Asparaginase treatment side-effects may be due to genes with homopolymeric Asn codons (Review-Hypothesis)

JULIAN BANERJI

Center for Computational and Integrative Biology, MGH, Simches Research Center, Boston, MA 02114, USA

Received April 15, 2015; Accepted July 15, 2015

DOI: 10.3892/ijmm.2015.2285

Abstract. The present treatment of childhood T-cell leukemias involves the systemic administration of prokaryotic L-asparaginase (ASNase), which depletes plasma Asparagine (Asn) and inhibits protein synthesis. The mechanism of therapeutic action of ASNase is poorly understood, as are the etiologies of the side-effects incurred by treatment. Protein expression from genes bearing Asn homopolymeric coding regions (N-hCR) may be particularly susceptible to Asn level fluctuation. In mammals, N-hCR are rare, short and conserved. In humans, misfunctions of genes encoding N-hCR are associated with a cluster of disorders that mimic ASNase therapy side-effects which include impaired glycemic control, dislipidemia, pancreatitis, compromised vascular integrity, and neurological dysfunction. This paper proposes that dysregulation of Asn homeostasis, potentially even by ASNase produced by the microbiome, may contribute to several clinically important syndromes by altering expression of N-hCR-bearing genes. By altering amino acid abundance and modulating ribosome translocation rates at codon repeats, the microbiomic environment may contribute to genome decoding and to shaping the proteome. We suggest that impaired translation at poly Asn codons elevates diabetes risk and severity.

1. Foundation of the hypothesis

Core hypothesis: translocation rates, poly Asparagine (Asn); insulin-receptor-substrate 2 (IRS2) and diabetes; hypothesis tests, poly glutamine (Gln) HTT and ataxias. Despite similar Asn codon usage, ~4%/gene, from plants to humans (1), mammals are distinguished by a paucity of genes with a long Asn homopolymeric coding region (N-hCR) (2). The 17 human genes with the longest N-hCR (ranging from five to eight consecutive Asn codons) are listed in Fig. 1; Table I lists genes with N-hCR greater than three. IRS2, encoding an insulin signal transducer, is the gene at the top of the list in Fig. 1 and multiple disorders of energy homeostasis and the urea cycle are associated with genes in Table I. The central hypothesis of this paper is that manifestations of these disorders may partly be attributable to reduced plasma Asn concentrations, which in turn may disproportionately affect the production of proteins containing N-hCR. More broadly, we propose a model in which protein expression may be affected at amino acid homopolymeric coding regions (hCR) in general because translation elongation rates at hCR could reflect variation in the levels of the corresponding amino acids. This model may contribute to explaining an association, initially noted with poly Gln codon runs, between hCR and some human diseases (1,3).

Asparaginase (ASNase) is a component of highly effective chemotherapeutic regimens used to treat pediatric acute lymphoblastic leukemia (ALL) (4,5) and some lymphomas (6-8). ASNase treatment has been estimated to have contributed to the sparing of the lives of upwards of 60,000 children in the US in the decades following its discovery (9) and rapid introduction to the clinic (10). However, ASNase treatment is not without hazard; it can produce a myriad of side-effects that include hyperglycemia, dislipidemia, pancreatitis, vascular accidents and adverse neurological outcomes. The physiological mode of action of ASNase is unclear. The enzyme deaminates Asn and Gln with production of altered amino acid ratios and ammonia (11-15). ASNase inhibits synthesis of proteins in vitro (16) and in vivo (17,18) by a mechanism consistent with reduced ribosomal translocation at Asn codons. In humans, ASNase treatment protocols cause depletion of plasma Asn and modest reductions of plasma Gln levels accompanied by mild transient hyperglycemia and occasional ketoacidosis (11,19,20). In mice, administration of ASNase causes Asn depletion in plasma and some tissues, e.g., skeletal muscle (21,22), indicating, importantly, that intracellular Asn

Correspondence to: Dr Julian Banerji, Center for Computational and Integrative Biology, MGH, Simches Research Center, seventh floor, 185 Cambridge Street, Boston, MA 02114, USA

E-mail: jbanerji@molbio.mgh.harvard.edu

Key words: asparaginase, diabetes, lipodystrophy, leukemia, lymphoma, immune response, pancreatitis, cystic fibrosis, insulin regulatory substrate-2, Salmonella
can also be depleted. Moreover, in mice, impaired glucose tolerance following ASNase treatment can be improved by amino acid supplements which serve to moderate amino acid ratio imbalances (23) and Asn administered directly to mice reverses adverse events initiated by ASNase (24). In rabbits, ASNase induces dose-dependent glycemic dysregulation extending from transient mild glycosuria to hyperglycemia and diabetes (25,26). Prednisolone has been shown to potentiate the action of ASNase: both drugs can cause hyperglycemia when used alone; but predisolone synergizes with ASNase to cause

![Figure 1. Asn homopolymeric coding regions (N-hCR)-bearing-genes from 8N-hCR to 5N-hCR. The 17 human genes with N-hCR of length greater than five. Human genes are grouped by N-hCR length. Rows list genes, labelled on the left and grouped by N-hCR length in descending order from insulin-receptor-substrate 2 (IRS2) with 8N-hCR. Columns of colored panels suggest (manually annotated) functional categories: purple, diabetes and metabolism; yellow, membrane and mitochondria; blue, neuro; pink, cancer and immunity; grey, cardiovascular, blood and bone; green, DNA/RNA. Karlin et al (1) have speculated that N-hCR shorter than five in length would arise by chance. However, Kriel and Kriel (2) demonstrates that the statistical difference between mammals and nonmammals continues to hold at least down to 3N-hCR. The cutoff threshold of significance would then reduce to 2N-hCR, and to the definition of a transcription unit, cf. VEZF1, which has multiple cDNAs defining infrequently used exons. N.B. Adjacent, potentially cojoined (380) genes are used to categorize PAPPA-AS1 and ALS2CR11. Like the PAPPA locus, the MEPC2 locus also has an N-hCR bearing antisense transcript, with a 7N-hCR (AF361491); The metabolic disease and retinal development associated gene SIX3 has an antisense transcript in human SIX3-AS1 (NR_1037686.1) and mouse SIX3-OS1 (NR_038083.1). SNP rs16882396 marks the association of periodontal disease with TMEM178B. The 49 genes with 4N-hCR are: ACACA, ACACB, AGBL2, BAII, BMP2, C2orf61, CD9, CFR, CHRM2, CNIT10, EOMES, EPPIN, EPPIN-WFDC6, EVI2A, FAM193A, FRS3, GTF2I, I9R, KIAA1841, KIF3C, KLF17, LEMD3, LRPD6, MAM12, MYRF, NCOA1, PAPR3, PEAK1, PPPIR3B, RNF103, SH3D19, SI, SLIT1, SLIT2, SLIT3, SNAP91, TAB2, TAB3, TAXIBP1, TEC, TMEM65, TTX3, TRPM6, TRPM7, TTR, TTYL5, UBE4A, ZDAX, ZDB; Unorthodox human proteins deserving closer attention are from unusual cDNAs: Map3K2 4N-hCR AAH65755.1; TCR 5N-hCR AIE11180.1; Vκ 5N-hCR AAO11865; and Vλ 4N-hCR AAD29331.1. The germline V regions of immunoglobulin (Ig) as well as T cell receptor AlphaJ regions are represented in Table I as 3N-hCR. However, there are rearranged cDNAs encoding for up to 5N-hCR in some hypervariable regions (HVR) that do not appear in the germline N-hCR (used for assigning length of N-hCR when classifying these genes). It is unclear what benefits, if any, could accrue to an Ig synthesized and, potentially, folded at a rate regulated by Asn levels at N-hCR. An arbitrary list of genes that may respond to fluctuations in other amino acids include: CNDP1, CYP21A2, SELT, SELM (L-hCR); CACNAID (M-hCR); HSD11B1 (Y-hCR); NR4A3 (H-hCR); TAF9, URI1, ASPN, EFTUD2, GLTSCR1, THBS4 (D-hCR); HRC (D-, E-, H-hCR); ATAD2 (S-, D-hCR); EIF5B (K-, D-, E-hCR); KCNMA1, MAP3K1, CXCR4, WDR26, YNCR1, SRRM2 (S-, T-, G-hCR); CACNA1A (H, N, Q-hCR); POU4F2 (M-, G-, H-, S-hCR); POU3F2 (G-, H-, Q-hCR); SKD1AI (H-, E-, A-hCR); USP54 (H-, N-hCR); ATXN1, ATXN2, ATXN3, ATXN7, AR, KMT2D, KMT2C, MAMC2, MAML3, FOXO2, ARID1A, ARID1B, ARID2B MED12, MED15, NCOA3, NCOA6, IRF2BPL, VEZF1, ABCF1 and HTT (Q-hCR). The HCR appear in proteins from the NCBI homologene (381) database.

Figure 1.

Asn homopolymeric coding regions (N-hCR)-bearing-genes from 8N-hCR to 5N-hCR. The 17 human genes with N-hCR of length greater than five. Human genes are grouped by N-hCR length. Rows list genes, labelled on the left and grouped by N-hCR length in descending order from insulin-receptor-substrate 2 (IRS2) with 8N-hCR. Columns of colored panels suggest (manually annotated) functional categories: purple, diabetes and metabolism; yellow, membrane and mitochondria; blue, neuro; pink, cancer and immunity; grey, cardiovascular, blood and bone; green, DNA/RNA. Karlin et al (1) have speculated that N-hCR shorter than five in length would arise by chance. However, Kriel and Kriel (2) demonstrates that the statistical difference between mammals and nonmammals continues to hold at least down to 3N-hCR. The cutoff threshold of significance would then reduce to 2N-hCR, and to the definition of a transcription unit, cf. VEZF1, which has multiple cDNAs defining infrequently used exons. N.B. Adjacent, potentially cojoined (380) genes are used to categorize PAPPA-AS1 and ALS2CR11. Like the PAPPA locus, the MEPC2 locus also has an N-hCR bearing antisense transcript, with a 7N-hCR (AF361491); The metabolic disease and retinal development associated gene SIX3 has an antisense transcript in human SIX3-AS1 (NR_1037686.1) and mouse SIX3-OS1 (NR_038083.1). SNP rs16882396 marks the association of periodontal disease with TMEM178B. The 49 genes with 4N-hCR are: ACACA, ACACB, AGBL2, BAII, BMP2, C2orf61, CD9, CFR, CHRM2, CNIT10, EOMES, EPPIN, EPPIN-WFDC6, EVI2A, FAM193A, FRS3, GTF2I, I9R, KIAA1841, KIF3C, KLF17, LEMD3, LRPD6, MAM12, MYRF, NCOA1, PAPR3, PEAK1, PPPIR3B, RNF103, SH3D19, SI, SLIT1, SLIT2, SLIT3, SNAP91, TAB2, TAB3, TAXIBP1, TEC, TMEM65, TTX3, TRPM6, TRPM7, TTR, TTYL5, UBE4A, ZDAX, ZDB; Unorthodox human proteins deserving closer attention are from unusual cDNAs: Map3K2 4N-hCR AAH65755.1; TCR 5N-hCR AIE11180.1; Vκ 5N-hCR AAO11865; and Vλ 4N-hCR AAD29331.1. The germline V regions of immunoglobulin (Ig) as well as T cell receptor AlphaJ regions are represented in Table I as 3N-hCR. However, there are rearranged cDNAs encoding for up to 5N-hCR in some hypervariable regions (HVR) that do not appear in the germline N-hCR (used for assigning length of N-hCR when classifying these genes). It is unclear what benefits, if any, could accrue to an Ig synthesized and, potentially, folded at a rate regulated by Asn levels at N-hCR. An arbitrary list of genes that may respond to fluctuations in other amino acids include: CNDP1, CYP21A2, SELT, SELM (L-hCR); CACNAID (M-hCR); HSD11B1 (Y-hCR); NR4A3 (H-hCR); TAF9, URI1, ASPN, EFTUD2, GLTSCR1, THBS4 (D-hCR); HRC (D-, E-, H-hCR); ATAD2 (S-, D-hCR); EIF5B (K-, D-, E-hCR); KCNMA1, MAP3K1, CXCR4, WDR26, YNCR1, SRRM2 (S-, T-, G-hCR); CACNA1A (H, N, Q-hCR); POU4F2 (M-, G-, H-, S-hCR); POU3F2 (G-, H-, Q-hCR); SKD1AI (H-, E-, A-hCR); USP54 (H-, N-hCR); ATXN1, ATXN2, ATXN3, ATXN7, AR, KMT2D, KMT2C, MAMC2, MAML3, FOXO2, ARID1A, ARID1B, ARID2B MED12, MED15, NCOA3, NCOA6, IRF2BPL, VEZF1, ABCF1 and HTT (Q-hCR). The HCR appear in proteins from the NCBI homologene (381) database.
disruption of insulin signaling due to deletion of I-S2 (92). TXNIP also affects pancreatic β-cell biology (93), for translational sensitivity to Asn concentration, other genes with N-hCR could be tested, including conserved genes with other parameter (such as inflammatory response profiles) (87). For example an exceptional mammalian gene, with an N-hCR the largest of all proteins by ribosomal synthesis. By contrast, γ-amino butyric acid (GABA) levels are 10-fold more negatively correlated with fasting insulin levels. In the Framingham data, the maximal negative correlation observed between Asn concentration and fasting insulin also extends to additional diabetes metrics such as body mass index (BMI), waist circumference (WC), homeostatic model assessment (HOMA), and triglyceride levels. In a third study, of a different cohort, Asn was the amino acid most negatively correlated with adiponectin, HOMA and leptin levels (29). Because therapeutic Asn depletion induces glycemic dysregulation, low Asn levels may not merely be correlative associated with poor glycemic control, but may be causative or provocative. This raises the question of the potential mechanisms by which Asn depletion in plasma or tissues could adversely impact glucose homeostasis.

The possibility that N-hCR can be implicated in the etiologies of some diabetic syndromes is supported by the enrichment of genes governing metabolic balance among the list of those containing N-hCR. Approximately one-fifth of the genes bearing N-hCR in Table I are associated with metabolic disorders, obesity, diabetes, urea cycle or pancreatic islet β-cell regulation. Among these, IRS2 is of particular note. IRS2 encodes insulin receptor substrate-2, a labile (30,31) intracellular signal transducer that is a substrate for a number of membrane spanning receptor tyrosine kinases specific for extracellular cytokines that include insulin, insulin-like-growth-factor-1, erythropoietin, thrombopoietin, growth hormone, leukemia inhibitory factor, interleukin-4 (IL-4) and interferon-γ (32-37). Sequence polymorphisms in the human IRS2 locus have been associated with obesity (38), type 2-diabetes-mellitus (T2DM) (39,40) or its complications (41,42), aspects of schizophrenia (43) and IgE immune responses (44). In transgenic mice, IRS2 depletion causes compromised maintenance of β-cell mass and produces a diabetic state similar to T2DM (45,46). Reduced levels of IRS2 in humans have been proposed to lead to desensitized insulin/cytokine signalling and thus to hyperglycemia/mutated immune responses, with prolonged IRS2 deficits exacerbating islet cell mass reduction leading to T2DM (47-50). Alterations in IRS2 expression have been associated with altered lipid metabolism in obese subjects (51) and have been correlated with development of insulin nonresponsiveness in obese boys (52). IRS2 has eight consecutive Asn-codons located 19 codons after initiation AUG codon. Depletion of the levels of the cognate Asn aminoacyl-tRNA may result in compromised elongation in the homopolymeric Asn coding region that may be especially deleterious to the synthesis of IRS2 due to the location of the N-hCR.

Codon usage and ribosome translocation rates affect protein expression in bacterial (53-57), viral (58,59) and human genes (60,61). Ribosomal footprinting studies have suggested that the stability of translation initiation complexes increases when nascent chains emerge from the exit tunnel or folding vestibule to engage chaperones (62). Ribosomal stalling may potentially lead to translation termination when the elongation rate is diminished in the ‘translation-initiation-ramp’ or instability region (63-65). The concept of the ramp, which may not apply to all mammalian genes, remains controversial (66) and though potentially contributory, it is not essential to the overall thesis proposed here. In general, a severely diminished elongation rate may lead to premature termination; for example in prokaryotes, ribosomal stalling induces a translational termination mechanism through tmRNA (67, 68). In the abstract, reduced rates of translation anywhere along an mRNA would result directly in a reduced overall rate of target protein synthesis and, depending on protein half-life, result indirectly in decreased steady state levels of such proteins. High rates of translation may even increase the half-life of an mRNA (69).

Of the genes that have been identified with N-hCR of length 3 or greater, approximately one third can be associated with cancer and immune response, one quarter with neuro-degeneration (20% with metabolic disorders, above), and eight percent with vasculature and hematopoiesis. Of the remaining ~14%, many can be classified as involved with chromatin modification, DNA maintenance and repair, RNA transcription and processing or protein synthesis and turnover, some have Leucine rich repeats that can serve as pattern recognition elements. Some genes fall into multiple categories, e.g. IRS2 is associated not only with diabetes and receptor mediated signal transduction for specific extracellular cytokines, but also with epilepsy (70), aspects of schizophrenia (43), Alzheimer’s disease (71-73), retinal degeneration (74), hippocampal synaptic plasticity (75), long term potentiation of hippocampal synaptic transmission (76), ataxia (77), cardiac failure (78), kidney development (79), renal disease (80), breast cancer (81,82), rhabdomyosarcoma (83) and, in conjunction with JAK2(N-ACR), hematopoiesis (84,85). A limited study of an N-hCR length polymorphism in IRS2 shows no association with diabetes (86).

For the purpose of establishing the consequences of N-hCR for translational sensitivity to Asn concentration, other genes with N-hCR could be tested, including conserved genes with nonhuman N-hCR lengths that also differ from humans in some other parameter (such as inflammatory response profiles) (87). For example an exceptional mammalian gene, with an N-hCR longer than the 8N-hCR of IRS2, is a bat paralog of the IL8-receptor, CXCR2, (EPQ18419), which has a 60N-hCR. Other genes of interest from mouse, that differ from human in N-hCR length, include MDR1 and CFTR (a Salmonella receptor), and TNFRSF16/BEX3A/NGFRAP1 (implicated in diabetes) (88) as well as the redox regulators: GCLC (89) and TXNIP (90) (the former encodes the first, rate limiting, enzyme in the glutathione synthesis pathway and has been associated with cardiovascular events) (91); the latter encodes a conserved thioredoxin binding protein that has an 8N-hCR in mice, vs. a 3N-hCR in nonrodent mammals. All of these TXNIP N-hCR are invariantly located and they begin at codon 386, end 3 codons before the stop codon. This is discussed further, below, along with the contribution of TXNIP to host response to P. aeruginosa bacteremia by recruitment of neutrophils in mice (92). TXNIP also affects pancreatic β-cell biology (93),
A2M	ATP6V1C1	CES2	DNAH1	FSP1	KHDRBS2	LY75
AATK	BAG5	CFAP45	DNAH6	FSTL3	KIAA0232	LYST
ACACA	BAG6	CFAP54	DNAJB1I	G3BP1	KIAA1024L	MALT1
ACACR	BAI2	CFTR	DNAL4	GABBR1	KIAA1107	MAML2
ACAN	BCAS1	CGRFF1	DNMTL1	GBP6	KIAA1210	MAP7
ACDBG2	BCAS3	CHAD	DNMT3A	GCLC	KIAA1217	MAPK8P2
ADAM10	BIN2	CHD7	DNTT1P2	GDPD1	KIAA1549L	MPR22
ADAM19	BIRC6	CHE2K	DOCK4	GGA1	KIAA1586	MARC1
ADAM30	BMP2R	CHFR	DRD1	GGA3	KIAA1671	MARCHE
ADCY8	BNIPS1	CHRM2	DSCAM	GIN1	KIAA1841	MAS1
ADCY9	BOC	CHRM3	DSPH	GIT2	KIDINS220	MBD5
AERP1	BODL1I	CHRN3	DUSP10	GJ9	KIF16B	MDG2
AFF2	BRPI1	CHRM5	DUSP21	GK	KIF1A	MEDI
AGAP1	BRCAR2	CHSY1	DYNC1H	GKN1	KIF21A	MEX3B
AGB2	BTA1	CKAP2L	DYNC11I	GNZ	KIF5C	MGAM
AKAP4	BTBD1	CLCA1	DYNC112	GNPT	KLFL17	MGAM2
ALDH6A1	BTBD2	CLCA2	DYSK	GOLPH3	KHLH3	MGAT2
ALKBH8	BTBD3	CLCA3P	DZIP1	GP1BA	KHLH30	MBI1
ALPK2	BTG4	CLCA4	ECM2	GPATCH2	KMT2A	MID1
ALS2CR11	C1sorf63	CLEC10A	EFNB2	GPR112	KMT2E	MIS18BP1
AMBRA1	C1orf86	CLEC6A	EIF2A	GPR126	KNG1	MITF
AMY2A	C1QB	CLMN	ELAVL2	GPR64	[101006032]	MLLT3
AMY2B	C1QL2	CLTC	ELF1	GPR82	[101006038]	MNO2
ANAPC7	C1QL3	CNOT30	EOMES	GSG2	[102723859]	MBTP
ANK3	C2orf49	CNOT2	EPCAM	GTF2I	[102723846]	MTC1
ANK5	C2orf61	CNOT6	EPPIN	HAC1L	[102725117]	MTERF1
ANKFN1	C5orf67	CNOT6L	EPPIN-WFDC6	HAVCR1	LAMA3	MTG2
ANKFY1	C7	CNST	ERPS	HCF2	LAMB4	MTRN1A
ANKRD17	C5orf67	COBL	EPRC	HECTD4	LAMC2	MTTU
ANKRD28	C5orf67	COBLL1	ERYA	HERC6	LAMP2	MUP2
ANKRD44	C7	CPEB4	EYA1	HERUDP1	LARP4	MUC19
ANKRD7	C5orf67	CPM	F5	HERUDP2	LEMD3	MUC3A
ANPEP	CACNA1A	CPNE9	FAM117B	HLA-DPA1	LGLI	MUC4
ANTRX1	CACNA1C	CPS1	FAM12A	HLTF	LGL3	MXRA5
ANTRX1L	CACNA1D	CPX2M	FAM17B	HMCN1	LGN6	MOY10
AP2B1	CACNA1F	COX9	FAM193A	HNRNPL	LIMS2	M vents
AP4E1	CACNA1H	CPEB4	FAM208B	HNRNPUL1	LINGO2	M vents
APB2A	CACNA1S	CPM	FAM65B	HRG	LITAF	MOY1B
APC	CALHM1	CPNE9	FAM69C	HSD3B1	LPHN2	MOY1E
APCDD1	CARF	CPS1	FANC1	HSP2	LRFN2	MOY1F
AP0B	CASC5	CPX2M	FAT2	HYMP	LRFN5	MOY6
APOL1	CASS4	CRTAC1	FAT3	ICE1	LRG1	MOY9A
APK5	CASZ1	CSM2D	FAT4	IGDCC3	LRG2	MOY9B
ARHGAP11A	CATSPERD	CSTF3	FBXL5	IGLTEL5-54	LRG3	MOY11
ARHGAP20	CCD144A	CUL1	FBX027	IL1RAP	M7RPB	MTF1
ARHGAP24	CCD144NL	CUL3	FBX037	IL23R	M7RP2	NBP1
ARHGEF10	CCD18	CXC12	FBX038	IL6R	M7RP4	NBP4
ARHGEF5	CCD36	CXC1L2	FBX039	ING3	LRP5	NBP5
ARHGEF6	CCD36	CYP19A1	FBX049	INTS12	LRP6	NBR1
ARID1A	CCD37	CYSLTR2	FBX05	IPA4	LRPPRC	NCM2
ARID1B	CCD38A	DCAF6	FBX07	IPRM	LRPC3	NCPAH2
ARID5B	CCKAR	DCAF7	FCGR2A	IRAK3	LRBC37A	NCPAP1
ARM3C	CCNT1	DCBLD1	FCGR2B	IRS2	LRBC37A	NCOA1
ARM4C	CD63	DCN	FCGR2C	ISL2R	LRBC37A3	NCOA3
ARPP21	CD9	DDAS1	FCN1	ITGAV	LRBC38	ND4
ASB2	CDC14A	DDAS2	FCRL4	ITGB1BP1	LRCC8	NCA3
ASCL5	CDH9	DDX4	FEZ1	ITK	LRCC8	ND4
ASIC2	CDHR1	DDX42	FGB	JAK2	LRCC7	NDC1
ASPN	CCK5	DDX59	FKBP7	JMD1C	LRCC71	NEAT1
ATAD5	CDON	DHX38	FLJ1	KNCY	LRCC72	NFLY1
ATF7IP	CEACAM5	DIAPH1	FLRT1	KCNA3	LRCC8	NIPAP2
ATFI7P2	CELS3	DIDO1	FLRT3	KCNH4	LRCC8B	NK2Z-5
AT2L	CEMIP	DGLAP5	FNDC4	KCNH8	LRRN1	NNT
ATP2B1	CENPC	DMD	FNDC5	KDM3A	LRNR2	NOD1
ATP2B3	CEP350	DXL2	FNS3	KDM6A	LRTOMT	NOD2
ATP2B4	CERS2	DMKN	FSHR	KDM6B	LTF	NOS2
Table I. Continued.

Gene	Description	Description	Description			
NOTCH1	PKDREJ	RHDI10	SLC2A12	SUSD1	TEMEM259	UTY
NPNT	PKD1L3	REG4	SLC35A4	SUZ12	TMOND1	VEPH1
NPY1R	PKHD1L1	RELA	SLC6A1	SYCP1	TRPMS11A	VEZF1
NPY6R	PKP1	RGL1	SLC6A4	SYNP2	TRPMS11D	VGLL4
NR1D1	PLEKHG3	RLF	SLC6A8	TAB2	TRPMS15	VNR2
NPK	PLS1	RM1	SLCO3A1	TAB3	TNRCE6A	VPS13A
NRP1	PMS1	RNF103	SLT1	TALPD3	TNRC6B	VPS4A
NSUN7	PNLIPRP1	RNF128	SLT2	TANGO2	TOX3	VPS45
NTSE	POZG	RNF139	SLT3	TA52R8	TPGS1	WDR13
NTRK3	PPAP2B	RNF157	SLTRK1	TAX1BP1	TRPRK	WDR17
NUP54	PPP1R13B	RNF180	SLTRK2	TBC1D3B	TRAJ31	WDR48
OBL1	PPP1R36	RNF19A	SLTRK3	TBC1D3B	TRAJ39	WFDC6
OG11	PPP1R3A	RNFF2	SLTRK4	TBC1D3C	TRAJ43	XIPI2
OIT3	PPP1R42	RNF213	SLTRK5	TBC1D3F	TRAPPC12	YAE1D1
OLFM4	PPP1R7	RNF216	SLTRK6	TBC1D3H	TRIP12	ZAN
OMG	PPPR19A	RNF220	SMARC2A	TBC1D3K	TRPM6	ZBTB10
OR4A5	PPP3CB	ROBO2	SMARC4	TBC1D5	TSC2D3	ZC3HAV1
OR4C16	PPP3CC	RP1	SMG1	TBR1	TSEN2	ZCCH11
OR5G5	PRDM12	RPRGR	SNAP91	TRB1	TSH23	ZFAND3
OSCP1	PRDM2	RUSC1	SNCAIP	TCN1	TSPAN17	ZFP1
OTTO	PRELP	RYR2	SNE1D	TCM1	TSPAN5	ZFP2
OVG1P1	PREX1	RY3	SRNPA1	TCT2	TSPYL2	ZFYV1
17x5N-hCR	S100PPB	SOCS4	TEC	TCTA	TTC1	ZFYVE28
PAN3	PRL	SALL4	SON	TECTA	TTD1	ZIC4
PAPDS	PSMD1	SCARB1	SOWADH	TETK1	TTD8	ZM1Z2
PAPP-AS1	PSMD3	SCP2	SP4	TENM3	TFDL4	ZMYM6
PARG	PSFM1	SCRN3	SPATA16	TENM4	TTL5	ZN13
PAR2	PTPRB	SDA1D	SPDYA	TESK1	TXMNG	ZNF23
PAR3	PTPRD	SEC1A6	SPEC1	TES15	TNIP	ZNF347
PAWR	PTPQR	SEC24B	SPRY1	TEX2	TXN4A	ZNF518A
PCDH7	PUM1	SEZ2L1	SPSB1	THEG	UBAC1	ZP1F1
PCDHAC2	PXDN	SGOL2	SPTBN4	THRAP3	UBE2Q2	ZNFG1
PCDHGA3	PXDLN	SHBP5	SRBPB	THSD7B	UBE4A	ZNFG1A
PCSK2	PXMP4	SHD15	SSH1	TING1L	UBENX	ZNFG2
PED3A	PYGO1	SHGLB1	STAR2	TKT	ULK4	ZNF3
PEAI1	P2P	SHANK1	STA2	TLR10	URB2	ZPD1
PEG10	QSER1	SHCBP1	STS2A	TLR2	USO1	ZEDA
PKFB2	RSHDM2	SHOC2	STS2A	TLR3	USP11	ZXD8
PGBD2	RAB3GAP1	S1	STSM1	TM4SF8	USP12	ZZFE1
PHACTR1	RANBP17	SIN3A	STSM2	TMC01	USP13	ZZZ3
PHF2	RAPGEF2	SIN3B	STSM3	TMC02	USP26	
PIK3CB	RBM12	SIA1L1	STSM4	TME106B	USP24	
PIK3R1	RBM27	SICI	SULF1	TME178B	USP32	
PJA1	RBM28	SLC18A1	SULF2	TME2	USP29	
PJA2	RBM51	SLC26A9	SUMO4	TME57	UTRN	

The top 17 listed on Fig. 1 from 8N-hCR to 5N-hCR are in bold font; the 49 genes with 4N-hCR are underlined. A total of 699 genes on this list have 3N-hCR and are in normal font (not bold or underlined). 17x5N-hCR, 49x4N-hCR, 699x3N-hCR. Each N-hCR-bearing-gene and its corresponding protein in the NCBI homologene database, were used in this analysis except for the following 28 genes: APOL1 isX1, X2; ANKRDK28 icRA_g; C1orf56/FAAP20 v4X1,2,3; DMKN is5; FBXO38 icRA_d; FBKP7 isf23 AF100751.1; IGLV10-54 BAA19993.1; KHRD852 icRA_c; loc102725117 isf1-7; LRTOMT isf1c,1a; MARCH1 isf1,1a; MARCH5 isf1; MAMG int ix1; MIBKCH AAD345019; NTRK3 isof x10, XP_006720612; PAAAS-AS1 AAV415021; PTPRB IX5; PHACTR1 IX6; RAPGEF2 IX7; RNF128 isf2; SHD19 isx2,4,5,6,8; SNAP91 isfD; TRAJ31,39,43 AAB867655.1, AAB867581, AAB867541; VEZF1 icRA_a; WFDC6 icRA_b; WDR17 ix5; XIPI2 tv5 and tv3; ZFP1 ix1. A number of N-hCR-bearing-genes are in GTPase, GPCR or odorant receptor families, or can be grouped as involved with innate immunity and aneurysms (393) and another notable genes devoid of Asn codons in an immune system (387). Other notable genes devoid of Asn codons are mus APRT (kidney stones) (388) and human BIRC7 (ALL prognosis) (389), LOR (cf. Staph. aureous infection of nares) (390), SEP11 (cell cycle) (391), TCL1 (leukemia) (392), CSF3 (innate immunity and anemysus) (393) and KLF16 (proposed master metabolic regulator KLF14) (394).
diabetic retinopathy (94), and glucose metabolism (indirectly regulated by mTOR) (95). Finally, a gene with the third longest N-hCR in the mosquito genome (XM_316513) is translationally regulated (perhaps at its N-hCR) in insect midgut in response to plasmadium infected blood meals (96). The gene is homologous to human FAF1/TNFRSF6 which is associated with diabetes (97) and Parkinson’s disease (PD) (98).

Human genes with hCR have been linked to complex diseases (1). Genes that may respond to fluctuations in amino acids other than Asn (99-106), include CNDP1 (107,108) (L-hCR), MECP2 (109) (A.G.H-hCR), and HTT (Q-hCR) (110). The gene list could also extend to DMPK/ SIX5 (111,112), GCLC (89), FMRI (113) and C9orf72 (114-116) if unorthodox, repeat-associated-non-ATG (RAN), translation of upstream codon repeats (117-120), or alternate transcript variants (121) are included.

The HTT locus mediates the deleterious effects of Huntington’s ataxia, and is one of the early examples of a gene containing an hCR associated with a disease (122). It has a Q-hCR whose length can vary inversely with the age of onset and severity of the ataxia. The 23Q-hCR of HTT is situated in its ramp region, with a 16 codon interval between the hCR and the initiator AUG. Although much of the effort to understand Huntington’s disease has focused on aggregation of products of the HTT locus (123,124), the etiology of truncated translation products resulting from ribosomal stalling in the Q-hCR has received much less attention. Exon truncation fragments may arise if HTT is expressed in an environment of limiting Gln (22,125) and the resulting increase in neuronal cell death (126), could accelerate the onset and clinical course of Huntington’s disease (127,128).

2. ASNase produced by the biome. The potential for N-hCR-bearing genes to cause side-effects

ASNase production by Salmonella, pancreatitis, immunosuppression. Genetic studies suggest an environmental component for the etiology of diabetes (129) and the gut microbiome has been proposed to regulate human physiology, e.g. bone mass (130). An individual’s microbiome may also produce enzymes that alter host Asn levels. Persistent salmonellosis in mice causes pancreatitis (131,132) which is a side-effect of therapeutic ASNase treatment (133,134). In addition, Salmonella mediates its own virulence (135) via a cytosstatic ASNase (16) and inhibits mouse T cell responses in a manner reversible by administration of Asn (24,136); this Salmonella mediated immune inhibition may reflect the immunosuppression noted in ASNase-treated rabbits (137) and rodents (138,139).

Elongation: pancreatitis, cystic fibrosis, dislipidemia, clotting, complement and neurodefunction; Notch, WNT and hedgehog. Allelic variation in loci encoding-N-hCR-bearing-genes, such as KCNA3, CFTR, SLC26A9, SCARB1, IRS2, F5, FGB and SHANK1, have been associated with diabetes, pancreatitis, lipodystrophy, vascular disorders and neurological changes (140-144). KCNA3 (I-hCR) encodes a potassium channel that has allelic variants associated with altered risk for ALL (145) in a certain (germ line RUNX rearranged) subset of children and its mouse homolog regulates energy homeostasis and body weight (146). KCNA3 is thought to have its structure and function affected during its synthesis by residence time of certain of its elongating domains in the ribosomal vestibule (147-149) (cf. KCNH4, SCARB1, and KCNH8). Pancreatitis and diabetes are associated, respectively, with CFTR and SLC26A9, the products of which physically and functionally interact. CFTR is an ion channel, closely related, by membership in the superfamily of ATP-binding cassette proteins, to the multidrug resistance transporter (MDR1) (150-153). Some MDR1 alleles contain a polymorphic synonymous codon substitution at Gly412 (C1236T), very similar in location to Asn416 in the N-hCR of CFTR. Such polymorphisms in MDR1 have been proposed (154) to affect its rate of translation elongation resulting in alterations in the conformation of MDR1 with concomitant functional changes in the profile of anticancer drugs that MDR1 transports (60). The N-hCR of CFTR, located in the regulatory insert (RI) between the membrane spanning domain (MSD) and the nucleotide binding domain (NBD) could, by analogy to the key MDR1 Gly412 substitution, alter translation rate at its Asn 415 to 418 region, under conditions of low Asn, to result in generation of CFTR protein folding variants (155) with altered function that may affect bicarbonate exchange (in co-assemblies with SLC26A9) (156-158), Salmonella susceptibility (159), and timing of cystic fibrosis (CF) disease onset (160).

A similar location of N-hCR, between MSDs and NBDs, is found in two genes that encode important ATP-regulated magnesin channels: TRPM6 and TRPM7. Allelic variation of the former has been associated with elevated risk of diabetes, osteoporosis, asthma, and heart and vascular diseases (161), whereas allelic variation of the latter has been associated with sudden cardiac death, QT interval prolongation and atrial fibrillation in individuals with African ancestry (162), and ALS and PD in Guam (163). TRPM6 can form heterodimers with, and regulate function of, TRPM7; the latter is a channel regulated enzyme that can be cleaved to modify histones (164,165). TRPM7 affects vascularization (166), and has been implicated in ovarian, breast, pancreatic and prostate cancer as well as in the metastasis of nasopharyngeal carcinoma (167). The NBDs of these ion channels, as well as the STAS domain of SLC26A9 (151) (which is thought to assemble and interact with the Regulatory domain in the NBD of CFTR), all have poly Asn regions separating them from portions of their hydrophobic MSDs, suggesting that translocation rate at the N-hCR, perhaps due to variation in Asn levels, may serve to modulate the chronology of the synthesis and assembly of the hydrophobic intracellular domains of these molecules.

Dislipidemia could be caused by altered translation of SCARB1. A list of fifteen candidate genes in which synonymous codon substitutions may be of functional consequence, perhaps due to altered translation rate affecting protein synthesis, includes not only MDR1 (Gly412 and Ile145) but also CFTR (Ile507 and ΔF508) (160) and SCARB1 (Ala350) (168). Rs5888, a synonymous substitution in SCARB1 of codon Ala350, adjacent to Asn349, is associated with increased risk of coronary artery disease (CAD) and ischemic stroke (169-171). Translation rates of CFTR and SCARB1 may be regulated not only at the synonymous codon substitutions above, but also, in response to Asn concentration changes, at their N-hCR. SCARB1 is a high density lipoprotein (HDL) receptor that participates in lipid metabolism and flux of cholesteryl
esters (172) into e.g. HDL particles that contribute to cell signalling (173) and thus it could mediate the dislipidemia that accompanies the therapeutic administration of ASNase (174). \textit{SCARBI} affects susceptibility to myocardial infarction (175) and renal cell carcinoma (176,177) activity of lipoprotein associated phospholipase A2 (Lp-PLA2) (178), and causes an anti-inflammatory effect in macrophage (179); it indirectly affects atherosclerosis (180), mitigates stress (181), and affects fertility (182) and macular degeneration (183). By influencing gut absorption of vitamins, it can affect vascular integrity and diabetes susceptibility (184-188). A similar synonymous codon substitution at Cys816 of IRS2, (rs4773092), is associated with an auditory component of schizophrenia (43); this supports the notion, with the usual caveats regarding RNA stability, that IRS2 may also be translationally regulated, for example at its N-hCR.

ASNase treatment produces side-effects that include vascular dysfunction. Factor V and fibrinogen are two of several coagulation and complement factors encoded by N-hCR-bearing-genes. Polymorphic alleles of \(F_5^{\text{N-hCR}} \) (encoding coagulation Factor V) have been linked to coronary artery disease (189), hippocampal degeneration (190) and thrombotic events in ASNase treated children (144,191). ASNase specifically reduces the synthesis rate of fibrinogen (18), see below, a subunit of which is encoded by \(FGB \). Thus inhibition by ASNase of the synthesis of at least two N-hCR-bearing-genes, \(F5 \) and \(FGB \), could potentially account for the vascular side-effects of ASNase administration. \(FGB^{\text{N-hCR}}, \text{GP1BA}^{\text{N-hCR}} \), encoding the platelet membrane receptor (von Willebrand’s factor) associated with ischemic stroke (192), and \(CD9^{\text{N-hCR}}, \) a gene involved in platelet formation (193), are candidate N-hCR bearing genes that could be examined for their genetic association with adverse vascular events attending ASNase treatment (as has been reported for \(F5 \), above). Coagulation proteins have long been considered potential risk factors of ASNase therapy (194). The steady state half-life of autologous iodinated fibrinogen is not affected by ASNase treatment and hence the observed reduction in steady state plasma fibrinogen concentration that produces the hypofibrinogenemia (195) observed after ASNase treatment is likely due to inhibition of fibrinogen synthesis (18). There are concordant studies in rabbits (196) and humans (197) regarding the rate of catabolism and synthesis of fibrinogen in response to ASNase, as well as studies on the proteomics of \(FGB \) and \(C3 \) in diabetics (198,199). N-hCR-bearing-genes encoding complement proteins may also contribute to other disorders such as retinal degeneration through effects on \(C3^{\text{N-hCR}} \) (200) to multiple sclerosis through effects on \(C7^{\text{N-hCR}} \) (201) and to uptake of pathogens such as glycosylated viruses or bacteria by any of multiple members of the lectin and alternate complement pathway on Table I such as \text{CLEC6A} (202), \text{CLEC9A} (203) \text{CLEC13B/LY75, MASPI and C1QB}.

Mitigating the effects of low plasma Asn, by altering the composition of intestinal microbiota (204) or by using amino acid supplements (23), may slow disease onset or progression in those at risk of diabetes or its complications. Dietary Asn supplementation may particularly benefit CFTR-null homozygotes or compound heterozygotes, who frequently present with diabetes at later stages of their disease (205). One of the N-hCR-bearing-genes in Fig. 1, \text{PHACTR1}^{\text{N-hCR}} has been linked to coronary artery disease (CAD) in diabetics (206). Diabetes and CAD are frequent comorbidities, as are diabetes and Alzheimer’s disease (72) perhaps due to a shared etiology originating in low plasma Asn concentration. There are two N-hCR-bearing-genes from Fig. 1 that are linked to PD and mood disorders: \text{SNCAIP}^{\text{N-hCR}} and \text{ANK3}^{\text{N-hCR}}. PD and diabetes are comorbidities, and abnormal glucose regulation has been reported in >50% of PD patients (207) perhaps due to altered Asn homeostasis; correspondingly, bipolar disorder treatment outcomes differ for patients with diabetes as compared to normal controls (208). PD and ALS often occur with dementia (209,210); a shared etiology may be responsible, due to altered levels of Asn, perhaps even through complement genes such as \text{C1QB}^{\text{N-hCR}} (211), or the balance between \text{C1QL2}^{\text{N-hCR}}, \text{C1QL3}^{\text{N-hCR}} (212) and \text{BAI2}^{\text{N-hCR}} and their non N-hCR bearing paralogs: \text{C1QL1} and \text{BAI3} (213).

Multiple genes encoding N-hCR have been linked to neuropsychiatric disorders, PD, aspects of schizophrenia, Alzheimer’s disease, mood disorders [\text{CDH9} (214), \text{GTF2I} (215) and \text{ALDH6A1}], neurological dysfunction (\text{CDKL5} and \text{TMEM106B}) (216,217), breast-cancer (234), diabetes and \text{CD9} (218), -B, -C (219), TTLL4 and \text{CDKL5} (220), large artery stroke (221), ischemic stroke (222), and ALS (223). Multiple genes encoding N-hCR have been linked to neuropsychiatric disorders, PD, aspects of schizophrenia, Alzheimer’s disease, mood disorders [\text{CDH9} (214), \text{GTF2I} (215) and \text{ALDH6A1}], neurological dysfunction (\text{CDKL5} and \text{TMEM106B}) (216,217), breast-cancer (\text{BRCA2}, \text{CEACAMS/CEA} (218), \text{CYP19A1/Aromatase} (219), \text{IRS2}, \text{CLEC10A} (220), \text{LRP6} and \text{TBC1D5} (221), spinal degeneration (\text{COIL}, \text{FBXO38}, \text{ITGAV}, \text{ASIC2}, \text{KIAA1217} and \text{CHAD}), age of onset of amyotrophic lateral sclerosis (ALS) (\text{TLTCL4} and \text{LAMA3}) (222), dementia in ALS (\text{TMEM106B}) (223) retinal dystrophy (\text{TTL5}) (224), large artery stroke (\text{TLT5} and \text{PHACTR1}) (225) decreased bone density in tamoxifen treated women (\text{LRP4} and \text{NCOA1}) (226), ovarian cancer (\text{TBC1D3} and \text{TBC1D3F}) (227) T cell anergy (\text{GRAIL}/\text{RNF128}/\text{isf2}) (228,229), asthma, autoimmune diseases, innate immune (231-233) and the link between innate and adaptive immunity (\text{FFGR2-A, -B, -C}) (234) suggesting a common etiology of altered Asn homeostasis may need to be considered for some of these conditions.

\text{LRP5}, \text{LRP6} and \text{APC} are encoded by N-hCR-bearing-genes involved in the Wnt pathway. Rotterlin, which is reported to accelerate the turnover rate of \text{LRP6} (235) (a Wnt signalling co-receptor) (236), could be co-administered with ASNase because it may potentially synergize with ASNase to focus the effect of ASNase on LRp6 mediated Wnt signalling (237). We hypothesize that by preferentially lowering the steady state level of LRp6, the combination of drugs could regulate (238) bone mass, cancer, cardiovascular health, vision, Alzheimer’s and multiple other diseases of aging. Notch and hedgehog signalling are also affected by N-hCR bearing-genes such as \text{DZIP1}, \text{MAML2}, \text{BOC} and \text{CDON}, and may present attractive targets for drug discovery via small molecules that accelerate turnover of specific proteins encoded by N-hCR bearing-genes, synergistically magnifying the impact of ASNase by altering the replacement rate and perhaps by establishing lowered steady state levels of the targeted protein. There is already a precedent for synergism of prednisolone with ASNase, which occurs by an as yet unknown mechanism. The half-life of WNT signalling complexes and the contribution of DSV to turnover of WNT coreceptors \text{FZD} and \text{LRP6} has recently been characterized (239).

The psychiatric disorders associated with ASNase treatment of adults (240) have been ascribed to ammonia toxicity and cerebrovascular-accidents (22,241,242). N-hCR-bearing-genes that affect nitrogen metabolism include \text{CPS1}^{\text{N-hCR}}, regulating the first committed step of urea-cycle entry, and \text{SLC6A8}^{\text{N-hCR}}, a creatine transporter. Impaired translation of either gene could
tend to cause ammonia toxicity due to urea cycle dysregulation. Indirect support for a link between elongation rate and altered mental status (cf. KIF3C,\textsubscript{Asn,acr}) (243, 244) comes from computational studies noting that SHANK-2 and SHANK-3, but not SHANK-1, demonstrate traditional 'codon-use-bias', suggesting that a translational regulatory mechanism may underly SHANK mediated autism spectrum disorders (245). Since SHANK family genes are associated with schizophrenia and SHANK-1, -2, and -3 are associated with autism, SHANK1,\textsubscript{Asn,acr} could mediate mental status changes through altered translation rate that could be caused by fluctuations in plasma Asn concentrations.

Adverse neurological outcomes have also been associated with N-hCR-bearing-genes ANK3, IRS2, SNCAIP, XIRP2, PPP1R9A and CACNA1-C. Low plasma Asn, via the 17 N-hCR-bearing-genes listed in Fig. 1, can thus also plausibly be linked to onset of age associated disorders from ALS (246-248) to PD (249) through COIL, PPP1R9A (250), QSER1 (251) and SNCAIP; dental caries and periodontal disease as a diabetes comorbidity through TMEI178B or ANKRD17 in children (252,253); (cf. LRPIB and periodontitis in adults) (254). Also affected by LRPIB are age at menarche (255), APOE and fibrinogen binding (256), protection from cognitive decline in aging (257) as well as BMI, insulin resistance, optic disc size/area (cf. glaucoma), conditional erectile dysfunction in African American men, heart rate and multiple cancers. Deafness (258,259) is affected by XIRP2 (cf. Xeplin, PTPRQ), heroin addiction vulnerability in African Americans (260) and heart disease by XIRP2 (261,262); heart disease by PHACTR1 (263) (cf. LRPIP6) and PPP1R9A (cf. CHRM2, -3) (264); bone density by PHACTR1 (cf. LRPIP4, LRPIP5); erythropoesis and quality control of mitochondria by BNIP3L; nucleic acid processing by COIL, PAPD5, THRAP3, MEX3B and Clor686/FAAP20; and diabetes by TRAP3 (cf. CHRM3), PTPRD and IRS2.

BNIP3L and PEG10: cancer and frameshifting. The discussion above has focused on adverse events elicited by ASNase therapy, not the induction of tumor remission. Two N-hCR-bearing-genes, PEG10 and BNIP3L, have transcripts with long N-hCR that are encompassed within their initial two dozen codons. Both BNIP3L and PEG10 are apoptosis-related genes that are candidates for mediation of the cell death that has been observed to follow depletion of Asn either in cell culture (265) or in pediatric ALL. Multiple other N-hCR-bearing-genes are also potential targets, e.g., APC, (ARID5B, IL9R and RYR2) (266), JAK2, KCNA3 (145), UBE2Q2 (267), COIL (268) or SMG1,\textsubscript{Asn,acr} (269) (a Ser-Thr kinase with homology to mTOR). Temperature sensitive mutants of Asn tRNA synthetase undergo cell cycle arrest in early S phase at the nonpermissive temperature, a phenomenon that has been posited to be consistent with the existence a protein required for cell cycle progression that is highly sensitive to the level of charged Asn-tRNA (270), such as one encoded by an N-hCR-bearing-gene that is eliminated and must be re synthesized once per cell cycle (cf. COIL above).

3. Evidence for and against the model, caveats

In vitro translation and in vivo half lives are consistent with ASNase impaired translation at N-hCR. ASNase in E. coli, as well as in other gram negative bacteria (Salmonella, Klebsiella) (271), is encoded by two independent genes AsnA and AsnB. The AsnB product is periplasmic and is the therapeutic enzyme whereas the AsnA product is a cytoplasmic enzyme with a lower K_m (272). Studies of a cytostatic factor produced by Salmonella led to its isolation and identification as ASNase, virtually identical to the AsnB product of E. coli. When added to in vitro translation extracts, it inhibited protein synthesis (16). To determine how it inhibited protein synthesis, i.e. if it simply depleted the levels of asparaginylated tRNAs available for translation, or if the process was more complicated (273,274) in vitro translation experiments (unpublished data) were performed with defined templates containing Asn codons at predetermined sites. T7 RNA polymerase was used to generate transcripts that were either devoid of Asn codons or contained one, two, five or 23 Asn codons between the N- and C-terminal segments of a bipartite hybrid protein composed of two human genes with no Asn codons. The N-terminal portion was derived from TCL1A, and the C-terminal portion was derived from CKS2. The central, intragenic N-hCR was, on occasion, substituted by the programmed ribosomal frameshifting (PRF) region from PEG10 which contains an Asn (AAC) codon at the frameshifting site. The resulting in vitro transcripts were translated in rabbit reticulocyte cell free lysates with isotopically labelled 35S-methionine and the products were analyzed by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis followed by autoradiography. This template gave extremely clean IVT results without the partial products seen with other templates such as PEG10 or gauvia luciferase. It was determined, with some appropriate control experiments, that there were quantities of ASNase that could be added to the translation mix to create different ratios of partial to full length products which could reflect relative degrees of pausing at the different poly Asn regions of length zero, one, two, five and 23 codons. Free Asn could subsequently be added back to the depleted reaction mix to ‘chase’, to a first approximation, the short ‘TCL1A’ proteins into longer, hybrid, ‘TCL1A/CKS2’ proteins. Conditions were also established in which the relative efficiency of frameshifting at the Asn codon of the PRF site of PEG10 was affected by exogenous ASNase added to the in vitro translation reaction, but this result was far less compelling than the effect of ASNase on translation at N-hCR.

We have seen full length translation of templates devoid of Asn codons under conditions of exogenously added ASNase, but in templates containing Asn codons, translated under identical conditions, we observe translation that extends to the N-hCR. Thus we suggest that depletion of Asn-ylated tRNA is likely to be the underlying cause of inhibition of synthesis seen previously by use of random, mixed templates for characterizing the inhibition, by Salmonella ASNase, of in vitro translation reactions (16). There were also unanticipated findings suggesting that frameshifting efficiency may depend on the number of Asn codons in an artificial N-hCR that was inserted a dozen codons upstream of the PEG10 frameshifting site. We have not characterised the behavior of deamidated Asn-tRNA\textsubscript{Asn} which could incorporate Asp residues at Asn codons were it not edited and removed by a proofreading complex.

Differences in response to ASNase administration in children and adults, a recent gene family expansion. There are differences in response to ASNase between children and adults. They
are most obvious in the ALL tumor remission response, as well as in the type of glycemic dysregulation: peripheral vs. central loss of responsiveness. In the pediatric patients, the hyperglycemia is insulin reversible, insulin is absent from circulation following an ASNase therapeutic regimen that includes steroid hormones similar to prednisolone, and it is likely that central control over insulin synthesis or release may be deficient. In the metabolic studies of diabetic adults, Fasting Insulin levels are high, and IRS2 mediated peripheral signalling may be deficient. In addition, the unacceptable neurovascular complications (fugue state, cerebrovascular accidents) in adults compared to children underscores the difference between the physiology of children and adults.

The evolutionarily recent duplication of the TBC1D3\textsubscript{N-hCR} gene of hominids, and the expansion, and perhaps positive selection in humans, of eight members of this N-hCR bearing-gene family (275), suggests that these oncogenes (associated with ovarian cancer) (227) whose turnover is regulated by palmitoylation (276), may control vesicle fusion by noncanonical regulation of RAB GTP exchange (277), perhaps in association with Rab5 (278) [cf. TBC1D5 with Rab7 (279) or autophagy with ATG-8 (280) or ATG-9 (280)]. TBC1D3 is involved in pinocytosis with ARF6 (281), affects epidermal growth factor receptor (EGFR) signalling by altering microtubule dynamics (282) and can influence insulin signalling (280) by regulating IRS1 degradation (284 cf. 285). These genes could also potentially regulate insulin or amino acid release from vesicular or lysosomal storage (286).

\textit{AAC codons; intrinsically disordered protein assemblies.} Most of the poly Asn codon runs reported here consist of the two isoacceptor codons AAT and AAC used in about equal frequency with a slight bias towards homopolymeric runs of AAC. In the gene IRS2\textsubscript{N-hCR}, from human, zebrafish, elephant-shark, frog, python and falcon, AAC is used exclusively in N-hCR runs of varying length and distance from the initiator methionine, suggesting that if regulation is not restricted only to the AAC isoacceptor species, perhaps there is a further, structural, component to this phenomenon [CAG homocopolymer encoding poly Q repeats can form triple stranded structures (287), RNA sequences enriched in AAT motifs can be labile (288)]. Interestingly, \textit{PEG10\textsubscript{N-hCR}} and BNIP3L\textsubscript{N-hCR} employ AAC codons exclusively in human and mouse \textit{(PEG10)}, or in human, mouse, rat, lizard, -frogs and chicken (BNIP3L), indicating that the two isoacceptor tRNAs may indeed be differentially regulated.

N-hCR-bearing-genes encode proteins that engage in networks whose equilibria may be affected by elongation rate, e.g. PPI1R9A\textsubscript{N-hCR}, unique among the 17 genes of Fig. 1 because of two separate N-hCR, encodes neurabin, the intrinsically disordered regions (289) of which become conformationally restricted in regulatory complexes with PPI (290), and which is implicated in neurite formation (291), neuroprotection against seizures (292), mood disorders (293), hippocampal plasticity (294), long term depression (295), dopamine mediated plasticity (296), contextual fear memory (297), hepatoesplenic lymphoma (298) and regulation of G protein coupled receptor (GPCR) signalling (290). A key unstructured UBZ domain of Fanconi's anemia gene FAAP20 can form a highly structured α helix upon ubiquitin binding; this domain is interrupted by a 5N-hCR in certain variant isoforms. The 2N-hCR of TP53 is similarly located: adjacent to a pair of transactivation domains (TADs) that gain structure upon ligand binding (299,300). The N-hCR of TRPM-6 and -7 interrupt their α kinase domain. Modulating translation rate by varying Asn concentration, while synthesising these proteins, could allow modulation of the protein assemblies in which these proteins participate.

\textit{Caveats, Asn residues can be post-translationally modified; interspecies N-hCR length variation and inflammation.} In this survey of other potential roles for the conserved poly Asn regions in proteins, we note that they also act as sites of post-translational modification to regulate protein activity by glycosylation or deamination or (cleavage, by Asparaginyl endopeptidases (301) (cf. Taspase, an ASNase gene family member) (302)). The 4N-hCR of CFTR, differing in length between human, mouse and pig, encodes a conformationally dynamic regulatory insertion (303) that may gate access to the ATP binding site (304). A similarly unstructured loop in Bcl-xL undergoes deamination (305,306), as does an Asn residue pair between the TADs of TP53 (307), a region unstructured until bound to MDM2 (308,309). The 2N-hCR of TP53 differs in length between rats, mice and humans. N-hCR length variation in N-hCR-bearing-genes can correlate with disease severity in animal models of human inflammation. For example the pig model of CF more closely reflects the physiology of the human disorder, in comparison to the mouse model (310) perhaps because, as with TP53, the length of the poly Asn region in pig more closely resembles that of human rather than mouse. Also, in \textit{P. aeruginosa-induced} bacteremic shock, TXNIP exacerbates septic shock associated with bacteremia in a mouse model (92). TXNIP of mouse has an identically situated, but longer poly Asn region (8N-hCR) than human and most other nonrodent mammals (3N-hCR), perhaps enabling greater redox level changes in response to Asn level variation. These examples may reflect divergent evolutionary choices in inflammatory and pathogen response strategies that may partially explain the reported differences between human and rodent models of inflammation (311,312) and IRS2 genetic associations (72). Altered electrophoretic mobility, a hallmark of some deamination events, indicates that post-translational modification may even occur at the poly Asn region of IRS (281). Deletion analysis of the N-terminal poly Asn containing region of \textit{BNP3L/B5/NIX} suggests that it masks apoptosis inducing function (313,314). Regarding self association and aggregation at poly Asn regions, Perutz stated that it is unlikely that poly Asn repeats can form polar zippers of the kind formed by poly Gln repeats (315), but see (316). hCR may be tolerated at intrinsically disordered regions of proteins (317) where proteins could accommodate hCR expansion in their genes (318). An alternative explanation for the action of ASNase: NH3 generated by ASNase may act as a gaseous reactive signalling molecule, akin to NO, CO or H2S, to modify protein structure and function (319).

4. Biochemistry of amino acid activation, genome-wide association studies
At least five different human tRNA synthetases can serve as autoantigens in inflammatory responses (320). Human tRNA
synthetases AsnRS and HisRS both serve as chemoattrac-
tants (321), ligands for cell surface proteins CCR5 and CCR3
respectively (322). AsnRS protein levels are upregulated by
almost three orders of magnitude in a model of preosteoblast
cell proliferation driven by FGF2 (323). Filarial AsnRS, in
contrast to human AsnRS, serves as a ligand for CXCR1 and
CXCR2 and is chemotactic for neutrophils and eosinophils,
with a terminal subdomain that serves as a ligand for human
IL8 receptor (324). The link between inflammatory responses
and Asn tRNA synthetases remains an open question.

Leu contributes to formation of mTORC1, a biochemical
complex that regulates cell cycle (325) in conjunction with
other amino acids (326,327) including Arg (328,329) and
Gln (105,330-332). In a related experimental paradigm,
apoptosis induced by Gln withdrawal, Asn, instead of Gln
may actually be the effector molecule whose withdrawal is
sensed (267). A biochemical mechanism for sensing Asn levels,
required either to trigger apoptosis, or to advance through
S phase of the cell cycle, perhaps mediated by AsnRS, and not
involving ribosomes may yet be discovered, but even if such
a mechanism were to exist, translational inhibition at N-hCR
would still remain a most parsimonious explanation for the
myriad clinical side-effects of ASNase treatment. Poly Asn (2)
and poly Leu (100) codon repeats (N-hCR and L-hCR) appear
in a biased manner in mammalian genomes; this bias may be
related to metabolicomic differences in the levels of Asn (23,28)
and Leu (333) between normal and diabetic patients as we have
discussed for the case of Asn in this study, and as may be the
case for Leu (cf. L-hCR length polymorphisms and diabetic
nephropathy in CNDP1 (107,108), mTORC1 activation is the
orthodox pathway for understanding how altered amino acid
levels exert metabolic control. This study has examined an
alternative hypothesis, of the potential for amino acid fluc-
tuations to control translation rate, to thereby effect a different
measure of metabolic control by reshaping the composition of
the proteome.

Genome-wide association studies (GWAS). GWAS have
met limited successes (190,334-336). The contribution of
the environment to gene expression is particularly difficult
to quantify but it may explain the missing heritability
problem (337). The biomic environment has a significant
impact on gene expression, and part of its function could
be to alter levels of plasma amino acids that may ultimately
be reflected in intracellular amino acid level variation and
alterations in translation rates within those cells. If the genomic
bias in N-hCR use is a harbinger of a broad effect of inhibited
translation due to Asn level variation, then GWAS screens
for common disorders may reveal N-hCR-bearing-genes that
could be influenced by constituents of the biome that alter Asn
concentrations and could contribute to metabolism, aging and
complex diseases.

GWAS of five major psychiatric illnesses implicates
four N-hCR-bearing-genes (338). Most prominent is ANK3
(one of the top 17 N-hCR-bearing-genes (cf. Fig. 1) as
well as CACNA1C, ZFPM2 and NTRK3. NTRK3 can be
related, through a neuronal cell death mechanism (339), to
mBEX3 (340), a murine gene that bears a long N-hCR. NTRK3
is associated with Gaucher's disease, PD (341,342), multiple
cancers (343-347) leukemia (348), and is an entry receptor for
trypanosomes (349) (cf. ANK3, PTPRD, PHACTR1) (350).
Asn level variation may affect all of these processes. In a
GWAS of seven common diseases, hypertension was most
closely associated with two linked N-hCR-bearing-genes, RYR2
and CHRM3. RYR2 is involved with heart disease (351) and
associated with lipid levels (352) and ALL (266), CHRM3
is associated with response to an antidiabetic drug in African
Americans (353) (cf. CHRM2, CHRM3 associated with metabolic
syndrome) (354). Another of the seven common diseases,
Crohn's disease, was quite significantly associated with an
N-hCR-bearing-gene, IL23R (355). IL23R is also associated
with psoriasis, diabetes (356), CAD, Behcet's disease, anky-
losing spondylitis (357-359) and leprosy (360).

A GWAS of ALL shows that it is affected by at least
two other N-hCR-bearing-genes, in addition to RYR2 (noted
above): IL9R (361) and ARID5B (cf. KCNA3) (145). IL9R shares
a common γ subunit with other interleukin receptors (362)
IL9R has a 4N-hCR that is absent from all mammals except
Pan (cf. APOL1 which lacks 3N-hCR in all mammals except
Gorilla (2N in Pongo), ARID5B encodes part of a histone
lysine demethylase complex (363) and is not only genetically
associated with ALL (266,364-369) but is also associated with
conveal changes (370), low birth weight (371), diastolic blood
pressure (372) rheumatoid arthritis (373), response to halo-
peridol (374) (an anti-psychotic medication), systemic lupus
erythematosus (SLE) (375), lipid balance (376) and triglyceride
metabolism in mouse adipocytes (377), as well as, in humans,
T2DM (378). The contribution of ASNase to these conditions,
especially to ALL, potentially by altered translation at the
N-hCR of ARID5B warrants further investigation (379).

We propose that the impaired translation which has been
described above be termed the ‘translational N-hamper effect'
because there is nothing intrinsically impaired about a protein
polymerization reaction in which one of the required com-
ponents, activated Asn tRNA, is ratelimiting for the translocation
reaction on the template mRNA. The verb of choice for slowed
translocation could just as well have been cumbered move-
ment instead of hampered movement. If the argument was first
made for Gln, the Q-cumber effect could have encompassed
this hypothetical phenomenon.

The ‘translational N-hamper effect’ is a mechanism
whereby protein expression is modulated by coupling fluc-
tuations in appropriate aminoacylated-tRNA availability to
ribosome translocation rates at corresponding hCR. Thus,
ribosome movement could pause at hCR which would serve
as punctuation marks to allow relative intracellular amino acid
pool sizes to influence mRNA decoding and protein synthesis.
Amino acid level fluctuation could potentially affect: mRNA
halflife and accessibility to regulatory complexes, ribosome
frameshifting efficiency, initiation rate and formation of stable
translation complexes, and elongation rate and vesicle resi-
dence time to affect steady state levels of these proteins and of
higher order structures in which they participate.

Our model holds that Asn level reductions, such as those
accompanying the administration of ASNase, cause impaired
translation of N-hCR-bearing-genes to precipitate metabolic,
vascular, immunological and neurological disorders and
contends that this could result in insulin desensitization, impaired
insulin release and, ultimately, diabetes. Thus the microbiome,
by endogenously generating ASNase, could cotranslationally
regulate a constellation of N-hCR-bearing genes to initiate complex disease pathologies.

Acknowledgements

I thank B. Seed (MGH) for support; F. Baas (AMC, NL), R. Movva (Basle, CH), W. Summers (Yale), T. Enoch (Berkeley, ZC), J. Broome (New Lebanon, NY), E. Fritch (DFCI) and G. Enikolopov (CSH) for encouragement and discussions; G.E. and B.S. for critical editorial advice. P. Mason (MGH) for help with database searches and Lin Sun and members of the Seed lab for help with in vitro translation experiments.

References

1. Karlin S, Brocchieli L, Bergman A, Mrazek J and Gentles AJ: Amino acid runs in eukaryotic proteomes and disease associations. Proc Natl Acad Sci U S A 99: 333-338, 2002.
2. Kreil DP and Kreil G: Asparagine repeats are rare in mammalian proteins. Trends Biochem Sci 25: 270-271, 2000.
3. Karlin S and Burge C: Trinucleotide repeats and long homo- peptides in genes and proteins associated with nervous system disease and development. Proc Natl Acad Sci USA 93: 1560-1565, 1996.
4. Kawedia JD and Ryting ME: Asparaginase in acute lymphoblastic leukemia. Clin Lymphoma Myeloma Leuk 14 (Suppl): S14-S17, 2014.
5. Müller HJ and Boos J: Use of L-Asparaginase in childhood ALL. Crit Rev Oncol Hematol 28: 97-113, 1998.
6. Suzuki R: Pathogenesis and treatment of extranodal natural killer/T-cell lymphoma. Semin Hematol 51: 42-51, 2014.
7. Fiéling E, Granel-Brocard F, Serrier C, Ortonne N, Barbaud A and Schmutz F: Extranodal NK/T-cell lymphoma, nasal-type, revealed by cutaneous breast involvement. Ann Dermatol Venereol 142: 104-111, 2015 (In French).
8. Kidd JG: Regression of transplanted lymphomas induced in vivo by means of normal guinea pig serum. I. Course of transplanted cancers of various kinds in mice and rats given guinea pig serum, horse serum, or rabbit serum. J Exp Med 98: 565-582, 1953.
9. Broome JD: Evidence that the L-asparaginase of guinea pig serum is responsible for its antilymphoma effects. I. Properties of the L-asparaginase of guinea pig serum in relation to those of the antilymphoma enzyme. J Exp Med 118: 99-120, 1963.
10. Essig S, Li Q, Chen Y, Hitzler J, Leisenring W, Greenberg M, Sklar C, Hudson MM, Armstrong GT, Krull KR, et al: Risk of late effects of treatment in children newly diagnosed with standard-risk acute lymphoblastic leukaemia: A report from the Childhood Cancer Survivor Study cohort. Lancet Oncol 15: 841-851, 2014.
11. Tong WH, Pieters R, Hop WC, Lanvers-Kaminsky C, Boos J and van der Sluis IM: No evidence of increased asparagine levels in the bone marrow of patients with acute lymphoblastic leukemia during asparaginase therapy. Pediatr Blood Cancer 50: 268-261, 2009.
12. Fine BM, Kaspers GI, Ho M, Loonen AH and Boxer LM: A genome-wide view of the in vitro response to L-asparaginase in acute lymphoblastic leukemia. Cancer Res 65: 291-299, 2005.
13. Kelo E, Noronkoski T, Stoinea IB, Petkov D and Mononen I: Beta-aspartylpeptides as substrates of L-asparaginases from Excherichia coli and Erwinia chrysanthemi. FEBS Lett 528: 130-132, 2002.
14. Chan WK, Lorenzi PL, Anishkin A, Purwaha P, Rogers DM, Sukhavet C, Rempe SB and Weinstein JN: The glutaminase activity of L-asparaginase is not required for anticancer activity against ASNS-negative cells. Blood 123: 3596-3606, 2014.
15. Huang L, Sun Y, Sun Y, Yan Q and Jiang Z: Biochemical characterization of a novel L-Asparaginase with low glutaminase activity from Rhizomucor miehei and its application in food safety and leukemia treatment. Appl Environ Microbiol 80: 1561-1569, 2014.
16. Iwamura Y, Miyake M, Arri J, Tanabe Y and Noda M: An inhibitory factor for cell-free protein synthesis from Salmonella enteritidis exhibits cytotoxic activity against Chinese hamster ovary cells. Microb Pathol 31: 283-293, 2001.
17. Capizzi RL, Bertino JR, Skeel RT, Creasey WA, Zanes R, Olayan C, Peterson RG and Handschumacher RE: L-asparaginase: Clinical, biochemical, pharmacological, and immunological studies. Ann Intern Med 74: 893-901, 1971.
18. Bertipoole RE, Himmelstein ES, Ottgen HC and Clifford GO: Hypolipidemic activity of L-asparaginase: Studies of fibrinogen survival using autologous 131-I-fibrinogen. Blood 35: 195-200, 1970.
19. Avramis VI: Is glutamine depletion needed in ALL disease? Blood 123: 3532-3533, 2014.
20. Quintanilla-Flores DL, Flores-Caballer MA, Rodrigo-Muñoz G, Tamez-Pérez E and González-González JG: Acute pancreatitis and diabetic ketoacidosis following L-asparaginase/ prednisone therapy in acute lymphoblastic leukemia. Case Rep Endocrinol 2014: 120813.
21. Frankel DL, Wells H and Fillips LC: Concentrations of asparagine in tissues of prepubertal rats after enzymic or dietary depletion of asparagine. Biochem J 132: 645-648, 1973.
22. Holenberg JS, Tang E and Dolowy WC: Effect of Acinetobacter glutaminase-asparaginase treatment on free amino acids in mouse tissues. Cancer Res 35: 1320-1325, 1975.
23. Cheng S, Rhee EP, Larson MG, Lewis GD, McCabe EL, Shen D, Palma MJ, Roberts LD, Dejam A, Souza AL, et al: Metabolic profiling identifies pathways associated with metabolic risk in humans. Circulation 122: 2222-2231, 2011.
24. Kullas AL, McClelland M, Yang HJ, Tam JW, Torres A, Portolík S, Menasce PA, McPhee JB, Bogomolnaya L, Andrews-Polimenis H and van der Velden AW: L-asparaginase II produced by Salmonella typhimurium inhibits T cell responses and mediates virulence. Cell Host Microbe 12: 791-798, 2012.
25. Lavine RL and D'Cinto DM: L-asparaginase diabetes mellitus in vitro: Differences in two different schedules of L-asparaginase administration. Horm Metab Res 16 (Suppl): 92-96, 1984.
26. Khan A, Adachi M and Hill JM: Diabetogenic effect of L-asparaginase. J Clin Endocrinol Metab 29: 1373-1376, 1969.
27. Khan A, Adachi M and Hill JM: Potentiation of diabetogenic effect of L-asparaginase by prednisolone. Horm Metab Res 2: 275-276, 1970.
28. Zhou Y, Qiu L, Xiao Q, Wang Y, Meng X, Xu R, Wang S and Na R: Obesity and diabetes related plasma amino acid alterations. Clin Biochem 46: 1447-1452, 2013.
29. Nakamura H, Jinzu H, Nagao K, Nagouchi Y, Shimb a N, Miyano H, Watanabe T and Iseki K: Plasma amino acid profiles are associated with insulin, C-peptide and adiponectin levels in type 2 diabetic patients. Nutr Diabetes 4: e133, 2014.
30. Burén J, Liu HX, Lauritz J and Eriksson JW: High glucose and insulin in combination cause insulin receptor substrate-1 and -2 dephosphorylation and protein kinase B desensitization in primary cultured rat adipocytes: possible implications for insulin resistance in type 2 diabetes. Eur J Endocrinol 148: 157-167, 2003.
31. Tsunekawa S, Demozay D, Braud I, McCuaig J, Accili D, Stein R and Rhodes CJ: FOXO feedback control of basal IRS-2 expression in pancreatic β-cells is distinct from that in hepa tocyes. Diabetes 60: 2883-2891, 2011.
32. Argtsinger LS, Norstedt G, Billestrup N, White MF and Carter-Su C: Growth hormone, interferon-gamma, and leukemia inhibitory factor utilize insulin receptor substrate-2 in intracellular signaling. J Biol Chem 271: 29415-29421, 1996.
33. Uddin S, Fish EN, Sher D, Gardziola C, Colamontic OR, Kellum M, Pitha PM, White MF and Platanias LC: The IRS-pathway operates distinctively from the Stat-pathway in hematopoietic cells and transduces common and distinct signals during engagement of the insulin or interferon-alpha receptors. Blood 90: 2574-2582, 1997.
34. O'Connor JC, Sherry CL, Guest CB and Freund GG: Type 2 diabetes impairs insulin receptor substrate-2-mediated phosphatidylinositol 3-kinase activity in primary macrophages to induce a state of cytokine resistance to IL-4 in association with overexpression of suppressor of cytokine signaling-3. J Immunol 178: 7882-7893, 2007.
35. Carey GB, Semenova E, Qi X and Keegan AD: IL-4 protects the B-cell lymphoma cell line CH31 from anti-IgM-induced growth arrest and apoptosis: Contribution of the PI-3 kinase/AKT pathway. Cell Res 17: 942-955, 2007.
36. Bluers F, Bryce PJ, Ho N, Raman V, Dickman D, Donaldson DD, Geha RS, Ottgen HC and Bhatia TA: Targeted inactivation of the IL-4 receptor alpha chain 1Mr promotes allergic airway inflammation. J Exp Med 198: 1189-1200, 2003.
37. Wurster AL, Withers DJ, Uchida T, White MF and Grusby MJ: Stat6 and IRS-2 cooperate in interleukin 4 (IL-4)-induced proliferation and differentiation but are dispensable for IL-4-dependent development. Mol Cell Biol 22: 11531-11539, 2002.

38. Butte NF, Voruganti VS, Cole SA, Haack K, Comuzzie AG, Muzny DM, Wheeler DA, Chang K, Hawes A and Gibbs RA: Resequencing of IRS2 reveals rare variants for obesity but not fasting glucose homeostasis in Hispanic children. Physiol Genomics 43: 1029-1037, 2011.

39. Hagganai G and Nakkayari S: The study on the relationship between IRS-1 Gly972Arg and IRS-2 Gly1057Asp polymorphisms and type 2 diabetes in the Kurdish ethnic group in West Iran. Genet Test Mol Markers 16: 1270-1276, 2012.

40. Ayaz L, Karakaş Çelik S and Cayan F: The G1057D polymorphism in the IRS-2 gene is associated with gestational diabetes mellitus. Gynecol Endocrinol 30: 165-168, 2014.

41. Pezzolesi MG, Poznik GD, Skupien J, Smiles AM, Mychaleckyj JC, Rich SS, Warram JH and Kroless AO: An intergenic region on chromosome 13q33.3 is associated with the susceptibility to kidney disease in type 1 and 2 diabetes. Kidney Int 80: 105-111, 2011.

42. Craig DW, Millis MP and DiStefano JK: Genome-wide SNP genotyping study using pooled DNA to identify candidate markers mediating susceptibility to end-stage renal disease attributed to type 2 diabetes. Diabetes 57: e1090-e1096, 2008.

43. Kim SK, Yu Gi, Park HJ, Kim YJ, Kim JW, Baik HH and Chung JH: A polymorphism (rs4773092, Cys816Cys) of IRS2 affects auditory hallucinations in schizophrenia patients. Psychiatry Res 209: 124-125, 2013.

44. Acero-Navarro D, Vergara C, Sánchez J, Kennedy MW, Jiménez S, Fernández AM, Gutiérrez M, Puerta L and Carballo L: Association between total immunoglobulin E and antibody responses to naturally acquired Ascaris lumbricoides infection and polymorphisms of immune system-related LIG4, TNFSF13B and IRS2 genes. Clin Exp Immunol 157: 282-290, 2009.

45. Alvarez-Perez JC, Rosa TC, Casinelli GP, Valle SR, Lakshmipathy J, Rossotto C, Rassoul-Palmos F, Vasavada RC and García-Ocaña A: Hepatocyte growth factor ameliorates steatohepatitis and IgG2 expression is associated with steatohepatitis and TNFSF13B and IRS2 genes. Clin Exp Immunol 157: 282-290, 2009.

46. Muzny DM, Wheeler DA, Chang K, Hawes A and Gibbs RA: The development of the 1000 Genomes Project. Nat Genet 44: 806-809, 2012.

47. Hookham MB, O'Donovan HC, Church RH, Mercier-Zuber A, Luzi L, Curran SP, Carew RM, Drogertt A, Mezzano S, Luzi L, Curran SP, Carew RM, Drogoett A, Mezzano S, Giovannetti M, DiStefano JK and DiStefano F: Whole-genome sequencing identifies a recurrent functional synonymous mutation in melanoma. Proc Natl Acad Sci USA 110: 13481-13486, 2013.

48. Qin Y, Xu Z, Zhu Q, Thomas C, Kumar R, Feng H, Dostal DE, Qi Y, Fu Q, Li X, Gao N, Qi F, Sun Z, Du Y and Li M: Association of insulin receptor H1085H C>T, insulin receptor substrate 1 G972R and insulin receptor substrate 2 1057G/A polymorphisms with refractory temporal lobe epilepsy in Han Chinese. Seizure 25: 178-180, 2015.

49. Dunlop DJ: The role of IRS-2 in cancer. J Physiol Pharmacol 92: 613-620, 2014.

50. Rametta R, Mozzé E, Dongiovanni P, Motta BM, Milano M, Roviaio G, Fargion S and Valenti L: Increased insulin receptor substrate 2 expression is associated with steatohepatitis and altered lipid metabolism in obese subjects. Int J Obes (Lond) 37: 986-992, 2013.

51. Minchenko DO, Davydov VV, Budreiko OA, Moliavko OS, Kulieshova DK, Tiazhka OV and Minchenko OH: The expression of CCN2, IQSEC, RSPO1, DNAJC15, RIPK2, IL13RA2, IRS1, and IRS2 genes in blood of obese boys with insulin resistance. Fiziol Zh 61: 10-18, 2015.

52. Chen GF and Inouye M: Role of the AGA/AGG codons, the rarest codons in global gene expression in Escherichia coli. Genes Dev 8: 2641-2652, 1994.

53. Mitarai N, Snepen K and Pedersen S: Ribosome collisions and translation efficiency: Optimization by codon usage and mRNA thermodynamics. Mol Biol Evol 26: 2395-2409, 2009.

54. Zhang S, Goldman E and Zubay G: Clustering of low usage codons and ribosome movement. J Theor Biol 170: 339-354, 1994.

55. Chen GF and Inouye M: Suppression of the negative effect of minor arginine codons on gene expression: preferential usage of minor codons within the first 25 codons of the Escherichia coli genes. Nucleic Acids Res 18: 1465-1473, 1990.
81. Landis J and Shaw LM: Insulin receptor substrate 2-mediated phosphatidylinositol 3-kinase signaling selectively inhibits glycoprotein synthase kinase 3β to regulate aerobic glycolysis. J Biol Chem 285: 1939-1943, 2010.

82. Porter HA, Perry A, Kingsley C, Tran NL and Keegan AD: IRS1 is highly expressed in localized breast tumors and regulates the sensitivity of breast cancer cells to chemotherapy, while IRS2 is highly expressed in invasive breast tumors. Cancer Lett 338: 239-248, 2013.

83. Nishimura R, Takita J, Sato-Otsubo A, Kato M, Koh K, Hando R, Tanaka Y, Kato K, Maeda D, Fukaya M, et al: Characterization of genetic lesions in rhabdomyosarcoma using a high density single nucleotide polymorphism array. Cancer Sci 104: 856-864, 2013.

84. Verma R, Su S, McCrania DJ, Green JM, Leu K, Young PR, Schlabert PJ, Jenkins MP and Wojciksi JV: RHEX, a novel regulator of human erythroid progenitor cell expansion and erythroblast development. J Exp Med 211: 1715-1722, 2014.

85. Bunn HF: Erthropoietin. Cold Spring Harb Perspect Med 3: a016193, 2012.

86. Wang H, Rusanen I, Miettinen R, Kärkkäinen P, Kekäläinen P, Kuusisto J, Mykkänen L, Karppa P and Laakso M: New amino acid substitutions in the IRS-2 gene in Chinese and Finnish subjects with late-onset type 2 diabetes. Diabetes 50: 1949-1951, 2001.

87. Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV, Xu W, Richards DR, McDonald-Smith GP, Gao H, Hennessey L, et al: Inflammation and Host Response to Injury, Large Scale Collaborative Research Project: Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci USA 110: 3507-3512, 2013.

88. Taborsky GJ Jr, Mei Q, Hackney DJ and Mundinger TO: The search for the mechanism of early sympathetic islet neuropathy in autoimmune diabetes. Diabetes Obes Metab 16 (Suppl 1): 96-101, 2014.

89. Nicheanetela SN, Lazarus P and Richie JP Jr: A GAG trinucleotide repeat polymorphism in the gene for glutathione biosynthetic enzyme, GCLC, affects gene expression through translation. FASEBJ J 25: 2180-2187, 2011.

90. Feuer SK, Liu X, Donjacour A, Lin W, Simbulan RK, Girtharan G, Piane LD, Kolahi K, Ameri K, Maltepe E, et al: Use of a mouse in vitro fertilization model to understand the developmental origins of health and disease hypothesis. Endocrinology 155: 1956-1969, 2014.

91. Campolo J, Penco S, Bianchi E, Colombo L, Parolini M, Caruso R, Sedda V, Patrocco MC, Cigetti G, Marocchi A, et al: Glutamate-cysteine ligase polymorphism, hypertension, and male sex are associated with cardiovascular events. Biochemical Research Group: A novel gene containing a trinucleotide repeat expansion at the myotonic dystrophy locus reduces efficiency of the transcription RAN Translation) Dependent on Sequence Downstream of the repeat expansion in signal peptides. FEBS J 277: 3147-3157, 2010.

92. Depledge DP and Dalby AR: COPASAAR - a database for proteomic analysis of single amino acid repeats. BMC Bioinformatics 6: 196, 2005.

93. Suh HW, Jung H, Yoon SR, Pereson S, Gijselinck I, Van Langenhove T, van der Zee J, Sleegers K, Philtjens S, Laaksovirta H, Peuralinna T, Schymick JC, Scholz SW, Lai SL, Novel MeCP2 isoform-specific antibody reveals the endogenous MeCP2E1 expression in murine brain, primary neurons and astrocytes. PLoS One 7: e49760, 2012.

94. No authors listed: The Huntington's Disease Collaborative Research Group: A novel gene containing a trinucleotide repeat that is expanded and unstable on chromosome 4: the Huntingtin gene. Cell 90: 523-531, 1997.

95. Gjersvik B, Beier L, Normann L, Hadeler H, Jensen S, Andersen CM, et al: Use of a mouse in vitro fertilization model to understand the developmental origins of health and disease hypothesis. Endocrinology 155: 1956-1969, 2014.

96. Kaadige MR, Yang J, Wilde BR and Ayer DE: MondoA-Mlx interaction is limited by mTOR-MondoA interaction. Mol Cell Biol 35: 101-110, 2015.

97. Wang H, Rissanen J, Miettinen R, Kärkkäinen P, Kekäläinen P, Kauranen P, Schymick JC, Scholz SW, Lai SL, Caruso R, Sedda V, Patrocco MC, Cigetti G, Marocchi A, et al: Glutamate-cysteine ligase polymorphism, hypertension, and male sex are associated with cardiovascular events. Biochemical Research Group: A novel gene containing a trinucleotide repeat expansion at the myotonic dystrophy locus reduces efficiency of the transcription RAN Translation) Dependent on Sequence Downstream of the repeat expansion in signal peptides. FEBS J 277: 3147-3157, 2010.
122. La Spada AR, Paulson HL and Fischbeck KH: Trinucleotide repeat expansion in neurological disease. Ann Neurol 36: 814-822, 1994.

123. Kayatekin C, Matlack KE, Hesse WR, Guan Y, Chabraborot S, Russ J, Waneker EE, Shah JV and Lindquist S: Prion-like protein sequester and suppress the toxicity of huntingtin exon 1. Proc Natl Acad Sci USA 111: 12085-12090, 2014.

124. Ripauld K, Chumakova V, Antonin M, Hastei AR, Pinkert S, Körner R, Ruff KM, Pappu RV, Hornburg D, Mann M, et al.: Overexpression of prion-like proteins suppresses polyQ cytotoxicity and alters the polyQ interactome. Proc Natl Acad Sci USA 111: 18219-18224, 2014.

125. Chambers JW, Maguire TG and Ahwine JC: Glutamine metabolism is essential for human cytomegalovirus infection. J Virol 88: 8671-8677, 2013.

126. Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C, Lawton M, Trottier Y, Lehrach H, Davies SW, et al.: Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87: 493-506, 1996.

127. Rosas HD, Reuter M, Doros G, Lee SY, Triggs T, Malarick K, Fischl B, Salat DH and Hersch SM: A tale of two factors: what determines the rate of progression in Huntington's disease? A longitudinal MRI study. Mov Disord 26: 1699-1701, 2011.

128. Lee JM, Ramos EM, Lee JH, Gillis T, Mysores JS, Hayden MR, Wang Y, Tsai SY and Panek M: SLC7A5-CCT HD study of the Huntington Study Group (HSG); REGISTRY study of the European Huntington's Disease Network; HD-MAPS Study Group; COHORT study of the HSG: CAG repeat expansion in Huntington disease determines age at onset in a fully dominant model. J Neurogenet 27: 69-80, 2013.

129. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D, et al.: A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490: 55-60, 2012.

130. Ohlsson C and Sjögren K: Effects of the gut microbiota on bone mass. Trends Endocrinol Metab 26: 69-74, 2015.

131. DelGiorno KE, Tam JW, Hall JC, Thotakura G, Crawford HC and van der Velden AW: Persistent salmoneiosis causes pancreatitis in a murine model of infection. PLoS One 9: e92807, 2014.

132. Whitcomb DC and Lazzarino E: Genetic modifiers of cystic fibrosis-related diabetes. Diabetes 62: 3627-3635, 2013.

133. Santos et al.: Identification of germline susceptibility loci in ETV6-RUNX1-rearranged childhood acute lymphoblastic leukemia. Leukemia 26: 902-909, 2012.

134. Santoro N, Colombini A, Silvestri D, Grassi M, Giordano P, Paraso R, Barisone E, Caruso R, Conter V, Valsecchi MG, et al.: Screening for coagulopathy and identification of children with acute lymphoblastic leukemia at a higher risk of symptomatic venous thrombosis: An AIEOP experience. J Pediatr Hematol Oncol 35: 348-353, 2013.

135. Qiu J, Kong W, Li G, Kaczmarek L, Wu Y, Li Y, Flavell RA and Desir GV: The voltage-gated potassium channel Kv1.3 regulates energy homeostasis and body weight. Hum Mol Genet 22: 551-560, 2013.

136. Tu L, Khanna P and Deutsch C: Transmembrane segments form tertiary hairpins in the folding vestibule of the ribosome. J Mol Biol 426: 185-198, 2014.

137. Kosolapov A and Deutsch C: Tertiary interactions within the ribosomal exit tunnel. Nat Struct Mol Biol 16: 405-411, 2009.

138. Delaney E, Khanna P, Tu L, Robinson JM and Deutsch C: Determinants of pore folding in potassium channel biogenesis. Proc Natl Acad Sci USA 111: 4620-4625, 2014.

139. Ko SB, Zeng W, Dorwart MR, Luo X, Kim KH, Millen L, Goto H, Naruse S, Soyombo A, Thomas PJ, et al.: Gating of CFTR by the SPAS domain of SLC26 transporters. Nat Cell Biol 6: 343-350, 2004.

140. Gray MA: Bicarbonate secretion: It takes two to tango. Nat Cell Biol 6: 292-294, 2004.

141. Chang MH, Plata C, Sindic A, Ranatunga WK, Chen AP, Zamora-Nejad K, Cheung KY, Thompson J, Mount DB and Romero MF: Sic26a9 is inhibited by the R-region of the cystic fibrosis transmembrane conductance regulator via the STAS domain. J Biol Chem 284: 28306-28318, 2009.

142. Ishiguro H, Yamamoto A, Nakukuki M, YL, Ishiguro M, Yamaguchi M, Kondo S and Mochimaru Y: Physiology and pathophysiology of bicarbonate secretion by pancreatic duct epithelium. Nagoya J Med Sci 74: 1-18, 2012.

143. Kimchi-Sarfaty C, Oh JM, Kim JW, Saena ZE, Calcagno AM, Ambudkar SV and Gottesman MM: A 'silent' polymorphism in the MDRI gene changes substrate specificity. Science 315: 525-528, 2007.

144. Chong PA, Kota P, Dokholyan NV and Forman-Kay JD: Dynamics intrinsic to cystic fibrosis transmembrane conductance regulator function and stability. Cold Spring Harb Perspect Med 3: a009522, 2013.

145. LaRusch J, Jung J, General IJ, Lewis MD, Park HW, Brand RE, Gelrud A, Anderson MA, Banks PA, Connell D, et al.: North American Pancreatitis Study Group: Mechanisms of CFTR functional variants that impair regulated bicarbonate permeation and increase risk for pancreatitis but not for cystic fibrosis. PLoS Genet 10: e1004376, 2014.

146. El Khouri E and Touré A: Functional interaction of the cystic fibrosis transmembrane conductance regulator with members of the SLC26 family of anion transporters (SLC26A8 and SLC26A9): Physiological and pathophysiological relevance. Int J Biochem Cell Biol 52: 58-67, 2014.
183. Meyer KJ, Mares JA, Igo RP Jr, Truitt B, Liu Z, Millen AE, Klein M, Johnson EJ, Engelman CD, Karki CK, et al.: Genetic evidence for role of carotenoids in age-related macular degeneration in the carotenoids in age-related eye disease study (CAREDS). Invest Ophthalmol Vis Sci 55: 587-590, 2014.

184. Rebold E, Goncalves A, Comera C, Bott R, Nowicki M, Landrier JF, Jourdheuil-Rahmani D, Dufour C, Collet X and Borel P: Vitamin D intestinal absorption is not a simple passive diffusion: Evidences for involvement of cholesterol transporters. Mol Nutr Food Res 52: 901-912, 2011.

185. Goncalves A, Margier M, Roh S, Comera C, Niot I, Goup Y, Caris-Veyrat C and Rebold E: Intestinal scavenger receptors are involved in vitamin K1 absorption. J Biol Chem 289: 30743-30752, 2014.

186. Major JM, Yu K, Wheeler W, Zhang H, Cornelis MC, Wright ME, Yeager M, Snyder K, Weinstein SJ, Mondul A, et al.: Genome-wide association study identifies common variants associated with circulating vitamin E levels. Hum Mol Genet 20: 3876-3883, 2011.

187. Schlumberger S and Furst B: How I treat poisoning with vitamin K antagonists. Blood 125: 438-442, 2015.

188. Ihrbar-Jurado N, Salas-Salvadó J, Martínez-González MA and Bullis M: Dietary phylloquinone intake and risk of type 2 diabetes in elderly subjects at high risk of cardiovascular disease. Am J Clin Nutr 96: 1113-1118, 2012.

189. Gaborieau V, Moore LE, Prokhortchouk E, Wu X, Kiemeney LA, Claus EB, Gueguen Y, Zoppett S, Johnson AD, Samani NJ, Bousquet P, Davies G, et al.: Genetic associations for activated partial thromboplastin time and prothrombin time, their gene expression profiles, and risk of coronary artery disease. Am J Hum Genet 91: 152-162, 2012.

190. Selbach M, Xu Y, Zhang L, Peer D, van der Viole H, Low M, Shen L, Risacher SL, Kim S, Jun G, DeCarli C, et al.: Alzheimer's Disease Neuroimaging Initiative: Multiple loci influencing hippocampal degeneration identified by genome scan. Ann Neurol 72: 65-75, 2012.

191. Nowak-Göttl U, Wermes C, Junker R, Koch HG, Schobes R, Fleischhacker G, Schwabe D and Ehrenforth S: Prospective evaluation of the thrombotic risk in children with acute lymphoblastic leukemia carrying the MTHFR TT 677 genotype, the prothrombin G20210A variant, and further prothrombotic risk factors. Blood 93: 1595-1599, 1999.

192. Schmalbach B, Stepanow O, Jochens A, Riedel C, Deusch G and Kuhlenbäumer G: Determinants of platelet-leukocyte aggregation and platelet activation in stroke. Cerebrovasc Dis 39: 176-180, 2015.

193. Grieger C, Radhakrishnan A, Cvejc A, Tang W, Porcu E, Psits G, Serbanovic-Camic J, Elling U, Goodall AH, Labrunn E, et al.: New gene functions in megakaryopoiesis and platelet formation. Nature 480: 201-208, 2011.

194. Klein M, Johnson EJ, Engelman CD, Karki CK, et al.: Genetic associations for activated partial thromboplastin time and prothrombin time, their gene expression profiles, and risk of coronary artery disease. Ann Intern Med 157: 483-490, 2015.

195. Brodsky I, Kahn SB, Vash G, Ross EM and Petkov G: Fibrinogen effects on protein synthesis in rabbits with normal and increased fibrinogen levels. Blood 93: 1595-1599, 1999.

196. Schulze K, Chen M and Xu H: Complement expression in retinal pigment epithelial cells is modulated by activated macrophages. Exp Eye Res 112: 93-101, 2013.
201. Kalloiu SP, Jakkula E, Purcell S, Suvela M, Koivistio K, Tienari PJ, Elovaa I, Pirttilä T, Reunanen M, Bronnikov D, et al: Use of a genetic isolate to identify rare disease variants: C7 on 5p associated with MS. Hum Mol Genet 18: 1670-1683, 2009.

202. Brudner M, Ghor E, Lear C, Chen L, Yantisca LM, Scully C, Sarraj A, Sokolovska A, Zariffard MR, Eisen DP, et al: Lectin-dependent enhancement of Ebola virus infection via soluble and transmembrane C-type lectin receptors. PLoS One 8: e60838, 2013.

203. van Vliet SJ, Steeghs L, Bruijns SC, Vaezirazid MM, Snijders Blok C, Arenas Busto JAK, Dena M, van Putten JP and van Kooyp Y: Variation of Neisseria gonorrhoeae lipooligosaccharide-charides directs dendritic cell-induced T helper responses. PLoS Pathog 5: e1000625, 2009.

204. Chen P, Zhang H, Liu X, Tian F, Zhao J, Chen Y, Zhang H and Chen W: Antidiabetic effect of Lactobacillus casei CCFM0412 on mice with type 2 diabetes induced by a high-fat diet and streptozotocin. Nutrition 30: 1061-1068, 2014.

205. Meyre D and Pare G: Genetic dissection of diabetes: Facing the giant. Diabetes 62: 3338-3340, 2013.

206. Qi L, Parrast L, Cai T, Powers C, Gervino EA, Hauser TH, Hu FB and Doria A: Genetic susceptibility to coronary heart disease in type 2 diabetes: 3 independent studies. J Am Coll Cardiol 58: 2675-2682, 2011.

207. Sandyk R: The relationship between diabetes mellitus and Parkinson's disease. Int J Neurosci 69: 125-130, 1993.

208. Calkin CV, Ruzickova M, Uher R, Hajek T, Slaney CM, Garnham JS, O'Donovan MC and Alda M: Insulin resistance and outcome in bipolar disorder. Br J Psychiatry 206: 52-57, 2010.

209. Cosgrove J, Alty JE and Jameson S: Cognitive impairment in Parkinson's disease. Postgrad Med J 86: 220-230, 2010.

210. Talbot K: Amyotrophic lateral sclerosis: cell vulnerability or system vulnerability? J Anat 224: 45-51, 2014.

211. Carbutt S, Duff J, Yarnall A, Burn DJ and Hudson G: Variation in complement protein C3q is not a major contributor to cognitive impairment in Parkinson's disease. Neurosci Lett 594: 66-69, 2014.

212. Ressl S, Vu BK, Vivona S, Martindell DC, Söhndorf TC, Brunger AT: Structures of Cfq-like proteins reveal unique features among the Cfq/TNF superfamily. Structure 23: 688-699, 2015.

213. Sigoillot SM, Iyer K, González-Calvo I, Talleur M, Vojdani G, Isope P and Selimi F: The secreted protein C1QL1 of the C1q/TNF superfamily. Structure 23: 688-699, 2015.

214. Ressl S, Vu BK, Vivona S, Martindell DC, Söhndorf TC, Brunger AT: Structures of Cfq-like proteins reveal unique features among the Cfq/TNF superfamily. Structure 23: 688-699, 2015.

215. Kortright JL: Practical experiences with antitoxin. Brooklyn MJ Med Soc 10: 87-101, 1896.

216. MacKenzie DA, Scharnich J, J, Tilmann A, J, C, A, and R, A: GRAIL controls primary T cell activation and oral tolerance. Proc Natl Acad Sci USA 106: 16770-16775, 2009.

217. Macen Perd S, Saorres L, Ranheim EA, S, L, H, P, C, and B, F, A: The gene related to anergy in lymphocytes, an E3 ubiquitin ligase, is necessary for anergy induction in CD4 T cells. J Immunol 173: 79-85, 2004.

218. Kriegel MA, Rathanum C and Flavell RA: E3 ubiquitin ligase GRAIL controls primary T cell activation and oral tolerance. Proc Natl Acad Sci USA 106: 16770-16775, 2009.

219. Gillis C, Gouel-Chéron A, J, F, and M, B: Contribution of human FcγRs to disease with evidence from human polymorphisms and transgenic animal studies. Front Immunol 5: 254, 2014.

220. Lu W, Lin C and Li Y: Rottlerin induces Wnt co-receptor LRP6 degradation and suppresses both Wnt/β-catenin and mTORC1 signaling in prostate and breast cancer cells. Cell Signal 26: 1303-1309, 2014.

221. Malinuakas T and Jones EY: Extracellular modulators of Wnt signalling. Curr Opin Struct Biol 29: 77-84, 2014.

222. Joiner DM, Ke J, Zhong Z, Xu HE and Williams BO: LR5P and LR6P in development and disease. Trends Endocrinol Metab 24: 31-39, 2013.

223. Moon RT, Kohn AD, De Ferrari GV and Kaykas A: WNT and beta-catenin signalling: Diseases and therapies. Nat Rev 5: 691-701, 2004.

224. Jiang X, Charlat O, Zamponi R, Yang Y and Cong F: Dishevelled Promotes Wnt Receptor Degradation through Recruitment of ZNRF3/RNF43 E3 Ubiquitin Ligases. Mol Cell 58: 522-533, 2015.

225. Holland J, Fassanello S and Onuma T: Neurological symptoms associated with L-asparaginase administration. J Psychiatr Res 10: 105-113, 1974.

226. Feinberg WM and Swenson MR: Cerebrovascular complications of L-asparaginase therapy. Neurology 38: 127-133, 1988.

227. Rodrigo R, Gauli O, Boix J, Emili N, Agasto A and Felipo V: Role of NMDA receptors in acute liver failure and ammonia toxicity: Therapeutic implications. Neurology Int 55: 113-118, 2009.

228. Davidovic L, Jaglin XH, Lepagnol-Bestel AM, Tremblay S, Simonneau M, Bordoni B and Khandjian EW: The fragile X mental retardation protein is a molecular adaptor between the neurospecific KIF13C kinesin and dendritic RNA granules. Hum Mol Genet 16: 2047-2058, 2007.

229. Donnell JC and Brkljac C: The translation of translational control by FMRP: Therapeutic targets for FXS. Nat Neurosci 16: 1530-1536, 2013.
245. Poliakov E, Koonin EV and Rogozin IB: Immunoablation of translation in neutrons as a putative causal factor for autism. Biol Direct 9: 16, 2014.
246. Cauchi RJ: Gem depletion: Amyotrophic lateral sclerosis and spinal muscular atrophy crossover. CNS Neurosci Ther 20: 574-581, 2014.
247. Hägmark A, Mikus M, Moenschenia H, Mong MG, Forström B, Gajewska B, Barańczyk-Kuźma A, Uhlén M, Schwenk JW, Kuźma-Kozakiewicz M, et al: Plasma profiling reveals three proteins associated to amyotrophic lateral sclerosis. Ann Clin Tranls Neuron 1: 544-553, 2014.
248. Ingre C, Roos PM, Pielh F, Kamel F and Fang F: Risk factors for amyotrophic lateral sclerosis. Clin Epidemiol 7: 181-193, 2015.
249. Smith WW, Liu Z, Liang Y, Masuda N, Swing DA, Jenkins NA, Cowie R and Nishimura RA: Xirp1, Pletnikov M, Dawson TM, et al: Synphilin-1 attenuates neuronal degeneration in the A53T alpha-synuclein transgenic mouse model. Hum Mol Genet 19: 2087-2098, 2010.
250. Wang X, Zeng W, Kim MS, Allen PB, Greengard P and MuallimS: Spinophilin/neurabin reciprocally regulate signaling intensity by G protein-coupled receptors. EMBO J 26: 2768-2776, 2007.
251. Latourelle JC, Pankratz N, Dumitriu A, Wilk JB, Goldberg P, Pezzoli G, Mariani CB, DeStefano AL, Halter C, Gusella JF, et al: PROGENI Investigators, Coordinators and Molecular Genetic Laboratories: Genomewide association study for onset age in Parkinson disease. BMC Med Genet 10: 98, 2009.
252. Lailla E and Pappanou PN: Diabetes mellitus and periodontitis: A tale of two common interrelated diseases. Nat Rev Endocrinol 7: 77-84, 2011.
253. Zeng Z, Feingold E, Wang X, Weeks DE, Lee M, Cueto DT, Broffitt B, Weyant RJ, Crout R, McNeil DW, et al: Genome-wide association study of primary dentition pit-and-fissure and smooth surface caries. Caries Res 48: 330-338, 2014.
254. Temmer A, Veldtbrecht B, Völker U, Petersmann A, Nauck M, Biffar R, Volzke H, Kremer HK, Meisel P, Homuth G, et al: Genome-wide association study of chronic periodontitis in a general German population. J Clin Periodontol 40: 977-985, 2013.
255. Elks CE, Perry JR, Sulem P, Chasman DI, Franci M, Kong C, Lange JJ, Samovski D, Liu J, Sundaresan S and Stahl PD: TBC1D5 and the AP2 complex regulate ATG9 trafficking and initiation of autophagy. EMBO Rep 15: 2842-2847, 2014.
256. Francis SP, Krey JF, Krystofik ES, Cui R, Nanda S, Xu W, Lee M, Cuenco DT, Dawson TM, et al: Synphilin-1 attenuates neuronal degeneration in the A53T alpha-synuclein transgenic mouse model. Hum Mol Genet 19: 2087-2098, 2010.
257. Gubanova E, Brown B, Ivanov SV, Helleday T, Mills GB, Yarbrough WG and Isaeva N: Downregulation of SMG-1 in HPV-positive head and neck squamous cell carcinoma due to promoter hypermethylation correlates with improved survival. Clin Cancer Res 18: 1257-1267, 2012.
258. Ding T, Green D, Ceder H and Hennings M: A temperature-sensitive mutation in asparaginyl-tRNA synthetase causes cell-cycle arrest in early S phase. Exp Cell Res 184: 53-60, 1989.
259. Reitzer LJ and Magasanik B: Asparaginase synthetases of Klebsiella aerogenes: Properties and regulation of synthesis. J Bacteriol 151: 1299-1313, 1982.
260. Srikhanta YN, Atack JM, Beacham IR and Jennings MP: Distinct physiological roles for the two L-asparaginase isoforms of Escherichia coli. Biochem Biophys Res Commun 436: 362-365, 2013.
261. Brito G, Mandelli F, Nanetti A, Zamboni M, Sperl S and Montanaro L: Isolation of an inhibitor of cell-free protein synthesis from Salmonella enteritidis. Microbiologia 138: 15-60, 1990.
262. Baudouin L, Martino E, Antonelli A, Pachiarotti A, Robbins J and Pinchera A: Effect of the antileukemic agent L-asparaginase on thyroxine-binding globulin and albumin synthesis in cultured human hepatoma (HEP G2) cells. Endocrinology 80: 1185-1188, 1986.
263. Stahl PD and Wainszelbaum MJ: Human-specific genes may offer a unique window into human cell signaling. Sci Signal 2: pe59, 2009.
264. Kong C, Lange J, Samovski D, Xu L, Liu J, Sundaresan S and Stahl PD: Ubiquitination and degradation of the hominoid-specific oncprotein TBC1D3 is regulated by protein palmitoylation. Biochem Biophys Res Commun 436: 362-365, 2013.
265. Frasa MA, Koessmeier KT, Ahmadian MR and Braga VM: Investigating the functional and structural repertoire of human TBC/RABGAPs. Nat Rev Mol Cell Biol 13: 67-73, 2012.
266. Pei L, Peng Y, Yang L, Lin XB, Van Eyndhoven WG, Nguyen KC, Robin M, Xu L and Li F: PRC1, a novel oncogene encoding a GTG GTPase-activating protein, is amplified in prostate cancer. Cancer Res 62: 5420-5424, 2002.
267. Seaman MN, Harbour ME, Tattersall D, Read E and Bright N: Membrane recruitment of the cargo-selective retromer subcomplex is catalysed by the small GTPase Rab7 and inhibited by the Rab-GAP TBC1D5. J Cell Sci 122: 2371-2382, 2009.
268. Popovic D and Dikic I: TBC1D5 and the AP2 complex regulate ATG9 trafficking and initiation of autophagy. EMBO Rep 15: 2842-2847, 2014.
269. Fritollo E, Palamidessi A, Pizzigoni A, Lanzetti L, Garré M, Troglio F, Troilo A, Fava M, Kunz P, Komorowski JA, Koopmann F, et al: The primate-specific protein TBC1D3 is required for optimal macropinocytosis in a novel ARF6-dependent pathway. Mol Biol Cell 19: 386-393, 2008.
270. Nielsen DA, Ji F, Yufarov V, Ho A, He C, Ott J and Kreek MJ: Genome-wide association study identifies genes that may contribute to risk for developing heroin addiction. Psychiatr Genet 20: 207-214, 2010.
271. McCallum S, Desjardins DM, Ahmad S, Davidoff KS, Snyder CM, Sato K, Ohashi K, Kielbasom BA, Mathew M, Ewen EP, et al: Modulation of angiotensin II-mediated cardiac remodeling by the MEF2A target gene Xirp2. Circ Res 106: 952-960, 2010.
272. Wang Q, Lin J, Erives AJ, Lin CI and Lin JJ: New insights into the roles of Xirp-repeat-containing proteins in cardiac development, function, and disease. Int Rev Cell Mol Biol 310: 89-128, 2014.
273. Matsuoka R, Abe S, Tokoro F, Arai M, Noda T, Watanabe S, Horiuchi H, Fujimoto T, Oguri M, Kato K, et al: Association of six genetic variants with myocardial infarction. Int J Mol Med 35: 1451-1459, 2015.
285. Copps KD and White MF: Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia 55: 2565-2582, 2012.

286. Chantranupong L, Wang SC, Duff SM, Lynne MT, Sattler M, Gilhar D, Dong Y: Nutrient-sensing mechanisms across evolution. Cell 161: 67-83, 2015.

287. Mirkin SM: Expandable DNA repeats and human disease. Nature 447: 932-940, 2007.

288. Shaw G and Kamen R: A conserved AU sequence from the 3' untranslated region of GM-CSF mRNA mediates selective 3' end processing and 3' end degradation. Cell 46: 659-667, 1986.

289. Uversky VN: Functional roles of transiently and intrinsically disordered regions within proteins. FEBS J 282: 1182-1189, 2015.

290. Ragusa MJ, Dancheck B, Critton DA, Nairn AC, Page R and Peti W: Spinophilin directs protein phosphatase 1 specificity by blocking substrate binding sites. Nat Struct Mol Biol 17: 459-464, 2010.

291. Nakashima N, Obashi H, Satoh A, Wada M, Mandai K, Satoh K, Nishikawa H, Matsuura Y, Mizuguchi A and Takai Y: Neurabin: A novel and tissue-specific actin filament-binding protein involved in neurite formation. J Cell Biol 139: 951-961, 1997.

292. Chen Y, Liu Y, Cottingham C, McMahon L, Jiao K, Greengard P and Wang Q: Neurabin scaffolding of adenosine receptor and RGS4 regulates anti-seizure effect of endogenous adenosine. J Neurosci 26: 20853-20863, 2006.

293. Kim S, Wang H, Li XY, Chen T, Mercaldo V, Descalzi G, Wu LJ and Zhuo M: Neurabin in the anterior cingulate cortex regulates anxiety-like behavior in adult mice. Mol Brain 4: 6, 2011.

294. Hu XD, Huang Q, Roadcap DW, Shenolikar SS and Xia H: Actin-associated neurabin-protein phosphatase-1 complex regulates hippocampal plasticity. J Neuroscience 98: 1841-1851, 2006.

295. Hu XD, Huang Q, Yang X and Xia H: Differential regulation of AMPA receptor trafficking by neurabin-targeted synaptic protein phosphatase-1 in synaptic transmission and long-term depression in hippocampus. J Neurosci 27: 4674-4686, 2007.

296. Allen PB, Zachariov V, Svenningsson P, Lepore AC, Centonze D, Costa C, Rossi S, Bender G, Chen G, Feng J, et al: Distinct roles for spinophilin and neurabin in dopamine-mediated plasticity. Neuron 99: 961-975, 2018.

297. Wu LJ, Ren M, Wang H, Kim SS, Cao X and Zhuo M: Neurabin contributes to hippocampal long-term potentiation and contextual fear memory. PLoS One 3: e1407, 2008.

298. Finale Ferreiro J, Rouighi-barei L, Urbankova H, van der Krogt JA, Michaux L, Shetty S, Krenacs L, Toussen T, De Paepe P, Yttebroeck A, et al: Integrative genomic and transcriptomic analysis identified candidate genes implicated in the pathogenesis of hepatosplenic T-cell lymphoma. PLoS One 9: e102977, 2014.

299. Teufel DP, Freund SM, Bycroft M and Fersht AR: Four domains of the glutamine-rich and asparagine-rich domains of Hsp104 regulate anxiety-like behavior in adult mice. Mol Brain 4: 6, 2011.

300. Dho SH, Deverman BE, Lapid C, Manson SR, Gan L, Riethm J, Aurora R, Kwon KS and Weintraub SJ: Control of cellular Bcl-xl levels by deamidation-regulated degradation. PLoS Biol 11: e1001558, 2013.

301. Lee JC, Kang SU, Jeon Y, Park JW, You JS, Ha SW, Bae N, Lubeck G, Kwon SH, Lee JS, et al: Protein L-isoaspartyl methyltransferase regulates p53 activity. Nat Commun 3: 927, 2012.

302. Dawson R, Müller L, Dehner A, Klein C, Kessler H and Bannister J: The N-terminal domain of p53 is natively unfolded. J Mol Biol 332: 1131-1141, 2003.

303. Schon O, Friedler A, Freund S and Fersht AR: Binding of p53-derived ligands to MDM2 induces a variety of long range conformational changes. J Mol Biol 336: 197-202, 2004.

304. Rogers JS, Abrahams WJ, Broom GA, Engelhardt JF, Fisher JT, McCray PB Jr, McLennan G, Meyerholz DK, Namati E, Ostedgaard LS, et al: The porcine lung as a potential model for cystic fibrosis. Am J Physiol Lung Cell Mol Physiol 295: L240-L263, 2008.

305. Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV, Xu W, Richards DR, McDonald-Smith GP, Cao H, Hennessy L, et al: Inflammation and Host Response to Injury, Large Scale Collaborative Research Program: Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci USA 110: 3507-3512, 2013.

306. Hallworth NE: Immune imprinting in schizophrenia and autism: etiology, pathology and animal models. Behav Brain Res 204: 313-321, 2009.

307. Ohn H, Kunugata A, Tsunoda H, Nakano K, Haraguchi K, Oka K, Motoyama N, Nakano H: A novel adenosine receptor, A1B1K-binding protein B5 inhibits apoptosis induced by Nip3 by forming a heterodimer through the C-terminal hydrophilic region. Cell Death Differ 6: 314-325, 1999.

308. Zhang J, Loyd MR, Randall MS, Waddell MB, Krivicki RW and Ney PA: A Short linear motif in BIN1/LNX (NIX) mediates mitochondrial clearance in reticulocytes. Autophagy 8: 1235-1232, 2012.

309. Perutz M: Polar zippers: their role in human disease. Protein Sci 3: 1629-1637, 1994.

310. Perutz M, Pope BJ, Owen D, Wanker EE and Scherzinger E: Aggregation of proteins with expanded glutamine and alanine repeats of the glutamine-rich and arginine-rich domains of Sup35 and of the amyloid beta-peptide of amyloid plaques. Proc Natl Acad Sci USA 99: 5596-5600, 2002.

311. Simon M and Hancock JM: Tandem and cryptic amino acid repeats accumulate in disordered regions of proteins. Genome Biol 10: R59, 2009.

312. Tompa P: Intrinsically unstructured proteins evolve by repeat expansion. Bioessays 25: 847-855, 2003.

313. Li L and Moore PK: An overview of the biological significance of endogenous gases: New roles for old molecules. Biochem Soc Trans 35: 1138-1141, 2007.

314. Levine SM, Rosen A and Casciola-Rosen LA: A-aminocayl tRNA synthetase immune responses: Insights into the pathogenesis of the idiopathic inflammatory myopathies. Curr Opin Rheumatol 15: 708-713, 2003.

315. Beaulande M, Tarbouriech N and Hättlein M: Human cytosolic asparaginyl-tRNA synthetase: cDNA sequence, functional expression in Excherichia coli and characterization as human autoantigen. Nucleic Acids Res 26: 521-524, 1998.

316. Howard OM, Dong HF, Yang D, Raben N, Nagaraju K, Rosen A, Casciola-Rosen L, Hättlein M, Kron M, Yang D: Histidyl-tRNA synthetase and asparaginyl-tRNA synthetase, autoantigens in myositis, activate chemokine receptors on T lymphocytes and immature dendritic cells. J Exp Med 198: 781-788, 2003.

317. Park JS, Kim SH, Choi H, Hwang J, Huh J, Roh J, Park Y and Lim SK: Fibroblast growth factor 2-induced cytoplasmic asparaginyl-tRNA synthetase promotes survival of osteoblasts by regulating anti-apoptotic PI3K/Akt signaling. Bone 45: 994-1003, 2009.

318. Bannister J: Interleukin-8-like activity in a filarial asparaginyl-tRNA synthetase and asparaginyl-tRNA synthetase: cDNA sequence, functional expression in Excherichia coli and characterization as human autoantigen. Nucleic Acids Res 26: 521-524, 1998.

319. Howard OM, Dong HF, Yang D, Raben N, Nagaraju K, Rosen A, Casciola-Rosen L, Hättlein M, Kron M, Yang D: Histidyl-tRNA synthetase and asparaginyl-tRNA synthetase, autoantigens in myositis, activate chemokine receptors on T lymphocytes and immature dendritic cells. J Exp Med 198: 781-788, 2003.

320. Park JS, Kim SH, Choi H, Hwang J, Huh J, Roh J, Park Y and Lim SK: Fibroblast growth factor 2-induced cytoplasmic asparaginyl-tRNA synthetase promotes survival of osteoblasts by regulating anti-apoptotic PI3K/Akt signaling. Bone 45: 994-1003, 2009.

321. Kuhn LA: Interleukin-8-like activity in a filarial asparaginyl-tRNA synthetase and asparaginyl-tRNA synthetase: cDNA sequence, functional expression in Excherichia coli and characterization as human autoantigen. Nucleic Acids Res 26: 521-524, 1998.
Dependence receptor TrkC is a
and requires NT-3 to stimulate invasive behavior. Oncogene 32: 3698-3710, 2013.

328. Wang S, Tsun ZY, Wolflson RF, Shen K, Wyant GA, Plovanich ME, Yuan ED, Jones TD, Chantraprompong L, Comb W, et al: Metabolism. Lysosomal amino acid transporter SLC3A9 signals arginine sufficiency to mTORC1. Science 347: 188-195, 2015.

329. Rebsamen M, Pochini L, Stasy4 K, de Araújo ME, Galluccio M, Kandasamy RK, Sniijder B, Fauster A, Rudashevskaya EL, Bruckner M, et al: SLC3A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature 519: 477-481, 2015.

330. Bar-Peled L and Sabatinii DM: Regulation of mTORC1 by amino acids. Trends Cell Biol 24: 400-406, 2014.

331. Eleyan A, Zoncu R and Sabatinii DM: Amino acids and mTORC1: From lysosomes to disease. Trends Mol Med 18: 524-533, 2012.

332. Abraham RM and Chen M: TrkC: Making sense of amino acid sensing. Science 347: 128-129, 2015.

333. Weng L, Quinlivan E, Gong Y, Beitelshes AL, Shahin MH, Turner ST, Chapman AB, Guns JG, Johnson JA, Frye RF, et al: Association of branched and aromatic amino acids levels with metabolic syndrome and impaired fasting glucose in hypertensive patients. Metab Syndr Relat Disord 13: 195-202, 2015.

334. Björkergen I, Kovacic JC, Dudley JT and Schadt EE: Genome-wide significant loci: How important are they? Systems genetics to understand heritability of coronary artery disease and other common complex disorders. J Am Coll Cardiol 65: 834-845, 2015.

335. Zhang N, Bailey SD and Lupien M: Laying a solid foundation for Manhattan – ‘setting the functional basis for the post-GWAS era’. Trends Genet 30: 140-149, 2014.

336. Gusev A, Bhatia G, Zaitlen N, Vilhjalmsson BJ, Diogo D, Stahl EA, Maller J, Erdincken PK, Worthington J, Klarleskog L, Raychaudhuri S, et al: Quantifying missing heritability at known GWAS loci. PLoS Genet 9: e1003993, 2013.

337. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Meredith CM, Chasman DI, et al: Genome-wide association studies and common disease: findings, problems, and strategies. Nat Genet 41: 847-855, 2009.

338. Cross-Disorder Group of the Psychiatric Genomics Consortium: Identification of risk loci with shared effects on five major psychiatric disorders: A genome-wide analysis. Lancet 381: 1371-1379, 2013.

339. Nikoletopoulou V, Lickert H, Frade JM, Rencurel C, Giallonardo P, Zhang L, Bibel M and Barde YA: Neurotrophin receptors TrkA and TrkC cause neuronal death whereas TrkB does not. Nature 467: 59-63, 2010.

340. Yoon K, Jang HD and Lee SY: Direct interaction of Smac with NEMO promotes TRAIL-induced apoptosis. Biochim Biophys Acta 1830: 649-654, 2004.

341. Zhang CK, Stein PB, Liu J, Wang Z, Yang R, Cho JH, Gregersen PK, Aerts JM, Zhao H, Pastores GM, et al: Genome-wide association study of N370S homozygous Gaucher disease reveals the functional importance of CLN3 gene as a genetic modifier contributing to extreme phenotypic variation. Am J Hum 87: 377-382, 2012.

342. Bultron G, Kacena K, Pearson D, Boxer M, Yang R, Sathe S, Bultron G, et al: PKA-dependent regulation of TrkC activation. J Biol Chem 284: 94-103, 2009.

343. Lauber CL, and Jensen PH: ETv6-NTRK3: A chimeric protein tyrosine kinase with transformation activity in multiple cell lines. Semin Cancer Biol 15: 215-223, 2005.

344. Genevits A, Iehim G, Coissieux MM, Lambert MP, Lavial F, Goldschneider D, Jarrosson-Wuilleme L, Lepinaisse F, Gouyse G, Herczeg Z, et al: Dependence receptor TrkC is a putative colon cancer tumor suppressor. Proc Natl Acad Sci USA 110: 3017-3022, 2013.

345. Luoy K, Kaz AM, Kangnur S, Welsch P, Morris SM, Wang J, Lutterbaugh JD, Markowitz SD and Grady WM: NTRK3 is a potential tumor suppressor gene that is inactivated by epigenetic mechanisms in colorectal cancer. PLoS Genet 9: e1003552, 2013.

346. Ivanov SV, Panaccione A, Brown B, Guo Y, Moskaluk CA, Wick MJ, Brown JL, Ivanova AV, Issaeva N, El-Naggar AK, et al: TrkC signaling is activated in adenoid cystic carcinoma and requires NT-3 to stimulate invasive behavior. Oncogene 32: 3698-3710, 2013.
367. Gutiérrez-Camino Á, López-López E, Martín-Guerrero I, Sánchez-Toledo J, García de Ando I, Carboné Bañeres A, García-Miguel P, Navajas A and García-Orad A: Intron 3 of the ARID5B gene: A hot spot for acute lymphoblastic leukemia susceptibility. J Cancer Res Clin Oncol 139: 1879-1886, 2013.

368. Guo LM, Xi JS, Ma Y, Shao L, Nie CL and Wang GF: ARID5B gene rs10821936 polymorphism is associated with childhood acute lymphoblastic leukemia: a meta-analysis based on 39,116 subjects. Tumour Biol 35: 709-713, 2014.

369. Lin CY, Li MJ, Chang FG, Liu SC, Weng T, Wu KH, Yang SF, Huang FK, Lo WY and Peng CT: High-resolution melting analyses for genetic variants in ARID5B and IKZF1 with childhood acute lymphoblastic leukemia susceptibility loci in Taiwan. Blood Cells Mol Dis 52: 140-145, 2014.

370. Lu Y, Vitarti V, Burdon KP, Khor CC, Bykhovskaya Y, Mirshahi A, Hewitt AW, Koehn D, Hysy PG, Ramdas WD, et al; NEIGHBOR Consortium: Genome-wide association analyses identify multiple loci associated with central corneal thickness and keratoconus. Nat Genet 45: 155-163, 2013.

371. Engel SM, Joubert BR, Wu MC, Olishan AF, Häberg SE, Ueland PM, Nystad W, Nilsen RM, Vollset SE, Peddada SD, et al: Neonatal genome-wide methylation patterns in relation to birth weight in the Norwegian Mother and Child Cohort. Am J Epidemiol 179: 834-842, 2014.

372. Newton-Cheh C, Johnson T, Gateva V, Tobin MD, Bochud M, Coin L, Najjar SS, Zhao JH, Heath SC, Eyheramendy S, et al; GIANT Consortium; MAGIC Investigators; DIAGRAM Consortium: Genome-wide association studies identify eight loci associated with blood pressure. EMBO J 31: 471-480, 2012.

373. Valaperta R, Rizzo V, Lombardi F, Verdelli C, Piccoli M, Ghiroaldi A, Creo P, Colombo A, Valisi M, Margiotta E, et al: Adenine phosphoribosyltransferase (APRT) deficiency: Identification of a novel nonsense mutation. BMC Nephrol 15: 102, 2014.

374. Ibrahim L, Aladle D, Mansour A, Hammad A, Al Wakeel AA and Abd El-Hameed SA: Expression and prognostic significance of livin/HIRC7 in childhood acute lymphoblastic leukemia. Med Oncol 31: 941, 2014.

375. Mulcahy ME, Geohagen JA, Monk IR, O'Keefe KM, Walsh EJ, Foster TJ and McGoughlin RM: Nasal colonisation by the last 15 years. Gene Expr 16: 129-135, 2015.

376. Hawkes WC, Wang TT, Alkan Z, Richter BD and Dawson K: Selenoprotein W modulates control of cell cycle entry. Biol Trace Elem Res 131: 229-244, 2009.

381. Geir LR, Marchler-Bauer A, Geer HC, Lan H, Je H, Je S, Liu C, Shi W and Bryant SH: The NCBI BioSystems database. Nucleic Acids Res 38: D492-D496, 2010.

382. Parge HE, Arvai AS, Murtari DJ, Reed SI and Tainer JA: Human CskH2 atomic structure: A role for its hexameric assembly in cell cycle control. Science 262: 387-395, 1993.

383. Liberal V, Martinsson-Ahlzén HS, Liberal J, Spruck CH, Widenschwendter M, McGowan CH and Reed SI: Cyclin-dependent kinase subunit (Cks) 1 or Cks2 overexpression overrides the DNA damage response barrier triggered by activated oncroteins. Proc Natl Acad Sci USA 109: 2754-2759, 2012.

384. Agirre X, Román-Gómez J, Jiménez-Velasco A, Garate L, Montiel-Duarte C, Navarro G, Vázquez I, Zalacain M, Calasanz MJ, Heiniger A, et al: ASPP1, a common activator of TP53, is inactivated by aberrant methylation of its promoter in acute lymphoblastic leukemia. Oncogene 25: 1862-1870, 2006.

385. Khattar V and Thottassery JV: Csk1: Structure, emerging roles and implications in multiple cancers. J Cancer Ther 4: 1341-1354, 2013.

386. Lee SW, Lin CY, Tian YF, Sun DP, Lin LC, Chen LT, Hsing CH, Huang CT, Hsu HP, Huang HY, et al: Overexpression of CDC28 protein kinase regulatory subunit 1B confers an independent prognostic factor in nasopharyngeal carcinoma. APMIS 122: 206-214, 2014.

387. Vigneron AM and Voutsos KH: An indirect role for ASPP1 in limiting p53-dependent p21 expression and cellular senescence. EMBO J 31: 471-480, 2012.

388. Valaperta R, Rizzo V, Lombardi F, Verdelli C, Piccoli M, Ghiroaldi A, Creo P, Colombo A, Valisi M, Margiotta E, et al: Adenine phosphoribosyltransferase (APRT) deficiency: Identification of a novel nonsense mutation. BMC Nephrol 15: 102, 2014.

389. Ibrahim L, Aladle D, Mansour A, Hammad A, Al Wakeel AA and Abd El-Hameed SA: Expression and prognostic significance of livin/HIRC7 in childhood acute lymphoblastic leukemia. Med Oncol 31: 941, 2014.

390. Mulcahy ME, Geohagen JA, Monk IR, O'Keefe KM, Walsh EJ, Foster TJ and McGoughlin RM: Nasal colonisation by the last 15 years. Gene Expr 16: 129-135, 2015.

391. Calasanz MJ, Heiniger A, et al: ASPP1, a common activator of TP53, is inactivated by aberrant methylation of its promoter in acute lymphoblastic leukemia. Oncogene 25: 1862-1870, 2006.

392. Khattar V and Thottassery JV: Csk1: Structure, emerging roles and implications in multiple cancers. J Cancer Ther 4: 1341-1354, 2013.

393. Lee SW, Lin CY, Tian YF, Sun DP, Lin LC, Chen LT, Hsing CH, Huang CT, Hsu HP, Huang HY, et al: Overexpression of CDC28 protein kinase regulatory subunit 1B confers an independent prognostic factor in nasopharyngeal carcinoma. APMIS 122: 206-214, 2014.

394. Vigneron AM and Voutsos KH: An indirect role for ASPP1 in limiting p53-dependent p21 expression and cellular senescence. EMBO J 31: 471-480, 2012.

395. Valaperta R, Rizzo V, Lombardi F, Verdelli C, Piccoli M, Ghiroaldi A, Creo P, Colombo A, Valisi M, Margiotta E, et al: Adenine phosphoribosyltransferase (APRT) deficiency: Identification of a novel nonsense mutation. BMC Nephrol 15: 102, 2014.

396. Ibrahim L, Aladle D, Mansour A, Hammad A, Al Wakeel AA and Abd El-Hameed SA: Expression and prognostic significance of livin/HIRC7 in childhood acute lymphoblastic leukemia. Med Oncol 31: 941, 2014.

397. Mulcahy ME, Geohagen JA, Monk IR, O'Keefe KM, Walsh EJ, Foster TJ and McGoughlin RM: Nasal colonisation by the last 15 years. Gene Expr 16: 129-135, 2015.

398. Calasanz MJ, Heiniger A, et al: ASPP1, a common activator of TP53, is inactivated by aberrant methylation of its promoter in acute lymphoblastic leukemia. Oncogene 25: 1862-1870, 2006.

399. Khattar V and Thottassery JV: Csk1: Structure, emerging roles and implications in multiple cancers. J Cancer Ther 4: 1341-1354, 2013.

400. Lee SW, Lin CY, Tian YF, Sun DP, Lin LC, Chen LT, Hsing CH, Huang CT, Hsu HP, Huang HY, et al: Overexpression of CDC28 protein kinase regulatory subunit 1B confers an independent prognostic factor in nasopharyngeal carcinoma. APMIS 122: 206-214, 2014.

401. Vigneron AM and Voutsos KH: An indirect role for ASPP1 in limiting p53-dependent p21 expression and cellular senescence. EMBO J 31: 471-480, 2012.

402. Valaperta R, Rizzo V, Lombardi F, Verdelli C, Piccoli M, Ghiroaldi A, Creo P, Colombo A, Valisi M, Margiotta E, et al: Adenine phosphoribosyltransferase (APRT) deficiency: Identification of a novel nonsense mutation. BMC Nephrol 15: 102, 2014.

403. Ibrahim L, Aladle D, Mansour A, Hammad A, Al Wakeel AA and Abd El-Hameed SA: Expression and prognostic significance of livin/HIRC7 in childhood acute lymphoblastic leukemia. Med Oncol 31: 941, 2014.

404. Mulcahy ME, Geohagen JA, Monk IR, O'Keefe KM, Walsh EJ, Foster TJ and McGoughlin RM: Nasal colonisation by the last 15 years. Gene Expr 16: 129-135, 2015.