Boundaries of Siegel disks: Numerical studies of their dynamics and regularity
Rafael de la Llave and Nikola P. Petrov

Citation: Chaos 18, 033135 (2008); doi: 10.1063/1.2985856
View online: http://dx.doi.org/10.1063/1.2985856
View Table of Contents: http://scitation.aip.org/content/aip/journal/chaos/18/3?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Analytical properties of horizontal visibility graphs in the Feigenbaum scenario
Chaos 22, 013109 (2012); 10.1063/1.3676686

Nonlinear dynamics in combinatorial games: Renormalizing Chomp
Chaos 17, 023117 (2007); 10.1063/1.2725717

The transient dynamics leading to spin turbulence in high-field solution magnetic resonance: A numerical study
J. Chem. Phys. 124, 154501 (2006); 10.1063/1.2181568

Dynamic characterization of hysteresis elements in mechanical systems. I. Theoretical analysis
Chaos 15, 013105 (2005); 10.1063/1.1844991

Self-similarity and renormalization in chaotic dynamics
Chaos 7, 1 (1997); 10.1063/1.166235
Boundaries of Siegel disks: Numerical studies of their dynamics and regularity

Rafael de la Llave1,a and Nikola P. Petrov2,b
1Department of Mathematics, University of Texas, Austin, Texas 78712, USA
2Department of Mathematics, University of Oklahoma, Norman, Oklahoma 73019, USA
(Received 16 May 2008; accepted 23 August 2008; published online 29 September 2008)

Siegel disks are domains around fixed points of holomorphic maps in which the maps are locally linearizable (i.e., become a rotation under an appropriate change of coordinates which is analytic in a neighborhood of the origin). The dynamical behavior of the iterates of the map on the boundary of the Siegel disk exhibits strong scaling properties which have been intensively studied in the physical and mathematical literature. In the cases we study, the boundary of the Siegel disk is a Jordan curve containing a critical point of the map (we consider critical maps of different orders), and there exists a natural parametrization which transforms the dynamics on the boundary into a rotation. We compute numerically this parameterization and use methods of harmonic analysis to compute the global Hölder regularity of the parametrization for different maps and rotation numbers. We obtain that the regularity of the boundaries and the scaling exponents are universal numbers in the sense of renormalization theory (i.e., they do not depend on the map when the map ranges in an open set), and only depend on the order of the critical point of the map in the boundary of the Siegel disk and the tail of the continued function expansion of the rotation number. We also discuss some possible relations between the regularity of the parametrization of the boundaries and the corresponding scaling exponents. © 2008 American Institute of Physics.

[DOI: 10.1063/1.2985856]

I. INTRODUCTION

Siegel disks, the domains around fixed points of holomorphic maps in which the map is locally linearizable (defined in more detail in Sec. II), are among the main objects of interest in the dynamics of holomorphic maps. Their boundaries have surprising geometric properties which have attracted the attention of both mathematicians and physicists. Notably, it was discovered in Refs. 1 and 2 that in some cases there were scaling relations for the orbit, which suggested that the boundary was a fractal object. Since then this phenomenon has been a subject of extensive numerical and mathematical studies.3–12

In this paper, we report some direct numerical calculations of the Hölder regularity of these boundaries for different rotation numbers of bounded type and for different maps.

The main conclusion of the numerical calculations in this paper is that, for the cases we consider, the boundaries of the Siegel disks are Cκ curves for some κ > 0, and we can compute numerically the value of κ. Even if we, obviously, consider only a finite number of cases, we expect that the results are significative for the Siegel disks of polynomials with rotation numbers which have an eventually periodic continued fraction.

The values of the Hölder regularity κ are, up to the error of our computation, universal in the sense of renormalization group analysis; namely, that they are independent of the map in a small neighborhood in the space of maps. We also performed computations for maps whose rotation numbers have the same “tail” of their continued fraction expansion, and found that our numerical results depend only on the tail.

Our computation of the Hölder regularity is based on the method introduced in Ref. 13, which is a numerical implementation of several constructions in Littlewood–Paley theory. This method was also used in Refs. 14–17.
For the case of the golden mean rotation number, the fact that the boundaries of Siegel disks are Hölder was proved in Ref. 5 assuming the existence of the fixed point of the renormalization operator conjectured in Ref. 2. The existence of a fixed point of a slightly different (and presumably equivalent) renormalization operator was proved in Ref. 4; an important theoretical work on universality and renormalization was Ref. 7. It seems that a similar argument will work for other rotation numbers with periodic continued fraction expansion provided that one has a fixed point of the appropriate renormalization operator. These arguments provide bounds to the Hölder regularity α, based on properties of the fixed point of the renormalization operator.

Our computations rely on several rigorous mathematical results in complex dynamics. Notably, we will use that for bounded type rotation numbers and polynomial maps, the boundary of the Siegel disk is a Jordan curve, and contains a bounded type rotation numbers and polynomial maps, the results in complex dynamics. Notably, we will use that for integer

$$\frac{\sigma}{h'}(0) = 1,$$

and in the final Sec. VI we recapitulate our results.

II. SIEGEL DISKS AND THEIR BOUNDARIES
A. Some results from complex dynamics

In this section we summarize some facts from complex dynamics, referring the reader to Refs. 27 and 28 for more details.

We consider holomorphic maps of \mathbb{C} that have a fixed point, and study their behavior around this point. Without loss of generality, we can assume that the fixed point is the origin, so that the maps have the form

$$f(z) = az + O(z^2).$$

(For numerical purposes, we may find more efficient to use another normalization.) We are interested in the case that $|a| = 1$, i.e., $a = e^{2\pi i \sigma}$, where $\sigma \in [0, 1)$ is called the rotation number of f. In our case, we take f to be a polynomial, so that the domain of definition of the map f is not an issue.

The stability properties of the fixed point depend crucially on the arithmetic properties of σ. The celebrated Siegel's theorem guarantees that, if σ satisfies some arithmetic properties (Diophantine conditions), then there is a unique analytic mapping h (called "conjugacy") from an open disk of radius r (called the Siegel radius) around the origin $B(0, r)$ to \mathbb{C} in such a way that $h(0) = 0$, $h'(0) = 1$, and

$$f(h(z)) = h(az).$$

The image of h is called the Siegel disk. An intrinsic characterization for it is that it is the largest set U that is open, connected, containing the fixed point, and such that f^n is equibounded in U. The maximum principle implies that U is simply connected. Then, h in Eq. (2) can be characterized as the Riemann mapping from the disk to U (see Ref. 32).

We note that the Siegel radius is a geometric property of the Siegel disk. It is shown in Ref. 32 that h can be characterized as the conformal mapping from $B(0, r_s)$ to the Siegel disk mapping 0 to 0 and having derivative 1 at 0. Later in Sec. IV A, we will show how the Siegel radius can be computed effectively in the cases we consider.

We refer to Refs. 33 and 34 for some mathematical developments on improving the arithmetic conditions of the Siegel theorem. In this paper we only consider rotation numbers that satisfy the strongest possible Diophantine properties. Namely, we assume that σ is of bounded type and, in particular, perform our computations for numbers with eventually periodic continued fraction expansions (see Sec. II C for definitions). In this case, there is an elementary proof of Siegel’s theorem.

Let r_s stand for the radius of the largest disk for which the map h exists. The image under h of the open disk $B(0, r_s)$ is called the Siegel disk D of the map f. For $r < r_s$, the image of each circle $\{w \in \mathbb{C} : |w| = r\}$ under h is an analytic circle. The boundary ∂D of the Siegel disk, however, is not a smooth curve for the cases considered here.

Reference 1 contains numerical observations that suggest that the dynamics of the map f on ∂D satisfies some scaling properties. These scaling properties were explained in certain cases by renormalization group analysis. These scaling properties suggest that the boundaries of Siegel disks can be very interesting fractal objects.

Clearly, the Siegel disk cannot contain critical points of the map f. It was conjectured in Ref. 1 that the boundary of the Siegel disk contains a critical point. The existence of critical points on the boundary depends on the arithmetic properties of σ and it may be false, but it is true under the condition that the rotation number is of bounded type, which is the case we consider in this paper (see also Ref. 37).

In Fig. 1 we show the Siegel disks of the map

$$f(z) = e^{2\pi i \sigma}z + z^2$$

(3)

for different rotation numbers σ (for the notations for σ see Sec. II C). In all cases the only critical point, $c = -\frac{1}{2}e^{2\pi i \sigma}$, is simple: $f'(c) = 0$, $f''(c) = 2 \neq 0$.

In this paper we study maps of the form

$$f_{m, \alpha, \beta}(z) = \frac{1}{\beta} e^{2\pi i \sigma} [g_m(z) + (1 - \beta) g_m(z)],$$

(4)
where \(m \in \mathbb{N} \), \(\beta \) is a complex parameter, and the function \(g_m : \mathbb{C} \rightarrow \mathbb{C} \) is defined as

\[
g_m(z) = \frac{1}{m+1} \left[1 - (1-z)^{m+1} \right].
\]

Let \(f \) be a map of the form (1), and \(c \) be its critical point that belongs to the boundary of the Siegel disk of this map (we will only consider cases where \(\partial D \) contains one critical point). Let \(d \) be the multiplicity of the critical point \(c \), i.e., \(f^d(c) = 0 \). We will call \(d \) the order of the critical point.

Noticing that, for the map \(f = e^{2\pi i \sigma} \), we see that

\[
f^{m+1}(c) = e^{2\pi i \sigma}(1 - z)^m + \frac{1}{\beta}.
\]

we see that \(f^{m+1}(0) = 0 \), and, more importantly, if \(\beta \neq 1 \), the point \(\beta = 1 \) is a zero of \(f^{m+1} \) of multiplicity \(m+1 \), while for \(\beta = 1 \), the point \(\beta = 0 \) is a zero of \(f^{m+1} \). As long as the critical point \(\beta = 0 \) is outside the closure of the Siegel disk, the scaling properties of the iterates on \(\partial D \) in the case of Diophantine \(\sigma \) are determined by the order \(d \) of the critical point \(c \) itself. Below, by “critical point” we will mean the critical point that belongs to \(\partial D \).

For the functions of the form (4) with \(|\beta| \) large enough, this point will be \(c = 1 \). One of the goals of this paper is to study how the regularity and the scaling properties depend only on the order of the critical point and the asymptotic properties of the continued fraction expansion of the rotation number, but not on the details of the map.

In Fig. 2 we show about \(16 \times 10^5 \) iterates of the critical point \(c = 1 \) of the maps \(f_{d,2^\alpha,1+3i} \) for order \(d = 1, 5 \), and 20, of the critical point \(c = 1 \) (the other critical point, \(\beta = 1 + 3i \), is not in the closure of the Siegel disks, so it is irrelevant for the problem studied). Note that, especially for highly critical maps, the iterates approach the critical point very slowly because the modulus of the scaling exponent becomes close to 1 (see Table II).

B. Parametrization of the boundary of a Siegel disk

In the cases considered here, the boundaries of Siegel disks cannot be written in polar coordinates as \(r = R(\theta) \) (because some rays \(\theta = const \). intersect \(\partial D \) more than once). In this section we explain how to parametrize \(\partial D \), and define the functions whose regularity we study numerically. Once we know that a critical point \(c \) is in the boundary of the Siegel disk \(D \) (which in the cases we consider is guaranteed by the results of Ref. 18), it is easy to obtain a parametrization of the boundary which semiconjugates the map \(f \) to a rotation.

It is known from the mathematical theory that \(h \), which is univalent in the open disk \(B(0,r_S) \), can be extended to the boundary of \(B(0,r_S) \) as a continuous function thanks to the Osgood–Taylor–Carathéodory Theorem (see, e.g., Ref. 38, Sec. 16.3 or Ref. 39, Sec. IX.4).

A dynamically natural parametrization \(\chi \) of \(\partial D \) is obtained by setting

\[
\chi(t) = h(r_S e^{2\pi i(t+\theta)}),
\]

where \(\theta \) is a constant to be chosen later. From Eq. (2), it follows that

\[
f(\chi(t)) = \chi(t + \sigma).
\]

Since we know that in our cases the critical point \(c \) is in \(\partial D \), \(|h^{-1}(c)| = r_S \), and we can choose \(\theta \) so that

\[
\chi(0) = h(r_S e^{2\pi i(\theta)}),
\]

In summary, the function \(\chi : T \rightarrow \mathbb{C} \) defined by Eqs. (5) and (7) is a parametrization of \(\partial D \) such that the dynamics of the map \(f \) on \(\partial D \) is a rotation by \(\sigma \) on the circle \(T \), and \(\chi(0) \) is the critical point.

Iterating \(n \) times Eq. (6) for \(t = 0 \), and using Eq. (7), we obtain

\[
\chi(n\sigma) = f^n(c).
\]

Since the rotation number \(\sigma \) of \(f \) is irrational, the numbers \(n\sigma \) (taken mod 1) are dense on the circle \(T \), and the iterates \(f^n(c) \) of the critical point \(c \) are dense on \(\partial D \) as well. Hence, using Eq. (8), we can compute a large number of values of \(\chi \) by simply iterating \(f \).
Our main objects of interest are the real (Re χ) and imaginary (Im χ) parts of the function χ. In Fig. 3 we have shown the graphs of the real and imaginary parts of the map χ for two different rotation numbers.

C. Continued fraction expansions and rational approximations

In this section, we collect some of the notation on continued fraction expansions.

Let $A=(a_1,a_2,\ldots,a_n)$ be a finite sequence of n natural numbers $a_i \in \mathbb{N}$; for brevity, we will usually omit the commas and write $A=(a_1a_2\ldots a_n)$. Let $B=(b_1b_2\ldots b_q)$ be another sequence of natural numbers $b_j \in \mathbb{N}$, $j=1,2,\ldots,q$. $AB := (a_1a_2\ldots a_1b_1b_2\ldots b_q)$ stand for the concatenation of A and B, and A^n stand for $AA\cdots A$ (n times). Let $|A|=p$ denote the length of A.

For $a \in \mathbb{N}$ define the function $F_a : (0,1) \to (0,1)$ by $F_a(x) := 1/(a+x)$. Similarly, for $A=(a_1a_2\ldots a_n)$, define the function $F_A : (0,1) \to (0,1)$ as the composition $F_A(x) := F_{a_1} \circ F_{a_2} \circ \cdots \circ F_{a_n}(x)$.

Let B stand for the number whose continued fraction expansion (CFE) is given by the numbers in the sequence B: $B = (b_1b_2\ldots b_q) := \cfrac{1}{b_1 + \cfrac{1}{b_2 + \cfrac{1}{\ddots + \cfrac{1}{b_q}}}}$.

The numbers b_i are called the (partial) quotients of B. A number $\sigma = (a_1a_2\ldots)$ is of bounded type if all numbers a_i ($i \in \mathbb{N}$) are bounded above by some constant M.

We are especially interested in studying numbers with CFEs of the form $\langle AB^\infty \rangle := \lim_{n \to \infty} (AB^n)$, which are called eventually periodic (or preperiodic). Since each number of this type is a root of a quadratic equation with integer coefficients (see Ref. 40, Theorem 176), such numbers are also called quadratic irrationals. We will call A the head and B^∞ the tail, B the period, and $|B|$ the length of the period of the CFE.

If two quadratic irrationals have the same tail, they are said to be equivalent. One can prove that σ and ρ are equivalent if and only if $\sigma = (\mu + \nu)/(\mu + \rho)$, where the integers ν, λ, μ, and ν satisfy $\nu - \lambda \mu = \pm 1$ (Ref. 40, Theorem 175).

D. Scaling exponents

Let f be a map of the form (1) with an eventually periodic rotation number $\sigma = (AB^\infty)$ with length of its period $q = |B|$, and let c be the critical point of f on ∂D (and there are no other critical points on ∂D). Let $\frac{P_m}{Q_m} = (AB^m)$,

\begin{equation}
\frac{P_m}{Q_m} = (AB^m),
\end{equation}

where P_m and Q_m are natural numbers that have no common factors. Define the scaling exponent

\begin{equation}
\alpha := \lim_{m \to \infty} \frac{f^{Q_m+1}(c) - c}{f^{Q_m}(c) - c}.
\end{equation}

This exponent is a complex number that depends on the tail B of the CFE of σ and on the order of the critical point c, but does not depend on the head A or on details about the map f.

If the length $|B|$ of the tail B of the CFE of the rotation number of the map is more than 1, then B is determined only up to a cyclic permutation, and the argument of the complex number α is different for different choices. That is why we give our data only for $|A|$.

III. HÖLDER REGULARITY AND SCALING PROPERTIES OF THE BOUNDARIES OF SIEGEL DISKS—NUMERICAL METHODS AND RESULTS

A. Some results from harmonic analysis

Let $\kappa = n + \kappa'$, where $n \in \{0,1,2,\ldots\}$, and $\kappa' \in (0,1)$. We say that a function $\phi : T \to \mathbb{R}$ has (global) Hölder regularity κ and write $\phi \in C^\kappa(T)$ if $\kappa = n + \kappa'$ is the largest number for which $\phi^{(n)}$ exists and for some constant $C > 0$ satisfies $|\phi^{(n)}(t) - \phi^{(n)}(s)| \leq C|t - s|^{\kappa'} \quad \forall t,s \in T$.

We call attention to the fact that we do not allow κ to be an integer since otherwise the definition of Hölder so that the characterizations we discuss later must be modified. In our problem, κ turns out to be noninteger, so that the characterizations we discuss apply.

In the mathematical literature, there are many characterizations of the Hölder regularity of functions. Some surveys that we have found useful are Refs. 41 and 42.

In Ref. 13 we developed implementations of several criteria for determining Hölder regularity numerically based on harmonic analysis, and assessed the reliability of these criteria. In this paper, we only use one of them; namely, the method that we call the continuous Littlewood-Paley (CLP) method, which has been used in Refs. 14–17. The CLP method is based on the following theorem:

Theorem 1: A function $\phi \in C^\kappa(T)$ ($\kappa > 0$) if and only if...
for some $\eta \geq 0$ there exists a constant $C > 0$ such that for all $\tau > 0$
\[
\left\| \left(\frac{\partial}{\partial \tau} \right)^n e^{-2\pi i k \cdot -\Delta \tau} \phi \right\|_{L^\infty(T)} \leq C \tau^{-\eta},
\]
(11)
where Δ stands for the Laplacian: $\Delta \phi(t) = \phi'(t)$.

Note that one of the consequences of Theorem 1 is that if the bounds [Eq. (11)] hold for some $\eta \geq 0$, they hold for any other $\eta \geq 0$. Even if from the mathematical point of view, all non-negative values of η would give the same result, it is convenient from the numerical point of view to use several to assess the reliability of the method.

B. Algorithms used

The algorithm we use is based on the fact that $(\partial / \partial t)^n e^{-2\pi i k \cdot -\Delta \tau}$ is a diagonal operator when acting on a Fourier representation of the function: if
\[
\phi(t) = \sum_{k \in \mathbb{N}} \phi_k e^{-2\pi i k t},
\]
then
\[
\left(\frac{\partial}{\partial \tau} \right)^n e^{-2\pi i k \cdot -\Delta \tau} \phi(t) = \sum_{k \in \mathbb{N}} (-2\pi |k|^\eta) e^{-2\pi i k |t|} \phi_k e^{-2\pi i k t}.
\]

The Fourier transform of the function ϕ can be computed efficiently if we are given the values of ϕ_k on a dyadic grid, after which the fast Fourier transform would give the same result, it is convenient from the numerical point of view to use several to assess the reliability of the method.

Hence, the algorithm to compute the regularity is the following.

1. Locate the critical point c (such that $f'(c) = 0$).
2. Use Eq. (8) to obtain the values of the function χ at the points $\{n\sigma \}_n$ for some large N.
3. Interpolate Re χ and Im χ to find their approximate values on the dyadic grid $\{2^{-M}m \}_{m=0}^{2^{M}-1}$.
4. For a fixed value of η, compute the value of the left-hand side of Eq. (11) for several values of τ by using FFT for $\phi = \text{Re} \, \chi$ and separately for $\phi = \text{Im} \, \chi$; do this for several values of η.
5. Fit the decay predicted by Eq. (11) to find the regularity κ.

Let us estimate the cost in time and storage of the algorithm above keeping 2^M values of the function. Of course, locating the critical point c is trivial. Iteration and interpolation require $O(2^M)$ operations. Then, each of the calculations of Eq. (11) requires two FFT, which is $O(2^M \ln(2^M)) = O(M 2^M)$. In the computers we used (with about 1 GB of memory) the limiting factor was the storage, but keeping several million iterates of f and computing $2^{23} \approx 8 \times 10^6$ Fourier coefficients of $\text{Re} \, \chi$ and $\text{Im} \, \chi$ was quite feasible.

(Note that a double precision array of 2^{23} double complex numbers takes 2^{27} bytes=128 MB and one needs to have several copies.)

The iterates $f^n(c)$ were computed by using extended precision with GMP—an arbitrary-precision extension of the C language. This extra precision is very useful to avoid that the orbit escapes. Note that the critical points are at the boundary of the domains of stability, so that they are moderately unstable.

The extended precision is vitally important in computing the scaling exponents α. To obtain each value in Table II, we computed several billion iterates of the critical point of the map. To reduce the numerical error, we used several hundred digits of precision.

C. Visual explorations

In Figs. 4 and 5 we have plotted (with impulses) the modulus of the Fourier coefficients $(\text{Re} \, \chi)_k$ versus $|k|$ on a log-log scale (for several million values of k) for the boundary of the Siegel disk corresponding to the map (3) for rotation numbers σ equal to (1°) and (5°), and order of the critical point $d=1$ (the same cases as the ones in Figs. 1 and 3). The self-similar structure of the boundary of the Siegel disk is especially clearly visible in the “straightened-out”
graph of the spectrum. In Fig. 6 we plotted $\log_{10}|k(\hat{\text{Re}} \chi_i)|$ versus $\log_{10}|k|$ for the same spectra as in Figs. 4 and 5. The width of each of the periodically repeating “windows” in the figure (i.e., the distance between two adjacent high peaks) is approximately equal to $|\log_{10}\sigma|$, where σ is the corresponding rotation number. The periodicity in the Fourier series has been related to some renormalization group analysis in phase space.\(^{44}\)

To illustrate the effect of the order of criticality on the Fourier spectrum of $\text{Re} \chi$, we showed in Fig. 7 the straightened-out graphs of the spectra, $\log_{10}|k(\hat{\text{Re}} \chi_i)|$ versus $\log_{10}|k|$, of the function $\text{Re} \chi$ corresponding to the maps $f_{d,2^{\eta},1+3i}$ for orders $d=1,5,20$ (the Siegel disks of these maps were shown in Fig. 2). For all plots in this figure we used the same scale in vertical direction. An interesting observation—for which we have no conceptual explanation at the moment—is that the variability of the magnitudes of the Fourier coefficients decreases as the order of the critical point increases.

Figures 8 and 9 illustrate the CLP method (Theorem 1) in practice. In the top part of each figure we have plotted on a log-log scale the norms in the left-hand side of Eq. (11).

\[N_\eta(\tau) = \left\Vert \left(\frac{\partial}{\partial \tau} \right)^{\eta} e^{-\tau\Delta} \text{Re} \chi \right\Vert_{L^p(T)}, \]

as functions of τ, for $\eta=1,2,\ldots,6$ for the map (3) with rotation numbers (1°) and (5°), respectively. For each value of η, the “line” consists of 400 points corresponding to 400 different values of τ for which we have computed the corresponding norm.

The bottom parts of Figs. 8 and 9 show the behavior of the differences between the vertical coordinates of adjacent points from the top parts of the figures. Clearly, the points in the top parts do not lie on exact straight lines but have small periodic (as functions of $\log \tau$) displacements. To make this
The form of these small periodic corrections depends in a complicated way on the behavior of the Fourier coefficients in the “periodic windows” in the Fourier spectrum. The presence of these periodic corrections is a good indicator of the ranges of t, which are large enough that the asymptotic behavior has started to take hold, but small enough so that they are not dominated by the round-off and truncation error. In our previous works, we have also found periodic corrections to the scaling in other conjugacies related to the regularity of conjugacies of other critical objects.

D. Numerical values of the Hölder regularity

In Table I we give the computed values of the global Hölder regularities of the real and imaginary parts of the dynamically natural parametrizations χ [Eqs. (5) and (7)] of the boundaries of the Siegel disks. We studied maps of the form (4), with different values of β, and with different orders d of the critical point in ∂D; some runs with the map (3) (for which the critical point is simple) were also performed.

To obtain each value in the table, we performed the procedure specified in Sec. III B for at least two maps of the form (4). For each map we plotted the points from the CLP analysis for $\eta=1, 2, \ldots, 6$ as in the top parts of Figs. 8 and 9, looked at the differences between the vertical coordinates of adjacent points (i.e., at graphs like in the bottom parts of Figs. 8 and 9), and selected a range of values of $\log_{10} \tau$ for which the differences oscillate regularly. For this range of $\log_{10} \tau$, we found the rate of decay of the norms $N_d(\tau)$ [Eq. (12)] by measuring the slopes, $\kappa - \eta$, from which we computed the regularity κ.

The accuracy of these values is difficult to estimate, but a conservative estimate on the relative error of the data in Table I is about 3% (see Table IV).

We have also computed the regularity κ and the scaling exponent α of several maps with rotation numbers with the same tails of the continued fraction expansion but with different heads.

Within the accuracy of our computations, the results did not depend on the head, which is consistent with the predictions of the renormalization group picture.

E. Importance of the phases of Fourier coefficients

In Fig. 6 we saw that the modulus of the Fourier coefficients of $\Re \chi$ and $\Im \chi$ decreases very approximately as

d	(1^*)	(2^*)	(3^*)	(4^*)	(5^*)
1	0.621	0.617	0.607	0.596	0.578
2	0.432	0.427	0.417	0.404	0.388
3	0.328	0.324	0.313	0.300	0.291
4	0.263	0.260	0.252	0.244	0.232
5	0.220	0.217	0.210	0.203	0.193
6	0.189	0.186	0.180	0.174	0.163
10	0.121	0.120	0.115	0.111	0.105
15	0.084	0.082	0.079	0.077	0.074
20	0.064	0.063	0.061	0.058	0.055

FIG. 9. (Top) plot of $\log_{10} N_d(\tau)$ vs $\log_{10} \tau$ for the map (3) with $\alpha=(5^*)$. (Bottom) plot of the differences between the vertical coordinates of adjacent points in the top figure.
cannot conclude that Re \(\hat{\chi} \) and \(\text{Im } \chi \) are even continuous [note, for example, that the function \(f(x) = \sum_{k=1}^{\infty} (1/k) \cos kx \) is discontinuous at \(x = 0 \)]. It is well known from harmonic analysis that the phases of the Fourier coefficients play a very important role, and changing the phases of Fourier coefficients changes the regularity of the functions (see, e.g., Ref. 45): For example,

\[
\sum_{k=2}^{\infty} \frac{1}{k^{1/4} e^{2\pi kx}} \sim \frac{1}{|x|^{3/4}} \quad \text{as } |x| \to 0,
\]

while

\[
\sum_{k=2}^{\infty} e^{\sqrt{-1} kx} \sim \frac{1}{|x|^2} \quad \text{as } |x| \to 0.
\]

In Fig. 10 we depict the phases of the Fourier coefficients of \(\text{Re } \chi \) for the map \(f_{0,(1^{\infty})_1} \) whose only critical point, i.e., \(c = 1 \), is simple (i.e., of order \(d = 1 \)). We see that, for large \(k \), the phases have a repeated pattern. If we consider \(k \in I_j \) \(= [\sigma^{-j}, \sigma^{-j-1}] \) (where \(\sigma = (1^{\infty}) \) is the golden mean), we see that the phase restricted to \(I_j \) has a pattern very similar to \(I_{j+1} \), except that the latter is reversed and amplified. Of course, since the phase only takes values between \(-\pi\) and \(\pi \), the amplification of the patterns can only be carried out a finite number of times until the absolute values of the phases reach \(\pi \), after which they will start “wrapping around” the interval \([-\pi, \pi]\). Unfortunately, to see this effect numerically, we would need hundreds of millions of Fourier coefficients, which at the moment is out of reach.

Given the above observation, it is natural to study the distribution of the phases of the Fourier coefficients in an interval of self-similarity. In Fig. 11 we present the histogram of the phases in the interval \(k \in I_{24} \cup I_{25} = [\sigma^{-24}, \sigma^{-26}] \) (i.e., of about 107,000 phases). We note that the histogram is very similar to a Gaussian. This visual impression is confirmed by using the Kolmogorov–Smirnov (KS) test, shown in Fig. 12. Recall that the Kolmogorov–Smirnov test consists in plotting the empirical distribution versus the theoretical one (for details see, e.g., Ref. 46, Chap. 7). If indeed the empirical distribution was a sample of the theoretical distribution, we would get a set of points close the diagonal. The Kolmogorov–Smirnov test is available in many statistical packages (we used the package R, in which the command \texttt{qqnorm} gives a KS test and the command \texttt{qqline} displays the result of a fitted Gaussian). The Kolmogorov–Smirnov test reveals that, as expected (since the variable is an angle), the distribution of the phases has discrepancies with a Gaussian near the edges, \(-\pi\) and \(\pi \). Nevertheless, there is a remarkably good fit away from these edges. For the intervals we chose, most of the data points are indeed out of the edges.

F. Data on the scaling exponents

In Table II we give the values of the modulus of the scaling exponent \(\alpha \) for maps of the form (3) with orders \(d = 1, \ldots, 6, 10, 15, 20, 40, 60, 80, 100, 200, 300 \) of the critical
point and rotation numbers $\sigma = (k^n)$ with $k = 1, \ldots, 5$. We believe that the numerical error in these values does not exceed 2 in the last digit.

In Ref. 3 the author computed the scaling exponents for maps with rotation number (1^n) and critical point of different orders d, and suggested that the behavior of a for large d is

$$|a(1^n,d)| \sim 1 - \frac{A(1^n)}{d} \quad \text{as } d \to \infty. \quad (14)$$

We studied the same problem for other rotation numbers and, taking advantage of the extended precision, we carried out the computation for rather high degrees of criticality ($=300$) (see Table II). In Fig. 13 we plotted $1/(1 - |a|)$ versus d for five rotation numbers. Our data that for high values of d the modulus of a tends to 1 for any rotation number. The values of the constants A_p in Eq. (14) for rotation numbers (k^n) with $k = 1, 2, 3, 4, 5$ are approximately $0.646, 1.168, 1.531, 1.960,$ and 1.925, respectively (the linear regression was based on the values for $d = 40, \ldots, 300$).

IV. CALCULATION OF THE SIEGEL RADIUS AND THE AREA OF THE SIEGEL DISK

As a by-product of our calculations we can obtain rather precise values of two quantities of mathematical interest: the area of the Siegel disk and the Siegel radius.

A. Calculation of Siegel radius

We note that the parametrization χ of the boundary ∂D is related to the conjugacy h [Eq. (2)] by Eq. (5). The Fourier coefficients of χ then satisfy $|\hat{\chi}_k| = |h_k| r_S^k$ for $k \in \mathbb{N}$, where h_k are the Taylor coefficients of h (recall that $h_0 = 0$ and $h_1 = 1$).

As shown in Refs. 32 and 47, one can get the all the coefficients h_k by equating terms of like powers in Eq. (2), and this gives infinitely many different ways to compute r_S. In particular, since $h_1 = 1$, we have $r_S = |\hat{\chi}|$. Since we also have $h_2 = f_2/[a(a-1)]$ and $|a| = 1$, we obtain $r_S^2 = [a-1]/|\hat{\chi}|$ (where f_1, a, f_2, \ldots are the Taylor coefficients of the function f). Similar formulas for higher order terms are also available.

B. Calculation of the area of the Siegel disk

Since $h(r_S^2)$ is a univalent mapping from the unit disk to the Siegel disk, we can use the area formula

$$\text{Area} = \pi \sum_{k=1}^{\infty} k|h_k|^2 = \pi \sum_{k=1}^{\infty} k r_S^{-2k} |\hat{\chi}_k|^2. \quad (15)$$

For polynomials, the Siegel disk is bounded so that the sum in Eq. (15) is finite. This is compatible with the observation (13), but it shows that the bound cannot be saturated very often.

In Table III we give the values of the areas of the Siegel disks of the map $f_{a,0,b}$ [Eq. (4)] (we believe that the error does not exceed 2 in the last digit). Since the series (15) converges slowly, we computed the partial sums of the first Q_n terms in Eq. (15), where Q_n are the denominators of the best rational approximants, $P_m/Q_m = (k^n)$, to the rotation number $\sigma = (k^n)$ [cf. Eq. (9)], and then performed Aitken extrapolation on these values. Because of the repeating "peri-
TABLE III. Areas of the Siegel disks for maps of the form $f_{D,\theta}^{n+1}$ [see Eq. (4)] with different rotation numbers α and orders d of the critical point.

d	$\langle 1 \rangle$	$\langle 2 \rangle$	$\langle 3 \rangle$	$\langle 4 \rangle$	$\langle 5 \rangle$
1	1.360 336 1	1.358 653 0	1.361 108 5	1.365 203 0	1.369 333 7
2	0.895 659	0.893 442	0.893 605	0.894 08	0.893 67
3	0.659 86	0.657 66	0.656 64	0.655 3	0.653 08
4	0.519 0	0.517 0	0.515 50	0.513 3	0.510 4
5	0.426 2	0.424 4	0.422 6	0.420 0	0.417 0
6	0.360 7	0.359 1	0.357 3	0.354	0.351 5
10	0.221 4	0.220 3	0.218 7	0.216 3	0.213 7
15	0.148	0.147	0.146	0.144	0.142 1
20	0.111	0.110	0.109	0.107	0.106

odd windows” in the Fourier spectra (shown in Figs. 4–7), these partial sums tend to the area of the Siegel disk geometrically, and Aitken extrapolation gives good results. In our computations we used $2^{23} \approx 8 \times 10^7$ Fourier coefficients of χ.

Clearly, the area of a Siegel disk depends on the particular choice of the map f; i.e., is nonuniversal. Perhaps the only universal characteristic that can be extracted is the rate of convergence in the Aitken extrapolation, but we have not studied this problem in detail.

V. AN UPPER BOUND OF THE REGULARITY OF THE CONJUGACY

As pointed out in Ref. 13, Sec. 8.2, one can find upper bounds for the regularity in terms of the scaling exponents.

Recall that $\chi : T \to \partial D$ conjugates (the restriction to ∂D of) the map $f : \partial D \to \partial D$ to the rigid rotation $r_{\sigma} : T \to T : t \mapsto t + \sigma$ (where σ is the rotation number of f); namely, $\chi \circ r_{\sigma} = f \circ \chi$. Let us consider only rotation numbers of the form $\sigma = (k^n)$, and let the natural numbers Q_n and the scaling exponent α be defined by Eqs. (9) and (10). Then closest returns of the iterates of 0 \in T of r_{σ} and the iterates of $c \in \partial D$ to the starting points 0 and c, respectively, are governed by the scaling relations

$$r_{\alpha}^{Q_n}(0) = C_1 \sigma^m + o(\sigma^m),$$

$$|f^{Q_n}(c) - c| = C_2|\alpha|^m + o(|\alpha|^m).$$

Thus, we obtain that $h(C_1 \sigma^m) \approx C_2|\alpha|^m$. This is impossible if h is C^κ with

$$\kappa > \kappa_{\max} = \log_{10}|\alpha|/\log_{10}|\sigma|$$

and the right-hand side of Eq. (16) is not an integer.

In Table IV, we give the values of the upper bound to the regularity κ_{\max} [Eq. (16)] for maps with rotation numbers and order of the critical point. To compute these values, we used the values for $|\alpha|$ from Table II and the exact values for the rotation numbers). We have kept only four digits of accuracy, although the error of these numbers is smaller (their relative error is the same as the relative error of the values of $|\alpha|$).

Clearly, within the numerical error, the values of the regularities from Table I (obtained from applying the CLP method) are equal to the upper bounds on the regularity from Table IV (obtained from the scaling exponents).

This is in contrast with the results in Ref. 13, where similar bounds based on scaling were found to be saturated by some conjugacies but not by the inverse conjugacy.

For maps with highly critical points, if Eq. (16) holds, then the asymptotic behavior of $|\alpha|$, Eq. (14) implies that the asymptotic behavior of the limit on the regularity becomes

$$\kappa_{\max,\sigma} \sim \frac{\log_{10}|1 - A_{\sigma}|}{\log_{10}|\sigma|} \approx \frac{A_{\sigma}}{\log_{10}|\sigma|} \frac{1}{d} \quad \text{as } d \to \infty. \quad (17)$$

VI. CONCLUSIONS

We have considered Siegel disks of polynomials with some quadratic fields and with different degrees of critical points.

We have made extended precision calculations of scaling exponents and a parametrization of the boundary. This allows us to compute the regularity of the boundary using methods of harmonic analysis.

The regularities of the boundary seem to be universal, depend only on the tail of the continued fraction expansion and saturate some easy bounds in terms of the continued fraction expansion.

We have identified several regularities of the Fourier series of the conjugacy. Namely, it seems that, irrespective of the rotation number, we have $0 < \lim sup|f_k| < \infty$. There seems to be a regular distribution of the phases of the Fourier coefficients which follows a Gaussian law.

We have also extended the results of Ref. 3 on the dependence of scaling exponents on the degree of the critical point to higher degrees and to other rotation numbers.

ACKNOWLEDGMENTS

The work of both authors has been partially supported by NSF grants. We thank Amit Apte, Lukas Geyer, and Arturo Olvera for useful discussions. This work would not have been possible without access to excellent publicly available software for compiler, graphics, extended precision, especially GMP (Ref. 43). We thank the Mathematics Department...
at University of Texas at Austin for the use of computer facilities.

1N. S. Manton and M. Nauenberg, Commun. Math. Phys. 89, 555 (1983).
2M. Widom, Commun. Math. Phys. 92, 121 (1983).
3A. H. Osbaldestin, J. Phys. A 25, 1169 (1992).
4A. Stirnemann, Nonlinearity 7, 959 (1994).
5A. Buranks and A. Stirnemann, Nonlinearity 8, 901 (1995).
6C. J. Bishop and P. W. Jones, Ark. Mat. 35, 201 (1997).
7C. T. McMullen, Acta Math. 180, 247 (1998).
8A. D. Buranks and A. H. Osbaldestin, and A. Stirnemann, Eur. Phys. J. B 4, 263 (1998).
9A. D. Buranks, A. H. Osbaldestin, and A. Stirnemann, Commun. Math. Phys. 199, 417 (1998).
10J. Graczyk and P. Jones, Invent. Math. 148, 465 (2002).
11D. Gaidashev and M. Yampolsky, Exp. Math. 16, 215 (2007).
12D. G. Gaidashev, Nonlinearity 20, 713 (2007).
13J. T. Rogers, Jr., Bull., New Ser., Am. Math. Soc. 37, 1073 (2000).
14J. T. Rogers, Jr., Commun. Math. Phys. 195, 175 (1998).
15C. L. Siegel, Ann. Math. 43, 607 (1942).
16J. Moser, Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat. 20, 265 (1966).
17M.-R. Herman, Usp. Mat. Nauk 27, 1169 (1992).
18E. Zehnder, in Geometry and Topology (Proceedings of the III Latin American School of Mathematics, Instituto de Matemática Pura e Aplicada CNPq), Rio de Janeiro, 1976 (Springer, Berlin, 1977), pp. 855–866; Lect. Notes Math. 597, 855 (1977).
19M.-R. Herman, Lectures on Celestial Mechanics (Springer, Berlin, 1995).
20J. T. Rogers, Jr., in Progress in Holomorphic Dynamics, Pitman Res. Notes Math. Ser. Vol. 387 (Longman, Harlow, 1998), pp. 41–49.
21G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers (Oxford, London, 1990).
22E. M. Stein, Singular Integrals and Differentiability Properties of Functions (Princeton University Press, Princeton, 1970).
23J. T. Rogers, Jr., in Handbook of Parametric and Nonparametric Statistical Procedures, 4th ed. (Chapman & Hall/CRC, Boca Raton, 2007).
24R. de la Llave, in Smooth Ergodic Theory and Its Applications, Seattle, WA, 1999 (American Mathematical Society, Providence, 2001), pp. 175–292.
25J. T. Rogers, Jr., Bull., New Ser., Am. Math. Soc. 32, 317 (1995).
26J. Milnor, Dynamics in One Complex Variable, 3rd ed. (Princeton University Press, Princeton, 2006).
27M. Y. Lyubich, Usp. Mat. Nauk 41, 35 (1986).