The fullerenes with a perfect star packing*

Ling-Juan Shi†

School of Software, Northwestern Polytechnical University,
Xi’an, Shaanxi 710072, P. R. China
E-mails: shilj18@nwpu.edu.cn.

Abstract

A spanning subgraph of a graph G is called a perfect star packing in G if every component of the spanning subgraph is isomorphic to the star graph $K_{1,3}$. An efficient dominating set of graph G is a vertex subset D of G such that each vertex of G not in D is adjacent to exactly one vertex from D and any two vertices of D are not adjacent in G. Fullerene graph is a connected plane cubic graph with only pentagonal and hexagonal faces, which is the molecular graph of carbon fullerene. Clearly, a perfect star packing in a fullerene graph G on n vertices will exist if and only if G has an efficient dominating set of cardinality $\frac{n}{4}$. The problem of finding an efficient dominating set is algorithmically hard [2]. In this paper, we give a characterization for a fullerene graph to own a perfect star packing. And mainly show that it is necessary for a fullerene G owning a perfect star packing to have order being divisible by 8. This answers an open problem asked by Došlić et. al. and also shows that a fullerene graph with an efficient dominating set has $8n$ vertices. By the way, we find some counterexamples for the necessity of Theorem 14 in [13] and list some forbidden configurations to preclude the existence of a perfect star packing of type $P0$.

Keywords: Fullerene graph; Perfect star packing; Efficient dominating set

1 Introduction

A chemical graph is a simple finite graph in which vertices denote the atoms and edges denote the chemical bonds in underlying chemical structure. Perfect matchings of a chemical graph correspond to kekulé structures of the molecule, which feature in the calculation of molecular energies associated with benzenoid hydrocarbon molecules [19]. Alternating sextet faces (sextet patterns) also play a meaningful role in the prediction of molecular stability, in particular, but not only, in benzenoid compounds. Although for fullerenes, the two structures do not play the

*This work was supported in part by the National Natural Science Foundation of China (grant no. 11901458 and 11871256) and by the Fundamental Research Funds for the Central Universities (grant no. D5000200199).
†Corresponding author.
same role as in benzenoid compounds, they received numerous attention in recent years, see [1, 3, 7, 12, 16, 20, 32, 33] etc.

A perfect matching in a graph G may be viewed as a collection of subgraphs of G, each of which is isomorphic to K_2, whose vertex sets partition the vertex set of G. This is naturally generalized by replacing K_2 by an arbitrary graph H. For a given graph H, an H-packing of G is the set of some vertex disjoint subgraphs, each of which is isomorphic to H. From the optimization point of view, the maximum H-packing problem is to find the maximum number of vertex disjoint copies of H in G called the packing number. An H-packing in G is called perfect if it covers all the vertices of G. If H is isomorphic to K_2, the maximum (perfect) H-packing problem becomes the familiar maximum (perfect) matching problem. If H is the cycle C_6 of length 6, for a fullerene or a hexagonal system G, the packing number is related to the Clar number (the maximum number of mutually disjoint sextet patterns) of G. If H is the star graph $K_{1,3}$, it is the maximum star packing problem. If a $K_{1,3}$-packing covers all the vertices of G, we call it being a perfect star packing. For a given family \mathcal{F} of graphs, an H-packing concept can also be generalized to an \mathcal{F}-packing (we refer the reader to [29] for the definition).

Packing in graphs is an effective tool as it has lots of applications in applied sciences. H-Packing, is of practical interest in the areas of scheduling [5], wireless sensor tracking [6], wiring-board design, code optimization [21] and many others. Packing problems were already studied for Carbon Nanotubes [27]. Packing lines in a hypercube have been studied in [14]. H-packing was determined for honeycomb [29] and hexagonal network [28]. For representing chemical compounds or to problems of pattern recognition and image processing, P_3-packing has some applications in chemistry [30]. Doslić et. al [13] have investigated which fullerene graphs allow perfect star packings, and have considered generalized fullerene graphs and packings of other graphs into classical and generalized fullerenes. They also listed several open problems.

In the following section we introduce necessary preliminaries and characterize the classical fullerenes which have a perfect star packing. Section 3 gives a negative answer to the problem “Is there a fullerene on $8n + 4$ vertices with a perfect star packing?” asked by Doslić et. al [13]. This implies that a fullerene graph with an efficient dominating set must has $8n$ vertices. In section 4, we generalize the Proposition 1 in reference [13] and give three counterexamples for Theorem 14 in the same paper. And some forbidden configurations are listed to preclude the
existence of a perfect star packing of type P_0.

2 Characterization of fullerenes with a perfect star packing

A fullerene graph (simply fullerene) is a cubic 3-connected plane graph with only pentagonal and hexagonal faces. It follows from the Euler formula that there must be exactly 12 pentagons in every fullerene graph. Such graphs are suitable models for carbon fullerene molecules: carbon atoms are represented by vertices, whereas edges represent chemical bonds between two atoms (see [15, 25]). In a classical paper by Grünbaum and Motzkin [18], we know that a fullerene graph with n vertices exists for all even $n \geq 20$ except for $n = 22$. Klein and Liu [23] used a similar approach to show that there exist fullerene graphs on n vertices with isolated pentagons for $n = 60$ and for each even $n \geq 70$. We refer the reader to the monograph [15] for a systematic introduction on fullerene graphs.

A cycle of a fullerene graph G is a facial cycle if it is the boundary of a face in G, otherwise, it is a non-facial cycle. Clearly, each pentagon and hexagon in G is a facial cycle since G is 3-connected and any 3-edge-cut is trivial [31]. In paper [13], the authors obtained the following basic conclusions.

Proposition 2.1 ([13]). Let S be a perfect star packing of fullerene graph G. Then each pentagon of G can contain at most one center of a star in S.

Lemma 2.2 ([13]). Let S be a perfect star packing of fullerene graph G. Then a vertex shared by two pentagons of G cannot be the center of a star in S.

Recall that a vertex set X of a graph G is said to be independent if any two vertices in X are not adjacent in G. A cycle $C = v_1v_2\cdots v_kv_1$ in G is called induced if v_i has only two adjacent vertices v_{i+1} and v_{i-1} around the k vertices v_1, v_2, \cdots, v_k (note that if $i = k, i+1 := 1$ and if $i = 1, i-1 := k$). Otherwise, there exists some i and $j \notin \{i-1, i+1\}$ such that v_i and v_j are adjacent in G, the edge v_iv_j is a chord of C and C is not induced. A subgraph R of a graph G is spanning if R covers all the vertices of G. For a vertex v of a graph G, we call vertex u being a neighbor of v in G if u is adjacent to v in G.

Theorem 2.3. Let G be a fullerene graph. Then G has a perfect star packing if and only if G has an independent vertex set S^* such that each component of $G - S^*$ is an induced cycle in G.

3
Proof. If G has a perfect star packing S, then S is a spanning subgraph of G and any component in S is isomorphic to a star graph $K_{1,3}$. Let S^* be the set of all 3-degree vertices in S. Clearly, S^* is an independent vertex set in G and any vertex in $G - S^*$ has degree 2. So each component of $G - S^*$ is an induced cycle in G.

Let S^* be an independent vertex set of G such that each component of $G - S^*$ is an induced cycle in G. Clearly, each vertex in S^* and its three neighbors induce a star graph $K_{1,3}$. We collect all these star graphs and denote this set by \mathcal{H}. For any vertex x on a cycle C in $G - S^*$, x has exactly one neighbor in S^* since G is 3-regular and induced cycle C is a component of $G - S^*$. So \mathcal{H} is a spanning subgraph of G and each component of \mathcal{H} is a star graph $K_{1,3}$, that is, \mathcal{H} is a perfect star packing of G. \hfill \square

We note that star graph $K_{1,3}$ has exactly one center (the vertex of degree 3) and three leaves. A perfect star packing S of a fullerene graph G is a spanning subgraph of G each component of which is a star graph $K_{1,3}$. We call each 1-degree vertex in S being a leaf. In the following, we denote by $C(S)$ the set of all the centers of stars in S.

Remark 2.4. Let S be a perfect star packing of fullerene graph G. Then
1. $C(S)$ is an independent vertex set in G.
2. Any leaf in S has exactly one neighbor belonging to $C(S)$ and has exactly two neighbors being leaves in S.
3. Each cycle in $G - C(S)$ does not have a chord.

Proposition 2.5. Each hexagon can contain at most two centers of a perfect star packing of fullerene graph G. If a hexagon h contains two such centers, then they are antipodal points on the hexagon h.

Proof. Let h be a hexagon in G. We denote the six vertices of h by v_1, v_2, \ldots, v_6 in the clockwise direction. If vertex v_1 is the center of a star H in a perfect star packing S of G, then v_2 and v_6 are two leaves in H. Hence both v_3 and v_5 are leaves in S by Remark 2.4 2. Clearly, v_4 could be the center of a star in S. Hence h has exactly one center of S or has exactly two centers of S which are antipodal points on h. \hfill \square
3 The order of fullerenes with a perfect star packing

To show the main conclusion, we need to prepare as follows.

![Fig. 1. (a) Type 1; (b) Type 2; (c) Type 3.](image)

Lemma 3.1. Let \(S \) be a perfect star packing of fullerene graph \(G \). Then for any vertex \(x \in C(S) \), all the vertices on the three faces sharing \(x \) are covered by \(S \) as Type 1, Type 2 or Type 3 (see Fig. 1).

Proof. By the Lemma 2.2, at most one of the three faces sharing \(x \) is a pentagon since \(x \in C(S) \).

There are two cases as follows.

Case 1. The three faces sharing \(x \) are all hexagons.

Clearly, \(x \) has three antipodal points on the three hexagons sharing \(x \), denoted by \(x_1, x_2 \) and \(x_3 \) respectively as depicted in Fig. 1 (a). By Remark 2.4 2, the two neighbors \(v_1 \) and \(v_3 \) of \(v_2 \) are leaves in \(S \). Similarly, \(u_1, u_3, w_1 \) and \(w_3 \) are also leaves in \(S \). We claim that at least two of \(x_1, x_2 \) and \(x_3 \) are centers of stars in \(S \). If \(x_1 \) is not the center of a star in \(S \), then \(x_1 \) is a leaf in \(S \). So the third neighbor of \(v_1 \), say \(y_1 \), is the center of a star in \(S \) (see Fig. 1 (b)). Similarly, the third neighbor of \(w_3 \), say \(y_2 \), is also the center of a star in \(S \). Since the three vertices \(v_1, v_2 \) and \(v_3 \) are leaves in \(S \) and \(y_1 \in C(S) \), the face \(f_1 \) has only one center of \(S \) by Propositions 2.5 and 2.1. Hence the two neighbors of \(v_3 \) on \(f_1 \) are leaves. By Remark 2.4 2, \(x_3 \) is the center of a star in \(S \), that is, \(x_3 \in C(S) \). Similarly, \(w_1 \) is a leaf in \(S \) and the two neighbors of \(w_1 \) on \(f_2 \) are all leaves in \(S \). Hence \(x_2 \in C(S) \). So at least two of \(x_1, x_2 \) and \(x_3 \) belong to \(C(S) \). If exactly two of \(x_1, x_2 \) and \(x_3 \) belong to \(C(S) \), without loss of generality, we suppose that \(x_2, x_3 \in C(S) \), then all the vertices on the three faces sharing \(x \) are covered by \(S \) as Type 2. If all the three vertices \(x_1, x_2 \) and \(x_3 \) belong to \(C(S) \) (see Fig. 1 (a)), then all the vertices on the three faces
sharing x are covered by S as Type 1.

Case 2. Exactly one of the three faces sharing x is a pentagon.

By Proposition 2.1, w_1 and u_3 are leaves in S (see Fig. 1(c)). Hence $x_4, x_3 \in C(S)$ and f is a hexagon by Remark 2.4 2 and Proposition 2.5. By Remark 2.4 2, the neighbor w_3 of w_2 is a leaf in S since the neighbor x of w_2 belong to $C(S)$. Hence the other vertices on f_1 except for x_4 are all leaves in S by Propositions 2.1 and 2.5. This follows that the neighbor x_1 of w_3 is the center of a star in S by Remark 2.4 2. Similarly, we can show $x_2 \in C(S)$. Hence all the vertices on the three faces sharing x are covered by S as Type 3 (see Fig. 1(c)).

Corollary 3.2. Let S be a perfect star packing of fullerene graph G. If a pentagon P of G has a vertex $x \in C(S)$, then $G - C(S)$ has a non-facial cycle C of G such that the path $P - x$ is a subgraph of C.

Proof. By Proposition 2.1, x is shared by this pentagon P and two hexagons. So all the vertices on the three faces sharing x are covered by S as Type 3 (see Fig. 1(c)). Clearly, the path $P - x$ is a subgraph of a cycle C in $G - C(S)$ and C is a non-facial cycle of G. □

We note that 3-connected graphs have only one embedding up to equivalence [11]. If we embed a fullerene graph G in the plane, then any non-facial cycle C of G as a Jordan curve separates the plane into two regions, denoted by R^*_1 and R^*_2, each of which has the entire C as its frontier. We denote the subgraph of G induced by the vertices lying in the interior of R^*_i by G_i, $i = 1, 2$. Here we note that \(\{V(G_1), V(G_2), V(C)\} \) is a partition of all the vertices of G. We say that C divide the graph G into two sides G_1 and G_2.

Theorem 3.3. Let S be a perfect star packing of fullerene graph G and C be a cycle in $G - C(S)$. Then $C(S)$ does not have a vertex which has three neighbors on C.

Proof. If C is a facial cycle of G, then C is a pentagon or a hexagon. The conclusion clearly holds. Now, let C be a non-facial cycle of G. Then C divides G into two sides, denoted by H_1 and H_2 respectively. We note that all vertices on C are leaves in S since C is a cycle in $G - C(S)$. On the contrary, we suppose that there is a vertex $x \in C(S)$ which has three neighbors on C, denoted by x_1, x_2 and x_3 respectively. Without loss of generality, we suppose that $x \in V(H_1)$ (see Fig. 2(a)). The three vertices separate the circle C into three sections, denoted by C_1, C_2
and C_3 respectively, each of which is a path with x_i and x_{i+1} as two terminal ends, $i = 1, 2, 3$ (if $i = 3$, then $i + 1 := 1$). From Lemma 3.1 we know that at most one of $x_1C_1x_2$, $x_2C_2x_3$ and $x_3C_3x_1$ is a facial cycle of G since C is a cycle in $G - C(S)$. Next, we suppose that $x_1C_1x_2$ and $x_2C_2x_3$ are non-facial cycles of G. Let $C_1 = x_1v_1v_2\cdots v_kx_2$, $C_2 = x_2u_1u_2\cdots u_tx_3$. So $k \geq 5$ and $t \geq 5$ since any non-facial cycle of G has length at least 8. By Remark 2.4.3, C does not have a chord. So $v_1v_k \notin E(G)$ and $u_1u_t \notin E(G)$. This implies that h is a hexagon face of G, and x_1, x, x_2 and v_1, v_k are five vertices on h. We denote the sixth vertex of h by y. Clearly, $y \in V(H_1)$ by the planarity of G (see Fig. 2 (b)). Similarly, both u_1 and u_t have a common neighbor in H_1.

Since S is a perfect star packing of G and the two neighbors x_1 and v_2 of v_1 are leaves in S, y is the center of a star in S. If the third neighbor of y is on C, then it is on C_1, denoted it by v_r. The three neighbors of y separate the circle C into three sections, two of which are subgraphs of C_1, denoted by C_1^1 and C_1^2 respectively. As the above discussion, we know that one of $v_1C_1^1v_y$ and $v_rC_1^2v_y$ is a non-facial cycle of G. By the recursive process and the finiteness of the order of G, we can suppose that the third neighbor of y is not on C, and denoted it by y'.

See Fig. 2 (b), the five vertices $v_{k-1}, v_k, x_2, u_1, u_2$ belong to a common facial cycle h' of G. Since C does not have a chord by Remark 2.4.3, v_{k-1} and u_2 are not adjacent in G. So h' is a hexagon. By the planarity of G, v_{k-1} and u_2 have a common neighbor in H_2. so v_{k-2}, v_{k-1}, v_k, y and y' are on a face of G, say f. If f is a pentagon, then v_{k-2} is adjacent to y'. So all the three neighbors of v_{k-2} are leaves in S. This implies a contradiction since v_{k-2} is also a leaf in S. If f is a hexagon, then v_{k-2} and y' have a common neighbor, denoted by z. Clearly, z is v_{k-3} or not. For $z = v_{k-3}$, the three neighbors of v_{k-3} are all leaves in S, a contradiction. For $z \neq v_{k-3}$, by
Remark 2.4, \(z \) is a leaf in \(S \) since \(y' \) has a neighbor \(y \in C(S) \). So the three neighbors of \(v_{k-2} \) are all leaves in \(S \), a contradiction. All these contradictions imply that \(C(S) \) does not have a vertex which has three neighbors on \(C \).

Let \(S \) be a perfect star packing of fullerene graph \(G \) and \(C \) be a cycle in \(G - C(S) \) which is a non-facial cycle of \(G \). \(C \) divides \(G \) into two sides, denoted by \(H_1 \) and \(H_2 \) respectively. Set \(C^i \) be the set of all the vertices on \(C \) each of which has a neighbor in \(H_i \), \(i = 1, 2 \). Clearly, \(\{ C^1, C^2 \} \) is a partition of \(V(C) \). \(G[C^i] \) is a vertex induced subgraph of \(G \) which has vertex set \(C^i \) and any two vertices of \(C^i \) are adjacent if and only if they are adjacent in \(G \). See Fig. 4, \(G[C^1] \) is depicted as red and \(G[C^2] \) is depicted as blue. In the following, we use these symbols no longer explaining.

Lemma 3.4. For \(i = 1, 2 \), if a vertex \(x \) on \(C \) has a neighbor in \(H_i \), then the component of the induced subgraph \(G[C^i] \) which contains \(x \) is a path with 2 or 3 vertices.

Proof. We suppose that \(x \) on \(C \) has adjacent vertex in \(H_1 \). For the convenience of the following description, set \(C := xv_1v_2 \cdots v_kx \). Since \(C \) is a cycle in \(G - C(S) \) which is a non-facial cycle of \(G \), the length of \(C \) is at least 8. So \(k \geq 7 \). There are three cases for the two neighbors \(v_1 \) and \(v_k \) of \(x \) on \(C \).

Case 1. Both \(v_1 \) and \(v_k \) have neighbors in \(H_2 \).

In this case, the three vertices \(v_1, x \) and \(v_k \) lie on the same face \(f \) of \(G \) (see Fig. 3(a)). Since all the vertices on \(C \) are leaves in \(S \), the other neighbor of \(v_1 \) (resp. \(v_k \)) which is not on \(C \) is the center of a star in \(S \). So \(f \) has two vertices in \(C(S) \) which are the centers of two stars in \(S \) covered \(v_1 \) and \(v_k \), respectively. So \(f \) is a hexagon by Proposition 2.1. But the case cannot hold by Propositions 2.5.

Case 2. Both \(v_1 \) and \(v_k \) have neighbors in \(H_1 \).

In this case, the five vertices \(v_2, v_1, x, v_k, v_{k-1} \) belong to a facial cycle \(h \) of \(G \) (see Fig. 3(b)). We claim that both \(v_2 \) and \(v_{k-1} \) have neighbors in \(H_2 \). Otherwise, at least one of \(v_2 \) and \(v_{k-1} \) has a neighbor in \(H_1 \). If \(v_2 \) has a neighbor in \(H_1 \) and \(v_{k-1} \) has a neighbor in \(H_2 \), then the six vertices \(v_3, v_2, v_1, x, v_k, v_{k-1} \) lie on a face \(h \) of \(G \). So \(h \) is a hexagon and \(C \) has a chord \(v_3v_{k-1} \), a contradiction. For \(v_2 \) having a neighbor in \(H_2 \) and \(v_{k-1} \) having a neighbor in \(H_1 \), we can also obtain a chord of \(C \), a contradiction. If both \(v_2 \) and \(v_{k-1} \) have neighbors in \(H_1 \), then the seven
vertices $v_3, v_2, v_1, x, v_k, v_{k-1}, v_{k-2}$ belong to a common face h of G. This implies that G has a facial cycle of length at least 7, a contradiction. So both v_2 and v_{k-1} have neighbors in H_2, and $v_2, v_1, x, v_k, v_{k-1}$ lie on a hexagon h of G (see Fig. 3(b)). Since C does not have a chord, the path v_1xv_k is a connected component of the induced subgraph $G[C^1]$.

Case 3. v_1 has a neighbor in H_1 and v_k has a neighbor in H_2, or v_1 has a neighbor in H_2 and v_k has a neighbor in H_1.

By the symmetry, it is sufficient to consider that v_1 has a neighbor in H_1 and v_k has a neighbor in H_2. If v_2 has a neighbor in H_1, then v_3 must have a neighbor in H_2, otherwise, C has a chord or G has a facial cycle of length at least seven, a contradiction. As the proof of Case 2, v_3, v_2, v_1, x, v_k lie on a hexagonal facial cycle. So the path v_2v_1x is a connected component of the induced subgraph $G[C^1]$. Now, we suppose that v_2 has a neighbor in H_2. Then the four vertices v_k, x, v_1, v_2 lie on the same face g of G. Since v_k, x, v_1, v_2 are all leaves in S, g is a pentagon and v_2, v_k have a common neighbor in H_2 which is the center of a star in S (see Fig. 3(c)). So the path xv_1 is a connected component of the induced subgraph $G[C^1]$.

In summary, the component of the induced subgraph $G[C^1]$ which contains x is a path with 2 or 3 vertices since C does not have a chord.

In addition, we have the following Lemma.

Lemma 3.5. Each component of $G[C^i]$ is a path with 2 or 3 vertices, $i = 1, 2$.

Proof. For any vertex x on C, x must have exactly one neighbor in H_1 or H_2 since G is 3-regular.
and C does not have a chord. Without loss of generality, we suppose that x has exactly one neighbor in H_1. By Lemma 3.4, the component of the induced subgraph $G[C]$ which contains x is a path with 2 or 3 vertices. We note that the choice of x is arbitrary. So the conclusion holds.

Proposition 3.6. Let $C = v_0v_1 \cdots v_{k-1}$ be a non-facial cycle in $G - C(S)$. (In the following, the subscript is module k).

(i) If both v_i and v_{i+1} have neighbors in H_1 (or H_2) and v_{i-1} and v_{i+2} have neighbors in H_2 (or H_1), then the four vertices v_{i-1}, v_i, v_{i+1} and v_{i+2} lie on a pentagon of G.

(ii) If v_i, v_{i+1}, v_{i+2} have neighbors in H_1 (or H_2) and v_{i-1} and v_{i+3} have neighbors in H_2 (or H_1), then the five vertices $v_{i-1}, v_i, v_{i+1}, v_{i+2}$ and v_{i+3} lie on a hexagon of G.

(iii) For $j = 1, 2$, if both v_i and v_{i+1} have neighbors in H_j (we denote the two edges incident to v_i and v_{i+1} not lie in C by e_i and e_{i+1}, respectively), then the facial cycle containing both e_i and e_{i+1} is a hexagon, and two antipodal points on this hexagon are centers of two stars in the perfect star packing S.

Proof. Cases (i) and (ii) can be easily obtained from the proof of the Cases 2 and 3 of Lemma 3.4 (see Fig. 3). Since all the vertices on C are leaves in the perfect star packing S, the other
end of e_i (resp. e_{i+1}) which is not on C, denoted by u_i (resp. u_{i+1}), is the center of a star in S. We know that any facial cycle of G is a pentagon or a hexagon. So u_i and u_{i+1} are distinct. By Lemmas 2.1 and 2.5, the facial cycle containing both e_i and e_{i+1} is a hexagon, and u_i and u_{i+1} are antipodal points on this hexagon.

For example, in Fig. 4, except for $f_i, i \in \{1, 2, 3, 4, 5\}$ the other faces sharing edges with C are all hexagons. Moreover, how the vertices on C being covered by S is determined.

We recall that the union of two graphs G_1 and G_2 is denoted by $G_1 \cup G_2$, which has vertex set $V(G_1) \cup V(G_2)$ and edge set $E(G_1) \cup E(G_2)$. Let n_3 be the number of the components of $G[C^1] \cup G[C^2]$ each of which is isomorphic to a path with 3 vertices. Similarly, n_2 is the number of the components of $G[C^1] \cup G[C^2]$ each of which is isomorphic to a path with 2 vertices. For example, $n_3 = n_2 = 5$ in Fig. 4 (a) and $n_3 = 10$, $n_2 = 0$ in Fig. 4 (b).

Observation 1. $n_2 + n_3$ is even.

Proposition 3.7. Let S be a perfect star packing of fullerene graph G and C a cycle in $G - C(S)$ which is a non-facial cycle of G. Then the length of C is $3n_3 + 2n_2$, and has the the same parity with n_2 and n_3.

Proof. Clearly, the length of C is $3n_3 + 2n_2$ by Lemma 3.5. So n_3 is odd if and only if the length of C is odd. Since $n_2 + n_3$ is even by Observation 1, the parity of n_2 and n_3 are same. Then we are done.

Theorem 3.8. Let S be a perfect star packing of fullerene graph G. Then $G - C(S)$ has even number of odd cycles.

Proof. If $G - C(S)$ does not have a non-facial cycle of G, then any pentagon of G does not have a vertex in $C(S)$ by Corollary 3.2. So all the vertices on pentagons are leaves in S. It implies that $G - C(S)$ has exactly twelve odd cycles, each of which is a pentagon. Next, we suppose that $G - C(S)$ has a non-facial cycle of G, denoted by C.

Claim 1. If C is an even cycle, then G has even number of pentagons which share edges with C. If C is an odd cycle, then G has odd number of pentagons which share edges with C.

By Proposition 3.6, the number of pentagons which share edges with C is equal to n_2. By Proposition 3.7, n_2 and the length of C have the same parity. So the Claim holds.
Claim 2. Any pentagon of G shares edges with at most one non-facial cycle in $G - C(S)$.

Let P be a pentagon of G. By Proposition 2.1, P has at most one vertex which is the center of a star in S. If P does not have a vertex in $C(S)$, then P is a cycle in $G - C(S)$. By Theorem 2.3, each component of $G - C(S)$ is an induced cycle of G. So P does not share edges with any non-facial cycle in $G - C(S)$. If P has a vertex $x \in C(S)$, then by Corollary 3.2, $P - x$ is a subgraph of a non-facial cycle in $G - C(S)$. So P shares edges with exactly one non-facial cycle in $G - C(S)$.

Now, we consider the following two cases for the non-facial cycles in $G - C(S)$.

Case 1. $G - C(S)$ does not have a non-facial cycle of odd length.

Then any non-facial cycle C in $G - C(S)$ is of even length. By the above Claims, there are even number of pentagons in G such that they share edges with C. Since G has exactly twelve pentagons, there are even number of pentagons in G each of which does not share edges with non-facial cycles in $G - C(S)$. These pentagons must be cycles in $G - C(S)$ by Corollary 3.2. Hence $G - C(S)$ has even number of odd cycles.

Case 2. $G - C(S)$ has some non-facial cycle of odd length.

Suppose that $G - C(S)$ has exactly k non-facial cycles of odd length. We denote the number of pentagons in G each of which does not share edges with non-facial cycles in $G - C(S)$ by p. These p pentagons must be cycles in $G - C(S)$ by Corollary 3.2. So $G - C(S)$ has $p + k$ odd length cycles. Next, we show that p and k have the same parity. If p is odd, then G has odd number of pentagons each of which share edges with exactly one non-facial cycle in $G - C(S)$ since G has exactly 12 pentagons. By the above Claims, for each even length non-facial cycle in $G - C(S)$, G has even number of pentagons which share edges with the cycle, and for each odd length non-facial cycle in $G - C(S)$, G has odd number of pentagons which share edges with the cycle. So $G - C(S)$ has odd number of non-facial cycles of odd length. This means that k is odd. For p being even, we can similarly show that k is even. So k and p have the same parity and $p + k$ is even.

Clearly, for a fullerene graph G with a perfect star packing, its order must be divisible by 4. So the order of G is $8k$ or $8k + 4$ for some positive integer k. Now, we can obtain the following main theorem which illustrate that the order of G can not be $8k + 4$.
Theorem 3.9. If fullerene graph G has a perfect star packing, then the order of G is divisible by 8.

Proof. We suppose that S is a perfect star packing of G and C_o and C_e are the collections of all the odd cycles and even cycles in $G - C(S)$, respectively. Then we have the following equation.

$$|V(G)| = |C(S)| + \sum_{C \in C_o} |C| + \sum_{C \in C_e} |C|$$

$$= \frac{|V(G)|}{4} + \sum_{C \in C_o} |C| + \text{even}. \quad (1)$$

By Theorem 3.8, C_o has even number of elements. Combine the above equation, we know that $\frac{|V(G)|}{4} \times 3$ is even. Hence $\frac{|V(G)|}{4}$ is even, that is, the order of G is divisible by 8.

This theorem is equivalent to the following corollary.

Corollary 3.10. A fullerene graph with order $8n + 4$ does not have a perfect star packing.

We recall that a dominating set of a graph G is a set of vertices D such that each vertex in $V(G) - D$ is adjacent to a vertex in D. Moreover, if each vertex in $V(G) - D$ is adjacent to exactly one vertex in D and D is an independent vertex set, then D is called efficient. The problem of determining the existence of efficient dominating sets in some families of graphs was first investigated by Biggs [4] and Kratochvil [24]. Later Livingston and Stout [26] studied the existence and construction of efficient dominating sets in families of graphs arising from the interconnection networks of parallel computers. The problem of finding an efficient dominating set, however, is algorithmically hard [2]. For more results and some historical background regarding efficient dominating set, we refer the reader to [8, 9, 22, 10] etc.

From the definitions of the efficient dominating set and the perfect star packing of a fullerene graph G, the following proposition is a natural result.

Proposition 3.11. A fullerene graph G with n vertices has a perfect star packing if and only if G has an efficient dominating set of cardinality $\frac{n}{4}$.

Combine Theorem 3.9 and Proposition 3.11 we get the following theorem.

Theorem 3.12. The order of a fullerene graph with an efficient dominating set is $8n$.

13
4 Some other conclusions

Dosić et. al. gave the following spectral necessary condition for the existence of a perfect star packing in a fullerene graph.

Proposition 4.1 ([13]). If a fullerene graph G has a perfect star packing, then -1 must be an eigenvalue of the adjacency matrix of G.

The proof of this Theorem can be translate to a simple r-regular graph. Here for completeness, we prove as follows. For the definition of eigenvalues of the adjacency matrix of a graph, we refer the reader to [17].

Theorem 4.2. If a simple r-regular graph G has a perfect $K_{1,r}$-packing S, then -1 must be an eigenvalue of the adjacency matrix of G.

Proof. Let $C(S)$ be the set of centers of stars $K_{1,r}$ in S. We define the characteristic vector $\vec{c} \in \mathbb{R}^{|V(G)|}$ of $C(S)$ as follows: $c_i = 1$ if $i \in C(S)$, otherwise $c_i = 0$. Set \vec{u} be the vector of all ones. For the adjacency matrix A of G, we have $A\vec{u} = r\vec{u}$ since G is r-regular. Let $\vec{w} = \vec{u} - (r + 1)\vec{c}$. As $A\vec{c} = \vec{u} - \vec{c}$, we have

$$A\vec{w} = A\vec{u} - (r + 1)A\vec{c} = r\vec{u} - (r + 1)\vec{u} + (r + 1)\vec{c} = (r + 1)\vec{c} - \vec{u} = -\vec{w}$$ (2)

This implies that -1 is an eigenvalue of A. \hfill \square

A perfect star packing S of a fullerene graph G is of **type P0** if no center of a star in S is on a pentagon of G. For such perfect star packing, the following corollary holds.

Corollary 4.3. If fullerene graph G has a perfect star packing S of type P0, then $G - C(S)$ does not have a non-facial cycle of odd length.

Proof. By the contrary, we suppose that $G - C(S)$ has a non-facial cycle C of odd length. By the Claim 1 of Theorem 3.8, G has a pentagon P which share edges with C. This implies that P contains the center of a star in S. This contradicts that S is of type P0. So $G - C(S)$ does not have a non-facial cycle of odd length. \hfill \square

In the above Corollary, we note that $G - C(S)$ may have non-facial cycles of even lengths (see Fig. 5, the blue cycle in C_{120}).

Now, we point out the error of the Theorem 14 in [13].
Theorem 4.4 ([13]). A fullerene graph on $8n$ vertices has a perfect star packing of type $P0$ if and only if it arises from some other fullerene via the chamfer transformation.

![Diagram of C_{120}, C_{144}, and C_{384}](image_url)

Fig. 5. Each of $C_{120}, C_{144}, C_{384}$ has a unique perfect star packing of type $P0$ which is depicted in bold edges.

In the proof of the necessity of this Theorem, there exist the following problem. Take a fullerene graph with a perfect star packing of type $P0$. All star centers lie on vertices shared by three hexagons. When we connect the centers of stars lying on the same hexagons, the resulting graph is planar, but does not have to be 3-regular, 3-connected and have only pentagonal and hexagonal faces. For example, it is easy to check that each of the fullerene graphs $C_{120}, C_{144}, C_{384}$ (see Fig. 5) has a unique perfect star packing of type $P0$. When we connect the centers of stars lying on the same hexagons, the resulting graph (the red dashed line in Fig. 5) is the resulting
graph for C_{120}, and here we omit the resulting graphs for C_{144} and C_{384}) is planar and is not connected. In fact, the three fullerene graphs C_{120}, C_{144} and C_{384} as depicted in Fig. 5 cannot arise from some other fullerene via the chamfer transformation. So the necessity of this theorem does not hold, however, its sufficiency is right. It can be corrected as follows.

Theorem 4.5. A fullerene graph that arises from some other fullerene via the chamfer transformation must have a perfect star packing of type P_0.

From paper [13], we know that fullerenes with two pentagons sharing an edge cannot have a perfect star packing of type P_0 since the edge shared by the two pentagons cannot lie in any star. Next we list some other forbidden configurations whose presence in a fullerene graph precludes the existence of a perfect star packing of type P_0.

![Forbidden Configurations](image)

Fig. 6. Three forbidden configurations.

Proposition 4.6. If a fullerene graph G contains a subgraph $PP1$, $PP3$ or $PP4$ (see Fig. 6), then it cannot have a perfect star packing of type P_0.

Proof. By the contrary, we suppose that G has a perfect star packing of type P_0, denoted by S. Clearly, the vertices v_1 and v_2 (see Fig. 6) are leaves in S. If $PP4$ is a subgraph of G, then x_1 is the center of a star in S since all vertices on a pentagon are leaves in S. So x_2 is a leaf in S. By Remark 2.4 2, the neighbor x_3 of x_2 is also a leaf in S. This implies that all the three neighbors of v_2 are leaves in S, a contradiction. For subgraphs $PP1$ and $PP3$, we can similarly show that v_2 has all its three neighbors being leaves in S, a contradiction.

5 Acknowledgments

I would like to sincerely thank Wuyang Sun for his careful reading and valuable comments and suggestions.
References

[1] M.B. Ahmadi, E. Farhadi, V.A. Khorasani, On computing the Clar number of a fullerene using optimization techniques, MATCH Commun. Math. Comput. Chem. 75 (2016) 695–701.

[2] H.J. Alber, M.R. Fellows, R. Niedermeier, Polynomial-time data reduction for dominating set, J. ACM 51 (2004) 363–384.

[3] S.J. Austin, P.W. Fowler, P. Hansen, D.E. Monolopoulos, M. Zheng, Fullerene isomers of C_{60}. Kekulé counts versus stability, Chem. Phys. Lett. 228 (1994) 478–484.

[4] N. Biggs, Perfect codes in graphs, J. Combin. Theory Ser. B 15 (1973) 288–296.

[5] R. Bar-Yehuda, M. Halldorsson, J. Naor, H. Shachnai, I. Shapira, Scheduling split intervals, in Proceedings of Thirteenth Annual ACM-SIAM Symposium On Discrete Algorithms (2002) 732–741.

[6] R. Bejar, B. Krishnamachari, C. Gomes, B. Selman, Distributed constraint satisfaction in a wireless sensor tracking system, in Workshop on Distributed Constraint Reasoning, International Joint Conference on Artificial Intelligence (2001).

[7] J.A. Carr, X. Wang, D. Ye, Packing resonant hexagons in fullerenes, Discrete Optim. 13 (2014) 49–54.

[8] I.J. Dejter, Worst-case efficient dominating sets in digraphs, Discrete Appl. Math. 161 (2003) 944–952.

[9] I.J. Dejter, O. Serra, Efficient dominating sets in cayley graphs, Discrete Appl. Math. 129 (2003) 319–328.

[10] Y. Deng, Y. Sun, Q. Liu, H. Wang, Efficient dominating sets in circulant graphs, Discrete Math. 340 (2017) 1503–1507.

[11] R. Diestel, Graph Theory, Springer-Verlag, Heidelberg, 2005.

[12] T. Došlić, On lower bounds of number of perfect matchings in fullerene graphs, J. Math. Chem. 24 (1998) 359–364.

[13] T. Došlić, M. Taheri-Dehkordi, G.H. Fath-Tabar, Packing stars in fullerenes, J. Math. Chem. 58 (2020) 2223–2244.

[14] A. Felzenbaum, Packing lines in a hypercube, Discrete Math. 117 (1993) 107–112.
[15] P.W. Fowler, D.E. Manolopoulos, An Atlas of Fullerenes, Oxford University Press, Oxford, 1995; Dover Publications, Newyork, 2006 (a revised and corrected version).

[16] Y. Gao, Q. Li, H. Zhang, Fullerenes with the maximum Clar number, Discrete Appl. Math. 202 (2016) 58–69.

[17] C. Godsil, G. Royle, Algebraic graph theory, Springer, 2001.

[18] B. Grünbaum, T. Motzkin, The number of hexagons and the simplicity of geodesics on certain polyhedra, Canad. J. Math. 15 (1963) 744–751.

[19] I. Gutman, J.W. Kennedy, L.V. Quintas, Perfect matchings in random hexagonal chain graphs, J. Math. Chem. 6 (1991) 377–383.

[20] E.J. Hartung, Fullerenes with complete Clar structure, Discrete Appl. Math. 161 (2013) 2952–2957.

[21] P. Hell, D. Kirkpatrick, On the complexity of a generalized matching problem, in Proceedings of Tenth ACM Symposium On Theory of Computing (1978) 309–31.

[22] J. Huang, J.M. Xu, The bondage numbers and efficient dominations of vertex-transitive graphs, Discrete Math. 308 (2008) 571–582.

[23] D.J. Klein, X. Liu, Theorems for carbon cages, J. Math. Chem. 11 (1992) 199–205.

[24] J. Kratochvil, Perfect codes of graphs, J. Combin. Theory Ser. B 40 (1986) 224–228.

[25] H. Li, H. Zhang, The isolated-pentagon rule and nice substructures in fullerenes, ARS Math. CONTEM. 15 (2018) 487–497.

[26] M. Livingston, Q.F. Stout, Perfect dominating sets, Congr. Numer. 79 (1990) 187–203.

[27] A.A. Mutairi, B. Ali, P. Manuel, Packing in carbon nanotubes, J. Comb. Math. Comb. Comput. 92 (2015) 195–206.

[28] A. Muthumalai, I. Rajasingh, A.S. Shanthi, Packing of hexagonal networks, J. Comb. Math. Comb. Comput. 79 (2011) 121–127.

[29] I. Rajasingh, A. Muthumalai, R. Bharati, A.S. Shanthi, Packing in honeycomb networks, J. Math. Chem. 50 (2012) 1200–1209.

[30] H.M.A. Siddiqui, M. Imran, Computation of metric dimension and partition dimension of nanotubes, J. Comput. Theor. Nanosci. 12 (2015) 199–203.

[31] Q. Yang, H. Zhang, Y. Lin, On the anti-forcing number of fullerene graphs, MATCH Commun. Math. Comput. Chem. 74 (2015) 681–700.
[32] H. Zhang, D. Ye, An upper bound for the Clar number of fullerene graphs, J. Math. Chem. 41 (2007) 123–133.

[33] H. Zhang, F. Zhang, New lower bounds on the number of perfect matchings of fullerene graphs, J. Math. Chem. 30 (2001) 343–347.