A STOCHASTIC MODEL OF GRAIN BOUNDARY DYNAMICS: A FOKKER-PLANCK PERSPECTIVE

YEKATERINA EPSHTEYN, CHUN LIU, AND MASASHI MIZUNO

ABSTRACT. Many technologically useful materials are polycrystals composed of small monocrystalline grains that are separated by grain boundaries of crystallites with different lattice orientations. The energetics and connectivities of the grain boundaries play an essential role in defining the effective properties of materials across multiple scales. In this paper we derive a Fokker-Planck model for the evolution of the planar grain boundary network. The proposed model considers anisotropic grain boundary energy which depends on lattice misorientation and takes into account mobility of the triple junctions, as well as independent dynamics of the misorientations. We establish long time asymptotics of the Fokker-Planck solution, namely the joint probability density function of misorientations and triple junctions, and closely related the marginal probability density of misorientations. Moreover, for an equilibrium configuration of a boundary network, we derive explicit local algebraic relations, a generalized Herring Condition formula, as well as formula that connects grain boundary energy density with the geometry of the grain boundaries that share a triple junction. Although the stochastic model neglects the explicit interactions and correlations among triple junctions, the considered specific form of the noise, under the fluctuation-dissipation assumption, provides partial information about evolution of a grain boundary network, and is consistent with presented results of extensive grain growth simulations.

1. Introduction

Most technologically useful materials are polycrystalline microstructures composed of a myriad of small monocrystalline grains separated by grain boundaries. The energetics and connectivities of grain boundaries play an important role in defining the main properties of materials across multiple scales. More recent mesoscale experiments and simulations provide large amounts of information about both geometric features and crystallography of the grain boundary network in material microstructures.

A classical model, due to Mullins and Herring \[24, 37, 38\], for the evolution of grain boundaries in polycrystalline materials is based on the motion by mean curvature as the local evolution law. Mathematical analysis of the motion by mean curvature can be found, for instance in \[16, 17, 20, 9\], and the study of the curvature flow for networks can be found in, e.g. \[27, 34, 35, 33, 26, 12\]. In addition, to have a well-posed model of the evolution of the grain boundary network, one has to impose a separate condition at the triple junctions where three grain boundaries meet \[14, 27\].

Grain growth is a very complex multiscale process. It involves, for example, dynamics of grain boundaries, triple junctions (triple junctions are where three grain boundaries meet) and the dynamics of lattice misorientations (difference in the orientation between two neighboring grains that share the grain boundary)/possibility of grains rotations. Recently, there
are some studies that consider interactions among grain boundaries and triple junctions, e.g., [42, 41, 6, 47, 45, 46]. In our very recent work [19, 18], we developed a new model for the evolution of the 2D grain-boundary network with finite mobility of the triple junctions and with dynamic lattice misorientations (possibility of grain rotations). In [19, 18], using the energetic variational approach, we derived a system of geometric differential equations to describe the motion of such grain boundaries. Under assumption of no curvature effect, we established a local well-posedness result, as well as large time asymptotic behavior for the model. Our results included obtaining explicit energy decay rate for the system in terms of mobility of the triple junction and the misorientation parameter (grains rotation relaxation time scale). In addition, we conducted several numerical experiments for the 2D grain boundary network in order to further understand/illustrate the effect of relaxation time scales, e.g. of the curvature of grain boundaries, mobility of triple junctions, and dynamics of misorientations on how the grain boundary system decays energy and coarsens with time [18, 7]. In [7], we also presented and discussed relevant experimental results of grain growth in thin films. Note that in the work [19, 18], the mathematical analysis of the model was done under assumption of no critical events/no disappearance events, e.g., grain disappearance, facet/grain boundary disappearance, facet interchange, splitting of unstable junctions (however, numerical simulations were performed with critical events).

The current work is motivated and is closely related to the work in [4, 8, 3] where a reduced 1D coarsening model based on the dynamical system was studied for texture evolution and was used to identify texture evolution as a gradient flow, see also the article [28] for a perspective on the problem. In addition, this paper is a further extension of our work in [19, 18, 7], and the work [10] is also relevant. In this paper, we study a stochastic model for the evolution of planar grain boundary network in order to be able to incorporate and model the effect of the critical events. We start with a simplified model and, hence, consider the Langevin equation analog of the model from [19], with the interactions among triple junctions and misorientations modeled as white noise. Next, we use the energetic variational approach to establish the associated fluctuation-dissipation theorem. The fluctuation-dissipation property ensures that the free energy of the corresponding Fokker-Planck system is dissipative. Moreover, the fluctuation-dissipation theorem also gives the sufficient condition for the steady-state solution of the Fokker-Planck equation to be given by the Boltzmann distribution.

Next, we study the well-posedness of the derived Fokker-Planck system under assumption of the fluctuation-dissipation relation. In particular, we show that the solution of the Fokker-Planck equation converges exponentially fast to the Boltzmann distribution for grain boundary energy of the system. Note that, the grain boundary energy has degeneracy with respect to the misorientations (due to constraints on misorientations) and singularity with respect to the triple junction. To overcome these difficulties, based on the idea of [36] (and see also a relevant work [22]), we consider Fokker-Planck equation in a weighted L^2 space, and we use the semigroup theory and the Poincaré inequality to obtain well-posedness and long-time asymptotics of the solution.

Finally, for an equilibrium configuration of a boundary network, we derive explicit local algebraic relations, a generalized Herring Condition formula, as well as formula that connects grain boundary energy density with the geometry of the grain boundaries that share a triple junction. The later local algebraic relation gives the condition for a steady-state solution of marginal probability density of misorientations to be the Boltzmann distribution with respect to a grain boundary energy density. Such a steady-state solution for marginal probability density of misorientations is related to the observed Boltzmann distribution for the steady-state Grain Boundary...
Character Distribution (GBCD) statistical metric of grain growth, e.g. [3,4,8]. Although the investigated simplified stochastic model neglects the explicit interactions and correlations among triple junctions, the considered specific form of the noise, under the fluctuation-dissipation assumption, provides partial information about evolution of a grain boundary network, and is consistent with extensive grain growth simulations presented in this paper.

The paper is organized as follows. In Section 2.1, we discuss important details and properties of the model for the grain boundary motion from [19]. In Sections 2.2, we introduce the stochastic model of the grain boundary system. In Section 3, we establish well-posedness results of the associated Fokker-Planck equation and obtain the long-time asymptotic behavior of the solution. In Section 4, we derive Fokker-Planck type equation for the marginal probability density of the misorientations and study long-time asymptotics of its solution. Finally, in Section 5, we present extensive numerical experiments to show consistency among the obtained results for the simplified stochastic model of a grain boundary network and the results of 2D grain growth simulations based on sharp-interface approach [18] (and an earlier work [8, 3]), including numerical investigation of the derived local algebraic relations for an equilibrium configuration of a boundary network.

2. THE FOKKER-PLANCK EQUATION AND THE FLUCTUATION-DISSIPATION PRINCIPLE

In this section, we first derive a Langevin equation, a stochastic differential equation for the dynamics of misorientations and the triple junctions using the deterministic model of grain boundary motion obtained in [19] and see also [18]. After that, we establish the fluctuation-dissipation theorem from associated Fokker-Planck equation. Note, we use below notation $|\cdot|$ for a standard Euclidean vector norm.

2.1. Review of the deterministic model and the gradient flow structure. First, we review here the deterministic grain boundary motion model from [19]. Assume a single triple junction and consider the following grain boundary energy of the system,

$\tilde{E} = \sum_{j=1}^{3} \sigma(\Delta^{(j)}\alpha)|\Gamma^{(j)}_t|$,

where $\sigma : \mathbb{R} \to \mathbb{R}$ is a given surface tension of a grain boundary, $\alpha^{(j)}_t = \alpha^{(j)}(t) : [0, \infty) \to \mathbb{R}$ is a time-dependent orientation of the grains, $\theta = \Delta^{(j)}\alpha := \alpha^{(j-1)} - \alpha^{(j)}$ is a lattice misorientation of the grain boundary $\Gamma^{(j)}_t$, and $|\Gamma^{(j)}_t|$ is the length of $\Gamma^{(j)}_t$ for $j = 1, 2, 3$. Here we put $\alpha^{(0)} = \alpha^{(3)}$. In this work, we assume a grain boundary energy density $\sigma(\Delta^{(j)}\alpha)$ is only a function of misorientation $\Delta^{(j)}\alpha$. In addition, we assume that σ is a C^1 function on \mathbb{R}.
Then, as a result of applying the maximal dissipation principle for the energy (2.1), the following model was derived in [19],

\[
\begin{align*}
\frac{d\mathbf{a}_n}{dt} &= \mu \sigma(\Delta^{(j)}\alpha) \kappa^{(j)}, \quad \text{on } \Gamma_t^{(j)}, \; t > 0, \; j = 1, 2, 3, \\
\frac{d\mathbf{a}}{dt} &= -\gamma \left(\sigma_\theta(\Delta^{(j)}\alpha) |\Gamma_t^{(j+1)}| - \sigma_\theta(\Delta^{(j)}\alpha) |\Gamma_t^{(j)}| \right), \quad j = 1, 2, 3, \\
\frac{da}{dt}(t) &= -\eta \sum_{k=1}^{3} \sigma(\Delta^{(k)}\alpha) \frac{b^{(k)}}{|b^{(k)}|}, \quad t > 0, \; \text{at } \mathbf{a}, \\
\Gamma_t^{(j)} : \mathbf{\xi}^{(j)}(s, t), \quad 0 \leq s \leq 1, \; t > 0, \; j = 1, 2, 3, \\
\mathbf{a}(t) &= \mathbf{\xi}^{(1)}(1, t) = \mathbf{\xi}^{(2)}(1, t) = \mathbf{\xi}^{(3)}(1, t), \quad \text{and} \quad \mathbf{\xi}^{(j)}(0, t) = \mathbf{x}^{(j)}, \quad j = 1, 2, 3,
\end{align*}
\]

where $\Delta^{(4)}\alpha = \Delta^{(1)}\alpha$. In (2.2), $v_n^{(j)}$, $\kappa^{(j)}$, and $b^{(j)} = \mathbf{\xi}_s^{(j)}$ denote a normal velocity, a curvature and a tangent vector of the grain boundary $\Gamma_t^{(j)}$, respectively. Note that s is not an arc length parameter of $\Gamma_t^{(j)}$, namely, $b^{(j)}$ is not necessarily a unit tangent vector. The vector $\mathbf{a} = \mathbf{a}(t) : [0, \infty) \rightarrow \mathbb{R}^2$ denotes a position of the triple junction, $\mathbf{x}^{(j)}$, in a current context (see also numerical Section 5), is a position of the end point of the grain boundary. The three independent relaxation time scales $\mu, \gamma, \eta > 0$ (length, misorientation and position of the triple junction) are considered in this work as positive constants.
Recall that in [19], to derive (2.2), we first computed energy dissipation rate,
\[
\frac{d \tilde{E}}{dt} = \frac{d}{dt} \sum_{j=1}^{3} \int_{0}^{1} \sigma(\Delta^{(j)} \alpha(t))|b^{(j)}(s, t)| \, ds
\]
(2.3)
\[
= \sum_{j=1}^{3} \int_{0}^{1} \sigma(\Delta^{(j)} \alpha(t)) \frac{b^{(j)}(s, t)}{|b^{(j)}(s, t)|} \cdot \xi^{(j)}_{ts}(s, t) \, ds
\]
\[
+ \sum_{j=1}^{3} \int_{0}^{1} \sigma_{\theta}(\Delta^{(j)} \alpha(t))(\Delta^{(j)} \alpha(t))_{t} |b^{(j)}(s, t)| \, ds.
\]
Using $\xi^{(j)}_{ts} = (\xi^{(j)}_{t})_{s}$, integration by parts, $\xi^{(j)}(0, t) = x^{(j)}$ is independent of t, and $\xi^{(j)}(1, t) = a(t)$, we have,
(2.4)
\[
\sum_{j=1}^{3} \int_{0}^{1} \sigma(\Delta^{(j)} \alpha(t)) \frac{b^{(j)}(s, t)}{|b^{(j)}(s, t)|} \cdot \xi^{(j)}_{ts}(s, t) \, ds
\]
\[
= - \sum_{j=1}^{3} \sigma(\Delta^{(j)} \alpha(t)) \int_{0}^{1} \left(\frac{b^{(j)}(s, t)}{|b^{(j)}(s, t)|} \right) \cdot \xi^{(j)}_{t}(s, t) \, ds + \sum_{j=1}^{3} \sigma(\Delta^{(j)} \alpha(t)) \frac{b^{(j)}(1, t)}{|b^{(j)}(1, t)|} \cdot a(t).
\]
Recall that $\Delta^{(j)} \alpha = \alpha^{(j-1)} - \alpha^{(j)}$, we replace index of sum for the misorientations and we obtain,
(2.5)
\[
\sum_{j=1}^{3} \int_{0}^{1} \sigma_{\theta}(\Delta^{(j)} \alpha(t))(\Delta^{(j)} \alpha(t))_{t} |b^{(j)}(s, t)| \, ds
\]
\[
= \sum_{j=1}^{3} \int_{0}^{1} \left(\sigma_{\theta}(\Delta^{(j+1)} \alpha(t)) |\Gamma^{(j+1)}_{t} - | - \sigma_{\theta}(\Delta^{(j)} \alpha(t)) |\Gamma^{(j)}_{t} \right) \alpha^{(j)}_{t}(t).
\]
Inserting (2.4) and (2.5) into (2.3), we have,
(2.6)
\[
\frac{d \tilde{E}}{dt} = - \sum_{j=1}^{3} \sigma(\Delta^{(j)} \alpha(t)) \int_{0}^{1} \left(\frac{b^{(j)}(s, t)}{|b^{(j)}(s, t)|} \right) \cdot \xi^{(j)}_{t}(s, t) \, ds + \sum_{j=1}^{3} \sigma(\Delta^{(j)} \alpha(t)) \frac{b^{(j)}(1, t)}{|b^{(j)}(1, t)|} \cdot a(t)
\]
\[
+ \sum_{j=1}^{3} \int_{0}^{1} \left(\sigma_{\theta}(\Delta^{(j+1)} \alpha(t)) |\Gamma^{(j+1)}_{t} - | - \sigma_{\theta}(\Delta^{(j)} \alpha(t)) |\Gamma^{(j)}_{t} \right) \alpha^{(j)}_{t}(t).
\]
After that, we ensured that the entire system is dissipative, that is $\frac{d \tilde{E}}{dt} \leq 0$. We obtained (2.2) with a help of the Frenet-Serret formulas and with a help of the energy dissipation principle which took a form as presented below,
\[
\frac{d \tilde{E}}{dt} = - \sum_{j=1}^{3} \left(\frac{1}{\mu} \int_{\Gamma^{(j)}_{t}} |v^{(j)}_{n}|^{2} d\mathcal{H}^{1} + \frac{1}{\gamma} \left| \frac{d \alpha^{(j)}}{dt} (t) \right|^{2} \right) - \frac{1}{\eta} \left| \frac{d a}{dt} \right|^{2},
\]
where \mathcal{H}^{1} is the 1-dimensional Hausdorff measure. More in-depth discussion and complete details of the derivation of the model (2.2) can be found in our earlier work [19, Section 2].
Next, in [19], we relaxed curvature effect, by taking the limit $\mu \to \infty$, and we obtained the reduced model,

\begin{equation}
\begin{aligned}
\frac{d\alpha^{(j)}}{dt} &= -\gamma \left(\sigma_\theta(\Delta^{(j+1)}\alpha)|a(t) - x^{(j+1)}| - \sigma_\theta(\Delta^{(j)}\alpha)|a(t) - x^{(j)}| \right), \quad j = 1, 2, 3, \\
\frac{da}{dt}(t) &= -\eta \sum_{j=1}^{3} \sigma(\Delta^{(j)}\alpha) \frac{a(t) - x^{(j)}}{|a(t) - x^{(j)}|}, \quad t > 0,
\end{aligned}
\end{equation}

(2.7)

where $x^{(4)} = x^{(1)}$. Note, in [19], we first applied the maximal dissipation principle for the grain boundary energy of the system with curvature (2.7), and after that we took the relaxation limit $\mu \to \infty$. In fact, as the following proposition shows, these operations are interchangeable.

Proposition 2.1. Let E be a relaxation energy associated with \tilde{E} ($\mu \to \infty$), given by

$$E(\Delta\alpha, a) = \sum_{j=1}^{3} \sigma(\Delta^{(j)}\alpha)|a - x^{(j)}|.$$

Then, equation (2.7) is a gradient flow associated with the energy E, namely, we have,

$$\frac{\delta E}{\delta \alpha^{(j)}} = \sigma_\theta(\Delta^{(j+1)}\alpha)|a - x^{(j+1)}| - \sigma_\theta(\Delta^{(j)}\alpha)|a - x^{(j)}|,$$

(2.8)

$$\frac{\delta E}{\delta a} = \sum_{j=1}^{3} \sigma(\Delta^{(j)}\alpha) \frac{a - x^{(j)}}{|a - x^{(j)}|}.$$

Proof. The first equation of (2.8) can be obtained by taking the derivative of E with respect to $\alpha^{(j)}$. The second equation of (2.8) can be deduced from,

$$\frac{d}{d\varepsilon} \bigg|_{\varepsilon=0} E(\Delta\alpha, a + \varepsilon p) = \sum_{j=1}^{3} \sigma(\Delta^{(j)}\alpha) \frac{a - x^{(j)}}{|a - x^{(j)}|} \cdot p,$$

for $p \in \mathbb{R}^2$.

To analyze the grain boundary motion in this work, Sections [2.2][4], it will be convenient to use the misorientation $\Delta^{(j)}\alpha$ as a state variable, instead of the orientation $\alpha^{(j)}$. Thus, from the first equation of (2.7), we can derive,

\begin{equation}
\frac{d(\Delta^{(j)}\alpha)}{dt} = -\gamma \left(2\sigma_\theta(\Delta^{(j)}\alpha)|a(t) - x^{(j)}| - \sigma_\theta(\Delta^{(j+1)}\alpha)|a(t) - x^{(j+1)}| - \sigma_\theta(\Delta^{(j-1)}\alpha)|a(t) - x^{(j-1)}| \right),
\end{equation}

(2.9)

where $\Delta^{(0)}\alpha = \Delta^{(3)}\alpha$, $\Delta^{(1)}\alpha = \Delta^{(4)}\alpha$, $\Delta^{(2)}\alpha = \Delta^{(5)}\alpha$, and $x^{(j)}$ is defined similarly. From the definition of the misorientation, $\Delta^{(j)}\alpha = \alpha^{(j-1)} - \alpha^{(j)}$, it is easy to find the constraint,

\begin{equation}
\Delta^{(1)}\alpha + \Delta^{(2)}\alpha + \Delta^{(3)}\alpha = 0.
\end{equation}

(2.10)

To consider (2.9) to be a gradient flow, we introduce the 2-dimensional plane,

\begin{equation}
\Omega := \left\{ (\Delta^{(1)}\alpha, \Delta^{(2)}\alpha, \Delta^{(3)}\alpha) \in \left[-\frac{\pi}{4}, \frac{\pi}{4}\right]^3 : \Delta^{(1)}\alpha + \Delta^{(2)}\alpha + \Delta^{(3)}\alpha = 0 \right\} \subset \mathbb{R}^3.
\end{equation}

(2.11)
Hence, the equation (2.9) can be regarded as a gradient flow of the energy \(E \) with respect to the misorientation \(\Delta \alpha \) and the triple junction \(a \).

Proposition 2.2. The system of equations (2.7) is a gradient flow of the energy \(E \) with respect to the misorientation \(\Delta \alpha \) and the triple junction \(a \).

Proof. We need to show that the right hand side of (2.9) is a gradient of \(E \) with respect to misorientation \(\Delta \alpha \) on \(\Omega \). Using the fact that one of the normal vectors of \(\Omega \) is \((1, 1, 1) \), the tangential derivative for an arbitrary function \(\phi = \phi \left(\Delta(1) \alpha, \Delta(2) \alpha, \Delta(3) \alpha \right) \) on \(\Omega \) is given by,

\[
\nabla_{\Delta \alpha} \phi = \left(\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \right) \begin{pmatrix} \phi_{\Delta(1) \alpha} \\ \phi_{\Delta(2) \alpha} \\ \phi_{\Delta(3) \alpha} \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix} \begin{pmatrix} \phi_{\Delta(1) \alpha} \\ \phi_{\Delta(2) \alpha} \\ \phi_{\Delta(3) \alpha} \end{pmatrix}.
\]

Thus, we have that,

\[
\nabla_{\Delta \alpha} E = \frac{1}{3} \begin{pmatrix} +2\sigma_\theta(\Delta(1) \alpha) |a - x(1)| - \sigma_\theta(\Delta(2) \alpha) |a - x(2)| - \sigma_\theta(\Delta(3) \alpha) |a - x(3)| \\ -\sigma_\theta(\Delta(1) \alpha) |a - x(1)| + 2\sigma_\theta(\Delta(2) \alpha) |a - x(2)| - \sigma_\theta(\Delta(3) \alpha) |a - x(3)| \\ -\sigma_\theta(\Delta(1) \alpha) |a - x(1)| - \sigma_\theta(\Delta(2) \alpha) |a - x(2)| + 2\sigma_\theta(\Delta(3) \alpha) |a - x(3)| \end{pmatrix}.
\]

Hence, the equation (2.9) can be regarded as a gradient flow of the energy \(E \), that is,

\[
\frac{d}{dt} \begin{pmatrix} \Delta(1) \alpha \\ \Delta(2) \alpha \\ \Delta(3) \alpha \end{pmatrix} = -3\gamma \nabla_{\Delta \alpha} E.
\]

From Propositions 2.1 and 2.2 we have that,

\[
\frac{d}{dt}(\Delta \alpha) = -3\gamma \nabla_{\Delta \alpha} E, \quad \frac{dv}{dt} = -\eta \nabla a E,
\]

where \(\Delta \alpha = (\Delta(1) \alpha, \Delta(2) \alpha, \Delta(3) \alpha) \). Thus, we obtain the following energy dissipation,

\[
\frac{dE}{dt} = -\frac{1}{3\gamma} \left| \frac{d(\Delta \alpha)}{dt} \right|^2 - \frac{1}{\eta} \left| \frac{dv}{dt} \right|^2.
\]

2.2. Stochastic model and the fluctuation-dissipation theorem.

Many technologically useful materials are polycrystals composed of a myriad of small monocrystalline grains separated by grain boundaries. An interaction among the grain boundaries and the triple junctions in a grain boundary network (including modeling of critical/disappearance events, e.g., grain disappearance, facet/grain boundary disappearance, facet interchange, splitting of unstable junctions) is a very complex process. Here, we propose a simplified stochastic model to develop better understanding of dynamics of misorientations and triple junctions in a network. In our model, we consider ensemble of triple junctions and misorientations (without curvature effect), and we use white noise to describe interactions among them. Therefore, we consider the following Langevin equations, or stochastic differential equations,

\[
d(\Delta \alpha) = v_{\Delta \alpha} dt + \beta_{\Delta \alpha} dB, \quad v_{\Delta \alpha} = -3\gamma \nabla_{\Delta \alpha} E,
\]

\[
da = v_a dt + \beta_a dB, \quad v_a = -\eta \frac{\delta E}{\delta a} = -\eta \nabla a E.
\]
Here B denotes a Brownian motion, and $\beta_{\Delta a}, \beta_a > 0$ are fluctuation parameters for misorientation Δa and triple junctions a, respectively. The proposed model (2.15) can be viewed as a stochastic analog of the “vertex model” (2.7). Thus, the associated probability density function or joint distribution function of misorientations Δa and positions of the triple junctions a, $f = f(\Delta a, a, t)$ obeys the following Fokker-Planck equation,

$$\frac{\partial f}{\partial t} + \nabla^Q_{\Delta a} \cdot (\mathbf{v}_{\Delta a} f) + \nabla_a \cdot (\mathbf{v}_a f) = \frac{\beta^2_{\Delta a}}{2} \Delta_{\Delta a} f + \frac{\beta^2_a}{2} \Delta_a f,$$

where $\Delta_{\Delta a} = \nabla^Q_{\Delta a} \cdot \nabla^Q_{\Delta a}$, and Δ_a is the standard Laplacian on Ω_{TJ}. Hereafter a bounded domain $\Omega_{\text{TJ}} \subset \mathbb{R}^2$ denotes the state space for the triple junction a. In addition, we impose the natural boundary conditions,

$$f \nabla^Q_{\Delta a} \left(\log f + \frac{6\gamma}{\beta^2_{\Delta a}} E \right) \cdot \mathbf{v}_{\Delta a} \bigg|_{\partial \Omega \times \Omega_{\text{TJ}}} = 0, \quad f \nabla_a \left(\log f + \frac{2\eta}{\beta^2_a} E \right) \cdot \mathbf{v}_a \bigg|_{\Omega \times \partial \Omega_{\text{TJ}}} = 0,$$

where $\mathbf{v}_{\Delta a}$ and \mathbf{v}_a are an outer unit normal vector to $\partial \Omega$ and $\partial \Omega_{\text{TJ}}$, respectively. Next, we state a condition for the fluctuation parameters $\beta_{\Delta a}$ and β_a under which the system described by the Fokker-Planck equation (2.16)-(2.17) is dissipative.

Theorem 2.3. Let f be a solution of the Fokker-Planck equation (2.16)-(2.17) with velocities $\mathbf{v}_{\Delta a}$, \mathbf{v}_a as defined in (2.15). If in addition, the relaxation time scales and the fluctuation parameters satisfy the relation,

$$\frac{6\gamma}{\beta^2_{\Delta a}} = \frac{2\eta}{\beta^2_a},$$

which in turn, determines the parameter D as,

$$D := \frac{\beta^2_{\Delta a}}{6\gamma} = \frac{\beta^2_a}{2\eta},$$

then, the Fokker-Planck equation (2.16)-(2.17) satisfies the following energy law,

$$\frac{d}{dt} \int_{\Omega \times \Omega_{\text{TJ}}} (D f \log f + f E) \, d\Delta a \, da$$

$$= -\frac{\beta^2_{\Delta a}}{2D} \int_{\Omega \times \Omega_{\text{TJ}}} f \left(\nabla^Q_{\Delta a} (D \log f + E) \right)^2 \, d\Delta a \, da - \frac{\beta^2_a}{2D} \int_{\Omega \times \Omega_{\text{TJ}}} f \left(\nabla_a (D \log f + E) \right)^2 \, d\Delta a \, da.$$

Here, $\int_{\Omega \times \Omega_{\text{TJ}}} (D f \log f + f E) \, d\Delta a \, da$ represents the (scaled) free energy of the Fokker-Planck system (2.16)-(2.17).

Proof. First, we use expression (2.15) for the velocities $\mathbf{v}_{\Delta a}$ and \mathbf{v}_a in the Fokker-Planck equation (2.16), and we have,

$$\frac{\partial f}{\partial t} = \frac{\beta^2_{\Delta a}}{2} \nabla^Q_{\Delta a} \left(f \nabla^Q_{\Delta a} \left(\log f + \frac{6\gamma}{\beta^2_{\Delta a}} E \right) \right) + \frac{\beta^2_a}{2} \nabla_a \left(f \nabla_a \left(\log f + \frac{2\eta}{\beta^2_a} E \right) \right).$$

Next, we multiply the Fokker-Planck equation (2.16) by $D(1 + \log f) + E$ and integrate over $\Omega \times \Omega_{\text{TJ}}$. Note that,

$$\frac{\partial f}{\partial t} (D(1 + \log f) + E) = \frac{\partial}{\partial t} (D f \log f + f E).$$
Hence, using the natural boundary conditions (2.17), we have,

\[
\frac{d}{dt} \int_{\Omega \times \Omega_{T}} (D f \log f + f E) \, d\Delta\alpha \, d\alpha = -\frac{\beta^{2}_{\Delta\alpha}}{2} \int_{\Omega \times \Omega_{T}} \left(f \nabla_{\Delta\alpha} \left(\log f + \frac{6\gamma}{\beta^{2}_{\Delta\alpha}} E \right) \right) \cdot \nabla_{\Delta\alpha} (D \log f + E) \, d\alpha \, d\alpha \nonumber
\]

\[
\frac{d}{dt} \int_{\Omega \times \Omega_{T}} (D f \log f + f E) \, d\Delta\alpha \, d\alpha = -\frac{\beta^{2}_{\alpha}}{2} \int_{\Omega \times \Omega_{T}} \left(f \nabla_{\alpha} \left(\log f + \frac{2\eta}{\beta^{2}_{\alpha}} E \right) \right) \cdot \nabla_{\alpha} (D \log f + E) \, d\alpha \, d\alpha.
\]

Finally, using (2.19), we have energy dissipation,

\[
\frac{d}{dt} \int_{\Omega \times \Omega_{T}} (D f \log f + f E) \, d\Delta\alpha \, d\alpha = -\frac{\beta^{2}_{\Delta\alpha}}{2D} \int_{\Omega \times \Omega_{T}} f (D \log f + E)^{2} \, d\Delta\alpha \, d\alpha - \frac{\beta^{2}_{\alpha}}{2D} \int_{\Omega \times \Omega_{T}} f (D \log f + E)^{2} \, d\alpha \, d\alpha.
\]

\[\square\]

Remark 2.4. The condition (2.18) is related to the fluctuation-dissipation theorem [15, 29]. The system will approach the equilibrium state of the free energy \(\int_{\Omega \times \Omega_{T}} (D f \log f + f E) \, d\Delta\alpha \, d\alpha\), which coincides with the Boltzmann distribution for the grain boundary energy \(E\),

\[
f_{\infty}(\Delta\alpha, \alpha) = C_{1} \exp \left(-\frac{E(\Delta\alpha, \alpha)}{D} \right),
\]

for some constant \(C_{1} > 0\). Relation (2.18), which is also called the fluctuation-dissipation principle, ensures not only the dissipation structure (2.20), but also that the solution of the Fokker-Planck equation (2.16)-(2.17) converges to the Boltzmann distribution (2.23).

3. Well-posedness of the Fokker-Planck Equation

In this section, we study well-posedness of the proposed Fokker-Planck model (2.16) under the fluctuation-dissipation relation (2.18), and the natural boundary conditions,

\[
\left\{ \begin{array}{l}
\frac{\partial f}{\partial t} + \nabla_{\Delta\alpha} \cdot (v_{\Delta\alpha} f) + \nabla_{\alpha} \cdot (v_{\alpha} f) = \frac{\beta^{2}_{\Delta\alpha}}{2} \nabla_{\Delta\alpha} f + \frac{\beta^{2}_{\alpha}}{2} \nabla_{\alpha} f, \\
v_{\Delta\alpha} = -3\gamma \nabla \nabla_{\Delta\alpha} E, \\
v_{\alpha} = -\eta \frac{\delta E}{\delta \alpha} = -\eta \nabla_{\alpha} E,
\end{array} \right.
\]

\[
\left\{ \begin{array}{l}
\left. \left(\frac{\beta^{2}_{\Delta\alpha}}{2} \nabla_{\Delta\alpha} f - v_{\Delta\alpha} f \right) \cdot \nabla_{\Delta\alpha} \right|_{\partial \Omega \times \Omega_{T}} = 0, \\
\left. \left(\frac{\beta^{2}_{\alpha}}{2} \nabla_{\alpha} f - v_{\alpha} f \right) \cdot \nabla_{\alpha} \right|_{\Omega \times \partial \Omega_{T}} = 0, \\
f(\Delta\alpha, \alpha, 0) = f_{0}(\Delta\alpha, \alpha).
\end{array} \right.
\]

Here, we assume that bounded domain \(\Omega_{T} \subset \mathbb{R}^{2}\) is a domain with \(C^{2}\) boundary and that,

\[
\Omega := \left\{ \Delta\alpha = \left(\Delta^{(1)}\alpha, \Delta^{(2)}\alpha, \Delta^{(3)}\alpha \right) \in \left(-\frac{\pi}{4}, \frac{\pi}{4} \right)^{3} : \Delta^{(1)}\alpha + \Delta^{(2)}\alpha + \Delta^{(3)}\alpha = 0 \right\} \subset \mathbb{R}^{3}.
\]
As in Section 2, the parameters $\beta, \Delta, \alpha, \gamma,$ and η are positive constants satisfying the fluctuation-dissipation relation (2.18). The vectors $\nu_{\Delta\alpha}$ and ν_a are an outer unit normal vector to $\partial \Omega$ and $\partial \Omega_{TJ}$, respectively. Recall from Section 2 that the energy of the system E is given by,

\begin{equation}
E(\Delta\alpha, a) = \sum_{j=1}^{3} \sigma(\Delta^{(j)}\alpha)|a - x^{(j)}|, \tag{3.3}
\end{equation}

where grain boundary energy density σ is a given C^1 function and $x^{(j)} \in \mathbb{R}^2$ is a fixed position for $j = 1, 2, 3$. The initial data $f_0 : \Omega \times \Omega_{TJ} \to \mathbb{R}$ is assumed to be positive and,

\begin{equation}
\int_{\Omega \times \Omega_{TJ}} f_0(\Delta\alpha, a) \, d\Delta\alpha da = 1. \tag{3.4}
\end{equation}

From the energy law (2.20), one can expect that the asymptotic profile $f_\infty = f_\infty(\Delta\alpha, a)$ of (3.1) is given by,

\begin{equation}
f_\infty(\Delta\alpha, a) = C_1 \exp\left(-\frac{E(\Delta\alpha, a)}{D}\right), \tag{3.5}
\end{equation}

for some constant $C_1 > 0$, where $D > 0$ is defined by (2.19). Since f is a probability density function, the constant C_1 satisfies,

\begin{equation}
\frac{1}{C_1} = \iint_{\Omega \times \Omega_{TJ}} \exp\left(-\frac{E(\Delta\alpha, a)}{D}\right) \, d\Delta\alpha da. \tag{3.6}
\end{equation}

In order to show that solution of the Fokker-Planck equation (3.1) converges to f_∞, we will introduce the change of variable $g(\Delta\alpha, a, t)$,

\begin{equation}
f(\Delta\alpha, a, t) = g(\Delta\alpha, a, t) \exp\left(-\frac{E(\Delta\alpha, a)}{D}\right), \tag{3.7}
\end{equation}

and we will prove that g converges to the constant C_1.

It is important to note, that the grain boundary energy E may not belong to $H^2(\Omega \times \Omega_{TJ})$, hence a solution of (3.1) will not be smooth in general. Thus, we will introduce the notion of a weak solution of (3.1), similar to (cf. \[30\]).

Definition 3.1. A function $f : \Omega \times \Omega_{TJ} \times [0, \infty) \to \mathbb{R}$ is a weak solution of (3.1) if,

\begin{equation}
f \in L^\infty(0, \infty; L^2(\Omega \times \Omega_{TJ})) \text{ with } \nabla^\Omega_{\Delta\alpha} f, \nabla_a f \in L^2(0, \infty; L^2(\Omega \times \Omega_{TJ})), \tag{3.8}
\end{equation}

and

\begin{align}

\left. \iint_{\Omega \times \Omega_{TJ}} f\phi \, d\Delta\alpha da \right|_{t=T} - \int_0^T dt \iint_{\Omega \times \Omega_{TJ}} f\phi_t \, d\Delta\alpha da \\
+ \int_0^T dt \iint_{\Omega \times \Omega_{TJ}} \left(\left(\frac{\beta_{\Delta\alpha}^2}{2} \nabla^\Omega_{\Delta\alpha} f - \nabla_{\Delta\alpha} f \right) \cdot \nabla^\Omega_{\Delta\alpha} \phi + \left(\frac{\beta_a^2}{2} \nabla_a f - \nabla_a f \right) \cdot \nabla_a \phi \right) \, d\Delta\alpha da \\
= \left. \iint_{\Omega \times \Omega_{TJ}} f_0\phi \, d\Delta\alpha da \right|_{t=0}, \tag{3.9}
\end{align}

for all $\phi \in C_c^\infty(\Omega \times \Omega_{TJ} \times [0, \infty))$ and almost every $T > 0$.

We also recall Hölder’s inequality \[23\ p.77\] and Gronwall’s inequality \[21\ Appendix B\] that we will use in our analysis below.
Lemma 3.2 (Hölder’s inequality). For functions $u \in L^p(\Omega \times \Omega_T)$, $v \in L^q(\Omega \times \Omega_T)$, $1/p + 1/q = 1$, we have that
\[\iiint_{\Omega \times \Omega_T} uv \, d\Delta \alpha \, da \leq \left(\iiint_{\Omega \times \Omega_T} |u|^p \, d\Delta \alpha \, da \right)^{1/p} \left(\iiint_{\Omega \times \Omega_T} |v|^q \, d\Delta \alpha \, da \right)^{1/q}. \]

Lemma 3.3 (Gronwall’s inequality). Let $\zeta(\cdot)$ be a nonnegative, absolutely continuous function on $[0, T]$, which satisfies for a.e. t, the differential inequality
\[\zeta'(t) \leq \phi(t) \zeta(t), \]
where $\phi(t)$ are summable function on $[0, T]$. Then,
\[\zeta(t) \leq e^{\int_0^t \phi(s) \, ds} \zeta(0), \]
for all $0 \leq t \leq T$.

3.1. Uniqueness and existence of a weak solution to the Fokker-Planck equation. Here, we establish uniqueness and existence of a weak solution to (3.1). First, uniqueness of a weak solution to (3.1) is considered. Since the Fokker-Planck equation (3.1) is linear, it is enough to deduce that the solution is zero provided that the initial data is zero.

Proposition 3.4. Let $f : \Omega \times \Omega_T \times [0, \infty) \rightarrow \mathbb{R}$ be a weak solution of (3.1) with $f_0 = 0$. Assume that σ is a C^1 function on \mathbb{R}. Then $f = 0$ in $\Omega \times \Omega_T \times [0, \infty)$.

Proof. We give a formal proof. Take f as a test function for (3.1), namely, multiply (3.1) by f and integrate over $\Omega \times \Omega_T$. Then, using integration by parts and the natural boundary conditions, we obtain that,
\[\frac{1}{2} \frac{d}{dt} \iiint_{\Omega \times \Omega_T} |f|^2 \, d\Delta \alpha \, da = -\frac{\beta_{\Delta \alpha}^2}{2} \iiint_{\Omega \times \Omega_T} |\nabla^\Omega_{\Delta \alpha} f|^2 \, d\Delta \alpha \, da - \frac{\beta_{\Delta \alpha}^2}{2} \iiint_{\Omega \times \Omega_T} |\nabla f|^2 \, d\Delta \alpha \, da \]
\[+ \iiint_{\Omega \times \Omega_T} f v_{\Delta \alpha} \cdot \nabla^\Omega_{\Delta \alpha} f \, d\Delta \alpha \, da \]
\[+ \iiint_{\Omega \times \Omega_T} f v_{\alpha} \cdot \nabla f \, d\Delta \alpha \, da. \]

To estimate the third and the fourth terms on the right hand side of (3.10), we use Young’s inequality,
\[\iiint_{\Omega \times \Omega_T} f v_{\Delta \alpha} \cdot \nabla^\Omega_{\Delta \alpha} f \, d\Delta \alpha \, da \]
\[\leq \frac{\beta_{\Delta \alpha}^2}{2} \iiint_{\Omega \times \Omega_T} |\nabla^\Omega_{\Delta \alpha} f|^2 \, d\Delta \alpha \, da + \frac{1}{2 \beta_{\Delta \alpha}^2} \iiint_{\Omega \times \Omega_T} |f|^2 |v_{\Delta \alpha}|^2 \, d\Delta \alpha \, da \]
\[\leq \frac{\beta_{\Delta \alpha}^2}{2} \iiint_{\Omega \times \Omega_T} |\nabla^\Omega_{\Delta \alpha} f|^2 \, d\Delta \alpha \, da + \frac{\|v_{\Delta \alpha}\|_\infty^2}{2 \beta_{\Delta \alpha}^2} \iiint_{\Omega \times \Omega_T} |f|^2 \, d\Delta \alpha \, da, \]
and similarly,
\[\iiint_{\Omega \times \Omega_T} f v_{\alpha} \cdot \nabla f \, d\Delta \alpha \, da \leq \frac{\beta_{\alpha}^2}{2} \iiint_{\Omega \times \Omega_T} |\nabla f|^2 \, d\Delta \alpha \, da + \frac{\|v_{\alpha}\|_\infty^2}{2 \beta_{\alpha}^2} \iiint_{\Omega \times \Omega_T} |f|^2 \, d\Delta \alpha \, da, \]
where $\|v_{\Delta \alpha}\|_\infty = \sup_{\Omega \times \Omega_T} |v_{\Delta \alpha}|$ and $\|v_{\alpha}\|_\infty = \sup_{\Omega \times \Omega_T} |v_{\alpha}|$. Thus, we have that,
\[\frac{d}{dt} \iiint_{\Omega \times \Omega_T} |f|^2 \, d\Delta \alpha \, da \leq \left(\frac{\|v_{\Delta \alpha}\|_\infty^2}{\beta_{\Delta \alpha}^2} + \frac{\|v_{\alpha}\|_\infty^2}{\beta_{\alpha}^2} \right) \iiint_{\Omega \times \Omega_T} |f|^2 \, d\Delta \alpha \, da. \]
Therefore, the assertion of the proposition follows from the application of Gronwall’s inequality.

Next, we show existence of a weak solution to the Fokker-Planck equation (3.1). To do that, we use change of variable (3.7) and we derive the equation of \(g \). By direct calculation of the derivative of \(f \) and the fluctuation-dissipation relation (2.18) and (2.19), we obtain,

\[
(3.14)
\frac{\partial f}{\partial t} = \frac{\partial g}{\partial t} \exp \left(-\frac{E}{D}\right),
\]

\[
\nabla_{\Delta a}^{\Omega} \cdot (v_{\Delta a} f) = \left(g (\nabla_{\Delta a}^{\Omega} \cdot v_{\Delta a}) + v_{\Delta a} \cdot \nabla_{\Delta a}^{\Omega} g \right) \exp \left(-\frac{E}{D}\right)
\]

\[
= \left(-3g \Delta_{\Delta a}^{\Omega} E - 3g \nabla_{\Delta a}^{\Omega} E \cdot \nabla_{\Delta a}^{\Omega} g + \frac{3g}{D} |\nabla_{\Delta a}^{\Omega} E|^2 \right) \exp \left(-\frac{E}{D}\right),
\]

\[
\beta_{\Delta a}^{2} \Delta_{\Delta a}^{\Omega} f = \frac{\beta_{\Delta a}^{2}}{2} \left(\Delta_{\Delta a}^{\Omega} g - \frac{2}{D} \nabla_{\Delta a}^{\Omega} E \cdot \nabla_{\Delta a}^{\Omega} g - \frac{g}{D} \Delta_{\Delta a}^{\Omega} E + \frac{g}{D^2} |\nabla_{\Delta a}^{\Omega} E|^2 \right) \exp \left(-\frac{E}{D}\right),
\]

Thus, we have that,

\[
\nabla_{a} \cdot (v_{a} f) = \left(-\eta g \Delta_{a} E - \eta v_{a} E \cdot \nabla_{a} g + \frac{\eta g}{D} |\nabla_{a} E|^2 \right) \exp \left(-\frac{E}{D}\right),
\]

\[
(3.15)
\frac{\beta_{\Delta a}^{2}}{2} \Delta_{\Delta a}^{\Omega} f = \left(\eta D \Delta_{a} g - 2\eta \nabla_{a} E \cdot \nabla_{a} g - \eta g \Delta_{a} E + \frac{\eta g}{D} |\nabla_{a} E|^2 \right) \exp \left(-\frac{E}{D}\right).
\]

Thus, using (3.7), (3.14)-(3.15) in the Fokker-Planck equation (3.1), we arrive at the equation for the function \(g \),

\[
(3.16) \quad \frac{\partial g}{\partial t} = 3g \Delta_{\Delta a}^{\Omega} g + \eta D \Delta_{a} g - 3g \nabla_{\Delta a}^{\Omega} E \cdot \nabla_{\Delta a}^{\Omega} g - \eta \nabla_{a} E \cdot \nabla_{a} g.
\]

We also derive the boundary condition for \(g \) using expression for the boundary conditions (3.1) for \(f \). By direct computation and the fluctuation-dissipation relation (2.18) and (2.19), we have that,

\[
(3.17) \quad \frac{\beta_{\Delta a}^{2}}{2} \nabla_{\Delta a}^{\Omega} f - v_{\Delta a} f = \left(\frac{\beta_{\Delta a}^{2}}{2} \nabla_{\Delta a}^{\Omega} g - \frac{\beta_{\Delta a}^{2}}{2D} g \nabla_{\Delta a}^{\Omega} E + 3g \nabla_{\Delta a}^{\Omega} E \right) \exp \left(-\frac{E}{D}\right)
\]

\[
= 3g \exp \left(-\frac{E}{D}\right) \nabla_{\Delta a}^{\Omega} g.
\]

Therefore, the natural boundary conditions for \(f \) is transformed into the Neumann boundary conditions for \(g \). To study (3.16), we introduce a differential operator,

\[
(3.18) \quad Lg := 3g \Delta_{\Delta a}^{\Omega} g + \eta D \Delta_{a} g - 3g \nabla_{\Delta a}^{\Omega} E \cdot \nabla_{\Delta a}^{\Omega} g - \eta \nabla_{a} E \cdot \nabla_{a} g
\]
subject to the Neumann boundary conditions,

\begin{equation}
\nabla_\Delta g \cdot v_\Delta = 0, \quad \text{on } \partial \Omega \times \Omega_{TJ}, \nonumber \\
\nabla_a g \cdot v = 0, \quad \text{on } \Omega \times \partial \Omega_{TJ},
\end{equation}

(3.19)

We will use the Lax-Milgram theorem below to show that L is a self-adjoint operator, (cf. [23, Theorem 5.8]). For the reader's convenience, we will state theorem below.

Lemma 3.5 (Lax-Milgram). Let B be a bounded, coercive bilinear form on a Hilbert space H. Then for every bounded linear functional $F \in H^*$, there exists a unique element $f \in H$ such that $B(x, f) = F(x)$ for all $x \in H$.

Now, we proceed to show that L is a self-adjoint operator on the weighted L^2 spaces,

\begin{equation}
L^2(\Omega \times \Omega_{TJ}, \text{d}m), \quad \text{d}m = e^{-\frac{E}{D}} \text{d}\Delta \alpha \text{d}a.
\end{equation}

(3.20)

Proposition 3.6. Let $\text{d}m = e^{-\frac{E}{D}} \text{d}\Delta \alpha \text{d}a$ and let L be defined by (3.18) on $L^2(\Omega \times \Omega_{TJ}, \text{d}m)$ with a domain $D(L) := H^2(\Omega \times \Omega_{TJ}, \text{d}m)$, and with the Neumann boundary conditions (3.19). Then, L is a self-adjoint operator on $L^2(\Omega \times \Omega_{TJ}, \text{d}m)$.

Proof. For $g_1, g_2 \in D(L)$, we have by the definition of L, that,

\begin{equation}
(Lg_1, g_2)_{L^2(\Omega \times \Omega_{TJ}, \text{d}m)} = 3 \gamma D \int_{\Omega \times \Omega_{TJ}} \Delta_\Delta \Omega g_1 g_2 \exp \left(-\frac{E}{D}\right) \text{d}\Delta \alpha \text{d}a + \eta D \int_{\Omega \times \Omega_{TJ}} \Delta_a g_1 g_2 \exp \left(-\frac{E}{D}\right) \text{d}\Delta \alpha \text{d}a
\end{equation}

(3.21)

\begin{equation}
- 3 \gamma \int_{\Omega \times \Omega_{TJ}} \nabla_\Delta \Omega \cdot \nabla_\Delta \Omega g_1 g_2 \exp \left(-\frac{E}{D}\right) \text{d}\Delta \alpha \text{d}a
\end{equation}

\begin{equation}
- \eta \int_{\Omega \times \Omega_{TJ}} \nabla_a \cdot \nabla_a g_1 g_2 \exp \left(-\frac{E}{D}\right) \text{d}\Delta \alpha \text{d}a.
\end{equation}

Using the integration by parts for the first and the second terms on the right hand side of (3.21), we obtain,

\begin{equation}
\int_{\Omega \times \Omega_{TJ}} \Delta_\Delta \Omega g_1 g_2 \exp \left(-\frac{E}{D}\right) \text{d}\Delta \alpha \text{d}a = \int_{\Omega \times \Omega_{TJ}} \nabla_\Delta \Omega g_1 \cdot \nabla_\Delta \Omega \left(g_2 \exp \left(-\frac{E}{D}\right)\right) \text{d}\Delta \alpha \text{d}a, \quad \text{and}
\end{equation}

\begin{equation}
\int_{\Omega \times \Omega_{TJ}} \Delta_a g_1 g_2 \exp \left(-\frac{E}{D}\right) \text{d}\Delta \alpha \text{d}a = \int_{\Omega \times \Omega_{TJ}} \nabla_a g_1 \cdot \nabla_a \left(g_2 \exp \left(-\frac{E}{D}\right)\right) \text{d}\Delta \alpha \text{d}a.
\end{equation}

(3.22)

Since,

\begin{equation}
\nabla_\Delta \Omega \left(g_2 \exp \left(-\frac{E}{D}\right)\right) = \exp \left(-\frac{E}{D}\right) \nabla_\Delta \Omega g_2 - g_2 \exp \left(-\frac{E}{D}\right) \nabla_\Delta \Omega E, \quad \text{and}
\end{equation}

\begin{equation}
\nabla_a \left(g_2 \exp \left(-\frac{E}{D}\right)\right) = \exp \left(-\frac{E}{D}\right) \nabla_a g_2 - g_2 \exp \left(-\frac{E}{D}\right) \nabla_a E,
\end{equation}
the integrals of $\nabla_{\Delta a}^\Omega E \cdot \nabla_{\Delta a}^\Omega g_1 g_2 \exp\left(-\frac{E}{D}\right)$ and $\nabla_{\Delta a} E \cdot \nabla_{\Delta a} g_1 g_2 \exp\left(-\frac{E}{D}\right)$ cancel out. Thus, by the definition of dm,

$$(Lg_1, g_2)_{L^2(\Omega \times \Omega_{Tj}, dm)}$$

$$= -3\gamma D \iint_{\Omega \times \Omega_{Tj}} \nabla_{\Delta a}^\Omega g_1 \cdot \nabla_{\Delta a}^\Omega g_2 \exp\left(-\frac{E}{D}\right) d\Delta a d\alpha$$

$$- \eta D \iiint_{\Omega \times \Omega_{Tj}} \nabla_{\Delta a} g_1 \cdot \nabla_{\Delta a} g_2 \exp\left(-\frac{E}{D}\right) d\Delta a d\alpha$$

(3.23)

$$= -3\gamma D \iiint_{\Omega \times \Omega_{Tj}} \nabla_{\Delta a}^\Omega g_1 \cdot \nabla_{\Delta a}^\Omega g_2 dm - \eta D \iiint_{\Omega \times \Omega_{Tj}} \nabla_{\Delta a} g_1 \cdot \nabla_{\Delta a} g_2 dm,$$

hence L is a dissipative symmetric operator.

Next, we show that L is maximal operator: for fixed $F \in L^2(\Omega \times \Omega_{Tj}, dm)$, we show that there is $g \in H^2(\Omega \times \Omega_{Tj}, dm)$, such that $-Lg + g = F$. Let us define for $g, \varphi \in H^1(\Omega \times \Omega_{Tj}, dm)$,

$$\langle -Lg + g, \varphi \rangle := 3\gamma D \iint_{\Omega \times \Omega_{Tj}} \nabla_{\Delta a}^\Omega g \cdot \nabla_{\Delta a}^\Omega \varphi d\alpha + \eta D \iiint_{\Omega \times \Omega_{Tj}} \nabla g \cdot \nabla \varphi d\alpha + \iint_{\Omega \times \Omega_{Tj}} g \varphi dm.$$

By Hölder’s inequality and the definition of the Sobolev spaces, there is a positive constant $C_2 > 0$, such that for $g, \varphi \in H^1(\Omega \times \Omega_{Tj}, dm)$, we have that,

$$|\langle -Lg + g, \varphi \rangle| \leq 3\gamma D \|\nabla_{\Delta a}^\Omega g\|_{L^2(\Omega \times \Omega_{Tj}, dm)} \|\nabla_{\Delta a}^\Omega \varphi\|_{L^2(\Omega \times \Omega_{Tj}, dm)}$$

$$+ \eta D \|\nabla g\|_{L^2(\Omega \times \Omega_{Tj}, dm)} \|\nabla \varphi\|_{L^2(\Omega \times \Omega_{Tj}, dm)}$$

$$+ \iint_{\Omega \times \Omega_{Tj}} g \varphi dm \leq C_2 \|g\|_{H^1(\Omega \times \Omega_{Tj}, dm)} \|\varphi\|_{H^1(\Omega \times \Omega_{Tj}, dm)}.$$

Thus, $\langle -Lg + g, \varphi \rangle$ is a bounded bilinear form in $H^1(\Omega \times \Omega_{Tj}, dm)$. Also, for $g \in H^1(\Omega \times \Omega_{Tj}, dm)$, we can obtain,

$$\langle -Lg + g, g \rangle = 3\gamma D \|\nabla_{\Delta a}^\Omega g\|_{L^2(\Omega \times \Omega_{Tj}, dm)}^2 + \eta D \|\nabla g\|_{L^2(\Omega \times \Omega_{Tj}, dm)}^2 + \iint_{\Omega \times \Omega_{Tj}} g^2 dm \geq \min\{3\gamma D, \eta D, 1\} \|g\|_{H^1(\Omega \times \Omega_{Tj}, dm)}^2,$$

which shows that $\langle -Lg + g, \varphi \rangle$ is a coercive bilinear form. In addition, F can be regarded as a bounded linear functional in $H^1(\Omega \times \Omega_{Tj}, dm)$, because for $\varphi \in H^1(\Omega \times \Omega_{Tj}, dm)$, we have,

$$||F, \varphi||_{L^2(\Omega \times \Omega_{Tj}, dm)} \leq ||F||_{L^2(\Omega \times \Omega_{Tj}, dm)} \|\varphi\|_{L^2(\Omega \times \Omega_{Tj}, dm)} \leq ||F||_{L^2(\Omega \times \Omega_{Tj}, dm)} \|\varphi\|_{H^1(\Omega \times \Omega_{Tj}, dm)}$$

by Hölder’s inequality. Thus, by the Lax-Milgram theorem, there exists $g \in H^1(\Omega \times \Omega_{Tj}, dm)$ such that,

$$\langle -Lg + g, \varphi \rangle = (F, \varphi)_{L^2(\Omega \times \Omega_{Tj}, dm)}$$

for $\varphi \in H^1(\Omega \times \Omega_{Tj}, dm)$. Next, for arbitrary $\varphi \in H^1(\Omega \times \Omega_{Tj})$, take $\varphi = \phi \exp(\frac{F}{D}) \in H^1(\Omega \times \Omega_{Tj}, dm)$. Then, we find that g is a weak solution of $-Lg + g = F$ with the Neumann boundary condition $\nabla_{\Delta a}^\Omega g \cdot \nu_{\Delta a}|_{\partial \Omega \times \Omega_{Tj}} = 0$, and $\nabla g \cdot \nu_{\Delta a}|_{\partial \Omega \times \Omega_{Tj}} = 0$. In a similar manner as for [23], we have $g \in H^2(\Omega \times \Omega_{Tj})$. Since $\exp(-\frac{F}{D})$ is bounded, g belongs to $H^2(\Omega \times \Omega_{Tj}, dm)$. □

By the semigroup theory (cf. [13]), for any $g_0 \in L^2(\Omega \times \Omega_{Tj}, dm)$, there uniquely exists $g \in C((0, \infty); L^2(\Omega \times \Omega_{Tj}, dm)) \cap C^1\left((0, \infty); L^2(\Omega \times \Omega_{Tj}, dm)\right) \cap C((0, \infty); H^2(\Omega \times \Omega_{Tj}, dm))$ such that,

$$\begin{cases}
g_t = Lg, & t > 0, \\
g(0) = g_0.
\end{cases}$$

(3.24)
Furthermore g belongs to $C^k((0, \infty); D(L^1))$ for any positive integer k, l. Using the existence of a solution of (3.24), one can obtain existence of a weak solution of (3.1).

Proposition 3.7. Let $f_0 \in L^2(\Omega \times \Omega_T)$. Assume that σ is a C^1 function on \mathbb{R}. Then, there exists a weak solution f of (3.1).

Proof. Let $g_0 = f_0 \exp(\frac{E}{D})$. Then $g_0 \in L^2(\Omega \times \Omega_T, dm)$ hence there is a solution $g \in C([0, \infty); L^2(\Omega \times \Omega_T, dm)) \cap C^1((0, \infty); L^2(\Omega \times \Omega_T, dm)) \cap C((0, \infty); H^2(\Omega \times \Omega_T, dm))$ to (3.24). Then by (3.23), for any $\phi \in C^\infty(\Omega \times \Omega_T \times [0, \infty))$ and almost every $T > 0$, we have that,

\[
\begin{align*}
\iint_{\Omega \times \Omega_T} g \phi \exp\left(-\frac{E}{D}\right) d\Delta \alpha d\mathbf{a} & \bigg|_{t=T} - \int_0^T dt \iint_{\Omega \times \Omega_T} g \phi_t \exp\left(-\frac{E}{D}\right) d\Delta \alpha d\mathbf{a} \\
& + \int_0^T dt \iint_{\Omega \times \Omega_T} \left(3\gamma D \nabla_{\Delta \alpha}^\Omega g \cdot \nabla_{\Delta \alpha}^\Omega \phi + \eta D \nabla_\alpha^\Omega g \cdot \nabla_\alpha^\Omega \phi \right) \exp\left(-\frac{E}{D}\right) d\Delta \alpha d\mathbf{a} \\
& = \iint_{\Omega \times \Omega_T} g_0 \phi \exp\left(-\frac{E}{D}\right) d\Delta \alpha d\mathbf{a} \bigg|_{t=0}.
\end{align*}
\]

From (3.21), (3.22), and (3.23) with $g_1 = \phi, g_2 = g$, we deduce,

\[
\begin{align*}
\iint_{\Omega \times \Omega_T} \left(3\gamma D \nabla_{\Delta \alpha}^\Omega \phi + \eta D \nabla_\alpha^\Omega \phi \right) \phi \left(g \exp\left(-\frac{E}{D}\right) \right) d\Delta \alpha d\mathbf{a} \\
= -(L\phi, g)_{L^2(\Omega \times \Omega_T, dm)} \\
= 3\gamma D \iint_{\Omega \times \Omega_T} \nabla_{\Delta \alpha}^\Omega \phi \cdot \nabla_{\Delta \alpha}^\Omega \phi \left(g \exp\left(-\frac{E}{D}\right) \right) d\Delta \alpha d\mathbf{a} \\
+ \eta D \iint_{\Omega \times \Omega_T} \nabla_\alpha^\Omega \phi \cdot \nabla_\alpha^\Omega \phi \left(g \exp\left(-\frac{E}{D}\right) \right) d\Delta \alpha d\mathbf{a} \\
+ 3\gamma \iint_{\Omega \times \Omega_T} \nabla_{\Delta \alpha}^\Omega E \cdot \nabla_{\Delta \alpha}^\Omega \phi \phi \exp\left(-\frac{E}{D}\right) d\Delta \alpha d\mathbf{a} \\
+ \eta \iint_{\Omega \times \Omega_T} \nabla_\alpha^\Omega E \cdot \nabla_\alpha^\Omega \phi \phi \exp\left(-\frac{E}{D}\right) d\Delta \alpha d\mathbf{a}.
\end{align*}
\]
From the fluctuation-dissipation relation (2.19), \(3\gamma D = \frac{\beta_{\Delta x}^2}{2}\) and \(\eta D = \frac{\beta_{a}^2}{2}\), we have that,

\[
3\gamma D \iint_{\Omega \times \Omega_{TJ}} \nabla_{\Delta \alpha}^\Omega \phi \cdot \nabla_{\Delta a}^\Omega \left(g \exp \left(-\frac{E}{D} \right) \right) d\Delta \alpha da \\
+ \eta D \iint_{\Omega \times \Omega_{TJ}} \nabla_a \phi \cdot \nabla_a \left(g \exp \left(-\frac{E}{D} \right) \right) d\Delta \alpha da \\
+ 3\gamma \iint_{\Omega \times \Omega_{TJ}} \nabla_{\Delta a}^\Omega E \cdot \nabla_{\Delta a}^\Omega \phi g \exp \left(-\frac{E}{D} \right) d\Delta \alpha da \\
+ \eta \iint_{\Omega \times \Omega_{TJ}} \nabla_a \phi \cdot \nabla_a \eta g \exp \left(-\frac{E}{D} \right) d\Delta \alpha da
\]

(3.27)

where we used \(v_{\Delta a} = -3\gamma \nabla_{\Delta a}^\Delta E, v_a = -\eta \nabla a E,\) and \(f = g \exp (-E/D),\) (3.7). Plugging (3.26), (3.27), and \(f = g \exp (-E/D)\) again into (3.25), we obtain that \(f\) is a weak solution (3.9) to (3.1).

\[\square\]

3.2. **Exponential decay of** \(f\). We study the long-time asymptotics of the solution \(f\) of the Fokker-Planck equation (3.1). In order to derive that \(f\) converges to \(f_\infty\) (3.3), we will show that \(g = f \exp (E/D)\) converges to some constant. Hereafter, we assume the 2-Poincaré-Wirtinger inequality (3.28) in the weighted \(L^2\) space \(L^2(\Omega \times \Omega_{TJ}, dm)\).

\[
\iint_{\Omega \times \Omega_{TJ}} |g - \bar{g}|^2 d\Delta \alpha da \leq C_3 \iint_{\Omega \times \Omega_{TJ}} \left(|\nabla_{\Delta \alpha}^\Omega g|^2 + |\nabla a g|^2 \right) d\Delta \alpha da,
\]

where

\[
\bar{g} = \frac{1}{|\Omega \times \Omega_{TJ}|} \iint_{\Omega \times \Omega_{TJ}} g d\Delta \alpha da
\]

is the integral mean on \(\Omega \times \Omega_{TJ}\). For example, when \(\Omega\) is a bounded convex domain, 2-Poincaré-Wirtinger inequality (3.28) holds [32] Lemma 6.12).

We now show that \(\Omega \times \Omega_{TJ}\) supports the 2-Poincaré-Wirtinger inequality (3.28) in the weighted \(L^2\) space \(L^2(\Omega \times \Omega_{TJ}, dm)\).

Lemma 3.8. There exists \(C_4 > 0\) such that for \(g \in C^\infty(\Omega \times \Omega_{TJ})\), we have that,

\[
\|g - \bar{g}\|_{L^2(\Omega \times \Omega_{TJ}, dm)}^2 \leq C_4 \iint_{\Omega \times \Omega_{TJ}} \left(|\nabla_{\Delta \alpha}^\Delta g|^2 + |\nabla a g|^2 \right) dm,
\]

where a constant \(C_1\) is defined in (3.6) and,

\[
\bar{g}_{L^2(\Omega \times \Omega_{TJ}, dm)} = C_1 \iint_{\Omega \times \Omega_{TJ}} g dm.
\]

Proof. We let

\[
C_5 = \inf_{(\Delta \alpha,a)} e^{-\frac{E(\Delta \alpha,a)}{b}}, \quad C_6 = \sup_{(\Delta \alpha,a)} e^{-\frac{E(\Delta \alpha,a)}{b}},
\]

16
so that \(C_5 \leq e^{-\frac{E}{D}} \leq C_6 \) on \(\Omega \times \Omega_T^j \). Thus, for \(g \in C^\infty(\Omega \times \Omega_T^j) \), we obtain that,

\[
\| g - \bar{g} L_2(\Omega \times \Omega_T^j, dm) \|^2_{L_2(\Omega \times \Omega_T^j, dm)} \leq C_6 \int_{\Omega \times \Omega_T^j} |g - \bar{g}|^2 \, d\Delta \alpha \, da
\]

\[
\leq C_6 C_3 \int_{\Omega \times \Omega_T^j} \left(|\nabla_{\Delta \alpha} g|^2 + |\nabla_{a} g|^2 \right) \, d\Delta \alpha \, da
\]

\[
\leq \frac{C_6 C_3}{C_5} \int_{\Omega \times \Omega_T^j} \left(|\nabla_{\Delta \alpha} g|^2 + |\nabla_{a} g|^2 \right) \, dm.
\]

(3.33)

The inequality (3.30) holds for

(3.34)

\[
C_4 = \frac{C_6 C_3}{C_5}.
\]

\(\square \)

Now we are in position to derive the long-time asymptotic behavior for the solution of the Fokker-Planck equation (3.1).

Theorem 3.9. Assume that \(\sigma \) is a \(C^1 \) function on \(\mathbb{R} \) and \(\Omega \times \Omega_T^j \) supports the 2-Poincaré-Wirtinger inequality (3.28). Let \(f_0 \in L^2(\Omega \times \Omega_T^j, e^{\frac{E}{D}} \, d\Delta \alpha \, da) \) be a probability density function. Then, there exists a constant \(C_7 > 0 \) such that the associated solution \(f \) of (3.1) satisfies,

(3.35)

\[
\int_{\Omega \times \Omega_T^j} \left| f(\Delta \alpha, a, t) - f_\infty(\Delta \alpha, a) \right|^2 \exp \left(\frac{E(\Delta \alpha, a)}{D} \right) \, d\Delta \alpha \, da \leq C_7 e^{\frac{2 \min \{3y, \eta \} D t}{C_4}}
\]

for \(t > 0 \), where \(f_\infty, C_1, \) and \(C_4 \) are defined in (3.5), (3.6), and (3.34), respectively.

Proof. We multiply (3.16) by \((g - \bar{g} L_2(\Omega \times \Omega_T^j, dm)) \) \(e^{-\frac{E}{D}} \) and integrate over \(\Omega \times \Omega_T^j \), we obtain that,

\[
\frac{1}{2} \frac{d}{dt} \int_{\Omega \times \Omega_T^j} |g - \bar{g} L_2(\Omega \times \Omega_T^j, dm)|^2 \, dm = \langle Lg, g - \bar{g} L_2(\Omega \times \Omega_T^j, dm) \rangle_{L^2(\Omega \times \Omega_T^j, dm)}.
\]

By (3.23) we get,

\[
(Lg, g - \bar{g} L_2(\Omega \times \Omega_T^j, dm))_{L^2(\Omega \times \Omega_T^j, dm)} = -3 \gamma D \int_{\Omega \times \Omega_T^j} |\nabla_{\Delta \alpha} g|^2 \, dm - \eta D \int_{\Omega \times \Omega_T^j} |\nabla_{a} g|^2 \, dm.
\]

Combining the above relations with the Poincaré inequality (3.30), we have that,

(3.36)

\[
\frac{1}{2} \frac{d}{dt} \int_{\Omega \times \Omega_T^j} |g - \bar{g} L_2(\Omega \times \Omega_T^j, dm)|^2 \, dm \leq -\frac{\min \{3y, \eta \} D}{C_4} \| g - \bar{g} L_2(\Omega \times \Omega_T^j, dm) \|^2_{L_2(\Omega \times \Omega_T^j, dm)}.
\]

Therefore, by Gronwall’s inequality, we deduce that,

(3.37)

\[
\int_{\Omega \times \Omega_T^j} |g - \bar{g} L_2(\Omega \times \Omega_T^j, dm)|^2 \, dm \leq e^{-\frac{\min \{3y, \eta \} D t}{C_4}} \int_{\Omega \times \Omega_T^j} |g_0 - \bar{g} L_2(\Omega \times \Omega_T^j, dm)|^2 \, dm =: C_7 e^{\frac{-2 \min \{3y, \eta \} D t}{C_4}}.
\]

where \(g_0 = f_0 \exp(-E/D) \). Using that, \(g = f \exp(E/D) \), we have,

(3.38)

\[
\int_{\Omega \times \Omega_T^j} |g - \bar{g} L_2(\Omega \times \Omega_T^j, dm)|^2 \, dm = \int_{\Omega \times \Omega_T^j} \left| f - \bar{g} L_2(\Omega \times \Omega_T^j, dm) \exp \left(-\frac{E}{D} \right) \right|^2 \exp \left(\frac{E}{D} \right) \, d\Delta \alpha \, da.
\]
Integrating (3.1) on $\Omega \times \Omega_{TJ}$, applying the integration by parts and using boundary conditions (3.1), we obtain that,
\begin{equation}
\frac{d}{dt} \iint_{\Omega \times \Omega_{TJ}} f \, d\Delta\alpha \, da = \iint_{\Omega \times \Omega_{TJ}} \frac{\partial f}{\partial t} \, d\Delta\alpha \, da = 0.
\end{equation}
Hence, due to the assumption on the initial data (3.4), it follows that,
\begin{equation}
\iint_{\Omega \times \Omega_{TJ}} f(t, \Delta\alpha, a) \, d\Delta\alpha \, da = \iint_{\Omega \times \Omega_{TJ}} f_0(\Delta\alpha, a) \, d\Delta\alpha \, da = 1,
\end{equation}
for $t > 0$. Since, $f = g \exp(-E/D)$ and $dm = \exp(-E/D) \, d\Delta\alpha \, da$, we have that,
\begin{equation}
\tilde{g} L^2(\Omega \times \Omega_{TJ}, dm) = C_1 \iint_{\Omega \times \Omega_{TJ}} g \, dm = C_1 \iint_{\Omega \times \Omega_{TJ}} f \, d\Delta\alpha \, da = C_1.
\end{equation}
Combining (3.37), (3.40) and $f_\infty = C_1 \exp(-E/D)$, we obtain (3.35). \hfill \Box

3.3. **Exponential decay for f_t**. Next, we study finer asymptotics of the solution f of the Fokker-Planck equation (3.1). Due to the properties of self-adjointness of L, the solution f is smooth in time even though f may not be smooth in space. Thus, we consider long-time asymptotic behavior of f_t.

Theorem 3.10. Assume that σ is a C^1 function on \mathbb{R} and $\Omega \times \Omega_{TJ}$ supports the 2-Poincaré-Wirtinger inequality (3.28). Let $f_0 \in L^2(\Omega \times \Omega_{TJ}, e^{\frac{E}{D}} \, d\Delta\alpha \, da)$ be a probability density function. Then, for any $t_0 > 0$, there exists a constant $C_8 > 0$, such that the associated solution f of (3.1) satisfies,
\begin{equation}
\iint_{\Omega \times \Omega_{TJ}} |f_t(\Delta\alpha, a, t)|^2 \exp\left(\frac{E(\Delta\alpha, a)}{D}\right) \, d\Delta\alpha \, da \leq C_8 e^{-\frac{2\min\{3\gamma, \eta\} D t}{C_4}},
\end{equation}
for $t > t_0$, where C_4 is a constant defined in (3.34).

Proof. The equation $g_t = Lg$, (3.16), (3.18) can be written as,
\begin{equation}
\exp\left(-\frac{E}{D}\right) g_t = 3\gamma D \nabla_{\Delta\alpha} \cdot \left(\exp\left(-\frac{E}{D}\right) \nabla_{\Delta\alpha} g\right) + \eta D \nabla_a \cdot \left(\exp\left(-\frac{E}{D}\right) \nabla_a g\right).
\end{equation}
Note that, $E(\Delta\alpha, a)$ is a function of only misorientations and the positions of the triple junctions. Take a derivative in time of (3.42), then,
\begin{equation}
\exp\left(-\frac{E}{D}\right) g_{tt} = 3\gamma D \nabla_{\Delta\alpha} \cdot \left(\exp\left(-\frac{E}{D}\right) \nabla_{\Delta\alpha} g_t\right) + \eta D \nabla_a \cdot \left(\exp\left(-\frac{E}{D}\right) \nabla_a g_t\right).
\end{equation}
Multiplying (3.43) by g_t, integrating over $\Omega \times \Omega_{TJ}$, integrating by parts and using the boundary conditions (3.19), it follows that,
\begin{equation}
\frac{1}{2} \frac{d}{dt} \iint_{\Omega \times \Omega_{TJ}} |g_t|^2 \, dm = - \iint_{\Omega \times \Omega_{TJ}} \left(3\gamma D |\nabla_{\Delta\alpha} g_t|^2 + \eta D |\nabla_a g_t|^2\right) \, dm.
\end{equation}
Next, note that,
\begin{equation}
\iint_{\Omega \times \Omega_{TJ}} g_t \, dm = 0,
\end{equation}
thus, we obtain by the Poincaré inequality,
\begin{equation}
\iint_{\Omega \times \Omega_{TJ}} \left(3\gamma D |\nabla_{\Delta\alpha} g_t|^2 + \eta D |\nabla_a g_t|^2\right) \, dm \geq \min\{3\gamma, \eta\} \frac{C_4}{C_4} \iint_{\Omega \times \Omega_{TJ}} |g_t|^2 \, dm.
\end{equation}
Hence, one can obtain from (3.44) that,
\[
\frac{1}{2} \frac{d}{dt} \iint_{\Omega \times \Omega_{\mathcal{T}}} |g_t|^2 \, dm \leq -\frac{\min\{3\gamma, \eta\}}{C_4} \iint_{\Omega \times \Omega_{\mathcal{T}}} |g_t|^2 \, dm.
\]
Thus, by Gronwall’s inequality,
\[
\iint_{\Omega \times \Omega_{\mathcal{T}}} |g_t(\Delta \alpha, a, t)|^2 \, dm \leq \left(\iint_{\Omega \times \Omega_{\mathcal{T}}} |g_t(\Delta \alpha, a, t_0)|^2 \, dm \right) e^{-\frac{2\min\{3\gamma, \eta\} D}{C_4} t} \cdot C_8 e^{-\frac{2\min\{3\gamma, \eta\} D}{C_4} t}.
\]
for \(t > t_0 \). Note again, that \(f = g \exp(-E/D) \), \(dm = \exp(-E/D) \, d\Delta \alpha \, da \), and,
\[
\iint_{\Omega \times \Omega_{\mathcal{T}}} |g_t|^2 \, dm = \iint_{\Omega \times \Omega_{\mathcal{T}}} |f_t|^2 \exp \left(\frac{E}{D} \right) \, d\Delta \alpha \, da.
\]
Therefore, the estimate (3.41) follows.

3.4. **Exponential decay for the gradient of \(f \).** Here we establish the exponential decay for the gradient of \(f \). To derive the asymptotics of the gradient of \(f \), one may consider the equation for the derivative of \(f \). However, we cannot take a space derivative of the Fokker-Planck equation (3.1), because of lack of regularity for the solution \(f \). Nevertheless, from the exponential decay for \(f_t \) in Theorem 3.10, one can obtain a long time asymptotics for the gradient of \(f \).

Theorem 3.11. Assume that \(\sigma \) is a \(C^1 \) function on \(\mathbb{R} \) and \(\Omega \times \Omega_{\mathcal{T}} \) supports the 2-Poincaré-Wirtinger inequality (3.28). Let \(f_0 \in L^2(\Omega \times \Omega_{\mathcal{T}}, e^{E/D} \, d\Delta \alpha \, da) \) be a probability density function. Then, for any \(t_0 > 0 \), there is a constant \(C_9 > 0 \), such that the associated solution \(f \) of (3.1) satisfies,
\[
\iint_{\Omega \times \Omega_{\mathcal{T}}} \left(3\gamma D |\nabla_{\Delta \alpha} (f - f_{\infty})|^2 + \eta D |\nabla_a (f - f_{\infty})|^2 \right) \exp \left(\frac{E(\Delta \alpha, a)}{D} \right) \, d\Delta \alpha \, da \leq C_9 e^{-\frac{2\min\{3\gamma, \eta\} D}{C_4} t},
\]
for \(t > t_0 \), where \(C_4 \) is a constant (3.34).

Proof. Multiplying (3.42) by \(g_t \), integrating over \(\Omega \times \Omega_{\mathcal{T}} \), and using the integration by parts with the boundary conditions (3.19), one can show,
\[
\iint_{\Omega \times \Omega_{\mathcal{T}}} |g_t|^2 \, dm = \iint_{\Omega \times \Omega_{\mathcal{T}}} \left(3\gamma D |\nabla_{\Delta \alpha} g_t|^2 + \eta D |\nabla_a g_t|^2 \right) \, dm.
\]
On the other hand, by direct computation and \(dm = e^{-E/D} \, d\Delta \alpha \, da \), we have,
\[
\frac{1}{2} \frac{d}{dt} \iint_{\Omega \times \Omega_{\mathcal{T}}} \left(3\gamma D |\nabla_{\Delta \alpha} g|^2 + \eta D |\nabla_a g|^2 \right) \, dm \leq \iint_{\Omega \times \Omega_{\mathcal{T}}} \left(3\gamma D \left(\exp \left(-\frac{E}{D} \right) \nabla_{\Delta \alpha} g \cdot \nabla_{\Delta \alpha} g_t + \eta D \left(\exp \left(-\frac{E}{D} \right) \nabla_a g \cdot \nabla_a g_t \right) \right) \right) \, d\Delta \alpha \, da.
\]
Thus, we arrive at,

$$\iint_{\Omega \times \Omega_{Tj}} |g_t|^2 \, dm = -\frac{1}{2} \frac{d}{dt} \iint_{\Omega \times \Omega_{Tj}} \left(3\gamma D |\nabla_{\Delta a} g|^2 + \eta D |\nabla a g|^2 \right) \, dm. $$

Using (3.45) and non-negativity of the integral of $|g_t|^2$, one can obtain, for $t > t_0$,

$$2C_8 e^{\frac{\gamma}{c_4} T_{\min}} \leq \frac{d}{dt} \iint_{\Omega \times \Omega_{Tj}} \left(3\gamma D |\nabla_{\Delta a} g|^2 + \eta D |\nabla a g|^2 \right) \, dm \leq 0. $$

Specifically, $3\gamma D \|\nabla_{\Delta a} g\|_{L^2(\Omega \times \Omega_{Tj}, dm)}^2 + \eta D \|\nabla a g\|_{L^2(\Omega \times \Omega_{Tj}, dm)}^2$ is monotone decreasing in time. On the other hand, multiplying (3.42) by g, integrating by parts and using the boundary conditions (3.19), we have,

$$\iint_{\Omega \times \Omega_{Tj}} |g|^2 \, dm + \iint_{\Omega \times \Omega_{Tj}} \left(3\gamma D |\nabla_{\Delta a} g|^2 + \eta D |\nabla a g|^2 \right) \, dm = 0. $$

Now, integrating over $0 \leq t \leq T$ for $T > 0$, we arrive at,

$$\iint_{\Omega \times \Omega_{Tj}} |g|^2 \, dm \bigg|_{t=0} + \int_0^T dt \iint_{\Omega \times \Omega_{Tj}} \left(3\gamma D |\nabla_{\Delta a} g|^2 + \eta D |\nabla a g|^2 \right) \, dm = \iint_{\Omega \times \Omega_{Tj}} |g|^2 \, dm \bigg|_{t=T}. $$

Thus, there is a positive monotone increasing sequence $\{t_j\}$ such that $t_j \to \infty$ and,

$$\iint_{\Omega \times \Omega_{Tj}} \left(3\gamma D |\nabla_{\Delta a} g|^2 + \eta D |\nabla a g|^2 \right) \, dm \bigg|_{t=t_j} \to 0 \quad \text{as } t_j \to \infty. $$

Using the monotonicity in time of $3\gamma D \|\nabla_{\Delta a} g\|_{L^2(\Omega \times \Omega_{Tj}, dm)}^2 + \eta D \|\nabla a g\|_{L^2(\Omega \times \Omega_{Tj}, dm)}^2$, we can take a full limit in time of (3.52), namely,

$$\iint_{\Omega \times \Omega_{Tj}} \left(3\gamma D |\nabla_{\Delta a} g|^2 + \eta D |\nabla a g|^2 \right) \, dm \to 0 \quad \text{as } t \to \infty. $$

Next, for $0 < T < T'$, we obtain,

$$\left| \iint_{\Omega \times \Omega_{Tj}} \left(3\gamma D |\nabla_{\Delta a} g|^2 + \eta D |\nabla a g|^2 \right) \, dm \bigg|_{t=T'} - \iint_{\Omega \times \Omega_{Tj}} \left(3\gamma D |\nabla_{\Delta a} g|^2 + \eta D |\nabla a g|^2 \right) \, dm \bigg|_{t=T} \right| $$

$$= \left| \int_T^{T'} \left(\frac{d}{dt} \iint_{\Omega \times \Omega_{Tj}} \left(3\gamma D |\nabla_{\Delta a} g|^2 + \eta D |\nabla a g|^2 \right) \, dm \right) \, dt \right| $$

$$\leq \int_T^{T'} \left| \frac{d}{dt} \iint_{\Omega \times \Omega_{Tj}} \left(3\gamma D |\nabla_{\Delta a} g|^2 + \eta D |\nabla a g|^2 \right) \, dm \right| \, dt. $$

Using (3.49), we deduce,

$$\left| \frac{d}{dt} \iint_{\Omega \times \Omega_{Tj}} \left(3\gamma D |\nabla_{\Delta a} g|^2 + \eta D |\nabla a g|^2 \right) \, dm \right| \leq 2C_8 e^{\frac{\gamma}{c_4} T_{\min}}. $$
Hence, we arrive at,
\[
(3.55) \int_{\Omega \times \Omega} \left(|\nabla^{\Omega} g|^{2} + \eta |\nabla a g|^{2} \right) \,dm \bigg|_{t=T'} - \int_{\Omega \times \Omega} \left(|\nabla^{\Omega} g|^{2} + \eta |\nabla a g|^{2} \right) \,dm \bigg|_{t=T}
\leq \int_{T}^{T'} 2C_{8}e^{-\frac{2 \min\{3\gamma, \eta\}D}{c_{4}} t} dt = C_{8}C_{4} \frac{e^{-\frac{2 \min\{3\gamma, \eta\}D}{c_{4}} T}}{\min\{3\gamma, \eta\}D} - e^{-\frac{2 \min\{3\gamma, \eta\}D}{c_{4}} T}.
\]
Taking a limit \(T' \to \infty\), we obtain that,
\[
(3.56) \int_{\Omega \times \Omega} \left(|\nabla^{\Omega} g|^{2} + \eta |\nabla a g|^{2} \right) \,dm \bigg|_{t=T} \leq C_{8}C_{4} \frac{e^{-\frac{2 \min\{3\gamma, \eta\}D}{c_{4}} T}}{\min\{3\gamma, \eta\}D}.
\]
In addition, by direct calculation, we have that,
\[
\nabla (f - f_{\infty}) = \left(\nabla g - \frac{1}{D} (g - C_{1}) \nabla E \right) \exp \left(\frac{-E}{D} \right) = \nabla g \exp \left(\frac{-E}{D} \right) - \frac{1}{D} (f - f_{\infty}) \nabla E,
\]
where \(\nabla \) is \(\nabla^{\Omega} \) or \(\nabla a \). Thus,
\[
\int_{\Omega \times \Omega} |\nabla^{\Omega} (f - f_{\infty})|^{2} \exp \left(\frac{E}{D} \right) \,d\Delta a \,da
\leq 2 \int_{\Omega \times \Omega} |\nabla^{\Omega} g|^{2} \exp \left(\frac{-E}{D} \right) \,d\Delta a \,da + \frac{2}{D^{2}} \int_{\Omega \times \Omega} |f - f_{\infty}|^{2} |\nabla^{\Omega} E|^{2} \exp \left(\frac{E}{D} \right) \,d\Delta a \,da.
\]
Therefore, from (3.55), (3.56), and boundedness of the gradient of \(E \), there is a constant \(C_{10} > 0 \), such that,
\[
\int_{\Omega \times \Omega} |\nabla^{\Omega} (f - f_{\infty})|^{2} \exp \left(\frac{E}{D} \right) \,d\Delta a \,da \leq C_{10} e^{-\frac{2 \min\{3\gamma, \eta\}D}{c_{4}} t}.
\]
Similarly, there is a constant \(C_{11} > 0 \) such that,
\[
\int_{\Omega \times \Omega} |\nabla a (f - f_{\infty})|^{2} \exp \left(\frac{E}{D} \right) \,d\Delta a \,da \leq C_{11} e^{-\frac{2 \min\{3\gamma, \eta\}D}{c_{4}} t},
\]
hence, we obtain (3.47). \(\square \)

Remark 3.12. Since \(E \) is not \(C^{2} \) for \(a \in \Omega_{T} \), it is not known that \(g \) is in \(C^{3} \) on \(\Omega_{T} \), hence one cannot take a derivative in \(a \) of (3.24). However, \(g \) is smooth in time so we can take a derivative in time. Note that, we do not use third derivative in \(a \) in the proof of Theorem 3.11 (cf. \[31,40\]).

Remark 3.13. In Theorem 3.9, 3.10 and 3.11 decay rate of solutions to (3.1) may not be optimal. It will be part of a future work to obtain optimal decay orders and dependence on the relaxation time scales \(\gamma, \eta > 0 \).

Remark 3.14. In this paper we have used the Poincaré inequality to obtain the large-time asymptotics of the solution in the weighted \(L^{2} \) framework. The specific difficulties for our system are related to the fact that the potential \(\nabla^{\Omega} E \) is degenerate and \(\nabla a E \) is not smooth enough. When the potential has better properties, such as non-degeneracy and smoothness, one could try to employ the logarithmic-Sobolev inequality or the higher order energy estimates \[12,25,39\] to obtain the results in weaker spaces. This is currently under study, and one of the subjects of our forthcoming work would be to study the logarithmic-Sobolev type of inequalities and Bakry-Émery theory to construct the \(L^{1} \) theory of the system discussed in this paper.
In this section, we obtained long-time asymptotics for joint distribution \(f \) on \(\Omega \times \Omega_T \) in the weighted \(L^2 \) space. In particular, we established that distribution \(f \) converges to the Boltzmann distribution \(f_\infty(\Delta\alpha, a) = C_1 \exp \left(-\frac{E(\Delta\alpha, a)}{D} \right) \) with respect to the grain boundary energy \(E \) on \(\Omega \times \Omega_T \). In the next section, we will study long-time asymptotics of the marginal probability density.

4. Marginal probability distribution

In this section, for a solution \(f \) of the Fokker-Planck equation (3.1), which is a joint distribution on \(\Omega \times \Omega_T \), we consider the marginal probability density of misorientations, \(\rho_1 \) of \(\Omega \). The probability density \(\rho_1 \) is related to the Grain Boundary Character Distribution (GBCD). The GBCD (in 2D context and with the grain boundary energy density which only depends on the misorientation \(\Delta\alpha \)) is an empirical statistical measure of the relative length (in 2D) of the grain boundary interface with a given lattice misorientation. GBCD can be viewed as a primary statistical descriptor to characterize texture of the grain boundary network, and is inversely related to the grain boundary energy density as discovered in experiments and simulations. The reader can consult, for instance, [5, 4, 8, 3] for more details about GBCD and the theory of the GBCD, and see also Section 5.

In this section, we compare the long-time asymptotics for the marginal distribution \(\rho_{1,\infty} \) and the Boltzmann distributions on \(\Omega \). Hence, let us define the marginal distributions for a misorientation \(\Delta\alpha = (\Delta\alpha^{(1)}, \Delta\alpha^{(2)}, \Delta\alpha^{(3)}) \in \Omega \), and for a position of the triple junction \(a \in \Omega_T \),

\[
\rho_1(\Delta\alpha, t) = \int_{\Omega_T} f(\Delta\alpha, a, t) \, da, \quad \rho_2(a, t) = \int_{\Omega} f(\Delta\alpha, a, t) \, d\Delta\alpha,
\]

and

\[
\rho_{1,\infty}(\Delta\alpha) = \int_{\Omega_T} f_\infty(\Delta\alpha, a) \, da, \quad \rho_{2,\infty}(a) = \int_{\Omega} f_\infty(\Delta\alpha, a) \, d\Delta\alpha.
\]

From Theorems 3.9, 3.10 and 3.11 in Section 3 we can obtain long time asymptotics of \(\rho_1 \) and \(\rho_2 \).

Proposition 4.1. Assume that \(\sigma \) is a \(C^1 \) function on \(\mathbb{R} \) and \(\Omega \times \Omega_T \) supports the 2-Poincaré-Wirtinger inequality (3.28). Let \(f_0 \in L^2(\Omega \times \Omega_T, e^{\frac{E}{2}} \, d\Delta\alpha \, da) \) be a probability density function. Let \(\rho_1 \) be defined in (4.1). Then, for any \(t_0 > 0 \), there are positive constants \(C_{12}, C_{13}, \) and \(C_{14} > 0 \), such that for \(t > t_0 \),

\[
\int_{\Omega} |\rho_1(\Delta\alpha, t) - \rho_{1,\infty}(\Delta\alpha)|^2 \, d\Delta\alpha \leq C_{12} e^{-\frac{2 \min(3y, \eta) D T}{c_4} t},
\]

\[
\int_{\Omega} |(\rho_1)_T(\Delta\alpha, t)|^2 \, d\Delta\alpha \leq C_{13} e^{-\frac{2 \min(3y, \eta) D T}{c_4} t},
\]

\[
\int_{\Omega} |\nabla_{\Delta\alpha} (\rho_1(\Delta\alpha, t) - \rho_{1,\infty}(\Delta\alpha))|^2 \, d\Delta\alpha \leq C_{14} e^{-\frac{2 \min(3y, \eta) D T}{c_4} t},
\]

where \(C_4 > 0 \) is a constant defined in (3.34).
Proof. We get by Hölder’s inequality that,
\[
|\rho_1(\Delta \alpha, t) - \rho_{1,\infty}(\Delta \alpha, t)|^2 = \left| \int_{\Omega_{\text{TJ}}} (f(\Delta \alpha, a, t) - f_{\infty}(\Delta \alpha, a)) \, da \right|^2 \\
\leq |\Omega_{\text{TJ}}| \int_{\Omega_{\text{TJ}}} |f(\Delta \alpha, a, t) - f_{\infty}(\Delta \alpha, a)|^2 \, da.
\]
(4.4)

Next, note that \(C_5 \leq e^{-\frac{E}{\kappa}} \leq C_6 \) on \(\Omega \times \Omega_{\text{TJ}} \), where the constants \(C_5, C_6 > 0 \) are defined in (3.32). Thus, we obtain,
\[
\int_{\Omega_{\text{TJ}}} |f(\Delta \alpha, a, t) - f_{\infty}(\Delta \alpha, a)|^2 \, da \leq C_6 \int_{\Omega_{\text{TJ}}} |f(\Delta \alpha, a, t) - f_{\infty}(\Delta \alpha, a)|^2 \exp \left(\frac{E(\Delta \alpha, a)}{D} \right) \, da.
\]
(4.5)

Then, using (3.35), we have,
\[
\int_{\Omega} |\rho_1(\Delta \alpha, t) - \rho_{1,\infty}(\Delta \alpha, t)|^2 \, d\Delta \alpha \\
\leq C_6 |\Omega_{\text{TJ}}| \int_{\Omega_{\text{TJ}}} \int_{\Omega_{\text{TJ}}} |f(\Delta \alpha, a, t) - f_{\infty}(\Delta \alpha, a)|^2 \exp \left(\frac{E(\Delta \alpha, a)}{D} \right) \, da \, d\Delta \alpha \\
\leq C_7 C_6 |\Omega_{\text{TJ}}| e^{-\frac{2 \min\{\gamma, \eta\} D t}{\epsilon_4}},
\]
(4.6)

hence the exponential decay estimate for \(\rho_1 \) is derived. Similarly, the estimates for \(\rho_1 \) and \(\nabla_{\Delta \alpha} \rho_1 \) can be deduced.

\(\square \)

Remark 4.2. Using the same argument as in the proof of Proposition 4.1, one can obtain similar long-time asymptotics for the probability density \(\rho_2 \). In this work, we are more interested in the analysis of the marginal probability density of the misorientations \(\Delta \alpha, \rho_1 = \rho_1(\Delta \alpha, t) \) due to the relation to the GBCD statistical metric.

Next, we compare \(\rho_{1,\infty} \) and the Boltzmann distribution of the misorientations \(\Delta \alpha \). We first derive the evolution equation for the marginal distribution \(\rho_1 \).

Proposition 4.3. Let \(f \) be a solution of (3.1), and let \(\rho_1 = \rho_1(\Delta \alpha, t) \) be a marginal distribution defined by (4.1). Then, \(\rho_1 \) satisfies,
\[
\frac{\partial \rho_1}{\partial t} = \frac{\beta_2^2}{2} \Delta_{\Delta \alpha} \rho_1 - \nabla_{\Delta \alpha} \cdot \left(\int_{\Omega_{\text{TJ}}} (v_{\Delta \alpha} f) \, da \right), \quad a \in \Omega, \ t > 0.
\]
(4.7)

Proof. Integrate (3.1) in \(a \in \Omega_{\text{TJ}} \), hence we obtain,
\[
\frac{\partial \rho_1}{\partial t} + \nabla_{\Delta \alpha} \cdot \left(\int_{\Omega_{\text{TJ}}} (v_{\Delta \alpha} f) \, da \right) + \int_{\Omega_{\text{TJ}}} \nabla_a \cdot (v_a f) \, da = \frac{\beta_2^2}{2} \Delta_{\Delta \alpha} \rho_1 + \frac{\beta_2^2}{2} \int_{\Omega_{\text{TJ}}} \Delta_a f \, da.
\]
(4.8)

Due to the boundary conditions of (3.1), it follows,
\[
\frac{\beta_2^2}{2} \int_{\Omega_{\text{TJ}}} \Delta_a f \, da - \int_{\Omega_{\text{TJ}}} \nabla_a \cdot (v_a f) \, da = \int_{\partial \Omega_{\text{TJ}}} \left(\frac{\beta_2^2}{2} \nabla_a f - v_a f \right) \cdot v_a \, dS_a = 0
\]
(4.9)

for \(\Delta \alpha \in \Omega \), where \(v_a \) is an outer unit normal on \(\partial \Omega_{\text{TJ}} \), and \(dS_a \) is a length element on \(\partial \Omega_{\text{TJ}} \). From (4.8) and (4.9), one can obtain (4.7). \(\square \)
To proceed with the analysis of ρ_1, we first consider the Taylor expansion of the grain boundary energy E around arbitrarily selected point $a_s \in \Omega_{TJ}$, namely,

$$
E(\Delta \alpha, a) = \sum_{j=1}^{3} \sigma(\Delta^{(j)} \alpha) |a - x^{(j)}| = E_1(\Delta \alpha) + E_2(\Delta \alpha, a),
$$

where,

$$
E_1(\Delta \alpha) = \sum_{j=1}^{3} \sigma(\Delta^{(j)} \alpha) |a_s - x^{(j)}|, \text{ and } E_2(\Delta \alpha, a) = E(\Delta \alpha, a) - E_1(\Delta \alpha).
$$

Note that, we formulated the grain boundary energy E in the form above (4.10) to investigate effect of the position of the triple junction $a = a_s$ on the distribution of the misorientations $\rho_1(\Delta \alpha, t)$ and its steady-state distribution $\rho_{1,\infty}(\Delta \alpha)$.

Remark 4.4. From Proposition 4.1, marginal distribution ρ_1 may not converge to the Boltzmann distribution, in general. This is because,

$$
\rho_{1,\infty}(\Delta \alpha) = \left(C_1 \int_{\Omega_{TJ}} \exp \left(- \frac{E_2(\Delta \alpha, a)}{D} \right) d\alpha \right) \exp \left(- \frac{E_1(\Delta \alpha)}{D} \right),
$$

and the coefficient of $\exp(-E_1/D)$ generally depend on $\Delta \alpha$.

Using (4.10), equation (4.7) becomes,

$$
\frac{\partial \rho_1}{\partial t} = \frac{\beta^2_\Delta}{2} \Delta_{\Delta \alpha} \rho_1 - \nabla_{\Delta \alpha} \cdot \left((-3\gamma \nabla_{\Delta \alpha} E_1(\Delta \alpha)) \rho_1 \right) + 3\gamma \nabla_{\Delta \alpha} \cdot \left(\int_{\Omega_{TJ}} \left(\nabla_{\Delta \alpha} E_2(\Delta \alpha, a) \right) f \right) d\alpha,
$$

hence ρ_1 satisfies the Fokker-Planck type equation with an extra term. Next, we explore the effects of the triple junction position, $a = a_s$ on (4.7).

Remark 4.5. In [5, 4, 8, 3], Fokker-Planck equation was derived for the evolution of the GBCD using a novel implementation of the iterative scheme for the Fokker-Planck equation in terms of the system free energy and a Kantorovich-Rubinstein-Wasserstein metric. Equation for probability density of misorientations ρ_1, (4.7) or (4.13) is a Fokker-Planck type equation which also takes into account the effect of the mobility of the triple junctions.

Remark 4.6. Because of

$$
\delta_{ak} |a - x^{(j)}| = \frac{a_k - x^{(j)}_k}{|a - x^{(j)}|}, \quad \delta_{ak} \delta_{al} |a - x^{(j)}| = \frac{1}{|a - x^{(j)}|} \left(\delta_{kl} - \frac{a_k - x^{(j)}_k}{|a - x^{(j)}|} \frac{a_l - x^{(j)}_l}{|a - x^{(j)}|} \right),
$$
where δ_{kl} is the Kronecker delta, $a = (a_1, a_2)$, and $x^{(j)} = (x_1^{(j)}, x_2^{(j)})$, by the Taylor expansion for $|a - x^{(j)}|$ around a_* we obtain the following expansion for E_2;

\begin{align}
E_2(\Delta \alpha, a) &= \frac{3}{2} \sum_{j=1}^{3} \sigma(\Delta \alpha^{(j)}) \left(|a - x^{(j)}| - |a_* - x^{(j)}| \right) \\
&= \sum_{j=1}^{3} \sigma(\Delta \alpha^{(j)}) \left(\frac{a_* - x^{(j)}}{|a_* - x^{(j)}|} \cdot (a - a_*) \\
&+ \frac{1}{2|a_* - x^{(j)}|} \left(|a - a_*|^2 - \left(\frac{a_* - x^{(j)}}{|a_* - x^{(j)}|} \cdot (a - a_*) \right)^2 \right) + o(|a - a_*|^2) \right)
\end{align}

as $a \to a_*$.

4.1. The weighted Fermat-Torricelli point as a triple junction point. Let a_* be the minimizer of $E(\Delta \alpha, a)$, which is called the weighted Fermat-Torricelli point a_{wFT}, for fixed $\Delta \alpha \in \Omega$ (cf. [11]), that is

\begin{align}
\sum_{j=1}^{3} \sigma(\Delta \alpha^{(j)}) |a_{wFT} - x^{(j)}| = \inf_{a \in \Omega} \sum_{j=1}^{3} \sigma(\Delta \alpha^{(j)}) |a - x^{(j)}| = \inf_{a \in \Omega} E(\Delta \alpha, a).
\end{align}

Let $\psi^{(i)}$ be an angle formed by $a - x^{(i)}$ and $a - x^{(i+1)}$ at the triple junction a. Now we give an equivalent condition that the triple junction coincides with a_{wFT}.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig2.png}
\caption{The angles ψ_1, ψ_2, ψ_3 are defined as the above figure.}
\end{figure}

Proposition 4.7. Assume that weighted Fermat-Torricelli point a_{wFT} does not coincide with $x^{(j)}$ for $j = 1, 2, 3$. Then, the triple junction coincides with a_{wFT}, if and only if,

\begin{align}
1 - \cos \psi^{(i)} &= \frac{(\sigma(\Delta^{(i)} \alpha) + \sigma(\Delta^{(i+1)} \alpha))^2 - \sigma(\Delta^{(i+2)} \alpha)^2}{2\sigma(\Delta^{(i)} \alpha)\sigma(\Delta^{(i+1)} \alpha)},
\end{align}

for $i = 1, 2, 3$.

25
Remark 4.8. A condition that for $k = 1, 2, 3$,

\begin{equation}
\sum_{1 \leq j \leq 3, \ j \neq k} \sigma(\Delta(j)\alpha) \frac{x^{(j)} - x^{(k)}}{|x^{(j)} - x^{(k)}|} > \sigma(\Delta(k)\alpha)
\end{equation}

is equivalent to the condition that a_{wFT} does not coincide with $x^{(j)}$ for $j = 1, 2, 3$ and

\begin{equation}
0 = \nabla_a E(\Delta\alpha, a_{wFT}) = \sum_{j=1}^{3} \sigma(\Delta(j)\alpha)e^{(j)}, \quad e^{(j)} := \frac{a_{wFT} - x^{(j)}}{|a_{wFT} - x^{(j)}|}
\end{equation}

holds (See [11, Theorem 18.37]).

Because, by (4.18),

\begin{equation}
\sigma(\Delta(k)\alpha) < \sigma(\Delta(i)\alpha) \frac{x^{(i)} - x^{(k)}}{|x^{(i)} - x^{(k)}|} + \sigma(\Delta(j)\alpha) \frac{x^{(j)} - x^{(k)}}{|x^{(j)} - x^{(k)}|}
\end{equation}

for different $1 \leq i, j, k \leq 3$, one can obtain the following condition,

\begin{equation}
\sigma(\Delta(k)\alpha) < \sigma(\Delta(i)\alpha) + \sigma(\Delta(j)\alpha).
\end{equation}

Proof of Proposition 4.7. When a_{wFT} does not coincide with $x^{(j)}$ for $j = 1, 2, 3$, the weighted Fermat-Torricelli point a_{wFT} satisfies (4.19). Taking the inner product of (4.19) with $e^{(k)}$ for $k = 1, 2, 3$, we obtain,

\begin{align*}
\sigma(\Delta(2)\alpha)(e^{(1)}, e^{(2)}) + \sigma(\Delta(3)\alpha)(e^{(3)}, e^{(1)}) &= -\sigma(\Delta(1)\alpha), \\
\sigma(\Delta(1)\alpha)(e^{(1)}, e^{(2)}) + \sigma(\Delta(3)\alpha)(e^{(2)}, e^{(3)}) &= -\sigma(\Delta(2)\alpha), \\
\sigma(\Delta(2)\alpha)(e^{(2)}, e^{(3)}) + \sigma(\Delta(1)\alpha)(e^{(3)}, e^{(1)}) &= -\sigma(\Delta(3)\alpha).
\end{align*}

Next, we can solve $(e^{(k)}, e^{(l)})$ from (4.21) and, thus, obtain,

\begin{align*}
(e^{(1)}, e^{(2)}) &= \frac{-(\sigma(\Delta(1)\alpha))^2 - (\sigma(\Delta(2)\alpha))^2 + (\sigma(\Delta(3)\alpha))^2}{2\sigma(\Delta(1)\alpha)\sigma(\Delta(2)\alpha)}, \\
(e^{(2)}, e^{(3)}) &= \frac{-(\sigma(\Delta(2)\alpha))^2 - (\sigma(\Delta(3)\alpha))^2 + (\sigma(\Delta(1)\alpha))^2}{2\sigma(\Delta(2)\alpha)\sigma(\Delta(3)\alpha)}, \\
(e^{(3)}, e^{(1)}) &= \frac{-(\sigma(\Delta(3)\alpha))^2 - (\sigma(\Delta(1)\alpha))^2 + (\sigma(\Delta(2)\alpha))^2}{2\sigma(\Delta(3)\alpha)\sigma(\Delta(1)\alpha)}.
\end{align*}

Note that, $(e^{(k)}, e^{(l)})$ is the cosine of the angle at a_{wFT} formed by $e^{(k)}$ and $e^{(l)}$. Thus, we have,

\begin{align*}
\cos \psi^{(1)} &= \frac{-(\sigma(\Delta(1)\alpha))^2 - (\sigma(\Delta(2)\alpha))^2 + (\sigma(\Delta(3)\alpha))^2}{2\sigma(\Delta(1)\alpha)\sigma(\Delta(2)\alpha)}, \\
\cos \psi^{(2)} &= \frac{-(\sigma(\Delta(2)\alpha))^2 - (\sigma(\Delta(3)\alpha))^2 + (\sigma(\Delta(1)\alpha))^2}{2\sigma(\Delta(2)\alpha)\sigma(\Delta(3)\alpha)}, \\
\cos \psi^{(3)} &= \frac{-(\sigma(\Delta(3)\alpha))^2 - (\sigma(\Delta(1)\alpha))^2 + (\sigma(\Delta(2)\alpha))^2}{2\sigma(\Delta(3)\alpha)\sigma(\Delta(1)\alpha)},
\end{align*}

hence we arrive at (4.17) by direct calculation of $1 - \cos \psi^{(i)}$.

26
 Conversely, when (4.17) holds, then (4.21) also holds. Using (4.20), and any nonparallel pair of \(e^{(j)}\), one can obtain (4.19). Since \(a_{\text{wFT}}\) is unique [11, Theorem 18.37], \(a_{\text{wFT}}\) coincides with the triple junction.

Remark 4.9. The relation (4.17) is a force balance condition at the triple junction, the generalized Herring condition. When \(\sigma \equiv 1\), then from (4.17) we have \(\cos \psi^{(i)} = -1/2\), hence three angles at the triple junction are the same, \(\frac{2\pi}{3}\).

Next, we study the behavior of the reminder term \(E_2\) when \(a_* = a_{\text{wFT}}\). Thanks to \(\nabla_a E(\Delta \alpha, a_*) = 0\), one can obtain the following result,

Proposition 4.10. Assume that weighted Fermat-Torricelli point \(a_{\text{wFT}}\) does not coincide with \(x^{(j)}\) for \(j = 1, 2, 3\). Let \(a_* = a_{\text{wFT}}\). Then,

\[
E_2(\Delta \alpha, a) = \sum_{j=1}^{3} \sigma(\Delta^{(j)} \alpha) \left(\frac{1}{2|a_* - x^{(j)}|} \left(|a - a_*|^2 - \frac{(a_* - x^{(j)}) \cdot (a - a_*)}{|a_* - x^{(j)}|} \right)^2 + o(|a - a_*|^2) \right)
\]

as \(a \to a_*\).

Proof. Since \(\nabla_a E(\Delta \alpha, a_*) = 0\), by (4.19) we have that,

\[
\sum_{j=1}^{3} \sigma(\Delta^{(j)} \alpha) \frac{(a_* - x^{(j)})}{|a_* - x^{(j)}|} = 0.
\]

Using this in (4.15), we obtain (4.24). \(\square\)

The above Proposition 4.10 is a reason of why we choose \(a_{\text{wFT}}\) as \(a_*\), namely, we can show that \(E_2\) is asymptotically of order \(|a - a_*|^2\) as \(a \to a_*\).

4.2. **The circumcenter as a triple junction point.** Next, we introduce the circumcenter \(a_{\text{cc}}\) of \(x^{(j)}\). The circumcircle of \(x^{(j)}\) is the unique circle that passes through all \(x^{(j)}\), and the circumcenter \(a_{\text{cc}}\) of \(x^{(j)}\) is the center of the circumcircle, namely

\[
|a_{\text{cc}} - x^{(1)}| = |a_{\text{cc}} - x^{(2)}| = |a_{\text{cc}} - x^{(3)}|.
\]

If a triple junction \(a\) coincides with the circumcenter then, Boltzmann distribution \(\exp(-E_1/D)\) becomes Boltzmann distribution for a grain boundary energy density \(\sigma(\Delta^{(j)} \alpha)\) (instead of Boltzmann distribution for the grain boundary energy \(E\)), namely,

\[
E_1(\Delta \alpha) = |a_{\text{cc}} - x^{(1)}| \sum_{j=1}^{3} \sigma(\Delta^{(j)} \alpha).
\]

This is reminiscent of the result for the steady-state GBCD which is given by the Boltzmann distribution for the grain boundary energy density, see for instance, [3, 4, 4, 8]. When \(a_*\) coincides with \(a_{\text{cc}}\), from (4.12) and (4.26), \(\rho_{1, \infty}\) is similar to \(\exp \left(\frac{-|a_{\text{cc}} - x^{(1)}|}{D} \sum_{j=1}^{3} \sigma(\Delta^{(j)} \alpha) \right)\).

We now give a relation between the angle at the circumcenter point and the point \(x^{(j)}\).

Proposition 4.11. If the triple junction coincides with the circumcenter \(a_{\text{cc}}\), then

\[
1 - \cos \Psi^{(1)} = \frac{1 - \cos \Psi^{(2)}}{|x^{(1)} - x^{(2)}|^2} = \frac{1 - \cos \Psi^{(3)}}{|x^{(2)} - x^{(3)}|^2} = \frac{1 - \cos \Psi^{(3)}}{|x^{(3)} - x^{(1)}|^2}.
\]
Proof. By the cosine formula, for \(i = 1, 2, 3 \),
\[
|x^{(i)} - x^{(i+1)}|^2 = |a_{cc} - x^{(i)}|^2 + |a_{cc} - x^{(i+1)}|^2 - 2|a_{cc} - x^{(i)}||a_{cc} - x^{(i+1)}|(e^{(i)}, e^{(i+1)})
\]
\[
= 2R^2(1 - \cos \psi^{(i)}),
\]
where \(R = |a_{cc} - x^{(1)}| = |a_{cc} - x^{(2)}| = |a_{cc} - x^{(3)}| \). Thus,
\[
\frac{1}{2R^2} = \frac{1 - \cos \psi^{(1)}}{|x^{(1)} - x^{(2)}|^2} = \frac{1 - \cos \psi^{(2)}}{|x^{(2)} - x^{(3)}|^2} = \frac{1 - \cos \psi^{(3)}}{|x^{(3)} - x^{(1)}|^2},
\]
hence (4.27) holds. \(\square \)

Next we look at a necessary condition for \(a_{w FT} = a_{cc} \). By combining the relations (4.17) and (4.27), we have the following corollary,

Corollary 4.12. Assume that weighted Fermat-Torricelli point \(a_{w FT} \) does not coincide with \(x^{(j)} \) for \(j = 1, 2, 3 \). If the triple junction, \(a_{w FT} \), and circumcenter \(a_{cc} \) are all the same, then,

\[
\frac{(\sigma(\Delta^{(1)} \alpha) + \sigma(\Delta^{(2)} \alpha))^2 - \sigma(\Delta^{(3)} \alpha)^2}{2\sigma(\Delta^{(1)} \alpha)\sigma(\Delta^{(2)} \alpha)|x^{(1)} - x^{(2)}|^2} = \frac{(\sigma(\Delta^{(2)} \alpha) + \sigma(\Delta^{(3)} \alpha))^2 - \sigma(\Delta^{(1)} \alpha)^2}{2\sigma(\Delta^{(2)} \alpha)\sigma(\Delta^{(3)} \alpha)|x^{(2)} - x^{(3)}|^2} = \frac{(\sigma(\Delta^{(3)} \alpha) + \sigma(\Delta^{(1)} \alpha))^2 - \sigma(\Delta^{(2)} \alpha)^2}{2\sigma(\Delta^{(3)} \alpha)\sigma(\Delta^{(1)} \alpha)|x^{(3)} - x^{(1)}|^2}.
\]

(4.28)

Remark 4.13. When \(\sigma \equiv 1 \), then the relation (4.28) gives
\[
|x^{(1)} - x^{(2)}| = |x^{(2)} - x^{(3)}| = |x^{(3)} - x^{(1)}|,
\]
hence \(x^{(1)}, x^{(2)}, x^{(3)} \) are vertices of some equilateral triangle. Thus, (4.28) is a more general “geometric” condition on \(x^{(j)} \) and the grain boundary energy density \(\sigma(\Delta \alpha) \) to observe Boltzmann distribution for a grain boundary energy density as a steady-state distribution for \(\rho_1(\Delta \alpha, t) \).

5. Numerical Experiments

Here, we present several numerical experiments to illustrate consistency of the proposed stochastic model (2.15) with a grain growth model (2.2) applied to a grain boundary network that undergoes critical/disappearance events, e.g., grain disappearance, facet/grain boundary disappearance, facet interchange, splitting of unstable junctions. We define the total grain boundary energy of the network, like,

\[
E(t) = \sum_{j} \sigma(\Delta^{(j)} \alpha)|\Gamma_t^{(j)}|,
\]

where \(\Delta^{(j)} \alpha \) is a misorientation, a difference between the lattice orientation of the two neighboring grains which form the grain boundary \(\Gamma_t^{(j)} \). Then, the energetic variational principle implies,

\[
\begin{align*}
\dot{v}_n^{(j)} &= \mu \sigma(\Delta^{(j)} \alpha) \kappa^{(j)}, & \text{on } \Gamma_t^{(j)}, & t > 0, \\
\frac{d\alpha^{(k)}}{dt} &= -\gamma \frac{\delta E}{\delta \alpha^{(k)}}, \\
\frac{d\alpha^{(l)}}{dt} &= \eta \sum_{a^{(l)} \in \Gamma_t^{(j)}} \left(\sigma(\Delta^{(j)} \alpha) \frac{b^{(j)}}{|b^{(j)}|} \right), & t > 0.
\end{align*}
\]

(5.2)
First, we will test “generalized” Herring condition (4.17), as well as relations (4.27) and (4.28) for the grain boundary network (5.2). Next, in our numerics, using grain boundary character distribution (GBCD) statistics (see for example, [5, 4, 8, 3]), we will illustrate that the grain growth system (5.2) exhibits some fluctuation-dissipation principles (see Section 2.2).

Therefore, to verify first “generalized” Herring condition (4.17), we define ratio R_1,

$$R_1 := \frac{\sigma(\Delta^{(i)}\alpha) + \sigma(\Delta^{(i+1)}\alpha)}{2(1 - \cos(\psi(i)))\sigma(\Delta^{(i)}\alpha)\sigma(\Delta^{(i+1)}\alpha)}, \ i = 1, 2, 3, ...$$

To verify relations (4.27) and (4.28), we define ratio R_2 and R_3 respectively for each triple junction a,

$$R_2 := \frac{|x^{(3)} - x^{(1)}|^2 \sqrt{(1 - \cos(\psi(1))(1 - \cos(\psi(2)))}}{(1 - \cos(\psi(3)))|x^{(1)} - x^{(2)}||x^{(2)} - x^{(3)}|},$$

and

$$R_3 := \sqrt[3]{\frac{R_1}{R_3}},$$

where $R_1 := \frac{(\sigma(\Delta^{(i)}\alpha) + \sigma(\Delta^{(i+1)}\alpha) - \sigma(\Delta^{(i+2)}\alpha)^2}{2|x^{(i)} - x^{(i+1)}|^2\sigma(\Delta^{(i)}\alpha)\sigma(\Delta^{(i+1)}\alpha)}$ and $x^{(i)} \neq a$ are any node along grain boundary with triple junction a. Note that formulas for R_2 and R_3 (5.4)-(5.5) require selection of the node x_i along the grain boundary different from the triple junction a, see for example Figs. 1 and 2.

Note also that for $j = 1, 2, 3$, R_j is a dimensionless quantity with respect to the length of grain boundaries. If the formula (4.17), (4.27), or (4.28) holds, then $R_j = 1$ ($j = 1, 2, 3$), respectively. Since (4.17), (4.27), and (4.28) are local relations (and not the property of the network), in our numerical experiments we compute probability densities for R_1, as well as for R_2 and R_3 (using two choices of the node x_i to compute R_2 and R_3). In Figs. 5-6, 8, 10, 11 (left plot) and 13 (left and middle plots) we selected x_i to be a mesh node on the grain boundary which is the closest to the triple junction a (note, we discretize each grain boundary using linear line segments, hence, end points of these line segments form mesh nodes on each grain boundary). As a second choice for the node x_i, see Fig. 7 we selected x_i to be the other end point of the grain boundary/the “other triple junction” (different from the triple junction of a) of the considered grain boundary that shares a. As our results show, choice of x_i affects the distributions for R_2 and R_3. However, the choice of x_i does not affect consistency property reflected by distributions for R_2 and R_3 between developed stochastic model (2.15) and the simulated grain growth system (5.2), see Figs. 5-6, 8, 10, 11 (left plot), 13 (left and middle plots) and Fig. 7.

Further, we will investigate the distribution of the grain boundary character distribution (GBCD) $\rho(\Delta^{(j)}\alpha)$ at T_∞ (T_∞ is defined below), and we will use GBCD to illustrate that the grain growth system (5.2) exhibits some fluctuation-dissipation principles (see Section 2.2). The GBCD (in our context) is an empirical statistical measure of the relative length (in 2D) of the grain boundary interface with a given lattice misorientation,

$$\rho(\Delta^{(j)}\alpha, t) = \text{relative length of interface of lattice misorientation } \Delta^{(j)}\alpha \text{ at time } t,$$

(5.6) normalized so that $\int_{\Omega_{\Delta^{(j)}\alpha}} \rho d\Delta^{(j)}\alpha = 1,$

where we consider $\Omega_{\Delta^{(j)}\alpha} = [-\frac{7}{4}, \frac{7}{4}]$ in the numerical experiments below (for planar grain boundary network, it is reasonable to consider such range for the misorientations). For more details, see for example [4]. In all our tests below, we compare GBCD at T_∞ to the stationary...
solution of the Fokker-Planck equation, the Boltzmann distribution for the grain boundary energy density $\sigma(\Delta^j \alpha)$,

$$\rho_D(\Delta^j \alpha) = \frac{1}{Z_D} e^{-\frac{\sigma(\Delta^j \alpha)}{b}},$$

(5.7)

with partition function, i.e., normalization factor

$$Z_D = \int_{\Omega_{\Delta^j \alpha}} e^{-\frac{\sigma(\Delta^j \alpha)}{b}} d\Delta^j \alpha,$$

[5,4,8,3] and see Section 4. We employ Kullback-Leibler relative entropy test to obtain a unique “temperature-like” parameter D and to construct the corresponding Boltzmann distribution for the GBCD at T_∞ as it was originally done in [5,4,8,3]. Kullback-Leibler (KL) relative entropy test [5,4,8,3] is based on the idea that if we know that the GBCD $\rho(\Delta^j \alpha, t)$ evolves according to the Fokker-Planck equation, then it must converge exponentially fast to $\rho_D(\Delta^j \alpha)$ in KL relative entropy as $t \to \infty$. Note, that the GBCD is a primary candidate to characterize texture of the grain boundary network, and is inversely related to the grain boundary energy density as discovered in experiments and simulations. The reader can consult, for example, [5,4,8,3] for more details about GBCD and the theory of the GBCD. In the numerical experiments in this paper, we consider the grain boundary energy density as plotted in Fig. 3 and given below,

$$\sigma(\Delta^j \alpha) = 1 + 0.25 \sin^2(2\Delta^j \alpha).$$

Our simulation of 2D grain boundary network [18] is a further extension of the algorithm based on sharp interface approach [8,3] (note, that in [8,3], only Herring conditions at triple junctions were considered, i.e., $\eta \to \infty$, and dynamic orientations/misorientations (“rotation of grains”) was absent, i.e., $\gamma = 0$). We recall that in the numerical scheme we work with a variational principle. The cornerstone of the algorithm, which assures its stability, is the discrete dissipation inequality for the total grain boundary energy that holds when either the discrete Herring boundary condition ($\eta \to \infty$) or discrete “dynamic boundary condition” (finite mobility η of the triple junctions, third equation of (5.2)) is satisfied at the triple junctions. We also recall that in the numerical algorithm we impose Mullins theory (first equation of (5.2)) as the local evolution law for the grain boundaries (and the relaxation time scale μ is kept finite). For more details about computational model based on Mullins equations (curvature driven growth), the

Figure 3. Grain boundary energy density function $\sigma(\Delta \alpha)$.

Note: The image contains a graph showing the grain boundary energy density function $\sigma(\Delta \alpha)$ with energy density on the y-axis and misorientation on the x-axis. The graph displays a sinusoidal shape, indicating the variation of energy density with misorientation.
Figs. 10-11. Namely, we consider grain growth systems (5.2) with three grain growth systems, we compute GBCD statistics at time evolution equations and not by the initial distribution. Finally, in the last test for the considered Fig. 8 (right plot). The results illustrate that the distributions are "defined" by the grain growth values of \(\gamma = 100 \) and \(\eta = 1000 \), and is consistent with the stochastic model and theory developed in this work, Sections 2.2-4. Furthermore, as concluded from our numerical results Fig. 9, grain growth systems with larger energy density see Fig. 9, which is consistent with the theory developed in the work [5, 4, 8, 3] dissipation-fluctuation relations (2.19), Section 2.2.

We check "generalized" Herring condition formula (4.17) by computing probability density for ratio \(R_1 \) at the time of the simulations \(t = 20000 \). The results are presented in Figs. 5–8. Again, we observe that the peaks of the distributions of \(R_1 \), \(R_2 \) and \(R_3 \) are almost indistinguishable, see Figs. 6 (left plot) and 7 (right plot), which is again consistent with a developed theory, see Section 4. In addition, on Fig. 8 we illustrate how distribution for ratio \(R_3 \) evolves with time for grain growth system with \(\gamma = 10 \) and \(\eta = 1000 \), Fig. 8 (left plot) and with \(\gamma = 1000 \) and \(\eta \to \infty \) (Herring condition) Fig. 8 (right plot). The results illustrate that the distributions are “defined” by the grain growth evolution equations and not by the initial distribution. Finally, in the last test for the considered three grain growth systems, we compute GBCD statistics at time \(T_\infty \). First, we observe that the GBCD at \(T_\infty \) is well-approximated by the Boltzmann distribution for the grain boundary energy density see Fig. 9, which is consistent with the theory developed in the work [5, 4, 8, 3] and is consistent with the stochastic model and theory developed in this work, Sections 2.2-4. Furthermore, as concluded from our numerical results Fig. 9, grain growth systems with larger values of \(\gamma \) and \(\eta \), give smaller diffusion coefficient/"temperature"-like parameter \(D \) for the GBCD at \(T_\infty \), and hence higher GBCD peak near misorientation 0. This is in agreement with dissipation-fluctuation relations (2.19), Section 2.2.

Next, we consider grain growth systems with different number of grains at initial time \(T_0 \). Namely, we consider grain growth systems (5.2) with \(N = 1000, N = 2500, N = 10000 \) and with \(N = 20000 \) grains initially, at time \(T_0 \). For these systems, we assume no reader can consult, for example [8, 3, 18]. In addition, in our final test Fig. 13 we also compare results of “curvature model” (\(\mu \) is finite) (5.2) with a results of “vertex model” (\(\mu \to \infty \)), grain boundaries are straight lines, and hence, only second and third evolution equations of (5.2) are considered for the vertex model, namely model (2.7) which is applied to the grain boundary network is studied.

In all the numerical tests below we initialized our system with \(N \) grains cells/grains with normally distributed misorientation angles at initial time \(t = 0 \). We also assume that the final time of the simulations \(T_\infty \) is the time when approximately 80% of grains disappeared from the system. The final time is selected based on the system with no dynamic misorientations (\(\gamma = 0 \)) and with Herring condition at the triple junctions (\(\eta \to \infty \)) and, it is selected to ensure that statistically significant number of grains still remain in the system and the system reached its statistical stead-state. Therefore, all the numerical results which are presented below are for the grain boundary system that undergoes critical/disappearance events. We also denote by \(T_0 \) the initial time (before first time step) and by \(T_1 \) we denote a time after a first time step.

First, we consider grain growth model with curvature (5.2) and we study three systems with \(N = 10000 \) initial grains, the first system has \(\gamma = 10 \) and \(\eta = 100 \), the second system has \(\gamma = 100 \) and \(\eta = 1000 \), and the third system has \(\gamma = 1000 \) and \(\eta \to \infty \) (Herring condition). We check “generalized” Herring condition formula (4.17) by computing probability density for ratio \(R_1 \), (5.3) and by computing time evolution of frequency of dihedral angles that satisfy ratio \(R_1 \) with 0.01 accuracy. The results for \(R_1 \) are plotted on Fig. 4. We observe that all three distributions of \(R_1 \) (left and middle plots) for all three grain growth systems have peak at 1 which is consistent with the “generalized” Herring condition formula (4.17). In addition, larger values of \(\gamma \) and of \(\eta \) provide a higher accuracy for ratio \(R_1 \) and, in addition, produce a higher peak of the distribution at 1. The distribution of \(R_1 \) for system with \(\gamma = 1000 \) and \(\eta \to \infty \) (Herring condition) looks like a delta function positioned at 1 which is again consistent with results for the developed stochastic model Sections 2.2-4. Next, we check relations (4.27) and (4.28) for the same three grain growth systems (5.2) by computing probability densities for ratio \(R_2 \) and \(R_3 \). (5.4)–(5.5). The results are presented in Figs. 5–8. Again, we observe that the peaks of the distributions for \(R_2 \) and \(R_3 \) for all three systems are near 1. Moreover, the agreement between distributions \(R_2 \) and \(R_3 \) is better for grain growth systems with larger values of \(\gamma \) and \(\eta \) (for \(\gamma = 1000 \) and \(\eta \to \infty \)), the plots for \(R_2 \) and \(R_3 \) are almost indistinguishable, see Figs. 6 (left plot) and 7 (right plot), which is again consistent with a developed theory, see Section 4. In addition, on Fig. 8, we illustrate how distribution for ratio \(R_3 \) evolves with time for grain growth system with \(\gamma = 10 \) and \(\eta = 100 \), Fig. 8 (left plot) and with \(\gamma = 1000 \) and \(\eta \to \infty \) (Herring condition) Fig. 8 (right plot). The results illustrate that the distributions are “defined” by the grain growth evolution equations and not by the initial distribution. Finally, in the last test for the considered three grain growth systems, we compute GBCD statistics at time \(T_\infty \). First, we observe that the GBCD at \(T_\infty \) is well-approximated by the Boltzmann distribution for the grain boundary energy density see Fig. 9, which is consistent with the theory developed in the work [5, 4, 8, 3] and is consistent with the stochastic model and theory developed in this work, Sections 2.2-4.

Furthermore, as concluded from our numerical results Fig. 9, grain growth systems with larger values of \(\gamma \) and \(\eta \), give smaller diffusion coefficient/"temperature"-like parameter \(D \) for the GBCD at \(T_\infty \), and hence higher GBCD peak near misorientation 0. This is in agreement with dissipation-fluctuation relations (2.19), Section 2.2.
dynamic misorientation ($\gamma = 0$) and Herring condition ($\eta \rightarrow \infty$) at the triple junctions. From the results, Fig. 10 and 11 (middle and right plots) we observe that distributions for R_2, R_3 and GBCD exhibit convergence to limiting distributions with increase in N. In addition, result on Fig. 11 (left plot), indicates that there is a closer agreement between distributions R_2 and R_3 for larger value of misorientation parameter γ. Again, this is consistent with the developed theory, Section 4. In Fig. 12 we investigate effect of the mobility of the triple junctions η on the GBCD, however we do not observe as much effect of η on the GBCD as we observed for the misorientation parameter γ, see Figs. 9 and 12. This can be due to more profound effect of the interactions among triple junctions/correlations effects among triple junctions that should be taken into account as a part of future work, we will study interactions/correlations and their effects on coarsening in polycrystalline materials.

Finally, in the last test, Fig. 13, we compare results of “curvature model” (μ is finite) (5.2) with a results of “vertex model” ($\mu \rightarrow \infty$), grain boundaries are straight lines, and hence, only second and third evolution equations of (5.2) are considered for the vertex model, namely model (2.7) which is applied to the grain boundary network is studied. As can be seen from results in Fig. 13 there is not much effect on the GBCD. However, we observe significant effect on the distributions of R_2 and R_3, Fig. 13 (left and middle plots), namely “curvature model” appears to be in closer agreement with the developed stochastic model (2.15) than “vertex model”. This again highlights the importance of correlations and their effects on grain growth. Therefore, as a part of future work, we will study interactions/correlations and their effects on coarsening in polycrystalline materials.

Figure 4. Grain growth system (5.2) with finite μ (with curvature), one run of 2D trial with 10000 initial grains: (a) Left plot, distribution of ratio R_1 (5.3) for grain growth systems with mobility of triple junctions $\eta = 100$ and the misorientation parameter $\gamma = 10$ (solid blue), with mobility of triple junctions $\eta = 1000$ and the misorientation parameter $\gamma = 100$ (solid red) and with mobility of triple junctions $\eta \rightarrow \infty$ (Herring condition) and the misorientation parameter $\gamma = 1000$ (dashed point black). (b) Middle plot, comparison of the two distributions of ratio R_1 (5.3) for grain growth systems with mobility of triple junctions $\eta = 100$ and the misorientation parameter $\gamma = 10$ (solid blue) and with mobility of triple junctions $\eta = 1000$ and the misorientation parameter $\gamma = 100$ (dashed red). The distributions are plotted at T_{∞}. (c) Right plot, time evolution of frequency of dihedral angles that satisfy ratio R_1 with 0.01 accuracy for grain growth systems with mobility of triple junctions $\eta = 100$ and the misorientation parameter $\gamma = 10$ (solid blue), with mobility of triple junctions $\eta = 1000$ and the misorientation parameter $\gamma = 100$ (solid red) and with mobility of triple junctions $\eta \rightarrow \infty$ (Herring condition) and the misorientation parameter $\gamma = 1000$ (solid black).

6. Conclusion

In this paper, we study a stochastic model for the evolution of planar grain boundary network in order to be able to incorporate and model the effect of the critical events during grain growth (coarsening). We start with a simplified model and, hence, consider the Langevin equation...
Figure 5. Grain growth system (5.2) with finite μ (with curvature), one run of 2D trial with 10000 initial grains: (a) Left plot, comparison of distributions of ratio R_2 (5.4) (solid black) and R_3 (5.5) (dashed black) for grain growth system with mobility of triple junctions $\eta = 100$ and the misorientation parameter $\gamma = 10$. (b) Right plot, comparison of distributions of ratio R_2 (5.4) (solid red) and R_3 (5.5) (dashed red) for grain growth system with mobility of triple junctions $\eta = 1000$ and the misorientation parameter $\gamma = 100$. The closest mesh node of the grain boundary to the triple junction a is used as x_i. The distributions are plotted at T_{100}.

Figure 6. Grain growth system (5.2) with finite μ (with curvature), one run of 2D trial with 10000 initial grains: (a) Left plot, comparison of distributions of ratio R_2 (5.4) (solid black) and R_3 (5.5) (dashed black) for grain growth system with mobility of triple junctions $\eta \to \infty$ (Herring condition) and the misorientation parameter $\gamma = 1000$. (b) Right plot, comparison of distributions of ratio R_2 (5.4) for grain growth systems with mobility of triple junctions $\eta = 100$ and the misorientation parameter $\gamma = 10$ (solid blue), with mobility of triple junctions $\eta = 1000$ and the misorientation parameter $\gamma = 100$ (solid red), and with mobility of triple junctions $\eta \to \infty$ (Herring condition) and the misorientation parameter $\gamma = 1000$ (dashed point black). The closest mesh node of the grain boundary to the triple junction a is used as x_i. The distributions are plotted at T_{100}.

33
To the Fokker-Planck equation, the joint probability density function of misorientations and triple

the Fokker-Planck equation and establish fluctuation-dissipation principle. Next, due to degeneracy and singularity of the system energy, we use weighted L^2 space to establish long time asymptotics of the solution to the Fokker-Planck equation, the joint probability density function of misorientations and triple

analog of the model from [19], with the interactions among triple junctions and misorientations modeled as white noise. The proposed system considers anisotropic grain boundary energy which depends on lattice misorientation and takes into account mobility of the triple junctions, as well as independent dynamics of the misorientations. We derive the associated Fokker-Planck equation and establish fluctuation-dissipation principle.
will study the logarithmic-Sobolev inequality \cite{1, 2, 25, 39} and construct the results are obtained under fluctuation-dissipation assumption. As a part of our future work, we will extend theory to different statistical metrics of grain growth.

Further, for an equilibrium configuration of a boundary network, we derive explicit local algebraic relations, a generalized Herring Condition formula, as well as formula that connects grain boundary energy density with the geometry of the grain boundaries that share a triple junction. Even though the considered simplified stochastic model neglects the explicit interactions and correlations among triple junctions, the considered specific form of the noise, under the fluctuation-dissipation assumption, provides partial information about evolution of a grain boundary network, and is consistent with presented results of extensive grain growth simulations. As a part of our future research, we also plan to identify and model explicitly correlations, including nucleation \cite{43, 44} and interactions among triple junctions, as well as extend theory to different statistical metrics of grain growth.
Figure 11. Grain growth system (5.2) with finite μ (with curvature): (a) Left plot, one run of 2D trial with 10000 initial grains, comparison of distributions of ratio R_2 (solid black) and R_3 (dashed black), grain growth system with mobility of triple junctions $\eta \to \infty$ (Herring condition) and $\gamma = 1000$. Comparison of distributions of ratio R_2 (solid red) and R_3 (dashed red), grain growth system with mobility of triple junctions $\eta \to \infty$ (Herring condition) and no dynamic misorientations ($\gamma = 0$). The closest mesh node of the grain boundary to the triple junction a is used as x_i. The distributions are plotted at T_∞ (b) Middle plot, one run of 2D trial with 10000 initial grains, GBCD (black curve) at T_∞ versus Boltzmann distribution with “temperature” $D \approx 0.068$ (magenta curve). (c) Right plot, one run of 2D trial with 20000 initial grains, GBCD (black curve) at T_∞ versus Boltzmann distribution with “temperature” $D \approx 0.069$ (magenta curve). Grain growth system with mobility of triple junctions $\eta \to \infty$ (Herring condition) and no dynamic misorientation ($\gamma = 0$).

Figure 12. Grain growth system (5.2) with finite μ (with curvature), one run of 2D trial with 10000 initial grains: (a) Left plot, GBCD (blue curve) at T_∞ versus Boltzmann distribution with “temperature” $D \approx 0.066$ (magenta curve), grain growth system with mobility of triple junctions $\eta = 100$ and no dynamic misorientation ($\gamma = 0$). (b) Right plot, GBCD (red curve) at T_∞ versus Boltzmann distribution with “temperature” $D \approx 0.071$ (magenta curve), grain growth system with mobility of triple junctions $\eta = 1000$ and no dynamic misorientation ($\gamma = 0$).

Acknowledgments

The authors are grateful to David Kinderlehrer for the fruitful discussions, inspiration and motivation of the work. The authors are also grateful to colleagues Katayun Barmak and Lajos Horvath for their collaboration and helpful discussions. Yekaterina Epshteyn acknowledges partial support of NSF DMS-1905463, Masashi Mizuno acknowledges partial support of JSPS KAKENHI Grant No.18K13446, Chun Liu acknowledges partial support of NSF DMS-1759535 and NSF DMS-1759536.
Figure 13. One run of 2D trial with 10000 initial grains: (a) Left plot: Comparison of distributions of ratio R_1 (5.3) (solid blue) for model with curvature (finite μ) (5.2) and R_1 (5.3) (solid magenta) “vertex model” with ($\mu \to \infty$) (5.2). (b) Middle plot: comparison of distributions of ratio R_2 (5.4) (solid blue) and R_3 (5.5) (dashed blue) for model with curvature (finite μ) (5.2), and comparison of distributions of ratio R_2 (5.4) (solid magenta) and R_3 (5.5) (dashed magenta) for “vertex model” with ($\mu \to \infty$) (5.2). The closest mesh node of the grain boundary to the triple junction a is used as x_i. The distributions are plotted at T_∞. (c) Right plot: One run of 2D trial with 10000 initial grains, GBCD (blue curve) “curvature model” (finite μ) (5.2), GBCD (dark magenta curve) “vertex model” ($\mu \to \infty$) (5.2) at T_∞ versus Boltzmann distribution with “temperature” $D \approx 0.064$ (magenta curve). Grain growth “curvature model” is considered with mobility of triple junctions $\eta = 100$ and $\gamma = 10$, and grain growth “vertex model” is considered with mobility of triple junctions $\eta = 100$ and $\gamma = 15$.

References

[1] Anton Arnold, Peter Markowich, Giuseppe Toscani, and Andreas Unterreiter. On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations. Comm. Partial Differential Equations, 26(1-2):43–100, 2001.
[2] D. Bakry and Michel Émery. Diffusions hypercontractives. In Séminaire de probabilités, XIX, 1983/84, volume 1123 of Lecture Notes in Math., pages 177–206. Springer, Berlin, 1985.
[3] Patrick Bardsley, Katayun Barmak, Eva Eggeling, Yekaterina Epshteyn, David Kinderlehrer, and Shlomo Ta’asan. Towards a gradient flow for microstructure. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 28(4):777–805, 2017.
[4] K. Barmak, E. Eggeling, M. Emelianenko, Y. Epshteyn, D. Kinderlehrer, R. Sharp, and S. Ta’asan. Critical events, entropy, and the grain boundary character distribution. Phys. Rev. B, 83:134117, Apr 2011.
[5] K. Barmak, E. Eggeling, M. Emelianenko, Y. Epshteyn, D. Kinderlehrer, and S. Ta’asan. Geometric growth and character development in large metastable networks. Rend. Mat. Appl. (7), 29(1):65–81, 2009.
[6] K. Barmak, E. Eggeling, D. Kinderlehrer, R. Sharp, S. Ta’asan, A.D. Rollett, and K.R. Coffey. Grain growth and the puzzle of its stagnation in thin films: The curious tale of a tail and an ear. Progress in Materials Science, 58(7):987–1055, 2013.
[7] Katayun Barmak, Anastasia Dunca, Yekaterina Epshteyn, Chun Liu, and Masashi Mizuno. Grain growth and the effect of different time scales. 2021. submitted for publication, https://arxiv.org/abs/2105.07255.
[8] Katayun Barmak, Eva Eggeling, Maria Emelianenko, Yekaterina Epshteyn, David Kinderlehrer, Richard Sharp, and Shlomo Ta’asan. An entropy based theory of the grain boundary character distribution. Discrete Contin. Dyn. Syst., 30(2):427–454, 2011.
[9] Giovanni Bellettini. Lecture notes on mean curvature flow, barriers and singular perturbations, volume 12 of Appunti. Scuola Normale Superiore di Pisa (Nuova Serie) [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)]. Edizioni della Normale, Pisa, 2013.
[10] Victor L. Berdichevsky. Thermodynamics of microstructure evolution: Grain growth. International Journal of Engineering Science, 57:50–78, 2012.
[11] V. Boltianski, H. Martini, and V. Soltan. Geometric methods and optimization problems, volume 4 of Combinatorial Optimization. Kluwer Academic Publishers, Dordrecht, 1999.
[12] Kenneth A. Brakke. The motion of a surface by its mean curvature, volume 20 of Mathematical Notes. Princeton University Press, Princeton, N.J., 1978.
[13] Haim Brezis. Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer, New York, 2011.
[14] Lia Bronsard and Fernando Reitich. On three-phase boundary motion and the singular limit of a vector-valued Ginzburg-Landau equation. *Arch. Rational Mech. Anal.*, 124(4):355–379, 1993.

[15] Herbert B. Callen and Theodore A. Welton. Irreversibility and generalized noise. *Phys. Rev.*, 83:34–40, Jul 1951.

[16] Yun Gang Chen, Yoshikazu Giga, and Shun’ichi Goto. Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. *J. Differential Geom.*, 33(3):749–786, 1991.

[17] Klaus Ecker. *Regularity theory for mean curvature flow*. Progress in Nonlinear Differential Equations and their Applications, 57. Birkhäuser Boston, Inc., Boston, MA, 2004.

[18] Yekaterina Epshteyn, Chun Liu, and Masashi Mizuno. Large time asymptotic behavior of grain boundaries motion with dynamic lattice misorientations and with triple junctions drag. *to appear in Communications in Mathematical Sciences*, 2021. https://arxiv.org/abs/1910.08022.

[19] Yekaterina Epshteyn, Chun Liu, and Masashi Mizuno. Motion of Grain Boundaries with Dynamic Lattice Misorientations and with Triple Juncions Drag. *SIAM J. Math. Anal.*, 53(3):3072–3097, 2021.

[20] L. C. Evans and J. Spruck. Motion of level sets by mean curvature. I. *J. Differential Geom.*, 33(3):635–681, 1991.

[21] Lawrence C. Evans. *Partial differential equations*, volume 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 1998.

[22] Yoshikazu Giga, Hideo Kubo, and Tohru Ozawa. The role of metrics in the theory of partial differential equations. *Hokkaido University technical report series in mathematics*, 174:1–154, jul 2018.

[23] David Gilbarg and Neil S. Trudinger. *Elliptic partial differential equations of second order*. Classics in Mathematics. Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition.

[24] Conyers Herring. Surface tension as a motivation for sintering. In *Fundamental Contributions to the Continuum Theory of Evolving Phase Interfaces in Solids*, pages 33–69. Springer, 1999.

[25] Angslar Jüngel. *Entropy methods for diffusive partial differential equations*. SpringerBriefs in Mathematics. Springer, [Cham], 2016.

[26] Lami Kim and Yoshihiro Tonegawa. On the mean curvature flow of grain boundaries. *Ann. Inst. Fourier (Grenoble)*, 67(1):43–142, 2017.

[27] J Kinderlehrer and C Liu. Evolution of grain boundaries. *Mathematical Models and Methods in Applied Sciences*, 11(4):713–729, Jun 2001.

[28] Robert V Kohn. Irreversibility and the statistics of grain boundaries. *Physics*, 4:33, 2011.

[29] R Kubo. The fluctuation-dissipation theorem. *Reports on Progress in Physics*, 29(1):255–284, jan 1966.

[30] O. Ladyzhenskaya, V. Solonnikov, and N. Ural’ceva. *Linear and quasilinear equations of parabolic type*. Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23. American Mathematical Society, Providence, R.I., 1967.

[31] O. Ladyzhenskaya. *The mathematical theory of viscous incompressible flow*. Mathematics and its Applications, Vol. 2. Gordon and Breach, Science Publishers, New York-London-Paris, 1969. Second English edition, revised and enlarged, Translated from the Russian by Richard A. Silverman and John Chu.

[32] Gary M. Lieberman. *Second order parabolic differential equations*. World Scientific Publishing Co. Inc., River Edge, NJ, 1996.

[33] Annibale Magni, Carlo Mantegazza, and Matteo Novaga. Motion by curvature of planar networks, II. *Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)*, 15:117–144, 2016.

[34] Carlo Mantegazza, Matteo Novaga, and Alessandra Pluda. Lectures on curvature flow of networks. In *Contemporary research in elliptic PDEs and related topics*, volume 33 of *Springer INdAM Ser.*, pages 369–417. Springer, Cham, 2019.

[35] Carlo Mantegazza, Matteo Novaga, and Vincenzo Maria Tortorelli. Motion by curvature of planar networks. *Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)*, 3(2):235–324, 2004.

[36] P. A. Markowich and C. Villani. On the trend to equilibrium for the Fokker-Planck equation: an interplay between physics and functional analysis. In *VI Workshop on Partial Differential Equations. Part II (Rio de Janeiro, 1999)*, volume 19, pages 1–29. Sociedade Brasileira de Matemática, Rio de Janeiro, 2000.

[37] W. W. Mullins. Two-dimensional motion of idealized grain boundaries. *Journal of Applied Physics*, 27(8):900–904, 1956.

[38] W. W. Mullins. Theory of thermal grooving. *Journal of Applied Physics*, 28(3):333–339, 1957.

[39] Otto and C. Villani. Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. *J. Funct. Anal.*, 173(2):361–400, 2000.
[40] Roger Temam. *Navier-Stokes equations*, volume 2 of *Studies in Mathematics and its Applications*. North-Holland Publishing Co., Amsterdam-New York, revised edition, 1979. Theory and numerical analysis, With an appendix by F. Thomasset.

[41] M Upmanyu, DJ Srolovitz, LS Shvindlerman, and G Gottstein. Molecular dynamics simulation of triple junction migration. *Acta materialia*, 50(6):1405–1420, 2002.

[42] Moneesh Upmanyu, David J Srolovitz, LS Shvindlerman, and G Gottstein. Triple junction mobility: A molecular dynamics study. *Interface Science*, 7(3):307–319, 1999.

[43] Lei Zhang, Long-Qing Chen, and Qiang Du. Mathematical and numerical aspects of a phase-field approach to critical nuclei morphology in solids. *J. Sci. Comput.*, 37(1):89–102, 2008.

[44] Lei Zhang, Long-Qing Chen, and Qiang Du. Diffuse-interface approach to predicting morphologies of critical nucleus and equilibrium structure for cubic to tetragonal transformations. *Journal of Computational Physics*, 229(18):6574–6584, 2010.

[45] Luchan Zhang, Jian Han, Yang Xiang, and David J Srolovitz. Equation of motion for a grain boundary. *Physical review letters*, 119(24):246101, 2017.

[46] Luchan Zhang and Yang Xiang. Motion of grain boundaries incorporating dislocation structure. *Journal of the Mechanics and Physics of Solids*, 117:157–178, 2018.

[47] Quan Zhao, Wei Jiang, David J. Srolovitz, and Weizhu Bao. Triple junction drag effects during topological changes in the evolution of polycrystalline microstructures. *Acta Materialia*, 128:345–350, 2017.

(Yekaterina Epshteyn) Department of Mathematics, The University of Utah, Salt Lake City, UT 84112, USA

Email address: epshteyn@math.utah.edu

(Chun Liu) Department of Applied Mathematics, Illinois Institute of Technology, Chicago, IL 60616, USA

Email address: cliu124@iit.edu

(Masashi Mizuno) Department of Mathematics, College of Science and Technology, Nihon University, Tokyo 101-8308 JAPAN

Email address: mizuno.masashi@nihon-u.ac.jp