Prokaryotical expression of structural and non-structural proteins of hepatitis G virus

Ning-Shao Xia¹, Hai-Jie Yang¹, Jun Zhang¹, Chang-Qing Lin¹, Ying-Bin Wang¹, Juan Wang¹, Mei-Yun Zhan² and MH Ng³

¹Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, Xiamen University, Xiamen 361005, Fujian Province, China
²Institute of Virology, Chinese Academy of Preventive Medicine Beijing 100052, China
³Department of Microbiology, Hong Kong University, Hongkong, China

Supported by National 863 Project, No. 102-07-02-07, and the 9th Five-Year Sci-Tech Plan, No. 96-906A-03-08

Correspondence to: Prof. Ning-Shao Xia, Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, Xiamen University, Xiamen 361005, Fujian Province.
Telephone: +86-592-2184110, Fax: +86-592-2184110
Received 2001-04-25 Accepted 2001-07-30

Abstract

AIM To study the epitope distribution of hepatitis G virus (HGV) and to seek for the potential recombinant antigens for the development of HGV diagnostic reagents.

METHODS Fourteen clones encompassing HGV gene fragments from core to NS3 and NS5 were constructed using prokaryotical expression vector pRSET and (or) pGEX, and expressed in E.coli. Western blotting and ELISA were used to detect the immunoreactivity of these recombinant proteins.

RESULTS One clone with HGV fragment from core to E1 (G1), one from E2 (G31), three from NS3 (G6, G61, G7), one from NS5B (G82) and one chimeric fragment from NS3 and NS5B (G61-821) could be expressed well and showed obvious immunoreactivity by Western blotting. One clone with fragment from NS5B (G82) was also well expressed, but could not show immunoreactivity by Western blotting. No obvious expression was found in the other six clones. All the expressed recombinant proteins were in inclusion body form, except the protein G61 which could be expressed in soluble form. Further purified recombinant proteins G1, G31, G61, G821 and G61-821 were detected in indirect ELISA as coating antigen respectively. Only recombinant G1 could still show immunoreactivity, and the other four recombinant proteins failed to react to the HGV antibody positive sera. Western blotting results indicated that the immunoreactivity of these four recombinant proteins were lost during purification.

CONCLUSION Core to E1, E2, NS3 and NS5 fragment of HGV contain antigenic epitopes, which could be produced in prokaryotically expressed recombinant proteins. A high-yield recombinant protein (G1) located in HGV core to E1 could remain its epitope after purification, which showed the potentia l that G1 could be used as a coating antigen to develop an ELISA kit for HGV specific antibody diagnosis.

Subject headings hepatitis agents; GB/genetics; genes, viral; viral proteins/biosynthesis

Xia NS, Yang HJ, Zhang J, Lin CQ, Wang YB, Wang J, Zhan MY, Ng MH. Prokaryotical expression of structural and non-structural proteins of hepatitis G virus. World J Gastroenterol, 2001;7(5):642-646

INTRODUCTION

Hepatitis G virus (HGV), also known as GBV-C, is a novel human virus, which can cause acute and persistent infection in humans[11,14]. The clinical significance of HGV infection is still controversial[5-10]. Some studies have reported the seroprevalence of HGV RNA in general population as well as voluntary blood donors between 0.3% and 6%, but the frequency is always significantly higher in high risk groups such as intravenous drug users (IVDU), patients with acute and chronic hepatitis B and C, patients with blood transfusion and hemodialysis, and patients with cryptogenic hepatitis[11-22]. HGV is a member of flaviviridae[3,4,19]. The genome organization of HGV resembles that of hepatitis C virus (HCV). Its positive- stranded RNA genome is about 9.4 kb in length that contains a single open reading frame (ORF), which encodes a polypeptide of about 2900 amino acids. The polypeptide is cleaved by viral and host proteases into structural proteins (Core, E1 and E2) and non-structural proteins (NS2, NS3, NS4, NS4a and NS5b)[11,23,24].

Up to now, RT-PCR is the most commonly used method for the diagnosis of HGV infection. It is necessary to develop a convenient antibody detection assay. In this study, we had serial fragments selected from core to NS3 and NS5 region of HGV Chinese strain expressed in E.coli, and detected their immunoreactivity by Western blotting and ELISA.

MATERIALS AND METHODS

Bacterial strains and plasmids

E.coli strain DH5α and BL21(DE3) were stored in our laboratory. Serial expression vectors pRSET and pGEX were purchased respectively from Invitrogen Co. and Pharmacia Co.. Clones include gene fragments of Chinese HGV strain (HGVch, Genbank Accession Number U94965) constructed in our laboratory before[25].

Enzymes and other biochemical reagents

Restriction endonucleases, T4 DNA ligase and DNA polymerase Taq were purchased from Promega. Sepharose 4B GST matrix, His Trap™ and isopropyl-β-D-thiogalactopyranoside (IPTG) were purchased from Pharmacia. Goat anti-human IgG-alkaline phosphatase conjugate and substrates BCIP, NBT were purchased from Boehringer Mannheim.

Serum samples

Three HGV positive serum samples were kindly provided by Dr. Qiu (Beijing Wantai Biological Medicine Co.). Two of them
were HGV RNA positive by RT-PCR, the other one was positive in the synthetic peptides based HGV ELISA kits and with high titer anti-HGV antibodies. These three serum samples mixed in equal ratio and were used in Western blotting.

**Construction of recombinant plasmids**

By the regular molecular biological METHODS, pRSET and pGEX were digested with single endoenzyme or two endoenzymes, gene fragments of HGV in pGEM T-Easy were digested with the same restriction enzyme (s), and they were ligated by T4 DNA ligase, and the expression clones of HGV gene fragments were constructed.

**Expression of HGV gene fragments in E.coli**

Two mL fresh overnight cultured BL21(DE3) carrying HGV gene fragment expression plasmids were diluted with 200 mL fresh LB medium in the presence of 100 mg·L⁻¹ ampicillin and grew to A₆₀₀= 0.8 at 37 °C at a shak ing speed of 210 r·min⁻¹. The culture was induced by adding IPTG to a final concentration of 0.2 mM·L⁻¹ at 37 °C for 3 h. One mL culture was harvested for 3 h. One mL culture was harvested for 3 h.

**Western blot analysis of recombinant proteins**

Total cell lysates were run on SDS-PAGE gels and transferred electrophoretically to nitrocellulose membrane for 1 h under the voltage of 100 V. The membrane was then incubated in blocking solution (50 g·L⁻¹ nonfat milk in Tris-buffered saline, TBS) for 1 h at room temperature followed by incubation at room temperature for 2 h in the sera that prediluted to 1:200 with blocking solution. The membrane was washed three times with TTBS (0.5 g·L⁻¹ Tween-20 in TBS) for 10 min, and alkaline phosphatase-labeled goat anti-human IgG antibodies diluted in TTBS (1:2000) were exposed to the membrane at room temperature for 1h. The membrane was visualized with a substrate solution of BCIP and NBT and overnight at 4 °C. Enzyme linked immunoadsorbent assay (ELISA) Purified recombinant antigens were coated to microplate in a amount of 100 ng each well in 0.05 mol·L⁻¹ CB (pH 9.6) buffer for 2 h at 37 °C and overnight at 4 °C. Plates were washed with PBS containing 0.5 g·L⁻¹ Tween 20 and blocked with blocking buffer (0.5 g·L⁻¹ Tween 20 and 10 g·L⁻¹ bovine serum albumin in PBS) for 2 hours at 37 °C. Sera (1:1000) were applied for 30 min at 37 °C. A peroxidase-conjugated goat anti-human IgG used as secondary antibody was incubated for 30 min at 37 °C and visualized with o-phenyl-diamine-2HCl (10 g·L⁻¹ in 5 mM·L⁻¹ Tris-HCl, pH 7.0). Wells were washed five times with PBST (0.5 g·L⁻¹ Tween 20 in PBS) between each step. The reaction was stopped with 50 µL of 2 mol·L⁻¹ H₂SO₄. Absorption was measured at A₄₉₅.

**RESULTS**

**Construction and identification of recombinant plasmids**

The recombinant plasmids were digested with proper restriction endoenzymes. Agarose gel electrophoresis showed that all HGV gene fragments were cloned into the vectors with correct orientation and size. The recombinant protein expressed by pGEX vector had a GST fusion protein in N-terminal, while that by pRSET vector had a hexahistidine in N-terminal. The locations of corresponding fragments in HGV genome of these plasmids are listed in Table 1.

| Clone | Vector | Target fragments | Amino acid location in ORF | Molecular mass of recombinant protein (kDa) | Yield in E.coli | Immunoreactivity |
|-------|--------|------------------|---------------------------|---------------------------------------------|----------------|-----------------|
| G1    | pGEX   | Core to E1       | 1-144                     | 42                                          | High           | +               |
| G2    | pRSET  | E1 to E2         | 101-284                   | 23                                          | No             | -               |
| G3    | pGEX   | E2               | 247-578                   | 62                                          | No             | -               |
| G4    | pRSET  | E2 to NS2        | 542-876                   | 36                                          | High           | +               |
| G5    | pRSET  | NS2 to NS3      | 854-1078                  | 40                                          | No             | -               |
| G6    | pGEX   | NS3              | 1073-1345                 | 56                                          | High           | +               |
| G61   | pRSET  | NS3              | 1160-1345                 | 24                                          | High           | +               |
| G7    | pGEX   | NS3              | 1267-1427                 | 44                                          | High           | +               |
| G8    | pRSET  | NS5              | 2151-2524                 | 45                                          | No             | -               |
| G81   | pRSET  | NS5              | 2151-2412                 | 32                                          | No             | -               |
| G82   | pGEX   | NS5              | 2408-2524                 | 40                                          | High           | -               |
| G821  | pRSET  | NS5              | 2357-2524                 | 23                                          | High           | +               |
| G61-821| pRSET | NS3+NS5         | 1160-1345+2357-2524       | 44                                          | High           | +               |
Expression of recombinant proteins in E.coli

Fourteen clones were constructed, covering the core, E1, E2, NS2, NS3 and NS5 region of HGV (Figure 1). The virus fragment in G1 covered a region from the beginning of the core to the aa144, which was located in the middle of E1. The yield of G1 was about 20% in total bacterial proteins (Figure 2, lane B). No visible expression was found in G2 (covering a region from E1 to E2) and G3 (including almost entire E2). But when the C-terminal 88 residues of G3, named G31, were expressed, a yield of about 30% was obtained (Figure 2, lane C). Both of the clones included NS2 fragment, G4 and G5, and could not produce obvious recombinant proteins. G6 and G7, both located in NS3, were expressed well (Figure 2, lane D and G). To obtain a soluble form of NS3 antigen, a fragment from aa1160 to aa1345 was subcloned from G6 to vector pRSET, the result ed clone G61 was expressed much better than G6 and G7, and the soluble form recombinant protein could be found in the supernatant after centrifugating the ultrasonificated bacteria (Figure 2, lane E and F). The NS5 fragment G8 was not expressed, so did the N-terminal two-three (G81) when G8 was spliced into two parts and subcloned, but the C-terminal one-three (G82) was expressed quite well (Figure 2, lane H). Better expression was found in the yield of G821, resulting from the 78 residues extended from G82 to N-terminal, (Figure 2, lane I), so did the chimerical clone, G61-821 (Figure 2, lane J).

Western blotting analysis

Eight well-expressed recombinant proteins were separated by SDS-PAGE and transferred electrophoretically to nitrocellulose for immunoblotting. As shown in Figure 3, except for fragment G82, all the other seven proteins showed immunoreactivity. G1 and G82 had strong reactivity with HGV positive sera, and reactivity of G31 was relatively weaker.

Purification and ELISA assay of recombinant proteins of HGV

Four immunoreactive antigens, G1, G31, G61 and G821, which were located in the core, E2, NS3 and NS5 respectively, and a chimerical antigen G61-821 was selected for further purification. After electrophoretical elution, the purity of these five proteins was higher than 90% (Figure 4). These antigens were coated respectively to microplate in a amount of 100ng each well. Three HGV antibody positive sera and five negative sera were used in ELISA. The results showed that only G1 could detected all positive sera effectively (Figure 5).
**DISCUSSION**

We have obtained full-length sequence of a Chinese HGV strain (HGVch) through overlapping RT-PCR. Seven overlapping clones covering from the beginning of core to the end of NS3, were named G1 to G7, and one clone (G8) was located in NS5. They were subcloned to prokaryotic expression vectors pRSET or pGEX and expressed in E.coli in this study. The SDS-PAGE results showed that only fragments within C-E1 (G1) and NS3 (G6 and G7) could be expressed efficiently, but the clones located in E2 (G2 and G3), NS2 (G4 and G5) and NS5 (G8) could not. To improve the yield, one subclone (G31) for E2 and two subclones (G81 and G82) for NS5 were constructed. The G31 was located in the C-part of G3, the G81 located in the N-terminal two-three of G8, and the G82 in the C-terminal one-three of G8. The results showed that G31 and G82 expressed well, but not G81.

In order to detect the immunoreactivity of different proteins at the same time, it is important to choose serum containing monoclonal antibodies against different epitopes. Due to the lack of reliable METHODS to detect anti-HGV, in this study, we chose a mixed serum as first antibodies in the immunoblotting assay. The Western blotting showed that G1, G6 and G7 had strong immunoreactivity, the immunoactivity of G3 could be identified too, but no reactivity could be found with G82. Then we constructed another clone G821, which resulted from the two-three of G8, and the G82 in the C-terminal one-three of G8.

The results showed that G31 and G82 expressed well, but not G81.

Among the four immunoreactive antigens, G1, G31, G61 and G821, which were locate d in the core, E2, NS3 and NS5 respectively, the chimerical gene G61-821 was expressed as an endeavor for making a better diagnostic antigen, and it showed a strong immunoreactivity in Western blot assays, but none of them could be used in ELISA. It may be due to the loss of antigenicity during the purification procedure as shown in this study. Dille et al[29] successfully established an ELISA for anti-HGV E2 using CHO expressed E2 antigen, however, the presence of anti-E2 and HGV RNA was almost mutually exclusive: few were positive for both markers at the same time, and the utility of this ELISA in epidemiological studies was very limited[30,31]. Two HGV RNA positive sera were positive in ELISA based on the core-E1 antigen G1 obtained in this study. Although the serum samples in this study are very limited, they suggested the potential utility of this ELISA in epidemiological studies.

Although the prevalence of HGV infection is higher than that of HCV infection in the general population, there is absence of an obvious relationship between elevated level of alanine aminotransferase (ALT) and presence of HGV infection. Besides, whether the liver is the replication site of HGV has not yet been demonstrated. Saito et al[32] had detected both positive and negative stranded HGV RNA by HGV RT-PCR in the liver tissues of all the six tested HGV infected patients, which indicated that liver might be the primary site of HGV replication, but many other scientists could not repeat these findings in their HGV infected patients by the same METHODS[33-36]. Recently, Reshehtyak et al reported that patients with HGV mono-infection had demonstrated the increase of the DNA single-stranded breaks peripheral blood lymphocytes (PBL) quantity[37]. Whether HGV is pathogenic to the liver or not, we should remain open to the possibility that its major pathological consequences, if any, may lie outside of the liver. A convenient serologic assay is undoubtedly crucial for the clarification of these unclear points.

REFERENCES

1. Simons JN, Leary TP, Dawson GJ, Pilot-Matias TJ, Muerhoff AS, Schlauder GG, Desai SM, Mushahwar IK. Isolation of novel virus-like sequences associated with human hepatitis. Nat Med, 1995;1:564-569
2. Linnen J, Wages JR, Zhang-Keck ZY, Fry KE, Krawczyński KZ, Alter H, Koonin E, Gallagher M, Alter M, Hadziyannis S, Karayannis P, Fung K, Nakatsuji Y, Shih JW, Young L, Piatak M Jr, Hoover C, Fernandez J, Chen S, Zou JC, Morris T, Hyams K, Ismay L, Lidon JD, Hess G, Fong SK, Thomas H, Bradley D, Margolis H, Kim JP. Molecular cloning and disease association of hepatitis G virus a transfusion-transmissible agent. Science, 1995;271:505-508
3. Yu JG, Xu CZ, Zhang GS. Progress in research of hepatitis G and HGV. Huaren Xiaohua Zazhi, 1998;6:1003-1004
4. Lin WL, Zhou HG, Pan BR. HGV-A new hepatitis virus. Huaren Xiaohua Zazhi, 1998;6:1005-1006
5. Liu JP, Li YF. Study on molecular epidemiology of hepatitis G virus infection in Chongqing. Shijie Huaren Xiaohua Zazhi, 2000;8:410-412
6. Nie QH, Hu DR, Li MD, Li L, Zhu YH. Detection of hepatitis G virus RNA in liver tissue using digoxigenin labelled probe by in situ hybridization. Shijie Huaren Xiaohua Zazhi, 2000;8:771-774
7. Ling BH, Zhuang H, Cui YH, An WF, Li ZJ, Wang SP, Zhu WF. A cross-sectional study on HGV infection in a rural population. World J Gastroenterol, 1998;4:489-492
8. Zhang F, Kang WZ, Xie YM, Mu XY. Detective significance of mi-
nus-strand RNA of HGV/GBV-C in liver and peripheral blood mononuclear cells of patients co-infected hepatitis C and G viruses. Shi Jie Huaren Xiaohua Zazhi, 2001;9:383-387

9 Peng XJ, An P, Ren YQ, Chen NL. State of Hepatitis G virus infection in acute hepatitis. Huaren Xiaohua Zazhi, 1998;6:546-547

10 Zhao XP, Yang DL, Wang BJ, Yang Y, Shen HX, Peng ZH, Hao LJ. Immunohistochemical study of HGV expression in liver of patients with hepatitis G. Huaren Xiaohua Zazhi, 1998;6:585-587

11 Kar P, Bedi P, Berry N, Chakravorty A, Gupta RK, Saha R, Das BC. Hepatitis G virus (HGV) infection in voluntary and commercial blood donors in India. J Med Virol, 1999;58:7-10

12 Chu CW, Hwang SJ, Luo J, Wang YJ, Lu RH, Lai CR, Tsay SH, Li CP, Wu JC, Chang FY, Lee SD. Clinical, virological, immunological, and pathological significance of GB virus C/hepatitis G infection in patients with chronic hepatitis C. Hepatol Res, 2001;19:225-236

13 Tang ZY, Kck J, Moradpour D, Yang DL, Hao LJ, Blum HE. Hepatitis G virus infection in Chinese patients with chronic hepatitis B, C or non-A-E: clinical and molecular aspects. Hepat Res, 1999;13:133-142

14 Yu JG, Hou XR, Pan W, Zhang GS, Zhou XM. PCR detection of hepatitis G virus RNA in sera and liver tissues from patients with chronic hepatitis C. Shi Jie Huaren Xiaohua Zazhi, 1998;6:580-581

15 Xu FQ, Tang W, Zhang DL, Wang HM. Detection of HGV-RNA in patients with viral hepatitis and its' clinical significance. Huaren Xiaohua Zazhi, 1998;6:642-643

16 Zhu CL, Duan XZ, Li L, Jin B, Du N, Chen JM. Clinical characters and significance of hepatitis G virus infection in Hubei Province of China. World J Gastroenterol, 1999;5:432-434

17 Nan YM, Zhang JG, Shang C, Liu JX, Cao ZC, Xie YF. The clinic and pathological significance of GB virus C/hepatitis G infection in patients with chronic hepatitis C. Hepatol Res, 1999;13:133-142

18 Nie QH, Hu DR, Li MD, Xie Q. Expression of virus-related antigens in the livers of patients co-infected with HGV and HCV. Shi Jie Huaren Xiaohua Zazhi, 2000;8:59-60

19 Wang XT, Zhuang H, Song HB, Li HM, Zhang HY, Yu Y. Partial sequencing of 5' non-coding region of 7 HGV strains isolated from different areas of China. World J Gastroenterol, 1999;5:432-434

20 Yan J, Dennin RH. A high frequency of GBV-C/HGV coinfection in hepatitis C patients in Germany. World J Gastroenterol, 2000;6:833-841

21 Xiong LS, Tang N, Chang MH. Hepatitis B patients coinfected with hepatitis D, E virus. Shi Jie Huaren Xiaohua Zazhi, 2000;8:832-833

22 Zhong RX, Luo HT, Zhang RX, Li GR, Lu L. Investigation on infection of hepatitis G virus in 105 cases of drug abusers. World J Gastroenterol, 2000;6(Suppl 3):63

23 Leary TP, Muerhoff AS, Simonov JS, Pilot-Matias TJ, Ezker JC, Chalmers ML, Schlauder GG, Dawson GJ, Desai SM, Mushahwar IK. Sequence and genomic organization of GBV-C: a novel member of the flaviviridae associated with human non-A-E hepatitis. J Med Virol, 1996;48:60-67

24 Belyaev AS, Chong S, Novikov A, Kompachit A, Masiarz FR, Lim M, Kim JP. Hepatitis G virus encodes protease activities which can effect processing of the virus putative nonstructural proteins. J Virol, 1998;72:868-872

25 Wang HL, Chen HS, Xia NS, Tan WJ, Chen G, Liu YL, Cong Y, Sun J, Zeng D, Hou YD, Wang Y, Zhan MY. cDNA cloning and sequence analysis of hepatitis G virus genome isolated from a Chinese blood donor. Chin Med J, 1999;112:747-749

26 Feucht H, Zolliner B, Polywka S, Knobler M, Schroder M, Notte H, Laufs R. Distribution of hepatitis G viremia and antibody response to recombinant proteins with special regard to risk factors in 709 patients. Hepatology, 1997;26:491-494

27 Shi J, Wang YC, Zhang Y. Li HM. Cloning and expression for cDNA of E2 region of hepatitis G virus isolated from Chinese blood donor. Zhonghua Weishengxue Xi Huanjishu Zazhi, 1999;19:470-473

28 Ren H, Zhu FL, Zhu SY, Song YB, Qi ZT. Immunogenicity of HGV NS5 protein expressed from Sf9 insect cells. World J Gastroenterol, 2001;7:98-101

29 Dille BJ, Surowy TK, Gutierrez RA, Coleman PF, Knigge MF, Carrick RJ, Aach RD, Hollinger FB, Stevens CE, Barbosa LH, Nemo GJ, Mosley JW, Dawson GJ, Mushahwar IK. An ELISA for detection of antibodies to the E2 protein of GB virus C. J Infect Dis, 1995;175:458-461

30 Tack M, Klyosava K, Stark K, Schluter V, Ofenloch-Haebleni B, Hess G, Engel AM. Detection of antibodies to a putative hepatitis G virus envelope protein. Lancet, 1997;349:318-320

31 Tian DY, Yang DF, Xia NS, Zhang ZG, Lei HB, Huang YC. The serological prevalence and risk factor analysis of hepatitis G virus infection in Hebei Province of China. World J Gastroenterol, 2000;6:585-587

32 Salee S, Tanaka K, Kondo M, Morita K, Kitamura T, Ibata T, Numata K, Sekihara H. Plus- and Minus-stranded hepatitis G virus RNA in liver tissue and in peripheral blood mononuclear cells. Biochem Biophy Res Comm, 1997;237:288-291

33 Laskus T, Radkowski M, Wang LF, Vargas H, Rakela J. Lack of evidence for hepatitis G virus replication in the livers of patients coinfected with hepatitis C and G virus. J Virol, 1998;71:7804-7806

34 Pessoa MG, Terrault NA, Detmer J, Kolberg J, Collins M, Hassoba HM, Wright TL. Quantitation of hepatitis G and C viruses in the liver: evidence that hepatitis G virus is not hepatotropic. Hepatology, 1998;27:877-880

35 Abe K, Edamoto Y, Takayama T, Tomida T, Mune K, Mihara Y, Numata K, Sekihara H. Plus- and Minus-stranded hepatitis G virus RNA in liver tissue and in peripheral blood mononuclear cells. Biochem Biophy Res Comm, 1998;248:439-444

36 Reshetnyak VI, Sharakinova TP, Ichenko UL, Golovanova EV, Poroshenko GG. Peripheral blood lymphocytes DNA in patients with chronic liver diseases. World J Gastroenterol, 2001;7:235-237

Edited by Ma JY