1. INTRODUCTION

A wide variety of nonradial oscillations have been previously investigated for neutron stars (NSs) with the majority of these studies focusing on surface g-modes (oscillations whose restoring force is gravity; McDermott, Van Horn & Hansen). The interface mode associated with this boundary has subsequently been neglected in studies of stellar nonradial oscillations. We revisit this mode, investigating its properties both analytically and numerically for a simple NS envelope model. We find that it acts like a shallow surface ocean wave, but with a large radial displacement at the ocean/crust boundary due to flexing of the crust with shear modulus $\mu \ll P$, the pressure. This displacement lowers the mode’s frequency by a factor of $\sim (\mu/P)^{1/2} \sim 0.1$ in comparison to a shallow surface wave frequency on a hard surface. The interface mode may be excited on accreting or bursting NSs and future work on nonradial oscillations should consider this mode. Our work also implies an additional mode on massive and/or cold white dwarfs with crystalline cores, which may have a frequency between the f-mode and g-modes, an otherwise empty part of the frequency domain.

Subject headings: stars: neutron — stars: oscillations — white dwarfs

NEUTRON STAR CRUSTAL INTERFACE WAVES

ANTHONY L. PIRO
Department of Physics, Broida Hall, University of California
Santa Barbara, CA 93106; piro@physics.ucsb.edu

AND

LARS BILDSTEN
Kavli Institute for Theoretical Physics and Department of Physics, Kohn Hall, University of California
Santa Barbara, CA 93106; bildsten@kip.ucsb.edu

ABSTRACT

The eigenfrequencies of nonradial oscillations are a powerful probe of a star’s interior structure. This is especially true when there exist discontinuities such as at the neutron star (NS) ocean/crust boundary, as first noted by McDermott, Van Horn & Hansen. The interface mode associated with this boundary has subsequently been neglected in studies of stellar nonradial oscillations. We revisit this mode, investigating its properties both analytically and numerically for a simple NS envelope model. We find that it acts like a shallow surface ocean wave, but with a large radial displacement at the ocean/crust boundary due to flexing of the crust with shear modulus $\mu \ll P$, the pressure. This displacement lowers the mode’s frequency by a factor of $\sim (\mu/P)^{1/2} \sim 0.1$ in comparison to a shallow surface wave frequency on a hard surface. The interface mode may be excited on accreting or bursting NSs and future work on nonradial oscillations should consider this mode. Our work also implies an additional mode on massive and/or cold white dwarfs with crystalline cores, which may have a frequency between the f-mode and g-modes, an otherwise empty part of the frequency domain.

Subject headings: stars: neutron — stars: oscillations — white dwarfs
We derive the adiabatic perturbation equations for a plane parallel layer in hydrostatic balance with a shear stress in §2. These are used in §3 to analytically estimate the interface mode’s radial eigenfunction and frequency. We follow this with a numerical study in §4 that confirms our analytic results and also provides more detail about the eigenfunctions. We conclude in §5 with a discussion of possible uses for the in-

2. ADIABATIC PERTURBATION EQUATIONS

Since the pressure scale height in the NS ocean, \(h = P/(\rho g) \approx (2 - 10) \times 10^6 \) cm, is always much less the NS radius, \(R \approx 10^6 \) cm, we approximate the surface as having constant gravitational ac-

The interface mode’s period is set by physics at the ocean/crust boundary, and is insensitive to the outer boundary condition. At these depths the thermal timescale is longer than the mode period (since \(t_\text{th} \approx c_p y T/F \) and \(y \) is large; where \(c_p \) is the specific heat capacity and \(F \) is the flux) so that the perturbations are adiabatic. The governing equations of the envelope are conservation of mass, \(\partial \rho/\partial t + \nabla \cdot (\rho \nu) = 0 \), and momentum,

\[
\rho \left(\frac{\partial}{\partial t} + v_i \frac{\partial}{\partial x_j} \right) \nu_i = \frac{\partial}{\partial x_j} \sigma_{ij} - \rho g z, \tag{1}
\]

where \(\sigma_{ij} \) is the stress tensor, and \(\mathbf{z} \) is a radial unit vector (repeated indices imply the Einstein summation convention unless noted otherwise). We neglect the NS spin so that we can focus on the effects of the crust. Rotation can be simply included using the “traditional approximation” (e.g. Bildsten, Ushomirsky & Cutler 1996).

We make Eulerian perturbations of the conservation equations, substituting for the dependent variables \(Q \rightarrow Q_0 + \delta Q \), where \(Q_0 \) denotes the static background (this subscript is dropped in subsequent expressions). Perturbations are assumed to have the form \(\delta Q = \delta Q(z) \exp(ik_x x + \omega t) \), where \(k_x^2 = l(l + 1)/R^2 \) is the transverse wavenumber and \(\omega \) is the mode frequency. These Eulerian perturbations are related to Lagrangian perturbations by \(\Delta Q = \delta Q + \xi \cdot \nabla Q \). Since the background model has no fluid motion we substitute \(\nu \rightarrow \delta \nu = d\xi/dt = i\omega \xi \), where \(\xi \) is the local Lagrangian displacement. We use the Cowling approximation and neglect perturbations of the gravitational potential (Cowling 1941), an excellent approximation in the thin outer layers of the NS. Keeping terms of linear order, we find

\[
\delta \rho + \nabla \cdot (\rho \xi) = 0, \tag{2}
\]

for continuity.

In making linear perturbations of equation (1) we include the effects of a finite shear modulus (such as in the NS crust). Relative displacements then introduce a shear component to the Lagrangian stress tensor given by (Landau & Lifshitz 1970).

\[
\Delta \sigma_{ij}^\text{L} = \mu \left(\frac{\partial \xi_i}{\partial x_j} + \frac{\partial \xi_j}{\partial x_i} - \frac{2}{3} (\nabla \cdot \xi) \delta_{ij} \right), \tag{3}
\]

where \(\mu \) is the crystalline shear modulus as calculated by Strohmayer et al. (1991) for a classical one-component plasma (OCP),

\[
\mu = \frac{0.1194}{1 + 0.595(173/\Gamma)^2} \frac{n_i(Ze)^2}{a}, \tag{4}
\]

where \(n_i \) is the ion number density, \(a = (3/4\pi n_i)^{1/3} \) is the average ion spacing, \(Z \) is the charge per ion, and

\[
\Gamma = \frac{(Ze)^2}{ak_B T} = \frac{127}{T_8^4/30} \left(\frac{64}{A} \right)^{1/3} \left(\frac{10^7}{\rho \text{ g cm}^{-3}} \right)^{1/3} \tag{5}
\]

is the dimensionless parameter that determines the liquid/solid transition for the OCP, where \(k_B \) is Boltzmann’s constant, \(T_8 \equiv T/10^8 \) K, and \(A \) is the number of nucleons per ion.
This transition occurs at $\Gamma \approx 173$ (Farouki & Hamaguchi 1993 and references therein, following the work of Brush, Sahlin & Teller 1966). Since the pressure in the crust is dominated by degenerate electrons we rewrite μ as

$$\frac{\mu}{P} = 1.4 \times 10^{-2} \left(\frac{Z}{30} \right)^{2/3}. \quad (6)$$

In the crust μ/P is fairly independent of temperature (except for a small dependence due to the factor of Γ in the denominator), so we typically substitute $\mu_0 \equiv \mu/P$ and assume that μ_0 is constant with depth. In the adiabatic limit, $\Delta P/P = \Delta \rho/\Gamma_1 \rho$, where $\Gamma_1 \equiv (\partial \ln P/\partial \ln \rho)_s$ is the adiabatic exponent. The Lagrangian stress tensor is

$$\Delta \sigma_{ij} = P \Gamma_1 (\nabla \cdot \xi) \delta_{ij} + \Delta \sigma^*_t,$$

and the Eulerian stress tensor is

$$\delta \sigma_{ij} = \Delta \sigma_{ij} - \rho g \xi_i \delta_{ij}, \quad (7)$$

so that the perturbed momentum balance equation is

$$- \rho \omega^2 \xi_i = \frac{\partial}{\partial x_j} \delta \sigma_{ij} - \delta \rho g \xi_i. \quad (8)$$

Equations (2) and (9) describe the nonradial oscillations.

The fluid viscosity in the ocean barely resists shear so that the Lagrangian stress tensor has only diagonal components, $\Delta \sigma_{ij} = -\Delta \rho \delta_{ij}$. Breaking equation (9) into radial and transverse components,

$$- \rho \omega^2 \xi_i = - \frac{\partial \Delta \rho}{\partial z} - g \delta \rho,$$

$$- \rho \omega^2 \xi_i = - ik \delta P,$$

Combining equations (2), (10), and (11) results in the standard nonradial oscillation equations for an inviscid fluid in hydrostatic balance and plane parallel geometry,

$$\frac{d \xi}{dz} - \frac{\xi}{\Gamma_1 h} = \left(\frac{ghk^2}{\omega^2} - \frac{1}{\Gamma_1} \right) \frac{\delta P}{P}, \quad (12)$$

$$\frac{d \delta P}{dz} - \left(1 - \frac{1}{\Gamma_1} \right) \frac{\delta P}{h} = \left(\frac{\omega^2}{g} - \frac{N^2}{g} \right) \frac{\xi}{h}, \quad (13)$$

where

$$N^2 = -g \left(\frac{d \log \rho}{dz} - \frac{1}{\Gamma_1} \frac{d \log P}{dz} \right), \quad (14)$$

is the Brunt-Väisälä frequency which measures the internal buoyancy of the envelope. Normal modes of oscillation are found by assuming $\Delta P = 0$ at the top boundary (a fluid element rising at the top feels no pressure perturbation) and then shooting for the bottom boundary condition. This top condition, though not unique, is fairly robust since little mode energy resides in the low density upper altitudes of the ocean (BC95).

When $\mu \neq 0$, expanding equation (9) in both the radial and transverse directions, and using the adiabatic condition and equation (2) to eliminate $\delta \rho$ and δP, results in

$$- \frac{d^2 \xi}{dz^2} \left(\Gamma_1 + \frac{4 \mu}{3P} \right) = \xi \left(\frac{\omega^2}{gh} - \frac{\mu k^2}{P} \right) \left(\Gamma_1 + \frac{4 \mu}{3P} \right),$$

$$+ \frac{d \xi}{dz} \left(\frac{4 \mu}{3P} \frac{d \mu}{dz} - \frac{\Gamma_1 d\Gamma_1}{dz} \right)$$

$$+ ik \frac{d \xi}{dz} \left(\frac{\mu}{3P} + \Gamma_1 \right), \quad (15)$$

and

$$- \mu \frac{d^2 \xi}{dz^2} \left(\frac{1}{P} \frac{dP}{dz} + \frac{\mu}{3P} + \Gamma_1 \right) = \xi \left(\omega^2 \left(\frac{4k^2 \mu}{3P} - \Gamma_1 k^2 \right) + \frac{1}{P} \frac{d\mu}{dz} \frac{d \xi}{dz} \right)$$

$$+ ik \frac{d \xi}{dz} \left(\frac{\mu}{3P} + \Gamma_1 \right), \quad (16)$$

the crustal mode equations derived by BC95.

The second derivatives in equations (15) and (16) imply additional boundary conditions at the ocean/crust interface. We require that ξ is continuous, so that there is no “space” between the two layers, and that $\Delta \sigma_{iz}$ is continuous, otherwise there is an infinite radial acceleration across the boundary. Furthermore, $\Delta \sigma_{zz} = 0$ because the ocean, with no shear modulus, cannot sustain finite transverse shear. We also require the additional boundary conditions that $\xi_r \approx 0$ at some depth deep within the crust. Though this is not necessarily the case, it is helpful for estimating the interface mode’s frequencies.

3. ANALYTIC ESTIMATES

We now use these differential equations to analytically derive the frequencies and eigenfunctions of the interface mode. As we explain in Appendix A, the interface wave is not well described by WKB analysis, so we proceed with use of analogies to shallow ocean surface waves. In §3.1, we solve equations (12) and (13) for a surface wave, and consider how its frequency changes when $\xi \neq 0$ at the ocean floor (as suggested by Figure 1). In §3.2 we solve for the radial crustal eigenfunction, which we use in §3.3 to connect to the ocean perturbation and find the radial displacement at the interface. In §3.4 we summarize our frequency prediction for the interface wave and show how it depends on the temperature and composition of the NS crust.

3.1. Surface Wave Analytics

We assume that the surface wave in the ocean has a constant transverse displacement so that $\xi_z = \xi_{z,\Gamma}$ and $d \xi_z / dz = 0$ (where we use the subscript “t” to denote the “top” of the ocean). At the top the boundary condition is $\Delta P = 0 = \delta P - \xi_r \rho g$, and by combining this with transverse momentum conservation, equation (11), we relate the surface radial and transverse displacements

$$\xi_{z,\Gamma} = \frac{\omega^2}{ik \rho \xi_{z,\Gamma}}. \quad (17)$$

Using equation (11) to eliminate δP from equation (12), and then eliminating $\xi_{z,\Gamma}$ using equation (17),

$$\frac{d \xi_z}{dz} - \frac{\xi_z}{\Gamma_1 h} = \frac{\xi_{z,\Gamma}}{h} \left(\frac{ghk^2}{\omega^2} - \frac{1}{\Gamma_1} \right). \quad (18)$$

The electrons in the deep NS ocean are degenerate and relativistic so that the equation of state can be approximated by a $P = K \rho^{4/3}$ polytrope, where K is a function of the mean molecular weight per electron. Using hydrostatic balance, the pressure scale height is

$$h(z) = \frac{1}{4} (z_t - z), \quad (19)$$

where $z_t = 4K \rho_t^{1/3}/g$, the subscript “c” denotes the top of the “crust”, and $z = 0$ at the ocean/crust interface (we also make
the approximation that $\rho_\ast \gg \rho_\ominus$. Substituting this for h in equation (18) and integrating gives

$$\frac{\xi_c(z)}{\xi_{c,t}} = 1 - \left(\frac{4}{\Gamma_1} + 1 \right) \frac{gk_c^2}{\omega^2} (\xi_t - z),$$

(20)

where the constant of integration is set to assure that $\xi_c = \xi_{c,t}$ at $z = z_t$.

The frequency of this surface wave is set by specifying the boundary condition $\xi_{c,c} = \xi_c(z = 0)$. Substituting this into equation (20) we find a frequency

$$\omega^2 = \frac{(4/\Gamma_1 + 1)^{-1} gk_c^2 z_t}{1 - \xi_c/\xi_{c,t}}.$$

(21)

To understand this result it is helpful to compare it to the frequency for a mode with $\xi_{c,c} = 0$ as expected for a solid floor, which we denote as ω_0. This results in

$$\omega_0^2 = \left(\frac{4}{\Gamma_1} + 1 \right)^{-1} gk_c^2 z_t.$$

(22)

For $\Gamma_1 = 4/3$ we find that $\omega_0^2 = gh^c k_n^2$, where h^c is the scale height at the bottom of the ocean, just as expected for the shallow surface wave. The interface mode’s frequency is then

$$\omega^2 = \frac{\omega_0^2}{1 - \xi_{c,c}/\xi_{c,t}}.$$

(23)

We expect $\xi_{c,c}/\xi_{c,t} < 0$ because a positive pressure perturbation will compress the crust (see the discussion in §I and Figure 1). Equation (23) shows that flexing of the crust results in a lower frequency than what would be expected if the ocean floor were solid.

3.2. The Radial Crustal Eigenfunction

To simplify equations (15), so that it can be solved analytically, we order the terms and drop those which are small. We first relate the ordering of the transverse and radial displacements within the crust. The ocean and crust slip with respect to one another so that the transverse displacement changes discontinuously at the boundary. We therefore set $\xi_{c,c} = \lambda \xi_{c,t}$ where λ is a dimensionless constant which we call the “discontinuity eigenvalue.” It determines how ξ_c changes at the interface, and is an eigenvalue set by the bottom boundary condition within the crust. We then rewrite equation (17) as

$$\xi_{c,c} = \frac{igk_c}{\omega^2} \lambda \xi_{c,t}.$$

(24)

At the top of the crust, the displacements must satisfy $\Delta \sigma_{zz} = 0$ so that

$$\mu_0 \frac{d\xi_c}{dz} + \mu_0 ik_c \xi_c = 0,$$

(25)

where we have used $\mu_0 \equiv \mu/P$. Assuming that $O(d\xi_c/dz) \sim O(\xi_{c,c}/h)$ within the crust, we combine equations (24) and (25) to find

$$O(\lambda) \sim O\left(\frac{\omega^2 h^c \xi_c}{g \xi_{c,t}} \right).$$

(26)

The largest reasonable frequency is that of a discontinuity g-mode at the boundary (with $\omega^2 \approx gh^2 k_n^2$) for which the terms in equation (25) with ω_0^2 appearing are negligible. Using order of magnitude estimates of $k_n h^c \approx 10^{-4} - 10^{-5}$ and $\mu_0 \approx 10^{-2}$, from equation (6), we identify the two highest order terms of equation (25), resulting in

$$\frac{d^2\xi_c}{dz^2} = \frac{1}{h} \frac{d\xi_c}{dz}.$$

(27)

as the simplified radial differential equation.

Since $\Gamma_1 \approx 4/3$, we introduce a new radial variable, s, defined by $s = 4h$ which is set equal to s_c at the ocean/crust interface and increases going down so that $ds = -dz$. Integration of equation (27) results in two constants of integration. The first is set by requiring that $\xi_c = \xi_{c,c}$ at $s = s_c$ and the second by requiring that $\xi_c = 0$ at some bottom depth, which we denote as s_b, so that

$$\xi_c(s) = \xi_{c,c} \left[\frac{(s_c/s)^3 - 1}{(s_b/s_c)^3 - 1} \right].$$

(28)

If we place the lower boundary condition infinitely deep within the crust, so that $s_b \gg s_c$, equation (28) simplifies to

$$\xi_c(s) = \xi_{c,c} \left(\frac{s_c}{s} \right)^3,$$

(29)

identical to what BC95 estimate for the crustal eigenfunction (in their case in the context of a g-mode extending into the crust).

3.3. Connecting the Modes at the Ocean/Crust Boundary

We solve for $\xi_{c,c}$, and estimate the mode frequency using equation (21), by demanding that $\Delta \sigma_{zz}$ be continuous across the ocean/crust boundary to avoid infinite radial accelerations. Expanding this component of the stress tensor,

$$\frac{\Delta \sigma_{zz}}{P} = \left(\frac{2\mu_0}{3} \right) \nabla \cdot \xi_c + 2\mu_0 \frac{d\xi_c}{dz}.$$

(30)

We evaluate this condition using the eigenfunctions we have found for both the ocean and crust. In the ocean, above the interface,

$$\left(\frac{\Delta \sigma_{zz}}{P} \right)_{\text{above}} = \frac{1}{h^c}(\xi_{c,c} - \xi_{c,t}).$$

(31)

In the crust we use equation (28) to evaluate $d\xi_c/dz$. The term involving $ik_c\xi_c$ can be ignored because it is order $(k_c h^c)^2$ less than the $d\xi_c/dz$ term (see Appendix B), so that below the interface,

$$\left(\frac{\Delta \sigma_{zz}}{P} \right)_{\text{below}} = \frac{3\Gamma_1/4 + \mu_0}{1 - (s_c/s_b)^3} \frac{\xi_{c,c}}{h^c}.$$

(32)

where we have substituted $s_c = 4h^c$. Setting equations (31) and (32) equal, we solve for the radial displacement at the crust,

$$\xi_{c,c} = -\left[\frac{3\Gamma_1/4 + \mu_0}{1 - (s_c/s_b)^3} \right]^{-1} \approx -\frac{1}{\mu_0},$$

(33)

where the last estimate is made for $\Gamma_1 = 4/3$ and $s_b \gg s_c$.

3.4. Interface Wave Frequency Estimate

From our estimate for the eigenfrequency, equation (23), along with $\xi_{c,c}/\xi_{c,t} \approx -1/\mu_0$, equation (33), we find the simple result that

$$\omega^2 \approx \mu_0 \omega_0^2,$$

(34)

The frequency of the interface mode is a factor of $\mu_0^{1/2} \approx 0.1$ less than a shallow surface wave in the NS ocean.

It is an interesting exercise to use this result to predict the interface wave’s frequency and dependence on the ocean/crust
boundary’s properties. At this depth, the pressure is dominated by relativistic and degenerate electrons with a Fermi energy of \(E_F \geq m_e c^2 \gg k_B T \)
\[
E_F = 4.1 \text{ MeV} \left(\frac{Z}{A} \right)^{1/3} \left(\frac{\rho}{10^9 \text{ g cm}^{-3}} \right)^{1/3}.
\]
Since the pressure is \(P \approx n_e E_F / 4 \), the scale height at the crust is
\[
h_c = 2620 \text{ cm} \left(\frac{Z}{A} \right)^{4/3} \left(\frac{\rho}{10^9 \text{ g cm}^{-3}} \right)^{1/3}.
\]
Using \(\omega_0 = g_h k_\perp^2 \) and substituting \(\Gamma \) from equation (5) to eliminate \(\rho \), we find the interface wave has a frequency of
\[
\frac{\omega}{2\pi} \approx 16.5 \text{ Hz} \left(\frac{\Gamma}{173} \right)^{1/2} \left(\frac{T_b}{4} \right)^{1/2} \times \left(\frac{64}{A} \right)^{1/2} \left(\frac{10 \text{ km}}{R} \right) \left[\frac{l(l + 1)}{2} \right]^{1/2}.
\]

For an accreting NS with a relatively cold ocean (similar to BC95 or what we consider in §4.1), this frequency is between the g-mode frequencies, \(\approx 6 \text{ Hz} \) (BC95), and the f-mode frequency, \(\approx 10^3 \text{ Hz} \), an otherwise empty part of the frequency domain. Furthermore, the interface mode frequency is independent of \(Z \) and has a simple scaling with both \(A \) and \(T \), making this mode a useful diagnostic for measuring the properties of the NS crust.

4. NUMERICAL SOLUTIONS

We now compute eigenfunctions and frequencies for the interface mode using numerical integrations of the mode equations on a two-component, ocean/crust NS model. In §4.2 we show that these compare very well with the analytic work of §3.

4.1. NS Ocean and Crust

We assume that the NS has a mass of \(M = 1.4M_\odot \) and radius of \(R = 10 \text{ km} \). The two components which make up our NS envelope are a liquid ocean and a degenerate crystalline crust (see Figure 1). For accreting NSs, the composition of each of these components is determined by nuclear burning processes which occur on the surface, especially the rp-process during type I X-rays bursts (Wallace & Woosely 1981; Schatz et al. 1999, 2002) and the hotter burning during superbursts (Cumming & Bildsten 2001; Schatz, Bildsten & Cumming 2003). Woosley et al. (2004) follow the accretion and subsequent unstable burning over multiple type I bursts in numerical simulations. Estimating their results for an accreted composition of 0.05 solar metallicity and an accretion rate of \(1.75 \times 10^{-5} M_\odot \text{ yr}^{-1} \) (which they denote model “zM”) after 14 bursts, we assume a composition with mass fractions of \(^{65}\text{Zn}(0.56), ^{68}\text{Ge}(0.35), ^{100}\text{Pd}(0.07) \) and \(^{106}\text{Cd}(0.02) \), for both the ocean and crust. At sufficient pressure and density, this material will change from liquid to solid. This transition occurs at \(\Gamma \approx 173 \) (see §2.1) which implies a critical density of
\[
\rho_c = 2.5 \times 10^9 \text{ g cm}^{-3} \left(\frac{T_b}{4} \right)^3 \left(\frac{A}{64} \right) \left(\frac{30}{Z} \right)^6 \left(\frac{\Gamma}{173} \right)^2.
\]
for an OCP. We assume that this is a good enough approximation even though we use a multi-component composition. Due to the strong dependence of this critical density on \(Z \), in cases where burning results in ashes of especially heavy elements (such as the rp-process at high accretion rates or during superbursts) crystallization can happen at significantly shallower depths. This decreases the energy needed for large mode amplitudes.

The envelope profile is described by the equation of radiative transfer, which after substituting \(y \) is
\[
F = \frac{4acT^3}{3\kappa} \frac{dT}{dy},
\]
where \(a \) is the radiation constant and \(\kappa \) is the opacity. The opacity is set using electron-scattering (Paczynski 1983), free-free (Clayton 1993 with the Gaunt factor of Schatz et al. 1999), and conductive opacities (Schatz et al. 1999 using the basic form of Yakovlev & Urpin 1980) in the liquid region. In the crust we make no distinction and use the same conductive opacity.

Equation (39) is integrated starting at an outer column depth (\(y \approx 10^7 \text{ g cm}^{-2} \)) and into the envelope. The outer temperature is set near \(10^6 \text{ K} \), a value for which the solutions are minimally sensitive because of their radiative zero nature (Schwarzschild 1938, or see the discussion in Piro & Bildsten 2004). Previous studies of constantly accreting NSs have shown that the interior thermal balance is set by electron captures, neutrion emissions, and pycnonuclear reaction in the inner crust (Miralda-Escudé, Paczynski & Haensel 1990; Bildsten & Brown 1997; Brown & Bildsten 1998) which release \(\approx 1 \text{ MeV}/m_p \approx 10^{18} \text{ erg g}^{-1} \) (Haensel & Zudunik 1990). Depending on the accretion rate and thermal structure of the crust, this energy will either be conducted into the core or released into the ocean such that for an Eddington accretion rate up to \(\approx 92\% \) of the energy is lost to the core and exists as neutrinos (Brown 2000). We therefore set the flux in the ocean to a fiducial value of \(10^{21} \text{ erg s}^{-1} \text{ cm}^{-2} \) (as expected for an accretion rate of \(\approx 10^{-9} M_\odot \text{ yr}^{-1} \), about one-tenth the Eddington rate). We solve for \(\rho \) using the analytic equation of state from Paczynski (1983) which is applicable to both the ocean and crust. The profiles are continuous across the ocean/crust interface because we assume the same conductive opacity in each region. Figure 2 shows the envelope profile for the variables most important for determining the mode properties. The dashed line denotes the location of the crust (which we assume is at a column depth of \(y_c = 10^{13} \text{ g cm}^{-2} \), near a density of \(\rho_c = 10^8 \text{ g cm}^{-3} \)).

4.2. Numerical Integrations and Comparisons with Analytics

Using the envelope profile of §4.1, we numerically solve for the interface wave eigenfunctions and eigenfrequencies. We treat each integration as a two eigenvalue shooting problem, first choosing \(\omega \) and \(\lambda \) and then shooting for the bottom boundary condition. We integrate equations (12) and (13), beginning at the top of the ocean at a column of \(y_1 \approx 10^6 \text{ g cm}^{-2} \) (where the unstable burning of X-ray bursts typically occurs; Bildsten 1998) where we set \(\Delta P = 0 \). The boundary conditions at the ocean/crust interface are set by requiring \(\xi \) to be continuous, \(\Delta \sigma_{\xi_c} = 0 \) (which sets \(d\xi_c/dz \)), and \(\Delta \sigma_{\xi_o} \) continuous across the boundary (which sets \(d\xi_o/dz \)). The discontinuity of \(\xi \) is set using \(\lambda \). We then integrate equations (15) and (16) into the NS crust (we assume that \(d\mu_0/dz \approx d\mu_1/dz \approx 0 \) and simply set \(\mu_0 = 10^{-2} \) for these examples) down to a depth within the crust where we require both \(\xi_s \) and \(\xi_c \) to be zero. We
The energy density is also strongly concentrated at the interface boundary, relative to its value at the ocean surface. The energy density (per logarithm of pressure) is close to the analytic values of the local scale height and $\Gamma_1 = 1.338$ (its value at the ocean/crust boundary) to set the eigenvalues. The numerical solutions find $\omega/(2\pi) = 24.46$ Hz and $\lambda = -1.8 \times 10^{-4}$, which are close to the analytic values of $\omega/(2\pi) = 24.46$ Hz and $\lambda = -1.8 \times 10^{-4}$. As shown in Figure 1, the radial displacement is found to be very large at the interface, relative to its value at the ocean surface. The energy density (per logarithm of pressure) is

$$\frac{dE}{d\log y} = \frac{1}{2} 4\pi R^2 \omega^2 \xi^2 \gamma,$$

where $\xi^2 = |\xi_x|^2 + |\xi_z|^2$, which shows where the mode “lives.” The energy density is also strongly concentrated at the interface, consistent with the result that the mode’s properties are set by the envelope at this depth.

As a comparison, we plot ξ_z for both the correct and the “solid” ocean/crustal boundary conditions in Figure 4. For the latter we find a frequency of $\omega_0/(2\pi) = 179.62$ Hz. The linear plot of the amplitudes shows how extreme the radial displacement is at the crust for the interface mode. We omit comparing ξ_z and the energy density for the modes since they are almost identical in the ocean.

leave the bottom boundary depth as a free parameter and study how the eigenvalues and eigenfunctions change with this variable.

In Figure 3 we show example eigenfunctions with a bottom boundary at $y_b = 10^{16}$ g cm$^{-2}$. On the same plot we also compare the analytic eigenfunctions from §3.2 and Appendix B. These use the numeric envelope model to set the local scale height and $\Gamma_1 = 1.338$ (its value at the ocean/crust boundary) to set the eigenvalues. The numerical eigenvalues are $\omega/(2\pi) = 23.43$ Hz and $\lambda = -1.5 \times 10^{-4}$, which are close to the analytic values of $\omega/(2\pi) = 24.46$ Hz and $\lambda = -1.8 \times 10^{-4}$. As shown in Figure 1, the radial displacement is found to be very large at the interface, relative to its value at the ocean surface. The energy density (per logarithm of pressure) is

$$\frac{dE}{d\log y} = \frac{1}{2} 4\pi R^2 \omega^2 \xi^2 \gamma,$$

where $\xi^2 = |\xi_x|^2 + |\xi_z|^2$, which shows where the mode “lives.” The energy density is also strongly concentrated at the interface, consistent with the result that the mode’s properties are set by the envelope at this depth.

As a comparison, we plot ξ_z for both the correct and the “solid” ocean/crustal boundary conditions in Figure 4. For the latter we find a frequency of $\omega_0/(2\pi) = 179.62$ Hz. The linear plot of the amplitudes shows how extreme the radial displacement is at the crust for the interface mode. We omit comparing ξ_z and the energy density for the modes since they are almost identical in the ocean.
As the bottom boundary is set deeper, the values which would be approximated for a shallow surface boundary depth, the numeric and analytic results as a function of the bottom boundary depth, using the envelope of Figure 2 with the crust at \(y_c = 10^{15} \text{ g cm}^{-2} \). The solid curves show the analytic estimates, using equations (21), (B7) and (33) (from top to bottom), while the points mark the numerical calculations. On the far left we find what is expected for a shallow surface wave, with a different radial mode to high precision (see discussion in Appendix C). For a non-rotating NS this would result in frequencies of \(\sim 20 \text{ Hz} \).

To study the dependence of the mode’s properties on the bottom boundary condition within the crust, we compare the numeric and analytic results as a function of the bottom boundary depth, \(y_b \), in Figure 5. On the left hand side is the limit when there is no penetration into the crust, in this case both the ratio \(\xi_{\rho \rho}/\xi_{tt} \) and \(\lambda \) are zero and \(\omega/(2\pi) \sim 200 \text{ Hz} \), the values which would be approximated for a shallow surface wave (see Figure 4). As the bottom boundary is set deeper, the frequency decreases, becoming nearly, but not quite equal to \(\sim \mu_0^{1/2} \times 200 \text{ Hz} \sim 20 \text{ Hz} \).

5. DISCUSSION AND CONCLUSIONS

We have discussed the ocean/crust interface wave, investigating its properties both analytically and numerically for a two-component NS envelope. We show that it can be understood as a shallow surface wave, with a different radial displacement boundary condition at the bottom of the ocean. This reduces the frequency by roughly \(\sim \mu_0^{1/2} \sim 0.1 \) from what would be expected if the crust were instead “solid.” In general the interface wave is a global mode of oscillation, so that the entire star must be taken into account to calculate the mode to high precision (see discussion in Appendix C). Fortunately, by using our analysis, a fairly good estimate of the mode frequency can be made just from considering the NS properties right near the ocean/crust interface because the majority of mode energy (\(\geq 99\% \)) resides in the NS ocean.

The interface wave should be included in future studies of nonradial oscillations on both accreting and bursting NSs. For a non-rotating NS this would result in frequencies of \(\sim 10 – 20 \text{ Hz} \) which would then be altered and split due to the NS spin (Bildsten, Ushomirsky & Cutler 1996). The observation of multiple mode periods would greatly assist our understanding of the NS crust. The g-modes are sensitive to the depth of the crust (since it provides a bottom boundary), while the interface wave is sensitive to both the depth and the value of the shear modulus. This provides information about the temperature and composition of the crust, which is determined by unstable nuclear burning processes (X-ray bursts and superbursts) that happen in the ocean.

Since the example considered in this work is a relatively “cool” envelope, the g-mode frequencies (\(\lesssim 6 \text{ Hz} \)) are well separated from the interface wave frequency (\(\sim 10 – 20 \text{ Hz} \)). On a bursting NS, which has temperatures in the upper atmosphere as high as \(10^9 \text{ K} \), at least one g-mode has a frequency higher than the interface wave. The interface wave would then have an additional node in its eigenfunction, due to the relation between g-mode frequency ordering and number of nodes, but its frequency would be unchanged as long as the ocean stays at a temperature of \(\sim 4 \times 10^8 \text{ K} \) (since this is where the mode’s energy is concentrated). Woosley et al. (2004) show that the thermal wave during an X-ray burst does not penetrate deeply into the ocean, so that our estimates for the interface mode frequency still hold.

The other important astrophysical context where our work can be applied is for old and/or massive WDs that have crystalline cores. This may be seen in the pulsations of BPM 37093 (Kanaan et al. 1992), a high-mass ZZ Ceti star that should be considerably crystallized (Winget et al. 1997). There is also the exciting possibility that some of the pulsators discovered through the Sloan Digital Sky Survey (Mukadam et al. 2004) may be massive enough to be crystallized. Scaling equation (37) to the fiducial interior properties of a \(\approx 1.1M_{\odot} \) WD, we find a crustal mode period of

\[
P \approx 95 \text{ s} \left(\frac{173}{T} \right)^{1/2} \left(\frac{10^7 \text{ K}}{T} \right)^{1/2} \times \left(\frac{A}{16} \right)^{1/2} \left(\frac{R}{5 \times 10^{15} \text{ cm}} \right) \left[\frac{2}{l(l+1)} \right]^{1/2},
\]

which for the \(l = 1 \) mode is between the periods of the f-mode (\(\sim 10 – 20 \text{ s} \)) and g-modes (\(\gtrsim 300 \text{ s} \)). HV79 (and more recently Montgomery & Winget 1999) previously calculated the spectrum of g-modes and torsional modes expected for these stars, concentrating on the effects of crystallization. HV79 do not single out any one mode as a “crustal mode,” but in their crystallized models their lowest order g-mode (which they denote \(\ldots \)) matches many of the properties we identify as being characteristic of a crustal mode. This includes a large radial displacement at the crust and a nearly constant transverse displacement in the WD “ocean” (see Figures 1 and 2 of HV79). Furthermore, HV79 find the period of their \(\ldots \) mode to be between the f-mode and the other g-mode periods, in confirmation of our above discussion.

We thank both Phil Arras and Omer Blaes for helpful discussions. We also thank the referee, Michael Montgomery, for pointing out the HV79 paper and its relevance to our work. This work was supported by the National Science Foundation under grants PHY99-07949 and AST02-05956, and by the Joint Institute for Nuclear Astrophysics through NSF grant PHY02-16783.
APPENDIX

A. INFLUENCE OF A FINITE SHEAR MODULUS

The interface wave’s properties are set by how it is influenced by the finite shear modulus of the NS crust. Unlike g-modes, which see the crust as solid, the interface wave reacts to the crust as if it is a flexible and compressible surface. We now explain why each of these cases occur.

Using \(\mu_0 \equiv \mu / P \), and assuming that \(d \mu / dz = d \Gamma_1 / dz \approx 0 \), equations (15) and (16) can be rewritten as

\[
- \frac{d^2 \xi_z}{dz^2} \left(\Gamma_1 + \frac{4}{3} \mu_0 \right) = \xi_z \left(\frac{\omega^2}{gh} - k_z \mu_0 - \Gamma_1 k^2_z \right) - \frac{\mu_0 d \xi_z}{dz} + \frac{4 \mu_0}{3} \frac{\Gamma_1}{h} + \frac{2 \mu_0}{h} \frac{d \xi_z}{dz} + \frac{2 \mu_0}{h} \frac{1}{h} + \frac{1}{h} + \frac{d \xi_z}{dz} \left(\frac{\mu_0}{3} + \Gamma_1 \right),
\]

(A1)

and

\[
- \frac{d^2 \xi_z}{dz^2} = \xi_z \left(\frac{\omega^2}{gh} - k_z \mu_0 - \Gamma_1 k^2_z \right) - \frac{\mu_0 d \xi_z}{dz} + \frac{4 \mu_0}{3} \frac{\Gamma_1}{h} \frac{d \xi_z}{dz}.
\]

(A2)

The simplest analysis of these equations arises when perturbations scale like \(\sim \exp(ik_z z) \) and dispersion relations are in the WKB limit (when the wavenumber \(k_z \gg 1 / h \)). This results in toroidal and spheroidal modes with frequencies

\[
\omega^2_{\text{shear}} = \mu_0 (P / \rho) k^2,
\]

(A3)

\[
\omega^2_{\text{sound}} = (\Gamma_1 + 4 \mu_0 / 3) (P / \rho) k^2,
\]

(A4)

where \(k^2 = k^2_t + k^2_r \) is the total wavenumber. The first is a shear mode (with a frequency of \(\sim 10^2 - 10^3 \) Hz) and the second is a sound wave slightly modified by \(4 \mu_0 / 3 (\sim 10^4 - 10^5) \) Hz. These imply that a g-mode with a frequency of \(\lesssim 6 \) Hz (BC95) will be reflected at the interface because of the frequency mismatch. Unfortunately, this analysis cannot be extended to the interface mode because it has \(k_z \lesssim 1 / h \), in contradiction to the WKB limit.

To see that a mode with a constant transverse velocity (like the interface wave) is not excluded from the crust we compare the transverse momentum terms from equation (9). The shear modulus term has two pieces, the larger one is \(d \delta \sigma_{xz} / dz = 4 \mu_0 d^2 \xi_z / dz^2 \). This term strongly affects the mode’s eigenfunctions when it is comparable to the transverse acceleration of the mode, \(\rho \omega^2 \xi_z \).

Using \(d / dz \sim k \), this implies a critical shear modulus of \(\mu_{\text{crit}} / P \sim \omega^2 / (gh k_z^2) \). In the case of g-modes \(k_z \sim 1 / h \) and \(\omega^2 \approx 4 N^2 (h k_z \omega) \), so that the critical modulus is (BC95)

\[
\frac{\mu_{\text{crit}}}{P} (\text{g-mode}) \sim \frac{6 l (l + 1) k_B T}{Z E_F} \left(\frac{h}{R} \right)^2.
\]

(A5)

Substituting values near the ocean/crust interface for degenerate, relativistic electrons,

\[
\frac{\mu_{\text{crit}}}{P} (\text{g-mode}) \sim 10^{-11} T B l (l + 1) \left(\frac{64}{A} \right)^2 \left(\frac{30}{Z} \right)^{2 / 3} \left(\frac{\Gamma}{173} \right),
\]

(A6)

which is clearly less than the value of \(\mu / P \) from equation (6), implying that the g-modes will be excluded from the crust.

One the other hand, the interface wave has a constant transverse velocity so that \(k_z \sim 1 / R \). Using \(\omega^2 \approx \mu_0 g h k_z^2 \omega \), the interface wave has a critical shear modulus of

\[
\frac{\mu_{\text{crit}}}{P} (\text{interface wave}) \sim \mu_0 g l (l + 1),
\]

(A7)

which is just the actual shear modulus present at the boundary, so the wave must penetrate the crust. This shows that in the interface wave the transverse momentum is perfectly balanced by the shear stress, so that the ocean/crust boundary behaves like a flexible and compressible surface.

B. TRANSVERSE CRUSTAL EIGENFUNCTION AND DISCONTINUITY EIGENVALUE

To estimate the transverse crustal eigenfunction, we order the terms from equation (A2) and drop those which are small. Using equations (24) and (26) we first relate the ordering of the transverse and radial displacements within the crust. Dividing equation (A2) through by \(\xi_z \), multiplying through by \(h^2 \) and using the above relations, the ordering of each of the terms are

\[
\mathcal{O}(\mu_0 k, h) \sim \mathcal{O}(\omega^2 h^2 k_z / g) + \mathcal{O}(\mu_0 k_f h^3) + \mathcal{O}(k_z h^3) + \mathcal{O}(k_h h) + \mathcal{O}(\mu_0 k_h) + \mathcal{O}(\mu_0 k_h) + \mathcal{O}(k_h h).
\]

(B1)
The size of these quantities are approximated using \(k_s h \sim 10^{-4} - 10^{-3} \) and \(\mu_0 \approx 10^{-2} \). Just as with the radial equation considered in §3.2, the terms which contain \(\omega^2 \) are negligible (as is seen from considering \(\omega^2 \) anywhere in the range of \(\sim \mu_0 ghk_s^2 - ghk_s^2 \)). To find a relation which includes \(\xi_c \), we must consider both first- and second-order terms of equation (A2) to get

\[
-\mu_0 \frac{d^2 \xi_c}{dz^2} + \frac{\mu_0 \xi_c}{h} \frac{d}{dz} - ik \xi_c \left(\frac{\mu_0}{h} + \frac{1}{h} \right)
+ ik \frac{d \xi_c}{dz} \left(\frac{\mu_0}{3} + \Gamma_1 \right),
\]

as a new simplified differential equation.

We substitute the eigenfunction for \(\xi_c \), equation (28) into equation (B2) to solve for \(\xi_c \). The two constants of integration are set by imposing that \(\Delta \sigma_{tt} = 0 \) at the top of the crust and that \(\xi_c \) (just like \(\xi_t \)) goes to zero at \(s_b \), so that

\[
\xi_c(s) = \frac{ik \sqrt{s_b \xi_c}}{(s_b / s_c)^{3/2}} \left\{ \alpha \left[\left(\frac{s_b}{s_c} \right)^3 - 1 \right] + \beta \left[\left(\frac{s_b}{s_c} \right)^2 - 1 \right] + \gamma \left[1 - \frac{s_b}{s_c} \right] \right\},
\]

where we have introduced dimensionless constants that only depend on the star,

\[
\alpha = \frac{2 \mu_0 + 4 - 3 \Gamma_1 s_c}{3 \mu_0} - \frac{1}{3 \mu_0} \left(\frac{s_b}{s_c} \right)^4,
\]

\[
\beta = \frac{3 \mu_0 + 4 - 3 \Gamma_1}{2 \mu_0},
\]

\[
\gamma = 1 + \frac{1}{\mu_0}.
\]

Substituting \(s = s_c \) and dividing by equation (17) we find

\[
\lambda \equiv \frac{\xi_{tt}}{\xi_{cc}} = \frac{\omega^2 s_b / g}{(s_b / s_c)^{3/2} \xi_{cc}} \left\{ \alpha \left[\left(\frac{s_b}{s_c} \right)^3 - 1 \right] + \beta \left[\left(\frac{s_b}{s_c} \right)^2 - 1 \right] + \gamma \left[1 - \frac{s_b}{s_c} \right] \right\},
\]

for the discontinuity eigenvalue.

We use equation (B3) (or consider the infinite crust limit of Appendix C), to see that the size of \(\xi_{tt} / \xi_{cc} \sim k_s s_c \). This shows that when we consider terms in equation (30), the \(\xi_t \) terms are of order

\[
\frac{k_s \xi_t}{d \xi_t / dz} \sim (k_s h c)^2 \ll 1,
\]

smaller than the \(\xi_c \) terms and can thus be ignored.

C. INFINITE CRUST LIMIT

Just as we did for the radial eigenfunction for equation (29), we take the \(s_b \gg s_c \) limit on equation (B3) to find the transverse eigenfunctions in the infinite crust limit,

\[
\xi_c(s) = ik \sqrt{s_c \xi_c} \left[\frac{2 \mu_0 + 4 - 3 \Gamma_1}{3 \mu_0} \left(\frac{s_c}{s} \right)^3 \right.
- \left. \frac{3 \mu_0 + 4 - 3 \Gamma_1}{2 \mu_0} \left(\frac{s_c}{s} \right)^2 \right],
\]

\[
\approx ik \sqrt{s_c \xi_c} \left[\frac{2}{3} \left(\frac{s_c}{s} \right)^3 - \frac{3}{2} \left(\frac{s_c}{s} \right)^2 \right],
\]

which corresponds to

\[
\lambda = \frac{\omega^2 s_c \xi_{cc}}{g} \left(\frac{5 \mu_0 + 4 - 3 \Gamma_1}{6 \mu_0} \right),
\]

\[
\approx -\frac{5 \omega^2 s_c \xi_{cc}}{6g} \xi_{cc},
\]

(C2)
for the discontinuity eigenvalue.

We use these eigenfunctions to estimate the mode’s energy density, \(dE/d\log y \), from equation (37). We consider the limit of \(s \to \infty \) to see if the energy density falls off with increasing depth. If this happens, it implies a natural depth at which to set a lower boundary and provides confidence that the interface mode is determined by conditions local to the ocean/crust boundary. Comparing equations (29) and (C1) we find that at depths of order the NS radius \(\xi_x \) will dominate so that \(\xi^2 \propto 1/s^4 \). For fully degenerate and relativistic material \(P \propto y \propto \rho^{4/3} \). Using \(h = P/(\rho g) \) and \(h \propto s \) we find that \(y \propto s^4 \). This means that at the greatest possible depths \(dE/d\log y \propto \xi^2 y \propto \text{constant} \), so that, unfortunately, deep regions of the NS much be taken into account to calculate the interface mode to very high accuracy. In practice, this is not necessary because there are structural changes within a realistic NS crust that introduce new bottom boundaries. Due to the large amount of energy concentrated in the ocean (\(\gtrsim 99\% \), see Figure 3), our frequency estimates are still good even with this difficulty.

REFERENCES

Bildsten, L. 1998, in The Many Faces of Neutron Stars, ed. R. Buccheri, J. van Paradijs & A. Alpar (Dordrecht: Kluwer), 419
Bildsten, L. & Brown, E. F. 1997, ApJ, 477, 897
Bildsten, L. & Cumming, A. 1998, ApJ, 506, 842
Bildsten, L. & Cutler, C. 1995, ApJ, 449, 800 (BC95)
Bildsten, L., Ushomirsky, G. & Cutler, C. 1996, ApJ, 460, 827
Brown, E. F. 2000, ApJ, 531, 988
Brown, E. F. & Bildsten, L. 1998, ApJ, 496, 915
Brush, S. G., Sahlén, H. L. & Teller, E. 1966, J. Chem. Phys., 45, 2102
Clayton, D. D. 1983, Principles of Stellar Evolution and Nucleosynthesis (Chicago: Univ. Chicago Press)
Cowling, T. G. 1941, MNRAS, 101, 367
Cumming, A. & Bildsten, L. 2001, ApJ, 559, 127
Farouki, R. T. & Hamaguchi, S. 1993, Phys. Rev. E, 47, 4330
Finn, L. S. 1987, MNRAS, 227, 265
Haensel, P. & Zdunik, J. L. 1990, A&A, 227, 431
Hansen, C. J. & Van Horn, H. M. 1979, ApJ, 233, 253 (HV79)
Kanaan, A., Kepler, S. O., Giovannini, O. & Diaz, M. 1992, ApJ, 390, L89
McDermott, P. N. 1990, MNRAS, 245, 508
McDermott, P. N. & Taam, R. E. 1987, ApJ, 318, 278
McDermott, P. N., Van Horn, H. M. & Hansen, C. J. 1988, ApJ, 325, 725 (MVH88)
McDermott, P. N., Van Horn, H. M. & Scholl, J. F. 1983, ApJ, 268, 837
Miralda-Escudé, J., Paczyński, B. & Haensel, P. 1990, ApJ, 363, 572
Montgomery, M. H. & Winget, D. E. 1999, ApJ, 526, 976
Mukadam, A. S., et al. 2004, ApJ, 607, 982
Muno, M. P., Chakrabarty, D., Galloway, D. K. & Savov, P. 2001, ApJ, 553, L157
Paczynski, B. 1983, ApJ, 267, 315
Piro, A. L. & Bildsten, L. 2004, ApJ, 603, 252
Schatz, H., Bildsten, L. & Cumming, A. 2003, ApJ, 583, 87
Schatz, H., Bildsten, L., Cumming, A. & Wiescher, M. 1999, ApJ, 524, 1014
Schatz, H. et al. 2001, Phys. Rev. Lett., 86, 3471
Schwarzschild, M. 1958, Structure and Evolution of Stars (New York: Dover Publications)
Strohmayer, T. E. 1993, ApJ, 417, 273
Strohmayer, T. E. & Lee, U. 1996, ApJ, 467, 773
Strohmayer, T., Ogata, S., Iyetomi, H., Ichimaru, S. & Van Horn, H. M. 1991, ApJ, 375, 679
Wallace, R. K. & Woosley, S. E. 1981, ApJ, 45, 389
Winget, D. E., Kepler, S. O., Kanaan, A., Montgomery, M. H. & Giovannini, O. 1997, ApJ, 487, L191
Woosley, S. E. et al. 2004, ApJS, 151, 75
Yakovlev, D. G. & Urpin, V. A. 1980, Soviet Astron., 24, 303