Research Paper:
Effect of an Eight-week High-intensity Interval Training Program on Serum Cardiac Troponin I Level of Streptozotocin-induced Diabetic Rats

Najmeh Miraghaee1, *Abbas Sadeghi2, Navid Mohammadi3,4

1. Department of Sport Sciences, Allameh Qazvini Institute of Higher Education, Qazvin, Iran.
2. Department of Physical Education and Sport Sciences, Faculty of Social Sciences, Imam Khomeini International University, Qazvin, Iran.
3. Children Growth Research Center, Research Institute for Prevention of Non-communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.
4. Canada Optimax Access Consultation, Ottawa, Canada.

Background
One of the complications of diabetes, as a chronic metabolic disorder, is cardiovascular diseases.

Objective
This study aims to investigate the effect of an eight-week High-Intensity Interval Training (HIIT) program on serum Cardiac troponin I (CtnI) level in streptozotocin-induced diabetic rats.

Methods
In this experimental clinical trial, 30 rats were randomly assigned into three groups of healthy Control (C), Diabetic (D), and diabetic+training (D+T). The third group performed the training which included a treadmill running at an intensity of 85%-90% of maximum speed in 6-12 sessions of 2 min for 8 weeks, 5 days per week. Blood glucose level and high-sensitive CtnI levels were measured 48 hours after the last training session and 12 hours of fasting. One-way ANOVA and Tukey’s test were used to analyze the collected data, considering a significance level of P<0.05.

Findings
The induction of diabetes caused a significant increase in blood glucose (P=0.01) and high-sensitive CtnI (P=0.01) levels in the D group. Also, a significant difference was observed in the blood glucose level of D+T group compared to the D group (P=0.001). The CtnI level also slightly reduced (11%) in the D+T group compared to the D group, but it was not statistically significant (P=0.591).

Conclusion
The HIIT program can reduce the fasting blood glucose and increase the serum level of high-sensitive CtnI to some extent in diabetic rats; therefore, it can be an appropriate strategy for diabetics. However, there is a need for more studies in this area.

ABSTRACT

Background. One of the complications of diabetes, as a chronic metabolic disorder, is cardiovascular diseases.

Objective. This study aims to investigate the effect of an eight-week High-Intensity Interval Training (HIIT) program on serum Cardiac troponin I (CtnI) level in streptozotocin-induced diabetic rats.

Methods. In this experimental clinical trial, 30 rats were randomly assigned into three groups of healthy Control (C), Diabetic (D), and diabetic+training (D+T). The third group performed the training which included a treadmill running at an intensity of 85%-90% of maximum speed in 6-12 sessions of 2 min for 8 weeks, 5 days per week. Blood glucose level and high-sensitive CtnI levels were measured 48 hours after the last training session and 12 hours of fasting. One-way ANOVA and Tukey’s test were used to analyze the collected data, considering a significance level of P<0.05.

Findings. The induction of diabetes caused a significant increase in blood glucose (P=0.01) and high-sensitive CtnI (P=0.01) levels in the D group. Also, a significant difference was observed in the blood glucose level of D+T group compared to the D group (P=0.001). The CtnI level also slightly reduced (11%) in the D+T group compared to the D group, but it was not statistically significant (P=0.591).

Conclusion. The HIIT program can reduce the fasting blood glucose and increase the serum level of high-sensitive CtnI to some extent in diabetic rats; therefore, it can be an appropriate strategy for diabetics. However, there is a need for more studies in this area.

Keywords: Heart, Diabetes, Cardiac troponin, High-intensity interval training

Extended Abstract

1. Introduction
In addition to having numerous complications, diabetes increases the risk of coronary heart disease and death [2]. Identifying people at risk of cardiovascular diseases based on specific criteria can improve their monitoring and treatment. One of the most important indicators is Cardiac Troponin I (CtnI) as a biomarker of myocardial damage [5]. Cardiac troponins increase in myocardial damage earlier than other paraclinical markers and remain in the blood longer [7]. The American College of Sports Medicine (ACSM) has recommended exercise as a best way to prevent heart disease. Adaptation to aerobic exercise is associated with increased maximum oxygen consumption, cardiac output and ultimately left ventricular mass size [12]. Due to the relationship between physical activity and cardiorespiratory fitness, determining the effect of duration and intensity...
of exercise on the risk index of myocardial infarction can help provide an appropriate model for improving the health of people and prevent cardiovascular diseases, especially in diabetic patients.

2. Materials and Methods

This experimental study was conducted for this study according to the ethical guidelines of the Declaration of Helsinki on 30 male Wistar rats (Weight=225-300 g; age=3 months) randomly divided into three groups of 10 rats including healthy Control (C), Diabetic (D), and Diabetic+Training (D+T).

Diabetes induction

A high-fat diet was provided to the animals for two weeks. Then, they received a single dose of 35 mg/kg Streptozotocin (STZ) by intraperitoneal injection after six hours of fasting [13]. A week after diabetes induction, blood samples were collected from their caudal vein. Those with a blood glucose level above 250 mg/dL were considered diabetic.

Training protocol

An incremental High-intensity Interval Training (HIIT) protocol on the treadmill was implemented to assess the maximum speed, starting at 10 m/min and then increased by 3 m/min every 2 minutes until exhaustion. The main exercise included 6-12 sessions of 2-min high-intensity exercise with a speed of 85-90% of maximum speed with 1-min low-intensity exercise at 10 m/min. The running speed increased by about 10% every week throughout the study. Since handling animals on the treadmill may induce stress, sedentary control animals were also trained on the treadmill once a week to familiarize with handling and treadmill environment [15].

Blood glucose and high-sensitive CtnI assay

All animals were intraperitoneally anesthetized with ketamine (90 mg/kg-1) and xylazine (10 mg/kg-1) and sacrificed 48 h after the last training session. A sufficient amount of blood was taken from the left ventricle of the heart by a syringe. All blood samples were immediately centrifuged (3000rpm, 15 min, 4°C) and stored at -80°C until analysis to extract the serum. Fasting blood sugar levels were measured by a colorimetric glucose-oxidase procedure. Serum CtnI level was measured by the ELISA method using a High-Sensitive (HS) enzyme-linked assay kit specific for rat CtnI (Cloud-Clone Corp, USA), according to the instructions. All statistical analyses were performed in SPSS V. 24 software, considering a statistical significance level of P<0.05.

3. Results

The Shapiro-Wilk test results showed that the data were normally distributed. The STZ-induced diabetes resulted in a significant increase in blood glucose (P=0.001) and HS-CtnI levels (P=0.001) in group D. There was also a significant difference in blood glucose level in the D+T group compared to group D (P=0.001), indicating a significant decrease in fasting blood glucose level after exercise in this group. Although the HS-CtnI level in the D+T group slightly decreased (11%) compared to the D group, this decrease was not significant (P=0.591).

4. Discussion and Conclusion

The results of this study showed that the 8 weeks of HIIT significantly reduced the blood glucose level of diabetic rats by 36.93%. Recent studies that have used the HIIT in diabetic patients suggest that the exercise intensity may play a key role in managing diabetes [19]. The mechanisms for the effect of HIIT on the glycemic index of diabetic patients are not fully understood. The hepatic glucose production induced by exercise can also be improved following the fasting blood glucose reduction. On the other hand, the HIIT can use muscle fibers and deplete muscle glycogen faster [20]. Therefore, it may further increase the insulin sensitivity of muscle cells after exercise. It seems that the effectiveness of HIIT in increasing the insulin sensitivity and reducing the blood glucose level is higher.

In the present study, the induction of diabetes in rats increased the serum level of CtnI significantly. This finding suggests that diabetes can damage to the myocardial tissues [22, 34] The HIIT reduced the serum levels of CtnI in diabetic rats to some extent (11%), which indicates the protective effect of this training program against cardiac tissue damage, although it was not significant. However, it is too early to comment definitively on the effect of such exercises on the specific markers of heart cell damage, and more research is needed to determine the impact of this type of exercise. Regular exercise increases myocardial adaptation and tolerance against ischemic injury [29]. The long-term exercise increases the activity of antioxidant enzymes in protecting the heart [31]. Other possible mechanisms are increased number of mitochondria, increased nitric oxide, and consequently increased endothelial nitric oxide synthase [33].
Ethical Considerations

Compliance with ethical guidelines

The research was approved by the Ethics Committee of the Allameh Qazvini Institute of Higher Education (Code: 97/K.A/1012) and the principles and codes of ethics in the research have been followed.

Funding

The present paper was extracted from the MA. thesis of the first author, Department of Sport Sciences, Allameh Qazvini Institute of Higher Education, Qazvin.

Authors' contributions

Conceptualization and finalization: Najmeh Miraghaee, Abbas Sadeghi and Navid Mohammadi; Methodology: Abbas Sadeghi; Data collection: Najmeh Mir Aghaei; Data analysis and interpretation: Abbas Sadeghi; Preparation of draft article: Najmeh Miraghaee; Critical editing and review of the text and content of the draft: Abbas Sadeghi and Navid Mohammadi; Project supervision and management: Abbas Sadeghi and Navid Mohammadi.

Conflict of interest

The authors declare no conflict of interest.

Acknowledgments

The author would like thank the officials of Allameh Qazvini Institute of Higher Education and the Sarai Cell Research Clinic.
تأثیر هشت هفته تناسب انسانی (HIIT) بر سطح سرمی تروپونین قلبی 1 (HS-CtnI) در زنان مبتلا به دیابت

عباس صادقی

مقدمه

سرطان رو به رشد مبارزه در جهان موجب شده است تا این بیماران به علائم یکی از سنگلین و مشکلات مهم سلامتی مانند قلبی قرار گیرند. کنترل و درمان قلب، خطر بیماری های قلبی و عروقی را کاهش می‌دهند. در این زمینه، تحقیقات نشان داده‌اند که تناسب انسانی به کاهش خطرات میکرو اسکوکلاروز و بیماری‌های قلبی و عروقی می‌تواند کمک کند.

می‌توان به دو دسته یا تناسب انسانی (HIIT) و تناسب انسانی معتدل (MIIT) تقسیم شد. این دو گروه در خلال هشت هفته روزانه ۳ تمرین می‌کردند. هر تمرین شامل ۲۰ دقیقه تمرین ورزشی شدید و ۱۳ دقیقه تمرین معتدل بود.

یافته‌ها

به طور کلی، این تحقیق نشان داد که تناسب انسانی به بالینی مشاهده شد. این نتایج نشان دهنده است که تناسب انسانی به کاهش خطرات میکرو اسکوکلاروز و بیماری‌های قلبی و عروقی می‌تواند کمک کند.

نتیجه‌گیری

در بیماران مبتلا به دیابت و درمان قلبی، تناسب انسانی به کاهش خطرات میکرو اسکوکلاروز و بیماری‌های قلبی و عروقی می‌تواند کمک کند.

کلیدواژه‌ها:

بلای دیابت، تروپونین قلبی، تناسب انسانی
از سوی دیگر، با توجه به پیشنهاد کالج پزشکی ورزش‌گرایانه، مرتبت از این مباحث و زبانی‌های ورزشی است و نشان دهنده حاله شده که فعالیت‌های ورزشی مورد مطالعه (کاراکتر) عمدتاً قبلاً به صورت تجربی و با طراحی ماهیتی و با توجه به محیطی که در این زمینه برگزار شده، همه دنیای رئولوژی قلبی خصوصاً در بیماران دیابتی، به حرکات ترکیبی و به زبانه‌هایی در صحرا و آزمایشگاهی مربوط به جامعه‌های مرکزی تحقیقات علمی مطرح و در صورتی که به بهره‌برداری از محیط‌های فیزیولوژیکی بیشتر و به دسترسی به مواد و روش‌ها به عنوان ابزاری، توانایی و حادی‌ترین بررسی‌های بیولوژیکی در نشان‌گرهای پاراکلینیکی مانند تروپونین‌های قلبی (HS-CtnI) مورد استفاده قرار گرفته و به‌عنوان متأثیرترین شاخص ریسک‌آسیب میوکاردی‌ای اشاره‌های شناخته‌شده است.

مواد و روش‌ها

به‌منظور ایجاد حالت سازگاری با محیط، جلوگیری از استرس و تبیین شرایط ویژینژیلی از زبانی ورزشی و از آنجایی که رابطه بین سطح دیابت و مصرف ویژینژیلی و درمان بیماران دیابتی با دوره‌های ورزشی نشان دهنده است که به توجه به پیشنهاد کالج پزشکی ورزش‌گرایانه، مرتبت از این مباحث و زبانی‌های ورزشی است و نشان دهنده حاله شده که فعالیت‌های ورزشی مورد مطالعه (کاراکتر) عمدتاً قبلاً به صورت تجربی و با طراحی ماهیتی و با توجه به محیطی که در این زمینه برگزار شده، همه دنیای رئولوژی قلبی خصوصاً در بیماران دیابتی، به حرکات ترکیبی و به زبانه‌هایی در صحرا و آزمایشگاهی مربوط به جامعه‌های مرکزی تحقیقات علمی مطرح و در صورتی که به بهره‌برداری از محیط‌های فیزیولوژیکی بیشتر و به دسترسی به مواد و روش‌ها به عنوان ابزاری، توانایی و حادی‌ترین بررسی‌های بیولوژیکی در نشان‌گرهای پاراکلینیکی مانند تروپونین‌های قلبی (HS-CtnI) مورد استفاده قرار گرفته و به‌عنوان متأثیرترین شاخص ریسک‌آسیب میوکاردی‌ای اشاره‌های شناخته‌شده است.

HS-CtnI

ستنگی تروپونین قلبی با احساسات بالا برای افزایش قلبی‌یافته در همه افراد سالم توصیه گردیده است. باید با یکی از این نشان‌گرهای پاراکلینیکی مانند تروپونین‌های قلبی (HS-CtnI) نشان‌گر بیولوژیکی ایجاد آسیب قلبی شناخته‌شده است.

کراتین کیناز (CK-MB)

کراتین کیناز مایکروبدان (CK-MB) از نشان‌گرهای پاراکلینیکی دیگری است که به‌طور خاص در موارد آسیب‌های قلبی فردی نشان‌دهنده بوده و می‌تواند به‌عنوان یکی از نشان‌گرهای پاراکلینیکی دیگری در استفاده باشند.

CtnI

CtnI به عنوان یک نشان‌گر بیولوژیکی ایجاد آسیب قلبی شناخته‌شده است. مصرف این واکنش خطر حوادث قلبی و مرگ‌زودرس را فراهم می‌کند.

CtnI با کلسومگام و درمان‌های انسامینی ممکن است موجب تسردی‌های قلبی خاصی نشان‌دهنده این واکنش‌ها باشد.

CtnI با فشار خون خاصی فیزیولوژیکی بیماران آسیب‌یافته و در آنها ممکن است مورد استفاده قرار گیرد.

CtnI با استفاده از دستگاه‌های اندازه‌گیری قلبی، به‌طور خاص در موارد آسیب‌های قلبی، تست CtnI ممکن است به‌عنوان یکی از نشان‌گرهای پاراکلینیکی ایجاد آسیب قلبی شناخته‌شده است.

CtnI به دسترسی به دستگاه‌های اندازه‌گیری قلبی، به‌طور خاص در موارد آسیب‌های قلبی، تست CtnI ممکن است به‌عنوان یکی از نشان‌گرهای پاراکلینیکی ایجاد آسیب قلبی شناخته‌شده است.

۱. Creatine Kinase (CK) M-BB
2. Creatine Kinase Myocardial Band (CK-MB)
3. Lactate Dehydrogenase (LDH)
4. High-Sensitivity Cardiac Troponin I (HS-CtnI)
5. Acute Myocardial Infarction (AMI)
10. High sensitive enzyme-linked assay kit
11. Ekt Caradiac Troponin I
12. Cloud-Clone Corp, USA

9. ELSA

8. Intra Proximal (iP)
در صنف کاهش داشتهای چندین کاهش معنی‌دار بیش از گروه C و گروه D+T و گروه C با اختلاف معنی‌داری (P<0/05) وجود داشت (شکل شماره ۲). این نتایج نشان می‌دهند که تمرین‌های تناوبی با شدت بالا می‌توانند به شدت قابل‌توجهی در کاهش گلوکز خون موش‌های صحرایی دیابتی موثر باشند.

جدول ۲. نتایج آزمون تحلیل واریانس یک‌طرفه (ANOVA) بین مقادیر GS Ctrl و گروه خویششگری

گروه	میزان جی‌سی‌البدن (گرم)	میزان جی‌سی‌المشتق (گرم)	میزان جی‌سی‌البدن (گرم)	میزان جی‌سی‌المشتق (گرم)
C	3/92/5/20	2/8/4/6	3/8/5/1	2/7/3/5
D	3/8/5/1	2/7/3/5	3/8/5/1	2/7/3/5
D+T	3/8/5/1	2/7/3/5	3/8/5/1	2/7/3/5

جدول ۳. مقایسه میانگین‌های
mیزان گلوکز خون، مشتق‌های میکروگلکز

گروه	میزان گلوکز خون (گرام/لیتر)	میزان مشتق‌های میکروگلکز (گرام/لیتر)
C	3/8/5/1	2/7/3/5
D	3/8/5/1	2/7/3/5
D+T	3/8/5/1	2/7/3/5

بحث و نتیجه‌گیری

مورخ قلبی‌های دیابتی در بیماران مبتلا به دیابتی عروقی توسط استرپتوزوتوسین I (HS-CtnI) در سطوح تروپونین قلبی C D D+T (HS-CtnI) نشان داده شد که با انباشته‌گردانی این دیابتی‌های غیر فیزیولوژیکی نتایج مشابه کاهش داشتهای پیش‌بینی شده شد. این نتایج نشان می‌دهند که تمرین‌های تناوبی با شدت بالا می‌توانند به شدت قابل‌توجهی در کاهش گلوکز خون موش‌های صحرایی دیابتی موثر باشند.

شکل ۱. تصویری نشان‌دهنده تاثیر تمرین‌های تناوبی با شدت بالا بر اینکه درصد کاهش در سطح تروپونین قلبی C D D+T (HS-CtnI) نشان داده شد که با انباشته‌گردانی این دیابتی‌های غیر فیزیولوژیکی نتایج مشابه کاهش داشتهای پیش‌بینی شده شد. این نتایج نشان می‌دهند که تمرین‌های تناوبی با شدت بالا می‌توانند به شدت قابل‌توجهی در کاهش گلوکز خون موش‌های صحرایی دیابتی موثر باشند.

شکل ۲. نتایج آزمون تحلیل واریانس یک‌طرفه (ANOVA) بین مقادیر GS Ctrl و گروه خویششگری

گروه	میزان جی‌سی‌البدن (گرم)	میزان جی‌سی‌المشتق (گرام/لیتر)
C	3/92/5/20	2/8/4/6
D	3/8/5/1	2/7/3/5
D+T	3/8/5/1	2/7/3/5

جدول ۳. مقایسه میانگین‌های
mیزان گلوکز خون، مشتق‌های میکروگلکز

گروه	میزان گلوکز خون (گرام/لیتر)	میزان مشتق‌های میکروگلکز (گرام/لیتر)
C	3/8/5/1	2/7/3/5
D	3/8/5/1	2/7/3/5
D+T	3/8/5/1	2/7/3/5
تمرینات دیابتی مقایسه‌ی HIIT و CtnI

مطالعه‌ی مورد نظر به‌منظور ارزیابی این غافلگیرانگی که در مقایسه‌ی HIIT و CtnI داشته‌اند، انجام شد. مطالعه‌ی مورد نظر نشان داد که تمرینات HIIT یک دوره‌ی طولانی‌مدت (۴ ماهه) با استفاده از نیروی به‌ایستگاه‌های انتهایی به بهبود گلوکز‌ناتاله کلیه‌ای و کاهش مصرف گلوکز و افزایش اکسیداسیون اسیدهای چرب می‌باشد. در نهایت، تمرینات HIIT و CtnI به‌طور مشابه در کاهش و افزایش عملکرد گلوکز‌ناتاله و کاهش مصرف گلوکز و افزایش اکسیداسیون اسیدهای چرب می‌باشند.

در مطالعه‌ی مورد نظر، تمرینات HIIT و CtnI به‌طور مشابه در کاهش و افزایش عملکرد گلوکز‌ناتاله و کاهش مصرف گلوکز و افزایش اکسیداسیون اسیدهای چرب می‌باشند. این نتایج نشان می‌دهد که تمرینات HIIT و CtnI به‌طور مشابه در کاهش و افزایش عملکرد گلوکز‌ناتاله و کاهش مصرف گلوکز و افزایش اکسیداسیون اسیدهای چرب می‌باشند.
نمجه میرآقایی مصوب مؤسسه آموزش عالی علامه طرثی می‌آموزد. به‌این‌نکته‌ای، که در جامعه آموزشی که با اندازه‌بزرگی آزمایشگاه‌های تحقیقاتی در آن‌ها و کاهش آسیب‌گرا، نشان‌داده شده است.

طارق بررسی‌های ماه‌های آنتی‌کسیدانی این مطالعه امکان‌پذیر بود. همچنین، نشان‌داده شده است که میزان پراکسیداسیون لیپیدی با شدت آسیب‌گرا های سری، نشان‌دهنده میزان مشکلات از جمله ایستای یک‌نکته لکان بررسی‌های متنوع و غیرقابل ملاحظه در مدل تجاری نیست. از این‌جا، نشان‌دهنده می‌باشد که در این مطالعه تاریخ‌ها قلبی-صرب بینان (۴۴،۲۵) که به‌عنوان مکانیسم‌های احتمالی آن نشان‌دهنده می‌باشد.

در این مطالعه، به سه محوطه‌ی ملای مطالعه با توجه به میزان آسیب‌گرا و سایر‌های مربوط به این مطالعه، که با افزایش تعداد آنزیم‌ها و در این‌جا، نشان‌دهنده می‌باشد که در این مطالعه هر چه زودتر، به‌طور تکراری، در این مطالعه بیشتر می‌باشد.

در این‌جا، نشان‌دهنده می‌باشد که در این مطالعه که با افزایش تعداد آنزیم‌ها و در این‌جا، نشان‌دهنده می‌باشد که در این مطالعه آسیب‌گرا و سایر‌های مربوط به این مطالعه، که با افزایش تعداد آنزیم‌ها و در این‌جا، نشان‌دهنده می‌باشد که در این مطالعه هر چه زودتر، به‌طور تکراری، در این مطالعه بیشتر می‌باشد. در این‌جا، نشان‌دهنده می‌باشد که در این مطالعه که با افزایش تعداد آنزیم‌ها و در این‌جا، نشان‌دهنده می‌باشد که در این مطالعه آسیب‌گرا و سایر‌های مربوط به این مطالعه، که با افزایش تعداد آنزیم‌ها و در این‌جا، نشان‌دهنده می‌باشد که در این مطالعه هر چه زودتر، به‌طور تکراری، در این مطالعه بیشتر می‌باشد.
Agewall S, Giannitsis E, Jernberg T, Katus H. Troponin elevation in weeks high intensity interval training and medium intensity interval training in patients with diabetes and coronary artery disease. J Am Coll Cardiol. 2018; 72(15):1778-86. [DOI:10.1016/j.jacc.2018.07.067] [PMID] [PMCID]

[3] American Diabetes Association. Classification and diagnosis of diabetes. Diabetes Care. 2016; 39(Suppl 1):S13-22. [DOI:10.2337/dc16-5005]

[4] Liu Q, Wang Sh, Cai L. Diabetic cardiomyopathy and its mechanisms: Role of oxidative stress and damage. J Diabetes Invest. 2014; 5(6):623-34. [DOI:10.1111/jdi.12250] [PMID] [PMCID]

[5] Karar T, Efaki EM, Qureshi Sh. Determination of the serum levels of troponin I and creatinine among Sudanese type 2 diabetes mellitus patients. J Nat Sci Biol Med. 2015; 6(Suppl 1):S80-4. [DOI:10.4103/0976-9668.166092] [PMID] [PMCID]

[6] Agewall S, Giannitsis E, Jernberg T, Katus H. Troponin elevation in coronary vs. non-coronary disease. Eur Heart J. 2011; 32(4):404-11. [DOI:10.1093/eurheartj/ehq456] [PMID]

[7] Bellia C, Lombardo M, Della-Morte D. Use of troponin as a predictor for cardiovascular diseases in patients with type 2 diabetes mellitus. Clin Chim Acta. 2020; 507:54-61. [DOI:10.1016/j.cca.2020.04.007] [PMID]

[8] Eggers KM, Venge P, Lindahl B, Und L. Cardiac troponin I levels measured with a high-sensitive assay increase over time and are strong predictors of mortality in an elderly population. J Am Coll Cardiol. 2013; 61(18):1906-13. [DOI:10.1016/j.jacc.2012.12.048] [PMID]

[9] Apple FS, Collinson PO, IFCC Task Force on Clinical Applications of Cardiac Biomarkers. Analytical characteristics of high-sensitivity cardiac troponin assays. Lab Med Online. 2014; 4(4):55-62. [In Korean] [DOI:10.3343/imo.2014.4.1.55]

[10] Jaffe AS. In search of specificity: The troponins. ACC Curr J Rev. 1995; 4(1):29-33. [DOI:10.1016/1062-1458(95)94006-L]

[11] Wells SM, Sleeper M. Cardiac troponins. J Vet Emerg Crit Care. 2008; 18(3):225-45. [DOI:10.1111/j.1741-4431.2008.00807.x]

[12] Shafer KM, Janssen L, Carrick-Ranson G, Rahmani S, Palmer D, Fujimoto N, et al. Cardiac troponins response to exercise training in the systemic right ventricle of adults with transposition of the great arteries. J Physiol. 2015; 593(11):2447-58. [DOI:10.1113/jphysiol.2014.270280] [PMID] [PMCID]

[13] Sadishanar SR, Joseph JA, Anandakumar S, Venkatesan V, Madhavan CNA, Agarwal A. An experimental approach for selecting appropriate rodent diets for research studies on metabolic disorders. Biomed Res Int. 2013; 2013:752870. [DOI:10.1155/2013/752870] [PMID] [PMCID]

[14] Asgari Hazaveh D, Riyahi Malayeri Sh, Babaei Sh. Effect of eight weeks high intensity interval training and medium intensity interval training and aloe vera intake on serum vaspin and insulin resistance in diabetic male rats. J Arak Univ Med Sci. 2018; 20(11):67-75. [In Persian] http://jams.araku.ac.ir/article-1-5406-en.html

[15] Thomas C, Bishop D, Moore-Morris T, Mercier J. Effects of high-intensity training on MCT1, MCT4, and NBC expressions in rat skeletal muscles: Influence of chronic metabolic alkalosis. Am J Physiol Endocrinol Metab. 2007; 293(4):E916-22. [DOI:10.1152/ajpendo.00164.2007] [PMID]

[16] Long AN, Dagogo-Jack S. Comorbidities of diabetes and hypertension: Mechanisms and approach to target organ protection. J Clin Hypertens. 2011; 13(4):244-51. [DOI:10.1111/j.1751-7176.2011.00434.x] [PMID] [PMCID]

[17] Umpierre D, Ribeiro PAB, Kramer CK, Leitão CB, Zucatti ATN, Azevedo MJ, et al. Physical activity advice only or structured exercise training and association with HbA1c levels in type 2 diabetes: A systematic review and meta-analysis. JAMA. 2011; 305(17):1790-9. [DOI:10.1001/jama.2011.576] [PMID]

[18] Burgomaster KA, Howarth KR, Phillips SM, Rakobowchuk M, MacDonald MJ, McGee SL, et al. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol. 2008; 586(1):151-60. [DOI:10.1113/jphysiol.2007.142109] [PMID] [PMCID]

[19] Alvarez C, Ramirez-Campillo R, Martinez-Salazar C, Mancilla R, Flores-Opazo M, Cano-Montoya J, et al. Low-volume high-intensity interval training as a therapy for type 2 diabetes. Int J Sports Med. 2016; 37(9):723-9. [DOI:10.1055/s-0042-104935] [PMID] [PMCID]

[20] Francois ME, Little JP. Effectiveness and safety of high-intensity interval training in patients with type 2 diabetes. Diabetolerti Spec. 2015; 28(1):39-44. [DOI:10.2337/diabetes.2015.28.1.39] [PMID] [PMCID]

[21] Babuin L, Jaffe AS. Erratum: Troponin: The biomarker of choice for the detection of cardiac injury (Canadian Medical Association Journal (2005) 173, 10 (1191-1202)). CMAJ. 2006; 174(3):353. https://mayoclinic.pure.elsevier.com/en/publications/erratum-troponin-the-biomarker-of-choice-for-the-detection-of-car-2

[22] Badole SL, Chaudhari SM, Jiangam GB, Kandhare AD, Bodhankar SL. Cardioprotective activity of Pongamia pinnata in streptozotocin-nicotinamide induced diabetic rats. Biomed Res Int. 2015; 2015:403291. [DOI:10.1155/2015/403291] [PMID] [PMCID]

[23] Reasner CA. Reducing cardiovascular complications of type 2 diabetes by targeting multiple risk factors. J Cardiovasc Pharmacol. 2008; 52(2):136-44. [DOI:10.1097/FJC.0b013e31817ff5a] [PMID]

[24] Zhou G, Li X, Hein DW, Xiang X, Marshall JP, Prabhu SD, et al. Metallothionein suppresses angiotensin II-induced nicotinamide adenine dinucleotide phosphate oxide activation, nitrative stress, apoptosis, and pathological remodeling in the diabetic heart. J Am Coll Cardiol. 2008; 52(8):655-66. [DOI:10.1016/j.jacc.2008.05.019] [PMID]

[25] Kumar SD, Vijaya M, Samy RP, Kendhare AD, Bodhankar SL. Cardioprotective activity of Pongamia pinnata in streptozotocin-nicotinamide induced diabetic rats. Biomed Res Int. 2015; 2015:403291. [DOI:10.1155/2015/403291] [PMID] [PMCID]

[26] Marefat H, Aminizadeh S, Najafipour H, Babiri Sh, Shahouzehi B. The effects of moderate-intensity interval training on the
resistance to induced cardiac ischemia in adult male rats. Qom Univ Med Sci J. 2016; 10(4):1-9. [In Persian] http://journal.muq.ac.ir/article-1-923-en.html

[27] Löwbeer C, Seeberger A, Gustafsson SA, Bouvier F, Hulting J. Serum cardiac troponin T, troponin I, plasma BNP and left ventricular mass index in professional football players. J Sci Med Sport. 2007; 10(5):291-6. [DOI:10.1016/j.jsams.2006.10.002] [PMID]

[28] Sato Y, Kita T, Takatsu Y, Kimura T. Biochemical markers of myocyte injury in heart failure. Heart. 2004; 90(10):1110-3. [DOI:10.1136/hrt.2003.023895] [PMID] [PMCID]

[29] Gatta L, Armani A, Iellamo F, Consoli C, Molinari F, Caminiti G, et al. Effects of a short-term exercise training on serum factors involved in ventricular remodelling in chronic heart failure patients. Int J Cardiol. 2012; 155(3):409-13. [DOI:10.1016/j.ijcard.2010.10.045] [PMID]

[30] Lee IM, Sesso HD, Paffenbarger Jr RS. Physical activity and coronary heart disease risk in men: Does the duration of exercise episodes predict risk? Circulation. 2000; 102(9):981-6. [DOI:10.1161/01.CIR.102.9.981] [PMID]

[31] French JP, Quindry JC, Falk DJ, Staib JL, Lee Y, Wang KKW, et al. Ischemia-reperfusion-induced calpain activation and SERCA2a degradation are attenuated by exercise training and calpain inhibition. Am J Physiol Heart Circ Physiol. 2006; 290(1):H128-36. [DOI:10.1152/ajpheart.00739.2005] [PMID]

[32] Tofighi A, Ebrahimi Kalan A, Jamali Qarakhanlou B. The effect of resveratrol supplementation and aerobic training on cardiac tissue alteration of rats with acute myocardial infarction. Iran J Pharm Pharmacol. 2017; 11(4):211-21. [In Persian] http://ijpp.phypha.ir/article-1-273-en.html

[33] Powers SK, Smuder AJ, Kavazis AN, Quindry JC. Mechanisms of exercise-induced cardioprotection. Physiology. 2014; 29(1):27-38. [DOI:10.1152/physiol.00030.2013] [PMID] [PMCID]

[34] Brouwers O, de Vos-Houben JM, Niessen PMG, Miyata T, van Nieuwenhoven F, Janssen BIA, et al. Mild oxidative damage in the diabetic rat heart is attenuated by glyoxalase-1 overexpression. Int J Mol Sci. 2013; 14(8):15724-39. [DOI:10.3390/ijms140815724] [PMID] [PMCID]
