Studies on Persistency of Milk Yield in Phule Triveni

S. S. Patale*, D. K. Deokar and N. Sharma

Department of Animal Husbandry and Dairy Science, Post Graduate Institute, Mahatma Phule Krishi Vidyapeeth, Rahuri, India

*Corresponding author

ABSTRACT

The records pertaining to 1049 lactations of 382, Phule Triveni cows maintained at Research Cum Development Project on Cattle, MPKV, Rahuri over a period of 40 years from 1977-2016, were used for research work. The least squares means of milk production traits and persistency of milk yield were estimated by considering the effect of period of calving, season of calving, order of lactation, age at first calving and peak milk yield. The data were first adjusted for the significant effect of non-genetic factors considered in this study and then stepwise regression analysis was carried out. Persistency of milk yield was significantly affected by period of calving, season of calving, order of lactation and peak milk yield. The lactation milk yield can be (R²=96.8 %) predicted by using persistency index P6 including lactation length and peak milk yield by using Y= -2967.97+14.74 PI+ 0.18 LL+ 195.76 PMY equation in Phule Triveni cattle.

Keywords
Phule Triveni, Persistency, Peak milk yield, Cattle

Introduction

The persistency of milk production is of economical interest to dairy farmers as it is closely associated with the total milk production in cows.Persistency is generally expressed as the rate of decline in milk yield from maximum production after parturition until milk secretion ceases. Milk yield is the result of interaction between genetic constitution of animal and its environment in which they thrive. Milk yield is complex character observed at later age and thus direct selection for it, may not be very efficient at an early age hence selection for milk yield may be based on highly heritable but easily associated with milk yield. Milk production is the major trait around which the economy of dairy animal revolves. The milk production criteria includes various trait viz. peak yield, days to attain peak yield, total milk yield and lactation length.

Persistency of milk yield is important factor which determines the shape of lactation curve. There is also consideration that highly persistent animal have more milk yield and thus provide regular source of income to the farmer throughout the year. Persistent animals are more beneficial to farmers to maintain it’s economic development. Therefore, present investigation was carried out to study persistency of milk yield in Phule Triveni.
Materials and Methods

The records pertaining to 1049 lactations of 382, Phule Triveni cows maintained at Research Cum Development Project on Cattle, MPKV, Rahuri Dist. Ahmednagar (Maharashtra) over a period of 40 years from 1977-2016, were used for research work. All complete lactations with lactation length not less than 200 days and lactation yield not less than 1000 kg were analyzed.

To examine the persistency of milk yield, the research data was classified into 7 periods of calving viz. P_1 (1977-1982), P_2 (1983-1988), P_3 (1989-1994), P_4 (1995-2000), P_5 (2001-2006), P_6 (2007-2013), and P_7 (2013-2016); 3 seasons of birth, viz. S_1 (Rainy) June-September, S_2 (Winter) October-January and S_3 (Summer) February-May; 5 order of lactation viz. L_1 first lactation, L_2 second lactation, L_3 third lactation, L_4 fourth lactation, L_5 fifth lactation; 3 different age at first calving groups as A_1 (<860 days), A_2(861-1000 days), A_3(\geq1001 days); and 3 peak milk yield groups viz. Y_1 (12 kg), Y_2 (12-14 kg), Y_3($>$14 kg). Persistency index was calculated by following methods:

Method I (Johanson and Hanson, 1940)

$$PI_1 = \frac{2^{nd} \text{ 14 week yield}}{1^{st} \text{ 14 week yield}} \times 100$$

$$PI_2 = \frac{3^{rd} \text{ 14 week yield}}{1^{st} \text{ 14 week yield}} \times 100$$

Method -2 (Ludwick and Peterson, 1943)

$$PI_3 = \frac{\sum x_2 \cdot x_1 \cdot x_4 \cdot x_1}{9}$$

$$PI_4 = \frac{\sum x_2 \cdot x_1 \cdot x_4}{7}$$

Method -3 (Mahadevan, 1951)

$$PI_5 = \frac{(A-B)}{B}$$

where,

A = Total lactation milk yield in first 26 week of lactation; and,

B = Lactation yield in first 10 week of lactation.

Method -4 (Rao and Sundaresan, 1982)

$$PI_6 = \frac{\text{Lactation milk yield}}{\text{Peak yield}}$$

Method -5 (Weller et al., 1987)

$$PI_7 = \frac{5^{th} \text{ month postpartum production}}{\text{Peak postpartum production}}$$

The following model was used for step-wise regression of milk yield on lactation length, peak yield and a measure of persistency taken one by one:

$$\gamma = a + b_1(X_1 - X_1) + b_2(X_2 - X_2) + b_3(X_3 - X_3) + e$$

Where, b’ s are the partial regression coefficients and X_1, X_2, X_3 and Y are the persistency index, peak yield, lactation length and lactation yield respectively. The residual error (e) is NID (0,δ^2e).

Results and Discussion

The persistency of milk yield was calculated by five different methods viz., Method I (Johanson and Hanson, 1940), Method II (Ludwick and Peterson, 1943), Method III (Mahadevan, 1951), Method IV (Rao and Sundarsean, 1982) and Method V (Weller et al., 1987) in Phule Triveni and presented.
Table 1 Least squares means of persistency of milk yield in Phule Triveni

N	Method-I	Method-II	Method-III	Method-IV	Method-V				
	P_1	P_2	P_3	P_4	P_5				
μ	1049	81.80 ± 0.86	53.16 ± 1.50	0.84 ± 0.006	0.88 ± 0.006	1.38 ± 0.15	195.53 ± 2.21	18.89 ± 0.20	
P_1		199	82.32 b ± 1.49	56.08 bc ± 2.60	0.85 b ± 0.11	0.88 b ± 0.011	1.38 ± 0.026	194.03 b ± 3.82	19.05 bc ± 0.35
P_2		362	85.84 b ± 1.11	58.53 b ± 1.93	0.87 b ± 0.008	0.90 b ± 0.008	1.40 ± 0.019	216.55 c ± 2.84	19.91 bc ± 0.26
P_3		257	84.39 b ± 1.10	53.32 b ± 1.91	0.86 b ± 0.008	0.89 b ± 0.008	1.40 ± 0.019	198.81 b ± 2.82	18.96 bc ± 0.25
P_4		79	80.41 b ± 1.92	51.88 b ± 3.34	0.84 b ± 0.014	0.87 b ± 0.014	1.38 ± 0.033	189.51 b ± 4.92	18.47 bc ± 0.45
P_5		80	82.58 b ± 1.98	64.67 c ± 3.45	0.87 b ± 0.014	0.89 b ± 0.014	1.39 ± 0.034	192.41 b ± 5.08	18.15 b ± 0.46
P_6		48	83.44 b ± 2.48	50.07 b ± 4.31	0.85 b ± 0.018	0.90 b ± 0.018	1.43 ± 0.042	213.70 c ± 6.34	20.32 c ± 0.58
P_7		24	73.65 a ± 3.43	37.57 a ± 5.97	0.74 a ± 0.024	0.82 a ± 0.025	1.28 ± 0.059	163.71 a ± 8.78	17.38 a ± 0.80

Period of Calving

S	Season of Calving	Order of Lactation	Age at First Calving	Peak Milk Yield
	S_1	S_2	S_3	S_4
	333	394	322	384
	86.25 a ± 1.12	81.51 b ± 1.10	77.65 a ± 1.17	83.03 ± 1.06
	58.89 b ± 1.95	50.83 a ± 1.92	49.76 b ± 2.03	58.52 b ± 1.84
	0.86 a ± 0.008	0.84 a ± 0.008	0.82 a ± 0.008	0.86 a ± 0.008
	0.90 b ± 0.008	0.88 b ± 0.008	0.85 b ± 0.008	0.88 b ± 0.008
	1.41 b ± 0.019	1.41 b ± 0.019	1.31 b ± 0.020	1.40 ± 0.018
	200.46 b ± 2.88	193.55 b ± 2.83	192.58 b ± 3.00	200.82 b ± 2.71
	19.33 b ± 0.26	19.30 b ± 0.26	19.35 b ± 0.27	18.88 ± 0.24
	188.23 c ± 3.50	188.23 c ± 3.50	189.75 b ± 5.29	19.33 ± 0.48
	18.35 ± 0.32	18.76 ± 0.27	19.15 ± 0.38	18.86 ± 0.28
	18.82 ± 0.27	19.84 ± 0.29	18.82 ± 0.27	18.88 ± 0.28
	195.63 ± 3.01	195.12 ± 3.08	18.99 ± 0.27	18.99 ± 0.27
	200.14 b ± 3.75	199.85 b ± 3.08	17.55 a ± 0.22	19.93 c ± 0.34

Means with different superscripts differ significantly from each other.
Table 2: Step-wise regression of lactation yield on lactation length (LL), peak milk yield (PMY), persistency index (PI)

Step	Variable	Partial 'b'	SE of 'b'	Partial 't'	Intercept	R^2(%)
I	PI$_1$	14.95	0.83	17.81	-3435.63	76.2
	LL	7.11	0.24	28.76		
	PMY	186.97	3.99	46.79		
II	PI$_2$	6.57	0.605	10.86	-1971.91	72.1
	LL	5.83	0.312	18.69		
	PMY	175.32	4.22	41.54		
III	PI$_3$	2209.10	127.28	17.35	-3676.53	75.9
	LL	5.89	0.266	22.13		
	PMY	186.73	4.02	46.42		
IV	PI$_4$	2070.36	118.10	17.53	-4015.53	76
	LL	7.03	0.24	28.25		
	PMY	188.35	4.03	46.63		
V	PI$_5$	757.92	51.47	14.72	-3306.411	74.3
	LL	7.39	0.25	28.89		
	PMY	184.81	4.16	44.33		
VI	PI$_6$	14.74	0.154	95.89	-2967.97	96.8
	LL	0.18	0.118	1.55		
	PMY	195.76	1.427	137.20		
VII	PI$_7$	85.43	3.08	27.70	-3799.94	82.1
	LL	7.07	0.21	33.07		
	PMY	187.13	3.39	55.08		

Note: All requested variable entered

The least squares means for persistency index PI$_1$, PI$_2$, PI$_3$, PI$_4$, PI$_5$, PI$_6$ and PI$_7$ in Phule Triveni indicated that the overall least squares means for corresponding persistency were 81.80 ± 0.86, 53.16 ± 1.50, 0.84 ± 0.006, 0.88 ± 0.006, 1.38±0.15, 195.53 ± 2.21 and 18.89 ± 0.20, respectively shown in Table 1. The period of calving had significant (P<0.01) effect on persistency of milk yield estimated by PI$_1$, PI$_2$, PI$_3$, PI$_4$, PI$_6$ and PI$_7$ in Phule Triveni. The effect of season of calving on persistency of milk yield was significant in PI$_1$, PI$_2$, PI$_3$, PI$_4$, PI$_5$, PI$_6$ and PI$_7$. The Lactation order had significant effect on persistency of milk yield in PI$_2$, PI$_3$, PI$_6$. The effect of age at first calving had non significant effect on persistency of milk yield estimated by all five methods.. The peak milk yield had significant effect on persistency of milk yield in PI$_1$, PI$_2$, PI$_3$, PI$_4$, PI$_5$, PI$_6$, and PI$_7$ (Table 1).

For prediction of LMY step down regression analysis was carried out. For step down regression analysis LL, PMY and various persistency indexes were considered. Out of them LL and PMY was kept constant and only persistency index was changed for regression analysis. From results depicted in Table 2 indicated that prediction of LMY by using LL, PMY and various persistency indexes all were having R^2. However, prediction of LMY by using LL, PMY and persistency index PI$_6$ had maximum R^2 (96.8%). From these results it can be
recommended that for prediction of LMY in Phule Triveni following equation can be used.

\[
Y = -2967.97 + 14.74 PI + 0.18 LL + 195.76 \text{ PMY.}
\]

References

Anakawiang, T. 1963. Persistency of lactation. M.Sc. (D.H.) Thesis (Punjab University), N.D.R.I., Karnal (Haryana) India.

Bhutia, S.T. and Pandey, R.S. 1989. A note on comparative study of persistency and its association with peak and total yield in dairy cattle. Indian J. dairy Sci. 42(1): 96-98.

Garudkar, S.R. 2011. Peak yield and its relationship with persistency and lactation milk production in Phule Triveni synthetic cow. M.Sc. (Agri.) Thesis M.P.K.V., Rahuri. (India).

Gawari, R.G. 1999. Studies on persistency of milk yield in triple crossbred cattle. M.Sc. (Agri.) Thesis M.P.K.V., Rahuri (India).

Gill, G.S., Balaine, D.S. and Acharya, R.M. 1970. Persistency of peak yield in Hariana cattle. Indian J. Anim. Sci. 40(6): 563-568.

Gupta, R.N. and Johar, K.S.1983. Effect of season, period and age at first calving on persistency of first lactation in Tharparkar-Holstein half-breed. Indian Vet. J. 60(7): 545-549.

Johanson I. and Hanson A. 1940. Causes of variation in milk and butter fat yield of dairy cows. Klung. Lantbr. Tidskr. Nr 6. Stockholm.

Ludwick, J.N. and Peterson, W.E. 1943. A measure of persistency of lactation in dairy cattle. J. Dairy Sic. 26(3): 439-445.

Mahadevan, P. 1951. Persistency of lactation. Indian J. Agric.Sci. 41: 89-93.

Mahto, L., Kaushik, S.N. and Garg, R.C. 1981. A study of factors affecting persistency of milk yield in Hariana Exotic crossbreds. Indian Vet. J. 58(2): 139-144.

Rao, M.K. and Sunderson, D. 1982. Factors affecting shape of lactation curve in Friesian x Sahiwal crossbred cows. Indian J. Dairy Sci. 82(2): 160-167.

Weller J.I., Ron M. and Baranan R. 1987. Effects of persistency and production on genetic parameters of milk and fat yield in Israeli Holsteins. Journal of Dairy Science. 70(3): 672-80.

How to cite this article:

Patale, S. S., D. K. Deokar and Sharma, N. 2020. Studies on Persistency of Milk Yield in Phule Triveni. *Int.J.Curr.Microbiol.App.Sci.* 9(09): 3295-3299.

doi: https://doi.org/10.20546/ijcmas.2020.909.409