OBJECTIVE—To evaluate whether fasting plasma glucose (FPG) within a normoglycemic range is associated with cardiometabolic risk factors (CMRF) among children and adolescents in an outpatient setting.

RESEARCH DESIGN AND METHODS—Subjects (780; age 6–16 years) with FPG <100 mg/dL were divided into tertiles of FPG.

RESULTS—BMI, waist circumference, homeostasis model assessment-insulin resistance, systolic blood pressure, and white blood cell (WBC) count (P < 0.001) increased across tertiles of FPG. Subjects with high-normal FPG (89–99 mg/dL) showed a higher risk of insulin resistance, hypertension, and high WBC count compared with subjects with low-normal FPG, independent of BMI z score.

CONCLUSIONS—In outpatient children and adolescents, higher FPG within the normal range is associated with several CMRF, independent of obesity. Thus the simple measurement of FPG may help identify subjects who warrant some monitoring in relation to cardiovascular risk.

From the 1Department of Internal Medicine, Pozzuoli Hospital, Pozzuoli, Naples, Italy; the 2Department of Pediatrics, Pozzuoli Hospital, Pozzuoli, Naples, Italy; the 3Department of Clinical Pathology, S. Maria delle Grazie, Pozzuoli Hospital, Pozzuoli, Naples, Italy; and the 4Department of Clinical and Experimental Medicine, Federico II University, Naples, Italy. Corresponding author: Procolo Di Bonito, procолодibonito@alice.it. Received 2 July 2010 and accepted 5 March 2011.

© 2011 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.
FPG showed an increased risk of IR, hypertension, and high WBC count compared with subjects with low-normal FPG (Table 1). The group with mid-normal FPG, as compared with the low-normal FPG, showed an increased risk of IR and hypertension, but not of high WBC count. These results did not change when the category of overweight/obesity was included in the model instead of BMI z score.

CONCLUSIONS—This study demonstrates that in an outpatient setting of normoglycemic Caucasian children and adolescents, FPG is associated with several CMRF, independent of obesity. In adults, a high but normal FPG is a risk factor for development of type 2 diabetes (11) and cardiovascular disease (12). Previous studies exploring the clinical significance of high-normal FPG in children have been performed in obese subjects (4–6). In a sample of 323 obese children, Grandone et al. (5) showed that high-normal FPG (87–99 mg/dL) is associated with a sevenfold higher risk of presenting IGT and IR. More recently, O’Malley et al. (6) reported a reduction in both insulin sensitivity and β-cell function at increasing FPG in normoglycemic multiethnic obese youth, thus demonstrating that some deterioration of glucose homeostasis is already present at apparently normal FPG. Our study extends this observation by demonstrating that FPG is associated with a cluster of CMRF and demonstrates that this relationship is independent of BMI. Actually, subjects with FPG between 89 and 99 mg/dL not only demonstrate that systemic inflammation may appear early in life and be related to subclinical abnormalities of glucose metabolism.

In conclusion, in an outpatient setting of Caucasian children and adolescents, FPG within the normal range is associated with several CMRF, independent of obesity. Subjects with high-normal FPG show a worse cardiometabolic profile than those with low-normal FPG. Although our observations need to be confirmed in the general pediatric population, the simple measurement of FPG may help in identifying children who warrant some monitoring. Longitudinal studies will confirm whether high-normal FPG in childhood could be considered a marker of cardiovascular risk and a predictor of hard outcomes in adulthood.

Acknowledgments—No potential conflicts of interest relevant to this article were reported.

P.D.B. had the original idea and wrote the manuscript. E.S., C.F., and F.S. collected clinical data. M.R.I. performed biochemical assays. B.C. reviewed and edited the manuscript.

References

1. Li C, Ford ES, Zhao G, Mokdad AH. Prevalence of pre-diabetes and its association with clustering of cardiometabolic risk factors and hyperinsulinemia among U.S. adolescents: National Health and Nutrition Examination Survey 2005-2006. Diabetes Care 2009;32:342–347.

2. Williams DE, Cadwell BL, Cheng YJ, et al. Prevalence of impaired fasting glucose and its relationship with cardiovascular disease risk factors in US adolescents, 1999-2000. Pediatrics 2005;116:1122–1126.

3. Nguyen QM, Srivinasan SR, Xu JH, Chen W, Kieltyka L, Berenson GS. Utility of childhood glucose homeostasis variables in predicting adult diabetes and related cardiometabolic risk factors: the Bogalusa Heart Study. Diabetes Care 2010;33:670–675.

4. Maffeis C, Pinelli L, Brambilla P, et al. Fasting plasma glucose (FPG) and the risk of impaired glucose tolerance in obese children and adolescents. Diabetes (Silver Spring) 2010;18:1437–1442.

5. Grandone A, Amato A, Luongo C, Santoro N, Perrone L, del Guadice EM. High-normal fasting glucose levels are associated with increased prevalence of impaired glucose tolerance in obese children. J Endocrinol Invest 2008;31:1098–1102.

6. O’Malley G, Santoro N, Northrup V, et al. High normal fasting glucose level in obese youth: a marker for insulin resistance and beta cell dysregulation. Diabetologia 2010;53:1199–1209.

Table 1—Anthropometric, clinical, and biochemical variables among categories of FPG and risk of CMRF in children and adolescents

Categories of FPG	Low (n=274)	Mid (n=275)	High (n=231)	P
n	274	275	231	
Age (years)	10 ± 3	10 ± 3	10 ± 3	0.101
Boys (%)	110 (40%)	143 (52%)	129 (56%)	0.001
Prepubertal stage (%)	135 (49%)	145 (53%)	112 (49%)	0.586
Normal weight (%)	92 (33%)	61 (22%)	45 (20%)	0.0001
Overweight (%)	62 (23%)	59 (21%)	53 (23%)	0.554
Obesity (%)	120 (44%)	155 (56%)	133 (58%)	0.001
BMI (kg/m²)	24 ± 6	25 ± 6	26 ± 6	0.0001
BMI z score	−0.22 ± 1.0	0.02 ± 0.96	0.19 ± 1.02	0.0001
Waist circumference (cm)	77 ± 17	82 ± 16	85 ± 17	0.0001
HOMA-IR	1.9 ± 1.4	2.7 ± 2.1	3.4 ± 2.5	0.0001
HbA1c (%)	5.4 ± 0.3	5.4 ± 0.3	5.3 ± 0.3	0.118
Cholesterol (mg/dL)	162 ± 33	163 ± 30	161 ± 32	0.792
HDL cholesterol (mg/dL)	52 ± 11	53 ± 11	52 ± 12	0.264
Triglycerides (mg/dL)	84 ± 40	87 ± 44	84 ± 36	0.902
BP (mmHg)				
Systolic	103 ± 11	107 ± 12	110 ± 13	0.0001
Diastolic	60 ± 9	60 ± 10	61 ± 9	0.542
WBC (10^3/L)	7.1 ± 2.4	7.4 ± 2.0	7.9 ± 2.3	0.0001
Odds ratio (95% CI)^				
Insulin resistance	1.00	2.35 (1.43–3.87)*	1.95 (1.52–2.51)†	
Hypertension	1.00	2.23 (1.06–4.08)§	1.57 (1.07–2.29)¶	
High WBC count	1.00	1.00 (0.63–1.38)*	1.31 (1.05–1.65)*	

Data are mean ± SD or n (%) unless otherwise indicated. *Adjusted for age, sex, pubertal stage, allergy, and BMI z score; †P < 0.001; §P < 0.0001; ¶P < 0.05; ‡P < 0.025.
Glucose and cardiometabolic risk factors

7. Di Bonito P, Forziato C, Sanguigno E, et al. Prehypertension in outpatient obese children. Am J Hypertens 2009;22:1309–1313
8. Cacciari E, Milani S, Balsamo A, et al. Italian cross-sectional growth charts for height, weight and BMI (2 to 20 yr). J Endocrinol Invest 2006;29:581–593
9. National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics 2004;114(Suppl. 4th Report):555–576
10. d'Annunzio G, Vanelli M, Pistorio A, et al.; Diabetes Study Group of the Italian Society for Pediatric Endocrinology and Diabetes. Insulin resistance and secretion indexes in healthy Italian children and adolescents: a multicentre study. Acta Biomed 2009;80:21–28
11. Tirosh A, Shai I, Tekes-Manova D, et al.; Israeli Diabetes Research Group. Normal fasting plasma glucose levels and type 2 diabetes in young men. N Engl J Med 2005;353:1454–1462
12. Sung J, Song YM, Ebrahim S, Lawlor DA. Fasting blood glucose and the risk of stroke and myocardial infarction. Circulation 2009;119:812–819
13. Hansen ML, Gunn PW, Kaelber DC. Underdiagnosis of hypertension in children and adolescents. JAMA 2007;298:874–879
14. Lee YJ, Shin YH, Kim JK, Shim JY, Kang DR, Lee HR. Metabolic syndrome and its association with white blood cell count in children and adolescents in Korea: the 2005 Korean National Health and Nutrition Examination Survey. Nutr Metab Cardiovasc Dis 2010;20:163–172