Fock 空间上的测不准原理

献给史济怀教授 80 华诞

陈泳①，朱克和②*

① 浙江师范大学数学系，金华 321004;
② Department of Mathematics and Statistics, State University of New York at Albany, Albany 12222, USA
E-mail: ychen227@gmail.com, kahu@math.albany.edu

收稿日期: 2015-01-29; 接受日期: 2015-04-25; * 通信作者
国家自然科学基金 (批准号: 11371234 和 11201274) 和浙江省自然科学基金 (批准号: LY14A010013 和 LY13A010021) 资助项目

摘要 本文在复平面 Fock 空间 F^2 上给出了测不准原理的一些形式。特别地，对 F^2 中的单位向量 f，有

$$\text{dist}(f' + zf, [f]) \geq 1,$$

其中 $[f] = C f$ 为 f 张成的一维子空间。

关键词 Fock 空间 测不准原理 Fourier 分析 量子物理 Gauss 函数

MSC (2010) 主题分类 30H20

1 引言

量子物理中的 Heisenberg 测不准原理指出，一个质点的位置和速度不能在同一个时间内被准确测出。这并不是由于测量仪器的不完善造成的，而是理论上的不可能。具体来讲，一个质点的位置“不确定性”和速度“不确定性”的乘积总是大于或等于一个很小的正常量 $h/(4\pi)$，其中 h 为 Planck 常量。

在物理、工程、数学中存在很多类似的基于位置、速度、动量和能量等的测不准原理，或有时也称为不确定性原理。本文将在 Fock 空间的框架里给出一些测不准原理的形式。这一点毫不奇怪，因为 Fock 空间是量子物理中非常重要的数学工具之一。

记 C 为复平面，

$$d\lambda(z) = \frac{1}{\pi} e^{-|z|^2} dA(z)$$

为 C 上的 Gauss 测度，其中 $d\lambda = dx dy$ 为面积测度。定义 Fock 空间为 $F^2 = L^2(C, d\lambda) \cap H(C)$，其中 $H(C)$ 为整函数全体。对 Fock 空间的一般性质参见文献 [1]。

本文的目的是在 Fock 空间上得到一些测不准原理的形式。下面给出本文的结果。

主要定理 对函数 $f \in F^2$ 和任意实数 a 和 b，有

$$\|f' + zf - af\| \|f' - zf - ibf\| \geq \|f\|^2.$$
(1) \(\text{dist} (f' + zf, [f]) \) \(\text{dist} (f' - zf, [f]) \geq 1; \)
(2) \(\|f' + zf\| \|f' - zf\| |\sin(\theta_+)\sin(\theta_-)| \geq 1; \)
(3) \((\|f'\|^2 + \|zf\|^2) |\sin(\theta_+)\sin(\theta_-)| \geq 1, \)
其中 [f] 为 \(F^2 \) 中由 \(f \) 构成的一维子空间，\(\theta_\pm \) 分别为 \(f \) 和 \(f' \pm zf \) 之间的夹角。另外，我们确定了上面每种情形等号何时成立。

注意函数 \(f'(z) \) (或等价地，函数 \(zf(z) \)) 并不总是属于 Fock 空间 \(F^2 \) (参见文献 [2])。当函数 \(f'(z) \) 不在 \(F^2 \) 中时，上面定理中的每个不等式左边为无穷大，因此，不等式显然成立。

2 Fock 空间上的测不准原理

测不准原理往往是下面这个来自泛函分析里的一般性结果的推论，本文也不例外。

定理 1 假设 \(A \) 和 \(B \) 为 Hilbert 空间 \(H \) 上可能无界的自伴算子，则对所有的 \(x \in \text{Dom}(AB) \cap \text{Dom}(BA) \) 和 \(a, b \in \mathbb{R} \)，有

\[
\|(A-a)x\|\|(B-b)x\| \geq \frac{1}{2}|\langle [A,B]x,x \rangle|,
\]

其中 \([A,B] = AB - BA \) 为 \(A \) 和 \(B \) 的换位子。进一步，(2.1) 中等号成立当且仅当 \((A-a)x \) 和 \((B-b)x \) 相差一个纯虚数倍。

证明 证明详见文献 [3, 第 27 页] 或 [4, 第 27 页]。证毕。

从定理 1 可知，如果有两个自伴算子 \(A \) 和 \(B \) 使得 \([A,B] \) 为恒等算子的常数倍，那么就可以得到测不准原理的形式，下面在空间 \(F^2 \) 中利用乘以 \(z \) 的乘法算子和微分算子构造这样的两个自伴算子。

引理 2 令 \(D:F^2 \rightarrow F^2 \) 为微分算子，即 \(Df = f' \)，则其对偶算子 \(D^* \) 为 \((D^*f)(z) = zf(z) \)。

证明 空间 \(F^2 \) 中的标准正交基为

\[
e_n(z) = \frac{z^n}{\sqrt{n!}}, \quad n = 0, 1, 2, \ldots
\]

设多项式 (其在空间 \(F^2 \) 中稠密) \(f = \sum_{n=0}^{\infty} a_ne_n, \quad g = \sum_{n=0}^{\infty} b_ne_n \) ，则

\[
Df(z) = \frac{d}{dz} \sum_{n=0}^{\infty} \frac{a_n}{\sqrt{n!}} z^n = \sum_{n=1}^{\infty} a_n \frac{n}{\sqrt{n!}} z^{n-1} = \sum_{n=0}^{\infty} a_{n+1} \sqrt{n+1} e_n(z).
\]

另外，

\[
zg(z) = \sum_{n=0}^{\infty} \frac{b_n}{\sqrt{n!}} z^{n+1} = \sum_{n=1}^{\infty} \sqrt{n} b_{n-1} e_n(z).
\]

于是，

\[
\langle Df, g \rangle = \sum_{n=0}^{\infty} \sqrt{n+1} a_{n+1} b_n = \sum_{n=1}^{\infty} \sqrt{n} a_n b_{n-1} = \langle f, zg \rangle.
\]

即得结论。证毕。

容易验证 \([D, D^*] = I \)。事实上，对所有 \(f \in F^2 \)，有

\[
(DD^* - D^*D)f = (zf)' - zf' = f.
\]

1848
在谐振子的量子理论里, D 称为湮灭算子, 而 D^* 称为产生算子. 因为 D 和 D^* 不是自伴算子, 这里还不能对标准交换关系 $[D, D^*] = I$ 直接应用定理. 故考虑空间 F^2 上的下面两个自伴算子:

$$A = D + D^*, \quad B = i(D - D^*),$$

即

$$Af(z) = f'(z) + zf(z), \quad Bf(z) = i(f'(z) - zf(z)). \tag{2.3}$$

由文献 [2] 知, 对函数 $f \in F^2$, $f' \in F^2$ 当且仅当 $zf \in F^2$. 因此, 若 $f' \in F^2$, 则 Af 和 Bf 定义合理. 而若 $f' + zf$ 和 $f' - zf$ 都在 F^2 中, 则由这两个函数的和及差可知, f' 和 zf 也都在 F^2 中. 于是, A 和 B 的定义域的交集包含那些使得 f' (或 zf) 仍在 F^2 中的 f. 为 AB 和 BA 及它们定义域的交, 同样确定为算子 A 和 B 的定义域的交集.

引理 3 对算子 A 和 B, 有 $[A, B] = -2iI$. 其中 I 为 F^2 上的恒等算子, i 为虚数单位.

证明 结合 (2.2) 直接验证可得. 证毕. □

现在给出 Fock 空间上的第一个测不准原理形式.

定理 4 令 $f \in F^2$, 则对所有实数 a 和 b 有

$$\|f' + zf - af\| \geq \|f' - zf - ibf\| \geq \|f\|^2. \tag{2.4}$$

等号成立当且仅当存在正数 c 和复数 C 使得

$$f(z) = C \exp \left(\frac{c - 1}{2(c + 1)}z^2 + \frac{a + ibc}{c + 1}z \right).$$

证明 由于不等式 (2.4) 中的 a 和 b 为任意实数, 且 $\|i(f' - zf) - bf\| \geq \|f' - zf + ibf\|$, 则此不等式由定理 1 结合引理 3 可得. 另外, 由定理 1 可知, (2.4) 中等号成立当且仅当存在非零实常数 c 使得

$$f' + zf - af = -ic(f' - zf) + ibcf. \tag{2.5}$$

重写其为

$$(1 + c)f' + [(1 - c)z - (a + ibc)]f = 0. \tag{2.6}$$

若 $c = -1$, 则 (2.6) 只有解 $f = 0$. 若 $c \neq -1$, 则由解常微分方程的初等方法可得 (2.6) 的一般解为

$$f(z) = C \exp \left(\frac{c - 1}{2(c + 1)}z^2 + \frac{a + ibc}{c + 1}z \right), \tag{2.7}$$

其中 C 为任意复常数. 由文献 [1, 第 38 页] 知, 每个 $f \in F^2$ 满足

$$\lim_{z \to \infty} f(z) \exp \left(-\frac{1}{2}z^2 \right) = 0. \tag{2.8}$$

因此要使函数 (2.7) 在空间 F^2 中的一个必要条件是 $C = 0$ 或 $|c - 1| \leq |c + 1|$. 由于 c 是实数, 后者等价于 $(c - 1)^2 \leq (c + 1)^2$, 即 $c \geq 0$. 由于 c 非零, 故 $c > 0$. 定理证毕. □

事实上, 函数 (2.7) 在空间 F^2 中的充要条件即为 $C = 0$ 或 $c > 0$, 因为当 $C \neq 0$ 时, 直接计算可得此函数 f 的范数为

$$\|f\|^2 = \frac{|c + 1|\|C\|^2}{2\sqrt{c}} \exp \left(\frac{a^2 + b^2c}{2(c + 1)} \right). \tag{2.9}$$
另外，对函数 (2.7)，直接计算可得
\[\langle zf, f \rangle = \frac{1}{2} (a - ib) \| f \|^2, \quad \| zf \|^2 = \frac{1}{4} \left(a^2 + b^2 + c + \frac{1}{c} + 2 \right) \| f \|^2, \] (2.10)
于是，
\[\| f' + zf \| = \sqrt{c + a^2 \| f \|}, \quad \| f' - zf \| = \sqrt{\frac{1}{c} + b^2 \| f \|}. \] (2.11)
这些将在后面用到。
为给出 Fock 空间上的下一个测不准原理形式，固定 f ∈ F^2。由于 A 为自伴算子，则对实数 a 有
\[\|(A - a)f\|^2 = \| Af \|^2 + |a|^2 \| f \|^2 - 2a \langle Af, f \rangle \]
\[= \| Af \|^2 + \| f \|^2 \left[a - \frac{\langle Af, f \rangle}{\| f \|^2} \right]^2 - \frac{|\langle Af, f \rangle|^2}{\| f \|^4} \]
\[\geq \| Af \|^2 - \frac{|\langle Af, f \rangle|^2}{\| f \|^2}. \]
此表示
\[\min_{a \in \mathbb{R}} \|(A - a)f\|^2 = \| Af \|^2 - \frac{|\langle Af, f \rangle|^2}{\| f \|^2}, \]
并且最小值当 a = \frac{\langle Af, f \rangle}{\| f \|^2} 时达到。等价地，
\[\min_{a \in \mathbb{R}} \| f' + zf - af \|^2 = \| f' + zf \|^2 - \frac{|\langle f' + zf, f \rangle|^2}{\| f \|^2}, \]
且最小值当 a = \frac{\langle f' + zf, f \rangle}{\| f \|^2} 时达到。类似地，
\[\min_{b \in \mathbb{R}} \| f' - zf - ibf \|^2 = \min_{b \in \mathbb{R}} \| (f' - zf) + bf \|^2 = \| f' - zf \|^2 - \frac{|\langle f' - zf, f \rangle|^2}{\| f \|^2}, \]
且最小值当 b = -\frac{\langle f' - zf, f \rangle}{\| f \|^2} 时达到。□

综上分析，当 f 为单位向量时可得到如下形式的测不准原理形式。

推论 5 令 f 为 F^2 中的单位向量，则
\[\| f' + zf \|^2 - |\langle f' + zf, f \rangle|^2 (\| f' - zf \|^2 - |\langle f' - zf, f \rangle|^2) \geq 1, \]
等号成立当且仅当
\[f(z) = C \exp \left(\frac{c - 1}{2(c + 1)} z^2 + \frac{a + ibc}{c + 1} z \right), \] (2.12)
其中 c 为正数，a 和 b 为实数，C 为复数且
\[|C|^2 = \frac{2 \sqrt{c}}{|c + 1|} \exp \left(-\frac{a^2 + b^2 c}{2(c + 1)} \right). \] (2.13)

证明 此结论由定理 4 和前面对最小值问题的讨论不难得出，下面仅给出等号成立情形的证明。
首先注意到条件 (2.13) 仅为保证 (2.12) 中函数为单位向量，此由 (2.9) 可知。若 f 不具有 (2.12) 的形式，则由定理 4 可知，对任意的实数 a 和 b 有
\[\| f' + zf - af \| \| f' - zf - ibf \| > 1. \]
特别地，取 \(a = (f' + zf, f), \ b = -i(f' - zf, f) \), 则由前面最小值问题的讨论知，

\[
(\|f' + zf\| - \|f' - zf\|)(\|f' + zf\| - \|f' - zf\|) > 1,
\]

即此时不等式等号不成立。

反之，若 \(f \) 具有 (2.12) 的形式，为方便记为 \(f_{a,b} \)，则由定理 4 可知，

\[
\|f'_{a,b} + zf_{a,b} - a_{a,b} - zf_{a,b} - i b_{a,b}\| = 1.
\] (2.14)

利用 (2.10) 直接计算内积可以得到

\[
\langle f'_{a,b} + zf_{a,b}, f_{a,b} \rangle = a, -i(f'_{a,b} - zf_{a,b}, f_{a,b}) = b,
\]

代入 (2.14) 且由前面最小值问题的讨论即得

\[
(\|f'_{a,b} + zf_{a,b}\|^2 - \|f'_{a,b} + zf_{a,b}, f_{a,b}\|^2)(\|f'_{a,b} - zf_{a,b}\|^2 - \|f'_{a,b} - zf_{a,b}, f_{a,b}\|^2) = 1,
\]

即不等式等号成立。证毕。

推论 6 对任意 \(f \in F^2 \) 有 \(\|f + zf\|\|f - zf\| \geq \|f\|^2 \)，等号成立当且仅当存在正数 \(c \) 和复数 \(C \) 使得

\[
f(z) = C \exp\left(\frac{c - 1}{2(c + 1)} z^2\right).
\] (2.15)

证明 在定理 4 中令 \(a = b = 0 \) 即得。证毕。

由于 \(\|f'\|^2 + \|zf\|^2 = \frac{1}{2}\|f' + zf\|^2 + \|f' - zf\|^2 \geq \|f' + zf\|\|f' - zf\| \)，则由推论 6 可得

\[
\|f'\|^2 + \|zf\|^2 \geq \|f\|^2, \ f \in F^2.
\]

此不等式也可以直接对 \(f \) Taylor 展开并利用空间 \(F^2 \) 的标准正交基性质可得，因此是平凡的。但对上面的推导稍作修改可得如下有趣而非平凡的结论，且包含了上述情形。

推论 7 对任意 \(f \in F^2 \) 和 \(\sigma > 0 \) 有 \(\frac{\sigma}{2}\|f' + zf\|^2 + \frac{1}{\sigma}\|f' - zf\|^2 \geq \|f\|^2 \)，等号成立当且仅当

\[
f(z) = C \exp\left(\frac{1 - \sigma}{2(1 + \sigma)} z^2\right).
\]

其中 \(C \) 为任意复常数。

证明 由推论 6 可得

\[
\|f\|^2 \leq \|\sqrt{\sigma}(f' + zf)\|\|f' - zf\| \leq \frac{1}{2}\left[\|f' + zf\|^2 + \|f' - zf\|^2\right]
\]

\[
= \frac{\sigma}{2}\|f' + zf\|^2 + \frac{1}{2\sigma}\|f' - zf\|^2.
\]

进一步，等号成立当且仅当 \(f \) 为形如 (2.15) 的函数且 \(\|\sqrt{\sigma}(f' + zf)\| = \|(f' - zf)/\sqrt{\sigma}\| \)，此等价于

\[
f(z) = C \exp\left(\frac{c - 1}{2(c + 1)} z^2\right), \ c \sigma = 1,
\]

即得结论。证毕。
在下一节将对上面这些形式的测不准原理作更多评注，下面将给出一些与角和距离相关的几何形式的测不准原理，这些结论将提供比推论 5 和 6 更好的估计形式。

推论 8 令 \(f \) 为 \(F^2 \) 中任何非零函数，\(\theta_{\pm} \) 分别为 \(f \) 和 \(f' \pm zf \) 之间的夹角，则

\[
\|f' + zf||f' - zf|| \geq \|f\|^2, \\
\text{等号成立当且仅当} \\
\quad f(z) = C \exp \left(\frac{c - 1}{2c + 1} z^2 + a + ibc \right),
\]

其中 \(c \) 为正数，\(a \) 和 \(b \) 为实数，\(C \) 为非零复数。

证明 由于

\[
\|f' + zf\|^2 - \frac{(f' + zf, f)^2}{\|f\|^2} = \|f' + zf\|^2 \left[1 - \frac{(f' + zf, f)}{\|f' + zf\|} \right]^2 \\
= \|f' + zf\|^2 (1 - \cos^2(\theta_+)) \\
= \|f' + zf\|^2 \sin^2(\theta_+),
\]

类似地有

\[
\|f' - zf\|^2 - \frac{(f' - zf, f)^2}{\|f\|^2} = \|f' - zf\|^2 \sin^2(\theta_-),
\]

则由推论 5 知结论成立。证毕。

利用 (2.10) 和 (2.11) 可知，当上面推论的等号成立时，

\[
|\sin \theta_+| = \sqrt{\frac{1}{1 + a^2 c}}, \quad |\sin \theta_-| = \sqrt{\frac{1}{1 + b^2 c}}.
\]

由此可知此时两夹角 \(\theta_{\pm} \) 的大小。

推论 9 令 \(f \) 为 \(F^2 \) 中单位向量，\(\theta_{\pm} \) 分别为 \(f \) 和 \(f' \pm zf \) 之间的夹角，则对任意 \(\sigma > 0 \) 有

\[
\left(\frac{\sigma}{2} \|f' + zf\|^2 + \frac{1}{2\sigma} \|f' - zf\|^2 \right) |\sin(\theta_+)\sin(\theta_-)| \geq 1,
\]

等号成立当且仅当 \(f \) 形如 (2.12) 且 \(\sigma \sqrt{c + a^2} = \sqrt{\frac{1}{c} + b^2} \)。特别地，\((\|f' + zf\|, \sin(\theta_+)\sin(\theta_-)) \geq 1 \)，

等号成立当且仅当 \(f \) 形如 (2.12) 且 \(c + a^2 = \frac{1}{c} + b^2 \)。

证明 由推论 8 结合推论 7 的证明方法可得。而等号成立当且仅当 \(f \) 为形如 (2.12) 的函数且 \(\|f' - zf\| = \sigma \|f' + zf\| \)，后者利用 (2.11) 即为 \(\sigma \sqrt{c + a^2} = \sqrt{\frac{1}{c} + b^2} \)。特别情形取 \(\sigma = 1 \) 得到。证毕。

推论 10 令 \(f \) 为 \(F^2 \) 中的非零向量，

\[
\text{dist}(f' - zf, [f]) \text{ dist}(f' + zf, [f]) \geq \|f\|^2,
\]

其中 \([f]\) 为 \(F^2 \) 中由 \(f \) 张成的一维子空间，\(\text{dist}(g, X) \) 为 \(F^2 \) 中 \(g \) 到 \(X \) 的距离。而等号成立当且仅当

\[
f(z) = C \exp \left(\frac{c - 1}{2c + 1} z^2 + a + ibc \right),
\]

其中 \(c \) 为正数，\(a \) 和 \(b \) 为实数，\(C \) 为非零复数。

证明 观察到

\[
\text{dist}(f' + zf, [f]) = \|f' + zf\| \sin(\theta_+), \quad \text{dist}(f' - zf, [f]) = \|f' - zf\| \sin(\theta_-),
\]

则结论由推论 8 直接可得。证毕。
3 一些推广

按照传统，测不准原理中的 a 和 b 为实数，然而定理 1 可以推广到 a 和 b 为复参量情形。

定理 11 假设 A 和 B 为 Hilbert 空间 H 上可能无界的自伴算子，则对所有的 $x \in \text{Dom}(AB) \cap \text{Dom}(BA)$ 和 $a, b \in \mathbb{C}$，有

$$
\|(A - a)x\| \| (B - b)x \| \geq \frac{1}{2} |\langle [A, B]x, x \rangle|,
$$

等号成立当且仅当 a 和 b 为实数且向量 $(A - a)x$ 和 $(B - b)x$ 相差纯虚数倍。

证明 记 $a = a_1 + ia_2$，其中 a_1 和 a_2 为实数，则

$$
\|(A - a)x\|^2 = \|(A - a_1)x - ia_2x\|^2
= \|(A - a_1)x\|^2 + |a_2|^2 \|x\|^2 - ia_2\langle (A - a_1)x, x \rangle + a_2i\langle (A - a_1)x, x \rangle
= \|(A - a_1)x\|^2 + |a_2|^2 \|x\|^2 \geq \|(A - a_1)x\|^2.
$$

类似地，若记 $b = b_1 + ib_2$，则

$$
\|(B - b)x\|^2 = \|(B - b_1)x\|^2 + |b_2|^2 \|x\|^2 \geq \|(B - b_1)x\|^2.
$$

于是，由定理 1 可知本定理成立。证毕。

另外，本文在 Fock 空间中成立的结果对任意的湮灭算子 D 和产生算子 D^* 依然成立。

定理 12 设 D 为 H 上的算子且满足 $[D, D^*] = I$，则对所有 $x \in \text{Dom}(DD^*) \cap \text{Dom}(D^*D)$ 和 $a, b \in \mathbb{R}$，有

$$
\|Dx + D^*x - ax\| \|Dx - D^*x - ibx\| \geq \|x\|,
$$

等号成立当且仅当 $Dx + D^*x - ax$ 和 $i(Dx - D^*x) + bx$ 相差纯虚数倍。

证明 由引理 3 和定理 4 的证明类似可证。证毕。

同样，可以将上面的结果推广到复参量情形，并且与 Fock 空间情形一样可得到湮灭算子 D 和产生算子 D^* 的相应的一些测不准原理的形式。有兴趣的读者可自行写出这些细节。

4 注记

正如在第 2 节开始曾提到的，若两个自伴算子的换位子为恒等算子的常数倍，则可以得到测不准原理。在 Fock 空间情形，注意算子 $Af = f' + zf$ 和 $Bf = i(f' - zf)$ 具有这样的性质。源自于经典的 Fourier 分析。事实上，空间 $L^2(\mathbb{R}) = L^2(\mathbb{R}, dx)$ 上乘以 x 的乘法算子 X 显然是自伴的。而算子

$$
D = \frac{1}{2\pi i} \frac{d}{dx}
$$

在 $L^2(\mathbb{R})$ 上也是自伴的。亦众所周知，已知 Bargmann 变换（参见文献 [1, 3, 4]）是空间 $L^2(\mathbb{R})$ 到 Fock 空间 F^2 上的同构线性变换，通过此变换，X 西等价于 $A/2$, D 西等价于 $-B/(2\pi)$，其中 A 和 B 如 (2.3) 定义。于是，$L^2(\mathbb{R})$ 上著名的交换关系 $[X, D] = -\frac{1}{2\pi} I$ 被 Bargmann 变换映为 F^2 上的交换关系 $[A, B] = -2iI$。

Fourier 分析中经典的测不准原理是指，对所有的 $f \in L^2(\mathbb{R})$，有

$$
\|Xf\|^2 + \|Df\|^2 \geq \frac{1}{2\pi} \|f\|^2,
$$

1853
陈泳等: Fock 空间上的测不准原理

等号成立当且仅当 \(f(x) = C \exp(-\pi x^2) \), 其为标准 Gauss 函数的常数倍。详见文献 [3, 推论 1.37] 和 [4, 推论 2.2.3]. 通过 Bargmann 变换可见, 此经典的测不准原理等价于 Fock 空间中以下不等式:

\[
\frac{1}{4} \| f' + zf \|^2 + \frac{1}{4\pi^2} \| f' - zf \|^2 \geq \frac{1}{2\pi} \| f \|^2.
\]

此为推论 7 中取 \(\sigma = \pi \) 时的特殊情形。

作为另一种选择, 本文在 Fock 空间中得到的所有结果都可以通过 Bargmann 变换从经典 Fourier 分析的测不准原理推得. 但直接得到 Fock 空间中的这些结果可以避免一些不必要的背景知识的介绍.

需要指出的是, 本文的结果可以推广到 \(\mathbb{C}^n \) 上的 Fock 空间中, 其中加权 Gauss 测度为

\[
d\lambda_n(z) = \left(\frac{\alpha}{\pi} \right)^n e^{-\alpha |z|^2} dv(z).
\]

具体细节留给感兴趣的读者.

最后, 一个自然的问题是, 如何在其他一些熟悉的函数空间, 如 Hardy 空间、Bergman 空间和 Dirichlet 空间等, 建立相应的测不准原理, 即在这些空间中构造两个自然的自伴算子使得它们的换位子为恒等算子的常数倍. 这些将是本文的后续研究工作.

致谢 第一作者首先感谢史济怀教授在 2001 年中科大暑期班上给予作者多复变函数理论的启蒙教育, 其次感谢纽约州立大学 Albany 分校数学系在作者 2014 年 2 月至 2015 年 3 月访学期间所给予的关照和厚待. 第二作者感谢在 2014 年秋季的学期里受到 Hans Feichtinger 和 Bruno Torresani 的热情邀请去 Luminy 的 CIRM 访问, 并参加了很棒的 Gabor 分析讨论, 本文就是在此次访问期间开始研究的.

参考文献

1. Zhu K. Analysis on Fock Spaces. New York: Springer-Verlag, 2012
2. Cho H, Zhu K. Fock-Sobolev spaces and their Carleson measures. J Funct Anal, 2012, 263: 2483–2506
3. Folland G. Harmonic Analysis on Phase Space. Princeton: Princeton University Press, 1989
4. Gröchenig K. Foundations of Time-Frequency Analysis. Boston: Birkhäuser, 2001

Uncertainty principles for the Fock space

CHEN Yong & ZHU KeHe

Abstract In this note, we prove several versions of the uncertainty principle for the Fock space \(F^2 \) in the complex plane. In particular, for any unit vector \(f \) in \(F^2 \), we show that dist \((f' + zf, [f]) \) dist \((f' - zf, [f]) \) \(\geq 1 \), where \([f] = \mathbb{C} f\) is the one-dimensional subspace spanned by \(f\).

Keywords Fock space, uncertainty principle, Fourier analysis, quantum physics, Gaussian functions

MSC(2010) 30H20
doi: 10.1360/N012015-00057