Influence of Irrigation Water Deficit on Forage Yield, and Water Utilization Efficiency for Sorghum and Cowpea Forage Crops

Tamer G. El-Gaafarey a*, Amira Abd Elraouf Kasem b and Shereen M. El-Nahrawy a

a Forage Crops Res. Department, Field Crops Res. Inst., Agric. Res. Center, Giza Egypt. b Water Requirements and Field Irrigation Department, Soils, Water and Environment. Res. Inst., Agric. Res. Center, Giza, Egypt.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

ABSTRACT

The present study was carried out at Sakha Agricultural Research Station (clayey soils) during 2018 and 2019 to find out the role of water deficit on yield and some water relations for sorghum and cowpea summer forage crops. Three irrigation levels were executed; 100% (full irrigation), 90% (10% deficit) and 80% (20% deficit). Results showed that increasing water deficit, markedly led to decreasing fresh, dry yield and plant height at the three cuts in the two seasons. Regarding water relations, irrigation level with 90% (10% deficit) resulted in several advantages; almost same yield as recorded under full irrigation, 10% water saving as well as the highest values of water productivity (WP) and productivity of irrigation water (PIW). The mean values of fresh sorghum forage yield can be arranged in descending order as; 2917.0 > 2857.5 > 2561.0 kg.plot⁻¹, while the corresponding values of the dry weight were; 381.6> 367.8> 319.6 kg.plot⁻¹. Plant height for cowpea slightly affected with different irrigation treatments. On the contrary, both fresh and dry yields were significantly affected with water level or deficit irrigation. Moreover, the effect was highly significant in connection with the combined analysis. In this regard, mean values of fresh yield descending arranged as; 1502.5> 1447.0> 1321.5 kg.plot⁻¹ for treatments A(control), B (90%) and C (80%), respectively. The corresponding values regarding dry yield are 253.5, 241.0 and 215.4 kg.plot⁻¹.

*Corresponding author: E-mail: tamerelgafarey@gmail.com;
Comparing the deficit treatments with the control irrigation (Trt. A), overall mean decrease in fresh yield was 3.7% for treatment B (90%) and 12% for treatment C (80%). While, the corresponding decrease in dry yield were 4.9% and 15.0%. We can conclude that forage yield of sorghum and cowpea not affect by water irrigation deficit about 10% at Middle North Nile Delta area.

Keywords: Forage crops; sorghum; cowpea; water deficit; water productivity; productivity of irrigation water.

1. INTRODUCTION

Egypt has unique features regarding its water status, it is the solely country worldwide that its agricultural production is mainly under irrigation i.e., irrigated agriculture due to the prevailing aridity conditions. Nile River is the main water resource for Egypt with its inlets outside the boundaries of the country. Capita share from water per annum becomes less than the water poverty edge of 1000 m3 and it decreasing rapidly towards the scarcity line of less than 500 m3 in the few coming decades. At this situation, it is difficult to make progress in any national economic sector.

In addition, Egypt is facing a pronounced water shortage, particularly for irrigating summer crops. In other words, irrigation is the main critical factor in agricultural production. Agricultural irrigation is the main sector in water consumption with more than 80% from the annual national water supply. Therefore, water productivity becomes one of the main targets under the umbrella of "effective on-farm irrigation management". Meaningfully, more crop per drop.

Regarding to irrigation management under water deficit status becomes necessity.

Crop productivity and its water functions under the prevailing water shortage are among the first priorities of many researches in the world such as; [1-5].

[6] demonstrated that the consumptive use (ET) of 110 to 130-day sorghum crops range between 450 and 750 mm, depending on evaporative demand. Seasonal water use is higher for late maturing genotypes because of longer growing periods. They also stated that surface irrigation methods of furrow, border, basin or corrugation are commonly practiced. Water deficit and drought are the most limiting factors affecting plant growth; reduce crop production and threatening food security in the world [7].

On the other hand, sorghum and cowpea are among other summer crops for animal feeding stuff. Summer forage crops are essential to provide the necessary such animal feeding. Animal feeding stuff is lack in summer due to the less cultivated area in comparison to that cultivated with the winter principal forage crop of Egyptian clover.

Sorghum (*Sorghum bicolor* L. *Moench*) is among the most important forage crops in summer season. A successful forage sorghum breeding program to develop hybrid sorghum, which had more tolerant for unsuitable environment and more productivity [8].

Cowpea (*Vigna unguiculata* L.) is an important source of protein in human diet [9] and is equally important as nutritious fodder for livestock [10]. As a legume fodder, it provides high quality forage rich in protein with 14-24% [11]. It has ability to tolerate drought and can withstand heat and can utilize soil moisture efficiently as it has a well-developed root system [12] [13] and [14]. So, the aim of this work was to find out the response of yield and some water functions for sorghum and cowpea forage crops to water deficit irrigation owing to produce "more per less".

2. MATERIALS AND METHODS

A field experiment was carried out during the two successive summer for sorghum and forage cowpea at the Research Farm of Sakha Agricultural Research Station 2018 and 2019 seasons forage. The site is located in middle North of Nile Delta area with 30°-57 N latitude, 31°-07E longitude with an elevation of about 6 meters above mean sea level. Table 1 represents the climatic elements of the area during the two field trial seasons. The soil of the site is clayey in texture as shown in Table 2.
Table 1. Climatic elements; air temperature (T, °C), relative humidity (RH, %), wind speed (U, m.sec⁻¹) and evaporation pan (Ep, mm.day⁻¹)

Month	T, °C	RH, %	U, m.sec⁻¹	Ep, mm.day⁻¹	Month	T, °C	RH, %	U, m.sec⁻¹	Ep, mm.day⁻¹				
	max	min	Mean	m		max	min	Mean	m				
May-18	31.2	23.8	27.5	60	1.1	6.3	May-19	31.9	25.4	28.3	57.2	0.79	6.8
June	32.6	25.3	28.9	62	1.14	7.8	June	33	27	30	65.7	1.19	8.5
July	34.2	25.4	29.8	67	1.03	7.4	July	33.5	28.4	30.9	70.5	0.97	9.4
Aug.	33.9	25.3	29.6	67	0.88	6.4	Aug.	34.2	29.1	31.7	70.8	0.8	6.8
Sept.	32.8	23.5	28.2	66	0.8	5	Sept.	32.4	27.9	30.2	68.2	0.89	5.9
Oct.	29.5	20.6	25.1	66	0.67	3.2	Oct.	30.2	26.7	28.5	70.8	0.66	3.8
Mean	32.4	24	28.2	65	0.94	6	Mean	32.5	27.4	29.9	67.2	0.88	6.9
2.1 Physical and Chemical Characteristics of the Studied Site

Soil samples were collected from different depths: 0-15, 15-30, 30-45 and 45-60 cm to determine soil-water constants of field capacity (F.C) and permanent wilting point (PWP) according to [15] as well as soil bulk density (Db). Physical properties of particle size distribution were determined according to [16]. The obtained analysis indicated that the soil is clayey in texture as shown in Table 2. Chemical properties of total soluble salts, soil reaction (pH), both soluble cations and anions were also determined according to [17]. Sulphate (SO₄²⁻) was computed by the difference between soluble cations and anions, both in meq L⁻¹ as tabulated in Table 3.

2.2 Agronomic Practices

The cultivated summer forage crops were sorghum (Sorghum bicolor L. Moench cv. piper black) and cowpea (Vigna unguiculata cv. Baladi), from Forage Corps Res. Dept, grown in a randomized complete block design (R.C.B.D) with three replications for each crop. Each crop was grown in nine plots, every plot area was 140 m² (25 m long x 5.6 m width (8 ridges, 0.7m wide)).

Sowing date (S) in the two growing seasons are 20th and 24th of May in the two seasons, respectively. Seeding rates were 20 kg/fad for sorghum and 30 kg/fad for cowpea. Twenty unit of nitrogen in the form of urea applied in the three times for each crop, at the second irrigation and after the first and the second cut. Harvesting date (H) in the two seasons at three cuts were taken for every crop, the first, second and third cuttings were taken after 55, 100 and 140 days from sowing in the two seasons, respectively.

Data recorded for each crop in the three cuts in the two seasons at the middle plot (4 ridges with 5 m long which mean 2.8 x 5 m for fresh forage yield and dry forage yield/kg (14m²) and converted to kg/plot (140m²), as well as plant height cm.

2.3 Statistically Analysis

The recorded data were statistically analyzed according to [18]. Treatment means were compared by the least significant difference test using [19]. Homogeneity of experiments variances were computed according to [20].

2.4 Irrigation Treatments

Three irrigation treatments based on water deficit levels were assigned as follows:

A- Irrigation with 100% of crop water requirements (control).
B- Irrigation with 90% of control A (10% deficit).
C- Irrigation with 80% of control A (20% deficit).

Table 2. Particle Size distribution and soil-water constants of the studied experimental site

Soil depth, cm.	Particle size distribution	Soil Water constants of the studied experimental site						
	Sand, %	Silt, %	Clay, %	Texture class	F.C, %	W.P, %	AW, %	Db, Mg/m⁻³
0 – 15	19.5	27.6	52.9	Clay	46.40	25.21	21.19	1.14
15 – 30	20.4	27.4	52.2	Clay	41.38	22.49	18.89	1.18
30 – 45	24.9	25.7	49.4	Clay	38.50	20.92	17.58	1.22
45 – 60	25.6	26.8	47.6	Clay	36.90	20.05	16.85	1.30
Mean	22.6	26.9	50.5	Clay	40.80	22.17	18.63	1.21

Where: F.C, % = soil field capacity, W.P, % = wilting point, AW, % = available soil water and Db, Mg.m⁻³ = soil bulk density.

Table 3. Chemical properties of the experimental site:

Soil depth, cm	Ec, ds⁻¹	pH (1: 2.5) soil water suspension	Cations	Soluble ions, meqL⁻¹	Anions					
			Ca⁺⁺	Mg⁺⁺	Na⁺	K⁺	CO₃⁻	HCO₃⁻	Cl⁻	SO₄²⁻
0-15	1.78	8.30	6.20	3.20	8.20	0.27	0.00	5.20	8.10	4.57
15-30	2.40	8.15	9.63	4.70	9.54	0.22	0.00	4.76	7.94	11.38
30-45	2.56	8.20	9.20	5.95	10.34	0.20	0.00	4.53	7.38	13.78
45-60	2.94	8.01	10.70	6.70	11.86	0.19	0.00	3.78	7.56	18.11
Mean	2.42	8.93	9.99	5.14	9.99	0.22	0.00	3.57	7.75	11.96

23
2.5 Data Collection

a. Water parameters:

- Irrigation water (IW)

Irrigation water was controlled and measured by irrigation pump with a discharge of 18 L per second. Control irrigation treatment A was irrigated till the end of the assigned cultivated plot.

- Consumptive use (CU)

Actual consumptive use (CU) or so-called crop evapotranspiration (ET) was computed based on soil moisture depletion (SMD) in the effective root zone of 60 cm as follows [21].

\[\text{CU} = \frac{\text{FC} - \Theta}{100} \times \frac{\text{Db}}{\text{Dw}} \times \text{d}\]

Where:
- \(\text{CU}\) = consumptive use or actual crop- water consumed, cm.
- \(\text{FC}\) = percent soil moisture content on weight basis at field capacity
- \(\Theta\) = percent soil moisture content on weight basis before irrigation as well as at harvesting.
- \(\text{Db}\) = soil bulk density, Mg.m\(^{-3}\)
- \(\text{Dw}\) = density of water = 1
- \(\text{d}\) = effective root zone of 60 cm.

- Crop-water functions

i. Water productivity (WP):

Water productivity as defined by [22] is the parameter of crop-water functions which reflects the capability of water consumed by growing crop in producing marketable yield as follows:

\[\text{WP} = \frac{\text{Y}}{\text{CU}}\]

Where:
- \(\text{WP}\) = productivity of crop- water consumed
- \(\text{Y}\) = marketable yield, and
- \(\text{CU}\) = consumption use.

ii. Productivity of irrigation water (PIW):

This parameter of PIW refers to the capability of applied irrigation water in producing marketable yield as defined by [22].

\[\text{PIW} = \frac{\text{Y}}{\text{IW}}\]

3. RESULTS AND DISCUSSION

3.1 Mean Squares

Analysis of variance of two years and their combined for fresh and dry forage yield and plant height for each summer forage crop were presented in Tables (4) and (5). Data revealed that differences among irrigation levels were highly significant and significant effects for most fresh and dry forage yield as well as plant height at the three cuts and total yield for the two forage crops in the two seasons and combined analysis were detected similar results obtained by [23, 24] and [25].

3.2 Mean Performance

3.2.1 Forage sorghum

In comparison to the full irrigation control treatment A, the obtained data (Table 6) demonstrated that water deficit irrigation has a substantial impact on feed sorghum crop output. Table 6 shows the average performance of plant height, fresh and dry forage yield for sorghum. According to [26] and [27], plant height was influenced by irrigation levels.

The lowest applied water, 80 percent water irrigation (deficient 20%), had the smallest plant height at the three cuts in the two trial seasons and combined analyses. Plant height can be ordered in descending order based on the levels of applied irrigation water that resulted from the tested water deficit treatments: no deficit (control) > 10% deficit > 20% deficit, respectively.

For fresh and dry sorghum forage yields, the highest mean values were obtained from the control normal watering. On the other hand, the low-level irrigation which associated with deficit treatments caused the low mean values at the three cuts in the two seasons and their combined data. The mean values of fresh sorghum forage yield can be arranged in descending order as; 2917.0 > 2857.5 > 2561.0 kg.plot\(^{-1}\), while the corresponding values of the dry weight are;
Table 4. Analysis of variance for two years and combined analysis for yield and plant height of forage Sorghum under water deficit

S.of.V.	2018 season	2019 season	Combined																							
	Fresh forage yield	Dry forage yield	Plant height (cm)	Fresh forage yield	Dry forage yield	Plant height (cm)	Fresh forage yield	Dry forage yield	Plant height (cm)																	
	df	Cut 1	Cut 2	Cut 3	Total	Cut 1	Cut 2	Cut 3	Total	Cut 1	Cut 2	Cut 3	Average	df	Cut 1	Cut 2	Cut 3	Total	Cut 1	Cut 2	Cut 3	Total	Cut 1	Cut 2	Cut 3	Average
Replication	2	75	8.33**	1.33*	46.3	0.053**	1.5	0.343*	4.33*	4.11	14.3	28	3.81													
Irrigation	2	7275.0*	10675**	5772.00**	69937**	217.56**	372.4	400.33*	352.44**	523.0*	241.33**	363.15**														
Error	4	637.5	508	131.33	111	8.42	17	7.87	95.8	5.77	32.3	6.33	6.53													
Total	8	-	-	-	-	-	-	-	-	-	-	-	-													
Replication	2	36.33	22.33*	6.33*	144.0*	0.260*	0.040**	0.04	823*	2.778*	5.78	7.11	3.02													
Irrigation	2	13129.0**	18157.0**	4501.0**	100069.0**	378.02**	627.19**	216.19**	3501.31**	287.44**	560.77**	214.77**	338.01**													
Error	4	578.8	515	231.33	3822	10.2	12	5.52	80.6	20.8	20.9	18.1	17.2													
Total	8	-	-	-	-	-	-	-	-	-	-	-	-													
Replication	2	8.167	24.5	1.5	35.2	0.23	1	0.25	3.85	6.50**	9.06	20.2	2.53													
(Y)Year	1	1002152**	125000.0**	19404.5**	285012.50**	522.29**	926.651**	477.405**	990.125**	206.722**	2403.55**	600.88**	168.05**													
Error	2	103.2	6.17	6.167	155	0.08	0.6	0.14	1.31	0.39	11.5	14.9	4.3													
Irrigation(I)	2	19974.5**	28333.5**	10233.5**	16865.5**	584.44**	983.138**	602.105**	6402.88**	630.167**	1078.22**	455.72**	698.087**													
(Y)x(I)	2	429.5*	499*	39.5*	1350.50**	11.1	17	14.4	13.7	9.72	5.56	0.389*	3.08													
Error	8	608.2	512	181.33	1987	9.31	14	6.7	88.2	13.3	26.6	12.2	11.9													
Total	17	-	-	-	-	-	-	-	-	-	-	-	-													

*, ** P ≤ 0.05 and 0.01 respectively
Table 5. Analysis of variance of two years and combined analysis for yield and plant height of forage Cowpea under water deficit

2018 season

S.of.V.	Fresh forage yield	Dry forage yield	Plant height (cm)
	df Cut 1 Cut 2 Cut 3 Total	df Cut 1 Cut 2 Cut 3 Total	df Cut 1 Cut 2 Cut 3 Total
Replication	2 4 16 6.333* 72.33* 0.173* 0.013** 0.1 0.360** 0.190* 0.169* 0.653* 0.296**		
Irrigation	2 1351 2496.0* 2547.00* 18811.0* 53.3 112.00* 139.08* 880.36* 13.9 49.6 43.3 33.04		
Error	4 256 224 174 1944 12.4 9.1 9.2 91 18.5 9.96 15.1 14.24		
Total	8 - - - - - - - - - - - -		

2019 season

S.of.V.	Fresh forage yield	Dry forage yield	Plant height (cm)
	df Cut 1 Cut 2 Cut 3 Total	df Cut 1 Cut 2 Cut 3 Total	df Cut 1 Cut 2 Cut 3 Total
Replication	2 52 9.00* 4.00* 147 0.154** 1.377* 0.493* 4.960* 0.97 0.33 0.39 0.493		
Irrigation	2 3411.0* 6247.00** 2179.00** 39361.0* 136 248.58* 104.160* 1414.359** 30.8 39 128.170* 58.96		
Error	4 460 155 98 1911 23.2 34 13 204 23.8 10.8 16.5 16.55		
Total	8 - - - - - - - - - - - -		

Combined

S.of.V.	Fresh forage yield	Dry forage yield	Plant height (cm)
	df Cut 1 Cut 2 Cut 3 Total	df Cut 1 Cut 2 Cut 3 Total	df Cut 1 Cut 2 Cut 3 Total
Replication	2 42 24.50* 10.167* 211.167* 0.3 0.6 0.5 4 1.01 0.43 1.022* 0.776		
Year(Y)	1 214512.50** 186050.00** 642978.00** 3397.902** 4418.940** 364.50** 11160.178** 121.680** 345.845** 5070.245** 448.002**		
Error	2 14 0.5 0.17 8.2 0.03 0.8 0.1 1.3 0.16 0.07 0.02 0.016		
Irrigation(I)	2 4524.50 NS 8319.500** 4718.00** 51591.50** 179.507** 347.113** 241.980** 2263.219** 43 88.265* 160.235** 90.141*		
(Y)x(I)	2 238 424 8 1112 9.54 13 1.3 32 1.68 0.37 11.255* 1.671		
Error	8 358 189 136 1928 17.8 22 11 148 21.1 10.4 15.8 15.4		
Total	17 - - - - - - - - - - - -		

* *, ** P ≤ 0.05 and 0.01 respectively; NS; not significantly different
Therefore, by implementing 10% water deficit irrigation (Trt. B), only 2 and 4% (Table 11) decreasing in fresh and dry yield of sorghum were recorded comparing to the traditional irrigation and the decrease were insignificant; as combined data. While C treatment were recorded 12 and 16% decreased in fresh and dry yield comparing to control A treatment and highly significant decreased (Table 11). It can be concluded that 10% water deficit irrigation on forage sorghum not affect on fresh and dry yield. General mean of total and dry yield is very high in the second season for two forage crops, it is due to may be climatic elements (Table 1). The obtained results are nearly as obtained by [28,29,30,31] and [32].

3.2.2 Cowpea

The mean performance of plant height, fresh and dry cowpea forage yield in the two seasons as well as the combined data are presented in Table 7. Plant height slightly affected with different irrigation treatments. On the contrary, both fresh and dry yields were significantly affected with water level or deficit irrigation. Moreover, the effect was highly significant in connection with the combined analysis. In this regard, mean values of fresh yield descending arranged as; 1502.5> 1447.0> 1321.5 kg plot \(^{-1}\) for treatments A (control), B (90%) and C (80%) from A, respectively. The corresponding values regarding dry yield are 253.5, 241.0 and 215.4 kg plot \(^{-1}\). Comparing the deficit treatments with the control irrigation (Trt. A), overall mean decrease in fresh yield was 3.7% for treatment B (90%) and 12% for treatment C (80%). While, the corresponding decreases in dry yield were 4.9% and 15.0%, respectively. The decreasing in treatment B (deficit 10%) were insignificant effect of fresh and dry forage yield as combined data, while treatment C (20% deficit) irrigation were highly significant effect fresh and dry forage yield. This finding could be attributed to the less applied irrigation water under 80% level comparing with 90%. The obtained results emphasized the results that reported by [33,34,35] and [36].

In general, increasing water deficit stress notably affected the physiological processes and nutrient uptake by fodder cowpea crop. Therefore, growth, development and yield are negatively affected [37].

3.3 Water Relations

3.3.1 Applied irrigation water (IW)

Seasonal values of applied irrigation water for forage sorghum and cowpea during the two growing seasons of the study are presented in Table 8. It is clear from the presented data that the control water (Trt. A) has the highest values compared to water deficit treatments B and C. In this regard, mean values of I.W. for sorghum could be arranged in descending order as 83.44> 75.25> 69.47 cm. for treatments A (100%), B (90%) and C (80%), while the corresponding values for cowpea are 78.51> 72.93> 68.30 cm.

Therefore, by comparing I.W. for water deficit treatments with the control (Trt. A), mean water saving for sorghum counted with 9.8 and 16.7% under 90 and 80% water deficit, respectively. For cowpea crop, the corresponding values are 7.1 and 13.0%.

It should be notified that choosing the suitable level of water deficit to be executed under surface irrigation in the clayey soils should be linked with the decreasing in crop yield. In other words, factors should be taken into consideration; water saving and crop productivity as well as net return per m\(^2\) of water.

The obtained findings are in the same direction with that reported by [38,29] and [6].

3.3.2 Consumptive use (CU)

Seasonal values of crop consumed water (CU) for different treatments in the two growing seasons are presented in Table 9. Data show that control treatment A (100%) has the highest values of seasonal CU, while the lowest ones are for 80% water deficit (Trt. C).
Table 6. Effect of irrigation levels in two years and combined data for fresh and dry forage yield and plant height of forage Sorghum under water deficit 2018 season

Irrigation levels	Cut 1	Cut 2	Cut 3	Total	Cut 1	Cut 2	Cut 3	Total	Cut 1	Cut 2	Cut 3	Total	Cut 1	Cut 2	Cut 3	Average
100%	1045.0	750.0	554.0	2349.0	125.4	101.3	89.7	316.4	261.8	185.0	164.0	203.5				
90%	1032.0	735.0	542.0	2309.0	121.8	97.0	86.7	305.5	251.3	165.0	157.0	191.1				
80%	931.0	660.0	481.0	2072.0	107.2	83.8	75.4	266.4	235.6	157.3	146.0	179.6				
Grand Mean	1002.6	715.0	525.6	2243.3	118.1	94.0	83.9	296.1	249.5	169.1	155.6	191.4				
Significance	*	**	**	**	*	**	**	*	**	**	**	**	**	**	**	**
LSD0.05	61.1	43.9	33.5	138.0	8.9	8.3	8.53	25.75	10.5	12.0	10.8	8.2				
LSD0.01	-	72.9	55.6	228.8	-	13.7	-	17.4	19.9	-	13.7	-				
2019 season																
Fresh forage yield kg/plot																
Dry forage yield kg/plot																
Plant height (cm)																
Irrigation levels	Cut 1	Cut 2	Cut 3	Total	Cut 1	Cut 2	Cut 3	Total	Cut 1	Cut 2	Cut 3	Total	Cut 1	Cut 2	Cut 3	Average
-------------------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	---------
100%	1624.0	1288.0	573.0	3485.0	188.4	167.4	91.0	466.8	248.3	161.3	155.6	188.4				
90%	1596.0	1254.0	556.0	3406.0	182.6	160.4	87.2	430.2	242.6	158.3	151.3	184.1				
80%	1437.0	1120.0	493.0	3050.0	158.0	126.7	76.0	372.8	228.0	140.0	132.6	168.2				
Grand Mean	1552.3	1220.6	540.6	3313.6	176.3	138.8	84.7	416.6	239.6	154.5	146.5	180.2				
Significance	*	**	**	**	*	**	**	*	**	**	**	**	**	**	**	**
LSD0.05	56.1	48.5	40.0	148.6	8.9	8.3	8.53	25.75	10.5	12.0	10.8	8.2				
LSD0.01	-	72.9	55.6	228.8	-	13.7	-	17.4	19.9	-	13.7	-				
Combined																
Fresh forage yield kg/plot																
Dry forage yield kg/plot																
Plant height (cm)																
Irrigation levels	Cut 1	Cut 2	Cut 3	Total	Cut 1	Cut 2	Cut 3	Total	Cut 1	Cut 2	Cut 3	Total	Cut 1	Cut 2	Cut 3	Average
-------------------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	---------
100%	1334.5	1019.0	563.5	2917.0	156.9	134.3	90.3	381.6	255.0	173.1	159.8	196.0				
90%	1314.0	994.5	549.0	2857.5	152.2	128.7	86.9	367.8	247.0	161.6	154.1	187.6				
80%	1184.0	890.0	487.0	2561.0	132.6	111.3	75.7	319.6	231.8	150.6	139.3	173.9				
Grand Mean	1277.5	967.8	533.1	2778.5	147.2	124.7	84.3	356.3	244.6	161.8	151.1	185.8				
Significance	*	**	**	**	*	**	**	*	**	**	**	**	**	**	**	**
LSD0.05	46.5	38.8	30.6	115.3	11.4	9.2	6.9	27.3	10.1	8.2	5.3	6.6				
LSD0.01	67.7	56.5	44.6	167.7	16.6	13.4	10.1	39.8	14.7	12.0	7.8	9.6				

*, ** P ≤ 0.05 and 0.01 respectively; NS; not significantly different
Table 7. Effect of irrigation levels in two years and combined data for fresh and dry forage yield and plant height of forage Cowpea under water deficit

Irrigation levels	Cut 1	Cut 2	Cut 3	Total	Cut 1	Cut 2	Cut 3	Total	Cut 1	Cut 2	Cut 3	Average
100%	470.0	424.0	407.0	1301.0	73.8	74.6	78.2	226.6	67.0	63.0	57.0	62.3
90%	459.0	408.0	389.0	1256.0	71.4	70.6	73.6	215.6	65.7	61.1	54.8	60.5
80%	429.0	368.0	350.0	1147.0	65.6	62.6	64.8	193.0	62.8	55.2	49.6	55.9
Grand Mean	452.6	400.0	382.0	1234.6	70.8	69.2	72.2	211.7	65.1	59.7	53.8	59.5
Significance	NS	*	NS	NS	*	*	*	NS	NS	NS	NS	NS
LSD0.05	-	33.9	29.8	99.9	-	6.8	6.8	21.6	-	-	-	-
LSD0.01	-	-	-	-	-	-	-	-	-	-	-	-

2019

Irrigation levels	Cut 1	Cut 2	Cut 3	Total	Cut 1	Cut 2	Cut 3	Total	Cut 1	Cut 2	Cut 3	Average
100%	700.0	642.0	362.0	1704.0	103.6	108.4	68.4	280.4	73.0	54.0	93.0	73.3
90%	679.0	615.0	344.0	1638.0	99.2	102.8	64.4	266.4	71.3	52.0	88.9	70.7
80%	634.0	553.0	309.0	1496.0	90.4	90.6	56.8	237.8	66.8	47.0	80.2	64.6
Grand Mean	671.0	603.3	338.3	1612.6	97.7	100.6	63.2	261.5	70.3	51.0	87.3	69.5
Significance	*	**	**	NS	*	*	*	NS	NS	*	NS	NS
LSD0.05	48.5	28.1	22.4	99.1	-	13.2	8.2	32.4	-	-	9.2	-
LSD0.01	-	-	37.2	-	-	-	-	-	-	-	-	-

Combined

Irrigation levels	Cut 1	Cut 2	Cut 3	Total	Cut 1	Cut 2	Cut 3	Total	Cut 1	Cut 2	Cut 3	Average
100%	585.0	533.0	384.5	1502.5	88.8	91.5	73.3	253.5	70.0	58.5	75.0	67.8
90%	569.0	511.5	366.5	1447.0	85.3	86.0	69.0	241.0	68.5	56.5	71.8	65.6
80%	531.5	460.5	329.5	1321.5	78.0	76.6	60.8	215.4	64.5	51.1	64.9	60.2
Grand Mean	561.8	501.6	360.1	1423.6	84.0	84.9	67.7	236.6	67.7	55.3	70.5	64.5
Significance	NS	**	**	NS	*	*	*	NS	*	NS	NS	NS
LSD0.05	35.6	25.9	21.95	82.6	7.7	8.7	8.7	22.9	-	6.07	7.48	7.38
LSD0.01	51.8	37.6	31.94	120.3	11.5	12.7	12.7	33.3	-	-	10.8	-

*, ** P ≤ 0.05 and 0.01 respectively; NS; not significantly different
Table 8. Seasonal irrigation water (IW, cm) for Sorghum and Cowpea as affected with different irrigation treatments

Treatment	Crop	1st season cm.	2nd season cm.	Mean	
A (100%)	Sorghum	84.75	82.13	83.44	3504.5
	Cowpea	82.63	74.38	78.51	3297.4
B (90%)	Sorghum	78.29	72.20	75.25	3160.3
	Cowpea	75.12	70.73	72.93	3062.9
C (80%)	Sorghum	71.65	67.29	69.47	2917.7
	Cowpea	70.59	66.00	68.30	2668.6

Table 9. Seasonal consumptive use (CU, cm) for Sorghum and Cowpea as affected with different irrigation treatments

Treatment	Crop	1st season cm.	2nd season cm.	Mean	
A (100%)	Sorghum	67.80	65.70	66.75	2803.5
	Cowpea	66.10	59.50	62.80	2637.6
B (90%)	Sorghum	64.20	59.20	61.70	2591.4
	Cowpea	61.60	58.00	59.80	2511.6
C (80%)	Sorghum	60.90	57.20	59.05	2480.1
	Cowpea	60.00	56.10	58.05	2438.1

In this regard, mean values of seasonal CU for sorghum crop are arranged in descending order as 66.8> 61.7> 59.1 cm, while the corresponding ones for cowpea are 62.8> 59.8> 58.1 cm for treatments A, B and C, respectively.

This finding is owing to the less applied irrigation water to water deficit irrigation treatments which caused a decreasing in consumed water by the growing plants.

The obtained results are in a good agreement with that obtained by [38,29], [39] and [6].

3.3.3 Crop-water functions

Crop- water functions reflect the capability of consumed and/or irrigation water in water productivity, herewith:

3.3.3.1 Water productivity (WP)

The obtained data of WP in kg/m3 consumed water for different treatments are presented in Table 10. It is clear that the 90% water level (10%deficit) of treatment B has the highest values and vice versa for the non-deficit irrigation treatment A of full watering. This could be attributed to that CU as the dominator of crop-water function is the highest for full irrigation. In other words, there is a reverse relation between CU and WP.

3.3.3.2 Productivity of irrigation water (PIW)

It is clear that PIW in kg/m3 irrigation water took the same trend of WP (Table 8). The highest applied irrigation water, the lowest PIW taking into consideration the obtained yield.

Therefore, the obtained results of WP and PIW are in the same trend with that reported by [40,41,42,43,29] and [39].

3.3.3.3 Maximizing productivity of water unit

As mentioned before, the water level of 90% (Trt. B) produced nearly the highest yield as full irrigation (Trt. A,100%) with slight decrease in fresh and dry yield with 2.0 and 4.0% for sorghum and 3.7 and 4.9%, for cowpea (Tables 6 & 7).

In that regard, mean values of WP and PIW under treatment B with 10% deficit for fresh and dry yield of sorghum and cowpea are the highest as presented in Table 10.

Therefore, one m3 consumed water produced 33.4 and/or 4.3 kg as fresh and dry yield for sorghum, and 17.5 and/or 2.9 kg for cowpea. Meanwhile, that one m3 of applied irrigation water produced 27.4 and/or 3.5 kg as fresh and dry yield of sorghum and 14.3 and/or 2.4 kg for cowpea.
Table 10. Mean values of fresh, dry yield, consumptive use (CU), irrigation water (IW), water productivity (WP) and productivity of irrigation water (PIW) for sorghum and cowpea under different treatment

Treatment	Crop	Yield, Kg/fed	CU, m³/fed	IW, m³/fed	Productivity, Kg/m³ water						
		Fresh	Dry	Fresh	Dry	Fresh	Dry	Fresh	Dry	Fresh	Dry
A (100%)	Sorghum	88385.1	11562.5	2803.5	3504.5	31.5	4.1	25.2	3.3		
	Cowpea	45525.8	7681.1	2637.6	3297.4	17.3	2.9	13.8	2.3		
B (90%)	Sorghum	86582.3	11144.3	2591.4	3160.3	33.4	4.3	27.4	3.5		
	Cowpea	43844.1	7302.3	2511.6	3062.9	17.5	2.9	14.3	2.4		
C (80%)	Sorghum	77598.3	9683.9	2480.1	2917.7	31.3	3.9	26.6	3.3		
	Cowpea	40041.5	6526.6	2438.1	2868.6	16.4	2.7	14.0	2.3		

Table 11. Percent of decrease of summer forage

Sorghum 2018 season	Fresh forage yield	Dry forage yield	Plant height (cm)										
	Cut 1	Cut 2	Cut 3	Cut 1	Cut 2	Cut 3	Cut 1	Cut 2	Cut 3	Cut 1	Cut 2	Cut 3	Average
100%	100	100	100	100	100	100	100	100	100	100	100	100	100
90%	1.2	2.0	2.2	1.7	2.9	4.2	3.3	3.4	3.9	10.8	4.3	6.1	6.0
80%	9.8	10.2	11.3	10.3	12.0	13.6	13.0	12.8	6.2	4.7	7.0	6.0	6.0

Sorghum 2019 season	Fresh forage yield	Dry forage yield	Plant height (cm)										
	Cut 1	Cut 2	Cut 3	Cut 1	Cut 2	Cut 3	Cut 1	Cut 2	Cut 3	Cut 1	Cut 2	Cut 3	Average
100%	100	100	100	100	100	100	100	100	100	100	100	100	100
90%	1.7	2.6	3.0	2.3	3.1	4.2	4.2	3.7	2.3	1.9	2.8	2.3	2.3
80%	10.0	10.7	11.3	10.5	13.5	21.0	12.8	13.3	6.0	9.0	12.4	8.6	8.6

Sorghum combined	Fresh forage yield	Dry forage yield	Plant height (cm)										
	Cut 1	Cut 2	Cut 3	Cut 1	Cut 2	Cut 3	Cut 1	Cut 2	Cut 3	Cut 1	Cut 2	Cut 3	Average
100%	100	100	100	100	100	100	100	100	100	100	100	100	100
90%	1.5	2.4	2.6	2.0	3.0	4.2	3.8	3.6	3.1	6.6	3.6	4.3	4.3
80%	9.9	10.5	11.3	10.4	12.9	13.5	12.9	13.1	6.2	6.8	9.6	7.3	7.3

Cowpea 2018 season
Irrigation levels	Fresh forage yield	Dry forage yield	Plant height (cm)													
	Cut 1	Cut 2	Cut 3	\bar{x}	Cut 1	Cut 2	Cut 3	\bar{x}	Cut 1	Cut 2	Cut 3	\bar{x}	Cut 1	Cut 2	Cut 3	Average
100%	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
90%	2.3	3.8	4.4	3.5	3.3	5.4	5.9	4.9	1.9	3.0	3.9	2.9				
80%	6.5	9.8	10.0	8.7	8.1	11.3	12.0	10.5	4.4	9.7	9.5	7.6				

Cowpea 2019 season

Irrigation levels	Fresh forage yield	Dry forage yield	Plant height (cm)													
	Cut 1	Cut 2	Cut 3	\bar{x}	Cut 1	Cut 2	Cut 3	\bar{x}	Cut 1	Cut 2	Cut 3	\bar{x}	Cut 1	Cut 2	Cut 3	Average
100%	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
90%	3.0	4.2	5.0	3.9	4.2	5.2	5.8	5.0	2.3	3.7	4.4	3.5				
80%	6.6	10.1	10.2	8.7	8.9	11.9	11.8	10.7	6.3	9.6	9.8	8.6				

Cowpea combined

Irrigation levels	Fresh forage yield	Dry forage yield	Plant height (cm)													
	Cut 1	Cut 2	Cut 3	\bar{x}	Cut 1	Cut 2	Cut 3	\bar{x}	Cut 1	Cut 2	Cut 3	\bar{x}	Cut 1	Cut 2	Cut 3	Average
100%	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
90%	2.7	4.0	4.7	3.7	3.9	6.0	5.9	4.9	2.1	3.4	4.3	3.2				
80%	6.6	10.0	10.1	8.7	8.6	10.9	11.9	10.6	5.8	9.6	9.6	8.2				
In other words, to produce 1 kg fresh and dry yield of sorghum it consumed 29.9 liter and 232.6 liter, respectively. For cowpea, the values were 57.1 and 344.8 liter, respectively.

Meanwhile, to produce 1 kg fresh sorghum, it needs 36.5 liter as irrigation water, while it is 285.7 liter for dry yield. For cowpea, the values were 69.9 and 416.7 liter for fresh and dry yield, respectively.

4. PERCENT OF DECREASE

Percent of decrease of sorghum and cowpea in 2018 and 2019 seasons and combined analysis are presented in Table (11). Water stress fewer than 80% irrigation, reduced total fresh and dry forage yield production for sorghum and cowpea [44,24]. In this regard, [45] found that drought stress led to reduced average yield for most major crops by more than 50%. Although, cowpea was tolerant to decreased water of irrigation [46,47,48].

5. CONCLUSIONS

- Water productivity (WP) for m² of sorghum and cowpea yield (fresh and dry) under treatment B of 90% level (10% deficit) were 33.4, 4.3, 17.5 and 2.9 kg, respectively.
- Productivity of irrigation water (PIW) for sorghum and cowpea yield (fresh and dry) under treatment B of 90% level (10% deficit) were 27.4, 3.5, 14.3, 2.4 kg, respectively.
- By implementing irrigation of 90% water needs i.e., 10% deficit for sorghum and cowpea forage crops, several advantages could be achieved such as; nearly highest yield, 10% water saving, the highest productivity of each unit of either consumed or applied irrigation water.
- More research should be done regarding the performance of crops and their water relations under deficit irrigation with considering the net return per consumption of m³ of water term.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Abu-Zeid M, Hamdy A. Water crisis and food security in the Arab world: Where we are and where do we go. Second Regional Conference on Arab Water, Cairo, Egypt; 2002.
2. Seckler DU, Amarasinghe U, Molden D, Da Silva R, Barker R. World water demand and supply, 1990-2025. Scenarios and issues. Research report 19. IWMI, Colombia, Sri Lanka; 1998.
3. Hamdy A, Lacirignola C. Mediterranean water resources: Major challenges towards the 21st century. Mediterranean Agronomic Institute of Bari, Italy; 1999.
4. Corgrove JW, Rijberman RF. World water vision. World Water Council Earthscan Publication, Ltd, UK; 2000.
5. IWMI- International water management institute. Water supply and demand in 2025. Colombia, Sri Lanka; 2000.
6. Steduto P, Hisao TC, Fereres E, Raes D. Crop yield response to water, FAO Irrigation and Drainage Paper. 2012:66.
7. Water in a Changing World. The United Nations World Water Development Report 3–WWDR3 – UNESCO. 2009:1–313.
8. Duvick DN. Commercial strategies for exploitation of heterosis. The Genetics and Exploitation of Heterosis in Crops, Wisconsin, USA. 1999:19-29.
9. Karigoudar AS, Angadi SS. Influence of seed rate, row spacing and fertility levels on yield and quality of field bean for forage production. Karnataka J.Agric.Sci. 2005;18(2):489-491.
10. Singh BB, Ajeigbe HA, Tarawali SA, Fernandez–Rivera S, Abubakar M. Improving the production and utilization of cowpea as food and fodder .Field Crops Research. 2003;84:169-177.
11. Heuze V, Tran G, Bastianelli D, lebas F, Noziere P. Cowpea (Vigna unguiculata) forage; 2013:20-42. Available: http://www.feedipedia.org/node/23September 2013
12. Turk KJ, Hall AE. Drought adaptation of cowpea. IV: Influence of drought on water use and relation with growth and seed yield. Agron J. 1980b;2:440-448.
13. Hamdy A, Ragab R, Elisa Scarascia-Mugnozza, Coping with water scarcity: Water saving and increasing water productivity. International Commission on Irrigation and Drainage, Montreal; 2002.
14. Sambo BE, Odion EC, Aiyu L, Labe DA. Cowpea Vigna unguiculata (L.) Walp) clipping management technology.1: Potential for fodder Production, sustained growth and food security in the Savannah
regions of Nigeria. J. Agriculture and Crop Research. 2013;1(3):36-45.
15. James LG. Principles of farm irrigation system design. John Willey and Sons Inc., New York. 1988:543.
16. Klute AC. Water retention laboratory methods. In: A. Koute (ed) Methods of Soil Analysis, part 1-2nd (ed) Agronomy Monogr. 9, ASA, Madison, WI. U. S. A. 1986:635-660.
17. Jackson ML. Soil chemical analysis prentice hall of India private, LTD new Delhi; 1973.
18. Steel RGD, Torrie JH. Principles and procedures of statistics. A Biometry: cal Approach 2nd Ed: McGraw Hill, New York. 1980:232-349.
19. Mstat C. A micro computer program for the design of experiment Michigan State Univ, USA; 1986.
20. Bartelett MS. Properties of sufficiency and statistical test. Proc. Roy. Soc. 1937:A160:268-282.
21. Hansen V, Israelsen W, Stringham QE. Irrigation principle and practices, 4th (ed.), John Willey and Sons, USA; 1979.
22. Bos MG. Irrigation efficiencies at crop production level. ICID. Bulletin New Delhi. 1980;29(2):189-260.
23. Blum A. Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Res. 2009;112:119-123.
24. Hall AE, Thiaw S, Ismail AM, Ehlers JD. Water-use efficiency and drought adaptation of cowpea. In: Advances in cowpea research, B.B. Singh et al. (Eds). IITA/JIRCAS, IITA, Ibadan, Nigeria. 1997:87-98.
25. Ludlow MM. Muchow RC. A critical evaluation of traits for improving crop yields in water limited environments. Advances in Agronomy. 1990;43:107-153.
26. Assaeed AM. Evaluation of some forage sorghum varieties under the condition of central region, Saudi Arabia. Annals Agric, Sci., Ain shams Univ., Cairo. 1994;39(2):649-654.
27. Bakheet BR. Performance, phenotypic and genotypic stability for green fodder and leafiness in sorghum under different nitrogen fertilization levels. Assiut Journal of Agricultural Sciences. 1990;21(1):65-77.
28. Carrow RN. Drought avoidance characteristic of diverse tall fescue cultivars. Crop Sci. 1996;36:371–377.
29. Abdel-Fattah IM. Climate change impacts on maize under surface irrigation with gated pipes in North Nile Delta. M.Sc., Fac. Of Agric., Mansoura Univ; 2011.
30. Mariola Staniak, Anna Kocon. Foreage grasses under drought stress in conditions of Poland. Acta Physiol Plant. 2015;37:116. DOI 10.1007/s11738-015-1864-1.
31. El-Shamarka sh. A, Ibrahim ME, Ali FM, EL-Gaafarey TG. Studies on yield stability of new forage sorghum genotypes in different environments. Minufiya j. Agric. Res. 2012;37(4).1:871-880.
32. Ghasemi A, Karim MH, Karim Koshteh, MM Ghasemi. Green fodder yield performance of different varieties of soraghum grown in an arid region. International Journal of Agriculture and Crop Sciences. 2012;4(13):839-843.
33. Hayatu M, Mukhtar FB. Phisiological responses of drought resistant cowpea genotypes (Vigna unguiculata(L)Walp) to water stress. Bayero j.pure and Applied Sci. 2010;3(2):69-75.
34. Mullen C. Summer legume forage crops: Cowpeas, lablab, soybeans. SW Department of primary Industries. Broad acre crops. Agfact. 1999;4(2):16.
35. IITA. Cowpea Research at international Institute for Tropical Agriculture (IITA) GLIP Research Monograph, No. (1) Ibadan Nigeria; 1989.
36. Madamba R, Grubben GJH, Asante IK, Akromah R. Vigna unguiculata (L) Walp. Brink, M. and Belay, G (Eds.), PROTA (Plant Resources of Tropical Africa), Wageningen, Netherlands; 2006.
37. Zeinab M Khalil, Azza Kh. Salem, Fadia M Sultan. Water stress tolerance of fodder cowpea as influenced by various added levels of potassium sulphate. J. soil Sci. and Agric.Eng., Mansura Univ. 2015; 6(2):113-131.
38. Doorenbos, Kassam. Stated that surface irrigation is commonly used in alfalfa production. Crop water requirements (ETm) are between 800 and 1600 mm/ growing period depending on climate and length of growing period; 1979.
39. Kassab MM, Ibrahim MAM, Talha NJ. Effect of cultivation method and irrigation rate on productivity and water efficiency of berseem crop grown in North Nile Delta. Minufiya J. Agric. Res. 2012;37,4(2):1019-1033.
40. Lazridou Martha, Koutroubas SD. Drought effect on water use efficiency of berseem clover at various growth stages. 4th International Crop Science Congress. Brisbane, Australia; 2004.
41. Ali MH, Talukder MSU. Increasing water productivity in crop production. A Syntheses Agriculture Water Management. 2008;1201-1213.
42. Abdulaziz AM, Saleh M, Robin Wardlaw. Modelling irrigation water management under water shortage and salinity conditions: 1- Evaluation of the current irrigation and drainage management practices in South Kazakhstan. Alexandria Science Exchange J. 2009;30(3):350-371.
43. Ouda Samiha A, Abou Elenin R, Shreif MA. Simulating the effect of deficit irrigation on Egyptian clover and water productivity. 14th International Water Technology IWTC 14 2010, Cairo, Egypt; 2012.
44. Mai-Kodomi Y, Singh BB, Myers O, Yopp JH, Gibson PJ, Terao T. Two mechanisms of drought tolerance in cowpea. Indian J.Genet. 1999a;59:309-316.
45. Wang et, W, Vinocur B, Altman A. Plant response to drought, salinity and extreme temperature: Towards genetic engineering for stress tolerance. Planta. 2003;218:1-14.
46. Hall AE. Breeding for adaptation to drought and heat in cowpea. Eur J Agron. 2004;21:447-454
47. Dadson RB, Hashem FM, Javaid I, Allen AL, Devine TE. Effect of water stress on yield of cowpea (Vigna unguiculata L. Walp.) genotypes in the Delmarva region of the United States. J. Agron. Crop Sci. 2005;191:210-217.
48. Ehlers JD, Hall AE. Cowpea (Vigna unguiculata L. Walp.). Field Crops Res. 1997;53:187-204.

© 2022 El-Gaafarey et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle5.com/review-history/82584