M2M is a concept and a general term for all technologies that enhance the communication and network capabilities of machines and equipment. It is a combination of different types of communication technologies. M2M enables all devices and users to share information, saving operation time and improving work efficiency. M2M is not a simple data transmission, but it is an intelligent and interactive communication between machines. Even if no real-time signal is sent, the machine will actively communicate according to the established program and select intelligently according to the obtained data. The communication system refers to the general term of the technology that completes the information transmission function. The modern communication system is mainly realized by the propagation of electromagnetic waves in free space or the transmission mechanism in the guiding medium. When the wavelength of the electromagnetic wave reaches the light wave range, such a telecommunication system is called an optical communication system, and the communication system in the other electromagnetic wave range is called an electromagnetic communication system, abbreviated as a telecommunication system. The purpose of this paper is to explore the study of wireless data sharing method for M2M mobile telecommunication systems in the 5G era. It is expected that the new algorithm will make the wireless resource allocation more reasonable and improve the resource utilization rate. The performance of the deterministic measurement matrix proposed in this paper is close to or even better than that of the random measurement matrix. The M-SP algorithm greatly improves the performance of the SP algorithm. The experimental results of this paper show that when the number of microbase stations is 10, the energy consumption of the direct algorithm is 175000 W, the energy consumption of the indirect algorithm is 350000 W, and the energy consumption of the direct algorithm is much smaller than that of the indirect algorithm.

1. Introduction

5G, known as the “new engine of the digital economy,” is the technical support of common artificial intelligence and other high-tech technologies and plays an important role in the development of modern science and technology. 5G is a key new infrastructure supporting the digital, networked, and intelligent transformation of the economy and society. It not only plays a prominent role in assisting epidemic prevention and control, resumption of work and production, etc. but also has huge potential in stabilizing investment, promoting consumption, assisting upgrading, and cultivating new momentum for economic development. With the substantial increase in the demand for mobile communication, 5G will become the mainstream of communication in the era. With the continuous development of Internet technology, 5G technology is also facing higher requirements. In addition to ensuring low cost and safety and reliability, it is more important to increase the transmission rate, break the constraints of time and space, and quickly realize the interconnection of people and things. Different from the concept of traditional mobile communication system, the research focus of the 5G mobile communication system will not be the classic technologies such as point-to-point physical layer transmission and channel coding and decoding. Instead, it should rely on some emerging IT technologies, such as cloud computing and network function virtualization, and strive to seek solutions that can meet future network needs in the system...
architecture. With the continuous development of science and technology, wireless communication technology has also evolved from the original electromagnetic wave to today’s satellite communication, which greatly improves the transmission rate. M2M is one of the key technologies of the Internet of Things, which can realize the connection and communication between machines. At present, M2M is in the development stage, there are many research fields, and there are many different types of M2M products in the market. However, due to the lack of unified standards at this stage, M2M cannot achieve large-scale development. Judging from the development trend of the world, M2M technology is being widely used in social production and life. At present, China is still in the stage of sustainable development, but the current resources are limited, and sustainable development is still a strategy that must be adhered to at present. The use of M2M technology can greatly improve production efficiency and save resources, which is of great significance to the entire society.

With the development of technology, people’s demand for products is getting higher and higher, and more users will put system capacity and transmission speed in a more important position. The application of 5G technology to products can realize high-definition services, make interactive applications run faster, and allow users to get a better experience. The resource allocation algorithm and M2M communication are combined to optimize the resource allocation scheme in the energy domain, reducing energy consumption and waste. Taking the economic cost of energy loss as a measure, this paper constructs a comprehensive energy supply model powered by mixed energy sources and establishes the relationship between energy cost and energy loss.

This paper analyzes the economic cost of energy loss and proposes a cost efficiency index, which aims to measure the utilization rate of energy cost and increase the number of bits transmitted per unit energy cost.

2. Related Work

With the continuous development of communication technology, people’s requirements for communication are also getting higher and higher, but today’s energy shortage is a problem that cannot be ignored. How to improve resource utilization and reduce waste is the focus of current research. Han et al. propose an authorization-free random access scheme. The scheme allows all active user equipment (UEs) to transmit their uplink information via time-frequency resources and utilizes the proposed integrated independent component analysis of channel-free estimation. Numerical results show that the EICA-PA scheme significantly improves the probability of successful access and the uplink throughput.

[1]. Machine-to-Machine (M2M) communication is one of the promising technologies for providing intelligent services to networks. Due to the heterogeneous requirements, the number of M2M devices on the network requires additional transmission resources, and Alqahtani proposes a hybrid preemptive/nonpreemptive recovery priority scheme which can handle the heterogeneous requirements of M2M services [2]. Machine-to-machine (M2M) systems for telecommunications support independent interactions of heterogeneous devices. Skocir et al. propose an algorithm and protocol for assigning tasks to nodes in an M2M architecture. Among them, M2M devices are powered by batteries, and this mechanism links the process of measurement with user needs; that is, data is collected only when the user is interested in the data, extending the life cycle of the device [3]. Machine-to-machine (M2M) communication provides real-time monitoring and control without human intervention. Patil and Limkar presented a prototype that uses machine-to-machine (M2M) communication to implement an automated electricity monitoring and billing system using smart meters. Smart meters transmit electricity consumption information to utility companies through a communication network. Users can log in to a web server connected to the database to monitor and track power consumption graphically. The information in the database is further used to generate electricity bills for consumers. Electricity users can benefit from smart meters as they can directly view usage [4]. Meng et al. present a framework for virtualizing M2M communication and wireless networks in cellular networks with software-defined. In the proposed framework, the virtualization of the physical M2M network is implemented [5]. In order to make full use of renewable energy sources, Meng et al. propose a distribution algorithm to maximize network utility. Specifically, the algorithm only needs to track the current system state and no other information, making it suitable for dynamic wireless networks with unpredictable channels [6]. Wan et al. investigate the problem of energy efficient resource allocation to support wireless power transmission systems. In the system, sensor nodes are powered by the WPT and use the collected energy to transmit data to the base station. The results show that the algorithm achieves good results between spectral efficiency and total power consumption [7]. The key features of wireless body area network are the limited energy resources of sensor nodes and the need for highly reliable data packet transmission; so, it is very important to design an appropriate algorithm to schedule the transmission of nodes. Karimzadeh-Farshbafan and Ashktani proposed a suboptimal algorithm for scheduling transmissions, the seminmyopia algorithm, which is much less complex than previous algorithms, but has near-optimal performance. Simulation results show that the difference in energy between his proposed algorithm and the optimal algorithm (i.e., POMDP) is negligible [8]. Although these theories discuss M2M technology and wireless resource allocation to a certain extent, the combination of the two is less discussed and not practical.

3. Algorithm Method of Radio Resource Allocation of the M2M Communication System in 5G Era

3.1. 5G and M2M Development Overview. With the expansion of mobile communication network scale, 5G has become a new wireless mobile communication network
In the process of evolving from the third generation mobile communication system to the fourth generation mobile communication system, the LTE standard based on orthogonal frequency division multiplexing and multiple input multiple output is formed [10]. 5G will break through the limitations of time and space in information communication, effectively shorten the distance between people and things, and achieve the goal of interconnecting people and things more quickly, allowing 5G users to experience the best interactive experience. Figure 1 shows the LTE standard system architecture.

As can be seen from Figure 1, compared with the traditional 3G, the LTE network structure is simpler and flatter, thereby reducing the networking cost, increasing the flexibility of networking, and making network deployment simpler and network maintenance easier.

Although 5G technology has been developed with the support of IoT technology, it still faces many problems in wireless resource allocation [11, 12]. The key technologies of current research hotspots mainly include the following: (1) High-frequency transmission, (2) new multiantenna transmission, (3) simultaneous cofrequency full-duplex, (4) D2D, (5) dense network, and (6) new network architecture. Although the large-scale input and output greatly improve the system capacity and network peak capacity, the structure of the system itself is very complicated. How to reduce the complexity of the system on the basis of increasing the system capacity must be solved [13]. Figure 2 is a diagram of the capacity architecture of the 5G base station system.

Machine-to-machine technology was developed for a relatively short period of time, and the technology was not formally proposed until the 21st century [14]. When the International Telecommunication Union proposed the concept of the Internet of Things at the beginning of this century, the machine and machine technology were mentioned. Western developed countries took the lead in conducting research on M2M technology, but the standards of each country are not the same [15]. Traditional mobile communication technology is mainly designed for people-to-people communication, but M2M services are very different in real-time, data volume, etc.; so, each country has different research standards. China’s exploration of M2M technology is slightly later than that of Western countries. In 2006, M2M technology entered the mobile market and has been widely used in other production fields. At present, there is no unified standard for M2M development, and there are major security risks. In recent years, a large number of IoT devices have been maliciously hijacked by hacker DDoS attacks [16, 17]. Figure 3 is the frame diagram of the M2M cloud system.

3.2. Resource Allocation Algorithm. Collaborative communication is based on the idea of cooperation. It believes that each user has a partner during the operation process, and each device needs to help the partner to transmit information when transmitting information to improve work efficiency [18].

\[
w_1 = \sqrt{Q_1 u_1 a_1 + p_1}.
\]

Among them, \(Q_1\) represents the destination node, \(u_1\) represents the random unit power channel gain, and \(p_1\) represents the additive white Gaussian noise.

\[
w_2 = \sqrt{Q_1 u_1 a_1 + p_1}.
\]

Among them, \(Q_1\) represents the average energy of the relay point signal, and \(p_1\) represents the additive white Gaussian noise.

\[
w = \sqrt{Q_1 u_1 a_1 + \sqrt{Q_1 u_1 a_1} + p_1}.
\]

Formula (3) represents the received signal for the second time slot destination.

\[
t_i = tKK_i \frac{a^3}{(3\pi s)^3} W.
\]

Among them, \(t_i\) represents the transmit power, \(k_i\) represents the antenna gain of the transmitter, \(a\) represents the wavelength, and \(s\) represents the distance.
TW stands for path propagation loss, which is terrain and altitude-dependent.

\[
TW(dO) = 8 \log \left(\frac{T_i}{T} \right). \tag{5}
\]

where \(G \) represents a constant, and \(\delta \) represents the path loss factor.

\[
t(\varphi) = \frac{2}{\sqrt{3\pi\kappa_\varphi}} \exp \left(-\frac{\varphi - \gamma_\varphi}{3\kappa_\varphi} \right), \tag{7}
\]

where \(\gamma_\varphi \) is the mean of \(\gamma \), and \(\kappa_\varphi \) is the standard deviation of \(\varphi \).

\[
g(a) = \frac{a}{\kappa^2} \exp \left(-\frac{a^3}{3\kappa^2} \right), \tag{8}
\]

\[
u(a) = \frac{a}{\kappa} \exp \left(-\frac{a^3 + l}{3\kappa} \right) p_1 \left(\frac{la}{\kappa} \right), \tag{9}
\]

where \(l \) represents the signal peak, and \(p_1 \) represents the modified Bessel function, \(a \geq 0 \).

\[
w = \sqrt{u_s R_1} + l. \tag{9}
\]

Figure 4 is a specific system model, where \(R \) represents the Gaussian matrix, \(l \) represents the Gaussian white noise, and \(u_s \) represents the transmit power.

\[
SNR = \frac{u_i |R|^3}{L_1} = u_{i, \text{e}} |R|^3, \tag{10}
\]

\[
W = \log_b \det \left(Q_i + \frac{u_i}{L} RR^R \right). \tag{11}
\]

Figure 5 shows the massive MIMO system model, where \(w \) represents the channel capacity, the channel capacity represents the maximum amount of information that can be transmitted per second or per channel symbol, or the information rate less than this number must be able to be transmitted without errors in this channel, and \(SNR \) represents the signal at the receiver.

\[
2 \frac{L}{R} RR^R = \begin{bmatrix} R \\ \vdots \\ R_K \end{bmatrix}. \tag{11}
\]

Among them, \(R \) represents the receiving end antenna, and \(L \) represents the distance.

\[
r = (r_1^r, r_2^r, \ldots, r_s^r). \tag{12}
\]

Among them, \(r \in (1, 2) \) represents the variation range of the Gaussian variable.

\[
\left(\frac{W^U W}{B} \right) = S^{0.5} \left(\frac{U^U U}{B} \right) S^{0.5} = S. \tag{13}
\]

Among them, \(W \) represents the weakening degree, and \(S \) represents the system channel transmission matrix.

\[
k = \sqrt{u_s W_a + L}, \tag{14}
\]

where \(k \) represents the received signal, \(L \) represents the noise term, and \(u_s \) represents the average power of the transmitted signal.

\[
r = \log_b \left(y_j + u_{i, \text{e}} W^W \right), \tag{15}
\]

\[
u_j = \sqrt{k_j W_j a_j + L_j}. \tag{15}
\]

Among them, \(k_j \) represents the average power of the transmitted signal, \(u_{i, \text{e}} \) represents the reception of the signal at the user end, and \(a_j \) represents the signal at the transmission end.

3.3. Communication System Model. The purpose of communication is to transmit information. The role of a communication system is to send information from a source to one or more destinations. For point-to-point communication, the message must first be converted into an electrical signal [19]. Then, through the sending device, the signal is sent into the channel. After the receiving end uses the
receiving device to output the received signal correspondingly, it is sent to the sink to convert it into the original message. This process can be generalized by a general model of communication systems. Figure 6 is a communication system model [20].

The key problem of wireless communication is to explore the propagation characteristics of wireless electromagnetic waves. In a sense, the research on the propagation characteristics of mobile wireless electromagnetic waves is the research on the characteristics of wireless channels [21, 22]. In the process of propagation, electromagnetic waves will have a certain impact on information propagation due to factors such as buildings and terrain. Generally speaking, the communication transmission model of the system only considers the two factors of path loss and shadow fading.

Path loss refers to the loss caused by radio waves in free space, and the longer the propagation distance, the greater the path loss. Shadow fading is the shadow effect of electromagnetic fields caused by obstacles in the transmission of radio waves.

4. Experiment of the Radio Resource Allocation Algorithm for the M2M Communication System in 5G Era

4.1. Experimental Environment. In order to compare and analyze the wireless resource allocation algorithms of the communication system and explore the advantages and disadvantages of different algorithms, this paper uses the
MATLAB simulation method to conduct experimental analysis of the performance of different algorithms.

According to the data in Table 1, in this simulation experiment, the radius of the user cell participating in the experiment is 1 km, only one household participates, and the number of multipaths in the experiment is 22, which is consistent with the general level. The pilot sequence of the device is 22. There are two cells around the experiment, and there is no pilot pollution around the two cells. The signal-to-noise ratio around the cell is 17 dB, and the signal distance between the cell and the surrounding is $\alpha/3$ km.

In this experiment, the angle domain displayed by the signal from the starting point to the antenna end satisfies the uniform distribution condition.

4.2. Experimental Techniques

The emergence of a variety of wireless communication methods provides technical support for data collection and monitoring. In actual use, users can use Internet technology to transmit data information and can also use wireless networks to transmit mobile information to different users. These two methods are also commonly used in M2M communication systems, which can be switched at any time according to the network environment during use, thereby improving the stability of the communication system and increasing the information transmission rate.

According to the data in Table 2, there are four types of local area networks used in this experiment, namely, 801.12, 801.12a, 801.12b, and 801.12c. The information transmission rate is 4 Mbps, 10 Mbps, 57 Mbps, and 55 Mbps, respectively, and the frequency of use is 5 GHz and 2.4 GHz. The physical layer standards of each device are different, and different standards can be selected according to the actual situation.

According to the data in Table 3, when the system is in the communication state, the information transmission rate is 300 m/s, and the light-off state is 30%; when the system is in the network connection state, the information transmission rate is 400 m/s, and the light-off state is 50%. When the system is in no network state, the information

Table 1: MATLAB simulation parameters table.

Parameters	Value	Parameters	Value
User	1	Conductive frequency pollution	Yes/no
Number of multipaths	22	Index	3.5
Frequency sequence	22	Signal distance	$\alpha/3$
Number of cells	2	Signal to noise ratio	17 dB

Table 2: Comparison of major standards for wireless LANs.

Category	801.12	801.12a	801.12b	801.12c
Rate	4 Mbps	10 Mbps	57 Mbps	55 Mbps
Frequency band	5 GHz	5 GHz	2.4 GHz	2.4 GHz
Physical layer	IR	OFDM	CCK	PBCC
Network topology				Infrastructure

Table 3: Network status and power consumption.

Network status	Lamp status	Mode	Power consumption
Communication	300 m/s +30% out	Send	30 mA
Connected to network	400 m/s +50% out	Microsecond wake-up	0.3 mA
No network	600 m/s +70% out	Sleep mode	2 mA
Shutdown	Extinguished	Interrupt	0.7 mA

Table 4: Experimental simulation parameters.

Category	Value	Category	Value
Simulation frames	990	Channel model	EVA
Carrier frequency	1.8 GHz	Number of subscribers	5
Dynamic circuit power factor	0.6 W/Mbps	Static circuit power	0.3 w
Maximum transmission power	1.2 W	Minimum transmission rate	141 kbps
Movement speed	1.4 km/h	Number of subcarriers	100
Figure 7: Energy efficiency of centralized and distributed allocation algorithms.

Figure 8: Energy cost analysis.
transmission rate is 600 m/s, and the light off state is 70%; when the system is off, the information transmission rate is 0 m/s, and the indicator light is off. When the system is in the sending mode, the power consumption of the device is 30 mA/min; when the system is in the microsecond wake-up mode, the power consumption of the device is 0.3 mA/min. When the system is in sleep mode, the power consumption of the device is 0.7 mA/min. According to the data, when the system is in use, the network status of the system can be judged according to the status of the indicator lights, and the operating mode of the system can be judged according to the power consumption.

4.3. Experimental Simulation Parameters. In order to explore the performance of different wireless resource allocation algorithms, this paper conducts simulation analysis on the multiuser system base based on centralized and distributed algorithms. The experimental simulation parameters are as follows:

According to the data in Table 4, the number of simulated frames in this experiment is 990, the carrier frequency is 1.8 GHz, the dynamic circuit power coefficient is 0.6 W/Mbps, and the maximum transmission power of the system is 1.2 W. The moving speed of information evaluation is 1.4 km/h, the channel model of the system is EVA, the number of users in this experiment is 5, the static circuit power of the system is 0.3 W, the minimum transmission power of the system is 141 kbps, and the number of subcarriers is 100. Figure 7 is a linear diagram of the energy efficiency relationship between the centralized and distributed allocation algorithms.

5. Radio Resource Allocation Algorithm of the M2M Communication System in 5G Era

5.1. Energy Cost Analysis. The energy cost refers to the comparison between the cost paid and the benefit obtained, and the pros and cons must be weighed. It must not only have a scientific feasibility analysis but also a comprehensive economic evaluation. For example, the construction of large-scale hydropower stations and nuclear power plants is also expensive, but the benefits are greater; so, they still need to be built. In the field of wireless communication, the cost of building energy base stations may be very high, but if the follow-up role is very good, it must be invested in the early stage. In this paper, the energy cost analysis is carried out for different energy allocation algorithms, and the allocation algorithm with the best benefit and the lowest loss is selected.

According to the data in Figure 8, the average cost of time slots under different indexes is different. According to the survey data, when the resource allocation scheme of energy efficiency index is adopted, when the time is less than 25 min, the average time slot cost is in a very stable state. When the time is 25-35 min, the average time slot cost increases significantly, the average time slot cost of

![Figure 9: Energy loss analysis.](image-url)
35-45 min shows a downward trend, and the average time slot cost of 55-75 min is in a state of rapid increase and then gradually stabilizes. When the resource allocation scheme of the cost efficiency index is adopted, although the overall change trend is consistent with the energy efficiency index, the specific values are lower than the energy efficiency index, indicating that the cost efficiency index resource allocation scheme is more reasonable.

According to the survey data, when the resource allocation scheme of energy efficiency index is adopted, the cost efficiency of resources fluctuates obviously, and the cost efficiency of resources shows a downward trend at 25-35 minutes. At 35-45 min, the cost efficiency of resources showed an upward trend, and at 45-65 min, the cost efficiency of resources declined to varying degrees, and then the cost efficiency of resources remained relatively stable. When the resource allocation scheme of the cost efficiency index is adopted, the cost efficiency change of resources is consistent with the energy efficiency index, but the specific value is higher than the cost efficiency of the energy efficiency index. From this data, it can be seen that the resource allocation scheme using the cost efficiency index is more efficient.

According to the data in Figure 9, it can be known that the energy consumption under the energy consumption labels of different time slots is different. When the resource allocation scheme of the energy efficiency index is adopted, the average time slot energy consumption shows a downward trend between 0 and 10 minutes, and the average time slot energy consumption shows an upward trend between 10 and 20 minutes. Between 20 and 60 min, the average time slot energy consumption decreased to varying degrees, and the average time slot energy consumption after that showed a relatively stable state. When the resource allocation scheme of the cost efficiency index is adopted, the average time slot energy consumption between 0 and 20 minutes presents a relatively stable state. Between 20 and 50 min, the average time-slot energy consumption shows an upward trend to varying degrees and then shows a downward trend between 50 and 60 min, after which the average time-slot energy consumption fluctuates less. According to the data, the resource allocation scheme with cost efficiency index consumes less
energy than the resource allocation scheme with energy efficiency index.

According to the survey data, when the resource allocation scheme of the energy efficiency index is adopted, the energy efficiency shows a downward trend between 0 and 10 minutes and then maintains a relatively stable state with small fluctuations in energy efficiency. When the resource allocation scheme of the cost efficiency index is adopted, the energy efficiency has an upward trend between 0 and 20 minutes, and the energy efficiency has a downward trend between 20 and 40 minutes and then maintains a relatively stable state. From the perspective of the overall energy consumption, the resource allocation of the price efficiency index is better than the resource allocation scheme of the energy efficiency index.

5.2. System Capacity and Number of Users. In order to make the resource allocation relatively fair, different algorithms are used in this experiment to analyze the relationship between the system capacity and the number of users. The details are as follows:

According to the data in Figure 10, when the system is single, although the system capacity is not only increasing with the continuous increase of users but according to the specific data, the system capacity is increasing very slowly. When the number of users is 1, the system capacity is 23 kbit/s, and when the number of users is 8, the system capacity is 34 kbit/s, the increase is very small, and from the overall situation, the system capacity is also very small. When using the SA + EQ algorithm, when the number of users is 1, the system capacity is 47 kbit/s, and when the number of users is 2, the system capacity is 49 kbit/s. When the number of users is 3, the system capacity is 50 kbit/s, and when the number of users is 4, the system capacity is 51 kbit/s. When the number of users is 5, the system capacity is 52 kbit/s, and when the number of users is 6, the system capacity is 53 kbit/s, and when the number of users is 7, the system capacity is 53 kbit/s. When the number of users is 8, the system capacity is 54 kbit/s.

When using the greedy+EQ algorithm, when the number of users is 1, the system capacity is 47 kbit/s, when the number of users is 2, the system capacity is 53 kbit/s, and when the number of users is 3, the system capacity is 55 kbit/s. When the number of users is 4, the system capacity is 57 kbit/s, and when the number of users is 5, the system capacity is 58 kbit/s. When the number of users is 6, the system capacity is 59 kbit/s, when the number of users is 7, the system capacity is 59 kbit/s, and when the number of users is 8, the system capacity is 60 kbit/s. When using the SA + PA algorithm, when the number of users is 1, the system capacity is 71 kbit/s, and when the number of users is 2, the system capacity is 79 kbit/s. When the number of users is 3, the
system capacity is 81 kbit/s, when the number of users is 4, the system capacity is 82 kbit/s, and when the number of users is 5, the system capacity is 82 kbit/s. When the number of users is 6, the system capacity is 83 kbit/s, when the number of users is 7, the system capacity is 83 kbit/s, and when the number of users is 8, the system capacity is 84 kbit/s. According to the experimental data, as the number of users increases, the system capacity will continue to increase, but the increase is small, and the SA + PA algorithm has the largest system capacity.

5.3. Power Loss of Different Algorithms. According to the data in Figure 11, when the gap marker is 10, the direct consumption is 20,000 W, and the indirect consumption is 30,000 W. When the gap marker is 20, the direct algorithm consumes 30,000 W, and the indirect consumption is 41,000 W. When the gap marker is 30, the direct consumption is 43,000 W, and the indirect consumption is 50,000 W. When the gap marker is 40, the direct consumption is 50,000 W, the indirect consumption is when the gap number was 50, and 52,000 W was consumed directly and 100,000 W indirectly. When the gap number was 60, 75,000 W was consumed directly and 120,000 W indirectly. When the gap number was 70, 97,000 W was consumed directly and 137,000 W indirectly. When the gap number was 80, 107,000 W was consumed directly and 160,000 W indirectly. According to the data, the direct algorithm consumes much less energy than the indirect algorithm when the gaps are the same.

According to the survey data, with a base station number of 0, the direct energy consumption is 120,000 W, and the indirect energy consumption is 120,000 W. At a microbase station number of 2, the direct energy consumption is 130,000 W, and the indirect energy consumption is 190,000 W. At a microbase station number of 4, the direct energy consumption is 140,000 W, and the indirect consumption is 250,000 W. When the number of microbase stations is 8, the direct energy consumption is 160,000 W, and the indirect energy consumption is 320,000 W. When the number of microbase stations is 10, the direct energy consumption is 175,000 W, and the indirect energy consumption is 350,000 W. According to the data, the energy loss continues to increase as the number of microbase stations increases, but the energy loss of the direct algorithm is much smaller than that of the indirect algorithm.

6. Conclusions
With the continuous optimization and upgrading of technology, the wireless communication system has also been converted from 2G technology to 5G technology. In the 5G dense network, the number of base stations is increasing, and the network scale continues to increase. On the whole, there are more and more wireless communication resources, but there is an unfair situation in the allocation. This paper is aimed at exploring the research on the wireless resource allocation algorithm of the M2M communication system in the 5G era. It is expected that the new algorithm will make the wireless resource allocation more reasonable and improve the resource utilization rate. Although this paper has achieved some results, there are still shortcomings: (1) the resource allocation scheme explored in this paper only considers the ideal situation, but in the actual use process, uncertain factors and errors always exist and affect the performance of the system, which is not discussed in this part of the paper. (2) At present, the power supply of the M2M communication system is powered by DC power supply, but whether it can be designed to use rechargeable batteries for power supply in the actual application process or how to ensure that the work of the system is not affected in the event of a power failure. This part of the article does not discuss it.

Data Availability
No data were used to support this study.

Conflicts of Interest
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Acknowledgments
This work was supported by the Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJZD-K202101602), by Chongqing Big Data Engineering Laboratory for Children, by Chongqing Electronics Engineering Technology Research Center for Interactive Learning, by Chongqing University Innovation Research Group, by Chongqing Key Discipline of Electronic Information, by the Science and Technology Research Program of Chongqing Municipal Education Commission (KJZD-K202101602), by Chongqing Natural Science Foundation Project (CSTC2021-msxm1993), and by the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJZD-M201801601).

References
[1] H. Han, Y. Li, W. Zhai, and L. Qian, “A grant-free random access scheme for M2M communication in massive MIMO systems,” IEEE Internet of Things Journal, vol. 7, no. 4, pp. 3602–3613, 2020.
[2] S. A. Alqahtani, “Analysis of a hybrid priority scheme for multi-class M2M communications over LTE-A networks,” Arabian Journal for Science & Engineering, vol. 43, no. 12, pp. 6981–6993, 2018.
[3] P. Skocir, M. Kusek, and G. Jezic, “Energy-efficient task allocation for service provisioning in machine-to-machine systems,” Concurrency, practice and experience, vol. 29, no. 23, 2017.
[4] B. Patil and M. Limkar, “Machine to machine communication based electricity monitoring and billing system,” Semiconductors and Semimetals, vol. 8, no. 2, pp. 1–7, 2018.
[5] L. Meng, F. R. Yu, P. Si, E. Sun, Y. Zhang, and H. Yao, “Random access and virtual resource allocation in software-defined cellular networks with machine-to-machine communications,” IEEE Transactions on Vehicular Technology, vol. 66, no. 7, pp. 6399–6414, 2017.
energ-aware resource allocation for OFDMA wireless networks with hybrid energy supplies,” *IET Communications*, vol. 11, no. 11, pp. 1671–1678, 2017.

[7] X. Y. Wan, X. N. Yang, Z. Wang, and Z. FAN, “Energy efficient resource allocation algorithm for massive MIMO systems based on wireless power transfer,” *IEICE Transactions on Communications*, vol. E102.B, no. 2, pp. 351–358, 2019.

[8] M. Karimzadeh-Farshbafan and F. Ashtiani, “Semi-myopic algorithm for resource allocation in wireless body area networks,” *IET Wireless Sensor Systems*, vol. 8, no. 1, pp. 26–35, 2018.

[9] Z. Liu, M. Zhao, Y. Yuan, and X. Guan, “Subchannel and resource allocation in cognitive radio sensor network with wireless energy harvesting,” *Computer Networks*, vol. 167, p. 107028, 2020.

[10] M. Ferreira and F. Vieira, “Resource allocation in f-OFDM wireless networks with delay estimation using service curve and envelope process,” *IEEE Latin America Transactions*, vol. 18, no. 7, pp. 1222–1229, 2020.

[11] Z. Dong, J. Wei, X. Chen, and P. Zheng, “Energy efficiency optimization and resource allocation of cross-layer broadband wireless communication system,” *Access*, vol. 8, no. 99, pp. 50740–50754, 2020.

[12] Y. Zhang, Y. Zhu, Y. Feng, W. Xia, and L. Shen, “Energy-efficient radio resource allocation in software-defined wireless sensor networks,” *IET Communications*, vol. 12, no. 3, pp. 349–358, 2018.

[13] J. Xu, C. Guo, H. Zhang, and J. Yang, “Resource allocation for real-time traffic in unreliable wireless cellular networks,” *Wireless Networks*, vol. 24, no. 5, pp. 1405–1418, 2018.

[14] Z. Xie, Q. Zhu, and S. Zhao, “Resource allocation algorithm based on simultaneous wireless information and power transfer for OFDM relay networks,” *KSII Transactions on Internet and Information Systems*, vol. 11, no. 12, pp. 5943–5962, 2017.

[15] B. C. Chung, K. Lee, and D. H. Cho, “Proportional fair energy-efficient resource allocation in energy-harvesting-based wireless networks,” *Systems Journal, IEEE*, vol. 12, no. 3, pp. 2106–2116, 2018.

[16] M. Lee, G. Yu, and G. Y. Li, “Learning to branch: accelerating resource allocation in wireless networks,” *IEEE Transactions on Vehicular Technology*, vol. 69, no. 1, pp. 958–970, 2020.

[17] R. Kuntschke, M. Winter, C. Glomb, and M. Specht, “Message-oriented machine-to-machine communication in smart grids,” *Computer Science - Research and Development*, vol. 32, no. 1-2, pp. 131–145, 2017.

[18] L. Karim, Q. H. Mahmoud, N. Nasser, A. Anpalagan, and N. Khan, “Localization in terrestrial and underwater sensor-based m2m communication networks: architecture, classification and challenges,” *International Journal of Communication Systems*, vol. 30, no. 4, 2017.

[19] S. Sengan, O. I. Khalaf, G. R. Rao, D. K. Sharma, K. Amarendra, and A. A. Hamad, “Security-aware routing on wireless communication for E-health records monitoring using machine learning,” *International Journal of Reliable and Quality E-Healthcare (IJRQEHEH)*, vol. 11, no. 3, pp. 1–10, 2022.

[20] H. Ko, K. Rim, and I. Praa, “Influence of features on accuracy of anomaly detection for an energy trading system,” *Sensors*, vol. 21, no. 12, p. 4237, 2021.