Prediction model of elastic constants of BCC high-entropy alloys based on first-principles calculations and machine learning techniques

G. Hayashi, K. Suzuki, T. Terai, H. Fujii, M. Ogura and K. Sato

By combining first-principles electronic structure calculations and machine learning techniques, prediction models of elastic constants are constructed for BCC high-entropy alloys (HEA) containing 5 different elements chosen from 3d, 4d and 5d transition metals with equal concentration. Three independent elastic constants of randomly selected 2555 HEAs are calculated by using the full potential Kohn–Kohn–Rostoker (FPKRR) method with taking configurational disorder into account within the coherent potential approximation (CPA). From the obtained database of the elastic constants, prediction models are constructed by the linear regression using the descriptors generated by the linearly independent descriptor generation (LIDG) method. By optimizing the selection of descriptors based on the genetic algorithm (GA), prediction errors of 10.2 GPa, 4.5 GPa, 2.4 GPa and 7.7 GPa are achieved for bulk modulus B, shear moduli c’, c44 and Young’s modulus E, respectively. By using the generated model we propose some HEAs with low E. It is well known that the magnitude of E is closely related to the shape of the calculated density of states (DOS). This statement is reconfirmed within the BCC HEAs, i.e., HEAs with larger DOS at the Fermi level shows smaller Young’s modulus and vice versa.

CONTACT K. Sato ksato@mat.eng.osaka-u.ac.jp Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-Oka, Suita, Osaka 565-0871, Japan

© 2022 The Author(s). Published by National Institute for Materials Science in partnership with Taylor & Francis Group

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
1. **Introduction**

High-entropy alloys (HEAs) are a new class of metallic alloys composed of more than 5 different elements with equiatomic or near equiatomic composition. Following the original works of the fabrication of HEAs [1–5], significant efforts have been devoted to synthesizing HEAs and investigating their physical properties from various points of view. So far, in this new category of alloys many exceptional physical properties have been reported [6], such as high hardness and high-temperature strength [7], good temperature dependence of strength and ductility [8], thermal stability [9], high hardness and low-density refractory [10], resistances to wear, corrosion, oxidation, and fatigue [11–14], bio-compatibility [15], and even superconductivity [16]. Thus, HEAs become a new category of alloy studies and provide opportunities to explore new functional alloys.

The concept of the HEA is different from conventional alloys composed of one or two major elements with additional impurity elements to control their physical properties. The essence of HEAs is the disorder and combinatorial complexity. For example, the configurational entropy of n-component HEA is calculated as \(S = k_B \log n \), and \(S \) reaches 1.61\(k_B \) for \(n = 5 \) with a completely random configuration. Due to this large configurational entropy of the system, the formation of a random solid solution phase is expected, as long as the magnitude of mixing enthalpy is small enough. This allows us to choose any combinations of constituent elements for fabricating HEA and provides us with more freedom in the choice of the materials, for example, suppose 5 constituents are chosen randomly from 25 transition elements, there are 53,130 possibilities for HEAs. As for material properties, the randomness of the local atomic configuration is supposed to affect the dynamics of impurities and defects leading to favorable mechanical properties in HEAs. An expectation to realize non-trivial effects arising from a novel combination of elements is called the cocktail effect and this is why the HEA attracts much attention from materials scientists [3–5].

HEAs have numerous combinations of elements, so more HEAs with good properties will be discovered and useful for many applications in the future. However, randomness and combinatorial complexity inherent in HEAs make it difficult to establish a guideline for controlling the materials properties of HEAs. Since exhaustive experimental search is not practical, computational approaches have been employed to support experimental investigations on functional HEAs. Among the computational methods, first-principles electronic structure calculations have been one of the most reliable methods due to its ability to simulate materials properties by tracing back their electronic origin [17,18]. Most of the first-principles calculations were done based on the density functional theory (DFT) by using various band structure methods. So far, for the HEA researches, the DFT calculations were applied to thermodynamic properties [19–25], local distortions [26,27] phase stabilities [18,28], mechanical properties [29–35] and magnetism [36–38]. However, due to its computational costs, computational materials design based on the DFT calculations is limited for HEA systems and still at its development stage.

In this paper, as one of the fundamental mechanical properties, we focus on the elastic constants of equiatomic quinary HEAs in BCC structure and try to construct a prediction model with reasonable predictability so that we can make use of it for the computational materials design of HEAs. Our strategy is along with the idea of ‘Materials Informatics’ [39–43], namely, first we prepare a database of the elastic constants of HEAs based on the DFT calculations, then construct a prediction model of the elastic constants by applying machine learning techniques to the database [44]. For the machine learning, we use simple linear regression with descriptors generated by the linearly independent descriptor generation (LIDG) method developed by Fujii et al. [45,46]. By tuning the selection of descriptors with employing the genetic algorithm (GA), optimization of the model is carried out.

In the linear regression method, the objective variables are expressed by simple polynomials of the combinations of several descriptors. Therefore, the generated model can be interpretable. Taking this advantage of the linear model, we will discuss physical trends from the relation between the elastic constants and the selected descriptors. As for the machine learning technique, the neural network (NN) is widely used and well accepted as standard tool to realize machine learning. In spite of its usefulness for constructing accurate prediction model, it is sometimes criticized that the interpretation of the NN model is not straightforward. Thus the NN modeling and the LIDG-GA modeling are complementary with each other. In the present paper, the prediction model is also constructed by using the NN and its performance will be compared to the LIDG-GA model. We also try to demonstrate the applicability of our model for the prediction of HEAs with desired elastic constants, low Young’s modulus \((E)\) in the present work. Additionally, we will analyze the electronic structure of predicted low-\(E\) HEAs and the relation between electronic structure and low-\(E\) will be investigated.
2. Calculation method

2.1. Elastic constants

For the present procedure of the modeling, to construct a database for machine learning the elastic constants of HEAs should be calculated as many as possible. Due to the requirement for the computational cost for taking an average of physical properties over possible atomic configurations, it is impractical to apply the standard band-structure method for supercells of the special quasi-random structure (SQS). In this paper, for the calculations of the electronic structure and elastic constants of HEAs, we employ the full-potential Korringa–Kohn–Rostoker (FPKKR) method with combining the coherent potential approximation (CPA). By using the FPKKR-CPA method, the configuration average of the electronic structure of HEAs can be calculated effectively from first-principles. For the present calculations, we use the program package developed by Ogura et al. [47]. Since the present implementation of the CPA to the FPKKR method depends on the single-site approximation, local fluctuation of atomic configurations and local lattice relaxation are not considered. It was pointed out that even for this simplification the CPA gives reasonable estimation for the fundamental properties of HEA including the lattice constant, relative structural stability between BCC and FCC and the elastic properties [17,28,32,37], and shown to be applicable for computational design of HEAs. On the other hand, it was also pointed out that the CPA gave a considerable error in the estimation of the heat of formation. The error reaches up to 30 meV/atom for MoNbTaVW, therefore the prediction of the formation of the solid solution by the CPA should be separately examined [18]. In the present paper, we do not focus on the modeling of the heat of formation, and in sec 3.2 we will use empirical rule for the screening of HEAs.

All of the present FPKKR-CPA calculations were spin-polarized and performed within the scalar relativistic approximation without the spin-orbit interaction. The exchange-correlation energy functional proposed by Perdew, Burke and Ernzerhof was employed [48]. The maximum angular momentum for the expansion of the Green’s function is \(l_{\text{max}} = 4\), and the \(20 \times 20 \times 20\) mesh points are prepared in the first Brillouin zone and the irreducible ones are used for the \(k\)-space integration. The electron density was calculated by taking the imaginary part of the Green’s function integrated by using 35 energy mesh points on the complex energy contour. The width of the contour is set 1.0–1.5 Ry depending on the system.

For a cubic structure, there are 3 independent elastic constants \(c_{11}, c_{12}, \text{ and } c_{44}\). To determine these 3 constants, we apply 3 different kinds of deformations. The first one is the change of the unit cell volume \(V\). By fitting the Murnaghan’s equation of state (equation 1) to the calculated total energy \(E\) as a function of \(V\), equilibrium volume \(V_0\), ground-state total energy \(E_0\), bulk modulus \(B\) and its derivative \(B'\) are determined. In the present calculations, for the determination of \(B\) volume change of \(-3\% \sim +3\%\) around \(V_0\) was assumed.

\[
E = E_0 + \frac{9V_0B}{16} \left\{ \left[\left(\frac{V}{V_0} \right)^{3/2} - \left(\frac{V}{V_0} \right) + 1 \right] B' + \left[\left(\frac{V}{V_0} \right)^{3/2} - 1 \right]^{2/3} \left(6 - 4 \left(\frac{V}{V_0} \right) \right) \right\}
\]

(1)

Then, we apply orthorhombic deformation \(\delta_o\) and monoclinic deformation \(\delta_m\) [31,32] with keeping \(V = V_0\), namely, primitive translation vectors are transformed with the following matrix, respectively,

\[
\begin{pmatrix}
1 + \delta_o & 0 & 0 \\
0 & 1 - \delta_o & 0 \\
0 & 0 & 1/(1 - \delta_m^2)
\end{pmatrix} = \begin{pmatrix}
1 & \delta_m & 0 \\
0 & 1 & 0 \\
0 & 0 & 1/(1 - \delta_m^2)
\end{pmatrix}
\]

The total energy change \(\Delta E\) due to volume-conserving orthorhombic and monoclinic deformations is calculated as a function of \(\delta_o\) and \(\delta_m\) and fitted to the following equations 2 and 3 to derive two cubic shear moduli \(c'\) and \(c_{44}\), respectively. \(B\) and \(c'\) are related to the elastic constants as \(B = (c_{11} + 2c_{12})/3\) and \(c' = (c_{11} - c_{12})/2\). In the present calculations, \(\delta_o\) and \(\delta_m\) are changed from 0–0.03 for the determination of \(c'\) and \(c_{44}\).

\[
\Delta E(\delta_o) = 2V_0c'\delta_o^2,
\]

(2)

\[
\Delta E(\delta_m) = 2V_0c_{44}\delta_m^2.
\]

(3)

For constituent elements of HEAs, we assume 3d transition metals (Sc, Ti, V, Cr, Mn, Fe, Co, Ni and Cu), 4d transition metals (Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd and Ag) and 5d transition metals (Ta, W, Re, Os, Ir, Pt and Au). By choosing 5 elements randomly from these 25 transition metals we generate in total 2555 HEAs and calculate electronic structure and derive \(V_0, B, c'\) and \(c_{44}\). Once the elastic constants are obtained Young’s modulus \(E\) can be derived as

\[
E = \frac{9BG}{2(1+\nu)},
\]

where \(G\) is the shear modulus. We assume poly-crystalline sample and \(G\) is supposed to be arithmetic mean of Voigt average \(G_V\) and Reuss average \(G_R\), where \(G_V = \frac{2c' + 3c_{44}}{5}\) and \(G_R = \frac{5c_{44}}{2c' + 3c_{44}}\). For typical HEAs, calculated Young’s moduli are compared with the previous theoretical results and experimental values in Table 1, and it is confirmed that they show reasonable agreement with each other.

2.2. Construction of prediction model

For model construction, we employ general linear regression method. In this case, the choice of descriptors is of primary importance. Basically, we follow the
procedure applied to sparse modeling of chemical bonding in binary compounds by Kanda et al. [46]. In the present study, objective variables are bulk modulus B, elastic constants c' and c_{44} of a target HEA, and as for the basic descriptors we use the calculated physical values of constituent elements of the HEA, namely, B, c', c_{44}, lattice constant a, group of element g, period of element p, atomic number Z and electron density parameter r_s, r_{p} is defined as $\frac{4\pi}{3}r_{s}^{3} = 1/\rho$, where ρ is electron density in the interstitial region of the unit cell [53]. The electron density in the interstitial region is calculated from the number of electrons outside the muffin-tin (MT) spheres and the volume of the interstitial space between MT spheres. For the estimation of interstitial electron density, we performed KKR calculation within the MT approximation by using the Akai-KKR method [54,55] with using the lattice constant obtained by the present FPKKR calculations. The MT radius is set so that the MT spheres touch with each other. All of the basic descriptors except for r_{p} summarized in Table 2 are calculated by the FPKKR with assuming BCC structure for all elements irrespective of their equilibrium structure. For some elements, BCC is not stable and this is why the calculated shear moduli become negative or very small for some cases.

From the basic descriptors, first-order descriptors which are a kind of seeds for constructing higher-order descriptors are generated. Since a model of a HEA should be symmetric under the permutation of constituent elements, we set up the following first-order descriptors which have permutation symmetry. Namely, concerning the physical value X, its average $\langle X \rangle = \sum_{i=1}^{5} X_{i}/5$ and the standard deviation $\sigma_{X} = \sqrt{\sum_{i=1}^{5} (X_{i} - \langle X \rangle)^{2}/5}$ and the inverse of the average $1/\langle X \rangle$, where X_{i} is the physical value X of the i-th constituent element. In total there are 25 first-order descriptors with including a constant term.

Then we generate higher-order descriptors by constructing products among the first-order descriptors up to 2nd order. From the set of all possible products, linearly independent ones are picked up by using the LIDG method [45,46]. Finally, from 325 2nd order products, 316 descriptors are chosen as linearly independent ones and used for the following linear regression. The details of the LIDG algorithm and python package developed by Fujii et al. can be found in ref [56].

It is not trivial which ones out of 316 descriptors play an important role in the prediction of elastic constants. Moreover, more descriptors do not necessarily mean the better model. Therefore, in this work, a selection of descriptors based on the cross-validation is performed. However, it is impossible to perform an exhaustive search for the optimized model, since the number of combinations of N descriptors out of 316 candidates can be too large to handle. Instead, we start with randomly chosen N descriptors and update the combination of descriptors by using the GA to find the best one which gives the smallest validation error. As for the estimation of validation error, we employ the leave-one-out cross-validation and monitor the root mean square error (RMSE) $R = R(N) = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_{i} - \hat{y}_{i}(i)^{2})}$, where $y_{i} - \hat{y}_{i}(i)$ is the predicted residual for the i-th HEA by the model constructed with excluding the data of the i-th HEA. In the present implementation of GA, population size is 2000 at most and updated to minimize R. The best 1000 sets are conserved. From the rest, 999 sets are generated by crossover and 1 set by mutation. The probabilities of crossover and mutation are 90% and 100%, respectively. After 500 updates, we choose the one with the

| Table 1. Experimental and calculated Young’s modulus for typical BCC and FCC HEAs. |
|---------------------|---------------------|---------------------|
| HEA | Structure | Young modulus (GPa) |
| MoNbTaVW BCC | 191 | Present |
| | 204.5 | EMTO-CPA [49] |
| | 185 | VASP-SOS [50] |
| | 180±15 (at 296 K) | Exp [51] |
| CoCrFeMnNi FCC | 252 | Present |
| | 267 | EMTO-CPA [33] |
| | 241.1 | VASP-SOS [3] |
| | 215 (at 55 K) | Exp [52] |

| Table 2. Basic descriptors used in the present study. Values are calculated by the FPKKR assuming BCC structure irrespective of its equilibrium structure. B: bulk modulus, c' and c_{44}: cubic shear moduli, a: lattice constant, g: the group of the element: p: the period of the element, Z: atomic number, r_s: electron density parameter, r_p is calculated by the MTKKR. The equilibrium crystal structure is also indicated. |
|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| Crystal | B (GPa) | c' | c_{44} | a (Å) | g | p | Z |
| | (GPa) | (GPa) | (GPa) | | | | |
| | (Å) | (Å) | (Å) | | | | |
| Sc | 53.9 | 1.4 | 36.8 | 3.6743 | 4 | 21 | 2.3422 |
| Ti | 104.1 | -17.4 | 39.8 | 3.2578 | 4 | 22 | 1.4776 |
| V | 183.9 | 59.0 | 17.0 | 3.0017 | 5 | 23 | 1.0962 |
| Cr | 251.5 | 166.9 | 77.2 | 2.8542 | 6 | 24 | 0.9328 |
| Mn | 247.9 | 6.3 | 128.3 | 2.8010 | 7 | 25 | 0.9527 |
| Fe | 199.7 | 57.8 | 94.8 | 2.8304 | 8 | 26 | 1.0707 |
| Co | 205.6 | -17.4 | 124.2 | 2.8082 | 9 | 27 | 1.0678 |
| Ni | 193.5 | -33.6 | 155.5 | 2.8002 | 10 | 28 | 1.1419 |
| Cu | 122.4 | -24.6 | 69.8 | 2.8823 | 11 | 29 | 1.3921 |
| Y | 37.5 | -9.1 | 26.5 | 4.0284 | 3 | 39 | 2.7554 |
| Zr | 88.5 | 1.6 | 42.8 | 3.5701 | 4 | 40 | 1.6863 |
| Nb | 169.7 | 55.4 | 17.8 | 3.3159 | 5 | 41 | 1.2278 |
| Mo | 257.2 | 151.9 | 101.2 | 3.1676 | 6 | 42 | 1.0258 |
| Tc | 306.1 | -5.2 | 129.1 | 3.0863 | 7 | 43 | 0.9780 |
| Ru | 300.5 | -178.6 | 160.8 | 3.0570 | 8 | 44 | 1.0283 |
| Rh | 239.8 | -157.3 | 135.8 | 3.0684 | 9 | 45 | 1.1752 |
| Pd | 143.6 | -5.7 | 113.9 | 3.3136 | 10 | 46 | 1.4888 |
| Ag | 115.9 | -7.6 | 60.9 | 3.3116 | 11 | 47 | 2.1035 |
| Ta | 194.3 | 49.8 | 92.5 | 3.3333 | 5 | 63 | 1.0443 |
| W | 311.9 | 163.3 | 159.2 | 3.1960 | 6 | 74 | 0.8901 |
| Re | 341.8 | -12.0 | 186.8 | 3.1273 | 7 | 75 | 0.8570 |
| Os | 339.8 | -240.2 | 241.7 | 3.1024 | 8 | 76 | 0.8860 |
| Ir | 302.3 | -305.0 | 144.5 | 3.1213 | 9 | 77 | 0.9728 |
| Pt | 243.2 | -41.9 | 181.1 | 3.1710 | 10 | 78 | 1.1178 |
| Au | 139.7 | 14.2 | 161.0 | 3.2820 | 11 | 79 | 1.3874 |
3. Results and discussion

3.1. Optimization of prediction models

Carrying out the LIDG and GA procedure described in Sec. 2, we perform model construction for elastic constants of HEAs. In Figure 1, the RMSE is plotted as a function of number of descriptors N, for bulk modulus B, elastic constants c' and c_{44} For each N the model is optimized by GA as explained in the previous section, and RMSE is evaluated by using leave-one-out cross validation for the training-validation data set. The model constructions are performed independently for these 3 physical values. It is found that for B, c' and c_{44}, the RMSE becomes minimum at $N = 160, 208$ and 198, respectively. In Table 3, the obtained smallest RMSE calculated by using test data that is not used in the model construction are summarized as a prediction error. For comparison, we also perform modeling by using a neural network (NN) [57]. For the NN modeling, the 25 first-order descriptors prepared for the LIDG procedure are used as inputs and predict B, c' and c_{44} with setting one hidden layer which has 64 neurons and a constant term. As the activation function we employed rectified linear unit (ReLU) function. Obtained RMSE by the NN model are also summarized in the table. It is found that the present LIDG-GA method offers an accurate model whose prediction error is comparable to the one obtained by the NN.

To assess the performance of the present models visually, in Figures 2(a)–(c), B, c' and c_{44} of HEAs included in the test data are plotted on the 2d-plane by using FPKKR-CPA values and LIDG-GA predictions. By assuming a poly-crystalline sample, Young’s modulus E is calculated for each HEA whose B, c' and c_{44} are predicted to be positive and also plotted in Figure 2(d). As shown in the figures, the performances of the present LIDG-GA models are reasonable and successfully predict elastic properties of HEAs. Interestingly, similar performance is observed even for derived physical value E (RMSE = 7.7 GPa).

Since the present method is basically the linear regression, the constructed model is merely a polynomial of descriptors with materials parameters as explained in Sec. 2. Therefore, it might be possible to discover the physical trend by analyzing which terms contribute to the prediction significantly. This possibility of interpretation of the constructed model is one of the advantages of using LIDG-GA [46]. For this purpose, we focus on the

![Figure 1. RMSE as a function of the number of descriptors N evaluated for (a) B, (b) c', and (c) c_{44} with using training-validation data set. For each N, the model is optimized by using the GA.](image)

Modeling	B (GPa)	c' (GPa)	c_{44} (GPa)
LIDG-GA	10.2	4.5	2.4
NN	11.4	6.2	3.1
model which has a smaller number of descriptors. As recognized from Figure 1, for all three objective variables predictability is already reasonable for the models with 5 descriptors, and the RMSE are evaluated as 13.0, 13.5 and 4.7 GPa for B, c' and c_{44}, respectively.

In Table 4, we list up the 5 descriptors for the small models of B, c' and c_{44}. Note that almost all of the selected 5 descriptors are 2nd order products. This means that if we take only the first order descriptors, the degree of freedom of the model is very limited and to achieve reasonable accuracy by describing complicated dependence of objective variables on the descriptors we need to increase the complexity of the model. The beneficial point of the LIDG-GA method is its balanced nature between accuracy and interpretability. We can keep the model as simple as possible, and at the same time, the complexity of the model can be systematically controlled by increasing the order of the products in the model.

For the constructed small models we discuss which descriptors are important for determining these physical values. In Table 4, the importance of each descriptor is also summarized. We define the importance of j-th descriptor x_j in the regression of physical value y as $G_j^2 = 1 - \frac{\sum_{i=1,N} (y_i - \hat{y}_i)^2}{\sum_{i=1,N} (y_i - \bar{y})^2}$, where \hat{y}_i is an estimated i-th target variable obtained from a regression without

![Figure 2](image_url) Figure 2. Performance of the LIDG-GA models for (a) B, (b) c', (c) c_{44} and (d) Young’s modulus E. The horizontal axis is the FPKKR-CPA result and the vertical axis is the prediction by the LIDG-GA model. The young’s moduli are evaluated by assuming polycrystalline samples and using calculated/predicted elastic constants. All of the plotted points are test data that is not used in the model construction.

B	Descriptor	$(g)/(B)$	$\sigma_g/(g)$	σ_g	σ_s^b	$\sigma_s/(c_{44})$
G_j^2	b	0.178	-2.894×10^3	4.344 $\times 10^3$	0.417	6.319×10^3

c'	Descriptor	$(g)/(B)$	$\sigma_g/(g)$	σ_g	σ_s^b	$\sigma_s/(c_{44})$
G_j^2	b	-0.719×10^{-2}	2.463×10^1	-3.374×10^1	0.177 $\times 10^{-2}$	0.110×10^6

c_{44}	Descriptor	$(g)/(B)$	$\sigma_g/(c_{44})$	σ_g	σ_s^b	$\sigma_s/(c_{44})$
G_j^2	b	0.921	0.575	0.460	0.309	0.167
b	0.053	1.270	-0.161	0.233	-0.099	
descriptor x_j. Namely, G_j^2 directly means how much the error (residuals) increases when regression is performed without x_j. By definition, $G_j^2 \leq 1$ and the descriptor which has larger G_j^2 is more important [45]. In the table, the obtained regression coefficients b are also summarized. It is reasonable that important descriptors for b and c' are related to $\langle B \rangle$ and $\langle c' \rangle$, namely the averages of b and c' of the constituent elements. However, $\langle c_{44} \rangle$ is not on the list of descriptors for c_{44}. Since $\langle B \rangle$ has a large correlation between $\langle c_{44} \rangle$, the effect of $\langle c_{44} \rangle$ might be included via $\langle B \rangle$. This speculation is partly justified by the appearance of $\langle B \rangle$ in the list of descriptors for c_{44}.

Since most of the selected important descriptors are the 2nd order products, direct interpretation of the model seems too complicated. Instead, we try to analyze Pearson’s cross-correlation values between objective variables and the first-order descriptors which appear as the factors in the important descriptors listed in Table 4. As shown in Table 5, it is found that B correlates closely not only with $\langle B \rangle$ but also with the descriptors related to the lattice constants. Particularly, σ_a shows a significant correlation with B and it has a negative regression coefficient. This means that the difference in the lattice constants of constituent elements becomes larger, the bulk modulus of the HEA becomes smaller. Such a negative correlation was also pointed out by Koval et al. [35].

In the case of c_{44}, among the first-order descriptors, it is interesting to find a large correlation with $\langle g \rangle$, the average of the number of groups of the constituent elements. In the present calculations the crystal structure is fixed to BCC, therefore, if we assume rigid band like behavior in the calculated DOS, the electronic structure is determined mainly by the average valence electron number which corresponds to $\langle g \rangle$. This might be a reason why this descriptor controls the mechanical stability of HEA systems. However, in the case of c', it shows a correlation with the inverse of $\langle g \rangle$, thus it seems not to be straightforward to extract the physical origin of the relation between selected descriptors and elastic constants. By directly inspecting the DOS of HEAs the relation between mechanical stability and the electronic structure may become more clear. General discussion from this viewpoint will be presented in the next subsection.

3.2. Prediction of HEAs with low Young’s modulus

Now, we try to demonstrate the application of the most predictable model constructed by the LIDG-GA to the materials design of HEA. As a target property, we focus on Young’s modulus E of HEA and try to propose HEAs with a small E value. Note that the present models concern only elastic constants and do not predict the stability of the BCC random solution phase. To propose realistic candidates, we perform further screening by using empirical rule for the fabrication of HEAs [3,20,21], namely, $\delta < 8.5(\%)$, $-22 < \Delta H < 7(\text{kJ/mol})$, $\Omega > 1$ and $\text{VEC} < 6.87$, where $\delta = \sqrt{\sum_{i=1}^{N} c_i(1 - (\sigma_i^0)^2) \times 100}$, $\Delta H = \sum_{i<j} 4\Delta H_{ij}$, $\Omega = \frac{\Delta m_{\text{mix}}}{\Delta m_{\text{mix}}}$, VEC is the average of atomic radius, ΔH_{ij} is mixing enthalpy of two-component equiatomic alloy with the i-th and j-th components, $T_m = \sum_i c_i T_m^i$ is the melting temperature of the i-th component, $\Delta S = -R \sum_i c_i \log c_i$ is the mixing entropy of random configuration and VEC is the average valence electron number. In addition, concerning to the mechanical stability, HEAs with $B > 0$, $\delta > 0$ and $c_{44} > 0$ are considered. Table 6 shows the candidates of low-E HEAs predicted by the present model and screened by the above criteria for stability. Among them, TiVZrNbTa and TiZrNbMoTa [15] were already studied by experiments to fabricate bio-compatible materials, but their E were not reported yet.

To investigate the origin of low Young’s modulus, the calculated electronic structure is analyzed for typical cases. For this purpose, we pick up two typical HEAs from the presently generated database of HEAs by the FP KK calculations. One is VCrMoWRe which has the highest $E = 321$ (GPa) and the other one is ScTiVZrNb which has the lowest $E = 46$ (GPa). B, c' and c_{44} of these two HEAs are all positive, and the predicted E of VCrMoWRe and ScTiVZrNb by the model are 308 and 45 (GPa), respectively.

As shown in Figure 3(a), for VCrMoWRe (high-E case), the DOS shows a clear dip and that the Fermi level E_F is located at the dip. This characteristic dip structure in the DOS is typical for BCC structure and the dip distinguishes the bonding states from the antibonding ones. Thus, it is intuitively recognized that the high-E of VCrMoWRe might be related to the electronic stability of this HEA. This speculation is partly confirmed.

b	Descriptor	$\langle \varnothing \rangle$	$\langle B \rangle$	σ_a	$1/\langle \varnothing \rangle$	$\langle g \rangle$	σ_a	σ_s	σ_g	$1/\langle c_{44} \rangle$
c'	Descriptor	$\langle B \rangle$	$1/\langle g \rangle$	$\langle c' \rangle$	$\langle c_{44} \rangle$	$1/\langle a \rangle$	$1/\langle B \rangle$			
Correlation	-0.52	0.87	-0.82	0.51	0.51	0.06	0.22	-0.70		
Correlation	-0.15	0.71	0.57	-0.49	-0.26	0.06				
Correlation	0.69	0.80	0.64	0.75	-0.77	0.39	-0.50	-0.39		

Table 5. Pearson’s cross correlation values between objective variables and first-order descriptors which appear in the optimized models with 5 descriptors.
Table 6. Prediction of low Young’s modulus HEAs by using the presently optimized model. 50 HEAs with the lowest Young’s modulus satisfying the stability criteria are summarized.

HEA	E	δ	ΔH	Ω	VEC
(GPa)	(%)	(kJ/mol)			
ScTiZrNbMo	31.5	5.99	3.0	10.2	4.4
ScTiVZrNb	45.0	6.94	3.6	8.2	4.2
ScZrAgTa	50.1	7.98	-0.3	106.0	5.2
ScTiZrNbTc	51.3	6.74	-13.1	2.3	4.6
ScTiZrNbTa	53.9	4.99	5.5	5.8	4.2
ScVrNbAg	57.3	7.01	1.3	21.5	5.6
ScTiCuZrTa	58.3	8.49	-2.2	12.7	5.4
ScTiCuNbTa	59.4	7.78	1.6	18.7	5.6
ScTiZrNbAu	61.6	5.36	-19.1	1.4	5.4
ScTiZrAgTa	62.2	5.23	0.4	71.8	5.4
ScTiVrMo	63.1	7.54	1.4	21.1	4.4
ScNbZrAgTa	63.5	7.64	-0.4	1.8	6.8
ScTiVZrTc	65.8	8.08	-13.8	2.1	4.6
ScTiVAgTa	66.1	6.34	3.1	9.1	5.6
ScVrNbAu	66.9	7.09	-17.0	1.6	5.6
TiZrNbAgTa	67.3	3.72	1.9	15.8	5.8
ScCuZrNbTa	68.0	8.45	0.2	132.4	5.6
ScTiVnNbAu	69.1	6.39	-14.0	1.9	5.6
TiZrPdAgTa	69.4	7.48	-21.7	1.3	6.8
ScTiGrZrNb	71.8	8.49	0.9	31.8	4.4
TiCuZrNb	75.5	7.67	-2.5	11.4	5.8
TiZrNbRhAg	77.0	5.43	-15.9	6.6	
TiZrNbMoAg	84.3	4.51	2.2	13.3	6.0
TiZrZrTa	87.5	5.39	0.3	130.2	4.6
TiCuZrTa	87.7	7.67	-2.7	10.9	5.8
TiNiZrAg	88.3	8.24	-9.6	2.6	6.8
TiWmZrAu	89.0	8.01	-18.0	1.4	6.2
TiVZrNbAg	91.6	5.43	1.1	26.1	5.8
TiVZrZrZr	92.3	8.03	-2.2	10.9	6.2
TiWbZrZr	92.4	8.09	-2.9	10.0	5.0
TiNiZrNbAg	92.6	7.76	-9.7	2.7	6.8
TiZrZrRhAg	92.8	6.38	-15.4	1.7	6.6
TiVZrZrAg	93.8	8.24	-7.4	3.4	6.6
TiCuZrZr	94.2	7.87	-19.9	1.4	6.6
TiCuZrRh	94.5	7.95	-18.7	1.4	6.6
TiCuZrNbAg	95.0	7.76	-7.4	3.6	6.6
TiZrZrNbAg	95.6	7.51	-14.1	17.9	6.2
TiZrNbTcAg	96.1	5.23	-10.2	2.8	6.2
TiCuZrNbRh	96.6	7.67	-19.4	1.4	6.6
TiFeZrCuTa	96.7	7.80	-18.5	1.4	6.4
TiCuZrNbMo	97.8	7.21	-2.0	15.1	6.0
TiZrRhAgTa	97.9	5.43	-16.1	1.8	6.6
TiCuZrNbTc	98.4	7.56	-14.2	2.0	6.2
TiCuZrNbTa	99.3	7.01	-1.7	18.1	5.8
TiNiZrNb	99.9	8.30	-13.1	2.2	5.6
TiZrAgTa	100.0	5.43	0.7	38.9	5.8
TiVZrZrAg	100.2	8.30	-10.7	2.7	5.4
TiZrNbMoTa	100.9	4.42	-1.0	34.4	4.8
TiZrZrAgTa	101.2	6.23	-16.2	1.7	6.6
TiZrNbAgTa	101.3	5.23	-17.0	1.7	6.6

by looking at the DOS of low-E HEA ScTiVZrNb where the DOS shows peak structure at the E_F as shown in Figure 3(b).

To investigate the relation between Young’s modulus and the electronic structure, the correlation of the DOS at E_F with E is plotted in Figure 4(a) for the 1590 HEAs predicted to have $B > 0$, $c > 0$ and $c_{43} > 0$ by the FPKKR-CPA. As recognized from the figure, the correlation between the DOS at E_F and E is easy to recognize, and the calculated Pearson correlation coefficient is -0.48. A similar negative correlation with E_F is also found with γ for the 2555 HEAs calculated by the FPKKR-CPA in the database (Figure 4(b)), the correlation coefficient of -0.51. The correlation between the DOS at E_F and structural instability is well known and the martensitic transformation of Fe-Pt alloys were investigated from this viewpoint [58]. Therefore, the present finding concerning to the Young’s modulus is not entirely new idea. It can be regarded as a new justification of that idea within the new class of metallic alloys BCC HEA with a wide range of combinations of constituent elements.

This information concerning to the correlation between the DOS at E_F and E might be useful to construct a new prediction model for the mechanical properties of HEAs. Of course, to use such a model, in which the electronic information (DOS at E_F) is included in the set of descriptors, we need to perform a first-principles calculation for a target HEA. This might require a certain effort before obtaining
a prediction. However, the DOS calculation is much simpler compared to the elastic constants, thus a model including simple electronic structure information, such as DOS at E_F, might be useful if it offers more accurate prediction.

4. Summary

In this paper, we have demonstrated the construction of a prediction model by using the LIDG-GA method based on the first-principles database of elastic constants of HEAs in BCC structure. Our database was originally generated by performing the FPKKR-CPA calculations for 2555 HEAs whose constituent elements are randomly chosen from 3d, 4d and 5d elements. We have shown that even with the simple linear model we can achieve accurate models for B, c' and c_{44} by choosing descriptors carefully. In the present study, the descriptors were generated from basic descriptors including elastic properties of B, c', c_{44}, lattice constant a, group of element g, period of element p, atomic number Z and electron density parameter r_s calculated by the FPKKR for each constituent element of the HEA. From these basic descriptors, owing to the LIDG method, higher-order descriptors are automatically generated with keeping their linear independence. We can optimize the combination of descriptors by using the GA to construct the most predictable model. In the present study, prediction errors measured by the RMSE are 10.2, 4.5 and 2.4 GPa for B, c' and c_{44}, respectively. By analyzing the small model with 5 descriptors, we recognized the physical trend of B. Namely, HEAs with the smaller difference in the lattice constants of constituent elements show the larger B. The most predictable model was applied for the prediction of low Young’s modulus HEAs. Experimental verification might be desirable for the present predictions. By investigating the electronic structure of proposed HEAs, the correlation between Young’s modulus of HEA and the density of states at the Fermi level is figured out. This finding might be useful to construct another model of the physical properties of HEAs. The presently proposed computational method, namely the combination of FPKKR-CPA calculations and LIDG-GA modeling, might be one of the effective tools towards the computational design of functional HEAs.
Acknowledgments

This work is partly supported by JSPS KAKENHI (Grant No. 20K05303, 18H05212), JST CREST (Grant No. JP-MJCR1812) and MEXT as ‘Program for Promoting Researches on the Supercomputer Fugaku’ (DPMSD, Project ID: JPMXP1020200307).

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

The work was supported by the Core Research for Evolutional Science and Technology [JP-MJCR1812]; JSPS [18H05212,20K05303]; Japanese Ministry of Education Culture, Sports, Science and Technology [JPMXP1020200307].

References

[1] Yeh JW, Chen SK, Lin SJ, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mat. 2004;6(5):299–303.
[2] Cantor B, Chang ITH, Knight P, et al. Microstructural development in equiatomic multicomponent alloys. Mat Sci Eng a. 2004;375–377:213–218.
[3] Gao MC, Yeh JW, Liaw PK, et al., editors. High-entropy alloys. Switzerland: Springer; 2016.
[4] Miracle DB, Senkov ON. A critical review of high entropy alloys and related concepts. Acta Materialia. 2017;122:448–511.
[5] Murty BS, Yeh JW, Ranganathan S, et al. High-entropy alloys. 2nd ed. Netherlands: Elsevier; 2019.
[6] Huang S, Tian F, Vitos L. Elasticity of high-entropy alloys from ab initio theory. J Mater Res. 2018;33(19):2938–2953.
[7] Tong CJ, Chen MR, Yeh JW, et al. Mechanical performance of the Al$_x$CoCr$_2$FeNi$_3$ high-entropy alloy system with multiprincipal elements. Metall Mat Trans a. 2005;36(5):1263–1271.
[8] Gali A, George EP. Tensile properties of high- and medium-entropy alloys. Intermetallics. 2013;39:74–78.
[9] Tsai MH, Wang CW, Tsai CW, et al. Thermal stability and performance of NbSitatizr high-entropy alloy barrier for copper metallization. J Electrochem Soc. 2011;158(11):1161–1165.
[10] Senkov ON, Senkova SV, Woodward C, et al. Low-Density, refractory multi-principal element alloys of the Cr$_x$-Nb-Ti-V-Zr system: microstructure and phase analysis. Acta Materialia. 2013;61(5):1545–1557.
[11] Chou YL, Yeh JW, Shih HC. The effect of molybdenum on the corrosion behavior of the high-entropy alloys Co$_{0.5}$Cr$_{0.5}$FeNi$_{1.5}$Ti$_{3.5}$Mo$_{0.5}$ in aqueous environments. Corr Sci. 2010;52(8):2571–2581.
[12] Kao YF, Lee TD, Chen SK, et al. Electrochemical passive properties of Al$_x$CoCr$_2$FeNi$_3$ (x = 0, 0.25, 0.50, 1.00) alloys in sulfuric acids. Corros Sci. 2010;52(3):1026–1034.
[13] Chuang MH, Tsai MH, Wang WR, et al. Microstructure and wear behavior of Al$_x$Co$_{1.5}$CrFeNi$_{1.5}$Ti$_{3}$ high-entropy alloys. Acta Materialia. 2011;59(16):6308–6317.
[14] Hemphill MA, Yuan T, Wang GY, et al. Fatigue behavior of Al$_{50}$CoCrFeNi high entropy alloys. Acta Materialia. 2012;60(16):5723–5734.
[15] Nagase T, Mizuguchi K, Nakano T. Solidification microstructures of the ingots obtained by arc melting and cold crucible levitation melting in TiNbTaZr medium-entropy alloy and TiNbTaZrx (X = V, Mo, W) high-entropy alloys. Entropy. 2019;21(5):483–1–18.
[16] Kozelj P, Vrtnik S, Jelen A, et al. Discovery of a superconducting high-entropy alloy. Phys Rev Lett. 2014;113(10):107001-1–5.
[17] Tian F. A review of solid-solution models of high-entropy alloys based on ab initio calculations. Front Mater. 2017;4:1–10.
[18] Ikeda Y, Grabowski B, Koermann F. Ab initio phase stabilities and mechanical properties of multicomponent alloys: a comprehensive review for high entropy alloys and compositionally complex alloys. Mater Charact. 2019;147:464–511.
[19] Zhou YJ, Zhang Y, Wang YL, et al. Microstructure and compressive properties of multicomponent Al$_x$ (TiVCrMnFeCoNi)$_{1-x}$ high-entropy alloys. Mat Sci Eng a. 2007;454–455:260–265.
[20] Guo S, Liu CT. Phase stability in high entropy alloys: formation of solution-phase or amorphous phase. Mater Int. 2011;21:433–446.
[21] Yang X, Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mat Chem Phys. 2012;132(2–3):233–238.
[22] Troparevsky MC, Morris JR, Kent PRG, et al. Criteria for predicting the formation of single-phase high-entropy alloys. Phys Rev X. 2015;5(1):011041-1–6.
[23] Ma D, Grabowski B, Koermann F, et al. Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: importance of entropy contributions beyond the configurational one. Acta Mat. 2015;100:90–97.
[24] Song H, Tian F, Wang D. Thermodynamic properties of refractory high entropy alloys. J Alloys Compd. 2016;682:773–777.
[25] Widom M. Modeling the structure and thermodynamics of high-entropy alloys. J Mater Res. 2018;33(19):2881–2898.
[26] Körnmann F, Slutier MHF. Interplay between lattice distortion, vibrations and phase stability in NbMowα high entropy alloys. Entropy. 2016;18(8):403–1–7.
[27] Song H, Tian F, Hu OM, et al. Local lattice distortion in high-entropy alloys. Phys Rev Mat. 2017;1:023404-1–8.
[28] Ogura M, Fukushima T, Zeller R, et al. Structure of the high-entropy alloy Al$_x$CrFeCoNi: fcc versus bcc. J Alloys Compd. 2017;715:454–459.
[29] Tian F, Varga LK, Chen N, et al. Ab initio investigation of high-entropy alloys of 3d elements. Phys Rev B. 2013;87(7):075144-1–8.
[30] Cao P, Ni X, Tian F, et al. Ab initio study of Al$_x$MoNBTiV high-entropy alloys. J Phys Condens Matter. 2015;27:2075401-1–6.
[31] Tian L, Wang G, Haris JS, et al. Alloying effect on the elastic properties of refractory high-entropy alloys. Mater Design. 2017;114:243–252.
[32] Zheng S, Feng W, Wang S. Elastic properties of high entropy alloys by MaxEnt approach. Compt Mat Sci. 2018;152:332–337.
[33] Zhang H, Sun X, Lu S, et al. Elastic properties of Al$_x$ CrFeCuNi(0 ≤ x ≤ 5) high-entropy alloys from ab initio theory. Acta Mat. 2018;155:12–22.
Kim G, Diao H, Lee C, et al. First-principles and machine learning predictions of elasticity in severely lattice-distorted high-entropy alloys with experimental validation. Acta Materialia. 2019;181:124–138.

Koval NE, Juaristi JI, Muiño RD, et al. Structure and properties of CoCrFeNi, multi-principal element alloys from ab initio calculations. J Appl Phys. 2020;127(14):145102–1–12.

Koerann F, Ma D, Belyea DD, et al. T→$\{\text{tr}\{\text{ddot T}\}\}$$\{\text{res}\}$ure maps$\{\text{tr}\{\text{ddot f}\}\}$$\{\text{for}\}$ magnetic high-entropy-alloys from theory and experiment. Appl Phys Lett. 2015;107(14):142404–1–5.

Fukushima T, Katayama-Yoshida H, Sato K, et al. Local energies and energy fluctuations - applied to the high entropy alloy CrFeconi. J Phys Soc Jpn. 2017;86(11):114704–1–7.

Fukushima T, Akai H, Chikyow T, et al. Automatic exhaustive calculations of large material space by Korringa-Kohn-Rostoker coherent potential approximation method applied to equiatomic quaternary high entropy alloys. Phys Rev Mater. 2022;6(2):023802–1–19.

Rajan K. Materials informatics. Mater Today. 2005;8:38–45.

Rampasad R, Batra R, Pilania G, et al. Machine learning in materials informatics: recent applications and prospects. Npj Comput Mater. 2017;3(10):54–1–13.

Butler KT, Davies DW, Cartwright H, et al. Machine learning for molecular and materials science. Nature. 2019;559(7715):547–555.

Schmidt J, Marques MRG, Botti S, et al. Recent advances and applications of machine learning in solid-state materials science. Npj Comput Mater. 2019;5(1):83–1–36.

Morgan D, Jacobs R. Opportunities and challenges for machine learning in materials science. Ann Rev Mat Res. 2020;50(1):71–103.

Revi V, Kasodariya S, Talapatra S, et al. Machine learning elastic constants of multi-component alloys. Comp Mat Sci. 2021;198(110671):1–11.

Fujii H, Fukushima T, Oguchi T. Linearly independent descriptor generation method for empirical law discovery. Unpublished.

Kanda Y, Fujii H, Oguchi T. Sparse modeling of chemical bonding in binary compounds. Sci Technol Adv Mater. 2019;20(1):1178–1188.

Ogura M, Akai H. The full potential Korringa-Kohn-Rostoker method and its application in electric field gradient calculations. J Phys: Condens Matter. 2005;17(37):5741–5755.

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(18):3865–3868.

Fazakas E, Zadorozhnyy V, Varga LK, et al. Experimental and theoretical study of Ti_{25}Zr_{25}Hf_{25} Nb_{25}X_{20} (X = V or Cr) refractory high-entropy alloys. Int J Refract Met Hard Mater. 2014;47:131–138.

Winter IS, de Jong M, Montoya J, et al. Intrinsic ductility of random substitutional alloys from non-linear elasticity theory. Phys Rev Mat. 2019;3:113608–1–12.

Senkov ON, Wilks GB, Scott JM, et al. Mechanical properties of Nb_{25}Mo_{25}Ta_{25}W_{25} and V_{20}Nb_{25}Mo_{20} Ta_{20}W_{20} refractory high entropy alloys. Intermetallics. 2011;19(5):698–706.

Haglund A, Koehler M, Catoor D, et al. Polycrystalline elastic moduli of a high-entropy alloy at cryogenic temperatures. Intermetallics. 2014;58:62–64.

Moruzzi VL, Janak JF, Williams AR. Calculated electronic structure of metals. USA: Pergamon; 1978.

Akai H. Fast Korringa-Kohn-Rostoker coherent potential approximation and its application to FCC Ni-Fe systems. J Phys Condens Matter. 1989;1:8045–8063.

Akai H. http://kkr.issp.u-tokyo.ac.jp

Fujii H. Linearly independent descriptor generation (LIDG) program package for sparse and interpretable modeling. https://github.com/Hitoshi-FUJII/LIDG

Abadi M, Agarwal A, Barham P, et al. Tensorflow: large-scale machine learning on heterogeneous systems. 2015. Software available from https://www.tensorflow.org

Yamamoto T, Yamamoto M, Fukuda T, et al. An interpretation of martensitic transformation in L12-Type Fe3Pt from its electronic structure. Mat Trans. 2010;51(5):896–898.