Density Functional Theory Analysis of Structural, Electronic, and Optical Properties of Mixed-Halide Orthorhombic Inorganic Perovskites

Hamid M. Ghaithan,* Zeyad. A. Alahmed,* Saif M. H. Qaid, and Abdullah S. Aldwayyan*

ABSTRACT: Inorganic metal-halide perovskites hold a lot of promise for solar cells, light-emitting diodes, and lasers. A thorough investigation of their optoelectronic properties is ongoing. In this study, the accurate modified Becke Johnson generalized gradient approximation (mBJ-GGA) method without/with spin orbital coupling (SOC) implemented in the WIEN2k code was used to investigate the effect of mixed I/Br and Br/Cl on the electronic and optical properties of orthorhombic CsPb-(I1−xBrx)3 and CsPb(Br1−xClex)3 perovskites, while the Perdew–Burke–Ernzerhof generalized gradient approximation (PBE-GGA) method was used to investigate their structural properties. The calculated band gap \(E_g\) using the mBJ-GGA method was in good agreement with the experimental values reported, and it increased clearly from 1.983 eV for CsPbI3 to 2.420 and 3.325 eV for CsPbBr3 and CsPbCl3, respectively. The corrected mBJ + SOC \(E_g\) value is 1.850 eV for CsPbI3, which increased to 2.480 and 3.130 eV for CsPbBr3 and CsPbCl3, respectively. The calculated photoabsorption coefficients show a blue shift in absorption, indicating that these perovskites are suitable for optical and optoelectronic devices.

1. INTRODUCTION

Because of their superior thermal stability compared to their organic–inorganic hybrid counterparts, inorganic perovskites have emerged as one of the most appealing research hotspots in the field of perovskite photovoltaics over the last 5 years.1–3 Perovskite compounds have the chemical formula ABX3, where A is a monovalent cation such as CH3NH3 (MA), HC(NH2)2 (FA), or Cs, B is a divalent cation such as Pb or Sn, and X is an anion such as I, Br, or Cl.4 Inorganic mixed halides have recently been used to create various nanophotonic components due to their electroluminescence in the green5,6 to blue7 optical ranges. The broad tunability of halide perovskites has emerged as promising demonstrations for appealing solar cells, light-emitting diodes (LEDs), and laser applications, with the promising demonstrations for appealing solar cells, light-emitting diodes, and laser applications, with the possibility of manipulating energy-e10
tronic and optical properties of orthorhombic CsPb-(I1−xBrx)3 and CsPb(Br1−xClex)3 perovskites, while the Perdew–Burke–Ernzerhof generalized gradient approximation (PBE-GGA) method was used to investigate their structural properties. The calculated band gap \(E_g\) using the mBJ-GGA method was in good agreement with the experimental values reported, and it increased clearly from 1.983 eV for CsPbI3 to 2.420 and 3.325 eV for CsPbBr3 and CsPbCl3, respectively. The corrected mBJ + SOC \(E_g\) value is 1.850 eV for CsPbI3, which increased to 2.480 and 3.130 eV for CsPbBr3 and CsPbCl3, respectively. The calculated photoabsorption coefficients show a blue shift in absorption, indicating that these perovskites are suitable for optical and optoelectronic devices.

1. INTRODUCTION

Because of their superior thermal stability compared to their organic–inorganic hybrid counterparts, inorganic perovskites have emerged as one of the most appealing research hotspots in the field of perovskite photovoltaics over the last 5 years.1–3 Perovskite compounds have the chemical formula ABX3, where A is a monovalent cation such as CH3NH3 (MA), HC(NH2)2 (FA), or Cs, B is a divalent cation such as Pb or Sn, and X is an anion such as I, Br, or Cl.4 Inorganic mixed halides have recently been used to create various nanophotonic components due to their electroluminescence in the green5,6 to blue7 optical ranges. The broad tunability of halide perovskites has emerged as promising demonstrations for appealing solar cells, light-emitting diodes (LEDs), and laser applications, with the promising demonstrations for appealing solar cells, light-emitting diodes, and laser applications, with the possibility of manipulating energy-e10
tronic and optical properties of orthorhombic CsPb-(I1−xBrx)3 and CsPb(Br1−xClex)3 perovskites, while the Perdew–Burke–Ernzerhof generalized gradient approximation (PBE-GGA) method was used to investigate their structural properties. The calculated band gap \(E_g\) using the mBJ-GGA method was in good agreement with the experimental values reported, and it increased clearly from 1.983 eV for CsPbI3 to 2.420 and 3.325 eV for CsPbBr3 and CsPbCl3, respectively. The corrected mBJ + SOC \(E_g\) value is 1.850 eV for CsPbI3, which increased to 2.480 and 3.130 eV for CsPbBr3 and CsPbCl3, respectively. The calculated photoabsorption coefficients show a blue shift in absorption, indicating that these perovskites are suitable for optical and optoelectronic devices.
Castelli et al. investigated the trends over band gaps for 240 perovskites composed of organic−inorganic cations, Sn and Pb as B-ion, and halides as anions. The optoelectronic properties of mixed inorganic perovskites at the orthorhombic phase (Pnma) have not yet been investigated in detail, particularly the mixed halide from I to Br and Cl. It is advantageous to investigate the optoelectronic properties of mixed orthorhombic (Pnma) inorganic perovskites, which are available at room
temperature and have applications in solar cells, LEDs, and lasers, using the most accurate DFT calculation methods.

Table 1. Theoretical Lattice Parameters \((a, b, \text{ and } c)\), Unit-Cell Volume \(V (\text{Å}^3)\), Pressure Derivatives \(B'\), Bulk Modulus \(B\) (GPa), and Total Energy \(E\) for Mixed-Halide Perovskites. Note: The lattice Parameter, \(c\) has been doubled.

Mixed halide perovskites	\(a\) (Å)	\(b\) (Å)	\(c\) (Å)	\(V(\text{Å}^3)\)	\(B'\)	\(B\) (GPa)	Total energy \(E\) (eV)		
CsPbI\(_3\)	8.93	12.76	17.71	2017.394	4.357	17.85	-800964.3712		
Previous work	8.906\(^{50}\) \((8.8561)\)	12.665\(^{50}\) \((8.577)\)	1903.098	5.448	19.52	-746912.3966			
CsPbI\(_{1.25}\)Br\(_{0.75}\)	8.76	12.50	17.53	1793.199	5.441	20.10	-602776.4668		
CsPbI\(_{1.15}\)Br\(_{0.85}\)	8.58	12.25	17.05	1687.614	6.096	21.35	-638692.1949		
CsPbI\(_{1.05}\)Br\(_{0.95}\)	8.42	12.00	16.72	1586.254	5.799	22.65	-584536.6893		
CsPbBr\(_3\)	8.24	11.74	16.39	8.244\(^{55}\) \((8.208)\)	11.735\(^{55}\) \((11.763)\)	8.1982\(^{55}\) \((8.257)\)	-558781.0674		
Previous work	8.244\(^{55}\) \((8.208)\)	11.735\(^{55}\) \((11.763)\)	1547.011	5.427	23.44	-553010.0061			
CsPbBr\(_{1.75}\)Cl\(_{0.25}\)	8.18	11.64	16.25	8.03	15.87	1482.081	4.866	24.21	-507337.2300
CsPbBr\(_{1.65}\)Cl\(_{0.35}\)	8.02	11.45	15.77	1448.388	5.581	25.66	-481486.4912		
CsPbCl\(_3\)	7.97	11.36	15.83	7.97	15.36	1433.32	5.654	25.62	-481486.4912

Figure 3. Band structure of (a) CsPbI\(_3\), (b) CsPbI\(_{1.25}\)Br\(_{0.75}\), (c) CsPbI\(_{1.15}\)Br\(_{0.85}\), (d) CsPbI\(_{0.75}\)Br\(_{2.25}\), (e) CsPbBr\(_3\), (f) CsPbBr\(_{1.75}\)Cl\(_{0.25}\), (g) CsPbBr\(_{1.65}\)Cl\(_{0.35}\), and (i) CsPbCl\(_3\) obtained using mBJ-GGA potential without/with SOC. The band gap values versus the concentration of Br and then Cl calculated using mBJ, mBJ + SOC, and the corrected mBJ + SOC (j). The black dashed line represents the band structure calculated with mBJ + SOC. The VBM is set as zero.

In this study, the mBJ-GGA method without/with spin orbital coupling (SOC)\(^{57–59}\) was used to look into the impact of halide composition on the electronic and optical properties of mixed...
orthorhombic perovskites $1 \times 1 \times 2 \text{CsPb}(I_{1-x}B_x)_{3}$ and
$
\text{CsPb}(\text{Br}_{1-x}\text{Cl}_x)_{3} \quad (x = 0.00, 0.25, 0.50, 0.75, 1.00), \n$ while the
PBE-GGA method was used to investigate their structural
properties. The mBJ-GGA method demonstrated the evolution
of band structure, optical absorption, and energy band gap (E_g)
with increasing x in CsPb(I$_{1-x}$Br$_x$)$_3$ and
CsPb(\text{Br}_{1-x}\text{Cl}_x)_{3}$. The
lattice constants and E_g were computed and found to be
consistent with previous research.

Furthermore, the effective masses of charge carriers, absorption,
optical dielectric, and reflectivity were precisely calculated.

2. RESULTS AND DISCUSSION

2.1. Optimized Structures. At room temperature, CsPb$_3$
($X = I, Br, Cl$) perovskites have orthorhombic structures with
space group $Pnma$. Using VESTA software, a supercell
$1 \times 1 \times 2$ with 40 atoms was used to simulate
CsPb(I$_{1-x}$Br$_x$)$_3$ and CsPb(\text{Br}_{1-x}\text{Cl}_x)_{3}$. The
starting with an orthorhombic inorganic CsPb$_3$ structure, a supercell
of CsPb(I$_{1-x}$Br$_x$)$_3$ and
CsPb(\text{Br}_{1-x}\text{Cl}_x)_{3}$. As the iodide was gradually replaced
with an appropriate concentration of Br and Cl, the structure of the
perovskite is presented in Tables S1—S9, Supporting
Information.

Figure 1. The structural properties of mixed-halide perovskites
are investigated using first-principles DFT with the PBE-GGA
method, which is implemented in the WIEN2k code. The
structural information is presented in Tables S1—S9, Supporting
Figure 2a–i shows the fitting of total energy as a function of volume using the
Murnaghan equation of state. a supercell
$1 \times 1 \times 2$ with 40 atoms was used to simulate
CsPb(I$_{1-x}$Br$_x$)$_3$ and CsPb(\text{Br}_{1-x}\text{Cl}_x)_{3}$. The
starting with an orthorhombic inorganic CsPb$_3$ structure, a supercell
of CsPb(I$_{1-x}$Br$_x$)$_3$ and CsPb(\text{Br}_{1-x}\text{Cl}_x)_{3}$. As the iodide was gradually replaced
with an appropriate concentration of Br and Cl, the structure of the
perovskite is presented in Tables S1—S9, Supporting
Information. The VBM is primarily derived from
the iodide, whereas there was no signiﬁcant change in the
valence band (VB) for pure CsPb$_3$/CsPbBr$_3$, but the VBM or CBM but only maintains overall load neutrality and
is the change in band gap for the mixed
$\text{CsPb}(I_{1-x}B_x)_{3}$ and $\text{CsPb}(\text{Br}_{1-x}\text{Cl}_x)_{3}$ perovskites, $DE(A)$ is the change in band gap for pure CsPb$_3$/CsPbBr$_3$ and $DE(B)$ is the change in band gap for pure CsPb$_3$/CsPbCl$_3$.

2.2. Electronic Properties. The electronic properties of
mixed-halide perovskites are investigated using the mBJ-GGA
method without/with SOC, which is implemented in the
WIEN2k code. The electronic band structures without/with SOC
follow the high-symmetry Γ-point path $R \rightarrow \Gamma \rightarrow X \rightarrow M$ and Γ as shown in
Figure 3a–i. The SOC had a significant effect on the conduction band (CB) region, with a sharp reduction in
the CBM in CsPb$_3$ to 3.130 eV for CsPbCl$_3$. Figure 3j shows the
Table 2. Band gap E_g (eV) Values for Mixed-Halide Inorganic Perovskites Compared With Previous Experimental and Theoretical Studies

mixed-halide perovskites	mBJ	mBJ + SOC	corrected mBJ + SOC	other DFT (exp.)
CsPbI$_3$	1.983	1.066	1.850	1.831,79(1.75),97,100,101
CsPbI$_{0.75}$Br$_{0.25}$	2.029	1.123	2.064	(2.010)11
CsPbI$_{0.50}$Br$_{0.50}$	2.112	1.151	2.079	1.93,10 (1.97),76,95
CsPbI$_{0.25}$Br$_{0.75}$	2.281	1.343	2.276	(2.17),86 (2.23)11
CsPbBr$_3$	2.420	1.482	2.480	2.32,10 (2.40),40
CsPbBr$_{0.75}$Cl$_{0.25}$	2.623	1.602	2.593	2.670,10
CsPbBr$_{0.50}$Cl$_{0.50}$	2.841	1.815	2.791	2.720,10 (2.800)11
CsPbBr$_{0.25}$Cl$_{0.75}$	3.033	1.973	2.933	(2.940)11
CsPbCl$_3$	3.325	2.182	3.130	3.05,10 (2.91)10,16 (2.78),16 (3.132)11

where $DE(A)_{I_{1-x}B_x}$ is the change in band gap for the mixed
$\text{CsPb}(I_{1-x}B_x)_{3}$ and $\text{CsPb}(\text{Br}_{1-x}\text{Cl}_x)_{3}$ perovskites, $DE(A)$ is the change in band gap for pure CsPb$_3$/CsPbBr$_3$ and $DE(B)$ is the change in band gap for pure CsPb$_3$/CsPbCl$_3$. Table 2 shows that the corrected mBJ-GGA + SOC E_g ranges from 1.850 eV for CsPb$_3$ to 3.130 eV for CsPbCl$_3$. Figure 3j shows the dramatic increase in E_g caused by replacing I with Br, followed by Cl.

The effective masses, m^*_e and m^*_h, were calculated using the equation $m^*_i = \frac{\hbar^2}{\epsilon_i^{\text{eff}}}$ where ϵ_i^{eff} is the effective mass of the electron or hole, $i = e$ or h, and $\epsilon_i^{\text{eff}}(k \rightarrow)$ is the energy dispersion function of the nth band, and $k \rightarrow$ represents the wave vector. The effective masses, m^*_e and m^*_h, without SOC ranged from 0.13579 to 0.23119\hbarm2/eV2 and from 0.07099 to 0.09354\hbarm2/eV2, respectively, and those with SOC ranged from 0.06019 to 0.08938\hbarm2/eV2 and from 0.06828 to 0.08354\hbarm2/eV2, respectively. As indicated by Figure 4, the calculated reduced effective mass $\mu = \frac{m^*_e}{m^*_e + m^*_h}$ without/with SOC increased significantly with increasing Br and Cl concentration in CsPb(I$_{1-x}$Br$_x$)$_3$ and CsPb(\text{Br$_1$Cl$_2$})$_3$ perovskites, but the edges were shifted up, when the VBM was shifted to 0 eV. The partial DOS (PDOS) for the mixed perovskite demonstrates that Cs$^+$ has no effect on the VBM or CBM but only maintains overall load neutrality and structural stability.

3.3. Density of States. Figure 5 shows that the total density of states (TDOS) remained unchanged as the concentration (x) increased from 0.00 to 1.00 of Br and Cl in CsPb(I$_{1-x}$Br$_x$)$_3$ and
CsPb(\text{Br$_1$Cl$_2$})$_3$ perovskites, but the edges were shifted up, when the VBM was shifted to 0 eV. The partial DOS (PDOS) for the mixed perovskite demonstrates that Cs$^+$ has no effect on the VBM or CBM but only maintains overall load neutrality and structural stability.
The CBM was formed mostly by the p states of Pb and minor contribution by the s and p states of I, Cl, and Br. An in-depth look at the band structure of CsPbI3, CsPbI1.50Br1.50, CsPbBr3, CsPbBr1.50Cl1.50, and CsPbCl3 with respect to PDOS is shown in Figure S4, Supporting Information.

3.4. Electron Density

To visualize the charge distribution and bonding nature of CsPbI3, CsPbI2.25Br0.75, CsPbI1.50Br1.50, CsPbI0.75Br2.25, CsPbBr3, CsPbBr2.25Cl0.75, CsPbBr1.50Cl1.50, CsPbBr0.75Cl2.25, and CsPbCl3 perovskites, the electron density distribution is investigated and presented in Figure 6. The atoms Cs, Pb, I, Br, and Cl have electronegativity values of 0.79, 2.33, 2.66, 2.96, and 3.16 on the Pauling scale, respectively. The difference in electronegativity (X1 − X2) is critical for describing the bonding character.98 The following equation is used to calculate the percentage of ionic character (IC) of the bonding obtained31,98,99

$$\% \text{ IC} = [1 - e^{-(0.25)(X_1-X_2)^2}] \times 100$$

The electronegativities of the 1 and 2 atoms are represented by X1 and X2, respectively. The % IC of Cs−Br, Cs−I, and Cs−Cl was 69.18, 58.28, and 75.44, whereas for Pb−Br, Pb−I, and Pb−Cl, was 9.45, 2.66, and 15.82, respectively. The electron clouds surrounding Cs atoms are spherical and free of distortion, indicating that they are mostly ionic and partially covalent with the surrounding atoms.21,31,100 In contrast, the bond between Pb and I, Br, or Cl is mostly covalent and partially ionic, with electron clouds around these atoms distorted and overlapping significantly.

3.5. Optical Properties

We investigate the optical properties of mixed-halide perovskites, including dielectric function, refractive index, extinction coefficient, reflectivity, and optical absorption for energy ranging from 0 to 10 eV. The calculated dielectric functions $\varepsilon_1(\omega)$ and $\varepsilon_2(\omega)$ are shown in Figure 7a,b. The dielectric function describes how a material responds to incident photons as a function of energy. The real part of the dielectric function $\varepsilon_1(\omega)$ value at zero frequency is known as the static frequency $\varepsilon_1(0)$, and it varies between 4.72 and 3.12 as shown in Figure 8. Figure 7b shows the behavior of the imaginary part of the dielectric function $\varepsilon_2(\omega)$, where it represents the radiation absorbed by the compound,31,101 with main peaks between 3.42 and 6.68 eV. It is worth noting that $\varepsilon_2(\omega)$ has a zero value until absorption begins after the photon energy reaches the band gap energy, which establishes the threshold for a direct optical transition between the VBM and the CBM.

The refractive index $n(\omega)$ and extinction coefficient $k(\omega)$ were calculated, as shown in Figure S5a,b, Supporting Information. $n(\omega)$ is a critical feature of semiconductors that indicates how much light is bent or refracted.101 The value of $n(\omega)$ increases as the energy increases up to 2.87 and 2.14 for CsPbI3 and CsPbCl3, and then it begins to decrease to 1.27 and 1.44 showing a nonlinear behavior as shown in Figure S5a. For CsPbI3, CsPbBr3, and CsPbCl3, the calculated $n(0)$ values were 2.17, 1.95, and 1.77 which agree well with the previous theoretical and experimental values31,55,102 as shown in Figure 8. Figure S5b shows that $k(\omega)$ is proportional to Br/Cl concentration, similar to $\varepsilon_2(\omega)$, with the local maximum...
occurring between 3.89 and 6.72 eV when moving from CsPbI3 to CsPbCl3.

The calculated reflectivity $R(\omega)$ in relation to incident energy is shown in Figure S6, Supporting Information. The mixed perovskites behaved as semiconductors; the value of $R(\omega)$ was not unity at zero energy. At zero frequency, CsPbI3 has a static reflectivity $R(0)$ value of 13.7%, which then decreases to 10.4 and 7.7% for CsPbBr3 and CsPbCl3, respectively. When moving from CsPbI3 to CsPbBr3 and CsPbCl3, the maximum $R(\omega)$ occurs between 3.22 and 4.71 eV, and it begins to fluctuate and decrease at higher energies. As shown in Figure 8, the calculated $R(0)$ at zero energy was approximately 13.65, 12.78, 12.42, 11.01, 10.43, 9.66, 8.42, 8.33, and 7.67% for mixed perovskite when transitioning from CsPbI3 to CsPbBr3 and CsPbCl3.

Figure 9a exhibits the absorption coefficient, $\alpha(\omega)$, as a function of the energy. $\alpha(\omega)$ peaks shifted to higher energies with increasing Br and Cl concentrations in CsPb(I1−xBrx)3 and CsPb(Br1−xClx)3. The wide absorption coefficient range from visible to ultraviolet indicates that they are useful for a variety of optical and optoelectronic applications. Figure 9b shows the optical conductivity $\sigma(\omega)$ characteristics, which are analogous to $\alpha(\omega)$ and provide information on how external parameters affect the electronic structure. The optical properties of the studied perovskite were consistent with those previously measured and reported.

3. CONCLUSIONS

In this study, the influence of halide composition on the optoelectronic properties of mixed-halide perovskites was investigated. The structural properties were calculated using the PBE-GGA method, and the lattice parameters are well comparable to previous experimental and theoretical work. When iodide (I) was replaced with bromide (Br) and then chloride (Cl), the unit-cell volume decreased linearly. The calculated band gap (E_g) using the mBJ-GGA method is in good agreement with the experimental values reported, and it increased clearly from 1.983 eV for CsPbI3 to 2.420 and 3.325 eV for CsPbBr3 and CsPbCl3, respectively, due to the increase in electronegativity of Br and Cl. Because the E_g values with mBJ + SOC are small compared to the experimental results, the alloy formula was used to correct the E_g values. The corrected mBJ + SOC E_g value is 1.850 eV for CsPbI3 and 2.480 and 3.130 eV for CsPbBr3 and CsPbCl3, respectively. The reduced masses (μ) are correlated with the energies of E_g, VBM, and CBM. When moving from CsPbI3 to CsPbBr3 and CsPbCl3, μ ranges from 0.046618 m_o to 0.066595 m_o without SOC and from 0.031569 m_o to 0.043181 m_o with SOC. As the Br and Cl content increases, the calculated photoabsorption coefficients show a blue shift in
the absorption coefficient. According to the calculations, these perovskites can be used in solar cells, LEDs, and laser applications.

3.1. Computational Method. The FP-LAPW method within the framework of DFT as implemented in the WIEN2k code was used to optimize the structure of the mixed inorganic perovskites.33,73 The PBE-GGA method was used to calculate the structural properties of the mixed perovskites. The mixed inorganic perovskite structures were created by building a 1 × 1 × 2 supercell with a binary perovskite’s Pnma space group. Because of the presence of a heavy element (Pb) in the structure, the SOC interaction was described in our previous work.47 To match the experimental values, the calculated band gap with SOC was corrected by using the alloy formula. To match the experimental values, the calculated band gap with SOC was corrected by using the alloy formula.14,69,105 During the calculation, \(K_{\text{max}} = 9 \) and \(k \)-points = 100 were used, and the total energy was converged to \(10^{-4} \) Ry.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsomega.1c04806.

Structural parameters; unit-cell volume versus Br and Cl contents; SOC; energy level splitting diagram for the orthorhombic phase of inorganic perovskites; PDOS of mixed inorganic perovskites; band structures; calculated effective mass of the electron and hole and reduced mass for mixed-halide perovskites; and calculated refraction indices and extinction coefficients and reflectivity spectra of mixed-halide perovskites with different dopant concentrations (PDF)

AUTHOR INFORMATION

Corresponding Authors

Hamid M. Ghaiathan — Physics and Astronomy Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; orcid.org/0000-0001-5126-4477; Phone: +966 532257491; Email: ghaiathan@ksu.edu.sa

Zeyad. A. Alahmed — Physics and Astronomy Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; Email: zalahmed@ksu.edu.sa

Abdullah S. Aljowayan — Physics and Astronomy Department, College of Science and King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia; K.A.CARE Energy Research and Innovation Center at Riyadh, Riyadh 11454, Saudi Arabia; Email: djowayan@ksu.edu.sa

Author

Saif M. H. Qaid — Physics and Astronomy Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; orcid.org/0000-0001-8958-8960

Complete contact information is available at: https://pubs.acs.org/10.1021/acsomega.1c04806

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors thank the Deanship of Scientific Research at King Saud University for funding this work through Research Group No. RG-1440-038.

REFERENCES

(1) Xiang, W.; Tress, W. Review on Recent Progress of All-Inorganic Metal Halide Perovskites and Solar Cells. Adv. Mater. 2019, 31, 1902851.

(2) Dang, Y.; Ju, D.; Wang, L.; Tao, X. Recent Progress in the Synthesis of Hybrid Halide Perovskite Single Crystals. CrystEngComm 2016, 18, 4476–4484.

(3) Wang, B.; Xiao, X.; Chen, T. Perovskite Photovoltaics: A High- Efficiency Newcomer to the Solar Cell Family. Nanoscale 2014, 6, 12287–12297.

(4) Song, J.; Li, J.; Li, X.; Xu, L.; Dong, Y.; Zeng, H. Quantum Dot Light-Emitting Diodes Based on Mixed Inorganic Perovskite Cesium Lead Halides (CsPbX3). Adv. Mater. 2015, 27, 1762–1767.

(5) Zhang, L.; Yang, X.; Jiang, Q.; Wang, P.; Yin, Z.; Zhang, X.; Tan, H.; Yang, Y. M.; Wei, M.; Sutherland, B. R.; et al. Ultra-Bright and Highly Efficient Inorganic Based Perovskite Light-Emitting Diodes. Nat. Commun. 2017, 8, 15640.

(6) Veldhuis, S. A.; Boix, P. P.; Yantara, N.; Li, M.; Sum, T. C.; Mathews, N.; Mhasikallar, S. G. Perovskite Materials for Light-Emitting Diodes and Lasers. Adv. Mater. 2016, 28, 6804–6834.

(7) Song, J.; Li, J.; Li, X.; Xu, L.; Dong, Y.; Zeng, H. Quantum Dot Light-Emitting Diodes Based on Mixed Inorganic Perovskite Cesium Lead Halides (CsPbX3). Adv. Mater. 2015, 27, 1762–1767.

(8) Xing, J.; Yan, F.; Zhao, Y.; Chen, S.; Yu, H.; Zhang, Q.; Zeng, R.; Demir, H. V.; Sun, X.; Huan, A.; et al. High-Efficiency Light-Emitting Diodes of Organometal Halide Perovskite Amorphous Nanoparticles. ACS Nano 2016, 10, 6623–6630.

(9) Li, X.; Cao, F.; Yu, D.; Chen, J.; Sun, Z.; Shen, Y.; Zhu, Y.; Wang, L.; Wei, Y.; Wu, Y.; et al. All Inorganic Halide Perovskites Nanosystem: Synthesis, Structural Features, Optical Properties and Optoelectronic Applications. Small 2017, 13, 1603996.

(10) Mao, X.; Sun, L.; Wu, T.; Chu, T.; Deng, W.; Han, K. First-Principles Screening of All-Inorganic Lead-Free ABX3 Perovskites. J. Phys. Chem. C 2018, 122, 7670–7675.

(11) Ahmad, M.; Rehman, G.; Ali, L.; Shafiq, M.; Iqbal, R.; Ahmad, R.; Khan, T.; Jalali-Asadabadi, S.; Maqbool, M.; Ahmad, I. Structural, Electronic and Optical Properties of CsPbX3 (X = Cl, Br, I) for Energy Storage and Hybrid Solid Cell Applications. J. Alloys Compd. 2017, 705, 828–839.

(12) Filip, M. R.; Eperon, G. E.; Snaith, H. J.; Giustino, F. Steric Engineering of Metal-Halide Perovskites with Tunable Optical Band Gaps. Nat. Commun. 2014, 5, 5757.

(13) Fang, Z.; Shang, M.; Hou, X.; Zheng, Y.; Du, Z.; Yang, Z.; Chou, K.-C.; Yang, W.; Wang, Z. L.; Yang, Y. Bandgap Alignment of α-CsPbI3 Perovskites with Synergistically Enhanced Stability and Optical Performance via B-Site Minor Doping. Nano Energy 2019, 61, 389–396.

(14) Chen, X.; Han, D.; Su, Y.; Zeng, Q.; Liu, L.; Shen, D. Structural and Electronic Properties of Inorganic Mixed Halide Perovskites. Phys. Status Solidi Rapid Res. Lett. 2018, 12, 1800193.

(15) Ray, D.; Clark, C.; Pham, H. Q.; Borycz, J.; Holmes, R. J.; Aydil, E. S.; Gagliardi, L. Computational Study of Structural and Electronic Properties of Lead-Free CsMi Perovskites (M = Ge, Sn, Pb, Mg, Ca, Sr, and Ba). J. Phys. Chem. C 2018, 122, 7838–7845.

(16) Linaburg, M. R.; McClure, E. T.; Mahjert, J. D.; Woodward, P. M. CsPbI3 and CsPbBr3 Solids: Understanding octahedral Tilting in Lead Halide Perovskites. Chem. Mater. 2017, 29, 3507–3514.

(17) Dos Reis, R.; Yang, H.; Ophus, C.; Ercius, P.; Bizaria, G.; Perrodon, D.; Shalapska, T.; Bourret, E.; Ciston, J.; Dahmen, U. Determination of the Structural Phase and Octahedral Rotation Angle in Halide Perovskites. Appl. Phys. Lett. 2018, 112, 071901.

(18) Arkan, F.; Izadyar, M. Computational Modeling of the Photovoltaic Activities in EABX, (EA = Ethylammonium, B = Pb, Sn, Ge, X = Cl, Br, I) Perovskite Solar Cells. Comput. Mater. Sci. 2018, 152, 324–330.
Electronic Properties of Cubic Perovskite CsPbI3: Using First Principles Calculations. *J. Phys. Chem. C* 2016, **120**, 166–173.

Bechtel, J. S.; Van Der Ven, A. First-Principles Thermodynamic Study of Phase Stability in Inorganic Halide Perovskite Solid Solutions. *Phys. Rev. Mater.* 2018, **2**, 045401.

Murtaza, G.; Ahmad, J. First Principle Study of the Structural and Optoelectronic Properties of Cubic Perovskites CsPbM3 (M=Cl, Br, I). *J. Phys. Rev. B: Condens. Matter Mater. Phys.* 2011, **406**, 3222–3229.

AfSari, M.; Boochani, A.; Hantezadeh, M. Electronic, Optical and Elastic Properties of Cubic Perovskite CsPbI3. Using First-Principles Study. *Optik* 2016, **127**, 11143–11143.

Kohn, W.; Sham, S. A. L. J. Self-Consistent Equations Including Exchange and Correlation Effects. *Phys. Rev.* 1965, **140**, A1133.

Perdue, J. P.; Burke, K.; Erzerzhof, M. Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* 1996, **77**, 3865–3868.

Ziesche, P.; Kurth, S.; Perdue, J. P. Density Functionals from LDA to GGA. *Comput. Mater. Sci.* 1998, **11**, 122–127.

Prudhvi Raju, N.; Thangavel, R. Theoretical Investigation of Spin–Orbit Coupling on Structural, Electronic and Optical Properties for CuA2B (A = Si, B = S, Se) Compounds Using Tran–Blaha-Modified Becke–Johnson Method: A First-Principles Approach. *J. Alloys Compd.* 2020, **830**, 154621.

Tran, F.; Blaha, P. Implementation of Screened Hybrid Functionals Based on the Yukawa Potential within the LAPW Basis Set. *Phys. Rev. B: Condens. Matter Mater. Phys.* 2011, **83**, 235118.

Staroverov, V. N.; Scuseria, G. E.; Tao, J.; Perdue, J. P. Tests of a Ladder of Density Functionals for Bulk Solids and Surfaces. *Phys. Rev. B: Condens. Matter Mater. Phys.* 2004, **69**, 075102.

Kurth, S.; Perdue, J. P.; Blaha, P. Molecular and Solid-State Tests of Density Functional Approximations: LSD, GGA's, and Meta-GGA's. In *J. Quantum Chem.* 1999, **75**, 889–909.

Ghaithan, H. M.; Alahmed, Z. A.; Qaid, S. M. H.; Hezam, M.; Aldawyayan, A. S. Density Functional Study of Cubic, Tetragonal, and Orthorhombic CsPbBr3 Perovskite. *ACS Omega* 2020, **5**, 7468–7480.

Camargo-Martinez, J. A.; Baquero, R. The Band Gap Problem: The Accuracy of the Wien2k Code Confronted. *Rev. Mex. Fis.* 2012, **59**, 453–459.

Tran, F.; Blaha, P. Importance of the Kinetic Energy Density for Band Gap Calculations in Solids with Density Functional Theory. *J. Phys. Chem. A* 2017, **121**, 3318–3325.

Ghaithan, H. M.; Alahmed, Z. A.; Qaid, S. M. H.; Aldawyayan, A. S. First Principle-Based Calculations of the Optoelectronic Features of 2 x 2 x 2 CsPbI3 Perovskite. *Superlattices Microstruct.* 2020, **140**, 106474.

Koliogiorgos, A.; Garoufalis, C. S.; Galanakis, I.; Baskoutsas, S. Electronic and Optical Properties of Ultrasmall ABX3 (A = Cs, CH3NH3, B = Ge, Pb, Sn, Cs, Sr/X = Cl, Br, I) Perovskite Quantum Dots. *ACS Omega* 2018, **3**, 18917–18924.

Chen, X.; Han, D.; Su, Y.; Zeng, Q.; Liu, L.; Shen, D. Structural and Electronic Properties of Inorganic Mixed Halide Perovskites. *Phys. Status Solidi Rapid Res. Lett.* 2018, **12**, 1800193.

Saleev, V. A.; Shipilova, A. V. Ab Initio Modeling of Band Gaps of Cesium Lead Halide Perovskites Depending on the Dopant Amount. *J. Phys. Conf.* 2018, **1096**, 012115.

AfSari, M.; Boochani, A.; Hantezadeh, M.; Elahi, S. M. Topological Nature in Cubic Phase of Perovskite CsPbI3. By DFT. *Solid State Commun.* 2017, **259**, 10–15.

Zhang, Q.; Su, R.; Du, W.; Liu, X.; Zhao, L.; Ha, S. T.; Xiong, Q. Adsorption in Small Perovskite-Based Lasers. *Small Methods* 2017, **1**, 1700163.

Even, J.; Pedesseau, L.; Jancu, J.-M.; Katan, C. Importance of Spin-Orbit Coupling in Hybrid Organic/Inorganic Perovskites for Photovoltaic Applications. *J. Phys. Chem. Lett.* 2013, **4**, 2999–3005.

Wang, K.; Yang, Q.; Duan, J.; Zhang, C.; Zhao, F.; Yu, H.; Hu, B. Spin-Polarized Electronic Transport through Ferromagnet/Organic–Inorganic Halide Perovskite Spirnaces at Room Temperature. *Adv. Mater. Interfaces* 2019, **6**, 1900718.

Li, Y.; Duan, J.; He, B.; Tang, Q.; Zhao, Y.; Yuan, H. Lattice Modulation of Alkal Metal Cations Doped Cs1−xRxB3+1 Perovskite for Inorganic Perovskite Solar Cells. *Sol. RRL* 2018, **2**, 1800164.

Qaid, S. M. H.; Al-Asbah, B. A.; Ghaithan, H. M.; AlSalhi, M. S.; Al dwayyan, A. S. Optical and Structural Properties of CsPbBr3 Perovskite Quantum Dots/PFO Polymer Composite Thin Films. *J. Colloid Interface Sci.* 2020, **563**, 426–434.

Heidrick, Ch.; Schäfer, W.; Schreiber, M.; Söchting, J.; Tredell, G.; Treusch, J.; Grandke, T.; Stola, H. J. Electronic Structure, Photo-emission Spectra, and Vacuum-Ultraviolet Optical Spectra of CsPbCl3 and CsPbBr3. *Phys. Rev. B: Condens. Matter Mater. Phys.* 1981, **24**, 5642–5649.

Pandey, N.; Kumar, A.; Chakrabarti, S. Investigation of the Structural, Electronic, and Optical Properties of Mn-Doped CsPbCl3: Theory and Experiment. *RSC Adv.* 2019, **9**, 29556–29565.

Yakunin, S.; Protocesu, L.; Krieg, F.; Bodnarchuk, M. I.; Nedelcu, G.; Humer, M.; Luca, G. D.; Fleibig, M.; Heiss, W.; Kovalenko, M. V. Low-Threshold Amplified Spontaneous Emission and Lasing from Colloid Nanocrystals of Caesium Lead Halide Perovskites Lead Halide Perovskites. *Nat. Commun.* 2015, **6**, 8056.

Yuan, Y.; Xu, R.; Xu, H. T.; Hong, F.; Xu, F.; Wang, L. J. Nature of the Band Gap of Halide Perovskites ABX3 (A = CH3NH3, Cs = B, Sn; Pb, X = Br, I): First-Principles Calculations. *Chin. Phys. B* 2015, **24**, 116302.

Jaroenjittichai, A. P.; Laosiritaworn, Y. Band Gap of Cesium-Halide Perovskites. *Ceram. Int.* 2018, **44**, S161–S163.

Kang, Y.; Han, S. Intrinsic Carrier Mobility of Cesium Lead Halide Perovskites. *Phys. Rev. Appl.* 2018, **10**, 044013.

Qaid, S. M. H.; Ghaithan, H. M.; Al-Asbah, B. A.; Aldawyayan, A. S. Tuning of Amplified Spontaneous Emission Wavelength for Green and Blue Light Emission through the Tunable Composition of CsPbBr3 (Cl, I): Inorganic Perovskite Quantum Dots. *J. Phys. Chem. C* 2021, **125**, 9491–9452.

Akkerman, Q. A.; Motti, S. G.; Srimath Kandada, A. R.; Mosconi, E.; D’Innocenzo, V.; Bertoni, G.; Marras, S.; Camino, B. A.; Miranda, L.; De Angelis, F.; et al. Solution Synthesis Approach to Colloidal Cesium Lead Halide Perovskite Nanoplatelets with Monolayer-Level Thickness Control. *J. Am. Chem. Soc.* 2016, **138**, 1010–1016.
1. Halide Perovskites.
2. Evolution of Caesium and Rubidium Triiodoplumbates.
3. 2008 Solids
4. ACS Omega http://pubs.acs.org/journal/acsodf
5. Structural, Electronic, and Optical Properties of Inorganic CsPb-
6. Lyras, A.; Amer, M.; Aldwayyan, A. S. Anion Substitution Effects on the
7. 2013 Cryst. Growth Des.
8. Trihalides
9. et al. Crystal Growth of the Perovskite Semiconductor CsPbBr3: A New
10. Evans, A. M.; et al. Photoinduced, Reversible Phase Transitions in All-
11. 4544. 2011 J. Franklin Inst.
12. Crystal Structure of Metastable Black-Phase CsPbI3 by Theory and
13. B.; Giustino, F.; Snaith, H. J. Cubic or Orthorhombic? Revealing the
14. (80) Zhou, Y.; Zhao, Y. Chemical Stability and Instability of Inorganic Halide Perovskites. Energy Environ. Sci. 2019, 12, 1495–1511.
15. (81) Protosenko, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of Cs-Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Lett. 2015, 15, 3692–3696.
16. (82) Sun, F.-P.; Li, Q.-S.; Yang, L.-N.; Li, Z.-S. Theoretical Insights into a Potential Lead-Free Hybrid Perovskite: Substituting Pb2+ with Ge4+. Nanoscale 2016, 8, 1503–1512.
17. (83) Zhang, P.; Zhu, G.; Shi, Y.; Wang, Y.; Zhang, J.; Du, L.; Ding, D. Ultrafast Interfacial Charge Transfer of Cesium Lead Halide Perovskite Films CsPbX3 (X = Cl, Br, I) with Different Halogen Mixing. J. Phys. Chem. C 2018, 122, 27148–27155.
18. (84) Xiao, Z.; Yan, Y. Progress in Theoretical Study of Metal Halide Perovskite Solar Cell Materials. Adv. Energy Mater. 2017, 7, 1701136.
19. (85) Atouki, L.; Vega, E.; Mollár, M.; Mari, B.; Kiroú, H.; Bouabd, K.; Ihíal, A. Impact of Iodide Substitution on the Physical Properties and Stability of Cesium Lead Halide Perovskite Thin Films CsPbBr3-xIₓ (0 ≤ x ≤ 1). J. Alloys Compd. 2017, 702, 404–409.
20. (86) Liu, S.; Chen, G.; Huang, Y.; Lin, S.; Zhang, Y.; He, M.; Xiang, W.; Liang, X. Tunable Fluorescence and Optical Nonlinearities of All-Inorganic Colloidal Cesium Lead Halide Perovskite Nanocrystals. J. Alloys Compd. 2017, 724, 889–896.
21. (87) Kang, B.; Biswas, K. Exploring Polaronic, Excitonic Structures and Luminescence in CsPbBr/ CsPbBr. J. Phys. Chem. Lett. 2018, 9, 830–836.
22. (88) Yu, J.; Liu, G.; Chen, C.; Li, Y.; Xu, M.; Wang, T.; Zhao, G.; Zhang, L. Perovskite CsPbBr Crystals: Growth and Applications. J. Mater. Chem. C 2020, 8, 6326–6341 Royal Society of Chemistry May.
23. (89) Su, Y.; Chen, Y.; Ji, W.; Zeng, Q.; Ren, Z.; Su, Z.; Liu, L. Highly Controllable and Efficient Synthesis of Mixed-Halide CsPbX3 (X = Cl, Br, I) Perovskite QDs toward the Tunability of Entire Visible Light. ACS Appl. Mater. Interfaces 2017, 9, 33020–33028.
24. (90) Yin, W.-J.; Yan, Y.; Wei, S.-H. Anomalous Alloy Properties in Mixed Halide Perovskites. J. Phys. Chem. Lett. 2014, 5, 3625–3631.
25. (91) Qaid, S. M. H.; Ghaithan, H. M.; Al-Asbahi, B. A.; Alqasem, A.; Aldwayyan, A. S. Fabrication of Thin Films from Powdered Cesium Lead Bromide (CsPbBr2) Perovskite Quantum Dots for Coherent Green Light Emission. ACS Omega 2020, 5, 30111–30122.
26. (92) Qaid, S. M. H.; Ghaithan, H. M.; Al-Asbahi, B. A.; Aldwayyan, A. S. Single-Source Thermal Evaporation Growth and the Tuning Surface Passivation Layer Thickness Effect in Enhanced Amplified Spontaneous Emission Properties of CsPbBr(CN)3 Perovskite Films. Polymers 2020, 12, 2925.
27. (93) Jin, H.; Im, J.; Freeman, A. J. Topological Insulator Phase in Halide Perovskite Structures. Phys. Rev. B: Condens. Matter Mater. Phys. 2012, 86, 121102.
28. (94) Ilyas, B. M.; Elias, B. H. A Theoretical Study of Perovskite CsXCl (X=Pb, Cd) within First Principles Calculations. Phys. Rev. B: Condens. Matter Mater. Phys. 2017, 910, 60–73.
29. (95) Yi, Z.; Fang, Z. Theoretical Studies on the Structural, Electronic and Optical Properties of Orthorhombic Perovskites CH(NH)2Pbx(X = I, Br, Cl). J. Phys. Chem. Solids 2017, 110, 145–151.
30. (96) Ghaithan, H. M.; AlAhmed, Z. A.; Lyra, A.; Qaid, S. M. H.; Aldwayyan, A. S. Computational Investigation of the Folded and Unfolded Band Structure and Structural and Optical Properties of CsPbI2Br Perovskites. Crystals 2020, 10, 342.
31. (97) Ghaithan, H. M.; AlAhmed, Z. A.; Qaid, S. M. H.; Aldwayyan, A. S. Structural, Electronic, and Optical Properties of CsPb(I1–xBrₓ) Perovskite: First-Principles Study with PBE–GGA and MBJ–GGA Methods. Materials 2020, 13, 4944.
32. (98) Reshak, A. H.; AlAhmed, Z. A.; Bila, J. Phase Transition in BaThO3 from Pbmm to Pbmm Turn the Fundamental Energy Band Gap from Indirect to Direct. J. Alloys Compd. 2019, 771, 607–613.
33. (99) Williams, D.; Callister, J. D. G. R. Fundamentals of Materials Science and Engineering, 4th ed; Hohn Wiley & Sons, Inc., 2012; pp 1–1087.
34. (100) Pitirana, P.; Wang, T. D. K.; Herman; Hidayat, R. The Characteristics of Band Structures and Crystal Binding in All-Inorganic Perovskite APbBr₃, Studied by the First Principle Calculations Using the
Density Functional Theory (DFT) Method. Results Phys. 2019, 15, 102592.

(101) Benchehima, M.; Abid, H.; Sadoun, A.; Chabane Chaouche, A. Optoelectronic Properties of Aluminum Bismuth Antimony Ternary Alloys for Optical Telecommunication Applications: First Principles Calculation. Comput. Mater. Sci. 2018, 155, 224–234.

(102) Ghebouli, M. A.; Ghebouli, B.; Fatmi, M. First-Principles Calculations on Structural, Elastic, Electronic, Optical and Thermal Properties of CsPbCl₃ Perovskite. Phys. Rev. B: Condens. Matter Mater. Phys. 2011, 406, 1837–1843.

(103) Kushwaha, A. K.; Laref, A.; Laref, S. First-Principles Investigation of Structural, Electronic, Optical, and Magnetic Properties of Ternary Mixed Compound CsTeₓS₁₋ₓ. J. Electron. Mater. 2019, 48, 3479–3489.

(104) Narasimha Rao, E.; Vaithheeswaran, G.; Reshak, A. H.; Auluck, S. Role of Spin-Orbit Interaction on the Nonlinear Optical Response of CsPbCO₃F Using DFT. Phys. Chem. Chem. Phys. 2017, 19, 31255–31266.

(105) Wu, Z.; Cohen, R. E. More Accurate Generalized Gradient Approximation for Solids. Phys. Rev. B: Condens. Matter Mater. Phys. 2006, 73, 235116.