Specialized acyl carrier protein used by serine palmitoyltransferase to synthesize sphingolipids in *Rhodobacteria*

Supplementary Tables

Table S1. Theoretical and measured masses of acyl carrier proteins AcpR_{Cc} and AcpP_{Cc}

Protein species	AcpR_{Cc}	AcpP_{Cc}				
	Detected mass	Theoret. mass*	Error (ppm)	Detected mass	Theoret. mass*	Error (ppm)
Apo	9020.3	9022.4	232	8599.1	8601.7	302
Holo	9360.8	9361.4	64	8939.8	8940.7	101
Palmitoyl	9601.2	9599.8	-145	9180.3	9179.1	-130

*The theoretical masses were determined using https://www.expasy.org and in the case of AcpP_{Cc} without the N-terminal methionine.
Table S2. Orthologues for sphingolipid biosynthesis proteins in the *Rhodobacteria C. crescentus*, *E. coli* B21(DE3), *S. wittichii*, *S. paucimobilis*, *Z. mobilis*, *G. oxydans*, and *N. eutropha*.

ORF (Query)	ORF (Subject)	E Value	identity (%)	similarity (%)	coverage (%)
CC_1154Cc (Aca)	ECD_02850Ec	1e-107	44	61	98
CC_1154Cc (Aca)	Swit_3908Sw	1e-104	45	58	97
CC_1154Cc (Aca)	DRN02_007910Sp	3e-91	41	59	97
CC_1154Cc (Aca)	ZMO1400Zm	7e-93	40	57	98
CC_1154Cc (Aca)	GOX2417Go	9e-62	34	50	97
CC_1154Cc (Aca)	Neut_1100Ne	2e-100	41	58	100
CC_1162Cc (Spt)	ECD_02854Ec	4e-144	53	68	96
CC_1162Cc (Spt)	Swit_3900Sw	1e-152	53	73	97
CC_1162Cc (Spt)	DRN02_007885Sp	2e-147	53	70	97
CC_1162Cc (Spt)	ZMO1270Zm	3e-151	52	72	97
CC_1162Cc (Spt)	GOX2056Go	1e-159	55	72	97
CC_1162Cc (Spt)	Neut_0461Ne	1e-133	51	66	97
CC_1163Cc (AcpR)	ECD_02853Ec	3e-08	41	68	61
CC_1163Cc (AcpR)	Swit_3899Sw	6e-10	32	54	71
CC_1163Cc (AcpR)	DRN02_007880Sp	1e-09	32	52	71
CC_1163Cc (AcpR)	ZMO2012Zm	5e-12	38	57	68
CC_1163Cc (AcpR)	GOX2057Go	1e-12	46	69	67
CC_1163Cc (AcpR)	Neut_0460Ne	8e-13	44	71	71
CC_1164Cc (Epi)	ECD_02852Ec	7e-38	34	49	94
CC_1164Cc (Epi)	Swit_3897Sw	2e-47	40	47	95
CC_1164Cc (Epi)	DRN02_007875Sp	7e-37	35	48	95
CC_1164Cc (Epi)	ZMO0205Zm	1e-38	31	48	96
CC_1164Cc (Epi)	GOX1849Go	2e-18	32	47	73
CC_1164Cc (Epi)	Neut_0459Ne	1e-47	38	52	85
CC_1165Cc (AasR)	ECD_02851Ec	1e-155	42	60	97
CC_1165Cc (AasR)	Swit_2559Sw	1e-163	46	63	98
CC_1165Cc (AasR)	DRN02_008180Sp	7e-163	46	62	98
CC_1165Cc (AasR)	ZMO0704Zm	3e-164	45	63	98
CC_1165Cc (AasR)	GOX2058Go	0	54	69	99
CC_1165Cc (AasR)	Neut_0458Ne	6e-152	43	60	99

Pairwise protein sequence alignments between *C. crescentus* (Cc) ORFs codifying proteins for dihydroceramide biosynthesis: putative acyl-CoA N-acyltransferase (Aca), serine palmitoyltransferase (Spt), acyl carrier protein (AcpR), predicted dehydrogenase/epimerase (Epi), and acyl-ACP synthetase (AasR); compared to the *E. coli* BL21(DE3) (Ec); *S. wittichii* (Sw), *S. paucimobilis* (Sp), *Z. mobilis* (Zm), *G. oxydans* (Go), and *N. eutropha* (Ne) homologues. Homologous ORFs are shown in equal colors. ORF names/accession numbers are as follows: *Caulobacter crescentus* CB15 (Aca: CC_1154/AAK23138.1; Spt: CC_1162/AAK23146.1; AcpR: CC_1163/AAK23147.1; Epi: CC_1164/AAK23148.1; AasR: CC_1165/AAK23149.1), *Escherichia coli* BL21(DE3) (Aca: ECD_02850/ACT4454.1; Spt: ECD_02854/ACT4458.1; AcpR: ECD_02853/ACT4457.1; Epi: ECD_02852/ACT4456.1; AasR: ECD_02851/ACT4455.1), *Sphingomonas wittichii* RW1 (Aca: Swit_3908/ABQ70253.1; Spt: Swit_3900/ABQ70245.1; AcpR: Swit_3899/ABQ70244.1; Epi: Swit_3897/ABQ70242.1; AasR: Swit_2559/ABQ68917.1), *Sphingomonas paucimobilis* strain AIMST S-2 (Aca: DRN02_007910/QBE91945.1; Spt:...
Padilla-Gómez et al.

DRN02_007885/QBE91942.1; AcpR: DRN02_007880/QBE91994.1; Epi: DRN02_007875/QBE91940.1; AasR: DRN02_008180/QBE91994.1), *Zymomonas mobilis* ZM4 (Aca: ZMO1400/AAV90024.1; Spt: ZMO1270/AAV89894.1; AcpR: ZMO2012/ADK75091.1; Epi: ZMO0205/AAV88829.1; AasR: ZMO0704/AAV89328.2), *Gluconobacter oxydans* 621H (Aca: GOX2417/AAW62148.1; Spt: GOX2056/AAW61792.1; AcpR: GOX2057/AAW61793.1; Epi: GOX1849/AAW61587.1; AasR: GOX2058/AAW61794.1) and *Nitrosomonas eutropha* C91 (Aca: Neut_1100/ABI59355.1; Spt: Neut_0461/ABI58738.1; AcpR: Neut_0460/ABI58737.1; Epi: Neut_0459/ABI58736.1; AasR: Neut_0458/ABI58735.1).

Table S3. Possible orthologues for FadD in *G. oxydans*, *N. eutropha* and *C. crescentus*.

ORF (Query)	ORF (Subject)	E Value	identity (%)	similarity (%)	coverage (%)
ECD_01775Ec (FadD)	AD932_04675Go	1×10^{-44}	28	45	85
ECD_01775Ec (FadD)	Neut_1417Ne	5×10^{-60}	29	46	93
ECD_01775Ec (FadD)	CC_1321Cc	1×10^{-65}	31	48	91
ECD_01775Ec (FadD)	CC_0966Cc	3×10^{-58}	28	45	95
SMc02162Sm (FadD)	AD932_04675Go	3×10^{-42}	28	44	93
SMc02162Sm (FadD)	Neut_1417Ne	5×10^{-38}	27	42	89
SMc02162Sm (FadD)	CC_0966Cc	3×10^{-60}	29	48	90
SMc02162Sm (FadD)	CC_1321Cc	8×10^{-56}	31	49	87

Pairwise protein sequence alignments between ORFs codifying for acyl-CoA synthetase (FadD) from *E. coli* (Ec) and *S. meliloti* (Sm); compared to *G. oxydans* (Go), *N. eutropha* (Ne) and *C. crescentus* (Cc) proteins. Possible homologous ORFs are shown in equal colors. ORF names/accession numbers are as follows: *Caulobacter crescentus* CB15 (CC_1321/AAK23302.1; CC_0966/AAK22950.1), *Escherichia coli* BL21(DE3) (ECD_01775/ACT43629.1), *Gluconobacter oxydans* 621H (AD932_04675/KXV13177), *Nitrosomonas eutropha* C91 (Neut_1417/ABI59664.1) and *Sinorhizobium meliloti* 1021 (SMc02162/CAC41921.1).
Table S4. Possible orthologues for AcpR, AcpP, AasR, FadD and Aas proteins in *B. thetaiotaomicron, B. stolpii, M. xanthus, P. gingivalis, S. multivorum, S. aurantiaca* and *S. cellulosum.*

ORF (Query)	ORF (Subject)	E Value	identity (%)	similarity (%)	coverage (%)
CC_1163Ec (AcpR)	BT_3359Bs	9e⁻¹¹	41	51	65
CC_1163Ec (AcpR)	COV70_14770Bs	7e⁻⁹⁷	29	60	57
CC_1163Ec (AcpR)	MXAN_6637Ms	1e⁻⁹³	42	60	51
CC_1163Ec (AcpR)	PGN_1705Pg	2e⁻¹⁰	38	56	60
CC_1163Ec (AcpR)	NCTC11343_01004Sm	5e⁻¹⁰	39	58	55
CC_1163Ec (AcpR)	STAUR_1257Sa	7e⁻⁰²	33	60	51
CC_1163Ec (AcpR)	scc7052Sc	1e⁻⁰⁹	44	66	65
CC_1677Ec (AcpP)	BT_3359Bs	5e⁻²⁶	59	74	96
CC_1677Ec (AcpP)	COV70_14770Bs	3e⁻¹⁴	42	67	93
CC_1677Ec (AcpP)	MXAN_4769Ms	4e⁻²¹	53	75	93
CC_1677Ec (AcpP)	PGN_1705Pg	2e⁻²³	52	79	93
CC_1677Ec (AcpP)	NCTC11343_01004Sm	2e⁻²⁵	58	75	93
CC_1677Ec (AcpP)	STAUR_5619Sa	8e⁻²¹	51	75	93
CC_1677Ec (AcpP)	scc3814Sc	2e⁻²⁰	56	74	91
EC01090Ec (AcpP)	BT_3359Bs	6e⁻²⁷	62	73	97
EC01090Ec (AcpP)	COV70_14770Bs	2e⁻¹⁴	40	65	96
EC01090Ec (AcpP)	MXAN_4769Ms	6e⁻³¹	66	80	97
EC01090Ec (AcpP)	PGN_1705Pg	1e⁻²²	55	75	93
EC01090Ec (AcpP)	NCTC11343_01004Sm	3e⁻²⁴	62	72	93
EC01090Ec (AcpP)	STAUR_5619Sa	5e⁻²⁹	63	78	97
EC01090Ec (AcpP)	scc3814Sc	1e⁻²²	62	78	84
CC_1165Ec (AasR)	BT_2782Bs	1e⁻³³	27	45	68
CC_1165Ec (AasR)	COV70_02865Bs	8e⁻³⁰	24	40	68
CC_1165Ec (AasR)	MXAN_6636Ms	1e⁻⁸⁷	36	52	91
CC_1165Ec (AasR)	CF001_1738Pg	4e⁻¹⁷	24	40	79
CC_1165Ec (AasR)	NCTC11343_01971Sm	1e⁻¹³	24	38	73
CC_1165Ec (AasR)	STAUR_1258Sa	3e⁻⁹²	36	52	97
CC_1165Ec (AasR)	scc7053Sc	6e⁻¹²²	39	56	96
EC01775Ec (FadD)	BT_2782Bs	4e⁻⁶³	30	50	89
EC01775Ec (FadD)	COV70_02865Bs	0	55	74	98
EC01775Ec (FadD)	MXAN_7148Ms	6e⁻⁷⁹	33	50	93
EC01775Ec (FadD)	CF001_1738Pg	2e⁻²⁹	25	42	80
EC01775Ec (FadD)	NCTC11343_01971Sm	8e⁻³⁷	28	45	74
EC01775Ec (FadD)	STAUR_3279Sa	0	58	73	98
EC01775Ec (FadD)	scc3825Sc	5e⁻⁵⁴	32	47	94
LA59_RS23465Yh (Aas)	BT_2782Bs	7e⁻³⁸	25	42	95
LA59_RS23465Yh (Aas)	COV70_10230Bs	2e⁻³⁴	27	45	93
LA59_RS23465Yh (Aas)	MXAN_6374Ms	4e⁻¹¹⁵	36	55	97
LA59_RS23465Yh (Aas)	CF001_1738Pg	1e⁻¹⁵	22	40	75
LA59_RS23465Yh (Aas)	NCTC11034_01400Sm	3e⁻⁸	23	42	79
LA59_RS23465Yh (Aas)	STAUR_2914Sa	2e⁻¹¹²	37	55	97
LA59_RS23465Yh (Aas)	scc5736Sc	1e⁻¹⁰⁷	36	52	97

Pairwise protein sequence alignments between ORFs codifying for: acyl carrier protein (AcpR) and acyl-ACP synthetase (AasR) from *C. crescentus* CB15 (Cc), acyl-CoA synthetase (FadD) from *E. coli* BL21(DE3) (Ec), and acyl-ACP synthetase (Aas) from *V. harveyi* (Vh); compared to the *B. thetaiotaomicron* (Bs), *B. stolpii* (Bs), *M. xanthus* (Ms), *P. gingivalis* (Pg), *S. multivorum* (Sm), *S. aurantiaca* (Sa), and *S. cellulosum*.

"Padilla-Gómez et al."
aurantiaca (Sa) and S. cellulosum (Sc) proteins. Possible homologous ORFs are shown in equal colors. ORF names/accession numbers are as follows: Bacteroides thetaiotaomicron VPI-5482 (BT_3359/Q8A2E6.1; BT_2782/AAO77888), Bacteriovorax stolpii (C0V70_14770/AUN99345.1; C0V70_02865/AUN97064; C0V70_10230/AUN98475), Myxococcus xanthus DK 1622 (MXAN_6637/ABF91660.1; MXAN_4769/ABF9032.1; MXAN_6636/ABF92798; MXAN_7148/ABF89596; MXAN_6374/ABF88458), Porphyromonas gingivalis ATCC 33277 (PGN_1705/B2RLH9.1; CF001_1738/AUR49213), Sphingobacterium multivorum (NCTC11343_01004/SPZ84464.1; NCTC11343_01971/SPZ85409; NCTC11034_01400/SUJ04263), Stigmatella aurantiaca DW4/3-1 (STAUR_1257/ADO69061.1; STAUR_5619/ADO73384.1; STAUR_1258/ADO69062; STAUR_3279/ADO70706) and Sorangium cellulosum So ce56 (sce7052/ CAN97221.1; sce3814/CAN93974.1; sce7053/CAN97222.1; sce3825/CAN93985.1; sce5736/CAN95899.1)

Table S5. Oligonucleotides used for amplification of different sphingolipid biosynthesis genes. Sites for recognition by restriction enzymes are underlined.

Primers for expression plasmids	Sequence (5’-3’)
oLOP227	AGGAATACATATGATCAGCCACGCGGTC
oLOP228	AAAGGTACCTAGTCCGACATTCTCGAGCG
oLOP264	AGGAATACATATGATCAGCCACGCGGTC
oLOP265	AAAGGTACCTAGTCCGACATTCTCGAGCG
oLOP423	ACTGGGTACCATTGAGCTATTTGATAAGCACC
oLOP424	ACTGCTAGAGTCCTAGCGCGCGCGCGCG
oLOP432	ACTGCAATGTGAAATCTGGAATAGTAATG
oLOP433	ACTGGATCCTATTATATTTCTCAGGCGT
oLOP434	ACTGACTCCATGCGATGCGTATAGGATAATGCGC
oLOP435	ACTGACTCCATGCGATGCGTATAGGATAATGCGC
oLOP436	ACTGACTCCATGCGATGCGTATAGGATAATGCGC
oLOP437	ACTGACTCCATGCGATGCGTATAGGATAATGCGC
oLOP438	ACTGACTCCATGCGATGCGTATAGGATAATGCGC
oLOP439	ACTGGGGCCGGCCCTAGGCGCGCGCGCGCG
oLOP440	ACTGCAATGTGATATGTCTATATAAATC
oLOP443	ACTGCTAGTCCGAGGATTCC

Table S6. Construction of different expression plasmids

For details see Materials and methods in main text.

Plasmid	ORFs cloned	oligonucleotides used	restricted with	cloned into plasmid restricted with ()
pDG04	CC_1165	oLOP227/oLOP228	Ndel/KpnI	pET17b (Ndel/KpnI)
pPEG01	CC_1677	oLOP264/oLOP265	Ndel/BamHI	pET9a (Ndel/BamHI)
pJPG05	CC_1162	oLOP243/oLOP242	KpnI/XbaI	pBAD24 (KpnI/XbaI)
pJPG06	ECD_02854	oLOP434/oLOP435	Ncol/XbaI	pBAD24 (Ncol/XbaI)
pJPG07	Swit_3900	oLOP436/oLOP437	Ncol/XbaI	pBAD24 (Ncol/XbaI)
pJPG12	ECD_02853	oLOP432/oLOP433	Ndel/BamHI	pET9a (Ndel/BamHI)
pJPG15	CC_1162	oLOP438/oLOP439	EcoRV/FseI	pJPG13 (MCS-2) (EcoRV/FseI)
pJPG17	ECD_02851	oLOP440/oLOP443	Ndel/XhoI	pET17b (Ndel/XhoI)
pJPG20	ECD_02853/	oLOP432/oLOP435	Ndel/BamHI	pCDFDuet-1 (MCS-2) (Ndel/BglII)