Description of 22 new alpha-1 antitrypsin genetic variants

Céline Renoux1,2†, Marie-Françoise Odou3,4†*, Guillaume Tosato3, Jordan Teoli1, Norman Abbou1, Christine Lombard5, Farid Zerimech3,6, Nicole Porchet3, Colette Chapuis Cellier5†, Malika Balduyck3,7† and Philippe Joly1,2†

Abstract

Alpha-1 antitrypsin deficiency is an autosomal co-dominant disorder caused by mutations of the highly polymorphic SERPINA1 gene. This genetic disorder still remains largely under-recognized and can be associated with lung and/or liver injury. The laboratory testing for this deficiency typically comprises serum alpha-1 antitrypsin quantification, phenotyping according to the isoelectric focusing pattern and genotyping if necessary. To date, more than 100 SERPINA1 variants have been described and new genetic variants are frequently discovered. Over the past 10 years, 22 new genetic variants of the SERPINA1 gene were identified in the daily practice of the University Medical laboratories of Lille and Lyon (France). Among these 22 variants, seven were Null alleles and one with a M1 migration pattern (M1 Cremeaux) was considered as deficient according to the clinical and biological data and to the American College of Medical Genetics and Genomics (ACMG) criteria. Three other variants were classified as likely pathogenic, three as variants of uncertain significance while the remaining ones were assumed to be neutral. Moreover, we also identified in this study two recently described SERPINA1 deficient variants: Trento (p.Glu99Val) and S Donosti (p.Ser38Phe). The current data, together with a recent published meta-analysis, represent the most up-to-date list of SERPINA1 variants available so far.

Keywords: Alpha-1 antitrypsin deficiency, SERPINA1 genotyping, Null alleles

Alpha-1 antitrypsin (A1AT) is the main circulating protease inhibitor, protecting the lung parenchyma against proteolytic attacks. Alpha-1 antitrypsin deficiency (AATD) is a common but still largely under-recognized genetic disorder. It predisposes to liver and lung diseases and rarely to granulomatosis with polyangiitis and necrotizing panniculitis [1]. The wild-type allele is called PI*M while the most common deficient alleles are known as PI*S and PI*Z, according to their isoelectric focusing (IEF) pattern. AATD-associated liver disease, observed for the deficient variants Z, S Iiyama and M Malton, can be attributed to intracellular polymerization of the misfolded protein leading to endoplasmic reticulum storage disease. Mild liver storage is observed with the S variant which is probably degraded before secretion [2].

The medical indications for AATD screening were either a pulmonary or hepatic disorder or when a routine protein electrophoresis fortuitously revealed a splitting (with or without decrease) of the α1-globulin fraction at protein electrophoresis. The biochemistry laboratories of the academic medical centers of Lyon and Lille (France) currently investigate AATD by serum immunochemical quantification and IEF of A1AT. In the laboratory of Lyon, IEF is carried out on polyacrylamide gels based on the method previously described [3] with slight modifications of pH gradient (4.2–4.9). In the laboratory of Lille, IEF is performed on agarose gels using commercially available kits and immuno-enzymatic revelation (Sebia, Evry, France) [4]. In both laboratories, A1AT inhibitory activity may also be assessed through the serum elastase inhibitory capacity (SEIC) which relies on the inhibition measurement of the hydrolytic

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
been shown to be the most suitable one for the prediction of pathogenic A1AT variants [11]. Briefly, a REVEL score of less than 0.354 is highly predictive of a benign character of the variant whereas a score of more than 0.618 is highly predictive of pathogenicity.

Seven new variants were assumed to be Null ones: Q0_Lille, Q0_Casablanca, Q0_Saint-Etienne, Q0_Achicourt, Q0_Saint-Avold, Q0_Amiens and Q0_Montfaucon. They resulted from splice-site, non-sense or frame shift mutations leading to premature stop codons with biosynthesis of truncated proteins or pre-mRNA degradation by the nonsense mediated decay mechanism. Interestingly, the c.288_291del frame shift mutation gives rise to two different SERPINA1 Null variants which are associated with distinct genetic backgrounds: M2 for Q0_Casablanca and Z for Q0_Lille. The c.559A > T (Q0_Saint-Etienne) and c.1237_1239del (Q0_Montfaucon) mutations lead to a premature stop codon while Q0_Achicourt, Q0_Saint-Avold and Q0_Amiens are caused by splicing abnormalities. It is noteworthy that Q0_Achicourt and Q0_Saint-Avold found in young patients presenting with emphysema, were both in compound heterozygosity with another deficient SERPINA1 allele (Q0_Clayton and Z, respectively).

The M1_Cremeaux variant was identified in four members of a same family (two sisters and their sons). The propositus was a 36-year-old woman without any pulmonary or hepatic disorder harboring the M1_Cremeaux variant in heterozygosity with the dysfunctional Z variant. A1AT biochemical analysis was prescribed because of low α1-globulin fraction at protein electrophoresis during a hair loss exploration. Despite the absence of any specific clinical impact, M1_Cremeaux was considered as a deficient A1AT variant (ACMG class5) for four reasons: (i) the A1AT serum level was significantly decreased (0.23 g/L in heterozygosity with the dysfunctional Z variant. A1AT activity of the porcine pancreatic elastase by A1AT on a chromogenic substrate (N-Succinyl-Ala-Ala-Ala-p-nitroanilide). This kinetic spectrophotometric test, adapted from the method previously described by Klumpp and Bieth [5], was developed in close collaboration by the two laboratories so that the results could be comparable [6]. Using the correlation between A1AT concentration and SEIC, a theoretical SEIC can be calculated and compared to the measured SEIC with R being the ratio between the measured SEIC and the expected SEIC. For patients in heterozygosity with a new variant, R below 0.8 is presumptive of a dysfunctional variant.

This combination of techniques is sufficient to characterize up to 95% of A1AT abnormalities, mainly ZZ, SZ and SS phenotypes [1, 6, 7]. For the other cases (i.e. unexplained low A1AT level, unusual IEF pattern or IEF pattern inconsistent with clinical history), Sanger sequencing of the SERPINA1 gene including coding exons, 5′ and 3′ untranslated regions (UTRs) and splice boundaries is performed and can be extended to intronic sequences by Next Generation Sequencing technology [8]. All sequence variations are named according to the Human Genome Variation Society (HGVS) and using the reference transcript NM_000295.4 which includes the 24 residues of the signal peptide.

Over the past 10 years, more than 1200 A1AT genotyping analyses performed in our two centers led to the identification of 22 new variants in 35 patients aged from 7 to 81 years (Table 1 and Fig. 1). It is noteworthy that 4 of them were already cited but neither named nor phenotypically or clinically described [9]. According to their IEF pattern and the birth place of the probands, we named them S_Roubaix, W_Saint-Avre, M1_lille and M1_yon. The criteria of the American College of Medical Genetics and Genomics (ACMG) were used to classify these 22 variants as benign, likely benign, of uncertain significance, likely pathogenic, or pathogenic [10]. Since we did not have the possibility to test them in expression vectors like HEK293T/17 or Hepa1–6 cells, the available clinical and biochemical data of A1AT were considered, as well as the results of two in silico pathogenicity predictors, shown to have a sensitivity of 0.75 for SERPINA1 mutations [11]. The first one, namely SIFT for Sorting Intolerant From Tolerant, ranges from 0.00 to 1 and is mainly based on amino-acid conservation scores. A SIFT score between 0 and 0.05 is highly predicting of an affected protein function. The second one, namely PolyPhen-2 HVAR, proposes a prediction confidence score between 0.00 and 1.00 which uses multiple alignment and protein structural data. A PolyPhen-2 score higher than 0.8 is considered as probably damaging. The recently described REVEL (for Rare Exome Variant Ensemble Learner) method [12] was also used since it had been shown to be the most suitable one for the prediction of
Table 1 Molecular, biological and clinical characteristics of the 22 new SERPINA1 variants

Variant	NM_000295.4 (24 amino-acids signal peptide included)	Genetic background	Clinical data	Biological data	ACMG score											
			Sex	Age (years)	Circumstance of discovery	Pulmonary/ hepatic status	AAT* (g/L)	SFC* (IEU/L)	R²	IEF (pH)	CRP (mg/L)	Genotype	Score			
GSaint-sorlin			♀	34	IgA nephropathy	No	2.06	37.164	1.28	GM3	19	GSaint-sorlin M3	3			
M1Brest	rs774775536		♀	19	Familial screening	No	0.66	11,020	1.07	M2	na	M1Brest Z	2			
M1Bruxelles			♀	49	Elevated plasma GGT	Cholestasis	0.83	12,423	1.00	Heterogeneous pattern	na	M1Bruxelles ZBrugge	2			
M1Cremaux			♀	39	Abnormal serum protein electrophoretic pattern	No	0.23	na	na	na	na	M1Cremaux Z	5			
M1Lille	rs141095970		♀	33	Hepatic cytolysis	Cirrhosis	1.45	21,625	1.06	M	< 3	M1Lille M1	2			
M1Lyon	rs141620200		♀	10	Cystic fibrosis	Liver transplant	1.66	na	na	na	na	M1Lyon Z	2			
			♀	40	Familial screening	No	1.15	16,165	0.96	M15	na	M1Lyon S	5			
			♀	7	Familial screening	No	1.14	14,172	0.85	M1 M2	na	M1Lyon M2	2			
			♀	15	Immune deficiency	No	1.38	19,240	0.99	M	na	M1Lyon M1	2			
			♀	79	Emphysema	No	2.35	32,937	1.03	M	na	M1Lyon M1	2			
			♀	36	Bronchiectasis	No	2.20	28,510	0.95	M	na	M1Lyon M1	2			
			♀	46	Familial screening	No	0.70	9556	0.88	MZ	na	M1Lyon Z	2			
			♀	45	Familial screening	No	0.82	11,190	0.90	MZ	na	M1Lyon Z	2			
M1Rouen	rs764726147		♀	18	Arg63His	No	1.63	21,879	0.94	M1	17	M1Rouen M1 or M1Rouen M2	3			
M1Saint-rambert			♀	73	Solitary bone plasmocytoma	No	1.63	21,879	0.94	M1	17	M1Saint-rambert M1	2			
			♀	37	na	No	1.63	21,879	0.94	M1	17	M1Saint-rambert M1	2			
Othonon-les-bains	rs759578830		♀	43	Irritable Bowel syndrome	No	1.30	15,521	0.82	M2O	5	M2Othonon-les-bains	2			
PLoayettes	rs762601018		♀	71	CLL and type 2 diabetes	No	1.26	11,347	0.62	PS	23	PLoayettes S	4			
P3ickaie	RC000206568.1		♀	18	Crohn’s disease	No	1.26	14,318	0.79	M3Pfast	d	P3ickaie M3	4			
PSaint-Avre	rs11575873		♀	69	Cholestasis	No	1.29	18,314	1.00	WS	na	M2PSaint-Avre	2			
			♀	34	Abnormal serum protein electrophoretic pattern	No	0.82	9871	0.80	na	na	WSaint-Avre Z	3			
Variant name	NM_000295.4 (24 amino-acids signal peptide included)	Genetic background	Clinical data	Biological data	ACMG score											
--------------	--	--------------------	---------------	----------------	------------											
	dbSNP or Clinvar ID	Exon (II-V)	cDNA	AA change	Sex	Age (years)	Circumstance of discovery	Pulmonary/hepatic status	AAT (g/L)	SEIC* (IU/L)	R^b	IEF (PI)	CRP (mg/L)	Genotype		
M1	W_{Renoux}	/	Exon II	449 T > G	Leu150Arg	M1	♀	8	Biliary atresia	Pre-liver transplant data, probably on inflammatory status	1.47	na	na	M1W	na	M1 W_{Saint-Avre}
M1	X_{Curtis}	rs755851961	Exon III	811A > G	Asn271Asp	M1	♀	21	Cystic fibrosis	No	1.34	24,121	1.24	M2X	2	M2 X_X
M1	Q0_{Amiens}	rs781591420	Exon IV	1065 + 1G > A	/	M1	♀	81	Abnormal serum protein electrophoretic pattern	No	1.18	17,419	1.03	M	na	M1 Q0_{Amiens}
M1	Q0_{Lille}	RCV000408906.1	Exon II	288_291del	His97Metfs	M2	♀	35	Neutropenia	No	0.76	11,741	1.01	M	< 3	M3 Q0_{Amiens}
M1	Q0_{Montluel}	rs760849035	Exon V	1237_1239del	Val413	M1	♀	51	Thrombophilia screening	No	0.66	7547	0.72	M1	5	M1 Q0_{Amiens}
M1	Q0_{Saint-Avold}	/	Inton 3	918 – 1G > A	/	M1	♀	63	na	Emphysema	0.21	5898	1.30	Z	na	Q0_{Saint-Avold} Z
M1	Q0_{Saint-Étienne}	rs750779440	Intron 3	917 + 1G > A	/	M1	♀	59	Dyspnea	Emphysema	< 0.10	2045	ns	No band	< 3	Q0_{Amiens} Q0_{Bastarson}
M1	Q0_{Clayton}	Q0_{Achicourt}	Intron 4	1065 + 1G > A	/	M1	♀	59	Dyspnea	Emphysema	< 0.10	2045	ns	No band	< 3	Q0_{Amiens} Q0_{Bastarson}

CRP: C-Reactive Protein

* Normal ranges in serum: A1AT: 0.90–2.00 g/L; SEIC (serum elastase inhibitory capacity): 17,500–31,500 IU/L.
* R = measured SEIC / expected SEIC; expected SEIC is based on the correlation between the measured SEIC and the corresponding AAT level according to the following linear relationship established from 10,863 individuals: SEIC (IU/L) = 12,784 x A1AT (g/L) + 1855. Measured SEIC< 17,500 IEU/L and/or R< 0.8 may result from A1AT functional deficiency.

CRP: C-Reactive Protein

Genotype	
M1 W_{Saint-Avre}	

CRP: C-Reactive Protein

a) Normal ranges in serum: A1AT: 0.90–2.00 g/L; SEIC (serum elastase inhibitory capacity): 17,500–31,500 IU/L.

b) R = measured SEIC / expected SEIC; expected SEIC is based on the correlation between the measured SEIC and the corresponding AAT level according to the following linear relationship established from 10,863 individuals: SEIC (IU/L) = 12,784 x A1AT (g/L) + 1855. Measured SEIC< 17,500 IEU/L and/or R< 0.8 may result from A1AT functional deficiency.

c) ACMG classification: 1 = benign, 2 = likely benign, 3 = uncertain significance, 4 = likely pathogenic, 5 = pathogenic.

d) Inflammatory electrophoretic profile

*nomenclature rule for stop codon.
status (CRP plasma levels higher than 10 mg/L) that probably led to overestimation of the recorded A1AT levels. They were thus classified as likely pathogenic according to ACMG criteria (class 4).

While caused by a non-sense mutation, A1AT G Saint-Sorlin (c.1252A > T; p.Lys418*) was ranged as variant of uncertain significance (class 3) since the A1AT biochemical data were normal. As the premature stop codon is located on the very last triplet of the gene, the final protein lacks only one amino-acid and it seems to have no consequence on its synthesis or functional activity. Conversely, the M1Rouen variant was also ranged in class 3 and not considered as benign or likely benign because: (i) it appears at very low allelic frequencies in databases (ExAC and Topmed: 0.0012%), (ii) a pathogenic variant on the same amino-acid (namely, the I variant p.Arg63Cys) has been described and (iii) we could not get any serum sample to assess A1AT quantification and SEIC. In detail, the SIFT and PolyPhen-2 algorithms classify the I variant as deleterious (0 and 1, respectively) while they are contradictory for the M1Rouen variant (0.04 and 0.185, respectively). A border-line R ratio of 0.8 was obtained for an asymptomatic 34-year-old woman harboring the W Saint-Avre variant in heterozygosity with the dysfunctional Z variant. According to its low frequency in databases (ExAC: 0.0032%) and to its SIFT and PolyPhen-2 scores (1 and 0.000 respectively), W Saint-Avre was also ranged in class 3 of ACMG classification.

The remaining eight variants were classified as likely benign (class 2) because in silico algorithms predicted no impact on gene product and the A1AT quantitation and SEIC measures revealed no abnormality.

Very interestingly, we also identified during the course of this study two SERPINA1 deficient variants that were very recently described: Trento (p.Glu99Val) [14] and SDonosti (p.Ser38Phe) [15]. The Trento variant showed compromised conformational stability after secretion from the hepatocyte [14]. In our cohort, this variant was present in heterozygosity with the M Malton variant in a 42-year-old man with a low A1AT level (0.85 g/L) presenting with hepatic fibrosis. The SDonosti variant was shown to form intra-cellular polymers that prevent its secretion from the hepatocytes. We identified the SDonosti variant in two unrelated individuals (in heterozygosity with the M1 variant and with the S variant, respectively): (i) a 64-year-old woman suffering from emphysema (A1AT level = 1.21 g/L but inflammatory status not known) and (ii) a 41-year-old man suffering from hemochromatosis (A1AT level = 0.80 g/L).

In conclusion, this study highlights the importance of the whole SERPINA1 gene sequencing (and not only the specific research of the Z and S variants) to explain some AATD clinical and biological pictures. Among these 22 new A1AT variants, a significant percentage of severely deficient ones (class 5) was observed (36.4%): Seven Q0 alleles and one deficient M1 allele (M1 Cremeaux). Three variants (P_Loyettes, P_Solaize and W_Vernaison) could be classified as dysfunctional variants (class 4) mainly because of their reduced elastase inhibitory activity. Three variants (M1Rouens G_Saint-Sorlin and W_Saint-Avre) were classified as variants of uncertain significance (Class 3) and the eight remaining ones as likely benign (Class 2). To note, we fortuitously observed that the IEF pattern of the S_Roubaix variant depended on the migration medium: W-like on polyacrylamide gels (Lyon) and S-like on agarose gels.

Fig. 1 IEF patterns of some frequent and rare A1AT phenotypes (polyacrylamide gels with Coomassie blue staining). 1, 33: M1M3; 2, 15, 18: M1S; 3, 17: P_Loyettes; 4: M1P_Loyettes; 5, 31: M1Z; 6, 11, 20: M1M4; 7: M1P_Solaize; 8, 10, 19, 24, 27, 28: M1M5; 9: M1M1; 12: M1S_Roubaix; 13: SW_Vernaison; 14: M1S; 16: M1P; 22: M1_X_Chrichurch; 23: M1_X_Chrichurch; 25: M1_X_Curis; 26: M1_X_Chrichurch; 29, 32: G_Saint-SorlinM1; 30: IM3.
(Lille) (Additional file 1: Figure S1). Since all patients carrying the S_{Roubaix} variant were of North African origin, we highly speculate that this variant might correspond to the ‘old’ W3_{Constantine} described in 1977 by Khitri [16]. The recent meta-analysis by Silva et al., completed by the present data, represents the most up-to-date list of SERPINA1 variants available so far.

Additional file

Additional file 1: Figure S1. A1AT phenotypes: (A) Coomassie blue stained polyacrylamide gel (B) agarose gel followed by immunofixation. 1:M1; 2:M2S; 3:M1M4; 4,5,6: M2P; 7:M2S_{Roubaix}; 8: IM; 9:M2S_{Roubaix}; 10,11:M1Z; 12:M1; 13:M1S; 14:M1S. The S_{Roubaix} Variant has clearly different patterns of migration on polyacrylamide and on agarose gels. (PPTX 217 kb)

Abbreviations

A1AT: Alpha-1-antitrypsin; AATD: Alpha-1-antitrypsin deficiency; IEF: Isoelectric focusing; SEIC: Serum elastase inhibitory capacity

Acknowledgements

We thank the technical teams of the laboratories of Lyon and Lille for their skilful assistance. We are also very grateful to all the patients and their medical doctors.

Funding

This work was funded by the ‘Hospices Civils de Lyon (HCL)’ and by the ‘Centre Hospitalier Régional Universitaire (CHRU) de Lille’.

Availability of data and materials

The dataset supporting the conclusions of this article is included within the article and its additional files.

Authors’ contributions

Biochemical and genetic analysis: CR, MFO, NP, FZ, CCC, MB, PJ. Made substantial contribution to acquisition of data, analysis and interpretation of data: CR, MFO, CL, GT, JT, NA, NP, FZ, CCC, MB, PJ. Drafting manuscript: CR, MFO, FZ, CCC, MB, PJ. Revising and approving content: CR, MFO, FZ, CCC, MB, PJ. Given final approval: CR, MFO, CL, GT, JT, NA, NP, FZ, CCC, MB, PJ.

Ethics approval and consent to participate

Written informed consents were obtained from all patients for the genetic analyses.

Consent for publication

Consents for research use of the data are included in the informed consent signed by the patients.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details

1. Laboratoire de Biochimie et Biologie moléculaire Grand Est, UFR "Biochimie des pathologies érythrocytaires", Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Lyon, France. 2. Laboratoire Interuniversitaire de Biologie de la Maternité (UBLM) EA7424, Team "Vascular Biology and Red Blood Cell", Université Claude Bernard Lyon 1, Villeurbanne, France. 3. Service de Biochimie et Biologie moléculaire "Hormonologie, Métabolisme-Nutrition, Oncologie", CHU Lille, F-59000, Lille, France. 4. Faculty of Pharmaceutical and Biological Sciences, UMR995, LIRIC (Lille Inflammation Research International Center), University of Lille, F-59000 Lille, France. 5. Laboratoire d’Immunologie, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon & Université Claude Bernard-Lyon 1, Lyon, France. 6. EA4483, IMPECS, Institut Pasteur de Lille, University of Lille, F-59000 Lille, France. 7. Faculty of Pharmaceutical and Biological Sciences, EA7364, RADEME (Research team on rare developmental and metabolic diseases), University of Lille, F-59000 Lille, France.

Received: 26 April 2018 Accepted: 23 August 2018

Published online: 17 September 2018

References

1. Greene CM, Marciniak SJ, Teckman J, Ferrarotti I, Brantly ML, Lomas DA, Stoller JK, NG ME. Alpha-1-antitrypsin deficiency. Nat Rev Dis Primers. 2016;2:16051. https://doi.org/10.1038/nrdp.2016.51.

2. Caffè F, Giovanni I, Francalanci P, Baldini R, Faa G, Medicina D, Nobili V, Desmet VJ, Ishak K, Sewaya K, Bellaccchio E. Mineralization of alpha-1-antitrypsin inclusion bodies in Mmalton alpha-1-antitrypsin deficiency. Orphanet J Rare Dis. 2018;13 https://doi.org/10.1186/s13023-018-0821-7.

3. Aumad P, Chapuis-Cellier C. Alpha-1-antitrypsin. Methods Enzymol. 1988; 163:400–18.

4. Zemmelch F, Hennache G, Belton F, Barouh G, Jacques Lafitte J, Porchet N, Balduyck M. Evaluation of a new Sebia seieloelectrofocusing kit for alpha-1 antitrypsin phenotyping with the Hydrasys system. Clin Chem Lab Med. 2008;46(2):260–3. https://doi.org/10.1515/CCLM.2008.036.

5. Klumpp T, Bieth JG. Automated measurement of the elastase-inhibitory capacity of plasma with a centrifugal analyzer. Clin Chem. 1979;25(6):969–72.

6. Balduyck M, Odou MF, Zemmelch F, Porchet N, Lafitte JJ, Maitre B. Diagnosis of alpha-1-antitrypsin deficiency: modalities, indications and diagnosis strategy. Rev Mal Respir. 2014;31(8):229–45. https://doi.org/10.1165/rmr.201406.001.

7. Stockley RA, Lussetti M, Miravilles M, Pitulainen E, Fernandez P. Alpha one international registry group: ongoing research in Europe: alpha one international registry (AIR) objectives and development. Eur Respir J. 2007; 29(3):S82–6. https://doi.org/10.1183/09031936.0035806.

8. Ilyk P, Francina A, Lacan P, Heraut J, Chapuis-Cellier C. Place de genotyping in addition to the phenotype and the assay of serum alpha-1 antitrypsin. Ann Biol Clin. 2011;69(5):571–6. https://doi.org/10.1684/abc.2011.0613.

9. Silva D, Oliveira MJ, Guimaraes M, Lima R, Gomes S, Seixas S. Alpha-1-antitrypsin (SERPINA1) mutation spectrum: three novel variants and haplotype characterization of rare deficiency alleles identified in Portugal. Respir Med. 2016;116B:1–8. https://doi.org/10.1016/j.rmed.2016.05.002.

10. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hiede M, Lyon E, Spector E, Voelkerding K, Rehm HL, Committee AQA. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015; 17(5):405–24. https://doi.org/10.1038/gim.2015.30.

11. Giacopuzzi E, Lafranchi M, Berardelli R, Ravasio V, Ferrarotti I, Gooptu B, Borsani G, Fra A. Real-world clinical applicability of pathogenicity predictors assessed on SERPINA1 mutations in alpha-1-antitrypsin deficiency. Hum Mutat. 2018; https://doi.org/10.1002/humu.23562.

12. Ioannidis NM, Rothstein JH, Pejavor V, Middha S, McDonnell SK, Baheti S, Musolf A, Li Q, Holzheimer E, Kayaali D, Cannon-Albright LA, Terenlin CC, Stanford J, Isacis WB, Xu J, Cooney KA, Lange EM, Schleutker J, Carpten JD, Powell U, Cussenot O, Cancel-Tassin G, Giles GG, MacInnis RJ, Maier C, Hsieh CL, Winkler F, Catalona JW, Foulkes WD, Mandel D, Eeles RA, Kote-Jarai Z, Bustamante CD, Schaid DJ, Hastie T, Ostrander EA, Bailey-Wilson JE, Radivojac P, Thibodeau SN, Whittemore AS, Sieh W. REVEL: an ensemble method for predicting the pathogenicity of rare missense variants. Am J Hum Genet. 2016;99(4):877–88. https://doi.org/10.1016/j.ajhg.2016.08.016.

13. Miranda E, Perez J, Ekeowa IU, Hadzic N, Kalsheker N, Gooptu B, Portmann B, Belorgey D, Hill M, Chambers S, Teckman J, Alexander GJ, Marciniak SJ, Lomas DA. A novel monoclonal antibody to characterize pathogenic polymers in liver disease associated with alpha1-antitrypsin deficiency. Hepatology. 2010;52(3):1078–88. https://doi.org/10.1002/hep.23760.

14. Miranda E, Ferrarotti I, Berardelli R, Laffranchi M, Cerea M, Gangemi F, Haq I, Ottaviani S, Lomas DA, Irving JA, Fra A. The pathological Trento variant of alpha-1-antitrypsin (EF575) shows nonclassical behaviour during polymerisation. FEBS J. 2017;284(13):2110–206. https://doi.org/10.1111/febs.14111.

15. Matamala N, Lara B, Gomez-Marango G, Martinez S, Retana D, Fernandez T, Silvestre RA, Belmonte I, Rodriguez-Frias F, Vilar M, Saiz R, Iturbe I, Castillo S,
Molina-Molina M, Texido A, Tirado-Conde G, Lopez-Campos JL, Posada M, Blanco I, Jancauskienė S, Martinez-Delgado B. Characterization of novel missense variants of SERPINA1 gene causing Alpha-1 antitrypsin deficiency. Am J Respir Cell Mol Biol. 2017 https://doi.org/10.1165/rcmb.2017-0179OC.

16. Khitri A, Benlatrache K, Martin JP. Pi W3 Constantine, new allele of Pi system. Sem Hop. 1977;53(16):909–10.