ON HOLOMORPHIC FUNCTIONS WITH CLUSTER SETS OF
FINITE LINEAR MEASURE

Josip Globevnik and David Kalaj

Abstract We prove that if \(f \) is a holomorphic function on the open unit disc in \(\mathbb{C} \) whose cluster set \(C(f) \) has finite linear measure and is such that \(\mathfrak{C} \backslash C(f) \) has finitely many components, then the derivative \(f' \) belongs to the Hardy space \(H^1 \).

1. Introduction and the result

Let \(f \) be a complex valued function defined on the open unit disc \(\Delta \subset \mathbb{C} \). The cluster set \(C(f) \) of \(f \) is defined as the set of all \(w \in \mathbb{C} \) such that \(w = \lim_{n \to \infty} f(z_n) \) where \(z_n \in \Delta \), \(\lim_{n \to \infty} |z_n| = 1 \). If \(f \) is bounded and continuous then \(C(f) \) is a compact connected set.

If \(E \subset \mathbb{C} \) then the linear measure \(\Lambda(E) \) of \(E \) is the one dimensional Hausdorff measure of \(E \), that is,

\[
\Lambda(E) = \lim_{\varepsilon \to 0} \inf_{(D_n)} \sum_n \text{diam} D_n
\]

where the infimum is taken over all systems of discs with \(\text{diam} D_n < \varepsilon \) that cover \(E \). If \(E \) is a rectifiable Jordan arc then \(\Lambda(E) \) equals the arclength of \(E \).

Let \(f \) be a nonconstant holomorphic function on \(\Delta \).

Theorem 1.1 [D, p.42] The function \(f \) extends continuously through \(\overline{\Delta} \) and \(f \) is absolutely continuous on \(b\Delta \) if and only if \(f' \) belongs to Hardy space \(H^1 \), that is, if and only if

\[
\sup_{0 < r < 1} \int_0^{2\pi} |f'(re^{i\theta})|d\theta < \infty.
\]

This happens if \(f \) is of bounded variation on \(b\Delta \).

A special case when this happens is

Theorem 1.2 [P2, p.320] Let \(f \) be a biholomorphic map from \(\Delta \) onto a domain \(D \). Then \(f' \in H^1 \) if and only if \(\Lambda(bD) < \infty \). In particular, if \(D \) is bounded by a rectifiable simple closed curve then \(f' \in H^1 \).

We want to find more general conditions for a holomorphic function \(f \) on \(\Delta \) which imply that \(f' \in H^1 \). Looking at Theorem 1.2 it is a natural question whether for a holomorphic function \(f \) on \(\Delta \) the assumption \(\Lambda(C(f)) < \infty \) implies that \(f' \in H^1 \). In the case when \(\Lambda(C(f)) < \infty \) we have the following result of H. Alexander and Ch. Pommerenke
\textbf{Theorem 1.3 [A, P1]} Let f be a holomorphic function on Δ such that $\Lambda(C(f)) < \infty$. Then f extends continuously through $\overline{\Delta}$.

However, as shown by D. Gnuschke-Hauschild [G-H, p.592], the condition that $\Lambda(C(f)) < \infty$ does not necessarily imply that $f' \in H^1$.

If f is a nonconstant holomorphic function on Δ then $f(\Delta)$ is a nonempty open set; if $\Lambda(C(f)) < \infty$ then $C(f)$ is a compact connected set with empty interior so $\mathcal{C}\setminus C(f)$ is an open set having at least one bounded component. In the example of Gnuschke-Hauschild $\mathcal{C}\setminus C(f)$ has infinitely many components. The principal result of the present paper is that the situation is different when $\mathcal{C}\setminus C(f)$ has only finitely many components:

\textbf{Theorem 1.4} Let f be a holomorphic function on Δ such that $\Lambda(C(f)) < \infty$ and such that $\mathcal{C}\setminus C(f)$ has finitely many components. Then $f' \in H^1$.

2. Proof of Theorem 1.4, Part 1

Let f be as in Theorem 1.4. With no loss of generality assume that f is not a constant. By Theorem 1.3, f extends continuously through $\overline{\Delta}$. We denote the extension with the same letter f. By Theorem 1.1 we have to show that there is a constant $M < \infty$ such that

$$\sum_{j=1}^{\ell} |f(e^{i\theta_j}) - f(e^{i\theta_{j-1}})| < M$$

whenever $0 \leq \theta_0 < \theta_1 < \cdots < \theta_{\ell} \leq 2\pi$.

As Gnuschke-Hauschild did in [G-H] we decompose Δ into subsets on which f has simpler behavior. If V is a component of the open set $f(\Delta) \setminus C(f)$ then V is an open connected set whose boundary is contained in $C(f) = f(b\Delta)$ and hence it is a component of $\mathcal{C}\setminus C(f)$. By our assumption $\mathcal{C}\setminus C(f)$ has finitely many components so it follows that $f(\Delta) \setminus C(f)$ has finitely many components. Denote these components by $U_1, U_2, \cdots U_m$. Since $C(f)$ is connected the domains U_j are simply connected.

The set $E = (f(\Delta))^{-1}(C(f)) = \{z \in \Delta : f(z) \in C(f)\} = \{z \in \Delta : f(z) \in f(b\Delta)\}$ is a closed subset of Δ. Let G_k, $k = 1, 2, \cdots$ be the components of the open set $\Delta \setminus E$. Then, as shown in [G-H], each domain G_k is simply connected and $f(G_k)$ equals one of the domains U_1, \cdots, U_m, moreover $f|G_k: G_k \rightarrow f(G_k)$ is a proper map, that is, if $\varphi_k: \Delta \rightarrow G_k$ and $\psi_k: \Delta \rightarrow f(G_k)$ are biholomorphic maps then $g_k = \psi_k^{-1} \circ f \circ \varphi_k$ is a proper holomorphic map from Δ to Δ, that is, a finite Blaschke product whose multiplicity we denote by ν_k.

We show that the number of components G_k is finite. To see this, assume the opposite, that there are one of the components U among U_1, \cdots, U_m and a sequence of components G_k, $k \in \mathbb{N}$, such that for each $k \in \mathbb{N}$, $f(G_k) = U$. Let $w \in U$. Clearly $w \notin C(f)$. For each k there is a $z_k \in G_k$ such that $f(z_k) = w$. Since G_k are pairwise disjoint, z_k is an injective sequence. We claim that $|z_k| \rightarrow 1$ as $k \rightarrow \infty$. If not, passing to a subsequence if necessary, we may assume that $z_k \rightarrow z \in \Delta$ and thus $f(z_k) = w$ for all k which is not possible since f is nonconstant. Thus, $|z_k| \rightarrow 1$. But since $f(z_k) = w$ for all k it follows that $w \in C(f)$, a contradiction. Thus, the number of components G_k is finite, denote them by $G_1, G_2, \cdots G_n$. Obviously $n \geq m$.

The cluster set $C(f)$ is a plane continuum. Since $\Lambda(C(f)) < \infty$ it follows that $C(f)$ is locally connected [CC, Lemma 2, p.49]. Since $\mathcal{C} \setminus C(f)$ has finitely many components, Thorhorst’s theorem [CC, p.44, W, p.113] implies that each component of $\mathcal{C} \setminus C(f)$ has locally connected boundary. Thus, bU_j is locally connected for each j, $1 \leq j \leq m$.

For each G_j there is some U_k such that $f(G_j) = U_k$ and such that $f|G_j: G_j \rightarrow U_k$ is a proper map. Since bU_k is locally connected, [CC, Lemma 1, p.46] implies that bG_j is locally connected. Thus, for each j, $1 \leq j \leq n$, the domain G_j is simply connected and has locally connected boundary.

For each j, $1 \leq j \leq n$, let $\psi_j: \Delta \rightarrow G_j$ be a biholomorphic map. Since bG_j is locally connected, the map ψ_j extends continuously through $\overline{\Delta}$ and $\psi_j(b\Delta) = bG_j$ [P2, p. 279]. In particular, for each $a, b \in bG_j$, $a \neq b$, there is an arc L, contained in G_j except for its endpoints a and b.

Notice that the set $E = (f|\Delta)^{-1}(C(f))$ has no interior: If E contains a nonempty open set then, since f is open, $f(E)$ contains a nonempty open set. Since $f(E) \subset C(f)$ this is not possible since $C(f)$, being of finite linear measure, has no interior. Since E has no interior and since $E \cup \bigcup_{j=1}^{n} G_j = \Delta$ it follows that $\cup_{j=1}^{n} G_j$ is dense in Δ. Thus, $\cup_{j=1}^{n} \overline{G_j} = \overline{\Delta}$ so $b\Delta \subset \cup_{j=1}^{n} bG_j$.

3. Some estimates

Assume that D is a domain such that $\Lambda(bD) < \infty$ and that $\Phi: \Delta \rightarrow D$ is a biholomorphic map. We know that Φ extends continuously through $\overline{\Delta}$. The proof of [Pom., Th.10.1, p.321] shows that

$$\int_{0}^{2\pi} |\Phi'(re^{i\theta})|d\theta \leq \pi \Lambda(bD) \quad (0 < r < 1).$$

Since $r \int_{0}^{2\pi} |\Phi'(re^{i\theta})|d\theta$ equals the length of the curve $\{\theta \mapsto \Phi(re^{i\theta}) : 0 \leq \theta \leq 2\pi\}$ it follows that given θ_j,

$$\theta_0 < \theta_1 < \cdots < \theta_\ell \leq \theta_0 + 2\pi$$

(3.2)

we have $\sum_{j=1}^{\ell} |\Phi(re^{i\theta_j}) - \Phi(re^{i\theta_j-1})| \leq r \int_{0}^{2\pi} |\Phi'(re^{i\theta})|d\theta \leq r\pi \Lambda(bD)$, which, as $r \rightarrow 1$, gives

$$\sum_{j=1}^{\ell} |\Phi(e^{i\theta_j}) - \Phi(e^{i\theta_j-1})| \leq \pi \Lambda(bD)$$

(3.3)

whenever θ_j satisfy (3.2).

Assume now that D is a simply connected domain with $\Lambda(bD) < \infty$ and that $g: \Delta \rightarrow D$ is a proper holomorphic map. If $\Phi: \Delta \rightarrow D$ is a biholomorphic map then $\Phi^{-1} \circ g$ is a proper holomorphic map from Δ to Δ, a finite Blaschke product B, so $g = \Phi \circ B$ where the multiplicity of the map g equals the multiplicity of B.

If ν is the multiplicity of B then, as ζ runs around $b\Delta$ once, $B(\zeta)$ runs around $b\Delta$ ν times so if θ_j satisfy (3.2) then there are τ_j, $\tau_0 < \tau_1 < \cdots < \tau_\ell \leq \tau_0 + \nu 2\pi$ such that $B(e^{i\theta_j}) = e^{i\tau_j}$ ($1 \leq j \leq \ell$). The preceding discussion now implies that $\sum_{j=1}^{\ell} |g(e^{i\theta_j}) - g(e^{i\theta_j-1})| = \sum_{j=1}^{\ell} |\Phi(e^{i\tau_j}) - \Phi(e^{i\tau_{j-1}})| \leq \nu \pi \Lambda(bD)$. This gives
Proposition 3.1 Let D be a simply connected domain such that $\Lambda(bD) < \infty$ and let $g: \Delta \rightarrow D$ be a proper holomorphic map of multiplicity ν. Then g extends continuously through $\overline{\Delta}$. If $\theta_0 < \theta_1 < \cdots < \theta_\ell \leq \theta_0 + 2\pi$ then

$$
\sum_{j=1}^{\ell} |g(e^{i\theta_j}) - g(e^{i\theta_{j-1}})| \leq \nu \pi \Lambda(bD)
$$

4. Proof of Theorem 1.4, Part 2

We shall show that

$$
b\Delta \text{ can be written as a finite union of pairwise disjoint semiopen arcs}
$$

$$L_1, L_2, \cdots, L_\mu, \text{ each being of the form } \{e^{i\theta} : \alpha \leq \theta < \beta\} \text{ such that each}
$$

$$L_k \text{ is contained in } bG_\sigma \text{ for some } \sigma, 1 \leq \sigma \leq n.
$$

Assume for a moment that we have done this. With no loss of generality assume that the initial point $e^{i\alpha}$ of L_1 is 1.

Let $A_j, 1 \leq j \leq \nu$, be points on $b\Delta$. We say that the ν–tuple $(A_1, A_2, \cdots, A_\nu)$ is ordered positively if $A_j = e^{i\theta_j}$ where $\theta_1 < \theta_2 < \cdots < \theta_\nu < \theta_1 + 2\pi$.

To proceed we need the following

Proposition 4.1 Let $G \subset \Delta$ be a simply connected domain with locally connected boundary and let $\Phi: \Delta \rightarrow G$ be a biholomorphic map (that extends continuously through $\overline{\Delta}$ as bG is locally connected). Suppose that L is a closed arc in $b\Delta$ such that $L \subset bG$ and assume that $A_j \in L, 1 \leq j \leq \nu$, are such that the ν–tuple $(A_1, A_2, \cdots, A_\nu)$ is ordered positively. For each $j, 1 \leq j \leq \nu$, let $a_j \in b\Delta$ be such that $\Phi(a_j) = A_j (1 \leq j \leq \nu)$. Then the ν–tuple $(a_1, a_2, \cdots, a_\nu)$ is ordered positively.

Remark. Note that we do not assume that IntL is an open subset of bG. Note also that since $\Phi(b\Delta) = bG$ it follows that for each $j, 1 \leq j \leq \nu$, there is an $a_j \in b\Delta$ which satisfies $\Phi(a_j) = A_j$. Note that this a_j is not necessarily unique.

Proof. It is enough to prove the special case of Proposition 4.1 when $\nu = 3$ as the general case will then follow by using this special case inductively. So let $\nu = 3$ and let $A_j, a_j, 1 \leq j \leq 3$, be as in Proposition 4.1. Let $\lambda \subset b\Delta$ be the arc obtained by sliding a_1 to a_3 along $b\Delta$ in positive direction, that is, if $a_1 = e^{i\omega_1}$ and $a_3 = e^{i\omega_3}$ where $\omega_1 < \omega_3 < \omega_1 + 2\pi$, then $\lambda = \{e^{i\omega} : \omega_1 < \omega < \omega_3\}$. To see that (a_1, a_2, a_3) is ordered positively we must show that $a_2 \in \lambda$.

Let ℓ be the arc in Δ consisting of the segment joining a_3 with 0 and the segment joining 0 with a_1 and let Ω be the domain bounded by $\lambda \cup \ell$. Orient $b\Omega = \lambda \cup \ell$ in the positive direction. In particular, ℓ has a_3 as the initial point and a_1 as the final point. The arc $\mathcal{L} = \Phi(\ell)$ is contained in Δ except for its endpoints $A_3 = \Phi(a_3)$ and $A_1 = \Phi(a_1)$; we keep the orientation from ℓ so A_3 is the initial point and A_1 is the final point of \mathcal{L}.

Since the endpoints of \mathcal{L} belong to $b\Delta$, $\Delta \setminus \mathcal{L}$ has two components D_1 and D_2 where D_1 is bounded by \mathcal{L} and by the arc $\Sigma \subset b\Delta$ obtained by sliding A_1 to A_3 along $b\Delta$ in positive
direction. The arc Σ oriented in this direction together with the arc \mathcal{L} oriented as above form the positively oriented boundary of D_1. Since $\Phi : \Delta \to \Phi(\Delta) = G$ is a biholomorphic map, $\Phi(\Omega)$ must be contained either in D_1 or in D_2. Along ℓ, Ω lies to the left of ℓ with respect to the above orientation of ℓ and since Φ is conformal it follows that along \mathcal{L}, $\Phi(\Omega)$ lies to the left of L. This implies that $\Phi(\Omega) \subset D_1$. If $a_2 \in b\Delta \setminus \lambda$ then a_2 is in the closure of $\Delta \setminus \Omega$, which, by the continuity of Φ on $\overline{\Sigma}$, implies that $\Phi(a_2) = A_2$ is in the closure of D_2 which is impossible since A_2 is an interior point of Σ. This completes the proof of Proposition 4.1.

Recall that for each σ, $1 \leq \sigma \leq n$, ν_σ is the multiplicity of the proper map $f|G_\sigma : G_\sigma \to f(G_\sigma)$. Let $V = \max_{1 \leq \sigma \leq n} \nu_\sigma$.

Now, let
\[0 \leq \theta_0 < \theta_1 < \cdots < \theta_\ell \leq 2\pi. \tag{4.2} \]

Fix k, $1 \leq k \leq \mu$, and consider those points $e^{i\theta_j}$ that belong to L_k, suppose that these points are $e^{i\theta_s}, e^{i\theta_{s+1}}, \ldots, e^{i\theta_t}$. Let σ, $1 \leq \sigma \leq n$, be such that $L_k \subset bG_\sigma$. By Proposition 4.1 there are ω_j, $\omega_s < \omega_{s+1} < \cdots < \omega_t < \omega_s + 2\pi$, such that
\[\psi_\sigma(e^{i\omega_p}) = e^{i\theta_p} \quad (s \leq p \leq t) \]
and hence by Proposition 3.1
\[
\sum_{j=s+1}^{t} |f(e^{i\theta_j}) - f(e^{i\theta_{j-1}})| = \sum_{j=s+1}^{t} |f(\psi_\sigma(e^{i\omega_j})) - f(\psi_\sigma(e^{i\omega_{j-1}}))| \leq \nu_\sigma \pi \Lambda(b(f(G_\sigma))) \leq V \pi \Lambda(C(f)).
\]

We repeat this for every k, $1 \leq k \leq \mu$. In the sum
\[
\sum_{j=1}^{\ell} |f(e^{i\theta_j}) - f(e^{i\theta_{j-1}})| \tag{4.3}
\]
there are terms as above whose total sum does not exceed $\mu V \pi \Lambda(C(f))$. However, in the sum (4.3) there are also terms $|f(e^{i\theta_j}) - f(e^{i\theta_{j-1}})|$ where $e^{i\theta_{j-1}}$ is the last point in L_k and $e^{i\theta_j}$ is the first point in L_{k+1}. Each such term does not exceed $\text{diam}(C(f))$ and there are $\mu - 1$ such terms. Thus, the sum (4.3) is bounded above by $\mu V \pi \Lambda(C(f)) + (\mu - 1)\text{diam}(C(f))$ whenever θ_j satisfy (4.2). Consequently, $f|(b\Delta)$ has bounded variation which was to be proved.

It remains to prove (4.1).

5. Proof of Theorem 1.4, Part 3

We now want to study how domains G_j ”touch” $b\Delta$, that is we want to look at $(b\Delta) \cap \overline{G_j} = (b\Delta) \cap bG_j$. Fix j, $1 \leq j \leq n$. Consider the set $\Sigma = \overline{G_j} \cap b\Delta = (bG_j) \cap b\Delta$. This is a closed subset of $b\Delta$. Its complement $(b\Delta) \setminus \Sigma$ is an open subset of $b\Delta$. We show that it has finitely many components. To see this, let $\lambda \subset b\Delta$ be a component of $b\Delta \setminus \Sigma$
Thus, λ is an open arc on $b\Delta$ disjoint from $\overline{G_j}$ whose endpoints belong to $\overline{G_j}$. As observed in Section 2 there is an arc L contained in G_j except for its endpoints which coincide with endpoints of λ. Since $b\Delta = \bigcup_{i=1}^{n} bG_i \cap b\Delta$ it follows that there are a k, $1 \leq k \leq n$, $k \neq j$, and a point $a \in \lambda \cap (bG_k)$. Notice that bG_k meets no other component of $(b\Delta) \setminus \Sigma$. Indeed, if it does, there is an arc L_1 contained in G_k except its endpoints a and $b \in \lambda_1$ where λ_1 is a component of $b\Delta \setminus \Sigma$ different from λ. However, such an L_1 would have to intersect L which is impossible since $L \subset G_j$ and $L_1 \subset G_k$ and $G_j \cap G_k = \emptyset$. Thus, for each component λ of $b\Delta \setminus \Sigma$ there is a G_k such that $\lambda \cap bG_k \neq \emptyset$ and such that bG_k meets no other component of $b\Delta \setminus \Sigma$. Obviously all domains G_k so obtained are pairwise disjoint. Since there are only n of them it follows that $b\Delta \setminus \Sigma$ has finitely many components.

Thus, for each j, $1 \leq j \leq n$, the set $bG_j \cap b\Delta$, if nonempty is a union of finitely many pairwise disjoint closed sets each of which is either a point or a closed arc. (The only trivial noninteresting exception is when there is just one such G_j, $G_1 = \Delta$ when $bG_1 = b\Delta$.) Since $\bigcup_{j=1}^{n} (bG_j \cap b\Delta) = b\Delta$ it follows that the family of all closed arcs so obtained for all j, $1 \leq j \leq n$, covers $b\Delta$. It is easy to see that this implies (4.1). The proof of Theorem 1.4 is complete.

References

[A] H. Alexander: Polynomial hulls and linear measure. Complex analysis, II (College Park, Md., 198586), 1-11, Lecture Notes in Math., 1276, Springer, Berlin, 1987.

[CC] J. J. Carmona and J. Cufi: On analytic functions with locally connected cluster sets. Complex Variables Theory Appl. 10 (1988), no. 1, 43-52.

[G-H] D. Gnuschke-Hauschild: On the angular derivative of analytic functions. Math. Z. 196 (1987), no. 4, 591-601.

[D] P. L. Duren: Theory of H^p spaces. Pure and Applied Mathematics, Vol. 38 Academic Press, New York-London 1970

[P1] Ch. Pommerenke: On analytic functions with cluster sets of finite linear measure. Michigan Math. J. 34 (1987), no. 1, 93-97

[P2] Ch. Pommerenke: Univalent functions. With a chapter on quadratic differentials by Gerd Jensen. Studia Mathematica/Mathematische Lehrbcher, Band XXV. Vandenhoeck & Ruprecht, Goettingen, 1975

[W] G. T. Whyburn: Analytic topology. American Mathematical Society Colloquium Publications, Vol. XXVIII American Mathematical Society, Providence, R.I. 1963
