Survival to Discharge Rate and Favorable Neurological Outcome Related to Gender, Duration of Resuscitation and First Document of Patients In-Hospital Cardiac Arrest: A Systematic Meta-Analysis

Afshin Goodarzi, Mahnaz Khatiban, Alireza Abdi, Khodayar Oshvandi

1Department of Nursing, Hamadan University of Medical Sciences, Hamadan, Iran
2Mother and Child Care Research Center, Department of Ethics in Medical Education and Department of Medical Surgical Nursing, Nursing and Midwifery School, Hamadan University of Medical Sciences, Hamadan, Iran
3School of Nursing and Midwifery, Kermanshah University of Medical Sciences, Kermanshah, Iran
4Chronic Disease (Home Care) Research Center, Nursing and Midwifery School, Hamadan University of Medical Sciences, Hamadan, Iran

Objective: To investigate the relationship between outcomes and demographic-clinical variables in in-hospital cardiac arrest (IHCA).

Methods: The Medline database was searched along with Google Scholar, Scopus, Web of Science, and Persian language database without time limitation until January 6th, 2020. The inclusion criteria included papers published in journals or presented in English and Persian congress that reported the IHCA outcomes based on the Utstein criterion. All the descriptive, cross-sectional, and cohort studies on CPR were covered based on inclusion and exclusion criteria. Primary checks covered titles and abstracts followed by a full-text check of the remaining papers from the first screening stage. Data analysis was done using comprehensive meta-analysis (CMA) software version 2.0. The finding’s heterogeneity was checked using Q and Cochran tests with heterogeneity >50% and the random-effects model was used to estimate survival and favorable neurological outcome (FNO) in the analysis. To detect the publication bias of studies, the subgroup test, meta-regression test, sensitivity analysis test, funnel plot, and Egger’s regression test were used.

Results: Survival to discharge was 19.1% (95% CI=16.8-21.7) and FNO in the survived to discharge cases was 68.1% (95% CI=55.8-78.3). Survival to discharge and FNO were notably higher in men, CPR duration <15min, and shockable dysrhythmias.

Conclusion: IHCA outcomes are poor in developing countries. The outcomes of IHCA in terms of gender were inconsistent with the result reported by other meta-analyses.

Keywords: Cardiopulmonary resuscitation; CPR; Resuscitation; Cardiac arrest; Neurological.

Please cite this paper as:
Goodarzi A, Khatiban M, Abdi AR, Oshvandi K. Survival to Discharge Rate and Favorable Neurological Outcome Related to Gender, Duration of Resuscitation and First Document of Patients In-Hospital Cardiac Arrest: A Systematic Meta-Analysis. Bull Emerg Trauma. 2022;10(4):141-156. doi: 10.30476/BEAT.2022.92465.1307.
Introduction

Cardiopulmonary resuscitation (CPR) is a measure to compensate the function and return vital performance of the heart and lungs and was developed in 1950 [1]. The first instruction was published in 1996 which was later revised in 2020 [2]. Although CPR is the only efficient treatment in the case of cardiac arrest as a lethal condition, the success rate of the procedure is still too low and the survival-to-discharge rate ranges from 0 to 20%. There has been no significant improvement in this rate over the past 30 years [3-5]. This can be justified by the aging population, increased prevalence of physical health problems, and longer response time in the prehospital emergency system, which is due to the growing population and traffic jams in cities [5-9].

Assessing CPR outcomes yields a valuable indicator that is used by the American Heart Association to revise CPR instructions based on the Utstein criterion and its relationship with demographical variables, patient’s background and other variables [9-11]. Two studies of Shao et al., [12] and Movahedi et al., [13] showed that gender affects survival. Other studies have emphasized shockable dysrhythmias as an effective factor in survival to discharge. According to Bergum et al., [14], 53% of cardiac arrest cases with shockable dysrhythmia have led to successful CPR and discharge. Hirlekar et al., [9] and Salari et al., [15] have reported a significant relationship between survival to discharge and shockable rhythms.

The neurological outcomes and side effects are the risk factors of a successful CPR that can be affected by prolonged CPR duration and decreased heart output which in return decreases cerebral perfusion [16]. Although there is a specific instruction about the time of CPR termination in pre-hospital cases, the new instructions available in hospitals are ambiguous and challenging [17]. The American Heart Association has given room for clinical judgment in this regard [18]. At any rate, cerebral damages are generally considered a risk factor in cardiac arrest patients. The CPR duration is an efficient factor that needs further examination; still, there is no review study on the studies in this field. Therefore, the present systematic meta-analysis is based on the question of “is there any relationship between the CPR outcomes and demographic-clinical variables (first document, gender, CPR duration) in patients with In-hospital Cardiac arrest (IHCA)”?

Materials and Methods

Study Design

This systematic review and meta-analysis was funded by Hamadan University of Medical Sciences and reported following the PRISMA and MOOSE guidelines to report the systematic reviews and meta-analysis of observational studies [19, 20]. In this study, we aim to investigate the relationship between resuscitation outcomes include survival to discharge, and favorable neurological outcome (FNO) at discharge with the first document, gender, and duration of CPR in IHCA patients. As a result, PECO in the current study is defined as P (patients): Patients with IHCA, E (exposure): Advanced in-hospital resuscitation, C (comparison): Gender / First document (shockable with non-Shockable dysrhythmias)/ Duration of resuscitation (≤15min with >15 min), As for outcomes (O in PECO): Survival to discharge or 30-day survival and FNO at discharge included Cerebral Performance Category (CPC) ≤2.

Search Strategy

The searching process was initiated by selecting keywords that included both standardized medical subject heading (MESH) and text word includes. With the aim of obtaining papers published in journals and presented in congress, Medline database along Scopus, Web of Science, and Persian language databases including SID and Magiran was searched without time limitation until January 6th, 2020. In addition, a general search was performed in Google Scholar to obtain possibly missed manuscripts. All the found materials were checked based on exclusion and inclusion criteria and irrelevant cases were removed from the study. The search strategy is presented in Appendix 1.

Selection Criteria

The inclusion criteria included papers published in journals or presented in English and Persian congress on adults (older than 13 years old), that reported the outcomes of IHCA (survival to discharge or 30 days’ survival and FNO at discharge) based on the Utstein criterion, or they have reviewed the relationship between a “first document, gender or CPR duration”, and outcomes of IHCA. Qualitative works, letters to the editor, review studies, repetitive works, studies on animals, infants, children, studies limited to an initial success rate of CPR without any results about survival to discharge, studies with less than 30 subjects, meta-analysis, structured studies, studies on out of hospital cardiac arrest (OHCA) or both (undetermined of the type of cardiac arrest), studies with overlapped study populations, studies on survived patients and without information about the population under study were excluded.

Data Collection

All the descriptive, cross-sectional, and cohort studies on CPR were covered based on inclusion and exclusion criteria. Two independent reviewers screened titles and abstracts of the gathered papers and any disagreements within the process were resolved using a third researcher’s opinion. Primary checks covered titles and abstracts followed by a full-text check of the remaining papers from the first screening stage. Data extraction was performed by
two researchers, and the final and agreed information of articles was added to a researchers-designed checklist. The checklist included information about author name, publication year, time, type, and place of study, the total number of samples, outcomes (survival to discharge and FNO included CPC≤2), and outcomes based on gender, CPR duration, and first document of patients. Table 1 lists the information extracted from the articles.

Outcome
The primary outcome of the present meta-analysis was an overall survival rate to discharge or 30-day survival and FNO at discharge included CPC≤2. The secondary outcome was survival rate to discharge or 30-day survival and FNO at discharge based on gender, first document rhythm, and duration of resuscitation (≤15 min, >15 min).

Methodological Quality (Risk of Bias) Assessment
The Critical Appraisal Skills Program (CASP) for the cross-sectional study was used to the risk of bias assessment [21]. The searched articles were checked based on CASP checklist criteria by two independent researchers, and each researcher independently assessed the articles, and any disagreements within the process were resolved using a third researcher’s opinion.

Statistical Analysis
Data analysis was done using CMA version 2.0. The findings’ heterogeneity was checked using Q and Cochran tests with heterogeneity >50%, the random-effects model was used to estimate survival and FNO in the analysis. We used random effect model for analysis because of the high heterogeneity (>50%) of the studies, studies’ variation in terms of population, event rate of survival to discharge and location of studies. The subgroup test (to estimate the relationship between survival and FNO and qualitative variables like gender and first document), meta-regression test (to check the relationship between survival and FNO and quantitative variables like publication year); funnel plot, and Eagger’s regression test (to check publication bias) were used. Finally, the sensitivity analysis test was used to evaluate the effect of each study on the final results of the meta-analysis. Sensitivity analysis responses to the question “Are the findings robust to the decisions made in the process of obtaining them?”, if there are some studies that effects are too different from other studies, we should be dubious about the results and recommend more studies.

Results

Study Characteristics
Our search strategy retrieved 8728 records, of which 5840 remained after duplicates were removed. The parallel exclusion of studies resulted in 326 articles eligible for detailed assessment based on title and abstract. Finally, we included 46 studies in our systematic review and meta-analysis [12, 14, 15, 22-64] (Figure 1).

Risk of Bias Assessment
CASP checklist was used to the risk of bias assessment [21]. This checklist has 11 items that

Fig. 1. PRISMA flow diagram of search strategy and included studies.
Row	The first author	Study time (study type)	Study place	N (total)	Survival to discharge or 30 days N (%)	FNO * N (%)	Total N	Survival based on gender N (%)	Survival based on First Document N (%)	Survival based on CPR duration N (%)											
								Female	Male	≤15min											
1	Meaney et al., [22]	1999-2005 (Prospective)	U.S.	51919	9125 (17.57)	6850 (75.07)		NR	NR	NR											
2	Hessulf et al. [23]	2006-2015 (Retrospective)	Swedish Register 18069	5113 (28.3)	NR (93)			NR	NR	NR											
3	Johnson et al., [24]	Unknown (Prospective)	South India 1955	197 (10.1)	161 (81.73)			628	1327	1676											
4	Radeschi et al., [25]	2012-2014 (Retrospective)	Italy 1539	228 (14.8)	207 (90.79)			575	964	1248											
5	Uberg et al., [26]	1983-1984 (Retrospective)	Michigan, US. 121	13 (11)	NR			58	63	116											
6	Hjalmansson et al., [27]	2007-2015 (Retrospective)	Karolinska Stockholm 1373	376 (27.38)	NR			478	895	897											
7	Andersen et al., [28]	2017-2018 (Retrospective)	Denmark 4049	1124 (27.8)	NR			125 (26.15)	251 (28.4)	171 (58.56)											
8	Lundin et al., [29]	2015-2017 (Retrospective)	Swedish 6033	1818 (30.13)	1660 (91.3)			NR	2891	703											
9	Cicekci et al., [30]	2013-2015 (Retrospective)	Konya, Turkey 390	44 (11.28)	25 (56.82)			NR	34 (NR)	10 (NR)											
10	Rohlin et al., [31]	2007-2017 (Retrospective)	Swedish 1679	471 (29)	NR			NR	24978	8361											
11	Nadkarni et al., [32]	2000-2004 (Retrospective)	US & Canada's H 36902	6485 (17.57)	4390 (67.69)			NR	2719 (10.88)	3013 (36)											
No.	Authors	Year/Period	Setting	Number	Survival Rate	Follow-up	Other Details														
-----	---------------------	--------------------	--------------	--------	---------------	-----------	--------------------------														
12	Qvick et al.,	2007-2017	Karolinska University	470(29)	NR	574	68477(24.62)														
		(Retrospective)	1639	NR		684338	311423														
13	Heller et al.,	1984-1991	Australia	120(39)	NR	415	113(27.2)														
		(Retrospective)		NR		38(22.48)	169														
14	Kung et al.,	2008-2011	Taiwan	28(5.1)	6(21.43)	544	224														
		(Retrospective)		NR		36(14.2)	36														
15	Jones et al.,	2004-2006	New Zealand	113(27.2)	NR	415	6(10.7)														
		(Retrospective)		NR		6(10.7)	6(10.7)														
16	Tok et al.,	2001-2002	Turkey	12(11.7)	NR	103	36														
		(Prospective)		NR		36(14.2)	36(14.2)														
17	Khatib et al.,	1995-2015	Afula, Israel	93(13.24)	NR	702	303														
		(Retrospective)		NR		303	303														
18	Kolte et al.,	2003-2011	USA	68477(24.62)	NR	192	37(12.21)														
		(Retrospective)		NR		37(12.21)	37(12.21)														
19	Thomas et al.,	1987-1988	U. K	32(16.6)	NR	108	32(16.6)														
		(Prospective)		NR		192	192														
20	Wachira et al.,	2013	Kenya	12(11.1)	NR	108	12(11.1)														
		(Retrospective)		NR		108	12(11.1)														
21	Widestedt et al.,	2012-2017	Stockholm, Sweden	191(33.27)	NR	574	234														
		(Retrospective)		NR		234	234														
22	Wang et al.,	2006-2014	Taiwan	215(14.1)	110(51.16)	1524	215(14.1)														
		(Retrospective)		NR		215(14.1)	215(14.1)														
23	Rakic et al.,	2003	Croatia	27(22.5)	NR	120	46														
		(Prospective)		NR		46(20.8)	46(20.8)														
24	Shao et al., [12]	2014	Beijing, China	247(9.10)	NR	2712	247(9.10)														
		(Prospective)		NR		247(9.10)	247(9.10)														
Study	Year	Location	Cases	Controls	Male	Female	Total														
--------------------------	------------	-------------------	-------	----------	------	--------	-------	------	--------	-------	------	--------	-------	------	--------	-------	------	--------	-------		
Chua et al., [45]	2008-2009	Singapore	49(13.88)	NR	NR	NR	290	NR	NR	32(11)	NR	NR	17(27)	NR	NR	NR	NR	NR	NR		
Garry et al., [46]	2012-2013	USA Stony Brook Univ	65(24.49)	NR	NR	NR	96	NR	NR	159	NR	NR	NR	NR	NR	NR	NR	NR	NR		
Chong et al., [47]	2017-2018	Unknown	55(30)	NR	NR	NR	183	NR	NR	143	40	NR	NR	NR	NR	NR	NR	NR	NR		
Saklayen et al., [48]	1988-1990	Dayton Ohio	44(13)	NR	NR	NR	340	NR	NR	113	61	NR	NR	NR	NR	NR	NR	NR	NR		
Skrifvars et al., [49]	1993-1997	Finland	22(12.02)	NR	NR	NR	183	NR	NR	126	57	NR	NR	NR	NR	NR	NR	NR	NR		
Yokoyama et al., [50]	2008-2009	Japan	136(27.8)	105(77.21)	NR	NR	491	NR	NR	347	138	NR	NR	NR	NR	NR	NR	NR	NR		
Topjian et al., [51]	2000-2008	Philadelphia	16960(1769)	13244(78.09)	NR	NR	9852	NR	NR	42213	53639	NR	NR	NR	NR	NR	NR	NR	NR		
DeVoe et al., [52]	2007-2013	New York	86(21)	NR	NR	NR	417	NR	NR	172	245	237	142	NR	NR	NR	NR	NR	NR		
Herlitz et al., [53]	1994-1998	Sweden	208(37.34)	192(92.31)	NR	NR	557	NR	NR	217	340	240	261	NR	NR	NR	NR	NR	NR		
Oxlsion et al., [54]	2007-2010	Sweden	58(20.2)	NR	NR	NR	287	NR	NR	111	176	207	80	NR	NR	NR	NR	NR	NR		
Parikh et al., [55]	2012 - 2018	New York	125(18.38)	NR	NR	NR	680	NR	NR	262	418	NR	NR	NR	NR	NR	NR	NR	NR		
Al-Dury et al., [56]	2007-2014	Swedish Register	4197(28.1)	NR	NR	NR	14933	NR	NR	5767	9166	NR	NR	NR	NR	NR	NR	NR	NR		
Goldberger et al., [57]	2000-2008	(NRCPR) Michigan	9912(15.4)	7034(80.6)	NR	NR	64339	NR	NR	1517(26.30)	2680(29.24)	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Study Reference	Study Period	Location	Survival Rate	Other Details																	
--------------------------	----------------	-------------------	---------------	---------------																	
Israelsson et al., [58]	2007-2011	Swedish	107(37.4)	NR																	
Li et al., [59]	2012-2016	Fujian, China	68(21.25)	NR																	
Ravipragasam et al., [60]	2016-2017	South India	44(17.50)	NR																	
Keivanpazhoh et al., [61]	2010	Iran	10(13.5)	NR																	
Jaber et al., [62]	Unknown	Iran	10(3.3)	NR																	
Salari et al., [15]	2006	Iran	18(7.2)	NR																	
Mohnil et al., [63]	2004-2006	Germany	57(30.2)	NR																	
Bergum et al., [14]	2009-2013	Norway	71(25)	NR																	
Nolan et al., [64]	2011-2013	UK	4153(18.35)	NR																	

*Favorable Neurological Outcome (CPC<=2); *No Reported
Table 2. Methodological quality (risk of bias) assessment (CASP Checklist)

Author; Year	Item 1	Item 2	Item 3	Item 4	Item 5	Item 6	Item 7	Item 8	Item 9	Item 10	Item 11
Meaney and et al; 2010	Y*	Y	Y	Y	Y	Y	Y	Y	Y	E	
Hessulf and et al; 2017	Y	Y	Y	Y	Y	Y	Y	Y	Y	E	
Johnson and et al; 2014	Y	Y	C	Y	Y	C	Y	Y	E	G†	
Radeschi and et al; 2017	Y	Y	Y	Y	Y	Y	Y	Y	E		
Urberg and et al; 1987	Y	Y	N†	Y	N	N	C	Y	N	F‡	
Hjalmarsson and et al; 2017	Y	Y	Y	Y	Y	Y	Y	Y	E		
Andersen and et al; 2019	Y	Y	Y	Y	Y	Y	Y	Y	E		
Lundin and et al; 2019	Y	Y	Y	Y	Y	Y	Y	Y	E		
Cieckci and et al; 2018	Y	Y	Y	N	Y	C	C	Y	G		
Rohlin and et al; 2018	Y	Y	Y	Y	Y	Y	Y	Y	E		
Nadkarni and et al; 2006	Y	Y	Y	Y	Y	Y	Y	Y	E		
Vqivck and et al; 2018	Y	Y	Y	Y	Y	Y	Y	Y	E		
Heller and et al; 1995	Y	Y	Y	N	Y	Y	Y	Y	E		
Kung and et al; 2014	Y	Y	C	Y	Y	Y	Y	Y	E		
Jones and et al; 2011	Y	Y	Y	Y	Y	Y	Y	Y	E		
Tok and et al; 2004	Y	Y	Y	N	Y	N	Y	C	G		
Kolte and et al; 2014*	Y	Y	Y	C	Y	Y	C	Y	G		
Thomas and et al; 1990	Y	Y	Y	N	Y	C	C	Y	G		
Wachira and et al; 2015	Y	Y	Y	N	Y	N	N	C	Y	N	F
Widestedt and et al; 2018	Y	Y	Y	C	Y	Y	C	Y	E		
Wang and et al; 2016	Y	Y	Y	Y	Y	Y	Y	Y	E		
Rakic and et al; 2005	Y	Y	N	N	Y	Y	Y	N	G		
Shao and et al; 2016	Y	Y	Y	Y	Y	Y	Y	Y	E		
Chua and et al; 2015*	Y	Y	C	Y	C	C	Y	C	E		
Garry and et al; 2015*	Y	Y	C	Y	C	C	C	Y	G		
Chong and et al; 2018*	Y	Y	C	Y	Y	C	C	Y	G		
Saklayen and et al; 1990	Y	Y	Y	N	Y	N	C	Y	G		
Skritvars and et al; 2005	Y	Y	Y	Y	Y	Y	Y	Y	E		
Yokoyama and et al; 2011	Y	Y	Y	C	Y	Y	Y	E			
Toppijan and et al; 2010	Y	Y	Y	Y	Y	Y	Y	Y	E		
DeVoe et al; 2016	Y	Y	Y	Y	Y	Y	Y	Y	E		
Herlitz et al; 2001	Y	Y	Y	Y	Y	Y	Y	Y	E		
Ohlsson et al; 2014	Y	Y	Y	Y	Y	Y	Y	Y	E		
Parikh et al; 2019	Y	Y	Y	Y	Y	Y	Y	Y	E		
Al-Dury et al; 2017	Y	Y	Y	Y	Y	Y	Y	Y	E		
Israelsson et al; 2014	Y	Y	Y	C	Y	Y	Y	E			
Mohnle et al; 2012	Y	Y	Y	C	Y	N	Y	Y	E		
Ravipragasam and et al; 2019	Y	Y	Y	N	Y	Y	Y	Y	E		
Li et al; 2019	Y	Y	Y	C	Y	Y	Y	Y	E		
Jaberi et al; 2011	Y	Y	Y	N	Y	C	N	Y	G		
Goldberger et al; 2012	Y	Y	Y	Y	Y	Y	Y	Y	E		
Nolan et al; 2014	Y	Y	Y	Y	Y	Y	Y	Y	E		
Bergum et al; 2015	Y	Y	Y	Y	Y	Y	Y	Y	E		
Keivanpazhoh et al; 2011	Y	Y	Y	N	Y	N	N	C	Y	N	F
Salari et al; 2010	Y	Y	Y	N	C	Y	N	Y	G		
Khatib and et al; 2017	Y	Y	Y	Y	Y	Y	Y	Y	E		

Item1: Did the study address a clearly focused issue?
Item2: Did the authors use an appropriate method to answer their question?
Item3: Were the subjects recruited in an acceptable way?
Item4: Were the measures accurately measured to reduce bias?
Item5: Were the data collected in a way that addressed the research issue?
Item6: Did the study have enough participants to minimize the play of chance?
Item7: How are the results presented and what is the main result?
Item8: Was the data analysis sufficiently rigorous?
Item9: Is there a clear statement of findings?
Item10: Can the results be applied to the local population?
Item11: How valuable is the research?

* presented in Congress; †. Yes; ‡. Can’t Tell; †. NO; €.Excellent; ¥.GOOD; ¥. Fair
10 items evaluate the content of the article from different angles and item 11 is related to commenting on the overall quality of the article based on the result obtained from the first 10 items. Based on the researchers’ evaluation of the articles, about 74% of the articles published in journals were evaluated as an excellent and only 2 articles were in an acceptable condition. In 12 articles, bias measurement and classification methods could not be deduced, and in 6 articles, there are enough participants to minimize the play of chance (Table 2).

Publication Bias

There were no evidences of publication bias in the assessment of survival to discharge on women (t=0.33, p=0.13), survival to discharge on men (t=1.5, p=0.74) and the rate of FNO (t=0.65, p=0.52) based on the results of funnel plot and Eagger’s regression test (Figure 2).

Sensitivity Analysis

The results of the sensitivity analysis test showed the parallel effect of each study on the conclusion and the robustness of the model; therefore, we did not delete any studies to compare with the remaining results (Figure 3).

Meta-analysis

Survival to Discharge

Based on the results of systematic and meta-analysis review on 46 articles of 1,020,799 cases with IHCA, survival to discharge was equal to 19.1% (95% CI=16.8-21.7) (Figure 4). In addition, meta-regression results showed that survival to discharge rate had a declining trend over the past few years. Figure 5 illustrates heterogeneity in survival to discharge in different studies and countries, therefore, the higher survival rates are in Australia (39%), Sweden with (32.7%) and Germany (30.2%), and the lowest survival rates are in Iran (6.9%) and Taiwan (8.7%) (Q-value=20707.47, p≤0.001).

The results about survival to discharge in men and women showed that survival to discharge to women with 364,593 cases was 19.8% (95% CI=17.6-22.2) and this figure for men with 444,463 cases was 22.2% (95% CI=20.2-24.3) (Figure 6).

Only three studies used a similar pattern to report the survival to discharge based on CPR duration. The meta-analysis results on these studies indicated that out of 2,148 cases with initial successful resuscitation (ROSC) and CPR duration ≤15 min, survival rate was 47.3% (95% CI=28.9-66.6) and in CPR duration>15min in 359 cases, this rate was...
Fig. 3. The results of sensitivity analysis test

Fig. 4. Survival to discharge (Survival rate: 19.1%, Q-value=11896.47, P<0.001)

Fig. 5. Survival rate to discharge based on study location

Fig. 6. Comparison of survival to discharge in female with male
Survival to discharge rate of patients in-hospital cardiac arrest

significantly lower (13.2%) (95% CI=6.5-25) (Figure 7). Also, survival rate to discharge in 135,996 cases under study with shockable and non-shockable dysrhythmias was 39.3% (95% CI=35.6-43.1) and 12.1% (95% CI=11-13.3), respectively (p<0.001) (Figure 8).

FNO (CPC≤2) at Discharge

From 46 articles entered to the meta-analysis, 15 articles with total cases of 302,850 reported FNO at discharge. This index relative to survivors until discharge was equal to 68.1% (95% CI=55.8-78.3) (Figure 9). Meta-regression results on survival to discharge and FNO showed that the higher of survival to discharge and the higher of FNO (p<0.001) (Figure 2).

Only three studies reported FNO related to gender. According to the meta-analysis results, FNO in men and women at discharge was 79.1 (95% CI=63-89.4) and 71.2 (95% CI=41.3-89.7), respectively; therefore, men had better outcomes (Figure 10). In addition to gender, shockable background dysrhythmias were another factor in neurological outcome. With shockable and non-shockable dysrhythmias, FNO was equal to 86.4 (95% CI=79.9-91) and 76.9 (95% CI=67.4-84.3), respectively (Figure 11). In addition, taking into account the limitations of the studies, it was not possible to assess the relationship between FNO and CPR duration (only two articles entered the meta-analysis). The assessment of the results of these two studies showed the duration of CPR affected the FNO at discharge, therefore, it will be high in CPR duration and low in FNO index (Table 1).

Fig. 7. Survival rate to discharge based on CPR duration

Fig. 8. Survival to discharge based on the first document rhythm

Fig. 9. Favorable neurological outcome during discharge (CPC<2)

Fig. 10. Favorable Neurological Outcome (CPC<2) by gender

Fig. 11. Favorable Neurological Outcome (CPC<2) based on the first document rhythm
Discussion

This systematic review study and meta-analysis were conducted to assess the relationship between resuscitation outcomes and demographic-clinical variables in patients with IHCA. By resuscitation outcome, survival to discharge or 30-day survival and FNO were intended. Survival to discharge or 30-day discharge results of 46 articles was 19.1% based on meta-analysis [12, 14, 15, 22-64]. In addition, the results of our study showed that the survival to discharge rate had a declining trend over the past few years. According to the updated report by the American Heart Association, survival to discharge is equal to 25%, in addition, D’Arrigo et al., reported this index equal to 37.9% [65, 66]. One reason for the declining statistics can be the inclusion of studies conducted in developing countries.

FNO at discharge was 68.1%, compared to the results of the meta-analysis performed in-hospital cardiac arrest which shows a declining trend over the past few years [65]. According to the results, FNO has a direct relationship with patients’ survival, therefore, it will be high in the survival to discharge and the FNO. The decrease in survival to discharge can explain the decrease in FNO.

Survival to discharge or 30-day survival and FNO were notably higher in men compared to women. Bougouin et al., [67] systematically assessed out-of-hospital cardiac arrest patients and reported results inconsistent with the present study. The different survival rates between men and women are indicative to a pathophysiological difference of cardiac arrest in women and men, and the results of our study challenge the classic paradigm of better prognosis in women. According to this paradigm, female hormones improve vascular performance at higher fertility ages by lowering lipoproteins levels and decreasing the risk of cardiac arrest [68-70]. This finding is also contradictory to the fact that estrogen has a protective effect on the nervous and cardiac system [71, 72]. The studies showed that the rate of shockable dysrhythmias in men was higher than in women [9, 14, 15, 22, 33]. Sensitivity of shockable dysrhythmias to timely shocks [14] can be a reason for different survival rates and better neurological outcomes in men.

Survival to discharge and FNO with shockable dysrhythmias were notably higher than those with non-shockable dysrhythmias. One of the predictors of survival to discharge in D’Arrigo et al., [66] was the shockable background dysrhythmia. Only in one study with a small sample group, survival to discharge was higher with non-shockable dysrhythmias [41]. On the other hand, studies on several clinics and large sample groups showed that shockable dysrhythmias were determinants of survival to discharge and FNO [11, 32, 64]. There is reliable evidence of reversibility, survival to discharge, and FNO when a defibrillator is used soon enough [14].

The results indicated that CPR duration was a determinant of survival to discharge, therefore, survival to discharge was notably higher when less than 15min compared with CPR duration >15min.

In conclusion, inconsistent with some of the meta-analysis studies on OHCA, our results showed that survival to discharge rate with strong evidence, and FNO in adults (CPC≤2) in men was higher than women. Despite limitations in studies with a similar time pattern on the effect of CPR duration on survival to discharge and FNO, the results of the present meta-analysis showed this factor effect on the mentioned outcomes. Adherence to the same pattern in the classification of the variables studied in the report on the outcomes of CPR will pave the way for future meta-analysis studies.

The results of our study showed that the outcomes of cardiac arrest in developing countries are weak and make it clearer to health care providers for identifying gaps in the survival chain and improve the quality of cardiopulmonary resuscitation. Although non-
shockable dysrhythmias and prolonged resuscitation time were identified as factors associated with weaker resuscitation outcomes, patient’s significant percentage with non-shockable dysrhythmias or prolonged resuscitation, with FNO was discharged. Therefore, adherence to guidelines until the end of resuscitation time and these factors non-interference in the quality of resuscitation is recommended for rescuers. On the other hand, about 32% of discharged resuscitated people are in the CPC>2 and will experience-dependent life. This result can be considered by health policymakers for rehabilitation needs and planning.

Declarations

Ethics approval: The Institutional Review Board and the Ethics Committee of Hamadan University of Medical Sciences, Hamadan, Iran, approved this study (codes: 9803282410 and IR.UMSHA.REC.1398.208).

References

1. Kouwenhoven WB, Jude JR, Knickerbocker GG. Closed-chest cardiac massage. JAMA. 1960;173:1064-7.
2. Panchal AR, Bartos JA, Cabañas JG, Donnino MW, Drennan IR, Hirsch KG, et al. Part 3: Adult Basic and Advanced Life Support: 2020 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2020;142(16_suppl_2):S366-S468.
3. Ebell MH, Afonso AM. Pre-arrest predictors of failure to survive after in-hospital cardiopulmonary resuscitation: a meta-analysis. Fam Pract. 2011;28(5):505-15.
4. Schneider AP 2nd, Nelson DJ, Brown DD. In-hospital cardiopulmonary resuscitation: a 30-year review. J Am Board Fam Pract. 1993;6(2):91-101.
5. Sasson C, Rogers MA, Dahl J, Kellermann AL. Predictors of survival from out-of-hospital cardiac arrest: a systematic review and meta-analysis. Circ Cardiovasc Qual Outcomes. 2010;3(1):63-81.
6. Gijsen R, Hoeymans N, Schellevis FG, Ruwaard D, Satariano WA, van den Bos GA. Causes and consequences of comorbidity: a review. J Clin Epidemiol. 2001;54(7):661-74.
7. Marengoni A, Angleman S, Melis R, Mangialasca F, Karp A, Garman A, et al. Aging with multimorbidity: a systematic review of the literature. Ageing Res Rev. 2011;10(4):430-9.
8. Fried LP, Ferrucci L, Darer J, Williamson JD, Anderson G. Untangling the concepts of disability, frailty, and comorbidity: implications for improved targeting and care. J Gerontol A Biol Sci Med Sci. 2004;59(3):255-63.
9. Hirlekar K, Karlsson T, Aune S, Ravn-Fischer A, Albertsson P, Hertlitz J, et al. Survival and neurological outcome in the elderly after in-hospital cardiac arrest. Resuscitation. 2017;118:101-106.
10. Goodarzi A, Jalali A, Almasi A, Naderipour A, Kalhori RP, Khodadadi A. Study of survival rate after cardiopulmonary resuscitation (CPR) in hospitals of Kermanshah in 2013. Glob J Health Sci. 2014;7(1):52-8.
11. Nolan JP, Berg RA, Andersen LW, Bhanji F, Chan PS, Donnino MW, et al. Cardiac Arrest and Cardiopulmonary Resuscitation Outcome Reports: Update of the Utstein Resuscitation Registry Template for In-Hospital Cardiac Arrest: A Consensus Report From a Task Force of the International Liaison Committee on Resuscitation. J Am Coll Cardiol. 2014;63(Suppl):S70-S85.
12. Shao F, Li CS, Liang LR, Qin J, Ding N, Fu Y, et al. Incidence and outcome of adult in-hospital cardiac arrest in Beijing, China. Resuscitation. 2016;102:51-6.
13. Movahedi A, Kavosi A, Behnam Vashani H, Mohammadi G, Mehrad Majd H, et al. 24 hour survival rate and its determinants in patients with successful cardiopulmonary resuscitation in Ghaem Hospital of Mashhad. J Neyshabur Univ Med Sci. 2016;3(4):56-63.
14. Bergum D, Nordseth T, Mjølstad OC, Skogvoll E, Haugen BO. Causes of in-hospital cardiac arrest - incidences and rate of recognition. Resuscitation. 2015;87:63-8.
15. Salari A, Mohammadnejad E, Vanaki Z, Ahmadi F. Survival rate and outcomes of cardiopulmonary resuscitation. Iranian Journal of Critical Care Nursing. 2010;3(2):45-9.
16. Welbourn C, Efstathiou N. How does the length of cardiopulmonary resuscitation affect brain damage in patients surviving cardiac arrest? A systematic review. Scand J Trauma Resusc Emerg Med. 2018;26(1):77.
17. Bossaert LL, Perkins GD, Askitopoulou H, Raffay VI, Greif R, Haywood KL, et al. European Resuscitation Council Guidelines for Resuscitation 2015: Section 11. The ethics of resuscitation and end-of-life decisions. Resuscitation. 2015;95:302-11.
18. Mancini ME, Diekema DS, Hoadley TA, Kadlec KD, Leveille MH, McGowan JE, et al. Part 3: Ethical Issues: 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care.

Consent for publication: Not applicable.

Conflict of interests: The authors declare that they have no competing interests

Funding: Financial resources for the design of the present study and collection, analysis, and interpretation of data and in writing the manuscript provided by Hamadan University of Medical Sciences.

Authors’ contributions: Study design: AG, KO, and MKH; Data collection: AG and ARA; Data extraction: AG and ARA; Analysis: AG and ARA; Drafting: AG, KO, ARA; Critically revised the paper: All authors.

Acknowledgments: We would like to thank the Research Administration of Hamadan University of Medical Sciences, Hamadan, Iran, who supported us in doing this study.
receiving in-hospital Advanced Cardiovascular Life Support. Heart Lung. 2016;45(6):497-502.
53. Herlitz J, Rundqvist S, Bång A, Aune S, Lundström G, Ekström L, et al. Is there a difference between women and men in characteristics and outcome after in hospital cardiac arrest? Resuscitation. 2001;49(1):15-23.
54. Ohlsson MA, Kennedy LM, Juhlin T, Melander O. Evaluation of pre-arrest morbidity score and prognosis after resuscitation score and other clinical variables associated with in-hospital cardiac arrest in southern Sweden. Resuscitation. 2014;85(10):1370-4.
55. Parikh PB, Malhotra A, Qadeer A, Patel JK. Impact of Sex on Survival and Neurologic Outcomes in Adults With In-Hospital Cardiac Arrest. Am J Cardiol. 2020;125(3):309-312.
56. Al-Dury N, Rawshani A, Israelsson J, Strömsöe A, Aune S, Agerström J, et al. Characteristics and outcome among 14,933 adult cases of in-hospital cardiac arrest: A nationwide study with the emphasis on gender and age. Am J Emerg Med. 2017;35(12):1839-1844.
57. Goldberger ZD, Chan PS, Berg RA, Kronick SL, Cooke CR, Lu M, et al. Duration of resuscitation efforts and survival after in-hospital cardiac arrest: an observational study. Lancet. 2012;380(9852):1473-81.
58. Israelsson J, Persson C, Strömberg A, Arestedt K. Is there a difference in survival between men and women suffering in-hospital cardiac arrest? Heart Lung. 2014;43(6):510-5.
59. Li H, Wu TT, Liu PC, Liu XS, Mu Y, Guo YS, et al. Characteristics and outcomes of in-hospital cardiac arrest in adults hospitalized with acute coronary syndrome in China. Am J Emerg Med. 2019;37(7):1301-1306.
60. Ravipragasam S, Chandar D, Pandit VR, Cheriyan A. Survival to discharge after in-hospital cardiac arrest at emergency department and its associated factors: a prospective observational study. Journal of Acute Disease. 2019;8(5):185.
61. Islamf F. Quality and outcome of cardiopulmonary resuscitation in imam Khomeini teaching hospital-report according to Ustsein style. Studies in Medical Sciences. 2011;22(4):346-52.
62. Jaberi Y, Changizian L, Mazlomzadeh S. Predictors of outcome in in-hospital cardio-pulmonary resuscitation. Journal of Advances in Medical and Biomedical Research. 2011;19(75):48-57.
63. Möhnle P, Hugo V, Polasek J, Weig I, Atzinger R, Kreimeier U, et al. Survival after cardiac arrest and changing task profile of the cardiac arrest team in a tertiary care center. ScientificWorldJournal. 2012;2012:294512.
64. Nolan JP, Soar J, Smith GB, Gwinnett C, Parrott F, Power S, et al. Incidence and outcome of in-hospital cardiac arrest in the United Kingdom National Cardiac Arrest Audit. Resuscitation. 2014;85(8):987-92.
65. D’Arrigo S, Cacciola S, Dennis M, Jung C, Kagawa E, Antonelli M, et al. Predictors of favourable outcome after in-hospital cardiac arrest treated with extracorporeal cardiopulmonary resuscitation: A systematic review and meta-analysis. Resuscitation. 2017;121:62-70.
66. Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, et al. Heart Disease and Stroke Statistics-2018 Update: A Report From the American Heart Association. Circulation. 2018;137(12):e67-e492.
67. Bougouin W, Mustafic H, Marjion E, Murad MH, Dumas F, Barboutis A, et al. Gender and survival after sudden cardiac arrest: A systematic review and meta-analysis. Resuscitation. 2015;94:55-60.
68. Kim C, Fahrenbruch CE, Cobb LA, Eisenberg MS. Out-of-hospital cardiac arrest in men and women. Circulation. 2001;104(22):2699-703.
69. Pell JP, Sirel J, Marsden AK, Cobbe SM. Sex differences in outcome following community-based cardiopulmonary arrest. Eur Heart J. 2000;21(3):239-44.
70. Perers E, Abrahamsson P, Bång A, Engdahl J, Lindqvist J, Karlsson BW, et al. There is a difference in characteristics and outcome between women and men who suffer out of hospital cardiac arrest. Resuscitation. 1999;40(3):133-40.
71. McCullough LD, Hurn PD. Estrogen and ischemic neuroprotection: an integrated view. Trends Endocrinol Metab. 2003;14(5):228-35.
72. Noppens RR, Kolfer J, Grafe MR, Hurn PD, Traysman RJ. Estradiol after cardiac arrest and cardiopulmonary resuscitation is neuroprotective and mediated through estrogen receptor-beta. J Cereb Blood Flow Metab. 2009;29(2):277-86. PMC2682442.
73. Schulz SC, Cullinane DC, Pasquale MD, Magnant C, Evans SR. Predicting in-hospital mortality during cardiopulmonary resuscitation. Resuscitation. 1996;33(1):13-7.
74. Ballew KA, Philbrick JT, Caven DE, Schorling JB. Predictors of survival following in-hospital cardiopulmonary resuscitation. A moving target. Arch Intern Med. 1994;154(21):2426-32.
75. Bedell SE, Delbanclo TL, Cook EF, Epstein FH. Survival after cardiopulmonary resuscitation in the hospital. New England journal of medicine. 1983;309(10):569-76.
Appendix 1. Search query

Filters applied: Full text, Congress, Observational Study, Humans, English, Persian, Adolescent: 13-18 years, Adult: 19+ year

Search terms:

Medline search query
1. ("Cardiopulmonary resuscitation"[Title/Abstract]) OR ("Advanced life support"[Title/Abstract]) OR ("Cardiac arrest"[Title/Abstract]) OR ("In-hospital Cardiac arrest"[Title/Abstract]) OR (IHCA[Title/Abstract]) AND ("Neurological outcome"[Title/Abstract]) OR ("success rate of Cardiopulmonary resuscitation"[Title/Abstract]) OR ("Survival to discharge"[Title/Abstract]) OR ("Favorable neurological outcome"[Title/Abstract])
2. ("Cardiopulmonary resuscitation"[Title/Abstract]) OR ("In-hospital Cardiac arrest"[Title/Abstract]) OR ("Neurological outcome"[Title/Abstract]) OR ("success rate of Cardiopulmonary resuscitation"[Title/Abstract]) OR ("Survival to discharge"[Title/Abstract]) OR ("Favorable neurological outcome"[Title/Abstract]) AND (Sex[Title/Abstract] OR gender[Title/Abstract] OR "Duration of resuscitation"[Title/Abstract] OR Shockable[Title/Abstract] OR "non-shockable"[Title/Abstract])

Scopus search query
1. "Cardiopulmonary resuscitation" OR ("Cardiac arrest" OR "In-hospital Cardiac arrest" OR (IHCA AND ("Neurological outcome" OR "success rate of Cardiopulmonary resuscitation" OR "Survival to discharge" OR "Favorable neurological outcome")) OR (Sex OR gender OR "Duration of resuscitation" OR Shockable OR "non-shockable")
2. (("Cardiopulmonary resuscitation" OR "Cardiac arrest" OR "In-hospital Cardiac arrest" OR (IHCA AND ("Neurological outcome" OR "success rate of Cardiopulmonary resuscitation" OR "Survival to discharge" OR "Favorable neurological outcome")) OR (Sex OR gender OR "Duration of resuscitation" OR Shockable OR "non-shockable")
3. (("Cardiopulmonary resuscitation" OR "Cardiac arrest" OR "In-hospital Cardiac arrest" OR (IHCA AND ("Neurological outcome" OR "success rate of Cardiopulmonary resuscitation" OR "Survival to discharge" OR "Favorable neurological outcome")) OR (Sex OR gender OR "Duration of resuscitation" OR Shockable OR "non-shockable")

Science direct query
1. ("Cardiopulmonary resuscitation" OR "Advanced life support" OR "Cardiac arrest" OR "In-hospital Cardiac arrest" OR IHCA AND ("Neurological outcome" OR "success rate of Cardiopulmonary resuscitation" OR "Survival to discharge" OR "Favorable neurological outcome")) OR ("Cardiopulmonary resuscitation" OR "In-hospital Cardiac arrest" OR (IHCA AND ("Neurological outcome" OR "success rate of Cardiopulmonary resuscitation" OR "Survival to discharge" OR "Favorable neurological outcome")) AND (Sex OR gender OR "Duration of resuscitation" OR Shockable OR "non-shockable")
2. ("Cardiopulmonary resuscitation" OR "Cardiac arrest" OR "In-hospital Cardiac arrest" OR (IHCA AND ("Neurological outcome" OR "success rate of Cardiopulmonary resuscitation" OR "Survival to discharge" OR "Favorable neurological outcome")) AND (Sex OR gender OR "Duration of resuscitation" OR Shockable OR "non-shockable")
3. ("Cardiopulmonary resuscitation" OR "Cardiac arrest" OR "In-hospital Cardiac arrest" OR (IHCA AND ("Neurological outcome" OR "success rate of Cardiopulmonary resuscitation" OR "Survival to discharge" OR "Favorable neurological outcome")) AND (Sex OR gender OR "Duration of resuscitation" OR Shockable OR "non-shockable")