Reset First Resistive Switching in Ni$_{1-x}$O Thin Films as Charge Transfer Insulator Deposited by Reactive RF Magnetron Sputtering

Dae-woo Kim 1, Tae-ho Kim 1,2, Jae-yeon Kim 1 and Hyun-chul Sohn 1,*

1 Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Korea; daewookim@yonsei.ac.kr (D.-w.K.); kkthh22@yonsei.ac.kr (T.-h.K.); jaeyeonkim@yonsei.ac.kr (J.-y.K.)
2 Lam Research, Daesan-ro 288, Icheon-si 17336, Korea

Abstract: Reset-first resistive random access memory (RRAM) devices were demonstrated for off-stoichiometric Ni$_{1-x}$O thin films deposited using reactive sputtering with a high oxygen partial pressure. The Ni$_{1-x}$O based RRAM devices exhibited both unipolar and bipolar resistive switching characteristics without an electroforming step. Auger electron spectroscopy showed nickel deficiency in the Ni$_{1-x}$O films, and X-ray photoemission spectroscopy showed that the Ni$^{3+}$ valence state in the Ni$_{1-x}$O films increased with increasing oxygen partial pressure. Conductive atomic force microscopy showed that the conductivity of the Ni$_{1-x}$O films increased with increasing oxygen partial pressure during deposition, possibly contributing to the reset-first switching of the Ni$_{1-x}$O films.

Keywords: resistive random access memory; nickel oxide; nickel vacancy; reset-first resistive switching; oxygen partial pressure; conductivity; area dependence

1. Introduction

Resistive random access memory (RRAM) [1] has been widely studied as a candidate for next-generation non-volatile memory to overcome the limitations of conventional memories, such as flash memory and dynamic random access memory (DRAM). RRAM has a relatively low operation voltage with excellent program and erase speed [2]. In addition, the device could be fabricated in a simple metal–insulator–metal (MIM) [3] structure, enabling the high-density cell structure of a cross-bar array with 4F2 [4,5]. It was reported that numerous transition metal oxides, including Al$_2$O$_3$ [6,7], HfO$_2$ [8–10], NiO$_x$ [11–14], TiO$_2$ [15,16], TaO$_x$ [17,18], Nb$_2$O$_5$ [19,20], and Pr$_{1-x}$Ca$_x$MnO$_3$ [21–23] show resistive switching (RS) characteristics. Moreover, various deposition techniques, such as sputtering [24–28], atomic layer deposition (ALD) [29] and pulsed laser deposition (PLD) [30] were used for the formation of such oxides. Notably, nickel oxide (NiO) film is one of the most widely studied oxides and is reported to have low operation power, a high on/off resistance ratio and is compatible with the CMOS fabrication process [31,32]. NiO has a rock salt structure composed of Ni$^{2+}$ and O$^{2-}$ and is a member of the strongly correlated 3d transition metal oxides that exhibit charge-transfer insulator behavior [33,34]. It is an insulating oxide with a wide bandgap (E$_g$ \approx 4.3 eV) due to the charge transfer gap caused by “Hubbard U” between the 2p and 3d states [34,35]. Therefore, the pristine state of NiO is typically the insulating state in RRAM [36,37]. The RS phenomenon in NiO has been mainly described as the formation and rupture of conductive filaments. This reversible resistance transition between the high-resistance state (HRS) and low-resistance state (LRS) is caused by applying electrical stress after an “electroforming” step [38]. It was suggested that oxygen atoms are migrated by the electric field, leaving oxygen vacancies (Vo$^{2+}$) at the vacated sites during the electroforming step; the adjacent Ni$^{2+}$ atoms are changed to Ni0 to compensate for the charge state, resulting in a Ni filament [39–41]. The electroforming...
process degrades the chemical and physical properties of devices of MIM structure, affecting their reliability. The characteristics of RS uniformity also deteriorate because of non-uniform filament formation among MIM devices [42]. Moreover, electroforming requires additional high-voltage circuits, significantly reducing the device density. Therefore, research on devices that can be operated without an electroforming step is essential for realizing RS memories [43–45].

This study investigated the RS characteristics of off-stoichiometric Ni$_{1-x}$O films for unipolar and bipolar RSs (URS and BRS, respectively). Particularly, it was demonstrated that nickel-deficient Ni$_{1-x}$O films deposited under excessive oxygen partial pressure exhibit a reset-first RS without an electroforming step. An RRAM device with a reset-first RS could be an alternative to overcome the limitations of RRAM requiring an electro-forming step.

2. Experimental

MIM devices with Pt/NiO/Pt and Pt/NiO/TiN stacks were fabricated for electrical characterization. First, Ti/TiN adhesive layers with thicknesses of 10–50 nm were deposited onto SiO$_2$ on a Si substrate using DC magnetron sputtering. Pt or TiN films were then deposited as bottom electrodes (BE). BE with various areas of 0.18~4.0 μm2 were formed to investigate the area-dependence of the electrical characteristics. After BE formation, off-stoichiometric Ni$_{1-x}$O films with a thickness of 10 nm were deposited via reactive RF magnetron sputtering using a Ni target under various O$_2$ partial pressures. During sputtering, the base and working pressures were less than 3×10^{-3} and 3 mTorr, respectively. During deposition, the RF power and temperature of the substrate were maintained at 100 W and 400 °C, respectively. The fraction of the O$_2$ partial pressure in the mixture of Ar and O$_2$ varied from 10% to 50% for deposition. Finally, Pt top electrodes (TEs) with a thickness of 100 nm were formed using DC magnetron sputtering and a lift-off process. The electrical characteristics of the device were characterized using a Keysight B1500A analyzer at 21~23 °C. RS under DC bias was measured with a compliance current of 10 mA to avoid hard breakdown of the Ni$_{1-x}$O films. The spatial distribution of conductivity in the pristine state was investigated using conductive atomic force microscopy (C-AFM) (Park Systems, XE-100) with a measurement bias of 3 V [46,47]. Grazing incidence X-ray diffraction (GI-XRD, Rigaku SmartLab), Auger electron spectroscopy (AES, PHI-700, ULVAC-PHI), and X-ray photoelectron spectroscopy (XPS, K-alpha, Thermo U. K.) analyses were conducted to investigate the crystallinity, composition, and valence states of Ni in the Ni$_{1-x}$O films, respectively.

3. Results and Discussion

XRD analysis was conducted to investigate the crystallinity of Ni$_{1-x}$O films. The XRD patterns of Ni$_{1-x}$O films deposited under various O$_2$ fractions are illustrated in Figure 1a. The peaks of NiO (111), NiO (200), NiO (220), and NiO (311) imply a polycrystalline structure [48]. NiO films, deposited with an O$_2$ partial pressure fraction of 50% showed lower intensity with a more comprehensive full-width half maximum (FWHM), implying poorer crystallinity of NiO films. The XRD peak of the (111) plane shifted to lower diffraction with increasing O$_2$ partial pressure, indicating an increase in the lattice constant with increasing O$_2$ partial pressure, as shown in Figure 1b. The increase in the lattice constant could be ascribed to the increased strain effect as Ni vacancies increase with excessive O$_2$ partial pressure [48–50]. Figure 1c shows the composition of Ni and O, estimated from AES analysis of the Ni$_{1-x}$O films with various O$_2$ partial pressures during deposition. The volume of Ni is gradually reduced with increasing O$_2$ partial pressure, resulting in a Ni-deficient Ni$_{1-x}$O film. The compositions of nickel oxide at 10% and 50% O$_2$ partial pressures were estimated to be Ni$_{0.89}$O and Ni$_{0.86}$O, respectively.
Figure 1. (a) XRD patterns of Ni$_{1-x}$O films deposited with various oxygen partial pressures. (b) Lattice constant of Ni$_{1-x}$O, estimated from (111) peak position, as a function of oxygen partial pressures. (c) Nickel and oxygen composition in Ni$_{1-x}$O by AES.

Figure 2a shows the typical behavior of Pt/Ni$_{1-x}$O/Pt stacks. The pristine Ni$_{1-x}$O films deposited under an O$_2$ partial pressure fraction of 10% offered an initial high resistance [51] at an applied voltage of 1.77 V (1.4 MV/cm) on the TE. The film resistance changed from HRS to LRS during the forming step. The resistance state was changed back to HRS at 0.64 V (0.5 MV/cm) during the subsequent bias application, exhibiting reversible switching for the positive bias on TE. The difference between the forming voltage (V_{form}) and set voltage (V_{set}) was approximately 0.57 V. In contrast, pristine Ni$_{1-x}$O films deposited under the 30% or 50% O$_2$ ratio showed low resistance in the pristine state without the electroforming step and reset-first RS behavior, where the initial LRS state was changed to the HRS state, as shown in Figure 2b,c. While V_{set} is similar to that of Ni$_{1-x}$O films for the O$_2$ partial pressure fraction of 10%, the $I_{\text{HRS}}/I_{\text{LRS}}$ ratio decreased because of the overall high current level in the HRS state. In particular, the I_{HRS} between these oxygen partial pressure fractions showed that the 50% O$_2$ ratio was 10 times higher than that of 30% O$_2$. The I-V curves of TiN/Ni$_{1-x}$O/Pt stacks are plotted in Figure 2d–f. The Ni$_{1-x}$O film deposited under a 10% O$_2$ partial pressure fraction shows BRS [52] characteristics, as shown in Figure 2d. The pristine Ni$_{1-x}$O film showed high resistivity, and the resistance state changed to LRS after the electroforming step with a negative bias on TE. The difference between V_{form} (~4.0 V) and V_{set} (~0.7 V) was approximately 3.3 V. On the contrary, the Ni$_{1-x}$O film deposited under the 30% or 50% O$_2$ partial pressure fraction showed reset-first BRS behavior for a positive voltage on the TE, as shown in Figure 2e,f.

Figure 3 shows the electric currents at 0.64 V of the Pt/Ni$_{1-x}$O/TiN stacks in the HRS and LRS states, where Ni$_{1-x}$O films were deposited at various O$_2$ partial pressures. The mean values of I_{HRS} and I_{LRS} (red line) increased with the O$_2$ ratio, suggesting that the Ni$_{1-x}$O film conductivity depends on the O$_2$ partial pressure, as shown in Figure 3a. The Ni$_{1-x}$O films with a 10% O$_2$ fraction required electroforming for resistive switching, but the Ni$_{1-x}$O films with a 30% O$_2$ fraction or higher showed reset-first RS behavior without electroforming. Figure 3b shows the electrical currents at 0.64 V in the LRS states, which has a similar tendency to the I_{HRS} with O$_2$ partial pressure, but the slope was lower than that of the I_{HRS} state. The I_{HRS} and I_{LRS} showed the highest values for Ni$_{1-x}$O films deposited under the 50% O$_2$ partial pressure fraction.

To understand the nature of resistance switching, HRS and LRS resistances were measured from devices with BE of 0.18, 0.38, 2.00, and 3.69 μm2 at a bias of ±0.48 V. Figure 4a shows the area dependence for BRS device with Ni$_{1-x}$O films deposited by 10% O$_2$ partial pressure fraction. The resistance of the HRS remained almost constant with decreasing geometric device area, where that of the LRS is almost independent of the device area. These area-independent characteristics imply that resistance switching through the device occurs in local regions, such as filamentary paths, rather than homogeneously distributed switching paths [53–57]. Meanwhile, the resistances of reset-first RS devices with Ni$_{1-x}$O films deposited at 50% O$_2$ partial pressure showed increased dependence on the device area, as shown in Figure 4b. Because the area dependence of the LRS for Ni$_{1-x}$O films with 50% O$_2$ partial pressure is close to that of Ni$_{1-x}$O films with 10% O$_2$ partial pressure, the nature of the RS is filamentary in the local area. The significant dependence
of HRS on the Ni$_{1-x}$O films with 50% O$_2$ partial pressure is attributed to the reduced resistance of the Ni$_{1-x}$O films, as shown in Figure 4b.

![Figure 2](image1.png)

Figure 2. I–V characteristics of Ni$_{1-x}$O devices with a bottom electrode of 2×2 μm2. URS characteristics of Ni$_{1-x}$O films deposited with partial oxygen pressure of (a) 10%, (b) 30% and (c) 50%. BRS characteristics of Ni$_{1-x}$O films deposited with oxygen partial pressure fraction of (d) 10%, (e) 30% and (f) 50%.

![Figure 3](image2.png)

Figure 3. Influence of oxygen partial pressure on (a) I_{HRS} of Ni$_{1-x}$O films and (b) I_{LRS} of Ni$_{1-x}$O films.

The DC, and AC endurance characteristics of the Ni$_{1-x}$O device are shown in Figure S1. DC endurance in Figure S1a was measured at a read voltage (V_{read}) of ±0.25 V under a compliance current of 10 mA. The measured I_{HRS}/I_{LRS} ratio is higher than 10^4 even after 10^3 cycles. Figure S1b shows the AC endurance under pulse, which is measured with a set pulse of -0.95 V with 180 ns, a reset pulse of 1.2 V with 180 ns, and a V_{read} of 0.3 V conditions. The device has a uniform I_{HRS}/I_{LRS} ratio even after 10^5 cycles, which results in a stable RS property.
It was reported that nickel deficiency could promote the further oxidation of Ni
2+
ions, which can be expressed with Kröger–Vink notation, as follows [48,49]:
\[
2\text{Ni}_{\text{Ni}}^{2+} + \frac{1}{2}\text{O}_2(g) \rightarrow 2\text{Ni}_{\text{Ni}}^{3+} + \text{O}_6^0 + \text{V}_{\text{Ni}}^0
\]
(1)
where \(\text{Ni}_{\text{Ni}}^{2+}\), \(\text{Ni}_{\text{Ni}}^{3+}\), \(\text{O}_6^0\), and \(\text{V}_{\text{Ni}}^0\) represent Ni2+, Ni3+, O2−, and ionized Ni vacancies, respectively. Ni2+ ions react with oxygen to generate ionized nickel vacancies and two Ni3+ ions, which affect the conductivity of the nickel oxide films. Therefore, it is shown that the increase

Figure 4. Area dependence of HRS and LRS resistances for Pt/Ni1−xO/TiN stacks (a) with Ni1−xO films, deposited with oxygen partial pressure fraction of 10%, with electroforming (b) with Ni1−xO films that are deposited with oxygen partial pressure fraction of 50%, with reset-first BRS without electroforming.

C-AFM measurements investigated the two-dimensional (2D) variation of the Ni1−xO film conductivity. Figure 5a illustrates the scheme of the C-AFM measurement. NiO/Pt and NiO/SiO2/Pt stacks were simultaneously formed on a sample to compare the differences during the current image mapping. Cross-sectional TEM images of the Ni1−xO films are shown in Figure 5b. The sample-to-sample variation in the Ni1−xO thickness on the SiO2/Pt stacks was estimated to be within 15%. Therefore, we ignore the difference in conductivity due to thickness variation. Figure 5c–e show the current mapping images at a bias of 3 V from Ni1−xO films deposited under various O2 partial pressures. The left region of each mapping image represents the reference of the insulating SiO2 between the BEs and Ni1−xO films. The regions on the right represent the Ni1−xO films on the Pt BEs in their pristine state. Similar to the I-V characteristics of MIM devices, C-AFM shows an increased current through the Ni1−xO films with increasing O2 partial pressure. The conductive regions in the Ni1−xO film regions increased with increasing O2 partial pressure fraction, as shown in Figure 5d,e. In particular, the current distribution is relatively uniform in Ni1−xO film with a 50% O2 fraction. In contrast, films deposited under 10% O2 partial pressure fraction showed improved resistivity, as shown in Figure 5c.

The effect of the O2 partial pressure on the chemical bonding states in the Ni1−xO films is investigated through XPS analysis. Figure 6a–c show the Ni 2p3/2 peaks of Ni1−xO films deposited with various O2 partial pressures. Ni0, Ni2+ and Ni3+ states with binding energies of 852.5, 853.7, and 855.5 eV, respectively, are used for deconvolution of Ni 2p3/2 peaks [58,59].

The proportion of the Ni3+ state was estimated from the ratio of the Ni3+ peak area to the Ni2+ peak area. The Ni3+ valence state increased while the fraction of Ni2+ ions decreased with increasing O2 partial pressure (Figure 6a–c). The Ni3+ ratio in the film grown under 10% and 50% O2 partial pressure was estimated at 14.0% and 23.9%, respectively. Meanwhile, the Ni0 state at the 852.5 eV peak was not observed in our Ni 2p2/3 peak analysis, although it was considered a conductive path in previous studies [39–41]. Conventionally, Ni vacancies form in Ni-deficient NiO films with relatively excessive oxygen. It was reported that nickel deficiency could promote the further oxidation of Ni2+ ions, which affect the conductivity of the nickel oxide films. Therefore, it is shown that the increase
in Ni$^{3+}$ in Ni$_{1-x}$O films is related to the increase in the current in the HRS state of MIM devices and C-AFM. It is expected that Ni deficiency in Ni$_{1-x}$O films grown under high O$_2$ partial pressure causes a high Ni$^{3+}$ concentration, leading to a highly conductive state and possibly the reset-first RS behavior with reinforced localized conductive paths [39,60,61]. Further investigation is required to understand how excess Ni$^{3+}$ ions produce the reset-first resistive switching behavior in Ni$_{1-x}$O films.

Figure 5. (a) Schematic diagram of the C-AFM measurement. (b) Cross-sectional TEM image of Ni$_{1-x}$O films deposited at various oxygen partial pressure. C-AFM current mapping images of the pristine Ni$_{1-x}$O films under oxygen partial pressure fraction of (c) 10%, (d) 30%, and (e) 50%.

Figure 6. XPS peaks of Ni 2p$_{3/2}$ of Ni$_{1-x}$O films with oxygen partial pressure fraction of (a) 10% (b) 30% (c) 50%.

4. Conclusions

In this study, the reset-first RS characteristics of off-stoichiometric Ni$_{1-x}$O films were investigated. The RS behavior without the electroforming step was observed in the unipolar
and bipolar off-stoichiometric Ni$_{1-x}$O films. Ni$^{3+}$ distribution contributes significantly to the conductivity of the pristine Ni$_{1-x}$O films. The conductivity and Ni deficiency of pristine Ni$_{1-x}$O films increased as the O$_2$ partial pressure increased during a deposition as revealed by the C-AFM and AES results. Moreover, Ni$^{2+}$ was further oxidized to Ni$^{3+}$ as the O$_2$ partial pressure increased, as revealed by the XPS results.

The NiO$_2$ bonding by Ni$^{3+}$ ions is related to the reset-first RS behavior without the electroforming step. This is advantageous in terms of device scale-down, making Ni$_{1-x}$O films promising candidates for memory applications by overcoming the limitations of the electroforming step in RRAM.

Supplementary Materials: The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/nano12132231/s1, Figure S1: Endurance characteristics of Ni$_{1-x}$O bipolar RS device.

Author Contributions: Conceptualization, D.-w.K.; methodology, J.-y.K.; validation, D.-w.K., T.-h.K. and J.-y.K.; writing—original draft preparation, D.-w.K.; writing—review and editing, H.-c.S.; supervision, H.-c.S. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Ministry of Trade, Industry and Energy, Korea under the Industrial Strategic Technology Development Program (Grant no. 100680075).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zahoor, F.; Zulkifli, T.Z.A.; Khanday, F.A. Resistive Random access Memory (RRAM): An Overview of Materials, Switching Mechanism, Performance, Multilevel Cell (mlc) Storage, Modeling, and Applications. *Nanoscale Res. Lett.* 2020, **15**, 90. [CrossRef] [PubMed]

2. Wang, H.; Yan, X. Overview of Resistive Random access Memory (RRAM): Materials, Filament Mechanisms, Performance Optimization, and Prospects. *Phys. Status Solidi (RRL)-Rapid Res. Lett.* 2019, **13**, 1900073. [CrossRef]

3. Wang, L.; Yang, C.; Wen, J.; Gai, S. Emerging Nonvolatile Memories to Go Beyond Scaling Limits of Conventional CMOS Nanodevices. *J. Nanomater.* 2014, **2014**, 927696. [CrossRef]

4. Pan, F.; Gao, S.; Chen, C.; Song, C.; Zeng, F. Recent progress in resistive random access memories: Materials, switching mechanisms, and performance. *Mater. Sci. Eng.: R: Rep.* 2014, **83**, 1–59. [CrossRef]

5. Wong, H.S.P.; Lee, H.-Y.; Yu, S.; Chen, Y.-S.; Wu, Y.; Chen, P.-S.; Lee, B.; Chen, F.T.; Tsai, M.-J. Metal-Oxide RRAM. *Proc. IEEE* 2012, **100**, 1951–1970. [CrossRef]

6. Quan, X.-T.; Zhu, H.-C.; Cai, H.-T.; Zhang, J.-Q.; Wang, X.-J. Resistive Switching Behavior in Amorphous Aluminum Oxide Film Grown by Chemical Vapor Deposition. *Chin. Phys. Lett.* 2014, **31**, 078101. [CrossRef]

7. Rodrigues, A.; Santos, Y.; Rodrigues, C.; Macêdo, M. Al2O3 thin film multilayer structure for application in RRAM devices. *Solid-State Electron.* 2018, **149**, 1–5. [CrossRef]

8. Lin, Y.S.; Zeng, F.; Tang, S.G.; Liu, H.Y.; Chen, C.; Gao, S.; Wang, Y.G.; Pan, F. Resistive switching mechanisms relating to oxygen vacancies migration in both interfaces in Ti/HfO$_x$/Pt memory devices. *J. Appl. Phys.* 2013, **113**, 064510. [CrossRef]

9. Raghavan, N.; Fantini, A.; Degraeve, R.; Roussel, P.; Goux, L.; Govoreanu, B.; Wouters, D.; Groeseneken, G.; Jurczak, M. Statistical insight into controlled forming and forming free stacks for HfOx RRAM. *Microelectron. Eng.* 2013, **109**, 177–181. [CrossRef]

10. Ku, B.; Abbas, Y.; Sokolov, A.S.; Choi, C. Interface engineering of ALD HfO$_2$-based RRAM with Ar plasma treatment for reliable and uniform switching behaviors. *J. Alloy. Compd.* 2018, **735**, 735–737. [CrossRef]

11. Seo, S.; Lee, M.-J.; Seo, D.H.; Jeoung, E.J.; Suh, D.-S.; Joung, Y.S.; Yoo, I.K.; Hwang, I.R.; Kim, S.H.; Byun, I.S.; et al. Reproducible resistance switching in polycrystalline NiO films. *Appl. Phys. Lett.* 2004, **85**, 5655–5657. [CrossRef]

12. Yoshida, C.; Kinoshita, K.; Yamasaki, T.; Sugiyama, Y. Direct observation of oxygen movement during resistance switching in NiO/Pt film. *Appl. Phys. Lett.* 2008, **93**, 042106. [CrossRef]

13. Liu, C.-Y.; Ho, J.-Y.; Huang, J.-J.; Wang, H.-Y. Transient Current of Resistive Switching of a NiO$_x$ Resitive Memory. *Jpn. J. Appl. Phys.* 2012, **51**, 041106. [CrossRef]

14. Alagoz, H.S.; Tan, L.; Jung, J.; Chow, K.H. Switching characteristics of NiOx crossbar arrays driven by low-temperature electroforming. *Appl. Phys. A* 2021, **127**, 499. [CrossRef]

15. Yang, J.J.; Ionue, I.H.; Mikolajick, T.; Hwang, C.S. Metal oxide memories based on thermochemical and valence change mechanisms. *MRS Bull.* 2012, **37**, 131–137. [CrossRef]

16. Trapatseli, M.; Khiat, A.; Cortese, S.; Serb, A.; Carta, D.; Prodromakis, T. Engineering the switching dynamics of TiO$_2$-based RRAM with Al doping. *J. Appl. Phys.* 2016, **120**, 025108. [CrossRef]

17. Chen, C.; Song, C.; Yang, J.; Zeng, F.; Pan, F. Oxygen migration induced resistive switching effect and its thermal stability in W/TaO$_x$/Pt structure. *Appl. Phys. Lett.* 2012, **100**, 253509. [CrossRef]
18. Jiang, Y.; Tan, C.C.; Li, M.H.; Fang, Z.; Weng, B.B.; He, W.; Zhuo, V.Y-Q. Forming-Free TaOxBased RRAM Device with Low Operating Voltage and High On/Off Characteristics. ECS J. Solid State Sci. Technol. 2015, 4, N137–N140. [CrossRef]
19. Hanzig, F.; Mahne, H.; Vesely, J.; Wylezich, H.; Slesazeck, S.; Leutertz, A.; Zschornak, M.; Motylenko, M.; Klemm, V.; Mikolajick, T.; et al. Effect of the stoichiometry of niobium oxide on the resistive switching of Nb 2 O 5 based metal–insulator–metal stacks. J. Electron Spectrosc. Relat. Phenom. 2015, 202, 122–127. [CrossRef]
20. Kundozzerova, T.V.; Grishin, A.M.; Stefanovich, G.B.; Velichko, A.A. Anodic Nb2O5 Nonvolatile RRAM. IEEE Trans. Electron Devices 2012, 59, 1144–1148. [CrossRef]
21. Asamitsu, A.; Tomioka, Y.; Kuwahara, H.; Tokura, Y. Current switching of resistive states in magnetoresistive manganites. Nature 1997, 388, 50–52. [CrossRef]
22. Lashkare, S.; Chouhan, S.; Chavan, T.; Bhat, A.; Kumbhare, P.; Ganguly, U. PCMO RRAM for Integrate-and-Fire Neuron in Spiking Neural Networks. IEEE Electron Device Lett. 2018, 39, 484–487. [CrossRef]
23. Panwar, N.; Ganguly, U. Variability assessment and mitigation by predictive programming in Pr 0.7 Ca 0.3 MnO 3 based RRAM. In Proceedings of the 2015 73rd Annual Device Research Conference (DRC), Columbus, OH, USA, 21–24 June 2015; pp. 141–142.
24. Depla, D.; Mahieu, S. Reactive Sputter Deposition; Springer: Berlin/Heidelberg, Germany, 2008.
25. Stognij, A.; Sharko, S.; Serokurova, A.; Trukhanov, S.; Panina, L.; Ketsko, V.; Dyakonov, V.; Szymczak, H.; Vinnik, D.; Gudkova, S. Preparation and investigation of the magnetoelectric properties in layered cermet structures. Ceram. Int. 2019, 45, 13030–13036. [CrossRef]
26. Sharko, S.A.; Serokurova, A.I.; Novitskii, N.N.; Ketsko, V.A.; Smirnova, M.N.; Almuqrin, A.H.; Sayyed, M.I.; Trukhanov, S.V.; Trukhanov, A.V. A New Approach to the Formation of Nanosized Gold and Beryllium Films by Ion-Beam Sputtering Deposition. Nanomaterials 2022, 12, 470. [CrossRef]
27. Zubar, T.; Fedosyuk, Y.; Tishkevich, D.; Kanafyev, O.; Astapovich, K.; Kozlovskyi, A.; Zdorovets, M.; Vinnik, D.; Gudkova, S.; Kaniuiev, E.; et al. The Effect of Heat Treatment on the Microstructure and Mechanical Properties of 2D Nanostructured Au/NiFe System. Nanomaterials 2020, 10, 1077. [CrossRef]
28. Zubar, T.I.; Fedosyuk, VM.; Trukhanov, S.V.; Tishkevich, D.I.; Michels, D.; Lyakhov, D.; Trukhanov, A.V. Method of surface energy investigation by lateral AFM: Application to control growth mechanism of nanostructured NiFe films. Sci. Rep. 2020, 10, 14411. [CrossRef]
29. George, S.M. Atomic Layer Deposition: An Overview. Chem. Rev. 2009, 110, 111–131. [CrossRef]
30. Greer, J.A. History and current status of commercial pulsed laser deposition equipment. J. Phys. D Appl. Phys. 2013, 47, 34005. [CrossRef]
31. Trukhanov, S.V.; Vasil’Ev, A.N.; Maignan, A.; Szymczak, H. Critical behavior of La0.825Sr0.175MnO2.912 anion-deficient manganite. J. Exp. Theor. Phys. Lett. 2007, 85, 507–512. [CrossRef]
32. Trukhanov, A.; Kostishyn, V.; Panina, L.; Korovushkin, V.; Turchenko, V.; Vinnik, D.; Yakovenko, E.; Zagorodnii, V.; Launetz, V.; Oliynyk, V.; et al. Correlation of the atomic structure, magnetic properties and microwave characteristics in substituted hexagonal ferrites. J. Magn. Magn. Mater. 2018, 462, 127–135. [CrossRef]
33. Hüfner, S. Electronic structure of NiO and related 3d-transition-metal compounds. Adv. Phys. 1994, 43, 183–386. [CrossRef]
34. Ferreira, L.G.; Marques, L.K.T. Band structure of NiO revisited. Mater. Sci. (Cond.-Mat. Mtrl.-Sci.) 2009. Available online at: https://www.semanticscholar.org/paper/Band-structure-of-NiO-revisited-Ferreira-Teles/0d15b06260c2aff5df1c9531066462f50f9145 (accessed on 26 June 2022).
35. Janod, E.; Tranchant, J.; Corraze, B.; Querret, M.; Stoliar, P.; Rozenberg, M.; Cren, T.; Roditchev, D.; Phuoc, V.T.; Besland, M.-P.; et al. Resistive Switching in Mott Insulators and Correlated Systems. Adv. Funct. Mater. 2015, 25, 6287–6305. [CrossRef]
36. Karolak, M.; Ulm, G.; Wehling, T.; Mazeunenko, V.; Poteryaev, A.; Lichtenstein, A. Double counting in LDA+DMFT—The example of NiO. J. Electron Spectrosc. Relat. Phenom. 2010, 181, 11–15. [CrossRef]
37. Xue, K.-H.; de Araujo, C.A.P.; Celinska, J.; McWilliams, C.A. A non-ferromagnetic model for unipolar switching transition metal oxide resistance random access memories. J. Appl. Phys. 2011, 109, 091602. [CrossRef]
38. Xue, N.; Liu, L.; Sun, X.; Liu, X.; Han, D.; Wang, Y.; Han, R.; Kang, J.; Yu, B. Characteristics and mechanism of conduction/set process in Ti/NiO/Pt resistance switching random-access memories. Appl. Phys. Lett. 2008, 92, 232112. [CrossRef]
39. Chien, F.S.-S.; Wu, Y.T.; Lai, G.L.; Lai, Y.H. Disproportionation and comproportionation reactions of resistive switching in polycrystalline NiO films. Appl. Phys. Lett. 2011, 98, 153513. [CrossRef]
40. Russo, U.; Ielmini, D.; Cagli, C.; Lacaia, A.L. Filament Conduction and Reset Mechanism in NiO-Based Resistive-Switching Memory (RRAM) Devices. IEEE Trans. Electron Devices 2009, 56, 186–192. [CrossRef]
41. Chen, Y.S.; Kang, J.F.; Chen, B.; Gao, B.; Liu, L.; Liu, X.Y.; Wang, Y.Y.; Wu, L.; Yu, H.Y.; Wang, J.Y.; et al. Microscopic mechanism for unipolar resistive switching behaviour of nickel oxides. J. Phys. D Appl. Phys. 2012, 45, 65303. [CrossRef]
42. Grossi, A.; Nowak, G.; Zambelli, C.; Pellissier, B.; Bernasconi, C.; Cibrario, G.; Crochemore, R.; Nodin, J.; Olivo, P. Fundamental variability limits of filament-based RRAM. In Proceedings of the 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2016; pp. 4.7.1–4.7.4.
43. Fang, Z.; Hu, H.Y.; Li, X.; Singh, N.; Ko, G.Q.; Kwong, D.L. HfOx/TiOx/HfOx/TiOx Multilayer-Based Forming-Free RRAM Devices With Excellent Uniformity. IEEE Electron Device Lett. 2011, 32, 566–568. [CrossRef]
44. Luo, Q.; Zhang, X.; Hu, Y.; Gong, T.; Xu, X.; Yuan, P.; Ma, H.; Dong, D.; Lv, H.; Long, S.; et al. Self-Rectifying and Forming-Free Resistive-Switching Device for Embedded Memory Application. IEEE Electron Device Lett. 2018, 39, 664–667. [CrossRef]
45. Aglieri, V.; Lullo, G.; Mosca, M.; Macaluso, R.; Zaffora, A.; DI Franco, F.; Santamaria, M.; Cicero, U.L.; Razzari, L. Forming-Free and Self-Rectifying Resistive Switching Effect in Anodic Titanium Dioxide-Based Memristors. In Proceedings of the 2018 IEEE 4th International Forum on Research and Technology for Society and Industry (RTSI), Palermo, Italy, 10–13 September 2018; pp. 1–4. [CrossRef]

46. De Wolf, P.; Snauwaert, J.; Clarysse, T.; Vandervorst, W.; Hellemans, L. Characterization of a point-contact on silicon using force microscopy-supported resistance measurements. Appl. Phys. Lett. 1995, 66, 1530–1532. [CrossRef]

47. Alexeev, A.; Loos, J.; Koets, M. Nanoscale electrical characterization of semiconducting polymer blends by conductive atomic force microscopy (C-AFM). Ultramicroscopy 2006, 106, 191–199. [CrossRef] [PubMed]

48. Kim, D.S.; Lee, H.C. Nickel vacancy behavior in the electrical conductance of nonstoichiometric nickel oxide film. J. Appl. Phys. 2012, 112, 034504. [CrossRef]

49. Chen, T.; Wang, A.; Shang, B.; Wu, Z.; Li, Y.; Wang, Y. Property modulation of NiO films grown by radio frequency magnetron sputtering. J. Alloy. Compd. 2015, 643, 167–173. [CrossRef] [PubMed]

50. Lombardo, S.; Stathis, J.H.; Linder, B.P.; Pey, K.L.; Palumbo, F.; Tung, C.H. Dielectric breakdown mechanisms in gate oxides. J. Appl. Phys. 2005, 98, 121301. [CrossRef]

51. Akinaga, H.; Shima, H. Resistive Random Access Memory (ReRAM) Based on Metal Oxides. Proc. IEEE 2010, 98, 2237–2251. [CrossRef]

52. Lee, J.; Park, J.; Jung, S.; Hwang, H. Scaling effect of device area and film thickness on electrical and reliability characteristics of RRAM. In Proceedings of the 2011 IEEE International Interconnect Technology Conference, Dresden, Germany, 8–12 May 2011; pp. 1–3.

53. Park, C.; Kim, J.; Lee, K.; Oh, S.K.; Kang, H.J.; Park, N.S. Electronic, Optical and Electrical Properties of Nickel Oxide Thin Films Grown by RF Magnetron Sputtering. Appl. Sci. Converg. Technol. 2015, 24, 72–76. [CrossRef]

54. Grosvenor, A.P.; Biesinger, M.C.; Smart, R.S.C.; McIntyre, N.S. New interpretations of XPS spectra of nickel metal and oxides. Surf. Sci. 2006, 600, 1771–1779. [CrossRef] [PubMed]

55. McWilliams, C.R.; Celinska, J.; de Araujo, C.A.P.; Xue, K.-H. Device characterization of correlated electron random access memories. J. Phys. 2011, 109, 091608. [CrossRef]

56. Kwon, D.-H.; Lee, S.R.; Choi, Y.S.; Son, S.-B.; Oh, K.H.; Char, K.; Kim, M. Observation of the Ni2 O3 phase in a NiO thin-film resistive switching system. Phys. Status Solidi (RRL)–Rapid Res. Lett. 2017, 11, 1700048. [CrossRef]