Controllable synthesis porous Ag₂CO₃ nanorods for efficient photocatalysis

Shenghui Guo¹²³⁴, Jianxing Bao¹²³⁴, Tu Hu¹²³⁴, Libo Zhang¹²³⁴, Li Yang¹²³⁴*, Jinhui Peng¹²³⁴ and Caiyi Jiang¹²³⁴

Abstract

The novel porous Ag₂CO₃ nanorods were facilely synthesized via a one-pot aqueous solution reaction at room temperature. The crystalline phase and size distribution of the nanorods were determined by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. In addition, the porous feature of nanorods was confirmed by transmission electron microscopy (TEM) and nitrogen adsorption-desorption. The morphology and size of the Ag₂CO₃ crystal can be regulated via the choice of dispersing agents and adding approaches of reactants. Photocatalytic results show that the porous Ag₂CO₃ nanorods exhibit excellent photodegradation of rhodamine B (RhB) under visible-light irradiation, particularly the photoactivity performance and stability can be further improved in the presence of sodium bicarbonate (NaHCO₃). It is indicated that NaHCO₃ can prevent effectively the photocorrosion and promote the probability of electron-hole separation.

Keywords: Crystal growth; Porous nanorods; Silver carbonate; Photocatalysis

Background

Semiconductor photocatalysts have attracted intense attention expecting to apply in the fields of pollution removal and fuel production by utilizing abundant sunlight [1-3]. Over the past years, TiO₂ as the most universal used photocatalyst has been widely studied owing to its high photocatalytic activity, stability, non-toxicity, and low cost [4-7]. However, TiO₂ is a wide bandgap (approximately 3.2 eV) semiconductor and difficult to be activated in visible-light region, only can be utilized under UV light which is a small fraction (about 4%) of the entire solar spectrum. In addition, TiO₂ quantum yield of photoactivated processes is frequently lower due to its high recombination of photogenerated electron-hole pairs. Such clear drawback is the main motivation for searching a new, active under visible-light-driven and more efficient photocatalysts [8-10].

Recently, it has been found that silver-containing complex oxide semiconductors show great promise for improving photocatalytic performance owning to their tops of valence band can form a new higher-energy valence band consisting of the hybrid orbital of Ag 4d and O 2p, which make the bandgap narrower [11,12]. As a result, a series of visible-light-responsive novel silver-containing complex oxide semiconductor photocatalysts have been developed, such as AgNbO₃ [13,14], AgSbO₃ [12,15], Ag₂CrO₄ [16,17], Ag₂SO₃ [18], Ag₃AsO₄ [19], AgMO₂ (M = Al,Ga,In) [20], and AgIO₄ [21], and their active visible-light-driven photocatalysts for the degradation of organic pollutants have also been explored. More recently, it was reported that Ag₂CO₃ showed high-efficiency visible-light activity and exhibited universal degradation ability for typically several organic dyes [22-24]. However, the photocorrosion behavior of Ag₂CO₃ exposed to the light irradiation cannot be ignored. Hence, the addition of light stabilizer in reaction solution is critical to Ag₂CO₃ photocatalyst for its practical application. Dai et al. [23] prepared Ag₂CO₃ short rods by a simple precipitation reaction, and it showed that high visible-light photocatalytic activity for the photodegradation of rhodamine B (RhB). The authors stated that the silver nitrate (AgNO₃) is beneficial to the stability during the photocatalytic degradation reaction process because it can act as an electron acceptor to avoid photocorrosion of Ag₂CO₃ photocatalyst. Moreover, it has been reported that the photocatalytic efficiency can be further improved by rational design to achieve...
porous structures, in that, the porous structures avail the
adsorption of reactant molecules and provide multiple
accessible passages which reduce the reactant diffusion
distance due to their large specific surface area (SSA). Sig-
nificantly, porous structure can produce more isolated
and separated active sites after photoirradiation and pro-
vide special channels for charge transport, which results
in high efficiency of charge separation and transport in
under photoirradiation [25-27].

As far as we know, the synthesis of porous silver-
containing complex oxide photocatalysts by one-pot aque-
ous solution reaction at room temperature has rarely
reported. Herein, in the present work, we prepared a novel
porous Ag$_2$CO$_3$ nanorod photocatalyst by one-pot aque-
ous solution reaction using PVP-K90 dispersing agent at
room temperature. The as-prepared samples showed efficient
photocatalytic activity for the degradation RhB aque-
ous solution at room temperature. Figure 1A,B shows typical
photocatalytic activity for the degradation RhB aque-
ous solution using PVP-K90 as a light stabilizer under visible-light irradiations. Furthermore, the growth behavior of Ag$_2$CO$_3$ and photocatalysis enhanced mechanism of NaHCO$_3$ were also discussed.

Methods

Materials

All the chemicals were analytic grade purity and were
used without further purification. AgNO$_3$, NaHCO$_3$,
polyvinylpyrrolidone (PVP-K30, PVP-K90) and RhB were
purchased from Shanghai Chemical Regent Factory of
China (Shanghai, China).

Synthesis of porous Ag$_2$CO$_3$ nanorods

The porous Ag$_2$CO$_3$ nanorods were synthesized by a
typically simple aqueous solution reaction at room
temperature. In a typical synthesis, AgNO$_3$ (0.025 M)
and PVP-K90 (0.45 M) were dissolved in 40 mL deion-
ized water to form a clear solution by magnetic stirring,
then, 40 mL aqueous solution of NaHCO$_3$ (0.05 M) was
dropwise added to the obtained solution. The reaction
was carried out at room temperature for 2 h under mag-
netic stirring, and the precipitate was collected by cen-
trifugation, washed three times with deionized water and
absolute ethyl alcohol, and dried at 50°C for 12 h. Fur-
thermore, the synthesis of Ag$_2$CO$_3$ thin nanorods was
similar to the above description except that PVP-K90
was replaced by PVP-K30. The cube-like Ag$_2$CO$_3$ was
achieved by one-time injection of the NaHCO$_3$ solution
using PVP-K90 as the dispersing agent. N-doped TiO$_2$,
which is good photocatalytic activity under visible-light
irradiation, was obtained as a reference to compare with
our sample according to the reported literature [28].

Characterization

Scanning electron microscopy (SEM) images were taken
using a field-emission scanning electron microscope
(JSM-6701 F, JEOL Ltd., Akishima-shi, Japan) and
equipped with an energy-dispersive (ED) detector with
this field-emission scanning electron microscope (FE-
SEM) operated at 15 kV. Energy-dispersive X-Ray (EDX)
analysis was also performed on the JSM-6701 F instru-
ment during SEM. Transmission electron microscopy
(TEM) images were obtained on a JEM-2100 electron
microscope (JEOL Ltd., Akishima-shi, Japan) at an accel-
erating voltage of 200 kV. X-ray diffraction (XRD) data
for the finely ground samples were collected at 298 K
using a Bruker D8 X-ray diffractometer (Bruker AXS,
Inc., Madison, WI, USA) with Cu-Ka radiation source
($\lambda = 1.5406$ Å). It was operated at 40 kV in the 2θ range
of 10° to 80° in the continuous scan mode with the step
size of 0.01°. The changes in the oxidation state of Ag
were recorded though an AXIS-ULTRA DLD-600 W
photocatalysis spectrometer (Shimadzu Corporation,
Kyoto, Japan) with Al K1 radiation. Nitrogen
adsorption-desorption isotherms were collected on an
Autosorb-iQ sorption analyzer (Quantachrome Instruments,
Boyston Beach, FL, USA) and analyzed followed by
the Brunauer-Emmett-Teller (BET) equation. The pore size
distribution plots were obtained by using the
Barret-Joyner-Halenda (BJH) model.

Photocatalytic performance measurements

The photocatalytic performance of the as-prepared sam-
ple was evaluated by measuring the degradation of RhB.
In all catalytic activity of experiments, the samples
(0.05 g) were put into a solution of RhB dyes (50 mL,
10 mg/L), which was then irradiated with a 300-W Xe
arc lamp to provide visible light with $\lambda \geq 420$ nm by an
ultraviolet cutoff filter. Before the suspensions were irrad-
iated, they were magnetically stirred for 30 min in the dark
to complete the adsorption-desorption equilibrium between
dyes and photocatalysts. The degradation of RhB was moni-
tored by UV-vis spectrophotometer (UV-2550, Shimadzu
Corporation, Kyoto, Japan) every 5 min. Before the spec-
troscopy measurement, these photocatalysts were removed
from the photocatalytic reaction systems by centrifugation.
The relative concentrations (C/C$_0$) of the RhB solutions
were determined by the absorbance (A/A$_0$) at 553 nm.

Results and discussion

The porous Ag$_2$CO$_3$ nanorods were successfully synthe-
sized by the precipitation reaction between AgNO$_3$ of
aqueous solution in the presence of PVP-K90 and
NaHCO$_3$ at room temperature. Figure 1A,B shows typical
morphology of samples with different magnifications.
From Figure 1A, it can be clearly seen that the products
are uniformly dispersed and present nanorod morphology
with length of about 3 μm and diameter of 300 nm. More-
over, the high-magnification SEM image in Figure 1B indi-
cates that the surface of the Ag$_2$CO$_3$ nanorods displayed
certain roughness, which implies that the nanorods are of porous feature. To get more information about the morphology and interior feature of the Ag\(_2\)CO\(_3\) nanorods, the TEM technique was used to investigate of the Ag\(_2\)CO\(_3\) nanorods. As shown in Figure 1C, a typical TEM image of the as-prepared products and a mass of holes are distributed on Ag\(_2\)CO\(_3\) nanorods and every nanorod is assembled by many Ag\(_2\)CO\(_3\) nanocrystal grains. In addition, energy-dispersive X-Ray spectroscopy (EDS) spectrum (Figure 1D) indicates that the Ag\(_2\)CO\(_3\) samples only contain C, O, and Ag elements except for the elements of Au from the supports, proving that the obtained products are composed of pure Ag\(_2\)CO\(_3\).

To further study the surface area and porous feature of Ag\(_2\)CO\(_3\) samples, N\(_2\) adsorption-desorption isotherms were also measured. As shown in Figure 2, the isotherm of samples can be identified as the type IV and H3-type hysteresis loop in the IUPAC classification [29], indicating that the samples are of mesoporous feature. According to the fitting analysis with the BET equation, the surface area is 8.16 m\(^2\)/g, which is much greater than Ag\(_2\)CO\(_3\) short rods (0.91 m\(^2\)/g) as reported in other literature [24]. Furthermore, as shown in the inset of Figure 2, the main pore size distribution is about 3.6 nm, which is good consistent with TEM observation. The formation of mesoporous is attributable to the loose aggregation of the originated nanoparticles [30,31].

The X-ray diffraction (XRD) was further used to characterize as-prepared Ag\(_2\)CO\(_3\) samples. As shown in Figure 3, the Ag\(_2\)CO\(_3\) nanorods prepared with PVP-K90 as the dispersing agent intense diffraction peaks at 2\(\theta\) values of 17.6°, 19.3°, 32.8°, 33.8°, 39.2°, 48.5°, 52.7°, 60.4°, and 67.7° correspond to the planes of (101), (110), (211), (300), (220), (222), (410), (330), and (304). All diffraction peaks can be indexed to the typical trigonal structure Ag\(_2\)CO\(_3\) crystal (JCPDS No. 31-1236) and no other diffraction peaks are detected, indicating that the obtained products are pure phase Ag\(_2\)CO\(_3\) and further confirm by means of EDS characterization (Figure 1D).

Furthermore, a potential reaction approach explaining the above growth process, as the schematic illustration, is shown in Figure 4A. The synthesis procedure mechanism can be understood as follows. Firstly, Ag\(^+\) ions and PVP molecules could form Ag\(^+\)-PVP complex ions when the dissolution of PVP and AgNO\(_3\) in the deionized water under magnetic stirred with an appropriate frequency [32].

![Figure 1](image1.png) **Figure 1** SEM, TEM images, and EDS pattern. (A, B) Low- and high-magnified SEM images. (C) TEM images (inset scale bar = 20 nm). (D) EDS pattern of as-prepared Ag\(_2\)CO\(_3\) samples.

![Figure 2](image2.png) **Figure 2** Nitrogen adsorption-desorption isotherm. Nitrogen adsorption-desorption isotherms of as-prepared porous Ag\(_2\)CO\(_3\) nanorods. Insets: the pore size distribution of the crystals.
The formed Ag⁺-PVP complex nucleate with CO₃²⁻ and quickly grew into uniform small Ag₂CO₃ nanocrystal grains with preferential (300) crystal plane, while the grains are difficult to continue growing because of isolation effect results from the surface cladding by PVP. As the reaction process continues, a large number of tiny grains assemble into nanorods via the induced effect of PVP long-chain molecules [33-35]. Due to the isolation effect of PVP dispersing agents and the intercrystallite void of aggregation procedure, there exists pore space among adjacent Ag₂CO₃ grains and it eventually evolves into the porous nanorod structure. In addition, we investigated the relationship between geometrical morphology of nanorods and the category of dispersing agents. When K30 was used in the reaction system, the Ag₂CO₃ nanorods obviously transform thinner and shorter (Figure 4B) by comparing with the as-prepared Ag₂CO₃ nanorods with K90. It is ascribed that K30 has smaller molecular weight, shorter molecular chain length, and lower viscosity than K90, thus result in a weaker adsorption and induced effect in the process of assembly. Furthermore, the adding method of NaHCO₃ solution is also an important influence factor for the evolution of Ag₂CO₃ morphology. When accelerating the drop rate of NaHCO₃ solution, the morphology of as-prepared Ag₂CO₃ becomes small cube-like with the size of about 200 nm; however, it still have a few short nanorods (Figure 4C). These changes may be related to exorbitant instantaneous concentration of CO₃²⁻, which leads to Ag₂CO₃ explosive nucleation and rapid growth in short time. Owing to the isolation effect of PVP, the formed crystal particles spontaneously start ordered assembly as the aforementioned. However, the assembly process will terminate once CO₃²⁻ specie completely consumed in the reaction system, and it means that the crystal particles will not continue to assemble following by two end face direction. Naturally, the morphology of Ag₂CO₃ samples exhibit cubic trait rather than nanorod. As a consequence, we believe that the geometrical morphology of Ag₂CO₃ can be regulated expediently by the design of experimental conditions.

The photocatalytic activity of as-prepared porous Ag₂CO₃ nanorods was evaluated by the degradation of...
typical water pollutants, RhB under visible-light irradiation at room temperature. As is shown in Figure 5A, the self-degradation effect of RhB could be ignored. What is more, by comparing to the photocatalytic performance of as-prepared Ag$_2$CO$_3$ samples and N-doped TiO$_2$ under visible-light irradiation, it indicates that the photocatalytic activity of porous Ag$_2$CO$_3$ nanorods is superior to N-doped TiO$_2$. The degradation rate of porous Ag$_2$CO$_3$ nanorods can reach 94% within 45 min to RhB, while the latter only 45% in the same experimental conditions. Meanwhile, the kinetic process of the photocatalytic degradation reaction was investigated, as shown in Figure 5B. It is observed that the photocatalytic degradation reaction process follows pseudo-first-order kinetic feature with rate constant k of 0.0583 min$^{-1}$ for porous Ag$_2$CO$_3$ nanorods, which show much higher degradation rate than the N-doped TiO$_2$ and P25 (0.0136 min$^{-1}$ and 0.0033 min$^{-1}$, respectively). It benefits from more surface active sites and larger specific surface area for the porous structure and ultimately leads to the increase of contact area between materials and target pollution [25,26].

The stability of the Ag$_2$CO$_3$ is another vital consideration except for the photocatalytic activity. It is well known that most silver compounds are light sensitive and appear metallic silver when exposed to light, including Ag$_2$CO$_3$ photocatalyst [22,23,36]. To evaluate the stability of the photocatalyst, the recycle experiments of RhB degradation over porous Ag$_2$CO$_3$ nanorods were conducted, and the result is shown in Figure 5C. It was found that after four-time cycles, the degradation efficiency of Ag$_2$CO$_3$ would decrease from 60% to 3%, indicating that Ag$_2$CO$_3$ was unstable in the absence of imperative stabilizers under visible-light irradiation. Two possible mechanisms are proposed to explain the photocatalytic activity decreased and instability (Figure 6). Ag$_2$CO$_3$ belongs to indirect bandgap semiconductor with a bandgap about 2.30 eV [23,24]; hence, the electrons can be effectively activated from the valence band (VB) to conduction band (CB) under visible light, leaving the holes in the valence band. The holes are capable of decomposing the pollutants in the aqueous solution. The photogenerated electrons in CB can reduce the...
dissolved O$_2$ in the solution to form H$_2$O$_2$ (Equation 1) and also can reduce Ag$^+$ ions in Ag$_2$CO$_3$ to form Ag particles (Equation 2). The formation of large amounts of Ag particles on the surface can result in instability of the Ag$_2$CO$_3$ under visible light. Meanwhile, they can also bring the decrease of the photocatalytic activity. In addition, Ag$_2$CO$_3$ has a small quantity of dissolution in aqueous solution (Equation 3, Ag$^+$: 2.5 x 10$^{-4}$ M), and the free Ag$^+$ on the surface may be reduce to Ag0 (Equation 4). This process may further increase the solubility and promote the instability of Ag$_2$CO$_3$ in water.

$$\ce{O_2 + 2e^- + 2H^+ \rightarrow H_2O_2 \quad (1)}$$

$$\ce{Ag_2CO_3 + 2e^- \rightarrow 2Ag^0 + CO_3^{2-} \quad (2)}$$

$$\ce{Ag_2CO_3 \rightarrow 2Ag^+ + CO_3^{2-} \quad (3)}$$

$$\ce{Ag^+ + e^- \rightarrow Ag^0 \quad (4)}$$

To avoid the disadvantages of photocorrosion, we employ NaHCO$_3$ as a stabilizer to inhibit the photocorrosion and decrease the solubility of Ag$_2$CO$_3$ in aqueous solution. So, to further evaluate the photostability of Ag$_2$CO$_3$ in the presence of NaHCO$_3$, the recycled experiments for the photodegradation of RhB were performed, and the results are shown in Figure 5C. After four cycles, the Ag$_2$CO$_3$ still gives 70% degradation rate of RhB after 40-min visible-light irradiation and that the Ag$_2$CO$_3$ in the absence of NaHCO$_3$ almost lost their activity. It indicates that the presence of NaHCO$_3$ is helpful to enhance the stability and photocatalytic activity of Ag$_2$CO$_3$. On the basis of experimental results, two possible reasons are proposed to explain the significantly enhanced photocatalytic activity and stability of the presence of NaHCO$_3$. Firstly, the NaHCO$_3$ may effectively prevent the dissolution of the Ag$_2$CO$_3$ in aqueous solution. More importantly, when the presence of NaHCO$_3$, it can facilitate reaction (Equation 2) equilibrium shift to the left and decrease photogenerated electrons reduce Ag$^+$ ions in Ag$_2$CO$_3$. So, it avoids the formation of large amounts of Ag particles, which lead to the photocatalyst inactivate. However, a small amount of Ag particles on the surface of Ag$_2$CO$_3$ can become electron-
rich collective. These electrons will participate in the degradation of pollutants. Thus, it promotes effective separation of electron-hole pairs.

To be more convincing of the possible mechanism, XPS measurements were performed to investigate the changes of chemical state of Ag_2CO_3 before and after photodegradation experiments (Figure 7). The survey XPS spectra are shown in Figure 7A. Carbon, oxygen, and silver were detected in the as-prepared Ag_2CO_3 samples, and no other impurities were found. Furthermore, Figure 7B shows the high-resolution XPS spectrum of Ag 3d region. As-prepared Ag_2CO_3 samples of Ag 3d_3/2 and Ag 3d_5/2 photoelectrons at 374.13 and 368.13 eV could be attributed to Ag^+ in Ag_2CO_3 [37,38]. After four cycles of photodegradation experiments in the absence of NaHCO$_3$, the Ag 3d_5/2 peak obvious shifts from 368.13 to 368.33 eV, yet, the Ag 3d_3/2 peak only shifts to 368.23 eV once the presence of NaHCO$_3$. It is stated that a strong covalent bond between Ag^+ cation and the ligand will result lower binding energy of Ag^+ oxidation state than neutral Ag0 [39,40]. In contrast to the XPS spectra of all Ag 3d $\frac{5}{2}$ (Figure 7B), from curve (a) to (c), the peak shifts to the higher binding energy, which indicates the decrease of the Ag^+ in Ag_2CO_3 oxidation state while the increase of Ag0. Meanwhile, the variation tendency confirms the restrained effect of Ag_2CO_3 photocorrosion in the presence of NaHCO$_3$ from the perspective of experiments.

Furthermore, Figure 8A shows the comparison of visible-light photocatalytic activity of porous Ag_2CO_3 nanorods in the presence of NaHCO$_3$ with different concentrations. When only in the presence of NaHCO$_3$, the RhB solutions almost were not degraded. Further observation shows that the Ag_2CO_3 exhibits the best photocatalytic activity in 0.01 M NaHCO$_3$. When the concentration of NaHCO$_3$ was reduced to 0.001 M, the degradation rate of RhB was decreased. This is due to low concentrations of NaHCO$_3$ which will not effectively prevent the solubility and photogenerated electrons reduce Ag^+ ions in Ag_2CO_3. However, in 0.1 M NaHCO$_3$, the degradation rate is decrease even further. This may be understood as such, although excess NaHCO$_3$ effectively prevents photogenerated electrons reduce Ag$^+$, at the same time, the photogenerated electrons become difficult to separate from holes. Furthermore, a small amount of Ag particles can be helpful to promote photocatalytic activity. Moreover, the UV-vis absorbance spectral changes of RhB aqueous in porous Ag_2CO_3 nanorods in the presence of 0.01 M NaHCO$_3$ as a function of irradiation time were investigated (Figure 8B). The maximum absorption wavelengths of RhB solutions are not shifting which indicate that the benzene/heterocyclic rings of the RhB molecule are decomposed [24].

Conclusions
In summary, the novel porous Ag_2CO_3 nanorods were successfully synthesized by using a facile, simple, effective method. The morphology and size of the as-prepared samples can be controlled by adjusting the dispersing agent category and means of adding to reactant. The obtained porous Ag_2CO_3 nanorods exhibit the capability to efficiently catalyze the degradation of organic pollutants under visible-light irradiation. Furthermore, adding an appropriate concentration of NaHCO$_3$ solution can effectively improve photoactivity and stability of Ag_2CO_3. Consequently, our work provides a one-pot aqueous solution reaction at room temperature of strategy which may be useful to extend to the synthesis of porous nanostructures of other inorganic materials.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
JB carried out the sample preparation and experimental measurements and drafted the manuscript. SG and LY conceived the experiments, and revised the manuscript. TH and CJ helped to analyze the characterization results. LZ and JP supervised all of the study and provided financial support. All authors read and approved the final manuscript.

Acknowledgements
This work was supported by the Yunnan Provincial Science and Technology Innovation Talents scheme - Technological Leading Talent (NO. 2013HA002) and State International Joint Research Center of Advanced Technology for Superhard Materials (NO.2013B01038).

Author details
1State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China. 2National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming 650093, China. 3Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming 650093, China. 4Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, No. 253 Xuefu Rd., Kunming 650093, China.

Received: 29 January 2015 Accepted: 7 April 2015
Published online: 21 April 2015

References
1. Zhang H, Chen G, Bahnemann DW. Photoelectrocatalytic materials for environmental applications. J Mater Chem. 2009;19:5089–121.
2. Tech WY, Scott JA, Amal R. Progress in heterogeneous photocatalysis: from classical radical chemistry to engineering nanomaterials and solar reactors. J Phys Chem Lett. 2012;3629–39.
3. Kamat PV, Biquert J. Solar fuels. Photocatalytic hydrogen generation. J Phys Chem C. 2013;117:14873–5.
4. Fujishima A, Rao TN, Tryk DA. Titanium dioxide photocatalysis. J Photochem Photobio C. 2000;1:1
5. Chen X, Mao SS. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev. 2007;107:2891–959.
6. Paramasivam I, Jha H, Liu N, Schmuki P. A review of photocatalysis using self-organized TiO$_2$ nanotubes and other ordered oxide nanostructures. Small. 2012;8:3073–103.
7. Fresno F, Portela R, Suárez S, Coronado JM. Photocatalytic materials: recent achievements and near future trends. J Mater Chem A. 2014;2:2863–84.
8. Li Y, Zhang L, Wu W, Dai P, Yu X, Wu M, et al. Hydrothermal growth of TiO$_2$ nanowire membranes sensitized with CdS quantum dots for the enhancement of photocatalytic performance. Nanoscale Res Lett. 2014;9:1–6.
photocatalyst with universal photodegradation–nanohybrids with improved visible-light-responsive semiconductor with visible-light-responsive and its photocatalytic nanospheres. J Alloy Compd. 2015;622:695–702.

35. Wang Y, Huang D, Zhu X, Ma Y, Geng H, Wang Y, et al. Surfactant-free synthesis of Cu$_2$O hollow spheres and their wavelength-dependent visible photocatalytic activities using LED lamps as cold light sources. Nanoscale Res Lett. 2014;9:1–8.

36. Yu C, Li G, Kumar S, Yang K, Jin R. Phase transformation synthesis of novel Ag$_2$O/Ag$_2$CO$_3$ heterostructures with high visible-light efficiency in photocatalytic degradation of pollutants. Adv Mater. 2014;26:892–8.

37. Xu H, Zhu J, Song Y, Zhao W, Xu Y, Song Y, et al. Ion-exchange preparation for visible-light-driven photocatalyst AgBr/Ag$_2$CO$_3$ and its photocatalytic activity. RSC Adv. 2014;4:9139–47.

38. Xu H, Zhu J, Song Y, Zhu T, Zhao W, Song Y, et al. Fabrication of AgX-loaded Ag$_2$CO$_3$ (X = Cl, I) composites and their efficient visible-light-driven photocatalytic activity. J Alloy Compd. 2015;622:347–57.

39. MeeLée J, KyungáJo Y. A facile exfoliation-crystal growth route to multicomponent Ag$_2$O/Ag$_2$CO$_3$/Ti$_2$O$_3$ nanohybrids with improved visible light photocatalytic activity. Dalton T. 2014;43:10566–73.

40. Geaenstroom SW, Winograd N. Initial and final state effects in the ESCA spectra of cadmium and silver oxides. J Phys Chem. 1977;81:3500–6.