Mechatronics Application in Precision Sowing: A Review

Prem Veer Gautam¹*, H.L. Kushwaha², Adarsh Kumar² and Dilip Kumar Kushwaha²

¹ICAR-CIAE, NabiBagh, Bhopal-462038, India
²Division of Agricultural Engineering, IARI, New Delhi, India

*Corresponding author

A B S T R A C T

In agriculture profession high output is demanded with limited resources and machines are the costlier investment to the agriculture for a marginal and poor farmer. The accuracy and precision of an agricultural machine can be increased using the electronics and computing systems however it increases the cost of the machines. In spite of costlier investments, many researchers have been conducted the study on mechatronics application in precise sowing operation in recent years. Mechanical planters have problems of ground wheel skidding and vibration in the mechanical transmission that affect the hill to hill spacing. From the review, it was concluded that the mechatronic driving system performed better than mechanical driving system in both tilled and non-tilled fields. The increase in uniformity of seed placement was also reported. Thus, mechatronics based seed placement technique was found a better way to achieve accurate seed spacing with higher efficiency in planting. This paper reviews on the mechatronics and its application in precision planting.

Keywords
Precision agriculture, Mechatronics, Electronics, Computing system, planter

Introduction

There are different methods such as broadcasting, dibbling, sowing behind country plough, seed drill and pneumatic planting for seed placement. Out of these methods, seed drill and pneumatic planting methods are more precise. Seed singulation capability of pneumatic planter is higher however it requires more energy. Seed drilling is most common method for cereals and pulse crops. In seed drill different type of metering mechanism are used for seed singulation. The seed drills are modified with seed metering mechanism for more precise singulation. These machines are called planter. Different types of seed mechanism are used for singulation in planter. These are variable orifice, fluted roller, internal double run, inclined plate and cup feed type. These mechanisms generally require ground wheel for transmission of the power. Due to load on ground wheel for power transmission to metering mechanism, the ground wheel skidding is observed. This skidding is responsible for non-uniform seed placement. Nowadays, agriculture requires new monitoring and control equipment and
embedded systems for agricultural tractors and implements. The concept of intelligent instruments is one of the key reasons for this trend: instruments with embedded microprocessors providing the capabilities of self-calibration, self-diagnosis and local analog-to-digital and digital-to-analog conversion. The digital transmission of data also increases reliability due to automatic error detection and correction. These distributed systems are composed of several devices like sensors, actuators, control elements and supervision and control units, all of them intercommunicating in real time. To overcome ground wheel skidding, research on electronics based seed metering mechanism in planters and seed drills has been done for precise placement of seeds during planting.

Further drawbacks of the mechanical metering devices are the bulkiness of the system and vibrations that are induced on the planter or seed drill as it travels through the field. The final drawback of the mechanically driven system is the lack of communication of seed placement between row units on an implement. On current metering designs, the system has control over only the seeding population, but not the actual timing and placement of the seed. This means a seed is dropping into the furrow at a constant rate, but the row unit cannot detect the time and place where a seed is being placed relative to its neighbouring row units. Therefore, electronically controlled seed singulation devices can address many of the inefficiencies experienced in a mechanically driven seed metering device and have the potential to increase productivity and yield rates dramatically.

Working principle and components of mechatronics sowing system

The mechatronics mechanism works on the principle that shaft encoder senses the forward speed and transmit signals in the digital code to the microcontroller. The microcontroller synchronizes the forward speed of operation into 1:1 transmission ratio with the metering mechanism plate. The microcontroller transmits signals to motor driver module and driver connected to electric motor which rotate seed plate of the metering mechanism (Fig. 1).

He et al., (2017) designed a mechatronic system for four row planter consists of seed box, touch screen display, shaft encoder to measure travel speed, electric motors, seed meters, and power supply (Fig. 2). A twelve volt tractor battery provides power for the Mechatronics system. The value of travel speed is measured by an incremental encoder that is mounted on the shaft of a ground wheel. With the rotation of the ground wheel, the encoder outputs corresponding pulses from which the controller can calculate travel speed by measuring the number of pulses received within a given time. The drive motors are brushless DC motors, each with three Hall-effect sensors mounted in the back for measuring the positions of the U, V, and W rotors, which realizes current switching for the rotors. Simultaneously, the three Hall-effect sensors measure the motor speed in real time to achieve closed loop control. A touch screen display allows the entry of parameters such as seed spacing, wheel slip ratio, diameter of the ground wheel, and number of seed holes per disk, displays travel speed, and seed plate rotation speed, and sounds alarms to warn of system malfunction. The controller main functionality is to output a pulse signal with a given frequency and duty cycle to control seed plate rotation speed based on travel speed to achieve uniform seed spacing.

Trends of mechatronics in sowing

As one of the trends of development on automation and intelligence of agricultural machinery in the 21st century, all kinds of agricultural robots have been researched and
developed to implement a number of agricultural production in many countries, such as picking, harvesting, weeding, pruning, planting, grafting, agricultural classification, etc. Application of electronics in agriculture has come with the technological advancement. The microcontroller or microprocessors for control of electronic circuitry are now economical and powerful tool with very low error margin as well as testing whether any machine operates in the right adjustment or not.

Not only the hardware but also open source user friendly software has been developed. This has encouraged researcher for specific electronics application in agriculture. The microcontroller can be used as per the need for actuation and sensing. The sensors are used by the researchers for seed placement for depth and distance control (Panning et al., 2000; Lan et al., 1999). Using electronics for metering mechanism may be one of the options to achieve accurate seed spacing with higher efficiency. Sensors can be used in precision planting if integrated with seed metering mechanism. A summary of mechatronics studies in seed sowing focusing on many different aspects is presented below in Table 1, 2, 3, 4 and 5.

Performance parameters related to precision planter

The sowing uniformity of seed distribution along the length of the row was analysed using the methods described by Kachman and Smith. Miss index (MI) is the percentage of seed spacings that are greater than 1.5 times the nominal seed spacing and indicates the percentage of missed seed locations or skips. Quality of feeding index (QFI) is the percentage of seed spacings that are more than half but no more than 1.5 times the nominal spacing and indicates the percentages of single seed drops. Precision index (PREC) is the coefficient of variation of the spacings (length) between the nearest seeds in a row that are classified as singles after omitting the outliers consisting of missing-seedings and multiples. The calculation formulas for MI, QFI and PREC (Gautam, 2017) are as follows:

\[
QFI = \frac{n'}{N}
\]

\[
MI = \frac{n''}{N}
\]

\[
PREC = \frac{S}{\bar{x}^n}
\]

\[
MULT = \frac{S}{N}
\]

Where,

\[
S = \sqrt{n} \sum_{i=1}^{n'} (x_i - \bar{x})^2
\]

\[
\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i
\]

\[x_i\] is the nth seed spacing

\[N = \text{Total number of seed spacings, and} \]

\[n' = \text{Number of spacings in the region greater than 1.5 times of the theoretical spacing} \]

\[n'' = \text{Number of spacings between 0.5 times the theoretical spacing and 1.5 times of the theoretical spacing} \]

\[n = \text{Number of spacing’s in the region less than or equal to 0.5 times of the theoretical spacing} \]

Suggested upper limit of PREC index for single seed planter is 29% (Nejadi and Raoufat, 2013; Raoufat and Mahmoodieh, 2005). Planting performance indicators were evaluated by using the criteria provided in Table 6 (Aykas et al., 2013; ISO 7256/1-1984(E) Standard, 1984; Önal et al., 2012).
Table.1 Mechatronics in seed drill

S/N	Researcher Name	Seed	Research Topic	Electronic Components	Source	Address of Researcher	Journal Name
1.	M. Jafari, A. Hemmat and M. Sadeghi	Wheat	Development and Performance Assessment of a DC Electric Variable-Rate Controller for Use on Grain Drills.	DC motor, encoders(E50S-2500-3-2-24 and ISE-200-5V), GPS receiver, pulse-with-modulation (PWM) DC motor controller, laptop, 12–24V supply, 12-step CMOS4040 IC, A 74LS138 IC, PID controller, MOSFET, 74LS373 IC	Jafari et al., (2010)	Department of Farm Machinery, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran. ahemmat@cc.iut.ac.ir	Computers and Electronics in Agriculture
2.	Caner Cuhac, ReinoVirrankoski, Petri Hanninen, Mohammed Elmusrati, HermannHoopenka and HeikkiPalomaki	Rye, Wheat, Barley, Corn and Oat	Seed Flow Monitoring in Wireless Sensor Networks.	LED, Light Dependent Resistors (LDR), receiver UWASA Node, ultrasonic and microwave sensor, SURFbuttons, SPI bridge, LCD display, transmitter, battery	Cuhac et al., (2012)	University of Vaasa Department of Computer Science Communications and Systems Engineering Group P.O.Box 700, FI-65101 Vaasa, Finland	Workshop on Wireless Sensor Systems
3.	HifjurRaheman and Rajeev Kumar	Wheat and Ragi	An Embedded System for Detecting Seed Flow in the Delivery Tube of a Seed Drill	12 V DC battery, DC motor, potentiometer, DC motor driver, microcontroller (ArduinoNano), IR sensor and buzzer	Raheman& Kumar, (2015)	Agricultural and Food Engineering Department, IIT, Kharagpur, India	Proceeding of International Conference on ACBEE
4.	S. Kamgar, F. Noei-Khodabadi and S.M. Shafaei	Wheat	Design, Development and Field Assessment of a Controlled Seed Metering Unit to be used in Grain Drills for Direct Seeding of Wheat	digital encoder (Autonics E50S8-1000), variable-rate DCM (model: D12-8001-45W), 4x4 matrix keyboard, Programmable PLC/PMW controller, 16 x2 LCD, PATA cable, PID controller, direct current voltage transducer	Kamgar et al., (2015)	Department of Biosystems Engineering, College of Agriculture, Shiraz University, Shiraz 71441-65186, Iran. smshafaei@shirazu.ac.ir	Information Processing in Agriculture
5.	SörenKirkegaard Nielsen, Lars JuhlMunkholm, Mathieu Lamandé, Michael Nøremark, Garet T.C. Edwards and Ole Green	Spring Barley	Seed Drill Depth Control System for Precision Seeding	Linear position sensors TX2, P43 ultrasonic height sensors, ultrasonic sensors, X20 controller, electrohydraulic 4/3 oil direction valve SV08-47B, GNSS BT-Q1000XT and pilot-controlled leak-proof	Nielsen et al., (2018)	Aarhus University, Faculty of Science and Technology, Department of Engineering, Denmark	Computers and Electronics in Agriculture
6.	Karan Singh, K. N. Agrawal and Anurag Kumar Dubey	Soybean	Development of the Controller based Seed cum Fertilizer Drill	Programmable PLC/PMW controller, inductive proximity sensor, AC motor, 24V DC motor, SMPS, encoder, USB, RS-232 and flash card	Singh et al., (2012)	ICAR-CIAE, Bhopal, India. kssingh@ciae.res.in	12th International Conference on IEEE
7.	HadiKarimi, HosseinNavid and AsgharMahmoudi	Wheat, corn and pelleted tomato	Online laboratory evaluation of seeding-machine application by an acoustic technique	Microphone (VM-034CY), sound card (Intel® 82801 BA/BAIM AC®97 Audio controller), MATLAB software	Karimi et al., (2015)	University of Tabriz, Faculty of Agriculture, Department of Agricultural Machinery, Tabriz, Iran hadiekarimi@gmail.com	Spanish Journal of Agricultural Research
S/N	Researcher Name	Seed	Research Topic	Electronic Components	Source	Address of Researcher	Journal Name
-----	----------------	------	----------------	----------------------	--------	----------------------	--------------
8.	D. E. Wilkins and D. H. Lenker	Lettuce	A microprocessor-controlled planter	8080 microprocessor, LED, phototransistor, power source and solenoid air valve	Wilkins and Lenker, (1981)	USDA SEA-AR, Columbia Plateau Conservation Research Centre, Pendleton (US)	Transactions of the ASAE
9.	P. R. Shinde, A. B. Lende, S.V. Rane, S. A. Nawale, M. S. Patwardhan, and L. V. Gharate	Groundnut	Development and Functional Test of Electronic Metering Mechanism for Bullock Drawn JyotiMulticrop Planter.	Opto-isolator sensors, microcontroller (ATMEL89), BC547 and SL100 transistors, 2x16 LCD, solenoid switches, 12V battery and keyboard.	Shinde et al., (2009)	Department of Farm Machinery and Power, Dr. A. S. College of Agricultural Engineering, Mahatma PhuleKrishiVidyapeeth, Rahuri - 413 722, India.	International Journal of Agriculture Environment and Biotechnology
10.	Lianning Xia, Xiangyou Wang, Duanyang Geng and Qingfeng Zhang	Maize and wheat	Performance Monitoring System for Precision Planter Based on MSP430-CT171	IR LED, phototransistor, photoelectric sensor, LM339, microcontroller (MSP430-CT171), display module (LMC240128ZK), LCD, Bluetooth module, FS-BT485A serial adapter, RS232, Buzzer, Stepper motor, motor driver, keyboard circuit and power driver	Xia et al., (2010)	School of Agricultural and Food Engineering, Shandong University of Technology Zibo, Shandong, China	International Conference on Computer and Computing Technologies in Agriculture
11.	M. Anantachara, Prasanna G.V. Kumar and T. Guruswamy	Peanut	NN Prediction of Performance Parameters of an Inclined Plate Seed Metering Device and Its Reverse Mapping for the Determination of Optimum Design and Operational Parameters	Opto-electronic seed counter, electric motor , ANN models	Anantachara et al., (2010)	Department of Farm Machinery, College of Agricultural Engineering, University of Agricultural Sciences, Raichur 584101, Karnataka, India	Computers and Electronics in Agriculture
12.	O. Hajahmed, E. Tola, K. A. Al-Gaadi and A. F. Kheiralla	Chickpeas seeds	Development of an Opto-Electronic Monitoring System for Crop Planter Seed Metering Unit	AC motor (220 Volt, 0.4 kW), Digital Fiber Sensor (E3X-DA-S), rotary encoder (E6B2- CWZ6C), microcontroller (Atmel ATmega16L)	Hajahmed et al., (2011)	Precision Agriculture Research Chair (PARC), College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia	Middle-East Journal of Scientific Research
13.	T. P. Singh and D. M. Mane	Okra	Development and Laboratory Performance of an Electronically Controlled Metering Mechanism for Okra Seed	Proximity sensor, pulse generator, BCD counter(IC 4510), Timer (IC 4093), Relay unit, DC motor, 12V tractor battery, screw control knob.	Singh and Mane, (2011)	Farm machinery and Power Engineering College of Technology G. B. Pant University of Agriculture and Technology Pantnagar-263145, Uttarakhand INDIA tpSingh_62@yahoo.co.in	Agricultural Mechanization in Asia, Africa, and Latin America
14.	H. Navid, S. Ebrahimian, H. R. Gassemzadeh and M. J. Mousavinia	Pelleted tomato seeds	Laboratory Evaluation of Seed Metering Device using Image Processing Method	Digital camera (Nikon, D70), USB port and MATLAB software	Navid et al., (2011)	Department of Agricultural Machinery Engineering, University of Tabriz, Tabriz, I.R. Iran navid@tabrizu.ac.ir	Australian Journal of Agricultural Engineering
15.	Tejminder Kaur and Dilip Kumar	Wheat	Design and Development of Calibration Unit for Precision Planter.	Frame light barrier sensor, Proximity sensor (gear tooth sensor), SMU, 1 hp AC motor, Yaskawa J1000 AC drive, RS232 and USB communication	Kaur& Kumar, (2013)	Centre for Development of Advanced Computing(C-DAC), Mohali, India	International Journal of Computer Science, Engineering and Applications
	Authors	Title	System Details	Reference Details			
---	---------	-------	----------------	-------------------			
16.	Du Ruicheng, Gong Bingcai, Liu Ningning, Wang Chencen, Yang Zidong and Ma Mingjian	Design and Experiment on Intelligent Fuzzy Monitoring System for Corn Planters	On-board computers, GPS receivers, digital cameras, tilt sensor, USB-CAN interface module, displacement sensors, electronically controlled stepless spacing regulator, CAN bus analog input module, CAN bus digital input and output modules, CAN bus pulse counting module, seed tank sensor, fertilizer tank sensor, seeding orifice sensor and gear speed sensor	Ruicheng et al., (2013) School of Agriculture and Food Engineering, Shandong University of Technology, Zibo 255049, Shandong, China. International Journal of Agricultural and Biological Engineering			
17.	Javad Taghinezhad, Reza Alimardani and Ali Reza Jafari	Design a Capacitive Sensor for Rapid Monitoring of Seed Rate of Sugarcane Planter	Rectangular parallel plate capacitor, electronic circuitry, microcontroller, and display unit	Taghinezhad et al., (2013) Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering and Technology University of Tehran, Iran. Agricultural Engineering International: CIGR Journal			
18.	Margarita Velandia, Michael Buscher Mohile, James A. Larson, Nathanael M. Thompson, Brandon Michael Jernigan	The economics of Automatic Section Control Technology for Planters: A Case Study of Middle and West Tennessee Farms	GPS receiver (Trimble EZ-Guide 500 system), GPS antenna (Trimble AgGPS 25 antenna), Intercom RTK Bridge cellular modem, netbook computer, data logger and switches	Velandia et al., (2013) Department of Agricultural and Resource Economics, The University of Tennessee, Knoxville, TN, United States. Computers and Electronics in Agriculture			
19.	Zhai Jianbo, Zhao Junfang, Zhou Yong and Zhang Shun	Design and Experimental Study of the Control System for Precision Seed-Metering Device	Hall sensor, AT89S51 single chip microcomputer, Motor control module, 57H76-03 stepper motor and adjustable speed motor	Jianbo et al., (2014) College of Engineering, Huazhong Agricultural University, Wuhan430070, Hubei Province, China. IJABE			
20.	V. V. Aware and S. V. Aware	Development of Microprocessor based Electronic Metering Mechanism for Seed—an Approach	Microcontroller (AT89C51 IC), inverter, D.C. motor, operational amplifier (LM741), 2 X 16 LCD Display, tactile switches, 12 MHz crystal oscillator, Capacitors, Diodes, opto- electric sensor, 230 V, 50 Hz A.C supply, Transformer	Aware & Aware, (2014) Department of Farm Machinery and Power, College of Agricultural Engineering and Technology, Dr. B.S. Konkan Krishi Vidyapeeth, Dapoli, RATNAGIRI (M.S.), INDIA. Engineering and Technology in India			
21.	Cristian Iacomi and Octavian Popescu	A New Concept for Seed Precision Planting	Linear solenoid actuator, Optoelectronic sensor (IR LED, phototransistor) and electronic switch	Iacomi & Popescu, (2015) University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd, 011464, Bucuresti-1, Romania. Agriculture and agricultural science proceedings			
22.	Niu Kang, Fang Xianfa, Liu Yangchun, Li Chengxu and Yuan Yanwei	Optimized Design and Performance Evaluation of an Electric Cup-Chain Potato Metering Device	Microcontroller (PIC18F2580), motor control circuit, GPS, D/A translate box, servo motor, differential GPS, RS232 serial port, PID control algorithm, servo motor (SGMV-04ADE6S), servo driver (SGDV-2R8A01B00200) analysis software DPS v7.05 and Matlab R2012A	Kang et al., (2017) College of Engineering, China Agricultural University, Beijing 100083, China yyw215@163.com. International Journal of Agricultural and Biological Engineering			
23.	Shankha Koley, Y. C. Bhatt, Gajendra Singh, Sunil Joshi and H. K. Jain	Development of Electronic Metering Mechanism for Precision Planting of Seeds	Proximity sensor, microcontroller (AT89C51), motor driver (L293D), DC motor, potentiometer (150 W) and power source	Koley et al., (2017) Indian Institute of Technology, Kharagpur, India. International Journal of Current Microbiology and Applied Sciences			
Table 3: Mechatronics in Pneumatic Planter

S/N	Researcher Name	Seed	Research Topic	Electronic Components	Source	Address of Researcher	Journal Name
24	Y. Lan, M. F. Kocher and J. A. Smith	Sugar beet and pelleted chicory	Opto-electronic Sensor System for Laboratory Measurement of Planter Seed Spacing with Small Seeds	NIR LEDs (EG and G VACTEC GaAs VTE3322LA), phototransistors (EG and G VACTEC NPN VTT3323LA), digital input/output (I/O) board, opto-electronic sensor, Hall-effect switch, 2.58 MHz clock, data-acquisition program	Lan et al., (1999)	Department of Biological Systems Engineering, University of Nebraska, Lincoln, NE 68583, USA	Journal of Agricultural Engineering Research
25	Zeliha Bereket Barut and Kadir Yiğit	Corn	Design of Electronic-Based Measurement System for Seed Spacing Measurement in Precision Planters	Microcontroller (AT89S8252), fiber-optic sensor amplifier, 2 fiber-optic sensors and 2 mutual fiber-optic cables, analog-digital converter, electrical motor.	Barut & Yiğit, (2008)	Çukurova University, Faculty of Agriculture, Department of Agricultural Machinery, 01330, Adana, Turkey	10th International Congress on Mechanization and Energy in Agriculture
26	Okan Önal and Ismet Önal	Hybrid maize and cotton	Development of a Computerized Measurement System for In-Row Seed Spacing Accuracy	CMS hardware, laser pointer, notebook computer, optical mouse (Microsoft Optical Mouse 3000), USB cable extension, Light meter (Lutron model Lx-1108) and CMS software	Önal & Önal, (2009)	Dokuz Eylül University, Department of Civil Engineering, Kaynaklar Yerleşkesi, Buca, İzmir – TURKEY. okan.onal@deu.edu.tr	Turkish Journal of Agriculture and Forestry
27	Saadat Kamgar and Mohammad J. Eslami	Corn	Design, Development and Evaluation of a Mechatronic Transmission System for Upgrading Performance of a Row Crop Planter	45W DC motor, tractor battery (12V&75Ah), microcontroller, MOSFET, potentiometer, rotary shaft encoder (E50S8-1000), 4x4 matrix keyboard and 2x16LCD	Kamgar & Eslami, (2012)	Agricultural Engineering Department, Shiraz University, Shiraz, Iran. kamgar@shirazu.ac.ir	American Society of Agricultural and Biological Engineers
28	Saadat Kamgar, Mohammad Javaad Eslami and Mohammad Mehdi Mahfarzouie	Corn	Design, Development and Evaluation of a Mechatronic Transmission System to Improve the Performance of a Conventional Row Crop Planter	45W DC motor, tractor battery (12V&75Ah), microcontroller, MOSFET, potentiometer, rotary shaft encoder (E50S8-1000), 4x4 matrix keyboard and 2x16LCD	Kamgar et al., (2013)	Agricultural Engineering Department, Shiraz University, Shiraz, Iran. kamgar@shirazu.ac.ir	International Journal of Agronomy and Plant Production
29	Qi Jiangtao, Jia Honglei, Li Yang, Yu Haibo, Liu Xinrui, Lan Yubin, Feng Xianzhen and Yang Yongxi	Corn	Design and Test of Fault Monitoring System for Corn Precision Planters	Capacitive sensors (TAP-3040N1-D3 model), Display module (J160128BLCD), matrix keyboard, single-chip microcomputer (STC12C5A60S2), alarm module, input mode, count chip (74LS590), encoder (PH8S-3600-G05L) and 8255A chip.	Jiangtao et al., (2015)	Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, China	International Journal of Agricultural and Biological Engineering
30	Yang Li, He Xiantao, Cui Tao, Zhang Dongxing, Shi Song, Zhang Rui and Wang Mantao	Corn	Development of Mechatronic Driving System for Seed Meters Equipped on Conventional Precision Corn Planter	Two-phase hybrid stepper motor (57HBP76AL4-TF0), tractor battery, driver module (2HD403), rotary shaft encoder (TRD-2T500BF), touchscreen (MT4414T), RS485 and microcontroller (STM32F103VCT6)	Li et al., (2015)	College of Engineering, China Agricultural University, Beijing 100083, China zhangdx@cau.edu.cn	International Journal of Agricultural and Biological Engineering
31	Habib Kocabiyik, Anil Cay, Bilal Karaaslan, Sahin May and M. Khurelbaatar	Corn	Electro-mechanic Control System for Pneumatic Precision Corn Planters	ESC (electronic speed controller), driver module, DC electric motors, encoders, cables connectors .PWM and PID techniques	Kocabiyik et al., (2016)	Canakkale Onsekiz Mart University, Faculty of Agriculture, Department of Agricultural Machinery and Technologies Engineering, 17020, Canakkale, Turkey.	International Conference on Machine Control and Guidance
32	Devin L. Mangus,	Corn	Development of High-Speed Borsch Terminal ME controller, radar	Mangus et al.,	Biological and Agricultural Computers and		
S/N	Researcher Name	Seed	Research Topic	Electronic Components	Source	Address of Researcher	Journal Name
-----	---------------------------------	--------------------	--	--	---------------------------	--	--------------------------------------
33	X. He, T. Cui, D. Zhang, J. Wei, M. Wang, Y. Yu, Q. Liu, B. Yan, D. Zhao and L. Yang	Corn	Development of an Electric-Driven Control System for a Precision Planter Based on a Closed-Loop PID Algorithm	Display (MT4414T), incremental encoder (TRD-2T500BF), four drive motors, 12V tractor battery, Hall-effect sensors, Optical Coupler (PC357), RS232 Transceiver (MAX232), Main Controller (STM32F103VCT6), Auxiliary Controller (STM32F103RBT6) and power MOSFET	He et al., (2017)	College of Engineering, China Agricultural University, Beijing 100083, China. yl_bb8@126.com	Computers and Electronics in Agriculture
34	Yongliang Hao, Tao Cui, Ganesh Bora, Dongxing Zhang, Jiantao Wei, Xiantao He, Mantao Wang and Li Yang	Corn	Development of an Instrument to Measure Planter Seed Meter Performance	Servo motor and gearbox, motor driver, seed sensor, PLC controller (CPUS04EX), table computer and printer (J625DW)	Hao et al., (2017)	College of Engineering, China Agricultural University, Beijing 100083, China. yangli@cau.edu.cn	Applied Engineering in Agriculture
35	Anil Cay, Habib Kocabiyik and Sahin May	Corn	Development of an electromechanical control system for seed-metering unit of single seed corn planters Part I: Design and laboratory simulation	Control panel, processor, electronic speed controller, driver module, brushless DC electric motors and other Supplementary elements such as encoders, cables and connectors	Cay et al., (2018)	Department of Agricultural Machinery and Technologies Engineering, Faculty of Agriculture, Canakkale Onsekiz Mart University, Canakkale, Turkey	Computers and Electronics in Agriculture
36	Anil Cay, Habib Kocabiyik and Sahin May	Corn	Development of an Electro-Mechanical Control System for Seed-Metering Unit of Single Seed Corn Planters Part II: Field Performance	Control panel, processor, electronic speed controller, driver module, brushless DC electric motors and other Supplementary elements such as encoders, cables and connectors	Cay et al., (2018)	Department of Agricultural Machinery and Technologies Engineering, Faculty of Agriculture, Canakkale Onsekiz Mart University, Canakkale, Turkey	Computers and Electronics in Agriculture

Table 4. Mechatronics in Magnetic Planter and Trans-Planter
Table 5 Seed Sowing Robot

S/N	Researcher Name	Seed	Research Topic	Electronic Components	Source	Address of Researcher	Journal Name
40.	M. Priyadarshini and L. S. Belsare	Command based Self-Guided Digging and Seed Sowing Rover	DC motor, Ultrasonic Radar sensor, sowing control sensor, relay driver circuit, Wireless controller, PC, Bluetooth module, Battery package, Arduino mega2560 microcontroller and LCD module	Priyadarshini & Sheela, (2015)	Dept of EEE, Embedded System Technologies Regional office: Anna University Tirunelveli, India	sambare.swati@gmail.com	International Conference on Engineering Trends and Science and Humanities
41.	Swati D. Sambare and S. S. Belsare	Use of robotics technology for seed sowing in Agriculture	Keyboard, Zigbee module, PC, IR sensor, L293D driver module, DC Motor, stepper motor, UNL2803, LCD, LPC2148 microcontroller, MAC layers	Sambare & Belsare, (2015)	Dept. of Electronics, BVDUCOEP, Pune, India		IJSRM
42.	Lin Haibo, Dong Shuliang, Liu Zanmin and Yi Chujie	Wheat	Study and Experiment on a Wheat Precision Seeding Robot	Drive motor, Steer motor, Seeding motor, Motor driver, Motor controller, Controller, PC, Lead-acid Batteries, sensor for pressure and speed	Haibo et al., (2015)	College of Mechanical Engineering, Qingdao Technological University, Qingdao 266520, China	Journal of Robotics
43.	Neha S. Naik, Virendra V. Shete and Shruti R. Danve	Cotton, Maize, Soybean and Wheat	Precision Agriculture Robot for Seeding Function	Power supply (9 and 12 V DC), input switches, IR sensors, relays, 16x2 LCD display, DC motors, motor driver (L293D IC), ARM7 board, microcontroller (LPC2148)	Naik et al., (2016)	Department of E and TC, MITCOE, Pune, India	International Conference on IEEE
44.	Kiran AS and Baban Parisa Dathwade	Design and Fabrication of Automatic Seed Sowing Machine with Variable Pitch	Microcontroller, DC Gear Motor, rotary encoder, Battery, Keypad	Kiran & Dathwade, (2016)	Department of Mechanical Engineering, BCE, Shravanabelagola, India	kiran.as.april92@gmail.com	European Journal of Advances in Engineering and Technology
45.	Palepu V. Santhi, Nellore Kapilieswar, Vijay K. R. Chenchela and Venkata Siva Prasad. CH	Sensor and vision based autonomous AGROBOT for sowing seeds	Controller (Arduino), Ultrasonic and IR sensors, vision sensor, power supply, PC	Santhi et al., (2017)	Department of Electrical, Electronic and Computer Engineering, University of Pretoria, South Africa		ICECDS
46.	Anuja Mohalkar, Priti Mohite, Shubhangi Nagare, and Sampada Tavse	Automatic Seed Sowing Machine using Solar Panel	Microcontroller (PIC16F877A), Keypad, LCD, DC Motor Driver (L293D), IR Sensor, DC motors, 12V battery, amplifier, buzzer, keypad and solar panel	Mohalkar et al., (2017)	Department of E and TC Engineering, MarathwadaMitraMandal's College of Engineering, Pune, India	anujamohalkar@gmail.com	International Journal of Innovations in Engineering Research and Technology
47.	Rohan Chauhan	Electronic Demarcation Technique for Robotic Precision Planter	Microcontroller (Arduino Mega), DOF IMU, rotary encoder, stepper motors, sensors, raspberry Pi3, Camera, motor board, battery, power bank, DC-DC converter and Ubuntu MATE	Chauhan, (2017)	Kalinga Institute of Industrial Technology, School of Computer Engineering, Bhubaneswar, Odisha, India.		Journal of Engineering and Applied Sciences
48.	T. V. Pavan, R. Suresh, K. R. Prakash, and C. Mallikarjuna	Green gram	Design and Development of Agrobot for Seeding	12V DC geared motors, Arduino Uno board, Atmega32 microcontroller, motor driver (L298), Voltage regulator785, lead acid battery, Ultrasonic sensor,	Pavan et al., (2017)	Dept Of Industrial Automation Engineering, VTU PG Studies, Mysuru, Karnataka, India	International Research Journal of Engineering and Technology
49.	Shraddha Muley and Warsha S. Kandlikar	Soybean, Jowar, Wheat and Peanut	Robotic Vehicle for Seed Planting and Weeding Applications	ultrasonic sensor, keypad, LDR, LED, DC motors, motor driver, Arduino Due Board, microcontroller (Atmel SAM3X8E ARM Cortex-M3 CPU), SDA and SCL pins, Due and AVR-based boards, Ultrasonic ranging module HC - SR04 and L293D IC	Muley & Kandlikar, (2017)	Department of Electronics Design and Technology, National Institute of Electronics and Information Technology, Dr. B.A.M. University Campus, Aurangabad India	International Journal for Innovative Research in Science and Technology
50.	Nikita Chame, Mamta Jadhav, Priyanka Tele and Snehal P. Hon	Design and Implementation of Automatic Seed Sowing Robot	12V battery, voltage regulator, PID controller, LDR sensor, IR sensor, DC motors driver IC L293D, DC motors, ADC (Atmega28p), Servo motor, Pulse Width Modulation	Chame et al., (2018)	Department of Electronics and Telecommunication, PES MCOE, Pune, India		International Journal of Research in Engineering, Science and Management
Table 6 Limit values of performance criteria for precision seeding (Cay *et al.*, 2018)

QFI (%)	MI (%)	MULT (%)	Classification
>98.6	<0.7	<0.7	Very good
>90.4–98.6	≥0.7 to<4.8	≥0.7 to<4.8	Good
≥82.3 to ≤90.4	≥04.8 to<7.7	≥04.8 to<10	Moderate
<82.3	>7.7	>10	Insufficient

Table 7 Results Obtained in Different Study with Mechatronics

Source	Speed (Kmh⁻¹)	Results				
		QFI (%)	MULT (%)	MI (%)	PREC (%)	
Cay *et al.*, (2018)	5 – 10	2.91–95.36	0–1.73	4.45–97.09	8.79–22.14	
Mangus *et al.*, (2017)	2.4 -16.1	98.45	0.2	0.8	---	
Cay *et al.*, (2018)	5 – 10	90.63	0.94	8.44	17.63	
Taghinezhad *et al.*, (2013)	0.9 – 3.6	89.72 - 93.43	2.52 - 7.23	2.81 - 7.26	---	
Jianbo *et al.*, (2014)	3.6–7.2	85.83 - 95	0 - 3.34	5 - 10.83	---	
Jiangtao *et al.*, (2015)	4.00	89.4 - 91.46	2.44 -3.86 %	5.28 - 9.11	---	
Xiao Yue *et al.*, (2013)	0.52rad/s.	90.28	4.69	5.04	---	
Singh and Mane, (2011)	1 - 3.4	100	0	0	1.84 - 7.34	
Önal & Önal, (2009)	1.8 - 7.2	91.30	2.90	5.80	---	
He *et al.*, (2017)	8.6 - 13	96.9 - 98.81	---	1.19 - 3.1	14.38 - 16.04	
Hao *et al.*, (2017)	3 - 12	95.1 - 98.1	0.2 - 0.7	1 - 4.2	---	
Kocabiyik *et al.*, (2016)	5 - 10	31.73 - 97.18	0 - 0.82	2.45 - 69.27	9.57 - 14.07	
Li *et al.*, (2015)	9 - 12	89.93 - 94.23	---	2.49 - 5.03	17.85 - 18.80	

Fig.1 Principle of mechatronics metering mechanism (Jiangtao *et al.*, 2015)
Different studies’ result

It was observed that as the working speed increased, quality of feed index (QFI) of the seed-metering device dropped gradually with increased miss index (MI) and precision index (PREC) as well as deviation from the average seeds spacing became greater. The multiple index (MULT) decreases with increase in speed. The studies were indicated that precision planter equipped with mechatronics system observed good seeding uniformity among all seeding technologies with QFI, MI, MULT and PREC in range of 90-98, 0-11, 0-7 and 1-22 per cent, respectively under travel speed of 1 to 16 km h\(^{-1}\) (Table 7). Thus, mechatronics metering mechanism may be one of the options to achieve accurate seed spacing with higher efficiency in planting/seeding and capable to reduce the effect of higher speed of seeding.

It was observed that mechatronics driving system when attached with pneumatic planter can reduce the effect of forward speed on planting accuracy effectively such as 4-8% increase in QFI and 4-7% decrease in MI.

Mechatronics system solves the problems of existing precision planters like as ground wheel skidding.

Possibility of getting more transmission ratio by changing the pulse width modulation like as variable rate technology.

Good seeding uniformity and high productivity obtained because lowering precision index value of precision index up to 15%.

Agribot gives near about 92% accuracy regarding placement of different type of seeds and it can much more accurate in future.

Acknowledgement

With greatest honesty, I express my cordial gratitude to Division of Agricultural Engineering, IARI, New Delhi and CIAE, Bhopal for providing facilities during study.

References

Anantachar, M., Kumar, P. G., and Guruswamy, T. (2010). Neural network prediction of...
performance parameters of an inclined plate seed metering device and its reverse mapping for the determination of optimum design and operational parameters. Computers and Electronics in Agriculture, 72(2), 87-98.

Arnold, E. W., Brock, G. K., and Halley, D. G. (1979). U.S. Patent No. 4,141,390. Washington, DC: U.S. Patent and Trademark Office.

Aware, V. V., and Aware, S. V. (2014). Development of microprocessor based electronic metering mechanism for seed—an approach. Engg. Tech. in India, 5(1&2), 26-31.

Barut, Z. B., and YİĞİT, K (2008). Design of Electronic-Based Measurement System for Seed Spacing Measurement in Precision Planters. 10th International Congress on Mechanization and Energy in Agriculture, 14-17 October 2008, Antalya-TURKIYE.

Cay, A., Kocabiyik, H., and May, S. (2018). Development of an electro-mechanic control system for seed-metering unit of single seed corn planters Part I: Design and laboratory simulation. Computers and Electronics in Agriculture, 144, 71-79.

Chame, N., Jadhav, M., Tele, P., and Hon, S. P. (2018). Design and Implementation of Automatic Seed Sowing Robot. International Journal of Research in Engineering, Science and Management, 1(5).

Chaney, P. P., Parish, R. L. and Sistler F. E. (1986). Automatic control system for a sugarcane planter. Applied Engineering in Agriculture, 2(2): 51–54.

Chauhan, R. (2017). Electronic Demarcation Technique for Robotic Precision Planter. Journal of Engineering and Applied Sciences, 12(7), 1840-1845.

Elmusrati, M., Hööpakka, H., and Palomäki, H. (2012, December). Seed flow monitoring in wireless sensor networks. In 2nd Workshop on Wireless Sensor Systems (WoWSS2012).

Gautam, P. V. (2017). Development of microcontroller based seed metering mechanism for planting of pulse crops. M. Tech. Thesis. IARI, New Delhi.

Haib, L., Shuliang, D., Zunmin, L., and Chuijie, Y. (2015). Study and experiment on a wheat precision seeding robot. Journal of Robotics, 2015, 12.

Hajahmed, O., Tola, E., Al-Gaadi, K. A., and Kheiralla, A. F. (2011). Development of an Opto-Electronic Monitoring System for Crop Planter Seed Metering Unit. Middle-East Journal of Scientific Research, 8(4), 732-738.

Hao, Y., Cui, T., Bora, G., Zhang, D., Wei, J., He, X., and Yang, L. (2017). Development of an Instrument to Measure Planter Seed Meter Performance. Applied engineering in agriculture, 33(1), 31-40.

He, P. X., Yang, M. J. and Chen, Z. H. (2003). Study on photoelectric controlled precision seeder. Transactions of the CSAM, 34(1): 47-49.

He, X., Cui, T., Zhang, D., Wei, J., Wang, M., Yu, Y., and Yang, L. (2017). Development of an electric-driven control system for a precision planter based on a closed-loop PID algorithm. Computers and Electronics in Agriculture, 136: 184-192.

Iacomi, C., and Popescu, O. (2015). A new concept for seed precision planting. Agriculture and agricultural science procedia, 6, 38-43.

Jafari, M., Hemmat, A., and Sadeghi, M. (2010). Development and performance assessment of a DC electric variable-rate controller for use on grain drills. Computers and Electronics in Agriculture, 73(1), 56-65.

Jianbo, Z., Junfang, X., Yong, Z., and Shun, Z. (2014). Design and experimental study of the control system for precision seed-metering device. International Journal of
Agricultural and Biological Engineering, 7(3), 13-18.
Jiangtao, Q., Honglei, J., Yang, L., Haibo, Y., Xinhui, L., Yubin, L., and Yongxi, Y. (2015). Design and test of fault monitoring system for corn precision planter. International Journal of Agricultural and Biological Engineering, 8(6), 13-19.

Kachman, S. D., and Smith, J. A. (1995). Alternative measures of accuracy in plant spacing for planters using single seed metering. Transactions of American Society of Agricultural Engineers, 38(2), 379-388.

Kamgar, S., and Eslami, M. J. (2012). Design, development and evaluation of a mechatronic transmission system for upgrading performance of a row crop planter. In 2012 Dallas, Texas, July 29-August 1, 2012 (p. 1). American Society of Agricultural and Biological Engineers.

Kamgar, S., Eslami, M. J., and Maharlouie, M. M. (2013). Design, development and evaluation of a mechatronic transmission system to improve the performance of a conventional row crop planter. International Journal of Agronomy and Plant Production, 4(3), 480-487.

Kamgar, S., Noei-Khodabadi, F., and Shafaei, S. M. (2015). Design, development and field assessment of a controlled seed metering unit to be used in grain drills for direct seeding of wheat. Information Processing in Agriculture, 2(3-4), 169-176.

Kang, N., Xianfa, F., Yangchun, L., Chengxu, L., and Yanwei, Y. (2017). Optimized design and performance evaluation of an electric cup-chain potato metering device. International Journal of Agricultural and Biological Engineering, 10(2), 36-43.

Karimi, H., Navid, H., and Mahmoudi, A. (2015). Online laboratory evaluation of seeding-machine application by an acoustic technique. Spanish Journal of Agricultural Research, 13(1), 0202.

Kaur, T., and Kumar, D. (2013). Design and development of calibration unit for precision planter. International Journal of Computer Science, Engineering and Applications, 3(3), 11.

Kiran, A. S., and Dathwade, B. P. (2016). Design and Fabrication of Automatic Seed Sowing Machine with Variable Pitch. European Journal of Advances in Engineering and Technology, 3(9), 50-54.

Kocabiyik, H., Cay, A., Karaaslan, B., May, S., and Khurelbaatar, M. (2016). Electromechanic Control System for Pneumatic Precision Corn Planters. International Conference on Machine Control and Guidance.

Koley, S., Bhatt, Y. C., Singh, G., Joshi, S., and Jain, H. K. (2017). Development of Electronic Metering Mechanism for Precision Planting of Seeds. Int. J. Curr. Microbiol. App. Sci, 6(8), 3481-3487.

Kushwaha, H. L., Sinha, J. P., Khura, T. K., Kushwaha, D. K., Ekka, U., Purushottam, M., and Singh, N. (2016). Status and Scope of Robotics in Agriculture. In International Conference on Emerging Technologies in Agricultural and Food Engineering (Vol. 12, p. 163).

Lan, Y., Kocher, M. F., and Smith, J. A. (1999). Opto-electronic sensor system for laboratory measurement of planter seed spacing with small seeds. Journal of Agricultural Engineering Research, 72, 119-127.

Li, J. F. and Gao, X. Y. (2007). Systematic design of the drills speed automatic monitor. Journal of Gansu Agricultural University, 2: 92–95.

Li, Y., Xiantao, H., Tao, C., Dongxing, Z., Song, S., Zhang, R., and Mantao, W. (2015). Development of mechatronic driving system for seed meters equipped on conventional precision corn planter. International Journal of Agricultural and Biological Engineering, 8(4), 1-9.

Mangus, D. L., Sharda, A., Flippo, D., Strasser, R., and Griffin, T. (2017). Development of high-speed camera hardware and software
package to evaluate real-time electric seed meter accuracy of a variable rate planter. Computers and Electronics in Agriculture, 142, 314-325.

Moyer, J. R., Roman, E. S., Lindwall, C. W., and Blackshaw, R. E. (1994). Weed management in conservation tillage systems for wheat production in North and South America. Crop Protection, 13(4): 243–259.

Muley, S., and Kandlikar, W. S. (2017). Robotic Vehicle for Seed Planting and Weeding Applications. International Journal for Innovative Research in Science and Technology, 3(12).

Naik, N. S., Shete, V. V., and Danve, S. R. (2016, August). Precision agriculture robot for seeding function. In Inventive Computation Technologies (ICICT), International Conference on (Vol. 2, pp. 1-3). IEEE.

Nandede, B. M., and Raheman, H. (2016). Digital Seedling Counter for Detection of Seedling Flow and Spacing in Vegetable Transplanter: A Low Cost Solution. International Journal of Engineering Research and Management Technology, 3(1), 2348-4039.

Navid, H., Ebrahimian, S., and Gassemzadeh, H. R. (2011). Laboratory evaluation of seed metering device using image processing method. Australian journal of agricultural Engineering, 2(1), 1.

Nielsen, S. K., Munkholm, L. J., Lamandé, M., Nørremark, M., Edwards, G. T., and Green, O. (2018). Seed drill depth control system for precision seeding. Computers and Electronics in Agriculture, 144, 174-180.

Önal, O., and Önal, I. (2009). Development of a computerized measurement system for in-row seed spacing accuracy. Turkish Journal of Agriculture and Forestry, 33(2), 99-109.

Onwubolu, G. (2005). Mechatronics: principles and applications. Butterworth-Heinemann.

Pavan, T. V., Suresh, R., Prakash, K. R., and Mallikarjuna, C. (2017). Design and Development of Agrobot for Seeding. International Research Journal of Engineering and Technology, Volume: 04 Issue: 05.

Priyadarshini, M., and Sheela, L. (2015). Command based self guided digging and seed sowing rover. In IntConf on Engineering Trends and Science and Humanities (pp. 5-9).

Raheman, H., and Kumar, R. (2015). An embedded system for detecting seed flow in the delivery tube of a seed drill. In Proceeding of International Conference on Advances in Chemical, Biological and Environmental Engineering, Singapore (pp. 236-241).

Ruicheng, D., Bingcai, G., Ningning, L., Chenchen, W., Zidong, Y., and Mingjian, M. (2013). Design and experiment on intelligent fuzzy monitoring system for corn planters. International Journal of Agricultural and Biological Engineering, 6(3), 11-18.

Sambare, S. D., and Belsare, S. S. (2015). Seed sowing using robotics technology. International Journal of scientific research and management (IJSRM), 3(5), 2889-2892.

Santhi, P. V., Kapileswar, N., Chenchela, V. K., and Prasad, C. V. S. (2017, August). Sensor and vision based autonomous AGROBOT for sowing seeds. In 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS) (pp. 242-245). IEEE.

Shinde, P. R., Lende, A. B., Rane, S. V., Nawale, S. A., Patwardhan, M. S., and Gharate, L. V. (2009). Development and functional test of electronic metering mechanism for bullock drawn Jyoti Multicrop planter. International Journal of Agriculture Environment and Biotechnology, 2(3), 305-309.

Singh, K., Agrawal, K. N., Dubey, A. K., and Chandra, M. P. (2012, November). Development of the controller based seed cum fertilizer drill. In Intelligent Systems Design and Applications (ISDA), 2012
Singh, T. P., and Mane, D. M. (2011). Development and laboratory performance of an electronically controlled metering mechanism for okra seed. Agricultural Mechanization in Asia, Africa and Latin America, 42(2), 63.

Spoorthy, M. N., and Muralidhara, K. N. (2018). Microcontroller based seeding and plowing using sensor and Bluetooth technology. International Journal of Advance Research, Ideas and Innovations in Technology, 4(3), 923-925.

Taghinezhad, J., Alimardani, R., and Jafary, A. (2013). Design a capacitive sensor for rapid monitoring of seed rate of sugarcane planter. Agricultural Engineering International: CIGR Journal, 15(4), 23-29.

Tang, Y. H. and Zhang, J. G. (2009) Research on the planting drive system based on a tractor front-wheel speed. Journal of Agricultural Mechanization Research, 3: 21-23.

Velandia, M., Buschermohle, M., Larson, J. A., Thompson, N. M., and Jernigan, B. M. (2013). The economics of automatic section control technology for planters: A case study of middle and west Tennessee farms. Computers and electronics in agriculture, 95, 1-10.

Wei, L., Zhang, X., Jia, Q., and Liu, Y. (2014, September). Automatic Navigation System Research for PZ60 Rice Planter. In International Conference on Computer and Computing Technologies in Agriculture (pp. 653-661). Springer, Cham.

Wilkins, D. E., and Lenker, D. H. (1981). A microprocessor-controlled planter. Transactions of the ASAE, 24(1), 2-0004.

Xia, L., Wang, X., Geng, D., and Zhang, Q. (2010, October). Performance monitoring system for precision planter based on MSP430-CT171. In International Conference on Computer and Computing Technologies in Agriculture (pp. 158-165). Springer, Berlin, Heidelberg.

Xiaoyue, Y., Jianping, H., Jun, M., and Xun, W. (2013). Design of a Control System for Magnetic Plate-type Precision Seeding Production Line Based on PLC and MCU. Open Electrical and Electronic Engineering Journal, 7, 82-89.

Yang, L., Shi, S., Cui, T., Zhang, D. X. and Gao, N. N. (2012). Air-suction corn precision metering device with mechanical supporting plate to assist carrying seed. Transactions of the CSAM, 43(s1): 48–53.

Yang, M. J., Yang, L. and He P. X. (2002). Development of a precision seeder control system. Journal of Southwest Agricultural University, 24(3): 286–288.

Zhai, J. B., Gao H. Z. and Zheng, X. L. (2011). Research on automatical seed metering drive system based on sensor technology. Hubei Agricultural Sciences, 50(17): 3619–3621, 3646.

How to cite this article:
Prem Veer Gautam, H.L. Kushwaha, Adarsh Kumar and Dilip Kumar Kushwaha. 2019. Mechatronics Application in Precision Sowing: A Review. Int.J.Curr.Microbiol.App.Sci. 8(04): 1793-1807. doi: https://doi.org/10.20546/ijcmas.2019.804.208