A cultural heritage approach is used to present a scientific analysis of a traditional building method. A series of detailed monographs are referenced. The article discusses the Central European conservation theories of “Heimatschutz” at the beginning of the 20th century and the ideals of Krausism to determine a direct relationship between narrative art and photography as a threshold to the heritage analyzed. The study begins with a metric analysis of the barraca, a typical one-story thatched farmhouse in the Valencia area, and examines its construction and pathology; the study reviews the construction’s constituent parts through schematic illustrations to offer a greater understanding of its creation and subsequent processes of transformation. The study departs from the strict reinterpretation of traditional building techniques to adopt an approach that examines the use of its component materials, thus providing an understanding of interventions that are compatible with conservation.

KEY WORDS: farmhouse, traditional techniques, vernacular dwelling, heritage, Heimat

1. INTRODUCTION

Architectural descriptions or classifications can take different forms: vernacular, related to a place, territory or country; native, related to the land or territory; typical, offering a quaint, delightful image; traditional, set in the transmission of customs and manners; self-constructed, built by the owner; and without architects, not designed by experts or builders, for example. However, Spanish history has adopted the term popular, as was widely used in the 1920s and 1930s (Torres, 1933).

The article presented is based on 4 years’ research to classify the last centenarian barracas that still remain in Valencia and the surrounding areas. Analogies are established with other areas at a national and international level and the intricacy of its maintenance and conservation are explained through descriptions of the building process and traditional techniques, since the study of popular housing cannot be separated from the characteristics of its habitat, that is, its physical environment.

An architectural and ethnographic perspective is taken in this study of popular housing, in an attempt to shed new light on the development of the barraca, thus allowing an examination and classification of the extremely poor legacy left today, without ambiguity or misinterpretation. These vernacular constructions, located on the Mediterranean coast, were used as dwellings over many generations and the
samples analyzed show how a series of construction phases have satisfied the needs of their inhabitants.

The aim of this article is to offer an insight into a vernacular shelter, providing not only a documentary record, but a guide for further research into traditional types of popular housing that are now gradually disappearing; it should be remembered that, although many settlements are considered to be insignificant, ordinary, and humble, the true spirit of their societies lies within them.

2. METHODS

Producing an extensive catalog of building methods requires prior awareness of the extent of the task to be undertaken, involving intense research into the history of the subject, preliminary studies, and an analysis of the complex morphological changes in building arising from environmental changes in recent decades. Prior to beginning the fieldwork, a search for similar studies that might help to geographically locate the buildings was undertaken, but no relevant information was available. Planimetric and general maps, with other graphic material, were examined from the municipalities in the area. Data gathering began in early 2004 and continues to date; the geographical information system and global positioning system were used to locate the constructions. An initial file card was created and modified as the study progressed and the data obtained. Manual and electronic methods were used to measure the barracas. A digital camera was used, either compact or reflex depending on the circumstances; the most recent photographs were taken with a Canon EOS 400 D. The final and perhaps most demanding phase of the research involved transferring the information from the file cards to digital format. Transcription of all the information, storing the photographs, compiling and ordering the maps to create a single document was undertaken with computer programs such as Microsoft Word, Publisher, and PowerPoint, Adobe Photoshop 7.0, Adobe Acrobat 7.0, and Autocad 2005 on an HP Pavillion ZV 5000 PC, to obtain the global view presented in this paper and in the catalogue of accompanying files (Figure 1).

3. DISCOVERY OF THE BARRACA IN THE CULTURAL PROCESS

3.1. Preliminary Study

At the end of the 19th century, Spain was a refuge for the ‘natural’ artistic perception of a country whose art continued to be the highest and most genuine expression of its culture, not yet corrupted by the haste of the industrial revolution. Cultural pessimism and essential thinking created a common denominator, from which the vernacular reference became one of the specific recurrent subjects in architecture at the beginning of the 20th century. The nostalgic defense of local values emerged out of a quest to establish roots in the fatherland, the Heimat, the traditionalist movement created between Spain and Germany in the first four decades of the 20th century (Medina, 2002).

Cultural traditions of the Spanish Regeneration, such as Krausism, were rooted in German Idealism and Romanticism. These romantic movements were related to and sprang from the picturesque spirit and the anti-urban criticism that spawned the idyllic Rousseauian views characteristic of the second half of the 18th century, particularly linked to the Age of Enlightenment. Hence, the rural country dwelling would become the
Figure 1. Map of the Municipal Area Valencia, Almassera, and Alborai. *The map has been reproduced in other publications and is protected by author copyright permission to publish has been granted.
architectural prototype of the period and European books and treatises of contemporary architecture on this subject were filled with designs of villas, and even farmhouses, as the first examples of popular architecture (García-Esparza, 2004–2007).

Education based on Krausist philosophy brought the student directly into contact with nature; experimental classes and field trips therefore took an important role. This movement gave rise to the Free Institution of Education, which had a lasting and fertile influence in artistic and intellectual circles between 1876 and 1936 when scholars of art from Central Europe and local authors began extensive surveys of the Spanish territory (Pérez, 1985). Many of them came to the Mediterranean coast, and in their endeavors to study the landscape, habits, and customs of the rural population, discovered the construction analyzed in this study, the barraca, which they mentioned, described, or illustrated.

The first summary of popular Spanish architecture is found in the work of the architect, historian, restorer, and professor of the history of architecture at the Madrid School of Architecture, Vicente Lampérez y Romea (1861–1923), who devoted a significant chapter of his work to rural architecture (Lampe´rez, 1922).

With regard to the ideals of Heimatschutz, the work of architect, critic, and ethnographer, Alfredo Baeschlin (1883–1964), founder of the Swiss Association of Homeland Protection, is particularly noteworthy. Baeschlin traveled to Barcelona around 1918 before visiting the Basque Country and finally settling in Valencia in 1930 where he stayed until his deportation in 1942. From the conservative traditionalism of the beginning of the century, through the ‘arcadia of noucentisme’, emerge the national treatise writers who, to a greater or lesser extent, studied the notion of what is regarded as popular. One of these writers was Leopoldo Torres Balbás (1888–1960), who organized the Charro-Hidalgo Contest in the Madrid Ateneo in 1923 under the title “Popular Architecture of the Spanish regions” and then went on to publish a considerably extended version of his detailed study of the Spanish house (Nieto, 1968), in which he describes the material nature of the barracas from three similar geographical areas on the Mediterranean coast (Torres Balbás, 1933).

Also of note is the work of Victor Gosálvex (1888–1965) who, together with his father, master builder Juan Bautista Gosálvex, and the architect Angel Romani, was responsible for most of the new constructions and rebuilding work in El Cabañal-Cañamelar between 1900–1936, when houses replaced barracas. His manuscript included drawings and photographs to illustrate his observations on the materials, systems, and building processes of the Valencian barraca and the economic and social reasons for its disappearance (Gosalvez, 1998). Fritz Krüger (1889–1974), an outstanding German professor of Romance languages, settled in Spain at the beginning of the 20th century to study the languages of the north of the peninsula; he also sent students from Hamburg University, such as Max Thede, to complete a thorough study of the Albufera of Valencia (Thede, 1932). Their report appeared in several articles published in a Hamburg journal by Fritz Krüger, Volkstum und kultur der Romanen.

Fernando García Mercadal (1896–1985), together with the architects Aizpurua, Sert and Torres Clavé, founded GATEPAC (Grupo de Artistas y Técnicos Españoles para la Arquitectura Contemporánea). As part of this group, García Mercadal forged an architectural link between Spain and the rest of Europe (Tarragó, 1980), highlighting the social function of architecture and urban development. The group’s interest lay not only in the architectural avant-garde, but also in regional architecture,

2 Early 20th cultural movement in Catalonia.

INTERNATIONAL JOURNAL OF ARCHITECTURAL HERITAGE 5(1): 27–47
based on the use of resources taken from local architectural styles that would be followed up in subsequent reports (Garcia, 1980).

3.2. Literature, the Stepping Stone to Cultural Heritage

Not only written documentation, archeological objects and monuments can testify to our history and traditions. Literature and oral accounts are also a powerful means of rediscovering the collective imagination. Articles on customs documented the barraca typologies, trades, and popular customs that tended to disappear with the advance of bourgeois society.

The literary works of Vicente Blasco Ibañez marked the end of Spanish realism, a movement on which he had a major impact. His series of local Valencian novels, the first of which, *La Barraca*, is considered to be his most poetic, thorough, and imaginative work, illustrates how many people, incapable of recognizing the value of the traditional lifestyle, were not slow to condemn it. His work is the first depiction of the social concerns facing agricultural workers who are intrinsically tied to their dwellings (Cardwell, 1994, p. 53).

Genres tended to merge in the narrative prose of this period, with the essay becoming predominant. At times the novel was speculative and structured in thoughtful descriptions; in other examples it gave a typical detailed description closer to poetry, but always in line with the new literary style that was spreading through Valencian society, which served to promote tourism and grant the typical barraca the appreciation it deserved.

4. THE BARRACA: A VERNACULAR BUILDING

4.1. Analysis of the Environment

Geographically, the barraca is located on a narrow coastal strip between the Ebro Delta and the agricultural environs of Orihuela. Examples of the construction continue to exist in this area. The most important variations are found on the coast and reflect the varied lifestyles of its occupants: the old seasonal shacks of the fishermen from Puig and Puzol; the more permanent dwelling places of the fishermen from Saler; the lake dwellings designed to provide storage for fishing tackle in the Albufera; and the secluded barracas in El Palmar, used by fishermen who also cultivated rice (Ciscar, 1974).

4.2. Genesis, Developing Milestones

The more primitive and basic the shelters, the more they depend on the environment. Hence, this type of humble architecture has been called *natural*, and the importance of the geographical description of the environment surrounding these vernacular buildings is justified. An analysis and comparison with other regions indicates that they are essentially determined and differentiated by a series of factors: the relief of the land in which they are located; the climate; the vegetation and fauna; and the social aspects of the community; in other words, the physical and human environment that make up the complex modern concept of the natural region.

Three main areas survive as a reminder of past ways of life in which the farmer lived in his barraca, a basic cottage characteristic of regions with a mild climate, where most of the time is spent outdoors, and in which the intensive cultivation of a small piece of land is highly productive and demands full-time dedication. These areas are the Turia Delta,
including the fields and the Valencian Albufera; the Segura Delta, which includes the fields of Orihuela and Murcia; and the Ebro Delta (Torres Balbás, 1933).

The documents published in *Aureum Opus* — the legal entity of the City and Kingdom of Valencia — state: “King Jaime permitted the construction of houses instead of barracas and other existing dwellings belonging to fishermen and seamen, which gave rise to the settlement of *Villanova maris Valencie*” (Mateu, 1955) (Figure 2).

Whether due to these changes on the coast or to the spread of intensive cultivation in the fields, with expansion, significant changes were observed in the characteristics of the buildings. These changes progressed from the simple hut, defined as a building made of light materials, to houses constructed with solid building materials.

The type of rooms therefore varied according to the length of time spent indoors. Dwellings built to provide shelter for seasonal jobs did not need to be permanent constructions; however, where activity was more intense, farmers were required to spend practically all their time on their lands. Consequently, the constructions in the Valencian fields are more complex or sophisticated than their equivalents in the Ebro and Segura areas.

4.3. Building Analysis

The barraca that has survived to the present day is a consequence of continuous developments in construction. Bearing in mind the complexity of development and the simplicity of the techniques used, the study considers each part of the house in turn in order to better understand its creation and subsequent transformation processes. These changes parallel the evolution of building in popular architecture, which shifted from improving on traditional techniques to make way for a hybrid vernacular-industrial architecture that is eminently popular, renewed, modified and altered by owners using 20th-century materials.

4.3.1. Origins of the building methods: The plan

Maldonado (1997, p. 34), in his paper on architecture and archeology, established the relationship between the internal organization of the dwelling and its shape. He associated a circular shape with nomadic
and semi-nomadic societies, while square and rectangular constructions corresponded to sedentary societies. Indeed, circular structures seem to have given way to rectangular ones for at least two reasons: the possibility of adding new rectangular structures when the family grew in size, and the increase in production favored by demographic growth, population concentration, and social organization (Figure 3).

This theory is endorsed by F. Oelman who considers the El Palmar barraca to represent a transition from the round hut with a conical roof to the quadrangular hut with an apex roof. Wilhelm Giese (1951) lends further support to Oelman’s theory by adding that the round floor shape is an extension of the primitive form found in circular huts.

4.3.2. Development of traditional techniques

4.3.2.1. The structure Evolution in the construction of the barraca is related to the advantageous use of wood in the skeleton roof. Rough tree branches gave the roof a more solid structure. A two-sided sloping roof was built. The structure evolved from one in which the hard, sun-dried branches were firmly anchored in the ground, to one with a pseudo roof structure, which starting at ground level, consisted of two main truss posts bearing a longitudinal beam on which the roof rafters were supported. To mitigate the pressure of the structure’s size, the slope of the roof and consequently its exposure to side winds, wooden crossbeams are nailed from one side to another at a height that does not hinder the performance of household chores inside the barraca.

The east-west orientation of the barraca is designed to take advantage of the sea breeze. To avoid structural strains deriving from the frontal exposure of the gable ends to these winds, vientos were put in place: small wooden pieces of wood that brace the rafters longitudinally. These diagonal braces form the vientos that cover the whole gable.

According to Max Thede (1932), and with further references by Sanchis Guarner (the structure consisted of a series of rafters anchored to cadorsa and carena (large and small beams), respectively, and jointed by means of a tie beam strategically located at
an appropriate height for ease of movement in this single room (Sanchís, 1999). This tie beam worked in compression, by horizontally transferring the strain originating on one side of the roof to the other side (Figure 4).

4.3.2.2. Adobe walls Initially, the walls were constructed with a framework of interwoven vegetation on which layers of clay were successively added, both internally and externally, until a certain thickness was obtained. In a rural area with intense construction, timber to support the structure was likely to be in short supply. Building

Figure 4. Structural evolution of the roof structure (simplified) by Paul Oliver (Oliver, 1978). Top, tent-type structure: simple, restricted usable space; Middle, intermediate structure: no lower floor pillars, but underroof space is still restricted; Bottom, final shape: the structure moves outwards, freeing up the attic cavity.
methods were therefore simplified and the supporting walls were then built with clay bricks. Initially, these adobe bricks were laid before they were completely dry, until the technique was eventually perfected; they were coated on both sides with a layer of clay a few centimeters thick. Use of adobe bricks increased the thickness of the walls, and hence a greater thermal inertia and improved structural stability, especially at the base (Houben and Guillaud, 1994).

The resistance of adobe, made of a mixture of clay and straw, is undoubtedly lower than that of baked brick and varies between 5 and 20 kg/cm² depending on whether it is semi-humid or completely dry (AAVV, 1986). The straw counteracts the internal strains that appear during the drying process and provides greater consistency to the dry adobe to counteract mechanical strains.

Common reed, *Phragmites communis*, obtained from riverbanks, was probably cut in the same way it had been for centuries: during the waning moon in winter when the sap lies dormant at the roots. The tradition of cutting wooden material at the right time to avoid premature decay is mentioned by Vitruvius, who attributes the origin of this custom to primitive architecture.

Some of the demolished or abandoned barracas analyzed during the research showed how the adobe was assembled by interlacing canes only in the four corners where the walls meet. This reinforcement prevented pathologies caused by differential settlements, and arrested the effect of bulges, retraction, and thermal protraction.

Babylonian culture may be regarded as the forerunner of this technique of infilling between the walls (Montero, 2005). These bundles of reeds, evenly distributed in strata at different heights of the building, helped to distribute the strain and tightened the structure in independent layers. Finally, to avoid pathologies due to the inclemency of the weather, the barraca was whitewashed inside and outside every year, coinciding with local festivities (Figure 5).

4.3.2.3. Framework of natural materials

The use of clay with a timber framework is considered to be a craft because it is a technique based on natural materials used individually or combined with others. The framework is a structure built with wooden pieces, sometimes machined, of considerable dimensions that brace the frames forming the wall; these frames are complemented with a thinner substance, usually made of reeds, secured with organic fibers or nails. The wall is made functional by filling the gaps with clay, particularly argillaceous clay or a mixture of clay and other materials (Gosalvez, 1998).

At the same time, the interweaving of natural materials for roofs, gables, and the interior walls evolved into a technique known as *master reeds*. This technique is applied to the roof, attic, and gables, which were later coated on only the most exposed side, while the intrados showed the structure as it was, uncoated. The coating and whitewashing mortar applied to the layers of reeds were the same as those for the adobe walls. The exterior walls of the cottages of the Ebro and Segura were erected using this technique while those of the Turia were replaced by strong adobe walls, only using the former for the interior (Figure 6a and 6b).

4.3.2.4. The roof

The roofs have been constructed with great skill and mastery for centuries using the master reed technique. The steep slope (between 45% and 120%) achieves a balance between resistance to the wind and the need to drain the water as quickly as possible to prevent decay of the thatching material (Nourissier, 2002). The herbaceous material (reed, *Phragmites communis*; sedge, *Cladium mariscus*; marram...
Figure 5. Schematic illustration of the reconstruction of adobe walls.
grass, *Ammophila arenaria*; bulrush or common cattail, *Typha latifolia*) was woven upwards onto the reed from the eave towards the ridge, forming a thick cover made of flat bundles 10–25 cm wide and 40–80 cm long. This material was always used for the thatch as it was particularly resistant to decay and is typical of wetland areas (Ruiz, 1999). The ridge was finished off with a clay and lime mortar to conceal the bundles of thatch that met in the upper vertex of the roof, thus preventing roof leaks (Figure 7).

4.3.3. Barraca dimensions One of the characteristics of the reform introduced by King Jaime I was the mechanism applied to control measurements by means of very thorough regulation. This reform established the official post of *Mustacaf* of the City of Valencia towards the end of the 14th century, charged with overseeing weights and measures in the city.

The basic units of reference were the foot and yard, although the cubit and the span were also used. In Valencia the yard was subdivided into four spans as well as three feet; the span into 4 quarters or 12 inches (Corachan, 1735). The predominant use of the span in Valencia led to the division of the yard into four spans (García, 1988). All the barracas studied correspond to dimensions that followed a system prior to the current metric system.

The size of the dwelling was calculated according to these premises, and depended on the needs of each family. No strict limits were set to the total final dimensions. The dimensions in evidence today have been modified to a greater or lesser extent by changes made to the roof or the addition of new coatings to the original wall (Figure 8).

5. CONSERVATION CRITERIA

Popular art dies out as a result of stagnation through loss of interest and degradation stemming from repetitiveness, but above all because of the global process.
Vegetable framework alterations

Original material
- River cane and esparto rope
- Mud mortar
- Lime slurry, whitewashed

Slightly altered materials
- Cane river and fibers rope
- Mud and lime mortar or gypsum mortar
- Whitewashed or mineral paints

Severely altered materials
- Replacement for ceramic brick
- Lime or cement mortar
- Tiles / plastic paints

Figure 6b. Schematic illustrations of framework reconstruction.
Figure 7. Photograph of a barraca in the Albufera Natural Park. (Figure is provided in color online.)

Figure 8. Schematic illustration of barraca measurements.
of uniformity, haste, and progress. The traditional lifestyle is undergoing transforma-
tion or disappearing altogether (Torres Balbás, 1933).

Traditional building materials (e.g., clay, wood, reed) have been replaced by
industrial materials (e.g., concrete, bricks, fiber cement, aluminum) across the entire
Mediterranean area. The uniformity of materials is heightened by the commonality of
the errors and banality in their use. The main problem derives from the galloping
colonization of traditional building methods by new industrialized materials.

Maintenance of existent barracas by traditional and/or compatible techniques is
disappearing. Existing methods should be maintained as far as possible without
overburdening owners who take it upon themselves to restore their properties.
While traditional techniques may be left to one side, restoration would be acceptable
so long as original materials are used. Restoration of the Valencian barraca, con-
structed as described previously, requires great care and is consequently a delicate task
if changes that adversely affect the present dwelling are to be avoided.

5.1. Recovery of Building Techniques

5.1.1. Adobe

5.1.1.1. Technique This adobe technique consists of making bricks from a mix of
clay and sandy earth, and organic fibrous material, using simple wooden molds into
which the mortar is pressed manually. This technique has various local names, but all
bricks are made in practically the same way. The bricks require 2–3 weeks to dry in the
sun; they are not fired in a kiln (Hoz et al., 2003, p. 57).

5.1.1.2. Restoration Any work on adobe walls may be irregular, depending on the
state of the walls. Three levels of damage are considered:

1. Superficial erosion: Superficial loss of adobe due to the detachment of the coating
 and overexposure to the inclemency and erosion of the weather. Walls can be
 repaired by thickening the external layer using the same conglomerate as the final
 coating shown in the first sketch.
2. Loss of a section: Loss of up to one third of the thickness in any area. Taking into
 consideration the difficulty of restoring such a large volume, a mixture similar to the
 original mortar used to make adobe bricks can be applied, with the addition of lime to
 improve adherence. Adhesive materials between the traditional wall and the restored
 section are essential.
3. Missing wall: Significant loss of the wall in which a section has disappeared
 completely, and many pieces are missing. In this case, new adobe bricks should
 be made to match existing sections to avoid bulges, following the techniques
 described in old documents, and with a similar composition to that of the existing
 wall so that the original and the rebuilt sections are statically compatible.

5.1.2. Vertical framework

5.1.2.1. Technique The framework structure is made of large organic pieces used to
brace the frames that make up the walls. These frames are usually complemented by reeds,
joined together by organic fiber or nails. Any gaps in the internal dividing walls should be filled with earth, particularly argillaceous clay or a combination of clay and other materials applied to both sides of the wall (Bardou and Arzoumanian, 1986) (Figure 9).

5.1.2.2. Restoration Repair of these walls will depend on their condition:

- **Loss of strength:** If the wall is considerably out of shape, it must be corrected by an auxiliary structure that will help it recover its original state. Installing wooden props at ground level and anchoring them to the ceiling can strengthen the wall.

- **Missing wall:** The percentage of missing wall should be estimated and then actions taken accordingly. Because of the simplicity of this technique, several solutions can be adopted. Whether only the missing section is repaired or the entire wall rebuilt will depend on each individual case, although the old clay coating will necessarily have to be removed and subsequently restored.

5.1.3. Thatching

5.1.3.1. Technique The organic material was woven onto the reeds, working in an upward direction from the eave to the ridge in flat bundles 10–25 cm wide and 40–80 cm long, making up a dense coat on the roof. Plant materials with high resistance to decay were always used. They provided good insulation when a covering of at least one third of the thatch volume was applied.

The disadvantages of thatching materials are fire and the weakness of the fastenings that join the *gavillas*, or bundles, to the structural frame. The ridge was finished off with a clay and lime mortar.

5.1.3.2. Restoration This technique does not allow for partial repair. In fact, the thatching material was traditionally renewed on a regular basis. Very few surviving barracas still have this organic roofing material today. In view of this loss, every effort should be made to conserve a building technique that is complex, endemic and in danger of dying out. To this end, the accumulated knowledge of the farmers from the south of the area and the Albufera should be retrieved, perpetuated and put into
practice. Today, this technique is no longer commonplace, and is regarded as a complex and unfamiliar process, in contrast to the new metal roofing techniques using flat tiles fixed in place by wire, or asbestos sheets screwed to metal structures (Figure 10).

5.1.4. Horizontal framework

5.1.4.1. Technique The technique of creating a flat structural support consists of intertwining thin reeds by placing them side by side horizontally and attaching them with rope made of organic material to the thicker transverse master reeds that provide support. The space between the reeds varies according to the rigidity desired. This technique is applied to the roof as well as the attic and the gable ends (Sanchís, 1999, p. 23).

5.1.4.2. Restoration The frame of the wall and entortado need constant care and annual inspections to maintain them in good condition as damage may be caused by small leaks from the roof or footfall on the organic structure. Depending on the extent of the damage, the frame can be strengthened by adding more reeds or simply by reinforcing it with a renchido that can substitute or be added to the clay mortar coating. In the case of horizontal frameworks, wooden planking placed on top of the plaster will mitigate damage by evenly distributing the weight of tiles, for example (Figure 11).

6. HISTORICAL, CULTURAL, EDUCATIONAL AND SOCIAL VALUES

The indigenous, age-old collective spirit of a community must be sought not in churches, castles, or palaces, but in its popular architecture. These dwellings, deeply rooted in and marked by the land, the weather and landscape, are directly dependent on and perfectly adapted to the environment, as a result of a transformation in which the land provides the raw materials and man the transforming capacity. The third factor that

3 Reed framework covered with a layer of clay and straw that plugs the gaps and irregularities in the intertwined structure and allows temporary movement.

4 Layer of plaster of variable thickness.
brings these two elements into contact is necessity, without which the transformation of
the geographical features of the landscape into dwellings would not take place.

The popular artist only creates that with which he is familiar. He expresses forms
as a reflection of his needs. He rejects all that is incomprehensible and useless; his art is
deep-rooted in this solid and traditional foundation. People build empirically, work-
ing directly with the material, without rectification or design. Despite these limita-
tions, popular collective genius has numerous channels of expression, so that its
creations can be considered art and, in turn, inspires others (Ruı́z, 1999).

Some basic questions must be considered to justify the conservation of such
buildings: who should undertake it and under what criteria. Whether they represent a
now lost way of life, whether they are preserved for their spatial and architectonic
qualities or whether they are maintained as museum pieces, all of these issues must be
considered in policy-making decisions. Some believe that awareness of ties with the
past should be a priority; for others, the beauty of the shapes and use of materials
wholly justify their preservation and render it essential.

This discussion clearly affirms the urgent need for intervention to bring a new
approach to the heritage of urban and natural environments dating from the begin-
n ing of the 20th century. These popular architectural elements of undeniable historical
and artistic value must be recovered by designing a strategy to reawaken interest in
and revitalize these buildings.

Regardless of their present state, would it be reasonable to exclude the people
that are still using and enjoying the barracas their ancestors built? These buildings
have obviously been modified or transformed to adapt them to present living stan-
dards through minor modifications, and for which a rehabilitation plan should be
introduced, following certain rules with minimum intervention (Figure 12).

Would it be reasonable to exclude farmers who are still actively working in the
fields around their barracas? As part of a strategic plan for the rural surroundings of
Valencia, sustainability should be analyzed and support provided to safeguard pro-
duction and guarantee the sale of their products through their own collective regional

Figure 11. Photograph of a reed thatch frame. (Figure is provided in color online.)
or district brand or a registered appellation of origin. Financial incentives could be provided for farmers who maintain their barracas to store farm equipment or simply for pleasure, allowing them to create rural accommodation or other tourist activities in addition to their usual tasks. Perhaps a series of measures is necessary to ensure the rural lifestyle remains a viable option, and allow owners to repair and even resume the traditional techniques of the barraca as an attraction for visitors, similarly to the competitions held in the early 20th century.

But, what can be done with buildings that have been abandoned or expropriated? The options are unlimited: any new initiative undertaken by an artistic or cultural organization could breathe new life into the barraca and its surroundings. Land or buildings given over to environmental associations or research centers should provide a meeting point to ensure the sustainable upkeep of these traditional spaces without representing an economic burden.

A rural dwelling is not simply the result of a geographical or human intervention; it is the hallmark of the geographical environment and the human factor. Its appearance does not depend either on the environment or its heritage, but on both.

The study of this popular art is a very complex task requiring a great deal of patience. In the wise words of Torres Balbás (1933), “The accurate, profound knowledge of the land, man and his dwellings is neither easily nor quickly achievable; none of them reveals their secrets before a long and intimate relationship has been established” (p. 139) (Figure 13).

7. ENVIRONMENTALLY DETERMINED CONSTRUCTION

According to the theory of Max Thede (1932), the original Valencian barraca must have resembled a type of Mediterranean cottage, as described by Vitruvius: ‘it was a hut or cabin crudely built with light materials for temporary use’ (Vitruvio, 2000, p. 79). Sanchís Guarner’s (1999) interpretation of this description suggests that it provides indirect proof of the pre-Roman origin of the barraca (Sanchís, 1999).
The barraca is a typical building found in alluvial areas with abundant mud, clay earth, reeds and straw. This unique dwelling, typical of the agricultural regions of Valencia and Murcia, is considered to have evolved from the 1000-year-old shelters found in Camargue, Languedoc, and the Eastern Pyrenees (France) or in the Province of Venice in a more elaborate version, depending on the needs of the land and the times (Queralt, 2008).

It should be remembered that throughout the Mediterranean, man’s dependence on water and the essential need for artificial irrigation has greatly influenced the way those living near rivers build their homes. This factor, inextricably linked to their farming activity, has not derived in uniform building styles, since it is widely recognized that in the inhabitants of this area are driven more by their own tastes and creativity than by external impositions.

8. SPECIFIC RESULTS FROM THE RESEARCH IN THE FIELD OF OUR CULTURAL HERITAGE

This study has attempted to meet the objectives established to provide clarity and accuracy on European and National Cultural Heritage:

- Understanding the process of cultural assessment of architectural heritage through complex philosophical and artistic methods originating in Central European regions at the beginning of the 20th century.
- Detailed explanation of the traditional measurement system used and the building process and techniques that serve as a documentary record and as a possible guide to a cultural heritage that has fallen into disuse.
- Classification of the last remaining dwellings as an “endangered species” in order to stimulate a plan for the recovery, maintenance and reuse of the cultural heritage.
common to delta regions and whose application is worthy of consideration in other European regions (Figure 14).

REFERENCES

AAVV. 1986. *La tierra como material de construcción, II: Encuentro de trabajo Navapalos*. Valladolid, Spain: Universidad de Valladolid, CSIC 8486790018.

Bardou, P., and Arzoumanian, V. 1986. *Arquitecturas de adobe*. Ciudad de Mexico, Mexico: Gustavo Gili.

Cardwell, R. 1994. *Blasco Ibáñez: La Barraca*. Ciudad de Mexico, Mexico: Gustavo Gili.

Ciscar, A. 1974. La barraca del bajo Segura. *Cuadernos de Geografía* 14: 47–60.

Corachan, J. B. 1735. *Aritmética demostrada teórico-practica para lo matemático y mercantil*. Barcelona, Spain: Pablo Camping.

García, F. 1980. *Sobre el Mediterráneo: Sus litorales, pueblos, culturas (imágenes y recuerdos)*. Madrid, Spain: J. Sánchez.

García, V. 1988. *Llibre dels privilegis*. Valencia, Spain: Vicent García.

García-Esparza, J. A. 2004–2007. *Archivo fotográfico*. Valencia, Spain: Unpublished, 52.

Giese, W. 1951. Los tipos de casa de la Península Ibérica. *Revista de Dialectología y Tradiciones Populares* VII: 563–601.

Gosalvez, V. 1998. *La barraca Valenciana*. Valencia, Spain: COATV.

Houben, H., and Guillaud, H. 1994. *Earth construction*, vol 1. London: Intermediate Technology Publications.

Hoz, J. de la, L. Maldonado, and F. Vela. 2003. *Diccionario de construcción tradicional: tierra*. San Sebastián, Spain: Nerea

Lampérez, V. 1922. *Arquitectura civil Española de los siglos I al XVIII*. Madrid, Spain: Saturnino Calleja.

Maldonado, L., Vela, F. 1997. *De arquitectura y arqueología*. Madrid, Spain: Munilla Lería.

Mateu. F. 1955. Brevisima historia del Grao de Valencia. In *Valencia atracción XXX*. Valencia, Spain: Sociedad Valenciana de Fomento del Turismo, 10.
Medina, J. 2002. La fábrica, la casa, el palacio: Frank Rank y Alfredo Baeschlin, dos “Heimatschützer” en España. In Actas del Congreso internacional de arquitectura, ciudad e ideología antiurbana. Pamplona, Spain: ETSA.
Montero, J. L. 2005. Nuevo proyecto de reconstrucción de la Torre de Babel. A Coruña, Spain: Inédito.
Nieto, G. 1968. La casa tradicional en la península ibérica, in J.M. Gómez-Tabanera (dir.) El folklore español. Madrid: Instituto Español de Antropología Aplicada, 25–50.
Nourissier, G., J. Reguant, X. Casanovas, and C. Graz. 2002. Arquitectura tradicional Mediterránea. Barcelona, Spain: Grup 4, Ecole d’Avignon, Collegi d’Aparelladors i Arquitectes Técnicas de Barcelona, Ecole des Arts et Métiers Traditionnels de Tétouan.
Oliver, P. 1978. Cobijo y sociedad. Madrid, Spain: H. Blume.
Pérez, S. 1985. Los movimientos lejanos o la imposibilidad de ser otra vez como aquellos viajeros. El Croquis 22: 32–38. Madrid.
Queralt, M. C. 2008. Les barraques del Delta de l’Ebre. Una arquitectura millenària. Caramella: Música i Cultura Popular, 18: 6–9.
Ruiz, J. V. 1999. Construïnt una barraca Valenciana. Valencia, Spain: Ajuntament d’Alboraya.
Sanchís, M. 1999. Les barraques Valencianes. Valencia, Spain: Institució Alfons el Magnánim.
Tarragó, S. 1980. Síntesis de trabajo del G.A.T.C.P.A.C en Barcelona. In 2C construcción de la ciudad. Barcelona, Spain: Novo Graphos: 65–68.
Thede, M. 1932. Die Albufera von Valencia. Eine volkskundliche Darstellung. Volksrum und Kultur der Romans VI, ed. Fritz Kruger. Hamburg, Germany: Hamburg University, 225–262.
Torres Balbás, L. 1933. La vivienda popular en España, in F. Carreras Candi (dir.), Folklore y costumbres de España, vol III. Barcelona, Spain: Alberto Martín, 137–502.
Vitruvio, M. 2000. Los diez libros de arquitectura. Barcelona, Spain: Iberia.