Time Since Rewetting Defines Vegetation Composition and Carbon Dioxide Fluxes on Former Milled Peatlands - Comparison With Undisturbed Bogs

Anna-Helena Purre (annahele@tlu.ee)
Tallinn University: Tallinna Ulikool https://orcid.org/0000-0001-9827-0794

Mati Ilomets
Tallinn University: Tallinna Ulikool

Research Article

Keywords: Milled peatlands, above-ground biomass, rewetting, CO2 exchange, reference ecosystem, peatland restoration

DOI: https://doi.org/10.21203/rs.3.rs-323253/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Rewetting is the most common restoration approach for milled peatlands in Europe, with the aim of creating suitable conditions for the development of peatland specific plant cover and carbon accumulation. Therefore, it is important to determine if time since rewetting is pivotal for milled peatlands to become functionally and structurally similar to their undisturbed counterparts. We investigate the temporal succession in rewetted peatlands in Estonia by a chronosequence of 4, 15, and 35 years before the measurements. Plant functional type (PFT) cover and biomass, bryophyte production and CO$_2$ fluxes were measured on two milled peatlands, as well as undisturbed bogs adjacent to milled peatlands.

Differences in vegetation composition and CO$_2$ fluxes between the sites were greater for rewetted than undisturbed sites. The most recently rewetted site was mainly covered in bare peat and *Eriophorum vaginatum* and was a CO$_2$ source. On the rewetted site of 15 years, *Sphagnum* was present in addition to ombrotrophic sedges, and in the rewetted site of 35 years, lawn-hollow microtopography is starting to develop with various PFTs. Both of these sites were CO$_2$ sinks. Lawn *Sphagnum* was abundant on the two older rewetted sites, and was connected with CO$_2$ sink functioning in the rewetted sites. Still, hummock *Sphagnum* species, which were present in undisturbed bogs, were absent from all of the rewetted sites. With time, CO$_2$ fluxes, microtopography and vegetation develop after rewetting in the direction of undisturbed bogs, while vegetation composition still differs from the reference sites even 35 years after rewetting.

1. Introduction

Undisturbed peatlands are important carbon sinks in the long term (Yu 2012) as well as a suitable habitat for plant species that have adapted to survive in acidic and waterlogged conditions (Minayeva 2008). Northern peatlands have been widely affected by peat mining for horticulture or energy production (Leifeld et al. 2019), particularly since the 1950s when peat milling became the main technique for peat extraction. This method involves drainage and the removal of vegetation in large areas, so thin layers of peat can be extracted every summer season.

Excavated peatlands have several negative environmental effects, such as peat loss through mineralisation, high CO$_2$ emissions, fire hazard, no plant diversity and low aesthetic value. The natural revegetation of those sites takes a long time, depends on the environmental conditions of the site and usually does not lead to mire-specific plant communities (Lavoie et al. 2003; Graf et al. 2008; Orru et al. 2016). Unrestored milled peatlands are important CO$_2$ sources to the atmosphere due to the low water tables allowing peat mineralisation and sparse or absent vegetation (Strack et al. 2016; Rankin et al. 2018). The main mitigation possibility for those negative impacts is peatland rewetting, which through higher water tables creates suitable conditions for revegetation and thus reduces CO$_2$ emissions (Wilson et al. 2016) and the flammability of these sites (Granath et al. 2016). Although rewetting increases CH$_4$ emissions on restored peatlands, but as CH$_4$ is a short-lived gas in the atmosphere, rewetting of
peatlands mitigates the climate change in long-term (Günther et al. 2020). Various criteria have been taken into account throughout the history of restoration ecology to assess restoration success. First, biodiversity measures and hydrology were engaged to indicate the success of restoring the ecosystem, which in recent decades have been integrated with greenhouse gas balances showing recovery of ecosystem functioning (Kløve et al. 2017; Renou-Wilson et al. 2018).

The initial response of the plant community and its diversity to rewetting is complex and depends also on the pre-rewetting state of the peatland (Tuittila et al. 2000). Over the time-scale of several decades after peatland rewetting or self-recovery, plant cover increases with time (Orru et al. 2016; Priede et al. 2016). Furthermore, CO₂ fluxes change in time after rewetting (Kløve et al. 2017). Beyer and Höper (2015) estimate based on their experience of greenhouse gas measurements in temperate peatland that rewetted peat extraction sites may become peat accumulating ecosystems after about 30 years. Even after 30 years post rewetting, milled peatlands can remain CO₂ sources, but those emissions from rewetted sites tend to be smaller than from active peat extraction sites, especially if Sphagnum is dominating (Samaritani et al. 2011; Vanselow-Algan et al. 2015).

The rate of vegetation recovery likely depends on successfully raising the water table (Konvalinková and Prach 2014; Strack et al. 2014; Priede et al. 2016), the presence of plant propagules (Campbell and Rochefort 2003; Konvalinková and Prach 2014) and the nutrient status of the site (Komulainen et al. 1999; Konvalinková and Prach, 2014; Kozlov et al. 2016; Priede et al. 2016). However, even after decades, rewetted boreal peatlands mostly differ from their reference ecosystem regarding carbon accumulation and vegetation structure (Moreno-Mateos et al. 2012). The quicker return of CO₂ sink function has been reported on milled peatlands restored using the moss-layer-transfer technique (Strack et al. 2016; Nugent et al. 2018).

Milled peatlands have been ombrotrophic bogs and in some cases bog remnants border the peat extraction areas. Usually during peat extraction, layers of Sphagnum peat are removed, so more nutrient-rich peat deposits at the bottom of the former mire with varying thickness are left on the site. This leads to the development of wet minerotrophic vegetation (Tuittila et al. 2000; Renou-Wilson et al. 2018), which is different from typical raised bog vegetation (Renou-Wilson et al. 2018). With vegetation succession and distancing peatland surface from the water table minerotrophic vegetation will be replaced by bog species in time (Samaritani et al. 2011).

Due to the challenges related to raising and keeping the stable water table close to the peat surface throughout the year (Price et al. 2003; Brown et al. 2017), functional dryness of the residual peat layer (Price and Whitehead, 2001; Price et al. 2003), the smaller water holding capacity of developed moss layer (Waddington et al. 2011; McCarter and Price 2015) and the moisture conditions being closely related with the microtopography of the site (Bugnon et al. 1997; Price et al. 1998; Price and Whitehead 2001; Purre and Iлометс, 2018) environmental conditions in restored sites may be drier than in undisturbed sites. Restoration sites have generally lower bryophyte and shrub but higher graminoid cover than in undisturbed peatlands (Soini et al. 2010; González et al. 2013; Strack et al. 2016). Some studies
report that vegetation in rewetted sites is more heterogeneous than in pristine peatlands due to the patchiness and incompleteness of the plant cover on restoration sites as vegetation cover starts to develop near the drainage ditches and close to existing vegetation (Soini et al. 2010; Laine et al. 2016).

Undisturbed peatlands are CO₂ sinks at least over longer time-scales, CO₂ exchange of the peatland can vary annually (Wilson et al. 2016; Nugent et al. 2018). Kløve et al. (2017) stress the lack of knowledge about the greenhouse gas fluxes in rewetted peatlands, especially on sites that have been rewetted for decades. Restored milled peatlands can have larger (Soini et al. 2010; Strack et al. 2016; Wilson et al. 2016; Nugent et al. 2018, 2019) or smaller (Renou-Wilson et al. 2018; Nugent et al. 2019) CO₂ uptake than similar eco-hydrologically undisturbed sites. Similar carbon sequestration as in undisturbed peatlands is reported to return sooner to rewetted milled peatlands than the development of typical raised bog species composition (Soini et al. 2010; Renou-Wilson et al. 2018). Although photosynthesis on restored milled peatlands develops akin to undisturbed peatland, ecosystem respiration stays lower (Strack et al. 2016). Therefore, on rewetted sites, Net Ecosystem Exchange (NEE) is reported to be driven by respiration rather than by photosynthesis (Samaritani et al. 2011; Wilson et al. 2016). Due to their transitional stages, rewetted sites have large interannual and within-site variations in CO₂ fluxes (Wilson et al. 2016; Nugent et al. 2019), whereas undisturbed peatlands have reached a mature development stage regarding their vegetation, water retention capacity and CO₂ balance (Wilson et al. 2016).

Plant communities vary by their photosynthesis and respiration rates. The highest photosynthesis on nutrient-poor peatlands is reported from Eriophorum communities (Beyer and Höper 2015; Wilson et al. 2016), but this is accompanied by higher respiration (Beyer and Höper 2015). Higher CO₂ net sink function (Kivimäki et al. 2008) and soil organic matter accumulation (Andersen et al. 2013) have been recorded on plots with mixed graminoid and Sphagnum patches compared to pure graminoid patches. Sphagnum species have lower photosynthetic capacities (Korrensalo et al. 2016) and lower respiration, therefore plots with Sphagnum are larger CO₂ sinks than plots with only graminoids (Beyer and Höper 2015). Vascular plants are also important in peatland CO₂ exchange, especially by mitigating the effect of drought on CO₂ sink functioning (Kuiper et al. 2014). In similar climatic conditions, correlating vegetation cover and CO₂ fluxes differs between land-use types (Laine et al. 2016; Strack et al. 2016) — in restored sites, CO₂ net uptake increases with vascular plant cover (Strack et al. 2014; 2016), while in undisturbed sites plots with higher moss cover are greater CO₂ sinks (Strack et al. 2016).

In this paper we analyse the success of rewetting by comparing CO₂ fluxes and vegetation on relatively similar rewetted milled peatlands with somewhat different site conditions in different successional stages and initially eco-hydrologically similar nearby undisturbed bogs to assess if a longer time since rewetting or ecosystem recovery time leads to ecosystems that functionally converge to the state of reference bogs. For that, we established the following postulates:

1. CO₂ fluxes and vegetation structure on rewetted milled peatlands develop in the direction of undisturbed reference bogs in time;
2. Higher amount of plant above-ground, especially *Sphagnum*, biomass is related to higher CO$_2$ sink function on rewetted milled peatlands.

2. Methods

2.1. Study sites

Two paired study sites (Kõrsa and Hara) were selected (Table 1), both of which include rewetted abandoned milled peatlands and remnant open raised bog areas (Fig. 1). The Kõrsa site is located in southwestern Estonia next to an active peat extraction site. The Kõrsa rewetted (Kõrsar$_R$) site has self-recovered after the end of peat extraction due to the water level being raised up to the peat surface in 1980 following a damming to create a firewater reservoir (Ramst et al. 2007). Revegetation began at Kõrsar$_R$ two years later with the self-establishment of *E. vaginatum* tussocks in 1982. The Hara site is located in Northern Estonia, in Lahemaa National Park. The Hara rewetted site divides into a self-recovered northern part (Hara$_{RN}$) and an actively rewetted southern part (Hara$_{RS}$). The water table in Hara$_{RN}$ rose in 2000–2002 due to closing of the bordering ditch, and vegetation started to develop earlier in that area. For conservative estimate of recovery time, year 2000 is considered as a start of recovery when analysing the effect of time since rewetting. Hara$_{RS}$ was rewetted in 2012 by the State Forestry Centre of Estonia. No additional restoration measures were applied in addition to rewetting.

The rewetted and undisturbed sites of both paired sites initially had a similar ecohydrological status (raised bog), which is still present in the undisturbed parts of Kõrsa (Kõrsar$_P$) and Hara (Hara$_P$).

Previously, the vegetation of the rewetted sites was described by Ramst et al. (2007), as the following:

- HaraRS: *Eriophorum vaginatum* and bare peat;
- Hara$_{RN}$: *E. vaginatum, Warnstorfia fluitans, Sphagnum riparium* and *Sphagnum cuspidatum*;
- Kõrsar$_R$: *E. vaginatum, Chiloscyphus pallescens, Pleurozium schreberi, Polytrichum strictum, W. fluitans, Brachythecium mildeanum, S. cuspidatum* and *Sphagnum balticum*.

The respective paired sites are located in the same mire-basin, and the distances between the rewetted and undisturbed sites range from 140 metres in Hara to 500 m in Kõrsa.

In all of the study sites, four measurement plots per site were established during the previous year (2015). As two of the plots in Hara$_{RN}$ became flooded during the measurement period, they were omitted from the study, and data from two measurement plots in Hara$_{RN}$ were used. The locations of the permanent measurement plots were chosen based on the dominant vegetation and by taking into account its variability between micro-topographic levels. In undisturbed sites and Kõrsar$_R$, where microtopography has already developed, two measurement plots were situated on the hummocks and two plots on the lawns of each site. In other sites, two replicates for each vegetation type were established.
Table 1
Locations and descriptions of the study site

	Hara	Kõrsa
Coordinates	N 59°33', E 25°36'	N 58°24', E 24°41'
End of extraction	1994	1980
Water table depth below surface (cm)\(^a\)	Hara\(_{RS}\): -10	Kõrsa\(_R\): 0 – -15
	Hara\(_{RN}\): 0	Kõrsa\(_P\): -10 – -35
	Hara\(_P\): -5 – -30	
Long-term (1981–2010) average annual/growing season temperature (°C)\(^b,c\)	5.7/12.4	6.3/13.4
Long-term (1981–2010) average annual/growing season precipitation (mm annually/growing season)\(^b,c\)	587/381	746/418
Average annual/growing season temperature (°C) 2016\(^b,c\)	6.6/13.4	6.7/13.5
Average annual/growing season precipitation (mm annually) 2016\(^b,c\)	849/430	757/398

\(^a\)- Average growing season water table according to manual measurements during the CO\(_2\) measurement sessions; \(^b\)- data from Estonian Weather Service; \(^c\)- Growing season data for May-October.

2.2. Vegetation analysis

Vegetation analyses were conducted on the plant functional type (PFT) level, and we used the PFT division described in Laine et al. (2012). In our study sites, the following PFTs were present from the larger number of PFTs described by Laine et al. (2012):

- Hummock Sphagnum: S. rubellum, S. fuscum and S. capillifolium;
- Lawn Sphagnum: S. angustifolium, S. balticum, S. medium, S. fallax, S. papillosum, S. squarrosum, S. riparium and S. cuspidatum;
- True mosses: Polytrichum strictum, Warnstorfia fluitans, Chiloscyphus pallescens, Pleurozium schreberi and Brachythecium mildeanum;
- Evergreen shrubs: Calluna vulgaris and Vaccinium oxyccocus, Andromeda polifolia;
- Ombrotrophic forbs: Drosera rotundifolia and Rubus chamaemorus;
- Minerotrophic forbs: Melampyrum spp., Menyanthes trifoliata and Thelypteris palustris;
- Ombrotrophic sedges: Eriophorum vaginatum;
• Trees: *Pinus sylvestris*, *Betula pubescens*, and *Salix* spp.

The nomenclature followed Ingerpuu and Vellak (1998) for bryophytes and Leht (2010) for vascular plants.

We measured the plant species coverage (%), vascular plant leaf area index (LAI\textsubscript{vasc}; m2 m−2), above-ground biomass of PFTs (AGB; g dm−2) and moss production (AGP; g dm−2 year−1) as well as the length increment of mosses (LI; mm year−1). The plant cover of measurement plots was determined visually at the peak of the 2016 growing season (end of July) from inside the CO\textsubscript{2} flux measurement collars (four plots per each site/management type combination, but two plots in Hara\textsubscript{RN}). LAI\textsubscript{vasc} was determined according to Wilson et al. (2007a) during the CO\textsubscript{2} flux measurement campaigns.

Biomass samples were collected from near the measurement plots with vegetation as similar as possible to those in the collars. Vascular plant biomass samples were collected at the end of July 2016 and bryophyte samples at the beginning of October 2016 to capture the maximum biomass of each plant group. We used two plot sizes for the AGB measurements of vascular plants (15 cm radius circular plot) and bryophytes (2.5 cm circular round plot) and collected one vascular plant sample and three bryophyte samples per measurement point (a total of four vascular plant and 12 bryophyte samples from Hara\textsubscript{RS}, Hara\textsubscript{P}, Kõrsa\textsubscript{R} and Kõrsa\textsubscript{P} each, and two vascular plant and six bryophyte samples in Hara\textsubscript{RN}). Only the capitula for *Sphagnum* species was used as there is no clear distinction between the live and dead material of *Sphagnum* (Clymo 1970), and the upper 2 cm layer for other bryophytes to obtain biomass samples up to the similar depth of biomass as *Sphagnum* were collected to determine bryophyte biomass similar to Moore et al. (2002), Laine et al. (2012) and Purre et al. (2019b). The collected samples were divided into species level. The sampling and laboratory analysis of biomass is described in Purre et al. (2019b). During the data analysis, the biomass of different species was compiled into PFTs. From the air-dried (65°C) bryophyte samples, the border of AGP and LI was determined using the innate markers method (Clymo 1970; Pouliot et al. 2010), then separated from the rest of the biomass and weighed (AGP). The LI of ten individuals from the dominant species of each sample were measured with a digital caliper. In Hara\textsubscript{RS}, bryophytes were absent and thus biomass AGP and LI were considered to be zero.

2.3. CO\textsubscript{2} flux measurements and data processing

CO\textsubscript{2} measurements were carried out at least once a month during the growing season (May-October 2016). NEE and ecosystem respiration (R\textsubscript{ECO}) was measured on 60×60 cm square aluminium collars inserted to about a 20 cm depth, with the rim filled with water to ensure an air-tight fit during flux measurements. We measured CO\textsubscript{2} concentrations with the infrared gas analyser Li-6400 (Li-Cor (USA)) from transparent Plexiglas chamber (60×60×30 cm) with a cooling system. The measurements period was two minutes, and the CO\textsubscript{2} content in the chamber was recorded with an interval of 15 s. After measuring the CO\textsubscript{2} concentrations in full-light, NEE was measured on two lower irradiation levels by using one or two shades that reduced the photosynthetically active radiation (PAR (µmol m−2 s−1)) reaching the
vegetation in the chamber at an average of 65% and 88%, respectively. Lastly, R_{ECO} was measured by covering the chamber with an opaque hood. Between each measurement period, the measurement chamber was ventilated. During the measurement campaigns, plant parameters for determining LAI_{vasc} inside the measurement collars were measured according to Wilson et al. (2007a) in addition to recording PAR, the temperature inside the chamber, peat temperatures at 5 cm and 15 cm depths and the water table (cm).

Input data (PAR, T_{AIR}) for CO$_2$ flux reconstruction were measured with hourly intervals in stations belonging to the Estonian Weather Service. For Hara, the temperature data was obtained from the nearest station in Vanaküla (about 10 km from the site) and radiation data from Harku meteorological station (about 70 km from Hara). For Kõrsa, all meteorological data was obtained from Pärnu-Sauga meteorological station located about 15 km from the site. Those stations were the closest to the study sites where PAR and T_{AIR} were continuously measured, and they were located within a 10 km distance from the sea similarly to the study sites.

The flux rates were estimated based on linear change in CO$_2$ concentrations in time. The linear method was chosen, as this method was considered suitable by Kandel et al. (2016) for CO$_2$ flux calculations in the case of short (few minutes) chamber closure periods (2 min in current study). The measured NEE and R_{ECO} fluxes were considered suitable according to the following quality criteria: variation of PAR during the flux measurement not exceeding ± 15%, variation of inside temperature of the chamber not varying more than ± 5°C and the determination coefficient (R^2) of the measured flux of at least 0.9. Very small fluxes (± 0.2 ppm s$^{-1}$) were accepted regardless of their R^2 value. Similar quality criteria in respect of R^2 values were used by Järveoja et al. (2016). A total of 215 CO$_2$ flux measurements fulfilled the set criteria and were used for CO$_2$ flux reconstructions. Photosynthesis (P_g) was calculated by adding R_{ECO} to NEE.

CO$_2$ fluxes were reconstructed for the period from the beginning of May until the end of September 2016 at each site. With these reconstructions, based on measured and calculated CO$_2$ fluxes and other parameters (PAR, LAI_{vasc} and air temperature (T_{AIR})), models were created for relating differences in measured CO$_2$ fluxes with differences in input parameters for reconstructing the whole growing season CO$_2$ fluxes. CO$_2$ flux and LAI_{vasc} reconstruction was carried out in program R version 3.2.2 package nlme (Linear and Nonlinear Mixed Effects Models, ver. 3.1–121; Pinheiro et al. (2015)). Gaussian curves were fitted to LAI_{vasc} values, which were calculated according to the vegetation parameters measured during the CO$_2$ measurement campaigns for reconstructing the change in LAI_{vasc} during the vegetation season as described by Wilson et al. (2007a) in each measurement collar.

The gross photosynthesis (P_g (mg CO$_2$ m$^{-2}$ h$^{-1}$)) model uses the saturating response to PAR (Eq. 1) and records the change in LAI_{vasc} during the vegetation season:

$$P_g = \frac{P_{max} \times PAR}{(k+PAR)} \times \frac{LAI_{vasc}}{(LAI_{vasc}+s)}$$ \hspace{1cm} (1)
where P_{max} is the maximum photosynthesis at light saturation, k and s are respectively the PAR and LAI$_{\text{vasc}}$ values when P_g reaches half of its maximum level.

The respiration model (Eq. 2) expresses an exponential response of ecosystem respiration (R_{ECO} (mg CO$_2$ m$^{-2}$ h$^{-1}$)) to the temperature inside the chamber (T_{AIR}).

$$R_{\text{ECO}} = r_0 \times \exp (b \times T_{\text{AIR}}) \quad (2)$$

Where parameters r_0 and b are respectively the respiration at the 0°C temperature and the sensitivity of respiration to air temperature, and T_{AIR} is the air temperature (°C). CO$_2$ measurements and reconstructions are described in more detail in Purre et al. (2019a, 2019b).

2.4. Data analysis

Data analyses were conducted with IBM SPSS ver. 23. As the data did not fulfil the requirements for parametric data analysis according to the Shapiro-Wilk test, non-parametric data analysis methods were chosen. The Kruskal-Wallis and Mann-Whitney tests with Bonferroni correction for the pairwise comparison of vegetation parameters and CO$_2$ fluxes between the sites were applied. Spearman correlations were used to relate separate plant group abundances with different parameters of CO$_2$ fluxes (NEE, P_g, R_{ECO}) in rewetted and undisturbed peatlands. Generalized linear mixed models (GLMMs) were applied on data from rewetted milled peatlands to determine the effect of site, microtopography and time since rewetting (fixed factors) on CO$_2$ fluxes (growing season NEE, P_g or R_{ECO} as target variables), biomass of studied plant functional types (PFTs) were incorporated in the models as random factors. For information criterion of the GLMMs log-likelihood was used, lower log-likelihood values showing better model fit. The results were considered statistically significant if $p < 0.05$. Average values are reported with standard errors.

The multivariate analysis methods Redundancy Analysis (RDA) and Detrended Correspondence Analysis (DCA) were applied in PC-ORD ver. 7 to relate the abundances of PFTs and CO$_2$ fluxes on rewetted and undisturbed sites, and to analyse the changes in those variables with time since rewetting, respectively. In RDA, the response variables were standardised and a randomisation test was applied to test for any significant relationship between the PFT and CO$_2$ flux matrices. DCA was used to find the main gradients in PFT and CO$_2$ flux data using time since rewetting and the site as supplementary variables.

3. Results

3.1. Vegetation

Vegetation varied significantly between rewetted and undisturbed sites and between all rewetted sites, while small differences also occurred between both undisturbed sites (Fig. 2). More PFTs were present on undisturbed and older rewetted sites, while many PFTs such as *Sphagnum* and evergreen shrubs were
absent from the recently rewetted Hara_{RS}. Evergreen shrubs such as <i>C. vulgaris</i> and <i>A. polifolia</i> had higher cover in undisturbed sites, while <i>V. oxyccoccus</i> was present with low cover only in Kõrsa_R. Evergreen shrub biomass was absent or significantly lower in rewetted sites compared to undisturbed sites (Appendix S1). Ombrotrophic forbs <i>R. chamaemorus</i> and <i>D. rotundifolia</i> were only present in undisturbed plots, but with relatively low cover (0.5-3%). Only in Kõrsa_R minerotrophic forbs like <i>Melampyrum</i> species and <i>T. palustris</i> were present. Tree seedling of <i>Salix</i> spp., <i>Betula</i> spp. and <i>P. sylvestris</i> had about 1% cover on all sites, or were absent.

In undisturbed sites, hummock (<i>S. fuscum</i>, <i>S. rubellum</i>, <i>S. angustifolium</i>) and lawn (<i>S. medium</i>, <i>S. balticum</i>, <i>S. papillosum</i>) <i>Sphagnum</i> species were present in relatively similar cover (ranging from 5% (<i>S. balticum</i> in Kõrsa) to 45% (<i>S. rubellum</i> in Kõrsa)). Only lawn species (<i>S. medium</i>, <i>S. fallax</i>, and <i>S. squarrosum</i>) were present in Kõrsa_R and Hara_{RN} site. True mosses (<i>P. strictum</i> and <i>P. schreberi</i>) had low cover (1–3%) on Kõrsa_R and Hara_{RN} but were absent from all of the other study sites.

Small differences in plant cover and AGB occurred between the measurement plots in hummocks and lawns. Hummocks had higher AGB (15.3 ± 1.3 g dm^{−2}), AGP of <i>Sphagnum</i> (3.4 ± 0.5 g dm^{−2} year^{−1}) and mosses (3.5 ± 0.5 g dm^{−2} year^{−1}) than lawns (AGB 9.9 ± 0.8 g dm^{−2}; AGP of <i>Sphagnum</i> 1.5 ± 0.5 g dm^{−2} year^{−1} and mosses 1.5 ± 0.4 g dm^{−2} year^{−1}) (p < 0.05). In reverse, the cover of lawn <i>Sphagna</i> was higher in lawns (72 ± 14%) than in hummocks (21 ± 15%) (p < 0.05).

3.2. Carbon dioxide fluxes

Measured NEE and R_E varied spatially to a larger extent in rewetted rather than in undisturbed sites (Appendix S2). A higher CO₂ net uptake with higher PAR was measured on both rewetted and undisturbed sites.

Reconstructed P_G and NEE did not differ statistically significantly (p > 0.05) between the rewetted and the undisturbed sites, whereas R_E was significantly higher in the rewetted than in the undisturbed sites (p < 0.05; Fig. 3). The respiration model’s parameter r0 was significantly (p < 0.05) higher in the rewetted (41.8 ± 11.4 mg CO₂ m^{−2} h^{−1}) than in the undisturbed sites (9.4 ± 3.1 mg CO₂ m^{−2} h^{−1}; Appendix S3). In Kõrsa_R the reconstructed P_G was significantly higher than in the undisturbed sites and at Hara_{RS} (p < 0.05). Also, Kõrsa_R had significantly higher R_E than Kõrsa_P, whereas all of the other sites had a similar R_E. Although there were no differences in the model parameters between Hara_{RN}, Hara_{RS} and Hara_P (p > 0.05), P_{max} and r0 were higher in Kõrsa_R than in Kõrsa_P (p < 0.05) indicating a higher maximum CO₂ uptake in case of light saturation and also a higher minimum respiration rate in rewetted sites. Undisturbed sites did not differ significantly according to their CO₂ fluxes (p > 0.05). There were no significant differences in CO₂ fluxes between the hummocks and the lawns in the undisturbed sites and Kõrsa_R (p < 0.05).

GLMMs were used to specify the effect of site, microtopography and time since rewetting on growing season CO₂ flux components (R_E, P_G, NEE) on rewetted peatlands. Although none of the fixed effects
and GLMMs were statistically significant, time since rewetting had strongest effect on all of the CO₂ flux components (Table 2). In addition to time since rewetting, microtopography and combination of microtopography and site had also relatively strong, but still statistically insignificant effect on R_{ECO}.

Table 2

Statistical results of general linear mixed models (GLMM) determining effect of site conditions (site, microtopography, time since rewetting) on CO₂ flux components (NEE, P_g, R_{ECO}) in rewetted milled peatlands.

CO₂ flux component	Effect	F	P
NEE	Site	$F_{1,10}=0,03$	0,87
	Microtopography	$F_{1,3}=0,00$	0,95
	Time since rewetting	$F_{1,1}=2,93$	0,40
	Site*Microtopography	$F_{1,8}=0,59$	0,47
P_g	Site	$F_{1,0}=0,03$	1,00
	Microtopography	$F_{1,2}=0,12$	0,76
	Time since rewetting	$F_{1,6}=1,87$	0,22
	Site*Microtopography	$F_{1,10}=0,40$	0,54
R_{ECO}	Site	$F_{1,0}=0,00$	1,00
	Microtopography	$F_{1,10}=3,50$	0,09
	Time since rewetting	$F_{1,8}=3,74$	0,09
	Site*Microtopography	$F_{1,9}=1,09$	0,32

3.3. CO₂ fluxes and vegetation

CO₂ fluxes correlate with every PFT differently between the undisturbed and rewetted plots (Fig. 4, Appendix. S4). In the undisturbed sites, P_g was higher in measurement plots with higher ombrotrophic sedge (*E. vaginatum*) cover and biomass but lower with higher tree cover, which was related with the higher values of the parameter k indicating the PAR value when P_g reaches half of its maximum value. In the rewetted sites, NEE was higher in the case of higher *Sphagnum* abundance, and higher photosynthesis rates were connected with the cover of minerotrophic forbs.

P_g increases with higher bryophyte and vascular biomass in rewetted sites, whereas this correlation was insignificant in the undisturbed sites (Fig. 5). In the undisturbed sites, higher R_{ECO} was measured on plots with higher vascular plant biomass, whereas this correlation was insignificant in the rewetted sites. There
were no other statistically significant correlations between vascular plant, bryophyte and plant biomass, and \(P_g \), \(R_{\text{ECO}} \) and NEE in the rewetted nor in the undisturbed plots.

With time since rewetting, communities evolve in the direction of undisturbed mires, where several PFTs are present, including *Sphagnum* and evergreen trees (Fig. 6). Hara\(_{\text{RS}}\) is characterised by high \(R_{\text{ECO}} \) and biomass of ombrotrophic sedges, Hara\(_{\text{RN}}\) and Kõrsa\(_R\) contain lawn *Sphagnum* and \(P_g \), while undisturbed sites (Hara\(_P\) and Kõrsa\(_P\)) have higher NEE along with the presence of hummock *Sphagnum*, ombrotrophic forbs and evergreen shrubs. With this transition, high \(R_{\text{ECO}} \) is replaced with higher \(P_g \), and eventually with higher NEE, indicating CO\(_2\) sink function during the growing season.

4. Discussion

4.1. Vegetation

Vegetation differed significantly between the undisturbed and rewetted sites. When undisturbed sites had oligotrophic raised-bog vegetation, vegetation in rewetted sites was typical to more nutrient rich environmental conditions and higher water table as reported previously (Tuittila et al. 2000; Samaritani et al. 2011; Renou-Wilson et al. 2018). Commonly, the less humified *Sphagnum* peat has been removed from abandoned milled peatlands, as the mineral-rich substrate supports the establishment and development of more nutrient demanding plant species. Contrary, oligotrophic vegetation is prevailing in bogs where the peat layer is more nutrient-poor and the water level deeper. After rewetting, vegetation establishment is more rapid and species rich in sites with more nutrients (Komulainen et al. 1999; Kozlov et al. 2016). This could have caused the relatively rapid vegetation succession on Kõrsa\(_R\) where peat ash content is reported to be about twice higher (2–3%) than in Hara rewetted sites (about 1–2%; Orru 1995). In Kõrsa\(_R\), a rather diverse peatland community with a thick *Sphagnum* mat had developed in about 35 years.

Actually, in Kõrsa\(_R\) a thin layer of new peat – an acrotelm – has formed, which means that the site is functionally (but not structurally) quite similar to a pristine bog. According to results reported by Lucchese et al. (2010), about a 19 cm thick bryophyte layer would be needed in the Bois-des-Bel restored milled peatland in Canada to mitigate summer water level drawdown; this could be reached about 17 years after restoration. Throughout the study period in Kõrsa\(_R\) and Hara\(_{\text{RS}}\), the water level stayed inside the moss layer, mainly near the moss surface, therefore not decreasing the moss growth during the summer period. In the rewetted sites with thick moss layer in the current study, the moss layer was looser than in the undisturbed reference sites. This was probably due to the higher water table along with the high abundance of hollow *Sphagna* in the rewetted sites. Hollow *Sphagnum* could be affected from extreme droughts to a larger degree due to their larger pore size and less connectivity with the residual peat layer (McCarter and Price, 2015) than the denser *Sphagnum* cover of undisturbed bogs, therefore making CO\(_2\) exchange on rewetted sites more susceptible to drought impacts.
Some PFTs were lacking or had very low abundances in the rewetted sites but were present in the reference sites. We found significantly lower biomass and cover of evergreen shrubs on the rewetted than in the undisturbed sites, similar to results by Soini et al. (2010) and González et al. (2013), and they were absent from the most recently rewetted sites. Hummock *Sphagna*, which was present in both undisturbed bog sites was completely absent from the rewetted sites. The low occurrence and dying-off of hummock *Sphagnum* due to high water tables has been reported previously by Soini et al. (2010) and González et al. (2013). In reverse, Karofeld et al. (2015) recorded relatively high cover of hummock *Sphagna* and the presence of shrubs on restored milled peatland site where those species were dispersed using the moss-layer-transfer technique (Rochefort et al. 2003). Therefore, the application of this technique could lead to a more diverse vegetation composition of restoration sites.

While vegetation differs significantly between the rewetted sites, being more diverse in the older sites, the vegetation in both undisturbed sites with a similar hummock and hollow vegetation pattern did not differ from each other. Hummocks on the two undisturbed sites are typical *Calluna-vulgaris-Sphagnum fuscum* communities, the most common plant associations in Estonian bogs (Masing 1982), and are comparable to the high hummock communities described by Korrensalo et al. (2018). Lawns in the undisturbed sites belong to the tussocky *Eriophorum* community or the *Sphagnum balticum-Sphagnum rubellum* community (Masing 1982), described also by Korrensalo et al. (2018) in an undisturbed bog in central Finland as lawn and high lawn communities. A large variation in vegetation occurred in rewetted, especially in the most recently rewetted site of Hara_RS between the measurement plots. However, this could also be caused by the relatively low number of measurement plots in each study site and their positioning on the site. In recovering milled peatlands, vegetation is developing in patterns due to large variations in suitable substrate conditions for plant growth (Tuittila et al. 2000; Purre and Ilomets 2018) and the presence of nurse-plant species (Tuittila et al. 2000; Groeneveld et al. 2007), whereas in undisturbed bogs microtopography explains the largest portion of variation in vegetation composition (Korrensalo et al. 2018; Mežaka et al. 2018).

Sphagnum has been considered a keystone genus of peatland restoration (Rochefort 2000). In the newly rewetted Hara site, *Sphagnum* was not yet present in the measurement plots, although some patches of lawn *Sphagnum* (mainly *Sphagnum cuspidatum*) were present in depressions with high water level. After rewetting, the height of the water table should remain a few centimetres below the peat surface, which leads to optimal conditions for *Sphagnum* growth and peat accumulation (Beyer and Höper 2015). *Sphagnum* has relatively high immigration potential (Campbell et al. 2003) and is abundant on the undisturbed plots bordering the rewetted ones, so further colonisation of *Sphagna* in recently rewetted sites is expected. In both older rewetting sites, *Sphagnum* had almost total cover. In addition, in the oldest Kõrsa_R site, lawn *Sphagnum* species have created some relatively high hummocks and overgrow *E. vaginatum* tussocks. The AGP and IL of *Sphagnum* in the rewetted sites was similar to those reported by Ilomets (1982) in Estonian undisturbed peatlands, while we measured about double the production and somewhat higher IL of *Sphagna* on the undisturbed sites. This probably results from different methods
used for growth measurements (Pouliot et al. 2010), variations in weather conditions (Vitt 1990; Bengtsson et al. 2020) and species composition (Lindholm and Vasander 1990; Bengtsson et al. 2020).

4.2. Carbon dioxide fluxes

Both the undisturbed sites and the older rewetted sites were CO2 net sinks during the growing season, while the more recently rewetted site was still a CO2 source. Variations in CO2 fluxes between the rewetted sites are large due to differences in vegetation, weather and water levels — while some sites are important CO2 sinks (Tuittila et al. 1999; Beyer and Höper 2015; Wilson et al. 2016; Lee et al. 2017; Purre et al. 2019a), others could be small CO2 sources (Tuittila et al. 1999; Waddington and Warner 2001; Beyer and Höper 2015; Purre et al. 2019a). Although rewetted sites could be CO2 sources in the first decades after rewetting, they should become a CO2 net sink with time (Samaritani et al. 2011). Similar (Komulainen et al. 1999) or higher (Soini et al. 2010; Strack et al. 2016) CO2 net uptake on rewetted sites as in reference sites has been reported about ten years after rewetting, which is consistent with our results.

NEE in the rewetted sites is rather connected with differences in R_ECO than photosynthesis (Samaritani et al. 2011; Wilson et al. 2016). Similarly to our results from the Hara rewetted site, lower CO2 net uptake due to higher respiration has been reported from newly rewetted sites than from undisturbed bogs (Urbanová et al. 2012). In reverse, in the studies by Soini et al. (2010), Christen et al. (2016) and Strack et al. (2016), higher P_g compensated for high R_ECO, therefore leading to a higher CO2 net uptake on a rewetted site, which is consistent with our results from the Kõrsa_R.

CO2 fluxes and model parameters varied stronger between the measurement plots of the rewetted sites compared to undisturbed sites, as also reported by Soini et al. (2010), Laine et al. (2016) and Strack et al. (2016). This could likely be driven by larger variations in PFT cover in the rewetted sites. Unvegetated plots on rewetted sites remain CO2 sources (Wilson et al. 2016; Purre et al. 2019a) but measurement plots turn from a CO2 source to a sink with increasing plant cover (Strack et al. 2016; Purre et al. 2019a). Respiration on younger sites with still fragmented vegetation cover and lower diversity of plant species is largely influenced by peat temperature and water table depth, whereas those factors have a smaller effect on sites where vegetation has recovered well (Waddington and Warner 2001; Samaritani et al. 2011; Vanselow-Algan et al. 2015). Therefore, it could be expected that the CO2 sink function will increase and be more stable with secondary succession after rewetting, especially as the actual acrotelm is formed with time.

We detected some effect of site status on plant above-ground biomass, which on rewetted sites had a strong positive correlation with photosynthesis, whereas in undisturbed plots the correlation between plant biomass and P_g was insignificant. Similarly to our rewetted sites, Marinier et al. (2004) reported higher photosynthesis in plots with higher AGB, but plots with high AGB have also been reported to have higher R_ECO (Marinier et al. 2004; Strack et al. 2016; Brown et al. 2017). This was not the case in our rewetted sites, although in the undisturbed sites, R_ECO and vascular plant biomass had a strong positive
correlation. The lack of correlations between the \(R_{ECO} \) and vascular plant biomass on rewetted milled peatlands is probably due to the domination of heterotrophic respiration on such sites (Wilson et al. 2007b; Järveoja et al. 2016; Purre et al. 2019a). Laine et al. (2016), Strack et al. (2016) and Purre et al. (2019b) also reported interaction between peatland management (undisturbed, rewetted), PFTs and carbon sequestration. According to Järveoja et al. (2016), those correlations depend on water level depth — if the water level is high in restored milled peatlands, bryophyte cover correlates with NEE, \(P_g \) and autotrophic respiration, whereas with deeper water table \(CO_2 \) fluxes correlated with vascular plant cover. Therefore, the different correlations on rewetted and undisturbed sites are consistent with previous studies (Strack et al. 2016) and could be related to differences in water table height and fluctuations on sites with different management.

There are large differences in photosynthetic capacities between PFTs. In the undisturbed sites, we measured higher photosynthesis and maximum photosynthesis rates (\(P_{max} \)) in the case of higher \(E. \) vaginatum cover. Vascular plant, especially graminoid biomass, has a relatively large impact on NEE in comparison with their abundance (Laine et al. 2012; Hassanpour Fard et al. 2020), due to their high photosynthetic capacity (Komulainen et al. 1999; Kivimäki et al. 2008; Urbanová et al. 2012; Strack et al. 2014; Laine et al. 2016). As \(E. \) vaginatum was present or abundant on most of the rewetted plots, the lack of correlation between the sedge cover and photosynthesis on the rewetted sites was unexpected. In addition to having high maximum photosynthesis (\(P_{max} \)), this sedge species also has high light use efficiency (parameter k in the photosynthesis model) (Kivimäki et al. 2008) and high respiration rate (Jordan et al. 2016). Still, in the case of a high water table, rewetted sites with high \(E. \) vaginatum cover have a \(CO_2 \) net sink function, even in unfavourable habitat conditions such as the occasionally lower water table during drought periods (Tuittila et al. 1999).

In the rewetted sites, higher photosynthesis and \(P_{max} \) were measured with higher evergreen shrub cover. Evergreen shrubs stand out from other vascular plants with low photosynthesis and respiration rates (Laine et al. 2016), while in reverse Korrensalo et al. (2016) reported high maximum photosynthesis rates on evergreen shrubs like \(A. \) polifolia, \(C. \) vulgaris and \(V. \) oxycoccus, which are also present in the undisturbed sites and Kõrsa rewetted site in our study. According to Korrensalo et al. (2016), the \(P_{max} \) of evergreen shrubs varies between species belonging to the same PFT. Still, the cause of controversies between different studies remains unclear and can be result of a rather low number of measurements that do not cover the whole ecosystem variation.

High photosynthesis in the case of higher evergreen shrub cover in this study could also be connected with higher plant cover and the number of PFTs on the measurement plots in Kõrsa where evergreen shrubs were present. According to Kivimäki et al. (2008), the presence of different PFTs lowers the \(R_{ECO}/P_g \) ratio, so creating conditions for higher \(CO_2 \) net uptake as in Kõrsa, while in monostands of \(E. \) vaginatum this ratio is higher, which also explains a lower \(CO_2 \) net uptake, as well as \(CO_2 \) net emissions from the younger site in this study. According to Hassanpour Fard et al. (2020), the presence of some key species or PFTs either in monostand or in mixed community support the larger carbon accumulation
during the growing season than the mixed communities with a different number of PFTs lacking such certain species. Whereas most vascular plants, especially sedges, have high photosynthesis rates during summer when their LAI is highest, the importance of *Sphagnum* in CO$_2$ sequestration expresses itself during spring and autumn, when LAI$_{vasc}$ is low (Korrensalo et al. 2017).

In the rewetted sites, CO$_2$ net sink function was larger in plots with higher *Sphagnum* cover. *Sphagnum* has lower photosynthetic capacities than vascular plants (Laine et al. 2012; Christen et al. 2016; Korrensalo et al. 2016) and also low respiration rates (Waddington and Warner 2001; Laine et al. 2016), and by increasing soil moisture content, a *Sphagnum* carpet could reduce soil respiration (Waddington and Warner 2001). However, restoring the *Sphagnum* carpet may not be enough for CO$_2$ sequestering (Samaritani et al. 2011), especially as a newly formed *Sphagnum* carpet is sensitive to drier conditions (Tuittila et al. 2004). Therefore, constant high water tables are necessary, which support CO$_2$ accumulation of those sites early on after restoration activities (Günther et al. 2017).

Limitations of the study

This paper contributes to the growing but rather sparse knowledge base surrounding peatland restoration, engaging peatlands with different stages after rewetting and also several vegetation variables in addition to CO$_2$ flux measurements. However, some limitations of the study must be taken into account when considering the results. First, the study was conducted at a relatively low number of measurement points in the rewetted sites, especially in Hara$_{RN}$. This could have affected the statistical analysis results regarding CO$_2$ fluxes as well as the vegetation variables to some extent, especially in case of GLMMs. For each vegetation type in each site, there were two true replicates, and one (Hara$_{RN}$) or two (all other sites) dominant vegetation types were covered in each study site. Also, the different rewetted milled peatlands or their fields had different time since rewetting, therefore the site conditions could have been affected somewhat the conclusions about the effect of time since rewetted. Still according to GLMMs time since rewetting was the main factor explaining the CO$_2$ flux components on the rewetted study sites.

Second, the study covered only one growing season, so the annual balances of CO$_2$ cannot be derived from this. The CO$_2$ sequestration of the sites presented here are also strongly affected by weather conditions during that year, so they can differ from other years with varying conditions as shown at the Hara rewetted site by Purre et al. (2019a). Also, although all of the sites were open peatland sites, the CO$_2$ exchange and biomass related with scarce tree cover were not accounted for in any of the studied sites. In addition, uncertainties related to flux measurements and reconstructions could affect the source or sink function of the sites during the growing seasons, especially if fluxes are very low and uncertainties higher (Bubier et al. 1999).

Third, the methane emissions, along with dissolved organic carbon and dissolved inorganic carbon, were not measured from the study sites in this paper, as the general aim of the study was to analyse the differences in plant production parameters and PFT composition closely related with the CO$_2$ fluxes.
Therefore, the results presented here do not provide information about the full carbon balance of the sites, as methane emissions for such sites have been reported to be high (Strack et al. 2014, 2016; Vanselow-Algan et al. 2015; Beyer and Höper 2015; Günther et al. 2017). Within these limitations, we still hope the paper will be of interest for a wide audience of peatland ecologists.

Conclusion

Although vegetation structure on rewetted milled peatlands approaches this on reference sites with time, some plant functional types present in the undisturbed reference sites, e.g., shrubs, colonise these sites in the later development stages and hummock *Sphagnum* could be absent even decades after rewetting. Vegetation composition developing with time affects the carbon accumulation of rewetted sites. During the studied growing season, over a decade ago rewetted milled peatlands were carbon sinks similarly to the reference sites, whereas the most recently rewetted site was still a carbon source to the atmosphere. Although graminoids play an important role in the photosynthesis of rewetted sites, as they do in undisturbed reference bogs, the carbon accumulation of rewetted peatlands is related with development of the *Sphagnum* mat, which is present in the reference sites. A well-developed *Sphagnum* mat also reflects the development of other environmental variables, of a functioning acrotelm and the development of a C sink function. Thus, a well-developed *Sphagnum* lawn could be used as an indicator of successful restoration. However, general plant functional type composition can still differ from reference sites in some accounts even several decades after rewetting.

Declarations

Funding: No funding was received for conducting this study.
Conflicts of interests: The authors have no conflicts of interest to declare that are relevant to the content of this article.

Availability of data and material: The datasets generated and/or analysed during the current study are available from the corresponding author on reasonable request.

Code availability: The codes used for data modelling and analysis are available from the corresponding author upon reasonable request.

Author contributions: Both authors contributed to the study conception and design. Anna-Helena Purre conducted the material preparation, fieldwork, laboratory and data analysis, and she wrote the first draft of the manuscript. Mati Ilomets commented on previous versions of the manuscript. Both authors read and approved the final manuscript.

Animal Research (Ethics): Not applicable

Consent to Participate (Ethics): Not applicable

Consent to Publish (Ethics): Not applicable

Plant Reproducibility: Not applicable

Clinical Trials Registration: Not applicable

References

1. Andersen R, Pouliot R, Rochefort L (2013) Above-ground net primary production from vascular plants shifts the balance towards organic matter accumulation in restored Sphagnum Wetlands 33:811-821

2. Bengtsson F, Rydin H, Baltzer JL, Bragazza L, Bu Z-J, Caporn SJ, Dorrepaal E, Flatberg KI, Galanina O, Galka M, Ganeva A, Goia I, Goncharova N, Hájek M, Haraguchi A, Harris LI, Humphreys E, Jiroušek M, Kajukalo K, Karofeld E, Koronatova NG, Kosykh NP, Laine AM, Lamentowicz M, Lapshina E, Limpens J, Linkosalmi M, Ma J-Z, Mauritz M, Mitchell EAD, Munir TM, Natali SM, Natcheva R, Payne RJ, Philippov DA, Rice SK, Robinson S, Robroek BJM, Rochefort L, Singer D, Stenøien HK, Tuittila E-S, Vellak K, Waddington JM, Granath G (2020) Environmental drivers of Sphagnum growth in peatlands across the Holarctic region. J Ecol. DOI: 10.1111/1365-2745.13499

3. Beyer C, Höper H (2015) Greenhouse gas exchange of rewetted bog peat extraction sites and a Sphagnum cultivation site in northwest Germany. Biogeosciences 12:2101-2117

4. Brown C, Strack M, Price J (2017) The effects of water management on the CO₂ uptake of Sphagnum moss in a reclaimed peatland. Mires Peat 20:1-15

5. Bubier JL, Frolking S, Crill PM, Linder E (1999) Net ecosystem productivity and its uncertainty in a diverse boreal peatland. J Geophys Res Atmos 104:27683-27692
6. Bugnon J-L, Rochefort L, Price JS (1997) Field experiment of *Sphagnum* reintroduction on a dry abandoned peatland in Eastern Canada. Wetlands 17:513-517

7. Campbell DR, Rochefort L (2003) Germination and seedling growth of bog plants in relation to the recolonization of milled peatlands. Plant Ecol 169:71-84

8. Campbell DR, Rochefort L, Lavoie C (2003) Determining the immigration potential of plants colonizing disturbed environments: the case of milled peatlands in Quebec. J Appl Ecol 40:78-91

9. Christen A, Jassal RS, Black TA, Grant NJ, Hawthorne I, Johnson MS, Lee SC, Merkens M (2016) Summertime greenhouse gas fluxes from an urban bog undergoing restoration through rewetting. Mires Peat 17:1-24

10. Clymo RS (1970) The growth of *Sphagnum*: Methods of Measurement. J Ecol 58:13-49

11. González E, Henstra SW, Rochefort L, Bradfield GE, Poulin M (2013) Is rewetting enough to recover *Sphagnum* and associated peat-accumulating species in traditionally exploited bogs? Wetl Ecol Manag 22:49-62

12. Graf MD, Rochefort L, Poulin M (2008) Spontaneous revegetation of cutaway peatlands of North America. Wetlands 28(1):28-39

13. Granath G, Moore PA, Lukenbach MC, Waddington JM (2016) Mitigating wildfire carbon loss in managed northern peatlands through restoration. Sci Rep 6:28498.

14. Groeneveld EVG, Massé A, Rochefort L (2007) *Polytrichum strictum* as a Nurse-Plant in Peatland Restoration. Restor Ecol 15:709-719.

15. Günther A, Barthelmes A, Huth V, Joosten H, Jurasisinski G, Koebsch F, Couwenberg J (2020) Prompt rewetting of drained peatlands reduces climate warming despite methane emissions. Nat Commun 11:1644

16. Günther A, Jurasisinski G, Albrecht K, Gaudig G, Krebs M, Glatsel S (2017) Greenhouse gas balance of an establishing *Sphagnum* culture on a former bog grassland in Germany. Mires Peat 18:1-16

17. Hassanpour Fard G, Farries E, Bérubé V, Rochefort L, Strack M (2020) Key Species Superpose the Effect of Species Richness and Species Interaction on Carbon Fluxes in a Restored Minerotrophic Peatland. Wetlands 40:333-349

18. Ilomets M (1982) The productivity of *Sphagnum* communities and the rate of peat accumulation in Estonian bogs. In: Reim K and Pärn E (eds) Peatland ecosystems. Research into the plant cover of Estonian bogs and their productivity. Valgus, Tallinn, pp 102–116

19. Ingerpuu N, Vellak K (1998) Key of Estonian Bryophytes (Estonian). Tartu, Eesti Loodusfoto

20. Järveoja J, Peichl M, Maddison M, Soosaar K, Vellak K, Karofeld E, Teemusk A, Mander Ü (2016) Impact of water table level on annual carbon and greenhouse gas balances of a restored peat extraction area. Biogeosciences 13:2637-2651

21. Jordan S, Strömgren M, Fiedler J, Lundin L, Lode E, Nilsson T (2016) Ecosystem respiration, methane and nitrous oxide fluxes from ecotopes in a rewetted extracted peatland in Sweden. Mires Peat 17:1-23
22. Kandel TP, Lærke PE, Elsgaard L (2016) Effect of chamber enclosure time on soil respiration flux: A comparison of linear and non-linear flux calculation methods. Atmos Environ 141:245-254

23. Karofeld E, Müür M, Vellak K (2015) Factors affecting re-vegetation dynamics of experimentally restored extracted peatland in Estonia. Environ Sci Pollut Res 23:13706-13717

24. Kivimäki SK, Yli-Petäys M, Tuittila E-S (2008) Carbon sink function of sedge and Sphagnum patches in a restored cut-away peatland: increased functional diversity leads to higher production. J Appl Ecol 45: 921-929

25. Kløve B, Berglund K, Berglund Ö, Weldon S, Maljanen M (2017) Future options for cultivated Nordic peat soils: Can land management and rewetting control greenhouse gas emissions? Environ Sci Policy 69:85-93

26. Komulainen V-M, Tuittila E-S, Vasander H, Laine J (1999) Restoration of drained peatlands in southern Finland: initial effects on vegetation change and CO$_2$ J Appl Ecol 36:634-648

27. Konvalinková P, Prach K (2014) Environmental factors determining spontaneous recovery of industrially mined peat bogs: A multi-site analysis. Ecol Eng 69:38-45

28. Korrensalo A, Alekseychik P, Hájek T, Rinne J, Vesala T, Mehtätalo L, Mammarella I, Tuittila E-S (2017) Species-specific temporal variation in photosynthesis as a moderator of peatland carbon sequestration. Biogeosciences 14:257-269

29. Korrensalo A, Hájek T, Vesala T, Mehtätalo L, Tuittila E-S (2016) Variation in photosynthetic properties among bog plants. Botany 94:1127-1139

30. Korrensalo A, Kettunen L, Laiho R, Alekseychik P, Vesala T, Mammarella I, Tuittila E-S (2018) Boreal bog plant communities along a water table gradient differ in their standing biomass but not their biomass production. J Veg Sci 29:136-146

31. Kozlov SA, Lundin L, Avetov NA (2016) Revegetation dynamics after 15 years of rewetting in two extracted peatlands in Sweden. Mires Peat 18:1-17

32. Kuiper JJ, Mooij WM, Bragazza L, Robroek BJM (2014) Plant functional types define magnitude of drought response in peatland CO$_2$ exchange. Ecology 95:123-131

33. Laine AM, Bubier J, Riutta T, Nilsson MB, Moore TR, Vasander H, Tuittila E-S (2012) Abundance and composition of plant biomass as potential controls for mire net ecosystem CO$_2$ Botany 90:63-74

34. Laine AM, Tolvanen A, Mehtätalo L, Tuittila E-S (2016) Vegetation structure and photosynthesis respond rapidly to restoration in young coastal fens. Ecol Evol 6:6880-6891

35. Lavoie C, Grosvernier P, Girard M, Marcoux K (2003) Spontaneous revegetation of mined peatlands: An useful restoration tool? Wetl Ecol Manag 11(1-2): 97-107

36. Lee SC, Christen A, Black AT, Johnson MS, Jassal RS, Ketler R, Nesic Z, Merkens M (2017) Annual greenhouse gas budget for a bog ecosystem undergoing restoration by rewetting. Biogeosciences 14:2799-2814

37. Leht M 2010. Key of Estonian Plants. Tartu, Eesti Maaülikool: Eesti Loodusfoto
38. Leifeld J, Wüst-Galley C, Page S (2019) Intact and managed peatland soils as a source and sink of GHGs from 1850 to 2100. Nat Clim Change 9:945-947

39. Lindholm T, Vasander H (1990) Production of eight species of *Sphagnum* at Suurisuo mire, southern Finland. Ann Bot Fenn 27:145-157

40. Lucchese M, Waddington JM, Poulin M, Pouliot R, Rochefort L, Strack M (2010) Organic matter accumulation in a restored peatland: Evaluating restoration success. Ecol Eng 36:482-488

41. Marinier M, Glatzel S, Moore TR (2004) The role of cotton-grass (*Eriophorum vaginatum*) in the exchange of CO$_2$ and CH$_4$ at two restored peatlands, eastern Canada. Ecoscience 11:141-149

42. Masing V (1982) The plant cover of Estonian bogs. A structural analysis. In: Reim K, Pärn E (eds) Peatland ecosystems. Research into the plant cover of Estonian bogs and their productivity. Valgus, Tallinn, pp 50-92

43. McCarter CPR, Price JS (2015) The hydrology of the Bois-des-Bel peatland restoration: hydrophysical properties limiting connectivity between regenerated *Sphagnum* and remnant vacuum harvested peat deposit. Ecohydrology 8:173-187

44. Mežaka A, Priede A, Dobkeviča L, Bader MY (2018) Environmental controls of raised-bog vegetation in the Baltic boreo-nemoral zone. Folia Geobot. DOI 10.1007/s12224-017-9305-0

45. Minayeva T (2008). Peatlands and Biodiversity. In: Parish et al. (eds) - Assessment on Peatlands, Biodiversity and Climate Change: Main Report. Global Environment Centre, Kuala Lumpur and Wetlands International, Wageningen, pp 60-98

46. Moreno-Mateos D, Power ME, Comín FA, Yockteng R (2012) Structural and functional loss in restored wetland ecosystems. PLoS Biol 10:1-8

47. Moore TR, Bubier JL, Frolking SE, Lafleur PM, Roulet NT (2002) Plant biomass and production and CO$_2$ exchange in an ombrotrophic bog. J Ecol 90:25-36

48. Nugent KA, Strachan IB, Roulet NT, Strack M, Frolking S, Helbig M (2019). Prompt active restoration of peatlands substantially reduces climate impact. Environ Res Lett 14:124030

49. Nugent KA, Strachan IB, Strack M, Roulet NT, Rochefort L (2018) Multi-year net ecosystem carbon balance of a restored peatland reveals a return to carbon sink. Glob Chang Biol 24:5751-5768

50. Orru M (1995) Eesti Turbasood (Estonian mires). Eesti Geoloogiakeskus (Estonian Geological Survey), Tallinn

51. Orru M, Ots K, Orru H (2016) Re-vegetation processes in cutaway peat production fields in Estonia in relation to peat quality and water regime. Environ Monit Assess 188. DOI 10.1007/s10661-016-5669-5

52. Pinheiro J, Bates D, Debroy S, Sarkar D, R Core Team. (2015) nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-121.

53. Pouliot R, Marchand-Roy M, Rochefort, L, Gauthier G (2010) Estimating moss growth in arctic conditions: a comparison of three methods. Bryologist 113:322-332
54. Price J, Heathwaite AL, Baird AJ (2003) Hydrological processes in abandoned and restored peatlands: An overview of management approaches. Wetl Ecol Manag 11:65-83
55. Price J, Rochefort L, Quinty F (1998) Energy and moisture considerations on cutover peatlands: surface microtopography, mulch cover and Sphagnum Ecol Eng 10:293-312
56. Price J, Whitehead GS (2001) Developing hydrologic thresholds for Sphagnum recolonization on an abandoned cutover bog. Wetlands 21:32-40
57. Priede A, Mežaka A, Dobkeviča L, Grīnberga L (2016) Spontaneous revegetation of cutaway fens: can it result in valuable habitats? Mires Peat 18:1-14
58. Purre A-H, Ilomets M (2018) Relationships between bryophyte production and substrate properties in restored milled peatlands. Restor Ecol 26:858-864
59. Purre A-H, Pajula R, Ilomets M (2019a) Carbon dioxide sink function in restored milled peatlands - the significance of weather and vegetation. Geoderma 346:30-42
60. Purre A-H, Penttilä T, Ojanen P, Minkkinen K, Aurela M, Lohila A, Ilomets M (2019b) Carbon dioxide fluxes and vegetation structure in rewetted and pristine peatlands in Finland and Estonia. Boreal Environ Res 24:243-261
61. Ramst R, Orru M, Salo V, Halliste L (2007) Eesti mahajäetud turbatootmisalade revisjon. Etapp. Viljandi, Pärnu, Saare ja Hiiumaa maakond. OÜ Eesti Geoloogiakeskus, Tallinn
62. Rankin T, Strachan IB, Strack M (2018) Carbon dioxide and methane exchange at a post-extraction, unrestored peatland. Ecol Eng 122:241-251
63. Renou-Wilson F, Moser G, Fallon D, Farrell CA, Müller C, Wilson D (2018) Rewetting degraded peatlands for climate and biodiversity benefits: Results from two raised bogs. Ecol Eng DOI 10.1016/j.ecoleng.2018.02.014.
64. Rochefort L (2000) Sphagnum – A keystone genus in habitat restoration. Bryologist 103:503-508
65. Rochefort L, Quinty F, Campeau S, Johnson K, Malterer T (2003) North American approach to the restoration of Sphagnum dominated peatlands. Wetl Ecol Manag 11:3-20
66. Samaritani E, Siegenthaler A, Yli-Petäys M, Buttler A, Christin P-A, Mitchell EAD (2011) Seasonal net ecosystem carbon exchange of a regenerating cutaway bog: How long does it take to restore the C-sequestration function? Restor Ecol 19:440-449
67. Soini P, Riutta T, Yli-Petäys M, Vasander H (2010) Comparison of vegetation and CO₂ dynamics between a restored cut-away peatland and a pristine fen: Evaluation of the restoration success. Restor Ecol 18:894-903
68. Strack M, Cagampan J, Hassanpour Fard G, Keith AM, Nugent K, Rankin T, Robinson C, Strachan IB, Waddington JM, Xu B (2016) Controls on plot-scale growing season CO₂ and CH₄ fluxes in restored peatlands: Do they differ from unrestored and natural sites? Mires Peat 17: 1-18
69. Strack M, Keith AM, Xu B (2014) Growing season carbon dioxide and methane exchange at a restored peatland on the Western Boreal Plain. Ecol Eng 64:231-239
70. Tuittila E-S, Komulainen V-M, Vasander H, Laine J (1999) Restored cut-away peatland as a sink for atmospheric CO$_2$. Oecol 120:563-574
71. Tuittila E-S, Vasander H, Laine J (2004) Sensitivity of C Sequestration in Reintroduced Sphagnum to Water-Level Variation in a Cutaway Peatland. Restor Ecol 12:483-493
72. Tuittila E-S, Vasander H, Laine J (2000) Impact of rewetting on the vegetation of a cut-away peatland. App Veg Sci 3:205-212
73. Urbanová Z, Picek T, Hájek T, Bufková I, Tuittila, E-S (2012) Vegetation and carbon gas dynamics under a changed hydrological regime in central European peatlands. Plant Ecol Divers 5:89-103
74. Vaneslow-Algan M, Schmidt SR, Greven M, Fiencke C, Kutzbach L, Pfeiffer E.-M (2015) High methane emissions dominated annual greenhouse gas balances 30 years after bog rewetting. Biogeosciences 12:4361-4371
75. Vitt DH (1990) Growth and production dynamics of boreal mosses over climatic, chemical and topographic gradients. Bot J Linn Soc 104:35-59
76. Waddington JM, Lucchese MC, Duval TP (2011) Sphagnum moss moisture retention following the re-vegetation of degraded peatlands. Ecohydrology 4:359-366
77. Waddington JM, Warner KD (2001) Atmospheric CO$_2$ sequestration in restored mined peatlands. Ecoscience 8:359-368
78. Wilson D, Alm J, Riutta T, Laine J, Byrne KA, Farrell EP, Tuittila E-S (2007a) A high resolution green area index for modelling the seasonal dynamics of CO$_2$ exchange in peatland vascular plant communities. Plant Ecol 190:37-51
79. Wilson D, Farrell CA, Fallon D, Moser G, Müller C, Renou-Wilson F (2016) Multiyear greenhouse gas balances at a rewetted temperate peatland. Glob Chang Biol 22:4080-4095
80. Wilson D, Tuittila E-S, Alm J, Laine J, Farrell EP, Byrne KA (2007b) Carbon dynamics of a restored maritime peatland. Ecoscience 14:71-80
81. Yu ZC (2012) Northern peatland carbon stocks and dynamics: a review. Biogeosciences 9:4071-4085

Figures
Figure 1

Kõrsa (a) and Hara (b) undisturbed reference sites, Kõrsa 35 years before rewetted (c) sites, and Hara rewetted fields 15 (d) and 4 (e) years after rewetting, respectively.
Figure 2

Average cover (in %) of vascular plant (a) and bryophyte (b) plant functional types of the study sites (±SE). Different small case letters indicate statistically significant differences between the sites (p < 0.05). Statistical significance was tested using the Kruskal-Wallis test, and pairwise comparison was concluded using the Mann-Whitney test with Bonferroni correction.
Figure 3

Cumulative reconstructed growing season CO2 fluxes in study sites ±SE. Different lower-case letters indicate a statistically significant (p < 0.05) difference in NEE between the sites. The statistical significance was tested using the Kruskal-Wallis test, and pairwise comparison was concluded with the Mann-Whitney test and Bonferroni correction. NEE = Pg – RECO, note that Pg and RECO are always positive for clarity.
Figure 4

Redundancy analysis of plant functional type cover, CO2 fluxes (NEE, Pg, RECO) and CO2 model parameters (Pmax, k, s, r0, b) in the undisturbed (a) and rewetted (b) sites. Only plant functional types, which are significant predictors explaining CO2 fluxes and model parameters, are shown. Minerotrophic forbs and true mosses in the case of undisturbed sites, and ombrotrophic forbs and hummock Sphagnum in the case of rewetted sites, were omitted from the analysis due to their absence from the
respective sites. NEE – net ecosystem exchange, Pg – gross photosynthesis, RECO – ecosystem respiration, ombro_sedge – ombrotrophic sedges, Minero_forb – minerotrophic forbs, True_moss – true mosses, Lawn_Sph – lawn Sphagnum

Figure 5

Bryophyte (a), plant (b) and vascular plant (c) biomass related with average growing season photosynthesis (a, b), and ecosystem respiration (c) in rewetted and undisturbed plots
Figure 6

Detrended correspondence analysis (DCA) of plant functional types and CO2 fluxes (NEE, Pg, RECO) and its model parameters (Pmax, k, s, r0, b) in the study sites. The eigenvalues for the first and second axes are 0.181 and 0.067, respectively. NEE – net ecosystem exchange, Pg – gross photosynthesis, RECO – ecosystem respiration, Ombro_sedge – ombrotrophic sedges, Omb_forb – ombrotrophic forbs, Minero_forb – minerotrophic forbs, Ever_shrub – evergreen shrubs, True_moss – true mosses, Lawn_Sph – lawn Sphagnum, Hummock_Sph – hummock Sphagnum

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Supplements.docx