Supplementary Information

Drugs that reverse disease transcriptomic signatures are more effective in a mouse model of dyslipidemia

Allon Wagner1,2,*, Noa Cohen1, Thomas Kelder3,#, Uri Amit4,5, Elad Liebman6, David M. Steinberg7, Marijana Radonjic3,# & Eytan Ruppin1,8,9,*

1 The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel;
2 Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA 94720-1770, USA;
3 Microbiology and Systems Biology, TNO, 3700 AJ Zeist, the Netherlands;
4 Neufeld Cardiac Research Institute, Tel Aviv University, Tel Aviv 69978, Israel;
5 Regenerative Medicine Stem Cells and Tissue Engineering Center, Sheba Medical Center, Tel Hashomer 52621, Israel;
6 Department of Computer Science, University of Texas at Austin, Austin, TX 78712, USA;
7 Department of Statistics and Operations Research, Tel Aviv University, Tel Aviv 69978, Israel;
8 The Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel;
9 Department of Computer Science, Institute of Advanced Computer Sciences (UMIACS) & the Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA;
\# Current affiliation: EdgeLeap B.V., Hooghiemstraiplein 15, 3514 AX Utrecht, the Netherlands;
* To whom correspondence should be addressed.

E-mail: (AW) allonwag@post.tau.ac.il; (ER) ruppin@post.tau.ac.il
Table of Contents

TABLE OF CONTENTS 2

SUPPLEMENTARY RESULTS 4

1. REVERSAL OF DISEASE PHENOTYPES IN THE GENE EXPRESSION SPACES 4
2. INTRA-GROUP VARIABILITY 4
3. GSEA ANALYSIS 5
4. ALTERNATIVE DEFINITIONS OF TDI 7
 4.1. GSEA-BASED METHODS 7
 4.2. GENES MAPPED TO MULTIPLE PROBES 8
5. UP-REGULATION OF PRO-INFLAMMATORY GENES IN THE T0901317 TREATMENT GROUP 8

SUPPLEMENTARY FIGURES 10

1. SUPPLEMENTARY FIGURE 1: TRANSCRIPTOME DEVIATIONS INDICES 10
2. SUPPLEMENTARY FIGURE 2: GLOBAL PHYSIOLOGICAL DEVIATION INDICES 11
3. SUPPLEMENTARY FIGURE 3: HIERARCHICAL CLUSTERING IN THE LIVER GENE EXPRESSION SPACE 12
4. SUPPLEMENTARY FIGURE 4: HIERARCHICAL CLUSTERING IN THE ADIPOSE GENE EXPRESSION SPACE 14
5. SUPPLEMENTARY FIGURE 5: CORRELATION BETWEEN GSEA-BASED SCORES AND TDIs 15
6. SUPPLEMENTARY FIGURE 6: SPEARMAN CORRELATIONS OF TDI, GPDI, AND MDI 16
7. SUPPLEMENTARY FIGURE 7: LIVER METABOLOME SPACE 17
8. SUPPLEMENTARY FIGURE 8: WHITE ADIPOSE TDI CORRELATION WITH INDIVIDUAL PDIs 18
9. SUPPLEMENTARY FIGURE 9: LIVER TDI CORRELATION WITH INDIVIDUAL PDIs 19
10. SUPPLEMENTARY FIGURE 10: LIVER MDI CORRELATION WITH INDIVIDUAL PDIs 20
11. SUPPLEMENTARY FIGURE 11: LIVER MDI CORRELATION WITH INDIVIDUAL PDIs (SCATTER PLOTS) 21
12. SUPPLEMENTARY FIGURE 12: DRUGS THAT INDUCE MAJOR NON-RESTORATIVE GENE EXPRESSION ALTERATIONS 22
13. SUPPLEMENTARY FIGURE 13: NON-RESTORATIVE GENE EXPRESSION ALTERATIONS ARE ASSOCIATED WITH UNFAVORABLE PHYSIOLOGICAL OUTCOMES 23
14. SUPPLEMENTARY FIGURE 14: UNFAVORABLE DRUG OUTCOMES IN PHYSIOLOGICAL MARKER DATA 25

SUPPLEMENTARY TABLES 26

1. SUPPLEMENTARY TABLE 1: LIST OF PHYSIOLOGICAL MARKERS MEASURED IN THE STUDY ANIMALS 26
2. SUPPLEMENTARY TABLE 2: DRUG MECHANISM OF ACTION 28
3. SUPPLEMENTARY TABLE 3: GSEA ANALYSIS OF THE LIVER TRANSCRIPTOME 30
4. SUPPLEMENTARY TABLE 4: GSEA ANALYSIS OF THE ADIPOSE TRANSCRIPTOME 34
5. **Supplementary Table 5: Probes used to construct the liver gene expression space**
6. **Supplementary Table 6: Probes used to construct the adipose gene expression space**
7. **Supplementary Table 7: Correlations of liver and adipose TDis with individual PDIs**
8. **Supplementary Table 8: Correlations of liver MDI with individual PDIs**
9. **Supplementary Table 9: Adverse side-effects of drugs in the current study**

Supplementary References
59
Supplementary Results

1. **Reversal of disease phenotypes in the gene expression spaces**

 It is reasonable to assume that effective clinical interventions should reverse disease-induced pattern to the gene expression of affected organs. We therefore tested whether the treated animals tended to lie closer in the gene expression space to the healthy (LFD) group than did the untreated HFD group (see also Supplementary Figure 1). Formally, for each treatment group we computed the TDIs of animals in that group, and ran a two-sample t-test between them and the TDIs of the untreated HFD (16 weeks) group. The following table presents the one-sided p-values with which the null hypothesis of equal means for the TDIs of both groups can be rejected in favor of the alternative that the treatment led to a smaller mean TDI. P-values were adjusted to multiple hypotheses testing by the Benjamini-Hochberg (BH) method.

Experimental group	Liver BH-adjusted p-value	Adipose BH-adjusted p-value
Dietary intervention (DLI)	0.0001	4e-7
Rosiglitazone	0.0287	0.1560
Pioglitazone	0.0918	0.0516
Metformin	0.0189	N/A
Glibenclamide	0.0094	N/A
Sitagliptin	0.1081	N/A
Atorvastatin	0.2065	N/A
Salicylate	0.1081	0.0378
T0901317	0.9338	2e-5
Fenofibrate	0.9338	N/A
Rofecoxib	0.0469	N/A

2. **Intra-group variability**

 Figure 2a-b suggests that there exists considerable variability in the transcriptomic effects of some of the treatments. For example, animals treated with salicylate do not tend to cluster together in both adipose and the liver, whereas animals treated with rosiglitazone tend to cluster together in the gene expression space. In order to better study intra-group variability, hierarchical clustering of the animals in the gene expression space was conducted. Results are shown in Supplementary Figures 3-4. Dendrograms were created with the Euclidean metric, conforming to the rest of the study, and with average linkage. Unlike the PCA plots, which show only the first two principal components, and thus do not capture the entire variability in the data, the dendrograms were computed based on all the dimensions of the gene expression.
spaces. Nevertheless, the trends that they show are similar to those that can be observed in the PCA plots.

First, in both tissues, the LFD animals cluster together, and most of the dietary lifestyle intervention (DLI) animals cluster with them. The dietary intervention is so successful at reversing disease gene expression patterns that these animals become practically indistinguishable from the animals that were fed LFD throughout the experiment. In the case of adipose tissue, the T0901317 cluster with LFD and DLI animals, yet still forms a distinct subgroup, in contrast to LFD and DLI which are “mixed together”. Yet, this occurs only in adipose; in the liver the T0901317 group is distinct from the LFD+DLI cluster.

Second, there exists large intra-group variability due to which many of the animals do not cluster with other animals from the same treatment group. Two notable exceptions occur: in the adipose tissue, rosiglitazone and pioglitazone cluster together and distinctly from other drugs. The same happens with fenofibrate and T0901317 in the liver. This seems to occur because each of these four compounds activates a key regulator that is expressed in the tissue in which it exerts considerable transcriptomic changes, whereas the other drugs either work through other mechanisms that have a subtler effect or exert their primary effect in tissues that were not examined in the current study, such as pancreatic β-cells (see Supplementary Table 2).

3. **GSEA analysis**

Gene set enrichment analysis (GSEA, (Subramanian *et al*, 2005)) was conducted to detect pathways that are enriched in genes that are either upregulated or downregulated in each treatment group compared with the HFD-16weeks group. Comparisons of the LFD and HFD-9weeks groups with the HFD-16weeks groups were made as well for the sake of completeness. The analysis was limited to gene sets from the collection of canonical KEGG pathways in the Molecular Signatures Database (MSigDB) v4.0 (accession: CP:KEGG; 186 gene sets in total) so as to retain statistical power in the face of multiple comparison. On the other hand, we emphasize that input to GSEA consisted of all the genes whose expression was measured, and not only the subset of top differentially-expressed genes that was used to define the gene expression space for the purpose of TDI computations (Methods).

Gene sets were downloaded from MSigDB (www.broadinstitute.org/gsea/msigdb; accessed July 2014) and translated from human gene identifiers to mouse gene identifiers using homology data from the Jackson laboratory (www.informatics.jax.org; accessed July 2014). GSEA software available from the Broad Institute (v2.1.0; www.broadinstitute.org/gsea/index.jsp; accessed July 2014) was run with default parameters. We note that phenotype permutation was used to assess the statistical significance of the enrichment scores. Phenotype permutation is more stringent and biologically reasonable than gene set permutation (Subramanian *et al*, 2005), and was therefore preferred despite the limits
it poses on statistical power in experiments with small number of samples in each group (our dataset typically has 8 animals per group).

Overall, the results agreed with prior expectations. Major hepatic and adipotic pathways were indeed modulated in the study animals by the drugs that are known to target them. Fenofibrate upregulated peroxisome proliferator-activated receptors (PPAR) signaling in the liver; fenofibrate, atorvastatin and T0901317 modulated hepatic fatty acid metabolism. Pioglitazone and rosiglitazone activated PPAR signaling and genes associated with fatty acid metabolism in white adipose. An exception to that was metformin, which did not alter any hepatic pathway in a statistically-significant way. This does not seem to stem from under-dosage because the dosage used was comparable to the one given in previous studies (250 mg/kg, 0.25% w/w), alleviated some of the clinical phenotypes of the disease (Radonjic et al, 2013), and significantly decreased the hepatic TDI compared with untreated HFD group (Supplementary Results 1). The indiscernibility of metformin’s effects in GSEA analysis may thus stem from the lack of statistical power.

Interestingly, pro-inflammatory pathways were downregulated in adipose gene expression in the LFD and DLI groups compared with the HFD group, which accords with the importance of adipose-related inflammatory processes in HFD-induced pathologies (Wellen & Hotamisligil, 2003; Berg & Scherer, 2005). Nonetheless, inflammatory pathways were upregulated in the liver by T0901317, which is also apparent in direct inspection of the expression of known pro-inflammatory genes (Supplementary Results 5). The hepatic inflammatory response is probably associated with the deleterious physiological outcomes observed in T0901317 mice, most notably abnormal hepatomegaly (see main text in the results subsection “Non-restorative alterations to the gene expression are associated with unfavorable outcomes”).

GSEA results also accord with observations that were reached in this study through other means: first, the dietary regimen seems particularly effective in inducing the opposite transcriptomic patterns than HFD. In both tissues there are multiple pathways which are altered between the LFD and the untreated HFD group due to HFD-feeding, and are altered in the opposite direction by DLI; the same reversal occurs in none or only in a handful of the drugs in each case, and only those that were shown to exert the most positive effect in the study animals. Second, taking the number of significantly altered gene sets as a proxy for the magnitude of the drug effect, we find that the drugs that had the most significant effects are the same ones that exert the largest effects as seen in the gene expression space (Supplementary Figure 12).

One result that we did not anticipate was the frequent occurrence of the KEGG_RIBOSOME gene set among the significantly altered ones in the liver. This gene set is upregulated in the liver by pioglitazone, rosiglitazone, fenofibrate, and T0901317 compared with the HFD group. Moreover, it is downregulated in the LFD and DLI group compared with the HFD
group, suggesting that this pathway’s downregulation is a phenotype associated with HFD and rectified by DLI. The gene set is also upregulated in the animals fed HFD for 9 weeks compared with the ones fed HFD for 16 weeks, which may be interpreted as a sign that this pathway’s downregulation should be associated with a late phase in the disease progression and as a marker for a severe form of the disease state. Indeed, it has been recently shown that HFD-feeding repressed liver ribosomal RNA transcription in both wildtype (C57BL6) mice fed HFD and in an obese mouse model (ob/ob) fed normal diet compared with wildtype mice fed a normal diet (Oie et al, 2014).

Another noteworthy effect occurs in the liver, where T0901317 downregulated the gene set KEGG_COMPLEMENT_AND_COAGULATION_CASCADES compared with the HFD group. A similar result was previously reported in a zebrafish study of T0901317’s hepatic effects (Sukardi et al, 2012), suggesting that it is not accidental but rather concerns a conserved biological mechanism in the two species. In our data, rosiglitazone (yet not pioglitazone) had the opposite effect and significantly upregulated this gene set in the liver. The gene set was significantly downregulated in the adipose tissue of the LFD group, yet not in the livers of the LFD animals.

4. Alternative definitions of TDI

4.1. GSEA-based methods

We define the Transcriptome Deviation Index as the Euclidean distance in the gene expression space between an animal and the mean of the healthy (low-fat diet) animals. Note that the gene expression space is defined through genes that are differentially expressed between the HFD and LFD groups, and are thus associated with the disease phenotypes. A different approach was taken by several previous studies (Lamb et al, 2006; Iorio et al, 2010; Sirota et al, 2011; Pacini et al, 2013) that sought inverse correlations between drug and disease profiles derived from gene expression data, and applied Gene Set Enrichment Analysis (GSEA) (Subramanian et al, 2005) towards that purpose. Briefly, these studies computed a score that is based on the Kolmogorov-Smirnov statistic and quantifies the extent by which genes that are up-regulated in the disease profile tend to be up-regulated in the treatment profile and, similarly, genes that are down-regulated in the disease profile tend to be down-regulated in the treatment profile. Negative scores occur when genes that are up-regulated by the disease tend to be down-regulated by the treatment, and vice-versa, and suggest that the drug might be effective in treating the disease. Following (Sirota et al, 2011), these score are denoted DDS (which stands for drug-disease-score, although here they are applied in the case of the non-pharmacological dietary intervention, and in an individual manner, see below).

TDIs and DDSs are thus two ways to quantify the success of a treatment to reverse gene expression patterns induced by the disease. Treatments that successfully act towards this goal should have both small (close to 0) TDIs and small (“very negative”) DDSs compared with
unsuccessful treatments. Therefore, one expects TDIs and DDSs to be directly correlated; we verified that a strong correlation indeed exists.

DDSs were computed for each animal in the dataset studied here. There are minute differences between the ways the scores are computed in the various studies that used a GSEA-based approach; we followed (Sirota et al, 2011). As in the TDIs, a) DDSs were computed separately for the adipose and for the liver gene expression, and b) DDSs were computed for each individual animal, rather than for an entire treatment group. Thus, DDSs offer an alternative quantification for the tissue-specific reversal of the HFD gene expression patterns in a certain animal. As expected, TDIs and DDSs are highly correlated (Supplementary Figure 5; Pearson rho = 0.97, 0.96, p-values < 1.4e-38, 3.4e-62 for the adipose and liver tissues, respectively). On the other hand, the definition of TDIs allows a simple decomposition of the TDI into two orthogonal components: one that corresponds to disease reversal, and one which is associated with adverse outcomes (Supplementary Figure 13a). It is not as straightforward to do the same for GSEA-based scores, and therefore the definition of TDIs that is presented in the main text was chosen for the current study.

4.2. Genes mapped to multiple probes

A subtle choice in the definition of TDIs concerns the way probes that are mapped to multiple genes are handled. We opted for the most data-driven approach, and treated each probe as a separate feature, thus accommodating the possibility that a particular probe might be much more correlated with disease phenotypes than other probes mapped to the same gene. We verified, however, that our results do not depend on this choice. Similar results are obtained when all the probes that are associated with a particular gene are collapsed into a single feature.

5. Up-regulation of pro-inflammatory genes in the T0901317 treatment group

T0901317 and fenofibrate are associated with unfavorable physiological outcomes that are indicative of liver pathologies, and particularly with notable hepatomegaly (see main text and Supplementary Figure 14), as well as with large non-restorative alterations in the liver gene expression (Supplementary Figures 12a, 13b). We hypothesized that these unfavorable phenotypes are accompanied by hepatic inflammation (Reddy & Sambasiva Rao, 2006). Therefore, we tested whether 13 known inflammatory genes were up-regulated in the livers of mice treated with one of these drugs compared with untreated HFD mice (one-sided t-test; p-values were adjusted to multiple hypotheses by the Benjamini-Hochberg method; significance level was set at 5%). No significantly up-regulated genes were observed in the fenofibrate group. However, 6 out of the 13 tested genes were significantly up-regulated in the T0901317 (we stress that the comparison is with the untreated HFD group and not with the LFD group): MCP-1, CD86, EMR-1, ICAM-1, VCAM-1, and IL-1β. In addition, TNF-α was up-regulated, but not
in a statistically-significant manner (adjusted p-value = 0.11, unadjusted p-value = 0.036). The other 6 genes that were tested are: SELE, SELP, NOS-1, NOS-2, IL-6, IL-18.
Supplementary Figures

1. **Supplementary Figure 1: Transcriptome deviations indices**

 (a) Liver and (b) adipose TDI distribution of the different experimental groups
2. Supplementary Figure 2: Global physiological deviation indices

GPDI distribution of the different experimental groups
3. Supplementary Figure 3: Hierarchical clustering in the liver gene expression space

Dendrogram was built with Euclidean distances and average linkage. Each leaf in the dendrogram corresponds to one animal, and leaf labels denote the treatment group to which the animal belonged. Two clusters are highlighted. The first (blue, bottom part of the dendrogram) contains all the LFD animals, and 6 out of the 8 dietary intervention animals. The second (pink, upper part of the dendrogram) contains all the animals treated with the lipid-modulating drugs fenofibrate and T0901317. Both of which activate master transcription factor that are highly expressed in the liver. See Supplementary Results 2 and main text for details.
4. Supplementary Figure 4: Hierarchical clustering in the adipose gene expression space

Dendrogram was built with Euclidean distances and average linkage. Each leaf in the dendrogram corresponds to one animal, and leaf labels denote the treatment group to which the animal belonged. Two clusters are highlighted. The first (blue, upper part of the dendrogram) contains all the LFD animals, most of the dietary intervention animals, and all the animals treated with T0901317. The second (pink, bottom part of the dendrogram) contains almost all the animals treated with the thiazolidinediones (TZDs) rosiglitazone and pioglitazone. These two drugs activate a master transcription factor that is highly expressed in adipose. See Supplementary Results 2 and main text for details.
5. **Supplementary Figure 5: Correlation between GSEA-based scores and TDIs**

Scatter plots of DDSs, which are GSEA-based scores (see Supplementary Results 4.1) that measures a drug’s ability to reverse the transcriptomic patterns of the disease, and the Transcriptome Deviation Indices (TDIs), which quantify the same ability via other means. We find that the two are highly correlated both when computed for (a) liver and (b) white adipose gene expression. X and y axes are TDIs and DDSs, respectively. Each dot represents one animal, color-coded according to its treatment group as in the rest of the study. Pearson correlation coefficients and their corresponding p-values are given for each tissue.
6. **Supplementary Figure 6: Spearman correlations of TDI, GPDI, and MDI**

This figure parallels Figure 2 of the main text, except that it presents Spearman correlations and their respective p-values instead of Pearson correlations. Accordingly, the x and y axes of each panel present the ranked values rather than the actual values. For example, the x coordinates of panel (a) are the rank of each animal’s adipose TDI with respect to all the animals for which adipose TDI was available.

![Panel A: Spearman correlation between ranked adipose TDI and ranked GPDI.](image)

\[\rho = 0.91 \quad p < 10^{-16} \]

![Panel B: Spearman correlation between ranked liver TDI and ranked GPDI.](image)

\[\rho = 0.50 \quad p < 9.6 \times 10^{-7} \]

![Panel C: Spearman correlations between ranked liver TDI and ranked MDI.](image)

\[\rho = 0.45 \quad p < 1.5 \times 10^{-5} \]

\[\rho = 0.27 \quad p < 0.008 \]
7. **Supplementary Figure 7: Liver metabolome space**

First two principal components of the liver metabolome space. Each dot represents one animal; color codes denote the different experimental groups. The dashed arrow connects the HFD centroid (yellow square) to the LFD centroid (yellow triangle), and denotes the direction of a reversal of the gene expression or physiological state back to the norm.
8. **Supplementary Figure 8: White adipose TDI correlation with individual PDIs**

Each panel presents the ranked PDI values of a particular physiological marker (y-axis) as a function of the ranked adipose TDI (x-axis). Each dot represents one animal, color-codes denote the different experimental groups. The dashed lines are linear regression lines. Refer to Supplementary Table 1 for complete details concerning the physiological markers. The Spearman correlations values and their respective p-values are given in Supplementary Table 7.
9. **Supplementary Figure 9: Liver TDI correlation with individual PDIs**

Each panel presents the ranked PDI values of a particular physiological marker (y-axis) as a function of the ranked liver TDI (x-axis). Each dot represents one animal, color-codes denote the different experimental groups. The dashed lines are linear regression lines. Refer to Supplementary Table 1 for complete details concerning the physiological markers. The Spearman correlations values and their respective p-values are given in Supplementary Table 7.
10. Supplementary Figure 10: Liver MDI correlation with individual PDIs

Deviations from the baseline liver metabolome (MDI) are correlated with deviations from the normal physiology (PDIs) in markers that are known to be associated with liver functions. Bar lengths represent the Spearman correlations between the hepatic MDI and PDIs of the measured 26 physiological markers. The liver has a central role in lipid metabolism, reflected in the relatively high correlations of its MDI and the physiological markers at the bottom part of the figure. WAT stands for white adipose tissue, ratio visc/sub WAT for ratio of visceral to subcutaneous WAT. Asterisks mark statistically-significant correlations (using the Benjamini-Hochberg correction for multiple hypotheses testing with a 5% FDR level). One marker (plasma MCP-1) had a negative correlation of -0.11 with the liver MDI, which is not shown in this figure.
11. Supplementary Figure 11: Liver MDI correlation with individual PDIs (scatter plots)

Each panel presents the ranked PDI values of a particular physiological marker (y-axis) as a function of the ranked liver MDI (x-axis). Each dot represents one animal, color-codes denote the different experimental groups. The dashed lines are linear regression lines. Refer to Supplementary Table 1 for complete details concerning the physiological markers. The Spearman correlations values and their respective p-values are given in Supplementary Table 8.
12. **Supplementary Figure 12: Drugs that induce major non-restorative gene expression alterations**

This figure reproduces Figure 1a-b from the main text, highlighting the four “outlier” drugs, Fenofibrate (pink) and T0901317 (purple) in the liver, and the two thiazolidinediones rosiglitazone (dark cyan) and pioglitazone (light cyan). These drugs induce major gene expression changes that are not congruent with reversal of the disease transcriptomic patterns. The direction of reversal is denoted by the dashed arrow that connects the HFD centroid (yellow square, circled in red) to the LFD centroid (yellow triangle, circled in blue).
13. **Supplementary Figure 13: Non-restorative gene expression alterations are associated with unfavorable physiological outcomes**

(a) A schematic illustration demonstrating the definition of non-restorative gene expression alterations. The gene expression space of a particular tissue is shown. Blue, red, and green markers represent LFD, untreated HFD, and treated HFD subjects, respectively. The dashed axis goes from the HFD mean to the LFD mean (yellow square and triangle, respectively). The treatment effects on each subject can be decomposed into two components: (1) reversal of the disease-induced gene expression patterns, which operates along the direction of the axis that goes from the HFD mean to the LFD mean, and (2) additional alterations which are orthogonal to that axis and hence incongruent with the healthy (LFD) state (Methods). We term the latter "non-restorative alterations" and hypothesize that they are associated with unfavorable physiological outcomes. (b-c) The distributions of the magnitudes of non-restorative alterations to the (b) liver and (c) white adipose gene expression induced by the various drugs. In (b) experimental groups are ordered from left to right in the same order that they appear in the legend; in (c) the groups are ordered from left to right as follows: DLI, pioglitazone, rosiglitazone, salicylate, T0901317. Evidently, four drugs induce the largest non-restorative alterations: fenofibrate and T0901317 in the liver and rosiglitazone and pioglitazone in white adipose (compare Figure 1a-b and Supplementary Figure 12). (d) a schematic illustration of the method employed to detect unfavorable outcomes in the physiological data available in the studied animals. Intuitively, a marker was considered as manifesting an unfavorable outcome of a certain treatment if its values in the treated animals were even farther from the LFD baseline than its values in the untreated HFD animals. This is exemplified in the illustration: while the untreated HFD animals (red bar) have higher blood triglycerides levels than the LFD animals (blue bar), the animals treated with a certain bar (green bar) have even higher blood triglycerides than the untreated HFD animals. Hence, the marker represents an unfavorable outcome of the treatment in this case. See the main text for a complete definition that also quantifies the statistical significance of the observation.
14. **Supplementary Figure 14: Unfavorable drug outcomes in physiological marker data**

This figure highlights the statistically-significant unfavorable physiological outcomes that were ascribed to particular drugs. Each panel presents the distribution of one physiological marker, with each bar representing one experimental group, color-coded as in the rest of the paper. Refer to Supplementary Table 1 for details concerning the measured markers, their units etc. A marker was considered as an unfavorable outcome of a certain treatment if its values in the treated animals were even farther from the baseline than its values in the untreated HFD animals in a statistically-significant manner (see main text for details). The figure shows all the statistically-significant associations of an unfavorable physiological outcome and a drug found in the data (i.e., the panels correspond to all the markers, interpreted as unfavorable outcomes, for which a statistically-significant association with at least one drug is detected; boxes shown in the panel correspond to the all the drugs which were associated with this unfavorable outcome). Note that an exception was made in the case of fenofibrate, which was not associated with elevated plasma triglycerides and atherosclerotic lesion area as unfavorable outcomes in a statistically significant manner; it is shown in those panels only for completeness of the presentation. One LFD outlier in the right panel of the middle row had a value of 1.6, but was clipped to a value of 3 (dashed line) for the sake of visualization.
Supplementary Tables

1. **Supplementary Table 1: List of physiological markers measured in the study animals**

WAT = White Adipose Tissue.
The termination column indicates the time point at which these markers were measured: 9 weeks for the HFD-9wks group, and 15 or 16 weeks for the other groups.

	Physiological marker	Units	Fasted / non-fasted	Termination
1	Body weight	g	non-fasted	t=16/t=9
2	Liver weight	mg	non-fasted	t=16/t=9
3	Heart weight	mg	non-fasted	t=16/t=9
4	Visceral WAT	mg	non-fasted	t=16/t=9
5	Gonadal WAT	mg	non-fasted	t=16/t=9
6	Subcutaneous WAT	mg	non-fasted	t=16/t=9
7	Total WAT (visceral + gonadal + subcutaneous)	mg	non-fasted	t=16/t=9
8	Ratio visceral / subcutaneous WAT	mg/mg	non-fasted	t=16/t=9
9	Kidneys weight (total both kidneys)	mg	non-fasted	t=16/t=9
10	Liver triglycerides	mmol/mg liver	non-fasted	t=16/t=9
11	Atherosclerotic lesion area (*)	log_{10}(um^2)	non-fasted	t=16/t=9
12	Urine glucose	mM	non-fasted	t=15/t=9
13	Plasma cholesterol	mM	fasted	t=15/t=9
14	Plasma triglycerides	mM	fasted	t=15/t=9
15	Plasma glucose	mM	fasted	t=15/t=9
16	Plasma insulin	ng/ml	fasted	t=15/t=9
17	Plasma glucagon	pg/ml	non-fasted	t=16/t=9
18	Plasma E-selectin	ng/ml	fasted	t=15/t=9
19	Plasma VCAM	ug/ml	fasted	t=15/t=9
20	Plasma MCP-1	pg/ml	non-fasted	t=16/t=9
21	Plasma adiponectin	ug/ml	fasted	t=15/t=9
22	Plasma leptin	ng/ml	non-fasted	t=16/t=9
23	Plasma resistin	ng/ml	non-fasted	t=16/t=9
24	HOMA insulin resistance	(**)	fasted	t=15/t=9
25	QUICKI insulin resistance	(***)	fasted	t=15/t=9
26	ACR (urine albumin /	ug/mg	fasted	t=15/t=9
(*) The marker was log-transformed because it was highly skewed, and followed an approximately normal distribution much more closely after taking the log. Note that (Radonjic et al, 2013) did not carry a similar transformation.

(**) computed as \((\text{fasting glucose} \times \text{fasting insulin})/22.5\), fasting glucose in mmol/l and fasting insulin in mU/l (Matthews et al, 1985).

(***) computed as \(1/ [\log(\text{fasting insulin}) + \log(\text{fasting glucose})]\), fasting insulin in uU/ml and fasting glucose in mg/dl (Katz et al, 2000).
2. **Supplementary Table 2: Drug mechanism of action**

The mechanism of action of drugs studied in this paper. Data is based on Drugbank (Law *et al*., 2013) (accessed July 2014) except where otherwise noted.

Drug	Mechanism of action
metformin	Metformin’s mechanism of action is two-fold, inhibiting liver glucose production, and additionally augmenting peripheral glucose uptake, mainly in muscles. These effects are believed to be partly mediated by activation of liver kinase B1 (LKB-1) (Shaw *et al*., 2005), which in turn regulates 5’ adenosine monophosphatase-activated protein kinase (AMPK), a key sensor of cellular metabolism and energetics. Nonetheless, metformin has been reported to improve glucose tolerance in liver AMPK-deficient mice (Foretz *et al*., 2010), which suggests that part of its effects occur through AMPK-independent pathways (Rena *et al*., 2013).
glibenclamide	Glibenclamide is a second generation sulfonylurea, which stimulate insulin secretion by pancreatic β cells. Sulfonylureas bind to a sulfonylurea receptor that is associated with inward rectifying adenosine triphosphate (ATP)-sensitive potassium channels in β cells. Binding of a sulfonylurea inhibits the efflux of potassium ions through the channels and results in depolarization that opens voltage-gated calcium channels. This leads to calcium influx and to the release of preformed insulin (Nolte Kennedy, 2012).
sitagliptin	Sitagliptin inhibits the enzyme dipeptidyl peptidase-4 (DPP-4), which degrades the incretins glucagon-like peptide-1 (GLP-1) and glucose-dependent insulintropic peptide (GIP). Incretins act on pancreatic β-cells to enhance glucose-dependent insulin secretion. Therefore, suppressing their degradation by DPP-4 improves glycemic control (Waget *et al*., 2011; Mudaliar & Henry, 2012).
pioglitazone	Pioglitazone and rosiglitazone are thiazolidinediones (TZDs), which exert their antidiabetic effects through activation of the gamma isoform of the peroxisome proliferator-activated receptor (PPARγ), a transcription factor that is highly expressed in adipose tissue, and is known to be a key regulator of adipogenesis and insulin sensitivity (Escher *et al*., 2001; Larsen *et al*., 2003; Evans *et al*., 2004; Vasudevan & Balasubramanyam, 2004; Poulsen *et al*., 2012; Ahmadian *et al*., 2013). Activation of PPARγ receptors regulates the transcription of insulin-responsive genes involved in the control of glucose production, transport and utilization. Thus, TZDs improve glycemic control in type 2 diabetic patients through insulin sensitization, rather than increased insulin secretion by pancreatic β cells (Soccio *et al*., 2014).
fenofibrate	The chief mode of action of fenofibrate is binding to PPARα, a transcription factor that is highly expressed in the liver (as well is in brown, but not white, adipose cells) (Escher *et al*., 2001; Evans *et al*., 2004; Oosterveer *et al*., 2009; Poulsen *et al*., 2012). Upon its activation PPARα heterodimerizes with retinoid X receptor (RXR); the heterodimers
recognize specific PPARα response elements and modulate the expression of genes responsible for fatty acids and cholesterol metabolism (Staels et al, 1998). The decrease in plasma triglycerides induced by fibrates has been attributed to an inhibition of the synthesis and secretion of VLDL by the liver and increased degradation of triglyceride-rich lipoproteins through the expression of lipoprotein lipase and a decreased expression of apolipoprotein CIII (Forcheron et al, 2002).

T0901317	T0901317 is a synthetic Liver X Receptor (LXR) agonist. LXR has two isoforms, one of them (LXRβ) is ubiquitously expressed, whereas the other (LXRα) is restricted to particular tissues, including the liver. LXRs regulates lipid and cholesterol metabolism and also have anti-inflammatory properties (Schultz et al, 2000; Steffensen & Gustafsson, 2004; Ulven et al, 2005; Zhao & Dahlman-Wright, 2010). T0901317 has been found unsuitable for clinical use due to its pleotropic effects, but LXRs continue to be studied as an attractive drug targets (Jakobsson et al, 2012; Hong & Tontonoz, 2014).
atorvastatin	Atorvastatin lowers LDL cholesterol by inhibiting hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase, which catalyzes the conversion of HMG-CoA to mevalonate in the cholesterol biosynthesis pathway. Ample evidence support that statins’ protective cardiovascular effects is not restricted to cholesterol metabolism but may also be related to their anti-inflammatory properties (Tousoulis et al, 2014).
salicylate	Salicylates are anti-inflammatory compounds that inhibit the activity of both types of cyclooxygenase (COX-1 and COX-2) and thus suppress platelet thromboxane synthesis. The artificial derivative acetylsalicylic acid, better known as aspirin, is broadly used to prevent atherosclerotic complications, most importantly myocardial infarction and ischemic stroke (Awtry & Loscalzo, 2000; Campbell et al, 2007; American Diabetes Association, 2013). Aspirin effectively inhibits platelet aggregation, yet this effect is partly mediated through its acetyl group (Furst et al, 2012; Steinberg et al, 2013). There may also be other mechanisms through which salicylates exert their favorable effects, such as inhibition of the pro-inflammatory κ-light-chain-enhancer of activated B cells (NF-κB) signaling pathway ((Kopp & Ghosh, 1994) but see also (Frantz et al, 1995; Steinberg et al, 2013)), and activation of AMPK (Hawley et al, 2012; Steinberg et al, 2013) that is also a target of metformin (see above). Notably, it has long been observed that salicylates have positive outcomes in in diabetic patients (Williamson, 1901; Gilgore, 1960; Gilgore & Rupp, 1962; Baron, 1982; Hundal et al, 2002; Shoelson, 2002; Goldfine et al, 2013).
rofecoxib	Rofecoxib is a selective cyclooxygenase-2 (COX-2) inhibitor, which has been withdrawn in 2004 worldwide by Merck & Co, due to an increased risk of cardiovascular events (Praticò & Dogné, 2005).
3. **Supplementary Table 3: GSEA analysis of the liver transcriptome**

Gene set enrichment analysis (GSEA, (Subramanian et al, 2005)) of the effects of the pharmacological and dietary interventions was conducted on the hepatic transcriptome. The analysis sought KEGG gene sets that were enriched with either upregulated or downregulated genes when comparing the treated animals with the untreated HFD-16weeks group. Comparisons of the LFD and HFD-9weeks groups with the HFD-16weeks groups were made as well for the sake of completeness. The table lists all the KEGG gene sets that were enriched at FDR < 25%. See Supplementary Results 3 for full details of the analysis.

Table columns:

- **Direction:**
 - up = upregulated in the treatment group compared with the HFD-16weeks group.
 - down = downregulated in the treatment group compared with the HFD-16weeks group.
- **Gene set size:** number of genes in the gene set
- **ES, NES:** Enrichment Score and Normalized Enrichment Score, respectively. See (Subramanian et al, 2005).

Gene set	Direction	Gene set size	ES	NES	Nominal p-value	FDR q-value
Metformin	up	53	-0.52	-2.28	0	0.001
Glibenclamide	No enriched gene sets					
Sitagliptin	No enriched gene sets					
Rosiglitazone	up	53	-0.52	-2.28	0	0.001
	up	67	-0.46	-1.86	0	0.036
Pioglitazone	down	22	0.61	1.91	0.002	0.051
	up	53	-0.46	-1.97	0	0.015
	up	38	-0.47	-1.67	0.024	0.247
	up	24	-0.52	-1.64	0.006	0.234
	up	65	-0.44	-1.63	0.004	0.187
Fenofibrate	up	53	-0.58	-2.23	0	0
	up	72	-0.61	-1.99	0	0.007
	up	38	-0.77	-1.88	0	0.022
Pathway	Direction	Z-Score	p-Value	Fold Change		
--	-----------	---------	---------	-------------		
KEGG_PPAR_SIGNALING_PATHWAY	up	-0.75	0.018	65		
KEGG_ALZHEIMERS_DISEASE	up	-0.4	0.015	129		
KEGG_OXIDATIVE_PHOSPHORYLATION	up	-0.47	0.02	94		
KEGG_PARKINSONS_DISEASE	up	-0.45	0.05	92		
KEGG_VALINE_LEUCINE_AND_ISOLEUCINE_DEGRADATION	up	-0.51	0.044	41		
KEGG_PROPANOATE_METABOLISM	up	-0.61	0.07	27		
KEGG_GLYCEROPHOSPHOLIPID_METABOLISM	up	-0.46	0.102	67		
KEGG_GLYCEROlipid_METABOLISM	up	-0.57	0.096	42		
KEGG_HUNTINGTONS_DISEASE	up	-0.34	0.099	136		
KEGG_BIOSYNTHESIS_OF_UNSATURATED_FAT ACIDS	up	-0.76	0.092	19		
KEGG_LYSINE_DEGRADATION	up	-0.46	0.087	40		
KEGG_TRYPTOPHAN_METABOLISM	up	-0.51	0.088	35		
KEGG_BETA_ALANINE_METABOLISM	up	-0.59	0.145	21		
KEGG_FRUCTOSE_AND_MANNOSE_METABOLISM	up	-0.45	0.161	31		
KEGG_ALPHA_LINOLENIC_ACID_METABOLISM	up	-0.62	0.162	17		
KEGG_ARACHIDONIC_ACID_METABOLISM	up	-0.52	0.158	56		
KEGG_ADIPOCYTOKINE_SIGNALING_PATHWAY	up	-0.36	0.22	62		
T0901317	down	0.47	0.235	67		
KEGG_COMPLEMENT_AND_COAGULATIONCASCADE	down	0.56	0.182	30		
KEGG_GLYCINE_SERINE_AND_THREONINE_METABOLISM	down	0.48	0.149	27		
KEGG_ALANINE ASPARTATE_AND_GLUTAMATE_METABOLISM	down	0.5	0.127	30		
KEGG_BASAL_TRANSCRIPTION_FACTORS	down	0.61	0.119	15		
KEGG_ONE_CARbon_POOL_BY_FOLATE	down	0.67	0.004	53		
KEGG_B_CELL_RECEPTOR_SIGNALING_PATHWAY	down	0.51	0.068	66		
KEGG_FC_GAMMA_R_MEDIATED_PHAGOCYTOSIS	down	0.53	0.055	83		
KEGG_VIRAL_MYOCARDITIS	up	-0.56	0.084	58		
KEGG_RETINOL_METABOLISM	up	-0.6	0.081	54		
KEGG_METABOLISM_OF_XENOBiotics_BY_CYTOCHROME_P450	up	-0.6	0.087	57		
KEGG_FATTY_ACID_METABOLISM	up	-0.61	0.08	38		
KEGG_ARACHIDONIC_ACID_METABOLISM	up	-0.65	0.073	56		
KEGG_ALZHEIMERS_DISEASE	up	-0.36	0.076	129		
KEGG_APOPTOSIS	up	-0.41	0.073	73		
KEGG_DRUG_METABOLISM_CYTOCHROME_P450	up	-0.57	0.081	57		
KEGG_GLYCEROPHOSPHOLIPID_METABOLISM	up	-0.46	0.079	67		
KEGG_COLORECTAL_CANCER	up	-0.45	0.08	56		
KEGG_FC_EPSILON RI_SIGNALING_PATHWAY	up	-0.45	0.074	73		
KEGG_UNOLEIC_ACID_METABOLISM	up	-0.65	0.081	28		
KEGG_LEISHMANIA_INFECTION	up	-0.65	0.089	59		
KEGG_LYSOSOME	up	-0.36	0.11	111		
KEGG_TYPE_1_DIABETES_MELLITUS	up	-0.59	0.106	36		
KEGG_PARKINSONS_DISEASE	up	-0.42	0.103	92		
KEGG_NODLIKE RECEPTOR_SIGNALING_PATHWAY	up	-0.48	0.103	43		
Pathway	Significance	p-value	Adjusted p-value			
--	--------------	---------	------------------			
KEGG_OXIDATIVE_PHOSPHORYLATION	up	94	-0.36			
KEGG_PPAR_SIGNALING_PATHWAY	up	65	-0.58			
KEGG_RENAL_CELL_CARCINOMA	up	63	-0.37			
KEGG_LEUKOCYTE_TRANSENDOTHelial_MIGRATION	up	98	-0.4			
KEGG_ALLOGRAFT_REJECTION	up	31	-0.61			
KEGG_GRAFT_VERSUS_HOST_DISEASE	up	28	-0.67			
KEGG_CELL_ADHESION_MODELS_CAMS	up	112	-0.45			
KEGG_TOLL_LIKE_RECEPTOR_SIGNALING_PATWAY	up	91	-0.47			
KEGG_ASTHMA	up	22	-0.7			
KEGG_VEGF_SIGNALING_PATHWAY	up	67	-0.35			
KEGG_BIOSYNTHESIS_OF_UNSATURATED_FATACIDS	up	19	-0.67			
KEGG_BLOOD_CANCER	up	36	-0.4			
KEGG_FRUCTOSE_AND_MANNOSMETABLISM	up	31	-0.36			
KEGG_GLYCEROLIPID_METABOLISM	up	42	-0.49			
KEGG_HUNTINGTONS_DISEASE	up	136	0.3			
KEGG_PROPOANOATE_METABOLISM	up	27	-0.5			
KEGG_Ether_LIPID_METABOLISM	up	29	-0.48			
KEGG_SPHINGOIPID_METABOLISM	up	31	-0.46			
KEGG_HEMATOPOIETIC_CELL_LINEAGE	up	72	-0.51			
KEGG_NON_SMALL_CELL_LUNG_CANCER	up	48	-0.35			
KEGG_PENTOSE_PHOSPHATE_PATHWAY	up	25	-0.49			
KEGG_MAPK_SIGNALING_PATHWAY	up	225	-0.34			
KEGG_PS3_SIGNALING_PATHWAY	up	59	-0.42			
KEGG_THYROID_CANCER	up	23	-0.37			
KEGG_GLUTATHIONE_METABOLISM	up	45	-0.47			
KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION	up	63	-0.45			
KEGG_ENDOCYTOSIS	up	144	-0.3			
KEGG_PATHOGENIC_ESCHERICHIA_COLI_INFECTION	up	42	-0.42			
KEGG_PROSTATE_CANCER	up	95	-0.33			
KEGG_CHRONIC_MYELOID_LEUKEMIA	up	63	-0.36			
KEGG_PANCREATIC_CANCER	up	65	-0.33			
KEGG_NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY	up	99	-0.39			
KEGG_AUTOIMMUNE_THYROID_MEDIATED_CYTOTOXICITY	up	44	-0.48			
KEGG_PATHWAYS_IN_CANCER	up	305	-0.3			
KEGG_ECM_RECEPOTOR_INTERACTION	up	72	-0.4			
KEGG_CHEMOKINE_SIGNALING_PATHWAY	up	149	-0.35			
KEGG_REGULATION_OF_ACTIN_CYTOSKELETON	up	181	-0.31			
KEGG_GLYCOLYSIS_GLUCONEOGENESIS	up	49	-0.39			
KEGG_SYSTEMIC_LUPUSERYTHEMATOSUS	up	98	-0.4			

Atorvastatin

Pathway	Significance	p-value	Adjusted p-value				
KEGG_SNARE_INTERACTIONS_IN_VESICULAR_TRANSPORT	down	32	0.48				
KEGG_PROPOANOATE_METABOLISM	up	27	-0.6				
KEGG_FATTY_ACID_METABOLISM	up	38	-0.5				
Salicylate	No enriched gene sets						
-----------	---------------------						
Rofecoxib	No enriched gene sets						
KEGG_MISMATCH_REPAIR	**down**	22	0.58	1.76	0.002	0.227	
LFD	**KEGG_GLYCOLYSIS_GLUCONEOGENESIS**	**down**	49	0.44	1.7	0.002	0.611
	KEGG_RIBOSOME	**up**	53	-0.48	-1.99	0.004	0.016
	KEGG_DRUG_METABOLISM_CYTOCHROME_P450	**up**	57	-0.57	-1.76	0.002	0.105
	KEGG_RIBOSOME	**up**	53	-0.55	-1.71	0.002	0.113
	KEGG_METABOLISM_OF_XENOBIOTICS_BY_CYTOCHROME_P450	**up**	57	-0.55	-1.7	0.002	0.092
	KEGG_TYROSINE_METABOLISM	**up**	33	-0.58	-1.65	0.01	0.117
	KEGG_SPLICEOSOME	**up**	81	-0.32	-1.64	0.006	0.114
	KEGG_N_GLYCAN_BIOSYNTHESIS	**up**	42	-0.39	-1.63	0.03	0.105
	KEGG_TRYPTOPHAN_METABOLISM	**up**	35	-0.43	-1.55	0.035	0.182
	KEGG_LINOLEIC_ACID_METABOLISM	**up**	28	-0.61	-1.55	0.012	0.162
	KEGG_PROTEIN_EXPORT	**up**	20	-0.55	-1.51	0.074	0.198
	KEGG_CYSTEINE_AND_METHIONINE_METABOLISM	**up**	28	-0.47	-1.47	0.07	0.229
	KEGG_ASCORBATE_AND_ALDARATE_METABOLISM	**up**	19	-0.57	-1.46	0.076	0.225
	KEGG_ALANINE_ASPARTATE_AND_GLUTAMATE_METABOLISM	**up**	27	-0.42	-1.44	0.047	0.245
	KEGG_SELENOAMINO_ACID_METABOLISM	**up**	23	-0.45	-1.44	0.101	0.23
	KEGG_FATTY_ACID_METABOLISM	**up**	38	-0.35	-1.44	0.118	0.215
	KEGG_PHENYLALANINE_METABOLISM	**up**	16	-0.56	-1.43	0.057	0.216
	KEGG_NITROGEN_METABOLISM	**up**	17	-0.59	-1.41	0.087	0.233
HFD-9weeks	**KEGG_RIBOSOME**	**up**	53	-0.51	-2.05	0	0.001
DLI	**KEGG_RIBOSOME**	**up**	53	-0.53	-2.05	0	0.004
	KEGG_METABOLISM_OF_XENOBIOTICS_BY_CYTOCHROME_P450	**up**	57	-0.54	-1.73	0	0.11
	KEGG_DRUG_METABOLISM_CYTOCHROME_P450	**up**	57	-0.55	-1.72	0	0.082
	KEGG_RETINOL_METABOLISM	**up**	54	-0.48	-1.6	0.006	0.191
	KEGG_PHENYLALANINE_METABOLISM	**up**	16	-0.62	-1.58	0.041	0.191
	KEGG_NITROGEN_METABOLISM	**up**	17	-0.64	-1.51	0.049	0.246
4. **Supplementary Table 4: GSEA analysis of the adipose transcriptome**

This table presents the results of an analysis parallel to the one presented in Supplementary Table 3, conducted on the white adipose, rather than the liver, transcriptome. Refer to the legend of Supplementary Table 3 for further details.

Gene set	Direction	Gene set size	ES	NES	Nominal p-value	FDR q-value
Rosiglitazone						
KEGG_HUNTINGTONS_DISEASE	up	136	-0.55	-2.02	0	0.005
KEGG_PARKINSONS_DISEASE	up	92	-0.65	-1.95	0	0.005
KEGG_ALZHEIMERS_DISEASE	up	129	-0.44	-1.9	0.002	0.011
KEGG_AMINOACYL_TRNA_BIOSYNTHESIS	up	37	-0.55	-1.86	0.012	0.014
KEGG_PEROXISOME	up	72	-0.58	-1.79	0.012	0.026
KEGG_CITRATE_CYCLE_TCA_CYCLE	up	28	-0.83	-1.78	0.002	0.024
KEGG_OXIDATIVE_PHOSPHORYLATION	up	94	-0.58	-1.77	0.002	0.023
KEGG_PPAR_SIGNALING_PATHWAY	up	65	-0.62	-1.63	0.004	0.087
KEGG_FATTY_ACID_METABOLISM	up	38	-0.69	-1.62	0.024	0.09
KEGG_REGULATION_OF_AUTOPHagy	up	30	-0.48	-1.6	0.006	0.088
KEGG_LYSINE_DEGRADATION	up	40	-0.51	-1.57	0.028	0.103
KEGG_CARDIAC_MUSCLE_CONTRACTION	up	54	-0.43	-1.54	0.011	0.124
KEGG_VALINE_LEUCINE_AND_ISOUCINE_D_EGRADATION	up	41	-0.55	-1.5	0.085	0.151
KEGG_GLYCEROPHOSPHOLIPID_METABOLISM	up	67	-0.39	-1.47	0.019	0.175
KEGG_PYRUVATE_METABOLISM	up	33	-0.54	-1.47	0.09	0.17
KEGG_TASTE_TRANSDUCTION	up	41	-0.46	-1.42	0.033	0.222
Pioglitazone						
KEGG_TYPE_I_DIABETES_MELLITUS	down	36	0.55	1.44	0.053	0.246
KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION	down	63	0.44	1.44	0.028	0.245
KEGG_PEROXISOME	up	72	-0.59	-1.86	0.002	0.044
KEGG_FATTY_ACID_METABOLISM	up	38	-0.69	-1.83	0	0.035
KEGG_PPAR_SIGNALING_PATHWAY	up	65	-0.62	-1.7	0	0.119
KEGG_AMINOACYL_TRNA_BIOSYNTHESIS	up	37	-0.47	-1.66	0.031	0.139
KEGG_CITRATE_CYCLE_TCA_CYCLE	up	28	-0.74	-1.63	0.008	0.148
KEGG_PARKINSONS_DISEASE	up	92	-0.44	-1.62	0.033	0.139
KEGG_BETA_ALANINE_METABOLISM	up	21	-0.53	-1.6	0.013	0.146
KEGG_REGULATION_OF_AUTOPHagy	up	30	-0.46	-1.56	0	0.184
KEGG_PYRUVATE_METABOLISM	up	33	-0.53	-1.53	0.029	0.223
KEGG_LYSINE_DEGRADATION	up	40	-0.44	-1.49	0.046	0.263
KEGG_HUNTINGTONS_DISEASE	up	136	-0.35	-1.49	0.075	0.242
T0901317						
No enriched gene sets						
Salicylate						
KEGG_PARKINSONS_DISEASE	up	92	-0.46	-1.81	0.006	0.127
KEGG_AMINOACYL_TRNA_BIOSYNTHESIS	up	37	-0.49	-1.8	0.014	0.077
LFD						
KEGG_PATHWAY	State	Value	p-value	Adjusted p-value		
--	-------	---------	---------	------------------		
KEGG_SYSTEMIC_LUPUSERYTHEMATOSUS	down	98	0.59	1.72	0	0.203
KEGG_ALLOGRAFT_REJECTION	down	31	0.62	1.7	0.004	0.18
KEGG_LEISHMANIA_INFECTION	down	59	0.65	1.69	0.016	0.141
KEGG_GRAFT_VERSUS_HOST_DISEASE	down	28	0.63	1.68	0.006	0.131
KEGG_TYPE_1_DIABETES_MELLITUS	down	36	0.56	1.67	0.006	0.121
KEGG_LYSOSOME	down	111	0.51	1.66	0.029	0.112
KEGG_PATHOGENIC_ESCHERICHIA_COLI_INFECTION	down	42	0.49	1.64	0.004	0.121
KEGG_CELL_CYCLE	down	108	0.48	1.64	0.008	0.109
KEGG_SPHINGOLIDＵMETABOLISM	down	31	0.56	1.63	0.014	0.103
KEGG_TOLL LIKE RECEPTOR_SIGNALING_PATHWAY	down	91	0.5	1.62	0.006	0.101
KEGG_PS3_SIGNALING_PATHWAY	down	59	0.48	1.56	0.018	0.125
KEGG_EPITHELIAL_CELL_SIGNALING_IN_HELICOBACTER_PYLOРИN_INFECTION	down	59	0.4	1.56	0.015	0.154
KEGG_NOD LIKE RECEPTOR_SIGNALING_PATHWAY	down	43	0.47	1.56	0.036	0.155
KEGG_HOMOLOGOUS_RECOMBINATION	down	23	0.47	1.54	0.052	0.161
KEGG_ECM_RECEPTOR_INTERACTION	down	72	0.43	1.54	0.006	0.154
KEGG_HEMATOPOIETIC_CELL_LINEAGE	down	72	0.5	1.54	0.028	0.147
KEGG_OTHER_GLYCAN_DEGRADATION	down	15	0.57	1.53	0.05	0.15
KEGG_B_CELL_RECEPTOR_SIGNALING_PATHWAY	down	66	0.5	1.52	0.04	0.157
KEGG_T_CELL_RECEPTOR_SIGNALING_PATHWAY	down	97	0.47	1.48	0.056	0.194
KEGG_GLIOMA	down	54	0.41	1.48	0.044	0.185
KEGG_PRIMARY_IMMUNODEFICIENCY	down	32	0.62	1.48	0.04	0.18
KEGG_NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY	down	99	0.45	1.47	0.039	0.188
KEGG_CELL_ADHESION_MOLECULES_CAMS	down	112	0.43	1.47	0.014	0.19
KEGG_VIBRIO_CHOLERA_E_INFECTION	down	46	0.41	1.45	0.053	0.205
KEGG_INTESTINAL_IMMUNE_NETWORK_FOR_IGA_PRODUCTION	down	37	0.55	1.45	0.075	0.2
KEGG_FC_EPSILON_RI_SIGNALING_PATHWAY	down	73	0.43	1.44	0.049	0.206
KEGG_COMPLEMENT_AND_COAGULATION_CASCADES	down	67	0.39	1.44	0.008	0.199
KEGG_FC_GAMMA_R_MEDIATED_PHAGOCYTOSIS	down	83	0.44	1.42	0.085	0.212
KEGG_JAK_STAT_SIGNALING_PATHWAY	down	140	0.33	1.41	0.006	0.225
KEGG_APOPTOSIS	down	73	0.33	1.41	0.087	0.219
KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION	down	63	0.43	1.41	0.079	0.216
KEGG_VIRAL_MYOCARDITIS	down	58	0.42	1.4	0.097	0.215
KEGG_CHEMOKINE_SIGNALING_PATHWAY	down	149	0.39	1.39	0.034	0.229
KEGG_PROTEASOME	down	41	0.38	1.38	0.181	0.24
KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION	down	219	0.36	1.37	0.016	0.243
KEGG_CITRATE_CYCLE_TCA_CYCLE	up	28	-0.63	-1.7	0.01	0.149
KEGG_VALINE_LEUCINE_AND_ISOULEUCINE_DEGRADATION	up	41	-0.57	-1.69	0.004	0.105
KEGG_PROPOANOATE_METABOLISM	up	27	-0.56	-1.67	0.012	0.107
KEGG_AMINOCYCL_TRNA_BIOSYNTHESIS	up	37	-0.46	-1.66	0.025	0.096
KEGG_BETA_ALANINE_METABOLISM	up	21	-0.53	-1.65	0.01	0.084
KEGG_NICOTINATE_AND_NICOTINAMIDE_METABOLISM	up	18	-0.52	-1.52	0.027	0.24
Pathway	Direction	FDR	Z-score	q-value	Adj. p-value	
--	-----------	------	---------	---------	--------------	
KEGG_FRUCTOSE_AND_MANNOSE_METABOLISM	down	31	0.55	1.78	0.002	
KEGG_AMINOACYL_TRNA_BIOSYNTHESIS	up	37	-0.48	-1.78	0.018	
KEGG_VALINE_LEUCINE_AND_ISOLEUCINE_DEGRADATION	up	41	-0.55	-1.68	0.006	
KEGG_SELENOAMINO_ACID_METABOLISM	up	23	-0.54	-1.67	0.016	
KEGG_PROPAANOATE_METABOLISM	up	27	-0.5	-1.65	0.02	
KEGG_CITRATE_CYCLE_TCA_CYCLE	up	28	-0.65	-1.61	0.028	

Pathway	Direction	FDR	Z-score	q-value	Adj. p-value
KEGG_ASTHMA	down	22	0.59	1.59	0.029
KEGG_ECM_RECEPTOR_INTERACTION	down	72	0.48	1.57	0.018
KEGG_LEISHMANIA_INFECTION	down	59	0.51	1.52	0.061
KEGG_PROPAANOATE_METABOLISM	up	27	-0.58	-1.89	0.002
KEGG_CITRATE_CYCLE_TCA_CYCLE	up	28	-0.62	-1.73	0
KEGG_BUTANOATE_METABOLISM	up	31	-0.62	-1.71	0.002
KEGG_VALINE_LEUCINE_AND_ISOLEUCINE_DEGRADATION	up	41	-0.53	-1.69	0.025
KEGG_LYSINE_DEGRADATION	up	40	-0.45	-1.61	0.014
KEGG_PYRUVATE_METABOLISM	up	33	-0.5	-1.58	0.077
5. **Supplementary Table 5: Probes used to construct the liver gene expression space**

N/A = Not available

nuID	Entrez gene ID	Gene symbol	Synonym	Illumina probe ID					
1	72056	1810055G02Rik	1810055G02Rik	ILMN_2650275					
2	70113	Odf3b	2010001J22Rik	ILMN_1251371					
3	69134	Fam25c	2200001115Rik	ILMN_2678637					
4	N/A	N/A	2310047D13Rik	ILMN_2543108					
5	71003	Prss41	4931440B09Rik	ILMN_2650180					
6	27413	Abcb11	Abcb11	ILMN_2758509					
7	26874	Abcg5	Abcg5	ILMN_2725781					
8	67470	Abcg8	Abcg8	ILMN_2789904					
9	216725	Adamts2	Adamts2	ILMN_2729103					
10	216725	Adamts2	Adamts2	ILMN_1226259					
11	268822	Adck5	Adck5	ILMN_2918317					
12	71562	Afmid	Afmid	ILMN_2702894					
13	71562	Afmid	Afmid	ILMN_2702894					
14	71562	Afmid	Afmid	ILMN_2702894					
15	71562	Afmid	Afmid	ILMN_2702894					
16	71562	Afmid	Afmid	ILMN_2702894					
17	71562	Afmid	Afmid	ILMN_2702894					
18	71562	Afmid	Afmid	ILMN_2702894					
19	71562	Afmid	Afmid	ILMN_2702894					
20	71760	Agxt2l1	Agxt2l1	ILMN_2661820					
21	71760	Agxt2l1	Agxt2l1	ILMN_1229990					
22	269378	Ahcy	Ahcy	ILMN_2852533					
23	432720	Akr1c19	Akr1c19	ILMN_3160292					
24	107747	Aldh1l1	Aldh1l1	ILMN_3100276					
25	107747	Aldh1l1	Aldh1l1	ILMN_3027287					
26	74018	Als2	Als2	ILMN_2620053					
27	12306	Anxa2	Anxa2	ILMN_2657175					
28	11808	Apoa4	Apoa4	ILMN_2834123					
29	66113	Apoa5	Apoa5	ILMN_2641301					
30	11813	Apoc2	Apoc2	ILMN_2647820					
31	11865	Arntl	Arntl	ILMN_2707510					
32	74008	Arsg	Arsg	ILMN_2732601					
33	27053	Asns	Asns	ILMN_2643513					
34	27053	Asns	Asns	ILMN_3006123					
---	---	---	---	---					
35	HRAuB61uPgBuu_e0N4	54140	Avpr1a	Avpr1a	ILMN_1242999				
36	InQzHfuo.UrM870f8	230789	Fam76a	BC008163	ILMN_1242176				
37	iUo5eQoCq13KFVw0g	227622	BC029214	BC029214	ILMN_2768209				
38	H5u.9cAXTJHuJ_nhU	208164	Fam180a	BC064033	ILMN_2833163				
39	9UngQivg80jTVEJWe	63857	Bcmo1	Bcmo1	ILMN_2713638				
40	fmsnpXAXSpQzrn3Nw	71911	Bdh1	Bdh1	ILMN_1231553				
41	N6lXjusorjS_RukIlo	12111	Bgn	Bgn	ILMN_2964042				
42	Tcqlplve.M.6BfXgo	20899	Bhlhe40	Bhlheb2	ILMN_1249378				
43	QGSk6CkmF5Qpwqbk	55950	Bri3	Bri3	ILMN_2700334				
44	HERI41YuB1XREflSk	110382	C8b	C8b	ILMN_1227404				
45	TrfRi5fopUuYfl3g	67426	Adck3	Cabc1	ILMN_2800813				
46	90TfnULVf1BDP0ufeQ	12338	Capn6	Capn6	ILMN_2695143				
47	rq3K7qDfp603_X3np4	23831	Car14	Car14	ILMN_2973824				
48	Zb.t7_jc75937GgSsM	231214	Car14	Car14	ILMN_2973824				
49	HnENch10g0C99R2s	20308	Clpx	Clpx	ILMN_2613869				
50	We9.KTeMv1kt6TwKT4	270166	Clpx	Clpx	ILMN_2613869				
51	xnLoik_v1SeqU8sEk	270166	Clpx	Clpx	ILMN_3154849				
52	cX26Ex0T0p.60_dw9P0	68396	Nat8	Cml4	ILMN_1216539				
53	0UCfEod46vuDv7nPXs	107581	Col16a1	Col16a1	ILMN_1248099				
54	EJWl20G7n3r_5dQl9o	246277	Csad	Csad	ILMN_2810624				
55	il5QPrtRabohNP_vsg	107869	Cth	Cth	ILMN_2733193				
56	x5Ioh9Lz.kV_wBkp9Q	55985	Cxcl13	Cxcl13	ILMN_2760019				
57	fuYqk6Cjk5vioFJyKU	13074	Cyp1a17a	Cyp1a17a	ILMN_2874352				
58	IVSeuZc911N95yxe	13077	Cyp1a2	Cyp1a2	ILMN_2739847				
59	ZuheVBzq_FOCVqF7g	13077	Cyp1a2	Cyp1a2	ILMN_2795106				
60	Qbi0qqDwmeelmd5F9s	13082	Cyp26a1	Cyp26a1	ILMN_2691295				
61	xsnnRFFX3HvvdQ11Ck	13094	Cyp2b9	Cyp2b9	ILMN_2617625				
62	HS.3j1_787s1PfiwAw	13095	Cyp2c29	Cyp2c29	ILMN_2769991				
63	9e40V4p.DOef1EeeHc	13096	Cyp2c37	Cyp2c37	ILMN_2691060				
64	Z3unFwKfw9Hn9RHoRE	13096	Cyp2c37	Cyp2c37	ILMN_2691059				
65	3dTNe0HPKhN3dHXdE	72082	Cyp2c55	Cyp2c55	ILMN_2736539				
66	QXtc7F5N6y1_ODpKj	226105	Cyp2c70	Cyp2c70	ILMN_1245514				
67	6ko4jY4p3IQqpF1R4s	13112	Cyp3a11	Cyp3a11	ILMN_2753183				
68	ZdV9Ad1F.SfE.CflfM	13118	Cyp4a12b	Cyp4a12b	ILMN_1217072				
69	I7bUp7Yw1SgfG7N6i	28042	Ept1	D5Swus178e	ILMN_1253323				
70	xUut6UnK5WClO0OSEA	13170	Dbp	Dbp	ILMN_2616226				
71	9XVJXSiRs8MLlE6g	13171	Dbt	Dbt	ILMN_2820948				
72	Wgp9kCnOZw6iSt0kk	13190	Dct	Dct	ILMN_1251894				
73	BWhQei4VUJwpTn02w	67880	Dcrr	Dcrr	ILMN_2868280				
74	BTT1iEL_.5xN_e7mdk	13195	Ddc	Ddc	ILMN_2628647				
	Description	Accession	Score	Description	Accession	Score	Description	Accession	Score
---	-------------	-----------	-------	-------------	-----------	-------	-------------	-----------	-------
75	KX0hOexHHq4eoeBSA5w	54722	Dfna5	Dfna5h	ILMN_2652482				
76	NVQpex1EUfocTEXAek	23856	Dido1	Dido1	ILMN_1257214				
77	iv7XgrWekiHolSp4v4	13370	Dio1	Dio1	ILMN_2772070				
78	3deCOG0AnQ107UP_Uc	13370	Dio1	Dio1	ILMN_2647234				
79	Edk7qf_wfrK7qiieU	13436	Dnmt3b	Dnmt3b	ILMN_1252310				
80	r18pXoRCYf4VluVFSI	207521	Dtx4	Dtx4	ILMN_2651706				
81	xuYs4mVP66QQsviKCo	67603	Ear12	Ear12	ILMN_2925711				
82	rk0UtooggRfMVdjFBQ	503845	Ear4	Ear4	ILMN_2868480				
83	uWCefi1Yf7deee_ofs	13370	Dnmt3b	Dnmt3b	ILMN_1252310				
84	QqPtGFPOOghOAU6Xgk	13909	Ces3b	EG13909	ILMN_2733745				
85	ohKcUISD0gDUKJXaX0	241041	Gm4956	EG241041	ILMN_2911009				
86	xuYs4mVP66QQsviKCo	13370	Ear12	Ear12	ILMN_2925711				
87	6pwHkgiNnm6CRq4Uhc	12686	Eps8l2	Eps8l2	ILMN_2652757				
88	BtfjSTYO.gVG5ehl9U	14571	Gpld1	Gpld1	ILMN_2892441				
89	ciiXb5RL_UsEuo9h6l	229599	Gm129	Gm129	ILMN_3102736				
90	fVKd59.VePVD_zA7O8	14251	Flot1	Flot1	ILMN_1241618				
91	XuXu1lPoJXoor6HlM	114142	Foxp2	Foxp2	ILMN_3140000				
92	ceJOSiX85pYjV1j4m	56473	Fads2	Fads2	ILMN_2713071				
93	BUcx053u7DFvFE164	76267	Fads1	Fads1	ILMN_2607786				
94	iVR64ld3mUJOk_FKI	56636	Fgf21	Fgf21	ILMN_2682207				
95	HUnxR5FU9bq9M3t0k	98845	Fpsg	Fpsg	ILMN_2747070				
96	ceJOSiX85pYjV1j4m	13587	Ear2	Ear2	ILMN_1232396				
97	QUuV5FCPjzfSVNUPw	14068	F7	F7	ILMN_2708871				
98	f0b5DgKp.VXdcbEc	14026	Evl	Evl	ILMN_2911009				
99	ceJOSiX85pYjV1j4m	13909	Ear12	Ear12	ILMN_2925711				
100	HUnxR5FU9bq9M3t0k	13436	Dnmt3b	Dnmt3b	ILMN_1252310				
101	ceJOSiX85pYjV1j4m	14251	Flot1	Flot1	ILMN_1241618				
102	ishlTUNDudqAu9.PQ	114142	Foxp2	Foxp2	ILMN_3140000				
103	ciiXb5RL_UsEuo9h6l	14026	Evl	Evl	ILMN_2708871				
104	HUnxR5FU9bq9M3t0k	98845	Fpsg	Fpsg	ILMN_2747070				
105	ceJOSiX85pYjV1j4m	13909	Ear2	Ear2	ILMN_1232396				
106	ceJOSiX85pYjV1j4m	13909	Ear2	Ear2	ILMN_1232396				
107	ceJOSiX85pYjV1j4m	13909	Ear2	Ear2	ILMN_1232396				
108	ceJOSiX85pYjV1j4m	13909	Ear2	Ear2	ILMN_1232396				
109	ceJOSiX85pYjV1j4m	13909	Ear2	Ear2	ILMN_1232396				
110	ceJOSiX85pYjV1j4m	13909	Ear2	Ear2	ILMN_1232396				
111	ceJOSiX85pYjV1j4m	13909	Ear2	Ear2	ILMN_1232396				
112	ceJOSiX85pYjV1j4m	13909	Ear2	Ear2	ILMN_1232396				
113	ceJOSiX85pYjV1j4m	13909	Ear2	Ear2	ILMN_1232396				
114	ceJOSiX85pYjV1j4m	13909	Ear2	Ear2	ILMN_1232396				
---	---	---	---						
115	NJHru_Oil3SgeXsO4	15109	Hal	Hal	ILMN_2984332				
116	ZbUXeGnTTVhflitQU	15486	Hsd17b2	Hsd17b2	ILMN_1213811				
117	cLqnxnXuuGuvImOeBA	53415	Htatip2	Htatip2	ILMN_2603834				
118	9caWIY4gu1RESdpwA	114663	Impa2	Impa2	ILMN_2662160				
119	00sAkrngdsL3yn1V2l	16326	Inhbe	Inhbe	ILMN_1229605				
120	WnVP3Unt99eX0_ghO	54139	Irf6	Irf6	ILMN_1216279				
121	Z6j0IP1p0iglonomI	16768	Lag3	Lag3	ILMN_2719811				
122	BvVHSxU0_fuzh_ggqU	16792	Laptm5	Laptm5	ILMN_1217849				
123	Zi6gH_T93dfNffsITU	16854	Lgals3	Lgals3	ILMN_1223317				
124	l3tR_9ECSX0Ru0ulvY	N/A	N/A	LOC100043671	ILMN_1258600				
125	WzolT1HoVo263eF5Dos	N/A	N/A	LOC100045567	ILMN_1256633				
126	0LT9Hsu5Egm3t6u1_4	N/A	N/A	LOC100046232	ILMN_2595732				
127	9QVQKdenG8zEiZDs48	N/A	N/A	LOC100047046	ILMN_2635387				
128	WXonq6AfxZtF5s4e4U	N/A	N/A	LOC100047937	ILMN_2706906				
129	EDaQVXoSlxU6vkgU4	N/A	N/A	LOC100047937	ILMN_2703392				
130	fYmCiJ3SoSMcB3Sleo	N/A	N/A	LOC100048733	ILMN_2759344				
131	TXXrfnp9PICE6TP43o	N/A	N/A	LOC676420	ILMN_2749958				
132	9j54e08a6R0Tg3qRck	67580	Lrrc18	Lrrc18	ILMN_2728504				
133	ZqeTe7.IdhTfo3wuiC	67867	Lrrc28	Lrrc28	ILMN_2700699				
134	6bDKE3kBENOSVQOFk0	109245	Lrrc39	Lrrc39	ILMN_2746123				
135	H6d6uvhK_nuoXeen5w	17304	Mfge8	Mfge8	ILMN_3133448				
136	QKnnHuDOUKHh6IydoE	76574	Mfsd2a	Mfsd2	ILMN_1225764				
137	IVLRI1UbMduqBezafl	23945	MglI	MglI	ILMN_2700408				
138	ufUF1J6F6KORFXwe4O1	17347	Mknn2	Mknn2	ILMN_2733887				
139	L6J5Foh46d5mK05I5	64144	Mllt1	Mllt1	ILMN_2756121				
140	HhKuXzH_9y5PUK79Kk	71054	Mmd2	Mmd2	ILMN_1252636				
141	Bjei8NMDqXqNMUzns	338467	Morc3	Morc3	ILMN_2874739				
142	QOSkuuzuHrz56t9Gc	381269	Mreg	Mreg	ILMN_2976159				
143	05ncVLXohClUSiu4A	17925	Myo9b	Myo9b	ILMN_2612484				
144	ESdC5ZVdFID3Qevluw	83814	Nedd4l	Nedd4l	ILMN_2878501				
145	BXSkiToPsMuEXGNZog	56349	Net1	Net1	ILMN_2610771				
146	lq_HS1e1DKMX5nkA	106582	Nrm	Nrm	ILMN_2733524				
147	HeEU03ekX1FD0CkKUy	18391	Sigmar1	Oprs1	ILMN_1238081				
148	0ICkYov4fTdBK2Tqkg	23972	Papss2	Papss2	ILMN_2638349				
149	9saUkCQQejFTr0ceo	18551	Pcsk4	Pcsk4	ILMN_1245529				
150	BVLOluj18sdP_issS6k	18551	Pcsk4	Pcsk4	ILMN_1252464				
151	WK01VH0eUSWOX0CkFk	72599	Pdia5	Pdia5	ILMN_1255177				
152	0WOCH_FL_4KHXe120	72599	Pdia5	Pdia5	ILMN_2607066				
153	okuH9Eko4dUT6_NEQ	27273	Pdk4	Pdk4	ILMN_1259322				
154	xll76CD_TsSoLZo6Iu	55983	Pdzn3	Pdzn3	ILMN_3156010				
ID	Gene Symbol	Description	Start Position	End Position	Reference Gene Expression Count				
----	-------------	-------------	----------------	--------------	----------------------------------				
155	Kkat9rwr54Qngut7U	Per1	18626	Per1	ILMN_2813484				
156	9ndl7mOOPIbiX5aElo	Per2	18627	Per2	ILMN_2987862				
157	flCTUle.38g7ufEau0	Per2	18627	Per2	ILMN_2987863				
158	of33UCE7qfQ60uk6g	Pik3cb	74769	Pik3cb	ILMN_2680549				
159	uJ5QgSar9ZpddOGZQ	Pnkd	56695	Pnkd	ILMN_1221275				
160	97qi0pCSldX0Ra90Q	Cyth1	19157	PsCd1	ILMN_2868827				
161	BFnSNVPS54LALHi.1HxQ	Pxnmp4	59038	Pxnmp4	ILMN_2688639				
162	BtFOPzWQJSpYHXLJF4	Raet1b	19369	Raet1b	ILMN_3158725				
163	Ti11cUh3F3kJfQ10uk6g	C27a6	74769	C27a6	ILMN_2680549				
164	NVamOKn.0.XXsesHS0	Rps6ka1	20111	Rps6ka1	ILMN_2975718				
165	6uKWXSPh7ItR7vn6U	Rtp3	235636	Rtp3	ILMN_2600744				
166	fn6VEsk0nPUzXQ.k9U	N/A	104175	N/A	ILMN_1224855				
167	rXFU7v7Ax3p9f6V4oo	Sbkb1	14664	Sbkb1	ILMN_2680549				
168	I3f0.rFexVL3m2XXO	Scnn1a	20276	Scnn1a	ILMN_2729607				
169	f5L3JN6N4kdeEcqVdQ	Selenbp2	20342	Selenbp2	ILMN_2939652				
170	0e9h1NdAfzoeyurl5I	Serpin1b1a	66222	Serpin1b1a	ILMN_1231573				
171	627v5cTXs7ud1rgigg	Scl13a2	20500	Scl13a2	ILMN_2646369				
172	Eu4U7Te4u_77OT6U	Scl17a8	216227	Scl17a8	ILMN_2806439				
173	EvXnQo_oVct1EkvQNU	Scl45a3	212980	Scl45a3	ILMN_1218226				
174	xrtPe03uQc8.X_ov10	Scl5a6	330064	Scl5a6	ILMN_1225056				
175	WVLnI57uSByr.AtbK8	Slc6a9	14664	Slc6a9	ILMN_2667384				
176	Wl9kIX_8eku9.eCUWo	Slc2a1	24059	Slc2a1	ILMN_2961216				
177	ZcLkvi6p5fft1KYNPE	Snhg11	319317	Snhg11	ILMN_2952098				
178	Kcs_FcINeITM7.U4k	Srpc25	66442	Srpc25	ILMN_1255960				
179	INNUBTI3_Kw7_4ngBl	Srpc25	66442	Srpc25	ILMN_2901180				
180	iop7gpDpDbxsJCI7c	Spinct2	20733	Spinct2	ILMN_2645845				
181	NJWFB17Dk33RmIeHo	Spre2d1	114715	Spre2d1	ILMN_2490252				
182	lXOaeKE5Xq64svsYKU	Srpx2	68792	Srpx2	ILMN_2698728				
183	BXbuURDtiBEcpu3U	St3gal1	20442	St3gal1	ILMN_2749178				
184	HJWBS6gXqmOkCuCO7c	Stx18	71116	Stx18	ILMN_2612350				
185	9QNvaCAvUCd16CFLU.Vc	Sult1c2	69083	Sult1c2	ILMN_2612973				
186	W33pV4V7n6linnauld	Suox	211389	Suox	ILMN_2912532				
187	KJX559ff_v_7KL96I	Synv1	74126	Synv1	ILMN_2628258				
188	IoCX6Tr3sCd_xZ6IBo	Tgfbi	21810	Tgfbi	ILMN_2834379				
189	EzinRbomCFI7inu_X8	Thbs2	21826	Thbs2	ILMN_2635229				
190	ZkQoBoHqG41755gR9R0	Tcld2	380712	Tcld2	ILMN_2814385				
191	iXuHLOb1FICWdz.rd4	Tmem184b	223693	Tmem184b	ILMN_2697433				
192	69lUiowc.thCBkDeU	Tmem218	66279	Tmem218	ILMN_2639402				
193	WUKRQQ5.fUneouL3A4	Tmem86a	67893	Tmem86a	ILMN_2645662				
194	KX9e6SCUoQjoohCh.4	Tfnsf19	29820	Tfnsf19	ILMN_2793522				
ID	Gene Symbol	Gene Name	Transcript ID						
-----	-------------	------------	----------------						
195	rVddRQh9795x.59IpY	Trem2	ILMN_2992709						
196	00e5PHiFe0QJ97VURI	Ube2e2	Ube2e2 ILMN_2792485						
197	ou9N69yF6jF5bnsRP0	Ugp2	ILMN_1244631						
198	iUcxJceWC1rxKYOKR8	Usp2	Usp2 ILMN_1240264						
199	iX93et.k.fXrWOAk3U	Wfdc2	Wfdc2 ILMN_1236758						
200	9MHuVJwX7COD6ok1Xc	Zfx	Zfx ILMN_3024592						
Supplementary Table 6: Probes used to construct the adipose gene expression space

N/A = Not available

nulID	Entrez gene ID	Gene symbol	Synonym	Illumina probe ID	
1	ZteIg.IKU0FNffMaBc	Fam198b	1110032E23Rik	ILMN_1235811	68659
2	l6Fws33vr8U_l9dXil	Hilpda	2310016C08Rik	ILMN_2926198	69573
3	E7SbiV6hXaPugD13lc	Snrnp25	3300001G02Rik	ILMN_2990229	78372
4	6hVAOYKB_rNKU.TXSE	Txlng	4932441K18Rik	ILMN_2895908	353170
5	KjUJK_qBfrHsd39y.l	Unc79	9030205A07Rik	ILMN_1222844	217843
6	6lW51dcMvXqd.c_4e0	Aacs	Aacs	ILMN_1253601	78894
7	ftkShJ80XeBLxUUCkC	Abi3bp	Abi3bp	ILMN_3132588	320712
8	319TZTj77S1vVTSI	Acsm3	Acsm3	ILMN_3111685	20216
9	6Uq7r41x1W5195QHc	Adap2	Adap2	ILMN_2589256	216991
10	QOXISulC_CupHr20E	Adb3	Adb3	ILMN_2764057	11556
11	0YhXaS5RQRfQYBLeCc	Adssl1	Adssl1	ILMN_1245079	11565
12	E5UV.6uaKQ44EE_uEU	Agt	Agt	ILMN_1227398	11606
13	xeKOEg2Ufql155RQ0	Angpt1	Angpt1	ILMN_1226520	11600
14	Bp96ngxplq1x1_Kks	Angpt1	Angpt1	ILMN_2874422	72713
15	QA57CW61NuAqR60	Aox3	Aox3	ILMN_2640097	71724
16	Wkcf55Lq_qgPxcetOx	Ar	Ar	ILMN_2684075	11835
17	Zd556UHip5_iKeB76A	Arghap25	Arghap25	ILMN_3155245	232201
18	Ku0qNaNl6170Q4LTO4	Arl4a	Arl4a	ILMN_3144984	11861
19	KjCLigMV8.une8Q64	Asns	Asns	ILMN_2636755	27053
20	f0r444Djit5JdUg1fQ	Asns	Asns	ILMN_3006123	27053
21	EuOr7vudbng57dll3U	Atp1b1	Atp1b1	ILMN_2767615	11931
22	964X7_BV3tf_5WvG40	Atp6v0a1	Atp6v0a1	ILMN_1247682	11975
23	Wn eup8xSUQJauVfUcE	Ces1f	AU018778	ILMN_1238140	234564
24	oRbp9UIf7ijwEfeLk	Fam83f	AW544981	ILMN_2759499	213956
25	9kS5dRoisuFKeVOKA	Fam20c	BC004044	ILMN_1240719	80752
26	TiHKrXu3I3_TXJUkK	Bcat1	Bcat1	ILMN_3131478	12035
27	NsXQgcWTZRFqelfXo	Birc5	Birc5	ILMN_2681241	11799
28	xyNBQI59dAkkTt1Kg	Blnk	Blnk	ILMN_2726931	17060
29	3oj91x4d40Ikvw53sQQ	Bvra	Bvra	ILMN_1257284	109778
30	QsudAtXBOet7h7n7I	Bmp3	Bmp3	ILMN_1235433	110075
31	EUjpcTv4HIMLMu592I	Bnc2	Bnc2	ILMN_2721466	242509
32	cUo_Sahd7F7Gktld3c	C2	C2	ILMN_2612895	12263
33	ZSjteFN1U.Suz5Pag	C6	C6	ILMN_1216720	12274
34	xoo0Kd6ljwJkC5efpK	C6	C6	ILMN_2798129	12274
35	ZyG.Rv7o9x_1JF3pGk	Car13	Car13	ILMN_1249727	71934
	Gene Name	Description	Accession	Log2 Fold Change	
---	------------	-------------	-----------	-----------------	
36	oUkI41Q4sp6lnElol0U	Ccl2	ILMN_1245710	20296	
37	3GtcKjKJ7eyg7gEtG6U	Ccl7	ILMN_2835117	20306	
38	WIMh666trRoN5xE4Ck	Ccnd1	ILMN_2601471	12443	
39	0pTleuurUaDev7h0Ao	Ccnd1	ILMN_1221503	12443	
40	9VRK1X6vKBH_o7rw	Cd6	ILMN_2769330	12511	
41	6ud.ePdPWO_k.e9Y	Ccl7	ILMN_2754698	12523	
42	TlIk.BB159orVWuJQ	Cited2	ILMN_2905866	17684	
43	NQhFSDqcRMQaFRTSTs	Cldn10	ILMN_1214954	58187	
44	6vuQijB7XRDLX1Cndew	Cldn10	ILMN_2723576	58187	
45	E1eId60nnuP3N8ddJE	Clec4b1	ILMN_2603898	69810	
46	6UTR3kXeyi0X7wnfuE	Clic6	ILMN_2667635	209195	
47	3Uumgk2HqfOF_k0DHQ	Cpa2	ILMN_3083163	12870	
48	QXtc7F5N6y1.ODpKjk	Cytip	ILMN_2764112	72832	
49	cd3RON9XwV6i5Rs0sc	Cyp2f2	ILMN_1245514	226105	
50	QXtc7F5N6y1.ODpKjk	Cyp2c70	ILMN_2702903	13107	
51	TurRSxLdz6F.9Iqmnk	Dbf4	ILMN_2952661	27214	
52	ohnL5seXnXDsR505SA	Dda1	ILMN_1256676	69219	
53	KX0hOexHHq4eo8SA5w	Dfn5	ILMN_2652482	54722	
54	HJ0ed5SeoBR1115K49g	Dido1	ILMN_3016099	23856	
55	Epfl51zUdB1Rjci4l6o	Dnajb13	ILMN_2667257	69387	
56	cSI9q.d17.PIKOxe5l	Dnmt3l	ILMN_3112268	54427	
57	6or1pxp3kQvrm5F5Ts	Dnmt3l	ILMN_1250149	54427	
58	Tu3ExUudMii_elYp6A	Dpep2	ILMN_2692315	319446	
59	ftr.NR15zdBrB5fuQ	Dusp15	ILMN_2675090	252864	
60	BUEiVRLX13_rHY9KTo	Ebf2	ILMN_1251248	13592	
61	r7azVIFkisiQV17VSUI	Esig8	ILMN_2824741	240916	
62	Kul1UI6d8n_QheCwk	Cela1	ILMN_2693403	109901	
63	6or1pxp3kQvrm5F5Ts	Dnmt3l	ILMN_3112268	54427	
64	o6fySSV69FVTlHo14	Ephx1	ILMN_2664224	13849	
65	KIwO0.Cf188D_B.Btboro	Fabp5	ILMN_1235908	16592	
66	BJC0O0s3u7lDnvFE164	Fads1	ILMN_2607786	76267	
67	Te1.kUCsDgcl.PRh1U	Fam13a	ILMN_1224427	58909	
68	rod6umOmNflufJT51w	Fgr4	ILMN_2631161	246256	
69	3U4IEGDQbJ54qQBip0	Fgf13	ILMN_1257196	14168	
76 NdF7E7ELXXtPo.pG4E Fgf13 Fgf13 ILMN_2745480 14168					
77 ceJosi8X5pYJLJzm14 Fgf21 Fgf21 ILMN_2710698 56636					
78 WNo1OQKdsr2EJ1557E Fn3k Fn3k ILMN_1223313 63828					
79 HKKxKSlohol4h.IJcJ4 Gadd45b Gadd45b ILMN_2900653 17873					
80 uJkv6ERJHp13Z0teQQ Gas6 Gas6 ILMN_2686327 14456					
81 Ts3sEd_GLXsUbhQVe4r Gata6 Gata6 ILMN_2868133 14465					
82 KofgiYf8Qa6d6f7eg Accsl Gm1967 ILMN_2787817 381411					
83 ucf7QByWqFReTQSSg Got111 Got111 ILMN_1246289 76615					
84 orHq1.d7R2u0ujDu70 Gpc1 Gpc1 ILMN_2635784 14733					
85 lltVHgiXTS7pTc7puc Gpc3 Gpc3 ILMN_2719973 14734					
86 ofiNeOAHiBi_hZ1vU Gpd2 Gpd2 ILMN_1247257 14571					
87 uh7f2CMAwpMT1Dggrg Gpnmb Gpnmb ILMN_2614655 93695					
88 QXideEA8w6i6an_70uY Gpnmb Gpnmb ILMN_2648669 93695					
89 KuEKqJjx6gi4PNe4z4 Gpr64 Gpr64 ILMN_3113571 237175					
90 cupqXVeJW3uuU1flk8 Gpx3 Gpx3 ILMN_2715546 14778					
91 cWPcQpTv0ifUIJ1xY Grhl1 Grhl1 ILMN_1246419 195733					
92 um3u0PShOHhigaWjk Gsta3 Gsta3 ILMN_1241437 14859					
93 0ikP9Xqnk4OJoEaK Gsta3 Gsta3 ILMN_3138685 14859					
94 9wgyXkFaC0ijl11L6U Gsta4 Gsta4 ILMN_2892441 14860					
95 cV41eX9NKeARX3cgP8 Gtse1 Gtse1 ILMN_2908070 29870					
96 cfShFuf37tMeXc9K1U H2-DMb1 H2-DMb1 ILMN_1244977 14999					
97 rCVML.d5dfvqG7pU H2-M2 H2-M2 ILMN_2964185 14990					
98 0eTXFa3vip3hTp.NBQ Hn1l Hn1l ILMN_2851251 52009					
99 052VBWp1ieVeCmftEo Igfbp2 Igfbp2 ILMN_1236788 16008					
100 NeC5B5t1dJx2in51Q Inmt Inmt ILMN_2803249 21743					
101 o.IEt2o._7_Hxt7UE Is1l Is1l ILMN_2727472 16392					
102 NAEqrqCbpZd_R5.tlo Itpk1 Itpk1 ILMN_2723920 217837					
103 KweVopFpXqXykXQof8 Kcnh2 Kcnh2 ILMN_1244402 16511					
104 WoYOSJwYoGCoKCEKeK Kcnj14 Kcnj14 ILMN_2898924 211480					
105 WfpZSUkSa1d_EcX3.A Kif22 Kif22 ILMN_2762326 110033					
106 3lwkiWCo9a9oV1k8 Krt19 Krt19 ILMN_2614462 16669					
107 u7ZSxV_g02UGTolIq Lama1 Lama1 ILMN_2973288 16772					
108 r15qfhufa4yODAHIV0 Lat2 Lat2 ILMN_3143483 56743					
109 WJdnNUKfesLPEK100 Lctl Lctl ILMN_1235276 235435					
110 Zi6gH_T93dfNffsITQ Lgals3 Lgals3 ILMN_1223317 16854					
111 0XTaMU6s6QAgpw597g Lilrb4 Lilrb4 ILMN_1236702 14728					
112 Eoj31cQOxfTepjo5k Lipf Lipf ILMN_2863532 67717					
113 l3tr_9ECX0Ru0uVY N/A LOC100043671 ILMN_1258600 N/A					
114 xPKK7Os8nk0e7o7Q3w N/A LOC100048295 ILMN_2470646 N/A					
115 9n1EZxdJ6n3PwKISDU Lrig3 Lrig3 ILMN_1213273 320398					
---	---	---	---	---	---
116	KojfYEAZ6rlZVYNUv8	Ltc4s	Ltc4s	ILMN_2658687	17001
117	TV_c3RbcXiU7E5r.0A	Maob	Maob	ILMN_2719069	109731
118	oIxFDyV4JICQijMjko	Matk	Matk	ILMN_2743902	17179
119	IIooody5Ac3XRFy7o	Mcm10	Mcm10	ILMN_2970532	70024
120	NSQPrTu7P.Uy1Rfok	Meis1	Meis1	ILMN_1218266	17268
121	QgLU4MsDBJcqnXUo	Mest	Mest	ILMN_2642417	17294
122	QAfQngywMElyqSddSo	Mest	Mest	ILMN_2642418	17294
123	Wkg.XAHlKTwgeTe5SI	Mest	Mest	ILMN_2846904	17896
124	u3XiGfhX5H0vl0vhA	Mfge8	Mfge8	ILMN_2771034	17304
125	rk69IpQevzewvw99Qu	Mmp9	Mmp9	ILMN_1250421	17381
126	TnLSisq7m869K0h7s	Myl4	Myl4	ILMN_2610744	56177
127	lxs_h0T9t93hUQX1eg	Net1	Net1	ILMN_2813830	71904
128	E5dCSZvdF1d3QeLuw	Ned4l	Ned4l	ILMN_2654186	83814
129	WoiQ9Hu3pu6CCTeCQ	Ned9	Ned9	ILMN_2654186	18003
130	BX5KToPsMuEXNzOg	Net1	Net1	ILMN_2610771	56349
131	uVX_3Qeg4EBFbpLHk	Net1	Net1	ILMN_3151722	56349
132	cSSjc6EqBO_v1y78Y	Nt5e	Nt5e	ILMN_2813830	23959
133	cR0N1ViJ7w6LfV5P78	Nup210	Nup210	ILMN_2662191	75475
134	xfhbv3t3yPB71hVrl	Olfm1	Olfm1	ILMN_1240615	56177
135	TrM1JfVImKS7s4sWWY	Oplah	Oplah	ILMN_2662191	75475
136	36JxLaeq_eOjF5s5p4	Palld	Palld	ILMN_3092653	72333
137	30P_lzh18nR79eqdSk	Paqr7	Paqr7	ILMN_1220363	71904
138	BkRuB6F8qQn4iL3Yc	Paqr9	Paqr9	ILMN_2752524	75552
139	xqRAhEBWqFBWDhDK6A	Paqr9	Paqr9	ILMN_3094043	75552
140	iwg0glTgZHggQku8I4	Pcolce2	Pcolce2	ILMN_1238603	76477
141	HppPfCoi3o.Plgr.U	Pcolce2	Pcolce2	ILMN_2678421	76477
142	NroTT0kgQlulgvp5U	Pde1a	Pde1a	ILMN_3146952	18573
143	Er0qyRKHXZP15.VYa	Pfkb4	Pfkb4	ILMN_2712668	207198
144	WVTrrz15x7dQQ7lq9Y	Pfkp	Pfkp	ILMN_1237695	56421
145	l6Vqz8nXp.N2.lehG	Phca	Phca	ILMN_2681057	66190
146	u3qJzCX3p93HuR75P78	Phkg1	Phkg1	ILMN_2769795	18682
147	Bippi1PoCHdefTFiktig	Pik3r1	Pik3r1	ILMN_2473531	18708
148	ITFifiLOyTE6VKOec	Pik3r1	Pik3r1	ILMN_3114641	18708
149	clMewrlnRlJ5w4ocDK	Pon1	Pon1	ILMN_2676379	18979
150	055edLlh.3T4EqdxHI	Plp	Plp	ILMN_3155363	19041
151	WbUQ4p3UB0cd9VAkc	Prc1	Prc1	ILMN_2757125	233406
152	WECCiS2xjU1JJiAFFI	Prlr	Prlr	ILMN_286899	19116
153	ToXo1xuTkd0eInl	Prlr	Prlr	ILMN_2617005	19116
154	QOk99O6HX241mDmXU	Prtn3	Prtn3	ILMN_2758029	19152
155	fSSK0gpx1Nc1Nbx0k	Ptprd	Ptprd	ILMN_2501929	19266
156	HuV4x1JlrScnEjU1zU	Ptprd	Ptprd	ILMN_3103904	19266
157	6Bf.A4l4xe79IP6Ub4	Ptpre	Ptpre	ILMN_2826916	19267
158	NdVTx6VjhlPfegOc	Pvalb	Pvalb	ILMN_1218223	19293
159	HXenoTnnL3vb69rUo	Rab7f1	Rab7f1	ILMN_2681186	226422
160	fbZuXex_91Ju59ViDM	Rasgrf1	Rasgrf1	ILMN_1233146	19417
161	3tm5d7H73Um7n1WIMw	Rasgrf1	Rasgrf1	ILMN_2699663	19417
162	Em577s8ygd_Q3X1fo	Rgs1	Rgs1	ILMN_2625377	50778
163	fg7qSK6U_iPvsd4otI	Ripk4	Ripk4	ILMN_2840856	72388
164	0ClAZ.epZNunZBJZCM	Rrad	Rrad	ILMN_1219106	56437
165	KI7mXoxHl0.9BCZAfY	Mtsu1	scl33870.2_144	ILMN_2459676	102103
166	9NWdNt3eUG.7gBwCDU	Sema5a	Sema5a	ILMN_2604422	20356
167	ZVnTbd3lBv_4AcAg1w	Sema5a	Sema5a	ILMN_2604422	20356
168	ENKH_CgN1JGehUqR1o	Sept9	Sept9	ILMN_2602185	53860
169	lUoKas8mK7fljNItLu0	Sfxn1	Sfxn1	ILMN_2675569	14057
170	3BKFvDfBTn3Xi5ehUQ	Sfxn1	Sfxn1	ILMN_2675569	14057
171	9Sc0s8mK7fljNItLu0	Sfxn1	Sfxn1	ILMN_2675569	14057
172	3BKvfBFBTn3Xi5ehUQ	Sfxn1	Sfxn1	ILMN_2675569	14057
173	NVt4_n_itd94n_.Snc	Slc44a1	Slc44a1	ILMN_1241827	100434
174	NVT4_n.itd94n_.Snc	Slc5a7	Slc5a7	ILMN_1243388	63993
175	WRJbxV3xej62c4ih2U	Scl15a3	Scl15a3	ILMN_2987709	65221
176	ZVqd5c7uxUe6HqAfR8	Scl1a3	Scl1a3	ILMN_2634317	20512
177	HdwkxN3NS0ot357SK4	Scl2a13	Scl2a13	ILMN_2925424	239606
178	6HSPnOqKp.nqAph13A	Scl2a3	Scl2a3	ILMN_2616565	20527
179	HeV7LUoJHbV7BobA_p4	Scl44a1	Scl44a1	ILMN_1241827	100434
180	BCAEi4P_VBO3uV9TY	Slc5a7	Slc5a7	ILMN_1243388	63993
181	9pUj1_1Ls_wlf2f2Xo	Scl15a3	Scl15a3	ILMN_2987709	65221
182	Kcs_FcIiNITM7.4U4	Scl1a3	Scl1a3	ILMN_2634317	20512
183	INNUTI3_KW7T_4ngBI	Spc25	Spc25	ILMN_2901180	66442
184	cp0UGek5_K.cfsAllk	Stambpl1	Stambpl1	ILMN_1252400	76630
185	3urlUy_Xo8UyyRA11U	Steap2	Steap2	ILMN_2797726	74051
186	HdBm3_.F.QVXjoCjpc	N/A	N/A	ILMN_2678838	N/A
187	foV3nu3uG_sxTuXuNu74	Syp	Syp	ILMN_2630182	20977
188	ofKGRaeWбуr67yplSw	Tek1	Tek1	ILMN_1239718	21689
189	fuUIrTSr.v8LCcoOl	Thbd	Thbd	ILMN_1249767	21824
190	u3hn55b.r.n5eUaDuo	Timp1	Timp1	ILMN_3103896	21857
191	rcUiw0Wfs_X1Lgg1KfuQ	Timp1	Timp1	ILMN_2769918	21857
192	fKiX1Cu1D5XN3q3qkg	Tnfrsf12a	Tnfrsf12a	ILMN_2424299	27279
193	6sD1_MVEB833uX00uk	Tpcn2	Tpcn2	ILMN_1236133	233979
194	9Kj_fs8reOl7I0tMjQ	Tph2	Tph2	ILMN_2460179	216343
195	H0_UblkKqOeXtG_V6c	Tst	Tst	ILMN_2493175	22117
---	-----	-----	-----	-----	-----
196	ijqhRqjmuOIJCWP10	Ubd	Ubd	ILMN_2426853	24108
197	reORWLYxdHH.pXv9d8	Ugt3a2	Ugt3a2	ILMN_2658355	223337
198	Qv5OTwY14KC14QtFP4	Upk1b	Upk1b	ILMN_2936646	22268
199	rgXkn3K4f6SP_XmgpM	Wfdc1	Wfdc1	ILMN_2466164	67866
200	HiliOOkuc8CXdM3_AF0	Xpnpep2	Xpnpep2	ILMN_1248998	170745
7. Supplementary Table 7: Correlations of liver and adipose TDIs with individual PDIs

The table lists the Spearman correlations and their respective p-values between liver and adipose TDIs and the PDIs of individual physiological markers. P-values were adjusted to multiple hypotheses testing by the Benjamini-Hochberg (BH) method. Refer to Supplementary Table 1 for complete details concerning the physiological markers.

Physiological marker	Adipose Spearman rho	BH-adjusted p-value	Liver Spearman rho	BH-adjusted p-value
1 Body weight	0.84	2.6e-17	0.34	2.9e-04
2 Liver weight	0.16	1.2e-01	0.52	1.4e-08
3 Heart weight	0.37	2.1e-03	0.04	3.9e-01
4 Visceral WAT	0.75	7.2e-12	0.32	6.0e-04
5 Gonadal WAT	0.84	< 1e-17	0.27	2.8e-03
6 Subcutaneous WAT	0.84	2.6e-17	0.31	8.0e-04
7 Total WAT (visceral + gonadal + subcutaneous)	0.85	< 1e-17	0.28	2.7e-03
8 Ratio visceral / subcutaneous WAT	0.59	5.3e-07	0.22	1.4e-02
9 Kidneys weight (total both kidneys)	0.01	4.7e-01	0.29	1.9e-03
10 Liver triglycerides	0.54	4.8e-06	0.61	5.5e-12
11 Atherosclerotic lesion area	0.19	1e-01	0.43	1.2e-05
12 Urine glucose	0.18	1.1e-01	0.27	3.8e-03
13 Plasma cholesterol	0.59	5.3e-07	0.76	2.5e-21
14 Plasma triglycerides	0.50	3.3e-05	0.64	1.8e-13
15 Plasma glucose	0.38	1.6e-03	0.15	6.6e-02
16 Plasma insulin	0.70	3.4e-10	0.42	1.2e-05
17 Plasma glucagon	0.06	3.5e-01	0	5.1e-01
18 Plasma E-selectin	0.39	1.4e-03	0.16	6.6e-02
19 Plasma VCAM	0.50	2.5e-05	0.38	6.5e-05
20 Plasma MCP-1	0.06	3.5e-01	0.14	9.2e-02
21 Plasma adiponectin	0.50	2.8e-05	0.02	4.4e-01
22 Plasma leptin	0.86	2.6e-17	0.36	2.3e-04
23 Plasma resistin	0.67	1.1e-08	0.09	2.1e-01
24 HOMA insulin resistance	0.68	1.9e-09	0.37	7.0e-05
25 QUICKI insulin resistance	0.60	5.3e-07	0.40	3.4e-05
26 ACR (urine albumin / creatinine ratio)	0.76	2.4e-10	0.27	5.5e-03
8. **Supplementary Table 8: Correlations of liver MDI with individual PDIs**

The table lists the Spearman correlations and their respective p-values between liver MDI and the PDIs of individual physiological markers. P-values were adjusted to multiple hypotheses testing by the Benjamini-Hochberg (BH) method. Refer to Supplementary Table 1 for complete details concerning the physiological markers.

Physiological marker	Spearman rho	BH-adjusted p-value
1. Body weight	0.12	2.5e-01
2. Liver weight	0.49	5.1e-07
3. Heart weight	0.11	2.5e-01
4. Visceral WAT	0.02	5.1e-01
5. Gonadal WAT	0	5.4e-01
6. Subcutaneous WAT	0.12	2.5e-01
7. Total WAT (visceral + gonadal + subcutaneous)	0.02	5.1e-01
8. Ratio visceral / subcutaneous WAT	0.12	2.5e-01
9. Kidneys weight (total both kidneys)	0.35	5.8e-04
10. Liver triglycerides	0.31	2.4e-03
11. Atherosclerotic lesion area	0.16	1.7e-01
12. Urine glucose	0.09	3.2e-01
13. Plasma cholesterol	0.42	3.5e-05
14. Plasma triglycerides	0.36	3.4e-04
15. Plasma glucose	0	5.5e-01
16. Plasma insulin	0.12	2.5e-01
17. Plasma glucagon	0.05	4.3e-01
18. Plasma E-selectin	0.30	3.2e-03
19. Plasma VCAM	0.09	3.2e-01
20. Plasma MCP-1	-0.11	8.7e-01
21. Plasma adiponectin	0.01	5.1e-01
22. Plasma leptin	0.07	3.42e-01
23. Plasma resistin	0.08	3.42e-01
24. HOMA insulin resistance	0.07	3.42e-01
25. QUICKI insulin resistance	0.07	3.42e-01
26. ACR (urine albumin / creatinine ratio)	0.24	3.5e-02
9. **Supplementary Table 9: Adverse side-effects of drugs in the current study**

The following is a comprehensive list of adverse side-effects of the drugs included in the current study as stated in the package inserts provided by the manufacturers. Highlighted in bold letters are side-effects which were investigated or could have been inferred from the physiological data collected in the animal model studied here. Superscript numbers refer to the physiological parameters relevant to the highlighted side effects as follows: 1. Body weight 2. Plasma glucose 3. Liver weight 4. Liver triglycerides 5. Heart weight 6. Atherosclerotic lesion area 7. Plasma cholesterol 8. Kidneys weight 9. ACR (urine albumin/creatinine ratio).

Side-effects data was downloaded from the SIDER database (http://sideeffects.embl.de/; accessed December 2014; (Kuhn et al., 2010)), which aggregates package-insert information from several public sources, among which are the US Food and Drug Administration (FDA) and Health Canada. SIDER lists side-effects using the Medical Dictionary for Regulatory Activities (MedDRA) – a standardized medical terminology that facilitates sharing of information concerning medical products (see http://www.meddra.org/; accessed December 2014).

Note, however, that the side-effects listed here are ones that pertain to human patients and may not apply to the mouse model studied here. In addition, the list is comprehensive and includes rare side-effects that may not be observed in a limited-scale study even if they occur in the animal model.

Drug	PubChem Compound ID	Adverse side-effects
metformin	4091	Abdominal discomfort, Abdominal distension, Abdominal pain, Abdominal pain upper, Abnormal faeces, Abscess, **Acute prerenal failure**^{8,9}, Anaemia, Anaemia megaloblastic, **Angina pectoris**⁶, **Angina unstable**⁶, **Angiopathy**⁶, Aortic dissection, Asthenia, **Azotaemia**^{8,9}, Blood disorder, **Blood glucose decreased**², Breast disorder, **Cardiac disorder**^{5,6}, Chest discomfort, Chest pain, Chills, Connective tissue disorder, Constipation, Decreased appetite, Dehydration, Dermatitis, Diarrhoea, Discomfort, Dizziness, Dysgeusia, Dyspepsia, Dyspnœa, Ear pain, Emotional distress, Epigastric discomfort, Erythema, Eye disorder, Fatigue, Feeling abnormal, Flatulence, Flushing, Fungal infection, Gastric disorder, Gastroenteritis, Gastrointestinal disorder, Gastrointestinal pain, Gastrointestinal tract irritation, Headache, **Hepatitis**^{3,4}, Hyperhidrosis, Hypertension, Hypoaesthesia, **Hypoglycaemia**², Ill-defined disorder, Immune system disorder, Infection, Infestation, Influenza, Lactic acidosis, Lethargy, **Liver function test abnormal**^{3,4}, Loss of consciousness, Malaise, Mediastinal disorder, Migraine, Muscle spasms, Musculoskeletal discomfort, Myalgia, Nail disorder, Nasal congestion, Nasopharyngitis,
Glibenclamide	3488	
---------------	------	
Abdominal distension, Abdominal pain, Agranulocytosis, Anaemia, Angioedema, Aplastic anaemia, Arthralgia, Asthenia, Cholestasis, Diarrhoea, Dyspepsia, Dyspnnoea, Erythema, Erythropenia, Gastrointestinal disorder, Gastrointestinal pain, Haemolytic anaemia, Hepatic failure\(^3,4\), Hepatic function abnormal\(^3,4\), Hepatitis\(^3,4\), Hypersensitivity, Hyponatraemia, Hypopituitarism, Hypotension, Inappropriate antidiuretic hormone secretion, Jaundice, Jaundice cholestatic, Leukocytoclastic vasculitis, Leukopenia, Liver disorder\(^3,4\), Malnutrition, Musculoskeletal discomfort, Myalgia, Nausea, Nephropathy\(^8,9\), Nervous system disorder, Pain, Pancytopenia, Photosensitivity reaction, Porphyria, Porphyria non-acute, Pruritus, Purpura, Rash, Shock, Thrombocytopenia, Urticaria, Vascular purpura, Vasculitis, Vision blurred, Visual impairment, Vomiting		

Sitagliptin	4369359
Abdominal discomfort, Abdominal pain, Abdominal pain upper, Anaphylactic shock, Angina pectoris\(^6\), Angioedema, Angiopathy\(^6\), Anxiety, Aortic dissection, Arthralgia, Asthenia, Back pain, Blood glucose decreased\(^2\), Blood glucose increased\(^2\), Breast disorder, Bronchitis, Bundle branch block, Cardiac disorder\(^6,6\), Cellulitis, Chest pain, Connective tissue disorder, Constipation, Cough, Decreased appetite, Dermatitis, Diarrhoea, Discomfort, Dizziness, Dysmenorrhoea, Dyspepsia, Eczema, Erectile dysfunction, Eye disorder, Face oedema, Fatigue, Feeling abnormal, Flatulence, Gastric ulcer, Gastritis, Gastroenteritis, Gastrointestinal disorder, Gastrointestinal pain, Gastrooesophageal reflux disease, Headache, Helicobacter gastritis, Hepatic steatosis\(^1,4\), Hepatobiliary disease, Herpes virus infection, Herpes zoster, Hyperglycaemia\(^2\), Hypersensitivity, Hypertension, Hypoesthesia, Hypoglycaemia\(^2\), Hypotension, Ill-defined disorder, Infection, Infestation, Influenza, Insomnia, Malaise, Mediastinal disorder, Mental disorder, Migraine, Muscle spasms, Muscle tightness, Musculoskeletal discomfort, Musculoskeletal pain, Myalgia, Nasopharyngitis, Nausea,	
Drug	Code
------------	------
rosiglitazone	7799
pioglitazone	4829
fenofibrate	3339
aminotransferase increased, Asthenia, Asthma, Atrial fibrillation, Back pain, Bladder pain, Blindness, Blood alkaline phosphatase increased, Blood bilirubin increased, Blood creatine phosphokinase increased, **Blood creatinine increased**\(^8,9\), Blood lactate dehydrogenase increased, Blood urea increased, Blood uric acid increased, Body temperature increased, Bronchitis, Bursitis, Calculus urinary, Candidiasis, Cardiac fibrillation, **Cardiovascular disorder**\(^5,6\), Cataract, Chest pain, Cholecystitis, Cholelithiasis, Colitis, Conjunctivitis, Constipation, Coronary artery disease, Cough, Cyst, Cystitis, Cystitis noninfecive, Decreased appetite, Deep vein thrombosis, Dermatitis, Dermatitis contact, Diarrhoea, Discomfort, Disturbance in sexual arousal, Dizziness, Dry mouth, Duodenal ulcer, Dyspepsia, Dyspnnea, Dysuria, Ear infection, Ear pain, Ecchymosis, Eczema, Electrocardiogram abnormal, Embolism, Eosinophilia, Erectile dysfunction, Eructation, Erythema, Extrasystoles, Eye disorder, Fatigue, Feeling abnormal, Flatulence, Fungal skin infection, Gamma-glutamyltransferase increased, Gastritis, Gastroenteritis, Gastrointestinal disorder, Gastrointestinal pain, Gout, Gynaecomastia, Haemoglobin, Haemorrhage, Haptoglobin decreased, Headache, **Hepatic cirrhosis**\(^3,4\), **Hepatic function abnormal**\(^3,4\), **Hepatic steatosis**\(^3,4\), **Hepatitis**\(^3,4\), Hernia, Herpes simplex, Herpes virus infection, Herpes zoster, Hyperhidrosis, Hypersensitivity, Hypertonia, Hyperuricaemia, **Hypoglycaemia**\(^2\), Hypotension, Ill-defined disorder, Increased appetite, **Infarction**\(^6\), Infection, Influenza, Insomnia, Jaundice, Laboratory test abnormal\(^2,7,5\), Laryngitis, Leukopenia, Libido decreased, **Liver function test abnormal**\(^3,4\), Lymphadenopathy, Malaise, Migraine, Multiple hereditary exostosis, Muscle spasms, Muscular weakness, Musculoskeletal discomfort, Myalgia, **Myocardial infarction**\(^6\), Myositis, Nail disorder, Nausea, Nervousness, Neuralgia, Oedema, Oedema peripheral, Oesophagitis, Osteoarthritis, Otitis media, Pain, Palpitations, Paraesthesia, Peptic ulcer, Pharyngitis, Phlebitis, Photosensitivity reaction, Pneumonia, Pollakiuria, Prostatic disorder, Pruritus, Pulmonary embolism, Rash, Rash maculo-papular, Rectal haemorrhage, Refraction disorder, **Renal failure**\(^8,9\), **Renal failure acute**\(^8,9\), **Renal impairment**\(^8,9\), Respiratory disorder, Rhabdomyolysis, Rhinitis, Sinusitis, Skin disorder, Skin ulcer, Somnolence, Tachycardia, Tenosynovitis, Tension, Thrombocytopenia, Thrombosis, Tooth disorder, Ulcer, Unintended pregnancy, Urticaria, Varicose vein, Vasodilation procedure, Venous thrombosis, Ventricular extrasystoles, Vertigo, Visual acuity reduced, Visual impairment, Vomiting, Vulvovaginal candidiasis, Vulvovaginal mycotic infection,
T0901317 447912

(*) This compound was never approved for use in humans, and therefore has no SIDER entry. There exist, however, multiple reports that implicate LXR agonists, including T0901317, in impaired lipid metabolism and hepatic dysfunction (Schultz et al, 2000; Chisholm et al, 2003; Lund et al, 2003; Millatt et al, 2003; Zanotti et al, 2008; Jung et al, 2011). Administration of LXR-623, a synthetic LXR agonist, to healthy human subjects led to neurological and psychiatric adverse events (Katz et al, 2009).

While the physiological data studied here allows detection of adverse treatment outcomes related to disruption of lipid metabolism and liver functions, it is not rich enough to study adverse events related to the central nervous system.

atorvastatin 60822 (atorvastatin calcium)

Abdominal discomfort, Abdominal pain, Abnormal dreams, Acne, Affect lability, Ageusia, Aggression, Agitation, Alanine aminotransferase increased, Alopecia, Amblyopia, Amnesia, Anaemia, Anaphylactic shock, Angioedema, Anorectal discomfort, Arrhythmia, Arthralgia, Arthritis, Asthenia, Asthma, Back pain, Biliary colic, Bladder pain, Blood creatine phosphokinase increased, Blood magnesium decreased, Body temperature increased, Breast enlargement, Bronchitis, Bursitis, Cells in urine, Cerebral haemorrhage, Cheilitis, Chest pain, Cholestasis, Colitis, Constipation, Coordination abnormal, Cystitis, Cystitis noninfective, Deafness, Death, Decreased appetite, Dermatitis, Dermatitis contact, Diarrhoea, Discomfort, Disturbance in sexual arousal, Dizziness, Dry eye, Dry mouth, Dry skin, Duodenal ulcer, Dysgeusia, Dyspepsia, Dysphagia, Dyspnoea, Dysuria, Ecchymosis, Eczema, Ejaculation disorder, Enteritis, Epididymitis, Epistaxis, Erectile dysfunction, Eruption, Erythema, Erythema multiforme, Eye haemorrhage, Face oedema, Fatigue, Feeling abnormal, Fibrocystic breast disease, Flatulence, Fluid retention, Gastric disorder, Gastric ulcer, Gastritis, Gastroenteritis, Gastrointestinal pain, Generalised oedema, Gingival bleeding, Glaucoma, Glossitis, Gout, Haematuria, Haemoglobin, Haemorrhage, Haemorrhagic stroke, Headache, Hepatic failure, Hepatitis, Hyperglycaemia, Hyperhidrosis, Hyperkinesia, Hypersensitivity, Hypertonia, Hypoaesthesia, Hypoglycaemia, Hypotension, Ill-defined disorder, Incontinence, Increased appetite, Infection, Influenza, Insomnia, Ischaemic stroke, Jaundice, Jaundice cholestatic, Joint swelling, Libido decreased, Liver function test abnormal, Loss of consciousness, Lymphadenopathy,
Condition	Salicylate	Rofecoxib
Malaise, Melaena, Memory impairment, Metrorrhagia, Micturition urgency, Migraine, Mood swings, Mouth ulceration, Muscle contracture, Muscle fatigue, Muscle rigidity, Muscle spams, Muscular weakness, Musculoskeletal discomfort, Musculoskeletal pain, Musculoskeletal stiffness, Myalgia, Myopathy, Myositis, Nasopharyngitis, Nausea, Neck pain, Nephritis, Nephrolithiasis, Neuropathy peripheral, Nightmare, Nocturia, Nuchal rigidity, Oedema, Oedema peripheral, Oesophagitis, Oropharyngeal pain, Orthostatic hypotension, Pain, Pain in extremity, Palpitations, Pancreatitis, Paralysis, Parosmia, Pharyngitis, Phlebitis, Photosensitivity reaction, Pneumonia, Pollakiuria, Proctalgia, Pruritus, Rash, Rectal haemorrhage, Rectal tenesmus, Refraction disorder, Rhabdomyolysis, Rhinitis, Seborrhoeic dermatitis, Shock, Sinusitis, Skin ulcer, Somnolence, Stomatitis, Swelling, Syncope, Tendinous contracture, Tenosynovitis, Thrombocytopenia, Tinnitus, Torticollis, Toxic epidermal necrolysis, Transient ischaemic attack, Ulcer, Urinary incontinence, Urinary retention, Urinary tract infection, Urticaria, Uterine haemorrhage, VIIth nerve paralysis, Vaginal haemorrhage, Vasodilation procedure, Vision blurred, Vomiting, Weight increased, White blood cells urine positive		
Anaemia, Anaphylactic shock, Angioedema, Asthma, Confusional state, Deafness, Diarrhoea, Dyspepsia, Feeling abnormal, Haematemesis, Hearing impaired, Hyperhidrosis, Hypersensitivity, Leukopenia, Melaena, Nausea, Oedema, Pruritus, Purpura, Rash, Somnolence, Thirst, Thrombocytopenia, Tinnitus, Ulcer, Urticaria, Vascular purpura, Vertigo, Vomiting		
Abdominal distension, Abdominal pain, Abdominal pain upper, Abdominal tenderness, Abscess, Acute coronary syndrome, Agranulocytosis, Alopecia, Alveolar osteitis, Alveolitis, Anaemia, Analgesic therapy, Anaphylactic shock, Anaphylactoid reaction, Angina pectoris, Angina unstable, Angioedema, Anxiety, Aphthous stomatitis, Aplastic anaemia, Arrhythmia, Arthralgia, Arthropathy, Asthenia, Asthma, Atopy, Atrial fibrillation, Back pain, Basal cell carcinoma, Bladder pain, Blister, Body temperature increased, Bradycardia, Breast cancer, Breast mass, Bronchitis, Bronchospasm, Bursitis, Calculus urinary, Cardiac		
Salicylate is not listed in SIDER; we provide here the information for its artificial derivative acetylsalicylic acid (aspirin).		
Rofecoxib is not listed in SIDER; we provide here the information for its artificial derivative rofecoxib.		
Condition		
--		
Heart failure		
Cardiac failure congestive		
Cardiac fibrillation		
Cellulitis		
Cerebrovascular accident		
Cerumen impaction		
Chest pain		
Chills		
Cholecystitis		
Colitis		
Confusional state		
Congenital anomaly		
Conjunctivitis		
Constipation		
Cough		
Cyst		
Cystitis		
Cystitis noninfective		
Death		
Deep vein thrombosis		
Dental caries		
Dermatitis		
Dermatitis atopic		
Dermatitis bullous		
Dermatitis contact		
Developmental delay		
Diaphragmatic hernia		
Diarrhoea		
Disability		
Discomfort		
Dizziness		
Dry mouth		
Dry throat		
Duodenal perforation		
Duodenal ulcer		
Dysgeusia		
Dyspepsia		
Dyspnoea		
Dysuria		
Ear infection		
Embolism		
Epigastric discomfort		
Epilepsy		
Epistaxis		
Erythema		
Fatigue		
Feeling abnormal		
Flatulence		
Fluid retention		
Flushing		
Fungal infection		
Gastric disorder		
Gastric perforation		
Gastric ulcer		
Gastritis		
Gastroenteritis		
Gastrointestinal disorder		
Gastrointestinal haemorrhage		
Gastrointestinal pain		
Gastrooesophageal reflux disease		
Haematochezia		
Haematoma		
Haemoglobin		
Haemorrhage		
Haemorrhoids		
Hallucination		
Heart rate irregular		
Hepatic failure		
Hepatitis		
Hernia		
Herpes simplex		
Herpes zoster		
Hypercholesterolaemia		
Hyperhidrosis		
Hyperkalaemia		
Hypersensitivity		
Hypertension		
Hypertensive crisis		
Hypoesthesia		
Hyponatraemia		
Infarction		
Infection		
Influenza		
Insomnia		
Intestinal obstruction		
Jaundice		
Joint swelling		
Laryngitis		
Leukocytoclastic vasculitis		
Leukopenia		
Loss of consciousness		
Lymphoma		
Meningitis		
Meningitis aseptic		
Menopausal symptoms		
Menopause		
Menstrual disorder		
Mental disorder		
Mouth ulceration		
Muscle spasms		
Muscular weakness		
Musculoskeletal discomfort		
Musculoskeletal pain		
Musculoskeletal stiffness		
Myalgia		
Myocardial infarction		
Myopathy		
Nasal congestion		
Nausea		
Neoplasm		
Neoplasm malignant		
Nephritis		
Neuropathy peripheral		
Nocturia		
Obstruction		
Oedema		
Oedema peripheral		
Oesophageal disorder		
Oesophageal ulcer		
Oesophagitis		
Oral disorder		
Oral infection		
Osteoarthritis		
Otitis media		
Pain in extremity		
Palpitations		
Pancreatitis		
Pancytopenia		
Paraesthesia		
Pelvic pain		
Pharyngitis		
Photosensitivity reaction		
Pneumonia		
Procedural pain		
Pruritus		
Pulmonary congestion		
Pulmonary embolism		
Pulmonary oedema		
Rash		
Renal failure		
Renal failure acute		
Renal failure chronic		
Respiratory tract congestion		
Respiratory tract infection		
Rhinitis		
Rhinitis allergic		
Sciatica		
Shock		
Sinusitis		
Somnolence		
Stomatitis		
Swelling		
Syncope		
Tachycardia		
Tenderness		
Tendonitis		
Thrombocytopenia		
Thrombosis		
Tinnitus		
Tonsillitis		
Tooth impacted		
Toothache		
Toxic epidermal necrolysis		
Transient		
ischaemic attack⁶, Tubulointerstitial nephritis^{8,9}, Ulcer, Upper respiratory tract infection, **Urinary retention**⁸, Urinary tract infection, Urticaria, Vaginal infection, Vaginal inflammation, Vasculitis, Venous insufficiency, Venous thrombosis, Ventricular extrasystoles, Vertigo, Viral diarrhoea, Viral infection, Vision blurred, Vomiting, **Weight increased**⁶, Xerosis		
Supplementary References

Ahmadian M, Suh JM, Hah N, Liddle C, Atkins AR, Downes M & Evans RM (2013) PPARγ signaling and metabolism: the good, the bad and the future. *Nat Med* **99**: 557–566

American Diabetes Association (2013) Standards of Medical Care in Diabetes—2013. *Diabetes Care* **36**: S11–S66

Awtry EH & Loscalzo J (2000) Aspirin. *Circ.* **101**: 1206–1218

Baron SH (1982) Salicylates as hypoglycemic agents. *Diabetes Care* **5**: 64–71

Berg AH & Scherer PE (2005) Adipose Tissue, Inflammation, and Cardiovascular Disease. *Circ. Res.* **96**: 939–949

Campbell C, Smyth S, Montalescot G & SR S (2007) Aspirin dose for the prevention of cardiovascular disease: A systematic review. *JAMA* **297**: 2018–2024

Chisholm JW, Hong J, Mills SA & Lawn RM (2003) The LXR ligand T0901317 induces severe lipogenesis in the db/db diabetic mouse. *J. Lipid Res.* **44**: 2039–2048

Escher P, Braissant O, Basu-Modak S, Michalik L, Wahli W & Desvergne B (2001) Rat PPARs: Quantitative Analysis in Adult Rat Tissues and Regulation in Fasting and Refeeding. *Endocrinology* **142**: 4195–4202

Evans RM, Barish GD & Wang Y-X (2004) PPARs and the complex journey to obesity. *Nat Med* **10**: 355–361

Forcheron F, Cacheo A, Thevenon S, Pinteur C & Beylot M (2002) Mechanisms of the Triglyceride- and Cholesterol-Lowering Effect of Fenofibrate in Hyperlipidemic Type 2 Diabetic Patients. *Diabetes* **51**: 3486–3491

Foretz M, Hébrard S, Leclerc J, Zarrinpashneh E, Soty M, Mithieux G, Sakamoto K, Andreelli F & Viollet B (2010) Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. *J. Clin. Invest.* **120**: 2355–2369

Frantz B, O’Neill EA, Ghosh S & Kopp E (1995) The Effect of Sodium Salicylate and Aspirin on NF-κB. *Science (80-.).* **270**: 2017–2019

Furst DE, Ulrich RW & Prakash S (2012) Nonsteroidal Anti-Inflammatory Drugs, Disease-Modifying Antirheumatic Drugs, Nonopioid Analgesics, & Drugs Used in Gout. In *Basic & Clinical Pharmacology (12th ed.)*, Katzung BG Masters SB & Trevor AJ (eds) New York, NY: McGraw-Hill

Gilgore SG (1960) The Influence of Salicylate on Hyperglycemia. *Diabetes* **9**: 392–393

Gilgore SG & Rupp JJ (1962) The long-term response of diabetes mellitus to salicylate therapy: Report of a case. *JAMA* **180**: 65–66
Goldfine AB, Buck JS, Desouza C, Fonseca V, Chen Y-DI, Shoelson SE, Jablonski KA, Creager MA & Team for the T-F (Targeting IUS in T 2 D-MDAS (2013) Targeting Inflammation Using Salsalate in Patients With Type 2 Diabetes: Effects on Flow-Mediated Dilation (TINSAL-FMD). Diabetes Care 36 : 4132–4139

Hawley SA, Fullerton MD, Ross FA, Schertzer JD, Chevtzoff C, Walker KJ, Peggie MW, Zibrova D, Green KA, Mustard KJ, Kemp BE, Sakamoto K, Steinberg GR & Hardie DG (2012) The Ancient Drug Salicylate Directly Activates AMP-Activated Protein Kinase. Sci. 336 : 918–922

Hong C & Tontonoz P (2014) Liver X receptors in lipid metabolism: opportunities for drug discovery. Nat Rev Drug Discov 13: 433–444

Hundal RS, Petersen KB, Mayerson AB, Randhawa S, Inzucchi S, Shoelson SE & Shulman GI (2002) Mechanism by which high-dose aspirin improves glucose metabolism in type 2 diabetes. J. Clin. Invest. 109: 1321–1326

Iorio F, Bosotti R, Scacheri E, Belcastro V, Mithbaokar P, Ferriero R, Murino L, Tagliaferri R, Brunetti-Pierri N, Isacchi A & di Bernardo D (2010) Discovery of drug mode of action and drug repositioning from transcriptional responses. Proc. Natl. Acad. Sci. 107 : 14621–14626

Jakobsson T, Treuter E, Gustafsson JA & Steffensen KR (2012) Liver X receptor biology and pharmacology: new pathways, challenges and opportunities. Trends Pharmacol. Sci. 33: 394–404

Jung UJ, Millman PN, Tall AR & Deckelbaum RJ (2011) n-3 Fatty acids ameliorate hepatic steatosis and dysfunction after LXR agonist ingestion in mice. Biochim. Biophys. Acta - Mol. Cell Biol. Lipids 1811: 491–497

Katz A, Nambi SS, Mather K, Baron AD, Follmann DA, Sullivan G & Quon MJ (2000) Quantitative Insulin Sensitivity Check Index: A Simple, Accurate Method for Assessing Insulin Sensitivity In Humans. J. Clin. Endocrinol. Metab. 85: 2402–2410

Katz A, Udata C, Ott E, Hickey L, Burczynski ME, Burghart P, Vesterqvist O & Meng X (2009) Safety, Pharmacokinetics, and Pharmacodynamics of Single Doses of LXR-623, a Novel Liver X-Receptor Agonist, in Healthy Participants. J. Clin. Pharmacol. 49: 643–649

Kopp E & Ghosh S (1994) Inhibition of NF-kappa B by sodium salicylate and aspirin. Sci. 265 : 956–959

Kuhn M, Campillos M, Letunic I, Jensen LJ & Bork P (2010) A side effect resource to capture phenotypic effects of drugs. Mol. Syst. Biol. 6:

Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, Lerner J, Brunet J-P, Subramanian A, Ross KN, Reich M, Hieronymus H, Wei G, Armstrong SA, Haggarty SJ, Clemons PA, Wei R, Carr SA, Lander ES & Golub TR (2006) The Connectivity Map: Using Gene-Expression Signatures to Connect Small Molecules, Genes, and Disease. Sci. 313 : 1929–1935

Larsen TM, Toubro S & Astrup A (2003) PPARgamma agonists in the treatment of type II diabetes: is increased fatness commensurate with long-term efficacy? Int. J. Obes. 27: 147–161
Law V, Knox C, Djoumbou Y, Jewison T, Guo AC, Liu Y, Maciejewski A, Arndt D, Wilson M, Neveu V, Tang A, Gabriel G, Ly C, Adamjee S, Dame ZT, Han B, Zhou Y & Wishart DS (2013) DrugBank 4.0: shedding new light on drug metabolism. *Nucleic Acids Res.*

Lund EG, Menke JG & Sparrow CP (2003) Liver X Receptor Agonists as Potential Therapeutic Agents for Dyslipidemia and Atherosclerosis. *Arterioscler. Thromb. Vasc. Biol.* 23: 1169–1177

Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF & Turner RC (1985) Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. *Diabetologia* 28: 412–419

Millatt LJ, Bocher V, Fruchart J-C & Staels B (2003) Liver X receptors and the control of cholesterol homeostasis: potential therapeutic targets for the treatment of atherosclerosis. *Biochim. Biophys. Acta - Mol. Cell Biol. Lipids* 1631: 107–118

Mudaliar S & Henry RR (2012) The incretin hormones: from scientific discovery to practical therapeutics. *Diabetologia* 55: 1865–1868

Nolte Kennedy MS (2012) Pancreatic Hormones & Antidiabetic Drugs. In *Basic & Clinical Pharmacology (12th ed.)*, Katzung BG Masters SB & Trevor AJ (eds) New York, NY: McGraw-Hill

Oie S, Matsuzaki K, Yokoyama W, Tokunaga S, Waku T, Han S-I, Iwasaki N, Mikogai A, Yasuzawa-Tanaka K, Kishimoto H, Hiyoshi H, Nakajima Y, Araki T, Kimura K, Yanagisawa J & Murayama A (2014) Hepatic rRNA Transcription Regulates High-Fat-Diet-Induced Obesity. *Cell Rep.* 7: 807–820

Oosterveer MH, Grefhorst A, van Dijk TH, Havinga R, Staels B, Kuipers F, Groen AK & Reijngoud DJ (2009) Fenofibrate Simultaneously Induces Hepatic Fatty Acid Oxidation, Synthesis, and Elongation in Mice. *J. Biol. Chem.* 284: 34036–34044

Pacini C, Iorio F, Gonçalves E, Iskar M, Klabunde T, Bork P & Saez-Rodriguez J (2013) DvD: An R/Cytoscape pipeline for drug repurposing using public repositories of gene expression data. *Bioinformatics* 29: 132–134

Poulsen L la C, Siersbæk M & Mandrup S (2012) PPARs: fatty acid sensors controlling metabolism. *Semin. Cell Dev. Biol.* 23: 631–9

Praticò D & Dogné J-M (2005) Selective Cyclooxygenase-2 Inhibitors Development in Cardiovascular Medicine. *Circ.* 112: 1073–1079

Radonjic M, Wielinga PY, Wopereis S, Kelder T, Goelela VS, Verschuren L, Toet K, van Duyvenvoorde W, van der Werff van der Vat B, Stroeve JHM, Cnubben N, Kooistra T, van Ommen B & Kleemann R (2013) Differential Effects of Drug Interventions and Dietary Lifestyle in Developing Type 2 Diabetes and Complications: A Systems Biology Analysis in LDLr−/− Mice. *PLoS One* 8: e56122

Reddy JK & Sambasiva Rao M (2006) Lipid Metabolism and Liver Inflammation. II. Fatty liver disease and fatty acid oxidation. 290: G852–G858

Rena G, Pearson E & Sakamoto K (2013) Molecular mechanism of action of metformin: old or new insights? *Diabetologia* 56: 1898–1906
Schultz JR, Tu H, Luk A, Repa JJ, Medina JC, Li L, Schwendner S, Wang S, Thoolen M, Mangelsdorf DJ, Lustig KD & Shan B (2000) Role of LXRα in control of lipogenesis. Genes Dev. 14: 2831–2838

Shaw RJ, Lamia KA, Vasquez D, Koo S-H, Bardeesy N, DePinho RA, Montminy M & Cantley LC (2005) The Kinase LKB1 Mediates Glucose Homeostasis in Liver and Therapeutic Effects of Metformin. Sci. 310: 1642–1646

Shoelson S (2002) JMM – Past and Present. Invited comment on W. Ebstein: On the therapy of diabetes mellitus, in particular on the application of sodium salicylate. J. Mol. Med. 80: 618–619

Sirota M, Dudley JT, Kim J, Chiang AP, Morgan AA, Sweet-Cordero A, Sage J & Butte AJ (2011) Discovery and Preclinical Validation of Drug Indications Using Compendia of Public Gene Expression Data. Sci. Transl. Med. 3: 96ra77–96ra77

Soccio RE, Chen ER & Lazar MA (2014) Thiazolidinediones and the Promise of Insulin Sensitization in Type 2 Diabetes. Cell Metab. 20: 573–591

Staels B, Dallongeville J, Auwerx J, Schoonjans K, Leitersdorf E & Fruchart J-C (1998) Mechanism of Action of Fibrates on Lipid and Lipoprotein Metabolism. Circ. 98: 2088–2093

Steffensen KR & Gustafsson J-Å (2004) Putative Metabolic Effects of the Liver X Receptor (LXR). Diabetes 53: S36–S42

Steinberg GR, Dandapani M & Hardie DG (2013) AMPK: mediating the metabolic effects of salicylate-based drugs? Trends Endocrinol. Metab. 24: 481–487

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES & Mesirov JP (2005) Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. United States Am. 102: 15545–15550

Sukardi H, Zhang X, Lui EY, Ung CY, Mathavan S, Gong Z & Lam SH (2012) Liver X receptor agonist T0901317 induced liver perturbation in zebrafish: Histological, gene set enrichment and expression analyses. Biochim. Biophys. Acta - Gen. Subj. 1820: 33–43

Toussoulis D, Psarros C, Demosthenous M, Patel R, Antoniades C & Stefanadis C (2014) Innate and Adaptive Inflammation as a Therapeutic Target in Vascular Disease: The Emerging Role of Statins. J. Am. Coll. Cardiol. 63: 2491–2502

Ulven SM, Dalen KT, Gustafsson J-Å & Nebb HI (2005) LXR is crucial in lipid metabolism. Prostaglandins, Leukot. Essent. Fat. Acids 73: 59–63

Vasudevan AR & Balasubramanyam A (2004) Thiazolidinediones: A Review of Their Mechanisms of Insulin Sensitization, Therapeutic Potential, Clinical Efficacy, and Tolerability. Diabetes Technol. Ther. 6: 850–863

Waget A, Cabou C, Masseboeuf M, Cattan P, Armanet M, Karaca M, Castel J, Garret C, Payros G, Maida A, Sulpice T, Holst JJ, Drucker DJ, Magnan C & Burcelin R (2011) Physiological and Pharmacological
Mechanisms through which the DPP-4 Inhibitor Sitagliptin Regulates Glycemia in Mice. *Endocrinology* **152**: 3018–3029

Wellen KE & Hotamisligil GS (2003) Obesity-induced inflammatory changes in adipose tissue. *J. Clin. Invest.* **112**: 1785–1788

Williamson RT (1901) On the Treatment of Glycosuria and Diabetes Mellitus with Sodium Salicylate. *BMJ* **1**: 760–762

Zanotti I, Potì F, Pedrelli M, Favari E, Moleri E, Franceschini G, Calabresi L & Bernini F (2008) The LXR agonist T0901317 promotes the reverse cholesterol transport from macrophages by increasing plasma efflux potential. *J. Lipid Res.* **49**: 954–960

Zhao C & Dahlman-Wright K (2010) Liver X receptor in cholesterol metabolism. *J. Endocrinol.* **204**: 233–240