Endogenous Neurogenesis, Oligodendrogenesis and Angiogenesis after Ischemic Brain Injury

Toru Yamashita and Koji Abe*

Department of Neurology, Okayama University Graduate School of Medicine, Okayama, Japan

Abstract

Since strokes are a major cause of death and result in a drastic reduction in the quality of life, a new strategy to minimize ischemic-related damage is thus required. Recent evidence indicates that endogenous neural stem cells of the subventricular zone give rise to not only neurons but also oligodendrocytes, which can restore a disrupted neuronal network in post-ischemic brain, and various kinds of neurotrophic factors, such as EGF, are known to promote this process. To promote the functional recovery of post-stroke brain, angiogenesis is also essential. It has been suggested that circulating endothelial progenitor cells (EPCs) can play an important role in angiogenesis of the post-stroke brain. The number or function of EPCs can also be modulated by various kinds of factors. For example, VEGF, G-CSF and statins can increase EPC levels. In this review, we discuss the present knowledge of endogenous neurogenesis/oligodendrogenesis/angiogenesis and how to enhance their ability to restore the neuronal network through self-repair strategies.

Keywords: Neurogenesis; Oligodendrogenesis; Neural stem cells; Angiogenesis; Endothelial progenitor cells (EPCs)

Abbreviations: NPCs: Neural Progenitor Cells; OPCs: Oligodendrocyte Precursor Cells; EPCs: Endothelial Progenitor Cells; EGF: Epidermal Growth Factor; VEGF: Vascular Endothelial Growth Factor; G-CSF: Granulocyte Colony-Stimulating Factor

Introduction

Strokes are a major cause of death and result in a drastic reduction in the quality of life. The only effective therapeutic approach is thrombolysis with recombinant tissue plasminogen activator, and a new strategy to minimize ischemic-related damage is thus required. Over the past 10 years, regenerative therapy, which supplies new neurons or oligodendrocytes, has been extensively studied. Two tactics are proposed to supply new neurons or oligodendrocytes into the infarcted brain. One is the transplantation of extrinsic neural stem cells (NSCs) derived from stem cells such as embryonic stem (ES) cells and induced pluripotent stem (iPS) cells [1]. The other is the activation of intrinsic neural stem cells [2,3]. Although stem cell transplantation may be one promising method, tumorigenicity and rejection by immuno-response are potential large hindrances for the application to a clinical setting. On the other hand, the endogenous capacity for regeneration now draws attention to the development of a novel therapeutic strategy for strokes. In addition, angiogenesis is also required to regenerate the neural network [4,5]. In this article, we focus on endogenous neurogenesis/oligodendrogenesis/angiogenesis, and discuss current developments in this field with special emphasis on the therapeutic application for strokes (Table 1).

Intrinsic Neural Stem Cells and Neurogenesis

Persistent neurogenesis occurs in two restricted regions of the adult mammalian brain including the subgranular zone (SGZ) of the hippocampal dentate gyrus [6] and the subventricular zone (SVZ) of the lateral ventricle [7]. In the SGZ, newly born neurons migrate into the granule cell layer and integrate into the neuronal network. In the SVZ, which is a thin cell layer in the lateral walls of lateral ventricles, NSCs continuously produce neural progenitor cells (NPCs) migrating into the olfactory bulb [8]. To discern whether the ischemic condition affects endogenous neurogenesis, we studied the temporal profile of NSC division, migration, and differentiation in the SGZ and the SVZ in the transient forebrain ischemia gerbil model. We found that the ischemic condition increased the division of NSCs of the SGZ with a peak 10 days after ischemic induction, following which cells migrated into the granule cell layer and differentiated mainly into neuronal cells [9]. Furthermore, we also found that transient forebrain ischemia enhances NSC proliferation in the SVZ with a peak 10 days after ischemia, leading to the migration of more NPCs to the olfactory bulb [10]. These studies indicate that ischemic stimuli could increase the number of NSCs and resulted in enhanced neurogenesis in the two restricted lesions, the SGZ and the SVZ. Many researchers reported that newly born neurons can be found in the post-infarcted lesion including the striatum and cortex in another animal model, the transient focal ischemia model [11,12], which is a mimic model of human cardio-embolic stroke. To clarify whether SVZ NSCs supply new neurons to areas injured by ischemia, several study groups have performed region-specific cell labeling and long-term tracing experiments. SVZ-derived NPCs were also reported to migrate towards the injured striatum after middle cerebral artery occlusion (MCAO). A long-term tracing study revealed that the SVZ-derived NPCs differentiated into mature neurons in the striatum, in which they formed synapses with neighboring striatal cells [13] (Figure 1), implying that the SVZ is one of the harbors supplying newborn neurons to brain lesions damaged by focal ischemia.

Intrinsic Oligodendrogenesis and Future Therapeutic Strategy

In the adult brain, mature oligodendrocytes have been reported...
been reported that a number of circulating, very small embryonic-like peri-infarcted area were bone marrow-derived cells [25]. It has also been regarded as the main cell resource for the regeneration of injured heart, have been shown to be capable of differentiating into endothelial cells [29]. Therefore, at present, it seems unclear which organ is the main resource for endothelial progenitor cells (EPCs). However, regardless of the origin, the circulating endothelial progenitors in peripheral blood may play an important role in vascular remodeling after a stroke (Figure 2).

Therapeutic Strategy Promoting Repair of Endogenous Endothelial Progenitor Cells

As discussed above, much evidence exists to show that EPCs take part in angiogenesis in ischemic tissue. Therefore, many researchers have tried various kinds of agents in the ischemic animal model, and test whether such agents can enhance the mobilization of EPCs, leading to augmented angiogenesis. Firstly, VEGF has been reported to play an important role in angiogenesis through mobilization of EPCs in an animal model and in human subjects [30,31]. Zhang et al. reported that administration of recombinant human VEGF at 48 hours after the induction of ischemia enhanced angiogenesis in the peri-infarcted lesion and significantly improved neurological recovery in the rat model [24]. These results seem to suggest that VEGF can be a promising agent for minimizing ischemic-related injury, although issues regarding its utility as a therapeutic agent remain because administration of VEGF at 1 hour after ischemia increased blood brain barrier leakage, and worsened brain edema [24]. As another candidate, granulocyte colony-stimulating factor (G-CSF) also increased the number of circulating EPCs. To test whether G-CSF can promote angiogenesis, we administrated G-CSF to a focal ischemia rat model, and analyzed angiogenesis. We found that newly born endothelial cells were significantly increased in the G-CSF-treated group, compared to be produced from local oligodendrocyte precursor cells (OPCs) located in the brain parenchyma. Recent evidence indicates that SVZ neural stem cells also give rise to oligodendrocytes as well as neurons [14]. Menn et al. clearly demonstrated that SVZ astrocytes generate oligodendrocytes, which migrate to the corpus callosum and the white matter tract, by using GFAP-tva transgenic mice and avian retrovirus [15].

In the post-ischemic brain, newly born neurons and oligodendrocytes can be supplied from the SVZ, but this number may be too small for recovery of neurological functions. For example, newly born neurons could replace only 0.2% of the dead striatal neurons even in the rat MCAO model [11]. It has been reported that various kinds of neurotrophic factors including EGF [16], FGF2 [17], CNTF [18], IGF-1 [19] and NGF [20], can promote neurogenesis in animal models. Of note, EGF may be a promising drug candidate because it can increase the number of precursors, promoting not only neurogenesis, but also oligodendrogenesis [21]. A recent study indicated that asialo-erythropoietin promoted the maturation of SVZ-derived OPCs and the recovery of neurological function in a hypoxia ischemia mouse model [22]. However, the precise mechanisms that control the proliferation, survival, and/or neuronal maturation of intrinsic NSCs and their progeny must be known so as to use their intrinsic neural cell source for therapeutic purposes.

Endogenous Endothelial Progenitor Cells for Angiogenesis in the Ischemic Brain

Several studies from human and experimental stroke models indicate that angiogenesis can occur in the adult brain after a stroke [23,24]. In the past, the migrated neighboring endothelial cells have been regarded as the main cell resource for the regeneration of injured endothelial cells. However, several research groups reported that bone marrow-derived cells can incorporate and differentiate into endothelial cells at the border of the infarct lesion of the focal cerebral ischemia murine model [25,26]. Hess et al. reported that 34% of vessels of the peri-infarcted area were bone marrow-derived cells [25]. It has also been reported that a number of circulating, very small embryonic-like stem cells mobilized into peripheral blood in patients after a stroke [27]. These results indicate that bone marrow-derived endothelial cells can take part in angiogenesis, and can minimize the effects of an ischemic stroke.

Table 1: Scientific evidence showing that the administrated factor/drug can enhance endogenous neurogenesis/oligodendrogenesis/angiogenesis.

Factor/Drug	Suggested effect	Reference
EGF	Increase both NPCs number and OPCs number	[21]
Asialo-erythropoetin	Promote the maturation of OPCs	[22]
VEGF	Increase EPCs number for angiogenesis	[30,31]
G-CSF	Increase EPCs number for angiogenesis	[32,45]
Statin	Increase EPCs number for angiogenesis Promoting re-endothelialization.	[40,41]
Cilostazol	Increase EPCs number for angiogenesis	[43]

Figure 1: The stage of endogenous neurogenesis/oligogenesis can be divided into three steps: proliferation, migration, and differentiation. Neural stem cells can proliferate in the subventricular zone (SVZ), and a sub-population of these cells can migrate toward the infarcted lesion, and differentiate into neurons, or oligodendrocyte (OCs). OPCs: Oligodendrocyte Precursor Cells.
Through new research, multiple novel neuronal self-repair strategies enhancing endogenous neurogenesis/oligodendrogenesis/angiogenesis should be proposed for clinical settings in the near future.

References

1. Hung CW, Liu YJ, Lu SW, Tseng LM, Kao CL, et al. (2010) Stem cell-based neuroprotective and neurorestorative strategies. Int J Mol Sci 11: 2039-2055.
2. Leker RR, McKay RD (2004) Using endogenous neural stem cells to enhance recovery from ischemic brain injury. Curr Neurovasc Res 1: 421-427.
3. Nakaguchi K, Masuda H, Kaneko N, Sawamoto K (2011) Strategies for regenerating striatal neurons in the adult brain by using endogenous neural stem cells. Neurol Res Int 2011: 898012.
4. Kaneko Y, Tajiri N, Shinozuka K, Glover LE, Weinbren NL, et al. (2012) Cell therapy for stroke: emphasis on optimizing safety and efficacy profile of endothelial progenitor cells. J Cereb Blood Flow Metab 32: 1125-1132.
5. Uemura M, Kasahara Y, Nagatsuka K, Taguchi A (2012) Cell-based therapy to promote angiogenesis in the brain following ischemic damage. J Vasc Pharmacol 10: 285-288.
6. Gage FH (2000) Mammalian neural stem cells. Science 287: 1433-1438.
7. Alvarez-Buylla A, Garcia-Verdugo JM (2002) Neurogenesis in adult subventricular zone. J Neurosci 22: 629-634.
8. Doetsch F, Caillé I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97: 703-716.
9. J Cereb Blood Flow Metab 22: 411-419.
10. Iwai M, Sato K, Kamada H, Omori N, Nagano I, et al. (2003) Temporal profile of stem cell division, migration, and differentiation from subventricular zone to olfactory bulb after transient forebrain ischemia in gerbils. J Cereb Blood Flow Metab 23: 331-341.
11. Arvidsson A, Collin T, Kirk D, Kokaia Z, Lindvall O (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8: 963-970.
12. Teramoto T, Oiu J, Plumier JC, Moskowitz MA (2003) EGFR amplifies the replacement of parvalbumin-expressing striatal interneurons after ischemia. J Clin Invest 111: 1125-1132.
13. Yamashita T, Ninomiya M, Hernández Acosta P, Garcia-Verdugo JM, Sunabori T, et al. (2006) Subventricular zone-derived neuroblasts migrate and differentiate into mature neurons in the post-stroke adult striatum. J Neurosci 26: 6627-6636.
14. Gensert JM, Goldman JE (1997) Endogenous progenitors remyelinate denervated axons in the adult CNS. Neuron 19: 197-203.
15. Benn B, Garcia-Verdugo JM, Yaschine C, Gonzalez-Perez O, Rowitch D, et al. (2006) Origin of oligodendrocytes in the subventricular zone of the adult brain. J Neurosci 26: 7907-7916.
16. Ninomiya M, Yamashita T, Araki N, Okano H, Sawamoto K (2006) Enhanced neurogenesis in the ischemic striatum following EGFR-induced expansion of transit-amplifying cells in the subventricular zone. Neurosci Lett 403: 63-67.
17. Türeyen K, Vemuganti R, Bowen KK, Sailor KA, Dempsey RJ (2005) EGFR and FGF-2 infusion increases post-ischemic neural progenitor cell proliferation in the adult rat brain. Neurosurgery 57: 1254-1263.
18. Uemura M, Kasahara Y, Nagatsuka K, Taguchi A (2012) Cell-based therapy to promote angiogenesis in the brain following ischemic damage. J Vasc Pharmacol 10: 285-288.
19. Gage FH (2000) Mammalian neural stem cells. Science 287: 1433-1438.
20. Alvarez-Buylla A, Garcia-Verdugo JM (2002) Neurogenesis in adult subventricular zone. J Neurosci 22: 629-634.
21. Yamashita T, Abe K (2012) Endogenous Neurogenesis, Oligodendrogenesis and Angiogenesis after Ischemic Brain Injury. J Neurol Neurophysiol S8: 003. doi:10.4172/2155-9562.S8-003
progeny of subventricular zone type B cells to migrate and differentiate into oligodendrocytes. Stem Cells 27: 2033-2043.

22. Kako E, Kaneko N, Aoyama M, Hida H, Takebayashi H, et al. (2012) Subventricular zone-derived oligodendrogenesis in injured neonatal white matter in mice enhanced by a nonerythropoietic erythropoietin derivative. Stem Cells 30: 2234-2247.

23. Krupinski J, Kaluza J, Kumar P, Wang M, Kumar S (1993) Prognostic value of blood vessel density in ischaemic stroke. Lancet 342: 742.

24. Zhang ZG, Zhang L, Jiang Q, Zhang R, Davies K, et al. (2000) VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain. J Clin Invest 106: 829-838.

25. Hess DC, Hill WD, Martin-Studdard A, Carroll J, Brailer J, et al. (2002) Bone marrow as a source of endothelial cells and NeuN-expressing cells after stroke. Stroke 33: 1362-1368.

26. Zhang ZG, Zhang L, Jiang Q, Chopp M (2002) Bone marrow-derived endothelial progenitor cells participate in cerebral neovascularization after focal cerebral ischemia in the adult mouse. Circ Res 90: 284-288.

27. Paczkowska E, Kucia M, Kozierska D, Halasa M, Safranow K, et al. (2009) Clinical evidence that very small embryonic-like stem cells are mobilized into peripheral blood in patients after stroke. Stroke 40: 1237-1244.

28. Hillebrands JL, Klatter FA, van Dijk WD, Rozing J (2002) Bone marrow does not contribute substantially to endothelial-cell replacement in transplant arteriosclerosis. Nati Med 8: 194-195.

29. Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, et al. (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114: 763-776.

30. Ashara T, Takahashi T, Masuda H, Kalka C, Chen D, et al. (1999) VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J 18: 3964-3972.

31. Kalka C, Masuda H, Takahashi T, Gordon R, Tepper O, et al. (2000) Vascular endothelial growth factor(165) gene transfer augments circulating endothelial progenitor cells in human subjects. Circ Res 86: 1198-1202.

32. Sehara Y, Hayashi T, Deguchi K, Zhang H, Tauchiya A, et al. (2007) Potentiation of neurogenesis and angiogenesis by G-CSF after focal cerebral ischemia in rats. Brain Res 1151: 142-149.

33. Schneider A, Kuhn HG, Schätzl WR (2005) A role for G-CSF (granulocyte colony-stimulating factor) in the central nervous system. Cell Cycle 4: 1753-1757.

34. Heeschen C, Aicher A, Lehmann R, Fichtlscherer S, Vasa M, et al. (2003) Erythropoietin is a potent physiologic stimulus for endothelial progenitor cell mobilization. Blood 102: 1340-1346.

35. Iwakura A, Luedemann C, Shastry S, Hanley A, Kearney M, et al. (2003) Estrogen-mediated, endothelial nitric oxide synthase-dependent mobilization of bone marrow-derived endothelial progenitor cells contributes to reendothelialization after arterial injury. Circulation 108: 3115-3121.

36. Strehlow K, Werner N, Berweiler J, Link A, Dinagl U, et al. (2003) Estrogen increases bone marrow-derived endothelial progenitor cell production and diminishes neointima formation. Circulation 107: 3059-3065.

37. Ding YH, Luan XD, Li J, Rafols JA, Guthinkonda M, et al. (2004) Exercise-induced overexpression of angiogenic factors and reduction of ischemia/reperfusion injury in stroke. Curr Neurovasc Res 1: 411-420.

38. Laufs U, Werner N, Link A, Endres M, Wassmann S, et al. (2004) Physical training increases endothelial progenitor cells, inhibits neointima formation, and enhances angiogenesis. Circulation 109: 220-226.

39. Aicher A, Heeschen C, Mildner-Rihr C, Urbich C, Ihling C, et al. (2003) Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat Med 9: 1370-1376.

40. Walter DH, Rittig K, Bahmann FH, Kirchmair R, Silver M, et al. (2002) Statin therapy accelerates reendothelialization: a novel effect involving mobilization and incorporation of bone marrow-derived endothelial progenitor cells. Circulation 105: 3017-3024.

41. Chen J, Zhang C, Jiang H, Li Y, Zhang L, et al. (2005) Atorvastatin induction of VEGF and BDNF promotes brain plasticity after stroke in mice. J Cereb Blood Flow Metab 25: 281-290.

42. Landmesser U, Engberding N, Bahmann FH, Schaefer A, Wienczeck A, et al. (2004) Statin-induced improvement of endothelial progenitor cell mobilization, myocardial neovascularization, left ventricular function, and survival after experimental myocardial infarction requires endothelial nitric oxide synthase. Circulation 110: 1933-1939.

43. Shin HK, Lee HR, Lee DH, Hong KW, Lee JH, et al. (2010) Cilostazol enhances neovascularization in the mouse hippocampus after transient forebrain ischemia. J Neurosci Res 88: 2228-2238.

44. Kawabe-Yako R, Li M, Masuo O, Ashara T, Itakura T (2011) Cilostazol activates function of bone marrow-derived endothelial progenitor cell for reendothelialization in a carotid balloon injury model. PLoS One 6: e24646.

45. Toth ZE, Leker RR, Shahar T, Pastorino S, Szalayova I, et al. (2008) The combination of granulocyte colony-stimulating factor and stem cell factor significantly increases the number of bone marrow-derived endothelial cells in brains of mice following cerebral ischemia. Blood 111: 5544-5552.