Finite-size scaling of the magnetization probability density for the critical Ising model in slab geometry

David Lopes Cardozo and Peter C W Holdsworth

Laboratoire de Physique, École Normale Supérieure de Lyon, Université de Lyon, UMR CNRS 5672, 46 Allée d’Italie, 69364 Lyon Cedex 07, France

E-mail: david.lopes_cardozo@ens-lyon.fr

Received 9 December 2015, revised 15 February 2016
Accepted for publication 3 March 2016
Published 29 March 2016

Abstract

The magnetization probability density in $d = 2$ and 3 dimensional Ising models in slab geometry of volume $L_{\parallel}^{d-1} \times L_z$ is computed through Monte-Carlo simulation at the critical temperature and zero magnetic field. The finite-size scaling of this distribution and its dependence on the system aspect-ratio $\rho = \frac{L_z}{L_{\parallel}}$ and boundary conditions are discussed. In the limiting case $\rho \to 0$ of a macroscopically large slab ($L_{\parallel} \gg L_z$) the distribution is found to scale as a Gaussian function for all tested system sizes and boundary conditions.

Keywords: critical point, thin film, Ising model, probability density

Introduction

Finite-size scaling (FSS) has proved to be a powerful tool for the interpretation and exploitation of the thermodynamics of confined critical systems [1]. The number one tool for computer modeling, FSS is finding a growing number of experimental applications as confinement on the nano and micro scales becomes more accessible. Examples include the critical Casimir effect [2, 3], fluctuation spectra in confined liquid crystals [4] or finite size order parameter scaling for superfluid helium films [5]. Here, we are interested in the form of fluctuations of the order parameter in confined critical two and three dimensional Ising models through the scaling behavior of the magnetization probability density. We make the transition between cubic and slab geometries, studying the influence of the aspect ratio on the fluctuations of the order parameter. This is motivated by the importance of the slab geometry for both theoretical and experimental applications of finite-size scaling. It is convenient in a system of dimensions $L_{\parallel} \times L_z$ (figure 1) to have a clearly identified confining length scale L_z and $d - 1$ non-confining ones such that $L_{\parallel} \gg L_z$, this geometry being relevant for magnetic thin films experiments [6] and wetting phenomenon [7].

We start by presenting the case of fully periodic boundary conditions (BC) but, as one might expect intuitively, the presence of boundary fields deeply influence the fluctuations. We study this influence in the following sections by using fixed $(+, \pm)$ boundary conditions in the confining direction z and see that in the slab limit $L_z \gg L_{\parallel}$ the probability density of the magnetization tends to a Gaussian form whatever the boundary conditions. Thanks to the universality of finite size scaling [8], results obtained in a critical Ising model can be extended to other systems in the Ising universality class, including the liquid–gas phase transition and the demixing transition of binary fluids. In particular, binary fluids can be confined in wetting layers [9], for which $(+, \pm)$ BCs correspond to boundaries which preferentially adsorb one of the two components.
The form of the magnetization probability density and finite-size scaling

At zero magnetic field and far from the critical temperature T_c, that is to say when the correlation length ξ is small with respect to all confining length scales, two regimes can be identified [1, 10]. At a temperature T much higher than the critical temperature, thermal fluctuations dominate and the central limit theorem applies to the uncorrelated spins leading to a Gaussian distribution

$$ P(m, T, N) = \frac{N}{\sqrt{2\pi k_B T / 3}} e^{-m^2 / 2k_B T / 3} $$

for the probability density of the magnetization per spin m, with the magnetic susceptibility χ being independent of the total number of spins N [11]. At temperatures much lower than T_c, $P(m, T, N)$ is double peaked, symmetrically around 0, the positions of the peaks are N independent but their width evolves as $N^{-1/2}$ [10]. We are interested in the behavior close to T_c, in between these two limit cases.

Any normalized distribution $\Pi(x)$ of a stochastic quantity x, of zero mean, can be written in the scaling form, $\Pi(x/\sigma_x)$, such that

$$ \Pi(x) = (1/\sigma_x)\Pi(x/\sigma_x), $$

with $\sigma_x = \sqrt{\langle x^2 \rangle - \langle x \rangle^2}$ the standard deviation and where $\langle \cdot \rangle$ is a statistical average. Distributions of the same functional form $\Pi(x)$ therefore give data collapse for $\sigma_x\Pi(x)$ plotted against x/σ_x independently of σ_x. Trivial examples are a door function for which the width is $\sqrt{12}\sigma_x$ and amplitude $1/\sqrt{12}\sigma_x$ or a Gaussian $\Pi(x) = \frac{1}{\sqrt{2\pi\sigma_x^2}} e^{-x^2 / 2\sigma_x^2}$. In this case, $x = m$ and $\sigma = (m^2 - \langle m \rangle^2) = \sqrt{k_B T / 3 N}$.

A more subtle example of this universal scaling occurs at a critical point through the finite size scaling hypothesis. In a thermodynamically large system, the correlation length diverges when the temperature approaches T_c as $\xi \sim (\xi_0^+ - T_c)^{-\nu}$ with ξ_0^+ non universal amplitudes and $t = \frac{T-T_c}{T_c}$ the reduced temperature. In a finite system of hyper cubic geometry, such that $L_x = L_y = L_z = L$, this divergence is cut-off by the confining size L and the ratio L/ξ becomes a relevant finite size scaling parameter. The shape of the magnetization probability density function and hence the functional form $\hat{\Pi}(\gamma)$, is governed by this scaling variable L/ξ. Hence, the change of variable defined in equation (2) leads to universal scaling for the magnetization probability density function, which verifies [12, 13]:

$$ P(m, L, t) = (1/\sigma)\hat{P}(m/\sigma_x, L/\xi), $$

in the scaling limit, where the temperature dependence is now contained in L/ξ. As we show in detail below, the particular form of the scaling function depends on the macroscopic properties of the sample, such as boundary conditions and aspect ratio. The diverging susceptibility, $\chi = \chi_0|t|^{-\nu}$ can be related to anomalous scaling for the width of the distribution, $\sigma^2 \propto L^{(d-\gamma)/\nu}$ which, using the hyper scaling relation between critical exponents, $\gamma + 2\beta = \nu$, can be written as [12, 14–16]:

$$ \sigma \propto L^{1-\beta\nu}, $$

giving finally, the usual finite size scaling form for the distribution [13, 14, 17]:

$$ P(m, L, t) = P(m, \tau^{1/\nu}, L^{1/\nu}), $$

Critical exponents γ, β and ν take their usual meaning throughout. The scaled distribution function \hat{P} is no longer necessarily Gaussian; it will depend both on dimension through the scaling exponent, β and ν (for the 2D case $\beta = 1/8$ and $\nu = 1$ and for the 3D we take values $\beta = 0.3265(3)$ and $\nu = 0.6301(4)$ [8]) and on boundary conditions.

Much richer behavior occurs in systems with anisotropic confining geometry. We are interested in systems in slab geometry of dimensions $L_x \times L_y^{d-1}$. To clearly identify L_x as the confining size, that is to say the one that will compete with ξ and cut-off its divergence at the critical temperature, we shall keep in all cases $L_x \gg L_y$. The aspect ratio $\rho = L_y/L_x$ will govern the functional form of the distribution [18], leading to a straightforward generalization of equation (3):

$$ P(m, L_x, L_y, t) = (1/\sigma)\hat{P}(m/\sigma_x, L_x/\xi, \rho), $$

with $\hat{P}(m/\sigma_x, L_x/\xi, \rho) = \hat{P}(m/\sigma_x, L_x/\xi)$. In the limit $L_y \gg L_x$, the argument that led to equation (4) can be extended to the slab geometry: ξ is proportional to L_y in the scaling limit at criticality, so that the magnetic susceptibility scales as $\chi \propto L_y^{\nu}$. Using the fluctuation-dissipation relation $\chi = N\sigma^2/k_BT$, with $N = L_x L_y^{d-1}$, and the hyperscaling relation, considering that we are in the scaling regime, we get:

$$ \sigma = \sqrt{\frac{\rho d-1}{\rho d-2} \frac{d-1}{2}} \xi^{d-1/2}, $$

which has been shown to hold in $d = 2$ [19] and that we will show to work in $d = 3$ in the following. The equations (6) and (7) lead us to propose the following scaling form for the magnetization distribution at $t = 0$ when the limit $L_y \gg L_x$ is approached:

$$ P(m, L_x, L_y, t = 0) = L_y^{\beta\nu/2} \rho^{-(d-1)/2} \hat{P}(m L_y^{\beta\nu/2} \rho^{-(d-1)/2}, 0, 0). $$

We expect the scaling function $\hat{P}(x, 0, 0)$ to be Gaussian

$$ \hat{P}(x, 0, 0) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-x^2 / 2\sigma^2}. $$

The origin of the Gaussian form of the distribution at T_c can be understood by stating that in the scaling limit with $L_y \gg L_x$ the cut-off of the correlation length will be solely determined by the confining length L_x so that the system can be divided in a number $N_{unc} \propto N/L_x^d$ of uncorrelated regions of volume $\xi^d \sim L_x^d$ [16]. In a sub-volume L_y^d the magnetization fluctuates with $\sigma_{unc} \propto L_x^{1-\beta\nu}$ as stated in equation (5) [14]. The N_{unc} sub-volumes being uncorrelated, the central-limit theorem tells us
that the total magnetization will tend to have Gaussian fluctuations of standard deviation \(\sigma = \sigma_0/\sqrt{N_{\text{ind}}} \), as \(N_{\text{ind}} \) is increased. However, the scaling standard deviation \(\tilde{\sigma} \) is a non-universal quantity, it relates to non-universal scaling amplitudes of \(\chi \) and \(\zeta \) and depends on the boundary conditions, as we will see in the following.

We stress that by \(T_c \), we mean the bulk \(d \)-dimensional critical temperature: for a two dimensional system, we work at \(T_c = T_{c2D} = 2/\ln(1 + \sqrt{2}) \) and for a three dimensional one at \(T_c = T_{c3D} \approx 4.5115 \) [8]. A different approach in a 3D slab would be to work at the apparent critical temperature \(T_c(L_x) < T_{c3D} \), which one could define as the temperature at which the susceptibility is maximum for a given system thickness. Even here, taking the \(d \)-dimensional scaling limit, \(L_x \rightarrow \infty \), for fixed \(\rho \), including the case \(\rho \rightarrow 0 \), \(T_c(L_x) \) scales towards \(T_{c3D} \) rather than \(T_{c3D - 1D} \). However, leaving the scaling limit, for sufficiently small thickness \(L_x \), a \(d \)-dimensional slab displays \((d - 1)\)-dimensional critical behavior at \(T_c(L_x) \), the bulk limit being governed by the size \(L_\perp \) of this effectively \((d - 1)\)-dimensional system [31]. Working at \(T_c(L_x) \) is thus a suitable choice for studying the dimensional crossover from a 3D to a 2D system as \(L_\perp \) is decreased. In the present work, we are not interested in this dimensional crossover but on the effect of geometry and boundary conditions on the fluctuations of the order parameter at the bulk critical temperature at which 3D (respectively 2D) universal quantities can be extracted from a finite-size scaling analysis of observables for confined systems in slab (resp. rod) geometry.

Numerical method

We have tested numerically these predictions for the scaling form of the probability density through Monte-Carlo simulations. We recall the Ising model Hamiltonian:

\[
\mathcal{H} = -J \sum_{\langle i,j \rangle} S_i S_j, \tag{10}
\]

where the sum runs over all pairs of nearest neighbors, \(J \) is the coupling constant set here to \(J = 1 \) for convenience and \(S_i \) are spins of value \(\pm 1 \). The spins are set on a hyper cubic lattice of dimensions \(L_\parallel^{d-1} \times L_\perp \) and were updated through a hybrid Wolff/Metropolis algorithm [20, 21] to reduce critical slowing down. By computing the frequency of occurrence \(\mathcal{P}(m) \) of each possible value \(m \) of the reduced magnetization

\[
\hat{m} = \frac{1}{N} \sum_{i=1}^{N} S_i, \tag{11}
\]

where \(N = L_\parallel L_\perp^{d-1} \) is the total number of spins, we can estimate the probability for the system to exhibit a reduced magnetization \(m \)

\[
P(m) = \frac{1}{Z} \sum_{\{S\}} \exp(-\beta \mathcal{H}(m - \hat{m})), \tag{12}
\]

where \(Z = \sum_{\{S\}} \exp(-\beta \mathcal{H}) \) is the partition function, and the sum runs over all possible spin configurations. The total number of spins \(N \) in the system fixes the discrete number of values the magnetization can take so that

\[
P(m) = \frac{N}{2} \mathcal{P}(m), \tag{13}
\]

ensuring that the normalization \(\int_{-1}^{1} P(m) dm = 1 \) is conserved whatever the system size.

In two dimensions, only the case of fully periodic BC was investigated. In three dimension, periodic BC were always set in the \(x, y \) directions (figure 1) while in the confining \(z \) direction either periodic, or fixed BC were used. Fixed boundary conditions were realized by considering that the system is confined in the \(z \) direction between two layers of spins with fixed values, either positive (++) or negative (−). We use the convention that \(L_\parallel \) refers to the number of layers of fluctuating spins, whatever the boundary conditions [22–24]. Both the symmetric (++ and anti-symmetric (−−) cases were investigated.

2D systems with fully periodic boundary conditions

We computed the probability density \(P(m) \) at the critical temperature \(T_{c2D} \) for different confining dimensions \(L_\parallel \in [10 : 60] \) and aspect ratios, ranging from the square case \(\rho = 1 \) to \(\rho = 1/100 \). As can be seen in figure 2(a) the aspect ratio affects the functional form of the distribution which goes from a bimodal one for square systems to a unimodal form as we get closer to the limit \(\rho \rightarrow 0 \). Plotting \(L_\perp^{-3/2} \mathcal{P} \) as a function of \(m L_\perp^{-3/2} \) gives a convincing collapse of distributions obtained for systems with similar aspect ratios, as expected from [18] and from equations (5) and (6). In the square case the collapse is imperfect at the maxima of the distribution for the smallest system sizes studied \(L_\parallel = 10 \) signaling corrections to the scaling limit.

Particularizing systems with aspect ratios \(\rho \leq 1/27 \) for which the distribution has reached a unimodal form, we can see in figure 2(b) that the expected Gaussian behavior in the limit \(L_\parallel \gg L_\perp \) [19] and the scaling form of equation (8) are very well verified. We stress that in this limit, all the magnetization distributions collapse according to equation (8), not just those for systems with similar aspect ratios. A Gaussian fit (equation (9)) performed on the reduced distribution for the biggest system size available proved excellent, with a standard deviation \(\tilde{\sigma} = 1.6835(35) \). We recall that a Gaussian distribution is entirely characterized by its two first moments (the mean and the standard deviation). Here, with periodic boundary conditions, the third moment is zero by symmetry, so that the lowest order moment of the distributions characterizing a deviation from a Gaussian form is the fourth, or kurtosis:

\[
\gamma_2 = \frac{\langle (m - \langle m \rangle)^4 \rangle}{\sigma^4} - 3, \tag{14}
\]

shown in figure 3. The excess kurtosis is proportional to the Binder cumulant \(U_4 = -1/3 \gamma_2 \) [14] which, in the scaling limit, is used to estimate the critical temperature as it is a universal constant with respect to the system size \(L_\parallel \) at \(T_c \). This is coherent with our observation that the kurtosis does
within our current precision as a function of \(P \). The curves for systems with the same aspect ratio \(\rho \) collapse to a unimodal Gaussian shape, Fig. 2. (a) \(L^{\beta \nu}_m P \) versus \(mL^{\beta \nu}_m \) with \(P(m) \) obtained in a 2D Ising system with fully periodic boundary conditions at the critical temperature \(T = T_c^{2D} \). The curves for systems with the same aspect ratio \(\rho \) collapse [18]. As the aspect ratio is changed from the square case \(\rho = 1 \) towards the limit \(L_L \gg L_\perp \), the functional form of the distribution goes from a bimodal to a unimodal one. (b) \(L^{\beta \nu}_m \rho^{1/2} P \) versus \(mL^{\beta \nu}_m \rho^{-1/2} \) displayed only for unimodal distributions, validating the expected scaling from equation (8) in the limit \(L_L \gg L_\perp \). The continuous line is a Gaussian fit which proves excellent [19]. Inset: same, with logarithmic scale.

not depend on the confinement \(L_\perp \) within our current precision (figure 3). The kurtosis only depends on the aspect ratio \(\rho \). As \(\rho \) is decreased the kurtosis goes to zero, indicating an evolution towards a Gaussian form of the distribution when reaching the limit of slab geometry, as we have predicted.

3D systems with fully periodic boundary conditions

Different BCs were used in the confining direction \(\hat{z} \) but in order to extend the results of the previous section to the 3D case we start with fully periodic boundaries.

With fully periodic boundary conditions, the evolution of \(P(m) \) with the aspect ratio at the critical temperature in three dimensions is qualitatively equivalent to the two dimensional case. As figure 4(a) shows, when \(\rho \) evolves from 1 to 1/12, the distribution evolves from a bimodal to a unimodal functional form [18]. Equivalently to the 2D case, equation (6) is verified: plotting \(L^{\beta \nu}_m P \) as a function of \(mL^{\beta \nu}_m \) gives a convincing collapse of distributions for systems with the same aspect ratio. The functional form of the collapse evolves with \(\rho \) from bimodal for \(\rho = 1 \) to Gaussian as \(\rho \to 0 \).

In the case of cubic \(\rho = 1 \) systems, a high resolution study of the Ising and spin-1 Blume–Capel models [25] has shown the functional form:

\[
P(m) \propto \exp \left(- \frac{M^2}{M_0^2 L^{-2\beta \nu}} - 1 \right) \left(a - \frac{M^2}{M_0^2 L^{-2\beta \nu C}} + c \right),
\]

with \(L = L_\perp = L_\parallel \) and \(a, c, M_0 \) non-universal factors which may contain corrections to scaling to accurately fit the probability density. This result can be made consistent with the scaling hypothesis of equation (5) by using the form

\[
P = \frac{P_0}{L^{-\beta \nu}} \exp \left(- \frac{M^2}{M_0^2 L^{-2\beta \nu}} - 1 \right) \left(a - \frac{M^2}{M_0^2 L^{-2\beta \nu C}} + c \right),
\]

in which we fitted \(a, c, P_0, M_0 \) to give excellent agreement with numerical data, see figure 4(b).

Figure 4(b) shows \(L^{\beta \nu}_m \rho^{(d-1)/2} P \) as a function of \(mL^{\beta \nu}_m \rho^{d-\beta \nu} \) following the scaling form proposed in equation (8). Unimodal distributions, that is to say for \(\rho \leq 1/6 \), collapse whatever the aspect ratio. A Gaussian fit (equation (9)) of the reduced distribution for the biggest system available indicates that the Gaussian behavior predicted in 2D in the limit \(L_L \gg L_\perp \) [19] indeed holds in 3D, with \(\delta \approx 2.54 \). Thus, the scaling form proposed in equation (8) appears verified in 3D as it was in 2D. Yet, the collapse is a little less convincing, probably because we could not as easily reach large values for \(L_\perp \).

Nevertheless, the Gaussian behavior clearly is approached in the limit \(\rho \to 0 \). Following equation (7), approaching this limit means having \(L^{\beta \nu}_m \rho^{\delta} \sigma \) approaching a non universal constant \(\delta \). This can be verified by looking at the dependency of \(L^{\beta \nu}_m \rho^{\delta} \sigma \) on \(\rho \), figure 4(c)), which indeed displays a saturation close to \(\rho = 0 \) at a value close to \(\delta \approx 2.4 \). Moreover, as in 2D, we used the kurtosis to characterize the evolution of the distribution towards a Gaussian when reaching the limit of slab.
The kurtosis depends slightly on the confinement $\perp L$ in the cubic $\rho = 1$ case (corrections to scaling) but strongly on the aspect ratio, approaching zero as $\rho \to \infty$, confirming that we approach Gaussian behavior.

Influence of fixed boundary conditions

Fixed (+−) boundary conditions

The presence of fixed boundary conditions deeply affects the behavior of the system. Fixed anti-symmetric (+−) BC in the confining direction were realized by considering that the system is confined in the z direction between two layers of spins with fixed values, one positive (+) and the other negative (−). Thus, these BC act as local magnetic fields of value $\pm J$ applied to the boundary spins that locally break the symmetry in opposite directions. This broken symmetry introduces a topological constraint on the magnetization that induces a boundary between a positively and a negatively magnetized region. This is similar to, but not quite the same, as a phase separation, induced by fixing the total magnetization. In that case, fluctuations are suppressed at large length scales by the constraint that m must remain a constant. Here, the magnetization is free to vary despite the topological domain wall imposed by the (+−) boundaries, allowing global fluctuations of diverging amplitude, as for periodic boundary conditions. The interface could, in principle be attracted to the walls, leading to a broken symmetry for its position below the transition. However, the divergence of the interface width at the transition ensures that this symmetry remains unbroken, leading to a maximum in probability at $m = 0$ and a unimodal function for $P(m)$. On lowering the value of the effective boundary fields below $\pm J$, the scaling function is expected to remain universal down to a critical value [34, 36]. Below this threshold, the boundary universality class changes to those of free boundary conditions (Dirichlet (O, O)). In this case the distribution for free boundaries should be observed, which is qualitatively similar to that for the fully periodic case, with a bimodal structure below T_c [14]. Although not verified here, one should find an evolution in the distribution functions for finite ρ, as one passes this surface field threshold.

The demixing of a binary mixture belongs to the Ising universality class and will thus display the same universal features at criticality. Here, the Ising model at fixed magnetic field $h = 0$ is exactly equivalent to a binary mixture in the semi-grand canonical ensemble [32, 33, 35] that is to say the

Figure 4. Results obtained by Monte-Carlo simulation of 3D Ising systems with fully periodic boundary conditions, for various system thicknesses L_z and aspect ratios ρ at the critical temperature $T = 4.5115 \approx T_c^{3D}$. (a) $L_z^{-\beta \nu} P$ as a function of $m L_z^{-\beta \nu}$. As the aspect ratio ρ is changed from 1 to 1/12 the distribution evolves from a bimodal to a unimodal functional form. Distributions for system with similar aspect ratios collapse, but the functional form of the collapse depends on the aspect ratio. (b) $L_z^{-\beta \nu} P$ as a function of $m L_z^{-\beta \nu}$. For distributions in the cubic case $\rho = 1$, we obtain an excellent collapse and the yellow continuous line is a fit of an Ansatz proposed in [25] (see main text). Distribution for both $\rho = 1/6$ and 1/12 which reached a unimodal form collapse. The black continuous line is Gaussian fit. (c) $L_z^{-\beta \nu} \rho \sigma$ tends to a saturation value $\hat{\sigma}$ as the slab limit $\rho \to 0$ is approached. (d) Kurtosis γ_2 of all the distributions as a function of ρ. The geometry, figure 4(d)). The kurtosis depends slightly on the confinement L_z in the cubic $\rho = 1$ case (corrections to scaling) but strongly on the aspect ratio, approaching zero as $\rho \to 0$, confirming that we approach Gaussian behavior.
ensemble in which the total number of particles in the mixture (respectively the number of spins) is conserved but the composition of the mixture is not (respectively the magnetization), with the particle type being free to change between A and B. Experimentally, the situation with $(+−)$ BC can be achieved for a critical binary polymer mixture of components A and B in a wetting layer or by confining it between two plates with each surface preferentially adsorbing one of the components of the mixture. The surfaces thus induce a phase boundary between an A rich phase and a B rich phase. Immersing the plates or wetting film in a bulk sample provides a reservoir for fluctuations of A and B type particles and even for overall density fluctuations, placing the system in the grand canonical ensemble. This is thermodynamically equivalent to the Blume Capel model in which the magnetic moments on each site can take the values $±1$ or 0, but away from the tri-critical point, the critical properties are identical to those of the Ising model [37]. We therefore expect that the average polymer composition for a systems with $(+−)$ BC will fluctuate around 0 as a result of fluctuations of the phase interface. This is the case for the magnetization in our simulations as can be seen in figure 5(a): as expected, the magnetization probability density remains unimodal at the critical temperature whatever the aspect ratio ρ, ranging from 1 to $1/9$, and the system thickness L_\perp. Plotting $L_\perp^{1/\nu} \rho^1$ as a function of $L_\perp^{1/\nu} \rho^1$ the scaling form of equation (8) leads to a convincing collapse for systems with $L_\perp = 20$, whatever the aspect ratio. The scaling functions obtained for thicknesses $L_\perp = 5, 10$ have greater variances. The continuous line is a Gaussian fit of the distribution for the biggest available system. (b) $L_\perp^{1/\nu} \rho^1$ as a function of L_\perp. The continuous line is a power law fit of form $\sigma + bL_\perp^{-\omega}$, intended as a guide to the eye. (c) Kurtosis of all the distributions as a function of ρ. The kurtosis depends mainly on ρ and goes to zero in the slab limit $\rho \to 0$. It also depends in a less pronounced way on the confinement L_\perp, especially when $\rho = 1$.

Figure 5. Results of Monte-Carlo simulation of 3D Ising systems with $(+−)$ BC for various thicknesses L_\perp and aspect ratios ρ at the critical temperature T_{c}^{3D}. (a) $L_\perp^{1/\nu} \rho^1$ versus $mL_\perp^{1/\nu} \rho^1$. All distributions are unimodal. We obtain a very convincing collapse of all data for thicknesses $L_\perp \geq 20$, whatever the aspect ratio. The scaling functions obtained for thicknesses $L_\perp = 5, 10$ have greater variances. The continuous line is a Gaussian fit of the distribution for the biggest available system. (b) $L_\perp^{1/\nu} \rho^1$ as a function of L_\perp. The continuous line is a power law fit of form $\sigma + bL_\perp^{-\omega}$, intended as a guide to the eye. (c) Kurtosis of all the distributions as a function of ρ. The kurtosis depends mainly on ρ and goes to zero in the slab limit $\rho \to 0$. It also depends in a less pronounced way on the confinement L_\perp, especially when $\rho = 1$.

Figure 6. Results obtained by Monte-Carlo simulation of 3D Ising systems with fixed $(++)$ BC for various system thicknesses L_\perp and aspect ratios ρ at the critical temperature $T = T_{c}^{3D}$. (a) Magnetization probability density $P(m)$ as a function of m. The distribution is always unimodal, but the symmetry breaking boundary conditions impose a non-zero average magnetization. (b) Asymmetry of the distributions can be highlighted by looking at the skewness γ_1. We find the main trend to be $\gamma_1 \propto \rho$, represented by the continuous line, fitted on the data for the largest thickness $L_\perp = 30$. Points color give L_\perp.
thicknesses, we understand them as corrections to scaling, which are expected to be more prominent with (+−) BC than periodic BC [26]. This assumption can be further tested by looking at the evolution of $L_{p}^{\frac{1}{10}}\rho^{-1}\sigma$ with L_{p} (figure 5(b)). This reduced variance depends very little on ρ but strongly on L_{p}. In the case of fully periodic boundary conditions, we interpreted the dependency on ρ of the reduced variance as a signature of approaching the infinite slab limit. Here, the reduced variance depends very little on ρ but strongly on L_{p}, thus the absence of collapse of the reduced probability distributions seems more likely to be related to corrections to the scaling limit rather than to the approach of the limit of slab geometry $\rho \rightarrow 0$. The evolution of the reduced standard deviation is well captured by a fit of the form

$$L_{p}^{\frac{1}{10}}\rho^{-1}\sigma = \hat{\delta} + b_{\text{eff}}L_{p}\omega,$$

(17)

where $b_{\text{eff}}, \omega_{\text{eff}}, \hat{\delta}$ are fitting parameters for which we find $\omega_{\text{eff}} \approx 0.86$, $\hat{\delta} \approx 0.35$ and $b_{\text{eff}} \approx 1.0$. This is consistent with a correction to scaling, as ω_{eff} compares well with the exponent $\omega = 0.84(4)$ [8] controlling the leading correction to scaling in the Ising model. A more thorough study of the impact of corrections to scaling on σ would be required to confirm this point, but the analysis proposed here seems to convincingly show that $L_{p}^{\frac{1}{10}}\rho^{-1}\sigma$ approaches a constant value for large L_{p}, confirming the scaling proposed in equation (7).

The kurtosis, our test of normality in the case of symmetric distributions, is always rather small and goes to zero as $\rho \rightarrow 0$ (figure 5(c)). Even for the smallest system $\rho = 1$ and $L_{p} = 5$, γ_{2} is only ≈ 0.3, which is a kurtosis we would expect in a system of approximately $\rho \sim 1/10$ with periodic boundary conditions. Thus, we obtain much more easily a Gaussian form with (+−) BC. We stress here that there is no fundamental reason to expect a Gaussian form for finite ρ, as the physical origin of the unimodal distribution is different from the periodic boundary conditions case. The (+−) BC forces the system to ‘demix’ and the fluctuations of the order parameter come from the deformation of the interface between a + oriented region and a − oriented one. Hence, although the measured kurtosis appears small we cannot rule out a finite value for finite ρ.

The limit case $L_{p} = 1$ here is a 2D system without boundary field, the two + and − boundaries canceling each other. As we are working at $T_{c}^{3D} > T_{c}^{2D}$, this 2D system in the limit $L_{p} = 1$ is at a temperature higher than the 2D critical one, giving rise to a unimodal distribution of the magnetization. This limit case ensures that with (+−) boundary conditions we shall always observe a unimodal distribution, even when the limit $L_{p} \rightarrow 1$ is approached.

Figure 7. Results obtained by Monte-Carlo simulation of 3D Ising systems with fixed (+−) BC for various system thicknesses L_{p} and aspect ratios ρ at the critical temperature $T = T_{c}^{3D}$. (a) $L_{p}^{\frac{1}{10}}\rho^{-1}\sigma$ versus $\rho \sim (m - \bar{m})$ for the sake of visibility, we have separated the most skewed distribution for $\rho = 1$ (a) and the smallest system thickness $L_{p} = 10$ for which the variance is notably different from larger system thickness (b). For systems with $L_{p} \geq 20$ and $\rho < 1$, we obtain a convincing collapse within the current precision (c). The continuous line is a Gaussian fit on data obtained with the largest system available. (d) $\sigma L_{\perp}^{\frac{3}{10}}\rho^{-d-1/2}$ as a function of L_{\perp}: the scaled standard deviation in this case noticeably depends on both ρ and L_{p}. The continuous line is a power law fit only intended as a guide to the eye.
Fixed (++) boundary conditions

With symmetry breaking (++) boundary conditions, the average magnetization \((m)\) is no longer expected to be zero, the total imposed magnetic field being non-zero. As can be seen in figure 6(a), the magnetization probability density is unimodal with the position \(m_{\text{max}}\) of its maximum depending on the system size. The average magnetization \((m)\) depends mainly on the thickness \(L_s\) and only little on the aspect ratio, as expected given that the field is applied uniquely at the boundaries.

With the boundary conditions breaking the symmetry, the kurtosis is no longer the lowest order moment quantifying a difference from the Gaussian behavior. An asymmetry can be noticed in the distribution which can be quantified by the skewness [13]:

\[
\gamma_i = \frac{1}{\sigma} \left(\frac{m - \langle m \rangle}{\sigma} \right)^3,
\]

which strongly depends on the aspect ratio, figure 6(b). For a given thickness, the dependency of \(\gamma_i\) with \(\rho\) appears linear in the range investigated, as the fit to data for the largest system size studied, \(L_s = 30\), shows (see figure 6(b)). For finite \(\rho\), \(\gamma_i\) clearly remains non-zero in the scaling limit and appears to approach a value exceeding 0.5 for the cubic system, although \(\gamma_i(L_s)\) does not converge to its asymptote for the system sizes available. A more extensive study is required to extract this asymptote. As one approaches the slab limit, the system can be again divided into a large number of statistically independent sub volumes, ensuring that \(\gamma_i \to 0\) when \(\rho \to 0\) as the central limit theorem applies.

Centering the distribution by plotting \(L_s^{1/\beta v} p P(m - \langle m \rangle)\) versus \((m - \langle m \rangle)L_s^{1/\beta v} \rho^{-1}\), figure 7, allows us to compare fluctuations of the magnetization around the mean value for varying \(\rho\) and \(L_s\). For clarity we have separated data for \(\rho = 1\) (figure 7(a)). In this case, the significant skewness, which is clearly visible, sets the distribution apart from those for other values of \(\rho\), giving an aspect similar to that observed for the distribution of the amplitude of the magnetization in two and three dimensional XY systems [13]. We also separate data for the smallest system thickness \(L_s = 10\) (figure 7(b)) for which the variance is notably different from larger system thickness. For systems with \(L_s > 20\) and \(\rho < 1\) (figure 7(c)), the distributions approximate well to a Gaussian form, despite the finite value for the skewness. A Gaussian fit to the data for the largest system available gives \(\hat{\sigma} = 0.25(1)\). The scaling form of equation (8) therefore seems to be approached as \(L_s\) grows and \(\rho\) decreases. As for the case of fixed (+-) boundaries, we test this further by examining the evolution of the scaled standard deviation \(L_s^{1/\beta v} \rho^{-1/2} \sigma\) with \(L_s\), as shown in (figure 7(d)). Unlike the previous case we now find a strong dependence on both \(\rho\) and \(L_s\) making a quantitative test, including corrections to scaling difficult. However, it does appear that the scaled standard deviation will evolve to a constant value for larger \(L_s\) and \(\rho\) and it would certainly be interesting to examine this further in the future.

Conclusion

We have seen how both the aspect ratio and boundary conditions of an Ising system influence the fluctuations of the order parameter at the critical temperature. We used simple arguments to propose a scaling form in the limit of slab geometry \(L_s > L_c\), in which case the probability density tends to a Gaussian distribution in all studied cases. The data collapse was obtained by taking into account both the aspect ratio and the confinement length \(L_s\). Fully periodic, (+-) and (++) boundaries offer widely differing characteristics. In the case of fully periodic conditions the probability density function reflects the bulk \(Z_2\) symmetry breaking of the Ising transition, evolving from a bimodal distribution for aspect ratio of unity, to gaussian in the limit of slab geometry. Imposing (+-) boundary conditions ensures that the \(Z_2\) symmetry is topologically protected by the interface between + and − domains, resulting in a distribution function that is unimodal, even for an aspect ratio of unity and leading to a probability density function close to Gaussian for all values of \(\rho\). Imposing (++) boundaries breaks the symmetry, dictating the broken symmetry phase, ensuring a non-zero value of the order parameter and giving a distribution function that depends both on the aspect ratio and the confining length scale, \(L_s\). The Gaussian form occurs because of the separation of scales, \(L_s \gg L_c\), while still maintaining criticality in the scaling limit in which \(L_s \gg L_c^2\). In this case one has both Gaussian fluctuations and a diverging susceptibility, even in the limit, \(\rho \to 0\), although the divergence is reduced in amplitude compared to cubic geometry by a factor \(\rho^{d-1}\).

With the ever increasing experimental control of nanoscale confinement, the understanding of how fluctuations develop in a confined system is of considerable theoretical and experimental importance. The (+-) boundary conditions are experimentally relevant for wetting films [7, 27] and for binary liquid mixtures stabilized in nanoscale wetting layers. These boundary conditions and (++) boundaries are all relevant for magnetic thin films [6, 28, 29], where magnetic moments can be pinned at the surface. Here, the development of enhanced Gaussian fluctuations at the critical temperature are intimately related to the phenomenon of superparamagnetism, which could be used as a diagnostic for the variance of the probability density. The modification of the spectrum of critical fluctuations by confinement and boundary conditions gives rise to the critical Casimir force which has been the topic of an extensive literature in the past decades [2, 3, 30]. The form of the Casimir force, like the fluctuation spectrum depends strongly on the boundary conditions and the two are closely related. In future work it would be interesting to extend the notions presented here to the study of magnetization profiles for different values of aspect ratios and confinement lengths, as well as to the depth dependence of local probability densities.
Acknowledgments

We thank M Fruchart, C Charles, S Ciliberto, F Puosi, A Rançon and T Roscilde for useful discussions. The work was financed by the European Research Council grant OUTEFLUCOP and used the numerical resources of the PSMN at the ENS Lyon. PCWH acknowledges financial support from the Institut Universitaire de France.

References

[1] Binder K 2003 Overcoming the limitation of finite size in simulations: from the phase transition of the Ising model to polymers, spin glasses, etc AIP Conf. Proc. 690 74
[2] Gambassi A 2009 The Casimir effect: from quantum to critical fluctuations J. Phys.: Conf. Ser. 161 012037
[3] Cardozo D L, Jacquin H and Holdsworth P C W 2014 Critical Casimir forces in a magnetic system: an experimental protocol Phys. Rev. B 90 184413
[4] Joubaud S, Petrosyan A, Ciliberto S and Garnier N B 2008 Experimental evidence of non-Gaussian fluctuations near a critical point Phys. Rev. Lett. 100 180601
[5] Bramwell S T, Faulkner M F, Holdsworth P C W and Taroni A 2015 Phase order in superfluid helium films Europhys. Lett. 112 56003
[6] Vaz C A F, Bland J A C and Lauhoff G 2008 Magnetism in ultrathin film structures Rep. Prog. Phys. 71 056501
[7] Binder K, Landau D and Müller M 2003 Monte Carlo studies of wetting, interface localization and capillary condensation J. Stat. Phys. 110 1411–514
[8] Pelissetto A and Vicari E 2002 Critical phenomena and renormalization-group theory Phys. Rep. 368 549–727
[9] Fukuto M, Yano Y F and Pershan P S 2005 Critical Casimir effect in three-dimensional Ising systems: measurements on binary wetting films Phys. Rev. Lett. 94 135702
[10] Amit D J and Martin-Mayor V 2005 Field Theory: the Renormalization Group and Critical Phenomena 3rd edn (Cambridge: Cambridge University Press)
[11] Landau D P and Binder K 2000 A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge: Cambridge University Press)
[12] Clusel M 2005 Quelques aspects de physique statistique des systèmes corréllés PhD Thesis Ecole Normale Supérieure de Lyon
[13] Bramwell S T, Fortin J-Y, Holdsworth P C W, Peysson S, Pinton J-F, Portelli B and Sellitto M 2001 Magnetic fluctuations in the classical \{XY\} model: the origin of an exponential tail in a complex system Phys. Rev. E 63 041106
[14] Binder K 1981 Finite size scaling analysis of Ising model block distribution functions Z. Phys. B 43 119–40
[15] Portelli B 2002 Fluctuations des grandeurs globales dans les systèmes corréllés PhD Thesis Ecole Normale Supérieure de Lyon
[16] Portelli B, Holdsworth P C W, Sellitto M and Bramwell S T 2001 Universal magnetic fluctuations with a field-induced length scale Phys. Rev. E 64 036111
[17] Eisenriegler E and Tomasschitz R 1987 Helmholtz free energy of finite spin systems near criticality Phys. Rev. B 35 4876–87
[18] Kaneda K, Okabe Y and Kikuchi M 1999 Shape effects of finite-size scaling functions for anisotropic three-dimensional Ising models J. Phys. A: Math. Gen. 32 7263–71
[19] Binder K and Wang J-S 1989 Finite-size effects at critical points with anisotropic correlations: phenomenological scaling theory and Monte Carlo simulations J. Stat. Phys. 55 87–126
[20] Newman M E J and Barkema G T 1996 Monte Carlo study of the random-field Ising model Phys. Rev. E 53 393–404
[21] Wolff U 1989 Collective Monte Carlo updating for spin systems Phys. Rev. Lett. 62 361–4
[22] Hasenbusch M 2010 Thermodynamic Casimir effect for films in the three-dimensional Ising universality class: symmetry-breaking boundary conditions Phys. Rev. B 82 104425
[23] Hasenbusch M 2011 Thermodynamic Casimir force: a Monte Carlo study of the crossover between the ordinary and the normal surface universality class Phys. Rev. B 83 134425
[24] Hasenbusch M 2015 Thermodynamic Casimir effect in films: the exchange cluster algorithm Phys. Rev. E 91 022110
[25] Tsypin M M and Blöte H W J 2000 Probability distribution of the order parameter for the three-dimensional Ising model universality class: a high-precision Monte Carlo study Phys. Rev. E 62 73–8
[26] Vasilyev O, Gambassi A, Maciolek A and Dietrich S 2009 Universal scaling functions of critical Casimir forces obtained by Monte Carlo simulations Phys. Rev. E 79 041142
[27] Wilding N B and KRech M 1998 Effect of criticality on wetting layers: a Monte Carlo simulation study Phys. Rev. E 57 5795–801
[28] Eugene Stanley H 1999 Scaling, universality, and renormalization: three pillars of modern critical phenomena Rev. Mod. Phys. 71 S358–66
[29] De Jongh L J and Miedema A R 2001 Experiments on simple magnetic model systems Adv. Phys. 50 947–1170
[30] de Gennes P-G and Fisher M E 1978 Phénomènes aux parois dans un mélange binaire critique C. R. Acad. Sc. Paris Ser. B 287 207
[31] Lasirisitaworn Y, Poullier J and Staunton J B 2004 Magnetic properties of Ising thin films with cubic lattices Phys. Rev. B 70 104413
[32] Materniak S, Putykijewicz A and Sokolowski S 2010 The phase behavior of two-dimensional symmetrical mixtures J. Chem. Phys. 133 244501
[33] Das S K, Horbach J, Binder K, Fisher M E and Sengers J V 2006 Static and dynamic critical behavior of a symmetrical binary fluid: a computer simulation J. Chem. Phys. 125 024506
[34] Mohry T F, Maciolek A and Dietrich S 2010 Crossover of critical Casimir forces between different surface universality classes Phys. Rev. E 81 061117
[35] Vasilyev O, Maciolek A and Dietrich S 2011 Critical Casimir forces for Ising films with variable boundary fields Phys. Rev. E 84 041605
[36] Krech M 1994 The Casimir Effect in Critical Systems (Singapore: World Scientific)
[37] Cardy J 1996 Scaling and Renormalization in Statistical Physics (Cambridge: Cambridge University Press)