Abstract. In this note, we prove that a 3-dimensional steady Ricci soliton is rotationally symmetric if its scalar curvature $R(x)$ satisfies
\[
\frac{C_0}{\rho(x)} \leq R(x) \leq \frac{C_0}{\rho(x)}
\]
for some constant $C_0 > 0$, where $\rho(x)$ denotes the distance from a fixed point x_0. Our result doesn’t assume that the soliton is κ-noncollapsed.

1. Introduction

In his celebrated paper [13], Perelman conjectured that all 3-dimensional κ-noncollapsed steady (gradient) Ricci solitons must be rotationally symmetric. The conjecture is solved by Brendle in 2012 [1]. For a general dimension $n \geq 3$, under an extra condition that the soliton is asymptotically cylindrical, Brendle also proves that any κ-noncollapsed steady Ricci soliton with positive sectional curvature must be rotationally symmetric [2]. In general, it is still open whether an n-dimensional κ-noncollapsed steady Ricci soliton with positive curvature operator is rotationally symmetric for $n \geq 4$. For κ-noncollapsed steady Kähler-Ricci solitons with nonnegative bisectional curvature, the authors have recently proved that they must be flat [10], [11].

Recall from [2],

Definition 1.1. An n-dimensional steady Ricci soliton (M,g,f) is called asymptotically cylindrical if the following holds:
(i) Scalar curvature $R(x)$ of g satisfies
\[
\frac{C_0^{-1}}{\rho(x)} \leq R(x) \leq \frac{C_0}{\rho(x)}, \quad \forall \rho(x) \geq r_0,
\]
where \(C_0 > 0 \) is a constant and \(\rho(x) \) denotes the distance of \(x \) from a fixed point \(x_0 \).

(ii) Let \(p_m \) be an arbitrary sequence of marked points going to infinity. Consider rescaled metrics \(g_m(t) = r_m^{-1}\phi_m^*g \), where \(r_m R(p_m) = \frac{n-1}{2} + o(1) \) and \(\phi_t \) is a one-parameter subgroup generated by \(X = -\nabla f \). As \(m \to \infty \), flows \((M, g_m(t), p_m)\) converge in the Cheeger-Gromov sense to a family of shrinking cylinders \((\mathbb{R} \times S^{n-1}(1), \tilde{g}(t)), t \in (0, 1)\). The metric \(\tilde{g}(t) \) is given by

\[
\tilde{g}(t) = dr^2 + (n-2)(2-2t)g_{S^{n-1}(1)},
\]

where \(S^{n-1}(1) \) is the unit sphere of euclidean space.

In this note, we discuss 3-dimensional steady (gradient) Ricci solitons without assuming the \(\kappa \)-noncollapsed condition. \(\footnote{It is proved by Chen that any 3-dimensional ancient solution has nonnegative sectional curvature \[7\].} \)

We prove

Theorem 1.2. Let \((M, g, f)\) be a 3-dimensional steady Ricci soliton. Then, it is rotationally symmetric if the scalar curvature \(R(x) \) of \((M, g, f)\) satisfies

\[
\frac{C_0^{-1}}{\rho(x)} \leq R(x) \leq \frac{C_0}{\rho(x)},
\]

for some constant \(C > 0 \), where \(\rho(x) \) denotes the distance from a fixed point \(x_0 \).

Under the condition \ref{2}, we need to check the property (ii) in Definition \ref{1} to prove Theorem \ref{2}. Actually, we show that for any sequence \(p_i \to \infty \), there exists a subsequence \(p_{i_k} \to \infty \) such that

\[
(M, g_{p_{i_k}}(t), p_{i_k}) \to (\mathbb{R} \times S^2, \tilde{g}(t), p_{\infty}), \text{ for } t \in (-\infty, 1),
\]

where \(g_{p_{i_k}}(t) = R(p_{i_k})g(R^{-1}(p_{i_k})t) \) and \((\mathbb{R} \times S^2, \tilde{g}(t))\) is a shrinking cylinders flow, i.e.

\[
\tilde{g}(t) = dr^2 + (2-2t)g_{S^2}.
\]

As in \cite{10}, we study the geometry of neighborhood \(M_{p, k} = \{ x \in M \mid f(p) - \frac{k}{\sqrt{R(p)}} \leq f(x) \leq f(p) + \frac{k}{\sqrt{R(p)}} \} \) around level set \(\Sigma_r = \{ f(x) = f(p) = r \} \) for any \(p \in M \). We are able to give a uniform injective radius estimate for \((M, R_{p, k}g)\) at each sequence of \(p_i \). Then we can still get a limit flow for rescaled flows \((M, g_{p_i}(t))\), which will split off a line. By using a classification result of Daskalopoulos-Hamilton-Sesum for ancient flows on a compact surface \cite{8}, we finish the proof of Theorem \ref{2}.

We remark that the curvature condition in Theorem \ref{2} cannot be removed, since there does exist a 3-dimensional non-flat steady Ricci soliton with exponential curvature decay. For example, \((\mathbb{R}^2 \times S^1, g_{cigar} + ds^2)\), where
(\mathbb{R}^2, g_{cigar}) is a cigar soliton. Also, Theorem \ref{thm:main} is not true for dimension \(n \geq 4 \) by Cao’s examples of steady Kähler-Ricci solitons with positive sectional curvature \cite{Cao1994}.

At last, we remark that it is still open whether there exists a 3-dimensional collapsed steady Ricci soliton with positive curvature. Hamilton has conjectured that there should exist a family of collapsed 3-dimensional complete gradient steady Ricci solitons with positive curvature and \(S^1 \)-symmetry (cf. \cite{Hamilton1982}). Our result shows that the curvature of Hamilton’s examples could not have a linear decay.

Acknowledgements. The work was done partially when the second author was visiting at the Mathematical Sciences Research Institute at Berkeley during the spring 2016 semester. The author would like to thank her hospitality and the financial supports, National Sciences Foundation under Grant No. DMS-1440140, and Simons Foundation.

2. Positivity of Ricci curvature

\((M, g, f)\) is called a gradient steady Ricci soliton if a Riemannian metric \(g \) on \(M \) satisfies

\[\text{Ric}(g) = \nabla^2 f, \]

for some smooth function \(f \). We first show the positivity of Ricci curvature of \((M, g, f)\) under \eqref{eq:condition} of Theorem \ref{thm:main}.

Lemma 2.1. Under \eqref{eq:condition}, \((M, g, f)\) has positive sectional curvature.

Proof. We need to show that \((M, g)\) has positive Ricci curvature. On the contrary, \((M, g)\) locally splits off a flat piece of line by Shi’s splitting theorem \cite{Shi1997}. Then, the universal cover \((\tilde{M}, \tilde{g})\) of \((M, g)\) is isometric to a product Riemannian manifold of a real line and the cigar soliton. Namely, \((\tilde{M}, \tilde{g}) = (\mathbb{R}^2 \times \mathbb{R}, g_{cigar} + ds^2)\). Let \(\pi : \tilde{M} \rightarrow M \) be a universal covering. We fix \(x_0 \in M \) and \(\tilde{x}_0 \in \tilde{M} \) such that \(\pi(\tilde{x}_0) = x_0 \). For any \(x \in M \) and \(\tilde{x} \in \tilde{M} \) such that \(\pi(\tilde{x}) = x \), one sees

\[\rho(x, x_0) \leq \tilde{\rho}(\tilde{x}, \tilde{x}_0), \]

where \(\rho \) and \(\tilde{\rho} \) are the distance functions w.r.t \(g \) and \(\tilde{g} \) respectively. Let \(\{\tilde{x}_i\}_{i \geq 1} \) be a sequence of points so that \(\tilde{x}_i = (p_i, 0) \in \mathbb{R}^2 \times \mathbb{R} \) tend to infinity. Then, one may check that

\[\tilde{R}(\tilde{x}_i) \rho(\tilde{x}_i, \tilde{x}_0) \rightarrow 0, \text{ as } i \rightarrow \infty. \]

Since \(R(x_i) = \tilde{R}(\tilde{x}_i) \rightarrow 0 \), where \(x_i = \pi(\tilde{x}_i) \), we see \(d(x_i, x_0) \rightarrow \infty \) by \eqref{eq:condition}. Again by \eqref{eq:condition} and \eqref{eq:dis}, we get

\[C_1 \leq R(x_i) d(x_i, x_0) \leq \tilde{R}(\tilde{x}_i) d(\tilde{x}_i, \tilde{x}_0). \]
This is a contradiction to (2.3). Hence, the lemma is proved.

\[\square \]

Corollary 2.2. \((M, g, f)\) in Theorem 1.2 has a unique equilibrium point \(o\), i.e., \(\nabla f(o) = 0\). As a consequence, \(\Sigma_r = \{ f(x) = r \}\) is diffeomorphic to \(S^2\), for any \(r > f(o)\).

Proof. Note that

\[|\nabla f|^2 + R = A. \tag{2.5} \]

By taking covariant derivatives on both sides of (2.5), it follows

\[2\text{Ric}(\nabla f, \nabla f) = -\langle \nabla R, \nabla f \rangle. \tag{2.6} \]

On the other hand, by (1.2), there exists a point \(o\) such that

\[\sup_M R(x) = R(o) = R_{\text{max}}. \]

In particular, \(\nabla R(o) = 0\). Thus

\[\text{Ric}(\nabla f, \nabla f) = 0. \]

By Lemma 2.1, \(\nabla f(o) = 0\). The uniqueness also follows from the positivity of Ricci curvature.

By the Morse theorem, \(\Sigma_r = \{ f(x) = r > f(o) \}\) is diffeomorphic to \(S^2\) (cf. [10], Lemma 2.1).

\[\square \]

3. Geometry of \(M_{p,k}\)

For any \(p \in M\) and number \(k > 0\), we set

\[M_{p,k} = \{ x \in M \mid f(p) - \frac{k}{\sqrt{R(p)}} \leq f(x) \leq f(p) + \frac{k}{\sqrt{R(p)}} \}. \]

Let \(g_p = R(p)g\) be a rescaled metric and denote \(B(p, r; g_p)\) a \(r\)-geodesic ball centered at \(p\) with respect to \(g_p\). Then by Corollary 2.2, we have (cf. [10], Lemma 3.3)

Lemma 3.1. Under (1.2), for any \(p \in M\) and number \(k > 0\) with \(f(p) - \frac{k}{\sqrt{R(p)}} > f(o)\), it holds

\[B(p, \frac{k}{\sqrt{R_{\text{max}}}}; g_p) \subset M_{p,k}. \tag{3.1} \]

By Lemma 3.1, we prove

Lemma 3.2. Under (1.2), there exists a constant \(C\) such that

\[\frac{|\Delta R(p)|}{R^2(p)} \leq C, \forall p \in M. \tag{3.2} \]
Proof. Fix any \(p \in M \) with \(f(p) \geq r_0 >> 1 \). Then
\[
|f(x) - f(p)| \leq \frac{1}{\sqrt{R(p)}}, \quad \forall \ x \in M_{p,1}.
\]
(3.3)

It is known by \cite{4},
\[
c_1 \rho(x) \leq f(x) \leq c_2 \rho(x), \quad \forall \ \rho(x) \geq r_0.
\]
(3.4)

Thus by (1.2), (3.3) and (3.4), we get
\[
c_2 \rho(x) \geq f(p) - \frac{1}{\sqrt{R(p)}} \geq c_1 \rho(p) - \sqrt{C_0 \rho(p)}.
\]
It follows
\[
\frac{R(x)}{R(p)} \leq \frac{C_0^2 \rho(p)}{\rho(x)} \leq \frac{2 c_2 C_0^2}{c_1}, \quad \forall \ x \in M_{p,1}.
\]
(3.5)

On the other hand, by (3.1), we have
\[
B(p, \frac{1}{\sqrt{R_{\max}}}; g_p) \subseteq M_{p,1}.
\]
Hence
\[
R(x) \leq C' R(p), \quad \forall \ x \in B(p, \frac{1}{\sqrt{R_{\max}}}; g_p).
\]
(3.6)

Let \(\phi_t \) be generated by \(-\nabla f \). Then \(g(t) = \phi_t^* g \) satisfies the Ricci flow,
\[
\frac{\partial g(t)}{\partial t} = -2 \text{Ric}(g(t)).
\]
(3.7)

Also rescaled flow \(g_p(t) = R(p)g(R^{-1}(p)t) \) satisfies (3.7). Since the Ricci curvature is positive,
\[
B(p, \frac{1}{\sqrt{R_{\max}}}; g_p(-t)) \subseteq B(p, \frac{1}{\sqrt{R_{\max}}}; g_p(0)), \quad t \in [-1, 0].
\]
Combining with (3.6), we get
\[
R_{g_p(t)}(x) \leq C', \quad \forall \ x \in B(p, \frac{1}{\sqrt{R_{\max}}}; g_p(0)), \quad t \in [-1, 0].
\]
(3.8)

Thus, by Shi’s higher order estimates, we obtain
\[
|\Delta_{g_p(t)} R_{g_p(t)}|(x) \leq C'_1, \quad \forall \ x \in B(p, \frac{1}{2\sqrt{R_{\max}}}; g_p(-1)), \quad t \in [-\frac{1}{2}, 0].
\]
It follows
\[
|\Delta R|(x) \leq C'_1 R^2(p), \quad \forall \ x \in B(p, \frac{1}{2\sqrt{R_{\max}}}; g_p(-1)).
\]
In particular, we have
\[
|\Delta R|(p) \leq C'_1 R^2(p), \quad \text{as} \ \rho(p) \geq r_0.
\]
The lemma is proved. \(\square \)
Remark 3.3. Under (1.2), by the same argument as in the proof of Lemma 3.2, for each \(k \in \mathbb{N} \), there exists a constant \(C(k) \) such that
\[
\frac{|\nabla^k R(p)|}{R^{\frac{k+2}{2}}(p)} \leq C(k), \quad \forall \, p \in M.
\]

Next, we want to show that \(M_{p,k} \) is bounded by a finite ball \(B(p, 2\pi \sqrt{B} + \frac{2k}{\sqrt{R_{\text{max}}}}; g_p) \), where \(C \) is a uniform constant. We need to use the Gauss formula,
\[
R(X,Y,Z,W) = R(X,Y,Z,W) + \langle B(X,Z), B(Y,W) \rangle - \langle B(X,W), B(Y,Z) \rangle,
\]
where \(X,Y,Z,W \in T\Sigma_r \) and \(B(X,Y) = \langle \nabla_X Y, \nabla f \rangle \cdot |\nabla f| \).

We choose a normal basis \(\{e_1, e_2\} \) on \((\Sigma_r, \bar{g})\) with the induced metric \(\bar{g} \). Then \(\{e_1, e_2, \nabla f / |\nabla f|\} \) spans a normal basis of \((M, g)\). Thus
\[
R_{11} = \bar{R}_{11} + R(\frac{\nabla f}{|\nabla f|}, e_1, e_1, \frac{\nabla f}{|\nabla f|}) - \frac{R_{11} R_{22} - R_{12} R_{21}}{|\nabla f|^2},
\]
\[
R_{22} = \bar{R}_{22} + R(\frac{\nabla f}{|\nabla f|}, e_2, e_2, \frac{\nabla f}{|\nabla f|}) - \frac{R_{11} R_{22} - R_{12} R_{21}}{|\nabla f|^2}.
\]

Since \((\Sigma_r, \bar{g})\) is a surface, \(K = \bar{R}_{11} = \bar{R}_{22} \). Hence, we get

Lemma 3.4. The Gauss curvature of \((\Sigma_r, \bar{g})\) is given by
\[
K = \frac{R}{2} - \frac{\text{Ric}(\nabla f, \nabla f)}{|\nabla f|^2} + \frac{R_{11} R_{22} - R_{12} R_{21}}{|\nabla f|^2}.
\]

Lemma 3.5. Under (1.2), there exists a uniform \(B > 0 \) such that the following is true: for any \(k \in \mathbb{N} \), there exists \(r_0 = r_0(k) \) such that
\[
M_{p,k} \subset B(p, 2\pi \sqrt{B} + \frac{2k}{\sqrt{R_{\text{max}}}}; g_p), \quad \forall \, p(\rho) \geq r_0.
\]

Proof. By (1.2) and (3.4), we have
\[
\frac{R_{\text{max}}}{2} \leq |\nabla f|^2(x) \leq R_{\text{max}}, \quad \forall \, x \in M_{p,k},
\]
as long as $\rho(p) \geq r_0 >> 1$. Then by Lemma 3.3 and Lemma 3.2, we get

$$|K - \frac{R}{2}| = |\frac{\text{Ric}(\nabla f, \nabla f)}{\nabla f^2} + \frac{R_{11}R_{22} - R_{12}R_{21}}{\nabla f^2}|$$

$$\leq \frac{|\text{div} R \times \nabla f|}{2\nabla f^2} + \frac{R^2}{\nabla f^2}$$

$$\leq \frac{|\Delta R + 2|\text{Ric}|^2}{2|\nabla f|^2} + \frac{R^2}{\nabla f^2}$$

$$\leq \frac{(C + 4)R^2}{R_{\text{max}}}.$$

It follows

$$(3.13) \quad \frac{R(x)}{4} \leq K(x) \leq \frac{3R(x)}{4}, \quad \forall \ x \in M_{p,k}, \ \rho(p) \geq r_0.$$

On the other hand, by (1.2), (3.3) and (3.4), we see

$$c^{-1}_2 \left(c_1 \rho(p) - k \sqrt{\rho(p)} C_0 \right) \leq \rho(x)$$

$$\leq c^{-1}_1 (c_2 \rho(p) + k \sqrt{\rho(p)} C_0), \quad \forall \ x \in M_{p,k},$$

as long as $\rho(p) \geq r_0$. Then similar to (3.5), there exists a $\bar{r}_0 \geq r_0$ such that

$$(3.15) \quad R(x) \geq \frac{c_1}{2c_2 C_0^2} R(p), \quad \forall \ x \in M_{p,k}.$$

Thus by (3.13), we get

$$\overline{R}_{ij} \geq B^{-1} R(p) \overline{g}_{ij}, \quad \forall \ x \in \Sigma_{f(p)}, \ \rho(p) \geq \bar{r}_0,$$

where $B > 0$ is a uniform constant. By the Myer’s theorem, the diameter of $\Sigma_{f(p)}$ is bounded by

$$\text{diam}(\Sigma_{f(p)}, g) \leq \text{diam}(\Sigma_{f(p)}, \overline{g}_{f(p)}) \leq 2\pi \sqrt{\frac{B}{R(p)}}.$$

As a consequence,

$$(3.16) \quad \Sigma_{f(p)} \subset B(p, 2\pi \sqrt{B}; R(p)g).$$

For any $q \in M_{p,k}$, there exists $q' \in \Sigma_{f(p)}$ such that $\phi_s(q) = q'$ for some $s \in \mathbb{R}$. Then by (3.16) and (3.12), we have
\[d(q, p) \leq d(q', p) + d(q, q') \]
\[\leq \text{diam}(\Sigma_{f(p)}, g) + \mathcal{L}(\phi_{\tau}|_{[0,s]}) \]
\[\leq 2\pi \sqrt{\frac{B}{R(p)}} + \int_0^s \left| \frac{d\phi_{\tau}(q)}{d\tau} \right| d\tau \]
\[= 2\pi \sqrt{\frac{B}{R(p)}} + \int_0^s |\nabla f(\phi_{\tau}(q))| d\tau \]
\[\leq 2\pi \sqrt{\frac{B}{R(p)}} + \int_0^s \left| \nabla f(\phi_{\tau}(q)) \right|^2 \cdot \frac{2}{\sqrt{R_{\max}}} d\tau \]
\[= 2\pi \sqrt{\frac{B}{R(p)}} + \int_0^s \left| \nabla f(\phi_{\tau}(q)) \right|^2 \cdot \frac{2}{\sqrt{R_{\max}}} d\tau \]
\[\leq 2\pi \sqrt{\frac{B}{R(p)}} + |f(q) - f(p)| \cdot \frac{2}{\sqrt{R_{\max}}} \]
\[\leq \left(2\pi \sqrt{B} + \frac{2k}{\sqrt{R_{\max}}} \right) \cdot \frac{1}{\sqrt{R(p)}}. \]

Thus

\[M_{p,k} \subset B(p, 2\pi \sqrt{B} + \frac{2k}{\sqrt{R_{\max}}}; R(p)g). \]

The lemma is proved.

\[\square \]

By Lemma 3.5, we get the following volume estimate of \(B(p, s; g_p) \).

Proposition 3.6. Under (1.2) of Theorem 1.2, there exists \(s_0 \) and \(c > 0 \) such that

\[\text{Vol} B(p, s; g_p) \geq cs^3, \quad \forall s \leq s_0 \text{ and } \rho(p) \geq r_0 \gg 1. \]

Moreover, the injective radius of \((M, g_p)\) at \(p \) has a uniform lower bound \(\delta > 0 \), i.e.,

\[\text{inj}(p, g_p) \geq \delta, \quad \forall \rho(p) \geq r_0. \]

Proof. By Lemma 3.5 we have

\[M_{p,1} \subset B(p, 2\pi \sqrt{B} + \frac{2}{\sqrt{R_{\max}}}; g_p). \]

In the following, we give an estimate of \(\text{Vol}(\Sigma_{l, \bar{g}}) \) for any \(l \) with \(f(p) - \frac{1}{\sqrt{R(p)}} \leq l \leq f(p) + \frac{1}{\sqrt{R(p)}} \).
By (3.5) and (3.15), we see
\[C_1^{-1} \leq \frac{R(x)}{R(p)} \leq C_1, \quad \forall \rho(p) \geq r_0 \text{ and } x \in M_{p,1}. \]

By (3.13), it follows that the Gauss curvature \(K_i \) of \((\Sigma_i, g_p|_{\Sigma_i})\) satisfies
\[\frac{1}{4C_1} \leq K_i \leq \frac{3C_1}{4}. \]

Thus
\[\text{Vol}(\Sigma_i, \bar{g}) = \frac{1}{R(p)} \text{Vol}(\Sigma_i, g_p|_{\Sigma_i}) \geq \frac{64\pi C_1}{R(p)}. \]

By the Co-Area formula, we get
\[
\text{Vol}(M_{p,1}, g) = \int_{f(p)-\frac{1}{\sqrt{R(p)}}}^{f(p)+\frac{1}{\sqrt{R(p)}}} \frac{\text{Vol}(\Sigma_i, \bar{g})}{|\nabla f|} dl \geq 128\pi C_1 R_{\text{max}}^{-\frac{1}{2}} R^{-\frac{3}{2}}(p).
\]

Hence
\[(3.19) \quad \text{Vol}(B(p, 2\pi \sqrt{B} + \frac{2}{\sqrt{R_{\text{max}}}}; g_p)) \geq \text{Vol}(M_{p,1}, g_p) \geq 128\pi C_1 R_{\text{max}}^{-\frac{1}{2}}. \]

By the volume comparison theorem, we derive from (3.19),
\[
\frac{\text{Vol}(B(p, s; g_p))}{s^3} \geq \frac{\text{Vol}(B(p, 2\pi \sqrt{B} + \frac{2}{\sqrt{R_{\text{max}}}}; g_p))}{(2\pi \sqrt{B} + \frac{2}{\sqrt{R_{\text{max}}}})^3} \geq \frac{128\pi C_1 R_{\text{max}}^{-\frac{1}{2}}}{(2\pi \sqrt{B} + \frac{2}{\sqrt{R_{\text{max}}}})^3},
\]
for any \(s \leq 2\pi \sqrt{B} + \frac{2}{\sqrt{R_{\text{max}}}} \). This proves (3.17). By (3.17), we can apply a result of Cheeger-Gromov-Taylor for Riemannian manifolds with bounded curvature to get the injective radius estimate (3.18) immediately \[6\].

\[\square \]

4. Proof of Theorem 1.2

First we prove the following convergence of rescaled flows.

Lemma 4.1. Under (1.2), let \(p_i \to \infty \). Then by taking a subsequence of \(p_i \) if necessary, we have
\[
(M, g_{p_i}(t), p_i) \to (\mathbb{R} \times N, \bar{g}(t); p_\infty), \quad \text{for } t \in (-\infty, 0],
\]
where \(g_{p_i}(t) = R(p_i)g(R^{-1}(p_i)t) \), \(\bar{g}(t) = ds \otimes ds + g_N(t) \) and \((N, g_N(t))\) is an ancient solution of Ricci flow on \(N \).
Proof. For a fixed $\tilde{\tau}$, as in (3.5), it is easy to see that there exists a uniform C_1 independent of $\tilde{\tau}$ such that
\begin{equation}
R(x) \leq C_1 R(p_i), \quad \forall \ x \in M_{p_i, \tilde{\tau}\sqrt{R_{\max}}}
\end{equation}
as long as i is large enough. By Lemma 3.3 it follows
\begin{equation}
R_{g_{p_i}}(x) \leq C_1, \quad \forall \ x \in B(p_i, \bar{\tau}; g_{p_i}),
\end{equation}
where $g_{p_i} = g_{p_i}(0)$. Since the scalar curvature is increasing along the flow, we get
\begin{equation}
|Rm_{g_{p_i}(t)}(x)|_{g_{p_i}(t)} \leq 3R_{g_{p_i}(t)}(x)
\end{equation}
\begin{equation}
\leq 3R_{g_{p_i}}(x) \leq 3C_1, \quad \forall \ x \in B(p_i, \bar{\tau}; g_{p_i}), \ t \in (-\infty, 0].
\end{equation}
Thus together with the injective radius estimate in Proposition 3.6 we can apply the Hamilton compactness theorem to see that $g_{p_i}(t)$ converges subsequently to a limit flow $(\tilde{M}, \tilde{g}(t); p_{\infty})$ on $t \in (-\infty, 0]$. Moreover, the limit flow has uniformly bounded curvature. It remains to prove the splitting property.

By Remark 3.3 we have
\begin{equation}
|Ric|(x) \leq CR(x), \quad \forall \ x \in B(p_i, \bar{\tau}; g_{p_i}).
\end{equation}
It follows from (4.1),
\begin{equation}
|Ric|(x) \leq CR(p_i), \quad \forall \ x \in B(p_i, \bar{\tau}; g_{p_i}).
\end{equation}
Let $X_{(i)} = R(p_i)^{-\frac{1}{2}} \nabla f$. Then
\begin{equation}
\sup_{B(p_i, r_0; g_{p_i})} |\nabla_{(g_{p_i})} X_{(i)}|_{g_{p_i}} = \sup_{B(p_i, r_0; g_{p_i})} \frac{|Ric|}{\sqrt{R(p_i)}}
\end{equation}
\begin{equation}
\leq C \sqrt{R(p_i)} \to 0.
\end{equation}
On the other hand, by Remark 3.3 we also have
\begin{equation}
\sup_{B(p_i, r_0; g_{p_i})} |\nabla_{(g_{p_i})}^m X_{(i)}|_{g_{p_i}} \leq C_n \sup_{B(p_i, r_0; g_{p_i})} |\nabla_{(g_{p_i})}^{m-1} Ric(g_{p_i})|_{g_{p_i}} \leq C_1.
\end{equation}
Thus $X_{(i)}$ converges subsequently to a parallel vector field $X_{(\infty)}$ on $(\tilde{M}, \tilde{g}(0))$. Moreover,
\begin{equation}
|X_{(i)}|_{g_{p_i}}(x) = |\nabla f|(p_i) = \sqrt{R_{\max}} + o(1) > 0, \quad \forall \ x \in B(p_i, r_0; g_i),
\end{equation}
as long as $f(p_i)$ is large enough. This implies that $X_{(\infty)}$ is non-trivial. Hence, $(\tilde{M}, \tilde{g}(t))$ locally splits off a piece of line along $X_{(\infty)}$. It remains to show that $X_{(\infty)}$ generates a line through p_{∞}.

By Lemma 3.5
\begin{equation}
M_{p_i, k} \subset B(p_i, 2\pi \sqrt{B} + \frac{2k}{\sqrt{R_{\max}}}; g_{p_i}(0)), \quad \forall \ p_i \to \infty.
\end{equation}
Let \(\gamma_{i,k}(s), s \in (-D_{i,k}, E_{i,k}) \) be an integral curve generated by \(X_{(i)} \) through \(p_{i,k} \), which restricted in \(M_{p_{i,k}} \). Then \(\gamma_{i,k}(s) \) converges to a geodesic \(\gamma_{\infty}(s) \) generated by \(X_{(\infty)} \) through \(p_{\infty} \), which restricted in \(B(p_{\infty}, 2\pi \sqrt{B} + \frac{2k}{\sqrt{R_{\max}}}; \bar{g}(0)) \). Let \(L_{i,k} \) be lengths of \(\gamma_{i,k}(s) \) and \(L_{\infty,k} \) length of \(\gamma_{\infty}(s) \),
\[
L_{i,k} = \int_{-D_{i,k}}^{E_{i,k}} |\nabla f|_{g_{p_{i,k}}(0)} ds = \int_{f(p_{i})}^{f(p_{i})+\frac{k}{\sqrt{R(p_{i})}}} \sqrt{R(p_{i})} \|\nabla f\|_{\bar{g}} ds \geq R_{\max}^{-\frac{1}{2}} \int_{f(p_{i})}^{f(p_{i})+\frac{k}{\sqrt{R(p_{i})}}} \sqrt{R(p_{i})} \|\nabla f\|_{\bar{g}} ds \geq R_{\max}^{-\frac{1}{2}} \int_{f(p_{i})}^{f(p_{i})+\frac{k}{\sqrt{R(p_{i})}}} \sqrt{R(p_{i})} ds = 2R_{\max}^{-\frac{1}{2}} k,
\]
and so,
\[
L_{\infty,k} \geq \frac{1}{2} L_{i,k} \geq R_{\max}^{-\frac{1}{2}} k.
\]
Thus \(X_{(\infty)} \) generates a line \(\gamma_{\infty}(s) \) through \(p_{\infty} \) as \(k \to \infty \). As a consequence, \((\bar{M}, \bar{g}(0)) \) splits off a line and so does the flow \((\bar{M}, \bar{g}(t); p_{\infty}) \). The lemma is proved.

\(\square \)

Next we estimate the curvature of \((N, g_N(t)) \).

Lemma 4.2. Under \((\ref{4.2}) \), there exists a constant \(C \) independent of \(t \) such that the scalar curvature \(R_N(t) \) of \((N, g_N(t)) \) satisfies
\[
\frac{R_N(x, t)}{R_N(y, t)} \leq C, \quad \forall \ x, y \in N, \ t \in (-\infty, 0].
\]

Proof. Let \(\bar{R}(x, t) \) be the scalar curvature of \((\mathbb{R} \times N, \bar{g}(t)) \). It suffices to prove the following is true:
\[
\frac{\bar{R}(x, t)}{\bar{R}(y, t)} \leq C, \quad \forall \ x, y \in \mathbb{R} \times N, \ t \in (0, \infty],
\]
for some constant \(C \). For any \(x, y \in \mathbb{R} \times N \), we choose \(\bar{\tau} > 0 \) such that \(x, y \in B(p_{\infty}, \bar{\tau}; \bar{g}(0)) \). By the convergence of \(g_{p_{i,t}}(t) \), there are sequences \(\{x_i\} \) and \(\{y_i\} \) in \(B(p_{i,t}, \bar{\tau}; g_{p_{i,t}}(0)) \) such that \(x_i \) and \(y_i \) converge to \(x \) and \(y \) in the Cheeger-Gromov sense, respectively. By Lemma \(\ref{3.1} \) we have
\[
x_i, y_i \subseteq B(p_{i,t}, \bar{\tau}; g_{p_{i,t}}(0)) \subseteq M_{p_{i,t}, \bar{\tau} \sqrt{R_{\max}}},
\]
Thus
\[
f(x_i) = (1 + o(1)) f(p_{i,t}) \quad \text{and} \quad f(y_i) = (1 + o(1)) f(p_{i,t}), \quad \text{as} \ p_{i,t} \to \infty.
\]
On the other hand, for a fixed \(t < 0 \),
\[
\frac{f(\phi_{R^{-1}(p_i) t}(x_i)) - f(x_i)}{|R^{-1}(p_i) t|} = \frac{\int_{R^{-1}(p_i) t}^{0} \nabla f^2 ds}{|R^{-1}(p_i) t|} \to R_{\max}, \text{ as } p_i \to \infty
\]
and
\[
\frac{f(\phi_{R^{-1}(p_i) t}(y_i)) - f(y_i)}{|R^{-1}(p_i) t|} = \frac{\int_{R^{-1}(p_i) t}^{0} \nabla f^2 ds}{|R^{-1}(p_i) t|} \to R_{\max}, \text{ as } p_i \to \infty.
\]
By (4.4) and the fact
\[
C_1 \leq R(x) f(x) \leq C_2, \quad \forall \text{ } f(x) >> 1,
\]
we get
\[
\frac{f(\phi_{R^{-1}(p_i) t}(x_i))}{f(\phi_{R^{-1}(p_i) t}(y_i))} \to 1, \text{ as } p_i \to \infty.
\]
It follows
\[
\frac{R(\phi_{R^{-1}(p_i) t}(x_i))}{R(\phi_{R^{-1}(p_i) t}(y_i))} \leq \frac{C_2}{C_1}.
\]
Hence we obtain
\[
\frac{R_N(x, t)}{R_N(y, t)} = \lim_{i \to \infty} \frac{R^{-1}(p_i) R(x_i, R^{-1}(p_i) t)}{R^{-1}(p_i) R(y_i, R^{-1}(p_i) t)} = \frac{\lim_{i \to \infty} \frac{R^{-1}(p_i) R(\phi_{R^{-1}(p_i) t}(x_i))}{R^{-1}(p_i) R(\phi_{R^{-1}(p_i) t}(y_i))}}{C_2} \leq \frac{C_2}{C_1}.
\]
This proves (4.3).

The proof of Theorem 1.2 is completed by the following lemma.

Lemma 4.3. \((N, g_N(t))\) in Lemma 4.1 is a shrinking spheres flow. Namely,

\[
(N, g_N(t)) = (S^2, (2 - 2t)g_{S^2}).
\]

Proof. By Lemma 4.2, the Gauss curvature of \((N, g_N(0))\) has a uniform positive lower bound. Then \(N\) is compact by Myer’s Theorem. On the other hand, by a classification theorem of Daskalopoulos-Hamilton-Sesum [8], an ancient solution on a compact surface \(N\) is either a shrinking spheres flow or a Rosenau solution. The Rosenau solution is obtained by compactifying \((\mathbb{R} \times S^1(2), h(x, \theta, t) = u(x, t)(dx^2 + d\theta^2))\) by adding two points, where \(u(x, t) = \frac{\sinh(-t)}{\cosh(x) + \cosh(t)}\) and \(t \in (-\infty, 0)\). By a direct computation,

\[
R_{h(t)} = \frac{\cosh(t) \cosh(x) + 1}{\sinh(-t)(\cosh(x) + \cosh(t))}.
\]
It is easy to check that $R_{h(t)}$ doesn’t satisfy (4.2) in Lemma 4.2 as $t \to -\infty$. Hence, $(N, g_{N(t)})$ must be a shrinking spheres flow on S^2. Note that $\bar{R}(p_\infty, 0) = 1$. Then it is easy to see that $g_{S^2(t)} = (2 - 2t)g_{S^2}$.

□

References

[1] Brendle, S., Rotational symmetry of self-similar solutions to the Ricci flow, Invent. Math., 194 No.3 (2013), 731-764.
[2] Brendle, S., Rotational symmetry of Ricci solitons in higher dimensions, J. Diff. Geom., 97 (2014), no. 2, 191-214.
[3] Cao, H.D., Existence of gradient Kähler-Ricci solitons, Elliptic and parabolic methods in geometry (Minneapolis, MN, 1994), 1-16, A K Peters, Wellesley, MA, 1996.
[4] Cao, H.D. and Chen, Q., On locally conformally flat gradient steady Ricci solitons, Trans. Amer. Math. Soc., 364 (2012), 2377-2391.
[5] Cao, H.D. and He, C.X., Infinitesimal rigidity of collapsed gradient steady Ricci solitons in dimension three, arXiv:math/1412.2714v1.
[6] Cheeger, J., Gromov, M. and Taylor, M., Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Diff. Geom., 17 (1982), 15-53.
[7] Chen, B.L., Strong uniqueness of the Ricci flow, J. Diff. Geom. 82 (2009), 363-382.
[8] Daskalopoulos, P., Hamilton, R. and Sesum, N., Classification of ancient compact solutions to the Ricci flow on surfaces, J. Diff. Geom. 91 (2012), no. 2, 171-214.
[9] Deng, Y.X. and Zhu, X.H., Asymptotic behavior of positively curved steady Ricci solitons, arXiv:math/1507.04802.
[10] Deng, Y.X. and Zhu, X.H., Steady Ricci solitons with horizontally ϵ-pinched Ricci curvature, arXiv:math/1601.02111.
[11] Deng, Y.X. and Zhu, X.H., Asymptotic behavior of positively curved steady Ricci solitons, II, arXiv:math/1604.00142.
[12] Hamilton, R.S., Formation of singularities in the Ricci flow, Surveys in Diff. Geom., 2 (1995), 7-136.
[13] Perelman, G., The entropy formula for the Ricci flow and its geometric applications, arXiv:math/0211159.
[14] Shi, W.X., Complete noncompact three-manifolds with nonnegative Ricci curvature, J. Diff. Geom. 29 (1989), no.2, 353-360.
[15] Shi, W.X., *Ricci deformation of the metric on complete noncompact Riemannian manifolds*, J. Diff. Geom., 30 (1989), 223-301.

Yuxing Deng, School of Mathematical Sciences, Beijing Normal University, Beijing, 100875, China, dengyuxing@mail.bnu.edu.cn

Xiaohua Zhu, School of Mathematical Sciences and BICMR, Peking University, Beijing, 100871, China, xhzhu@math.pku.edu.cn