Differentiation of COVID-19 signs and symptoms from allergic rhinitis and common cold: An ARIA-EAACI-GA²LEN consensus

Jan Hagemann | Gabrielle L. Onorato | Marek Jutel | Cezmi A. Akdis

Ioana Agache | Torsten Zuberbier | Wienczyslawa Czarlewski

Joaquim Mullol | Anna Bedbrook | Claus Bachert | Kazi S. Bennoor

Karl-Christian Bergmann | Fulvio Braido | Paulo Camargos | Luis Caraballo

Victoria Cardona | Thomas Casale | Lorenzo Cecchi | Tomas Chivato

Derek K. Chu | Cemal Cingi | Jaime Correa-de-Sousa | Stefano del Giacco

Dejan Dokic | Mark Dykewicz | Motohiro Ebisawa

Yehia El-Gamal | Regina Emuzyte | Jean-Luc Fauquert | Alessandro Fiocchi

Wytske J. Fokkens | Joao A. Fonseca | Bilun Gemicioglu | René-

Maximiliano Gomez | Maia Gotua | Tari Haahlela | Eckard Hamelmann

Tomohisa Inuma | Juan Carlos Ivancevich | Ewa Jassem | Omer Kalayci

Przemyslaw Kardas | Musa Khaitov | Piotr Kuna | Violeta Kvedariene

Desiree E. Larenas-Linnemann | Brian Lipworth | Michael Makris | Jorge

F. Maspero | Neven Miculinic | Florin Mihaltan | Youssef Mohammad

Stephen Montefort | Mario Morais-Almeida | Ralph Mösges

Robert Naclerio | Hugo Neffen | Marek Niedoszytko | Robyn E. O’Hehir

Ken Ohta | Yoshitaka Okamoto | Kumi Okubo | Petr Panzner

Nikolaos G. Papadopoulos | Giovanni Passalacqua

Vincenzo Patella | Ana Pereira | Oliver Pfarr | Davor Plavec

Todor A. Popov | Emmanuel P. Prokopakis | Francesca Puggioni

Filip Raciborski | Jere Reijula | Frederico S. Regateiro | Sietze Reitsma

Antonino Romano | Nelson Rosario | Menachem Rottem | Dermot Ryan

Boleslaw Samolinski | Joaquin Sastre | Dirceu Solé | Milan Sova

Cristiana Stellato | Charlotte Suppli-Ulrik | Ioanna Tsiligianni | Antonio Valero

Arunas Valiulis | Erkka Valovirta | Tuula Vasankari | Maria

Teresa Ventura | Dana Wallace | De Yun Wang | Siân Williams

Arzu Yorgancioglu | Osman M. Yusuf | Mario Zernotti | Jean Bousquet

Ludger Klimek

1Department of Otolaryngology, Head and Neck Surgery, Universitätsmedizin Mainz, Mainz, Germany

© 2021 European Academy of Allergy and Clinical Immunology and John Wiley & Sons Ltd.
Institute of Health, Berlin, Germany

51 Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland

50 Transylvania University Brasov, Brasov, Romania

49 Comprehensive Allergy Center, Department of Dermatology and Allergy, Charité, Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany

48 Medical Consulting Czarlewski, Levallois, France

47 Rhinology Unit & Smell Clinic, ENT Department, Hospital Clinic; Clinical & Experimental Respiratory Immunoallergy, IDIBAPS, CIBERES, University of Barcelona, Barcelona, Spain

46 MASK-air, Montpellier, France

45 Upper Airways Research Laboratory, ENT Department, Ghent University Hospital, Ghent, Belgium

44 Sun Yat-sen University, International Airway Research Center, First Affiliated Hospital Guangzou, Guangzou, China

43 Division of ENT Diseases, CLINTEC, Karolinska Institutet, Stockholm, Sweden

42 Department of ENT Diseases, Karolinska University Hospital, Stockholm, Sweden

41 Department of Respiratory Medicine, National Institute of Diseases of the Chest and Hospital, Dhaka, Bangladesh

40 Department of Internal Medicine (DiMI) and IRCCS Ospedale Policlinico San Martino, University of Genoa, Genoa, Italy

39 Department of Pediatrics, Federal University of Minas Gerais, Medical School, Belo Horizonte, Brazil

38 Institute for Immunological Research, University of Cartagena, Campus de Zaragocilla, Edificio Biblioteca Primer piso, Cartagena, Colombia

37 Foundation for the Development of Medical and Biological Sciences (Fundemeb), Cartagena, Colombia

36 Allergy Section, Department of Internal Medicine, Hospital Vall d’Hebron & ARADyAL Research Network, Barcelona, Spain

35 Division of Allergy/immunology, University of South Florida, Tampa, FL, USA

34 SOS Allergology and Clinical Immunology, USL Toscana Centro, Prato, Italy

33 School of Medicine, University CEU San Pablo, Madrid, Spain

32 Departments of Medicine and Health Research Methods, Evidence & Impact, McMaster University, Hamilton, ON, Canada

31 ENT Department, Medical Faculty, Eskisehir Osmangazi University, Eskisehir, Turkey

30 Life and Health Sciences Research Institute (ICVS, School of Medicine, University of Minho, Braga, Portugal

29 PT Government Associate Laboratory, Braga/Guimarães, Portugal

28 International Primary Care Respiratory Group IPCRG, London, UK

27 Department of Medical Sciences and Public Health and Unit of Allergy and Clinical Immunology, University Hospital ‘Duilio Casula’, University of Cagliari, Cagliari, Italy

26 University Clinic of Pulmology and Allergy, Medical Faculty Skopje, Skopje, Republic of Macedonia

25 Section of Allergy and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, USA

24 Clinical Research Center for Allergy and Rheumatology, NHNO Sagamihara National Hospital, Sagamihara, Japan

23 Pediatric Allergy and Immunology Unit, Children's hospital, Ain Shams University, Cairo, Egypt

22 Clinic of Children’s Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania

21 CHU Clermont-Ferrand, Unité d’Allergologie de l’Enfant, Pole pédiatrique, Hospital Estaing, Clermont-Ferrand, France

20 Division of Allergy, Department of Pediatric Medicine, The Bambino Gesù Children's Research Hospital Holy see, IRCCS, Rome, Italy

19 Department of Otorhinolaryngology, Academic Medical Centers, AMC, Amsterdam, The Netherlands

18 EUFOREA, Brussels, Belgium

17 CINITESIS, Center for Health Technology and Services Research, Faculdade de Medicina, Universidade do Porto, Porto, Portugal

16 Allergy Unit, CUF Porto, Porto, Portugal

15 Department of Pulmonary Diseases, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Turkey

14 Fundacion Ayre-Instituto Medico ALAS, Salta, Argentina

13 Center of Allergy and Immunology, Georgian Association of Allergology and Clinical Immunology, Tbilisi, Georgia

12 Skin and Allergy Hospital, Helsinki University Hospital, Helsinki, Finland

11 University Hospital Bielefeld, Children's Center Bethel, EvKB, Bielefeld, Germany

10 Department of Otorhinolaryngology, Chiba University Hospital, Chiba, Japan

9 Department of Allergology, Medical University of Lodz, Lodz, Poland

8 Pediatric Allergy and Asthma Unit, Hacettepe University School of Medicine, Ankara, Turkey

7 Department of Family Medicine, Medical University of Lodz, Lodz, Poland

6 National Research Center, Institute of Immunology, Federal Medicobiological Agency, Laboratory of Molecular Immunology, Moscow, Russian Federation

5 Division of Internal Medicine, Asthma and Allergy, Barlicki University Hospital, Medical University of Lodz, Lodz, Poland

4 Department of Pathology, Faculty of Medicine, Institute of Biomedical Sciences, Vilnius University and Institute of Clinical Medicine, Clinic of Chest Diseases and Allergology, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
52 Center of Excellence in Asthma and Allergy, Médica Sur Clinical Foundation and Hospital, México City, Mexico

54 Scottish Centre for Respiratory Research, Cardiovascular & Diabetes Medicine, Medical Research Institute, Ninewells Hospital, University of Dundee, Dundee, UK

55 Allergy Unit ‘D Kalogeromitros’, 2nd Department of Dermatology and Venereology, National & Kapodistrian University of Athens, ‘Attikon’ University Hospital, Athens, Greece

56 Argentine Association of Allergy and Clinical Immunology, Buenos Aires, Argentina

57 Croatian Pulmonary Society, Zagreb, Croatia

58 National Institute of Pneumology M Nasta, Bucharest, Romania

59 National Center for Research in Chronic Respiratory Diseases, Tishreen University School of Medicine, Latakia and Syrian Private University-Damascus, Damascus, Syria

60 Respiratory Physician Mater Dei Hospital Malta, Medicine University of Malta, Faculty of Medicine and Surgery University of Medicine, La Valette, Malta

61 Allergy Center, CUF Descobertas Hospital, Lisbon, Portugal

62 CRI-Clinical Research International-Ltd, Hamburg, Germany

63 Johns Hopkins School of Medicine, Baltimore, MD, USA

64 Center of Allergy, Immunology and Respiratory Diseases, Santa Fe, Argentina

65 Department of Allergology, Medical University of Gdańsk, Gdańsk, Poland

66 Department of Allergy, Immunology and Respiratory Medicine, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Vic., Australia

67 Department of Immunology, Monash University, Melbourne, Vic., Australia

68 National Hospital Organization, Tokyo National Hospital, Tokyo, Japan

69 Department of Otolaryngology, Nippon Medical School, Tokyo, Japan

70 Department of Immunology and Allergology, Faculty of Medicine and Faculty Hospital in Pilsen, Charles University in Prague, Pilsen, Czech Republic

71 Division of Infection, Immunity & Respiratory Medicine, Royal Manchester Children's Hospital, University of Manchester, Manchester, UK

72 Allergy and Respiratory Diseases, Ospedale Policlinico San Martino - University of Genoa, Genoa, Italy

73 Division of Allergy and Clinical Immunology, Department of Medicine, Agency of Health ASL Salerno, ‘Santa Maria della Speranza’ Hospital, Salerno, Italy

74 Center for Research in Health Technologies and Information Systems- CINTESS, University of Porto, Porto, Portugal

75 Allergy Unit, Instituto CUF Porto and Hospital CUF Porto, Porto, Portugal

76 Department of Community Medicine, Health Information and Decision - MEDCIDsS, Faculty of Medicine, University of Porto, Porto, Portugal

77 Department of Otorhinolaryngology, Head and Neck Surgery, Section of Rhinology and Allergy, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany

78 Children's Hospital Srebrnjak, Zagreb, School of Medicine, University J.J. Strossmayer, Osijek, Croatia

79 University Hospital ‘Sv Ivan Rilski’**, Sofia, Bulgaria

80 Department of Otorhinolaryngology, University of Crete School of Medicine, Heraklion, Greece

81 Personalized Medicine Clinic Asthma & Allergy, Humanitas Clinical and Research Center IRCCS, Rozzano, and Department of Biomedical Sciences, Humanitas University Pieve Emanuele, Milan, Italy

82 Department of Prevention of Environmental Hazards and Allergology, Medical University of Warsaw, Warsaw, Poland

83 Department of Pulmonology, Helsinki University Central Hospital, Helsinki, Department of Public Health, University of Helsinki, Helsinki, Finland

84 Allergy and Clinical Immunology Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra and Institute of Immunology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal

85 Department of Otorhinolaryngology, Amsterdam University Medical Centres, AMC, Amsterdam, The Netherlands

86 Oasi Research Institute-IRCCS, Troina, Italy

87 bFondazione Mediterranea GB Morgagni, Catania, Italy

88 Hospital de Clinicas, University of Parana, Curitiba, Brazil

89 Division of Allergy Asthma and Clinical Immunology, Emek Medical Center, Afula, Israel

90 Usher Institute, University of Edinburgh, Edinburgh, UK

91 Fundacion Jimenez Diaz, CIBERES, Faculty of Medicine, Autonoma University of Madrid, Madrid, Spain

92 Division of Allergy, Clinical Immunology and Rheumatology, Department of Pediatrics, Federal University of São Paulo, São Paulo, Brazil

93 Department of Respiratory Medicine, University Hospital Olomouc, Olomouc, Czech Republic

94 Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, Salerno, Italy

95 Department of Respiratory Medicine, Copenhagen University Hospital Hvidovre, and Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark

96 Health Planning Unit, Department of Social Medicine, Faculty of Medicine, University of Crete, Greece and International Primary Care Respiratory Group IPCRG, Aberdeen, Scotland

97 Pneumology and Allergy Department CIBERES and Clinical & Experimental Respiratory Immunology, IDIBAPS, University of Barcelona, Barcelona, Spain

98 Vilnius University Faculty of Medicine, Institute of Clinical Medicine & Institute of Health Sciences, Vilnius, Lithuania

99 European Academy of Paediatrics (EAP/UEMS-SP), Brussels, Belgium
INTRODUCTION

Although there are many asymptomatic patients, one of the problems of COVID-19 is early recognition of the disease. Pre-medical visit screening and symptom evaluation have to be implemented quickly to minimise the risk of seeing COVID-19 patients unprepared. Furthermore, testing for coronavirus is still widely restricted due to the shortage of available PCR tests in many countries. Testing capacities have improved dramatically since the beginning of the pandemic, with the recent addition of antigen-based testing. Some of these tests are home-based and have only just obtained FDA approval. However, they still represent a bottleneck, with the subsequent waiting periods leading to large groups of people at risk of infection requiring quarantine. To prevent unnecessary closure of critical facilities, for example schools and public services, triage requires further improvement in terms of speed and accuracy.

COVID-19 symptoms are polymorphic. Typically, COVID-19 induces shortness of breath, cough, fever, nasal congestion and general malaise. However, SARS-coronavirus-2 (SARS-CoV-2) infection has been linked to a number of other symptoms afflicting several organ systems, including muscle and joint pain, sore throat, headache, nausea, vomiting and diarrhoea, as well as coagulopathy. Impaired sense of smell and taste has emerged as an alarming symptom of SARS-CoV-2 infection in the West, but not so much in Asia. Presentation in the upper respiratory tract has also been described as extremely variable across age groups, making it difficult to distinguish COVID-19 from common upper respiratory infections (e.g. croup in children). Therefore, besides the management of severe COVID-19, one of the major problems of the infection is how to screen citizens with possible COVID-19 and distinguish them from patients with similar symptoms caused by allergic rhinitis or other common viral infections of the respiratory tract. A digital tool enabling a rapid
Question	Occurrence	Characteristics	Common cold	Allergic rhinitis	Level Agreement					
1 Runny nose (anterior rhinorrhea)	Very rare	If present, mild symptoms (VAS<5/10)	3.98 0.15	Anterior and posterior rhinorrhea	9.93 0.54	Often	Profuse anterior rhinorrhea	5.41 1.22	8.50 1.90	
2 Sneezing	Very rare	Not in bursts	3.99 0.11	Common	Not in burst	5.02 0.21	Very common	In burst	9.99 0.11	9.37 1.09
3 Stuffy nose	Not uncommon	If present, mild symptoms (VAS<5/10)	4.10 0.68	Always	Often severe	10.00 0.00	Very common	May be severe	8.07 0.36	8.86 1.51
4 Nasal pruritus	NO	NO	0.00 0.00	NO	0.08 0.53	Very common	Variable in intensity	8.02 0.21	9.22 1.38	
5 Nasal pain	Possible	Sometimes	2.99 0.11	3.00 0.00	NO	0.00 0.00	8.21 2.22			
6 Ocular itch	NO	NO	2.94 0.38	3.00 0.00	Common	10.00 0.00	9.31 1.41			
7 Ocular pain	Possible	3.09 0.78	3.00 0.00	NO	0.06 0.53	8.14 2.43				
8 Ocular redness	Possible	3.07 0.54	NO	3.05 0.30	Common	9.98 0.21	8.36 2.29			
9 ≥3 nasal symptoms	NO	N/A	YES	N/A	YES	N/A	8.92 1.82			
10 Smell dysfunction	Not uncommon	Usually anosmia whereas in other diseases it is hyposmia. Associated with other COVID-19 symptoms, it is likely to be a significant diagnostic criterion	10.00 0.00	Sometimes	6.98 0.21	Rare	Anosmia very seldom	6.95 0.30	8.88 1.88	
11 Taste dysfunction	Not uncommon	Dyssgeusia rather than loss of taste. Associated with other COVID-19 symptoms, it is likely to be a significant diagnostic criterion	10.00 0.00	Rare	3.00 0.00	Very rare	2.00 0.00	9.24 1.34		
12 Dyspnea	Relatively common	May start as an isolated mild symptom but may rapidly become severe with respiratory rate>24/min	10.00 0.00	Rare	5.00 2.92	Sometimes if asthma	10.00 0.00	9.08 1.35		
distinction is needed for this approach and may be of great importance during the winter with the co-existence of COVID-19, flu, common cold or other respiratory viral infections and house dust mite-induced rhinitis.

Systematic reviews and meta-analyses have been produced for many COVID-19 symptoms including differentiation between flu and COVID-19. However, there is insufficient knowledge on consensus across the international medical community regarding nasal symptoms that may enable differentiation between COVID-19, common cold and allergic rhinitis. An ARIA (Allergic Rhinitis and its Impact on Asthma)-EAACI (European Academy of Allergy and Clinical Immunology)-GA²LEN (Global Allergy and Asthma European Network) initiative was carried out to establish consensus on a set of questions aimed at distinguishing these diseases. From this consensus, an algorithm will be proposed and digitalised using a method already validated in MASK. The current paper presents the results of the consensus.

This is a new paper of the series of ARIA-EAACI papers on COVID-19.

2 | METHODS

A modified Delphi was carried out. A questionnaire developed by JB, WC, LK and JM was sent to all ARIA members by GLO. Those seeing COVID-19 patients were requested to answer within a week.

The questionnaire included items related to upper and lower airway symptoms for COVID-19, common cold and allergic rhinitis (Table 1). In the questionnaire, the respondents were asked to assess five nasal symptoms, three ocular symptoms, taste, smell, cough, wheezing and sore throat. For each question, there was a statement on frequency and severity. For this, participants were asked to grade the severity from 0 to 10. Then, they gave a global assessment from 0 to 10 according to whether they agreed on the suggested severity grading for the three diseases. A level of 6 or higher was considered as agreement. Suggestions for questions/statements were able to be added to the questionnaire.

A total of 87 answer sheets were included in this analysis. Any written comments were transformed into numeric changes where possible. To determine whether the participants agreed that the symptom/item was to be included in the tool, we collected the total number of participants agreeing as well as the total percentages. The same procedure was used for disagreement and missing/invalid data, respectively.

3 | RESULTS

Among the 192 questionnaires sent out, 89 (46.3%) were returned within 7 days. The average monthly number of COVID-19 consultations among the participants was 16.8 ± 20. The participants were from 37 different countries (Figure 1).
There was a high proportion of agreeing participants, with an average of 76.3% (range 69–83). The overall data quality was acceptable, and missing values for some of the questions were below 20% (Table 2).

Participants were able to grade the maximum expected severity for each disease, and the average final VAS severity data are shown in Figure 2. A two-way ANOVA revealed significant differences in symptom intensity between the three diseases ($p < .001$).

Eye symptoms (7, 8) were among the most discussed statements, and the corresponding statements had relatively low levels of approval (Figure 1). Nasal pain (5) was regarded as impractical by six participants, which was also reflected by a relatively low level of

No.	Symptom	Disagree (≤6)	Agree (>6)	Missing/invalid answer			
		n = 87					
		n	%	n	%	n	%
1	Runny nose (anterior rhinorrhea)	12	13.8	62	71.3	13	14.9
2	Sneezing	3	3.4	72	82.8	12	13.8
3	Stuffy nose	8	9.2	68	78.2	11	12.6
4	Nasal pruritus	7	8.0	69	79.3	11	12.6
5	Nasal pain	14	16.1	61	70.1	12	13.8
6	Ocular itch	5	5.7	70	80.5	12	13.8
7	Ocular pain	16	18.4	60	69.0	11	12.6
8	Ocular redness	13	14.9	62	71.3	12	13.8
9	≥3 Nasal symptoms	7	8.0	65	74.7	15	17.2
10	Smell dysfunction	8	9.2	67	77.0	12	13.8
11	Taste dysfunction	2	2.3	73	83.9	12	13.8
12	Dyspnea	5	5.7	67	77.0	15	17.2
13	Cough	4	4.6	69	79.3	14	16.1
14	Wheezing	7	8.0	64	73.6	16	18.4
15	Sore throat	8	9.2	67	77.0	12	13.8
Mean		9.1	76.3			14.6	
agreement (8.21 ± 2.2; Figure 3). This was possibly caused by different interpretations of the item's description, and this issue needs to be addressed in further developments of the algorithm.

Additional common COVID-19 symptoms will be considered for integration in the future algorithm development process (Table 3).

TABLE 3 Additional items to be integrated in the algorithm

- Strenuous fatigue
- Fever
- COVID−19 comorbidities
- Contact with COVID patient
- Travel to ‘high-risk’ region
- Gastrointestinal symptoms
- Muscle/body ache
- Profound sweating

4 | DISCUSSION

This paper presents the results of a consensus initiative across the ARIA network of health professionals. The aim was to develop a set of questions on symptoms and their intensity in order to discriminate between classical rhinologic disorders and COVID-19. The presentation of COVID-19 is highly variable, ranging from a complete absence of symptoms to severe illness and critical organ dysfunction. The underlying mechanisms for this polymorphic behaviour are yet to be defined.

Within the ARIA network of specialists in upper and lower respiratory diseases, we asked 193 to respond to our consensus initiative, of whom 89 did. The response rate was under 50%, but many physicians were not seeing COVID-19 patients. The strength of this paper is that the involved participants represented different medical specialties and many different countries, suggesting a generalisation of the study.

We found high levels of consensus among this community, with over 76% of participants agreeing to the symptoms presented in our
questionnaire. VAS was found to be a useful and simple tool for discussing questions of symptom intensity in this large group of health professionals. Statistical analysis revealed a significantly different expected maximum VAS of the three diseases (two-way ANOVA, \(p < .001 \)). Hence, there are potential symptom constellations that allow discrimination between the three diseases.

The triage of patients with newly developed symptoms – any individual under suspicion of being at risk of SARS-CoV-2 infection – remains a challenge during this pandemic. Digital application-based symptom reporting and triage have been evaluated in prospective trials in the UK, China and the US.\(^{23-25}\) The improvement of triage will also (i) enhance pre-test probability for SARS-CoV-2 PCR swabs or alternative test methods; (ii) increase the availability of tests in general to make current infection numbers more accurate; (iii) ease unnecessary quarantine; and (iv) reduce the closure of schools, child day care and public services.

ARIA-MASK includes a decision-making tool for allergic rhinitis.\(^{14}\) With a broad user base of 39,670, there is an opportunity to provide newly developed tools for a large group of patients. The questionnaire, along with the participants’ comments, has to be transferred to a validation process. This process can be enhanced by already-developed artificial intelligence (AI) in order to fine-tune and improve symptom VAS thresholds. A final questionnaire and algorithm are open for use across the medical community, focussing on specialists treating upper and lower airway diseases and allergy, hence confronted with similar rhinologic, pneumologic and ophthalmologic symptoms. For allergy and respiratory tract specialists, undoubtedly at high risk of infection during examinations, recommendations for treatment and handling of the field of allergic diseases have been suggested by the European Academy of Allergy and Clinical Immunology (EAACI) in alliance with the global initiative ‘Allergic Rhinitis and its Impact on Asthma’ (ARIA).\(^{17,19-21,26}\) It has been shown that digital decision-making tools and app-based algorithms can improve patient–doctor communication and therapy adherence for both patients and physicians.\(^{27,28}\)

In summary, our future COVID-19 symptom tool may be a helpful device for improving active patient reporting and triage of patients when integrated in the ARIA MASK-air App. We have asked the networks to circulate the tool to their members for testing, and we hope to be able to present the results and create more robust evidence in its practicality. This article presents a substantial consensus effort in COVID-19-treating physicians across the globe. Limitations arise from missing or inappropriate data in the returned questionnaires. However, the development process is followed by AI-supported validation, and future studies have to show the power of such questionnaires.

CONFLICTS OF INTEREST

CA reports grants from Allergopharma, Idorsia, Swiss National Science Foundation, Christine Kühne-Center for Allergy Research and Education, European Commission's Horizon's 2020 Framework Programme, Cure, Novartis Research Institutes, Astra Zeneca, Scibase, advisory role in Sanofi/Regeneron, grants from Glakso Smith-Kline, advisory role in Scibase. JB reports personal fees from Chiesi, Cipla, Hikma, Menarini, Mundipharma, Mylan, Novartis, Purina, Sanofi-Aventis, Takeda, Teva, Uriach, other from KYomed-Innov. VC reports personal fees from ALK, Allergy Therapeutics, LETI, Thermofisher, Merck, AstraZeneca, GSK. JCS reports Advisory Board from Boheringer Ingelheim, personal fees and Advisory Board from GSK, Bial, grants, personal fees and Advisory Board from AstraZeneca, non-financial support from Mundipharma, personal fees from Sanofi, Advisory Board from Novartis. JCI reports personal fees from Faes Farma, Abbott Ecuador, Laboratorios Casasco, Laboratorios Bago Bolivia, Eurofaroma Argentina, Sanofi. PK reports personal fees from Adamed, AstraZeneca, Berlin Chemie Menarini, Boehringer Ingelheim, Hal Allergy, Lekam, Mylan, Novartis, Polpharma, Sanofi, Teva, Chiesi, USP Pharmacia. VK reports personal fees from GSK, non-financial support from AstraZeneca, DIMUNA, DLL reports personal fees from Allakos, Amstrong, AstraZeneca, Boehringer Ingelheim, Chiesi, DBV Technologies, Grunenthal, GSK, MEDA, Menarini, MSD, Novartis, Pfizer, Novartis, Sanofi, Siegfried, UCB, Alakos, Gossamer, grants from Sanofi, AstraZeneca, Novartis, UCB, GSK, TEVA, Boehringer Ingelheim, Chiesi, Purina institute. BL reports grants and personal fees from Mylan, Glenmark. JM reports personal fees and other from SANOFI-GENZYME & REGENERON, NOVARTIS, ALLAKOS, grants and personal fees from MYLAN-MEDA Pharma, URIACH Group, personal fees from MITSUBISHI-TANABE, MENARINI, UCB, ASTRAZENECA, personal fees from GSK, MSD. NP reports personal fees from Novartis, Nutricia, HAL, MENARINI/FAES FARMA, SANOFI, MYLAN/MEDA, BIOMAY, AstraZeneca, GSK, MSD, ASIT BIOTECH, Boehringer Ingelheim, grants from Gerolymatos International SA, Capicicare. OP reports grants and personal fees from ALK-Abelló, Allergopharma, Stallergenes Greer, HAL Allergy Holding B.V./HAL Allergie GmbH, Bencard Allergie GmbH/Allergy Therapeutics, Lofaroma, ASIT Biotech Tools S.A., Laboratorios LETI/LETI Pharma, Anergis S.A., Glaxo Smith Kline, personal fees Astellas Pharma Global, EUFORIA, ROXALL Medizin, Novartis, Sanofi-Aventis and Sanofi-Genzyme, Med Update Europe GmbH, streamedup! GmbH, grants from Pohl-Boskamp, Immunotek S.L.,personal fees from John Wiley and Sons, AS, personal fees from MADA Pharma/MYLAN, Mobile Chamber Experts (a GA’LEN Partner), Indoor Biotechnologies. DP reports grants and personal fees from GlaxoSmithKline, personal fees from Menarini, Pliiva, Belupo, AbbVie, Novartis, MSD, Chiesi, Revenio, AbbVie, Novartis, MSD, Chiesi, Revenio, non-financial support from Philips, personal fees and non-financial support from Boehringer Ingelheim, FP reports personal fees from SANOFI, ASTRAZENECA, NOVARTIS, GLAXO SMITHKLINE, STALLERGENES, ALLERGY THERAPEUTICS, HAL ALLERGY, MENARINI, MALESCI, GUIDOTTI, VALEAS, BOEHRINGER INGELHEIM, ALMIRALL, MUNDIPHARMA, NR reports and Advisory Board: Sanofi, Mylan, AstraZeneca, Speaker: Sanofi, Mylan, Chiesi. JS reports grants and personal fees from SANOFI, personal fees from GSK, NOVARTIS, ASTRAZENCA, MUNDIPHARMA, FAES FARMA. Dr. Tsiligianni reports grants from GSK Hellas, ELPEN, Astra Zeneca Hellas, personal fees from GSK, Boehringer Ingelheim, Novartis, Astra Zeneca. DW reports personal
REFERENCES

1. Han E, Tan MMJ, Turk E, et al. Lessons learnt from easing COVID-19 restrictions: an analysis of countries and regions in Asia Pacific and Europe. Lancet. 2020;396(10261):1525-1534.

2. Gao J, Quan L. Current status of diagnostic testing for SARS-CoV-2 infection and future developments: a review. Med Sci Monit. 2020;26.

3. Mair M, Singhavi H, Pai A, et al. A meta-analysis of 67 studies with presenting symptoms and laboratory tests of COVID-19 patients. Laryngoscope. 2021;131(6):1254-1265.

4. Goyal P, Choi JJ, Pinheiro LC, et al. Clinical characteristics of covid-19 in New York City. N Engl J Med. 2020;382(24):2372-2374.

5. Rojas-Lechuga MJ, Izquierdo-Domínguez A, Chiesa-Estomba C, et al. Chemosensory dysfunction in COVID-19 out-patients. Eur Arch Otorhinolaryngol. 2020;278(3):695-702.

6. Pang KW, Chee J, Subramaniam S, Ng CL. Frequency and clinical utility of olfactory dysfunction in COVID-19: a systematic review and meta-analysis. Curr Allergy Asthma Rep. 2020;20(12):76.

7. Hoang MP, Kanjanaumporn J, Aeumjaturapat S, Chusakul S, Seresirikachorn K, Snidvongs K. Olfactory and gustatory dysfunctions in COVID-19 patients: a systematic review and meta-analysis. Asian Pac J Allergy Immunol. 2020;38(3):162-169.

8. Liu X, Li X, Sun T, et al. East-West differences in clinical manifestations of COVID-19 patients: a systematic literature review and meta-analysis. J Med Virol. 2021;93(5):2683-2693.

9. Mullol J, Alobid I, Marino-Sanchez F, et al. The loss of smell and taste in the COVID-19 outbreak: a tale of many countries. Curr Allergy Asthma Rep. 2020;20(10):61.

10. Venn AMR, Schmidt JM, Mullan PC. A case series of pediatric croup with COVID-19. Am J Emerg Med. 2020. https://doi.org/10.1016/j.ajem.2020.09.034

11. Bousquet J, Anto JM, Bachert C, et al. Allergic rhinitis. Nat Rev Dis Primers. 2020;6(1):95.

12. Bedard A, Basagana X, Anto JM, et al. Treatment of allergic rhinitis during and outside the pollen season using mobile technology. A MASK study. Clin Transl Allergy. 2020;10(1):62.

13. Pormohammad A, Ghorbani S, Khatami A, et al. Comparison of influenza type A and B with COVID-19: a global systematic review and meta-analysis on clinical, laboratory and radiographic findings. Rev Med Virol. 2021;31(3):e2179.

14. Courbis AL, Murray RB, Arnavielhe S, et al. Electronic clinical decision support system for allergic rhinitis management: MASK e-CDSS. Clin Exp Allergy. 2018;48(12):1640-1653.

15. Bousquet JJ, Schunemann HJ, Togias A, et al. Next-generation ARIA care pathways for rhinitis and asthma: a model for multimorbidity chronic diseases. Clin Transl Allergy. 2019:9:44.

16. Bousquet J, Bedbrook A, Czarlewski W, et al. Guidance to 2018 ARIA digitally-enabled, integrated, person-centred care pathways for rhinitis and asthma. Curr Allergy Asthma Rep. 2020;20(10):61.

17. Bousquet J, Akdis C, Jutel M, et al. Intranasal corticosteroids in allergic rhinitis in COVID-19 infected patients: an ARIA-EAACI statement. Allergy. 2021;75(10):2440-2444.

18. Bousquet J, Jutel M, Akdis CA, et al. ARIA-EAACI statement on asthma and COVID-19 (June 2, 2020). Allergy. 2020;76(3):689-697.

19. Klimek L, Jutel M, Akdis C, et al. Handling of allergen immunotherapy in the COVID-19 pandemic: an ARIA-EAACI statement. Allergy. 2020;75(7):1546-1554.

20. Klimek L, Pfaar O, Worm M, et al. Allergen immunotherapy in the current COVID-19 pandemic: a position paper of AeDA, ARIA, EAACI, DGAKI and GPA: position paper of the German ARIA Group(A) in cooperation with the Austrian ARIA Group(B), the Swiss ARIA Group(C), German Society for Applied Allergology (AEDAI)(D), German Society for Allergology and Clinical Immunology (DGAKI) (E), Society for Pediatric Allergology (GPA)(F) in cooperation with AG Clinical Immunology, Allergology and Environmental Medicine of the DGHNO-KHC(G) and the European Academy of Allergy and Clinical Immunology (EAACI)(H), Allergol Select. 2020:4:44-52.

21. Pfaar O, Klimek L, Jutel M, et al. COVID-19 pandemic: practical considerations on the organization of an allergy clinic - an EAACI/ARIA position paper. Allergy. 2020;76(3):648-676.

22. Thompson M. Considering the implication of variations within Delphi research. Fam Pract. 2009;26(5):420-424.
23. Varsavsky T, Graham MS, Canas LS, et al. Detecting COVID-19 infection hotspots in England using large-scale self-reported data from a mobile application: a prospective, observational study. Lancet Public Health. 2021;6(1):21–29.

24. Yu J, Zhang HW, Shao YK, et al. A smartphone-based online tool for prehospital self-triage of COVID-19. Chin J Acad Radiol. 2020;16:1–6.

25. Antonelli M, Capdevila J, Chaudhari A, et al. Identification of optimal symptom combinations to trigger diagnostic work-up of suspected COVID-19 cases: analysis from a community-based, prospective, observational cohort. medRxiv. 2020. https://doi.org/10.1101/2020.11.23.20237313

26. Klimek L, Hoffmann HJ, Kalpakioglou AF, et al. In-vivo diagnostic test allergens in Europe: a call to action and proposal for recovery plan - An EAACI position paper. Allergy. 2020;75(9):2161-2169.

27. Tricco AC, Ashoor HM, Cardoso R, et al. Sustainability of knowledge translation interventions in healthcare decision-making: a scoping review. Implement Sci. 2016;11:55.

28. Stacey D, Hawker G, Dervin G, et al. Decision aid for patients considering total knee arthroplasty with preference report for surgeons: a pilot randomized controlled trial. BMC Musculoskelet Disord. 2014;15:54.

SUPPORING INFORMATION

Additional supporting information may be found online in the Supporting Information section.
Howarth, Martin Hrubyško, Yunuen Rocio Huerta Villalobos, Marc Humbert, Salina Husain, Michael Hyland, Guido Iaccarino, Moustafa Ibrahim, Natalia Illina, Maddalena Illario, Cristoforo Incorvaia, Antonio Infantino, Carla Irani, Zhanat Ispayeva, Juan Carlos Ivanovich, Edvardo EJ Jares, Deborah Jarvis, Ewa Jassem, Klemen Jenko, Rubén Darío Jiménezacruz Uscanga, Sebastian L Johnston, Guy Joos, Maja Jošt, Kaj Jurlie, Kj-Suck Jung, Jocelyne Just, Marek Jutel, Igor Kaidashev, Omer Kalayci, Fuat Kalyoncu, Jeni Kapalli, Przemysław Kardas, Jussi Karjalainen, Carmela A. Kasala, Michael Katotomichealakis, Loretta Kavaliukai, Thomas Keil, Paul Keith, Musa Khaitov, Nikolai Khaltayev, You-Young Kim, Bruce Kirenga, Jorg Kleine-Tebbe, Ludger Klimek, Fanny Ko, Bernard Koffi N’Goran, Evangelia Kompoti, Peter Kopač, Gerard Koppelman, Anja Koren Jeverica, Seppo Koskinen, Mitja Košnik, Tomasz Kostka, Kosta V. Kostov, Marek L Kowalski, Tanya Kralimarkova, Karmen Kramer Vrščaj, Helga Kraxner, Samo Kreft, Vicky Kritikos, Dmitry Kudlay, Mikael Kuitunen, Inger Kull, Piotr Kuna, Maciej Kupczyk, Violeta Kvědati, Marialena Kyriakakou, Nika Lalek, Massimo Landi, Stephen Lane, Désirée E. Larenas-Linnemann, Susanne Lau, Daniel Laune, Jorge Lavrut, Lan TT Le, Martina Lenzenhuber, Gualtiero Leo, Marcus Lessa, Michael Levin, Jing Li, Philip Lieberman, Giuseppe Liotta, Brian Lipworth, Xuanduo Liu, Rommel Lobo, Karin C Lodrup Carlsen, Carlo Lombardi, Renaud Louis, Stelios Loukidis, Olga Lourenço, Jorge A. Luna Pech, Bojan Madjar, Enrico Maggi, Antoine Magnan, Bassam Mahboub, Alpama Mařík, Anke-Hilse Maitland van der Zee, Mika Makela, Michael Makris, Hans-Jorgen Malling, Mariana Mandajieva, Patrick Manning, Manolis Manousakis, Pavlos Maragoudakis, Gianluigi Marseglia, Gailen Marshall, Mohammad Reza Masjedi, Jorge F. Máspero, Juan José Mata Campos, Marcus Maurer, Sandra Mavale-Manuel, Cem Meç, Erik Melén, Giovanni Melioli, Elisabete Melo-Gomes, Eli O Meltzer, Enrica Menditto, Andrew Menzies-Gow, Hans Merk, Jean-Pierre Michel, Yann Micheli, Neven Milunic, Luís Midão, Florin Mihaltan, Nikolaos Mikos, Manlio Milanese, Bransilava Milenkovic, Dimitrios Mitsias, Bassem Moalla, Giuliana Modena, Maria Dolores Mogica Martínez, Yousser Mohammad, Frances-Montserrat Moharra, Mostafa Moin, Mathieu Molimard, Isabelle Momas, Monique Mommers, Alessandro Monaco, Steve Montfort, Lucy-Eilvia Montenegro, Riccardo Monti, Dory Mora, Mario Morais-Almeida, Ralph Mösges, Badr Eldin Mostafa, Joaquim Mullol, Lars Münter, Antonella Muraro, Ruth Murray, Antonio Musarra, Tihomir Mustakov, Robert Nacerio, Kari C. Nadeau, Rachel Nadif, Alla Nakonechna, Leyla Namazova-Baranova, Gretchen Navarro-Locsin, Hugo Neffen, Kristof Nekam, Angelos Neou, Eustachio Nettis, Daniel Neuberger, Laurent Nicod, Stefania Nicola, Verena Niederberger-Leppin, Marek Niedoszytko, Antonio Nieto, Ettore Novellino, Elizabete Nunes, Dieudonné Nyembue, Robyn O’Hehir, Cvetanka Odjakova, Ken Ohta, Yoshitaka Okamoto, KiMi Okubo, Brian Oliver, Gabrielle L Onorato, Maria Pia Orru, Solange Ouedraogo, Kampadilema Ouda, Francisco-Javier Padilla, Pier Luigi Paggiaro, Aris Pagnos, Giovanni Pajno, Gianna Pala, SP Palanilappan, Isabella Pall-Schöll, Susanna Palkonen, Stephen Palmer, Carmen Painaitescu Bunu, Petr Panzer, Nikolaos G Papadopoulos, Vasilis Papanikolaou, Alberto Papi, Bojdar Paralchev, Giannis Paraskevopoulos, Hae-Sim Park, Giovanni Passalacqua, Vincenzo Patella, Ian Pavord, Ruby Pawankar, Soren Pedersen, Susete Peleve, Simona Pellegrino, Ana Pereira, Mariana Pereira, Tamara Pérez, Andrea Perna, Diego Peroni, Oliver Pfarrer, Nhán Phạm-Thi, Bernard Pigereias, Isabelle Pin, Konstantina Piskou, Constantinos Pittsios, Davor Plavec, Dagmar Poethig, Wolfgang Pohl, Antonija Poplas Susic, Tudor A. Popov, Fabienne Portejoie, Paul Potter, Lars Poulsen, Alexandra Prados-Torres, Fotis Prarv, David Price, Emmanuel Prokopakis, Francesca Puggioni, Elisa Puig-Domenéch, Robert Puy, Klaus Rabe, Silvia Rabotti, Filip Raciborski, Josephine Ramos, Cristina Recalcati, Marysia T. Recto, Shereen M. Reda, Federico S Regateiro, Norbert Reider, Sietze Reitsma, Susana Repka-Ramirez, Erminia Ridolo, Janet Rimmer, Daniela Rivero Yeverino, José Ángelo Rizzo, Carlos Robalo-Cordeiro, Graham Roberts, Karen Robles, Nicolas Roche, Mónica Rodríguez González, Erándira Rodríguez Zagal, Giovanni Rolla, Christine Rolland, Regina Roller-Wirnsberger, Miguel Roman Rodríguez, Antonino Romano, Jan Romantowski, Philippe Rombaux, Joel Romualdez, José Rosado-Pinto, Nelson Rosario, Lanny Rosenwasser, Olivier Rossi, Menachem Rottem, Philip Rouadi, Nikolea Rovina, Irma Rozman Sinur, Mauricio Ruiz, Lucy Tania Ruiz Segura, Dermot Ryan, Hironori Sagara, Daiki Sakai, Daiju Sakurai, Wafaa Saleh, Johanna Salimaki, Konstantinos Samitas, Boleslaw Samolinski, Maria Guadalupe Sánchez Coronel, Mario Sanchez-Borges*, Jaime Sanchez-Lopez, Melissa Sansonna, Codrut Sarafoleanu, Faradiba Sarquis Serpa, Joaquín Sastre-Dominguez, Eleonora Savi, Agne Savonyte, Bisher Sawaf, Glenis K Scadding, Sophie Scheire, Peter Schmid-Grendelmeier, Juan Francisco Schuhl, Holger Schünemann, Maria Schvalbová, Jörgen Schwarze, Nicola Scibellone, Gianenrico Senna, Cecilia Sepúlveda, Elle Serrano, Sara Shamai, Aziz Sheikh, Mike Shields, Vasil Shishkov, Nikos Siafakas, Alexander Simeonov, Estelle FER Simons, Juan Carlos Silus, Brígida Sitkovskiene, Ingelbjorg Skrindo, Tanja Soklič Košak, Dircce Solé, Martin Sondermann, Talant Soonraeber, Manuel Soto-Martínez, Manuel Soto-Quiros, Bernardo Sousa Pinto, Milan Sova, Michael Soyka, Krzysztof Specalski, Annette Sper, Otto Springer, Sofia Stamatakia, Lina Stefanaki, Cristinastellato, Rafael Stelmach, Timo Strandberg, Petra Stute, Abirami Subramaniam, Charlotte Suppli Ulrik, Michael Sutherland, Silvia Sylvestre, Alkaterini Syrigou, Luis Taborda Barata, Nadejda Takovska, Rachel Tan, Frances Tan, Vincent Tang, Ing Ping Tang, Masami Taniguchi, Line Tannert, Pongsakorn Tantilipikorn, Jessica Tattersall, Filippo Tesi, Uta Thiene, Carel Thijss, Mike Thomas, Teresa To, Ana Maria Todo-Bom, Alkis Togias, Peter-Valentin Tomazic, Yesica Tomic-Spiric, Sanna Toppila-Salmi, Maria-José Torres Jaen, Eлина Toskala, Massimo Triggiani, Nadja Triller, Katja Triller, Ioana Tisligianni, M. Uberti, Ruxandra Ulmeanu, Jure Urbancic, Marilyn Urrutia-Pereira, Martina Vachova, Felipe Valdés, Rudolf Valenta, Marylin Valentin Rostan, Antonio Valero, Arunas Valiulis, Mina Vallianatou, Eirkka Valovirta, Michel Van Eerd, Eric Van Ganse, Marianne van Hage, Olivier Vandenhals, Tuula Vasankari, Davina Vassileva, Cesar Velasco Munoz, Maria Teresa Ventura, Cécilia Vera-Munoz, Frédéric Viart, Dilyana Vicheva, Pakit Vichyanond, Petra Vidgren, Giovanni Viegi, Claus Vogelmeier, Leena Von Hertzen, Theodoros Vontetsianos, Dimitris Voroudas, Vu
