Estimating the true piezoelectric properties of BiFeO3 from measurements on BiFeO3-PVDF terpolymer composites

Tuluk, Anton; Mahon, Tadhg; van der Zwaag, Sybrand; Groen, Pim

DOI
10.1016/j.jallcom.2021.159186

Publication date
2021

Document Version
Final published version

Published in
Journal of Alloys and Compounds

Citation (APA)
Tuluk, A., Mahon, T., van der Zwaag, S., & Groen, P. (2021). Estimating the true piezoelectric properties of BiFeO3 from measurements on BiFeO3-PVDF terpolymer composites. Journal of Alloys and Compounds, 868, [159186]. https://doi.org/10.1016/j.jallcom.2021.159186

Important note
To cite this publication, please use the final published version (if applicable). Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.
Estimating the true piezoelectric properties of BiFeO$_3$ from measurements on BiFeO$_3$-PVDF terpolymer composites

Anton Tuluk*, Tadhg Mahon, Sybrand van der Zwaag, Pim Groen

Novel Aerospace Materials group (NovAM), Faculty of Aerospace Engineering, Delft University of Technology, Kluysterweg 1, Delft, the Netherlands

ARTICLE INFO

Article history:
Received 15 December 2020
Received in revised form 5 February 2021
Accepted 10 February 2021
Available online 13 February 2021

Keywords:
Bismuth Ferrite
BiFeO$_3$
PVDF
Piezoelectricity
Dielectric
Polymer composites

ABSTRACT

BiFeO$_3$ is an interesting multiferroic material with potential use in sensors and transducers. However, the high coercive field and low dielectric strength of this material make the poling process extremely difficult. Poling becomes a lot easier if the ceramic particles are incorporated in a non-conductive polymer with comparable dielectric properties. In this work, unstructured composites consisting of BiFeO$_3$ particles in a non-piezoelectric PVDF terpolymer matrix are made with a ceramic volume fraction ranging from 20% to 60%. The highest piezoelectric charge and voltage constant values ($d_{33}=31$ pC/N and $g_{33}=47$ mV m/N) are obtained for a BiFeO$_3$-PVDF terpolymer composite with a volume fraction of 60%. The Poon model is chosen to analyse the volume fraction dependence of the dielectric constant while the modified Yamada model is used to analyse the piezoelectric charge constant data. It is concluded that the maximum possible piezoelectric constant for bulk BiFeO$_3$ can be as high as 56 pC/N.

© 2021 The Author(s). Published by Elsevier B.V.
CC_BY_4.0

1. Introduction

BiFeO$_3$, also called Bismuth Ferrite or BFO, like many piezoelectrics, crystallises with a distorted rhombohedral perovskite-type structure and was first discovered in the late 1950s by Royen and Swars [1]. However, interest in this material only rose in the early 2000s due to the high Curie temperature (~825 °C [2]) and the high spontaneous polarization: 50–60 μC/cm2 in thin films [3] and ~100 μC/cm2 in single crystals along the $[111]_c$ direction [4] and 45 μC/cm2 in bulk ceramics [5]. But studies on the piezoelectric properties of bulk ceramics of BiFeO$_3$ never yielded the high values reported for the thin films (120 pm/V [6]) and its true potential was never demonstrated. This is largely due to the problems of electrical leakage and phase purity, which created difficulties in realising the potential maximal properties of bulk BiFeO$_3$. The presence of secondary phases in BiFeO$_3$ leads to large electrical leakage currents, which impose serious restrictions on its industrial use. Furthermore, large leakage currents become increasingly prohibitive at high fields. Thus, due to the high coercive field required to pole BiFeO$_3$, it is important to increase its insulating properties to reduce the leakage currents [7].

One way to prevent leakage and short circuiting is to incorporate BiFeO$_3$ particles into a non-conductive matrix, such as another ceramic [8,9] or a polymer [10–13]. The dielectric properties of different composite films of BiFeO$_3$-PVDF (with BiFeO$_3$ concentrations ranging from 13 to 34 vol%) were found to increase with increasing filler content [14]. Composites of one-dimensional (1D) multiferroic BiFeO$_3$ and poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE) composites showed coexistence of electric and magnetic hysteresis for the composite materials at room temperature [15].

While the intrinsic piezoelectric properties of granular BiFeO$_3$ can in principle be derived from the volume fraction dependence of the piezoelectric properties of BiFeO$_3$-polymer composites, the analysis is only valid if the dielectric constants of the polymer and the piezoceramic are almost equal. Since BiFeO$_3$ ceramics have a relatively low value for the dielectric constant in comparison to other piezoelectric ceramics, this opens up possibilities for selecting a polymer matrix with a comparable dielectric permittivity. Hence in this work a relaxor polymer, polyvinylidene difluoride with tri-fluoroethylene and chlorofluoroethylene copolymers (PVDF-TrFE-CFE), or in short a PVDF terpolymer, with a high dielectric constant and without any piezoelectric properties itself (even cast film 150 μm thick polarized at 35 kV/mm field for 20 min showed no piezoelectric response), is chosen as the matrix material. To minimize the contribution of particle-to-particle connectivity to the properties the work focusses on so-called 0–3 composites where the particles are homogeneously dispersed in the polymer matrix with minimal particle-particle contact. The volumetric dependence of the dielectric and the piezoelectric properties of the composites is then analysed in detail to determine an...
accurate estimate of the intrinsic piezoelectric properties of BiFeO$_3$ in granular form.

2. Experimental procedure

2.1. Composite manufacturing

Based on extensive synthesis trials single phase BiFeO$_3$ powder was obtained by solid state synthesis from pre-milled Bi$_2$O$_3$ and Fe$_2$O$_3$ in equal proportions with 1 at% excess Bi, as described previously [16]. This mixture of oxides was calcined at 750 °C for 1 h. The agglomerated powder was then dry-milled using 2 mm yttria stabilized zirconia balls for 5 h by using a planetary ball mill. The particle size distributions of the milled powder in an aqueous solution as measured by a laser diffraction analyzer were found to be d(10) = 0.67 µm, d(50) = 1.44 µm, and d(90) = 2.83 µm (d(X) signifies the point in the size distribution, up to and including which X% of the total volume of material in the sample is ‘contained’. Therefore, d(50) is the size below which 50% of the particles lie in the distribution). The powder was dried in a circulating air oven at 220 °C for 24 h prior to the experiment to avoid moisture adsorption. Phase purity of the powders was checked by X-ray diffraction analysis using a Rigaku miniflex600 table top diffractometer and Cu Kα radiation.

To produce the BiFeO$_3$-polymer composites, solutions of polyvinylidene difluoride with tri-fluoroethylene and chlorofluoroethylene copolymers (P(VDF-TrFE-CFE)) (obtained from Piezotech Arkema) in dimethylformamide (DMF) were prepared. For low volume fractions of filler particles (< 30 vol%) a solution of 20 wt% P(VDF-TrFE-CFE) in DMF was used while for higher volume fractions a 13 wt% solution was used. The BiFeO$_3$ particles were mixed into this solution using a Haushild DAC 150 FVZ planetary speed mixer at 750 rpm for 5 min. The mixture formed a viscous liquid that was degassed before casting on a glass substrate for the preparation of the thin films. Cast composites were dried in a vacuum oven at 60 °C for 1 h before annealing at 100 °C for 1 h. The final thickness of the dried samples varied between 120 and 160 µm. Once annealing was completed, a number of discs (12 mm diameter) were cut from the composite for electrical testing. Finally, gold electrodes of 10.9 mm diameter were deposited on both sides of the composite samples with a magnetron sputtering apparatus (Balzers Union, SCD 040).

2.2. Measurement procedures

Scanning Electron Microscope (SEM) images were taken using a Jeol JSM-7500F field emission scanning electron microscope. Prior to SEM measurements a thin (15 nm) layer of gold was deposited on the sample. In order to examine the cross sections of the composites they were first frozen in liquid N$_2$ to obtain a brittle fracture mode.

Electrical measurements were performed using a Novocontrol Alpha Dielectric Analyzer in the frequency range from 1 Hz to 10 MHz at temperatures from −50 to 120 °C at a fixed potential difference of 1 V. The piezoelectric constant, d_{33}, measurements were performed with a high precision PM300 Piezometer from Piezotest Piezo Systems, at 110 Hz and a static and dynamic force of 10 and 0.25 N respectively. At least 4 samples of each composite were tested. Inter-sample variability was found to be modest (± 0.5 pC/N).

3. Result and discussion

3.1. Phase purity of BiFeO$_3$

Fig. 1 shows the Rietveld refined XRD patterns of the calcined BiFeO$_3$ ceramic powder. The material crystallises in a rhombohedral perovskite structure type with space group R3c. The refined unit cell parameters of $a = 5.57564(7)$ Å and $c = 13.8628(2)$, are in good agreement with the values reported in the literature [17]. The sample also contains minor amounts of the bismuth-rich phase, Bi$_{12}$Fe$_{39}$ (0.9 wt%), and the iron-rich phase, Bi$_4$Fe$_2$O$_9$ (1.4 wt%) (for more details see Fig. 15), which are formed due to the addition of extra bismuth and evaporation of bismuth oxide during the calcination process as indicated in the previous work [16].

3.2. Microstructure of composites

Fig. 2 shows scanning electron microscope images of the cross-section of BiFeO$_3$-PVDF terpolymer composites. Piezoceramic particles appear to be homogeneously distributed in the polymer matrix and only show minor degrees of agglomeration for composite with 20 and 30 vol%, as shown by the porous agglomerates on Fig. 2b and c. No signs of sedimentation problems were encountered. Although dark fissure-like zones in the micrographs appear due to the uneven height of the cross-section created by inducing brittle fracture, no microcracks were present in the as-produced samples. The average particle size as determined by SEM corresponded well with the results obtained from particle size analysis.

3.3. Dielectric and electrical properties of the constituent materials

Samples of pure polymer and BiFeO$_3$ ceramics were prepared to determine the dielectric constants of the polymer and BiFeO$_3$. PVDF terpolymer films with a thickness of around 200 µm were prepared by the same method as for the composites. BiFeO$_3$ bulk ceramics were sintered at a temperature of 775 °C for 1 h (details in [16]). Fig. 3 shows the temperature dependence of the dielectric constant of the polymer (a) and BiFeO$_3$ (b) at different frequencies. It can be seen in Fig. 3a that, due to its relaxor nature [18], the PVDF terpolymer film demonstrates a strong and clearly non-linear dependence of the dielectric constant on temperature and frequency with a maximum value at around 25 °C. In contrast, the dielectric constant of BiFeO$_3$ (Fig. 3b) increases linearly with temperature due to an increase in the conductivity of the sample. Since measurements of the piezoelectric charge constant of the composites were carried out at 25 °C and a frequency of 100 Hz, we are particularly interested in the difference in dielectric strength of the two materials at this frequency and at this temperature. As can be seen in the Fig. 3 at this temperature and this frequency, the values of the dielectric constant of BiFeO$_3$ and the polymer are 85 and 61 respectively leading to an unusually small mismatch between the polymer matrix and the ceramic filler particles when compared to other piezoelectric ceramic-polymer composites.

Fig. 4 shows the temperature dependence of the DC conductivity for both the polymer and the bulk ceramic. The electrical conductivity of BiFeO$_3$ increases almost linearly with temperature, while the conductivity of the polymer rises sharply over the temperature region of
10–50 °C and then increases more linearly. Such a sharp increase in conductivity over a limited temperature range can be explained by the relaxor phase transition [19]. The origin of the high dielectric response of this class of terpolymers is its ferroelectric phase and the polar nanodomains. The former is responsible for almost frequency independent dielectric maxima (sharp phase transition), while the latter leads to a strong frequency dependence of dielectric spectra (relaxor phase transition). Such a ferroelectric relaxation is associated with short segmentation mobility in the nanodomains [20]. Considering that there are no free protons in our polymer, the conductivity is most likely associated with the transfer of ions by induced segmental dynamics in the nanodomains, [21].

3.4. Dielectric and electrical properties of the composite materials

Fig. 5 shows the dielectric measurements of the composite with a 50 vol% BiFeO₃ (Other samples show similar behavior; this concentration is chosen as to analyse the material behaviour because of its optimal properties and uniform microstructure). It can be seen...
that the temperature response is similar to that observed for a pure polymer. At low temperatures, the dielectric constant is most notably changed by the ceramic filler which increases the dielectric constant from a value of 5 for the pure polymer to a value of 20 for this composite. The relaxation peak at higher temperatures is less pronounced than for the pure polymer due to the linear temperature behaviour of the BiFeO$_3$.

To fit the temperature dependent dielectric constant of the composites multiple models (as presented in Table 1) are available.
increases and then stabilizes abruptly. This is a clear indication that
the sample is optimally polarized at a field of 22.5 kV/mm. The de-
crease in the piezoelectric constant at a field of 27.5 kV/mm is at-
tributed to damage to the electrodes during polarization. As shown
in Fig. 8b, a modest increase in d_{33} with poling temperature is ob-
served.

The observed optimal poling temperature can be explained on
the basis of the competing temperature dependences of the DC
conductivity [27] and that of the dielectric constant of the polymer
matrix.

3.6. Piezoelectric properties

The piezoelectric charge constant (d_{33}) of the composites as a
function of the BiFeO$_3$ volume fraction is shown in Fig. 9a. As ex-
pected, with an increase in the volume fraction of BiFeO$_3$, the pie-
zoelectric constant also increases. The maximum value of d_{33} at 60 vol
% is 31 pC/N. Since the dielectric constant of the matrix material
(about 61 at room temperature) is very similar to that of BiFeO$_3$
(about 85), the field distribution in the composite should be rather
uniform and the piezoelectric constant should grow almost linearly
with increasing ceramic loading. The piezoelectric voltage constant
(g_{33}) is proportional to the piezoelectric charge constant and inversel-
ly proportional to the dielectric constant, and because the dielectric
constants of the matrix and the filler differ insignificantly, g_{33} should
also grow almost linearly with increasing ceramic content. The maximum value of the piezoelectric voltage constant experimentally
measured at 60 vol% is 47 mV m/N. Table 2 presents the ceramic vol-
ume fraction, permittivity, piezoelectric charge and piezoelectric
voltage constants of our composite compared with composites and
ceramics reported by others. As the value of the dielectric constant is
low compared to that of PZT or different composites, the measured
piezoelectric voltage constants of the present composites are quite
high and compare favorably with those of other composites. Due to
the fact that the dielectric constant is higher than that of other
composites, devices based on this family of composites will have a
higher capacitance, which expands the frequency range (Reducing the
cutoff frequency at low frequencies) of applications and makes the
BiFeO$_3$–PVDF terpolymer composite a promising material for sensor
applications.

3.7. Determining the true piezoelectric constant of granular BiFeO$_3$
material

Since incorporation of BiFeO$_3$ particles in the polymer matrix
selected allowed us to increase the electric field for poling, it opened
up the possibility to indirectly measure the maximum or intrinsic
piezoelectric properties of the granular BiFeO$_3$ particles. In order to

![Figure 8](image_url)

*Fig. 8. Poling study of the BiFeO$_3$–PVDF 50 vol% composite. a) as function of applied field at 60 °C and b) as a function of the poling temperature at 25 kV/mm. The fit lines are to
guide the eye and are not based on model predictions.*

![Figure 9](image_url)

Fig. 9. d_{33} (a) and g_{33} (b) values for BiFeO$_3$–PVDF terpolymer composites with fitted theoretical model predictions according to the Yamada model.
extract the piezoelectric constant of ceramics from the effective piezoelectric constant of the 0–3 BiFeO$_3$-P(VDF) terpolymer composites measured, we used Yamada’s model:

$$d_{33} = \frac{n_{eff} \cdot d_{33c}}{n_{eff} \cdot + \varepsilon - \varepsilon_{eff}}$$ \hspace{1cm} (1)$$

Where n is again the filler volume fraction, ε is the poling efficiency and ε_{eff} is the effective dielectric constant. The Yamada model also incorporates shape anisotropy effects of the particles by the parameter n. If $n = 3$, the particles are spherical while $n > 3$ reflects elongated particles. The Yamada model has been modified in part to account for changes in the effective dielectric constant as described by the Poon model.

Based on the poling results obtained the poling efficiency, ε, was chosen as 1. Since, in our model, the actual value of n does not matter much, and almost equal final results of the piezoelectric constant (with a deviation of 3 pC/N) are obtained for $3 < n < 10$ the value for the shape factor, n, was chosen as 3, since this corresponds to a spherical shape of the particles, which is the closest to the morphology of our particles.

If we assume that this model is valid up to 100 vol% loading, we predict that the piezoelectric charge constant of ideally poled granular BiFeO$_3$ could be as high as 56 pC/N, which is 25% higher than highest observed bulk value shown (~45 pC/N) in recent studies [2]. Assuming that routes for non-lead BiFeO$_3$ bulk ceramics will be found in future, the combination of the predicted high value for the piezoelectric voltage constant ε_{eff} of about 80 mV/m/N, and a high Curie temperature (~825°C [2]), would make BiFeO$_3$ a truly attractive material for high-temperature sensors.

4. Conclusions

Embedding BiFeO$_3$ granular material in a non-conducting PVDF terpolymer having a comparable dielectric constant allowed for proper poling of the BiFeO$_3$ particles and a correct interpretation of the volume fraction dependence of the dielectric and piezoelectric properties of the composites made. By combining the Poon model for the dielectric properties and the Yamada model for the piezoelectric properties, the piezoelectric charge and voltage constants of granular BiFeO$_3$ could be determined and were found to be as high as 56 pC/N for d_{33} and 80 mV/m/N for g_{33}. These values, in combination with the high Curie temperature, reconfirm the great potential of BiFeO$_3$ as a high temperature sensor material.

CRediT authorship contribution statement

Anton Tuluk: Conceptualization, Methodology, Formal analysis, Investigation, Writing - original draft. Yadegar Mahon: Formal analysis, Writing - review & editing. Sybrand van der Zwaag: Writing - review & editing, Supervision. Pim Groen: Funding acquisition, Conceptualization, Supervision.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

During the preparation of this manuscript, Prof. Groen tragically passed away. The remaining authors would like to thank him for his contribution in this and many other works. He was a valued colleague and friend and he will be greatly missed.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.jallcom.2021.159186.

References

[1] P. Royen, K. Swars, Das system Wismutoxyd-Eisenoxyd im Bereich von 0 bis 55 mol\%. Eisenoxyd, Angew. Chem. 69 (2007), https://doi.org/10.1002/ange.1957092407.779–779.
[2] R. Palai, R.S. Katiyar, H. Schmid, P. Tissot, S.J. Clark, J. Robertson, S.A.T. Redfern, G. Catalán, J.F. Scott, β phase and γ-metal-insulator transition in multiferroic BiFeO$_3$, Phys. Rev. B Condens. Matter Mater. Phys. 77 (2008) 1–11, https://doi.org/10.1103/PhysRevB.77014110.
[3] J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaitheesanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Epitaxial BiFeO$_3$ multiferroic thin film heterostructures, Science 299 (2003) 1719–1722, https://doi.org/10.1126/science.1080615.
[4] H. Zhu, J. Chu Progress and prospect for high temperature single-phase magnetic ferroelectrics, Chin. Sci. Bull. 53 (2008) 2097–2112, https://doi.org/10.1007/s11434-008-0318-3.
[5] L. Liu, T. Rojac, J. Kimpトン, J. Walker, M. Makarovic, J.F. Li, J. Daniels, Poling-induced inverse time-dependent microstrain mechanisms and post-poling relaxation in bismuth ferrite, Appl. Phys. Lett. 116 (2020) 122901, https://doi.org/10.1063/5.002233.
[6] H. Zhu, Y. Yang, W. Ren, M. Niu, W. Hu, H. Ma, J. Ouyang, Rhombohedral BiFeO$_3$ thin films integrated on Si with a giant electric polarization and prominent piezoelectricity, Acta Mater. 200 (2020) 305–314, https://doi.org/10.1016/j.actamat.2020.09.022.
[7] J. Wu, Z. Fan, D. Xiao, J. Zhu, J. Wang, Multiferroic bismuth ferrite-based materials for multifunctional applications: ceramic bulk, thin films and nanostructures, Prog. Mater. Sci. 84 (2016) 335–402, https://doi.org/10.1016/j.pmatsci.2016.09.001.
[8] A. Hussain, M.A. Qaiser, J. Zhang, S.T. Zhang, Y. Wang, Y. Yang, Z. Liu, G. Yuan, High temperature piezoelectric properties of 0-3 type CaBi$_4$Ti$_4$O$_{15}$-x wt%BiFeO$_3$ composites, J. Am. Ceram. Soc. 100 (2017) 3522–3529, https://doi.org/10.1111/jace.14879.
[9] M.A. Qaiser, A. Hussain, J. Zhang, Y. Wang, S. Zhang, L. Chen, G. Yuan, 0–3 type Bi$_{4}$Ti$_{3}$O$_{12}$/PVDF composite with improved high-temperature piezoelectric properties, J. Alloy. Compd. 740 (2018) 1–6, https://doi.org/10.1016/j.jallcom.2017.12.365.
[10] K. Yoshiyama, M. Mori, M. Hagiwara, S. Fujihara, Effect of particle size and morphology on the performance of BiFeO$_3$-PDMS piezoelectric generators, CrystEngComm 22 (2020) 2919–2925, https://doi.org/10.1039/d0ce00067a.
[11] S. Moharana, R.N. Mahaling, High performance of hydroxylated Bi$_{50}$Fe$_{30}$O$_{9}$poly-styrene composite films with enhanced dielectric constant and low dielectric loss, J. Aust. Ceram. Soc. 56 (2020) 751–760, https://doi.org/10.1111/jace.14879.9.
[12] S. Dash, R.N.P. Choudhary, M.N. Goswami, Enhanced dielectric and ferroelectric properties of PVDF-BiFeO$_3$ composites in 0–3 connectivity, J. Alloy. Compd. 715 (2017) 29–36, https://doi.org/10.1016/j.jallcom.2017.04.310.
[13] M.K. Mishra, S. Moharana, R.N. Mahaling, Enhanced dielectric properties of polyy (vinylidene fluoride)–surface functionalized BiFeO$_3$ composites using sodium dodecyl sulfate as a modulating agent for device applications, J. Appl. Polym. Sci. 134 (2017) 1–9, https://doi.org/10.1002/app.45040.
[14] A. Kumar, K.L. Yadav, Enhanced magnetocapacitance sensitivity in BiFeO$_3$–poly (vinylidene fluoride) hot pressed composite films, J. Alloy. Compd. 528 (2012) 16–19, https://doi.org/10.1016/j.jallcom.2012.02.125.
[15] S. You, C. Liu, H. Liu, X. Yu, S. Li, W. Liu, S. Guo, X. Zhao, The preparation and characterization of 1D multiferroic BF$_3$(VDF-TrFE) composite nanofibers using electropinning, Mater. Lett. 130 (2014) 157–159, https://doi.org/10.1016/j.matlet.2014.02.118.
A.Y. Tuluk, T.R. Mahon, S. Van Der Zwaag, P. Groen, BiFeO$_3$ synthesis by conventional solid-state reaction, 2019 IEEE Int. Symp. Appl. Ferroelect. ISAF 2019 - Proc., 2019, pp. 3–6. https://doi.org/10.1109/ISAF33659.2019.8934976.

G. Catalan, J.F. Scott, Physics and applications of bismuth ferrite, Adv. Mater. 21 (2009) 2463–2485. https://doi.org/10.1002/adma.200802840.

Y. Wang, S.G. Lu, M. Lanagan, Q. Zhang, Dielectric relaxation of relaxor ferroelectric PVDF-TrFE-CFE terpolymer over broad frequency range, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 56 (2009) 444–449. https://doi.org/10.1109/TUFFC.2009.1063.

A. Pramanick, N.C. Osti, N. Jalarvo, S.T. Misture, S.O. Diallo, E. Mamontov, Y. Luo, J.K. Keum, K. Littrell, Origin of dielectric relaxor behavior in PVDF-based copolymer and terpolymer films, AIP Adv. 8 (2018) 045204. https://doi.org/10.1006/i1.5014992.

H.M. Bao, J.F. Song, J. Zhang, Q.D. Shen, C.Z. Yang, Q.M. Zhang, Phase transitions and ferroelectric relaxor behavior in PVDF-TrFE-CFE terpolymers, Macromolecules 40 (2007) 2371–2379. https://doi.org/10.1021/ma062800i.

Q. Liu, X. Yin, C. Richard, J.F. Capsal, Influence of the crystallization on the molecular mobility and ionic DC conductivity behaviors of relaxor ferroelectric P(VDF-TrFE-CFE) terpolymers, J. Polym. Sci. Part B Polym. Phys. 54 (2016) 1645–1657. https://doi.org/10.1002/polb.24068.

C.W. Nan, Comment on Effective dielectric function of a random medium, Phys. Rev. B Condens. Matter Mater. Phys. 63 (2001) 5–7. https://doi.org/10.1003/ PhyRevB.63.176203.

T. Yamada, T. Ueda, T. Kitayama, Piezoelectricity of a high-content lead zirconate titanate/polymer composite, J. Appl. Phys. 53 (1982) 4328–4332. https://doi.org/10.1063/1.331211.

F. Carpi, D. De Rossi, Improvement of electromechanical actuating performances of a silicone dielectric elastomer by dispersion of titanium dioxide powder, IEEE Trans. Dielectr. Electr. Insul. 12 (2005) 835–843. https://doi.org/10.1109/TDEI.2005.1511110.

N. Jayasundere, B.V. Smith, Dielectric constant for binary piezoelectric 0-3 composites, J. Appl. Phys. 73 (1993) 2462–2465. https://doi.org/10.1063/1.354057.

Y.M. Poon, F.G. Shin, A simple explicit formula for the effective dielectric constant of binary 0-3 composites, J. Mater. Sci. 39 (2004) 1277–1281. https://doi.org/10.1002/jpsc.21604.

H. Khanbareh, S. Van Der Zwaag, W.A. Groen, Piezoelectric and pyroelectric properties of conductive polyethylene oxide-lead titanate composites, Smart Mater. Struct. 24 (2015) 045020. https://doi.org/10.1088/0964-1726/24/4/045020.

V.L. Stuber, D.B. Deutz, J. Bennett, D. Cannel, D.M. de Leeuw, S. van der Zwaag, P. Groen, Flexible Lead-free piezoelectric composite materials for energy harvesting applications, Energy Technol. 7 (2019) 177–185. https://doi.org/10.1002/ente.201800419.

Piezoelectric Film | PVDF Film | Piezotech, (n.d.). https://www.piezotech.eu/en/Applications/piezoelectric-film/. (Accessed 25 November 2020).

V.L. Stuber, T.R. Mahon, S. Van Der Zwaag, P. Groen, The effect of the intrinsic electrical matrix conductivity on the piezoelectric charge constant of piezoelectric composites, Mater. Res. Express 7 (2019) 015703. https://doi.org/10.1088/2053-1591/ab5863.

H. Khanbareh, M. Hegde, J.C. Bijleveld, S. Van Der Zwaag, P. Groen, Functionally graded ferroelectric polyetherimide composites for high temperature sensing, J. Mater. Chem. C 5 (2017) 9389–9397. https://doi.org/10.1039/c7tc02649h.

T. Rojac, M. Makarovic, J. Walker, H. Urisic, D. Damjanovic, T. Kos, Piezoelectric response of BiFeO$_3$ ceramics at elevated temperatures, Appl. Phys. Lett. 109 (2016) 042904. https://doi.org/10.1063/1.4960103.