63Cu, 35Cl, and 1H NMR in the $S = \frac{1}{2}$ Kagomé Lattice

$\text{ZnCu}_3(\text{OH})_6\text{Cl}_2$

T. Imai1,2, E. A. Nytko3, B.M. Bartlett3, M.P. Shores3, and D. G. Nocera3

1Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S4M1, Canada

2Canadian Institute for Advanced Research, Toronto, Ontario M5G1Z8, Canada

3Department of Chemistry, M.I.T., Cambridge, Massachusetts 02139

(Dated: October 10, 2018)

Abstract

$\text{ZnCu}_3(\text{OH})_6\text{Cl}_2 \ (S = \frac{1}{2})$ is a promising new candidate for an ideal Kagomé Heisenberg antiferromagnet, because there is no magnetic phase transition down to ~ 50 mK. We investigated its local magnetic and lattice environments with NMR techniques. We demonstrate that the intrinsic local spin susceptibility decreases toward $T = 0$, but that slow freezing of the lattice near ~ 50 K, presumably associated with OH bonds, contributes to a large increase of local spin susceptibility and its distribution. Spin dynamics near $T = 0$ obey a power-law behavior in high magnetic fields.

PACS numbers: 75.40.Gb, 76.60.-k
A major challenge in condensed matter physics today is identifying a model material for investigating spin liquid [1, 2]. Searching for exotic electronic states without magnetic long range order, such as Kagomé Heisenberg antiferromagnets, constitutes a common thread in a wide range of research fields, from high temperature superconductivity to low dimensional quantum magnetism. Over the last decade, many candidate materials have been investigated as model systems for a Kagomé lattice [3, 4, 5, 6]. However, they mostly exhibit a magnetically ordered or spin-glass-like state at low temperatures. A recent breakthrough in the hunt for a spin liquid state[2] is the successful synthesis [7] and characterization [8] of ZnCu$_3$(OH)$_6$Cl$_2$ (herbertsmithite), a chemically pure spin $S = \frac{1}{2}$ Kagomé lattice. As shown in Fig. 1, three Cu$^{2+}$ ions form a triangle, and a network of corner-shared triangles form a Kagomé lattice. The $S = \frac{1}{2}$ spins on Cu sites are mutually frustrated by antiferromagnetic super-exchange interaction $J \sim 170$ K [8, 9], hence the possibility of a spin liquid ground state.

Recent measurements of ZnCu$_3$(OH)$_6$Cl$_2$ with bulk magnetic susceptibility, χ_{bulk} [8], specific heat [8], neutron scattering on powders [8], μSR [10, 11], and 35Cl NMR [10] have established that ZnCu$_3$(OH)$_6$Cl$_2$ remains paramagnetic down to at least ~ 50 mK with no evidence of magnetic long range order. These findings indeed point towards the possible realization of a frustrated spin liquid state with the Kagomé symmetry. However, very little is known beyond the paramagnetic nature of the ground state. For example, the bulk averaged susceptibility, χ_{bulk}, reveals a mysterious sharp increase below ~ 50 K [8]. This clearly contradicts the predictions of various theoretical calculations: series expansions predict a decrease of χ_{bulk} below $T \sim J/6$ with a gap [12, 13], while the recent Dirac Fermion model predicts linear behavior in T towards $T = 0$ [14]. Does this apparent contradiction mean that ZnCu$_3$(OH)$_6$Cl$_2$ is not a good Kagomé model system after all, or that extrinsic effects other than Kagomé Heisenberg interaction, such as mixing of Zn ($S = 0$) into Cu ($S = \frac{1}{2}$) sites [15, 16] and Dzyaloshinsky-Moriya (DM) interactions [9, 17], simply mask the intrinsic Kagomé behavior below ~ 50 K? What about spin dynamics? Do spin fluctuations slow down toward a critical point, or are they gapped [12, 13, 14]?

In this Letter, we report a 63Cu, 35Cl, and 1H NMR investigation of ZnCu$_3$(OH)$_6$Cl$_2$ for a broad range of magnetic fields and frequencies. Taking full advantage of the local nature of NMR techniques, we uncover hitherto unknown properties of ZnCu$_3$(OH)$_6$Cl$_2$. First, from the observation of the broadening of 35Cl NMR lineshapes, we will demonstrate that
local spin susceptibility, χ_{loc}, has a large distribution throughout the sample. Moreover, the smallest components of χ_{loc} actually saturate and even decrease with T below $T \sim 0.2J$, even though the bulk averaged χ_{bulk} increases as $\sim 1/T$. The observed decrease of χ_{loc} is precisely what the intrinsic spin susceptibility of a Kagomé Heisenberg antiferromagnet is expected to show. Second, from the comparison of ^1H and ^{35}Cl nuclear spin-lattice relaxation rates, $^{1,35}(1/T_1)$, we present unambiguous evidence for slow freezing of the lattice near $\sim 50\ K$, most likely due to orientational disorder of OH bonds. We suggest that this subtle freezing of lattice distortion enhances the DM interactions, and is key to understanding the aforementioned upturn of bulk-averaged spin susceptibility, χ_{bulk}, below $\sim 50\ K$ that masks the intrinsic Kagomé behavior of χ_{loc}. Third, we demonstrate from the measurements of the ^{63}Cu nuclear spin-lattice relaxation rate, $^{63}(1/T_1)$, that in the presence of a high magnetic field the low frequency Cu spin fluctuations grow without a gap below $\sim 30\ K$ satisfying a simple power-law.

In Fig. 2, we show representative ^{35}Cl NMR lineshapes. For these measurements, we cured a powder sample in glue in a magnetic field of 9 Tesla. From powder x-ray diffraction measurements, we confirmed that approximately 20% of the powder is uniaxially aligned along the c-axis. In fact, we observe a sharp c-axis central peak near 35.02 MHz (marked as $B//c$ in Fig. 2) arising from particles oriented along the c-axis. The "double horns" marked as #1 and #2 are split by the nuclear quadrupole interaction, and arise from the randomly oriented portion of the powder (i.e. 80% of the sample) \cite{10}. Notice that the whole ^{35}Cl NMR lineshape begins to tail-off toward lower frequencies below $\sim 50\ K$. The resonance frequency of the sharp c-axis central peak and its distribution depends on the NMR Knight shift, ^{35}K, induced by χ_{loc}. Hence the observed line broadening implies that χ_{loc} varies depending on the location within the sample below $\sim 50\ K$.

In Fig. 3, we summarize the ^{35}Cl NMR Knight shifts ^{35}K and $^{35}K_{1/2}$ deduced from the lineshapes, together with χ_{bulk} as observed by SQUID. ^{35}K corresponds to the central peak above $\sim 45\ K$ as determined by FFT techniques. Below $\sim 45\ K$, where the central peak is smeared out by line broadening, we determined ^{35}K as the higher frequency edge of the central peak from point-by-point measurements, i.e. ^{35}K represents the smallest component of the distributed χ_{loc}. $^{35}K_{1/2}$ corresponds to the half-intensity position of the central peak on the lower frequency side of the spectrum. Quite generally, $^{35}K = A_{hf} \chi_{\text{local}} + ^{35}K_{\text{chem}}$, where A_{hf} is the magnetic hyperfine interaction between ^{35}Cl nuclear spin and nearby Cu
electron spins, and $^{35}K_{chem}$ is a very small, temperature independent chemical shift. In the present case, from the comparison with χ_{bulk}, we can estimate $A_{hf} \sim -3.7 \pm 0.7$ kOe/μ_B. The negative sign of A_{hf} makes the overall sign of ^{35}K negative. Accordingly, we have inverted the vertical scale of Fig. 3.

We wish to comment on two important aspects of Fig. 3. First, ^{35}K follows Curie-Weiss behavior all the way from 295 K down to \sim25 K. This clearly differs from χ_{bulk} which begins to deviate from Curie-Weiss behavior below temperatures as high as \sim150 K [8]. On the other hand, series-expansion calculations indicate that the Kagomé lattice follows Curie-Weiss behavior down to $T \sim J/6 \sim 25$ K [12]. Our Knight shift data demonstrate that χ_{local} of some ideal segments of the Cu$^{2+}$ Kagomé lattice in this material indeed show such behavior. Theoretical models also predict that below $T \sim J/6 \sim 25$ K, χ_{bulk} begins to decrease exponentially with a small gap[12], or linearly[14]. As shown in Fig. 2, the 35Cl NMR lineshape begins to transfer some spectral weight to higher frequencies below 25 K. Recalling that A_{hf} is negative, this is consistent with vanishing spin susceptibility, χ_{local}, near $T = 0$ for some parts of the Kagomé lattice. After the initial submission of this Letter, Olariu et al. also observed a similar decrease of 17O NMR Knight shift and arrived at the same conclusion [18].

Another important aspect of Fig. 3 is that $^{35}K_{1/2}$ begins to deviate from the aforementioned Curie-Weiss fit in a manner similar to χ_{bulk}, as the 35Cl NMR line gradually broadens to lower frequencies. It is important to realize that $^{35}(1/T_1)$ also begins to increase in the same temperature range below \sim150 K (see Fig. 4). Below 50 K, where $^{35}(1/T_1)$ shows a peak, the 35Cl NMR line shows a dramatic broadening to lower frequencies. Fig. 2 and Fig. 3 establish that $^{35}K_{1/2}$ follows the same trend as χ_{bulk}, i.e. some segments of the Kagomé lattice have large and distributed local spin susceptibility χ_{local}, and their temperature dependence is different from the smaller χ_{local} as represented by ^{35}K. χ_{bulk} simply represents a bulk average of χ_{local}.

In passing, we recall that earlier μSR Knight shift $K_{\mu SR}$ measurements by Ofer et al. [10] showed identical behavior between $K_{\mu SR}$ and χ_{bulk}. They concluded that the upturn of χ_{bulk} below 50 K is not caused by impurity spins but is a bulk phenomenon. Our new results in Fig. 3 do not contradict these μSR data. $K_{\mu SR}$ was deduced by assuming a Gaussian distribution of χ_{local}, hence by default $K_{\mu SR}$ represents the central value of the presumed Gaussian distribution. That explains why $K_{\mu SR}$ shows behavior similar to χ_{bulk} and $^{35}K_{1/2}$.
Next, we turn our attention to the dynamics of lattice and spin degrees of freedom. Fig. 4 shows the temperature dependence of the 35Cl nuclear spin-lattice relaxation rate, $^{35}(1/T_1)$, measured at the central peak frequency in various magnetic fields, B. We also plot $^1(1/T_1)$ for 1H NMR in 0.9 Tesla, and $^{63}(1/T_1)$ for 63Cu NMR in 8 Tesla. We have overlaid $^{1,63}(1/T_1)$ on $^{35}(1/T_1)$ measured in comparable magnetic fields by scaling the vertical axis.

We can draw a number of conclusions from Fig. 4. First, let us focus on T and B independent results of $^{35}(1/T_1)$ above ~ 150 K. This high temperature regime is easily understandable within Moriya’s theory for the exchange narrowing limit of Heisenberg antiferromagnets, where we should expect $^{35}(1/T_1)_{exc} \sim A_{hf}^2/J = \text{constant}$ for $T > J \sim 170 \, \text{K}$.

If we assume $J \sim 170 \, \text{K}$ and $A_{hf} \sim -4 \, \text{kOe}/\mu_B$, we can estimate $^{35}(1/T_1)_{exc} \sim 4 \, \text{sec}^{-1}$. This is in excellent agreement with our result.

Another important feature is that $^{35}(1/T_1)$ begins to increase below ~ 150 K and peaks near $\sim 50 \, \text{K}$. Since 35Cl is a quadrupolar nucleus with nuclear spin $I = \frac{3}{2}$, the observed enhancement may be caused by slow fluctuations of the lattice via nuclear quadrupole interactions, as well as by Cu spin fluctuations. To discern the two possibilities, we show $^1(1/T_1)$ of 1H measured at 0.9 Tesla for comparison. The $^1(1/T_1)$ data nicely interpolate $^{35}(1/T_1)$ in the field-independent regime above ~ 150 K and $^{35}(1/T_1)$ measured at a comparable magnetic field (1 Tesla) at low-temperatures, without a peak near $\sim 50 \, \text{K}$. Since 1H has $I = \frac{1}{2}$, $^1(1/T_1)$ has no contributions from lattice fluctuations. Therefore we conclude that the peak of $^{35}(1/T_1)$ near $\sim 50 \, \text{K}$ arises from enhancement of lattice fluctuations at the NMR frequency. The peak of $^{35}(1/T_1)$ shifts to progressively lower temperatures as we lower the 35Cl NMR frequency, from 50 K (35 MHz at 8.3 Tesla), 46 K (18 MHz at 4.4 Tesla) to 40 K (10 MHz at 2.4 Tesla). This means that the typical frequency scale of lattice fluctuations is 35 MHz at 50 K, 18 MHz at 46 K, and 10 MHz at 40 K, and the Kagomé lattice becomes static below 40 K. Given that no structural phase transition has been detected by x-ray and neutron scattering techniques, the observed freezing of the lattice near $\sim 50 \, \text{K}$ must be a very subtle effect. In fact, our careful measurements of the quadrupole split $\pm \frac{1}{2}$ to $\pm \frac{3}{2}$ satellite transitions of 35 Cl NMR didn’t detect any noticeable changes, either. All pieces put together, we suggest that the lightest elements in the lattice, i.e. OH bonds, must be freezing with random orientations, with only subtle effects on heavier atoms.

Regardless of the exact nature of the freezing of the lattice, our observation provides a major clue to understanding the mysterious behaviors of χ_{bulk} and χ_{local}. Recent structural
studies revealed that up to 6% of Cu sites may be occupied by Zn to create unpaired defect spins [15]. There is no doubt that such antisite disorder would enhance χ_{bulk} and contribute to the large distribution of χ_{local} at low temperatures. However, it is important to realize that χ_{bulk} begins to deviate from high temperature Curie-Weiss behavior below ~ 150 K [8], exactly where $^{35}(1/T_1)$ begins to grow due to slowing of lattice fluctuations toward ~ 50 K. Furthermore, the crossover between the two different Curie-Weiss behaviors of χ_{bulk} and $^{35}K_{1/2}$ takes place precisely when the lattice fluctuations die out below ~ 50 K [8]. Evidently, the anomaly of the lattice correlates well with that of the spins, suggesting it must be playing a major role in the deviation of spin susceptibility from the theoretically expected behavior of ideal Kagomé Heisenberg antiferromagnets. In fact, recent numerical simulations by Rigol and Singh showed that DM interactions can enhance spin susceptibility below ~ 50 K [9, 17]. Our experimental finding naturally fits with their theoretical picture: when OH bonds freeze with random orientation, the hexagonal symmetry of the Kagomé lattice slightly breaks down locally; this would progressively enhance the DM interaction from ~ 150 K to ~ 50 K, hence leading to an enhancement of χ_{bulk} and $^{35}K_{1/2}$, as well as a large distribution of χ_{local}.

Finally, let us focus on the low temperature regime below 20 K, where only spin fluctuations contribute to $(1/T_1)$. $^{35}(1/T_1)$ at ~ 4 K is independent of magnetic field from $B \sim 0.9$ Tesla up to $B \sim 2$ Tesla, but larger magnetic fields suppress $^{35}(1/T_1)$. This suggests that unpaired paramagnetic spins are fluctuating in low magnetic fields, but applied magnetic field decouples the weak coupling between them. The exact origin of these paramagnetic spins is not clear, but one obvious possibility is unpaired free spins induced in the near neighbor sites of Zn ($S = 0$) ions occupying the Cu sites, i.e. antisite disorder [15, 16]. In fact, after the initial submission of the present work, Olariu et al. reported that approximately 30% of the integrated intensity of 17O NMR signals is split off from the main line, which they attributed to the contribution of the 4 nearest neighbor O sites of Zn ions occupying the Cu sites [18]. Our observation of field dependence is also consistent with a recent report that the application of $B \sim 8$ Tesla suppresses defect contributions to dc spin susceptibility in the low T regime [16].

All the $^{63,35,1}(1/T_1)$ data measured at various magnetic fields and frequencies decrease towards the zero temperature limit. That is, we observe no hint of critical slowing down of spin fluctuations towards $T \sim 0$, hence any magnetic critical point, if it exists, is still very far
from our temperature region. This is in agreement with an earlier report based on a limited set of ^{35}Cl NMR data\cite{10}, but in remarkable contrast with earlier NMR works on frustrated spin systems with Kagomé or triangular lattice geometry, where $(1/T_1)$ data always show evidence for a magnetic long range order or freezing \cite{0}. At $B \sim 8$ Tesla, both $^{35}(1/T_1)$ and $^{63}(1/T_1)$ decrease toward $T = 0$, obeying a simple power law, $^{63}(1/T_1) = T^\eta$ with $\eta \sim 0.5$. Since the slope of the log-log plot of $(1/T_1)$ increases somewhat at higher fields, $\eta \sim 0.5$ may be somewhat underestimated. We note that spin fluctuation susceptibility is proportional to $^{63}(1/T_1 T) = T^{\eta-1}$, hence spin fluctuations grow toward $T = 0$. This is inconsistent with the exponential decrease expected for a gapped Kagomé lattice in some theoretical scenarios.

On the other hand, recent field theoretical calculations based on the Dirac Fermion model predicted a power law, $^{63}(1/T_1) = T^\eta$, with unknown critical exponent η \cite{14}. We note that the issue of power law behavior of spin dynamics is at the focus of the field theoretical approach toward spin liquid systems. It remains to be seen if the Dirac Fermion model would be consistent with $\eta \gtrsim 0.5$.

To summarize, we have presented a site-by-site picture of the new Kagomé material ZnCu$_3$(OH)$_6$Cl$_2$ using NMR techniques. Our NMR data revealed that both local spin susceptibility and spin dynamics (in high magnetic fields) show aspects that are consistent with theoretical conjectures for ideal Kagome antiferromagnets, despite perturbations from lattice freezing and paramagnetic defects.

We thank Y.S. Lee, P.A. Lee, S. De’Soto, M. Rigol, R. Singh, and P. Mendels for helpful communications. The work at McMaster was supported by NSERC and CIFAR. We thank NSF for providing EAN and BMB with predoctoral fellowships, and DuPont for providing BMB with a Graduate Fellowship Award.

\begin{thebibliography}{99}
\bibitem{1} P. W. Anderson, Science \textbf{253}, 1196 (1987).
\bibitem{2} Physics Today, \textbf{Feb. 2007}, 16 (2007).
\bibitem{3} A. Keren, Y. J. Uemura, G. Luke, P. Mendels, M. Mekata, and T. Asano, Phys. Rev. Lett. \textbf{84}, 3450 (2000).
\bibitem{4} A. Fukaya, Y. Fudamoto, I. M. Gat, T. Ito, M. I. Larkin, A. T. Savici, and Y. J. Uemura, Phys. Rev. Lett. \textbf{91}, 207603 (2003).
\end{thebibliography}
[5] F. Bert, D. Bono, P. Mendels, F. Ladieu, F. Duc, J. C. Trombe, and P. Millet, Phys. Rev. Lett. 95, 087203 (2005).

[6] P. Mendels, A. Olariu, F. Bert, D. Bono, L. Limot, G. Collin, B. Ueland, P. Schiffer, R. Cava, N. Blanchard, et al., J. Phys.-Cond. Matt. 19, 145224 (2007).

[7] M. P. Shores, E. A. Nytko, B. M. Bartlett, and D. G. Nocera, J. Am. Chem. Soc. 127, 13462 (2005).

[8] J. S. Helton, K. Matan, M. P. Shores, E. A. Nytko, B. M. Bartlett, Y. Yoshida, A. Suslov, Y. Qiu, J. H. Chung, D. G. Nocera, et al., Phys. Rev. Lett. 98, 107204 (2007).

[9] M. Rigol and R. R. P. Singh, Phys. Rev. Lett. 98, 207204 (2007).

[10] O. Ofer, A. Keren, E. A. Nytko, and M. P. Shores, cond-matt/0610540.

[11] P. Mendels, F. Bert, M. deVries, A. Olariu, A. Harrison, F. Duc, J. Trombe, J. Lord, A. Amato, and C. Baines, Phys. Rev. Lett. 98, 077204 (2007).

[12] N. Elstner and A. P. Young, Phys. Rev. B 50, 6871 (2000).

[13] F. Mila, Phys. Rev. Lett. 81, 2356 (1998).

[14] Y. Ran, M. Hermele, P. A. Lee, and X. G. Wen, Phys. Rev. Lett. 98, 117205 (2007).

[15] M. A. de Vries, K. V. Kamenev, W. A. Kockelmann, J. Sanchez-Benitez, and A. Harrison, ArXive: 0705.0654.

[16] F. Bert, S. Nakamae, F. Ladieu, D. L. Hote, P. Bonville, F. Duc, J. C. Trombe, and P. Mendels, ArXive: 0710.0451.

[17] M. Rigol and R. R. P. Singh, ArXive: 0705.2591.

[18] A. Olariu, P. Mendels, F. Bert, F. Duc, J. C. Tombe, M. A. de Vries, and A. Harrison, ArXive: 0711.2459.

[19] T. Moriya, Prog. Theor. Phys. 16, 23 (1956).
Fig. 1
Left: A Kagomé lattice. Right: Cu$^{2+}$ Kagomé layer in ZnCu$_3$(OH)$_6$Cl$_2$. Cl$^-$ site is above or below the middle of the Cu$^{2+}$ triangles.

Fig. 2
35Cl NMR lineshapes of the $I_z = +\frac{1}{2}$ to $-\frac{1}{2}$ central transition in 8.4 Tesla in a partially (~20 %) uniaxially aligned powder sample. The sharp peak near 35.02 MHz marked as "B//c" originates from the particles whose c-axis is aligned along the external magnetic field. Vertical lines specify the c-axis peak and edge corresponding to ^{35}K. Vertical dashed lines specify the frequency corresponding to $^{35}K_{1/2}$.

Fig. 3
35Cl NMR Knight shift (left scale). ^{35}K (blue circles). $^{35}K_{1/2}$ (red triangles). The blue solid line is a fit to Curie-Weiss behavior, $^{35}K = (22 \pm 7)/(T - \theta_{CW}) + ^{35}K_{chem}$, where $\theta_{CW} = -240 \pm 80$K. The constant background $^{35}K_{chem} = 0.018\%$ is shown by a dashed line. χ_{bulk} measured by SQUID (dotted line) is also overlaid (right scale).

Fig. 4
Temperature dependence of 35Cl NMR spin-lattice relaxation rate $^{35}(1/T_1)$ at various magnetic fields (filled symbols). Solid line represents a fit to a power law, $^{35}(1/T_1) = T^n$ with $n = 0.47$ (8.3 T), 0.44 (4.4 T), 0.2 (2.4 T and 1.0 T). 1H relaxation rate in low field (0.9 T), $^1(1/T_1)$, and 63Cu relaxation rate in high field (8 T), $^{63}(1/T_1)$, are also superposed on $^{35}(1/T_1)$ measured in comparable magnetic field.
\[\frac{1}{T_1}[\text{sec}^{-1}] \]

- 8.3 T (34.6MHz)
- 4.4T (18.4MHz)
- 2.4T (10MHz)
- 1.5T (6.3MHz)
- 1.0T (4.2MHz)

\[\frac{1}{T_1}[\text{sec}^{-1}] \]

- 63-Cu (8T, 93MHz)
- 1-H (0.9T, 38MHz)