Structural variability of 3C 111 on parsec scales

C. Grossberger1, M. Kadler2,1, J. Wilms1, C. Müller1, T. Beuchert1, E. Ros3,4, R. Ojha5, M. Aller6, H. Aller6, E. Angelakis1, L. Fuhrmann1, I. Nestoras3, R. Schmidt4, J.A. Zensus4, T.P. Krichbaum4, H. Ungerechts7, A. Sievers7, and D. Riquelme7

1Dr. Remeis Sternwarte & ECAP, Universität Erlangen-Nürnberg, Sternwartstr. 7, 96049 Bamberg, Germany
2Institut für Theoretische Physik und Astrophysik, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
3Departament d’Astronomia i Astrofísica, Universitat de València, 46100 Burjassot, València, Spain
4Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
5Goddard Space Flight Center, NASA, Greenbelt, 8800 Greenbelt Rd., Greenbelt, MD, 20771, USA
6Department of Astronomy, University of Michigan, Ann Arbor, MI, 48109-1042, USA
7Instituto de Radio Astronomía Milimétrica, Avenida Divina Pastora 7, Local 20, 18012, Granada, Spain

Abstract

We discuss the parsec-scale structural variability of the extragalactic jet 3C 111 related to a major radio flux density outburst in 2007. The data analyzed were taken within the scope of the MOJAVE, UMRAO, and F-GAMMA programs, which monitor a large sample of the radio brightest compact extragalactic jets with the VLBA, the University of Michigan 26 m, the Effelsberg 100 m, and the IRAM 30 m radio telescopes. The analysis of the VLBA data is performed by fitting Gaussian model components in the visibility domain. We associate the ejection of bright features in the radio jet with a major flux-density outburst in 2007. The evolution of these features suggests the formation of a leading component and multiple trailing components.

Keywords: galaxies: individual: 3C 111 - galaxies: active - galaxies: jets - galaxies: nuclei

1 Introduction

Jets of active galactic nuclei (AGN) are among the most fascinating objects in the universe. From the time when the term “jet” was first introduced by Baade & Minkowski (1954) until today it is still unclear how these jets are created and formed. A prime source to gain insight into the physics of extragalactic jets is the broad-line radio galaxy 3C 111 (PKS B0415+379) at $z=0.049$.\footnote{Assuming $H_0 = 71 \text{ km s}^{-1} \text{ Mpc}^{-1}$, $\Omega_L = 0.73$ and $\Omega_m = 0.27$ (1 mas = 0.95 pc; 1 mas yr$^{-1} = 3.1$ c)}

The object can be described with a classical FR II morphology (Fanaroff & Riley 1974) exhibiting two radio lobes with hot spots and a single-sided jet (Linfield & Perley 1984).\footnote{The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.} Unusual for radio galaxies, a small inclination angle of only 18° to our line of sight has been determined on parsec scales (Jorstad et al. 2005). Moreover, 3C 111 has a blazar-like spectral energy distribution (SED) (Hartman et al. 2008) and shows one of the brightest radio cores in the mm-cm wavelength regime of all FRII radio galaxies.\footnote{UMRAO has been supported by a series of grants from the NSF and NASA and by funds from the University of Michigan}

Superluminal motion was detected in this radio galaxy by Götz et al. (1987) and Preuss et al. (1988) making this source one of the first radio galaxies to exhibit this effect. The EGRET source 3EG J0416+3650 has been associated with 3C 111 (Sguera et al. 2005, Hartman et al. 2008) and γ-ray emission from 3C 111 has been confirmed by Fermi/LAT (Abdo et al. 2010a, 2010b, 2010c).\footnote{In this paper a new major flux density outburst from 2007 and the associated jet kinematics will be discussed with data from the Very Large Baseline Array (VLBA), the University of Michigan Radio Astronomy Observatory (UMRAO), and the F-GAMMA program.} A major flux-density outburst in 1997 was investigated by Kadler et al. (2008) with 10 years of radio monitoring data (1995–2005). In addition Chatterjee et al. (2011) and Tombesi et al. (2011) report on a possible connection between the accretion disk and the jet of 3C 111.\footnote{In addition Chatterjee et al. (2011) and Tombesi et al. (2011) report on a possible connection between the accretion disk and the jet of 3C 111. In this paper a new major flux density outburst from 2007 and the associated jet kinematics will be discussed with data from the Very Large Baseline Array (VLBA), the University of Michigan Radio Astronomy Observatory (UMRAO), and the F-GAMMA program.}
4.80 GHz
2010
2005
2000
1995
1990
1985
1980
1975
1970
1965
1960
1955
1950
1945
1940
1935
1930
1925
1920
1915
1910
1905
1900
1895
1890
1885
1880
1875
1870
1865
1860
1855
1850
1845
1840
1835
1830
1825
1820
1815
1810
1805
1800
1795
1790
1785
1780
1775
1770
1765
1760
1755
1750
1745
1740
1735
1730
1725
1720
1715
1710
1705
1700
1695
1690
1685
1680
1675
1670
1665
1660
1655
1650
1645
1640
1635
1630
1625
1620
1615
1610
1605
1600
1595
1590
1585
1580
1575
1570
1565
1560
1555
1550
1545
1540
1535
1530
1525
1520
1515
1510
1505
1500
1495
1490
1485
1480
1475
1470
1465
1460
1455
1450
1445
1440
1435
1430
1425
1420
1415
1410
1405
1400
1395
1390
1385
1380
1375
1370
1365
1360
1355
1350
1345
1340
1335
1330
1325
1320
1315
1310
1305
1300
1295
1290
1285
1280
1275
1270
1265
1260
1255
1250
1245
1240
1235
1230
1225
1220
1215
1210
1205
1200
1195
1190
1185
1180
1175
1170
1165
1160
1155
1150
1145
1140
1135
1130
1125
1120
1115
1110
1105
1100
1095
1090
1085
1080
1075
1070
1065
1060
1055
1050
1045
1040
1035
1030
1025
1020
1015
1010
1005
1000
995
990
985
980
975
970
965
960
955
950
945
940
935
930
925
920
915
910
905
900
895
890
885
880
875
870
865
860
855
850
845
840
835
830
825
820
815
810
805
800
795
790
785
780
775
770
765
760
755
750
745
740
735
730
725
720
715
710
705
700
695
690
685
680
675
670
665
660
655
650
645
640
635
630
625
620
615
610
605
600
595
590
585
580
575
570
565
560
555
550
545
540
535
530
525
520
515
510
505
500
495
490
485
480
475
470
465
460
455
450
445
440
435
430
425
420
415
410
405
400
395
390
385
380
375
370
365
360
355
350
345
340
335
330
325
320
315
310
305
300
295
290
285
280
275
270
265
260
255
250
245
240
235
230
225
220
215
210
205
200
195
190
185
180
175
170
165
160
155
150
145
140
135
130
125
120
115
110
105
100
95
90
85
80
75
70
65
60
55
50
45
40
35
30
25
20
15
10
5
0
Figure 1: Long-term radio lightcurve of 3C 111 obtained by the UMRAO at 4.8 GHz (left). Short-}

term radio lightcurves (right) at 32.0 GHz, 42.0 GHz, 86.24 GHz and 142.33 GHz obtained by the

F-GAMMA program.

2 Data Analysis

The broad-line radio galaxy 3C 111 has been part of the VLBA 2cm Survey program since its start

in 1995 (Kellermann et al. 1998) and its successor MOJAVE (Monitoring Of Jets in Active galactic

nuclei with VLBA Experiments, Lister et al. 2009) in 2002. Twenty-four epochs of data have been
taken from 2006 to 2010 within the MOJAVE program of this source. Phase and amplitude self-

calibration as well as hybrid mapping by deconvolution techniques were performed as described

by Kellermann et al. (1998). Utilizing the program DIFMAP (Shepherd 1997), two-dimensional

Gaussian components have been fitted in the (u,v)-plane to the fully calibrated data of each epoch.

We refer to the inner ∼ 0.5 mas as the “core” region, which can usually be modeled with two Gauss-

ian components. All models have been aligned by assuming the westernmost components to be sta-

tionary and all component positions are measured with respect to it. Conservative errors of 15% are

assumed for the flux densities of the model-fit components accounting for absolute calibration un-

certainties and formal model-fitting uncertainties (Homan et al. 2002). Within the UMRAO radio-

flux-density monitoring program (Aller et al. 2003), more than three decades of single-dish flux-
density data have been collected for 3C 111 at 4.8 GHz, 8.0 GHz, and 14.5 GHz. In addition, 3C 111

is observed monthly by the F-GAMMA program (Fuhrmann et al. 2007, Angelakis et al. 2008) at

multiple frequencies throughout the cm- and mm-bands since 2007.

3 Results

3.1 Lightcurves

Figure 1 (left) shows the long-term radio lightcurve of 3C 111 at 4.8 GHz. Since the start of the
measurements the source has been in a low activity state for almost two decades with only minor
activity. The source showed a major outburst in 1996/1997 (Kadler et al. 2008). Starting in 2004,
minor outbursts are observed and the flux density level increases. A major flux density outburst
starts in early 2007 at high frequencies (see Figure 1 right), peaking ∼ 2007.6 and is subsequently
seen at lower frequencies. A secondary outburst starts mid 2008 at high frequencies. The overall
flux density level at 4.8 GHz has been decreasing since the major outburst.

3.2 VLBA Data Overview

In this work, we focus on the time period 2006 through 2010, which contains 24 MOJAVE epochs
with an average image rms noise of 0.2 mJy beam−1 and a maximum of 0.4 mJy beam−1. The
restoring beams of different epochs are very similar with an average of (0.84 × 0.58) mas at P.A.
−8°. A peak flux density of 6.54 Jy was measured in May 2008. Figure 2 shows the evolution
of the parsec scale jet of 3C 111 observed within the MOJAVE VLBA program at 15 GHz since

In this work, we consider only the 4.8 GHz UMRAO data. A multi-frequency long-term analysis of the light
curve will be presented elsewhere (Grossberger et al., in prep.).
Figure 2: Naturally weighted clean images of 3C 111 from 2008 to 2010. The minimum contours are set to 5 sigma of the rms noise and increase logarithmically by a factor of 2. All fitted model components are indicated with a circle or ellipse (size of the full-width half maximum of the Gaussian function) enclosing a cross. The lines are the fitted evolutional tracks of the leading components. The dashed line indicates the primary component (and leading component after mid 2009). The dotted line shows the position of the core.
May 2008 (excluding six epochs before the ejection of the primary component). A major bright feature appears in May 2008 and is travelling downstream. The source brightness distribution was modelled with the CLEAN algorithm by Hogbom (1974) within DIFMAP.

3.3 Model Fitting

In Figure 3, the radial distances to the stationary component in the core region are plotted for every component as a function of time. The identification throughout the epochs is based on the comparison of the positions and flux densities of these model components. This identification is preliminary and will be discussed in more detail in a forthcoming paper. In the context of this paper we focus on the components which can be associated with the major flux density outburst of 2007 (see Fig. 1).

A linear regression fit has been performed to measure component speeds and ejection dates (see Figure 3). The ejection dates of a primary component and a secondary component are quasi-identical (≈ 2007.6) within the errors and were found to coincide with the peak of the outburst at high frequencies (see Figure 1 right). The components flux density evolution (see Figure 1) shows that the core region was extremely bright during the time of the outburst but dropped significantly after ejecting the bright primary and secondary component. The determined apparent speed for the primary component is 3.94 ± 0.19 c and for the secondary component 2.80 ± 0.40 c.

The primary component remains at a constant flux density of ≈ 1 Jy until mid 2009. After that, the component is splitting into multiple parts: a new leading component with trailing components in its wake.

The secondary component has a higher flux density than the primary in the beginning of its lifetime which rapidly decays. This decay suggests that this component disappeared in mid 2009 though an identification with the first trailing component is possible based on position alone. The calculated apparent speed of the new leading component after mid 2009 is 4.53 ± 0.09 c with the flux density decreasing. The first trailing component has an apparent speed of 3.32 ± 0.19 c and shows a constant flux density evolution. The second trailing component was first observed 2010.53 with a flux density of ≈ 240 mJy and could be modeled until 2010.91 with a flux density of less than 100 mJy. The flux density evolution of the second trailing component suggests that this component faded away and thus could not be modeled in epoch 2010.98. An association of this second trailing component with the 2008 component is possible based on the flux density evolution and position but needs further investigation of the 2008-outburst.

A similar behaviour with a leading, secondary and trailing components has been seen in the evolution of the components associated with the outburst from 1997 by Kadler et al. (2008). The components were interpreted as a forward and backward shock with the backward shock fading very fast. In this model, the plasma of the forward shock entered a region of rapidly decreasing external pressure allowing it to expand into the jet ambient medium and accelerate. In the following, the plasma recollimated and trailing features were formed in the wake of the leading component (Perucho et al. 2008).

4 Summary

In this paper, the ejection of new jet components on parsec scales were associated with a major flux density outburst of 3C 111 in 2007. It was shown that the major flux density outburst can be associated with the ejection of a primary jet component and secondary component. The evolution of the leading component suggests a split into multiple components. The full multi-epoch kinematical analysis of the VLBA jet of 3C 111 between 2006 and 2011 will be presented elsewhere (Grossberger et al., in prep).

Abdo, A. A., et al., 2010a, ApJ 715, 429
Abdo, A. A., et al., 2010b, ApJS 188, 405
Abdo, A. A., et al., 2010c, ApJ 720, 912
Aller, M. F., Aller, H. D. & Hughes, P. A., 2003, in Radio Astronomy at the Fringe, Zensus, J. A., Cohen, M. H., Ros, E. (eds.), ASP Conf. Ser. 300, 159
Angelakis, E., et al., 2008, arXiv:0809.3912
Figure 3: Separation of all model-fit components (left) and only components associated with the 2007-outburst (right) with respect to the core as a function of time. Model-fit components which could not be identified in 5 or more epochs are marked with a black cross. The 2007-primary component is presented by triangles, the 2007-secondary component by crosses, the leading component by open rectangles, the first trailing component by open diamonds, the second trailing component by pluses and the 2008-component by stars. Linear regression fits determine the trajectories of the components associated with the 2007-outburst.

Figure 4: Flux density evolution of the "core" region and the components as a function of time. Conservative errors of 15% are assumed for the flux densities of the model-fit components. The component symbols are the same as in Fig. 3 with the addition of the "core" region, presented by stars. The black arrow at the bottom indicates the calculated and almost identical ejection date of the primary and secondary component based on the derived jet kinematics.
Baade W. & Minkowski R., 1954, ApJ 119, 215
Chatterjee R., et al., 2011, ApJ 734, 43
Fanaroff B.L. & Riley J.M., 1974, MNRAS 167, 31P
Fuhrmann, L., et al., 2007, The First GLAST Symposium, 921, 249
Götz M.M.A., et al., 1987, A&A 176, 171
Hartman R.C., Kadler M. & Tueller J., 2008, ApJ 688, 852
Högöbom J.A., 1974, A&AS 15, 417
Homan D.C., et al., 2002, ApJ 568, 99
Jorstad S.G., et al., 2005, AJ 130, 1418
Kadler M., et al., 2008, ApJ 680, 867
Kellermann K.I., et al., 1998, AJ 115, 1295
Linfield R. & Perley R., 1984, ApJ 279, 60
Lister M.L., et al., 2009, AJ 137, 3718
Perucho M., et al., 2008, A&A 489, L29
Preuss E., Alef W. & Kellermann K.I., 1988, In: M. J. Reid & J. M. Moran (ed.) The Impact of VLBI on Astrophysics and Geophysics, Vol. 129. IAU Symposium, p.105
Sguera V., et al., 2005, A&A 430, 107
Shepherd M.C., 1997, In: G. Hunt & H. Payne (ed.) Astronomical Data Analysis Software and Systems VI, Vol. 125. ASP Conf. Ser., p.77
Tombesi, F., et al., 2011, arXiv:1108.6095