ABSTRACT

Purpose: CD4 T cells are essential in the pathogenesis of allergic asthma. We have previously demonstrated that microRNA-1165-3p (miR-1165-3p) was significantly reduced in T-helper type (Th) 2 cells and that miR-1165-3p was a surrogate marker for atopic asthma. Little is known about the mechanisms of miR-1165-3p in the regulation of Th2-dominated allergic inflammation. We aimed to investigate the associations between Th2 differentiation and miR-1165b-3p in asthma as well as the possible mechanisms.

Methods: CD4 naïve T cells were differentiated into Th1 or Th2 cells in vitro. MiR-1165-3p was up-regulated or down-regulated using lentiviral systems during Th1/Th2 differentiation. In vivo, the lentiviral particles with the miR-1165-3p enhancer were administered by tail vein injection on the first day of a house dust mite-induced allergic airway inflammation model. Allergic inflammation and Th1/Th2 differentiation were routinely monitored. To investigate the potential targets of miR-1165-3p, biotin-microRNA pull-down products were sequenced, and the candidates were further verified with a dual-luciferase reporter assay. The roles of a target protein phosphatase, Mg2+/Mn2+-dependent 1A (PPM1A), in Th2 cell differentiation and allergic asthma were further explored. Plasma PPM1A was determined by ELISA in 18 subjects with asthma and 20 controls.

Results: The lentivirus encoding miR-1165-3p suppressed Th2-cell differentiation in vitro. In contrast, miR-1165-3p silencing promoted Th2-cell development. In the HDM-induced model of allergic airway inflammation, miR-1165-3p up-regulation was accompanied by reduced airway hyper-responsiveness, serum immunoglobulin E, airway inflammation and Th2-cell polarization. IL-13 and PPM1A were the direct targets of miR-1165-3p. The expression of IL-13 or PPM1A was inversely correlated with that of miR-1165-3p. PPM1A regulated the signal transducer and activator of transcription and AKT signaling pathways during Th2 differentiation. Moreover, plasma PPM1A was significantly increased in asthmatic patients.

Conclusions: MiR-1165-3p negatively may regulate Th2-cell differentiation by targeting IL-13 and PPM1A in allergic airway inflammation.

Keywords: MicroRNA; Th2; allergy; IL-13; asthma; inflammation

MiR-1165-3p Suppresses Th2 Differentiation via Targeting IL-13 and PPM1A in a Mouse Model of Allergic Airway Inflammation

Zhengxia Wang 1,*, Ningfei Ji 1,†, Zhongqi Chen 1,†, Zhixiao Sun 1, Chaojie Wu 1, Wenqing Yu 1,†, Fan Hu 2, Mao Huang 1,* Mingshun Zhang 3,4,*

1Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
2Department of Infectious Disease, Taizhou People’s Hospital, Taizhou, China
3State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
4NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu, China
5Department of Immunology, Nanjing Medical University, Nanjing, China

Received: Aug 13, 2019
Revised: Mar 6, 2020
Accepted: Mar 13, 2020

Correspondence to
Mingshun Zhang, MD, PhD
NHC Key Laboratory of Antibody Technique, Department of Immunology, Nanjing Medical University, 101 Longmian Street, Nanjing, Jiangsu 211166, China.
Tel: +86-25-8686-3776
Fax: +86-25-8686-3776
E-mail: mingshunzhang@njmu.edu.cn

Mao Huang, MD
Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China.
Tel: +86-25-8371-4511
Fax: +86-25-8371-4511
E-mail: hm6114@163.com

Zhengxia Wang, Ningfei Ji, and Zhongqi Chen are contributed equally to the work.

Copyright © 2020 The Korean Academy of Asthma, Allergy and Clinical Immunology - The Korean Academy of Pediatric Allergy and Respiratory Disease. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
INTRODUCTION

Atopic asthma is characterized by pulmonary inflammation, airway hyper-responsiveness and airway remodeling. After recognizing a presented allergen, CD4+ T cells differentiate into diverse subsets, initiating and regulating the allergic cascade reactions. T-helper type (Th) 2 cells, releasing interleukin (IL)-4, IL-5 and IL-13, play a foundational role in the pathogenesis of allergic asthma. IL-4 promotes differentiation and immunoglobulin (Ig) E class-switching of plasma cells, whereas IL-13 mediates airway hyper-responsiveness and mucus hyper-production. IL-5 is highly specific for eosinophil activation and recruitment, leading to eosinophilic inflammation. Adoptive transfer of Th2 cells from allergic mice is sufficient to induce eosinophilic pulmonary inflammation, suggesting that Th2 cells are largely indispensable for the onset of atopic asthma.

CD4+ cell differentiation is regulated by various cytokines and transcription factors. As the master transcription factors, T-bet and GATA-3 control the fate of Th1 and Th2 cells, respectively. In addition, activation of the signal transducer and activator of transcription (STAT) 1 and STAT5 regulates the development of Th1 and Th2 cells, respectively. STAT1 promoted the expression of T-bet, therefore favoring Th1 differentiation. IL-2-driven STAT5 activation is essential in Th2 differentiation, which may be independent of GATA-3.

MicroRNAs (miRNAs) are a class of small noncoding RNAs that function in the posttranscriptional regulation of complimentary messenger RNA (mRNA) stability and translation. The roles of miRNAs in asthma pathogenesis have been well documented. However, only a few studies have focused on Th2 cells in asthma. In an adoptive transfer asthma model, miR-19 promoted Th2 differentiation and exacerbated airway inflammation. Mice deficient in miR-24 and miR-27 in T cells enhanced Th2-cell responses and airway inflammation in an OVA asthma model; both miR-24 and miR-27 targeted IL-4.

Previously, we have identified a novel miRNA, miR-1165-3p (previously termed novel miRNA-11), which was significantly decreased in the sorted CD4+ T cells from a murine model of asthma and in Th2 cells. Moreover, serum miR-1165-3p levels were significantly elevated in asthmatic patients when compared to those of healthy controls. In this study, we further demonstrated that miR-1165-3p inhibited Th2 cell differentiation and alleviated type 2 inflammation in an asthma model.

MATERIALS AND METHODS

Animals
Specific pathogen-free female C57BL/6j mice aged 6 to 8 weeks were obtained from Nanjing Medical University (Nanjing, China). All experiments that involved animal and tissue samples were performed in accordance with the guidelines and procedures approved by the Institutional Animal Care and Use Committee of Nanjing Medical University (IACUC No. 1709011).

House dust mite (HDM) sensitization/challenge protocol
C57BL/6j mice were randomly divided into 4 groups: control, HDM, HDM treated with miR-1165-3p blank and HDM treated with miR-1165-3p enhancer. Mice in the latter 3 groups were exposed intratracheally to whole-body HDM extract from Dermatophagoides pteronyssinus (Greer Laboratories, Lenoir, NC, USA) according to the established 14-day model. Mice received...
100 µg HDM in 40 µL normal saline (NS) on day 0 and 10 µg HDM in 40 µL NS on days 7–11 intratracheally under isoflurane anesthesia to induce allergic lung inflammation. Mice exposed to 40 µL NS according to the HDM protocol served as healthy controls.

To explore whether miR-1165-3p was involved in Th2 differentiation and asthma pathogenesis, lenti-miR-green fluorescent protein (GFP)-miR-1165-3p virus (enhancer) or lenti-miR-GFP control virus (Abm, Zhengjiang, China) at 5 × 10^7 in 100 µL NS per mouse were administered by tail vein injection before HDM challenge on day 7. The mice were sacrificed 3 days after the final challenge, and bronchoalveolar lavage fluid (BALF) and lung tissues were collected for analyses.

Measurement and analysis of airway responsiveness
Mice were anesthetized with 70 mg/kg pentobarbital and 1.8 g/kg urethane, followed by 0.5 mg/kg pancuronium bromide and the mice were tracheotomized 72 hours after the final challenge. Airway hyperreactivity (AHR) was measured in response to increasing doses of acetylcholine via a FinePointe RC system (Buxco Research Systems, Wilmington, NC, USA) under general anesthesia as described before.

Bronchoalveolar lavage fluid and serum analysis
After AHR measurement, whole blood was collected without anticoagulants and incubated for 1 hour at 37°C; serum was isolated by centrifugation at 2,000 × g for 30 minutes. The tracheae were exposed, and BALF was collected by lavage with ice-cold phosphate-buffered saline (PBS, 400 µL × 3; 85%-90% of the lavage volume was recovered) via a tracheal catheter. BALF from each mouse was centrifuged at 1,000 rpm for 10 minutes at 4°C, and the total number of inflammatory cells in BALF was examined by flow cytometry analysis. The supernatant of BALF was collected, divided into 4 equal portions and frozen at ~80°C for enzyme-linked immunosorbent assay (ELISA).

Lung histology
The lung specimens were fixed in 5% formalin, paraffin-embedded and cut into 5-µm sections that were then stained with either hematoxylin-eosin or periodic acid-Schiff (PAS) before microscopic analysis. The severity of peribronchial inflammation was graded semiquantitatively for the following features: 0, normal; 1, few cells; 2, a ring of inflammatory cells 1 cell layer deep; 3, a ring of inflammatory cells 2–4 cells deep; and 4, a ring of inflammatory cells 4 cells deep. The numerical scores for the abundance of PAS-positive mucus-containing cells in each airway were determined as follows: 0, <0.5% PAS-positive cells; 1, 5%-25%; 2, 25%-50%; 3, 50%-75%; and 4, >75%.

In vitro mouse primary T-cell polarization
Naive CD4+ T cells purified from mice were cultured for Th-cell differentiation as described before. Briefly, CD4+ T cells were isolated from the spleen and lymph nodes of C57/B6 mice using a naïve CD4+ T cell isolation kit (130-104-453, Miltenyi Biotec, Bergisch Gladbach, Germany) according to the instructions provided by the manufacturer. Naïve CD4+ T cells (2 × 10^5) were plated onto 96-well tissue culture plates (Thermo Fisher Scientific, Basingstoke, UK) precoated with 5 µg/mL anti-CD3e antibody (16-0031-85, eBioscience, San Diego, CA, USA) and 2 µg/mL anti-CD28 antibody (16-0281-85, eBioscience) on day 0. Th1-cell cultures contained 20 ng/mL murine IL-2 (96-212-12-5, PeproTech, Offenbach, Germany), 20 ng/mL murine IL-12 (96-210-12-10, PeproTech) and 10 µg/mL anti-IL-4 antibody (16-7041-85, eBioscience). Th2-cell cultures contained 20 ng/mL murine IL-2 (96-212-12-5, PeproTech),
100 ng/mL murine IL-4 (96-214-14-20, PeproTech), 10 μg/mL anti-IL-12 (16-7123-85, eBioscience) and 10 μg/mL anti-interferon (IFN)-γ (16-7311-85, eBioscience). After 2 days, the cells were re-cultured for 3 additional days in the same culture medium with cytokines but without anti-CD3e or anti-CD28 antibody stimulation. Lenti-miRa-GFP-miR-1165-3p virus (enhancer), Lenti-III-mir-GFP control virus (blank), Lentil-III-miR-off-control virus (scramble), Lenti-miRa-off-miR-1165-3p virus (silencer) were added on day 1 (multiplicity of infection, MOI = 15), and cells were harvested on day 5 for quantitative polymerase chain reaction (qPCR), western blotting or flow cytometry, while cell supernatants were collected for ELISA.

ELISA

The levels of IL-4, IL-5, IFN-γ (431105, 430805, 431205, Biolegend, San Diego, CA, USA), eotaxin-1 (FMS-ELM070, FCMACS, Nanjing, China) and IL-13 (96-900-K207, PeproTech) in BALF, lung homogenates or cell supernatants, total IgE (555248, BD Biosciences, San Jose, CA, USA) in sera, or protein phosphatase, Mg²⁺/Mn²⁺-dependent 1A (PPM1A; HM11307, BioSwamp, Wuhan, China) and total IgE (E-EL-H2161C, Elabscience, Wuhan, China) in human plasma were measured using commercial ELISA kits according to the instructions provided by the manufacturer.

Flow cytometry for cell counting

Inflammatory cells were counted and analyzed by flow cytometry. Cells were counted by counting beads (01-1234-42, eBioscience). After stained with CD16/CD32 Fc receptor (FcR)-blocking antibody (14-0161-85, eBioscience) and fixable viability dye eFluor™ 506 (65-0866-14, eBioscience) according to the manufacturer's instructions, neutrophils (CD45⁺Ly6G⁺F4/80⁻), eosinophils (CD45⁺SiglecF⁺F4/80⁻), macrophages (CD45⁺SiglecF⁺F4/80⁺) and lymphocytes (CD45⁺CD3⁺) in BAL fluid were measured by flow cytometry. 5,19,20

Staining nuclear protein for flow cytometry

The spleen specimens from animal experiments were prepared as single-cell suspensions. After erythrocyte lysis, differentiated Th1/Th2 cells were stained with CD16/CD32 FcR-blocking antibody, fixable viability dye eFluor™ 506 and anti-CD4-APC (17-0041-83, eBioscience). For intracellular staining, cells were fixed and permeabilized (00-5523-00, eBioscience) according to the manufacturer’s instructions, and then intracellular products were stained. Flow cytometry was performed with anti-GATA-PE-Cy7 (560405, BD Biosciences) and anti-T-bet-PE-Cy7 (25-5825-80, eBioscience). A FACS Stratagene (BD Biosciences) was used for flow cytometry, and data were analyzed by FlowJo software (Treestar, Woodburn, OR, USA).

Reverse transcription and qPCR analysis

Total RNA was prepared from differentiated T cells using an miRNeasy Mini Kit (217004, Qiagen, Hilden, Germany). The mRNAs were reverse transcribed with 5X All-In-One RT MasterMix (G490, Abm, Zhenjinag, China), while miRNAs were reverse transcribed by a Mir-X miRNA First-Strand Synthesis Kit (638313, TaKaRa Bio, Kusatsu, Japan). The qPCR analysis was performed using a CFX96 system (Bio-Rad Laboratories, Hercules, CA, USA) in conjunction with SYBR Advantage qPCR Premix (639676, TaKaRa Bio). The cycling conditions were 95°C for 30 seconds, followed by 95°C for 5 seconds and 60°C for 30 seconds for up to 40 cycles and dissociation at 95°C for 5 seconds, 60°C for 30 seconds and a final extension with 95°C for 15 seconds. The relative abundance of gene targets was determined by the comparative cycle threshold (CT) number normalized to β-actin. The relative
abundance of miRNA was determined by the comparative CT number normalized to U6. The primers used are shown in Supplementary Table S1.

Western blot analysis

Total cellular protein was collected following lysis in RIPA Lysis Buffer (P0013B, Beyotime Biotech, Beijing, China) with PMSF (ST506, Beyotime Biotech) on ice and centrifugation for 10 minutes at 12,000 rpm at 4°C. The supernatant was then transferred to a new tube and was denatured in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) loading buffer (P0015, Beyotime Biotech) with heating at 100°C for 10 minutes. The supernatant was then stored at −80°C. The proteins were separated by 12% SDS-PAGE. After electrophoresis, the separated proteins were transferred to 0.45-µm polyvinylidene difluoride membranes (INIP86300, Merck Millipore, Burlington, MA, USA) using a wet transfer method. Nonspecific sites were blocked with 5% nonfat milk in tris-Buffered Saline-Tween 20 (25 mM Tris [pH 7.5], 150 mM NaCl and 0.1% Tween 20) for 2 hours, and the blots were incubated with primary antibodies, including anti-β-actin (4970L, Cell Signaling Technology, Danvers, MA, USA), anti-GATA3 (ab106625, Abcam, Cambridge, England), anti-T-bet (ab91109, Abcam), anti-PPM1a (ab14824, Abcam), and Phospho-Stat Antibody Sampler Kit (9914, Cell Signaling Technology), Stat antibody sampler kit (9939, Cell Signaling Technology), Phospho-AKT (Ser473) (4060, Cell Signaling Technology), and AKT antibody (4691, Cell Signaling Technology) overnight at 4°C. HRP-linked Anti-rabbit IgG and HRP-linked anti-mouse IgG, (7074, 7076, Cell Signaling Technology) were used to detect antibody binding. After treating the membranes with Immobilon Western Chemiluminescent HRP Substrate (WBKLS0500, Merck Millipore), the binding of specific antibodies was visualized using a Syngene G:BOX Imaging System and was analyzed with ImageJ.

Biotin-miRNA pull-down assays

NIH-3T3 cells were seeded in a 10-cm dish at a density that allowed them to grow for 24 hours without reaching complete confluency. A final concentration of Biotin-miR-1165-3p mimics or Biotin-miRNC (GenePharma, Shanghai, China) of 50 µM was used to transfect NIH-3T3 cells using the standard protocol for HiEff Trans™ Liposomal Transfection Reagent (40802ES03, YEASEN, Shanghai, China). Forty-eight hours after washing twice with ice-cold PBS and cross-linking in a UV cross-linker at 1,200 mJ/cm² for 2 minutes, the cells were lysed in cell lysis buffer (9803S, Cell Signaling Technology) supplemented with a protease inhibitor cocktail (539134, Merck Millipore) for 20 minutes, after which the lysates were sonicated for 2 minutes at 20% amplitude. Lysates were cleared of cell debris by centrifugation at 13,000 rpm for 10 minutes. For a 10-cm plate, 50 µL of Dynabeads M-280 Streptavidin beads (11205D, Thermo Fisher Scientific) were activated according to the manufacturer’s protocol. The beads were blocked with 10 µg/mL RNase-free BSA and yeast transfer RNA (AM7119, ThermoFisher Scientific) for 3 hours at 4°C. After washing the beads with cell lysis buffer, lysates that had previously been prepared were incubated with the blocked beads and were incubated at 4°C overnight, followed by RNA extraction. Total RNA bound to the streptavidin beads was extracted by using an miRNeasy Mini Kit. The amount of pull-down RNA was quantified by RNA-seq.

RNA-seq and data analysis

RNA from biotin-tagged miR-1165-3p mimics or miRNC pull-down assays were subjected to RNA deep sequencing, which was performed by the Ribobio Institute (Guangzhou, China). RNA-seq libraries were prepared using an Illumina RNA-Seq Preparation Kit and sequenced by a HiSeq3000 PE150 (Illumina, San Diego, CA, USA). TopHat output data were analyzed by Cufflinks to estimate RPKM values for known transcripts and to analyze differentially
expressed transcripts. Differentially expressed genes were selected by the logFC > 1 and P value < 0.05.

Bioinformatics analysis
The target genes of miR-1165-3p were predicted using miRanda, PITA and RNAhybrid. To create a visual representation, we further screened and sorted the predicted results and used the predicted results of the 3 software programs as the candidate target bases of the miRNA. The intersection of the candidate mRNAs and the different mRNAs in RNA-seq were determined, and a miRNA-mRNA regulatory network was constructed using Cytoscape.

Transfection
During the differentiation period, Th2 cells were transfected with either a PPM1A overexpression vector (MR205969, OriGene Tech, Rockville, MD, USA) or an empty vector (PS100001, OriGene Tech) using a Neon Transfection system (MPK1025, Thermo Fisher Scientific) on days 1 and 3. Transfections were performed using 2–3 × 10^7 cells/mL in 10 µL “R buffer” with 1 µg plasmid. The optimal setting used was 1,550 V with three 10-minute pulses. After transfection, the mRNA and protein expression levels of PPM1A were determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blotting on day 5, respectively.

Dual-luciferase reporter assay
3′ UTR dual-luciferase plasmids, including mutant plasmids, were constructed using plenti-UTR-Dual-Luc (Abm, Zhengjia, China). MiR-1165-3p mimics and the relevant control were purchased from GenePharma. One day before transfection, HEK293T cells were plated on 24-well plates. Blank plasmids and reporter constructs (50 ng) containing the mutant or wild-type 3′ UTR of PPMIA or IL-13 were cotransfected with miR-1165-3p into cells according to the manufacturer’s protocol of Hieff Trans™ Liposomal Transfection Reagent. Luciferase activities were assessed using a dual-luciferase reporter assay system (E1910, Promega, Madison, WI, USA) according to the manufacturer’s instructions at 48 hours after transfection.

Patient selection and clinical data
Based on GINA 2017 and the Guidelines for the Prevention and Control of Bronchial Asthma of China 2016, a total of 20 asthmatic patients were recruited from the Department of Respiratory and Critical Care Medicine at the First Affiliated Hospital of Nanjing Medical University between September and November of 2017. A total of 18 healthy subjects without current or previous asthma or allergic disease diagnoses were also recruited. Written informed consent was obtained from all of the subjects, and this study was approved by the Ethics Committee of the First Affiliated Hospital of Nanjing Medical University (2017-SR-298). Venous blood samples (approximately 5 mL) were collected in anticoagulant tubes. Samples were then centrifuged at 2,000 rpm for 10 minutes; the plasma was collected and stored at −80°C for future use.

Statistical analysis
The data are expressed as the mean ± standard error of the mean. All of the tests were performed using Prism 7.00 (GraphPad Software, San Diego, CA, USA). The results were analyzed by one-way analysis of variance for repeated measures, followed by Dunnett’s post hoc test to determine differences among multiple comparisons. The significance level was set at P < 0.05.
RESULTS

MiR-1165-3p inhibits Th2 differentiation in vitro

Naive CD4+ T cells purified from the spleens of mice were cultured for Th-cell differentiation as described before. Upon infection with lentivirus-encoding miR-1165-3p (Supplementary Fig. S1), miR-1165-3p was significantly increased in Th2 cells (Fig. 1A). To analyze the effects of miR-1165-3p on Th2 differentiation, we first measured the cytokines produced and released by CD4+ T cells. As shown in Fig. 1B and C, type 1 cytokines (IFN-γ and IL-12) were increased and type 2 cytokines (IL-4, IL-5 and IL-13) were decreased, suggesting that miR-1165-3p elevation was accompanied by reduced Th2 differentiation. To further determine whether

![Graphs and images showing cytokine levels and mRNA expression](https://e-aair.org)
the master transcription factors T-bet and GATA-3 were involved, we quantified T-bet and GATA-3 using qRT-PCR, western blotting and intracellular flow cytometry (Fig. 1D and F). As expected, miR-1165-3p significantly increased T-bet expression and decreased GATA-3 expression. Overall, miR-1165-3p suppressed type 2 cytokines (IL-4, IL-5 and IL-13) and the Th2 master transcription factor GATA-3, implying that miR-1165-3p was a negative modulator of Th2 differentiation.

Down-regulation of miR-1165-3p promotes Th2 differentiation

As miR-1165-3p was increased in Th1 cells, we wondered whether down-regulation of miR-1165-3p would antagonize Th1 differentiation and therefore favor Th2 differentiation. As expected, lentivirus-encoding short hairpin RNA for miR-1165-3p significantly decreased miR-1165-3p in Th1 cells (Fig. 2A). In addition to decreased miR-1165-3p, type 1 cytokines (IFN-γ and IL-12) were reduced, and type 2 cytokines (IL-4, IL-5 and IL-13) were up-regulated as measured by qRT-PCR (Fig. 2B) and verified by ELISA (Fig. 2C). Accordingly, the Th1 master transcription factor T-bet was significantly decreased and the Th2 master transcription factor GATA-3 was significantly increased (Fig. 2D and F), implying that miR-1165-3p may promote Th1 cell differentiation and suppress Th2-cell differentiation.

MiR-1165-3p alleviates allergic inflammation in asthma

Given the critical role of type 2 immune responses in the pathogenesis of asthma, we next investigated whether miR-1165-3p could alter type 2 inflammation in airways in vivo. We designed a LentimiRa-GFP-miR-1165-3p virus (enhancer) or Lenti-III-mir-GFP control virus (blank), and approximately 5 x 10^7 lentiviral particles were injected through the tail vein into a mouse on day 7 in an HDM acute asthma model (Fig. 3A). Compared to control virus, enhancer virus significantly increased miR-1165-3p in the lung (Fig. 3B). In parallel, airway hyper-responsiveness and total serum IgE were significantly decreased in the asthma model mice treated with miR-1165-3p enhancer virus (Fig. 3C and D). Furthermore, eosinophils infiltration in BALF (Fig. 3E) and eotaxin-1 was also decreased in the asthmatic mouse treated with miR-1165-3p enhancer lentivirus (Fig. 3F). Inflammatory response in the lung parenchyma (Fig. 3G) was comparably significantly alleviated in the mouse treated with miR-1165-3p enhancer lentivirus. Moreover, goblet cell hyperplasia and mucus secretion in the lumen of the bronchioles were significantly relieved (Fig. 3H). In summary, with the up-regulation of miR-1165-3p in the lung, type 2 pulmonary inflammation in a mouse model of acute asthma was significantly alleviated, suggesting that miR-1165-3p might negatively regulate the differentiation of Th2 cells.

MiR-1165-3p represses Th2 cells in vivo

To explore whether Th2 cells were inhibited in the asthma model mice treated with miR-1165-3p enhancer lentivirus, we quantified cytokines in BALF and infiltrated CD4+ T cells in the lung parenchyma. As shown in Fig. 4A, miR-1165-3p significantly decreased the type 2 cytokines IL-4, IL-5 and IL-13. Intracellular transcription factor staining revealed that CD4+ GATA-3+ (Th2) cells were significantly reduced from the allergic airway inflammation mouse model infected with miR-1165-3p enhancer lentivirus, while CD4+ T-bet+ (Th1) cells were increased (Fig. 4B). In summary, miR-1165-3p suppressed Th2 cell differentiation in vivo and in an allergic airway inflammation mouse model.

PPM1A and IL-13 are the direct targets of miR-1165-3p

To identify mRNAs directly targeted by miR-1165-3p, we used a biotinylated miRNA-mRNA pull-down approach. Considering cell number and transfection efficiency, we took NIH-
NIH-3T3 cells were transfected with biotinylated miR-1165-3p or negative control. RNAs pulled down by biotinylated miR-1165-3p or the negative control miRNA were subjected to RNA-seq analysis. Compared with the negative control, 159 mRNAs (including IL-13, PPM1A and other potential targets) were enriched in the bio-miR-1165-3p pull-down (Fig. 5A and B). The intersection of different bioinformatics analyses suggested that PPM1A was significantly associated with miR-1165-3p (Fig. 5C).

IL-13 had a putative binding site for miR-1165-3p within its 3′-UTR, which was further confirmed using a luciferase reporter assay (Fig. 5D). As IL-13 was elevated in asthma and Th2 cells, PPM1A was also increased in the mouse model of allergic airway inflammation (Fig. 5E).

Fig. 2. MiR-1165-3p silencing promoted Th2 differentiation. CD4⁺ T cells were cultured in Th1-cell conditions for 5 days and were infected with miR-1165-3p silencer or scramble lentivirus on day 1. (A) MiR-1165-3p significantly decreased in Th1 cells infected with lentivirus-encoding short hairpin RNA for miR-1165-3p (silencer) (B-C) analysis of type 1 cytokines (IFN-γ and IL-12) and type 2 cytokines (IL-4, IL-5 and IL-13). (D-F) The Th1 and Th2 master transcription factors T-bet and GATA-3 were measured by qRT-PCR, western blotting and intracellular flow cytometry. Data are representative of independent experiments with similar results. (n = 3–6).

MiR-1165-3p, microRNA-1165-3p; Th, T helper type; IFN, interferon; IL, interleukin; qRT-PCR, quantitative reverse transcription polymerase chain reaction; MFI, mean fluorescence intensity.

*P < 0.05; †P < 0.01.
and in vitro Th2 cells (Fig. 5F). In the luciferase reporter assay, cotransfection with the luciferase construct (containing the 3’-UTR of PPM1A) and the miR-1165-3p mimic resulted in a decrease in luciferase signal compared to mutant plasmids or empty plasmids (Fig. 5G), implying that PPM1A was one of the direct targets of miR-1165-3p. Furthermore, PPM1A was significantly reduced in Th2 cells infected with miR-1165-3p enhancer lentivirus (Fig. 5H and I). Collectively, IL-13 and PPM1A were direct targets of miR-1165-3p in Th2 differentiation.
PPM1A regulates Th2 differentiation via STAT and AKT signaling

PPM1A is a type of Ser/Thr protein phosphatase, which negatively regulate STAT1 and AKT during the differentiation of bone marrow monocytes to macrophages. Therefore, Th2 cells were transfected with PPM1A-ORF, which increased PPM1A expression. Furthermore, the phosphorylation of STAT1 and AKT was repressed. In contrast, STAT5 phosphorylation was increased. STAT2, STAT3 and STAT6 showed no difference in the Th2 cells electro-transfected with PPM1A coding plasmid or blank control plasmid (Fig. 6A).

To better explore the roles of miR-1165-3p and PPM1A in Th2 differentiation, we co-transfected Th2 cells with miR-1165-3p enhancer lentivirus and PPM1A-ORF plasmid (Fig. 6B). PPM1A overproduction in Th2 cells infected with miR-1165-3p lentivirus at least partially restored the expression of the master transcription factor GATA-3, further suggesting that PPM1A may be required for the differentiation of Th2 cells. To add the clinical significance of our study, we sampled plasma from allergic asthmatic patients, in which total IgE was significantly increased (Supplementary Fig. S2). In these allergic asthmatic patients, PPM1A was also elevated (Fig. 6C), which may further support the importance of PPM1A for Th2 cells and the pathogenesis of allergic asthma.

DISCUSSION

The functions of miRNAs in Th2 differentiation in allergic asthma remain largely elusive. In this study, we reported that the over-expression of miR-1165-3p decreased the production of IL-4, IL-5 and IL-13. Furthermore, GATA-3 was reduced in CD4⁺ cells infected with lentivirus-encoding miR-1165-3p. In contrast, upon the down-regulation of miR-1165-3p, type 2 cytokines (IL-4, IL-5 and IL-13) and the Th2 master transcription factor GATA-3 were...
increased. In the HDM-induced allergic airway inflammation model, miR-1165-3p lentivirus treatment relieved airway hyper-responsiveness, total IgE and pulmonary inflammation. Moreover, miR-1165-3p suppressed Th2 differentiation in vivo. MiR-1165-3p was shown
MiR-1165-3p Suppresses Th2 in Allergy

Fig. 6. PPM1A regulated Th2 differentiation through STAT and AKT signaling pathways. (A) PPM1A expression was determined by western blot analysis in cells transfected with either pCMV6-entry (vector) or PPM1A-ORF. STAT and AKT were analyzed by western blot. β-actin was included as an internal control (n = 3–6). PPM1A-ORF vs. vector; (B) Flow cytometry analysis of GATA-3 expression or T-bet expression in Th2-polarized CD4+ T cells infected with miR-1165-3p enhancer lentivirus and/or transfected with PPM1A-ORF. Data are representative of independent experiments with similar results (n = 3–6) (C) PPM1A in the plasma of the asthmatic and control groups was quantified (n = 18–20), PPM1A, protein phosphatase, Mg2+/Mn2+-dependent TA; STAT, signal transducer and activator of transcription; NS, not significant; miR-1165-3p, microRNA-1165-3p. *P < 0.05, †P < 0.01, ‡P < 0.001 vs. blank group; §P < 0.05, ‡P < 0.01, enhancer + PPM1A-ORF vs. enhancer + vector.

to target IL-13 and PPM1A, which regulated Th2 polarization via STAT1, STAT5 and AKT signaling pathways. Ectopic expression of PPM1A in CD4+ T cells over-expressing miR-1165-3p promoted Th2 differentiation. In addition, PPM1A was significantly elevated in asthmatic patients. Combined with our previous observation that miR-1165-3p was a diagnostic marker for asthma,12 these results suggested that miR-1165-3p targeted IL-13 and PPM1A to control Th2 differentiation and pulmonary inflammation in asthma.

The prevalence of asthma has increased considerably in the past 3 decades.30 Though heterogeneity in asthma phenotypes has been recognized, allergic asthma is the most common type.31 For almost 3 decades, the Th1 and Th2 paradigm has provided a productive model for exploring the pathogenesis of allergic diseases.12 Though Th9,34 Th17,34 Th22,
Tfh, Treg and other non-Th2 CD4+ cells may contribute to asthma development, Th2 cells still orchestrate the type 2 immune response, leading to IgE-primed sensitization, airway hyper-reactivity and eosinophilia. Therefore, a better understanding of the mechanisms behind the differentiation of Th2 in asthma is a prerequisite for Th2-based therapy for allergic asthma and other diseases.

In a previous study, we reported that miR-1165-3p was lower in Th2 cells. Therefore, we transfected Th2 cells with lentivirus-encoding miR-1165-3p. With elevated miR-1165-3p, type 2 cytokines (IL-4, IL-5 and IL-13) were decreased in Th2 cells; furthermore, the Th2 master transcription factor GATA-3 was also suppressed, suggesting that miR-1165-3p down-regulated GATA-3-dependent Th2 differentiation. Moreover, in the HMD-induced allergic airway inflammation model, ectopic expression of miR-1165-3p suppressed Th2 pulmonary inflammation, suggesting that miR-1165-3p may be a potential candidate for therapeutic intervention against allergic airway inflammation.

To explore the direct targets of miR-1165-3p, we used biotin-miRNA pull-down and RNA-seq, in which 159 mRNAs were enriched in the Bio-miR-1165-3p pull-down compared to the RNA pull-down with a biotinylated negative control. Using the combination of bioinformatics analysis and a luciferase reporter assay, we further demonstrated that IL-13 and PPM1A were direct targets of miR-1165-3p. As a fundamental mediator of allergic asthma, IL-13 mediates eosinophilic infiltration, mucus secretion and airway hyper-responsiveness. In addition, IL-13 mediates tissue fibrosis; therefore, miR-1165-3p-dependent degradation of IL-13 may alleviate chronic asthma as well as acute asthma.

In genome-wide association studies (GWAS), PPM1A was a risk factor for allergic rhinitis. In resting CD4+ T cells, PPM1A is relatively high. Compared to Th1 cells, PPM1A transcripts were higher in Th2 cells, suggesting that PPM1A may regulate Th2 differentiation. In fact, PPM1A is a negative threshold regulator of type 1 macrophage differentiation through AKT or STAT1, establishing it as a key phosphatase that orchestrates cell polarization. The direct association between PPM1A and IL-13 remains elusive in the literature. However, PPIβ augmented IL-5 and IL-13 expression in IL-2 stimulated T cells. In contrast, protein tyrosine phosphatase Shp-1 is a negative modulator of IL-13, implying that protein phosphatase may be involved in IL-13 and Th2 differentiation. Collectively, our results showed that PPM1A activated STAT5, and inhibited AKT and STAT1, which cooperatively promoted Th2 differentiation.

The clinical observation that plasma PPM1A was higher in asthmatic patients further supported the importance of PPM1A in Th2 allergic asthma. Previously, we have showed that miR-1165-3p was lower in Th2 cells or CD4+ T cells from asthmatic mice and that miR-1165-3p was paradoxically increased in the sera from clinical asthmatic patients. Extracellular miRNAs may not necessarily reflect the abundance of miRNAs in the cell of origin. For example, miR-141 was up-regulated in the plasma of prostate cancer patients and was down-regulated in prostate cancer cell lines. Patients with asthma were given medications to control symptoms, which may influence the release of miR-1165-3p from cells into blood. Moreover, expression levels of miRNAs may be not associated with their regulatory activities. For example, miR-34c-5p and its target STAB2 were both down-regulated in CRC tissues, implicating that interactions between miRNAs and their targets may be more intricate. The mechanisms for the discrepancy of miR-1165-3p and the target PPM1A in asthma warrant further research. Indeed, our study was hampered by the inadequate clarifications in the expression and the regulation of miR-1165-3p.
In summary, we investigated the role of miR-1165-3p in the progression of allergic airway inflammation and its potential underlying mechanism to regulate Th2 differentiation. Our results provided direct evidence that miR-1165-3p inhibits the Th2 response of allergy through the STAT and AKT signaling pathways by targeted inhibition of PPM1A, shedding the light that miR-1165-3p and PPM1A may be effective targets for the prevention and treatment of allergic asthma and associated diseases.

ACKNOWLEDGMENTS

This research was supported by the Precision Medicine Research of The National Key Research and Development Plan of China (2016YFC0905800), National Natural Science Foundation of China (81671563, 81770031, 81700028), Natural Science Foundation of Jiangsu Province (BK20171501, SBK2017080, BK20181497), Jiangsu Province’s Young Medical Talent Program, China (QNRC2016600) and Jiangsu Provincial Health and Family Planning Commission Foundation (Q2017001).

SUPPLEMENTARY MATERIALS

Supplementary Table S1
Primers in the study

Supplementary Fig. S1
The transfection efficiency of lentiviral on CD4\(^+\) T cells. CD4\(^+\) T cells were cultured in T-helper type 2 cell conditions for 5 days and were transfected with LentimiRa-GFP-miR-1165-3p viral on day 1. GFP was used as a marker for miR-1165-3p overexpression.

Supplementary Fig. S2
The total IgE in the plasma of the asthmatic and control groups. The IgE levels in the plasma was measured using ELISA kit (n = 18–20).

REFERENCES

1. Wenzel SE. Asthma phenotypes: the evolution from clinical to molecular approaches. Nat Med 2012;18:716-25.
PUBMED | CROSSREF

2. Malmhäll C, Alawieh S, Lu Y, Sjöstrand M, Bossios A, Eldh M, et al. MicroRNA-155 is essential for T(H)2-mediated allergen-induced eosinophilic inflammation in the lung. J Allergy Clin Immunol 2014;133:1429-38, 1438.e1-1438.e7.
PUBMED | CROSSREF

3. Barnes PJ. The cytokine network in asthma and chronic obstructive pulmonary disease. J Clin Invest 2008;118:3546-56.
PUBMED | CROSSREF
4. Jenner RG, Townsend MJ, Jackson I, Sun K, Bouwman RD, Young RA, et al. The transcription factors T-bet and GATA-3 control alternative pathways of T-cell differentiation through a shared set of target genes. Proc Natl Acad Sci U S A 2009;106:17876-81.

5. Afkarian M, Sedy JR, Yang J, Jacobson NG, Cereb N, Yang SY, et al. T-bet is a STAT1-induced regulator of IL-12R expression in naïve CD4+ T cells. Nat Immunol 2002;3:549-57.

6. Zhu J, Cote-Sierra J, Guo L, Paul WE. Stat5 activation plays a critical role in Th2 differentiation. Immunity 2003;19:739-48.

7. Ambros V. The functions of animal microRNAs. Nature 2004;431:350-5.

8. Maneechotesuwan K. Role of microRNA in severe asthma. Respir Investig 2019;57:9-19.

9. Simpson LJ, Patel S, Bhakta NR, Choy DF, Brightbill HD, Ren X, et al. A microRNA upregulated in asthma airway T cells promotes TH2 cytokine production. Nat Immunol 2014;15:1162-70.

10. Pua HH, Steiner DF, Patel S, Gonzalez JR, Ortiz-Carpena JF, Kageyama R, et al. MicroRNAs 24 and 27 suppress allergic inflammation and target a network of regulators of T helper 2 cell-associated cytokine production. Immunity 2016;44:821-32.

11. Liu Y, Chen Z, Xu K, Wang Z, Wu C, Sun Z, et al. Next generation sequencing for miRNA profile of spleen CD4+ T cells in the murine model of acute asthma. Epigenomics 2018;10:1071-83.

12. Wu C, Xu K, Wang Z, Chen Z, Sun Z, Yu W, et al. A novel microRNA miR-1165-3p as a potential diagnostic biomarker for allergic asthma. Biomarkers 2019;24:56-63.

13. Draijer C, Robbe P, Boorsma CE, Hylkema MN, Melgert BN. Dual role of YM1+ M2 macrophages in allergic lung inflammation. Sci Rep 2018;8:5105.

14. Takyar S, Vasavada H, Zhang JG, Ahangari F, Niu N, Liu Q, et al. VEGF controls lung Th2 inflammation via the miR-1-Mpl (myeloproliferative leukemia virus oncogene)-P-selectin axis. J Exp Med 2013;210:1993-2010.

15. Boldogh I, Bacsí A, Choudhury BK, Dharajiya N, Alam R, Hazra TK, et al. ROS generated by pollen NADPH oxidase provide a signal that augments antigen-induced allergic airway inflammation. J Clin Invest 2005;115:2169-79.

16. Myou S, Leff AR, Myo S, Boetticher E, Tong J, Meliton AY, et al. Blockade of inflammation and airway hyperresponsiveness in immune-sensitized mice by dominant-negative phosphoinositide 3-kinase-TAT. J Exp Med 2003;198:1573-82.

17. Tumes DJ, Onodera A, Suzuki A, Shinoda K, Endo Y, Iwamura C, et al. The polycomb protein Ezh2 regulates differentiation and plasticity of CD4(+) T helper type 1 and type 2 cells. Immunity 2013;39:819-32.

18. Sekiya T, Yoshimura A. In vitro Th differentiation protocol. Methods Mol Biol 2016;1344:183-91.

19. Chae WJ, Ehrlich AK, Chan PY, Teixeira AM, Henegariu O, Hao L, et al. The Wnt antagonist dickkopf1 promotes pathological type 2 cell-mediated inflammation. Immunity 2016;44:246-58.

20. Tussiwand R, Everts B, Grajales-Reyes GE, Kretzer NM, Ivata A, Bagaićar J, et al. Klf4 expression in conventional dendritic cells is required for Th helper 2 cell responses. Immunity 2015;42:916-28.

21. Awan HM, Shah A, Rashid F, Wei S, Chen L, Shan G. Comparing two approaches of miR-34a target identification, biotinylated-miRNA pulldown vs miRNA overexpression. RNA Biol 2018;15:55-61.

22. Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc 2016;11:1650-67.
23. John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS. Human MicroRNA targets. PLoS Biol 2004;2:e363.

24. Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E. The role of site accessibility in microRNA target recognition. Nat Genet 2007;39:1278-84.

25. Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R. Fast and effective prediction of microRNA/target duplexes. RNA 2004;10:1507-47.

26. Zhang J, Liu Y, Shi G. Gene microarray analysis of expression profiles in Suberoyllanilide hyroxamic acid-treated dendritic cells. Biochem Biophys Res Commun 2019;508:392-7.

27. Steiner DF, Thomas MF, Hu JK, Yang Z, Babiarz JE, Allen CD, et al. MicroRNA-29 regulates T-box transcription factors and interferon-γ production in helper T cells. Immunity 2011;35:169-81.

28. d’Avenia M, Citro R, De Marco M, Veronese A, Rosati A, Visone R, et al. A novel miR-371a-5p-mediated pathway, leading to BAG3 upregulation in cardiomyocytes in response to epinephrine, is lost in Takotsubo cardiomyopathy. Cell Death Dis 2015;6:e1948.

29. Smith SR, Schaaf K, Rajabalee N, Wagner F, Duverger A, Kutsch O, et al. The phosphatase PPM1A controls monocyte-to-macrophage differentiation. Sci Rep 2018;8:902.

30. Kim HY, DeKruyff RH, Uematsu DT. The many paths to asthma: phenotype shaped by innate and adaptive immunity. Nat Immunol 2010;11:577-84.

31. Schatz M, Rosenwasser L. The allergic asthma phenotype. J Allergy Clin Immunol Pract 2014;2:645-8.

32. Maggi E. The TH1/TH2 paradigm in allergy. ImmuneTechnology 1998;3:233-44.

33. Tong R, Xu L, Liang L, Huang H, Wang R, Zhang Y. Analysis of the levels of Th9 cells and cytokines in the peripheral blood of mice with bronchial asthma. Exp Ther Med 2018;15:2480-4.

34. Choy DF, Hart KM, Borthwick LA, Shikotra A, Siddiqui S, et al. TH2 and TH17 inflammatory pathways are reciprocally regulated in asthma. Sci Transl Med 2015;7:301ra129.

35. Leyva-Castillo JM, Yoon J, Geha RS. IL-22 promotes allergic airway inflammation in epicutaneously sensitized mice. J Allergy Clin Immunol 2019;143:619-630.e7.

36. Varricchi G, Harker J, Borriello F, Marone G, Durham SR, Shamji MH. T follicular helper (Tfh) cells in normal immune responses and in allergic disorders. Allergy 2016;71:1086-94.

37. Aron JL, Akbari O. Regulatory T cells and type 2 innate lymphoid cell-dependent asthma. Allergy 2017;72:1148-55.

38. Muehling LM, Lawrence MG, Woodfolk JA. Pathogenic CD4+ T cells in patients with asthma. J Allergy Clin Immunol 2017;140:1523-40.

39. Grüning G, Corry DB, Reibman J, Wills-Karp M. Interleukin 13 and the evolution of asthma therapy. Am J Clin Exp Immunol 2012;1:20-7.

40. Zhu Z, Homer RJ, Wang Z, Chen Q, Geha GP, Wang J, et al. Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J Clin Invest 1999;103:779-88.

41. Ortiz RA, Barnes KC. Genetics of allergic diseases. Immunol Allergy Clin North Am 2015;35:19-44.
43. Lund R, Ahlfors H, Kainonen E, Lahesmaa AM, Dixon C, Lahesmaa R. Identification of genes involved in the initiation of human Th1 or Th2 cell commitment. Eur J Immunol 2005;35:3307-19.
PUBMED | CROSSREF

44. Yamaoka K, Kaminuma O, Kitamura N, Mori A, Tatsumi H, Nemoto S, et al. Protein phosphatase 1 is involved in IL-2-induced IL-5 and IL-13 expression in human T cells. Genes Cells 2012;17:611-8.
PUBMED | CROSSREF

45. Haque SJ, Harbor P, Tahrizi M, Yi T, Williams BR. Protein-tyrosine phosphatase Shp-1 is a negative regulator of IL-4- and IL-13-dependent signal transduction. J Biol Chem 1998;273:33893-6.
PUBMED | CROSSREF

46. Russo F, Di Bella S, Bonnici V, Lagana A, Rainaldi G, Pellegrini M, et al. A knowledge base for the discovery of function, diagnostic potential and drug effects on cellular and extracellular miRNAs. BMC Genomics 2014;15 Suppl 3:S4.
PUBMED | CROSSREF

47. Liang Z, Zhou H, Zheng H, Wu J. Expression levels of microRNAs are not associated with their regulatory activities. Biol Direct 2011;6:43.
PUBMED | CROSSREF

48. Chen QY, Des Marais T, Costa M. Deregulation of SATB2 in carcinogenesis with emphasis on miRNA-mediated control. Carcinogenesis 2019;40:393-402.
PUBMED | CROSSREF