TERMINAL TORIC FANO THREE-FOLDS WITH CERTAIN NUMERICAL CONDITIONS

HIROSHI SATO AND RYOTA SUMIYOSHI

Abstract. We completely classify the \mathbb{Q}-factorial terminal toric Fano three-folds such that the sum of the squared torus invariant prime divisors is non-negative.

Contents

1. Introduction 1
2. Preliminaries 2
3. Formulas for intersection numbers 4
4. Gorenstein del pezzo surfaces 7
5. Terminal Fano 3-folds 9
References 11

1. INTRODUCTION

A smooth projective variety X is a Fano manifold if its first Chern character $c_1(X) = -K_X$ is an ample divisor. Although the definition of Fano manifolds is very simple, there are a lot of important properties for them.

In order to investigate the existence of rational surfaces on a Fano manifold, the notion of 2-Fano manifolds was introduced in [5]:

Definition 1.1. A Fano manifold X is a 2-Fano manifold if the second Chern character $c_2(X)$ is nef, that is, $c_2(X) \cdot S \geq 0$ for any surface S on X.

For recent results for the classification of 2-Fano manifolds, see [1]. Few examples of 2-Fano manifolds are known so far. This means that the condition that $c_2(X)$ is nef strongly determines the structure of a Fano manifold.

For the case of toric manifolds, we can see this phenomenon without the condition that X is Fano. Namely, it seems that projective toric manifolds whose second Chern characters are nef have common geometric properties (see [8], [10] and [11]).

In this paper, we generalize these researches for singular cases. Let X be a \mathbb{Q}-factorial projective toric d-fold and D_1, \ldots, D_n the torus invariant prime divisors on X. Put

$$\gamma_2(X) := D_1^2 + \cdots + D_n^2.$$

If X is smooth, it is well known that $2c_2(X) = \gamma_2(X)$. So, we investigate a singular toric variety X such that $\gamma_2(X)$ is positive or nef (see Definition 3.1). In particular, we completely determine which \mathbb{Q}-factorial terminal toric Fano 3-fold is γ_2-nef. There exist exactly 23 \mathbb{Q}-factorial terminal γ_2-nef toric Fano 3-folds (see Theorem 5.3). To prove the main theorem, we introduce the useful formulas for the calculation of intersection numbers.

This paper is organized as follows: In Section 2 we collect basic results for toric varieties. In Section 3 we introduce the notion of γ_2-positive and γ_2-nef toric varieties which are...
main objects of this paper. Moreover, we introduce the formulas for the calculation of intersection numbers which are useful for checking whether a given toric variety is γ_2-nef or not. In Section 3 we determine which Gorenstein toric del Pezzo surface is γ_2-nef. This classification is useful to understand the results of Section 4. In Section 5, we complete the classification of \mathbb{Q}-factorial terminal γ_2-nef toric Fano 3-folds. One can see that they have some common geometric properties.

Acknowledgments. The authors would like to thank Professor Akihiro Higashitani for teaching them about the software *polymake* which is useful for computing convex lattice polytopes. They also thank Professors Yasuhiro Nakagawa and Takahiko Yoshida for comments. The first author was partially supported by JSPS KAKENHI Grant Number JP18K03262. Finally, the authors would like to thank the referee for giving them some polite and concrete comments.

2. Preliminaries

In this section, we introduce some basic results and notation of toric varieties and intersection numbers on them. For the details, please see [3], [4] and [9].

Let $X = X_\Sigma$ be the toric d-fold associated to a fan Σ in $N = \mathbb{Z}^d$ over an algebraically closed field k of arbitrary characteristic. Put $N_\mathbb{R} := N \otimes \mathbb{R}$. It is well known that there exists a one-to-one correspondence between the r-dimensional cones in Σ and the torus invariant subvarieties of dimension $d - r$ in X. Let $G(\Sigma)$ be the set of primitive generators for 1-dimensional cones in Σ. Thus, for $v \in G(\Sigma)$, we have the torus invariant prime divisor corresponding to $\mathbb{R} \geq 0v \in \Sigma$.

For an r-dimensional simplicial cone $\sigma \in \Sigma$, let $N_\sigma \subset N$ be the sublattice generated by $\sigma \cap N$ and let $\sigma \cap G(\Sigma) = \{v_1, \ldots, v_r\}$. Put

$$\text{mult}(\sigma) := [N_\sigma : Zv_1 + \cdots + Zv_r],$$

which is the index of the subgroup $Zv_1 + \cdots + Zv_r$ in N_σ. The following property for intersection numbers on a toric variety is fundamental.

Proposition 2.1. Let X be a \mathbb{Q}-factorial toric d-fold, and let $\sigma, \tau \in \Sigma$, V_σ and V_τ the torus invariant subvarieties associated to σ and τ. If σ and τ span $\lambda \in \Sigma$ with $\dim \lambda = \dim \sigma + \dim \tau$, then

$$V_\sigma \cdot V_\tau = \frac{\text{mult}(\sigma) \cdot \text{mult}(\tau)}{\text{mult}(\lambda)} V_\lambda,$$

where V_λ is the torus invariant subvariety associated to λ. On the other hand, if σ and τ are contained in no cone of Σ, then $V_\sigma \cdot V_\tau = 0$.

Let X be a projective toric d-fold. For $1 \leq i \leq d$, we put

$$Z_i(X) := \{\text{the } i\text{-cycles on } X\}, \text{ while } Z^i(X) := \{\text{the } i\text{-cocycles on } X\}.$$

We introduce the numerical equivalence \equiv on $Z_i(X)$ and $Z^i(X)$ as follows: For $C \in Z_i(X)$, we define $C \equiv 0$ if $D \cdot C = 0$ for any $D \in Z^i(X)$, while for $D \in Z^i(X)$, we define $D \equiv 0$ if $D \cdot C = 0$ for any $C \in Z_i(X)$. We put

$$N_i(X) := (Z_i(X) \otimes \mathbb{R}) / \equiv, \text{ while } N^i(X) := (Z^i(X) \otimes \mathbb{R}) / \equiv.$$

3. Formulas for intersection numbers

In this section, we introduce the notion of γ_r-positive toric varieties, which are main objects of this paper. Also, we prepare the formulas for intersection numbers which are useful for our calculations in Section 5.
Definition 3.1. Let X be a \mathbb{Q}-factorial projective toric d-fold. For any integer $1 \leq r \leq d$, put
\[
\gamma_r = \gamma_r(X) := D_1^r + \cdots + D_n^r \in N^r(X),
\]
where D_1, \ldots, D_n are the torus invariant prime divisors.

If $\gamma_r \cdot Y > 0$ (resp. ≥ 0) for any r-dimensional torus invariant subvariety $Y \subset X$, then we say that X is γ_r-positive (resp. γ_r-nef).

Remark 3.2. For the case where X is smooth, it is well known that
\[
\frac{1}{r!} \gamma_r(X) = \text{ch}_r(X)
\]
which is the r-th Chern character.

The main purpose of this paper is to determine which \mathbb{Q}-factorial terminal toric Fano 3-fold is γ_2-positive or γ_2-nef (see Section 5).

For the classification, we introduce the following notion about intersection numbers on X. This is convenient for the calculation of intersection numbers.

Definition 3.3. Let $X = X_\Sigma$ be a \mathbb{Q}-factorial projective toric d-fold, and $S \subset X$ a torus invariant subsurface on X. Let $G(\Sigma) = \{x_1, \ldots, x_n\}$, and we consider the polynomial ring $\mathcal{R}(X) := \mathbb{Q}[X_1, \ldots, X_n]$, where X_1, \ldots, X_n are the independent variables of polynomials corresponding to x_1, \ldots, x_n, respectively. Let D_1, \ldots, D_n be the torus invariant prime divisors corresponding to x_1, \ldots, x_n, respectively. Then, we define the quadric homogeneous polynomial $I_{S/X} \in \mathbb{Q}[X_1, \ldots, X_n]$ as follows:
\[
I_{S/X} = I_{S/X}(X_1, \ldots, X_n) := \sum_{1 \leq i, j \leq n} (D_i \cdot D_j \cdot S)X_iX_j.
\]

For the cases where $\rho(S) = 1$ or 2, we can determine $I_{S/X}$ explicitly as follows.

Proposition 3.4. Let $X = X_\Sigma$ be a \mathbb{Q}-factorial projective toric d-fold, and $S \subset X$ a torus invariant subsurface on X. If $\rho(S) = 1$, then $\gamma_2 \cdot S > 0$.

Proof. Let $\tau \in \Sigma$ be a $(d-2)$-dimensional cone associated to S and $\tau \cap G(\Sigma) = \{x_1, \ldots, x_{d-2}\}$. There exist exactly 3 maximal cones
\[
\mathbb{R}_{\geq 0}x_{d-1} + \mathbb{R}_{\geq 0}x_d + \tau, \quad \mathbb{R}_{\geq 0}x_d + \mathbb{R}_{\geq 0}x_{d+1} + \tau, \quad \mathbb{R}_{\geq 0}x_{d+1} + \mathbb{R}_{\geq 0}x_{d-1} + \tau
\]
in Σ, where $\{x_{d-1}, x_d, x_{d+1}\} \subset G(\Sigma)$. There exists a linear relation
\[
a_1x_1 + \cdots + a_{d-2}x_{d-2} + a_{d-1}x_{d-1} + a_dx_d + a_{d+1}x_{d+1} = 0,
\]
where $a_1, \ldots, a_{d+1} \in \mathbb{Q}$ and $a_{d-1}, a_d, a_{d+1} > 0$. We remark that this relation is unique up to multiplication by a positive rational number. Since $\{x_1, \ldots, x_d\}$ is an \mathbb{R}-basis for $N_\mathbb{R}$, we have d relations
\[
D_i - \frac{a_i}{a_{d+1}}D_{d+1} + F_i = 0 \quad \text{for } 1 \leq i \leq d,
\]
in $N^1(X)$, where D_1, \ldots, D_{d+1} are torus invariant prime divisors corresponding to x_1, \ldots, x_{d+1}, respectively, while F_1, \ldots, F_d are torus invariant divisors which do not intersect S. So, we can ignore F_i's in the following calculation. For any $1 \leq i, j \leq d$,
\[
D_i \cdot D_j \cdot S = \left(\frac{a_i}{a_{d+1}} \times a_{d+1} \cdot D_{d-1}\right) \cdot \left(\frac{a_j}{a_{d+1}} \times a_{d+1} \cdot D_d\right) \cdot S = \frac{a_ia_j}{a_ia_{d+1}a_d}D_{d-1}D_d \cdot S.
\]
This means that there exists a rational positive number α such that for any $1 \leq i, j \leq d+1$, we have $\alpha D_i \cdot D_j \cdot S = a_ia_j$. In particular, we have
\[
\gamma_2 \cdot S = \frac{a_1^2 + \cdots + a_{d+1}^2}{\alpha} > 0.
\]
\[\square\]
Remark 3.5. The calculation in the proof of Proposition 3.4 tells us that
\[\alpha I_{S/X} = (a_1 X_1 + \cdots + a_{d+1} X_{d+1})^2, \]
where \(X_1, \ldots, X_{d+1} \) are the independent variables of polynomials corresponding to \(x_1, \ldots, x_{d+1} \), respectively.

Although the case where \(\rho(S) = 2 \) is more complicated, we can determine \(I_{S/X} \) as follows:

Let \(X = X_\Sigma \) be a \(\mathbb{Q} \)-factorial projective toric \(d \)-fold, and \(S \subset X \) a torus invariant subsurface of \(\rho(S) = 2 \). Let \(\tau \in \Sigma \) be a \((d-2) \)-dimensional cone associated to \(S \) and \(\tau \cap G(\Sigma) = \{ x_1, \ldots, x_{d-2} \} \). Then, there exist exactly 4 maximal cones
\[\mathbb{R}_{\geq 0} y_1 + \mathbb{R}_{\geq 0} y_3 + \tau, \mathbb{R}_{\geq 0} y_2 + \mathbb{R}_{\geq 0} y_3 + \tau, \mathbb{R}_{\geq 0} y_1 + \mathbb{R}_{\geq 0} y_4 + \tau, \mathbb{R}_{\geq 0} y_2 + \mathbb{R}_{\geq 0} y_4 + \tau \]
in \(\Sigma \), where \(\{ y_1, y_2, y_3, y_4 \} \subset G(\Sigma) \). For \((d-1) \)-dimensional cones \(\mathbb{R}_{\geq 0} y_3 + \tau \) and \(\mathbb{R}_{\geq 0} y_1 + \tau \), we have linear relations
\[b_1 y_1 + b_2 y_2 + c_3 y_3 + a_1 x_1 + \cdots + a_{d-2} x_{d-2} = 0 \]
and
\[b_3 y_3 + b_4 y_4 + c_1 y_1 + e_1 x_1 + \cdots + e_{d-2} x_{d-2} = 0, \]
respectively, where \(a_1, \ldots, a_{d-2}, b_1, b_2, b_3, b_4, c_1, c_3, e_1, \ldots, e_{d-2} \in \mathbb{Q} \) and \(b_1, b_2, b_3, b_4 > 0 \). Then, the following holds.

Proposition 3.6. Under the above setting, we have
\[\alpha I_{S/X} = -b_3 c_1 \left(b_1 y_1 + b_2 y_2 + c_3 y_3 + \sum_{i=1}^{d-2} a_i X_i \right)^2 + 2b_1 b_3 \left(b_1 y_1 + b_2 y_2 + c_3 y_3 + \sum_{i=1}^{d-2} a_i X_i \right) \left(b_3 y_3 + b_4 y_4 + c_1 y_1 + \sum_{i=1}^{d-2} e_i X_i \right) - b_1 c_3 \left(b_3 y_3 + b_4 y_4 + c_1 y_1 + \sum_{i=1}^{d-2} e_i X_i \right)^2, \]
for some positive rational number \(\alpha \), where \(X_1, \ldots, X_{d-2}, Y_1, Y_2, Y_3, Y_4 \) are the independent variables of polynomials corresponding to \(x_1, \ldots, x_{d-2}, y_1, y_2, y_3, y_4 \), respectively. In particular,
\[\alpha \gamma_2 \cdot S = -b_3 c_1 \left(b_1^2 + b_2^2 + c_3^2 + \sum_{i=1}^{d-2} a_i^2 \right) + 2b_1 b_3 \left(b_1 c_1 + b_3 c_3 + \sum_{i=1}^{d-2} a_i e_i \right) - b_1 c_3 \left(b_3^2 + b_4^2 + c_1^2 + \sum_{i=1}^{d-2} e_i^2 \right). \]

Proof. \(\{ x_1, \ldots, x_{d-2}, y_1, y_3 \} \) is an \(\mathbb{R} \)-basis for \(N_\mathbb{R} \), and by using this basis, \(y_2 \) and \(y_4 \) are expressed as
\[y_2 = -\frac{1}{b_2} \left(b_1 y_1 + c_3 y_3 + \sum_{i=1}^{d-2} a_i x_i \right) \]
and
\[y_4 = -\frac{1}{b_4} \left(b_3 y_3 + c_1 y_1 + \sum_{i=1}^{d-2} e_i x_i \right), \]
respectively. Thus, we obtain \(d \) relations
\[\left(D_i - \frac{a_i}{b_2} E_2 - \frac{e_i}{b_4} E_4 \right) \cdot S = 0 \]
for \(1 \leq i \leq d-2 \),
\[(1) \left(E_1 - \frac{b_1}{b_2} E_2 - \frac{c_1}{b_4} E_4 \right) \cdot S = 0 \]
and
\[(2) \left(E_3 - \frac{c_3}{b_2} E_2 - \frac{b_3}{b_4} E_4 \right) \cdot S = 0 \]
in \(N_1(X)\), where \(D_1, \ldots, D_{d-2}, E_1, E_2, E_3, E_4\) are the torus invariant prime divisors corresponding to \(x_1, \ldots, x_{d-2}, y_1, y_2, y_3, y_4\), respectively. On the other hand, \(E_1E_2 \cdot S = E_3E_4 \cdot S = 0\) and \(E_1E_3 \cdot S, E_2E_4 \cdot S > 0\). So, we can express the intersection numbers by \(E_2E_4 \cdot S\).

By multiplying the equality (1) by \(E_1, E_2, E_3, E_4\), we obtain
\[
E_1^2 \cdot S = \frac{c_1}{b_4} E_1 E_4 \cdot S, \quad E_2^2 \cdot S = -\frac{b_2c_1}{b_1 b_4} E_2 E_4 \cdot S,
\]
\[
E_1E_3 \cdot S = \frac{b_1}{b_2} E_2 E_3 \cdot S, \quad E_1E_4 \cdot S = \frac{b_1}{b_2} E_2 E_4 \cdot S + \frac{c_1}{b_4} E_3^2 \cdot S,
\]
while by multiplying the equality (2) by \(E_1, E_2, E_3, E_4\), we obtain
\[
E_1^2 \cdot S = \frac{b_3}{b_4} E_1 E_4 \cdot S, \quad E_2E_3 \cdot S = \frac{c_3}{b_2} E_2^2 \cdot S + \frac{b_3}{b_4} E_2 E_4 \cdot S,
\]
\[
E_3^2 \cdot S = \frac{c_3}{b_2} E_2 E_3 \cdot S, \quad E_1^2 \cdot S = -\frac{b_4c_3}{b_2 b_3} E_2 E_4 \cdot S.
\]
Thus, we have the equalities
\[
E_1E_4 \cdot S = \left(\frac{a_i}{b_2} - \frac{c_1c_3}{b_2b_3} \right) E_2 E_4 \cdot S, \quad E_2^2 \cdot S = \frac{1}{b_4} \left(\frac{a_i}{b_2} - \frac{c_1c_3}{b_2b_3} \right) E_2 E_4 \cdot S,
\]
\[
E_1E_3 \cdot S = \frac{b_1}{b_4} \left(\frac{a_i}{b_2} - \frac{c_1c_3}{b_2b_3} \right) E_2 E_4 \cdot S, \quad E_2E_3 \cdot S = \left(\frac{a_i}{b_4} - \frac{c_1c_3}{b_2b_3} \right) E_2 E_4 \cdot S,
\]
\[
E_3^2 \cdot S = \frac{c_3}{b_2} \left(\frac{b_3}{b_4} - \frac{c_1c_3}{b_1b_4} \right) E_2 E_4 \cdot S.
\]

On the other hand, for any \(1 \leq i, j \leq d - 2\), we have
\[
D_i D_j \cdot S = \left(\frac{a_i}{b_2} E_2 + \frac{e_i}{b_4} E_4 \right) \cdot \left(\frac{a_j}{b_2} E_2 + \frac{e_j}{b_4} E_4 \right) \cdot S
\]
\[
= \frac{a_i a_j}{b_2^2} E_2^2 \cdot S + \frac{e_i e_j}{b_4^2} E_4^2 \cdot S + \frac{a_i e_j + a_j e_i}{b_2 b_4} E_2 E_4 \cdot S
\]
\[
= \left(\frac{a_i a_j c_1}{b_1 b_2 b_4} - \frac{e_i e_j c_2}{b_2 b_3 b_4} + \frac{a_i e_j + a_j e_i}{b_2 b_4} \right) E_2 E_4 \cdot S,
\]
while
\[
D_i E_1 \cdot S = \frac{e_i}{b_4} E_1 E_4 \cdot S = \frac{e_i}{b_4} \left(\frac{b_1}{b_2} - \frac{c_1 c_3}{b_2 b_3} \right) E_2 E_4 \cdot S,
\]
\[
D_i E_2 \cdot S = \frac{a_i}{b_2} E_2 \cdot S + \frac{e_i}{b_4} E_2 E_4 \cdot S = \left(\frac{e_i}{b_4} - \frac{a_i c_1}{b_2 b_4} \right) E_2 E_4 \cdot S,
\]
\[
D_i E_3 \cdot S = \frac{a_i}{b_2} E_2 E_3 \cdot S = \frac{a_i b_3}{b_2} \left(\frac{b_3}{b_4} - \frac{c_1 c_3}{b_1 b_4} \right) E_2 E_4 \cdot S,
\]
\[
D_i E_4 \cdot S = \frac{a_i}{b_2} E_2 E_4 \cdot S + \frac{e_i}{b_4} E_4^2 \cdot S = \left(\frac{a_i}{b_2} - \frac{c_3 e_i}{b_2 b_4} \right) E_2 E_4 \cdot S,
\]
for \(1 \leq i \leq d - 2\). Put \(\beta := D_2 D_4 \cdot S\). By multiplying these intersection numbers by the positive rational number \(b_1 b_2 b_3 b_4\), we have the following tables of intersection numbers:

\(\frac{b_1 b_2 b_3 b_4}{\beta}E_i E_j \cdot S\)	\(E_1\)	\(E_2\)	\(E_3\)	\(E_4\)
\(E_1\)	\(b_1^2 b_3 c_1 - b_1 c_1^2 c_3\)	\(0\)	\(b_2^2 b_3^2 - b_1 b_3 c_1 c_3\)	\(b_2^2 b_4 b_1 - b_1 b_4 c_1 c_3\)
\(E_2\)	\(-b_2^2 b_3 c_1\)	\(b_1 b_2 b_3^2 - b_2 b_3 c_1 c_3\)	\(b_1 b_2 b_3 b_4\)	\(b_1 b_2 b_3 c_3 - b_3 c_1 c_3^2\)
\(E_3\)	\(b_1 b_2^2 c_3 - b_3 c_1 c_3^2\)	\(0\)	\(b_2^2 c_3 - b_3 c_1 c_3^2\)	\(-b_1 b_2^2 c_3\)
\(E_4\)	\(b_1 b_2^2 c_3\)	\(b_1 b_2^2 c_3\)	\(-b_1 b_2^2 c_3\)	\(0\)
for $1 \leq i \leq d-2$.

$$\frac{b_1 b_2 b_3 b_4}{D_i} D_i E_j \cdot S = -a_i a_j b_3 c_1 - e_i e_j b_1 c_3 + a_i e_j b_1 b_3 + a_j e_i b_1 b_3$$

for $1 \leq i, j \leq d-2$.

Put

$$f_1 := b_1 Y_1 + b_2 Y_2 + c_3 Y_3, \quad f_2 := b_3 Y_3 + b_4 Y_4 + c_1 Y_1,$$

$$g_1 := \sum_{i=1}^{d-2} a_i X_i \text{ and } g_2 := \sum_{i=1}^{d-2} e_i X_i \in \mathcal{R}(X).$$

Then,

$$-b_3 c_1 \left(b_1 Y_1 + b_2 Y_2 + c_3 Y_3 + \sum_{i=1}^{d-2} a_i X_i \right)^2 +$$

$$2b_1 b_3 \left(b_1 Y_1 + b_2 Y_2 + c_3 Y_3 + \sum_{i=1}^{d-2} a_i X_i \right) \left(b_3 Y_3 + b_4 Y_4 + c_1 Y_1 + \sum_{i=1}^{d-2} e_i X_i \right)$$

$$-b_1 c_3 \left(b_3 Y_3 + b_4 Y_4 + c_1 Y_1 + \sum_{i=1}^{d-2} e_i X_i \right)^2$$

$$= -b_3 c_1 (f_1 + g_1)^2 + 2b_1 b_3 (f_1 + g_1)(f_2 + g_2) - b_1 c_3 (f_2 + g_2)^2$$

$$= (-b_3 c_1 f_1^2 + 2b_1 b_3 f_1 f_2 - b_1 c_3 f_2^2) + (-b_3 c_1 g_1^2 + 2b_1 b_3 g_1 g_2 - b_1 c_3 g_2^2)$$

$$+ (-2b_1 c_3 f_1 g_1 + 2b_1 b_3 f_1 g_2 + 2b_1 b_3 f_2 g_1 - 2b_1 c_3 f_2 g_2).$$

Thus, one can easily check that every coefficient of this polynomial coincides with the intersection number calculated above. \qed

In Proposition [3.6] if $c_1 = c_3 = a_1 e_1 = \cdots = a_{d-2} e_{d-2} = 0$, we have $\gamma_2 \cdot S = 0$. In particular, the following holds:

Proposition 3.7. Let X be a \mathbb{Q}-factorial projective toric d-fold. If there exists a toric finite morphism $\pi : X' \to X$ such that X' is a direct product of lower-dimensional \mathbb{Q}-factorial projective γ_2-nef toric varieties, then X is also γ_2-nef (but not γ_2-positive).

Proof. It is sufficient to prove for the case where X itself is a direct product. Suppose $X = X_1 \times X_2$. For any torus invariant curves $C_1 \subset X_1$ and $C_2 \subset X_2$, put $S := C_1 \times C_2$. Then, for this S, the set of elements in $G(\Sigma)$ which appear in the left-hand side of

$$b_1 y_1 + b_2 y_2 + c_3 y_3 + a_1 x_1 + \cdots + a_{d-2} x_{d-2} = 0$$

and the one of

$$b_3 y_3 + b_4 y_4 + c_1 y_1 + e_1 x_1 + \cdots + e_{d-2} x_{d-2} = 0$$

have no common element, because X is a direct product. Since $b_1 \neq 0$ and $b_3 \neq 0$, consequently, $c_1 = c_3 = a_1 e_1 = \cdots = a_{d-2} e_{d-2} = 0$. Thus, we have $\gamma_2 \cdot (C_1 \times C_2) = 0$ as seen above. Therefore, X is γ_2-nef (but not γ_2-positive). \qed
4. Gorenstein del pezzo surfaces

In order to understand the 3-folds studied in Section 5 more deeply, we classify the Gorenstein γ_2-nef toric del Pezzo surfaces in this section. In this case, γ_2 is a rational number.

In general, the case where $\rho(X) = 1$ for any dimension can be determined easily as follows:

Proposition 4.1. If $X = X_\Sigma$ is a \mathbb{Q}-factorial projective toric d-fold of $\rho(X) = 1$, then X is γ_2-positive.

Proof. Any torus invariant subsurface of X is of Picard number 1. Therefore, this proposition is an immediate consequence from Proposition 3.4. □

For a projective toric surface S, the polynomial $I_{S/\tilde{S}}$ defined in Definition 3.3 can be calculated inductively:

Let $S = S_\Sigma$ be a projective toric surface. For a maximal cone $\sigma = \mathbb{R}_{\geq 0}x_1 + \mathbb{R}_{\geq 0}x_2 \in \Sigma$ and a primitive lattice point p, q, r, s where $p, q, r, s \in \mathbb{Z}$ and $q > 0, s > 0, qr - ps > 0$. The linear relation

$$qy = (qr - ps)x_1 + sx_2$$

holds. We prepare two additional elements $x_3 = (a_3, b_3), x_4 = (a_4, b_4) \in G(\Sigma) \subset G(\tilde{\Sigma})$ such that $\mathbb{R}_{\geq 0}x_1 + \mathbb{R}_{\geq 0}x_3$ and $\mathbb{R}_{\geq 0}x_2 + \mathbb{R}_{\geq 0}x_4$ are maximal cones in Σ (the case where $x_3 = x_4$ is admitted). Let D_1, D_2, D_3, D_4 be the torus invariant prime divisors on S associated to x_1, x_2, x_3, x_4, respectively, while $\tilde{D}_1, \tilde{D}_2, \tilde{D}_3, \tilde{D}_4, E$ be the torus invariant prime divisors on \tilde{S} associated to x_1, x_2, x_3, x_4, y, respectively.

Proposition 4.2. Under the above setting, we have

$$I_{\tilde{S}/\tilde{\Sigma}} = I_{S/\tilde{S}} - \frac{1}{qs(qr - ps)}((qr - ps)x_1 + sx_2 - qy)^2.$$

Proof. We calculate the intersection numbers of $\tilde{D}_1, \tilde{D}_2, \tilde{D}_3, \tilde{D}_4, E$.

On S, we have

$$D_1D_2 = \frac{1}{\det \begin{pmatrix} 1 & p \\ 0 & q \end{pmatrix}} = \frac{1}{q}$$

by Proposition 2.1. The relations

$$D_1 + pD_2 + a_3D_3 + a_4D_4 + \cdots = 0$$

and

$$qD_2 + b_3D_3 + b_4D_4 + \cdots = 0$$

tells us that

$$D_1^2 = -\frac{p}{q} - a_3D_1D_3$$

and

$$D_2^2 = -\frac{b_4}{q}D_2D_4.$$

On the other hand, on \tilde{S},

$$\tilde{D}_1E = \frac{1}{\det \begin{pmatrix} 1 & r \\ 0 & s \end{pmatrix}} = \frac{1}{s} \quad \text{and} \quad \tilde{D}_2E = \frac{1}{\det \begin{pmatrix} r & p \\ s & q \end{pmatrix}} = \frac{1}{qr - ps}$$

for $s \neq qr - ps$.
The relations
\[\tilde{D}_1 + p\tilde{D}_2 + a_3\tilde{D}_3 + a_4\tilde{D}_4 + rE + \cdots = 0 \]
and
\[q\tilde{D}_2 + b_3\tilde{D}_3 + b_4\tilde{D}_4 + sE + \cdots = 0 \]
tells us that
\[\tilde{D}_1^2 = -a_3\tilde{D}_1\tilde{D}_3 - \frac{r}{s}\tilde{D}_1^2 - \frac{s}{q(qr-ps)} \]
and
\[E^2 = -\frac{q}{s(qr-ps)}. \]
Additionally, we remark that
\[D_1D_3 = \tilde{D}_1\tilde{D}_3 \]
and
\[D_2D_4 = \tilde{D}_2\tilde{D}_4. \]
Thus, we obtain
\[I_{\tilde{S}/\tilde{S}} - I_{S/S} = \frac{2}{q}X_1X_2 + \left(\frac{p}{q} - \frac{r}{s} \right)X_1^2 - \frac{s}{q(qr-ps)}X_2^2 \]
\[+ \frac{2}{s}X_1Y + \frac{2}{qr-ps}X_2Y - \frac{q}{s(qr-ps)}Y^2, \]
where \(X_1, X_2, X_3, X_4, Y\) are the independent variables of polynomials corresponding to \(x_1, x_2, x_3, x_4, y\), respectively.

The following is an immediate consequence of Proposition 4.2:

Corollary 4.3. Let \(\varphi : \tilde{S} \to S \) be a toric birational morphism between projective toric surfaces \(\tilde{S} \) and \(S \). Then, \(\gamma_2(\tilde{S}) < \gamma_2(S) \).

By Corollary 4.3, for the classification, it is sufficient to investigate Gorenstein toric del Pezzo surfaces of lower Picard numbers. The Gorenstein toric del Pezzo surfaces are classified by Koelman [7]. There exist exactly 16 Gorenstein toric del Pezzo surfaces, and we can get the list of them on the internet (see [6]).

The case of Picard number 1 is done by Proposition 4.1. For the next case where the Picard number is two, we show the following easy lemma:

Lemma 4.4. Let \(S = S_\Sigma \) be a projective toric surface of \(\rho(S) = 2 \). If there exist \(x_1, x_2 \in G(\Sigma) \) such that \(x_1 + x_2 = 0 \), then \(S \) is \(\gamma_2 \)-nef.

Proof. Let \(G(\Sigma) = \{x_1, x_2, x_3, x_4\} \). Then, we may assume that there exists another relation
\[ax_3 + bx_4 - cx_1 = 0 \]
for \(a, b, c \in \mathbb{Z}_{\geq 0} \) (\(a, b > 0 \)). By Proposition 3.6, there exists a positive rational number \(\alpha \) such that
\[\alpha \gamma_2 = ac \times (1 + 1) + 2a \times (-c) = 0. \]

There exists exactly one Gorenstein \(\gamma_2 \)-nef (but not \(\gamma_2 \)-positive) toric del Pezzo surface \(S = S_\Sigma \) of \(\rho(S) = 2 \) such that there is no centrally symmetric pair in \(G(\Sigma) \) (see ID 9 in Table 1 below). Therefore, by Corollary 4.3 if \(\rho(S) \geq 3 \), then \(S \) is not \(\gamma_2 \)-nef.

Thus, we obtain the following list of Gorenstein \(\gamma_2 \)-nef toric del Pezzo surfaces. In the first column of the table, we describe ID of Kasprzyk’s classification list:

\[\text{http://www.grdb.co.uk/forms/toricldp} \]

We describe a toric surface \(S_\Sigma \) by giving all the elements in \(G(\Sigma) \) in the second column.
Table 1. Gorenstein γ_2-nef toric del Pezzo surfaces

ID	$\text{G}(\Sigma)$
12	(0, 1), (3, 1), (-3, -2)
13	(0, 1), (4, 1), (-2, -1)
14	(0, 1), (2, 1), (-3, -2)
15	(0, 1), (2, 1), (-1, -1)
16	(0, 1), (1, 1), (-1, -2)
6	(0, 1), (2, 1), (0, -1), (-2, -1)
8	(0, 1), (1, 1), (0, -1), (-2, -1)
9	(0, 1), (1, 1), (-1, -2), (-1, 0)
10	(0, 1), (1, 1), (0, -1), (-1, 0)
11	(0, 1), (1, 1), (0, -1), (-1, -1)

5. Terminal Fano 3-folds

In this final section, we give the classification of \mathbb{Q}-factorial terminal γ_2-nef toric Fano 3-folds.

Definition 5.1. A \mathbb{Q}-factorial projective toric variety X is a Fano variety if its anticanonical divisor $-K_X$ is an ample divisor.

Remark 5.2. A γ_1-positive toric variety is nothing but a toric Fano variety.

Terminal toric Fano 3-folds are classified by Kasprzyk [6], and the classification list is available on the internet (see [6]). There exist exactly 233 \mathbb{Q}-factorial terminal toric Fano 3-folds up to isomorphism. We checked the non-negativities of γ_2 for these 233 \mathbb{Q}-factorial terminal toric Fano 3-folds mainly by hand calculation. Partially, we used the software polymake (see [2]). Thus, the following is the main theorem of this paper:

Theorem 5.3. There exist exactly 23 \mathbb{Q}-factorial terminal γ_2-nef toric Fano 3-folds.

The following is the classification table. In the first column of the table, we describe ID of Kasprzyk’s classification list:

http://www.grdb.co.uk/forms/toricf3t

We describe a toric variety X_Σ by giving all the elements in $\text{G}(\Sigma)$ in the second column. In the 3rd column, if there exists a Fano contraction $\varphi : X \to S$ such that S is a Gorenstein γ_2-nef toric del Pezzo surface, then we describe ID of S in Table 1 in Section [4].
Table 2. \(\mathbb{Q}\)-factorial terminal \(\gamma_2\)-nef toric Fano 3-folds

ID	\((1,0,0),(0,1,0),(1,-3,5),(-2,2,-5)\)	
2	\((1,0,0),(0,1,0),(1,-2,7),(-1,1,-5)\)	
3	\((1,0,0),(0,1,0),(-2,2,7),(1,-2,-5)\)	
4	\((1,0,0),(0,1,0),(0,0,1),(-1,-1,-1)\)	
5	\((1,0,0),(0,1,0),(-1,-2,5),(-1,1,-4)\)	
6	\((1,0,0),(0,1,0),(-2,1,5),(1,-1,-3)\)	
7	\((1,0,0),(0,1,0),(1,1,2),(-1,-1,-1)\)	
8	\((1,0,0),(0,1,0),(-1,-2,3),(-1,1,-2)\)	
9	\((1,0,0),(0,1,0),(1,2,3),(-1,-1,0),(-1,-2,3)\)	12
34	\((1,0,0),(0,1,0),(0,0,1),(-1,-1,0),(0,0,-1)\)	16
35	\((1,0,0),(0,1,0),(-1,-2,3),(-1,1,-2),(-1,0,0)\)	14
36	\((1,0,0),(0,1,0),(1,1,2),(-1,-1,-1),(1,1,1)\)	16
38	\((1,0,0),(0,1,0),(-1,2,3),(-1,1,-2),(-1,0,0)\)	14
43	\((1,0,0),(0,1,0),(-1,2,3),(-1,1,-2),(-1,1,1)\)	15
45	\((1,0,0),(0,1,0),(1,1,2),(-1,1,-1),(-1,0,0)\)	15
47	\((1,0,0),(0,1,0),(1,1,2),(-1,0,0),(0,-1,0),(-1,-1,-2)\)	6, 6, 6
62	\((1,0,0),(0,1,0),(0,0,1),(-1,0,0),(0,-1,0),(0,0,-1)\)	11, 11, 11
105	\((1,0,0),(0,1,0),(1,1,1),(-1,1,0),(0,0,-1),(1,1,0)\)	11
110	\((1,0,0),(0,1,0),(1,1,2),(-1,-1,-1),(-1,0,0),(-1,0,0)\)	8, 8
123	\((1,0,0),(0,1,0),(0,0,1),(-1,-1,0),(0,0,-1),(-1,0,0)\)	10, 11
131	\((1,0,0),(0,1,0),(0,0,1),(-1,1,-1),(-1,0,0),(-1,1,0)\)	10
140	\((1,0,0),(0,1,0),(0,0,1),(-1,-1,-1),(-1,0,0),(-1,-1,-2)\)	9

Remark 5.4. In the above table, every \(\mathbb{Q}\)-factorial terminal \(\gamma_2\)-nef toric Fano 3-fold \(X\) of \(\rho(X) \geq 2\) is not \(\gamma_2\)-positive.

So, we suggest the following question:

Question 5.5. Does there exist a \(\mathbb{Q}\)-factorial terminal projective \(\gamma_2\)-positive toric variety \(X\) of \(\rho(X) \geq 2\)?

The following example tells us that the answer to Question 5.5 is positive, if \(X\) is not terminal:

Example 5.6. Let \(\Sigma\) be a complete fan in \(N = \mathbb{Z}^2\) such that \(G(\Sigma) = \{x_1 := (1,0), x_2 := (1,2), x_3 := (-1,2), x_4 := (-1,-1)\}\), and \(S = S_2\) the associated projective toric surface. One can easily find the two relations
\[
2x_1 + x_3 - x_2 = 0 \quad \text{and} \quad 3x_2 + 4x_4 - x_3 = 0.
\]
By Proposition 3.6, for a positive number \(\alpha\), we have
\[
\alpha \gamma_2 = 3 \times (1 + 2^2 + 1) + 2 \times 3 \times (-1 - 3) + (3^2 + 4^2 + 1) = 20 > 0.
\]
Therefore, \(S\) is \(\gamma_2\)-positive. We remark that \(S\) has two canonical singular points and one log terminal singular point.

On the other hand, for every \(\gamma_2\)-nef toric Fano 3-fold \(X\) of \(\rho(X) \geq 2\) in Table 2, there exists a Fano contraction \(\varphi : X \to S\) such that \(\dim S = 2\) and \(S\) is \(\gamma_2\)-nef. So, the following is also a natural question.
Question 5.7. For any \(\mathbb{Q}\)-factorial terminal projective \(\gamma_2\)-nef toric \(d\)-fold of \(\rho(X) \geq 2\), does one of the following hold?

1. There exists a Fano contraction \(\varphi : X \to \overline{X}\) such that \(\overline{X}\) is a \(\gamma_2\)-nef toric \((d-1)\)-fold.
2. There exists a toric finite morphism \(\pi : X' \to X\) such that \(X'\) is a direct product of lower-dimensional \(\gamma_2\)-nef toric varieties (see Proposition 3.7).

Remark 5.8. Without the assumption that \(X\) is terminal, the Gorenstein \(\gamma_2\)-nef toric del Pezzo surface of ID 9 in Table 1 in Section 4 tells us that the answer to Question 5.7 is negative.

Remark 5.9. There exists a \(\mathbb{Q}\)-factorial terminal toric 3-fold such that it has a Fano contraction to a \(\gamma_2\)-nef surface, but is not \(\gamma_2\)-nef. For example, let \(X = X_\Sigma\) be the smooth toric Fano 3-fold such that
\[
G(\Sigma) = \{(1, 0, 0), (0, 1, 0), (0, 0, 1), (-1, -1, -1), (-1, -1, 0), (1, 1, 0)\}.
\]
Then, \(X\) is a \(\mathbb{P}^1\)-bundle over \(\mathbb{P}^1 \times \mathbb{P}^1\), but not \(\gamma_2\)-nef.

We end this section by giving an example of calculations for a terminal toric Fano 3-fold.

Example 5.10. Let \(X = X_\Sigma\) be the \(\mathbb{Q}\)-factorial terminal toric Fano 3-fold of ID 34 in the above table. Put \(v_1 := (1, 0, 0), v_2 := (0, 1, 0), v_3 := (-2, 1, 5), v_4 := (-1, -1, -3), v_5 := (-1, 1, 3)\), and put \(D_1, \ldots, D_5\) be the torus invariant divisors corresponding to \(v_1, \ldots, v_5\), respectively. Then, we have a 3 relations
\[
D_1 - 2D_3 + D_4 - D_5 = 0, \quad D_2 + D_3 - D_4 + D_5 = 0, \quad 5D_3 - 3D_4 + 3D_5 = 0
\]
in \(\text{N}^1(X)\). There exist exactly 6 maximal cones generated by
\[
\{v_1, v_2, v_4\}, \quad \{v_2, v_3, v_4\}, \quad \{v_1, v_3, v_4\}, \quad \{v_1, v_2, v_5\}, \quad \{v_2, v_3, v_5\}, \quad \{v_1, v_3, v_5\}.
\]
The equalities \(3D_4 = 5D_3 + 3D_5, 3D_1 = D_3\) and \(2D_1 = D_2\) say that it is sufficient to check the non-negativities for two torus invariant surfaces \(S_1\) and \(S_5\) corresponding to \(1\)-dimensional cones \(\mathbb{R}_{\geq 0} v_1\) and \(\mathbb{R}_{\geq 0} v_5\), respectively. Since \(\rho(S_5) = 1\), we have \(\gamma_2 \cdot S_5 > 0\) by Proposition 3.7. On the other hand, since \(\rho(S_1) = 2\), we can apply Proposition 3.6. One can easily calculate the relations
\[
2v_2 + 3v_3 - 5v_5 + v_1 = 0 \quad \text{and} \quad v_4 + v_5 = 0
\]
corresponding to \(2\)-dimensional cones
\[
\mathbb{R}_{\geq 0} v_1 + \mathbb{R}_{\geq 0} v_5 \quad \text{and} \quad \mathbb{R}_{\geq 0} v_1 + \mathbb{R}_{\geq 0} v_2,
\]
respectively. By Proposition 3.6, there exists a positive rational number \(\alpha\) such that
\[
\alpha I_{S_1/X} = 4(2V_2 + 3V_2 - 5V_5 + V_1)(V_4 + V_5) + 10(V_4 + V_5)^2,
\]
where \(V_1, \ldots, V_5\) are the independent variables of polynomials corresponding to \(v_1, \ldots, v_5\), respectively. In particular, \(\alpha \gamma_2 \cdot S_1 = 4 \times (-5) + 10 + 10 = 0\). Therefore, \(X\) is \(\gamma_2\)-nef (not \(\gamma_2\)-positive).

References

[1] C. Araujo and AM. Castravet, Classification of 2-Fano manifolds with high index, A celebration of algebraic geometry, Clay Math. Proc., vol. 18, Amer. Math. Soc., Providence, RI, 2013, 1–36.

[2] B. Assarf, E. Gawrilow, K. Herr, M. Joswig, B. Lorenz, A. Paffenholz and T. Rehn, Computing convex hulls and counting integer points with polymake, Math. Program. Comput. 9 (2017), no. 1, 1–38.

[3] D. A. Cox, J. B. Little, H. K. Schenck, *Toric varieties*, Graduate Studies in Mathematics, 124. American Mathematical Society, Providence, RI, 2011.

[4] W. Fulton, *Introduction to toric varieties*, Annals of Mathematics Studies, 131. The William H. Roever Lectures in Geometry. Princeton University Press, Princeton, NJ, 1993.
[5] A. J. de Jong and Jason Starr, Higher Fano manifolds and rational surfaces, Duke Math. J. 139 (2007), no. 1, 173–183.
[6] A. Kasprzyk, Toric Fano three-folds with terminal singularities, Tohoku Math. J. 58 (2006), no. 1, 101–121.
[7] R. Koelmann, The number of moduli of families of curves on toric surfaces, Thesis, Univ. Nijmegen, 1991.
[8] E. Nobili, Classification of Toric 2-Fano 4-folds, Bull. Braz. Math. Soc., New Series 42 (2011), 399–414.
[9] T. Oda, Convex bodies and algebraic geometry, An introduction to the theory of toric varieties, Translated from the Japanese, Results in Mathematics and Related Areas (3) 15, Springer-Verlag, Berlin, 1988.
[10] H. Sato, The numerical class of a surface on a toric manifold, Int. J. Math. Math. Sci. 2012, 9 pp.
[11] H. Sato, Toric 2-Fano manifolds and extremal contractions, Proc. Japan Acad. Ser. A Math. Sci. 92 (2016), no. 10, 121–124.

Department of Applied Mathematics, Faculty of Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
E-mail address: hirosato@fukuoka-u.ac.jp

Department of Applied Mathematics, Faculty of Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
E-mail address: sd170002@cis.fukuoka-u.ac.jp