Dictyostelium discoideum as a pharmacological model system to study the mechanisms of medicinal drugs and natural products

JUDITH SCHAF*, JOSEPH DAMSTRA-ODDY* and ROBIN S.B. WILLIAMS*
Centre for Biomedical Sciences, Department of Biological Sciences, Royal Holloway University of London, UK.

ABSTRACT Developing novel compounds for the treatment of diseases remains one of the highest priorities in biomedical research, where it is critical to identify their targets and how they work at a cellular level. Most studies in this area employ mammalian models, since rodents or non-human primates are seen as a good approximation for humans. However, using mammalian models can be problematic for a range of reasons, including high genetic redundancy and the essential role for many proteins in development. More importantly, it is very difficult to identify how compounds function at a cellular or molecular level in these models without a previously suggested mechanism or target. So how can we identify targets of medicinal compounds? In this review we outline the use of an innovative and tractable model system, Dictyostelium discoideum, to provide useful insight to the cellular and molecular functions of both therapeutic drugs and pharmacologically active natural products. We outline the advantages of using this model, and then provide a range of exemplar studies using D. discoideum in pharmacological research to demonstrate breakthroughs in understanding the action and effects of compounds, and the subsequent translational of these advances to mammalian models leading to potential improvements in societal health.

KEY WORDS: mechanism of action, natural product, drug discovery, pharmacogenomics, pharmacology

Introduction

Dictyostelium discoideum is a soil-living eukaryotic amoeba that was first described in 1935. D. discoideum employs two mutually exclusive life cycles – initially under optimal nutrient conditions existing in a unicellular state consuming bacteria as a food source and multiplying via mitotic cell division (Li and Purugganan, 2011). However, under starvation conditions, cells enter a development life cycle, where they migrate together and form multicellular structures called fruiting bodies. During this aggregation phase, cells initiate a process of differentiation where two distinct cell types are formed.

In the following sections we will introduce D. discoideum as a pharmacological research model. We will highlight the characteristics of the model that facilitate its use in this research area, including specific methodologies and approaches that are rapidly employable in the system. We will then outline a range of studies, relating to both pharmaceutical drugs and potential therapeutic natural products, where D. discoideum has been used as a research model to advance our understanding of their cellular mechanisms and targets. We will also outline subsequent translational work to validate these discoveries in mammalian models or in humans.

Pharmacological model systems and the social amoeba D. discoideum

The field of pharmacology focuses on understanding the action of drugs (and natural products) at a molecular, cellular, or organ-
A wide variety of characteristics support the use of *D. discoideum* as an advantageous model for this research. Phylogenetic analysis indicates that *D. discoideum* is more closely related to animals than to plants or bacteria, and contains many orthologues of human proteins that have been lost in yeast (Eichinger et al., 2005), including a range of proteins linked to disease-related processes (Muller-Taubenberger et al., 2013, Williams et al., 2006). Thus, the simple compact genome of *D. discoideum*, with less functional redundancy compared to mammalian cells, provides a useful model for research. In addition, a range of experimental procedures are available in *D. discoideum* that are difficult or impossible in mammalian systems. The haploid nature of *D. discoideum* has allowed the creation of genome wide mutant libraries, which contain thousands of individual mutants having each lost a single gene (Paschke et al., 2018). These libraries can be used to identify mutants with reduced sensitivity to medicinal compounds (Fig. 1), thus suggesting that the encoded proteins are either potential targets or function to revert key changes in drug-sensitive signalling pathways. Mutants that are resistant to a specific compound can be rapidly recapitulated by using either homologous integration of knockout cassettes (Paschke et al., 2018) or CRISPR/Cas9 techniques (Sekine et al., 2018). In these cases, cell growth can provide an effective and rapid means to measuring sensitivity to a compound. Alternately, *D. discoideum* undergoes a simple development cycle upon starvation, where a set of discrete proteins control aggregation and formation of a fruiting body, and this process can also be used to rapidly test compound effects and mutant resistance (Cocorocchio et al., 2018, Kelly et al., 2019). In addition, both the function and the cellular location of identified proteins can be characterised by generating *D. discoideum* mutant cell lines overexpressing the ablated gene or the orthologous human gene (Fischer et al., 2004, Ludtmann et al., 2014, Sekine et al., 2018). On a cellular level *D. discoideum* growth, movement and cell shape can also be used as a rapid readout system to analyse the effects of a compound (Cocorocchio et al., 2018, Robery et al., 2011, Robery et al., 2013). Thus, through identifying and analysing *D. discoideum* mutants lacking potential target proteins, the role of drugs or bioactive natural products can be rapidly explored at a cellular level.

Pharmacological drug analysis and drug discovery

Modern pharmaceutical drug development has tended to focus on the development of novel chemical structures, found through screening libraries of compounds or through iterative cycles of chemical modification and testing (Taylor, 2015). Resulting compounds are thus novel chemicals with efficacy against a known target or for regulating a disease-associated effect. Through this process, it is regularly assumed that the actions of the new drugs present in widely ranging cell types, and due to metabolism and pharmacokinetics considerations. Thus, new and innovative approaches are needed to help identify drug targets and mechanisms.

Non-animal models have long been employed as innovative, fast, and cost-effective systems for research, often providing fundamental breakthroughs in understanding cellular functions in mammalian systems. These systems traditionally include yeast and fungi, but a range of recent studies have illustrated that *D. discoideum* can now be added to this list (Muller-Taubenberger et al., 2013, Williams et al., 2006). A wide variety of cell types, and due to metabolism and pharmacokinetics. Thus, new and innovative approaches are needed to help identify drug targets and mechanisms.

Non-animal models have long been employed as innovative, fast, and cost-effective systems for research, often providing fundamental breakthroughs in understanding cellular functions in mammalian systems. These systems traditionally include yeast and fungi, but a range of recent studies have illustrated that *D. discoideum* can now be added to this list (Muller-Taubenberger et al., 2013, Williams et al., 2006). A wide variety of characteristics support the use of *D. discoideum* as an advantageous model for this research. Phylogenetic analysis indicates that *D. discoideum* is more closely related to animals than to plants or bacteria, and contains many orthologues of human proteins that have been lost in yeast (Eichinger et al., 2005), including a range of proteins linked to disease-related processes (Muller-Taubenberger et al., 2013, Williams et al., 2006). Thus, the simple compact genome of *D. discoideum*, with less functional redundancy compared to mammalian cells, provides a useful model for research. In addition, a range of experimental procedures are available in *D. discoideum* that are difficult or impossible in mammalian systems. The haploid nature of *D. discoideum* has allowed the creation of genome wide mutant libraries, which contain thousands of individual mutants having each lost a single gene (Paschke et al., 2018). These libraries can be used to identify mutants with reduced sensitivity to medicinal compounds (Fig. 1), thus suggesting that the encoded proteins are either potential targets or function to revert key changes in drug-sensitive signalling pathways. Mutants that are resistant to a specific compound can be rapidly recapitulated by using either homologous integration of knockout cassettes (Paschke et al., 2018) or CRISPR/Cas9 techniques (Sekine et al., 2018). In these cases, cell growth can provide an effective and rapid means to measuring sensitivity to a compound. Alternately, *D. discoideum* undergoes a simple development cycle upon starvation, where a set of discrete proteins control aggregation and formation of a fruiting body, and this process can also be used to rapidly test compound effects and mutant resistance (Cocorocchio et al., 2018, Kelly et al., 2019). In addition, both the function and the cellular location of identified proteins can be characterised by generating *D. discoideum* mutant cell lines overexpressing the ablated gene or the orthologous human gene (Fischer et al., 2004, Ludtmann et al., 2014, Sekine et al., 2018). On a cellular level *D. discoideum* growth, movement and cell shape can also be used as a rapid readout system to analyse the effects of a compound (Cocorocchio et al., 2018, Robery et al., 2011, Robery et al., 2013). Thus, through identifying and analysing *D. discoideum* mutants lacking potential target proteins, the role of drugs or bioactive natural products can be rapidly explored at a cellular level.

Pharmacological drug analysis and drug discovery

Modern pharmaceutical drug development has tended to focus on the development of novel chemical structures, found through screening libraries of compounds or through iterative cycles of chemical modification and testing (Taylor, 2015). Resulting compounds are thus novel chemicals with efficacy against a known target or for regulating a disease-associated effect. Through this process, it is regularly assumed that the actions of the new drugs present in widely ranging cell types, and due to metabolism and pharmacokinetics considerations. Thus, new and innovative approaches are needed to help identify drug targets and mechanisms.
D. discoideum as a pharmacological model

Bipolar disorder drugs regulate InsP₃ signalling

- Williams et al. (1999)

VPA regulates MAPK signalling

- Boeckeler et al. (2006)

VPA regulates phosphoinositide signalling

- Xu et al. (2007)

VPA, novel anti-epileptic and bipolar disorder treatments work through DAGK

- Kelly et al. (2018)

Fig. 2. The use of *D. discoideum* in bipolar disorder and epilepsy research. A range of studies, originating in *D. discoideum* (blue) have investigated the cellular and molecular mechanisms of drugs used as bipolar disorder and epilepsy treatments, including valproic acid (VPA). Some of these studies have led to further research in both *D. discoideum* and animal models (green) to validate drug mechanisms and to identify novel compounds with the potential of therapeutic use. Further studies, in animal models or with human tissue samples (yellow) have further validated these mechanisms and seizure control in pre-clinical models. Currently, this work has led to one clinical trial (grey banner). Relevant papers are cited for each study.

The encoded enzyme has been linked to patients with bipolar disorder (Breen et al., 2004, Williams, 2005). Further studies in *D. discoideum* showed that loss of prolyl oligopeptidase elevated inositol trisphosphate levels to overcome the reduction caused by lithium, thus linking a potential marker for bipolar disorder with a pharmacological mechanism of inositol depletion. This mechanism was then successfully translated to primary mammalian neurons, where lithium, VPA and a third bipolar disorder treatment (carbamazepine) commonly caused an enlargement of the neuronal growth cones, and this effect was reversed by co-treatment with inositol or by inhibiting the mammalian prolyl oligopeptidase (Williams et al., 2002). This discovery also enabled *D. discoideum* to be used to screen for novel chemicals related to VPA that retain this effect of inositol trisphosphate depletion, but were likely to lack serious side effects of VPA, providing a potential new treatment for bipolar disorder (Eickholt et al., 2005, Shimshoni et al., 2007).

Recent studies in *D. discoideum* have provided new mechanistic insight to VPA function linking both epilepsy and bipolar disorder treatment mechanism (Kelly et al., 2018) (Fig. 2). This study focused on the diacylglycerol kinase enzyme (DGKA) that functions in the phosphorylation of diacylglycerol (DAG) to produce phosphatidic acid in the phosphoinositide salvage pathway (Berridge, 2016), and thus is involved in inositol recycling. In *D. discoideum*, loss of this protein reduced the rapid changes caused by VPA on cell movement and on the inhibition of development caused by both VPA and lithium (Kelly et al., 2018). These outcomes suggested a key role for this protein as a regulator of bipolar disorder drugs at a cellular level. The study went on to employ a structure-activity relationship (SAR) approach, where the loss-of-function mutant was shown to be resistant to a range of potential treatments for epilepsy and bipolar disorder (Augustin et al., 2018a, Chang et al., 2012, Chang et al., 2013, Kelly et al., 2018), suggesting that these compounds may therefore function through the same pathway. In
addition, several mammalian and human-based studies have linked DGKA function with epilepsy (Leach et al., 2007, Rodriguez de Turco et al., 2001) and bipolar disorder (Baum et al., 2007, Moya et al., 2010). Furthermore, DAG acts to regulate protein kinase C (PKC) activity that is also elevated during manic episodes (Wang and Friedman, 1996), and lithium is known to increase DAG levels (Brami et al., 1993). Thus, the molecular mechanism of VPA may be evolutionarily conserved from D. discoideum to mammals, through DGKA-dependent signalling. These studies have therefore provided key insights into the molecular mechanism of VPA and have proposed DGKA as a new therapeutically-relevant drug target.

Epilepsy research and new therapeutic approaches: from amoeba to humans

The World Health Organization classifies VPA as an essential anti-epileptic medication (WHO, 2017), for the approximately 50 million people worldwide who experience epilepsy. VPA was serendipitously discovered to have anti-convulsant effects in 1963 (Terbach and Williams, 2009), and despite its efficacy and long-term use, its mechanism of action remains to be confirmed. Unfortunately, VPA has several severe side effects, such as hepatotoxicity, pancreatitis and teratogenicity that limit its use (Stadelmaier et al., 2017, Terbach and Williams, 2009). Thus, understanding its underlying molecular mechanisms may help to develop more effective and safer treatments.

D. discoideum has been widely used to explore potential anti-convulsant mechanisms of VPA to identify phosphoinositide signalling as a target (Fig. 2). Initial studies in D. discoideum, which focused on analysing VPA-induced biochemical changes that are related to epilepsy treatment, showed that VPA rapidly reduced directional cell movement (chemotaxis) by inhibiting phosphoinositide signalling (Chang et al., 2012, Xu et al., 2007). This observation led to the translation of this effect to mammalian models, where radioactively-labelled inositol was used to monitor phosphoinositides in primary rat neurons, and seizure-like activity was induced, followed by VPA treatment. From this study, seizure activity was found to reduce phosphatidylinositol triphosphate (PIP$_3$), and this effect was blocked by VPA (Chang et al., 2014). This effect was verified using *ex vivo* and *in vivo* seizure models, providing strong evidence for this mechanism in the brain.

The VPA-dependent effect of phosphoinositide signalling in D. discoideum was also used leading to the identification of potential new anti-epileptic drugs (Chang et al., 2012). Here, more than 100 novel compounds were analysed for inhibitory effects on phosphoinositide signalling to identify novel structures showing increased potency over VPA. From this screen, a new family of active compounds were identified containing branched chain derivatives of medium-chain fatty acids with an eight (octanoic acid) or nine carbon (nonanoic acid) backbone. Several of these compounds were then shown to be effective in seizure control in both *in vitro* and *in vivo* mammalian models (Chang et al., 2016, Chang et al., 2012, Chang et al., 2013, Chang et al., 2015), and as neuroprotective agents (Chang et al., 2015), validating this mechanism of drug discovery. Related compounds are still being developed for ultimate assessment in clinical trials.

Another compound identified in the D. discoideum--based anti-epileptic drug screen was decanoic acid (Chang et al., 2012) (Fig. 2), a key component of a therapeutic diet used to treat patients with drug resistant epilepsy (Augustin et al., 2018a, Neal et al., 2009). Dietary treatments for epilepsy are important, since approximately 30% of patients are resistant to anti-epileptic drugs, and specialised diets remain a key approach to treat these individuals (D’Andrea Meira et al., 2019). These diets, commonly called ‘ketogenic’ diets, involve a low carbohydrate and protein intake, supplemented by long chain fatty acids (in a classical ketogenic diet) or medium-chain fatty acids (in a medium-chain triglyceride (MCT) ketogenic diet) (Augustin et al., 2018a, D’Andrea Meira et al., 2019, Warren et al., 2018). These diets have traditionally been thought to function through the breakdown of fatty acids to produce chemicals called ketones that were thought to be the therapeutically active agents, although evidence for this mechanism remains limited (Augustin et al., 2018a). The identification of decanoic acid in the D. discoideum anti-epileptic screen suggested that this medium-chain fatty acid may provide direct seizure control independent of its breakdown to ketones (Chang et al., 2012). This was subsequently validated in multiple *in vitro* seizure models (Chang et al., 2016, Chang et al., 2012, Chang et al., 2013, Chang et al., 2015). Subsequent experiments in mammalian models have shown that decanoic acid directly inhibits a key neurotransmitter receptor and thereby suppresses excitatory neurotransmission (Chang et al., 2016) involved in seizure activity (Augustin et al., 2018a, Augustin et al., 2018b, Chang et al., 2016). Since this mechanism is also shared by the pharmaceutical epilepsy treatment perampanel (Patsalos, 2015), further studies showed a synergistic effect of decanoic acid and perampanel on neurotransmission receptor function and seizure control (Augustin et al., 2018b). Finally, a diet that is rich in decanoic acid has anti-convulsant effects in an *in vivo* seizure model (Tan et al., 2016), independent of ketone generation, supporting a distinct role for decanoic acid (rather than ketones) in seizure control. All these studies provide evidence that some medium-chain fatty acids, including decanoic acid, have anti-convulsant properties. The observations made in D. discoideum and in mammalian seizure models have been used to develop a novel MCT-based diet and a clinical trial to test the efficiency of this diet in epileptic patients is currently ongoing (Augustin et al., 2018a).

Other studies in D. discoideum have also shown that VPA elevates the activity of the mitogen-activated protein kinase (MAPK) signalling pathway (Bocekler et al., 2006), consistent with observations made in mammalian studies (Hao et al., 2004). This mechanism may explain the neuroprotective effects of VPA. In addition to analysing positive therapeutic effects of VPA, D. discoideum has also been used to assess adverse effects of VPA and related analogues, including teratogenicity and hepatotoxicity (Eickholt et al., 2005, Elphick et al., 2012).

Treating cancer: lessons from D. discoideum

In 2018, cancer was responsible for approximately 9.6 million deaths worldwide, which makes it the second leading cause of death (WHO, 2018). One of the most common treatments for cancer are chemotherapeutic drugs, such as the platinum-based drug cisplatin (Kelland, 2007). As a cancer treatment, the anti-proliferative effects of cisplatin were accidentally discovered in 1965 and currently platinum-based drugs are used for the treatment of various solid tumours, in particular testicular or ovarian cancer, where it is assumed that they cause cytotoxicity mainly by covalently binding to DNA molecules (Kelland, 2007). Despite their wide use, cisplatin and related drugs have severe side ef-
fects and patients often become drug resistant. Thus, an improved understanding of the mechanism through which cisplatin functions may help to overcome these adverse effects.

Dictyostelium has been used to study the molecular mechanisms underlying cisplatin treatment. Studies into this mechanism initially employed a library of *Dictyostelium* mutants that were screened for cells showing resistance to the effect of cisplatin. One cisplatin resistant mutant showed loss of sphingosine-1-phosphate (S-1-P) lyase activity (Li et al., 2000). Based on this, it was shown that sensitivity to cisplatin was regulated by the balance between the two lipids, ceramide and S-1-P (Alexander and Alexander, 2011). In these experiments, increasing the ratio of S-1-P to ceramide through ablation of the S-1-P lyase or through overexpression of the sphingosine kinase decreased the sensitivity of *Dictyostelium* cells to cisplatin (Li et al., 2000, Min et al., 2005a). In contrast, increasing the ratio of ceramide to S-1-P by overexpressing the S-1-P lyase or by ablating the sphingosine kinase, increased the sensitivity of *Dictyostelium* cells to cisplatin (Min et al., 2004, Min et al., 2005a). Thus, these studies proposed a novel mechanism of action for cisplatin as an anti-cancer agent. The pivotal role of sphingolipid metabolism in controlling sensitivity to cisplatin was confirmed in human-derived cell lines by overexpression of sphingolipid metabolism genes, including S-1-P lyase, ceramide synthase 1 and sphingosine kinase 1 (Min et al., 2007, Min et al., 2005b). Overexpression of S-1-P lyase was confirmed in HEK293 or A549 cells to have the same phenotype as in *Dictyostelium* – increased sensitivity to cisplatin (Min et al., 2005b). Overexpressing sphingosine kinase 1 in HEK293 cells decreased cisplatin sensitivity, whereas overexpression of sphingosine kinase 2 has the opposite effect (Min et al., 2007). Similarly, overexpressing ceramide synthase 1, but not ceramide synthase 4 and 5, in cell lines enhanced the sensitivity of cells to cisplatin. These data provide important new insights in the cellular mechanisms regulating cisplatin sensitivity.

Dictyostelium has also been used in a range of other cancer-related studies. The role of cisplatin on gene expression in the model has been analysed (Van Driessche et al., 2007), in addition to its regulation of mitogen activated protein kinase phosphatases (Moncho-Amor et al., 2011) and in DNA repair pathways (Gunn et al., 2016). The cellular functions of other anti-cancer treatments, such as bestatin and Poly (ADPribose) polymerase inhibitors have also been analysed in *Dictyostelium* (Kolb et al., 2017, Poloz et al., 2012). Finally, *Dictyostelium* strains have also been shown to provide a source of novel compounds with anti-proliferative properties that could thus be used as cancer treatments (Honma et al., 2018, Kubohara and Kikuchi, 2018).

Investigating novel anti-microbial drugs using *Dictyostelium*

The discovery of novel anti-microbial compounds for the treatment of infectious diseases is very important. In 2010, approximately 15 million people worldwide died from infectious diseases and infection provides the leading cause of death in low income countries (Dye, 2014), therefore efficient approaches to develop novel antibiotics are needed.

Dictyostelium has been proposed as a novel model host for virulent bacteria, enabling the identification of compounds with anti-microbial properties. In one series of studies, *Dictyostelium* cells grown on lawns comprising a single bacterial species (*Klebsiella pneumoniae*) as the food source form plaques and subsequently aggregate and develop into fruiting bodies. In contrast, plaque formation and development is impeded by the presence of the virulent strain *Mycobacterium marinum* (a model organism to study tuberculosis infections) or the pathogenic strain *Pseudomonas aeruginosa* PAO1 (Bravo-Toncio et al., 2016, Ouertatani-Sakouhi et al., 2017). Mechanistic insight into this effect was shown when *Dictyostelium* was able to form plaques and aggregate in the presence of a *P. aeruginosa* mutant which lacks the polyphosphate kinase 1 (PPK1). Based on this observation, *Dictyostelium* was employed as a host to conduct a screen with thirty compounds that could inhibit the *P. aeruginosa* PPK1 and therefore might have anti-microbial properties (Bravo-Toncio et al., 2016). In a similar manner, a high-throughput screen was performed with a large array of compounds to identify those that allow plaque formation of *Dictyostelium* in the presence of *M. marinum*, through either directly inhibiting mycobacterial growth or decreasing Mycobacteria virulence (Ouertatani-Sakouhi et al., 2017). These *Dictyostelium*-based screens, and others that exploited *Dictyostelium* in secondary assays to further characterise the function of compounds (Trofimov et al., 2018; Kicka et al., 2014; Harrison et al., 2015; Slepkas et al., 2016), highlight the value of *Dictyostelium* as a host model to quickly screen a large number of potential anti-microbial compounds.

Similarly, *Dictyostelium* along with macrophages and Acanthamoeba castellanii were also used to investigate the effectiveness of a potential anti-*Legionella pneumophila* drug (Harrison et al., 2015). This study successfully demonstrated that an amoeba can be employed to find novel inhibitors of *L. pneumophila* intracellular replication (Harrison et al., 2015). *Dictyostelium* was then further used to determine which mutants of *L. pneumophila* had replication defects (Harrison et al., 2013). Thus, *Dictyostelium* provides a successful model for virulent bacterial infection and the discovery of new anti-bacterial drugs.

Intriguingly, *Dictyostelium* also represents a novel source of anti-microbial compounds. For instance, it has been shown that the *Dictyostelium* protein ApiD (amoeboaporelike protein D) has anti-microbial effects by destroying the integrity of bacterial membranes (Dhakshinamoorthy et al., 2018). In addition, further *Dictyostelium*-based screening assays have been developed to screen for compounds that restore the function of impaired versions of the human phenylalanine hydroxylase enzyme (Kim et al., 2015) or for compounds that inhibit chemotaxis of immune or cancer cells (Liao et al., 2016).

Natural product medicines – learning from nature?

Natural compounds have been used for centuries as medicinal remedies (Taylor, 2015). For many of these remedies, detailed analysis has validated the potential therapeutic efficacies of specifically purified components, although how these compounds work at a molecular or cellular level often remains unclear, making ultimate validation significantly more difficult. Thus, using a tractable biological system such as *Dictyostelium* can help to define the molecular and cellular effects of natural compounds, enabling the validation of these mechanisms in mammalian models (Muller-Taubenberger et al., 2013, Warren et al., 2018, Williams et al., 2006). The following sections describe the use of *Dictyostelium* as a pharmacological model to study the molecular targets and mechanisms of action of bioactive natural products associated with traditional remedies (Fig. 3).
The golden spice - medical insights from Turmeric-derived Curcumin

One naturally occurring bioactive compound that has been characterised using *D. discoideum* is the polyphenol curcumin, derived from the spice turmeric (Fig. 3). Turmeric has been used as a treatment for inflammatory disorders for centuries, and curcumin has been proposed as a treatment for many diseases such as heart disease, cancer, inflammatory disorders, allergies, Alzheimer’s disease and asthma (Hewlings and Kalman, 2017).

In both *D. discoideum* (Cocorocchio et al., 2018, Garige and Walters, 2015, Swatson et al., 2017) and mammalian systems (Kunnumakkara et al., 2008), curcumin inhibits cellular growth, allowing *D. discoideum* to be used to explore the molecular mechanisms behind this effect. Curcumin delays the chemotactic response towards cyclic AMP (cAMP), blocks the formation of fruiting bodies during starvation, and reduces the expression of genes essential for development (Cocorocchio et al., 2018). To determine which key features of the curcumin molecule were responsible for these effects, multiple curcumin derivatives were tested in a quantitative structure-activity relationship (QSAR) study (Cocorocchio et al., 2018). From this study, specific regions of the chemical structure (e.g. the diketone group and the α,β-unsaturated carbonyl moiety on the seven-carbon linker) were demonstrated to be essential for the effects on acute cell behaviour. To investigate molecular targets for this compound, a genetic screen was also employed to isolate mutants resistant to curcumin during growth. This approach identified that the protein phosphatase 2A (PP2A) regulatory subunit (psrA) and the presenilin B protein controlled sensitivity to both curcumin and specific analogues during growth. These targets potentially link the use of curcumin with treatments for cancer (Kiely and Kiely, 2015) and Alzheimer’s disease (Ludtmann et al., 2014, Sharma et al., 2019), and further translational studies are necessary to continue this research. Another study has also shown that protein kinase A (PKA) contributes to mediating the effects of curcumin on cell proliferation and transcriptional regulation (Swatson et al., 2017). Interestingly, these *D. discoideum* studies suggest that the cellular mechanisms of curcumin are not solely, as assumed by other studies (Hewlings and Kalman, 2017), based on its anti-oxidant and anti-inflammatory properties, but that curcumin instead functions through specific cell signalling mechanisms and transcription effects. Thus, further insights into the cellular and molecular effects of curcumin may indeed lead to the discovery of molecular targets and mechanisms of action for curcumin in health and medicine.

Finding the function of flavonoids

Flavonoids represent a large group of compounds that are often associated with positive health effects and potential medicinal benefits (Panche et al., 2016). Although most of these compounds are thought to function through anti-oxidative and anti-inflammatory roles, many flavonoids have also been implicated in the modulation of key cell signalling functions, and identifying and characterising these targets and mechanisms should help to validate their therapeutic potential.

D. discoideum has been used to investigate the flavonoid naringenin (Fig. 3), a polyphenol compound found in grapefruit, which has been associated with a wide range of health and medical
benefits (Salehi et al., 2019). In *D. discoideum*, naringenin reduces cell growth, blocks cellular movement and causes cells to lose shape following acute (30 min) exposure (Waheed et al., 2014). Employing this growth effect, a *D. discoideum* mutant library was screened to identify naringenin-resistant cells including mutants lacking the transient receptor potential cation channel (TRPP2), which is encoded by the polycystic kidney disease 2 (PKD2) gene (Waheed et al., 2014), suggesting that this protein may be a direct target of naringenin. To validate this target, the effects of the flavonoid on *D. discoideum* cell movement and cell shape were assessed in cells lacking TRPP2, thus confirming a role for TRPP2 in the cellular function of naringenin in this model. Excitingly, mutations in the human TRPP2 orthologue are associated with polycystic kidney disease where patients develop debilitating kidney cysts, suggesting that naringenin may provide a treatment for this disorder. To examine this, a canine kidney cell line (Madin-Darby Canine Kidney - MDCK cells) was induced to form cysts, and naringenin was shown to block cyst formation through a TRPP2-dependent mechanism (Waheed et al., 2014). These data suggest a conserved function of the *D. discoideum* and canine TRPP2 proteins as a target for naringenin. In a subsequent study exploring the effect of naringenin on proteins related to TRPP2, naringenin impaired the activity of the human two-pore channel 1 (TPC1) and two-pore channel 2 (TPC2) proteins (Pafumi et al., 2017). Thus, the discovery that growth inhibitory effects of naringenin in *D. discoideum* are controlled by TRPP2 has identified a specific molecular target of naringenin in mammalian cells with potential therapeutic implications relating to the treatment of polycystic kidney disease.

Two *D. discoideum* studies have examined other flavonoids contained in different forms of tea, such as epigallocatechin gallate (EGCG) and theaflavins. Surprisingly little is known regarding the target proteins and mechanisms of action for these compounds. As an early model for testing compounds for their level of bitterness and whether they have a strong bitter taste before they are developed into human drugs (Williams and Andrews, 2019), *D. discoideum* provides a valuable biomedical model for the study of known drugs and bioactive natural products, as well as in the discovery of novel compounds with medicinal effects. These advances have been possible, since genetic screening, rapid targeted gene ablation, and assays for cAMP in addition to its role as an intracellular second messenger (Reymond et al., 1995). A more recent study in *D. discoideum* shows an effect of caffeine through inhibiting pathways downstream of cAMP signalling, including the phosphatidylinositol 3-kinase (PI3K), mTOR Complex 2 (mTORC2), and protein kinase A (PKA) signalling pathways, as well as the extracellular signal-regulated kinases 1/2 (ERK1 and ERK2) (Tariqul Islam et al., 2019). The caffeine-dependent inhibition of the PI3K/mTORC2 pathway has also been demonstrated in mammalian models, where it has been associated with induction of autophagy (Saiki et al., 2011). Finally, in both *D. discoideum* and mammalian neutrophils, caffeine inhibits chemotaxis (Elferink and De Koster, 1995) as well as the migration of tumour cells in the human gut, through antagonising adenosine receptors (Merighi et al., 2007). Therefore, studies of caffeine in *D. discoideum* complement and extend those in mammalian models.

A broad selection of natural products modify *D. discoideum* behaviour

D. discoideum has been employed in many other studies to assess the effects of natural compounds. For example, one study employed *D. discoideum* as a model organism to quantify the taste quality of bitterness for a range of natural products and drugs. In these studies, *D. discoideum* cell motility was shown to be strongly inhibited by pungent and bitter tastants, such as capsaicin, a constituent of chilli, and quinine hydrochloride; quinine naturally occurs in the cinchona tree and is used as an antimalarial drug (Achan et al., 2011) (Fig. 3) (Cocorocchio et al., 2016, Otto et al., 2016, Robery et al., 2011, Robery et al., 2013). Within these studies, a strong correlation was found between the effects of bitter tastants on *D. discoideum* cell motility and effects in rat and human taste studies, where compounds that were found most potent in *D. discoideum* cell movement assays were also the strongest bitter tastant in rats and humans (Cocorocchio et al., 2016). This provides the possibility of using *D. discoideum* as an early model for testing compounds for their level of bitterness and whether they have a strong bitter taste before they are developed into human drugs.

Summary

Improving our understanding of the molecular and cellular actions of therapeutic drugs and bioactive natural products will significantly aid the development of more effective and safer medicinal treatments. Identifying the mechanisms of action and direct targets of medicinal compounds in mammalian model systems can be difficult, unless potential targets and mechanisms can be proposed for focused analysis. In recent years, many studies have demonstrated that *D. discoideum* provides a valuable biomedical model for the study of known drugs and bioactive natural products, as well as in the discovery of novel compounds with medicinal effects. These advances have been possible, since *D. discoideum* offers a range of advantageous research techniques, including genetic screening, rapid targeted gene ablation, and assays for acute cell behaviour and chronic developmental effects that can be used as readouts. Numerous *D. discoideum*-based studies indicate that if a therapeutic drug or natural product has an effect on *D. discoideum* at concentrations related to physiological use, the model provides an excellent platform for identifying potential target proteins and mechanisms of action for these compounds.
Acknowledgement

JS is funded by a Department of Biological Science PhD studentship award.

References

ACHAN, J., TALISUNA, A.O., ERHART, A., YEKA, A., TIBENDERANA, J.K., BALIRAI, F.N., ROSENTHAL, P.J. and D’ALESSANDRO, U. (2011). Quinine, an old anti-malarial drug in a modern world: role in the treatment of malaria. Malar J 10: 144.

ALEXANDER, S. and ALEXANDER, H. (2011). Lead genetic studies in Dictyostelium discoideum and translational studies in human cells demonstrate that sphingolipids are key regulators of sensitivity to cisplatin and other anticancer drugs. Semin Cell Dev Biol 22: 97-104.

ANANDHAN, A., ESSA, M.M. and MANIVASAGAM, T. (2013). Therapeutic attenuation of neuroinflammation and apoptosis by black tea theaflavin in chronic MPTP/probenecid model of Parkinson’s disease. Neurotox Res 23: 166-173.

AUGUSTIN, K., KHABBUSH, A., WILLIAMS, S., EATON, S., ORFORD, M., CROSS, J.H., HEALES, S.J.R., WALKER, M.C. and WILLIAMS, R.S.B. (2018a). Mechanisms of action for the medium-chain triglyceride ketogenic diet in neurological and metabolic disorders. Lancet Neurol 17: 84-93.

AUGUSTIN, K., WILLIAMS, S., CUNNINGHAM, M., DEVLIN, A.M., FRIEDRICH, M., JAYASEKERA, A., HUSSAIN, M.A., HOLLIMAN, D., MITCHELL, P., JENKINS, A. et al. (2018b). Peroxidation and deacetylase show synergistic action against AMPA receptors and seizures. Epilepsia 59: e172-e187.

BAUM, A.E., AKULA, N., CABANERO, M., CARDONA, I., CORONA, W., KLEMENS, B., SCHULZE, T.G., CICHON, S., RIETSCHEL, M., NOTHEN, M.M. et al. (2007). A genome-wide association study implicates diacylglycerol kinase eta (DGKH) and several other genes in the etiology of bipolar disorder. Mol Psychiatry 13: 10.

BERRIDGE, M.J. (2016). The Inositol Trisphosphate/Calcium Signaling Pathway in PIP3 levels contributes to seizure-activity and is rescued by valproic acid. Neurobiol Dis 548: 352-361.

BERRIDGE, M.J., DOWNES, C.P. and HANLEY, M.R. (1989). Neural and developmental actions of lithium: a unifying hypothesis. Cell 59: 411-419.

BRAMI, B.A., LEI, U. and HAUSER, G. (1993). Elevated phosphatidylyl-CMP is not the source of diacylglycerol accumulation induced by lithium in NG108-15 cells. J Neurochem 60: 1137-1142.

BRAVO-TONCIO, C., ALVAREZ, J.A., CAMPOS, F., ORTIZ-SEVERIN, J., VARAS, M., CABRERA, R., LAGOS, C.F. and CHAVEZ, F.P. (2016). A genome-wide association study implicates diacylglycerol kinase eta (DGKH) and several other genes in the etiology of bipolar disorder. Mol Psychiatry 13: 10.

CHANG, P., ORABI, B., DERANIEH, R.M., DHAM, M., HOELLER, O., SHIMSHONI, CHANG, P., AUGUSTIN, K., BODDUM, K., WILLIAMS, S., SUN, M., TERSCHAK, BREEN, G., HARWOOD, A.J., GREGORY, K., SINCLAIR, M., COLLIER, D., STBRAVO-TONCIO, C., ALVAREZ, J.A., CAMPOS, F., ORTIZ-SEVERIN, J., VARAS, M., BERRIDGE, M.J. (2016). The Inositol Trisphosphate/Calcium Signaling Pathway in PIP3 levels contributes to seizure-activity and is rescued by valproic acid. Neurobiol Dis 548: 352-361.

CHANG, P., ORABI, B., DERANIEH, R.M., DHAM, M., HOELLER, O., SHIMSHONI, CHANG, P., AUGUSTIN, K., BODDUM, K., WILLIAMS, S., SUN, M., TERSCHAK, BREEN, G., HARWOOD, A.J., GREGORY, K., SINCLAIR, M., COLLIER, D., STBRAVO-TONCIO, C., ALVAREZ, J.A., CAMPOS, F., ORTIZ-SEVERIN, J., VARAS, M., BERRIDGE, M.J. (2016). The Inositol Trisphosphate/Calcium Signaling Pathway in PIP3 levels contributes to seizure-activity and is rescued by valproic acid. Neurobiol Dis 548: 352-361.

DYE, C. (2014). After 2015: infectious diseases in a new era of health and development. Philos Trans R Soc Lond B Biol Sci 369: 20130426.

EICHINGER, L., PACHEBATO, J.A., GLOCKNER, R., JAHRANDREJAM, M.A., SUCGANG, R., BERRIMAN, M., SONG, J., OLSEN, R., ZAFRANSKI, K., XU, Q. et al. (2005). The genome of the social amoeba Dictyostelium discoideum. Nature 435: 43-57.

EICKHOLT, B.J., TOWERS, G., RYVES, W.J., EIKEL, D., ADLEY, K., YLlNE, L., CHADBORN, N., HARWOOD, A., NAU, H. and WILLIAMS, R.S. (2005). Effects of valproic acid derivatives on inositol trisphosphate depletion, teratogenicity, GSK-3b inhibition and viral replication - A screening approach for new bipolar disorder drugs based on the valproic acid core structure. Mol. Pharmacol 67: 7.

ELFERINK, J.G. and DE KOSTER, B.M. (1995). Ryanodine as inhibitor of chemo- tactic peptide-induced chemotaxis in human neutrophils. Biochem Pharmacol 50: 975-979.

ELPHICK, L.M., PAWOLLECK, N., GUSCHINA, I.A., CHAIEB, L., EIKEL, D., EYLEY, K., CHADBORN, N., HARWOOD, A., NAU, H. and WILLIAMS, R.S. (2012). Conserved valproic-acid-induced lipid droplet formation in Dictyostelium and human hepatocytes identify structurally active compounds. Dia. Model. Mech 5: 231-240.

FISCHER, M., HAASE, I., SIMMETH, E., GERISCH, G. and MULLER-TAUBENBERGER, A. (2004). A brilliant monomeric red fluorescent protein to visualize cytoskeleton dynamics in Dictyostelium. FEBS Lett 577: 227-232.

FREDHOLM, B.B., BATTIG, K., HOLJEN, M., NEHLIG, A. and ZVARTAU, E.E. (1999). Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 51: 83-133.

GAITATZIS, A. and SANDER, J.W. (2013). The long-term safety of antiepileptic drugs. CNS Drugs 27: 435-55.

GARIGE, M. and WALTERS, E. (2015). Curcumin inhibits development and cell adhesion in Dictyostelium discoideum: Implications for YAKa signaling and GST enzyme function. Biochem Biophys Res Commun 467: 275-281.

GUNN, A.R., BANOS-PINERO, B., PASCHKE, P., SANCHEZ-PULIDO, L., ARIZA, A., DAY, J., EMRICH, M., LEYS, D., PONTING, C.P., AHEIL, I. et al. (2016). The role of ADP-ribosylation in regulating DNA interstrand crosslink repair. J Cell Sci 129: 3845-3858.

HAO, Y., CRESON, T., ZHANG, L., LI, P., DU, F., YUAN, P., GOULD, T.D., MANJI, H.K. and CHEN, G. (2004). Mood stabilizer valproate promotes ERK pathway-dependent cortical neuronal growth and neurogenesis. J Neurosci24: 6590-6599.

HARRISON, C.F., CHIRIANO, G., FINSEl, I., MANSKI, C., HOFFMANN, C., STEINER, B., KRAJANC, A., PATTHY-VUADENS, O., KICKA, S., TROFIMOv, V. et al. (2015). Amoebae-Based Screening Reveals a Novel Family of Compounds Restricting Intracellular Legionella pneumophila. ACS Infect Dis 1: 327-338.

HARRISON, C.F., KICKA, S., TROFIMOv, V., BERSCHL, K., QUERTATANI-SAKOUI, H., ACKERMANN, N., HEDBERG, C., COSSON, P., SOLDATI, T. and HILBI, H. (2013). Exploring anti-bacterial compounds against intracellular Legionella. PLoS One 8: e74813.

HEWLINGS, S.J. and KALMAN, D.S. (2017). Curcumin: A Review of Its’ Effects on Human Health. Foods 6(10), 92.

HOMMA, S., KOUNO, K., TAKASAKA, S., MITAZAKI, S., ABE, S., KIKUCHI, H., OSHIMA, Y. and YOSHIDA, M. (2018). Effect of breflanilamide on proliferation of 1321N1 human astrocytoma cells induced by glial cell line-derived neurotrophic factor. Pharmacol 73: 22-28.

ILACQUA, A.N., SHETTLER, J.A., WERNKE, K.M., SKALLA, J.K. and MCGUADE, K.J. (2017). Theaflavins from black tea affect growth, development, and motility in Dictyostelium discoideum. Biochem Biophys Res Commun 491: 449-454.
IMRAN, A., BUTT, M.S., ARSHAD, M.S., ARSHAD, M.U., SAEED, F., SOHAIB, M. and MUNIR, R. (2018). Exploring the potential of black tea based flavonoids against hyperlipidemia related disorders. *Lipids Health Dis* 17: 57.

KELLAND, L. (2007). The resurgence of platinum-based cancer chemotherapy. *Nat Rev Cancer* 7: 573-584.

KELLY, E., SHARMA, D., WILKINSON, C.J. and WILLIAMS, R.S.B. (2018). Diacylglycerol kinase (DGKα) regulates the effect of the epilepsy and bipolar disorder treatment valproic acid in *Dictyostelium discoideum*. *Dis Model Mech* 11 (9).

KICKA, S., TROFIMOV, V., HARRISON, C., CUERTATANI-SAKOUIH, H., MCKINNEY, J., SCAPOZZA, L., HILBI, H., COSSON, P. and SOLDATI, T. (2014). Establishment and validation of whole-cell based fluorescence assays to identify anticytocbacterial compounds using the Acanthamoeba castellanii-Mycobacterium marinum host-pathogen system. *PLoS One* 9: e97834.

KIELY, M. and KIELY, P.A. (2015). *PP2A: The Wolf in Sheep’s Clothing?* *Science Transl Med* 7: 646-669.

KIM, Y.M., YANG, Y.G., KIM, H.L. and PARK, Y.S. (2015). *Disruption of diacylglycerol kinase eta in bipolar disorder*. *Epilepsia* 56: 12-27.

KIELY, M. and KIELY, P.A. (2015). *PP2A: The Wolf in Sheep’s Clothing?* *Science Transl Med* 7: 646-669.

MIN, J., STEGNER, A.L., ALEXANDER, H. and ALEXANDER, S. (2004). Overexpression of sphingosine-1-phosphate lyase or inhibition of sphingosine kinase in *Dictyostelium discoideum* results in a selective increase in sensitivity to platinum-based chemotherapy drugs. *Eukaryot Cell* 3: 795-805.

MIN, J., TRAYNOR, D., STEGNER, A.L., ZHANG, L., HANIGAN, M.H., ALEXANDER, H. and ALEXANDER, S. (2005a). Sphingosine kinase regulates the sensitivity of *Dictyostelium discoideum* cells to the anticancer drug cisplatin. *Eukaryot Cell* 4: 178-189.

MIN, J., VAN VELDHOVEN, P.P., ZHANG, L., HANIGAN, M.H., ALEXANDER, H. and ALEXANDER, S. (2005b). Sphingosine-1-phosphate lyase regulates sensitivity of human cells to select chemotherapy drugs in a p38-dependent manner. *Mol Cancer Res* 3: 287-296.

MONCHO-AMOR, V., GALARDI-CASTILLA, M., PERONA, R. and SASTRE, L. (2011). The dual-specificity protein phosphatase Mkp8, homologous to mammalian MKP phosphatases, is required for *D. discoideum* post-aggregative development and cisplatin response. *Differentiation* 81: 199-207.

MOYA, P.R., MURPHY, D.L., MCMAHON, F.J. and WENDLAND, J.R. (2010). Increased gene expression of diacylglycerol kinase eta in bipolar disorder. *Int J Neuropsychopharmacol* 13: 1127-1128.

MULLER-TAUBENBERGER, A., KORTHOLT, A. and EICHINGER, L. (2013). Simple system--substantial share: the use of *Dictyostelium* in cell biology and molecular medicine. *Eur J Cell Biol* 92: 45-53.

NEAL, E.G., CHAFFE, H., SCHWARTZ, R.H., LAWSON, M.S., EDWARDS, N., FITZSIMMONS, G., WHITNEY, A. and CROSS, J.H. (2009). A randomized trial of classical and medium-chain triglyceride ketogenic diets in the treatment of childhood epilepsy. *Epilepsia* 50: 1109-1117.

NIMH, (2017). Bipolar disorder: Statistics. ed. HEALTH, N. I. O. M.

OTT, G.P., CECORCIOCO, M., MUNOZ, L., TYSON, R.A., BRETSCHNEIDER, T. and WILLIAMS, R.S. (2016). Employing *Dictyostelium* as an Advantageous 3Rs Model for Pharmacogenetic Research. *Methods Mol Biol* 1407: 123-130.

 CUERTATANI-SAKOUIH, H., KICKA, S., CHIRIANO, G., HARRISON, C.F., HILBI, H., SCAPOZZA, L., SOLDATI, T. and COSSON, P. (2017). Inhibitors of Mycobacterium marinum virulence identified in a *Dictyostelium discoideum* host model. *PLoS One* 12: e0181121.

PAFUMI, I., FESTA, M., PATASALOS, P.N. (2015). The clinical pharmacology profile of the new antiepileptic drug rufinamide. *Epilepsia* 56: 12-27.

PANCHE, A.N., DIWAN, A.D. and CHANDRA, S.R. (2016). Flavonoids: an overview. *J Nutr Sci* 5: e47.

PASCHKE, P., KNECHT, D.A., SULLACE, A., TRAYNOR, D., WILLIAMS, T.D., THOMAS, P.A., INSALL, R.H., CHUBB, J.R., KAY, R.R. and VELTMAN, D.M. (2018). Rapid and efficient genetic engineering of both wild type and axenic strains of *Dictyostelium discoideum*. *PLoS One* 13: e0196809.

PATSALOS, P.N. (2015). The clinical pharmacology profile of the new antiepileptic drug perampanel: A novel noncompetitive AMPA receptor antagonist. *Epilepsia* 56: 12-27.

POLOZ, Y., CATALANO, A. and O’DAY, D.H. (2012). Bestatin inhibits cell growth, cell division, and spore cell differentiation in *Dictyostelium discoideum*. *Eukaryot Cell* 11: 545-557.

RAWANGKAN, A., WONGSIRISIN, P., NAMIKI, K., KOBAYASHI, Y., SHIMIZU, Y., FUJIKI, H. and SUGANUMA, M. (2018). *Green Tea Catechin is an Alternative Immune Checkpoint Inhibitor that Inhibits PD-L1 Expression and Lung Tumor Growth*. *Molecules* 23 (8).

REYMOND, C.D., SCHAAP, P., VERON, M. and WILLIAMS, J.G. (1995). Dual role of PAF and platelet-activating factor as an Advantageous 3Rs Model for Pharmacogenetic Research. *Methods Mol Biol* 1407: 123-130.

ROBERY, S., MUKANOWA, J., PERCIE DU, S.N., ANDREWS, P.L. and WILLIAMS, R.S. (2016). Investigating the effect of emetic compounds on chemotaxis in *Dictyostelium discoideum* as a pharmacological model. *PLoS One* 6: e24439.

ROBERY, S., TYSON, R., DINH, C., KUSPA, A., NOEGEL, A.A., BRETSCHNEIDER, T. and ANDREWS, P.L. and WILLIAMS, R.S. (2016). Investigating the effect of emetic compounds on chemotaxis in *Dictyostelium discoideum* as a pharmacological model. *PLoS One* 6: e24439.

ROBERY, S., TYSON, R., DINH, C., KUSPA, A., NOEGEL, A.A., BRETSCHNEIDER, T. and ANDREWS, P.L. and WILLIAMS, R.S. (2016). Investigating the effect of emetic compounds on chemotaxis in *Dictyostelium discoideum* as a pharmacological model. *PLoS One* 6: e24439.

ROBERY, S., TYSON, R., DINH, C., KUSPA, A., NOEGEL, A.A., BRETSCHNEIDER, T. and ANDREWS, P.L. and WILLIAMS, R.S. (2016). Investigating the effect of emetic compounds on chemotaxis in *Dictyostelium discoideum* as a pharmacological model. *PLoS One* 6: e24439.

RÓDRIGUEZ DE TURCO, E.B., TANG, W., TOPHAM, M.K., SAKANE, F., MAR
Further Related Reading, published previously in the Int. J. Dev. Biol.

Overexpression of S-adenosylmethionine decarboxylase impacts polyamine homeostasis during development of Dictyostelium discoideum
Priyanka Sharma, Rishikesh Kumar and Shweta Saran
Int. J. Dev. Biol. (2018) 62: 647-652
https://doi.org/10.1387/ijdb.180167ss

Dictyostelium discoideum Sir2D modulates cell-type specific gene expression and is involved in autophagy
Rakhee Lohia, Punita Jain, Mukul Jain, Pradeep Kumar Burma, Anju Shrivastava and Shweta Saran
Int. J. Dev. Biol. (2017) 61: 95-104
https://doi.org/10.1387/ijdb.160038ss

Pattern formation mechanisms in reaction-diffusion systems
Vladimir K. Vanag and Irving R. Epstein
Int. J. Dev. Biol. (2009) 53: 673-681
https://doi.org/10.1387/ijdb.072484vv

Dictyostelium discoideum: a model system for differentiation and patterning
R Escalante and J J Vicente
Int. J. Dev. Biol. (2000) 44: 819-835
http://www.intjdevbiol.com/web/paper/11206323

Cell-cell signaling and adhesion in phagocytosis and early development of Dictyostelium
E Bracco, B Pergolizzi, B Peracino, E Ponte, A Balbo, A Mai, A Ceccarelli and S Bozzaro
Int. J. Dev. Biol. (2000) 44: 733-742
http://www.intjdevbiol.com/web/paper/11061438

A cell type-specific effect of calcium on pattern formation and differentiation in dic-tyostelium discoideum
R Baskar, P Chhabra, P Mascarenhas and V Nanjundiah
Int. J. Dev. Biol. (2000) 44: 491-498
http://www.intjdevbiol.com/web/paper/11032184