Spin transfer to \(\Lambda_c^+ \) hyperons in polarized proton collisions at RHIC

V. L. RYKOV and K. SUDOH

RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
E-mails: rykov@riken.jp, sudou@rarfaxp.riken.jp

The analysis\(^1\) of helicity transfer to \(\Lambda_c^+ \) in polarized proton collisions is extended to the proton helicity correlations with the \(\Lambda_c^+ \) transverse polarization in the production plane (parameter \(D_{LS} \)). The available spin transfer observables for the collisions of two longitudinally polarized protons are evaluated. It is shown that, in the central region at \(\Lambda_c^+ \) transverse momenta of a few GeV/c, \(D_{LS} \) parameters are of about the same size as the helicity-to-helicity correlations. The methodical issue of using spin transfers for cross-checks of systematic errors in cross-section \(A_{LL} \) measurements at polarized proton colliders is also briefly discussed.

1 Introduction

Spin transfers to inclusive strange and charmed hyperons in polarized proton collisions have been recently proposed\(^1, 2\) as a probe for the polarized gluon distribution \(\Delta G/G \) of proton. Compared to the usually considered for this purpose cross-section asymmetry \(A_{LL} = \frac{\sigma^{++} - \sigma^{+-}}{\sigma^{++} + \sigma^{+-}} \), where \(\sigma^{++} \) and \(\sigma^{+-} \) are the cross sections for same and opposite helicities of colliding protons, spin transfers are linear with \(\Delta G/G \) while \(A_{LL} \propto (\Delta G/G)^2 \). This means that spin transfers might become more sensitive probes for polarized gluon distribution if \(\Delta G/G \) appeared to be small. The other difference is that, unlike \(A_{LL} \), spin transfer measurements generally do not require monitoring the relative luminosity of collisions with different polarizations of initial protons. Such monitoring is not a simple task at a proton collider with longitudinally polarized beams and is always considered as a potential source of systematic errors. And, in general, measuring a number of sensitive characteristics rather than one and comparing them to the predictions of theoretical models could serve as a good consistency check of the model’s assumption.

In the papers\(^1\), the measurements of helicity-to-helicity transfer parameter \(D_{LL} \) in gluon fusion dominant \(\Lambda_c^+ \) production at RHIC with polarized protons have been proposed and studied\(^3\). In this report, we extended this analysis

\(^1\)The notation \(A_{LL} \) has been used for \(D_{LL} \) in Refs\(^1\).
to the proton helicity correlations with the Λ^+_c transverse polarization in the production plane (parameter D_{LS})\(^2\). The D_{LS} is also expected to be nonzero at Λ^+_c transverse momenta (P_T) of a few GeV/c due to the large c-quark mass. Moreover, for each spin transfer, LL and LS, we evaluated two more observables: D^{++}_{LL} and D^{+-}_{LL}, $\Pi = L, S$, which will be measured at RHIC in collisions of two polarized protons of the same and opposite helicities:

\[
D^{++}_{LL} = \frac{\sigma^{++}_{LL} - \sigma^{-+}_{LL} - \sigma^{+-}_{LL} + \sigma^{-+}_{LL}}{\sigma^{++}_{LL} + \sigma^{-+}_{LL} + \sigma^{+-}_{LL} + \sigma^{-+}_{LL}}, \quad \Pi = L, S
\]

In Eqs. (1), σ^{-+}_{LS}, for example, is for the production cross-section of Λ^+_c with the polarization “+1” along the S-axis in the collisions of two proton beams, both of the negative helicity equal to “-1”.

Parameters D_{LL} for collisions of polarized protons at unpolarized are the weighted with A_{LL} averages of D^{++}_{LL} and D^{+-}_{LL}:

\[
D_{LL} = \frac{1}{2}[D^{++}_{LL}(1 + A_{LL}) + D^{+-}_{LL}(1 - A_{LL})]
\]

In turn, if all three D’s for the same final spin component were measured, then A_{LL} can be derived, using Eq. (2). As it mentioned above, the A_{LL} determined this way would potentially be free from systematics due to monitoring the relative luminosity of collisions with different beam polarizations. With this approach, the statistical error $\delta A_{LL} \approx 2\sqrt{\frac{\alpha_p}{P\sqrt{N}}}\sqrt{\frac{\sigma^{++}_{LL}}{D_{LL}^{++}}}$, where α is the hyperon decay asymmetry parameters; P is the beam polarization; N is the combined statistics in 3 measurements. This error would usually be noticeably larger than of “direct” A_{LL} measurements. However, if the systematic rather than statistic is an issue, then using spin transfers in high event rate processes, along with Eq. (2), could be an option.

2 Numerical results and discussion

The leading order calculations for pseudo-rapidity dependences of 6 spin transfer parameters, averaged over P_T interval from 2 to 5 GeV/c, are shown in Fig. 1. These results have been obtained, using the same assumptions as in the analyses\[^{[1]}\]. Only the dominant partonic subprocess of gluon fusion, $gg \rightarrow \eta c\bar{c}$, was taken into account. The same spin dependent fragmentation function $\Delta D(z) = C(z) \cdot D(z)$ were used for both the longitudinal and transverse spin transfers from c-quark to Λ^+_c, where $D(z)$ is the “unpolarized” quark fragmentation function. For the $C(z)$, two options are compared: $C(z) = 1$ and $C(z) = z$. The shown statistical errors are for the integrated luminosity of 320 pb\(^{-1}\) and beam polarization of 70%, assuming that the decay chain $\Lambda^+_c \rightarrow \Lambda^0 \pi^+ \rightarrow p\pi^- \pi^+$

\[^{2}\]L and S axes here correspond to Z and X in the notations of book\[^{[3]}\].
Figure 1: η-dependences of spin transfer parameters for inclusive Λ_\p^+ production in polarized proton collisions at $\sqrt{S} = 200$ GeV. The leading order predictions for AAC [4] and $GRSV$ [5] polarized gluon distributions are compared. Each error bar is for the integrated statistics within a pseudo-rapidity interval of $\Delta \eta = 1$. See text for other details.

is to be used for measuring the Λ_\p^+ polarization, with the detection efficiency at $\sim 10\%$.

In the central region of $|\eta| < 1$, D_{LL}’s and D_{LS}’s are of about the same size in the range of ~ 5–15%. As η increases, all D_{LL}’s grow up to ~ 20–30% at $\eta \sim 2$ for the AAC parameterization [4], while D_{LS}^{+} stays almost flat. The achievable statistical errors of about 1% are small enough to clearly separate predictions for the shown models even in the central rapidity region. Since only a half of the total luminosity will be utilized for measuring $D_{L\Pi}^{++}$, and the other half will go to the measurements of $D_{L\Pi}^{+-}$, the statistical errors for these parameters would be larger than for D_{LL} by a factor of $\sqrt{2}$. However, it is worth underlining that $D_{LL}^{++} \approx 2D_{LL}$ and $D_{LS}^{+} \approx 2D_{LS}$ for η in the vicinity of zero. These relations follow from Eq. (2) with $|A_{LL}| \ll 1$, and taking into account the “forward–backward” symmetry of the initial system of two colliding protons. As
a result, in the central region, the statistical significance of measurements with two polarized beams would be higher compared to the case of only one beam being polarized.

3 Summary

It is shown that both components, D_{LL} and D_{LS}, of the proton helicity transfer to the polarization of inclusive Λ_c^+ hyperons are expected to be equally sensitive to $\Delta G/G$. In the central region, the expected effects at ~ 5–15% are well above the achievable at RHIC statistical errors, which are also small enough for distinguishing the AAC1 and GRSV5 parameterizations for $\Delta G/G$. The really large spin transfers at the level of up to 20–30\% are expected at $\eta \sim 2$ and beyond, which could be potentially accessible at STAR6, but definitely with the recently proposed new RHIC-II detector7.

Acknowledgments

It is our pleasure to thank H. En’yo, N. Saito and K. Yazaki for the useful discussions.

References

[1] K. Ohkuma, K. Sudoh, T. Mori, Phys. Lett. B491, 117 (2001); K. Ohkuma, T. Mori, hep-ph/0306285.
[2] Xu Qing-hua, Liang Zuo-tang, Phys. Rev. D70, 034015 (2004).
[3] E. Leader, “Spin in Particle Physics”, Cambridge University Press, 2001.
[4] Y. Goto et al., Phys. Rev. D62, 034017 (2000).
[5] M. Glück et al., Phys. Rev. D63, 094005 (2001).
[6] K. H. Ackermann et al., Nucl. Instrum. Meth. A499 624 (2003).
[7] P. Steinberg et al., “Expression of Interest for a Comprehensive New Detector at RHIC II”, Presentation to the BNL PAC, BNL, September 8, 2004 (available at http://www.bnl.gov/HENP/docs/pac0904/bellwied_0201.pdf, unpublished).