Physical activity and mental well-being during COVID-19 pandemic

Walid Kamal Abdelbasset, Gopal Nambi, Marwa M Eid, Safaa M Elkholi

ORCID number: Walid Kamal Abdelbasset 0000-0003-4705-661X; Gopal Nambi 0000-0002-4203-5506; Marwa M Eid 0000-0002-2703-6033; Safaa M Elkholi 0000-0002-1100-4301.

Author contributions: All authors conceptualized, designed the study, and wrote the first draft of the manuscript; Abdelbasset WK managed and supervised the literature searches; all authors reviewed and agreed to submit the final version of the manuscript.

Conflict-of-interest statement: No competing interests to disclose.

Supported by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-track Research Funding Program.

Country/Territory of origin: Saudi Arabia

Specialty type: Psychiatry

Provenance and peer review: Invited article; Externally peer reviewed.

Peer-review model: Single blind

Peer-review report’s scientific quality classification

Grade	Description
A	Excellent
B	Very good
C	Good
D (Fair)	Poor

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Abstract

The corona virus disease 2019 (COVID-19) pandemic has resulted in most nations deciding upon self-isolation and social distancing policies for their citizens to control the pandemic and reduce hospital admission. This review aimed at evaluating the effect of physical activity on mental well-being during the COVID-19 pandemic. It was concluded that the COVID-19 pandemic may lead to augmented levels of angiotensin-converting enzyme (ACE)-2 that led to cardiovascular and neurological disorders associated with highly inflammatory effects of viral infection affecting the brain tissues leading to damage of the nervous system and resulting in cognition dysfunction, insulin sensitivity reduction, and behavioral impairments. Anxiety and depression may lead to negative effects on various quality of life domains, such as being physically inactive. Regular physical activities may reduce inflammatory responses, improve ACE-2 responses, and improve mental well-being during self-isolation and social distancing policies related to the COVID-19 pandemic. Further studies should be conducted to assess the different intensities of physical activities on cardiovascular function, and mental well-being during the COVID-19 pandemic.

Key Words: COVID-19; Physical activity; Mental well-being; Pandemic; Angiotensin-converting enzyme-2
Core Tip: The coronavirus disease 2019 (COVID-19) pandemic has resulted in most nations deciding upon self-isolation and social distancing policies for their citizens to control the pandemic and reduce hospital admission. This review aimed at evaluating the effect of physical activity on mental well-being during the COVID-19 pandemic. COVID-19 may lead to cardiovascular and neurological disorders associated with inflammatory effects of viral infection affecting brain tissues, leading to nervous system damage and cognitive dysfunction, insulin sensitivity reduction, and behavioral impairments. Regular physical activities may reduce inflammatory responses, improve angiotensin-converting enzyme-2 responses, and mental well-being during self-isolation and social distancing.

INTRODUCTION

The coronavirus disease 2019 (COVID-19) pandemic caused by the novel coronavirus SARS-CoV-2 appeared in China in 2019[1]. The infection probably resulted from a usual assortment of animal hosts prior to zoonotic spread that affected populations worldwide and caused thousands of deaths[2]. Through a cellular membrane receptor known as angiotensin-converting enzyme-2, SARS-CoV-2 influences host cells, affects lungs with insufficient oxygen supply, and accordingly may affect cardiac and brain tissues[3]. With the rapid progress of COVID-19, most nations decided upon self-isolation and social distancing policies for their citizens and residents to control the pandemic and reduce hospital admission, with a recommendation of self-isolation and social distancing to successfully control the pandemic outbreak[4].

At this time, it is important for all populations to understand the local characteristics of COVID-19 transmission and social distancing policy as the transmission of COVID-19 is predicted to occur up to 2024, and intermittent or extended social distancing may be continued to 2022 and will cause major lifestyle changes among people worldwide[5]. Therefore, it is doubtful during these policies that individuals can continue their sedentary behaviors to maintain their healthy condition[6]. Government policies of social isolation and distancing during the COVID-19 pandemic can increase disturbance of mental health, including anxiety and depression[7]. Figure 1 presents the negative effects of the COVID-19 pandemic on physical activity and mental health.

Nutritional deprivation may affect cognitive status and lead to mood disorders[8]. Poor physical activity levels during COVID-19 quarantine can also lead to sedentary behaviors that could lead to the development of chronic cardiovascular, metabolic and mood disorders[9,10]. Several studies have reported that regular physical activity and exercise training are considered effective nonpharmacological interventions in several chronic disorders[9].

MENTAL HEALTH AND COMMUNITY

Generally, the development and prevalence of mental health impairments are associated with social and physical determinants[11]. Community service integration may promote awareness of mental well-being, reduce discrimination and stigma, support social recovery, and prevent mental dysfunction[12,13].

International guidelines accentuate community care for mental well-being and the World Health Organization also has suggested stipulations of integrated and comprehensive social care for mental well-being, including prevention and interventional protocols in the community incorporating the perceptions of families and service providers[14]. It is reported that individuals with psychological impairment should be encouraged to live without assistance among populations[15].
NEUROLOGICAL MANIFESTATIONS RELATED TO COVID-19

Brain tissues may be affected by viral infection due to infected nerve cells through infected vascular endothelium, or leukocyte migration into the brain circulation[16]. Although headache and anosmia are the major prevalent neurological disorders related to COVID-19, neurophysiological impairments have been documented, including encephalopathy, seizures, consciousness impairment, and stroke[17,18].
Measures
Reduced physical activity have a greatly undesirable effects on psychological health conditions [19]. This inflammation may affect the brain tissues leading to damage of the nervous system and cognitive dysfunction, insulin sensitivity reduction, and behavioral impairments [20]. Also, these inflammatory reactions associated with viral infection may develop primitive neurological manifestations [21].

Due to impaired neural plasticity, the initial fatality of nerve cells, and disturbed neurotransmitter production, psychoses, impaired memory, and post-traumatic stress disorders may occur with COVID-19 [22]. In addition, angiotensin-converting enzyme (ACE)-2 is expressed with COVID-19 in several brain areas, such as the olfactory system, striatum, and cortex, and on various types of nerve cells such as astrocytes, microglia, neurons, and oligodendrocytes [23]. The primary projected mechanism that affects the function of the nervous system is ACE-2 activation associated with COVID-19 through augmentation of inflammatory responses [20,23].

PHYSICAL ACTIVITY AND MENTAL HEALTH

A recent cross-sectional study found that individuals who conducted a regular physical exercise for one month had good life satisfaction during quarantine, while the individuals who stayed at home and without physical exercise suffered from poor health conditions [24]. It was also reported that isolation and social distancing related to COVID-19 led to a greater incidence of anxiety and depression [25]. Accordingly, these reports suggest that individuals who conducted physical exercise during COVID-19 should be regularly observed as they may be particularly irritated by self-isolation. Therefore, exercise training for a long time does not indicate good mental well-being, but it may be a predictor of developing mood disorders [25].
It can be assumed that overtraining or prolonged exercise training may lead to pessimistic health conditions such as mood disorders[20]. The quarantine associated with COVID-19 may increase the development of a sedentary lifestyle among different populations including adolescents[26]. Regular exercise training improves immune function, lowers the severity of symptoms, and reduces the mortality rate in individuals exposed to viral infection[10]. Conducting physical activity or sports during the COVID-19 pandemic may provide a complementary and alternative treatment to develop mental well-being[27].

It is documented that COVID-19 may be associated with neurotropism, neuroinvasion, and neuroinflammation that could clearly affect the outcomes of mental well-being including acute myelitis, cerebrovascular disorders, encephalitis, and encephalopathy[28]. Several exercise training programs and different laboratory investigations should be conducted to assess the influence of exercise training on COVID-19 and how it prevents disturbances of mental well-being. Regrettably, studies that suggest or explain the ideal exercise protocol conducted during the COVID-19 pandemic and its influence on mental and cardiovascular well-being are limited, and therefore the relationship between exercise training, cardiovascular function, and mental well-being should be investigated.

Anxiety and depression are the most frequent mental disorders, with varied incidence rates among different ages, including adults, adolescents, children, and particularly aged individuals[29]. It is reported that anxiety and depression may lead to negative effects on various quality of life domains, such as being physically inactive[30]. The pathophysiology of anxiety and depression is still not clearly explained, and an abundance of biomarkers have been recommended to identify the sequences and development of mental disorders[30,31].

Recent studies have proved that adherence to physical activities and exercise training programs during COVID-19 quarantine is associated with better mental health and lower anxiety and depression levels. However, poor physical activity levels are associated with higher levels of anxiety and depression in addition to poor mental health and well-being[32-40][Table 1].

Exercise training and physical activity have been suggested as nonpharmacological interventions to eliminate the complications associated with self-isolation and social distancing during the COVID-19 pandemic [27]. The effects of different exercise programs are not being clearly investigated during the COVID-19 pandemic. Physical activity may improve mental well-being and protect against the undesirable impacts of COVID-19. Regular physical activities should be encouraged to improve mental well-being during the COVID-19 pandemic[32-40]. Figure 2 shows the positive effects of regular physical activity on physical and mental well-being.

CONCLUSION

The COVID-19 pandemic may lead to augmented levels of ACE-2 that led to cardiovascular and neurological disorders associated with inflammatory effects of viral infection, affecting the brain tissues and leading to damage to the nervous system and cognitive dysfunction, insulin sensitivity reduction, and behavioral impairments. Anxiety and depression may lead to negative effects on various quality of life domains, such as being physically inactive. Regular physical activities may reduce inflammatory responses, improve ACE-2 responses and mental well-being during self-isolation and social distancing related to the COVID-19 pandemic. Further studies should be conducted to assess the different intensities of physical activities on cardiovascular function, and mental well-being during the COVID-19 pandemic.

REFERENCES

1 van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN, Tamin A, Harcourt JL, Thornburg NJ, Gerber SI, Lloyd-Smith JO, de Wit E, Munster VJ. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N Engl J Med 2020; 382: 1564-1567 [PMID: 32182409 DOI: 10.1056/NEJMcm2004973]

2 Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med 2020; 26: 450-452 [PMID: 32284615 DOI: 10.1038/s41591-020-0820-9]

3 Libby P. The Heart in COVID-19: Primary Target or Secondary Bystander? JACC Basic Transl Sci 2020; 5: 537-542 [PMID: 32292847 DOI: 10.1016/j.jacbts.2020.04.001]

4 Kucharski AJ, Klepac P, Conlan AJK, Kissler SM, Tang ML, Fry H, Gog JR, Edmunds WJ;
Abdelbasset WK et al. Physical activity and mental health during COVID-19

CMIMID COVID-19 working group. Effectiveness of isolation, testing, contact tracing, and physical distancing on reducing transmission of SARS-CoV-2 in different settings: a mathematical modelling study. *Lancet Infect Dis* 2020; 20: 1151-1160 [PMID: 32559451 DOI: 10.1016/S1473-3099(20)30457-6]

Kissler SM, Tedijanto C, Goldstein E, Grad YH, Lipsitch M. Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period. *Science* 2020; 368: 860-868 [PMID: 32921728 DOI: 10.1126/science.abb5793]

Hall G, Laddu DR, Phillips SA, Lavie CJ, Arena R. A tale of two pandemics: How will COVID-19 and global trends in physical inactivity and sedentary behavior affect one another? *Prog Cardiovasc Dis* 2021; 64: 108-110 [PMID: 3277997 DOI: 10.1016/j.pcad.2020.04.005]

Abdelbasset WK. Stay Home: Role of Physical Exercise Training in Elderly Individuals' Ability to Face the COVID-19 Infection. *J Immunol Res* 2020; 2020: 8375096 [PMID: 33354578 DOI: 10.1155/2020/8375096]

Sousa RAL, Freitas DA, Leite HR. Cross-talk between obesity and central nervous system: role in cognitive function. *Interv Obes Diabetes* 2019; 3: 7-9 [DOI: 10.31031/iod.2019.03.000551]

Pedersen BK, Saltin B. Exercise as medicine - evidence for prescribing exercise as therapy in 26 different chronic diseases. *Scand J Med Sci Sports* 2015; 25 Suppl 3: 1-72 [PMID: 26606383 DOI: 10.1111/sm.12581]

Abdelbasset WK, Alghanti BA, Alrawaili SM, Ahmed AS, Elnegamy TE, Ibrahim AA, Soliman GS. Similar effects of low to moderate-intensity exercise program vs moderate-intensity continuous exercise program on depressive disorder in heart failure patients: A 12-week randomized controlled trial. *Medicine (Baltimore)* 2019; 98: e16820 [PMID: 31393414 DOI: 10.1097/MD.0000000000016820]

Sederer LI. The Social Determinants of Mental Health. *Psychiatr Serv* 2016; 67: 234-235 [PMID: 26522677 DOI: 10.1176/appi.ps.201500232]

Jorm AF. Mental health literacy: empowering the community to take action for better mental health. *Am Psychol* 2012; 67: 231-243 [PMID: 22040221 DOI: 10.1037/a0025957]

Evans-Lacko S, Corker E, Williams P, Henderson C, Thornicroft G. Effect of the Time to Change anti-stigma campaign on trends in mental-illness-related public stigma among the English population in 2003-13: an analysis of survey data. *Lancet Psychiatry* 2014; 1: 121-128 [PMID: 26360575 DOI: 10.1016/S2215-0366(14)70243-1]

Saxena S, Funk M, Chisholm D. WHO's Mental Health Action Plan 2013-2020: what can psychiatrists do to facilitate its implementation? *World Psychiatry* 2014; 13: 107-109 [PMID: 24890053 DOI: 10.1002/wps.20141]

Kohrt BA, Asher L, Bhardwaj A, Fazel M, Jordans MJD, Mutamba BB, Nadkarni A, Pedersen GA, Asher L, Bhardwaj A, Fazel M, Jordans MJD, Mutamba BB, Nadkarni A, Pedersen GA, Sederer LI. Mental health implications of COVID-19. *JAMA Neurol* 2020; 77: 1055-1072 [PMID: 32649387 DOI: 10.1001/jamaneurol.2020.2065]

Vaira LA, Salzano G, Deiana G, De Riu G. Anosmia and Ageusia: Common Findings in COVID-19 Patients. *Laryngoscope* 2020; 130: 1787 [PMID: 32237238 DOI: 10.1002/lary.28692]

Orozco-Hernández JP, Marin-Medina DS, Sánchez-Duque JA. [Neurologic manifestations of the Coronavirus in the Age of Coronavirus Disease 2019: A Review. *JAMA Neurol* 2020; 77: 1018-1027 [PMID: 32469387 DOI: 10.1001/jamaneurol.2020.2065]

De Sousa RAL, Imperato-Caria AC, Aras-Júnior R, de Oliveira EM, Soci ÚPR, Cassilhas RC. Physical exercise effects on the brain during COVID-19 pandemic: links between mental and cardiovascular health. *Neuro Sci* 2021; 42: 1325-1334 [PMID: 33492565 DOI: 10.1007/s10072-021-00982-9]

Karwowski MP, Nelson JM, Staples JE, Fischer M, Fleming-Dutra KE, Villanueva J, Powers AM, Mead P, Honen MA, Moore CA, Rasmussen SA. Zika Virus Disease: A CDC Update for Pediatric Health Care Providers. *Pediatrics* 2016; 137 [PMID: 27009036 DOI: 10.1542/peds.2016-0621]

Huaracaya-Victoria J, Menses-Saco A, Luna-Cuadros MA. Psychotic symptoms in COVID-19 infection: A case series from Lima, Peru. *Psychiatry Res* 2020; 293: 113378 [PMID: 32805590 DOI: 10.1016/j.psychres.2020.113378]

Chen R, Wang K, Yu J, Howard D, French L, Chen Z, Wen C, Xu Z. The Spatial and Cell-Type Distribution of SARS-CoV-2 Receptor ACE2 in the Human and Mouse Brains. *Front Neurol* 2020; 11: 573095 [PMID: 33551947 DOI: 10.3389/fneur.2020.573095]

Zhang SX, Wang Y, Rauch A, Wei F. Unprecedented disruption of lives and work: Health, distress and life satisfaction of working adults in China one month into the COVID-19 outbreak. *Psychiatry Res* 2020; 288: 112958 [PMID: 32283450 DOI: 10.1016/j.psychres.2020.112958]

Pearson GS. The Mental Health Implications of COVID-19. *J Am Psychiatr Nurses Assoc* 2020; 26: 443-444 [PMID: 32815433 DOI: 10.1177/1078390320949563]
The implementation of COVID-19 social distancing measures.

D, Firth J, Grabovac I, Yakkundi A, Armstrong N, Young T, Smith L. The relationship between physical activity and mental health in a sample of the UK public: A cross-sectional study during the COVID-19 pandemic. *Neural Sci* 2021; 42: 21-23 [PMID: 33113054 DOI: 10.1007/s10072-020-04857-w]

Jiménez-Pavón D, Carbonell-Baeza A, Lavie CJ. Physical exercise as therapy to fight against the mental and physical consequences of COVID-19 quarantine: Special focus in older people. *Prog Cardiovasc Dis* 2020; 63: 386-388 [PMID: 32220590 DOI: 10.1016/j.pcad.2020.03.009]

Yachou Y, El Idriessi A, Belapasov V, Art Benali S. Neuroinvasion, neurotropic, and neuroinflammatory events of SARS-CoV-2: understanding the neurological manifestations in COVID-19 patients. *Neural Sci* 2020; 41: 2657-2669 [PMID: 32725449 DOI: 10.1007/s10072-020-04575-3]

World Health Organization. Depression and other common mental disorders: Global Health Estimates. World Health Organization 2017. [cited 20 February 2021]. Available from: https://apps.who.int/iris/handle/10665/254610

Vancini RL, Rayes ABR, Lira CAB, Sarro KJ, Andrade MS. Pilates and aerobic training improve levels of depression, anxiety and quality of life in overweight and obese individuals. *Arq Neuropsiquiatr* 2017; 75: 850-857 [PMID: 29236887 DOI: 10.1590/0004-282X20170149]

Strawbridge R, Young AH, Cleare AJ. Biomarkers for depression: recent insights, current challenges and future prospects. *Neuropsychiatr Dis Treat* 2017; 13: 1245-1262 [PMID: 28546750 DOI: 10.2147/NDT.S114542]

Wright LJ, Williams SE, Veldhuijzen van Zanten JCS. Physical Activity Protects Against the Negative Impact of Coronavirus Fear on Adolescent Mental Health and Well-Being During the COVID-19 Pandemic. *Front Psychol* 2021; 12: 580511 [PMID: 33776827 DOI: 10.3389/fpsyg.2021.580511]

Xiao Y, Becerik-Gerber B, Lucas G, Roll SC. Impacts of Working From Home During COVID-19 Pandemic on Physical and Mental Well-Being of Office Workstation Users. *J Occup Environ Med* 2021; 63: 181-190 [PMID: 33234875 DOI: 10.1097/JOM.0000000000002097]

Faulkner J, O'Brien WJ, McGrane B, Wadsworth D, Batten J, Askew CD, Badenhorst C, Byrd E, Coulter M, Draper N, Elliott C, Fryer S, Hanlin MJ, Jakeman J, Mackintosh KA, McNarry MA, Mitchemore A, Murphy J, Ryan-Stewart H, Saynor Z, Schaumberg M, Stone K, Stoner L, Stuart B, Lambrick D. Physical activity, mental health and well-being of adults during initial COVID-19 containment strategies: A multi-country cross-sectional analysis. *J Sci Med Sport* 2021; 24: 320-326 [PMID: 33341382 DOI: 10.1016/j.jsams.2020.11.016]

Meyer J, McDowell C, Lansing J, Brower C, Smith L, Tully M, Herring M. Changes in Physical Activity and Sedentary Behavior in Response to COVID-19 and Their Associations with Mental Health in 3052 US Adults. *Int J Environ Res Public Health* 2020; 17 [PMID: 32899495 DOI: 10.3390/ijerph17118469]

Carriedo A, Cecchini JA, Fernandez-Rio J, Méndez-Giménez A. COVID-19, Psychological Well-being and Physical Activity Levels in Older Adults During the Nationwide Lockdown in Spain. *Am J Geriatr Psychiatry* 2020; 28: 1146-1155 [PMID: 32919872 DOI: 10.1016/j.jagp.2020.08.007]

Maugeri G, Casiglia P, Battaglia G, Pippi R, D’Agata V, Palma A, Di Rosa M, Musumeci G. The impact of physical activity on psychological health during Covid-19 pandemic in Italy. *Heliyon* 2020; 6: e04315 [PMID: 32613133 DOI: 10.1016/j.heliyon.2020.e04315]

López-Bueno R, Calataluy J, Ezzatvar Y, Casajús JA, Smith L, Andersen LL, López-Sánchez GF. Association Between Current Physical Activity and Current Perceived Anxiety and Mood in the Initial Phase of COVID-19 Confinement. *Front Psychiatry* 2020; 11: 729 [PMID: 32793013 DOI: 10.3389/fpsyt.2020.00729]

Duncan GE, Avery AR, Seto E, Tsang S. Perceived change in physical activity levels and mental health during COVID-19: Findings among adult twin pairs. *PLoS One* 2020; 15: e0237695 [PMID: 32970974 DOI: 10.1371/journal.pone.0237695]

Jacob L, Tully MA, Barnett Y, López-Sanchez GF, Butler L, Schuch F, López-Bueno R, McDermott D, Firth J, Grabovac I, Yakkundi A, Armstrong N, Young T, Smith L. The relationship between physical activity and mental health in a sample of the UK public: A cross-sectional study during the implementation of COVID-19 social distancing measures. *Ment Health Phys Act* 2020; 19: 100345 [PMID: 32834833 DOI: 10.1016/j.mhpa.2020.100345]
