High Throughput Sequencing Identifies MicroRNAs Mediating α-Synuclein Toxicity by Targeting Neuroactive-Ligand Receptor Interaction Pathway in Early Stage of Drosophila Parkinson's Disease Model.

Yan Kong
Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University

Xijun Liang
MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University

Lin Liu
MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University

Dongdong Zhang
Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Science, Southeast University

Chao Wan
Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Science, Southeast University

Follow this and additional works at: https://jdc.jefferson.edu/medfp

See next page for additional authors
https://jdc.jefferson.edu/medfp/134

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Department of Medicine Faculty Papers by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: JeffersonDigitalCommons@jefferson.edu.
Authors
Yan Kong, Xijun Liang, Lin Liu, Dongdong Zhang, Chao Wan, Zhenji Gan, Liudi Yuan, and Bing-Hua Jiang
RESEARCH ARTICLE

High Throughput Sequencing Identifies MicroRNAs Mediating α-Synuclein Toxicity by Targeting Neuroactive-Ligand Receptor Interaction Pathway in Early Stage of Drosophila Parkinson’s Disease Model

Yan Kong1*, Xijun Liang2, Lin Liu2, Dongdong Zhang3, Chao Wan3, Zhenji Gan2, Liudi Yuan1,3*

1 Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Nanjing, Jiangsu Province, 210009, China, 2 MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, 210061, China, 3 The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Science, Southeast University, Nanjing, 210009, China

* kongyancn@163.com (YK); yld@seu.edu.cn (LY)

Abstract

Parkinson’s disease (PD) is a prevalent neurodegenerative disorder with pathological features including death of dopaminergic neurons in the substantia nigra and intraneuronal accumulations of Lewy bodies. As the main component of Lewy bodies, α-synuclein is implicated in PD pathogenesis by aggregation into insoluble filaments. However, the detailed mechanisms underlying α-synuclein induced neurotoxicity in PD are still elusive. MicroRNAs are ~20nt small RNA molecules that fine-tune gene expression at posttranscriptional level. A plethora of miRNAs have been found to be dysregulated in the brain and blood cells of PD patients. Nevertheless, the detailed mechanisms and their in vivo functions in PD still need further investigation. By using Drosophila PD model expressing α-synuclein A30P, we examined brain miRNA expression with high-throughput small RNA sequencing technology. We found that five miRNAs (dme-miR-133-3p, dme-miR-137-3p, dme-miR-13b-3p, dme-miR-932-5p, dme-miR-1008-5p) were upregulated in PD flies. Among them, miR-137 was predicted to regulate most of the identified targets in this pathway, including dopamine receptor (DopR, D2R), γ-aminobutyric acid (GABA) receptor (GABA-B-R1, GABA-B-R3) and N-methyl-D-aspartate (NMDA) receptor (Nmdar2). The validation experiments showed that the expression of miR-137 and its targets was negatively correlated in PD flies. Further experiments using luciferase reporter assay confirmed that miR-137 could act on specific sites in 3′ UTR region of D2R, Nmdar2 and GABA-B-R3, which downregulated significantly in PD flies. Collectively, our findings indicate that α-synuclein could induce
the dysregulation of miRNAs, which target neuroactive ligand-receptor interaction pathway in vivo. We believe it will help us further understand the contribution of miRNAs to α-synuclein neurotoxicity and provide new insights into the pathogenesis driving PD.

Introduction

Parkinson’s disease (PD) is the second most prevalent neurodegenerative disorder affecting the elderly population [1]. Its predominant pathological features are death of dopaminergic (DA) neurons in the substantia nigra pars compacta and intraneuronal accumulations of Lewy bodies [2]. As the main component of Lewy bodies, α-synuclein contributes to PD by aggregation into insoluble filaments. Multiplication of α-synuclein or mutations such as A53T, A30P and E46K were found in familial forms PD patients [3–5]. However, the detailed mechanisms underlying α-synuclein induced neurotoxicity in PD still need further investigation.

PD animal models have been established by ectopic expression of human α-synuclein in yeast, Caenorhabditis elegans, Drosophila melanogaster, rat, mouse, and non-human primates [6–11]. Drosophila models have been widely used to study neurodegenerative diseases including Alzheimer’s disease (AD), Huntington’s disease (HD) and PD [8, 12, 13]. In addition to the advantages of short lifespan and convenience for genetic manipulation, Drosophila conceives complicated central and peripheral nervous systems which are analogous to those of human. Panneuronal expression of human wild type and mutant α-synuclein (A53T and A30P) demonstrate adult onset PD pathological features including DA neuronal loss, decreased dopamine level, impaired locomotive ability and shortened lifespan [8, 14, 15]. Drosophila models provide efficient tools for screening genes participate in PD and potential drugs against PD.

MicroRNAs are ~20nt small RNA molecules that fine-tune gene expression at posttranscriptional level [16]. They usually bind to 3’UTR of target mRNA and lead to translational inhibition or target degradation. It is estimated that more than half of human genes are regulated by miRNAs and the regulatory mechanisms are highly conserved among invertebrates and vertebrates. Since the discovery in 1990s, miRNAs have been found to exert essential roles in development, homeostasis and diseases. A plethora of miRNAs have been found to be dysregulated in the brain and blood of PD patients [17–20]. However, the underlying mechanisms and their functions in PD are still elusive.

In the present study, we examined the expression of miRNAs in a PD Drosophila model expressing α-synuclein by high throughput small RNA sequencing technology. We found that five miRNAs (dme-miR-133-3p, dme-miR-137-3p, dme-miR-13b-3p, dme-miR-932-5p, dme-miR-1008-5p) were upregulated in PD flies. Among them, miR-13b, miR-133, miR-137 are brain enriched and highly conserved from Drosophila to Homo sapiens. Validation experiment using qRT-PCR confirmed that these miRNAs were elevated in PD flies. KEGG pathway analysis indicated that neuroactive-ligand receptor interaction pathway was most likely affected by these miRNAs. Further studies showed miR-137 targeted multiple molecules in this pathway as predicted, including dopamine receptor (DopR, D2R), GABA receptor (GABA-B-R1, GABA-B-R3) and NMDA receptor (Nmdar2). The mRNA levels of these molecules were significantly decreased in PD flies. Our findings indicated that α-synuclein could induce the dysregulation of miRNAs, which target neuroactive ligand receptor interaction pathway in vivo.
Materials and Methods

Fly stocks and maintenance
The elav-C155 and UAS-α-synuclein flies were obtained from Bloomington Stock Center (Indiana University, USA). Flies were raised in standard yeast agar food at 25°C with a 12/12 hours light/dark cycle. After backcrossing with w^{118} flies for 6 generations, elav-C155 virgin flies were crossed with w^{118} or UAS-α-synuclein A30P males. The F1 generation offspring expressed α-synuclein in panneuronal manner and were used for further experiments.

Lifespan analyses
Two days after the eclosion, mated males and females were discriminated and transferred to different vials. Each vial contained 10 flies and at least 100 in total for each group. The vials were changed 3 times a week and deaths were recorded. Data was presented as survival curves and analysis was performed using log-rank tests to compare between groups.

Climbing assay
In order to characterize behavior defects in PD flies, climbing assay was performed as described previously [8]. Briefly, twenty male flies were transferred into an empty plastic vial and gently tapped to the bottom. The numbers of flies that could climb to the top (above 8cm) or remained at bottom in 18 seconds were recorded. The climbing assay was performed at least 3 times for every vial at each time point.

High throughput sequencing for miRNAs
Total RNA of each sample (three biological repeats for PD and control fly heads) was used to prepare the miRNA sequencing library through following steps: 1) 3'-adapter ligation with T4 RNA ligase; 2) 5'-adapter ligation with T4 RNA ligase; 3) cDNA synthesis with RT primer; 4) PCR amplification; 5) extraction and purification of ~125–145 bp PCR amplified fragments (correspond to ~15–35 nt small RNAs) from the PAGE gel. After the completed libraries were quantified with Agilent 2100 Bioanalyzer, the DNA fragments in the libraries were denatured with 0.1M NaOH to generate single-stranded DNA molecules, captured on Illumina flow cells, amplified in situ and finally sequenced for 36 cycles on Illumina HiSeq2000 according to the manufacturer’s instruction. Raw sequences were generated as clean reads from Illumina HiSeq by real-time base calling and quality filtering. Subsequently, the 3’ adapter sequence was trimmed from the clean reads and the reads with lengths shorter than 15 nt were discarded. As the 5’-adaptor was also used as the sequencing primer site, the 5’-adaptor sequence is not present in the sequencing reads. The trimmed reads (length ≥ 15 nt) were aligned to the fly premiRNA in miRBase 21, using novoalign software. The miRNA expression levels were measured and normalized as transcripts per million of total aligned miRNA reads (TPM). When comparing profile differences two groups of samples (PD and Control), the “fold change” (i.e. the ratio of the group averages) and p-value were calculated. miRNAs having fold changes ≥ 1.2, P-value ≤0.05 or fold change ≥ 2.0 were selected as the differentially expressed miRNAs.

qRT-PCR for miRNA
Quantitative real-time PCR (qRT-PCR) analysis was performed to validate the differently expressed mRNA in PD flies. First strand cDNA was synthesized using M-MLV reverse transcriptase (Epicentre) according to manufacture’s instructions. The sequences of RT primers are: 5’-GATTTTGGTGTCCATCCTTG-3’ (U6); 5’-GTCGTATCCAGTGCGTGTCGTGGACGTCGGCAATTGCACCTTGGAATACGACACAGCTG-3’ (dme-miR-133-3p); 5’-GTCGTATC
miRNAs Mediate α-Synuclein Toxicity in PD Drosophila

miRNA Targets Prediction and Pathway Enrichment Analysis

The target genes of differentially expressed miRNAs were predicted by miRanda-mirSVR algorithm and then subjected to GO analysis using Database for Annotation, Visualization and Integrated Discovery (DAVID) (count cutoff 10, EASE 0.01). The significantly affected GO terms ($p < 0.05$) in biological process, cellular component and molecular function were identified.

DIANA-miRPath is an efficient tool for analyzing the combinatorial effect of microRNAs on target pathways. We uploaded the dysregulated miRNAs and predicted potential target pathways using DIANA-microT-CDS algorithm. The significantly influenced pathways ($p < 0.05$) were identified.

Validation of target mRNA Expression

In order to validate the expression of predicted targets for dysregulated miRNAs, qRT-PCR was performed according to previously reported methods as mentioned before. PCR primers for mRNAs were listed in S2 Table.

Luciferase Reporter Assay

The 3'UTR fragments flanking miR-137 targeting sites of Nmdar2, D2R and GABA-B-R3 were cloned from Drosophila cDNA library and inserted into pGL3-promoter vectors respectively. Each of these vectors was co-transfected with Renilla plasmid pRL-TK and dme-miR-137-3p mimics (Genepharma, Shanghai) into HEK 293 cells in 12-well plates using Lipofactamine 2000 (Invitrogen). 24 hours post-transfection, luciferase activity was measured with Dual-Glo (Promega) according to the manufacturer's instructions. PCR primers for amplification were listed in S3 Table. Mutant constructs were made by site-directed mutagenesis to replace seed sequence with BglII cleavage site.

Statistics

Log-rank tests were performed to compare lifespan between groups. For other experiments, the significance of the difference was analyzed with Student's t test using GraphPad Prism software, and $p < 0.05$ were considered statistically significant.

Results

Characterization of PD Drosophila models

We established PD fly models according to literatures [8, 14, 15]. Briefly, elav-Gal4 flies were crossed with UAS-α synuclein (A30P) to ectopically express human α synuclein in nervous systems. As reported previously, we found that PD flies exhibited shorter lifespan (Fig 1A) and impaired locomotive ability (Fig 1B) compared with control flies. These results indicated that Drosophila models successfully developed adult-onset PD like phenotype in age dependent manner. Climbing ability of PD Drosophila was comparable with control flies at day 10 post eclosion (Fig 1B), which was consistent with the results from Feany et al [8]. At this time point,
miRNAs Mediate α-Synuclein Toxicity in PD Drosophila

A

![Graph showing survival over days for Control and PD](image)

Control
PD

B

![Graph showing climbing ability over days for Control and PD](image)

Control
PD

Climbing ability (%)
loss of dopaminergic cells in PD *Drosophila* was also detected. Therefore, we chose day 10 flies post eclosion as early PD stage to investigate miRNA expression profiles.

Deep sequencing data analysis and verification

The miRNA samples from heads of control and PD flies were sequenced using Illumina HiSeq2000 platform. The total numbers of the reads at the sequencing data processing stages are listed for each sample (3 biological repeats for control and PD flies) in Table 1. The majority of small RNAs were 20-22nt which were the typical length for miRNAs (Figs 2 and S1). The reads can be divided into several groups (miRNAs, tRNAs, rRNAs, sRNAs, snRNAs, other ncRNAs). As shown with pie charts in Figs 3 and S2, the majority was miRNAs (86.1%-90.8%).

The high-throughput sequencing results showed that 154 miRNAs (83.7% of total) were coexpressed in both control and PD flies (Fig 4). In contrast, 18 (9.8%) and 12 (6.5%) were preferentially expressed in the control or experimental groups (Fig 4B). Among 154 coexpressed miRNAs, five mature miRNAs (dme-miR-1008-5p, dme-miR-133-3p, dme-miR-137-3p, dme-miR-13b-3p, dme-miR-932-5p) were differentially expressed between PD and control groups (p<0.05) (Table 2 and S5 Table). Interestingly, all these miRNAs were upregulated in PD flies. Among them, dme-miR-133-3p, dme-miR-137-3p and dme-miR-13b-3p (the mature sequence both for dme-mir-13b-1 and dme-mir-13b-2) were highly conserved from flies to humans and enriched in nervous system. We choose them for validation using qRT-PCR. The results were consistent with miRNA sequencing data (Fig 5).

Functional annotations for targets of differentially expressed miRNAs

As four of the dysregulated miRNAs in PD flies including dme-miR-133-3p, dme-miR-137-3p, dme-miR-13b-3p and dme-miR-932-5p were brain enriched, we predicted targets of them and then submit to DAVID for Gene Ontology analysis (Fig 6 and S7 Table). GO enrichment analysis revealed that the target genes were functionally enriched in neuron related biological process (neurodifferentiation, neuron development, neuron projection development, neuron projection morphogenesis). In addition, cell component analysis showed that these targets were enriched in the membrane proteins.

DIANA miRPath is a powerful tool to analyze the combinational effects of miRNA on signaling pathways [21]. Using this method, we found dysregulated miRNAs significantly affect four pathways, of which neuroactive-ligand receptor interaction was most significant (Fig 7 and Table 3). Four of the total dysregulated miRNA could target 8 genes of this pathway. As

Table 1. The total numbers of the reads at the sequencing data processing stages.

Sample Name	Clean Reads	Adapter-trimmed Reads (length ≥ 15nt)	Reads aligned to known fly pre-miRNA in miRBase 21
Control1	5,129,041	1,946,868	1,464,900
PD1	5,099,213	1,770,633	1,275,736
Control2	6,504,988	1,898,757	1,272,772
PD2	5,008,812	2,222,004	1,654,116
Control3	5,249,650	1,548,423	1,021,194
PD3	4,508,826	1,644,140	1,161,098

doi:10.1371/journal.pone.0137432.t001

Fig 1. α-synuclein-induced locomotion defects and shortened lifespan. (A) Expression of A30P α-synuclein specifically in the nervous system shortened lifespan. Survival curves were compared using the log-rank test (P<0.01 between elav>W1118 and elav>α-synuclein A30P flies). (B) There is no difference for climbing ability for flies expressing A30P α-synuclein and control genotype at day 10. In contrast, PD flies showed significant age dependent locomotive impairments at days 30 and 40 (*P<0.05). Control flies: elav>W1118; PD flies: elav>α-synuclein (A30P).

doi:10.1371/journal.pone.0137432.g001
miRNAs Mediate α-Synuclein Toxicity in PD Drosophila
shown in S3 Fig and Table 4, miR-137-3p potentially targeted Nmdar2 (receptor for N-Acetylaspartyl glutamate and Glutamate, L-asparate, L-cysteic acid, L-homocysteic acid),
GABA-B-R1/GABA-B-R3 (GABA receptor) and D2R/DopR (Dopamine receptor). Lgr3 (Relaxin receptor) and AR2 (Galanin receptor) were predicted to be targeted by miR133-3p and miR-13b-3p respectively. In addition, miR-932-5p was proposed to act on AlstR (Galanin receptor) and GABA-B-R1 (GABA receptor). These results indicated that dysregulation of miRNAs potentially lead to interruption of neuroactive-ligand receptor signaling pathway and contributed to α-synuclein induced PD flies.

The mRNA levels of predicted targets were downregulated in PD flies. We examined the transcriptional levels of miR-137 targets in neuroactive ligand-receptor interaction pathway. Within five predicted targets, Nmdar2, GABA-B-R3, GABA-B-R1 and D2R were confirmed to be downregulated in PD flies (Fig 8). Particularly, the NMDA receptor Nmdar2 and GABA receptor GABA-B-R3 were most significant. Interestingly, hsa-miR-137-3p was also predicted to target KEGG pathways including Glutamatergic synapse (hsa04724) (p = 0.001749507) and GABAergic synapse (hsa04727) (p = 0.007160067) by DIANA miRPath analysis. GABA-B receptor (GABRA1, GABRA6, GABBR2) and NMDA receptor (GRIN2A) were identified as hsa-miR-137-3p targets (Table 5). Our results were consistent with previous reports that PD was associated with neuroactive ligand-receptor interaction pathway [22] and miR-137 could regulate synaptogenesis and neuronal transmission [23]. The regulatory effects of miR-137 on GRIN2A expression have been confirmed in human neuronal like SH-SY5Y cells [23]. Luciferase reporter assay showed that miR-137 could target GRIN2A directly in Rats [24]. The regulatory mechanisms seemed to be highly conserved from Drosophila to humans.

Table 2. Differentially expressed miRNAs.

MATURE-ID	PRE-ID	PRE-ACC	MATURE-LENGTH	MATURE-SEQ	EXP vs CTL Fold change	EXP vs CTL P-value
dme-miR-932-5p	dme-mir-932	M0005820	22	UCAAUCCGUAGUGCAUUGCAG	1.285714286	0.019803941
dme-miR-13b-3p	dme-mir-13b-2	M0000135	22	UAUCAGCAGCAUUUGACGAGU	1.49382716	0.008027299
dme-miR-13b-3p	dme-mir-13b-1	M0000134	22	UAUCAGCAGCAUUUGACGAGU	1.49382716	0.008027299
dme-miR-137-3p	dme-mir-137	M0005849	22	UAAUGCUGAGAAUACACGUAG	1.255868545	0.034111438
dme-miR-133-3p	dme-mir-133	M0000362	22	UUGGUCCCUCUACACGCUGU	1.301026694	0.009145923
dme-miR-1008-5p	dme-mir-1008	M0005869	21	GUAUAUAUCUAAAGUUGACU	1.228571429	0.015268072

doi:10.1371/journal.pone.0137432.t002
Luciferase reporter assays showed that dme-miR-137-3p could dose-dependently inhibit the luciferase activities for all these vectors as compared with miR-negative control, indicating that dme-miR-137-3p could target these predicted sites (Fig 9B). Furthermore, when we mutated both of miR-137 binding sites in D2R 3'UTR, the inhibitory effects were abolished (Fig 9C). Taken together, these results indicate that NMDAR2, D2R and GABA-B-R3 are direct targets for dme-miR-137-3p.

Discussion

As regulatory molecules that fine-tune gene expression at posttranscriptional level, miRNAs have been estimated to exert important roles in PD. However, their detailed in vivo functions are still elusive. Drosophila models provide powerful tools to investigate etiology and intervention methods for PD. Using high throughput small RNA sequencing technology, we measured miRNA expression profiles of early stage PD flies and identified five dysregulated mature miRNAs (miR-13b, dme-miR-133, dme-miR-137, miR-932 and miR-1008). KEGG functional annotation analysis showed that neuroactive-ligand receptors to be potentially affected by these miRNAs, which were confirmed by qRT-PCR analysis and luciferase reporter assay. Our study proposed miRNAs as potential biomarker for early stage PD and their dysregulation subsequently participates in PD pathogenesis by interruption of neuroactive-ligand receptor interaction pathway.
Fig 6. GO annotation of predicted targets for differentially expressed miRNAs. Functional annotations were performed using DAVID (count cutoff 10, EASE 0.01) to analyze predicted targets for differentially expressed miRNAs. The top 20 clusters in biological process and molecular function as well as top 10 terms in cellular component were shown (p<0.05).

doi:10.1371/journal.pone.0137432.g006
PD is a neurodegenerative disorder characterized by intraneuronal accumulation of filamentous inclusions known as Lewy body in substantia nigra. Feany and Bender established PD fly models by panneuronal expression normal and mutant forms of human \(\alpha\)-synuclein, the main components accumulated in Lewy body [8, 14, 15]. PD flies shows intraneuronal inclusions, loss of dopamine neurons and impaired locomotive ability. It provides powerful tool to investigate underlying mechanisms for PD. Endonuclease G (EndoG) and sirtuin2 (SIRT2) have been identified contributing to \(\alpha\) synuclein toxicity while vacuolar protein sorting 35 (VPS35), glucose phosphate isomerase 1 (GPI), tumor necrosis factor receptor-associated protein 1 (TRAP1), nuclear factor erythroid 2-related factor 2 (Nrf2), Rab1a, Rab8, histone deacetylase 6 (HDAC6), PTEN induced putative kinase 1 (Pink1), Cu/Zn superoxid Dismutase (SOD), methionine sulfoxide reductase A (MSRA), parkin as well as heat shock cognate 70-kd protein (Hsp70) could intervene PD progression [25–37].

Drugs currently used to treat this disorder have been tested in this model. Dopamine agonist (such as L-DOPA, pergolide, bromocriptine, and 2,3,4,5-tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine) and

Fig 7. Pathway enrichment of predicted miRNA targets. DIANA miRPath v.2.0 was used for pathway functional annotation. Significant affected pathways \(p<0.05\) were shown. The results were displayed as \(-\log p\) values.

doi:10.1371/journal.pone.0137432.g007

Table 3. KEGG pathway analysis for differential expressed miRNAs.

KEGG pathway	p-value	genes	miRNAs
Neuroactive ligand-receptor interaction	0.000265508	8	4
Fatty acid elongation	0.01106502	1	1
Sphingolipid metabolism	0.01106502	3	2
Terpenoid backbone biosynthesis	0.04363707	2	2

doi:10.1371/journal.pone.0137432.t003
prototypical muscarinic cholinergic receptor antagonist are found to be effective to restore climbing defects, confirming the utility of this model in screening PD drugs [38]. Since then, a number of potential drugs have been clarified. Spermidine, GABA, L-ascorbic acid, nordihydroguaiaretic acid, fendiline, geldanamycin, isorhynchophylline (IsoRhy), curcumin, epicatechin gallate, mannitol, sodium butyrate, S-methyl-L-cysteine (SMLC) as well as plant extracts including cinnamon extract precipitation (CEppt), Ocimum sanctum leaf extract extract, E. citriodora extract and Regrapex-R have been proved to ameliorate PD pathogenesis [35].

Table 4. Target genes for differential expressed miRNAs in neuroactive-ligand receptor interaction pathway.

miRNA names	Targets	Targets
dme-miR-137-3p	Nmdar2 FBgn0053513	GABA-B-R3 FBgn0031275
	GABA-B-R1 FBgn00260446	D2R FBgn0053517
dme-miR-133-3p	AR-2 FBgn0039595	Dopr FBgn0011582
dme-miR-13b-3p	Lgr3 FBgn0039354	GABA-B-R1 FBgn00260446
dme-miR-932-5p	AlstR FBgn0028961	FBgn00260446

Fig 8. Validation analysis for targets in neuroactive ligand-receptor interaction pathway. The mRNA levels for targets were validated using qRT-PCR in control and PD flies. The results showed that the targets were significantly inhibited in PD flies. (* p<0.05, ** p<0.01).

doi:10.1371/journal.pone.0137432.t004

doi:10.1371/journal.pone.0137432.g008
Taken together, these results demonstrate that α-synuclein induced PD fly models provide efficient tool for clarifying etiology and screening potential drugs for this disorder.

MiRNAs regulate gene expression at posttranscriptional level, which plays important roles in neurodegenerative diseases. Expression profiling analysis has identified a variety of miRNAs dysregulated in brain regions and blood samples from PD patients and animal models [17–20]. As α-synuclein inclusions is the major component of Lewy body, miRNAs (miR-34b, miR-34c, miR-153 and miR-7) could target 3'UTR of α-synuclein and ameliorate its toxic effects [53, 54]. In addition, miRNAs could also act on downstream signaling molecules mediating α-synuclein toxicity. Midbrain dopamine neuron (DA) specific miR-133b was found to target paired-like homeodomain transcription factor (Pitx3) and regulate DA neurons differentiation and activity [55]. MiR-128 could repression of transcription factor EB (TFEB) in both A9 and A10 DA neurons which further inhibits mTOR activation and defense against α-synuclein toxicity [56]. However, these findings were obtained from in vitro studies. Further experiments using genetic modified animal models are required to clarify detailed miRNA functions in PD. With advantages discussed previously, Drosophila PD models could contribute to elucidation PD related miRNA functions in vivo.

Our study using high throughput sequencing of miRNAs identified miR-13b, miR-133, miR-137, miR-932 and miR-1008 consistently upregulated in early stage PD flies. Among the dysregulated miRNAs, miR-13b, miR-133 and miR-137 were highly conserved from Drosophila to H. sapiens and their expression was validated by qRT-PCR. MiR-13b’s human homologue is miR-499 [57] that expressed in brain region and its polymorphism is associated with ischemic stroke [58]. Previously, we found miR-13b was also upregulated in adult onset AD flies [59]. These results indicate that miR-13b/miR-499 play important roles in pathogenesis of brain insults. MiR-133a and miR-133b are human orthologs of dme-miR-133 and enriched in human brain. Exosomes containing miR-133b from mesenchymal stem cells (MSCs) regulate neurite outgrowth of neural cells [60]. Morphine regulates dopaminergic neuron differentiation via miR-133b [61]. In addition to its physical functions, miR-133b is essential for functional recovery after spinal cord injury in adult zebrafish [62]. By targeting Pitx3, miR-133b was found to regulate the maturation and function of midbrain dopaminergic neurons, contributing to PD pathogenesis [55]. MiR-137 is also a highly conserved miRNA and exerts

Table 5. Target genes for hsa-miR-137-3p in GABAergic synapse and Glutamatergic synapse pathway in Homo sapiens.

	GABAergic synapse	Glutamatergic synapse
hsa-miR-137-3p targets	GABRA1	ADCY1
	PLCL1	ADCY2
	ADCY1	GRM5
	ADCY2	SLC17A6
	GABRG2	CPD
	GABBR2	PLCB1
	GAD2	PPP3CB
	GABRA6	DLGAP1
	SRC	GRM7
	CACNA1D	CACNA1D
	ADCY9	GRIN2A
	SLC6A1	ADCY9
		KCNJ3
		SLC1A2
Fig 9. Luciferase reporter assays confirmed dme-miR-137 could inhibit the targets in neuroactive-ligand receptor interaction pathway. (A) 3' UTRs of Nmdar2, D2R and GABA-B-R3 containing dme-miR-137-3p binding sites predicted by DIANA—microT (shown in square) were cloned into pGL3-promoter vectors. Arrows indicated the location of primers used for amplification. (B) The pGL3-promoter vector carrying Nmdar2, D2R and GABA-B-R3 3' UTR fragments flanking miR-137 targeting sites were co-transfected with Renilla plasmid pRL-TK as well as dme-miR-137-3p mimics into HEK 293 cells.
important roles in neuronal development and diseases. By regulating expression of nuclear receptor tailless (TLX) and lysine-specific demethylase 1 (LSD1) in neural stem cells, miR-137 controls the dynamics between neural stem cell proliferation and differentiation during neural development [63]. MiR-137 could also regulate neuronal maturation by targeting ubiquitin ligase mind bomb-1 [64]. Recently, it was reported that miR-137 and its seed-similar fly homologue miR-1000 regulated vesicular glutamate transporter (VGlut) expression and fine-tune excitatory synaptic transmission [65]. In addition, miR-137 also plays important roles in brain disorders. MiR-137 is associated with intellectual disability [66]. miR-137 is also proved to be associated with schizophrenia susceptibility, which usually accompanied with PD [67–69]. The mechanistic studies reveal that miR-137 regulates gene sets involved in synaptogenesis and neuronal transmission as well as glucocorticoid receptor-dependent signalling network, contributing to etiology of schizophrenia [23, 70]. In another neurodegenerative disorder Alzheimer’s disease, miR-137 is found to be associated with serine palmitoyltransferase (SPT) and amyloid β (Aβ) levels [71].

The reason for α-synuclein induced miRNA dysregulation in vitro could be explained in various mechanisms. Firstly, α-synuclein overexpression and aggregation in neuronal cells may influence signaling pathways and transcription factors that mediate miRNA expression. α-synuclein expression could influence signaling pathways including IRS-1/insulin/Akt, mTOR/S6K, MAPK, p53, GSK3β, PKC, synaptic transmission, ubiquitin protein pathway (UPS) and the autophagy pathway [72–79]. These pathways could further stimulate transcription factors and lead to miRNA dysregulation. α-synuclein could increase the activity of transcription factors including NRF2, NFAT, MEF2C-PGC1α, CREB, NF-κB, p53, Nurr1, and FOXP1 [74, 80–86]. We analyzed the promoter region of dme-miR-137 (5kb upstream of pre-dme-miR-137) using AliBaba2.1 based on TRANSFAC 4.0 and found three CREB binding sites as well as six NF-κB binding sites. In addition, CREB and NF-κB were also predicted to bind to hsa-miR-137 promoter, indicating the regulatory mechanisms were highly conserved. Taken together, α-synuclein may induce miR-137 expression by transcription factor CREB and NF-κB. Second, α-synuclein overexpression and aggregation in neuronal cells may stimulate cells to release different factors that induce miRNA expression. These factors include brain-derived neurotrophic factor, glial cell line-derived neurotrophic factor, reactive oxygen species, nitric oxide and other factors [87–90]. These factors may act on other cells and activate relevant signaling pathways as well as downstream transcription factors and induce miRNA expression. Third, the extracellular α-synuclein aggregates may act on neurons to regulate miRNA expression. It was reported that exogenous α-synuclein fibrils induce could activate singlaing pathways including PI3/Akt, calpain-dependent CDK5, LKB1/AMPK/Raptor, leading to synaptic dysfunction and neuron death [91–94]. Extracellular alpha-synuclein may also induce miRNA expression in vitro. Detailed experiments are required to clarify this problem.

In order to elucidate which signaling pathways potentially affected by these dysregulated miRNAs in PD flies, DIANA-miRPath analysis was performed and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway neuroactive-ligand receptor interaction was identified. Consistent with our findings, Huang et al. reported that when applying to a genome-wide association study (GWAS) dataset for Parkinson disease, extended Bayesian lasso (EBLasso) identified three significant pathways including the neuroactive-ligand receptor interaction, the primary bile acid biosynthesis pathway, and the mitogen-activated protein kinase (MAPK) signaling pathway [95]. Our validation experiments showed that downregulations of NMDA
receptor (Nmdar2) and GABA receptor (GABA-B-R3) were most significant. NMDA receptor GRIN2A was also predicted to be targeted by miR-137 in *Homo sapiens*, which have been validated in human SY-SH5Y cells [23]. Luciferase reporter assay showed that miR-137 could target GRIN2A directly in Rats [24], suggesting the regulatory mechanisms seemed to be highly conserved from *Drosophila* to humans. Interestingly, Genome-wide gene-environment study identifies glutamate receptor gene GRIN2A as a Parkinson’s disease modifier gene via interaction with coffee [95]. Activation of GABAB receptors within the substantia nigra pars reticulata (SNr), but not the globus pallidus (GP), reverses reserpine-induced akinesia in rats. The success of intracerebroventricular injection of baclofen suggests a potential for GABAB receptor agonists in the treatment Parkinson’s disease [96]. Hillman R et al reported that GABA rescue the loss of climbing activity in this PD fly models [40]. More specifically, GABA(B) agonists baclofen and the allosteric agonists CG 7930 and GS 39783 could also ameliorate locomotive defects, which diminished when flies are cofed with the GABA(B) receptor antagonist 2-hydroxysaclofen. In contrast, GABA(A) receptor agonist muscimol has no effect. This result indicated the important roles for neuroactive-ligand pathways in PD. Next step, we will use genetic manipulations and pharmacological methods to clarify the role miRNA-targets axis we identified within this pathway in PD.

Conclusions

Our findings indicated that α-synuclein could induce the dysregulation of highly conserved and brain enriched miRNAs, which target neuroactive ligand-receptor interaction pathway *in vivo*. We believe it will contribute to understanding miRNA functions in mediating α-synuclein toxicity and provide new insights into the pathogenesis driving PD.

Supporting Information

S1 Fig. Length distribution of total small RNAs in PD (PD2 and PD3) and control (control2 and control 3) flies.
(TIF)

S2 Fig. Frequency of different classes of RNA in small RNA libraries in PD (PD2 and PD3) and control (control2 and control3) flies.
(TIF)

S3 Fig. Predicted targets for dysreugulated *Drosophila* miRNAs in KEGG neuroactive ligand-receptor interaction pathway. The targets predicted by DIANA miRPath v.2.0 in neuroactive ligand-receptor interaction pathway were shown in red square.
(TIF)

S4 Fig. Predicted targets in KEGG Glutamatergic synapse in *H. sapiens*. The hsa-miR-137-3p targets predicted by DIANA miRPath v.2.0 in Glutamatergic synapse pathway were shown in red square. NMDA receptor GRIN2A was identifies as potential target.
(TIF)

S5 Fig. Predicted targets in KEGG GABAergic synapse in *H. sapiens*. The hsa-miR-137-3p targets predicted by DIANA miRPath v.2.0 in GABAergic synapse pathway were shown in red square. GABA receptors including GABRA1, GABRA6 and GABBR2 were identifies as potential targets.
(TIF)

S1 Table. PCR primers for miRNAs and U6.
(XLS)
S2 Table. PCR primers for mRNA targets.
(XLS)

S3 Table. PCR primers for luciferase reporter assay.
(XLS)

S4 Table. Expression profile of miRNAs in control and PD flies.
(XLS)

S5 Table. Differentially expressed miRNAs between control and PD flies.
(XLS)

S6 Table. Novel miRNAs were predicted with miRDeep2.
(XLS)

S7 Table. GO functional enrichment annotations for the miRNA targets.
(XLSX)

Author Contributions
Conceived and designed the experiments: YK. Performed the experiments: YK XL LL DZ CW.
Analyzed the data: YK ZG LY. Wrote the paper: YK ZG.

References
1. Mayeux R. Epidemiology of neurodegeneration. Ann Rev Neurosci. 2003; 26:81–104. PMID: 12574495
2. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. Alpha-synuclein in Lewy bodies. Nature 1997; 388:839–840. PMID: 9278044
3. Chartier-Harlin MC, Kachergus J, Roumier C, Mournoux V, Douay X, Lincoln S, et al. Alpha-synuclein locus duplication as a cause of familial Parkinson's disease. Lancet. 2004; 364:1167–1169. PMID: 15451224
4. Conway KA, Harper JD, Lansbury PT. Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat Med. 1998; 4:1318–1320. PMID: 9899568
5. Zarranz JJ, Alegre J, Gomez-Esteban JC, Lezcano E, Ros R, Ampuero I, et al. The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol. 2004; 55:164–173. PMID: 14755719
6. Tenreiro S, Reimao-Pinto MM, Antas P, Rino J, Wawrzycka D, Macedo D, et al. Phosphorylation modulates clearance of alpha-synuclein inclusions in a yeast model of Parkinson's disease. PLoS Genet. 2014; 10:e1004302. doi: 10.1371/journal.pgen.1004302 PMID: 24810576
7. Wang S, Zhang S, Liou LC, Ren Q, Zhang Z, Caldwell GA, et al. Phosphatidylethanolamine deficiency disrupts alpha-synuclein homeostasis in yeast and worm models of Parkinson disease. Proc Natl Acad Sci U S A. 2014; 111:E3976–3985. doi: 10.1073/pnas.1411694111 PMID: 25201965
8. Feany MB, Bender WW. A Drosophila model of Parkinson's disease. Nature. 2000; 404:394–398. PMID: 10746727
9. Van der Perren A, Macchi F, Toelen J, Carlon MS, Maris M, de Loo H, et al. FK506 reduces neuroinflammation and dopaminergic neurodegeneration in an alpha-synuclein-based rat model for Parkinson's disease. Neurobiol Aging. 2015; 36:1559–1568. doi: 10.1016/j.neurobiolaging.2015.01.014 PMID: 25660193
10. Chen L, Xie Z, Turkson S, Zhuang X. A53T human alpha-synuclein overexpression in transgenic mice induces pervasive mitochondria macroautophagy defects preceding dopamine neuron degeneration. J Neurosci. 2015; 35:890–905. doi: 10.1523/JNEUROSCI.0089-14.2015 PMID: 25609609
11. Barkholt P, Sanchez-Guajardo V, Krik D, Romero-Ramos M. Long-term polarization of microglia upon alpha-synuclein overexpression in nonhuman primates. Neuroscience. 2012; 208:85–96. doi: 10.1016/j.neuroscience.2012.02.004 PMID: 22342967
12. Bouleau S, Tricoire H. Drosophila models of Alzheimer's disease: advances, limits, and perspectives. J Alzheimers Dis. 2015; 45:1015–1038. doi: 10.3233/JAD-142802 PMID: 25697708
13. Maheshwari M, Bhutani S, Das A, Mukherjee R, Sharma A, Kino Y, et al. Dexamethasone induces shock response and slows down disease progression in mouse and fly models of Huntington's disease. Hum Mol Genet. 2014; 23:2737–2751. doi: 10.1093/hmg/ddt466 PMID: 24381308

14. Chen L, Feany MB. Alpha-synuclein phosphorylation controls neurotoxicity and inclusion formation in a Drosophila model of Parkinson's disease. Nat Neurosci. 2005; 8:657–663. PMID: 15834418

15. Periquet M, Fulga T, Myllykangas L, Schlossmacher MG, Feany MB. Aggregated alpha-synuclein mediates dopaminergic neurotoxicity in vivo. J Neurosci. 2007; 27:3338–3346. PMID: 17376994

16. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011; 12:861–874. doi: 10.1038/nrg3074 PMID: 22094949

17. Cardo LF, Coto E, de Mena L, Ribacoba R, Moris G, Menendez M, et al. Profile of microRNAs in the plasma of Parkinson's disease patients and healthy controls. J Neurol. 2013; 260:1420–1422. doi: 10.1007/s00415-013-6900-8 PMID: 23543376

18. Minones-Moyano E, Porta S, Escaramís G, Rabionet R, lira Olavarrieta S, Kagerbauer B, et al. MicroRNA profiling of Parkinson's disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. Hum Mol Genet. 2011; 20:3067–3068. doi: 10.1093/hmg/ddr210 PMID: 21558425

19. Margis R, Margis R, Rieder CR. Identification of blood microRNAs associated to Parkinson's disease. J Biotechnol. 2011; 152:96–103. doi: 10.1016/j.jbiotec.2011.01.023 PMID: 21295623

20. Vlachos IS, Kostoulas N, Vergoulis T, Georgakilas G, Reczko M, Maragkakis M, et al. DIANA miRPath v.2.0: investigating the combinatorial effect of microRNAs in pathways. Nucleic Acids Res. 2012; 40 (Web Server issue):W498–504. doi: 10.1093/nar/gks494 PMID: 22649059

21. Huang A, Martin ER, Vance JM, Cai X. Detecting genetic interactions in pathway-based genome-wide association studies. Genetic Epidemiol. 2014; 38:300–309.

22. Strazisar M, Cammaerts S, van der Ven K, Forero DA, Lenaerts AS, Nordin A, et al. MIR137 variants identified in psychiatric patients affect synaptogenesis and neuronal transmission gene sets. Mol Psychiatry. 2015; 20:472–481. doi: 10.1038/mp.2014.53 PMID: 24888363

23. Zhao L, Li H, Guo R, Ma T, Hou R, Ma X, et al. miR-137, a new target for post-stroke depression? Neurobiol Dis. 2014; 71:1–13. doi: 10.1016/j.nbd.2014.07.014 PMID: 25107340

24. Yin G, Lopes da Fonseca T, Eisbach SE, Anduaga AM, Breda C, Orcuilet ML, et al. alpha-Synuclein interacts with the switch region of Rab8a in a Ser129 phosphorylation-dependent manner. Neurobiol Disease 2014; 70:149–161.

25. Butler EK, Voigt A, Lutz AK, Toegel JP, Gerhardt E, Karsten P, et al. The mitochondrial chaperone protein TRAP1 mitigates alpha-Synuclein toxicity. PLoS Genet. 2012; 8:e1002488. doi: 10.1371/journal.pgen.1002488 PMID: 22319455

26. Barone MC, Sykiotis GP, Bohmann D. Genetic activation of Nrf2 signaling is sufficient to ameliorate neurodegenerative phenotypes in a Drosophila model of Parkinson's disease. Dis Model Mech. 2011; 4:701–707. doi: 10.1242/dmm.007575 PMID: 21719443

27. Winslow AR, Chen CW, Corrochano S, Acevedo-Arozena A, Gordon DE, Peden AA, et al. alpha-Synuclein impairs macroautophagy: implications for Parkinson's disease. J Cell Biol. 2010; 190:1023–1037. doi: 10.1083/jcb.201003122 PMID: 20855506

28. Du G, Liu X, Chen X, Song M, Yan Y, Jiao L, et al. Drosophila histone deacetylase 6 protects dopaminergic neurons against alpha-synuclein toxicity by promoting inclusion formation. Mol Biol Cell. 2010; 21:2128–2137. doi: 10.1091/mbc.E10-03-0200 PMID: 20449773

29. Todd AM, Staveley BE. Pink1 suppresses alpha-synuclein-induced phenotypes in a Drosophila model of Parkinson's disease. Genome. 2008; 51:1040–1046. doi: 10.1139/G08-085 PMID: 19088817

30. Botella JA, Bayersdorfer F, Schneuwly S. Superoxide dismutase overexpression protects dopaminergic neurons in a Drosophila model of Parkinson's disease. Neurobiol Dis. 2008; 30:65–73. doi: 10.1016/j.nbd.2007.11.013 PMID: 18243719
35. Wassef R, Haenold R, Hansel A, Brot N, Heinemann SH, Hoshi T. Methionine sulfoxide reductase A and a dietary supplement S-methyl-L-cysteine prevent Parkinson's-like symptoms. J Neurosci. 2007; 27:12808–12816. PMID: 18032652

36. Haywood AF, Staveley BE. Parkin counteracts symptoms in a Drosophila model of Parkinson's disease. BMC Neurosci. 2004; 5:14. PMID: 15090075

37. Auluck PK, Chan HY, Trojanowski JQ, Lee VM, Bonini NM. Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson's disease. Science. 2002; 295:865–868. PMID: 11823645

38. Pendleton RG, Parvez F, Sayed M, Hillman R. Effects of pharmacological agents upon a transgenic model of Parkinson's disease in Drosophila melanogaster. J Pharmcol Exp Ther. 2002; 300:91–96. PMID: 11752102

39. Buttnner S, Broeskamp F, Sommer C, Markaki M, Habemig L, Alavian-Ghavanini A, et al. Spermidine protects against alpha-synuclein neurotoxicity. Cell cycle. 2014; 13:3903–3908. doi: 10.1016/1538-4101.2014.07.001 PMCID: 25483063

40. Rowan R, Osanai J, Pendleton R. The role of the GABA(B) receptor and calcium channels in a Drosophila model of Parkinson's Disease. Neurosci Lett. 2012; 516:167–170. doi: 10.1016/j.neulet.2012.03.034 PMCID: 22480689

41. Khan S, Jyoti S, Naz F, Shakya B, Rahul, Afzal M, et al. Effect of L-ascorbic Acid on the climbing ability and protein levels in the brain of Drosophila model of Parkinson's disease. Int J Neurosci. 2012; 122:704–709. doi: 10.3109/00207454.2012.709893 PMCID: 22776006

42. Siddique YH, Ara G, Jyoti S, Afzal M. The dietary supplementation of nordihydroguaiaretic acid (NDGA) delayed the loss of climbing ability in Drosophila model of Parkinson's disease. J Diet Suppl. 2012; 9:1–8. doi: 10.3109/19390211.2011.630716 PMID: 22432798

43. Shaltiel-Karyo R, Davidi D, Frenkel-Pinter M, Ovadia M, Segal D, Gazit E. Differential inhibition of alpha-synuclein oligomeric and fibrillar assembly in parkinson's disease model by cinnamon extract. Biochim Biophys Acta. 2012; 1820:1628–1635. doi: 10.1016/j.bbadis.2012.04.021 PMCID: 22575665

44. Auluck PK, Meulener MC, Bonini NM. Mechanisms of Suppression of alpha-Synuclein Neurotoxicity by Geldanamycin in Drosophila. J Biol Chem. 2005; 280:2873–2878. PMID: 15556931

45. Lu JH, Tan JQ, Durairajan SS, Liu LF, Zhang ZH, Ma L, et al. Isorhynchophylline, a natural alkaloid, protects against alpha-synuclein toxicity in a Drosophila model for Parkinson's disease. Neurosci. 2013; 246:382–390. doi:10.1016/j.neuroscience.2013.04.037 PMID: 23623990

46. Siddique YH, Naz F, Jyoti S. Effect of curcumin on lifespan, activity pattern, oxidative stress, and apoptosis in the brains of transgenic Drosophila model of Parkinson's disease. Biomed Res Int. 2014; 2014:606928. doi: 10.1155/2014/606928 PMCID: 24860828

47. Siddique YH, Jyoti S, Naz F. Effect of epicatechin gallate dietary supplementation on transgenic Drosophila model of Parkinson’s disease. J Diet Suppl. 2014; 11:121–130. doi: 10.3109/19390211.2013.859207 PMCID: 24670116

48. Shaltiel-Karyo R, Frenkel-Pinter M, Rockenstein E, Patrick C, Levy-Sakin M, Schiller A, et al. Spermidine protects against the degradation of alpha-synuclein in neuronal cells via inducing autophagy. Apoptosis. 2012; 8:98–108. doi: 10.1016/20.1.138131 PMCID: 22113202

49. Siddique YH, Faisal M, Naz F, Jyoti S, Rahul. Role of Ocimum sanctum leaf extract on dietary supplementation in transgenic Drosophila model of Parkinson’s disease. Nutr Neurosci. 2011; 14:257–262. doi: 10.1080/12088630100107321635. PMID: 11823645

50. Siddique YH, Jyoti S, Naz F, Rahul. Role of Ocimum sanctum leaf extract on dietary supplementation in the transgenic Drosophila model of Parkinson’s disease. Chin J Nat Med. 2014; 12:777–781. doi: 10.1016/S1875-5364(14)00118-7 PMCID: 25443371

51. Siddique YH, Mujtaba SF, Jyoti S, Naz F. GC-MS analysis of Eucalyptus citriodora leaf extract and its role on the dietary supplementation in transgenic Drosophila model of Parkinson’s disease. Food Chem Toxicol. 2013; 55:29–35. doi: 10.1016/j.fct.2012.12.028 PMCID: 23318758

52. Long J, Gao H, Sun L, Liu J, Zhao-Wilson X. Grape extract protects mitochondria from oxidative damage and improves locomotor dysfunction and extends lifespan in a Drosophila Parkinson's disease model. Rejuvenation Res. 2009; 12:321–331. doi: 10.1089/rej.2009.0877 PMID: 19929256

53. Kabaria S, Choi DC, Chaudhuri AD, Mouradian MM, Jann E. Inhibition of miR-34b and miR-34c enhances alpha-synuclein expression in Parkinson's disease. FEBS Lett. 2015; 589:319–325. doi: 10.1016/j.febslet.2015.12.014 PMCID: 25541488

54. Dovakin E. Post-transcriptional regulation of alpha-synuclein expression by mir-7 and mir-153. J Biol Chem. 2010; 285:12726–12734. doi: 10.1074/jbc.M109.086827 PMCID: 20109693
56. Decressac M, Mattsson B, Weikop P, Lundblad M, Jakoblund A. TFEB-mediated autophagy rescues midbrain dopamine neurons from alpha-synuclein toxicity. Proc Natl Acad Sci U S A. 2013; 110:E1817–1826. doi:10.1073/pnas.1305623110 PMID: 23610405

57. Ibanez-Ventoso C, Vora M, Driscoll M. Sequence relationships among C. elegans, D. melanogaster and human microRNAs highlight the extensive conservation of microRNAs in biology. PloS One. 2008; 3:e2818. doi:10.1371/journal.pone.0002818 PMID: 18665242

58. Jeon YJ, Kim OJ, Kim SY, Oh SH, Oh D, Kim OJ, et al. Association of the miR-146a, miR-149, miR-196a2, and miR-499 polymorphisms with ischemic stroke and silent brain infarction risk. Arterioscler thromb Vasc Biol. 2013; 33:420–430. doi:10.1161/ATVBAHA.112.300251 PMID: 23202363

59. Kong Y, Wu J, Yuan L. MicroRNA expression analysis of adult-onset Drosophila Alzheimer’s disease model.Curr Alzheimer Res. 2014; 11:882–891. PMID: 25274109

60. Xin H, Li Y, Buller B, Katakowski M, Zhang Y, Wang X, et al. Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells. 2012; 30:1556–1564. doi:10.1002/stem.2650841

61. Sanchez-Simon FM, Zhang XX, Loh HH, Law PY, Rodriguez RE. Morphine regulates dopaminergic neuron differentiation via miR-133b. Mol Pharmacol. 2010; 78:935–942. doi:10.1124/mol.110.066837 PMID: 20716624

62. Yu YM, Gibbs KM, Davila J, Campbell N, Sung S, Todorova TI, et al. MicroRNA miR-133b is essential for functional recovery after spinal cord injury in adult zebrafish. Eur J Neurosci. 2011; 33:1587–1597. doi:10.1111/j.1460-9568.2011.07643.x PMID: 21447094

63. Sun G, Ye P, Murali K, Lang MF, Li S, Zhang H, et al. miR-137 is a regulatory loop with nuclear receptor TLX and LSD1 in neural stem cells. Nature Commun. 2011; 2:529.

64. Smrt RD, Szulwach KE, Pfeiffer RL, Li X, Guo W, Pathania M, et al. MicroRNA miR-137 regulates neuronal maturation by targeting ubiquitin ligase mind bomb-1. Stem Cells. 2010; 28:1060–1070. doi:10.1002/stem.431 PMID: 20506192

65. Verma P, Augustine GJ, Ammar MR, Tashiro A, Cohen SM. A neuroprotective role for microRNA miR-1002 mediated by limiting glutamate excitotoxicity. Nature Neurosci. 2015; 18:379–385. doi:10.1038/nn.3935 PMID: 25643297

66. Willemsen MH, Valles A, Kirkels LA, Mastebroek M, Olde Loohuis N, Kos A, et al. Chromosome 1p21.3 microdeletions comprising DPYD and MIR137 are associated with intellectual disability. J Med Genet. 2011; 48:810–818. doi:10.1136/jmedgenet-2011-100294 PMID: 22003227

67. Wright C, Turner JA, Calhoun VD, Perrone-Bizzozero N. Potential Impact of miR-137 and Its Targets in Schizophrenia. Front Genet. 2013; 4:58. doi:10.3389/fgene.2013.00058 PMID: 23637704

68. Yin J, Lin J, Luo X, Chen Y, Li Z, Ma G, Li K. miR-137: a new player in schizophrenia. Int J Mol Sci. 2014; 15:3262–3271. doi:10.3390/ijms15023262 PMID: 24566148

69. Nalls MA, Saad M, Noyce AJ, Keller MF, Schrag A, Bestwick JP, et al. Genetic comorbidities in Parkinson's disease. Hum Mol Genet. 2014; 23:831–841. doi:10.1093/hmg/ddt465 PMID: 24057672

70. Valles A, Martens GJ, De Weerd P, Poelmans G, Aschrafi A. MicroRNA-137 regulates a glucocorticoid receptor-dependent signalling network: implications for the etiology of schizophrenia. J Psychiatry Neurosci. 2014; 39:312–320. PMID: 24866554

71. Geekiyange H, Chan C. MicroRNA-137/181c regulates serine palmitoyltransferase and in turn amyloid beta, novel targets in sporadic Alzheimer’s disease. J Neurosci. 2011; 31:14820–14830. doi:10.1523/JNEUROSCI.3935-11.2011 PMID: 21994399

72. Gao S, Duan C, Gao G, Wang X, Yang H. Alpha-synuclein overexpression negatively regulates insulin receptor substrate 1 by activating mTORC1/S6K1 signaling. Int J Biochem Cell Biol. 2015; 64:25–33. doi:10.1016/j.biocel.2015.03.006 PMID: 25813876

73. Musgrove RE, King AE, Dickson TC. α-Synuclein protects neurons from apoptosis downstream of free-radical production through modulation of the MAPK signalling pathway. Neurotox Res. 2013; 23 (4):358–369. doi:10.1007/s12640-012-9352-5 PMID: 22936601

74. Desplats P, Spencer B, Crews L, Pathel P, Morvinski-Friedmann D, Kosberg K, et al. α-Synuclein induces alterations in adult neurogenesis in Parkinson disease models via p53-mediated repression of Notch1. J Biol Chem. 2012; 287:31691–31702. doi:10.1074/jbc.M112.354522 PMID: 22833673

75. Golpich M, Amini E, Hemmati F, Ibrahim NM, Rahmani B, Mohamed Z, et al. Glycogen synthase kinase-3 beta (GSK-3β) signaling: Implications for Parkinson’s disease. Pharmacol Res. 2015; 97:16–26. doi:10.1016/j.phrs.2015.03.010 PMID: 25829335

76. Jin H, Kanthasamy A, Ghosh A, Yang Y, Anantharam V, Kanthasamy AG. α-Synuclein negatively regulates protein kinase Cδ expression to suppress apoptosis in dopaminergic neurons by reducing p300 histone acetyltransferase activity. J Neurosci. 2011; 31:2035–2051. doi:10.1523/JNEUROSCI.5634-10.2011 PMID: 21307242
77. Wu N, Joshi PR, Cepeda C, Masliah E, Levine MS. Alpha-synuclein overexpression in mice alters synaptic communication in the corticostriatal pathway. J Neurosci Res. 2010; 88:1764–1776. doi: 10.1002/jnr.22327 PMID: 2029978

78. Lee FK, Wong AK, Lee YW, Wan OW, Chan HY, Chung KK. The role of ubiquitin linkages on alpha-synuclein induced-toxicity in a Drosophila model of Parkinson’s disease. 2009; J Neurochem. 110:208–219. doi: 10.1111/j.1471-4159.2009.06124.x PMID: 19457126

79. Decressac M, Mattsson B, Weikop P, Lundblad M, Jakobsson J, Björklund A. TFEB-mediated autophagy rescues midbrain dopamine neurons from α-synuclein toxicity. Proc Natl Acad Sci U S A. 2013; 110:E1817–E1826. doi: 10.1073/pnas.1305623110 PMID: 23610405

80. Barone MC, Sykiotis GP, Bohmann D. Genetic activation of Nrf2 signaling is sufficient to ameliorate neurodegenerative phenotypes in a Drosophila model of Parkinson’s disease. Dis Model Mech. 2011; 4:701–707. doi: 10.1242/dmm.007575 PMID: 21719443

81. Luo J, Sun L, Lin X, Liu G, Yu J, Parisiadou L, et al. A calcineurin- and NFAT-dependent pathway is involved in α-synuclein-induced degeneration of midbrain dopaminergic neurons. Hum Mol Genet. 2014; 23:6567–74. doi: 10.1093/hmg/ddu377 PMID: 25051958

82. Ryan SD, Dolatabadi N, Chan SF, Zhang X, Akhtar MW, Parker J, et al. Isogenic human iPSC Parkinson’s model shows nitrosative stress-induced dysfunction in MEFS2-PGC1α transcription. Cell. 2013; 155:1351–1364. doi: 10.1016/j.cell.2013.11.009 PMID: 24290359

83. Price DL, Rockenstein E, Ubhi K, Phung V, MacLean-Lewis N, Askay D, et al. Alterations in mGlur5 expression and signaling in Lewy body disease and in transgenic models of alpha-synucleinopathy—implications for excitotoxicity. PLoS One. 2010; 5:e14020. doi: 10.1371/journal.pone.0014020 PMID: 2110359

84. Aoki R, Li YR. α-synuclein promotes neuroprotection through NF-κB-mediated transcriptional regulation of protein kinase C5. Sci Signal. 2011; 4:jc6. doi: 10.1126/scisignal.2002425 PMID: 22009151

85. Devine MJ. Proteasomal inhibition as a treatment strategy for Parkinson’s disease: the impact of AMP-activated protein kinase in α-synuclein neurotoxicity in vitro. Neurobiol Dis. 2014; 63:1–5. doi: 10.1016/j.nbd.2013.11.002 PMID: 24269733

86. Gispert S, Kurz A, Brehm N, Rau K, Walter M, Riess O, Auburger G. Complexin-1 and Foxp1 expression Changes Are Novel Brain Effects of Alpha-Synuclein Pathology. Mol Neurobiol. 2015; 52:57–63. doi: 10.1007/s12052-014-8844-0 PMID: 25112678

87. Decressac M, Kadkhodaei B, Mattsson B, Laguna A, Perllmann T, Björklund A. α-synuclein-induced down-regulation of Nurr1 disrupts GDNF signaling in nigral dopamine neurons. Sci Transl Med. 2012; 4:163ra156. doi: 10.1126/scitranslmed.3004676 PMID: 23220632

88. Kohno R, Sawada H, Kawamoto Y, Uemura K, Shibasaki H, Shimohama S. BDNF is induced by wild-type alpha-synuclein but not by the two mutants, A30P or A53T, in glioma cell line. Biochem Biophys Res Commun. 2004; 318:113–118. PMID: 15110760

89. Wang B, Liu Q, Shan H, Xia C, Liu Z. Nrf2 inducer and cncC overexpression attenuates neurodegeneration due to α-synuclein in Drosophila. Biochem Cell Biol. 2015; 93:351–358. doi: 10.1139/bcb-2015-0015 PMID: 26008822

90. Liu S, Fa M, Ninan I, Trinchese F, Dauer W, Arancio O. Alpha-synuclein involvement in hippocampal synaptic plasticity: role of NO, cGMP, cGK and CaMKII. Eur J Neurosci. 2007; 25:3583–3596. PMID: 17610578

91. Czapski GA, Gsowska M, Wilkaniec A, Cie lIk M, Adamczyk A. Extracellular alpha-synuclein induces calpain-dependent overactivation of cyclin-dependent kinase 5 in vitro. FEBS Lett. 2013; 587:3135–3141. doi: 10.1016/j.febslet.2013.07.053 PMID: 23954626

92. Dulovic M, Jovanovic M, Xilouri M, Stefanis L, Harhaji-Trajkovic L, Kravic-Stevovic T, et al. The protective role of AMP-activated protein kinase in α-synuclein neurotoxicity in vitro. Neurobiol Dis. 2014; 63:1–8. doi: 10.1016/j.nbd.2013.11.002 PMID: 24269733

93. Seo JH, Rah JC, Choi SH, Shin JK, Min K, Kim HS, et al. Alpha-synuclein regulates neuronal survival via Bcl-2 family expression and PI3/Akt kinase pathway. FASEB J. 2002; 16:1826–1828. PMID: 12223445

94. Volpicelli-Daley LA, Luk KC, Patel TP, Tanik SA, Riddle DM, Stieber A, et al. Exogenous α-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron. 2011; 72:57–71. doi: 10.1016/j.neuron.2011.06.033 PMID: 21982369

95. Hamza TH, Chen H, Hill-Burns EM, Rhodes SL, Montimurro J, Kay DM, et al.Genome-wide gene-environment study identifies glutamate receptor gene GRIN2A as a Parkinson’s disease modifier gene via interaction with coffee. PLoS Genet. 2011; 7:e1002237. doi: 10.1371/journal.pgen.1002237 PMID: 21876681
96. Johnston T, Duty S. GABA(B) receptor agonists reverse akinesia following intranigral or intracerebroventricular injection in the reserpine-treated rat. Br J Pharmacol. 2003; 139:1480–1486. PMID: 12922935