Differential Natural Selection of Human Zinc Transporter Genes between African and Non-African Populations

Chao Zhang1,*, Jing Li1,*, Lei Tian1, Dongsheng Lu1, Kai Yuan1, Yuan Yuan1 & Shuhua Xu1,2,3

1Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CASAMPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China, 2School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China, 3Collaborative Innovation Center of Genetics and Development, Shanghai 200438, China.

Zinc transporters play important roles in all eukaryotes by maintaining the rational zinc concentration in cells. However, the diversity of zinc transporter genes (ZTGs) remains poorly studied. Here, we investigated the genetic diversity of 24 human ZTGs based on the 1000 Genomes data. Some ZTGs show small population differences, such as SLC30A6 with a weighted-average FST (WA-FST = 0.015), while other ZTGs exhibit considerably large population differences, such as SLC30A9 (WA-FST = 0.284). Overall, ZTGs harbor many more highly population-differentiated variants compared with random genes. Intriguingly, we found that SLC30A9 was underlying natural selection in both East Asians (EAS) and Africans (AFR) but in different directions. Notably, a non-synonymous variant (rs1047626) in SLC30A9 is almost fixed with 96.4% A in EAS and 92% G in AFR, respectively. Consequently, there are two different functional haplotypes exhibiting dominant abundance in AFR and EAS, respectively. Furthermore, a strong correlation was observed between the haplotype frequencies of SLC30A9 and distributions of zinc contents in soils or crops. We speculate that the genetic differentiation of ZTGs could directly contribute to population heterogeneity in zinc transporting capabilities and local adaptations of human populations in regard to the local zinc state or diets, which have both evolutionary and medical implications.

Zinc (Zn), an essential trace mineral, is required for the structures and functions of many proteins, including enzymes and transcription factors, and is critical for their biological activities, such as cellular metabolism and gene expression1,2. Previous studies have estimated that >3% or even as much as 10% of human proteins are zinc-binding proteins3, indicating that the maintainability of cellular zinc concentrations and distribution in human cell compartments is of extreme importance. Generally, there are 24 zinc transporter genes (ZTGs) involved in cellular zinc homeostasis in the human genome4,5, among which 10 genes of SLC30A family lower intracellular cytoplasmic zinc by mediating zinc efflux from cells or influx into intracellular vesicles6, while 14 genes of SLC39A family transporters mobilize zinc in the opposite direction7.

Because of the fundamental roles in biological processes, mutations in ZTGs are likely to break the balance of zinc in cell compartments, resulting in improper biological functions of zinc-dependent proteins and subsequent severe diseases or impaired development. For instance, studies have shown that acrodermatitis enteropathica (OMIM 201100) was caused by the loss of function of one or both SLC39A4 alleles, leading to a diminished uptake of dietary zinc, increased sensitivity to zinc deficiency, and severe growth retardation8. Some reports suggested that changes in intercellular zinc level are associated with cancer progression as the expression of zinc transporters in many cancers altered. For example, increased expression of ZIP6, ZIP7 and ZIP10 have been observed to contribute to zinc hyper-accumulation in breast tissue and breast cancer9. Other investigations also indicated that ZIP6 and ZIP10 play critical roles in breast cancer progression10,11. Similarly, elevated ZIP4 expression level in pancreatic cell is associated with pancreatic cancer12-15. Besides cancers, zinc transporters are involved in some complex diseases. Sladek et al. found that rs13266634, a non-synonymous SNP (R325W) in SLC30A8 is related to type 2 diabetes16. SLC30A8 encodes a zinc transporter which is expressed solely in secretory vesicles of β-cells and the overexpression of SLC30A8 in insulinoma cells increases glucose-simulated insulin secretion17. Another example is that SLC39A8 was observed to have relationship with body mass index18. Such disruptive mutations that reduce fitness would be removed from population by purified selection.
On the other hand, functionally important ZTGs may also be subjected to positive selection for acquired changes that increase fitness. Recently, Engelken and Carnero et al. reported that the human intestinal zinc uptake transporter, SLC39A4, has undergone positive selection in Sub-Saharan African populations 11. By carrying out cell transfection assays of putative functional variants, they validated an amino acid change (L372V) in SLC39A4 which was shown to lead to reduced zinc uptake in the African isoform. According to previous studies, zinc contents in soils or crops are extremely diverse across continents or countries and it is estimated that African populations have undergone severe zinc deficiency, according to various kinds of zinc deficiency indicators 27. We hypothesize that, due to the uneven global distribution of absorbable zinc in soils, crops and different diet habits, some ZTGs with adaptable variations in different populations might be underlying natural selection as their transporting capability changed, thus maintaining the balance of intercellular or serous zinc in the human body.

We, therefore, systematically analyzed the patterns of genetic diversity and signals of natural selection for 24 ZTGs in 14 worldwide populations. In this study, we showed that ZTGs harbor many more highly population-differentiated variants compared with random genes and discussed the potential underlying forces shaping the genetic diversity of ZTGs. Further, we reported that SLC30A9 was underlying natural selection in both East Asians (EAS) and Africans (AFR) but in different directions. By performing a correlation, we found that the evolutionary force underlying the selective sweep of SLC30A9 may be the uneven worldwide zinc distribution in soils or corps. Moreover, we predicted 17 potentially functional SNPs, which may guide the study of molecular mechanism of ZTGs. Our results may subsequently increase our understanding of the evolutionary forces that affect ZTGs, as well as augmenting our knowledge of gene function on zinc homeostasis in different populations and the mechanisms of zinc-related diseases.

Results
Genetic differentiation of ZTGs among populations. We first performed an analysis of molecular variance (AMOVA) to examine whether genetic variance among four continental regions is significantly different from populations within each region (Table S1 and Figure S1). Our analysis showed that SLC30A9 and SLC30A3 had a greater proportion of variance among continental groups than within group (empirical $P < 0.05$), indicating that the two genes were genetically differentiated among continental populations. On the contrary, SLC30A6 showed a much lower proportion of variance between groups compared with most of the other genes genomewide (empirical $P < 0.05$), suggesting that SLC30A6 may be functionally conserved.

We next calculated a weighted-average F_{ST} (referred to as WA-F_{ST}) for each gene. WA-F_{ST} employs a weighted average of the F_{ST} values calculated from variants in a gene or a genomic region. Among the 24 ZTGs, SLC30A9 and SLC30A3 showed high WA-F_{ST} values (>0.19, top 5% cutoff of the whole genome), indicating that the variation composition is substantially different between populations. Therefore, the functional variants associated with specific haplotypes are also distributed heterogeneously across populations. On the contrary, SLC30A6 with a low WA-F_{ST} ($<=0.128$, empirical $P < 0.05$) may have limited genetic heterogeneity across populations (Table S1 and Figure S2).

We then calculated the unbiased locus-specific F_{ST}, following Weir and Hill 21 in determining the highly differentiated loci in ZTGs (see Materials and Methods). A locus-specific F_{ST} measures the apportionment of genetic variation of one specific SNP between populations. A high locus-specific F_{ST} value indicates that the corresponding allele is substantially different between populations, while SNPs with low locus-specific F_{ST} have small genetic difference and little functional heterogeneity across populations. The locus-specific F_{ST} values varied widely among SNPs in ZTGs, with the maximum F_{ST} for SNP rs1871534 in SLC39A4 at 0.763 and the average value at 0.018. We used the highest 1% of the genome-wide locus-specific F_{ST} (0.183) as the cutoff for a significant signal of population differentiation. As a result, compared to the F_{ST} distributions of 24 random genes, ZTGs showed significantly higher percentages of variants with high F_{ST} and average F_{ST} values (the mean F_{ST} value for random genes is 0.015). In total, there were 361 (of 19888) (1.82%) SNPs in ZTGs with $F_{ST} > 0.183$, while the percentage was only 0.56% (131 of 23,237) in random genes (Figure 1A). In particular, 17% SNPs in SLC30A9, 8% SNPs in SLC30A3 and 6% SNPs in SLC30A4 harbored genetic variants with significantly high F_{ST}. The proportions in SLC30A1, SLC30A10, SLC30A5 and SLC30A6 were relatively lower than the other genes (Figure S3). Finally, a permutation test (see Materials and Methods) ($P = 0.048$) was applied to

Figure 1 | ZTGs show a higher proportion of locus-specific F_{ST} when compared to random genes. (A) The locus-specific F_{ST} distribution of all sites located in 24 ZTGs and 24 random genes. In the figure, the dashed line represents the cutoff with the empirical P-value of 0.01, i.e. $F_{ST} = 0.183$, the highest 1% of the genome-wide locus-specific F_{ST}. (B) Distribution of a 10,000 times permutation for the proportion of high F_{ST} in 24 random genes. The red dashed line represents the cutoff with the empirical P-value of 0.05, i.e., proportion = 0.018, while the blue line represents the proportion of loci with high F_{ST} in ZTGs (0.0182).
exclude the possibility that the population differentiations in ZTGs resulted from sampling effect (Figure 1B). When we used the top 5% of the genome-wide locus-specific FST as the cutoff for a significant signal of population differentiations, the P-value (<0.01) was also significant (see next section for more details). All these results suggested that the differentiations of ZTGs among populations were unlikely to be caused by any stochastic factors.

Population differentiations and potential effects of functional SNPs. The above analyses focused on general patterns of FST distribution of all loci in ZTGs. However, the genetic variants that directly affect protein functions and gene expressions are functional SNPs, which are more likely to have true associations with zinc transporting or diseases. In our study, SNPs that (i) change the amino acid sequence of protein (non-synonymous SNPs, nSNPs), (ii) correlate with gene expression (eQTL) expression quantitative trait loci (SNPs), (iii) alter splicing (splicing SNPs) and (iv) are associated with diseases (in the GWAS catalog or other databases) were investigated (see Materials and Methods).

Compared to the FST distributions of random genes, the ZTGs showed significantly higher percentages of variants with high FST; i.e. there were 932 out of a total 19,888 SNPs with FST > 0.092 (the top 5% FST cutoff) (P < 0.01, 10,000 permutations). We first predicted the functional types of all 19,888 SNPs in ZTGs and 5,728 SNPs located within the upstream and downstream 10 Kb of ZTGs by consulting the variance effect prediction tools from the Ensembl website (Figure 2). As shown in Figure 2, 61% SNPs were located in the intronic region, 2% SNPs in the intergenic region, 13% SNPs in the upstream region and 10% SNPs in the downstream region, respectively. In particular, 195 nSNPs and 47 splicing SNPs were observed. Furthermore, we found an additional 25 eQTL SNPs in RegulomeDB, 16 SNPs in the GWAS catalog, and 3 SNPs in the GKB database. From those 25,616 SNPs, we screened 17 functional SNPs with FST > 0.092, including 7 nSNPs, 1 splicing SNP, 6 eQTL SNPs and 3 disease-related SNPs (2 in the GWAS catalog and 1 in GKB) (Table 1).

All of the 17 functional SNPs showed high FST values across populations and therefore were assumed to have a higher potential functional impact on zinc transporting or were associated with diseases. Non-synonymous SNPs can cause a structural change in the protein product, which potentially leads to a minor or major phenotypic change. We applied PolyPhen-2 to predict how amino acid variants might change the function of ZTGs peptides (Table 1). Interestingly, rs1871534 was predicted to be potentially damaging, with a score of
permutation for the proportion of nSNPs with a high
lines represent the cutoff with the empirical p value 0.05 and a proportion in ZTGs, respectively. nSNPs with a high
SCIENTIFIC
REPORTS
Figure 3 | Worldwide derived allele frequency (DAF) distributions of highly differential nSNPs. (A) DAF of rs1871534 in SLC39A4, which is nearly fixed in Africans but almost absent in non-Africans. (B) DAF of rs1047626 in SLC30A4. This SNP shows a pattern opposite of rs1871534. (C) 10,000 times permutation for the proportion of nSNPs with a high F_{ST} (≥ 0.092) and a low DAF (<0.05) in CEU and CHB in random genes. The red and blue dashed lines represent the cutoff with the empirical p value 0.05 and a proportion in ZTGs, respectively. nSNPs with a high F_{ST} and a low DAF in CEU and CHB are significantly enriched in ZTGs ($P = 0.019$), which is possibly caused by natural selection. World maps here were created by R packages (http://www.r-project.org/).
Directional selections acted on SLC30A9 differently in Africans and East Asians. We further analyzed the selected haplotypes of SLC30A9 in each population and found that the haplotype favored in the African population was different from that found in East Asians and Europeans (Figure 5). The iHS test generally takes SNPs with minor allele frequency (MAF) larger than 5% into consideration. Therefore, there were only 28 and 294 (of 1294) loci with iHS values in CHB and YRI, respectively, leaving numerous numbers of alleles in SLC30A9 which were nearly fixed and thus could not be estimated. The SNP with a large positive iHS value indicates that the ancestral allele of this respective site hitchhiked with the selected locus, while the SNP with a large negative iHS value indicates the derived allele was favored by selection. According to the iHS distribution of SLC30A9 in CHB, there was a high proportion of selected SNPs (SNPs with a significant iHS value, P < 0.05) with large negative values (13 of 26) (Figure 5A), while in YRI most of the selected SNPs harbored large positive iHS values (53 of 55) (Figure 5B). That is, the selected haplotype in CHB included approximately 50% of the derived alleles, whereas merely 3.6% (2 of 55) of selected SNPs hitchhiked with the extended haplotype in YRI, indicating that the haplotypes selected in these two populations were probably different. Moreover, not only were there differences in the ratios of the derived and ancestral alleles selected in CHB and YRI, the SNPs with significant iHS values were unmatched in each population. There were only two selected SNPs (rs4362859 and rs28620429) that were shared by the extended haplotypes in CHB and YRI (Figures 5A–B and S10A–B). For these two SNPs in CHB, there was a high proportion of selected alleles (84.1% in YRI). Comparing H1 with H2, we found that the only difference was that H2 contained the derived allele in rs1047626, while H1 had the ancestral allele (Figures 6A and S11). The rs1047626 was an nSNP with a high FST value (0.387) (Table 1), changing the 50th amino acid from methionine acid to valine (M50V) deficiency. Finally, to explore the possible reasons underlying this interesting distribution pattern of haplotypes in SLC30A9, we correlated the haplotype frequencies and zinc deficiency. We collected haplotype frequency data from all populations, including Africans and East Asians using both iHS and CLR tests (Figures 4 and S8), suggesting that the selective signals in SLC30A9 were very strong.

The correlation between haplotype frequencies and zinc deficiency. Finally, to explore the possible reasons underlying this interesting distribution pattern of haplotypes in SLC30A9, we
performed a correlation between the haplotype frequency of H2 in each population and the corresponding zinc deficiency status. Previous studies have estimated the global prevalence of zinc deficiencies based on zinc availability in national food supplies and the prevalence of stunting. Their preceding results have indicated that inadequate dietary zinc intake may particularly occur in Sub-Saharan Africans and south Asians. For example, about 20%, 11% and 10% of the population have inadequate zinc intake in YRI, CHB and CEU, respectively. Most of the countries in Africa were marked as being in the “HIGH” risk category of zinc deficiency. Here we directly adopted the zinc related data previous researchers used to analyze the relationship between zinc status and populational haplotype distributions (Figure 7A and Table S3). As shown in Figure 7A, populations in those areas with high prevalence of zinc deficiency (YRI and LWK) are more likely to harbor H1 of SLC30A9. For example, in YRI the frequency of H1 was 84.1%, but the zinc deficiency state was 21%, which is the highest among all populations. However, H2 was dominant in the populations with a low prevalence of zinc deficiency. For example, the frequencies of H2 in CEU (76.5%) and CHB (96.4%) were much higher than in YRI (8%), but the zinc deficiency states in CEU (9.6%) and CHB (11%) were lower than in YRI (21%). We then demonstrated a strong correlation between the haplotype frequency of H2 and the zinc deficiency state ($R^2 = 0.5$, $P = 0.003$, Figure 7B). We further included additional 51 populations from Human Genome Diversity Project (HGDP) in our analysis and also observed strong correlation between H2 and zinc deficiency ($R^2 = 0.38$, $P = 3.4 \times 10^{-8}$, Figure S12), giving further support to natural selection acting on SLC30A9.

Discussion

With recent developments of high-through DNA genotyping and sequencing technologies, genome-wide scans for genes that have been targeted by selection have become feasible. These studies screened out several categories of genes that have undergone natural selection, for example, electron transporter genes and peroxisome transporter genes. But it was still necessary to unfold which changes in environment or habit that one category of genes have adapted to. Our work provides such an example that may advance our understanding of human evolution and molecular evolution. In this study, we found that ZTGs have very different population differentiation patterns, both globally and regionally. Some genes have higher global population differentiation levels, such as SLC30A9 and SLC30A3, while SLC30A6 is more conserved (Figure S1). Moreover, our results showed that ZTGs exhibit significantly larger percentages of genetic variants with high F_{ST} than random genes do, indicating there are great genetic differentiations in ZTGs among populations (Figure 1A). Generally, several factors can influence population differentiation of a certain gene, such as natural selection, genetic drift and migration. Under neutral evolution, population differentiation is influenced solely by genetic drift, which increases differentiation versus migration, which decreases differentiation. These two factors, drift and migration, are expected to have the same average effect across the genome. However, natural selection impacts population differentiation only in specific regions. We ruled out the possibility that drift could cause this differentiation landscape in ZTGs by comparing 24 ZTGs with random genes (Figure 1B). Despite the marginally significant P-value (0.048) of permutation, we suggested that natural selection had acted on ZTGs. Furthermore, another analysis that indicating...
nSNPs with high FST and low DAF (<0.05) in CEU and CHB are significantly enriched in ZTGs (P = 0.019) (Figure 3C), which has provided more evidence that natural selection events may have occurred on ZTGs.

The analysis above was based on locus-specific FST, which revealed patterns of genetic differentiations that are incompatible with neutral expectations in ZTGs among worldwide populations. We then applied two commonly used approaches, iHS and CLR, to detect natural selection in ZTGs; several genes exhibited significant signals (Figure 4). In general, there were selective sweeps in three genes (SLC30A8, SLC30A9 and SLC39A11) that are shared among different continental populations. In principle, haplotypes inherited from ancestral populations might also lead to sharing selective signals between populations. However, this is likely a small effect because recombination for >1000 generations will break down such unusually long haplotypes. Therefore, this might be due to selective events these populations have experienced.

Among these 3 genes, SLC30A9 was reported to be strongly selected in East Asian populations; it was among the top 10 selective signals in the genome-wide detection of positive selection in human populations. However, we detected the selective signal in this gene not only in East Asians, but also in Europeans and Africans (Figures 4–5 and S8). This is probably because the footprints that selection left in European populations and African populations were not strong enough to be screened by the genome-wide selection scan in previous studies. Surprisingly, the selective pressure directions in East Asians and Africans were the opposite. It is notable that two functional haplotypes, H1 and H2, are dominant in Africans and East Asians, respectively (Figures 5 and 6). A linear regression was performed to reveal the relationship between the zinc deficiency state and H2 of SLC30A9 in corresponding populations (Figure 7 and 8).

Figure 6 | Analysis of putative selected haplotypes carrying 7 nSNPs in SLC30A9. (A) Haplotypes shared among different continental groups. African populations are more likely to harbor haplotype CAGAGAC, while in non-African populations, haplotype CGGAGAC is much more pervasive, especially in East Asians in whom the haplotype frequency is nearly fixed. (B) Graphical depictions of SLC30A9 haplotypes constructed from 7 nSNPs with haplotype frequencies derived from the 1000 Genomes Project. Hap1 (CAGAGAC) is the same as the haplotype in a chimpanzee (Chimp) and a Neanderthal (Nean). Hap2 (CGGAGAC) is different from Hap1 at rs1047626 of which the derived allele can alter an amino acid change from methionine acid to valine (M50V). (C) Predicted membrane topology of human SLC30A9 generated using HMMTOP and visualized with TeXtopo. Location of rs1047626 carried by the possible selected haplotype is indicated.

Figure 7 | Correlation between zinc deficiency state and frequency of putative selected haplotype. (A) Estimated country-specific prevalence of zinc deficiency and worldwide haplotype frequency distribution for SLC30A9. Population zinc deficiency data are based on the composite nutrient composition database, IZINCG physiological requirements, the Miller Equation to estimate zinc absorption and an assumed 25% inter-individual variation in zinc intake (Ref. 20, see Table S3). (B) Correlation test for the zinc deficiency and frequency of Hap2. World map was created by R packages (http://www.r-project.org/).
Many other genes in ZTGs, such as in high differentiations of the ZTGs across different ethnic groups. This is an example of investigating the underlying force that results in evolutionary scenarios cannot be entirely ruled out and should be in high differentiations of ZTGs across different ethnic groups. Other otherwise in the food chain, since humans spread from Africa and speculate that some genes in ZTGs were also selected by the uneven success in which many ZTGs are definitely involved. Therefore, we of serum or cellular zinc concentrations is a complex biological process in which many ZTGs are involved. The correlation (Figure 7) between zinc deficiency and the frequency of H2 in SLCT30A9, which exhibited a great proportion of high FST (Figure S3) and significant selective signals (Figure 4), provides us a good example for investigating the underlying force that results in high differentiations of the ZTGs across different ethnic groups. Many other genes in ZTGs, such as SLCT30A3 and SLCT30A4, which harbored a great proportion of high FST and SLCT30A7, SLCT30A8 and SLCT39A11, which showed significant selective signals probably exhibited a similar pattern with SLCT30A9, because the regulation of serum or cellular zinc concentrations is a complex biological process in which many ZTGs are definitely involved. Therefore, we speculate that some genes in ZTGs were also selected by the uneven continental distribution of absorbable zinc in soils or crops or otherwise in the food chain, since humans spread from Africa and colonized most of the globe. Local adaptation consequently resulted in high differentiations of ZTGs across different ethnic groups. Other evolutionary scenarios cannot be entirely ruled out and should be investigated in detail. One possible scenario is that, in addition to transporting zinc, ZTGs transport other microelements, such as cadmium and manganese, which may also make ZTGs adapt to the environment, leading to high differentiation. What’s more, not only does it act as a transporter, SLCT30A9 is located in a nucleus and performs as a nuclear receptor co-activator to regulate gene expression. "Nutritional immunity" may also explain the evolutionary force. According to the nutritional immunity hypothesis, the human host restricts access to certain micronutrients so that pathogens become less virulent. One recent study used this hypothesis to interpret the selective force of SLCT39A4 in Sub-Saharan Africa. The findings have indicated that the underlying evolutionary force that led to population differentiations of ZTGs still needs to be investigated further.

In summary, proteins coded by Zinc Transporter Genes (ZTGs) play pivotal roles in decreasing or increasing zinc concentrations in cells and thus keep homeostasis of zinc in human body. Genetic variations in ZTGs could directly contribute to population heterogeneity in zinc transporting capabilities. In this study, we outline for the first time the genetic differentiation of worldwide populations and footprints of natural selection upon a comprehensive list of ZTGs. We demonstrated that high differentiations exist in ZTGs among populations. Besides, we identified 17 potentially functional SNPs with allele frequency highly differentiated among populations, which may affect either the protein structures or the expression levels of ZTGs. These results may enhance our understanding of the importance of zinc levels in human evolutionary history and facilitate further functional studies of ZTGs and medical studies on worldwide nutrient problem as well as zinc-related diseases.

Methods

Genetic variation data. We analyzed the latest release of the data (version 3 of phase 1, March 2012 release) from the 1000 Genomes Project with autosomal SNPs of 1,092 individuals representing 14 populations worldwide. According to the 1000 Genomes Project Steering Committee, the 14 populations were derived from four ancestries: East Asian ancestry (ASN: CHB, CHS, JPT), African ancestry (AFR: ASW, LWK, YRI), European ancestry (EUR: GBR, FIN, IBS, TSI, CEU) and American ancestry (AMR: CLM, MXL, PUR). The ancestry information of SNPs was obtained from the 1000 Genomes Project (http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/supporting/ancestral_alignments/).

Obtaining gene information for zinc transporter genes. Mammalian zinc transporters come from two major families, the SLCT30 (ZnT) family and the SLCT39 (Zip) family. There are 10 ZnT transporters and 14 Zip transporters encoded in the human genome. Their genes are designated as SLCT30A1-10 and SLCT39A1-14, respectively. Gene coordinate information was obtained from the UCSC Table Browser (http://genome.ucsc.edu/cgi-bin/hgTables) to infer the start and position (hg19) for each gene (Table S4 and Figure S13).

Population differentiation and FST estimation. To evaluate whether the genetic variance between the four continental regions is significantly different from the genetic variance among populations within each region, AMOVA was carried out using Arlequin. To investigate global differentiation among ZTGs, we calculated the weighted average FST (WA - FST) of multiple sites from haplotypes of each gene across all 14 populations. The genetic differentiation between populations of each locus was measured using the unbiased estimates of FST, following Weir and Hill with a python script. We determined empirical cutoffs for the top 1% and 5% of signals genome-wide. Thus, loci or genes with an FST value greater than the cutoffs were considered as highly differential SNPs (selected SNPs) or genes. As a result, the highest 1% and 5% of the genome-wide locus-specific FST was 0.183 and 0.092 with the average being 0.017.

Functional SNPs prediction. The functional effects of each SNP from each ZTGM gene were obtained based on the variance effect prediction tools from the Ensembl database. The SNPs that affect gene expression were studied based on the RegulomeDB database. In addition, we studied the SNPs with clinical effects and disease-related effects, which were then collected and annotated in the PharmGKB database and the GWAS catalog.

Permutation test. Two kinds of permutation were used in our study. One was used to discern that the FST distribution of ZTGs was different from random genes of the whole genome. We randomly sampled 24 un-repeated genes from the whole genome gene list 10,000 times. In every instance, we calculated the proportion of SNPs with FST values higher than 0.183. Finally, we obtained 10,000 percentage values considering the whole genome and 1 value (0.0182) for ZTGs. We then sorted these values in descending order. Thus, the index (478 of 10,000) of value for ZTGs represents the P-value of this permutation, which is 0.0478. The distribution of percentage values shows that the ratio (0.0182) of ZTGs is larger than the highest 5% cutoff value (0.0180) of the whole genome (Figure 1B). The other permutation attempts to examine whether nSNPs with high FST (> = 0.092, top 5 percentile of FST values) in Africans are enriched in ZTGs, and to exclude the possibility that drift leads to this pattern. We randomly sampled 24 genes from the UCSC database without repetition 10,000 times. Every time, for random genes we calculated the proportion that the number of nSNPs with high DAF in TIR but low DAF (< 0.05) in CEU and CHB accounted for the number of SNPs with high FST.

Detecting signals of selection. Two approaches, the integrated haplotype score (iHS) and the composite likelihood ratio (CLR) test, were used to detect the signals of recent positive selection. Because of the hitchhiking effect, positive selection might bring a selected allele into high frequency rapidly enough that recombination does not have time to break down this haplotype, resulting in a long haplotype in high frequency. The iHS test is based on the long haplotype, which is a distinctive signature that could not be expected under neutral drift. It has been shown to possess power enough to identify recent, incomplete sweeps. The standardized iHS scores were calculated for every SNP with minor allele frequency > 5% by an R package, rehh. For every gene in each population, we screened the iHS value of each locus and inferred a positive selection signal if there are 7 or more loci with iHS equal to or more than the top 5% of genome-wide signals in any continuous 50-SNPs bin of this gene region.

The CLR test, a model-based method, is a statistic to compute the likelihood ratio of selective sweeps by comparing the spatial distribution of allele frequencies in a given window, compared to the frequency spectrum of null distribution, such as all the autosomal regions. In this study, the SweepFinder program was used to carry
The calculation for the CLR test, we calculated the standardized CLR score of each population for the entire autosomal regions and took the values with an empirical P-value of 0.05 as the cutoff to detect a natural selection signal at given ZTGs genes.

Haplotype analysis. To visualize the long haplotype of SLC30A9, EH3D plot and bifurcation diagrams were drawn using an R package reh3S. SLC30A9 spans about 97 Kb in the chromosome region 4p13. We defined that SLC30A9 haplotypes were composed of 7 non-synonymous SNPs (Table S2): rs147121215, rs1047626, rs151273121, rs115329927, rs2581423, rs181235146 and rs141510850. Then, we counted the number of haplotypes composed of these chosen SNPs and computed the corresponding proportion in each population using python script.

Correlation test. Three indicators of zinc status at the population level has been recommended: (1) the percentage of the population with plasma (serum) zinc concentrations below an appropriate cut-off, (2) the prevalence of usual dietary zinc intakes below the Estimated Average Requirement (EAR), and (3) stunting prevalence. The zinc status data for specific regions or countries was directly downloaded from a published paper that estimated the global prevalence of zinc deficiency. We used a proportion of the population with inadequate zinc intake as an indicator for zinc deficiency and investigated its correlation with H2 (CGGAGAC) of SLC30A9, which is strikingly common in East Asians. All significance tests were performed using R packages (http://www.r-project.org/).

Membrane protein topology and phenotype variation prediction. The transmembrane helices and topology of ZTGs were predicted using HMMTOP3 and visualized with TeXtope2. To predict how amino acid variants might change the function of the peptides of ZTGs, Polyphen-2 was used.

1. Vallee, B. L. & Auld, D. S. Cocalytic zinc motifs in enzyme catalysis. *Proc Natl Acad Sci USA* 90, 2715–2718 (1993).
2. Vallee, B. L. & Falchuk, K. H. The biochemical basis of zinc physiology. *Physiol Rev* 73, 79–118 (1993).
3. Blasie, C. A. & Berg, J. M. Structure-based thermodynamic analysis of a coupled metal binding-protein folding reaction involving a zinc finger peptide. *Biochemistry* 41, 15068–15073 (2002).
4. Kambe, T., Weaver, B. P. & Andrews, G. K. The genetics of essential metal homeostasis during development. *Genes* 46, 214–228 (2008).
5. Kambe, T., Yamagami, K., Iwai, Y., Sasaki, R. & Nago, M. Overview of mammalian zinc transporters. *Cell Mol Life Sci* 61, 49–68 (2004).
6. Palmiter, R. D. & Huang, L. Eflux and compartmentalization of zinc by members of the SLC30 family of solute carriers. *Pflugers Arch* 447, 744–751 (2004).
7. Ede, D. J. The SLC39 family of metal ion transporters. *Pflugers Arch* 447, 796–800 (2004).
8. Schmitt, S. et al. An update on mutations of the SLC39A4 gene in acrodermatitis enteropathica. *Hum Mutat* 30, 926–933 (2009).
9. Taylor, K. M. et al. The emerging role of the LIV-1 subfamily of zinc transporters in breast cancer. *Mol Med* 13, 396–406 (2007).
10. Kagara, N., Tanaka, N., Noguchi, S. & Hirano, T. Zinc and its transporter ZIP10 are involved in invasive behavior of breast cancer cells. *Cancer Sci* 98, 692–697 (2007).
11. Taylor, K. M., Morgan, H. E., Johnson, A., Hadley, L. J. & Nicholson, R. I. Structure-function analysis of LIV-1, the breast cancer-associated protein that belongs to a new subfamily of zinc transporters. *Biochem J* 375, 51–59 (2003).
12. Li, M. et al. Aberrant expression of zinc transporter ZIP4 (SLC39A4) significantly contributes to human pancreatic cancer progression and genesis. *Proc Natl Acad Sci USA* 104, 18636–18641 (2007).
13. Li, M. et al. Down-regulation of ZIP4 by RNA interference inhibits pancreatic cancer growth and increases the survival of nude mice with pancreatic cancer xenografts. *Clin Cancer Res* 15, 5939–6001 (2009).
14. Zhang, Y. et al. ZIP4 regulates pancreatic cancer cell growth by activating IL-6/STAT3 pathway through zinc finger transcription factor CREB. *Clin Cancer Res* 16, 1432–1430 (2010).
15. Zhang, Y., Chen, C., Yao, Q. & Li, M. ZIP4 upregulates the expression of neuropilin-1, vascular endothelial growth factor, and matrix metalloproteases in pancreatic cancer cell lines and xenografts. *Cancer Biol Ther* 9, 235–241 (2010).
16. Sladek, R. et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. *Nature* 445, 881–885 (2007).
17. Chimienti, F. et al. In vivo expression and functional characterization of the zinc transporter ZnT8 in glucose-induced insulin secretion. *J Cell Biol* 119, 4199–4206 (2006).
18. Spilotes, E. E. et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. *Nat Genet* 42, 937–948 (2010).
19. Engelken, J. et al. Extreme Population Differences in the Human Zinc Transporter ZIP (SLC39A4) Are Explained by Positive Selection in Sub-Saharan Africa. *PLoS Genet* 10, e1004123 (2014).
20. Ryan Wessells, K. & Brown, K. H. Estimating the Global Prevalence of Zinc Deficiency: Results Based on Zinc Availability in National Food Supplies and the Prevalence of Stunting. *PLoS One* 7, e50682 (2012).
21. Weir, B. S. & Hill, W. Estimating F-statistics. *Ann Hum Genet* 36, 721–750 (2002).
57. Beitz, E. TEXtopo: shaded membrane protein topology plots in LATEX2e. Bioinformatics 16, 1050–1051 (2000).

Acknowledgments
These studies were supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (CAS) (XDB13040100), by the National Science Foundation of China (NSFC) grants 91331204, 31370505, 31301083, and 31171218, by the Knowledge Innovation Program of Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (2013KIP108). S.X. is Max-Planck Independent Research Group Leader and member of CAS Youth Innovation Promotion Association. S.X. also gratefully acknowledges the support of the National Program for Top-notch Young Innovative Talents of The "Wanren Jihua". We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript. All funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author contributions
S.X. and J.L. conceived and designed the study. C.Z. and J.L. analyzed data, with contribution from L.T., D.L., K.Y. and Y.Y. C.Z., J.L. and S.X. wrote the paper. All authors contributed to revision and review of the manuscript.

Additional information
Supplementary information accompanies this paper at http://www.nature.com/scientificreports

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Zhang, C. et al. Differential Natural Selection of Human Zinc Transporter Genes between African and Non-African Populations. Sci. Rep. 5, 9658; DOI:10.1038/srep09658 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/