Co-infection status of novel parvovirus’s (PPV2 to 4) with porcine circovirus 2 in porcine respiratory disease complex and porcine circovirus-associated disease from 1997 to 2012

Paula Lagan Tregaskis1,2 | Anthony Staines3 | Alan Gordon4 | Pauline Sheridan1 | Michael McMenamy1 | Catherine Duffy1 | P. J. Collins1 | Mark H. Mooney2 | Ken Lemon1

1Department of Virology, Veterinary Science Division, Agri-food and Biosciences Institute, Belfast, UK
2Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, UK
3Department of Nursing and Human Sciences, Dublin City University, Dublin, Ireland
4Statistical Services Branch, Veterinary Science Division, Agri-food and Biosciences Institute, Belfast, UK

Correspondence
Paula Lagan Tregaskis, Department of Virology, Veterinary Science Division, Agri-food and Biosciences Institute, Belfast BT4 3SD, UK.
Email: Paula.lagan@afbini.gov.uk

Abstract
As global pig health diseases, porcine respiratory disease complex (PRDC) and porcine circovirus-associated disease (PCVAD) generate substantial economic losses despite pigs been vaccinated against the primary causative virus, highlighting the importance of understanding virome interactions and specifically co-factor infections. Established primary endemic pathogens for PRDC include porcine circovirus 2 (PCV2), porcine reproductive and respiratory syndrome virus (PRRSv) and swine influenza virus (SIV), and PCV2 aetiology in interaction with other co-infecting viruses can result in PCVAD. Porcine parvovirus (PPV) 1 is a well-characterized virus with an available vaccine preventing reproductive failure in sows. However, whilst novel PPV 2 to 7 viruses have been identified since 2001, their viral pathogenic potential in clinical and subclinical disease remains to be determined. Therefore, this study has sought to develop a better understanding of their potential role as associated co-infections in PRDC and PCVAD by examining archival samples for the presence of PCV2 and the novel parvoviruses PPV2-4 from clinically diseased pigs across production age stages. Epidemiologically, the novel PPV2 was found to be the most prevalent within the fattener age group with PPV2-4 statistically associated with pig respiratory disease and enteric ulcers. Additionally, statistical modelling by latent class analysis (LCA) on veterinary pathology scored pigs found a clustering co-factor association between PPV2 and PCV2, suggesting the novel PPV may be involved in PRDC and PCVAD. Phylogenetic analysis of novel PPVs revealed the PPV2 capsid evolution to be diverged from the original strains with a low nucleotide homology of 88%–96% between two distinct clades. These findings determine that novel PPV2-4 viruses are statistically associated as co-infectors in a diseased pig population, and significantly detected PPV2 clustering co-infection frequency with PCV2 in PRDC and PCVAD diseased pigs through LCA analysis.

KEYWORDS
LCA, PCV2, PCVAD, phylogenetics, pigs, PPV2, PPV3, PPV4, PRDC, prevalence
1 | INTRODUCTION

The novel porcine paroviruses (PPV2–PPV4) are emerging viral agents and globally endemic in domestic pig and wild boar populations (Afolabi et al., 2018; Cadar, Csagola, et al., 2013; Cságo et al., 2012; Huang et al., 2010; Zhang et al., 2014). Evidence of emerging PPV association with clinical disease has been broadly reported (Xiao, Gerber, et al., 2013; Opriessnig et al., 2014; Saekhow & Ikeda, 2014). However, as these single-stranded (ss) DNA novel viruses are not cell culture adapted, experimental infection has been hindered, resulting in limited knowledge of viral pathogenesis or the relevance of these viruses both clinically and economically. Porcine circovirus type 2 (PCV2), a ssDNA virus, is the known causative agent of the multi-factorial disease, post-weaning multisystemic wasting syndrome (PMWS) in pigs (Allan et al., 1999; Segales, 2012). PCV2 disease is facilitated by a co-factor infection suppressing the pig immune system allowing PCV2 to replicate to a higher rate. Since the initial characterization of PMWS, further disease associations have been documented and referred to as PCV2-associated disease (PCVAD) to encompass a wide variety of clinical symptoms and pathologies including enteric, respiratory, porcine dermatitis nephropathy syndrome (PDNS) and reproductive and congenital disorders (Opriessnig et al., 2007). Additionally, a multi-factorial disease was recognized as porcine respiratory disease complex (PRDC) and is observed in pig herds where respiratory symptoms with coughing, fever, anorexia and gastric ulcers occur in recently weaned piglets and in older pigs. PRDC can be attributed to a wide range of viruses such as PCV2 and potentially PCV type 3 (Kedkovid et al., 2018), PRRSV and swine influenza virus (SIV) which is known to cause significant damage to the epithelial respiratory airways where secondary bacterial pathogens can then cause infection (Opriessnig et al., 2011).

A next-generation sequencing (NGS) study on PRDC porcine lung samples has associated the presence of PPV2, PPV3, PPV6 and torque teno virus to PRDC diseased pigs (Qin et al., 2018). The novel porcine paroviruses PPV2–4 may have emerged approximately seventy years ago and possess a high nucleotide substitution rate similar to RNA viruses (Cadar, Lorincz, et al., 2013). Through frequent recombination, the positive selection of porcine paroviruses has the capacity to further adapt and circulate amongst pig herds, which merits continuous phylogenetic mapping and the monitoring of disease association. PPV1 is considered an endemic virus in pig herds causing enteritis and dermatitis with gilts routinely vaccinated to prevent the vertically transmitted disorder, as it is difficult to assess subclinical disease in pig herds, ultimately this study focused on clinically diseased pigs to demonstrate the prevalence and statistical association within this grouping (Streick et al., 2013). The PCV2 vaccine introduced in ~2006 reduces PCV2 viremia and viral shedding, and 65% of the samples from this study were categorized in the pre-vaccine category. These samples were sourced from veterinary diagnosed clinically diseased pigs representing production groups originating from Northern Ireland, Republic of Ireland, Great Britain and other neighbouring European countries, sourced from 9 different studies and post-mortem submissions (Table S1), dating from 1997 to 2012, was collated. This cohort represented a single sample per animal, comprising of various sample types including lymph tissue, sera, abortion fluid, abortion tissue, organ tissue, nasal swab and faeces (Table S1). Novel PPVs 2–4 are known to be endemic in ‘healthy pigs’, and as it is difficult to assess subclinical disease in pig herds, ultimately this study focused on clinically diseased pigs to demonstrate the prevalence and statistical association within this grouping (Streick et al., 2013). The PCV2 vaccine introduced in ~2006 reduces PCV2 viremia and viral shedding, and 65% of the samples from this study were categorized in the pre-vaccine category. These samples were sourced from veterinary diagnosed clinically diseased pigs representing production groups originating from France (n = 337, 48.5%), Northern Ireland (n = 182, 26.19%), Great Britain (n = 106, 15.25%), Republic of Ireland (n = 47, 6.7%) and Belgium (n = 23, 3.3%). All recorded sample data were reviewed, and where possible, included the history of animal, age, post-mortem veterinary gross pathology, diagnostic tests including PRRS and PCV2 indirect fluorescence assay, and veterinary histopathology. The collated sample data were categorized by production age groups as foetus (0 weeks),...
pre-weaners (<4 weeks), weaners (>4 weeks to < 10 weeks) and fatteners (>10 weeks).

Samples were processed before nucleic acid extraction. Sera were removed from whole clotted blood and spun at 200 xg for 10 mins to pellet remaining blood cells. 10% w/v faecal samples were prepared in transport media with three freeze-thawed cycles and spun at 200 xg for 30 mins 4°C to clarify the supernatant. 0.2 g of tissue samples was trimmed of fatty tissue and homogenized before clarifying at 200 xg for 30 mins 4°C (TissueLyser II, Qiagen Ltd, Crawley, UK). A 200 µl volume of processed sample was extracted by a Total Nucleic Acid kit on a MagNa Pure LC automated liquid handling platform (Roche, Burgess Hill, UK) alongside positive and negative controls.

2.2 Detection PCR and sequencing

The detection of PCV2 and the PPVs (PPV1, PPV2, PPV3 and PPV4) (Eurofins, MWG Operon, Germany) (Table S4), primers were used at a concentration of 0.5 µM, in separate 25 µl qPCRs of QuantiTect SYBR® Green (Qiagen Ltd, Crawley, UK) with 2 µl sample template of nucleic acid. Samples were run in duplicate with an in-house PCR inter-run and the extraction controls on the LightCycler 480 (Roche, Burgess Hill, UK) with approximately 10% of samples tested for PPV1. PCR amplification of 45 cycles began after a 15-min activation step, followed by 95°C for 30 s, annealing 30 s (temperature was primer dependent see Table S4), extension at 72°C 30 s with a melt curve before cooling to 40°C. The sample PCR melt–curve analysis was completed with crossing threshold (Ct) >40 considered negative and Ct levels classified into low, medium and high levels (Table S1). The semi-quantitative qPCR data from this study were restrictive as viral loads were not standardized by quantifying in copies per gram and PCR assays were of different specificity and sensitivity. PCR Ct values were accordingly scored as positive or negative for statistical purposes.

Sequencing primer sets were applied (Table S4) to selected samples with a low Ct to amplify the capsid gene. Specifically, the partial variable region of PPV2 VP1 capsid gene and the full VP capsid gene for PPV3 and PPV4 was amplified for phylogenetic analysis. Excised positive amplicons were purified through the Wizard® SV gel and PCR clean-up system (Promega, UK) and sequenced at Eurofins (MWG Operon, Germany). PCV2-positive samples open reading frame 2 from pre- and post-PCV2 vaccination samples (n = 50) were also sequenced (Collins & Zaykalova, 2020).

2.3 Phylogenetic analysis

Multiple sequence alignments (MSA) of novel PPVs were generated using sequences available from Nucleotide-NCBI (National Centre for Biotechnology Information) and sequencing data analysed on Geneious 10v (Biomatters Ltd, Auckland, New Zealand). Sequenced amplicons of the novel PPVs whole and partial capsid were initially aligned on Geneious and then transferred and completed on Mega X (Mega software version 10.0.4) to avail of the alignment tool, multiple sequence comparison by log-expectation (MUSCLE) and phylogenetic tree builder through maximum-likelihood (ML) phylogenetic trees obtaining 1,000 bootstrap replicates. Phylogenetic trees were graphically viewed and edited in Interactive Tree of Life (Letunic & Bork, 2016).

2.4 Statistical analysis

Initial statistical analysis from the whole cohort of samples evaluated possible association between the detection of virus and disease was completed using permutation tests to calculate the significance probability for the classical chi-square test of the independence of rows and columns in a two-dimensional contingency table using GenStat 16.2 (2013) (VSN International Ltd) (Roff & Bentzen, 1989). All collated results from clinical observations such as wasting, gross pathology, histopathology, diagnostic immunofluorescent assay (IFA) and PCR findings were presented in a scored matrix with positives “1”, negatives “0” and no information as a “blank”. Chi-squared uni-variate analysis was set with the probability value “P” at the statistical significance level of .05.

2.5 Latent class analysis

LCA was completed using the poLCA package in R (Linzer & Lewis, 2011), which allows for both traditional LCA and latent class regression, where the probability of being in one or another class is influenced by other covariates besides those used to define the classes (Dayton & Macready, 1988). Only UK and Ireland samples for which symptoms were recorded (n = 272) were included in these analyses (Supplementary Data S2). Models were run from 200 or 400 random starting points to ensure, as far as possible, that the final fit is a global maximum. A key question for LCA is how many latent classes are present. This was decided by a combination of advice from veterinary experts, who reviewed the sets of symptoms included in analysis, and for the resulting classes, the Bayesian information criterion (BIC) (Dziak et al., 2012) (Supplementary Data S2). As with any other analysis, there is a risk of false-negative and false-positive classifications with LCA, but this is mitigated to the extent possible, by the principled examination of a range of models, and use of expert domain knowledge to guide model construction. All of the models considered are presented in Supplementary Data S2.

3 RESULTS

3.1 Viral prevalence by age group and year

PCV2 was determined to be the most frequently detected virus 48% (331/695) across all age groups examined in this study, followed by PPV2 17.3% (120/695) (Figure 1 and Table S3). In foetuses, PCV2 prevalence was 36% (51/143), PPV2 2.8% (4/143), PPV4 0.7%
 Whilst PPV3 was not detected. A similar pattern was also observed in both the pre-weaner and weaner age groups, indicating an increase in PCV2 prevalence from 22% (40/182) to 61% (77/127), respectively, with no major increase in the prevalence of other novel PPVs. Only within the fattener age group did novel parvovirus’s prevalence increase to higher levels with PPV2 at 56% (84/150), PPV3 14% (21/150) and PPV4 at 9% (13/150), although PCV2 remained the most frequently detected virus at 77% (115/150).

The profiling of PCV2 detection from 1997 to 2012 found PCV2 consistently present in all years from 1998; however, a decline in viral presence was recorded when the vaccine introduction (~2006) occurred (Table 1, Figure S5). Interestingly, the PCV2 levels also profiled an increased frequency, per year, post-PCV2 vaccine introduction. The earliest detection of co-infections of the novel PPV’s was PPV2 in 1998, whilst PPV3 and PPV4 were first detected in 2000 (Table 1). The novel PPVs were detected in samples prior to their initial discovery dates although a study did also detect PPV2 and PPV3 in the USA in 1998 (Opriessnig et al., 2014). A PPV2 sample, not captured in this data analysis, was sequenced from 1996 and included in the phylogenetic analysis. The PPV4 from this study detected in 2000 is the earliest reported PPV4.

3.2 | Viral tissue tropism

In clinically diseased pigs, PCV2 was the most frequently detected virus 48% (331/695) prevalence), followed by PPV2 at 17% (120/695). PPV3 and PPV4 were only detected at a low prevalence of 6% (40/695) and 3% (24/695), respectively (Figure 2 and Table S3). Foetuses and abortion juice tested positive for novel PPVs at a lower prevalence, with only three samples testing positive for PPV2 and one for PPV4. The known vertically transmitted PCV2 virus was present in 24% (21/88) of abortion juice samples and in 53% (16/30) of foetus samples, and although only one placenta sample was tested, it was positive only for PPV2. No PPV2-PPV4 were present in colon, small intestine, thymus and brain samples although these were representative of low sample numbers.

Lymphatic tissue and lymph nodes (LN) were screened for the novel viruses, reporting PPV2, PPV3 and PPV4 prevalence in spleen at 43% (13/30), 3% (1/30) and 7% (2/30), respectively, tonsils at 28% (5/18), 17% (3/18) and 6% (1/18), mesenteric LN at 30% (33/109), 11% (12/109) and 4%, (4/109) and inguinal LN at 52% (31/60), 7% (4/60) and 5% (3/60). Interestingly, PPV2 was the only novel PPV detected in a small subset of bronchial LNs at 33% (1/3) and mediastinal LNs at 29% (2/7) prevalence. All novel PPVs were present in the lungs, with PPV2 having the highest prevalence of 30% (15/50), comparable to the prevalence of PCV2 at 48% (24/50), with PPV3 and PPV4 been detected less frequently at 6% (3/50) and 8% (4/50) prevalence. Nasal swabs provided for a lower detection rate of PPV2 at 2% (1/52), PPV3 at 6% (3/52), PPV4 at 2% (1/52) and PCV2 at 17% (9/52). Sera and faecal samples were positive for PCV2 and the novel PPVs; however, sera had the highest prevalence of PCV2 at 30% (58/193), PPV2 at 6% (12/193), PPV3 at 6% (11/193) and PPV4 at 3% (5/193).
Concurrent infections did occur in clinically diseased pigs, with dual infection of PCV2 and novel PPV2 being most frequent at 12.9% (Table 2). PCV2 dual infection with PPV3 only occurred in 3.6% of samples, and PPV2 and PPV3 concurrent infection rates were similar (3%), with all other dual or multiple infections occurring in less than 3% of cases (Table 2 and 3).

3.3 Viral presence and statistical associations with clinical and pathological observations

A total of 25 different parameters including gross post-mortem observations, pathological/histopathological findings and the results of diagnostic assays (such as the IFA for PRRSv) were used as a scoring matrix of clinically diseased pigs (Table 4). The data set (n = 695 samples) was initially subjected to chi-squared analysis in order to investigate the presence of virus and statistical association with clinical and pathological presentations. A significant association of virus and lung pathologies was observed for PCV2 ($p = .012$), PPV2 ($p = .001$) and PPV4 ($p = .001$). PCV2 was significantly linked to respiratory pathogenesis with respiratory symptoms ($p = .012$), pneumonia ($p = .017$) and broncho interstitial pneumonia (BIP) ($p = .036$). PPV2 also showed significance to the same respiratory pathogenesis parameters but with an additional pathogenesis of lung oedema and at greater statistical significance ($p = .001$). Notably, PPV3 presented no association with respiratory pathogenesis, and PPV4 had only significant association to pathogenesis and lung oedema. PCV2 was the only virus to demonstrate statistical significance ($p = .001$) with wasting symptoms, enlarged lymph nodes, lymphoid depletion and intracellular inclusions. PPV3 and PPV2 provided none of these

Table 2 Concurrent infections

Virus	PCV2 n (%)	PPV2 n (%)	PPV3 n (%)	PPV4 n (%)
PCV2	331 (47.6%)	90 (12.9%)	25 (3.6%)	20 (2.88%)
PPV2	90 (12.9%)	120 (17.2%)	23 (3%)	8 (1.2%)
PPV3	25 (3.6%)	23 (3%)	40 (5.8%)	4 (0.6%)
PPV4	20 (2.88%)	8 (1.2%)	4 (0.6%)	24 (3.5%)

Table 3 Multiple concurrent infections

Virus	n (%)
PCV2, PPV2, PPV3	17 (2.4%)
PCV2, PPV2, PPV3, PPV4	1 (0.14%)
PCV2, PPV3, PPV4	2 (0.29%)
PPV2, PPV3, PPV4	1 (0.14%)

Figure 2 Prevalence of virus per tissue. The tissue tropism of PCV2 and PPV2-PPV4 viruses was detected in clinically diseased pigs. PCV2 was systemic and detected in most tissue types (47%), the novel parvoviruses were detected at lower levels of PPV2 (17%), PPV3 (5.8%) and PPV4 (3.5%).
associations but PPV2 was statistically associated with lymphoedema ($p = .002$) with PPV4 also significantly associated with lymphoedema and intracellular inclusions ($p = .001$). In addition, PPV2 and PPV3 were also significantly associated with peritonitis and all novel PPVs were statistically associated with ulcers detected in the stomach, colon and caecum ($p = .001$ to $p = .004$). Kidney disease had the most significant association with PPV4 ($p = .001$), and PPV2 was less ($p = .038$), whereas PCV2 and PPV3 had no association. Porcine dermatitis and nephropathy syndrome (PDNS) were only associated with PPV2 ($p = .001$) and PPV3 ($p = .017$) and interestingly none with PCV2. The novel systemic PPVs and specifically PPV2, statistical analysis reveals, significant association to a range of clinical disease and pathologies; however, these associations are unable to infer the PPV’s causal role in the associated pathogenesis.

3.4 | Latent class analysis

Viral co-infections were examined using logistic regression analysis and graphical 95% confidence interval level (Table 5 & Supplementary Data S2) and the clinical signs and pathologies plotted (Figure 3 and Supplementary Data S2). The frequency of clinical signs varied greatly, with, for example, enteric pathologies being recorded over 125 times whereas symptoms such as meningitis and rash were rarely seen across four studies (Figure 3). Data were excluded where animals had no clinical or pathological data recorded, whilst animals on which data were recorded were included, even if the data were recorded with the absence of a symptom, sign or finding. An important question addressed as part of the analysis was the choice of symptoms to include and the number of latent classes to be identified. There are 25 different symptoms reported, and the use of low-frequency symptoms is expected to be uninformative. To address these, each LCA model was run on the six symptoms occurring 50 times or more, the 14 symptoms occurring 20 times or more, and the 22 symptoms occurring 10 times or more, as well as all 25 symptoms. Each model was fit to between 1 and 6 latent classes, and these models were then reviewed, both to see whether there were major substantive differences between them, and, by veterinary experts, based on the clustering of clinical pathologies. For most models, the lowest

Symptom	Present	Absent	Total	Per cent
Wasting	61	149	210	29
Porcine respiratory and reproductive syndrome virus antibody by IFA (PRRS Ab)	4	206	210	1.90
Lymphoid depletion	68	144	212	32.10
Lymphoedema	22	187	209	10.50
Lymphadenopathy	49	164	213	23
Macrophage syncytia	29	183	212	13.70
intracellular inclusion bodies	26	186	212	12.30
Focal necrosis	17	195	212	8
Kidney pathology	32	173	205	15.60
Respiratory pathology	132	103	235	56.20
Lung consolidation	94	123	217	43.30
Lung oedema	51	163	214	23.80
Broncho interstitial pneumonia (BP-BIP)	49	162	211	23.20
Enteric pathology	155	83	238	65.10
Peritonitis	24	185	209	11.50
Stomach ulcer (gut ulcer)	18	195	213	8.50
Abdominal fluid	19	193	212	9
Porcine dermatitis and nephropathy Syndrome (PDNS)	10	188	198	5.10
Rash	10	202	212	4.70
Organomegaly	10	202	212	4.70
Brain oedema	15	197	212	7.10
Meningitis	16	196	212	7.50
Pericardium pathology	37	175	212	17.50
Eye pathology	5	207	212	2.40
Aborted	4	208	212	1.90

TABLE 4 Count of findings, signs and symptoms used in the latent class analysis
BIC was at 3 latent classes, and for one, the model fit to symptoms occurring 20 times or more, the lowest BIC was for 4 latent classes. A veterinary expert opinion established a substantively meaningful set of symptoms were those occurring ten times or more, for which 3 latent classes were the best fitting model. Our initial model (Figure 4, Supplementary Data S2) identified three groups of animals: those with predominantly respiratory symptoms, but no wasting, and fewer GI symptoms; those with a predominance of GI symptoms, and little respiratory symptoms and wasting; and a third group with prominent wasting, respiratory and gut symptoms. The ordering of these three groups is arbitrary within any given model.

To examine the effect of other covariates, specifically the age of the animal and evidence of viral infection, a series of latent class regression models were fitted with covariates representing the age group of the animal, and evidence of infection with PCV2 and PPV2-PPV4 (Supplementary Data S2). Age and PCV2 did contribute to class membership, and there was little evidence of any contribution of PPV2, PPV3 or PPV4 on their own to class membership. However, there was good evidence for a joint effect of PCV2 and PPV2, and some evidence for an interaction between them (Table 6). Once both viruses were added to the model, there was little remaining evidence for an effect of age (Table 7). The confidence intervals for these effects are wide, reflecting the relatively small number of animals, but the direction and approximate magnitude of the main effects appear to be robust to a range of modelling assumptions.

3.5 | Phylogenetic analysis

The partial PPV2 variable region of the VP1 capsid gene sequence from 33 selected samples with low Ct values was determined and edited to a 330-bp fragment to incorporate the equivalent sequenced regions deposited in GenBank for phylogenetic analysis (Figure 5) (Saekhow & Ikeda, 2014). The ML tree displays two distinct clades inclusive of 81 sequences downloaded from GenBank and PPV2 sequences from this study with an overall nucleotide percentage homology identity between the clades at 88 to 96%. The p-distance within clade 1 was 0 to 0.08, clade 2 at 0 to 0.06 and between clades p-distance of 0.04 to 0.13. The majority of PPV2 sequences in this study and dating from 1996 to 2012 clustered in clade 2 comprising of mainly European samples with a 6% homology difference. Only three PPV2 sequences from this study (MK639161 isolate 5, MK639164 isolate 8, MK639169 isolate 13), with nucleotide homology difference at 7%, and dating from 2004 and 2005, were positioned in the upper clade 1 with an assortment of sequence origins from South Korea (KY018938), USA (JX101461), China (MG345013), Brazil (KF725661) and other European countries. Wild boar sequences were situated in both clades of the PPV2 phylogenetic tree.

The complete viral capsid gene of 9 PPV3 UK samples with low Ct values was sequenced for phylogenetic analysis (Figure 6), situated at 2,180 to 4957bp on reference KY586145 PPV3 sequence and was aligned with an additional sixty full capsid sequences. The range of the nucleotide difference in the PPV3 phylogenetic tree was 5% across samples from both domestic pigs and wild boar originating from China, USA, South America and Europe creating three main clades with a p-distance between the clades of 0.01 to 0.05. The sequences from this study positioned within clade 3 (p-distance of 0 to 0.03) nearest to European nested clades. PPV3 MK649766 isolate 16 from 2010 had the lowest nucleotide homology with the Chinese strain JQ177082 from clade 2 at 95%. The clades 1 and 2 represent a small number of Chinese PPV3 sequences dating from 2005 to 2007 and 2010 to 2011, respectively.

The nearly complete capsid sequences for 3 PPV4 isolates, at the position of 3,430 to 5308bp of reference sequence KC701334, were phylogenetically analysed (Figure 7). The PPV4 ML tree split into two clades with high genetic nucleotide homology of 97% to 100% and nucleotide p-distance at 0.01 to 0.02. The PPV4 isolate 01 (MK609918) positioned in clade 1 with European sequences dating...
2004 to 2011 whereas clade 2 sequences were of mixed global origins from China and Brazil with isolate 07 (MK613834) and 05 (MK609919) nested within European clades.

Positive PCV2 samples (n = 50) were sequenced for PCV2 capsid open reading frame 2 in a parallel study revealing a genotype PCV2a shift to PCV2b occurring prior to the introduction of PCV2 vaccination (Collins & Zaykalova, 2020).

All sequences were deposited in NCBI GenBank with accession numbers; PPV2 MK639157-MK649760, PPV3 MK0649761-MK649769 and PPV4 MK609918, MK609919 and MK613834.

4 | DISCUSSION

There is a scientific premise concerning pig herd health issues attributed to viral aetiology in cases of multi-factorial PCVAD and PRDC which remains unexplained (Opriessnig et al., 2011; Qin et al., 2018). Parvovirus plays an important role as a viral co-factor in PCVAD and PRDC, and with compounding factors of high nucleotide substitution rate, positive selection from vaccination pressure, co-infection and recombination all contribute to the continual adaption and emergence of new parvovirus strains (Parrish & Kawaoka, 2005;
The current study cohort represented clinically diseased animals from a range of production age groups, with samples dating from 1997 to 2012 of which 65% were acquired prior to the introduction of the PCV2 vaccine in ~2006. PPV2-PPV4 were found to exhibit similar infection prevalence profiles in pre-weaner (2%, 3% and 1%) and weaner (11%, 3% and 2%) age groups, respectively. The estimated probability from the base latent class model which a particular symptom, sign or finding occurs amongst the members of each of the three latent classes occurs. Symptoms, signs and findings are ordered in terms of their overall frequency across the whole study sample.

FIGURE 4 Latent class model membership probabilities. The estimated probability from the base latent class model which a particular symptom, sign or finding occurs amongst the members of each of the three latent classes occurs. Symptoms, signs and findings are ordered in terms of their overall frequency across the whole study sample.

TABLE 6 Covariates of PPV2 and PCV2

Term	Class 2:1	Value coefficient	Value standard error	Odds ratio	Odds ratio lower	Odds ratio upper
Intercept		0.58	0.41			
PCV2 count		1.19	0.77	3.28	0.73	14.9
PPV2 count		-0.29	0.91	0.75	0.13	4.41
PCV2 count.PPV2 count		-2.06	1.24	0.13	0.01	1.45
Intercept		-1.88	0.89			
PCV2 count		3.78	1.09	43.7	5.14	370
PPV2 count		1.49	1.3	4.45	0.34	57.4
PCV2 count.PPV2 count		-3.17	1.48	0.04	0	0.77

TABLE 7 Covariates of PCV2 and PPV2 with age

Term	Class 2:1	Value coefficient	Value standard error	Odds ratio	Odds ratio lower	Odds ratio upper
Intercept		-3.89	1.67			
PCV2 count		2.21	1	9.11	1.28	64.9
PPV2 count		0.26	0.68	1.3	0.34	4.91
Ages		0.79	0.5	2.21	0.83	5.88
Intercept		-2.27	1.29			
PCV2 count		-0.52	0.61	0.59	0.18	1.96
PPV2 count		0.83	0.87	2.3	0.42	12.6
Ages		0.68	0.56	1.98	0.67	5.87
whilst fattener (>10 weeks) group profiles demonstrated higher levels of PPV2 (56%, 14% and 9%), signifying PPV2 to be the most prevalent novel PPV in this study. In contrast, PCV2 had a high level of prevalence at foetus level (36%) through vertical transmission which dipped at the pre-weaner age due to maternal antibody and/or vaccine effects, and which then increased to 61% and 77% in weaner and fattener groups, respectively. Statistical analysis in diseased pigs demonstrated the presence of PPV2 and PPV4 in pigs with lung disease and lymph node oedema pathologies. PPV2 detection significantly identified in pigs with pneumonia and BIP, whilst PPV4 was more specifically associated with lung oedema. However, although no statistical association of PPV2-4 and PCVAD wasting symptoms was identified, all had significant association with enteric ulcers with PPV2 and PPV3 significantly associated with peritonitis. Veterinary clinical scored data composed of 25 parameters from the diseased pig cohort were also applied to the detection of novel parvoviruses (PPV2-PPV4) utilizing LCA, indicating that PCV2 and PPV2 clustering, as a concurrent infection, was observed as significantly associated. Moreover, this analysis also found that no statistical significant association with PCVAD could be drawn from single viral infections or other combinations apart from PPV2 and PCV2. This observed PCV2 and PPV2 co-infection confirms findings from other studies using different statistical approaches (Opriessnig et al., 2013, 2014; Saekhow & Ikeda, 2014).

The observed concurrent infections of novel PPV and PCV2 resulted in PCV2 and PPV2 being the most predominant (12.9%), whilst other co-infections occurred at a much lower rate (<3.6%) similar to findings from a previous reported USA study (Opriessnig et al., 2014), with the viral distribution across age groups also similar to previous reports (Cságoła et al., 2012; Xiao, Gerber, et al., 2013; Xiao et al., 2012). The low-level prevalence of novel PPVs in the pre-weaner and weaner age groups may indicate that the viruses were not vertically transmitted or that piglets acquired protection from maternally derived antibody and is comparable to the epidemiological serological profile study of PPV2 infection with severe respiratory disease, where onset occurred from 28 days post-decline of PPV2 protective maternal antibodies (Cságoła et al., 2016). A subset of samples (10%) from this cohort were initially screened for PPV1 resulting in negative or very weakly positive results, with remaining samples not tested considering that the widely administered PPV1 vaccine would result in low prevalence. The most recent European PPV prevalence studies undertaken in Poland (2015–2017) on 19 pig farms detecting PPV1-6 genotypes reported a high prevalence of PPV2 (69%), PPV5 (28%) and PPV6 (32%) in sera with lower levels of PPV3 and PPV4, and due to vaccination a very low level of PPV1 notably, however, oral fluid levels detected higher levels of virus (Miłek et al., 2019). A study on 8 farms with non-acute PCVAD pig serum samples (2014–2017) reported a significant higher level of PCV2 virus detected when co-infected with PPV7 (Miłek et al., 2020). Assessments of the prevalence of novel PPVs and correlation to PCV2 genotypes showed a high prevalence of PPV2 occurring where the vaccine evading PCV2d genotype was detected (Opriessnig et al., 2014). Parallel analysis of this sample cohort detected only PCV2a and PCV2b genotypes, with PCV2b being the dominant strain from 2003 onwards whilst other PCV2 genotypes were not detected (Collins & Zaykalova, 2020). The global prevalence rates of novel PPVs are considerably variable, specifically the prevalence of PPV3 and PPV4 virus, and this variation is compounded by factors not fully understood and may affect the viral epidemiological dynamics, for example the country of origin, sample type, study design, environmental factors and year of sampling. A recent retrospective study (Sun et al., 2015) on PCVAD suspected pigs (mixed samples) in China revealed a similarly higher occurrence of PPV3 (45.11%) and PPV4 (21.56%), with a South African prevalence study of healthy and sick pigs (2015–2016) reporting a higher rate of PPV4 prevalence (43.6%) (Afobabi et al., 2018). Whilst these recent reports are indicative that prevalence rates for PPV3 and PPV4 may have increased, validated standardized assays, phylogenetic analysis, sample age and tissue type would be beneficial in enabling data comparisons to be made from any future studies.

The retrospective yearly virus prevalence, first detected PCV2 in 1998, and whilst profiling a high prevalence, a decline in frequency occurred with the introduction of the PCV2 vaccine (~2006) (Table 1, Figure S5). The impact of vaccine reduced the PCV2 frequency, which continued over several years, followed by a yearly incline of prevalence from 2009 onwards to 2012. The most consistently present novel PPV, PPV2, detection occurs years from 1998 to 2012; however, all novel PPV2-4 were undetectable from 2006 to 2008. The correlation of novel PPV absence is possibly linked with the PCV2 vaccine introduction and impact of reduction of PCV2 frequency (Table 1, Figure S5). It is well established that the suppression of the immune system by PPV1 co-infection allows the increases PCV2 viral replication and hence greater viral load, conversely, the presence of virus per year has highlighted, that PCV2 may also be essential for the interdependent existence of the novel PPV’s warranting further investigations. The PCV2 and PPV2
in this study detected virus from 1998 although an additional PPV2 sample was sequenced from 1996 and included in the phylogenetic sequencing analysis which may be the earliest reported detection.

A previous retrospective study established PCV2 circulated in pig herds since 1962 and before the observation of clinical PMWS cases, and in the USA a study detected the PCV2 in 1998 (Jacobsen...

FIGURE 6 PPV3 phylogenetic analysis. The tree with the highest log-likelihood (~10311.93) is shown and analysis involved 69 nucleotide sequences. There were a total of 2,787 positions in the final data set and formed three clades.
et al., 2009; Opriessnig et al., 2014). Both PPV3 and PPV4 were only detected from 2000 and are earlier than they were originally discovered although a previous study identified PPV3 in USA in 1998 whereas this may be the earliest reporting of PPV4.

Empirically, tissue sampled from a variety of sample types allowed for an insight into the tropism of these viruses with an overall prevalence of PCV2 (47%), PPV2 (17.3%), PPV3 (5.8%) and PPV4 (3.5%). PPV2 to 4 caused systematic infection in pigs with virus detected mainly in the lymphatic tissue, lungs, nasal tract, faeces and sera. Subsequent analysis showed that the lung tissue prevalence of PPV2 was high (28%) although PCV2 had the highest prevalence (45%). In the current study, bronchial and mediastinal lymph nodes situated near the respiratory system were only positive for PPV2 which supports evidence that PPV2 is involved in respiratory infection. PPV2 to 4 were found in a kidney sample tested meriting further investigation to better understand the role of PPV2-4 in kidney pathology and disease. It was also observed that PPV2 was detected at a much higher rate in lymphatic tissue such as tonsil (28%), spleen (43%), mesenteric LN (30%), mediastinal LN (29%), inguinal LN (52%) and bronchial LN (33%) than PPV3 and PPV4, indicating that in this cohort PPV2 is more virulent and better adapted to cause systemic infection. A USA study reported lung tissue prevalence of PPV2 (42.7%), PPV3 (9.1%) and PPV4 (4.3%) (Opriessnig et al., 2014) whereas a Japanese study in both clinically diseased and healthy slaughter age pigs' tonsils found elevated PPV2 prevalence of 100% and 58%, respectively.

FIGURE 7 PPV4 phylogenetic analysis. The tree with the highest log-likelihood (~4422.01) is shown. The analysis involved 49 nucleotide sequences, and there were a total of 1731 positions in the final data set formed two clades.
indicated that cluster co-infection of PPV2 and PCV2 occurs in
related and cultured virus, statistical modelling by LCA analysis has
demonstrated that PPV2, a genetically diverse virus, is a co-factor
to PCV2 infection in PCVAD and PRDC. In the absence of iso-
diversity similarity. It would be advantageous to phylogenetically
remain whether further genetic drifting or recombination has occurred.

The pathology of PCV2 and PPV2 infection indicated that PPV2 may contribute to the pathol-
ologicals of pneumonia observing significant association with lung
lesions (Novosel et al., 2018). Opriessnig (2016) performed an ex-
perimental infection of PCV2 and PPV2 (via a tissue homogenate)
finding infected pigs developed microscopic lesions with severe
lymphoid depletion, consistent with PCVAD, demonstrating that
PPV2 can act as the trigger for PCVAD in the presence of PCV2
infection.

Phylogenetic analysis of novel PPVs in this study showed the
greatest genetic diversity occurred within PPV2 sequences where 114
PPV2 sequences of global origin from both domestic and wild boar
formed two distinct clades as reported previously (Figure 5) (Cságola
et al., 2012; Saekhow & Ikeda, 2014). A high nucleotide divergence of
88 to 96% with a p-distance of 0.04 to 0.13 between each clade in this
study was determined. The VP1 PPV2 gene is a potential genotype
subtyping region with a cut-off p-distance value of 0.04. Clade 1 se-
tuquences were comprised of chronologically more recent (up to 2018)
PPV2 isolates, although it also included three early sequences isolated
in this study (from 2004 and 2005 samples) demonstrating continual
evolution and adaption of the PPV2 capsid. The evolutionary diversity
of PPV2 capsid region mutations resulting from antigenic escape, host
adaptation or the role of viral pathogenicity remains to be established and
highlights the need to continue to phylogenetically map current
cirulating strains assessing the divergence of the PPV2 clade 1. The
PPV3 phylogeny maps three main clades with the majority of strains
positioned within clade 3 originating from global strains although
predominantly strains isolated from Europe. The clades 1 and 2 com-
prise of PPV3 strains from China isolated in 2007 to 2011 showing
further divergence of PPV3 with an overall nucleotide homology
difference of 5% across all clades. The PPV3 strains from this study
are nested clades within clade 3 with the most similar strains to the
European strains, including wild boar although one sequence mapped
more closely to a USA strain from 1998 (Figure 6). The PPV4 capsid
remains highly conserved in comparison with PPV2 (Cadar, Csagola,
et al., 2013; Cadar, Lorincz, et al., 2013) with a high 97% nucleotide
homology similarity. It would be advantageous to phylogenetically
map more recently isolated PPV2, PPV3 and PPV4 viruses to ascer-
tain whether further genetic drifting or recombination has occurred.

The findings of this study on clinically diseased pigs have demonstrated that PPV2, a genetically diverse virus, is a co-factor
to PCV2 infection in PCVAD and PRDC. In the absence of iso-
lated and cultured virus, statistical modelling by LCA analysis has
indicated that cluster co-infection of PPV2 and PCV2 occurs in
a diseased pig population, whereas PPV3 and PPV4 showed no
cluster association with PCV2. Further investigations establishing
viruses attributed to PRDC disease utilizing quantifiable PCR as-
says for viral load and including PPV5 to PPV7, PCV3 plus porcine
bocaparvoviruses would be beneficial. Additionally, inclusion of swine influenza, an important primary pathogen of PRDC and a
causative agent of lung lesions, should be considered as a critical
parameter in statistical modelling analysis. Future work by viral
metagenomics in longitudinal studies is an advantageous tool in
understanding disease associations, co-infection dynamics of par-
voiruses and PRDC. Successful viral isolation/propagation and the
development of serological neutralization assays for PPV2-7
will be necessary in order to determine Koch’s postulates, and
characterize viral serotypes and cross-protection with the ultimate aim of developing a suitable vaccine candidate with good
antigenic variability to protect pig herds. This study confirms the
novel PPV 2-4 virus’ co-infection occurs with PCV2 and can be
statistically associated with respiratory disease and specifically,
PPV2 co-infects with PCV2 in PRDC and PCVAD.

ACKNOWLEDGEMENTS
Cheryl Ball and Lorna McCabe.

CONFLICT OF INTEREST
There is no conflict of interest.

ETHICS STATEMENT
The authors confirm that the ethical policies of the journal, as noted
in the journal guidelines, have been adhered to. The study included
sampling of animals for diagnostic purposes and therefore did not
require approval from the ethic committee.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available in the
supplementary material of this article, and the sequenced data are
deposited in NCBI GenBank.

ORCID
Paula Lagan Tregaskis
https://orcid.org/0000-0002-5050-9433
Ken Lemon
https://orcid.org/0000-0001-9844-1573

REFERENCES
Afolabi, K. O., Iwereibe, B. C., Obi, L. C., & Okoh, A. I. (2018). Prevalence
of porcine parvoviruses in some South African swine herds with
background of porcine circovirus type 2 infection. Acta Tropica, 190,
37–44. https://doi.org/10.1016/j.actatropica.2018.10.010
Allan, G. M., Kennedy, S., McNeilly, F., Foster, J. C., Ellis, J. A., Krakowka,
S. J., Meehan, B. M., & Adair, B. M. (1999). Experimental reproduc-
tion of severe wasting disease by co-infection of pigs with porcine
circovirus and porcine parvovirus. Journal of Comparative Pathology,
121(1), 1–11. https://doi.org/10.1053/jcpa.1998.0295
Cadar, D., Csagola, A., Kiss, T., & Tuboly, T. (2013). Capsid protein evo-
lution and comparative phylogeny of novel porcine parvoviruses.
Molecular Phylogenetics and Evolution, 66(1), 243–253. https://doi.
org/10.1016/j.ympev.2012.09.030
PPV2. Veterinary Microbiology, 163(1-2), 177-183. https://doi.org/10.1016/j.vetmic.2012.12.019

Opriessnig, T., Xiao, C. T., Gerber, P. F., & Halbur, P. G. (2014). Identification of recently described porcine paroviruses in archived North American samples from 1996 and association with porcine circovirus associated disease. Veterinary Microbiology, 173(1-2), 9-16. https://doi.org/10.1016/j.vetmic.2014.06.024

Palinski, R. M., Mitra, N., & Hause, B. M. (2016). Discovery of a novel Parovirinae virus, porcine parovirus 7, by metagenomic sequencing of porcine rectal swabs. Virus Genes, 52(4), 564–567. https://doi.org/10.1007/s11265-016-1322-1

Parrish, C. R., & Kawaoka, Y. (2005). The origins of new pandemic viruses: The acquisition of new host ranges by canine parovirus and influenza A viruses. Annual Review of Microbiology, 59, 553–586. https://doi.org/10.1146/annurev.micro.59.030804.121059

Qin, S., Ruan, W., Yue, H., Tang, C., Zhou, K., & Zhang, B. (2018). Viral metagenomic analyses demonstrate the diversity of viral flora in piglet diarrheic faeces in China. Journal of General Virology, 95, 1603–1611. https://doi.org/10.1099/vir.0.063743-0

R Core Team. (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing.

Roff, D. A., & Bentzen, P. (1989). The statistical analysis of mitochondrial DNA polymorphisms: χ2 and the problem of small samples. Molecular Biology, 6, 539–545.

Saekhow, P., & Ikeda, H. (2014). Prevalence and genomic characterization of porcine paroviruses detected in Chiangmai area of Thailand in 2011. Microbiology and Immunology, 59(2), 82–88. https://doi.org/10.1111/1348-0421.12218

Segales, J. (2012). Porcine circovirus type 2 (PCV2) infections: Clinical signs, pathology and laboratory diagnosis. Virus Research, 164(1-2), 10–19. https://doi.org/10.1016/j.virusres.2011.10.007

Shackelton, L. A., & Holmes, E. C. (2006). Phylogenetic evidence for the rapid evolution of human B19 erythrovirus. Journal of Virology, 80(7), 3666–3669. https://doi.org/10.1128/jvi.80.7.3666-3669.2006

Streck, A. F., Homeier, T., Foerster, T., Fischer, S., & Truyen, U. (2013). Analysis of porcine paroviruses in tonsils and hearts from healthy pigs reveals high prevalence and genetic diversity in Germany. Archives of Virology, 158(6), 1173–1180. https://doi.org/10.1007/s00705-013-1603-0

Sun, J., Huang, L., Wei, Y., Wang, Y., Chen, D., Du, W., Wu, H., & Liu, C. (2015). Prevalence of emerging porcine paroviruses and their co-infections with porcine circovirus type 2 in China. Archives of Virology, 160(5), 1339–1344. https://doi.org/10.1007/s00705-015-2373-7

Tamura, K., & Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10(3), 512–526. https://doi.org/10.1093/oxfordjournals.molbev.a040023

Wang, F., Wei, Y., Zhu, C., Huang, X., Xu, Y., Yu, L., & Yu, X. (2010). Novel parovirus sublineage in the family of Paroviridae. Virus Genes, 41(2), 305–308. https://doi.org/10.1007/s11262-010-0506-3

Wilhelm, S., Zimmermann, P., Selbitz, H. J., & Truyen, U. (2006). Real-time PCR protocol for the detection of porcine parovirus in field samples. Journal of Virological Methods, 134, 257–260. https://doi.org/10.1016/j.jviromet.2006.01.004

Xiao, C. T., Gerber, P. F., Gimenez-Lirola, L. G., Halbur, P. G., & Opriessnig, T. (2013). Characterization of porcine parovirus type 2 (PPV2) which is highly prevalent in the USA. Veterinary Microbiology, 161(3-4), 325–330. https://doi.org/10.1016/j.vetmic.2012.07.038

Xiao, C. T., Gimenez-Lirola, L. G., Halbur, P. G., & Opriessnig, T. (2012). Increasing porcine PARV4 prevalence with pig age in the U.S. pig population. Veterinary Microbiology, 160(3-4), 290–296. https://doi.org/10.1016/j.vetmic.2012.05.038

Xiao, C. T., Gimenez-Lirola, L. G., Jiang, Y. H., Halbur, P. G., & Opriessnig, T. (2013). Characterization of a novel porcine parovirus tentatively designated PPV5. PLoS One, 8(6), e65312. https://doi.org/10.1371/journal.pone.0065312

Zhang, B., Tang, C., Yue, H., Ren, Y., & Song, Z. (2014). Viral metagenomics analysis demonstrates the diversity of viral flora in piglet diarrhoeic faeces in China. Journal of General Virology, 95, 1603–1611. https://doi.org/10.1099/vir.0.063743-0

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section.

How to cite this article: Lagan Tregaskis P, Staines A, Gordon A, et al. Co-infection status of novel parovirus’s (PPV2 to 4) with porcine circovirus 2 in porcine respiratory disease complex and porcine circovirus-associated disease from 1997 to 2012. Transbound Emerg Dis 2020;00:1-16. https://doi.org/10.1111/tbed.13846