On Bouncing Solutions in Non-Local Gravity

A. S. Kosheleva and S. Yu. Vernovb,c

aTheoretische Natuurkunde, Vrije Universiteit Brussel and The International Solvay Institutes, Pleinlaan 2, B-1050 Brussels, Belgium
bInstituto de Ciencias del Espacio (ICE/CSIC) and Institut d’Estudis Espacials de Catalunya (IEEC), Camp. UAB, Fac. Ciencies, T. C5, E-08193, Bellaterra, Barcelona, Spain
cSkobeltsyn Institute of Nuclear Physics, Moscow State University, Leninskie Gory 1, Moscow, 119991 Russia

e-mail: alexey.koshelev@vub.ac.be, vernov@ieec.uab.es, svernov@theory.sinp.msu.ru

Abstract—A non-local modified gravity model with an analytical function of the d’Alembert operator, is considered. This model has been recently proposed as a possible way of resolving the singularities problem in cosmology. We present exact bouncing solution, which is simpler compared to the already known one in this model, in the sense it does not require an additional matter to satisfy all gravitational equations.

DOI: 10.1134/S106377961205019X

1. INTRODUCTION

Modified gravity cosmological models have been proposed in the hope of finding solutions to the important open problems of the standard cosmological model. One possible modification, which allows to improve ultraviolet behavior, and even to get renormalizable theory of quantum gravity is adding higher-derivative terms to the Einstein–Hilbert action (as one of the first papers we can mention [1]). Unfortunately, models with higher-derivative terms have ghosts. A way to overcome this problem is to consider non-local gravity.

The main theoretical motivation for studying cosmological models, with non-local corrections to the Einstein–Hilbert action, comes from the string field theory [2]. These corrections usually contain the exponential functions of the d’Alambertian operator and appear in such stringy models as tachyonic actions in string field theory framework. The majority of non-local cosmological models motivated by such structures explicitly include an analytic or meromorphic function of the d’Alembertian [3–9].

Usually both general relativity and modified gravity models are described by a non-integrable system of equations and only particular exact solutions can be obtained. At the same time exact solutions play an important role in the cosmological models since one must consider perturbations in order to claim the model is realistic. Needless to say exact solutions for non-local nonlinear equations is an extremely tough subject. Some studies for nonlocal gravitational models with exact solutions can be found in [5–8].

2. ACTION AND EQUATIONS OF MOTION

The nonlocal modification of the Einstein gravity, which has been proposed in [5, 6], is described by the following action:

\[
S = \int d^4x \sqrt{-g} \left(\frac{M_P^2}{2} R + \frac{1}{2} R \mathcal{F} \left(\frac{\Box}{M_*^2} \right) - \Lambda \right) \tag{1}
\]

where \(M_P \) is the Planck mass, \(M_* \) is the mass scale at which the higher derivative terms in the action become important. An analytic function \(\mathcal{F} \left(\frac{\Box}{M_*^2} \right) = \sum_{n=0}^\infty f_n \Box^n \) is an ingredient inspired by the SFT. The operator \(\Box \) is the covariant d’Alembertian. In the case of an infinite series we have a non-local action.

Let us introduce dimensionless coordinates \(\bar{x}_\mu = M_* x_\mu \) and \(\bar{M}_P = M_P/M_* \). It is easy to see that

\[
\mathcal{F} \left(\frac{\Box}{M_*^2} \right) = \mathcal{F}(\Box),
\]

where \(\Box \) is the d’Alembertian in terms of dimensionless coordinates. In the following formulae we omit bars, but use only dimensionless coordinates.

Straightforward variation of action (1) yields the following equations

\[
\left(M_P^2 + 2 \mathcal{F}(\Box) \right) \left(R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R \right) = 2 \left(D_{\mu} \partial_{\nu} - g_{\mu\nu} \right) \mathcal{F}(\Box) \tag{2}
\]

\[
\times \mathcal{F}(\Box) R - \Lambda g_{\mu\nu} + \frac{1}{2} \sum_{n=1}^\infty \sum_{i=0}^{n-1} \left(\partial^i_{\mu} R \partial^i_{\nu} \Box^{n-i-1} \right) R
\]

\[
+ \partial_{\mu} \Box \left(R \partial_{\nu} \Box^{n-i-1} - g_{\mu\nu} \left(g^{\rho\sigma} \partial_{\rho} \Box^{n-i-1} R - \partial_{\rho} R \partial_{\sigma} R \right) + \Box R \right)\right) - \frac{1}{2} R \mathcal{F}(\Box) R_{\mu\nu}.
\]
where D_{μ} is the covariant derivative. It is useful [6] to write down the trace equation:

$$\begin{align*}
M_p^2 R - \sum_{n=1}^{\infty} \sum_{l=0}^{n-1} \left(\partial_{\mu} R \partial^{\mu} \bar{R} \right)^{n-1} R \\
+ 2 \bar{R} R^{n-1} R - 6 \partial \bar{R} \square R = 4 \Lambda.
\end{align*}$$

(3)

3. GENERAL ANSIATZ FOR FINDING EXACT SOLUTIONS

It has been shown [5] that the following ansatz

$$\square R = r_1 R + r_2,$$

(4)

where $r_1 \neq 0$ is useful to find exact solutions. Using (4), the trace equation becomes

$$A_1 R + A_2 \left(2r_1 R^2 + 2 \partial_{\mu} \bar{R}^{\mu} \right) + A_3 = 0,$$

(5)

where

$$A_1 = -M_p^2 + 4 \mathcal{F}'(r_1) r_2 - 2 \frac{r_2}{r_1} \left(\mathcal{F}(r_1) - f_0 \right) + 6 \mathcal{F}(r_1) r_1,$$

$$A_2 = \mathcal{F}'(r_1),$$

$$A_3 = 4 \Lambda + \frac{r_1}{r_1} M_p^2 + \frac{r_2}{r_1} A_2 - \frac{2 \mathcal{F}'}{r_1}. \mathcal{F}'(r_1).$$

The simplest way to get a solution of equation (5) is to put all the above coefficients to zero. Relations $A_j = 0, j = 1, 2, 3$ determine values of r_1, r_2 and provide a constraint on the value of the cosmological constant:

$$\mathcal{F}'(r_1) = 0, \quad r_2 = -\frac{r_1 M_p^2 - 6 \mathcal{F}(r_1) r_1}{2 \left[\mathcal{F}(r_1) - f_0 \right]},$$

$$\Lambda = -\frac{r_1 M_p^2}{4 r_1} = M_p^2 \left[\frac{M_p^2 - 6 \mathcal{F}(r_1) r_1}{8 \mathcal{F}(r_1) - f_0} \right].$$

(6)

4. EXACT SOLUTIONS AND ITS APPLICATIONS

Let us consider solutions in the spatially flat Friedmann—Lemaître—Robertson—Walker (FLRW) metric with the interval $ds^2 = -dt^2 + a^2(t) \left(dx_1^2 + dx_2^2 + dx_3^2 \right)$.

The very important result for this kind of models was a construction of an analytic solution describing the non-singular bounce

$$a(t) = a_0 \cosh(\lambda t),$$

(7)

where a_0 is an arbitrary constant and $\lambda = \sqrt{\Lambda} / 3 M_p$. To satisfy all equations (2) one should add a radiation to the model. This is the exact analytic result and we refer the reader to [5, 6] about all the details.

Let us consider another solution, which satisfies the ansatz (4). Namely,

$$a(t) = a_0 e^{\frac{r_1 t}{2}},$$

(8)

where a_0 is an arbitrary constant. On this solution

$$H(t) = \lambda t, \quad R = 12 \lambda^2 t^2 + 6 \lambda, \quad \square R = 72 \lambda \frac{1}{2} - 24 \lambda^2,$$

(9)

$$\Rightarrow \quad r_1 = -6 \lambda, \quad r_2 = 12 \lambda^2,$$

where $H = \dot{a}/a$ is the Hubble parameter, differentiation with respect to time t is denoted by a dot. From relation $A_1 = 0$ we get $\Lambda = \lambda M_p^2 / 2$. From $A_1 = 0$ and $A_2 = 0$ we get the following conditions on the function \mathcal{F} at the point r_1:

$$\mathcal{F}(r_1) = -\frac{M_p^2}{32 \lambda} - f_0, \quad \mathcal{F}'(r_1) = 0.$$

(10)

There are two independent Einstein equations in the FLRW metric. Let us consider “00” component of system (2), which reads, after imposing the simplifying ansatz and using conditions $A_1 = 0$ as the second order differential equation for the Hubble parameter H:

$$\mathcal{F}(r_1) \left[HH + 3 H^2 - \frac{1}{2} \frac{f_0}{2} H^2 + \frac{f_0}{24} \right] = 0.$$

(11)

Substituting (9) we get that equation (11) is satisfied, so the function (8) is a solution of all Einstein equations. Note that we do not add any matter to get the exact solution.

We stress that a construction of exact solutions is obviously a non-trivial task and to the moment only one non-trivial exact analytic bouncing solution (7) in the class of models given by action (1) is analyzed [6]. We present here another bouncing solution (8) which is simpler compared to (7) in the sense it does not require an additional matter to be present.

We leave open questions of perturbation spectrum for exact solutions in this nonlocal model and those applications to describing the bounce phase and the initial inflation stage. These question will be addressed in the forthcoming publications.

ACKNOWLEDGMENTS

The author is grateful to the organizers of the Dubna International Workshop “Supersymmetries and Quantum Symmetries” (SQS ‘2011) for hospitality and financial support. The authors thank T. Biswas for very useful and stimulating discussions. The work is supported in part by the RFBR grant 11-01-00894, A.K. is supported in part by the Belgian Federal Science Policy Office through the Interuniversity Attraction Pole P6/11, and in part by the “FWO-Vlaanderen” through the project G.0114.10N. S.V. is supported in part by grants of the Russian Ministry of Education and Science NSh-4142.2010.2 and NSh-3920.2012.2 and by contract CPAN10-PD12 (ICE, Barcelona, Spain).
REFERENCES

1. K. S. Stelle, “Renormalization of Higher Derivative Quantum Gravity,” Phys. Rev. D: Part. Fields 16, 953–969 (1977).

2. I. Ya. Aref’eva, D. M. Belov, A. A. Giryavets, A. S. Koshelev, and P. B. Medvedev, “Non-commutative Field Theories and (Super)String Field Theories” (2001). arXiv:hep-th/0111208v2.

3. S. Jhingan, S. Nojiri, S. D. Odintsov, M. Sami, I. Thongkool, and S. Zerbini, “Phantom and Non-Phantom Dark Energy: The Cosmological Relevance of Non–Locally Corrected Gravity,” Phys. Lett. B 663, 424–428 (2008). arXiv:0803.2613; T. S. Koivisto, “Dynamics of Nonlocal Cosmology,” Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 77, 123513 (2008). arXiv:0803.3399; S. Capozziello, E. Elizalde, S. Nojiri, and S. D. Odintsov, “Accelerating Cosmologies from Non–Local Higher-Derivative Gravity,” Phys. Lett. B 671, 193–198 (2009). arXiv:0809.1535; G. Calcagni and G. Nardelli, “Nonlocal Gravity and the Diffusion Equation,” Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 82, 123518 (2010). arXiv:1004.5144; L. Modesto, “Super-Renormalizable Quantum Gravity,” (2011). arXiv:1107.2403

4. N. Barnaby, T. Biswas, and J. M. Cline, “P-Acidic Inflation,” J. High Energy Phys. 0704, 056 (2007). arXiv:hep-th/0612230; A. S. Koshelev, “Non-Local SFT Tachyon and Cosmology,” J. High Energy Phys. 0704, 029 (2007). arXiv:hep-th/0701103; I. Ya. Aref’eva, L. V. Joukovskaya, and S. Yu. Vernov, “Bouncing and Accelerating Solutions in Nonlocal Stringy Models,” J. High Energy Phys. 0707, 087 (2007). arXiv:hep-th/0701184; D. J. Mulryne and N. J. Nunes, “Diffusing Non-Local Inflation: Solving the Field Equations as an Initial Value Problem,” Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 78, 063519 (2008). arXiv:0805.0449; I. Ya. Aref’eva and A. S. Koshelev, “Cosmological Signature of Tachyon Condensation,” J. High Energy Phys. 0809, 068 (2008). arXiv:0804.3570; A. S. Koshelev and S. Yu. Vernov, “Analysis of Scalar Perturbations in Cosmological Models with a Non-Local Scalar Field,” Classical Quantum Gravity 28, 085019 (2011). arXiv:1009.0746; A. S. Koshelev, “Modified Non-Local Gravity” (2012). arXiv:1112.6410v2

5. T. Biswas, A. Mazumdar, and W. Siegel, “Bouncing Universes in String-Inspired Gravity,” J. Cosmol. Astropart. Phys. 0603, 009 (2006). arXiv:hep-th/0508194

6. T. Biswas, T. Koivisto, and A. Mazumdar, “Towards a Resolution of the Cosmological Singularity in Non-Local Higher Derivative Theories of Gravity,” J. Cosmol. Astropart. Phys. 1011, 008 (2010). arXiv:1005.0590

7. I. Ya. Aref’eva, L. V. Joukovskaya, and S. Yu. Vernov, “Dynamics in Nonlocal Linear Models in the Friedmann-Robertson-Walker Metric,” J. Phys. A: Math. Theor. 41, 304003 (2008). arXiv:0711.1364; S. Yu. Vernov, “Localization of the SFT Inspired Nonlocal Linear Models and Exact Solutions,” Phys. Part. Nucl. Lett. 8, 310–320 (2011). arXiv:1005.0372

8. Sh. Nojiri and S. D. Odintsov, “Modified Non-Local F(R) Gravity as the Key for the Inflation and Dark Energy,” Phys. Lett. B 659, 821 (2008). arXiv:0708.0924; Y. L. Zhang and M. Sasaki, “Screening of Cosmological Constant in Non-Local Cosmology,” Int. J. Mod. Phys. D 21, 1250006 (2012). arXiv:1108.2112; E. Elizalde, E. O. Pozdeeva, and S. Yu. Vernov, “De Sitter Universe in Non-Local Gravity,” Phys. Rev. D: Part., Fields, Gravitation, Cosmol. (2012). arXiv:1110.5806; S. Yu. Vernov, “Nonlocal Gravitational Models and Exact Solutions,” Physics of Particles and Nuclei, 43, No. 5, pp. 694–696 (2012), arXiv:1202.1172

9. T. Biswas, E. Gerwick, T. Koivisto, and A. Mazumdar, “Towards Singularity and Ghost Free Theories of Gravity,” Phys. Rev. Lett. 108, 031101 (2012). arXiv:1110.5249