INTRODUCTION

Transition metal dichalcogenides (TMDCs) are layered materials with strong in-plane covalent bonding and weak out-of-plane van der Waals bonding which is similar with graphene (Novoselov et al., 2005; Ramakrishna Matte et al., 2010). In particular, semiconducting two-dimensional (2D) TMDCs such as MoS$_2$, WS$_2$, MoSe$_2$, and WSe$_2$, have been demonstrated to be feasible for various advanced electronic and optical applications. In these regards, process to synthesize high quality 2D TMDCs layers with high reliability, wafer-scale uniformity, controllable layer number and excellent electronic properties is essential in order to use 2D TMDCs in practical applications. Vapor deposition techniques, such as physical vapor deposition, chemical vapor deposition and atomic layer deposition, could be promising processes to produce high quality 2D TMDCs due to high purity, thickness controllability and thickness uniformity. In this article, we briefly review recent research trend on vapor deposition techniques to synthesize 2D TMDCs.

Key Words: Molybdenum disulfide, Transition metal dichalcogenides, Two-dimensional materials, Chemical vapor deposition, Atomic layer deposition
Radisavljevic et al., 2011; Li et al., 2012; Nicolosi et al., 2013). The exfoliated 2D TMDCs are suitable for basic research and demonstration of concept application since they have high crystallinity and inherent properties. However, the exfoliated 2D TMDCs have shown several limitations such as isolation, small size (usually less than a few μm), and low productivity, which make it difficult to be used 2D TMDCs in practical devices. Thus, significant efforts have been devoted to synthesize high quality and large area 2D TMDCs. Recently several studies have shown synthesis of 2D TMDCs using various methods based on the vapor deposition techniques: sulfurization of metal and metal oxide thin films (Lin et al., 2012; Zhan et al., 2012; Elias et al., 2013; Liu et al., 2014b), chemical vapor deposition (CVD) (Lee et al., 2012; Huang et al., 2013; Najmaei et al., 2013; van der Zande et al., 2013; Cong et al., 2014; Ji et al., 2014; Ling et al., 2014; Shaw et al., 2014; Dumcenco et al., 2015; Kang et al., 2015) and atomic layer deposition (ALD) (Song et al., 2013; Jin et al., 2014; Tan et al., 2014; Song et al., 2015). In this review, synthetic methods for 2D TMDCs, mainly focused on the MoS$_2$ and WS$_2$ which are the most studied 2D TMDCs, will be presented.

CHALCOGENIZATION OF METAL AND METAL OXIDE THIN FILM

Initial studies on the synthesis of 2D MoS$_2$ were focused on the sulfurization of Mo and MoO$_x$ thin films, which were deposited by physical vapor deposition (PVD) at high temperature. Zhan et al. (2012) reported that the synthesis of MoS$_2$ film by thermal annealing (at 750°C) of PVD Mo thin film on SiO$_2$/Si substrate as shown in Fig. 1A-D. Similarly, Lin et al. (2012) reported wafer-scale (2 inch) MoS$_2$ thin layers synthesis by sulfurization of MoO$_3$ thin film at 1,000°C (Fig. 1E-G). Although these
sulfurization methods are simple and easy to produce 2D MoS$_2$, several limitations exist such as difficulty in precise thickness control and in wafer-scale thickness uniformity of PVD Mo and MoO$_x$. Thus, precise control on the thickness of metal oxide film is essential to obtain layer number controlled, wafer-scale uniform 2D TMDCs. Recently, Song et al. (2013) demonstrated the synthesis of high quality WS$_2$ by the sulfurization of WO$_3$ thin film deposited by ALD. Since ALD has inherently excellent ability to control the film thickness over wafer scale, the synthesized WS$_2$ layer has retained the inherent benefits of the ALD process as well as high mobility of approximately 4 cm2/Vs (Fig. 1H-L). Further, latest report by Song et al. (2015) has shown that the composition controllable synthesis of Mo$_{1-x}$W$_x$S$_2$ alloy using sulfurization of super-cycle ALD Mo$_{1-x}$W$_x$O$_y$. Based on this, they synthesized a vertically composition-controlled Mo$_{1-x}$W$_x$S$_2$ multilayer that has broadband light absorption. Since the various transition metal oxides can be easily deposited by ALD, sulfurization (or selenization) of ALD metal oxide could be extended to synthesis of various 2D TMDCs.

CHEMICAL VAPOR DEPOSITION

The synthesis of 2D TMDCs using CVD with metal oxide

Fig. 2. (A) Schematic illustration of chemical vapor deposition (CVD) MoS$_2$. (B) The optical microscopy (OM) images of CVD MoS$_2$ on the SiO$_2$ substrate treated with reduced graphene oxide solution. (C) OM image of CVD MoS$_2$ on a SiO$_2$ substrate, and OM image of a monolayer CVD MoS$_2$ triangle with size up to 120 μm in lateral (inset). (D) High-resolution transmission electron microscopy image of the grain boundary of CVD MoS$_2$ with a period line of 8-4-4 ring defects. (E) An atomic model of the experimental structure shown in Fig. 2D. (F) Large-area (1×7 cm2) mono-, bi-, and trilayered CVD WS$_2$ on SiO$_2$ substrates. (G) Schematic illustration of metal-organic CVD MoS$_2$ and WS$_2$. (H) Batch-fabricated 8×100 MoS$_2$ field effect transistor arrays on a 4-inch SiO$_2$ wafer. Top inset: enlarged image of one square containing 100 devices. Middle and bottom insets: corresponding color maps of σ at gate bias V_{BG}=50 V and −50 V, respectively. Fig. 2A and B reproduced from the article of Lee et al. (2012) (*Advanced Materials* 24, 2320-2325) with original copyright holder’s permission. Fig. 2C-E reproduced from the article of van der Zande et al. (2013) (*Nature Materials* 12, 554-561) with original copyright holder’s permission. Fig. 2F reproduced from the article of Park et al. (2015) (*Nanoscale* 7, 1308-1313) with original copyright holder’s permission. Fig. 2G and H reproduced from the article of Kang et al. (2015) (*Nature* 520, 656-660) with original copyright holder’s permission.
(MO$_3$, M=Mo and W) and chalcogen (X=S and Se) powders at 600°C~700°C has been extensively studied (Lee et al., 2012; Najmaei et al., 2013; van der Zande et al., 2013; Ling et al., 2014). In this process scheme, MO$_{3-x}$ is formed by the reduction of MO$_3$ vapor. Subsequently, MO$_{3-x}$ vapor diffuses to the substrate and reacts with X vapor. Lee et al. (2012) reported the promotion of 2D MoS$_2$ synthesis using substrate treatment by graphene like species, such as reduced graphene oxide, perylene-3,4,9,10-tetracarboxylic acidtetrapotassium salt and perylene-3,4,9,10-tetracarboxylicdianhydride. Here, the species used for surface treatment promote act as seeds for 2D MoS$_2$ formation and enhance the lateral growth of MoS$_2$, as shown in Fig. 2A and B (Lee et al., 2012). Meanwhile, van der Zande et al. (2013) reported the synthesis of large MoS$_2$ single crystal grains (at 700°C) up to 120 µm without seeding. In this report, they used ultraclean substrates and fresh precursors to promote grain size (Fig. 2C). Further, they have observed that formation of periodic line of 8-4-4 ring defects at grain boundary of CVD MoS$_2$ as represented in Fig. 2D and E. Recent studies on the CVD with MO$_3$ and X powder have been focused on the synthesis of MoS$_2$ and WS$_2$ on single crystal substrate for enhancing grain size. In particular, orientation aligned growth of CVD MoS$_2$ on c-plane sapphire has been reported by Ji et al. (2014) and Dumcenco et al. (2015). They have shown that the same hexagonal lattice symmetry induces van der Waals epitaxy of MoS$_2$ on c-plane sapphire, which suggests possibility of wafer-scale growth of single-crystal MoS$_2$ similar with graphene on hydrogen-terminated germanium (Lee et al., 2014b).

However, the CVD process based on MO$_3$ and X powder is critically depending on process conditions such as amount of MO$_3$ and X powder, non-homogeneous diffusion of vaporized molecules, and outgoing flow of vapors from the chamber. Since these process conditions cannot be easily controlled, uniform and high quality synthesis is hardly achievable (Najmaei et al., 2013; van der Zande et al., 2013;}

Fig. 3. (A) Schematic illustration of one growth cycle of atomic layer deposition (ALD) MoS$_2$. (B) High-resolution transmission electron microscopy (HRTEM) image of mono- and multilayer ALD MoS$_2$. (C) Optical absorption. (D) Photoluminescence spectra for ALD-deposited, as-grown or annealed MoS$_2$. (E) Cross-sectional HRTEM image of the ALD MoS$_2$ after annealed at 900°C for 5 minutes. Fig. 3A-D reproduced from the article of Tan et al. (2014) (Nanoscale 6, 10584-10588) with original copyright holder’s permission. Fig. 3E reproduced from the article of Jin et al. (2014) (Nanoscale 6, 14453-14458) with original copyright holder’s permission.
Park et al., 2015). Thus, CVD of 2D TMDCs based on gas precursor and reactant is more promising. As shown in Fig. 2F, Park et al. (2015) reported layer number controllable and wafer-scale uniform growth of WS₂ using WCl₆ and H₂S at 700°C. More recently, Kang et al. (2015) reported high quality WS₂ synthesis based on metal-organic CVD (MOCVD) using Mo(CO)₆, W(CO)₆, and (C₂H₅)₂S at 700°C (Fig. 2G). The synthesized MOCVD 2D TMDCs exhibited homogeneous electrical properties with high electron mobility of 30 cm²/Vs and 99% devices yield (Fig. 2H). However, the growth rate was reported to be very low, which requires 26 hours to grow monolayer 2D TMDCs.

ATOMIC LAYER DEPOSITION

Due to benefits of ALD in terms of thickness controllability of thin film in nanometer scale, ALD is considered to be a promising candidate to synthesis technique for 2D TMDCs. In fact, various ALD processes of chalcogenides thin films such as ZnS, GaS, CdS, etc, have been reported for photovoltaic and energy storage materials (Dasgupta et al., 2015). Recently, a few reports on ALD MoS₂ are available as shown in Fig. 3. Tan et al. (2014) reported growth of ALD MoS₂ film using MoCl₅ and H₂S at 300°C (Fig. 3A-D). In addition, low temperature (at 100°C) ALD MoS₂ process using Mo(CO)₆ and (CH₃)₂S is available.

Table 1. Summary of the vapor deposition techniques for synthesis of two-dimensional TMDCs

TMDCs	Process	Process temperature (°C)	Layer number	Electrical properties (cm²/V·s⁻¹)	Reference
MoS₂	Sulfurization (S powder) of PVD Mo (1–5 nm)	750	Mono- and few-layer mixing	Back gate FET Mobility: 0.004 to 0.04	Zhan et al. (2012)
	Sulfurization (S powder) of PVD MoO₃	1,000	Bi- and few-layer	Back gate FET Mobility: 0.8	Lin et al. (2012)
	Sulfurization (H₂S) of ALD MoO₃	Annealing: 1st, 600; 2nd, 1,000	Mono-, bi-, and tri-layer	-	Song et al. (2015)
WS₂	Sulfurization (S powder) of PVD WO₃	800	Mono-, bi-, and tri-layer	Top gate FET Mobility: 3.9	Song et al. (2013)
	Sulfurization (H₂S) of ALD WO₃	1,000	Mono-, bi-, and tetra-layer	-	

| Chemical vapor deposition |
MoS₂	MoO₃ and S powder with seeding	650	Monolayer	Back gate FET Mobility: 0.02	Lee et al. (2012); Ling et al. (2014)
MoO₃ and S powder		700	Monolayer	Back gate FET Mobility: 3 to 4	van der Zande et al. (2013)
MoO₃ nanoribbons and S powder		850	Monolayer	Back gate FET Mobility: 4.3	Najmaei et al. (2013)
MoO₃ and S powder		850	Monolayer on sapphire	Back gate FET Mobility: 0.1 to 1	Ji et al. (2014)
MoO₃ and S powder		700	Monolayer on sapphire	Back gate FET Mobility: 25	Dumcenco et al. (2015)
WS₂	WO₃ and S powder	750	Monolayer	Back gate FET Mobility: 25	Cong et al. (2014)
WCl₆ and H₂S gas		700	Mono-, bi-, and tetra-layer	-	Park et al. (2015)
MoS₂, MoO₃, W(CO)₆, and diethyl sulfide		550	Monolayer	Top gate FET Mobility: 30	Kang et al. (2015)
MoSe₂	MoO₃ and Se powder	750	Mono- and few-layer	Electric double-layer FET Mobility: 90	Shaw et al. (2014)
WSe₂	WO₃ and Se powder	750	Monolayer	-	Huang et al. (2013)
Atomic layer deposition					
MoS₂	Mo(CO)₆ and dimethyl disulfide	100	Amorphous	-	Lin et al. (2014)
	MoCl₆ and H₂S gas	300	Amorphous	-	Tan et al. (2014)

TMDCs, transition metal dichalcogenides; PVD, physical vapor deposition; FET, field effect transistor; ALD, atomic layer deposition.
reported by Jin et al. (2014). However, the reported ALD MoS₂ films show low optical property attributed to amorphous phase as shown in Fig. 3E, which limits there use for the electrical and optical applications. The basic problem of ALD processes for TMDCs are the difficulty in the formation of layered structure. The deposition of high quality TMDCs by direct ALD process is yet to come.

CONCLUSIONS

This review provides a brief collection of literatures on the synthesis of 2D TMDCs materials as summarized in Table 1. Vapor deposition techniques, which are suitable for wafer-scale and high-quality synthesis of 2D TMDCs such as MoS₂, WS₂, WSe₂ and MoSe₂ for electronic and optoelectronic devices have been developed. To realize the advanced applications using 2D TMDCs, more efforts are needed to resolve many issues related to the growth, including high reliability, layer number controllability, wafer-scale uniformity and high crystallinity. Furthermore, synthesis of high quality 2D TMDCs will boost the study on the stacking of different types of 2D materials which could exhibit novel properties and new phenomena.

CONFLICT OF INTEREST

No potential conflict of interest relevant to this article was reported.

REFERENCES

Baugher B W H, Churchill H O H, Yang Y, and Jarillo-Herrero P (2013) Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS₂. Nano Letters 13, 4212-4216.

Bernardi M, Palummo M, and Grossman J C (2013) Extraordinary sunlight absorption and 1 nm-thick photovoltaics using two-dimensional monolayer materials. Nano Letters 13, 3664-3670.

Cheng R, Li D, Zhou H, Wang C, Yin A, Jiang S, Liu Y, Chen Y, Huang Y, and Duan X (2014) Electroluminescence and photocurrent generation from atomically sharp WSe₂/MoS₂ heterojunction pn diodes. Nano Letters 14, 5590-5597.

Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, and Zhang H (2013) The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chemistry 5, 263-275.

Coleman J N, Lotya M, O’Neill A, Bergin S D, King P J, Khan U, Young K, Gaucher A, De S, and Smith R J (2011) Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568-571.

Cong C, Shang J, Wu X, Cao B, Peiymoo N, Qiu C, Sun L, and Yu T (2014) Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS₂ monolayer from chemical vapor deposition. Advanced Optical Materials 2, 131-136.

Dasgupta N P, Meng X, Elam J W, and Martinson A B (2015) Atomic layer deposition of metal sulfide materials. Accounts of Chemical Research 48, 341-348.

Dumcenco D, Ovchinnikov D, Marinov K, Lazic P, Gibertini M, Marzari N, Sanchez O L, Kung Y C, Krasnozhon D, and Chen M W (2015) Large-area epitaxial monolayer MoS₂. ACS Nano 9, 4611-4620.

Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, and Chhowalla M (2011) Photoluminescence from chemically exfoliated MoS₂. Nano Letters 11, 5111-5116.

Elías A L, Perea-López N, Castro-Beltrán A, Berkdemir A, Lv R, Feng S, Long A D, Hayashi T, Kim Y A, Endo M, Gutiérrez H R, Pradhan N R, Balicas L, MALLIOUT T E, López-Urías F, Terrones H, and Terrones M (2013) Controlled synthesis and transfer of large-area WS₂ sheets: from single layer to few layers. ACS Nano 7, 5235-5242.

Furchi M M, Pospischil A, Libisch F, Burgdörfer J, and Mueller T (2014) Photovoltaic effect in an electrically tunable van der Waals heterojunction. Nano Letters 14, 4785-4791.

Georgiou T, Jaili R, Belle B D, Britnell L, Gorbachev R V, Morozov S V, Kim Y J, Gholinia A, Haigh S J, and Makarovsky O (2013) Vertical field-effect transistor based on graphene-WSe₂ heterostructures for flexible and transparent electronics. Nature Nanotechnology 8, 100-103.

He Q, Zeng Z, Yin Z, Li H, Wu S, Huang X, and Zhang H (2012) Fabrication of flexible MoS₂ thin-film transistor arrays for practical gas-sensing applications. Small 8, 2994-2999.

Huang J K, Pu J, Hsu C L, Chiu M H, Jiang Z Y, Chang Y H, Chang W H, Iwasa Y, Takenobu T, and Li L J (2013) Large-area synthesis of highly crystalline WSe₂ monolayers and device applications. ACS Nano 8, 923-930.

Ji Q, Kan M, Zhang Y, Guo Y, Ma D, Shi J, Sun Q, Chen Q, Zhang Y, and Liu Z (2014) Unravelling orientation distribution and merging behavior of monolayer MoS₂ domains on sapphire. Nano Letters 15, 198-205.

Jin Z, Shin S, Kwon D H, Han S J, and Min Y S (2014) Novel chemical route for atomic layer deposition of MoS₂ thin film on SiO₂/Si substrate. Nanoscale 6, 14453-14458.

Kang K, Xie S, Huang L, Han Y, Huang P Y, Mak K F, Kim C J, Muller D, and Park J (2015) High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656-660.

Late D J, Huang Y K, Liu B, Acharya J, Shirodkar S N, Luo J, Yan A, Charles D, Waghmare U V, Dravid V P, and Rao C N R (2013) Sensing behavior of atomically thin-layered MoS₂ transistors. ACS Nano 7, 4879-4891.

Lee C H, Lee G H, van der Zande A M, Chen W, Li Y, Han M, Cui X, Arefe G, Nuckolls C, Heinz T F, Guo J, Hone J, and Kim P (2014a) Atomically thin p-n junctions with van der Waals heterointerfaces. Nat Nano 9, 671-681.

Lee G H, Yu Y J, Cui X, Petrone N, Lee C H, Choi M S, Lee D Y, Lee C, Yoo W J, and Watanabe K (2013) Flexible and transparent MoS₂ field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano 7, 7931-7936.

Lee J H, Lee E K, Joo W J, Jang Y, Kim B S, Lim J Y, Choi S H, Ahn S J, Ahn J R, and Park M H (2014b) Wafer-scale growth of single-crystal monolayer
graphene on reusable hydrogen-terminated germanium. Science 344, 286-289.

Lee Y H, Zhang X Q, Zhang W, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T W, Chang C S, Li L J, and Lin T W (2012) Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Advanced Materials 24, 2320-2325.

Li H, Yin Z, He Q, Li H, Huang X, Lu G, Farn D W H, Tok A I Y, Zhang Q, and Zhang H (2012) Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. Small 8, 63-67.

Lin Y C, Zhang W, Huang J K, Liu K K, Lee Y H, Liang C T, Chu C W, and Li L J (2012) Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. Nanoscale 4, 6637-6641.

Ling X, Lee Y H, Lin Y, Fang W, Yu L, Dresselhaus M S, and Kong J (2014) Role of the seeding promoter in MoS2 growth by chemical vapor deposition. Nano Letters 14, 464-472.

Liu B, Chen L, Liu G, Abbas A N, Fathi M, and Zhou C (2014a) High-performance chemical sensing using schottky-contacted chemical vapor deposition grown monolayer MoS2 transistors. ACS Nano 5, 5304-5314.

Liu H, Antwi K K A, Chua S, and Chi D (2014b) Vapor-phase growth and characterization of Mo1-xWxS2 (0 ≤ x ≤ 1) atomic layers on 2-inch sapphire substrates. Nanoscale 6, 624-629.

Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, and Kis A (2013) Ultrasensitive photodetectors based on monolayer MoS2. Nature Nanotechnology 6, 147-150.

Mak K F, Lee C, Hone J, Shan J, and Heinz T F (2010) Atomically thin MoS2: a new direct-gap semiconductor. Physical Review Letters 105, 136805.

Najmaei S, Liu Z, Zhou W, Zou X, Shi G, Lei S, Yakobson B I, Iodrobo J C, Ajayan P M, and Lou J (2013) Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nature Materials 12, 754-759.

Niccolosi V, Chhowalla M, Kanatzidis M G, Strano M S, and Coleman J N (2013) Liquid exfoliation of layered materials. Science 340, 1226419.

Novoselov K, Jiang D, Schedin F, Booth T, Khotkevich V, Morozov S, and Geim A (2005) Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America 102, 10451-10453.