AUSLANDER-BUCHWEITZ CONTEXT AND CO-t-STRUCTURES

O. MENDOZA, E. C. SÁENZ, V. SANTIAGO, M. J. SOUTO SALORIO.

Abstract. We show that the relative Auslander-Buchweitz context on a triangulated category T coincides with the notion of co-t-structure on certain triangulated subcategory of T (see Theorem 3.8). In the Krull-Schmidt case, we establish a bijective correspondence between co-t-structures and cosuspended, precovering subcategories (see Theorem 3.11). We also give a characterization of bounded co-t-structures in terms of relative homological algebra. The relationship between silting classes and co-t-structures is also studied. We prove that a silting class ω induces a bounded non-degenerated co-t-structure on the smallest thick triangulated subcategory of T containing ω. We also give a description of the bounded co-t-structures on T (see Theorem 5.10). Finally, as an application to the particular case of the bounded derived category $\mathcal{D}^b(\mathcal{H})$, where \mathcal{H} is an abelian hereditary category which is Hom-finite, Ext-finite and has a tilting object (see [10]), we give a bijective correspondence between finite silting generator sets $\omega = \text{add} (\omega)$ and bounded co-t-structures (see Theorem 6.7).

1. Introduction.

In [11], Hashimoto defined the “Auslander-Buchweitz context” for abelian categories, giving a new framework to homological approximation theory. The starting point of Hashimoto’s work is the theory of approximations in abelian categories developed by Auslander and Buchweitz in [1], which has been a starting point for performing relative homological algebra with respect to suitable subcategories, with applications ranging from the study of Cohen-Macaulay modules over commutative rings, to tilting theory, the theory of quasi-hereditary algebras and reductive groups, the study of homological conjectures for finite dimensional algebras, and many other topics. On the other hand, in [5], Beligiannis generalizes to exact categories the fundamental work of [1]. In particular, following Hashimoto’s ideas, he introduces the Auslander-Buchweitz context for exact categories, which are more general than abelian ones.

2000 Mathematics Subject Classification. Primary 18E30 and 18E40. Secondary 18G25. The authors thank the financial support received from Project PAPIIT-UNAM IN101607 and MICINN-FEDER TIN2010-18552-C03-02.
In the case of mod(Λ) (the category of finitely generated modules over an artin algebra Λ), it is important to mention the work of Auslander and Reiten in [2]. They studied the notion of approximations of modules using tilting and cotilting modules, and showed that there is a bijective correspondence between the basic cotilting modules in mod(Λ), and certain precovering subcategories X of mod(Λ). The main aim in [2] is to explore the connection between various aspects of tilting theory and the theory of cotorsion pairs in mod(Λ).

As we mentioned before in [14], abelian categories used to be the proper context for the study of homological algebra. But recently, triangulated categories entered into the subject in a relevant way. In [14], an analogue of Auslander-Buchweitz approximation theory is developed.

The main aim of the present paper is to explore, in the setting described in [14], results analogous to the results of Auslander-Reiten in connection with various aspects of tilting theory and the theory of co-t-structures. To do that, we use the notions and machinery of [14], concentrating our study to the relations between Auslander-Buchweitz contexts in a triangulated category T and co-t-structures defined on T.

The notion of co-t-structure was recently introduced independently by Pauksztello [15] and Bondarko [6] (under the name “weight structures”). This notion seems to be important, and one reason for this is that they provide important information in a triangulated category T allowing the existence of nice “weight” decompositions and filtrations. Furthermore, co-t-structures provide examples of torsion theories in Krull-Schmidt triangulated categories in the sense of Iyama and Yoshino [12].

Throughout this paper, T denotes an arbitrary triangulated category. Given a class X of objects of T, the smallest triangulated (respectively, smallest thick) subcategory of T containing X is denoted by ∆T(X) (respectively, ∆T(X)).

The paper is organized as follows. In Section 1, we recall, from [14], some notions about the Auslander-Buchweitz approximation theory that will be useful in this paper.

In Section 2, we show that the notion of relative Auslander-Buchweitz context for triangulated categories T coincides with the notion of co-t-structure on ∆T(X) (see Theorem 3.3). In particular, an Auslander-Buchweitz context is the same as a bounded below co-t-structure. Moreover, we establish a bijective correspondence between the relative Auslander-Buchweitz contexts (X, Y) on T and the class of pairs (X, ω) such that X is cosuspended and ω is an X-injective weak-cogenerator in X (see Theorem 3.11).

In Section 3, we focus our attention on bounded, faithful and non-degenerate co-t-structures. A characterization of bounded co-t-structures, in terms of relative homological algebra, is also given. Furthermore, a relationship between the different types of co-t-structures is also established (see Theorem 4.20). We also provide, on one hand, a relationship between several subcategories
attached to co-t-structures; and on the other hand, some relations between relative homological dimensions. We finish the section with some results involving co-t-structures and the notion of categorical cogenerator.

In Section 4, we study the relationship between co-t-structures and silting classes. In this section, we establish a bijective correspondence between silting classes in \mathcal{T} and bounded co-t-structures on the thick subcategory of \mathcal{T} generated by the silting class (see Corollary 5.8). Furthermore, we give a characterization of the bounded co-t-structures on \mathcal{T} (see Theorem 5.10).

In Section 5, we apply the results, obtained in Section 4, to the particular case of the bounded derived category $\mathcal{D}^b(\mathcal{H})$ where \mathcal{H} is an abelian hereditary category which is Hom-finite, Ext-finite and has a tilting object. We give a bijective correspondence between finite silting generator sets $\omega = \operatorname{add}(\omega)$ and bounded co-t-structures (see Theorem 6.7). As a nice consequence, we get that any bounded co-t-structure on $\mathcal{D}^b(\mathcal{H})$ has two companions as t-structures: one on the left and the other on the right. That is, any bounded co-t-structure on $\mathcal{D}^b(\mathcal{H})$ is always left (respectively, right) adjacent to a t-structure on $\mathcal{D}^b(\mathcal{H})$ in the sense of [6].

Note that in [9], the author studies co-t-structures on triangulated categories with arbitrary coproducts (his notion of “negative subcategories” correspond to our notion of silting). In this context, he proves that any silting subcategory ω provides a co-t-structure on the smallest triangulated subcategory of \mathcal{T} closed under arbitrary coproducts and containing ω. Our result (Theorem 5.5), which is proved using relative homology techniques, is the analogue for thick subcategories containing ω, to the Theorem 4.3.2 in [6] which was proved with different techniques.

2. Preliminaries

Throughout this paper, \mathcal{T} will be a triangulated category and $[1] : \mathcal{T} \rightarrow \mathcal{T}$ its suspension functor.

In this paper, when we say that \mathcal{C} is a subcategory of \mathcal{T}, it always means that \mathcal{C} is a full subcategory which is additive and closed under isomorphisms. For a class \mathcal{X} of objects of \mathcal{T}, we denote by $\operatorname{add}(\mathcal{X})$ the smallest subcategory of \mathcal{T} containing \mathcal{X}, closed under finite direct sums and direct summands.

For some classes \mathcal{X} and \mathcal{Y} of objects in \mathcal{T}, we write $\perp \mathcal{X} := \{Z \in \mathcal{T} : \operatorname{Hom}_\mathcal{T}(Z,-)|_{\mathcal{X}} = 0\}$ and $\mathcal{X}^\perp := \{Z \in \mathcal{T} : \operatorname{Hom}_\mathcal{T}(-,Z)|_{\mathcal{X}} = 0\}$. We also recall that $\mathcal{X} \ast \mathcal{Y}$ denotes the class of objects $Z \in \mathcal{T}$ for which there exists a distinguished triangle $X \rightarrow Z \rightarrow Y \rightarrow X[1]$ in \mathcal{T} with $X \in \mathcal{X}$ and $Y \in \mathcal{Y}$. Furthermore, it is said that \mathcal{X} is closed under extensions if $\mathcal{X} \ast \mathcal{Y} \subseteq \mathcal{X}$.

Recall that a class \mathcal{X} of objects in \mathcal{T} is said to be suspended (respectively, cosuspended) if $\mathcal{X}[1] \subseteq \mathcal{X}$ (respectively, $\mathcal{X}[-1] \subseteq \mathcal{X}$) and \mathcal{X} is closed under
extensions. Observe that a suspended (respectively, cosuspended) class \(\mathcal{X} \), of objects in \(\mathcal{T} \), is a subcategory of \(\mathcal{T} \) (see [14, Lemma 2.1 (b)]).

Given a class \(\mathcal{X} \) of objects in \(\mathcal{T} \), it is said that \(\mathcal{X} \) is closed under cones if for any distinguished triangle \(A \to B \to C \to A[1] \) in \(\mathcal{T} \) with \(A, B \in \mathcal{X} \) we have that \(C \in \mathcal{X} \). Similarly, \(\mathcal{X} \) is closed under cocones if for any distinguished triangle \(A \to B \to C \to A[1] \) in \(\mathcal{T} \) with \(B, C \in \mathcal{X} \) we have that \(A \in \mathcal{X} \).

Let \(\mathcal{X} \) be a class of objects of \(\mathcal{T} \). We denote by \(\mathcal{U}_\mathcal{X} \) (respectively, \(\mathcal{X}\mathcal{U} \)) the smallest suspended (respectively, cosuspended) subcategory of \(\mathcal{T} \) containing the class \(\mathcal{X} \). Note that if \(\mathcal{X} \) is suspended (respectively, cosuspended) subcategory of \(\mathcal{T} \), then \(\mathcal{X} = \mathcal{U}_\mathcal{X} \) (respectively, \(\mathcal{X} = \mathcal{X}\mathcal{U} \)). We also recall that a subcategory \(\mathcal{U} \) of \(\mathcal{T} \), which is suspended and cosuspended, is called a triangulated subcategory of \(\mathcal{T} \). A thick subcategory of \(\mathcal{T} \) is a triangulated subcategory of \(\mathcal{T} \) which is closed under direct summands in \(\mathcal{T} \). The smallest triangulated (respectively, smallest thick) subcategory of \(\mathcal{T} \) containing \(\mathcal{X} \) is denoted by \(\Delta_\mathcal{T}(\mathcal{X}) \) (respectively, \(\Sigma_\mathcal{T}(\mathcal{X}) \)).

We recall the following well known definition (see, for example, [7] and [8]).

Definition 2.1. Let \(\mathcal{X} \) and \(\mathcal{Y} \) be classes of objects in a triangulated category \(\mathcal{T} \). A morphism \(f : X \to C \) in \(\mathcal{T} \) is said to be an \(\mathcal{X} \)-precover of \(C \) if \(X \in \mathcal{X} \) and \(\text{Hom}_{\mathcal{T}}(X', f) : \text{Hom}_{\mathcal{T}}(X', X) \to \text{Hom}_{\mathcal{T}}(X', C) \) is surjective \(\forall X' \in \mathcal{X} \). If any \(C \in \mathcal{Y} \) admits an \(\mathcal{X} \)-precover, then \(\mathcal{X} \) is called a precovering class in \(\mathcal{Y} \).

By dualizing the definition above, we get the notion of an \(\mathcal{X} \)-preenveloping of \(C \) and a preenveloping class in \(\mathcal{Y} \). Finally, it is said that \(\mathcal{X} \) is functorially finite in \(\mathcal{T} \) if \(\mathcal{X} \) is both precovering and preenveloping in \(\mathcal{T} \).

Now, we recall from [14], the following definitions. For a more completed discussion and properties of such notions, we suggest that the reader see [14].

Definition 2.2. [14] Let \(\mathcal{X} \) be a class of objects in \(\mathcal{T} \). For any natural number \(n \), we introduce inductively the class \(\varepsilon_n^\wedge(\mathcal{X}) \) as follows: \(\varepsilon_0^\wedge(\mathcal{X}) := \mathcal{X} \) and assuming defined \(\varepsilon_n^\wedge(\mathcal{X}) \), the class \(\varepsilon_{n+1}^\wedge(\mathcal{X}) \) is given by all the objects \(Z \in \mathcal{T} \) for which there exists a distinguished triangle in \(\mathcal{T} \)

\[
\begin{array}{cccc}
Z[-1] & \longrightarrow & W & \longrightarrow & X & \longrightarrow & Z
\end{array}
\]

with \(W \in \varepsilon_{n-1}^\wedge(\mathcal{X}) \) and \(X \in \mathcal{X} \).

Dually, we set \(\varepsilon_n^\vee(\mathcal{X}) := \mathcal{X} \) and assuming defined \(\varepsilon_n^\vee(\mathcal{X}) \), the class \(\varepsilon_{n+1}^\vee(\mathcal{X}) \) is formed for all the objects \(Z \in \mathcal{T} \) for which there exists a distinguished triangle in \(\mathcal{T} \)

\[
\begin{array}{cccc}
Z & \longrightarrow & X & \longrightarrow & K & \longrightarrow & Z[1]
\end{array}
\]

with \(K \in \varepsilon_{n-1}^\wedge(\mathcal{X}) \) and \(X \in \mathcal{X} \). We also introduce the following classes

\[
\mathcal{X}^\wedge := \cup_{n \geq 0} \varepsilon_n^\wedge(\mathcal{X}), \quad \mathcal{X}^\vee := \cup_{n \geq 0} \varepsilon_n^\vee(\mathcal{X}) \quad \text{and} \quad \mathcal{X}^\sim := (\mathcal{X}^\wedge)^\vee.
\]

For the convenience of the reader, we include the following remark from [14].
Remark 2.3. [14, Remark 3.6 (2)] Let (\mathcal{Y}, ω) be a pair of classes of objects in \mathcal{T} with $\omega \subseteq \mathcal{Y}$. If \mathcal{Y} is closed under cones (respectively, cocones) then $\omega^\wedge \subseteq \mathcal{Y}$ (respectively, $\omega^\vee \subseteq \mathcal{Y}$). Indeed, assume that \mathcal{Y} is closed under cones and let $M \in \omega^\wedge$. Thus $M \in \varepsilon_n^\wedge(\omega)$ for some $n \in \mathbb{N}$. If $n = 0$ then $M \in \omega \subseteq \mathcal{Y}$. Let $n > 0$, and hence there is a distinguished triangle $M[-1] \to K \to Y \to M$ in \mathcal{T} with $K \in \varepsilon_n^\wedge(\omega)$ and $Y \in \mathcal{Y}$. By induction $K \in \mathcal{Y}$ and hence $M \in \mathcal{Y}$ since \mathcal{Y} is closed under cones; proving that $\omega^\wedge \subseteq \mathcal{Y}$.

In what follows, to deal with the (co) resolution, relative projective and relative injective dimensions, we consider the extended natural numbers $\overline{\mathbb{N}} := \mathbb{N} \cup \{\infty\}$. Here, we set the following rules: (a) $x + \infty = \infty$ for any $x \in \mathbb{N}$, and (b) $x < \infty$ for any $x \in \mathbb{N}$. Finally, we declare, by definition, that the minimum of the empty set is ∞. That is, $\min(\emptyset) := \infty$.

Definition 2.4. [14, Definition 2.4] Let \mathcal{X} be a class of objects in \mathcal{T}, and let $M \in \mathcal{T}$. The \mathcal{X}-resolution dimension of M is

$$\text{resdim}_\mathcal{X}(M) := \min \{n \in \mathbb{N} : M \in \varepsilon_n^\wedge(\mathcal{X})\}.$$

Dually, the \mathcal{X}-coresolution dimension of M is

$$\text{coresdim}_\mathcal{X}(M) := \min \{n \in \mathbb{N} : M \in \varepsilon_n^\vee(\mathcal{X})\}.$$

The following result, and its dual version, will be used in Section 2.

Theorem 2.5. [14, Theorem 3.5] For any cosuspended subcategory \mathcal{X} of \mathcal{T} and any object $C \in \mathcal{T}$, the following statements hold.

(a) $\text{resdim}_\mathcal{X}(C) \leq n$ if and only if $C \in \mathcal{X}[n]$.
(b) $\mathcal{X}^\wedge = \cup_{n \geq 0} \mathcal{X}[n] = \Delta_\mathcal{T}(\mathcal{X})$.
(c) If \mathcal{X} is closed under direct summands in \mathcal{T}, then $\mathcal{X}^\wedge = \Sigma_\mathcal{T}(\mathcal{X})$.

For the convenience of the reader, we include the dual version of [2.5]

Remark 2.6. For any suspended subcategory \mathcal{Y} of \mathcal{T} and any object $C \in \mathcal{T}$, the following statements hold.

(a) $\text{coresdim}_\mathcal{Y}(C) \leq n$ if and only if $C \in \mathcal{Y}[-n]$.
(b) $\mathcal{Y}^\vee = \cup_{n \geq 0} \mathcal{Y}[-n] = \Delta_\mathcal{T}(\mathcal{Y})$.
(c) If \mathcal{Y} is closed under direct summands in \mathcal{T}, then $\mathcal{Y}^\vee = \Sigma_\mathcal{T}(\mathcal{Y})$.

We recall the notion of \mathcal{X}-projective (respectively, \mathcal{X}-injective) dimension of objects in \mathcal{T}.

Definition 2.7. [14] Let \mathcal{X} be a class of objects in \mathcal{T} and M an object in \mathcal{T}.

(a) The \mathcal{X}-projective dimension of M is

$$\text{pd}_\mathcal{X}(M) := \min \{n \in \mathbb{N} : \text{Hom}_\mathcal{T}(M[-i], -) |_{\mathcal{X}} = 0, \ \forall i > n\}.$$

(b) The \mathcal{X}-injective dimension of M is

$$\text{id}_\mathcal{X}(M) := \min \{n \in \mathbb{N} : \text{Hom}_\mathcal{T}(-, M[i]) |_{\mathcal{X}} = 0, \ \forall i > n\}.$$
Definition 2.8. [14] Let \((\mathcal{X}, \omega)\) be a pair of classes of objects in \(\mathcal{T}\).

(a) \(\omega\) is a weak-cogenerator in \(\mathcal{X}\), if \(\omega \subseteq \mathcal{X} \subseteq \mathcal{X}[-1]*\omega\).

(b) \(\omega\) is a weak-generator in \(\mathcal{X}\), if \(\omega \subseteq \mathcal{X} \subseteq \omega*[\mathcal{X}[1]]\).

(c) \(\omega\) is \(\mathcal{X}\)-injective if \(\text{id}_{\mathcal{X}}(\omega) = 0\); and dually, \(\omega\) is \(\mathcal{X}\)-projective if \(\text{pd}_{\mathcal{X}}(\omega) = 0\).

3. Relative Auslander-Buchweitz context and co-\(t\)-structures

In this section, we give the notion of the (relative) Auslander-Buchweitz context for a triangulated category \(\mathcal{T}\), relating this notion with the concept of co-\(t\)-structure.

Definition 3.1. [6, 15] A pair \((A, B)\) of subcategories in \(\mathcal{T}\) is said to be a co-\(t\)-structure on \(\mathcal{T}\) if the following conditions hold.

(a) \(A\) and \(B\) are closed under direct summands in \(\mathcal{T}\).

(b) \(A[-1] \subseteq A\) and \(B[1] \subseteq B\).

(c) \(\text{Hom}_{\mathcal{T}}(A[-1], B) = 0\).

(d) \(\mathcal{T} = A[-1]*B\).

We will make use of the following result, stated by D. Pauksztello in [15].

Proposition 3.2. [15, Proposition 2.1] Let \((A, B)\) be a co-\(t\)-structure on \(\mathcal{T}\). Then, the following statements hold.

(a) \(A[-1]\) is a precovering class in \(\mathcal{T}\).

(b) \(B\) is a preenveloping class in \(\mathcal{T}\).

(c) \(A[-1] = \perp B\) and \(B = A[-1]*\).

(d) \(A\) and \(B\) are closed under extensions.

Lemma 3.3. Let \((A, B)\) be a co-\(t\)-structure on \(\mathcal{T}\), and \(Y\) be a class of objects in \(\mathcal{T}\). Then, the following statements hold.

(a) \(\text{id}_A(Y) \leq n\) if and only if \(Y \subseteq B[-n]\).

(b) \(\text{pd}_B(Y) \leq n\) if and only if \(Y \subseteq A[n]\).

Proof. (a) By [14] Lemma 4.2, we get the equivalence: \(\text{id}_A(Y) \leq n\) if and only if \(Y \subseteq A[-n]\). Therefore, since \((A, B)\) is a co-\(t\)-structure, it follows from [14] (c), that \(A[1][-n-1] = B[-n]\).

(b) It is dual to (a). □

The following result states that, for a co-\(t\)-structure \((A, B)\) on \(\mathcal{T}\), the class \(\omega := A \cap B\) is an \(A\)-injective weak-cogenerator in \(A\); and moreover, \(\omega\) is also a \(B\)-projective weak-generator in \(B\). Note that \(\omega = \text{add}(\omega)\).

Proposition 3.4. Let \((A, B)\) be a co-\(t\)-structure on \(\mathcal{T}\), and let \(\omega := A \cap B\). Then, the following statements hold.

(a) \(\text{id}_A(B) = 0\) and \(A \subseteq A[-1]*\omega\).

(b) \(\text{pd}_B(A) = 0\) and \(B \subseteq \omega*B[1]\).
from the preceding triangle that $A \in \mathcal{A}$. Then, by 3.1 (d), we have a distinguished triangle $C' \to C \to C'' \to C'[1]$ in \mathcal{T} with $C' \in \mathcal{A}[-1]$ and $C'' \in \mathcal{B}$. Hence, by 3.2 (d), it follows that $C'' \in \mathcal{A} \cap \mathcal{B} = \omega$; proving that $\mathcal{A} \subseteq \mathcal{A}[-1] \ast \omega$.

By 3.1 for any $X \in \mathcal{T}$, there is a distinguished triangle $A \to X \to B[1] \to A[1]$ in \mathcal{T} with $A \in \mathcal{A}$ and $B \in \mathcal{B}$. Moreover, in the case $X \in \mathcal{B}$, it follows from the preceding triangle that $A \in \mathcal{A} \cap \mathcal{B} = \omega$; getting us that $\mathcal{B} \subseteq \omega \ast \mathcal{B}[1]$.

We will show the relation between the notions of cosuspended (respectively, suspended) subcategories \mathcal{X}, weak-cogenerator (respectively, weak-generator), \mathcal{X}-injective (respectively, \mathcal{X}-projective) and co-t-structures on $\overline{\mathcal{T}}(\mathcal{X})$. We only state the results for the cosuspended case and omit those for the suspended case which can be proved by similar arguments.

First, we show that any \mathcal{X}-injective weak-cogenerator in a cosuspended subcategory $\mathcal{X} = \text{add}(\mathcal{X})$ of \mathcal{T} provides a co-t-structure on $\overline{\mathcal{T}}(\mathcal{X}) = \mathcal{X}^\wedge$.

Theorem 3.5. Let (\mathcal{X}, ω) be a pair of classes of objects in \mathcal{T} which are closed under direct summands, \mathcal{X} be cosuspended and ω be an \mathcal{X}-injective weak-cogenerator in \mathcal{X}. Then, the following statements hold.

(a) The pair $(\mathcal{X}^\wedge \cap \perp(\omega^\wedge))[1], \omega^\wedge)$ is a co-t-structure on the triangulated category \mathcal{X}^\wedge.

(b) $\omega^\wedge = \mathcal{X}^\wedge \cap \mathcal{X}^\perp[-1]$, $\mathcal{X} = \mathcal{X}^\wedge \cap \perp(\omega^\wedge)[1]$ and $\omega = \mathcal{X} \cap \mathcal{X}^\perp[-1]$.

(c) If ω' is an \mathcal{X}-injective weak-cogenerator in \mathcal{X}, then $\omega = \text{add}\omega'$.

Proof. First note that $\mathcal{X} = \mathcal{X}^\mathcal{U}$ since \mathcal{X} is cosuspended.

(b) From [14 Proposition 5.9], we have that $\omega^\wedge = \mathcal{X}^\wedge \cap \mathcal{X}^\perp[-1]$. By [14 Proposition 5.2 (b)], it follows that $\omega = \mathcal{X} \cap \mathcal{X}^\perp[-1]$ since \mathcal{X} is cosuspended. Moreover, by [14 Theorem 5.10] it follows that $\mathcal{X} = \mathcal{X}^\wedge \cap \perp(\omega^\wedge)[1]$.

(a) We have that $\omega^\wedge = \mathcal{X}^\wedge \cap \mathcal{X}^\perp[-1]$ is suspended and closed under direct summands. Therefore $\mathcal{X}^\wedge \cap \perp(\omega^\wedge)[1]$ is cosuspended and closed under direct summands. So, in order to get that the given pair in (a) is a co-t-structure on the triangulated category \mathcal{X}^\wedge, it is enough to see that $\mathcal{X}^\wedge = (\mathcal{X}^\wedge \cap \perp(\omega^\wedge)) \ast \omega^\wedge$.

But this is a consequence of [14 Corollary 5.5 (b)] since $\mathcal{X}[-1] = \mathcal{X}^\wedge \cap \perp(\omega^\wedge)$.

(c) It follows from (b) and the fact that $\text{add}(\omega')$ is an \mathcal{X}-injective weak-cogenerator in \mathcal{X}. □

Remark 3.6. Let $\mathcal{X} = \text{add}(\mathcal{X})$ be a cosuspended subcategory of \mathcal{T}. Note that $\mathcal{X} \cap \mathcal{X}^\perp[-1]$ is \mathcal{X}-injective. Moreover, from 3.1 we get that: If there is an \mathcal{X}-injective weak-cogenerator $\omega = \text{add}(\omega)$ in \mathcal{X} then it is unique. Consequently, there is an \mathcal{X}-injective weak-cogenerator $\omega = \text{add}(\omega)$ in \mathcal{X} if and only if $\mathcal{X} \cap \mathcal{X}^\perp[-1]$ is a weak-cogenerator in \mathcal{X}.

The Auslander-Buchweitz context for abelian categories was introduced by M. Hashimoto in [11]. Inspired by that, we will introduce such a context
for a triangulated category \mathcal{T}. To do so, we define the notion of a relative Auslander-Buchweitz context on \mathcal{T}. Observe that the “relative Auslander-Buchweitz context” in triangulated categories is used for an analogue of what Hashimoto calls “weak Auslander-Buchweitz context” in abelian categories.

Definition 3.7. Let $(\mathcal{X}, \mathcal{Y})$ be a pair of classes of objects in \mathcal{T}, and let $\omega := \mathcal{X} \cap \mathcal{Y}$. The pair $(\mathcal{X}, \mathcal{Y})$ is said to be a relative Auslander-Buchweitz context on \mathcal{T} if the following three conditions hold:

1. **(AB1)** \mathcal{X} is cosuspended and closed under direct summands in \mathcal{T}.
2. **(AB2)** \mathcal{Y} is suspended and closed under direct summands in \mathcal{T} and $\mathcal{Y} \subseteq \mathcal{X}^\perp$.
3. **(AB3)** ω is an \mathcal{X}-injective weak-cogenerator in \mathcal{X}.

The pair $(\mathcal{X}, \mathcal{Y})$ is said to be an Auslander-Buchweitz context on \mathcal{T} if $(\mathcal{X}, \mathcal{Y})$ is a relative Auslander-Buchweitz context on \mathcal{T} and $\mathcal{X}^\perp = \mathcal{T}$.

Theorem 3.8. Let $(\mathcal{X}, \mathcal{Y})$ be a relative Auslander-Buchweitz context on \mathcal{T} and $\omega := \mathcal{X} \cap \mathcal{Y}$. Then, the following statements hold.

(a) $\omega = \mathcal{X} \cap \mathcal{X}^\perp[-1]$ and $\omega^\perp = \mathcal{Y}$.

(b) $(\mathcal{X}, \mathcal{Y})$ is a co-t-structure on the triangulated category $\Delta_{\mathcal{T}}(\mathcal{X})$.

Proof. (a) The first equality follows from 3.5. Since $\omega \subseteq \mathcal{Y}$ and \mathcal{Y} is suspended, it follows from 3.4 (a) that $\mathcal{Y}^\perp = \omega^\perp$.

We assert that $\text{id}_{\mathcal{X}}(\mathcal{Y}) = 0$. Indeed, let $C \in \mathcal{Y} \subseteq \mathcal{X}^\perp$. Hence, by [14, Theorem 5.4], we have a distinguished triangle $Y_C \to X_C \to Y_C[1]$ in \mathcal{T} with $X_C \in \mathcal{X}$ and $Y_C \in \omega^\perp \subseteq \mathcal{Y}$. Hence $X_C \in \mathcal{X} \cap \mathcal{Y} = \omega$ and so $\text{id}_{\mathcal{X}}(X_C) = 0$. On the other hand, since $\text{id}_{\mathcal{X}}(Y_C) = 0$ (see [14, Proposition 5.2 (a)]), it follows by [14, Lemma 5.7] that $\text{id}_{\mathcal{X}}(C) = 0$; proving the assertion. Finally, $\text{id}_{\mathcal{X}}(\mathcal{Y}) = 0$ and the fact that \mathcal{X} is cosuspended implies by [14, Lemma 4.2] that $\mathcal{Y} \subseteq \mathcal{X}^\perp \cap \mathcal{X}^\perp[-1]$. Therefore $\mathcal{Y} \subseteq \omega^\perp$ by 3.5.

(b) Since $\omega^\perp = \mathcal{Y}$, we have that (b) follows from 3.5. \square

Given a class \mathcal{X} of objects in \mathcal{T}, we recall that $\overline{\Delta}_{\mathcal{T}}(\mathcal{X})$ denotes the smallest thick subcategory of \mathcal{T} containing the class \mathcal{X}.

Proposition 3.9. Let \mathcal{X} and \mathcal{Y} be classes of objects in \mathcal{T} such that the pair $(\mathcal{X}, \mathcal{Y})$ is a co-t-structure on the triangulated category $\overline{\Delta}_{\mathcal{T}}(\mathcal{X})$. Then, $\overline{\Delta}_{\mathcal{T}}(\mathcal{X}) = \mathcal{X}^\perp$ and $(\mathcal{X}, \mathcal{Y})$ is a relative Auslander-Buchweitz context on \mathcal{T}.

Proof. By 3.2 (d), we have that \mathcal{X} is cosuspended and \mathcal{Y} is suspended. In particular, from 2.8 we conclude that $\overline{\Delta}_{\mathcal{T}}(\mathcal{X}) = \mathcal{X}^\perp$. The fact that $\omega = \mathcal{X} \cap \mathcal{Y}$ is an \mathcal{X}-injective weak-cogenerator in \mathcal{X}, follows from 3.4 (a). \square

Now, we are in a position to state our main result in this section. In order to do that, we introduce the following classes.

Definition 3.10. For a given triangulated category \mathcal{T}, we introduce the following classes:
Theorem 3.11. Let \(T \) be a triangulated category. Then, the following statements hold.

(a) \(C_2 = C_3 \) and the correspondence \(C_1 \rightarrow C_2 \), \((\mathcal{X}, \omega) \mapsto (\mathcal{X}, \mathcal{Y} := \omega^\wedge)\)

is a bijection with inverse \(C_2 \rightarrow C_1 \) given by \((\mathcal{X}, \mathcal{Y}) \mapsto (\mathcal{X}, \omega := \mathcal{X} \cap \mathcal{Y})\).

(b) If \(T \) is an \(R \)-linear triangulated category which is Hom-finite and

Krull-Schmidt, then the correspondence \(C_4 \rightarrow C_3 \), \(\mathcal{X} \mapsto (\mathcal{X}, \mathcal{Y} := \mathcal{X}^\perp[-1] \cap \mathcal{X}^\wedge) \)

is a bijection with inverse \(C_4 \rightarrow C_3 \) given by \((\mathcal{X}, \mathcal{Y}) \mapsto \mathcal{X}\).

\[\begin{align*}
\mathcal{X}[-1] \ast (\mathcal{X}^\perp[-1] \cap \mathcal{X}^\wedge) &= (\mathcal{X} \ast (\mathcal{X}^\perp \cap \mathcal{X}^\wedge))[-1] = \mathcal{X}^\perp[-1] = \mathcal{X}^\wedge,
\end{align*}\]
giving us that \((\mathcal{X}, \mathcal{X}^\perp[-1] \cap \mathcal{X}^\wedge) \in C_3\).

Consider a pair \((\mathcal{X}, \mathcal{Y})\) \(\in C_3\). Then by \(3.9\) \(\text{and} 3.8\), it follows that \(\mathcal{Y} = \mathcal{X}^\perp[-1] \cap \mathcal{X}^\wedge\). Moreover, since the pair \((\mathcal{X}[1], \mathcal{Y}[1])\) is also a co-\(t\)-structure on \(\overline{\Delta}_T(\mathcal{X})\), we have from \(3.2\) that \(\mathcal{X} \in C_4\). Furthermore, since \(\mathcal{Y} = \mathcal{X}^\perp[-1] \cap \mathcal{X}^\wedge\), it follows that the correspondence \(\mathcal{X} \mapsto (\mathcal{X}, \mathcal{X}^\perp[-1] \cap \mathcal{X}^\wedge)\) induces a bijection, with inverse \((\mathcal{X}, \mathcal{Y}) \mapsto \mathcal{X}\), between the classes \(C_4\) and \(C_3\).
Corollary 3.12. There is a bijective correspondence \(\mathcal{X} \mapsto (\mathcal{X}, \mathcal{X}^\perp \cap \mathcal{X}^\perp[-1]) \) between cosuspended subcategories \(\mathcal{X} = \text{add} (\mathcal{X}) \) of \(\mathcal{T} \) such that \(\mathcal{X} \cap \mathcal{X}^\perp \cap \mathcal{X}^\perp[-1] \) is a weak-cogenerator in \(\mathcal{X} \), and co-t-structures \((\mathcal{X}, \mathcal{Y})\) on \(\overline{\mathcal{X}} \).

Proof. It follows from 3.11 and 3.6.

4. Bounded, faithful and non-degenerate co-t-structures

In this section we focus our attention on bounded, faithful and non-degenerate co-t-structures. We finish the section with some results involving co-t-structures and the notion of categorical cogenerator.

Following the terminology for co-t-structures on triangulated categories given in [6], we recall the following definition.

Definition 4.1. Let \((A, B)\) be a co-t-structure on \(\mathcal{T} \). It is said that \((A, B)\) is bounded below (respectively, bounded above) if \(\bigcup_{n \in \mathbb{Z}} A[n] = \mathcal{T} \) (respectively, \(\bigcup_{n \in \mathbb{Z}} B[n] = \mathcal{T} \)). So, the pair \((A, B)\) is said to be bounded if it is bounded both below and above.

Remark 4.2. From 2.5 and 2.6, we have that a co-t-structure \((A, B)\) on \(\mathcal{T} \) is bounded below (respectively, above) if and only if \(A^\wedge = \mathcal{T} \) (respectively, \(B^\vee = \mathcal{T} \)).

Corollary 4.3. There is a bijective correspondence \(\mathcal{X} \mapsto (\mathcal{X}, \mathcal{X}^\perp \cap \mathcal{X}^\perp[-1]) \) between cosuspended subcategories \(\mathcal{X} = \text{add} (\mathcal{X}) \) of \(\mathcal{T} \) such that \(\mathcal{X} \cap \mathcal{X}^\perp \cap \mathcal{X}^\perp \cap \mathcal{X}^\perp[-1] \) is a weak-cogenerator in \(\mathcal{X} \), and bounded below co-t-structures \((\mathcal{X}, \mathcal{Y})\) on \(\mathcal{T} \).

Proof. It follows from 3.12 and 4.2

Now, we prove some relationships between the relative homological dimensions attached to a co-t-structure.

Proposition 4.4. Let \((A, B)\) be a co-t-structure on \(\mathcal{T} \) and \(\omega := A \cap B \). Then

\((a) \) \pd_B(M) = \resdim_A(M) \text{ and } \id_A(M) = \coresdim_B(M), \ \forall M \in \mathcal{T}.

\((b) \) \resdim_A(M) = \resdim_\omega(M), \ \forall M \in \omega^\wedge.

\((c) \) \coresdim_B(M) = \coresdim_\omega(M), \ \forall M \in \omega^\vee.

Proof. By 3.2, we know that \(B = \mathcal{A}^\perp[-1] = \mathcal{A} \mathcal{U}^\perp[-1] \) and \(A = \mathcal{B}^\perp[1] = \mathcal{B}^\perp[1] \). Hence, from [14] Proposition 4.3, we get (a). Finally, (b) and (c) follows from [14] Theorem 4.4 and its dual, and the item (a).

The next result provides a relationship between several subcategories attached to co-t-structures. Furthermore, it characterizes the bounded below co-t-structures on \(\mathcal{T} \). We recall that \(\omega^\sim := (\omega^\wedge)^\vee \) for any class \(\omega \) of objects in \(\mathcal{T} \).

Theorem 4.5. Let \((A, B)\) be a co-t-structure on \(\mathcal{T} \) and \(\omega := A \cap B \). Then, the following conditions hold.
(a) \(U_\omega = \omega^\wedge = A^\wedge \cap B \) and \(U_\omega^\vee = \omega^\vee = B^\vee \cap A \).

(b) \(\Sigma_T(\omega) = \omega^\sim = \{ C \in A^\wedge : \text{id}_A(C) < \infty \} = \{ C \in B^\vee : \text{pd}_B(C) < \infty \} = A^\wedge \cap B^\vee \).

(c) The following conditions are equivalent:
 (c1) \((A, B)\) is bounded below.
 (c2) \(B \subseteq \omega^\sim \).
 (c3) \(\omega^\wedge = B \).
 (c4) \(B \subseteq A^\wedge \).

Proof. (a) Since \((A, B)\) is a co-t-structure on \(T\), we obtain from 3.4 that \(\omega\) is an \(A\)-injective weak-cogenerator in \(A\). Therefore, the first equalities in (a) follows from [14, Proposition 5.9], and the second ones can be proven by dualizing [14, Proposition 5.9].

(b) It follows from [14, Theorem 5.16] and its dual.

(c) (c1) \(\Rightarrow\) (c3) Let \(A^\wedge = T\) (see 4.2). Then, by 3.9, it follows that \((A, B)\) is an Auslander-Buchweitz context on \(T\). Hence \(B = \omega^\wedge\) by 3.8.

(c3) \(\Rightarrow\) (c2) Assume that \(B = \omega^\wedge\). Since \(\omega^\wedge \subseteq \omega^\sim\), we get that \(B \subseteq \omega^\sim\).

(c2) \(\Rightarrow\) (c1) Suppose that \(B \subseteq \omega^\sim\). We assert that \(T = A^\wedge\). Indeed, since \((A, B)\) is a co-t-structure on \(T\), we have that \(T = A[-1] \ast A^\perp[1] = (A \ast A^\perp)[1];\) and so \(T = A \ast A^\perp\). Thus for any \(C \in T\) there is a distinguished triangle \(Z[1] \to A \to C \to Z\) in \(T\) with \(A \in A\) and \(Z \in A^\perp\). But \(Z[1] \in A^\perp[1] = B \subseteq \omega^\sim \subseteq A^\wedge\) by (b); proving that \(C \in A^\wedge\).

(c3) \(\Leftrightarrow\) (c4) It follows from the equality \(\omega^\wedge = A^\wedge \cap B\) (see (a)). ✷

The results for bounded above co-t-structures can be stated and proved. To give an example, we give the following characterization of bounded above co-t-structures.

Remark 4.6. Let \((A, B)\) be a co-t-structure on \(T\) and \(\omega := A \cap B\). Then, the following conditions are equivalent:
 (a) \((A, B)\) is bounded above.
 (b) \(A \subseteq \omega^\sim\).
 (c) \(\omega^\vee = A\).
 (d) \(A \subseteq B^\vee\).

Following the terminology for t-structures on triangulated categories, and also \([6]\) and \([15]\), we give the following definitions.

Definition 4.7. Let \((A, B)\) be a co-t-structure on \(T\), and let \(\omega := A \cap B\). It is said that \((A, B)\) is faithful below (respectively, faithful above) if \(\sqcup_{n \in \mathbb{Z}} A[n] = \Sigma_T(\omega)\) (respectively, \(\sqcup_{n \in \mathbb{Z}} B[n] = \Sigma_T(\omega)\)). So, it is said that \((A, B)\) is faithful if it is both faithful below and above.

Proposition 4.8. Let \((A, B)\) be a co-t-structure on \(T\), and let \(\omega := A \cap B\). Then, the following conditions are equivalent.
 (a) \((A, B)\) is faithful below.
(b) \(A^\land = \Delta_T(\omega) \).
(c) \(A^\land \subseteq B^\lor \).
(d) \((A, B)\) is bounded above.

Proof. (a) \(\Leftrightarrow\) (b) It follows from 2.5.
(b) \(\Leftrightarrow\) (c) It follows from 4.5 (b).
(c) \(\Leftrightarrow\) (d) First, observe that \(A^\land \subseteq B^\lor \) is equivalent to the inclusion \(A \subseteq B^\lor \) since \(B^\lor \) is a triangulated subcategory of \(T \) (see 2.6). Therefore, by 4.6, we get the result. \(\square\)

Corollary 4.9. Let \((A, B)\) be a co-t-structure on \(T \). Then, \((A, B)\) is bounded if and only if it is faithful.

Proof. It follows from 4.8 and its dual. \(\square\)

Theorem 4.10. Let \((A, B)\) be a bounded co-t-structure on \(T \), and let \(\omega := A \cap B \).

Then, the following statements hold.

(a) \(\Delta_T(\omega) = (\omega^\lor)^\land = T \), \(\cup_\omega = \omega^\land = B \) and \(\omega \mathcal{M} = \omega^\lor = A \).
(b) \(\text{id}_A(C) = \text{id}_\omega(C) = \text{coresdim}_B(C) < \infty \) for all \(C \in T \).
(c) \(\text{pd}_B(C) = \text{pd}_\omega(C) = \text{resdim}_A(C) < \infty \) for all \(C \in A \).
(d) \(\text{coresdim}_B(C) = \text{coresdim}_\omega(C) < \infty \) for all \(C \in B \).

Proof. (a) It follows from 3.8 [4.3] and its dual.
(b) Since \(\omega^\sim = T \) (see (a)), we get from 4.8 (b) that \(\text{id}_A(C) < \infty \) for all \(C \in T \). Thus, (b) follows from 4.4 (a) and [14] Proposition 5.17 (a).
(c) Using that \((A, B)\) is a co-t-structure on \(A^\land = T \), we get from 3.4 that the pair \((A, \omega)\) satisfies the needed hypothesis in [14] Theorem 5.6; proving (c).
(d) and (e) They follow from 4.4 since \(\omega^\lor = A \) and \(\omega^\land = B \). \(\square\)

Now, we will do one application of [4.10] to the so called Rouquier’s relative dimension which was introduced in [14]. Let \(\mathcal{X} \) and \(\mathcal{Y} \) be classes of objects in a triangulated category \(T \). Consider the subcategory \(\langle \mathcal{X} \rangle := \text{add} \left(\bigcup_{i \in \mathbb{Z}} \mathcal{X}[i] \right) \) and let \(\mathcal{X} \diamond \mathcal{Y} := \langle \mathcal{X} \ast \mathcal{Y} \rangle \). Following R. Rouquier in [16], we inductively define \(\langle \mathcal{X} \rangle_0 := 0 \) and \(\langle \mathcal{X} \rangle_n := \langle \mathcal{X} \rangle_{n-1} \diamond \langle \mathcal{X} \rangle \) for \(n \geq 1 \). So, we start with the following definition.

Definition 4.11. [14] Definition 6.3 Let \(T \) be a triangulated category, \(\mathcal{X} \) a class of objects in \(T \) and \(M \in T \). The \(\mathcal{X} \)-dimension of \(M \) is

\[\dim_\mathcal{X}(M) := \min \{ n \in \mathbb{N} \text{ such that } M \in \langle \mathcal{X} \rangle_{n+1} \}. \]

For a class \(\mathcal{Y} \) of objects in \(T \), we set \(\dim_\mathcal{X}(\mathcal{Y}) := \sup \{ \dim_\mathcal{X}(Y) : Y \in \mathcal{Y} \} \).

Corollary 4.12. Let \((A, B)\) be a bounded co-t-structure on \(T \), and let \(\omega := A \cap B \). Then

(a) \(\max \{ \dim_A(C), \dim_B(C) \} \leq \dim_\omega(C) \) for all \(C \in T \).
Dually, by induction and using the definition of Remark 4.14. Let \(\Omega := \) and let \(\cap \) is a cogenerator in \(\mathcal{T} \). Therefore, using that Proposition 4.15.

Proof. Since \(\omega = \mathcal{A} \cap \mathcal{B} \), (a) follows from \([14\text{ Lemma 6.4 (b)}]\). Let \(\mathcal{X} \) be any class of objects in \(\mathcal{T} \) and \(M \in \mathcal{T} \). Since \(\mathcal{X} \subseteq \langle \mathcal{X} \rangle \), we get by \([14\text{ Proposition 6.6}]\), that \(\dim_{\mathcal{X}}(M) \leq \min \{ \resdim_{\mathcal{X}}(M), \coresdim_{\mathcal{X}}(M) \} \). Hence, the result follows from \([4.10\text{]}) \.

We recall the following well known notions that will be useful in what follows.

Definition 4.13. Let \(\omega \) be a class of objects of the triangulated category \(\mathcal{T} \), and let \(\Omega := \bigcup_{i \in \mathbb{Z}} \omega[i] \). It is said that \(\omega \) is a cogenerator in \(\mathcal{T} \), if \(\Omega^\perp = \{0\} \). Dually, \(\omega \) is a generator in \(\mathcal{T} \), if \(\Omega^\perp = \{0\} \).

Remark 4.14. Let \(\omega \) be a class of objects of the triangulated category \(\mathcal{T} \). So, by induction and using the definition of \(\overline{\mathcal{T}}(\omega) \), it can be seen that \(\omega \) is both a generator and a cogenerator in the triangulated category \(\overline{\mathcal{T}}(\omega) \).

Proposition 4.15. Let \(\mathcal{X} = \text{add}(\mathcal{X}) \) be a cosuspended subcategory of \(\mathcal{T} \) and let \(\omega \) be an \(\mathcal{X} \)-injective weak-cogenerator in \(\mathcal{X} \). Then, \(\cap_{i \in \mathbb{Z}} \mathcal{X}[i] = \{0\} \) if and only if \(\omega \) is a cogenerator in \(\overline{\mathcal{T}}(\mathcal{X}) \).

Proof. First, by \([2.3\text{]}) we have that \(\overline{\mathcal{T}}(\mathcal{X}) = \mathcal{X}^\wedge = \bigcup_{n \geq 0} \mathcal{X}[n] \). We assert that \(\cap_{i \in \mathbb{Z}} \mathcal{X}[i] \subseteq \overline{\mathcal{T}}(\mathcal{X})^\perp \), where \(\Omega := \bigcup_{i \in \mathbb{Z}} \omega[i] \). Indeed, let \(M \in \cap_{i \in \mathbb{Z}} \mathcal{X}[i] \) and \(j \in \mathbb{Z} \). Hence \(M = X[j - 1] \) for some \(X \in \mathcal{X} \), and so \(\text{Hom}(M, W[j]) \simeq \text{Hom}(X, W[1]) = 0 \) for any \(W \in \omega \), proving the assertion.

Assume that \(\omega \) is a cogenerator in \(\overline{\mathcal{T}}(\mathcal{X}) \). Hence \(\Omega^\perp \cap \overline{\mathcal{T}}(\mathcal{X}) = \{0\} \) and by the assertion above, it follows that \(\cap_{i \in \mathbb{Z}} \mathcal{X}[i] = \{0\} \).

Suppose now that \(\cap_{i \in \mathbb{Z}} \mathcal{X}[i] = \{0\} \). Let \(Y \in \overline{\mathcal{T}}(\mathcal{X}) \) be non-zero. We prove the existence of an integer \(\ell \) such that \(\text{Hom}(Y, \omega[\ell]) \neq 0 \). Indeed, since \(\overline{\mathcal{T}}(\mathcal{X}) = \bigcup_{i \geq 0} \mathcal{X}[n] \), there is \(n \in \mathbb{N} \) with \(Y = X[n] \) for some \(X \in \mathcal{X} \). Furthermore, using that \(X[n] = X[n - i][i] \) and the fact that \(\mathcal{X} \) is cosuspended, it follows that \(Y \in \mathcal{X}[i] \) for any \(i \geq n \). On the other hand, since \(\cap_{j \in \mathbb{Z}} \mathcal{X}[j] = \{0\} \), we have that there is some \(j_0 < n \) such that \(Y \notin \mathcal{X}[j_0] \). We assert that \(Y \notin \mathcal{X}[i] \) for any \(i \leq j_0 \). It follows from \(\mathcal{X}[i] = \mathcal{X}[i - j_o][j_o] \subseteq \mathcal{X}[j_0] \) and \(Y \notin \mathcal{X}[j_0] \). Now, we set \(\ell := \min \{ s : j_0 < s \leq n \text{ and } Y \in \mathcal{X}[s] \} \). So we have \(Y[-\ell] \in \mathcal{X} \) and then, by using that \(\omega \) is a weak-cogenerator in \(\mathcal{X} \), there exists a distinguished triangle \(X'[-1] \to Y[-\ell] \xrightarrow{f} W \to X' \) with \(X' \in \mathcal{X} \) and \(W \in \omega \).

Hence, the morphism \(f : Y[-\ell] \to W \) is non-zero. In fact if \(f = 0 \), then \(Y[-\ell] \) would be a direct summand of \(X'[-1] \subseteq \mathcal{X}[-1] \), and so \(Y[-\ell + 1] \in \mathcal{X} \); giving a contradiction since \(Y \notin \mathcal{X}[\ell - 1] \). Thus \(\text{Hom}(Y, W[\ell]) \neq 0 \); proving the result. □
Definition 4.16. Let \((A, B)\) be a co-t-structure on \(T\). It said that the pair \((A, B)\) is **non-degenerate below** (respectively, **non-degenerate above**) if \(\cap_{i \in \mathbb{Z}} A[i] = \{0\}\) (respectively, \(\cap_{i \in \mathbb{Z}} B[i] = \{0\}\)). So, it is said that \((A, B)\) is **non-degenerate** if it is both non-degenerate below and above.

Proposition 4.17. Let \((\mathcal{X}, \mathcal{Y})\) be a bounded below co-t-structure on a triangulated category \(T\), and let \(\omega := \mathcal{X} \cap \mathcal{Y}\). Then, the following conditions are equivalent.

(a) \((\mathcal{X}, \mathcal{Y})\) is non-degenerate below.
(b) \(\omega\) is a cogenerator in \(T\).

Proof. It follows from 4.15, 3.4 (a) and 2.5 (c). \(\Box\)

Corollary 4.18. Let \((\mathcal{X}, \mathcal{Y})\) be a bounded co-t-structure on a triangulated category \(T\), and let \(\omega := \mathcal{X} \cap \mathcal{Y}\). Then, the following conditions are equivalent.

(a) \((\mathcal{X}, \mathcal{Y})\) is non-degenerate.
(b) \(\omega\) is both a generator and a cogenerator in \(T\).

Proof. It follows from 4.17 and its dual. \(\Box\)

Corollary 4.19. There is a bijective correspondence \(\mathcal{X} \mapsto (\mathcal{X}, \Xi_T(\mathcal{X}) \cap \mathcal{X}^\perp[-1])\) between cosuspended subcategories \(\mathcal{X} = \text{add}(\mathcal{X})\) of \(T\) such that \(\mathcal{X} \cap \mathcal{X}^\perp[-1]\) is both a weak-cogenerator in \(\mathcal{X}\) and a cogenerator in \(\Xi_T(\mathcal{X})\), and non-degenerate below co-t-structures \((\mathcal{X}, \mathcal{Y})\) on \(\Xi_T(\mathcal{X})\).

Proof. From 3.12, co-t-structures \((\mathcal{X}, \mathcal{Y})\) on \(\Xi_T(\mathcal{X})\) correspond bijectively to cosuspended subcategories \(\mathcal{X}\) of \(T\) such that \(\mathcal{X} \cap \mathcal{X}^\perp[-1]\) is a weak-cogenerator in \(\mathcal{X}\). Therefore, the result follows from 4.15 and 4.17. \(\Box\)

The relationship between the different types of co-t-structures is as follows.

Theorem 4.20. Let \((\mathcal{X}, \mathcal{Y})\) be a co-t-structure on a triangulated category \(T\). Then, the following statements are equivalent.

(a) \((\mathcal{X}, \mathcal{Y})\) is bounded.
(b) \((\mathcal{X}, \mathcal{Y})\) is faithful.
(c) \((\mathcal{X}, \mathcal{Y})\) is bounded and non-degenerate.
(d) \(T = \Xi_T(\mathcal{X} \cap \mathcal{Y})\).

Proof. (a) \(\Leftrightarrow\) (b) It is 4.19

(a) \(\Rightarrow\) (c) Assume that \((\mathcal{X}, \mathcal{Y})\) is bounded. Thus, by 4.2 and 4.8 (b), we get that \(T = \Xi_T(\omega)\) for \(\omega := \mathcal{X} \cap \mathcal{Y}\); and so by 4.14 we have that \(\omega\) is both a cogenerator and a generator in \(T\). Then, (c) follows from 4.18.

(c) \(\Rightarrow\) (d) It follows from 4.10 (a).

(d) \(\Rightarrow\) (a) Let \(T = \Xi_T(\mathcal{X} \cap \mathcal{Y})\). Hence we get \(T = \Xi_T(\mathcal{X}) = \Xi_T(\mathcal{Y})\).
Therefore, by 2.3 and 2.6 we get that \((\mathcal{X}, \mathcal{Y})\) is bounded. \(\Box\)
5. siltings and co-t-structures

In this section, we show that in many cases a co-t-structure can be determined by a silting set. We also study the relationship between co-t-structures, silting and relative injective classes. Following [13], we recall the notion of a silting class in triangulated categories.

Definition 5.1. Let ω be a class of objects in \mathcal{T}. It is said that ω is silting if $\text{id}_\omega(\omega) = 0$.

We denote by $\omega \mathcal{U}$ (respectively, \mathcal{U}_ω) the smallest cosuspended (respectively, suspended) subcategory of \mathcal{T}, closed under direct summands and containing ω.

Remark 5.2. Let ω be a class of objects in \mathcal{T}. We define a sequence $\{\varepsilon_i^{-}(\omega)\}_{i \geq 0}$ of classes of objects of \mathcal{T} as follows. Set $\varepsilon_0^{-}(\omega) := \text{add} (\bigcup_{i \leq 0} \omega[i])$. Assume that $\varepsilon_i^{-}(\omega), \varepsilon_{i-1}^{-}(\omega), \ldots, \varepsilon_0^{-}(\omega)$ are already defined. Then, we define $\varepsilon_i^{-}(\omega)$ as the class of objects in \mathcal{T}, which are direct summands of objects in $\varepsilon_{i-1}^{-}(\omega) * \varepsilon_0^{-}(\omega)$. It is not hard to show that $\omega \mathcal{U} = \bigcup_{i \geq 0} \varepsilon_i^{-}(\omega)$.

Lemma 5.3. Let (\mathcal{X}, ω) be a pair of classes of objects in \mathcal{T}, such that $\omega \subseteq \mathcal{X}$. Then, the following statements hold.

(a) If \mathcal{X} is cosuspended and $\mathcal{X} = \text{add}(\mathcal{X})$, then $\mathcal{X}[-1] * \omega$ is closed under direct summands.

(b) If ω is silting and closed under direct sums, then ω is closed under extensions.

Proof. (a) Assume that \mathcal{X} is cosuspended and closed under direct summands. Let $C \in \mathcal{X}[-1] * \omega$. Then, there is a distinguished triangle $X[-1] \rightarrow C \rightarrow W \rightarrow X$ where $X \in \mathcal{X}$ and $W \in \omega$. Let Z be a direct summand of C, hence there is distinguished triangle $Z \rightarrow C \rightarrow Z'[1]$, which splits. Using the octahedral axiom, we get distinguished triangles $\Delta_1 : Z \rightarrow C' \rightarrow V \rightarrow Z[1]$ and $\Delta_2 : Z' \rightarrow V \rightarrow X \rightarrow Z'[1]$. By the hypothesis, we have that $\mathcal{X}[-1] * \omega \subseteq \mathcal{X} * \mathcal{X} \subseteq \mathcal{X}$; and so $C \in \mathcal{X}$, giving us that Z and Z' belong to \mathcal{X}. Thus $V \in \mathcal{X}$ (see Δ_2), and hence from Δ_1, we get that $Z \in \mathcal{X}[-1] * \omega$.

(b) Assume that ω is silting and closed under direct sums. Let $\Delta : W \rightarrow X \rightarrow W' \rightarrow W'[1]$ be a distinguished triangle with $W, W' \in \omega$. Using that $\text{id}_\omega(\omega) = 0$, we obtain that the triangle Δ splits; and hence $X \in \omega$ since ω is closed under direct sums. □

Proposition 5.4. Let ω be a silting class in \mathcal{T} such that $\text{add}(\omega) = \omega$. Then ω is an $\omega \mathcal{U}$-injective weak-cogenerator in $\omega \mathcal{U}$.

Proof. From 5.2, we know that $\omega \mathcal{U} = \bigcup_{n \geq 0} \varepsilon_n^{-}(\omega)$. Hence, it is enough to prove, by induction on n, that $\varepsilon_n^{-}(\omega) \subseteq \omega \mathcal{U}[-1] * \omega$ for any $n \in \mathbb{N}$. Assume
that add \((\omega) = \omega\). In particular, we have that \(\varepsilon_0^- (\omega) = \bigoplus_{i \leq 0} \omega[i] \), where direct sums means here finite direct sums.

If \(X \in \varepsilon_0^- (\omega) \), then there is a split distinguished triangle \(W' \to X \to W \to W'[1] \), where \(W' \in \bigoplus_{i < 0} \omega[i] \) and \(W \in \omega \). Hence \(X \in \omega \mathcal{U}[-1] \ast \omega \).

Let \(n > 1 \), and take \(X \in \varepsilon_n^- (\omega) \). Then, there is a distinguished triangle \(X_{n-1} \to X' \to X_0 \to X_{n-1}[1] \) with \(X_0 \in \varepsilon_0^- (\omega) \), \(X_{n-1} \in \varepsilon_{n-1}^- (\omega) \) and \(X \) is a direct summand of \(X' \). For \(X_0 \) we have an split distinguished triangle \(W' \to X_0 \to X \to W'[,1] \), where \(W' \in \bigoplus_{i < 0} \omega[i] \) and \(W \in \omega \). Therefore, by the base change argument (using the octahedral axiom), we get the following commutative and exact diagram in \(\mathcal{T} \)

\[
\begin{array}{ccc}
W[-1] & \longrightarrow & W[-1] \\
\downarrow & & \downarrow \\
X_{n-1} & \longrightarrow & Y \longrightarrow W' \longrightarrow X_{n-1}[1] \\
\downarrow & & \downarrow & & \downarrow \\
X_{n-1} & \longrightarrow & X' \longrightarrow X_0 \longrightarrow X_{n-1}[1] \\
\downarrow g & & \downarrow f & & \downarrow \\
W & \longrightarrow & W
\end{array}
\]

By induction there exist a distinguished triangle \(U[-1] \to X_{n-1} \to U \to W'' \) where \(U \in \omega \mathcal{U} \) and \(W'' \in \omega \). Since \(\text{Hom}(\bigoplus_{i < 0} \omega[i], \omega[1]) = 0 \) because \(\omega \) is silting, we have a morphism \(\alpha : W' \to U \) that can be completed to a distinguished triangle \(W' \to U \to V \to W'[1] \). By using the octahedral axiom, we get the following exact and commutative diagram in \(\mathcal{T} \)

\[
\begin{array}{ccc}
U[-1] & \longrightarrow & V[-1] \longrightarrow W' \longrightarrow U \\
\downarrow & & \downarrow & & \downarrow \\
X_{n-1} & \longrightarrow & Y \longrightarrow W' \longrightarrow X_{n-1}[1] \\
\downarrow h & & \downarrow & & \downarrow h[1] \\
W'' & \longrightarrow & W'' \longrightarrow 0 \longrightarrow W''[1] \\
\downarrow & & \downarrow & & \downarrow \\
U & \longrightarrow & V
\end{array}
\]
Corollary 5.8. Let $X_t : Y \to W' \to V$, it follows that $V[-1] \in \omega \mathcal{U}[-1]$ since $\omega \mathcal{U}[-1]$ is closed under extensions. Now, the triangle $V[-1] \to Y \to W'$ implies that $Y \in \omega \mathcal{U}[-1] \ast \omega$. Then $X' \in \omega \mathcal{U}[-1] \ast \omega \ast \omega$ since we have the triangle $W[-1] \to Y \to X' \ast \mathcal{W}$. But $\omega \ast \omega \in \omega$ (see 5.3 (b)), and so $X' \in \omega \mathcal{U}[-1] \ast \omega \ast \omega \subseteq \omega \mathcal{U}[-1] \ast \omega$. Therefore, from 5.3 (a), we conclude that $X \in \omega \mathcal{U}[-1] \ast \omega$; hence X is a weak-cogenerator in $\omega \mathcal{U}$. Finally, we prove that \mathcal{U} is also $\omega \mathcal{U}$-injective. Indeed, since $\text{id}_\omega(\omega) = 0$ it follows from Lemma 4.2 (a2) that $\omega \subseteq \omega \mathcal{U}^{[-1]}$; and using that $\omega \mathcal{U}^{[-1]} = \omega \mathcal{U} \mathcal{U}^{[-1]}$, we get by Lemma 4.2 (a2) that $\text{id}_{\omega \mathcal{U}}(\omega) = 0$. □

The following result is very similar to Theorem 4.3.2(II), which was proved with different techniques.

Theorem 5.5. Let ω be a silting class in \mathcal{T} such that $\omega = \text{add}(\omega)$. Then, $\omega = \omega \mathcal{U} \cap \mathcal{U}_\omega$ and the pair $(\omega \mathcal{U}, \mathcal{U}_\omega)$ is a bounded co-\mathcal{T}-structure on \mathcal{U}_ω.

Proof. Since $\Sigma_{\mathcal{T}}(\omega) = \Sigma_{\mathcal{T}}(\omega \mathcal{U})$, it follows from 5.5 that $\Sigma_{\mathcal{T}}(\omega) = \omega \mathcal{U}^{\omega}$. On the other hand, by 5.3 and 4.11 (a), we get that the pair $(\omega \mathcal{U}, \omega^{\mathcal{U}})$ is a co-\mathcal{T}-structure on $\mathcal{U}_\omega = \omega \mathcal{U}$ and $\omega = \omega \mathcal{U} \cap \omega^{\mathcal{U}}$. In particular, from 4.5 (a), it follows that $\mathcal{U}_\omega = \omega^{\mathcal{U}}$ and hence $\mathcal{U}_\omega = \mathcal{U}_\omega$. Therefore, the pair $(\omega \mathcal{U}, \mathcal{U}_\omega)$ is a bounded below and faithful below co-\mathcal{T}-structure on \mathcal{U}_ω, and $\omega = \omega \mathcal{U} \cap \mathcal{U}_\omega$. So, from 4.5 we get that $(\omega \mathcal{U}, \mathcal{U}_\omega)$ is bounded on \mathcal{U}_ω. Furthermore, by 4.10 (a), we obtain that $\omega \mathcal{U} = \omega \mathcal{U}$ and $\mathcal{U}_\omega = \mathcal{U}_\omega$. □

Remark 5.6. Let ω be a silting class in \mathcal{T} such that $\omega = \text{add}(\omega)$. Then, by 5.3 it follows that $\omega \mathcal{U} = \omega \mathcal{U}$ and $\mathcal{U}_\omega = \mathcal{U}_\omega$.

Definition 5.7. For a given triangulated category \mathcal{T}, we introduce the following classes:

(a) \mathcal{S} consists of all silting classes ω of \mathcal{T} such that $\text{add}(\omega) = \omega$.

(b) \mathcal{C}_b consists of all bounded co-\mathcal{T}-structures $(\mathcal{X}, \mathcal{Y})$ on $\Sigma_{\mathcal{T}}(\mathcal{X} \cap \mathcal{Y})$.

Corollary 5.8. Let \mathcal{T} be a triangulated category. Then, the correspondence $\varphi : \mathcal{S} \to \mathcal{C}_b$, given by $\varphi(\omega) := (\omega \mathcal{U}, \mathcal{U}_\omega)$, is bijective.

Proof. From 5.3 it follows that $\varphi : \mathcal{S} \to \mathcal{C}_b$ is well defined and injective. Let $(\mathcal{X}, \mathcal{Y})$ in \mathcal{C}_b, and consider $\omega := \mathcal{X} \cap \mathcal{Y}$. Since $(\mathcal{X}, \mathcal{Y})$ is a bounded co-\mathcal{T}-structure on $\Sigma_{\mathcal{T}}(\omega)$, we conclude by 4.10 (a) that $\varphi(\omega) = (\mathcal{X}, \mathcal{Y})$; proving that φ is also surjective. □

Corollary 5.9. Let \mathcal{T} be a triangulated category. Then, there is a bijective correspondence $(\mathcal{X}, \mathcal{Y}) \mapsto \omega := \mathcal{X} \cap \mathcal{Y}$, with inverse $\omega \mapsto (\omega \mathcal{U}, \mathcal{U}_\omega)$, between bounded co-$\mathcal{T}$-structures $(\mathcal{X}, \mathcal{Y})$ on \mathcal{T} and silting classes $\omega = \text{add}(\omega)$ such that $\mathcal{T} = \Sigma_{\mathcal{T}}(\omega)$.

Proof. It follows from 5.8 and 4.20 □

The next result characterizes when a cosuspended subcategory of \mathcal{T} determines a bounded co-\mathcal{T}-structure on \mathcal{T}.
Theorem 5.10. Let \mathcal{T} be a triangulated category, and \mathcal{X} be a cosuspended subcategory of \mathcal{T} such that $\mathcal{X} = \text{add}(\mathcal{X})$. Then, the following statements are equivalent.

(a) There is a bounded co-t-structure $(\mathcal{X}, \mathcal{Y})$ on \mathcal{T}.

(b) $\overline{\mathcal{X}}(\mathcal{X} \cap \mathcal{X}^\perp[-1]) = \mathcal{T}$.

(c) There is an \mathcal{X}-injective $\omega = \text{add}(\omega)$ such that $\overline{\mathcal{X}}(\omega) = \mathcal{T}$ and $\omega \subseteq \mathcal{X}$.

(d) There is a silting $\omega = \text{add}(\omega)$ such that $\overline{\mathcal{X}}(\omega) = \mathcal{T}$ and $\omega \subseteq \mathcal{X} \subseteq \omega^\perp$.

Moreover, if one of the above conditions hold, we have that $\mathcal{X} = \omega \cup \omega = \omega^\perp$, $\mathcal{Y} = \omega \cap \mathcal{Y} = \mathcal{X} \cap \mathcal{X}^\perp[-1]$.

Proof. (a) \Rightarrow (d) Assume that $(\mathcal{X}, \mathcal{Y})$ is a bounded co-t-structure on \mathcal{T}, and let $\omega = \mathcal{X} \cap \mathcal{Y}$. Then, by 5.9 we get that $\omega = \text{add}(\omega)$ is a silting class such that $\overline{\mathcal{X}}(\omega) = \mathcal{T}$. On the other hand, since $(\mathcal{X}, \mathcal{Y})$ is bounded, it follows from 4.10 (a) that $\mathcal{X} = \omega \cup \omega = \omega^\perp$.

(d) \Rightarrow (a) Suppose there is a silting class ω such that $\omega \subseteq \mathcal{X} \subseteq \omega^\perp$ and $\overline{\mathcal{X}}(\omega) = \mathcal{T}$. Hence, by 5.5, it follows that $\omega \cup \omega$ is a bounded co-t-structure on \mathcal{T}, and $\omega = \omega \cap \omega$. In particular, from 4.10 (a), we know that $\omega \cup \omega = \omega^\perp$. Furthermore, since $\omega \subseteq \mathcal{X}$, it follows that $\omega \cup \omega \subseteq \mathcal{X}$ and hence $\mathcal{X} = \omega \cup \omega$.

(a) \Rightarrow (b) Let $(\mathcal{X}, \mathcal{Y})$ be bounded. Then, by 4.10 (b), we get that $\overline{\mathcal{X}}(\omega) = \mathcal{T}$, where $\omega := \mathcal{X} \cap \mathcal{Y} = \mathcal{X} \cap \mathcal{X}^\perp[-1]$ (see 3.2 (c)).

(b) \Rightarrow (c) Let $\overline{\mathcal{X}}(\mathcal{X} \cap \mathcal{X}^\perp[-1]) = \mathcal{T}$. Since \mathcal{X} is a cosuspended subcategory of \mathcal{T}, it follows from [14, Lemma 4.2 (a2)], that $\omega := \mathcal{X} \cap \mathcal{X}^\perp[-1]$ is \mathcal{X}-injective.

(c) \Rightarrow (a) Assume the hypothesis in (c). In particular, ω is silting since $\text{id}_\mathcal{X}(\omega) = 0$. Thus, from 5.9, it follows that $\omega \cup \omega$ is a bounded co-t-structure on \mathcal{T} and also that $\omega = \omega \cap \omega$. Furthermore $\omega \cup \omega \subseteq \mathcal{X}$ since $\omega \subseteq \mathcal{X}$. On the other hand, since $\text{pd}_\omega(\mathcal{X}) = \text{id}_\mathcal{X}(\omega) = 0$, it follows from [14, Lemma 4.2 (a1)], that $\mathcal{X} \subseteq \omega \cup \omega = \omega \cup \omega$ (see 3.2 (c)); and hence $\mathcal{X} = \omega \cup \omega$. \qed

6. co-t-structures on $\mathbf{D}^b(\mathcal{H})$

Throughout this section, k denotes an algebraically closed field and \mathcal{H} an abelian hereditary k-category which is Hom-finite, Ext-finite and has a tilting object. We will consider the bounded derived category $\mathbf{D}^b(\mathcal{H})$ which is triangulated and has been intensively studied (see, for example, [9] and [10]).

In this section, we give a description of the bounded co-t-structures on $\mathcal{T} := \mathbf{D}^b(\mathcal{H})$. In this case, the obtained results take a more complete form that in the preceding section.

In what follows, we need the following useful lemma. For details, we refer the reader to [3].
Lemma 6.1. \[3\] Let \(\omega \) be a set in the triangulated category \(\text{D}^b(\mathcal{H}) \). Then, the following statements hold.

(a) \(\omega \) is a generator in \(\text{D}^b(\mathcal{H}) \) if and only if it is a cogenerator in \(\text{D}^b(\mathcal{H}) \).
(b) Let \(\omega \) be a silting class in \(\text{D}^b(\mathcal{H}) \). Then, \(\omega \) is a generator in \(\text{D}^b(\mathcal{H}) \) if and only if \(\Delta_{\text{D}^b(\mathcal{H})}(\omega) = \text{D}^b(\mathcal{H}) \).

Proof. (a) It follows from \[3\] Lemma 2.1 since \(\text{D}^b(\mathcal{H}) \) has a Serre duality.
(b) \(\Rightarrow \) By \[3\] Corollary 3.2 (b)], we know that, for every complex \(X \in \mathcal{T} \), there is a distinguished triangle \(W \to X \to L \to W[1] \) such that \(W \in \Delta_{\text{D}^b(\mathcal{H})}(\omega) \) and \(L \in \Delta_{\text{D}^b(\mathcal{H})}(\omega)^\perp \). If \(\omega \) is a generator then \(L = 0 \) and so \(X \simeq W \in \Delta_{\mathcal{T}}(\omega) \), proving that \(\Delta_{\text{D}^b(\mathcal{H})}(\omega) = \text{D}^b(\mathcal{H}) \). \(\square \)

Proposition 6.2. Let \((\mathcal{X}, \mathcal{Y})\) be a co-t-structure on \(\text{D}^b(\mathcal{H}) \). Then, the following statements are equivalent.

(a) \((\mathcal{X}, \mathcal{Y})\) is bounded.
(b) \((\mathcal{X}, \mathcal{Y})\) is non-degenerate below and bounded below.
(c) \((\mathcal{X}, \mathcal{Y})\) is non-degenerate above and bounded above.

Proof. (a) \(\Rightarrow \) (b) It follows from \[4\] Proposition 4.20.
(b) \(\Rightarrow \) (a) Assume the hypothesis in (b). Then, by \[4\] Proposition 4.17, we get that \(\omega \) is a cogenerator in \(\text{D}^b(\mathcal{H}) \). Hence, from 6.1 and 4.20, we conclude that \((\mathcal{X}, \mathcal{Y})\) is bounded.

Finally, the equivalence between (c) and (a), can be proven in a similar way we did for (a) and (b). \(\square \)

The following result gives a characterization, in terms of generators and cogenerators, of the bounded co-t-structures on \(\text{D}^b(\mathcal{H}) \).

Theorem 6.3. Let \(\mathcal{X} \) be a cosuspended subcategory of \(\text{D}^b(\mathcal{H}) \) such that \(\mathcal{X} = \text{add}(\mathcal{X}) \). Then, the following statements are equivalent.

(a) There is a bounded co-t-structure \((\mathcal{X}, \mathcal{Y})\) on \(\text{D}^b(\mathcal{H}) \).
(b) \(\mathcal{X} \cap \mathcal{X}^\perp[-1] \) is a generator set in \(\text{D}^b(\mathcal{H}) \).
(c) There is an \(\mathcal{X} \)-injective set \(\omega = \text{add}(\omega) \), which is a cogenerator in \(\text{D}^b(\mathcal{H}) \) and \(\omega \subseteq \mathcal{X} \).

Proof. Since \(\mathcal{X} \) is cosuspended, it follows by \[13\] Lemma 4.2 (a2)] that \(\mathcal{X} \cap \mathcal{X}^\perp[-1] \) is \(\mathcal{X} \)-injective; and hence, it is silting. Therefore, the result follows from \[5\] Proposition 6.10 and \[6\]. \(\square \)

Corollary 6.4. Let \(\mathcal{X} \) be a cosuspended subcategory of \(\text{D}^b(\mathcal{H}) \) such that \(\mathcal{X} = \text{add}(\mathcal{X}) \). If \(\mathcal{X} \cap \mathcal{X}^\perp[-1] \) is a generator set in \(\mathcal{T} \), then \(\mathcal{X}^\wedge = \mathcal{T} \) and \(\mathcal{X} \) is a precovering class in \(\mathcal{T} \).

Proof. It follows from \[6\] Proposition 6.3 (a) and \[3\] Proposition 3.11 (b). \(\square \)
Corollary 6.5. Let \((\mathcal{X}, \omega)\) be a pair of classes of objects of \(D^b(\mathcal{H})\), which are closed under direct summands, and let \(\mathcal{X}\) be cosuspended. Then, the following conditions are equivalent.

(a) \(\omega\) is an \(\mathcal{X}\)-injective weak-cogenerator in \(\mathcal{X}\); \(\bigcap_{i \in \mathbb{Z}} \mathcal{X}[i] = \{0\}\) and \(\mathcal{X}^\perp = D^b(\mathcal{H})\).
(b) \(\omega \subseteq \mathcal{X} \subseteq \mathcal{X}^\perp \) and \(\omega = \text{add} (\omega)\) is a silting cogenerator set in \(D^b(\mathcal{H})\).
(c) \(\omega = \text{add} (\omega) \subseteq \mathcal{X}\) and \(\omega\) is an \(\mathcal{X}\)-injective cogenerator set in \(D^b(\mathcal{H})\).
(d) \(\omega = \mathcal{X} \cap \mathcal{X}^\perp [-1]\) and \(\omega\) is a generator set in \(D^b(\mathcal{H})\).

Moreover, if one of the above conditions hold, we have that \(\mathcal{X} = \omega \mathcal{U} = \omega^\perp\).

Proof. (a) \(\Rightarrow\) (b) By \ref{thm:6.4} (a) and \ref{thm:2.4}, there is a bounded below co-t-structure \((\mathcal{X}, \mathcal{Y})\) on \(D^b(\mathcal{H})\). Furthermore, by \ref{thm:4.13}, we get that \(\omega\) is a cogenerator set in \(D^b(\mathcal{H})\); and so, by \ref{thm:6.1} and \ref{thm:4.20}, it follows that \((\mathcal{X}, \mathcal{Y})\) is bounded. Hence (b) follows from \ref{thm:6.10} (d).

(b) \(\Rightarrow\) (a) By \ref{thm:6.1} it follows that \(\Sigma_{D^b(\mathcal{H})}(\omega) = D^b(\mathcal{H})\). Therefore, the condition (d) in \ref{thm:5.10} holds. Hence (a) follows by \ref{thm:3.11} (a) and \ref{thm:4.15}.

(b) \(\Leftrightarrow\) (c) It follows from \ref{thm:6.1}, \ref{thm:5.10} and \ref{thm:6.3}.

(a) \(\Leftrightarrow\) (d) It follows from \ref{thm:6.3}, \ref{thm:3.4}, \ref{thm:6.1} and \ref{thm:4.15}.

Let \(\omega\) be a class of objects of \(D^b(\mathcal{H})\). We say that \(\omega\) is of finite type if there exist a finite number of pairwise non isomorphic indecomposable objects \(W_1, W_2, \cdots, W_n\) in \(D^b(\mathcal{H})\) satisfying that \(\text{add}(\omega) = \text{add}(\{W_1, W_2, \cdots, W_n\})\).

In such a case, we set \(\text{ind}(\omega) := \{W_1, W_2, \cdots, W_n\}\) and \(\text{rk}(\omega) := n\). We also denote by \(\text{rk}_{K_0}(\mathcal{H})\) the rank of the Grothendieck group associated with \(\mathcal{H}\).

Lemma 6.6. \cite{3} The following statements holds.

(a) If \(\omega\) is a silting set in \(D^b(\mathcal{H})\), then \(\text{rk}(\omega) \leq \text{rk}_{K_0}(\mathcal{H})\).
(b) Let \(\mathcal{Y} = \text{add}(\mathcal{Y})\) be a suspended and precovering subcategory of \(D^b(\mathcal{H})\), and let \(\omega := \mathcal{Y} \cap \mathcal{Y}^\perp[1]\). Then, \(\text{rk}(\omega) = \text{rk}_{K_0}(\mathcal{H})\) if and only if \(\omega\) is a generator in \(D^b(\mathcal{H})\). Furthermore, if this is the case, then \(\mathcal{Y} = \mathcal{U}_\omega = \mathcal{U}_{\omega}\).

Proof. (a) By \ref{thm:5.4}, we know that \(\omega\) is \(\omega\mathcal{U}\)-injective. Therefore, the item (a) is just the dual of \cite{3} Theorem 2.3 (b)]).

(b) This is \cite{3} Corollary 4.4. Observe that the equality \(\mathcal{U}_\omega = \mathcal{U}_{\omega}\) follows from \ref{thm:5.6}.

Theorem 6.7. There are bijective correspondences

\[(\mathcal{X}, \mathcal{Y}) \mapsto \mathcal{Y}, \quad \mathcal{Y} \mapsto \omega := \mathcal{Y} \cap \mathcal{Y}^\perp[1]\] and \(\omega \mapsto (\omega \mathcal{U}, \mathcal{U}_\omega)\)

between the following classes:

(a) Bounded co-t-structures \((\mathcal{X}, \mathcal{Y})\) on \(D^b(\mathcal{H})\).
(b) Suspended and precovering subcategories \(\mathcal{Y} = \text{add}(\mathcal{Y})\) of \(D^b(\mathcal{H})\) such that \(\text{rk}(\mathcal{Y} \cap \mathcal{Y}^\perp[1]) = \text{rk}_{K_0}(\mathcal{H})\).
(c) Silting sets \(\omega = \text{add}(\omega)\) in \(D^b(\mathcal{H})\) such that \(\text{rk}(\omega) = \text{rk}_{K_0}(\mathcal{H})\).
Proof. By [3] Corollary 4.5 and [6.6] (b), we have that the correspondence \(\mathcal{Y} \mapsto \mathcal{Y} \cap \perp \mathcal{Y}[1] \) between the classes of items (b) and (c) is bijective with inverse \(\omega \mapsto \mathcal{U} \). We prove now that the correspondence \(\mathcal{X} \mapsto \mathcal{X} \cap \mathcal{Y} \) between the classes of items (a) and (c) is bijective with inverse \(\omega \mapsto (\omega, \mathcal{U}, \mathcal{U}_\omega) \). Indeed, let \(\mathcal{X} \) be a pair belonging to item (a). By [5.10] and [6.3] it follows that \(\mathcal{X} \cap \mathcal{Y} = \mathcal{Y} = \mathcal{U}_\omega \mathcal{Y} \). Hence, by applying [3] Corollary 3.2 (b), we get that \(\mathcal{Y} \) is a bounded and precovering subcategory of \(D^b(\mathcal{H}) \). Therefore, from [6.6] we get that \(\mathcal{X} \cap \mathcal{Y} \) belongs to the item (c). Furthermore, from [5.11] we conclude that \(\beta(\mathcal{X}, \mathcal{Y}) = (\mathcal{X}, \mathcal{Y}) \). Let \(\omega \) be a class belonging to the item (c). In particular, by [5.5] we have that \(\beta(\omega) = (\omega, \mathcal{U}, \mathcal{U}_\omega) \) is a bounded non-degenerate co-t-structure on \(D^b(\mathcal{H}) \) and \(\omega = \mathcal{U} \cap \mathcal{U}_\omega = \alpha \beta(\omega) \). But, using the bijective correspondence between the classes of items (b) and (c), we get that \(\mathcal{U}_\omega \) is a bounded and precovering subcategory of \(D^b(\mathcal{H}) \). Therefore, from [6.6] we obtain that \(\omega \) is a generator in \(D^b(\mathcal{H}) \); and so \(\sum(\mathcal{U}_\omega) = \sum(D^b(\mathcal{H})) \) (see [6.1]), proving that \((\omega, \mathcal{U}, \mathcal{U}_\omega) \) is a bounded co-t-structure on \(D^b(\mathcal{H}) \). That is, \(\beta(\omega) \) belongs to the item (a). ❑

Remark 6.8. The item (b) in [6.7] is equivalent to the following one:

(b') Suspended subcategories \(\mathcal{Y} = \text{add}(\mathcal{Y}) \) of \(D^b(\mathcal{H}) \) such that \(\text{rk}(\mathcal{Y} \cap \perp \mathcal{Y}[1]) = \text{rk}K_0(\mathcal{H}) \). Moreover, if (b') holds, then we have that \(\omega := \mathcal{Y} \cap \perp \mathcal{Y}[1] \) is a generator set in \(D^b(\mathcal{H}) \) and \(\mathcal{Y} = \mathcal{U}_\omega \).

Proof. Let \(\mathcal{Y} = \text{add}(\mathcal{Y}) \) be a suspended subcategory of \(D^b(\mathcal{H}) \), and let \(\omega := \mathcal{Y} \cap \perp \mathcal{Y}[1] \) be such that \(\text{rk}(\omega) = \text{rk}K_0(\mathcal{H}) \). Then, from [6.7] (a), we have that \((\omega, \mathcal{U}, \mathcal{U}_\omega) \) is a bounded co-t-structure on \(D^b(\mathcal{H}) \). Thus \(\sum(D^b(\mathcal{H}))(\omega) = D^b(\mathcal{H}) \) and \(\omega \) is a generator set in \(D^b(\mathcal{H}) \) (see [5.10]). In particular \((\sum(D^b(\mathcal{H}))(\omega)) = \{0\} \); and therefore, from [3] Theorem 4.2 (b), we conclude that \(\mathcal{Y} = \mathcal{U}_\omega \). Finally, using [3] Corollary 3.2, we get that \(\mathcal{Y} \) is precovering in \(D^b(\mathcal{H}) \). ❑

Corollary 6.9. There are bijective correspondences

\[
(\mathcal{X}, \mathcal{Y}) \mapsto \mathcal{X}, \quad \mathcal{X} \mapsto \omega := \mathcal{X} \cap \mathcal{X}^\perp[-1] \quad \text{and} \quad \omega \mapsto (\omega, \mathcal{U}, \mathcal{U}_\omega)
\]

between the following classes:

(a) Bounded co-t-structures \((\mathcal{X}, \mathcal{Y}) \) on \(D^b(\mathcal{H}) \).
(b) Cosuspended and preenveloping subcategories \(\mathcal{X} = \text{add}(\mathcal{X}) \) of \(D^b(\mathcal{H}) \) such that \(\text{rk}(\mathcal{X} \cap \mathcal{X}^\perp[-1]) = \text{rk}K_0(\mathcal{H}) \).
(c) Silting sets \(\omega = \text{add}(\omega) \) in \(D^b(\mathcal{H}) \) such that \(\text{rk}(\omega) = \text{rk}K_0(\mathcal{H}) \).
(d) Cosuspended subcategories \(\mathcal{X} = \text{add}(\mathcal{X}) \) of \(D^b(\mathcal{H}) \) such that \(\text{rk}(\mathcal{X} \cap \mathcal{X}^\perp[-1]) = \text{rk}K_0(\mathcal{H}) \).

Proof. Let \(\mathcal{T} := D^b(\mathcal{H}) \). In order to prove the result, using [6.7] 6.8 and the duality principle for triangulated categories, it is enough to prove the following statement: if \((\mathcal{X}, \mathcal{Y}) \) is a bounded co-t-structure on \(\mathcal{T} \), then \((\mathcal{Y}^\perp, \mathcal{X}^\perp) \) is so on...
the opposite triangulated category \mathcal{T}^{op}. Observe, firstly, that this statement is true since the boundedness property is a self-dual notion; and secondly, $\mathcal{T}^{op} \cong \mathsf{D}^b(\mathcal{H}^{op})$ where \mathcal{H}^{op} is also an abelian hereditary k-category which is Hom-finite, Ext-finite and has a tilting object (see [10 Proposition 1.9]). □

As a nice consequence, from 6.7 (b) and 6.9 (b), is the following corollary, saying that any bounded co-t-structure on $\mathsf{D}^b(\mathcal{H})$ has two companions as t-structures: one on the left and the other on the right. For the convenience of the reader, we recall the definition of t-structure.

Definition 6.10. [4] A pair $(\mathcal{A}, \mathcal{B})$ of subcategories in \mathcal{T} is said to be a t-structure on \mathcal{T} if the following conditions hold.

(a) $\mathcal{A}[1] \subseteq \mathcal{A}$ and $\mathcal{B}[1] \subseteq \mathcal{B}$.

(b) $\text{Hom}_\mathcal{T}(\mathcal{A}, \mathcal{B}[1]) = 0$.

(c) $\mathcal{T} = \mathcal{A} \ast \mathcal{B}[1]$.

Corollary 6.11. Let $(\mathcal{X}, \mathcal{Y})$ be a bounded co-t-structure on $\mathsf{D}^b(\mathcal{H})$. Then, the pairs $(\mathcal{X}[-1], \mathcal{X})$ and $(\mathcal{Y}, \mathcal{Y}^\perp[1])$ are both t-structures on $\mathsf{D}^b(\mathcal{H})$.

Proof. From 6.7 (b) and [13 Proposition 1.3], it follows that \mathcal{Y} is an aisle in $\mathsf{D}^b(\mathcal{H})$. Thus $(\mathcal{Y}, \mathcal{Y}^\perp[1])$ is a t-structure on $\mathsf{D}^b(\mathcal{H})$. Furthermore, by 6.9 (b) and the dual of [13 Proposition 1.3], we get that \mathcal{X} is a co-aisle in $\mathsf{D}^b(\mathcal{H})$, and so, $(\mathcal{X}[-1], \mathcal{X})$ is a t-structure on $\mathsf{D}^b(\mathcal{H})$. □

Remark 6.12. The previous result, says that a bounded co-t-structure on $\mathsf{D}^b(\mathcal{H})$ is always left (respectively, right) adjacent to a t-structure on $\mathsf{D}^b(\mathcal{H})$ in the sense of [6].

Corollary 6.13. Let $(\mathcal{X}, \mathcal{Y})$ be a bounded co-t-structure on $\mathsf{D}^b(\mathcal{H})$. Then \mathcal{X} and \mathcal{Y} are functorially finite in $\mathsf{D}^b(\mathcal{H})$.

Proof. It follows from 6.7, 6.9 and 6.12. □

Corollary 6.14. Let $\omega = \text{add} (\omega)$ be a silting generator set in $\mathsf{D}^b(\mathcal{H})$. Then $\omega \mathcal{U}$ and $\mathcal{U} \omega$ are functorially finite in $\mathsf{D}^b(\mathcal{H})$, $\omega \mathcal{U}^\perp = \mathsf{D}^b(\mathcal{H}) = \mathcal{U} \omega^\perp$ and $\text{rk} (\omega) = \text{rk} K_0 (\mathcal{H})$.

Proof. From 6.1 (b) and 6.6 we know that $(\omega \mathcal{U}, \mathcal{U} \omega)$ is a bounded co-t-structure on $\mathsf{D}^b(\mathcal{H})$. Hence the result follows from 6.13 and 6.7 (c). □

Corollary 6.15. Let ω be a silting set in $\mathsf{D}^b(\mathcal{H})$. Then, ω is a generator in $\mathsf{D}^b(\mathcal{H})$ if and only if $\text{rk} (\omega) = \text{rk} K_0 (\mathcal{H})$.

Proof. Consider $\omega' := \text{add} (\omega)$. Observe that $\omega := \text{add} (\omega')$ and ω' is also a silting set in $\mathsf{D}^b(\mathcal{H})$.

(\Rightarrow) Suppose that ω is a generator in $\mathsf{D}^b(\mathcal{H})$; and hence ω' is so. Then by 6.14 we get $\text{rk} (\omega) = \text{rk} K_0 (\mathcal{H})$ since $\text{rk} (\omega) = \text{rk} (\omega')$.

(\Leftarrow) Assume now that $\text{rk} (\omega) = \text{rk} K_0 (\mathcal{H})$. Thus $\text{rk} (\omega') = \text{rk} K_0 (\mathcal{H})$ and so from 6.7 it follows that $(\omega \mathcal{U}, \mathcal{U} \omega)$ is a bounded co-t-structure on $\mathsf{D}^b(\mathcal{H})$.

Therefore by \(4.8\) and \(4.9\) we get that
\[
\Delta_{D^b(H)}(\omega) = \Delta_{D^b(H)}(\omega') = D^b(H).
\]
Hence \(\omega\) is a generator in \(D^b(H)\) (see \(6.1\)).

Corollary 6.16. Let \(\mathcal{Y} = \text{add}(\mathcal{Y})\) be a suspended subcategory of \(D^b(H)\) and let \(\omega := \mathcal{Y} \cap \mathcal{Y}[1]\). If \(\text{rk}(\omega) = \text{rk} K_0(H)\), then \(\mathcal{Y}\) is functorially finite in \(D^b(H)\), \(\mathcal{Y} = \mathcal{U}_\omega\) and \(\mathcal{Y}^\perp = D^b(H)\).

Proof. Let \(\text{rk}(\omega) = \text{rk} K_0(H)\). Then, by \(6.8\) it follows that \(\omega\) is a generator set in \(D^b(H)\) and \(\mathcal{Y} = \mathcal{U}_\omega\). So the result now follows from \(6.14\). □

Corollary 6.17. Let \(\mathcal{X} = \text{add}(\mathcal{X})\) be a cosuspended subcategory of \(D^b(H)\) and let \(\omega := \mathcal{X} \cap \mathcal{X}^[-1]\). If \(\text{rk}(\omega) = \text{rk} K_0(H)\), then \(\mathcal{X}\) is functorially finite in \(D^b(H)\), \(\mathcal{X} = \mathcal{M} \) and \(\mathcal{X}^\wedge = D^b(H)\).

Proof. It follows from \(6.16\) and the discussion given in the proof of \(6.9\). □

Acknowledgement The authors are very grateful to the referee for the comments, corrections and suggestions.

References

[1] M. Auslander, R.O. Buchweitz. The homological theory of maximal Cohen-Macaulay approximations. *Societe Mathematique de France* 38 (1989), 5-37.

[2] M. Auslander, I. Reiten. Applications of contravariantly finite subcategories. *Advances in Math.* 86 (1991), 111-152.

[3] I. Assem, M.J. Souto Salorio, S. Trepode. Ext-projectives in suspended subcategories. *J. Pure Appl. Algebra* 212 (2008), no. 2, 423-434.

[4] A. A. Beilinson, J. Bernstein, P. Deligne. Faisceaux pervers. *Asterisque* 100 (1982), 5-171.

[5] A. Beligiannis. The homological theory of contravariantly finite subcategories: Auslander-Buchweitz contexts, Gorenstein categories and (co)-stabilization. *Comm. in algebra* 28 (10), (2000), 4547-4596.

[6] M. V. Bondarko. Weight structures vs. t-structures; weight filtrations, spectral sequences, and complexes (for motives and in general). *J. K-Theory* 6 (2010), 387-504.

[7] A. B. Buan. Subcategories of the derived category and cotilting complexes. *Colloq. Math.* 88 (2001), no. 1, 1-11.

[8] A. Beligiannis, I. Reiten. Homological and homotopical aspects of torsion theories. *Mem. Amer. Math. Soc.* 188 (2007) no. 883, viii+207 pp.

[9] D. Happel. Triangulated categories in the representation theory of finite dimensional algebras. *LMS Series* 119, Cambridge University Press (1988).

[10] D. Happel, I. Reiten. Hereditary categories with tilting objects. *Math. Z.* 232 (1999), 559-588.

[11] M. Hashimoto. Auslander-Buchweitz approximations of equivariant modules. *LMS, Lecture Notes Series* 282 (2000) Cambridge University Press.

[12] O. Iyama, Y. Yoshino. Mutation in triangulated categories and rigid Cohen-Macaulay modules. *Invent. math.* 172 (2008), 117-168.

[13] B. Keller, D. Vossieck. Aisles in derived categories. *Bull. Soc. Math. Belg.* 40 (1988), 239-253.

[14] O. Mendoza, C. Sáenz, V. Santiago, M.J. Souto Salorio. Auslander-Buchweitz approximation theory in triangulated categories. *Appl. Categor. Struct.* (2011), DOI 10.1007/s10485-011-9261-4.
[15] D. Pauksztello. Compact corigid objects in triangulated categories and co-t-structures.
Cent. Eur. J. Math. 6 (2008), no. 1, 25-42.

[16] R. Rouquier. Dimension of triangulated categories. K-Theory 1 (2008), 193-256.

Octavio Mendoza Hernández:
Instituto de Matemáticas, Universidad Nacional Autónoma de México
Circuito Exterior, Ciudad Universitaria, C.P. 04510, México, D.F. MEXICO.
omendoza@matem.unam.mx

Edith Corina Sáenz Valadez:
Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México
Circuito Exterior, Ciudad Universitaria, C.P. 04510, México, D.F. MEXICO.
ecsv@lya.fciencias.unam.mx

Valente Santiago Vargas:
Instituto de Matemáticas, Universidad Nacional Autónoma de México
Circuito Exterior, Ciudad Universitaria, C.P. 04510, México, D.F. MEXICO.
valente@matem.unam.mx

María José Souto Salorio:
Facultade de Informática, Universidade da Coruña
15071 A Coruña, ESPAÑA.
mariaj@udc.es