Research notes on bats' species assemblage in Madai Cave of Segama Valley, Sabah, Malaysia

A Mahyudin1,2,3*, S S Sukiman2, S V Kumar3 and M Z Hoque4

1 Faculty of Tropical Forestry, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
2 Conservation Biology Program, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
3 Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
4 Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia

* Corresponding author: azniza@ums.edu.my

Abstract. Insectivorous bats spend approximately half of their lives in the roost. Most of them are cave-dwelling and use the caves as roosting grounds. Roosts are important for mating, hibernation, rearing young, and a place to socialise, while providing protection from predators in a thermo-stable environment. This study aims to assess the diversity of insectivorous bats at Madai caves in Kunak, Lahad Datu, Sabah over a temporal period of 8 years. The sampling of bats was conducted twice i.e. in August 2010 and in December 2018. Harp traps and mist nets were used to sample bats in all sampling sessions. Eighteen species of bats, including two fruit bats, *Cynopterus brachyotis* and *Rousettus spinalatus*, were identified from the study site. Four insectivorous bat species were found in both years consistently i.e. *Hipposideros cervinus*, *Rhinolophus creaghi*, *R. philippinensis*, and *Chaerephon plicatus*. The species list in 2010 and 2018 differed by more than 50%, which may be a cause of concern and warrants further investigation. Most of the listed species are categorised as Least Concern, under the IUCN Red List of Threatened Species, except for *Rousettus spinalatus*, *Hipposideros ridleyi* and *Miniopterus schreibersii* which are listed as vulnerable. Only *Hipposideros dyacorum* is protected under Sabah Wildlife Enactment (1997). These findings will assist policymakers in making decisions on the importance to conserve the natural habitats of bats.

Keywords: Bats; cave; IUCN; Sabah; virgin jungle reserve.

1. Introduction
The state of Sabah which is located at the northeast region of Borneo is a hotspot for bat diversity, housing 87 of the 102 species recorded throughout the island [1]. This number consists of eight families, including the only fruit bat family of Pteropodidae (16 species) and seven families of insectivorous bats: Emballonuridae (5 species), Rhinolophidae (10 species), Hipposideridae (9 species), Vespertilionidae (40 species), Molossidae (3 species), Megadermatidae (*Megaderma spasma*) and Nycteridae (*Nycteris tragata*). From these, three families i.e., Hipposideridae, Rhinolophidae and Vespertilionidae, are recognised as the narrow-space ensemble of insectivorous bats [2-4]. They are considered common and widely distributed in the caves of Sabah [5]. The members of Hipposideridae and Rhinolophidae are mostly cave-dwelling bats, whereas some members of Vespertilionidae (subfamilies Kerivoulinea and Murininae) are forest-dependent bats. They are highly adapted to forage in the forest and are predicted to be sensitive to land-use change [4]. Like all other bats, insectivorous bats spend approximately half of their lives in the roost, and most are cave-dwelling, using caves to roost. Roosts are important sites for mating, hibernation, rearing young, and a place to socialise with other individuals [5-7]. The roost protects them from predators and provide a thermo-stable environment. Furthermore, a suitable roost site will reduce commuting costs to foraging sites [8].
There has been relatively little cave-bat research conducted in Sabah. Most bat diversity study was carried out in the Gomantong cave and surrounding area. Boonratana and Sharma carried out the first bat report from the Lower Kinabatangan in Kampung Sukau [9]. In 2000, Yasuma (pers. comm) surveyed Gomantong Forest Reserve and Gomantong Virgin Jungle Reserve, reporting twenty-five species of bats. To date, sixteen species of insectivorous bats and four species of fruit-bats were reported from Gomantong and Sukau [1,6,7,9-11] (Table 1).

Table 1. List of bats present in Gomantong Virgin Jungle Reserve, Gomantong Protected Forest Reserve and Sukau.

Family	Species
Pteropodidae	*Pteropus vampyrus*, *Cynopterus horsfieldi*, *Cynopterus brachyotis*,
	Eonycteris spelaea
Hipposideridae	*Hipposideros diadema*, *Hipposideros cervinus*, *Hipposideros galeritus*,
	Hipposideros bicolor
Rhinolophidae	*Rhinolophus creaghi*, *Rhinolophus philippinensis*, *Rhinolophus
	arcuatus, *Rhinolophus borneensis*
Vespertilionidae	*Miniopterus magnate*, *Miniopterus australis*, *Miniopterus paululus*,
	Myotis gomantongensis, *Myotis muricola*, *Kerivoula papillosa*
Molossidae	*Chaerephon plicatus*

2. Materials and methods

2.1 Study site
Gomantong, Batu Supu and Madai are considered large caves, compared to other caves in the Lower Kinabatangan-Segama Valley, with edible birds’ nest harvesting being regularly conducted at Gomantong and Madai caves. Madai cave is in the Madai-Baturong Virgin Jungle Forest (VJR; 5,867ha) and consists of two compartments i.e., Madai VJR (Block A) and Baturong VJR (Block B). About 23 to 38 caves are located within this forest reserve, with Madai being the largest of them [12] (Figure 1).

Figure 1. Location of Madai cave and other caves in Lower Kinabatangan and Segama Valley.
2.2 Sampling effort and bat handling
Sampling was conducted twice over a period of eight years apart, in August 2010 and December 2018 for four consecutive nights each. Due to seasonal factors in Sabah, we had modified some sampling protocols [4,13] and operating hours to avoid any animal casualties. Bats were sampled from 8.00 pm to 10 pm every day and the nets and traps were manned every 15-20 minutes. After each collection, the traps were drawn down from the caves instead of leaving it unmanned overnight at the sites.

On-site, three harp traps and eight mist nets were set inside and around the caves in the evening after the bats emerged from the cave. The body weight of the bats was measured in grams (g). In addition, the forearm length (FA), hindfoot (HF), ear and tragus (Ear-tragus), and tail (T) were measured in millimetres (mm) for species identification [1,12,14]. Only fifteen individuals were taken for measurement for each trap checking session and we had reduced the length of time taken to process each bat. This was to avoid massive backlog of collection at any given time and to avoid any unnecessary casualty.

2.3 Data analyses

2.3.1 Inventory sampling efforts and completeness. We calculated the success rate and the sampling efforts in 2010 and 2018. Also, diversity estimation indicators such as Chao1, Chao2, ACE, ICE, First and Second-order Jacknife were computed to evaluate the completeness of our inventories, using EstimateS [12].

2.3.2. Species diversity, species assemblages, guild structure and conservation status. We recorded species and sampling methods that were successfully used to catch the species for future reference. Species diversity and inventory completeness were calculated using diversity indices such as Chao1, Chao2, ACE, ICE, First-order Jacknife, Second-order Jacknife and Bootstrap in EstimateS software [12]. Captured bats were assigned to their conservation status following the IUCN Red List of Threatened Species and Sabah Wildlife Enactment (1997) [12]. Also, we determined their guild structure based on their foraging strategies [4,15].

3. Results and discussions

3.1 Sampling efforts and success rate in Madai cave
We had sampled Madai cave for forty-four (44) trap-nights in both years (2010 and 2018). However, in 2010 we had recorded 179 individuals while 100 individuals were captured in 2018. The number of catches contributed to the success rate, calculated to be 407% in 2010 and 227% in 2018 (Table 2). The indication shows that the bat inventory at Madai cave is incomplete by only documenting 69%-90% of expected bat diversity in 2010, whereas in 2018, the bat inventories incompleteness is recorded at 80-100%. (Table 3). The absence of a species from our surveys did not exhibit that the species is not present in the site [16]. If the surveys are extended, more species will likely be recorded.

Year	Number of traps	Numbers of nights	Number of catch	Numbers of trap-nights (trapping effort)	Percentage of trapping success
2010	11	4	179	44	407%
2018	11	4	100	44	227%
Table 3. Bat inventory completeness in Madai Cave in 2010 and 2018.

Estimator indices	2010	2018		
	Expected species richness	Inventory completeness (%)	Expected species richness	Inventory completeness (%)
Chao1	16.98	82%	8.0	100%
Chao2	16.73	84%	8.3	96%
ACE	18.03	78%	8.4	95%
ICE	16.71	84%	9.18	87%
First-order jacknife	17.64	79%	9.82	81%
Second-order jacknife	20.17	69%	9.98	80%
Bootstrap	15.6	90%	8.94	89%

3.2 Species diversity, species assemblages, guild structures and conservation status

In this study, 279 individuals of bats were captured, comprising of eighteen species in Madai cave. These include two species of fruit bats, *Cynopterus brachyotis* and *Rousettus spinalatus*. Some species were more commonly caught either in harp traps, mist nets, or both methods. The most abundant species and consistently sampled were *Rhinolophus creaghi* and *Rhinolophus philippinensis*, besides *Hipposideros cervinus* and *Chaerephon plicatus* (Table 4). The usage of harp trap is proven successful in the cave and karst ecosystem in previous studies [16-18]. However, our surveys’ deployment of harp trap and mist net had increased the chances of trapping several rare species, i.e., *Hipposideros dyacorum* and *Emballonura alecto*.

The species composition varied hugely between the two sampling years, which was partly contributed by the changes in the sampling stations, leading to changes in vegetation. For instance, in 2010, we sampled Madai cave and the Madai cave boardwalk, which cuts across into the cave's forest. Meanwhile, in 2018, the sampling was conducted at Madai cave, Kampung Madai and forest trails near the cave, covering different vegetation such as small orchards, forest edge, and the forest itself.

The overall assemblages of eighteen species were dominated by two families: Vespertilionidae (6 species; 33%) and Hipposideridae (5 species; 28%). The only fruit bat family, Pteropodidae, contributed two species to the assemblages (Table 5). Changes to assemblage composition were frequently related to environmental, anthropogenic, and spatial gradients because species tend to be most abundant around their optimal environmental conditions [12]. From the surveys, six species of insectivorous bat were assigned to both edge-gap and narrow-space insectivores (38%), and five species each were assigned to edge-gap insectivores and narrow-space insectivores (31%) (Table 5). The guild structure composition was as expected since our surveys only focused on the cave ecosystem [15].

Most of the species reported in this study were categorised as Least Concern (LC) under the IUCN Red List of Threatened Species except for three species: *Rousettus spinalatus, Hipposideros ridleyi* and *Miniopterus schreibersii*, which were identified as vulnerable. Meanwhile, only *Hipposideros dyacorum* is protected under the Sabah Wildlife Conservation Enactment (Schedule 2) (Table 5). In addition, *H. dyacorum* is recognised as endemic to Borneo [1] and has Sundaic ranges that are restricted to Borneo and Malay Peninsula [16]. Species diversity reported from the Madai cave is relatively comparable to the diversity of insectivorous bats from other caves and limestone karst in this region, such as Gunung Senyum, Peninsular Malaysia (15 species, [3]), Central Mindanao (14 species, [19]), and Cebu Island (16 species, [19]) in the Philippines, yet still low compared to Sangkulirang limestone karst, in East Kalimantan (36 species,[16]).
Table 4. Species diversity, sampling methods and species occurrence at Madai cave, Kunak, Sabah.

Family	Species	Sampling methods	Year	2010	2018
		Mist net	Harp trap		
Pteropodidae	Cynopterus brachyotis	√		2	-
	Rousettus spinalatus	√		-	2
Hipposiderida	Hipposideros diadema	√		6	-
	Hipposideros cervinus	√		38	3
	Hipposideros dyacorum	√		3	-
	Hipposideros galeritus			-	5
	Hipposideros ridleyi			1	-
Rhinolophidae	Rhinolophus creaghi	√		28	57
	Rhinolophus philippinensis	√		21	14
Vespertilionida	Miniopterus magnater	√		4	-
	Miniopterus schreibersii	√		33	-
	Miniopterus paululus	√		-	4
	Myotis macrotarsus	√		7	-
	Myotis muricola			33	-
	Myotis horsfieldii			1	-
Emballonurida	Emballonura alecto			1	-
Molossida	Miniopterus schreibersii	√		1	14
	Myotis horsfieldii				
	Myotis horsfieldii				
	Chaerephon plicatus	√			1
	Cheiromeles torquatus				1

Table 5. Conservation status according to the IUCN Red List of Threatened Species and Sabah Wildlife Conservation Enactment (1997) and bats' foraging strategies at Madai cave.

Family	Species	Conservation Status	Foraging strategy	
		IUCN	WCE	
		LC	NP	NF
Pteropodidae	Cynopterus brachyotis	LC	NP	NF
	Rousettus spinalatus	VU	NP	NF
Hipposiderida	Hipposideros diadema	LC	NP	E/Ni
	Hipposideros cervinus	LC	NP	Ei
	Hipposideros dyacorum	LC	P(2)	Ni
	Hipposideros galeritus	LC	NP	Ni
	Hipposideros ridleyi	VU	NP	Ni
Rhinolophidae	Rhinolophus creaghi	LC	NP	Ni
	Rhinolophus philippinensis	LC	NP	Ni
Vespertilionida	Miniopterus magnater	LC	NP	Ei
	Miniopterus schreibersii	VU	NP	Ei
	Miniopterus paululus	LC	NP	Ei
	Myotis macrotarsus	LC	NP	E/Ni
	Myotis muricola	LC	NP	E/Ni
	Myotis horsfieldii	LC	NP	E/Ni
Emballonurida	Emballonura alecto	LC	NP	Ei
Molossida	Chaerephon plicatus	LC	NP	E/Ni
	Cheiromeles torquatus	LC	NP	E/Ni

Notes: LC- Least Concern; VU- Vulnerable; P- Protected; NP – Not Protected; NF- narrow space (understorey) frugivore/nectarivore; Ei-edge-gap insectivores; Ni- narrow space insectivores; and E/Ni- both edge-gap and narrow space insectivorous

4. Conclusion
The presence of several rare species with noteworthy conservation status indicates the importance of the Madai cave ecosystem in maintaining bat diversity in the eastern coast of Sabah and Malaysia in general. It highlights the need to enhance bats’ protection and conservation in Sabah through the revision and
remapping of the conservation status in the Sabah Wildlife Conservation Enactment 1997. These findings will assist policymakers to enhance and expand their conservation and management on the natural habitats of bats.

5. References

[1] Phillipps Q and Phillipps K 2016 *Phillipps' Field Guide to the Mammals of Borneo and Their Ecology: Sabah, Sarawak, Brunei, and Kalimantan.* (Princeton, NJ: Princeton University Press)

[2] Struwegb M J, Christy L, Pio D and Meijaard E 2008 Bats of Borneo: Diversity, distributions and representation in protected areas. *Biodiversity and Conservation* **19** 449-69

[3] Struwegb M J, Kingston T, Zubaid A, Le Comber S C, Mohd-Adnan A, Turner A, Kelly J, Bożek M and Rossiter S J 2009 Conservation importance of limestone karst outcrops for Palaeotropical bats in a fragmented landscape. *Biological Conservation* **142** 2089-96

[4] Francis C M, Zubaid A and Kunz T H 2003 Species richness in an insectivorous bat assemblage from Malaysia. *Journal of Tropical Ecology* **19** 67-79

[5] Yasuma S, Azniza M and Bernard H 2005 *Pocket Guide the Bornean Mammals: Vol 2 : Chiroptera: Part I* (Kota Kinabalu: Universiti Malaysia Sabah)

[6] Abdullah M T, Halls L S, Tissen O B, Tuuga A and Cranbrook E O 2007 The large bat caves of Malaysian Borneo. *Bat Research News* **48** 99-100

[7] Ong K Y 2008 *The Comparison of bats population between microhabitats of Gomantong Forest Reserve, Sandakan, Sabah and Mostyn Estate, Kunak, Sabah.* (Kota Kinabalu: Universiti Malaysia Sabah)

[8] Altringham J D, Mc Owat T and Hammond L 1997 *Bats: Biology and Behaviour* (Oxford : University Press)

[9] Boonratana R and Sharma D S 1977 *Checklist of wildlife recorded in the Lower Kinabatangan, Sabah.* *The Journal of Wildlife Management and Research Sabah* **1** 47-60

[10] Wan Ibrahim W I 2006 *Taburan Kepelbagaian dan Kelimpahan Spesies Kelawar di Tiga Habitat Vegetasi di Hutan Sukau, Sandakan, Sabah.* (Kota Kinabalu, Sabah: Universiti Malaysia Sabah)

[11] Karim M E 2006 *Diversiti dan Kelimpahan Kelawar di Kawasan Gomantong dan Poring.* (Kota Kinabalu, Sabah: Universiti Malaysia Sabah)

[12] Sukiman S S 2019 *Kajian terhadap Kepelbagaian Spesies Kelawar di Gua Madai, Kunak, Sabah.* (Kota Kinabalu, Sabah: Universiti Malaysia Sabah)

[13] Kunz T H and Parsons S 2009 *Ecological and behavioral methods for the study of bats* (Baltimore: Johns Hopkins University Press)

[14] Yasuma S, Mahyudin A and Bernard H 2005 *Pocket Guide the Bornean Mammals: Vol 3: Chiroptera : Part 2* (Kota Kinabalu: Universiti Malaysia Sabah)

[15] Struwegb M J, Galdikas B M F and Suatma 2006 Bat diversity in oligotrophic forests of southern Borneo. *Orx* **40** 447-55

[16] Suyanto A and Struwegb M J 2007 Bats of the Sangkulirang limestone karst formations, East Kalimantan - A priority region for Bornean bat conservation. *Acta Chiropterologica* **9** 67-95

[17] Struwegb M J, Bożek M, Hildebrand J, Rossiter S J and Lane D J W 2012 Bat diversity in the lowland forests of the Heart of Borneo. *Biodiversity and Conservation* **21** 3711-27

[18] Struwegb M J, Christy L, Pio D and Meijaard E 2010 Bats of Borneo: Diversity, distributions and representation in protected areas. *Biodiversity Conservation* **19** 449–69

[19] Tanalgo K C and Tabora J A G 2015 Cave-dwelling bats (Mammalia: Chiroptera) and conservation concerns in South Central Mindanao, Philippines. *Journal of Threatened Taxa* **7** 8185-94