SHIMURA CURVES EMBEDDED IN IGUSA’S THREEFOLD

VICTOR ROTGER

Abstract. Let \mathcal{O} be a maximal order in a totally indefinite quaternion algebra over a totally real number field. In this note we study the locus $Q_\mathcal{O}$ of quaternionic multiplication by \mathcal{O} in the moduli space A_g of principally polarized abelian varieties of even dimension g with particular emphasis in the two-dimensional case. We describe $Q_\mathcal{O}$ as a union of Atkin-Lehner quotients of Shimura varieties and we compute the number of irreducible components of $Q_\mathcal{O}$ in terms of class numbers of CM-fields.

Introduction

Let A be an abelian variety over a fixed algebraic closure $\overline{\mathbb{Q}}$ of the field of rational numbers. By Poincaré’s Decomposition Theorem, the algebra of endomorphisms $\text{End}(A) \otimes \mathbb{Q}$ of A decomposes as a direct sum

$$\text{End}(A) \otimes \mathbb{Q} \simeq \bigoplus_{i=1}^s M_{n_i}(B_i)$$

of matrix algebras over a division algebra B_i.

The ranks $[B_i : \mathbb{Q}]$ are bounded in terms of the dimension of A and, by a classical theorem of Albert, the algebras B_i are isomorphic to either a totally real field, a quaternion algebra over a totally real field or a division algebra over a CM-field (cf. [8], [7]).

We will focus our attention on abelian varieties with totally indefinite quaternionic multiplication. More precisely, let F be a totally real number field of degree $[F : \mathbb{Q}] = n \geq 1$, let R_F be its ring of integers and let ϑ_F denote the different ideal of F over \mathbb{Q}. We also let $F^*_+ = F^*_+ \cap F^*_+$.

Let B be a totally indefinite division quaternion algebra over F, i.e. a division algebra of rank 4 over F such that $B \otimes_{\mathbb{Q}} \mathbb{R} \simeq \bigoplus_{i=1}^n M_2(\mathbb{R})$, and let $\text{disc}(B)$ denote the reduced discriminant ideal of B. We assume for simplicity that ϑ_F and $\text{disc}(B)$ are coprime ideals of F. Since B is totally indefinite and division, it follows from [10] that $\text{disc}(B) = \vartheta_1 \cdots \vartheta_{2r}$ for pairwise different prime ideals ϑ_i of F and $r \geq 1$.

We shall denote by $n = n_{B/F}$ and $\text{tr} = \text{tr}_{B/F}$ the reduced norm and reduced trace on B, respectively. For any subset O of B, we shall write $O_0 = \{\beta \in O : \text{tr}(\beta) = 0\}$

Partially supported by a grant FPI from Ministerio de Educación y Ciencia and by Ministerio de Ciencia y Tecnología BFM2000-0627

1991 Mathematics Subject Classification. 11G18, 14G35.

Key words and phrases. Shimura variety, moduli space, abelian variety, quaternion algebra.
for the set of pure quaternions of O. We shall also use the notation $O_+ = \{\beta \in O : n(\beta) \in F^*_+\}$ and $O^1 = \{\beta \in O : n(\beta) = 1\}$.

Finally, let O be a maximal order in B and let $\vartheta(O) = \{\mu \in O : \text{disc}(B)|n(\mu)\}$ denote the reduced different of O over R_F. This is a two-sided ideal of O such that $n(\vartheta(O)) \cdot R_F = \text{disc}(B)$.

Let A_g/\mathbb{Q} be the moduli space of principally polarized abelian varieties of dimension $g = 2n$. We let $[(A, \mathcal{L})]$ denote the isomorphism class of a principally polarized abelian variety (A, \mathcal{L}) regarded as a closed point in A_g.

It is our aim to investigate the nature of the quaternionic locus $Q_O \subset A_g(\mathbb{C})$ of isomorphism classes of complex principally polarized abelian varieties $[(A, \mathcal{L})]$ of dimension g such that $\text{End}(A) \supseteq O$.

A reformulation of Proposition 6.2 in [10] yields that the quaternionic locus Q_O is nonempty if and only if $\text{disc}(B)$ is a totally positive principal ideal of F. In consequence, for the sake of clarity of the exposition, we will assume throughout these notes that the narrow class number of F is $h_+(F) = 1$. This automatically implies the nonemptiness of Q_O.

Acknowledgements. I am grateful to A. Arenas for some useful comments and correspondence.

1. ABELIAN VARIETIES WITH QUATERNIONIC MULTIPLICATION

As a first step in the study of the quaternionic locus Q_O in the moduli space A_g, it is necessary to understand the geometry of the objects that Q_O parametrizes. Let us review some of the results that were accomplished in [10] in this direction.

Definition 1.1. An abelian variety with quaternionic multiplication by O over $\overline{\mathbb{Q}}$ is an abelian variety $A/\overline{\mathbb{Q}}$ such that $\text{End}(A) \simeq O$ and $\dim(A) = 2[F : \mathbb{Q}] = 2n$.

Let A be an abelian variety with quaternionic multiplication by O over $\overline{\mathbb{Q}}$ and let $\text{NS}(A)$ denote the free \mathbb{Z}-module of rank $3n = 3g/2$ of line bundles on A up to algebraic equivalence. We say that two line bundles $\mathcal{L}, \mathcal{L}' \in \text{NS}(A)$ are isomorphic if there exists an automorphism $\alpha \in \text{Aut}(A) \simeq O^*$ such that $\mathcal{L}' = \alpha^*(\mathcal{L})$.

Theorem 1.2. Let $A/\overline{\mathbb{Q}}$ be an abelian variety with quaternion multiplication by O and let $\iota : O \simeq \text{End}(A)$ be a fixed isomorphism of rings. Then, there is an isomorphism of groups

\[
\text{NS}(A) \xrightarrow{\sim} \vartheta(O)_0,
\]

\[
\mathcal{L} \mapsto c_1(\mathcal{L}) = \mu
\]

between the Néron-Severi group of A and the group of pure quaternions of the reduced different $\vartheta(O)$ of O.
Moreover, for any two non trivial line bundles \(L, L' \in \text{NS}(A) \), let \(\mu = c_1(L) \) and \(\mu' = c_1(L') \). Then we have that

1. \(L \cong L' \) if and only if there exists \(\alpha \in \mathcal{O}^* \) such that \(\mu' = \overline{\alpha}\mu\alpha \).

2. \(\deg(L) = \deg(\varphi_L : A \to \hat{A})^{1/2} = N_{\mathbb{F}/\mathbb{Q}}(n(\mu)/D) \).

3. \(L \) is a polarization if and only if \(n(\mu) \in \mathcal{F}^* \) and \(\mu \) is ample (cf. [10], §5).

4. The Rosati involution on \(\mathcal{O} \cong \text{End}(A) \) with respect to \(L \) is

\[
\circ : \mathcal{O} \to \mathcal{O} \\
\beta \mapsto \mu^{-1}\overline{\beta}\mu
\]

Let us write the isomorphism \(c_1 \) in more explicit terms. Fix an immersion of \(\mathbb{Q} \) into the field \(\mathbb{C} \) of complex numbers and let \(A(\mathbb{C}) = V/\Lambda \) for some complex vector space \(V \) and a lattice \(\Lambda \). Upon the choice of an isomorphism \(\iota : \mathcal{O} \cong \text{End}(A) \), the lattice \(\Lambda \) is naturally a left \(\mathcal{O} \)-module and, since \(h(F) = h_+(F) = 1 \), by a theorem of Eichler [2] we know that \(\Lambda \cong \mathcal{O} \).

By the Appell-Humbert Theorem, a line bundle \(L \in \text{NS}(A) \) on \(A \) can be regarded as a Riemann form \(E : \Lambda \times \Lambda \to \mathbb{Z} \) on \(V \). Let us identify \(\Lambda = \mathcal{O} \) through a fixed isomorphism and let \(t \in F^* \) be any generator of the principal ideal \(\vartheta_F \). Then, the inverse isomorphism \(c_{1}^{-1} : \vartheta(\mathcal{O})_0 \xrightarrow{\sim} \text{NS}(A) \) maps a pure quaternion \(\mu \) to the Riemann form \(E_{\mu} : \mathcal{O} \times \mathcal{O} \to \mathbb{Z}, (\beta_1, \beta_2) \mapsto -\text{tr}_{\mathbb{F}/\mathbb{Q}}(\text{tr}(\mu\beta_1\overline{\beta}_2)/n(\mu)) \).

Remark 1.3. The isomorphism \(c_1 \) is canonical in the sense that it does not depend on the choice of any polarization on \(A \). However, we warn the reader that it does depend on the choice of the isomorphism \(\iota : \mathcal{O} \cong \text{End}(A) \).

Theorem 1.4. Let \(A \) be an abelian variety over \(\mathbb{Q} \) with quaternionic multiplication by \(\mathcal{O} \). Let \(D \in F^*_+ \) be a totally positive generator of \(\text{disc}(B) \).

Then, \(A \) is principally polarizable and the number of isomorphism classes of principal polarizations on \(A \) is

\[
\pi_0(A) = \frac{1}{2} \sum_S h(S),
\]

where \(S \) runs among the set of orders in the CM-field \(F(\sqrt{-D}) \) that contain \(R_F[\sqrt{-D}] \) and \(h(S) \) denotes its class number.

2. Shimura varieties

As in the preceding sections, let \(B \) be a totally indefinite division quaternion algebra over a totally real field \(F \) of trivial narrow class number. Let \(\hat{D} \in F^*_+ \) be a totally positive generator of \(\text{disc}(B) \).

Definition 2.1. A principally polarized maximal order of \(B \) is a pair \((\mathcal{O}, \mu)\) where \(\mathcal{O} \subset B \) is a maximal order and \(\mu \in \mathcal{O} \) is a pure quaternion such that \(\mu^2 + uD = 0 \) for some \(u \in R_{F,+}^* \).
Attached to a principally polarized maximal order \((\mathcal{O}, \mu)\) there is the following moduli problem over \(\mathbb{Q}\): classifying isomorphism classes of triplets \((A, \iota, \mathcal{L})\) given by

- An abelian variety \(A\) of dimension \(g = 2n\).
- A ring homomorphism \(\iota: \mathcal{O} \hookrightarrow \text{End}(A)\).
- A principal polarization \(\mathcal{L}\) on \(A\) such that

\[
\iota(\beta) \circ = \iota(\mu^{-1} \beta \mu)
\]

for any \(\beta \in \mathcal{O}\), where \(\circ: \text{End}(A) \to \text{End}(A)\) is the Rosati involution with respect to \(\mathcal{L}\).

A triplet \((A, \iota, \mathcal{L})\) will be referred to as a polarized abelian variety with multiplication by \(\mathcal{O}\). Two triplets \((A_1, \iota_1, \mathcal{L}_1), (A_2, \iota_2, \mathcal{L}_2)\) are isomorphic if there exists an isomorphism \(\alpha \in \text{Hom}(A_1, A_2)\) such that \(\alpha \iota_1(\beta) = \iota_2(\beta) \alpha\) for any \(\beta \in \mathcal{O}\) and \(\alpha^*(\mathcal{L}_2) = \mathcal{L}_1 \in \text{NS}(A_1)\). Note also that, since a priori there is no canonical structure of \(R_F\)-algebra on \(\text{End}(A)\), the immersion \(\iota: \mathcal{O} \hookrightarrow \text{End}(A)\) is just a homomorphism of rings.

As it was proved by Shimura, the corresponding moduli functor is coarsely represented by an irreducible and reduced quasi-projective scheme \(X_\mu/\mathbb{Q}\) over \(\mathbb{Q}\) and of dimension \(n = [F: \mathbb{Q}]\). Moreover, since \(B\) is division, the Shimura variety \(X_\mu\) is complete (cf. [14], [15]).

Let \(\mathfrak{H} = \{z \in \mathbb{C} : \text{Im}(z) > 0\}\) denote the upper half plane. Complex analytically, the manifold \(X_\mu(\mathbb{C})\) can be described independently of the choice of \(\mu\) as the quotient

\[
\mathcal{O}^1 \backslash \mathfrak{H}^n \simeq X_\mu(\mathbb{C})
\]

of the symmetric space \(\mathfrak{H}^n\) by the action of the group \(\mathcal{O}^1\) regarded suitably as a discontinuous subgroup of \(\text{SL}_2(\mathbb{R})^n\). See [11] for details.

In addition, we are also interested in the Hilbert modular reduced scheme \(H_F/\mathbb{Q}\) that coarsely represents the functor attached to the moduli problem of classifying principally polarized abelian varieties \(A\) of dimension \(g\) together with an homomorphism \(R_F \hookrightarrow \text{End}(A)\). The Hilbert modular variety \(H_F\) has dimension \(3n\) and \(H_F(\mathbb{C})\) is the quotient of \(n\) copies of the three-dimensional Siegel half space \(\mathfrak{H}_2\) by a suitable discontinuous group (cf. [14], [7]).

Notice that, when \(F = \mathbb{Q}\), \(H_F = A_2\) is Igusa’s three-fold, the moduli space of principally polarized abelian surfaces.

There are natural morphisms

\[
\pi: \quad X_\mu \quad \xrightarrow{\pi_F} \quad H_F \quad \quad \quad \rightarrow \quad A_g
\]

\[
(A, \iota, \mathcal{L}) \quad \mapsto \quad (A, \iota\mid_{R_F}, \mathcal{L}) \quad \mapsto \quad (A, \mathcal{L})
\]
from the Shimura variety \mathfrak{X}_μ to the Hilbert modular variety H_F and the moduli space A_g that consist of gradually forgetting the quaternionic endomorphism structure. These morphisms are representable, proper and defined over the field \mathbb{Q} of rational numbers.

As it will be convenient for our purposes in the rest of this paper, we introduce the variety $\tilde{\mathfrak{X}}_\mu = \pi(\mathfrak{X}_\mu)$ to be the image of the Shimura variety \mathfrak{X}_μ attached to a pure quaternion $\mu \in \mathcal{O}$ with $\mu^2 + uD = 0$ for some $u \in R_{F,+}$ in the moduli space A_g by the forgetful map π. It is important to remark that although the complex analytical structure of \mathfrak{X}_μ does not depend on the choice of μ, the construction of the forgetful map π and the subvariety $\tilde{\mathfrak{X}}_\mu$ of A_g do.

The varieties $\tilde{\mathfrak{X}}_\mu$ are reduced, irreducible, complete and possibly singular schemes over \mathbb{Q} of dimension n. The set of singularities of $\tilde{\mathfrak{X}}_\mu$ is a finite set and all the singularities are of quotient type (cf. [3] for the terminology).

3. The birational class of the forgetful maps

It is our aim now to describe the forgetful maps $\pi : \mathfrak{X}_\mu \rightarrow H_F \rightarrow A_g$ as the projection of the Shimura varieties \mathfrak{X}_μ onto their quotient by suitable Atkin-Lehner groups up to a birational equivalence. The following groups of Atkin-Lehner involutions were introduced in [12]. We keep the notations and assumptions of the Introduction.

Definition 3.1. The Atkin-Lehner group W of the maximal order \mathcal{O} is

$$W = \text{Norm}_{B,+}(\mathcal{O})/F^* \cdot \mathcal{O}^1.$$

It was shown in [11] that $W \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2^r \times \mathbb{Z}/2\mathbb{Z}$, where $2r$ is the number of ramified prime ideals of B.

Definition 3.2. Let (\mathcal{O}, μ) be a principally polarized maximal order in B. A twist of (\mathcal{O}, μ) is an element $\chi \in \mathcal{O} \cap \text{Norm}_{B,+}(\mathcal{O})$ such that $\chi^2 + n(\chi) = 0$ and $\mu \chi = -\chi \mu$.

In other words, a twist of (\mathcal{O}, μ) is a pure quaternion $\chi \in \mathcal{O} \cap \text{Norm}_{B,+}(\mathcal{O})$ such that

$$B = F + F_\mu + F_\chi + F_{\mu \chi} = (\frac{-uD, -n(\chi)}{F}).$$

We say that a principally polarized maximal order (\mathcal{O}, μ) in B is twisting if it admits some twist χ in \mathcal{O}. We say that a maximal order \mathcal{O} is twisting if there exists $\mu \in \mathcal{O}$ such that (\mathcal{O}, μ) is a twisting principally polarized order. Finally, we say that B is twisting if there exists a twisting maximal order \mathcal{O} in B. Note that B is twisting if and only if $B \simeq (\frac{-uD, m}{F})$ for some $u \in R_{F,+}$ and $m \in F^*$ such that $m|D$.

Definition 3.3. A twisting involution $\omega \in W$ of (\mathcal{O}, μ) is an Atkin-Lehner involution such that $[\omega] = [\chi] \in W$ is represented in B^* by a twist χ of (\mathcal{O}, μ).
We let $V_0 = V_0(\mathcal{O}, \mu)$ denote the subgroup of W generated by the twisting involutions of (\mathcal{O}, μ). For a principally polarized maximal order (\mathcal{O}, μ), let $R_\mu = F(\mu) \cap \mathcal{O}$ and let $\Omega = \Omega(R_\mu) = \{ \xi \in R_\mu : \xi^f = 1, f \geq 1 \}$ denote the finite group of roots of unity in the CM-quadratic order R_μ over R_F.

Definition 3.4. The *stable group* of (\mathcal{O}, μ) is the subgroup

$$W_0 = U_0 \cdot V_0$$

of W generated by

$$U_0 = U_0(\mathcal{O}, \mu) = \text{Norm}_{F(\mu)^*}(\mathcal{O})/F^* \cdot \Omega(R_\mu),$$

and the group V_0 of twisting involutions of (\mathcal{O}, μ).

As it was also shown in [11], for any principally polarized maximal order (\mathcal{O}, μ), there are natural monomorphisms of groups $V_0 \subseteq W_0 \subseteq W \subseteq \text{Aut}_\mathbb{Q}(\mathcal{X}_\mu) \subseteq \text{Aut}_\mathbb{Q}(\mathcal{X}_\mu \otimes \bar{\mathbb{Q}})$. The question whether the two latter immersions are actually isomorphisms was studied by the author for the case of Shimura curves in [9].

The following was proved in [11].

Theorem 3.5. Let (\mathcal{O}, μ) be a principally polarized maximal order in B and let \mathcal{X}_μ be the Shimura variety attached to it. Then there is a commutative diagram of finite maps

$$\mathcal{X}_\mu \xymatrix{ \ar[r]^-{\pi_F} & \mathcal{H}_F \ar[d]_{b_F}^\sim \ar@/_{1.5pc}/[dd] \ar@/^1.5pc/[dd] \ar[r]^-{b_F^{-1}} & \mathcal{X}_\mu/W_0, \ar@/_{1.5pc}/[dd] \ar@/^1.5pc/[dd] }$$

where $\mathcal{X}_\mu \to \mathcal{X}_\mu/W_0$ is the natural projection and $b_F : \mathcal{X}_\mu/W_0 \to \pi_F(\mathcal{X}_\mu)$ is a birational morphism from \mathcal{X}_μ/W_0 onto the image of \mathcal{X}_B in \mathcal{H}_F.

The domain of definition of b_F^{-1} is $\pi_F(\mathcal{X}_\mu) \setminus \mathcal{T}_F$, where \mathcal{T}_F is a finite set (of Heegner points).

4. The Quaternionic Locus

As above, we let \mathcal{O} be a maximal order in a totally indefinite division quaternion algebra B over a totally real field F of trivial narrow class number and we fix a generator $D \in F_+^*$ of disc(B).

It is the aim of this section to use the preceding results to study the quaternionic locus $Q_\mathcal{O}$ in $\mathcal{A}_g(\mathbb{C})$. As we mentioned in the Introduction, since $h_+^*(F) = 1$, the set $Q_\mathcal{O}$ is not empty.

Definition 4.1. A Heegner point in $Q_\mathcal{O}$ is an isomorphism class $[(A, \mathcal{L})]$ of a principally polarized abelian variety such that $\text{End}(A) \supseteq \mathcal{O}$.
According to the Definitions \([14]\) and \([15]\) we note that \(Q_\mathcal{O}\) is the disjoint union of the set of principally polarized abelian varieties \([\mathcal{A}, \mathcal{L}]\) with quaternionic multiplication by \(\mathcal{O}\) and the set of Heegner points. The former is a subset of \(Q_\mathcal{O}\) whose closure with respect to the analytical topology is \(Q_\mathcal{O}\) itself. The latter is also a dense but discrete subset of \(Q_\mathcal{O}\) (cf. \([15]\)).

In order to understand the nature of the locus \(Q_\mathcal{O}\), we observe that for any principally polarized pair \((\mathcal{O}, \mu)\), the set \(\tilde{\mathbf{X}}_\mu(\mathbb{C})\) of complex points of the Shimura variety \(\tilde{\mathbf{X}}_\mu/\mathbb{Q}\) attached to \((\mathcal{O}, \mu)\) sits inside \(Q_\mathcal{O}\).

Proposition 4.2. Let \(\mu, \mu' \in \mathcal{O}_0\) be two pure quaternions such that \(n(\mu) = uD\) and \(n(\mu') = u'D\) for some units \(u, u' \in R_{F^+}^*\). If \(\tilde{\mathbf{X}}_\mu(\mathbb{C})\) and \(\tilde{\mathbf{X}}_{\mu'}(\mathbb{C})\) are different subvarieties of \(\mathcal{A}_g(\mathbb{C})\), then \(\tilde{\mathbf{X}}_\mu(\mathbb{C}) \cap \tilde{\mathbf{X}}_{\mu'}(\mathbb{C})\) is a finite set of Heegner points.

Proof. Assume that the isomorphism class \([\mathcal{A}, \mathcal{L}]\) of a principally polarized abelian variety falls at the intersection of \(\tilde{\mathbf{X}}_\mu\) and \(\tilde{\mathbf{X}}_{\mu'}\) in \(\mathcal{A}_g\). Write \([\mathcal{A}, \mathcal{L}] = \pi([\mathcal{A}, \iota, \mathcal{L}]) = \pi([\mathcal{A}', \iota', \mathcal{L}'])\) as the image by \(\pi\) of points in \(\mathbf{X}_\mu\) and \(\mathbf{X}_{\mu'}\), respectively. Since \([\mathcal{A}, \mathcal{L}] = ([\mathcal{A}', \mathcal{L}'])\) \(\in Q_\mathcal{O}\), we can identify the pair \((\mathcal{A}, \mathcal{L}) = (\mathcal{A}', \mathcal{L}')\) through a fixed isomorphism of polarized abelian varieties.

Let us assume that \([\mathcal{A}, \mathcal{L}] = [\mathcal{A}', \mathcal{L}']\) was not a Heegner point. Then \(\iota: \mathcal{O} \simeq \text{End}(\mathcal{A})\) would be an isomorphism of rings such that \(c_1(\mathcal{L}) = \mu\). We then would have by Theorem \([12]\) \(\S 4\), that \(c_1(\mathcal{L}) = c_1(\mathcal{L}') = \mu = \mu'\) up to multiplication by elements in \(F^*\). Since \(\tilde{\mathbf{X}}_\mu = \tilde{\mathbf{X}}_{u\mu}\) for all units \(u \in R_{F^+}^*\), this would contradict the statement. Since the set of Heegner points in \(\mathcal{A}_g(\mathbb{C})\) is discrete, we conclude that any two irreducible components of \(Q_\mathcal{O}\) meet at a finite set of Heegner points. \(\square\)

Proposition 4.3.

1. The locus \(Q_\mathcal{O}\) is the set of complex points \(Q_\mathcal{O}(\mathbb{C})\) of a reduced complete subscheme \(Q_\mathcal{O}\) of \(\mathcal{A}_g\) defined over \(\mathbb{Q}\).

2. Let \(\rho(\mathcal{O})\) be the number of absolutely irreducible components of \(Q_\mathcal{O}\). Then there exist quaternions \(\mu_k \in \mathcal{O}_0\) with \(\mu_k^2 + u_kD = 0\) for \(u_k \in R_{F^+}^*\), \(1 \leq k \leq \rho(\mathcal{O})\), such that

\[
Q_\mathcal{O} = \bigcup \tilde{\mathbf{X}}_{\mu_k}.
\]

is the decomposition of \(Q_\mathcal{O}\) into irreducible components.

Proof. Let \([\mathcal{A}, \mathcal{L}] \in Q_\mathcal{O}\) be the isomorphism class of a complex principally polarized abelian variety such that \(\text{End}(\mathcal{A}) \simeq \mathcal{O}\). Fix an isomorphism \(\iota: \mathcal{O} \simeq \text{End}(\mathcal{A})\). By Theorem \([12]\) \(\S 4\), the Rosati involution with respect to \(\mathcal{L}\) on \(\mathcal{O}\) must be of the form \(\theta_\mu: \mathcal{O} \to \mathcal{O}, \beta \mapsto \mu^{-1}\beta\mu\) for some \(\mu \in \mathcal{O}\) with \(\mu^2 + uD = 0\), \(u \in R_{F^+}^*\). Thus \([\mathcal{A}, \mathcal{L}] = \pi([\mathcal{A}, \iota, \mathcal{L}])\) \(\in \tilde{\mathbf{X}}_\mu(\mathbb{C})\), namely the set of complex points on a reduced, irreducible, complete and possibly singular scheme over \(\mathbb{Q}\) (cf. \([14]\), \([15]\)). Since the set of Heegner points \([\mathcal{A}, \mathcal{L}] \in \tilde{\mathbf{X}}_\mu(\mathbb{C})\) is a discrete set which lies on the Zariski closure of its complement, we conclude that \(Q_\mathcal{O}\) is the union of the
Shimura varieties $\tilde{X}_\mu(C)$ as μ varies among pure quaternions satisfying the above properties.

Let us now show that Q_O is actually covered by finitely many pairwise different Shimura varieties. Let A/C be an arbitrary abelian variety with quaternionic multiplication by O and fix an isomorphism $\iota : O \simeq \text{End}(A)$.

Let (O, μ) be any principally polarized pair. Since $h_+(F) = 1$, there exists a unit $u \in R_F^*$ such that $u\mu$ is an ample quaternion in the sense of [10], §5. Let $L \in \text{NS}(A)$ be the line bundle on A such that $c_1(L)^{-1} = u\mu$. From Theorem 1.2 it follows that L is a principal polarization on A such that the isomorphism class of the triplet (A, ι, L) corresponds to a closed point in $X_\mu(C)$ and hence $[A, L] \in \tilde{X}_\mu$.

Since, by Proposition 4.2, the intersection points of two different Shimura varieties $\tilde{X}_\mu(C)$ and $\tilde{X}_{\mu'}(C)$ in $\mathcal{A}_{g}(C)$ are Heegner points, this shows that for every irreducible component of Q_O there exists at least one principal polarization L on A such that $[A, L]$ lies on it. Consequently, the number $\pi_0(A)$ of isomorphism classes of principal polarizations on A is an upper bound for the number $\rho(O)$ of irreducible components of Q_O. Since, by Theorem 1.4 the number $\pi_0(A)$ is a finite number, this yields the proof of the proposition. \square

In view of Proposition 4.3 it is natural to pose the following

Question 4.4. What is the number $\rho(O)$ of irreducible components of Q_O? When is Q_O irreducible?

5. **The Distribution of Principal Polarizations on an Abelian Variety in Q_O**

Let us relate Question 4.4 to the following problem. In Theorem 1.2 we computed the number $\pi_0(A)$ of principal polarizations on an abelian variety A with quaternion multiplication by O as the finite sum of relative class numbers of suitable orders in the CM-fields $F(\sqrt{-uD})$ for $u \in R_F^*/R_F^{*2}$. This has the following modular interpretation:

Let $L_1, \ldots, L_{\pi_0(A)}$ be representatives of the $\pi_0(A)$ distinct principal polarizations on A. Then the pairwise nonisomorphic principally polarized abelian varieties $[(A, L_1)], \ldots, [(A, L_{\pi_0(A)})]$ correspond to all closed points in Q_O whose underlying abelian variety is isomorphic to A. We then naturally ask the following

Question 5.1. Let A be an abelian variety with quaternionic multiplication by O. How are the distinct principal polarizations $[(A, L_j)]$ distributed among the irreducible components \tilde{X}_{μ_k} of Q_O?

It turns out that the two questions above are related. The linking ingredient is provided by the definition below, which establishes a slightly coarser equivalence relationship on polarizations than the one considered in Theorem 1.2 §1.
Definition 5.2. Let A be an abelian variety with quaternionic multiplication by \mathcal{O} over \bar{Q}.

1. Two polarizations \mathcal{L} and \mathcal{L}' on A are weakly isomorphic if $c_1(\mathcal{L}) \simeq mc_1(\mathcal{L}') \in \text{NS}(A)$ for some $m \in F_+^*$. We shall denote it $\mathcal{L} \simeq_w \mathcal{L}'$.

2. Two principal polarizations \mathcal{L} and \mathcal{L}' on A are Atkin-Lehner isogenous, denoted $\mathcal{L} \sim \mathcal{L}'$, if there is an isogeny $\omega \in \mathcal{O} \cap \text{Norm}_{B_+}(\mathcal{O})$ of A such that

$$\omega^*(\mathcal{L}) \simeq_w \mathcal{L}'$$

We note that there is a closed relationship between the above definition and the modular interpretation of the Atkin-Lehner group W given in [11].

Definition 5.3. Let A be an abelian variety with quaternionic multiplication by \mathcal{O} over \bar{Q}. We let $\hat{\Pi}_0(A)$ be the set of principal polarizations on A up to Atkin-Lehner isogeny and we let $\hat{\pi}_0(A) = \sharp\hat{\Pi}_0(A)$ denote its cardinality.

Theorem 5.4 (Distribution of principal polarizations). Let A be an abelian variety with quaternionic multiplication by \mathcal{O} over \bar{Q} and let $\mathcal{L}_1, ..., \mathcal{L}_{\pi_0(A)}$ be representatives of the $\pi_0(A)$ distinct principal polarizations on A.

Then, two closed points $[A, \mathcal{L}_1]$ and $[A, \mathcal{L}_j]$ lie on the same irreducible component of $\mathcal{Q}_\mathcal{O}$ if and only if the polarizations \mathcal{L}_i and \mathcal{L}_j are Atkin-Lehner isogenous.

Proof. We know from Proposition 4.8 that any irreducible component of $\mathcal{Q}_\mathcal{O}$ is $\hat{\mathcal{X}}_\mu$ for some principally polarized pair (\mathcal{O}, μ). We single out and fix one of these.

Let \mathcal{L} be a principal polarization on A such that $[(A, \mathcal{L})]$ lies on $\hat{\mathcal{X}}_\mu$ and let \mathcal{L}' be a second principal polarization on A. We claim that $[A, \mathcal{L}'] \in \hat{\mathcal{X}}_\mu$ if and only if there exists $\omega \in \mathcal{O} \cap \text{Norm}_{B_+}(\mathcal{O})$ such that \mathcal{L}' and $\omega^*(\mathcal{L})$ are weakly isomorphic.

Assume first that $\mathcal{L}' \simeq_w \omega^*(\mathcal{L})$ for some $\omega \in \mathcal{O} \cap \text{Norm}_{B_+}(\mathcal{O})$. This amounts to saying that $\omega c_1(\mathcal{L}) \omega = mc_1(\mathcal{L}')$ for some $m \in F_+^*$. Since both $\omega^*(\mathcal{L})$ and \mathcal{L}' are polarizations, we deduce from Theorem 4.2 §3, that $m \in F_+^*$. Moreover, since \mathcal{L} and \mathcal{L}' are principal, we obtain from Theorem 4.2 §2, that $m = un(\omega)$ for some $u \in R_{F,+}$.

Note that $(A, \iota_\omega, \mathcal{L}')$ is a principally polarized abelian variety with quaternionic multiplication such that the Rosati involution that \mathcal{L}' induces on $\iota_\omega(\mathcal{O})$ is θ_μ. Indeed, this follows because $\iota_\omega(\beta)^{\circ \omega'} = \iota((\omega^{-1} \beta \omega))^{\circ \omega'} = \iota((\omega^{-1} \mu \omega)^{-1} \omega^{-1} \beta \omega (\omega^{-1} \mu \omega))^{-1} = \iota_\omega(\mu^{-1} \beta \mu)$. This shows that, if \mathcal{L}' and $\omega^*(\mathcal{L})$ are weakly isomorphic for some $\omega \in \mathcal{O} \cap \text{Norm}_{B_+}(\mathcal{O})$, then $[A, \mathcal{L}'] \in \hat{\mathcal{X}}_\mu$.

Conversely, let us assume that $[A, \mathcal{L}'] \in \hat{\mathcal{X}}_\mu$. Let $\iota' : \mathcal{O} \hookrightarrow \text{End}(A)$ be such that $[A, \iota', \mathcal{L}'] \in \hat{\mathcal{X}}_{\mathcal{O}X_\mu, \theta_\mu}$. By the Skolem-Noether Theorem, it holds that $\iota' = \omega^{-1} \iota_\omega$ for some $\omega \in \text{Norm}_{B_+}(\mathcal{O})$; we can assume that $\omega \in \mathcal{O}$ by suitably scaling it. Since it holds that $\iota_\omega(\beta)^{\circ \omega'} = \iota_\omega(\mu^{-1} \beta \mu)$ for any $\beta \in \mathcal{O}$, we have that $c_1(\mathcal{L}') = u \omega^{-1} c_1(\mathcal{L}) \omega$ for some $u \in R_F^*$ such that $un(\omega) \in F_+^*$. Since $n(\mathcal{O}^*) = R_F^*$, we can find $\alpha \in \mathcal{O}^*$ with reduced norm $n(\alpha) = u^{-1}$ and thus $\omega \alpha \in B_+^*$.

Let $\mathcal{L}_{\omega\alpha}$ be the polarization on A such that $c_1(\mathcal{L}_{\omega\alpha}) = \frac{\omega}{n(\omega)}c_1((\omega\alpha)^*(\mathcal{L}))$. The automorphism $\alpha \in \mathcal{O}^* = \text{Aut}(A)$ induces an isomorphism between the polarizations $\mathcal{L}_{\omega\alpha}$ and $\mathcal{L'}$, since $c_1(\alpha^*(\mathcal{L}')) = \overline{\alpha}(\omega^{-1}c_1(\mathcal{L})\omega)\alpha = c_1(\mathcal{L}_{\omega\alpha})$. Hence \mathcal{L}' is weakly isomorphic to $(\omega\alpha)^*(\mathcal{L})$. This concludes our claim above and also proves the theorem. □

Corollary 5.5. The number of irreducible components of $Q_{\mathcal{O}}$ is

$$\rho(\mathcal{O}) = \tilde{\pi}_0(A),$$

independently of the choice of A.

For any irreducible component $\tilde{\mathcal{X}}_{\mu_k}$ of $Q_{\mathcal{O}}$, let $\Pi_{\mathcal{O}}^{(k)}(A) \subset \Pi_0(A)$ denote the set of isomorphism classes of the classes of principal polarizations lying on $\tilde{\mathcal{X}}_{\mu_k}$.

As another immediate consequence of Theorem 5.4, the following corollary establishes an internal structure on the set $\Pi_0(A)$. Roughly, it asserts that $\Pi_0(A) = \bigcup_{k=1}^{\rho(\mathcal{O})} \Pi_{\mathcal{O}}^{(k)}(A)$ is the disjoint union of the sets $\Pi_{\mathcal{O}}^{(k)}(A)$, which are equipped with a free and transitive action of a 2-torsion finite abelian group.

Corollary 5.6. Let A be an abelian variety with quaternionic multiplication by \mathcal{O}. Let $\tilde{\mathcal{X}}_{\mu_k}$ be an irreducible component of $Q_{\mathcal{O}}$ and let $W_{\mathcal{O}}^{(k)} \subseteq W$ be the stable subgroup attached to the polarized order (\mathcal{O}, μ_k).

Then there is a free and transitive action of $W/W_{\mathcal{O}}^{(k)}$ on the Atkin-Lehner isogeny class $\Pi_{\mathcal{O}}^{(k)}(A)$ of principal polarizations lying on $\tilde{\mathcal{X}}_{\mu_k}$.

In the case of a non twisting maximal order \mathcal{O}, we have that the stable group $W_{\mathcal{O}}(\mathcal{O}, \mu)$ attached to a principally polarized pair (\mathcal{O}, μ) is $U_{\mathcal{O}}(\mathcal{O}, \mu)$. The following corollary follows from the proof of Lemma 2.10 in [12].

Corollary 5.7. Let \mathcal{O} be a non twisting maximal order in B and assume that, for any $u \in R_{F,+}^*$, any primitive root of unity of odd order in the CM-field $F(\sqrt{-uD})$ is contained in the order $R_{F}[\sqrt{-uD}]$.

Let A be an abelian variety with quaternionic multiplication by \mathcal{O}. Then the distinct isomorphism classes of principally polarized abelian varieties $[(A, \mathcal{L}_1)], \ldots, [(A, \mathcal{L}_{\rho(\mathcal{O})})]$ are equidistributed among the $\rho(\mathcal{O})$ irreducible components of $Q_{\mathcal{O}}$.

In particular, it then holds that

$$\pi_0(A) = \frac{|W|}{|W_{\mathcal{O}}|} \cdot \rho(\mathcal{O}).$$

6. **Shimura curves embedded in Igusa’s threefold**

The whole picture becomes particularly neat when we consider the simplest case of quaternion algebras over \mathbb{Q}. Let then B be an indefinite quaternion algebra over \mathbb{Q} of discriminant $D = p_1 \cdot \ldots \cdot p_{2r}$ and let \mathcal{O} be a maximal order in B. Since
$h(Q) = 1$, there is a single choice of O up to conjugation by B^*. Moreover, all left ideals of O are principal and hence isomorphic to O as left O-modules.

Let A be a complex abelian surface with quaternionic multiplication by O. By Theorem 1.4, A is principally polarizable and the number of isomorphism classes of principal polarizations on A is

$$\pi_0(A) = \frac{h(-D)}{2},$$

where, for any nonzero squarefree integer d, we write

$$h(d) = \begin{cases} h(4d) + h(d) & \text{if } d \equiv 1 \mod 4, \\ h(4d) & \text{otherwise.} \end{cases}$$

For any integral element $\mu \in O$ such that $\mu^2 + D = 0$, let now X_μ be the Shimura curve that coarsely represents the functor which classifies principally polarized abelian surfaces (A, ι, L) with quaternionic multiplication by O such that the Rosati involution with respect to L on O is ι_μ. This is an algebraic curve over Q whose isomorphism class does not actually depend on the choice of the quaternion μ, but only on the discriminant D (cf. [15]). Hence, it is usual to simply denote this isomorphism class as X_D.

Let $W = \{\omega_m : m|D\} \simeq (\mathbb{Z}/2\mathbb{Z})^{2r}$ be the Atkin-Lehner group attached to O in Section 3. We know that $W \subseteq \text{Aut}_Q(X_D)$ is a subgroup of the group of automorphisms of the Shimura curve X_D.

Let now A_2 be Igusa’s three-fold, the moduli space of principally polarized abelian surfaces. By the work of Igusa (cf. [3]), it is an affine scheme over Q that contains, as a Zariski open and dense subset, the moduli space M_2 of curves of genus 2, immersed in A_2 via the Torelli embedding.

Sitting in A_2 there is the quaternionic locus Q_O of isomorphism classes of principally polarized abelian surfaces $[(A, L)]$ such that $\text{End}(A) \supseteq O$. Since all maximal orders O in B are pairwise conjugate, the quaternionic locus Q_O does not actually depend on the choice of O and we may simply denote it by $Q_O = Q_D$.

As explained in Section 2 and 3, there are forgetful finite morphisms $\pi : X_\mu \to Q_D \subset A_2$ which map the Shimura curve X_μ onto an irreducible component \tilde{X}_μ of Q_D. We insist on the fact that the image $\tilde{X}_\mu \subset Q_D$ does depend on the choice of the quaternion μ.

Let us now compare the non twisting and twisting case, respectively. We first assume that

$$B \not\equiv \left(\frac{-D, m}{Q}\right)$$
for all positive divisors $m|D$ of D. Then all principally polarized pairs (\mathcal{O}, μ) in B are non twisting and the stable subgroup attached to (\mathcal{O}, μ) is

$$W_0 = U_0 = \langle \omega_D \rangle \subset W,$$

independently of the choice of μ. By Theorem 3.5, we deduce that any irreducible component $\tilde{\mathcal{X}}_\mu$ of Q_D is birationally equivalent to the Atkin-Lehner quotient $\mathcal{X}_D/\langle \omega_D \rangle$ and thus the quaternionic locus Q_D in A_2 is the union of pairwise birationally equivalent Shimura curves $\tilde{\mathcal{X}}_{\mu_1}, \ldots, \tilde{\mathcal{X}}_{\mu_{\rho(\mathcal{O})}}$, meeting at a finite set of Heegner points.

Moreover, for any abelian surface A with quaternionic multiplication by \mathcal{O}, it follows from Theorem 5.4 that the closed points $\{(A, \mathcal{L}_j)\}_{j=1}^{\pi_0(A)}$ are equidistributed among the $\rho(\mathcal{O})$ irreducible components of Q_D. In addition, Corollary 5.7 ensures that

$$|W/W_0| = 2^{2r-1}|\pi_0(A)|,$$

as genus theory for binary quadratic forms already predicts.

Finally, we obtain that the number of irreducible components of Q_D in the non twisting case is

$$\rho(\mathcal{O}) = \frac{\tilde{h}(-D)}{2^{2r}}.$$

On the other hand, let us assume that

$$B \simeq \left(\frac{-D, m}{\mathbb{Q}} \right)$$

for some $m|D$. In this case, there can be two different birational classes of irreducible components on Q_D. Indeed, the assumption means that there exist pure quaternions $\mu \in \mathcal{O}$, $\mu^2 + D = 0$, such that (\mathcal{O}, μ) is a twisting principally polarized maximal order. Then

$$W_0(\mathcal{O}, \mu) = \langle \omega_m, \omega_D \rangle$$

and $\tilde{\mathcal{X}}_\mu$ is birationally equivalent to $\mathcal{X}_D/\langle \omega_m, \omega_D \rangle$. We may refer to $\tilde{\mathcal{X}}_\mu$ as a twisting irreducible component of Q_D.

In addition to these, there may exist non twisting polarized orders (\mathcal{O}, μ) such that the corresponding irreducible components $\tilde{\mathcal{X}}_\mu$ of Q_D are birationally equivalent to $\mathcal{X}_D/\langle \omega_D \rangle$. We may refer to these as the non twisting irreducible components of Q_D.

We then have the following lower and upper bounds for the number of irreducible components of Q_D:

$$\frac{\tilde{h}(-D)}{2^{2r}} < \rho(\mathcal{O}) \leq \frac{\tilde{h}(-D)}{2^{2r-1}}.$$
Summing up, we obtain the following

Theorem 6.1. Let B be an indefinite division quaternion algebra over \mathbb{Q} of discriminant $D = p_1 \cdot \ldots \cdot p_{2r}$. Then, the quaternionic locus Q_D in A_2 is irreducible if and only if

$$h(-D) = \begin{cases} 2^{2r-1} & \text{if } B \simeq \left(\frac{-D,m}{\mathbb{Q}}\right) \text{ for some } m|D, \\ 2^{2r} & \text{otherwise.} \end{cases}$$

Proof. If B is not a twisting quaternion algebra, we already know from the above that the number of irreducible components of Q_D is $\frac{h(-D)}{2^{2r}}$. Hence, in this case, the quaternionic locus of discriminant D in A_2 is irreducible if and only if $h(-D) = 2^{2r}$. If on the other hand B is twisting, it follows from the above inequalities that Q_D is irreducible if and only if $h(-D) = 2^{2r-1}$. \blacksquare

In view of Theorem 6.1, there arises a closed relationship between the irreducibility of the quaternionic locus in Igusa’s threefold and the genus theory of integral binary quadratic forms and the classical *numeri idonei* studied by Euler, Schinzel and others. We refer the reader to [1] and [13] for the latter.

7. Hashimoto-Murabayashi’s families

As the simplest examples to be considered, let B_6 and B_{10} be the rational quaternion algebras of discriminant $D = 2 \cdot 3 = 6$ and $2 \cdot 5 = 10$, respectively. Hashimoto and Murabayashi [4] exhibited two families of principally polarized abelian surfaces with quaternionic multiplication by a maximal order in these quaternion algebras. Namely, let

$$C^{(6)}_{(s,t)} : Y^2 = X(X^4 + PX^3 + QX^2 + RX + 1)$$

be the family of curves with

$$P = 2s + 2t, \quad Q = \frac{(1 + 2t^2)(11 - 28t^2 + 8t^4)}{3(1 - t^2)(1 - 4t^2)}, \quad R = 2s - 2t$$

over the base curve

$$g^{(6)}(t, s) = 4s^2t^2 - s^2 + t^2 + 2 = 0.$$

And let

$$C^{(10)}_{(s,t)} : Y^2 = X(P^2X^4 + P^2(1 + R)X^3 + PQX^2 + P(1 - R)X + 1)$$

be the family of curves with

$$P = \frac{4(2t + 1)(t^2 - t - 1)}{(t - 1)^2}, \quad Q = \frac{(t^2 + 1)(t^4 + 8t^3 - 10t^2 - 8t + 1)}{t(t - 1)^2(t + 1)^2}$$
and

$$R = \frac{(t - 1)s}{t(t + 1)(2t + 1)}$$

over the base curve

$$g^{(10)}(t, s) = s^2 - t(t - 2)(2t + 1) = 0.$$

Let \(J_{(6)}^{(6)} = \text{Jac}(C_{(s,t)}^{(6)}) \) and \(J_{(10)}^{(10)} = \text{Jac}(C_{(s,t)}^{(10)}) \) be the Jacobian surfaces of the fibres of the families of curves above respectively. It was proved in [4] that their ring of endomorphisms contain a maximal order in \(B_6 \) and \(B_{10} \), respectively.

Both \(B_6 = \left(-\frac{6}{4}, 2 \right) \mathbb{Q} \) and \(B_{10} = \left(-\frac{10}{4}, 2 \right) \mathbb{Q} \) are twisting quaternion algebras. Moreover, it turns out from our formula for \(\pi_0(A) \) in the above section that any abelian surface \(A \) with quaternionic multiplication by a maximal order in either \(B_6 \) or \(B_{10} \) admits a single isomorphism class of principal polarizations. This implies that \(\rho(B_6) = \pi_0(A) = \pi_0(A) = 1 \) and \(\rho(B_{10}) = \pi_0(A) = \pi_0(A) = 1 \), respectively.

Moreover, the Shimura curves \(X_6/\mathbb{Q} \) and \(X_{10}/\mathbb{Q} \) have genus 0, although they are not isomorphic to \(\mathbb{P}^1_{\mathbb{Q}} \) because there are no rational points on them. However, it is easily seen that \(X_6/W_0 = X_6/W \simeq \mathbb{P}^1_{\mathbb{Q}} \) and \(X_{10}/W_0 = X_{10}/W \simeq \mathbb{P}^1_{\mathbb{Q}} \), respectively.

As it is observed in [4], the base curves \(g^{(6)} \) and \(g^{(10)} \) are curves of genus 1 and not of genus 0 as it should be expected. This is explained by the fact that there are obvious isomorphisms between the fibres of the families \(C^{(6)} \) and \(C^{(10)} \), respectively.

Ibukiyama, Katsura and Oort [5] proved that the supersingular locus in \(\mathcal{A}_2/\mathbb{Q} \) is irreducible if and only if \(p \leq 11 \). As a corollary to their work, Hashimoto and Murabayashi obtained that the reduction mod 3 and 5 of the family of Jacobian surfaces with quaternionic multiplication by \(B_6 \) and \(B_{10} \) respectively yield the single irreducible component of the supersingular locus in \(\mathcal{A}_2/\overline{\mathbb{F}}_3 \) and \(\mathcal{A}_2/\overline{\mathbb{F}}_5 \) respectively.

The following statement may be considered as a lift to characteristic 0 of these results.

Theorem 7.1.

1. The quaternionic locus \(\mathcal{Q}_6 \) in \(\mathcal{A}_2/\mathbb{Q} \) is absolutely irreducible and birationally equivalent to \(\mathbb{P}^1_{\mathbb{Q}} \) over \(\mathbb{Q} \). A universal family over \(\mathbb{Q} \) is given by Hashimoto-Murabayashi’s family \(C^{(6)} \).
2. The quaternionic locus \(\mathcal{Q}_{10} \) in \(\mathcal{A}_2/\mathbb{Q} \) is absolutely irreducible and birationally equivalent to \(\mathbb{P}^1_{\mathbb{Q}} \) over \(\mathbb{Q} \). A universal family over \(\mathbb{Q} \) is given by Hashimoto-Murabayashi’s family \(C^{(10)} \).

Proof. This follows from Theorem 6.1 and the discussion above. \(\Box \)

In particular, we obtain from Theorem 7.1 that every principally polarized abelian surface \((A, \mathcal{L}) \) over \(\mathbb{Q} \) with quaternionic multiplication by a maximal order of discriminant 6 or 10 is isomorphic over \(\mathbb{Q} \) to the Jacobian variety of one of the curves \(C^{(6)}_{(s,t)} \) or \(C^{(10)}_{(s,t)} \), except for finitely many degenerate cases.
References

[1] A. Arenas, Genera and rational equivalence classes of integral quadratic forms, *J. Number Theory* 51 (1995), 210-218.

[2] M. Eichler, Zur Zahlentheorie der Quaternionen-Algebren, *J. reine angew. Math.* 195 (1955), 127-151.

[3] G. van der Geer, *Hilbert modular surfaces*, Ergebn. Math. Grenz. 16, Springer 1987.

[4] K. Hashimoto, N. Murabayashi, Shimura curves as intersections of Humbert surfaces and defining equations of QM-curves of genus two, *Tôhoku Math. J.* 47 (1995), 271-296.

[5] T. Ibukiyama, T. Katsura, F. Oort, Supersingular curves of genus two and class numbers, *Compos. Math.* 57 (1986), 127-152.

[6] J. Igusa, Arithmetic variety of moduli for genus two, *Ann. Math.* 72 (1960), 612-649.

[7] H. Lange, Ch. Birkenhake, *Complex Abelian Varieties*, Grundl. math. Wiss. 302, Springer, 1992.

[8] D. Mumford, *Abelian varieties*, Tata Institute of Fundamental Research, Bombay, Oxford University Press (1970).

[9] V. Rotger, On the group of automorphisms of Shimura curves and applications, *Compos. Math.* 132 (2002), 229-241.

[10] V. Rotger, Quaternions, polarizations and class numbers, *J. Reine Angew. Math.* 561 (2003), 177-197.

[11] V. Rotger, Modular Shimura varieties and forgetful maps, *Trans. Amer. Math. Soc.* 356 (2004), 1535-1550.

[12] V. Rotger, The field of moduli of quaternionic multiplication on abelian varieties, submitted to publication.

[13] A. Schinzel, Sur les sommes de trois carrés, *Bull. Acad. Polonaise Sc.* Vol. VII 6 (1959), 307-310.

[14] G. Shimura, On analytic families of polarized abelian varieties and automorphic functions, *Ann. Math.* 78 (1963), 149-192.

[15] G. Shimura, Construction of class fields and zeta functions of algebraic curves, *Ann. Math.* 85 (1967), 58-159.

[16] M.F. Vignéras, *Arithmétique des algèbres de quaternions*, Lect. Notes Math. 800, Springer, 1980.

Universitat Politècnica de Catalunya, Departament de Matemàtica Aplicada IV (EUPVG), Av. Víctor Balaguer s/n, 08800 Vilanova i la Geltrú, Spain.

E-mail address: vrotger@mat.upc.es