustrated antiferromagnets Cu\textsubscript{2}Te\textsubscript{2}O\textsubscript{5}(Cl,Br)\textsubscript{2} and Li\textsubscript{2}VO(Si,Ge)O\textsubscript{4}.

PACS: 75.10.Jm, 75.30.Kz, 75.40.Gb, 75.40.-s

It was argued by Haldane and Chakravarty, Halperin and Nelson1 that a quantum phase transition between a Néel state and a magnetically disordered phase in a two-dimensional (2D) quantum antiferromagnet is described by the 2+1 dimensional non-linear O(3) σ-model. More recently the problem was studied in detail using the 1/N expansion2 ($N = 3$ is the number of components of the order parameter), numerical methods3 as well as the Brueckner method4. In this description the lowest quasiparticle excitation is a spin triplet. There are cases when a low-energy singlet excitation also appears, however it turns out to be irrelevant to the critical dynamics because of its vanishing spectral weight at the quantum critical point5.

The above picture based on $S=1$ excitations describes a wide class of quantum phase transitions6. On the other hand in Cr-based $S=3/2$ Kagomé materials it was found that at low temperatures ($T \lesssim 3-5$ K) the specific heat $C \propto T^3$ and is practically independent of magnetic field up to 12 T7. If we try to understand these data in terms of quasiparticles, the temperature behavior indicates a linear dependence of the excitation energy on momentum, and the insensitivity to field suggests that the quasiparticle spin is zero. Finite cluster numerical simulations for the $S=1/2$ Kagomé model indeed show that the lowest excitations are spin singlets with very small or zero gap8. Similar behavior with many singlet states inside the triplet gap was also found in the pyrochlore antiferromagnet9 and the Ca\textsubscript{3}V\textsubscript{4}O\textsubscript{9} lattice10. In the Kagomé case the singlet quasiparticle picture is far from being certain. It is unclear how to explain in this scenario the rather large zero temperature magnetic susceptibility observed in the Kagomé materials11. It is also possible that the material is a spin glass and hence a description in terms of quasiparticles would not be adequate. Nevertheless, it is very important and interesting to analyze the quasiparticle scenario. From this point of view the Kagomé magnets are critical (or close to critical) systems, and they certainly cannot be described by the $O(3)$ σ-model. In the present work we consider a two-dimensional spin system which exhibits a non-trivial singlet dynamics leading to a quantum critical point controlled by singlet excitations.

Critical singlet dynamics can naturally appear in a 2D quantum spin model with a zero temperature quantum phase transition separating two singlet ground states, both of which are magnetically disordered but have different discrete lattice symmetries. We show that a spin model constructed as an array of weakly coupled frustrated plaquettes has only singlet low-energy degrees of freedom in a certain range of parameters. Many theoretical works have been devoted to the conventional order-disorder quantum phase transition in similar models, mainly in relation to the Ca\textsubscript{3}V\textsubscript{4}O\textsubscript{9} compound12–14. Different types of singlet dimer states have also been discussed for the quantum dimer model15, the Heisenberg model on a 3D pyrochlore lattice16, and the generalized 2D J_1-J_2 model17. However, low-energy critical singlet dynamics for these systems has not been studied until now. Very recent numerical work has shown, in the context of the 2D J_1-J_2 model, that a quantum transition governed by singlet dynamics takes place for strong frustration $J_2 \approx J_1/2$18. It was also recently argued that this regime is experimentally accessible in Cu\textsubscript{2}Te\textsubscript{2}O\textsubscript{5}(Cl,Br)\textsubscript{2} and Li\textsubscript{2}VO(Si,Ge)O\textsubscript{4}19, and measurements of the excitation spectrum of these materials, such as Raman spectroscopy, are now actively being pursued20. Let us mention that dimer states appear also in various 1D spin models (e.g. in the frustrated J_1-J_2 Heisenberg chain). Their critical behavior is understood in terms of deconfined spin-1/2 excitations or spinons, which do not generally exist in higher dimensions. A 1D system with features similar to the generic critical behavior we analyze in this work is an effective 1D Kagomé lattice model21 with gapless singlet and gapped triplet excitations. However, unlike the behavior we focus on, this model does not exhibit a quantum phase transition and breaking of lattice symmetry. Thus our future discussion is relevant to models in $D > 1$, and a 2D case is analyzed as a generic example.
Consider a cluster of four $S=1/2$ spins (plaquette, see Fig.1(a)):

\[\hat{H}_0 = J_1 \sum_{(ij)} \mathbf{S}_i \cdot \mathbf{S}_j + J_2 \sum_{(ij)} \mathbf{S}_i \cdot \mathbf{S}_j, \]

where $\langle ij \rangle$ and (ij) denote, respectively, the side and diagonal bonds. We choose the diagonal coupling J_2 to be close to the side one: $J_2 \approx J_1 = J > 0$, and define $\alpha = J_1 - J_2 \ll J$. In this regime the spectrum of a plaquette is the following: two close singlet states which we denote by $|s_A\rangle$ and $|s_B\rangle$, with energy difference $\epsilon_B - \epsilon_A = 2\alpha$, three almost degenerate triplet states with excitation energy J above the singlets, and one $S=2$ state with energy $3J$. The two singlet wave functions are expressed as: $|s_A\rangle = \frac{1}{\sqrt{2}} \{[1,2][3,4] + [2,3][4,1]\}$ and $|s_B\rangle = \{[1,2][3,4] - [2,3][4,1]\}$, where $[i,j]$ denotes a singlet formed by the nearest-neighbor spins i and j (Fig.1(a)). Both singlets $|s_A\rangle$ and $|s_B\rangle$ are invariant under a four-fold rotation of a plaquette, whereas the columnar dimer states, e.g., $[1,2][3,4]$, break this symmetry. Consider now two decoupled plaquettes which for $\alpha = 0$ have a 2×2 degenerate ground state. The degeneracy is lifted if a weak interaction between the plaquettes is switched on by selecting one of the columnar dimer states. Such a degeneracy lifting is different from the effect of a non-zero α and competition between the two leads to a nontrivial singlet dynamics in an array of weakly coupled plaquettes.

To be specific consider a square array with antiferromagnetic couplings J_1 between nearest-neighbor spins and J_2 between next-nearest-neighbor (diagonal) spins from different plaquettes, see Fig.1(b). For $J_1 = J_1$ and $J_2 = J_2$ it would be equivalent to the translationally-invariant 2D $J_1 - J_2$ model. However now we are interested in the weak-coupling limit: $J_1, J_2 \ll J_1 \approx J$. The low-energy singlet sector of the Hilbert space has a natural pseudospin representation in terms of the states $|\uparrow\rangle = |s_A\rangle$ and $|\downarrow\rangle = |s_B\rangle$. The total Heisenberg spin Hamiltonian of the array of coupled plaquettes is mapped on the following pseudospin Hamiltonian to lowest order in the small parameters α and $J_{1,2}/J$:

\[\hat{H} = -\Omega \sum_{(ij)} \left[\frac{1}{2} S_i^z S_j^z + \frac{1}{2} S_i^x S_j^x + \Omega (\alpha - \frac{4}{3}) (S_i^x S_j^y + S_i^y S_j^x) \right] - \Omega h \sum_i S_i^+ . \]

\[(2) \]

The energy scale Ω and the effective dimensionless "magnetic field" h are obtained in second-order perturbation theory:

\[\Omega = \frac{1}{2j} (J_1^2 + J_2^2), \quad h = \frac{1}{\Omega} [2\alpha + (J_1^2 + J_2^2 - 6J_1J_2)/6J]. \]

\[(3) \]

We have also defined $Q = (0, \pi)$ and dropped a constant term. The first sum in Eq.(2) is over nearest-neighbor plaquettes since bonds connecting second neighbors contribute to a constant term only and thus do not change the singlet dynamics. We stress that (3) is an exact mapping of the original Heisenberg model in the low-energy sector (excitation energy $\omega \sim \Omega, \alpha \ll J$). The Hamiltonian \hat{H} describes an anisotropic ferromagnet in an external field. The interaction between pseudospins on adjacent sites is purely Ising, which can be seen by rotating the spin axes. However the Ising axis is staggered in the $x-z$ plane deviating by angle $\pm \pi/6$ from the x-direction for horizontal (vertical) pairs.

The form of the Hamiltonian \hat{H} is unaffected by asymmetry in the coupling constants J_1 and J_2, which would only change the position of the reference zero-field level. In fact, the pseudospin Hamiltonian remains the same with parameters given by: $\Omega = J_1^2/2J$ and $h = [2\alpha + (J_1^2 - 3J_1J_2)/6J]/\Omega$, even if we switch off one of the diagonal J_2-bonds between nearest-neighbor plaquettes. In this case our model resembles the frustrated J_1-J_2 system of CuV$_4$O$_8$ which has next-nearest-neighbor couplings comparable or even exceeding the nearest-neighbor exchange. Thus our results apply to the singlet ground states of this magnet as well.

In zero “magnetic field” $h = 0$ the ground state of \hat{H} has broken Ising symmetry with all spins parallel or antiparallel to the \hat{z} direction. In the language of spin singlets breaking of Z_2 symmetry corresponds to spontaneous dimerization in one of the two columnar patterns. The rotational symmetry of the square lattice is obviously broken. The “magnetic field” tends to orient all spins along the \hat{z} axis, and depending on the sign of h favors either $|s_A\rangle$ or $|s_B\rangle$. Hence there are two critical fields, a positive and a negative one, for transitions into states with a restored Z_2 symmetry. Since Eq.(2) is invariant under $h \rightarrow -h$, we consider the case $h > 0$ only.

To study in more detail the properties of the symmetric phase near the critical point we map the pseudospin Hamiltonian (3) onto a hard-core boson model. Positive and large h corresponds to $J_1 > J_2$. In this case we choose the bare ground state as $|0\rangle = \prod_i |s_A\rangle_i$. A boson creation operator on site i is defined by $|s_B\rangle_i = b^\dagger_i |s_A\rangle_i$. In terms of pseudospins we have $S_i^+ = \frac{1}{2} - b^\dagger_i b_i$, $S_i^- = \bar{b}^\dagger_i b_i$. The resulting boson Hamiltonian is:

\[H_B = \epsilon \sum_i b_i^\dagger b_i + 2\Omega \sum_{(ij)} (b_i^\dagger b_j + b_i b_j^\dagger + h.c.) + \sum_{(ij)} t (b_i^\dagger b_j + b_i b_j^\dagger + h.c.) + \sum_{(ij)} g (b_i^\dagger b_j^\dagger b_i b_j + h.c.) + V \sum_{(ij)} b_i^\dagger b_j^\dagger b_i b_j . \]

\[(4) \]

In the g-term the sign $+$ corresponds to a horizontal link and the sign $-$ to a vertical one. The parameters are:

\[\epsilon = \Omega (1 + h), \quad t = -\frac{\Omega}{8}, \quad g = -\frac{\Omega}{4\sqrt{3}}, \quad V = -\frac{\Omega}{6}. \]

\[(5) \]

Considered in combination with the hard-core constraint $(b_i^\dagger)^2 = 0$, the Hamiltonian (3) is equivalent to the pseu-
dospin Hamiltonian \(^2\) and hence it is an exact mapping of the original spin problem in its low-energy sector.

The bosonic form of the effective Hamiltonian is convenient for the analysis of the low density (disordered) phase. Diagonalization of Eq.(4) in the quadratic approximation gives the following excitation spectrum:

\[
\omega_k = \sqrt{\epsilon + 4\gamma_k} - (4\gamma_k) \sqrt{2}, \quad \text{where} \quad \gamma_k = \frac{1}{2} (\cos k_x + \cos k_y).
\]

We set the inter-plaquette lattice spacing to one. The bosonic form of the effective Hamiltonian is consistent with the mean-field ansatz. At \(h = 0 \) we find \(\langle S \rangle \approx 0.498 \), meaning that the effect of quantum fluctuations is extremely small and the linear spin-wave theory is well justified. At the transition point \(h = h_c \) the zero-point oscillations are larger (\(\approx 0.44 \) but still small enough to justify our approximations leading to Eq.(3)).

The broken \(Z_2 \) symmetry in the ground state at \(|h| < h_c \) leads to a finite temperature transition. The whole phase diagram of the system of coupled plaquettes in the \(h-T \) plane is shown schematically in Fig.3. The critical temperature can be estimated as \(T_c(h = 0) \approx \Omega (1.14\Omega \text{ for a pure Ising case}) \). The phase transition between the ordered dimer and the plaquette states belongs to the 2D Ising universality class, and we therefore expect a logarithmic singularity in the specific heat: \(C \sim \ln |T-T_c(h)| \). Below \(T_c \) the excitations acquire a gap and \(C \) goes exponentially at low temperatures. The same activated dependence holds also for the symmetric phases at \(|h| > h_c \). However, when we approach the quantum critical points at \(h = \pm h_c \) the gap becomes smaller and the low-\(T \) behavior of the specific heat changes to the quantum critical law \(C_V = \gamma T^2 \). The universal prefactor \(\gamma \) can be calculated using the Brueckner technique \[^3\]. The result is \(\gamma = \frac{J^2}{\pi^2 (N-1)} \approx 0.92 \Omega^2 \), per plaquette, where \(c = \Omega/2 \) is the singlet excitation velocity at the critical point (we set \(k_B = h = 1 \)). This value coincides with the large-\(N \) mean-field result \[^2\]. Notice that, unlike \(C_V \), the magnetic susceptibility is always activated \(\chi \sim \exp(-\Delta_t/T), T \to 0 \), since it is governed by the triplet gap \(\Delta_t \sim J \).

The variation of \(C_V \) as a function of temperature is schematically presented in Fig.4 for the different parts of the phase diagram. In addition to the singlet contribution, whose form was discussed above, we have also shown the peaks expected to arise from the higher energy triplet and quintplet states. We remind the reader that \(\Omega \) and \(J \) represent two distinctly different energy scales since according to our weak inter-plaquette coupling assumption \(\Omega \ll J \). We have estimated that the singlets contribute about 25\% to the entropy \(S = \int (C_V) dT \) (and 61\% and 14\% are taken by the \(S=1 \) and \(S=2 \) states, respectively). The possibility of rich behavior at low \(T \) has been debated for some time for the Kagomé antiferromagnet and a sharp structure is believed to exist due to low-energy singlets \[^2\]. Notice that in our model a very peculiar behavior with a logarithmic singularity sets in at \(h < h_c \) which crosses over to the quantum critical regime at \(h = h_c \). Such a sharp feature is generic for systems near a transition between two singlet ground states. We also note that near the quantum critical point \(h \approx h_c \), \(T_c \) is expected to be small (and ultimately vanish at \(h = h_c \)). Consequently the logarithmic singularity at \(T = T_c \ll \Omega \)
and the singlet peak at $T \sim \Omega$ should be clearly separated (this has been assumed in Fig.4). Alternatively, for $h \ll 1$ one has $T_c \sim \Omega$ and therefore the two contributions should merge. A numerically reliable calculation of C_V in the temperature region $T < \Omega$ is a separate problem, however for higher temperatures (of order J) a quantitative description can be easily achieved, and the result is plotted in Fig.5 (for the specific value of $\Omega = 0.1 J$). The contributions of the triplet and quintuplet states have merged into a broad peak around $T \approx J/3$, while the singlet peak is sharper and centered at $T \approx \Omega/2$ (in this region our calculation is expected to be qualitatively correct).

In conclusion, we have analyzed a quantum spin model with purely singlet low-energy dynamics. There is a quantum phase transition in the model separating a disordered plaquette phase and a columnar dimer phase. Even though the inter-plaquette interaction was assumed to be weak, we expect our results to hold also for stronger interactions as long as there are no other instabilities, and to be applicable, e.g. to CaV$_4$O$_9$. The broken symmetries in the singlet ground state of CaV$_4$O$_9$ were considered previously in Ref. [13] in the framework of the quantum dimer model, and the possibility of Ising transitions between spin-Peierls and other disordered phases was discussed [2]. Furthermore, recent numerical studies of the square-lattice $J_1 - J_2$ model [8] have indeed found a quantum transition near $J_2 \approx J_1/2$ of the type discussed in the present work, even though a formally small expansion parameter (justifying the separation of the singlet and triplet dynamics) is not available.

We have found that while the magnetic susceptibility is always activated, the specific heat behavior is very rich and changes substantially in the different regimes. The model was inspired by experimental and numerical data for Kagomé systems and also shares common structure with pyrochlore antiferromagnets, the CaV$_4$O$_9$ lattice, and strongly frustrated square lattice antiferromagnets. The novel quantum critical behavior associated with singlet criticality (or proximity to such a critical point) discussed in this work can be relevant to a wide class of disordered quantum spin systems, and could be detected by measurements of the specific heat as well as the low-T excitation spectrum in the S=0 sector via Raman spectroscopy.

We are grateful to C. Lhuillier, F. Mila, A.P. Ramirez, R.R.P. Singh, S. Sachdev, W.H. Zheng, and P. Lemmens for stimulating discussions. This work was supported by NSF Grant DMR9357474 (V.N.K.), in part by NSF Grant PHY94-07194 (O.P.S.), and by the Swiss National Fund (M.E.Z.).

[1] F.D.M. Haldane, Phys. Rev. Lett. 50, 1153 (1983); S. Chakravarty, B.I. Halperin, and D.R. Nelson, Phys. Rev. B 39, 2344 (1989).
[2] A.V. Chubukov, S. Sachdev, and J. Ye, Phys. Rev. B 49, 11919 (1994).
[3] A.W. Sandvik and D.J. Scalapino, Phys. Rev. Lett. 72, 2777 (1994); W.H. Zheng, Phys. Rev. B 55, 12267 (1997).
[4] V.N. Kotov, O.P. Sushkov, W.H. Zheng, and J. Oitmaa, Phys. Rev. Lett. 80, 5790 (1998).
[5] P.V. Shevchenko, A.W. Sandvik, and O.P. Sushkov, Phys. Rev. B 61, 3475 (2000).
[6] V.N. Kotov and O.P. Sushkov, Phys. Rev. B 61, 11820 (2000).
[7] S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, 1999).
[8] A.P. Ramirez, B. Hessen, and M. Winklemann, Phys. Rev. Lett. 84, 2957 (2000).
[9] Ch. Waldtmann, H.-U. Everts, B. Bernu, P. Sindzingre, C. Lhuillier, P. Lecheminant, and L. Pierre, Eur. Phys. J. B 2, 501 (1998).
[10] B. Canals and C. Lacroix, Phys. Rev. Lett. 80, 2933 (1998).
[11] M. Albrecht, F. Mila, and D. Poilblanc, Phys. Rev. B 54, 15856 (1996).
[12] K. Ueda, H. Kontani, M. Sigrist, and P.A. Lee, Phys. Rev. Lett. 76, 1932 (1996); O.A. Starykh, M.E. Zhitomirsky, D.I. Khomskii, R.R.P. Singh, and K. Ueda, ibid. 77, 2558 (1996).
[13] S. Sachdev and N. Read, Phys. Rev. Lett. 77, 4800 (1996).
[14] W.H. Zheng, M.P. Gelfand, R.R.P. Singh, J. Oitmaa, and C.J. Hamer, Phys. Rev. B 55, 11377 (1997).
[15] P.W. Leung, K.C. Chiu and K.J. Runge, Phys. Rev. B 54, 12938 (1996).
[16] A.B. Harris, A.J. Berlinsky and C. Bruder, J. Appl. Phys. 69, 5200 (1991); M. Isoda and S. Mori, J. Phys. Soc. Jpn. 67, 4022 (1998).
[17] R.R.P. Singh, W.H. Zheng, C.J. Hamer, and J. Oitmaa, Phys. Rev. B 60, 7278 (1999).
[18] O.P. Sushkov, J. Oitmaa, and W.H. Zheng, cond-mat/0007329 and references therein.
[19] M. Johnsson, K.W. Tornroos, F. Mila, and P. Millet, submitted to Chem. Mater. (2000); R. Melzi, P. Carretta, A. Lascialfari, M. Mambri, M. Troyer, P. Millet, and F. Mila, Phys. Rev. Lett. 85, 1318 (2000).
[20] P. Lemmens, private communication.
[21] P. Azaria, C. Hooley, P. Lecheminant, C. Lhuillier, and A. M. Tsvelik, Phys. Rev. Lett. 81, 1694 (1998).
[22] R. Guida and J. Zinn-Justin, J. Phys. A 31, 8103 (1998).
[23] P. Sindzingre, G. Misguich, C. Lhuillier, B. Bernu, L. Pierre, Ch. Waldtmann, and H.-U. Everts, Phys. Rev. Lett. 84, 2953 (2000).

However the columnar dimer model [13] applied to a real spin system with Heisenberg interactions.

FIG. 1. (a) A single frustrated plaquette. (b) An array of interacting plaquettes.
FIG. 2. Singlet gap in the vicinity of the quantum critical point separating the plaquette and dimerized phases.

FIG. 3. Schematic phase diagram of the model. The solid line represents the 2D Ising critical line, and the dots are the two quantum critical points belonging to the $O(1)$ (equivalently 3D Ising) universality class. The vertical dashed line represents the crossover boundary between the two plaquette phases.

FIG. 4. Schematic temperature dependence of the specific heat throughout the plaquette phase, $h > h_c$, down to the quantum critical point $h = \pm h_c$ (top), as well as for $h < h_c$, across the 2D Ising critical line (bottom).

FIG. 5. Calculated specific heat for $\Omega = J/10$, showing the low-temperature singlet contribution at $T \approx \Omega/2$ as well as the broader peak on the scale of J arising from the $S = 1, 2$ states.
Fig. 1.
FIG. 2.

The figure shows a phase diagram with the x-axis labeled h_c and the y-axis labeled Δ/Ω. The diagram is divided into two regions: the Columnar Dimer Phase and the Plaquette Phase. The Columnar Dimer Phase is indicated by a dashed line, while the Plaquette Phase is indicated by a solid line. The diagram includes markers for different states within these phases.
FIG. 3.

Quantum critical 2D Ising O(1)
FIG. 4.

\[C_v \sim e^{\frac{\Delta}{T}}, |h|>h_c \]

\[\sim T^2, |h|=h_c \]

\[\sim -\frac{\Delta}{T}, |h|<h_c \]

\[\sim \ln|T-T_c| \]

\[\Omega^2 \]

\[\frac{\Omega^2}{T^2} \]

\[S=0, S=1, S=2 \]
FIG. 5.

$S = 0$