The Brain’s Emotional Development

By Nim Tottenham, Ph.D.

Editor’s Note: From our earliest days, the brain rapidly develops thinking, mobility, and communication skills. But not quite as quick to develop are the parts of the brain that regulate and process our emotions. New research is helping scientists learn about areas that are crucial to emotional development, and how our surroundings fit into the picture. The findings could have far-reaching implications for both parents and policy-makers.
Humans are likely the most emotionally regulated creatures on earth. Compared to other animal species, we can modulate and modify emotional reactions and experiences, even very intense ones, through a large and sophisticated emotion regulation repertoire that includes skills of distraction, reappraisal, language, prediction, social interaction, suppression, and more. At times, these skills require effort, and at other times, they seem reflexive and automatic.

But what are some of the variables in this sophisticated emotion regulation repertoire? The parent of any toddler or even adolescent can attest to the very slow development of emotion regulation processes. This slow development has been documented in empirical research, which also notes the large individual differences from one person’s ability or style of emotion regulation to another’s.

Evolutionarily speaking, this slow development of emotion regulation ability in childhood that culminates in an exquisite ability in adulthood points to the benefits of a slow-maturing emotion regulation system. Indeed, humans are not only a highly emotionally regulated species, but they are slowly developing in general, relative to other species, with a prolonged period of immaturity. Phylogenetically, slow development may confer benefits through an extended period of neural plasticity—a feature of a developing neural system that heightens its ability to learn from the environment. If so, then humans may owe their sophisticated emotion regulation skills to the “extension” of childhood that has evolved in us.

The nature, chronicity, and quality of environmental inputs during these periods of plasticity, in particular those from close relationships (e.g., parents, friends, teachers), in large part determine emotion regulation functioning in adulthood. Thus, adult brain and behavioral function in this regard can be conceptualized as a historical reflection of what was experienced during development. To fully appreciate individual differences in adult emotion regulation skills, then, it is helpful to understand how the brain develops.
Emotion Regulation in Adulthood

While it is probably fair to say that much of the brain contributes in some form or another to emotion regulation, at its core the processes rely on communication between areas of the prefrontal cortex, in particular medial regions and subcortical systems including the amygdala, hippocampus, and basal ganglia. The medial prefrontal cortex (mPFC) includes association cortex (meaning that it can synthesize incoming information from multiple sources) and has strong bidirectional connections, which typically occur via a single synapse, to and from subcortical regions. The mPFC receives and coordinates signals from perceptual, semantic, and linguistic
regions of the brain as well, to facilitate regulation—e.g. amplification, redirection, or dampening—of emotional reactions.5

Prefrontal Cortex and Sensitive Periods

This complex neurobiological interstate takes years to reach maturity. It is often the case that slow developing systems are highly susceptible to environmental pressures; that is, they exhibit a high degree of plasticity. In a given neural system’s development, there is a moment when it is particularly sensitive to the environment—a so-called sensitive period. The brain undergoes multiple sensitive periods, a different one for each neural circuit, and taken together such intervals span development. Sensitive periods, and their less-forgiving cousins, critical periods, have been studied more often in perceptual systems (e.g., vision) than in emotion regulation. Thus, we will illustrate the properties of sensitive periods with an example from vision development. Then we will discuss how these principles may apply to emotion regulation.

The Nobel prize-winning work of Hubel and Wiesel15 demonstrated that a window of heightened brain plasticity opens in the early days of a cat’s visual system; during this window, environmental input (i.e., light) leaves an enduring influence on the visual cortex and associated visual behavior (i.e., binocular vision) that is impossible to reverse once the critical period terminates. That is, once the window of heightened plasticity closes (i.e., the cat becomes older), the developing system is no longer modifiable by light.

More recently, this pioneering work has been extended in rodent models to reveal the molecular mechanisms that give rise to the opening and closing of these windows of plasticity.16,17 This research identified core cellular and molecular mechanisms, highlighting the central role of shifting inhibitory and excitatory neurotransmitter input balances (e.g., GABA and glutamate) across development. In addition, it discovered the environmental means through which sensitive periods themselves might be altered, in terms of timing, duration, and magnitude.7 It suggested, in other words, that the nature of the sensitive periods themselves might be plastic and modifiable by early experiences (e.g., sensory deprivation, high exposure to video games, maternal depression7).
Such periods of heightened plasticity (and the accompanying rapid learning) have been identified in humans. For example, using clever behavioral studies with preverbal infants, researchers have discovered that within the first six months of postnatal life, the infant’s auditory system becomes attuned to the sounds (i.e. phonemes) that are meaningful in the language to which the infant is exposed.18,19 Similar effects have been identified in human face recognition.20

While sensitive/critical periods have been identified for the development of perceptual systems, their existence in higher-level processes, such as emotion and cognition, has remained elusive. One possibility is that there are no sensitive periods for these processes and that sensitive periods are an exclusive property of perceptual systems. Another is that sensitive periods exist for higher order brain processes (e.g., cognition, emotion), just as they would for any developing neural system, but exhibit much broader and less well-defined temporal boundaries than earlier-developing perceptual systems.

The latter is what we might expect from very slow-maturing regions of the brain, such as the prefrontal cortex. Indeed, a large volume of literature spanning the past two decades has demonstrated that developmental change in this region continues well into adulthood, both structurally and functionally,21-24 far outpaced by perceptual systems25,26 and lower subcortical structures, including those involved in emotional learning.27-32 This pattern reflects the hierarchical nature of development, the process whereby a system’s functioning depends upon the prior maturation of other systems.

The slow development of emotion regulation is paralleled by the slow development of the neurobiology that supports it (e.g., the amygdala and mPFC). Prolonged age-related change in prefrontal cortex and subcortical connectivity has been demonstrated both by structural and functional connectivity measures.27,31-38 Several studies have shown that communication between mPFC and the amygdala, which supports emotional learning and arousal, is qualitatively different in childhood than in adulthood (even though continued quantitative change is observed throughout adolescence and young adulthood). Specifically, in adulthood (but not earlier), increases in mPFC activity are associated with a decrease in the amygdala’s activity—these two regions are anti-correlated with each other in response to emotional stimuli (such as fear faces).
This anti-correlation, which has been supported by more invasive studies involving lesions in the brain, is interpreted to reflect mPFC regulation of the amygdala in healthy adulthood—i.e., top-down information flow from mPFC to amygdala. Unsurprisingly, adults who typically exhibit this pattern of anti-correlated amygdala and mPFC communication in response to emotional cues are those with better emotion regulation. On average, children do not show this adult-like pattern, but instead, a child-specific one.27,37,40,41

This child-specific pattern is a compelling argument for a sensitive period in the development of connections between the amygdala and mPFC. One should note that it can be quite challenging to definitively identify sensitive periods in humans, because our period of development takes so long, posing considerable difficulties in experimental control and design. This is where translation from animal studies becomes necessary. For example, the period between weaning and puberty has emerged as the sensitive period for mPFC-amygdala connections in the rodent.42 Precise tracing and optogenetic studies have shown that amygdala-to-mPFC connections develop earlier than regulatory connections in the opposite direction.43-46 Consequently, the neurobiology of emotion regulation differs qualitatively between late infancy and adolescence—where the adolescent rat uses the mPFC for regulating emotion, the infant does not.47

Similar findings have been observed in human fMRI studies.48 The connections between mPFC and amygdala exhibit massive development during the post-weaning/pre-pubertal period, and the boundaries of this change are marked by drastic shifts in the excitatory/inhibitory balance—the molecular hallmark of sensitive period opening/closure.43 Moreover, stimuli (e.g., music) learned during this juvenile period have enduring consequences on mPFC-amygdala function observed throughout adulthood, and this learning must occur during a sensitive period.42 In 2016, Laurel Gabard-Durnam and others showed that in humans, the nature of the coactivation of mPFC and amygdala in response to environmental stimuli predicts the development of future functioning most strongly when it is measured in childhood.
Emotion Regulation Without a Mature Prefrontal Cortex

Taken together, non-human and human research has established that the young animal (rodent or human) does not use the mPFC for emotion regulation in the way that the mature one does. Nonetheless, young animals can exhibit regulated emotional behavior. So how is the young animal accomplishing this task?

Image source: Conel, JL. The postnatal development of the human cerebral cortex. Cambridge, Mass.: Harvard University Press, 1959.
While the infant rat displays some forms of emotion regulation (for example, extinguishing a learned fear), the nature of the behavior is starkly different from the adult. For an animal dependent on an adult for survival, there is a species-expectation that the attachment figure will be available. This caregiver can serve as an external social regulator at a time of mPFC immaturity. Indeed, the behavioral literature has noted across decades of empirical work that the young child relies on the parent in just this way, using various strategies.

A common example is social referencing. Children routinely look to the parent for guidance in navigating the emotional and physical landscape. Social referencing is a powerful means of regulating emotions and has been used to explain the intergenerational transmission of emotional knowledge, including the transmission of anxious behaviors and reactions.

Another mechanism by which parents can regulate emotions is through modulation of stress reactivity and fear learning. Evidence for parental buffering has been identified across various species, including rats, guinea pigs, monkeys, and now humans. Researchers have found that there are sensitive periods in development when access to parental cues provides a powerful external means of emotion regulation. As has been described extensively in other sources, stimuli related to a (regulated) parent can modulate a physiological response to threat, namely that parental cues can dampen elevations in the stress hormone cortisol (in humans) and corticosterone (in rats).

Parental cues have also been shown to decrease amygdala activity in both humans and in rats. For example, in the developing rodent, this reduction of amygdala activity by the parent prevents threat learning. That is, the presence of parental cues prevents the developing rat from learning to associate a threatening stimulus with a cue (e.g., a tone or a light). Conversely, when a parent expresses defensive behaviors or heightened negative affect, the rodent work has shown that such cues are quite effective in amplifying amygdala reactivity. Emerging research in humans has also demonstrated that parental cues are effective in reducing amygdala activity. Taken together, these studies show that during a time of relative mPFC immaturity, the parent can serve as an external regulator of subcortical arousal. Moreover, the effect of parental cues not only provides
instruction to prefrontal cortex development, but may also contribute to the high degree of plasticity observed in this region.63,64

We now know that the prefrontal cortex is one of the last brain regions to develop, and its connections with other cortical and subcortical targets are very slow to form. These processes are especially slow in the human, and evidence of continued development has been documented through adolescence and adulthood. This slow-paced and sustained development renders the prefrontal cortex and its connections vulnerable to environmental insults (e.g., early psychosocial adversity), but at the same time offers great potential for extensive learning from positive, enriching environments, and the optimization of neural processes that will facilitate regulated behavior. Its end-product is an incredibly rich emotional regulation repertoire in the mature adult.

Bio

Nim Tottenham, Ph.D. is an associate professor of psychology at Columbia University and director of the Developmental Affective Neuroscience Laboratory. Her research examines brain development underlying emotional behavior in humans, and highlights fundamental changes in brain circuitry across development and the powerful role that early experiences, such as caregiving and stress, have on the construction of these circuits. Tottenham has authored over 80 journal articles and book chapters and is a frequent lecturer both nationally and internationally on human brain and emotional development. She is a recipient of the National Institute of Mental Health Biobehavioral Research Award for Innovative New Scientists (BRAINS), the American Psychological Association’s Distinguished Scientific Award for Early Career Contribution to Psychology, and the Developmental Science Early Career Researcher Prize.

References

1. Ochsner KN, Silvers JA, Buhle JT. Functional imaging studies of emotion regulation: a synthetic review and evolving model of the cognitive control of emotion. \textit{Annals of the New York Academy of Sciences}. 2012;1251:E1-24.
2. McRae K, Hughes B, Chopra S, Gabrieli JD, Gross JJ, Ochsner KN. The neural bases of distraction and reappraisal. \textit{J Cogn Neurosci}. Feb;22(2):248-262.
3. Gross JJ. Antecedent- and response-focused emotion regulation: divergent consequences for experience, expression, and physiology. \textit{J Pers Soc Psychol}. Jan 1998;74(1):224-237.
4. Cisler JM, Olatunji BO. Emotion Regulation and Anxiety Disorders. *Current psychiatry reports*. 2012;14:182-187.
5. Campos JJ, Frankel CB, Camras L. On the nature of emotion regulation. *Child Dev.* Mar-Apr 2004;75(2):377-394.
6. Thompson JL, Nelson AJ. Middle childhood and modern human origins. *Human Nature*. Sep 2011;22(3):249-280.
7. Werker JF, Hensch TK. Critical Periods in Speech Perception: New Directions. http://dx.doi.org/10.1146/annurev-psych-010814-015104. 2015.
8. Quirk GJ, Beer JS. Prefrontal involvement in the regulation of emotion: convergence of rat and human studies. *Current Opinion in Neurobiology*. Dec 2006;16(6):723-727.
9. Hare TA, Tottenham N, Davidson MC, Glover GH, Casey BJ. Contributions of amygdala and striatal activity in emotion regulation. *Biological Psychiatry*. Mar 15 2005;57(6):624-632.
10. Sokol-Hessner P, Camerer CF, Phelps EA. Emotion regulation reduces loss aversion and decreases amygdala responses to losses. *Soc Cogn Affect Neurosci*. Mar 2013;8(3):341-350.
11. Barbas H, Ghashghaei H, Dombrowski SM, Rempel-Clower NL. Medial prefrontal cortices are unified by common connections with superior temporal cortices and distinguished by input from memory-related areas in the rhesus monkey. *J Comp Neurol*. Aug 1999;410(3):343-367.
12. Ghashghaei HT, Barbas H. Pathways for emotion: interactions of prefrontal and anterior temporal pathways in the amygdala of the rhesus monkey. *Neuroscience*. 2002;115(4):1261-1279.
13. Ghashghaei HT, Hilgetag CC, Barbas H. Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala. *Neuroimage*. Feb 1 2007;34(3):905-923.
14. Cho YT, Ernst M, Fudge JL. Cortico-amygdala-striatal circuits are organized as hierarchical subsystems through the primate amygdala. *J Neurosci*. Aug 28 2013;33(35):14017-14030.
15. Hubel DH, Wiesel TN. The period of susceptibility to the physiological effects of unilateral eye closure in kittens. *Journal of Physiology*. 1970;206(2):419-436.
16. Fagiolini M, Hensch TK. Inhibitory threshold for critical-period activation in primary visual cortex. *Nature*. 2000;404:183-186.
17. Hensch TK, Fagiolini M, Mataga N, Stryker MP, Baekkeskov S, Kash SF, Wiesel TN, Hubel DH, Olson CR, Freeman RD, Shatz CJ, Stryker MP, Antonini A, Stryker MP, Shatz CJ, Kratz KE, Spear PD, Smith DC, Duffy FH, Snodgrass SR, Burchfield JR, Conway JL, Blakemore C, Hawken MJ, Sillito AM, Kemp JA, Blakemore C, Mower GD, Christen WG, Reiter HO, Stryker MP, Hata Y, Stryker MP, Ramoa AS, Paradiso MA, Freeman RD, Videen TO, Daw NW, Collins RC, Erlander MG, Tillakaratne NJK, Feldblum S, Patel N, Tobin AJ, Kaufman DL, Houser CR, Tobin AJ, Asada H, Guo Y, Kaplan IV, Cooper NGF, Mower GD, Fukuda T, Aika Y, Heizmann CW, Kosaka T, Reetz A, Martin DL, Martin SB, Wu SJ, Espina N, Asada H, Kash SF, Mataga N, Imamura K, Watanabe Y, Greif KD, Erlander MG, Tillakaratne NJK, Tobin AJ, Greif KD, Kaczmarek L, Chaudhuri A, Worley PF, Mataga N, Gordon JA, Stryker MP, Rauschecker JP, Tsumoto T, Kirkwood A, Rioulit MG, Bear MF, Singer W, Katz LC, Shatz CJ, Study RE, Barker JL, Tallman JF, Gallagher DW, MacDonald RL, Olsen RW, Rogers CJ, Twyman RE, MacDonald RL, Eghbali M, Curmi JF, Birnin B, Gage PW, Shaw C, Aoki C, Wilkinson M, Prusky G, Cynader M, Xiang Z, Huguenard JR, Prince DA, Sigel E, Buhr A, Costa E, Berrueta LA, Gallo B, Vicente F, Zafra F, Castren E, Thoenen H, Lindholm D, Thoenen H, McAllister AK, Lo DC, Katz LC, Bonhoeffer T, Sala R, Rutherford LC, Nelson SB, Turrigiano GG, Artola A, Singer W, Bear MF,
Kirkwood A, Dudek SM, Friedlander MJ, Miller KD, Hensch TK, Stryker MP, Hensch TK, DeFelipe J, Gonchar Y, Burkhalter A, Kang Y, Kaneko T, Ohishi H, Endo K, Araki T, Brederode JFMV, Spain WJ, Komatsu Y, Carder RK, Leclerc SS, Hendry SHC, Kawaguchi Y, Parra D, Gulyas AI, Miles R, Kawaguchi Y, Shindou T, Xiang Z, Huguenard JR, Prince DA, Tamas G, Somogyi P, Buhl E, Gulyas A, Miles R, Hajas N, Freund TF, Buhl E, Halasy K, Somogyi P, Soltesz I, Smetters DK, Mody I, Miles R, Tamas G, Buhl EH, Somogyi P, Kawaguchi Y, Kubota Y, Benardo LS, Kawaguchi Y, Sugita S, Johnson SW, North RA, Segal M. Local GABA circuit control of experience-dependent plasticity in developing visual cortex. *Science (New York, N.Y.)*. 1998;282:1504-1508.

18. Kuhl PK, Andruski JE, Chistovich IA, Chistovich LA, Kozhevnikova EV, Ryskina VL, Stolyarova EI, Sundberg U, Lacerda F. Cross-language analysis of phonetic units in language addressed to infants. *Science*. Aug 1 1997;277(5326):684-686.

19. Werker JF, Gilbert JH, Humphrey K, Tees RC. Developmental aspects of cross-language speech perception. *Child Dev.* Mar 1981;52(1):349-355.

20. Pascalis O, Scott LS, Kelly DJ, Shannon RW, Nicholson E, Coleman M, Nelson CA. Plasticity of face processing in infancy. *Proc Natl Acad Sci U S A*. Apr 5 2005;102(14):5297-5300.

21. Casey BJ, Trainor RJ, Orendi JL, Schubert AB, Nystrom LE, Giedd JN, Castellanos FX, Haxby JV, Noll DC, Cohen JD, Forman SD, Dahl RE, Rapoport JL. A Developmental functional MRI study of prefrontal activation during performance of a go-no-go task. *Journal of Cognitive Neuroscience*. 1997;9(6):835-847.

22. Gogtay N, Giedd JN, Lusk L, Hayashi KM, Greenstein D, Vaituzis AC, Nugent TF, 3rd, Herman DH, Clasen LS, Toga AW, Rapoport JL, Thompson PM. Dynamic mapping of human cortical development during childhood through early adulthood. *Proc Natl Acad Sci U S A*. May 25 2004;101(21):8174-8179.

23. Sowell ER, Thompson PM, Holmes CJ, Jernigan TL, Toga AW. In vivo evidence for postadolescent brain maturation in frontal and striatal regions. *Nature Neuroscience*. 1999;2(10):859-861.

24. Durston S, Davidson MC, Tottenham N, Galvan A, Spencer J, Fossella JA, Casey BJ. A shift from diffuse to focal cortical activity with development. *Dev Sci.* Jan 2006;9(1):1-8.

25. Huttenlocher P. Synaptogenesis, synapse elimination, and neural plasticity in human cerebral cortex. In: Nelson C, ed. *Threats to Optimal Development: Integrating Biological, Psychological, and Social Risk Factors*. Vol 27. New Jersy: Erlbaum; 1994:35-54.

26. Bourgeois JP. Synaptogenesis, heterochrony and epigenesis in the mammalian neocortex. *Acta Paediatr Suppl.* Jul 1997;422:27-33.

27. Gee DG, Humphreys KL, Flannery J, Goff B, Telzer EH, Shapiro M, Hare TA, Bookheimer SY, Tottenham N. A developmental shift from positive to negative connectivity in human amygdala-prefrontal circuitry. *J Neurosci.* Mar 6 2013;33(10):4584-4593.

28. Casey BJ. Beyond simple models of self-control to circuit-based accounts of adolescent behavior. *Annu Rev Psychol.* Jan 3 2015;66:295-319.

29. Silvers JA, Insel C, Powers A, Franz P, Helion C, Martin R, Weber J, Mischel W, Casey BJ, Ochsner KN. The transition from childhood to adolescence is marked by a general decrease in amygdala reactivity and an affect-specific ventral-to-dorsal shift in medial prefrontal recruitment. *Dev Cogn Neurosci.* Jul 2 2016.

30. Galván A, Hare T, Parra C, Penn J, Voss H, Glover G, Casey B. Earlier development of the accumbens relative to orbitofrontal cortex might underlie risk-taking behavior in adolescents. *Journal of Neuroscience*. 2006;26(25):6885-6892.
31. Vink M, Derks JM, Hoogendam JM, Hillegers M, Kahn RS. Functional differences in emotion processing during adolescence and early adulthood. Neuroimage. May 2014;91:70-76.
32. Decety J, Michalska KJ, Kinzler KD. The contribution of emotion and cognition to moral sensitivity: a neurodevelopmental study. Cereb Cortex. Jan 2012;22(1):209-220.
33. Swartz JR, Carrasco M, Wiggins JL, Thomason ME, Monk CS. Age-related changes in the structure and function of prefrontal cortex-amygdala circuitry in children and adolescents: a multi-modal imaging approach. Neuroimage. Feb 2014;86:212-220.
34. Gabard-Durnam LJ, Flannery J, Goff B, Gee DG, Humphreys KL, Telzer E, Hare T, Tottenham N. The development of human amygdala functional connectivity at rest from 4 to 23 years: A cross-sectional study. Neuroimage. Mar 2014;95C:193-207.
35. Gabard-Durnam LJ, Gee DG, Goff B, Flannery J, Telzer E, Humphreys KL, Lumian DS, Fareri DS, Caldera C, Tottenham N. Stimulus-Elicited Connectivity Influences Resting-State Connectivity Years Later in Human Development: A Prospective Study. J Neurosci. Apr 27 2016;36(17):4771-4784.
36. Perlman SB, Pelphrey KA. Developing connections for affective regulation: age-related changes in emotional brain connectivity. J Exp Child Psychol. Mar 2011;108(3):607-620.
37. Silvers JA, Insel C, Powers A, Franz P, Helion C, Martin RE, Weber J, Mishel W, Casey BJ, Ochsner KN. vIPFC-vmPFC-Amgdala Interactions Underlie Age-Related Differences in Cognitive Regulation of Emotion. Cereb Cortex. Jun 23 2016.
38. Wu M, Kujawa A, Lu LH, Fitzgerald DA, Klumpp H, Fitzgerald KD, Monk CS, Phan KL. Age-related changes in amygdala-frontal connectivity during emotional face processing from childhood into young adulthood. Hum Brain Mapp. May 2016;37(5):1684-1695.
39. Motzkin JC, Philippi CL, Wolf RC, Baskaya MK, Koenigs M. Ventromedial prefrontal cortex is critical for the regulation of amygdala activity in humans. Biol Psychiatry. Feb 1 2015;77(3):276-284.
40. Ducharme S, Albaugh MD, Hudziak JJ, Botteron KN, Nguyen TV, Truong C, Evans AC, Karama S, Brain Development Cooperative G. Anxious/depressed symptoms are linked to right ventromedial prefrontal cortical thickness maturation in healthy children and young adults. Cereb Cortex. Nov 2014;24(11):2941-2950.
41. Dougherty LR, Blankenship SL, Spechler PA, Padmala S, Pessoa L. An fMRI Pilot Study of Cognitive Reappraisal in Children: Divergent Effects on Brain and Behavior. J Psychopathol Behav Assess. Dec 01 2015;37(4):634-644.
42. Yang EJ, Lin EW, Hensch TK. Critical period for acoustic preference in mice. Proc Natl Acad Sci U S A. Oct 2012;109 Suppl 2:17213-17220.
43. Arruda-Carvalho M, Wu W, Cummings KA, Clem R. Optogenetic examination of prefrontal-amygdala synaptic development. Journal of Neuroscience. in press.
44. Cressman VL, Balaban J, Steinfeld S, Shemyakin A, Graham P, Parisot N, Moore H. Prefrontal cortical inputs to the basal amygdala undergo pruning during late adolescence in the rat. J Comp Neurol. Jul 15 2010;518(14):2693-2709.
45. Bouwmeester H, Smits K, Van Ree JM. Neonatal development of projections to the basolateral amygdala from prefrontal and thalamic structures in rat. J Comp Neurol. Aug 26 2002;450(3):241-255.
46. Bouwmeester H, Wolterink G, van Ree JM. Neonatal development of projections from the basolateral amygdala to prefrontal, striatal, and thalamic structures in the rat. J Comp Neurol. Jan 14 2002;442(3):239-249.
47. Kim JH, Hamlin AS, Richardson R. Fear extinction across development: the involvement of the medial prefrontal cortex as assessed by temporary inactivation and immunohistochemistry. *J Neurosci.* Sep 2 2009;29(35):10802-10808.

48. Silvers JA, Lumian DS, Gabard-Durnam L, Gee DG, Goff B, Fareri DS, Caldera C, Flannery J, Telzer EH, Humphreys KL, Tottenham N. Previous Institutionalization Is Followed by Broader Amygdala-Hippocampal-PFC Network Connectivity during Aversive Learning in Human Development. *J Neurosci.* Jun 15 2016;36(24):6420-6430.

49. Campos JI. Human emotions: Their new importance and their role in social referencing. *Research & Clinical Center for Child Development.* 1981;Annual Rpt.:1-7.

50. Walden TA, Ogan TA. The development of social referencing. *Child Dev.* Oct 1988;59(5):1230-1240.

51. Zarbatany L, Lamb ME. Social referencing as a function of information source: Mothers versus strangers. *Infant Behavior and Development.* 1985;8(1):25-33.

52. Aktar E, Majdandzic M, de Vente W, Bogels SM. Parental social anxiety disorder prospectively predicts toddlers’ fear/avoidance in a social referencing paradigm. *J Child Psychol Psychiatry.* Jan 2014;55(1):77-87.

53. de Rosnay M, Cooper PJ, Tsigaras N, Murray L. Transmission of social anxiety from mother to infant: an experimental study using a social referencing paradigm. *Behav Res Ther.* Aug 2006;44(8):1165-1175.

54. Hostinar CE, Sullivan RM, Gunnar MR. Psychobiological mechanisms underlying the social buffering of the hypothalamic-pituitary-adrenocortical axis: a review of animal models and human studies across development. *Psychol Bull.* Jan 2014;140(1):256-282.

55. Gee DG, Gabard-Durnam L, Telzer EH, Humphreys KL, Goff B, Shapiro M, Flannery J, Lumian DS, Fareri DS, Caldera C, Tottenham N. Maternal buffering of human amygdala-prefrontal circuitry during childhood but not during adolescence. *Psychol Sci.* Nov 2014;25(11):2067-2078.

56. Howell BR, McMurray MS, Guzman DB, Nair G, Shi Y, McCormack KM, Hu X, Styner MA, Sanchez MM. Maternal buffering beyond glucocorticoids: impact of early life stress on corticolimbic circuits that control infant responses to novelty. *Soc Neurosci.* Jun 27 2016:1-15.

57. Kikusui T, Winslow JT, Mori Y. Social buffering: relief from stress and anxiety. *Philos Trans R Soc Lond B Biol Sci.* Dec 9 2006;361(1476):2215-2228.

58. Hennessy MB, Kaiser S, Sachser N. Social buffering of the stress response: diversity, mechanisms, and functions. *Front Neuroendocrinol.* Oct 2009;30(4):470-482.

59. Hostinar CE, Johnson AE, Gunnar MR. Parent support is less effective in buffering cortisol stress reactivity for adolescents compared to children. *Dev Sci.* Mar 2015;18(2):281-297.

60. Moriceau S, Sullivan RM. Maternal presence serves as a switch between learning fear and attraction in infancy. *Nat Neurosci.* Aug 2006;9(8):1004-1006.

61. Shionoya K, Moriceau S, Bradstock P, Sullivan RM. Maternal attenuation of hypothalamic paraventricular nucleus norepinephrine switches avoidance learning to preference learning in preweanling rat pups. *Horm Behav.* Sep 2007;52(3):391-400.

62. Debiec J, Sullivan RM. Intergenerational transmission of emotional trauma through amygdala-dependent mother-to-infant transfer of specific fear. *Proc Natl Acad Sci U S A.* Aug 19 2014;111(33):12222-12227.
63. Callaghan BL, Tottenham N. The Neuro-Environmental Loop of Plasticity: A Cross-Species Analysis of Parental Effects on Emotion Circuitry Development Following Typical and Adverse Caregiving. *Neuropsychopharmacology*. Jan 2016;41(1):163-176.

64. Callaghan BL, Tottenham N. The Stress Acceleration Hypothesis: effects of early-life adversity on emotion circuits and behavior. *Current Opinion in Behavioral Sciences*. 2016.