Genetic Control of Differential Acetylation in Diabetic Rats

Pamela J. Kaisaki1, Georg W. Otto1, Joanna F. McGouran2, Amine Toubal3,4, Karène Argoud1, Helen Waller-Evans1, Clare Finlay1, Sophie Caldérari3,4, Marie-Thérèse Bihoreau5, Benedikt M. Kessler2, Dominique Gauguier3,4, Richard Mott4,*

1 The Wellcome Trust Centre for Human Genetics, University of Oxford, Headington, Oxford, United Kingdom, 2 Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom, 3 INSERM, U872, Cordeliers Research Centre, Paris, France, 4 Institute of Cardiometabolism & Nutrition, ICAN, Pitié-Salpêtrière Hospital, University Pierre & Marie-Curie, Paris, France, 5 National Genotyping Centre, Evry, France

Abstract

Post-translational protein modifications such as acetylation have significant regulatory roles in metabolic processes, but their relationship to both variation in gene expression and DNA sequence is unclear. We address this question in the Goto-Kakizaki (GK) rat inbred strain, a model of polygenic type 2 diabetes. Expression of the NAD-dependent deacetylase Sirtuin-3 is down-regulated in GK rats compared to normoglycemic Brown Norway (BN) rats. We show first that a promoter SNP causes down-regulation of Sirtuin-3 expression in GK rats. We then use mass-spectrometry to identify proteome-wide differential lysine acetylation of putative Sirtuin-3 protein targets in livers of GK and BN rats. These include many proteins in pathways connected to diabetes and metabolic syndrome. We finally sequence GK and BN liver transcriptomes and find that mRNA expression of these targets does not differ significantly between GK and BN rats, in contrast to other components of the same pathways. We conclude that physiological differences between GK and BN rats are mediated by a combination of differential protein acetylation and gene transcription and that genetic variation can modulate acetylation independently of expression.

Introduction

Post-translational modification (PTM) of proteins is one means by which an organism can alter protein function independently of transcription and translation. There are over 400 characterised PTMs, including phosphorylation, acetylation, methylation, ubiquitination and SUMOylation. In this study, we focus on protein acetylation, which is regulated by complex mechanisms involving families of acetyltransferases and deacetylases. Acetylation of enzymes may affect their activity, and is a mechanism used by cells to make metabolic adaptations, possibly through the coordination of pathways such as glycolysis, gluconeogenesis, citrate cycle, fatty acid metabolism, urea cycle, and glycogen metabolism [1]. Many of the essential enzymes required for metabolite processing in liver are acetylated [2]. As a consequence, variation in protein acetylation is expected to affect diseases such as diabetes and the metabolic syndrome (Reaven’s syndrome).

Animal models of diabetes can reveal causal relationships between altered protein acetylation and impaired glucose homeostasis. The Goto-Kakizaki (GK) rat is an established model of spontaneous non-obese Type 2 diabetes, which has elevated blood glucose and peripheral insulin resistance similar to human Type 2 diabetes [3]. The genetic basis of metabolic and hormonal anomalies in the GK rat has been mapped in crosses between GK and non-diabetic Brown Norway (BN) rats which identified quantitative trait loci (QTL) linked to diabetes-related phenotypes such as glucose intolerance [4]. The GK rat is also a model for the metabolic syndrome, because it exhibits traits of salt-induced hypertension, increased adiposity, glucose intolerance, and hyperlipidemia [5–8].

Previous genome-wide liver transcriptome analyses in rat strains [9] identified significantly down-regulated expression of the NAD-dependent deacetylase sirtuin 3 (Sirt3) in GK compared to BN rats. Sirtuins influence insulin sensitivity and energy homeostasis and possibly ageing. There is controversy over their role in ageing [10], but it is known that they mediate metabolic adaptation to stress and changes in nutrition [11].

The transcriptional difference between GK and BN was confirmed in a further microarray study [6] of a congenic rat strain carrying a large section (170 Mb) of GK chromosome 1 associated with glucose intolerance, where Sirt3 is localised, on a BN genetic background (1conomic). GK alleles in this region are associated with lower Sirt3 expression (p = 0.0030). Sirt3 is likely to affect metabolism and may account for the observed effect because...
it is a key regulator of mitochondrial protein acetylation levels [12].

Due to the potential importance of differential expression of Sirt3 between BN and GK rats, we undertook a series of experiments to first validate and then fine-map the difference in Sirt3 transcript levels to discover the cause of this variation, and finally to explore the effects of lower Sirt3 deacetylase activity on protein acetylation in liver, and determine whether differences in lysine acetylation of metabolic enzymes sheds light on the pathophysiology of the GK rat. We identify alterations in liver protein acetylation and gene transcription that may contribute to physiological differences between GK and BN rats.

Results

Transcription regulation of Sirt3 in congenic strains of the GK rat

We performed genome-wide gene expression analysis using Illumina expression microarrays, on white adipose tissue, kidney, skeletal muscle, liver and brown adipose tissue (BAT) from BN and 1consomic rats, and found 1.6-fold higher transcript levels of Sirt3 in BAT from BN rats compared to 1consomic rats (p = 6.7 x 10^-5), and similar results in liver, consistent with our earlier finding obtained with Affymetrix arrays in liver from the same congenic and control rats [9]. Sirt3 is the tenth most significantly differentially expressed gene (DEG) out of 92 DEG in the 1consomic interval in BAT, and twelfth most differentially expressed gene in liver (out of 100 DEG). The difference in Sirt3 expression appears to be specific to liver and BAT, because it was not present in white adipose, kidney or skeletal muscle. We performed qRT-PCR in order to validate these differences in liver and BAT from BN and 1consomic rats. Expression of Sirt3 was significantly lower in both tissues from 1consomic compared to BN (p<0.05) (Figure 1A).

To fine-map this variation, we used qRT-PCR to compare Sirt3 transcription in BAT from three BN.GK congenic strains of rat chromosome 1 containing either the GK allele of Sirt3 (strains 1h and 1o) with BN or the BN allele of Sirt3 (strain 1b). Figure 1B, right, illustrates these congenic strains, and shows that compared to BN and congenic 1b, Sirt3 expression was lower (p<2.0 x 10^-4) in strains 1h and 1o. These results confirm that GK alleles nearby Sirt3 down-regulate its transcription in cis.

Identification and functional analysis of Sirt3 polymorphisms in the GK rat

To identify the cis-acting variants affecting Sirt3 transcription, we compared the sequences of the Sirt3 gene, including its promoter, in GK and BN in the interval 1:201019865-201045697. We detected 64 intronic SNPs, 3 intronic insertions, 3 intronic deletions, one known synonymous coding SNP (rs13449840), and one SNP in the 5'-UTR, which was within the Sirt3 promoter (1:201044229_C/T). We investigated the consequences of segregating polymorphisms using the Variant Effect Predictor [13] (Table S1) but no obviously functional coding variants were found.

The 646 bp Sirt3 promoter is bi-directional, and lies between the transcriptional start site (TSS) of Sirt3 and the TSS of a neighboring gene encoding the proteasome non-ATPase regulatory subunit 13 (Psmd13) (Figure 2A) [14]. Expression of Psmd13 was not altered in liver and BAT of GK and BN rat. The Sirt3 promoter SNP occurs within a predicted binding site for the estrogen-related receptor response element (ERRE) transcription factor, which is known to activate Sirt3 transcription in the mouse [15]. In order to test whether the variant affected function of the ERRE, we cloned both the BN and GK alleles of the promoter sequence into luciferase reporter construct pGL3-basic. No difference in luciferase activity was observed when HEK293T kidney cells were transfected at two concentrations with the GK promoter compared to BN control (Figure S1). However, when transfected into Hep3B hepatocyte cells, luciferase activity driven by the GK promoter at the higher level of transfection was significantly less than that of BN (p<0.05) (Figure 2B). We conclude that the GK promoter variant in Sirt3 is the likely cause of the cis-regulated transcriptional downregulation of the GK allele, and that this effect is tissue-specific.

RNA-sequencing

We sequenced mRNA from the liver and BAT of GK and BN rats, and identified differentially expressed transcripts in each tissue (Tables S2 and S3). RNA-sequencing re-confirmed that Sirt3 is down-regulated in both BAT (GK 47% lower than BN) and liver (37% lower) from GK rats compared to BN. KEGG pathway enrichment analysis was then performed (Tables S4 and S5). In BAT, the most significantly over-represented pathways that differentiated GK and BN rats were “Metabolic pathways”.

Figure 1. Validation of Sirt3 transcript levels. QRT-PCR of Sirt3 levels (A) comparing BN control rat and congenic strain 1consomic (which has GK chromosome 1 on a BN genetic background), in liver (blue) and BAT (green); (B) left, comparing BAT from BN and three congenic strains, two carrying GK allele of Sirt3 (1o and 1h), and one with BN allele of Sirt3 (1b); (C) diagram of BN.GK chromosome 1 congenic strains used, with maroon bars representing region of GK chromosome 1 introgressed onto BN background. (Genomic location of Sirt3 is indicated.) Results are corrected for expression of housekeeping gene 36B4. doi:10.1371/journal.pone.0094555.g001
Proteome-wide analysis of liver protein acetylation

Since Sirt3 is the major deacetylase enzyme in mitochondria, we reasoned that lower levels of Sirt3 in GK liver would increase lysine-acetylation of proteins. Therefore, we determined global liver protein acetylation in GK and BN rats. First, in order to enrich for acetylated proteins, an equal amount of liver protein extract from GK and BN rats was digested with trypsin, then subjected to immunoprecipitation using pan-acetyllysine antibodies. These enriched peptides were analysed by liquid chromatography tandem mass spectrometry (LC-MS/MS). The 89 differentially acetylated peptides we identified with the approach used.

Differential Acetylation in Diabetic Rats

Since Sirt3 is the major deacetylase enzyme in mitochondria, we reasoned that lower levels of Sirt3 in GK liver would increase lysine-acetylation of proteins. Therefore, we determined global liver protein acetylation in GK and BN rats. First, in order to enrich for acetylated proteins, an equal amount of liver protein extract from GK and BN rats was digested with trypsin, then subjected to immunoprecipitation using pan-acetyllysine antibodies. These enriched peptides were analysed by liquid chromatography tandem mass spectrometry (LC-MS/MS). The 89 differentially acetylated peptides we identified with the approach used.

Figure 2. Sirt3 promoter variant and luciferase assay. (A) Bidirectional promoter of Sirt3 and Psmd13. One single nucleotide polymorphism (1:201044229_C/T) was identified when comparing sequence of GK promoter with BN. (B) Luciferase reporter assay results for transfection of hepatoma cell line. BN or GK allele of Sirt3 promoter was cloned into pGL3-basic vector upstream of luciferase gene, and transfected into Hep3B cells at two levels, 0.1 and 0.4 ug/well. Results are corrected for transfection efficiency by co-transfection with beta-galactosidase vector, and represent two-three independent transfections, which were run in triplicate wells.

doi:10.1371/journal.pone.0094555.g002

(p = 3.08 × 10^{-13}) and “Oxidative phosphorylation” (p = 1.63 × 10^{-9}). Digestion and absorption of protein and fat are also over-represented in BAT, as well as fatty acid metabolism and PPAR signaling pathway. In liver, KEGG analysis again highlights “Metabolic pathways” as the most significantly over-represented pathway amongst the differentially expressed genes (p = 8.41 × 10^{-14}). Cytochrome P450 metabolism, PPAR signaling and steroid hormone biosynthesis are among the top five significantly over-represented pathways in liver. Because Sirt3 is a target of PPAR-coactivator1-alpha, and therefore involved in PPAR-gamma signaling, it is not surprising that PPAR signaling is affected [15].

Proteome-wide analysis of liver protein acetylation

Since Sirt3 is the major deacetylase enzyme in mitochondria, we reasoned that lower levels of Sirt3 in GK liver would increase lysine-acetylation of proteins. Therefore, we determined global liver protein acetylation in GK and BN rats. First, in order to enrich for acetylated proteins, an equal amount of liver protein extract from GK and BN rats was digested with trypsin, then subjected to immunoprecipitation using pan-acetyllysine antibodies. These enriched peptides were analysed by liquid chromatography tandem mass spectrometry (LC-MS/MS). The 89 differentially acetylated peptides we identified with the approach used.

Differential Acetylation in Diabetic Rats

Since Sirt3 is the major deacetylase enzyme in mitochondria, we reasoned that lower levels of Sirt3 in GK liver would increase lysine-acetylation of proteins. Therefore, we determined global liver protein acetylation in GK and BN rats. First, in order to enrich for acetylated proteins, an equal amount of liver protein extract from GK and BN rats was digested with trypsin, then subjected to immunoprecipitation using pan-acetyllysine antibodies. These enriched peptides were analysed by liquid chromatography tandem mass spectrometry (LC-MS/MS). The 89 differentially acetylated peptides we identified with the approach used.

Differential Acetylation in Diabetic Rats

Since Sirt3 is the major deacetylase enzyme in mitochondria, we reasoned that lower levels of Sirt3 in GK liver would increase lysine-acetylation of proteins. Therefore, we determined global liver protein acetylation in GK and BN rats. First, in order to enrich for acetylated proteins, an equal amount of liver protein extract from GK and BN rats was digested with trypsin, then subjected to immunoprecipitation using pan-acetyllysine antibodies. These enriched peptides were analysed by liquid chromatography tandem mass spectrometry (LC-MS/MS). The 89 differentially acetylated peptides we identified with the approach used.

Differential Acetylation in Diabetic Rats

Since Sirt3 is the major deacetylase enzyme in mitochondria, we reasoned that lower levels of Sirt3 in GK liver would increase lysine-acetylation of proteins. Therefore, we determined global liver protein acetylation in GK and BN rats. First, in order to enrich for acetylated proteins, an equal amount of liver protein extract from GK and BN rats was digested with trypsin, then subjected to immunoprecipitation using pan-acetyllysine antibodies. These enriched peptides were analysed by liquid chromatography tandem mass spectrometry (LC-MS/MS). The 89 differentially acetylated peptides we identified with the approach used.

Differential Acetylation in Diabetic Rats

Since Sirt3 is the major deacetylase enzyme in mitochondria, we reasoned that lower levels of Sirt3 in GK liver would increase lysine-acetylation of proteins. Therefore, we determined global liver protein acetylation in GK and BN rats. First, in order to enrich for acetylated proteins, an equal amount of liver protein extract from GK and BN rats was digested with trypsin, then subjected to immunoprecipitation using pan-acetyllysine antibodies. These enriched peptides were analysed by liquid chromatography tandem mass spectrometry (LC-MS/MS). The 89 differentially acetylated peptides we identified with the approach used.

Differential Acetylation in Diabetic Rats

Since Sirt3 is the major deacetylase enzyme in mitochondria, we reasoned that lower levels of Sirt3 in GK liver would increase lysine-acetylation of proteins. Therefore, we determined global liver protein acetylation in GK and BN rats. First, in order to enrich for acetylated proteins, an equal amount of liver protein extract from GK and BN rats was digested with trypsin, then subjected to immunoprecipitation using pan-acetyllysine antibodies. These enriched peptides were analysed by liquid chromatography tandem mass spectrometry (LC-MS/MS). The 89 differentially acetylated peptides we identified with the approach used.

Differential Acetylation in Diabetic Rats

Since Sirt3 is the major deacetylase enzyme in mitochondria, we reasoned that lower levels of Sirt3 in GK liver would increase lysine-acetylation of proteins. Therefore, we determined global liver protein acetylation in GK and BN rats. First, in order to enrich for acetylated proteins, an equal amount of liver protein extract from GK and BN rats was digested with trypsin, then subjected to immunoprecipitation using pan-acetyllysine antibodies. These enriched peptides were analysed by liquid chromatography tandem mass spectrometry (LC-MS/MS). The 89 differentially acetylated peptides we identified with the approach used.

Differential Acetylation in Diabetic Rats

Since Sirt3 is the major deacetylase enzyme in mitochondria, we reasoned that lower levels of Sirt3 in GK liver would increase lysine-acetylation of proteins. Therefore, we determined global liver protein acetylation in GK and BN rats. First, in order to enrich for acetylated proteins, an equal amount of liver protein extract from GK and BN rats was digested with trypsin, then subjected to immunoprecipitation using pan-acetyllysine antibodies. These enriched peptides were analysed by liquid chromatography tandem mass spectrometry (LC-MS/MS). The 89 differentially acetylated peptides we identified with the approach used.
GK liver. Transketolase (Tkt) was 2.6-fold more acetylated in GK than BN liver.

(iv) Fatty acid metabolism. These pathways include acetyl-CoA acyltransferase (Acaa2), an enzyme in fatty acid beta-oxidation and elongation, which has 2 acetylated peptides that are only detected in GK liver. One peptide of mitochondrial acetyl-CoA acetyltransferase Acat1 is more highly acetylated in GK rat liver than in BN, but other peptides from Acat1 and a peptide from cytosolic Acat2 are only acetylated in BN liver. Mitochondrial medium-chain acyl-CoA dehydrogenase (Acadm) and enoyl-CoA delta isomerase 1 (Eci1) are only acetylated in GK liver. Echs1 (enoyl-CoA hydratase/3-ketoacyl thiolase 1, mitochondrial) is acetylated about equally in GK and BN. Several peptides of fatty acid-binding protein, important in fat transport and PPAR

| Table 1. Illumina liver transcripts significantly differentially expressed between GK and BN or 1Consomic strain rats. |
|-----------------|-----------------|
| **Gene Symbol** | **Description** |
| Phf20 | PHD finger protein 20 |
| Asl | argininosuccinate lyase |
| Mdh2 | malate dehydrogenase 2, NAD (mitochondrial) |
| Spi1 | spleen focus forming virus (SFFV) proviral integration oncogene spi1 |
| Tafl | TAF5-like RNA polymerase II, p300/CBP-associated factor (PCAF)-associated factor |
| Ncoa1 | nuclear receptor coactivator 1 |
| Dsc1 | defective in sister chromatid cohesion 1 homolog (S. cerevisiae) |
| Ctcp1 | C-terminal binding protein 1 |
| Pole4 | polymerase (DNA-directed), epsilon 4 (p12 subunit) |
| Yeats4 | YEATS domain containing 4 |
| Kat2a | K(l)ysine) acetyltransferase 2A |
| Gata2 | GATA binding protein 2 |
| Por | P450 (cytochrome) oxidoreductase |
| Mbd3 | methyl-CpG binding domain protein 3 |
| Bag6 | BCL2-associated athanogene 6 |
| RGD1563945 | similar to mKIAA0215 protein |
| Bmi1 | Bmi1 polyclomb ring finger oncogene |
| Edi1 | EP300 interacting inhibitor of differentiation 1 |

Gene ontology descriptions relating to protein acetylation or deacetylation are shown. Transcripts with False Discovery Rates (FDR)<0.05 are in bold. doi:10.1371/journal.pone.0094555.t001
signaling, are acetylated, and one of these is 2.7-fold more acetylated in BN than in GK. Diazepam binding inhibitor (Dbi), which plays a role in acetyl-CoA metabolism and mitochondrial steroidogenesis, is 1.5-fold more acetylated in BN than GK.

(v) Amino acid metabolism. Lysine ketoglutarate reductase, in lysine degradation, is only acetylated in GK. Similarly, aspartate aminotransferase (Got2) is only acetylated in GK, as was choline dehydrogenase (Chdh) and dimethylglycine dehydrogenase (Dmgdh), which are involved in glycine, serine and threonine metabolism, and glutamic-oxaloacetic transaminase 2 (Got2). Formimidodtransferase-cyclodeaminase (Ftd), an enzyme of histidine and one carbon metabolism, is only acetylated in BN. Omega-amidase (Nit2), which is involved in alanine, aspartate and glutamate metabolism, is acetylated 2-fold more in BN than in GK liver. There are several enzymes involved in amino acid metabolism that are acetylated, but differ less than 25% in their acetylation between BN and GK. These include aldehyde dehydrogenase 9A1 (Aldh9a1), which participates in degradation of many amino acids; arginase 1, betaine-homocysteine S-methyltransferase (Betms), which functions in methionine, cysteine, glycine, serine and threonine metabolism, and S-adenosylhomocysteine hydrolase (Ahcy), which is involved in cysteine and methionine metabolism.

(vi) Purine and pyrimidine pathway. This includes adenosine kinase (Adk) and adenylyl kinase (Ak), which are only acetylated in GK liver. Two peptides of carbamoyl-phosphate synthetase 1 (Cps1) are acetylated, one at about equal levels in BN and GK, and one that is twice as acetylated in BN as compared to GK. Carbamoyl-phosphate synthetase 2/aspartate transcarbamylase/dihydroorotase (Cad) is only acetylated in GK. Dihydropyrimidinase (Dhp) is very similar, with two acetylation sites detected, one about equally acetylated and one that is only acetylated in BN (Table S6).

Thus, as in other studies of protein acetylation, we find a wide range of metabolic pathways whose enzymes are affected by this modification. However, as lysine acetylation can either activate or inhibit an enzyme’s activity, the direction of effect must be determined empirically for each protein. Therefore, we cannot predict the overall consequence of differential acetylation for the majority of these pathways.

However, the citrate (TCA) cycle does contain enzymes for which the effect of acetylation has been directly determined, and by combining transcriptomic and proteomic data, we can predict the effects on this pathway due to acetylation rather than amount of protein. Additionally, we observe some TCA proteins that are not acetylated are nonetheless differentially expressed, which can also affect enzyme activity. Thus, the TCA pathway serves as a model for integrating the transcriptome and proteome, in order to give a more complete view of differences between the diabetic GK and control BN rat liver (Figure 4).

Liver transcription regulation of acetyltransferases and deacetylases

We also examined transcription patterns of genes encoding acetyltransferases and deacetylases in our Illumina transcriptomic data that were identified using Gene Ontology terms. We did so in order to determine whether the differences that we measured in lysine acetylation are part of a general trend toward altered acetylation, or specific to the down-regulation of Sir3 (Tables 2 and 3). Nineteen acetyltransferases and eleven deacetylases were significantly differentially expressed between BN and GK, though the annotation may be incomplete. For instance, Sir3 was not originally annotated on the Illumina array as a deacetylase. Besides Sir3, there are five other deacetylases that show significantly lower transcript level in GK than BN livers: MACRO domain containing 1 (Macro1), amidohydrolase domain containing 2 (Amdhd2), and histone deacetylases Hdac3, Hdac5, and Hdac11 (however, the substrates of Macro1 and Amdhd2 are not proteins). Deacetylases that are overexpressed in GK (or 1consomic) when compared to BN are N-deacetylase/N-sulfotransferase (Ndst1), with target heparan sulfate (a linear polysaccharide), Phosphatidylcholine glycan anchor biosynthesis, class L (Pgly), with target N-acetyl-D-glucosaminylphosphatidylinositol (a glycospholipid), arylationamidase deacetylase (Amdhd2), and ataxin 3 (Atxn3). Acetyltransferases that are significantly different between BN and GK include enzymes that acylate xenobiotics (Nat1), higher in GK, and Nat2, lower in GK), metabolites (Acot3, Gnpnat1 and Crat, higher in GK; Gnpat, lower in GK), phospholipid (Lpect1, lower in (1consomic), and a few where targets are unknown (Taf5l, Natb, Nat8b). In certain cases, protein targets of the acetyltransferase have been identified: Pfgb, with targets platelet-activating factor and Plcb1, and Sat2, with target eukaryotic initiation factor 5A, both lower in GK; and Pfgb, with target platelet-activating factor, Pbg2, which targets histone; Gas2, which acts on proteins in cell cycle progression, and Kt2a, with target PPC-1 alpha, which are higher in GK. Macro1 is functionally related to Sir3, because a product of Sir3 deacetylation reaction, O-acetyl-ADP-ribose, is a substrate of Macro1 [17]. Macro1 is not known to deacetylate proteins. Besides Sir3, no other members of the siruin family are differentially expressed in liver (Table 3).

None of the differentially expressed acetyltransferases are in the chromosome 1 QTL linked to diabetes-related traits. Both acetyl-Coenzyme A acetyltransferase 3 and lysophosphatidylcholine acetyltransferase 1 map to chromosome 1 but outside of the QTL region. Of the deacetylases tested for differential transcription, only Sir3 and Macro1 are within the QTL. As noted in Table S6, 40% of the acetylated proteins that we detected were also identified in a Sir3-knockout model, and therefore are likely to be Sir3 targets [16]. We conclude that, although we observe some difference in other enzymes affecting acetylation, a significant fraction of the changes in lysine acetylation are likely to be due to down-regulation of Sir3.

Discussion

In this study, we have shown how transcript level and protein acetylation combine to control protein activity. This integrated, systems-level approach is crucial for understanding the regulation of complex phenotypes, including pathophysiological mechanisms involved in type 2 diabetes and cardiometabolic diseases. In our data, protein acetylation and gene transcription are independent of each other (Figure 3) and hence have uncorrelated effects.

We identified a SNP in the promoter of Sir3 that is probably responsible for the lower expression of Sir3 in the liver of GK rats, and for downstream variation in protein acetylation in enzymes and pathways linked to diabetes and the metabolic syndrome. Sir3 transcription is strongly activated by PGC-1α in combination with ERRx in mouse muscle cells and hepatocytes [15]. It also mediates the influence of PGC-1α on mitochondrial biogenesis and the production of reactive oxygen species. Mouse knockouts of Sir3 cause mitochondrial protein hyperacetylation [12]. The effect of deacetylation by Sir3 on enzyme activity has been measured experimentally for 18 proteins [18,19], and for 78% of these, the deacetylated form has higher activity. Enzymes whose activities increase upon deacetylation include mitochondrial acetyl-CoA synthetase (Acsct2), required for producing acetyl-CoA under ketogenic conditions such as fasting. Sir3 deacetylation also activates Complexes I (NDUFA9) and II (succinate dehydrogenase) of
the electron transport chain, though SDH activity was reported to be affected only in MEFs and brown adipose tissue, not liver [10,20]. Sirt3−/− knockout mice have reduced ATP production [21]. Other enzymes in the TCA cycle affected by deacetylation include isocitrate dehydrogenase (deacetylation causes higher activity) [22] and malate dehydrogenase (lower activity) [18]. Sirt3 reduces reactive oxygen species in cells by activating mitochondria manganese superoxide dismutase 2 [23]. Mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 (Hmgcs2) gluta-
mate dehydrogenase (Gdh) [22], forkhead box O3a (Foxo3a) [24], Ku70 [25], long chain acyl CoA dehydrogenase (Lcad) [23], Serine/threonine protein kinase 11 (Stk11, o r Lkb1) [26], and mitochondrial ribosomal protein L10 (Mrpl10) [27], are all activated when deacetylated by Sirt3. Of these proteins, we detect acetylation of succinate dehydrogenase and malate dehydrogenase in our data.

By integrating our GK and BN liver transcriptome and acetylome analyses, we can predict the effects on the TCA cycle (Figure 4). Malate dehydrogenase 1 (Mdh1), whose activity increases with acetylation, is only acetylated in BN liver, so BN Mdh1 activity is predicted to be higher than in GK. Succinate dehydrogenase (Sdh; Complex II of oxidative phosphorylation) is only acetylated in GK liver. Since Sdh activity decreases when it is acetylated, we predict that GK Sdh activity is lower than in BN [27]. Isocitrate dehydrogenase 2 and fumarate hydratase transcripts are present at lower levels in GK than BN (though the subunits of a-ketoglutarate dehydrogenase complex are equivocal). Thus, the combined effect of lysine acetylation and transcript differences increases flux through the TCA cycle, and which should be higher in BN than GK liver.

Our results are consistent with a report showing that flux through Complex II with palmitoylcarnitine substrate is reduced in GK liver, but not in GK muscle [28]. We observe lower Sirt3 transcript abundance with concomitant increased Sdh acetylation in liver, but no change of Sirt3 transcription in muscle.

Studies of liver mitochondrial energetics in GK rats have demonstrated that the GK rat has a low endogenous ATP/ADP ratio [29], which could be the result of reduced flux through the TCA cycle. In the liver mitochondrial proteome, phosphoproteome and hydroxyproteome of GK rats, [30] suggest that protein expression is coordinated between the TCA cycle, fatty acid oxidation and oxidative phosphorylation during the progression from pre-diabetes to early Type 2 diabetes. Here we show that GK liver protein acetylation provides another layer post-translational control of enzyme activity. It is important to note that acetylation patterns in tissues other than liver are likely to be different [31].

We find that DNA variation in the Sirt3 promoter may contribute to impaired glucose homeostasis in the GK model of type 2 diabetes. Diabetes in the GK rat is a complex, multifactorial disease, caused by susceptibility alleles isolated from an outbred
Table 2. Acetyltransferases in the rat liver transcriptome.

Symbol	Description	Illumina microarray	RNA-sequencing				
		GK/BN log2 fold-change	1Cons/BN log2 fold-change	GK/BN FDR	1Cons/BN FDR	1Cons/BN FDR	
		GK/BN FDR	1Cons/BN FDR	1Cons/BN FDR	1Cons/BN FDR	1Cons/BN FDR	
Pafah1b1	platelet-activating factor acetylhydrolase 1b1	−1.69	1.54E-09	0.13	0.5895	1	1
Sut2	spermidine/spermine N1-acetyltransferase 2	−1.39	2.32E-09	−0.24	0.1951	−0.51	0.127
Aat3	acetyl-Coenzyme A acetyltransferase 3	2.00	1.50E-07	−0.02	0.9640	0.75	0.0044
Phf20	PHD finger protein 20	0.68	1.73E-06	−0.21	0.1457	−0.32	0.17198
Nat8	N-acetyltransferase 8	2.04	3.42E-06	0.62	0.1787	nf*	nf
Nat1	N-acetyltransferase 1	1.60	8.05E-06	0.47	0.2360	nf	nf
Nat2	N-acetyltransferase 2	−0.58	0.0002	0.07	0.7654	0.35	0.1461
Pafah1b3	platelet-activating factor acetylhydrolase 1b3	0.61	0.0005	0.14	0.5398	0.21	0.8658
Tafl	TAF5-like RNA polymerase II	−0.59	0.0005	0.63	0.0076	−1.07	8.87E-07
Gnpat	glyceronephosphate O-acyltransferase	−0.29	0.0017	−0.12	0.3442	−0.29	0.2881
Ncoa1	nuclear receptor coactivator 1	−0.42	0.0022	−0.10	0.6087	0.03	0.9711
Gnpnat1	glucosamine-phosphate N-acetyltransferase 1	0.36	0.0037	0.06	0.7465	0.24	0.2677
Naa20	N(alpha)-acetyltransferase 20	0.27	0.0039	0.02	0.8875	nf	nf
Kat2a	K(lysine) acetyltransferase 2A	0.42	0.0138	0.09	0.7453	0.48	0.101
Crat	carnitine O-acyltransferase	0.50	0.0305	−0.06	0.8800	1.06	1.46E-11
Lpcat1	lysophosphatidylcholine acyltransferase 1	0.06	0.6192	−0.43	0.0146	−0.34	0.533
Nat8b	N-acetyltransferase 8B	0.14	0.1751	−0.30	0.0373	−0.23	0.7107
Lpcat3	lysophospholipid acyltransferase 5	nf	nf	nf	nf	0.51	0.0047
Phf25	protein Jade-2	nf	nf	nf	nf	0.77	0.0043

Shown are transcripts differentially expressed between BN and GK or 1consomic strains. False Discovery Rates (FDR)<0.05 are in bold. doi:10.1371/journal.pone.0094555.t002
Table 3. Liver deacetylases in the rat liver transcriptome.

Symbol	Description	Illumina microarray	RNA-sequencing				
		GK/BN log2 fold-change	GK/BN adjusted p-value	1Cons/BN log2 fold-change	1Cons/BN FDR	GK/BN log2 fold-change	GK/BN FDR
Ndst1	N-deacetylase/N-sulfotransferase 1	0.67	8.26E-05	0.056	0.828	−0.04	0.9211
Pigl	phosphatidylinositol glycan anchor biosynthesis L	0.42	0.0001	−0.214	0.1077	nf	nf
Hdac5	histone deacetylase 5	−0.75	0.0007	0.043	0.9096	0.13	0.6452
MacroD1	MACRO domain containing 1	−0.49	0.0008	0.286	0.1235	−0.56	0.0018
Amdhd2	amidohydrolase domain containing 2	−0.36	0.002	0.033	0.8696	−0.97	0.0001
Hdac11	histone deacetylase 11	−0.59	0.0065	−0.182	0.5643	−0.52	0.1061
Adac	arylacetamide deacetylase	0.38	0.0228	0.434	0.0628	−0.49	0.0737
Hdac3	histone deacetylase 3	−0.22	0.0345	0.145	0.3341	nf	nf
Atxn3	ataxin 3	0.2	0.117	0.594	0.0033	0.42	0.0672
Atxn1	ataxin 1	nf	nf	nf	nf	0.93	0.0001
SirT1	sirtuin 1	0.16	0.3331	−0.086	0.7452	0.14	0.7643
SirT2	sirtuin 2	V	V	V	V	−0.19	0.4863
SirT3	sirtuin 3	−0.74	2.66E-06	−0.928	1.34E-05	−0.66	0.0008
SirT4	sirtuin 4	−0.15	0.1684	0.063	0.7183	−0.44	0.3751
SirT5	sirtuin 5	0.12	0.3046	0.077	0.6704	0.1	0.8224
SirT6	sirtuin 6	0.1	0.2433	0.129	0.2749	0.09	0.8905
SirT7	sirtuin 7	−0.08	0.4437	−0.052	0.7549	0.31	0.3553

Shown are transcripts differentially expressed between BN and GK or 1consomic strains. False Discovery Rates (FDR)<0.05 are in bold (V: Variant in probe).

doi:10.1371/journal.pone.0094555.t003
Wistar stock upon selection of glucose intolerant animals. The polygenic threshold model for complex dichotomous conditions is therefore likely to apply [32]. Under this model, contributing factors accumulate until a threshold is reached, leading to descent into disease. Other rat strains may have reduced Sirt3 deacetylase activity, but are below the threshold required to move into the disease state.

Our data also provide insights into the relationship between glucose intolerance and ageing. Wistar-related rat strains have shorter lifespans than BN rats [33]. Though there is some controversy about the role of sirtuins in ageing, they do mediate metabolic adaptation to stress and changes in nutrition [1] which affect ageing, and higher levels of Sirt3 in BN rat may contribute to its longer lifespan. Furthermore, higher Sirt3 in BN rat liver may contribute to its resistance to the metabolic syndrome. Knockdown of Sirt3 in the BN rat and measurement of its effects on metabolism and longevity, could test this hypothesis.

Materials and Methods

Animals

GK, BN and congenic rat strains were provided from our breeding colony at Biomedical Services, University of Oxford. Rats were housed in groups of five per cage, with free access to water and standard laboratory chow pellets (B&K Universal Ltd., Grimston, Aldbrough, Hull) and were maintained on a 12 h light-dark cycle, at a room temperature of 21 °C with a relative humidity of 55±10%. Tissues were collected from 7–8 month old animals that were fasted overnight and killed by a rising concentration of CO2. The tissue was flash-frozen and stored in a −80°C freezer until protein or RNA isolation was performed. Records of the breeding colony were kept using a FilemakerPro database [34]. Animal procedures were approved by the ethical review panel of the University of Oxford and UK Home Office project licence PPL 30/2918.

RNA preparation

Liver and brown adipose tissue (BAT) were taken from six each of GK, BN.GK1congenic, and Brown Norway (BN control) male rats and flash-frozen in liquid nitrogen. Tissue samples were similarly taken from male BN.GK1 congenics derived for different sections of GK rat chromosome 1 (four each of strains BN.GK1b, 1h, 1o) (Figure 1B, right).

Total RNA was isolated from frozen tissues using either the RNaseasy kit (Qiagen, Crawley, UK), or Trizol reagent (Invitrogen Life Technologies, Paisley, UK). Briefly, for RNasey kit, frozen tissue samples were homogenized in QIAzol Lysis Reagent using a Qiaqen Tissue Lyser. Following phase separation after addition of chloroform, total RNA was purified using a spin technology protocol details and raw data have been deposited in ArrayExpress (http://www.ebi.ac.uk/arrayexpress/) under the accession number E-MTAB-1048.

Statistical analysis of Illumina microarray data and Gene Ontology annotation

Microarray data were imported and normalized using normexp [35]. Batch effects on expression values, as revealed by a principal component analysis, were dealt with by using the array identifier as additive covariant in the linear model. Differentially expressed genes were identified by comparing the consomic strain or GK with the BN strain. A linear model was fitted using the software LIMMA. Gene were tested for differential expression using a moderated t-statistic. Multiple testing correction of p-values was carried out using the false discovery rate [36].

Quantitative real-time PCR

Total RNA was treated with Turbo DNA-free DNase kit, for removal of genomic DNA (Ambion Inc., Austin, Texas, USA). cRNA concentrations were determined using a NanoDrop spectrophotometer whilst cRNA quality and integrity were assessed using an Agilent 2100 Bioanalyzer (Agilent Technologies, Waldbronn, Germany). Hybridizations onto Sentrix® BeadChip RatRef-12 v1 Arrays were carried out using 750 ng of each biotinylated cRNA in a 50°C hybridization oven for 18 hours. Following washing and staining with Streptavidin-Cy3, the BeadChips Arrays were scanned on the Illumina® BeadArray Reader (Illumina Inc., San Diego, USA). Resulting data were then preliminarily analysed using the Illumina® BeadStudio Application software before undergoing comprehensive statistical analysis.

Illumina Bead Array hybridization and scanning

Gene transcription profiling for the BN, GK, and chromosome 1 congeneric strains was performed using Sentrix® BeadChip RatRef-12 v1 Whole-Genome Gene Expression Arrays (Illumina Inc., San Diego, California, USA).

Double-stranded cDNA and purified biotin-labeled cRNA were synthesized from 300 ng high quality total RNA using the Illumina® TotalPrep RNA Amplification Kit (Ambion Inc., Austin, Texas, USA). cRNA concentrations were determined using a NanoDrop spectrophotometer whilst cRNA quality and integrity were assessed using an Agilent 2100 Bioanalyzer (Agilent Technologies, Waldbronn, Germany). Hybridizations onto Sentrix® BeadChip RatRef-12 v1 Arrays were carried out using 750 ng of each biotinylated cRNA in a 50°C hybridization oven for 18 hours. Following washing and staining with Streptavidin-Cy3, the BeadChips Arrays were scanned on the Illumina® BeadArray Reader (Illumina Inc., San Diego, USA). Resulting data were then preliminarily analysed using the Illumina® BeadStudio Application software before undergoing comprehensive statistical analysis.

Sequence of the Sirt3 gene and promoter cloning

Polymorphism information comparing GK and BN for the region containing Sirt3 and the flanking 5’ and 3’ sequence was obtained by comparing our genome sequence of the GK rat (Kaisaki, unpublished) with the BN reference sequence. BN-GK SNPs in the region of chr1:201019865-201045697 were submitted for analysis to the online tool at Ensembl, Variant effect predictor (http://www.ensembl.org/info/docs/variation/vep/index.html, [13]).

For cloning, the Sirt3 promoter region (RGSC3.4, chr1:201,043,757-201,044,402) was amplified with the primers Sirt3-promoter-F (5’-ACACAAATACCGCCACGTCG-3’) and Sirt3-promoter-R (5’-ACGTTGACAGCTTATCCTAG-3’) from genomic DNA of either GK or BN rats, using proofreading enzyme Phusion High Fidelity PCR mix (New England Biolabs, Hitchin, UK), and ligated first into PCRII-TOPO vector (Invitrogen, Paisley, UK) with Roche Rapid Ligation kit, and...
then subcloned into pGL3-basic Luciferase Reporter vector (Promega, Southampton, UK). Clones were sequenced to confirm there were no PCR errors.

Cell transfection and luciferase assay

HEP3B hepatoma and HEK293T cells were plated in 24-well plates at 2.5 x 10^4 cells/well, and transfected the next day using Fugene 6, following manufacturer protocols (Roche Molecular Biochemicals, Burgess Hill, UK). Two different concentrations of pGL3-promoter plasmid were transfected, and pCMV-LacZ was co-transfected in all cells (pCMV-LacZ was kindly provided by J. Bragunova and S. Bhattacharya). Luciferase activity was measured using Promega Luciferase Assay System (Promega, Southampton, UK), and read on a Labsystems Luminoskan Ascent microplate luminometer (Thermo Fisher Scientific, Loughborough, UK).

Activity of β-galactosidase was assayed by measuring cleavage of the substrate 5-nitrophenyl-β-D-galactoside (ONPG) [37]. Two to three independent transfection experiments were run, each time in triplicate wells, and results are corrected for transfection efficiency by expressing data as the ratio of luciferase to β-galactosidase activity.

Analysis of acetylated proteome

Protein extraction and trypsin digest. Detection of protein acetylation was previously shown to be more optimal when the enrichment step as performed at the peptide level [31,38]. Liver tissue was homogenised in Lysis buffer, consisting of 50 mM Tris-HCl, pH 7.4, 0.5% NP-40 substitute, 150 mM NaCl, 20 mM MgCl₂, 10 mM trichostatin A, 10 mM nicotinamide, 50 mM butyric acid, and protease inhibitor cocktail (Pierce, Cramlington, UK), using a Tissuelyser at 20 mHz for 3 min (Qiagen Ltd., Crawley, UK). Samples were rotated in a cold room for 30 min, sonicated, and centrifuged 13000 rpm for 20 min at 4°C to remove solids. Protein concentration was measured (Pierce BCA Protein Assay Kit, Perbio Science UK, Ltd, Crawlingdon, UK), and 30 mg of protein from each sample was methanol-chloroform extracted [39]. The pellet was resuspended in 6 M urea in 0.1 M Tris, pH 7.8 by vortexing and sonication. The proteins were reduced in 10 mM DTT, alkylated with 40 mM iodoacetamide, and reduced again in 40 mM DTT. Urea concentration was reduced to 0.7 M by diluting with water, then trypsin was added in a 1:50 ratio (i.e. 60 μg trypsin for 30 mg protein), and incubated at 37°C overnight. Samples were desalted using Sep-pak C18 cartridges (Waters Ltd, Elstree, UK), then evaporated to dryness in a speed-vac.

Immunoprecipitation of acetylated peptides. Pellets were resuspended in RIPA buffer (50 mM Tris, pH 7.4, 150 mM NaCl, 1% NP-40 substitute (Sigma-Aldrich, Gillingham, UK), 0.25% Na-deoxycholate, 1 mM EDTA), then diluted in NET buffer (50 mM Tris, pH 7.4, 5 mM EDTA, 150 mM NaCl). The trypptic peptides were cleared of non-specifically binding peptides by incubating with Protein A-dynabeads (Invitrogen, Paisley, UK). Immunoprecipitation was performed using a mixture of mouse monoclonal and rabbit polyclonal pan-acetyllysine antibodies (NEB Cell Signalling Technology, Hitchin, UK) conjugated to Protein A-dynabeads in NET buffer. Beads were washed three times with NET buffer, transferred to a fresh tube, and eluted twice with ice-cold 100 μl elution buffer (100 mM glycine, pH 2.5). Eluates were desalted using Supel-Tips C18 micropipette tips (“zip-tips”, Sigma-Aldrich, Gillingham, UK), and evaporated to dryness in a speed-vac.

LC-MS/MS Mass-spectrometric analysis. The analysis of digested immunoprecipitated material was performed by LC-MS/MS using an orbitrap Velos (Thermo) coupled to a nano-UPLC system (NanoAcquity, Waters) using a reversed phase 75 μm x 250 mm C18 column as described [39]. MS/MS spectra were searched against the NCBInr Rodentia database (v2012.07.08, 108970916 sequences) using the Mascot search engine v2.3.01, allowing two missed cleavage and 20 ppm/0.5 Da mass deviations in MS/MSMS, respectively. Carbamidomethylation of cysteine was a fixed modification. Oxidation of methionine, and acetylation of lysine were used as variable modifications. Acetylated peptides were identified on a Mowse score probability based scoring algorithm with a >95% confidence of identification. Acetylated lysine residues were detected as +42.01 Da mass tags and MS/MS spectra required at least four consecutive b or y ions. Representative MS/MS spectra of acetyl-lysine containing peptides are shown in Figure S2, and the peptide scores for each acetylated peptide observed in either the GK or BN samples were compared for an indication of a change in relative abundance (Table S6).

RNA-sequencing

RNA-sequencing was performed according to standard operating procedures by the High-Throughput Genomics Group at the Wellcome Trust Centre for Human Genetics. Briefly, mRNA was selected from the total RNA, then fragmented and converted to cDNA. The cDNA was end-repaired, A-tailed and adapter-ligated before amplification and size selection. The prepared libraries were multiplexed and quality controlled before 51-nt paired end sequencing on an Illumina HiSeq2000 next generation sequencing machine.

Sequencing reads were mapped to the rat reference genome (RGSC3.4, Ensembl release 69) using tophat version 2.0.6 [40]. Bam files were filtered using samtools version 0.1.17 [41], removing alignments with MAPQ <15. Filtered Bam files were sorted and duplicates were removed using samtools. Differential expression was detected with edgeR [42]. Significant enrichment of KEGG pathways was analysed with goseq [43].

Supporting Information

Figure S1 Luciferase reporter assays for transfection of kidney cell line cell.

(PDF)

Figure S2 Mass spectrometry based detection of protein lysine acetylation.

(PDF)
Acknowledgments

We thank Drs. Nicola Terneste and Roman Fischer for help with the analysis by tandem mass spectrometry. We are grateful to Amelie Baud for advice. We also thank the High-Throughput Genomics Group at the Wellcome Trust Centre for Human Genetics.

References

1. Hirschy MD, Shimazu T, Jing E, Grueter CA, Collins AM, et al. (2011) SIRT3 Deficiency and Mitochondrial Protein Hyperacetylation Accelerate the Development of the Metabolic Syndrome. Mol Cell 44: 177–190.

2. Zhao S, Xu W, Jiang W, Yu W, Liu Y, et al. (2010) Regulation of cellular metabolism by protein lysine acetylation. Science 327: 1000–1004.

3. O’Rourke CM, Davis JA, Saluri AR, Cornicelli JA (1997) Metabolic effects of troglitazone in the Goto-Kakizaki rat, a non-obese and normolipidemic rodent model of non-insulin-dependent diabetes mellitus. Metabolism 46: 192–198.

4. Gaugier D, Froged P, Parent V, Bernard C, Bihoreau MT, et al. (1996) Chromosomal mapping of genetic loci associated with non-insulin dependent diabetes in the GK rat. Nat Genet 12: 30–45.

5. Marion E, Kaisaki PJ, Pouillon V, Gueydan C, Levy JC, et al. (2002) The gene INPPL1, encoding the lipid phosphatase SHIP2, is a candidate for type 2 diabetes in rat and man. Diabetes 51: 2012–2017.

6. Walls RH, Collins SC, Kaisaki PJ, Argoud K, Wilder SP, et al. (2008) Pathophysiological, genetic and gene expression features of a novel rodent model of the cardio-metabolic syndrome. PLoS One 3: e2962.

7. Cheng ZJ, Vaskonen T, Tikkanen I, Nurminen K, Ruskoaho H, et al. (2001) Endothelial dysfunction and salt-sensitive hypertension in spontaneously diabetic Goto-Kakizaki rats. Hypertension 37: 413–419.

8. Argoud K, Wilder SP, McAteer MA, Bihoreau MT, Ouali F, et al. (2006) Genetic control of plasma lipid levels in a cross derived from normoglycaemic Brown Norway and spontaneously diabetic Goto-Kakizaki rats. Diabetologia 49: 2679–2688.

9. Wilder SP, Kaisaki PJ, Argoud K, Salhan A, Ragoussis J, et al. (2009) Comparative analysis of methods for gene transcription profiling data derived from different microarray technologies in rat and mouse models of diabetes. BMC Genomics 10: 123.

10. Haigis MC, Sinclair DA (2010) Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol 5: 253–295.

11. Lombard DB, Fletcher SD, Canto C, Anversa J (2011) Aging: longevity hits a roadblock. Nature 477: 410–411.

12. Lombard DB, Alt FW, Cheng HL, Bunkenborg J, Streeper RS, et al. (2007) Comparative analysis of methods for gene transcription profiling data derived from different microarray technologies in rat and mouse models of diabetes. BMC Genomics 10: 63.

13. Haigis MC, Sinclair DA (2010) Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol 5: 253–295.

14. Bellizi D, Dato S, Cavalcante P, Covello G, Di Cianni F, et al. (2007) Characterization of a bidirectional promoter shared between two human genes. BMC Genomics 8: 223.

15. Meng X, Yang Z, Sun Y, Kong S, Peng H, et al. (2010) The fasted/fed mouse metabolic acetylome: N6-acetylation differences suggest acetylation coordinates organ-specific fuel switching. J Proteome Res 10: 3381–3387.

16. Rardin MJ, Newman JC, Held JM, Cusack MP, Sorensen DJ, et al. (2013) Exogenous NAD blocks cardiac hyperglycolysis in diabetic rats by deacetylating CREB-binding protein/p300-interacting transactivator with ED-rich tail (CITED). 4, a new member of the CITED family, functions as a co-activator for transcription factor AP-2. J Biol Chem 288: 1115–1119.

17. Chen D, Vollmar M, Rossi MN, Phillips C, Krachenbuhl R, et al. (2011) Identification of macrodomain proteins as novel N-acetyl-ADP-ribose deacetylases, J Biol Chem 286: 32811–32817.

18. Guan KL, Xiong Y (2011) Regulation of intermediary metabolism by protein acetylation. Trends Biochem Sci 36: 108–116.

19. Xiong Y, Guan KL (2012) Mechanistic insights into the regulation of metabolic enzymes by acetylation. J Cell Biol 198: 155–164.

20. Finley LW, Haas WS, Desmet-Dumas V, Wallace DC, Procaccio V, et al. (2011) Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity. PLoS One 6: e22955.

21. Ahn BH, Kim HS, Song S, Lee IH, Liu J, et al. (2008) A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc Natl Acad Sci U S A 105: 14447–14452.

22. Schlieker G, Gertz M, Papadopoulos P, Kachholz B, Becker CF, et al. (2008) Substrates and regulation mechanisms for the human mitochondrial sirtuin Sirt3 and Sirt5. J Mol Biol 382: 790–801.

23. Qin X, Brown K, Hirschy MD, Verdin E, Chen D (2010) Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab 12: 662–667.

24. Sundaresan NR, Gupta M, Kim G, Rajamohan SB, Ishatan A, et al. (2009) Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J Clin Invest 119: 2758–2771.

25. Sundaresan NR, Samant SA, Pillai VB, Rajamohan SB, Gupta MP (2008) SIRT3 is a stress-responsive deacetylase. J Biol Chem 283: 3514–3523.

26. Pillai VB, Sundaresan NR, Kim G, Gupta M, Rajamohan SB, et al. (2010) Exogenous NAD blocks cardiac hyperglycolysis in diabetic rats by deacetylating CREB-binding protein/p300-interacting transactivator with ED-rich tail (CITED). 4, a new member of the CITED family, functions as a co-activator for transcription factor AP-2. J Biol Chem 288: 1115–1119.

Author Contributions

Conceived and designed the experiments: PK BK DG RM. Performed the experiments: PK JFM AT KA HWE CF SC MTB. Analyzed the data: GO BK RM. Wrote the paper: PK BK RM.