Quantum interference controlled resonance profiles: From lasing without inversion to photo-detection

Konstantin E. Dorfman1, Pankaj K. Jha1 and Sumanta Das2†

1 Institute for Quantum Science and Engineering and Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843-4242, USA
2 Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany

(Dated: March 11, 2021)

In this work we report a quantum interference mediated control of the resonance profiles in a generic three-level system and investigate its effect on key quantum interference (QI) phenomena. Namely in a three level configuration with doublets in the ground or excited states, we show control over enhancement and suppression of the emission (absorption) profiles. This is achieved by manipulation of the strength of QI and the energy spacing of the doublets. We analyze the application of such QI induced control of the resonance profile in the framework of two limiting cases of lasing without inversion and photo-detection.

PACS numbers: 42.50.Gy 42.50.Lc 73.21.-b 78.56.-a

I. INTRODUCTION

Study of quantum interference (QI) had led to the discovery of numerous fascinating phenomena in various type of systems ranging from atoms to biomolecules [1][3]. In atomic systems for example, one of the earliest known effects of QI is the modification of the absorption profiles that comes about due to interference among the bound-bound and bound-continuum transitions, a phenomenon now called Fano interference [4]. Agarwal [5] later showed how QI among decay pathways can lead to generation of coherence and population trapping in a multi-level atomic configuration. A counterintuitive application of such Agarwal-Fano QI was discovered by Harris in the form of inversion-less lasing (LWI) [6]. This non-energy conserving phenomena had thereof lead to several theoretical investigations [7][9] and experimental demonstration [10][12]. Furthermore, during the past decade study of QI effects has been extended to tailored semiconductor nanostructures like quantum wells and dots due to coherent resonant tunneling owing to their potential applications in photodetection [13][14], lasing [15][16], quantum computing and quantum circuitry [17][18].

In the seminal work of Scully [19] it was shown that coherence induced by external source can break the detailed balance between emission and absorption and enhance, in principle, the quantum efficiency of a photovoltaic cell. Ref [19] demonstrated the role of quantum coherence in a simple way. In a recent work we showed that coherence induced by QI can enhance the power of the Photocell and Laser Quantum Heat Engines [20,21] following the earlier work on Photo-Carnot Engine enhanced by quantum coherence [22]. The main idea is that the quantum coherence induced by either an external drive or QI among the decay paths alters the detailed balance between emission and absorption and can enhance the efficiency of the system compared to that without quantum coherence. In the case of photovoltaic cells quantum coherence leads to suppression of radiative recombination [19] or enhancement of absorption [21] and thus, increase of the efficiency. Furthermore, the results of the Ref. [19] have initiated debates about the principle issues. In his article [23] Kirk attempts to investigate the limits of Ref. [19] and, in particular, argues that Fano interference does not break detailed balance of the photocell. Note, that noise induced coherence via Fano interference was later shown to indeed enhance the balance breaking in photovoltaics where it leads to increase in power [20,21,24,25].

These investigations have hence generated renewed interest in the fundamental question of noise induced interference effects on the emission and absorption profile of an atom or atom like system (excitons in quantum wells or dots) [26]. As such, in this paper we undertake a thorough theoretical investigation of the vacuum induced interference effects on the resonance line profiles of a three level system with doublets in ground (excited) state configuration (see Fig. 1). Our analysis is quite general and applies to atoms, molecules as well as quantum wells and dots. We study the time profile of absorption and emission probabilities and derive its close form expression in the steady state regime. In the present work we use a simple probability amplitude method to calculate the resonance profiles since the states involved in calculation have zero photon occupation number. The latter is equivalent to the density matrix formalism usually used in this type of problems [20,21].

The probabilities of emission and absorption are found to have strong functional dependence on the energy spacing between the doublets (2\Delta) and interaction strength p. In the case of atomic system p is governed by a mutual orientation of dipole moments. In semiconductor systems p has a meaning of the phase shift acquired by the wave function between two interfering pathways. This thus provides us with two different parameter by which we can regulate the QI in the system. For example, we show that depending on the choice of energy spacing between the doublets compared to spontaneous decay rate we can use destructive interference to achieve either LWI by enhancing the emission or photodetectors and interferometers by reducing emission and enhancing absorption. More-
over depending on the \(p \) we can manipulate the interference type from destructive to constructive which can significantly alter the resonance profiles (see Fig. 3.)

The outline of the paper is as follows. In section II, we present our theoretical model of three-level system with the doublet in the ground state and calculate the expression for the probability of emission \(P_{\text{emiss}} \) and absorption \(P_{\text{abs}} \) in the long time limit \(t \gg \gamma^{-1}, \Gamma^{-1} \). Furthermore, we also give results for emission and absorption probabilities for a three-level configuration with upper state doublet. In section III, the functional form of the ratio \(P_{\text{emiss}} / P_{\text{abs}} \) is presented to quantify its dependence on the dipole alignment parameter \(p \), energy spacing \((2\Delta) \) and the radiative decay rates \(\Gamma, \gamma \). We discuss our results and propose potential application of our model to enhancement of emission in LWI configuration, enhancement of absorption for photodetectors, measurement of high to moderate magnetic field intensities and observation of QED results on quantum beats in the semi-classical regime. Finally in section IV we conclude by summarizing our findings.

II. THEORETICAL MODEL

In order to investigate the effect of QI on the emission and absorption profile of an atomic, molecular or semiconductor system we consider a three level configuration with a ground state doublet \(|v_{1,2}\rangle \) and excited state \(|c\rangle \) (see Fig. 1a). The three level system is excited by coherent field with the central frequency \(\nu \) so that the energies of state \(|v_{1,2}\rangle \) are related to \(|c\rangle \) as \(\nu \pm \Delta \), where \(\Delta \) half of the energy spacing between the ground state doublet. The ground state doublet \(|v_{1,2}\rangle \) decays to the reservoir state \(R_v \) with the rate \(2\gamma_{1,2} \) respectively and the excited state decays to the reservoir state \(R_c \) with the decay rate \(2\Gamma \). Furthermore, states \(|v_{1,2}\rangle \) can represent either Zeeman sub-levels in atoms, vibrational levels within electronic band in molecules or intrasubband in semiconductor. Since the typical relaxation rate of electronic (intrasubband) transition is much smaller than that of vibrational (intrasubband), we neglect direct decay process between level \(|c\rangle \) and \(|v_{1,2}\rangle \). Note that the decay of ground state doublets \(|v_{1,2}\rangle \) to the same state \(|R_v\rangle \) leads to a vacuum induced coherence among them. The physics of this coherence is attributed to the Agarwal-Fano QI of the transition amplitudes among the decay pathways. Note that analysis presented below is valid for the system with excited state doublet \(|c\rangle \) and single ground state \(|v\rangle \) (as per Fig.1b, see discussion). We will show later that such QI plays a major role in the line profiles of an atomic system [6,27]. The time dependent amplitude of the states \(|v_{1,2}\rangle \) and \(|c\rangle \) essentially exhibits the effect of coherence on the dynamics of the system. The probability amplitude method can be applied in the present system since states \(|v_{1,2}\rangle \) and \(|c\rangle \) have zero photon occupation number. Solving the time dependent Schrödinger equation, the dynamical evolution of the probability amplitudes \(v_{1,2} \) and \(c \) of finding system in corresponding states \(|v_{1,2}\rangle \) and \(|c\rangle \) (i.e. states with zero photons) in Weisskopf-Wigner approximation is given by

\[
\dot{v}_2(t) = - (\gamma_2 + i\Delta)v_2(t) - p\sqrt{\gamma_1\gamma_2}v_1(t) - i\Omega_2 c(t), \tag{1}
\]

where \(\gamma_1 = \gamma_1, \gamma_2 = \gamma_2 \) and \(p = \Omega_2/\sqrt{\gamma_1\gamma_2} \) are the dipole moment corresponding to the transition \(|v_1\rangle \leftrightarrow |R_v\rangle \) and \(|v_2\rangle \leftrightarrow |R_v\rangle \) respectively with \(p = \pm 1 \) exhibiting the maximal interference among the decay paths. Here \(p = 1 \) corresponds to the two dipole moment vectors parallel to each other on the other hand when they are anti-parallel \(p = -1 \). Non-orthogonal dipole moments in optical transition have been generated using superposition of singlet and triplet states due to spin-orbit coupling in sodium dimers [31]. More generally, interference strength \(p \) is a phase shift acquired by wavefunction between initial and final states. Equations (1) and (2) can be written and solved in the dressed basis using the approach developed by Scully [32] as discussed in Appendix A for general \(p \) and in the presence of additional decay rates \(\Gamma, \gamma \). The probability of emission \(P_{\text{emiss}} \) defined as a sum of population of the doublet \(|v_1\rangle, |v_2\rangle \)

\[
\dot{v}_1(t) = - (\gamma_1 - i\Delta)v_1(t) - p\sqrt{\gamma_1\gamma_2}v_2(t) - i\Omega_1 c(t), \tag{2}
\]

\[
\dot{c}(t) = -i\Omega_2 v_2(t) - i\Omega_1 v_1(t) - \Gamma c(t), \tag{3}
\]
and of the reservoir state $|R_\tau\rangle$ due to conservation of probability, can be written in terms of populations of states $|c\rangle$ and $|R_\tau\rangle$ as

$$P_{\text{emiss}}(\tau|c) = 1 - |c(\tau)|^2 - 2\tilde{\Gamma} \int_0^\tau |c(\tau')|^2 d\tau'. \quad (5)$$

In the long time limit, $\tau \gg 1/\tilde{\Gamma}$ and assuming $\gamma_1 = \gamma_2 = \gamma$ for simplicity, the probability of emission defined in Eq. (5) (derived in Appendix B) yields

$$P_{\text{emiss}}(\infty|c) = \frac{\tilde{\Gamma} + 1(\tilde{\Omega}_1^2 + \tilde{\Omega}_2^2) - 2p\tilde{\Delta}\tilde{\Omega}_1\tilde{\Omega}_2}{\tilde{\Gamma} \left[(\tilde{\Gamma} + 1)^2 + \tilde{\Delta}^2 - p^2 \right]} \quad (6)$$

where the tilde signifies that all the parameters are now dimensionless as they are normalized by γ. The probability of absorption from level $|v_1\rangle$ can be evaluated in a similar manner. For the initial conditions $v_1(0) = 1, v_2(0) = 0$ and $c(0) = 0$ the probability of absorption P_{abs} is given by the sum of population on states $|c\rangle$ and $|R_\tau\rangle$:

$$P_{\text{abs}}(\tau|v_1) = |c(\tau)|^2 + 2\tilde{\Gamma} \int_0^\tau |c(\tau')|^2 d\tau' \quad (7)$$

that yields the following expression in the long time limit, $\tau \gg 1, 1/\tilde{\Gamma}$ (see Appendix B)

$$P_{\text{abs}}(\infty|v_1) = \frac{1}{D} \left\{ \begin{array}{l}
\left[(\tilde{\Gamma} + \tilde{\Delta})^2(1 + \tilde{\Gamma}) - \tilde{\Gamma}p^2 \right] \tilde{\Omega}_1^2 \\
-2(\tilde{\Gamma} + 2)p\tilde{\Omega}_1\tilde{\Omega}_2 + (\tilde{\Gamma} + 2)p^2\tilde{\Omega}_2^2
\end{array} \right\} \quad (8)$$

where $D = 2(1 + \tilde{\Delta} - p^2) [(\tilde{\Gamma} + 1)^2 + \tilde{\Delta}^2 - p^2]$. The probability of absorption from level $|v_2\rangle$ can be derived in the same way as for the level $|v_1\rangle$ by interchanging $v_1 \leftrightarrow v_2$ in Eq. (7) and $\Omega_1 \leftrightarrow \Omega_2$ in Eq. (8). Comparison of Eq. (6) with Eq. (8) yields that probability of emission and absorption can vary substantially in the presence ($p \neq 0$) or absence ($p = 0$) of interference.

So far we have discussed a model with doublet in the ground state. Let us now consider doublet in the excited state (as shown in Fig. 1(b)). In practice this configuration is commonly used in semiconductor systems like quantum wells and dots. The expression for the probability of emission and absorption in case of excited state doublet can be obtained as follows. If we start with $|c_1\rangle$, the probability of emission is given by

$$P_{\text{emiss}}(\tau|c_1) = |v(\tau)|^2 + 2\tilde{\Gamma} \int_0^\tau |v(\tau')|^2 d\tau' \quad (9)$$

Similarly the probability of absorption from $|v\rangle$ yields

$$P_{\text{abs}}(\tau|v) = 1 - |v(\tau)|^2 - 2\tilde{\Gamma} \int_0^\tau |v(\tau')|^2 d\tau' \quad (10)$$

The expression for the emission and absorption probability can be calculated by following a procedure similar to that outlined in appendix B for the ground state doublet. In the long time limit $t \gg \gamma^{-1}, \Gamma^{-1}$, we find that the expression for emission and absorption probabilities obtained from Eqs. (9) and (10) reduces to Eqs. (6) and (8) respectively.

III. DISCUSSION

Applications to Lasing without Inversion and Photodetectors: The model discussed in the previous section is relevant for the design of the systems with nonreciprocal relation...
between emission and absorption. For instance, suppressed absorption or/and enhanced emission in the laser systems allows for operating without population inversion. On the other hand enhanced absorption with suppressed emission can result in the photodetector or photovoltaic/solar cell system with enhanced power output [20]. Both LWI and photodetector schemes can be realized in atomic molecular and semiconductor systems. In atoms Agarwal-Fano type QI can arise between decay channels from magnetic sub-levels. In molecular systems on the other hand, decay pathways of different vibrational/rotational levels lead to asymmetric absorption/emission profiles due to interference. In the case of semiconductors, Agarwal-Fano interference comes about quite naturally in a system of two quantum wells or dots grown at nanometer separations [15, 16]. The tunneling/Förster interactions among the wells/dots renormalizes the bare energies and bare states of the system thereby creating new eigenstates which then reveals the interference in decay channels through tunneling to the same continuum [32, 33]. Note that QI and coherence effects in semiconductors are strongly affected by the presence of dephasing environment and hence experiments in these systems are carried out at very low temperatures (10 K). This thereby restrict their practical feasibility for various applications involving QI. However, recently quantum dot photodetector enhanced by Fano-type interference assisted with metallic hole array was reported operating at 77 K [14]. Hence in near future realization of Fano like QI effects in nanostructure and its various applications might be achievable even at room temperatures.

To put the above ideas to perspective, we discuss the functional dependence of the of emission and absorption probabilities on the interference strength p and the level spacing Δ in the steady state and transient regime. We show in Fig. 2 the steady state behavior and temporal evolution of emission and absorption probabilities for different values of p and Δ. Figures in the upper panel (2a, b, c) correspond to large level spacing compare to spontaneous decay rate $\Delta \gg \gamma (\Delta \gg 1)$. The steady state emission profile is seen to be strongly influenced by the strength of QI. It varies from its minimum at $p = 1$ to maximum at $p = -1$ (see Fig. 2a). The enhancement in emission is found to be almost 10 fold. However for absorption the effect of interference is not significant as p varies from -1 to 1. Therefore, for $p = -1$ one can achieve regime with largest emission, which can be useful in inversionless lasing schemes. On the other hand at $p = 1$, as emission reaches its minimum, it is attractive in realization of photo-detectors and photovoltaic devices. Note, that in semiconductor double quantum well system, control over p can be achieved by manipulating of the width of the shallow well [16]. The time evolution of the resonance profiles shown in Fig. 2b and 2c exhibits oscillatory behavior in the emission and absorption probabilities. Period of oscillations is determined by the frequency $\sqrt{\Delta^2 - \gamma^2}$ and thus strongly depend on the level spacing. We see further that the oscillations gets damped with time and the probabilities eventually reaches the steady state.

For small level spacing $\Delta \ll \gamma (\Delta \ll 1)$, the situation becomes less trivial. In this case the behavior of emission and absorption profiles is depicted in the lower panel of Fig. 2 (d, e, f). In the steady state the both the probabilities varies significantly with the interference strength p (see Fig. 2d). We find that while absorption probability increases monotonically from $p = 1$ to $p = -1$, emission is seen to first increase until about $p = -0.5$ beyond which it rapidly decreases to reach the minimum value at $p = -1$. This is in sharp contrast to the behavior of the emission probability for large Δ. In the time dependent profiles (Fig. 2e, 2f) we find that in comparison to the case of large splitting both emission and absorption probabilities show no oscillations and reach their steady state values that depend strongly on the interference strength. Furthermore, interesting case arise at $p = -1$ where emission profile first reaches its maximum and then drops down to the steady state that has the smallest value compare to other $p \neq -1$. In the same time absorption profile at $p = -1$ reaches its maximum value at steady state. Note that in contrast to that, for large splitting at $p = -1$ emission has its maximum (see Fig. 2b). Therefore, not only interference strength determines the emission and absorption profile, but the level spacing itself has strong impact. Namely, for fixed value of p, for example $p = -1$, large level spacing Δ yields the strongest emission (see Fig. 2b) which is in favor of lasing process. In the same time for small level spacing the emission is strongly suppressed while absorption reaches its maximum (See Figs. 2e,f), which is perfect situation for photo-detection and photocell operation. Furthermore, it is worth noting, that despite the asymmetry between curves for $p = \pm 1$ in Fig. 2, result for $p = 1$ can be derived from $p = -1$ case by changing the sign of the Rabi frequency, for instance: $\Omega_1 \rightarrow -\Omega_1$.

To study further the effects of p and Δ and to understand the special case of antiparallel alignment $p = -1$ consider the ratio of emission and absorption given by Eq. (6) and (8):

$$\frac{P_{\text{emiss}}}{P_{\text{abs}}} = \frac{2(1 + \frac{\Gamma}{\Delta^2 + \gamma^2} - p))}{\Gamma[\Delta^2(1 + \gamma) + (1 - p)]^2}, \quad (11)$$

where for simplicity we assume $\Omega_1 = \Omega_2$. Fig. 3 shows the ratio in Eq. (11) as a function of interference strength p for the case of small and large level spacing. If the spacing is small, $\Delta \ll \gamma$, then the ratio in Eq. (11) monotonically increasing.
most all quantum phenomena. However it is not always correct. For instance, the phenomena of quantum beats has substantially different result if considered in the framework of quantum electrodynamics (QED)[11]. Namely, for different configurations of three-level systems: for instance V-\textit{and} Λ schemes (see Fig. 5) that are initially prepared in a coherent superposition of all three states SCT description predicts the existence of quantum beats for both schemes, whereas QED theory predicts no quantum beats in the case of Λ scheme. The explanation of the phenomenon is quite straightforward and based on quantum theory of measurements. In the case of V scheme the coherently excited atom decays to the same final state $|v\rangle$ starting from $|c_+\rangle$ and $|c_-\rangle$ and one cannot determine which decay channel was used. Therefore this interference that is similar to the double-slit problem leads to the existence of quantum beats. However in the case of Λ scheme that has also two decay channels: $|c\rangle \rightarrow |v_+\rangle$ and $|c\rangle \rightarrow |v_-\rangle$, after a long time the observation of the atom’s final state ($|v_+\rangle$ or $|v_-\rangle$) will determine which decay channel was used. In this case we do not expect quantum beats. Three-level systems with doublet in the ground state or excited state is in a way similar to the Λ and V types of atom respectively. Therefore we can also study the quantum beats effect in those systems. Note that in the model of Fig. 1 we have additional radiative decays of states which guarantees that system can reach a steady state within finite amount of time. Fig. 5 illustrates that in the case of doublet in excited state (V scheme) with large spacing between levels $|c_+\rangle$ and $|c_-\rangle$ $\Delta \gg 1$, the probability of emission oscillates as a function of time and reaches the steady state at the time scale determined by radiative decay $1/\Gamma \gg 1$. However, for the case of doublet in the ground state (Λ scheme) with small spacing $\Delta \ll 1$ the probability of emission does not process any quantum beats and smoothly reach the steady state. Therefore, phenomenon of Fano interference has a potential to resolve the fundamental question about an applicability of the semiclassical description to the problem of quantum beats.
IV. CONCLUSION

To conclude, in this paper we investigated the effect vacuum induced QI on the emission(absorption) profile of a three-level system with a doublet in the ground or excited state (see Fig. 1(a)). We show that QI can enhance the balance breaking between emission and absorption. We use probability amplitude method, since the states involved in calculation have zero photon occupation number. Furthermore, our findings are in full agreement with the results obtained by density matrix formalism. We observed that the interference strength p governed by the phase shift between the decay pathways play a crucial role on the emission(absorption) dynamics of the system. For the closely spaced doublet ($\Delta \ll \gamma$), for which the vacuum induced QI becomes important, the behavior of the emission(absorption) profile of our model appears counterintuitive. For $p \sim -1$, the ratio of probability of emission to probability of absorption is very small, a condition favorable for applications like photovoltaics. On the other hand for $p \sim 1$, the ratio is large thus favorable for amplification without population inversion in steady-state (see Fig 2 (b,c)). In addition to these applications we found that Agarwal-Fano QI can also predicts the occurrence of fundamental phenomena like quantum beats in the semi-classical framework, that fully agrees with the QED description.

V. ACKNOWLEDGMENT

We thank Anatoly Svidzinsky and Dong Sun for useful and stimulating discussion and acknowledge the support from the Office of Naval Research, Robert A. Welch Foundation (Award A-1261). P.K.J also acknowledges Herman F. Heep and Minnie Belle Heep Texas A&M University Endowed Fund held/administered by the Texas A&M Foundation.

Appendix A: The Scully dressed state analysis

We start with evolution of amplitudes in Eqs. (1)-(3) for $\gamma_1 = \gamma_2 = \gamma$

$$\dot{v}_2 = - (\gamma + i\Delta)v_2 - p\gamma v_1 - i\Omega_2 c,$$ (A1)

$$\dot{v}_1 = - (\gamma - i\Delta)v_1 - p\gamma v_2 - i\Omega_1 c,$$ (A2)

$$\dot{c} = -i\Omega_2 v_2 - i\Omega_1 v_1 - \Gamma c,$$ (A3)

Writing Eqs. (A1)-(A3) in matrix form, we obtain

$$\frac{d}{d\tau} \begin{pmatrix} v_2 \\ v_1 \\ c \end{pmatrix} = -\Gamma_0 \begin{pmatrix} v_2 \\ v_1 \\ c \end{pmatrix} - iV \begin{pmatrix} v_2 \\ v_1 \\ c \end{pmatrix},$$ (A4)

where $\tau = \gamma t$, and the Fano decay matrix is defined by

$$\Gamma_0 = \begin{pmatrix} 1 + i\tilde{\Delta} & p & 0 \\ p & 1 - i\tilde{\Delta} & 0 \\ 0 & 0 & \Gamma \end{pmatrix},$$ (A5)

and probe-field interaction is given by

$$V = \begin{pmatrix} 0 & 0 & \tilde{\Omega}_2 \\ 0 & 0 & \tilde{\Omega}_1 \\ \tilde{\Omega}_2 & \tilde{\Omega}_1 & 0 \end{pmatrix},$$ (A6)

with $\tilde{\Delta} = \frac{\Delta}{\gamma}$ and $\tilde{\Omega}_{1,2} = \frac{\Omega_{1,2}}{\gamma}$.

It is intuitive to introduce a basis in which the Fano coupling is transformed away. We proceed from the bare basis via the U, U^{-1} matrices of diagonalization.

$$U^{-1} = \frac{1}{\sqrt{2p}} \begin{pmatrix} p & p & 0 \\ x - i\tilde{\Delta} & -x - i\tilde{\Delta} & 0 \\ 0 & 0 & \sqrt{2p} \end{pmatrix},$$ (A7)

$$U = \frac{1}{\sqrt{2x}} \begin{pmatrix} x + i\tilde{\Delta} & 0 & p \\ x - i\tilde{\Delta} & 0 & -p \\ 0 & \sqrt{2x} & 0 \end{pmatrix},$$ (A8)

Here $x = \sqrt{p^2 - \Delta^2}$.

so that the transformed state vector is defined by

$$U \begin{pmatrix} v_2 \\ v_1 \\ c \end{pmatrix} = \begin{pmatrix} V_+ \\ V_- \\ C \end{pmatrix},$$ (A9)

which implies

$$V_{\pm} = \frac{(x \pm i\tilde{\Delta})v_2 \pm pv_1}{\sqrt{2x}},$$ (A10)

and thus,

$$\begin{pmatrix} \dot{V}_+ \\ \dot{V}_- \\ \dot{C} \end{pmatrix} = -\Gamma_t \begin{pmatrix} V_+ \\ V_- \\ C \end{pmatrix} - iV_t \begin{pmatrix} V_+ \\ V_- \\ C \end{pmatrix},$$ (A11)

in which the diagonal Γ_t operator is

$$\Gamma_t = U\Gamma_0 U^{-1} = \begin{pmatrix} 1 + x & 0 & 0 \\ 0 & 1 - x & 0 \\ 0 & 0 & \Gamma \end{pmatrix},$$ (A12)

and the transformed interaction potential is
The equation of motion in terms of V_\pm and C are then found to be

$$
\frac{dV_+}{d\tau} = -(1 + x)V_+ - \frac{i}{\sqrt{2x}} [\tilde{\Omega}_2(x + i\Delta) + p\tilde{\Omega}_1] C,
$$
(A14)

$$
\frac{dV_-}{d\tau} = -(1 - x)V_- - \frac{i}{\sqrt{2x}} [\tilde{\Omega}_2(x - i\Delta) - p\tilde{\Omega}_1] C,
$$
(A15)

$$
\frac{dC}{d\tau} = -\tilde{\Gamma} C - \frac{i}{\sqrt{2}} [p\tilde{\Omega}_2 + \tilde{\Omega}_1(x - i\Delta)] V_+ - \frac{i}{\sqrt{2}} [p\tilde{\Omega}_2 - \tilde{\Omega}_1(x + i\Delta)] V_-.
$$
(A16)

Appendix B: Derivation of emission and absorption probabilities in dressed basis

We start with amplitude equations in dressed basis (A14) - (A16). The initial conditions corresponding to the emission from the state C are $V_+(0) = 0$, $C(0) = 1$. Assuming the driving fields to be weak ($\Omega_{1,2} << 1$ we can solve Eqs. (A14) - (A16) by expansion in perturbation series over $\Omega_{1,2}$. The lowest order solution for $B(\tau)$ of Eq. (A16) yields $C^{(0)}(\tau) = e^{-\tilde{\Gamma} \tau}$. The latter can be substituted in Eqs. (A14) and (A15) to find $V^{(0)}_\pm(\tau)$:

$$
V^{(0)}_\pm(\tau) = -\frac{i}{\sqrt{2x}} \frac{\tilde{\Omega}_2(x \pm i\Delta) \pm p\tilde{\Omega}_1}{1 \pm x - \tilde{\Gamma}} \left[(1 \pm x - \tilde{\Gamma}) e^{-\tilde{\Gamma} \tau} - e^{-(1 \pm x)\tau} \right].
$$
(B1)

The exponential approximation of $C(\tau)$ gives relatively good agreement with numerical simulations only for small time. For large time the behavior of the system is far from being exponential. Therefore, we should consider next order correction for $C(\tau)$. It can be done by substituting functions $V^{(0)}_\pm$ from Eq. (B1) to Eq. (A16) which yields

$$
C^{(1)}(\tau) = \left[\frac{A_+}{1 + x - \tilde{\Gamma}} + \frac{A_-}{1 - x - \tilde{\Gamma}} - (A_+ + A_-) \right] e^{-\tilde{\Gamma} \tau}
$$

$$
+ e^{-\tilde{\Gamma} \tau} \left[\frac{A_+}{1 + x - \tilde{\Gamma}} e^{-(1 + x)\tau} - \frac{A_-}{1 - x - \tilde{\Gamma}} e^{-(1 - x)\tau} \right],
$$
(B2)

where

$$
A_\pm = \frac{[p\tilde{\Omega}_2 \pm (x \pm i\Delta)\tilde{\Omega}_1] \Omega_2(x \pm i\Delta) \pm p\tilde{\Omega}_1}{2px(1 \pm x - \tilde{\Gamma})}.
$$
(B3)

Using the definition for emission probability from Eq. (5) at large time $\tau \gg 1, 1/\tilde{\Gamma}$, neglecting higher order terms in $\Omega_{1,2}$ the probability of absorption yields

$$
P_{\text{emiss}}(\infty|x, p) = \frac{\tilde{\Gamma} + 1}{\tilde{\Gamma}^2 + (1 + 1/\tilde{\Gamma} - p^2)}.
$$
(B4)

Similarly one can derive the probability of absorption. We start from absorption from level Ω_1. The initial conditions for system with population on v_1 in dressed states are $V_{\pm}(0) = \pm p/\sqrt{2x}, C(0) = 0$ (see Eq. (A10)). In lowest order of $\Omega_{1,2}$, Eqs. (A14) and (A15) yield

$$
V^{(0)}_\pm(\tau|v_1) = \pm \frac{p}{\sqrt{2x}} e^{-(1 \pm x)\tau}.
$$
(B5)

Corresponding zero order solution of $C^{(0)}(\tau)$ of Eq. (A16) is given by

$$
C^{(0)}(\tau|v_1) = B_+ e^{-(1+x)\tau} - B_- e^{-(1-x)\tau} + (B_+ - B_-) e^{-\tilde{\Gamma} \tau},
$$
(B6)

where

$$
B_\pm = i \frac{p\tilde{\Omega}_2 \pm \tilde{\Omega}_1 (x \mp i\Delta)}{2x(1 \pm x - \tilde{\Gamma})}.
$$
(B7)

Therefore, probability of absorption form level v_1 for large time $\tau \gg 1, 1/\tilde{\Gamma}$ given by Eq. (7) reads

$$
P_{\text{abs}}(\infty|v_1) =
$$

$$
\frac{(\tilde{\Gamma} + 2)|\Omega_1 - p\tilde{\Omega}_2|^2 + (\tilde{\Gamma} - 1 - p^2)^2 + (\tilde{\Gamma} + 1)|\Omega_1^2|^2}{2(1 + \tilde{\Delta}^2 - p^2)(1 + \tilde{\Delta}^2 + (\tilde{\Gamma} + 1)^2 - p^2)}
$$
(B8)

The probability of absorption from level v_2 can be derived in the same way as for the level v_1. In this case, the initial conditions according to Eq. (A10) read $V_{\pm}(0) = (x \pm i\Delta)/\sqrt{2x}$. $C(0) = 0$. In lowest order of $\Omega_{1,2}$, Eqs. (A14) and (A15) have the following solution:

$$
V^{(0)}_\pm(\tau|a_2) = \frac{x \pm i\Delta}{\sqrt{2x}} e^{-(1 \pm x)\tau}.
$$
(B9)

Corresponding zero order solution of $C^{(0)}(\tau)$ of Eq. (A16) yields

$$
C^{(0)}(\tau|v_1) = D_+ e^{-(1+x)\tau} + D_- e^{-(1-x)\tau} + (D_+ + D_-) e^{-\tilde{\Gamma} \tau},
$$
(B10)

where

$$
D_\pm = i \frac{p\tilde{\Omega}_2 \pm \tilde{\Omega}_1 (x \mp i\Delta)}{2px(1 \pm x - \tilde{\Gamma})}.
$$
(B11)
Therefore, probability of absorption from level v_2 for $\tau \gg 1, 1/\Gamma$ given by Eq. (7) yields

$$P_{\text{abs}}(\infty|v_2) = \frac{(\tilde{\Gamma} + 2)|\tilde{\Omega}_2 - p\tilde{\Omega}_1|^2 + [\tilde{\Gamma}(1 - p^2) + 2\tilde{\Delta}^2(\tilde{\Gamma} + 1)]|\tilde{\Omega}_2|^2}{2(1 + \Delta^2 - p^2)[\Delta^2 + (\tilde{\Gamma} + 1)^2 - p^2]}$$

(B12)

which becomes Eq. (B8) if $\tilde{\Omega}_1 \leftrightarrow \tilde{\Omega}_2$.

[1] M.O. Scully and M. S. Zubairy Quantum Optics, (Cambridge Press, London 1997).
[2] Z. Ficek and S. Swain Quantum Interference and Coherence, Springer New-York, (2007).
[3] A. Ishizaki, and G. Fleming, PNAS 106, 17255 (2009).
[4] U. Fano, Phys. Rev. 124, 1866 (1961).
[5] G. S. Agarwal, Springer Tracts in Modern Physics: Quantum Optics (Springer-Verlag, Berlin, 1974).
[6] S. E. Harris, Phys. Rev. Lett. 62, 1033 (1989).
[7] M. O. Scully, S. -Y. Zhu, and A. Gavrielides, Phys. Rev. Lett. 62, 2813 (1989).
[8] O. Koharovskyaya, Phys. Rep. 219, 175 (1992).
[9] P. Mandel and O. Koharovskyaya, PhysRev. A 45, 2700 (1992).
[10] E. S. Fry, X. Li, D. Nikonov, G. G. Padmanabandu, M. O. Scully, A. V. Smith, F. K. Tittel, C. Wang, S. R. Wilkinson and S. Y. Zhu, Phys. Rev. Lett. 70, 3235 (1993).
[11] A. S. Zibrov, M. D. Lukin, D. E. Nikonov, L. Hollberg, M. O. Scully, V. L. Velichansky, and H. G. Robinson, Phys. Rev. Lett. 75, 1499 (1995).
[12] G. G. Padmanabandu, G. R. Welch, I. N. Shubin, E. S. Fry, D. E. Nikonov, M. D. Lukin, and M. O. Scully, Phys. Rev. Lett. 76, 2053 (1996).
[13] A. K. Wojcik,F. Xie, V. R. Chaganti, A. A. Belyanin, and J. Kono, J. Mod. Opt. 55, 3305 (2008).
[14] P. Vasinajindakaw, J. Vaillancourt, G. Gu, R. Liu, Y. Ling, and X. Lu, App. Phys. Lett. 98, 211111 (2011).
[15] J. Faist, F. Capasso, C. Sirtori, K.W. West, and L.N.Pfeiffer, Nature 390, 589 (1997).
[16] H. Schmidt, K.L. Campman, A.C. Gossard, and A. Imamoglu, Appl. Phys. Lett. 70, 3455 (1997).
[17] Andrey E. Miroshnichenko, Sergey Flach, and Yuri S. Kivshar Rev. Mod. Phys. 82, 2257 (2010).
[18] H. M. Gibbs, G. Khitrova and S. W. Koch, Nat. Phot 5, 275 (2011).
[19] M.O.Scully, Phys. Rev. Lett. 104, 207701 (2010).
[20] M.O. Scully, K.R. Chapin, K.E. Dorfman, M.B. Kim, and A.A. Svidzinsky, PNAS (2011)
[21] A.A. Svidzinsky, K.E. Dorfman, and M.O. Scully, to be published (2011)
[22] M.O. Scully, M. S. Zubairy, G. S. Agarwal, and H. Walther, Science 299, 862 (2003).
[23] A.P.Kirk, Phys. Rev. Lett. 106, 048703 (2011).
[24] M.O.Scully, Phys. Rev. Lett. 106, 049801 (2011).
[25] K.R.Chapin, K.E.Dorfman, A.A.Svidzinsky, and M.O.Scully, arXiv:1012.5321
[26] Z. Wang, Annals of Physics 326, 340 (2011).
[27] A. Imamoglu and R. J. Ram, Optics letters 19, 1744 (1994).
[28] M. O. Scully, Laser Phys. 17, 635 (2007).
[29] M. O. Scully, E. S. Fry, C. H. R. Ooi, and K. Wodkiewicz, Phys. Rev. Lett. 96, 010501 (2006).
[30] Sumanta Das, G. S. Agarwal and M. O. Scully, Phys. Rev. Lett. 101, 153601 (2008).
[31] H. R. Xia, C. Y. Ye, and S. Y. Zhu, Phys. Rev. Lett. 77, 1032 (1996).
[32] M.O.Scully Coherent Control, Fano Interference, and Non-Hermitian Interactions, Workshop held in May, 1999 (Kluwer Academic Publishers, Norwell, MA, 2001).
[33] A. Sitek and P. Machnikowski, Phys. Status. Solidi B 248, 847 (2011).
[34] P. K. Jha, Y. V. Rostovtsev, H. Li, V. A. Sautenkov, and M. O. Scully, Phys. Rev. A 83, 033404 (2011)
[35] P. K. Jha, H. Li, V. A. Sautenkov, Y. V. Rostovtsev, and M. O. Scully, Opt. Commun. 284, 2538 (2011).