C++ Programme for total dominator chromatic number of ladder graphs through simple transformations

J. Virgin Alangara Sheeba1 and A. Vijayalekshmi2,*

Abstract
A total dominator coloring of a graph $G = (V, E)$ without isolated vertices, along with each vertex in G, is a proper coloring that dominates a color class. The total chromatic dominator number of G is the minimum number of color classes with further assumption that each vertex in G dominates a color class properly and is represented as $\chi_{td}(G)$. In this manuscript, we consider the chromatic total dominator number of ladder graphs through fundamental transformations via the program C++.

Keywords
Coloring, Total dominator coloring, Total dominator chromatic number.

AMS Subject Classification
05C69, 68W25.

1Research Scholar [Reg. No:11813], Department of Mathematics, S.T. Hindu College, Nagercoil-629002, Tamil Nadu, India.
2Department of Mathematics, S.T. Hindu College, Nagercoil-629002, Tamil Nadu, India.
1,2Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012, Tamil Nadu, India.

*Corresponding author: vijimath.a@gmail.com

Article History: Received 14 March 2020; Accepted 02 June 2020

Contents
1 Introduction .. 1480
2 Preliminaries .. 1481
3 Main Result .. 1481
4 Conclusion .. 1486
References ... 1487

1. Introduction

We mainly find ladder graphs in this manuscript. For additional information in graph theory and its applications, we suggest the reader to refer F. Harrary [4]. Allow $G = (V, E)$ to be a graph without isolated vertices. For any two graphs G and H, we characterize the cartesian product, signified by $G \times H$, to be the graph with vertex set $V(G) \times V(H)$ and edges between two vertices (u_1, v_1) and (u_2, v_2) iff either $u_1 = u_2$ and $v_1, v_2 \in E(H)$ or $u_1, u_2 \in E(G)$ and $v_1 = v_2$.

In general, for $n \geq 2$, we characterize a ladder graph as $P_2 \times P_n$ and is signified by L_n and $|V(L_n)| = p = 2n, n \geq 2$.

A proper coloring of G is an assignment of colors to the vertices of G, in a way that adjacent vertices have different colors. The smallest number of colors for which G is properly colored is considered a chromatic number of G, and $\chi(G)$ is denoted. A total dominator coloring (td-coloring) of G is a proper coloring of G with additional axioms that is properly dominated color class by every vertex in G. Let $\chi_{td}(G)$ be the total dominator chromatic number and is defined by the minimum number of colors needed in a total dominator coloring of G. This principle was developed in [1] by Vijayalekshmi. This thought is often pointed to as a $G, (k \geq 1)$Smarandachely k-dominator color and was presented in [2] by Vijayalekshmi. A Smarandachely k-dominator coloring of G for an integer $k \geq 1$ is a proper coloring of G, so that each vertex in G graph properly dominates a color class of k. The smallest number of colors for which there exists a Smarandachely k-dominator coloring of G is called the Smarandachely k-dominator chromatic number of G and is denoted by $\chi_{td}^{k}(G)$.

Let C be a minimum td-coloring of G. We say a color class is considered a non-dominated color class ($n - d$ color class) if no vertex of G dominates it and these color classes are often considered repeated color classes.

We recommend the author to pertain to [3, 5, 6] for further information on this theory and its applications.
2. Preliminaries

In this segment, we remember the critical [3] theorem which is quite helpful in our research. For the subsequent observation the minimum dominator chromatic number of ladder graphs has been identified.

For every \(n \geq 2 \), the total dominator chromatic number of a ladder graph is

\[
\chi_{td}(C_n) = \begin{cases}
2 \lfloor \frac{n}{6} \rfloor + 2, & \text{if } n \equiv 0 \pmod{6} \\
2 \lfloor \frac{n-2}{6} \rfloor + 4, & \text{otherwise.}
\end{cases}
\]

In this manuscript we obtain a C++ program which uses fundamental transformations to find the \(td \)-chromatic number of ladder graphs.

3. Main Result

In this section, We have to find the total dominator chromatic number of ladder graphs using C++ programme. The C++ programme is successfully compiled and run on C++ platform. The runtime test is included.

Programme as follows

```cpp
#include "stdafx.h"
#include <Windows.h>
#include <conio.h>
#include <iostream>
using namespace std;

int main() {
    int inpt;
    cout << "Enter the Value of Ln" << endl;
    cin >> inpt;
    int N = inpt + inpt; int M = inpt + inpt;
    int** ary = new int*[N];
    int** mat = new int*[N];
    int** mat1 = new int*[N];
    int** mat2 = new int*[N];
    int** mat3 = new int*[N];
    int** matsum = new int*[N];
    for (int i = 0; i < N; ++i) {
        ary[i] = new int[M];
        mat[i] = new int[M];
        mat1[i] = new int[M];
        mat2[i] = new int[M];
        mat3[i] = new int[M];
        matsum[i] = new int[M];
    }
    int k, l, sum;
    HANDLE p = GetStdHandle(STD_OUTPUT_HANDLE);
    SetConsoleTextAttribute(p, FOREGROUND_INTENSITY | FOREGROUND_INTENSITY);
    for (int i = 0; i < N; ++i) {
        ary[i][i] = 1;
    }
    cout << "The Adjacency Matrix for L" << inpt << "n" << "n";
    for (int i = 0; i < N; i++) {
        if (i % 2 == 0) {
            for (int j = 0; j < N; j++) {
                if (ary[j][i] == i + 1 | ary[j][i] == i - 1 | ary[j][i] == i + 3) {
                    mat[i][j] = 1;
                }
            }
        }
    }
    cout << "n" << "n" << "n";
    return 0;
}
```

else
{
 mat[i][j] = 0;
cout << mat[i][j] << " ";
}
}

else
{
 for (int j = 0; j < N; j++)
 {
 if (ary[j][i] == i + 1 | ary[j][i] == i - 1 | ary[j][i] == i - 3)
 {
 mat[i][j] = 1;
cout << mat[i][j] << " ";
 }
 else
 {
 mat[i][j] = 0;
cout << mat[i][j] << " ";
 }
 }
 cout << "\n";
}

cout << "\n" << "ADJACENCY MATRIX BY SUBSTRATING THE ROW ASSENDING VALUES" << "\n";
for (int i = 0; i < N; i++)
{
 int sum = 0;
 for (int j = 0; j < N; j++)
 {
 if (i >= 2 && i <= 5 && mat[i][j] == 1 && mat1[i - 2][j] == 1)
 {
 mat1[i][j] = mat[i][j] - mat[i - 2][j];
 }
 else if (i >= 6 && mat[i][j] == 1 && mat1[i - 2][j] == 1 && matsum[i - 4][0] != 1)
 {
 mat1[i][j] = mat[i][j] - mat[i][j];
 }
 else if (i >= 4 && mat[i][j] == 1 && mat1[i - 2][j] == 0 && matsum[i - 4][0] == 1)
 {
 mat1[i][j] = mat[i][j] - mat1[i - 4][j];
 }
 else
 {
 mat1[i][j] = mat[i][j];
 }
 sum = sum + mat1[i][j];
 }
 matsum[i][0] = sum;
}
for (int i = 0; i < N; i++)
{
 for (int j = 0; j < N; j++)
 {
 if (mat1[i][j] == 1)
```cpp
{ SetConsoleTextAttribute(p, FOREGROUND_RED | FOREGROUND_INTENSITY);
cout << mat1[i][j] << " ";
} else
{
SetConsoleTextAttribute(p, FOREGROUND_INTENSITY | FOREGROUND_INTENSITY);
cout << mat1[i][j] << " ";
}
cout << "\n";
} SetConsoleTextAttribute(p, FOREGROUND_INTENSITY | FOREGROUND_INTENSITY);
cout << "\n" << "\n" << "ADJACENCY MATRIX BY SUBTRACTING THE COLUMN VALUES";
if (N%3 == 0)
{
N = N - 1;
for (int i = N; i >= 0; i--)
{
for (int j = N; j >= 0; j--)
{
if (i >= 4 && mat1[i][j] == 1 && mat1[i - 4][j] == 1)
{
mat1[i - 4][j] = mat1[i][j] - mat1[i - 4][j];
}
else if (i >= 2 && mat1[i][j] == 1 && mat1[i - 2][j] == 1)
{
mat1[i - 2][j] = mat1[i][j] - mat1[i - 2][j];
}
}
N = N + 1;
cout << "\n";
} 
else
{
for (int i = 0; i < N; i++)
{
for (int j = 0; j < N; j++)
{
if (mat1[i][j] == 1 && mat1[i][j+2] == 1)
{
mat1[i][j+2] = mat1[i][j+2] - mat1[i][j];
}
else if (mat1[i][j] == 1 && mat1[i][j + 4] == 1)
{
mat1[i][j + 4] = mat1[i][j + 4] - mat1[i][j];
}
else
{
mat1[i][j] = mat1[i][j];
}
}
cout << "\n";
}
```

for (int i = 0; i < N; i++)
{
for (int j = 0; j < N; j++)
{
if (mat1[i][j] == 1)
{
SetConsoleTextAttribute(p, FOREGROUND_RED | FOREGROUND_INTENSITY);
cout << mat1[i][j] << " ";
}
else
{
SetConsoleTextAttribute(p, FOREGROUND_INTENSITY | FOREGROUND_INTENSITY);
cout << mat1[i][j] << " ";
}
}
cout << "\n";
}
SetConsoleTextAttribute(p, FOREGROUND_INTENSITY | FOREGROUND_INTENSITY);
cout << "\n";
int ary2[] = { 0,1,4,5,2,3 }, aaa = 0;
for (int i = 0; i < N; i++)
{
for (int j = 0; j < N; j++)
{
if (ary2[aaa] > N-1)
{
ary2[aaa] = ary2[aaa]-2;
mat3[i][j] = mat1[ary2[aaa]][j];
}
mat3[i][j] = mat1[ary2[aaa]][j];
}
if (aaa < 5)
{
ary2[aaa] = ary2[aaa] + 6;
aaa = aaa + 1;
}
else if (aaa = 5)
{
ary2[aaa] = ary2[aaa] + 6;
aaa = 0;
}
}
cout << "FINAL SUB MATRIXES AFTER SUBTRACTING THE COLUMN FROM BOTTOM TO TOP " << "\n";
k = 0;
for (int i = 0; i < N; i++)
{
for (int j = 0; j < N; j++)
{
if (j % 2 == 0 && i % 2 == 0 && mat1[i][j] == 0 && mat1[i][j + 1] == 1 ||
mat1[i][j] == 1)
{
SetConsoleTextAttribute(p, FOREGROUND_RED | FOREGROUND_INTENSITY);
cout << mat1[i][j] << " ";
}
else if (j % 2 != 0 && i % 2 != 0 && mat1[i][j] == 0 && mat1[i][j - 1] == 1)


```cpp
{
    SetConsoleTextAttribute(p, FOREGROUND_RED | FOREGROUND_INTENSITY);
    k = k + 1;
    cout << mat1[i][j] << " ";
} else {
    SetConsoleTextAttribute(p, FOREGROUND_INTENSITY | FOREGROUND_INTENSITY);
    cout << mat1[i][j] << " ";
}
}
cout << "\n";
SetConsoleTextAttribute(p, FOREGROUND_INTENSITY | FOREGROUND_INTENSITY);
cout << "\n" << "FINAL SUB MATRIXES AFTER INTERCHANGING THE COLUMN" << "\n";
for (int i = 0; i < N; i++) {
    for (int j = 0; j < N; j++) {
        if (i % 2 == 0 && mat3[i][j] == 0 && mat3[i][j + 1] == 1 || mat3[i][j] == 1) {
            SetConsoleTextAttribute(p, FOREGROUND_RED | FOREGROUND_INTENSITY);
            cout << mat3[i][j] << " ";
        } else if (i % 2 != 0 && mat3[i][j] == 0 && mat3[i][j - 1] == 1) {
            SetConsoleTextAttribute(p, FOREGROUND_RED | FOREGROUND_INTENSITY);
            cout << mat3[i][j] << " ";
        } else {
            SetConsoleTextAttribute(p, FOREGROUND_INTENSITY | FOREGROUND_INTENSITY);
            cout << mat3[i][j] << " ";
        }
    }
    cout << "\n";
}
cout << "\n";
if (inpt % 3 == 0) {
    cout << "\n" << "TOTAL DOMINATOR CHROMATIC NUMBER IS " << (2 * (k / 3)) + 2 
    << "\n";
} else {
    cout << "\n" << "TOTAL DOMINATOR CHROMATIC NUMBER IS " << (2 * (k - 1) / 3) + 4 
    << "\n";
}
system("Pause");
return 0;
for (int i = 0; i < N; ++i) {
    delete[] ary[i], ary, mat1[i], mat1, mat[i], mat, matsum[i], matsum, mat2[i], mat2, 
    mat3[i], mat3;
}
```

return 0;
}

4. Conclusion
Within this manuscript, we treat the total dominator chro-
C++ Programme for total dominator chromatic number of ladder graphs through simple transformations — 1487/1487

matic number of ladder graphs in a simplified and enhanced fashion utilizing elementary transformations by C++ programme.

References

[1] A. Vijayalekshmi, Total dominator colorings in paths, *International Journal of Mathematical Combinatorics*, 2(2012), 89–95.
[2] A. Vijayalekshmi, Total dominator colorings in cycles, *International Journal of Mathematical Combinatorics*, 4(2012), 92–96.
[3] A. Vijayalekshmi and J.Virgin Alangara Sheeba, Total dominator chromatic number of Paths, Cycles and Ladder graphs, *International Journal of Contemporary Mathematical Sciences*, 13(5)(2018), 199–204.
[4] F. Harrary, *Graph Theory*, Addition-Wesley, Reading Mass, 1969.
[5] M.I. Jinnah and A. Vijayalekshmi, *Total Dominator Colorings in Graphs*, Ph.D Thesis, University of Kerala, 2010.
[6] Terasa W. Haynes, Stephen T. Hedetniemi, Peter J. Slater, *Domination in Graphs*, Marcel Dekker, New York, 1998.

ISSN(P):2319 – 3786
Malaya Journal of Matematik
ISSN(O):2321 – 5666
