Invited Review

The role of RhoA-mediated Ca2+ sensitization of bronchial smooth muscle contraction in airway hyperresponsiveness

Yoshihiko CHIBA1 and Miwa MISAWA1

1Department of Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan

Abstract

Smooth muscle contraction is mediated by Ca2+-dependent and Ca2+-independent pathways. The latter Ca2+-independent pathway, termed Ca2+ sensitization, is mainly regulated by a monomeric GTP binding protein RhoA and its downstream target Rho-kinase. Recent studies suggest a possible involvement of augmented RhoA/Rho-kinase signaling in the elevated smooth muscle contraction in several human diseases. An increased bronchial smooth muscle contractility, which might be a major cause of the airway hyperresponsiveness that is a characteristic feature of asthmatics, has also been reported in bronchial asthma. Here, we will discuss the role of RhoA/Rho-kinase-mediated Ca2+ sensitization of bronchial smooth muscle contraction in the pathogenesis of airway hyperresponsiveness. Agonist-induced Ca2+ sensitization is also inherent in bronchial smooth muscle. Since the Ca2+ sensitization is sensitive to a RhoA inactivator, C3 exoenzyme, and a Rho-kinase inhibitor, Y-27632, the RhoA/Rho-kinase pathway is involved in the signaling. It is of interest that the RhoA/Rho-kinase-mediated Ca2+ sensitization of bronchial smooth muscle contraction is markedly augmented in experimental asthma. Moreover, Y-27632 relaxes the bronchospasm induced by contractile agonists and antigens \textit{in vivo}. Y-27632 also has an ability to inhibit airway hyperresponsiveness induced by antigen challenge. Thus, the RhoA/Rho-kinase pathway might be a potential target for the development of new treatments for asthma, especially in airway hyperresponsiveness.

Key words: asthma, airway hyperresponsiveness, bronchial smooth muscle, Ca2+ sensitization, RhoA, Rho-kinase

Introduction

Increased airway narrowing in response to nonspecific stimuli is a characteristic feature of human obstructive diseases, including bronchial asthma. This abnormality is an important symptom of the disease, although the pathophysiological variations leading to the hyperresponsiveness remain unclear. Several mechanisms have been suggested to explain airway hyperresponsiveness, such as alterations in the neural control of airway smooth muscle contraction...
(Boushey et al., 1980), increased mucosal secretions (Jeffery et al., 1993), and mechanical factors related to remodeling of the airways (Wiggs et al., 1990). In addition, it has also been suggested that one of the factors that contributes to the exaggerated airway narrowing in asthmatics is an abnormality in the nature of airway smooth muscle (Seow et al., 1998; Martin et al., 2000). The rapid relief from airway limitation in asthmatic patients by β-stimulant inhalation may also suggest an involvement of augmented airway smooth muscle contraction in the airway obstruction. Thus, it may be important for development of asthma therapy to understand changes in the contractile signaling of airway smooth muscle cells associated with the disease.

In the current brief review, we will discuss the role of RhoA-mediated Ca²⁺ sensitization of airway smooth muscle contraction in the pathogenesis of airway hyperresponsiveness.

Ca²⁺-dependent smooth muscle contraction

Typically, smooth muscle contraction is mainly mediated by an increase in cytosolic Ca²⁺ via the activation of plasma membrane Ca²⁺ channels and/or Ca²⁺ release from sarcoplasmic reticulum (SR). Airway smooth muscle is predominantly innervated by vagal efferent nerves, which release acetylcholine (ACh) when stimulated and subsequently activate muscarinic cholinergic receptors. Five muscarinic receptor subtypes (m₁–m₅) have been cloned (Hulme et al., 1990), and three of them have been functionally characterized in airways; M₁ receptors mediate bronchoconstriction through stimulation of parasympathetic ganglia (Beck et al., 1987), M₂ autoreceptors on pulmonary parasympathetic nerve terminals inhibit vagally mediated ACh release (Fryer and Maclagan, 1984), and M₃ receptors on airway smooth muscle cells mediate contraction through activation of phosphoinositide metabolism (Roffel et al., 1990). M₃ receptors, that have been thought a main receptor subtype contributing to airway smooth muscle contraction (Barnes, 1990), are coupled to a heterotrimeric guanosine triphosphate (GTP) binding protein (G protein) termed G₉. When ACh binds to M₃ receptors, agonist-receptor-G protein coupling occurs and the exchange of guanosine diphosphate (GDP) for GTP in the α subunit is promoted. The binding of GTP to the α subunit induces a dissociation of the αβγ holomer to free, activated, GTP-bound α subunit. Subsequently, this GTP-bound α subunit activates phospholipase C (Linder and Gilman, 1992; Rodger and Pyne, 1992). This enzyme generates inositol 1,4,5-trisphosphate (IP₃), which binds to its receptors of SR leading to Ca²⁺ release from SR (Rodger and Pyne, 1992). The increased cytosolic Ca²⁺ forms the 4Ca²⁺-calmodulin-myosin light chain kinase (MLCK) complex and activates MLCK. The activated MLCK phosphorylates the 20 kDa myosin light chain (MLC), leading to smooth muscle contraction (Rodger and Pyne, 1992) (Fig. 1).

RhoA-mediated Ca²⁺ sensitization in smooth muscle contraction

In addition to the Ca²⁺-dependent phosphorylation of MLC, the MLC phosphorylation is also regulated by MLC phosphatase, Ca²⁺-independently, and thus further contraction occurs, which is termed Ca²⁺ sensitization (reviewed by Somlyo and Somlyo, 2003). The agonist-induced Ca²⁺ sensitization of smooth muscle contraction has been demonstrated by studies using the
Simultaneous measurements of force development and intracellular Ca²⁺ concentration (Sato et al., 1988), and chemically permeabilized preparations (Fujita et al., 1995) in various types of smooth muscle including airways (Ozaki et al., 1990; Chiba et al., 1999b). It has been demonstrated that agonist stimulation increases myofilament Ca²⁺ sensitivity in β-escin-permeabilized smooth muscle of the rat coronary artery (Satoh et al., 1994), guinea pig vas
deferens (Fujita et al., 1995), canine trachea (Bremerich et al., 1997), rat bronchus (Chiba et al., 1999b) and so on. A participation of a monomeric GTP binding protein, RhoA, and its downstream target, Rho-kinase, in the agonist-induced Ca\(^{2+}\) sensitization has been suggested by many investigators (e.g., Fujita et al., 1995; Otto et al., 1996; Gong et al., 1997; Chiba et al., 1999b).

RhoA/Rho-kinase plays an important role in the regulation of MLC phosphatase activity. MLC phosphatase removes phosphate from phosphorylated MLC to induce smooth muscle relaxation. MLC phosphatase is a holoenzyme and consists of three subunits: a 37-kDa catalytic subunit, a 20-kDa variable subunit, and a 110- to 130-kDa myosin-binding subunit. The myosin-binding subunit, when phosphorylated, inhibits the enzymatic activity of MLC phosphatase, allowing the light chain of myosin to remain phosphorylated, thereby promoting contraction. Rho-kinase, a serine/threonine kinase, phosphorylates the myosin-binding subunit of MLC phosphatase, resulting in an inhibition of its activity and thus promoting the phosphorylated state of the MLC (Fig. 1). Pharmacological inhibitors of Rho-kinase, such as fasudil and Y-27632, block its activity by competing with the ATP-binding site on the enzyme and prevent RhoA-mediated MLC phosphatase inhibition, resulting in smooth muscle relaxation (e.g., Uehata et al., 1997; Nagumo et al., 2000; Chiba et al., 2001b).

RhoA-mediated Ca\(^{2+}\) sensitization in diseased smooth muscle

In experimental animal models of several human diseases, an augmented RhoA/Rho-kinase-mediated Ca\(^{2+}\) sensitization in smooth muscle contraction has been reported. Uehata et al. (1997) originally demonstrated an involvement of Rho-kinase signaling in the pathogenesis of hypertension. They showed that inhibition of Rho-kinase by Y-27632 reduced the elevated blood pressure in spontaneously hypertensive rats (SHR) and renal and deoxycorticosterone acetate-salt-induced hypertensive rats but not the normal blood pressure in normotensive control animals (Uehata et al., 1997). Mukai et al. (2001) reported an increase in Rho-kinase mRNA and activity in vascular smooth muscle of the SHR model. Furthermore, Seko et al. (2003) demonstrated an augmented activation of RhoA, i.e., an increase in GTP-RhoA level, in vascular smooth muscle of various hypertension models including the SHR. In coronary arterial smooth muscle, Satoh et al. (1994) firstly demonstrated an augmented agonist-induced, G protein-mediated Ca\(^{2+}\) sensitization in coronary vasospasm of the SHR model, although the involvement of RhoA/Rho-kinase signaling had not yet been identified. Then Shimokawa et al. (1999) showed that hypercontraction and enhanced MLC phosphorylation induced by serotonin in a swine model of coronary artery spasm were inhibited by a Rho-kinase inhibitor, hydroxyfasudil, suggesting that the RhoA/Rho-kinase pathway plays a central role in the pathogenesis of coronary artery spasm. Recent studies demonstrated an upregulation of Rho-kinase by inflammatory stimuli, such as interleukin-1\(\beta\) and angiotensin II, in coronary artery smooth muscle (Kandabashi et al., 2000; Hiroki et al., 2004). RhoA/Rho-kinase signaling is also remarkable in cerebral vasospasm. Sato et al. (2000) reported that experimental cerebral vasospasm induced by subarachnoid hemorrhage is accompanied by elevated Rho-kinase activity and phosphorylation of myosin phosphatase at its myosin-binding subunit. In the SHR model, cerebral vasodilation induced by Y-27632 is significantly greater than that in the
normotensive control (Chrissobolis and Sobey, 2001). It is thus possible that the RhoA/Rho-kinase-mediated signaling is the key for understanding the abnormal contraction of diseased vascular smooth muscles. Rho-kinase is now recognized as a therapeutic target and its inhibitors are clinically used for treating cerebral vasospasm (Sasaki et al. 2002).

Abnormalities of the RhoA/Rho-kinase signaling system have also been suggested in preterm labor and erectile dysfunction. During pregnancy, the uterus undergoes major functional and structural remodeling. The myometrium normally remains relatively quiescent but is able to generate powerful contractions at the time of parturition. Niiro et al. (1997) reported an upregulation of RhoA/Rho-kinase associated with the augmented smooth muscle contractility in the rat myometrium during pregnancy. Similar results have also been obtained in pregnant rabbit myometrium (Cario-Toumaniantz et al., 2003). Penile erection is induced by raised corpus cavernosum pressure resulting from increased blood flow into the penis, which is mediated by relaxation of the smooth muscle cells in the cavernosal arterioles and sinuses. Chitaley et al. (2001) reported that Y-27632 increases corpus cavernosum pressure in an in vivo rat model, suggesting that RhoA/Rho-kinase-mediated Ca\(^{2+}\) sensitization of corpus cavernosum smooth muscle maintains the flaccid (contracted) state of the penis. This is further supported by recent investigations (Mills et al., 2001; Chitaley et al., 2002; Wang et al., 2002; Wingard et al., 2003). It is of interest that topical application of Y-27632 to the surface of the tunica albuginea or to the glans penis and surrounding skin causes penile erection in rats (Dai et al., 2004). Thus, the RhoA/Rho-kinase signaling pathway might also provide potential targets for the development of new treatments for preterm labor and erectile dysfunction.

RhoA-mediated Ca\(^{2+}\) sensitization in airway smooth muscle of asthmatic animal models

Asthmatic patients have an increased contractility of airway smooth muscle (Roberts et al., 1984), which might be a major cause of airway hyperresponsiveness. Asthmatic animal models also have hyperresponsiveness of airway smooth muscle (Gavett and Wills-Karp, 1993; Lee et al., 1994). Similarly, an increased responsiveness of bronchial smooth muscle has been demonstrated in a rat model of airway hyperresponsiveness induced by repeated antigen inhalation (Misawa and Chiba, 1993; Chiba and Misawa, 1995a, b). In this animal model of airway hyperresponsiveness, the bronchial smooth muscle contraction induced by receptor agonists such as ACh, but not by high K\(^+\) depolarization, is markedly augmented (Misawa and Chiba, 1993; Chiba and Misawa, 1995a, b). Moreover, it has also been demonstrated that muscarinic receptor density and antagonist affinity of airway smooth muscle are at normal levels (Chiba and Misawa, 1995a). Thus, it is possible that the mechanisms responsible for the airway hyperresponsiveness exist, at least in part, in the downstream pathway of muscarinic receptor signaling, including agonist-mediated Ca\(^{2+}\) sensitization.

Ca\(^{2+}\) sensitization of airway smooth muscle has been reported in canine (Bremerich et al., 1997), porcine (Croxton et al., 1998) and rabbit trachea (Yoshii et al., 1999) and human bronchus (Yoshii et al., 1999; Yamagata et al., 2000). Likewise, Ca\(^{2+}\) sensitization is also inherent in rat bronchial smooth muscle (Fig. 2), as determined by permeabilized muscle strips. Since the Ca\(^{2+}\) sensitization induced by ACh is sensitive to C3 exoenzyme (Chiba et al., 1999b)
Y. CHIBA and M. MISAWA

and Y-27632 (Fig. 2), the RhoA/Rho-kinase pathway is involved in the signaling. RhoA and Rho-kinases are also expressed in rat bronchial smooth muscle (Chiba et al., 1999b; 2001b; 2003). Activation of RhoA by ACh stimulation has also been demonstrated in the bronchial smooth muscle of the rat (Figs. 3 and 4) (Chiba et al., 2001a; 2004).

An increase in responsiveness of airway smooth muscle to muscarinic agonists has been demonstrated in both animal models of airway hyperresponsiveness (Gavett and Wills-Karp, 1993; Lee et al., 1994; Chiba and Misawa, 1995; Chiba et al., 2000) and asthmatic patients (Roberts et al., 1984), although no change in the levels of plasma membrane receptors was observed (Gavett and Wills-Karp, 1993; Lee et al., 1994; Chiba and Misawa, 1995). Moreover, the agonist-induced increase in cytosolic Ca\(^{2+}\) level has been reported to be normal level even in
RhoA in asthmatic bronchial smooth muscle (Jiang et al., 1995; Chiba et al., 1999a), reminding us that the Ca2+ sensitization induced by agonist stimulation might be elevated in airway hyperresponsiveness. Indeed, an augmented ACh-induced, RhoA-mediated Ca2+ sensitization of bronchial smooth muscle contraction in a rat airway hyperresponsiveness model has been suggested by the following findings (Chiba et al., 1999b): 1) the ACh-induced Ca2+ sensitizing effect, measured in permeabilized muscle strips under a constant Ca2+ concentration, was augmented in the airway hyperresponsive rats (Fig. 5), 2) this Ca2+ sensitizing effect was
blocked by pretreatment with C3 exoenzyme, and 3) the RhoA protein expression in the bronchial smooth muscle was markedly increased in the airway hyperresponsive rats (Fig. 6). The same findings have also been observed in a murine model of antigen-induced airway hyperresponsiveness (Chiba et al., submitted data). It is thus possible that RhoA/Rho-kinase-mediated signaling is the key to the understanding of the augmented bronchial smooth muscle contraction in asthma. If RhoA proteins are activated by receptors other than muscarinic receptors, this might account for the ‘non-specific’ airway hyperresponsiveness, which is a common feature of allergic asthmatics. Selective inhibition of this pathway may be an effective asthma treatment as Y-27632 can relax the bronchospasm induced by contractile agonists and antigens in vivo (Iizuka et al., 2000; Tokuyama et al., 2002). Moreover, Y-27632 inhibits the

Fig. 4. Typical confocal immunofluorescent images of RhoA and α-actin in freshly isolated rat bronchial smooth muscle cells at rest (left panels) and stimulated by 10^{-3} M acetylcholine (ACh; for 10 min; right panels). A and E; transmitted light images, B and F; RhoA immunostainings indicated by green fluorescence of Alexa Fluor 488, C and G; overlays of A and E with B and F, respectively, and D and H; α-actin immunostainings indicated by red fluorescence of Alexa Fluor 546. Original magnification: × 600. From Chiba et al. (2004).
Fig. 5. Comparison of ACh-induced Ca\(^{2+}\) sensitization in \(\beta\)-escin-permeabilized intrapulmonary bronchial smooth muscle from normal rats (Control; n=6) and the antigen-induced airway hyperresponsive rats (AHR; n=5). The contractile responses induced by \(10^{-6}\) M Ca\(^{2+}\) in the presence (closed column) and absence (open column) of 100 \(\mu\)M ACh and 100 \(\mu\)M GTP are expressed as % of maximal contraction induced by \(10^{-6}\) M Ca\(^{2+}\). Data represent the mean ± S.E.M. *\(P<0.05\) and **\(P<0.01\) vs. respective Ca\(^{2+}\)-induced contraction in the absence of ACh and GTP. ***\(P<0.01\) vs. ACh-induced Ca\(^{2+}\) sensitization in the control group. From Chiba et al. (1999b).

Fig. 6. The levels of RhoA protein in intrapulmonary bronchi from normal rats (Control) and the antigen-induced airway hyperresponsive rats (AHR). Left panel: typical immunoblot. Lane 1; Control, Lane 2; AHR, Markers; protein molecular weight markers, and GAPDH; glyceraldehyde-3-phosphate dehydrogenase as a tissue marker. The bands were analyzed by a densitometer and normalized by loading protein, and the data are summarized as shown in the right panel. The data represent the mean ± S.E.M. from 4 individual experiments, respectively. **\(P<0.01\) vs. Control. From Chiba et al. (1999b).

Conclusion

As described in this brief review, there is increasing evidence that upregulation of RhoA/Rho-kinase signaling is widely involved in the enhanced contraction of diseased smooth muscle
including bronchial smooth muscle in asthma. Thus, the RhoA/Rho-kinase pathway might be a potential target for the development of new treatments for asthma, especially for airway hyperresponsiveness.

References

Barnes, P.J. (1990). Muscarinic receptors in airways: recent developments. *J. Appl. Physiol.* **68**: 1777–1785.

Beck, K.C., Vettermann, J., Flavahan, N.A. and Rehder, K. (1987). Muscarinic M₁ receptors mediate the increase in pulmonary resistance during vagus nerve stimulation in dogs. *Am. Rev. Respir. Dis.* **137**: 1135–1139.

Boushey, H.A., Holtzman, M.J., Sheller, J.R. and Nadel, J.A. (1980). Bronchial hyperreactivity. *Am. Rev. Respir. Dis.* **121**: 389–413.

Bremerich, D.H., Warner, D.O., Lorenz, R.R., Shumway, R. and Jones, K.A. (1997). Role of protein kinase C in calcium sensitization during muscarinic stimulation in airway smooth muscle. *Am. J. Physiol.* **273**: L775–L781.

Cario-Toumaniantz, C., Reillaudoux, G., Sauzeau, V., Heutte, F., Vaillant, N., Finet, M., Chardin, P., Loirand, G. and Pacaud, P. (2003). Modulation of RhoA-Rho kinase-mediated Ca²⁺ sensitization of rabbit myometrium during pregnancy - role of Rnd3. *J. Physiol. (Lond.)* **552**: 403–413.

Chiba, Y. and Misawa, M. (1995a). Characteristics of muscarinic cholinceptors in airways of antigen-induced airway hyperresponsive rats. *Comp. Biochem. Physiol.* **111C**: 351–357.

Chiba, Y. and Misawa, M. (1995b). Alteration in Ca²⁺ availability involved in antigen-induced airway hyperresponsiveness in rats. *Eur. J. Pharmacol.* **278**: 79–82.

Chiba, Y., Sakai, H. and Misawa, M. (2001a). Augmented acetylcholine-induced translocation of RhoA in bronchial smooth muscle from antigen-induced airway hyperresponsive rats. *Br. J. Pharmacol.* **133**: 886–890.

Chiba, Y., Sakai, H., Suenaga, H., Kamata, K. and Misawa, M. (1999a). Enhanced Ca²⁺ sensitization of the bronchial smooth muscle contraction in antigen-induced airway hyperresponsive rats. *Res. Commun. Mol. Pathol. Pharmacol.* **106**: 77–85.

Chiba, Y., Sakai, H., Wachi, H., Sugitani, H., Seyama, Y. and Misawa, M. (2003). Upregulation of rhoA mRNA in bronchial smooth muscle of antigen-induced airway hyperresponsive rats. *J. Smooth Muscle Res.* **39**: 221–228.

Chiba, Y., Takada, Y., Miyamoto, S., Mitsui-Saito, M., Karaki, H. and Misawa, M. (1999b). Augmented acetylcholine-induced, Rho-mediated Ca²⁺ sensitization of bronchial smooth muscle contraction in antigen-induced airway hyperresponsive rats. *Br. J. Pharmacol.* **127**: 597–600.

Chiba, Y., Takada, Y., Sakai, H., Takeyama, H. and Misawa M. (2000). Acetylcholine-induced smooth muscle contraction of intrapulmonary small bronchi is augmented in antigen-induced airway hyperresponsive rats. *Jpn. J. Pharmacol.* **84**: 221–224.

Chitailey, K., Uchida, T., Sakai, H., Oku, T., Itoh, S., Tsuji, T. and Misawa, M. (2004). Acetylcholine-induced translocation of RhoA in freshly isolated single smooth muscle cells of rat bronchi. *J. Pharmacol. Sci.* **95**: 479–482.

Chitailey, K., Bivalacqua, T.J., Champion, H.C., Usta, M.F., Hellstrom, W.J., Mills, T.M. and Webb, R.C. (2002). Adeno-associated viral gene transfer of dominant negative RhoA enhances erectile function in rats. *Biochem. Biophys. Res. Commun.* **298**: 427–432.

Chitailey, K., Wingard, C.J., Webb, R.C., Branam, H., Stopper, V.S., Lewis, R.W. and Mills, T.M. (2001).
Antagonism of Rho-kinase stimulates rat penile erection via a nitric oxide-independent pathway. Nat. Med. 7: 119–122.

Chrissobolis, S. and Sobey, C.G. (2001). Evidence that Rho-kinase activity contributes to cerebral vascular tone in vivo and is enhanced during chronic hypertension. Comparison with protein kinase C. Circ. Res. 88: 774–779.

Croxton, T.L., Lande, B. and Hirshman, C.A. (1998). Role of G proteins in agonist-induced Ca2+ sensitization of tracheal smooth muscle. Am. J. Physiol. 275: L748–L755.

Dai, Y., Chitaley, K., Webb, R.C., Lewis, R.W. and Mills, T.M. (2004). Topical application of a Rho-kinase inhibitor in rats causes penile erection. Int. J. Impot. Res. 16: 294–298.

Fryer, A.D. and Maclagan, J. (1984). Muscarinic inhibitory receptors in pulmonary parasympathetic nerves in the guinea-pig. Br. J. Pharmacol. 83: 973–978.

Fujita, A., Takeuchi, T., Nakajima, H., Nishio, H. and Hata, F. (1995). Involvement of heterotrimeric GTP-binding protein and rho protein, but not protein kinase C, in agonist-induced Ca2+ sensitization of skinned muscle of guinea pig vas deferens. J. Pharmacol. Exp. Ther. 274: 555–561.

Gavett, S.H. and Wills-Karp, M. (1993). Elevated lung G protein levels and muscarinic receptor affinity in a mouse model of airway hyperreactivity. Am. J. Physiol. 265: L493–L500.

Hashimoto, K., Peebles, R.S., Jr., Sheller, J.R., Jarzecka, K., Furlong, J., Mitchell, D.B., Hartert, T.V. and Graham, B.S. (2002). Suppression of airway hyperresponsiveness induced by ovalbumin sensitisation and RSV infection with Y-27632, a Rho kinase inhibitor. Thorax 57: 524–527.

Hiroki, J., Shimokawa, H., Higashi, M., Morikawa, K., Kandabashi, T., Kawamura, N., Kubota, T., Ichiki, T., Amano, M., Kaibuchi, K. and Takeshita, A. (2000). Inflammatory stimuli upregulate Rho-kinase in human coronary vascular smooth muscle cells. J. Mol. Cell. Cardiol. 37: 537–546.

Hulme, E.C., Birdsall, N.J.M. and Buckley, N.J. (1990). Muscarinic receptor subtypes. Annu. Rev. Pharmacol. Toxicol. 30: 633–673.

Iizuka, K., Shimizu, Y., Tsukagoshi, H., Yoshii, A., Harada, T., Dobashi, K., Murozono, T., Nakazawa, T. and Mori, M. (2000). Evaluation of Y-27632, a rho-kinase inhibitor, as a bronchodilator in guinea pigs. Eur. J. Pharmacol. 406: 273–279.

Jiang, H., Rao, K., Liu, X., Liu, G. and Stephens, N.L. (1995). Increased Ca2+ and myosin phosphorylation, but not calmodulin activity in sensitized airway smooth muscles. Am. J. Physiol. 268: L739–L746.

Jeffery, P.K. (1993). Microscopic structure of airway secretory cells: variation in hypersecretory disease and effects of drugs. In: Airway Secretion: Physiological Basis for the Control of Mucus Hypersecretion, ed. by Takishima, T. and Shimura, S., Marcel Dekker, New York, pp. 149–215.

Kandabashi, T., Shimokawa, H., Miyata, K., Kunihiro, I., Kawano, Y., Fukata, Y., Higo, T., Egashira, K., Takahashi, S., Kaibuchi, K. and Takeshita, A. (2000). Inhibition of myosin phosphatase by upregulated Rho-kinase plays a key role for coronary artery spasm in a porcine model with interleukin-1β. Circulation 101: 1319–1323.

Kitazawa, T., Eto, M., Woodsome, T.P. and Brautigan, D.L. (2000). Agonists trigger G protein-mediated activation of the CPI-17 inhibitor phosphoprotein of myosin light chain phosphatase to enhance vascular smooth muscle contractility. J. Biol. Chem. 275: 9897–9900.

Lee, J.Y., Uchida, Y., Sakamoto, T., Hirata, A., Hasegawa, S. and Hirata, F. (1994). Alteration of G protein levels in antigen-challenged guinea pigs. J. Pharmacol. Exp. Ther. 271: 1713–1720.

Linder, M.E. and Gilman, A.G. (1992). G Proteins. Sci. Am. 267: 56–65.

Martin, J.G., Duguet, A. and Eidelman, D.H. (2000). The contribution of airway smooth muscle to airway narrowing and airway hyperresponsiveness in disease. Eur. Respir. J. 16: 349–354.

Mills, T.M., Chitaley, K., Wingard, C.J., Lewis, R.W. and Webb, R.C. (2001). Effect of Rho-kinase
inhibition on vasoconstriction in the penile circulation. *J. Appl. Physiol.* **91**: 1269–1273.

Misawa, M. and Chiba, Y. (1993). Repeated antigenic challenge-induced airway hyperresponsiveness and airway inflammation in actively sensitized rats. *Jpn. J. Pharmacol.* **61**: 41–50.

Mukai, Y., Shimokawa, H., Matoba, T., Kandabashi, T., Satoh, S., Hiroki, J., Kaibuchi, K. and Takeshita, A. (2001). Involvement of Rho-kinase in hypertensive vascular disease: a novel therapeutic target in hypertension. *FASEB J.* **15**: 1062–1064.

Nagumo, H., Sasaki, Y., Ono, Y., Okamoto, H., Seto, M. and Takuwa, Y. (2000). Rho kinase inhibitor HA-1077 prevents Rho-mediated myosin phosphatase inhibition in smooth muscle cells. *Am. J. Physiol. Cell. Physiol.* **278**: C57–C65.

Niiró, N., Nishimura, J., Sakihara, C., Nakano, H. and Kanaide, H. (1997). Up-regulation of rhoA and rho-kinase mRNAs in the rat myometrium during pregnancy. *Biochem. Biophys. Res. Commun.* **230**: 356–359.

Otto, B., Steusloff, A., Just, I., Aktories, K. and Pfitzer, G. (1996). Role of Rho proteins in carbachol-induced contractions in intact and permeabilized guinea-pig intestinal smooth muscle. *J. Physiol. (Lond.)* **496**: 317–329.

Ozaki, H., Kwon, S.-C., Tajimi, M. and Karaki, H. (1990). Changes in cytosolic Ca²⁺ and contraction induced by various stimulants and relaxants in canine tracheal smooth muscle. *Pflügers Arch.* **416**: 351–359.

Roffel, A.F., Meurs, H., Elzinga, C.R.S. and Zaatasma, J. (1990). Characterization of the muscarinic receptor subtype involved in phosphoinositide metabolism in bovine tracheal smooth muscle. *Br. J. Pharmacol.* **99**: 293–296.

Sasaki, Y., Suzuki, M. and Hidaka, H. (2002). The novel and specific Rho-kinase inhibitor (S)-(–)-2-methyl-1-[(4-methyl-5-isoquinoline)sulfonyl]-homopiperazine as a probing molecule for Rho-kinase-involved pathway. *Pharmacol. Ther.* **93**: 225–232.

Sato, M., Tani, E., Fujikawa, H. and Kaibuchi, K. (2000). Involvement of Rho-kinase-mediated phosphorylation of myosin light chain in enhancement of cerebral vasospasm. *Circ. Res.* **87**: 195–200.

Sato, K., Ozaki, H. and Karaki, H. (1988). Changes in cytosolic calcium level in vascular smooth muscle strip measured simultaneously with contraction using fluorescent calcium indicator Fura 2. *J. Pharmacol. Exp. Ther.* **246**: 294–300.

Sekoh, S., Kreutz, R., Wilm, C., Ganten, D. and Pfitzer, G. (1994). Augmented agonist-induced Ca²⁺-sensitization of coronary artery contraction in genetically hypertensive rats. Evidence for altered signal transduction in the coronary smooth muscle cells. *J. Clin. Invest.* **94**: 1397–1403.

Seow, C.Y., Schellenberg, R.R. and Pare, P.D. (1998). Structural and functional changes in the airway smooth muscle of asthmatic subjects. *Am. J. Respir. Crit. Care Med.* **158**: S179–S186.

Shimokawa, H., Seto, M., Katsumata, N., Amano, M., Kozai, T., Yamawaki, T., Kuwata, K., Kandabashi, T., Egashira, K., Ikegaki, I., Asano, T., Kaibuchi, K. and Takeshita, A. (1999). Rho-kinase-mediated pathway induces enhanced myosin light chain phosphorylations in a swine model of coronary artery spasm. *Cardiovasc. Res.* **43**: 1029–1039.

Somlyo, A.P. and Somlyo, A.V. (2003). Ca²⁺ sensitivity of smooth muscle and nonmuscle myosin II: Modulated by G proteins, kinases, and myosin phosphatase. *Physiol. Rev.* **83**: 1325–1358.
Tokuyama, K., Nishimura, H., Iizuka, K., Kato, M., Arakawa, H., Saga, R., Mochizuki, H. and Morikawa, A. (2002). Effects of Y-27632, a Rho/Rho kinase inhibitor, on leukotriene D4 and histamine-induced airflow obstruction and airway microvascular leakage in guinea pigs in vivo. Pharmacol. 64: 189–195.

Uehata, M., Ishizaki, T., Satoh, H., Ono, T., Kawahara, T., Morishita, T., Tamakawa, H., Yamagami, K., Inui, J., Maekawa, M. and Narumiya, S. (1997). Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 389: 990–994.

Wang, H., Eto, M., Steers, W.D., Somlyo, A.P. and Somlyo, A.V. (2002). RhoA-mediated Ca2+ sensitization in erectile function. J. Biol. Chem. 277: 30614–30621.

Wiggs, B.R., Moreno, R., Hogg, J.C., Hilliam, C. and Pare, P.D. (1990). A model of the mechanics of airway narrowing. J. Appl. Physiol. 69: 849–860.

Wingard, C.J., Hussain, S., Williams, J. and James, S. (2003). RhoA-Rho kinase mediates synergistic ET-1 and phenylephrine contraction of rat corpus cavernosum. Am. J. Physiol. 285: R1145–R1152.

Yamagata, S., Ichinose, M., Sugiura, H., Koarai, A., Koike, K. and Shirato, K. (2000). Effect of calcium sensitization modulator, Y-27632, on isolated human bronchus and pulmonary artery. Pulm. Pharmacol. Ther. 13: 25–29.

Yoshii, A., Iizuka, K., Dobashi, K., Horie, T., Harada, T., Nakazawa, T. and Mori, M. (1999). Relaxation of contracted rabbit tracheal and human bronchial smooth muscle by Y-27632 through inhibition of Ca2+ sensitization. Am. J. Respir. Cell Mol. Biol. 20: 1190–1200.

(Received August 30, 2004; Accepted September 25, 2004)