Sound regular corecursion in coFJ

Davide Ancona
DIBRIS, University of Genova, Italy
davide.ancona@unige.it

Pietro Barbieri
DIBRIS, University of Genova, Italy
pietro.barbieri@edu.unige.it

Francesco Dagnino
DIBRIS, University of Genova, Italy
francesco.dagnino@dibris.unige.it

Elena Zucca
DIBRIS, University of Genova, Italy
elena.zucca@unige.it

Abstract

The aim of the paper is to provide solid foundations for a programming paradigm natively supporting the creation and manipulation of cyclic data structures. To this end, we describe coFJ, a Java-like calculus where objects can be infinite and methods are equipped with a codefinition (an alternative body). We provide an abstract semantics of the calculus based on the framework of inference systems with corules. In coFJ with this semantics, FJ recursive methods on finite objects can be extended to infinite objects as well, and behave as desired by the programmer, by specifying a codefinition. We also describe an operational semantics which can be directly implemented in a programming language, and prove the soundness of such semantics with respect to the abstract one.

2012 ACM Subject Classification Theory of computation → Operational semantics; Software and its engineering → Recursion; Software and its engineering → Semantics

Keywords and phrases Operational semantics, coinduction, programming paradigms, regular terms

Introduction

Applications often deal with data structures which are conceptually infinite, such as streams or infinite trees. Thus, a major problem for programming languages is how to finitely represent something which is infinite, and, even harder, how to correctly manipulate such finite representations to reflect the expected behaviour on the infinite structure.

A well-established solution is lazy evaluation, as, e.g., in Haskell. In this approach, the conceptually infinite structure is represented as the result of a function call, which is evaluated only as much as needed. Focusing on the paradigmatic example of streams (infinites lists) of integers, we can define \texttt{two_one} = \texttt{2:1:two_one}, or even represent the list of natural numbers as \texttt{from_0}, where \texttt{from_n} = \texttt{n:from_n+1}. In this way, functions which only need to inspect a finite portion of the structure, e.g., getting the \textit{i}-th element, can be correctly implemented. On the other hand, functions which need to inspect the whole structure, e.g., \texttt{min} getting the minimal element, or \texttt{allPos} checking that all elements are positive, have an undefined result (that is, non-termination, operationally).
More recently, a different, in a sense complementary, approach has been considered, which focuses on cyclic structures (e.g., cyclic lists, trees and graphs). They can be regarded as a particular case of infinite structures: abstractly, they correspond to regular terms (or trees), that is, finitely branching trees whose depth can be infinite, but contain only a finite set of subtrees. For instance, the list \texttt{two_one} is regular, whereas the list of natural numbers is not. Typically, cyclic data structures are handled by programming languages by relying on imperative features or ad hoc data structures for bookkeeping. For instance, we can build a cyclic object by assigning to a field of an object a reference to the object itself, or we can visit a graph by marking already encountered nodes. In this approach, instead, the programming language natively supports regular structures, as outlined below:

- Data constructors are enriched by allowing equations, e.g., \(x = 2 : 1 : x \). Functions are \textit{regularly corecursive}, that is, execution keeps track of pending function calls, so that, when the same call is encountered the second time, this is detected, avoiding non-termination as with ordinary recursion. For instance, when calling \texttt{min} on the list \(x = 2 : 1 : x \), after an intermediate call on the list \(y = 1 : 2 : y \), the same call is encountered.

Regular corecursion originates from \textit{co-SLD resolution} \cite{20, 21, 7}, where already encountered goals (up to unification), called \textit{coinductive hypotheses}, are considered successful. However, co-SLD resolution is not flexible enough to to correctly express certain predicates on regular terms; for instance, in the \texttt{min} example, the intuitively correct corecursive definition is not sound, because the predicate succeeds for all lower bounds of \(l \), as shown in the following.

When moving from goals to functions calls, the same problem manifests more urgently because a result should always be provided for already encountered calls. To solve this issue, the mechanism of \textit{flexible regular corecursion} can be adopted to allow the programmer to correctly specify the behaviour of recursive functions on cyclic structures. For instance, for function \texttt{min}, the programmer specifies that the head of the list should be returned when detecting a cyclic call; in this way, on the list \(x = 2 : 1 : x \), the result of the cyclic call is \(2 \), so that the result of the original call is \(1 \), as expected.

Flexible regular corecursion as outlined above has been proposed in the object-oriented \cite{8}, functional \cite{17}, and logic \cite{3} paradigms (see Section 7 for more details). However, none of these proposals provides formal arguments for the correctness of the given operational semantics, by proving that it is sound with respect to some model of the behaviour of functions (or predicates) on infinite structures. The aim of this paper is to bridge this gap, by providing solid foundations for a programming paradigm natively supporting cyclic data structures. This is achieved thanks to the recently introduced framework of \textit{inference systems with corules} \cite{4, 13}, allowing definitions which are neither inductive, nor purely coinductive.

We present the approach in the context of Java-like languages, namely on an extension of Featherweight Java (FJ) \cite{15} called \texttt{coFJ}, outlined as follows:

- FJ objects are smoothly generalized from finite to infinite by interpreting their definition coinductively, and methods are equipped with a \textit{codefinition} (an alternative body).
- We provide an abstract big-step semantics for \texttt{coFJ} by an inference system with corules. In \texttt{coFJ} with this semantics, FJ recursive methods on finite objects can be extended to infinite objects as well, and behave as desired by the programmer, by specifying a codefinition. For instance, if the codefinitions for \texttt{min} and \texttt{allPos} are specified to return the head, and \texttt{true}, respectively, then \texttt{min} returns \(1 \) on \(x = 2 : 1 : x \), and \(0 \) on the list of the natural numbers, whereas \texttt{allPos} returns \texttt{true} on both lists.

\footnote{As we will discuss further in the Conclusion.}
Then, we provide an operational (hence, executable) semantics where infinite objects are restricted to regular ones and methods are regularly corecursive, and we show that such operational semantics is sound with respect to the abstract one. At https://person.dibris.unige.it/zucca-elena/coFJ_implementation.zip we provide a prototype implementation of CoFJ, briefly described in the Conclusion. A preliminary version of the operational semantics, with no soundness proof with respect to a formal model, has been given in [10].

Section 1 is a quick introduction to inference systems with corules. Section 2 describes FJ and informally introduces our approach. In Section 3 we define CoFJ and its abstract semantics, in Section 4 the operational semantics, in Section 5 we show some advanced examples, and in Section 6 we prove soundness. Finally, we discuss related work and draw conclusions in Section 7 and Section 8, respectively.

1 Inference systems with corules

First we recall standard notions on inference systems [1, 19]. Assuming a universe \(\mathcal{U} \) of judgments, an inference system \(\mathcal{I} \) is a set of (inference) rules, which are pairs \(\frac{Pr}{c} \), with \(Pr \subseteq \mathcal{U} \) the set of premises, and \(c \in \mathcal{U} \) the consequence (a.k.a. conclusion). A rule with an empty set of premises is an axiom. A proof tree (a.k.a. derivation) for a judgment \(j \) is a tree whose nodes are (labeled with) judgments, \(j \) is the root, and there is a node \(c \) with children \(Pr \) only if there is a rule \(\frac{Pr}{c} \).

The inductive and the coinductive interpretation of \(\mathcal{I} \), denoted \(\text{Ind}(\mathcal{I}) \) and \(\text{CoInd}(\mathcal{I}) \), are the sets of judgments with, respectively, a finite and a possibly infinite proof tree. In set-theoretic terms, let \(F_{\mathcal{I}} : \mathcal{P}(\mathcal{U}) \to \mathcal{P}(\mathcal{U}) \) be defined by \(F_{\mathcal{I}}(S) = \{ c \mid Pr \subseteq S, \frac{Pr}{c} \in \mathcal{I} \} \), and say that a set \(S \) is closed if \(F_{\mathcal{I}}(S) \subseteq S \), consistent if \(S \subseteq F_{\mathcal{I}}(S) \). Then, it can be proved that \(\text{Ind}(\mathcal{I}) \) is the smallest closed set, and \(\text{CoInd}(\mathcal{I}) \) is the largest consistent set. We write \(\mathcal{I} \vdash j \) when \(j \) has a finite derivation in \(\mathcal{I} \), that is, \(j \in \text{Ind}(\mathcal{I}) \).

An inference system with corules, or generalized inference system, is a pair \((\mathcal{I}, \mathcal{I}^{\omega}) \) where \(\mathcal{I} \) and \(\mathcal{I}^{\omega} \) are inference systems, whose elements are called rules and corules, respectively. Corules can only be used in a special way, as defined below.

For a subset \(S \) of the universe, let \(\mathcal{I}_S \) denote the inference system obtained from \(\mathcal{I} \) by keeping only rules with consequence in \(S \). Let \((\mathcal{I}, \mathcal{I}^{\omega}) \) be a generalized inference system. Then, its interpretation \(\text{Gen}(\mathcal{I}, \mathcal{I}^{\omega}) \) is defined by \(\text{Gen}(\mathcal{I}, \mathcal{I}^{\omega}) = \text{CoInd}(\mathcal{I}_{\text{Ind}(\mathcal{I}, \mathcal{I}^{\omega})}) \).

In proof-theoretic terms, \(\text{Gen}(\mathcal{I}, \mathcal{I}^{\omega}) \) is the set of judgments that have a possibly infinite proof tree in \(\mathcal{I} \), where all nodes have a finite proof tree in \(\mathcal{I} \cup \mathcal{I}^{\omega} \), that is, the (standard) inference system consisting of rules and corules. We write \((\mathcal{I}, \mathcal{I}^{\omega}) \vdash j \) when \(j \) is derivable in \((\mathcal{I}, \mathcal{I}^{\omega}) \), that is, \(j \in \text{Gen}(\mathcal{I}, \mathcal{I}^{\omega}) \). Note that \((\mathcal{I}, \emptyset) \vdash j \) is the same as \(\mathcal{I} \vdash j \).

We illustrate these notions by a simple example. As usual, sets of rules are expressed by meta-rules with side conditions, and analogously sets of corules are expressed by meta-corules with side conditions. (Meta-)corules will be written with thicker lines, to be distinguished from (meta-)rules. The following inference system defines the minimum element of a list, where \([x] \) is the list consisting of only \(x \), and \(x : u \) the list with head \(x \) and tail \(u \).

\[
\begin{align*}
\min([x], x) & \quad \min(u, y) \\
\min(x, u, z) & = \min(x, y)
\end{align*}
\]

\(^2\) Under the common assumption that sets of premises are finite, otherwise we should say well-founded.
The inductive interpretation gives the correct result only on finite lists, since for infinite lists an infinite proof is clearly needed. However, the coinductive one fails to be a function. For instance, for \(L \) the infinite list \(2∶1∶2∶1∶\ldots \), any judgment \(\text{min}(L, x) \) with \(x \leq 1 \) can be derived, as shown below.

\[
\begin{array}{c}
\text{min}(L, 1) \\
\text{min}(1:L, 1) \\
\text{min}(2:1:L, 1)
\end{array}
\quad
\begin{array}{c}
\text{min}(L, 0) \\
\text{min}(1:L, 0) \\
\text{min}(2:1:L, 0)
\end{array}
\]

By adding a corule (in this case a coaxiom), wrong results are “filtered out”:

\[
\begin{array}{c}
\text{min}(x∷, x) \\
\text{min}(u, y) \\
\text{min}(x∶u, z) = \text{min}(x, y) \\
\text{min}(x∶u, x)
\end{array}
\]

Indeed, the judgment \(\text{min}(2:1:L, 1) \) has the infinite proof tree shown above, and each node has a finite proof tree in the inference system extended by the corule:

\[
\begin{array}{c}
\text{min}(L, 1) \\
\text{min}(1:L, 1) \\
\text{min}(2:1:L, 1)
\end{array}
\]

The judgment \(\text{min}(2:1:L, 0) \), instead, has the infinite proof tree shown above, but has no finite proof tree in the inference system extended by the corule. Indeed, since 0 does not belong to the list, the corule can never be applied. On the other hand, the judgment \(\text{min}(L, 2) \) has a finite proof tree with the corule, but cannot be derived since they it has no infinite proof tree. We refer to [4, 5, 6, 13] for other examples.

As final remark, note that requiring the existence of a finite proof tree with corules only for the root is not enough. For regular proof trees, the requirement to have such a proof tree for each node can be simplified in two ways:

- either requiring a sufficiently large finite proof-with-corules for the root, that is, a finite proof tree for the root which includes all the nodes of the regular proof tree
- or requiring a finite proof-with-corules for one node taken from each infinite path.

Let \((\mathcal{I}, \mathcal{I}^\infty) \) be a generalized inference system. The bounded coinduction principle 4, a generalization of the standard coinduction principle, can be used to prove completeness of \((\mathcal{I}, \mathcal{I}^\infty) \) w.r.t. a set \(S \) (for “specification”) of valid judgments.

\begin{itemize}
\item \textbf{Theorem 1} (Bounded coinduction). If the following two conditions hold:
\begin{enumerate}
\item \(S \subseteq \text{Ind}(\mathcal{I} \cup \mathcal{I}^\infty) \), that is, each valid judgment has a finite proof tree in \(\mathcal{I} \cup \mathcal{I}^\infty \);
\item \(S \subseteq F_{\mathcal{I}}(S) \), that is, each valid judgment is the consequence of a rule in \(\mathcal{I} \) with premises in \(S \) then \(S \subseteq \text{Gen}(\mathcal{I}, \mathcal{I}^\infty) \).
\end{enumerate}
\end{itemize}

\section{From FJ to coFJ}

We recall FJ, and informally explain its extension with infinite objects and codefinitions.

\textbf{Featherweight Java} The standard syntax and semantics in big-step style of FJ are shown in Figure 1. We omit cast since this feature does not add significant issues. We adopt a big-step, rather than a small-step style as in the original FJ definition, since in this way the semantics is directly defined by an inference system, denoted \(\mathcal{I}_{\text{FJ}} \) in the following, which will be equipped with corules to support infinite objects. We write \(\overline{\text{cd}} \) as metavariable for
A sequence of class declarations $\overrightarrow{c d}$ is called a class table. Each class has a canonical constructor whose parameters match the fields of the class, the inherited ones first. We assume standard FJ constraints, e.g., no field hiding and no method overloading. The only variables occurring in method bodies are parameters (including this). Values are objects, that is, constructor invocations where arguments are values in turn.

The judgment $e \Downarrow v$ is implicitly parameterized on a fixed class table. In the rules we use standard FJ auxiliary functions, omitting their formal definition. Notably, $\text{fields}(C)$ returns the sequence $f_1 \ldots f_n$ of the field names of the class, in declaration order with the inherited first, and $\text{mbody}(C, m)$, for method m of the class, the pair of the sequence of parameters and the definition. Substitution $e[v/x]$ is defined in the customary manner. Finally, for $\overrightarrow{v_0} = \text{new } C(...)$, $\overrightarrow{v_0} = \text{new } C(...)$. $\text{mbody}(C, m) = (\overrightarrow{v}, e)$

Rule (FJ-field) models field access. If the selected field is actually a field of the receiver’s class, then the corresponding value is returned as result. Rule (FJ-new) models object creation: if the argument expressions $e \uparrow v$ evaluate to values v, then the result is an object of class C. Rule (FJ-invk) models method invocation. The receiver and argument expressions are evaluated first. Then, method look-up is performed, starting from the receiver’s class, by the auxiliary function mbody. Lastly, the definition e of the method, where this is replaced by the receiver, and the parameters by the arguments, is evaluated, and its result is returned.

Infinite objects and codefinitions We take as running example the following FJ implementation of lists of integers, equipped with some typical methods: isEmpty tests the emptiness, incr returns the list where all elements have been incremented by one, allPos checks whether all elements are positive, member checks whether the argument is in the list, and min returns the minimal element.

$$
\begin{align*}
\text{class List extends Object { }
\end{align*}
$$

3 We omit types since not relevant here. We discuss about type systems for coFJ in the conclusion.
We used some additional standard constructs, such as conditional and primitive types `bool` and `int` with their operations; to avoid to use abstract methods, `List` provides the default implementation on empty lists, overridden in `NonEmptyList`, except for method `min` which is only defined on non empty lists.

In FJ we can represent finite lists. For instance, the object

```
new NonEmptyList(2, new NonEmptyList(1, new EmptyList()))
```

which we will abbreviate `[2,1]`, represents a list of two elements, and it is easy to see that all the above method definitions provide the expected meaning on finite lists.

On the other hand, since the syntactic definition for objects is interpreted, like the others, inductively, in FJ objects are finite, hence we cannot represent, e.g., the infinite list of natural numbers `[0,1,2,3,...]`, abbreviated `[0..]`, or the infinite list `[2,1,2,1,2,1,...]`, abbreviated `[2,1]ω`. To move from finite to infinite objects, it is enough to interpret the syntactic definition for values coinductively, so to obtain infinite terms as well. However, to make the extension significant, we should be able to generate such infinite objects as results of expressions, and to appropriately handle them by methods.

To generate infinite objects, e.g., the infinite lists mentioned above, a natural approach is to consider method definitions as corecursive, that is, to take the coinductive interpretation of the inference system in Figure 1. Consider the following class:

```
class ListFactory extends Object {
    NonEmptyList from(int x) { new NonEmptyList(x, this.from(x+1)) }
    NonEmptyList two_one() { new NonEmptyList(2, this.two_one()) }
    NonEmptyList one_two() { new NonEmptyList(1, this.one_two()) }
}
```

With the standard FJ semantics, given by the inductive interpretation of the inference system in Figure 1 the method invocation `new ListFactory().from(0)` (abbreviated `from0` in the following) has no result, since there is no finite proof tree for a judgment of shape `from0 ⊘ _`. Taking the coinductive interpretation, instead, such call returns as result the infinite list of natural numbers `[0..]`, since there is an infinite proof tree for the judgment `from0 ⊘ [0..]`. Analogously, the method invocation `new ListFactory().two_one()` returns `[2,1]ω`. Moreover, the method invocations `[0..].incr()` and `[2,1]ω.incr()` correctly return as result the infinite lists `[1..]` and `[3,2]ω`, respectively.
However, in many cases to consider method definitions as corecursive is not satisfactory, since it leads to non-determinism, as shown for inference systems in Section 1. For instance, for the method invocation \([0..].allPos()\) both judgments \([0..].allPos()\) \(\downarrow\) true and \([0..].allPos()\) \(\downarrow\) false are derivable, and analogously for \([2,1]^{\omega}.allPos()\). In general, both results can be obtained for any infinite list of all positive numbers. A similar behavior is exhibited by method member; given an infinite list \(L\) which does not contain \(x\), both judgments \(L.member(x)\) \(\downarrow\) true and \(L.member(x)\) \(\downarrow\) false are derivable. Finally, for the method invocation \([2,1]^{\omega}.min()\), any judgment \([2,1]^{\omega}.min()\) \(\downarrow\) \(x\) with \(x \leq 1\) can be derived.

To solve this problem, coFJ allows the programmer to control the semantics of corecursive methods by adding a codefinition that is, an alternative method body playing a special role. Depending on the codefinition, the purely coinductive interpretation is refined, by filtering out some judgments. In the example, to achieve the expected meaning, the programmer should provide the following codedefinitions.

```java
class ListFactory extends Object {
    NonEmptyList from(int x) {
        new NonEmptyList(x, this.from(x + 1)) corec {any}
    }
    NonEmptyList one_two () {
        new NonEmptyList(1, this.two_one()) corec {any}
    }
    NonEmptyList two_one () {
        new NonEmptyList(2, this.one_two()) corec {any}
    }
}
class NonEmptyList extends List {
    int head; List tail;
    boolean isEmpty() {false}
    List incr() {
        new NonEmptyList(this.head + 1, this.tail.incr()) corec {any}
    }
    boolean allPos() {
        if (this.head <= 0) false else this.tail.allPos() corec {true}
    }
    boolean member(int x) {
        if (this.head == x) true else this.tail.member(x) corec {false}
    }
    int min() {
        if (this.tail.isEmpty()) this.head
        else Math.min(this.tail.min(), this.head)
    }
}
```

For the three methods of ListFactory and for the method incr the codefinition is any. This corresponds to keeping the coinductive interpretation as it is, as is appropriate in these cases since it provides only the expected result. In the other three methods, instead, the effect of the codefinition is to filter the results obtained by the coinductive interpretation. The way this is achieved is explained in the following section. Finally, for method isEmpty no codefinition is added, since the inductive behaviour works on infinite lists as well.

3 coFJ and its abstract semantics

We formally define coFJ, illustrate how the previous examples get the expected semantics, and show that, despite its non-determinism, coFJ is a conservative extension of FJ.

Formal definition of coFJ The coFJ syntax is given in Figure 1. As the reader can
Sound regular corecursion in coFJ

\[cd \quad ::= \quad \text{class } C \text{ extends } C' \{ \text{fd} \text{ } \text{md} \} \quad \text{class declaration} \]
\[fd \quad ::= \quad C; \quad \text{field declaration} \]
\[md \quad ::= \quad C \text{ } m(C, x_1, \ldots, C, x_n) \{ e \} \{ \text{corec } e' \} \quad \text{method declaration with codefinition} \]
\[e \in \mathcal{E} \quad ::= \quad x | e.f \mid \text{new } C(\tau) | e.m(\tau) \quad \text{expression} \]
\[v \in \mathcal{V}^a \quad ::= \quad \text{new } C(\tau) \quad \text{possibly infinite object} \]
\[e \in \mathcal{E}^a \quad ::= \quad x | e.f \mid \text{new } C(\tau) | e.m(\tau) | v \quad \text{runtime expression} \]

\[
\begin{array}{l}
\frac{e \downarrow v}{e.f \downarrow v_i} \quad \text{fields}(C) = f_1 \ldots f_n \\
\frac{e_0 \downarrow v_0 \quad \tau \sqsupset \gamma \quad e'[v_0/\text{this}][\tau/\gamma] \downarrow v}{e_0.m(\gamma) \downarrow v} \quad \text{new } C(_)
\end{array}
\]

\[
\begin{array}{l}
\frac{e_0 \downarrow v_0 \quad \tau \sqsupset \gamma \quad e'[v_0/\text{this}][\tau/\gamma][v/\text{any}] \downarrow v_{co}}{e_0.m(\gamma) \downarrow v_{co}} \quad \text{co-mbody}(C, m) = (\tau, e')
\end{array}
\]

\[\text{Figure 2 coFJ syntax and abstract semantics} \]

Note, the only difference is that method declarations include now, besides a definition \(e \), an optional codefinition \(e' \), as denoted by the square brackets in the production. Furthermore, besides \text{this}, there is another special variable \text{any}, which can only occur in codefinitions.

The codefinition will be used to provide an abstract semantics through an inference system with corules, where the role of \text{any} is to be a placeholder for an arbitrary value. For simplicity, we require the codefinition \(e' \) to be statically restricted to avoid recursive (even indirect) calls to the same method (we omit the standard formalization). Note that FJ is a (proper) subset of coFJ: indeed, an FJ class table is a coFJ class table with no codefinitions.

The syntactic definition for values is the same as before, but is now interpreted \text{coinductively}, as indicated by the symbol \(_::=_{co} \). In this way, infinite objects are supported. By replacing method parameters by arguments, we obtain \text{runtime expressions} admitting infinite objects as subterms. The sets \(\mathcal{V} \) and \(\mathcal{E} \) of FJ objects and expressions are subsets of \(\mathcal{V}^a \) and \(\mathcal{E}^a \), respectively. The judgment \(e \downarrow v \), with \(e \in \mathcal{E}^a \) and \(v \in \mathcal{V}^a \), is defined by an inference system with corules \((\mathcal{I}_f, \mathcal{I}_{co}^F) \) where the rules \(\mathcal{I}_f \) are those of FJ, as in Figure 1, and the corules \(\mathcal{I}_{co}^F \) are instances of two metacorules.

Corule (\text{abs-co-val}) is needed to obtain a value for infinite objects, as shown below. Corule (\text{abs-co-invk}) is analogous to the standard rule for method invocation, but uses the codefinition, and the variable \text{any} can be non-deterministically substituted with an arbitrary value. The auxiliary function \text{co-mbody} is defined analogously to \text{mbody}, but it returns the codefinition. Note that, even when \text{mbody}(C, m) is defined, \text{co-mbody}(C, m) can be undefined since no codefinition has been specified. This can be done to force a purely inductive behaviour for the method.

Examples As an example, we illustrate in Figure 3 the role of the two corules for the call \text{new ListFactory().from(0)}. For brevity, we write abbreviated class names. Furthermore, \text{fromn} stands for the call \text{new ListFactory().from(n)} and \text{[n..]} for the infinite object \text{new}
Non-determinism and conservativity interpretation may be kept. For instance, consider the following method declaration:

```
class C {
    C m() { this.m() } corec { any }
}
```

Figure 3 Infinite (top) and finite (bottom) proof trees for `from, n`.

\[
T_n \Rightarrow \text{(abs-new)} \frac{\text{new LF} \parallel \text{new LF}}{\text{new NEL}(n, \text{new LF} \cdot \text{from}(n+1)) \parallel [n..]}
\]

\[
T_{n+1} \Rightarrow \text{(abs-new)} \frac{\text{new LF} \parallel \text{new LF}}{\text{new NEL}(n+1, \text{new LF} \cdot \text{from}(n+1) \cdot \text{from}(n+2)) \parallel [n+1..]}
\]

\[
\text{(abs-co-val)} \frac{\text{[n..]} \equiv \text{any[new LF}/\text{this}[\text{[n..]}]/\text{any}] \parallel [n..]}{\text{from, n} \parallel [n..]}
\]

NonEmptyList(n, new NonEmptyList(n+1, ...)). In the top part of Figure 3, we show the infinite proof tree \(T_n\), which can be constructed, for any natural number \(n\), for the judgment \(\text{from, n} \parallel [n..]\) without the use of corules. We use standard rules \((n-\text{val})\) and \((+\) to deal with integer constants and addition.

To derive the judgment in the inference system with corules, each node in this infinite tree should have a finite proof tree with the corules. Notably, this should hold for nodes of shape \(\text{from, n} \parallel [n..]\), and indeed the finite proof tree for such nodes is shown in the bottom part of the figure. Note that, in this example, the result for the call \(\text{from, n}\) is uniquely determined by the rules, hence the role of the corules is just to “validate” this result. To this end, the codefinition of the method \(\text{from}\) is the special variable \(\text{any}\), which, when evaluating the codefinition, can be replaced by any value, hence, in particular, by the correct result \([n..]\). Corule \((\text{abs-co-val})\) is needed to obtain a finite proof tree for the infinite objects of shape \([n..]\). Analogous infinite and finite proof trees can be constructed for the judgments \(\text{new LF}/\text{this}\) \([2,1] \parallel [0..] \cdot \text{incr}() \parallel [1..] \) and \([2,1] \parallel [3,2] \). For the method call \([0..] \cdot \text{allPos}()\), instead, both judgments \([0..] \cdot \text{allPos}() \parallel \text{true}\) and \([0..] \cdot \text{allPos}() \parallel \text{false}\) have an infinite proof tree. However, no finite proof tree using the codefinition can be constructed for the latter, whereas this is trivially possible for the former. Analogously, given an infinite list \(L\) which does not contain \(x\), only the judgment \(L.\text{member}(x) \parallel \text{false}\) has a finite proof tree using the codefinition.

Finally, for the method invocation \([2,1] \parallel \text{min}()\), for any \(v \leq 1\) there is an infinite proof tree built without corules for the judgment \([2,1] \parallel \text{min}() \parallel v\) as shown in Figure 4. However, only the judgment \([2,1] \parallel \text{min}() \parallel 1\) has a finite proof tree using the codefinition (Figure 5). For space reasons in both figures ellipses are used to omit the less interesting parts of the proof trees; we use the standard rule \((\text{if}-\text{f})\) for conditional, and the predefined function \(\text{Math.min}\) on integers.

Non-determinism and conservativity The coFJ abstract semantics is inherently non-deterministic. Indeed, depending on the codefinition, the non-determinism of the coinductive interpretation may be kept. For instance, consider the following method declaration:
Sound regular corecursion in coFJ

Method \(m() \) recursively calls itself. In the abstract semantics, the judgment \(\text{new } C().m() \Downarrow v \) can be derived for any value \(v \). In the operational semantics defined in Section 4 such method call evaluates to \((x, x : x) \), that is, the representation of \textit{undetermined}.

However, determinism of FJ evaluation is preserved. Indeed, coFJ abstract semantics is a \textit{conservative} extension of FJ semantics, as formally stated below.

\begin{theorem}[Conservativity] If \(\mathcal{I}_{x} = e \Downarrow v \), then \((\mathcal{I}_{x}, \mathcal{I}_{x}'') = e \Downarrow v' \) iff \(v = v' \).
\end{theorem}

\textbf{Proof.} Both directions can be easily proved by induction on the definition of \(\mathcal{I}_{x} \). For the left-to-right direction, the fact that each syntactic category has a unique applicable meta-rule is crucial.

This theorem states that, whichever the codefinitions chosen, coFJ does not change the semantics of expressions evaluating to some value in FJ. That is, coFJ abstract semantics allows derivation of new values only for expressions whose semantics is undefined in standard FJ, as in the examples shown above. Note also that, if no codefinition is specified, then the coFJ abstract semantics \textit{coincides} with the FJ one, because corule \(\text{ABS-CO-INVK} \) cannot be applied, hence no infinite proof trees can be built for the evaluation of FJ expressions.

\section{Operational semantics}

We informally introduce the operational semantics of coFJ, provide its formal definition, and prove that it is deterministic and conservative.
Outline In contrast to the abstract semantics of the previous section, the aim is to define a semantics which leads to an interpreter for the calculus. To obtain this, there are two issues to be considered:

1. infinite (regular) objects should be represented in a finite way;
2. infinite (regular) proof trees should be replaced by finite proof trees.

In the following we explain how these issues are handled in the coFJ operational semantics.

To obtain (1), we use an approach based on capsules [16], which are essentially expressions supporting cyclic references. In our context, capsules are pairs \((e, \sigma)\) where \(e\) is an FJ expression and \(\sigma\) is an environment, that is, a finite mapping from variables into FJ expressions. Moreover, the following capsule property is satisfied: writing \(FV(e)\) for the set of free variables in \(e\), \(FV(e) \subseteq \text{dom}(\sigma)\) and, for all \(x \in \text{dom}(\sigma)\), \(FV(\sigma(x)) \subseteq \text{dom}(\sigma)\). An FJ source expression \(e\) is represented by the capsule \((e, \emptyset)\), where \(\emptyset\) denotes the empty environment. In particular, values are pairs \((v, \sigma)\) where \(v\) is an open FJ object, that is, an object possibly containing variables. In this way, cyclic objects can be obtained: for instance, \((x, x : \text{new NEL}(2, \text{new NEL}(1, x)))\) represents the infinite regular list \([2, 1]^{\omega}\) considered before.

To obtain (2), methods are regularly corecursive. This means that execution keeps track of the pending method calls, so that, when a call is encountered the second time, this is detected\(^6\) avoiding non-termination as it would happen with ordinary recursion. Regular corecursion in coFJ is flexible, since the behaviour of the method when a cycle is detected is specified by the codeinition.

Consider, for instance, the method call \text{new ListFactory().two_one()}; thanks to regular corecursion, the result is the cyclic object \((x, x : \text{new NEL}(2, \text{new NEL}(1, x)))\). Indeed, the operational semantics associates a fresh variable, say, \(x\), to the initial call, so that, when the same call is encountered the second time, the association \(x : x\) is added in the environment, and the codeinition is evaluated where any is replaced by \(x\). Hence, \((x, x : x)\) is returned as result, so that the result of the original call is \((x, x : \text{new NEL}(2, \text{new NEL}(1, x)))\). The call \text{new ListFactory().from(0)}, instead, does not terminate in the operational semantics, since no call is encountered more than once (the resulting infinite object is non-regular).

Consider now the call \([2, 1]^{\omega}.\text{allPos()}\). In this case, when the call is encountered the second time, after an intermediate call \([1, 2]^{\omega}.\text{allPos()}\), the result of the evaluation of the codeinition is \text{true}, so that the result of the original call is \text{true} as well\(^7\). If the codeinition were \text{any}, then the result would be \((x, x : x)\), that is, undetermined. Note that, if the list is finite, then no regular corecursion is involved, since the same call cannot occur more than once; the same holds if the list is cyclic, but contains a non-positive element, hence the method invocation returns \text{false}. The only case requiring regular corecursion is when the method is invoked on a cyclic list with all positive elements, as \([2, 1]^{\omega}\).

In the case of \([2, 1]^{\omega}.\text{min()}\), when the call is encountered the second time the result of the evaluation of the codeinition is 2, so that the result of the intermediate call \([1, 2]^{\omega}.\text{min()}\) is 1, and this is also the result of the original call.

Formal definition To formally express the approach described above, the judgment of the operational semantics has shape \(e, \sigma, \tau \vdash v, \sigma'\) where: \((e, \sigma)\) is the capsule to be evaluated; \(\tau\) is a call trace, used to keep track of already encountered calls, that is, an injective map from calls \(v_0.m(\tau)\) to (possibly tagged) variables, and \((v, \sigma')\) is the capsule result. Variables in the codomain of the call trace have a tag \(ck\) during the checking step for the corresponding call, as detailed below. The pair \((e, \sigma)\) and \((v, \sigma')\) are assumed to satisfy the capsule property.

\(^6\) The semantics detects an already encountered call by relying on capsule equivalence (Figure \ref{fig: equivalence}).

\(^7\) To be rigorous, a capsule of shape \((\text{true}, ___)\).
The semantic rules are given in Figure 8. We denote by $\sigma \{ x : v \}$ the environment which gives v on x, and is equal to σ elsewhere, and analogously for other maps. Furthermore, we use the following notations, formally defined in Figure 4:

- $\text{unfold}(v, \sigma)$ is the unfolding of v in σ, that is, the corresponding object, if any.
- $\sigma_1 \uplus \sigma_2$ is the union of environments, defined if they agree on the common domain.
- $(v, \sigma) \approx (v', \sigma')$ is the equivalence of capsules. As will be formalized in the first part of Section 5, equivalent capsules denote the same sets of abstract objects. This equivalence is extended by congruence to expressions, in particular to calls $v_0.m(\tau)$.
- τ_{σ} is obtained by extending τ up to equivalence in σ. That is, detection of already encountered calls is performed up-to equivalence in the current environment.

Rule (val) is needed for objects which are not FJ objects. Rule (field) is similar to that of FJ except that the capsule (v, σ') must be unfolded to retrieve the corresponding object. Furthermore, the resulting environment is that obtained by evaluating the receiver. Rule (new) is analogous to that of FJ. The resulting environment is the union of those obtained by evaluating the arguments.

There are four rules for method invocation. In all of them, as in the FJ rule, the receiver and argument expressions are evaluated first to obtain the call $c = v.m(\tau)$. The environment $\bar{\sigma}$ is the union of those obtained by these evaluations. Then, the behavior is different depending whether such call (meaning a call equivalent to c in $\bar{\sigma}$) has been already encountered.

Rules (invk-ok) and (invk-check) handle a call c which is encountered the first time, as expressed by the side condition $c \notin \text{dom}(\tau_{\bar{\sigma}})$. In both, the definition e, where the receiver replaces this and the arguments replace the parameters, is evaluated. Such evaluation is performed in the call trace τ updated to associate the call c with an unused variable x (in these two rules “x fresh” means that x does not occur in the derivations of $e_i, \sigma, \tau \uplus v_i, \sigma'_i$, for all $i \in 0..n$), and produces the capsule (v, σ'). Then there are two cases, depending on whether $x \in \text{dom}(\sigma')$ holds.

If $x \notin \text{dom}(\sigma')$, then the evaluation of the definition for c has been performed without evaluating the code definition. That is, the same call has not been encountered, hence the result has been obtained by standard recursion, and no additional check is needed.

If $x \in \text{dom}(\sigma')$, instead, then the evaluation of the definition for c has required to evaluate the code definition. In this case, an additional check is required (third premise). That is, $d[v_0/\text{this}][\tau/\tau]$ is evaluated once more under the assumption that v is the result of the call. Formally, evaluation takes place in an environment updated to associate x with v, and the variable x corresponding to the call is tagged with ck. The capsule result obtained in this way must be (equivalent to) that obtained by the first evaluation of the body of the method. In Section 5 we discuss in detail the role of this additional check, showing an example where it is necessary. If the check succeeds, then the final result is the variable x in the environment updated to associate x with v. Otherwise, rule (invk-check) cannot be applied since the last premise does not hold. For simplicity, we assume the result of c to be undefined in this case; an additional rule could be added raising a runtime error in case the result is different from the expected one, as should be done in an implementation.

The remaining rules handle an already encountered call c, that is, $\tau_{\sigma}(c)$ is defined. The behavior is different depending on whether the corresponding variable x is tagged or not.

If x is not tagged, then rule (corec) evaluates the code definition where the receiver object replaces this, the arguments replace the parameters, and, furthermore, the variable x found

Footnote:

The two rules could be merged together, but we prefer to make explicit the difference for sake of clarity.
\[v \in \mathcal{V}_{op} ::= \text{new } C(v) \mid x \]
open object

\[\sigma ::= x_1 : v_1 \ldots x_n : v_n \quad (n \geq 0) \]
environment

\[c ::= v. m(v) \]
call

\[t ::= [\text{ck}] \]
optional checking tag

\[\tau ::= e_1 : x_1^1, \ldots, e_n : x_n^n \quad (n \geq 0) \]
call trace

In all the following rules:
\[C = v_0.m(v) \]
\[\sigma = \bigcup_{i=0..n} \sigma_i' \]
\[\text{unfold}(v_0, \sigma') = \text{new } C(v_1, \ldots, v_n) \]
\[\text{fields}(C) = f_1 .. f_n \]
\[f = f_i, i \in 1..n \]

\[\begin{array}{c}
\text{val} \\
\begin{array}{c}
\vdash \mathcal{V}, \sigma, \tau \Downarrow v, \sigma' \\
\text{unfold}(v, \sigma') = \text{new } C(v_1, \ldots, v_n)
\end{array}
\end{array} \]
\[\begin{array}{c}
\text{corec} \\
\begin{array}{c}
\vdash e, \sigma, \tau \Downarrow v, \sigma' \\
\text{fields}(C) = f_1 .. f_n
\end{array}
\end{array} \]
\[\begin{array}{c}
\text{new} \\
\begin{array}{c}
\vdash e_i, \sigma, \tau \Downarrow v_i, \sigma_i' \\
\forall i \in 1..n
\end{array}
\end{array} \]
\[\begin{array}{c}
\vdash \text{new } C(e_1, \ldots, e_n), \sigma, \tau \Downarrow \text{new } C(v_1, \ldots, v_n), \bigcup_{i=1..n} \sigma_i'
\end{array} \]

\[\begin{array}{c}
\begin{array}{l}
\vdash v, \sigma, \tau \Downarrow v, \sigma' \\
\text{new } C(v_1, \ldots, v_n)
\end{array}
\end{array} \]
\[\begin{array}{c}
\vdash e, \sigma, \tau \Downarrow v, \sigma' \\
f = f_i, i \in 1..n
\end{array} \]
\[\begin{array}{c}
\vdash e_i, \sigma, \tau \Downarrow v_i, \sigma_i' \\
\forall i \in 1..n
\end{array} \]
\[\vdash \text{new } C(e_1, \ldots, e_n), \sigma, \tau \Downarrow \text{new } C(v_1, \ldots, v_n), \bigcup_{i=1..n} \sigma_i'
\end{array} \]

Figure 6 CoFJ operational semantics
We write \(\sigma \) values. The stronger strictness condition prevents erroneous identification of objects during evaluation, e.g., \(\text{unfold}(\tau_1, \sigma_1) \neq \text{unfold}(\tau_2, \sigma_2) \) if \(\tau_1 = \tau_2 \) and \(\sigma_1 \neq \sigma_2 \).

For \(\sigma_1 \) and \(\sigma_2 \) such that \(\sigma_1(x) = \sigma_2(x) \) for all \(x \in \text{dom}(\sigma_1) \cap \text{dom}(\sigma_2) \)

\[
(\sigma_1 \sqcup \sigma_2)(x) = \begin{cases}
\sigma_1(x) & x \in \text{dom}(\sigma_1) \\
\sigma_2(x) & x \in \text{dom}(\sigma_2)
\end{cases}
\]

Set \(\leftrightarrow \) the least equivalence relation on \(\text{undet}(\sigma) \) such that \(x \leftrightarrow y \) if \(\sigma(x) = y \), \([x]\) the equivalence class of \(x \), and \(\text{undet}_n(\sigma) \) the quotient. A relation \(\alpha \subseteq \text{undet}(\sigma_1) \times \text{undet}(\sigma_2) \) is a \(\sigma_1, \sigma_2 \)-renaming if it induces a (partial) bijection from \(\text{undet}_n(\sigma_1) \), still denoted \(\alpha \), to \(\text{undet}_n(\sigma_2) \). Given \(\alpha \) a \(\sigma_1, \sigma_2 \)-renaming, the relation \((x, \sigma_1) \sim_{\alpha}(x', \sigma_2) \) is coinductively defined by:

\[
(x, \sigma)_\sim_{\alpha}(x', \sigma') \iff \forall i \in 1..n \quad \frac{(v_i, \sigma) = (v'_i, \sigma')}{(v_i, \sigma') = (v'_i, \sigma')}
\]

A \(\sigma_1, \sigma_2 \)-renaming \(\alpha \) is strict if, for \(x, y \in \text{undet}(\sigma_1) \cap \text{undet}(\sigma_2) \), \([x]\alpha[\sigma[\gamma]]\) iff \(x \leftrightarrow y \) and \(x \leftrightarrow y \).

We write \((v, \sigma) = (v', \sigma') \) iff \((v, \sigma) = (v', \sigma') \) for some strict \(\alpha \).

\[\tau_{\sim_{\alpha}}(c') = \tau(c) \text{ for each } c' \text{ such that } (c', \sigma) = (c, \sigma)\]

Figure 7 coFJ auxiliary definitions

in the call trace replaces any. In addition, \(\overline{\sigma} \) is updated to associate \(x \) with \(x \). In this way, the semantics keeps track of the application of rule \(\text{COREC} \).

If \(x \) is tagged, instead, then we are in a checking step for the corresponding call. In this case, rule \(\text{LOOK-\text{UP}} \) simply returns the associated variable for a call; by definition of the operational semantics, in this case such a variable is always defined in the environment.

Figure 7 contains the formal definitions of the notations used in the rules.

Note that \(\text{unfold} \), being inductively defined, can be undefined, denoted \(\dagger \), in presence of unguarded cycles among variables. Capsule equivalence, instead, is defined coinductively, so that, e.g., \((x,x: \text{new } C(x)) \) is equivalent to \((x,x: \text{new } C(\text{new } C(x))) \). Capsule equivalence implicitly subsumes \(\alpha \)-equivalence of variables whose unfolding is defined, e.g., \((x,x: \text{new } C(x)) = (y,y: \text{new } C(y)) \). Instead, \(\alpha \)-equivalence of undetermined variables is given by an explicit renaming, which should preserve disjointness of cycles. For instance, \((\text{new } C(x,y), (x,y,y:x)) \) is equivalent to \((\text{new } C(x,y), (x,y:y,x)) \), but is not equivalent to \((\text{new } C(x,y), (x,y,y:x)) \). Indeed, in the latter case \(x \) and \(y \) can be instantiated independently.

We will prove in Section 6 (Theorem 10) that the relation \(=_{\alpha} \), for some \(\sigma_1, \sigma_2 \)-renaming \(\alpha \), is the operational counterpart of the fact that two capsules denote the same set of abstract values. The stronger strictness condition prevents erroneous identification of objects during evaluation, e.g., \((\text{new } C(x,y), (x,y,y:x)) \) is not equivalent to \((\text{new } C(y,x), (y,y,x:x)) \).

Determinism and conservativity In contrast to coFJ abstract semantics, but like FJ, coFJ operational semantics is deterministic.

Theorem 3 (Determinism). If \(e, \sigma, \tau_1 \downarrow v_1, \sigma_1 \) and \(e, \sigma, \tau_2 \downarrow v_2, \sigma_2 \) hold and \(\text{dom}(\tau_1) = \text{dom}(\tau_2) \), then \((v_1, \sigma_1) \) and \((v_2, \sigma_2) \) are equal up-to \(\alpha \)-equivalence.

Proof. The proof is by induction on the derivation for \(e, \sigma, \tau_1 \downarrow v_1, \sigma_1 \). The key point is that, once fixed \(e, \sigma \) and \(\text{dom}(\tau_1) \), there is a unique applicable rule, hence both \(e, \sigma, \tau_1 \downarrow v_1, \sigma_1 \) and
e, \sigma, \tau_2 \Downarrow v_2, \sigma_2 are derived by the same rule.

As the abstract one, the operational semantics is a conservative extension of the standard FJ semantics. This result follows from soundness with respect to the abstract semantics in next section, however the direct proof below provides some useful insight.

\textbf{Theorem 4 (Conservativity).} If \(I_{\tau_1} \vdash e \Downarrow v \), then \(e, \emptyset, \emptyset \Downarrow v, \sigma \) holds iff \(v = v \) and \(\sigma = \emptyset \).

For the proof, we need some auxiliary lemmas and definitions. First, we note that FJ has the \textit{strong determinism} property: each expression has at most one finite proof tree in \(I_{\tau_1} \).

\textbf{Lemma 5 (FJ strong determinism).} If \(I_{\tau_1} \vdash e \Downarrow v_1 \) by a proof tree \(t_1 \) and \(I_{\tau_1} \vdash e \Downarrow v_2 \) by a proof tree \(t_2 \), then \(t_1 = t_2 \) and \(v_1 = v_2 \).

\textbf{Proof.} By induction on the definition of \(e \Downarrow v_1 \). The key point is that each judgement is the consequence of exactly one rule.

By relying on strong determinism, it is easy to see that in FJ a proof tree for an expression cannot contain another node labelled by the same expression. In other words, if the evaluation of \(e \) requires to evaluate \(e \) again, then the FJ semantics is undefined on \(e \), as expected.

\textbf{Lemma 6.} A proof tree in \(I_{\tau_1} \) for \(e \Downarrow v \) cannot contain any other node \(e \Downarrow v' \), for any \(v' \).

\textbf{Proof.} By Lemma 5 there is a unique proof tree \(t \) for the expression \(e \). Hence, a node \(e \Downarrow v' \) in \(t \) would be necessarily the root of a subtree of \(t \) equal to \(t \), that is, it is the root of \(t \).

\textbf{Definition 7.} Let \(I_{\tau_1} \vdash e \Downarrow v \). A call trace \(\tau \) is disjoint from \(e \Downarrow v \) if in its proof tree\(^9\) there are no instances of (FJ-Invk) where \(v_0, m(\overline{v}) \in \text{dom}(\tau) \).

\textbf{Lemma 8.} If \(I_{\tau_1} \vdash e \Downarrow v \), then, for all \(\tau \) disjoint from \(e \Downarrow v \), we have \(e, \emptyset, \tau \Downarrow v, \emptyset \).

\textbf{Proof.} The proof is by induction on the definition of \(e \Downarrow v \).

\textbf{(FJ-field)} Let \(\tau \) be a call trace disjoint from \(e.f \Downarrow v \). Since \(I_{\tau_1} \vdash e \Downarrow v \), with \(v = \text{new} C(v_1, \ldots, v_n) \), holds by hypothesis, and \(\tau \) is, by definition, also disjoint from \(e \Downarrow v \), we get \(e, \emptyset, \tau \Downarrow v, \emptyset \) by induction hypothesis. Then, since \(\text{unfold}(v, \emptyset) = v \), we get \(e, \emptyset, \tau \Downarrow v, \emptyset \) by rule (Field).

\textbf{(FJ-new)} Let \(\tau \) be a call trace disjoint from \(\text{new} C(e_1, \ldots, e_n) \Downarrow \text{new} C(v_1, \ldots, v_n) \). For all \(i \in 1..n \), since \(I_{\tau_1} \vdash e_i \Downarrow v_i \) holds by hypothesis, and \(\tau \) is, by definition, also disjoint from \(e_i \Downarrow v_i \), we get \(e_i, \emptyset, \tau \Downarrow v_i, \emptyset \) by induction hypothesis. Then, we get \(\text{new} C(e_1, \ldots, e_n), \emptyset, \tau \Downarrow \text{new} C(v_1, \ldots, v_n), \emptyset \) by rule (New).

\textbf{(FJ-inv)} Let \(\tau \) be a call trace disjoint from \(e_0.m(e_1, \ldots, e_n) \Downarrow v \). For all \(i \in 0..n \), since \(I_{\tau_1} \vdash e_i \Downarrow v_i \) holds by hypothesis, and \(\tau \) is, by definition, also disjoint from \(e_i \Downarrow v_i \), we get \(e_i, \emptyset, \tau \Downarrow v_i, \emptyset \) by induction hypothesis. Set \(\overline{v} = v_1 \ldots v_n \) and \(e' = e[e_0/\text{this}](\overline{v}/\tau) \). By hypothesis, \(I_{\tau_1} \vdash e' \Downarrow v \) and, by definition, \(\tau \) is also disjoint from \(e' \Downarrow v \); furthermore, by Lemma 5, \(e' \) cannot occur twice in the proof tree for \(e' \Downarrow v \), hence \(\tau \{ v_0, m(\overline{v}) : x \} \) is disjoint from \(e' \Downarrow v \), for any fresh variable \(x \). Then, by induction hypothesis, we have \(e', \emptyset, \tau \{ v_0, m(\overline{v}) : x \} \Downarrow v, \emptyset \), thus we get \(e_0.m(e_1, \ldots, e_n), \emptyset, \tau \Downarrow v, \emptyset \) by rule (Invk-ok).

We can now prove the conservativity result for coFJ operational semantics.

\(^9\) Unique thanks to Lemma 5.
Proof of Theorem 4. The right-to-left direction follows from Lemma 8, since \emptyset is disjoint from any expression, while the other direction follows from the right-to-left one and Theorem 3.

For coFJ operational semantics we can prove an additional result, characterizing derivable judgements which produce an empty environment. The meaning is that all results obtained without using the codefinitions are original FJ results.

▶ **Lemma 9.** If $e, \emptyset, \tau \downarrow v, \emptyset$ holds, then v is an FJ value v, and $I_{\tau, v} \vdash e \downarrow v$.

Advanced examples

This section provides some more complex examples to better understand the operational semantics of coFJ in Section 4 and its relationship with the abstract semantics in Section 3.

Examples on lists

We first show an example motivating the additional checking step (third premise) in rule (invk-check). Essentially, the success of this check for some capsule result corresponds to the existence of an infinite tree in the abstract semantics, whereas the fact that this capsule result is obtained by assuming the codefinition as result of the cyclic call (second premise) corresponds to the existence of a finite tree which uses the codefinition.

Assume to add to our running example of lists of integers a method that returns the sum of the elements. For infinite regular lists, that is, lists ending with a cycle, a result should be returned if the cycle has sum 0, for instance for a list ending with infinitely many 0s, and no result if the cycle has sum different from 0. This can be achieved as follows.

```java
class List extends Object {
    int sum() {0}
}
class NonEmptyList extends List {
    int sum() {this.head + this.tail.sum()} corec {0}
}
```

It is easy to see that the abstract semantics of the previous section formalizes the expected behavior. For instance, an infinite tree for a judgment $[2,1]^\omega$.sum() $\downarrow v$ only exists for $v = 2 + 1 + v$, and there are no solutions of this equation, hence there is no result. In the operational semantics, by evaluating the body assuming the codefinition as result of the cyclic call (second premise of rule (invk-check)) the spurious result 3 would be returned. This is avoided by the third premise, which evaluates the method body assuming 3 as result of the cyclic call. Since we do not get 3 in turn as result, evaluation is stuck, as expected.

Note that the stuckness situation is detected: the last side-condition of rule (invk-check) fails, and a dynamic error (not modeled for simplicity, see the comments to the rule) is raised, likely an exception in an implementation. On the other hand, computations which never reach (a base case or) an already encountered call still do not terminate in this operational semantics, exactly as in the standard one, and the fact that this does not happen should be proved by suitable techniques, see the Conclusion.

All the examples shown until now have a constant codefinition. We show now an example where this is not enough. Consider the method `remPos()` that removes positive elements. A first attempt at a coFJ definition is the following:

```java
class NonEmptyList extends List {
    List remPos() {
        if(this.head > 0) this.tail.remPos()
        else new NonEmptyList(this.head, this.tail.remPos())
    }
}
```
corec { new EmptyList()}

Is this definition correct? Actually, it provides the expected behavior on finite lists, and cyclic lists where the cycle contains only positive elements. However, when the cycle contains at least one non positive element, there is no result. For instance, consider the method call \([0,1]^{\omega}.remPos()\). In the abstract semantics, an infinite tree can be constructed for the judgment \([0,1]^{\omega}.remPos() \Downarrow v\) only if \(v = 0: v\), and this clearly only holds for \(v = [0]^{\omega}\). However, no finite tree can be constructed for this judgment using the codefinition. Note that, in the operational semantics, without the additional check (third premise of rule (invk-check)), we would get the spurious result \([0]\). In order to have a CoFJ definition complete with respect to the expected behavior, we should provide a different codefinition for lists with infinitely many non-positive elements.

```java
class NonEmptyList extends List {
    List remPos() {
        if (this.head > 0) this.tail.remPos()
        else new NonEmptyList(this.head, this.tail.remPos())
    }
}
```

Arithmetic with rational and real numbers All real numbers in the closed interval \([0..1]\) can be represented by infinite lists \([d_1, d_2, ...]\) of decimal digits; more precisely, the infinite list \([d_1, d_2, ...]\) represents the real number which is the limit of the series \(\sum_{i=1}^{\infty} 10^{-i}d_i\).

It is well-known that all rational numbers in \([0..1]\) correspond to either a terminating or repeating decimal, hence they can be represented by infinite regular lists of digits, where terminating decimals end with either an infinite sequence of 0 or an infinite sequence of 9; for instance, the terminating decimal \(\frac{1}{2}\) can be represented equivalently by either \([5,0,0,...]\) or \([4,9,9,...]\), while the repeating decimal \(\frac{1}{3}\) is represented by \([3,3,...]\).

Therefore, in CoFJ all rational numbers in \([0..1]\) can be effectively represented with infinite precision at the level of the operational semantics; to this aim, we can declare a class `Number` with the two fields `digit` of type `int` and `others` of type `Number`: `digit` contains the leftmost digit, that is, the most significant, while `others` refers to the remaining digits, that is, the number we would obtain by a single left shift (corresponding to multiplication by 10). Since also non-regular values are allowed, in the abstract semantics class `Number` can be used to represent also all irrational numbers in \([0..1]\).

We now show how it is possible to compute in CoFJ the addition of rational numbers in \([0..1]\) with infinite precision. We first define the method `carry` which computes the carry of the addition of two numbers: its result is 0 if the sum belongs to \([0..1]\), 1 otherwise.

```java
class Number extends Object {
    int digit; // leftmost digit
    Number others; // all other digits

    int carry(Number num) {
        // returns 0 if this+num<=1, 1 otherwise
        if (this.digit + num.digit == 9) (this.digit + num.digit) / 10
        else this.others.carry(num.others)
    }
}
```

The two numbers `this` and `num` are inspected starting from the most significant digits: if their sum is different from 9, then the carry can be computed without inspecting the other digits, hence the integer division by 10 of the sum is returned. Corecursion is needed when
the sum of the two digits equals 9; in this case the carry is the same obtained from the addition of `this.others` and `num.others`.

Finally, in the codefinition the carry 0 is returned; indeed, the codefinition is evaluated only when the sum of the digits for all positions inspected so far is 9 and the same patterns of digits are encountered for the second time. This can only happen for pairs of numbers whose addition is \([9, 9, \ldots]\), that is, 1, hence the computed carry must be 0.

Based on method `carry`, we can define method `add` which computes the addition of two numbers, excluding the possible carry in case of overflow.

```java
class Number extends Object { ... // declarations as above
    Number add(Number num) { // returns this + num
        new Number((this.digit + num.digit + this.others.carry(num.others))%10,
            this.others.add(num.others))
    }
}
```

For each position, the corresponding digits of `this` and `num` are added to the carry computed for the other digits (`this.others.carry(num.others)`), then the reminder of the division by 10 gives the most significant digit of the result, whereas the others are obtained by corecursively calling the method on the remaining digits (`this.others.add(num.others)`). Since this call is guarded by a constructor call, the codefinition is `any`.

Note that, in the abstract semantics, methods `carry` and `add` correctly work also for irrational numbers.

Method `add` above is simple, but has the drawback that the same carries are computed more times; hence, in the worst case, the time complexity is quadratic in the period\(^{10}\) of the two involved repeating decimals. To overcome this issue, we present a more elaborate example where carries are computed only once for any position; this is achieved by method `all_carries` below, which returns the sequence of all carries (hence, a list of binary digits).

Method `simple_add` corecursively adds all digits without considering carries, while method `add`, defined on top of `simple_add` and `all_carries`, computes the final result. This new version of `add` is not recursive and, hence, does not need a codefinition.

```java
class Number extends Object { ... // declarations as above
    Number all_carries(Number num) { // carries for all positions
        this.simple_carries(num).complete()
    }
    Number simple_carries(Number num) { // carries computed immediately
        if(this.digit + num.digit != 9)
            new Number((this.digit + num.digit)/10,
                this.others.simple_carries(num.others))
        else new Number(9, this.others.simple_carries(num.others))
    }
    Number complete() { // computes missing carries marked with 9
        if(this.digit != 9)
            new Number(this.digit, this.others.complete())
        else this.fill(this.carry_lookahead()).complete()
    }
    Number fill(int dig) { // fills with dig all next missing carries
    }
}
```

\(^{10}\) Indeed, the worst case scenario is when the carry propagates over all digits because their sum is always 9, and this can happen only if the two numbers have the same period.
if(this.digit!=9) this else new Number(dig,this.others.fill(dig))
} corec {any}

int carry_lookahead(){ // returns the next computed carry
if(this.digit!=9) this.digit else this.others.carry_lookahead()
} corec {0}

Number simple_add(Number num){ // addition without carries
new Number((this.digit+num.digit)%10,
 this.others.simple_add(num.others))
} corec {any}

Number add(Number num){
 this.simple_add(num).simple_add(this.all_carries(num).others)
}

Distances on graphs The last example of this section involves graphs, which are the paradigmatic example of cyclic data structure. Our aim is to compute the distance, that is, the minimal length of a path, between two vertexes Consider a graph \((V, \text{adj})\) where \(V\) is the set of vertexes and \(\text{adj} : V \rightarrow \mathcal{P}(V)\) gives, for each vertex, the set of the adjacent vertexes. Each vertex has an identifier \(\text{id}\) assumed to be unique. We assume a class \(\text{Nat}^{\infty}\), with subclasses \(\text{Nat}\) with an integer field, and \(\text{Infty}\) with no fields, for naturals and \(\infty\) (distance between unconnected nodes), respectively. Such classes offer methods \(\text{succ()}\) for the successor, and \(\text{min}(\text{Nat}^{\infty} n)\) for the minimum, with the expected behaviour (e.g., \(\text{succ}\) in class \(\text{Nat}^{\infty}\) returns \(\infty\)).

```java
class Vertex extends Object {
    Id id; AdjList adjVerts;
    Nat^\infty dist(Id id) {
        this.id==id?new Nat(0):this.adjVerts.dist(id).succ()
    } corec {new Infty()}
}
class AdjList extends Object { }
class EAdjList extends AdjList {
    Nat^\infty dist(Id id) { new Infty() }
}
class NEAdjList extends AdjList {
    Vertex vert; AdjList adjVerts;
    Nat^\infty dist(Id id) {this.vert.dist(id).min(this.adjVerts.dist(id))}
}
```

Clearly, if the destination \(\text{id}\) and the source node coincide, then the distance is 0. Otherwise, the distance is obtained by incrementing by one the minimal distance from an adjacent to \(\text{id}\), computed by method \(\text{dist()}\) of \(\text{AdjList}\) called on the adjacency list. The codedefinition of method \(\text{dist()}\) of class \(\text{Vertex}\) is needed since, in presence of a cycle, \(\infty\) is returned and non-termination is avoided. The same approach can be adopted for visiting a graph: instead of keeping trace of already encountered nodes, cycles are implicitly handled by the loop detection mechanism of coFJ.

\footnote{The example can be easily adapted to weighted paths.}
6 Soundness

Soundness of the operational semantics with respect to the abstract one means, roughly, that a value derived using the rules in Figure 4 can also be derived by those in Figure 2. However, this statement needs to be refined, since values in the two semantics are different: possibly infinite objects in the abstract semantics, and capsules in the operational semantics.

We define a relation from capsules to abstract objects, formally express soundness through this relation, and introduce an intermediate semantics to carry out the proof in two steps.

From capsules to infinite objects Intuitively, given a capsule \((v, \sigma)\), we get an abstract value by instantiating variables in \(v\) with abstract values, in a way consistent with \(\sigma\). To make this formal, we need some preliminary definitions.

A substitution \(\theta\) is a function from variables to abstract values. We denote by \(e\theta\) the abstract expression obtained by applying \(\theta\) to \(e\). In particular, if \(e\) is an open value \(v\), then \(v\theta\) is an abstract value. Given an environment \(\sigma\) and a substitution \(\theta\), the substitution \(\sigma[\theta]\) is defined by:

\[
\sigma[\theta](x) = \begin{cases}
\sigma(x) & x \in \text{dom}(\sigma) \\
\theta(x) & x \notin \text{dom}(\sigma)
\end{cases}
\]

Then, a solution of \(\sigma\) is a substitution \(\theta\) such that \(\sigma[\theta] = \theta\). Let \(\text{Sol}(\sigma)\) be the set of solutions of \(\sigma\). Finally, if \((e, \sigma)\) is a capsule, we define the set of abstract expressions it denotes as \([e, \sigma] = \{e\theta \mid \theta \in \text{Sol}(\sigma)\}\). Note that \([v, \sigma] \subseteq \mathbb{V}\), for any capsule \((v, \sigma)\). We now show an operational characterization of the semantic equality.

\textbf{Theorem 10.} \([v_1, \sigma_1] = [v_2, \sigma_2] \iff (v_1, \sigma_1) \equiv_\alpha (v_2, \sigma_2),\) for some \(\sigma_1, \sigma_2\)-renaming \(\alpha\).

To prove this result we need some auxiliary definitions and lemmas. The tree expansion of a capsule \((v, \sigma)\) is the possibly infinite open value coinductively defined as follows:

\[
T(v, \sigma) = \begin{cases}
x & v = x \text{ and } \text{unfold}(v, \sigma) \uparrow \\
\text{new } C(T(v_1, \sigma), \ldots, T(v_n, \sigma)) & \text{unfold}(v, \sigma) = \text{new } C(v_1, \ldots, v_n)
\end{cases}
\]

The next proposition shows relations between solutions and tree expansion of a capsule.

\textbf{Proposition 11.} Let \((v, \sigma)\) be a capsule and \(\theta \in \text{Sol}(\sigma)\), then
1. if \(\text{unfold}(v, \sigma) \uparrow\) then \(v = x\) and \(x \sigma = x\)
2. \(\text{FV}(T(v, \sigma)) \subseteq \{x \in \text{dom}(\sigma) \mid x \sigma = x\}\)
3. if \(x \sigma = y\) then \(\theta(x) = \theta(y)\)
4. if \(\text{unfold}(v, \sigma) = \text{new } C(v_1, \ldots, v_n)\) then \(v\theta = \text{new } C(v_1\theta, \ldots, v_n\theta)\)
5. \(v\theta = T(v, \sigma)\theta\)

Given a relation \(\alpha\) on variables, we will denote by \(\alpha^\circ\) the opposite relation and by \(=\alpha\) the equality of possibly infinite open values up-to \(\alpha\), coinductively defined by the following rules:

\[
\begin{array}{c}
x = \alpha y \\
x = \alpha
\end{array} \quad \begin{array}{c}
t_1 = \alpha s_1 \\
\forall i \in 1..n \\
t_1 = \alpha \text{new } C(t_1, \ldots, t_n) = \alpha \text{new } C(s_1, \ldots, s_n)
\end{array}
\]

It is easy to check that
\(\alpha\) is a \(\sigma_1, \sigma_2\)-renaming iff \(\alpha^\circ\) is a \(\sigma_2, \sigma_1\)-renaming,
\((v_1, \sigma_1) \equiv_\alpha (v_2, \sigma_2)\) iff \((v_2, \sigma_2) \equiv_{\alpha^\circ} (v_1, \sigma_1)\),
\(t_1 = \alpha t_2\) iff \(t_2 = \alpha^\circ t_1\).
We have the following lemmas:

- **Lemma 12.** \((v_1, \sigma_1) =_\alpha (v_2, \sigma_2)\) if and only if \(T(v_1, \sigma_1) =_\alpha T(v_2, \sigma_2)\), for each \(\sigma_1, \sigma_2\)-renaming \(\alpha\).

 Proof. The proof is immediate by coinduction in both directions.

- **Lemma 13.** If \(T(v_1, \sigma_1) =_\alpha T(v_2, \sigma_2)\), where \(\alpha\) is a \(\sigma_1, \sigma_2\)-renaming, then \([v_1, \sigma_1] = [v_2, \sigma_2]\).

- **Proposition 14.** If \([v_1, \sigma_1] = [v_2, \sigma_2]\) then
 1. if \(\text{unfold}(v_1, \sigma_1) \uparrow\) then \(\text{unfold}(v_2, \sigma_2) \uparrow\),
 2. if \(\text{unfold}(v_1, \sigma_1) = \text{new } C(v_1, \ldots, v_{n+1})\) then \(\text{unfold}(v_2, \sigma_2) = \text{new } C(v_2, \ldots, v_{n+1})\) and, for all \(i \in 1..n\), \([v_{1,i}, \sigma_1] = [v_{2,i}, \sigma_2]\).

- **Lemma 15.** If \([v_1, \sigma_1] = [v_2, \sigma_2]\) then \(T(v_1, \sigma_1) =_\alpha T(v_2, \sigma_2)\), for some \(\sigma_1, \sigma_2\)-renaming \(\alpha\).

 Proof of Theorem 10 The right-to-left direction follows from Lemma 12 and Lemma 13 while the other direction follows from Lemma 15 and Lemma 12.

Since by definition \(=\) is equal to \(\approx\) for some \(\alpha\), applying Lemma 12 and Lemma 13 we get that if \((v_1, \sigma_1) = (v_2, \sigma_2)\) then \([v_1, \sigma_1] = [v_2, \sigma_2]\). Actually we can prove a stronger result:

- **Lemma 16.** If \((v_1, \sigma_1) =_\alpha (v_2, \sigma_2)\) for some strict \(\sigma_1, \sigma_2\)-renaming \(\alpha\), then, for each solution \(\theta \in \text{Sol}(\sigma_1 \cap \sigma_2)\), there are \(\theta_1 \in \text{Sol}(\sigma_1)\) and \(\theta_2 \in \text{Sol}(\sigma_2)\) such that \(v_1 \theta_1 = v_2 \theta_2\). We use the following lemmas.

Soundness statement: We can now formally state the soundness result:

- **Theorem 17.** If \(e, \emptyset, v, \sigma\), then, for all \(v \in [v, \sigma]\), \((I_{\mathcal{I}_v}, I_{\mathcal{I}_v}^{\sigma})\) \(\vdash e \downarrow v\).

This main result is about the evaluation of source expressions, hence both the environment and the call trace are empty. To carry out the proof we need to generalize the statement.

- **Theorem 18 (Soundness).** If \(e, \sigma, \emptyset \downarrow v, \sigma'\), then, for all \(\theta \in \text{Sol}(\sigma')\), \((I_{\mathcal{I}_v}, I_{\mathcal{I}_v}^{\sigma'})\) \(\vdash e \downarrow \theta \downarrow v, \theta\).

To show that this is actually a generalization, set \(\sigma_1 \leq \sigma_2\) if \(\text{dom}(\sigma_1) \subseteq \text{dom}(\sigma_2)\), and, for all \(x \in \text{dom}(\sigma_1)\), \(\sigma_1(x) = \sigma_2(x)\). We use the following lemmas.

- **Lemma 19.** If \(\sigma_1 \leq \sigma_2\), then \(\text{Sol}(\sigma_2) \subseteq \text{Sol}(\sigma_1)\).

- **Lemma 20.** If \(e, \sigma, \tau \downarrow v, \sigma'\), then \(\sigma \leq \sigma'\).

In the statement of Theorem 18 thanks to Lemma 20 we know that \(\sigma \leq \sigma'\), hence, by Lemma 19, \(\theta \in \text{Sol}(\sigma)\), thus \(e \theta \in [e, \sigma]\). Theorem 18 implies Theorem 17 since, when \(\sigma = \emptyset\), \(e\) is closed, hence \(e \theta = e\), and all elements in \([v, \sigma]\) have shape \(v \downarrow \theta\) with \(\theta \in \text{Sol}(\sigma')\).

Proof through intermediate semantics In order to prove Theorem 18 we introduce a new semantics called intermediate, defined in Figure 5. Values are those of the abstract semantics, hence calls are of shape \(v.n(\pi)\) (abstract calls). The judgment has shape \(e, \rho, S \downarrow \downarrow v, \rho'\), with \(S, S'\) sets of abstract calls, \(\rho\) map from abstract calls to values. Comparing with \(e, \sigma, \tau \downarrow v, \sigma'\) in the operational semantics, no variables are introduced for calls; \(\rho\) and \(S\) play the role of the \(\text{ck}\) and non \(\text{ck}\) part of \(\tau\), respectively, keeping trace of already encountered calls. Moreover, \(\rho\) directly associates to a call its value to be used in the checking step, which in \(\sigma\) is associated to the corresponding variable. Finally, \(S'\) plays the role of \(\sigma'\), tracing the calls for which the cdefinition has been evaluated, hence the checking step will be needed. This correspondence is made precise below. The rules are analogous to those of Figure 5 with the difference that, for an already encountered call \(e \in S\), either rule \((\text{IN-INVX-OK})\) or rule \((\text{IN-COREC})\) can be
\[\begin{align*}
\forall v \in \mathcal{V}_{\text{co}} & \quad \text{new } C(\tau) \quad \text{possibly infinite object} \\
\forall c & \quad v, m(\tau) \quad \text{abstract call} \\
\forall S & \quad c_1 \ldots c_n \quad (n \geq 0) \quad \text{set of abstract calls} \\
\forall \rho & \quad c_1 : v_1 \ldots c_n : v_n \quad (n \geq 0)
\end{align*} \]

\[\begin{align*}
\text{\textit{Figure 8}} & \quad \text{coFJ intermediate semantics}
\end{align*} \]
applied. In other words, evaluation of the codefnition is not necessarily triggered when the first cycle is detected. This non-determinism makes the relation with the abstract semantics simpler.

By relying on the intermediate semantics, we can prove Theorem 21 by two steps:
1. The operational semantics is sound w.r.t. the intermediate semantics (Theorem 22).
2. The intermediate semantics is sound w.r.t. the abstract semantics (Theorem 23).

At the beginning of Section 4, we mentioned two issues for an operational semantics: representing infinite objects in a finite way, and replacing infinite (regular) proof trees by finite proof trees. This proof technique nicely shows that the two issues are orthogonal: notably, detection of cyclic calls is independent from the format of values.

To express the soundness of the operational semantics w.r.t. the intermediate one, we need to formally relate the two judgments. First of all, a call trace τ is the disjoint union of two maps τ^{ck} and τ^{-ck} into tagged and non-tagged variables, respectively. Then, given an environment σ, we define the following sets of (operational) calls:

- $S^\tau = dom(\tau^{-ck})$
- $S^{\tau,\sigma} = dom(\sigma \circ \tau^{-ck})$, where \circ is the composition of partial functions
- $S^{\tau,\sigma,\sigma'} = S^{\tau,\sigma} \setminus S^{\tau,\sigma'}$

For S set of calls and θ substitution, we abbreviate by S_θ the set of abstract calls $S \theta$. Note that $S^{\tau,\sigma}_\theta \subseteq S^{\tau,\sigma}$ and, if $\sigma_1 \leq \sigma_2$, then $S^{\tau,\sigma_1}_\theta \subseteq S^{\tau,\sigma_2}_\theta$. Finally, $\rho^\tau_\theta(c \theta) = v$ if $v = \theta(\tau^{ck}(c))$.

Then, the soundness result can be stated as follows:

Theorem 21 (Soundness operational w.r.t. intermediate). If $e, \sigma, \tau \Downarrow v, \sigma'$ then, for all $\theta \in Sol(\sigma')$, there exists S such that $S^{\tau,\sigma,\sigma'}_\theta \subseteq S \subseteq S^{\tau,\sigma}_\theta$ and, $e, \theta, S^{\tau,\sigma}_\theta \Downarrow_{IN} \nu \theta, S$.

In particular, the bounds on S ensure that it is empty when $\tau = \emptyset$. Hence, if $e, \sigma, \emptyset \Downarrow v, \sigma'$ (hypothesis of Theorem 18), then $e, \emptyset, \emptyset \Downarrow_{IN} \nu \theta, S$, that is, the hypothesis of Theorem 23 below holds.

The proof of the theorem uses the following corollary of Lemma 16.

Corollary 22. If $(v_1, \sigma_1) = (v_2, \sigma_2)$, $\theta_1 \in Sol(\sigma_1)$, $\sigma_1 \leq \sigma_2$, then there is $\theta_2 \in Sol(\sigma_2)$ such that $v_1 \theta_1 = v_2 \theta_2$ and, for all $x \in dom(\sigma_1)$, $\theta_1(x) = \theta_2(x)$. Moreover, if $\sigma_1 = \sigma_2$, then $v_1 \theta_1 = v_2 \theta_1$.

We now state the second step of the proof: the soundness result of the intermediate semantics with respect to the abstract semantics.

Theorem 23 (Soundness intermediate w.r.t. abstract). If $e, \emptyset, \emptyset \Downarrow_{IN} v, \emptyset$, then $(I_{\tau}, I_{\sigma}) \vdash e \Downarrow v$.

The proof uses the bounded coinduction principle (Theorem 1), and requires some lemmas. Recall that $I_{\tau} \cup I_{\sigma} \vdash e \Downarrow v$ means that the judgment $e \Downarrow v$ has a finite proof tree in the (standard) inference system consisting of FJ rules and COFJ corules.

Lemma 24. If $e, \emptyset, S \Downarrow_{IN} v, S'$ then $I_{\tau} \cup I_{\sigma} \vdash e \Downarrow v$ holds.

Lemma 25. If $e, \rho, S \cup \{c\} \Downarrow_{IN} v, S'$ holds, and $c \notin S'$, then $e, \rho, S \Downarrow_{IN} v, S'$.

Lemma 26. If $e, \rho(c \Downarrow v'), S \Downarrow_{IN} v, S'$ and $c, \rho, S \Downarrow_{IN} v', \emptyset$, then $e, \rho, S \Downarrow_{IN} v, S'$.

We can now prove Theorem 23.

Proof of Theorem 23. We take as specification the set $A = \{(e, v) \mid e, \emptyset, \emptyset \Downarrow_{IN} v, \emptyset\}$, and we use bounded coinduction (Theorem 1). We have to prove the following:

Boundedness For all $(e, v) \in A$, $I_{\tau} \cup I_{\sigma} \vdash e \Downarrow v$ holds.
Consistency For all \((c, v) \in A\), there exist a rule in the abstract semantics having \(e \downarrow v\) as consequence, and such that all its premises are elements of \(A\).

Boundedness follows immediately from Lemma 24. We now prove consistency.

Consider a pair \((c, v) \in A\), hence we know that \(c, \emptyset, \emptyset \downarrow_{IN} v, \emptyset\) is derivable. We proceed by case analysis on the last applied rule in the derivation of this judgement.

(IN-val) We know that \(e = v = \text{new } C(v_1, \ldots, v_n)\). We choose as candidate rule (ABS-NEW).

We have to show that, for all \(i \in 1..n\), \((v_i, v_i') \in A\), that is, \(v_i, \emptyset, \emptyset \downarrow_{IN} v_i, \emptyset\) holds We can get the thesis thanks to rule (IN-VAL).

(IN-field) We know that \(e = e' \cdot f\) and \(e', \emptyset, \emptyset \downarrow_{IN} \text{new } C(v_1 \ldots v_n)\). We choose as candidate rule (ABS-FIELD), with conclusion \(e' \cdot f \downarrow v_i\). We have to show that \((e', \text{new } C(v_1 \ldots v_n)) \in A\), that is, \(e', \emptyset, \emptyset \downarrow_{IN} \text{new } C(v_1 \ldots v_n)\), \(\emptyset\) holds, but this is true by hypothesis.

(IN-new) We know that \(v_i, \emptyset, \emptyset \downarrow_{IN} v_i, \emptyset\) holds for all \(i \in 1..n\). We choose as candidate rule (ABS-NEW). We have to show that, for all \(i \in 1..n\), \((e_i, v_i) \in A\), that is, \(e_i, \emptyset, \emptyset \downarrow_{IN} v_i, \emptyset\) holds, but this is true by hypothesis.

(IN-invk-ok) We know that \(e = e_0, m(\tau)\), \(e_i, \emptyset, \emptyset \downarrow_{IN} v_i, \emptyset\) holds for all \(i \in 0..n\), \(e = e_0, m(\tau)\), \(mbody(C, m) = (\tau, e')\), and \(e'[v_0/\text{this}[\tau][\tau]], \emptyset, (c) \downarrow_{IN} v, \emptyset\) holds. We choose as candidate rule (ABS-INVK). We have to show that, for all \(i \in 0..n\), \((e_i, v_i) \in A\), and \((e'[v_0/\text{this}[\tau][\tau]], v) \in A\). That is, that the following judgments hold: \(e_i, \emptyset, \emptyset \downarrow_{IN} v_i, \emptyset\) for all \(i \in 0..n\), and \(e'[v_0/\text{this}[\tau][\tau]], \emptyset, \emptyset \downarrow_{IN} v, \emptyset\). The judgments in the first set hold by hypothesis. The last judgment holds thanks to Lemma 25, where \(S' = \emptyset\).

(IN-invk-check) We know that \(e = e_0, m(\tau)\), \(e_i, \emptyset, \emptyset \downarrow_{IN} v_i, \emptyset\) holds for all \(i \in 0..n\), \(e = e_0, m(\tau)\), \(mbody(C, m) = (\tau, e')\), and \(e'[v_0/\text{this}[\tau][\tau]], \{c : v\}, \emptyset \downarrow_{IN} v, \emptyset\) holds. We choose as candidate rule (ABS-INVK). We have to show that, for all \(i \in 0..n\), \((e_i, v_i) \in A\), and \((e'[v_0/\text{this}[\tau][\tau]], v) \in A\). That is, that the following judgments hold: \(e_i, \emptyset, \emptyset \downarrow_{IN} v_i, \emptyset\) for all \(i \in 0..n\), and \(e'[v_0/\text{this}[\tau][\tau]], \emptyset, \emptyset \downarrow_{IN} v, \emptyset\). The judgments in the first set hold by hypothesis. The last judgment holds thanks to Lemma 25, since from the hypothesis we easily get \(e, \emptyset, \emptyset \downarrow_{IN} v, \emptyset\).

(IN-core) Empty case since to apply the rule it should be \(S \not= \emptyset\).

(IN-look-up) Empty case since to apply the rule it should be \(\rho \not= \emptyset\).

Related work

As already mentioned, the idea of regular corecursion (keeping track of pending method calls, so to detect cyclic calls), originates from co-SLD resolution [20, 21, 7]. Making regular corecursion flexible means that the programmer can specify the behaviour in case a cycle is detected. Language constructs to achieve such flexibility have been proposed in the logic [4, 5], functional [17], and object-oriented [8, 6] paradigm.

Logic paradigm The above mentioned co-SLD resolution [20, 21, 7] is a sound resolution procedure based on cycle detection. That is, the interpreter keeps track of resolved atoms and an atom selected from the current goal can be resolved if it identifies with an atom that has been already resolved. In this way it is possible to define coinductive predicates. Correspondingly, models are subsets of the complete Herbrand basis, that is, the set of ground atoms built on arbitrary (finite or infinite) terms, and the declarative semantics is the greatest fixed point of the monotone function associated with a program. Structural resolution [13, 14] (a.k.a. S-resolution) is a proposed generalization for cases when formulas computable at infinity are not regular; infinite derivations that cannot be built in finite time are generated lazily, and
only partial answers are shown. More recently, a comprehensive theory has been proposed to provide operational semantics that go beyond loop detection.

Anyway, in coinductive logic programming, only standard coinduction is supported. The notion of finally clause, introduced in [2], allows the programmer to specify a fact to be resolved when a cycle is detected, instead of simply accepting the atom. The approach has been refined in [3], following the guidelines given by the formal framework of generalized inference systems. That is, the programmer can write special clauses corresponding to corules, so that, when an atom is found for the second time, standard SLD resolution is triggered in the program enriched by the corules. However, this paradigm is very different from the object-oriented one, since based on relations rather than functions: cycles are detected on the same atom, where input and output are not distinguished, by unification.

Functional paradigm CoCaml (www.cs.cornell.edu/Projects/CoCaml) is a fully-fledged extension of OCaml supporting non-well-founded data types and corecursive functions. CoCaml, as OCaml, allows programmers to declare regular values through the let-rec construct, and, moreover, detects cyclic calls as in our approach. However, whereas coFJ immediately evaluates the cyclic call by using the codefinition, the CoCaml approach is in two phases. First, a system of equations is constructed, associating with each call a variable and partially evaluating the body of functions, where calls are replaced with associated variables. Then, the system of equations is given to a solver specified in the function definition. Solvers can be either pre-defined or written by the programmer in order to enhance flexibility. An advantage that we see in our approach is that the programmer has to write the codefinition (standard code) rather than working at the meta-level to write a solver, which is in a sense a fragment of the interpreter. A precise comparison is difficult for the lack of a simple operational model of the CoCaml mechanism. In future work, we plan to develop such model, and to relate the two approaches on a formal basis.

Object-oriented paradigm A previous version of coFJ has been proposed in [8]. At this time, however, the framework of inference systems with corules was still to come, so there was no formal model against which to check the given operational semantics, which, indeed, derived spurious results in some cases, as illustrated in Section 4 at page 16. The operational semantics provided in the current paper solves this problem, and is proved to be sound with respect to the abstract semantics. Moreover, we adopt a simpler representation of cyclic objects through capsules [16]. A type system has been proposed [21] for the previous version of coFJ to prevent unsafe use of the “undetermined” value. We leave to further work the investigation of typing issues for the approach presented in this paper.

8 Conclusion

The Java-like calculus presented in this paper promotes a novel programming style, which smoothly incorporates support for cyclic data structures and coinductive reasoning, in the object-oriented paradigm. Our contribution is foundational: we provide an abstract semantics based on corules and show that it is possible to define a sound operational model; such operational semantics is inductive, syntax-directed and deterministic, hence can be directly turned into an interpreter. In order to get a “real-world” language, of course many other issues should be taken into account.

Our prototype implements the abstract semantics on top of a Prolog meta-interpreter supporting flexible regular corecursion [3]. In this way, the inference system is naturally
translated in Prolog, cyclic terms are natively supported, and their equality handled by
unification. A fully-fledged interpreter of the operational semantics should directly handle
these issues and, moreover, attempt at some optimization.

The current paper does not deal with types: an important concern is to guarantee type
soundness, statically ensuring that an undetermined value never occurs as receiver of field
access or method invocation, as investigated in [9] for the previous coFJ version [8].

Another issue is how to train developers to write codefinitions. Standard recursion is
non-trivial as well for beginners, whereas it becomes quite natural after understanding its
mechanism. For regular corecursion the same holds, with is the additional difficulty of
reasoning on infinite structures. Intuitively, the codefinition can be regarded as a base case
to be applied when a loop is detected. Moreover, again as for standard recursion, this novel
programming style could be integrated with proof techniques to show the correctness of
algorithms on cyclic data structures. Such proofs could be mechanized in proof assistants, as
Agda, that provide built-in support for coinductive definitions and proofs by coinduction.

Finally, a non-trivial challenge is how to integrate regular corecursion, requiring to detect
“the same call”, with the notion of mutable state. Likely, some immutability constraints will be
needed, or a variant of the model where such a check requires a stateless computation. Another
solution is to consider the check as an assertion that can be disabled if the programmer has
verified the correctness of the method by hand or assisted by a tool.

The semantics of flexible regular corecursion in the paper is the operational counterpart of
that obtained by considering recursive functions as relations, and recursive definitions (with
codefinition) as inference systems (with corules). We prove that the operational semantics is
sound with respect to that interpretation. Obviously, completeness does not hold in general,
since the abstract semantics deals with not only cyclic data structures (such as $[2, 1]^{\omega}$), but
arbitrary non-well-founded structures (such as the list of natural numbers). Even considering
only regular proof trees in the abstract semantics, in some subtle cases there is more than
one admissible result whereas the operational semantics, being deterministic, finds “the
first” among such results, as reasonable in an implementation. We plan to investigate such
completeness issues in further work, also in the more general framework of inference systems,
that is, to characterize judgments which have a regular proof tree.

We also plan to study how to deal with flexible corecursion in other programming
paradigms, notably in the functional paradigm, and to compare on a formal basis this
approach with the CoCaml approach relying on solvers, rather than codefinitions.

As already discussed in the Introduction, lazy evaluation and regular corecursion are
complementary approaches to deal with infinite data structures. With the lazy approach,
arbitrary (computable) non-well-founded data structures are supported. However, we cannot
compute results which need to explore the whole structure, whereas, with regular corecursion,
this becomes possible for cyclic structures: for instance we can compute allFos one_two,
which diverges in Haskell. A natural question is then whether it is possible to extend
the regular corecursion approach to manage also non-regular objects, thus overcoming
the principal drawback with respect to the lazy approach. A possible interesting direction,
exploiting the work of Courcelle on infinite trees, could be to move from regular to
algebraic objects.

12 A logic program can be seen as an inference system where judgments are atoms.
13 For instance, the list with no repetitions extracted from $[1, 2]^{\omega}$ can be either $[1, 2]$ or $[2, 1]$.
References

1. P. Aczel. An introduction to inductive definitions. In Handbook of Mathematical logic. North Holland, 1977.

2. Davide Ancona. Regular corecursion in Prolog. Computer Languages, Systems & Structures, 39(4):142–162, 2013.

3. Davide Ancona, Francesco Dagnino, and Elena Zucca. Extending coinductive logic programming with co-facts. In Ekaterina Komendantskaya and John Power, editors, First Workshop on Coalgebra, Horn Clause Logic Programming and Types, CoALP-Ty’16, volume 258 of Electronic Proceedings in Theoretical Computer Science, pages 1–18. Open Publishing Association, 2017. doi:10.4204/EPTCS.258.1

4. Davide Ancona, Francesco Dagnino, and Elena Zucca. Generalizing inference systems by coaxioms. In Hongseok Yang, editor, 26th European Symposium on Programming, ESOP 2017, volume 10201 of Lecture Notes in Computer Science, pages 29–55. Springer, 2017. doi:10.1007/978-3-662-54434-1_2

5. Davide Ancona, Francesco Dagnino, and Elena Zucca. Reasoning on divergent computations with coaxioms. PACMPL, 1(OOPSLA):81:1–81:26, 2017.

6. Davide Ancona, Francesco Dagnino, and Elena Zucca. Modeling infinite behaviour by corules. In ECOOP’18 - Object-Oriented Programming, pages 21:1–21:31, 2018.

7. Davide Ancona and Agostino Dovier. A theoretical perspective of coinductive logic programming. Fundamenta Informaticae, 140(3-4):221–246, 2015.

8. Davide Ancona and Elena Zucca. Corecursive Featherweight Java. In FTfJP’12 - Formal Techniques for Java-like Programs, pages 3–10. ACM Press, 2012.

9. Davide Ancona and Elena Zucca. Safe corecursion in coFJ. In FTfJP’13 - Formal Techniques for Java-like Programs, page 2. ACM Press, 2013.

10. Pietro Barbieri, Francesco Dagnino, Elena Zucca, and Davide Ancona. Corecursive Featherweight Java revisited. In Alessandra Cherubini, Nicoletta Sabadini, and Simone Tini, editors, ICTCS’19 - Italian Conf. on Theoretical Computer Science, volume 2504 of CEUR Workshop Proceedings, pages 158–170. CEUR-WS.org, 2019. URL: http://ceur-ws.org/Vol-2504/paper19.pdf

11. Henning Basold, Ekaterina Komendantskaya, and Yue Li. Coinduction in uniform: Foundations for corecursive proof search with Horn clauses. In Programming Languages and Systems - 28th European Symposium on Programming, ESOP 2019, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2019, Prague, Czech Republic, April 6-11, 2019, Proceedings, pages 783–813, 2019.

12. B. Courcelle. Fundamental properties of infinite trees. Theoretical Computer Science, 25:95–169, 1983.

13. Francesco Dagnino. Coaxioms: flexible coinductive definitions by inference systems. Logical Methods in Computer Science, 15(1), 2019. URL: https://lmcs.episciences.org/5277

14. E. Komendantskaya et al. A productivity checker for logic programming. Post-proc. LOPSTR’16, 2017. URL: http://arxiv.org/abs/1608.04415

15. Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: A minimal core calculus for Java and GJ. In ACM Symp. on Object-Oriented Programming: Systems, Languages and Applications 1999, pages 132–146. ACM Press, 1999. doi:10.1145/320384.320395

16. Jean-Baptiste Jeannin and Dexter Kozen. Computing with capsules. Journal of Automata, Languages and Combinatorics, 17(2-4):185–204, 2012. doi:10.25596/jalc-2012-185

17. Jean-Baptiste Jeannin, Dexter Kozen, and Alexandra Silva. Coaml: Functional programming with regular coinductive types. Fundamenta Informaticae, 150:347–377, 2017.

18. E. Komendantskaya et al. Coalgebraic logic programming: from semantics to implementation. J. Logic and Computation, 26(2):745, 2015. doi:10.1093/logcom/exu026

19. X. Leroy and H. Grall. Coinductive big-step operational semantics. Information and Computation, 207(2):284–304, 2009.
A Proofs

Proof of Lemma 9. The proof is by induction on the definition of \(e, \varnothing, \tau \parallel v, \varnothing\).

(val) By hypothesis \((v, \varnothing)\) is a capsule, then, since the environment is empty, \(v\) is a closed FJ value, hence, we can prove by induction on \(v\) that \(I_{v} \vdash v \parallel v\).

(field) By hypothesis we have \(e, \varnothing, \tau \parallel v, \varnothing\), with \(\text{unfold}(v, \varnothing) = v = \text{new} \ C(v_1, \ldots, v_n)\) and \(n \geq 1\), then we get \(I_{v} \vdash e \parallel v\) by induction hypothesis. Hence we get the thesis by rule (FJ-FIELD).

(new) By hypothesis, we have \(e_i, \varnothing, \tau \parallel v_i, \sigma'_i\), for all \(i \in 1..n\). Since \(\bigcup_{i \in 1..n} \sigma'_i = \varnothing\), we have \(\sigma'_i = \varnothing\) for all \(i \in 1..n\), hence, by induction hypothesis, we get \(I_{v_i} \vdash e_i \parallel v_i\). Then, we get the thesis by rule (FJ-NEW).

(invk-ok) By hypothesis we have \(e_i, \varnothing, \tau \parallel v_i, \sigma'_i\) for all \(i \in 0..n\), and \(e[v_0/\text{this}[\{x\} \tau], \sigma, \{c : x\}] \parallel v, \varnothing\). Then, by Lemma 20, we get \(\sigma \subseteq \varnothing\), thus \(\sigma = \varnothing\), and, since \(\sigma'_i \subseteq \varnothing\), for all \(i \in 0..n\), by definition, we also get \(\sigma'_i = \varnothing\) for all \(i \in 0..n\). Therefore, by induction hypothesis, we get \(I_{v_i} \vdash e_i \parallel v_i\), for all \(i \in 0..n\), and \(I_{v_i} \vdash e[v_0/\text{this}[\{x\} \tau]] \parallel v\), hence, we get the thesis by rule (FJ-INVK).

(invk-check) This case is empty since to apply the rule it should be \(\sigma'(x : x) \neq \varnothing\).

(corec) This case is empty since to apply the rule it should be \(\sigma \neq \varnothing\), while \(x \in \text{dom}(\sigma)\).

Proof of Prop. 11
1. If \(\text{unfold}(v, \sigma) \uparrow\), then trivially \(v = x\) and \(\text{unfold}(\sigma(x), \sigma) \uparrow\). Hence, by definition of \(\sigma\), we get the thesis.
2. If \(x\) is a free variable in \(T(v, \sigma)\), then by definition of tree expansion we have \(\text{unfold}(x, \sigma) \uparrow\), hence the thesis follows by 1
3. It is enough to show that, if \(\sigma(x) = y\), then \(\theta(x) = \theta(y)\), and this is true as \(\theta(x) = \sigma(x) \theta = \theta(y)\), since \(\theta \in \text{Sol}(\sigma)\).
4. We know that either \(v = \text{new} \ C(v_1, \ldots, v_n)\) or \(v = x\) and \(\sigma^n(x) = \text{new} \ C(v_1, \ldots, v_n)\). In the former case, the thesis is immediate. In the latter, it follows by induction on \(n\), since \(x\theta = \theta(x) = \sigma(x) \theta\), as \(\theta \in \text{Sol}(\sigma)\).
5. The proof is by coinduction. If \(\text{unfold}(v, \sigma) \uparrow\), then \(v = x \in \text{dom}(\sigma)\), \(T(x, \sigma) = x\) hence the thesis is immediate. If \(\text{unfold}(v, \sigma) = \text{new} \ C(v_1, \ldots, v_n)\), then \(T(v, \sigma) = \text{new} \ C(T(v_1, \sigma), \ldots, T(v_n, \sigma))\). If \(v \theta = T(v, \sigma) \theta\), since by point 4 we have \(v \theta = \text{new} \ C(v_1, \ldots, v_n) \theta\) and, by definition, \(T(v, \sigma) \theta = \text{new} \ C(T(v_1, \sigma) \theta, \ldots, T(v_n, \sigma) \theta)\), hence we get \(v_i \theta = T(v_i, \sigma) \theta\) for all \(i \in 1..n\), as needed.

Proof of Lemma 13 We first prove that \([v_2, \sigma_2] \subseteq [v_1, \sigma_1]\). Let \(\theta_2 \in \text{Sol}(\sigma_2)\). We have to find \(\theta_1 \in \text{Sol}(\sigma_1)\) such that \(v_2 \theta_2 = v_1 \theta_1\). We define a regular system of equations, with variables in \(\text{dom}(\sigma_1)\), which is finite by definition, as follows:

\[
\begin{align*}
\sigma(x) &= \begin{cases}
\theta_2(y) & \exists x' \in \text{undet}(\sigma_1). x \xrightarrow{c} x' \text{ and } x'\alpha y \\
\sigma_1(x) & \text{otherwise}
\end{cases}
\end{align*}
\]
The system is well-defined because, if there are \(x_1, x_2 \in \text{undet}(\sigma_1) \) such that \(x_1 \overset{\alpha}{\leftrightarrow} x_1, x_2 \overset{\alpha}{\leftrightarrow} x_2, x_1 \overset{\alpha}{\leftrightarrow} x_2, \) and \(x_2 \overset{\alpha}{\leftrightarrow} y_2, \) then \(x_1 \overset{\alpha}{\leftrightarrow} x_2, \) since \(\overset{\alpha}{\leftrightarrow} \) is an equivalence relation, thus \(y_1 \overset{\alpha}{\leftrightarrow} y_2, \) as \(\alpha \) is a \(\sigma_1, \sigma_2 \)-renaming; hence, by Prop. \([11](3)\), we have \(\theta_2(y_1) = \theta_2(y_2). \) By results in \([12]\), there exists a solution \(\theta_1 \) of \(s \), we now show that \(\theta_1 \in \text{Sol}(\sigma_1), \) that is, for all \(x \in \text{dom}(\sigma_1), \) \(\theta_1(x) = \sigma_1(x) \theta_1 \). There are two cases: if there is \(x' \in \text{undet}(\sigma_1) \) such that \(x' \overset{\alpha}{\leftrightarrow} x' \) and \(x' \overset{\alpha}{\leftrightarrow} y, \) then unfold\((x, \sigma_1) \) and unfold\((\sigma_1(x), \sigma_1) \), hence \(\sigma_1(x) \) is a variable, and, since \(x' \overset{\alpha}{\leftrightarrow} \sigma_1(x), \) we get \(\sigma_1(x) \overset{\alpha}{\leftrightarrow} x' \), hence, by definition of \(s, \theta_1(x) = \theta_2(y) = \theta_1(x) \theta_1 \); otherwise, we have \(\theta_1(x) = s(x) \theta_1 = \sigma_1(x) \theta_1, \) as needed.

Finally, we can prove by coinduction that, for all open values \(v_1 \) and \(v_2 \) such that \(FV(v_1) \subseteq \text{dom}(\sigma_1) \) and \(FV(v_2) \subseteq \text{dom}(\sigma_2), \) if \(T(v_1, \sigma_1) \equiv_a T(v_2, \sigma_2), \) then \(v_1 \theta_1 = v_2 \theta_2. \) There are two cases:

- if \(\text{unfold}(v_1, \sigma_1) \), then \(v_1 = x, v_2 = y, \text{unfold}(y, \sigma_2) \), and \(x \overset{\alpha}{\leftrightarrow} y, \) hence the thesis follows by construction of \(\theta_1; \)
- if \(\text{unfold}(v_1, \sigma_1) \Rightarrow v = \text{new} C(v_1, \ldots, v_n) \), then \(T(v_1, \sigma_1) = \text{new} C(T(v_1, \sigma_1), \ldots, T(v_n, \sigma_1)) \) and \(T(v_2, \sigma_2) = \text{new} C(T(v_2, \sigma_2), \ldots, T(v_n, \sigma_2)) \), hence, for all \(i \in 1 \ldots n \) we have \(T(v_1, \sigma_1) \equiv_R T(v_2, \sigma_2), \) then the thesis follows by coinductive hypothesis.

Therefore, this proves that \([v_1, \sigma_1] \subseteq \text{[v_2, \sigma_2]} \). To get the other inclusion, it is enough to note that, if \(T(v_1, \sigma_1) \equiv_a T(v_2, \sigma_2), \) then \(T(v_2, \sigma_2) \equiv_a T(v_1, \sigma_1), \) hence the thesis follows from what we have just proved.

Proof of Prop. \([14]\): If \(\text{unfold}(v_1, \sigma_1) \) and \(\text{unfold}(v_2, \sigma_2) = \text{new} C(v_1', \ldots, v_n'), \) then \(v_1 = x \) for some undetermined variable \(x \in \text{dom}(\sigma_1) \) hence \([v_1, \sigma_1] = \mathcal{V}_a. \) Instead, if \(v \in [v_2, \sigma_2], \) we have \(v = \text{new} C(v_1, \ldots, v_n). \) Therefore, the value \(\text{new} C(v_1', \ldots, v_n') \in \mathcal{V}_a \) exists by definition of values, but it does not belong to \([v_2, \sigma_2]\), which is a contradiction. This proves \([11]\) and the first part of \([2]\). To conclude, assume \(\text{unfold}(v_1, \sigma_1) = \text{new} C(v_1, \ldots, v_n) \) and \(\text{unfold}(v_2, \sigma_2) = \text{new} C(v_2, \ldots, v_n), \) and consider \(i \in 1 \ldots n. \) Consider a solution \(\theta_1 \in \text{Sol}(\sigma_1), \) then \(v_1, \theta_1 \in [v_1, \sigma_1], \) and we have to prove \(v_1, \theta_1 \in [v_2, \sigma_2]. \) By hypothesis, we know that there is a solution \(\theta_2 \in \text{Sol}(\sigma_2) \) such that \(v_1 \theta_1 = v_2 \theta_2, \) hence, by Prop. \([11]\), we get \(\text{new} C(v_1, \theta_1, \ldots, v_n, \theta_1) = \text{new} C(v_2, \theta_2, \ldots, v_n, \theta_2), \) and in particular \(v_1, \theta_1 = v_2, \theta_2 \in [v_2, \sigma_2], \) as needed. This proves \([v_1, \sigma_1] \subseteq [v_2, \sigma_2], \) the other inclusion is immediate.

Proof of Lemma \([15]\): Following \([12]\), given an infinite open value \(t \), each subtree of \(t \) is identified by a finite sequence \(\beta \) of positive natural numbers, and it will be denoted by \(t(\beta). \) Extending the notation for capsules, we denote by \(\llbracket t, \sigma \rrbracket \) the set \(\{t \theta \in \text{Sol}(\sigma)\}. \) Set \(t_1 = T(v_1, \sigma_1) \) and \(t_2 = T(v_2, \sigma_2), \) we prove that for all \(\beta, \) if \([t_1(\beta), \sigma_1] = [t_2(\beta), \sigma_2] \) then either \(t_1(\beta) \) and \(t_2(\beta) \) are both variables, or \(t_1(\beta) = \text{new} C(t_1(\beta_1), \ldots, t_1(\beta_n)), t_2(\beta) = \text{new} C(t_2(\beta_1), \ldots, t_2(\beta_n)) \) and, for all \(i \in 1 \ldots n, \) \([t_1(\beta_i), \sigma_1] = [t_2(\beta_i), \sigma_2]. \) The proof is by induction on \(\beta, \) since by hypothesis \(\llbracket t_1, \sigma_1 \rrbracket = \llbracket t_2, \sigma_2 \rrbracket \) and using Prop. \([13]\).

We define a relation \(\alpha \subseteq FV(t_1) \times FV(t_2) \) as follows: \(x \alpha y \) if there is a sequence \(\beta \) such that \(x = t_1(\beta) \) and \(y = t_2(\beta). \) We verify it is a \(\sigma_1, \sigma_2 \)-renaming. First note that if \(x \alpha y, \) since \(\llbracket t_1, \sigma_1 \rrbracket = \llbracket t_2, \sigma_2 \rrbracket, \) for all \(\theta_1 \in \text{Sol}(\sigma_1) \) and \(\theta_2 \in \text{Sol}(\sigma_2), \) if \(t_1 \theta_1 = t_2 \theta_2, \) then \(\theta_1(x) = \theta_2(y). \) Then, if \(x_1 \alpha y_1, x_2 \alpha y_2 \) and \(x_1 \overset{\sigma_1}{\leftrightarrow} x_2, \) we have to prove \(y_1 \overset{\sigma_1}{\leftrightarrow} y_2. \) By contradiction, if \(y_1 \overset{\sigma_1}{\leftrightarrow} y_2 \) does not hold, since both \(y_1 \) and \(y_2 \) are undetermined variables by Prop. \([11]\), there is a solution \(\theta_2 \in \text{Sol}(\sigma_2) \) such that \(\theta_2(y_1) \neq \theta_2(y_2). \) Because \(\llbracket t_1, \sigma_1 \rrbracket = \llbracket t_2, \sigma_2 \rrbracket, \) there is a solution \(\theta_1 \in \text{Sol}(\sigma_1) \) such that \(t_1 \theta_1 = t_2 \theta_2, \) hence, since \(x_1 \alpha y_1, x_2 \alpha y_2 \) we get, by definition of \(\alpha, \theta_1(x_1) = \theta_2(y_1) \) and \(\theta_1(x_2) = \theta_2(y_2). \) Now, since \(x_1 \overset{\sigma_1}{\leftrightarrow} x_2, \) by Prop. \([11]\) \(\llbracket t_1, \sigma_1 \rrbracket = \llbracket t_2, \sigma_2 \rrbracket, \) we have \(\theta_1(x_1) = \theta_2(x_2), \) hence \(\theta_2(y_1) = \theta_2(y_2), \) which is a contradiction. The proof of the other direction is the same.
Finally, we can prove by coinduction that, for all β, $t_1(\beta) = t_2(\beta)$, which, in particular, implies the thesis.

Proof of Lemma 16 We define systems of equations s_2 and s_1 as follows:

\[
 s_2(x) = \begin{cases}
 \theta(x) & x \in \text{dom}(\sigma_2 \cap \sigma_1) \\
 \sigma_2(x) & \text{otherwise}
 \end{cases}
\]

\[
 s_1(x) = \begin{cases}
 \theta(x) & x \in \text{dom}(\sigma_1 \cap \sigma_2) \\
 \theta_2(y) & x \notin \text{dom}(\sigma_1 \cap \sigma_2) \text{ and } \exists x' \in \text{dom}(\sigma_1), x \xrightarrow{\alpha} x' \text{ and } x' \alpha y \\
 \sigma_1(x) & \text{otherwise}
 \end{cases}
\]

Both systems are well-defined since α is a σ_2, σ_1-renaming (see the proof of Lemma 13 for details), and have solutions θ_2 and θ_1, respectively, by results in [12].

The fact that $\theta_2 \in \text{Sol}(\sigma_2)$ is trivial. We now prove $\theta_1 \in \text{Sol}(\sigma_1)$. We have three cases:

- If $x \in \text{dom}(\sigma_1 \cap \sigma_2)$, then $\sigma_1(x) \sigma_1(x) = (\sigma_1 \cap \sigma_2)(x) \theta_1$ and, by definition, $FV((\sigma_1 \cap \sigma_2)(x)) \subseteq \text{dom}(\sigma_1 \cap \sigma_2)$, hence we get $(\sigma_1 \cap \sigma_2)(x) \sigma_1(x) = (\sigma_1 \cap \sigma_2)(x) = \theta_1(x)$; thus $\sigma_1(x) \theta_1 = \theta(x) = \theta_1(x)$.

- If $x \notin \text{dom}(\sigma_1 \cap \sigma_2)$ and there is $x' \in \text{dom}(\sigma_1)$ such that $x \xrightarrow{\alpha} x' \text{ and } x' \alpha y$, then $\theta_1(x) = \theta_2(y)$, $\text{unfold}(\sigma_1(x), \sigma_1) \uparrow$ and $x \xrightarrow{\alpha} x' \text{ and } x' \alpha y$. Hence, we have to prove $\theta_1(\sigma_1(x)) = \theta_2(y)$. Now, if $\sigma_1(x) \in \text{dom}(\sigma_1 \cap \sigma_2)$, then $\sigma_1(x) \in \text{dom}(\sigma_2)$, hence, since α is strict, we have $\sigma_1(x) x \xrightarrow{\alpha}$ y. Thus we get, by Prop. 11(1), $\theta_2(y) = \theta_2(\sigma_1(x))$, and, by definition, we have $\theta_2(\sigma_1(x)) = \theta_1(\sigma_1(x))$, hence $\theta_1(x) = \theta_2(y) = \theta_1(\sigma_1(x))$.

- Otherwise, we have $\theta_1(x) = s_1(x) \theta_1 = \sigma_1(x) \theta_1$. Furthermore, we also have that, for all $x \in \text{dom}(\sigma_1 \cap \sigma_2)$, $\langle \text{subst}_1(x) \sigma_1(x) = \theta(x) = \theta_2(x) \rangle$.

We now prove, by coinduction, that if $(v'_1, \sigma_1) \sigma_1 \sigma_2$ then $v'_1 \sigma_1 \sigma_2 v'_2 \theta_2$, which in particular implies the thesis. If $\text{unfold}(v'_1, \sigma_1) \uparrow$, then $\text{unfold}(v'_1, \sigma_2) \uparrow, v'_1 = x, v'_2 = y$ and αy, hence, by definition, $\theta_1(x) = \theta_2(y)$, as needed. Otherwise, the thesis follows from Prop. 11(4) and coinduction hypothesis.

Proof of Lemma 20 By induction on the definition of $e, \sigma, \tau \Downarrow v, \sigma'$.

\[\text{(VAL): We have that } v, \sigma, \tau \Downarrow v, \sigma. \text{ The thesis trivially holds since } \sigma \leq \sigma.\]

\[\text{(FIELD): By inductive hypothesis, } e, \sigma, \tau \Downarrow v, \sigma' \text{ holds, and } \sigma \leq \sigma'. \text{ Hence, } e, f, \sigma, \tau \Downarrow v_i, \sigma' \text{ holds as well, and } \sigma \leq \sigma'.\]

\[\text{(NEW): By inductive hypothesis, } e_i, \sigma, \tau \Downarrow v_i, \sigma' \text{ holds for all } i \in 1..n, \text{ and } \sigma \leq \sigma' \text{ for all } i \in 1..n. \text{ Hence, } \text{new } C(e_1, \ldots, e_n), \sigma, \tau \Downarrow \text{new } C(v_1 \ldots v_n), \sigma_i \text{ holds as well, and, since } \sigma \leq \sigma', \text{ for all } i \in 1..n, \text{ we have that } \sigma \leq \bigcup_{i=1..n} \sigma_i.\]

\[\text{(INK-OK): By inductive hypothesis, } e_i, \sigma, \tau \Downarrow v_i, \sigma' \text{ holds for all } i \in 1..n, \text{ new } \text{this}{\{\neg {\neg} x\}} \neg \neg {\neg} x, \sigma' \text{ holds, } \sigma \leq \sigma' \text{ for all } i \in 1..n, \text{ and } \neg \neg x \leq \sigma'. \text{ Hence, } e_0, m(\neg x), \sigma, \tau \Downarrow v, \sigma' \text{ holds as well and, since } \sigma \leq \neg \neg x, \text{ and by the transitivity of the relation } \leq, \sigma \leq \sigma'.\]

\[\text{(INK-CHECK): By inductive hypothesis, } e_i, \sigma, \tau \Downarrow v_i, \sigma' \text{ holds for all } i \in 1..n, \text{ new } \text{this}{\{\neg {\neg} x\}} \neg \neg {\neg} x, \sigma' \text{ holds, } \text{new } \text{this}{\{\neg {\neg} x\}} \neg \neg {\neg} x, \sigma' \text{ holds, } \sigma \leq \sigma' \text{ for all } i \in 1..n, \text{ and } \neg \neg x \leq \sigma'. \text{ Hence, } e_0, m(\neg x), \sigma, \tau \Downarrow x, \sigma' \{x:v\} \text{ holds as well and, since } \sigma \leq \neg \neg x, \text{ we have that } \sigma \leq \sigma' \{x:v\}.\]
By hypothesis, \(e_i, \sigma, \tau \downarrow v_i, \sigma'_i \) holds for all \(i \in 1..n \), \(e'[\forall x][\tau][\forall/\alpha] \downarrow v, \sigma'[x:x], \sigma \downarrow v, \sigma' \) holds, \(\sigma \leq \sigma'_i \) for all \(i \in 1..n \), and \(\sigma(x:x) \leq \sigma' \).

Hence, \(e_0, m(e_1, \ldots, e_n), \sigma, \tau \downarrow v, \sigma' \) holds and, since \(\sigma \leq \sigma(x:x) \), and by the transitivity of the relation \(\leq \), \(\sigma \leq \sigma'_i \).

(LOOK-UP) By inductive hypothesis, \(e_i, \sigma, \tau \downarrow v_i, \sigma'_i \) holds for all \(i \in 1..n \), and \(\sigma \leq \sigma'_i \) for all \(i \in 1..n \). Hence, \(e_0, m(\tau), \sigma, \tau \downarrow x, \sigma \) holds, and, \(\sigma \leq \sigma \).

Proof of Lemma 24. By induction on the definition of \(e, \emptyset, S \downarrow_{IN} v, S' \).

(IN-val) By hypothesis, we have that \(v, \emptyset \downarrow_{IN} S \downarrow_{IN} v, \emptyset \). The thesis is immediate by applying rule (ABS-CO-VAL).

(IN-field) By hypothesis, we have that \(e, \emptyset, S \downarrow_{IN} v, S' \). By inductive hypothesis, \(I_{v_i} \cup I_{v_i} \downarrow_{IN} v \) holds. Thus, we can apply rule (ABS-FIELD) and get the thesis.

(IN-new) By hypothesis, we have that \(e_i, \emptyset, S \downarrow_{IN} v_i, S'_i \) for all \(i \in 1..n \). By inductive hypothesis, \(I_{v_i} \cup I_{v_i} \downarrow_{IN} v_i \) holds for all \(i \in 1..n \). Thus, we can apply rule (ABS-NEW) and get the thesis.

(IN-invk-ok)-(IN-invk-check) By hypothesis, \(e_i, \emptyset, S \downarrow_{IN} v_i, S'_i \) holds for all \(i \in 0..n \), and \(e'[\forall x][\tau][\forall/\alpha] \downarrow v, \sigma, S \cup \{ c \} \downarrow_{IN} v, S' \) holds. By inductive hypothesis, \(I_{v_i} \cup I_{v_i} \downarrow_{IN} v_i \) holds for all \(i \in 0..n \) and also \(I_{v_i} \cup I_{v_i} \downarrow_{IN} v_i \) holds. We can trivially get the thesis by rule (ABS-CO-INVK) and get the thesis.

(IN-corec) By hypothesis, \(e_i, \emptyset, S \downarrow_{IN} v_i, S'_i \) holds for all \(i \in 0..n \), and \(e'[\forall x][\tau][\forall/\alpha] \downarrow v, \sigma, S \downarrow_{IN} v, S' \) holds. By inductive hypothesis, \(I_{v_i} \cup I_{v_i} \downarrow_{IN} v_i \) holds for all \(i \in 0..n \) and also \(I_{v_i} \cup I_{v_i} \downarrow_{IN} v_i \) holds. Thus, we can apply rule (ABS-CO-INVK) and get the thesis.

(IN-look-up) This case is empty since to apply the rule it should be \(\rho \neq \emptyset \).
Finally, \(e[n/\text{this}][\tau]\rho(c:v), S \downarrow IN v, S'' \) holds, and, from Lemma 27, \(c' \notin S'' \), hence, by inductive hypothesis, \(e[n/\text{this}][\tau]\rho(c:v), S \downarrow IN v, S'' \) hold. Thus, we can apply rule (IN-INVK-CHECK) and get the thesis.

(IN-corec) By hypothesis, \(e_i, \rho, S \downarrow IN v_i, S'_i \) holds, and \(c' \notin S'_i \) for all \(i \in 0..n \). Also by hypothesis, \(e'[v_0/\text{this}][\tau]\rho\{c:v\}, S \downarrow IN v, S' \) holds and \(c' \notin S' \). By inductive hypothesis, \(e_i, \rho, S \downarrow IN v_i, S'_i \) holds for all \(i \in 0..n \) and \(e'[v_0/\text{this}][\tau]\rho\{c:v\}, S \downarrow IN v, S' \) holds, and by inductive hypothesis, \(e_i, \rho, S \downarrow IN v_i, S'_i \) holds for all \(i \in 0..n \) and \(e'[v_0/\text{this}][\tau]\rho\{c:v\}, S \downarrow IN v, \emptyset \) holds. Thus, we can apply rule (IN-COREC) and get the thesis.

(IN-look-up) By hypothesis, \(e_i, \rho, S \downarrow IN v_i, S'_i \) holds, and \(c' \notin S'_i \) for all \(i \in 1..n \). By inductive hypothesis, \(e_i, \rho, S \downarrow IN v_i, S'_i \) holds \(\forall i \in 0..n \). Thus, we can apply rule (IN-LOOK-UP) and get the thesis.

Lemma 28. If \(e, \rho, S \downarrow IN v, S' \), then the following judgments hold:

1. \(e, \rho, S \cup \{c\} \downarrow IN v, S' \)
2. \(e, \rho\{c:v\}, S \downarrow IN v, S' \) for any \(v \in V' \).

Proof. The proof of both points is by induction on the definition of \(e, \rho, S \downarrow IN v, S' \).

Proof of Lemma 28. In the proof of this lemma we will use \(\rho' \) in place of \(\rho\{c:v\} \). In rules (IN-INVK-OK), (IN-INVK-CHECK), (IN-COREC) and (IN-LOOK-UP), \(\rho' \) will be used in place of \(\rho\{c:v\} \) to distinguish between different calls that could be present in the call trace at the same time.

We proceed by induction on the definition of \(e, \rho', S \downarrow IN v, S' \).

(IN-val) By hypothesis, \(v, \rho', S \downarrow IN v, \emptyset \). The thesis trivially holds by applying rule (IN-VAL).

(IN-field) By hypothesis, \(e, \rho', S \downarrow IN v, S' \). By inductive hypothesis, \(e, \rho, S \downarrow IN v, S' \) holds.

Thus, we can apply rule (IN-FIELD) and get the thesis.

(IN-new) By hypothesis, \(e_i, \rho', S \downarrow IN v_i, S'_i \) holds for all \(i \in 0..n \). By inductive hypothesis, \(e_i, \rho, S \downarrow IN v_i, S'_i \) holds for all \(i \in 0..n \). Thus, we can apply rule (IN-NEW) and get the thesis.

(IN-invk-ok) By hypothesis, \(e_i, \rho', S \downarrow IN v_i, S'_i \) holds for all \(i \in 0..n \). Also by hypothesis, \(e[v_0/\text{this}][\tau], \rho', S \cup \{c\} \downarrow IN v, S' \) holds. In order to use the inductive hypothesis, we apply Lemma 28 to the hypothesis \(c', \rho, S \downarrow IN v', \emptyset \) and obtain \(c', \rho, S \cup \{c\} \downarrow IN v', \emptyset \). By inductive hypothesis, \(e_i, \rho, S \downarrow IN v_i, S'_i \) holds for all \(i \in 0..n \). Also by hypothesis, \(e[v_0/\text{this}][\tau], \rho, S \cup \{c\} \downarrow IN v, S' \) and \(e[v_0/\text{this}][\tau], \rho\{c:v\}, S \downarrow IN v, S'' \) hold. Thus, we can apply rule (IN-INVK-OK) and get the thesis.

(IN-invk-check) By hypothesis, \(e_i, \rho', S \downarrow IN v_i, S'_i \) holds for all \(i \in 0..n \). Also by hypothesis, \(e[v_0/\text{this}][\tau], \rho', S \cup \{c\} \downarrow IN v, S' \) and \(e[v_0/\text{this}][\tau], \rho'\{c:v\}, S \downarrow IN v, S'' \) hold. Thus, we can apply rule (IN-INVK-CHECK) and get the thesis.

(IN-corec) By hypothesis, \(e_i, \rho', S \downarrow IN v_i, S'_i \) holds for all \(i \in 0..n \). Also by hypothesis, \(e[v_0/\text{this}][\tau][u/\text{any}], \rho' \), \(S \downarrow IN v, S' \) holds. In order to proceed, we have to distinguish between two cases (recall that \(c' = U, m(t) \) and \(c = v_0, m(t) \)):

- If \(c' \neq c \), then \(\rho'(c) = \rho(c) = v \), hence we get the thesis by applying rule (LOOK-UP).
If \(c' = c \), then, since \(c', \rho, S_{\text{IN}}^v, S' \) holds by hypothesis, and \(e_0, \rho, S_{\text{IN}}^v, S' \) holds by inductive hypothesis for all \(i \in 0..n \), the judgment \(e_0.m(\tau), \rho, S_{\text{IN}}^v, S' \) can still be derived.

Proof of Theorem

The proof is by induction on the definition of \(e, \sigma, \tau \vdash v, \sigma' \).

(val) Immediately by \((\text{IN-VAL})\), as \(S_{\sigma,\tau}^\theta \setminus S_{\sigma}^\theta = \emptyset \).

(field) By induction hypothesis, we have \(e_\theta, \rho_\theta, S_\theta^\tau \vdash v, \theta, S \), for some \(S_{\tau,\sigma'}^\theta \subseteq S \subseteq S_{\sigma'}^\theta \) and, by Prop. 21, we get \(v \theta = \text{new } C(v_1, \ldots, v_n) \), hence the thesis follows by rule \((\text{IN-FIELD})\).

(new) Since \(\sigma'_i \subseteq \bigcup_{i \in 1..n} \sigma'_i \), we have \(\theta \in \text{Sol}(\sigma'_i) \) by Lemma 19, hence, by induction hypothesis, we have \(e_\theta, \rho_\theta, S_\theta^\tau \vdash v_1, \theta, S_i \), with \(S_{\tau,\sigma'}^\theta \subseteq S_i \subseteq S_{\sigma'}^\theta \), for all \(i \in 1..n \). It is easy to see that \(S_{\theta}^\tau \bigcup_{i \in 1..n} \sigma'_i = \bigcup_{i \in 1..n} S_{\tau,\sigma'}^\theta \), then, if \(\sigma' = \bigcup_{i \in 1..n} \sigma'_i \), \(S_{\tau,\sigma'}^\theta \subseteq \bigcup_{i \in 1..n} S_i \subseteq S_{\sigma'}^\theta \), hence the thesis follows by rule \((\text{IN-NEW})\).

(invk-ok) Since \(\sigma'_i \subseteq \varnothing \subseteq \sigma'_l \), by Lemma 19 we get \(\theta \in \text{Sol}(\sigma'_i) \), for all \(i \in 1..n \). By induction hypothesis, we have \(e_\theta, \rho_\theta, S_\theta^\tau \vdash v_1, \theta, S_i \), with \(S_{\tau,\sigma'}^\theta \subseteq S_i \subseteq S_{\sigma'}^\theta \), for all \(i \in 1..n \), and \(e[v_\theta/\text{this}][\tau/\varnothing] \bigwedge \theta, \rho_\theta, S_{\tau,\sigma'}^\theta \vdash v, \theta, S \), with \(S_{\tau,\sigma'}^\theta \subseteq S \subseteq S_{\sigma'}^\theta \). Then we get \(S_{\tau,\sigma'}^\theta \subseteq \bigcup_{i \in 1..n} S_i \subseteq S_{\sigma'}^\theta \). Since \(\varnothing \subseteq \text{Sol}(\sigma'_i) \) such that \(v' \theta = \theta(x) \) and, for all \(x \in \text{dom}(\sigma'_i) \), \(\theta(x) = \theta(x) \). Therefore, by induction hypothesis, we get \(e[v_\theta/\text{this}][\tau/\varnothing] \bigwedge \theta, \rho_\theta, S_{\tau,\sigma'}^\theta \vdash v', \theta, S' \), with \(S_{\tau,\sigma'}^\theta \bigcup \varnothing \subseteq S \subseteq S_{\sigma'}^\theta \). Then, by construction of \(\theta' \), we have \(e[v_\theta/\text{this}][\tau/\varnothing] \bigwedge \theta, \rho_\theta, S_{\tau,\sigma'}^\theta \vdash v', \theta, S' \), and \(\psi = \rho_\theta(c, \theta : \theta(x)) \) and \(\psi = S_{\sigma'}^\theta \). Finally, since \(x \in \text{dom}(\sigma'_i) \), \(c \in S_{\tau,\sigma'}^\theta \), since \(x \) is fresh, hence \(\theta \in \text{Sol}(\sigma'_i) \), hence the thesis follows by rule \((\text{IN-NEW})\).

(corec) Since \(\sigma'_i \subseteq \sigma \subseteq \sigma' \), by Lemma 19 we get \(\theta \in \text{Sol}(\sigma'_i) \), for all \(i \in 1..n \). By induction hypothesis, we have \(e_\theta, \rho_\theta, S_\theta^\tau \vdash v_1, \theta, S_i \), with \(S_{\tau,\sigma'}^\theta \subseteq S_i \subseteq S_{\sigma'}^\theta \), for all \(i \in 1..n \), and \(e[v_\theta/\text{this}][\tau/\varnothing] \bigwedge \theta, \rho_\theta, S_{\tau,\sigma'}^\theta \vdash v, \theta, S \), with \(S_{\tau,\sigma'}^\theta \subseteq S \subseteq S_{\sigma'}^\theta \). Then we get \(S_{\tau,\sigma'}^\theta \subseteq \bigcup_{i \in 1..n} S_i \subseteq S_{\sigma'}^\theta \), hence, \(\sigma \in \text{Sol}(\sigma'_i) \), hence the thesis follows by rule \((\text{IN-COREC})\).

(look-up) Since \(\sigma'_i \subseteq \varnothing \subseteq \sigma' \), by Lemma 19 we get \(\theta \in \text{Sol}(\sigma'_i) \), for all \(i \in 1..n \). By induction hypothesis, we have \(e_\theta, \rho_\theta, S_\theta^\tau \vdash v_1, \theta, S_i \), with \(S_{\tau,\sigma'}^\theta \subseteq S_i \subseteq S_{\sigma'}^\theta \), for all \(i \in 1..n \), and then we get \(S_{\tau,\sigma'}^\theta \subseteq \bigcup_{i \in 1..n} S_i \subseteq S_{\sigma'}^\theta \). In order to conclude by rule \((\text{IN-LOOK-UP})\), we have to prove that \(\rho_\theta(c, \theta : \theta(x)) \). We know that there exists \(c' \in \text{dom}(\tau^\psi) \) such that \(\langle c, \sigma \rangle \in (c', \varnothing) \) and \(\psi = c' \), by definition.