THE PICARD GROUPS OF UNITAL INCLUSIONS OF UNITAL
C*-ALGEBRAS INDUCED BY INVOLUTIVE EQUIVALENCE
BIMODULES

KAZUNORI KODAKA

Abstract. Let A be a unital C^*-algebra and X an involutive $A-A$-equivalence bimodule. Let $A \subset C_X$ be the unital inclusion of unital C^*-algebras induced by X. We suppose that $A' \cap C_X = C_1$. We shall compute the Picard group of the unital inclusion $A \subset C_X$.

1. Introduction

Let A be a unital C^*-algebra and X an $A-A$-equivalence bimodule. Following [7], we say that X is involutive if there exists a conjugate linear map $x \mapsto x^\#$ on X such that

1. $(x^\#)^\# = x$, $x \in X$,
2. $(a \cdot x \cdot b)^\# = b^* \cdot x^\# \cdot a^*$, $x \in X$, $a, b \in A$,
3. $A \langle x, y^\# \rangle = \langle x^\#, y \rangle_A$, $x, y \in X$,

where $A(-, -)$ and $(-, -)_A$ are the left and the right A-valued inner products on X, respectively. We call the above conjugate linear map an involution on X. For each $A-A$-equivalence bimodule X, \tilde{X} denotes its dual $A-A$-equivalence bimodule. For each $x \in X$, \tilde{x} denotes the element in \tilde{X} induced by x. For each involutive $A-A$-equivalence bimodule X, let L_X be the linking C^*-algebra for X defined in Brown, Green and Rieffel [1]. Following [7], we define the C^*-subalgebra C_X of L_X by

$$C_X = \{ \begin{bmatrix} a & x \\ x^\# & a \end{bmatrix} | a \in A, x \in X \}.$$

We regard A as a C^*-subalgebra of C_X, that is, $A = \{ \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix} | a \in A \}$.

In [5], we defined the Picard of unital inclusion of unital C^*-algebras $A \subset C$. We denote it by $\text{Pic}(A, C)$. In this paper, we shall compute $\text{Pic}(A, C_X)$ under the assumption that $A' \cap C_X = C_1$. Let us explain the strategy of computing $\text{Pic}(A, C_X)$. Let f_A be the homomorphism of $\text{Pic}(A, C_X)$ to $\text{Pic}(A)$ defined in [3], where $\text{Pic}(A)$ is the Picard group of A. We compute $\text{Ker} f_A$ and $\text{Im} f_A$, the kernel of f_A and the image of f_A, respectively and we construct a homomorphism g_A of $\text{Im} f_A$ to $\text{Pic}(A, C_X)$ with $f_A \circ g_A = \text{id}_{\text{Pic}(A)}$. We can compute $\text{Pic}(A, C_X)$ in the above way.

2. Preliminaries

We recall the definition of the Picard group for a unital inclusion of unital C^*-algebras $A \subset C$. Let Y be a $C-C$-equivalence bimodule and X its closed subspace satisfying Conditions (1), (2) in [11 Definition 2.1]. Let $\text{Equi}(A, C)$ be the set of all such pairs (X, Y) as above. We define an equivalence relation “\sim” as follows:

2010 Mathematics Subject Classification. Primary 46L05, Secondary 46L08.
Key words and phrases. inclusions of C^*-algebras, involutive equivalence bimodules, Picard groups, strong Morita equivalence.
For \((X, Y), (Z, W) \in \text{Equi}(A, C)\), \((X, Y) \sim (Z, W)\) in \text{Equi}(A, C) if and only if there is a \(C - C\)-equivalence bimodule isomorphism \(\Phi\) of \(Y\) onto \(W\) such that the restriction of \(\Phi\) to \(X\), \(\Phi|_X\), is an \(A - A\)-equivalence bimodule isomorphism \(X\) onto \(Z\). We denote by \([X, Y]\), the equivalence class of \((X, Y)\) in \text{Equi}(A, C). Let \(\text{Pic}(A, C) = \text{Equi}(A, C)/\sim\). We define the product in \(\text{Pic}(A, C)\) as follows: For \((X, Y), (Z, W) \in \text{Pic}(A, C)\)

\[[X, Y][Z, W] = [X \otimes_A Z, Y \otimes_C W], \]

where the \(A - A\)-equivalence bimodule \(X \otimes_A Z\) is identified with the closed subspace “\(X \otimes_C Z\)” of \(Y \otimes_C W\) by \([5\text{ Lemma 3.1}]\) and “\(X \otimes_C Z\)” is defined by the closure of linear span of the set

\[\{x \otimes z \in Y \otimes_C W \mid x \in X, z \in Z\} \]

by \([5]\) and easy computations, \(Y \otimes_C W\) and its closed subspace \(X \otimes_A Z\) satisfy Conditions (1), (2) in \([11\text{ Definition 2.1}]\) and \(\text{Pic}(A, C)\) is a group. We regard \((A, C)\) as an element in \(\text{Equi}(A, C)\) in the evident way. Then \([A, C]\) is unit element in \(\text{Equi}(A, C)\) in \(\text{Pic}(A, C)\). For any element \((X, Y) \in \text{Equi}(A, C)\), \((\tilde{X}, \tilde{Y}) \in \text{Equi}(A, C)\) and \([\tilde{X}, \tilde{Y}]\) is the inverse element of \([X, Y]\) in \(\text{Pic}(A, C)\). We call the group \(\text{Pic}(A, C)\) defined in the above, the Picard group of the unital inclusion of unital \(C^*\)-algebras \(A \subset C\).

Let \(f_A\) be the homomorphism of \(\text{Pic}(A, C)\) to \(\text{Pic}(A)\) defined by

\[f_A([X, Y]) = [X] \]

for any \((X, Y) \in \text{Equi}(A, C)\).

3. Kernel

Let \(A\) be a unital \(C^*\)-algebra and \(X\) an involutive \(A - A\)-equivalence bimodule. Let \(A \subset C_X \) be the unital inclusion of unital \(C^*\)-algebras induced by \(X\) and we suppose that \(A' \cap C_X = C_1\). Let \(f_A\) be the homomorphism of \(\text{Pic}(A, C_X)\) to \(\text{Pic}(A)\) defined by

\[f_A([M, N]) = [M] \]

for any \((M, N) \in \text{Equi}(A, C_X)\). In this section, we compute \(\text{Ker} f_A\). Let \((M, N) \in \text{Equi}(A, C_X)\). We suppose that \([M, N] \in \text{Ker} f_A\). Then \([M] = [A]\) in \(\text{Pic}(A)\) and by \([5\text{ Lemma 7.5}]\), there is a \(\beta \in \text{Aut}_0(A, C_X)\) such that

\[[M, N] = [A, N_\beta] \]

in \(\text{Pic}(A, C_X)\) where \(\text{Aut}_0(A, C_X)\) is the group of all automorphisms \(\beta\) such that \(\beta(a) = a\) for any \(a \in A\) and \(N_\beta\) is the \(C_X - C_X\)-equivalence bimodule induced by \(\beta\) which is defined in \([5\text{ Section 2}]\). By the above discussions, we obtain the following lemma.

Lemma 3.1. With the above notation,

\[\text{Ker} f_A = \{[A, N_\beta] \in \text{Pic}(A, C_X) \mid \beta \in \text{Aut}_0(A, C_X)\}. \]

Let \(\text{Aut}(A, C_X)\) be the group of all automorphisms \(\alpha\) of \(C_X\) such that the restriction of \(\alpha\) to \(A\), \(\alpha|_A\), is an automorphism of \(A\). Then \(\text{Aut}_0(A, C_X)\) is a normal subgroup of \(\text{Aut}(A, C_X)\). Let \(\pi\) be the homomorphism of \(\text{Aut}(A, C_X)\) to \(\text{Pic}(A, C_X)\) defined by

\[\pi(\alpha) = [M_\alpha, N_\alpha] \]

for any \(\alpha \in \text{Aut}(A, C_X)\), where \((M_\alpha, N_\alpha)\) is the element in \(\text{Equi}(A, C_X)\) induced by \(\alpha \in \text{Aut}(A, C_X)\) (See \([5\text{ Section 3}]\)). By Lemma \([5.1]\) \(\pi(\text{Aut}_0(A, C_X)) = \text{Ker} f_A\) and \([5\text{ Lemma 3.4}]\),

\[\text{Ker} f_A \cap \text{Aut}_0(A, C_X) = \text{Int}(A, C_X) \cap \text{Aut}_0(A, C_X), \]
where $\text{Int}(A, C_X)$ is the group of all $\text{Ad}(u)$ such that u is a unitary element in A. Hence

$$\ker \pi \cap \text{Aut}_0(A, C_X) = \{\text{Ad}(u) \in \text{Aut}_0(A, C_X) \mid u \text{ is a unitary element in } A\} = \{\text{Ad}(u) \in \text{Aut}_0(A, C_X) \mid u \text{ is a unitary element in } A' \cap A\}.$$

Since $A' \cap C_X = C_1$, $A' \cap A = C_1$. Thus we can see that $\ker \pi \cap \text{Aut}_0(A, C_X) = \{1\}$. It follows that we can obtain that the following lemma.

Lemma 3.2. With the above notation, $\ker f_A \cong \text{Aut}_0(A, C_X)$.

Let $\text{Aut}^\theta_0(X)$ be the group of all involutive $A - A$-equivalence bimodule automorphisms of X. Let E^A be the conditional expectation from C_X onto A defined by

$$E^A\left[\begin{array}{c} a \\ x^2 \\ a \end{array}\right] = \left[\begin{array}{c} a \\ 0 \\ a \end{array}\right]$$

for any $a \in A$, $x \in X$. Then E^A is of Watatani index-finite type by [7, Lemma 3.4].

Lemma 3.3. With the above notation, $E^A = E^A \circ \beta$ for any $\beta \in \text{Aut}_0(A, C_X)$.

Proof. Let $\beta \in \text{Aut}_0(A, C_X)$. Then $E^A \circ \beta$ is also a conditional expectation from C_X onto A. Since $A' \cap C_X = C_1$, by Watatani [17 Proposition 1.4.1], $E^A = E^A \circ \beta$. □

Lemma 3.4. With the above notation, for any $\beta \in \text{Auto}^\theta_0(A, C_X)$, there is the unique $\theta \in \text{Aut}^\theta_0(X)$ such that

$$\beta\left[\begin{array}{c} a \\ x^2 \\ a \end{array}\right] = \left[\begin{array}{c} a \\ \theta(x) \\ a \end{array}\right]$$

for any $a \in A$, $x \in X$.

Proof. For any $x \in X$, let

$$\beta\left[\begin{array}{c} 0 \\ x^2 \\ 0 \end{array}\right] = \left[\begin{array}{c} b \\ y^2 \\ b \end{array}\right],$$

where $b, y \in X$. Then by Lemma 3.3

$$\left[\begin{array}{c} b \\ 0 \\ b \end{array}\right] = (E^A \circ \beta)\left[\begin{array}{c} 0 \\ x^2 \\ 0 \end{array}\right] = E^A\left[\begin{array}{c} 0 \\ x^2 \\ 0 \end{array}\right] = \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right].$$

Hence $b = 0$. Thus

$$\beta\left[\begin{array}{c} 0 \\ x^2 \\ 0 \end{array}\right] = \left[\begin{array}{c} 0 \\ y^2 \\ 0 \end{array}\right].$$

We define a map θ on X by

$$\theta(x) = y,$$

where y is the element in X defined as above. Then clearly θ is linear and since

$$\beta\left[\begin{array}{c} 0 \\ x^2 \\ 0 \end{array}\right] = \beta\left[\begin{array}{c} 0 \\ x^2 \\ 0 \end{array}\right]^* = \left[\begin{array}{c} 0 \\ y^2 \\ 0 \end{array}\right],$$

we obtain that

$$\theta(x^2) = y^2 = \theta(x)^2.$$

Hence θ preserves the involution \sharp. Also, for any $a \in A$, $x \in X$,

$$\left[\begin{array}{c} 0 \\ \theta(a \cdot x) \\ \theta((a \cdot x)^2) \end{array}\right] = \beta\left[\begin{array}{c} 0 \\ a \cdot x \\ a \cdot x^2 \end{array}\right] = \beta\left[\begin{array}{c} 0 \\ a \\ a \cdot x \end{array}\right] = \left[\begin{array}{c} 0 \\ a \\ a \cdot \theta(x) \end{array}\right].$$

\[3\]
Hence \(\theta(a \cdot x) = a \cdot \theta(x) \) for any \(a \in A, x \in X \). Similarly \(\theta(x \cdot a) = \theta(x) \cdot a \) for any \(a \in A, x \in X \). Furthermore, for any \(x, y \in X \),
\[
\begin{bmatrix}
A(\theta(x), \theta(y)) & 0 \\
0 & A(\theta(x), \theta(y))
\end{bmatrix}
= \begin{bmatrix}
0 & \theta(x) \\
\frac{\theta(x)^y}{\theta(x)^y} & 0
\end{bmatrix}
\begin{bmatrix}
0 & \theta(y) \\
\frac{\theta(y)^y}{\theta(y)^y} & 0
\end{bmatrix}
= \beta\left(\begin{bmatrix}
\frac{\theta(x)^y}{\theta(x)^y} & 0 \\
0 & \frac{\theta(y)^y}{\theta(y)^y}
\end{bmatrix}\right)
= \beta\left(\begin{bmatrix}
A(x, y) & 0 \\
0 & A(x, y)
\end{bmatrix}\right)
= \left(\begin{bmatrix}
0 & y^y \\
0 & A(x, y)
\end{bmatrix}\right).
\]
Hence \(A(\theta(x), \theta(y)) = A(x, y) \) for any \(x, y \in X \). Similarly for any \(x, y \in X \),
\[
\begin{bmatrix}
\langle \theta(x), \theta(y) \rangle_A & 0 \\
0 & \langle \theta(x), \theta(y) \rangle_A
\end{bmatrix}
= \begin{bmatrix}
(x, y)_A & 0 \\
0 & (x, y)_A
\end{bmatrix},
\]
Hence \(\langle \theta(x), \theta(y) \rangle_A = (x, y)_A \) for any \(x, y \in X \). Thus \(\theta \in A \text{Aut}^2_A(X) \). Next, let \(\theta \in A \text{Aut}^3_A(X) \). Then let \(\beta \) be a map on \(C_X \) defined by
\[
\beta\left(\begin{bmatrix}
a & x \\
x^a & a
\end{bmatrix}\right) = \begin{bmatrix}
a & \theta(x) \\
\frac{x}{\theta(x)^x} & a
\end{bmatrix}
\]
for any \(a \in A, x \in X \). Then by easy computations, \(\beta \in \text{Auto}_0(A, C_X) \). Therefore, we obtain the conclusion.

Corollary 3.5. With the above notation, \(\text{Auto}_0(A, C_X) \cong A \text{Aut}^2_A(X) \).

Proof. This is immediate by Lemma 3.4.

Proposition 3.6. With the above notation, \(\text{Ker}_{FA} \cong T_1 \).

Proof. This is immediate by Lemma 3.2 Corollary 3.3 and the above discussions.

4. A RESULT ON STRONGLY MORITA EQUIVALENT UNITAL INCLUSIONS OF UNITAL C*-ALGEBRAS

In this section, we shall prove the following result: Let \(H \) be a finite dimensional C*-Hopf algebra and \(H^0 \) its dual C*-Hopf algebra. Let \((\rho, u)\) and \((\sigma, v)\) be twisted coactions of \(H^0 \) on unital C*-algebras \(A \) and \(B \), respectively. Let \(A \subset A \times_{\rho,u} H \) and \(B \subset B \times_{\sigma,v} H \) be unital inclusions of unital C*-algebras. We suppose that they are strongly Morita equivalent with respect to \(A \times_{\rho,u} H \) and \(B \times_{\sigma,v} H \)-equivalence bimodule \(Y \) and its closed subspace \(X \). And we suppose that \(A' \cap (A \times_{\rho,u} H) = C_1 \). Then there are a twisted coaction \((\gamma, w)\) of \(H^0 \) on \(B \) and a twisted coaction \(\lambda \) of \(H^0 \) on \(X \) satisfying the following:

1. \((\rho, u)\) and \((\gamma, w)\) are strongly Morita equivalent with respect to \(\lambda \),
2. \(B \times_{\sigma,v} H = B \times_{\gamma,w} H \),
3. \(Y \cong X \times_{\lambda} H \) as \(A \times_{\rho,u} H \) and \(B \times_{\sigma,v} H \)-equivalence bimodules.
In the next section, we shall use this result in the case of \(Z_2 \)-actions, where \(Z_2 = \mathbb{Z}/2\mathbb{Z} \). We shall use the results in [12] in order to prove the above result. First we recall [12].

Let \(H \) be a finite dimensional \(C^* \)-Hopf algebra. We denote its comultiplication, counit and antipode by \(\Delta, \epsilon \), and \(S \), respectively. We shall use Sweedler’s notation
\[
\Delta(h) = h(1) \otimes h(2)
\]
for any \(h \in H \) which suppresses a possible summation when we write comultiplications. We denote by \(N \) the dimension of \(H \). Let \(H^0 \) be the dual \(C^* \)-Hopf algebra of \(H \). We denote its comultiplication, counit and antipode by \(\Delta^0, \epsilon^0 \) and \(S^0 \), respectively. There is the distinguished projection \(e \in H \). We note that \(e \) is the Haar trace on \(H^0 \). Also, there is the distinguished projection \(\tau \) in \(H^0 \) which is the Haar trace on \(H \). Since \(H^0 \) is finite dimensional, \(H^0 \cong \otimes_{k=1}^K M_{d_k}(\mathbb{C}) \) as \(C^* \)-algebras, where \(M_n(\mathbb{C}) \) is the \(n \times n \) matrix algebra over \(\mathbb{C} \). Let
\[
\{ w_{ij}^k \mid k = 1, 2, \ldots, K, i, j = 1, 2, \ldots, d_k \}
\]
be a basis of \(H \) satisfying Szymański and Peligrad’s [10] Theorem 2.2,2], which is called a system of \textit{comatrix units} of \(H \), that is, the dual basis of a system of matrix units of \(H^0 \).

Let \(A \) be a unital \(C^* \)-algebra and \((\rho, u) \) a twisted coaction of \(H^0 \) on \(A \), that is, \(\rho \) is a weak coaction of \(H^0 \) on \(A \) and \(u \) is a unitary element in \(A \otimes H^0 \otimes H^0 \) satisfying that
\begin{enumerate}
\item \((\rho \otimes \text{id}) \circ \rho = \Delta \rho \circ (\text{id} \otimes \Delta^0) \circ \rho , \)
\item \((u \otimes 1^0)(\text{id} \otimes \Delta^0 \otimes \text{id})(u) = (\rho \otimes \text{id} \otimes \text{id})(u)(\text{id} \otimes \text{id} \otimes \Delta^0)(u) , \)
\item \((\text{id} \otimes h \otimes \epsilon^0)(u) = (h \otimes \epsilon^0 \otimes h)(u) = \epsilon^0(h)1 \) for any \(h \in H . \)
\end{enumerate}
For a twisted coaction \((\rho, u) \) of \(H^0 \) on \(A \), we can consider the twisted action of \(H \) on \(A \) and its unitary element \(\tilde{\rho} \) defined by
\[
\tilde{\rho}(x, h, l) = (\text{id} \otimes h \otimes l)(u)
\]
for any \(x \in A, h, l \in H \). We call it the twisted action of \(H \) on \(A \) induced by \((\rho, u) \). Let \(A \rtimes_{\rho, u} H \) be the twisted crossed product of \(A \) by the twisted action of \(H \) induced by \((\rho, u) \). Let \(x \rtimes_{\rho, u} h \) be the element in \(A \rtimes_{\rho, u} H \) induced by \(x \in A \) and \(h \in H \). Let \(\tilde{\rho} \) be the dual coaction of \(H \) on \(A \rtimes_{\rho, u} H \) defined by
\[
\tilde{\rho}(x \rtimes_{\rho, u} h) = (x \rtimes_{\rho, u} h(1)) \otimes h(2)
\]
for any \(x \in A, h \in H \). Let \(E_{1}^{\rho, u} \) be the canonical conditional expectation from \(A \rtimes_{\rho, u} H \) onto \(A \) defined by
\[
E_{1}^{\rho, u}(x \rtimes_{\rho, u} h) = \tau(h)x
\]
for any \(x \in A, h \in H \). Let \(\Lambda \) be the set of all triplets \((i, j, k)\), where \(i, j = 1, 2, \ldots, d_k \) and \(k = 1, 2, \ldots, K \) with \(\sum_{k=1}^K d_k^2 = N \). Let \(W_{I}^{\rho, u} = \sqrt{d_k} \rtimes_{\rho, u} w_{ij}^k \) for any \(I = (i, j, k) \in \Lambda \). By [9] Proposition 3.18, \(\{ (W_{I}^{\rho, u}, W_{I}^{\rho, u}) \}_{I \in \Lambda} \) is a quasi-basis for \(E_{1}^{\rho, u} \).

Let \(A \) and \(B \) be unital \(C^* \)-algebras and let \((\rho, u) \) and \((\sigma, v) \) be twisted coactions of \(H^0 \) on \(A \) and \(B \), respectively. Let \(A \rtimes_{\rho, u} H \) and \(B \rtimes_{\sigma, v} H \) be the twisted crossed products of \(A \) and \(B \) by \((\rho, u) \) and \((\sigma, v) \), respectively. We denote them by \(C \) and \(D \), respectively. Then we obtain unital inclusions of unital \(C^* \)-algebras, \(A \subset C \) and \(B \subset D \). We suppose that \(A \subset C \) and \(B \subset D \) are strongly Morita equivalent with respect to a \(C \sim D \)-equivalence bimodule \(Y \) and its closed subspace \(X \). We also suppose that \(A' \cap C = C_1 \). Then \(B' \cap D = C_1 \) by [11] Lemma 10.3. And by [11] Theorem 2.9, there are a conditional expectation \(F^B \) from \(D \) onto \(B \) and a conditional expectation \(E^X \) from \(Y \) onto \(X \) with respect to \(E_1^{\rho, u} \) and \(F^B \) satisfying Conditions (1)–(6) in [11] Definition 2.4. Since \(B' \cap D = C_1 \), by Watatani [12] Proposition 1.4.1], \(F^B = E_{1}^{\sigma, v} \), the canonical conditional expectation from \(D \) onto \(B \). Furthermore, by [11] Section 6], we can see that the unital inclusions
Lemma 4.1. $y \in C$ for any expectations from C of unital Y where we regard D for any y.

Also, we define the action of Y on X with respect to the C-algebras, respectively. Let $Y = C \otimes_A X \otimes_B D$. Let E^Y be the conditional expectation from Y onto Y with respect to $E^Y_{\rho,u}$ and $E^Y_{\sigma,v}$ defined by

$$E^Y(c \otimes x \otimes d) = \frac{1}{N} c \cdot x \cdot d$$

for any $c \in C$, $d \in D$, $x \in X$, where $E^Y_{\rho,u}$ and $E^Y_{\sigma,v}$ are the canonical conditional expectations from C and D onto C and D, respectively.

We regard Y as a closed subspace of Y by the injective linear map ϕ from Y into Y defined by

$$\phi(y) = \sum_{i,j \in A} W^y_{ij} \otimes E^X(W^y_{ij} \cdot y \cdot W^y_{ij}) \otimes \tilde{W}^X_{ij}$$

for any $y \in Y$. By Remark 3.1, for any $\psi \in H^0$, $y \in Y$,

$$\psi \cdot \mu = \sum_{i \in A} [\psi \cdot \hat{\rho} W^\psi_{ii}] \cdot E^X(W^\psi_{ii} \cdot y).$$

Also, we define the action of H^0 on D induced by β as follows: For any $\psi \in H^0$, $y, z \in Y$,

$$\psi \cdot \beta (y, z) = (S^0(\psi_{ij}^{(1)}) \cdot \mu y, \psi_{ij}^{(2)} \cdot \mu z)_D,$$

where we regard D as the linear span of the set $\{(y, z) \mid y, z \in Y\}$.

Lemma 4.1. For any $y \in Y$, $\tau \cdot \mu = E^X(y)$.

Proof. By routine computations, we obtain the lemma. Indeed, by Remark 3.1, for any $y \in Y$,

$$\tau \cdot \mu = \sum_{i \in A} [\tau \cdot \hat{\rho} W^\tau_{ii}] \cdot E^X(W^\tau_{ii} \cdot y)$$

$$= \sum_{i,j,k} [\tau \cdot \hat{\rho} (\sqrt{d_k} \cdot \rho \cdot u w_{ij}^k)^*] \cdot E^X(\sqrt{d_k} \cdot \rho \cdot u w_{ij}^k \cdot y)$$

$$= \sum_{i,j,l,j_2,j_3 \in A} [\tau \cdot \hat{\rho} (\hat{u}(S(w_{j_1,j_2}^k), w_{ij_1}^k)^* \cdot \rho \cdot u w_{j_{23}}^k \cdot \sqrt{d_k} \cdot \rho \cdot u w_{j_{23}}^k)]$$

$$\cdot E^X(\sqrt{d_k} \cdot \rho \cdot u w_{ij}^k \cdot y)$$

$$= \sum_{i,j,l,j_2,j_3 \in A} \sqrt{d_k} [\tau \cdot \hat{\rho} (\hat{u}(S(w_{j_1,j_2}^k), w_{ij_1}^k)^* \cdot \rho \cdot u w_{j_{23}}^k)] \cdot E^X(\sqrt{d_k} \cdot \rho \cdot u w_{ij}^k \cdot y)$$

$$= \sum_{i,j,l,j_2,j_3 \in A} \sqrt{d_k} [\hat{u}(S(w_{j_1,j_2}^k), w_{ij_1}^k)^* \cdot \rho \cdot u w_{j_{23}}^k \cdot \tau(w_{j_{23}}^k)]$$

$$\cdot E^X(\sqrt{d_k} \cdot \rho \cdot u w_{ij}^k \cdot y)$$

$$= \sum_{i,j,l,j_2,j_3 \in A} \sqrt{d_k} [\hat{u}(S(w_{j_1,j_2}^k), w_{ij_1}^k)^* \cdot \rho \cdot u \tau(w_{j_{23}}^k)] \cdot E^X(\sqrt{d_k} \cdot \rho \cdot u w_{ij}^k \cdot y).$$
Since \(\tau \circ S^0 = \tau, \tau(w_{ijj}^k) = \tau(S(w_{ijj}^k)) = (\tau \circ S^0)(w_{ijj}^k) = \tau(w_{ijj}^k). \) Hence

\[
\tau \cdot y = \sum_{i,j_1,j_2,k} \sqrt{d_k} (\tilde{u}(S(w_{ijj}^k), w_{ij_1}^k, w_{ij_2}^k) \cdot E^X((\sqrt{d_k} \times_{\rho,u} w_{ij_1}^k \tau(w_{ijj}^k)) \cdot y)) = \sum_{i,j_1,j_2,k} \sqrt{d_k} (\tilde{u}(S(w_{ijj}^k), w_{ij_1}^k, w_{ij_2}^k) \cdot E^X((\sqrt{d_k} \times_{\rho,u} \tau(w_{ijj}^k)) \cdot y)) = \sum_{i,j_1,j_2,k} d_k (\tilde{u}(S(w_{ijj}^k), w_{ij_1}^k, w_{ij_2}^k) * \times_{\rho,u} 1) \cdot E^X(y).
\]

Since \(\tau = \tau^*, \tau(w_{ijj}^k) = \tau^*(w_{ijj}^k) = \tau(S(w_{ijj}^k)) = \tau(w_{ijj}^k). \) Hence

\[
\tau \cdot y = \sum_{i,j_1,j_2,k} d_k (\tilde{u}(S(w_{ijj}^k), w_{ij_1}^k, w_{ij_2}^k) \cdot \tau(w_{ijj}^k)) * \times_{\rho,u} 1) \cdot E^X(y) = \sum_{i,j_1,j_2,k} d_k (\tilde{u}(S(\tau(w_{ijj}^k))), \times_{\rho,u} 1) \cdot E^X(y) = \sum_{i,j_1,j_2,k} d_k (\tilde{u}(S(\tau(w_{ijj}^k))) \cdot E^X(y).
\]

Since \(\epsilon \circ S = \epsilon, \epsilon(S(\tau(w_{ijj}^k))) = \tau(w_{ijj}^k)1. \) Hence

\[
\tau \cdot y = \sum_{j_1,j_2,k} d_k (\tilde{u}(\tau(w_{ijj}^k))) E^X(y) = \sum_{j_1,j_2,k} d_k (\tilde{u}(w_{ijj}^k)1) E^X(y) = N\tau(\epsilon) E^X(y)(y) = E^X(y)
\]
since \(\epsilon = \epsilon(\sum_{j,k} d_k w_{ijj}^k) \). Therefore, we obtain the conclusion. \(\square \)

We recall that the unital inclusions of unital \(C^* \)-algebras, \(C \subset C_1 \) and \(D \subset D_1 \) are strongly Morita equivalent with respect to \(Y_1 \) and its closed subspace \(Y \). Also, \(C \subset C_1 \) and \(D \subset D \times_\beta H^0 \) are strongly Morita equivalent with respect to the \(C_1 - D \times_\beta H^0 \)-equivalence bimodule \(Y \times_\mu H^0 \) and its closed subspace \(Y_1 \), where \(Y \times_\mu H^0 \) is the crossed product of \(Y \) by the coaction \(\mu \) and it is a \(C_1 - D \times_\beta H^0 \)-equivalence bimodule (See [13]). Hence the unital inclusions \(D \subset D_1 \) and \(D \subset D \times_\beta H^0 \) are strongly Morita equivalent with respect to the \(D - D \times_\beta H^0 \)-equivalence bimodule \(\tilde{Y}_1 \otimes C_1(Y \times_\mu H^0) \) and its closed subspace \(\tilde{Y} \otimes C_1(Y \times_\mu H^0) \). Then since \(\tilde{Y} \otimes C_1 \) is isomorphic to \(D \) as \(D - D \times_\beta H^0 \)-equivalence bimodule, we can see that there is an isomorphism \(\Psi \) of \(D_1 \) onto \(D \times_\beta H^0 \) which is defined as follows: Since \(Y \) is a \(C_1 - D \)-equivalence bimodule, there are elements \(y_1, \ldots, y_n \in Y \) such that \(\sum_{i=1}^n \langle y_i, y_i \rangle_D = 1 \). Let \(\Psi \) be the map from \(D_1 \) to \(D \times_\beta H^0 \) defined by

\[
\Psi(d) = \sum_{i,j} \langle d \cdot \tilde{y}_i \otimes y_i, \tilde{y}_j \otimes y_j \rangle_{D \times_\beta H^0}
\]

for any \(d \in D_1 \). By [13] Section 5], \(\Psi \) is an isomorphism of \(D_1 \) onto \(D \times_\beta H^0 \) satisfying that \(\Psi(d) = d \) for any \(d \in D \) and that \(E^0_1 \circ \Psi = E^0_2 \), where \(E^0_1 \) is a canonical conditional expectation from \(D \times_\beta H^0 \) onto \(D \) and \(E^0_2 \) is the canonical conditional expectation from \(D_1 \) onto \(D \).

Remark 4.2. \(\tilde{Y} \) is a closed subspace of \(\tilde{Y}_1 \) by the inclusion \(\tilde{\phi} \) defined by

\[
\tilde{\phi}(\tilde{y}) = \tilde{\phi}(y)
\]

for any \(y \in Y \). Also, \(Y \) is a closed subspace \(Y \times_\mu H^0 \) by the inclusion defined by

\[
Y \longrightarrow Y \times_\mu H^0 : y \mapsto y \times_\mu 1^0.
\]
Lemma 4.3. With the above notation, \(\Psi(e_B) = \Psi(1 \times_\beta \tau) = 1 \times_\beta \tau \).

Proof. The lemma can be proved by routine computations. Indeed, we note that \(\tilde{Y} \) is regarded as a closed subspace of \(\tilde{Y}_1 \) by the inclusion \(\bar{\phi} \) and \(Y \) is regarded as a closed subspace \(Y \times_\beta 1^0 \) of \(Y \times_\beta H^0 \). Then

\[
\Psi(e_B) = \Psi(1 \times_\beta \tau) = \sum_{i,j} \langle (1 \times_\beta \tau) \cdot (\tilde{y}_i \otimes y_i), \tilde{y}_j \otimes y_j \rangle_{D \times_\beta H^0} \]

\[
= \sum_{i,j} \langle [y_i \cdot (1 \times_\beta \tau)] \otimes y_i, \tilde{y}_j \otimes y_j \rangle_{D \times_\beta H^0} \]

\[
= \sum_{i,j} \langle y_i, [y_i \cdot (1 \times_\beta \tau)] \rangle_{C \times_\beta H^0}. \]

We note that \(\tilde{y}_i, \tilde{y}_j \in \tilde{Y} \subset \tilde{Y}_1 \) and that \(y_i, y_j \in Y = Y \times_\mu 1^0 \subset Y \times_\mu H^0 \). Hence

\[
\Psi(e_B) = \sum_{i,j} \langle y_i \times_\mu 1^0, c_i \langle \phi(y_i) \cdot (1 \times_\beta \tau), \phi(y_j) \rangle \cdot y_j \rangle_{D \times_\beta H^0}. \]

Furthermore, let \(\{(u_k, u^*_l)\} \) and \(\{(v_l, v^*_l)\} \) be quasi-bases for \(E_1^{\sigma,u} \) and \(E_1^{\sigma,v} \), respectively. Then

\[
\phi(y_i) \cdot (1 \times_\beta \tau) = \phi(y_i) : e_B = \sum_{k,l} u_k \otimes E_X(u^*_k \cdot y_i \cdot v_l) \otimes \tilde{u}_l \cdot e_B \]

\[
= \sum_{k,l} u_k \otimes E_X(u^*_k \cdot y_i \cdot v_l) \otimes \tilde{E}_B(v_l) \]

\[
= \sum_{k,l} u_k \otimes E_X(u^*_k \cdot y_i \cdot v_l E_B(v^*_l)) \otimes \tilde{1}_D \]

\[
= \sum_{k,l} u_k \otimes E_X(u^*_k \cdot y_i) \otimes \tilde{1}_D. \]

Hence since \(1 \times_\beta \tau \) is a projection in \(D_1 \),

\[
c_i \langle y_i \cdot (1 \times_\beta \tau), y_j \rangle = c_i \langle y_i \cdot (1 \times_\beta \tau), y_j \cdot (1 \times_\beta \tau) \rangle \]

\[
= \sum_{k,l} c_i \langle u_k \otimes E_X(u^*_k \cdot y_i) \otimes \tilde{1}_D, u_l \otimes E_X(u^*_l \cdot y_j) \otimes \tilde{1}_D \rangle \]

\[
= \sum_{k,l} c_i \langle u_k \cdot A(E_X(u^*_k \cdot y_i) \otimes \tilde{1}_D, E_X(u^*_l \cdot y_j) \otimes \tilde{1}_D), u_l \rangle \]

\[
= \sum_{k,l} c_i \langle u_k \cdot A(E_X(u^*_k \cdot y_i), B(\tilde{1}_D, \tilde{1}_D), E_X(u^*_l \cdot y_j)), u_l \rangle \]

\[
= \sum_{k,l} c_i \langle u_k E^A(c \langle u^*_k \cdot y_i, E_X(u^*_l \cdot y_j) \rangle), u_l \rangle \]

\[
= \sum_{k,l} c_i \langle u_k E^A(u^*_k c \langle y_i, E_X(u^*_l \cdot y_j) \rangle), u_l \rangle \]

\[
= \sum_{l} c \langle y_i, E_X(u^*_l \cdot y_j) \rangle c_A u^*_l. \]
Thus
\[
\Psi(e_B) = \sum_{i,j,l} \langle y_i \times_\mu 1^0, c(y_i, E^X(u^*_1 \cdot y_j)) e_A u^*_1 \times_\mu 1^0 \rangle_{D \times_\beta H^0}
\]
\[
= \sum_{i,j,l} \langle c(E^X(u^*_1 \cdot y_j)) \cdot (y_i \times_\mu 1^0), e_A u^*_1 \times_\mu 1^0 \rangle_{D \times_\beta H^0}
\]
\[
= \sum_{i,j,l} \langle E^X(u^*_1 \cdot y_j) \cdot (y_i, y_j), e_A u^*_1 \cdot y_j \rangle_{D \times_\beta H^0}
\]
\[
= \sum_{i,j} \langle u_i e_A \cdot E^X(u^*_1 \cdot y_j), y_j \rangle_{D \times_\beta H^0}.
\]

Since we identify \(e_A \) with \(1 \times_\beta \tau \), we obtain that
\[
u_i e_A \cdot E^X(u^*_1 \cdot y_j) = (u_i \times_\beta 1^0)(1 \times_\beta \tau) \cdot (E^X(u^*_1 \cdot y_j) \times_\mu 1^0)
\]
\[
= (u_i \times_\beta \tau) \cdot (E^X(u^*_1 \cdot y_j) \times_\mu 1^0).
\]

By Lemma 4.4, \(E^X(u^*_1 \cdot y_j) = \tau' \times_\mu (u^*_1 \cdot y_j) \), where \(\tau' = \tau \). Thus
\[
u_i e_A \cdot E^X(u^*_1 \cdot y_j) = (u_i \times_\beta \tau) \cdot \tau' \times_\mu (u^*_1 \cdot y_j) \times_\mu 1^0
\]
\[
= u_i [\tau] \cdot \tau' \times_\mu (u^*_1 \cdot y_j) \times_\mu 1^0
\]
\[
= u_i [\tau'] \times_\mu (u^*_1 \cdot y_j) \times_\mu \tau
\]
\[
= u_i E^X(u^*_1 \cdot y_j) \times_\mu \tau.
\]

It follows by [11] Lemma 5.4] that
\[
\Psi(e_B) = \sum_{j,l} \langle u_i E^X(u^*_1 \cdot y_j) \times_\mu \tau, y_j \rangle_{D \times_\beta H^0} = \sum_j \langle y_j \times_\mu \tau, y_j \times_\mu 1^0 \rangle_{D \times_\beta H^0}
\]
\[
= \sum_j \tau \gamma(y_j, y_j) = \sum_j \tau \gamma(y_j, y_j) = \tau \gamma(y_j, y_j).
\]

Therefore we obtain the conclusion. \(\square \)

Let \((Y \times_\mu H^0)_\Psi \) be the \(C_1 - D_1 \)-equivalence bimodule induced by the \(C_1 - D \times_\beta H^0 \)-equivalence bimodule \(Y \times_\mu H^0 \) and the isomorphism \(\Psi \) of \(D_1 \) onto \(D \times_\beta H^0 \). Let \(E^1 \) be the linear map from \(Y \times_\mu H^0 \) onto \(Y \) defined by
\[
E^1(y, \times_\mu \psi) = \psi(e) \cdot y
\]
for any \(y \in Y, \psi \in H^0 \), where \(y \times_\mu \psi \) is the element in \(Y \times_\mu H^0 \) induced by \(y \in Y, \psi \in H^0 \). Then \(E^1 \) is a conditional expectation from \(Y \times_\mu H^0 \) onto \(Y \) with respect to \(E^0 \) and \(E_1 \), the canonical conditional expectation from \(D_1 \times_\beta H^0 \) onto \(D_1 \) by [11] Proposition 4.1. Let \(E^1 \cdot \Psi \) be the linear map from \((Y \times_\mu H^0)_\Psi \) onto \(Y \) induced by \(E^0 \) and \(\Psi \).

Lemma 4.4. With the above notation, \(E^1 \cdot \Psi \) is a conditional expectation from \((Y \times_\mu H^0)_\Psi \) onto \(Y \) with respect to \(E^0 \) and \(E^1 \).

Proof. We shall show that Conditions (1)-(6) in [11] Definition 2.4] hold. Let \(y, z \in Y, c \in C, d \in D \) and \(\psi \in H^0 \).
\begin{align*}
(1) & \quad E^1((c \times_\beta \psi) \cdot y) = E^1(c \times_\beta \psi) \cdot (y \times_\mu 1^0) = E^\mu E^1(c \cdot [\psi(1)_1, y] \times_\mu \psi(2)) \\
& = c \cdot [\psi(1)_1, y] \psi(2) \cdot e = c \cdot \psi(e) \cdot y = \psi(e) \cdot y.
\end{align*}
On the other hand,
\[E_2^{\mu,\nu}(c \times_\beta \psi) \cdot y = \psi(e) c \cdot y. \]
Hence Condition (1) holds.

(2)
\[E_1^{\mu,\psi}(c \cdot (y \times_\mu \psi)) = E_1^{\mu,\psi}((c \cdot y) \times_\mu \psi) = c \cdot y \psi(e) = \psi(e) c \cdot y. \]
On the other hand,
\[c \cdot E_1^{\mu,\psi}(y \times_\mu \psi) = c \cdot \psi(e) y = \psi(e) c \cdot y. \]
Hence Condition (2) holds.

(3)
\[E_2^{\mu,\nu}(c \times_\beta H^0(y \times_\mu \psi, z \times_\mu 1^0)) = E_2^{\mu,\nu}(c \times_\beta H^0(y \times_\mu \psi, z \times_\mu 1^0)) = E_2^{\mu,\nu}(c(y, [S^0(\psi_1^* \psi) \times_\beta \psi_2^]) = c(y, [S^0(\psi_1^* \psi) \times_\beta \psi_2^]) \psi_2(e) = c(y, [S^0(\psi_1^* \psi) \times_\beta \psi_2^]) \psi_2(e) = c(y, [e(S^0(\psi_1^* \psi) \times_\beta \psi_2^]) = c(y, \psi(e) y, z) = \psi(e) c(y, z). \]
Hence Condition (3) holds.

(4)
\[E_1^{\mu,\psi}(y \cdot (d \times_\beta \psi)) = E_1^{\mu,\psi}(y \cdot \Psi(d \times_\beta \psi)) = y \cdot E_1^{\mu,\psi}(\Psi(d \times_\beta \psi)) = y \cdot E_2^{\mu,\nu}(d \times_\beta \psi). \]
Hence Condition (4) holds.

(5)
\[E_1^{\mu,\psi}((y \times_\mu \psi) \cdot d) = E_1^{\mu,\psi}((y \times_\mu \psi) \cdot \Psi(d)) = E_1^{\mu,\psi}(y \times_\mu \psi) \cdot \Psi(d) = E_1^{\mu,\psi}(y \times_\mu \psi) \cdot d. \]
Hence Condition (5) holds.

(6)
\[E_2^{\mu,\nu}(y \times_\mu \psi, z)_{D \times_\beta H^0} = E_2^{\mu,\nu}((y \times_\mu \psi, z \times_\mu 1^0)_{D \times_\beta H^0}) = E_2^{\mu,\nu}((y \times_\mu \psi, z \times_\mu 1^0)_{D \times_\beta H^0}) = E_2^{\mu,\nu}((\psi_1^* \cdot \beta \langle y, z \rangle_D) \times_\beta \psi_2^) = \psi(e) \langle y, z \rangle_D. \]
On the other hand,
\[(E_1^{\mu,\psi}(y \times_\mu \psi, z \times_\mu 1^0)_{D \times_\beta H^0} = \Psi^{-1}(\langle \psi(e) y, z \rangle_{D \times_\beta H^0}) = \psi(e) \langle y, z \rangle_D. \]
Hence Condition (6) holds. Therefore, we obtain the conclusion. \(\square \)

Lemma 4.5. With the above notation, for any \(y \in Y \),
\[E_1^{\mu,\psi}(e_A \cdot y \cdot e_B) = \frac{1}{N} E(X(y)). \]
Proof. By the definition of $E^{\mu,\Psi}_1$ and Lemma 4.6,

$$E^{\mu,\Psi}_1(e_A \cdot y \cdot e_B) = E^\mu_1((1 \rtimes_{\beta} \tau) \cdot y \cdot (1 \rtimes_{\beta} \tau)).$$

Also,

$$(1 \rtimes_{\beta} \tau) \cdot y \cdot (1 \rtimes_{\beta} \tau) = (1 \rtimes_{\beta} \tau) \cdot (y \rtimes_{\mu} 1^0) \cdot (1 \rtimes_{\beta} \tau) = (1 \rtimes_{\beta} \tau) \cdot (y \rtimes_{\mu} \tau') = [\tau(y) \rtimes_{\mu} \tau'] = \tau(y) \rtimes_{\mu} \tau,$$

where $\tau' = \tau$. Hence

$$E^{\mu,\Psi}_1(e_A \cdot y \cdot e_B) = E^\mu_1([\tau(y) \rtimes_{\mu} \tau]) = [\tau(y)\tau(e)] = \frac{1}{N} E^X(y)$$

by Lemma 4.7. \hfill \Box

Proposition 4.6. With the above notation, there is a C_1-D_1-equivalence bimodule isomorphism θ of Y_1 onto $(Y \rtimes_{\mu} H^0)\Psi$ such that $E^{\mu,\Psi}_1 = E^\Psi \circ \theta$.

Proof. This is immediate by Lemma 4.5 and [11, Theorem 6.13]. \hfill \Box

Next, modifying the discussions of [12, Section 5], we shall show that there is a C^*-Hopf algebra automorphism f^0 of H^0 such that

$$\widehat{\beta} \circ \Psi = (\Psi \circ f^0) \circ \widehat{\sigma},$$

where $\widehat{\beta}$ is the dual coaction of β and $\widehat{\sigma}$ is the second dual coaction of (σ, v).

Lemma 4.7. With the above notation, $\Psi |_{B' \cap D_1}$, the restriction of Ψ to $B' \cap D_1$ is an isomorphism of $B' \cap D_1$ onto $B' \cap (D \rtimes_{\beta} H^0)$.

Proof. It suffices to show that $\Psi(d) \in B' \cap (D \rtimes_{\beta} H^0)$ for any $d \in B' \cap D_1$. For any $d \in B' \cap D_1$, $b \in B$,

$$\Psi(d)b = \Psi(d)(b) = \Psi(b(d))b = \Psi(b)\Psi(d) = b\Psi(d).$$

Hence $\Psi(d) \in B' \cap (D \rtimes_{\beta} H^0)$ for any $d \in B' \cap D_1$. \hfill \Box

By Lemma 4.8. $B' \cap D_1 = 1 \rtimes_{\sigma,v} 1 \rtimes_{\beta} H^0$. Also, we have the next lemma.

Lemma 4.8. With the above notation, $B' \cap (D \rtimes_{\beta} H^0) = 1 \rtimes_{\sigma,v} 1 \rtimes_{\beta} H^0$.

Proof. We note that $\psi \cdot_{\mu} x = e^0(\psi)x$ for any $\psi \in H^0$, $x \in X$ by [12, Lemma 3.2]. Thus by the definition of β, $\psi \cdot (b \rtimes_{\sigma,v} 1) = e^0(\psi)(b \rtimes_{\sigma,v} 1)$ for any $\psi \in H^0$, $b \in B$ (See [12, Section 4]). Hence in the same way as in the proof of [12, Lemma 5.8], we obtain the conclusion. \hfill \Box

Since $\Psi(1 \rtimes_{\beta} \tau) = 1 \rtimes_{\beta} \tau$ by Lemma 4.8 and $\Psi(d) = d$ for any $d \in D$, in the same way as in [12, Lemma 5.6], we can see that there is an isomorphism $\widehat{\Psi}$ of D_2 onto $D \rtimes_{\beta} H^0 \rtimes_{\beta} H$ satisfying that

$$\widehat{\Psi}|_{D_1} = \Psi,$$

$$E^\beta_{e_2} \circ \widehat{\Psi} = \Psi \circ E^\sigma_{e_2},$$

$$\widehat{\Psi}(1 \rtimes_{\beta} 1 \rtimes_{\beta} e) = 1 \rtimes_{\beta} 1 \rtimes_{\beta} e,$$

where $\widehat{\beta}$ is the second dual coaction of (σ, v), $\widehat{\beta}$ is the dual coaction of β, $D_2 = D_1 \rtimes_{\beta} H$ and $E^\sigma_{e_2}$ and $E^\beta_{e_2}$ are the canonical conditional expectations from D_2 and $D \rtimes_{\beta} H^0 \rtimes_{\beta} H$ onto D_1 and $D \rtimes_{\beta} H^0$, respectively. Furthermore, in the same way as in the above or [12, Section 5], $\widehat{\Psi}|_{B' \cap D_2}$ is an isomorphism of $B' \cap D_2$ onto $D' \cap (D \rtimes_{\beta} H^0 \rtimes_{\beta} H)$. Since

$$B' \cap D_1 = B' \cap (D \rtimes_{\beta} H^0) = 1 \rtimes_{\sigma,v} 1 \rtimes_{\beta} H^0$$
by Lemma 4.8 we identify \(B' \cap D_1 \) and \(B' \cap (D \times_\beta H^0) \) with \(H^0 \). Let \(f^0 = \Psi|_{B' \cap D_1} \) and we regard \(f^0 \) as a \(C^* \)-algebra automorphism of \(H^0 \). By the proof of [12, Lemma 5.9], we can see that

\[
N^2(E_1^{\sigma,v} \circ E_1^{|\tau|})(1 \times_\beta \psi \times_\beta 1)(1 \times_\beta 1_0 \times_\beta e)(1 \times_\beta \tau \times_\beta 1)(1 \times_\beta 1_0 \times_\beta h) = \psi(e),
\]

\[
N^2(E_1^{|\tau|} \circ E_2^{|\beta|})(1 \times_\beta \psi \times_\beta 1)(1 \times_\beta 1_0 \times_\beta e)(1 \times_\beta \beta \times_\beta 1)(1 \times_\beta 1_0 \times_\beta h) = \psi(e),
\]

for any \(h \in H, \psi \in H^0 \). Hence in the same way as in the proof of [12, Lemma 5.9], we can see that \(f^0 \) is a \(C^* \)-Hopf algebra automorphism of \(H^0 \).

Lemma 4.9. With the above notation, \(\widehat{\beta} \circ \Psi = (\Psi \otimes f^0) \circ \widehat{\sigma} \).

Proof. This can be proved in the same way as in the proof of [12, Lemma 5.10]. \(\square \)

Lemma 4.10. With the above notation, \(\widehat{\beta}(1_D \times_\beta \tau) \) is Murray-von Neumann equivalent to \((1_D \times_\beta \tau) \otimes 1^0 \) in \((D \times_\beta H^0) \otimes H^0 \).

Proof. By Lemmas 4.3, 4.9,

\[
\widehat{\beta}(1_D \times_\beta \tau) = \widehat{\beta}(\Psi(1_D \times_\beta \tau)) = (\Psi \otimes f^0)(\widehat{\sigma}(1_D \times_\beta \tau)).
\]

By [9, Proposition 3.19], \(\widehat{\sigma}(1_D \times_\beta \tau) \) is Murray-von Neumann equivalent to \((1 \times_\beta \tau) \otimes 1^0 \) in \(D_1 \otimes H^0 \). Hence we obtain the conclusion by Lemma 4.3. \(\square \)

Lemma 4.11. With the above notation, \(\beta \) is saturated, that is, the action of \(H \) on \(D \) induced by \(\beta \) is saturated in the sense of Szymański and Peligrad [16].

Proof. By the definition of \(\widehat{\sigma} \),

\[
D_1(1_D \times_\beta \tau)D_1 = D_1.
\]

Since \(\Psi \) is an isomorphism of \(D_1 \) onto \(D \times_\beta H^0 \),

\[
(1_D \times_\beta H^0)(1_D \times_\beta \tau)(D \times_\beta H^0) = \Psi(D_1(1_D \times_\beta \tau)D_1) = \Psi(D_1) = D \times_\beta H^0
\]

by Lemma 4.1. Hence \(\beta \) is saturated. \(\square \)

Since \(\beta \) is saturated by Lemma 4.11, there is the conditional expectation \(E^{D_\beta} \) from \(D \) onto \(D_\beta \) defined by

\[
E^{D_\beta}(d) = \tau \circ d
\]

for any \(d \in D \) (See [16, Proposition 2.12]), where \(D_\beta \) is the fixed-point \(C^* \)-subalgebra of \(D \) for \(\beta \). Also, since \(\widehat{\beta}(1_D \times_\beta \tau) \) is Murray-von Neumann equivalent to \((1 \times_\beta \tau) \otimes 1^0 \) in \((D \times_\beta H^0) \otimes H^0 \) by Lemma 4.10, there is a twisted coaction \((\gamma, w) \) of \(H^0 \) on \(D_\beta \) and an isomorphism \(\pi_D \) of \(D_\beta \) satisfying

\[
E_1^{\sigma,w} = E^{D_\beta} \circ \pi_D, \quad \psi \circ \pi_D(d) = \pi_D(\psi \circ d)
\]

for any \(d \in D, \psi \in H^0 \) by [9, Proposition 6.1, 6.4 and Theorem 6.4]. We identify \(D_\beta \times_{\gamma,w} H \) and \(E_1^{\sigma,w} \) with \(D \) and \(E^{D_\beta} \) by the above isomorphism \(\pi_D \), respectively. We show that \(B = D_\beta \). By the definition of \(\beta, B \subset D_\beta \). Let \(F \) be the conditional expectation of \(D_\beta \) onto \(B \) defined by \(F = E_1^{\sigma,w}|_{D_\beta} \), the restriction of \(E_1^{\sigma,w} \) to \(D_\beta \). Since \(E_1^{\sigma,w} \) is of Watatani index-finite type, there is a quasi-basis \(\{ (d_i, d_i^*) \}_{i=1}^n \) for \(E_1^{\sigma,w} \). Then \(F \circ E_1^{\sigma,w} \) is also a conditional expectation from \(D_1 \) onto \(B \). Since \(B' \cap D_1 = C_1 \), by [17, Proposition 1.4.1],

\[
E_1^{\sigma,w} = F \circ E_1^{\sigma,w}.
\]

Lemma 4.12. With above notation, \(F \) is of Watatani index-finite type and its Watatani index, \(\text{Ind}_W(F) \in C_1 \).
Proof. We claim that \(\{(E_1^{\gamma,w}(d_i), E_1^{\gamma,w}(d'_i))\}_{i=1}^n \) is a quasi-basis for \(F \). Indeed, for any \(d \in D^3 \),
\[
\sum_{i=1}^n E_1^{\gamma,w}(d_i)F(E_1^{\gamma,w}(d'_i))d = \sum_{i=1}^n E_1^{\gamma,w}(d_i)(F \circ E_1^{\gamma,w})(d'_i E_1^{\gamma,w}(d)) \\
= \sum_{i=1}^n E_1^{\gamma,w}(d_i)(F \circ E_1^{\gamma,w})(d'_i E_1^{\gamma,w}(d)) \\
= \sum_{i=1}^n E_1^{\gamma,w}(d_i)E_1^{\sigma,v}(d'_i E_1^{\gamma,w}(d)) \\
= \sum_{i=1}^n E_1^{\gamma,w}(d_i)E_1^{\sigma,v}(d'_i E_1^{\gamma,w}(d)) \\
= E_1^{\gamma,w}(E_1^{\gamma,w}(d)) = d
\]
since \(E_1^{\sigma,v} = F \circ E_1^{\gamma,w} \) and \(E_1^{\gamma,w}(d) = d \) for any \(d \in D^3 \). Hence \(F \) is of Watatani index-finite type. Also, \(\text{Ind}_{W}(F) \in (D^3)' \cap D^3 \subset B' \cap D = C1 \) by [17] Proposition 1.2.8. □

Lemma 4.13. With the above notation, \(B = D^3 \).

Proof. It suffices to show that \(\text{Ind}_W(F) = 1 \). By [17] Proposition 1.7.1,
\[
\text{Ind}_W(E_1^{\sigma,v}) = \text{Ind}_W(F)\text{Ind}_W(E_1^{\gamma,w}).
\]
By [17] Proposition 3.18 \(\text{Ind}_W(E_1^{\sigma,v}) = \text{Ind}_W(E_1^{\gamma,w}) = N \). Hence \(\text{Ind}_W(F) = 1 \).
Therefore, we obtain the conclusion by [17]. □

Let \(Y^\mu = \{ y \in Y \mid \mu(y) = y \otimes 1^0 \} \). By [4] Theorem 4.9, there are a twisted coaction \(\lambda \) of \(H \) on \(Y^\mu \) and a Hilbert \(A \rtimes_{(\rho,u)} H - B \rtimes_{(\gamma,w)} H \)-bimodule isomorphism \(\pi_Y \) of \(Y^\mu \) onto \(H \) such that
\[
\psi \cdot_\mu \pi_Y(x \rtimes_\lambda h) = \pi_Y(\psi \cdot_\lambda (x \rtimes_\lambda h))
\]
for any \(x \in Y^\mu \), \(h \in H \), \(\psi \in H^0 \). Furthermore, by [4] Lemma 3.10, \(Y^\mu \) is an \(A - B \)-equivalence bimodule and hence \(\pi_Y \) is an \(A \rtimes_{(\rho,u)} H - B \rtimes_{(\gamma,w)} H \)-equivalence bimodule isomorphism. We identify \(Y \) with \(Y^\mu \rtimes_\lambda H \) by the isomorphism \(\pi_Y \).
Thus the twisted coactions \((\rho,u) \) and \((\gamma,w) \) are strongly Morita equivalent with respect to the twisted coaction \(\lambda \) of \(H \) on the \(A - B \)-equivalence bimodule \(Y^\mu \). We show that \(Y^\mu = X \).

Lemma 4.14. With the above notation, \(Y^\mu = X \).

Proof. By [12] Lemma 3.2, \(X \subset Y^\mu \). Also, for any \(y \in Y^\mu \), \(\tau \cdot_\mu y = \epsilon(\tau)y = y \).
On the other hand, by Lemma [11] \(\tau \cdot_\mu y = E^X(y) \). Hence \(y = E^X(y) \in X \). Thus we obtain that \(Y^\mu \subset X \). □

By the above discussions, we obtain the following theorem:

Theorem 4.15. Let \(H \) be a finite dimensional C^*-Hopf algebra and \(H^0 \) its dual C^*-Hopf algebra. Let \((\rho,u) \) and \((\sigma,v) \) be twisted coactions of \(H^0 \) on unital C^*-algebras \(A \) and \(B \), respectively. Let \(A \subset A \rtimes_{(\rho,u)} H \) and \(B \subset B \rtimes_{(\sigma,v)} H \) be unital inclusions of unital C^*-algebras. We suppose that they are strongly Morita equivalent with respect to \(A \rtimes_{(\rho,u)} H - B \rtimes_{(\sigma,v)} H \)-equivalence bimodule \(Y \) and its closed subspace \(X \). And we suppose that \(A' \cap (A \rtimes_{(\rho,u)} H) = C1 \). Then there are a twisted coaction \((\gamma,w) \) of \(H^0 \) on \(B \) and a twisted coaction \(\lambda \) of \(H^0 \) on \(X \) satisfying the following:
(1) \((\rho,u) \) and \((\gamma,w) \) are strongly Morita equivalent with respect to \(\lambda \),
(2) \(B \rtimes_{(\sigma,v)} H = B \rtimes_{(\gamma,w)} H \),
(3) \(Y \cong X \rtimes_\lambda H \) as \(A \rtimes_{(\rho,u)} H - B \rtimes_{(\sigma,v)} H \)-equivalence bimodules.
5. Image

Let A be a unital C^*-algebra and X an involutive $A - A$-equivalence bimodule. Let $A \subset C_X$ be the unital inclusion of unital C^*-algebras induced by X. We suppose that $A' \cap C_X = C_1$. Let f_A be the homomorphism of $\text{Pic}(A,C_X)$ onto $\text{Pic}(A)$ defined in Preliminaries, that is,

$$f_A([M,N]) = [M]$$

for any $(M,N) \in \text{Equi}(A,C_X)$. In this section, we shall compute $\text{Im} f_A$, the image of f_A.

Let E_A be the conditional expectation from C_X onto A defined in Section 3 and let ϵ_A be the Jones projection for E_A. Since E_A is of Watatani index-finite type by [7, Lemma 3.4], there is the C^*-basic construction of the inclusion $A \subset C_X$ for E_A, which is the linking C^*-algebra L_X for X, that is,

$$L_X = \{ \begin{pmatrix} a & x \\ y & b \end{pmatrix} | a, b \in A, \ x, y \in X \}. \tag{5.1}$$

By [7] Lemma 2.6, we can see that there is the action α^X of \mathbb{Z}_2, the group of order two, on C_X defined by

$$\alpha^X \left(\begin{pmatrix} a & x \\ x^2 & a \end{pmatrix} \right) = \begin{pmatrix} a & -x \\ -x^2 & a \end{pmatrix}$$

for any $\begin{pmatrix} a & x \\ x^2 & a \end{pmatrix} \in C_X$ and that $L_X \cong C_X \rtimes_{\alpha^X} \mathbb{Z}_2$ as C^*-algebras. We note that we regard an action β of \mathbb{Z}_2 on a unital C^*-algebra B as the automorphism β of B with $\beta^2 = \text{id}$ on B. We identify L_X with $C_X \rtimes_{\alpha^X} \mathbb{Z}_2$. Let M be an $A - A$-equivalence bimodule satisfying that

$$\tilde{M} \otimes_A X \otimes_A M \cong X$$

as involutive $A - A$-equivalence bimodules. Then by the proof of [6, Lemma 5.11], we can see that there is an element $(M,C_M) \in \text{Equi}(A,C_X)$, where C_M is a $C_X - C_X$-equivalence bimodule induced by M, which is defined in [6] Section 5.]. Next, we show that

$$\tilde{M} \otimes_A X \otimes_A M \cong X$$

as involutive $A - A$-equivalence bimodules for any $(M,N) \in \text{Equi}(A,C_X)$. Let (M,N) be any element in $\text{Equi}(A,C_X)$. Since $A' \cap C_X = C_1$, by [5] Lemma 4.1 there is the unique conditional expectation E_M from N onto M with respect to E_A and E_A. Let N_1 be the upward basic construction of N for E_M (See [11] Definition 6.5). Then by [11] Corollary 6.3, the unital inclusion $C_X \subset L_X$ is strongly Morita equivalent to itself with respect to N_1 and its closed subspace N. Hence by Theorem 4.15, there are an action γ of \mathbb{Z}_2 on C_X and an action λ of \mathbb{Z}_2 on N satisfying the following:

1. The actions α^X and γ of \mathbb{Z}_2 on C_X are strongly Morita equivalent with respect to the action λ of \mathbb{Z}_2 on N,
2. $L_X = C_X \rtimes_{\alpha^X} \mathbb{Z}_2 = C_X \rtimes_{\gamma} \mathbb{Z}_2$,
3. $N_1 \cong N \rtimes_{\lambda} \mathbb{Z}_2$ as $L_X - L_X$-equivalence bimodules.

We identify N_1 with $N \rtimes_{\lambda} \mathbb{Z}_2$. Let $\tilde{\alpha}^X$ be the dual action of α^X, which is an action of \mathbb{Z}_2 on L_X. We regard $\tilde{\alpha}^X$ as an automorphism of L_X with $(\tilde{\alpha}^X)^2 = \text{id}$ on L_X,
which is defined by

\[\tilde{\alpha}^X\left(\begin{bmatrix} a & x \\ x^* & a \end{bmatrix}\right) = \begin{bmatrix} a & x \\ x^* & a \end{bmatrix}\text{ for any }\begin{bmatrix} a & x \\ x^* & a \end{bmatrix} \in C_X,\]

\[\tilde{\alpha}^X\left(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}\right) = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} .\]

Let \((L_X)_{\tilde{\alpha}^X}\) be the involutive \(L_X - L_X\)-equivalence bimodule induced by \(\tilde{\alpha}^X\), that is, \((L_X)_{\tilde{\alpha}^X} = L_X\) as vector spaces over \(C\) and the left \(L_X\)-action and the left \(L_X\)-valued inner product on \((L_X)_{\tilde{\alpha}^X}\) are defined in the usual way. The right \(L_X\)-action and the right \(L_X\)-valued inner product on \((L_X)_{\tilde{\alpha}^X}\) are defined as follows: For any \(a \in L_X, x, y \in (L_X)_{\tilde{\alpha}^X}\),

\[x \cdot a = x\tilde{\alpha}^X(a), \quad \langle x, y \rangle_{L_X} = \tilde{\alpha}^X(x^* y) .\]

Furthermore, we define the involution \(\hat{\gamma}\) as follows: For any \(x \in (L_X)_{\tilde{\alpha}^X}\),

\[x^\flat = \tilde{\alpha}^X(x)^* .\]

Then by easy computations \((L_X)_{\tilde{\alpha}^X}\) is an involutive \(L_X - L_X\)-equivalence bimodule.

Let \(\hat{\lambda}\) be the dual action of \(\lambda\), which is an action of \(Z_2\) by linear automorphisms of \(N_1 = N \rtimes_{\lambda} Z_2\) such that

\[\tilde{\alpha}^X((L_X(m, n)) = L_X((\hat{\lambda}(m), \hat{\lambda}(n)), \]

\[\tilde{\gamma}((\langle m, n \rangle_{L_X}) = (\hat{\lambda}(m), \hat{\lambda}(n))_{L_X}\]

for any \(m, n \in N_1\), where we regard the action \(\hat{\lambda}\) as a linear automorphism of \(N_1\) with \(\hat{\lambda}^2 = \text{id}\) on \(N_1\). We note that

\[\hat{\lambda}(x \cdot m) = \tilde{\alpha}^X(x) \cdot \hat{\lambda}(m), \quad \hat{\lambda}(m \cdot x) = \hat{\lambda}(m) \cdot \tilde{\gamma}(x)\]

for any \(m \in N_1, x \in L_X\). Since \(L_X = C_X \rtimes_{\alpha} Z_2 = C_X \rtimes_{\gamma} Z_2\) and \(N_1 = N \rtimes_{\lambda} Z_2\), in the same way as after the proof of Lemma 13 and in the proof of Lemma 19 or by the discussions of [12, Section 5], there is an automorphism \(\kappa\) of \(L_X\) satisfying the following:

\[\tilde{\gamma} \circ \kappa = \kappa \circ \tilde{\alpha}^X, \quad \kappa|_{C_X} = \text{id}_{C_X}\]

Then \(\kappa|_{A' \cap L_X}\) is an automorphism of \(A' \cap L_X\). And by [8], [9], \(A' \cap L_X \cong C^2\). Since \(e_A \in A' \cap L_X, \kappa(e_A) = e_A\) or \(1 - e_A\). If \(\kappa(e_A) = e_A\), \(\kappa = \text{id}_{L_X}\) since \(\kappa|_{C_X} = \text{id}_{C_X}\).

Hence \(\tilde{\gamma} = \tilde{\alpha}^X\). If \(\kappa(e_A) = 1 - e_A\), \(\kappa = \tilde{\alpha}^X\) since \(\kappa = \tilde{\alpha}^X\) = \text{id} on \(C_X\). Hence \(\tilde{\gamma} \circ \tilde{\alpha}^X = \tilde{\alpha}^X \circ \tilde{\alpha}^X = \text{id}_{L_X}\). Thus \(\tilde{\gamma} = (\tilde{\alpha}^X)^{-1} = \tilde{\alpha}^X\). Then, we obtain the following:

Lemma 5.1. With the above notation,

\[\bar{N}_1 \otimes_{L_X} (L_X)_{\tilde{\alpha}^X} \otimes_{L_X} N_1 \cong (L_X)_{\tilde{\alpha}^X}\]

as \(L_X - L_X\)-equivalence bimodules.

Proof. We note that \(N_1 = N \rtimes_{\lambda} Z_2\). Let \(\pi\) be the linear map from \(\bar{N}_1 \otimes_{L_X} (L_X)_{\tilde{\alpha}^X} \otimes_{L_X} N_1\) to \((L_X)_{\tilde{\alpha}^X}\) defined by

\[\pi(\bar{m} \otimes x \otimes n) = \langle x^* \cdot m, \hat{\lambda}(n) \rangle_{L_X}\]

for any \(m, n \in N_1, x \in (L_X)_{\tilde{\alpha}^X}\), where we regard \(\langle x^* \cdot m, \hat{\lambda}(n) \rangle_{L_X}\) as an element in \((L_X)_{\tilde{\alpha}^X}\). We show that \(\pi\) is an involutive \(L_X - L_X\)-equivalence bimodule isomorphism of \(\bar{N}_1 \otimes_{L_X} (L_X)_{\tilde{\alpha}^X} \otimes_{L_X} N_1\) onto \((L_X)_{\tilde{\alpha}^X}\). By routine computations, we can see that \(\pi\) is well-defined. Since \(L_X \cdot N_1 = N_1\) by Brown, Mingo and Shen
Proposition 1.7] and \((L_X)_{\otimes X}\) is full with respect to the right \(L_X\)-valued inner product, \(\pi\) is surjective. For any \(m, n, m_1, n_1 \in N_1, x, x_1 \in L_X\),

\[
\langle \pi(m \otimes x \otimes n), \pi(m_1 \otimes x_1 \otimes n_1) \rangle_{L_X} = \langle \langle x^* \cdot m, \hat{\lambda}(n) \rangle_{L_X}, \langle x_1^* \cdot m_1, \hat{\lambda}(n_1) \rangle_{L_X} \rangle_{L_X}
\]

as involutive \((L_X)^{\Delta X} \otimes_{L_X} L_X\)-valued inner products. Thus we can obtain that \(\pi\) preserves involutions \(\hat{\lambda}\). Therefore, we obtain the conclusion.

We regard \(e_A L_X\) as an \(A - L_X\)-equivalence bimodule in the usual way, where we identify \(e_A L_X e_A\) with \(A\). Also, we regard \(L_X e_A\) as an \(L_X - A\)-equivalence bimodule in the usual way. We note that \(L_X e_A \cong \tilde{e}_A L_X\) as \(L_X - A\)-equivalence bimodules by the map \(xe_A \in L_X e_A \mapsto e_A x^* \in \tilde{e}_A L_X\). In the same way as in \[7\] Section 3], we regard \(e_A L_X(1 - e_A)\) as an involutive \(A - A\)-equivalence bimodule.

Lemma 5.2. With the above notation,

\[
e_A L_X \otimes_{L_X} (L_X)_{\otimes X} \otimes_{L_X} L_X e_A \cong e_A L_X(1 - e_A) \cong X
\]
as involutive \(A - A\)-equivalence bimodules.

Proof. By \[7\] Theorem 3.11], we can see that \(e_A L_X(1 - e_A) \cong X\) as involutive \(A - A\)-equivalence bimodules. Let \(\pi\) be the linear map from \(e_A L_X \otimes_{L_X} (L_X)_{\otimes X} \otimes_{L_X} L_X e_A\) to \(e_A L_X(1 - e_A)\) defined by

\[
\pi(e_A x \otimes y \otimes z e_A) = e_A x y \tilde{\alpha}^X(z e_A) = e_A x y \hat{\lambda}(z)(1 - e_A)
\]
for any \(x, y, z \in L_X \). We note that \(\hat{\alpha}^X(e_A) = 1 - e_A \) by [7] Remark 2.7. Clearly \(\pi \) is surjective. For any \(x, y, z \in L_X \),

\[
A(\pi(e_A x \otimes y \otimes z e_A), \pi(e_A x_1 \otimes y_1 \otimes z_1 e_A)) = A(e_A xy \hat{\alpha}^X(z)(1 - e_A), e_A x_1 y_1 \hat{\alpha}^X(z_1)(1 - e_A)) = e_A xy \hat{\alpha}^X(z)(1 - e_A) \hat{\alpha}^X(z_1^* y_1^* x_1^* e_A).
\]

On the other hand,

\[
A(e_A x \otimes y \otimes z e_A, e_A x_1 \otimes y_1 \otimes z_1 e_A) = A(e_A x \cdot L_X (y \otimes z e_A, y_1 \otimes z_1 e_A), e_A x_1) = [e_A x \cdot L_X (y \otimes z e_A, y_1 \otimes z_1 e_A)] x_1^* e_A = e_A x \cdot L_X (y \otimes z A z_1^*, y_1) x_1^* e_A = e_A x \cdot L_X (y \hat{\alpha}^X(z A z_1^*), y_1) x_1^* e_A = e_A xy \hat{\alpha}^X(z A z_1^*) y_1^* x_1^* e_A = e_A xy \hat{\alpha}^X(z)(1 - e_A) \hat{\alpha}^X(z_1^*) y_1^* x_1^* e_A.
\]

Hence \(\pi \) preserves the left \(A \)-valued inner products. Similarly, we can see that \(\pi \) preserves the right \(A \)-valued inner products. Thus we can obtain that \(\pi \) is an \(A - A \) equivalence bimodule isomorphism by the remark after [3] Definition 1.1.18.

Furthermore,

\[
\pi((e_A x \otimes y \otimes z e_A)^2) = (e_A xy \hat{\alpha}^X(z)(1 - e_A))^2 = \hat{\alpha}^X(1 - e_A) z^* \hat{\alpha}^X(y^* x^*) (1 - e_A) = e_A z^* \hat{\alpha}^X(y^* x^*)(1 - e_A).
\]

On the other hand,

\[
\pi((e_A x \otimes y \otimes z e_A)^2) = \pi(e_A z^* \hat{\alpha}^X(y^*) \otimes x^* e_A) = e_A z^* \hat{\alpha}^X(y^* x^*)(1 - e_A).
\]

Hence \(\pi \) preserves the involutions \(\hat{\cdot} \). Therefore, we obtain the conclusion. \(\square \)

Lemma 5.3. With the above notation, \(e_A L_X \otimes_{L_X} C_X \cong A \) as \(A - A \) equivalence bimodules, where \(C_X \) is regarded as an \(L_X - A \) equivalence bimodule in the usual way and \(A \) is regarded as the trivial \(A - A \) equivalence bimodule.

Proof. Let \(\pi \) be the linear map from \(e_A L_X \otimes_{L_X} C_X \) to \(A \) defined by

\[
\pi(e_A e_A e_A b \otimes c) = e_A e_A e_A b \cdot c = E^A(a) e_A b \cdot c = E^A(a) E^A(b c)
\]

for any \(a, b, c \in C_X \). Clearly \(\pi \) is surjective. For any \(a, b, c, a_1, b_1, c_1 \in C_X \),

\[
A(\pi(e_A e_A e_A b \otimes c), \pi(e_A e_A e_A b_1 \otimes c_1)) = A(E^A(a) E^A(b), E^A(a_1) E^A(b_1 c_1)) = E^A(a) E^A(b) E^A(c_1 b_1^*) E^A(a_1^*).
\]

On the other hand,

\[
A(e_A e_A e_A b \otimes c, e_A e_A e_A b_1 \otimes c_1) = A(e_A e_A e_A b \cdot L_X (c, c_1), e_A a_1 e_A b_1) = A(e_A e_A e_A b \cdot c e_A c_1, e_A a_1 e_A b_1) = A(e_A E^A(a) E^A(b) c_1^* E^A(a_1) b_1) = E^A(a) E^A(b) E^A(c_1 b_1^*) E^A(a_1^*) e_A.
\]
Since we identify \(A \) with \(Ae_A \) by the map \(a \in A \mapsto ae_A \in Ae_A \), \(\pi \) preserves the left \(A \)-valued inner products. Similarly, we can see that \(\pi \) preserves the right \(A \)-valued inner products. Thus by the remark after [3, Definition 1.1.18], we obtain the conclusion. \(\Box \)

Proposition 5.4. For any \((M, N) \in \text{Equi}(A, C_X)\),
\[
X \cong \tilde{M} \otimes_A X \otimes_A M
\]
as involutive \(A - A \)-equivalence bimodules.

Proof. By Lemmas 5.2, 5.1,
\[
X \cong e_A L_X \otimes_{L_X} (L_X)^* \otimes_{L_X} L_X e_A
\]
\[
\cong e_A L_X \otimes_{L_X} \overline{N}_1 \otimes_{L_X} (L_X)^* \otimes_{L_X} N_1 \otimes_{L_X} L_X e_A
\]
\[
\cong e_A L_X \otimes_{L_X} \overline{N}_1 \otimes_{L_X} L_X e_A \otimes_A X \otimes_A e_A L_X \otimes_{L_X} N_1 \otimes_{L_X} L_X e_A.
\]
as involutive \(A - A \)-equivalence bimodules. Since \(N_1 = C_X \otimes_A M \otimes_A \overline{C_X} \),
\[
e_A L_X \otimes_{L_X} N_1 \otimes_{L_X} L_X e_A = e_A L_X \otimes_{L_X} C_X \otimes_A M \otimes_A \overline{C_X} \otimes_{L_X} L_X e_A,
\]
where \(C_X \) is regarded as an \(L_X - A \)-equivalence bimodule. Hence by Lemma 5.3,
\[
e_A L_X \otimes_{L_X} N_1 \otimes_{L_X} L_X e_A \cong e_A L_X \otimes_{L_X} C_X \otimes_A M \otimes_A e_A L_X \otimes_{L_X} C_X
\]
\[
\cong A \otimes_A M \otimes_A A \cong M
\]
as \(A - A \)-equivalence bimodules. Therefore,
\[
X \cong [e_A L_X \otimes_{L_X} N_1 \otimes_{L_X} L_X e_A] \otimes_A X \otimes_A [e_A L_X \otimes_{L_X} N_1 \otimes_{L_X} L_X e_A]
\]
\[
\cong \tilde{M} \otimes_A X \otimes_A M
\]
as involutive \(A - A \)-equivalence bimodules. \(\Box \)

Theorem 5.5. Let \(A \) be a unital \(C^* \)-algebra and \(X \) an involutive \(A - A \)-equivalence bimodule. Let \(A \subset C_X \) be the unital inclusion of unital \(C^* \)-algebras induced by \(X \). We suppose that \(A' \cap C_X = C_1 \). Let \(f_A \) be the homomorphism of \(\text{Pic}(A, C_X) \) to \(\text{Pic}(A) \) defined by
\[
f_A([M, N]) = [M]
\]
for any \((M, N) \in \text{Equi}(A, C_X)\). Then the image of \(f_A \) is:
\[
\text{Im} f_A = \{ [M] \in \text{Pic}(A) \mid M \text{ is an } A - A \text{-equivalence bimodule with } X \cong \tilde{M} \otimes_A X \otimes_A M \text{ as involutive } A - A \text{-equivalence bimodules} \}.
\]

Proof. This is immediate by Proposition 5.4 and the proof of [6, Lemma 5.11]. \(\Box \)

6. A HOMOMORPHISM

In this section, we shall construct a homomorphism \(g \) of \(\text{Im} f_A \) to \(\text{Pic}(A, C_X) \) with \(f_A \circ g = \text{id} \) on \(\text{Im} f_A \). Let \(M \) be an \(A - A \)-equivalence bimodule with \(X \cong \tilde{M} \otimes_A X \otimes_A M \) as involutive \(A - A \)-equivalence bimodules. Let \(\Phi_M \) be an involutive \(A - A \)-equivalence bimodule isomorphism of \(\tilde{M} \otimes_A X \otimes_A M \) onto \(X \) and let \(\tilde{\Phi}_M \) be the involutive \(A - A \)-equivalence bimodule isomorphism of \(\tilde{M} \otimes_A \tilde{X} \otimes_A M \) onto \(\tilde{X} \) induced by \(\Phi_M \) (See [3, Section 5]). Let \(\Psi_M \) and \(\tilde{\Psi}_M \) be the \(A - A \)-equivalence bimodule isomorphism of \(X \otimes_A M \) onto \(M \otimes_A X \) and the \(A - A \)-equivalence bimodule
isomorphism of $\breve{X} \otimes_A M$ onto $M \otimes_A \breve{X}$ indexed by Φ_M and $\breve{\Phi}_M$, which are defined in [6 Section 5], respectively. Let C_M be the linear span of the set

$$C_M^X = \{ \begin{bmatrix} m_1 \otimes x & m_2 \otimes x \end{bmatrix} \mid m_1, m_2 \in M, x \in X \}. $$

Also, let C_M^X be the linear span of the set

$$X \otimes C_M = \{ \begin{bmatrix} m_1 \otimes x & m_2 \otimes x \end{bmatrix} \mid m_1, m_2 \in M, x \in X \}. $$

As mentioned in [6 Section 5], we identify C_M with C_M^X by Ψ_M and $\breve{\Psi}_M$. In the same way as in [6 Section 5], we define the left C_X-action and the right C_X-action on C_M as follows:

$$\begin{bmatrix} a & x \\ \overline{x} & a \end{bmatrix} \cdot \begin{bmatrix} m_1 & m_2 & y \\ m_2 \otimes \overline{y} & m_1 \end{bmatrix} = \begin{bmatrix} a \otimes m_1 + x \otimes m_2 \otimes \overline{y} & a \otimes m_2 \otimes y + x \otimes m_1 \\ \overline{x} \otimes m_1 + a \otimes m_2 \otimes \overline{y} & \overline{x} \otimes m_2 \otimes y + a \otimes m_1 \end{bmatrix},$$

$$\begin{bmatrix} m_1 & m_2 & y \\ m_2 \otimes \overline{y} & m_1 \end{bmatrix} \cdot \begin{bmatrix} a & x \\ \overline{x} & a \end{bmatrix} = \begin{bmatrix} m_1 \otimes a + m_2 \otimes y \otimes \overline{x} & m_1 \otimes x + m_2 \otimes y \otimes a \\ m_2 \otimes \overline{y} \otimes a + m_1 \otimes \overline{x} & m_2 \otimes \overline{y} \otimes x + m_1 \otimes a \end{bmatrix},$$

for any $a \in A$, $m_1, m_2 \in M$, $x, y \in X$. But we identify $A \otimes_A M$, $M \otimes_A A$ and $X \otimes_A \breve{X}$, $\breve{X} \otimes_A X$ with M and A by the isomorphisms defined by

$$a \otimes m \in A \otimes_A M \mapsto a \cdot m \in M,$$

$$m \otimes a \in M \otimes_A A \mapsto m \cdot a \in M,$$

$$x \otimes \overline{y} \in X \otimes_A \breve{X} \mapsto (x, y) \in A,$$

$$\overline{x} \otimes y \in \breve{X} \otimes_A X \mapsto (x, y)_A \in A,$$

respectively and we identify $X \otimes_A M$ and $\breve{X} \otimes_A M$ with $M \otimes_A X$ and $M \otimes_A \breve{X}$ by Ψ_M and $\breve{\Psi}_M$, respectively. By the above identifications, the right hand-sides of the above equations are in C_M. Before we define a left C_X-valued inner product and a right C_X-valued inner product on C_M, we define a conjugate linear map on C_M,

$$\begin{bmatrix} m_1 & m_2 \otimes x \\ m_2 \otimes \overline{x} & m_1 \end{bmatrix} \in C_m \mapsto \begin{bmatrix} m_1 & m_2 \otimes x \\ m_2 \otimes \overline{x} & m_1 \end{bmatrix}^\dagger \in C_m$$

by

$$\begin{bmatrix} m_1 & m_2 \otimes x \\ m_2 \otimes \overline{x} & m_1 \end{bmatrix} \mapsto \begin{bmatrix} \overline{m}_1 & x \otimes \overline{m}_2 \\ \overline{x} \otimes m_2 & m_1 \end{bmatrix}.$$
for any \(m_1, m_2 \in M, x \in X\). We define the left \(C_X\)-valued inner product and the right \(C_X\)-valued inner product as follows:

\[
C_X \left\{ \begin{bmatrix} m_1 & m_2 \otimes x \\ m_2 \otimes x & m_1 \end{bmatrix}, \begin{bmatrix} n_1 & n_2 \otimes y \\ n_2 \otimes y & n_1 \end{bmatrix} \right\} = \begin{bmatrix} m_1 & m_2 \otimes x \\ m_2 \otimes x & m_1 \end{bmatrix} \begin{bmatrix} n_1 & n_2 \otimes y \\ n_2 \otimes y & n_1 \end{bmatrix} = \begin{bmatrix} m_1 \otimes \tilde{n}_1 + m_2 \otimes x \otimes \tilde{y} \otimes \tilde{n}_2 + m_1 \otimes y \otimes \tilde{n}_2 + m_2 \otimes x \otimes \tilde{n}_1, m_1 \otimes y \otimes \tilde{n}_2 + m_2 \otimes x \otimes \tilde{n}_1 \\ m_2 \otimes \tilde{n}_1 + m_1 \otimes y \otimes \tilde{n}_2 + m_2 \otimes x \otimes \tilde{n}_1, m_2 \otimes \tilde{n}_1 + m_1 \otimes y \otimes \tilde{n}_2 + m_2 \otimes x \otimes \tilde{n}_1 \end{bmatrix}.
\]

for any \(m_1, m_2, n_1, n_2 \in M, x, y \in X\), where we regard the tensor product as a product on \(C_M\) in the formal manner. We denote it by \(\cdot\). Also, we identify \(A \otimes_A M, M \otimes_A A \) and \(X \otimes_A \tilde{X}, \tilde{X} \otimes_A X\) with \(M\) and \(A\) by the same isomorphisms as above and we identify \(X \otimes_A M\) and \(\tilde{X} \otimes_A M\) with \(M \otimes_A X\) and \(M \otimes_A \tilde{X}\) by \(\Psi_M\) and \(\Psi_{\tilde{M}}\). By the above identifications, we can define the left \(C_X\)-valued and the right \(C_X\)-valued inner products. In the same way as above, we can define the left \(C_X\)-action and the right \(C_X\)-valued action on \(C_M\) and the left \(C_X\)-valued inner product and the right \(C_X\)-valued inner product on \(C_M\). Since we identify \(C_M\) with \(C_M^1, C_M^2, \ldots\) by \(\Psi_M\) and \(\Psi_{\tilde{M}}\), we can see that \(C_M\) and \(C_M^i\) are \(C_X\)-\(C_X\)-equivalence bimodules by \(6\) Lemma 5.10 and that each of them agrees with the other by routine computations (See \(6\) Section 5). We identify \(C_M\) with \(C_M^1\) as \(C_X\)-\(C_X\)-equivalence bimodules by the isomorphisms \(\Psi_M\) and \(\Psi_{\tilde{M}}\) and we denote them by the same symbol \(C_M\). Furthermore, by \(6\) Lemma 5.11, \((M, C_M) \in \text{Equi}(A, C_C)\).

Let \(\Phi_M\) be another involutive \(A\)-\(A\)-equivalence bimodule isomorphism of \(\tilde{M} \otimes_A X \otimes_A M\) onto \(X\) and let \(\Phi_{M'}\) be the involutive \(A\)-\(A\)-equivalence bimodule isomorphism of \(\tilde{M} \otimes_A \tilde{X} \otimes_A M\) onto \(\tilde{X}\) induced by \(\Phi_M\). Let \(\Psi_M\) be the \(A\)-\(A\)-equivalence bimodule isomorphism of \(X \otimes_A M\) onto \(M \otimes_A X\) induced by \(\Phi_M'\) and let \(\Psi_M'\) be the \(A\)-\(A\)-equivalence bimodule isomorphism of \(\tilde{X} \otimes_A M\) onto \(M \otimes_A \tilde{X}\) induced by \(\Phi_{M'}\). Then we can identify \(C_M\) with \(C_M^1, C_M^2, \ldots\) by the isomorphisms \(\Psi_M'\) and \(\Psi_{\tilde{M}}\). Hence we can obtain an element in \(\text{Equi}(M, C_X)\) by the above identification. We denote the element by \((M, C_M')\).

Lemma 6.1. With the above notation, \([M, C_M] = [M, C_M']\) in \(\text{Pic}(A, C_X)\).

Proof. We can construct a \(C_X\)-\(C_X\)-equivalence bimodule isomorphism using the \(A\)-\(A\)-equivalence isomorphisms \(\Psi_M, \Psi_{\tilde{M}}, \Psi_M', \Psi_{\tilde{M}}\). Hence \(C_M\) and \(C_M'\) are isomorphic as \(C_X\)-\(C_X\)-equivalence bimodules by the \(C_X\)-\(C_X\)-equivalence bimodule isomorphism, which leaves the diagonal elements in \(C_M\) and \(C_M'\) invariant. Thus \([M, C_M] = [M, C_M']\) in \(\text{Pic}(A, C_X)\). \(\square\)

Let \(M_1\) be another \(A\)-\(A\)-equivalence bimodule with \(\tilde{M}_1 \otimes_A X \otimes_A M_1 \cong X\) as involutive \(A\)-\(A\)-equivalence bimodules. Let \([M_1, C_{M_1}]\) be the element in \(\text{Pic}(A, C_X)\) induced by \(M_1\) in the above.

Lemma 6.2. With the above notation, we suppose that \(M\) and \(M_1\) are isomorphic as \(A\)-\(A\)-equivalence bimodules. Then \([M, C_M] = [M_1, C_{M_1}]\) in \(\text{Pic}(A, C_X)\).
Proof. Since $M \cong M_1$ as $A - A$-equivalence bimodules, there is an $A - A$-equivalence bimodule isomorphism π of M_1 onto M. Let Φ_M be an involutive $A - A$-equivalence bimodules isomorphism of $\tilde{M} \otimes_A X \otimes_A M$ onto X. Then $\Phi_M \circ (\tilde{\pi} \otimes \text{id}_X \otimes \pi)$ is an involutive $A - A$-equivalence bimodule isomorphism of $\tilde{M}_1 \otimes_A X \otimes_A M_1$ onto X, where $\tilde{\pi}$ is the $A - A$-equivalence bimodule isomorphism of \tilde{M}_1 onto M defined by

$$\tilde{\pi}(\tilde{m}) = \pi(m)$$

for any $m \in M$. Let $[M, C_M]$ and $[M_1, C_{M_1}]$ be the element in $\text{Pic}(A, C_X)$ induced by Φ_M and $\Phi_M \circ (\tilde{\pi} \otimes \text{id}_X \otimes \pi)$. Let (M, C_M) be the element in $\text{Equi}(A, C_X)$ obtained by using the isomorphism Φ_M and let (M_1, C_{M_1}) be the element in $\text{Equi}(A, C_X)$ obtained by using the isomorphism $\Phi_M \circ (\tilde{\pi} \otimes \text{id} \otimes \pi)$. Then by the definitions of (M, C_M), (M_1, C_{M_1}) and Lemma 6.1, we obtain that $[M, C_M] = [M_1, C_{M_1}]$ in $\text{Pic}(A, C_X)$.

Let g be the map from $\text{Im} f_A$ to $\text{Pic}(A, C_X)$ defined by

$$g([M]) = [M, C_M]$$

for any $[M] \in \text{Im} f_A$. By Lemmas 6.1 and 6.2, g is well-defined.

Let M and K be $A - A$-equivalence bimodules with $\tilde{M} \otimes_A X \otimes_A M \cong X$ and $\tilde{K} \otimes_A X \otimes_A K \cong X$ as $A - A$-equivalence bimodules, respectively. Let (M, C_M) and (K, C_K) be the elements in $\text{Equi}(A, C_X)$ induced by M and K, respectively. Also, let $(M \otimes_A K, C_{M \otimes_A K})$ be the element in $\text{Equi}(A, C_X)$ induced by $M \otimes A K$.

Lemma 6.3. With the above notation, $C_M \otimes_{C_X} C_K \cong C_{M \otimes_A K}$ as $C_X - C_X$-equivalence bimodules.

Proof. Let π be the linear map from $C_M \otimes_{C_X} C_K$ onto $C_{M \otimes_A K}$ defined by

$$\pi\left(\begin{bmatrix} m_1 & m_2 \otimes x \\ m_2 \otimes x \otimes 2 & m_1 \end{bmatrix} \otimes \begin{bmatrix} k_1 & y \otimes k_2 \\ \tilde{y} \otimes k_2 & k_1 \end{bmatrix}\right) = \begin{bmatrix} m_1 & m_2 \otimes x \\ m_2 \otimes x \otimes 2 & m_1 \end{bmatrix} \cdot \begin{bmatrix} k_1 & y \otimes k_2 \\ \tilde{y} \otimes k_2 & k_1 \end{bmatrix}$$

for any $\left[\begin{bmatrix} m_1 & m_2 \otimes x \\ m_2 \otimes x \otimes 2 & m_1 \end{bmatrix}\right] \in C_M^X$ and $\left[\begin{bmatrix} k_1 & y \otimes k_2 \\ \tilde{y} \otimes k_2 & k_1 \end{bmatrix}\right] \in X C_K$, where we regard the tensor product as a product on C_M in the formal manner. But we identify $A \otimes_A K$ and $X \otimes_A \tilde{X}$ with K and A by the isomorphisms defined by

$$a \otimes k \in A \otimes_A K \mapsto a \cdot k \in K,$$

$$x \otimes \tilde{y} \in X \otimes_A \tilde{X} \mapsto A(x, y) \in A,$$

$$\tilde{x} \otimes y \in \tilde{X} \otimes_A X \mapsto (x, y)_X \in A,$$

respectively. Furthermore, we identify $X \otimes_A K$ and $X \otimes_A \tilde{K}$ with $K \otimes_A X$ and $K \otimes_A \tilde{X}$ as $A - A$-equivalence bimodules by Ψ_K and $\Psi_{\tilde{K}}$, which are defined as above, respectively. Thus,

$$\pi\left(\begin{bmatrix} m_1 & m_2 \otimes x \\ m_2 \otimes x \otimes 2 & m_1 \end{bmatrix} \otimes \begin{bmatrix} k_1 & y \otimes k_2 \\ \tilde{y} \otimes k_2 & k_1 \end{bmatrix}\right) = \begin{bmatrix} m_1 \otimes k_1 + m_2 \otimes A(x, y) \cdot k_2 \\ m_2 \otimes A(x, y) \cdot k_1 \end{bmatrix} \cdot \begin{bmatrix} k_1 & y \otimes k_2 \\ \tilde{y} \otimes k_2 & k_1 \end{bmatrix}$$

for any $m_1 \otimes k_1 + m_2 \otimes A(x, y) \cdot k_2$ and $m_2 \otimes A(x, y) \cdot k_1$. Thus, we have $C_M \otimes_{C_X} C_K \cong C_{M \otimes_A K}$ as $C_X - C_X$-equivalence bimodules.
Then by routine computations,
\[A(x, y^2) = (x^2, y)_A, \]
\[\Psi_K(\tilde{x}^2 \otimes k_1) = \sum_{i=1}^{n} u_i \otimes \Phi_K(\tilde{u}_i \otimes x \otimes k_1)^2, \]
\[\Psi_K(x \otimes k_1) = \sum_{i=1}^{n} u_i \otimes \Phi_K(\tilde{u}_i \otimes x \otimes k_1), \]
\[\tilde{\Psi}_K(\tilde{y}^2 \otimes k_2) = \sum_{i=1}^{n} u_i \otimes \Phi_K(\tilde{u}_i \otimes y \otimes k_2)^3, \]
\[\Psi_K(y \otimes k_2) = \sum_{i=1}^{n} u_i \otimes \Phi_K(\tilde{u}_i \otimes y \otimes k_2), \]
where \(\{u_i\}_{i=1}^{n} \) is a finite subset of \(K \) with \(\sum_{i=1}^{n} A(u_i, u_i) = 1 \) and \(\Phi_K \) and \(\tilde{\Psi}_K \) are as defined in the above. Hence \(\pi \) is a linear map from \(C_M \otimes_{C_X} C_K \) to \(C_M \otimes_{A K} \).

Next, we show that \(\pi \) is surjective. We take elements
\[\begin{bmatrix} m_1 & m_2 \otimes x \\ m_2 \otimes \tilde{x}^2 & m_1 \end{bmatrix} \in C_M, \quad \begin{bmatrix} k_1 & 0 \\ 0 & k_1 \end{bmatrix} \in \tilde{x} C_K. \]
Then
\[\pi\left(\begin{bmatrix} m_1 & m_2 \otimes x \\ m_2 \otimes \tilde{x}^2 & m_1 \end{bmatrix} \otimes \begin{bmatrix} k_1 & 0 \\ 0 & k_1 \end{bmatrix} \right) = \begin{bmatrix} m_1 \otimes k_1 & m_2 \otimes \Psi_K(x \otimes k_1) \\ m_2 \otimes \tilde{\Psi}_K(\tilde{x}^2 \otimes k_1) & m_1 \otimes k_1 \end{bmatrix}. \]
We also take elements
\[\begin{bmatrix} 0 & m_2 \otimes y \\ m_2 \otimes \tilde{y}^2 & 0 \end{bmatrix} \in C_M, \quad \begin{bmatrix} k_2 & 0 \\ 0 & k_2 \end{bmatrix} \in \tilde{y} C_K. \]
Then
\[\pi\left(\begin{bmatrix} 0 & m_2 \otimes y \\ m_2 \otimes \tilde{y}^2 & 0 \end{bmatrix} \otimes \begin{bmatrix} k_2 & 0 \\ 0 & k_2 \end{bmatrix} \right) = \begin{bmatrix} 0 & m_2 \otimes \Psi_K(y \otimes k_2) \\ m_2 \otimes \tilde{\Psi}_K(\tilde{y}^2 \otimes k_2) & 0 \end{bmatrix}. \]
Thus
\[\pi\left(\begin{bmatrix} m_1 & m_2 \otimes x \\ m_2 \otimes \tilde{x}^2 & m_1 \end{bmatrix} \otimes \begin{bmatrix} k_1 & 0 \\ 0 & k_1 \end{bmatrix} + \begin{bmatrix} 0 & m_2 \otimes y \\ m_2 \otimes \tilde{y}^2 & 0 \end{bmatrix} \otimes \begin{bmatrix} k_2 & 0 \\ 0 & k_2 \end{bmatrix} \right) = \begin{bmatrix} m_1 \otimes k_1 & m_2 \otimes \Psi_K(x \otimes k_1 + y \otimes k_2) \\ m_2 \otimes \tilde{\Psi}_K(\tilde{x}^2 \otimes k_1 + \tilde{y}^2 \otimes k_2) & m_1 \otimes k_1 \end{bmatrix}. \]

Since \(\Psi_K \) and \(\tilde{\Psi}_K \) are isomorphisms of \(X \otimes_A K \) and \(\tilde{X} \otimes_A K \) onto \(K \otimes_A X \) and \(K \otimes_A \tilde{X} \), respectively, we can see that \(\pi \) is surjective. Furthermore, by the definitions of \(\pi \) and the left and the right \(A \)-valued inner products on \(C_M, C_K \) and \(C_M \otimes_{A K} \), we can easily see that \(\pi \) preserves the left and the right \(A \)-valued inner products. Indeed, let \(M, M_1 \subseteq C_M \) and \(K, K_1 \subseteq C_K \). Then
\[c^X_M(\pi(M \otimes K), \pi(M_1 \otimes K_1)) = c^X_M((M \cdot K), (M_1 \cdot K_1)) = M \cdot K \cdot (M_1 \cdot K_1) = M \cdot K \cdot \tilde{K}_1 \cdot M_1. \]
Also,
\[c_X(M \otimes K, M_1 \otimes K_1) = c_X(M \cdot c_X(K, K_1), M_1) = c_X(M \cdot K \cdot K_1, M_1) = M \cdot K \cdot K_1 \cdot M_1. \]
Hence \(\pi \) preserves the left \(C_X \)-valued inner products. Similarly, we can see that \(\pi \) preserves the right \(C_X \)-valued inner products. Therefore, \(\pi \) is a \(C_X - C_X \)-equivariance bimodule isomorphism of \(C_M \otimes C_X C_K \) onto \(C_{M \otimes A K} \) by the remark after [3, Definition 1.1.18].

Proposition 6.4. With the above notation, \(g \) is a homomorphism of \(\text{Im} f_A \) to \(\text{Pic}(A, C_X) \) with \(f_A \circ g = \text{id} \) on \(\text{Im} f_A \).

Proof. This is immediate by Lemma [3,6] and the definition of \(g \).

We give the main result of this paper.

Theorem 6.5. Let \(A \) be a unital \(C^\ast \)-algebra and \(X \) an involutive \(A - A \)-equivalence bimodule. Let \(A \subset C_X \) be the unital inclusion of unital \(C^\ast \)-algebras induced by \(X \). We suppose that \(\mathcal{N} \cap C_X = \mathcal{C} \). Let \(f_A \) be the homomorphism of \(\text{Pic}(A, C_X) \) to \(\text{Pic}(A) \) defined by \(f_A([M, N]) = [M] \) for any \((M, N) \in \text{Equ}(A, C_X) \). Then \(\text{Pic}(A, C_X) \) is isomorphic to a semi-direct product group of \(T \) by the group
\[\{ [M] \in \text{Pic}(A) \mid M \text{ is an } A - A \text{-equivalence bimodule with } X \cong \tilde{M} \otimes_A X \otimes_A M \text{ as involutive } A - A \text{-equivalence bimodules} \}. \]

Proof. This is immediate by Proposition [3,6], Theorem [5,5] and Proposition [6,4].

References

[1] L. G. Brown, P. Green and M. A. Rieffel, Stable isomorphism and strong Morita equivalence of \(C^\ast \)-algebras, Pacific J. Math., 71 (1977), 349–363.
[2] L. G. Brown, J. Mingo and N-T. Shen, Quasi-multipliers and embeddings of Hilbert \(C^\ast \)-bimodules, Can. J. Math., 46 (1994), 1150–1174.
[3] K. K. Jensen and K. Thomsen, Elements of KK-theory, Birkhäuser, 1991.
[4] K. Kodaka, Equivariant Picard groups of \(C^\ast \)-algebras with finite dimensional \(C^\ast \)-Hopf algebra coactions, Rocky Mountain J. Math., 47 (2017), 1565–1615.
[5] K. Kodaka, The Picard groups for unital inclusions of unital \(C^\ast \)-algebras, Acta Sci. Math. (Szeged), 86 (2020), 183–207.
[6] K. Kodaka, Equivalence bundles over a finite group and the strong Morita equivalence for unital inclusions of unital \(C^\ast \)-algebras, preprint, [arXiv:1905.10001].
[7] K. Kodaka and T. Teruya, Involutive equivalence bimodules and inclusion of \(C^\ast \)-algebras with Watatani index 2, J. Operator Theory, 57 (2007), 3–18.
[8] K. Kodaka and T. Teruya, A characterization of saturated \(C^\ast \)-algebraic bundles over finite groups, J. Aust. Math. Soc., 88 (2010), 363–383.
[9] K. Kodaka and T. Teruya, Inclusions of unital \(C^\ast \)-algebras of index-finite type with depth 2 induced by saturated actions of finite dimensional \(C^\ast \)-Hopf algebras, Math. Scand., 104 (2009), 221–248.
[10] K. Kodaka and T. Teruya, The strong Morita equivalence for coactions of a finite dimensional \(C^\ast \)-Hopf algebra on unital \(C^\ast \)-algebras, Studia Math., 228 (2015), 259–294.
[11] K. Kodaka and T. Teruya, The strong Morita equivalence for inclusions of \(C^\ast \)-algebras and conditional expectations for equivalence bimodules, J. Aust. Math. Soc., 105 (2018), 103–144.
[12] K. Kodaka and T. Teruya, Coactions of a finite dimensional \(C^\ast \)-Hopf algebra on unital \(C^\ast \)-algebras, unital inclusions of unital \(C^\ast \)-algebras and the strong Morita equivalence, preprint, [arXiv:1706.09530].
[13] M. A. Rieffel, \(C^\ast \)-algebras associated with irrational rotations, Pacific J. Math., 93 (1981), 415–429.
[14] M. E. Sweedler, Hopf algebras, Benjamin, New York, 1969.
[15] W. Szymański, Finite index subfactors and Hopf algebra crossed products, Proc. Amer. Math. Soc., 120 (1994), 519–528.
[16] W. Szymański and C. Peligrad, *Saturated actions of finite dimensional Hopf \(*\)-algebras on \(C^\ast\)-algebras*, Math. Scand., 75 (1994), 217–239.

[17] Y. Watatani, *Index for \(C^\ast\)-subalgebras*, Mem. Amer. Math. Soc., 424, Amer. Math. Soc., 1990.

DEPARTMENT OF MATHEMATICAL SCIENCES, FACULTY OF SCIENCE, RYUKYU UNIVERSITY, NISHIHARA-CHO, OKINAWA, 903-0213, JAPAN

E-mail address: kodaka@math.u-ryukyu.ac.jp