Dynamics, Symmetries, and Hadron Properties

Craig D. Roberts
cdroberts@anl.gov

Physics Division
Argonne National Laboratory

http://www.phy.anl.gov/theory/staff/cdr.html
Quark and Gluon Confinement

No matter how hard one strikes the proton, one cannot liberate an individual quark or gluon.
QCD’s Challenges

- Quark and Gluon Confinement
 - No matter how hard one strikes the proton, one cannot liberate an individual quark or gluon

- Dynamical Chiral Symmetry Breaking
 - Very unnatural pattern of bound state masses
 - e.g., Lagrangian (pQCD) quark mass is small but ...
 - no degeneracy between $J^P=+$ and $J^P=-$
QCD’s Challenges

- Quark and Gluon Confinement
 - No matter how hard one strikes the proton, one cannot liberate an individual quark or gluon

- Dynamical Chiral Symmetry Breaking
 - Very unnatural pattern of bound state masses
 - e.g., Lagrangian (pQCD) quark mass is small but … no degeneracy between $J^P=+$ and $J^P=−$

- Neither of these phenomena is apparent in QCD’s Lagrangian yet they are the dominant determining characteristics of real-world QCD.
QCD’s Challenges

Understand Emergent Phenomena

- Quark and Gluon Confinement
 - No matter how hard one strikes the proton, one cannot liberate an individual quark or gluon

- Dynamical Chiral Symmetry Breaking
 - Very unnatural pattern of bound state masses
 - e.g., Lagrangian (pQCD) quark mass is small but...
 - no degeneracy between $J^P=+$ and $J^P=−$

 - Neither of these phenomena is apparent in QCD’s Lagrangian yet they are the dominant determining characteristics of real-world QCD.

- QCD – Complex behaviour arises from apparently simple rules
Dichotomy of the Pion
How does one make an almost massless particle from two massive constituent-quarks?
How does one make an almost massless particle from two massive constituent-quarks?

Not Allowed to do it by fine-tuning a potential

Must exhibit \(m_\pi^2 \propto m_q \)

Current Algebra ... 1968

Dichotomy of the Pion

- How does one make an almost massless particle from two massive constituent-quarks?
- Not Allowed to do it by fine-tuning a potential

\[m_{\pi}^2 \propto m_q \]

Current Algebra … 1968

The correct understanding of pion observables; e.g. mass, decay constant and form factors, requires an approach to contain a
- well-defined and valid chiral limit;
- and an accurate realisation of dynamical chiral symmetry breaking.
Dichotomy of the Pion

- How does one make an almost massless particle from two massive constituent-quarks?
 - Not Allowed to do it by fine-tuning a potential
 - Must exhibit $m_{\pi}^2 \propto m_q$

Current Algebra ... 1968

The correct understanding of pion observables; e.g. mass, decay constant and form factors, requires an approach to contain a
 - well-defined and valid chiral limit;
 - and an accurate realisation of dynamical chiral symmetry breaking.

Highly Nontrivial
What’s the Problem?
What’s the Problem?

- Minimal requirements
 - detailed understanding of connection between Current-quark and Constituent-quark masses;
 - and systematic, symmetry preserving means of realising this connection in bound-states.
What’s the Problem?

- Minimal requirements
 - detailed understanding of connection between Current-quark and Constituent-quark masses;
 - and systematic, symmetry preserving means of realising this connection in bound-states.

Means . . . must calculate hadron wave functions
– Can’t be done using perturbation theory
Minimal requirements

detailed understanding of connection between Current-quark and Constituent-quark masses;

and systematic, symmetry preserving means of realising this connection in bound-states.

Means . . . must calculate hadron *wave functions*

– Can’t be done using perturbation theory

Why problematic? Isn’t same true in quantum mechanics?
What’s the Problem?

- Minimal requirements
 - detailed understanding of connection between Current-quark and Constituent-quark masses;
 - and systematic, symmetry preserving means of realising this connection in bound-states.
- Means . . . must calculate hadron wave functions
 – Can’t be done using perturbation theory
- Why problematic? Isn’t same true in quantum mechanics?
- Differences!
What’s the Problem?

Relativistic QFT!

Minimal requirements

- detailed understanding of connection between Current-quark and Constituent-quark masses;
- and systematic, symmetry preserving means of realising this connection in bound-states.

Differences!

- Here relativistic effects are crucial – *virtual particles*, quintessence of Relativistic Quantum Field Theory – must be included.
Minimal requirements

- detailed understanding of connection between Current-quark and Constituent-quark masses;
- and systematic, symmetry preserving means of realising this connection in bound-states.

Differences!

- Here relativistic effects are crucial – *virtual particles*, quintessence of Relativistic Quantum Field Theory – must be included
- Interaction between quarks – the Interquark Potential – unknown throughout > 98% of an hadron’s volume
Intranucleon Interaction
Intranucleon Interaction

98% of the volume
The question must be rigorously defined, and the answer mapped out using experiment and theory.
Dyson-Schwinger Equations
Dyson-Schwinger Equations

Well suited to Relativistic Quantum Field Theory
Dyson-Schwinger Equations

Well suited to Relativistic Quantum Field Theory

Simplest level: Generating Tool for Perturbation Theory

Materially Reduces Model Dependence
Dyson-Schwinger Equations

- Well suited to Relativistic Quantum Field Theory
- Simplest level: Generating Tool for Perturbation Theory
 Materially Reduces Model Dependence
- NonPerturbative, Continuum approach to QCD
Dyson-Schwinger Equations

- Well suited to Relativistic Quantum Field Theory
- Simplest level: Generating Tool for Perturbation Theory

 Materially Reduces Model Dependence

- NonPerturbative, Continuum approach to QCD

 Hadrons as Composites of Quarks and Gluons
Dyson-Schwinger Equations

- Well suited to Relativistic Quantum Field Theory
- Simplest level: Generating Tool for Perturbation Theory

 Materially Reduces Model Dependence

- NonPerturbative, Continuum approach to QCD

- Hadrons as Composites of Quarks and Gluons

 Qualitative and Quantitative Importance of:

 - Dynamical Chiral Symmetry Breaking
 - Generation of fermion mass from nothing
 - Quark & Gluon Confinement
 - Coloured objects not detected, not detectable?
Dyson-Schwinger Equations

- Well suited to Relativistic Quantum Field Theory
- Simplest level: Generating Tool for Perturbation Theory
 Materially Reduces Model Dependence
- NonPerturbative, Continuum approach to QCD
- Hadrons as Composites of Quarks and Gluons
 Qualitative and Quantitative Importance of:
 - Dynamical Chiral Symmetry Breaking
 - Generation of fermion mass from nothing
 - Quark & Gluon Confinement
 - Coloured objects not detected, not detectable?
 ⇒ Understanding InfraRed (long-range)
 behaviour of $\alpha_s(Q^2)$
Dyson-Schwinger Equations

- Well suited to Relativistic Quantum Field Theory
- Simplest level: Generating Tool for Perturbation Theory

 Materially Reduces Model Dependence

NonPerturbative, Continuum approach to QCD

- Hadrons as Composites of Quarks and Gluons
- Qualitative and Quantitative Importance of:
 - Dynamical Chiral Symmetry Breaking
 - Generation of fermion mass from nothing
 - Quark & Gluon Confinement
 - Coloured objects not detected, not detectable?

- Method yields Schwinger Functions \(\equiv \) Propagators
Dyson-Schwinger Equations

- Well suited to Relativistic Quantum Field Theory
- Simplest level: **Generating Tool for Perturbation Theory**

 Materially Reduces Model Dependence
- NonPerturbative, Continuum approach to QCD
- Hadrons as Composites of Quarks and Gluons
- Qualitative and Quantitative Importance of:
 - Dynamical Chiral Symmetry Breaking
 - Generation of fermion mass from *nothing*
 - Quark & Gluon Confinement
 - Coloured objects not detected, not detectable?

Cross-Sections built from Schwinger Functions
Solutions are Schwinger Functions (Euclidean Green Functions)
Schwinger Functions

- Solutions are Schwinger Functions (Euclidean Green Functions)
- Not all are Schwinger functions are experimentally observable
Schwinger Functions

- Solutions are Schwinger Functions (Euclidean Green Functions)
- Not all are Schwinger functions are experimentally observable but . . .
 - all are same VEVs measured in numerical simulations of lattice-regularised QCD
- opportunity for comparisons at pre-experimental level . . . cross-fertilisation
Schwinger Functions

- Solutions are Schwinger Functions (Euclidean Green Functions)
- Not all are Schwinger functions are experimentally observable but . . .
 - all are same VEVs measured in numerical simulations of lattice-regularised QCD
 - opportunity for comparisons at pre-experimental level . . . cross-fertilisation
- Proving fruitful.
World ... DSE Perspective
Persistent Challenge

Infinitely Many Coupled Equations
Persistent Challenge

- Infinitely Many Coupled Equations

- Coupling between equations necessitates truncation
Persistent Challenge

- **Infinitely Many Coupled Equations**

- Coupling between equations *necessitates* truncation

 - Weak coupling expansion \Rightarrow Perturbation Theory
Persistent Challenge

- Infinitely Many Coupled Equations

- Coupling between equations necessitates truncation

- Weak coupling expansion \Rightarrow Perturbation Theory
 Not useful for the nonperturbative problems in which we're interested
Persistent Challenge

- Infinitely Many Coupled Equations

- There is at least one systematic nonperturbative, symmetry-preserving truncation scheme
 H.J. Munczek Phys. Rev. D 52 (1995) 4736

 Dynamical chiral symmetry breaking, Goldstone’s theorem and the consistency of the Schwinger-Dyson and Bethe-Salpeter Equations
 A. Bender, C. D. Roberts and L. von Smekal, Phys. Lett. B 380 (1996) 7

 Goldstone Theorem and Diquark Confinement Beyond Rainbow Ladder Approximation
Persistent Challenge

- Infinitely Many Coupled Equations
- There is at least one **systematic nonperturbative, symmetry-preserving** truncation scheme
- Has Enabled Proof of **EXACT** Results in QCD
Persistent Challenge

- Infinitely Many Coupled Equations
- There is at least one systematic nonperturbative, symmetry-preserving truncation scheme
- Has Enabled Proof of EXACT Results in QCD
- And Formulation of Practical Phenomenological Tool to Illustrate Exact Results
Persistent Challenge

- Infinitely Many Coupled Equations
- There is at least one systematic nonperturbative, symmetry-preserving truncation scheme
- Has Enabled Proof of **EXACT** Results in QCD
- And Formulation of Practical Phenomenological Tool to
 - Illustrate Exact Results
 - Make Predictions with Readily Quantifiable Errors
Dressed-Quark Propagator
\[S(p) = \frac{Z(p^2)}{i\gamma \cdot p + M(p^2)} \]

Dressed-Quark Propagator

Gap Equation
\[
S(p) = \frac{Z(p^2)}{i \gamma \cdot p + M(p^2)}
\]

- Gap Equation’s Kernel Enhanced on IR domain

\[\Rightarrow \text{IR Enhancement of } M(p^2)\]
Dressed-Quark Propagator

\[S(p) = \frac{Z(p^2)}{i\gamma \cdot p + M(p^2)} \]

Gap Equation’s Kernel Enhanced on IR domain

⇒ IR Enhancement of \(M(p^2) \)

Euclidean Constituent–Quark Mass: \(M^E_f : p^2 = M(p^2)^2 \)

flavour	\(u/d \)	\(s \)	\(c \)	\(b \)
\(M^E/m_\zeta \)	\(\sim 10^2 \)	\(\sim 10 \)	\(\sim 1.5 \)	\(\sim 1.1 \)
Dressed-Quark Propagator

\[S(p) = \frac{Z(p^2)}{i\gamma \cdot p + M(p^2)} \]

- Gap Equation’s Kernel Enhanced on IR domain
 \[\Rightarrow \text{IR Enhancement of } M(p^2) \]

- Euclidean Constituent–Quark Mass: \(M_f^E : p^2 = M(p^2)^2 \)

flavour	\(M_f^E / m_\zeta \)	\(u/d \)	\(s \)	\(c \)	\(b \)
	\(\sim 10^2 \)	\(\sim 10 \)	\(\sim 1.5 \)	\(\sim 1.1 \)	

Predictions confirmed in numerical simulations of lattice-QCD
Hadrons

- Established understanding of two- and three-point functions
Hadrons

- Established understanding of two- and three-point functions
- What about bound states?
Without bound states, Comparison with experiment is impossible
• Without bound states, Comparison with experiment is impossible
• They appear as pole contributions to $n \geq 3$-point colour-singlet Schwinger functions
• Without bound states, Comparison with experiment is impossible

• Bethe-Salpeter Equation

QFT Generalisation of Lippmann-Schwinger Equation.
• Without bound states, Comparison with experiment is impossible

• Bethe-Salpeter Equation

QFT Generalisation of Lippmann-Schwinger Equation.

• What is the kernel, K?
Without bound states, Comparison with experiment is impossible.

Bethe-Salpeter Equation

QFT Generalisation of Lippmann-Schwinger Equation.

What is the kernel, K?
What is the light-quark Long-Range Potential?
Bethe-Salpeter Kernel
Bethe-Salpeter Kernel

Axial-vector Ward-Takahashi identity

\[P_\mu \Gamma^l_{\bar{5}\mu}(k; P) = S^{-1}(k_+) \frac{1}{2} \lambda^l_f i\gamma_5 + \frac{1}{2} \lambda^l_f i\gamma_5 \ S^{-1}(k_-) \]

\[-M_\zeta i\Gamma^l_{\bar{5}}(k; P) - i\Gamma^l_{\bar{5}}(k; P) M_\zeta \]

QFT Statement of Chiral Symmetry
Bethe-Salpeter Kernel

Axial-vector Ward-Takahashi identity

\[P_\mu \Gamma_{5\mu}^l(k; P) = S^{-1}(k_+) \frac{1}{2} \lambda_f i \gamma_5 + \frac{1}{2} \lambda_f i \gamma_5 S^{-1}(k_-) \]

\[-M_\zeta i \Gamma_5^l(k; P) - i \Gamma_5^l(k; P) M_\zeta \]

Satisfies BSE \hspace{1cm} Satisfies DSE
Axial-vector Ward-Takahashi identity

\[P_{\mu} \Gamma_{5\mu}^l (k; P) = S^{-1}(k_+) \frac{1}{2} \lambda_f i \gamma_5 + \frac{1}{2} \lambda_f i \gamma_5 S^{-1}(k_-) \]

\[-M_{\zeta} i \Gamma_5^l (k; P) - i \Gamma_5^l (k; P) M_{\zeta} \]

Satisfies BSE

Satisfies DSE

Kernels must be intimately related
Axial-vector Ward-Takahashi identity

\[P_\mu \Gamma^l_{5\mu}(k; P) = S^{-1}(k_+) \frac{1}{2} \lambda^l_f i\gamma_5 + \frac{1}{2} \lambda^l_f i\gamma_5 S^{-1}(k_-) \]

\[-M_\zeta i\Gamma^l_{5}(k; P) - i\Gamma^l_{5}(k; P) M_\zeta \]

Satisfies BSE Satisfies DSE

Kernels must be intimately related

- Relation must be preserved by truncation
Axial-vector Ward-Takahashi identity

\[P_\mu \Gamma_{5\mu}^l (k; P) = S^{-1}(k_+) \left(\frac{1}{2} \chi_f i\gamma_5 + \frac{1}{2} \chi_f i\gamma_5 S^{-1}(k_-) \right) \]

\[-M_\zeta i\Gamma_{5}^l (k; P) - i\Gamma_{5}^l (k; P) M_\zeta \]

Satisfies BSE \hspace{1cm} Satisfies DSE

Kernels must be \textit{intimately} related

- Relation \textit{must} be preserved by truncation
- Nontrivial constraint
Axial-vector Ward-Takahashi identity

\[P_\mu \Gamma^l_{5\mu}(k; P) = S^{-1}(k_+) \frac{1}{2} \lambda_f i\gamma_5 + \frac{1}{2} \lambda_f i\gamma_5 S^{-1}(k_-) \]

\[-M_\zeta i\Gamma^l_{5}(k; P) - i\Gamma^l_{5}(k; P) M_\zeta \]

Satisfies BSE Satisfies DSE

Kernels must be **intimately** related

- **Relation must** be preserved by truncation
- **Failure** \(\Rightarrow \) Explicit Violation of QCD’s Chiral Symmetry
\[f_H \ m_H^2 = - \ \rho_H^\zeta \ M_H \]
Radial Excitations & Chiral Symmetry

(Maris, Roberts, Tandy
nu-th/9707003)

\[f_H \ m_H^2 = - \ \rho_H^\zeta \ \mathcal{M}_H \]

- Mass\(^2\) of pseudoscalar hadron
Radial Excitations & Chiral Symmetry

\[f_H \ m_H^2 = - \rho_H^H \ M_H \]

\[M_H := \text{tr}_\text{flavour} \left[M_{(\mu)} \ (T^H, (T^H)^t) \right] = m_{q_1} + m_{q_2} \]

- Sum of constituents’ current-quark masses
- e.g., \[T^{K^+} = \frac{1}{2} (\lambda^4 + i\lambda^5) \]
Radial Excitations
& Chiral Symmetry

\[f_H \rho_H^2 = - \rho_H^2 \mathcal{M}_H \]

\[f_H p_\mu = Z_2 \int_\Lambda q \frac{1}{2} \text{tr} \left\{ (T^H)^t \gamma_5 \gamma_\mu S(q_+) \Gamma_H(q; P) S(q_-) \right\} \]

- **Pseudovector** projection of BS wave function at \(x = 0 \)
- **Pseudoscalar meson’s leptonic decay constant**

\[\vec{\pi} \rightarrow -f_\pi k^\mu \rightarrow A_5^\mu \]

Craig Roberts: Dynamics, Symmetries, and Hadron Properties
MENU07 – Inst. Nuclear Physics, Forschungszentrum Jülich, September 10-14, 2007
Radial Excitations & Chiral Symmetry

\[f_H \quad m_H^2 = -\rho^H_\zeta \mathcal{M}_H \]

\[i\rho^H_\zeta = Z_4 \int_q^\Lambda \frac{1}{2} \text{tr} \left\{ (T^H)^t \gamma_5 S(q_+) \Gamma_H(q; P) S(q_-) \right\} \]

- Pseudoscalar projection of BS wave function at \(x = 0 \)

\[\pi \quad -\rho_\pi \quad P_5 \]

\[k \]

\[\vec{\pi} \quad \vec{P}_5 \quad \vec{\Gamma}_5 \quad \vec{\pi} \]

Craig Roberts: Dynamics, Symmetries, and Hadron Properties
MENU07 – Inst. Nuclear Physics, Forschungszentrum Jülich, September 10-14, 2007
Radial Excitations & Chiral Symmetry

(Maris, Roberts, Tandy nu-th/9707003)

\[f_H \ m_H^2 = - \rho_\zeta^H \mathcal{M}_H \]

- **Light**-quarks; i.e., \(m_q \sim 0 \)

- \(f_H \rightarrow f_H^0 \) & \(\rho_\zeta^H \rightarrow -\frac{\langle \bar{q}q \rangle_\zeta^0}{f_H^0} \), Independent of \(m_q \)

Hence \(m_H^2 = \frac{-\langle \bar{q}q \rangle_\zeta^0}{(f_H^0)^2} m_q \) \ldots GMOR relation, a corollary
Valid for ALL Pseudoscalar mesons

\[f_H \, m_H^2 = - \, \rho_H^\zeta \, M_H \]
Valid for ALL Pseudoscalar mesons

$\rho_H \Rightarrow$ finite, nonzero value in chiral limit, $M_H \to 0$
Radial Excitations & Chiral Symmetry

Höll, Krassnigg, Roberts

\[f_H \ m_H^2 = - \ \rho_H^\zeta \ \mathcal{M}_H \]

- Valid for ALL Pseudoscalar mesons
- \(\rho_H \to \) finite, nonzero value in chiral limit, \(\mathcal{M}_H \to 0 \)
- “radial” excitation of \(\pi \)-meson,
 \[m_{\pi_n \neq 0}^2 > m_{\pi_n = 0}^2 = 0, \text{ in chiral limit} \]
Radial Excitations & Chiral Symmetry

\[f_H \ m_H^2 = - \ \rho_H^{\zeta} \ \mathcal{M}_H \]

- Valid for **ALL** Pseudoscalar mesons
- \(\rho_H \Rightarrow \) finite, nonzero value in chiral limit, \(\mathcal{M}_H \to 0 \)
- "radial" excitation of \(\pi \)-meson,
 \[m_{\pi \neq 0}^2 > m_{\pi = 0}^2 = 0, \text{ in chiral limit} \]
 \[\Rightarrow f_H = 0 \]
- **ALL** pseudoscalar mesons except \(\pi(140) \) in chiral limit
Radial Excitations & Chiral Symmetry

Höll, Krassnigg, Roberts

\[f_H \quad m_H^2 = - \rho_H^H \quad \mathcal{M}_H \]

- Valid for **ALL** Pseudoscalar mesons
- \(\rho_H \Rightarrow \) finite, nonzero value in chiral limit, \(\mathcal{M}_H \rightarrow 0 \)
- "radial" excitation of \(\pi \)-meson,
 \[m_{\pi \neq 0}^2 > m_{\pi=0}^2 = 0, \text{ in chiral limit} \]
- \(\Rightarrow f_H = 0 \)
- **ALL** pseudoscalar mesons except \(\pi(140) \) in chiral limit

Dynamical Chiral Symmetry Breaking

- **Goldstone’s Theorem** –
 impacts upon **every** pseudoscalar meson
Radial Excitations
& Lattice-QCD

McNeile and Michael
he-la/0607032
When we first heard about [this result] our first reaction was a combination of “that is remarkable” and “unbelievable”.
When we first heard about [this result] our first reaction was a combination of “that is remarkable” and “unbelievable”.

CLEO: $\tau \rightarrow \pi(1300) + \nu_{\tau}$
$\Rightarrow f_{\pi_1} < 8.4 \text{ MeV}$

Diehl & Hiller

he-ph/0105194
When we first heard about [this result] our first reaction was a combination of “that is remarkable” and “unbelievable”.

CLEO: $\tau \to \pi(1300) + \nu_\tau$
$\Rightarrow f_{\pi_1} < 8.4 \text{ MeV}

Diehl & Hiller
he-ph/0105194

Lattice-QCD check:
$16^3 \times 32$,
$a \sim 0.1 \text{ fm},$
	wo-flavour, unquenched

$\Rightarrow \frac{f_{\pi_1}}{f_\pi} = 0.078 (93)$
When we first heard about [this result] our first reaction was a combination of “that is remarkable” and “unbelievable”.

CLEO: $\tau \rightarrow \pi(1300) + \nu_\tau$

$\Rightarrow f_{\pi_1} < 8.4$ MeV

Diehl & Hiller

he-ph/0105194

Lattice-QCD check:

$16^3 \times 32$,

$a \sim 0.1$ fm,

two-flavour, unquenched

$\Rightarrow \frac{f_{\pi_1}}{f_\pi} = 0.078 (93)$

Full ALPHA formulation is required to see suppression, because PCAC relation is at the heart of the conditions imposed for improvement (determining coefficients of irrelevant operators)
When we first heard about [this result] our first reaction was a combination of “that is remarkable” and “unbelievable”.

CLEO: $\tau \rightarrow \pi(1300) + \nu_\tau$
$\Rightarrow f_{\pi_1} < 8.4$ MeV

Diehl & Hiller
he-ph/0105194

Lattice-QCD check:
$16^3 \times 32$, $a \sim 0.1$ fm,
two-flavour, unquenched
$\Rightarrow \frac{f_{\pi_1}}{f_\pi} = 0.078 (93)$

The suppression of f_{π_1} is a useful benchmark that can be used to tune and validate lattice QCD techniques that try to determine the properties of excited states mesons.
Pion ... \(J = 0 \)

but ...

Orbital angular momentum is not a Poincaré invariant. However, if absent in a particular frame, it will appear in another frame related via a Poincaré transformation.
Nonzero quark orbital angular momentum is thus a necessary outcome of a Poincaré covariant description.
Pion \ldots J = 0

but \ldots

Pseudoscalar meson Bethe-Salpeter amplitude

\begin{equation}
\chi_{\pi}(k; P) = \gamma_5 \left[i\mathcal{E}_{\pi n}(k; P) + \gamma \cdot P \mathcal{F}_{\pi n}(k; P) \right] + \gamma \cdot k \times P \mathcal{G}_{\pi n}(k; P) + \sigma_{\mu\nu} k_\mu P_\nu \mathcal{H}_{\pi n}(k; P) \right]
\end{equation}
Pseudoscalar meson Bethe-Salpeter amplitude

\[\chi_\pi(k; P) = \gamma_5 \left[iE_\pi_n(k; P) + \gamma \cdot P F_\pi_n(k; P) \right. \]

\[\left. + \gamma \cdot k k \cdot P G_\pi_n(k; P) + \sigma_{\mu\nu} k_\mu P_\nu H_\pi_n(k; P) \right] \]

\(J = 0 \) \(\ldots \) but while \(E \) and \(F \) are purely \(L = 0 \) in the rest frame, the \(G \) and \(H \) terms are associated with \(L = 1 \). Thus a pseudoscalar meson Bethe-Salpeter wave function \textit{always} contains both \(S \)- and \(P \)-wave components.
$J = 0 \ldots$ but while E and F are purely $L = 0$ in the rest frame, the G and H terms are associated with $L = 1$. Thus a pseudoscalar meson Bethe-Salpeter wave function always contains both S- and P-wave components.

Introduce mixing angle θ_π such that

$$
\chi_\pi \sim \cos \theta_\pi |L = 0\rangle + \sin \theta_\pi |L = 1\rangle
$$
\(J = 0 \ldots \) but\ldots

\(J = 0 \ldots \) but while \(E \) and \(F \) are purely \(L = 0 \) in the rest frame, the \(G \) and \(H \) terms are associated with \(L = 1 \). Thus a pseudoscalar meson Bethe-Salpeter wave function always contains both \(S \)- and \(P \)-wave components.

Introduce mixing angle \(\theta_{\pi} \) such that

\[
\chi_{\pi} \sim \cos \theta_{\pi}|L = 0\rangle + \sin \theta_{\pi}|L = 1\rangle
\]
$J = 0 \ldots \text{but} \ldots$ while \mathcal{E} and \mathcal{F} are purely $L = 0$ in the rest frame, the \mathcal{G} and \mathcal{H} terms are associated with $L = 1$. Thus a pseudoscalar meson Bethe-Salpeter wave function \textit{always} contains both S- and P-wave components.

Introduce mixing angle θ_π such that

$$\chi_\pi \sim \cos \theta_\pi |L = 0\rangle + \sin \theta_\pi |L = 1\rangle$$

L is significant in the neighbourhood of the chiral limit, and decreases with increasing current-quark mass.
\[P_\mu \Gamma^a_{5\mu}(k; P) = S^{-1}(k_+) i\gamma_5 F^a + i\gamma_5 F^a S^{-1}(k_-) \]
\[-2i M^{ab} \Gamma^b_{5}(k; P) - A^a(k; P) \]
Charge Neutral Pseudoscalar Mesons

\[P_\mu \Gamma^a_{5\mu}(k; P) = S^{-1}(k_+) i\gamma_5 F^a + i\gamma_5 F^a S^{-1}(k_-) \]
\[-2i M^{ab} \Gamma^b_{5}(k; P) - A^a(k; P) \]

\[\{ F^a | a = 0, \ldots, N_f^2 - 1 \} \text{ are the generators of } U(N_f) \]
\[P_\mu \Gamma^a_{5\mu}(k; P) = S^{-1}(k_+) i\gamma_5 F^a + i\gamma_5 F^a S^{-1}(k_-) \]

\[-2i M^{ab} \Gamma^b_{5}(k; P) - A^a(k; P) \]

\{ \mathcal{F}^a | a = 0, \ldots, N_f^2 - 1 \} are the generators of \(U(N_f) \)

\(S = \text{diag}[S_u, S_d, S_s, S_c, S_b, \ldots] \)
$P_\mu \Gamma_5^a (k; P) = S^{-1}(k_+) i\gamma_5 F^a + i\gamma_5 F^a S^{-1}(k_-)$

$-2 i M^{ab} \Gamma_5^b (k; P) - A^a (k; P)$

$\{ F^a \} a = 0, \ldots, N_f^2 - 1 \}$ are the generators of $U(N_f)$

$S = \text{diag}[S_u, S_d, S_s, S_c, S_b, \ldots]$

$M^{ab} = \text{tr}_F \left[\{ F^a, M \} F^b \right], \quad \mathcal{M} = \text{diag}[m_u, m_d, m_s, m_c, m_b, \ldots] = \text{matrix of current-quark bare masses}$
Charge Neutral Pseudoscalar Mesons

\[
P_\mu \Gamma_5^a (k; P) = S^{-1}(k_+) i \gamma_5 F^a + i \gamma_5 F^a S^{-1}(k_-) \\
-2i M^{ab} \Gamma_5^b (k; P) - A^a (k; P)
\]

- \{ F^a | a = 0, \ldots, N_f^2 - 1 \} are the generators of \(U(N_f) \)
- \(S = \text{diag}[S_u, S_d, S_s, S_c, S_b, \ldots] \)
- \(M^{ab} = \text{tr}_F \left[\{ F^a, M \} F^b \right], \)
 \(M = \text{diag}[m_u, m_d, m_s, m_c, m_b, \ldots] = \text{matrix of current-quark bare masses} \)
- The final term in the second line expresses the non-Abelian axial anomaly.
Charge Neutral
Pseudoscalar Mesons

\[P_\mu \Gamma^a_{5\mu}(k; P) = S^{-1}(k_+) i\gamma_5 F^a + i\gamma_5 F^a S^{-1}(k_-) \]

\[-2iM^{ab}\Gamma^b_{5}(k; P) - A^a(k; P) \]

\[A^a(k; P) = S^{-1}(k_+) \delta^{a0} A_U(k; P) S^{-1}(k_-) \]

\[A_U(k; P) = \int d^4x d^4y e^{i(k_+ \cdot x - k_- \cdot y)} N_f \langle \mathcal{F}^0 q(x) Q(0) \bar{q}(y) \rangle \]
\[P_\mu \Gamma_\mu^a (k; P) = S^{-1}(k_+) \gamma_5 F^a + i \gamma_5 F^a S^{-1}(k_-) \]

\[-2i M_{ab} \Gamma_5^b (k; P) = A^a (k; P) \]

\[A^a (k; P) = S^{-1}(k_+) \delta^{a0} A^a_U (k; P) S^{-1}(k_-) \]

\[A^a_U (k; P) = \int d^4 x d^4 y e^{i (k_+ \cdot x - k_- \cdot y)} N_f \langle \mathcal{F}_0^a q(x) Q(0) \bar{q}(y) \rangle \]

\[Q(x) = i \frac{\alpha_s}{4\pi} tr_C [\epsilon_{\mu\nu\rho\sigma} F_{\mu\nu} F_{\rho\sigma}(x)] = \partial_\mu K_\mu (x) \]

\[\ldots \text{ The topological charge density operator.} \]

(Trace is over colour indices & \(F_{\mu\nu} = \frac{1}{2} \lambda^a F_{\mu\nu}^a \).)
Charge Neutral
Pseudoscalar Mesons

\[P_\mu \Gamma^a_{\frac{5}{5} \mu}(k; P) = S^{-1}(k_+) i \gamma_5 F^a + i \gamma_5 F^a S^{-1}(k_-) \]

\[-2i M^{ab} \Gamma^b_5(k; P) - A^a(k; P)\]

\[A^a(k; P) = S^{-1}(k_+) \delta^{a0} A_U(k; P) S^{-1}(k_-) \]

\[A_U(k; P) = \int d^4x d^4y e^{i(k_+ \cdot x - k_- \cdot y)} N_f \langle F^0 q(x) Q(0) \bar{q}(y) \rangle \]

\[Q(x) = i \frac{\alpha_s}{4\pi} \text{tr}_C [\epsilon_{\mu \nu \rho \sigma} F_{\mu \nu} F_{\rho \sigma}(x)] = \partial_\mu K_\mu(x) \]

\ldots The topological charge density operator.

Important that only \(A^{a=0} \) is nonzero.
Charge Neutral
Pseudoscalar Mesons

\[P_\mu \Gamma^{a}_{5\mu}(k; P) = S^{-1}(k_+) i \gamma_5 F^a + i \gamma_5 F^a S^{-1}(k_-) \]
\[-2i M^{ab} \Gamma^b_5(k; P) - A^{a}(k; P) \]
\[A^a(k; P) = S^{-1}(k_+) \delta^{a0} A_U(k; P) S^{-1}(k_-) \]
\[A_U(k; P) = \int d^4 x d^4 y e^{i (k_+ \cdot x - k_- \cdot y)} N_f \langle F^0 q(x) Q(0) \bar{q}(y) \rangle \]
\[Q(x) = i \frac{\alpha_s}{4\pi} \text{tr}_C [\epsilon_{\mu\nu\rho\sigma} F_{\mu\nu} F_{\rho\sigma}(x)] = \partial_\mu K_\mu(x) \]

\[\text{... The topological charge density operator.} \]

\[\text{NB. While } Q(x) \text{ is gauge invariant, the associated Chern-Simons current, } K_\mu, \text{ is not } \Rightarrow \text{ in QCD no physical boson can couple to } K_\mu \text{ and hence no physical states can contribute to resolution of } U_A(1) \text{ problem.} \]
Charge Neutral
Pseudoscalar Mesons

Bhagwat, Chang, Liu, Roberts, Tandy
nucl-th/arXiv:0708.1118
Only $A^0 \not\equiv 0$ is interesting
Only $A^0 \neq 0$ is interesting . . . otherwise all pseudoscalar mesons are Goldstone Modes!
Anomaly term has structure

$$\mathcal{A}_0^0(k; P) = \mathcal{F}_5 \gamma^5 \left[i \mathcal{E}_A(k; P) + \gamma \cdot P \mathcal{F}_A(k; P)
ight]$$

$$+ \gamma \cdot k k \cdot P \mathcal{G}_A(k; P) + \sigma_{\mu \nu} k_\mu P_\nu \mathcal{H}_A(k; P)$$
AVWTI gives generalised Goldberger-Treiman relations

\[2 f_{\eta'} E_{BS}(k; 0) = 2 B_0(k^2) - \mathcal{E}_A(k; 0),\]
\[F^0_R(k; 0) + 2 f_{\eta'} F_{BS}(k; 0) = A_0(k^2) - \mathcal{F}_A(k; 0),\]
\[G^0_R(k; 0) + 2 f_{\eta'} G_{BS}(k; 0) = 2 A'_0(k^2) - \mathcal{G}_A(k; 0),\]
\[H^0_R(k; 0) + 2 f_{\eta'} H_{BS}(k; 0) = -\mathcal{H}_A(k; 0),\]

\[A_0, B_0\] characterise gap equation’s chiral limit solution.
AVWTI gives generalised Goldberger-Treiman relations

\[
2f_{\eta'} E_{BS}(k; 0) = 2B_0(k^2) - \mathcal{E}_A(k; 0),
\]
\[
F_R^0(k; 0) + 2f_{\eta'} F_{BS}(k; 0) = A_0(k^2) - \mathcal{F}_A(k; 0),
\]
\[
G_R^0(k; 0) + 2f_{\eta'} G_{BS}(k; 0) = 2A'_0(k^2) - \mathcal{G}_A(k; 0),
\]
\[
H_R^0(k; 0) + 2f_{\eta'} H_{BS}(k; 0) = -\mathcal{H}_A(k; 0),
\]

\(A_0, B_0\) characterise gap equation’s chiral limit solution.

Follows that \(\mathcal{E}_A(k; 0) = 2B_0(k^2)\) is necessary and sufficient condition for absence of massless \(\eta'\) bound-state.
\[\mathcal{E}_A(k; 0) = 2B_0(k^2) \]

Discussing the chiral limit

\[B_0(k^2) \neq 0 \text{ if, and only if, chiral symmetry is dynamically broken.} \]

Hence, absence of massless \(\eta' \) bound-state is only assured through existence of intimate connection between DCSB and an expectation value of the topological charge density.
\[\mathcal{E}_A(k; 0) = 2B_0(k^2) \]

Discussing the chiral limit

\[B_0(k^2) \neq 0 \quad \text{if, and only if, chiral symmetry is dynamically broken.} \]

Hence, absence of massless \(\eta' \) bound-state is only assured through existence of intimate connection between DCSB and an expectation value of the topological charge density.

Further highlighted ... proved

\[\langle \bar{q}q \rangle_0^0 = - \lim_{\Lambda \to \infty} Z_4(\zeta^2, \Lambda^2) \textrm{tr}_{CD} \int_q^\Lambda S^0(q, \zeta) \]

\[= N_f \int d^4x \langle \bar{q}(x)i\gamma_5q(x)Q(0) \rangle^0. \]
AVWTI ⇒ QCD mass formulae for neutral pseudoscalar mesons
AVWTI ⇒ QCD mass formulae for neutral pseudoscalar mesons

Implications of mass formulae illustrated using elementary dynamical model, which includes Ansatz for that part of the Bethe-Salpeter kernel related to the non-Abelian anomaly
Charge Neutral Pseudoscalar Mesons

- AVWTI \Rightarrow QCD mass formulae for neutral pseudoscalar mesons
- Implications of mass formulae illustrated using elementary dynamical model, which includes Ansatz for that part of the Bethe-Salpeter kernel related to the non-Abelian anomaly
- Employed in an analysis of pseudoscalar- and vector-meson bound-states
AVWTI ⇒ QCD mass formulae for neutral pseudoscalar mesons

Implications of mass formulae illustrated using elementary dynamical model, which includes Ansatz for that part of the Bethe-Salpeter kernel related to the non-Abelian anomaly

Despite its simplicity, model is elucidative and phenomenologically efficacious; e.g., it predicts

- $\eta - \eta'$ mixing angles of $\sim -15^\circ$ (Expt.: $-13.3^\circ \pm 1.0^\circ$)
- $\pi^0 - \eta$ angles of $\sim 1.2^\circ$ (Expt. $pd \to ^3\text{He} \pi^0$: $0.6^\circ \pm 0.3^\circ$)
- Strong neutron-proton mass difference . . .
 $\lesssim 75\%$ current-quark mass-difference
New Challenges

Next Steps . . . Applications to excited states and axial-vector mesons, e.g., will improve understanding of confinement interaction between light-quarks.
New Challenges

- **Next Steps** . . . Applications to excited states and axial-vector mesons, e.g., will improve understanding of confinement interaction between light-quarks.

- Move on to the problem of a *symmetry preserving* treatment of hybrids and exotics.
Another Direction . . . Also want/need information about three-quark systems
New Challenges

- Another Direction . . . Also want/need information about three-quark systems

- With this problem . . . current expertise at approximately same point as studies of mesons in 1995.
New Challenges

- Another Direction . . . Also want/need information about three-quark systems

- With this problem . . . current expertise at approximately same point as studies of mesons in 1995.

- Namely . . . Model-building and Phenomenology, constrained by the DSE results outlined already.
Nucleon EM Form Factors: A Précis

Höll, et al.: nu-th/0412046 & nu-th/0501033
Nucleon EM Form Factors: A Précis

Höll, et al.: nu-th/0412046 & nu-th/0501033

- Interpreting expts. with GeV electromagnetic probes requires Poincaré covariant treatment of baryons
Nucleon EM Form Factors: A Précis

Höll, *et al.*: nu-th/0412046 & nu-th/0501033

- Interpreting expts. with GeV electromagnetic probes requires Poincaré covariant treatment of baryons
 ⇒ Covariant dressed-quark Faddeev Equation
Nucleon EM Form Factors: A Précis

Höll, et al.: nu-th/0412046 & nu-th/0501033

- Interpreting expts. with GeV electromagnetic probes requires Poincaré covariant treatment of baryons ⇒ Covariant dressed-quark Faddeev Equation
- Excellent mass spectrum (octet and decuplet)

Easily obtained:

\[
\left(\frac{1}{N_H} \sum_H \frac{[M_H^{\text{exp}} - M_H^{\text{calc}}]^2}{[M_H^{\text{exp}}]^2} \right)^{1/2} = 2\%
\]

Craig Roberts: Dynamics, Symmetries, and Hadron Properties
MENU07 – Inst. Nuclear Physics, Forschungszentrum Jülich, September 10-14, 2007 – p. 23/42
Nucleon EM Form Factors: A Précis

Höll, et al.: nu-th/0412046 & nu-th/0501033

- Interpreting expts. with GeV electromagnetic probes requires Poincaré covariant treatment of baryons
 ⇒ Covariant dressed-quark Faddeev Equation
- Excellent mass spectrum (octet and decuplet)
 Easily obtained:

\[
\left(\frac{1}{N_H} \sum_H \frac{[M_H^{\text{exp}} - M_H^{\text{calc}}]^2}{[M_H^{\text{exp}}]^2} \right)^{1/2} = 2\%
\]

(Oettel, Hellstern, Alkofer, Reinhardt: nucl-th/9805054)
Nucleon EM Form Factors: A Précis

Höll, et al.: nu-th/0412046 & nu-th/0501033

• Interpreting expts. with GeV electromagnetic probes requires Poincaré covariant treatment of baryons
 ⇒ Covariant dressed-quark Faddeev Equation

• Excellent mass spectrum (octet and decuplet)
 Easily obtained:

\[
\left(\frac{1}{N_H} \sum_H \left[\frac{M_H^{\text{exp}} - M_H^{\text{calc}}}{M_H^{\text{exp}}} \right]^2 \right)^{1/2} = 2\%
\]

• But is that good?
Nucleon EM Form Factors: A Précis

Höll, et al.: nu-th/0412046 & nu-th/0501033

• Interpreting expts. with GeV electromagnetic probes requires Poincaré covariant treatment of baryons
 ⇒ Covariant dressed-quark Faddeev Equation

• Excellent mass spectrum (octet and decuplet)
 Easily obtained:

\[
\left(\frac{1}{N_H} \sum_H \frac{[M_H^{\text{exp}} - M_H^{\text{calc}}]^2}{[M_H^{\text{exp}}]^2} \right)^{1/2} = 2\%
\]

• But is that good?
 • Cloudy Bag: \(\delta M_+^{\pi-\text{loop}} = -300 \text{ to } -400 \text{ MeV}! \)
Nucleon EM Form Factors: A Précis

Höll, et al.: [nu-th/0412046](http://arxiv.org/abs/nu-th/0412046) & [nu-th/0501033](http://arxiv.org/abs/nu-th/0501033)

- Interpreting expts. with GeV electromagnetic probes requires Poincaré covariant treatment of baryons
 \(\Rightarrow \) Covariant dressed-quark Faddeev Equation
- Excellent mass spectrum (octet and decuplet)

Easily obtained:

\[
\left(\frac{1}{N_H} \sum_H \left[\frac{M_H^{\text{exp}} - M_H^{\text{calc}}}{M_H^{\text{exp}}^2} \right]^2 \right)^{1/2} = 2\%
\]

- **But** is that good?
 - Cloudy Bag: \(\delta M_+^{\pi-\text{loop}} = -300 \) to \(-400 \) MeV!
 - **Critical** to anticipate pion cloud effects

Roberts, Tandy, Thomas, et al., [nu-th/02010084](http://arxiv.org/abs/nu-th/02010084)
Faddeev equation
Faddeev equation

\[\Psi^a \rightarrow \Psi^b \]

\[p_q \]

\[p_d \]

\[P \]

\[= \]

\[p_q \]

\[p_d \]

\[\Gamma^a \]

\[\Gamma^b \]

Craig Roberts: Dynamics, Symmetries, and Hadron Properties
MENU07 – Inst. Nuclear Physics, Forschungszentrum Jülich, September 10-14, 2007 – p. 24/42
Faddeev equation

\[\Psi^a \] \hspace{1cm} \Psi^b \]

\[p_q \] \hspace{1cm} \Gamma^a \quad \Gamma^b \]

\[p_d \] \hspace{1cm} q \]

Linear, Homogeneous Matrix equation

- Yields wave function (Poincaré Covariant Faddeev Amplitude) that describes quark-diquark relative motion within the nucleon

- Scalar and Axial-Vector Diquarks . . . In Nucleon’s Rest Frame Amplitude has . . . \(s- \), \(p- \) & \(d- \)–wave correlations
Diquark correlations
Diquark correlations

Same interaction that describes mesons also generates three coloured quark-quark correlations:

- blue–red
- blue–green
- green–red

Confined . . . Does not escape from within baryon.

Scalar is isosinglet,
Axial-vector is isotriplet.

DSE and lattice-QCD

\[
\begin{align*}
 m_{[ud]}^{0+} &= 0.74 - 0.82 \\
 m_{(uu)}^{1+} &= m_{(ud)}^{1+} = m_{(dd)}^{1+} = 0.95 - 1.02
\end{align*}
\]
Results: Nucleon and Δ Masses
Results: Nucleon and Δ Masses

Mass-scale parameters (in GeV) for the scalar and axial-vector diquark correlations, fixed by fitting nucleon and Δ masses

Set A – fit to the actual masses was required; whereas for
Set B – fitted mass was offset to allow for “π-cloud” contributions

set	M_N	M_Δ	m_{0+}	m_{1+}	ω_{0+}	ω_{1+}
A	0.94	1.23	0.63	0.84	0.44=1/(0.45 fm)	0.59=1/(0.33 fm)
B	1.18	1.33	0.79	0.89	0.56=1/(0.35 fm)	0.63=1/(0.31 fm)

$m_{1+} \to \infty$: $M_N^A = 1.15$ GeV; $M_N^B = 1.46$ GeV
Results: Nucleon and Δ Masses

Mass-scale parameters (in GeV) for the scalar and axial-vector diquark correlations, fixed by fitting nucleon and Δ masses.

Set A – fit to the actual masses was required; whereas for Set B – fitted mass was offset to allow for “π-cloud” contributions.

set	M_N	M_Δ	m_0^+	m_1^+	ω_{0^+}	ω_{1^+}
A	0.94	1.23	0.63	0.84	0.44 = 1/(0.45 fm)	0.59 = 1/(0.33 fm)
B	1.18	1.33	0.79	0.89	0.56 = 1/(0.35 fm)	0.63 = 1/(0.31 fm)

$m_1^+ \to \infty: M_N^A = 1.15 \text{ GeV}; M_N^B = 1.46 \text{ GeV}$

Axial-vector diquark provides significant attraction
Results: Nucleon and Δ Masses

Mass-scale parameters (in GeV) for the scalar and axial-vector diquark correlations, fixed by fitting nucleon and Δ masses

Set A – fit to the actual masses was required; whereas for Set B – fitted mass was offset to allow for “π-cloud” contributions

set	M_N	M_Δ	m_0^+	m_1^+	ω_0^+	ω_1^+
A	0.94	1.23	0.63	0.84	0.44=1/(0.45 fm)	0.59=1/(0.33 fm)
B	1.18	1.33	0.79	0.89	0.56=1/(0.35 fm)	0.63=1/(0.31 fm)

$m_1^+ \to \infty$: $M_N^A = 1.15$ GeV; $M_N^B = 1.46$ GeV

Constructive Interference: 1^{++}-diquark + $\partial_\mu \pi$
Nucleon-Photon Vertex
Nucleon-Photon Vertex

6 terms . . . constructed systematically . . . current \textit{conserved} automatically for on-shell nucleons described by Faddeev Amplitude
6 terms . . .

constructed systematically . . . current conserved automatically
for on-shell nucleons described by Faddeev Amplitude

Nucleon-Photon Vertex
Form Factor Ratio: \(\frac{G_E}{G_M} \)

\[
\mu_p \frac{G_E^P}{G_M^P} vs. Q^2 [\text{GeV}^2]
\]

- Rosenbluth
- precision Rosenbluth
- polarization transfer
- polarization transfer
Combine these elements . . .

Form Factor Ratio: GE/GM

\[\frac{\mu_p G_E^p}{G_M^p} \]
Combine these elements . . .

Dressed-Quark Core

Form Factor Ratio: $\frac{G_E}{G_M}$

![Graph showing $\mu_p G_E^p / G_M^p$ vs Q^2]

- Rosenbluth
- precision Rosenbluth
- polarization transfer
- polarization transfer
Combine these elements . . .

- Dressed-Quark Core
- Ward-Takahashi Identity preserving current

Form Factor Ratio: \(\frac{G_E}{G_M} \)
Combine these elements . . .

- Dressed-Quark Core
- Ward-Takahashi Identity preserving current
- Anticipate and Estimate Pion Cloud’s Contribution

Form Factor Ratio: \(\frac{G_E}{G_M} \)
Combine these elements . . .

- Dressed-Quark Core
- *Ward-Takahashi*
 Identity preserving current
- Anticipate and Estimate Pion Cloud's Contribution

Form Factor Ratio:

\[\frac{G_E}{G_M} \]
Combine these elements . . .

- Dressed-Quark Core
- Ward-Takahashi Identity preserving current
- Anticipate and Estimate Pion Cloud’s Contribution

All parameters fixed in other applications . . . Not varied.
Combine these elements . . .

- Dressed-Quark Core
- *Ward-Takahashi* Identity preserving current
- Anticipate and Estimate Pion Cloud’s Contribution

All parameters fixed in other applications . . . **Not** varied.

Agreement with Pol. Trans. data at $Q^2 \gtrsim 2\text{ GeV}^2$
Combine these elements . . .

- Dressed-Quark Core
- *Ward-Takahashi* Identity preserving current
- Anticipate and Estimate Pion Cloud’s Contribution

All parameters fixed in other applications . . . Not varied.

- Agreement with Pol. Trans. data at $Q^2 \gtrsim 2$ GeV2
- Correlations in Faddeev amplitude – quark orbital angular momentum – essential to that agreement
Combine these elements . . .

- Dressed-Quark Core
- Ward-Takahashi Identity preserving current
- Anticipate and Estimate Pion Cloud’s Contribution

All parameters fixed in other applications . . . Not varied.

- Agreement with Pol. Trans. data at \(Q^2 \gtrsim 2 \text{ GeV}^2 \)
- Correlations in Faddeev amplitude – quark orbital angular momentum – essential to that agreement
- Predict Zero at \(Q^2 \approx 6.5 \text{ GeV}^2 \)
Quark Distribution Functions

DIS

\[\ell' \rightarrow k', s' \]

\[\ell \rightarrow k, s \]

SI–DIS

\[\ell' \rightarrow k', s' \]

\[\ell \rightarrow k, s \]

Craig Roberts: Dynamics, Symmetries, and Hadron Properties
MENU07 – Inst. Nuclear Physics, Forschungszentrum Jülich, September 10-14, 2007

- p. 29/42
Three twist-2 parton distributions \((k_\perp = 0)\):

- Spin-Independent: \(q(x)\)
- Helicity: \(\Delta q(x)\)
- Transversity: \(\Delta_T q(x)\)

All distributions have probability interpretation.

By definition, contain essentially non-perturbative information about a given process.
Definition and Sum Rules

- Light-cone Fourier transforms:
 \[
 \Delta_T q(x) = p^+ \int \frac{d\xi^-}{2\pi} e^{ixp^+\xi^-} \langle p, s | \overline{\psi}_q(0)\gamma^+\gamma^1\gamma_5\psi_q(\xi^-) | p, s \rangle_c
 \]
 \[
 q(x) = \langle \gamma^+ \rangle, \quad \Delta q(x) = \langle \gamma^+\gamma_5 \rangle
 \]
 - Related to the nucleon axial & tensor charges via
 \[
 g_A = \int dx [\Delta u(x) - \Delta d(x)], \quad g_T = \int dx [\Delta_T u(x) - \Delta_T d(x)],
 \]
 - Must satisfy: positivity constraints and Soffer bound
 \[
 \Delta q(x), \Delta_T q(x) \leq q(x), \quad q(x) + \Delta q(x) \geq 2 |\Delta_T q(x)|
 \]
Once more on the one that got away.
Model predictions

Cloët, Bentz, Thomas
arXiv:0708.3246 [hep-ph]
Model predictions

- Simplified Faddeev equation

\[Q^2 = 2.4 \text{ GeV}^2 \]

\[x u(x) \quad x \Delta u(x) \quad x \Delta_T u(x) \]

- Satisfy: Soffer bound, baryon & momentum SRs.
Model predictions

- **Simplified Faddeev equation**

- **Satisfy**: Soffer bound, baryon & momentum SRs.

- **Moments at** $Q^2 = 0.16$ GeV2:
 \[\Delta u = 0.97, \quad \Delta d = -0.30 \quad \Rightarrow \quad g_A = 1.267 \]
 \[\Delta_T u = 1.04, \quad \Delta_T d = -0.24 \quad \Rightarrow \quad g_T = 1.28 \]
Simplified Faddeev equation

- Satisfy: Soffer bound, baryon & momentum SRs.
- Moments at $Q^2 = 0.16 \text{ GeV}^2$:
 \[\Delta u = 0.97, \quad \Delta d = -0.30 \implies g_A = 1.267 \]
 \[\Delta_T u = 1.04, \quad \Delta_T d = -0.24 \implies g_T = 1.28 \]

\[\Delta q(x) \sim \Delta_T q(x) \text{ in valence region for } Q^2 \lesssim 10 \text{ GeV}^2 \]
Epilogue
Epilogue
DCSB exists in QCD.
DCSB exists in QCD.

- It is manifest in dressed propagators and vertices
- It impacts dramatically upon observables.
DCSB exists in QCD.

- It is manifest in dressed propagators and vertices
- It impacts dramatically upon observables.

Confinement
Epilogue

- DCSB exists in QCD.
 - It is manifest in dressed propagators and vertices
 - It impacts dramatically upon observables.
- Confinement
 - Expressed and realised in dressed propagators and vertices associated with elementary excitations
 - Observables can be used to explore model realisations
Epilogue

- DCSB exists in QCD.
 - It is manifest in dressed propagators and vertices
 - It impacts dramatically upon observables.

Confinement

- Expressed and realised in dressed propagators and vertices associated with elementary excitations
- Observables can be used to explore model realisations
- DSEs ... contemporary tool that describes and explains these phenomena, and connects them with prediction of observables
Quenched-QCD

Dressed-Quark Propagator

$M(p)$

$Z(p)$
Quenched-QCD

Dressed-Quark Propagator

2002

\[M(p) \]

\[Z(p) \]

“data:” Quenched Lattice Meas.

– Bowman, Heller, Leinweber, Williams: [he-lat/0209129](http://arxiv.org/abs/he-lat/0209129)
“data”: Quenched Lattice Meas.
– Bowman, Heller, Leinweber, Williams: [he-lat/0209129](http://arxiv.org/abs/he-lat/0209129)
current-quark masses: 30 MeV, 50 MeV, 100 MeV
Quenched-QCD

Dressed-Quark Propagator

- **“data”:** Quenched Lattice Meas.
 - Bowman, Heller, Leinweber, Williams: [he-lat/0209129](https://arxiv.org/abs/he-lat/0209129)
 - current-quark masses: 30 MeV, 50 MeV, 100 MeV

- **Curves:** Quenched DSE Cal.
 - Bhagwat, Pichowsky, Roberts, Tandy [nu-th/0304003](https://arxiv.org/abs/nu-th/0304003)
Quenched-QCD
Dressed-Quark Propagator

$M(p)$

$Z(p)$

“data:” Quenched Lattice Meas.

– Bowman, Heller, Leinweber, Williams: [he-lat/0209129](https://arxiv.org/abs/he-lat/0209129)

Current-quark masses: 30 MeV, 50 MeV, 100 MeV

Curves: Quenched DSE Cal.

– Bhagwat, Pichowsky, Roberts, Tandy [nu-th/0304003](https://arxiv.org/abs/nu-th/0304003)

Linear extrapolation of lattice data to chiral limit is inaccurate
Kernel of Gap Equation: $D_{\mu\nu}(p - q)\Gamma_\nu(q)$

Dressed-gluon propagator and dressed-quark-gluon vertex

Reliable DSE studies of Dressed-gluon propagator:

- R. Alkofer and L. von Smekal, *The infrared behavior of QCD Green’s functions...*, Phys. Rept. **353**, 281 (2001).
QCD & Interaction Between Light-Quarks

Kernel of Gap Equation: \(D_{\mu\nu}(p - q) \Gamma_{\nu}(q) \)

Dressed-gluon propagator and dressed-quark-gluon vertex

Reliable DSE studies of Dressed-gluon propagator:
- R. Alkofer and L. von Smekal, *The infrared behavior of QCD Green’s functions* . . . , Phys. Rept. 353, 281 (2001).

Dressed-gluon propagator – lattice-QCD simulations confirm that behaviour:
- D. B. Leinweber, J. I. Skullerud, A. G. Williams and C. Parrinello [UKQCD Collaboration], *Asymptotic scaling and infrared behavior of the gluon propagator*, Phys. Rev. D 60, 094507 (1999) [Erratum-ibid. D 61, 079901 (2000)].

Exploratory DSE and lattice-QCD studies of dressed-quark-gluon vertex
\[D_{\mu \nu}(k) = \left(\delta_{\mu \nu} - \frac{k_\mu k_\nu}{k^2} \right) \frac{Z(k^2)}{k^2} \]

Suppression means \(\exists \) IR gluon mass-scale \(\approx 1 \text{ GeV} \)

Naturally, this scale has the same origin as \(\Lambda_{\text{QCD}} \)
Dressed-gluon Propagator

\[D_{\mu\nu}(k) = \left(\delta_{\mu\nu} - \frac{k_{\mu} k_{\nu}}{k^2} \right) \frac{Z(k^2)}{k^2} \]

- Suppression means \(\exists \) IR gluon mass-scale \(\approx 1 \) GeV

- Naturally, this scale has the same origin as \(\Lambda_{\text{QCD}} \)
Dressed-gluon Propagator

\[D_{\mu\nu}(k) = \left(\delta_{\mu\nu} - \frac{k_{\mu} k_{\nu}}{k^2} \right) \frac{Z(k^2)}{k^2} \]

- Suppression means \(\exists \) IR gluon mass-scale \(\approx 1 \text{ GeV} \)

- Naturally, this scale has the same origin as \(\Lambda_{\text{QCD}} \)
Dynamical chiral symmetry breaking and a critical mass
Lei Chang, Yu-Xin Liu, Mandar S. Bhagwat, Craig D. Roberts and Stewart V. Wright . . . nucl-th/0605058
Phys. Rev. C 75 (2007) 015201 (8 pages)
Realistic models of QCD’s gap equation simultaneously admit two inequivalent DCSB solutions & solution connected with realisation of chiral symmetry in Wigner mode.
Critical Mass for Chiral Expansion

Realistic models of QCD’s gap equation simultaneously admit two inequivalent DCSB solutions & solution connected with realisation of chiral symmetry in Wigner mode.

Wigner solution and one DCSB solution are destabilised by current-quark mass & both disappear when that mass exceeds a critical value, m_{cr}.

The zeros of $G(M)$ characterise the different solutions of the gap equation. Solid curve: obtained with $m^{bm} = 0$, in which case $G(M)$ is odd under $M \rightarrow -M$; long-dashed curve: $m^{cm} = 0.01$; short-dashed curve: $m^{cm} = m^{bm} = 0.033$; dotted curve: $m^{bm} = 0.05$.
Critical Mass for Chiral Expansion

- Realistic models of QCD’s gap equation simultaneously admit two inequivalent DCSB solutions & solution connected with realisation of chiral symmetry in Wigner mode.

- m_{cr} also bounds domain on which surviving DCSB solution possesses a chiral expansion: $m_{cr} = \lim_{n \to \infty} \left(\frac{1}{|a_n|} \right)^{1/n}$
Critical Mass for Chiral Expansion

- Realistic models of QCD’s gap equation simultaneously admit two inequivalent DCSB solutions & solution connected with realisation of chiral symmetry in Wigner mode.

- m_{cr} also bounds domain on which surviving DCSB solution possesses a chiral expansion: $m_{cr} = \lim_{n \to \infty} \left(\frac{1}{|a_n|} \right)^{1/n}$

- m_{cr} is therefore an upper bound on the domain within which a perturbative expansion in the current-quark mass around the chiral limit is uniformly valid for physical quantities.
Critical Mass for Chiral Expansion

- Realistic models of QCD's gap equation simultaneously admit two inequivalent DCSB solutions & solution connected with realisation of chiral symmetry in Wigner mode.

- m_{cr} also bounds domain on which surviving DCSB solution possesses a chiral expansion:

$$m_{cr} = \lim_{n \to \infty} \left(\frac{1}{|a_n|} \right)^{1/n}$$

- m_{cr} is therefore an upper bound on the domain within which a perturbative expansion in the current-quark mass around the chiral limit is uniformly valid for physical quantities.

- For a pseudoscalar meson constituted of equal mass current-quarks, it corresponds to a mass $m_{cr}^0 \sim 0.45$ GeV.
Critical Mass for Chiral Expansion

- Realistic models of QCD’s gap equation simultaneously admit two inequivalent DCSB solutions & solution connected with realisation of chiral symmetry in Wigner mode.

- m_{cr} also bounds domain on which surviving DCSB solution possesses a chiral expansion: $m_{cr} = \lim_{n \to \infty} \left(\frac{1}{|a_n|} \right)^{1/n}$

- m_{cr} is therefore an upper bound on the domain within which a perturbative expansion in the current-quark mass around the chiral limit is uniformly valid for physical quantities.

- For a pseudoscalar meson constituted of equal mass current-quarks, it corresponds to a mass $m_{cr}^{0-} \sim 0.45$ GeV.

- Entails lattice-QCD simulations must have many results at $m_\pi < m_{cr}^{0-} \sim 0.45$ GeV for reliable extrapolation via EFT.
Realistic models of QCD's gap equation simultaneously admit two inequivalent DCSB solutions & solution connected with realisation of chiral symmetry in Wigner mode.

The two DCSB solutions of the gap equation enable a valid definition of $\langle \bar{q}q \rangle$ in the presence of a nonzero current-mass.
Critical Mass for Chiral Expansion

- Realistic models of QCD’s gap equation simultaneously admit two inequivalent DCSB solutions & solution connected with realisation of chiral symmetry in Wigner mode.

- The two DCSB solutions of the gap equation enable a valid definition of $\langle \bar{q}q \rangle$ in the presence of a nonzero current-mass.

- The behaviour of this condensate indicates that the essentially dynamical component of chiral symmetry breaking decreases with increasing current-quark mass.
Consituent-quark σ-term

Impact of Dynamical chiral symmetry breaking . . . exhibited via constituent-quark σ-term

$$\sigma_f := m_f(\zeta) \frac{\partial M^E_f}{\partial m_f(\zeta)} , \quad (M^E)^2 := s \mid s = M(s)^2.$$
Consituent-quark σ-term

- Impact of Dynamical chiral symmetry breaking . . . exhibited via constituent-quark σ-term

\[
\sigma_f := m_f(\zeta) \frac{\partial M_f^E}{\partial m_f(\zeta)}, \quad (M^E)^2 := s \mid s = M(s)^2.
\]

- Renormalisation-group-invariant and determined from solutions of the gap equation
Consituent-quark σ-term

Impact of Dynamical chiral symmetry breaking . . . exhibited via constituent-quark σ-term

$$\sigma_f := m_f(\zeta) \frac{\partial M_f^E}{\partial m_f(\zeta)}, \ (M^E)^2 := s \mid s = M(s)^2.$$

Unambiguous probe of impact of explicit chiral symmetry breaking on the mass function
Consituent-quark σ-term

Impact of Dynamical chiral symmetry breaking . . . exhibited via constituent-quark σ-term

\[
\sigma_f := m_f(\zeta) \frac{\partial M^E_f}{\partial m_f(\zeta)}, \quad (M^E)^2 := s \mid s = M(s)^2.
\]

Ratio

\[
\frac{\sigma_f}{M^E_f} = \frac{\text{EXPLICIT}}{\text{EXPLICIT} + \text{DYNAMICAL}}
\]

measures effect of EXPLICIT chiral symmetry breaking on dressed-quark mass-function
cf. SUM of effects of EXPLICIT AND DYNAMICAL CHIRAL SYMMETRY BREAKING
Impact of Dynamical chiral symmetry breaking . . . exhibited via constituent-quark σ-term

$$\sigma_f := m_f(\zeta) \frac{\partial M_f^E}{\partial m_f(\zeta)}, \quad (M^E)^2 := s \mid s = M(s)^2.$$
Constituent-quark σ-term

Impact of Dynamical chiral symmetry breaking . . . exhibited via constituent-quark σ-term

\[
\sigma_f := m_f(\zeta) \frac{\partial M^E_f}{\partial m_f(\zeta)}, \quad (M^E)^2 := s \mid s = M(s)^2.
\]

Obvious: ratio vanishes for light-quarks because magnitude of their constituent-mass owes primarily to DCSB. On the other hand, for heavy-quarks it approaches one.
Consituent-quark σ-term

Impact of Dynamical chiral symmetry breaking . . . exhibited via constituent-quark σ-term

$$\sigma_f := m_f(\zeta) \frac{\partial M^E_f}{\partial m_f(\zeta)}, \quad (M^E)^2 := s \mid s = M(s)^2.$$

Essentially dynamical component of chiral symmetry breaking, and manifestation in all its order parameters, vanishes with increasing current-quark mass.
Crude estimate based on magnitudes \Rightarrow probability for a u-quark to carry the proton’s spin is $P_u^{\uparrow} \sim 80\%$, with $P_u^{\downarrow} \sim 5\%$, $P_d^{\uparrow} \sim 5\%$, $P_d^{\downarrow} \sim 10\%$.

Hence, by this reckoning $\sim 30\%$ of proton’s rest-frame spin is located in dressed-quark angular momentum.
Neutron Form Factors

\[\mu_n G_E^n / G_M^n \]

\[Q^2 \quad [\text{GeV}^2] \]

Craig Roberts: Dynamics, Symmetries, and Hadron Properties
MENU07 – Inst. Nuclear Physics, Forschungszentrum Jülich, September 10-14, 2007
Neutron Form Factors

Expt. Madey, et al. nu-ex/0308007
Neutron Form Factors

Expt. Madey, et al. nu-ex/0308007

Calc. Bhagwat, et al. nu-th/0610080

\[\mu_p \frac{G^n_E(Q^2)}{G^n_M(Q^2)} = -\frac{r_n^2}{6} Q^2 \]

Valid for \(r_n^2 Q^2 \lesssim 1 \)
Expt. Madey, et al. nu-ex/0308007

Calc. Bhagwat, et al. nu-th/0610080

\[
\mu_p \frac{G^n_E(Q^2)}{G^n_M(Q^2)} = -\frac{r_n^2}{6} Q^2
\]

Valid for \(r_n^2 Q^2 \lesssim 1 \)

No sign yet of a zero in \(G^n_E(Q^2) \), even though calculation predicts \(G^p_E(Q^2 \approx 6.5 \text{ GeV}^2) = 0 \)

Data to \(Q^2 = 3.4 \text{ GeV}^2 \) is being analysed (JLab E02-013)
Contemporary Reviews

Dyson-Schwinger Equations: Density, Temperature and Continuum Strong QCD
C.D. Roberts and S.M. Schmidt, nu-th/0005064,
Prog. Part. Nucl. Phys. 45 (2000) S1

The IR behavior of QCD Green's functions: Confinement, DCSB, and hadrons . . .
R. Alkofer and L. von Smekal, he-ph/0007355,
Phys. Rept. 353 (2001) 281

Dyson-Schwinger equations: A Tool for Hadron Physics
P. Maris and C.D. Roberts, nu-th/0301049,
Int. J. Mod. Phys. E 12 (2003) pp. 297-365

Infrared properties of QCD from Dyson-Schwinger equations.
C. S. Fischer, he-ph/0605173,
J. Phys. G 32 (2006) pp. R253-R291

Nucleon electromagnetic form factors
J. Arrington, C.D. Roberts and J.M. Zanotti, nucl-th/0611050,
J. Phys. G 34 (2007) pp. S23-S52.