Observational Study of Chlorpromazine in Hospitalized Patients with COVID-19

Nicolas Hoertel1,2,3 · Marina Sánchez-Rico1,4 · Raphaël Vernet5 · Anne-Sophie Jannot3,5,6 · Antoine Neuraz6,7 · Carlos Blanco8 · Cédric Lemogne1,2,3 · Guillaume Airagnes1,2,3 · Nicolas Paris9,10 · Christel Daniel9,11 · Alexandre Gramfort12 · Guillaume Lemaitre12 · Mélodie Bernaux13 · Ali Bellamine14 · Nathanaël Beeker14 · Frédéric Limosin1,2,3 On behalf of AP-HP/Universities/INSERM COVID-19 Research Collaboration and AP-HP COVID CDR Initiative

Accepted: 15 January 2021 / Published online: 9 February 2021
© The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 2021

Abstract
Introduction Chlorpromazine has been suggested as being potentially useful in patients with coronavirus disease 2019 (COVID-19) on the grounds of its potential antiviral and anti-inflammatory effects.
Objective The aim of this study was to examine the association between chlorpromazine use and mortality among adult patients hospitalized for COVID-19.
Methods We conducted an observational, multicenter, retrospective study at Assistance Publique-Hôpitaux de Paris (AP-HP) Greater Paris University hospitals. Study baseline was defined as the date of first prescription of chlorpromazine during hospitalization for COVID-19. The primary endpoint was death. Among patients who had not been hospitalized in intensive care units (ICUs), we compared this endpoint between those who received chlorpromazine and those who did not, in time-to-event analyses adjusted for patient characteristics, clinical markers of disease severity, and other psychotropic medications. The primary analysis used a Cox regression model with inverse probability weighting. Multiple sensitivity analyses were performed.
Results Of the 14,340 adult inpatients hospitalized outside ICUs for COVID-19, 55 patients (0.4%) received chlorpromazine. Over a mean follow-up of 14.3 days (standard deviation [SD] 18.2), death occurred in 13 patients (23.6%) who received chlorpromazine and 1289 patients (9.0%) who did not. In the primary analysis, there was no significant association between chlorpromazine use and mortality (hazard ratio [HR] 2.01, 95% confidence interval [CI] 0.75–5.40; \(p = 0.163 \)). Sensitivity analyses included a Cox regression in a 1:5 ratio matched analytic sample that showed a similar result (HR 1.67, 95% CI 0.91–3.06; \(p = 0.100 \)) and a multivariable Cox regression that indicated a significant positive association (HR 3.10, 95% CI 1.31–7.34; \(p = 0.010 \)).
Conclusion Our results suggest that chlorpromazine prescribed at a mean daily dose of 70.8 mg (SD 65.3) was not associated with reduced mortality.

Key Points
- We examined the association between chlorpromazine use and mortality among adult patients hospitalized for coronavirus disease 2019 (COVID-19) outside intensive care units.
- Chlorpromazine was prescribed at a mean daily dose of 70.8 mg (SD 65.3).
- Our results suggest that chlorpromazine use was not associated with reduced mortality.
1 Introduction

Global spread of the novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has created an unprecedented infectious disease crisis worldwide [1, 2]. In the current absence of antiviral medications associated with a substantial decrease in COVID-19-related mortality [3–5], the search for an effective treatment for patients with COVID-19 among all available medications is urgently needed [6–8].

Chlorpromazine, a dimethylamine derivative of phenothiazine used in the treatment of acute and chronic psychoses [9], has been suggested as potentially useful for patients with COVID-19 on the grounds of its antiviral and anti-inflammatory effects [10]. Specifically, several in vitro studies [11–13] showed that chlorpromazine reduces viral replication of coronavirus-229E, Middle East Respiratory Syndrome Coronavirus (MERS-CoV) and SARS-CoV-1, possibly through the inhibition of clathrin-mediated endocytosis [14, 15]. Furthermore, several mouse models of sepsis [16–19] suggest that this medication is associated with a decrease in pro-inflammatory cytokines, including interleukin (IL)-2, IL-4, interferon (IFN)-α, tumor necrosis factor (TNF), and granulocyte macrophage colony-stimulating factor (GM-CSF), and an increase of the anti-inflammatory cytokine IL-10. Short-term use of chlorpromazine is generally well tolerated [10, 20], although adverse effects can occur, including QT interval prolongation, extrapyramidal symptoms, dry mouth, dizziness, urine retention, blurred vision, constipation, and hyperprolactinemia [10, 20].

To our knowledge, no clinical study to date has examined the potential usefulness of chlorpromazine in patients hospitalized for COVID-19. Observational studies of patients with COVID-19 taking medications for other indications can help decide which treatment should be prioritized for randomized clinical trials and minimize the risk of patients being exposed to potentially harmful and ineffective treatments.

We took advantage of the Assistance Publique-Hôpitaux de Paris (AP-HP) Health Data Warehouse, which includes data on all patients with COVID-19 who had been consecutively admitted to AP-HP Greater Paris University hospitals. We included all adults aged 18 years or over who had been admitted to these medical centers with COVID-19 from the beginning of the epidemic in France, i.e. 24 January 2020, until 1 May 2020. COVID-19 was ascertained by a positive reverse transcriptase–polymerase chain reaction (RT-PCR) test from analysis of nasopharyngeal or oropharyngeal swab specimens. This observational, non-interventional study using routinely collected data, received approval from the Institutional Review Board of the AP-HP Clinical Data Warehouse (decision CSE-20-20_COVID19, IRB00011591). The AP-HP Clinical Data Warehouse initiative ensures patient information and consent regarding the different approved studies through a transparency portal in accordance with the European Regulation on data protection and authorization number 1980120 from the National Commission for Information Technology and Civil Liberties (CNIL). Participants who did not consent to participate in the study were excluded. All procedures related to this work adhered to the ethical standards of the relevant national and institutional committees on human experimentation and with the Helsinki Declaration of 1975, as revised in 2008.

2 Methods

2.1 Setting

We conducted a multicenter, observational, retrospective study at AP-HP, which includes 39 hospitals, of which 23 are acute hospitals, 20 are adult hospitals, and 3 are pediatric hospitals. We included all adults aged 18 years or over who had been admitted to these medical centers with COVID-19 from the beginning of the epidemic in France, i.e. 24 January 2020, until 1 May 2020. COVID-19 was ascertained by a positive reverse transcriptase–polymerase chain reaction (RT-PCR) test from analysis of nasopharyngeal or oropharyngeal swab specimens. This observational, non-interventional study using routinely collected data, received approval from the Institutional Review Board of the AP-HP Clinical Data Warehouse (decision CSE-20-20_COVID19, IRB00011591). The AP-HP Clinical Data Warehouse initiative ensures patient information and consent regarding the different approved studies through a transparency portal in accordance with the European Regulation on data protection and authorization number 1980120 from the National Commission for Information Technology and Civil Liberties (CNIL). Participants who did not consent to participate in the study were excluded. All procedures related to this work adhered to the ethical standards of the relevant national and institutional committees on human experimentation and with the Helsinki Declaration of 1975, as revised in 2008.

2.2 Data Sources

We used data from the AP-HP Health Data Warehouse (‘Entrepôt de Données de Santé’ [EDS]). This warehouse contains all the clinical data available on all inpatient visits for COVID-19 in all medical departments of any of the 39 AP-HP Greater Paris University hospitals. The data obtained included patient demographic characteristics, RT-PCR test results, medication administration data, medication lists during current and past hospitalizations in AP-HP hospitals, current diagnoses, discharge disposition, ventilator use data, and death certificates.

2.3 Variables Assessed

We obtained the following data for each patient at the time of hospitalization: sex; age, which was categorized based on the OpenSAFELY study results (i.e. 18–50, 51–70, 71–80, 81+) [21]; hospital, which was categorized into four classes following the administrative clustering of AP-HP hospitals in Paris and its suburbs based on their geographical location (i.e. AP-HP Centre–Paris University, Henri Mondor University Hospitals and at-home hospitalization; AP-HP Nord and
Chlorpromazine in Hospitalized Patients with COVID-19

Hôpitaux Universitaires Paris Seine-Saint-Denis; AP-HP Paris Saclay University; and AP-HP Sorbonne University); obesity, which was defined as having a body mass index higher than 30 kg/m² or an International Statistical Classification of Diseases and Related Health Problems, Tenth Revision (ICD-10) diagnosis code for obesity (E66.0, E66.1, E66.2, E66.8, E66.9); self-reported current smoking status; number of medical conditions associated with increased risk of severe SARS-CoV-2 infection [22–27], based on ICD-10 diagnosis codes, including diabetes mellitus (E11), diseases of the circulatory system (I00–I99), diseases of the respiratory system (J00–J99), neoplasms (C00–D49), and diseases of the blood and blood-forming organs and certain disorders involving the immune mechanism (D5–D8); any medication prescribed according to compassionate use or as part of clinical trials (e.g. hydroxychloroquine, azithromycin, remdesivir, tocilizumab, sarilumab, or dexamethasone); and clinical severity of COVID-19 at admission, defined as having at least one of the following criteria [28, 29]: respiratory rate > 24 breaths/min or < 12 breaths/min, resting peripheral capillary oxygen saturation in ambient air < 90%, temperature > 40 °C, or systolic blood pressure < 100 mmHg. To take into account possible confounding by indication bias for chlorpromazine, we recorded whether patients had any current diagnosis of psychiatric disorder (F00–F04 and F06–F99) or delirium (F05 and R41.0), and whether they were prescribed clozapine, which could be associated with increased risk of COVID-19 infection [30], any antipsychotic medication other than chlorpromazine or clozapine, any antidepressant, any benzodiazepine or Z-drug, or any mood stabilizer (i.e. lithium or antiepileptic medications with mood-stabilizing effects [31–34]).

All medical notes and prescriptions are computerized in Greater Paris University hospitals. Medications, including dose, frequency, date, and mode of administration, were identified from medication administration data or scanned hand-written medical prescriptions, through two deep learning models based on Bidirectional Encoder Representations from Transformers (BERT) contextual embeddings [35], one for the medications and another for their mode of administration. The model was trained on the APmed corpus [36], a previously annotated dataset for this task. Extracted medication names were then normalized to the Anatomical Therapeutic Chemical (ATC) terminology using approximate string matching.

2.4 Chlorpromazine Use

Study baseline was defined as the date of first prescription of chlorpromazine during hospitalization for COVID-19. Chlorpromazine is mostly used in psychiatry to treat acute symptoms in patients with psychotic disorders, but may also be prescribed in intensive care units (ICUs), either in terminal restlessness (i.e. agitation and delirium before death) or as an aid in orotracheal intubation. Therefore, to reduce a potential indication bias due to these later medical indications, which are associated with increased mortality, patients who had been hospitalized in ICUs (receiving or not receiving chlorpromazine) were excluded from the main analyses, and chlorpromazine use was defined as receiving this medication during hospitalization for COVID-19 before the end of the index hospitalization or death. In our study, all patients who had been intubated and ventilated were hospitalized in ICUs.

In the absence of curative treatment for COVID-19, all patients benefited from symptomatic care, including respiratory support and supportive management of the complications of the disease (e.g. pneumonia, secondary bacterial infections, thromboembolism). This symptomatic care was not different in patients who received chlorpromazine and those who did not.

2.5 Endpoints

The primary endpoint was the time from study baseline (i.e. first prescription of chlorpromazine during hospitalization for COVID-19) until death. Patients without an endpoint event had their data censored on 1 May 2020.

2.6 Statistical Analysis

We calculated the frequencies of each variable described above in patients receiving or not receiving chlorpromazine and compared them using Chi-square tests.

To examine the association of chlorpromazine use with the primary endpoint, we performed Cox proportional hazards regression models [37]. Weighted Cox regression models were used when the proportional hazards assumption was not met [38]. To help account for the non-randomized prescription of chlorpromazine and reduce the effects of confounding, the primary analysis used propensity score analysis with inverse probability weighting (IPW) [39, 40]. The individual propensities for chlorpromazine prescription were estimated by a multivariable logistic regression model that included sex, age, hospital, obesity, smoking status, number of medical conditions, any medication prescribed according to compassionate use or as part of a clinical trial, any current diagnosis of psychiatric disorder or delirium, any prescribed psychotropic medication, including clozapine, any antipsychotic medication other than chlorpromazine or clozapine, any antidepressant, any benzodiazepine or Z-drug, and any mood stabilizer, as well as clinical severity. In the inverse-probability-weighted analysis, the predicted probabilities from the propensity score model were used to calculate the stabilized inverse-probability-weighting weights [39]. The association between chlorpromazine use...
and the primary endpoint was then estimated using an IPW Cox regression model. In case of unbalanced covariates, an IPW multivariable Cox regression model adjusting for the unbalanced covariates was performed to examine the robustness of the results. Kaplan–Meier curves were performed using the inverse-probability-weighting weight [41, 42], and their pointwise 95% confidence intervals (CIs) were estimated using the non-parametric bootstrap method [41, 43].

We conducted three sensitivity analyses. We performed a multivariable Cox regression model comprising as covariates the same variables as in the IPW analysis, and a univariate Cox regression model in a matched analytic sample. For this later analysis, we decided a priori to select five controls for each exposed case, based on the same variables used for both the IPW analysis and the multivariable Cox regression. Weighted Cox regression models were used when proportional hazards assumption was not met [38]. To reduce the effects of confounding, optimal matching was used in order to obtain the smallest average absolute distance across all the characteristics listed in Table 1 between each exposed patient and the five corresponding non-exposed matched controls [44]. We also examined whether our findings were similar when including in the analyses the 813 patients who had been hospitalized in ICUs but were excluded from the main analyses.

Finally, we examined a potential dose–effect relationship by testing the association between the daily dose received (dichotomized at the median value) with the endpoint among patients receiving chlorpromazine (Fig. 1).

For all associations, we performed residual analyses to assess the fit of the data, checked assumptions, including the proportional hazards assumption [37], and examined the potential influence of outliers. To improve the quality of result reporting, we followed the recommendations of the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) initiative [45]. Statistical significance was fixed a priori at \(p < 0.05 \). All analyses were conducted in R software version 2.4.3 (The R Project for Statistical Computing, Vienna, Austria).

3 Results

3.1 Characteristics of the Cohort

Of the 17,076 hospitalized adult patients with a positive COVID-19 RT-PCR test, 1908 patients (11.2%) were excluded because of missing data or their young age (i.e. <18 years of age). Of the 75 adult patients who received chlorpromazine at any time during the COVID-19 visit, 15 patients (20.0%) were excluded because they received this treatment after intubation. Of the remaining 15,153 adult inpatients, 813 patients had been hospitalized in ICUs and were excluded from the main analyses. Among the remaining 14,340 adult patients hospitalized outside ICUs, 55 patients (0.40%) received chlorpromazine, either by intramuscular injection (5.5%) or orally (94.5%), at a mean daily dose of 70.8 mg (standard deviation [SD] 65.3, median 43.8 mg, range 10.0–300.0 mg). Of these 55 patients who received chlorpromazine during the visit, 76.3% had either a current diagnosis of psychiatric disorder or a current prescription of another psychotropic medication (63.6% if excluding a prescription of any benzodiazepine or Z-drug and a diagnosis of delirium). The relatively high rate of chlorpromazine prescription (0.4%) [46] might be explained by the greater risk of severe COVID-19, and thus of COVID-19-related hospitalization, in individuals with psychiatric disorders than in their counterparts, in line with findings from prior studies [32, 47, 48]. A complementary explanation may include that certain patients may have received this treatment for non-psychiatric indications. The median delay between hospital admission and the first prescription of chlorpromazine was 1 day (SD 0.48, mean 0.78, range 0–2 days), and the median delay between first prescription of chlorpromazine and the endpoint event, or the end of the index hospitalization or the end of the study was 5.5 days (SD 7.0, mean 6.4, range 1–36 days).

The first positive COVID-19 RT-PCR tests were obtained after a median delay of 1.2 days (SD 12.8) from study baseline. This delay was not significantly different between patients receiving or not receiving chlorpromazine (exposed group median 1.0 day [SD 11.9]; non-exposed group median 1.2 days [SD 12.8]; Mood’s median test Chi-square <0.01, \(p > 0.99 \)).

Over a mean follow-up of 14.3 days (SD 18.2, median 7.0 days, range 1–98 days), 1302 patients (9.1%) had a primary endpoint event prior to the completion of data collection on 1 May 2020. In patients who received chlorpromazine, the mean follow-up was 6.4 days (SD 7.0, median 5.5 days, range 1–36 days), and 14.3 days (SD 18.2, median 7.0 days, range 1–98 days) in those patients who did not receive this medication.

The distribution of patient characteristics according to chlorpromazine use is shown in Table 1. In the full sample, chlorpromazine use significantly differed according to most baseline characteristics, including hospital, obesity, smoking status, number of medical conditions, any medication according to compassionate use or as part of a clinical trial, any current psychiatric disorder, any antidepressant, any benzodiazepine or Z-drug, any mood stabilizer medication, any antipsychotic medication other than chlorpromazine or clozapine, and clinical severity. The direction of these associations indicated overall greater medical severity of patients receiving chlorpromazine than those who did not. After applying the propensity score weights, these differences were substantially reduced but were still significant.
Table 1 Characteristics of patients receiving or not receiving chlorpromazine in the matched and unmatched analytic samples

Characteristics	Exposed to chlorpromazine [n = 55]	Not exposed to chlorpromazine [n = 14,285]	Non-exposed matched group using a 1:5 ratio [n = 275]	Exposed to chlorpromazine vs. not exposed to chlorpromazine (crude analysis)	Exposed to chlorpromazine vs. not exposed to chlorpromazine (analysis weighted by inverse-probability-weighting weights)	Exposed to chlorpromazine vs. the non-exposed matched group (matched analytic sample analysis)
	n (%)	n (%)	n (%)	Chi-square test (p value)	Weighted Chi-square test (p value)	Chi-square test (p value)
Age, years				4.83 (0.185)	0.60 (0.896)	3.31 (0.346)
18–50	16 (29.1)	5639 (39.5)	58 (21.1)	1.25 (0.264)	<0.01 (0.987)	0.16 (0.694)
51–70	21 (38.2)	4320 (30.2)	104 (37.8)	21.42 (<0.001)^a	1.34 (0.719)	3.65 (0.302)
71–80	10 (18.2)	1710 (12.0)	46 (16.7)	21.42 (<0.001)^a	1.34 (0.719)	3.65 (0.302)
> 80	8 (14.5)	2616 (18.3)	67 (24.4)	21.42 (<0.001)^a	1.34 (0.719)	3.65 (0.302)
Sex				1.25 (0.264)	<0.01 (0.987)	0.16 (0.694)
Females	25 (45.5)	7699 (53.9)	136 (49.5)	21.42 (<0.001)^a	1.34 (0.719)	3.65 (0.302)
Males	30 (54.5)	6586 (46.1)	139 (50.5)	21.42 (<0.001)^a	1.34 (0.719)	3.65 (0.302)
Hospital				5.28 (0.022)^a	0.64 (0.425)	0.67 (0.413)
AP-HP Centre – Paris University, Henri Mondor University Hospitals and at-home hospitalization	12 (21.8)	6763 (47.3)	91 (33.1)	5.28 (0.022)^a	0.64 (0.425)	0.67 (0.413)
AP-HP Nord and Hopitaux Universitaires Paris Seine-Saint-Denis	28 (50.9)	3914 (27.4)	118 (42.9)	8.31 (0.004)^a	0.42 (0.518)	1.46 (0.227)
AP-HP Paris Saclay University	4 (7.27)	1707 (11.9)	26 (9.45)	5.28 (0.022)^a	0.64 (0.425)	0.67 (0.413)
AP-HP Sorbonne University	11 (20.0)	1901 (13.3)	40 (14.5)	8.31 (0.004)^a	0.42 (0.518)	1.46 (0.227)
Obesity^b				8.31 (0.004)^a	0.42 (0.518)	1.46 (0.227)
Yes	13 (23.6)	1780 (12.5)	49 (17.8)	5.28 (0.022)^a	0.64 (0.425)	0.67 (0.413)
No	42 (76.4)	12505 (87.5)	226 (82.2)	8.31 (0.004)^a	0.42 (0.518)	1.46 (0.227)
Smoking^c				8.31 (0.004)^a	0.42 (0.518)	1.46 (0.227)
Yes	11 (20.0)	1187 (8.31)	35 (12.7)	5.28 (0.022)^a	0.64 (0.425)	0.67 (0.413)
No	44 (80.0)	13098 (91.7)	240 (87.3)	8.31 (0.004)^a	0.42 (0.518)	1.46 (0.227)
Number of medical conditions^d				17.95 (<0.001)^a	1.98 (0.372)	0.34 (0.844)
0	28 (50.9)	10791 (75.5)	138 (50.2)	17.95 (<0.001)^a	1.98 (0.372)	0.34 (0.844)
1	6 (10.9)	796 (5.7)	24 (8.73)	17.95 (<0.001)^a	1.98 (0.372)	0.34 (0.844)
2 or more	21 (38.2)	2698 (18.9)	113 (41.1)	17.95 (<0.001)^a	1.98 (0.372)	0.34 (0.844)
Table 1 (continued)

Characteristics	Exposed to chlorpromazine $[n = 55]$	Not exposed to chlorpromazine $[n = 14,285]$	Non-exposed matched group using a 1:5 ratio $[n = 275]$	Exposed to chlorpromazine vs. not exposed to chlorpromazine (crude analysis)	Exposed to chlorpromazine vs. not exposed to chlorpromazine (analysis weighted by inverse-probability-weighting weights)	Exposed to chlorpromazine vs. the non-exposed matched group (matched analytic sample analysis)
	n (%)	n (%)	n (%)	Chi-square test (p value)	Weighted Chi-square test (p value)	Chi-square test (p value)
Medication according to compassionate use or as part of a clinical trialc	5.55 (0.018)a	1.02 (0.313)	0.86 (0.355)			
Yes	12 (21.8)	1564 (10.9)	43 (15.6)			
No	43 (78.2)	12721 (89.1)	232 (84.4)			
Deliriumf	<0.01 (> 0.99)	<0.01 (0.974)	<0.01 (> 0.99)			
Yes	1 (1.82)	217 (1.52)	5 (1.82)			
No	54 (98.2)	14,068 (98.5)	270 (98.2)			
Any current psychiatric disorderg	50.23 (< 0.001)a	13.12 (< 0.001)a	<0.01 (> 0.99)			
Yes	14 (25.5)	644 (4.51)	69 (25.1)			
No	41 (74.5)	13641 (95.5)	206 (74.9)			
Any antidepressant	32.9 (< 0.001)a	4.91 (0.027)a	<0.01 (> 0.99)			
Yes	14 (25.5)	859 (6.01)	69 (25.1)			
No	41 (74.5)	13426 (94.0)	206 (74.9)			
Any benzodiazepine or Z-drug	78.29 (< 0.001)a	10.40 (0.001)a	<0.01 (> 0.99)			
Yes	24 (43.6)	1248 (8.74)	120 (43.6)			
No	31 (56.4)	13037 (91.3)	155 (56.4)			
Any mood stabilizer medication	23.21 (< 0.001)a	0.24 (0.622)	<0.01 (> 0.99)			
Yes	9 (16.4)	495 (3.47)	230 (83.6)			
No	46 (83.6)	13,790 (96.5)	45 (16.4)			
Clozapine	1.30 (0.255)	12.60 (< 0.001)a	<0.01 (> 0.99)			
Yes	1 (1.82)	29 (0.20)	5 (1.82)			
No	54 (98.2)	14,256 (99.8)	270 (98.2)			
Any antipsychotic medication other than chlorpromazine or clozapine	83.48 (< 0.001)a	15.98 (< 0.001)a	<0.01 (> 0.99)			
Yes	14 (25.5)	435 (3.05)	70 (25.5)			
No	41 (74.5)	13850 (97.0)	205 (74.5)			
Characteristics	Exposed to chlorpromazine \[n = 55\]	Not exposed to chlorpromazine \[n = 14,285\]	Non-exposed matched group using a 1:5 ratio \[n = 275\]	Exposed to chlorpromazine vs. not exposed to chlorpromazine (crude analysis)	Exposed to chlorpromazine vs. not exposed to chlorpromazine (analysis weighted by inverse-probability-weighting weights)	Exposed to chlorpromazine vs. the non-exposed matched group (matched analytic sample analysis)
-----------------	---------------------------------------	-------------------------------------	---------------------------------	--	---	---
	\(n (\%)\)	\(n (\%)\)	\(n (\%)\)	Chi-square test (\(p\) value)	Weighted Chi-square test (\(p\) value)	Chi-square test (\(p\) value)
Clinical severity\(^b\)	[18.78 (< 0.001)\(^a\)]	1.72 (0.424)	1.01 (0.605)	18.78 (< 0.001)\(^a\)	1.72 (0.424)	1.01 (0.605)
Yes	14 (25.5)	2130 (14.9)	94 (34.2)			
No	22 (40.0)	3180 (22.3)	67 (24.4)			
Missing	19 (34.5)	8975 (62.8)	114 (41.5)			

\(^a\)\(p\) value is significant (\(p < 0.05\))

\(^b\)Defined as having a body mass index higher than 30 kg/m\(^2\) or an ICD-10 diagnosis code for obesity (E66.0, E66.1, E66.2, E66.8, E66.9)

\(^c\)Current smoking status was self-reported

\(^d\)Assessed using ICD-10 diagnosis codes for diabetes mellitus (E11), diseases of the circulatory system (I00–I99), diseases of the respiratory system (J00–J99), neoplasms (C00–D49), and diseases of the blood and blood-forming organs and certain disorders involving the immune mechanism (D5–D8)

\(^e\)Any medication prescribed as part of a clinical trial or according to compassionate use (e.g. hydroxychloroquine, azithromycin, remdesivir, tocilizumab, sarilumab, or dexamethasone)

\(^f\)Assessed using ICD-10 codes (F05 and R41.0)

\(^g\)Assessed using ICD-10 codes (F00–F04 and F06–F99)

\(^h\)Clinical severity of COVID-19 at admission was defined as having at least one of the following criteria: respiratory rate > 24 breaths/min or < 12 breaths/min, resting peripheral capillary oxygen saturation in ambient air < 90%, temperature > 40 °C, or systolic blood pressure < 100 mmHg
for any current psychiatric disorder, any antidepressant, any benzodiazepine or Z-drug, clozapine, and any antipsychotic medication other than chlorpromazine or clozapine (Table 1). In the matched analytic sample comprising 330 patients (i.e. 55 patients receiving chlorpromazine and 275 patients from the matched group who did not), there were no significant differences in patient characteristics according to chlorpromazine use (Table 1).

3.2 Study Endpoint

In the full sample, death occurred in 13 patients (23.6%) who received chlorpromazine and 1289 patients (9.0%) who did not. This endpoint event occurred in 54 patients (19.6%) from the 1:5 ratio matched control group (Table 2). There was a significant positive association between chlorpromazine use and the primary endpoint in the crude, unadjusted analysis (hazard ratio [HR] 3.29, 95% CI 1.91–5.69; \(p < 0.001 \)), but not in the primary analysis with IPW (HR 2.01, 95% CI 0.75–5.40; \(p = 0.163 \)) [Fig. 2, Table 2]. A similar result was found in the multivariable IPW analysis adjusting for unbalanced covariates (i.e. any current psychiatric disorder, any antidepressant, any benzodiazepine or Z-drug, clozapine, and any antipsychotic medication other than chlorpromazine or clozapine) [HR 4.58, 95% CI 0.40–52.5; \(p = 0.221 \)] (Table 2). In sensitivity analyses, the univariate Cox regression model in the 1:5 ratio matched analytic sample yielded a similar
Chlorpromazine in Hospitalized Patients with COVID-19

Table 2 Associations between chlorpromazine use and the endpoint of death in both the full sample and the matched analytic sample

Variable	Death
Full sample	
Number of events/number of patients (%)	1302/14,340 (9.1)
Chlorpromazine	13/55 (23.6)
No chlorpromazine	1289/14,285 (9.0)
Crude analysis—HR (95% CI) [p value]	3.29 (1.91–5.69) [< 0.001]a
Multivariable analysis—HR (95% CI) [p value]	3.10 (1.31–7.34) [0.010]a
Propensity score analysis with inverse probability weighting—HR (95% CI) [p value]	2.01 (0.75–5.40) [0.163]
Propensity score analysis with inverse probability weighting, adjusted for unbalanced covariatesb—HR (95% CI) [p value]	4.58 (0.40–52.48) [0.221]
Matched analytic sample	
Number of events/number of patients (%)	67/330 (20.3)
Chlorpromazine	13/55 (23.6)
No chlorpromazine	54/275 (19.6)
Crude analysis—HR (95% CI) [p value]	1.67 (0.91–3.06 [0.100]

CI confidence interval, HR hazard ratio

a p Value is significant (p < 0.05)

b Adjusted for any current psychiatric disorder, any antidepressant, any benzodiazepine or Z-drug, clozapine, and any antipsychotic medication other than chlorpromazine or clozapine

Fig. 2 Kaplan–Meier curves for mortality in (a) the full sample crude analysis (n = 14,340); (b) the full sample analysis with inverse-probability weighting analysis (n = 14,340); and (c) the matched analytic sample using a 1:5 ratio (n = 330) of hospitalized patients with COVID-19 according to chlorpromazine use. The shaded areas represent pointwise 95% confidence intervals. COVID-19 coronavirus disease 2019

result (HR 1.67, 95% CI 0.91–3.06; p = 0.100) [Fig. 2, Table 2], whereas the multivariable Cox regression model in the full sample showed a significant positive association between chlorpromazine use and mortality (HR 3.10, 95% CI 1.31–7.34; p = 0.010) [Table 2]. Findings were similar when including the 813 patients who had been hospitalized in ICUs and were excluded from the main analyses (Online Resource 1).

Finally, exposure to higher rather than lower doses of chlorpromazine was not significantly associated with the endpoint (HR 0.15, 95% CI 0.02–1.34; p = 0.090).

A post hoc analysis indicated that in the full sample, we had 80% power to detect unweighted and unadjusted HRs of at least 0.15/2.80 for the primary endpoint, while we had 80% power to detect unweighted and unadjusted HRs of at least 0.17/2.49 in the matched analytic sample.

4 Discussion

In this multicenter, retrospective, observational study involving a large sample of patients hospitalized for COVID-19, chlorpromazine prescribed at a mean daily dose of 70.8 mg
mortality, we cannot rule out that this treatment might have been prescribed for agitation or terminal restlessness among patients hospitalized in other units, including geriatric units. However, most patients (76.3%) who received chlorpromazine had either a current diagnosis of psychiatric disorder or a current prescription of another psychotropic medication, and the median delay between hospital admission and the first prescription of chlorpromazine was 1 day (SD 0.48, mean 0.78 days), suggesting that most of these patients were prescribed chlorpromazine for psychiatric symptoms. Sixth, our findings might support the true impact of medical care in COVID-19 rather than of the specific medication used [49]. Finally, the primary IPW analysis did not successfully balance several covariates between the chlorpromazine group and the control group, including any current psychiatric disorder, any antidepressant, any benzodiazepine or Z-drug, clozapine, and any antipsychotic medication other than chlorpromazine or clozapine, which might have led to biased results. However, a similar non-significant result was found in the multivariable IPW analysis adjusting for these unbalanced covariates, as well as in the univariate Cox regression model in a matched analytic sample, in which all covariates were adequately balanced between the two groups, suggesting the robustness of our findings.

5 Conclusion

In this multicenter, observational, retrospective study, chlorpromazine use prescribed at a mean daily dose of 70.8 mg (SD 65.3) was not associated with reduced mortality among adult patients hospitalized for COVID-19. Double-blind, controlled, randomized clinical trials, such as the reCoVery study [10], are needed to confirm these results.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s40261-021-01001-0.

Acknowledgements The authors thank the EDS APHP COVID consortium integrating the APHP Health Data Warehouse team, as well as all the APHP staff and volunteers who contributed to the implementation of the EDS-COVID database and operating solutions for this database. Collaborators of the EDS APHP COVID consortium are: Pierre-Yves Ancel, Alain Bauchet, Nathanaël Beer, Vincent Benoit, Mélodie Bernaux, Ali Bellamine, Romain Bey, Aurélie Bournaud, Stéphane Breant, Anita Burgun, Fabrice Carrat, Charlotte Cauchois, Stéphane Charm, Sylvie Cormont, Christel Daniel, Julien Dubiel, Catherine Duclos, Loic Esteve, Marie Frank, Nicolas Garcelon, Alexandre Gramfort, Nicolas Griffon, Olivier Grisel, Martin Guibaud, Claire Hassen-Khodja, Francois Hemery, Martin Hilka, Anne Sophie Janot, Jerome Lambert, Richard Layese, Judith Leblanc, Léo Lebouter, Guillaume Lemaitre, Damien Leprovost, Ivan Lerner, Kankoe Levi Sallah, Aurélien Maire, Marie-France Manzer, Patricia Martel, Arthur Mensch, Thomas Moreau, Antoine Neuraz, Nina Orlova, Nicolas Paris, Bastien Rance, Hélène Ravera, Antoine Rozes, Elisa Salamanca,
Arnaud Sandrin, Patricia Serre, Xavier Tannier, Jean-Marc Treluyer, Damien van Gysel, Gaël Varoquaux, Jill Jen Vie, Maxime Wack, Perceval Wajsurt, Demian Wassermann, Eric Zapletal.

Declarations

Funding This work did not receive any external funding.

Conflict of interest Nicolas Hoertel has received personal fees and non-financial support from Lundbeck, outside the submitted work; Cédric Lemogne reports personal fees and non-financial support from Janssen-Cilag, Lundbeck, Otsuka Pharmaceutical, and Boehringer Ingelheim, outside the submitted work; Guillaume Airagnes reports personal fees from Pfizer, Pierre Fabre and Lundbeck, outside the submitted work; and Frédéric Lemosin has received speaker and consulting fees from Janssen-Cilag outside the submitted work. Marina Sanchez-Rico, Raphaël Vernet, Anne-Sophie Jannot, Antoine Neuraz, Carlos Blanco, Nicolas Paris, Christel Daniel, Alexandre Gramfort, Guillaume Lemaître, Mélodie Bernaux, Ali Bellamine, and Nathanaël Beeker declare no competing interests.

Ethics approval All procedures related to this work adhered to the ethical standards of the relevant national and institutional committees on human experimentation and with the Helsinki Declaration of 1975, as revised in 2008. This study received approval from the Institutional Review Board of the AP-HP Clinical Data Warehouse (decision CSE-20-20_COVID19, IRB00011591).

Consent to participate The AP-HP Clinical Data Warehouse initiative ensures patient information and consent regarding the different approved studies through a transparency portal in accordance with the European Regulation on Data Protection and Authorization number 1980120 from the National Commission for Information Technology and Civil Liberties (CNIL). Participants who did not consent to participate in this study were excluded.

Consent for publication Not applicable.

Availability of data and material Data from the AP-HP Health Data Warehouse can be obtained with permission at https://eds.aphp.fr/.

Code availability Not applicable.

Author contributions NH designed the study, performed statistical analyses, and wrote the first draft of the manuscript. MSR performed statistical analyses and critically revised the manuscript. RV contributed to the statistical analyses and critically revised the manuscript for scientific content. FL, NB, and ASJ contributed to the study design and critically revised the manuscript for scientific content. NB, ASJ, AN, NP, CD, AG, GL, MB, and AB contributed to the database build process. All authors critically revised the manuscript for scientific content.

References

1. Hoertel N, Blachier M, Blanco C, Offson M, Massetti M, Sanchez-Rico M, et al. A stochastic agent-based model of the SARS-CoV-2 epidemic in France. Nat Med. 2020;26:1417–21.
2. Hoertel N, Blachier M, Blanco C, Offson M, Massetti M, Limosin F, et al. Facing the COVID-19 epidemic in NYC: a stochastic agent-based model of various intervention strategies. medRxiv. 2020. https://doi.org/10.1101/2020.04.23.20076885.
3. Beigel J, Tomashek K, Dodd L, et al. Remdesivir for the treatment of Covid-19—final report. N Engl J Med. 2020;383(19):1813–26.
4. Dyer O. Covid-19: Remdesivir has little or no impact on survival. WHO trial shows BMJ. 2020;371:m4057.
5. RECOVERY Collaborative Group. Effect of hydroxychloroquine in hospitalized patients with Covid-19. N Engl J Med. 2020;383:2030–40.
6. Anderson RM, Heesterbeek H, Klinkenberg D, Hollingsworth TD. How will country-based mitigation measures influence the course of the COVID-19 epidemic? Lancet. 2020;395:931–4.
7. Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. 2020;583:459–68.
8. Chevance A, Gourion D, Hoertel N, Llorca P-M, Thomas P, Bocher R, et al. Ensuring mental health care during the SARS-CoV-2 epidemic in France: a narrative review. L’Encéphale. 2020;46:193–201.
9. Delay J, Deniker P, Harl J. Therapeutic use in psychiatry of phenothiazine of central elective action (4560 RP). Ann Med Psychol (Paris). 1952;110(21):112–7.
10. Plaze M, Attali D, Petit A, Blazer M, Simon-Loriere E, Vinckier F, et al. Repurposing chlorpromazine to treat COVID-19: the reCoVery study. Encephale. 2020;46(3):169–72.
11. De Wilde AH, Jochmans D, Posthuma CC, Zevenhoven-Dobbe JC, Van Nieuwkoop S, Bestebroer TM, et al. Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture. Antimicrobial agents and chemotherapy. Am Soc Microbiol. 2014;58:4875–84.
12. Dyall J, Coleman CM, Hart BJ, Venkataraman T, Holbrook MR, Kindrachuk J, et al. Repurposing of clinically developed drugs for treatment of Middle East respiratory syndrome coronavirus infection. Antimicrob Agents Chemother. 2014;58:4885–93.
13. Cong Y, Gross R, Zhou H, Frieman M, Bollinger L, Lollar L, Wada J, et al. MERS-CoV pathogenesis and antiviral efficacy of licensed drugs in human monocyte-derived antigen-presenting cells. PLoS ONE. 2018;13:e0194868.
14. Daniel JA, Chau N, Abdel-Hamid MK, Hu L, von Kleist L, Whiting A, et al. Phenothiazine-derived antipsychotic drugs inhibit dynamin and clathrin-mediated endocytosis. Traffic. 2015;16:635–54.
15. Wang L-H, Rothberg KG, Anderson R. Mis-assembly of clathrin lattices on endosomes regulates a switch for coated pit formation. J Cell Biol. 1993;123:1107–17.
16. Bertini R, Garattini S, Delgado R, Ghezzi P. Pharmacological activities of chlorpromazine involved in the inhibition of tumour necrosis factor production in vivo in mice. Immunology. 1993;79:217.
17. Gadina M, Bertini R, Mengozzi M, Zandalasini M, Mantovani A, Ghezzi P. Protective effect of chlorpromazine on endotoxin toxicity and TNF production in glucocorticoid-sensitive and glucocorticoid-resistant models of endotoxic shock. J Exp Med. 1991;173:1305–10.
18. Mengozzi M, Fantuzzi G, Faggioni R, Marchant A, Goldman M, Orencole S, et al. Chlorpromazine specifically inhibits peripheral and brain TNF production, and up-regulates IL-10 production, in mice. Immunology. 1994;82:207.
19. Tarazona R, Gonzalez-Garcia A, Zamzami N, Marchetti P, Frechin N, Gonzalo JA, et al. Chlorpromazine amplifies macrophage-dependent IL-10 production in vivo. J Immunol. 1995;154:861–70.
20. Mann SK, Marwaha R. Chlorpromazine. Treasure Island: Pearls Publishing; 2019.
21. Williamson E, Walker AJ, Bhaskaran KJ, Bacon S, Bates C, Morton CE, et al. OpenSAFELY: factors associated with COVID-19-related hospital death in the linked electronic health records

△ Adis
of 17 million adult NHS patients. medRxiv. 2020. https://doi.org/10.1101/2020.05.06.20092999.
22. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–62.
23. Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020;46:846–8.
24. Salje H, Kiem CT, Lefrançq N, Courtejoie N, Bosetti P, Païreau J, et al. Estimating the burden of SARS-CoV-2 in France. Science. 2020;369(6500):208–11.
25. Hur K, Price CP, Gray EL, Gulati RK, Maksimoski M, Racette SD, et al. Factors associated with intubation and prolonged intubation in hospitalized patients with COVID-19. Otolaryngol Head Neck Surg. 2020;163(1):170–8.
26. Vardavas CI, Nikitara K. COVID-19 and smoking: a systematic review of the evidence. Tob Induc Dis. 2020;18:20.
27. Ryan DH, Ravussin E, Heymsfield S. COVID-19 and the patient with obesity—the editors speak out. Obesity (Silver Spring). 2020;28(5):847.
28. Haut Conseil de la Santé Publique. Statement on the management of infection in patients from Wuhan, China. Intensive Care Med. 2020;46:846–8.
29. Lagunas-Rangel FA. Neutrophil-to-lymphocyte ratio and lymphocyte-to-C-reactive protein ratio in patients with severe coronavirus disease 2019 (COVID-19): a meta-analysis. J Med Virol. 2020;92(10):1733–4.
30. Govind R, de Freitas DF, Pritchard M, Hayes RD, MacCabe JH. Clozapine treatment and risk of COVID-19 infection: retrospective cohort study. Br J Psychiatry. 2020. https://doi.org/10.1192/bjp.2020.151.
31. Hoertel N, Sánchez M, Vernet R, Beeker N, Neuraz A, Alvarado J, et al. Dexmethylxanthine use and mortality in hospitalized patients with coronavirus disease 2019: a multicenter retrospective observational study. medRxiv. 2020. https://doi.org/10.1101/2020.10.23.20218172.
32. Hoertel N, Sánchez-Rico M, Vernet R, Beeker N, Jannot A-S, Neuraz A, et al. Association between SSRI antidepressant use and reduced risk of intubation or death in hospitalized patients with coronavirus disease 2019: a multicenter retrospective observational study. medRxiv. 2020. https://doi.org/10.1101/2020.07.09.20143339.
33. Hoertel N, Rico MS, Vernet R, Jannot A-S, Neuraz A, Blanco C, et al. Observational study of haloperidol in hospitalized patients with Covid-19. medRxiv. 2020. https://doi.org/10.1101/2020.07.15.20150490.
34. Hoertel N, Sánchez M, Vernet R, Beeker N, Neuraz A, Blanco C, et al. Association between hydroxychloroquine use and reduced mortality in patients hospitalized for coronavirus disease 2019: results from a multicenter observational study. medRxiv. 2020. https://doi.org/10.1101/2020.10.23.20154302.
35. Devlin J, Chang M-W, Lee K, Toutanova K. Bert: Pre-training of deep bidirectional transformers for language understanding. 2018. arXiv:1810.04805v2.
36. Jouffroy J, Feldman SF, Lerner I, Rance B, Neuraz A, Burgun A. MedExt: combining expert knowledge and deep learning for medication extraction from French clinical texts. ResearchGate. 2020; preprint. https://www.researchgate.net/publication/339156636. Accessed 26 Jan 2021.
37. Therneau TM, Grambsch PM. Modeling survival data: extending the cox model. New York: Springer; 2000.
38. Dunkler D, Pioner M, Schumper M, Heinze G. Weighted cox regression using the R Package coxphw. J Stat Softw. 2018;84:1–26.
39. Robins JM, Hernán MÁ, Brumback B. Marginal structural models and causal inference in epidemiology. Epidemiology. 2000;11:550–60.
40. Geleris J, Sun Y, Platt J, Zucker J, Baldwin M, Hripcsak G, et al. Observational study of hydroxychloroquine in hospitalized patients with Covid-19. N Engl J Med. 2020;382:2411–8.
41. Kassambara A, Kosinski M, Biecek P. survminer: Drawing Survival Curves using “ggplot2”. 2020. https://CRAN.R-project.org/package=survminer.
42. Kaplan EL, Meier P. Nonparametric estimation from incomplete observations. J Am Stat Assoc. 1958;53:457–81.
43. Efron B. Nonparametric standard errors and confidence intervals. Can J Stat. 1981;9:139–58.
44. Hansen BB, Klopfer SO. Optimal full matching and related designs via network flows. J Comput Graph Stat. 2006;15:609–27.
45. Von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Ann Intern Med. 2007;147:573–7.
46. Javelot H, Weiner L, Petignet J, Meyer G, Briet J, El-Hage W, et al. Psychoactive compounds as multifactorial protection factors against COVID-19. Ir J Med Sci. 2020. https://doi.org/10.1007/s11845-020-02346-9.
47. Wang QQ, Kaelber DC, Xu R, Volkow ND. COVID-19 risk and outcomes in patients with substance use disorders: analyses from electronic health records in the United States. Mol Psychiatry. 2020. https://doi.org/10.1038/s41380-020-00880-7.
48. Li L, Li F, Fortunati F, Krystal JH. Association of a prior psychiatric diagnosis with mortality among hospitalized patients with coronavirus disease 2019 (COVID-19) infection. JAMA Netw Open. 2020;3:e2023282.
49. Davido B, Boussaid G, Vaugier I, Lansaman T, Bouchard F, Lawrence C, et al. Impact of medical care, including use of anti-infective agents, on prognosis of COVID-19 hospitalized patients over time. Int J Antimicrob Agents. 2020;56:106129.
Chlorpromazine in Hospitalized Patients with COVID-19

Authors and Affiliations

Nicolas Hoertel¹,²,³ · Marina Sánchez-Rico¹,⁴ · Raphaël Vernet⁵ · Anne-Sophie Jannot³,⁵,⁶ · Antoine Neuraz⁶,⁷ · Carlos Blanco⁸ · Cédric Lemogne¹,²,³ · Guillaume Airagnes¹,²,³ · Nicolas Paris⁹,¹⁰ · Christel Daniel⁹,¹¹ · Alexandre Gramfort¹² · Guillaume Lemaitre¹² · Mélodie Bernaux¹³ · Ali Bellamine¹⁴ · Nathanaël Beeker¹⁴ · Frédéric Limosin¹,²,³ on behalf of AP-HP/Universities/INSERM COVID-19 Research Collaboration and AP-HP COVID CDR Initiative

¹ DMU Psychiatrie et Addictologie, AP-HP. Centre-Université de Paris, Hôpital Corentin-Celton, 4 parvis Corentin Celton, 92130 Issy-les-Moulineaux, France
² INSERM, Institut de Psychiatrie et Neurosciences de Paris, UMR_S1266, Paris, France
³ Faculté de Santé, UFR de Médecine, Université de Paris, Paris, France
⁴ Department of Psychobiology and Behavioural Sciences Methods, Faculty of Psychology, Universidad Complutense de Madrid, Campus de Somosaguas, Madrid, Spain
⁵ Medical Informatics, Biostatistics and Public Health Department, AP-HP. Centre-Université de Paris, Hôpital Européen Georges Pompidou, 75015 Paris, France
⁶ INSERM, UMR_S 1138, Cordeliers Research Center, Université de Paris, Paris, France
⁷ Department of Medical Informatics, AP-HP. Centre-Université de Paris, Necker-Enfants Malades Hospital, 75015 Paris, France
⁸ National Institute on Drug Abuse, Bethesda, MD, USA
⁹ AP-HP. Département Web Innovation Données (DSI-WIND), Paris, France
¹⁰ LIMSI, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
¹¹ Sorbonne University, University Paris 13, Sorbonne Paris Cité, INSERM UMR_S 1142, 75012 Paris, France
¹² Université Paris-Saclay, Inria, CEA, Palaiseau, France
¹³ AP-HP, Direction de la stratégie et de la transformation, Paris, France
¹⁴ Unité de Recherche clinique, Hôpital Cochin, AP-HP. Centre-Université de Paris, Paris, France