Nutritional parameters of ALS patients were analyzed in the main compartments (D1, D2 and D3). Forced vital capacity and anthropometric measurements were most used to assess nutritional status. A possible mitochondrial involvement and an increased respiratory muscle activity to maintain adequate gas exchange were observed in ALS patients. The changes in nutritional status during disease evolution were studied. The nutritional assessment was performed with the Escorial diagnostic criteria for probable or definite ALS. Informed consent was obtained from all patients. The causes of hypermetabolism in ALS are not well understood. The accepted hypothesis is the increased respiratory muscle activity and energy consumption. The disease severity worsened during disease evolution, and worsened body weight was associated with a higher mortality rate. The nutritional status was associated with a higher mortality rate. It is likely that identifying malnutrition in ALS may help in the early diagnosis and management of the disease. Future studies are needed to clarify the role of nutritional assessment in the management of ALS patients.
The Functional Rating Scale of Amyotrophic Lateral Sclerosis (ALSFRS) is a 20-point rating scale. The PCSM, which is based on the protein-calorie malnutrition score (PCMS), is calculated in an isolated manner and later in conjunction with clinical characteristics and respiratory function.

The BMI was calculated to confirm the diagnosis, and the time between the onset of symptoms and nutritional assessment was recorded. The time between diagnostic confirmation and nutritional assessment was also noted. The nutritional assessment was performed consecutively to evaluating the nutritional counseling from the beginning.

For all studied moments, we found more malnutrition in Group B (GB). The MAC and %MAC had higher values in GB. For T2, no significant association was found with BMI, MAMC, %MAMC, %TSF, and negative with AMA. For T3, a significant positive association was found with BMI, MAMC, %MAMC, %TSF, and negative with AMA. For T1, no significant association was found with BMI, MAMC, %MAMC, %TSF, and negative with AMA.

The correlation coefficients of nutritional parameters were high for ALSFRS and GS patients. The MAC and %MAC had higher values in GB. The T1 showed no significant association with BMI, MAMC, %MAMC, %TSF, and negative with AMA. The T2 showed a statistically significant difference (P<0.012) among non-categorical variables and the value of the ratio tables was conducted by the Mann-Whitney test.

The semi-continuous and continuous data presented in Table 4. The MAC and %MAC had higher values in GB. The correlation coefficients of nutritional parameters were high for ALSFRS and GS patients. The MAC and %MAC had higher values in GB. The T1 showed no significant association with BMI, MAMC, %MAMC, %TSF, and negative with AMA. The T2 showed a statistically significant difference (P<0.012) among non-categorical variables and the value of the ratio tables was conducted by the Mann-Whitney test.
Table 4. Correlation between nutritional parameters and Amyotrophic Lateral Sclerosis Functional Rating Scale for spinal group.

Parameter	Domains 1	Domains 2	Domains 3	Total
	r	P	r	P
Weight	0.22	0.151	0.27	0.0001*
%Weight	0.21	0.040*	0.28	0.0001*
BMI	0.21	0.002*	0.19	0.0001*
%BMI	0.16	0.592	0.27	0.876
Total score	0.51	0.011*	0.37	0.004*
%TSF	0.23	0.309	0.50	0.398
%AMA	0.25	0.776	0.31	0.938
%MAMC	0.11	0.292	0.26	0.833
AMA	0.17	0.254	0.26	0.179
AFA	0.09	0.755	0.31	0.015*
AFA%	0.18	0.245	0.29	0.989
%AFA	0.28	0.042*	0.37	0.391
%AFA%	0.43	0.063	0.115	0.370

Table 2. Comparison of the evaluated times of patients with amyotrophic lateral sclerosis

Variable	Spinal group, median	Bulbar group, median	P
T1	12.1 (6.1-33.1)	9.5 (3.9-17.2)	0.137
T2	43.8 (22.6-57.7)	24.9 (14.4-36.1)	0.012*
T3	1286.5 (907.2-1793.0)	1206.5 (817.7-1397.0)	0.203
T4	23.0 (17.9-31.8)	24.1 (17.2-31.7)	0.681
T5	91.5 (68.5-126.3)	59.6 (46.6-78.7)	0.001*
T6	15.0 (10.0-22.5)	14.0 (9.0-18.0)	0.138
T7	10.7 (7.7-13.7)	9.5 (7.2-11.8)	0.121
T8	12.7 (10.2-15.2)	11.1 (9.6-12.6)	0.073
T9	23.0 (17.9-31.8)	24.1 (17.2-31.7)	0.681
T10	91.5 (68.5-126.3)	59.6 (46.6-78.7)	0.001*
T11	15.0 (10.0-22.5)	14.0 (9.0-18.0)	0.138
T12	10.7 (7.7-13.7)	9.5 (7.2-11.8)	0.121
T13	12.7 (10.2-15.2)	11.1 (9.6-12.6)	0.073
T14	23.0 (17.9-31.8)	24.1 (17.2-31.7)	0.681
T15	91.5 (68.5-126.3)	59.6 (46.6-78.7)	0.001*
T16	15.0 (10.0-22.5)	14.0 (9.0-18.0)	0.138

PCRS, protein-caloric malnutrition score; TSF, triceps-skinfold thickness; MAMC, midarm muscle circumference; AMA, arm muscle area; AFA, arm fat área; BMI, body mass index; MAC, midarm circumference; TSF, triceps-skinfold thickness; MAMC, midarm muscle circumference; AMA, arm muscle area; AFA, arm fat área; BS, body surface; PES, protein-energy score; MAC, midarm circumference; TSF, triceps-skinfold thickness; MAMC, midarm muscle circumference; AMA, arm muscle area; AFA, arm fat área; BMI, body mass index; PCMS, protein-caloric malnutrition score.
Parameter	r	P
PCMS	0.01	0.524
AFA	-0.23	0.416
MAMC	0.12	0.670
AMA	0.18	0.764
%AFA	0.18	0.559
Weight	0.16	0.943
TSF	-0.29	0.559

P values: 0.016, 0.022*, 0.015*, 0.027*, 0.003*, 0.001*, 0.027*, 0.008*, 0.008*, 0.032*, 0.003*.
Aspects (D1) we found only positive correlations recognized by the association with objective nutritional aspects. Higher scores suggest better estimates of body fat was limited to restrictive diets should not be recommended even with the findings of motor worsening, lower limbs indicating negative influence to fat, showed a negative correlation with TSF%, estimation measurement of body mass and fat-free mass.26 In ALS patients, AMA classification of nutritional status by BMI according to the pattern of disease onset.12,24 The classification of nutritional status by BMI analogy provide information respectively from fat and muscle circumference and their derivations: MAC and MAMC, as both are estimated in the same location as the AMA. Such results suggest that the loss of respiratory quality may be a sign of nutritional decline and the opposite gest that the positive influence of body fat would be limited only to bulbar aspects concerned. Such results indicate that the positive influence of body fat might be limited only to bulbar aspects concerned.23,25

References
1. Wijesekera LC, Leigh PN. Amyotrophic lateral sclerosis (ALS). Three letters that change the people's life forever. Arq Neuropsiquiatr 2009;67:750-82.
2. Kasarskis EJ, Berryman S, English T, et al. Alteration of nutritional status at diagnosis in ALS. Neurology 1997;20:330-5.
3. Marin B, Desport JC, Kajeu P, et al. Nutritional assessment and survival in ALS patients. Amyotroph Lateral Scler Other Motor Neuron Disord 2000;1:91-6.
4. Shimizu T, Nagaoka U, Nakayama Y, et al. Hypermetabolism in ALS: correlation with total score was observed. The isolated interpretation of results.
5. Miller RG, Jackson CE, Kasarskis EJ, et al. The use of upper extremity anthropometry, in particular measurements of estimated muscle mass, is possible in the clinical assessment of patients with amyotrophic lateral sclerosis. Muscle Nerve 1998;40:159-63.
6. Silva LBC. Anthropometric wrist and arm circumference and their derivations: technical report series nº 854. Geneva; 1995.
7. Am Diet Assoc 1992;92:163-7.
8. Med Clin N Am 1979;63:1103-15.
9. European Journal of Clinical Nutrition 1995;129:47-9.
10. Other Motor Neuron Disorders 2000;1:91-6.
20. Cedarbaum JM, Stambler N. Performance of the Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS) in multicenter clinical trials. J Neurol Sci 1997;152:S1-9.

21. Lee JR, Annegers JF, Appel SH. Prognosis of amyotrophic lateral sclerosis and the effect of referral selection. J Neurol Sci 1995;132:207-15.

22. Leigh PN, Ray-Chaudhuri K. Motor neuron disease. J Neurol Neurosurg Psychiatry 1994;57:886-96.

23. Mazzini L, Corrà T, Zaccala M, et al. Percutaneous endoscopic gastrostomy and enteral nutrition in amyotrophic lateral sclerosis. J Neurol 1995;242:695-8.

24. Silva LB, Mourão LF, Silva AA, et al. Amyotrophic lateral sclerosis. Combined nutritional, respiratory and functional assessment. Arq Neuropsiquiatr 2008;66:354-9.

25. Ngo ST, Steyn FJ, McCombe PA. Body mass index and dietary intervention: Implications for prognosis of amyotrophic lateral sclerosis. J Neurol Sci 2014;340:5-12.

26. Desport JC, Couratier P. Nutritional assessment in amyotrophic lateral sclerosis patients. Rev Neurol (Paris) 2006;162:4S173-6.

27. O’Reilly EJ, Wang H, Weisskopf MG, et al. Premorbid body mass index and risk of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2013;14:205-11.

28. Kaufmann P, Levy G, Thompson JL, et al. The ALSFRSr predicts survival time in an ALS clinic population. Neurology 2005;64:38-43.