Use of midodrine for treatment of chylopericardium after coronary artery bypass grafting

Charmian Chong, MBBS,a Marco Lizwan, BSc (Hons),b Jason Hongting Leung, BSE, MD, MRCSEd,a Tar Toong Victor Chao, MBBS, FRCS, FRCSEd (CTh), FAMS,a and Ing Xiang Soo, MBBS, MRCS (Glasg), FRCSEd (CTh), FAMS,a Singapore

Chylopericardium after cardiac surgery was first described by Thomas and McGoon in 1971.1 To our best knowledge, there are only 25 reported cases of chylopericardium after cardiac surgery in adults worldwide (Table 1). Current conservative treatment options for chylopericardium include low-fat diet, total parenteral nutrition, and octreotide. We report a case of chylopericardium after coronary artery bypass grafting that was successfully treated with midodrine, octreotide, and low-fat diet.

CASE REPORT
A 60-year-old Chinese man presented with stable angina. Coronary angiogram showed triple-vessel disease and he underwent coronary artery bypass grafting with left internal mammary artery and saphenous vein graft conduits. The left pleura was incised during left internal mammary artery harvest. Postoperative progress was uneventful and he was discharged 6 days later.

He presented 13 days later with a moderate left pleural effusion, which drained serous fluid. He presented 10 days later with exertional dyspnea. He was hemodynamically stable. A chest radiograph showed a widened mediastinum (Figure 1, A). A bedside transthoracic echocardiogram (TTE) revealed a large pericardial effusion 4.7 cm from the lateral right ventricular wall with no diastolic collapse. Chest computed tomography imaging showed a large 4.6-cm pericardial effusion and a moderate-sized left pleural effusion (Figure 1, B).

Percutaneous pericardiocentesis and pericardial drain insertion was performed. A total of 1.9 L of serous fluid was drained in the first day. Milky drain output was noted the next day. Biochemical analysis showed a triglyceride level of 2.72 mmol/L. Fluid cultures were negative, which confirmed sterile chyle.

He was started on a low-fat diet supplemented with medium-chain triglyceride oil and intravenous octreotide. Because the drainage was still milky with high output of 400 to 500 mL/d (Figure 2), oral Midodrine treatment was started. Drain output decreased and became serous after midodrine treatment was started. He was weaned off octreotide treatment. Pericardial drainage was 100 to 200 mL/d even after weaning off octreotide treatment. The drain was removed 20 days later after it was found to be blocked despite flushing. Serial TTE showed a small stable pericardial effusion. He was discharged home with oral midodrine and gradual resumption of normal diet. TTE 3 weeks postdischarge showed no recurrence of pericardial effusion. Institutional review board approval was not required. Informed consent was obtained from the patient for publication.

DISCUSSION
Etiology
Several mechanisms can contribute to chylopericardium after cardiac surgery. Pericardial lymphatic channels can be disrupted at various locations. Dissection of the posterior pericardium before encircling major vessels with surgical
Reference	Location of chyle	Procedure	Age/sex	Management
Kansu et al, 1977	Pericardium	AVR	53/F	Partial pericardiectomy
Weber et al, 1981	Pericardium	CABG	55/M	MCT diet
Rose et al, 1982	Pericardium	Infundibular muscular resection and closure of septal defect for severe PS	20/F	MCT diet and ligation of transected lymphatic vessel
Wong et al, 1982	Anterior mediastinum	CABG	42/F	MCT diet, persistent chyle drainage prompted thoracic duct ligation
Schiessler et al, 1984	Pericardium	CABG	45/M	Continuous drainage and MCT diet
Lee et al, 1987	Pericardium	CABG	49/M	TPN, MCT oil, ligation of supradiaphragmatic thoracic duct and Denver pleuroperitoneal shunt
Pellegrini et al, 1987	Pericardium	CABG	60/M	Ibuprofen
Bar-El et al, 1989	Pericardium	MVR	39/F	MCT diet
Sharpe et al, 1999	Pericardium and pleura	CABG	63/F	Initially pigtail catheter, continued normal diet and drained intermittently from pericardial catheter for 5 days. Pigtail pericardial drain removed and replaced with larger drain and left-sided pleural drain inserted, tunneled feeding line introduced into left subclavian vein. Postoperatively NBM with TPN
Narayan et al, 2007	Pericardium	CABG	65/F	MCT diet, octreotide, surgical clip of severed lymphatic duct in thymic area
Sachithanandan et al, 2008	Pericardium and left pleura	CABG	58/M	TPN and MCT diet
Chalooob et al, 2008	Pericardium	AVR	50/M	Oversew of bilateral divided thymic lobes
Szabados et al, 2011	Pericardium	CABG	46/F	MCT diet and SC octreotide
Albage et al, 2011	Pericardium	On-pump CABG	74/M	TPN, I.V. somatostatin, and ligation of thoracic duct in posterior mediastinum adjacent to diaphragm
Mundra et al, 2011	Pericardium	AVR	54/M	Pericardial window and thoracic duct ligation
Cheng et al, 2013	Pericardium	AVR and CABG	59/M	Fat-free diet
	Pericardium	AVR	45/F	Fat-free diet, MCT oil, and octreotide
Koutsogiannidis et al, 2013	Pericardium	ASD closure	36/F	TPN and MCT diet
Karaca et al, 2014	Pericardium	Ascending aorta replacement	47/M	TPN and I.V. somatostatin
Niznansky et al, 2015	Pericardium	Pulmonary endarterectomy	48/F	TPN, surgical ligation of injured lymphatic vessel at left lobe of thymus, ligation of whole left thymic lobe, and sealed with tissue glue

(Continued)
tapes can cause inadvertent injury to mediastinal lymph vessels.26

Another source of chylopericardium is the thymus, which is routinely divided to gain exposure to the aorta for cannulation. There are multiple small lymphatic channels, with reports of large aberrant lymphatic ducts in the thymic area. Electrocautery dissection is inadequate to prevent lymphatic leakage because lymph contains less coagulable material than plasma. Chyle leak from the divided thymic tissue could be a possible source of chylopericardium in our patient.

Management
Persistent chyle leak can cause dehydration, malnutrition, and delayed wound healing. Chylopericardium can cause cardiac tamponade, acute pericarditis, or chronic constriction. If untreated, chylopericardium is associated with a mortality rate of up to 50%.

There is no consensus on the management of chylopericardium after cardiac surgery. Most studies adopted an initial conservative approach, reserving surgical treatment for cases with persistently high drainage despite medical therapy. Dietary modification with low-fat diet and medium-chain triglyceride oil can be trialed. Total parenteral nutrition is also effective. Somatostatin and its analog, octreotide, have been used as adjuncts with favorable outcomes.27 They reduce lymph flow by inhibiting the secretion of gastrointestinal hormones and decreasing splanchnic blood flow. For cases refractory to medical therapy, various surgical options have been described (Table 1).

Evidence in the current literature indicates a risk of failure with conservative treatment. Dietary modification and parenteral alimentation were successful in 10 of 16 cases (62.5%). Somatostatin/octreotide was successful in 4 of 6 cases (66.7%). A multimodal treatment approach helps to improve the success of conservative treatment. Midodrine is an alpha-1 adrenergic agonist, which causes vasoconstriction of the lymph system. This might lead to decreased chyle flow. To our knowledge, there are only 2 reported cases of midodrine use for chyle leak.28,29 To our knowledge, this is the first study to use midodrine for treatment of chylopericardium. Midodrine was used as the mainstay treatment option in our patient because it is generally safe

Reference	Location of chyle	Procedure	Age/sex	Management
Attia et al, 201621	Pericardium and right pleura	CABG	62/M	TPN, SC octreotide, pericardial window, diaphragm plication and supradiaphragmatic thoracic duct ligation
Lippmann et al, 201622	Pericardium	AVR	50/M	MCT diet
Erkut et al, 201923	Pericardium	CABG	61/M	TPN with low fat and MCT diet
Borulu et al, 202024	Pericardium	CABG	62/M	TPN
Chia et al, 202025	Pericardium	MVR	67/M	TPN

AVR, Aortic valve replacement; F, female; CABG, coronary artery bypass grafting; M, male; MCT, medium-chain triglyceride; PS, pulmonary stenosis; TPN, total parenteral nutrition; MVR, mitral valve replacement; NBM, nil by mouth; SC, subcutaneous; I.V., intravenous; ASD, atrial septal defect.

FIGURE 1. A, Chest radiograph depicting widened mediastinum. B, Computed tomography scan showing a large pericardial effusion measuring up to 4.6 cm in thickness with no collapse of the right ventricle, and a moderate-sized left pleural effusion.
and can be used in the outpatient setting, which improves cost effectiveness as well.

References

1. Thomas CS Jr, McGoon DC. Isolated massive chylopericardium following cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1971;61:945-8.
2. Kansu E, Fraimow W, Smulens SN. Isolated massive chylopericardium: complication of open heart surgery for aortic valve replacement. Chest. 1977;71:408-10.
3. Weber DO, Del Mastro P, Yarno MD. Chylothorax after myocardial revascularization with internal mammary graft. Ann Thorac Surg. 1981;32:499-502.
4. Rose DM, Colvin SB, Danilowicz D, Isom OW. Cardiac tamponade secondary to chylopericardium following cardiac surgery: case report and review of the literature. Ann Thorac Surg. 1982;34:333-6.
5. Wong PH, Mok CK, Ong GB. Chylomediastinum: an unusual complication after mitral valve replacement. Aust NZ J Surg. 1982;52:560-1.
6. Schiessler A, John A, Pallua N, Burchardt E. Chylopericardium following aorto-coronary bypass procedure. Thorac Cardiovasc Surg. 1984;32:112-4.
7. Lee Y, Lee WK, Doromal N, Ganepola GA, Hutchinson J III. Cardiac tamponade resulting from massive chylopericardium after an aorta-coronary bypass operation. J Thorac Cardiovasc Surg. 1987;94:449-50.
8. Pellegrini RV, Travers DJ, Marrangoni AG, DiMarco RF, Bekoe S, Grant KJ, et al. Massive chylopericardium after coronary artery bypass surgery. Tex Heart Inst J. 1987;14:318-20.
9. Bar-Eli Y, Smolinsky A, Yellin A. Chylopericardium as a complication of mitral valve replacement. Thorax. 1989;44:74-5.
10. Sharpe DA, Pullen MD, McGoldrick JP. A minimally invasive approach to chylopericardium after coronary artery surgery. Ann Thorac Surg. 1999;68:1002-3.
11. Narayan P, Rahaman N, Molnar TF, Capito M. Chylopericardium following cardiac surgery caused by unusual lymphatic anatomy. Asian Cardiovasc Thorac Ann. 2007;15:e58-9.
12. Sachithanandan A, Nanjaiah P, Rooney SJ, Rajesh PB. Idiopathic primary chylopericardium with associated chylothorax following coronary artery surgery—successful conservative treatment. J Card Surg. 2008;23:258-9.
13. Chaloob SS, Brown M, Stakliks RG. Chylous pericardial effusion after aortic valve replacement. Asian Cardiovasc Thorac Ann. 2008;16:e21-2.
14. Szabados E, Toth K, Mezosi E. Use of octreotide in the treatment of chylopericardium. Heart Lung. 2011;40:574-5.
15. Albige A, Eggertsen G, Parini P. Late cardiac tamponade by chylous pericardial effusion after coronary artery bypass surgery: case report. Heart Surg Forum. 2011;14:E195-7.
16. Mundra V, Savage EB, Novaro GM, Asher CR. Delayed chylous pericardial effusion after aortic valve replacement. Tex Heart Inst J. 2011;38:431-2.
17. Cheng CS, Uchime C, Kang D. Two cases of chylopericardium after aortic valve surgery. Asian Cardiovasc Thorac Ann. 2013;21:588-91.
18. Koutsogiannidis C-P, Ananiadou O, Kapas G, Madesis A, Palladas P, Drossos G. Early post-cardiomyotomy chylopericardium and the imaging value of magnetic resonance thoracic-ductography. Heart Lung Circ. 2013;22:1033-5.
19. Karaca S, Rager O, Kalangos A. Successful treatment of persistent chylopericardium with somatostatin after operation on ascending aorta. Ann Thorac Surg. 2014;97:e97-9.
20. Niznansky M, Prskavec T, Cerny V, Lindner J. Chylous pericardial effusion as a rare complication after pulmonary endarterectomy. Interact Cardiovasc Thorac Surg. 2015;21:257-9.
21. Attia A, Alshayyab H, El Ghoneimy Y, Oueida F. Right chylothorax combined with chylopericardium and right diaphragmatic paralysis after coronary revascularization by bilateral internal mammary arteries. J Egypt Soc Cardiothorac Surg. 2016;24:312-5.
22. Lippmann M, Gupta K. Chylous pericardial effusion resulting in cardiac tamponade. Indian Heart J. 2016;68(Suppl 2):S161-2.
23. Erkut B, Ates A. Chylous accumulation in the mediastinal space following coronary artery bypass graft surgery. CorSalud (Revista de Enfermedades Cardiovasculares). 2019;11:258-62.
24. Borula F, Erkut B. Successful conservative treatment of chylopericardium after open-heart surgery: a case report. J Thorac Heart Cent. 2020;15:73.
25. Chia AX, Pang PY. Isolated chylopericardium: an unusual cause of late cardiac tamponade after mitral valve repair. Ann Thorac Surg. 2020;110:e497-500.
26. Karaca S, Rager O, Kalangos A. Successful treatment of persistent chylopericardium with somatostatin after operation on ascending aorta. Ann Thorac Surg. 2014;97:e97-9.
27. Gabbieri D, Buvutti L, Zacà F, Turinetto B, Ghidoni I. Conservative treatment of postoperative chylothorax with octreotide. Ital Heart J. 2004;5:479-82.
28. Lisu EZ, Warren H, Maher DP, Soukiasian HJ, Melo N, Salim A, et al. Midodrine: a novel therapeutic for refractory chylothorax. Chest. 2013;144:1055-7.
29. Sivakumar P, Ahmed L. Use of an alpha-1 adrenoreceptor agonist in the management of recurrent refractory idiopathic chylothorax. Chest. 2018;154:e1-4.