ALD-induced TiO$_2$/Ag nanofilm for rapid surface photodynamic ion sterilization

Peng-Fei Cai, Jun Li, Xin-Bao Wu*, Zhao-Yang Li, Jie Shen*, Jing-Jun Nie, Zhen-Duo Cui, Da-Fu Chen*, Yan-Qin Liang, Sheng-Li Zhu, Shui-Lin Wu*

Abstract The daily life of people in the intelligent age is inseparable from electronic device, and a number of bacteria on touch screens are increasingly threatening the health of users. Herein, a photocatalytic TiO$_2$/Ag thin film was synthesized on a glass by atomic layer deposition and subsequent in situ reduction. Ultraviolet–visible (UV-Vis) spectra showed that this film can harvest the simulated solar light more efficiently than that of pristine TiO$_2$. The antibacterial tests in vitro showed that the antibacterial efficiency of the TiO$_2$/Ag film against S. aureus and E. coli was 98.2% and 98.6%, under visible light irradiation for 5 min. The underlying mechanism was that the in-situ reduction of Ag on the surface of TiO$_2$ reduced the bandgap of TiO$_2$ from 3.44 to 2.61 eV due to the formation of Schottky heterojunction at the interface between TiO$_2$ and Ag. Thus, TiO$_2$/Ag can generate more reactive oxygen species for bacterial inactivation on the surface of electronic screens. More importantly, the TiO$_2$/Ag film had great biocompatibility with/without light irradiation. The platform not only provides a more convenient choice for the traditional antibacterial mode but also has limitless possibilities for application in the field of billions of touch screens.

Keywords Antibacterial; Photoresponsive; Photodynamic; Surface sterilization; Atomic layer deposition (ALD)

1 Introduction

Since the spread of coronavirus pandemic in 2019, healthy life has attracted more people’s attention, especially the demand for effective antibacterial materials [1]. At the same time, with the advent of the intelligent society and the popularization of electronic products, billions of touch screens have been popularized in people’s lives. However, the species and quantities of bacteria on the surface of them are affecting people’s health [2, 3]. At present, traditional antibacterial methods include antibiotics, inorganic antibacterial agents (such as Cu, Ag, Au) [4–6], and organic antibacterial agents (quaternary ammonium salts, etc.) [7]. Since the discovery of penicillin by Alexander Fleming in the early twentieth century, antibiotics have been widely utilized to treat diseases caused by bacterial infections. However, the overuse and abuse of antibiotics have led to the emergence of bacterial resistance, even the birth of “super bacteria” [8]. Metal ions on the carrier...
through physical or chemical means can kill the microbes by destroying the cell membrane, which has strong bactericidal ability, low toxicity, and high safety. However, the expensive cost and unpromising durability limit its application [9]. Further, organic antibacterial agents have fast sterilization speed and high stability, but they are prone to the development of drug resistance, and the decomposition products are toxic to human body [10].

In the post-antibiotic era, photocatalytic sterilization is an effective antibacterial method. Photoactivated sterilization refers to the use of light with appropriate wavelengths, ranging from ultraviolet (UV) to near-infrared (NIR), to activate photoresponsive materials [11–16]. Photoresponsive materials can absorb light energy to effectively kill pathogens in a short time through the synergy of heat and reactive oxygen species (ROS) such as O$_2^-$, -OH, 1O$_2$, generated by photocatalysts [17–22]. Among various semiconductor-based photocatalysts, TiO$_2$ has appeared as the leading candidate due to its high photoactivity, superior chemical stability, and broad-spectrum antibacterial property. However, the energy band gap limits the application of TiO$_2$ under visible light [23]. At the same time, the low rate of electron transfer to oxygen and the high electron–hole recombination rate of TiO$_2$ also inhibit the production of ROS [24]. Therefore, many efforts have been devoted to improving visible light absorbance by modifying TiO$_2$ nanoparticles (NPs), including element doping, heterojunction structure, noble metal deposition, and so on [25–30].

Among the commonly used preparation methods of TiO$_2$ coating, atomic layer deposition (ALD) has great advantages such as accurate thickness control, outstanding atomic-surface uniformity, and saturated surface reactions compared with other deposition methods [31–34]. Further, as one of the effective methods, noble metals can act as electron traps which are close to conduction bands of semiconductors or improve the excitation of surface electrons through surface plasmon resonance effects, thereby reducing the recombination of photoincided carriers in noble metal/semiconductor [35–37]. On the other hand, the cell membranes of microorganisms are mostly negatively charged, while metal ions are positively charged, so they can firmly adhere to the cell membrane by electrostatic interaction and further penetrate the cell wall into the bacterial cell membrane [38]. Thus, TiO$_2$ deposited silver or other noble metals, which can not only effectively prevent recombination of electron–hole pairs, but also enhance the photocatalytic effect of TiO$_2$ under visible light, thereby enhancing the antibacterial efficiency of composite materials [39, 40].

In this work, we prepared a TiO$_2$ nanofilm by ALD, then Ag particles were deposited on the surface by photo-reduction. Due to the different Fermi levels of TiO$_2$ and Ag, they can form Schottky barrier which can efficiently improve the separation of electrons and holes. Therefore, more ROS can be generated under visible light. The platform showed great antibacterial efficiency against *Staphylococcus aureus* (*S. aureus*, 98.2%) and *Escherichia coli* (*E. coli*, 98.6%) under the conditions of simulated sunlight for 5 min, respectively. The excellent antimicrobial effects of TiO$_2$/Ag nanofilm under visible light illumination open up new possibilities, such as continuous visible light-powered disinfection during daytime and at night, for a broad range of surface disinfection application.

2 Experimental

2.1 Preparation of TiO$_2$ nanofilms

Firstly, glass slides (2 cm × 2 cm) were ultrasonically cleaned with acetone, ethanol, and distilled water for 30 min to remove stains on their surface. Then TiO$_2$ nanofilm was deposited on glass slides by plasma-enhanced ALD (MNT-P-100–43, Micro and Nanotech Co, LTD, Wuxi, China). Tetrakis(diethylamino)titanium (TDMAT) as titanium precursor and H$_2$O as oxygen precursor were kept at 75 °C and 25 °C, respectively. The reaction temperature was 200 °C and the base pressure was 25 Pa with high purity N$_2$ during deposition. Each cycle consisted of precursor exposure and N$_2$ purging following a sequence of H$_2$O:N$_2$:TDMAT:N$_2$ with a corresponding duration of 0.1:15:0.1:20 s. The reaction was repeated for 200 cycles to produce TiO$_2$ nanofilms.

2.2 Synthesis of TiO$_2$/Ag nanofilms

Silver nitrate aqueous solution (0.05 mol·L$^{-1}$, 400 μl) was dropped onto surface of TiO$_2$ nanofilm, then it was placed in a 60 °C oven. To spread the silver ions uniformly on the surface of TiO$_2$, a xenon lamp was used to irradiate it for 50 min. The ultraviolet light could quickly reduce the silver ions into silver nanoparticles, with the color of the surface changed from transparent to light gray. The Ag nanofilm was also fabricated in the same way.

2.3 Morphological and structural characterization

The morphology of TiO$_2$ and TiO$_2$/Ag was observed by scanning electron microscopy (SEM, S-4800, Hitachi, Japan). Water contact angle (JC2000D Contact Angle system, POWER EACH) measurement was conducted to analyze the hydrophilic property of surfaces of TiO$_2$ and TiO$_2$/Ag. The surface elemental composition of the samples was obtained using X-ray photoelectron spectroscopy (XPS, ESCALAB 250Xi). Ultraviolet–visible–NIR (UV–
Vis–NIR) spectrometer (UV-2700, Shimadzu, Japan) was used to obtain samples’ optical properties.

2.4 Photocatalytic and photoelectric performance measurement

A three-electrode system in quartz glass cell in 0.5 mol·L⁻¹ Na₂SO₄ aqueous solution was performed to measure the photocurrent response. Pt plate as counter electrode, an Ag/AgCl electrode as reference electrode, and an experimental sample as working electrode was used to analyze electrochemical impedance spectroscopy (EIS). The photoinduced current densities of the photocurrent response with time (i-t curve) were measured at a 1 V bias potential under xenon lamp (PLS-SXE300, Beijing Changming Technology Co., Ltd, China) irradiation. EIS tests were recorded over the frequency range from 1 × 10⁴ to 1 × 10⁻¹ Hz with an alternating current voltage magnitude of 5 mV under simulated visible light irradiation. The experimental samples (TiO₂ and TiO₂/Ag) were prepared on ITO conductive glasses (2 cm × 2 cm).

2.5 Detection of ROS

Electron spin resonance (ESR) spectra were recorded on a JES-FA200 spectrometer. 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) (Sigma) was used to trap ·OH and ·O₂⁻ under xenon lamp irradiation. The glass slides, TiO₂ and TiO₂/Ag samples were immersed in 100 mmol·L⁻¹ DMPO at ambient temperature under xenon lamp irradiation (PLS-SXE300/300UV).

2.6 Evaluation of antibacterial activity

The spread plate method was used to study the antibacterial activity of the samples (including pure glass slide, TiO₂, Ag, and TiO₂/Ag) under stimulated visible light irradiation. E. coli (Gram-negative, ATCC 25,922) and S. aureus (Gram-positive, ATCC 29,213) were used for antibacterial experiments. All bacteria were cultured in Luria–Bertani (LB) medium. The pure glass slide was set as the control group and TiO₂, Ag and TiO₂/Ag constituted the experimental groups. The details were as follows: 40 µl of bacterial suspension (~ 1 × 10⁴ CFU·ml⁻¹) was dropped onto the surface of the samples (2 mm × 2 mm glass slide). After 5 min with or without stimulated visible light irradiation, the samples were put upside down on the LB agar plates, then incubated at 37 °C for 1 h. Next, the glass slide was removed from the LB plates, and the LB plates were still incubated at 37 °C for 24 h for bacterial counts. Three parallel samples from each group were used in the antibacterial test. The antibacterial efficiency of each sample was calculated by the number of bacterial colonies on the glass slide using Eq. (1):

\[
\text{Antibacterial ratio} = \frac{\text{CFU}_{\text{Control}} - \text{CFU}_{\text{Sample}}}{\text{CFU}_{\text{Control}}} \times 100\% \quad (1)
\]

where CFU_control indicates the growth of bacteria without treatment and CFU_sample indicates the growth of bacteria with sample cotreatment.

To better analyze the bacterial morphologies, the bacterial morphology study was evaluated using SEM. After 5 min stimulated visible light irradiation, the E. coli and S. aureus on the samples were fixed with a 2.5 wt% glutaraldehyde solution for 2 h, then washed with phosphate buffer saline (PBS, pH = 7.0). Further, the bacteria were dehydrated using graded ethanol solutions (20, 40, 60, 80, and 100 wt%) for 15 min. After drying, the morphologies and microstructures were observed by SEM.

2.7 Cytotoxicity assay

L929 fibroblast cells were cultured in Roswell Park Memorial Institute 1640 (RPMI 1640, Meilunbio) including 10% (v/v) fetal bovine serum and 1 wt% penicillin–streptomycin. The cells were placed in an incubator at 37 °C with 95% humidity and 5% CO₂. The cell culture medium was replaced regularly every other day. To investigate the cytotoxicity of TiO₂, Ag, and TiO₂/Ag, the sterilized samples (Φ8 mm) were put into 48-well plates, and 400 µl L929 (1 × 10⁵ cells·ml⁻¹) were added to the plates. Then each type of sample was treated with or without light irradiation. The cells were cultured in samples for 24 h under the same conditions. After that, the culture medium was removed and 200 µl 0.05 mg·ml⁻¹ MTT (dissolved MTT powder into pH 7.4 PBS solution) solution was added to each well. Next, the culture medium was incubated for 4 h at 37 °C in an atmosphere of 5% CO₂ and 95% air until purple precipitate appeared. Then, MTT solution was removed, then 200 µl of dimethyl sulfoxide (DMSO) was added to each well with continuous shaking for 15 min to dissolve the purple precipitate. Finally, the samples were taken out, and the optical density (OD) of liquid was tested at 490 nm with a microplate reader. The cell viability was calculated using Eq. (2):

\[
\text{Cell viability} = \frac{\text{OD in experiment group}}{\text{OD in control group}} \times 100\% \quad (2)
\]

2.8 Statistical analysis

All the quantitative data were analyzed by one-way analysis of variance (ANOVA) and expressed as mean values ± standard deviations with n = 3 (3 biologically independent samples). A student t-test was performed to evaluate the statistical significance of the variance. Values
of \(*p < 0.05, **p < 0.01, ***p < 0.001 \) ****\(p < 0.0001 \) were considered statistically significant.

3 Results and discussion

3.1 Morphology and structural characterization

As schematically illustrated in Scheme 1, the TiO\(_2\) nanofilm on glass substrate was prepared by ALD. From the thermodynamic and kinetic point of view, the reaction of TiO\(_2\) by TDMAT and H\(_2\)O can be separated into two half-reactions, which are described as follows [41, 42]:

\[
\begin{align*}
\text{Ti} & (\text{N(CH}_3)_2)_4 + \text{TiO}_2-\text{OH}^* \rightarrow \text{NH(CH}_3)_2 \\
& + \text{TiO}_2-\text{O}-\text{Ti(N(CH}_3)_2)_3^* \\
\text{TiO}_2-\text{O}-\text{Ti(N(CH}_3)_2)_3^* + 2\text{H}_2\text{O} & \rightarrow \text{TiO}_2-\text{TiO}_2-\text{OH}^* + 3(\text{NH(CH}_3)_2)
\end{align*}
\]

where the asterisks denote the functional groups absorbed on the surface of the glass substrate. The growth mechanism of TiO\(_2\) nanofilm can be explained in the following steps:

1. The vapor pulse of the precursor TDMAT entered the reaction formula, then chemisorption reaction occurred on the exposed glass substrate surface.
2. The cleaning gas N\(_2\) brought the excess precursor TDMAT vapor which was not adsorbed by the substrate surface, and the reaction product methylamine (NH(CH\(_3\)_2) out of the reaction chamber.
3. Water vapor entered the reaction chamber and reacted with the TDMAT precursor adsorbed on the surface of glass substrate.
4. The cleaning gas N\(_2\) brought the excess water vapor and the by-product methylamine out of the reaction chamber.

The first stage was the chemisorption of TDMAT molecules by active sites of surface and the exchange of ligand. It usually happened easily even at very low operating temperatures, which was attributed to high reactivity of both TDMAT and OH groups. The subsequent step was the purge of remained TDMAT and reaction products (NH (CH\(_3\)_2)\(_2\)) from the reaction chamber. The next step was to introduce H\(_2\)O into the ALD chamber and perform the oxidation reaction. After the reaction process was completed, an atomically-layered TiO\(_2\) film was formed on the surface in which all Ti atoms were connected to each other by O atoms. After several cycles of reaction, TiO\(_2\) nanofilm was formed on the surface of glass substrate. Because the two half-reactions were carried out through a cycle, the film thickness could be adjusted with atomic-level accuracy and the film uniformity could be guaranteed. Subsequently, the silver nitrate solution was dropped onto the surface of the film. When TiO\(_2\) nanofilm was irradiated with UV light, holes and electrons were generated as shown in Eq. (5), where \(h^\text{v} \) is the energy absorbed:

\[
\text{TiO}_2 \xrightarrow{h^\text{v}} \text{h}^+ + \text{e}^-
\]

There were silver ions (Ag\(^+\)) and nitrate ions (NO\(_3^-\)) in the AgNO\(_3\) aqueous solution. The silver ions gained a generated electron and, consequently, silver metal was deposited onto the TiO\(_2\) surface, as shown in Eq. (6):

\[
\text{AgNO}_3 \xrightarrow{H\text{O}} \text{Ag}^+ + \text{NO}_3^- + \text{e}^-\rightarrow \text{Ag(s)}
\]

SEM images exhibited the morphology of the samples.
As shown in Fig. 1a, b, TiO$_2$ deposited by ALD formed a uniform and flat coating. Further, in Fig. 1c, the SEM image of TiO$_2$/Ag nanofilm exhibited that the size of photo-reduced silver nanoparticles was 200–800 nm, with slight agglomeration. The main reason for the agglomeration may due to the longer light irradiation. Elemental mappings further confirmed the successful deposition of silver nanoparticles on TiO$_2$ nanofilm (Fig. 1d–f).

Considering the subsequent antibacterial application of the coating on the touch screen, the transmittance of the sample was studied. The visible light transmittance of the TiO$_2$ nanofilm reached 83.2%. Even after adding photo-reduced silver particles, the light transmittance could still be maintained at about 76.4%, which satisfied the standard of the screen surface (Fig. 1g). The thickness of the nanofilm was proportional to the number of ALD cycles, thus the transmittance of the samples can be controlled and adjusted (Fig. 1h, i). The hydrophilicity and hydrophobicity of the coating would affect its antibacterial effect, so water contact angle was also measured. The contact angles of glass slide, TiO$_2$ film, Ag film, and TiO$_2$/Ag film were 46.0$^\circ$, 52.7$^\circ$, 71.7$^\circ$, and 84.7$^\circ$, respectively (Fig. 1j). The result demonstrated the hydrophilicity of the samples, which were not conducive to the adhesion of bacteria.

The UV–Vis spectra (Fig. 2a) could reflect the optical property of TiO$_2$, Ag, and TiO$_2$/Ag nanofilms. Obviously, the optical absorbance of TiO$_2$ nanofilm mainly focused on the ultraviolet region, while Ag particles could absorb partial visible light. After Ag nanoparticles were deposited on TiO$_2$ nanofilm, the absorption edge of TiO$_2$/Ag had a red shift compared with separate TiO$_2$ or Ag. It may be
based on the local plasmon resonance effect of Ag nanoparticles [43]. The red shift of the absorption curve led to a decrease in the band gap energy and recombination rate, thereby increasing the effect of photocatalytic activity. The calculation of the semiconductor band gap was expressed by the following equation:

\[(\alpha h \nu)^n = C(h \nu - E_g)\]

(7)

where \(\alpha\) is the absorption coefficient, \(h \nu\) is the absorption energy, \(C\) is a parameter associated with the valence and conduction band, and \(E_g\) is the band gap. The digit of \(n\) depends on the nature of the transition. In our case, for an indirect band gap, the value of \(n\) is 1/2. The yield of photogenerated electron–hole pair will also increase because of the shortening of band gap [44].

3.2 Photocatalytic performance

Photocurrent response and EIS were utilized to characterize the photo-electrical properties of photocatalysts. It is widely accepted that the photocurrent intensity is decided by the separation efficiency of photogenerated carriers. As shown in Fig. 3a, the TiO\(_2\) nanofilm had a weak current response under dark conditions but exhibited a stable current when exposed to xenon lamp irradiation. What's more, the composite film had a larger photocurrent response than the pure TiO\(_2\) film. This indicated that the recombination of Ag particles could improve the separation of electron–hole pairs and transition efficiency of carriers. As shown in
Fig. 3b, the diameter of Nyquist semicircle of TiO$_2$ was obviously shortened after the deposition of Ag particles, suggesting that the carriers transfer resistance was smaller.

Further, electron spin resonance (ESR) measurement was used to study generation process of ROS (Fig. 4). It can be seen that -OH and -O$_2$ were detected under stimulated sunlight, while no signals for these two species were detected in the dark. In addition, it is indicated that the TiO$_2$/Ag heterojunction can provide more photogenerated holes and electrons than TiO$_2$ nanofilm to generate more ROS, which further supported the photocurrent and EIS test results. This was due to the localized plasmon resonance (LSPR) effect on the surface of Ag nanoparticles. After being excited under the irradiation of visible light, Ag nanoparticles can induce the transition of electron from the valence band (VB) of TiO$_2$ to the conduction band (CB), leaving holes in the VB. The photo-generated electrons reacted with O$_2$ adsorbed on the surface of TiO$_2$ to generate -O$_2^-$, while the holes in the CB of TiO$_2$ have more positive potential to oxidize OH$^-$ and produce -OH. Therefore, the TiO$_2$/Ag nanofilm can generate more ROS [49]. As the product of photocatalysis, ROS bears the important responsibility of killing bacteria, which is exactly the antibacterial mechanism of this study. This will be further elaborated in the following text.

3.3 In vitro antibacterial property

Two typical pathogenic bacteria, *S. aureus* and *E. coli* were chosen to evaluate the antibacterial performance of the coating. It can be seen from Fig. 5a–d that after 5 min of exposure to the simulated sunlight, the bacterial colonies of the TiO$_2$ group and the Ag group were slightly reduced compared to the control group. However, the doping of silver particles improved the photocatalytic activity. The bacterial colony reduction of the TiO$_2$/Ag group was the most significant, whose antibacterial efficiency against *S. aureus* and *E. coli* were 98.6% and 98.2%, respectively.
The results of antibacterial activities also agreed with photocatalytic results. That is to say, better photocatalytic performance means more ROS generated during visible light irradiation, thus providing better antibacterial property [50].

The bacterial morphologies of representative samples of different groups under xenon lamp irradiation were examined by SEM. It can be seen from Fig. 6 that the bacteria in the control group were smooth, complete, and representative. In contrast, the bacterial membranes of the TiO\textsubscript{2} group and the Ag group showed slight wrinkles and ruptures. However, the bacterial membrane of the TiO\textsubscript{2}/Ag group exhibited obvious deformation and cracking, whether it was \textit{S. aureus} or \textit{E. coli}. It has been verified that ROS could react with membranes through multiple mechanisms, causing them to rupture, inducing protein leakage, and even entering bacteria to damage DNA and organelles [51]. In addition to the effect of ROS, the release of Ag+ also played a certain role in the damage of the bacterial membrane. The release of Ag+ which interacted with the thiol group of a bacterial enzyme interrupted the respiratory mechanism by having a lethal effect on the bacteria [52].

The mechanism of the photocatalytic disinfection was schematically illustrated in Fig. 7. As one of traditional

Fig. 5 Antibacterial activity of TiO\textsubscript{2}, Ag and TiO\textsubscript{2}/Ag: \textbf{a} spread plate of \textit{S. aureus} and \textbf{c} corresponding antibacterial efficiency; spread plate of \textbf{b} \textit{E. coli} and \textbf{d} corresponding antibacterial efficiency. Data represents mean ± standard deviation (\(n = 3\) independent experiments per group; \(*p < 0.05\), \(**p < 0.01\), and \(****p < 0.001\), \(***p < 0.0001\))

Fig. 6 SEM images of bacteria with TiO\textsubscript{2}, Ag, and TiO\textsubscript{2}/Ag under 5 min stimulated solar irradiation: \textbf{a} \textit{S. aureus} and \textbf{b} \textit{E. coli}
n-type semiconductors, when TiO$_2$ was irradiated by stimulated sunlight, the electrons in its VB would be excited to the CB. These electrons would be removed by O$_2$, so that \cdotO$_2^-$ was produced. At the same time, the holes on the VB trapped the H$_2$O on the surface to oxidize them to \cdotOH. However, when Ag particles were deposited on the surface of TiO$_2$ and in contact with each other, since the Fermi level of TiO$_2$ was higher than Ag, electrons will transfer from TiO$_2$ to Ag until the Fermi levels of them were equal. Therefore, in the space charge layer formed after the electrical contact, the surface of Ag got excessive quantity of negative charges, while the TiO$_2$ surface left excessive quantity of holes, which formed a Schottky heterojunction at the interface of TiO$_2$ and Ag. The Ag particles acted as electron traps to leave electrons and holes in two different phases, inhibiting the recombination of electron–hole pairs, thereby improving the efficiency of photocatalysis.

3.4 Cytotoxicity evaluation

The MTT assay was used to examine the effects of different samples on the growth of L929 cells. Since the film was used in vitro, the cells were only cultured for one day. It can be seen from Fig. 8 that the effect of light on cell viability was almost negligible. The cell survival rate of the TiO$_2$ group was about 90%, while the cell viability of final group could still be maintained at about 85%, indicating that the material will not have a health impact on the human body when applied in vitro.

4 Conclusion

In this work, TiO$_2$ nanofilm was prepared by atomic layer deposition, and then Ag particles were deposited on the film by photo-reduction to prepare photocatalytic TiO$_2$/Ag coating. Because the Schottky heterojunction was formed at the interface between TiO$_2$ and Ag, the electron–hole recombination rate of TiO$_2$/Ag was suppressed. Besides, the photocatalytic efficiency of TiO$_2$/Ag was greatly increased by generating more ROS. Its visible light catalytic antibacterial effect was better than that of untreated TiO$_2$ nanofilm. The antibacterial efficiency against *S. aureus* and *E. coli* in vitro under the irradiation of stimulated sunlight reached 98.2% and 98.6%, respectively. Meanwhile, the deposited film had great light transmittance and biocompatibility with/without light irradiation, with a good prospect not only for the traditional antibacterial mode but also in the field of surface antibacterial application.

Acknowledgements This work was financially supported by the National Natural Science Foundation of China (Nos. 82002303, 51871162 and 51932002), the China National Funds for
Distinguished Young Scientists (No. 51925104), Scientific Research Foundation of Peking University Shenzhen Hospital (No. KYQD2021064), and Beijing Municipal Health Commission (Nos. BMHC-2021-6, BMHC-2019-9, BMHC-2018-4 and PXM2020_026275_000002), and the National Key R&D Program of China (No. R&D# 2018YFA0703100).

Declarations

Conflict of Interests The authors declare that they have no conflict of interest.

References

[1] Deng W, Sun YJ, Yao XX, Subramanian K, Ling C, Wang HB, Chopra SS, Xu BB, Wang JX, Chen JF, Wang D, Amancio H, Pramana S, Ye RQ, Wang S. Masks for COVID-19. Adv Sci. 2021. https://doi.org/10.1002/advs.202102189.

[2] Hosseini M, Chin AWH, Williams MD, Behzadinasab S, Falkingham JO, Poon LLM, Ducker WA. Transparent anti-SARS-CoV-2 and antibacterial silver oxide coatings. Acs Appl Mater Interfaces. 2022. https://doi.org/10.1021/acsami.1c08782.

[3] Wang X, Wang Y, Bi S, Wang YG, Chen XG, Qiu LY, Sun JQ. Optically transparent antibacterial films capable of healing multiple scratches. Adv Funct Mater. 2014;24(3):403. https://doi.org/10.1002/adfm.201302109.

[4] Yu P, Han YJ, Han DL, Liu XM, Liang YQ, Li ZY, Zhu SL, Wu SL. In-situ spherulization of Cu-based metal-organic framework for rapid near-infrared light sterilization. J Hazard Mater. 2020;390:122126. https://doi.org/10.1016/j.jhazmat.2020.122126.

[5] Zeng X, Mccarthy DT, Deletic A, Zhang X. Silver/reduced graphene oxide hydrogel as novel bactericidal filter for point-of-use water disinfection. Adv Funct Mater. 2015;25(27):4344. https://doi.org/10.1002/adfm.201501454.

[6] Li P, Wu HX, Dong A. Ag/AgX nanostructures serving as antibacterial agents: achievements and challenges. Rare Met. 2022;41(2):519. https://doi.org/10.1007/s12598-021-01822-0.

[7] Liu W, Ou-Yang W, Zhang C, Wang QS, Pan XB, Huang PS, Zhang CN, Li YJ, Kong DL, Wang WW. Synthetive polymeric antibacterial hydrogel for methicillin-resistant Staphylococcus aureus-infected wound healing: nanoantimicrobial self-assembly, drug- and cytokine-free strategy. ACS Nano. 2020;14(10):12905. https://doi.org/10.1021/acsnano.0c03855.

[8] Hamad M, Al-Marzoq F, Orive G, Al-Tel TH. Superbugs but no drugs: steps in averting a post-antibiotic era. Drug Discov Today. 2019;24(12):2225. https://doi.org/10.1016/j.drudis.2019.08.004.

[9] Kwang GB, Huang H, Wu G, Shin J, Kaizfas A, Karu K, Toit HD, Aloitaib AM, Mohajan-Hadi L, Allan E, Macrobot AJ, Gavrillidis A, Parkin IP. Photobactericidal activity activated by thiolated gold nanoclusters at low flux levels of white light. Nat Commun. 2020;11(1):1207. https://doi.org/10.1038/s41467-016-15004-6.

[10] Natan M, Gutman O, Lavi R, Margel S, Banin E. Killing mechanism of stable N-halamine cross-linked polyethylene-terephalamide nanoparticles that selectively target bacteria. ACS Nano. 2015;9(2):1175. https://doi.org/10.1021/nn507168x.

[11] Ren Y, Liu HP, Liu XM, Zheng YF, Li ZY, Li CY. Yeung KKW, Zhu SL, Liang YQ, Cui ZD, Wu SL. Photoresponsive materials for antibacterial applications. Cell Rep Phys Sci. 2020;1(11):100245. https://doi.org/10.1016/j.xcrp.2020.100245.

[12] Luo Y, Liu XM, Tan L, Li ZY, Yeung KKW, Zheng YF, Cui ZD, Liang YQ, Zhu SL, Li CY, Wang XB, Wu SL. Enhanced photocatalytic and photothermal properties of ecofriendly metal-organic framework heterojunction for rapid sterilization. Chem Eng J. 2021;405:126730. https://doi.org/10.1016/j.cej.2020.126730.

[13] Li J, Li ZY, Liu XM, Li CY, Zheng YF, Yeung KKW, Cui ZD, Liang YQ, Zhu SL, Hu WB, Qi YJ, Zhang TJ, Wang XB, Wu SL. Interfacial engineering of BiS_{2}Ti_{6}C_{14} MXene based on work function for rapid photo-excited bacteria-killing. Nat Commun. 2021;12(1):1224. https://doi.org/10.1038/s41467-021-21435-6.

[14] Han D, Li Y, Liu XM, Yeung KKW, Zheng YF, Cui ZD, Liang YQ, Li ZY, Zhu SL, Wang XB, Wu SL. Photothermy-strengthened photocatalytic activity of polydopamine-modified metal-organic frameworks for rapid therapy of bacteria-infected wounds. J Mater Sci Technol. 2021;62:83. https://doi.org/10.1002/advs.2020.05.055.

[15] Han D, Li Y, Liu XM, Li B, Han Y, Zheng YF, Yeung KKW, Li CY, Cui ZD, Liang YQ, Li ZY, Zhu SL, Wang XB, Wu SL. Rapid bacteria trapping and killing of metal-organic frameworks strengthened photo-responsive hydrogel for rapid tissue repair of bacterial infected wounds. Chem Eng J. 2020;396:125194. https://doi.org/10.1016/j.cej.2020.125194.

[16] Chai M, An MW, Zhang XU, Chu P. In vitro and in vivo antibacterial activity of graphene oxide-modified porous TiO\textsubscript{2} coatings under 808-nm light irradiation. Rare Met. 2022;41(2):540. https://doi.org/10.1007/s12598-021-01754-9.

[17] Yang B, Chen Y, Shi JL. Reactive oxygen species (ROS)-based nanomedicine. Chem Rev. 2019;119(8):4881. https://doi.org/10.1021/acs.chemrev.8b00626.

[18] D’Auteur B, Toledano MB. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol. 2007;8(10):813. https://doi.org/10.1038/nrm2256.

[19] Lv R, Liang YQ, Li ZY, Zhu SL, Cui ZD, Wu SL. Flower-like CuS/graphene oxide with photothermal and enhanced photocatalytic effect for rapid bacteria-killing using visible light. Rare Met. 2022;41(2):639. https://doi.org/10.1007/s12598-021-01759-4.

[20] Han D, Yu PL, Liu XM, Xu YD, Wu SL. Polydopamine modified CuS@HKUST for rapid sterilization through enhanced photothermal property and photocatalytic ability. Rare Met. 2022;41(2):663. https://doi.org/10.1007/s12598-021-01786-1.

[21] Kanagamani K, Muthukrishnan P, Saravananukumar K, Shankar K, Kathiresan A. Photocatalytic degradation of environmental perilous gentian violet dye using leucaena-mediated zinc oxide nanoparticle and its anticancer activity. Rare Met. 2019;38(4):277. https://doi.org/10.1007/s12598-018-1189-5.

[22] Han Z, Liu XM, Tan L, Li ZY, Zheng YF, Yeung KKW, Cui ZD, Liang YQ, Zhu SL, Wu SL. Photothermal-controlled sustainable degradation of protective coating modified Mg alloy using near-infrared light. Rare Met. 2021;40(9):2538. https://doi.org/10.1007/s12598-020-01667-z.

[23] Yang H, Zhai LS, Li K, Liu X, Deng B, Xu WL. A highly efficient nano-graphite-doped TiO\textsubscript{2} photocatalyst with a unique sea-island structure for visible-light degradation. Catal Sci Technol. 2020;10(4):1171. https://doi.org/10.1039/c9cy02179e.

[24] Deng H, Wang XC, Wang L, Li ZJ, Liang PL, Ou JA, Liu K, Yuan LY, Jiang ZY, Zheng LR, Chai ZF, Shi WQ. Enhanced photocatalytic reduction of aqueous Re (VII) in ambient air by amorphous TiO\textsubscript{2}/g-C\textsubscript{3}N\textsubscript{4} photocatalysts: implications for Tc (VII) elimination. Chem Eng J. 2020;401:125977. https://doi.org/10.1016/j.cej.2020.125977.

[25] Moridi Mahdieh Z, Shekarziz S, Afsar Taromi F, Montazer M. A new method for in situ synthesis of Ag-TiO\textsubscript{2} nanocomposite particles on polyester/cellulose fabric by photoreduction and self-cleaning properties. Cellulose. 2018;25(4):2355. https://doi.org/10.1007/s10570-018-1694-6.
