Compassionate use experience with high-titer respiratory syncytial virus (RSV) immunoglobulin in RSV-infected immunocompromised persons

Ann R. Falsey1 | Christine Koval2 | John P. DeVincenzo3 | Edward E. Walsh1

1University of Rochester School of Medicine and Rochester General Hospital, Rochester, NY, USA
2Cleveland Clinic, Cleveland, OH, USA
3Department of Pediatrics and Microbiology, Immunology and Biochemistry, University of Tennessee Center for Health Sciences, Children’s Foundation Research Institute at LeBonheur Children’s Hospital, Memphis, TN, USA

Correspondence
Ann R. Falsey, MD, Infectious Disease Unit, Rochester General Hospital, Rochester, NY, USA.
Email: ann.falsey@rochesterregional.org

Abstract

Background: Respiratory syncytial virus (RSV) may cause fatal lower respiratory tract infection (LRTI) in immunocompromised patients. Ribavirin with or without standard intravenous immunoglobulin (IVIG) is frequently given although efficacy is debated. Infusion of IVIG with high levels of neutralizing antibody against RSV may offer benefit in these patients.

Methods: RI-001 contains standardized levels of high-titer anti-RSV neutralizing antibody and was provided for compassionate use to 15 patients with RSV LRTI who either failed conventional therapy or had significant risk of progression. Patients were treated on day 1 with RI-001 1500 mg/kg, followed 2 days later with 750 mg/kg. Pre- and post-infusion sera were measured for RSV neutralizing antibody. Patient data were analyzed for safety related to infusion of RI-001, and clinical outcomes.

Results: Patients ranged in age from 2 months to 71 years and 80% had hematologic malignancy or were bone marrow or hematopoietic stem cell transplant recipients. Administration was well tolerated. Pre-infusion neutralizing titers ranged from 51 to 1765 geometric mean titer (mean 646±519) and all patients demonstrated at least a 4-fold rise (mean 6410±4470) 5-10 days post infusion. Eleven of 15 improved and were discharged from the hospital. Days from positive RSV test to RI-001 treatment was shorter in survivors compared to non-survivors (4.4±2.8 vs. 20.3±21.0 days, P=.02).

Conclusion: Administration of RI-001 was well tolerated and resulted in significant increases in serum neutralizing antibody titers to RSV. Our data suggest that early identification of RSV and treatment with RI-001 may offer benefit.

KEYWORDS
immunoglobulin, pneumonia, respiratory syncytial virus, RI-001, transplant

1 INTRODUCTION

Respiratory syncytial virus (RSV) is the most common cause of serious respiratory infection in infants and young children, leading to >100 000 hospitalizations and 300 deaths each year in the United States.1 Reinfection is common throughout life and generally results in mild disease in healthy young adults. However, severe RSV disease may occur in the elderly and in adults with chronic cardiopulmonary disease or compromised immune function.2-3 Recipients of lung transplant or hematopoietic stem cell transplant (HSCT) are at particularly high risk of severe RSV infection.4 Mortality rates in HSCT patients who develop RSV lower respiratory tract disease (LRTI) range from...
20% to 40% and may be as high as 100% in those with respiratory failure.5–9 Optimal therapy for immunocompromised patients with RSV infection has not been defined and data on treatment are limited. Inhaled ribavirin (Virazole®) is US Food and Drug Administration (FDA) approved only for use in RSV-infected hospitalized infants and young children. This drug has been used off-label in oral, intravenous, and inhaled formulations in immunocompromised patients with RSV, despite questionable efficacy.10,11 A second option for treatment of RSV infection is immunoglobulin, generally combined with ribavirin.8,12,13 Presently, two immunoglobulin products are available, including the monoclonal antibody palivizumab (Synagis®, MedImmune, Gaithersburg, MD, USA), approved for prophylaxis in high-risk infants, and pooled human intravenous immunoglobulin (IVIG). Because palivizumab is dosed based on weight and is costly, IVIG is generally used in adults when an immunoglobulin product is used.14 RespiGam® was an IVIG product containing high titers of neutralizing antibody to RSV with demonstrated efficacy for prevention of serious lower respiratory tract infection caused by RSV infection in high-risk infants. However, RespiGam® was voluntarily discontinued in 2003 by Medimmune with the introduction of palivizumab and is no longer an option for seriously ill immunocompromised adults with RSV infection.

RI-001 (ADMA Biologics, Inc, Ramsey, NJ, USA) is an IVIG prepared from plasma donors selected to have high-titer neutralizing anti-RSV antibody, similar to RespiGam®. We report its use under investigator-requested emergency investigational new drug applications on a compassionate use basis in patients with lower respiratory tract RSV disease who failed conventional therapy or were at high risk for progression of RSV infection. Data on the treatment and clinical course of these patients were collected and analyzed for safety related to the infusion of RI-001 and clinical outcomes.

2 | METHODS

2.1 | Patients

Data were collected from patients who received compassionate use RI-001 at 6 centers in the United States, 3 centers in Australia, and 1 center in New Zealand from December 2008 to February 2011. Hospitalized patients with documented RSV, who were either unresponsive to standard of care therapy including some combination of ribavirin, corticosteroids, palivizumab, or standard IVIG or who were at high risk for mortality because of their RSV infection, were eligible for compassionate use of RI-001. Patients were identified by their treating physicians after being diagnosed with RSV by reverse-transcription polymerase chain reaction (RT-PCR), direct fluorescent antibody test, indirect fluorescent antibody test, or viral culture from respiratory secretions.

The sponsor evaluated potential study participants after receiving unsolicited compassionate use requests for the use of RI-001. Treatment with the investigational drug, RI-001, was provided on an emergency use basis for compassionate use. ADMA policy required US sites to document that the FDA single patient Emergency Investigational New Drug (EIND) form (Form FDA 3926) was submitted to the agency and that an approval was granted.

Clinical information provided for each patient included the following: RSV diagnosis including date of sample collection and type of sample, test type used to diagnose RSV (e.g., rapid antigen, PCR, or other), and date of result, and patient's use of oxygen, ribavirin, palivizumab, IVIG, and steroids. Sites were instructed to provide a brief summary of each patient's medical history, respiratory signs and symptoms, other relevant symptoms or conditions that contributed to the need for RI-001, and a summary of the patient's response to the administration of RI-001. In addition to the clinical information, serum samples from the patient were requested prior to infusion and at 1, 3, 8, and 18 days post infusion for measurement of serum RSV neutralizing antibody titers.

2.2 | Study product

RI-001 is polyclonal human immunoglobulin G (IgG) made from pools of source plasma from up to 3000 screened healthy US adult donors with high neutralizing anti-RSV titers. The immunoglobulin pool contains standardized high levels of RSV neutralizing antibodies, consisting of various immunoglobulins specificities representative of the diversity of human antibodies made against the virus. All plasma used in the production of RI-001 was collected in International Quality Plasma Program-certified and FDA-licensed facilities, under Good Manufacturing Practices guidelines and in accordance with the Code of Federal Regulations. Trace amounts of immunoglobulin A and immunoglobulin M are contained in RI-001. The formulation is in 0.150 M sodium chloride, 0.30 M glycine, and 0.20% polysorbate 80, at pH 4.0–4.6. The product, which does not contain preservatives, was supplied in single-dose vials.

2.3 | Product infusion

Patients were treated on day 1 with RI-001 1500 mg/kg, followed 2 days later with 750 mg/kg on day 3. RI-001 drug concentration was 100 mg/mL. Infusion rate was gradually increased from 0.3 mL/kg/hour to 2.0 mL/kg/hour (maximum 150 mL/hour) at 15 minute intervals over a 2-hour period. If an infusion reaction occurred, sites were instructed to slow or stop the infusion until symptoms resolved and to re-start the infusion at a lower rate, slowly increasing the rate as tolerated by the patient. Pre-medication per institutional guidelines was permitted.

2.4 | Microneutralization antibody assay

Serum neutralizing antibody titers were performed by use of an established microneutralization method for RSV A strain.15 In brief, serum dilutions were incubated with 75 pfu of RSV A2 strain (group A virus) for 30 minutes at room temperature, followed by the addition of 1.5×10^4 HEP-2 cells in 96-well culture plates. After 3 days, the quantity of RSV antigen was determined by enzyme immunoassorbent assay
using monoclonal antibody to the RSV F protein. The neutralization titer was defined as the serum dilution that results in a 50% reduction in color development.

2.5 | Statistical analysis
Means between groups were compared by Student’s t-test; proportions were compared by Fisher’s exact test.

3 | RESULTS

3.1 | Population
A total of 15 patients ranging in age from 2 months to 71 years of age received compassionate use RI-001 (Table 1). Sixty percent were male and 53% were <18 years of age. Patients with a variety of underlying medical conditions received RI-001 including the following: recipients of bone marrow transplants or HSCT (9), hematologic malignancy (3), severe combined immunodeficiency (1), liver transplant (1), and interstitial lung disease (1). Four HSCT recipients were pre-engraftment and 3 had chronic graft-versus-host disease at the time their RSV infection was identified.

3.2 | RSV illness
Diagnosis of RSV was most often made by detecting RSV in upper airway secretions by antigen detection or PCR, but RSV was also detected in the sputum of 3 patients and in bronchoalveolar lavage fluid from one individual. All but one patient was thought to have pneumonia or LRTI caused by RSV. The single patient with a clear chest radiograph was a 16-month-old child with hemophagocytic lymphohistiocytosis diagnosed with persistent RSV infection relapsing over several months, and who was treated for a RSV relapse prior to HSCT. A variety of radiographic changes were reported with bilateral or diffuse involvement with ground-glass or interstitial infiltrates being most common. Co-infections during RSV infection were frequent (7/15), although only 2 subjects had concomitant infection with other respiratory viral pathogens (1 human metapneumovirus/rhinovirus and 1 influenza A).

3.3 | Treatment of RSV infection
All patients received ribavirin prior to or concomitant with RI-001 treatment. Seven were treated with inhaled, 4 with intravenous, 1 with oral, and 3 with a combination of oral and inhaled ribavirin. Eight patients received prior antibody treatments; 6 received standard IVIG and 4 children received palivizumab (2 with IVIG); 1 patient received IVIG after RI-001. Six patients received RI-001 as part of their initial treatment for RSV (within 4 days of diagnosis) and 9 were considered to be failing treatment because of persistent or worsening symptoms after ≥5 days of ribavirin±IVIG or palivizumab treatment. Other concomitant treatments included: bronchodilators (33%), corticosteroids (80%), and antibiotics or antifungals (93%).

3.4 | RI-001 treatment
All patients received a minimum 2 doses of RI-001 of whom 13 (87%) were dosed per the sponsor’s instructions, receiving 1500 mg/kg of RI-001 as an IV infusion, followed 2 days later by 750 mg/kg. Two patients did not receive product according to the sponsor’s instructions: One patient received the second dose of RI-001 on day 4 and one patient received 4 doses of RI-001 at 1500 mg/kg on days 1, 3, 5, and 7. Three patients were judged to have infusion-related adverse events. One subject had back pain and elevated blood pressure with the first dose, but tolerated the second dose without incident. Two patients had infusion-related symptoms that resolved after slowing the infusion, and the second doses were well tolerated with pre-medication.

No serious adverse events related to study product were noted.

3.5 | Antibody measurements
Fourteen patients had pre-treatment and at least one post-infusion serum sample available for measurement of serum neutralizing antibody against RSV (Table 2). The pre-infusion titers ranged from 51 to 1765 geometric mean titer (GMT), with a mean of 646±519. Notably, 2 of 5 patients who received standard IVIG had serum neutralizing titers of <330 before receiving RI-001. All patients demonstrated at least a 4-fold rise post infusion, with all but one patient having persistently higher RSV antibody than baseline 18-33 days after infusion. The increases between mean GMT titers from baseline compared to days 1, 3, and 5-10 post infusion were all significantly higher (5625±3109, 6176±4061, 6410±4470, respectively, all P<.0001).

3.6 | Illness outcomes
Of the 15 patients treated, 7 required intensive care treatment, 6 assisted ventilation (2 non-invasive and 4 mechanical ventilation) during their RSV infection (Table 3). All patients who required mechanical ventilation died, and 3 of the 4 had respiratory failure before receipt of RI-001. Eleven of 15 (73%) patients had improvement of their respiratory infection and survived the hospitalization. Of these, one had refractory leukemia and was discharged to home with comfort care. Four patients (2 children and 2 adults) died of progressive respiratory failure during the hospitalization. No apparent differences in survival were observed between patients with underlying malignant diseases (9 patients, 2 deaths) and those with non-malignant diseases (6 patients, 2 deaths). In addition, no differences in survival were observed in patients who had undergone bone marrow or HSCT vs those who had not. Survival was 0/4 (0%) for patients with respiratory failure compared to 11/11 (100%), P<.001 in those without respiratory failure.

Time from onset of respiratory symptoms and time from RSV diagnosis to initiation of RI-001 treatment were evaluated (Table 4). Patients who had significant underlying illness, such as congestive heart failure, that complicated interpretation of dyspnea, or had chronic relapsing RSV, were evaluated in two ways: time from onset of any respiratory symptom and time from new respiratory symptoms
Summary data	Age <18 years	Male gender No. (%)	BMT or HSCT No. (%)	Abnormalities on CXR No (%)	Low SaO2 Mean (SD)	PCR+ No (%)	Clinical diagnosis of pneumonia No (%)	Other therapies No (%)	Co-Infection No (%)
8 (53)	9 (60)	9 (60)			13/14 (93)	90 (6)	6 (40)	12 (80)	15 (100)

Detailed subject characteristics

Subject number	Age (years)	Gender	Underlying diseases	CXR/CT Scan results	Low SaO2	Method RSV Diagnosis	RSV clinical diagnosis	Other RSV therapy during Illness	Co-Infection
1	59	M	Hepatitis C, Liver transplant ×2, ESRD on dialysis, CHF	Diffuse nodular ground-glass infiltrates, right mid lung consolidation	92	NPS Antigen	Pneumonia	Inhaled ribavirin	None
2	66	F	Reinduction chemotherapy, Relapsed AML	Diffuse interstitial infiltrates	93	Sputum viral culture	Pneumonia	Inhaled ribavirin IVIG	None
3	44	M	CLL	Diffuse tree-in-bud	93	Sputum PCR	Bronchiolitis/ Pneumonia	Inhaled ribavirin	None
4	2	F	ALL, post BMT 10 months prior, GVHD	Bilateral atelectasis and consolidation	88	NPA IFA	Pneumonia	IV ribavirin IVIG	Clostridium difficile
5	8	F	AML HSCT pre engraftment	Left-sided diffuse alveolar opacities	85	NPS RSV	Pneumonia	IV ribavirin	Clostridium difficile
6	46	M	AML HSCT 2 years prior Chronic GVHD	Bronchiectasis Ground-glass infiltrates	93	NPA RSV	LRTI	Oral ribavirin IVIG	None
7	9	M	ALL cord blood HSCT pre engraftment	NA	94	BAL and NPA RSV	LRTI	IV ribavirin IVIG	Blood culture
8	47	M	ALL, HSCT 11 months prior, GVHD	Diffuse patchy opacities CT - ground glass	92	Sputum & NPS rapid antigen	Pneumonia	Inhaled & oral ribavirin	None
9	1.5	M	HLH Persistent RSV HSCT pre engraftment	Clear	100	NPA RSV	Persistent RSV	IV ribavirin Palivizumab	None
10	0.75	M	Osteopetrosis RSV prior to HSCT	Bilateral opacities, Interstitial markings	79	NPS, wash PCR & culture	Pneumonia	Inhaled & oral ribavirin Palivizumab	HMPV, HRV, CONS, lactobacillus
11	0.17	M	SCID	RUL infiltrate	89	NPS PCR	Pneumonia	Inhaled ribavirin Palivizumab	CONS
12	20	F	APLM prior BMT HSCT pre engraftment	Diffuse ground-glass small nodules	pO2-55	NPS PCR	Pneumonia	Inhaled ribavirin IVIG	None
13	1	F	ALL, seizures, history of pulmonary Aspergillus	Bilateral patchy infiltrate	NA	Nasal wash IFA & PCR	Pneumonia	Inhaled ribavirin Palivizumab	None
14	71	F	Interstitial lung disease	Diffuse interstitial alveolar infiltrate	81	NPS PCR	Pneumonia	Inhaled ribavirin	Influenza A
15	15	M	Aplastic anemia PNH HSCT	Bilateral lower lobe infiltrates	93	Nasal wash RSV	Pneumonia	Oral & inhaled ribavirin	Clostridium difficile

BMT, bone marrow transplant; HSCT, hematopoietic stem cell transplant; CXR, chest radiograph; SaO2, percutaneous oxygen saturation; SD, standard deviation; PCR, polymerase chain reaction; CT, computed tomography; RSV, respiratory syncytial virus; ESRD, end-stage renal disease; CHF, congestive heart failure; NPS, nasopharyngeal swab; AML, acute myelogenous leukemia; IV, intravenous; IVIG, intravenous immunoglobulin; CLL, chronic lymphocytic leukemia; ALL, acute lymphocytic leukemia; GVHD, graft-versus-host disease; NPA, nasopharyngeal aspirate; IFA, immunofluorescent assay; LRTI, lower respiratory tract infection; BAL, bronchoalveolar lavage; CONS, coagulase-negative staphylococcus; HMPV, human metapneumovirus; HRV, human rhinovirus; SCID, severe combined immunodeficiency; NA, not available/applicable; RUL, right upper lobe; HLH, hemophagocytic lymphohistiocytosis; APML, acute promyelocytic leukemia; PNH, paroxysmal nocturnal hemoglobinuria.
TABLE 2

Subject	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15		
Mean (SD)	IVIG Paliviz Pre-infusion immunoglobulin therapy	Day 1 pre-infusion RI-001	1158	882	662	1765	5025 (3109)	362	1448	5194	322	5361	7723	5148	3861	7723	3861
	Paliviz	Day 1 post-infusion RI-001	926	NA	NA	290	297	290	7038	2647	6176	6176	6176	6176	6176	6176	6176
	Paliviz	Day 3 post-infusion RI-001	2896	5792	2574	11584	1241	1241	4945	3088	3088	3088	3088	3088			
	Paliviz	Day 5-10	NA	12352	622	1765	646 (519)	646 (519)	646 (519)	646 (519)							
	Paliviz	Day 18-20	NA	221	882	28233	6176	6176	6176	6176							
	Paliviz	Day 21-28	NA	1287	2574	1655	1544	1544									
	Paliviz	NA	NA	NA	926	926	926	926	926	926	926	926	926	926	926	926	
	Paliviz	NA	NA	NA	12352	622	1765	646 (519)	646 (519)	646 (519)	646 (519)	646 (519)	646 (519)	646 (519)	646 (519)	646 (519)	

SD, standard deviation; IVIG, intravenous immunoglobulin; Paliviz, palivizumab; RI-001, investigational IVIG with high-titer neutralizing anti-respiratory syncytial virus antibody; NA, not available.

Lack of definitive randomized controlled trials. Small case series, the body was a risk factor for severe RSV infection.15,19 High serum antibody levels may lead to greater transudation of IgG from serum to the lower airways, thereby ameliorating disease or preventing progression to the lower airways. Although treatments of immunocompetent children with monoclonal antibodies (palivizumab and motavizumab) have not demonstrated clinical advantage, it is possible that immunodeficient patients might derive benefit.20 Supporting this concept, immunosuppressed cotton rats treated with RI-002 (the second derivative of RI-001) were protected from RSV infection in the lower airways and resultant pulmonary inflammation.21 In addition to an antiviral effect, immunoglobulins are known to have anti-inflammatory effects that may be beneficial when used in combination with antiviral agents.22

Despite the theoretical benefit, the use of immunoglobulin products to treat RSV infection in immunosuppressed patients remains controversial, in part because standard IVIG or palivizumab was used in combination with ribavirin at the discretion of the treating physician.9 In a review of 407 HSCT patients, treatment with aerosolized relating to RSV infection. Time from RSV diagnosis and from onset of new respiratory symptoms to treatment with RI-001 was significantly shorter among survivors compared to non-survivors.

4 | DISCUSSION

RSV remains a cause of significant morbidity and mortality in patients with immune deficiencies and, although mortality rates from RSV LRTI have dropped from 50%–100% in initial reports to 20%–40% in more recent reviews, better therapies are clearly still needed.24 Lower mortality rates likely reflect more sensitive diagnostics, better supportive care, and earlier more aggressive treatment. Yet the benefit of specific antiviral treatment remains difficult to define. Optimal treatment of RSV infection in this population is controversial primarily owing to the lack of definitive randomized controlled trials. Small case series, heterogeneous populations, and lack of standardized treatment regimens make interpretation of the literature challenging. However, several retrospective studies and a recent pooled analysis suggest that ribavirin in any form is associated with decreased progression of upper respiratory tract infection (URTI) to LRTI (45% down to 16%) and decreased mortality (70% down to 13%).8,9 Although observational data suggest benefit of early treatment with ribavirin, multiple issues remain, including high cost ($29,953/day) toxicity, and administration difficulties with the inhaled preparation and of IV ribavirin.21 New and more potent antiviral agents are currently in clinical development, but are not currently available.17,18

Immunotherapy is an option for adjunctive therapy with antiviral agents for the treatment of RSV infection in immunosuppressed persons. Although antibody is traditionally considered most important for prevention rather than treatment of established infection, immunotherapy, if given early in the course of illness, may offer benefit in this select population. All adults have measurable antibody to RSV and although a precise correlate of immunity does not yet exist, two earlier studies of older adults found that low serum-neutralizing antibody was a risk factor for severe RSV infection.15,19 High serum antibody levels may lead to greater transudation of IgG from serum to the lower airways, thereby ameliorating disease or preventing progression to the lower airways. Although treatments of immunocompetent children with monoclonal antibodies (palivizumab and motavizumab) have not demonstrated clinical advantage, it is possible that immunodeficient patients might derive benefit.20 Supporting this concept, immunosuppressed cotton rats treated with RI-002 (the second derivative of RI-001) were protected from RSV infection in the lower airways and resultant pulmonary inflammation.21 In addition to an antiviral effect, immunoglobulins are known to have anti-inflammatory effects that may be beneficial when used in combination with antiviral agents.22

Despite the theoretical benefit, the use of immunoglobulin products to treat RSV infection in immunosuppressed patients remains controversial, in part because standard IVIG or palivizumab was used in combination with ribavirin at the discretion of the treating physician.9 In a review of 407 HSCT patients, treatment with aerosolized
ribavirin plus either IVIG, palivizumab, or high-titer RSV immunoglobulin (RespiGam®), Shah⁹ and Chemaly⁸,¹⁰ noted a trend toward decreased progression from URTI to LRTI in those who received dual treatment compared to those treated with ribavirin alone (12% vs 25%, P=.13). Notably, the RSV-specific mortality rate in patients with LRTI was significantly lower in the combination therapy group (24% vs 50%, P<.001). Prior to RespiGam® being discontinued, two reports described its use in immunosuppressed patients.¹² Two adult patients and 11 children undergoing bone marrow transplant were treated with inhaled ribavirin and RespiGam® and all but one child survived. The mortality rate of 8% in this small case series was seen as favorable when compared to historical data citing mortality rates of 20%-24% with ribavirin alone.¹²

The importance of achieving a specific level of RSV antibody in transplant patients is unknown. In one study of HSCT patients, serum neutralizing antibody levels were not significantly different in those who progressed from URTI to LRTI compared to non-progressors.⁶ In contrast, in a study of 56 RSV-infected HSCT recipients, of whom 71%
developed LRTI and 35% of those with LRTI died, investigators found that hypogammaglobulinemia (<6 g/L of IgG) was an independent risk factor for prolonged viral shedding and death.23

Many factors likely contribute to the difficulty of demonstrating consistent benefit of immunotherapy including heterogeneous populations, time from onset of infection to treatment, underlying diseases, and treatment regimens. In addition, commercial IVIG contains variable concentrations of RSV antibody and lacks standardization from batch to batch.24 For patients treated with palivizumab, resistant escape mutants caused by selective pressure are of potential concern. Such mutants have been produced in vitro and have been found in 5%-9% of children with RSV breakthrough episodes while receiving palivizumab prophylaxis.25,26 Although not a significant clinical problem in immunocompetent children, resistant viruses might be more likely to develop because of prolonged shedding and higher levels of virus in immunosuppressed children. Polyclonal RSV antibody preparations such as RI-001, which has standardized concentrations of RSV antibody and meets the FDA guidance for treatment of patients with immune deficiency, could address both these issues.27

Our experience with 15 patients who received RI-001 as compassionate use indicates the product is safe and well tolerated with minimal side effects. RI-001 produced at least a 4-fold rise in RSV neutralizing titers in all patients, and in some had 24- to 76-fold increases. These results highlight the advantage of using RI-001 over standard IVIG in achieving high serum neutralizing titers in patients.

Caution is necessary in drawing conclusions regarding efficacy of RI-001 in the absence of a randomized study. While the mortality rate of 27% in our cohort is similar to the 22%-24% mortality rates in similar patients using ribavirin alone or with IVIG, it is important to note that 9 patients in our cohort were judged to be failing conventional therapy with ribavirin±IVIG or palivizumab when RI-001 was requested. Five of these patients subsequently improved and cleared their RSV infection. Although 4 patients died, 3 required mechanical ventilation prior to receiving the drug, which is known to be associated with death rates nearing 100%. The significant difference in time from diagnosis to treatment with RI-001 among survivors suggests that treatment should be administered early for the greatest benefit.

Despite the lack of randomized clinical trials and uncertainty regarding benefit, the European Conference on Infections in Leukemia (ECIL-4) recommends the treatment of RSV-infected H SCT patients with URTI who have risk factors for progression to be treated with ribavirin and IVIG.28 The British Committee for Standards in Hematology echoes this recommendation, as well as recommending treatment of RSV LRTI with both ribavirin and IVIG.29 Thus, a high RSV neutralizing antibody immunoglobulin preparation such as RI-001 or its subsequent derivatives may offer advantages over standard IVIG in the treatment of RSV-infected immunocompromised patients.

TABLE 4 Timing of RI-001 treatment

Time to treatment with RI-001	Survived (N=11)	Died (N=4)	P-value
Days from initial respiratory symptoms	19.5 (15.8)	34.5 (20.5)	.15
Days from new respiratory symptoms	10.7 (5.4)	34.5 (20.5)	.003
Days from diagnosis of RSV	4.4 (2.8)	20.3 (21.0)	.02

RI-001, investigational IVIG with high-titer neutralizing anti-respiratory syncytial virus (RSV) antibody.

REFERENCES

1. Shay DK, Holman RC, Roosevelt GE, Clarke MJ, Anderson LJ. Bronchiolitis-associated mortality and estimates of respiratory syncytial virus-associated deaths among US children, 1979-1997. J Infect Dis. 2001;183:16–22.
2. Falsey AR, Hennessey PA, Formica MA, Cox C, Walsh EE. Respiratory syncytial virus infection in elderly and high-risk adults. N Engl J Med. 2005;352:1749–1759.
3. Englund JA, Sullivan CJ, Jordan MC, Dehner LP, Vercellotti GM, Balfour HH. Respiratory syncytial virus infection in immunocompromised adults. Ann Intern Med. 1988;109:203–208.
4. Schiffer JT, Kirby K, Sandmaier B, Storb R, Corey L, Boeckh M. Timing and severity of community acquired respiratory virus infections after myeloablative versus non-myeloablative hematopoietic stem cell transplantation. Haematologica. 2009;94:1101–1108.
5. Whimbey E, Champlin RE, Couch RB, et al. Community respiratory virus infections among hospitalized adult bone marrow transplant recipients. Clin Infect Dis. 1996;22:778–782.
6. Kim YJ, Guthrie KA, Wagmhare A, et al. Respiratory syncytial virus in hematopoietic cell transplant recipients: Factors determining progression to lower respiratory tract disease. J Infect Dis. 2014;209:1195–1204.
7. Ghosh S, Champlin RE, Englund J, et al. Respiratory syncytial virus upper respiratory tract illnesses in adult blood and marrow transplant recipients: Combination therapy with aerosolized ribavirin and intravenous immunoglobulin. Bone Marrow Transplant. 2000;25:751–755.
8. Chemaly RF, Shah DP, Boeckh MJ. Management of respiratory viral infections in hematopoietic cell transplant recipients and patients with hematologic malignancies. Clin Infect Dis. 2014;59(Suppl 5):S344–S351.
9. Shah DP, Gharojo S, Shah JN, et al. Impact of aerosolized ribavirin on mortality in 280 allogeneic hematopoietic stem cell transplant recipients with respiratory syncytial virus infections. J Antimicrob Chemother. 2013;68:1872–1880.
10. Chemaly RF, Torres HA, Munsell MF, et al. An adaptive randomized trial of an intermittent dosing schedule of aerosolized ribavirin in patients with cancer and respiratory syncytial virus infection. J Infect Dis. 2012;206:1367–1371.
11. Waghmare A, Enblad JA, Boeckh M. How I treat respiratory viral infections in the setting of intensive chemotherapy or hematopoietic cell transplantation. Blood. 2016;127:2682–2692.

12. DeVincenzo JP, Hirsch RL, Fuentes RJ, Top FH Jr. Respiratory syncytial virus immune globulin treatment of lower respiratory tract infection in pediatric patients undergoing bone marrow transplantation – A compassionate use experience. Bone Marrow Transplant. 2000;25:161–265.

13. Boeckh M, Berrey MM, Bowden RA, Crawford SW, Balsley J, Corey L. Phase 1 evaluation of the respiratory syncytial virus-specific monoclonal antibody palivizumab in recipients of hematopoietic stem cell transplants. J Infect Dis. 2001;184:350–354.

14. Beaird OE, Freifeld A, Ison MG, et al. Current practices for treatment of respiratory syncytial virus and other non-influenza respiratory viruses in high-risk patient populations: A survey of institutions in the Midwestern Respiratory Virus Collaborative. Transpl Infect Dis. 2016;18:210–215.

15. Walsh EE, Falsey AR. Humoral and mucosal immunity from natural respiratory syncytial virus infection in adults. J Infect Dis. 2004;190:373–378.

16. Khanna N, Widmer AF, Decker M, et al. Respiratory syncytial virus infection in patients with hematological diseases: Single-center study and review of the literature. Clin Infect Dis. 2008;46:402–412.

17. DeVincenzo JP, McClure MW, Symons JA, et al. Activity of oral ALS-008176 in a respiratory syncytial virus challenge study. N Engl J Med. 2015;373:2048–2058.

18. DeVincenzo JP, Whitley RJ, Mackman RL, et al. Oral GS-5806 activity in a respiratory syncytial virus challenge study. N Engl J Med. 2014;371:711–722.

19. Luchsinger V, Piedra PA, Ruiz M, et al. Role of neutralizing antibodies in adults with community-acquired pneumonia by respiratory syncytial virus. Clin Infect Dis. 2012;54:905–912.

20. Ramilo O, Lagos R, Saez-Llorens X, et al. Motavizumab treatment of infants hospitalized with respiratory syncytial virus infection does not decrease viral load or severity of illness. Pediatr Infect Dis J. 2014;33:703–709.

21. Boukhvalova M, Blanco JC, Falsey AR, Mond J. Treatment with novel RSV Ig RI-002 controls viral replication and reduces pulmonary damage in immunocompromised Sigmodon hispidus. Bone Marrow Transplant. 2016;51:119–126.

22. Aschermann S, Lux A, Baerenwaldt A, Bilburger M, Nimmerjahn F. The other side of immunoglobulin G: Suppressor of inflammation. Clin Exp Immunol. 2010;160:161–167.

23. Lehners N, Schnitzer P, Geis S, et al. Risk factors and containment of respiratory syncytial virus outbreak in a hematology and transplant unit. Bone Marrow Transplant. 2013;48:1548–1553.

24. Orange JS, Du W, Falsey AR. Therapeutic immunoglobulin selected for high antibody titer to RSV also contains high antibody titers to other respiratory viruses. Front Immunol. 2015;28:431.

25. Zhao X, Sullender WM. In vivo selection of respiratory syncytial viruses resistant to palivizumab. J Virol. 2005;79:3962–3968.

26. Zhu Q, McAuliffe JM, Patel NK, et al. Analysis of respiratory syncytial virus preclinical and clinical variants resistant to neutralization by monoclonal antibodies palivizumab and/or motavizumab. J Infect Dis. 2011;203:674–682.

27. Wasserman RL, Lumry W, Harris J 3rd, et al. Efficacy, safety and pharmacokinetics of a new 10% liquid intravenous immunoglobulin containing high titer neutralizing antibody to rsv and other respiratory pathogens in subjects with primary immunodeficiency disease. J Clin Immunol. 2016;36:590–599.

28. Hirsch HH, Martino R, Ward KN, Boeckh M, Einsele H, Ljungman P. Fourth European Conference on Infections in Leukaemia (ECIL-4): Guidelines for diagnosis and treatment of human respiratory syncytial virus, parainfluenza virus, metapneumovirus, rhinovirus, and coronavirus. Clin Infect Dis. 2013;56:258–266.

29. Dignan FL, Clark A, Atikten C, et al. BCSH/BSBMT/UK clinical virology network guideline: Diagnosis and management of common respiratory viral infections in patients undergoing treatment for haematological malignancies or stem cell transplantation. Br J Haematol. 2016;173:380–393.

How to cite this article: Falsey AR, Koval C, DeVincenzo JP, Walsh EE. Compassionate use experience with high-titer respiratory syncytial virus (RSV) immunoglobulin in RSV-infected immunocompromised persons. Transpl Infect Dis. 2017;19:e12657. https://doi.org/10.1111/tid.12657