Abstract—A quantized message passing decoding algorithm for low-density parity-check codes is presented. The algorithm relies on the min approximation at the check nodes, and on modelling the variable node inbound messages as observations of an extrinsic discrete memoryless channel. The performance of the algorithm is analyzed and compared to quantized min-sum decoding by means of density evolution, showing remarkable gains and almost closing the gap with the performance of the sum-product algorithm. A stability analysis is derived, which highlights the role played by degree-3 variable nodes in the stability condition. Finite-length simulation results confirm large gains predicted by the asymptotic analysis.

I. INTRODUCTION

The envisaged deployment of very high throughput communication links [1], [2] is motivating a revived interest in the design of low-complexity, high-speed channel code decoders. Recently, a specific attention has been devoted to the design and the analysis of iterative decoders where the messages exchanged within the decoder are coarsely quantized. In the context of low-density parity-check (LDPC) codes, simple message passing algorithms involving the exchange of binary messages were already presented in [3]. By introducing errors in the decoding, the performance of these algorithms can be improved as shown in [4]. Finite-alphabet iterative decoders were also studied, for instance, in [5]–[9]. While coarse message quantization allows to reduce the amount of information exchanged within the decoder, it is well-established that the decoding complexity of LDPC codes can be reduced also by employing simplified update rules at the check nodes (CNs). Examples are the min-sum decoder [10], [11] and some of its variations (see, e.g., [12]–[14]), that aim at limiting the losses due to the min-approximation at the CNs by introducing simple corrections.

In this paper, we address the analysis and the design of quantized min-sum decoders [15]. At the CNs, we use the standard min-approximation rule. In contrast to the quantized min-sum (QMS) algorithm [15], the variable node (VN) decoder converts all incoming messages to log-likelihood ratios (LLRs) by modeling the extrinsic channel as a discrete memoryless channel (DMC), extending the approach introduced for binary message passing decoding in [5] to the case where messages are represented by b bits. The transition probabilities of the extrinsic DMCs are derived via density evolution (DE) analysis, which is developed for unstructured irregular LDPC ensembles. Owing to the fact that the VN inbound messages are matched to the reliability of the underlying extrinsic DMC, we refer to the proposed algorithm as matched quantized min-sum (MQMS) decoding. A stability analysis is derived. Remarkably, as observed for the quantized message passing decoders of [5], [8], [9], the fraction of edges connected to degree-3 VNs plays an important role in the stability condition of the proposed decoding algorithm. The DE analysis shows how the proposed MQMS decoding algorithm is capable of largely improving on the decoding thresholds of the QMS decoder [15], enabling to close the gap with respect to the performance achievable by the sum-product algorithm (SPA). The results are confirmed by finite-length simulations.

II. PRELIMINARIES

A. LDPC Codes

LDPC codes are binary linear block codes defined by an $m \times n$ sparse parity-check matrix H. The code dimension is $k \geq n - m$. The Tanner graph of an LDPC code is a bipartite graph $G = (\mathcal{V} \cup \mathcal{C}, \mathcal{E})$ consisting of n VNs and m CNs. The set \mathcal{E} of edges contains the elements e_{ij}, where e_{ij} is an edge between VN $v_j \in \mathcal{V}$ and CN $c_i \in \mathcal{C}$. Note that e_{ij} belongs to the set \mathcal{E} if and only if the parity-check matrix element h_{ij} is equal to 1. The sets $\mathcal{N}(v_j)$ and $\mathcal{N}(c_i)$ denote the neighbors of VN v_j and CN c_i, respectively. The degree of a VN v_j (CN c_i) is equal to the cardinality of the set $\mathcal{N}(v_j)$ ($\mathcal{N}(c_i)$).

The edge-oriented degree distribution polynomials of an LDPC code graph are $\lambda(x) = \sum_{i} \lambda_i x^{i-1}$ and $\rho(x) = \sum_{i} \rho_i x^{i-1}$ where λ_i and ρ_i correspond, respectively, to the fraction of edges incident to VNs and CNs with degree i. An unstructured irregular LDPC code ensemble $\mathcal{G}_{n}^{\lambda,\rho}$ is the set of all LDPC codes with block length n defined by a bipartite graph with degree distributions $\lambda(x)$ and $\rho(x)$.

B. Channel Model

We consider the binary-input additive white Gaussian noise (biAWGN) channel with input alphabet $\mathcal{X} = \{-1, +1\}$. The channel output is $Y = X + N$, where N is Gaussian random variable (RV) with zero mean and variance σ^2. The channel signal-to-noise ratio (SNR) is defined in terms of E_b/N_0, where E_b is the energy per information bit and N_0 is the single-sided noise power spectral density.
C. Extrinsic Channels

Consider a binary-input M-ary output DMC with input alphabet $X' = \{-1, +1\}$ and output alphabet $Z = \{-\frac{M-1}{2}, -\frac{M-3}{2}, \ldots, 0, \ldots, \frac{M-1}{2}\}$, where $M = 2^b - 1$ and b is a positive integer. For a generic channel output z, LLR can be obtained as

$$L(z) = \ln \left[\frac{P_{Z|X}(z + 1)}{P_{Z|X}(z - 1)} \right].$$

If the channel satisfies the symmetry constraint, i.e., $\forall z \in Z$, $P_{Z|X}(-z + 1) = P_{Z|X}(z - 1)$, we have

$$L(z) = \text{sign}(z) D_{|z|}$$

where $\forall a \in Z, a > 0$

$$D_a = \ln \left[\frac{P_{Z|X}(a + 1)}{P_{Z|X}(-a + 1)} \right]$$

and where by convention the $\text{sign}(x)$ function takes value 0 for $x = 0$. We refer to the term $D_{|z|}$ as the reliability of z. The decomposition of (1) will be instrumental to the development of a message-passing decoding algorithm for LDPCs codes. In particular, we will focus on a decoding algorithm where the exchanged messages are quantized. In this case, a message sent from a CN to a VN can be modeled as the observation of the RV X after transmission over a binary-input M-ary output discrete memoryless extrinsic channel [16, Fig. 3], where M is the number of quantization levels used for the messages. While the transition probabilities of the extrinsic channel are in general unknown, we will see that accurate estimates can be obtained via DE analysis, as suggested in [5]. This observation will be used to derive the decoding algorithm presented in Section III.

D. Quantization

Throughout the paper, we will consider uniform quantization of the messages. We denote by $f: \mathbb{R} \to \mathcal{M}$ the quantization function of the exchanged messages, where the quantized message alphabet is $\mathcal{M} = \{-S \Delta, -(S-1) \Delta, \ldots, S \Delta\}$. The function f is a b-bit uniform quantizer with step size Δ and $2^b - 1$ quantization levels. Formally, we have

$$f(x) := \text{sign}(x) \Delta \cdot \min \left\{ \left\lfloor \frac{|x|}{\Delta} + \frac{1}{2} \right\rfloor, S \right\}$$

where $S = 2^{b-1} - 1$.

For the channel output, we will consider two cases: A first case, where the channel output is unquantized, and a second case where the channel output is quantized. For the latter, the biAWGN channel output is quantized using a b_0-bit uniform quantizer with step size Δ_0, where b_0 and Δ_0 may in general differ from the analogous parameters used for the message quantization. The quantized channel output alphabet is $\mathcal{M}_0 = \{-S_0 \Delta_0, -(S_0 - 1) \Delta_0, \ldots, S_0 \Delta_0\}$ with $S_0 = 2^{b_0-1} - 1$, and the quantized version of y is denoted as m_{ch}.

III. MATCHED QUANTIZED MIN-SUM DECODING

We denote by $m_{c-v}^{(t)}$ the message sent from CN c to its neighboring VN v. Similarly, $m_{v-c}^{(t)}$ is the message sent from VN v to CN c at the t-th iteration.

A. Unquantized Channel Output

Initially, each VN computes the LLR of the corresponding channel output

$$L_{ch}(y) = \frac{2}{\sigma^2} y.$$

Then the VN passes a b-bit quantized value to its neighboring CNs. Thus, $\forall c \in \mathcal{N}(v)$ we have

$$m_{v-c}^{(t)} = f(L_{ch}(y))$$

where f is defined in (3).

The min update rule is performed at the CNs. We have

$$m_{c-v}^{(t)} = \min_{v' \in \mathcal{N}(c) \setminus c} \left[m_{v'-c}^{(t-1)} \prod_{v'' \in \mathcal{N}(c) \setminus v'} \text{sign} \left(m_{v''-c}^{(t-1)} \right) \right].$$

At the t-th iteration, each VN converts its channel message and the incoming CN messages to LLRs. The sum of these LLRs is then quantized into a b-bit message. Formally, we have

$$m_{v-c}^{(t)} = f \left(L_{ch}(y) + \sum_{c' \in \mathcal{N}(v) \setminus c} L_{ex} \left(m_{c'-v}^{(t)} \right) \right)$$

while, for obtaining the final hard decision, each VN computes at the last iteration

$$\hat{x}_q^{(t)} = \text{sign} \left(L_{ch}(y) + \sum_{c' \in \mathcal{N}(v)} L_{ex} \left(m_{c'-v}^{(t)} \right) \right)$$

where in (4) and (5)

$$L_{ex} \left(m_{c'-v}^{(t)} \right) := \text{sign} \left(m_{c'-v}^{(t)} \right) D_{|m_{c'-v}|}^{(t)}.$$

Note that the reliability of $m_{c'-v}$ depends on the iteration number and it is, in general, unknown: In fact, the transition probabilities of the underlying extrinsic DMCs are not known. As proposed in [5], their values can be estimated via Monte Carlo simulations, or via DE analysis. The latter approach provides accurate results for moderate-large block lengths, as shown in [5], [8]. We hence follow this direction and use the DE presented in Section IV to estimate the message reliability at each iteration. Note that for the special case of $b = 2$, we will obtain the ternary message passing (TMP) decoder introduced in [8].

B. Quantized Channel Output

For the case where the channel output is quantized (as described in Section II-D), we need to replace $L_{ch}(y)$ in (4) and (5) by $L_{ch}(m_{ch}) = \text{sign}(m_{ch}) D_{|m_{ch}|}$. As mentioned in Sec. II-C the decoder’s communication channel can be modeled as a binary-input $|M|_0$-ary output DMC, which satisfies the symmetry condition. The value of $D_{|m_{ch}|}$ can be computed from (2) using the transition probabilities of the quantized communication channel.
\[q_i^{(\ell)} = \begin{cases}
\frac{1}{2} \left[\rho \left(\Phi_i^{(\ell-1)} + \Psi_i^{(\ell-1)} \right) + \rho \left(\Phi_i^{(\ell-1)} - \Psi_i^{(\ell-1)} \right) - \rho \left(\Phi_i^{(\ell-1)} + \Psi_i^{(\ell-1)} \right) - \rho \left(\Phi_i^{(\ell-1)} - \Psi_i^{(\ell-1)} \right) \right] & \text{if } i > 0 \\
1 - \rho \left(1 - p_i^{(\ell-1)} \right) & \text{if } i = 0 \\
\frac{1}{2} \left[\rho \left(\Phi_i^{(\ell-1)} + \Psi_i^{(\ell-1)} \right) - \rho \left(\Phi_i^{(\ell-1)} - \Psi_i^{(\ell-1)} \right) - \rho \left(\Phi_i^{(\ell-1)} + \Psi_i^{(\ell-1)} \right) + \rho \left(\Phi_i^{(\ell-1)} - \Psi_i^{(\ell-1)} \right) \right] & \text{if } i < 0
\end{cases} \]

\[p_i^{(\ell)} = \begin{cases}
\sum_d \lambda_d \sum_{l_m} P\left(L_{in}^{(\ell)} = l_m \right) Q\left(\frac{(S-\frac{1}{2})\Delta + \mu_a}{\sigma_a} \right) & \text{if } i = -S \\
\sum_d \lambda_d \sum_{l_m} P\left(L_{in}^{(\ell)} = l_m \right) Q\left(\frac{(S-\frac{1}{2})\Delta - \mu_a}{\sigma_a} \right) & \text{if } i = S \\
\sum_d \lambda_d \sum_{l_m} P\left(L_{in}^{(\ell)} = l_m \right) \left[Q\left(\frac{(i-S-\frac{1}{2})\Delta - \mu_a}{\sigma_a} \right) - Q\left(\frac{(i+S+\frac{1}{2})\Delta - \mu_a}{\sigma_a} \right) \right] & \text{otherwise}
\end{cases} \]

where \(L_{in}^{(\ell)} \) is a RV associated to the sum of the LLRs of the \(d-1 \) incoming CN messages at the \(\ell \)-th iteration. We have

\[P\left(L_{in}^{(\ell)} = l_m \right) = \sum_v \left(\frac{d-1}{v_{-S} \ldots v_S} \prod_{i=-S}^S \left(q_i^{(\ell)} \right)^{v_i} \right) \]

where the sum is over all integer vectors \(v \) for which

\[\sum_{i=-S}^S v_i = d - 1 \quad \text{and} \quad \sum_{i=-S}^S (v_i - v_{-i}) D_{\Delta i}^{(\ell)} = l_m \]

where \(D_{\Delta i}^{(\ell)} := \ln \left(q_i^{(\ell)}/q_{-i}^{(\ell)} \right) \). Note that the vector entry \(v_i \) represents the number of incoming CN messages with value \(\Delta i \).

The ensemble iterative decoding threshold \((E_b/N_0)^* \) is defined as the minimum \(E_b/N_0 \) for which \(\lim_{\ell \to \infty} P_e^{(\ell)} = 0 \) as \(n \to \infty \), where

\[P_e^{(\ell)} = \sum_{i=-S}^S p_i^{(\ell)}. \]

V. Stability Analysis

Let us define

\[p^{(\ell)} := \left[p_{-S}^{(\ell)}, \ldots, p_{S-1}^{(\ell)} \right]^T \quad \text{and} \quad q^{(\ell)} := \left[q_{-S}, \ldots, q_{S-1} \right]^T. \]

We should determine the evolution of \(p^{(\ell)} \) over one iteration in proximity of the fixed point \(p^* = 0 \). Note that, as \(p^{(\ell)} \to 0 \), we have \(q^{(\ell)} \to 0 \). Thus, for the inbound VN extrinsic channel, \(D_{\Delta i}^{(\ell)} \to +\infty \) for \(i = S \) while \(D_{\Delta i}^{(\ell)} \to 0 \) for \(i < S \).

As \(q^{(\ell)} \to 0 \), we have

\[p_{-S}^{(\ell)} = \sum_d \lambda_d \left[\mathbb{P}\left(S_{in}^{(\ell)} = 0 \right) \mathbb{P}\left(L_{ch} \leq -(S-0.5)\Delta \right) + \mathbb{P}\left(S_{in}^{(\ell)} \leq -1 \right) \right] \]

while for \(i \in \{ -S+1, \ldots, S-1 \} \)

\[p_i^{(\ell)} = \sum_d \lambda_d \mathbb{P}\left(S_{in}^{(\ell)} = 0 \right) \mathbb{P}\left((i-0.5)\Delta \leq L_{ch} \leq (i+0.5)\Delta \right) \]

\(^1\)We implicitly assume here that the minimum VN degree is at least 2.
where $S^{(t)}_{in}$ is a RV representing the difference between the number of incoming messages equal to S and the number of incoming messages equal to $-S$ to a VN of degree d. We have

$$P\left\{S^{(t)}_{in} = s_{in}\right\} = \sum_{v} \left(\frac{d - 1}{v_S - \ldots - v_S}\right) S \prod_{i = -S}^{S} \left(q^{(t)}_{i} \right)^{v_{i}} \quad (9)$$

where the sum is over all integer vectors v for which

$$S \sum_{i = -S}^{S} v_{i} = d - 1, \quad (v_S - v_{-S}) = s_{in}.$$

We have

$$\lim_{q^{(t)} \to 0} \frac{\partial P\left\{S^{(t)}_{in} = s_{in}\right\}}{\partial q^{(t)}_{i}} = \begin{cases} d - 1 & s_{in} = d - 3 \\ -(d - 1) & s_{in} = d - 1 \\ 0 & \text{otherwise} \end{cases} \quad (10)$$

while, for $i \in \{-S + 1, \ldots, S - 1\}$,

$$\lim_{q^{(t)} \to 0} \frac{\partial P\left\{S^{(t)}_{in} = s_{in}\right\}}{\partial q^{(t)}_{i}} = \begin{cases} d - 1 & s_{in} = d - 2 \\ -(d - 1) & s_{in} = d - 1 \\ 0 & \text{otherwise} \end{cases} \quad (11)$$

From (6), for $i, j \in \{-S, \ldots, S - 1\}$

$$\lim_{p^{(t-1)} \to 0} \frac{\partial p^{(t)}_{i}}{\partial p^{(t-1)}_{j}} = \begin{cases} \rho'(1) & i = j \\ 0 & \text{otherwise} \end{cases} \quad (12)$$

From (8), (9), (10), (11), (12), we obtain

$$\lim_{p^{(t-1)} \to 0} \frac{\partial p^{(t)}_{i}}{\partial p^{(t-1)}_{j}} = \rho'(1) (2\lambda_3 \alpha + \lambda_2) \quad (13)$$

for $i, j \in \{-S + 1, \ldots, S - 1\}$

$$\lim_{p^{(t-1)} \to 0} \frac{\partial p^{(t)}_{i}}{\partial p^{(t-1)}_{j}} = \lambda_2 \alpha \rho'(1) \quad (14)$$

$$\lim_{p^{(t-1)} \to 0} \frac{\partial p^{(t)}_{i}}{\partial p^{(t-1)}_{j}} = 2\rho'(1) \lambda_3 \gamma_i \quad (15)$$

$$\lim_{p^{(t-1)} \to 0} \frac{\partial p^{(t)}_{i}}{\partial p^{(t-1)}_{j}} = \rho'(1) \lambda_2 \gamma_i \quad (16)$$

where

$$\alpha = Q \left(\frac{(S - \frac{1}{2}) \Delta + \mu_{ch}}{\sigma_{ch}} \right)$$

$$\gamma_i = Q \left(\frac{(i - 0.5) \Delta - \mu_{ch}}{\sigma_{ch}} \right) - Q \left(\frac{(i + 0.5) \Delta - \mu_{ch}}{\sigma_{ch}} \right)$$

if the channel output is unquantized while

$$\alpha = \sum_{m_{ch} = f(L_0(m_{ch})) = -S\Delta} P_{Ma}X(m_{ch} + 1)$$

$$\gamma_i = \sum_{m_{ch} = f(L_0(m_{ch})) = \Delta i} P_{Ma}X(m_{ch} + 1)$$

if the channel output is quantized. The first order Taylor expansions via (13), (14), (15), (16) yield

$$p^{(t)}_{i,j} = A \cdot p^{(t-1)}_{i,j} \quad \text{where for } i, j \in \{-S, \ldots, S - 1\}$$

$$a_{i,j} = \lim_{p^{(t-1)} \to 0} \frac{\partial p^{(t)}_{i}}{\partial p^{(t-1)}_{j}}$$

Let r be the spectral radius of A. The stability condition is fulfilled if and only if $r < 1$.

Remark 1. By a close inspection of (13) and (15), we see that the fraction of edges connected to degree-3 VNs plays an important role in the stability condition of the proposed decoding algorithm. This was already noted for the quantized decoders of [9], [8], [7], and in the analysis of saturated belief propagation decoding of [15]. The result hence points to a stronger limitation in the use of degree-2 and degree-3 VNs when constructing unstructured LDPC ensembles, with respect to the case of unquantized, non-saturated belief propagation decoding. From a practical viewpoint, it might be worth relaxing the definition of decoding threshold by adopting a suitably-low target decoding error probability, especially when design codes which tailored for moderate error rates.

VI. Numerical Results

A first set of results deals with the asymptotic performance of MQMS decoding. Table I reports a comparison between the iterative decoding thresholds of MQMS for both quantized and unquantized channel output and QMS [15] for (d_v, d_c) regular LDPC ensembles and different values of b and b_0.

(d_v, d_c)	MQMS (unquant. channel)	MQMS (quant. channel)	QMS	
$(3,6)$	1.85	2	2.39	2.66
	1.32	3	1.45	1.8
	1.21	4	1.34	1.8
$(4,8)$	1.18	3	1.35	1.72
	1.73	4	1.24	1.65
	1.65	5	1.19	1.62

MQMS decoding largely outperforms QMS, with gains that achieve in some cases 0.7 dB. Remarkably, for $b = b_0 = 5$ the MQMS thresholds are within 0.1 dB of the unquantized belief.
propagation thresholds (which are at $(E_b/N_0)^* \approx 1.1 \text{ dB}$ for the regular $(3, 6)$ ensemble, and at $(E_b/N_0)^* \approx 1.58 \text{ dB}$ for the regular $(4, 8)$ ensemble). Based on the DE analysis of Section [IV] we designed a set of optimized irregular ensembles with various rates. For the design, we assumed a MQMS decoder with $b = 4$ and unquantized channel output. We set the maximum VN degree to $d_{v}^{\text{max}} = 20$. The optimized degree distributions, obtained via differential evolution, are shown in Table [II]. As comparison, we provide the Shannon limit and the thresholds of the codes designed under MQMS with $b = b_0 = 4$. We next considered the performance for rate $4/5$ and $7/8$ codes, designed for MQMS decoder and unquantized channel output, where we set $b = 4$, $d_{v}^{\text{max}} = 15$, $\ell_{\text{max}} = 30$. The codes have a block length $n = 20000$ bits and their graphs has been designed via the progressive edge-growth (PEG) algorithm [18]. The simulation results are shown in Fig. [I] in terms of frame error rate (FER) versus E_b/N_0. As a reference, we provide the simulation results of the optimized codes for MQMS under unquantized belief propagation (BP) decoding, MQMS for both 4 bit quantized and unquantized channel output and QMS with $b = b_0 = 4$, as well as the random coding bound union (RCU) of [19]. Observe that the MQMS algorithm outperforms the QMS decoder although they both use the same CN update rule. Admittedly, the VN update rule of MQMS is more complex than the one of the plain QMS decoder: An open question is whether the VN update rule in [4] can be efficiently implemented in approximate form (e.g., via look-up tables) without compromising the performance of the MQMS algorithm.

VII. CONCLUSION

A quantized message passing decoding algorithm for low-density parity-check codes was presented. The algorithm relies on the min approximation at the check nodes, and on modelling the variable node inbound messages as observations of an extrinsic channel output. The algorithm has been analyzed via density evolution. The stability analysis has been developed, showing that degree-3 variable nodes play a role in the stability condition. The algorithm shows remarkable gains over quantized min-sum decoding, almost closing the gap with the performance of the sum-product algorithm.

ACKNOWLEDGMENT

The author is grateful to Dr. Gianluigi Liva for many fruitful discussions and valuable comments.

REFERENCES

[1] B. P. Smith, A. Farhood, A. Hunt, F. R. Kschischang, and J. Lodge, “Staircase Codes: FEC for 100 Gb/s OTN,” J. Lightw. Technol., vol. 30, no. 1, pp. 110–117, Jan. 2012.
[2] T. Richardson and S. Kudekar, “Design of Low-Density Parity Check Codes for 5G New Radio,” IEEE Commun. Mag., vol. 56, no. 3, pp. 28–34, Mar. 2018.
[3] R. G. Gallager, “Low-density parity-check codes,” IRE Trans. Inf. Theory, vol. 8, no. 1, pp. 21–28, 1962.
[4] T. J. Richardson and R. L. Urbanke, “The capacity of low-density parity-check codes under message-passing decoding,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 599–618, 2001.
[5] G. Lechner, T. Pedersen, and G. Kramer, “Analysis and Design of Binary Message Passing Decoders,” IEEE Trans. Commun., vol. 60, no. 3, pp. 601–607, Mar. 2012.
[6] S. K. Planjery, D. Declercq, L. Danjean, and B. Vasic, “Finite alphabet iterative decoders – part I: Decoding beyond belief propagation on the binary symmetric channel,” IEEE Trans. Commun., vol. 61, no. 10, pp. 4033–4045, Oct. 2013.
[7] J. Lewandowski and G. Bauch, “Information-Optimum LDPC Decoders Based on the Information Bottleneck Method,” IEEE Access, vol. 6, pp. 4054–4071, Jan. 2018.
[8] E. Ben Yacoub, F. Steiner, B. Matuz, and G. Liva, “Protopath-based LDPC code design for ternary message passing decoding,” in Proc. ITG Int. Conf. Syst. Commun. Coding (SCC), Rostock, Germany, Feb. 2019.
[9] F. Steiner, E. Ben Yacoub, B. Matuz, G. Liva, and A. G. i. Amat, “One and two bit message passing for SC-LDPC codes with higher-order modulation,” J. Lightw. Technol., vol. 37, no. 23, pp. 5914–5925, Dec. 2019.
[10] J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary block and convolutional codes,” IEEE Trans. Inf. Theory, vol. 42, no. 2, pp. 429–445, Mar. 1996.
[11] Jinghu Chen and M. P. C. Fossorier, “Near optimum universal belief propagation based decoding of low-density parity check codes,” IEEE Trans. Commun., vol. 50, no. 3, pp. 406–414, Aug. 2002.
[12] C. Jones, E. Valles, M. Smith, and J. Villasenor, “Approximate-MIN constraint node updating for LDPC code decoding,” in Proc. IEEE Military Commun. Conf., Boston, MA, USA, Oct. 2003.
[13] G. Lechner and J. Sayir, “Improved sum-min decoding for irregular LDPC codes,” in Proc. 4th International Symposium on Turbo Codes Related Topics, Munich, Germany, 2006.
[14] W. Ryan and S. Lin, Channel Codes: Classical and Modern. Cambridge University Press, 2009.
[15] B. Smith, F. R. Kschischang, and Wei Yu, “Low-density parity-check codes for discretized min-sum decoding,” in 23rd Biennial Symp. Commun., May 2006, pp. 14–17.
[16] A. Ashikhmin, G. Kramer, and S. ten Brink, “Extrinsic information transfer functions: Model and erasure channel properties,” IEEE Trans. Inf. Theory, vol. 50, no. 11, pp. 2657–2673, 2004.
[17] S. Kudekar, T. Richardson, and A. R. Yegan, “Analysis of saturated belief propagation decoding of low-density parity-check codes,” IEEE Trans. Inf. Theory, vol. 63, no. 9, pp. 5734–5751, Jul. 2017.
[18] X.-Y. Hu, E. Eleftheriou, and D., Arnold, “Progressive edge-growth Tanner graphs,” in Proc. IEEE Global Telecommun. Conf. (GLOBECOM), vol. 2, Nov 2001, pp. 995–1001 vol.2.
[19] Y. Polyanskiy, H. V. Poor, and S. Verdú, “Channel Coding Rate in the Finite Blocklength Regime,” IEEE Trans. Inf. Theory, vol. 56, no. 5, pp. 2307–2359, May 2010.
TABLE II
Thresholds of optimized degree distributions for the MQMS decoder for unquantized channel with $b = 4$ and quantized channel with $b = b_0 = 4$.

R	$\lambda(x)$	$\rho(x)$	$(E_b/N_0)^*$ [dB]	$(E_b/N_0)^*_{b_0=4}$ [dB]	$(E_b/N_0)_{3b}$ [dB]
2/3	$0.0317x + 0.489x^2 + 0.0374x^3 + 0.4419x^{19}$	$0.328x^{13} + 0.672x^{14}$	1.47	1.5	1.06
3/4	$0.0313x + 0.461x^2 + 0.0058x^3 + 0.4999x^{19}$	$0.5336x^{19} + 0.4664x^{20}$	1.96	2	1.62
4/5	$0.4961x^2 + 0.0051x^3 + 0.4988x^{19}$	$0.7907x^{25} + 0.2093x^{26}$	2.34	2.37	2.04
5/6	$0.0205x + 0.4646x^2 + 0.0534x^3 + 0.4616x^{19}$	$0.9926x^{40} + 0.0074x^{41}$	2.63	2.66	2.36
7/8	$0.4789x^2 + 0.0021x^3 + 0.032x^5 + 0.487x^{19}$	$0.3752x^{41} + 0.6248x^{42}$	3.08	3.11	2.85
9/10	$0.4442x^2 + 0.0403x^3 + 0.0025x^5 + 0.513x^{19}$	$0.6604x^{59} + 0.3396x^{54}$	3.42	3.44	3.2