Efficient chemical fixation and defixation cycle of carbon dioxide under ambient conditions

Saumen Hajra & Anurag Biswas

Chemical fixation of CO₂ as a C1 feedstock for producing value-added products is an important post-combustion technology reducing the CO₂ emission. As it is an irreversible process, not considered for the CO₂ capture and release. Overall, these chemical transformations also do not help to mitigate global warming, as the energy consumed in different forms is much higher than the amount of CO₂ fixed by chemical reactions. Here we describe the development of re-generable chemical fixation of CO₂ by spiroaziridine oxindole, where CO₂ is captured (chemical fixation) under catalyst-free condition at room temperature both in aqueous and non-aqueous medium even directly from the slow stream of flue gas producing regioselectively spirooxazolidinyl oxindoles, a potential drug. The CO₂-adduct is reversed back to the spiroaziridine releasing CO₂ under mild conditions. Further both the fixation-defixation of CO₂ can be repeated under near ambient conditions for several cycles in a single loop using a recyclable reagent.

Means of viable development, typically relying on more sensible resource management, is a conceit challenge in front of modern human society. Sustainability level in recent economic growth requires a massive improvement as it is far from an adequate level. According to the data released by Intergovernmental Panel on Climate Change (IPCC 2018), global surface temperature has mounted by approximately 1.5 °C from 1880 to 2018, which is a phenomenon caused by anthropogenic activities, predominantly greenhouse gases like CO₂ emissions from fossil carbon to accomplish the escalating energy demand. Under this circumstances, melting of thousand years old glaciers, desertification of fertile land, rise in ocean water level and acidification of ocean water had caused enormous detriment to diverse ecological environment. Scientific and technical advancements to curve atmospheric CO₂ concentration via limiting industrial emission and use CO₂ as an alternative fuel source in the renewable energy sector, had been a recurrent course of study for past few years. The reduction of CO₂ can be considered as a typical cohesive technology to rise artificial efficiency in producing various valuable hydrocarbons like formic acid, methanol, methane, and C₂–C₄ olefins. Several fascinating integrated protocols have freshly been reported for hydrothermal and photochemical CO₂ reduction, e.g., metal/metal oxide redox reaction based solar two-step water-splitting thermochemical cycle for CO₂ reduction via hydrogen generation. Chemical fixation of CO₂ has gained substantial importance in synthetic chemistry because CO₂ could be used as a benign, abundant, inexpensive, and renewable C1 reserve to yield a variety of value-added chemicals e.g. esters, amides, aldehydes, carboxylic acids, alcohols, organic carbonates and 2-oxazolidiniones, etc. In particular, synthesis of therapeutically cherished and synthetically convenient five-membered cyclic urethanes such as oxazolidinones via cycloaddition of CO₂ with aziridines has become one of the most promising approaches in this area, because this process possess 100% atom efficiency, which exactly matches one of the most substantial criteria of green chemistry. Despite being an admirable strategy to chemically capture and recycle CO₂, most of these protocols suffer from high energy demand and utilize costly catalysts/ionic liquids to achieve ambient or near ambient condition for CO₂ fixation, even from highly enriched CO₂ source. However, emissions from thermal power plants contain numerous gaseous components like SO₂, NOₓ along with CO₂. In these context, post-combustion CO₂ capture, release, and storage (CCS) had been the most abundantly used protocols for CO₂ purification from industrial exhausts. Various strategies are being industrialized for capture, release and storage (CCS) of CO₂ from gas streams, where gas–solid adsorption by metal–organic frameworks, gas–liquid chemical absorption by amines and carbonation by quick/slacked lime are notable. However, chemical fixation of CO₂ from contaminated sources under mild conditions to produce industrially vibrant chemicals and products faces...
great defies because of two main reasons: (1) the high ionization potential (IP), and (2) the negative adiabatic electron affinity (EA) of carbon dioxide. Therefore, most of the reports use harsh reaction conditions to overcome the high thermodynamic stability and chemical inertness of carbon dioxide. Hence, the development of a cost-effective and robust protocol for CO₂ capture, storage, and release in ambient conditions along with utility is highly desirable. Further, the chemical fixation is an irreversible process producing stable covalent compounds and thus, till now it could not be utilized for CO₂ capture and release. It might be a potential CCS protocol as it would produce valuable chemicals, provided the chemical fixation and the defixation (release) done under ambient conditions, the latter is an unmet challenge. Herein, we report the first regenerable chemical fixation, where CO₂ fixation by spiroaziridine oxindole under atmospheric pressure at rt (30 °C) without any catalyst producing stable spirooxazolidinone, a potential drug candidate, further reversed back (defixation) to the spiroaziridine releasing CO₂ under mild conditions. This fixation and defixation cycle can be repeated in a single loop for several times using a recyclable reagent.

Results and discussion

Uniqueness of spiroaziridine- and spirooxazolidinone oxindoles. CO₂ is an overall non-polar molecule, but the presence of net partial charges [O⁻δ−C⁺2δ−Oδ] makes its susceptibility to nucleophilic as well as electrophilic attack at carbon and oxygen, respectively. As a consequence, substrate such as epoxide and aziridine with both reactivity centres are suitable for the fixation of CO₂. However, all these require high pressure, -temperature and/or catalyst/additive. Designing substrate with tuned reactivity may lower the pressure and temperature for the chemical fixation of CO₂ and may further facilitate the CO₂ release. We envision that NH-free spiroaziridine oxindole could be a suitable substrate with desired reactivity as the presence of oxindole unit may enhance the nucleophilicity of aziridine-nitrogen via an electron-donating resonance effect of nitrogen of oxindole unit and/or its anchimeric assistance (Fig. 1), simultaneously these may increase the electrophilicity of the C3 center of oxindole via resonance structure 1A and/or the formation of intermediate 1B under neutral or mild basic condition. It is further envisioned that the presence of oxindole unit in spirooxazolidinone similarly will enable the release of CO₂ under acidic conditions as shown in Fig. 1. More importantly, the spirooxazolidinyl oxindole is a potential drug candidate so this CO₂ fixation could be excellent and cheap method for its production.

Optimization of auto-chemical fixation of CO₂ by NH-free spiroaziridine 1a under ambient conditions. According to the presumption, we started our studies initially on synthesis of NH-free spiroaziridine oxindole 1a and its reactivity towards CO₂ under different conditions. We have developed a new and efficient method for the synthesis of NH-free spiro aziridine 1a from easily available amino alcohol 3a on successive treatment with chlorosulfonic acid (ClSO₃H) in dioxane and aqueous KOH. The exclusive formation of NH-free spiroaziridine oxindole 1a was detected by MS and NMR analysis. With great delight, when a slow stream of CO₂ was passed through an aqueous dioxane solution of in situ synthesized spiroaziridine 1a at rt, within 30 min it produced exclusively CO₂ adduct, spiro oxazolidinone 2a in excellent yield (Table 1, entry 1) without any catalyst. This might be the first report of catalyst-free spontaneous chemical fixation of CO₂ under ambient condition and also in aqueous medium. Instead of aqueous, solid KOH was also found to be suitable for the in situ synthesis of
spiroaziridine 1a and subsequent fixation of CO₂, but it took a bit more time than the aqueous-dioxane (entry 2). The dioxane was the optimized solvent for both in situ spiroaziridine formation and the chemical fixation of CO₂. NaOH instead of KOH is also equally effective for the synthesis of spiroaziridine and subsequent CO₂ fixation (entries 3 and 4). Further, when in situ generated spiroaziridine was taken in ethyl acetate and treated with slow stream of CO₂ in absence of any base, it also gave the CO₂-adduct within 1.5 h in 69% isolated yield (entry 5). Thus it can be concluded that the chemical fixation of CO₂ by spiroaziridine does not require base as a catalyst/promoter. Ultimately with our great delight, the auto-chemical fixation of CO₂ was successful with 12.5% CO₂ in N₂ as well as a stimulated coal flue gas (12.5% CO₂, 7.5% O₂ and 80% N₂) without any appreciable loss in the yield of the adduct (entries 6–8). These took longer reaction time, may be due to low concentration and retention of CO₂ in solution.

Defixation of CO₂ at near ambient conditions.

We next sought to explore the possibility to regenerate the spiroaziridine via decarboxylation, which is an unmet challenge in CO₂-chemical fixation. As per the presumption, the decarboxylation (CO₂ release) was initiated with the reaction of spirooxazolidinone in the presence of different Brønsted acids and the subsequent treatment of base to regenerate the spiroaziridine and its regeneration was quantified with the further chemical fixation of CO₂ leading to spirooxazolidione again. Both the CO₂ defixation and the fixation were optimized in dioxane and briefly summarized in Table 2. The regeneration of spiroaziridine 1a was detected when a dioxane solution of spirooxazolidinone was heated with triflic acid at 100 °C. The extend of formation of spiroaziridine was confirmed by its chemical fixation of CO₂ and it gave only 24% yield of the resynthesized spirooxazolidinone 2a (Table 2, entry 1). With our great delight, near quantitative formation of spiroaziridine 1a was achieved, when the compound 2a was heated only at 70 °C with HI followed by treatment with aqueous NaOH (Table 2, entry 4). This was revealed with the re-synthesis of spirooxazolidinone 2a with 94% of isolated yield. HBr was also found to act on at 70 °C, but it took longer time with incomplete conversion (entry 6).

Table 1. Optimizat of in situ synthesis of spiroaziridine 1a and fixation of CO₂.

Entry	Base	t (h)	Yield of 2a (%)^a
1	Aq. KOH	0.5	99 (93)
2	Solid KOH	1.5	98
3	Aq. NaOH	0.5	99
4	Solid NaOH	1.5	98
5^a	Aq. KOH	1.5	75 (69)
6^c	KOH (aq.)	18	97
7^d	KOH (aq.)	18	98
8^e	Solid KOH	24	98

^a Chlorosulfonic acid (1.0 equiv.) was added slowly into the dioxane solution of 3a (100 mg, 0.521 mmol) and stirred at 70 °C. Reaction mixture was basified and a slow stream of carbon dioxide was passed through the solution until complete consumption of 1a. GC-yield is determined using naphthalene as internal standard; the value in parenthesis referred to the isolated yield. ^bSpiroaziridine 1a was extracted with ethyl acetate and treated with slow stream of CO₂. ^c12.5% CO₂ gas in N₂ was used as CO₂ source. ^dStimulated flue gas (12.5% CO₂, 7.5% O₂ and 80% N₂) was used as CO₂ source.

Chlorosulfonic acid (1.0 equiv.) was added slowly into the dioxane solution of 3a (100 mg, 0.521 mmol) and stirred at 70 °C. Reaction mixture was basified and a slow stream of carbon dioxide was passed through the solution until complete consumption of 1a. **GC-yield is determined using naphthalene as internal standard; the value in parenthesis referred to the isolated yield.**

- Spiroaziridine 1a was extracted with ethyl acetate and treated with slow stream of CO₂.
- 12.5% CO₂ gas in N₂ was used as CO₂ source.
- Stimulated flue gas (12.5% CO₂, 7.5% O₂ and 80% N₂) was used as CO₂ source.
developed an efficient and handy reagent, NaI-phosphoric acid for the regeneration of spiroaziridine 1a (entry 8) (“Supplementary material”).

Mechanism of CO2 defixation. In TIOH mediated decarboxylation of 2a (defixation of CO2), the formation of spiroaziridinium ion 1a’ was detected by MS analysis prior to the treatment with base. However, in case of HI or NaI-H3PO4, exclusive formation of intermediate compound 3-(aminomethyl)-3-iodooxindole 4a’ and no 1a’ was observed by MS analysis prior to the reaction with base. The intermediate iodo-amine 4a’ was isolated and identified as N-tosyl compound 5a by MS and NMR analysis (Fig. 2). The intermediate compound 4a’ on treatment with base regenerated the spiroaziridine 1a. Its in situ formation was confirmed by MS and NMR analysis and further isolated as N-tosyl spiroaziridine 6a.

![Figure 2. Intermediate compounds during defixation of CO2 from 2a.](image)

Table 2. Optimization of reaction condition for defixation and subsequent fixation of CO2.

Entry	Reagent	t (h)	T (°C)	Conversion (%)a	Yield of 2a (%)b
1	TfOH	12	100	>99	24
2	HI	48	rt	NR	–
3	HI	48	50	45	–
4	HI	5	70	>99	98 (94)
5	HI	48	50/rt	NR	–
6	HBr	6	70	64	–
7	NaI-H3PO4	48	50	48	–
8	NaI-H3PO4	5	70	>99	98 (95)
9	NaBr-H3PO4	48	70	NR	–

A dioxane solution of spiro-oxazolidone 2a (100 mg, 0.46 mol) was heated under specified acidic conditions followed by treatment of base and then slow stream of CO2. *Conversion of 2a was determined by GC–MS analysis. GC-yield is determined using naphthalene as internal standard; the value in parenthesis referred to the isolated yield.
Chemical fixation and defixation cycle of CO₂. The defixation of CO₂ at 70 °C and the subsequent fixation of CO₂ at rt (25 °C) was repeated for five times through the isolation of regenerated spirooxazolidinone 2a using solid NaOH. All the cycles required equal CO₂-defixation and fixation time-scale and exhibited quantitative regeneration of 2a (≥ 95%; Fig. 3). Further the CO₂ defixation (at 70 °C) and the fixation (at rt) were successfully continued for consecutive five cycles in one-pot by treating with NaI-H₃PO₄ and solid NaOH. Excitingly the overall yield of spirooxazolidinone after five cycles was found to be excellent (overall GC yield 95% and isolated yield 90%).

Again, if we deeply look into the chemical reactions involved during the release and capture of CO₂ of the process, NaI supposed to regenerate after the treatment of 4a′/1a′ with NaOH. So, in principle, NaI may be reused for the subsequent cycles. For the purpose, the first regeneration cycle with release of CO₂ was carried out as usual with the combination of NaI-H₃PO₄ and NaOH and subsequent chemical fixation of CO₂ produced the spirooxazolidinone. The subsequent cycles for the regeneration of spiroaziridine (CO₂-release/defixation) and CO₂-fixation were performed without further addition of NaI, only varying with the equivalent of H₃PO₄ and NaOH (Fig. 4). Thrillingly these were smoothly continued for five cycles. It showed almost quantitative yield
of spirooxazolidinone 2a in each cycle and finally the spirooxazolidinone 2a was isolated with excellent overall yield (90%).

In some of the developed technologies, the sorbent (liquid or solid) loaded with the captured CO₂ is transported to a different vessel, where it releases the CO₂ (regeneration) either after being heated or after a pressure decrease or after any other change of conditions around the sorbent. The sorbent resulting after the regeneration step is sent back to capture more CO₂ in a cycle. This makes additional cost of the process. It will be desirable to conduct both CO₂ capture and the release in a single vessel, this is possible when both are near similar conditions. In our case, 70 °C was found to be optimum temperature for the CO₂ defixation. So, we further studied the temperature effect on CO₂ fixation. Interestingly, it showed a near horizontal line for the fixation at 5 °C, 30 °C, 50 °C, 60 °C and 70 °C, respectively, with > 95% yield in each case (Fig. 5).

Inspired by the above findings of temperature effect on CO₂ fixation, we performed both CO₂ defixation and fixation at 70 °C and continued for five cycles. With our great delight, it showed almost quantitative yield of spirooxazolidinone 2a in each cycle and an excellent overall yield after five cycles. This chemical fixation-defixation (five) cycles at 70 °C are repeated for three times with a standard deviation of 0.47–1.70 (Fig. 6).

Figure 5. Temperature effect in chemical fixation of CO₂ by spiroaziridine 1a.

Figure 6. Chemical fixation-defixation cycles at 70 °C (The yield in each cycle referred to the GC yield of resynthesized spirooxazolidinone 2a; Standard deviation: cycle 1 and 2 = 0.82; cycle 3 = 1.25, cycle 4 = 1.70, cycle 5 = 0.47).
The spirooxazolidonyl oxindoles are important bioactive compounds. Thus further efforts are made to generalize the developed method for the synthesis of various spirooxazolidines by catalyst-free CO2 fixation of in situ generated spiroaziridines (Fig. 7). Irrespective of N-protection- and substitution of arene moiety of the oxindole unit, all underwent smooth auto-chemical fixation of CO2 providing the excellent isolated yields of the adducts 2, albeit N-benzyl and N-allyl substrates took longer time in comparison with others for the CO2 fixation. Further, alike 1a, the spiroaziridines derived from 3b, 3e, 3f and 3j also efficiently produced the corresponding CO2-adducts 2b, 2e, 2f and 2j with the flue gas in similar yields as with pure CO2. The regioselectivity of the fixation and the structure of the compound 2 was confirmed from the single crystal X-ray analysis of the compounds 2g (Fig. 7; CCDC 1898609). All the CO2-adducts 2 are solid compounds with melting point > 100 °C and bench stable for a couple of months under ambient conditions. Thus the developed regenerable chemical fixation protocol can be utilized for CO2 capture, storage and release, if and when it needed.

Conclusion

In summary, the first regenerable chemical fixation by spiroaziridine oxindole proved to be an excellent protocol for spontaneous and reversible CO2 fixation and defixation. We have demonstrated that the CCS [CO2 fixation and defixation cycle (regeneration)] can work well in one-pot (single vessel) for several cycles with excellent recovery using recyclable reagent under near ambient conditions. More importantly, the process regioselectively produced bioactive spirooxazolidinonyl oxindole in quantitative yields under extremely mild conditions (no extra reagent/catalyst, 1 atm., and rt). The CO2-adducts are stable compounds with high melting points, these can be stored for months under ambient conditions and can be reversed back to the sorbent as and when it requires. So, these findings in the ongoing research can open up a new avenue of the chemical fixation for the development of CO2 capture.
of smart innovative technology towards the energy and cost effective practical CCS and would find abundant applications in CO₂ fixation and -defixation chemistry towards chemical utilization of CO₂ in industry.

Methods

Auto-chemical fixation of CO₂ by in situ generated spiroaziridine 1a. Amino alcohol 3a (500 mg, 2.60 mmol) was dissolved in dry dioxane (8 ml) and cooled to 0 °C. Chlorosulfonic acid (174 µl, 2.6 mmol) was added drop wise and the reaction mixture was stirred for 2 h at room temperature (rt). 14 ml of 1 M aqueous NaOH solution was added dropwise to quench the acid at 0 °C and stirred at 70 °C for 16 h. The complete conversion to spiroaziridine was detected by MS analysis. Next, a slow stream of CO₂ was passed through the solution at rt for 30 min. After complete consumption of 1a (monitored with TLC and also by MS analysis) the dioxane was removed under reduced pressure and the residue was extracted with EtOAc (3 × 10 ml), washed with brine solution and dried over anhydrous Na₂SO₄. Combined organic layer was concentrated and purified by silica gel flash chromatography using EtOAc/hexanes (1:1) to afford the desired CO₂-adduct 2a (528 mg, 93%).

Note In case of stimulated flue gas (12.5% CO₂, 80% N₂ and 7.5% O₂) or 12.5% CO₂ in N₂, the stream of gas was passed through the solution for 18 h.

Defixation of CO₂ from spirooxazolidinone 2a and re-fixation of CO₂. To a solution of spirooxazolidinone 2a (150 mg, 0.69 mmol) in dry dioxane (6 ml), sodium iodide (414 mg, 2.76 mmol) and o-phosphoric acid (144 µl, 2.76 mmol) were added. The mixture was stirred at 70 °C and the consumption of 2a was monitored by TLC and GC–MS. After 5 h, aqueous NaOH solution (0.7 M, 10 ml) was added and stirred for 30 min. The exclusive regeneration of spiroaziridine 1a was confirmed by MS analysis. No spirooxazolidinone 2a and iodoamine 4a were detected in MS analysis at this stage. The crude solution containing spiroaziridinoxindole 1a was further used for the chemical fixation of CO₂. So, the slow stream of CO₂ was passed through the solution for 30 min. The GC–MS analysis of the crude mixture with naphthalene as an internal standard showed quantitative formation of spirooxazolidinone 2a (98%). Usual work and flash column chromatographic purification as discussed in general procedure gave the compound 2a (143 mg, 95%).

CO₂-defixation and fixation cycles through in situ regeneration of spiroaziridine 1a and the isolation of spirooxazolidinone 2a. To a stirred solution of spirooxazolidinone 2a (150 mg, 0.69 mmol) in dry dioxane (6 ml), sodium iodide (414 mg, 2.76 mmol) and o-phosphoric acid (144 µl, 2.76 mmol) were successively added at 70 °C and the reaction (consumption of 2a) was monitored by TLC. After complete consumption (5 h), it was brought to 0 °C and solid NaOH powder (390 mg, 9.75 mmol) was added to the reaction mixture. After attaining to rt, it was stirred for additional 1 h. The stream of 100% CO₂ was passed through to the suspended mixture for 1 h at rt. The solid mass was filtered off and washed with dioxane (2 × 5 ml). The combined organic solvent was evaporated to dryness under reduced pressure. The crude compound was dissolved in dioxane (6 ml) and 150 µl of the solution was taken out for the GC–MS analysis with naphthalene (5 mg) as an internal standard. The analysis showed 97% yield of the spirooxazolidinone 2a. So the calculated amount of resynthesized 2a was found to be 148.5 mg and 150 µl of the solution contained 3.7 mg of 2a. The resynthesized compound 2a (148.5 − 3.7 = 144.8 mg) was used for the second cycle for the regeneration of spiroaziridine and the fixation of CO₂ using the same procedure as mentioned above i.e. the use of NaI–H₃PO₄, solid NaOH and the stream of CO₂. The GC-yield of the second cycle was observed to be 96%. Similarly, another three cycles were carried and the GC-yields were found to be 99%, 97% and 95%, respectively.

One-pot CO₂-defixation and fixation cycles without isolation of re-synthesized spirooxazolidinone. The one-pot CO₂-defixation and fixation cycles were carried out following the similar procedure as above without separating out the solid by-products and isolation of re-synthesized spirooxazolidinone in the intermediate cycles.

To a stirred solution of spirooxazolidinone 2a (150 mg, 0.69 mmol) in dry dioxane (6 ml), sodium iodide (414 mg, 2.76 mmol) and o-phosphoric acid (144 µl, 2.76 mmol) were successively added at 70 °C and the reaction (consumption of 2a) was monitored by TLC. After complete consumption (5 h), it was brought to rt and solid NaOH powder (390 mg, 9.75 mmol) was added to the reaction mixture. After attaining to rt, it was stirred for additional 1 h. The stream of CO₂ was passed through to the suspended mixture for 1 h at rt. The complete consumption of in situ regenerated spiroaziridine and the formation of spirooxazolidinone 2a were monitored by TLC and MS analysis. Without separating out the solid mass and the isolation of spirooxazolidinone, another consecutive four cycles were repeated by adding the same amount of sodium iodide and o-phosphoric acid followed by solid NaOH and the stream of CO₂ for each cycle in the same pot. The consumption of the intermediate substrate and regeneration of the product were monitored during each cycles by TLC and MS analysis. At the end of 5th cycles, the solid mass was filtered off and washed with dioxane (3 × 10 ml). The combined organic solvent was evaporated to dryness under reduced pressure. The crude compound was dissolved in dioxane (6 ml) and the GC–MS analysis with naphthalene as an internal standard showed 95% overall yield of the spirooxazolidinone 2a for the five cycles. The silica gel flash column chromatographic purification of the crude with hexanes–EtOAc (1:1) gave the spirooxazolidinone 2a (134.9 mg, 90% overall yield) as a white solid.

Recycling of spiroaziridine and NaI for the fixation- and defixation of CO₂. To a stirred solution of spirooxazolidinone 2a (150 mg, 0.69 mmol) in dry dioxane (6 ml), sodium iodide (414 mg, 2.76 mmol) and o-phosphoric acid (144 µl, 2.76 mmol) were successively added at rt and the reaction (consumption of 2a) was monitored by TLC. After complete consumption of 2a (5 h), solid NaOH powder (342 mg, 8.6 mmol) was added to the reaction mixture at 0 °C. After attaining to rt, it was stirred for additional 1 h. The stream of CO₂...
was passed through to the suspended mixture for 1 h at rt. The complete consumption of in situ regenerated spirowaziridine and the formation of spirowazolidinone 2a (97% GC yield) were monitored by TLC and MS analysis. For the next reaction, the reaction mixture was acidified with orthophosphoric acid (292 μL, 5.6 mmol) and stirred at 70 °C without further addition of sodium iodide. After complete consumption of the spirowazolidinone (monitored with TLC), solid NaOH powder was added (694 mg, 17.36 mmol) and the stream of CO₂ was passed through for 1 h to reproduce the spirowazolidinone 2a (98%, GC yield). This process was repeated for five consecutive cycles. GC–MS analysis showed almost quantitative yield of spirowazolidinone in each stage and finally the spirowazolidinone 2a (135.0 mg, 90%) was isolated after fifth cycle by flash chromatography using hexanes-EtOAc (1:1).

Note (a) GC yield is determined by using naphthalene as internal standard; (b) the release of CO₂ from spirowazolidinone and its subsequent regeneration using CO₂ fixation is considered as one complete cycle. (c) At constant temperature (70 °C) five consecutive cycles of CO₂ fixation and defixation was accomplished using above method (Supplementary material; General procedure 2). GC yield in resynthesis of spirowazolidinone 2a was monitored at each stage (Fig. 3).

Received: 16 April 2020; Accepted: 17 July 2020
Published online: 25 September 2020

References

1. Monastersky, R. Global carbon dioxide levels near worrisome milestone. *Nature* **497**, 13–14 (2013).
2. Fuss, S. et al. Betting on negative emissions. *Nat. Clim. Change* **4**, 850–853 (2014).
3. Rogelj, J. et al. Energy system transformations for limiting end-of-century warming to below 15 °C. *Nat. Clim. Change* **5**, 519–527 (2015).
4. Williamson, P. Emissions reduction: Scrutinize CO₂ removal methods. *Nature* **530**, 153–155 (2016).
5. Wei, J. et al. Directly converting CO₂ into a gasoline fuel. *Nat. Commun.* **8**, 15174 (2017).
6. Martin, O. et al. Indium oxide as a superior catalyst for methanol synthesis by CO₂ hydrogenation. *Angew. Chem. Int. Ed.* **55**, 6261–6265 (2016).
7. Studt, F. et al. Discovery of a Ni–Ga catalyst for carbon dioxide reduction to methanol. *Nat. Chem.* **6**, 320–324 (2014).
8. Graciani, J. et al. Highly active copper–ceria and copper–ceria–titania catalysts for methanol synthesis from CO₂. *Science* **345**, 546–550 (2014).
9. Moret, S., Dyson, P. J. & laurenczy, G. Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media. *Nat. Commun.* **5**, 4017 (2014).
10. Zha, Y. et al. Catalytic conversion of carbon dioxide to methane on ruthenium–cobalt bimetalllic nanocatalysts and correlation between surface chemistry of catalysts under reaction conditions and catalytic performances. *ACS Catal.* **2**, 2403–2408 (2012).
11. Mistry, H. et al. Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. *Nat. Commun.* **7**, 12123 (2016).
12. Wei, J. et al. New insights into the effect of sodium on Fe₃O₄-based nanocatalysts for CO₂ hydrogenation to light olefins. *Catal. Sci. Technol.* **6**, 4786–4793 (2016).
13. Jin, F. et al. Highly efficient and autocaltatic H₂O dissociation for CO₂ reduction into formic acid with zinc. *Sci. Rep.* **4**, 4503 (2014).
14. Lya, L. Y., Zeng, X., Yun, J., Wei, F. & Jin, F. M. No catalyst addition and highly efficient dissociation of H₂O for the reduction of CO₂ to formic acid with Mn. *Environ. Sci. Technol.* **48**, 6003–6009 (2014).
15. Jin, F. et al. High-yield reduction of carbon dioxide into formic acid by zero-valent metal/metal oxide redox cycles. *Energy Sci. Technol.* **4**, 881–884 (2011).
16. Jin, F. et al. Zeng, X., Jing, Z. Z. & Enomoto, H. A potentially useful technology by mimicking nature-rapid conversion of biomass and CO₂ into chemicals and fuels under hydrothermal conditions. *Ind. Eng. Chem. Res.* **51**, 9921–9937 (2012).
17. Steinfield, A. et al. Solar–processed metals as clean energy carriers and water splitters. *Int. J. Hydrogen. Energ.* **23**, 767–774 (1998).
18. Steinfield, A. Solar hydrogen production via a two-step water-splitting thermochemical cycle based on Zn/ZnO redox reactions. *Int. J. Hydrogen. Energy* **27**, 611–619 (2002).
19. Steinfield, A. Solar thermochemical production of hydrogen—A review. *Sol. Energy* **78**, 603–615 (2005).
20. Kodama, T. & Gokon, N. Thermocatalytic cycles for high-temperature solar hydrogen production. *Chem. Rev.* **107**, 4017–4048 (2007).
21. Galvez, M., Loutzenhiser, P., Hischier, I. & Steinfield, A. CO₂ splitting via two-step solar thermochemical cycles with Zn/ZnO and FeO/Fe₂O₃ redox reactions: Thermodynamic analysis. *Energy Fuels.* **22**, 3544–4500 (2008).
22. Park, H., Kim, H. I., Moon, G. H. & Choi, W. Photoinduced charge transfer processes in solar photocatalysis based on modified TiO₂. *Energy Environ. Sci.* **9**, 411–435 (2016).
23. Yuan, G., Qi, C., Wu, W. & Jiang, H. Recent advances in organic synthesis with CO₂ as C1 synth. *Curr. Opin. Green. Sus. Chem.* **3**, 22–27 (2016).
24. Aresta, M., Dibenedetto, A. & Angelini, A. Catalysis for the valorization of exhaust carbon: from CO₂ to chemicals, materials, and fuels. *Chemical Review* **114**, 1709–1742 (2014).
25. Appel, A. M. et al. Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO₂ fixation. *Chem. Rev.* **113**, 6621–6658 (2013).
26. Darenbourg, D. J. Making plastics from carbon dioxide: Salen metal complexes as catalysts for the production of polycarbonates from epoxides and CO₂. *Chem. Rev.* **107**, 2388–2410 (2007).
27. Leach, K. L., Brickner, S. J., Noe, M. C. & Miller, P. F. Linezolid, the first oxazolidinone antibacterial agent. *Ann. N. Y. Acad. Sci.* **1222**, 49–54 (2011).
28. Moran, G. J. et al. Tedizolid for 6 days versus linezolid for 10 days for acute bacterial skin and skin-structure infections (ESTABLISH-2): A randomised, double-blind, phase 3 non-inferiority trial. *Lancet Infect. Dis.* **14**, 696–705 (2014).
29. Berlin, I. et al. Comparison of the monoamine oxidase inhibiting properties of two reversible and selective monoamine oxidase-A inhibitors moclobemide and toloxatone, and assessment of their effect on psychometric performance in healthy subjects. *Br. J. Clin. Pharm.* **30**, 805–816 (1990).
30. Makkhat, T. M. & Wright, G. D. Streptorgramins, oxazolidinones, and other inhibitors of bacterial protein synthesis. *Chem. Rev.* **105**, 529–542 (2005).
31. Aurelio, L., Brownlee, R. T. C. & Hughus, A. B. Synthetic preparation of N-methyl-α-amino acids. *Chem. Rev.* **104**, 5823–5846 (2004).
32. Blomen, E. et al. Capture technologies: Improvements and promising developments. *Energy Procedia* **1**, 1505–1512 (2009).
33. Xia, S.-M., Chen, K.-H., Fu, H.-C. & He, L.-N. Ionic liquids catalysis for carbon dioxide conversion with nucleophile. *Front. Chem.* 6, 462 (2018).
34. Biswas, T. & Mahalingam, V. Efficient CO₂ fixation under ambient pressure using poly(ionic liquid)-based heterogeneous catalysts. *Sustain. Energy Fuels* 3, 935–941 (2019).
35. Chen, Y. *et al.* Metalloporphyrin polymers with intercalated ionic liquids for synergistic CO₂ fixation via cyclic carbonate production. *ACS Sustain. Chem. Eng.* 6, 1074–1082 (2018).
36. Wang, K. *et al.* A metal–metalloporphyrin framework based on an octa-topic porphyrin ligand for chemical fixation of CO₂ with aziridines. *Chem. Commun.* 54, 1170–1173 (2018).
37. Adhikari, D., Miller, A. W., Baik, M.-H. & Nguyen, S. T. Intramolecular ring-opening from a CO₂-derived nucleophile as the origin of selectivity for 5-substituted oxazolidinone from the (salen)Cr catalyzed [aziridine + CO₂] coupling. *Chem. Sci.* 6, 1293–1300 (2015).
38. Fontana, F., Chen, C. C. & Aggarwal, V. K. Palladium-catalyzed insertion of CO₂ into vinylaziridines: New route to 5-vinylxazolidinones. *Org. Lett.* 13, 3454–3457 (2011).
39. Ihata, O., Kayaki, Y. & Ikariya, T. Synthesis of thermoresponsive polyurethane from 2-methylaziridine and supercritical carbon dioxide. *Angew. Chem. Int. Ed.* 43, 717–719 (2004).
40. Ihata, O., Kayaki, Y. & Ikariya, T. Poly(urethane-amine)s synthesized by copolymerization of aziridines and supercritical carbon dioxide. *Macromolecules* 38, 6429–6434 (2005).
41. Harkin, T. *et al.* Process integration analysis of a brown coal-fired power station with CO₂ capture and storage and lignite drying. *Energy Procedia* 1, 3817–3825 (2009).
42. Sumida, K., Rogow, D. L., Mason, J. A., McDonald, T. M., Bloch, E. D., Herm, Z. R., Bae, T.-H. & Long, J. R. Carbon Dioxide Capture in Metal Organic Frameworks. *Chem. Rev.* 112, 724–781 (2012).
43. Ozt, J. C. *et al.* Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. *Nature* 437, 681–686 (2005).
44. Haszeldine, R. S. Carbon capture and storage: How green can black be? *Science* 325, 1647–1652 (2009).
45. Boot-Handford, M. E. *et al.* Carbon capture and storage update. *Energy Environ. Sci.* 7, 130–189 (2014).
46. Heldebrant, D. J. *et al.* Water-lean solvents for post-combustion CO₂ capture: Fundamentals, uncertainties, opportunities, and outlook. *Chem. Rev.* 117, 9594–9624 (2017).
47. Hutchison, A. J. Oxazolidinedione derivatives. *Eur. Pat. Appl.* EP 79675 A1 19830525 (1983).
48. Spear, K. L., Campbell, U. Preparation of piperidinyldinolone derivatives for use as nervous system agents. *PCT Int. Appl. WO* 201406238 A1 201406703 (2014).
49. Mautino, M., Jaipuri, F., Marcinowicz-Flick, A., Kesharwani, T., Waldo, J. Preparation and disclosure of indoleamine 2,3-dioxygenase (IDO) inhibitors. *PCT Int. Appl. WO* 2009073620 A2 20090611 (2009).
50. Hajra, S., Singha Roy, S., Aziz, S. M. & Das, D. Catalyst-free, “On-Water” Regio- and stereospecific ring-opening of spiroaziridine oxindole: Enantiopture synthesis of unsymmetrical 3,3′-bisindoles. *Org. Lett.* 19, 4082–4085 (2017).
51. Hajra, S., Roy, S. S., Biswas, A. & Saleh, S. A. Catalyst-free ring opening of spiroaziridine oxindoles by heteronucleophiles: An approach to the synthesis of enantiopure 3-substituted oxindoles. *J. Org. Chem.* 83, 3633 (2018).
52. Hajra, S., Hazra, A., Saleh, S. A. & Mondal, A. S. Aqueous tert-butyl hydroperoxide mediated regioselective ring-opening reactions of spiro-aziridine/epoxy oxindoles: Synthesis of 3-peroxy-3-substitued oxindoles and their acid mediated rearrangement. *Org. Lett.* 21, 10154–10158 (2019).
53. Hajra, S., Maity, S. & Maity, R. Efficient synthesis of 3,3′-mixed bisindoles via Lewis acid catalyzed reaction of spiro- epoxyoxindoles and indoles. *Org. Lett.* 17, 3430–3433 (2015).
54. Hajra, S. & Roy, S. Feedback inhibition in chemical catalysis leads dynamic kinetic to kinetic resolution in C3-indolylation of spiro-epoxyoxindoles. *Org. Lett.* 22, 1458–1463 (2020).

Acknowledgements

This work was supported by SERB, New Delhi (EMR/2016/001161) and MoES, New Delhi (MoES/09-DS/12/2015 PC-IV). A. B. thanks DST, New Delhi for his fellowships. We grateful to Prof. P. Banerjee and Mr. K. Verma, IIT Ropar for the assistance with X-ray analysis.

Author contributions

S.H. conceived the work. S.H. and A.B. designed the experiments and analysed the data. A.B. performed the experiments. S.H. wrote the manuscript. A.B. assisted in writing and editing the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-71761-w.

Correspondence and requests for materials should be addressed to S.H.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2020