On the Stanley depth of edge ideals of k–partite clutters

Luis A. Dupont and Daniel G. Mendoza
Facultad de Matemáticas, Universidad Veracruzana
Circuito Gonzalo Aguirre Beltrán S/N;
Zona Universitaria;
Xalapa, Ver., México, CP 91090.

Abstract
We give upper bounds for the Stanley depth of edge ideals of certain k–partite clutters. In particular, we generalize a result of Ishaq about the Stanley depth of the edge ideal of a complete bipartite graph. A result of Pournaki, Seyed Fakhari and Yassemi implies that the Stanley’s conjecture holds for d-uniform complete d-partite clutters. Here we give a shorter and different proof of this fact.

1 Introduction
Let \(R = K[x_1, \ldots, x_n] \) be a polynomial ring over a field \(K \). A clutter \(C \), with finite vertex set \(V = \{x_1, \ldots, x_n\} \) is a family of subsets of \(V \), called edges, none of which is included in another. The set of vertices and edges of \(C \) are denoted by \(V(C) \) and \(E(C) \) respectively. For example, a simple graph (no multiple edges or loops) is a clutter. The edge ideal of \(C \), denoted by \(I(C) \), is the ideal of \(R \) generated by all monomials \(x_e = \prod_{x_i \in e} x_i \) such that \(e \in E(C) \). The map

\[C \mapsto I(C) \]

gives a one to one correspondence between the family of clutters and the family of squarefree monomial ideals. Edge ideals of graphs were introduced and studied in [18, 21]. Edge ideals of clutters correspond to simplicial complexes via the Stanley-Reisner correspondence [20] and to facet ideals [8, 23].

\(^0\)Key words and phrases. monomial ideal, Stanley’s conjecture, Stanley decompositions, Stanley depth
AMS Mathematics Subject Classification: 05E40
Partially supported by CONACYT
A \(k \)-partite clutter is a clutter \(C \) where the vertices are partitioned into \(k \) subsets \(V(C) = V_1 \cup V_2 \cup \cdots \cup V_k \) with the following conditions:

1. No two vertices in the same subset are adjacent, i.e., \(|V_i \cap E| \leq 1 \) for all \(1 \leq i \leq k \) and \(E \in E(C) \).
2. There is no partition of the vertices with fewer than \(k \) subsets where condition (1) holds.

A clutter is called \(d \)-uniform or uniform if all its edges have exactly \(d \) vertices.

Along the paper we introduce most of the notions that are relevant for our purposes. Our main references for combinatorial optimization and commutative algebra are [5, 6, 22].

Let \(M \) be a finitely generated \(\mathbb{Z}^n \)-graded \(R \)-module, \(R = K[x_1, \ldots, x_n] \). If \(u \in M \) is a homogeneous element in \(M \) and \(Z \subseteq \{x_1, \ldots, x_n\} \) then let \(uK[Z] \subset M \) denote the linear \(K \)-subspace of \(M \) of all elements \(uf, f \in K[Z] \). This space is called a Stanley space of dimension \(|Z| \) if \(uK[Z] \) is a free \(K[Z] \)-module. A presentation of \(M \) as a finite direct sum of Stanley spaces

\[
\mathcal{D} : M = \bigoplus_{i=1}^{r} u_iK[Z_i]
\]

is called a Stanley decomposition of \(M \). The number

\[
s\text{depth}(\mathcal{D}) = \min\{|Z_i| : i = 1, \ldots, r\}
\]

is called the Stanley depth of decomposition \(\mathcal{D} \) and the number

\[
s\text{depth}(M) := \max\{s\text{depth}(\mathcal{D}) : \mathcal{D} \text{ is a Stanley decomposition of } M\} \leq n.
\]

is called the Stanley depth of \(M \). This is a combinatorial invariant which does not depend on the characteristic of \(K \).

In 1982, [19], Stanley introduced the idea of what is now called the Stanley depth of a \(\mathbb{Z}^n \)-graded module over a commutative ring and conjectured that \(s\text{depth}(M) \geq \text{depth}(M) \). While some special cases of the conjecture have been resolved, it still remains largely open, (for example see [12, 2, 11, 10, 14, 12, 13, 17]). Shen’s proof (see from [17, Lema 2.3, Theorem 2.4]) relies on a theorem of Cimpoeaş, [4, Theorem 2.1], which states that the Stanley depth of a complete intersection monomial ideal is equal to that of its radical, which allows for a focus on squarefree ideals. In [10, Theorem 2.8] Ishaq showed that the Stanley depth of the edge ideal of a complete bipartite graph over \(n \) vertices with \(n \geq 4 \) is less than or equal to \(\frac{n+2}{2} \). In [11] Ishaq and Qureshi, provide an upper bound for the Stanley depth of an edge ideal of a \(k \)-uniform complete bipartite hypergraph which is a kind of generalization to the complete bipartite graph.

2
The aim of this paper is to bound the Stanley depth of the edge ideal of a d–uniform complete k–partite clutter [Theorems 3.3, 3.5, 3.9]. The proofs use the correspondence between a Stanley decomposition of a monomial ideal and a partition of a particular poset into intervals established by Herzog, Vladoiu, and Zheng. In [15, Corollary 2.9] Pournaki, Seyed Fakhari and Yassemi show that the Stanley’s conjecture holds for finite products of monomial prime ideals. This fact implies that the conjecture holds for d-uniform complete d-partite clutters. Here we give a shorter and different proof of this result [Theorem 3.3]. Finally, we show that the result of Ishaq [10, Theorem 2.8] follows from the Theorem 3.9.

2 Algebraic and combinatorial Stanley depth

For a positive integer n, let $[n] = \{1, ..., n\}$ and let 2^n denote the Boolean algebra consisting of all subsets of $[n]$. For $x \leq y$ in a poset P, we let $[x, y] = \{z : x \leq z \leq y\}$ and call $[x, y]$ an interval in P. If P is a poset and $x \in P$, we let $U[x] = \{y \in P : y \geq x\}$ and call this the up-set of x. In [9], Herzog et al. introduced a powerful connection between the Stanley depth of a monomial ideal and a combinatorial partitioning problem for partially ordered sets. For $c \in \mathbb{N}^n$, let $x^c := x_1^{c(1)} x_2^{c(2)} \cdots x_n^{c(n)}$. Let $I = (x^{v_1}, \ldots, x^{v_q}) \subset R$ be a monomial ideal. Let $h \in \mathbb{N}^n$ be such that $h \geq v_i$ for all i. The characteristic poset of I with respect to h, denoted P^h_I is defined as the induced subposet of \mathbb{N}^n with ground set

$$\{c \in \mathbb{N}^n : c \leq h \text{ and there is } i \text{ such that } c \geq v_i\}.$$

Let D be a partition of P^h_I into intervals. For $J = [x, y] \in D$, define

$$Z_J = \{i \in [n] : y(i) = h(i)\}.$$

Define the Stanley depth of a partition D to be

$$sdepth(D) = \min_{J \in D} |Z_J|$$

and the Stanley depth of the poset P^h_I to be

$$sdepth(P^h_I) = \max_D sdepth(D),$$

where the maximum is taken over all partitions D of P^h_I into intervals. Herzog et al. showed in [9] that

$$sdepth(I) = sdepth(P^h_I).$$

If I is a squarefree monomial ideal, then we may take $h = (1, 1, \ldots, 1)$ and work inside $\{0, 1\}^n$, which is isomorphic to 2^n. A monomial m in R then can be identified with the subset of $[n]$ whose elements correspond to the subscripts of
the variables appearing in m. Let $G(I) = \{x^{v_1}, x^{v_2}, \ldots, x^{v_q}\}$ be the set of minimal monomial generators of I and $A_i \subseteq [n]$ corresponds to v_i. The characteristic poset of I with respect to $h = (1, 1, \ldots, 1)$, denoted by P^h_I is in fact the set

$$P^h_I = \{C \subset [n] : C \text{ contains the } supp(v_i) \text{ for some } i\}$$

where $supp(v_i) = \{j : x_j \mid v_i\}$. Then the definition of P^h_I clearly simplifies to

$$P^h_I = \bigcup_{i=1}^{\varphi} U[A_i]$$

as a subposet of 2^n. For an interval $J = [X, Y]$, we then have that $|Z_J|$ corresponds to $|Y|$.

Let $\mathcal{P} : P^h_I = \bigcup_{i=1}^{\varphi} [C_i, D_i]$ be a partition of P^h_I, and for each i, let $c_i \in \{0, 1\}^n$ be the n–tuple such that $supp(x^{c_i}) = C_i$. Then there is a Stanley decomposition $\mathcal{D}(\mathcal{P})$ of I

$$\mathcal{D}(\mathcal{P}) : I = \bigoplus_{i=1}^{\varphi} x^{c_i} K[\{x_k : k \in D_i\}].$$

The above description of $sdepth(I) = sdepth(P^h_I)$ shows that

Lemma 2.1 If I is a squarefree monomial ideal and $G(I)$ is the minimal monomial generating set of I, then $\min\{\deg(v) : v \in G(I)\} \leq sdepth(I) \leq n$.

By the previous lemma, if \mathcal{C} is a d–uniform clutter, then $d \leq sdepth(I(\mathcal{C})) \leq n$.

3 Stanley depth of edge ideals

Let $R = K[x_1, \ldots, x_n]$ be a polynomial ring over a field K and let v_1, \ldots, v_q be the column vectors of a matrix $A = (a_{ij})$ whose entries are non-negative integers. For technical reasons, we shall always assume that the rows and columns of the matrix A are different from zero. As usual we use the notation $x^a := x_1^{a_1} \cdots x_n^{a_n}$, where $a = (a_1, \ldots, a_n) \in \mathbb{N}^n$.

Consider the monomial ideal:

$$I = (x^{v_1}, \ldots, x^{v_q}) \subset R$$

generated by $F = \{x^{v_1}, \ldots, x^{v_q}\}$.

Let A be the incidence matrix of \mathcal{C} whose column vectors are v_1, \ldots, v_q. The set covering polyhedron of \mathcal{C} is given by:

$$Q(A) = \{x \in \mathbb{R}^n | x \geq 0; xA \geq 1\},$$
A subset \(C \subset V(C) \) is called a minimal vertex cover of \(C \) if: (i) every edge of \(C \) contains at least one vertex of \(C \), and (ii) there is no proper subset of \(C \) with the first property. The map \(C \mapsto \sum_{x_i \in C} e_i \) gives a bijection between the minimal vertex covers of \(C \) and the integral vectors of \(Q(A) \)\(^6\). A polyhedron is called an integral polyhedron if it has only integral vertices.

Definition 3.1 A \(d \)-uniform clutter \(C(V, E) \) with vertex set \(V \) and edge set \(E \) is called \(k \)-partite if the vertex set \(V \) is partitioned into \(k \) disjoint subset \(V_1, V_2, \ldots, V_k \) and \(|e \cap V_i| \leq 1 \) for all \(e \in E \) and \(1 \leq i \leq k \).

Definition 3.2 A \(d \)-uniform clutter \(C(V, E) \) with vertex set \(V \) and edge set \(E \) is called complete \(k \)-partite \((d \leq k \leq n)\) if the vertex set \(V \) is partitioned into \(k \) disjoint subset \(V_1, V_2, \ldots, V_k \) and \(E = \{\{x_{j_1}, \ldots, x_{j_d}\} : |x_{j_i} \cap V_i| \leq 1\} \), in that case we say that \(V = V_1 \cup V_2 \cup \cdots \cup V_k \) is a complete partition. Note that if \(d = k \), then \(V_1, V_2, \ldots, V_k \) are the minimal vertex covers of \(C \).

Let \(I \subset R \) be the edge ideal of a complete bipartite graph over \(n \) vertices with \(n \geq 4 \). In \(^{10}\) Ishaq showed that

\[
\text{sdepth}(I) \leq \frac{n + 2}{2}.
\]

Now let \(C \) be a complete \(k \)-partite \(d \)-uniform clutter with vertex set \(V(C) \) partitioned into \(k \) disjoint subset \(V_1, V_2, \ldots, V_k \); \(V(C) = V_1 \cup \cdots \cup V_k \), with \(|V_i| = r_i \), where \(r_i \in \mathbb{N} \) and \(2 \leq r_1 \leq \cdots \leq r_k \). Let \(r_1 + \cdots + r_k = n \) and \(V_1 = \{x_1, \ldots, x_{r_1}\} \), \(V_2 = \{x_{r_1+1}, \ldots, x_{r_1+r_2}\} \), \ldots, \(V_k = \{x_{r_1+\cdots+r_{k-1}+1}, \ldots, x_{r_1+\cdots+r_k}\} \). Let \(I_1 = (V_1) \), \(I_2 = (V_2) \), \ldots, \(I_k = (V_k) \) be the monomial ideals in \(R \). Note that

\[
|E(C)| = \sum_{1 \leq j_1 < j_2 < \cdots < j_d \leq k} r_{j_1} r_{j_2} \cdots r_{j_d}.
\]

Then the edge ideal of \(C \) is of the form

\[
I = \sum_{1 \leq j_1 < j_2 < \cdots < j_d \leq k} I_{j_1} \cap I_{j_2} \cap \cdots \cap I_{j_d}.
\]

The next result follows from the fact that the Stanley’s conjecture holds for finite products of monomial prime ideals (see from \(^{15}\) Corollary 2.9); for convenience we include a short proof.

Theorem 3.3 Let \(I \) be the edge ideal of \(d \)-uniform complete \(d \)-partite clutter. Then Stanley’s Conjecture holds for \(I \).
Proof. We continue to use the notation used in the above description of $I = I(C) = (V_1) \cap \cdots \cap (V_d)$, with $V(C) = V_1 \cup \cdots \cup V_d$. In our situation V_1, \ldots, V_d are the minimal vertex covers of C. Therefore

$$I = (V_1) \cap \cdots \cap (V_d)$$

is a reduced intersection of monomial prime ideals of R, where $(V_i) \not\subseteq \sum_{j=1, j \neq i}^d (V_j)$ for all $1 \leq i \leq d$. Then by [14, Theorem 3.3],

$$\text{depth}(I) = d \leq \text{sdepth}(I).$$

\[\square \]

Theorem 3.4 Let C be a d–uniform complete k–partite clutter. Then

$$d \leq \text{sdepth}(I(C)) \leq d + \frac{1}{|E(C)|} \left(\sum_{1 \leq j_1 < j_2 < \cdots < j_d \leq k} \left(\sum_{i=1}^d \left(\frac{r_{j_i}}{2} \right) \frac{r_{j_1} \cdots r_{j_d}}{r_{j_i}} \right) \right).$$

Proof. Note that $I = I(C)$ is a squarefree monomial ideal generated by monomials of degree d. Let $\rho = \text{sdepth}(I)$ and $P : P^h_k = \cup_{i=1}^q [C_i, D_i]$ be a partition of P^h_k satisfying $\text{sdepth}(D(P)) = \rho$, where $D(P)$ is the Stanley decomposition of I with respect to the partition P. We may choose P' such that $|D| = \rho$ whenever $C \neq D$ in the interval $[C, D]$, considering these intervals of P with $|D| = \rho$ and 1-dimensional spaces. Now we see that for each interval $[C, D]$ in P' with $|C| = d$ we have $\rho - d$ subsets of cardinality $d + 1$ in this interval. The total number of these kind of intervals is $|E(C)| = \sum r_{j_1}r_{j_2} \cdots r_{j_d}$, where the sum runs over all $1 \leq j_1 < j_2 < \cdots < j_d \leq k$. So we have

$$(\rho - d) \left(\sum r_{j_1}r_{j_2} \cdots r_{j_d} \right)$$

subsets of cardinality $d + 1$. This number is less than or equal to the total number of monomials $m \in I$ with $\deg(m) = d + 1$ and $|\text{supp}(m)| = d + 1$. Furthermore,

$$\{ m : m \in I; \deg(m) = d + 1; |\text{supp}(m)| = d + 1 \} = \{ x^e x_i : e \in E(C); i \notin e \},$$

with cardinality $\sum_{1 \leq j_1 < j_2 < \cdots < j_d \leq k} \left(\sum_{i=1}^d \left(\frac{r_{j_i}}{2} \right) \frac{r_{j_1} \cdots r_{j_d}}{r_{j_i}} \right)$. Hence

$$(\rho - d)|E(C)| \leq \sum_{1 \leq j_1 < j_2 < \cdots < j_d \leq k} \left(\sum_{i=1}^d \left(\frac{r_{j_i}}{2} \right) \frac{r_{j_1} \cdots r_{j_d}}{r_{j_i}} \right).$$

Therefore we obtain the required inequality. \[\square \]
Theorem 3.5 Let C be a d–uniform complete d–partite clutter. Then

$$d \leq s\text{depth}(I(C)) \leq d + \sum_{i=1}^{d} \frac{r_i - 1}{2}. $$

Proof. The proof is analogous to the proof of Theorem 3.4, but with $|E(C)| = r_1 r_2 \cdots r_d$ and

$$\{m : m \in I; \deg(m) = d + 1; \text{supp}(m) = d + 1\} = \{x^e x_i : e \in E(C); i \notin e\},$$

has cardinality

$$\sum_{i=1}^{d} \binom{r_i}{2} \frac{r_1 r_2 \cdots r_d}{r_i} = (r_1 r_2 \cdots r_d) \sum_{i=1}^{d} \frac{r_i - 1}{2}. $$

Hence

$$(\rho - d) (r_1 r_2 \cdots r_d) \leq (r_1 r_2 \cdots r_d) \sum_{i=1}^{d} \frac{r_i - 1}{2}. $$

Therefore we obtain the required inequality. \hfill \Box

Definition 3.6 A clutter $C(V, E)$, whose set covering polyhedron $Q(A)$ is integral, is called integral.

Lemma 3.7 (See [6]) If C is an integral d–uniform clutter, then there exists a minimal vertex cover of C intersecting every edge of C in exactly one vertex.

Proof. Let B be the integral matrix whose columns are the vertices of $Q(A)$. It is not hard to show that a vector $\alpha \in \mathbb{R}^n$ is an integral vertex of $Q(A)$ if and only if $\alpha = \sum_{x \in C} e_i$ for some minimal vertex cover C of C. Thus the columns of B are the characteristic vectors of the minimal vertex covers of C. Using [5] Theorem 1.17 we get that

$$Q(B) = \{x|x \geq 0; xB \geq 1\}$$

is an integral polyhedron whose vertices are the columns of A, where $1 = (1, 1, \ldots, 1)$. Therefore we have the equality

$$Q(B) = \mathbb{R}^n_+ + \text{conv}(v_1, \ldots, v_q).$$

(2)

We proceed by contradiction. Assume that for each column u_k of B there exists a vector v_{ik} in $\{v_1, \ldots, v_q\}$ such that $\langle v_{ik}, u_k \rangle \geq 2$. Here $\langle \cdot, \cdot \rangle$ is the standard inner product. Then

$$v_{ik}B \geq 1 + e_k,$$
where e_i is the i-th unit vector.
Consider the vector $\alpha = v_{i_1} + \cdots + v_{i_s}$, where s is the number of columns of B.
From the inequality
\[\alpha B \geq (1 + e_1) + \cdots + (1 + e_s) = (s + 1, \ldots, s + 1) \]
we obtain that $\alpha / (s + 1) \in Q(B)$. Thus, using Eq. (2), we can write
\[\alpha / (s + 1) = \mu_1 e_1 + \cdots + \mu_n e_n + \lambda_1 v_1 + \cdots + \lambda_q v_q \quad (\mu_i, \lambda_j \geq 0; \sum \lambda_i = 1). \quad (3) \]
Therefore taking inner products with 1 in Eq. (3) and using the fact that C is d-uniform we get that $|\alpha| \geq (s + 1)d$. Then using the equality $\alpha = v_{i_1} + \cdots + v_{i_s}$ we conclude
\[sd = |v_{i_1}| + \cdots + |v_{i_s}| = |\alpha| \geq (s + 1)d, \]
a contradiction because $d \geq 1$.

Let C be a clutter and let $I = I(C)$ be its edge ideal. Recall that a deletion of I is any ideal I' obtained from I by making a variable equal to 0. A deletion of C is a clutter C' that corresponds to a deletion I' of I. Notice that C' is obtained from I' by considering the unique set of square-free monomials that minimally generate I'. A contraction of I is any ideal I' obtained from I by making a variable equal to 1. A contraction of C is a clutter C' that corresponds to a contraction I' of I. This terminology is consistent with that of [5, p. 23].
A clutter obtained from C by a sequence of deletions and contractions of vertices is called a minor of C. The clutter C is considered itself a minor.

The notion of a minor of a clutter is not a generalization of the notion of a minor of a graph in the sense of graph theory [16, p. 25]. For instance if G is a cycle of length four and we contract an edge we obtain that a triangle is a minor of G, but a triangle cannot be a minor of G in our sense.

The notion of a minor plays a prominent role in combinatorial optimization [5]. As an application of the power of using minors, this allows us to get a nice decomposition of an integral uniform clutter.

Proposition 3.8 (See [6]) If $C(V, E)$ be an integral d-uniform clutter, then there are V_1, \ldots, V_d mutually disjoint minimal vertex covers of C such that $V = \bigcup_{i=1}^d V_i$. In particular $|\text{supp}(x^e) \cap V_i| = 1$ for all $e \in E; 1 \leq i \leq d$.

Proof. By induction on d. If $d = 1$, then $E(C) = \{\{x_1\}, \ldots, \{x_n\}\}$ and V is a minimal vertex cover of C. In this case we set $V_1 = V$. Assume $d \geq 2$. By Lemma 3.7 there is a minimal vertex cover V_1 of C such that $|\text{supp}(x^{v_1}) \cap V_1| = 1$
for all i. Consider the ideal I' obtained from I by making $x_i = 1$ for $x_i \in V_1$.
Let C' be the clutter corresponding to I' and let A' be the incidence matrix of C'. The ideal I' (resp. the clutter C') is a minor of I (resp. C). Recall that
the integrality of $Q(A)$ is preserved under taking minors [16, Theorem 78.2], so $Q(A')$ is integral. Then C' is a $(d - 1)$-uniform clutter whose set covering polyhedron $Q(A')$ is integral. Note that $V(C') = V \setminus V_1$. Therefore by induction hypothesis there are V_2, \ldots, V_d pairwise disjoint minimal vertex covers of C' such that $V \setminus V_1 = V_2 \cup \cdots \cup V_d$. To complete the proof observe that V_2, \ldots, V_d are minimal vertex covers of C. Indeed if e is an edge of C and $2 \leq k \leq d$, then $e \cap V_1 = \{x_i\}$ for some i. Since $e \setminus \{x_i\}$ is an edge of C', we get $(e \setminus \{x_i\}) \cap V_k \neq \emptyset$. Hence V_k is a vertex cover of C. Furthermore if $x \in V_k$, then by the minimality of V_k relative to C' there is an edge e' of C' disjoint from $V_k \setminus \{x\}$. Since $e = e' \cup \{y\}$ is an edge of C for some $y \in V_1$, we obtain that e is an edge of C disjoint from $V_k \setminus \{x\}$. Therefore V_k is a minimal vertex cover of C, as required.

Theorem 3.9 Let $C(V, E)$ be an integral d–uniform clutter. Then C is a d–partite clutter, with

$$d \leq sdepth(I(C)) \leq d + \frac{r_1 \cdots r_d}{|E(C)|} \sum_{i=1}^{d} \frac{r_i - 1}{2}$$

Proof. By Proposition 3.8 we have that C is a d–partite clutter. The proof is analogous to the proof of Theorem 3.4 but with $k = d$. Note that $I = I(C)$ is a squarefree monomial ideal generated by monomials of degree d. Let $\rho = sdepth(I)$ and $P : P^h = \cup_{i=1}^{\beta} [C_i, D_i]$ be a partition of P^h satisfying $sdepth(D(P)) = \rho$, where $D(P)$ is the Stanley decomposition of I with respect to the partition P.
We may choose P such that $|D| = r$ whenever $C \neq D$ in the interval $[C, D]$. Now we see that for each interval $[C, D]$ in P with $|C| = d$ we have $r - d$ subsets of cardinality $d + 1$ in this interval. The total number of these kind of intervals is $|E(C)|$. So we have

$$(\rho - d)|E(C)|$$

subsets of cardinality $d + 1$. This number is less than or equal to the total number of monomials $m \in I$ with $\deg(m) = d + 1$ and $|\text{supp}(m)| = d + 1$. Furthermore,

$$\{m : m \in I; \deg(m) = d + 1; \text{supp}(m) = d + 1\} = \{x^e : e \in E(C); i \notin e\},$$

with cardinality less than or equal $\sum_{i=1}^{d} \binom{r_i}{2} \frac{r_1 \cdots r_d}{r_i} = \sum_{i=1}^{d} \frac{r_i - 1}{2} r_1 \cdots r_d$. Therefore we obtain

$$sdepth(I(C)) \leq d + \frac{1}{|E(C)|} \left(\sum_{i=1}^{d} \left(\frac{r_i - 1}{2} \right) r_1 \cdots r_d \right).$$

9
Hence
\[
sdepth(I(C)) \leq d + \frac{r_1 \cdots r_d}{|E(C)|} \sum_{i=1}^{d} \frac{r_i - 1}{2}.
\]
\[\square\]

Corollary 3.10 Let \(C(V, E) \) be an integral \(d \)-uniform clutter, such that its decomposition \(d \)-partite \(V = V_1 \cup V_2 \cup \cdots \cup V_k \) is complete. Then
\[
d \leq sdepth(I(C)) \leq d + \sum_{i=1}^{d} \frac{r_i - 1}{2}.
\]

Proof. It follows from Theorem 3.5 or Theorem 3.9. \[\square\]

Corollary 3.11 ([10, Theorem 2.8]) The Stanley depth of the edge ideal of a complete bipartite graph over \(n \) vertices with \(n \geq 4 \) is less than or equal to \(\frac{n+2}{2} \).

Proof. This follows from the fact that complete bipartite graphs are integral clutters. \[\square\]

References

[1] Apel, J., On a conjecture of R.P. Stanley, Part I Monomial ideals, J. Algebraic Combin. (2003) 17, 39–56.

[2] Anwar, I. and Popescu D., Stanley conjecture in small embedding dimension, J. Algebra (2007) 318, 1027–1031.

[3] Biró, C., Howard, D. M., Keller, M. T., Trotter, W. T., Young, S. J., Interval partitions and Stanley depth, J. Combin. Theory Ser. A (2010) 117, no. 4, 475–482.

[4] Cimpoea¸s, M., Stanley depth of complete intersection monomial ideals, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) (2008) 51 (99) (3), 205–211.

[5] Cornuèjols, G. *Combinatorial optimization: Packing and covering*, CBMS-NSF Regional Conference Series in Applied Mathematics (2001) 74, SIAM.

[6] Dupont, L. A., *Rees Algebras, Monomial Subrings and Linear Optimization Problems*, PhD Thesis (2010), Cinvestav-IPN. [arXiv:1006.2774](http://arxiv.org/abs/1006.2774)

[7] Escobar, C., Villarreal, R. H., Yoshino, Y., Torsion freeness and normality of blowup rings of monomial ideals, *Commutative Algebra*, Lect. Notes Pure Appl. Math. (2006) 244, Chapman & Hall/CRC, Boca Raton, FL, pp. 69-84.
[8] Faridi, S., The facet ideal of a simplicial complex, Manuscripta Math. (2002) **109**, 159-174.

[9] Herzog, J., Vladoiu, M., Zheng, X., How to compute the Stanley depth of a monomial ideal, J. Algebra (2009) **322**, 3151–3169.

[10] Ishaq, M., Upper bounds for the Stanley depth, Comm. Algebra (2012) **40**, no. 1, 87-97.

[11] Ishaq, M., Qureshi, M. I., Stanley depth of edge ideals, Studia Sci. Math. Hungar. (2012) **49**, no. 4, 501-508.

[12] Popescu, D., Stanley depth of multigraded modules, J. Algebra (2009) **321**, 2782–2797.

[13] Popescu, D., Qureshi, M. I., Computing the Stanley depth, J. Algebra (2010) **323**, 2943–2959.

[14] Popescu, D., Stanley conjecture on intersection of four monomial prime ideals, Comm. Algebra (2013) **41**, no. 11, 4351-4362.

[15] Pournaki M. R., Seyed Fakhari S. A. and Yassemi S., On the Stanley depth of weakly polymatroidal ideals, Arch. Math. (2013) **100**, no. 2, 115–121.

[16] Schrijver, A., *Combinatorial Optimization*, Algorithms and Combinatorics (2003) **24**, Springer-Verlag, Berlin.

[17] Shen, Y. H., Stanley depth of complete intersection monomial ideals and upper-discrete partitions, J. Algebra (2009) **321**, (4) 1285–1292.

[18] Simis, A., Vasconcelos, W. V., Villarreal, R. H., On the ideal theory of graphs, J. Algebra, (1994) **167**, 389–416.

[19] Stanley, R. P., Linear Diophantine equations and local cohomology, Invent. Math. (1982) **68**, 175–193.

[20] Stanley, R. P., *Combinatorics and Commutative Algebra. Second edition*. Progress in Mathematics (1996) **41**, Birkhäuser Boston, Inc., Boston, MA.

[21] Villarreal, R. H., Cohen-Macaulay graphs, Manuscripta Math. (1990) **66**, 277–293.

[22] Villarreal, R. H., *Monomial Algebras*, Dekker, New York, N.Y. (2001).

[23] Zheng, X., Resolutions of facet ideals, Comm. Algebra (2004) **32** (6), 2301–2324.