Revealing Cosmic Rotation

Amit P.S. Yadav1,3, Meir Shimon2, and Brian G. Keating3

1Institute for Advanced Study, School of Natural Sciences, Einstein Drive, Princeton, NJ 08540
2School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel and
3Center for Astrophysics and Space Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0424

(Dated: May 2, 2014)

Cosmological Birefringence (CB), a rotation of the polarization plane of radiation coming to us from distant astrophysical sources, may reveal parity violation in either the electromagnetic or gravitational sectors of the fundamental interactions in nature. Until only recently this phenomenon could be probed with only radio observations or observations at UV wavelengths. Recently, there is a substantial effort to constrain such non-standard models using observations of the rotation of the polarization plane of cosmic microwave background (CMB) radiation. This can be done via measurements of the B-modes of the CMB or by measuring its TB and EB correlations which vanish in the standard model. In this paper we show that EB correlations-based estimator is the best for upcoming polarization experiments. The EB based estimator surpasses other estimators because it has the smallest noise and of all the estimators is least affected by systematics. Current polarimeters are optimized for the detection of B-mode polarization from either primordial gravitational waves or by large scale structure via gravitational lensing. In the paper we also study optimization of CMB experiments for the detection of cosmological birefringence, in the presence of instrumental systematics, which by themselves are capable of producing EB correlations; potentially mimicking CB.

PACS numbers: 98.70.Vc

INTRODUCTION

The cosmic microwave background (CMB) is, arguably, the ideal probe of the standard cosmological model. The polarization of the CMB can be studied in terms of the parity-even E and parity-odd B-modes [1–2]. In the standard cosmological model, the physics governing the radiating field is parity invariant. Hence, the parity odd correlations $\langle TB \rangle$, $\langle EB \rangle$ vanish identically. However, the plane of the CMB’s linear polarization can be rotated due to interactions which introduce different dispersion relations for left and right circularly polarized modes, during propagation to us from the last scattering surface. Such rotations generate non-zero $\langle TB \rangle$ and $\langle EB \rangle$-cross-correlations in the CMB. Thus, measurement of these correlations allow estimation of the rotation of the plane of the CMB polarization [3]. Such rotation can come from several processes/sources; e.g., foregrounds, Faraday rotation due to interactions with magnetic fields, and interactions with pseudoscalar fields [4]. The interaction with foregrounds and Faraday rotation lead to frequency dependent effects; the latter having a frequency dependence $(\propto \nu^{-2})$ [4] [10], while interactions with pseudo-scalar fields are usually assumed to be frequency independent. The distinct frequency dependencies allow separation of these effects.

We know that parity is violated by weak interactions and is possibly violated in the early universe, giving rise to baryon asymmetry. Hence, investigating the existence of parity violating interactions involving cosmologically evolving scalar fields is well-motivated. As an example, an interaction of the form $\sigma T \phi F_{\mu \nu} \tilde{F}^{\mu \nu}$, rotates the polarization plane of linearly polarized light by an angle of rotation $\alpha = \frac{1}{2\pi} \int d\tau \sigma \phi$ during propagation for a conformal time τ. Here $F_{\mu \nu}$ is electromagnetic strength tensor, and $\tilde{F}^{\mu \nu}$ is its dual. The fluctuations in the scalar field ϕ are then encoded in the rotation angle α of the polarization.

Faraday rotation (FR), an interaction of CMB with magnetic fields, rotates the plane of polarization by angle $\alpha = \frac{3}{40\pi a} \lambda_0^2 \int \hat{r} \cdot B \cdot dl$, where $\hat{r} \equiv n_0 n_e \sigma_T a$ is the differential optical depth, n_e is the line of sight free electron density, σ_T is the Thomson scattering cross-section, a is the scale factor, λ_0 is the observed wavelength of the radiation, B is the “comoving” magnetic field, and dl is the comoving length element along the photon trajectory. Magnetic fields are prevalent in cosmic structures at high redshift [12] and it is possible that they may have generated from primordial seed fields imprinted in the early universe (see [13] for a review). It has been shown that constraining FR using the CMB polarization information is a leading diagnostic of primordial magnetic field [14] [15].

As we will show, upcoming CMB polarization probes have the potential constrain the CB rotation angle, α, to unprecedented precision – at the 1’ level. The objective of this paper is to seek optimization schemes for a family of proposed ground-based CMB experiments to detect cosmological birefringence. In particular, we consider the possibility of increasing the size of observed sky patch at the expense of increasing the map noise of the experiments...
and explore how this may affect the bounds on cosmic birefringence (CB) that these experiments set. We have considered a range of experiments (varying from Planck-like to cosmic-variance-limited experiment up to $\ell = 3000$) to study general trends.

THE CMB AND COSMIC BIREFRINGENCE

In the standard model E and B are pure parity states (even and odd, respectively). The correlation, over the full sky, of the B-mode with either the temperature or E-mode polarization vanishes in this case. However in the presence of CB the polarization plane is rotated, generating “forbidden” TB and EB power spectra. The un-rotated CMB temperature field and the Stokes parameters at angular position \hat{n} are written as $\hat{T}(\hat{n})$, and $\hat{Q}(\hat{n})$, $\hat{U}(\hat{n})$, respectively. The temperature field is invariant under a rotation of the polarization by an angle $\alpha(\hat{n})$ at the angular position \hat{n}, while the Stokes parameters transform like a spin-2 field:

\[(Q(\hat{n}) \pm iU(\hat{n})) = (\hat{Q}(\hat{n}) \pm \hat{U}(\hat{n})) \exp(\pm 2i\alpha(\hat{n}))\]

The E and B fields of the CMB are constructed from observed Stokes parameters. In a Fourier basis (in the flat-sky approximation),

\[[E \pm iB](l) = \int d\hat{n} [Q(\hat{n}) \pm iU(\hat{n})] e^{\pm 2i\varphi_1} e^{-i\hat{n}} \cdot \hat{l}, \]

where $\varphi_1 = \cos^{-1}(\hat{n} \cdot \hat{l})$. The change in the CMB fields due to rotation is

\[\delta T(l) = 0, \]

\[\delta B(l) = 2 \int \frac{d^2l'}{(2\pi)^2} \left[\hat{E}(l') \cos 2\varphi_{12} - \hat{B}(l') \sin 2\varphi_{12} \right] \alpha(l), \]

\[\delta E(l) = -2 \int \frac{d^2l'}{(2\pi)^2} \left[\hat{B}(l') \cos 2\varphi_{12} + \hat{E}(l') \sin 2\varphi_{12} \right] \alpha(l), \]

where $L = l - l'$, and $\varphi_{12} = \varphi_1 - \varphi_2$. Thus, due to rotation, a mode of wavevector L mixes the polarization modes of wavevectors l and $l' = 1 - L$. Taking the ensemble average of the CMB fields for a fixed α, for $x \neq x'$ one gets

\[\langle x^*(l)x'(l') \rangle_{\text{CMB}} = f_{xx'}(l, l') \alpha(l), \]

where $x, x' \in \{T, E, B\}$; $f_{TB} = \tilde{C}_{l1}^{TE} \cos 2\varphi_{12}$, and $f_{EB} = 2(l\tilde{C}_{l2}^{EE} - \tilde{C}_{l2}^{BB}) \cos 2\varphi_{12}$. We have assumed that $\alpha \ll 1$ radian, which is an excellent approximation because current upper limits already set it on the sub-degree level [16, 17]. The power spectrum is obtained by averaging over many realizations of the CMB, with α fixed. Note that the power spectrum is linearly proportional to α except for $x = x' = B$, where the BB power spectrum is quadratic in α.

If we also average over the rotation field then the above two point function vanishes for all x, x' except for $x = x'$ for which we are left with the rotation-induced CMB B-mode power spectrum,

\[C_L^{BB} = 4 \int \frac{d^2l'}{(2\pi)^2} C_{l1}^{\alpha} C_{l2}^{BB} \cos^2[2(\varphi_{12} - \varphi_{L})], \]

where $L = l' - l''$. Note that no assumption has been made here as to the origin of this rotation, namely whether or not it is cosmological. In the literature, α is identified with the CB rotation angle (see [17, 18]).

Constant Rotation Case: For the special case where CB is constant over the sky, i.e. the rotation angle is l-independent:

\[a_{l}^{E} = a_{l}^{E} \cos(2\alpha) - a_{l}^{B} \sin(2\alpha) \]

\[a_{l}^{B} = a_{l}^{E} \sin(2\alpha) + a_{l}^{B} \cos(2\alpha), \]

and the power spectra become

\[C_{l}^{TB} = C_{l}^{TE} \sin(2\alpha) \]

\[C_{l}^{EB} = \frac{1}{2} \left(C_{l}^{EE} - C_{l}^{BB} \right) \sin(4\alpha) \]

\[C_{l}^{TE} = C_{l}^{TE} \cos(2\alpha) \]

\[C_{l}^{EE} = C_{l}^{EE} \cos^2(2\alpha) + C_{l}^{BB} \sin^2(2\alpha) \]

\[C_{l}^{BB} = C_{l}^{EE} \sin^2(2\alpha) + C_{l}^{BB} \cos^2(2\alpha). \]
DETECTABILITY OF COSMOLOGICAL BIREFRINGENCE

Following Ref. [19, 22], an unbiased quadratic estimator \(\hat{\alpha}_{xx'}(L) \) for \(\alpha(L) \) for the CMB modes, \(xx' = TB \) and \(EB \) is

\[
\hat{\alpha}_{xx'}(L) = N_{xx'}(L) \int \frac{d^2 l_1}{(2\pi)^2} x(l_1)x'(l_2) \frac{f_{xx'}(l_1, l_2)}{C_{l_1}^{xx'}C_{l_2}^{xx'}} ,
\]

where \(L = l_2 - l_1 \), and the normalization is given by

\[
N_{xx'}(L) = \left[\int \frac{d^2 l_1}{(2\pi)^2} f_{xx'}(l_1, l_2) \frac{f_{xx'}(l_1, l_2)}{C_{l_1}^{xx'}C_{l_2}^{xx'}} \right]^{-1} ,
\]

The fields \(x(l) \) can be obtained from the observed map. Here, \(C_{l_2}^{xx'} \) and \(C_{l_4}^{xx'} \) are the observed power spectra including the effects of both the signal and noise,

\[
C_{l}^{xx} = C_{l}^{xx, \text{theory}} + \Delta_{x}^{2} e^{2\Theta_{\text{FWHM}}^2/(8 \ln 2)}
\]

where \(\Delta_{x} \) is the detector noise and \(\Theta_{\text{FWHM}} \) is full-width at half-maximum (FWHM) of beam size.

The variance of the estimator can be calculated as

\[
\text{Var}(\hat{\alpha}(L)) = \langle \hat{\alpha}_{xx'}(L) \hat{\alpha}_{xx'}^{*}(L') \rangle = N_{xx'}^{2}(L) \int \frac{d^2 l_1}{(2\pi)^2} \int \frac{d^2 l_3}{(2\pi)^2} \langle x(l_1)x(l_2)x(l_3)x(l_4) \rangle \frac{f_{xx'}(l_1, l_2) f_{xx'}(l_3, l_4)}{C_{l_1}^{xx'}C_{l_2}^{xx'}C_{l_3}^{xx'}C_{l_4}^{xx'}} ,
\]

where \(L = l_2 - l_1 = l_4 - l_3 \). In the last line, the first term is the desired CB power spectrum and second term is the estimator’s noise for the reconstruction of CB. The expression for the noise is given by Eq. [9]. The signal-to-noise ratio for detecting CB is given by [20, 21],

\[
\left(\frac{S}{N} \right)^2 = \sum_{l} \frac{f_{s ky}}{2} (2l + 1) \left(\frac{C_{l}^{\alpha\alpha}}{N_{xx}(l)} \right)^2 ,
\]

where \(C_{l}^{\alpha\alpha} \) is the fiducial rotation angle power spectrum.

In Fig. [1] we show the quadratic \(EB \) estimator noise as a function of multipole, \(\ell \), for four experimental configurations. For reference we show two theoretical Faraday rotation power spectrum (black solid curves), one which corresponds to scale invariant magnetic field spectrum and other the for model with a causal stochastic magnetic field. Details on these models involving Faraday rotation can be found in Ref. [15]. For the experiments considered here, the \(EB \) estimator is the most sensitive, as will be demonstrated.

A Constant Rotation Case: For uniform rotation, \(L = l_1 - l_2 = 0 \) in Eq. [9], hence there is no mode mixing between different wavevectors. Although we do not show the “monopole term”, \(L = 0 \), in Fig. [1] the estimator can also be used to find the detectability of uniform rotation. The signal-to-noise (S/N) for the detection of non-vanishing \(C_{l}^{EB} \) is

\[
(S/N)^2_{EB} = \sum_{l} f_{s ky} \frac{(2l + 1)}{2} \left(\frac{C_{l}^{EB, obs}}{C_{l}^{EB}} \right)^2
\]

The power spectrum in the numerator, \(C_{l}^{EB, obs} \), is the observed spectrum, and the power spectra \(C_{l}^{EB} \) and \(C_{l}^{BB} \) in the denominator include the effects of noise and beam smearing (see Eq. (10)). Similar expressions can be written for \((S/N)_{TB} \) by replacing \(E \) by \(T \). Note that for a cosmic-variance-limited experiment, \((S/N)_{EB} \) will exceed \((S/N)_{TB} \) because the cosmic variance of the temperature anisotropy is at least an order of magnitude larger than that of the E-mode polarization.

Employing the conventional definition of the Fisher matrix, and assuming constraints from the \(EB \) data, we obtain

\[
P_{ij}^{EB} = \sum_{l} f_{s ky} \frac{(2l + 1)}{2} \frac{\partial (C_{l}^{EB})}{\partial \lambda_{i}} \frac{\partial (C_{l}^{EB})}{\partial \lambda_{j}} (C_{l}^{EB}C_{l}^{F})^{-1} ,
\]
FIG. 1: Detectability of CB using the EB estimator. We show the EB estimator noise, $N(L)$, as given by Eq. (9), as a function of multipole L. We show the noise for four experimental setups. The noise, Δ_T in μK-arcmin and beam full-width at half-maximum Θ_{FWHM} – units of arcmin, is labeled. For reference, the two solid black curves show the Faraday rotation power spectrum from the stochastic magnetic field with “causal spectrum” ($2n = 5.0$) and for a nearly scale-invariant spectrum ($2n = 0.1$).

and the error on the parameter λ_i is given by $\sigma_i = \sqrt{\left(F_{EB}\right)_{ii}^{-1}}$, the i'th diagonal element of the square root of the inverse Fisher matrix. In the simplest case we consider, there is only a single parameter, the rotation angle α, and the calculation is trivial. A similar expression can be written for the TB estimator. It should be noted that assuming small instrumental noise, such as EPIC [24], CMBPol [25–27], and CoR E [28] the EB estimator outperforms the TB estimator. This can be readily seen from the fact that $\sqrt{C_{iEB}^E} \geq C_{iEE}$, is the Cauchy-Schwarz inequality. In the other extreme, when the experiment is dominated by instrument noise, the TB estimator performs the best. This is due to the fact that $C_{iTE} > C_{iEE}$ and the fact that $\sigma_{det}^E = 2C_{i, det}^{T}$. This result is also clear from Fig. 2 where we compare the EB and TB estimator of various noise configurations.

Optimizing surveys for CB detection can be approached as follows: given the detector noise Δ_0 for an experimental setup, we can get $\Delta = \Delta_0 (f_{\text{sky}})_{i/2}$. Here f_{sky} is a fiducial sky-fraction. Note that larger the f_{sky}, the shorter the observation time in a given sky direction, making the noise, Δ, correspondingly higher. In Fig. 3 we show how changing the sky-fraction, f_{sky}, changes the performance of the EB estimator. In general there is a preferred f_{sky} for which the error in CB is minimized. For the noise-dominated experiment it is preferred to have lower f_{sky}. For a nearly cosmic-variance-limited experiment it is always favorable to have larger f_{sky}. We discuss the physical reasons for this behavior in our results section.

REQUIREMENT ON INSTRUMENTAL SYSTEMATICS

So far the CB detection prospects in the absence of systematics have been discussed. It has been shown that there are several instrumental systematics that can generate EB and TB correlations which also generate spurious B-mode polarization [23, 29]. Although the CMB experiments considered in this work were designed to detect the very weak B-mode signal from inflationary gravitational waves [23, 30], it has been shown [29] that this feature of these CMB experiments may be insufficient for an unbiased detection of CB.
FIG. 2: Comparison of the EB and TB estimator for constant α case. We show forecasted uncertainties on constant α from the two estimators as a function of sky-fraction f_{sky}, for several choices of instrumental noise. The dashed-dotted red curves are for the EB estimator while the solid black curves are for the TB estimator. Clearly the EB estimator outperforms the TB estimator for the experiments with low enough noise such as E BEX [36], CMBPol [25], POLARBEAR [30], SPTPol [37], and SPIDER [38]. Note that for a given observing time, the noise ΔT is proportional to $\sqrt{f_{\text{sky}}}$ and hence can be reduced by observing smaller sky fractions.

Polarimeters such as MaxiPol [31], Boomerang [32], BICEP [33], QUAD [34] etc. difference intensity from bolometers sensitive to two orthogonal polarizations. Any differences between the two bolometers generates spurious Q and U signals. Furthermore, the spatial beams for each bolometer produces generally some degree of ellipticity. Following the formalism presented in Ref. [35], polarization systematics fall into two categories, one associated with the detector system which distorts the polarization state of the incoming polarized signal (hereafter “Type I”), and another associated with systematics of the CMB signal due to the beam anisotropy (“Type II”). To first order, the effect of Type I systematics on the Stokes parameters can be written as

$$\delta(Q \pm iU)(\hat{n}) = [a \pm 2i\omega](\hat{n})[Q \pm iU](\hat{n}) + [f_1 \pm if_2](\hat{n})[Q \mp iU](\hat{n}) + [\gamma_1 \pm i\gamma_2](\hat{n})T(\hat{n}),$$

where $a(\hat{n})$ is a scalar field which describes the polarization miscalibration, $\omega(\hat{n})$ is a scalar field that describes the rotation misalignment of the instrument, $(f_1 \pm if_2)(\hat{n})$ are spin ± 4 fields that describe the coupling between two spin ± 2 states (spin-flip), and $(\gamma_1 \pm i\gamma_2)(\hat{n})$ are spin ± 2 fields that describe monopole leakage, i.e. leakage from CMB temperature anisotropy to polarization.

Similar to the Type I systematics, the effect of Type II systematics on the Stokes parameters can be written as

$$\delta(Q \pm iU)(\hat{n}; \sigma) = \sigma p(\hat{n}) \cdot \nabla[Q \pm iU](\hat{n}; \sigma) + \sigma[d_1 \pm id_2](\hat{n})[\partial_1 \pm i\partial_2]T(\hat{n}; \sigma) + \sigma q(\hat{n})[\partial_1 \pm i\partial_2]^2T(\hat{n}; \sigma),$$

where the systematic fields are smoothed over the coherence size σ. The spin ± 1 fields, $(d_1 \pm id_2)$ describe pointing errors and dipole leakage from temperature to polarization, respectively, and q is a scalar field that represents quadrupole leakage [35], e.g. beam ellipticity.

We now discuss how systematics contaminate the rotation estimator. We start by defining a matrix $F^{D'}_\ell$ for each multipole ℓ,

$$F^{D'}_\ell = \int \frac{d^2l_2}{(2\pi)^2} f^{D'}_{EB}(\ell_1, \ell_2)(C^{-1})_{EB}^{EE} f^{D'}_{EB}(\ell_1, \ell_2)(C^{-1})_{BB}^{BB},$$

where $\ell = \ell_1 - \ell_2$, and D run over all the 11 systematics and lensing, $\{a, \omega, \gamma_1, \gamma_2, f_1, f_2, d_1, d_2, q, p_1, p_2, \phi\}$. The filters $f^D(\ell_1, \ell_2)$ are given in Ref. [25, 35]. Our estimator, in the absence of any distorting systematics field, is unbiased,
meaning that

$$\langle \hat{\alpha}(L) \rangle_{CMB} = \alpha(L). \quad \text{(18)}$$

However, in the presence of multiple systematic effects the estimator as constructed in Eq. (8) may not be unbiased. In general Eqn. (18) is modified as:

$$\langle \hat{\alpha}(L) \rangle_{CMB} = \alpha(L) + \frac{\sum_D F_L^{D\ell} D'(L)}{F_L^{\alpha\alpha}}, \tag{19}$$

where $\hat{\alpha}$ is an estimate of α in the presence of multiple systematics. The level of bias depends on the Fisher matrix, $F_L^{\alpha\alpha}$, and the amplitude of systematics, D.

Systematics induced B-mode power spectrum is given by

$$\langle B(l_1)B(l_2) \rangle_{CMB,D} = (2\pi)^2 \delta(l_1 + l_2) \int \frac{d^2Y}{(2\pi)^2} C_p^{D\ell} \tilde{C}_p^{\ell\ell} W_B^B(l',l'') W_B^B(l',l''), \tag{20}$$

where $l'' = l_1 - l'$; $x = E$ for systematics with E to B leakage, $(D = a, \omega, (f_1, f_2), (p_1, p_2))$; and $x = T$ for systematics with T to B leakage $(D = q, \omega, (\gamma_1, \gamma_2), (d_1, d_2))$. We have assumed zero primordial B-modes for our fiducial model. The window function, $W_B^B(l_1, l_2)$, for each of the systematics, D, are given in Ref. [23, 35].

In Table I we compare the requirement on instrumental systematics for the measurement of CB either via the B-modes or by using the EB estimator. In the table, the first column lists the systematics considered. In column 2-5 we
show the requirement from rotation induced B-mode power spectrum. This requirement was derived by demanding that the systematics induced B-mode power spectrum is 10 times smaller than the rotation induced B-mode power spectrum detectable by that experimental setup. Columns 6-9 shows the requirement for the EB quadratic estimator. This requirement was derived using Eq.(19), where we demand that the spurious power spectrum contamination to the rotation EB estimator (coming from the second term on the right hand side of Eq.(19)) is 10 times smaller than the fiducial underlying underlying rotation power spectrum.

Table I: Requirement on instrumental systematics for the measurement of cosmic birefringence.

Systematics	Requirement							
E1 (ΔT = 1,1)	E2 (5,1)	E3 (1,3.5)	E4 (5,3.5)	E1 (1,1)	E2 (5,1)	E3 (1,3.5)	E4 (5,3.5)	
α	1.1 x 10^{-3}	2.8 x 10^{-3}	1.2 x 10^{-3}	3.1 x 10^{-3}	-	-	-	-
γ1	1.1 x 10^{-5}	2.7 x 10^{-5}	1.1 x 10^{-5}	3.0 x 10^{-5}	-	-	-	-
γ2	8.6 x 10^{-6}	2.2 x 10^{-5}	9.4 x 10^{-6}	2.5 x 10^{-5}	0.10	0.08	0.1	0.08
f1	1.1 x 10^{-3}	2.9 x 10^{-3}	1.2 x 10^{-3}	3.2 x 10^{-3}	-	-	-	-
f2	1.0 x 10^{-3}	2.6 x 10^{-3}	1.1 x 10^{-3}	2.9 x 10^{-3}	-	-	-	-
d1	1.2 x 10^{-4}	3.2 x 10^{-4}	7.1 x 10^{-5}	1.8 x 10^{-4}	0.1	0.56	0.04	0.24
d2	1.3 x 10^{-4}	3.5 x 10^{-4}	7.8 x 10^{-5}	2.0 x 10^{-4}	-	-	-	-
q	1.4 x 10^{-3}	3.6 x 10^{-3}	4.3 x 10^{-4}	1.1 x 10^{-3}	-	-	-	-
p1	2.0 x 10^{-2}	5.3 x 10^{-2}	1.2 x 10^{-2}	3.06 x 10^{-2}	0.16	0.4	0.05	0.13
p2	1.2 x 10^{-2}	3.3 x 10^{-2}	7.3 x 10^{-3}	1.9 x 10^{-2}	-	-	-	-

This requirement was derived by demanding that the systematics induced B-mode power spectrum is 10 times smaller than the rotation induced B-mode power spectrum detectable by that experimental setup. In column 2-5 we show the requirement from rotation induced B-mode power spectrum. This requirement was derived by demanding that the systematics induced B-mode power spectrum is 10 times smaller than the rotation induced B-mode power spectrum detectable by that experimental setup. The analytic model for beam systematics considered by Ref. [41] gives the systematic beam systematics for a constant CB case: We discussed the requirements on systematics, however we can marginalize over unknown beam parameters. This is possible due to the fact that e.g. beam ellipticity and beam offset have different L-dependence than CB and can therefore be distinguished from a pure CB. In other words, the Fisher matrix is regular and invertible. However, pixel rotation is completely degenerate with and we therefore can offer no method of disentangling it from the measured α other than a precise calibration with polarized sources [40]. It turns out that including the beam ellipticity and beam offset effects in our Fisher matrix estimation is surprisingly easy. The analytic model for beam systematics considered by Ref. [41] gives the systematic TB and EB spectra from the combined effect of beam offset ρ and ellipticity ε

\[
C_{T}^{TB,sys} = A_{1}^{2} C_{T}^{TT} \\
C_{E}^{EB,sys} = A_{2}^{4} C_{T}^{TT}
\]
where the two new free parameters A_1 and A_2 are certain combinations of ϵ and ρ. The Fisher matrices in Eq. (1) now become two dimensional. In Table I we show 1σ error on constant CB, α from the EB and the TB estimator with and without the systematics parameters marginalized. It is clear from Table I that for various experimental configurations, the systematics increases the error by only $10 - 20\%$.

RESULTS AND DISCUSSION

In Fig. 1 we show the the minimum detectable spatially dependent CB. We show the EB quadratic estimator noise as a function of multipole l for several experimental configurations. For a given multipole l, the noise level sets the minimum detectable signal for that multipole. For reference we have also shown two fiducial theoretical Faraday rotation power-spectra, for a scale-invariant and causal stochastic magnetic field [15]. It is clear from the plot that for scale invariant case largest contribution to the (S/N) comes from large-scale (low l), while for causal magnetic fields, small scales (large l) contribute the most.

In Fig. 2 we compare the TB and EB estimator for the constant CB case. It is clearly seen that the EB estimator results in better constraints on α for current and future polarization experiments. We also show curves for relatively large experimental noise cases $\Delta_T = 200, 500 \mu$K-arcmin to show that, for experiments with larger noise levels, the TB estimator performs better.

In Fig. 3 we study the optimization of polarization experiments seeking to constrain CB. We show the minimum detectable rotation angle as a function of the sky fraction, f_{sky}, for several choices of instrument detector sensitivity. Here the observing time was fixed. For smaller f_{sky} the noise will be lower but at the cost of smaller number of modes. While if f_{sky} is large, we will have more modes at the cost of larger noise. This compromise between the number of modes and noise is visible in the plot in the form of preferred minima in the curve $\Delta \alpha$ versus f_{sky}.

In Table II we study the requirements on instrumental systematics to be able to utilize a given experiment for detecting or constraining CB. Here we have considered 11 systematics. For each systematic we ask, how small their rms fluctuation must be such that they do not affect detection of CB using (1) the B-mode power spectrum (2) EB estimator. The conclusion of this analysis tells that EB estimator is much less prone to instrumental systematics, i.e. the requirement on EB systematics effects are much weaker than for the B-mode spectra. In fact there are several systematics $(a, \gamma_1, f_1, f_2, d_2, q$ and $p_2)$ which do not affect the estimation of rotation with EB estimator while all the systematics affect the estimation using the B-mode spectrum. Even for the systematics which do affect EB estimator, the requirements on systematics rms control is three-orders of magnitude smaller than the corresponding requirement from B-modes. We also note that lensing deflection is same as the pointing systematics parameter p_2. We show in Table I that p_2 is orthogonal to CB and does not bias the CB estimator. Hence lensing also does not bias the CB estimator.

In Table II we give our forecasted Fisher uncertainties on constant CB α. The experimental configurations used to get the constraints are also shown in the first three columns. It is seen from the table II that the EB estimator gives constraints ~ 3 times better than those obtained from employing the TB estimator this is due to the fact that the experiments considered here are near cosmic-variance-limited and that C_i^{TT} is ~ 10 times larger than C_i^{EE} on the range of multipoles considered ($l_{max} = 3000$ in our calculation). It is also apparent from Table II that adding in the beam systematics does not degrade our constraints by more than 20% due to the fact the beam-systematics-induced TB and EB are only weakly degenerate with pure CB (different L-dependence and the fact that the experiments we consider cover a sufficiently wide multipole range to allow separation of systematic TB and EB from cosmological birefringence). One could add additional free parameters but our results are not expected to significantly change because the L-dependence is different enough to allow separation between CB and beam systematic effects.

CONCLUSIONS

Any mechanism capable of converting E- to B-mode polarization will necessarily leak the TE and EE correlations to TB and EB, respectively. Non-vanishing TB and EB could be used, for example, to monitor residual systematics during data processing [23,24], to constrain Faraday rotation, or to constrain parity violating physics. In this paper we presented a simple analytic approach to the optimization of ground-based CMB polarization observations capable of CB detection. We studied and compared the detection capabilities using the EB correlations, TB correlations, and the B-mode power spectrum. We find the EB correlation based estimator to be the best, both in terms of having least noise and also suffering least from systematic effects. Special care should be given to systematics because they can generate spurious EB correlations in the CMB - widely considered as smoking gun for CB. We demonstrated that
TABLE II: Projected constraints from various experimental configurations on the constant cosmic rotation α. Experimental specifications are shown in column 1-3. Column 4-7 show the expected uncertainties on α from both the TB and EB estimators, without and with systematics marginalized. It is clear that the EB estimator yields tighter constraints on α.

this is probably not a significant issue when one performs a global parameter estimation, leaving beam parameters as nuisance parameters in the analysis. We find that that in general there is a preferred sky fraction f_{sky} for which the errors on CB are minimized. However for experiment with noise $<5\mu$K-arcmin, very deep observing mode will result in weaker constraints on CB and that increasing the observed sky area typically exhausts the capacity to constrain CB. However, adopting such a wide sky coverage will come at the expense of the very high sensitivity required for the inflation-induced B-mode – the tradeoff between these two scientific goals is clear and in order to optimize future experiments it is desirable to define a metric for the successful measurement of both signals. Complications from astrophysical foregrounds were not considered in this work. It is our hope that future CMB observations will provide crucial information of the emission mechanisms that could produce spurious TB and EB correlations in the CMB. In any case, these foregrounds have very different spectral radiances behaviors than the CMB and so by using multifrequency observation one may hope to remove their contribution, at least in part. In addition, their spatial profile and possibly their clustering properties could be used to further identify these non-cosmological contributions and separate them out from the data.

Acknowledgements

A.P.S.Y. acknowledges support from NASA grant number NNX08AG40G. MS was supported by the James B. Ax Family Foundation.

[1] U. Seljak and M. Zaldarriaga, Phys. Rev. Lett. 78, 2054 (1997).
[2] U. Seljak and M. Zaldarriaga (1998), astro-ph/9805010.
[3] M. Kamionkowski, A. Kosowsky, and A. Stebbins, Phys. Rev. D 55, 7368 (1997).
[4] M. Kamionkowski, A. Kosowsky, and A. Stebbins, Phys. Rev. Lett. 78, 2058 (1997).
[5] A. Lue, L. Wang, and M. Kamionkowski, Phys. Rev. Lett. 83, 1506 (1999), arXiv:astro-ph/9812088.
[6] S. M. Carroll, Phys. Rev. Lett. 81, 3067 (1998).
[7] A. Kosowsky and A. Loeb, Astrophys. J. 469, 1 (1996).
[8] A. Kosowsky, T. Kuhniashvili, G. Lavrelashvili, and B. Ratra, Phys. Rev. D 71, 043006 (2005).
[9] L. Campanelli, A. D. Dolgov, M. Giannotti, and F. L. Villante, Astrophys. J. 616, 1 (2004).
[10] C. Scóccola, D. Harari, and S. Mollerach, Phys. Rev. D 70, 063003 (2004), arXiv:astro-ph/0405396.
[11] M. Pospelov, A. Ritz, and C. Skordis (2008), 0808.0673.
[12] A. M. Wolfe, R. A. Jorgenson, T. Robishaw, C. Heiles, and J. X. Prochaska, Nature (London) 455, 638 (2008), 0811.2408.
[13] D. Grasso and H. R. Rubinstein, Physics Reports 348, 163 (2001), arXiv:astro-ph/0009061.
[14] A. P. S. Yadav, L. Pogosian, and T. Vachaspati, ArXiv e-prints (2012), 1207.3356.
[15] L. Pogosian, A. P. S. Yadav, Y.-F. Ng, and T. Vachaspati, ArXiv e-prints (2011), 1106.1438.
[16] . E. Y. S. Wu et al. (QUaD) (2008), astro-ph/0811.0618.
[17] E. Komatsu, K. M. Smith, J. Dunkley, C. L. Bennett, B. Gold, G. Hinshaw, N. Jarosik, D. Larson, M. R. Nolta, L. Page, et al., ApJS 192, 18 (2011), 1001.4538.
[18] E. Komatsu et al. (WMAP) (2008), astro-ph/0803.0547.
[19] W. Hu and T. Okamoto, Astrophys. J. 574, 566 (2002).
[20] M. Kamionkowski, ArXiv e-prints (2008), astro-ph/0810.1286.
[21] A. P. S. Yadav, R. Biswas, M. Su, and M. Zaldarriaga, Phys. Rev. D 79, 123009 (2009), 0902.4466.
[22] V. Gluscevic, M. Kamionkowski, and A. Cooray, Phys. Rev. D 80, 023510 (2009), 0905.1687.
[23] A. P. S. Yadav, M. Su, and M. Zaldarriaga, Phys. Rev. D 81, 063512 (2010), 0912.3532.
[24] J. Bock, A. Aljabri, A. Amblard, D. Baumann, M. Betoule, T. Chui, L. Colombo, A. Cooray, D. Crumb, P. Day, et al., ArXiv e-prints (2009), 0906.1188.
[25] D. Baumann et al. (CMBPol Study Team) (2008), 0811.3919.
[26] M. Zaldarriaga, L. Colombo, E. Komatsu, A. Lidz, M. Mortonson, S. P. Oh, E. Pierpaoli, L. Verde, and O. Zahn, ArXiv e-prints (2008), 0811.3918.
[27] K. M. Smith et al. (2008), 0811.3916.
[28] The COrE Collaboration, C. Armitage-Caplan, M. Avillez, D. Barbosa, A. Banday, N. Bartolo, R. Battye, J. Bernard, P. de Bernardis, S. Basak, et al., ArXiv e-prints (2011), 1102.2181.
[29] N. J. Miller, M. Shimon, and B. G. Keating, Phys. Rev. D 79, 103002 (2009), 0903.1116.
[30] B. Keating, S. Moyerman, D. Boettger, J. Edwards, G. Fuller, F. Matsuda, N. Miller, H. Paar, G. Rebeiz, I. Schanning, et al., ArXiv e-prints (2011), 1110.2101.
[31] B. R. Johnson, J. Collins, M. E. Abroe, P. A. R. Ade, J. Bock, J. Borrill, A. Boscaleri, P. de Bernardis, S. Hanany, A. H. Jaffe, et al., Astrophys. J. 665, 42 (2007), arXiv:astro-ph/0611394.
[32] B. P. Crill, P. A. R. Ade, D. R. Artusa, R. S. Bhatia, J. J. Bock, A. Boscaleri, P. Cardoni, S. E. Church, K. Coble, P. de Bernardis, et al., ApJS 148, 527 (2003), arXiv:astro-ph/0206254.
[33] K. W. Yoon, P. A. R. Ade, D. Barkats, J. O. Battle, E. M. Bierman, J. J. Bock, J. A. Brevik, H. C. Chiang, A. Crites, C. D. Dowell, et al., in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (2006), vol. 6275 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, arXiv:astro-ph/0606278.
[34] J. R. Hinderks, P. Ade, J. Bock, M. Bowden, M. L. Brown, G. Cahill, J. E. Carlstrom, P. G. Castro, S. Church, T. Culverhouse, et al., Astrophys. J. 692, 1221 (2009), 0805.1990.
[35] W. Hu, M. M. Hedman, and M. Zaldarriaga, Phys. Rev. D67, 043004 (2003).
[36] B. Reichborn-Kjennerud, A. M. Aboobaker, P. Ade, F. Aubin, C. Baccigalupi, C. Bao, J. Borrill, C. Cantalupo, D. Chapman, J. Didier, et al., in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (2010), vol. 7741 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 1007.3672.
[37] J. J. McMahon, K. A. Aird, B. A. Benson, L. E. Bleem, J. Britton, J. E. Carlstrom, C. L. Chang, H. S. Cho, T. de Haan, T. M. Crawford, et al., in American Institute of Physics Conference Series, edited by B. Young, B. Cabrera, and A. Miller (2009), vol. 1185 of American Institute of Physics Conference Series, pp. 511–514.
[38] B. P. Crill, P. A. R. Ade, E. S. Battistelli, S. Benton, R. Bihary, J. J. Bock, J. R. Bond, J. Brevik, S. Bryan, C. R. Contaldi, et al., in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (2008), vol. 7010 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 0807.1548.
[39] V. Gluscevic, D. Hanson, M. Kamionkowski, and C. M. Hirata, ArXiv e-prints (2012), 1206.5546.
[40] B. Keating, M. Shimon, and A. Yadav, In preparation (2012).
[41] M. Shimon, B. Keating, N. Ponthieu, and E. Hivon, Phys. Rev. D 77, 083003 (2008), 0709.1513.