A SIMPLE CONNECTION BETWEEN THE NEAR- AND MID-INFRARED EMISSION OF GALAXIES AND THEIR STAR FORMATION RATES

ERIN MENTUCH1, ROBERTO G. ABRAHAM1, AND STEFANO ZIBETTI2

1 Department of Astronomy & Astrophysics, University of Toronto, 50 St. George Street, Toronto, Ontario, M5S 3H4, Canada
2 Max-Planck-Institut fur Astronomie, Konigstuhl 17, D-69117 Heidelberg, Germany

Received 2010 August 13; accepted 2010 October 9; published 2010 December 3

ABSTRACT

We have measured the near-infrared colors and the fluxes of individual pixels in 68 galaxies common to the Spitzer Infrared Nearby Galaxies Survey and the Large Galaxy Atlas Survey. Pixels from each galaxy are grouped into regions of increasingly red near-infrared colors. As expected, the majority of pixels are shown to have relatively constant NIR flux ratios \(\log_{10} I_{3.6}/I_{1.25} = -0.30 \pm 0.07 \) and \(\log_{10} I_{4.5}/I_{3.6} = -0.19 \pm 0.02 \), representing the blackbody continuum emission of main sequence stars. However, pixels with red NIR colors correspond to pixels with higher H\(_{\alpha}\) emission and dust extinction. We show that the NIR colors are correlated to both quantities, with the strongest correlation to the intrinsic H\(_{\alpha}\) emission. In addition, in regions of high star formation, the average intensity of pixels in red-excess regions (at 1.25 \(\mu m \), 3.6 \(\mu m \), 4.5 \(\mu m \), 5.6 \(\mu m \), 8.0 \(\mu m \) and 24 \(\mu m \)) scales linearly with the intrinsic intensity of H\(_{\alpha}\) emission, and thus with the star formation rate (SFR) within the pixel. This suggests that most NIR-excess regions are not red because their light is being depleted by absorption. Instead, they are red because additional infrared light is being contributed by a process linked to star formation. This is surprising because the shorter wavelength bands in our study (1.25 \(\mu m \)–5.6 \(\mu m \)) do not probe emission from cold (10–20 K) and warm (50–100 K) dust associated with star formation in molecular clouds. However, emission from hot dust (700–1000 K) and/or polycyclic aromatic hydrocarbon (PAH) molecules can explain the additional emission seen at the shorter wavelengths in our study. The contribution from hot dust and/or PAH emission at 2 \(\mu m \)–5 \(\mu m \) and PAH emission at 5.6 \(\mu m \) and 8.0 \(\mu m \) scales linearly with warm dust emission at 24 \(\mu m \) and the intrinsic H\(_{\alpha}\) emission. Since both are tied to the SFR, our analysis shows that the NIR excess continuum emission and PAH emission at ~1–8 \(\mu m \) can be added to spectral energy distribution models in a very straightforward way, by adding an additional component to the models that scales linearly with SFR.

Key words: dust, extinction – galaxies: ISM – galaxies: star formation – infrared: galaxies – infrared: ISM – surveys

Online-only material: color figures, figure set

1. INTRODUCTION

The signatures of star formation are expressed across a galaxy’s spectral energy distribution (SED). Ultraviolet and optical light trace the recently formed stellar populations, infrared light maps out luminous dust grains that re-emit this same starlight, and radio emission traces magnetic fields produced by short-lived, massive stars. How well these tracers can be used to determine a galaxy’s star formation rate (SFR) depends on the galaxy’s luminosity, dust content, nuclear activity, and metallicity. Adding to the complexity, the timescale of each tracer depends on the emission mechanism, hydrogen is ionized by only the most massive stars on timescales of 10\(^7\) years, while dust emission can be heated by lower mass, longer-lived stars on the order of several 10\(^8\) years. At a fundamental level these tracers are highly interdependent, because energy must be conserved. For example, the energy in the UV radiation absorbed by dust must be balanced out by the re-emission of this energy at other wavelengths. This suggests that the best estimator for SFR will be based on a combination of tracers which together capture the full energetics of the system.

Recent work by Calzetti et al. (2007) and Kennicutt et al. (2009) shows that a good estimator for the SFR emerges from the linear combination of a galaxy’s near-UV or visible-wavelength emission (either UV continuum or line fluxes, attenuated by dust) and its emission in the infrared (e.g., 8, 24, or total IR \(\lambda \) 8–1000 and also radio). The beauty of this approach is that the data itself can correct for the attenuation and emission of dust. At near-infrared (NIR; 0.9–5 \(\mu m \)) and mid-infrared (MIR) wavelengths (5–30 \(\mu m \)), emission due to heating of very small grains (VSGs) and polycyclic aromatic hydrocarbons (PAHs) also contributes to the SED. UV photons excite these small molecules which emit through various vibrational/stretching/rotational modes and thus this emission should trace regions of star formation. PAH emission around 8 \(\mu m \) shows spatial correlation to star formation within H\(_{\alpha}\) regions (Calzetti et al. 2007), and can be used as an SFR indicator, particularly if used in combination with an optical SFR indicator (Kennicutt et al. 2009). Observations of nearby star-forming galaxies suggest that the spectrum of PAH line emission is expressed through constant line ratios. For example, Lu et al. (2003) found constant ratios of stellar subtracted flux densities at 4, 6.2, 7.7, and 11.3. PAH and/or dust emission at shorter wavelengths has received less attention, partly because of the stronger contribution from stellar continuum emission at these wavelengths. In addition to PAH line emission, NIR continuum emission in excess of NIR stellar emission can be significant at wavelengths of 2–5 \(\mu m \). High-redshift star-forming galaxies, where SFRs are significantly higher than nearby galaxies, emit significant NIR excesses at this wavelength (Mentuch et al. 2009; Magnelli et al. 2008) and its emission correlates with optical SFR indicators (Mentuch et al. 2009). Nearby galaxies, studied with the Infrared Space Observatory also show NIR excess continuum emission (Lu et al. 2003) which scales linearly with the PAH spectrum and shows trends of increasing with increasing star formation.
indicators. This NIR dust emission component is seen not only in extragalactic cirrus emission (Flagay et al. 2006), reflection nebulae (Sellgren et al. 1983, 1996), planetary nebulae (de Ruyter et al. 2006), and massive star-forming regions (Maercker & Burton 2005; Maercker et al. 2006; Longmore et al. 2007). In the latter two cases, the NIR dust emission is linked to circumstellar disk emission (Wood et al. 2008; Touhami et al. 2010; Acke & van den Ancker 2004) where high luminosity OB stars heat dust to its sublimation temperature (for example, a $10^5 L_{\odot}$ star will heat dust to 1000 K at $r = 7.3$ AU, while a $10^2 L_{\odot}$ star will heat dust to 1000 K at $r = 0.23$ AU, and a L_{\odot} star will heat dust up to 1000 K out to a radius of 0.023 AU).

The source of extragalactic NIR dust emission and its contribution to a galaxy’s integrated light remains uncertain. The excess seen in higher star-forming galaxies at high redshift is possibly a combination of both NIR dust emission related to star formation regions (which includes reflection nebulae and circumstellar dust emission) and NIR emission due to cirrus emission. In Mentuch et al. (2009), we show that there is a trend of increasing NIR continuum emission with star formation and show that the magnitude of the NIR excess emission can be well matched if the majority of the excess NIR emission originates in hot (700 K–1000 K) thermal emission, possibly from dust in circumstellar disks heated to their sublimation temperature. Other sources of NIR emission such as dust heated by an active galactic nucleus (AGN), planetary nebula, and reflection nebula can also be important, although their contribution to the integrated light of a galaxy is expected to be less significant (Mentuch et al. 2009).

A central purpose of the present paper is to test this hypothesis, using the images of nearby galaxies in which we are able to resolve the components of the galaxy at greater resolution, giving us the opportunity to determine if the NIR excess emission is associated with emission from young stellar populations, galactic cirrus, or a AGN. Additional narrowband Hα imaging, which traces the young, massive stellar populations, complements the analysis. We perform multiwavelength pixel-by-pixel analysis on a sample of 68 nearby galaxies from the Spitzer Infrared Nearby Galaxies Survey (SINGS; Kennicutt et al. 2003) with complementary near-infrared data from the Large Galaxy Atlas (LGA; Jarrett et al. 2003). These data resolve galaxies on physical scales between 8 pc (for the closest galaxy NGC 6822 at a distance of 0.6 Mpc) and ~400 pc (for the most distant galaxies at ~30 Mpc).

Near-infrared colors of evolved stellar populations are not highly sensitive to a population’s age, although contributions from post-main-sequence stars can contribute at ages of ~1–3 Gyr. The NIR traces the Rayleigh–Jeans tail of stellar emission and as a result the colors remain nearly constant as stars of progressively lower masses leave the main sequence. However, observations have shown that in addition to emission in the NIR, extinction due to dust leads to reddened colors as is shown in Indebetouw et al. (2005) in our own galaxy and in nearby starbursts (Calzetti et al. 1994). Integrated colors consist of light from all the stellar populations and dust in a galaxy, making it difficult to discern whether red NIR colors are associated with non-stellar emission or are merely due to dust extinction. Our study provides synergy between investigations of integrated emission for whole galaxies, and studies of resolved stellar populations by grouping pixels with common near-infrared colors together so that the common properties of these regions are revealed.

We motivate the need for pixel-by-pixel color studies in the following section. The rest of the paper is outlined as follows. In Section 3, we briefly summarize our sample selection from the SINGS and LGA surveys. Our pixel-by-pixel color selection and image processing is described in Section 4. Results from the average NIR colors and intensities at Hα, 1.25 μm, 3.6 μm, 4.5 μm, 5.6 μm, 8.0 μm, and 24 μm measured in each color-selected region are presented in Section 5. Implications for studying integrated galaxies and applying our results to SED models are discussed in Section 6.

2. PIXEL-BY-PIXEL NIR COLORS OF RESOLVED GALAXIES

An analysis of galaxy colors at the level of individual pixels is substantially more complicated than the usual approach based on integrated photometry using large apertures. It is important to establish from the outset whether such a complicated approach is really required in order to understand the underlying physics. Before embarking on a description of our methodology, we will first attempt to justify the underlying need for it.

At near-ultraviolet and visible wavelengths a galaxy’s SED is the sum of the light from the stellar populations that make up the galaxy, modulated by dust absorption, and augmented by additional sources of emission (such as those from nebular lines). The different ages of the stellar populations impact the SED and the resulting colors, as young high-mass stars peak in their emission at shorter wavelengths and have blue visible colors, while older low-mass stars peak in their emission at red wavelengths and have redder visible colors. Slightly longer near-infrared wavelengths (around ~1–2 μm) are ideal for probing the bulk of a galaxy’s stellar mass, because starlight still dominates the overall SED and most of the light at these wavelengths comes from late evolutionary stages of low-mass stars which dominate the stellar mass budget. The colors of stellar populations in the near-infrared are relatively constant for most stellar spectral types and most evolutionary phases, with few notable exceptions, like the TP-AGB stars (e.g., Maraston 2005). Slightly longer wavelengths, say between 2 μm and 5 μm, are special. This wavelength range corresponds to a minimum in a galaxy’s SED, because the Rayleigh–Jeans tail of starlight is rapidly declining but thermal emission from warm dust is not yet important. Additional components of a galaxy that happen to emit at these wavelengths, such as hot dust, may be detectable at these wavelengths even if they do not contribute a large fraction of a galaxy’s bolometric output, simply because of contrast against the weak underlying galactic SED. At wavelengths longer than 5 μm starlight starts to play a negligible role, and the physics of dust emission takes over. For example in the Spitzer 5.6 μm and 8.0 μm bands, molecular emission lines from PAHs are important, while at 24 μm most of the light comes from the thermal emission of warm dust.

Some of these ideas are illustrated in Figure 1. The left-hand panel of the figure shows a ratio of optical and near-infrared colors. Integrated photometry from Dale et al. (2007) for the SINGS sample (black asterisks) is plotted along with rest-frame colors from a high-redshift galaxy sample (data taken from the Gemini Deep Deep Survey (GDDS); Abraham et al. 2004). For the high-redshift data, the colors were computed from the best-fit SEDs from Mentuch et al. (2009) and have been corrected for full cosmological dimming. Their symbols have been keyed to differing galaxy types as indicated by the spectral indicators given in Abraham et al. (2004). Star-forming galaxies show spectral indicators of young stellar populations, while evolved
galaxies are mainly comprised of older stellar populations. Intermediate galaxies show signatures of both evolved and young stellar populations. The axes can be converted to AB magnitude colors by multiplying by 2.5.

The spread in the $I_{1.25}/I_{0.43}$ ratio (or, in magnitude space, $B−J$ color) is over 1 dex and is much larger than the spread in the NIR intensity ratios ($J−H$ color). Star-forming galaxies tend to have bluer $B−J$ color and evolved galaxies have redder $B−J$ color, but the intermediate galaxies are spread throughout (dust can play a major role in this spread). In the right-hand panel, near-infrared colors are plotted for both the SINGS and GDDS rest-frame sample. The rest-frame colors of the high-redshift data are interpolated from SED models fit to the observed photometry. The purple crosses are from SED models that only incorporate emission from starlight and attenuation by dust. The NIR colors of these models colors occupy a compact region in the NIR color–color plot. The trend for NIR colors along this vector, predicted to be of non-stellar emission. Either the starlight is being reddened must be telling us quite a lot about dust or some other source of non-stellar emission. Either the starlight is being reddened by dust absorption or dust emission must be contributing to the colors at surprisingly short wavelengths.

Resolved galaxy colors can help distinguish between the latter two possibilities, because the properties of dust are known to vary from place-to-place in galaxies. Figure 1 (right panel) shows that galaxy colors tend to scatter along the extinction vectors found in starburst regions, but not along the vectors appropriate for regions outside of starburst regions. The extinction curve for lines of sight through our own galaxy (obtained by the GLIMPSE survey; Indebetouw et al. 2005) is shown in green. Using the prescriptions presented in Pei (1992), we see that this extinction curve is consistent with the dust extinction law for the Milky Way (shown in red), the Small Magellanic Cloud (shown in orange), and the Large Magellanic Cloud (shown in cyan). The extinction measured in starburst galaxies from Calzetti et al. (1994) is plotted in blue, and the effective dust extinction law from Charlot & Fall (2000) is shown in black. In this figure, we show all extinction vectors originating from the colors ($log_{10} I_{3.6}/I_{1.25}$, $log_{10} I_{5.8}/I_{3.6}$ = −0.30, −0.17) which we found to be the average colors of stellar emission in the NIR from the PEGASE.2 stellar SEDs. The trend for NIR colors along this vector, predicted to be due to dust extinction in starburst regions, is supported by the high-redshift data. The star-forming galaxies tend to have the reddest NIR colors, but we cannot say for certain that dust attenuation due to dust was included in these models. We later show (in Section 5) that these colors are consistent with the median pixel color of the majority of pixels which compose the SINGS galaxy sample.

Figure 1. Color–color plots in the optical/NIR (left) and the NIR (right) for the integrated SINGS photometry from Dale et al. (2007) and rest-frame colors for the GDDS high-redshift galaxy sample. Rest-frame colors are computed using best-fit SEDs from Mentuch et al. (2009). The spread in $I_{1.25}/I_{0.43}$ color (left panel) results from variations in both age and dust attenuation and is well described by SPS models, while the spread in $I_{3.6} /I_{1.25}$ color (right panel) is largest for high SFR galaxies, but is not well described by SPS models (purple points) although SPS models augmented with NIR emission (colored points, keyed to legend according to galaxy spectral type) provide a better model. In the right panel, extinction vectors are plotted from the color locus of the SINGS galaxies (Keyed to galaxy spectral type) provide a better model. In the right panel, extinction vectors are plotted from the color locus of (log 10 $I_{3.6}/I_{1.25}$, log 10 $I_{3.6}/I_{1.25}$ = −0.30, −0.17) for various dust extinction laws. The colored boxes indicate regions of increasing NIR color, defined in Section 4, and used as color selection in the quantitative analysis presented in this analysis.

(A color version of this figure is available in the online journal.)
extinction is the main culprit. Most of the GDDS galaxies have total extinction values $A_V < 1.5$ mag. The extinction vectors here suggest the extinction is in excess of $A_V > 2$ mag. What do the resolved colors of nearby galaxies tell us about dust extinction in the NIR?

3. SAMPLE SELECTION

Table 1 summarizes our sample of 68 spatially resolved nearby galaxies, with observations at 1.25 μm (J band), 3.6 μm, 4.5 μm, 5.6 μm, 8.0 μm, and 24 μm. All data come from publicly available sources, namely, the SINGS (Kennicutt et al. 2003) and the Two Micron All Sky Survey (2MASS) LGA survey (Jarrett et al. 2003, hereafter referred to as the 2MASS LGA). We used SINGS data release 2070410_enhanced_v14. Our data are comprised of all galaxies that were observed by both surveys that meet our minimum signal-to-noise (S/N) criterion (described below). As a result, we excluded SINGS galaxies DDO 053, Holmberg I, Holmberg IX, M81 Dwarf A, and M81 Dwarf B, which do not have NIR coverage in the 2MASS LGA. In addition, two SINGS galaxies, DDO 154 and DDO 165, did not contain any pixels which satisfied our S/N criterion, so only two objects were omitted for our analysis because of low S/N.

In addition to the infrared data contained in the SINGS and 2MASS LGA data releases, 56 galaxies had publicly available Hα images, obtained from telescopes at Kitt Peak National Observatory (KPNO) or Cerro Tololo Inter-American Observatory (CTIO). We used the continuum subtracted Hα images contained within the SINGS data release, applying a small correction for a residual background pedestal where needed.

Because nuclear activity may contribute significantly to NIR and MIR flux, we took careful consideration of which systems hosted AGNs. Galaxies were differentiated based on nuclear activity using the results from Dale et al. (2006), who used optical line diagnostics to identify which SINGS nuclei are either starburst dominated or require additional powering from an AGN, using the linear/starburst boundary of $N_{\text{H}_2} \lambda 6583/\text{H}$ in ~ 0.6. This identification is included in Table 1.

4. METHODS

As we have noted in Section 2 and illustrated in Figure 1, the scatter in the NIR colors of high-redshift star-forming galaxies is greater than that seen nearby (where SFRs are lower). How does this small scatter manifest itself on smaller spatial scales? Our methodology is to group the pixels composing the local galaxy sample into regions based on different color-cuts motivated by both the spread in the data and the extinction law from Charlot & Fall (2000) as indicated by the colored parallelograms shown in Figure 1. The upper and lower limits of the boxes are defined as 0.1 dex above and below the extinction vector of Charlot & Fall (2000). The regions are separated in steps of increasing $\log_{10} I_{3.6}/I_{2.5} = 0.2$ dex (or 0.5 mags in $L-J$ color) from $\log_{10} I_{3.6}/I_{2.5} = -0.6$. We summarize the properties of the NIR color-selected regions in Table 2.

4.1. Image Preparation

Prior to analyzing the pixel-by-pixel colors of our galaxy sample a number of steps were taken to register images to a common pixel scale and common point-spread function (PSF), clean out contaminants and ensure that each pixel has an S/N ratio of at least 15. Each step is outlined below in more detail.

1. All images were re-sampled to the IRAC plate scale of 1′′/22 pixel$^{-1}$ using the remap tool in the WCSTools library (Mink 2002).
2. The counts in each pixel were converted to intensity units of MJy sr$^{-1}$.
3. Images were registered to sub-pixel accuracy using unsaturated bright stars and 500 \times 500 pixel (\sim10.2 \times 10/2) subsets were cut from the registered master frames.
4. Saturated regions and large galaxy neighbors on each image were manually masked.
5. All images were convolved with a Gaussian kernel to match the diffraction-limited \sim6″ beam of the 24 μm MIPS image PSF. We assumed a median FWHM of 1′′.0, 2′′.8, 1′′.7, 1′′.9, 2′′.0, and 6′′.0 for the 1.25, 3.6, 4.5, 5.6, 8.0, and 24 μm images, respectively. (Pixel-by-pixel image analysis requires that each pixel value be a good representation of the true intensity in the area of galaxy contained by the pixel. By convolving our images, we ensured that the distributions of intensities were matched as they were spread across the pixels by varying PSFs.)
6. Bright foreground stars and small background galaxies were automatically removed. Foreground stars were removed in 5 pixel (6′′) radius apertures using the 2MASS point-source catalog. Unfortunately, many compact H ii regions are falsely identified as point sources in the 2MASS catalog, so we attempted to identify these sources beforehand through their mid-infrared colors as in Muñoz-Mateos et al. (2009). We also did not remove any point sources with 24 μm intensity >0.7 MJy. These two criteria result in \sim30% catalog point source removal, with some contaminants remaining, but we chose this approach to preserve compact H ii regions and compact nuclear sources such as AGNs. In addition, faint background galaxies have the potential to show up as spurious objects in our analysis. We have inspected each image carefully to note cases where contamination remains important after the steps just described, and will explicitly note these cases below.
7. We used a median adaptive smoothing algorithm (Zibetti et al. 2009; Zibetti 2009) on the 1.25, 3.6, and 4.5 μm images so that S/N > 15 is obtained in each pixel. This final step is non-standard and will be described below.

4.2. Adaptive Smoothing

Much of our analysis is based on an investigation of the flux ratios of individual pixels. This required the construction of data frames obtained by dividing 1.25 μm, 3.6 μm, and 4.5 μm images against each other. To minimize the noise in the resulting divided images we used the adaptsmooth software (Zibetti et al. 2009; Zibetti 2009) to median smooth the images so that a reasonably high S/N threshold is first met. This trades resolution at low S/N levels for robustness in the final flux ratios (see the discussion in Zibetti 2009 for details).

Our goal with adaptsmooth was to obtain input data frames where S/N > 15 in each pixel. Adaptsmooth works by taking the median intensity over a smoothing aperture with a radius defined by the size needed to meet the S/N > 15 criterion. If the smoothing radius required is greater than 12 pixels, the algorithm is declared to have failed for that pixel, and the pixel is excluded from subsequent analysis. All results reported in this analysis in which colors were computed in individual pixels use the smoothed then convolved images. For analysis involving measurements of the average intensity over many pixels adaptsmoothed images are used to perform pixel selection.
Table 1
Object List

Galaxy Name	Optical Morphology	Distance (Mpc)	Metallicity [O/H]	*AGN ?	*Hα ?
Ho II	Im	3.5	0.0	0	1
IC 2574	SABm	3.5	8.1	0	1
IC 4710	SBm	8.5	0.0	0	1
MRK 33	Im	21.7	0.0	0	1
NGC 0024	Sa	8.2	0.0	0	1
NGC 0337	Sbd	24.7	0.0	0	1
NGC 0584	E4	27.6	0.0	0	1
NGC 0628	Sa	11.4	9.1	0	1
NGC 0855	E	9.6	0.0	0	0
NGC 0925	SAbd	10.1	8.7	0	1
NGC 1097	Sb	16.9	9.0	0	1
NGC 1266	SB0	31.3	0.0	1	1
NGC 1291	SBa	9.7	0.0	0	1
NGC 1316	SAB0	26.3	0.0	0	1
NGC 1377	S0	24.4	0.0	0	1
NGC 1404	E1	25.1	0.0	0	1
NGC 1482	SA0	22.0	0.0	0	1
NGC 1512	SBab	10.4	0.0	0	1
NGC 1566	SABbc	18.0	9.0	1	1
NGC 1705	Am	5.8	0.0	0	1
NGC 2403	SABcde	3.5	8.8	0	0
NGC 2798	SBa	24.7	0.0	24.7	0
NGC 2841	Sa	9.8	9.3	1	1
NGC 2915	I0	2.7	0.0	0	0
NGC 2976	SAc	3.5	0.0	0	1
NGC 3031	SAab	3.5	8.9	1	1
NGC 3034	IO	3.5	0.0	0	1
NGC 3049	SBab	19.6	8.9	0	1
NGC 3184	SABcde	8.6	9.3	0	1
NGC 3190	SAb	17.4	0.0	1	1
NGC 3198	SBc	9.8	8.9	1	1
NGC 3265	E	20.0	0.0	0	1
NGC 3351	Sb	9.3	9.3	0	0
NGC 3521	SABbc	9.0	9.1	0	1
NGC 3621	Sd	6.2	9.0	1	1
NGC 3627	SABb	8.9	9.3	1	1
NGC 3773	SA0	12.9	0.0	0	1
NGC 3938	SAc	12.2	0.0	0	1
NGC 4125	E6p	21.4	0.0	0	1
NGC 4236	SBdm	3.5	0.0	0	0
NGC 4254	Sa	20.0	9.2	0	1
NGC 4321	SABc	20.0	9.3	0	1
NGC 4450	SAab	20.0	0.0	1	1
NGC 4536	SABbc	25.0	9.9	0	1
NGC 4552	E	4.5	0.0	0	0
NGC 4559	SABcde	11.6	8.7	0	1
NGC 4569	SABab	20.0	9.3	1	0
NGC 4579	SABb	20.0	9.3	1	1
NGC 4594	Sa	13.7	0.0	1	1
NGC 4625	SABm	9.5	0.0	0	0
NGC 4631	SBd	9.0	0.0	0	1
NGC 4725	SABab	17.1	9.3	1	1
NGC 4736	SAab	5.3	9.0	1	0
NGC 4826	SAab	5.6	9.4	1	1
NGC 5033	SAc	13.3	9.1	1	0
NGC 5055	SAbc	8.2	9.3	1	1
NGC 5194	SABc	8.2	9.3	1	1
NGC 5195	SB0p	8.2	0.0	0	0
NGC 5408	Im	4.5	8.0	0	0
NGC 5474	SACd	6.9	0.0	0	1
NGC 5713	SABbc	26.6	0.0	0	1
NGC 5866	S0	12.5	0.0	1	1
NGC 6822	Im	0.6	8.1	0	1
NGC 6946	SABcde	5.5	9.1	0	1
NGC 7331	Sa	15.7	9.1	1	1
NGC 7552	Sa	22.3	9.0	1	1
NGC 7793	Sa	3.2	8.6	0	1
TOL 89	SBdm	15.0	0.0	0	1

Notes.
* Shows spectral signatures of an active galactic nuclei (Dale et al. 2006).
* Indicates Hα observations.
spiral structure and regions of star formation in the galaxy. A degeneracy between extinction and emission occurs at the brightest knots of star formation, where the NIR colors are their reddest. If these regions correspond to regions of high dust extinction, then the red NIR colors may be the result of dust extinction in which the light at 3.6 μm is attenuated less than the 1.25 μm emission. On the other hand, additional emission can also explain the excess continuum emission at 2–5 μm.

Fortunately, for 56 of the galaxies, continuum subtracted Hα images can be combined with 24 μm images to create two composite images that represent the intrinsic Hα emission (corrected for attenuation due to dust extinction) and the dust extinction at Hα in each pixel. The intrinsic Hα line emission luminosity, and consequently the SFR, of normal star-forming galaxies and H II regions can be estimated empirically as a linear superposition of the observed Hα and 24 μm flux (Kennicutt et al. 2007; Calzetti et al. 2007). Recent work (Kennicutt et al. 2009) shows that for a sample of galaxies, including the SINGS galaxies, the dust-corrected, intrinsic Hα, luminosity is related to the observed Hα and 24 μm luminosities by

\[L(Hα_{\text{int}}) = L(Hα_{\text{obs}}) + 0.02 \times L(24\mu m) \]

with the galaxies showing an rms dispersion of 0.119 dex in the fit. From this equation, one can immediately get \(I_{Hα,\text{int}} \) shown in Equation (2). Also, from \(L(Hα_{\text{int}}) \) one can obtain the SFR by means of a simple multiplicative factor (e.g., Kennicutt 1998). Hence, \(I_{Hα,\text{int}} \) is in fact a direct estimate of the local SFR density (or surface brightness):

\[I_{Hα,\text{int}} = I_{Hα,\text{obs}} + 0.02 \times \frac{24.0}{0.656} \times I_{24\mu m}. \]

Similarly, the average extinction in each pixel can be derived using the intrinsic Hα intensity, \(I_{Hα,\text{int}} \), defined above and the observed Hα intensity, \(I_{Hα,\text{obs}} \). The extinction, \(A(Hα) \) in magnitudes, is given as

\[A(Hα) = 2.5 \log_{10} \left[1 + 0.02 \times \frac{(24.0/0.656)}{I_{Hα,\text{obs}}} \right]. \]

The two panels on the right of Figure 2 show the median intrinsic Hα intensity, \(I_{Hα,\text{int}} \), and the median dust extinction, \(A(Hα) \), in the pixels corresponding to the given NIR colors. By spatially resolving the galaxy colors, we can see a trend emerge in the NIR color–color plane in the pixel plots shown in Figure 2. The pixels which scatter along the extinction line to the redder color-selected regions also tend to have the highest intrinsic Hα intensities. Regions with higher intensity star formation show redder NIR colors. The dust extinction, in the far right panel, shows less variation, and tends to be \(A(Hα) = 0–2 \) mag. There is no strong trend of increasingly red NIR colors with increasing dust extinction. We now attempt to quantify this by measuring the average NIR colors and surface brightness in increasingly red NIR color-selected regions.

5.1. Average Surface Brightness Measurements in NIR Color-selected Regions

We measured the average NIR colors and intensity (i.e., surface brightness) for each galaxy in each of the NIR color-selected regions marking 0.1 dex in color space above and below the extinction curve of \(\lambda^{-0.7} \) from Charlot & Fall (2000) and defined in Table 2. The regions are mapped in the spatial domain and in the NIR color plane in the second and third columns of

Table 2

Color Key	\(\log_{10} I_{3.6}/I_{1.25} \)	\(\log_{10} I_{4.5}/I_{3.6} \)
Red	−0.6 to −0.4	−0.12
Orange	−0.4 to −0.2	−0.17
Yellow	−0.2 to 0.0	−0.14
Green	0.0 to 0.2	−0.12
Blue	>0.2	−0.09
Purple	Manually selected	

Notes.

a Upper and lower limits.

b Value in the center of the parallelogram shown in Figure 1.

The three rightmost columns show binned color–color diagrams with the intensity of cells keyed to various quantities. The intensity in the first of these three is keyed to the total number of pixels in that color bin. The scatter in pixel NIR colors is larger than for the integrated colors of the SINGS galaxies shown in Figure 1, with some pixels containing intensity ratios at \(I_{3.6}/I_{1.25} > 1 \), larger than any of the integrated colors. As with the integrated colors, the majority of pixels in the galaxies are found in the orange region, that is 0.1 dex (or 0.25 mags) above and below our typical color for the sample of \(I_{3.6}/I_{1.25} \) and \(I_{4.5}/I_{3.6} \).

Red colors (identified as yellow, then green, then blue) follow the
Figure 2. IRAC 3.6 μm image (left) and the spatial locations (second from left) of the NIR color-selected pixels (defined in Table 2) for examples of normal star-forming galaxies in our sample: NGC 0628, NGC 2976, NGC 3184, NGC 3627, NGC 5194, and NGC 6946. The three rightmost panels plot the pixel NIR colors with the intensity levels keyed to different quantities. In the first of these, the intensity is keyed to the distribution of pixels at each NIR color–color bin. NIR color-selection criteria is shown in colored boxes. The last two panels show the median intrinsic Hα intensity (and consequently star formation rate density) and the median A(Hα) in mag for all the pixels in that NIR color bin.

(A color version of this figure and the complete figure set (68 images) are available in the online journal.)

Figure 2. Measurements are made at all wavelengths in this analysis (0.6563, 1.25, 3.6, 4.5, 5.6, 8.0, and 24 μm) as well as to the intrinsic Hα image defined by Equation (2) and the A(Hα) dust extinction image defined by Equation (3).

We begin by looking at the NIR color trends. A trend of increasing $I_{3.6}/I_{1.25}$ and/or $I_{4.5}/I_{3.6}$ colors with increasing dust extinction would suggest that red NIR colors are due to dust, or alternatively, a trend of increasingly red NIR colors with the average dust-corrected Hα surface brightness would suggest that the NIR colors are instead due to dust emission. Because of the likely coincidence of both high dust extinction and strong Hα emission in regions of star formation, it is not easy to dissociate...
increasing the NIR intensity ratios, dust extinction. Quantified by Pearson’s correlation coefficient, α is stronger between the NIR colors and the Hα color-selected regions (blue, green, and yellow points). By design, the regions with higher NIR ratios are from the redder points are keyed to the color-selection regions. As expected (by as they do with dust extinction in the bottom rows. The data to the average dust-corrected Hα intensity vs average dust extinction.

Here, the NIR colors in the color-selected regions are compared to the average dust-corrected Hα emission and dust extinction. The top row shows that the NIR colors ($I_{3.6}/I_{1.25}$ and $I_{4.5}/I_{3.6}$ from left to right) both increase with increasing Hα emission, as they do with dust extinction in the bottom rows. The data points are keyed to the color-selection regions. As expected (by design) the regions with higher NIR ratios are from the redder color-selected regions (blue, green, and yellow points).

In all cases, there is a trend of increasing NIR colors with both Hα emission and dust extinction. We find that the correlation is stronger between the NIR colors and the Hα emission than the dust extinction. Quantified by Pearson’s correlation coefficient, the NIR intensity ratios, $I_{3.6}/I_{1.25}$ and $I_{4.5}/I_{3.6}$, correlate to the intrinsic Hα surface brightness by $\rho = 0.38$ and 0.36, respectively. We compare how the NIR intensity ratios correlate with the dust attenuation, quantified as $I_{\text{PAH}}/I_{\text{Hα,int}}$ (to compare linear quantities), and find that the correlation is weaker, but still significant at $\rho = 0.11$ and 0.16 for $I_{3.6}/I_{1.25}$ and $I_{4.5}/I_{3.6}$ ratios, respectively. The stronger trend with Hα emission suggests that the NIR colors are due to dust emission rather than extinction. The weaker trend for the reddest color-selected regions to have a higher median extinction value is likely a consequence of the higher star formation and associated dust content in these regions, resulting in higher dust extinction.

The intensity in each region is compared for each observed wave band to the intrinsic Hα intensity (a direct measure of the average SFR) in Figure 4. There is clear correlation between the intensity at 5.6, 8.0, and 24 μm and the intrinsic Hα intensity. These bands are dominated by PAH emission. Also evident is a correlation between emission at 1.25, 3.6, and 4.5 μm and the intrinsic Hα emission, although here the trends are more nuanced. In regions of high intrinsic Hα intensities (and high SFRs), the emission from the young star-forming environment dominates over the emission of the longer-lived population. But at lower Hα intensities ($\lesssim 10$ MJy sr$^{-1}$), the emission at 3.6, 4.5 μm, and particularly at 1.25 μm is scattered in this plane, indicating that in these regions the NIR emission from the star-forming population is lower and the emission traces the evolved stellar populations which varies from galaxy to galaxy as expected from the different star formation histories.

We calculate the intensity ratios at 1.25, 3.6, 4.5, 5.6, 8.0, and 24 μm relative to $I_{\text{H$\alpha$,int}}$ in Table 3. In the rightmost column, we give the range in possible values for the proportionality constant between $I_{\text{H$\alpha$,int}}$ and intensity at other wavelengths within the rms of the fit.

These results support the conclusion that very red NIR colors are due to sources of NIR emission. But the possibility that extinction may also be important needs further exploration. In particular, the trend for increasingly red NIR colors falls along the dust law of Charlot & Fall (2000), which may suggest that the spread in NIR colors is at least partly due to dust extinction rather than any additional emission mechanism. Using the dust extinction image defined by Equation (3), we can measure the
Again, the data show a correlation with the dust extinction. Higher intensities resulting from increased dust emission. These observed wave bands and the average dust extinction in Figure 5. We further investigate any trends between average intensities at all average dust extinction in the NIR color-selected pixels. We again see that the correlation with the dust extinction is weaker in all wave bands compared with the correlation between intensities and intrinsic Hα emission as indicated by compact 24 μm emission. In most of these cases, the NIR colors follow a vector corresponding to higher I_{4.5}/I_{3.6} ratios than the λ^{−0.7} extinction law from Charlot & Fall (2000). For example, Holmberg II, NGC 1266, NGC 1377, NGC 5408, NGC 7552, and Tololo 89 show a similar distribution of NIR colors. The increasingly red NIR colors correspond to regions of increasing star formation (fourth panel in Figure 6) and higher dust extinction (fifth panel in Figure 6). These regions correspond to compact regions with bright infrared emission. The emission is likely related to star formation; in many cases it corresponds to the brightest regions along a spiral arm or compact opaque star formation, as is the case for NGC 1377 which is an opaque starburst galaxy whose dust emission is optically thick (Roussel et al. 2006). In this galaxy, the emission is related to very young (<1 Myr), highly obscured starburst activity. These NIR colors are the result of either a different extinction law that manifests as an optically thick dust screen or perhaps a different dust emission law resulting from the high radiation fields produced by the starburst activity (in which the ratio of PAH emission and continuum emission from hot and warm dust is different than the typical spectrum found in normal star-forming environments found in this study). Some additional possible mechanisms have been recently put forth in Smith & Hancock (2009) to explain the redder I_{4.5}/I_{3.6} ratios seen in nearby dwarf galaxies.

5.2. Galaxies with Anomalous NIR Color Structures

Not all galaxies show binned pixel distributions similar to the typical ones presented in Figure 2. Ten galaxies (15%) show distributions with markedly different structures. To study these, we manually selected regions in the NIR color space to identify the spatial location of anomalous populations. Their location in pixel space and in the spatial domain are shown in purple for 6/10 galaxies in Figure 6 (the rest can be found in the online version of Figure 2). For these 10 galaxies (Holmberg II, NGC 1097, NGC 1266, NGC 1377, NGC 2403, NGC 3031, NGC 4736, NGC 5408, NGC 7552, and Tololo 89) we find that the red colors are related to regions of clumpy star formation as indicated by compact 24 μm emission. In most of these cases, the NIR colors follow a vector corresponding to higher I_{4.5}/I_{3.6} ratios than the λ^{−0.7} extinction law from Charlot & Fall (2000). For example, Holmberg II, NGC 1266, NGC 1377, NGC 5408, NGC 7552, and Tololo 89 show a similar distribution of NIR colors. The increasingly red NIR colors correspond to regions of increasing star formation (fourth panel in Figure 6) and higher dust extinction (fifth panel in Figure 6). These regions correspond to compact regions with bright infrared emission. The emission is likely related to star formation; in many cases it corresponds to the brightest regions along a spiral arm or compact opaque star formation, as is the case for NGC 1377 which is an opaque starburst galaxy whose dust emission is optically thick (Roussel et al. 2006). In this galaxy, the emission is related to very young (<1 Myr), highly obscured starburst activity. These NIR colors are the result of either a different extinction law that manifests as an optically thick dust screen or perhaps a different dust emission law resulting from the high radiation fields produced by the starburst activity (in which the ratio of PAH emission and continuum emission from hot and warm dust is different than the typical spectrum found in normal star-forming environments found in this study). Some additional possible mechanisms have been recently put forth in Smith & Hancock (2009) to explain the redder I_{4.5}/I_{3.6} ratios seen in nearby dwarf galaxies.

NGC 3031 and NGC 4736 display NIR color sequences that show decreasing I_{4.5}/I_{3.6} ratios for decreasing I_{3.6}/I_{25} ratios. Both of these galaxies show spectral indicators of harboring an AGN (Dale et al. 2006).
Figure 5. Surface brightness measurements at Hα (0.656), J (1.25), 3.6, 4.5, 5.6, 8.0, and 24 μm in relation to the average dust extinction derived from the ratio between the Hα and 24 μm intensities as described by Equation (3). The different colored points are keyed to the regions of increasingly larger NIR colors as defined in Section 4 and plotted in Figure 2. The purple dots are regions with anomalous NIR color sequences as discussed in Section 5.2.

(A color version of this figure is available in the online journal.)

We have included the points for these 10 galaxies in Figures 3–5 as purple dots to compare the average intensities in these anomalous red colors sequences to the SFR intensity and dust extinction and find that in all cases the values agree with the measurements made for the standard NIR color-selected regions.

6. DISCUSSION

Spatially resolved pixel-by-pixel analysis of the SINGS galaxies yields a number of insights regarding the underlying stellar populations and their associated dust emission and extinction. In regions of negligible star formation, NIR colors occupy a small region of NIR color space, and we have shown that the majority of pixels tend to be located in this color space. However, younger populations, with higher Hα and 24 μm emission, tend to show colors that become increasingly red in the NIR, with both the intensity ratios of $I_{3.6}/I_{1.25}$ and $I_{4.5}/I_{3.6}$ increasing along a vector well matched by the $\lambda^{-0.7}$ extinction law from Charlot & Fall (2000). Motivated by this empirical trend in the data, we divided galaxies into different regions based on the NIR color of each individual pixel. These regions are designed to encompass 0.1 dex (or 0.25 mag) above and below the $\lambda^{-0.7}$ extinction curve separated into steps of 0.2 dex (0.5 mag) in log $I_{3.6}/I_{1.25}$ color starting at log $I_{3.6}/I_{1.25} = -0.6$. By doing so we isolate regions with different NIR emission properties and consequently different stellar populations, revealing the relatively linear nature of emission in the near- and mid-infrared.

6.1. The Linear Scaling of the Near/Mid-infrared Spectrum

Figure 4 shows that the average intensity of NIR color-selected regions is strongly correlated with the average intrinsic Hα intensity in that region for the majority of bands in this study. The 5.8, 8.0, and 24 μm intensities scale linearly with this parameter, with scatter presumably mostly due the non-negligible contribution from the stellar population at 5.8 and 8.0 μm and also due to differences in metallicity (Calzetti et al. 2007) and possibly PAH fractions (Draine et al. 2007). Rather surprisingly, the shorter NIR wavelengths also show a linear correlation with the SFR intensity at sufficiently high intensities that the emission is dominated by emission from the dust associated with young stellar populations. We find that linear fits to the data with zero offsets can fit the data in all wave bands, but limit the fits to large star formation intensities ($I_{\text{SFR}} > 10$ MJy sr$^{-1}$) in the shorter bands and slightly lower star formation intensities ($I_{\text{SFR}} > 1$ MJy sr$^{-1}$) at 5.8 and 8.0 μm.

The flux ratios between Hα and other wavelengths is obtained from the linear fits (and resulting fitting errors) shown in Figure 4 and tabulated in Table 3. The SED points obtained in this way are then normalized to the J band (at 1.25 μm) and plotted as black dots in Figure 7. The black open squares represent the colors (logλ_{10} $I_{3.6}/I_{1.25} = -0.30 \pm 0.07$ and logλ_{10} $I_{4.5}/I_{3.6} = -0.19 \pm 0.02$) of the majority of pixels in the ensemble of galaxies. In Figure 2, this corresponds to the peak NIR color in the distribution panel (middle panel) and represents the NIR colors for non star-forming environments consisting of intermediate and evolved aged stellar populations. These NIR colors are consistent with the average typical NIR colors found for the integrated photometry of the SINGS sample (Dale et al. 2007), as well as for evolved galaxies in our previously studied high-z sample (Mentuch et al. 2009). For reference, three SEDs from stellar population models using PEGASE.2 are plotted for a galaxy with an exponentially declining star formation history with an e-folding time of 500 Myr at ages of 25 Myr (blue and green lines) and 3 Gyr (red line). The green spectrum is for a 25 Myr old galaxy with dust extinction in the visible of $A_v = 0.75$, while the blue spectrum has no dust extinction applied. These galaxies are dominated by the emission from the youngest stellar populations and are, in essence, a starburst stellar population modeled according...
Figure 6. IRAC 3.6 μm images for galaxies with anomalous NIR pixel colors are shown for (from top to bottom) NGC 1097, NGC 1266, NGC 1377, NGC 2403, NGC 5408, and NGC 7552. The second panel from the left shows the spatial location of the anomalous pixel colors (outlined in purple). In general, these colors spatially correspond to bright compact regions of star formation. The left panel of the three pixel color panels shows the number of pixels in each color–color bin. The middle panel indicates the median value of the intrinsic Hα intensity for all the pixels within that color–color bin. The left panel indicates the median dust extinction for the pixels.

(A color version of this figure is available in the online journal.)

to stellar population synthesis. Contribution from non-stellar emission, which is known to be significant for starburst galaxies at NIR and MIR wavelengths is not yet incorporated into these models. The older spectrum (red) is modeled with 0.25 mag of visual extinction. As emphasized earlier (in Section 2), the stellar emission beyond 1 μm is not dependent on the star formation history of the galaxy, and near-infrared colors for a galaxy that do not have emission from PAH and/or dust molecules are independent of a galaxy’s age.

The average spectrum effectively measures the broad SED of a young stellar population and its associated dusty star-forming environment as the fits were made to minimize the
from PEGASE.2 are normalized at 1.25 μm, while the dust models, varying in PAH mass fraction (q_{PAH}), from Draine & Li (2007) have been normalized at the IRAC 8 μm band. The sum of the young PEGASE model (blue) and $q_{\text{PAH}} = 4.58\%$ (cyan) dust/PAH model is shown as the orange dashed curve. The open triangles represent the flux densities of this model in the 2MASS and Spitzer/IRAC filters and are consistent within errors to the observed average SED data points (black solid dots).

(A color version of this figure is available in the online journal.)

Figure 7. Using the linear fits from Figure 4 (which scale with the star formation rate), a spectrum of broadband near/mid-infrared emission is plotted as solid black points (connected by the black dotted line), normalized at 1.25 μm. This average SED is a measure of the young stellar population and its associated dusty star-forming environment as seen in the near/mid-infrared as it is shown to scale with the intrinsic Hα emission. The black open squares represent the colors (log$_{10}I_{3.6}/I_{1.25} = -0.30 \pm 0.07$ and log$_{10}I_{5.8}/I_{1.25} = -0.19 \pm 0.02$) of the majority of pixels in a galaxy (taken from the results of Figure 2). Shown for comparison are SEDs generated for stellar emission from PEGASE.2 models and dust emission models from Draine & Li (2007). The stellar models from PEGASE.2 are normalized at 1.25 μm, while the dust models, varying in PAH mass fraction (q_{PAH}), from Draine & Li (2007) have been normalized at the IRAC 8 μm band. The sum of the young PEGASE model (blue) and $q_{\text{PAH}} = 4.58\%$ (cyan) dust/PAH model is shown as the orange dashed curve. The open triangles represent the flux densities of this model in the 2MASS and Spitzer/IRAC filters and are consistent within errors to the observed average SED data points (black solid dots).

(A color version of this figure is available in the online journal.)

contribution from emission from evolved stellar populations (except at Hα where all stellar emission is effectively removed). It is evident that beyond ~2 μm the stellar SED does not provide sufficient emission to account for the observations. Although SPS models are extremely uncertain at these wavelengths, due to poor knowledge of stellar evolutionary phases and lack of good spectral templates, this conclusion is reinforced by the fact that typical NIR colors for stellar populations not contaminated by star-forming environments are way lower than those which are found in star-forming environments. Emission due to dust heated by the young stellar population is the obvious culprit.

We plot for reference dust models, scaled to the 8.0 μm flux density, from Draine & Li (2007) for three PAH fractions of $q_{\text{PAH}} = 0.47\%$, 2.50% and 4.58% (these models assume $U_{\text{min}} = 3.00$ and $u_{\text{max}} = 1000$, see Draine & Li 2007 for details, and are shown for reference, not as best fits of the average SED).

The orange dashed curve is the sum of the PEGASE.2 star-forming model (blue line) scaled to the 1.25 μm flux density and the dust model with $q_{\text{PAH}} = 4.58\%$ scaled to the 8.0 μm flux density. The open triangles represent the flux densities of this composite model. The model flux densities are consistent with the average SED derived from the linear fits measured in this analysis. The scaling of the near/mid-infrared spectrum with the SFR suggests this region of the SED for a galaxy can be incorporated into galaxy SED models as a spectral component that scales linearly with the SFR.

Figure 7. Using the linear fits from Figure 4 (which scale with the star formation rate), a spectrum of broadband near/mid-infrared emission is plotted as solid black points (connected by the black dotted line), normalized at 1.25 μm. This average SED is a measure of the young stellar population and its associated dusty star-forming environment as seen in the near/mid-infrared as it is shown to scale with the intrinsic Hα emission. The black open squares represent the colors (log$_{10}I_{3.6}/I_{1.25} = -0.30 \pm 0.07$ and log$_{10}I_{5.8}/I_{1.25} = -0.19 \pm 0.02$) of the majority of pixels in a galaxy (taken from the results of Figure 2). Shown for comparison are SEDs generated for stellar emission from PEGASE.2 models and dust emission models from Draine & Li (2007). The stellar models from PEGASE.2 are normalized at 1.25 μm, while the dust models, varying in PAH mass fraction (q_{PAH}), from Draine & Li (2007) for three PAH fractions of $q_{\text{PAH}} = 0.47\%$, 2.50%, and 4.58% (these models assume $U_{\text{min}} = 3.00$ and $u_{\text{max}} = 1000$, see Draine & Li 2007 for details, and are shown for reference, not as best fits of the average SED).

The orange dashed curve is the sum of the PEGASE.2 star-forming model (blue line) scaled to the 1.25 μm flux density and the dust model with $q_{\text{PAH}} = 4.58\%$ scaled to the 8.0 μm flux density. The open triangles represent the flux densities of this composite model. The model flux densities are consistent with the average SED derived from the linear fits measured in this analysis. The scaling of the near/mid-infrared spectrum with the SFR suggests this region of the SED for a galaxy can be incorporated into galaxy SED models as a spectral component that scales linearly with the SFR.

6.2. The NIR Excess Due to Circumstellar (Disk) Emission

A hypothesis for the origin of the NIR emission we have identified was proposed in Mentuch et al. (2009), namely, that the emission is associated with circumstellar emission of dust around massive young stars. We can measure the excess NIR emission at 3.6 μm by subtracting the contribution of stellar light from the bandpass. We use the ratio between emission in the near-IR of log$I_{3.6}/I_{1.25} = -0.3$ ($I_{3.6}/I_{1.25} = 0.5$) to measure the excess emission in the NIR and plot this as a function of the intrinsic Hα. A linear relation exists between the NIR excess (stellar subtracted) emission and is shown in Figure 8. A linear fit to the data is plotted as a solid line. The fit has a slope of 0.0435 (+0.1092/−0.0311).

We can use the quantitative model we developed in Mentuch et al. (2009) to see if the excess emission at 3.6 μm can be explained by the same model. A relationship between NIR excess emission from circumstellar disks from the model of Dullemond et al. (2001) was applied to the integrated light of a galaxy as

$$L_{\text{NIR(SFR)}} = 350L/\odot \left(\frac{\text{SFR}}{M_{\odot} \text{yr}^{-1}} \right) \left(\frac{t_{\text{excess}}}{\text{yr}} \right), \tag{4}$$

This equation requires an SFR in $M_{\odot} \text{yr}^{-1}$ and a value for the timescale of the circumstellar disk emission, t_{excess}. The calculation assumed an initial mass function (IMF) from Kroupa (2001) and as a result requires the same IMF assumption when converting the intrinsic Hα intensity into an SFR.

We use the standard conversion from Kennicutt (1998), except an additional factor of 0.55 is applied to convert from an IMF from Salpeter (1955) to an IMF from Kroupa (2001):

$$\text{SFR}(M_{\odot} \text{yr}^{-1}) = 0.55 \times 7.942 \times 10^{-42} \text{erg s}^{-1} L(H_{\alpha,\text{int}}). \tag{5}$$

The relation resulting from this model is plotted in Figure 8 for two timescales of 106 and 107 years, which cover the range of timescales in which circumstellar disks are found locally to
survive. In general the model overpredicts the emission, but is within an order of magnitude, which is encouraging given the model’s simplicity. This suggests that the excess NIR emission seen in nearby young massive stars can explain the NIR colors seen in star-forming regions in the SINGS galaxies and may be due to circumstellar dust heated to its sublimation temperature.

6.3. AGN Activity

Do AGNs cause red NIR colors? There is a trend for the NIR excess emission regions to be associated with regions of star formation. For many of the normal spiral galaxies in the sample, the regions of NIR excess spatially correlate with Hα bright regions, found to be located along the spiral arms. Similar knots are seen in the irregular galaxies in the sample, but are found dispersed throughout these galaxies. In some galaxies (both irregular and spiral types), some of these regions are found in the nuclear region of the galaxy.

Table 1 contains a column which identifies whether a galaxy may harbor an active galactic nucleus using spectral indicators (Dale et al. 2006). We investigate each of the 24 galaxies with an AGN and find that in a third of the cases the nuclear regions of galaxies do correspond to redder NIR colors. For five galaxies (NGC 1266, NGC 3031, NGC 3198, NGC 4736, and NGC 7552), their nuclear regions have very red NIR colors ($I_{1.6}/I_{2.25} > 1$). The pixels in these regions have both high Hα emission and high dust extinction. The red NIR colors may either be related to the AGN itself (or dust heated by the AGN) or could also be from optically thick dust extinction in starburst regions as the NIR colors in these nuclear regions are similar to or could also be from optically thick dust extinction in starburst either be related to the AGN itself (or dust heated by the AGN) emission and high dust extinction. The red NIR colors may due to circumstellar dust heated to its sublimation temperature. No. 2, 2010 CONNECTION BETWEEN THE NIR/MIR EMISSION AND SFRs OF GALAXIES

This analysis relied entirely on archival data. We thank the SINGS collaboration (Kennicutt et al. 2003) and the Large Galaxy Atlas team (Jarrett et al. 2003) for publicly sharing their data sets.

REFERENCES

Abraham, R. G., et al. 2004, AJ, 127, 2455
Acke, B., & van den Ancker, M. E. 2004, A&A, 426, 151
Calzetti, D., et al. 2007, ApJ, 666, 870
Calzetti, D., Kinney, A. L., & Storchi-Bergmann, T. 1994, ApJ, 429, 582
Charlot, S., & Fall, S. M. 2000, ApJ, 539, 718
Dale, D. A., et al. 2006, ApJ, 646, 161
Dale, D. A., et al. 2007, ApJ, 655, 863
de Ruyter, S., van Winckel, H., Maas, T., Evans, T. L., Waters, L. B. F. M., & Dejonghe, H. 2006, A&A, 448, 641
Draine, B. T., & Li, A. 2007, ApJ, 657, 810
Draine, B. T., et al. 2007, ApJ, 663, 866
Dullemond, C. P., Dominik, C., & Natta, A. 2001, ApJ, 560, 957
Flagay, N., Boulanger, F., Verstraete, L., Deschênes, M. A. M., Crespo, A. N., & Reach, W. T. 2006, A&A, 453, 969
Indebetouw, R., et al. 2005, ApJ, 619, 931
Jarrett, T. H., Chester, T., Cutri, R., Schneider, S. E., & Huchra, J. P. 2003, AJ, 125, 525
Kennicutt, R. C. 1998, ARA&A, 36, 189
Kennicutt, R. C., et al. 2003, PASP, 115, 928
Kennicutt, R. C., et al. 2007, ApJ, 671, 333
Kennicutt, R. C., et al. 2009, ApJ, 703, 1672
Kroupa, P. 2001, MNRS, 322, 231
Longmore, S. N., Maercker, M., Ramsdell, S., & Burton, M. G. 2007, MNRS, 380, 1497
Lu, N., et al. 2003, ApJ, 588, 199
Maercker, M., & Burton, M. G. 2005, A&A, 438, 663
Maercker, M., Burton, M. G., & Wright, C. M. 2006, A&A, 450, 253
Magnelli, B., Chary, R. R., Pope, A., Elbaz, D., Morrison, G., & Dickinson, M. 2008, ApJ, 681, 258
Maraston, C. 2005, MNRS, 362, 799
Mentuch, E., et al. 2009, ApJ, 706, 1020
Mink, D. J. 2002, Astron. Data Anal. Softw. Syst., 281, 169
Muñoz-Mateos, J. C., et al. 2009, ApJ, 703, 1569
Pei, Y. C. 1992, ApJ, 395, 130
Roussel, H., et al. 2006, ApJ, 646, 841
Salpeter, E. E. 1955, ApJ, 121, 161
Salez, F., et al. 2006, ApJ, 637, 511
Sellgren, K., Werner, M. W., & Allamandola, L. J. 1996, ApJS, 102, 369
Sellgren, K., Werner, M. W., & Dinerstein, H. L. 1983, ApJ, 271, L13
Smith, B. J., & Hancock, M. 2009, AJ, 138, 130
Tsunami, Y., et al. 2010, PASP, 122, 379
Wood, K., Whitney, B. A., Robitaille, T., & Draine, B. T. 2008, ApJ, 688, 1118
Zibetti, S. 2009, arXiv:0911.4956
Zibetti, S., Charlot, S., & Rix, H.-W. 2009, MNRS, 400, 1181

7. CONCLUSION

The near-infrared, at 1–5 μm, marks a transition in the SED of galaxies. At ~1–2 μm, emission from longer-lived low-mass stars from evolved populations remains bright, tracing the build up of mass in a galaxy. However, these wavelengths also trace currently star-forming populations, which emit brightly in both the UV, optical, and near-infrared. Near-infrared colors at 1–5 μm, if dominated by stellar emission, are predicted to be independent of the age of a stellar population. However, in star-forming environments, the contribution from PAHs and dust grain emission becomes important beyond 2 μm, making the near- and mid-infrared a complicated but rich region of a galaxy’s SED.

In this paper, we have analyzed the pixel-by-pixel near-infrared colors for a sample of 68 galaxies from the SINGS (Kennicutt et al. 2003) and LGA (Jarrett et al. 2003). Specifically, we use images at 1.25, 3.6, 4.5, 5.6, 8.0, and 24 μm, as well as continuum subtracted Hα images for 56 galaxies. Using the Hα and 24 μm images, we were able to create images representing the spatially resolved dust extinction (at A(Hα)) and the intrinsic Hα intensity. The pixels in each galaxy were categorized into different regions based on a near-infrared color selection. The majority of pixels for each galaxy in the sample are found to have constant NIR colors, as is predicted for main-sequence stellar emission, while the reddest NIR pixels correspond to regions of star formation, which usually trace the galaxy’s spiral arms structure. Our analysis suggests that very red NIR colors are produced by emission, not dust extinction.

For each NIR color cut in our galaxy sample, we measured the average intensities at 1.25, 3.6, 4.5, 5.6, 8.0, and 24 μm for each galaxy. We compared these to the average dust extinction and SFR in each region and found a linear correlation between the emission at all bands from ~1 to 8 μm with the average Hα emission (and consequently the SFR). The strong correlation between near-infrared and PAH emission from 1 to 8 μm and star formation suggests that the average spectrum derived from this data set is representative of a young stellar population and its associated dusty star-forming environment and can be incorporated to galaxy SED models very simply as a component directly scaled to the SFR of a stellar population.