Status of Cold Dark Matter Cosmology

Joel R. Primack

aPhysics Department, University of California, Santa Cruz, CA 95064 USA

Cold Dark Matter (CDM) has become the standard modern theory of cosmological structure formation. Its predictions appear to be in good agreement with data on large scales, and it naturally accounts for many properties of galaxies. But despite its many successes, there has been concern about CDM on small scales because of the possible contradiction between the linearly rising rotation curves observed in some dark-matter-dominated galaxies vs. the $1/r$ density cusps at the centers of simulated CDM halos. Other CDM issues on small scales include the very large number of small satellite halos in simulations, far more than the number of small galaxies observed locally, and problems concerning the angular momentum of the baryons in dark matter halos. The latest data and simulations have lessened, although not entirely resolved, these concerns. Meanwhile, the main alternatives to CDM that have been considered to solve these problems, self-interacting dark matter (SIDM) and warm dark matter (WDM), have been found to have serious drawbacks.

1. Introduction

The universe on the largest scales can be described by three numbers:

- $H_0 \equiv 100h \text{ km s}^{-1} \text{ Mpc}^{-1}$, the Hubble parameter (expansion rate of the universe) at the present epoch,
- $\Omega_m \equiv \rho/\rho_c$, the density of matter ρ in units of critical density $\rho_c \equiv 3H_0^2(8\pi G)^{-1} = 2.78 \times 10^{11}h^2 M_\odot \text{ Mpc}^{-3}$, and
- $\Omega_\Lambda \equiv \Lambda(3H_0^2)^{-1}$, the corresponding quantity for the cosmological constant.

The current values of these and other key parameters are summarized in the Table below (for additional references and discussion see [1]). It remains to be seen whether the “dark energy” represented by the cosmological constant Λ is really constant, or is perhaps instead a consequence of the dynamics of some fundamental field as in “quintessence” theories [2].

Cold Dark Matter (CDM) assumes that the dark matter is mostly cold — i.e., with negligible thermal velocities in the early universe, either because the dark matter particles are weakly interacting massive particles (WIMPs) with mass $\sim 10^2 \text{ GeV}$, or alternatively because they are produced without a thermal distribution of velocities, as is the case with axions. CDM also assumes that the fluctuations in the dark matter are adiabatic and have a nearly Zel’dovich spectrum. Considering that the CDM model of structure formation in the universe was proposed almost twenty years ago [3,4], its successes are nothing short of amazing. As I will discuss, the ΛCDM variant of CDM with $\Omega_m = 1 - \Omega_\Lambda \approx 0.3$ appears to be in good agreement with the available data on large scales. Issues that have arisen on smaller scales, such as the centers of dark matter halos and the numbers of small satellites, have prompted people to propose a wide variety of alternatives to CDM, such as warm dark matter (WDM) [5] and self-interacting dark matter (SIDM) [6]. It remains to be seen whether such alternative theories with extra parameters actually turn out to be in better agreement with data. As I will discuss below, it now appears that WDM and SIDM are both probably ruled out, while the small-scale predictions of CDM may be in better agreement with the latest data than appeared to be the case as recently as a year ago.

In the next section I will briefly review the current observations and the successes of ΛCDM on large scales, and then I will discuss the possible problems on small scales.
2. Cosmological Parameters and Observations on Large Scales

The table below summarizes the current observational information about the cosmological parameters, with estimated 1σ errors. The quantities in brackets have been deduced using at least some of the ΛCDM assumptions. Is is apparent that there is impressive agreement between the values of the parameters determined by various methods, including those based on ΛCDM. In particular, (A) several different approaches all suggest that $\Omega_m \approx 0.3$; (B) the location of the first acoustic peak in the CMB angular anisotropy implies that $\Omega_m + \Omega_\Lambda \approx 1$; and (C) the data on supernovae of Type Ia (SNIa) at redshifts $z = 0.4 - 1.2$ from two independent groups imply that $\Omega_\Lambda - \frac{1}{2}\Omega \approx \frac{1}{7}$. Any two of these three results then imply that $\Omega_\Lambda \approx 0.7$. The 1σ errors in these determinations are about 0.1.

Questions have been raised about the reliability of the high-redshift SNIa results, especially the possibilities that the SNIa properties at high redshift might not be sufficiently similar to those nearby to use them as standard candles, and that there might be “grey” dust (which would make the SNIa dimmer but not change their colors). Although the available evidence disfavors these possibilities, additional observations are needed on SNIa at high redshift, both to control systematic effects and to see whether the dark energy is just a cosmological constant or is perhaps instead changing with redshift as expected in “quintessence” models. But it is important to appreciate that, independently of (C) SNIa, (A) cluster and other evidence for $\Omega_m \approx 0.3$, together with (B) $\sim 1^\circ$ CMB evidence for $\Omega_m + \Omega_\Lambda \approx 1$, imply that $\Omega_\Lambda \approx 0.7$.

All methods for determining the Hubble parameter now give compatible results, confirming our confidence that this crucial parameter has now been measured robustly to a 1σ accuracy of about 10%. The final result from the Hubble Key Project on the Extragalactic Distance Scale is 72 ± 8 km s$^{-1}$ Mpc$^{-1}$, or $h = 0.72 \pm 0.08$, where the stated error is dominated by one systematic uncertainty, the distance to the Large Magellanic Cloud (used to calibrate the Cepheid period-luminosity relationship). The most accurate of the direct methods for measuring distances to distant objects, giving the Hubble parameter directly as $H_0 = d/v$ where the velocity is determined by the redshift, are (1) time delays between luminosity variations in different gravitationally lensed images of distant quasars, giving $h \approx 0.65$, and (2) the Sunyaev-Zel’dovich effect (Compton scattering of the CMB by the hot electrons in clusters of galaxies), giving $h \approx 0.63$. For the rest of this article, I will take $h = 0.7$ whenever I need to use an explicit value, and express results in terms of $h_{70} \equiv H_0/70$ km s$^{-1}$ Mpc$^{-1}$.

If $\Omega_{tot} = 1$ and structure formed from adiabatic initial conditions as assumed in ΛCDM, CMB data imply $t_0 = 14.0 \pm 0.5$ Gyr. For a ΛCDM universe with $\Omega_m = (0.2)(0.3)(0.4)(0.5)$, the expansion age is $t_0 = (15.0)13.47(12.41, 11.61)h_{70}$ Gyr.

Table 1

Parameter	Value
H_0	$100 h$ km s$^{-1}$ Mpc$^{-1}$, $h = 0.7 \pm 0.08$
t_0	13 ± 2 Gyr (from globular clusters)
Ω_b	$(0.040 \pm 0.002)h_{70}^{-2}$ (from D/H)
Ω_m	0.33 ± 0.035 (from cluster baryons etc.)
Ω_Λ	0.73 ± 0.08 (from previous two lines)
Ω_{tot}	1.04 ± 0.05 (from CMB peak location)
ν_ν	< 0.73 (2σ) from radio QSO lensing
σ_8	0.001 (from SuperKamiokande data)

1Updating the one in my talk at DM2000.

2For example, SNIa at $z = 1.2$ and 1.7 apparently have the brightness expected in a ΛCDM cosmology but are brighter than would be expected with grey dust, and the infrared brightness of a nearer SNIa is also inconsistent with grey dust.
For $\Omega_m \approx 0.3$ and $h \approx 0.7$, there is excellent agreement with the latest estimates of the ages of the oldest stars in the Milky Way, both (A) from the globular cluster Main Sequence turnoff luminosities \cite{16}, giving $12 - 13 \pm 2$ Gyr, (B) using the thorium and uranium radioactive decay chronometers for halo stars \cite{17}, giving 14 ± 3 Gyr and 12.5 ± 3 Gyr, respectively, and (C) from white dwarf cooling time, giving 12.7 ± 0.7 Gyr as the age of the globular cluster M4 \cite{13}. It is remarkable that these four different clocks all agree!

The lower limit on the hot dark matter (i.e. neutrino) contribution to the cosmological density comes from the Super-Kamiokande atmospheric neutrino data \cite{14,20}. The latest upper limit is from the 2dF redshift survey galaxy power spectrum \cite{21}.

3. Further Successes of ΛCDM

The ΛCDM cosmology correctly predicts the abundances of clusters nearby and at $z \approx 1$ within the current uncertainties in the values of the parameters. It is even consistent with $P(k)$ from the Lyα forest \cite{22} and from CMB anisotropies. Low-Ω_m CDM predicts that the amplitude of the power spectrum $P(k)$ is rather large for $k \lesssim 0.02 h$/Mpc$^{-1}$, i.e. on size scales larger (k smaller) than the peak in $P(k)$. The largest-scale surveys, 2dF and SDSS, should be able to measure $P(k)$ on these scales and test this crucial prediction soon; preliminary results are encouraging \cite{23}.

The hierarchical structure formation which is inherent in CDM already explains why most stars are in big galaxies like the Milky Way \cite{10}: smaller galaxies merge to form these larger ones, but the gas in still larger structures takes too long to cool to form still larger galaxies, so these larger structures — the largest bound systems in the universe — become groups and clusters instead of galaxies.

What about the more detailed predictions of ΛCDM, for example on the spatial distribution of galaxies. On large scales, there appears to be a pretty good match. In order to investigate such questions quantitatively on the smaller scales where the best data is available it is essential to do N-body simulations, since the mass fluctuations $\delta \rho/\rho$ are nonlinear on the few-Mpc scales that are relevant. My colleagues and I were initially concerned that ΛCDM would fail this test \cite{24}, since the dark matter power spectrum $P_{dm}(k)$ in ΛCDM, and its Fourier transform the correlation function $\xi_{dm}(r)$, are seriously in disagreement with the galaxy data $P_g(k)$ and $\xi_g(r)$. One way of describing this is to say that scale-dependent antibiasing is required for ΛCDM to agree with observations. That is, the bias parameter $b(r) \equiv [\xi_g(r)/\xi_{dm}(r)]^{1/2}$, which is about unity on large scales, must decrease to less than 1/2 on scales of a few Mpc \cite{24,25}. This was the opposite of what was expected: galaxies were generally thought to be more correlated than the dark matter on small scales. However, when it became possible to do simulations of sufficiently high resolution to identify the dark matter halos that would host visible galaxies \cite{26,27}, it turned out that their correlation function is essentially identical with that of observed galaxies!

Jim Peebles, who largely initiated the study of galaxy correlations and first showed that $\xi_g(r) \approx (r/r_0)^{-1.8}$ with $r_0 \approx 5 h^{-1}$Mpc \cite{24}, thought that this simple power law must be telling us something fundamental about cosmology. However, it now appears that the power law ξ_g arises because of a coincidence — an interplay between the non-power-law $\xi_{dm}(r)$ and the decreasing survival probability of dark matter halos in dense regions because of their destruction and merging. But the essential lesson is that ΛCDM correctly predicts the observed $\xi_g(r)$.

The same theory also predicts the number density of galaxies. Using the observed correlations between galaxy luminosity and internal velocity, known as the Tully-Fisher and Faber-Jackson relations for spiral and elliptical galaxies respectively, it is possible to convert observed galaxy luminosity functions into approximate galaxy velocity functions, which describe the number of galaxies per unit volume as a function of their internal velocity. The velocity function of dark matter halos is robustly predicted by N-body simulations for CDM-type theories, but to connect it with the observed internal velocities of bright galaxies it is necessary to correct for the infall of the baryons in these galaxies \cite{28,31}, which must have hap-
pened to create their bright centers and disks. When we did this it appeared that ΛCDM with \(\Omega_m = 0.3 \) predicts perhaps too many dark halos compared with the number of observed galaxies with internal rotation velocities \(V \approx 200 \text{km s}^{-1} \). While the latest results from the big surveys now underway appear to be in better agreement with these ΛCDM predictions \([15,16]\), this is an important issue that is being investigated in detail \([17]\). Questions concerning the luminosity function still need to be resolved \([18]\).

The problem just mentioned of accounting for baryonic infall is just one example of the hydrodynamical phenomena that must be taken into account in order to make realistic predictions of galaxy properties in cosmological theories. Unfortunately, the crucial processes of especially star formation and supernova feedback are not yet well enough understood to allow reliable calculations. Therefore, rather than trying to understand galaxy formation from full-scale hydrodynamical simulations (for example \([19]\)), more progress has been made via the simpler approach of semi-analytic modelling of galaxy formation (initiated by White and Frenk \([20,21]\), reviewed and extended by Rachel Somerville and me \([22]\)). The computational efficiency of SAMs permits detailed exploration of the effects of the cosmological parameters, as well as the parameters that control star formation and supernova feedback.

We have shown \([23]\) that both flat and open CDM-type models with \(\Omega_m = 0.3 - 0.5 \) predict galaxy luminosity functions and Tully-Fisher relations that are in good agreement with observations. Including the effects of (proto-)galaxy interactions at high redshift in SAMs allows us to account for the observed properties of high-redshift galaxies, but only for \(\Omega_m \approx 0.3 - 0.5 \). Models with \(\Omega_m = 1 \) and realistic power spectra produce far too many galaxies at high redshift, essentially because of the fluctuation growth rate argument mentioned above.

In order to tell whether ΛCDM accounts in detail for galaxy properties, it is model to model the dark halos accurately. The Navarro-Frenk-White (NFW) \([24]\) density profile \(\rho_{\text{NFW}}(r) \propto r^{-1}(r + r_s)^{-2} \) is a good representation of typical dark matter halos of galactic mass, except possibly in their very centers \([25]\). Comparing simulations of the same halo with numbers of particles ranging from \(\sim 10^3 \) to \(\sim 10^6 \), my colleagues and I have also shown \([26]\) that \(r_s \), the radius where the log-slope is -2, can be determined accurately for halos with as few as \(\sim 10^3 \) particles. Based on a study of thousands of halos at many redshifts in an Adaptive Refinement Tree (ART) \([27]\) simulation of the ΛCDM cosmology, we \([28]\) found that the concentration \(c_{\text{vir}} \equiv r_{\text{vir}}/r_s \) has a log-normal distribution, with \(1\sigma \Delta(\log c_{\text{vir}}) = 0.14 \) at a given mass \([29,30]\). This scatter in concentration results in a scatter in maximum rotation velocities of \(\Delta V_{\text{max}}/V_{\text{max}} = 0.12 \); thus the distribution of halo concentrations has as large an effect on galaxy rotation curves shapes as the well-known log-normal distribution of halo spin parameters \(\lambda \). Frank van den Bosch \([31]\) showed, based on a semi-analytic model for galaxy formation including the NFW profile and supernova feedback, that the spread in \(\lambda \) mainly results in movement along the Tully-Fisher line, while the spread in concentration results in dispersion perpendicular to the Tully-Fisher relation. Remarkably, he found that the dispersion in ΛCDM halo concentrations produces a Tully-Fisher dispersion that is consistent with the observed one.\(^3\)

4. Halo Centers

Already in the early 1990s, high resolution simulations of individual galaxy halos in CDM were finding \(\rho(r) \sim r^{-\alpha} \) with \(\alpha \approx 1 \). This behavior implies that the rotation velocity at the centers of galaxies should increase as \(r^{1/2} \), but the data, especially that on dark-matter-dominated dwarf galaxies, instead showed a linear increase with radius, corresponding to roughly constant density in the centers of galaxies. This disagreement of...
theory with data led to concern that CDM might be in serious trouble. Subsequently, NFW found that halos in all variants of CDM are well fit by the $\rho_{NFW}(r)$ given above, while Moore’s group proposed an alternative $\rho_M(r) \propto r^{-3/2}(r + M) + r_M^{-3/2}$ based on a small number of very-high-resolution simulations of individual halos. Klypin and collaborators (including me) initially claimed that typical CDM halos have shallow inner profiles with $\alpha \approx 0.2$, but we subsequently realized that the convergence tests that we had performed on these simulations were inadequate. We now have simulated a small number of galaxy-size halos with very high resolution, and find that they range between ρ_{NFW} and ρ_M. Actually, these two analytic density profiles are almost indistinguishable unless galaxies are probed at scales smaller than about 1 kpc.

Meanwhile, the observational situation is improving. The rotation curves of dark matter dominated low surface brightness (LSB) galaxies were measured with radio telescopes during the 1990s, and the rotation velocity was typically found to rise linearly at their centers. But a group led by van den Bosch showed that in many cases the large beam size of the radio telescopes did not adequately resolve the inner parts of the rotation curves, and they concluded that after correcting for beam smearing the data are on the whole consistent with expectations from CDM. Similar conclusions were reached for dwarf galaxies. Swaters and collaborators showed that optical (Hα) rotation curves of some of the LSB galaxies rose significantly faster than the radio (HI) data on these same galaxies, and these rotation curves (except for F568-3) appear to be more consistent with NFW.

Recently, a large set of high-resolution optical rotation curves has been analyzed for LSB galaxies, including many new observations. The first conclusion that I reach in looking at the density profiles presented is that the NFW profile often appears to be a good fit down to about 1 kpc. However, some of these galaxies appear to have shallower density profiles at smaller radii. Of the 48 cases presented (representing 47 galaxies, since two different data sets are shown for F568-3), in a quarter of the cases the data do not probe inside 1 kpc, and in many of the remaining cases the resolution is not really adequate for definite conclusions, or the interpretation is complicated by the fact that the galaxies are nearly edge-on. Of the dozen cases where the inner profile is adequately probed, about half appear to be roughly consistent with the cuspy NFW profile (with fit $\alpha \approx 0.5$), while half are shallower. This is not necessarily inconsistent with CDM, since observational biases such as seeing and slight misalignment of the slit lead to shallower profiles. Perhaps it is significant that the cases where the innermost data points have the smallest errors are cusplier.

I think that this data set may be consistent with an inner density profile $\alpha \sim 1$ but probably not steeper, so it is definitely inconsistent with the claims of the Moore group that $\alpha \leq 1.5$. But recent work has shown that Moore’s simulations did not have adequate resolution to support their claimed steep central cusp; the highest-resolution simulations appear to be consistent with NFW, or even shallower with $\alpha \approx 0.75$. Further simulations and observations, including measurement of CO rotation curves, may help to clarify the nature of the dark matter.

It is something of a scandal that, after all these years of simulating dark matter halos, we still do not have a quantitative — or even a qualitative — theory explaining their radial density profiles. In her dissertation research, Risa Wechsler found that the central density profile and the value of r_s are typically established during the early, rapidly merging phase of halo evolution, and that, during the usually slower mass accretion afterward, r_s changes little (see also). The mass added on the halo periphery increases R_{vir}, and thus the concentration $c_{vir} = R_{vir}/r_s$. Now we want to understand this analytically. Earlier attempts to model the result of sequences of mergers (e.g.,) led to density profiles that depend strongly on the power spectrum of initial fluctuations, in conflict with simulations (e.g.,). Perhaps it will be possible to improve on the simple analytic model of mass loss due to tidal stripping during satellite inspiral that we presented in. Including the tidal puffing up of the inspiralling satellite before tidal stripping
can perhaps account for the origin of the cusp seen in dissipationless simulations, independent of the power spectrum \[72\]. They argue that the profile must be steeper than \(\alpha = 1\) as long as enough satellites make it into the halo inner regions, simply because for flatter profiles the tidal force causes dilation rather than stripping. The proper modeling of the puffing and stripping in the merger process of CDM halos may also provide a theoretical framework for understanding the observed flat cores as a result of gas processes; reionization and feedback into the baryonic component of small satellites would make their cores puff up before merging. This could cause them to be torn apart before they penetrate into the halo centers, and thus allow \(\alpha < 1\) cores \[80\]. Other possible explanations for flatter central density profiles involving the baryonic component in galaxies has recently been proposed, in which the baryons form a bar that transfers angular momentum into the inner parts of the halo \[74\], or alternatively binary black holes eject matter by a gravitational slingshot effect \[75\]. While these phenomena could be very important in massive galaxies, it is not clear that they are important in dark-matter-dominated dwarf and LSB galaxies that have small or nonexistent bulge components.

It would be interesting to see whether CDM can give a consistent account of the distribution of matter near the centers of big galaxies, but this is not easy to test. One might think that big bright galaxies like the Milky Way could help to test the predicted CDM profile, but the centers of such galaxies are dominated by ordinary matter (stars) rather than dark matter.\(^4\)

5. Too Much Substructure?

Another concern is that there are more dark halos in CDM simulations with circular velocity \(V_c \lesssim 30\) km s\(^{-1}\) than there are low-\(V_c\) galaxies in the Local Group \[78\]. A natural solution to this problem was proposed by Bullock et al. \[80\], who pointed out that gas will not be able to cool in \(V_c \lesssim 30\) km s\(^{-1}\) dark matter halos that collapse after the epoch of reionization, which occurred perhaps at redshift \(z_{\text{reion}} \approx 6\) \[81\]. When this is taken into account, the predicted number of small satellite galaxies in the Local Group is in good agreement with observations \[80\] \[82\]. It is important to develop and test this idea further, and this is being done by James Bullock and by Rachel Somerville and their collaborators; the results to date (e.g. \[83\] \[84\]) look rather promising. Other groups (e.g. \[85\] \[87\]) now agree that astrophysical effects will keep most of the subhalos dark. As a result, theories such as warm dark matter (WDM), which solve the supposed problem of too many satellites by decreasing the amount of small scale power, may end up predicting too few satellites when reionization and other astrophysical effects are taken into account \[88\].

The fact that high-resolution CDM simulations of galaxy-mass halos are full of subhalos has also led to concerns that all this substructure could prevent the resulting astrophysical objects from looking like actual galaxies \[74\]. In particular, it is known that interaction with massive satellites can thicken or damage the thin stellar disks that are characteristic of spiral galaxies, after the disks have formed by dissipative gas processes. However, detailed simulations \[89\] \[90\] have shown that simpler calculations \[91\] had overestimated the extent to which small satellites could damage galactic disks. Only interaction with large satellites like the Large Magellanic Cloud could do serious damage. But the number of LMC-size and larger satellites is in good agreement with the number of predicted halos \[78\], which suggests that preventing disk damage will not lead to a separate constraint on halo substructure.

6. Angular Momentum Problems

As part of James Bullock’s dissertation research, we found that the distribution of specific angular momentum in dark matter halos has a universal profile \[12\]. But if the baryons have the same angular momentum distribution as the dark matter, this implies that there is too much baryonic material with low angular momentum
to form the observed rotationally supported exponential disks [92,93]. It has long been assumed (e.g. [29,30]) that the baryons and dark matter in a halo start with a similar distribution, based on the idea that angular momentum arising from large-scale tidal torques will be similar across the entire halo. But as my colleagues and I argued recently, a key implication of our new picture of angular momentum growth by merging [94] is that the DM and baryons will get different angular momentum distributions. For example, the lower density gas will be stripped by pressure and tidal forces from infalling satellites, and in big mergers the gaseous disks will partly become tidal tails. Feedback is also likely to play an important role, and Maller and Dekel [73] have shown using a simple model that this can account for data on the angular momentum distribution in low surface brightness galaxies [95].

A related concern is that high-resolution hydrodynamical simulations of galaxy formation lead to disks that are much too small, evidently because formation of baryonic substructure leads to too much transfer of angular momentum and energy from the baryons to the dark matter [96]. But if gas cooling is inhibited in the early universe, more realistic disks form [75], more so in ΛCDM than in Ω_m = 1 CDM [98]. Hydrodynamical simulations also indicate that this disk angular momentum problem may be resolved if small scale power is suppressed because the dark matter is warm rather than cold [93], which I discuss next.

7. Alternatives to ΛCDM?

Because of the concerns just mentioned that CDM may predict higher densities and more substructure on small scales than is observed, many people have proposed alternatives to CDM. Two of these ideas that have been studied in the greatest detail are self-interacting dark matter (SIDM) [6] and warm dark matter (WDM).

Cold dark matter assumes that the dark matter particles have only weak interactions with each other and with other particles. SIDM assumes that the dark matter particles have strong elastic scattering cross sections, but negligible annihilation or dissipation. The hope was that SIDM might suppress the formation of the dense central regions of dark matter halos, although the large cross sections might also lead to high thermal conductivity which drains energy from halo centers and could lead to core collapse [100], and which also causes evaporation of galaxy halos in clusters, resulting in violation of the observed “fundamental plane” correlations [101]. But in any case, self-interaction cross sections large enough to have a significant effect on the centers of galaxy-mass halos will make the centers of galaxy clusters more spherical [102,103] and perhaps also less dense [104,105] than gravitational lensing observations [106] indicate.

Warm dark matter arises in particle physics theories in which the dark matter particles have relatively high thermal velocities, for example because their mass is ≲1 keV [107], comparable to the temperature about a year after the Big Bang when the horizon first encompassed the amount of dark matter in a large galaxy. Such a velocity distribution can suppress the formation of structure on small scales. Indeed, this leads to constraints on how low the WDM particle mass can be. From the requirement that there is enough small-scale power in the linear power spectrum to reproduce the observed properties of the Lyα forest in quasar spectra, it follows that this mass must exceed about 0.75 keV [108]. The requirement that there be enough small halos to host early galaxies to produce the floor in metallicity observed in the Lyα forest systems, and early galaxies and quasars to reionize the universe, probably implies a stronger lower limit on the WDM mass of at least 1 keV [109]. Simulations [110] do show that there will be far fewer small satellite halos with AWDM than ΛCDM. However, as I have already mentioned, inclusion of the effects of reionization may make the observed numbers of satellite galaxies consistent with the predictions of ΛCDM [80], in which case AWDM may predict too few small satellite galaxies [111]. Lensing can be used to look for these subhalos [112,113] and may already indicate that there are more of them than expected in AWDM [114]. Thus it appears likely that WDM does not solve all the problems it was invoked to solve, and may create new problems. Moreover, even with an initial
power spectrum truncated on small scales, simulations appear to indicate that dark matter halos nevertheless have density profiles much like those in CDM [113, 55, 77] (although doubts have been expressed about the reliability of such simulations because of numerical relaxation [116]). But WDM does lead to lower concentration halos in better agreement with observed rotation velocity curves [117, 118].

One theoretical direction that does appear very much worth investigating is ΛCDM with a tilt $n \sim 0.9$ in the primordial power spectrum $P_p(k) \propto k^n$ [111]. Such tΛCDM cosmology is favored by recent measurements of the power spectrum of the Ly α forest [22] and appears to be consistent with the latest CMB measurements and all other available data [119]. Our simple analytic model [15] predicts that the concentration of halos in tΛCDM will be approximately half that in LCDM, because the reduced power on small scales makes the halos form later. While this does not resolve the possible cusp problem, it is a step in the right direction which may lessen the conflict with galaxy rotation curves.

8. Conclusion

The successes of the CDM paradigm are remarkable. Except possibly for the density profiles at the centers of dwarf and low surface brightness galaxies, the predictions of ΛCDM appear to be in good agreement with the available observations. The disagreements between predictions and data at galaxy centers appear to occur on smaller scales than was once thought. As the data improve it is possible that the discrepancies on \(< 1 \) kpc scales may ultimately show that CDM cannot be the correct theory of structure formation. However, ΛCDM appears to be better than any alternative theory that has so far been studied, even though these alternative theories have additional adjustable parameters. Maybe ΛCDM is even true.

REFERENCES

1. J.R. Primack, in COSMO-2000, J.E. Kim et al. (eds.), World Scientific, Singapore, 2001, p. 1, and J.R. Primack, in Proc. Internat. School of Space Science 2001, A. Morselli (ed.), Frascati Physics Series, astro-ph/0112253.
2. See e.g. P.J. Steinhardt, Physica Scripta 185 (2000) 177.
3. P.J.E. Peebles ApJ 263 (1982) L1.
4. G.R. Blumenthal, S.M. Faber, J.R. Primack, and M.J. Rees, Nature 311 (1084) 517.
5. P. Bode et al., ApJ, 556 (2001) 93.
6. D.N. Spergel and P.J. Steinhardt, Phys. Rev. Lett. 84 (2000) 3760.
7. J.R. Primack, in DM2000, D. Cline (ed.) Springer, Berlin, 2001, p. 3.
8. P. de Bernardis et al., ApJ 564 (2002) 559.
9. A. Balbi et al., ApJ 545 (2000) L1, erratum 558 (2001) L145; R. Stompor et al., ApJ 561 (2001) L7; M. Abroe et al., MNRAS submitted, astro-ph/0111101.
10. C. Pryke et al., ApJ 568 (2002) 46.
11. A.G. Riess et al., ApJ 536(2000) 62; ApJ 560 (2001) 49.
12. M.S. Turner, astro-ph/0106035.
13. W.L. Freedman et al., ApJ 553 (2001) 47.
14. J.E. Carlstrom et al., Physica Scripta T 85 (2000) 148; J.E. Carlstrom et al., astro-ph/0103480.
15. L. Knox et al., ApJ 563 (2001) L95.
16. E. Carretta et al. ApJ 533 (2000) 215.
17. C. Sneden et al., ApJ 536 (2000) L85; R. Cayrel et al., Nature 409 (2001) 691.
18. B.M.S. Hansen et al., ApJ in press, astro-ph/0205087.
19. S. Fukuda, Phys. Rev. Lett. 85 (2000) 3999.
20. J.R. Primack, Beam Line 11 (Fall 2001) 50 (www.slac.stanford.edu/pubs/beamline/).
21. O. Elgaroy et al., astro-ph/0204152.
22. D.H. Weinberg et al., ApJ 522 (1999) 563; R.A. Croft et al., astro-ph/0012324.
23. W.J. Percival et al. (2dF), MNRAS 327 (2001) 1297; O. Lahav et al. (2dF), astro-ph/0112163; A.S. Szalay et al. (SDSS), astro-ph/0107419; S. Dodelson et al. (SDSS), astro-ph/0107421; cf. (2MASS) B. Allgood, G.R. Blumenthal, and J.R. Primack, astro-ph/0109403.
24. A.A. Klypin, J.R. Primack, and J. Holtzman, ApJ 466 (1996) 13.
25. A. Jenkins et al., ApJ 499 (1998) 20.
26. A.A. Klypin et al. ApJ 516 (1999) 530.
27. P. Colin et al. ApJ 523 (1999) 32.
28. C.M. Baugh, MNRAS 280 (1996) 267.
29. G.R. Blumenthal, S.M. Faber, R. Flores, and J.R. Primack, ApJ 301, 27 (1986); R. Flores, J.R. Primack, G.R. Blumenthal, and S.M. Faber, ApJ 412 (1993) 443.
30. H.-J. Mo, S. Mao, and S.D.M. White, MNRAS 295 (1998) 319.
31. C.S. Kochanek and M. White, ApJ 559 (2001) 531.
32. A.H. Gonzalez et al. ApJ 528 (2000) 145.
33. S. Cole et al. MNRAS 319 (2000) 168.
34. M. Davis and P.J.E. Peebles, ApJ 267 (1983) 465.
35. N. Cross, S. Driver, and W. Couch (2dF Collaboration), astro-ph/0012165; P. Norberg et al., astro-ph/0111011.
36. M.R. Blanton et al. (SDSS Collaboration), AJ 121 (2001) 2358.
37. M.A. Pahre et al. (MALIGN survey), AAS Meeting 197, (2000) #96.01.
38. E.L. Wright, ApJ, 556 (2002) L17.
39. D.H. Weinberg, L. Hernquist, and N. Katz, ApJ submitted.
40. S.D.M. White and C.S. Frenk, ApJ 379 (1991) 52.
41. G. Kauffmann, S.D.M. White, and B. Guiderdoni, MNRAS 264 (1993) 201.
42. S. Cole et al., MNRAS 271 (1994) 781; MNRAS 319 (2000) 168.
43. R.S. Somerville and J.R. Primack, MNRAS, 310 (1999) 1087.
44. R.S. Somerville, J.R. Primack, and S.M. Faber, ApJ 320 (2001) 504.
45. J.F. Navarro, C.D. Frenk, C.S. and S.D.M. White, ApJ 462 (1996) 563; ApJ 490 (1997) 493.
46. A.A. Klypin et al., ApJ 554 (2001) 903.
47. A.V. Kravtsov, A.A. Klypin, and A.M. Khokhlov, ApJS 111 (1997) 73.
48. J.S. Bullock et al., MNRAS 321 (2001) 559.
49. Y. Jing, ApJ 535 (2000) 30.
50. R.H. Wechsler, J.S. Bullock, J.R. Primack, A.V. Kravtsov, and A. Dekel, ApJ 568 (2002) 52. (2001).
51. F.C. van den BoschApJ 530 (2000) 177.
52. R.A. Flores and J.R. Primack, ApJ, 427 (1994) L1.
53. B. Moore, Nature 370 (1994) 620.
54. B. Moore et al., ApJ 499 (1998) L5.
55. B. Moore et al., MNRAS 310 (1999) 1147.
56. S. Ghigna et al., ApJ 544 (2000) 616.
57. W.J.G. de Blok, S.S. McGaugh, and J.M. van der Hulst, MNRAS 283 (1996) 18.
58. S.S. McGaugh and W.J.G. de Blok, ApJ 499, 41 (1998) and refs. therein.
59. A.A. Klypin et al., ApJ 502 (1998) 48 and refs. therein.
60. F.C. van den Bosch, B.E. Robertson, J.J. Dalcanton, and W.J.G. de Blok, AJ, 119 (2000) 1579.
61. F. van den Bosch and R.A. Swaters, MNRAS 325 (2001) 1017.
62. R.A. Swaters, B.F. Madore, and M. Trewella, ApJ 531 (2000) L107.
63. R.A. Swaters, in Galaxy Disks and Disk Galaxies, ed. J. G. Funes and E.M. Corsini, ASP Conf. Series 230 (2001) 545.
64. W.J.G. de Blok, S.S. McGaugh, A. Bosma, and V.C. Rubin, ApJ, 552 (2001) L23; S.S. McGaugh, V.C. Rubin, and W.J.G. de Blok, AJ 122 (2001) 2381; W.J.G. de Blok, S.S. McGaugh, and V.C. Rubin, AJ 122 (2001) 2396.
65. R. Swaters, in Proc. The Mass of Galaxies at Low and High Redshift, Venice Oct 2001, R. Bender and A. Renzini (eds.) Springer-Verlag, in press; R.A. Swaters, B.F. Madore, F.C. van den Bosch, and M. Balcells, ApJ submitted.
66. C. Power et al., astro-ph/0201544; cf. J.F. Navarro, in IAU Symposium 208, Astrophysical SuperComputing using Particles, eds. J. Makino and P.Hut, astro-ph/0110680.
67. A.D. Bolatto, J.D. Simon, A. Leroy, and L. Blitz, ApJ 565 (2002) 238.
68. D. Zhao et al., astro-ph/0204108.
69. D. Syer and S.D.M. White, MNRAS 293 (1998) 377.
70. A. Nusser and R.K. Sheth, MNRAS 303 (1999) 685.
71. A. Huss, B. Jain, and M. Steinmetz, ApJ 517 (1999) 64.
72. A. Dekel and J. Devor, astro-ph/0204455.
73. A. Maller and A. Dekel, astro-ph/0201187.
74. M.D. Weinberg and N. Katz, astro-
75. D. Merritt, M. Milosavljevic, L. Verde, and R. Jimenez, Phys. Rev. Lett. 88 (2002) 191301.
76. J.F. Navarro and M. Steinmetz, ApJ 528 (2000) 607.
77. V.R. Eke, J.F. Navarro, and M. Steinmetz, ApJ 554 (2001) 114.
78. A.A. Klypin, A.V. Kravtsov, O. Valenzuela, and F. Prada, ApJ 522 (1999) 82.
79. B. Moore et al., ApJ 524 (1999) L19.
80. J.S. Bullock, A.V. Kravtsov, and D.H. Weinberg, ApJ 539 (2000) 517.
81. X. Fan et al., AJ 123 (2002) 1247.
82. B. Moore, astro-ph/0103100.
83. J.S. Bullock, A.V. Kravtsov, and D.H. Weinberg, ApJ 548 (2001) 33.
84. R.S. Somerville, astro-ph/0107507.
85. E. Scannapieco, R.J. Thacker, and M. Davis, ApJ 557 (2001) 605.
86. W.A. Chiu, N.Y. Gnedin, and J.P. Ostriker, ApJ 563 (2001) 21.
87. A.J. Benson et al., MNRAS 333 (2002) 156.
88. R. Barkana et al. ApJ 558 (2001) 482.
89. I.R. Walker et al. ApJ 460 (1996) 121.
90. H. Velazquez and S.D.M. White, MNRAS 304 (1999) 254.
91. G. Toth and J.P. Ostriker, ApJ 389 (1992) 5.
92. J.S. Bullock et al., ApJ 555 (2001) 240.
93. F. van den Bosch, MNRAS 327 (2001) 1334.
94. M. Vitvitska, A.A. Klypin, A.V. Kravtsov, J.S. Bullock, R.H. Wechsler, and J.R. Primack, ApJ submitted, astro-ph/0105343.
95. A.H. Maller, A. Dekel, and R.S. Somerville, MNRAS 329 (2002) 423.
96. F. van den Bosch, A. Burkert, and R.A. Swaters, MNRAS 326 (2001) 1205.
97. J.F. Navarro and M. Steinmetz, ApJ 478, 13 (1997); 513 (1999) 555; 538 (2000) 477.
98. M.L. Weil, V.R. Eke, and G. Efstathiou, MNRAS 300 (1998) 773.
99. V.R. Eke, G. Efstathiou, and L. Wright, MNRAS 315 (2000) L18.
100. J. Sommer-Larsen and A. Dolgov, ApJ 551 (2001) 608.
101. A. Burkert, astro-ph/01012178.
102. O.Y. Gnedin and J.P. Ostriker, ApJ 561 (2001) 61.
102. J. Miralda-Escude, ApJ 564 (2002) 60.
103. Yoshida et al. ApJ 544 (2000) L87.
104. M. Meneghetti et al., MNRAS 325 (2001) 435.
105. J.S.B. Wuytse et al. ApJ 555 (2001) 504.
106. See e.g. J.S. Abadajis, M.W. Bautz, and G.P. Garnire, ApJ 572 (2002).
107. H. Pagels and J.R. Primack, Phys. Rev. Lett. 48 (1982) 223; G.R. Blumenthal, H. Pagels, and J.R. Primack, Nature 299 (1982) 37.
108. V.K. Narayan et al., ApJ 543 (2000) L103.
109. Haiman et al., astro-ph/0103056.
110. R. Colin et al., ApJ 542 (2000) 622.
111. J.S. Bullock, in Proc. Marseille 2001 Conf., R. Treyer & L. Tresse (eds.), astro-ph/0111005 (2001).
112. R.B. Metcalf and P. Madau, ApJ in press, astro-ph/0108224.
113. M. Chiba, ApJ in press, astro-ph/0109499.
114. N. Dalal and C.H. Kochtanek, astro-ph/011156 and astro-ph/0202290.
115. A. Huss et al. ApJ 517 (1999) 64.
116. J.J. Dalcanton and C.J. Hogan, ApJ 561 (2001) 35.
117. V. Avila-Rees et al., ApJ 559 (2001) 516.
118. S.M.K. Alam, J.S. Bullock, and D.H. Weinberg, astro-ph/0109392.
119. X. Wang, M. Tegmark, and M. Zaldarriaga, astro-ph/0105091, Phys. Rev. D in press (2002).