Advantages of high fiber content millet family chosen for the study of anti-hyperlipidemic activity using the extract of Italica seeds and husk on rats

Ramana S V1, Sai Phanindra M2, Muthu Babu K3

1Department of ENT, Konaseema Institute of Medical Sciences Research Foundation, Amalapuram, Andhra Pradesh, India
2Department of Orthopedics, Konaseema Institute of Medical Sciences Research Foundation, Amalapuram, Andhra Pradesh, India
3Department of ENT, Meenakshi Academy of Higher Education and Research, Chennai, Tamil Nadu, India

Article History:
Received on: 11 Nov 2020
Revised on: 12 Dec 2020
Accepted on: 19 Dec 2020

Keywords:
Setariaitalica, antihyperlipidemic activity, atherogenic diet, Foxtail millet, hydroalcoholic extract

ABSTRACT

Setariaitalica is usually identified as Foxtail millet (Korralu in Telugu). It belongs to the millet family consisting of high fiber content along with many minerals, vitamins, essential amino acids, proteins, gluten-free and very less quantity of carbohydrates. Due to enormous advantages and was less explored, this millet was chosen for the study of antihyperlipidemic activity. To examine the anti-hyperlipidemic activity of hydroalcoholic extract of seed and husk of Setariaitalicain atherogenic diet-induced hyperlipidemic rats. The hydroalcoholic extract of Setariaitalica seeds and husk are assessed for antihyperlipidemic movement in atherogenic diet brought hyperlipidemic rats. The study was performed by comparing the results with that of standard drug atorvastatin (10mg/kg body wt). The education results are uttered as mean ± S.E and the data is analyzed by utilizing one-way investigation (ANOVA). Values with $P<0.05$ is measured as important. Oral management of 500mg/kg body wt of hydroalcoholic extract of Setariaitalica showed a significant reduction in the serum levels of low-density lipoproteins (LDL), triglycerides (TG), total cholesterol and an increase in high-density lipoproteins (HDL) than the standard control. The hydroalcoholic extract of seed possesses significant activity than the hydroalcoholic extract of a husk of Setariaitalica. The hydroalcoholic seed extract of Setariaitalica produced promising results the millets have to be consumed as a diet as it immensely controls the serum cholesterol levels, which plays a vital role in the control of cardiovascular diseases.

INTRODUCTION

In this modern era, highly sophisticated instruments made mankind too lazy to work. Lack of physical exercise, sedentary work style, high fat diet, fast foods, irregular time periods of consuming food, diseased states, are being faced by the present generation which is an alarming sign in increasing hyperlipidemia in the present scenario. Hyperlipidemia is a lipid metabolic disorder, which includes abnormal levels of lipids in the blood such as ele-
vated stages of total cholesterol (TC), Low-density lipoprotein (LDL), Triglycerides (TG) and low levels of High-density lipoprotein (HDL). (Gofman et al., 1950) Hyperlipidemia was a modifiable risk factor for the expansion of atherosclerosis. (Mozaffarian, 2015) This may lead further complications with high injury and humanity rate, mainly coronary thrombosis artery disease and stroke in India most prevalent dyslipidemia was due to borderline and higher levels of LDL-C, low levels of HDL-C (men - 54.9% and women - 64.4%). (Levy et al., 1979) Medicinal plants show a chief role in the hypolipidemic activity and extensively utilized by the popular of the population to cure numerous diseases like hypertension and atherosclerosis and illness hastallinfluence on the world’s budget. Millets are rich in variable nutrients like fibre, minerals, amino acids, vitamins, proteins and low content of carbohydrates. (Smolders et al., 2007; Gowda et al., 2007) Foxtail millet, technical name Setaria italica (synonym Panicum italicum L.), is an annual grass grownup for human food. Due to this tremendous benefits, foxtail millet has been chosen for evaluating the antihyperlipidemic activity.

MATERIALS AND METHODS

The whole grain seeds of Setaria italica were purchased from the local market of Mangalagiri, Guntur dist, Andhra Pradesh. They were genuine by Dr P. Satyanarayana Raju, Plant Taxonomist, Department of Botany and Microbiology, Acharya Nagarjuna University, Guntur, Andhra Pradesh, India.

Preparation of Hydroalcoholic extract

The seeds were shade dried for 3-4 days and grounded to a fine powder. The powder was passed through the sieves and husk was separated. The seed powder and husk were taken separately and were macerated in hydroalcoholic solution in the ratio of 3:1 for three days and filtered. The procedure was repeated twice and the filterates were combined. The combined filterates were subjected to distillation. The extracts obtained are refrigerated until further studies were carried out (Diao and Jia, 2017; Chandrasekara and Shahidi, 2010).

Graph 1 is Standards are statistically important at **p < 0.001 as compared with the standard group.

Materials

Setaria italica whole grains (Local market of Mangalagiri), Albino rats (Mahaveer Enterprises) Formaldehyde (from Sigma Aldrich Chemicals Pvt Ltd, Bangalore, India), Ethanol and chloroform (from Sigma Aldrich Chemicals Pvt Ltd, Bangalore, India, Distilled water).
Table 1: Phytochemical constituents of Setaria italica Seed and Husk.

Constituent	Hydroalcoholic seed	Hydroalcoholic husk
Alkaloids	+	+
Carbohydrates	+	+
Glycosides	+	_
Steroids	+	+
Flavonoids	+	_
Saponins	_	_
Tannins	_	_
Terpenes	+	+
Phenols	+	+

Table 2: Effect of Setaria italica Seed and Husk extract on Serum lipids mg/dl

S.No.	Treatment	LDL mg/dl	HDL mg/dl	TG mg/dl	Total Cholesterol mg/dl
1	Normal	55.5 ± 1.23	38.13 ± 1.83	65.33 ± 2.14	60.83 ± 1.82
2	Control (HFD)	105.66 ± 2.31	18.16 ± 1.68	101 ± 3.00	106.5 ± 4.08
3	Standard Atorvastatin 10mg/kg	49.64 ± 2.27	32.14 ± 3.50	76.13 ± 1.83	174.91 ± 1.84
4	SIHaSE 250mg	67.45 ± 2.70	32.44 ± 2.56	82.45 ± 2.65	182.45 ± 1.82
5	SIHaSE 500mg	54.15 ± 1.87**	38.45 ± 1.76**	78.48 ± 1.83**	171.08 ± 1.69**
6	SIHaHE 25mg	84.26 ± 1.78	24.56 ± 1.54	105.30 ± 1.27	214.12 ± 1.32

Atherogenic diet

Investigational hyperlipidemic diet: Investigational diet contains of well crushed combination of cholesterol (2%), cholic acid (1%), peanut oil (10%), sucrose (40%) and normal laboratory diet (47%).

Experimental animals

Adult male Albino rats (150-200gm) of swiss strain were obtained from (Mahaveer Enterprises, Hyderabad), for the study of antihyperlipidemic activity. Those animals were acclimatized on standard lab states (temp 25 ± five °C), stickiness (55 ± 5%) What's more looked after ahead 12-h light: 12-h dim cycle. They were Gave for typical rodent chow What's more drinking water not indispensable Appropriately Concerning illustration for every those guideline provided for Eventually Tom’s perusing regulate creature moral council. (CPCSEA) 11. (Approval No: 1629/PO/a/12/CPCSEA) (National Institutes of Health, 1996).

Selection of dose

As per LD50 of both extracts, one-tenth of the dose was taken as the raputic dose to evaluate antihyperlipidemic activity.

Preparation of standard drug

Atorvastatin (10mg/kg) might have been utilized as position typical drug for assessing the antihyperlipidemic action which might have been suspended to refined water Toward utilizing 1% tween-80 as hanging agenize.

Acute toxicity studies

As per the literature review, acute toxicity studies for Setaria italica seed and husk was found to be safe up to 5000 mg/kg as per OECDguidelines-423 (Dunnett, 1964; OECD, 2000).
Induction of experimental Hyperlipidemia
High-fat hyperlipidemia was induced in experimental animals by giving the high-fat atherogenic diet up to 15 days.

Investigational design
Animals are separated into six clusters, each containing six animals. Group, I helped as a usual controller. Group II was fed with a high-fat diet till 15th day. Group III received standard drug atorvastatin 10 mg/kg. Group IV & V treated with a hydroalcoholic excerpt of the Setaria Italica seed extract at a dose of 100mg/kg and 150 mg/kg body weight. Groups VI established hydro alcoholic excerpt of the husk of Setaria Italica at a dose of 25 mg/kg body weight (Dallas and American Heart Association, 1997; WHO, 2002).

Biochemical analysis
Serum collection and analysis
On the 15th-day blood samples are composed by direct cardiac puncture by using chloroform as anesthesia and were sent to a laboratory for analysis to estimate the amount of cholesterol, triglycerides, high-density lipoproteins, low-density lipoproteins present in the composed samples.

Arithmetical Examination
The consequences of the examination are communicated as mean± S.E. Information was broke down by utilizing one path investigation of change test (ANOVA) trailed by Dunnett’s t-test for different correlations. Qualities with P < 0.05 are measured as critical (Acharya, 2004a,b).

RESULTS
These are found to a chance to be rich sources from claiming phytochemicals for example, such that phenolic acids, flavonoids (Acharya, 2004c; Tripathi, 2008), catechins, phytic acid, and phytosterols & specialists bring accounted for that those vicinity of dietary fiber Furthermore phenolic mixes help in the counteractive action of huge numbers ailments, for example, diabetes, cardiovascular diseases, What’s more, cataractogenesis Tables 1 and 2.

Histopathological study
To confirm the incidence of hyperlipidemias, the animals were sacrificed and their liver was isolated subjected to histopathological studies (Acharya, 2004d). The isolated liver is prepared off inessential tissue, weighed and washed by ice-cold usual saline and sent for histopathological studies Figures 1, 2, 3 and 4. From the histopathological studies, it is evident that:-

Group- III Atrovastatin 10mg shows the multi focal damage in the liver tissue and with extensive damage than treatment groups.

Group-IV Setariaitalica seed extract treated with 250mg shows that there is focal damage in the liver. The damage is limited when compared to the standard treated group.

Group-V Setariaitalica seed extract treated with 500mg shows very limited and negligible damage in multifocal areas which can be due to hepatoprotective activity of test drug administration.

Group-VI Setariaitalica husk extract treated with 25mg shows vascular damage which may lead to liver cirrhosis (Tripathi, 1946).

DISCUSSION
The antihyperlipidemic activity is evaluated by a decrease of LDL levels and increase of HDL levels. The present study reveals that there is a significant increase in HDL levels, which is considered as good cholesterol for the body as HDL removes extrahepatic cholesterol and transports it to the liver for endocytic mediated LDL receptor activity. The hydroalcoholic seed extract of Setaria italic 500 mg has shown a significant effect when compared to that of the standard atorvastatin 10mg. The hydroalcoholic seed extract of 500mg had shown very little and limited damage in multifocal areas which signifies the hepatoprotective activity (Sastri, 2007a) of the seed extract. The triglyceride levels and total cholesterol levels of seed extract 500mg are nearly equal to that of the standard atorvastatin indicating that the plant extract shows hepatoprotective activity towards hyperlipidemias. The hydroalcoholic husk extract of setaria italic 25mg was found deviating from treating hyperlipidemias. The husk extract has produced a tremendous increase in LDL levels and very low HDL levels indicating that husk doesn’t possess flavanoids and phenolic compounds. Scientists have revealed that the attendance of dietetic fiber and phenolic mixes assistance in the counteraction of numerous maladies, for example, diabetes, cardiovascular sicknesses, and cataractogenesis (Sastri, 2007b). The triglycerides and total cholesterol levels are very high when compared to that of the standard indicating that husk lack proteins, minerals, fibres, Vit E, etc. than that of seed.

CONCLUSIONS
This study proves that Setariaitalica seed extract is very useful in treating hyperlipidemias than that of husk. This evidence paves the way to carry out further study in isolating the chemical constituents and
to build up new entities in treating hyperlipidemia.

Conflict of interest
The authors declare that they have no conflict of interest for this study.

Funding support
The authors declare that they have no funding support for this study.

REFERENCES

Acharya, V. Y. T. 2004a. Agnivesha, Charakasamhita, Chaukhamba Sanskrit Series. Varanasi, India, Sutra Sthana 23/3-4:122.

Acharya, V. Y. T. 2004b. Agnivesha, Charakasamhita, Chaukhamba Sanskrit Series. Varanasi, India, Sutra Sthana 22/26:123.

Acharya, V. Y. T. 2004c. Agnivesha, Charakasamhita, Chaukhamba Sanskrit Series. Varanasi, India, Siddhi Sthana 10/5:724.

Acharya, V. Y. T. 2004d. Sushruta, Sushruta Samhita, Chaukhamba Sanskrit Series. Varanasi, India, Sutrasasthana 40/5:176.

Chandrasekara, A., Shahidi, F. 2010. Content of Insoluble Bound Phenolics in Millets and Their Contribution to Antioxidant Capacity. *Journal of Agricultural and Food Chemistry*, 58(11):6706–6714.

Dallas, American Heart Association 1997. American Heart Association: Heart and Stroke Statistical.

Diao, X., Jia, G. 2017. Origin and domestication of foxtail Millet. In *Genetics and Genomics of Setaria*, pages 61–72. Springer.

Dunnett, C. W. 1964. New Tables for Multiple Comparisons with a Control. *Biometrics*, 20(3):482–482.

Gofman, J. W., Lindgren, F., et al. 1950. The Role of Lipids and Lipoproteins in Atherosclerosis. *Science*, 111(2877):166–186.

Gowda, K. T. K., Seetharam, S., Icar, Usa, Gkvk, B. 2007. Food Uses of Small Millets and Avenues for Further Processing and Value Addition. *Project Coodinated Cell, All India Coordinated Small Millets Improvrmnt Project*. ICAR, USA, GKVK, Bangalore.

Levy, R. I., Rifkind, B. M., Dennis, B. H., Ernst, N. D., Eds 1979. Nutrition lipids and coronary heart disease, A global view; Nutrition in Health and Disease. *JAMA*, 242(10):1084–1084.

Mozaffarian, D. 2015. Heart disease and stroke statistics-2015 update: A report from the American Heart Association Circulation. *Pubmed*, 131(4):29–322.