Spectroscopy of \(a_1\) mesons from lattice QCD with the truncated overlap fermions

Masayuki Wakayama\(^1\), Yuko Murakami\(^4\), Atsushi Nakamura\(^5,6,3\), Motoo Sekiguchi\(^7\) and Hiroaki Wada\(^7\)

\(^1\)Center for Extreme Nuclear Matters (CENuM), Korea University, Seoul 02841, Republic of Korea
\(^2\)Department of Physics, Pukyong National University (PKNU), Busan 48513, Republic of Korea
\(^3\)Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047, Japan
\(^4\)Research and Development Laboratory, Seikow Chemical Engineering & Machinery, LTD, Akashi 674-0093, Japan
\(^5\)School of Biomedicine, Far Eastern Federal University, 690950 Vladivostok, Russia
\(^6\)Theoretical Research Division, RIKEN, Wako 351-0198, Japan
\(^7\)School of Science and Engineering, Kokushikan University, Tokyo 154-8515, Japan

\(^*\)E-mail: wakayama@rcnp.osaka-u.ac.jp

We study the ground state and next radial excitation of the \(a_1\) mesons from a quenched lattice QCD simulation with the truncated overlap fermion formalism based on the domain wall fermion formalism\(^2,3\). Our objective is to reveal the relationship between the nature of the \(a_1\) meson associated with the chiral partner of the \(\rho\) meson and dynamical chiral symmetry breaking, as for the \(\pi\) and the chiral partner of the \(\sigma\) meson\(^6\). In the conventional constituent quark model, the \(\sigma\) meson and the \(a_1\) meson are assigned excited states.

Lattice simulations of \(a_1\) mesons have been previously conducted.

1. Introduction

In hadron physics, determining the properties of excited light mesons will provide important information on the chiral dynamics of quantum chromodynamics (QCD). We study the structures of \(a_1\) mesons determined using the truncated overlap fermion (TOF) formalism by Boriçi\(^1\) based on the domain wall fermion formalism\(^2,3\). The TOF formalism is classified into lattice chiral fermions\(^2-5\), and exhibits good chiral symmetry. Our objective is to reveal the relationship between the nature of the \(a_1\) meson associated with the chiral partner of the \(\rho\) meson and dynamical chiral symmetry breaking, as for the \(\pi\) and the chiral partner of the \(\sigma\) meson\(^6\). In the conventional constituent quark model, the \(\sigma\) meson and the \(a_1\) meson are assigned excited states.

Lattice simulations of \(a_1\) mesons have been previously conducted.
Wingate et al. were the first to measure the mass of the a_1 meson using two-flavor lattice QCD. Their result agrees with the experimental value for $a_1(1260)$. A decade later, a study of the a_1 meson was performed with the Lüscher–Weisz gauge action and the chirally improved Dirac operator in the quenched approximation. Although the ground state of the a_1 meson was improved by using various interpolators including derivative quark sources in the simulations, the obtained mass of the ground state is close to $a_1(1420)$, instead of $a_1(1260)$. Moreover, the mass of the first excited state of a_1 was observed to be above 2 GeV.

Recently, Prelovšek et al. presented results for the mass of the a_1 meson and its coupling constant. They performed a simulation for a full QCD lattice with clover-improved Wilson quarks. This work was continued in Ref., in which they extracted the resonance mass of the ground state of the a_1 meson $m_{a_1} = 1.435(53)(^{+0}_{-109})$ GeV and the coupling $g_{a_1\pi\rho} = 1.71(39)$ GeV by simulating the corresponding scattering channel $\pi\rho$. Their obtained value of the a_1 meson mass is higher than the experimental result of $a_1(1260)$.

In our previous work, we investigated the mass of the ground state of the a_1 meson by a quenched lattice QCD using TOF. Our result is consistent with the experimental value of $a_1(1260)$.

2. **Truncated overlap fermions**

The TOF are defined by

$$D_{TOF} = \epsilon_1 P^I \overline{D}^{-1}_{PV} D_{DW F} P \epsilon ,$$

where the five dimensional projection operator P is constructed from the four-dimensional projection operators $P_{R/L} = (1 \pm \gamma_5)/2$. The indexes x_5 and y_5 represent the fifth-dimensional lattice sites, which are defined in $x_5,y_5 \in [1,N_5]$. The domain wall fermion operator $D_{DF}^{2,3}$ is defined by

$$D_{DF}(x,y) = (4 - M_5)\delta_{x,y} - \frac{1}{2} \sum_{\mu=\pm 1} (1 - \gamma_\mu) U_\mu(x) \delta_{x+\hat{\mu},y} ,$$

The parameters of TOF are m_f and M_5, which correspond to the bare quark mass and the height of the domain wall, respectively. The Pauli-Villars matrix D_{PV} is given by $D_{PV} = D_{DF}(m_f = 1)$. In the $N_5 \to \infty$ limit, the lattice chiral symmetry is exactly reproduced in TOF.
3. Simulation setup and Lattice QCD results

In this work, we simulate the spectroscopy of a_1 mesons on $8^3 \times 24$ quenched lattice with the plaquette gauge action with $\beta = 5.7$. Gauge configurations are generated with the pseudo-heat-bath method. After 20000 thermalization iterations, we start to save gauge configurations every 1000 sweeps. The propagators of the π, ρ and a_1 mesons are calculated with TOF. The fermion parameters are set to $N_5 = 32$, $M_5 = 1.65$ and $m_f a = 0.04–0.08$.

We calculate the meson propagators and their effective masses (see Fig. 1). We estimate the statistical errors using the jackknife method. By performing a single- or double-pole fit to the effective masses, we obtain the meson masses as listed in Table 1.

Fig. 1. Time dependences of the propagators (left) and the effective masses (right) for $m_f a = 0.06$. In the right figure, the dotted lines and dotted curve represent the single-pole and double-pole fitting results, respectively.

$m_f a$	$m_\pi a$	$m_\rho a$	m_π / m_ρ	Confs.
0.08	0.6668(7)	0.9496(18)	0.702(2)	3000
0.07	0.6283(7)	0.9249(21)	0.679(2)	3000
0.06	0.5895(8)	0.9042(24)	0.652(3)	3000
0.05	0.5478(8)	0.8816(27)	0.621(3)	3600
0.04	0.5028(6)	0.8614(24)	0.584(2)	7864
Fig. 2 shows the quark mass dependence of the meson masses. We linearly extrapolate the meson masses to the chiral limit, \((m_\pi a)^2 = 0\). By tuning the \(\rho\) meson mass in the chiral limit to \(m_\rho = 775\) MeV, we obtain a lattice spacing of \(a = 0.1893(15)\) fm. Note that calculations for TOF have a residual mass such as \(m_{\pi a} = -m_{\text{res}} a\) in the chiral limit due to the finite \(N_5\) effect. In our calculation with \(N_5 = 32\), we obtain \(m_{\text{res}} a = 1.29(4) \times 10^{-2}\), that is \(m_{\text{res}} = 13.4(5)\) MeV, which is negligible. We estimate the masses of the ground state and first excited states of the \(a_1\) mesons to be \(m_{a_1} = 1158(42)\) MeV and \(m_{a_1}^{\text{ext}} = 1667(202)\) MeV. Our results are consistent with the experimental values of \(a_1(1260)\) and \(a_1(1640)\), \(m_{a_1(1260)} = 1230(40)\) MeV and \(m_{a_1(1640)} = 1654(19)\) MeV.

4. Conclusion

We have investigated the masses of the ground and first excited states of \(a_1\) mesons from a quenched lattice QCD with the TOF action. We have obtained the masses of the \(a_1\) mesons to be 1158(42) MeV and 1667(202) MeV, which are in good agreement with the experimental values of \(a_1(1260)\) and \(a_1(1640)\). Since our simulation was performed in the quenched approximation and the \(\bar{q}q\) source and sink, in which virtual intermediate states such as \(\bar{q}qqq\) states are highly suppressed, our results suggest that \(a_1(1260)\) and \(a_1(1640)\) are the simple \(\bar{q}q\) states whereas \(a_1(1420)\) may have a more
complicated structure than the $\bar{q}q$ state.

Acknowledgments

This work was supported by RSF grant 15-12-20008 and the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2018R1A5A1025563). The simulations were performed on the supercomputer system SX-ACE at RCNP and the Cybermedia Center, Osaka University, and were conducted using the Fujitsu PRIMEHPC FX10 System (Oakleaf-FX, Oakbridge-FX) at the Information Technology Center, The University of Tokyo. This work was supported by “Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures” in Japan (Project ID: jh180053-NAJ and jh190048-NAH).

References

1. A. Boriçi, Nucl. Phys. Proc. Suppl. 83, 771 (2000) [hep-lat/9909057].
2. D. B. Kaplan, Phys. Lett. B 288, 342 (1992) [hep-lat/9206013].
3. V. Furman and Y. Shamir, Nucl. Phys. B 439, 54 (1995) [hep-lat/9405004].
4. R. Narayanan and H. Neuberger, Phys. Rev. Lett. 71, no. 20, 3251 (1993) [hep-lat/9306011].
5. R. C. Brower, H. Neff and K. Orginos, Nucl. Phys. Proc. Suppl. 140, 686 (2005) [hep-lat/0409118].
6. Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961); Phys. Rev. 124, 246 (1961).
7. M. Wingate, T. A. DeGrand, S. Collins and U. M. Heller, Phys. Rev. Lett. 74, 4596 (1995) [hep-ph/9502274].
8. C. Gattringer, L. Y. Glozman, C. B. Lang, D. Mohler and S. Prelovsek, Phys. Rev. D 78, 034501 (2008) [arXiv:0802.2020 [hep-lat]].
9. S. Prelovsek, C. B. Lang, D. Mohler and M. Vidmar, PoS LATTICE 2011, 137 (2011) [arXiv:1111.0409 [hep-lat]].
10. C. B. Lang, L. Leskovec, D. Mohler and S. Prelovsek, JHEP 1404, 162 (2014) [arXiv:1401.2088 [hep-lat]].
11. M. Alekseev et al. [COMPASS Collaboration], Phys. Rev. Lett. 104, 241803 (2010) [arXiv:0910.5842 [hep-ex]].
12. M. Tanabashi et al. [Particle Data Group], Phys. Rev. D 98, 030001 (2018).
13. M. Wakayama, Y. Murakami, S. Muroya, A. Nakamura, C. Nonaka, M. Sekiguchi and H. Wada, JPS Conf. Proc. 26, 031007 (2019).