Neuropeptide-Y causes coronary microvascular constriction and is associated with reduced ejection fraction following ST-elevation myocardial infarction

Neil Herring1,2*, Nidi Tapoulal1, Manish Kalla1,2, Xi Ye3, Lyudmyla Borysova3, Regent Lee2, Erica Dall’Armellina2,4, Christopher Stanley3, Raimondo Ascione5, Chieh-Ju Lu1; ‘Oxford Acute Myocardial Infarction (OxAMI) Study’, Adrian P. Banning2,6, Robin P. Choudhury2,4, Stefan Neubauer2,6, Kim Dora3, Rajesh K. Kharbanda2,6, and Keith M. Channon2,6

1Department of Physiology, Anatomy and Genetics, Burdon Sanderson Cardiac Science Centre, University of Oxford, Parks Road, Oxford OX13PT, UK; 2Department of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; 3Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT UK; 4Oxford Acute Vascular Imaging Centre, Department of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU UK; 5Bristol Heart Institute, Bristol Royal Infirmary, and Faculty of Health Sciences, University of Bristol, Horfield Road, Bristol BS2 8ED UK; and 6National Institute for Health Research (NIHR) Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headley Way Oxford OX3 9DU, UK

Received 2 August 2018; revised 23 October 2018; editorial decision 10 January 2019; accepted 18 February 2019

Aims
The co-transmitter neuropeptide-Y (NPY) is released during high sympathetic drive, including ST-elevation myocardial infarction (STEMI), and can be a potent vasoconstrictor. We hypothesized that myocardial NPY levels correlate with reperfusion and subsequent recovery following primary percutaneous coronary intervention (PPCI), and sought to determine if and how NPY constricts the coronary microvasculature.

Methods and results
Peripheral venous NPY levels were significantly higher in patients with STEMI (n = 45) compared to acute coronary syndromes/stable angina (n = 48) or with normal coronary arteries (NC, n = 16). Overall coronary sinus (CS) and peripheral venous NPY levels were significantly positively correlated (r = 0.79). STEMI patients with the highest CS NPY levels had significantly lower coronary flow reserve, and higher index of microvascular resistance measured with a coronary flow wire. After 2 days they also had significantly higher levels of myocardial oedema and microvascular obstruction on cardiac magnetic resonance imaging, and significantly lower ejection fractions and ventricular dilatation 6 months later. NPY (100–250 nM) caused significant vasoconstriction of rat microvascular coronary arteries via increasing vascular smooth muscle calcium waves, and also significantly increased coronary vascular resistance and infarct size in Langendorff hearts. These effects were blocked by the Y1 receptor antagonist BIBO3304 (1 μM). Immunohistochemistry of the human coronary microvasculature demonstrated the presence of vascular smooth muscle Y1 receptors.

Conclusion
High CS NPY levels immediately after reperfusion correlate with microvascular dysfunction, greater myocardial injury, and reduced ejection fraction 6 months after STEMI. NPY constricts the coronary microcirculation via the Y1 receptor, and antagonists may be a useful PPCI adjunct therapy.

Keywords
Neuropeptide-Y • Myocardial infarction • Percutaneous coronary intervention • Cardiac magnetic resonance imaging • Microvascular function

* Corresponding author. Tel: +44 1865 220256, Email: neilherring@doctors.org.uk
© The Author(s) 2019. Published by Oxford University Press on behalf of the European Society of Cardiology.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Introduction

The rapid re-opening and stenting of occluded epicardial coronary arteries via emergency primary percutaneous coronary intervention (PPCI) has revolutionized the treatment of ST-elevation myocardial infarction (STEMI). Despite technical refinements to the procedure and the introduction of numerous antiplatelet and anticoagulant medications, around one-third of patients demonstrate ‘no-reflow’ due to flow limitation in small intramyocardial arteries and arterioles beyond the point of the stenting known as the ‘microcirculation’. This is associated with persistent ST-elevation, larger infarct size, lower ejection fraction, and worse prognosis. Patients with a high index of microcirculatory resistance (IMR), or with persistently low coronary flow reserve (CFR) following PPCI measured using a coronary pressure wire, have larger infarcts and lower ejection fractions. Microvascular obstruction can also be directly imaged using contrast-enhanced cardiac magnetic resonance imaging (CMR) and its presence strongly predicts infarct size and adverse prognosis. Distal athero-thrombotic embolization from the ruptured plaque and thrombus may contribute to poor microcirculatory perfusion although clinical trials of thrombectomy at the time of PPCI have failed to demonstrate consistent improvements in outcome. Functional vasoconstriction in the coronary microvasculature may also contribute to poor microvascular flow, but the mechanisms are poorly understood. Commonly used vasodilator drugs such as adenosine and sodium nitroprusside have not demonstrated clinical benefit, suggesting that these mechanisms remain to be identified. It is likely that there are reversible as well as irreversible components to microvascular obstruction, the former of which could provide new therapeutic targets.

Acute myocardial infarction is associated with high levels of cardiac sympathetic drive, which is a poor prognostic indicator. Prolonged sympathetic activation causes the release of the co-transmitter neuropeptide-Y (NPY), which can cause vasoconstriction in a variety of vascular beds. When infused directly into coronary arteries in humans, NPY can induce chest pain and ischaemic electrocardiogram (ECG) changes presumably from microvascular constriction. We have shown that peripheral venous levels of NPY are significantly elevated in patients undergoing PPCI following STEMI and remain high for at least 48 h. Clinical studies before the advent of PPCI and modern medical treatment, have also shown that peripheral venous ‘NPY-like activity’ is elevated during ischaemic events and correlates with 1-year mortality. However, hepato-mesenteric release also contributes significantly to circulating levels of ‘NPY-like activity’, making peripheral venous sampling less accurate in determining local cardiac NPY concentrations.

We, therefore, hypothesized that coronary sinus (CS) levels of NPY would provide a close correlation with measurements of reperfusion and microvascular obstruction in STEMI patients undergoing PPCI, and may determine the degree to which myocardial function recovers. Further to investigate possible causation, we tested whether NPY vasoconstricts the coronary microvasculature and increases infarct size in the rat, and then explored the receptor pathways involved to assess whether these may be applicable for human pharmacological intervention.

Methods

See Supplementary material online for expanded Methods. This study complies with the Declaration of Helsinki and was approved by local ethics committee (REC: 10/H0408/24 and 10/H0606/36). All participants gave written informed consent. Patients were recruited as part of the Oxford Acute Myocardial Infarction (OxAMI) study. Animal use complied with the University of Oxford local ethical guidelines and the Animals (Scientific Procedures) Act 1986 (UK).

Results

Peripheral venous and coronary sinus neuropeptide-Y levels in patients with normal coronary arteries, stable angina, acute coronary syndromes, and ST-elevation myocardial infarction

45 patients with acute left coronary artery STEMI (presenting throughout the 24-h cycle of clinical activity) underwent peripheral venous and CS blood sampling immediately after completion of PPCI. NPY levels were compared with 48 patients who were pain-free and undergoing non-emergency coronary angiography for stable angina (SA) or acute coronary syndromes (ACS) and a group of 16 patients undergoing elective coronary angiography who were found to have normal coronary arteries (NC). The patients demographics, admission medications, and haemodynamics at the time of angiography are summarized in Table 1. Patients were of similar age with similar cardiovascular risk factors, although significantly fewer STEMI patients had a diagnosis of hyperlipidaemia at presentation. Significantly fewer STEMI patients were taking beta-blockers, angiotensin converting enzyme inhibitors/angiotensin receptor antagonists, or a statin at presentation. Moreover, patients presenting with STEMI who were in pain at the time of PPCI had significantly higher heart rate and diastolic blood pressure. As expected, patients with STEMI had the highest peak troponin rise followed by those experiencing SA/ACS with those with NC having minimal troponin rise.

The levels of peripheral venous and CS NPY in the three groups are summarized in Figure 1. Overall paired CS and peripheral venous NPY were significantly positively correlated (r = 0.79, n = 64, P < 0.0001) as shown in Figure 1C. Peripheral venous and CS levels of NPY were similar in the SA/ACS and NC groups, as shown in Figure 1A and B. Patients with STEMI had three-fold higher CS NPY levels than those with SA/ACS or NC. We used this to define the lower tertile of the STEMI group as having low CS NPY levels (n = 15), similar to those with NC and SA/ACS [12.9 (9.0–14.9) vs. NC/SA/ACS: 10.0 (1.8–12.4 pg/mL)], and the middle and upper tertiles as having high CS NPY levels (n = 30), shown by the dotted line in Figure 1C.

Invasive measures of microvascular function in STEMI patients with high vs. low coronary sinus neuropeptide-Y levels

The baseline characteristics of STEMI patients with low and high CS NPY levels are summarized in Table 2. The two groups were well matched in terms of age, sex, cardiovascular risk factors, medications, and haemodynamics on admission. They had similar TIMI flow and pain to balloon time at presentation. There was no significant correlation between CS NPY levels and pain to balloon time (r = 0.24,
Table 1 Patient demographics according to clinical diagnosis (peripheral venous blood)

	NC (n = 16)	SA/ACS (n = 48)	STEMI (n = 45)	P-value	P-value	P-value	P-value
Age (years)	67 ± 12	65 ± 12	63 ± 13	0.39	1.00	0.59	1.00
Males	10/16 (63)	36/48 (75)	35/45 (77.8)	0.48	0.35	0.32	0.81
Cardiovascular risk factors							
Hypertension	13/16 (81)	32/48 (67)	19/45 (42.2)	0.36	0.35	1.00	0.36
Hyperlipidaemia	9/16 (56)	41/48 (85)	16/45 (35.6)	<0.0001	0.031	0.24	<0.0001
Diabetes mellitus	3/16 (19)	10/48 (21)	6/45 (13.3)	0.63	1.00	0.69	0.42
Current smoker	2/16 (13)	13/48 (27)	19/45 (42.2)	0.06	0.32	0.037	0.13
Ex-smoker	8/16 (50)	21/48 (43)	19/45 (42.2)	0.86	0.77	0.77	>0.9999
Family history	8/16 (50)	22/48 (46)	19/45 (42.2)	0.85	0.78	0.77	0.84
Medications on admission							
Beta-blockers	10/16 (63)	27/48 (56)	4/45 (8.9)	<0.0001	0.77	<0.0001	<0.0001
ACE inhibitor/ATR antagonist	11/16 (69)	31/48 (65)	7/45 (15.6)	<0.0001	1.00	0.0002	<0.0001
Statin	14/16 (88)	39/48 (81)	8/45 (17.8)	<0.0001	0.72	<0.0001	<0.0001
Blood pressure and heart rate							
Systolic (mmHg)	130.3 ± 27.8	125.9 ± 22.7	135.3 ± 27.3	0.23	1.00	0.26	
Diastolic (mmHg)	64.1 ± 10.2	69.3 ± 11.1	81.4 ± 17.9	<0.0001	0.78	0.001	0.0005
Heart rate (/min)	66.4 ± 14.4	69.2 ± 13.7	79.6 ± 21.7	0.008	1.00	0.05	0.02
Peak Troponin I (mg/L)	0.3 ± 0.6	3.8 ± 12.4	40.7 ± 16.2	<0.0001	1.00	<0.0001	<0.0001

Values are expressed mean ± SD or n (%).
ACS, acute coronary syndromes; NC, normal coronary arteries; SA, stable angina; STEMI, ST-elevation myocardial infarction.

\[P = 0.1 \]. Although levels of CS NPY were significantly different between the groups, levels of CS endothelin-1 were similar and there was no significant correlation between CS NPY and endothelin-1 levels \((r = 0.001, P = 0.81)\).

Immediately after stent implantation and post-dilatation, invasive measurements of coronary microcirculatory function were taken using a pressure wire. Coronary haemodynamic measures are summarized in Table 3. Patients with high CS NPY levels had significantly lower CFR and a significantly higher IMR. This relationship did not reach significance when considering low vs. high peripheral venous NPY \((\text{CFR} 1.84 ± 0.88 \text{ vs. } 1.52 ± 0.55, P = 0.22; \text{IMR} 35.2 ± 18.7 \text{ vs. } 43.2 ± 31.2, P = 0.29)\) or low vs. high CS endothelin-1 \((\text{CFR} 1.62 ± 0.75 \text{ vs. } 1.63 ± 0.66, P = 0.94; \text{IMR} 50.1 ± 38.3 \text{ vs. } 35.7 ± 19.5, P = 0.19)\). In a subset of patients a collateral pressure index was also measured, although there was no significant difference between patients with low v’s high CS NPY \((0.16 ± 0.09, n = 7 \text{ vs. } 0.15±0.07, n = 10)\).

Imaging measures of microvascular function and cardiac recovery in STEMI patients with high vs. low coronary sinus neuropeptide-Y levels

Two days following PPCI, all patients underwent CMR and there was no difference in the time to scan between those patients with low vs. high CS NPY \([41.5 (33.8–47.3) \text{ vs. } 48.0 (28.5–49.0) \text{ h}, P = 0.38]\). This demonstrated similar left ventricular dimensions and ejection fraction in the high and low CS NPY groups at this stage. However, there was a significantly larger volume of myocardial oedema in those patients with high CS NPY levels and a significantly greater volume of microvascular obstruction. Six months following STEMI a further CMR scan demonstrated a significantly lower ejection fraction in those with high CS NPY compared to those with low CS NPY levels \((50.5 ± 11.8, n = 12, \text{ vs. } 61.7 ± 3.8%, n = 23, P<0.0001)\) and significantly dilated left ventricular volumes as shown in Table 4. Overall CS NPY levels were positively correlated with infarct size (by late gadolinium enhancement) at 6 months \((r = 0.46, P = 0.01)\) as was acute microvascular obstruction \((r = 0.55, P = 0.003)\). However, on multivariate analysis, acute microvascular obstruction was an independent predictor of infarct size \((P = 0.01)\) above CS NPY, in keeping with CS NPY causing larger infarcts via worsening microvascular obstruction. The relationship with infarct size, ejection fraction and left ventricular volumes did not reach significance when considering high vs. low peripheral venous NPY (ejection fraction 51.7 ± 11.6 vs. 58.8 ± 9.6%, \(P = 0.12\)).

The action of neuropeptide-Y on microvascular coronary arteries and Langendorff perfused hearts

In order to investigate the mechanistic importance of high myocardial NPY in mediating coronary microvascular dysfunction, we tested the direct effects of NPY on microvascular coronary arteries. NPY \((100 \text{ nM}, n = 6)\) caused calcium waves in vascular smooth muscle cells (Figure 2A–C) and dose dependent vasoconstriction of isolated microvascular coronary arteries (significant at 100 and 250 nM, \(n = 6, \text{Figure 2D}\), which could be prevented by the \(\text{Y}_1\) receptor antagonist BIB03304 (1 \text{µM}) without changing...
myogenic tone (Figure 2E). In the Langendorff perfused heart, NPY (250 nM, n = 6) caused a significant increase in coronary vascular resistance (Figure 2F) that could also be prevented by the Y₁ receptor antagonist BIBO3304 (1 μM, n = 6) but not the Y₂ receptor antagonist BIIE0246 (1 μM, n = 6). NPY (250 nM, n = 10) also significantly increased infarct size in relation to the area at risk during left coronary artery ischaemia reperfusion compared with control hearts (n = 10), and this could also be prevented by the Y₁ receptor antagonist BIBO3304 (1 μM, n = 6) as shown in Figure 3.

Neuropeptide-Y Y₁ receptor is present in the human coronary microvasculature

We obtained samples of human myocardium during cardiothoracic surgery from which we dissected coronary micro-arteries. Immunohistochemistry demonstrated the presence of the Y₁ receptor on vascular smooth muscle cells in the media of the vessels as shown in Figure 4.

Discussion

This is the first study to measure CS NPY levels in patients undergoing PPCI and demonstrate a link with microvascular obstruction, infarct size, and subsequent cardiac recovery at 6 months in terms of ejection fraction. In addition it is the first study to show that NPY constricts the coronary microvasculature via Y₁ receptor dependent calcium mobilization and demonstrate the utility of blocking this receptor in reducing coronary vascular resistance and limiting infarct size. Importantly, the Y₁ receptor is expressed on vascular smooth muscle cells in the media of human coronary micro-arteries making it a suitable target for pharmacological intervention.
Table 2 Clinical characteristics according to coronary sinus neuropeptide-Y level

Characteristic	Low CS NPY (n = 15)	High CS NPY (n = 30)	P-value
Age (years)	58.4 ± 12.9	64.5 ± 12.9	0.14
Males	13/15 (86.7)	22/30 (73.3)	0.46
Cardiovascular risk factors			
Hypertension	5/15 (33.3)	14/30 (46.7)	0.53
Hyperlipidaemia	7/15 (46.7)	9/30 (30)	0.33
Diabetes mellitus	3/15 (20)	3/30 (10)	0.65
Current smoker	7/15 (46.7)	12/30 (40)	0.75
Ex-smoker	7/15 (46.7)	12/30 (40)	0.75
Family history	6/15 (40)	13/30 (43.3)	1.00
Medications on admission			
Beta-blockers	0/15 (0)	4/30 (13.3)	0.28
ACE inhibitor/ATR antagonist	2/15 (13.3)	5/30 (16.7)	1.00
Statin	3/15 (20)	5/30 (16.7)	1.00
BP and heart rate at presentation			
Systolic BP (mmHg)	135.1 ± 4.1	135.4 ± 5.8	0.97
Diastolic BP (mmHg)	82.7 ± 4.0	80.7 ± 3.5	0.71
Heart rate (l/min)	78.4 ± 4.0	80.1 ± 4.5	0.77
Pain to balloon time (min)	368 ± 85	244 ± 47	0.21
Infarct artery	LAD		
	11/15 (73.3)	22/30 (73.3)	1.00
	LCx/Int	8/30 (26.7)	1.00
TIMI flow at presentation	0	0.71	
	I	1.00	
	II	1.00	
	III	1.00	
Peak Troponin I (mg/L)	40.8 ± 16.7	40.6 ± 16.2	0.97
Coronary sinus NPY concentration (pg/mL)	12.9 (9.0–14.9)	29.3 (23.6–51.4)	<0.00001
Coronary sinus endothelin-1 concentration (fmol/mL)	3.3 (2.1–22.3)	5.0 (2.0–10.7)	0.87

Values are mean ± SD, median (interquartile range), or n (%). Statistically significant results are in bold.

LAD, left anterior descending artery; LCx, left circumflex artery; Int, intermediate artery.

Table 3 Coronary physiology according to coronary sinus neuropeptide-Y levels

Coronary haemodynamics	Low CS NPY (n = 15)	High CS NPY (n = 30)	P-value
Baseline fractional flow reserve	0.91 ± 0.06	0.92 ± 0.05	0.37
Hyperaemic fractional flow reserve	0.87 ± 0.08	0.90 ± 0.07	0.11
Baseline transit time (s)	0.87 ± 0.47	0.77 ± 0.37	0.45
Hyperaemic transit time (s)	0.48 ± 0.24	0.60 ± 0.40	0.24
Baseline distal pressure (mmHg)	84.5 ± 14.5	90.9 ± 16.4	0.19
Hyperaemic distal pressure (mmHg)	68.0 ± 13.3	77.0 ± 14.0	0.04
Coronary flow reserve	1.94 ± 0.81	1.47 ± 0.55	0.03
Index of microcirculatory resistance	30.9 ± 12.2	45.3 ± 31.9	0.03

Values are expressed as mean ± SD. Statistically significant results are in bold.
Coronary sinus and peripheral venous neuropeptide-Y levels in patients undergoing coronary angiography

The main source of circulating NPY is sympathetic nerve terminals and the adrenal medulla and NPY can act as a local neromodulator of several aspects of cardiac function. NPY may be involved in the pathogenesis of atherosclerosis, in addition to maintaining cardiac contraction, promoting ventricular hypertrophy, and reducing parasympathetic nerve activity. It may also be taken up into megakaryocytes and released at sites of vascular remodelling as well as in the endothelium itself which also contains dipeptidyl peptidase. There may, therefore, be local autocrine NPY systems at sites of angiogenesis and vascular remodelling. Animal studies suggest that cardiac NPY is released from sympathetic nerves during experimentally induced myocardial infarction. Early studies in the late 1980s, before modern interventional and pharmacological treatment of STEMI have shown that peripheral venous ‘NPY-like activity’ is elevated during ischaemic events and correlates with 1-year mortality. However, hepato-mesenteric release also contributes significantly to circulating levels of ‘NPY-like activity’, making peripheral venous sampling less accurate in reflecting cardiac NPY levels. These early studies only measured ‘NPY like activity’ with very high limits of detection (>90 pg/mL compared to our 2–3 pg/mL). Our assay has 0% cross-reactivity with structurally similar peptides such as peptide YY, pancreatic polypeptide, gastric inhibitory polypeptide, ghrelin, pro-insulin, or glucagon. In patients with normal coronary arteries, we measure CS NPY levels of 4.5 ± 2.5 pg/mL. By comparison, the median peripheral venous NPY level in 303 normal adult subjects (using an assay with a similar level of detection to ours and minimal cross-reactivity) is <2 pg/mL.

STEMI patients had higher NPY levels and were also more hypertensive and tachycardic than patients with SA/ACS and NC who were pain-free at the time of their non-emergency procedure. This is unsurprising given that STEMI patients were suffering from chest pain and would have high levels of sympathetic drive. NPY released during these conditions can also inhibit parasympathetic neurotransmission and the ability of the vagus to reduce heart rate. Elevated NPY levels have also been observed in animal models and patients with essential hypertension. For comparison, venous NPY levels in patients presenting with Takotsubo cardiomyopathy with severely impaired systolic function and massive catecholamine release were around 186 pg/mL.

In the anesthetized dog, direct stimulation of the cardiac sympathetic innervation leads to the appearance of NPY in CS blood. In patients with cardiac failure or patients with normal hearts undertaking exercise, cardiac release contributes significantly more to circulating peripheral venous levels than at rest. Whilst peripheral venous and CS levels of NPY are correlated across all three patient groups in our study, this is driven by the very high levels of NPY measured in the STEMI group where cardiac NPY release is likely to have equilibrated with peripheral circulating levels by the time of blood sampling. It is interesting to note that peripheral venous NPY levels are not significantly different in patients with NC and ACS/SA, whereas CS NPY levels are higher in the ACS/SA group compared to patients with NC. Moreover, whilst high CS levels of NPY in the STEMI groups correlated with indices of reperfusion and 6 month ejection fraction, this relationship did not reach significance for peripheral venous levels, suggesting that CS levels may give a more accurate reflection of the NPY concentration to which the coronary microvasculature is exposed and subsequently its behaviour.

Table 4 Cardiac magnetic resonance imaging post-ST-elevation myocardial infarction according to coronary sinus neuropeptide-Y levels

Cardiac MRI	Low CS NPY (n = 12)	High CS NPY (n = 23)	P-value
Post-PPCI			
Ejection fraction (%)	47.3 ± 8.5	44.6 ± 10.0	0.40
End-diastolic volume (mL)	142.9 ± 48.5	162.9 ± 45.4	0.23
End-systolic volume (mL)	78.1 ± 38.2	92.4 ± 35.8	0.30
Late Gd enhancement (%)	25.2 ± 13.6	34.1 ± 16.3	0.10
Haemorrhage (%)	1.0 ± 1.9	3.6 ± 6.1	0.07
Ventricular oedema (%)	33.4 ± 14.0	44.5 ± 16.2	0.048
Microvascular obstruction (%)	0.22 ± 0.12	1.62 ± 2.52	0.02
6 months			
Ejection fraction (%)	61.7 ± 3.8	50.5 ± 11.8	< 0.001
End-diastolic volume (mL)	140.9 ± 28.0	173.0 ± 47.3	0.038
End-systolic volume (mL)	54.6 ± 14.7	87.6 ± 38.5	0.003

Values are expressed as mean ± SD. Statistically significant results are in bold.

Gd, gadolinium; MRI, magnetic resonance imaging.

Coronary sinus neuropeptide-Y and measures of reperfusion and cardiac recovery

Contrast-enhanced CMR is considered the gold-standard imaging to assess microvascular obstruction following myocardial infarction, and strongly predicts infarct size and prognosis. Studies have also correlated an IMR >40 with CMR measures of oedema and microvascular obstruction as well as a worse ejection fraction and ventricular...
CMR measures of microvascular obstruction are also associated with lower CFR. Patients with high CS NPY levels have significantly higher IMR, lower CFR, and evidence of microvascular obstruction and worse ejection fraction at 6 months on CMR compared to patients with low CS NPY levels. However, the same relationship did not reach significance for high vs. low peripheral vascular resistance.

Figure 2 Microvascular coronary artery vasoconstriction with neuropeptide-Y. Neuropeptide-Y (100 nM, n = 6) increases calcium wave frequency in vascular smooth muscle cells of microvascular coronary arteries measured using Fluo-8. (A) The location of a smooth muscle cell line scan (B) A raw data trace of normalized Fluo-8 fluorescence (F/F0) in response to neuropeptide-Y over the line scan and at three separate points (red, orange, and blue). This is prevented by the Y1 receptor antagonist (BIBO3304, 1 μM, n = 6) as shown in (C). (D) Dose-response curve to neuropeptide-Y (n = 6) demonstrating vasoconstriction in isolated, pressurized microvascular coronary arteries. This is prevented by the Y1 receptor antagonist (BIBO3304, 1 μM, n = 6), without altering basal myogenic tone (E). (F) Neuropeptide-Y (250 nM, n = 6) causes a significant increase in coronary vascular resistance in the Langendorff heart and this is prevented by the Y1 receptor antagonist BIBO3304 (1 μM, n = 6), but not the Y2 receptor antagonist BIEE0246 (1 μM, n = 6).
venous NPY levels, although there was a strong trend. In a separate cohort of STEMI patients, we have found that those with angiographic no-reflow, lack of electrocardiographic ST-resolution, CFR <1.5, or IMR >33 had significantly higher peripheral venous NPY levels over the first 48 h from admission although we did not measure CS levels or assess subsequent myocardial damage and prognosis.

Mechanism of microvascular vasoconstriction

We hypothesize that maintained microvascular vasoconstriction post-PPCI may contribute to a larger infarct size, worse left ventricular function, and poorer prognosis and that NPY may be a key mediator of this. Other substances have also been implicated including endothelin-1, thromboxane-A2, and B-type natriuretic peptide. The effect of NPY on small to medium arteries has been studied in a variety of vascular beds although little is known about the action of NPY in the coronary circulation. NPY produces vasoconstriction in human epicardial coronary arteries by potentiating norepinephrine mediated vasoconstriction. However, whether NPY vasoconstricts the coronary microvasculature (which lack alpha1 adrenergic receptors) has not previously been studied, and these vessels are key to reperfusion post-PPCI. We directly demonstrate that NPY causes a dose-dependent vasoconstriction of microvascular coronary arteries and a rise in coronary vascular resistance in the whole heart.

There are several potential mechanisms by which NPY may induce vasoconstriction including:

i. Inhibiting cAMP dependent vasodilatory signalling (e.g. beta2 adrenergic receptors) via Y1 receptor coupling to inhibitory G proteins.

ii. Direct mobilization of sarcoplasmic reticulum calcium through a phospholipase C—IP3 dependent pathway coupled to the Y1 receptor.

iii. Indirectly through the release of endothelin-1 via the Y2 receptor.

Endothelin-1 is a potent vasoconstrictor of small resistance vessels in the coronary circulation and several studies have found an association between peripheral venous endothelin-1 levels and coronary no-reflow post-STEMI. Although NPY has been shown to cause endothelin-1 release in endocardial endothelial cells via a Y2 receptor dependent pathway, we observe no correlation between CS NPY and endothelin-1.
and endothelin-1 levels. Moreover, the increase in coronary vascular resistance in response to NPY could not be prevented by a Y2 receptor antagonist. A Y1 receptor antagonist did not on its own cause vasodilatation or decrease coronary vascular resistance suggesting no background β2 receptor stimulation making Gi signalling unlikely. In microvascular arteries, we directly observe the mobilization of intracellular calcium stores suggesting that Y1 receptor signalling is most likely coupled to a phospholipase C-IP3 dependent pathway.

Limitations
This is a small mechanistic study that lacks statistical power and studies in large cohorts will be required to further investigate the relationship with overall prognosis. Given the positive correlation between peripheral venous and CS NPY levels, it may be that the same associations we describe for CS NPY also apply to peripheral venous levels if there was a larger sample size. We also did not measure cardiac NPY release via a CS-arterial NPY difference. By the time of sample acquisition, CS and venous NPY levels appear to have equilibrated and therefore a CS-arterial difference will have a low sensitivity. The coronary microvasculature post-PPCI will be exposed to NPY released locally as well as from circulating blood, and the combined concentration will determine its overall physiological response. We feel that this is best reflected in the overall CS concentration rather than a CS-arterial difference.

Clinical implications
Given our clinical observations regarding CS NPY levels in STEMI patients, the fact that the Y1 receptor antagonist BIBO3304 could limit infarct size during ischaemia reperfusion in the rat, and the presence of the Y1 receptor on human coronary micro-arteries, we speculate that Y1 receptor antagonism may be beneficial post-revascularization by PPCI. This may help relieve microvascular constriction, restore blood flow, minimize infarct size, and improve ejection fraction if there is a reversible component to the obstruction. It is also possible that NPY may play a role in the remodelling process itself. The competitive Y1 receptor antagonist AR-H040922 has been administered as an intravenous infusion in patients with SA but did not influence exercise induced ischaemia at the dose used. This is unsurprising given that SA is due to flow limiting epicardial coronary artery stenosis, rather than microvascular dysfunction. Whether this or similar compounds can improve microvascular function, reduce infarct size, and improve prognosis in the context of PPCI remains to be established.

Supplementary material
Supplementary material is available at European Heart Journal online.

Acknowledgements
We are very grateful to the patients who participated. This study would not have been possible without the tireless support of the coronary care unit and catheter laboratory staff of the Oxford Heart Centre of the John Radcliffe Hospital. We are very grateful to Jihana Mendu for technical assistance with the ischaemia/reperfusion experiments. We also thank the Bristol Clinical Trial Evaluation Unit.

Funding
This work was supported by the Oxford National Institute for Health Research (NIHR) Biomedical Research Centre and an Oxford Health Services Research Committee (OHSRC: 1135) grant (NH). R.A. acknowledges support from the NIHR Bristol Biomedical Research Centre, University Hospital Bristol NHS Foundation Trust. N.H. is a British Heart Foundation Intermediate Fellow (FS/15/0/3115) and K.D. is a British...
Conflict of interest: none declared.

References

1. Niccoli G, Burzotta F, Galullo L, Crea F. Myocardial no-reflow in humans. J Am Coll Cardiol 2009;54:281–292.
2. Fearon WF, Low AF, Yong AS, McGeech R, Berry C, Shah MG, Ho MY, Kim HS, Loh JP, Oldroyd KG. Prognostic value of the index of microcirculatory resistance measured after primary percutaneous coronary intervention. Circulation 2013;127:2436–2441.
3. Cuculi F, Dall’Armellina E, Manhiert C, De Caterina AR, Colyer S, Ferreira V, Morovat A, Prendergast BD, Forfar JC, Alp NJ, Choudhury RP, Neubauer S, Channon KM, Banning AP, Kharbanda RK. Early change in invasive measures of microvascular function can predict myocardial recovery following PCI for STEMI. Circulation 2013;128:1758–1768.
4. Wu KC, Zerhouni EA, Judd RM, Lugo-Oliveri CH, Barouch LA, Schulpen SM, Blumenthal RS, Lima JA. Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction. Circulation 1998;97:765–772.
5. Bekkers SC, Yazdani SK, Virmani R, Waltenberger J. Microvascular obstruction: underlining pathophysiology and clinical diagnosis. J Am Coll Cardiol 2010;55:1649–1660.
6. Jolly SC, Yazdani SK, Virmani R, Waltenberger J. Microvascular obstruction: randomized trial of primary PCI with or without routine manual thrombectomy. N Engl J Med 2015;372:1389–1398.
7. Naar SA, McCann GP, Greenwood JP, Kunadian V, Khan JN, Mahmoud IZ, Blackman DJ, Been M, Abrams KR, Shipley L, Wilcox R, Adgey AA, Gershlick AH. Strategies to attenuate micro-vascular obstruction during P-PCI: the randomized reperfusion facilitated by local adjunctive therapy in STElevation myocardial infarction trial. Eur Heart J 2016;37:1910–1919.
8. Schomig A. Catecholamines in myocardial ischemia. Systemic and cardiac release. Circulation 1990;82:813–822.
9. Herring N, Cranley J, Lokale MN, Li D, Shanks J, Alston EN, Girard BM, Carter E, Khan SH, Freedman NJ, Zhang L, Crosslin DR, Stone DH, Haynes C, Johnson J, Nelson S, Wang L, Connelly J, Muehlbauer M, Ginsburg GS, Crossman DC, Jones CJ, Vance J, Sketch MH, Granger CB, Newgard CB, Gregory SG, Goldschmidt-Clermont PJ, Kraus WE, Hauser ER. Neuropeptide Y gene polymorphisms confer risk of early-onset atherosclerosis. PLoS Genet 2009;5:e1000318.
10. Herring N, Lokale MN, Danson EJ, Heaton DA, Paterson DJ. Neuropeptide Y reduces acetylcholine release and vagal bradycardia via a Y2 receptor-mediated, protein kinase C-dependent pathway. J Mol Cell Cardiol 2008;44:477–485.
11. Shah SH, Freedman NJ, Zhang L, Crosslin DR, Stone DH, Haynes C, Johnson J, Nelson S, Wang L, Connelly J, Muehlbauer M, Ginsburg GS, Crossman DC, Jones CJ, Vance J, Sketch MH, Granger CB, Newgard CB, Gregory SG, Goldschmidt-Clermont PJ, Kraus WE, Hauser ER. Neuropeptide Y gene polymorphisms confer risk of early-onset atherosclerosis. PLoS Genet 2009;5:e1000318.