Külshammer ideals of graded categories and Hochschild cohomology.

Yury Volkov and Alexandra Zvonareva

Abstract

We generalize the notion of Külshammer ideals to the setting of a graded category. This allows us to define and study some properties of Külshammer type ideals in the graded center of a triangulated category and in the Hochschild cohomology of an algebra, providing new derived invariants. Further properties of Külshammer ideals are studied in the case where the category is d-Calabi-Yau.

1 Introduction

Let Λ be a symmetric algebra over a field of positive characteristic p with a symmetrizing form $(-,-)$. The sequence of Külshammer ideals

$$K^d_r = \{a \in \Lambda | (a, b) = 0 \text{ for } b \in \Lambda \text{ such that } b^{p^r} \in [\Lambda, \Lambda]\}$$

in the center of Λ is a fine invariant of the derived category of an algebra [20, 11]. These ideals were applied to distinguish various algebras up to derived equivalence [8, 9]. With the use of trivial extensions the definition of Külshammer ideals was extended to arbitrary algebras [3]. Also various attempts to generalize Külshammer ideals to higher Hochschild (co)homology were taken (see [22, 23]).

In this paper we propose to consider the same type of ideals in the center of a graded category A. These ideals are defined using the module structure of the graded abelianization of the category A over its graded center. For a graded category A the center of A is the graded k-algebra A^A, whose i-th component A^A_i is formed by elements $(m_{i,x})_{x \in A} \in \Pi_{x \in A} \text{A}(x,x)$, such that $f m_{i,x} = (-1)^{ij} m_{i,y} f$ for any $x,y \in A$ and any $f \in \text{A}(x,y)$. The abelianization of A is the graded k-module $A_A = \oplus_{x \in A} \text{A}_x^x/[\text{A}, \text{A}]$, where $[\text{A}, \text{A}]$ denotes the subspace of $\oplus_{x \in A} \text{A}(x,x)$ formed by the elements $fu - (-1)^{ij} uf$, for all $x,y \in A$, $u \in \text{A}(y,x)$ and $f \in \text{A}(y,x)$.

The ideals $K_{r,s}A$ are defined as the annihilators of the appropriate homogeneous component of the kernel of the map $(-)^{p^r}$. For precise definitions see Sections 2 and 3. It turns out that the ideals defined in this way are invariant under graded equivalences.

In this construction is then applied in the particular situation of a category A with an automorphism Σ. In this case the orbit category A/Σ is graded and we can consider ideals
in the graded center of A/Σ. If A is d-Calabi-Yau, we establish a duality between the Hochshild-Mitchel homology and cohomology of A. This generalizes the well known duality between Hochshild homology and cohomology for symmetric algebras. Using the pairing provided by this duality we recover the usual definition of the ideals $K_{r,d}(A/\Sigma)$ in this general context. Thus,

$$K_{r,d}(A/\Sigma) = \{ a \in (A/\Sigma)^{A/\Sigma} | (a,b) = 0 \text{ for } b \in \oplus_{x \in A}(A/\Sigma)_x \text{ such that } b^{p^r} \in [A/\Sigma, A/\Sigma] \}.$$

If A is the homotopy category of complexes of finitely generated projective modules $K_p^b\Lambda$ over some algebra Λ and $[1]$ is the shift functor, then $(K_p^b\Lambda/[1])^{K_p^b\Lambda/[1]}$ is the graded center $Z^*(K_p^b\Lambda)$ of $K_p^b\Lambda$, i.e. the graded ring of natural transformations from the identity functor to $[n]$ which commute modulo the sign $(-1)^n$ with $[1]$. Graded centers of triangulated categories are studied and used by various authors and attract some interest (see [4, 15, 2, 12]). Thus, the ideals defined for $K_p^b\Lambda/[1]$ belong to the graded center of $K_p^b\Lambda$.

The characteristic map from the Hochshild cohomology of Λ to the graded center of $K_p^b\Lambda$ allows us to define Küchhammer ideals $HK_{r,s}(A)$ in the higher Hochshild cohomology as the inverse image of the ideals $K_{r,s}(K_p^b\Lambda/[1])$. If Λ is a symmetric algebra, then $HK_{r,0}(\Lambda)$ coincide with the classical Küchhammer ideals K_{r}^d. So the ideals $HK_{r,s}(\Lambda)$ can be considered as a generalization of Küchhammer ideals to higher Hochshild cohomology. Both ideals $K_{r,s}(K_p^b\Lambda/[1])$ and $HK_{r,s}(\Lambda)$ are invariant under derived equivalence.

For arbitrary algebras we provide an alternative description of $HK_{r,0}(\Lambda)$.

$$HK_{r,0}^0(\Lambda) = \{ a \in Z(\Lambda) | ab \in [\Lambda, \Lambda] \text{ for } b \text{ such that } b^{p^r} \in [\Lambda, \Lambda] \}.$$

This provides an alternative generalization of Küchhammer ideals for non-symmetric algebras.

We finish the paper computing all the defined ideals for the algebra $k[x]/x^2$.

2 Graded center and abelianization

All categories and functors are assumed to be k-linear for some fixed field k. Moreover, all categories are assumed to be small. We write simply \otimes and Hom instead of \otimes_k and Hom_k.

In this section we recall some definitions and introduce some notation. From here on we will write A^y_x instead of $\text{Hom}_A(x, y)$ for Hom-sets in a category A.

Definition 2.1. A category A is called a graded category if, for any x, y in A, there is a fixed decomposition of graded spaces $A^y_x = \oplus_{i \in \mathbb{Z}}(A^y_x)_i$ such that $fg \in (A^y_x)_{i+j}$ for any $f \in (A^y_x)_j$ and $g \in (A^y_x)_j$. We write $|f|$ for the degree of $f \in A^y_x$, i.e. $|f| = i$ if and only if $f \in (A^y_x)_i$.

Definition 2.2. The tensor product $A \otimes B$ of categories A and B is a k-linear category defined in the following way. Its objects are pairs (x, y) where $x \in A$, $y \in B$. Its morphism spaces are

$$(A \otimes B)_{(x_1, y_1)}^{(x_2, y_2)} = A_{x_1}^{x_2} \otimes B_{y_1}^{y_2}.$$

The composition in $A \otimes B$ is given by the formula

$$(f_2 \otimes g_2)(f_1 \otimes g_1) = f_2f_1 \otimes g_2g_1,$$

where $f_1 \in A_{x_1}^{x_2} , f_2 \in A_{x_2}^{x_3} , g_1 \in B_{y_1}^{y_2} , g_2 \in B_{y_2}^{y_3}$ and $x_1, x_2, x_3 \in A, y_1, y_2, y_3 \in B$.

2
Definition 2.3. A \(k \)-linear contravariant functors from \(A \) to \(\text{Mod-}k \) are called \(A \)-modules. We denote by \(\text{Mod-}A \) the category of \(A \)-modules. An \(A \)-bimodule is by definition an \(A^{op} \Box A \)-module. We denote by \(\text{Bimod-}A \) the category of \(A \)-bimodules.

If it does not cause any confusion, we will write \(fug \) instead of \(M(f \otimes g)u \) for an \(A \)-bimodule \(M \) and \(g \in A^w_x, f \in A^y_z, u \in M(x, w) \), where \(w, x, y, z \in A \).

If \(A \) is graded, then the \(A \)-bimodule \(M \) is called \textit{graded} if there are some fixed decompositions \(M(x, y) = \bigoplus_{i \in \mathbb{Z}} M(x, y)_i \) such that \(fug \in M(y, z)_{i+j+l} \) for all \(g \in (A^w_x)_j, f \in (A^y_z)_l \), and \(u \in M(x, w)_i \). A homogeneous morphism of degree \(m \) from a graded bimodule \(M \) to a graded bimodule \(N \) is a collection of maps \(\phi_{x,y,k} : M(x, y)_k \rightarrow N(x, y)_{k+m} \) such that \(N(f \otimes g)\phi_{x,w,k} = (-1)^m \phi_{y,z,k+l}M(f \otimes g) \) for \(g \in (A^w_x)_j, f \in (A^y_z)_l \). A morphism between graded bimodules is by definition a finite sum of homogeneous morphisms. Any nongraded category \(A \) can be considered as a graded category with all morphisms of degree 0. In this case a graded bimodule is simply a module \(M \) with \(A \)-bimodule decomposition \(M = \bigoplus_{i \in \mathbb{Z}} M_i \). We define the graded bimodule \(M[n] \) as a graded \(A \)-bimodule such that \(M[n](x, y)_i = M(x, y)_{i+n} \) and \(M[n](f \otimes g)u = (-1)^m M(f \otimes g)u \) for all \(g \in (A^w_x)_j, f \in (A^y_z)_l \), and \(u \in M(x, w)_i \). If \(\phi_{x,y,j} \) is a homogeneous morphism form \(M \) to \(N \), then \(\phi_{x,y,j}[n] := \phi_{x,y,j} + n \).

One can consider \(A \) as an \(A \)-bimodule defined by the equality \(A(x, y) = A^y_x \) on objects and in the obvious way on morphisms.

Definition 2.4. An \(A \)-linear category is an \(A \)-bimodule \(M \) together with a structure of a \(k \)-linear category (which will be also denoted by \(M \)) compatible with the bimodule structure. Namely, the class of objects of \(M \) is the same as the class of objects of \(A \), and the morphism spaces of \(M \) are \(M^x_y = M(x, y) \). Thus, there are bilinear maps

\[
M(y, x) \times M(x, z) = M^v_x \times M^x_z \xrightarrow{-\circ-} M^y_z = M(y, z)
\]

that satisfy all the conditions of a categorical composition. The compatibility conditions are

\[
f(v \circ u)g = (fv) \circ (ug) \text{ and } u \circ (fv) = (uf) \circ v,
\]

\[
\begin{array}{ccc}
M(y, x) \times M(x, z) \xrightarrow{-\circ-} M(y, z) & & \xrightarrow{-\circ-} M_z \times M (y, x) \\
\downarrow M(f \otimes id) \times M(id \otimes g) & & \downarrow M(f \otimes id) \\
M(w, x) \times M(x, \tau) \xrightarrow{-\circ-} M(w, \tau) & & \xrightarrow{-\circ-} M(z, w) \times M(y, x)
\end{array}
\]

where \(f \in A^w_x \) and \(g \in A^z_x \) are morphisms in \(A \) and \(u \) and \(v \) are morphisms in \(M \).

We say that an \(A \)-linear category \(M \) is graded if \(M \) is a graded category and a graded bimodule with respect to the same family of decompositions \(M^x_y = \bigoplus_{i \in \mathbb{Z}} (M^x_y)_i \).

Definition 2.5. Let \(A \) be a graded category and let \(M \) be a graded \(A \)-bimodule. The \textbf{\(A \)-center} of \(M \) is the graded \(k \)-module \(\text{Ass} \), whose \(i \)-th component \(\text{Ass}^i \) is formed by such elements \((m_{i,x})_{x \in A} \in \Pi_{x \in A} M(x, x) \), that \(fm_{i,x} = (-1)^{ij}m_{i,y}f \) for any \(x, y \in A \) and any \(f \in (A^y_z)_j \). If \(A \) and \(M \) are not graded, then we can consider them as a graded category and a bimodule concentrated in degree 0. So we can talk about the center of a nongraded bimodule over a nongraded category.
Note that Definition [2.4] guarantees that if M is a A-linear category, then M^A has a structure of a unital associative k-algebra, with multiplication induced by the composition in M. In particular, the compatibility of the the bimodule and the categorical structure ensures that M^A is closed under multiplication.

Definition 2.6. Let A be a (nongraded) category and $\Sigma : A \to A$ be an automorphism of A. The orbit category A/Σ is a graded category defined as follows.

- The class of objects of A/Σ is equal to that of A;
- The sets of morphisms are $((A/\Sigma)^x) = A^{xy}_x$ for $x, y \in A/\Sigma$ and $n \in \mathbb{Z}$;
- The composition \circ in A/Σ is given by the formula $g \circ f = \Sigma^n(g)f$ for $f \in ((A/\Sigma)^y)_n$ and $g \in ((A/\Sigma)^x)_m$.

Note that A/Σ becomes a graded A-linear category if we define $(A/\Sigma)(f \otimes g)u = \Sigma^n(f)ug$ for $f \in A^{y_1}_{x_1}$, $g \in A^{y_2}_{x_2}$ and $u \in ((A/\Sigma)^{y_2})_n$. Given an automorphism α of the category A and $M \in \operatorname{Bimod}-A$, we define the bimodule αM as the composition of functors $M \circ (\alpha \otimes \operatorname{Id}_A) \in \operatorname{Bimod}-A$. It is easy to see that this defines an action of $(\operatorname{Aut} A)^{op}$ on $\operatorname{Bimod}-A$. Note that $A/\Sigma \cong \oplus_{n \in \mathbb{Z}} (\Sigma^n A)[-n]$ as a graded A-bimodule.

If α is an automorphism of A, then we say that α acts on the graded bimodule M if there is a homogeneous isomorphism $M \xrightarrow{\alpha} M \circ (\alpha \otimes \operatorname{Id}_A)$ of degree 0. Such action induces an automorphism α_{M^A} of the graded center M^A. If M is an A-linear category and α acts on it by a category automorphism, then α_{M^A} is an automorphism of the graded algebra M^A. Note that if α acts on M by α_M, then we can define $\alpha_{M[n]} = (-1)^n \alpha_M[n]$. The automorphism Σ of A acts on $\Sigma^n A$ by the rule $\Sigma_{(\Sigma^n A)}(u) = \Sigma(u)$ for $u \in A^{xy}_x$. We fix this action of Σ on $\Sigma^n A$ and write simply Σ instead of $\Sigma_{(\Sigma^n A)}$. Moreover, for any integer m, we denote by Σ the natural transformation $\Sigma_{(\Sigma^n A)[m]}$ and the automorphism $\Sigma_{(\Sigma^n A)[m]}^A$. Thus, Σ acts on the bimodule A/Σ and this action determines an automorphism of the graded A-linear category A/Σ. For any space V with an action of some automorphism α we can consider the subspace of invariants V^α, i.e. $\{m \in V|\alpha(m) = m\}$.

Definition 2.7. Let A be a (nongraded) category and let $\Sigma : A \to A$ be some fixed automorphism of A. We define the graded rings $\operatorname{Nat}^*(A) = \operatorname{Nat}^*(A, A)$ and $Z^*(A) = Z^*(A, \Sigma)$ as follows. Let $\operatorname{Nat}^*(A)$ ($n \in \mathbb{Z}$) be the abelian group formed by all natural transformations $\eta : \operatorname{Id}_A \to \Sigma^n$ and $Z^*(A)$ be its subgroup formed by η that satisfy the equality $\eta \Sigma = (-1)^n \eta \Sigma$. Given natural transformations $\eta : \operatorname{Id}_A \to \Sigma^n$ and $\theta : \operatorname{Id}_A \to \Sigma^m$, we define the product of η and θ by the formula $\eta \theta = \Sigma^m(\eta) \circ \theta : \operatorname{Id}_A \to \Sigma^{n+m}$. We call $Z^*(A)$ the graded center of A. Note that $\eta \theta = (-1)^mn \theta \eta$ if $\eta \in Z^*(A)$.

Remark 2.8. The definition of a graded center has sense if Σ is an autoequivalence, but further we need it to be an automorphism. On the other hand, we can replace any autoequivalence of a category by an automorphism (the category is changed during this process) by the results of [3].

Lemma 2.9. There is an isomorphism of graded algebras $\operatorname{Nat}^*(A) \cong (A/\Sigma)^A$ that induces isomorphisms $Z^*(A) \cong ((A/\Sigma)^A)_{\Sigma} \cong (A/\Sigma)^{A/\Sigma}$.

4
Definition 2.10. Given a graded A-bimodule M, \([A, M]\) denotes the subspace of \(\bigoplus_{x \in A} M^x\) formed by the elements \(fu - (-1)^{iy}uf\), for all \(x, y \in A, u \in M(y, x), \) and \(f \in (A^x_y)\). The A-abelianization of M is the graded \(k\)-module \(M_A = \bigoplus_{x \in A} M^x/[A, M]\). As in the case of the center, we can talk about the abelianization of a nongraded bimodule over a nongraded category.

For any space \(V\) with an action of some automorphism \(\alpha\) we can consider the space of co-invariants \(V_\alpha\), i.e. the quotient space of \(V\) modulo the subspace generated by the classes of the elements of the form \(v - \alpha(v)\) for \(v \in V\). If \(M\) is an \(A\)-linear category, then the composition in \(M\) induces a structure of a graded \(M^A\)-bimodule on \(M_A\). Note that an action of an automorphism on \(M\) induces an action on \(M_A\). So in this case one can define the graded space \((M_A)_\Sigma\) as the quotient space of \(M_A\) modulo the subspace generated by the classes of the elements of the form \(m - \Sigma m\) for \(m \in \bigoplus_{x \in A} M^x\). The \(M^A\)-bimodule structure on \(M_A\) induces the \((M^A)_\Sigma\)-bimodule structure on \((M_A)_\Sigma\). Note also that if the action of the automorphism \(\alpha\) of \(A\) on the bimodule \(M\) is given by \(\alpha_M\), then \(\alpha\) acts on \(M\) by \(a\alpha_M\) for any \(a \in k^*\) as well.

Definition 2.11. Let \(A\) be a (nongraded) category and let \(\Sigma : A \to A\) be some fixed automorphism of \(A\). We define the graded spaces \(\text{Nat}_\Sigma(A) = \text{Nat}_\Sigma(A, \Sigma)\) and \(\text{Ab}_\Sigma(A, \Sigma)\) as follows. Let \(\text{Nat}_\Sigma(A)\) be the quotient space of the space \(\bigoplus_{x \in A} A^x\Sigma^x\) modulo the subspace generated by the elements of the form \(fg - \Sigma^n(g)f\) for all \(f \in A^x\Sigma^y, g \in A^y\). We define \(\text{Ab}_\Sigma(A)\) as the quotient space of \(\text{Nat}_\Sigma(A)\) modulo the subspace generated by the classes of the elements of the form \(f + (-1)^n\Sigma(f)\) for all \(f \in A^x\Sigma^n\). We call \(\text{Ab}_\Sigma(A)\) the graded abelianization of \(A\).

It is easy to see that \(\text{Nat}_\Sigma(A)\) is a \(\text{Nat}_\Sigma(A)\)-bimodule. Moreover, the corresponding \(Z^*(A)\)-bimodule structure on \(\text{Nat}_\Sigma(A)\) induces a \(Z^*(A)\)-bimodule structure on \(\text{Ab}_\Sigma(A)\). Note also
that the isomorphisms from Lemma 2.9 induce a \(\text{Nat}^*(A) \)-bimodule structure on \((A/\Sigma)_{\Lambda}\) and a \(\mathbb{Z}^*(A) \)-bimodule structure on \((A/\Sigma)_{\Lambda/\Sigma}\) and \(((A/\Sigma)_{\Lambda})_{-\Sigma}\) (in fact, as it was noted above, on \((A/\Sigma)_{\Lambda}\) for any \(a \in \mathbb{k}^* \)).

Lemma 2.12. There is an isomorphism of graded \(\text{Nat}^*(A) \)-bimodules \(\text{Nat}_*(A) \cong (A/\Sigma)_{\Lambda} \) that induces isomorphisms \(\text{Ab}_*(A) \cong \left((A/\Sigma)_{\Lambda} \right)_{-\Sigma} \cong (A/\Sigma)_{\Lambda/\Sigma} \).

Proof. By definition, \(\text{Nat}_*(A) \) and \((A/\Sigma)_{\Lambda} \) are both quotients of the \(\text{Nat}^*(A) \)-bimodule \(\bigoplus_{n \in \mathbb{Z}} \bigoplus_{x \in \Lambda} A_x^{\Sigma^n y} \) and it suffices to check that we take the quotient space modulo the same submodule.

It is easy to see that

\[
f g - \Sigma^n(g)f = (A/\Sigma)(\text{Id}_y \otimes g)(f) - (A/\Sigma)(g \otimes \text{Id}_x)(f)
\]

for all \(f \in A_x^{\Sigma^n y} \) and \(g \in A_y^x \), i.e. \(\text{Nat}_n(A) = \left((A/\Sigma)_{\Lambda} \right)_n = \bigoplus_{x \in \Lambda} A_x^{\Sigma^n y}/U_n \), where \(U_n \) is generated by \(f g - \Sigma^n(g)f \) for \(f \in A_x^{\Sigma^n y} \) and \(g \in A_y^x \).

Now we have \(\text{Ab}_n(A) = \bigoplus_{x \in \Lambda} A_x^{\Sigma^n y}/(U_n + V_n) \), where \(V_n \) is generated by \(f + (-1)^n \Sigma(f) \) for all \(f \in A_x^{\Sigma^n y} \). It is easy to see that \(\left((A/\Sigma)_{\Lambda} \right)_{-\Sigma}^n = \bigoplus_{x \in \Lambda} A_x^{\Sigma^n y}/(U_n + V_n) \) too. Let now consider \(\left((A/\Sigma)_{\Lambda/\Sigma} \right)_n = \bigoplus_{x \in \Lambda} A_x^{\Sigma^n y}/W_n \), where \(W_n \) is generated by \(\Sigma^j(f)g - (-1)^j \Sigma^j(g)f \) for \(f \in A_x^{\Sigma^n y} \) and \(g \in A_y^{\Sigma^j x} \), \(i + j = n \). Taking \(j = 0 \), we get that \(U_n \subseteq W_n \). Taking \(i = n + 1, j = -1 \), \(y = \Sigma^{-1} x \), and \(g = \text{Id}_x \), we get that \(V_n \subseteq W_n \). Thus, \(U_n + V_n \subseteq W_n \).

Since \(\Sigma^j(f)g - \Sigma^n(g)\Sigma^j(f) = \Sigma^j(g)f - (-1)^j \Sigma^j(\Sigma^j(g)f) \in V_n \), we have \(W_n = U_n + V_n \).

\(\square \)

3 Külshammer ideals in the center of a graded category

In this section we define Külshammer ideals in the center of a graded category. From now on we assume that \(\mathbb{k} \) is a field of characteristic \(p > 0 \). For a graded category \(A \) we define the map \(\xi_p : \bigoplus_{x \in \Lambda} A_x^p \rightarrow \bigoplus_{x \in \Lambda} A_x^p \)

by the equality \(\xi_p \left(\sum_{n \in \mathbb{Z}} f_n \right) = \sum_{n \in \mathbb{Z}} f_n^p \), where \(f_n \in \left(\bigoplus_{x \in \Lambda} A_x^p \right)_n \) for \(n \in \mathbb{Z} \). Note that \(\xi_p \) maps \((A_x^n)_n \) to \((A_x^n)_{np} \).

Lemma 3.1. Let \(A \) be a graded category. The map \(\xi_p : \bigoplus_{x \in \Lambda} A_x^p \rightarrow \bigoplus_{x \in \Lambda} A_x^p \) induces a well-definite map \(\xi_p : A_A \rightarrow A_A \).

Proof. It is enough to show that \(\xi_p ([A, A]_n) \subseteq [A, A]_{np} \). Let us first prove that for \(f, g \in \left(\bigoplus_{x \in \Lambda} A_x^p \right)_n \) one has \((f + g)^p - f^p - g^p \in [A, A]_{np} \). Fix \(s_i \in \left(\bigoplus_{x \in \Lambda} A_x^p \right)_n \) for \(1 \leq i \leq p \). By
Here, for an algebra Λ, a Λ-bimodule M and $V \subseteq \Lambda$. Since $(-1)^{n^2(p-1)} = 1$ if $2 \nmid p$ or $\text{char } K = p = 2$, we have $s_1 \ldots s_p - s_2 \ldots s_p s_1 \in [\Lambda, \Lambda]$. Now the condition $(f + g)^p - f^p - g^p \in [\Lambda, \Lambda]$ can be proved in the same way as in [21] Lemma 1.1.

Any element of $[\Lambda, \Lambda]_n$ has the form $u = \sum_{t=1}^{k} (f_t g_t - (-1)^{(n-t)} g_t f_t)$ for some integer $k \geq 0$ and some $f_t \in (\Lambda^{y_t})_{i_t}$ and $g_t \in (\Lambda^{y_t})_{n-i_t}$ for $1 \leq t \leq k$. Then we have

$$\xi_p(u) + [\Lambda, \Lambda]_{np} = \sum_{t=1}^{k} ((f_t g_t)^p - (-1)^{(n-t)}(g_t f_t)^p) + [\Lambda, \Lambda]_{np}$$

$$= \sum_{t=1}^{k} (f_t((g_t f_t)^{p-1} g_t) - (-1)^{(n-t)}((g_t f_t)^{p-1} g_t) f_t) + [\Lambda, \Lambda]_{np} \in [\Lambda, \Lambda]_{np},$$

i.e. $\xi_p([\Lambda, \Lambda]_n) \subseteq [\Lambda, \Lambda]_{np}$.

Definition 3.2. Let A be a graded category. Then we define $T_s A \subseteq A_A$ as the kernel of the map ξ^s_p. Let us define the graded subspace $K_{r,s} A \subseteq A_A$ by the equality

$$(K_{r,s} A)_n = \text{Ann}_{A_A}((T_s A)_{s-n}).$$

Here, for an algebra Λ, a Λ-bimodule M and $V \subseteq M$, we denote by $\text{Ann}_A(V)$ the set $\{a \in A \mid aV = V a = 0\}$. We will call $K_{r,s} A$ the (r, s)-th Kulshammer ideal of A and $K_r A = \cap_{s \in \mathbb{Z}} K_{r,s} A = \text{Ann}_{A_A}(T_r A)$ the r-th Kulshammer ideal of A. Also we will call $R_s A = \cap_{r \geq 0} K_{r,s} (A)$ the s-th Reynolds ideal of A and will call $\mathcal{R} A = \cap_{r \geq 0} K_{r,s} (A)$ the Reynolds ideal of A.

We say that $F : A \rightarrow A'$ is a degree preserving equivalence if F induces an isomorphism of graded spaces $F : A^{x}_y \rightarrow (A')^{x'}_{y'}$ for any $x, y \in A$, and for any $x' \in A'$ there exists an isomorphism $\xi_{x'} \in A^{x'}_{x'}$ of degree zero for some $x, x' \in A$.

Theorem 3.3. If A is a graded category and $s \in \mathbb{Z}$, then

$$A^A = K_{0,s} A \supseteq K_{1,s} A \supseteq \cdots \supseteq K_{r,s} A \supseteq \cdots \supseteq R_s A$$

is a decreasing sequence of graded ideals. In particular,

$$A^A = K_{0} A \supseteq K_{1} A \supseteq \cdots \supseteq K_{r} A \supseteq \cdots \supseteq \mathcal{R} A$$

is a decreasing sequence of graded ideals. Moreover, if $F : A \rightarrow A'$ is a degree preserving equivalence, then F induces an isomorphism of graded algebras $\varphi_F : A^A \rightarrow (A')^{A'}$ such that $\varphi_F(K_{r,s} A) = K_{r,s} A'$ for any $r \geq 0, s \in \mathbb{Z}$.

Proof. It follows directly from the definition that $R_s A \subseteq K_{r+1,s} A \subseteq K_{r,s} A$ for all $r \geq 0$. Since A^A is graded commutative, it is easy to see that $\bigoplus_{n \in \mathbb{Z}} (A^A_n \cap \text{Ann}_{A_A}(V_{s-n}))$ is a graded ideal of A^A for any graded A^A-bimodule M and any graded subbimodule $V \subseteq M$. For $f \in (A_A)_m$ such that $f^p = 0$, $\theta \in (A_A)_{d-m-n}$ we have $(\theta f)^p = (-1)^{m} \theta f^p = 0$, where $a = \frac{p(p^2-1)}{2} m(d - m - n)$, and hence $T_r A$ is a graded subbimodule of A_A. Thus, the first part of the theorem is proved.
Let us now prove the second part. We can choose a quasi inverse equivalence F' for F and natural isomorphisms $\varphi : \text{Id}_A \to FF'$ and $\beta : \text{Id}_{A'} \to FF'$ in such a way that α_x and $\beta_{x'}$ are of degree zero for all $x \in A$ and $x' \in A'$.

Suppose that $f = (f_x)_{x \in A} \in \Pi_{x \in A}(A^n_x)^n$ belongs to A^n_n. We define $\varphi_F(f)_{x'} = \beta_{x'}^{-1}F(f_{x'})_{x'}$. It is easy to see that $\varphi_F(f) \in (A^n_n)^{x'}$. It is clear also that $\varphi_F : A^n \to (A')^{n'}$ is a homomorphism of graded algebras. Let us define $\varphi_F^{-1} : (A')^{n'} \to A^n$ in the same way (using α instead of β). Take $f = (f_x)_{x \in A} \in A^n_n$. We have $f_{x'}F\alpha_x = \alpha_x f_x$ and $F'F(f_x)\alpha_x = \alpha_x f_x$ since f belongs to the center and α is a natural transformation. Hence, $f_{x'}F\alpha_x = F'F(f_x)\alpha_x$. Thus,

$$\varphi_F \varphi_F(f)_x = \alpha_x^{-1}F'(\beta_{x'}^{-1}F(f_{x'})\beta_{x'})\alpha_x$$

$$= \alpha_x^{-1}F'(\beta_{x'}^{-1}FF'(f_x)\beta_{F_x})\alpha_x = \alpha_x^{-1}F'F(f_x)\alpha_x = f_x.$$

Thus, $\varphi_F \varphi_F = \text{Id}_{A^n}$. Analogously, $\varphi_F \varphi_F^- = \text{Id}_{(A')^{n'}}$. Consequently, φ_F is an isomorphism.

Suppose now that $f = (f_x)_{x \in A} \in \Pi_{x \in A}(A^n_x)^n$ belongs to $(K_{r,s}A)_n$. Let us take some $u = (u_{x'})_{x' \in A'} \in (\oplus_{x' \in A'}(A^n_{x'})_{x'})_{x'}$ such that $u_{x'} \in [A', A']$. Let $(F'(x))^{-1}(x)$ be the inverse image of x, i.e. the set $\{x' \in A' \mid F'(x') = x\}$. We define $F'(u)_x = \sum_{x' \in (F'(x))^{-1}(x)} F'(u_{x'})$. By Lemma 3.1 we have $(F'(u)_x)' = \sum_{x' \in (F'(x))^{-1}(x)} F'(u_{x'})'$. Since $F'([A', A']) \subseteq [A, A]$, we see that $F'(u) \in T_{r,A}$. Then $f_{F'(u)} \in [A, A]$. As before, we have $f_{F'(u)}F'(u) \in [A', A']$, where $(F(f)F'(u)_{x'}) = \sum_{F'(u') = x'} F'(f_{F'(u')}F'(u')).$ Since

$$\sum_{y' \in A'} (F(f_{F'(y')}F'(u_{y'}) - \beta_{y'}^{-1}F(f_{F'(y')}F'(u_{y'})\beta_{y'})) \in [A', A']$$

and $F'(u_{y'})\beta_{y'} = \beta_{y'}u_{y'}$, we have

$$\varphi_F(f)u = F(f)F'(u) - \sum_{y' \in A'} (F(f_{F'(y')}F'(u_{y'}) - \beta_{y'}^{-1}F(f_{F'(y')}\beta_{y'}u_{y'})) \in [A', A'].$$

Consequently, $\varphi_F(f) \in (K_{r,s}A')_n$, i.e. $\varphi_F(K_{r,s}A) \subseteq K_{r,s}A'$. In the same way one can prove that $\varphi_F^{-1}(K_{r,s}A') = \varphi_F^{-1}(K_{r,s}A) \subseteq K_{r,s}A$, i.e. $\varphi_F(K_{r,s}A) = K_{r,s}A'$.

\square

Remark 3.4. Note that the map φ_F constructed in the proof does not depend on β and F', i.e. it is really induced by F. Indeed, if $\beta, \tilde{\beta} : \text{Id}_{A'} \to FF'$ are two natural isomorphisms, then $\tilde{\beta}^{-1}$ is a natural isomorphism from Id_A to itself and hence

$$(\tilde{\beta}^{-1})_{x'}F(f_{x'})_{x'} = F(f_{x'})_{x'}\tilde{\beta}_{x'}^{-1}\beta_{x'} = F(f_{x'})_{x'}\tilde{\beta}_{x'},$$

i.e. $\beta_{x'}^{-1}F(f_{x'})_{x'} = \tilde{\beta}_{x'}^{-1}F(f_{x'})_{x'}$. Now, if F'' is another quasi inverse of F, then there is a natural isomorphism $\gamma : F' \to F''$. Then $F(\gamma)\beta : \text{Id}_{A'} \to FF''$ is a natural isomorphism too and we have

$$(F(\gamma_{x'})_{x'})^{-1}F(f_{x'})_{x'}F(\gamma_{x'})_{x'} = \beta_{x'}^{-1}F(f_{x'}f_{x'}\gamma_{x'})_{x'}\beta_{x'} = \beta_{x'}^{-1}F(f_{x'})_{x'}\beta_{x'}$$

since $f \in A^n$.

8
Corollary 3.5. If A is a category with the automorphism Σ and $s \in \mathbb{Z}$, then
$$Z^*(A) = K_{0,s}(A/\Sigma) \supseteq K_{1,s}(A/\Sigma) \supseteq \cdots \supseteq K_{r,s}(A/\Sigma) \supseteq \cdots \supseteq R_s(A/\Sigma)$$
is a decreasing sequence of graded ideals. In particular,
$$Z^*(A) = K_{0}(A/\Sigma) \supseteq K_{1}(A/\Sigma) \supseteq \cdots \supseteq K_{r}(A/\Sigma) \supseteq \cdots \supseteq R(A/\Sigma)$$
is a decreasing sequence of graded ideals. Moreover, if A' with the automorphism Σ' is another category and there is an equivalence $F : A \rightarrow A'$ such that $F \Sigma \sim \Sigma' F$, then F induces an isomorphism of graded algebras $\varphi_F : Z^*(A) \rightarrow Z^*(A')$ such that $\varphi_F(K_r(A/\Sigma)) = K_r(A'/\Sigma')$.

Proof. Suppose that $\psi : \Sigma' \rightarrow F \Sigma$ is a natural isomorphism. It induces a natural isomorphism $\psi_n : (\Sigma')^n F \rightarrow F (\Sigma)^n$ for any $n \in \mathbb{Z}$. Then we define $F^*_\Sigma : (A/\Sigma) \rightarrow (A'/\Sigma')$ by the equality $F^*_\Sigma x = F x$ on objects and by the equality $F^*_\Sigma(f) = (\psi_n)^{-1} f(x) \in ((A'/\Sigma')^{\Sigma y}_n)^{\Sigma y}_n$ on morphisms $f \in ((A/\Sigma)^y_n) = A^{\Sigma y}_n$. It is easy to see that F^*_Σ is a degree preserving equivalence. Now the stated result follows from Theorem 3.3 and Lemma 2.9.

\[\square\]

4 Calabi-Yau categories

In this section we recall the definition of a (weakly) Calabi-Yau category and establish some dualities arising for such categories. We will give an alternative definition of Külsammer ideals for a Calabi-Yau category and show that Külsammer ideals in such categories satisfy additional properties.

Definition 4.1. Let A be a category with a fixed automorphism Σ and let d be some integer. The category A is called d-Calabi-Yau if A^x_y is finite dimensional for any $x, y \in A$ and there is a family of linear maps $tr_x : A^{\Sigma^d x}_x \rightarrow k$ ($x \in A$) such that

- the pairing $(\cdot, \cdot) : A^{\Sigma^d x}_x \times A^y_y \rightarrow k$ given by the formula $(f, g) = tr_x(fg)$ is nondegenerate, and

- for all $m \in \mathbb{Z}$, $g \in A^{\Sigma^m x}_x$, and $f \in A^{\Sigma^d-m x}_y$ one has
$$tr_x(\Sigma^{m}(f)g) = (-1)^{m(d-m)}tr_y(\Sigma^{d-m}(g)\Sigma^{m-m}(f)). \quad (4.1)$$

If the first condition is fulfilled and the second condition is true for $m = 0$, then A is called a weakly d-Calabi-Yau category. Usually Calabi-Yau categories are assumed to be triangulated and Σ is assumed to be the shift functor. For more details on Calabi-Yau categories see \cite{10}.

If A is a (weakly) d-Calabi-Yau category, then we define the map $tr_A : \oplus_{x \in A, n \in \mathbb{Z}} A^{\Sigma^n x}_x \rightarrow k$ by the equality
$$tr_A|_{A^{\Sigma^n x}_x} = \begin{cases} tr_x, & \text{if } n = d, \\ 0 & \text{otherwise.} \end{cases}$$
Lemma 4.2. Let A with the automorphism Σ be a weakly d-Calabi-Yau category. Then the map tr_A induces a map $tr_A : \text{Nat}_s(A) \to k$. If A is d-Calabi-Yau, then tr_A induces also a map $tr_A : \text{Ab}_s(A) \to k$.

Proof. If A is weakly Calabi-Yau, then $tr_A(fg) = tr_A(\Sigma^n(g)f)$ for $f \in A^{d+n}_x$ and $g \in A^d_x$ by definition. Thus, the first assertion is true. For the second assertion it suffices to show that $tr_A(f) = (-1)^{n+1}tr_A(\Sigma(f))$ for all $f \in A^{d+n}_x$. If $n \neq d$, then both sides are zero. For $n = d$, let us take $m = 1, y = \Sigma^{-1} x, g = \text{Id}_x$. By (4.1), we have

$$tr_A(\Sigma(f)) = tr_x(\Sigma(f)) = (-1)^{d-1}tr_y(f) = (-1)^{d+1}tr_A(f)$$

for all $f \in A^{\Sigma^{-d-1}x}$. Replacing x by Σx, we deduce the required equality.

Let us now recall the definitions of Hochschild-Mitchel homology and cohomology. Since in this paper we use this notion only for a graded bimodule over a nongraded category, we restrict our definition only to this case.

Definition 4.3. Let A be a nongraded category (i.e. a graded category with all morphisms of degree zero) and let M be a graded A-bimodule. For $n \geq 0$, we define the set of n-cochains

$$C^n(A, M) = \prod_{x_0, \ldots, x_n \in A} \text{Hom}(A^{x_0}_{x_1} \otimes \cdots \otimes A^{x_{n-1}}_{x_n}, M(x_0, x_n))$$

and the set of n-chains

$$C_n(A, M) = \bigoplus_{x_0, \ldots, x_n \in A} M(x_n, x_0) \otimes A^{x_0}_{x_1} \otimes \cdots \otimes A^{x_{n-1}}_{x_n}.$$

For $n \geq 0$, let us define the linear maps $d_{C^n(A, M)} : C^n(A, M) \to C^{n+1}(A, M)$ and $d_{C_n(A, M)} : C_{n+1}(A, M) \to C_n(A, M)$ by the equalities

$$d_{C^n(A, M)}(\alpha)(f_0 \otimes \cdots \otimes f_n) = f_0 \alpha(f_1 \otimes \cdots \otimes f_n) + \sum_{i=1}^{n} (-1)^i \alpha(f_0 \otimes \cdots \otimes f_{i-1}f_i \otimes \cdots \otimes f_n) + (-1)^{n+1} \alpha(f_0 \otimes \cdots \otimes f_{n-1})f_n,$$

$$d_{C_n(A, M)}(u \otimes f_0 \cdots \otimes f_n) = uf_0 \otimes f_1 \otimes \cdots \otimes f_n + \sum_{i=1}^{n} (-1)^i uf_0 \otimes f_0 \otimes \cdots \otimes f_{i-1}f_i \otimes \cdots \otimes f_n + (-1)^{n+1} uf_n \otimes f_0 \otimes \cdots \otimes f_{n-1},$$

where $\alpha \in C^n(A, M), u \in M(x, y)$ for some $x, y \in A$ and f_0, \ldots, f_n are morphisms in A such that the composition $f_0 \ldots f_n$ is a well-defined element of A^y_x. We define the n-th Hochschild-Mitchel cohomology and homology of A with coefficients in M by the equalities

$$\text{HH}^n(A, M) = \text{Ker} d_{C^n(A, M)}/\text{Im} d_{C^{n-1}(A, M)} \quad \text{and} \quad \text{HH}_n(A, M) = \text{Ker} d_{C_{n-1}(A, M)}/\text{Im} d_{C_n(A, M)}.$$
Remark 4.4. For more details on Hochschild-Mitchell cohomology and homology see [10], derived invariance of Hochschild-Mitchell homology and cohomology is proved in [7]. In general, the formulas for the differentials above have to be more complicated (see, for example, [14]), but in the case where A is nongraded the formulas above are valid. In fact, in this case we can even define $\operatorname{HH}_n(A, M)$ and $\operatorname{HH}^n(A, M)$ for a nongraded M and then set $\operatorname{HH}_n(A, M) = \bigoplus_{i \in \mathbb{Z}} \operatorname{HH}_n(A, M_i)$ and $\operatorname{HH}^n(A, M) = \bigoplus_{i \in \mathbb{Z}} \operatorname{HH}^n(A, M_i)$ for a graded bimodule M.

As usually, we have $\operatorname{HH}^0(A, M) = M^A$ and $\operatorname{HH}_0(A, M) = M_A$. Thus, by Lemmas 2.4 and 2.12 we have $\operatorname{Nat}^*(A, A/\Sigma) \cong \operatorname{HH}^0(A/\Sigma)$ and $\operatorname{Nat}_*(A) \cong \operatorname{HH}_0(A, A/\Sigma)$ for a category A with an automorphism Σ.

If M is a graded A-linear category, then the sets defined above carry a lot of additional structure. Here we need only the so-called contraction map

$$i : C^n(A, M) \to \operatorname{Hom}(C_n(A, M), C_{n-m}(A, M)).$$

In general i is defined for all integers $n \geq m$ and induces a well-defined map from $\operatorname{HH}^m(A, M)$ to $\operatorname{Hom}(\operatorname{HH}_n(A, M), \operatorname{HH}_{n-m}(A, M))$ that is denoted by i as well. In the present paper we need only the case $n = m$. Let us write i_α for the image of $\alpha \in C^n(A, M)$ in $\operatorname{Hom}(C_n(A, M), C_0(A, M))$ under the map i. Then $i : C^n(A, M) \to \operatorname{Hom}(C_n(A, M), C_0(A, M))$ can be defined by the equality

$$i_\alpha(u \otimes f_1 \otimes \cdots \otimes f_n) = u \circ \alpha(f_1 \otimes \cdots \otimes f_n)$$

for $\alpha \in C^n(A, M)$, $u \in M(x, y)$ and morphisms f_1, \ldots, f_n in A such that the composition $f_1 \ldots f_n$ is a well-defined element of A^n, where $x, y \in A$. As was mentioned above, i induces a well-defined map $i : \operatorname{HH}^n(A, M) \to \operatorname{Hom}(\operatorname{HH}_n(A, M), \operatorname{HH}_0(A, M))$, i.e. we have a map $i_\alpha : \operatorname{HH}_n(A, M) \to M_A$ for each $\alpha \in \operatorname{HH}^n(A, M)$.

Suppose now that Σ is an automorphism of A that acts on the graded bimodule M. Then there is an action of Σ on $C^n(A, M)$ and $C_n(A, M)$ defined by the equalities

$$(\Sigma \alpha)(f_1 \otimes \cdots \otimes f_n) = \Sigma(\alpha^{\Sigma^{-1}} f_1 \otimes \cdots \otimes \alpha^{\Sigma^{-1}} f_n) \quad \text{and} \quad \Sigma(u \otimes f_1 \otimes \cdots \otimes f_n) = \Sigma u \otimes f_1 \otimes \cdots \otimes f_n.$$

It is easy to see that this action induces an action of Σ on $\operatorname{HH}^n(A, M)$ and $\operatorname{HH}_n(A, M)$, respectively. As before, $a\Sigma$ acts on $C_n(A, M)$ and $\operatorname{HH}_n(A, M)$ for any $a \in k^*$. Moreover, i induces maps

$$i : C^n(A, M)^\Sigma \to \operatorname{Hom}(C_n(A, M)_{a\Sigma}, C_0(A, M)_{a\Sigma})$$

and

$$i : \operatorname{HH}^n(A, M)^\Sigma \to \operatorname{Hom}(\operatorname{HH}_n(A, M)_{a\Sigma}, (M_A)_{a\Sigma}).$$

There are gradings on $C^n(A, M)$ and $C_n(A, M)$ defined by the equalities $C^n(A, M)_i = C^n(A, M)_{i_1}$ and $C_n(A, M)_i = C_n(A, M)_{i_1}$. These gradings induce gradings on $\operatorname{HH}^n(A, M)$, $\operatorname{HH}_n(A, M)_{\Sigma}$, $\operatorname{HH}^n(A, M)_{\Sigma}$, $\operatorname{HH}_n(A, M)_{a\Sigma}$, and $\operatorname{HH}_n(A, M)_{a\Sigma}$. If V is a graded space, then we define V^* as a graded space with the degree i component $(V^*)_i = (V_{-i})^*$ for $i \in \mathbb{Z}$. If we fix some isomorphism $\Theta : X \to Y^*$ between graded spaces X and Y, then, for $U \subseteq Y$, we define $U^\perp = \{ x \in X \mid \Theta(x)[U] = 0 \}$. If $U \subseteq Y$ is a graded subspace, then it is easy to see that Θ induces an isomorphism from U^\perp to $(Y/U)^*$.

Since $(A/\Sigma)_A \cong \operatorname{Nat}_*(A)$ and $\left((A/\Sigma)_A \right)_{-\Sigma} \cong \operatorname{Ab}_*(A)$, we have a map $tr_A : (A/\Sigma)_A \to k$ in the case where A is weakly Calabi-Yau and a map $tr_A : \left((A/\Sigma)_A \right)_{-\Sigma} \to k$ in the case where A is Calabi-Yau.
Theorem 4.5. Let A with the automorphism Σ be a weakly d-Calabi-Yau category. Then, for any $n \geq 0$, the map $\Theta_n : HH^n(A, A/\Sigma) \to HH_n(A, A/\Sigma)^*[-d]$ defined by the equality $\Theta_n(\alpha) = tr_A \mathbf{i}_n$ for $\alpha \in HH^n(A, A/\Sigma)$ is an isomorphism of graded spaces. Moreover, if A is d-Calabi-Yau, then Θ_n induces an isomorphism of graded spaces $\Theta_n : HH^n(A, A/\Sigma)^\Sigma \to (HH_n(A, A/\Sigma)^\Sigma)^*[-d]$.

Proof. Let us consider the map $\Theta_n : C^n(A, A/\Sigma) \to C_n(A, A/\Sigma)^*[-d]$ defined by the equality $\Theta_n(\alpha) = tr_A \mathbf{i}_n$. Its i-th component equals to the composition of isomorphisms

$$
\prod_{x_0, \ldots, x_n \in A} \text{Hom}(A_{x_1}^{x_0} \otimes \cdots \otimes A_{x_n}^{x_{n-1}}, A_{x_n}^{\Sigma x_0}) \cong \prod_{x_0, \ldots, x_n \in A} \left(A_{x_n}^{\Sigma x_0} \otimes \text{Hom}(A_{x_1}^{x_0} \otimes \cdots \otimes A_{x_n}^{x_{n-1}}, k) \right)
$$

$$
\cong \prod_{x_0, \ldots, x_n \in A} \left((A_{x_0}^{\Sigma d-i x_n})^* \otimes (A_{x_1}^{x_0} \otimes \cdots \otimes A_{x_n}^{x_{n-1}})^* \right) \cong \left(\bigoplus_{x_0, \ldots, x_n \in A} A_{x_0}^{\Sigma d-i x_n} \otimes A_{x_1}^{x_0} \otimes \cdots \otimes A_{x_n}^{x_{n-1}} \right)^* ,
$$

where the isomorphism $A_{x_0}^{\Sigma x_0} \cong (A_{x_0}^{\Sigma d-i x_n})^*$ is induced by the pairing $(,) : A_{x_0}^{\Sigma d-i x_n} \times A_{x_0}^{\Sigma x_0} \to k$ defined by the equality $(f, g) = tr_x(\Sigma^i fg)$. Thus, Θ_n is an isomorphism.

Let us now prove that $\Theta_{n+1} d_{C^n(A, A/\Sigma)} = (d_{C_n(A, A/\Sigma)})^* \Theta_n$ for any $n \geq 0$. Fix some $\alpha \in C^n(A, A/\Sigma)$, $x, y \in A$, $u \in A/\Sigma(x, y)_j$, and some morphisms f_0, \ldots, f_n in A such that the composition $f_0 \ldots f_n$ is a well-defined element of A_y^x. Then

$$
(\Theta_{n+1} d_{C^n(A, A/\Sigma)}(\alpha))(u \otimes f_0 \otimes \cdots \otimes f_n) = tr_A (ud_{C^n(A, A/\Sigma)}(\alpha)(f_0 \otimes \cdots \otimes f_n))
$$

and

$$
((d_{C_n(A, A/\Sigma)})^* \Theta_n(\alpha))(u \otimes f_0 \otimes \cdots \otimes f_n) = tr_A \mathbf{i}_n d_{C_n(A, A/\Sigma)}(u \otimes f_0 \otimes \cdots \otimes f_n) .
$$

It is easy to see that

$$
ud_{C^n(A, A/\Sigma)}(\alpha)(f_0 \otimes \cdots \otimes f_n) - \mathbf{i}_n d_{C_n(A, A/\Sigma)}(u \otimes f_0 \otimes \cdots \otimes f_n)
$$

$$
= (-1)^{n+1} (u \alpha(f_0 \otimes \cdots \otimes f_{n-1}) f_n - f_n u \alpha(f_0 \otimes \cdots \otimes f_{n-1})).
$$

If $i + j \neq d$, then it follows from the definition of tr_A that

$$
tr_A(u \alpha(f_0 \otimes \cdots \otimes f_{n-1}) f_n) = tr_A(f_n u \alpha(f_0 \otimes \cdots \otimes f_{n-1})) = 0 .
$$

For $i + j = d$, we have

$$
tr_A(u \alpha(f_0 \otimes \cdots \otimes f_{n-1}) f_n) = tr_A(f_n u \alpha(f_0 \otimes \cdots \otimes f_{n-1}))
$$

by the weak Calabi-Yau property. Thus, the maps Θ_i induce an isomorphism of graded spaces

$$
\Theta_n : HH^n(A, A/\Sigma) \cong \text{Ker}(d_{C_n(A, A/\Sigma)})^*[d]/\text{Im}(d_{C_{n-1}(A, A/\Sigma)})^*[d] \cong HH_n(A, A/\Sigma)^*[d]
$$

for each $n \geq 0$. So the first part of the theorem is proved.

Suppose now that A is d-Calabi-Yau. Note that it follows from the definition of tr_A that $\Theta_n(\alpha)(\gamma) = 0$ for $\alpha \in C^n(A, A/\Sigma)$ and $\gamma \in C_n(A, A/\Sigma)$ if $i + j \neq d$. Then, for
\(\alpha \in C^n(A, A/\Sigma), \ x, y \in A, \ u \in A/\Sigma(x, y), \) and morphisms \(f_1, \ldots, f_n \) in \(A \) such that the composition \(f_1 \ldots f_n \) is a well-defined element of \(A^*_x \), we have

\[
\Theta_n(\alpha)(u \otimes f_1 \otimes \ldots f_n + \Sigma(u \otimes f_1 \otimes \ldots f_n)) = tr_A(u \alpha(f_1 \otimes \ldots f_n) + \Sigma u(\Sigma f_1 \otimes \ldots \Sigma f_n)) = tr_A(u(\alpha - \Sigma^{-1}\alpha)(f_1 \otimes \ldots f_n)) = \Theta_n(\alpha - \Sigma^{-1}\alpha)(u \otimes f_1 \otimes \ldots f_n).
\]

This holds by the Calabi-Yau property and since \(\Sigma \in \gamma \) have (\(U_n \)). Let us consider \(U_n \) and \(\gamma \). It is clear that \(K \) is perfect. Then, for each \(r \geq 0 \), there exists a unique linear map \(\xi_p : Z^*(A) \to Z^*(A) \) such that \((\xi_p f, g)^{\Sigma} = (f, \xi_p g) \) for all \(f \in Z^*(A) \) and \(g \in Ab_s(A) \). Moreover, \(K_r(A/\Sigma) = \text{Im} \xi_r \).

Lemma 4.6. Let \(A \) with the automorphism \(\Sigma \) be a \(d \)-Calabi-Yau category. Then \(K_r(A/\Sigma) = K_{r,d}(A/\Sigma) = T_r(A/\Sigma)^\perp \).

Proof. It is clear that \(K_r(A/\Sigma) \subseteq K_{r,d}(A/\Sigma) \subseteq T_r(A/\Sigma)^\perp \). Let us prove that \(T_r(A/\Sigma)^\perp \subseteq K_r(A/\Sigma) \). Suppose that \(\eta \in Z^m(A) \) does not belong to \(K_r(A/\Sigma) \). Then there is \(f \in Ab_m(A) \) such that \(f^{\Theta^r} = 0 \) and \(\eta f \neq 0 \). Then there exists \(\theta \in Z^{d-m-n}(A) \) such that

\[
0 \neq (\theta, \eta f) = tr_A(\theta \eta f) = (-1)^{n(d-m-n)}tr_A(\eta \theta f) = (-1)^{n(d-m-n)}(\eta, \theta f).
\]

Since \(\theta f \in T_r(A/\Sigma) \), we have \(\eta \notin T_r(A/\Sigma)^\perp \). Consequently, \(K_r(A/\Sigma) = T_r(A/\Sigma)^\perp \).

Lemma 4.6 gives an alternative definition of Külshammer ideals for a Calabi-Yau category. In particular, it implies that \(T_r(A/\Sigma)^\perp \) does not depend on the choice of \(\Theta_{tr} \). As usually, such a definition can be reformulated in terms of the adjoint map.

Proposition 4.7. Let \(A \) with the automorphism \(\Sigma \) be a \(d \)-Calabi-Yau category. Assume that the field \(k \) is perfect. Then, for each \(r \geq 0 \), there is a unique linear map \(\zeta_r : Z^*(A) \to Z^*(A) \) such that \((\zeta_r f, g)^{\Sigma} = (f, \zeta_r g) \) for all \(f \in Z^*(A) \) and \(g \in Ab_s(A) \). Moreover, \(K_r(A/\Sigma) = \text{Im} \zeta_r \).
such that k is an isomorphism for $u \in (\text{Ab}_n(A))^\bullet$. The equality that ζ has to satisfy can be rewritten in the form $\Theta_{tr} \zeta_r = (\phi_r^{-1})_s(\xi_p^r)^* \Theta_{tr}$. Thus, the unique map satisfying the required condition is $\zeta_r = \Theta_{tr}^{-1}((\phi_r^{-1})_s(\xi_p^r)^*) \Theta_{tr}$. Note that $(\phi_r^{-1})_s(\xi_p^r)^*(u) = 0$ for $u \in (\text{Ab}_n(A))^\bullet$ if $p^r \nmid n$ and hence $\zeta_r(f) = 0$ for $f \in Z^\bullet(A)$ if $p^r \nmid d - m$.

Let us now prove that $K^r(A/\Sigma) = \text{Im} \zeta_r$. It is clear that $\text{Im} \zeta_r \subseteq (\text{Ker} \xi_p^r)_m$. Let us prove the inverse inclusion. Note that $\Theta_{tr}(\text{Im} \zeta_r) = \text{Im} ((\phi_r^{-1})_s(\xi_p^r)^* \Theta_{tr} = \text{Im} ((\phi_r^{-1})_s(\xi_p^r)^*)$. Let us prove that $\Theta_{tr}((\text{Ker} \xi_p^r)_m) \subseteq \text{Im} ((\phi_r^{-1})_s(\xi_p^r)^*)$. Suppose that $h \in \Theta_{tr}((\text{Ker} \xi_p^r)_m) \subseteq (\text{Ab}_{d-m}(A))^\bullet$.

Let $u_i, i \in I \cup J$ be a basis of $\text{Ab}_{d-m}(A)$ such that u_i, $i \in J$ is a basis of $\text{Ker} \xi_p^r|_{\text{Ab}_{d-m}(A)}$. Then $(\xi_p^r(u_i), i \in I$ is a set of linearly independent elements and there exists $u \in (\text{Ab}_{d-m})^\bullet$ such that $u \xi_p^r(u_i) = \phi_r h(u_i)$. Then $h = (\phi_r^{-1})_s(\xi_p^r)^* u \in \text{Im} ((\phi_r^{-1})_s(\xi_p^r)^*)$. Hence, $K^*(A/\Sigma) = \text{Im} \zeta_r$ and the proposition is proved.

\[\Box \]

5. Küllshammer ideals in the Hochschild cohomology

In this section we will define Küllshammer ideals in the Hochschild cohomology of an algebra. From here on Λ denotes a k-algebra.

Let DA be the derived category of the module category over Λ and $K^b_p \Lambda$ be the full subcategory of DA formed by objects isomorphic to complexes of finitely generated projective modules. Let $[1] : DA \rightarrow DA$ be the shift functor. Then we can define the graded center of $K^b_p \Lambda$ with the automorphism $[1]$. Let us recall the definition of the homomorphism $\chi_A : HH^*(\Lambda) \rightarrow Z^*(K^b_p \Lambda)$, which is called the characteristic homomorphism. It is well known that there is an isomorphism of algebras $HH^*(\Lambda) \cong \oplus_{n \geq 0} \text{Hom}_{D(A^op \otimes \Lambda)}(\Lambda, \Lambda[n])$ and so any element of $HH^*(\Lambda)$ corresponds to a unique morphism $f \in \text{Hom}_{D(A^op \otimes \Lambda)}(\Lambda, \Lambda[n])$. Then, for each $X \in K^b_p \Lambda$, we define $\chi_A(f)_X = \text{Id}_X \otimes f : X \cong X \otimes \Lambda \rightarrow X \otimes \Lambda[n] \cong X[n]$.

It is not hard to see that $\chi_A(f)$ is a natural transformation satisfying the equality $\chi_A(f)_{X[1]} = (-1)^n \chi_A(f)_X[1]$. Thus, $\chi_A : HH^*(\Lambda) \rightarrow Z^*(K^b_p \Lambda)$ is a homomorphism of graded algebras.

It is well known that $HH^*(\Lambda)$ is invariant under derived equivalences. Since $K^b_p \Lambda$ is invariant under derived equivalences too, it is clear that $Z^*(K^b_p \Lambda)$ is a derived invariant. In fact, we can say a little more. Let us recall that by [17] if Λ and Γ are derived equivalent algebras over a field, then there exist $U \in D(\Lambda^op \otimes \Gamma)$ and $V \in D(\Gamma^op \otimes \Lambda)$ such that $U \otimes \Lambda V \cong \Lambda$ in $D(\Lambda^op \otimes \Lambda)$ and $V \otimes \Lambda U \cong \Gamma$ in $D(\Gamma^op \otimes \Gamma)$. In this case $F_U = - \otimes \Lambda U$ and $F_V = - \otimes \Lambda V$ induce a pair of quasi inverse equivalences between $K^b_p \Lambda$ and $K^b_p \Gamma$. Moreover, U and V induce an isomorphism $\varphi_{U,V} : HH^*(\Lambda) \rightarrow HH^*(\Gamma)$ in the following way. For $f \in \text{Hom}_{D(A^op \otimes \Lambda)}(\Lambda, \Lambda[n])$ we define $\varphi_{U,V}(f) = \alpha_{U,V}^{-1}[n](\text{Id}_V \otimes \Lambda f \otimes \Lambda \text{Id}_U)\alpha_{U,V}$, where $\alpha_{U,V} : \Gamma \rightarrow V \otimes \Lambda U$ is an isomorphism and we use the identifications $V \otimes \Lambda U \cong V \otimes \Lambda A \otimes \Lambda U$ and $V \otimes \Lambda U[n] \cong V \otimes \Lambda \Lambda[n] \otimes \Lambda U$. Note also that due to Corollary [15], the equivalence F_U induces an isomorphism $\varphi_{F_U} : Z^*(K^b_p \Lambda) \rightarrow Z^*(K^b_p \Gamma)$.

14
Lemma 5.1. Let Λ, Γ, U and V be as above. Then $\varphi_{F_U} \chi_\Lambda = \chi_\Gamma \varphi_{U,V}$.

Proof. For $X \in K^b_p \Gamma$, we define
$$\alpha_X = \text{Id}_X \otimes_{\Gamma} \alpha_{U,V} : X \cong X \otimes_{\Gamma} \Gamma \to X \otimes_{\Gamma} V \otimes_{\Lambda} U = F_U F_V(X).$$

Then $\alpha : \text{Id}_{K^b_p \Gamma} \to F_U F_V$ is a natural isomorphism. Using the construction of φ_{F_U} from Theorem 3.3, we get, for $f \in \text{Hom}_{D(A^{op} \otimes \Lambda)}(\Lambda, \Lambda[n]) \cong \text{HH}^* (\Lambda)$ and $X \in K^b_p \Gamma$, that
$$(\varphi_{F_U} \chi_\Lambda (f))_X = (\text{Id}_X \otimes_{\Gamma} \alpha_{U,V}^{-1} [n]) (\chi_\Lambda (f) \chi_{\otimes_{\Gamma} V} \otimes_{\Lambda} \text{Id}_U)(\text{Id}_X \otimes_{\Gamma} \alpha_{U,V})$$
$$= (\text{Id}_X \otimes_{\Gamma} \alpha_{U,V}^{-1} [n]) (\text{Id}_X \otimes_{\Gamma} f \otimes_{\Lambda} \text{Id}_U)(\text{Id}_X \otimes_{\Gamma} \alpha_{U,V})$$
$$= \text{Id}_X \otimes_{\Gamma} (\alpha_{U,V}^{-1} [n] (\text{Id}_V \otimes f \otimes \text{Id}_U) \alpha_{U,V}) = (\chi_\Gamma \varphi_{U,V} (f))_X.$$

\[\square \]

Lemma 5.1 immediately implies derived invariance of the following ideal in the Hochschild cohomology.

Corollary 5.2. The ideal $\operatorname{Ker}(\chi_\Lambda) \subseteq \text{HH}^* (\Lambda)$ is invariant under derived equivalences.

For any $s \in \mathbb{Z}$, Corollary 3.5 gives a decreasing sequence of ideals
$$Z^*(K^b_p \Lambda) = K_{0,s} (K^b_p \Lambda/[1]) \supseteq K_{1,s} (K^b_p \Lambda/[1]) \supseteq \cdots \supseteq K_{r,s} (K^b_p \Lambda/[1]) \supseteq \cdots \supseteq R_s (K^b_p \Lambda/[1]).$$

Definition 5.3. The (r, s)-th higher Kulshammer ideal $\text{HK}^*_{r,s} (\Lambda)$, the r-th higher Kulshammer ideal $\text{HK}^*_r (\Lambda)$, the s-th higher Reynolds ideal $\text{HR}^*_s (\Lambda)$ and the higher Reynolds ideal $\text{HR}^* (\Lambda)$ of Λ are the ideals in $\text{HH}^* (\Lambda)$ defined by the equalities
$$\text{HK}^*_{r,s} (\Lambda) = \chi_\Lambda^{-1} (K_{r,s} (K^b_p \Lambda/[1])), \quad \text{HK}^*_r (\Lambda) = \chi_\Lambda^{-1} (K_r (K^b_p \Lambda/[1])),$$
$$\text{HR}^*_s (\Lambda) = \chi_\Lambda^{-1} (R_s (K^b_p \Lambda/[1])), \quad \text{and} \quad \text{HR}^* (\Lambda) = \chi_\Lambda^{-1} (R(K^b_p \Lambda/[1])).$$

Theorem 5.4. If Λ is an algebra and s is an integer, then
$$\text{HH}^* (\Lambda) = \text{HK}^*_{0,s} (\Lambda) \supseteq \text{HK}^*_1 (\Lambda) \supseteq \cdots \supseteq \text{HK}^*_s (\Lambda) \supseteq \cdots \supseteq \text{HR}^*_s (\Lambda)$$
is a decreasing sequence of graded ideals. In particular,
$$\text{HH}^* (\Lambda) = \text{HK}^*_0 (\Lambda) \supseteq \text{HK}^*_1 (\Lambda) \supseteq \cdots \supseteq \text{HK}^*_s (\Lambda) \supseteq \cdots \supseteq \text{HR}^* (\Lambda)$$
is a decreasing sequence of graded ideals. Moreover, if Γ is derived equivalent to Λ, then there is an isomorphism of graded algebras $\varphi : \text{HH}^* (\Lambda) \to \text{HH}^* (\Gamma)$ such that $\varphi (\text{HK}^*_{r,s} (\Lambda)) = \text{HK}^*_{r,s} (\Gamma)$.

Proof. $\text{HK}^*_{r,s} (\Lambda)$ is an ideal, since it is an inverse image of the ideal $K_{r,s} (K^b_p \Lambda/[1])$ under the algebra homomorphism χ_Λ. All inclusions follow from the corresponding inclusions for the ideals in $Z^*(K^b_p \Lambda)$.

Let now $U \in D(\Lambda^{op} \otimes \Gamma)$ and $V \in D(\Gamma^{op} \otimes \Lambda)$ be as above. By Lemma 5.1 and Corollary 3.5, we have
$$\chi_\Gamma \varphi_{U,V} (\text{HK}^*_{r,s} (\Lambda)) = \varphi_{F_U} \chi_\Lambda (\text{HK}^*_{r,s} (\Lambda)) \subseteq \varphi_{F_U} (K_{r,s} (K^b_p \Lambda/[1])) = K_{r,s} (K^b_p \Gamma/[1]),$$
i.e. $\varphi_{U,V} (\text{HK}^*_{r,s} (\Lambda)) \subseteq \text{HK}^*_{r,s} (\Gamma)$, and
$$\chi_\Lambda \varphi_{U,V} (\text{HK}^*_{r,s} (\Gamma)) = \varphi_{F_U} \chi_\Gamma (\text{HK}^*_{r,s} (\Gamma)) \subseteq \varphi_{F_U} (K_{r,s} (K^b_p \Gamma/[1])) = K_{r,s} (K^b_p \Lambda/[1]),$$
i.e. $\varphi_{U,V}^{-1} (\text{HK}^*_{r,s} (\Gamma)) \subseteq \text{HK}^*_{r,s} (\Lambda)$. Thus, $\varphi_{U,V}$ satisfies the required conditions as desired.

\[\square \]
6 Zero degree

In this section we fix some algebra Λ over a field k of characteristic p. We will be considering the finite dimensional case, but the first construction is valid for any algebra. We define $[\Lambda, \Lambda] = \{ab - ba \mid a, b \in \Lambda\}$. It is well known and can be proved analogously to Lemma 3.1 that the map $\xi_p : \Lambda \to \Lambda$ defined by the equality $\xi_p(a) = a^p$ for $a \in \Lambda$ induces a well defined map $\xi_p : \Lambda/[[\Lambda, \Lambda] \to \Lambda/[[\Lambda, \Lambda]$, i.e. an endomorphism of $\text{HH}_0(\Lambda)$.

Let us recall the notion of the so-called Hattori-Stallings trace (see [6, 18, 14]). For the map $f \in \text{End}_\Lambda(\Lambda^n)$, we define $\text{tr}(f) = \sum_{i=1}^n \pi_i(f(e_i))$, where $e_i \in \Lambda^n$ is an element that has 1 in the i-th component and zeros in all others, and $\pi_i : \Lambda^n \to \Lambda/[[\Lambda, \Lambda]$ is the composition of the canonical projection to the i-th component and the canonical projection $\Lambda \to \Lambda/[[\Lambda, \Lambda]$. For a finitely generated projective module P and $f \in \text{End}_\Lambda(P)$, we choose some pair of maps $\iota : P \to \Lambda^n$ and $\pi : \Lambda^n \to P$ such that $\pi \iota = 1_P$ and define $\text{tr}(f) = \text{tr}(\iota \pi f)$. One can check that this definition does not depend on ι and π. Now, for a bounded complex C with finitely generated projective terms and a map $f \in \text{End}_{K^b_p}(C)$, we define $\text{tr}(f) = \sum_{i\in \mathbb{Z}} (-1)^i \text{tr}(f_i)$, where f_i is the i-th component of f. Among other $\text{tr}(f)$ has the following properties: $\text{tr}(f + h) = \text{tr}(f) + \text{tr}(h)$, $\text{tr}(fh) = \text{tr}(hf)$. One can check that $\text{tr} : \bigoplus_{i \in \mathbb{Z}} K^b_p(\Lambda) \to \Lambda/[[\Lambda, \Lambda]$ is a well-defined map that, moreover, induces a map $\text{tr} : \text{Ab}_0(K^b_p(\Lambda)) \to \Lambda/[[\Lambda, \Lambda]$. One can easily check also that there is a well defined map $\phi : \Lambda/[[\Lambda, \Lambda] \to \text{Ab}_0(K^b_p(\Lambda))$ that sends the class of $a \in \Lambda$ to the element $\phi(a) \in \bigoplus_{i \in \mathbb{Z}} K^b_p(\Lambda)$ that has only one nonzero component $\phi(a)_i : \Lambda \to \Lambda$ defined by the equality $\phi(a)_i(1_A) = a$. Note that $\Lambda/[[\Lambda, \Lambda]$ and $\text{Ab}_0(K^b_p(\Lambda))$ are $\text{Z}(\Lambda)$-bimodules, where the second $\text{Z}(\Lambda)$-bimodule structure is induced by the inclusion $\chi_\Lambda : \text{Z}(\Lambda) \to \text{Z}^0(\Lambda)$.

Lemma 6.1. The maps ϕ and tr are homomorphisms of $\text{Z}(\Lambda)$-bimodules such that $\xi_p \phi = \phi \xi_p$, $\text{tr} \xi_p = \xi_p \text{tr}$ and $\text{tr} \phi = \text{Id}_{\text{HH}_0(\Lambda)}$.

Proof. All the assertions can be easily verified.

Let us now describe $\text{Ab}_0(K^b_p(\Lambda))$ for a finite dimensional algebra Λ. This will allow us to obtain alternative descriptions of $\text{HK}^0_{r,0}(\Lambda)$ and $\text{HR}^0_{r,0}(\Lambda)$. Let us consider the set of indecomposable objects $U \in K^b_p(\Lambda)$ that are not isomorphic to direct summands of Λ and satisfy the condition $\max_{x_i(U) \neq 0} i = 0$. Let us choose one object in each isomorphism class contained in this set and denote by C the obtained collection of objects of $K^b_p(\Lambda)$.

Theorem 6.2. Let Λ be a finite dimensional algebra. Then $\text{Ab}_0(K^b_p(\Lambda)) = \text{Im} \phi \oplus \bigoplus_{x \in C} kT_x$, where T_x denotes the class of Id_x in $\text{Ab}_0(K^b_p(\Lambda))$. In particular, $\text{Ker} \text{tr} = \bigoplus_{x \in C} k(T_x - \phi \text{tr}(T_x))$.

Proof. Let us prove that $\text{Im} \phi \oplus \bigoplus_{x \in C} kT_x$ is really a subspace of $\text{Ab}_0(K^b_p(\Lambda))$, i.e. that if $f + \sum_{i=1}^k a_i T_{x_i} = 0$ for some $f \in \text{Im} \phi$, $a_i \in k$ and distinct $x_i \in C$ ($1 \leq i \leq k$), then $f = 0$ and $a_i = 0$ for all $1 \leq i \leq k$. Since ϕ is injective, it is enough to show that $\sum_{i=1}^k a_i T_{x_i} \notin \text{Im} \phi$. The proof is similar to the proof of Lemma 3.1.
if at least one of the elements \(a_i \) is nonzero. We may assume that \(a_1 \neq 0 \). Let us consider \(I \subseteq \oplus_{x \in K_p^b} (K_p^b)^x \) generated by all the nilpotent maps and all the maps that can be factored throw an indecomposable element not isomorphic to an element of the form \(x_1[i] \) (\(i \in \mathbb{Z} \)). Then it is easy to see that any element \(g \), whose class in \(\text{Ab}_0(K_p^b) \) coincides with the class of \(\sum_{i=1}^{k} a_i \mathcal{T}_{x_i} \), can be represented in the form

\[
g = \sum_{x \equiv x_1, i \in \mathbb{Z}} c_{x,i} \text{Id}_{x[i]} + T
\]

for some \(T \in I \) and \(c_{x,i} \in k \) almost all zero such that \(\sum_{x \equiv x_1, i \in \mathbb{Z}} (-1)^i c_{x,i} = a_0 \). It is easy to see that \(g \neq 0 \).

Now, note that any element of \(\text{Ab}_0 \) can be represented by \((f_x)_{x \in K_p^b} \in \oplus_{x \in K_p^b} (K_p^b)^x \) such that \(f_x = 0 \) for \(x \notin C \cup \{ \Lambda \} \). Indeed, if \(x = y \oplus z \), then, for any \(f : x \rightarrow x \), we have

\[
\bar{f} = \bar{f}((\pi_y y + \pi_z z)) = \bar{f}_y \pi_y + \bar{f}_z \pi_z,
\]

where \(\pi_y : x \rightarrow y, \pi_z : x \rightarrow z \), \(\bar{f}_y : y \rightarrow x, \bar{f}_z : z \rightarrow x \) are the canonical projections and inclusions, and \(\pi \) denotes the class of \(a \) in \(\text{Ab}_0(K_p^b) \). Thus, we may assume that \(f_x = 0 \) for any decomposable \(x \). Then, due to the equality \(\bar{f} + \bar{f}[i] = 0 \), we may assume that \(f_x = 0 \) if \(\max \ i \neq 0 \). Finally, for any \(x \) such that \(f_x \) is still nonzero, we can choose an isomorphism \(\alpha : x \cong y \) \((y \in C) \) or a direct inclusion \(\alpha : x \hookrightarrow \Lambda \) and change \(f_x \) by \(\alpha f_x \beta \), where \(\beta \) is such a map that \(\beta \alpha = \text{Id}_x \).

The class of any element \(f \in (K_p^b)^\Lambda \) is obviously contained in \(\text{Im} \phi \). Let us now take \(U \in C \). We may assume that the differential \(d_U \) of \(U \) has image contained in \(U J_A \), where \(J_A \) is the Jacobson radical of \(\Lambda \). Since \(\text{End}_{K_p^b}(U) \) is a local algebra, any \(f \in (K_p^b)^U \) can be represented in the form \(f = a_U \text{Id}_U + f_N \), where \(f_N \) is nilpotent, \(a_U \in k \). Thus, it remains to show that \(\bar{f} \in \text{Im} \phi \) for any nilpotent \(f \in (K_p^b)^U \). Since we assume that \(\text{Im} d_U \subseteq U J_A \), it is easy to show that all the components of \(f \) are nilpotent. Let us prove that \(\bar{f} \in \text{Im} \phi \) using induction on the length of \(U \). The assertion is obvious if \(U \) has only one nonzero term. Suppose that the assertion holds for complexes of length \(n \) and \(U \) has length \(n + 1 \), i.e.

\[
U = (\cdots \rightarrow 0 \rightarrow U_{-n} \xrightarrow{d_{-n}} U_{-n+1} \xrightarrow{d_{-n+1}} \cdots \rightarrow U_{-1} \xrightarrow{d_0} U_0 \rightarrow 0 \rightarrow \cdots),
\]

and \(f \) has components \(f_{-n}, \ldots, f_0 \). Let us prove by induction that the class of \(f \) in \(\text{Ab}_0(K_p^b) \) equals to the class of the endomorphism of \(U(i) \) with components \(f_{-n}, \ldots, f_0 \), where

\[
U(i) = (\cdots \rightarrow 0 \rightarrow U_{-n} \xrightarrow{d_{-n} f^i_{-n}} U_{-n} \xrightarrow{d_{-n+1}} \cdots \xrightarrow{d_1} U_{-1} \xrightarrow{d_0} U_0 \rightarrow 0 \rightarrow \cdots).
\]

The assertion is vacuous for \(i = 0 \). For the induction step, it is enough to represent the map with components \(f_{-n}, \ldots, f_0 \) from \(U(i - 1) \) to itself as the composition of the map with components \(\text{Id}_{U_{-n}}, f_{-n}, \ldots, f_0 \) from \(U(i - 1) \) to \(U(i) \) and the map with components \(f_{-n}, \text{Id}_{U_{-1}}, \ldots, \text{Id}_{U_0} \) from \(U(i) \) to \(U(i - 1) \). Since the map \(f_{-n} \) is nilpotent,

\[
U(i) = U_{-n}[n] \oplus (\cdots \rightarrow 0 \rightarrow U_{-n} \xrightarrow{d_{-n}} U_{-n} \xrightarrow{d_{-n+1}} \cdots \xrightarrow{d_1} U_{-1} \xrightarrow{d_0} U_0 \rightarrow 0 \rightarrow \cdots)
\]

for big enough \(i \), and the induction hypothesis implies \(\bar{f} \in \text{Im} \phi \).
Definition 6.3. The r-th Külsheimer ideal $K_r\Lambda$ ($n \geq 0$) is the set of such $a \in Z(\Lambda)$ that $ab \in [\Lambda, \Lambda]$ for all $b \in \Lambda$ such that $b^r \in [\Lambda, \Lambda]$. The Reynolds ideal of Λ is the set $R\Lambda = \bigcap_{r \geq 0} K_r\Lambda$.

It is easy to see that

$$Z(\Lambda) = K_0\Lambda \supseteq K_1\Lambda \supseteq \cdots \supseteq K_r\Lambda \supseteq \cdots \supseteq R\Lambda$$

is a decreasing sequence of ideals. It is also not difficult to prove that

$$R\Lambda = \{a \in Z(\Lambda) \mid aJ_\Lambda \subseteq [\Lambda, \Lambda]\}$$

if Λ is finite dimensional, where J_Λ is the Jacobson radical of Λ. Now we are ready to describe the ideals $HK^0_{r,0}$. Λ

Corollary 6.4. If Λ is a finite dimensional algebra, then $HK^0_{r,0}(\Lambda) = K_r\Lambda$ for any $r \geq 0$. In particular, $HR^0_{r,0}(\Lambda) = R\Lambda$ in this case.

Proof. Since ϕ is injective and respects ξ_p, we have by definition

$$K_r\Lambda = \text{Ann}_{Z(\Lambda)} \text{Ker}(\xi_p^r)^r = \text{Ann}_{Z(\Lambda)}(\text{Ker}(\xi_p^r)^r \cap \text{Im } \phi)$$

and

$$HK^0_{r,0}(\Lambda) = \text{Ann}_{Z(\Lambda)} \text{Ker}(\xi_p^r)^r$$

where ξ_p^Λ denotes $\xi_p : \Lambda/[[\Lambda, \Lambda] \to \Lambda/[[\Lambda, \Lambda]])$ and ξ_p^{Ab} denotes $\xi_p : \text{Ab}_0(K^b_p\Lambda) \to \text{Ab}_0(K^b_p\Lambda)$. By Theorem 6.2 and since $\xi_p^{Ab}(\text{Im } \phi) \subseteq \text{Im } \phi$ we have $\text{Ker}(\xi_p^{Ab})^r \subseteq \text{Im } \phi$, and hence the assertion follows.

Corollary 6.5. If Λ and Γ are derived equivalent finite dimensional algebras, then there exists an isomorphism $\varphi : Z(\Lambda) \cong Z(\Gamma)$ such that $\varphi(K_r\Lambda) = K_r\Gamma$ for any $r \geq 0$ and $\varphi(R\Lambda) = R\Gamma$.

Proof. Follows from Theorem 5.4 and Corollary 6.4.

Remark 6.6. It follows from Corollary 6.5 that the set $R\Lambda = \{a \in Z(\Lambda) \mid aJ_\Lambda \subseteq [\Lambda, \Lambda]\}$ is an ideal in $Z(\Lambda)$ invariant under derived equivalences if Λ is an algebra over a field of characteristic p. In fact, our argument can be adopted to prove the derived invariance of this ideal for a finite dimensional algebra over a field of characteristic 0 as well. For this one uses the fact, that $R\Lambda$ is the annihilator of the set of nilpotent elements in $\text{Ab}_0(K^b_p\Lambda)$.

Let us recall the classical definition of Külsheimer ideals.

Definition 6.7. The finite dimensional algebra Λ is called symmetric if there is a nondegenerate bilinear form $(,) : \Lambda \times \Lambda \to k$ such that $(ab, c) = (a, bc)$ and $(a, b) = (b, a)$ for all $a, b, c \in \Lambda$.

18
For a symmetric algebra \(\Lambda \), the \(r \)-th classical Küllshammer ideal \(K_r^\text{cl} \Lambda \) \((r \geq 0)\) is the set of \(a \in \Lambda \) such that \((a, b) = 0\) for all \(b \in \Lambda \) such that \(b^r \in [\Lambda, \Lambda] \). It is known that
\[
\text{Z}(\Lambda) = K_0^\text{cl} \Lambda \supseteq K_1^\text{cl} \Lambda \supseteq \cdots \supseteq K_r^\text{cl} \Lambda \supseteq \cdots \supseteq R\Lambda
\]
is a decreasing sequence of ideals. Moreover, if the algebra \(\Gamma \) is derived equivalent to \(\Lambda \), then \(\Gamma \) is symmetric \([17]\) and there is an isomorphism from \(\text{Z}(\Lambda) \) to \(\text{Z}(\Gamma) \) that maps \(K_r^\text{cl} \Lambda \) to \(K_r^\text{cl} \Gamma \) for any \(r \geq 0 \) \([20]\). The later fact can be recovered from the following lemma, the proof is analogous to the proof of Lemma \([4,6]\).

Lemma 6.8. If \(\Lambda \) is symmetric, then \(K_r^\text{cl} \Lambda = K_r \Lambda \) for any \(r \geq 0 \).

The following lemma is well known \([3]\).

Lemma 6.9. If \(\Lambda \) is a symmetric algebra, then \(K_p^b \Lambda \) is a 0-Calabi-Yau category.

Corollary 6.10. If \(\Lambda \) is symmetric, then \(HK_0^b(\Lambda) = K_r \Lambda \) for any \(r \geq 0 \). In particular, \(HR^0(\Lambda) = R\Lambda \) is the socle of the algebra \(\Lambda \).

Proof. Follows from Lemmas \([4,6]\) and \([6,8]\) and Corollary \([6,4]\) \(\square \)

Remark 6.11. Let \(\Lambda \) be symmetric. The bilinear form \((,): \Lambda \times \Lambda \to k\) induces a nondegenerate bilinear form \((,): HH^*(\Lambda) \times HH_*(\Lambda)\) by the equality \((f, u) = \varepsilon(f \preceq u)\). Here the map \(\varepsilon: \Lambda/|\Lambda, \Lambda| \cong HH_0(\Lambda) \to k\) is induced by the map \(\varepsilon: \Lambda \to k\) defined by the equality \(\varepsilon(a) = (1, a)\). Thus, we can define the map \(\lambda^\Lambda: \text{Ab}_s(K_p^b \Lambda) \to HH_*(\Lambda)\) as the unique map satisfying the equality \((f, \lambda^\Lambda(u)) = (\chi^\Lambda(f), u)\) for all \(f \in HH^*(\Lambda)\) and \(u \in \text{Ab}_s(K_p^b \Lambda)\). It is not difficult to show that \(\lambda^\Lambda\) is a homomorphism of graded \(HH^*(\Lambda)\)-modules. Note that \(\text{Ker}(\lambda^\Lambda) \subseteq HH^*(\Lambda)\). Actually we have \(\text{Ker}(\lambda^\Lambda) = \text{Im}(\lambda^\Lambda)^\perp\) and \(HK_0^*\Lambda = \lambda^\Lambda(T\text{K}^b_p \Lambda)^\perp\).

Remark 6.12. One can consider the Tate-Hochschild cohomology \(\widetilde{HH}^*(\Lambda)\) of a selfinjective algebra \(\Lambda \) and the stable category \(\text{mod}\Lambda\) of the category of finitely generated \(\Lambda\)-modules. Note that \(\text{mod}\Lambda\) is a triangulated category with the shift functor \(\Omega^\Lambda\). In this case there exists the characteristic map \(\chi^\Lambda: \widetilde{HH}^*(\Lambda) \to Z^*(\text{mod}\Lambda)\) and one can define Küllshammer and Reynolds ideals in \(\widetilde{HH}^*(\Lambda)\) as preimages of the corresponding ideals in \(Z^*(\text{mod}\Lambda)\). These ideals are invariant under stable equivalences of Morita type and it would be interesting to study their properties. Of course, the case where \(\Lambda \) is stably d-Calabi-Yau for some integer \(d\) is of special interest. Note, in particular, that symmetric algebras are stably \((-1)\)-Calabi-Yau.

7 Example

In this section we are going to compute all notions defined above for the category \(K_p^b \Lambda\), where \(\Lambda = k[x]/x^2\). The classification of indecomposable objects in \(K_p^b \Lambda\) is given in \([13]\), the graded center of \(K_p^b \Lambda\) is computed in \([12]\).

For any \(m \leq n \in \mathbb{Z}\) consider
\[
\Lambda^{[m,n]} = \cdots \to 0 \to \Lambda \xrightarrow{x} \Lambda \to \cdots \to \Lambda \xrightarrow{x} \Lambda \to 0 \cdots,
\]
where nonzero entries are concentrated in the interval \([m, n]\). Each indecomposable object of \(K^b_p\Lambda\) is isomorphic to an object of the form \(\Lambda^{[m, n]}\) for some \(m \leq n \in \mathbb{Z}\). Let us denote by \(x_t\) the element of \(\text{Hom}(\Lambda^{[m,n]}, \Lambda^{[m',n']})\) given by the multiplication by \(x\) in degree \(t\) and zero in all other degrees. It is easy to see that \(\text{Hom}(\Lambda^{[m,n]}, \Lambda^{[m,n]})\) is two dimensional and any map is homotopic to a map of the form \(c_1 \text{Id}_{\Lambda^{[m,n]}} + c_2 x_n\) for some \(c_1, c_2 \in k\). If \([m, n] \neq [m', n']\) and the intervals have a nontrivial intersection, then \(\text{Hom}(\Lambda^{[m,n]}, \Lambda^{[m',n']})\) is one dimensional in the following cases:

1) \(m \leq m', n \leq n'\), any map is homotopic to a map of the form \(c x_n\) \((c \in k)\):

\[
\cdots \to 0 \overset{0}{\longrightarrow} \Lambda \overset{x}{\longrightarrow} \Lambda \overset{0}{\longrightarrow} \Lambda \overset{0}{\longrightarrow} \cdots
\]

2) \(m \geq m', n \geq n'\), any map is homotopic to a map of the form \(c \text{Id}_{\Lambda^{[m,n]}}\) \((c \in k)\), where the map \(\text{Id}_{\Lambda^{[m,n]}}\) is induced by \(\text{Id}_{\Lambda}\) in degrees \(m, \ldots, n'\) and zero in other degrees:

\[
\cdots \to 0 \overset{0}{\longrightarrow} \Lambda \overset{x}{\longrightarrow} \Lambda \overset{0}{\longrightarrow} \cdots
\]

In all other cases there are no nonzero morphisms.

The following description of \(\text{Nat}^t(K^b_p\Lambda)\) and \(Z^t(K^b_p\Lambda)\) for \(t \geq 0\) was obtained in \([12]\).

\(\text{Nat}^0(K^b_p\Lambda)\) consists of natural transformations \(\eta\) given by the data of the form \(\{\mu, \lambda_{[m,n]} \in k, -\infty < m \leq n < \infty\}\), the corresponding natural transformation is given by \(\eta_{\Lambda^{[m,n]}} = \mu \text{Id}_{\Lambda^{[m,n]}} + \lambda_{[m,n]} x_n\).

The transformation \(\eta\) belongs to \(Z^0(K^b_p\Lambda)\) if and only if \(\lambda_{[m,n]} = \lambda_{[m+r,n+r]}\) for any \(r\).

\(\text{Nat}^t(K^b_p\Lambda)\), \(t > 0\) consists of natural transformations \(\eta\) given by the data of the form \(\{c \in k\}\), the corresponding natural transformation is given by \(\eta_{\Lambda^{[m,n]}} = c \text{Id}_{\Lambda^{[m,n]-t}}\) for \(n-t-m \geq 0\) and \(\eta_{\Lambda^{[m,n]}} = 0\), otherwise.

The transformation \(\eta\) belongs to \(Z^t(K^b_p\Lambda)\) if and only if \(\text{char} k = 2\) or \(t\) is even.

\(\text{Nat}^t(K^b_p\Lambda) = 0 = Z^t(K^b_p\Lambda)\) for \(t < 0\).

\(\text{Nat}_0(K^b_p\Lambda) = \oplus_{\Lambda^{[m,n]}} \langle \text{Id}_{\Lambda^{[m,n]}} \rangle \oplus V_0\), where \(V_0\) is one dimensional. \(V_0 = \oplus_{\Lambda^{[m,n]} \in K^0_p\Lambda} \langle x_n \rangle / U_0\), where \(U_0\) is the subspace generated by the elements \(x_n - (-1)^{n'-n} x_{n'}\) for \(x_n : \Lambda^{[m,n]} \to \Lambda^{[m,n]}, x_{n'} : \Lambda^{[m',n']} \to \Lambda^{[m',n']}\).

\(\text{Ab}_0(K^b_p\Lambda) = \oplus_{\Lambda^{[m,n]}} \langle \text{Id}_{\Lambda^{[m,n]}} \rangle / W_0 \oplus V_0\), where \(W_0\) is the subspace generated by the elements \(\text{Id}_{\Lambda^{[m,n]}} - (-1)^t \text{Id}_{\Lambda^{[m+n+r]}}\).

\(\text{Nat}_t(K^b_p\Lambda) = 0 = \text{Ab}_t(K^b_p\Lambda)\), for \(t > 0\).

For \(t < 0\) the space \(\text{Nat}_t(K^b_p\Lambda) = \Lambda_t\) is one dimensional. \(\Lambda_t = \oplus_{\Lambda^{[m,n]}, n \geq m-t} \langle x_n \rangle / U_t\), where \(U_t\) is the subspace generated by the elements \(x_n - (-1)^{n'-n} x_{n'}\) for \(x_n : \Lambda^{[m,n]} \to \Lambda^{[m,n]}, x_{n'} : \Lambda^{[m',n']}, t \to \Lambda^{[m',n']}\). Here, for \(t\) odd, the map \(x_t\) still denotes the multiplication by \(x\) in degree \(t\) and zero in all other degrees.

For \(t < 0\) the space \(\text{Ab}_t(K^b_p\Lambda) = V_t\) if \(\text{char} k = 2\) or \(t\) is even, \(\text{Ab}_t(K^b_p\Lambda) = 0\), otherwise.

Let us compute the ideals \(K_{r,s}(K^b_p\Lambda / \Sigma)\) and \(K_r(K^b_p\Lambda / \Sigma)\).

For any \(r > 1\) we have
Let us denote by \tilde{Z}^0 the subset of $Z^0(K_p^b\Lambda)$ given by \{0, $\lambda_{[m,n]} \in k, -\infty < m \leq n < \infty$\}.

$$T_r := T_r(K_p^b\Lambda/\Sigma) = V_0 \oplus \bigoplus_{t < 0} \text{Ab}_t(K_p^b\Lambda).$$

Hence, $R(K_p^b\Lambda/\Sigma) = K_r(K_p^b\Lambda/\Sigma) = \tilde{Z}^0$.

If $\text{char } k \neq 2$, then

$$K_{r,s}(K_p^b\Lambda/\Sigma)_{t} = \begin{cases}
0, & \text{for } t < 0, s \in \mathbb{Z}, \\
Z^t(K_p^b\Lambda/\Sigma), & \text{for } s > 0, t \geq 0, \\
Z^t(K_p^b\Lambda/\Sigma), & \text{for } (s - t) \text{ odd}, s \leq 0, t \geq 0, \\
\tilde{Z}^0, & \text{for } (s - t) \text{ even}, s \leq 0, t = 0, \\
0, & \text{for } (s - t) \text{ even}, s \leq 0, t > 0.
\end{cases}$$

If $\text{char } k = 2$, then

$$K_{r,s}(K_p^b\Lambda/\Sigma)_{t} = \begin{cases}
0, & \text{for } t < 0, s \in \mathbb{Z}, \\
Z^t(K_p^b\Lambda/\Sigma), & \text{for } s > 0, t \geq 0, \\
\tilde{Z}^0, & \text{for } s \leq 0, t = 0, \\
0, & \text{for } s \leq 0, t > 0.
\end{cases}$$

$$R_s(K_p^b\Lambda/\Sigma) = K_{r,s}(K_p^b\Lambda/\Sigma).$$

Let us now compute the corresponding ideals in the Hochschild cohomology. The bimodule resolution of Λ is

$$\cdots \rightarrow \Lambda \otimes \Lambda \otimes r \oplus \Lambda \otimes \Lambda \otimes r \rightarrow \Lambda \otimes \Lambda \otimes r \oplus \Lambda \otimes \Lambda \otimes r \rightarrow \Lambda$$

$$\text{HH}^l(\Lambda) = \begin{cases}
\Lambda, & \text{for } l = 0, \\
\Lambda/2r\Lambda, & \text{for even } l > 0, \\
\text{Ann}(2r), & \text{for odd } l.
\end{cases}$$

$\text{HH}^0(\Lambda) = \Lambda$, $\chi_{\Lambda}(c + dx)$ is the natural transformation $\eta_{\Lambda_{[m,n]}}$ given by the data \{c, $\lambda_{[m,n]}$\}, where $\lambda_{m,n} = 0$ for $m - n$ odd and $\lambda_{m,n} = d$ for $m - n$ even.

For greater l we are going to compute χ_{Λ} in the following way: any element of $\text{HH}^l(\Lambda)$ gives a map f from the bimodule resolution of Λ to its shift, so first we compute $\Lambda^{[m,m+n]} \otimes_\Lambda^L \Lambda$ as the totalization of a bicomplex, then we compute mutually inverse isomorphisms $\iota_{[m,n]} : \Lambda^{[m,m+n]} \rightarrow \Lambda^{[m,m+n]} \otimes_\Lambda^L \Lambda$ and $\pi_{[m,n]} : \Lambda^{[m,m+n]} \otimes_\Lambda^L \Lambda \rightarrow \Lambda^{[m,m+n]}$, then $\chi_{\Lambda}(f) = \pi_{[m,n]}[l]((\text{Id}_{\Lambda^{[m,m+n]} \otimes f}\iota_{[m,n]}$). Since the shift does not matter for these computations we can assume $m + n = 0$. Let us use the notation $d_- := x \otimes 1 - 1 \otimes x$, $d_+ := x \otimes 1 + 1 \otimes x$. As a right module $\Lambda^{op} \otimes \Lambda$ is isomorphic to $\Lambda \oplus \Lambda$ (the first Λ is generated by $1 \otimes 1$, the
second Λ is generated by $x \otimes 1$), let us denote by ι_1 the map $\Lambda \xrightarrow{(1,0)^t} \Lambda^{\text{op}} \otimes \Lambda$, by π_1 the map $\Lambda^{\text{op}} \otimes \Lambda \xrightarrow{(1,0)} \Lambda$ and by x_2 the map $\Lambda^{\text{op}} \otimes \Lambda \xrightarrow{(0,x)} \Lambda$.

The complex $C := \Lambda[-n,0] \otimes^L_{\Lambda} \Lambda$ is the totalization of the bicomplex \tilde{C} with n nonzero rows:

\[
\begin{array}{ccccccc}
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\cdots & \Lambda \otimes \Lambda & \xrightarrow{d_-} & \Lambda \otimes \Lambda & \xrightarrow{d_+} & \Lambda \otimes \Lambda & \xrightarrow{d_-} & \Lambda \otimes \Lambda \\
\xrightarrow{-x \otimes 1} & \xrightarrow{x \otimes 1} & \xrightarrow{-x \otimes 1} & \xrightarrow{x \otimes 1} \\
\cdots & \Lambda \otimes \Lambda & \xrightarrow{d_-} & \Lambda \otimes \Lambda & \xrightarrow{d_+} & \Lambda \otimes \Lambda & \xrightarrow{d_-} & \Lambda \otimes \Lambda \\
\xrightarrow{-x \otimes 1} & \xrightarrow{x \otimes 1} & \xrightarrow{-x \otimes 1} & \xrightarrow{x \otimes 1} \\
\cdots & \Lambda \otimes \Lambda & \xrightarrow{d_-} & \Lambda \otimes \Lambda & \xrightarrow{d_+} & \Lambda \otimes \Lambda & \xrightarrow{d_-} & \Lambda \otimes \Lambda \\
\end{array}
\]

\[C^{-i} = (\Lambda^{\text{op}} \otimes \Lambda)^{i+1} \text{ for } i \leq n; \quad C^{-i} = (\Lambda^{\text{op}} \otimes \Lambda)^{n+1} \text{ for } i > n.\]

To obtain C^{-i} one takes the sum of the entries of the bicomplex along the diagonal, the numbering of the summands $\Lambda^{\text{op}} \otimes \Lambda$ goes from the lower left entry to the upper right entry. The differential d^{-i} is a matrix with entries $d_{k,k}^{-i} = d_{(-1)^{l+k+1}}$, $d_{k,k+1}^{-i} = (-1)^{l+k}x \otimes 1$, all other entries are zero. The maps $\iota_{[-n,0]} : \Lambda[-n,0] \rightarrow C$ and $\pi_{[-n,0]} : C \rightarrow \Lambda[-n,0]$ can be defined by the equalities

\[
\begin{align*}
\iota_{[-n,0]} &= ((-1)^{\frac{l}{2}} \iota_1, (-1)^{\frac{l+1}{2}} \iota_1, \ldots, \iota_1)^t : \Lambda \rightarrow (\Lambda^{\text{op}} \otimes \Lambda)^{i+1}, \quad -n \leq -i \leq 0; \\
\pi_{[-n,0]} &= ((-1)^{\frac{l}{2}} \pi_1, 0, \ldots, 0) : (\Lambda^{\text{op}} \otimes \Lambda)^{i+1} \rightarrow \Lambda, \quad -n < -i \leq 0; \\
\pi_{[-n,0]} &= ((-1)^{\frac{l}{2}} \pi_1 \pm x_2, \pm x_2, \ldots, \pm x_2) : (\Lambda^{\text{op}} \otimes \Lambda)^{n+1} \rightarrow \Lambda,
\end{align*}
\]

for appropriate signs before the maps x_2.

Case 1: $\text{char } k \neq 2$

For l odd $\text{HH}^l(\Lambda)$ is generated by x. We have $\chi_{\Lambda}\text{HH}^l(\Lambda) = 0$ since $Z^l(K_p\Lambda/\Sigma) = 0$.

For l even $\text{HH}^l(\Lambda)$ is generated by the class of 1. The corresponding f has entries $f_{-i} = \text{Id}_\Lambda$, $n \geq i \geq l$. The corresponding composition $(\pi_{[-n,0]}[l])(\text{Id}_\Lambda[-n,0] \otimes f)\iota_{[-n,0]} - i = (-1)^{l/2}\text{Id}_\Lambda$ for $n \geq i \geq l$. Hence,

\[
\chi_{\Lambda}\text{HH}^l(\Lambda) = Z^l(K_p\Lambda/\Sigma), \quad \text{for } l > 0.
\]

If $r > 0, s \leq 0$ is even, then $\text{HK}_{r,s}(\Lambda) = \langle x \rangle \oplus \bigoplus_{l \geq 0} \text{HH}^{2l+1}(\Lambda)$ since

\[
\text{HK}_{r,s}^l(\Lambda) = \begin{cases}
\langle x \rangle, & \text{for } l = 0, \\
\text{HH}^l(\Lambda), & \text{for } l > 0, l \text{ odd}, \\
0, & \text{for } l > 0, l \text{ even}.
\end{cases}
\]

If $r > 0$ and either $s \leq 0$ is odd or $s > 0$, then $\text{HK}_{r,s}(\Lambda) = \text{HH}^r(\Lambda)$.

\[
\text{HR}(\Lambda) = \text{HK}_r(\Lambda) = \langle x \rangle \oplus \bigoplus_{l \geq 0} \text{HH}^{2l+1}(\Lambda); \quad \text{HR}_s(\Lambda) = \text{HK}_{r,s}(\Lambda), \text{ for } r > 0.
\]
Case 2: $\text{char} \, k = 2$

For $l > 0$, $\text{HH}^l(\Lambda)$ is generated by 1 and x, for x the corresponding f has entries $f_{-i} = x \otimes 1$, $n \geq i \geq l$. The corresponding composition $\pi_{[-n,0]}[l](\text{Id}_{\Lambda[-n,0]} \otimes f)_{[-n,0]}$ is clearly homotopic to zero, i.e. $\chi_\Lambda(f) = 0$. For l the corresponding f has entries $f_{-n} = \text{Id}_\Lambda$, $n \geq i \geq l$. The corresponding composition $\pi_{[-n,0]}[l](\text{Id}_{\Lambda[-n,0]} \otimes f)_{[-n,0]} = \text{Id}_\Lambda$ for $n \geq i \geq l$. Hence,

$$\chi_\Lambda \text{HH}^l(\Lambda) = Z^l(K^b_p\Lambda/\Sigma), \text{ for } l > 0.$$

If $r > 0$, $s \leq 0$, then $\text{HK}_{r,s}(\Lambda) = \bigoplus_{t \geq 0} \langle x \rangle_t$, is the ideal generated by $x \in \text{HH}^0(\Lambda)$. Here $\langle x \rangle_t$ denotes the subspace $\langle x \rangle$ of $\text{HH}^t(\Lambda)$.

If $r > 0$, $s > 0$, then $\text{HK}^{r,s}(\Lambda) = \text{HH}^r(\Lambda)$

$$\text{HK}_r(\Lambda) = \bigoplus_{t \geq 0} \langle x \rangle_t; \text{HR}_s(\Lambda) = \text{HK}_{r,s}(\Lambda), \text{ for } r > 0.$$

References

[1] H. Asashiba, A generalization of Gabriel’s Galois covering functors and derived equivalences, — J. Algebra, 334 (1), 109–149 (2011).

[2] D. Benson, S. Iyengar, H. Krause, Local cohomology and support for triangulated categories, — Annales scientifiques de l’É. NS., 41 (4) (2008).

[3] C. Bessenrodt, T. Holm, A. Zimmermann, Generalized Reynolds ideals for non-symmetric algebras, — J. Algebra, 312, 985–994 (2007).

[4] R.-O. Buchweitz, H. Flenner, Global Hochschild (co-)homology of singular spaces, — Adv. Math., 217, 205–242 (2008).

[5] D. Happel, Triangulated categories in the representation theory of finite-dimensional algebras, — London Mathematical Society Lecture Note Series, 119, Cambridge University Press, Cambridge (1988).

[6] A. Hattori, Rank element of a projective module, — Nagoya Math. J., 25, 113–120 (1965).

[7] E. Herscovich, A. Solotar. Derived invariance of Hochschild-Mitchell (co)homology and one-point extensions, — J. Algebra, 315 (2), 852–873 (2007).

[8] T. Holm, A. Skowronski, Derived equivalence classification of symmetric algebras of polynomial growth, — Glasgow Math. J., 53 (2), 277–291 (2011).

[9] T. Holm, A. Zimmermann, Generalized Reynolds ideals and derived equivalences for algebras of dihedral and semidihedral type, — J. Algebra, 320, 3425–3437 (2008).

[10] B. Keller, Calabi-Yau triangulated categories, — Trends in representation theory of algebras and related topics, 467–489 (2008).
[11] S. Koenig, Y. Liu, G. Zhou. Transfer maps in Hochschild (co)homology and applications to stable and derived invariants and to the Auslander-Reiten conjecture, — Transactions of the American Mathematical Society, 364 (1), 195–232 (2012).

[12] H. Krause, Y. Ye. On the centre of a triangulated category, — Proceedings of the Edinburgh Mathematical Society (Series 2), 54 (2), 443-466 (2011).

[13] M. Künzer, On the center of the derived category, — preprint (2006).

[14] H. Lenzing, Nilpotente Elemente in Ringen von endlicher globaler Dimension, — Math. Z. 108, 313–324 (1969).

[15] M. Linckelmann, On graded centers and block cohomology, — Proceedings of the Edinburgh Mathematical Society (2), 52 (2), 489–514 (2009).

[16] B. Mitchell, Rings with several objects, — Adv. Math., 8 (1), 1–161 (1972).

[17] J. Rickard, Derived equivalences as derived functors, — J. London Math. Soc. (2), 43 (1), 37–48 (1991).

[18] J. Stallings, Centerless groups—an algebraic formulation of Gottlieb’s theorem, — Topology, 4, 129–134 (1965).

[19] D. Tamarkin, B. Tsygan, The ring of differential operators on forms in noncommutative calculus, — Graphs and patterns in mathematics and theoretical physics, Proc. Sympos. Pure Math., 73, 105–131 (2005).

[20] A. Zimmermann, Invariance of generalized Reynolds ideals under derived equivalences, — Mathematical Proceedings of the Royal Irish Academy, 107A (1), 1–9, (2007).

[21] A. Zimmermann, On the use of Külshammer type invariants in representation theory, — Bull. Iranian Math. Soc., 37 (2), 291–341 (2011).

[22] A. Zimmermann, Fine Hochschild invariants of derived categories for symmetric algebras, — J. Algebra, 308, 350–367 (2007).

[23] A. Zimmermann, Hochschild homology invariants of Kulshammer type of derived categories, — Communications in Algebra, 39 (8), 2963–2980 (2011).