1. INTRODUCTION

Many stellar streams and substructures resulting from the tidal disruption of satellite dwarf galaxies and star clusters under the gravitational influence of the Milky Way have been identified and mapped using deep, large-area photometric surveys (Newberg et al. 2002, 2009; Ibata et al. 2003; Majewski et al. 2003; Yanny et al. 2003; Majewski et al. 2006; Rocha-Pinto et al. 2004; Belokurov et al. 2006, 2007; Grillmair & Johnson 2006; Grillmair & Dionatos 2006a, 2006b; Grillmair 2006, 2009, 2010; Willett et al. 2009; Koposov et al. 2010; Rocha-Pinto 2010; Sharma et al. 2010; Li et al. 2012; Sesar et al. 2012). Streams and cloud-like substructures have also been observed kinematically via spectroscopic surveys of tracers such as RR Lyrae, M giants, or turnoff stars (e.g., Vivas et al. 2001; Duffau et al. 2006; Carlin et al. 2012; Majewski et al. 2012; Shefield et al. 2012).

Here we report a stellar tidal stream discovered kinematically, which (based on its location in the constellation Pisces) we call the “Pisces Stellar Stream” (PSS). This stream was identified as a grouping of red giant branch (RGB) stars at a common distance and radial velocity during the course of a spectroscopic study of the Cetus Polar Stream (CPS). In the CPS study (Yam et al. 2013), we selected metal-poor (−3.0 < [Fe/H] < −1.5) stars with surface gravities consistent with being giants (0 < log g < 4.0) from the Sloan Digital Sky Survey Data Release 8 (SDSS DR8) spectroscopic data in the south Galactic hemisphere. The Cetus stream was clearly present in velocity versus Galactic latitude plots of these stars, along with a clump in the matched-filter density maps of Grillmair (2012), and is the same as the “Triangulum stream” in Bonaca et al. (2012). We chose to rename the stream because our detection is within the Pisces constellation, the stream does not pass through Triangulum, and we cannot verify whether the stream extends the length of “stream a.” This Letter presents the first measurement of velocities and metallicities of stars in this stream.

2. OBSERVATION AND DATA ANALYSIS

In Figure 1 we plot v_gsr versus Galactic latitude for stars between Galactic longitudes of 120° and 160°, 0 < log g < 4 (giant stars), −2.8 < [Fe/H] < −1.8, 0.4 < (g −r)$_0$ < 0.9, and g_0 > 15.5. The color and magnitudes were chosen to exclude both turnoff stars whose surface gravity was miscalculated and evolved post-RGB stars, while retaining likely RGB stars. The most prominent features in Figure 1 are swaths of RGB stars at $v_\text{gsr} < 0$ km s$^{-1}$, running across most of this plot, which are associated with the Sagittarius and Cetus streams (Newberg et al. 2009; Koposov et al. 2012; Yam et al. 2013). An additional overdensity of metal-poor giant stars can be seen around $b = −37^\circ$ and $v_\text{gsr} = 90$ km s$^{-1}$.

We now show that this velocity clump represents a real structure in the Galactic halo. From the sample of metal-poor RGB stars shown in Figure 1, we selected a smaller velocity range of 75 km s$^{-1}$ < v_gsr < 115 km s$^{-1}$. We plotted the positions of stars in Galactic coordinates, and noted that many of these velocity-selected giant stars with metallicities between −2.8 < [Fe/H] < −1.8 are concentrated in a small fraction of a single SDSS spectroscopic plate centered at $l = 136^\circ$ and $b = −35^\circ$ (see Figure 2).

Figure 2 was produced using the matched-filter technique described in detail by Grillmair (2009), which is in turn a refinement of the Rockosi et al. (2002) method. This method can be used to create weighted density maps of stars from within a given color–magnitude filter (based on either an empirical ridgeline or a theoretical isochrone) placed at a given distance; the weights emphasize regions of the filter expected to contain the highest ratio of stream stars to foreground stars. The map in Figure 2 shows filtered star counts from SDSS DR8 using a filter based on a Padova isochrone (Marigo et al. 2008; Girardi et al. 2010) with $Z = 0.0001$ ([Fe/H] ∼ −2.28), age 12.7 Gyr, at a distance of 33.6 kpc (note that the filter’s response will be highest near the main-sequence turnoff (MSTO) of the filter, at...
Figure 1. Line-of-sight velocity in the Galactic standard of rest frame, v_{gsr} (calculated using Equation (1) from Li et al. 2012), as a function of Galactic latitude, for stars from SDSS DR8. These are selected as metal-poor giant stars in the south Galactic cap, with $120^\circ < l < 160^\circ$. Two separate bands of stars with $v_{\text{gsr}} < 0 \text{ km s}^{-1}$ sweep across the lower portion of this figure, moving to lower v_{gsr} with increasing latitude. These two structures are associated with the Cetus Polar Stream and the Sagittarius tidal stream. An additional clump of stars is seen at $b \approx -37^\circ$ and $v_{\text{gsr}} \approx 90 \text{ km s}^{-1}$; we show in this work that these stars are part of a stellar stream at a distance of $\sim 35 \text{ kpc}$.

(A color version of this figure is available in the online journal.)

Figure 2. Left panel: map of filtered star counts in the region surrounding the Pisces Stellar Stream; darker shades represent higher densities. This map was created by extracting stars from SDSS DR8 within an isochrone filter of age 12.7 Gyr, metallicity $Z = 0.0001$ ([Fe/H] ≈ -2.28), and placed at a distance of 33.6 kpc, using the matched-filter technique of Grillmair (2009) with 0.1 bins. The image was smoothed with a Gaussian kernel three pixels wide. The large “blob” at $(\alpha, \delta) \sim (23.5, 30.5)$ is M33. Passing near M33 on the sky is the PSS, which is visible as a narrow feature running diagonally from $(\alpha, \delta) \sim (24^\circ, 23^\circ)$ to $(21^\circ, 35^\circ)$, and perhaps further. The red and dashed lines show the “on-stream” and “off-stream” regions of the sky, respectively. Note that the broad feature at $\alpha \sim 24^\circ$ and $19^\circ < \delta < 22^\circ$ is a data artifact that arises because of poor seeing when this particular SDSS stripe was observed. Right panel: positions of SDSS spectra of metal-poor ($-2.8 < [\text{Fe/H}] < -1.8$) giant stars (small open triangles). The filled red dots indicate stars with velocities between $75 \text{ km s}^{-1} < v_{\text{gsr}} < 115 \text{ km s}^{-1}$. The SDSS plate centered at $(\alpha, \delta) \sim (24^\circ, 23^\circ)$ contains most of the velocity-selected red points. Within the plate, these metal-poor, velocity-selected giant stars are mostly clustered in a narrow line of 11 stars.

(A color version of this figure is available in the online journal.)
colors where foreground contamination is minimal). The most prominent feature (the blob at $\alpha, \delta \sim 23^h5, 30^\circ 5$) is due to the M33 galaxy. A narrow stream is visible running nearly vertically across this plot, from $(\alpha, \delta) \sim (24^h4, 23^\circ)$ to $(\alpha, \delta) \sim (21^h, 35^\circ)$.

We selected a region of sky based on the positions of these velocity-selected, metal-poor giants that we call the "on-stream field." This is defined as the area within $\pm 0^h75$ in right ascension about the line $\delta = -4.33 \alpha + 126^h46$, confined to $22^\circ < \delta < 28^\circ$; the linear trend was fit to apparent density peaks in the matched-filter star count map (Figure 2). The width of the on-stream field was chosen to include all of the spectroscopic candidates we originally identified in this region, and its length covers the portion of the sky where the stream is obvious in the filtered star counts map.

An off-stream region was defined that contains an area eight times larger than that of the on-stream field. This comparison region was made up of two areas (seen as dashed boxes on Figure 2) defined by

\begin{align}
-0.231\delta + 21^h455 &< \alpha < -0.231\delta + 27^h455, \quad 22^\circ < \delta < 28^\circ; \\
-0.231\delta + 30^h956 &< \alpha < -0.231\delta + 36^h956, \quad 22^\circ < \delta < 28^\circ.
\end{align}

In the top left and top right panels of Figure 3 we show color–magnitude diagrams (CMDs) of all stars having SDSS DR8 spectra within the on- and off-stream fields, respectively. We also show subsets of the spectra with properties expected for the PSS. The subscripts on the magnitudes g_0 and $(g-r)_0$ mean that these magnitudes have been extinction-corrected based on the Schlegel et al. (1998) maps (using the extinction values provided for each star in the SDSS database).

The metal-poor giant stars selected using the velocity criteria (i.e., red points in the top panels of Figure 3) are mostly clustered around $(g-r)_0, g_0 = [0.55, 18.8]$ in the on-stream field (top left panel of Figure 3), while the more metal-rich stars (light blue points) scatter throughout the diagram. We suggest that these stars are part of the RGB of a single structure. The comparison off-stream field (top right panel) contains several stars that match our velocity, metallicity, and giant-selection criteria, but does not have a coherent distribution that could reasonably correspond to a giant branch. In the on-stream field there are a total of 448 stars with spectra in this diagram: 32 light blue points (velocity-selected giants) and 11 red points (velocity- and metallicity-selected giants). The off-stream area has 1584 total spectra, with 90 light blue points and 14 red points. To calculate potential foreground contamination, we selected stars with $g_0 < 19.2$ that are within 0.1 mag in $g_0, (g-r)_0$ of the Padova isochrone with age 12.7 Gyr, $[\text{Fe}/\text{H}] = -2.3$, at a distance of 33 kpc. There are 403 and 124 spectra within this filter in the off- and on-stream regions, respectively; a factor of 3.25 times as many spectra were observed in the off-stream region. Among the off-stream spectra in this isochrone filter, there are only two metal-poor ($-2.8 < [\text{Fe}/\text{H}] < -1.8$) red giants ($\log g < 4.0$) with $75 < v_{\text{gsr}} < 115$ km s$^{-1}$. Scaling by the factor of 3.25, this leads to an expectation of ~ 1 background "interloper" in our on-stream sample. Our finding of 10 candidate stream stars in this region (satisfying the same criteria) is thus a significant excess relative to neighboring regions. Furthermore, these stars are clustered in a small region of the CMD where we expect RGB stars. One additional candidate is a blue star that is consistent with being a horizontal branch star at the same distance. Table 1 shows the properties of the 10 stars classified as PSS candidates.

![Figure 3](image3.png)

Figure 3. Top row: color–magnitude diagrams of stars within the on-stream (upper left panel) and off-stream (upper right panel) fields defined in Section 2. The small black dots represent all stars with SDSS DR8 spectra. The light blue points in both panels represent giant stars with Galactocentric line-of-sight velocities 75 km s$^{-1} < v_{\text{gsr}} < 115$ km s$^{-1}$. The red points have an additional metallicity constraint of $-2.8 < [\text{Fe}/\text{H}] < -1.8$. The left (on-stream) panel has a clear concentration of stars grouped at $0.5 < (g-r)_0 < 0.7, g_0 \sim 18.8$, indicative of a red giant branch. The overplotted Padova isochrones correspond to a metallicity of $[\text{Fe}/\text{H}] \approx -2.3$ and an age of 12.7 Gyr. The blue, green, and red isochrones correspond to distances of 28, 33, and 38 kpc, respectively. Bottom row: color–magnitude Hess diagrams showing stellar density in the on-stream field after subtraction of the local background (off-stream, scaled down by a factor of eight) contribution. The left panel shows the residuals; the right panel is the same Hess diagram with Padova isochrones from the upper left panel overplotted. The darker pixels signify excess on-stream stars. A main-sequence turnoff is apparent at $g_0 \sim 21$ in the lower panels.

On the top left panel of Figure 3 we overplot three isochrones shifted to distances $(28, 33, \text{and } 38$ kpc) that roughly match the RGB, with a metallicity of $Z = 0.0001$ ($[\text{Fe}/\text{H}] \sim -2.28$) and age 12.7 Gyr. Our choices of isochrone parameters will become clear later in this Letter, as these were motivated by the MSTO visible in our background-subtracted Hess diagram, our...
spectroscopic metallicity measurement, and by examination of our matched-filter star count map. For now, we note that the RGBs of the fainter two isochrones match the clump of red points in Figure 3 well.

The surface gravity cut selects asymptotic giant branch and blue horizontal branch stars in addition to the RGB stars we are interested in finding. To further isolate RGB stars, we chose only stars with color \((g - r)_0 > 0.4\) from the velocity-selected sample shown in Figure 3 (light blue points), and histogrammed their metallicities in the upper panel of Figure 4. Because the off-stream field has many more stars than the on-stream selection, we normalized the off-stream counts by the relative number of stars with \([\text{Fe/H}] > -1.5\) (43 in the off-stream versus 11 in the on-stream region). The distributions of velocity-selected RGB candidate stars in the on- and off-stream fields are clearly different. The off-stream field has a metal-rich component at \(-1.0 < [\text{Fe/H}] < -0.4\) that is consistent with the off-stream (i.e., background) stars, but also a different, more metal poor, population at \([\text{Fe/H}] < -1.8\). Also shown in the left panel of Figure 4 is a Gaussian that we fit to the residuals from subtracting the scaled off-stream counts from the on-stream data; this yields \([\text{Fe/H}] = -2.24\), with \(\sigma_{[\text{Fe/H}]} = 0.32\). Because this low-metallicity peak is not present in the off-stream fields, we identify this as the PSS metallicity signature; this is the reason for the metallicity selection of \(-2.8 < [\text{Fe/H}] < -1.8\) for the red points in Figure 3.

We performed a similar procedure to find the velocity of stream candidates. The right panel of Figure 4 shows velocities of metal-poor \(([\text{Fe/H}] < -1.5)\) red giants, with the off-stream number counts scaled down by a factor of 3.16 so that the number of red giants with \([\text{Fe/H}] > -1.5\) is equal in the two samples. Again, we subtracted the scaled off-stream histogram from the on-stream data, and fit a Gaussian to the residuals. The fit (shown as a dotted curve in Figure 4) gives \(\langle v_{\text{gsr}} \rangle = 90.7 \text{ km s}^{-1}\), with \(\sigma_{v_{\text{gsr}}} = 8.7 \text{ km s}^{-1}\).

Having confirmed the presence of a population of stars having common velocity and metallicity, we next examine the photometric data in this region of the sky to look for additional evidence of the substructure. We selected all stars with photometric data from the SDSS DR8 database, within the on- and off-stream fields described above. We created CMD Hess diagrams for both the on- and off-stream fields using

![Figure 4](image-url)
extinction-corrected g_0 magnitudes and $(g - r)_0$ colors. The Hess diagram for the off-stream field was normalized by dividing number counts in each bin by 8 to account for the 8× larger area relative to the on-stream region. We subtracted the normalized off-stream Hess diagram from that of the on-stream field to create a difference plot. The residuals from this subtraction can be seen in the bottom left panel of Figure 3.

Figure 3 (lower panels) reveals an overdensity of stream stars between $0.2 < (g - r)_0 < 0.4$ and $20.5 < g_0 < 21.6$, consistent with a population of F-turnoff stars from the stream whose velocity signature we have found in RGB stars. The turnoff magnitude is clearly fainter than that of the 28 kpc isochrone, and appears more likely to be between the 33 kpc and 38 kpc isochrones. Since the stars are in a narrow line across the sky, we surmise that the turnoff stars and spectroscopically selected RGB stars are part of an old, metal-poor tidal stream at a distance of $\sim 35 \pm 3$ kpc.

3. DISCUSSION AND CONCLUSION

We have identified the kinematical and chemical signature of a likely stellar tidal stream based on spectra in an SDSS plate located at $l \approx 135^\circ$ and between $-39^\circ < b < -36^\circ$. Stars in this structure, which we call the Pisces Stellar Stream, have line-of-sight velocities in the Galactic standard of rest (GSR) frame between 77 km s$^{-1} < v_{gsr} < 114$ km s$^{-1}$. We estimate the mean velocity for the 11 stars using a maximum likelihood method (e.g., Pryor & Meylan 1993; Kleya et al. 2002), and find $\langle v_{gsr} \rangle = 95.6 \pm 3.1$ km s$^{-1}$ and an intrinsic velocity dispersion (accounting for individual velocity errors; the typical error for an individual star is ~ 7.0 km s$^{-1}$) of $\sigma_v = 7.6 \pm 3.0$ km s$^{-1}$. The metallicity of these 11 stars, determined from a Gaussian fit to the residuals after subtracting an off-stream field, is $[\text{Fe/H}] = -2.24$ with a dispersion of $\sigma_{[\text{Fe/H}]} = 0.32$, which is only slightly larger than the SDSS metallicity measurement error of ~ 0.2 dex (Lee et al. 2008). We isolate the PSS in both a background-subtracted color–magnitude Hess diagram and a matched-filter star count map. From these, we derive a distance to the stream of 35 ± 3 kpc. No distance gradient was apparent over the short stretch of the stream we isolated. The distance to the stream of 35 kpc isochrone to match the stream in the CMD.

The Pisces stream is a small segment of the structure identified as “stream a” by Grillmair (2012) in a matched-filter star count map of the south Galactic cap. This structure has also been located at ~ 30 kpc from the Sun (Majewski et al. 2004), much closer than our 35 kpc estimate for the PSS. Moreover, our mean velocity of $\langle v_{gsr} \rangle = 95.6$ km s$^{-1}$ at $l \approx 135^\circ$ is much higher than the ~ 30 km s$^{-1}$ found by Rocha-Pinto et al. (2004) for TriAnd at this position. We thus consider an association between the Pisces stream and TriAnd to be unlikely. The PSS is also unlikely to be associated with the CPS, as the CPS has $v_{gsr} = \sim 60$ km s$^{-1}$ at $b \approx -38^\circ$, compared to our ~ 90 km s$^{-1}$ velocity for the Pisces stream at this position.

We thank the anonymous referee for insightful comments. This work was supported by NSF grants AST 09-37523, AST 10-09670, and AST 12-39904. Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the US Department of Energy Office of Science. The SDSS-III Web site is http://www.sdss3.org/.

REFERENCES

Belokurov, V., Zucker, D. B., Evans, N. W., et al. 2006, ApJL, 642, L137
Belokurov, V., Zucker, D. B., Evans, N. W., et al. 2007, ApJ, 654, 897
Bonaca, A., Geha, M., & Kallivayalil, N. 2012, ApJL, 765, L6
Carlin, J. L., Yam, W., Casertani-Dinescu, D. I., et al. 2012, ApJ, 753, 145
Duffau, S., Zinn, R., Vivas, A. K., et al. 2006, ApJL, 636, L97
Girardi, L., Williams, B. F., Gilbert, K. M., et al. 2010, ApJ, 724, 1030
Grillmair, C. J. 2006, ApJL, 651, L29
Grillmair, C. J. 2009, ApJ, 693, 1118
Grillmair, C. J. 2010, in Galaxies and their Masks, eds. D. L. Block, K. C. Freeman, & I. Puerari (New York: Springer), 247
Grillmair, C. J., & Dionatos, O. 2006a, ApJ, 641, L37
Grillmair, C. J., & Dionatos, O. 2006b, ApJL, 643, L17
Grillmair, C. J., & Johnson, R. 2006, ApJL, 639, L17
Ibata, R. A., Irwin, M. J., Lewis, G. F., Ferguson, A. M. N., & Tanvir, N. 2003, MNRAS, 340, L21
Kleya, J., Wilkinson, M. I., Evans, N. W., Gilmore, G., & Frayn, C. 2002, MNRAS, 330, 792
Koposov, S. E., Belokurov, V., Evans, N. W., et al. 2012, ApJ, 750, 80
Koposov, S. E., Rix, H.-W., & Hogg, D. W. 2010, ApJ, 716, 220
Lee, Y. S., Beers, T. C., Sivaran, T., et al. 2008, AJ, 136, 2022
Li, J., Newberg, H. J., Carlin, J. L., et al. 2012, ApJ, 757, 151
Majewski, S. R., Nidever, D. L., Smith, V. V., et al. 2012, ApJL, 747, L37
Majewski, S. R., Ostheimer, J. C., Rocha-Pinto, H. J., et al. 2004, ApJ, 615, 738
Majewski, S. R., Skrutskie, M. F., Weinberg, M. D., & Ostheimer, J. C. 2003, ApJL, 599, L82
Marigo, P., Girardi, L., Bressan, A., et al. 2008, A&A, 482, 883
Newberg, H. J., Yanny, B., Rockosi, C., et al. 2002, ApJL, 569, 245
Newberg, H. J., Yanny, B., & Willett, B. A. 2009, ApJL, 700, L61
Pryor, C., & Meylan, G. 1993, in ASP Conf. Ser. 50, Structure and Dynamics of Globular Clusters, ed. S. G. Djorgovski & G. Meylan (San Francisco, CA: ASP), 357
Rocha-Pinto, H. J. 2010, in IAU Symp. 265, Chemical Abundances in the Universe: Connecting First Stars to Planets, ed. K. Cunha, M. Spite, & B. Barbey (Cambridge: Cambridge Univ. Press), 255
Rocha-Pinto, H. J., Majewski, S. R., Skrutskie, M. F., Crane, J. D., & Patterson, R. J. 2004, ApJL, 615, 732
Rockosi, C. M., Odenkirchen, M., Grebel, E. K., et al. 2002, AJ, 124, 349
Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525
Sesar, B., Cohen, J. G., Levanit, D., et al. 2012, ApJ, 755, 134
Sharma, S., Johnston, K. V., Majewski, S. R., et al. 2010, ApJ, 722, 750
Sheffield, A. A., Majewski, S. R., Johnston, K. V., et al. 2012, ApJL, 761, 161
Vivas, A. K., Zinn, R., Andrews, P., et al. 2001, ApJL, 554, L33
Willett, B. A., Newberg, H. J., Zhang, H., Yanny, B., & Beers, T. C. 2009, ApJ, 697, 207
Yam, W., Newberg, H. J., Carlin, J. L., et al. 2013, ApJ, submitted
Yanny, B., Newberg, H. J., Grebel, E. K., et al. 2003, ApJL, 588, 824