REVIEW

Making the clock tick: the transcriptional landscape of the plant circadian clock [version 1; referees: 2 approved]

James Ronald, Seth J Davis
Department of Biology, University of York, York, YO10 5DD, UK

Abstract
Circadian clocks are molecular timekeepers that synchronise internal physiological processes with the external environment by integrating light and temperature stimuli. As in other eukaryotic organisms, circadian rhythms in plants are largely generated by an array of nuclear transcriptional regulators and associated co-regulators that are arranged into a series of interconnected molecular loops. These transcriptional regulators recruit chromatin-modifying enzymes that adjust the structure of the nucleosome to promote or inhibit DNA accessibility and thus guide transcription rates. In this review, we discuss the recent advances made in understanding the architecture of the *Arabidopsis* oscillator and the chromatin dynamics that regulate the generation of rhythmic patterns of gene expression within the circadian clock.
Introduction

The daily rotation of the Earth generates predictable diurnal changes in light and temperature. Circadian clocks act as endogenous timers to coordinate internal physiological responses to match the predicted environmental condition. The plant circadian clock directly regulates a range of output pathways, which includes hormone signalling, hypocotyl development, metabolism, the floral transition, photosynthesis, and the response to biotic and abiotic stress\(^1\)-\(^3\). Accordingly, plants with an internal clock that matches the external environment (~24 hours) have enhanced photosynthesis and survival compared to plants with a clock that does not match the external environment\(^4\).

Endogenous circadian rhythms are generated through a series of interconnected transcriptional–translational feedback loops, collectively termed the oscillator. Light and temperature signals differentially converge on the plant oscillator through multiple input pathways to provide timing cues in a process termed entrainment\(^5\)-\(^10\). In plants, light signals at dawn are thought to act as the major entraining signal\. This review will discuss the recent advances made in understanding the transcriptional architecture of the plant oscillator and the chromatin dynamics driving rhythmic gene expression.

Overview of the oscillator

At the core of the plant oscillator are the morning-expressed, partially redundant MYB domain transcription factors (TFs) CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY)\(^1\)-\(^10\). CCA1/LHY directly antagonise most clock gene expression through binding to the evening element (EE) motif within the promoter\(^1\)-\(^3\),\(^11\)-\(^13\). One target of CCA1/LHY-repressive activity is the PSEUDO-RESPONSE REGULATOR (PRR) TIMING OF CAB EXPRESSION (TOC1)\(^7\),\(^9\),\(^14\). CCA1/LHY-repressive activity restricts TOC1 expression to a window around dusk. At dusk, TOC1 accumulates and reciprocally represses CCA1/LHY expression in addition to other clock genes\(^15\),\(^16\). This mutual antagonism between CCA1/LHY and TOC1 defines the central loop of the Arabidopsis oscillator\(^17\),\(^18\).

Additional inter-connected loops subsequently regulate the activity of the core loop\(^19\),\(^20\). At dawn, the TFs TEOSINTE BRANCHED CYCLOIDEA-PCF20/22 (TCP20/22) recruit the co-activator LIGHT REGULATED WD 1 (LWD1) to activate CCA1/LHY expression\(^21\). LWD1 and its homolog LWD2 are also required to activate the expression of TOC1 and the related PRR5, PRR7, and PRR9\(^22\). PRR5, PRR7, and PRR9 directly associate with the CCA1/LHY promoter and repress CCA1/LHY expression\(^23\),\(^24\). PRR9, PRR7, and PRR5 are sequentially expressed, generating a wave of repressive activity. PRR9 expression starts at dawn, followed by PRR7 in the late morning and PRR5 in the afternoon\(^25\). This repressive sequence is re-enforced by the CCA1-related MYB TF REVEILLE8 (RVE8) and its associated homologs, RVE6 and RVE4\(^26\). RVE8 binds to the EE within the PRR5, TOC1, and EARLY FLOWERING 4 (ELF4) promoter and activates gene expression by recruiting the co-activators NIGHT LIGHT-INDUCIBLE AND CLOCK REGULATED 1/2 (LNK1/LNK2)\(^27\)-\(^29\). In the evening, the GARP TF LUX ARRHYTHMO (LUX) and the unrelated proteins ELF3 and ELF4 associate to form the evening complex (EC)\(^30\),\(^31\). The EC represses the morning-expressed PRR7 and PRR9 and evening-expressed GIGANTEA (GI) and LUX\(^32\),\(^33\). LUX and ELF3 have also been recently shown to associate with the promoter of LNK1/2, highlighting another potential target of the EC\(^34\). Together, this interconnected network of activators and repressors drives rhythmic gene expression within the plant oscillator.

Chromatin dynamics of the circadian clock

The structure of nucleosomes has a fundamental role in regulating gene expression. A nucleosome is a complex of DNA wound around the histone octamer (two H2A-H2B dimers and a H3-H4 tetramer)\(^35\). Each histone unit can be post-translationally modified through a suite of chromatin-remodelling enzymes to generate what is collectively called the histone code\(^36\). These modifications regulate the accessibility of the DNA through opening or compacting the histone octamer or by providing a binding site for other chromatin-modifying enzymes\(^37\). Modifications associated with transcriptional activation include the acetylation of H3 lysine residues (H3Ac) or tri-methylation of H3K4 (H3K4me3), while repressive markers include the tri-methylation of H3K9 (H3K9me3) and H3K27 (H3K27me3)\(^38\)-\(^40\).

The promoter regions of CCA1, LHY, TOC1, GI, PRR9, and LUX all display diurnal changes in histone modifications. The levels of H3K9Ac, H3K14Ac, H3K56Ac, and H3K4me3 within the gene promoter peak at the time of maximum gene activation\(^41\)-\(^44\). Conversely, as gene expression declines, there is a reduction in H3Ac and demethylation of H3K4me3 and an increase in H3K36me2, modifications associated with transcriptional repression\(^42\). It has also recently been shown that there are global diurnal changes in H3K9Ac, H3K27Ac, and H3S28P in the promoters of genes associated with the circadian clock and sugar signalling\(^43\). Additionally, the association of RVE8 to the TOC1 promoter is associated with hyperacetylation while the association of CCA1 to the TOC1 promoter correlates with hypoacetylation\(^43\),\(^44\). Diurnal post-translational modification of histones thus has a fundamental role in generating the rhythmic patterns of gene expression within the oscillator.

The factors regulating these histone modifications are beginning to be understood. PRR5, PRR7, and PRR9 directly recruit the Groucho/Tup1 co-repressor TOPELESS (TPL) through an ethylene amphiphilic repression (EAR) domain to repress CCA1/LHY expression\(^45\). TPL belongs to a multi-gene family of co-repressors that recruit the histone deacetylase (HDA)19 and/or the closely related HDA6 to facilitate gene silencing\(^47\). Unlike the other PRRs, TOC1 lacks an EAR domain and cannot directly interact with TPL\(^46\). The mechanisms mediating TOC1 repression are therefore unknown. Alongside the PRRs, the EC has also recently been shown to interact with chromatin-remodelling enzymes. ELF3 can co-precipitate with MUT9-like kinase 1–4 (MLK1–4), which promotes the phosphorylation of H3T3\(^48\),\(^49\). H3T3P is associated with heterochromatin formation and gene silencing\(^50\). mlk1–4 single and combination loss-of-function mutants displayed a longer circadian period\(^49\). In contrast, loss of function in ELF3, ELF4, or LUX all display circadian arrhythmicity\(^50\),\(^51\). Thus, the EC may recruit other co-repressors to repress gene expression.
Other chromatin-remodelling enzymes have also been associated with the plant oscillator. The histone acetyltransferase (HAT) TAF1 and the HDA HD1 regulates the acetylation and de-acetylation of the TOC1 and CCA1 promoter, respectively. However, TAF1 and HDA1 loss-of-function mutants had only a small effect on TOC1 and CCA1 expression. Arabidopsis has 12 HATs and 18 HDAs, and within each respective class functional redundancy has been observed. HATs and HDAs are therefore likely to be acting redundantly within the clock. Alongside HATs and HDAs, histone methylases and demethylases have also been implicated within the clock. The H3K4me3 methylase SET DOMAIN GROUP 2 (SDG2/ATRX3) aids clock gene expression and the ability of TOC1 to associate with DNA. The histone demethylase JUMONJI DOMAIN CONTAINING 5 (JMJD5, also referred to as JMJ30) displays diurnal regulation with expression peaking in the evening. JMJD5 mutants have a shortening of circadian period, suggesting that JMJD5 is a regulatory role within the oscillator. Remarkably, Arabidopsis JMJD5 has retained conserved functional activity with its human orthologue, which functions within the mammalian clock. However, the mammalian JMJD5 lacks canonical demethylase activity. Further work is needed to understand the functional activity of JMJD5 and its role within the Arabidopsis clock. It has also been recently shown that 17 different chromatin-remodelling enzymes display diurnal patterns of expression, further intertwining the relationship between the clock and chromatin remodelers. In summary, the concerted activities of a broad range of histone-modifying enzymes are required within the clock to facilitate the transcriptional regulatory activity of the plant oscillator.

Conclusions and perspectives

In recent years, much progress has been made in connecting the individual components of the oscillator into an interconnected transcriptional network. However, many questions still persist over the mechanisms of transcriptional regulation. The association of RVE8 to the TOC1 promoter correlates with hyperacetylation, but neither RVE8 nor LNK1/2 have domains that could recruit HAT directly. The repressive mechanisms of the core components CCA1/LHY and TOC1 are also poorly understood. TOC1 has been recently shown to co-operate PHYTOCHROME INTERACTING FACTOR 3 (PIF3) target promoters and inhibit PIF3-mediated gene activation. However, whether this is achieved by passively inhibiting HAT recruitment or by actively recruiting co-repressors through an unidentified repression domain is unknown. It also remains unclear whether CCA1/LHY repress gene expression passively or actively, with both mechanisms being proposed in a temporal-dependent manner. Furthermore, CCA1 and LHY are often grouped together and viewed as a joint operator within the clock. However, CCA1 and LHY have been shown to have distinct roles within the clock. Future work could investigate the extent of functional overlap between CCA1/LHY.

One noticeable shortage in the plant clock when compared to the mammalian or fungal circadian clock are transcriptional activators. CCA1/LHY, TOC1, and the plant-specific protein GI were all proposed to act as transcriptional activators within the oscillator. However, these have now been shown to be an indirect relationship or an effect caused by the mutant background used. In eukaryotes, the default state of gene expression is often one of a repressive nature, so transcriptional activators would be expected within the oscillator.

The discovery of the RVE8/LNKs and the TCP/LWD complex has provided some answers to the mechanisms of transcriptional activation within the oscillator. However, recent mathematical modelling of the oscillator that incorporated RVE8 has shown a non-reliance of the oscillator on transcriptional activation. The activation of the oscillator genes could be sourced externally. The transcript induction of CCA1, LHY, GI, PRR9, PRR7, LNK1, LNK2, ELF3, and ELF4 are all positively regulated by light. Additionally, the expression of LUX, PRR7, and PRR9 is activated in a temperature-dependent manner. Thus, external environmental signals may participate in gene activation within the clock, while the repressive circuitry of the clock acts to antagonise and attenuate the external gene activation pathways. What is notable in this is the finding that a large proportion of transcription factors are rhythmic and a subset of those can modulate clock parameters. Together, it appears that known activators within the clock act to fine-tune prevailing environmental antagonism as a form of signal integration.

Transcriptional regulators and the associated chromatin landscape governing transcriptional regulation are only one level nestled within a multi-layered regulatory network. Post-translational modifications, nucleocytoplasmic partitioning, RNA splicing, and protein degradation all have their own regulatory activity are only one level nestled within a multi-layered regulatory network. Post-translational modifications, nucleocytoplasmic partitioning, RNA splicing, and protein degradation all have their own regulatory activity are only one level nestled within a multi-layered regulatory network. Post-translational modifications, nucleocytoplasmic partitioning, RNA splicing, and protein degradation all have their own regulatory activity.

Competing interests

The authors declare that they have no competing interests.

Grant information

Circadian work in the SJD group is currently funded by the BBSRC awards BB/M000435/1 and BB/N018540/1. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Acknowledgements

This work was supported by the University of York and a BBSRC White Rose DTP Studentship in Mechanistic Biology (JR).
Lu SX, Knowles SM, Andronis C, Sanchez A, Shin J, Davis SJ: Arabidopsis TOC1 is a photic oscillator: the photosynthesis, growth, survival, and competitive advantage. Proc Natl Acad Sci U S A. 2012; 109(23): 9456–61.

Wu JF, Tsai HL, Joanito I, Huang W, Pérez-García P, Pokhilko A, Gendron JM, Pruneda-Paz JL, Doherty CJ, Greenham K, McClung CR: Rethinking transcriptional activation in the circadian clock differentially integrates perception of photic vs. thermal environment. Science. 2016; 353(6299): 840–6.

Abiatic stress and the plant circadian clock. Integrating circadian dynamics with environmental memory from a circadian clock. PLoS Genet. 2011; 7(2): e1001350.

Nakamichi N, Kiba T, Henriques R, et al.: PSEUDO-RESPONSE REGULATORS 9, 7, and 5 are transcriptional repressors in the Arabidopsis circadian clock. Plant Cell. 2010; 22(3): 594–605.

Hsu PY, Devosky UT, Hamer SL: Accurate timekeeping is controlled by a cycling activator in Arabidopsis. eLife. 2013; 2: e00473.

Rawat R, Takahashi N, Hsu PY, et al.: REVESL8 and PSEUDO-RESPONSE REGULATORS form a negative feedback loop within the Arabidopsis circadian clock. PLoS Genet. 2011; 7(3): e1001350.

Farinas B, Mas P: Functional implication of the MYB transcription factor RVE-LCL5 in the circadian control of histone acetylation. Plant J. 2011; 66(2): 318–29.

Ohto T, Michael VD, Luan JM, et al.: EARLY FLOWERING2: an activator that regulates early flowering through light and clock signaling networks. Proc Natl Acad Sci U S A. 2013; 110(23): 9410–5.

Farinas DA, Helfer A, Hamilton EE, et al.: The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature. 2011; 478(7366): 398–402.

Herrero E, Koimos E, Bujdosó N, et al.: EARLY FLOWERING, recruitment of EARLY FLOWERING3 in the nucleus sustains the Arabidopsis circadian clock. Plant Cell. 2012; 24(2): 428–43.

Koimos E, Nowak M, Werner M, et al.: Integrating ELF4 into the circadian system through combined structural and functional studies. HFSP J. 2009; 3(5): 350–66.

Dixon LE, Knox K, Kozma-Bognár L, et al.: Temporal repression of core circadian genes is mediated through EARLY FLOWERING3 in Arabidopsis. Curr Biol. 2011; 21(2): 120–5.

Koimos E, Herrero E, Bujdosó N, et al.: A reduced-function allele reveals that EARLY FLOWERING3 repressive action on the circadian clock is modulated by phytochrome signals in Arabidopsis. Plant Cell. 2011; 23(9): 3230–46.

Mizoguchi T, Wheatley K, Hanzawa Y, et al.: LHY and CCA1 are partially redundant genes required to maintain circadian rhythms in Arabidopsis. Dev Cell. 2002; 2(5): 629–41.

Abadí D, Yanovsky MJ, Más P, et al.: Critical role of CCA1 and LHY in maintaining circadian rhythmicity in Arabidopsis. Curr Biol. 2002; 12(9): 757–61.
chromatin structure and the Arabidopsis biological clock. Plant Cell. 2007; 19(7): 2111–23. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

42. Malapeira J, Khatova LC, Mas P: Ordered changes in histone modifications at the core of the Arabidopsis circadian clock. Proc Natl Acad Sci U S A. 2012; 109(2): 21540–5. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

43. Song H, Noh YS: Rhythmic oscillation of histone acetylation and methylation at the Arabidopsis central clock loci. Mol Cells. 2012; 34(3): 279–87. Published Abstract | Publisher Full Text | Free Full Text

44. Hemmes H, Henriques R, Jang IC, et al.: Circadian clock regulates dynamic chromatin modifications associated with Arabidopsis CCA1/LHY and TOC1 transcriptional rhythms. Plant Cell Physiol. 2012; 53(12): 2016–29. Published Abstract | Publisher Full Text | Free Full Text

45. Baerenfaller K, Shu H, Hirsch-Hoffmann M, et al.: Diurnal changes in the histone H3 signature H3K9ac/H3K27ac/H3S28p are associated with diurnal gene expression in Arabidopsis. Plant Cell Environ. 2016; 39(11): 2557–69. Published Abstract | Publisher Full Text | Free Full Text

46. Wang L, Kim J, Somers DE: Transcriptional corepressor TOPLESS complexes with pseudorepressor regulator proteins and histone deacetylases to regulate circadian transcription. Proc Natl Acad Sci U S A. 2013; 110(2): 761–6. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

47. Zhu Z, Xu F, Zhang Y, et al.: Arabidopsis resistance protein SNC1 activates immune responses through association with a transcriptional corepressor. Proc Natl Acad Sci U S A. 2015; 107(31): 13960–5. Published Abstract | Publisher Full Text | Free Full Text

48. Huang H, Alvarez S, Bindbeutel R, et al.: Identification of Evening Complex Associated Proteins in Arabidopsis by Affinity Purification and Mass Spectrometry. Mol Cell Proteomics. 2016; 15(1): 201–17. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

49. Wang Z, Casas-Mollano JA, Xu J, et al.: Osmotic stress induces phosphorylation of histone H3 at threonine 3 in pericentromeric regions of Arabidopsis thaliana. Proc Natl Acad Sci U S A. 2011; 108(7): 2847–52. Published Abstract | Publisher Full Text | Free Full Text

50. Reed JW, Nappi P, Bastow RM, et al.: Independent action of ELF3 and phyB to control hypocotyl elongation and flowering time. Plant Physiol. 2000; 122(4): 1149–60. Published Abstract | Publisher Full Text | Free Full Text

51. Hicks KA, Albertson TM, Wagner DR: EARLY FLOWERING3 encodes a novel protein that regulates circadian clock function and flowering in Arabidopsis. Plant Cell. 2001; 13(6): 1281–92. Published Abstract | Publisher Full Text | Free Full Text

52. Doyle MR, Davis SJ, Bastow RM, et al.: The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana. Nature. 2002; 419(6902): 74–7. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

53. Hazen SP, Schultz TF, Pruneda-Paz JL, et al.: LUX ARRHYTHMO encodes a Myb domain protein essential for circadian rhythms. Proc Natl Acad Sci U S A. 2000; 102(29): 10367–92. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

54. Zhou C, Labbe H, Sridha S, et al.: Expression and function of HD2-type histone deacetylases in Arabidopsis development. Plant J. 2004; 38(5): 715–24. Published Abstract | Publisher Full Text | Free Full Text

55. Berhamida M, Berhard C, Servet C, et al.: Arabidopsis GCN5, HD1, and TAF1/HAF2 interact to regulate histone acetylation required for light-responsive gene expression. Plant Cell. 2006; 18(11): 2893–903. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

56. Tanaka M, Kikuchi A, Kamada H: The Arabidopsis histone deacetylases HDA6 and HDA19 contribute to the repression of embryonic properties after germination. Plant Cell. 2008; 14(1): 149–61. Published Abstract | Publisher Full Text | Free Full Text

57. Jones MA, Covington MF, DiTacchio L, et al.: Jumonji domain protein JMJD5 functions in both the plant and human circadian systems. Proc Natl Acad Sci U S A. 2010; 107(50): 21623–8. Published Abstract | Publisher Full Text | Free Full Text

58. Jones MA, Hamer S: JMJD5 Functions in concert with TOC1 in the Arabidopsis circadian system. Plant Signal Behav. 2011; 6(3): 445–8. Published Abstract | Publisher Full Text | Free Full Text

59. Del Rizzo PA, Krishnan S, Tieleman DC: Crystal structure and functional analysis of JMJD5 indicate an alternate specificity and function. Mol Cell Biol. 2012; 32(19): 4044–52. Published Abstract | Publisher Full Text | Free Full Text

60. Lee HG, Lee K, Jang K, et al.: Circadian expression profiles of chromatin remodeling factor genes in Arabidopsis. J Plant Res. 2015; 128(1): 187–99. Published Abstract | Publisher Full Text | F1000 Recommendation

61. Soy J, Leiper P, Gonzalez-Scham N, et al.: Molecular convergence of clock and photosensory pathways through PIF3-TOC1 interaction and co-occupancy of target promoters. Proc Natl Acad Sci U S A. 2016; 113(17): 4870–5. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

62. Gould PD, Locke JC, Larue C, et al.: The molecular basis of temperature compensation in the Arabidopsis circadian clock. Plant Cell. 2006; 18(5): 1177–87. Published Abstract | Publisher Full Text | Free Full Text

63. Partch CL, Green CB, Takahashi JS: Molecular architecture of the mammalian circadian clock. Trends Cell Biol. 2014; 24(2): 90–9. Published Abstract | Publisher Full Text | Free Full Text

64. Baker CL, Lutos JJ, Dunlap JC: The circadian clock of Neurospora crassa. FEMS Microbiol Rev. 2012; 36(1): 95–110. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

65. Locke JC, Koymaz-Bognar L, Gould PD, et al.: Experimental validation of a predicted feedback loop in the multi-oscillator clock of Arabidopsis thaliana. Mol Syst Biol. 2006; 2: 59. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

66. Polkitko A, Fernandez AP, Edwards KD, et al.: The clock gene circuit in Arabidopsis includes a repressor with additional feedback loops. Mol Syst Biol. 2012; 8: 574. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

67. Struhl K: Fundamentally different logic of gene regulation in eukaryotes and prokaryotes. Cell. 1999; 98(1): 1–4. Published Abstract | Publisher Full Text | Free Full Text

68. Covington MF, Panda S, Liu XL, et al.: ELF3 modulates resetting of the circadian clock in Arabidopsis. Plant Cell. 2001; 13(6): 1305–15. Published Abstract | Publisher Full Text | Free Full Text

69. Jiao Y, Yang H, Ma L, et al.: A genome-wide analysis of blue-light regulation of Arabidopsis transcription factor gene expression during seedling development. Plant Physiol. 2003; 133(4): 1490–93. Published Abstract | Publisher Full Text | Free Full Text

70. Tepperman JM, Hudson ME, Khanna R, et al.: Expression profiling of phyB mutant demonstrates substantial contribution of other phytochromes to red-light-regulated gene expression during seedling de-etiolation. Plant J. 2004; 38(5): 725–39. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

71. Ito S, Nakamichi N, Kiba T, et al.: Rhythmic and light-inducible appearance of clock-associated pseudo-response regulator protein PRR9 through programmed degradation in the dark in Arabidopsis thaliana. Plant Cell Physiol. 2007; 48(11): 1644–51. Published Abstract | Publisher Full Text

72. Li G, Siddiqui H, Teng Y, et al.: Coordinated transcriptional regulation underlying the circadian clock in Arabidopsis. Nat Cell Biol. 2011; 13(5): 616–22. Published Abstract | Publisher Full Text | F1000 Recommendation

73. Chow BY, Sanchez SE, Breton G, et al.: Transcriptional regulation of LUX by CBF1 mediates cold input to the circadian clock in Arabidopsis.Curr Biol. 2014; 24(13): 1518–24. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

74. Karayev E, Sellaro L, Legris M, et al.: Heat shock-induced fluctuations in clock and light signaling enhance phytochrome B-mediated Arabidopsis deetiolation. Plant Cell. 2013; 25(5): 2892–906. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

75. Hanano S, Stracke R, Jakoby M, et al.: A systematic survey in Arabidopsis thaliana of transcription factors that modulate circadian parameters. BMC Genomics. 2008; 9: 182. Published Abstract | Publisher Full Text | Free Full Text

76. Herrero E, Davis SJ: Time for a nuclear meeting: protein trafficking and chromatin dynamics intersect in the plant circadian system. Mol Plant. 2012; 5(3): 554–65. Published Abstract | Publisher Full Text | Free Full Text

77. Nohalies MA, Kay SA: Molecular mechanisms at the core of the plant circadian oscillator. Nat Struct Mol Biol. 2016; 23(12): 1061–9. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

78. Staiger D, Shin J, Johannson M, et al.: The circadian clock goes genomic. Genome Biol. 2013; 14(6): 208. Published Abstract | Publisher Full Text | Free Full Text

Page 6 of 7
Open Peer Review

Current Referee Status: ✔ ✔

Editorial Note on the Review Process
F1000 Faculty Reviews are commissioned from members of the prestigious F1000 Faculty and are edited as a service to readers. In order to make these reviews as comprehensive and accessible as possible, the referees provide input before publication and only the final, revised version is published. The referees who approved the final version are listed with their names and affiliations but without their reports on earlier versions (any comments will already have been addressed in the published version).

The referees who approved this article are:

Version 1

1 Shu-Hsing Wu Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
 Competing Interests: No competing interests were disclosed.

1 Xiaodong Xu Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, China
 Competing Interests: No competing interests were disclosed.