Transiently Consistent SDN Updates: Being Greedy is Hard

Saeed Akhoondian Amiri1, Arne Ludwig1, Jan Marcinkowski2, and Stefan Schmid3,1

1 Technical University Berlin, Berlin, Germany, saeed.amiri@tu-berlin.de, arne@inet.tu-berlin.de
2 Institute of Computer Science, University of Wroclaw, Wroclaw, Poland, jasiekmarc@gmail.com
3 Aalborg University, Aalborg, Denmark, schmiste@cs.aau.dk

Abstract

The software-defined networking paradigm introduces interesting opportunities to operate networks in a more flexible, optimized, yet formally verifiable manner. Despite the logically centralized control, however, a Software-Defined Network (SDN) is still a distributed system, with inherent delays between the switches and the controller. Especially the problem of changing network configurations in a consistent manner, also known as the consistent network update problem, has received much attention over the last years. In particular, it has been shown that there exists an inherent tradeoff between update consistency and speed. This paper revisits the problem of updating an SDN in a transiently consistent, loop-free manner. First, we rigorously prove that computing a maximum (“greedy”) loop-free network update is generally NP-hard; this result has implications for the classic maximum acyclic subgraph problem (the dual feedback arc set problem) as well. Second, we show that for special problem instances, fast and good approximation algorithms exist.

1 Introduction

By outsourcing and consolidating the control over multiple data-plane elements to a centralized software program, Software-Defined Networks (SDNs) introduce flexibilities and optimization opportunities. However, while a logically centralized control is appealing, an SDN still needs to be regarded as a distributed system, posing non-trivial challenges [3, 12, 21, 22, 23, 24, 26]. In particular, the communication channel between switches and controller exhibits non-negligible and varying delays [13, 24], which may introduce inconsistencies during network updates.

Over the last years, the problem of how to consistently update routes in a (software-defined) network has received much attention, both in the systems as well as in the theory community [12, 20, 22, 24, 28]. While in the seminal work by Reitblatt et al. [24], protocols providing strong, per-packet consistency guarantees were presented (using some kind of 2-phase commit approach), it was later observed that weaker, but transiently consistent guarantees can be implemented more efficiently. In particular, Mahajan and Wattenhofer [22] proposed a first algorithm to update routes in a network in a transiently loop-free manner. Their approach is appealing as it does not require packet tagging (which comes with overheads in terms of header space and also introduces challenges in the presence of middleboxes [27] or multiple controllers [3]) or additional TCAM entries [3, 24] (which is problematic given the fast table growth both in the Internet as well as in the highly virtualized datacenter [2]). Moreover, this approach also allows (parts of the) paths to become available sooner [22].

Concretely, to update a network in a transiently loop-free manner, the approach proceeds in rounds [20, 22]: in each round, a “safe subset” of (so-called OpenFlow) switches is updated,
such that, independently of the times and order in which the updates of this round take effect, the network is always consistent. The scheme can be implemented as follows: After the switches of round t have confirmed the successful update (e.g., using acknowledgments [17]), the next subset of switches for round $t + 1$ is scheduled.

It is easy to see that a simple update schedule always exists: we can update switches one-by-one, proceeding from the destination toward the source of a route. In practice, however, it is desirable that updates are fast and new routes become available quickly: Ideally, in order to be able to use as many new links as possible, one aims to maximize the number of concurrently updated switches [22]. We will refer to this approach as the greedy approach.

This paper revisits the problem of updating a maximum number of switches in a transiently loop-free manner. In particular, we consider the two different notions of loop-freedom introduced in [20]: strong loop-freedom and relaxed loop-freedom. The first variant guarantees loop-freedom in a very strict, topological sense: no single packet will ever loop. The second variant is less strict, and allows for a small constant number of packets to loop during the update; however, at no point in time should newly arriving packets be pushed into a loop. It is known that by relaxing loop-freedom, in principle many more switches can be updated simultaneously.

Our Contributions. We rigorously prove that computing the maximum set of switches which can be updated simultaneously, without introducing a loop, is NP-hard, both regarding strong and relaxed loop-freedom. This result may be somewhat suprising, given the very simple graph induced by our network update problem. The result also has implications for the classic Maximum Acyclic Subgraph Problem (MASP), a.k.a. the dual Feedback Arc Set Problem (dFASP): The problem of computing a maximum set of switches which can be updated simultaneously, corresponds to the dFASP, on special graphs essentially describing two routes (the old and the new one). Our NP-hardness result shows that MASP/dFASP are hard even on such graphs. On the positive side, we identify network update problems which allow for optimal or almost optimal (with a provable approximation factor less than 2) polynomial-time algorithms, e.g., problem instances where the number of leaves is bounded or problem instances with bounded underlying undirected tree-width.

2 Model

We are given a network and two policies resp. routes π_1 (the old policy) and π_2 (the new policy). Both π_1 and π_2 are simple directed paths (digraphs). Initially, packets are forwarded (using the old rules, henceforth also called old edges) along π_1, and eventually they should be forwarded according to the new rules of π_2. Packets should never be delayed or dropped at a switch, henceforth also called node: whenever a packet arrives at a node, a matching forwarding rule should be present. Without loss of generality, we assume that π_1 and π_2 lead from a source s to a destination d.

We assume that the network is managed by a controller which sends out forwarding rule updates to the nodes. As the individual node updates occur in an asynchronous manner, we require the controller to send out simultaneous updates only to a “safe” subset of nodes. Only after these updates have been confirmed (acked), the next subset is updated.

We observe that nodes appearing only in one or none of the two paths are trivially updatable, therefore we focus on the network G induced by the nodes V which are part of both policies π_1 and π_2, i.e., $V = \{v : v \in \pi_1 \land v \in \pi_2\}$. We can represent the policies as $\pi_1 = (s = v_1, v_2, \ldots, v_\ell = d)$ and $\pi_2 = (s = v_1, \pi(v_{v_2}), \ldots, \pi(v_{v_{\ell-1}}), v_\ell = d)$, for some permutation $\pi : V \setminus \{s, d\} \to V \setminus \{s, d\}$ and some number ℓ. In fact, we can represent policies in an even
We are interested in the set of to-be-updated nodes \(U \subseteq V \) which need to be updated. Let, for each node \(v \in V \), \(out_t(v) \) (resp. \(in_t(v) \)) denote the outgoing (resp. incoming) edge according to policy \(\pi_t \), and \(out_1(v) \) (resp. \(in_1(v) \)) denote the outgoing (resp. incoming) edge according to policy \(\pi_2 \). Moreover, let us extend these definitions for entire node sets \(S \), i.e., \(out_t(S) = \bigcup_{v \in S} out_t(v) \), for \(i \in \{1, 2\} \), and analogously, for \(in_t \). We define \(s \) to be the first node (say, on \(\pi_1 \)) with \(out_1(v) \neq out_2(v) \), and \(d \) to be the last node with \(in_1(v) \neq in_2(v) \). We are interested in the set of to-be-updated nodes \(U = \{ v \in V : out_1(v) \neq out_2(v) \} \), and define \(n = |U| \). Given this reduction, in the following, we will assume that \(V \) only consists of interesting nodes \((U = V) \).

We require that paths be loop-free \(^{22}\), and distinguish between Strong Loop-Freedom (SLF) and Relaxed Loop-Freedom (RLF) \(^{20}\).

Strong Loop-Freedom. We want to find an update schedule \(U_1, U_2, \ldots, U_k \), i.e., a sequence of subsets \(U_i \subseteq U \) where the subsets form a partition of \(U \) (i.e., \(U = U_1 \cup U_2 \cup \ldots \cup U_k \)), with the property that for any round \(t \), given that the updates \(U_t \) for \(t' < t \) have been made, all updates \(U_t \) can be performed “asynchronously”, that is, in an arbitrary order without violating loop-freedom. Thus, consistent paths will be maintained for any subset of updated nodes, independently of how long individual updates may take.

More formally, let \(U_{ct} = \bigcup_{i=1,\ldots,t-1} U_i \) denote the set of nodes which have already been updated before round \(t \), and let \(U_{ct}, U_{ct}, U_{ct}, \ldots \) etc. be defined analogously. Since updates during round \(t \) occur asynchronously, an arbitrary subset of nodes \(X \subseteq U_t \) may already have been updated while the nodes \(\overline{X} = U_t \setminus X \) still use the old rules, resulting in a temporary forwarding graph \(G_t(U, X, E_t) \) over nodes \(U_t \), where \(E_t = out_t(U_{ct} \cup \overline{X}) \cup out_2(U_{ct} \cup X) \). We require that the update schedule \(U_1, U_2, \ldots, U_k \) fulfills the property that for all \(t \) and for any \(X \subseteq U_t \), \(G_t(U, X, E_t) \) is loop-free.

In the following we will call an edge \((u, v)\) of the new policy \(\pi_2 \) *forward*, if \(v \) is closer (with respect to \(\pi_1 \)) to the destination, resp. *backward*, if \(u \) is closer to the destination. It is also convenient to name nodes after their outgoing edges w.r.t. policy \(\pi_2 \) (e.g., forward or backward); similarly, it is sometimes convenient to say that we update an edge when we update the corresponding node.

While the initial network configuration consists of two paths, in later rounds, the already updated solid edges may no longer form a line from left to right, but rather an arbitrary directed tree, with tree edges directed towards the destination \(d \). We will use the terms *forward* and *backward* also in the context of the tree: they are defined with respect to the direction of the tree root. However, there also emerges a third kind of edges: horizontal edges in-between two different branches of the tree.

Relaxed Loop-Freedom. Relaxed Loop-Freedom (RLF) is motivated by the practical observation that transient loops are not very harmful if they do not occur between the source \(s \) and the destination \(d \). If relaxed loop-freedom is preserved, only a constant number of packets can loop: we will never push new packets into a loop “at line rate”. In other words, even if switches acknowledge new updates late (or never), new packets will not enter loops. Concretely, and similar to the definition of SLF, we require the update schedule to fulfill the property that for all rounds \(t \) and for any subset \(X \), the temporary forwarding graph \(G_t(U, X, E_t') \) is loop-free. The difference is that we only care about the subset \(E_t' \) of \(E_t \) consisting of edges reachable from the source \(s \).

The Greedy Approach. Our objective is to update simultaneously as many nodes (or equivalently, edges) as possible: a greedy approach \(^{22}\). Note that in the first round, computing a maximum update set is trivial: All forward edges can be updated simultaneously, as they will never introduce a cycle; at the same time, no backward edge can be updated.
Greedy is Hard

in the first round, as it can always induce a cycle. Also observe that since all nodes lie on
the path from source to destination, this holds for both strong and relaxed loop-freedom.
However, as we will show in this paper, already in the second round, a computationally hard
problem can arise.

3 Being Greedy is Hard

Interestingly, although the underlying graphs are very simple, and originate from just two
(legal) paths, we now prove that the loop-free network update problem is NP-hard.

> Theorem 1. The greedy network update problem is NP-hard.

Our reduction is from the NP-hard Minimum Hitting Set problem. This proof is similar
for both consistency models: strong and relaxed loop-freedom, and we can present the two
variants together. The inputs to the hitting set problem are:

1. A universe of \(m \) elements \(E = \{ \varepsilon_1, \varepsilon_2, \ldots, \varepsilon_m \} \).
2. A set \(S = \{ S_1, S_2, S_3, \ldots, S_k \} \) of \(k \) subsets \(S_i \subseteq E \).

The objective is to find a subset \(E' \subseteq E \) of minimal size, such that each set \(S_i \) includes
at least one element from \(E' \): \(\forall S_i \in S : S_i \cap E' \neq \emptyset \). In the following, we will assume that
elements are unique and can be ordered \(\varepsilon_1 < \varepsilon_2 \ldots < \varepsilon_m \). The idea of the reduction is to
create, in polynomial time, a legal network update instance where the problem of choosing
a maximum set of nodes which can be updated concurrently is equivalent to choosing a
minimum hitting set. While in the initial network configuration, essentially describing two
paths from \(s \) to \(d \), a maximum update set can be chosen in polynomial time (simply update
all forwarding edges but no backward edges), we show in the following that already in the
second round, the problem can be computationally hard.

More concretely, based on a hitting set instance, we aim to construct a network update
instance of the following form, see Figure 1. For each element \(\varepsilon \in E \), we create a pair of
branches \(\varepsilon_{\text{in}} \) and \(\varepsilon_{\text{out}} \), i.e., \(2m \) branches in total. To model the relaxed loop-free case, in
addition to the \(E \) branches, we add a source-destination branch, from \(s \) to \(d \), depicted on the
right in the figure. We will introduce the following to-be-updated new edges:

1. Set Edges (SEs): The first type of edges models sets. Let us refer to the (ordered)
elements in a given set \(S_i \) by \(\varepsilon_1^{(i)} < \varepsilon_2^{(i)} < \varepsilon_3^{(i)} \ldots \). For each set \(S_i \in S \), we now create \(m+1 \)
edges from each \(\varepsilon_j^{(i)} \) to \(\varepsilon_{j+1}^{(i)} \), in a modulo fashion. That is, we also introduce \(m+1 \) edges
from the last element to the first element of the set. These edges start at the \(\text{out} \) branch of
the smaller index and end at the \(\text{in} \) branch of the larger index. There are no requirements
on how the edges of different sets are placed with respect to each other, as long as they
are not mixed. Moreover, only one instance of multiple equivalent SEs arising in multiple
sets must be kept.

2. Anti-selector Edges (AEs): These \(m \) edges constitute the decision problem of whether
an element should be included in the minimum hitting set. AEs are created as follows:
From the top of each \(\text{in} \) branch we create a single edge to the bottom of the corre-
spanding \(\text{out} \) branch. That is, we ensure that an update of the edge from \(\varepsilon_{\text{in}}^{(i)} \) to \(\varepsilon_{\text{out}}^{(i)} \) is
equivalent to \(\varepsilon_i \notin E' \), or, equivalently, every \(\varepsilon_i \notin E' \) will not be included in the update set.

3. Relaxed Edges (WEs): These edges are only needed for the relaxed loop-free case.
They connect the \(s-d \) branch to the other branches in such a way that no loops are missed.
In other words, the edges aim to emulate a strong loop-free scenario by introducing
artificial sources at the bottom of each branch. To achieve this, we create a certain
Figure 1 Example: Construction of network update instance given a hitting set instance with $E = \{1, 2, 3, \ldots, m\}$ and $S = \{\{1, 2, 3\}, \{1, m\}\}$. Each element $\varepsilon \in E$ is represented by a pair of branches, one called outgoing (out) and one incoming (in). Moreover, we add a branch representing the $s-d$ path on the very right. The solid black branches represent already installed rules (either old or updated in the first round), and new rules (dashed) are situated between the branches. There are three types of to-be-updated, dashed edges: one type represents the sets (loosely and densely dashed grey), one type represents element selector edges (between in and out branch, loosely dashed black), and one type is required to connect the $s-d$ path to the elements (densely dashed grey). We prove that such a scenario can be reached after one update round where all (and only) forward edges are updated. Top-left: Each loosely dashed grey edge represents $m+1$ edges, and is used to describe the set $\{1, 2, 3\}: (1, 2), (2, 3), (3, 1)$. Top-right: Each densely dashed grey edge represents $m+1$ edges and is used for the set $\{1, m\}: (1, m), (m, 1)$. Bottom-left: The loosely dashed black edges are single edges and are the element selector edges, representing the decision if an element is part of E' or not. Bottom-right: Each densely dashed edge visualizes $m \cdot (m+1)$ edges from the s-branch to the incoming branches of every $\varepsilon \in E$.

number of edges from the s-branch to the bottom of every in branch. The precise amount will be explained at the detailed construction part of creating parallel edges. See Figure 1 bottom-left for an example.

The rational is as follows. If no Anti-selector Edges (AEs) are updated, all Relaxed Edges (WEs) as well as all Set Edges (SEs) can be updated simultaneously, without introducing a loop. However, since there are in total exactly m AEs but each set of SEs are $m + 1$ edges (hence they will all be updated), we can conclude that the problem boils down to selecting a maximum number of element AEs which do not introduce a loop. The set of non-updated AEs constitutes the selected sets, the hitting set: There must be at least one element for which there is an AE, preventing the loop. By maximizing the number of chosen AEs (maximum update set) we minimize the hitting set.

Let us consider an example: In Figure 1 bottom-right, if for a set S_i every AE of $\varepsilon_i \in S_i$ is updated, a cycle is created: updating edges ε_{i}^{in} and ε_{m}^{in} results in a cycle with the $m+1$ edges from ε_{1}^{out} and ε_{m}^{out}. Note that the resulting network update instance is of polynomial size (and can also be derived in polynomial time). In the remainder of the proof, we show that the described network update instance is indeed legal, e.g., we have a single path from source to destination, and this instance can actually be obtained after one update round.
3.1 Concepts and Gadgets

Before we describe the details of the construction, we first make some fundamental observations regarding greedy updates.

Introducing Forwarding Edges and Branches: First, a delayer concept is required to establish forwarding edges for the second round. Observe that every forwarding edge \((a, b)\), with \(a < b\), is always updated by a greedy algorithm in the first round. A delayer is used to construct a forward edge \((a, b)\), with \(a < b\), that is created in the second round. A delayer for edge \((a, b)\) consists of two edges: an edge pointing backwards to \(a'\) from \(a\) with \(a' < a\), plus an edge pointing from there to \(b\). The forward edge \((a', b)\) will be updated in the first round, which yields an edge \((a, b)\) due to merging (see Figure 2).

![Figure 2](image)

Figure 2 Delayer concept: A forwarding edge \((a, a'b)\) can be created in round 2 using a helper node \(a'\).

We next describe how to create the \(in\) and \(out\) branches as well as the \(s\) branch pointing to the destination \(d\) (recall Figure 1). This can be achieved as follows: From a node close to the source \(s\), we create a path of forward edges which ends at the destination. Each of these forward edges will be updated in the first round, and hence merged with its respective successor, which will be the destination for the very last forward edge. The nodes belonging to these forward edges will be called branching nodes. Every node in-between two branching nodes will be part of a new branch pointing to the destination. See Figure 3 for an example. The rightmost node before the branching node on the line will also be the topmost node on the branch after the first round update (as long as it has an outgoing backward edge, hence not being updated in the first round). We will use the terms right and high (rightmost-topmost) and left-low for the first and second round interchangeably.

![Figure 3](image)

Figure 3 Creating branches after a greedy update of forward edges.

Introducing Special Segments: In our construction, we split the line (old path) into disjoint segments which will become independent branches at the beginning of the second round. In addition to these segments, there will be two special segments, one at the beginning and one at the end. The first will not even become an independent branch at the beginning of the second round, but is merely used to realize the delayer edges. Behind the very last segment \((\varepsilon_{ln}\) and just before \(d\), there is a second special segment, which we call relaxed: it is needed to create the branch with the source \(s\) at the bottom and its connections to the other \(\varepsilon_{ln}\) branches.

In our construction, SEs come in groups of \(m + 1\) edges. These edges must eventually be part of a legal network update path, and must be connected in a loop-free manner. In other words, to create the desired problem instance, we need to find a way to connect two
branches b_1 and b_2 with $m + 1$ edges, such that there is a single complete path from s to d. Furthermore, these edges should not form a loop.

Creating Parallel Edges: Parallel edges can be constructed as follows, henceforth called the zigzag-approach (Figure 4). Split the branch b_2 into two different parts. The first part $b_{2,1}$ on the left side (respectively bottom of the branch) will be used to complete the path but can only be reached over backward edges. The second part $b_{2,2}$ will receive the incoming edges from the other branch, b_1. Start at a node, say v_{o-1} on b_1. Here create an edge to a node of $b_{2,1}$, say v_{i-1} and from there a backward edge to a node of $b_{2,2}$, say v'_{i-1}. Afterwards use a delayed edge to connect to v_{o-1}‘s right (respectively to the line) neighbor, v_{o-2}. From here create the next edge to v_{i-1}‘s right neighbor, v_{i-2} and the backward edge to v'_{i-2} on $b_{2,2}$ again. Repeat this procedure $m + 1$ times.

This zigzag construction indeed ensures loop-freedom. To see this, note that all incoming edges from the b_1 branch will always connect to the $b_{2,2}$ part of b_2. From here the way back to b_1 (or potentially any other branch that connects with $b_{2,1}$) can only be completed if any of the backward edges from $b_{2,1}$ to $b_{2,2}$ has been updated. This cannot be true for the strong loop freedom definition, since no backward edge can ever be updated and the edge is backward in the first and the second round. For relaxed loop freedom it also cannot be updated in the first round since it would create a loop on the $s - d$ path, which is a line of all nodes in the first round. In the second round it will not be included since we make sure that a maximum update always includes the WE which will be incoming at the very left side of $b_{2,2}$, and hence cannot be updated in the same round with any backward edge on this branch.

In order to ensure that all the WE will always be included, we will create $m \cdot (m + 1)$ WE to every in branch. This is always more than the amount of backward edges on a single branch b_2 since they are only created as a path completion for the SEs. We will have at most $(m - 1) \cdot (m + 1)$ SEs incoming in a case where this node is connected to every other node (but itself). Choosing the WE will immediately force that none of the backward edges from $b_{2,1}$ to $b_{2,2}$ will be included, as they might cause a cycle on a path that might be in-between s and d.

The $m \cdot (m + 1)$ WE to a branch b are simple to create. Here, we do not need to take care about other branches reached from the relaxed branch. Hence we can create the way back to the relaxed branch without the detour over the b_1 part. This is because the WE will always be the incoming edges on the leftmost part of b_1 without the possibility of any other parallel edges making use of them.

3.2 Connecting the Pieces

Given these gadgets, we are able to complete the construction of our problem instance.

Realizing the Delayer: The first created segment, temp, serves for edges that are created using the delayer concept. This is due to our construction: every node that will be created in this interval in our construction will be a forward node and therefore updated in the first greedy round. The temp segment will be located right after the source s on the line.

Realizing the Branches: We create two segments for each $e \in E$, one out and one in, and sort them in descending global order (and depict them from left to right) w.r.t. $e \in E$, with the out segment closer to s than the in segment for each e, i.e. $e_{m,1}^{out}, e_{m}^{in}, \ldots, e_{2,1}^{out}, e_{2}^{in}, e_{1}^{out}, e_{1}^{in}$.

Connecting the Path: We will now create the new path from the source s to the destination d through all the different segments. This path requires additional edges. We will ensure that these edges can always be updated and hence do not violate the selector properties. Moreover, we ensure that they do not introduce a loop. In order to create a
round 1:

![Diagram](image1)

Figure 4 Connecting two branches with 3 edges. The backward edges shown in loosely dashed black assure that there will not be a way back in the second round from the *in* branch to the *out* branch.

![Diagram](image2)

Figure 5 Illustration of how to split the old line into segments according to the amount of needed branches in the second round.

branch with *s* at the bottom (to ensure that the proof will also hold for relaxed loop-freedom), we start our path from the source *s* to a node *relaxed-bot* on the very left part of the *relaxed* segment. From here we need to create the $m \cdot (m+1)$ connections to every other e^{in}_{i} branch, more precisely to the very left of the top part of this branch e^{in}_{i}, the relaxed Edges (WEs). Starting from *relaxed-bot*, we create the $m \cdot (m+1)$ zigzag edges we postulated earlier (see Section 3.1) to the e^{in}_{1} segment. Once this is done, we repeat this process for the remaining e^{in}_{i} connecting them in the same order blockwise, as they are ordered on the line. See Figure 6.

At the beginning of the second round, we will now have a branch with the source *s* at the bottom and $m+1$ edges to each of the e^{in}_{m} branches. The next step is to connect the out branches with the in branches (the Set Edges). For each set $S_j \in S$ and each pair $e_i, e_l \in S_j$ with no $e' \in S_i, e_i < e' < e_l$, we create $m+1$ edges from e^{out}_{i} to e^{in}_{l}, more precisely to the top part e^{in}_{l}, somewhere above the WEs. Each pair e_i, e_l only needs to connect once with the $m+1$ edges, even if it occurs in several different sets of S. The last element e_i of a set S_j will additionally need to be connected to the first element of the set (the modulo edges).

After the $m+1$ connections to e^{in}_{m}, the path returns at the right most (or highest in the (s,d)-branch) node in the *relaxed* segment. From here we create a backward edge to the left part of e^{out}_{1}. Here, we create $m+1$ connections to every e^{out}_{1}, which is the next larger element in any of the sets. An example is shown in Figure 7.

To complete the $m+1$ connections for every pair, we proceed as follows: we connect
Figure 6 Creating the branch with the source at the bottom and \(m \cdot (m + 1) \) connections to each \(\varepsilon_i^{in} \) segment of the line, as shown in Section 3.1. The \(m \cdot (m + 1) \) connections are visualized as a single edge in the first round to enhance visibility.

the \(\varepsilon_i^{out} \) branch to all required in-branches, then add the edge from \(\varepsilon_i^{out} \) to the \(\varepsilon_i^{out} \) branch, then add the edges from the \(\varepsilon_i^{out} \) branch to all required in-branches, etc. Generally, we interleave adding the edges from the \(\varepsilon_i^{out} \) branch to all required in-branches and then add the \(i \)-out to \((i + 1)\)-out edge. Until the path arrives at the end of the last out branch, \(\varepsilon_m^{out} \).

Step A - Create the \(m + 1 \) set specific edges: Here we create \(m + 1 \) connections to every successor in the respective sets (at most once per pair). If this element is the largest element in a set, it needs to be connected to the in part of the smallest element of this set again. Here the delayer concept needs to be used for the modulo edges.

Step B - Connecting the out branches: In order to create the next \(m + 1 \) connections from the next out segment \(\varepsilon_i^{out} \), we need to connect it from our current out segment \(\varepsilon_i^{out} \). The edge therefore needs to point to the rightmost part of \(\varepsilon_i^{out} \). Since this edge is always a backward edge in the first round (we start closer to the destination and move backward towards the source), it will turn out to be an edge which points to the very top of \(\varepsilon_i^{out} \) at the beginning of the second round. This assures that there are no loops created, since the only way is going directly towards the destination. From here we create an edge pointing to the very left side of \(\varepsilon_i^{out} \) (evolving to a backward rule from top to bottom of the branch in the second round, hence not being part of the update set in the first nor the second round).

To finish the construction, we need to add the anti-selector edges (AEs), and connect the in and out branches of every single \(\varepsilon_i \), with each other. The goal is to create, for each given \(i \), an edge from the top of each \(\varepsilon_i^{in} \) to the bottom of each \(\varepsilon_i^{out} \). This way, if this edge is included in the update, a loop may be formed: as every incoming edge to \(\varepsilon_i^{in} \) arrives below the AEs start point and every outgoing edge on \(\varepsilon_i^{out} \) is above AE’s destination. The decision to not include one of these edges is equivalent to \(\varepsilon_i \in E' \) in the minimum hitting set problem. In order to keep the path connected we will also need to include edges from \(\varepsilon_i^{out} \) to \(\varepsilon_{i+1}^{in} \), compare Figure 8. These edges will point to the top of \(\varepsilon_i^{in} \), and therefore do not create loops, since the only way is going directly to the destination. From here we create another backward edge to its left neighbor such that there is no possible other way than traversing towards \(d \) from this point. Without this backward edge loops may be created,
Since it introduces connections between branches which are not both in a set \(S_i \) of the hitting set problem. Therefore, an update of one of the additional connector edges will never lead to a loop, and the edges can all be included in the update set of the round 2.

The construction of these edges is straightforward. From the end of the current path which is located on the \(\varepsilon^{\text{out}}_m \) segment, we create a delayed edge (over \(\text{temp} \)) to the very right part of the \(\varepsilon^{\text{in}}_1 \) segment. From here we construct the path as described with a short backward edge to its left neighbor and then to the very left part of the \(\varepsilon^{\text{out}}_1 \) segment and again to the very right part of the \(\varepsilon^{\text{in}}_{m+1} \) segment afterwards, until we arrive at the very left part of the \(\varepsilon^{\text{out}}_m \) segment.

It remains to create the segments and branches for the second round. From \(\varepsilon^{\text{out}}_m \), we create a backward edge to the \(\text{temp} \) part. From here we use the branching concept and connect all horizontal nodes in-between the single parts that we created on the line (see Figure 9).

In summary, we ensured that already after a single greedy first update round, we end up in a situation where choosing the maximum set of updateable nodes is equivalent to choosing the minimum hitting set.

4 Polynomial-Time Algorithms

While the computational hardness is disappointing, we can show that there exist several interesting specialized and approximative algorithms.

Optimal Algorithms. There are settings where an optimal solution can be computed quickly. For instance, it is easy to see that in the first round, in a configuration with two paths, updating all forward edges is optimal: Forward edges never introduce any loop, and at
 Figure 8 Connecting the in and out branches of every ε_i, shown in densely dashed black. The edges shown in densely dashed grey are needed to keep the path complete and the backward edges in loosely dashed black are needed to ensure that only the destination can be reached from that point in the second round.

 Figure 9 Connecting the segments with forward edges. This creates a single branch from the destination for every segment due to the merging. The edge shown in loosely dashed grey is connecting this step with the step before.

the same time we know that backward edges can never be updated in the first round, as any backward edge alone (i.e., taking effect in the first round), will immediately introduce a loop. In the following, we first present an optimal algorithm for \textit{SLF}, for trees with only two leaves. We will then extend this algorithm to \textit{RLF}.

\\textbf{Lemma 2.} A maximum \textit{SLF} update set can be computed in polynomial-time in trees with two leaves.

\\textbf{Proof.} Recall that there are three types of new edges in the graph (see also Figure 10): forward edges (F), backward edges (B) and horizontal edges (H), hence $E = H \cup B \cup F$. Moreover, recall that forward edges can always be updated while backward edges can never be updated in \textit{SLF}. Thus, the problem boils down to selecting a maximum subset of H, pointing from one branch to the other. If there is a simple loop $C \in G$ such that $H^C = E(C) \cap H \neq \emptyset$, then $|H^C| \geq 2$ and we say that the two edges $e_1, e_2 \in H^C$ cross each other, written $e_1 \times e_2$.

We observe that the different edge types can be computed efficiently. For illustration, suppose the policy graph $G = (V, E)$ (the union of old and new policy edges) is given as a straight line drawing Π in the 2-dimensional Euclidean plane, such that the old edges of the 2-branch tree form two disjoint segments which meet at the root of the tree (the destination), and such that each node is mapped to a unique location. Given the graph, such a drawing (including crossings) in the plane can be computed efficiently. Also note that there could be other edges which intersect w.r.t. the drawing Π, but those are not important for us.
Now create an auxiliary graph $G' = (V', E')$ where $V' = \{ v_e \mid e \in E \}$, $E' = \{ (v_{e_1}, v_{e_2}) \mid e_1, e_2 \in H : e_1 \times e_2 \}$. The graph G' is bipartite, and therefore finding a minimum vertex cover $VC \in V(G)$ is equivalent to finding maximum matching, which can be done in polynomial time. Let $H' = \{ e \mid e \in H : v_e \in VC \}$, then the set H' is a minimum size subset of H which is not updatable. Therefore the set $H \setminus H'$ is the maximum size subset of H which we can update in a SLF manner.

We conclude the proof by observing that all these algorithmic steps can be computed in polynomial time.

\textbf{Lemma 3.} A maximum RLF update set can be computed in polynomial-time in trees with two leaves.

\textbf{Proof.} We prove the lemma by presenting a polynomial-time reduction to the strong loop-free case. Let us fix the path (i.e., branch) in the tree consisting of the currently active edges which includes both the source and the destination: $P_{s_d}^d = (s = v_0, \ldots, v_n = d)$. Note that in the branch which contains s, d there may exist some vertices which have a path to s: those vertices are irrelevant for our construction and we just consider the path $P_{s_d}^s$ of the old policy starting at s.

Let us refer to the entire path in the other branch by $P_2 = (u_1, \ldots, u_m)$, omitting the vertex d. Here, node u_1 is the node with the lowest y-coordinate in the drawing Π (for definition of Π see the proof of Lemma 2). In this case, we can update B edges as long as they are not in any path from s to d. Therefore, the objective is to find the maximum subset $S \subseteq H \cup B$ which is not part of any loop reachable from s.

Without loss of generality, we can assume that there is no B edge which connects two vertices of the path $P_{s_d}^d$. We cannot update those edges anyway, and hence we can ignore them. If we simulate B edges with H edges, then the problem becomes equivalent to SLF which is in P. To see this, suppose $B = \{ e_1, \ldots, e_k \}$, create a new graph G' out of G by adding k vertices $\{ v^{e_1}, \ldots, v^{e_k} \}$ to $P_{s_d}^d$ to obtain $P_{s,d}^{b} = (s = v_1, v^{e_1}, \ldots, v^{e_k}, v_1, \ldots, v_n = d)$, and a set of edges $H' = \{ (u, v^{n}) \mid e_i \in B, u = \text{tail}(e_i) \}$, where the tail of an edge $e = (u, v)$ is u. After that, we delete all edges in B. We can now find the maximum set of the horizontal edges in G' which can be updated using the same algorithm as we had for SLF. If any edge $H' \subseteq H'$ has been chosen in the algorithm for SLF in the G', we choose $e \in E(G)$ for the update as well. These edges together with all forward edges and the chosen edges from the set H in G' give us the maximum set of edges $\mathcal{H} \subseteq E(G)$ which can safely be updated in the RLF model in G. Let $\mathcal{H} \setminus E(G) = \mathcal{H}$.

Notice that there is no loop reachable from s which uses only edges in $H \cup F$ in $G_{opt} = (V(G), \mathcal{H})$, by the construction of G'. Moreover, there is no loop in G_{opt} which uses edges

![Figure 10](image_url) Concept of horizontal edges shown in loosely dashed grey. Both horizontal edges (v_2, v_4) and (v_5, v_3) are crossing each other. The backward edge (v_3, v_2) is shown in loosely dashed black and the forward edges in densely dashed grey. Note that s does not necessarily have to be a leaf.
Approximation Algorithms. Even in scenarios for which there is no optimal polynomial time scheduling algorithm, there can exist good approximations. It is easy to observe that there is a reduction to the Maximum Acyclic Subgraph Problem (MASP) which ensures that both RLF and SLF can be approximated at least as well as MASP. It is also easy to see that the problem for strong loop-freedom (for SLF) is $1/2$-approximable in general, as the problem boils down to finding a maximum subset of H edges which are safe to update, and at least half of the H edges are pointing out to the left resp. right, and we can take the majority. Similarly for RLF: let F be the set of vertices where every $v \in F$ appears along a walk between source and destination. Similar to SLF, at least half of the edges of F are safe to update, and we can find these edges quickly. Also every $e = (u, v) \in E(G)$, where $u \not\in F$ or $v \not\in F$, is safe to update. So we have at least a $1/2$-approximation.

However, for a small number of leaves, even better approximations are possible. The following lemma can be proven by an approximation preserving reduction to the hitting set problem.

Lemma 4. The optimal SLF schedule is $2/3$-approximable in polynomial time in scenarios with exactly three leaves. For scenarios with four leaves, there exists a polynomial-time $7/12$-approximation algorithm.

Proof. We use an approximation preserving reduction to the d-hitting set problem which is $\Sigma^P_{d+1}/1 - 1/2$-approximable \cite{2}, and particularly, we use a 3-hitting set which gives us a $2/3$-approximation algorithm.

Let $G = (V, E)$ be the update graph with at most three leaves and let H be the set of the horizontal edges. For every closed simple loop $C \subseteq G = (V, E)$ we have $C_H = E(C) \cap H \neq \emptyset$. Furthermore $C_H \leq 3$. Given these observations, we construct our hitting set as follows. Let $|H| = m$ and let F be a one-to-one mapping $F : H \to [m]$. For each simple loop C_j, let $C^H_j = \{s_1, s_2, s_3\}$, and create a subset $S_i = \{F(s_1), F(s_2), F(s_3)\}$. Note that if $|C^H_j| = 2$ then we have a subset S_i of size 2. There are at most $|H|^3$ simple loops, as choosing any set of size at most three edges from E forces at most one simple loop. So we have $\binom{m}{3}$ loops with 3 edges in H and $\binom{m}{2}$ loops with two edges in H. Furthermore the hitting set for S_1, \ldots, S_i gives a minimum set of update edges to be removed; on the other hand, every subset S_i is of cardinality at most 3. This gives a $4/3$-approximation on the size of subset $H' \subseteq H$, which we do not update. On the other hand, in the optimal solution H'^{opt} we have $|H'| \leq H$ resp. $|H'^{opt}| \geq |H'|$, so the approximation factor will be at least $(1 - 1/3)|opt|$: this is a $2/3$-approximation, as claimed. For four leaves, a similar argument works, and we omit the proof.
5 Related Work

In their seminal work, Reitblatt et al. [24] initiated the study of network updates providing strong, per-packet consistency guarantees, and the authors also presented a 2-phase commit protocol. This protocol also forms the basis of the distributed control plane implementation in [3]. Mahajan and Wattenhofer [22] started investigating a hierarchy of transient consistency properties—in particular also (strong) loop-freedom but for example also bandwidth-aware updates [1]—for destination-based routing policies. The measurement studies in [13] and [18] provide empirical evidence for the non-negligible time and high variance of switch updates, further motivating their and our work. In their paper, Mahajan and Wattenhofer proposed an algorithm to “greedily” select a maximum number of edges which can be used early during the policy installation process. This study was recently refined in [9, 10], a parallel work to ours, where the authors also establish a hardness result for destination based routing (single- and multi-destination). Our work builds upon [22] and complements the results in [9, 10]:

We consider the scheduling complexity of updating arbitrary routes which are not necessarily destination-based. Interestingly, our results (using a different reduction) show that even with the requirement that the initial and the final routes are simple paths, the problem is NP-hard. Moreover, our results hold for both the strong SLF and the relaxed RLF loop-free problem variants introduced in [20] (this distinction does not exist in [9]). The SLF can be seen as a special variant of the Dual Feedback Arc Set Problem (FASP) resp. Maximum Acyclic Subgraph Problem (MASP): important classic problems in approximation theory [15]. In particular, it is known that dual-FASP/MASP can be $1/2 + \varepsilon$ approximated on general graphs (for arbitrary small ε). The results presented in this paper also imply that better approximation algorithms and even optimal polynomial-time algorithms exist for special graph families, namely graph families describing network update problems; this may be of independent interest. The RLF variant is a new optimization problem, and to the best of our knowledge, existing bounds are not applicable to this problem. We should note that FASP is in FPT [4], and the hitting set problem is W[2]-hard [8]. In our hardness construction we actually find a reduction from hitting set to FASP for particular graph classes. But the reduction is not parameter preserving, so the W-hierarchy does not collapse. Finally, our model is orthogonal to the network update problems aiming to minimizing the number of interactions with the controller (the so-called rounds), which we have recently studied for single [20] and multiple [6] policies, also including additional properties, beyond loop-freedom, such as waypointing [19]. The two objectives conflict [20], a good approximation for the number of update edges yields a bad approximation for the number of rounds, and vice versa.

6 Concluding Remarks: Special Graph Classes

We conclude our contribution with some remarks. First, it is easy to observe that there is a reduction to the Maximum Acyclic Subgraph Problem (MASP) which ensures that both RLF and SLF can be approximated at least as well as MASP.

It is also interesting to study the hardness of the problem on some special graph classes. By \bar{G} we denote the underlying undirected graph of a graph G which is obtained by replacing directed edges with undirected edges, and deleting parallel edges. We have the following lemma for bounded tree-width [25] scenarios.

\textbf{Lemma 5.} Given a digraph G, both RLF and SLF are solvable in polynomial time if \bar{G} has bounded tree-width.

\textbf{Proof.} Thanks to Courcelle’s theorem [5], we can solve the feedback arc set problem in
bounded tree-width digraphs in polynomial time. This directly gives a solution for SLF. For RLF, we find all vertices which are on a walk between source and destination, and we apply Courcelle theorem to the subgraph of G induced by these vertices.

Unfortunately the undirected width measures are not very useful in directed graphs. Analogously to tree-width which is defined for undirected graphs, there exists a directed tree-width notion for directed graphs, introduced by Johnson et al. [14]. We refer the reader to the provided reference for the definition.

An interesting question regards whether RLF and SLF, and more generally MASP, are polynomial-time solvable in digraphs of bounded directed treewidth and bounded degree. There are two negative results related to this question. First, it has been shown that the Feedback Arc Set Problem (FASP) is already NP-complete [16] in digraphs of directed tree width at most 5. Their hardness construction is based on a graph which has a bounded degree in all vertices except for one vertex. It seems that with binarization one can easily adapt their proof to show that the FASP problem still remains hard in digraphs of bounded degree and bounded directed treewidth. But on bounded degree graphs, vertex cover problems [11] are NP-complete, and a simple construction for vertex cover yields an NP-hardness result for FASP in those graphs as well. This suggests that directed tree-width cannot be exploited in our problem.

However, another kind of directed width measure may be more useful: The directed path width is defined very similarly to the directed treewidth; intuitively the graph looks like a “thick directed path”. None of the negative results for bounded degree graphs on graphs of bounded directed tree-width can be extended to digraphs of bounded directed path-width with bounded degree. We claim the following: There is a function $f: \mathbb{N} \to \mathbb{N}$ such that for a digraph G of directed path-width k and maximum degree d, there is an algorithm which runs in time and space $n^{f(k+d)}$ and finds an optimal solution to FASP.

Acknowledgments. The research of Saeed Amiri has been supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (ERC consolidator grant DISTRUCT, agreement No 648527).

References

1. Sebastian Brandt, Klaus-Tycho Förster, and Roger Wattenhofer. On Consistent Migration of Flows in SDNs. In Proc. IEEE INFOCOM, 2016.
2. Tian Bu, Lixin Gao, and Don Towsley. On characterizing bgp routing table growth. Comput. Netw., 2004.
3. Marco Canini, Petr Kuznetsov, Dan Levin, and Stefan Schmid. A distributed and robust sdn control plane for transactional network updates. In Proc. IEEE INFOCOM, 2015.
4. Jianer Chen, Yang Liu, Songjian Lu, Barry O’sullivan, and Igor Razgon. A fixed-parameter algorithm for the directed feedback vertex set problem. J. ACM, 55(5):21:1–21:19, November 2008.
5. Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite graphs. Information and Computation, 85(1):12 – 75, 1990.
6. Szymon Dudycz, Arne Ludwig, and Stefan Schmid. Can’t touch this: Consistent network updates for multiple policies. In Proc. 46th IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), 2016.
7. Rong-chii Duh and Martin Führer. Approximation of k-set cover by semi-local optimization. In Proc. 29th Annual ACM Symposium on Theory of Computing (STOC), STOC ’97, pages 256–264, New York, NY, USA, 1997. ACM.
8 Jörg Flum and Martin Grohe. *Parameterized Complexity Theory*. Texts in Theoretical Computer Science. An EATCS Series. Springer, 2006.

9 Klaus-Tycho Förster, Ratul Mahajan, and Roger Wattenhofer. Consistent Updates in Software Defined Networks: On Dependencies, Loop Freedom, and Blackholes. In *Proc. 15th IFIP Networking*, 2016.

10 Klaus-Tycho Förster and Roger Wattenhofer. The Power of Two in Consistent Network Updates: Hard Loop Freedom, Easy Flow Migration. In *Proc. 25th International Conference on Computer Communication and Networks (ICCCN)*, 2016.

11 Michael R. Garey and David S. Johnson. *Computers and Intractability: A Guide to the Theory of NP-Completeness*. W. H. Freeman & Co., New York, NY, USA, 1979.

12 Soudeh Ghorbani and Brighten Godfrey. Towards correct network virtualization. In *Proc. ACM HotSDN*, pages 109–114, 2014.

13 Xin Jin, Hongqiang Liu, Rohan Gandhi, Srikanth Kandula, Ratul Mahajan, Jennifer Rexford, Roger Wattenhofer, and Ming Zhang. Dionysus: Dynamic scheduling of network updates. In *Proc. ACM SIGCOMM*, 2014.

14 Thor Johnson, Neil Robertson, P.D. Seymour, and Robin Thomas. Directed tree-width. *Journal of Combinatorial Theory, Series B*, 82(1):138 – 154, 2001.

15 Viggo Kann. On the approximability of np-complete optimization problems. *PhD Thesis*, 1992.

16 Stephan Kreutzer and Sebastian Ordyniak. Digraph decompositions and monotonicity in digraph searching. *Theoretical Computer Science*, 412(35):4688 – 4703, 2011.

17 Maciej Kuźniar, Peter Peresini, and Dejan Kostić. Providing reliable FIB update acknowledgments in SDN. In *Proc. 10th ACM CoNEXT*, pages 415–422, 2014.

18 Maciej Kuźniar, Peter Peresini, and Dejan Kostić. *Proc. Conference on Passive and Active Measurement (PAM)*, chapter What You Need to Know About SDN Flow Tables. 2015.

19 Arne Ludwig, Szymon Dudycz, Matthias Rost, and Stefan Schmid. Transiently secure network updates. In *Proc. ACM SIGMETRICS*, 2016.

20 Arne Ludwig, Jan Marcinkowski, and Stefan Schmid. Scheduling loop-free network updates: It’s good to relax! In *Proc. ACM Symposium on Principles of Distributed Computing (PODC)*, 2015.

21 Arne Ludwig, Matthias Rost, Damien Foucard, and Stefan Schmid. Good network updates for bad packets: Waypoint enforcement beyond destination-based routing policies. In *Proc. ACM Workshop on Hot Topics in Networks (HotNets)*, 2014.

22 Ratul Mahajan and Roger Wattenhofer. On Consistent Updates in Software Defined Networks. In *Proc. ACM HotNets*, 2013.

23 Oded Padon, Neil Immerman, Aleksandr Karbyshev, Ori Lahav, Mooly Sagiv, and Sharon Shoham. Decentralizing sdn policies. In *Proc. 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL)*, pages 663–676, 2015.

24 Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, and David Walker. Abstractions for network update. In *Proc. ACM SIGCOMM*, pages 323–334, 2012.

25 Neil Robertson and P.D. Seymour. Graph minors. ii. algorithmic aspects of tree-width. *Journal of Algorithms*, 7(3):309 – 322, 1986.

26 Stefan Schmid and Jukka Suomela. Exploiting locality in distributed sdn control. In *Proc. ACM HotSDN*, August 2013.

27 Z. Qazi et al. Simple-fying middlebox policy enforcement using sdn. In *Proc. ACM SIGCOMM*, 2013.

28 Wenxuan Zhou, Dong (Kevin) Jin, Jason Croft, Matthew Caesar, and Philip Brighten Godfrey. Enforcing customizable consistency properties in software-defined networks. In *Proc. 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI)*, pages 73–85, 2015.