Amyloid Proteins in Plant-Associated Microbial Communities

Daniel Gómez-Pérez Vasvi Chaudhry Ariane Kemen Eric Kemen
ZMBP/IMIT, University of Tübingen, Tübingen, Germany

Keywords
Amyloid · Plant colonization · Microbial survival · Mechanism · Biofilm

Abstract
Amyloids have proven to be a widespread phenomenon rather than an exception. Many proteins presenting the hallmarks of this characteristic beta sheet-rich folding have been described to date. Particularly common are functional amyloids that play an important role in the promotion of survival and pathogenicity in prokaryotes. Here, we describe important developments in amyloid protein research that relate to microbe-microbe and microbe-host interactions in the plant microbiome. Starting with biofilms, which are a broad strategy for bacterial persistence that is extremely important for plant colonization. Microbes rely on amyloid-based mechanisms to adhere and create a protective coating that shelters them from external stresses and promotes cooperation. Another strategy generally carried out by amyloids is the formation of hydrophobic surface layers. Known as hydrophobins, these proteins coat the aerial hyphae and spores of plant pathogenic fungi, as well as certain bacterial biofilms. They contribute to plant virulence through promoting dissemination and infectivity. Furthermore, antimicrobial activity is an interesting outcome of the amyloid structure that has potential application in medicine and agriculture. There are many known antimicrobial amyloids released by animals and plants; however, those produced by bacteria or fungi remain still largely unknown. Finally, we discuss amyloid proteins with a more indirect mode of action in their host interactions. These include virulence-promoting harpins, signaling transduction that functions through amyloid templating, and root nodule bacteria proteins that promote plant-microbe symbiosis. In summary, amyloids are an interesting paradigm for their many functional mechanisms linked to bacterial survival in plant-associated microbial communities.

Introduction
Plants are an important system for the study of microbe-microbe and microbe-host interactions together with their mechanisms. Plants constitute approximately 80% of Earth’s total biomass, which makes them the world’s largest living surface area [Bar-On et al., 2018]. Furthermore, all plants are ubiquitously colonized by microbes, including bacteria, fungi, and oomycetes, to a variable extent [Beattie and Lindow, 1999; Kandel et al., 2017]. Plant-colonizing microbes thrive on primary and secondary plant-derived metabolites, which include nutrients and protective compounds. In addition, plants...
Amyloid Proteins in Plant-Associated Microbial Communities

Microb Physiol 2021;31:88–98
DOI: 10.1159/000516014

provide a niche that defends microbes against biotic and abiotic factors, in both the phyllosphere (above ground) and rhizosphere (below ground) parts of the plant [Mercado-Blanco, 2014]. As a consequence, complex interactions between prokaryotes and eukaryotes have evolved, where fungi and oomycetes are major determinants of the diversity and abundance of plant-associated bacteria [Agler et al., 2016]. This results in competition between microbes for access to the specific plant niches [Anderson et al., 2010; Chaudhry et al., 2021].

On one side of the spectrum, some microbes develop symbiotic relationships that benefit all parties by sharing common goods, which can be defined as secreted metabolites that benefit not just the producer but the whole community [Saikkonen et al., 2004]. On the other side, they can develop antagonistic relationships either toward other microbes or the host. In the first case, either a specific microbe or a number of them are inhibited through physical or chemical mechanisms. As a consequence, the competitors, either directly or indirectly, are denied access to the plant’s resources. In the second, a pathogenic relationship develops, which benefits the microbe to the detriment of the host. Thus, pathogenic interactions primarily benefit the pathogen and depending on symptoms to the host can be fatal to the native community. The key to colonization of both beneficial and pathogenic microbes is therefore a robust interaction with the host that can resist perturbations. Crucial mechanisms include biofilm formation and the release of antimicrobial and cytotoxic peptides to enforce niche colonization.

One intriguing class of proteins that is increasingly linked with pathogenicity and microbial survival in plant-associated communities are amyloids. Amyloids are proteins diverse in nature that have a set of common structural properties, the most salient of which is the capacity to polymerize as long unbranched fibrils with convergent characteristics (Fig. 1) [Makin et al., 2005]. These fibrils show a consistent cross beta structure, which consists of two parallel or antiparallel beta-sheets held together on their perpendicular axis through intermolecular hydrogen bonds [Nelson et al., 2005]. Single protofibrils may associate laterally with other protofibrils and lead to mature amyloid fibrils, which are about 6–10 nm thick and up to several micrometers long [Khurana et al., 2003]. Amyloid fibrils result in the same X-ray refraction pattern and are detectable via binding of Congo Red and Thioflavin T dyes [Eanes and Glenner, 1968; Kuznetsova et al., 2012; Wu et al., 2012; Girych et al., 2016]. Other more general characteristics of amyloids include their resistance toward proteases and ionic detergents, and a nucleation-mediated growth, which is mostly homogeneous but can be heterogeneous at lower levels [Soto and Castaño, 1996; Šarić et al., 2014; Törnquist et al., 2018]. This latter feature makes it interesting for potential cross-in-

Fig. 1. Different functions of amyloid proteins related to plant microbial communities at different stages of amyloid structural conformations.
Interactions between amyloids of different species. Additionally, the study of antimicrobial properties of many of the known amyloids, including pathology-associated ones, has gained a lot of traction in recent years [Soscia et al., 2010; Kagan et al., 2011; Spitzer et al., 2016; Gosztyla et al., 2018; Martin et al., 2018]. Pore formation and general non-specific and irreversible interaction with phospholipid membranes have been proposed as mechanisms for antibiotic activity [Butterfield and Lashuel, 2010; Last and Miranker, 2013].

Initially, amyloids were investigated as the etiological agent of many neurodegenerative diseases [Muchowski, 2002]. However, over the last two decades, they have been increasingly studied in the context of their prevalence in many physiological processes in all three domains of life including bacteria, archaea, and eukarya [Levkovich et al., 2021]. Many amyloids that impact both virulence and survival in prokaryotes have been described [Antonets et al., 2020]. Thus, to distinguish pathogenic amyloids from the latter they are commonly referred to as functional amyloids in the literature [Badtke et al., 2009]. In Figure 2, the larger increase in recent years in publications containing the keyword “amyloid” related to functional as compared to those lacking the term “functional” is evident.

The characteristics of amyloids already mentioned, including resilience, heterogeneity, nucleation, and antimicrobial activity, underscore many of their physiological functions in plant-associated microbial communities. Here, we discuss in the context of plant colonization the history and recent developments of functional amyloids associated with bacterial survival strategies in host-associated and host-related communities. We classify these strategies into two main groups: structural modifications, which include biofilm and hydrophobic surface formation, and defense through antimicrobial activity. Lastly, miscellaneous plant niche-related functions are described, which include amyloids that regulate diverse aspects of their hosts survival and which do not fit within the other two categories. A visual summary of all of these functions is shown in Figure 1 and representative proteins mentioned in this mini-review are summarized in Table 1.

Structural Modifications of Microbial Amyloids

Biofilm Formation

Biofilms are complex microbial communities formed by the cooperation of single or multiple species that adhere to a surface and each other, secreting an extracellular matrix (ECM) [Dragoș and Kovács, 2017]. They represent one of the most widespread strategies for bacterial virulence and proliferation in the microbial world. Biofilms naturally exist in diverse niches of plants in both the

Fig. 2. Comparison of publications per year with the keyword “amyloid” and the presence/lack of the term “functional” as found in the PubMed Central (PMC) database as of December 30, 2020. Trend lines drawn over scatter plot with local regression based on the LOESS method.
phyllosphere and rhizosphere and are accountable for a large part of all activity of bacteria in nature [Hall-Stoodley et al., 2004]. The ECM is composed of proteins, extracellular DNA, and polysaccharides, which in addition to maintaining microbial adhesion, protects the community and mediates interaction with the environment, including the host [Branda et al., 2005]. Within biofilms, common goods can be freely shared and bacteria are protected against harmful chemical and physical events, such as antimicrobials or displacement by rain [Patel, 2005; Arnaouteli et al., 2016]. The ECM components of biofilms are diverse in function and their composition varies for different microbial species [Flemming and Wingender, 2010]. However, the protein component is often consistently comprised of a single protein which forms a mesh of functional amyloid fibrils [Erskine et al., 2018a]. The main role of these fibrils is to build the scaffold on which the stationary cells and other ECM components rest. Additionally, it gives a greater degree of resilience to the structure, as mature fibrils are resistant to thermal and chemical denaturing conditions, including proteases. This helps to maintain the integrity of biofilms in a competitive environment, such as the extracellular compartments inside of plants, where these stresses are common.

Table 1. Representative microbial, plant amyloids, and related proteins with a role in plant-associated microbial communities

Main function	Protein	Organism	Localization	Additional comments	References
Biofilm formation	CsgA	*Escherichia coli*	Extracellular	Virulence promotion	[Barnhart and Chapman, 2006]
	CsgB	*Salmonella enterica*	Extracellular	Quorum sensing	
	TasA	*Bacillus species*	Extracellular	Antibacterial	[Stöver and Driks, 1999;
				Membrane stabilization	Romero et al., 2010]
	FapC	*Pseudomonas species*	Extracellular	Cell surface adhesion	[Dueholm et al., 2013; Rouse et al., 2018a]
Hydrophobic layer formation	MPG1	*Magnaporthe oryzae*	Extracellular	Surface detection	[Kershaw et al., 1998; Pham et al., 2016]
	BslA	*Bacillus subtilis*	Extracellular	Self-assembling protein that coats *Bacillus* biofilms	[Kovács et al., 2012; Hubbley et al., 2013]
	Chaplins	*Streptomyces coelicolor*	Extracellular	Surface attachment	[Elliot et al., 2003; Bokhove et al., 2013]
	Hum3, Rap1	*Ustilago maydis*	Extracellular	Shields fungus from the plant immune system	[Müller et al., 2008]
Antimicrobial activity	Microcin E492	*Klebsiella pneumoniae*	Extracellular	Amyloid fibrils act as a reservoir for antimicrobial peptides	[Bieler et al., 2005; Shahnavaz and Soto, 2012]
				Latex tree antifungal peptide	[Berthelot et al., 2016]
	Prohevein	*Hevea brasilensis*	Extracellular	Antimicrobial peptide from coconut	[Gour et al., 2016]
	Cn-AMP2	*Cocos nucifera*	Extracellular	Antimicrobial peptide from coconut	
	RsAFP-19	*Raphanus sativus*	Extracellular	Antifungal peptide from radish	[Garvey et al., 2013]
Plant virulence promotion	Harpins	*Xanthomonas species*	Extracellular	Effector translocation	[Oh et al., 2007; Choi et al., 2013]
		Erwinia amylovora		Plant hypersensitive response	
		Pseudomonas syringae		Plant cell toxicity	
	RTP1p	*Uromyces fabae*	Extracellular	Structural and stabilizing role	[Kemen et al., 2013]
Signaling	NLR amyloids	Filamentous fungi and	Membrane and	Non-self recognition	[Loquet and Saupe, 2017; Dyrka et al., 2020]
		bacteria	cytosolic components		
Plant symbiosis promotion	RopA and RopB	*Rhizobium leguminosarum*	Outer membrane	Soluble forms are membrane proteins	[Kosolapova et al., 2019]
			Extracellular		

NLR, Nod-like receptor.
[Taglialegna et al., 2016]. Functional amyloids in association with biofilms have been studied in many different microbial species, the majority of them focusing on bacteria. Herein, we summarize the well-documented ones and their involvement in plant colonization.

Curli is the most studied biofilm-associated amyloid and was the first to be described [Olsen et al., 1989]. It is produced by, among others, the enteric bacteria Escherichia coli and Salmonella enterica, which are also found in the environment and are well prepared to form biofilms on plants [Danhorn and Fuqua, 2007; Carter et al., 2016; Pruteanu et al., 2020]. The major subunit protein of curli is CsgA, composed of five repeat units with conserved glutamine and asparagine residues important for amyloid formation [Wang et al., 2010]. Curli plays an important role in the adhesion and promotion of biofilm onto different phyllosphere surfaces, including various economically important crops [Jeter and Matthysse, 2005; Boyer et al., 2016]. Moreover, curli is involved in many aspects of the biology of its producer, including virulence promotion, and it is regulated through quorum sensing [Smith et al., 2017; Saxena et al., 2019]. Curli has been determined in addition as an important virulence factor in Shigatoxigenic E. coli on fresh produce of crops and therefore represents a serious risk to human health through ingestion of uncooked vegetables [Merget et al., 2019]. How far curli stabilizes biofilms on plants and how much it promotes resistance to biofilms of E. coli to mechanical stresses and removal by solvents is still under debate and an important topic in food security.

The formation of Bacillus biofilms in the rhizosphere and phyllosphere is associated with plant growth promotion [Hashem et al., 2019]. The major proteinaceous component of this biofilm is TasA, which forms amyloid fibrils and provides integrity to the ECM [Romero et al., 2010]. Despite claims to its non-amyloidogenic nature, it is still widely considered to be a functional amyloid [Ers- kine et al., 2018b]. TasA was also shown initially to be antibacterial [Stöver and Driks, 1999]. However, whether this function is associated with its capacity to form an amyloid structure is not known. Recently reported functions of this amyloid not related to biofilm formation include its potential contribution to membrane stabilization during the stationary phase of the cell and its role in community signaling [Steinberg et al., 2020; Câmara-Almirón et al., 2020]. Overall, TasA promotes many aspects of the fitness and survival of plant-associated Bacillus species.

Biofilm formation in the roots by some members of Pseudomonas, like Pseudomonas fluorescens and Pseudomonas putida, is also associated with plant growth promotion [Meliani et al., 2017]. Pseudomonas species secrete the functional amyloid protein (Fap), which contributes to stable and robust biofilm formation and renders protection against chemical and mechanical stresses [Ueda and Saneoka, 2015; Zeng et al., 2015; Rouse et al., 2018b]. The major amyloid fibril component in Pseudomonas’ biofilm is FapC [Dueholm et al., 2010]. It presents three imperfect repeats of a glutamine- and asparagine-rich domain that are responsible for the formation of very stable amyloid fibrils [Rasmussen et al., 2019].

All of these biofilm amyloids require unique and intricate pathways with numerous intermediate enzymes and safety stops that keep aggregation under control [Balistreri et al., 2020], as its unintended trigger in the cytoplasm would overwhelm chaperones and lead to cell death [Landreh et al., 2015]. Additionally, there are usually two or more proteins that are directly responsible for amyloid formation: the major subunit protein that makes up most of the fibril’s weight but is unable to polymerize on its own, or does so slowly, and the minor subunit that acts as a nucleator. This strategy is found, for example, in curli, where CsgA and CsgB fulfill those roles, respectively [Hammer et al., 2007; Yan et al., 2020].

The dependence on amyloid fibrils for biofilm construction makes them a central target for interference by plants in order to keep infection under control. Plant polyphenols and flavonoids, in particular, have been shown to inhibit the development of bacterial biofilms through the blocking of amyloid formation in several distinct bacterial species [Najarzadeh et al., 2019; Pruteanu et al., 2020]. Interestingly, rather than a broad anti-amyloidogenic effect, they target amyloids produced by specific bacterial species. This is in accordance with the reported benefits of some bacterial biofilms in the promotion of plant fitness, which therefore may be preferred by the plant over others.

The widespread occurrence of functional amyloids in their association with biofilm-forming pathogenic and beneficial microbes emphasize their significance in microbe-microbe and microbe-host interactions. Further studies are required to decipher their role in plant-associated microbes, which could lead to the development of novel strategies for plant disease management particularly through probiotics based on mixed cultures that could gain resilience under harsh natural conditions through amyloid-stabilized surface attachment.
Hydrophobic Surface Formation

Another class of structural modifications that are related to microbial survival in the plant holobiont includes hydrophobic layer formation by surface-active proteins. Surface-active proteins modify the properties of physical interfaces and are often linked to an amyloid structure [Sunde et al., 2016]. In fungi, these are called hydrophobins and are known to play an active role in plant-fungi interactions that favor virulence [Teertstra et al., 2009]. Proteins with a similar function as fungal hydrophobins have also been described in some filamentous bacteria. In Streptomyces coelicolor, the protein family of chaplins is composed of amyloids that play a role in the formation of aerial mycelia and attachment to surfaces [Elliot et al., 2003]. They respectively perform these roles in two distinct amyloid morphologies, the first formed at water-air interfaces, and the second formed in solution [Bokhove et al., 2013].

Some Streptomyces species such as S. scabies have become serious crop pathogens where the ability to colonize plant niches including the secretion of plant hormones has become a virulence factor [Li et al., 2019]. The role of functional amyloids in such lifestyle shifts has been poorly studied and might in the future become an important target to study the transition from symbionts and facultative pathogens to obligate pathogens. In the obligate biotrophic plant pathogenic fungus Ustilago maydis two secreted candidate effectors Hum3 and Rsp1, a hydrophobin and a hydrophobic repeat-rich protein, are tightly bound to the cell wall and form amyloid-like fibrils that influence the surface hydrophobicity [Müller et al., 2008]. It was proposed that they play a role in shielding the fungal hyphae from the plant immune system [Lanver et al., 2017]. For obligate biotrophic fungi, the integrity of the host is crucial for their successful manifestation and the completion of their pathogen life cycle. The obligate rust fungus, Uromyces fabae, delivers the filament-forming protein RTP1p, via sub-compartments of the haustorium into the host cytoplasm where it plays a structural and stabilizing role [Kemen et al., 2005, 2013]. RTP1p has therefore been hypothesized to be a haustorial cell wall protein that extends the intracellular lifespan of the pathogen. Amyloid effector proteins may therefore represent a tool for extending the biotrophic phase and protecting the haustorium from the plant defenses even under conditions where cell death has been initiated by the host. If and how this is related to the green islands that can be observed when endophytes colonize plant leaves is a future topic of debate [Wemheuer et al., 2019].

In other filamentous phytopathogenic fungi, hydrophobin functions that promote virulence and pathogenicity include spore dispersal, attachment to hydrophobic surfaces, and immune evasion. Hydrophobins act as surfactants that break surface water tension and maintain a hydrophobic exterior to allow aerial hyphae to develop and prevent its desiccation [Linder et al., 2005]. This also helps with better dissemination as dry spores are lighter and carried farther away [Beever and Dempsey, 1978; Wessels, 1996]. Hydrophobins also contribute to surface detection and spore attachment to the hydrophobic leaf surface. Such is the case of the hydrophobin MPG1 from the pathogen Magnaporthe oryzae in rice [Kershaw et al., 1998], whose amyloid aggregation is triggered by a surface-driven mechanism [Pham et al., 2016]. Hydrophobins may also help mask spore epitopes recognized by the plant and thus evade immune detection [Aimanianda et al., 2009; Carrion et al., 2013; Marcos et al., 2016].

These hydrophobic coatings can also be understood as a way to prevent bacterial colonization from water droplets. They discourage accumulation and adsorption onto the surface, therefore effectively inhibiting bacterial adhesion and thus biofilm formation onto the hyphae, spores, or other biofilm surfaces [Wick et al., 2007; Artini et al., 2017]. In fact, new developments in antibacterial surfaces with application in, for example, medical devices, include the use of recombinant hydrophobins to prevent biofilm attachment [Wang et al., 2017; Berger and Sallada, 2019; Devine et al., 2019; Sorrentino et al., 2020].

Antimicrobial Properties of Amyloids

Many already known antimicrobials have been associated in their activity with their capacity to assemble amyloid structures, including mammalian Protegrin-1 and amphibian Uperin 3.5 [Jang et al., 2011; Martin et al., 2018; Salinas et al., 2020]. The bacterial microcin E492 produced by Klebsiella pneumoniae, a soil and plant dwelling bacterium, has been described as amyloid. This microcin is an antibacterial peptide that kills bacteria through the formation of channels that disrupt mem-
brane permeability and mannose metabolism [Biéler et al., 2010]. Another interesting aspect of this amyloid is that mature fibrils act as an inert reservoir for the toxic peptide. After triggering through external factors, such as low pH, small soluble oligomers are released, which are then responsible for its toxicity [Bieler et al., 2005; Shahnawaz and Soto, 2012].

On the plant side, certain defense-related peptides have been shown to exhibit amyloid-like properties in vitro. These include prohevein from *Hevea brasiliensis*, a wound-induced peptide whose C-terminus exhibits agglutination of pathogenic organisms [Berthelot et al., 2016]. Other antimicrobial amyloid peptides from plants include Cn-AMP2 from *Cocos nucifera*, an antimicrobial from coconut water effective against gram-positive and gram-negative bacteria, and RsAFP-19, an antifungal defensin from *Raphanus sativus* [Mandal et al., 2009; Gour et al., 2016]. Interestingly, the fungicidal activity of the latter is negatively correlated with its aggregation level. This seems to suggest that one of its roles is to act as a decoy for the inactivation of toxic oligomeric intermediates from competitors into non-active fibrils [Caughey and Lansbury, 2003; Bieler et al., 2005].

The antimicrobial nature of amyloids is a topic of research with many implications for their potential use in human health. Particularly interesting would be the applications of such antimicrobial peptides against multidrug-resistant bacteria, for which targeted antibiotic resistance is an increasing problem [Wise et al., 1998]. Since the mechanism of most antimicrobial peptides, including antimicrobial amyloids, is not linked to a specific target but rather to irreversible binding and disruption of membranes, mechanisms of resistance are less likely to evolve [Mwangi et al., 2019]. Additionally, there is a need for antimicrobial compounds with little environmental impact for their use in agriculture [Montesinos and Bardaji, 2008]. However, their applicability in both of these branches is hindered by the lack of understanding of what makes some antimicrobial amyloids more cytotoxic than others [Voth et al., 2020].

How antimicrobial amyloid producers defend against their own peptides is not known and probably varies among specific amyloids. As already mentioned, a complex system of chaperones ensures that there is no aggregation in the cytoplasm and the protein is in a state ready for translocation across the membrane [Sugimoto et al., 2018]. Additionally, external conditions also trigger amyloid-dependent antimicrobial activity and therefore may help to direct its action through two main mechanisms. The first is conformational change into an amyloid structure that leads to a more toxic protein, for example, human Serum amyloid A, which is active only at the skin surface because of its sensitivity to lower pH [Zheng et al., 2020]. The second is due to the shedding of soluble oligomers from mature fibrils that may themselves be toxic, as is the case of microcin E492 [Shahnawaz and Soto, 2012]. Very little is known about toxic amyloid proteins in the plant microbial community. Such as microbes on the human skin, microbes in the plant apoplast face a low pH (healthy skin pH 5.4 to 5.9, plant apoplast pH 5 to 6) that can quickly get more alkaline upon stress [Geilfus, 2017]. These changes might have a severe impact on amyloid toxicity and functionality as described above for human Serum amyloid A and require a high degree of adaptation by the microbes [Zheng et al., 2020]. Identifying antimicrobial amyloids that react to pH shifts in plants might be key to identify novel antimicrobial compounds that do not harm the natural microbiota but do protect from specific pathogens.

Virulence, Signaling, and Symbiosis in Microbial Amyloids

Finally, we describe three classes of amyloids that are not directly related to structural or antimicrobial functions that have been described in plant-associated microbial communities. These include plant toxicity and hypersensitive response promotion by harpins, non-self-recognition in filamentous fungi and bacteria, and root symbiosis promotion.

The harpins are a family of heat-stable proteins produced by the phytopathogenic bacteria *Xanthomonas* spp., *Erwinia amylovora*, and *Pseudomonas syringae* [Oh et al., 2007]. These proteins are associated with the promotion of virulence through several amyloid-related mechanisms: bacterial effector translocation, induction of plant hypersensitive response, and cytotoxicity against plant cells [Choi et al., 2013]. Harpin’s ability to induce hypersensitive response was correlated to its capacity to form amyloid fibrils in vitro [Oh et al., 2007]. The cytotoxicity mechanism is believed to be due to the formation of beta sheet-rich pores that bind to membranes and cause depolarization in plant cells [Pike et al., 1998].

The role for non-self-recognition and programmed cell death of amyloids has been described in filamentous fungi [Glass and Dementhon, 2006]. Small amyloid motifs act as a signaling mechanism that works by linking receptor and activator protein domains through a templating fold, leading ultimately to cell death [Loquet and...
Saupe, 2017]. Nod-like receptor-associated amyloid signaling motifs have been recently discovered in filamentous bacteria, termed BELL and BASS [Dyrka et al., 2020]. They are loosely homologous to the animal, plant, and fungi Nod-like receptors and are proposed to act through similar amyloid-templating mechanisms [Saupe, 2020]. Non-self-recognition plays a role in maintaining pathogen diversity and therefore promoting the exchange of pathogenic traits important for survival against an ever-evolving plant immune system [Ishikawa et al., 2012].

There are fewer reports of functional amyloids concerning symbiotic interactions, probably because research effort is biased toward pathogenic and virulence-promoting mechanisms. RopA and RopB are two recently described proteins from *Rhizobium leguminosarum*, which display amyloid formation linked to microbe-host symbiosis [Kosolapova et al., 2019]. These proteins show structural similarity and are predicted to be outer membrane porins in their soluble forms. Their expression correlates with the formation of capsules, extracellular structures associated with stationary growth, in this root nodule bacterium. Kosolapova et al. [2019] speculate on its role in the establishment of plant-microbial symbiosis through the observation of enhanced expression after the addition of a plant flavonoid.

Conclusion

Amyloid proteins have crucial properties that make them suitable to fill diverse roles in the bacterial and fungal survival of plant-associated communities. Their capacity to polymerize into very resistant fibrils helps them withstand the stresses associated with plant colonization. This is highlighted by the many amyloid biofilm-forming proteins, including curli, Fap, and TasA. Additionally, the tendency of small soluble oligomers to interact with membranes and depolarize them makes them a common structure among antimicrobial and cytotoxic peptides. In this mini-review, we have also discussed amyloids that take part in symbiosis, signaling, and virulence mechanisms. Such a plethora of functions, with what is at the core the same fold, hints at yet to be discovered interactions. Potential cross-seeding among different amyloids in microbial communities, like the plant microbiome, may have a big impact on bacterial survival and disease. Recent examples from human health about the involvement of bacterial amyloids in the seeding of pathogenic amyloids give us a hint of this untapped potential [Javed et al., 2020; Sampson et al., 2020]. All in all, understanding proteins in the context of their amyloid structure and cross-interactions will improve our understanding of the ecology of plant-associated microbial communities and help to develop new methods relevant to human medicine and pest biocontrol.

Acknowledgment

The authors are thankful to Paul Runge and Monja Schmid for their comments and suggestions. We further thank the anonymous reviewers for their time and input.

Conflict of Interest Statement

The authors have no conflicts of interest to declare.

Funding Sources

The authors are grateful to the German Research Foundation (DFG)-funded research training group RTG 1708 “Molecular principles of bacterial survival strategies” (grant # 174858087; Y.H) for providing the funding for the development of the manuscript.

Author Contributions

D.G.-P. conceived the idea for the review, drafted the manuscript, and designed the illustrations. V.C. contributed to the biofilm section. A.K. contributed to the hydrophobic surface section. E.K. contributed to the overall discussion. All authors reviewed and approved the final manuscript.

References

Agler MT, Ruhe J, Kroll S, Morhenn C, Kim ST, Weigel D, et al. Microbial Hub Taxa Link Host and Abiotic Factors to Plant Microbiome Variation. *Plos Biol.* 2016; 14(1): e1002352.

Aimanianda V, Bayry J, Bozza S, Kniemeyer O, Perruccio K, Elluru SR, et al. Surface hydrophobin prevents immune recognition of airborne fungal spores. *Nature*. 2009; 460(7259): 1117–21.

Anderson JP, Gleason CA, Foley RC, Thrall PH, Burdon JB, Singh KB. Plants versus pathogens: an evolutionary arms race. *Funct Plant Biol*. 2010;37(6):499–512.

Antonets KS, Belousov MV, Sulatskaya AI, Belousova ME, Kosolapova AO, Sulatsky MI, et al. Accumulation of storage proteins in plant seeds is mediated by amyloid formation. *Plos Biol*. 2020;18(7):e3000564.
Berger BW, Sallada ND. Hydrophobins: multi-functional biofilm matrix proteins. Microorganisms. 2020;8(12):1951.

Bar-On YM, Phillips R, Milo R. The biomass distribution on Earth. Proc Natl Acad Sci. 2015;112(17):5419–24.

Barnhart MM, Chapman MR. Curli Biogenesis and Function. Annu Rev Microbiol. 2006;60:131–47.

Becerra SM, Mollnes TE, Madsen H, et al. Functional Amyloid and Other Protein Fibers in the Biofilm Matrix. J Mol Biol. 2018a;430(20):3642–56.

Erskine E, MacPhee CE, Stanley-Wall NR. Functional Amyloid and Other Protein Fibers in the Biofilm Matrix. J Mol Biol. 2018a;430(20):3642–56.

Erskine E, Morris RJ, Schor M, Earl C, Gillespie RMC, Bromley KM, et al. Formation of functional, non-amyloidogenic fibres by recombinant Bacillus subtilis TasA. Mol Microbiol. 2018b;110(6):897–913.

Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010;8(9):623–33.

Girich M, Gorbenko G, Malyiov I, Trusova V, Mirugucu C, Saito H, et al. Combined thioflavin T-Congo red fluorescence assay for amyloid fibril detection. Methods Appl Fluoresc. 2016;4(3):034010.

Glass NL, Dementhon K. Non-self recognition and programmed cell death in filamentous fungi. Curr Opin Microbiol. 2006;9(6):533–8.

Gosztyla ML, Brothers HM, Robinson SR. Alzheimer’s Amyloid-β is an Antimicrobial Peptide: A Review of the Evidence. J Alzheimers Dis. 2018;62(4):1495–506.

Gour S, Kaushik V, Kumar V, Bhat P, Yadav SC, Yadav JK. Antimicrobial peptide (Cn-AMP2) from liquid endosphere of Cocos nucifera forms amyloid-like fibrillar structure. J Pept Sci. 2016;22:201–7.

Halle-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the Natural environment to infectious diseases. Nat Rev Microbiol. 2004;2(2):95–108.

Hammer ND, Schmidt JC, Chapman MR. The curli nucleator protein, CsgB, contains an amyloidogenic domain that directs CsgA polymerization. Proc Natl Acad Sci USA. 2007;104(30):12494–9.

Hashem A, Tabassum B, Fathi Abd Allah E. Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biostress. Saudi J Biol Sci. 2019;26(6):1291–7.

Hobley L, Ostrowski A, Rao FV, Bromley KM, Porter M, Prescott AR, et al. BslA is a self-assembling bacterial hydrophobin that coats the Bacillus subtilis biofilm. Proc Natl Acad Sci USA. 2013;110(33):13600–5.

Ishikawa FH, Souza EA, Shoji YJ, Connolly L, Freitag M, Read NA, et al. Heterokaryon Incompatibility Is Suppressed Following Conidial Anastomosis Tube Fusion in a Fungal Plant Pathogen. Plos One. 2012;7(2):e31175.

Jang H, Arce FT, Mustata M, Ramachandran S, Capone R, Nussinov R, et al. Antimicrobial Peptatin-1 Forms Amyloid-Like Fibrils with Rapid Kinetics Suggesting a Functional Link. Biophys J. 2011;100(7):1775–83.
Amyloid Proteins in Plant-Associated Microbial Communities

Microb Physiol 2021;31:88–98
DOI: 10.1159/000516014

Javed I, Zhang Z, Adamcik J, Andriskopoulos N, Li Y, Otzen DE, et al. Accelerated Amyloid Beta Pathogenesis by Bacterial Amyloid FapC. Adv Sci (Weinheim). 2020;7(18):2001299.

Jeter C, Matthysse AG. Characterization of the Binding of Diarrheagenic Strains of E. coli to Plant Surfaces and the Role of Curli in the Interaction of the Bacteria with Alfalfa Sprouts. Mol Plant Microbe Interact. 2005;18(11):1235–42.

Kagan BL, Jang H, Capone R, Teran Arce F, Ramachandran S, Lal R, et al. Antimicrobial Properties of Amyloid Proteptides. Mol Pharm. 2011;9(4):708–17.

Kandel S, Joubert P, Doty S. Bacterial Endophyte Colonization and Distribution within Plants. Microorganisms. 2017;5(4):77.

Kemen E, Kemen AC, Rafidi M, Hempel U, Mendgen K, Hahn M, et al. Identification of a Protein from Rust Fungi Transferred from Haustoria into Infected Plant Cells. Mol Plant Microbe Interact. 2005;18(11):1130–9.

Kemen E, Kemen A, Ehlers A, Voegele R, Mendgen K. A novel structural effector from rust fungi is capable of fibril formation. Plant J. 2013;73(5):767–80.

Kershaw MJ, Walden G, Talbot MJ. Complementation of the mpg1 mutant phenotype in Magnaporthe grisea reveals functional relationships between fungal hydrophobins. Embo J. 1998;17(14):3838–49.

Khurana R, Ionescu-Zanetti C, Pope M, Li J, Nielson Kershaw MJ, Wakley G, Talbot NJ. Catenation of the Mpg1 mutant phenotype in Magnaporthe grisea reveals functional relationships between fungal hydrophobins. Embo J. 1998;17(14):3838–49.

Kobayashi K, Iwamoto M. BdA1(YubA) forms a hydrophobic layer on the surface of Bacillus subtilis biofilms. Mol Microbiol. 2012;85(1):51–66.

Kosolapova AO, Belousov MV, Sulatskaya AI, Belousova ME, Sulatsky MI, Antonets KS, et al. Two Novel Amyloid Proteins, RopA and RopB, from the Root Nodule Bacterium Rhizobium leguminosarum. Biomolecules. 2019;9(11):694.

Kovács AT, van Gestel J, Kuipers OP. The protective layer of biofilm: a repellent function for a new class of amphiphilic proteins. Mol Microbiol. 2012;85(1):8–11.

Kuznetsova IM, Sulatskaya AI, Uversky VN, Turoverov KK. A novel trend in the experimental methodology for the Analysis of the Thorilavin T Binding to Amyloid Fibris. Mol Neurobiol. 2012;45(3):488–98.

Landreh M, Rising A, Presto J, Jörnvall H, Johansson J. Specific Chaperones and Regulatory Domains in Control of Amyloid Formation. J Biol Chem. 2015;290(44):26430–6.

Lanver D, Tollot M, Schweizer G, Lo Presti L, Reissmann S, Ma LS, et al. Ustilago maydis effectors and their impact on virulence. Nat Rev Microbiol. 2017;15(7):409–21.

Last NB, Miranker AD. Common mechanism unites membrane poration by amyloid and antimicrobial peptides. Proc Natl Acad Sci USA. 2013;110(16):6382–7.

Levkovich SA, Gazit E, Bar-Yosef DL. Two Decades of Studying Functional Amyloids in Microorganisms. Trends Microbiol. 2021 Mar; 29(3):251–65.

Li Y, Liu J, Díaz-Cruz G, Cheng Z, Bignell DRD. Virulence mechanisms of plant-pathogenic Streptomyces species: an updated review. Microbiology (Reading). 2019;165(10):1025–40.

Linder MB, Szlaby GR, Nakari-Setälä T, Penttilä ME. Hydrophobins: the protein-ampiphiles of filamentous fungi. Fems Microbiol Rev. 2005;29(5):877–96.

Liu W, Li S, Wang Z, Yan ECY, Leblanc RM. Characterization of Surface-Active Biofilm Protein BslA in Self-Assembling Langmuir Monolayer at the Air-Water Interface. Langmuir. 2015;31(33):10311–20.

Loquet A, Saupé SJ. Diversity of Amyloid Motifs in NLR Signaling in Fungi. Biomolecules. 2017;7(2):38.

Makin OS, Atkins E, Sikorski P, Johansson J, Serpell LC. Molecular basis for amyloid fibril formation and stability. Proc Natl Acad Sci USA. 2005;102(2):315–20.

Mandal SM, Dey S, Mandal M, Sarkar S, Marien Neto S, Franco OL. Identification and structural insights of three novel antimicrobial peptides isolated from green coconut water. Peptides. 2009;30(4):633–7.

Marcos CM, de Oliveira HC, de Melo WC, da Silva JF, Assato PA, Scorzonì L, et al. Anti-Immune Strategies of Pathogenic Fungi. Front Cell Infect Microbiol. 2016;6:142.

Martin LL, Kubel C, Piantavigna S, Tikkoo T, Gray NP, John T, et al. Amyloid aggregation and membrane activity of the antimicrobial peptide uperin 3.5. Peptide Science. 2018;110(3):e24052.

Meliani A, Bensoltane A, Benidire L, Oufdou K, Mercado-Blanco J. Life of Microbes Inside the Plant. Microbes for Sustainable Agriculture. 2014:25–32.

Merget B, Forbes KJ, Brennan F, McAteer S, Shepherd T, Strachan NCJ, et al. Relating growth potential and biofilm formation of Shigatoxigenic Escherichia coli to in planta colonisation and the metabolism of ready-to-eat crops. BioRxiv. 2019;354317.

Montesinos E, Bardaji E. Synthetic antimicrobial peptides as agricultural pesticides for plant-protection. Biotechnology Advances. 2020;38:107377.

Mwangi J, Hao X, Lai R, Zhang ZY. Antimicrobial peptides: new hope in the war against multidrug resistance. Zool Res. 2019;40(6):488–505.

Najzarzadeh Z, Mohammad-Beigi H, Nedergaarde Pedersen J, Christiansen G, Sønderby TV, Shojaoosadi SA, et al. Plant Polyphenols Inhibit Functional Amyloid and Biofilm Formation in Pseudomonas Strains by Directing Monomers to Off-Pathway Oligomers. Bio- molecules. 2019;9(11):659.

Nelson R, Sawaya MR, Defrance M, Madsen AO, Riekel C, Grothe R, et al. Structure of the cross-beta spine of amyloid-like fibrils. Nature. 2005;435(7043):773–8.

Oh J, Kim JG, Jeon E, Yoo CH, Moon JS, Rhee S, et al. Amyloidogenesis of Type III-dependent Harpins from Plant Pathogenic Bacteria. J Biol Chem. 2007;282(18):13601–9.

Olsen A, Jonsson A, Normark S. Fibronectin binding mediated by a novel class of surface organelles on Escherichia coli. Nature. 1989;338:652–5.

Patel R. Biofilms and Antimicrobial Resistance. Clinical Orthopaedics and Related Research. 2005Aug;437(1):41–7.

Pham CL, Rey A, Lo V, Soules M, Ren Q, Meid G, et al. Self-assembly of MPG1, a hydrophobin protein from the rice blast fungus that forms functional amyloid coatings, occurs by a surface-driven mechanism. Sci Rep. 2016;6:25288.

Pike SM, Ádam AL, Pu X-A, Hoyos ME, Laby R, Beer SV, et al. Effects on mouse amylolysin a-harpin on tobacco leaf cell membranes are related to leaf necrosis and electrolyte leakage and distinct from perturbations caused by inoculated E. amylovora. Physiological and Molecular Plant Pathology. 1998;53(1):39–60.

Pruteau M, Hernández Lobato JI, Stach T, Hengge R. Common plant flavonoids prevent the assembly of amyloid curli fibres and can interfere with bacterial biofilm formation. Environ Microbiol. 2020;22(12):5280–99.

Rasmussen CB, Christiansen G, Vad BS, Lynegaard G, Engberg JJ, Andreassen M, et al. Imperfect repeats in the functional amyloid protein FapC reduce the tendency to fragment during filtration. Protein Sci. 2019;28(3):633–42.

Romero D, Aguilar C, Losick R, Kolter R. Amyloid fibers provide structural integrity to Bacillus subtilis biofilms. Proc Natl Acad Sci USA. 2010;107(5):2230–4.

Rouge SL, Matthews SJ, Dueholm MS. Ecology and Biogenesis of Functional Amyloids in Pseudomonas. J Mol Biol. 2018a;430(20):3685–95.

Rouge SL, Matthews SJ, Dueholm MS. Ecology and Biogenesis of Functional Amyloids in Pseudomonas. J Mol Biol. 2018a;430(20):3685–95.

Saikkonen K, Wäli P, Helander M, Faeth SH. Evolution of endophyte-plant symbioses. Trends Plant Sci. 2004;9(6):275–80.
Salinas N, Povolotsky TL, Landau M, Kolodkin-Gal I. Emerging Roles of Functional Bacterial Amyloids in Gene Regulation, Toxicity, and Immunomodulation. *Microbiol Mol Biol Rev*. 2020;85(1).

Sampson TR, Challis C, Jain N, Moiseyenko A, Ladinsky MS, Shastri GG, et al. A gut bacterial amyloid promotes α-synuclein aggregation and motor impairment in mice. *Elife*. 2020;9:e53111.

Šarić A, Chebaro YC, Knowles TPJ, Frenkel D. Crucial role of nonspecific interactions in amyloid nucleation. *Proc National Acad Sci*. 2014;111:17869–74.

Saupe SJ. Amyloid Signaling in Filamentous Fungi and Bacteria. *Annu Rev Microbiol*. 2020;74:1–19.

Saxena P, Joshi Y, Rawat K, Bisht R. Biofilms: Architecture, Resistance, Quorum Sensing and Control Mechanisms. *Indian J Microbiol*. 2019;59(1):3–12.

Shahnawaz M, Soto C. Microcin Amyloid Fibrils Are Reservoir of Toxic Oligomeric Species. *J Biol Chem*. 2012;287(15):11665–76.

Smith DR, Price JE, Burby PE, Blanco LP, Chaminade I, Gargano M, Ricciardelli A, Parrilli Soscia SJ, Kirby JE, Washicosky KJ, Tucker SM, Shahnawaz M, Soto C. Microcin Amyloid Fibrils Are Reservoir of Toxic Oligomeric Species. *J Biol Chem*. 2012;287(15):11665–76.

Sugimoto S, Arita-Morioka KI, Terao A, Yamanaoka K, Ogura T, Mizunoe Y. Multitasking of Hsp70 chaperone in the biogenesis of bacterial functional amyloids. *Commun Biol*. 2018;1:52.

Sunde M, Pham CL, Kwan AH. Molecular Characteristics and Biological Functions of Surface-Active and Surfactant Proteins. *Annu Rev Biochem*. 2016;86:585–608.

Taglialegna A, Lasa I, Valle J. Amyloid Structures as Biofilm Matrix Scaffolds. *J Bacteriol*. 2016;198(19):2579–88.

Teertstra WR, van der Velden GJ, de Jong JP, Kruijtzer JA, Liskamp RM, Kroon-Batenburg E, Buonocore C, de Pascale D, et al. Development of anti-bacterial surfaces using a hydrophobin chimeric protein. *Int J Biol Macrobiol*. 2020;164:2293–300.

Sosca SJ, Kirby JE, Washicosky KJ, Tucker SM, Ingelsson M, Hyman B, et al. The Alzheimer’s disease-associated amyloid beta-protein is an antimicrobial peptide. *Plos One*. 2010;5(3):e9505.

Soto C, Castaño EM. The conformation of Alzheimer’s beta peptide determines the rate of amyloid formation and its resistance to proteolysis. *Biochem J*. 1996;314(Pt 2):701–7.

Spitzer P, Condic M, Herrmann M, Oberstein TJ, Scharin-Mehlmann M, Gilbert DF, et al. Amyloidogenic amyloid-β-peptide variants induce microbial agglutination and exert antimicrobial activity. *Sci Rep*. 2016;6:32228.

Steinberg N, Keren-Paz A, Hou Q, Doron S, Yanuka-Golub K, Olender T, et al. The extracellular matrix protein TasA is a developmental cue that maintains a motile subpopulation within Bacillus subtilis biofilms. *Sci Signal*. 2020;13(632):eaaw8905.

Stöver AG, Driks A. Secretion, Localization, and antibacterial activity of TasA, a Bacillus subtilis spore-associated protein. *J Bacteriol*. 1999;181:1664–72.

Taglialegna A, Lasa I, Valle J. Amyloid Structures as Biofilm Matrix Scaffolds. *J Bacteriol*. 2016;198(19):2579–88.

Teertstra WR, van der Velden GJ, de Jong JP, Kruijtzer JA, Liskamp RM, Kroon-Batenburg E, Buonocore C, de Pascale D, et al. Development of anti-bacterial surfaces using a hydrophobin chimeric protein. *Int J Biol Macrobiol*. 2020;164:2293–300.

Sosca SJ, Kirby JE, Washicosky KJ, Tucker SM, Ingelsson M, Hyman B, et al. The Alzheimer’s disease-associated amyloid beta-protein is an antimicrobial peptide. *Plos One*. 2010;5(3):e9505.

Soto C, Castaño EM. The conformation of Alzheimer’s beta peptide determines the rate of amyloid formation and its resistance to proteolysis. *Biochem J*. 1996;314(Pt 2):701–7.

Spitzer P, Condic M, Herrmann M, Oberstein TJ, Scharin-Mehlmann M, Gilbert DF, et al. Amyloidogenic amyloid-β-peptide variants induce microbial agglutination and exert antimicrobial activity. *Sci Rep*. 2016;6:32228.

Steinberg N, Keren-Paz A, Hou Q, Doron S, Yanuka-Golub K, Olender T, et al. The extracellular matrix protein TasA is a developmental cue that maintains a motile subpopulation within Bacillus subtilis biofilms. *Sci Signal*. 2020;13(632):eaaw8905.

Stöver AG, Driks A. Secretion, Localization, and antibacterial activity of TasA, a Bacillus subtilis spore-associated protein. *J Bacteriol*. 1999;181:1664–72.

Taglialegna A, Lasa I, Valle J. Amyloid Structures as Biofilm Matrix Scaffolds. *J Bacteriol*. 2016;198(19):2579–88.

Teertstra WR, van der Velden GJ, de Jong JP, Kruijtzer JA, Liskamp RM, Kroon-Batenburg E, Buonocore C, de Pascale D, et al. Development of anti-bacterial surfaces using a hydrophobin chimeric protein. *Int J Biol Macrobiol*. 2020;164:2293–300.

Sosca SJ, Kirby JE, Washicosky KJ, Tucker SM, Ingelsson M, Hyman B, et al. The Alzheimer’s disease-associated amyloid beta-protein is an antimicrobial peptide. *Plos One*. 2010;5(3):e9505.

Soto C, Castaño EM. The conformation of Alzheimer’s beta peptide determines the rate of amyloid formation and its resistance to proteolysis. *Biochem J*. 1996;314(Pt 2):701–7.

Spitzer P, Condic M, Herrmann M, Oberstein TJ, Scharin-Mehlmann M, Gilbert DF, et al. Amyloidogenic amyloid-β-peptide variants induce microbial agglutination and exert antimicrobial activity. *Sci Rep*. 2016;6:32228.

Steinberg N, Keren-Paz A, Hou Q, Doron S, Yanuka-Golub K, Olender T, et al. The extracellular matrix protein TasA is a developmental cue that maintains a motile subpopulation within Bacillus subtilis biofilms. *Sci Signal*. 2020;13(632):eaaw8905.