Effectiveness of a Primary Care Program to Increase Physical Activity in People With Dementia and Their Family Caregivers (AFISDEMYF Study).

Elena DE DIOS-RODRIGUEZ
Unidad de Investigación en Atención Primaria de Salamanca (APISAL), Instituto de investigación Biomédica de Salamanca (IBSAL), Salamanca, España;

María C PATINO-ALONSO
Unidad de Investigación en Atención Primaria de Salamanca (APISAL), Instituto de investigación Biomédica de Salamanca (IBSAL), Salamanca, España;

Susana GONZÁLEZ-SÁNCHEZ
Unidad de Investigación en Atención Primaria de Salamanca (APISAL), Instituto de investigación Biomédica de Salamanca (IBSAL), Salamanca, España;

Joana RIPOLL
Primary Care Research Unit of Mallorca, Baleares Health services-IbSalut, Palma, Spain. Balearic Islands Health Research Institute (IdISBa), Palma,

Olaya TAMAYO-MORALES
Unidad de Investigación en Atención Primaria de Salamanca (APISAL), Instituto de investigación Biomédica de Salamanca (IBSAL), Salamanca, España;

Sara MORA-SIMÓN
Unidad de Investigación en Atención Primaria de Salamanca (APISAL), Instituto de investigación Biomédica de Salamanca (IBSAL), Salamanca, España;

Jaime UNZUETA-ARCE
Unidad de Investigación en Atención Primaria de Salamanca (APISAL), Instituto de investigación Biomédica de Salamanca (IBSAL), Salamanca, España;

Manuel A GÓMEZ-MARCOS
Unidad de Investigación en Atención Primaria de Salamanca (APISAL), Instituto de investigación Biomédica de Salamanca (IBSAL), Salamanca, España;

Luis GARCÍA-ORTIZ
Unidad de Investigación en Atención Primaria de Salamanca (APISAL), Instituto de investigación Biomédica de Salamanca (IBSAL), Salamanca, España;

Emiliano RODRÍGUEZ-SÁNCHEZ (✉ emiliano@usal.es)
Unidad de Investigación en Atención Primaria de Salamanca (APISAL), Instituto de investigación Biomédica de Salamanca (IBSAL), Salamanca, España;
Research Article

Keywords: dementia, family care, nursing, family functionality, physical activity, primary care, randomized controlled trials

Posted Date: December 15th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-1058583/v1

License: ☝️ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Aim: To evaluate the effectiveness of an intervention in primary health care designed to increase physical activity in people with dementia and their family caregivers.

Methods: A cluster-randomized multicentre clinical trial was carried out.

Participants: 140 people with dementia (median age 82 years; 63.6% women) and 176 caregivers (median age 62 years; 72.7% women). Seventy patients and 80 caregivers were assigned to the Control Group (CG) and 70 patients and 96 caregivers to the Intervention Group (IG). The physical activity was measured with the pedometer and with the IPAQ-SF questionnaire. The intervention consisted of applying in primary care the program promoting physical activity (PEPAF) for 3 months. The changes observed at 6 months were analyzed.

Results:

In people with dementia, in the pedometer assessment a decrease was observed in both groups, but it was larger in the CG both in the total number step/day lower in the IG than in the CG and in the aerobic steps/day (52.89 vs -615.93). The activity reported with the IPAQ-SF decreased more in IG, both in the MET/min/week (-258.470 vs -148.23) and in the MVPA min/week. In caregivers the pedometer assessment showed that total steps/day increased more in the IG, as did aerobic steps/day (356.91 vs -12.95). The IPAQ-SF a smaller increase in global activity was declared in the IG than in the CG (545.25 MET/min/week vs 609.55), but the increase in vigorous activity was greater.

No differences were found in changes in the functional status and the cognitive performances of people with dementia nor in the mental health in the caregivers, but systolic blood pressure, the Family APGAR and overload in the IG did improve.

Conclusions: The results suggest that the intervention carried out may be effective on physical activity in both patients and caregivers. It can also improve systolic blood pressure, the Family APGAR and overload in caregivers. This is the first study to implement a primary care intervention aimed at simultaneously increasing physical activity in people with dementia and their relatives. These results reinforce the importance of using objective measures in clinical trials in people with dementia.

Trial registration number: NCT 02044887.

Background

Population ageing has led to a rise in chronic diseases, as well as disability, and this requires greater dedication to care by family members [1]. Dementias, as the main cause of loss of disability-adjusted life years in women, are a major health problem [2]. More than two thirds of people suffering from dementia continue to live at home, impacting significantly on their families [3], and worsening the quality of life both of those with dementia and their family caregivers [4]. These challenges are exacerbated by a
shortage of dementia care specialists, which places an increasing burden on primary physicians to provide care for people living with dementia [5]. It is known that people with dementia (PWD) have a less active lifestyle in comparison to their peers without health problems [6]. They highly depend on their caregivers to do any physical activity[5]. Because of this, informal caregivers have a great interest when it comes to physical activity intervention for people who suffer from dementia.

A caregiver is someone who gives support and takes care of someone else who lives with dementia. Unpaid caregivers are usually closed family members of the patient and it is known that more than 30% of PWD have an average of three caregiver members of their family [1]. However, most interventions focus only on the patient and just one caregiver, not taking into account the family functionality [5].

In addition, the sedentary lifestyle that PWD present has a negative influence on executive functions [7]. Physical activity (PA) is a highly protective factor for cognitive functions and also a promising psychosocial strategy for the protection of cognition in older people [8]. However, measuring PA in this group of subjects is not easy. As far as we know, practically all the studies carried out on PWD evaluate PA using questionnaires instead of objective measures such as the pedometer [9]. Furthermore, whether the questionnaires are filled out by PWD or their caregivers is not specified, so it is difficult to assess the discrepancy between performed and reported PA [10].

Caring for a family member often has a negative impact on physical and psychological health [11]. Moreover, caregivers have been found to have a greater tendency towards a sedentary lifestyle than non-caregivers [12], which can exacerbate negative mental health effects [13], cardiovascular morbidity [14, 15], and increase overall mortality [16]. PA is a beneficial intervention for healthy older people, increasing functional capacity and the control of cardiovascular disease risk factors [8, 17, 18], as demonstrated in the program promoting physical activity (PEPAF), a randomized controlled clinical trial developed in primary health care which has been effective in increasing PA in sedentary people, especially in people over 50 years of age [19]. Even though physical activity interventions may have a positive impact on PWD, these types of interventions are a big challenge for people living with dementia. They also require the participation of caregivers and sometimes they might have negative secondary effects on the patient, such as behavioral and psychological symptoms, pain, confusion, agitation, feelings of malaise and higher likelihood of falls. In a review by Lamotte et al. [12] only 4 controlled trials which developed interventions for patients in dyads were taken into account, focused both on the patient and his or her caregiver [20-23].

The conclusion of these trials is that physical activity interventions are feasible and may have a positive effect on the patient, promoting his functional independence and making it easier for the caregiver [23]. However, there is not enough evidence on the benefits of these interventions with dyads with regard to cognitive performance and the behavioral and neuropsychiatric symptoms in participants with dementia.

Finally, interventions aimed at increasing PA in groups of PWD and their relatives, in a primary care setting, have not yet been published since most of the interventions so far have been carried out only on the patient with dementia or only with a family caregiver [24].
THE STUDY

Aim/s

The objective of this study is therefore to evaluate the effectiveness of a primary health care intervention for increasing the PA of PWD and their relative caregivers with objective and subjective measures.

The effects of the intervention on PWD regarding their cognitive status and level of dependence, and on caregivers in terms of mental health, overload and family functionality were also estimated.

Design / Methodology

Field trial with two health centres (clusters) randomly assigned to the intervention group (IG), and two more centres to the control group (CG), where normal care was to be maintained. The protocol has been published with the sections of the methodology shown below [25] and registered in Clinical Trials.gov (AFISDEMYF study, NCT 02044887; date: 24/01/2014). Assessments were made at baseline and after 6 months between January 2016 and December 2018 (Figure 1).

Setting and Participants

The study was carried out in four primary care centres in Spain. Using the morbidity registry of PWD of the primary care physicians participating in the study, those PWD meeting the inclusion criteria were selected. A detailed description of the inclusion and exclusion criteria have been published in the study protocol [25]. A list of PWD was created, including family members who were involved in the care of the patient on at least two days a week, and it was suggested that at least one family member and up to three caregivers participate in the study. Those who accepted and met the inclusion/exclusion criteria had to sign the informed consent document before the initial assessment at the health centres. Finally, 140 PWD and 176 caregivers were included. Figure 1 (flow chart) shows the subjects assessed, causes of exclusion and drop-outs at 6-month follow-up. The study was completed by 48.6%, with “did not want to continue” being the main reason given for dropping out. Twelve months assessment allowed us to have complete information about 22 PWD (11 IG and 11 CG) and 35 caregivers (16 CG and 19 IG). Because of a high sample loss (84.29% of PWD and 80.45% of caregivers), effectiveness results were obtained with 6 months assessment data.

Sample size

Accepting a 0.05 alpha risk and a beta risk of 0.2 in a bilateral contrast, 67 participants in the control group and 67 in the intervention group are needed to detect a difference equal to or greater than 600 steps/day (1/2 SD) between the 2 groups. It is assumed that the common standard deviation is 1200 steps. Therefore, we consider that the 140 subjects included are sufficient to test the hypotheses of the study.

Intervention
The intervention was carried out by health workers (medics and nurses) who regularly care for PWD at the health centre. Caregivers and PWD may have had different family doctors. In a first interview, participating health workers carried out an assessment of the morbidity situation, lifestyles, functionality and care plans of PWD. The intervention carried out in the IG was the one recommended in the PEPAF study [26], consisting of an interview lasting 15-20 minutes, in which possible problems regarding exercise anticipated by the patient and caregiver are addressed and a focused Physical Activity Plan is negotiated in compliance with the recommendations of the Centers for Disease Control and Prevention (CDC). Benefits of doing physical activity and international recommendations about weekly physical activity were explained. Finally, a recommendation was made of 30 min of moderate activity during five days a week or 20 min of vigorous activity just three days a week. Participants are instructed to do PA autonomously, preferably by walking around their neighbourhood. To support the intervention, PEPAF recommendations were handed out in writing (a diptych) to both PWD and caregivers. During the following 3 months, interviews of about 15 minutes were carried out every 3 weeks to reinforce the performance of PA and offer support in case of any difficulties they may have encountered when exercising.

The health workers participating in the IG received a four-hour training session at the beginning of the study in the protocol for prescribing PA and were offered support during the study period to complete information or reinforce intervention content. No records other than those used in the care the care provided in primary care to PWD (medical history) were requested to avoid overloading the attention of the participants. The CG health workers performed the normal care and delayed any systematic intervention on PA until the end of the study, unless the reason for the consultation or the health problems of the PWD and caregivers were directly related to PA.

Data collection

Variables and measurement instruments

1- Primary measurement variable

The measurement of objective PA was carried out with a pedometer, which was used for 7 days, and subjective PA was assessed with a PA questionnaire, covering the same days as the pedometer. The two measurements were made at the beginning of the study and at 6 months with the dementia sufferers and caregivers in the two groups.

1) Digital pedometer (Omron Hj-321 lay-UPS):

The pedometer was previously validated [27]. Its piezoelectric sensors use multi-position sensing technology. It shows total steps, aerobic steps, distance covered and calories consumed, and stores the results of the last 7 days. The pedometer was worn by PWD and caregivers for 9 consecutive days in order to record 7 full days. The application was configured with the participant's data (sex, age, weight and height, step length).
2) The international physical activity questionnaire short form (IPAQ-SF)

The subjective PA record was collected for 7 days using the 9-item version of the IPAQ-SF questionnaire [28]. The IPAQ-SF is a general measure of PA which has been recognized as a valid and reliable tool. The sum of the products of the hours dedicated to each activity and the estimated energy expenditure (MET) provides an estimate of the kilocalories per kilogram used per day (kcal * kg⁻¹ * d⁻¹). The physical exercise dose is estimated in METs per minute per week (METS/min/week).

2- Secondary measurement variables:

A questionnaire was created to collect demographic variables of age, marital status, educational level, number of people living together at home, number of living children and caregiver's occupation. Anthropometric variables, functionality measured with the Barthel test [29, 30], the Lawton and Brody test [31] and morbidity were reported from the medical history by the health workers who regularly attended the PWD. The research team collected the responses to different questions regarding the care received by the patient, the number of months that caregivers had been caring for the family member, also asking whether the caregiver and the patient lived in the same home [32], and carried out the evaluation of the following questionnaires:

1) ADAS-Cog:

This is a brief cognitive battery composed of several scales assessing memory, learning and recognition, language, visuo-constructive skills, ideational practice, and temporal-spatial orientation. Errors are counted and scoring can range from 0 (best) to 70 (worst). It is the most widely used general cognitive measure in AD clinical trials [33].

2) Mini – Mental State Examination (MMSE):

This comprises 20 items and explores the functions of temporal-spatial orientation, attention, memory, language and constructive practice. The total score is a summation of all item scores, with 0 being the maximum error and 30 being the maximum success [34].

3) The clock drawing test:

In this test, the subject is instructed to draw a clock with all the numbers and to place the hands at ten past eleven. Visuo-constructive, visuospatial, planning and organization skills are assessed. The maximum total score is 7 points [35].

4) The 12-item General Health Questionnaire (GHQ-12)

The assessment of perceived mental health was carried out with the GHQ-12 [36], a self-administered screening questionnaire designed to be used in a clinical setting to detect individuals with psychiatric disorders. The total score is obtained by adding the scores between 1 and 4 of the 12 items: the higher the score, the worse the state of mental health. The cut-off point is set at 12 points.
5) The Family APGAR:

This questionnaire assesses the functionality of the family through five components: Adaptation, Partnership, Growth, Affection and Resolve. It consists of five questions, with five possible answers: never, rarely, sometimes, quite frequently, almost always, scored from 0 to 4. A score of 10-12 indicates moderate dysfunction, 13-16 mild dysfunction, and 17-20 normal functionality [37].

6) The short-form Zarit test:

The short-form Zarit test was applied to evaluate the caregiver's burden [38]. It consists of 7 questions with 5 possible responses (never, rarely, sometimes, quite frequently, almost always), scored from 1 to 5, giving a total scoring range of 7-35. The cut-off point is set at 17 points, with higher scores representing overload situations.

Ethical considerations

The Ethics Committee for Drug Research in the Salamanca health area (Spain) approved the project on 11/04/2013. Participants were informed of the project's objectives, as well as the risks and benefits of the actions taken and informed consent was obtained from all participants. They signed an informed consent in accordance with the Declaration of Helsinki. All methods were carried out in accordance with Declaration of Helsinki.

Validity and reliability

The study follows the recommendations of the CONSORT guidelines. The computer program (Epidat 4.0) was used to randomize the primary care centres (two to the IG and two to the CG) to avoid possible contamination due to the interaction of participants from the same centre. Randomization was carried out by researchers other than those performing the assessment, and the researcher in charge of carrying out the analyses was also blinded. Due to the nature of the study, subjects could not be masked. Participants from both groups were able to participate freely in other activities during the intervention period and were able to continue participating in those activities they had previously started.

Data analysis

Data are expressed as means and standard deviations or medians and interquartile ranges for continuous variables, and number and percentages for categorical variables. Normality was assessed using the Kolmogorov–Smirnoff normality test. When comparing categorical variables with each other, the χ² test was used. Comparisons of continuous variables between groups were performed using Student's t-test for independent samples or Mann-Whitney U test to evaluate differences by control and intervention group. PWD and caregivers were analyzed separately. To analyze the changes at 6 months with respect to the baseline evaluation in the outcome variables within the same group, the Student's t-test of paired data or the Wilcoxon test was used. The statistical analyses were carried out using IBM® SPSS® v.26 software (IBM Corp, Armonk, NY).
Results

Baseline characteristics of the participants and follow-up

One hundred and forty PWD (median age = 82.00 (IQR: 78.00-85.00; 63.6% women) and 176 carers (median age = 62.00 (IQR: 52.00-78.00; 72.7% women) participated in the study. Seventy PWD and 80 caregivers, and 70 PWD and 96 caregivers were distributed across the CG and IG respectively.

The second evaluation was taken by 61.43% (n=43) of the PWD in the IG and 35.71% (n=25) in the CG (Figure 1), and by 73.08% of the caregivers in the IG and 62.24% in the CG. A comparison of PWD who dropped out with those who participated in the second evaluation did not show differences regarding sex and PA, although there were differences in age: more older PWD dropped out (84.07 ± 5.78 years vs 80.42 ± 6.18; p = 0.016). Similarly, there were no differences in terms of sex and PA measures between the caregivers who dropped out and those who took the second evaluation in CG and IG. However, there were differences with respect to age, with younger caregivers dropping out more in the IG (57.49 ± 14.05 vs 64.67 ± 14.46 years; p = 0.020). The pedometer measurements were repeated on 8 PWD and on 3 caregivers because they did not obtain valid records during the week that they had to wear it, and 6 PWD who lost the pedometer explicitly refused to put it on again.

Tables 1 and 2 compare the sociodemographic and clinical characteristics of PWD and caregivers across IG and CG. A difference was found between the groups in caregiver overload, which was greater in the CG (p < 0.001). No differences were observed when comparing the PA of the CG with the IG in the baseline assessment, both in PWD and caregivers.

More than one caregiver participated in 32.4% of the cases in the intervention group and in 10% in the control group (TABLE 3). All PCDs who had 3 caregivers participating in the study performed at least 2 evaluations. The highest percentage of losses was observed in the group of PCD who had only one caregiver and belonged to the control group, since they represented 62.9% (44/70). Among the PCD who only carried out the initial evaluation, had only one caregiver the 97.8% in the control group and 85.2% in the intervention group. The number of PCD who participated in the third evaluation was the same in both groups, 11 (15.7%).

Changes in physical activity

In PWD, in the pedometer assessment a decrease was observed in both groups, but it was larger in the CG both in the total number step / day lower in the IG than in the CG (-646.37 v. -898.46) and in the aerobic steps / day (52.89 vs -615.93). However, the activity reported with the IPAQ-SF decreased more in IG, both in the MET / min / week (-258.470 vs -148.23) and in the MVPA min / week. However, statistical significance was not reached in any of the cases (Table 4).

Regarding caregivers, the pedometer assessment showed that total steps/day increased more in the IG (569.41 vs 377.23), as did aerobic steps/day (356.91 vs -12.95). In the activity reported with the IPAQ-SF,
a smaller increase in global activity was declared in the IG than in the CG (545.25 MET/min/week vs 609.55), but the increase in vigorous activity was greater (495.14 MVPA min/week v. 124.68) (Table 5).

Table 1.- Comparison of control and intervention groups at baseline: people with dementia.
Demographic characteristics:

Variables	Control (n=70)	Intervention (n=70)	p value
Age (years)	82.00(78.00-85.00)	81.50(78.00-86.25)	0.446
Gender: Women	41(58.6)	48(68.6)	0.219
Years of schooling.	8.00(6.00-8.00)	8.00(6.00-8.00)	0.532
Marital status: Married	36(65.5)	41(70.7)	0.551
Lives with One person	53(75.7)	48(68.6)	0.346
Two or more	17(24.3)	22(31.4)	
Classification Number of children			0.145
No children	3(4.3)	8(11.4)	
One child	13(18.6)	8(11.4)	
Two children	17(24.3)	24(34.3)	
Three or more children	37(52.2)	30(44.8)	

Clinical characteristics:

Variables	Control (n=70)	Intervention (n=70)	p value
Abdominal perimeter (cm)	92.07(10.96)	95.24(14.54)	0.331
Systolic blood pressure (mmHg)	128.50(122.50-138.50)	132.00(118.50-145.50)	0.997
Diastolic blood pressure (mmHg)	73.00(66.75-82.00)	74.00(65.00-84.00)	0.652
Body Mass Index (kg/m2)	27.34(6.28)	26.99(4.50)	0.755
Hypertension	24(34.3)	36(51.4)	0.040
Hipercholesterolemia	29(41.4)	28(40.0)	0.863
Melliteus Diabetes	12(17.1)	13(18.6)	0.825
Smoking	1(3.4)	4(6.6)	0.810
Obesity	6(20)	16(25.8)	0.540
Barthel Index	70 (55-80)	75 (45-85)	0.639
Lawton-Brody Index	1 (0-3)	3 (1-3)	0.009
ADAS-Cog	48.50 (42.00-62.75)	45.00 (39.00-60.50)	0.561
Mini Mental State Examination	15.44(7.51)	18.06(7.68)	0.095
The clock drawing test	1 (0-4)	2 (0-5)	0.483
Number of months receiving care:

Less than 18	12 (18.5)	18 (28.1)
Between 18 and 36	13 (20.0)	18 (28.1)
Between 37 and 68	19 (29.2)	12 (18.8)
More than 68	21 (32.3)	16 (25.0)

Pedometer

Total Steps/day	3340.89 (2831.53)	4384.52 (4988.75)
Aeróbics Steps/day	1697.97 (1695.99)	2316.95 (3011.92)
Kilocaloríes/day	100.01 (49.68-151.84)	111.29 (54.85-165.86)
Total Steps		0.407
Less than 7000	19 (82.6)	43 (78.2)
Between 7000-10000	4 (17.4)	8 (14.5)
More than 10000	0 (0.0)	4 (7.3)

IPAQ-SF

METS/min/week	1052.47 (926.56)	1412.00 (1391.72)
MVPA_min/week	16.77 (54.74)	28.88 (123.95)
Physical Activity Intensity		0.405
Light	7 (28)	22 (38.6)
Moderate	17 (68)	30 (52.6)
Intense	1 (4)	5 (8.8)

Notes: IPAQ-SF International Physical Activity Questionnaires -Short Form; MET: metabolic equivalent. Values expressed as mean (± standard deviation), Mean (SD), Median (IQR) or frequencies (percent). Chi-squared test and Mann-Whitney U test is used to test differences in all measures excepting Short Zarit where Student-t is applied.

Table 2.- Comparison of control and intervention groups at baseline: caregivers.
Variables	Control (n=78)	Intervention (n=98)	p value	
Demographic characteristics				
Age (years)	69.00(53.00-78.00)	59.00(51.00-76.00)	0.120	
Gender: Women	52(66.7)	76(77.6)	0.107	
Years of schooling.	9(8-13)	12(8-15)	0.119	
Marital estatus: Married	65(83.3)	82(83.7)	0.952	
Lives with			0.960	
Alone	3(4.1)	3(3.3)		
One person	40(54.1)	48(53.3)		
Two or more people	31(41.9)	39(43.3)		
Current job situation			0.343	
Housewife	32(41.03)	36(36.37)		
Works	13(16.67)	22(24.45)		
Retired	3(3.85)	9(9.20)		
Does not work	30(38.46)	31(31.63)		
Number of children	1.98(1.54)	1.95(1.57)	0.648	
No children	17(21.8)	19(19.4)		
One children	11(14.1)	16(16.3)		
Two children	23(29.5)	36(36.7)		
Three or more children	27(34.6)	27(27.6)		
Clinical characteristics				
Abdominal perimeter (cm)	92.24(15.42)	90.94(13.24)	0.567	
Systolic blood pressure (mmhg)	130.00(115.25-146.25)	120.00(110.75-135.00)	0.026	
Diastolic blood pressure (mmhg)	77.00(70.00-86.00)	75.50(70.00-84.00)	0.207	
Body Mass Index (kg/m2)	26.76(4.94)	26.21(4.17)	0.430	
Hypertension	26(33.3)	32(32.7)	0.924	
Hipercholesterolemia	25(32.1)	34(34.7)	0.712	
Mellitus Diabetes	6(7.7)	9(9.2)	0.725	
Smoking	14(17.9)	18(18.4)	0.943	
	Participating Caregivers	People with dementia	Chi-square	p-value
--------------------------	--------------------------	----------------------	------------	---------
Obesity	26(33.3)	41(41.8)	0.248	
Anxiety/Depression	15(19.2)	21(21.4)	0.720	
Mental Health-GHQ-12	1 (0-4)	1 (0-3)	0.139	
Family APGAR	15 (11-18)	15.50 (13-19)	0.070	
Short Zarit	19.96(6.75)	15.95(6.41)	<0.01	

Pedometer

	Participating Caregivers	People with dementia	Chi-square	p-value
Total Steps/day	6039.32(3211.98)	7067.45(3717.84)	0.067	
Aeróbics Steps/day	1891.74 (1719.76)	2060.35 (1933.64)	0.603	
Kilocalories/day	104.21(47.07-164.46)	122.71(72.43-187.43)	0.042	
Total Steps			0.314	

Less than 7000	45(36.4)	46(51.7)		
Between 7000-10000	18(25.4)	28(31.5)		
More than 10000	8(11.30)	15(16.9)		

IPAQ-SF

	Participating Caregivers	People with dementia	Chi-square	p-value
METS/min/week	2322.43 (1865.04)	2273.98 (2273.33)	0.883	
MVPA_min/week	97.17 (190.28)	112.65 (300.41)	0.701	
Physical Activity Intensity			0.857	
Light	11(14.9)	12(13.2)		
Moderate	44(59.5)	61(67)		
Intense	19(25.7)	18(19.8)		

Note: GHQ-12: General Health Questionnaire-12. IPAQ-SF International Physical Activity Questionnaires - Short Form; MET: metabolic equivalent. Values expressed as mean (± standard deviation), Mean (SD), Median (IQR) or frequencies (percent). Chi-squared test and Mann-Whitney U test is used to test differences in all measures excepting Short Zarit where Student-t is applied.

Table 3. Comparison of the number of evaluations carried out by people with dementia with the number of participating caregivers.
Number of evaluations carried out to the people with dementia:

	Only the initial	6 months	12 months	Total

Number of participating caregivers for each people with dementia:

Control group:

Number of caregivers	1 caregiver	2 caregivers	3 caregivers	Total
1 caregiver	44(97,8)	9(64,3)	10(90,9)	63(90,0)
2 caregivers	1(2,2)	4(28,6)	1(9,1)	6(8,6)
3 caregivers	0(0,0)	1(7,1)	0(0,0)	1(1,4)
Total	45(100)	14(100)	11(100)	70(100)

Intervención group

Number of caregivers	1 caregivers	2 caregivers	3 caregivers	Total
1 caregivers	23(85,2)	20(62,5)	5(45,5)	48(68,6)
2 caregivers	4(14,8)	7(21,9)	5(45,5)	16(22,9)
3 caregivers	0(0,0)	5(15,6)	1(9,1)	6(8,6)
Total	27(100)	32(100)	11(100)	70(100)

Total | 72(51,4) | 46(32,9) | 22(15,7) | 140(100) |

Notes: Values expressed as frequencies (percent). Chi-squared test is used to test.

† p value = 0,007; # p value =0,049) in both groups

Other changes measured in people with dementia and caregivers

Table 5 shows that in PWD an improvement in BMI was observed in the IG (0.51 vs. - 0.71; p = 0.011) but the figures of systolic and diastolic blood pressure in the IG were worse. It also shows a deterioration in the Barthel index (p <0.05) and Lawton index in both groups and in the cognitive evaluation (ADAS-cog, MMSE, clock test) but with no differences when comparing the changes between the two groups.

In caregivers, systolic blood pressure figures improved in the IG (0 = 0.001), as well as diastolic blood pressure. Also, an improvement in the Family APGAR was only observed in the IG group (p = 0.018), but not when comparing the changes between both groups. The short-form Zarit test showed an improvement in IG overload (-151 vs. -0.38).

No differences were found in the functional status and the cognitive performances of PWD or in mental health in the caregivers, but systolic blood pressure, the Family APGAR and overload in the IG did
Table 4.- Changes in people with dementia at 6 months compared to baseline.

Variables	Control group (n=32)	Intervención group (n=35)	Mean difference (intervention-control)			
	Mean (CI 95%)	p value †	Mean (CI 95%)	p value †	Mean (CI 95%)	p value †
Physical Activity						
Pedometer						
Total Steps (day)	-898.46 (-2225.51 - 428.59)	0.171	-646.37 (-1502.21 - 209.48)	0.134	252.10 (-1218.33 - 1722.53)	0.732
Aerobic steps (day)	-615.93 (-1344.33 - 112.47)	0.087	52.89 (-695.45 - 801.23)	0.883	668.82 (-444.27 - 1781.91)	0.227
IPAQ-SF[a]						
MET/min/week	-148.23 (-338.46 - 42.00)	0.119	-258.47 (-870.87 - 353.93)	0.396	-110.24 (-896.31 - 675.84)	0.779
MVPA_min/week	-14.96 (-38.88 - 8.95)	0.205	-31.54 (-101.67 - 38.59)	0.366	-16.58 (-106.90 - 73.74)	0.714
Clinical characteristics:						
Abdominal perimeter (cm)	3.44 (-0.915 - 7.80)	0.114	-3.16 (-7.31 - 0.99)	0.130	-6.60 (-12.43 - 0.77)	0.031
Systolic blood pressure (mmHg)	5.95 (-3.55 - 15.46)	0.206	-0.73 (-8.68 - 7.219)	0.852	-6.69 (-19.07 - 5.39)	0.284
Diastolic blood pressure (mmHg)	4.50 (-1.84 - 10.84)	0.154	-0.70 (-5.52 - 4.11)	0.767	-5.20 (3.86 - 12.96)	0.184
Body Mass Index (kg/m2)	-0.71 (-1.33 - 0.08)	0.28	0.51 (-3.55 - 1.08)	0.079	1.21 (0.43 - 0.36)	0.006
Functional and cognitive state						
Índice de Barthel	-15.63 (-26.18 - 5.07)	0.006	-14.64 (-25.75 - 0.54)	0.011	0.98 (-15.49 - 17.45)	0.906
Índice de Lawton-Brody	-0.20 (-0.98 - 0.58)	0.599	0.19 (-0.59 - 0.96)	0.625	0.39 (-0.75 - 1.52)	0.496
ADAS-Cog	5.84 (-3.25 - 14.93)	0.194	3.00 (-5.51 - 11.51)	0.477	-2.84 (-15.54 -)	0.655
Discussion

In this study, we assessed the effectiveness of an intervention to increase the PA of PWD and their family caregivers through a program which was designed, adapted and applied in the field of primary health care.

When analysing the effectiveness of the intervention at 6 months in PWD, in the pedometer assessment a decrease was observed in both groups (IG and CG), but it was greater in the CG. However, the activity reported with the IPAQ-SF decreased more in IG. In caregivers, the tendency in both groups was to report increased physical activity: the pedometer assessment showed that activity increased more in the IG and reporting with the IPAQ-SF, a smaller increase in global activity was declared in the IG than in the CG, but the increase in vigorous activity was greater.

The effectiveness of interventions for increasing PA when applied in the field of primary care is not conclusive [3], nevertheless, in the PEPAF study [19], improvement was achieved at least in those over 50 years of age. It was thus more effective than the results achieved in this study. One of the plausible explanations for the differences could be that the studies were applied to different populations, -the PEPAF study applied to a healthy and sedentary population, which was the aim of that project. In the initial assessment, only 23 caregivers (13% of the total) passed 10,000 steps/day, a recommended goal for healthy adults [39]. Although it was not an aim of the study to show the PA levels of caregivers, in our sample they were observed to be more sedentary than in the study by Loi et al. [40]. Our data can therefore help to highlight the great importance of developing interventions that contribute to increasing the PA of this group of people [12]. Furthermore, the way to measure AF was different: subjective and objective in our study, subjective in the PEPAF study.

It is likely that the expected changes were not achieved because the duration of the intervention was only 3 months, possibly too short a period for this type of participant. It is also probable that in people with serious illnesses such as dementia, healthcare providers pay more attention to aspects related to patient morbidity and to enhancing support for caregivers, rather than implementing healthier lifestyles [3, 5, 41]. If this is the case, we suggest that future studies assess the possibility of supporting them with
Table 5.- Changes in caregivers at 6 months compared to baseline.

Variables	Control group (n=55)		Intervención group (n=60)		Mean difference (intervention- control)	
	Mean (CI 95%)	p value	Mean (CI 95%)	p value	Mean (CI 95%)	p value
Physical Activity						
Pedometer						
Total Steps (day)	377.23 (-218.28 - 972.73)	0.208	569.41 (-565.57 - 568.38)	0.319	192.18 (-1109.25 - 1493.60)	0.770
Aerobic steps (day)	-12.95 (-566.78 - 540.89)	0.962	356.91 (-378.17 - 407.39)	0.351	369.86 (-659.33 - 1399.05)	0.476
IPAQ-SF						
MET/min/week	609.55 (-53.36 - 1272.46)	0.071	545.25 (-420.38 - 1510.89)	0.262	-64.29 (-592.34 - 1240.09)	0.914
MVPA_min/week	124.68 (-153.75 - 403.11)	0.358	495.14 (-59.33 - 1049.62)	0.074	370.46 (253.45 - 150.51)	0.156
Clinical characteristics						
Abdominal perimeter (cm)	4.04 (0.59-7.49)	0.023	2.55 (-0.26-5.37)	0.075	-1.48 (2,212-(-5.90)	0.506
Systolic blood pressure (mmhg)	-3.71 (-8.85-1.42)	0.152	6.18 (2.55-9.82)	0.001	9.90 (3.09-3.77)	0.002
Diastolic blood pressure (mmhg)	0.13 (-3.29-3.56)	0.939	9.09 (-0.47-4.27)	0.114	1.76 (2.04-(-2.28)	0.390
Body Mass Index (kg/m2)	1.51 (-0.03-3.39)	0.111	0.23 (-0.31-0.78)	0.391	-1.28 (0.93-<8-3.13)	0.172
Mental Health						
Mental Health-GHQ-12	0.40 (-0.82 -1.63)	0.512	0.74 (-0.45 -1.94)	0.218	0.34 (-1.36 - 2.04)	0.691
Family APGAR	0.02 (-1.12 -1.16)	0.970	1.38 (0.24 -2.52)	0.018	1.36 (-0.23 -2.95)	0.093
Short Zarit	-0.38 (-1.77 -1.00)	0.582	-1.51 (-3.44 -0.42)	0.123	-1.13 (-3.48 -1.22)	0.344

specialized personnel in the health centre itself or with community resources in the context of
interventions directed at PWD and their caregivers [42]. In addition, it will be necessary to do so with caution, since situations could easily arise in which caregivers and health workers provide care against the will of the PWD, known as involuntary treatment [43].

Likewise, we encountered serious difficulties in the proper use of pedometers by some PWD, with several pedometers even being lost, and participants on other occasions refusing to repeat the assessments. In addition, we encountered the technical limitation that some pedometers did not record the PA performed on a specific day by certain PWD, which reduced the sample obtained. Discrepancies between questionnaires and objective measures were observed to be greater in people with obesity, higher disability scores and with more depressive symptoms [44]. The use of accelerometers and recent digital devices in particular [27, 45] can offer safer and more reliable measurements, but the cost of the different must be considered as well as appropriate strategies for using them correctly with this type of patient so that the devices are not frequently lost. However, the possible biases related to these devices should have been the same in both groups (CG and IG), so they did not modify the validity of the results regarding the effectiveness of the intervention. Objective measures may be the most appropriate, especially in the case of people when they are not in a position to declare reliable information [6]. In such cases, however, the discrepancies observed between the questionnaires and the objective measures may be due to reasons different from those found when comparing the PA reported by healthy participants wearing devices and their PA measurements [46]. The discrepancies between questionnaire and pedometer results are found in caregivers but not in PWD. This is possibly due to the fact that all data were provided by the caregivers and this bias did not show up when reporting the PA of the PWD. A social desirability bias commonly causes participants to respond to PA verification questionnaires too optimistically, and variability in the optimism for achieving goals may influence the ability to respond accurately to questionnaires [47]. We consider that these findings are sufficiently interesting to recommend that they be taken into account in new research on the recording of PA in PWD.

Other changes analyzed through the intervention

Among the PWD, no differences were observed between IG and CG in the changes measured in both the assessment of functional state and cognitive state. However, in both groups we observed that most PWD showed a worsening of their general condition.

Nor wer significant differences found in the changes observed with regard to mental health, burden or Family APGAR in IG and CG caregivers. However, it should be noted that the APGAR family questionnaire and the Short Zarit test found improvement in the IG, suggesting that at least the intervention is not harmful to caregivers. Although no significant differences were reached, it should be noted that this improvement in the stress tests is in line with what was observed in several interventions developed in dyads of PWD to implement PA [48].

Most of the interventions on PA in PWD have been developed in groups of specialized dementia centres (nursing homes, day centres, associations, etc.) [3, 42, 49]. Although the intervention model of this project is based on the PEPAF, in which an individual intervention was performed, given that the AFISDEMYF
study is applied simultaneously to PWD and their family caregivers, we cannot classify this as a typical individual intervention.

Nor is it a group intervention because it was applied in the consultations of the health centre staff with each of the family groups made up of the patient and at least one of the caregivers.

Furthermore, it is not identical to an intervention in dyads, characterized by the fact that only one main caregiver participates with each person with dementia. Since it is known that more than 30\% of PWD are cared for by 3 or more family caregivers, in this study, up to 3 caregivers for each person with dementia were invited to take part. A positive characteristic of this proposal has been reflected in the fact that the proportion of family groups in which more than one caregiver participated in the second evaluation was higher than in the initial one, and especially in those who participated in the 12-month evaluation. It seems to be a promising approach to encourage integrated programs which address the needs and requirements of persons with disabilities and their careers in a multidimensional way \[42\].

Limitations and Strengths

It is important to mention the main limitation of the study, which is the sample loss throughout follow-up. Although the study follow-up was planned for up to 12 months, the progress of the disease itself, accompanied as it is by a worsening of general health, meant that the number of PWD who dropped out at 6 months was large. As this would compromise the power of the study, it was decided to analyze the data for this period only. The main reasons for drop-out were refusal to continue the study, and failure to locate the participants. As has been discussed, these are usually the most frequent causes faced by similar population studies with older people \[50\] and is exacerbated when the degree of disability is considerable \[44\]. However, we have observed that participation can be improved if more than one caregiver is included for each person with dementia, which may represent a strength in the study methodology.

The CG did not show differences with regard to age, sex and PA level in those caregivers and PWD who participated in both assessments and those who dropped out of the study. However, there were differences with respect to age in the IG, where it was the older PWD and the younger caregivers who dropped out. It is possible that caregivers under 65 years of age felt more overburdened with other activities (including work) and did not value prioritizing PA in the context of the care plan offered to PWD, and that older PWD felt less motivated to implement PA. The fact that caregivers presented a higher level of burden was also likely to have contributed to the considerable drop-out rate in the CG, since it is the only characteristic in which a difference was found between the IG and the CG in the initial caregiver assessment (Table 2).

To our knowledge, this is the first study to implement a primary care intervention aimed at simultaneously increasing PA in PWD and their relatives. In order to reach clinically relevant conclusions regarding the potentially significant effects of the intervention on PA and the other aspects, a longer intervention would
be necessary, and to achieve this, specific measures would be required to avoid substantial drop-out rates [12, 44].

Conclusions

The results suggest that the intervention carried out may be effective on physical activity in both PWD and caregivers. It can also improve systolic blood pressure, the Family APGAR and overload in caregivers. This is the first study to implement a primary care intervention aimed at simultaneously increasing physical activity in PWD and their relatives. These results reinforce the importance of using objective measures in clinical trials on PWD.

Abbreviations

PWD: People with dementia; CG: Control Group; IG: Intervention Group; CDC: Centers for Disease Control and Prevention; IPAQ-SF: The international physical activity questionnaire short form; MMSE: Mini – Mental State Examination; GHQ-12: The 12-item General Health Questionnaire; PA: Physical activity; PEPAP: program promoting physical activity.

Declarations

Acknowledgements

We are grateful to all professionals participating: 1) APISAL (Primary Care Research Unit of Salamanca. Health Service of Castilla y León): Luis García-Ortiz, Manuel A Gómez-Marcos, Emiliano Rodríguez Sánchez, José I Recio-Rodríguez, Sara Mora Simón, Jaime Unzueta Arce, M Carmen Patino-Alonso, Cristina Agudo Conde, José A. Maderuelo-Fernández. Elena De Dios-Rodríguez, M Paz Muriel-Diaz, Maria Concepción Becerro-Muñoz, Ana Menor-Odriozola, Mercedes Meigide, Alfonso Romero-Furones, Lucas Fernandez del campo Carranza, Lourdes Melón-Barrientos y Teresa Polo.

2) Unitat d’Investigació Atenció Primària de Mallorca: María Clara Vidal-Thomas, Joana María Taltavull-Aparicio, Elena Aracil Gomila, Mª Antonia Gayá Buazá and Joana Ripoll.

Author contributions:

ERS, LGO and MAG contributed to the conception and design of the study. ERS and LGO had full access to all of the data in the study and takes responsibility for the integrity of data and the accuracy of data analysis. ERS, LGO and MPA contributed to the drafting of the paper and ERS had the primary responsibility for the final content. ERS and LGO contributed as senior authors in the manuscript. ERS, LGO, MPA and MAGM contributed to the analysis and interpretation of the data. EDR, SGS, JR, OTM, SMS and JUA contributed to the critical review of the paper for important intellectual content. EDR, SGS, OTM and JUA were responsible for the collection and assembly of data. All authors have read and approved the manuscript.
Conflict of Interest Statement:

No conflict of interest was declared by the author(s).

Funding Statement:

The project was funded by the IBSAL; the Carlos III Health Institute (PI14/01465) of the Ministry of Science and Innovation (Spain) through the Network of Preventive Activities and Health Promotion in Primary Care (RedIAPP, RD16 / 0007/0003) and co-financed with European regional development funds of (ERDF), the Autonomous Government of Castilla and León (GRS 770/B/13), Vicente-García Corselas Foundation (University of Salamanca) and INFOSALUD Foundation.

Ethics approval and consent to participate:

The Ethics Committee for Drug Research in the Salamanca health area (Spain) approved the project on 11/04/2013. Participants were informed of the project's objectives, as well as the risks and benefits of the actions taken and informed consent was obtained from all participants.

Availability of data and materials

The datasets generated and/or analyzed during the current study are not publicly available due to them still being used for analyses but are available from the corresponding author on reasonable request.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

1. 2020 Alzheimer's disease facts and figures. <bi>Alzheimers Dement</bi> 2020.
2. Fernandez de Larrea-Baz N, Morant-Ginestar C, Catala-Lopez F, Genova-Maleras R, Alvarez-Martin E: Disability-adjusted Life Years Lost to Ischemic Heart Disease in Spain. <bi>Rev Esp Cardiol (Engl Ed)</bi> 2015, 68(11):968-975.
3. Oh ES, Rabins PV: Dementia. <bi>Ann Intern Med</bi> 2019, 171(5):ITC33-ITC48.
4. Opara JA: Activities of daily living and quality of life in Alzheimer disease. <bi>Journal of Medicine and Life</bi> 2012, 5(2):162-167.
5. Goncalves AC, Demain S, Samuel D, Marques A: Physical activity for people living with dementia: carer outcomes and side effects from the perspectives of professionals and family carers. <bi>Aging
Clin Exp Res 2021, 33(5):1267-1274.

6. Hartman YAW, Karssemeijer EGA, van Diepen LAM, Olde Rikkert MGM, Thijssen DHJ: Dementia Patients Are More Sedentary and Less Physically Active than Age- and Sex-Matched Cognitively Healthy Older Adults. <bi>Dement Geriatr Cogn Disord</bi> 2018, 46(1-2):81-89.

7. Steinberg SI, Sammel MD, Harel BT, Schembri A, Policastro C, Bogner HR, Negash S, Arnold SE: Exercise, Sedentary Pastimes, and Cognitive Performance in Healthy Older Adults. <bi>American journal of Alzheimer's disease and other dementias</bi> 2015, 30(3):290-298.

8. World-Health-Organization.: Risk Reduction of Cognitive Decline and Dementia: WHO in. Geneva: World Health Organization.; 2019.

9. Bravata DM, Smith-Spangler C, Sundaram V, Gienger AL, Lin N, Lewis R, Stave CD, Olkin I, Sirard JR: Using Pedometers to Increase Physical Activity and Improve HealthA Systematic Review. <bi>JAMA</bi> 2007, 298(19):2296-2304.

10. Yayama S, Yamakawa M, Suto S, Greiner C, Shigenobu K, Makimoto K: Discrepancy between subjective and objective assessments of wandering behaviours in dementia as measured by the Algase Wandering Scale and the Integrated Circuit tag monitoring system. Psychogeriatrics 2013, 13(2):80-87.

11. Wang XR, Robinson KM, Carter-Harris L: Prevalence of chronic illnesses and characteristics of chronically ill informal caregivers of persons with dementia. <bi>Age and Ageing</bi> 2014, 43(1):137-141.

12. Lamotte G, Shah RC, Lazarov O, Corcos DM: Exercise Training for Persons with Alzheimer’s Disease and Caregivers: A Review of Dyadic Exercise Interventions. <bi>J Mot Behav</bi> 2017, 49(4):365-377.

13. Hamer M, Stamatakis E: Prospective Study of Sedentary Behavior, Risk of Depression, and Cognitive Impairment. <bi>Medicine and science in sports and exercise</bi> 2014, 46(4):718-723.

14. Mausbach BT, Patterson TL, Rabinowitz YG, Grant I, Schulz R: Depression and distress predict time to cardiovascular disease in dementia caregivers. <bi>Health Psychology</bi> 2007, 26(5):539-544.

15. von Känel R, Mills PJ, Mausbach BT, Dimsdale JE, Patterson TL, Ziegler MG, Ancoli-Israel S, Allison M, Chattillion EA, Grant I: Effect of Alzheimer Caregiving on Circulating Levels of C-reactive Protein and Other Biomarkers Relevant to Cardiovascular Disease Risk: A Longitudinal Study. <bi>Gerontology</bi> 2012, 58:354-365.

16. Leiva AM, Martínez MA, Cristi-Montero C, Salas C, Ramírez-Campillo R, Díaz Martínez X, Aguilar-Farías N, Celis-Morales C: Sedentary lifestyle is associated with metabolic and cardiovascular risk factors independent of physical activity. <bi>Revista médica de Chile</bi> 2017, 145:458-467.

17. García-Ortiz L, Grandes G, Sánchez-Pérez A, Montoya I, Iglesias-Valiente JA, Recio-Rodríguez JI, Castaño-Sánchez Y, Gómez-Marcos MA: Effect on cardiovascular risk of an intervention by family physicians to promote physical exercise among sedentary individuals. <bi>Rev Esp Cardiol</bi> 2010, 63(11):1244-1252.
18. Sampaio A, Marques-Aleixo I, Seabra A, Mota J, Carvalho J: Physical exercise for individuals with dementia: potential benefits perceived by formal caregivers. <bi>BMC Geriatr</bi> 2021, 21(1):6.

19. Grandes G, Sanchez A, Sanchez-Pinilla R, et al.: Effectiveness of physical activity advice and prescription by physicians in routine primary care: A cluster randomized trial. <bi>Archives of Internal Medicine</bi> 2009, 169(7):694-701.

20. Canonici AP, Andrade LP, Gobbi S, Santos-Galduroz RF, Gobbi LT, Stella F: Functional dependence and caregiver burden in Alzheimer’s disease: a controlled trial on the benefits of motor intervention. <bi>Psychogeriatrics</bi> 2012, 12(3):186-192.

21. Pitkala K, Savikko N, Poysti M, Strandberg T, Laakkonen ML: Efficacy of physical exercise intervention on mobility and physical functioning in older people with dementia: a systematic review. <bi>Exp Gerontol</bi> 2013, 48(1):85-93.

22. Prick AE, de Lange J, Twisk J, Pot AM: The effects of a multi-component dyadic intervention on the psychological distress of family caregivers providing care to people with dementia: a randomized controlled trial. <bi>Int Psychogeriatr</bi> 2015, 27(12):2031-2044.

23. Lowery D, Cerga-Pashoja A, Iliffe S, Thune-Boyle I, Griffin M, Lee J, Bailey A, Bhattacharya R, Warner J: The effect of exercise on behavioural and psychological symptoms of dementia: the EVIDEM-E randomised controlled clinical trial. <bi>Int J Geriatr Psychiatry</bi> 2014, 29(8):819-827.

24. Kim E, Ullrich-French S, Bolkam C, Hill LG: The Role of Caregivers in Physical Activity for Older Adults With Alzheimer’s Disease. <bi>American Journal of Alzheimer's Disease & Other Dementias</bi> 2017, 33(2):122-130.

25. Rodriguez-Sanchez E, Criado-Gutierrez JM, Mora-Simon S, Muriel-Diaz MP, Gomez-Marcos MA, Recio-Rodriguez JI, Patino-Alonso MC, Valero-Juan LF, Maderuelo-Fernandez JA, Garcia-Ortiz L: Physical activity program for patients with dementia and their relative caregivers: randomized clinical trial in Primary Health Care (AFISDEMyF study). <bi>BMC Neurol</bi> 2014, 14:63.

26. Grandes G, Sanchez A, Torcal J, Ortega Sanchez-Pinilla R, Lizarraga K, Serra J: [Protocol for the multi-centre evaluation of the Experimental Programme Promotion of Physical Activity (PEPAF)]. <bi>Atención Primaria</bi> 2003, 32(8):475-480.

27. Steeves JA, Tyo BM, Connolly CP, Gregory DA, Stark NA, Bassett DR: Validity and reliability of the Omron HJ-303 tri-axial accelerometer-based pedometer. <bi>J Phys Act Health</bi> 2011, 8(7):1014-1020.

28. Lee PH, Macfarlane DJ, Lam TH, Stewart SM: Validity of the international physical activity questionnaire short form (IPAQ-SF): A systematic review. <bi>The International Journal of Behavioral Nutrition and Physical Activity</bi> 2011, 8:115-115.

29. González N, Bilbao A, Forjaz MJ, Ayala A, Orive M, Garcia-Gutierrez S, Hayas CL, Quintana JM, group OI: Psychometric characteristics of the Spanish version of the Barthel Index. <bi>Aging Clinical and Experimental Research</bi> 2018, 30(5):489-497.

30. Mahoney FI, Barthel DW: Functional evaluation: The Barthel Index. <bi>Md State Med J</bi> 1965, 14:61-65.
31. Farias ST, Harrell E, Neumann C, Houtz A: The relationship between neuropsychological performance and daily functioning in individuals with Alzheimer's disease: ecological validity of neuropsychological tests. <bi>Archives of Clinical Neuropsychology</bi> 2003, 18(6):655-672.

32. Crespo M, Rivas MT: Assessment of caregiver's burden: A review beyond Zarit's scale. <bi>Clínica y Salud</bi> 2015, 26(1):9-16.

33. Connor DJ, Sabbagh MN: Administration and Scoring Variance on the ADAS-Cog. <bi>Journal of Alzheimer's disease: JAD</bi> 2008, 15(3):461-464.

34. Manubens JM, Martinez-Lage P, Martinex-Lage JM, Larumbe R, Muruzabal J, Martinez-Gonzalez MA, Guarch C, Urrutia T, Sarrasqueta P, Lacruz F: Variation of Mini-Mental-State examination scores due to age and educational level. Normalized data in the population over 70 years of age in Pamplona. <bi>Neurologia</bi> 1998, 13(3):111-119.

35. Lorente Aznar T, Olivera Pueyo FJ, Benabarre Ciria S, Rodríguez Torrente M, Solans Aisa B, Giménez Baratech AC: Diagnostic yield of cognitive tests applied in primary care. Consistency and validity of screening tests. <bi>Atención Primaria</bi> 2010, 42(4):226-232.

36. Hystad SW, Johnsen BH: The Dimensionality of the 12-Item General Health Questionnaire (GHQ-12): Comparisons of Factor Structures and Invariance Across Samples and Time. <bi>Front Psychol</bi> 2020, 11:1300.

37. Cotelo NV, Rodríguez NFA, Pérez JAF, Iglesias JCA, Lago MR: Burden and associated pathologies in family caregivers of Alzheimer's disease patients in Spain. <bi>Pharmacy practice</bi> 2015, 13(2):521-521.

38. Gort AM, March J, Gomez X, de Miguel M, Mazarico S, Balleste J: [Short Zarit scale in palliative care]. <bi>Med Clin (Barc)</bi> 2005, 124(17):651-653.

39. Catrine Tudor-Locke 1, Cora L Craig, Wendy J Brown, Stacy A Clemes, Katrien De Cocker, Billie Giles-Corti, Yoshiro Hatano, Shigeru Inoue, Sandra M Matsudo, Nanette Mutrie <bi>et al</bi>: How many steps/day are enough? for adults. <bi>International Journal of Behavioral Nutrition and Physical Activity</bi> 2011, 8:79.

40. Loi SM, Dow B, Ames D, Moore K, Hill K, Russell M, Lautenschlager N: Physical activity in caregivers: What are the psychological benefits? <bi>Arch Gerontol Geriatr</bi> 2014, 59(2):204-210.

41. Barrado-Martin Y, Heward M, Polman R, Nyman SR: Acceptability of a Dyadic Tai Chi Intervention for Older People Living With Dementia and Their Informal Carers. <bi>J Aging Phys Act</bi> 2019, 27(2):166-183.

42. Droes RM, van Rijn A, Rus E, Dacier S, Meiland F: Utilization, effect, and benefit of the individualized Meeting Centers Support Program for people with dementia and caregivers. <bi>Clin Interv Aging</bi> 2019, 14:1527-1553.

43. Mengelers A, Bleijlevens MHC, Verbeek H, Capezuti E, Tan FES, Hamers JPH: Professional and family caregivers' attitudes towards involuntary treatment in community-dwelling people with dementia. <bi>J Adv Nurs</bi> 2019, 75(1):96-107.
44. Koolhaas CM, van Rooij FJ, Cepeda M, Tiemeier H, Franco OH, Schoufour JD: Physical activity derived from questionnaires and wrist-worn accelerometers: comparability and the role of demographic, lifestyle, and health factors among a population-based sample of older adults. <bi>Clin Epidemiol</bi> 2018, 10:1-16.

45. Barton J, O'Flynn B, Tedesco S: A Review of Physical Activity Monitoring and Activity Trackers for Older Adults. (1879-8365 (Electronic)).

46. Heesterbeek M, Van der Zee EA, van Heuvelen MJG: Passive exercise to improve quality of life, activities of daily living, care burden and cognitive functioning in institutionalized older adults with dementia - a randomized controlled trial study protocol. <bi>BMC Geriatrics</bi> 2018, 18(1):182-182.

47. Farran CJ, Etkin CD, Eisenstein A, Paun O, Rajan KB, Sweet CMC, McCann JJ, Barnes LL, Shah RC, Evans DA: Effect of Moderate to Vigorous Physical Activity Intervention on Improving Dementia Family Caregiver Physical Function: A Randomized Controlled Trial. <bi>Journal of Alzheimer's disease & Parkinsonism</bi> 2016, 6(4):253.

48. Kim E, Ullrich-French S, Bolkan C, Hill LG: The Role of Caregivers in Physical Activity for Older Adults With Alzheimer's Disease. <bi>Am J Alzheimers Dis Other Demen</bi> 2018, 33(2):122-130.

49. Finnanger Garshol B, Ellingsen-Dalskau LH, Pedersen I: Physical activity in people with dementia attending farm-based dementia day care - a comparative actigraphy study. <bi>BMC Geriatr</bi> 2020, 20(1):219.

50. Hardy SE, Allore H, Studenski SA: Missing data: a special challenge in aging research. <bi>Journal of the American Geriatrics Society</bi> 2009, 57(4):722-729.

Figures
Figure 1

Study flowchart: enrollment of participants and completion study