DETECTION OF CO\(^+\) TOWARD THE REFLECTION NEBULA NGC 7023

A. FUENTE AND J. MARTÍN-PINTADO
Observatorio Astronómico Nacional, Instituto Geográfico Nacional, Campus Universitario, Apdo. 1143, E-28800 Alcalá de Henares, Madrid, Spain

Received 1996 October 24; accepted 1996 December 11

ABSTRACT

We have detected CO\(^+\) toward the photon-dominated region (PDR) associated with the reflection nebula NGC 7023. This is the first detection of CO\(^+\) in the vicinity of a Be star. A CO\(^+\) column density of \(3 \times 10^{11}\) cm\(^{-2}\) has been derived toward the PDR peak. However, we have not detected CO\(^+\) in a well-shielded clump of the adjacent molecular cloud, where the CO\(^+\)/HCO\(^+\) abundance ratio is at least 100 times lower than in the PDR. Our results show, for the first time, that CO\(^+\) column densities as large as \(3 \times 10^{11}\) cm\(^{-2}\) can be produced in regions with incident UV fields of just a few 10\(^3\) (in units of Habing field) and densities of \(\lesssim 10^6\) cm\(^{-3}\). Furthermore, since the ionization potential of CO is larger than 13.6 eV, our data rule out the direct photoionization of CO as a significant CO\(^+\) formation mechanism.

Subject headings: ISM: abundances — ISM: individual (NGC 7023) — radio lines: ISM — reflection nebulae — stars: individual (HD 200775) — stars: pre–main-sequence

1. INTRODUCTION

Although CO is the most abundant interstellar molecule after H\(_2\), its corresponding ion, CO\(^+\), is expected to have very low abundance in molecular clouds. The reason is that CO\(^+\) is quickly converted into HCO\(^+\) by reactions with H\(_2\). Only in the hot layers of photon-dominated regions (PDRs), where a significant fraction of hydrogen is still in atomic form, does the CO\(^+\) abundance become significant. Chemical models (Sternberg & Dalgarno 1995) predict that for the PDRs associated with massive stars \((n \sim 10^6\) cm\(^{-3}\), \(G_\odot \sim 2 \times 10^5\) in units of Habing field), the CO\(^+\)/HCO\(^+\) abundance ratio is 0.05 at a visual extinction lower than 1.5 mag but decreases by more than 2 orders of magnitude when the extinction increases above 3–5 mag. Based on its chemical behavior, they proposed the CO\(^+\)/HCO\(^+\) ratio as a tracer of the H\(_2\)/H\(_2\) transition layer in PDRs.

CO\(^+\) was tentatively detected for the first time by Erickson et al. (1981) toward OMC-1. Later, Latter, Walker, & Maloney (1993) detected CO\(^+\) in the well-known PDR M17SW and the planetary nebula NGC 7027. More recently, CO\(^+\) has also been detected in the Orion Bar (Störzer, Stutzki, & Sternberg 1995). But, so far, all the detections of CO\(^+\) have been made toward the interfaces between the molecular cloud and the H\(_2\) regions around massive O stars. Störzer et al. (1995) failed to detect CO\(^+\) toward the reflection nebula S140. They propose that the large densities and intense UV fields associated with massive O stars are required to form CO\(^+\) column densities \(\geq 10^{11}\) cm\(^{-2}\). We present the detection of CO\(^+\) toward the reflection nebula NGC 7023, which is illuminated by a Be star. Although in this region the incident UV field is \(G_\odot \sim 10^5\) (in units of Habing field) and densities are \(n \sim 10^5\) cm\(^{-3}\), we have observed a CO\(^+\) column density of \(3 \times 10^{11}\) cm\(^{-2}\). Furthermore, the spatial velocity distribution of the CO\(^+\) emission shows that CO\(^+\) is only located within the H\(_2\)/H\(_2\) transition layer of this PDR.

2. OBSERVATIONS AND RESULTS

In Figure 1 (Plate L2), we show the integrated intensity map of the HCO\(^+\) 1 \(\rightarrow\) 0 (thin dark contours) and the H\(_2\) column density map (gray scale) of the reflection nebula NGC 7023 (Fuente et al. 1993, 1996). The illuminating star, HD 200775, is located in a cavity of the parent cloud delimited by dense walls (Fuente et al. 1993 and references therein). Dense PDRs are found on the surfaces of these walls. In particular, an intense H\(_2\) clump appears \(\approx 40^\circ\) northwest of the star position, at the edge of the bulk of the molecular emission (see Fig. 1). Interferometric observations of the J = 1 \(\rightarrow\) 0 line of HCO\(^+\) showed the existence of several high-density HCO\(^+\) filaments within this clump (Fuente et al. 1996). The two most intense filaments are also shown in Figure 1. We have searched for CO\(^+\) toward the peak position of these filaments. The coordinates of this position are given in Table 1, and hereafter we will refer to it as the “PDR peak.” Beyond the “PDR peak,” our HCO\(^+\) single-dish data show the existence of several clumps immersed in the molecular cloud. We have also searched for CO\(^+\) toward the molecular clump closest to the “PDR peak” (Fig. 1). The coordinates of this position are also given in Table 1, and hereafter we will refer to it as the “molecular peak.”

CO\(^+\) has a 2\(^\Sigma\) ground electronic state in which each rotational line is split into two fine-structure levels with J = N \pm 1/2. The N = 1 \(\rightarrow\) 0 rotational line is heavily obscured by the O\(_2\) line at 118 GHz and cannot be observed from ground-based telescopes. The most intense transitions of the N = 2 \(\rightarrow\) 1 rotational spectrum are N = 2 \(\rightarrow\) 1, J = 5/2 \(\rightarrow\) 3/2 at 236062.553 MHz and N = 2 \(\rightarrow\) 1, J = 3/2 \(\rightarrow\) 1/2 at 235789.641 MHz. In the optically thin limit, the intensity ratio I(235.789)/I(236.062) is 0.55 (Sastry et al. 1981). Both line frequencies were covered by the receiver band. Unfortunately, the most intense line is blended with the 5 \(\rightarrow\) 4 = 4, 1\(^{13}\)CH\(_3\)OH E lines (see Blake et al. 1984). In order to determine an upper limit to the 1\(^{13}\)CH\(_3\)OH emission, we have observed the 5 \(\rightarrow\) 4, methanol line toward the PDR peak. To determine accurate CO\(^+\) column densities, it is necessary to have accurate estimates of the hydrogen density. For this aim, maps of about 20" \(\times\) 20" with a spacing of 5" were carried out around the studied positions in the CS J = 2 \(\rightarrow\) 1, 3 \(\rightarrow\) 2, and 5 \(\rightarrow\) 4 lines. Furthermore, the H\(^{12}\)CO\(^+\) J = 1 \(\rightarrow\) 0 (toward both positions) and 3 \(\rightarrow\) 2 (only toward the molecular peak) lines have also been observed.

The observations were carried out in 1995 December and 1996 May using the 30 m telescope. The observational proce-
emission of each 13CH$_3$OH line. Since there are two 13CH$_3$OH lines blended, these lines could contribute to our CO$^+$ detection at 236.062 GHz with, at most, an integrated intensity of 0.01 K km s$^{-1}$. This is only 4% of the observed integrated intensity emission at 236.062 GHz, and it is within the observational errors (see Table 1). We therefore conclude that the emission detected at 236.062 and 235.789 GHz is due to CO$^+$.

A striking result of our data is that the CO$^+$ lines have line widths much larger than those of CS and H3CO$. The interferometric HCO$^+$ filaments detected toward the PDR peak are characterized by having different velocities. The four well-detected filaments are centered at radial velocities of 1.9, 2.4, 2.8, and 4 km s$^{-1}$, and the one tentatively detected is centered at 5.8 km s$^{-1}$. One of these filaments, 2.4 km s$^{-1}$, is very likely embedded in the molecular cloud, but most of the others, 2.8, 4.0, and 5.8 km s$^{-1}$, seem to be immersed in the atomic medium. The situation is less clear for the filament at 1.9 km s$^{-1}$, which seems to be part of a weak and extended molecular component (Fuente et al. 1996). Therefore, a gradient in the chemical composition of the HCO$^+$ filaments is expected depending upon the local visual extinction toward the exciting star. CS and H3CO$^+$ present narrow lines centered at 2.4 km s$^{-1}$, i.e., the velocity of the filament immersed in the bulk of the molecular cloud. Only HCO$^+$ and CO$^+$ present emission at the velocities of the filaments immersed in the atomic medium. From the comparison of the spectra of the H3CO$^+$, HCO$^+$, and CO$^+$ lines, it is clear that there exists a gradient in the CO$^+$/HCO$^+$ abundance ratio as a function of velocity, i.e., as a function of the visual extinction from the star (see Fig. 1). To determine this gradient, we have estimated the CO$^+$/HCO$^+$ abundance ratio in three different velocity intervals, 0–1.6 km s$^{-1}$, 1.6–3.2 km s$^{-1}$, and 3.2–6 km s$^{-1}$.

CO$^+$ column densities have been estimated using the LTE approximation. Assuming $T_K = 40$ K (see Fuente et al. 1993) we derived from CS data a hydrogen density of 3.5×10^7 cm$^{-3}$ for the component at 2.4 km s$^{-1}$. Similar densities were obtained for the other filaments from the interferometric HCO$^+$ data (Fuente et al. 1996). Using a LYG code and assuming $T_K = 40$ K and $n = 3.5 \times 10^7$ cm$^{-3}$, we estimate $T_{mb} = 10$ K for HCO$^+$.

We have determined that the CO$^+$/HCO$^+$ abundance ratio is a factor of 10 larger for the filaments immersed in the atomic region than for the filaments embedded in the molecular cloud. This gradient in the CO$^+$/HCO$^+$ ratio cannot be due to an opacity effect. The I(CO$^+$) / I(HCO$^+$) ratio is consistent with optically thin emission (within the observational errors) for all the velocity intervals (see Table 2).

Though consistent with optically thin emission, our data suggest that the opacity of the CO$^+$ lines could be larger for the velocities 3.2–6.0 km s$^{-1}$ than for 1.6–3.2 km s$^{-1}$. In this case, the CO$^+$ column density would be slightly underestimated for the velocity interval 3.2–6.0 km s$^{-1}$, and the derived CO$^+$/HCO$^+$ ratio would be a lower limit to the actual value of the CO$^+$/HCO$^+$ ratio for this interval. Therefore, although we are aware of the uncertainties involved in column density estimates, we think that the observed gradient in the CO$^+$/HCO$^+$ ratio (a factor of 10) is significant, and it is in agreement with the expected behavior of the CO$^+$/HCO$^+$ ratio, in which CO$^+$ formation is restricted to a narrow range.

Table 1

OBSERVATIONAL PARAMETERS

Molecule	Frequency (MHz)	$f_{T MB}$ (K km s$^{-1}$)	ν_{LSR} (K km s$^{-1}$)	Δv (K km s$^{-1}$)	T_{MB} (K)
CO$^+$	235789.64	0.17 (0.03)	3.4 (0.2)	2.1 (0.4)	0.076
CO$^+$	236062.55	0.23 (0.02)	2.7 (0.1)	2.1 (0.4)	0.104
CH$_3$OH	239746.25	<0.2a
CS$^+$	97980.97	0.92 (0.04)	2.3 (0.1)	0.7 (0.1)	1.31
CS$^+$	146969.05	1.38 (0.02)	2.3 (0.1)	0.7 (0.1)	1.85
CS$^+$	244935.61	0.79 (0.03)	2.3 (0.1)	0.5 (0.1)	2.73
H3CO$^+$	86754.33	0.34 (0.04)	2.38 (0.04)	0.5 (0.1)	0.61

Molecular peak: R.A., 21$^\circ$01$'$32.6; decl., 68$^\circ$11$'$27$'$ (2000)

a The 3σ upper limit assuming a line width of 2 km s$^{-1}$.

b Spectrum after degrading the angular resolution of the CS 3 \to 2 map to have that of the CS 2 \to 1 map.

c The same as footnote (b), but for the CS 5 \to 4 map.

d The 3σ upper limit assuming a line width of 1 km s$^{-1}$.
of visual extinctions, $A_v < 2$ mag. The visual extinction at the surface of the filament at 2.4 km s$^{-1}$ must be greater than 1 mag to be immersed in a mainly molecular medium, while for the filaments immersed in a mainly atomic medium, the visual extinction must be less than 1 mag. Assuming an HCO$^+$ fractional abundance of 4×10^{-10} (Fuente et al. 1996), the CO$^+$ fractional abundance is 4×10^{-11} in the filaments immersed in the atomic medium. CO$^+$ fractional abundances of approximately 10^{-11} are also derived from the CO$^+$ data reported by Stöhr et al. (1995) and Latter et al. (1993), toward M17SW and the Orion Optical Bar. Although the physical conditions and incident UV field are different (see §3), the CO$^+$ fractional abundance in NGC 7023 is similar to that found at the edges of the H II regions around massive stars.

2.2. Molecular Peak

We have not detected CO$^+$ toward the molecular peak. Assuming a line width of 1 km s$^{-1}$ (a typical line width for the molecular cloud), we obtain an upper limit to the integrated intensity of the CO$^+$ line at 236.062 GHz of 0.03 K km s$^{-1}$. Assuming a kinetic temperature of $T_K = 15$ K (Fuente et al. 1990), we estimate a density of 10^3 cm$^{-3}$ from our CS data. This density is high enough to excite the CO$^+$ lines. In fact, the excitation conditions required for the H13CO$^+$ $J = 3 \to 2$ line are comparable to those required for the CO$^+$ $N = 2 \to 1$, $I = 5/2 \to 3/2$, and $3/2 \to 1/2$ lines, and the H13CO$^+$ $J = 3 \to 2$ line has been detected with an intensity of 1.04 K. Therefore, the lack of detection of CO$^+$ toward the molecular peak is not due to the excitation conditions in this region. With the same assumptions as for the PDR peak, the upper limit to the CO$^+$ column density is 4.5×10^{10} cm$^{-2}$. Assuming $n = 10^6$ cm$^{-3}$ and $T_K = 15$ K, we estimate an H13CO$^+$ column density of 8×10^{11} cm$^{-2}$. This means a CO$^+$/H13CO$^+$ ratio of less than 0.001. Therefore, the CO$^+$/H13CO$^+$ ratio is at least 100 times lower in the molecular peak than in the filaments immersed in the atomic medium. Assuming an HCO$^+$ abundance of 4×10^{-10}, we obtain a fractional abundance of CO$^+$ of less than 5×10^{-13} in the molecular peak.

3. SUMMARY AND DISCUSSION

We have detected, for the first time, CO$^+$ in a PDR associated with a Be star. This region is very different from the massive star-forming regions in which CO$^+$ had been detected thus far. First of all, since the ionization potential of CO is larger than 13.6 eV, a Be star does not produce a significant number of photons capable to ionize CO. Furthermore, the intensity of the UV field and the density around this star, $G_e \sim 10^2$ (in units of Habing field), and densities of approximately 10^4 cm$^{-3}$, are very different from those around massive O stars, in which $G_e \sim 10^3$ and $n \sim 10^5$ cm$^{-3}$. Chemical models predict that CO$^+$ column densities decrease sharply for UV fields less than 102 and densities less than 104 cm$^{-3}$ (Stöhr et al. 1995). Even for the conditions prevailing in massive star-forming regions, chemical models fail to predict the large CO$^+$ column densities observed toward them. To solve this problem, some authors have suggested that the direct photoionization of CO might be a nonnegligible formation mechanism of CO$^+$ in these regions (Jansen et al. 1995; Black, Latter, & Maloney 1996). We have estimated a CO$^+$ column density of 3×10^{12} cm$^{-2}$ toward the PDR peak in NGC 7023. Our results show that large CO$^+$ column densities can be produced even with UV fields of just a few 102 and densities of around 104 cm$^{-3}$. Since the peak CO$^+$ abundance in NGC 7023 (4×10^{-13}) is similar to that found in massive star-forming regions, our data suggest that the direct photoionization of CO is not a significant formation mechanism for CO$^+$.

We are grateful to the technical staff of Pico de Veleta for their support during the observations. We are also grateful to R. Gaume for his careful reading of the manuscript. This work has been partially supported by the Spanish DGICYT under grant PB93-0048.

REFERENCES

Anderson, T., De Lucia, C., & Herbst, E. 1990, ApJS, 72, 797
Black, J. H., Latter, W. B., & Maloney, P. R. 1996, in IAU Symp. 178, Molecules in Astrophysics: Probes & Processes, ed. D. J. Jansen, M. R. Hogerheijde, & E. F. van Dishoeck (Dordrecht: Reidel)
Blake, G. A., Sutton, E. C., Masson, C. R., Phillips, T. G., Herbst, E., Plummer, G. M., & De Lucia, F. C. 1984, ApJ, 286, 586
Erickson, N. R., Snell, R. L., Loren, R. B., Mundy, L., & Plambeck, R. L. 1981, ApJ, 245, L83
Fuente, A., Martin-Pintado, J., Cernicharo, J., & Bachiller, R. 1990, A&A, 237, 471

No. 2, 1997 DETECTION OF CO$^+$ TOWARD NGC 7023 L109

Parameter	0.16 km s$^{-1}$	1.6–3.2 km s$^{-1}$	3.2–6.0 km s$^{-1}$
I(HCO$^+$, $J = 1 \to 0$) (K km s$^{-1}$)	0.59 (0.02)a	4.67 (0.02)	1.10 (0.03)
I(H13CO$^+$, $J = 1 \to 0$) (K km s$^{-1}$)	0.11 (0.04)	0.34 (0.04)	<0.15
I(CO$^+$, $N = 2 \to 1$, $I = 5/2 \to 3/2$) (K km s$^{-1}$)	0.02 (0.01)	0.14 (0.01)	0.07 (0.02)
I(CO$^+$, $N = 2 \to 1$, $I = 3/2 \to 1/2$) (K km s$^{-1}$)	<0.06	0.08 (0.02)	0.09 (0.03)
I(CO$^+$, $N = 2 \to 1$, $I = 3/2 \to 1/2$) (K km s$^{-1}$)	0.6 (0.2)	1.3 (0.8)	
N(HCO$^+$) (cm$^{-2}$)	5×10^{11}	4×10^{12}	9×10^{11}
N(H13CO$^+$) (cm$^{-2}$)	8×10^{10}	3×10^{11}	...
N(CO$^+$) (cm$^{-2}$)	3×10^{10}	2×10^{11}	1×10^{11}
N(CO$^+$) (HCO$^+$)	0.03b	0.02b	0.1
X(CO$^+$)	4×10^{-12}	8×10^{-12}	4×10^{-11}

a The number in parentheses is σ.
b In these cases, the HCO$^+$ column density has been estimated from H13CO$^+$ data assuming an isotopic ratio of 40.

Assuming X(HCO$^+$) $\sim 4 \times 10^{-10}$.
FIG. 1.—Left panel shows the integrated intensity map of the HCO$^+$ $J = 1 \rightarrow 0$ line carried out with the 30 m telescope toward NGC 7023 (solid contours) superposed to the H I column density image obtained after combining VLA and DRAO data (gray scale) (Fuente et al. 1993, 1996). HCO$^+$ contours are 0.8 to 7.2 by 0.8 K km s$^{-1}$. The numbers in the wedge are in units of 10^{20} cm$^{-2}$. The star indicates the position of HD 200775, the white triangle indicates the PDR peak, and the filled square indicates the molecular peak. The HCO$^+$ molecular filaments as observed with the IRAM PdBI interferometer are the heavy contours, black is the filament at 2.4 km s$^{-1}$, and white is the one at 4 km s$^{-1}$ (Fuente et al. 1996). On the right we show (top to bottom) the spectra of the HCO$^+$ $J = 1 \rightarrow 0$, H13CO$^+$ $J = 1 \rightarrow 0$, and CO$^+$ $N = 2 \rightarrow 1$, $J = 5/2 \rightarrow 3/2$, and $J = 3/2 \rightarrow 1/2$ lines toward the molecular peak and the PDR peak. Several channels of the original CO$^+$ spectra have been averaged.

Fuente & Martín-Pintado (see 477, L107)