TERT Mutation was Associated with the Risk of Recurrence in Lung Adenocarcinoma with A Micropapillary Pattern

Fenfang Wang
Xiangshan First People's Hospital

Lu Xu
The First People's Hospital Yongkang

Qing Hao
OrigiMed

Chenghui Li
Zhejiang Cancer Hospital

Qihuan Wu
Xiangshan First People's Hospital

Hongyang Lu (✉ luhy@zjcc.org.cn)
Zhejiang Cancer Hospital
https://orcid.org/0000-0003-0404-5153

Research article

Keywords: lung adenocarcinoma with a micropapillary pattern, next-generation sequencing, mutation profiling, prognosis

DOI: https://doi.org/10.21203/rs.3.rs-39789/v1

License: ☞ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background: Lung adenocarcinoma with a micropapillary pattern (MPPAC) is the histological subtype of lung cancer. It has attracted increasing attention, especially regarding its association with poor prognosis, including the predisposition towards recurrence and metastasis. Although MPPAC has been described in early-stage cases, only a few studies have reported the correlation between disease-specific prognosis and gene mutation of MPPAC. This study aimed to clarify the common genetic mutations and the prognostic characteristics in MPPAC patients.

Methods: A total of 17 patients whose surgical pathology was defined as MPPAC were followed up, the molecular characteristics were elucidated by next-generation sequencing, and the prognostic characteristics were analyzed.

Results: Epidermal growth factor receptor (EGFR) mutations were identified in 11/17 (65%) of patients. TP53 alterations were identified in 10/17 (59%). Other common mutations include ATM (18%), KRAS (18%), SDHA (18%), and TERT (18%). MPPAC patients harboring EGFR and TERT mutations were at a high risk of tumor recurrence, while TP53 might be associated with a low risk of recurrence.

Conclusions: TERT mutation was more frequently harbored in MPPAC patients than in the other histological type of lung cancer, and such patients were at a high risk of recurrence. So TERT mutation might be associated with adverse prognosis in MPPAC patients.

Background

Lung cancer is the leading cause of cancer-related deaths worldwide [1]. Adenocarcinoma (AC) is the most common histological type of lung cancer. Lung AC with a micropapillary pattern (MPPAC) is determined as a histological subtype of AC according to the new multidisciplinary classification in 2011 [2]. It is characterized by a specific primary histological pattern, MPP, observed semiquantitatively in 5% increments on resection specimens. As a major component, tumor cells growing in papillary tufts form florets that lack fibrovascular cores in this variant of carcinoma [3]. These tumor cells may appear detached from and/or connected to alveolar walls and are usually small and cuboidal with variable nuclear atypia. Ring-like glandular structures may float within alveolar spaces. The vascular and stromal invasion is common, and also psammoma bodies are detected. The clinical manifestations of MPPAC patients are similar to those of other ACs [4] but have a high rate of lymphatic invasion [5–7], visceral pleural invasion [8–11], and lymph node metastases [4, 5, 9, 11–15]. Furthermore, most MPPAC patients are males and nonsmokers [9, 12, 16–19]. Comparing with other ACs, the molecular markers of MPPAC, including vimentin, napsin A, phosphorylated c-Met, cytoplasmic maspin, Notch-1, MUC1, and tumoral CD10, are highly expressed; conversely, markers such as MUC4 and surfactant apoprotein A have low expression in MPPAC [20–27]. MPPAC has a higher frequency of epidermal growth factor receptor (EGFR) mutations and v-raf murine sarcoma viral oncogene homolog B1 (BRAF) mutations as compared to other histological subtypes [3, 22, 28–31], while the Kirsten rat sarcoma 2 viral oncogene homolog (KRAS)
mutations or anaplastic lymphoma kinase (ALK) rearrangement are similar in all subtypes [22, 32–34]. Several studies have shown that MPP is associated with lung cancer prognosis, and even a minimal proportion of the tumor can lead to poor prognosis [7, 11, 12, 14, 35–37].

Methods

Sample collection

Formalin-fixed paraffin-embedded (FFPE) blocks from 17 MPPAC patients between 2012 and 2017 were collected retrospectively from Zhejiang Cancer Hospital in China. The pathological diagnosis was based on the standard criteria defined by the International Association for the Study of Lung Cancer, American Thoracic Society and European Respiratory Society (IASLC/ATS/ERS) [2]. The classification of stages was defined by the eighth edition of the TNM (tumor, node, metastasis) classification for lung cancer [38]. The clinical characteristics, such as gender, age, and clinical stage, are listed in Table 1. This study was approved by the Medical Ethics Committee of Zhejiang Cancer Hospital. All the specimens of the patients in this study were obtained from the Biological Sample Bank of Zhejiang Cancer Hospital, and the patients signed the written informed consent to preserve their specimens in the Biological Sample Bank of Zhejiang Cancer Hospital for research.

Age at diagnosis (n = 17)	Years
Median	60
Range	47–70

Gender	No. of patients
Female	9
Male	8

Clinical stage	No. of patients
I	4
II	3
III	10

Next-generation sequencing (NGS)

The genomic alterations (GAs) in formalin-fixed, FFPE tissue samples obtained from 17 MPPAC patients were subjected to comprehensive profiling using NGS-based cancer gene panel, as described previously [39].

Results
Patient characteristics
8/17 MPPAC patients enrolled in this study were males. Of these, 7 were smokers, while none of the 9 female patients had a smoking history. The median age of the cohort was 60 (range, 47–70). 6/17 patients were diagnosed with stage I-II diseases, while 11 patients had stage III diseases. All patients were microsatellite stable (MSS), and no patient showed microsatellite instability-high (MSI-H).

Genomic alterations
In the current study, the most common mutations in these 17 MPPAC patients were as follows: EGFR (65%), tumor protein p53 (TP53) (59%), ataxia telangiectasia mutated (ATM) (18%), KRAS (18%), succinate dehydrogenase subunit A (SDHA) (18%), and telomerase reverse transcriptase (TERT) (18%) (Fig. 1a).

15/17 (89%) MPPAC patients harbored mutually exclusive mutations: 11 (65%) EGFR, 3 (18%) KRAS, and 1 (6%) BRAF, which was different from the rate of mutations in western countries. Achcar et al. [40] analyzed the molecular profile of 15 primary MPPAC patients with respect to KRAS, EGFR, and BRAF mutations and found that 11/15 (73%) MPPAC patients harbored mutually exclusive mutations: 5 (33%) KRAS, 3 (20%) EGFR, and 3 (20%) BRAF. This profile confirmed that the EGFR mutation rate is high in patients with MPPAC, but that the KRAS mutation rate is low in the Chinese population. Similar results were reported by other investigators. Chao et al. [41] and Zhang et al. [42] also found that micropapillary predominant subtypes are likely to occur with EGFR-mut tumors in Chinese lung ACs. Most studies from East Asia have reported a much lower rate of KRAS mutations than Western countries [43, 44]. In this study, the EGFR mutation rate is highest; 8/17 MPPAC (47%) patients presented an EGFR-sensitive mutation (EGFR 19del or L858R). The T790M and insertion mutations in exon 20 (E20ins) were the EGFR-tyrosine kinase inhibitor (TKI)-resistant mutations, among the 8 patients harboring an EGFR-sensitive mutation, 1 patient at the same time featured a EGFR-TKI-resistant mutation. 2/17 MPPAC (12%) patients featured a de novo EGFR-TKI-resistant mutation, and other 2/17 MPPAC (12%) patients featured less frequent mutations, such as G719X and L861Q. Another study showed a high EGFR-sensitive mutation rate in patients with MPPAC. A total of 211 patients with invasive AC were observed; 58 (27.5%) ACs featured MMP, 46 (79.4%) featured an EGFR-sensitive mutation (deletion in exon 19 or L858R). Interestingly, 5 (8.6%) MPPACs presented a de novo EGFR-TKI-resistant mutation, and 2 (12%) MPPACs featured less frequent mutations, such as G719X, L861Q, and S768I [45].

TP53 mutation is one of the most common genetic abnormalities found in all types of human tumors and has been reported in approximately half of the lung cancer [46]. In various malignancies, TP53 mutations have been associated with tumor progression, metastasis, resistance to chemotherapy and radiation, and reduced overall survival (OS) [47, 48]. Quinlan et al. [49] first reported TP53 oncoprotein expression as a poor prognostic factor in non-small cell lung carcinoma (NSCLC). The percentage of TP53 mutation varies by tumor type and ranges from 10–80% (http://p53.free.fr). In previous studies, TP53 alterations, mainly missense mutations, are found in 35–55% of NSCLC and are more prevalent in squamous cell carcinoma than AC [50, 51]. In this study, the mutation frequency of TP53 was similar to that observed previously. Herein, we detected TP53 mutations in tumor samples from 10/17 (59%) MPPAC patients.
Also, we identified that TERT frequently mutated in MPPAC patients. 3/17 (18%) MPPAC harbored TERT mutation. TERT activities are frequently upregulated in many human cancers and might contribute to human tumorigenesis [52]. The prevalence of TERT promoter mutations (pTERTm) was first identified in melanoma and subsequently detected in bladder cancer, glioblastoma, thyroid cancer, and other cancers [53–57]. pTERTm is a moderately prevalent genetic event in NSCLC. Also, the prevalence and association of pTERTms in NSCLC patients have been studied. Yuan et al. [58] identified a low frequency of pTERTm (5.8%) in NSCLCs, and found that patients who carry pTERTm are older than noncarriers, male patients were more likely to carry pTERTm and that pTERTm had a significant association with distant metastasis. Hence, it could be a poor prognostic factor for cancer patients. Ma et al. [59] demonstrated that 2.67% of NSCLC patients in their cohort had pTERTm, and those with TERT promoter mutation were significantly associated with older age. We also found that the mutation frequency of TERT was higher than that reported previously. However, due to the small sample size, we could not link TERT promoter mutations to the age and gender of patients.

The tumor mutation burden (TMB) is 0.7–24.7 (median 5.7) in these patients (Fig. 1b). According to the progression-free survival (PFS) results of Checkmate 026 [60] and 227 [61], TMB was considered as a potentially new and independent biomarker, the high TMB patients could choose nivolumab plus ipilimumab combination treatment, irrespective of PD-L1 expression level. TMB-positive advanced NSCLC patients who have no oncogenic drivers choose the immune checkpoint inhibitors as first-line treatment, while platinum-based chemotherapy may represent only the first-line option for patients with no PD-L1 expression and TMB-negative [62]. Nevertheless, the predictive value of TMB should be further investigated in future randomized trials. In the current study, the TMB was not significantly associated with disease-free survival (DFS). DFS was defined as the interval from the surgery to the point of any definite clinical or pathological evidence of local or distant disease recurrence or last evaluation.

Genomic alterations associated with the risk of recurrence

In this study, all patients were subjected to surgically and pathologically determined stages I, II, and III, which accounted for 4 (23%), 3 (18%), and 10 (59%) of the cohort. Thirteen patients received adjuvant chemotherapy, local radiotherapy, and EGFR TKIs after surgery. These patients presented different genomic alterations, and the DFS in patients ranged from 13 to > 72 months (alive at the time of testing) after diagnosis (Fig. 1c), suggesting that their genetic background might be related to the differences in their prognosis.

Some studies reported a higher than usual incidence of EGFR mutations in papillary and micropapillary AC of the lung [63, 64]. In this study, 11/17 (65%) MPPAC harbored EGFR mutations. Three cases with EGFR mutation were at stage I disease, 1 case was at stage II disease, and 7 cases were at stage III. The 2stage I patients received no other treatment after surgery, 1 stage II patient received chemotherapy, and 1 stage III patient received no other treatment after surgery, 1 received TKI treatment, and 5 received chemotherapy. The DFS of the patients received TKI treatment for > 46 months (alive at the time of the return visit), while the DFS in patients who received chemotherapy ranged from 13 to > 42 months. MPPAC patients harboring EGFR mutation might be good candidates for the treatment with EGFR TKIs. According to the recurrence status, 17 patients were divided into two groups: recurrence and non-
recurrence. One patient was lost to follow-up, and disease recurrence was found in 10 patients; 8/10 carried the EGFR mutation. Thus, MPPAC patients harboring the EGFR mutation might face a high risk of tumor recurrence. However, due to the small sample size, we did not observe a significant association between the risk of recurrence and EGFR mutation (P = 0.299451, Table 2). Kishi et al. [65] demonstrated that the MPPAC patients harboring L858R were at a high risk of recurrence in the pN0M0 lung AC. In previous studies, the correlation between EGFR mutations and the risk of recurrence of the MPPAC patients was controversial. Some investigators showed a positive correlation [63, 64, 66, 67], whereas one proposed that there was no correlation [12]. Sumiyoshi et al. [17] established a positive correlation between EGFR mutations and micropapillary component and speculated that MPPAC was biologically aggressive but could be controlled with EGFR-TKIs. The study recommended that to avoid the progression of the disease, the MPPAC patients harboring EGFR mutation should be actively treated with EGFR-TKIs. The current results showed that the EGFR mutation might be associated with the risk of recurrence in MPPAC patients. The risk of disease recurrence might be predicted by EGFR mutations, and the MPPAC patients harboring the EGFR mutation would be subjected to EGFR TKIs treatment.

Genes	MUT/recurrence N	MUT/non-recurrence N	WT/recurrence N	WT/non-recurrence N	Fisher's test P-value	Chi-sq. test P-value
TERT	3	0	7	6	0.25	0.408295
EGFR	8	3	2	3	0.299451	0.486234

Abbreviations: MUT, mutation; WT, wild type.

In this retrospective study, we reviewed and analyzed the risk of recurrence in 17 MPPAC patients with documented tumor p53 mutational status (mutant-type [mtp53] vs. wild-type [wtp53]). Ten patients had mtp53, 1 was lost to follow-up, and 7 did not carry the TP53 mutation. 6/10 harbored the TP53 mutation showed a DFS of > 33 months, while 1/7 with wpt53 had a DFS > 33 months. Thus, TP53 could be speculated as a positive prognostic factor for enhanced DFS (P = 0.06014, Fisher’s test), indicating that it is associated with a low risk of recurrence in MPPAC patients. However, due to the limited sample size, we did not observe a significant association between the risk of recurrence and TP53 mutation. In contrast to our data, a previous study showed that TP53 positive or overexpression is found to be significantly associated with short OS in NSCLC [68–70], and differences were observed between the various subtypes of NSCLC. Intriguingly, Nishio et al. [71] found an association between TP53 abnormalities and poor prognosis of patients with ACs but not with the squamous cell carcinomas. TP53 mutations are widespread in NSCLC, but to date, there are no approved agents that specifically target TP53 in NSCLC. The Wee-1 inhibitor AZD1775 is currently under investigation, but mainly with respect to small cell lung cancer [72].
In addition, 3/17 (18%) MPPAC patients harbored TERT mutation. BRAF and NRAS mutations activate the expression of TERT via MAPK pathway [54]. 68.6% of the lung ACs in the Chinese population carry EGFR or KRAS mutations [73], which were the known oncogenes that drive lung cancer by the MAPK/AKT pathway. In the present study, all 3 patients with TERT mutations had a concurrent EGFR mutation and also showed a disease recurrence. This phenomenon could be attributed to the TERT mutation in MPPAC patients, which elevated the risk of tumor recurrence in this group. However, due to the limited sample size, we did not observe a significant association between the risk of recurrence and TERT mutation (P = 0.25, Table 2). Another study showed that there was no significant difference in the OS or relapse-free survival (RFS) between TERT with and without mutation [54]. Therefore, additional studies and large sample sizes are needed to determine the correlation between TERT mutation and the risk of tumor recurrence. Previous findings of the associations of TERT expression and telomere length with the survival length of NSCLC patients also remained controversial. Several molecular epidemiology studies have associated TERT overexpression with poor prognosis in NSCLC patients [74–79]. Also, a significant association between high TERT levels and short periods of DFS and OS and high TERT levels in breast cancer were found to be significantly associated with short RFS [80]. A correlation between real-time quantitative measurement of TERT and the clinicopathological parameters of poor prognoses, such as histologic grade and muscle invasion, has been observed in bladder urothelial cell carcinomas [81], albeit with different conclusions [82–85]. The telomerase activity is one of the critical prognostic factors in NSCLC patients, as assessed by multivariate analysis. Additionally, TERT was not associated with the prognosis, as depicted in another study.

Discussion

Previous studies have demonstrated close correlations between the presence of MPP and lymph node metastasis, lymphatic invasion, venous invasion, differentiation grade, and TNM stage, suggesting that MPP display highly aggressive biological behavior. Thus, MPP in lung AC is considered as a distinct histopathological variant with biological and prognostic significance. The presence of an MPP could serve as an accurate indicator of prognosis in lung AC patients.

In this study, we analyzed the genomic profiles of 17 MPPAC patients by targeted sequencing of pan-cancer genes in archived primary FFPE tissue samples. Thus, we obtained an overall profile of the genomic alterations for this distinctive subtype of invasive lung ACs and analyzed the prognostic characteristics of these patients. The mutational profiles of MPPAC patients were compared to that from a previous study on lung ACs. It was found that these distinctive micropapillary subtypes had similarities but also differed in genomic alterations as compared to those with lung ACs. *EGFR* was the most commonly mutated gene. TP53 alterations were more prevalent in MPPAC than lung ACs. The mutation rate of *KRAS* gene was similar in MPPAC and lung ACs, while the mutation frequency of TERT was higher than that reported previously.

Herein, we investigated the effect of EGFR, TP53, and TERT mutations on DFS in MPPAC patients. In the 17 MPPAC patients, disease recurrence was found in 10 patients; of these, 8 harbored the EGFR mutation
placing them at a high risk of tumor recurrence. Also, the MPPAC patients harboring TERT mutation were at similar risk, while TP53 mutation served as a positive prognostic factor for improved DFS. However, large sample size is required to confirm the above conclusion.

Conclusions

MPPAC is determined as a new histological subtype and a highly malignant potential type. TERT mutation was more frequently harbored in MPPAC patients than the other histological type of lung cancer, and those harboring TERT mutation were at a high risk of recurrence in patients. Thus, TERT mutation might be associated with the adverse prognostic in MPPAC patients. In the current study, EGFR, TP53, and TERT were the common mutations in MPPAC patients, and recognition of the common mutations would guide the treatment and predict the outcomes in MPPAC patients. According to targeted therapy, MPPAC patients harboring EGFR mutation were promising candidates for the treatment with EGFR TKIs. However, the high prevalence of TP53 and TERT mutations in MPPAC poses a challenge because of the absence of effective therapy for TP53 and TERT mutations.

Declarations

Disclosure

The authors report no conflicts of interest in this study.

Acknowledgments

This study was supported by the Zhejiang Province Medical Science and Technology Project (No. 2019ZH019).

References

1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34.
2. Travis WD, Brambilla E, Noguchi M, Nicholson AG, Geisinger KR, Yatabe Y, Beer DG, Powell CA, Riely GJ. *et al.* International association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol. 2011;6:244–85., Van Schil PE.
3. Travis WD, Brambilla E, Burke AP, Marx A, Nicholson AG. Introduction to The 2015 World Health Organization Classification of Tumors of the Lung, Pleura, Thymus, and Heart. J Thorac Oncol. 2015;10(9):1240–42.
4. Amin MB, Tamboli P, Merchant SH, Ordóñez NG, Ro J, Ayala AG, Ro JY. Micropapillary component in lung adenocarcinoma: a distinctive histologic feature with possible prognostic significance. The
American Journal of Surgical Pathology. 2002;26(3):358–64.

5. Hung JJ, Yeh YC, Jeng WJ, Wu KJ, Huang BS, Wu YC, Chou TY, Hsu WH. Predictive value of the International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society classification of lung adenocarcinoma in tumor recurrence and patient survival. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2014;32(22):2357–64.

6. Ye B, Cheng M, Li W, Ge XX, Geng JF, Feng J, Yang Y, Hu DZ. Predictive factors for lymph node metastasis in clinical stage IA lung adenocarcinoma. The Annals of Thoracic Surgery. 2014;98(1):217–23.

7. Warth A, Muley T, Meister M, Stenzinger A, Thomas M, Schirmacher P, Schnabel PA, Budczies J, Hoffmann H, Weichert W. The novel histologic International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society classification system of lung adenocarcinoma is a stage-independent predictor of survival. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2012;30(13):1438–46.

8. Hung JJ, Jeng WJ, Chou TY, Hsu WH, Wu KJ, Huang BS, Wu YC. Prognostic value of the new International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society lung adenocarcinoma classification on death and recurrence in completely resected stage I lung adenocarcinoma. Ann Surg. 2013;258(6):1079–86.

9. Miyoshi T, Satoh Y, Okumura S, Nakagawa K, Shirakusa T, Tsuchiya E, Ishikawa Y. Early-stage lung adenocarcinomas with a micropapillary pattern, a distinct pathologic marker for a significantly poor prognosis. The American Journal of Surgical Pathology. 2003;27(1):101–09.

10. Hamasaki M, Kato F, Koga K, Hayashi H, Aoki M, Miyake Y, Iwasaki A, Nabeshima K. Invasion of the inner and outer layers of the visceral pleura in pT1 size lung adenocarcinoma measuring </=3 cm: correlation with malignant aggressiveness and prognosis. Virchows Archiv: An International Journal of Pathology. 2012;461(5):513–19.

11. Makimoto Y, Nabeshima K, Iwasaki H, Miyoshi T, Enatsu S, Shiraishi T, Iwasaki A, Shirakusa T, Kikuchi M. Micropapillary pattern: a distinct pathological marker to subclassify tumours with a significantly poor prognosis within small peripheral lung adenocarcinoma (</=20 mm) with mixed bronchioloalveolar and invasive subtypes (Noguchi’s type C tumours). Histopathology. 2005;46(6):677–84.

12. Zhang J, Liang Z, Gao J, Luo Y, Liu T. Pulmonary adenocarcinoma with a micropapillary pattern: a clinicopathological, immunophenotypic and molecular analysis. Histopathology. 2011;59(6):1204–14.

13. Bao F, Yuan P, Yuan X, Lv X, Wang Z, Hu J. Predictive risk factors for lymph node metastasis in patients with small size non-small cell lung cancer. Journal of Thoracic Disease. 2014;6(12):1697–703.

14. Russell PA, Wainer Z, Wright GM, Daniels M, Conron M, Williams RA. Does lung adenocarcinoma subtype predict patient survival? a clinicopathologic study based on the new International
15. Wang L, Jiang W, Zhan C, Shi Y, Zhang Y, Lin Z, Yuan Y, Wang Q. Lymph node metastasis in clinical stage IA peripheral lung cancer. Lung Cancer. 2015;90(1):41–6.

16. Cha MJ, Lee HY, Lee KS, Jeong JY, Han J, Shim YM, Hwang HS. Micropapillary and solid subtypes of invasive lung adenocarcinoma: clinical predictors of histopathology and outcome. The Journal of Thoracic Cardiovascular Surgery. 2014;147(3):921–28.e2.

17. Sumiyoshi S, Yoshizawa A, Sonobe M, Kobayashi M, Fujimoto M, Tsuruyama T, Date H, Haga H. Pulmonary adenocarcinomas with micropapillary component significantly correlate with recurrence, but can be well controlled with EGFR tyrosine kinase inhibitors in the early stages. Lung Cancer. 2013;81(1):53–9.

18. Morales-Oyarvide V, Mino-Kenudson M. High-grade lung adenocarcinomas with micropapillary and/or solid patterns: a review. Current Opinion in Pulmonary Medicine. 2014;20(4):317–23.

19. Jain D. Low papillary structures in lepidic lung adenocarcinoma: any relationship with micropapillary lung adenocarcinoma? Hum Pathol. 2013;44(12):2867.

20. Hirano H, Maeda H, Takeuchi Y, Susaki Y, Kobayashi R, Hayashi A, Ose N, Yamaguchi T, Yokota S, Mori M. Lymphatic invasion of micropapillary cancer cells is associated with a poor prognosis of pathological stage IA lung adenocarcinomas. Oncology Letters. 2014;8(3):1107–11.

21. Nakashima H, Jiang SX, Sato Y, Hoshi K, Matsumoto T, Nagashio R, Kobayashi M, Matsuo Y, Shiomi K, Hayakawa K. et al. Prevalent and upregulated vimentin expression in micropapillary components of lung adenocarcinomas and its adverse prognostic significance. Pathol Int. 2015;65(4):183–92.

22. Warth A, Penzel R, Lindenmaier H, Brandt R, Stenzinger A, Herpel E, Goeppert B, Thomas M, Herth FJ, Dienemann H. et al. EGFR, KRAS, BRAF and ALK gene alterations in lung adenocarcinomas: patient outcome, interplay with morphology and immunophenotype. The European Respiratory Journal. 2014;43(3):872–83.

23. Koga K, Hamasaki M, Kato F, Aoki M, Hayashi H, Iwasaki A, Kataoka H, Nabeshima K. Association of c-Met phosphorylation with micropapillary pattern and small cluster invasion in pT1-size lung adenocarcinoma. Lung Cancer. 2013;82(3):413–19.

24. Miki Ohe T, Yokose Y, Sakuma Y, Miyagi N, Okamoto S, Osanai C, Hasegawa H, Nakayama Y, Kameda K, Yamada. et al. Stromal micropapillary component as a novel unfavorable prognostic factor of lung adenocarcinoma. Diagn Pathol. 2012;7:3.

25. Takagi Y, Matsuoka Y, Shiomi T, Nosaka K, Takeda C, Haruki T, Araki K, Taniguchi Y, Nakamura H, Umekita Y. Cytoplasmic maspin expression is a predictor of poor prognosis in patients with lung adenocarcinoma measuring < 3 cm. Histopathology. 2015;66(5):732–39.

26. Huang J, Song H, Liu B, Yu B, Wang R, Chen L. Expression of Notch-1 and its clinical significance in different histological subtypes of human lung adenocarcinoma. Journal of Experimental Clinical
27. Kadota K, Buitrago D, Lee MC, Villena-Vargas J, Sima CS, Jones DR, Travis WD, Adusumilli PS. Tumoral CD10 expression correlates with high-grade histology and increases risk of recurrence in patients with stage I lung adenocarcinoma. Lung Cancer. 2015;89(3):329–36.

28. Song Z, Zhu H, Guo Z, Wu W, Sun W, Zhang Y. Correlation of EGFR mutation and predominant histologic subtype according to the new lung adenocarcinoma classification in Chinese patients. Medical Oncology (Northwood, London, England). 2013;30(3):645.

29. Shim HS, Lee da H, Park EJ, Kim SH. Histopathologic characteristics of lung adenocarcinomas with epidermal growth factor receptor mutations in the International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society lung adenocarcinoma classification. Archives of Pathology Laboratory Medicine. 2011;135(10):1329–34.

30. Li H, Pan Y, Li Y, Li C, Wang R, Hu H, Zhang Y, Ye T, Wang L, Shen L. et al. Frequency of well-identified oncogenic driver mutations in lung adenocarcinoma of smokers varies with histological subtypes and graduated smoking dose. Lung Cancer. 2013;79(1):8–13.

31. Marchetti A, Felicioni L, Malatesta S, Grazia Sciarrotta M, Guetti L, Chella A, Viola P, Pullara C, Mucilli F, Buttitta F. Clinical features and outcome of patients with non-small-cell lung cancer harboring BRAF mutations. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2011;29(26):3574–79.

32. Rekhtman N, Ang DC, Riely GJ, Ladanyi M, Moreira AL. KRAS mutations are associated with solid growth pattern and tumor-infiltrating leukocytes in lung adenocarcinoma. Modern Pathology: An Official Journal of the United States Canadian Academy of Pathology Inc. 2013;26(10):1307–19.

33. Yoshizawa A, Sumiyoshi S, Sonobe M, Kobayashi M, Fujimoto M, Kawakami F, Tsuruyama T, Travis WD, Date H, Haga H. Validation of the IASLC/ATS/ERS lung adenocarcinoma classification for prognosis and association with EGFR and KRAS gene mutations: analysis of 440 Japanese patients. Journal of Thoracic Oncology: Official Publication of the International Association for the Study of Lung Cancer. 2013;8(1):52–61.

34. Finberg KE, Sequist LV, Joshi VA, Muzikansky A, Miller JM, Han M, Beheshti J, Chirieac LR, Mark EJ, Iafrate AJ. Mucinous differentiation correlates with absence of EGFR mutation and presence of KRAS mutation in lung adenocarcinomas with bronchioloalveolar features. The Journal of Molecular Diagnostics: JMD. 2007;9(3):320–26.

35. Yanagawa N, Shiono S, Abiko M, Ogata SY, Sato T, Tamura G. The correlation of the International Association for the Study of Lung Cancer (IASLC)/American Thoracic Society (ATS)/European Respiratory Society (ERS) classification with prognosis and EGFR mutation in lung adenocarcinoma. The Annals of Thoracic Surgery. 2014;98(2):453–58.

36. Sanchez-Mora N, Presmanes MC, Monroy V, Moreno N, Lara-Martínez JM, Aladro MH, Alvarez-Fernández E. Micropapillary lung adenocarcinoma: a distinctive histologic subtype with prognostic significance. Case series. Hum Pathol. 2008;39(3):324–30.
37. Tsutsumida H, Nomoto M, Goto M, Kitajima S, Kubota I, Hirotsu Y, Wakimoto J, Hollingsworth MA, Yonezawa S. A micropapillary pattern is predictive of a poor prognosis in lung adenocarcinoma, and reduced surfactant apoprotein A expression in the micropapillary pattern is an excellent indicator of a poor prognosis. Modern Pathology: An Official Journal of the United States Canadian Academy of Pathology Inc. 2007;20(6):638–47.

38. Goldstraw P, Chansky K, Crowley J, Rami-Porta R, Asamura H, Eberhardt WE, Nicholson AG, Groome P, Mitchell A, Bolejack V. The IASLC lung cancer staging project: proposals for revision of the TNM stage groupings in the forthcoming (eighth) edition of the TNM classification for lung cancer. J Thorac Oncol. 2016;11:39–51.

39. Yang P, Javle M, Pang F, Zhao W, Abdel-Wahab R, Chen X, Meric-Bernstam F, Chen H, Mitesh J, Borad Yu, Liu. et al. Somatic genetic aberrations in gallbladder cancer: comparison between Chinese and US patients. Hepatobiliary Surg Nutr. 2019;8(6):604–14.

40. De Oliveira Duarte Achcar R1. Nikiforova MN, Yousem SA. Micropapillary lung adenocarcinoma: EGFR, K-ras, and BRAF mutational profile. Am J Clin Pathol. 2009;131(5):694–700.

41. Chao L, Yi-Sheng H, Yu C, Li-Xu Y, Xin-Lan L, Dong-Lan L, Jie C, Yi-Lon W, Hui LY. Relevance of EGFR mutation with micropapillary pattern according to the novel IASLC/ATS/ERS lung adenocarcinoma classification and correlation with prognosis in Chinese patients. Lung Cancer. 2014;86(2):164–69.

42. Zhang Y, Wang R, Cai D, Li Y, Pan Y, Wang HHu,L, Li H, Ye T, Luo X. et al. A comprehensive investigation of molecular features and prognosis of lung adenocarcinomas with micropapillary component. J Thorac Oncol. 2014;9(12):1772–78.

43. Wang Z, Wu YL, Zhang GC, Zhou Q, Xu CR, Guo AL. EGFR/KRAS mutations and gefitinib therapy in Chinese NSCLC patients. Onkologie. 2008;31(4):174–78.

44. Wu CC, Hsu HY, Liu HP, Chang JW, Chen YT, Hsieh WY, Hsieh JJ, Hsieh MS, Chen YR, Huang SF. Reversed mutation rates of KRAS and EGFR genes in adenocarcinoma of the lung in Taiwan and their implications. Cancer. 2008;113(11):3199–208.

45. Cai YR, Dong YJ, Wu HB, Liu ZC, Zhou LJ, Su D, Chen XJ, Zhang L, Zhao YL. Micropapillary: A component more likely to harbour heterogeneous EGFR mutations in lung adenocarcinomas. Sci Rep. 2016;6:23755.

46. Lee JS, Yoon A, Kalapurakal SK, Ro JY, Lee JJ, Tu N, Hittelman WN, Hong WK. Expression of p53 oncoprotein in non-small-cell lung cancer: a favorable prognostic factor. J Clin Oncol. 1995;13(8):1893–903.

47. Olivier M, Langerød A, Carrière P, Bergh J, Klaar S, Eyfjord J, Theillet C, Rodriguez C, Lidereau R, Bièche I. et al. The clinical value of somatic TP53 gene mutations in 1,794 patients with breast cancer. Clin Cancer Res. 2006;12:1157–67.

48. Poeta ML, Manola J, Goldwasser MA, Forastiere A, Benoit N, Califano JA, Ridge JA, Goodwin J, Kenady D, John Saunders, et al. TP53 mutations and survival in squamous-cell carcinoma of the head and neck. N Engl J Med. 2007;357(25):2552-61.
49. Quinlan DC, Davidson AG, Summers CL, Warden HE, Doshi HM. Accumulation of p53 protein correlates with a poor prognosis in human lung cancer. Cancer Res. 1992;52(17):4828–31.

50. Mogi A, Kuwano H. TP53 mutations in non-small cell lung cancer. J Biomed Biotechnol. 2011;2011:583929.

51. Petitjean A, Achatz MI, Borresen-Dale AL, Hainaut P, Olivier M. TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene. 2007;26:2157–65.

52. Smekalova EM, Shubenetskaya OS, Zvereva MI, Gromenko EV, Rubtsova MP, Dontsova OA. Telomerase RNA biosynthesis and processing. Biochemistry. 2012;77:1120–28.

53. Huang FW, Hodis E, Xu MJ, Kryukov GV, Chin L, Garraway LA. Highly recurrent TERT promoter mutations in human melanoma. Science. 2013;339:957–59.

54. Horn S, Figl A, Rachakonda PS, Fischer C, Sucker A, Gast A, Kadel S, Moll I, Nagore E, Hemminki K. et al. TERT promoter mutations in familial and sporadic melanoma. Science. 2013;339(6122):959–61.

55. Liu X, Bishop J, Shan Y, Pai S, Liu D, Murugan AK, Sun H, El-Naggar AK, Xing M. Highly prevalent TERT promoter mutations in aggressive thyroid cancers. Endocr Relat Cancer. 2013;20(4):603–10.

56. Patrick J, Killela ZJ, Reitman Y, Bettegowda JC, Agrawal N, Luis A, Diaz Jr, Allan H, Friedman H, Friedman GL, Gallia, Beppino C, Giovanella. et. TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proc Natl Acad Sci U S A. 2013;110(15):6021–26.

57. Vinagre J, Almeida A, Pópulo H, Batista R, Lyra J, Pinto V, Coelho R, Celestino R, Prazeres H, Lima L. et al. Frequency of TERT promoter mutations in human cancers. Nat Commun. 2013;4:2185.

58. Yuan P, Cao JL, Abuduwufuer A, Wang LM, Yuan XS, Lv W, Hu J. Clinical characteristics and prognostic significance of TERT promoter mutations in cancer: a cohort study and a metaanalysis. PLoS One. 2016;11(1):e0146803.

59. Ma X, Gong R, Wang R, Pan Y, Cai D, Pan B, Li Y, Xiang J, Li H, Zhang J. et al. Recurrent TERT promoter mutations in non-small cell lung cancers. Lung Cancer. 2014;86(3):369–73.

60. Carbone DP, Reck M, Paz-Ares L, Creeelan B, Horn L, Steins M, Felip E1, van den Heuvel MM1, Ciuleanu TE1, Badin F, et al. First-line Nivolumab in stage IV or recurrent non-small-cell lung cancer. N Engl J Med. 2017;376(25):2415-26.

61. Pillai RN, Behera M, Owonikoko TK, Kamphorst AO, Pakkala S, Belani CP, Khuri FR, Ahmed R, Ramalingam SS. Comparison of the toxicity profile of PD-1 versus PD-L1 inhibitors in non-small cell lung cancer: a systematic analysis of the literature. Cancer. 2018;124(2):271–77.

62. Proto C, Ferrara R, Signorelli D, Lo Russo G, Galli G, Imbimbo M, Prelaj A, Zilembo N, Ganzinelli M, Pallavicini LM. et al. Choosing wisely first line immunotherapy in non-small cell lung cancer (NSCLC): what to add and what to leave out. Cancer Treat Rev. 2019;75:39–51.

63. Hironori Ninomiya M, Hiramatsu K, Inamura K, Nomura M, Okui T, Miyoshi S, Okumura Y, Satoh K, Nakagawa M, Nishio. et al. Correlation between morphology and EGFR mutations in lung adenocarcinomas: significance of the micropapillary pattern and the hobnail cell type. Lung Cancer. 2009;63(2):235–40.
64. Motoi N, Szoke J, Riely GJ, Seshan VE, Kris MG, Rusch VW, Gerald WL, Travis WD. Lung adenocarcinoma: modification of the 2004 WHO mixed subtype to include the major histologic subtype suggests correlations between papillary and micropapillary adenocarcinoma subtypes, EGFR mutations and gene expression analysis. Am J Surg Pathol. 2008;32(6):810–27.

65. Kishi N, Ito M, Miyata Y, Kanai A, Handa Y, Tsutani Y, Kushitani K, Takeshima Y, Okada M. Intense Expression of EGFR Characterizes the Micropapillary Component and L858R Is Associated with the Risk of Recurrence in pN0M0 Lung Adenocarcinoma with the Micropapillary Component. Ann Surg Oncol. 2020;27(3):945–55.

66. De OD Achcar Nikiforova R, Yousem MN SA. Micropapillary lung adenocarcinoma: EGFR, K-ras, and BRAF mutational profile. Am J Clin Pathol. 2009;131(5):694–700.

67. Sun PL, Seol H, Lee HJ, Yoo SB, Kim H, Xu X, Jheon S, Lee CT, Lee JS, Chung JH. High incidence of EGFR mutations in Korean men smokers with no intratumoral het-erogeneity of lung adenocarcinomas: correlation with histologic subtypes. EGFR/TTF-1 expressions, and clinical features. J Thorac Oncol. 2012;7(2):323–30.

68. Mitsudomi T, Oyama T, Kusano T, Osaki T, Nakanishi R, Shirakusa T. Mutations of the p53 gene as a predictor of poor prognosis in patients with non-small-cell lung cancer. J Natl Cancer Inst. 1993;85(24):2018–23.

69. Xu HJ, Quinlan DC, Davidson AG, Hu SX, Summers CL, Li J, Benedict WF. Altered retinoblastoma protein expression and prognosis in early-stage non-small-cell lung carcinoma. J Natl Cancer Inst. 1994;86(9):695–99.

70. Apolinario RM. van der Valk P, de Jong JS, Deville W, van Ark-Otte J, Dingemans AM. van Mourik JC, Postmus PE, Pinedo HM, Giaccone G. Prognostic value of the expression of p53, bcl-2, and bax oncproteins, and neovascularization in patients with radically resected non-small-cell lung cancer. J Clin Oncol. 1997;15(6):2456–66.

71. Nishio M, Koshikawa T, Kuroishi T, Suyama M, Uchida K, Takagi Y, Washimi Q, Sugiura T, Ariyoshi Y, Takahashi T. Prognostic significance of abnormal p53 accumulation in primary, resected non-small-cell lung cancers. J Clin Oncol. 1996;14(2):497–502.

72. Alice Lallo KK, Frese CJ, Morrow R, Sloane S, Gulati MW, Schenf K, Trapani N, Simms M, Galvin S, Brown. et al. The Combination of the PARP Inhibitor Olaparib and the WEE1 Inhibitor AZD1775 as a New Therapeutic Option for Small Cell Lung Cancer. Clin Cancer Res. 2018;24(20):5153–64.

73. Gao B, Sun Y, Zhang J, Ren Y, Fang R, Han X, Shen L, Liu X-Y, Pao W, Chen H. et al. Spectrum of LKB1, EGFR, and KRAS mutations in Chinese lung adenocarcinomas. J Thorac Oncol. 2010;5(8):1130–35.

74. Pellegrini AMarchetti,C, Buttitta F, Falleni M, Romagnoli S, Felicioni L, Barassi F, Salvatore S, Chella A, Angeletti CA. et al. Prediction of survival in stage I lung carcinoma patients by telomerase function evaluation. Lab Invest. 2002;82(6):729–36.

75. Hara H, Yamashita K, Shinada J, Yoshimura H, Kameya T. Clinicopathologic significance of telomerase activity and hTERT mRNA expression in non-small cell lung cancer. Lung Cancer. 2001;34(2):219–26.
76. Zhu CQ, Cutz JC, Liu N, Lau D, Shepherd FA, Squire JA, Tsao MS. Amplification of telomerase (hTERT) gene is a poor prognostic marker in non-small-cell lung cancer. Br J Cancer. 2006;94(10):1452–59.

77. Komiya T, Kawase I, Nitta T, Yasumitsu T, Kikui M, Fukuoka, Nakagawa K, Hirashima T. Prognostic significance of hTERT expression in non-small cell lung cancer. Int J Oncol. 2000;16(6):1173–77.

78. Wang L, Soria JC, Kemp BL, Liu DD, Mao L, Khuri FR. hTERT expression is a prognostic factor of survival in patients with stage I non-small cell lung cancer. Clin Cancer Res. 2002;8(9):2883–89.

79. Fujita Y, Fujikane T, Fujiuchi S, Nishigaki Y, Yamazaki Y, Nagase A, Shimizu T, Ohsaki Y, Kikuchi K. The diagnostic and prognostic relevance of human telomerase reverse transcriptase mRNA expression detected in situ in patients with nonsmall cell lung carcinoma. Cancer. 2003;98(5):1008–13.

80. Bièche I, Noguès C, Paradis V, Olivi M, Bedossa P, Lidereau R, Vidaud M. Quantitation of hTERT gene expression in sporadic breast tumors with a real-time reverse transcription-polymerase chain reaction assay. Clin Cancer Res. 2000;6(2):452–59.

81. De Kok JB1, Schalken JA, Aalders TW, Ruers TJ, Willems HL, Swinkels DW. Quantitative measurement of telomerase reverse transcriptase (hTERT) mRNA in urothelial cell carcinomas. Int J Cancer. 2000;87(2):217–20.

82. Metzger R, Vallbohmer D, Muller-Tidow C, Higashi H, Bollschweiler E, Warnecke-Eberz U, Brabender J, Baldus SE, Xi H, Berdel WE. Increased human telomerase reverse transcriptase (hTERT) mRNA expression but not telomerase activity is related to survival in curatively resected non-small cell lung cancer. Anticancer Res. 2009;29(4):1157–62.

83. Wu TC, Lin P, Hsu CP, Huang YJ, Chen CY, Chung WC, Lee H, Ko JL. Loss of telomerase activity may be a potential favorable prognostic marker in lung carcinomas. Lung Cancer. 2003;41(2):163–69.

84. Lu C, Soria JC, Tang X, Xu XC, Wang L, Mao L, Lotan R, Kemp B, Bekele BN, Feng L. Prognostic factors in resected stage I non-small-cell lung cancer: a multivariate analysis of six molecular markers. J Clin Oncol. 2004;22(22):4575–83.

85. Arinaga M, Shimizu S, Gotoh K, Haruki N, Takahashi T, Takahashi T, Mitsudomi T. Expression of human telomerase subunit genes in primary lung cancer and its clinical significance. Ann Thorac Surg. 2000;70(2):401–05.

Figures
Figure 1

(a) Genomic alterations in the study patients. (b) Distribution of mutations per megabase (MB). (c)DFS (months) with recurrence and non-recurrence.
Mutation analysis of MPPAC patients.

a A co-mutation plot of various types of mutations in all patients. Each column represents one patient. The mutation rates of each gene were marked on the left in percentage. Patient characteristics such as gender, smoker were shown at the top with different colors.
b Tumor mutation burden (TMB) in each patient.
c For disease-free survival (DFS) time, grey bars indicate disease recurrence and black bars indicate non-recurrence. One patient was lost to follow-up and his DFS time was marked as “NA”. All patients were placed in the same order in the 3 panels.