Rotationally-invariant slave-bosons for strongly correlated superconductors

Aldo Isidori1 and Massimo Capone2

1Royal Holloway, University of London
2International Institute for Advanced Studies (SISSA), Trieste, Italy

Royal Holloway, University of London, June 21 (2013)
Part I: Slave-boson formulations

- Barnes (1976), Coleman (1984), Kotliar and Ruckenstein (1986), Frésard and Wölfle (1992), Lechermann et al. (2007)
- Limitations of old approaches
- Rotationally invariant formalism

Part II: Application to superconducting fullerides \((A_nC_{60}, A \equiv \text{alkali metal})\)

Perspectives
Kotliar-Ruckenstein’s slave-bosons in multi-orbital models

Auxiliary fields

- slave-bosons ϕ_n^{\dagger} for each local Fock state
 \[
 |n\rangle_d \equiv \left(d_1^{\dagger} \right)^{n_1} \cdots \left(d_M^{\dagger} \right)^{n_M} |\text{vac}\rangle, \quad [n_\alpha = 0, 1] \quad \alpha = 1, \ldots, M \quad \text{(local electronic species: orbitals and spin)}
 \]
- auxiliary fermions f_α^{\dagger} to retain Fermi-liquid properties

Representation of physical states in the *enlarged* Hilbert space \mathcal{H}:

\[
|n\rangle_d \quad \longrightarrow \quad |n\rangle \equiv \phi_n^{\dagger} |\text{vac}\rangle \otimes |n\rangle_f
\]
Kotliar-Ruckenstein’s slave-bosons in multi-orbital models

Auxiliary fields

- slave-bosons ϕ_n^\dagger for each local Fock state

 $|n\rangle_d \equiv (d_1^\dagger)^{n_1} \cdots (d_M^\dagger)^{n_M} |\text{vac}\rangle$, \quad \[n_\alpha = 0, 1\]

 $\alpha = 1, \ldots, M$ (local electronic species: orbitals and spin)

- auxiliary fermions f_α^\dagger to retain Fermi-liquid properties

Representation of physical states in the enlarged Hilbert space \mathcal{H}:

$$|n\rangle_d \mapsto |n\rangle \equiv \phi_n^\dagger |\text{vac}\rangle \otimes |n\rangle_f$$

Constraints

$$\sum_n \phi_n^\dagger \phi_n = 1$$

$$\sum_n \phi_n^\dagger \phi_n n_\alpha = f_\alpha^\dagger f_\alpha$$
Kotliar-Ruckenstein’s slave-bosons in multi-orbital models

Auxiliary fields

- slave-bosons ϕ_n^\dagger for each local Fock state

$$|n\rangle_d \equiv (d_1^\dagger)^{n_1} \cdots (d_M^\dagger)^{n_M} |\text{vac}\rangle, \quad [n_\alpha = 0, 1]$$

$\alpha = 1, \ldots, M$ (local electronic species: orbitals and spin)

- auxiliary fermions f_α^\dagger to retain Fermi-liquid properties

Representation of physical states in the enlarged Hilbert space \mathcal{H}:

$$|n\rangle_d \quad \mapsto \quad |n\rangle \equiv \phi_n^\dagger|\text{vac}\rangle \otimes |n\rangle_f$$

Constraints

$$\sum_n \phi_n^\dagger \phi_n = 1$$

$$\sum_n \phi_n^\dagger \phi_n n_\alpha = f_\alpha^\dagger f_\alpha$$

Density-density interactions

$$H_{\text{loc}} = \sum_\alpha \epsilon_\alpha^0 \hat{n}_\alpha + \sum_{\alpha\beta} W_{\alpha\beta} \hat{n}_\alpha \hat{n}_\beta, \quad \hat{n}_\alpha = d_\alpha^\dagger d_\alpha$$

$$\mapsto \quad H_{\text{loc}} = \sum_n E_n \phi_n^\dagger \phi_n, \quad H_{\text{loc}} |n\rangle = E_n |n\rangle$$

free-boson Hamiltonian!
Limitations of Kotliar-Ruckenstein’s approach

Intrinsically *basis-dependent*

1. Unable to handle *arbitrary* forms of H_{loc}
 - non density-density interactions
 - inter-orbital hybridization
 - ...

2. Unable to describe, at mean-field level, phases with *off-diagonal* order parameters
 - superconductivity
 - spin/orbital ordering off the quantization axis
 - ...
Limitations of Kotliar-Ruckenstein’s approach (I)

Arbitrary local Hamiltonian

\[
H_{\text{loc}} = \sum_{\alpha\beta} \epsilon_{\alpha\beta} d_\alpha^\dagger d_\beta + \sum_{\alpha\beta\gamma\delta} W_{\alpha\beta\gamma\delta} d_\alpha^\dagger d_\beta^\dagger d_\gamma d_\delta
\]

- the eigenstates of \(H_{\text{loc}}\) are atomic *multiplets* \(|\Gamma\rangle = \sum_n U_{\Gamma n} |n\rangle\),

\[
E_\Gamma = \sum_{nm} U_{\Gamma n}^* U_{\Gamma m} E_{nm}
\]

If we use \(|n\rangle \equiv \phi_n^\dagger |\text{vac}\rangle \otimes |n\rangle_f\), the representation of \(H_{\text{loc}}\) is *no longer* a simple free-boson Hamiltonian:

\[
H_{\text{loc}} \longrightarrow H_{\text{loc}} \overset{?}{\Rightarrow} \sum_{nm} E_{nm} \phi_n^\dagger \phi_m
\]
Limitations of Kotliar-Ruckenstein’s approach (II)

- Diagonal relation between physical electron operators and auxiliary fermions (quasiparticles):
 \[d_\alpha^\dagger = \hat{r}_\alpha [\phi] f_\alpha^\dagger \]

\[\downarrow \]

At mean-field level the (local) self-energy is diagonal:

\[\Sigma(\omega)_{\alpha\beta} = \delta_{\alpha\beta} \Sigma_\alpha(\omega) \]

- \(\langle d_\alpha^\dagger d_\beta^\dagger \rangle = 0 \quad \rightarrow \quad \text{NO charge-symmetry breaking (superconductivity)} \)

- \(\langle d_\alpha^\dagger d_\beta \rangle = \delta_{\alpha\beta} \langle \hat{n}_\alpha \rangle \quad \rightarrow \quad \text{NO off-diagonal spin/orbital magnetization} \)
Representation of physical states

- \{ |A\rangle \} \rightarrow \text{basis set for the (physical) local Hilbert space } \mathcal{H}, \text{ eigenstates of the local particle number: } \sum_{\alpha=1}^{M} d_{\alpha}^{\dagger} d_{\alpha} |A\rangle = N_{A} |A\rangle \\
 (e.g., \{ |A\rangle \} = \{ |n\rangle \}, \{ |\Gamma\rangle \}, \ldots)

- Mapping onto the enlarged Hilbert space \(\mathcal{H} \):

\[|A\rangle \leftrightarrow |A\rangle \equiv \frac{1}{\sqrt{2^{M-1}}} \sum_{n} \phi_{An}^{\dagger} |\text{vac}\rangle \otimes |n\rangle_{f} \]

\(\phi_{An}^{\dagger} \) are introduced for each pair of physical and quasiparticle states with the same statistics (\(|A\rangle, |n\rangle_{f} \)):

\[[N_{A} - \sum_{\alpha} n_{\alpha}] \mod 2 = 0 \]
Representation of physical states

- \{ |A\rangle \} \longrightarrow \text{basis set for the (physical) local Hilbert space } \mathcal{H},
 \text{eigenstates of the local particle number: } \sum_{\alpha=1}^{M} d^\dagger_{\alpha} d_{\alpha} |A\rangle = N_A |A\rangle
 \text{(e.g., } \{ |A\rangle \} = \{ |n\rangle \}, \{ |\Gamma\rangle \}, \ldots \text{)}

- Mapping onto the enlarged Hilbert space \overline{\mathcal{H}}:

 |A\rangle \iff |A\rangle \equiv \frac{1}{\sqrt{2^{M-1}}} \sum_n \phi_A^\dagger \phi_{An} \langle \text{vac} | \otimes |n\rangle_f

\phi_{An}^\dagger \text{ are introduced for each pair of physical and quasiparticle states with the same statistics } (|A\rangle, |n\rangle_f):

\left[N_A - \sum_{\alpha} n_{\alpha} \right] \text{ mod } 2 = 0 \quad \Rightarrow \quad (N_A - \sum_{\alpha} n_{\alpha}) \neq 0 \text{ enables the non-conservation of the local quasiparticle number}
Rotational invariant formalism

Physical electron operator in \mathcal{H}

- **Definition:**
 \[
 d_{\alpha}^\dagger |B\rangle = \sum_A \langle A|d_{\alpha}^\dagger |B\rangle |A\rangle
 \]
 \[
 d_{\alpha}^\dagger = \hat{R}_{\alpha\beta}^{(p)}[\phi]^*f_{\beta}^\dagger + \hat{R}_{\alpha\beta}^{(h)}[\phi]f_{\beta}
 \]

- $H = H_{\text{kin}} + \sum_i H_{\text{loc}}[i]$

- $H_{\text{loc}} \mapsto \tilde{H}_{\text{loc}} = \sum_{AB} \langle A|H_{\text{loc}}|B\rangle \sum_n \phi_{An}^\dagger \phi_{Bn} = \sum_\Gamma E_\Gamma \sum_n \phi_{\Gamma n}^\dagger \phi_{\Gamma n}$

- $H_{\text{kin}} \mapsto \tilde{H}_{\text{kin}} = \sum_{\mathbf{k}, \alpha\beta} \epsilon_{\alpha\beta}(\mathbf{k})d_{\mathbf{k}\alpha}^\dagger d_{\mathbf{k}\beta}$
 \[
 = \sum_{\mathbf{k}, \alpha\beta} \left[\hat{E}_{\alpha\beta}(\mathbf{k})[\phi] f_{\mathbf{k}\alpha}^\dagger f_{\mathbf{k}\beta} + \frac{1}{2} \left(\hat{\Delta}_{\alpha\beta}(\mathbf{k})[\phi] f_{\mathbf{k}\alpha}^\dagger f_{-\mathbf{k}\beta}^\dagger + \text{H.c.} \right) \right]
 \]

Constraints

- $\sum_{An} \phi_{An}^\dagger \phi_{An} = 1$
- $\sum_{Ann'} \phi_{An}^\dagger \phi_{An'}\langle n'|f_{\alpha}^\dagger f_{\alpha}|n\rangle = f_{\alpha}^\dagger f_{\alpha}$
- $\sum_{Ann'} \phi_{An}^\dagger \phi_{An'}\langle n'|f_{\alpha}^\dagger f_{\alpha}^\dagger|n\rangle = f_{\alpha}^\dagger f_{\alpha}^\dagger$
Saddle-point solution

- **condensation** of slave-boson fields into *static* amplitudes:
 \[\phi_{An} \to \langle \phi_{An} \rangle \equiv \varphi_{An} \]

- **minimization** of the free-energy functional
 \[\Omega[\{\varphi\}, \{\mathcal{M}\}] = -\frac{1}{\beta} \ln \mathcal{Z} \]
 with respect to \(\varphi \)'s and Lagrange multipliers \(\{\mathcal{M}\} \)
Mean-field observables

Saddle-point solution

- **Condensation** of slave-boson fields into *static* amplitudes:
 \[\phi_{An} \rightarrow \langle \phi_{An} \rangle \equiv \varphi_{An} \]

- **Minimization** of the free-energy functional
 \[\Omega[\{\varphi\}, \{\mathcal{M}\}] = -\frac{1}{\beta} \ln \mathcal{Z} \]
 with respect to \(\varphi \)'s and Lagrange multipliers \(\{\mathcal{M}\} \)

Local observables

- \[\langle \hat{O}_d \rangle = \sum_{AB} \langle A | \hat{O}_d | B \rangle \sum_n \varphi_{An}^* \varphi_{Bn} \]

- \(\hat{O}_d = d_{\alpha}^\dagger d_{\beta}, \ d_{\alpha}^\dagger d_{\beta}, \ldots \)
Mean-field observables

Physical electron propagator

- **definition** (Nambu-Gorkov formalism):
 \[D_d = - \langle T \Psi_d(k, \tau) \Psi_d^\dagger(k, 0) \rangle, \quad \Psi_d(k) \equiv \left(\begin{array}{c} \{ d_{k\alpha} \} \\ \{ d^\dagger_{-k\alpha} \} \end{array} \right) \]

- \[D_d(k, \omega) = R[\omega - h(k)]^{-1} R^\dagger, \]

- \[R[\varphi] \rightarrow \text{matrix relating physical and quasiparticle operators: } \Psi_d = R \Psi_f \]

- \[h(k)[\varphi, M] \rightarrow \text{quasiparticle energy matrix: } \]

\[H_f = \frac{1}{2} \sum_k \Psi_f^\dagger(k) h(k) \Psi_f(k) \]

NON-DIAGONAL self-energy matrix in orbital and particle-hole space:

\[\Sigma_d(\omega) = D_{d0}^{-1}(k, \omega) - D_d^{-1}(k, \omega) \]
\[= \omega \left(1 - [RR^\dagger]^{-1} \right) + \Sigma_d(0) \]
Part I: Slave-boson formulations

- Barnes (1976), Coleman (1984), Kotliar and Ruckenstein (1986), Frésard and Wölfle (1992), Lechermann et al. (2007)
- Limitations of naive approaches
- Rotationally invariant formalism

Part II: Application to superconducting fullerides (A_nC_{60}, $A \equiv$ alkali metal)

Perspectives
A model for alkali-doped fullerides: A_nC_{60}

$$H_{\text{loc}} \left[C_{60}^{n-} \right] = \frac{U}{2} \hat{n}^2 + J \left[2 \mathbf{S} \cdot \mathbf{S} + \frac{1}{2} \mathbf{L} \cdot \mathbf{L} + \frac{5}{6} (\hat{n} - 3)^2 \right]$$

- $\hat{n} = \sum_{a\sigma} \hat{d}^\dagger_{a\sigma} \hat{d}_{a\sigma}$,
 - $\sigma = \uparrow, \downarrow$
 - $a = 1, 2, 3$ t_{1u} orbitals (valence electrons)
- \mathbf{S}, \mathbf{L} spin and orbital angular momentum
- $J = -J_{\text{Hund}} + J_{\text{JT}} > 0$

Jahn-Teller coupling J_{JT}

$$J_{\text{JT}} \propto \sum_{\nu=1}^{8} \frac{g^2_{\nu}}{\omega_{\nu}} \text{ effective electron-electron interaction mediated by intramolecular vibrational modes of } C_{60}$$

Hund’s rule is reversed!
Slave-boson representation of the model

- eigenstates of H_{loc}: $|\Gamma\rangle \equiv |n, (\ell, \ell_z), (s, s_z)\rangle$

- eigenvalues: $E_{\Gamma} = \frac{U}{2} n^2 + J \left[2s(s+1) + \frac{1}{2} \ell(\ell+1) + \frac{5}{6} (n-3)^2 \right]$

$J > 0$ (inverted Hund’s rule) favors multiplets with low s and ℓ \Rightarrow Cooper pairing in the spin- and orbital- singlet channel ($s = \ell = 0$)

Mean-field observables (degenerate bands: $\epsilon_{ab}(k) = \delta_{ab}\epsilon_k$)

- quasiparticle weight: $Z[\varphi]$

- $(s = \ell = 0)$ superconducting order parameter: $\psi_{sc}[\varphi] = \sum_{a=1}^{3} \langle d_{a\uparrow}^\dagger d_{a\downarrow}^\dagger \rangle$

- low-energy spectrum: $E_{\text{low}}(k)[\varphi, M] = \pm \sqrt{(Z\epsilon_k + \lambda)^2 + |\tilde{\Delta}|^2}$
\(n_{\text{phys}} = 3 \) (half-filling), \(U = 0 \) (attractive model)

\[
\frac{\Delta}{J} = \frac{10}{9} \psi_{sc} = \frac{W}{J} e^{-\frac{1}{\lambda}},
\]

\[
\lambda = \frac{10}{3} \left(\frac{J}{W}\right)
\]

A. I. and M. Capone, Phys. Rev. B 80 (2009)
$n_{\text{phys}} = 3$ (half-filling), $J/W = 0.2$ (large pair coupling)

- Δ and ψ_{sc} decrease monotonically with U
- $U > U_{c}^{(N,S)}$ Mott-insulator: $\langle (\hat{n} - 3)^2 \rangle = 0$
- $Z > Z_{N}$: superconducting quasiparticles are more coherent than in normal metal

\[Z \]
\[Z_{N} \]
\[\psi_{sc} \]
\[\Delta/J \]
$n_{\text{phys}} = 3$ (half-filling), $J/W = 0.04$ (small pair coupling)

- **non-monotonic** behaviour of Δ and ψ_{sc} as functions of U
- $U/W \ll 1$
 - Coulomb repulsion *destroys* BCS-like superconductivity
- $W \lesssim U \lesssim U_c$
 - superconductivity *re-emerges*, with enhanced values of Δ and ψ_{sc}
\(n_{\text{phys}} = 3 \) (half-filling), \(J/U = 0.01 \) (small pair coupling)

- non-BCS superconductivity:
 \[\Delta/J \sim \mathcal{O}(1) \]
 \[\Delta/J \sim 10 \times \psi_{\text{sc}} \]

- large enhancement with respect to \(U = 0 \):
 \[\Delta[J, U \lesssim U_c] \sim 10^3 \times \Delta[J, U = 0] \]
$n_{\text{phys}} = 3$ (half-filling), $U/W = 2.5$ (strong repulsion)

- Strongly correlated superconductivity (SCS):
 - $U \sim U_c^{(N)}$
 - $\frac{10}{3} J \ll U$

- BEC superconductivity:
 - $\frac{10}{3} J \gg U$
\(\mathit{n}_{\text{phys}} = 3 - x \) (finite doping), \(U/W = 5, \quad J/W = 0.02 \)

- doping the Mott-insulator at \(J/U \ll 1 \)
- superconducting “dome” as in cuprates, with optimal doping \(x_{\text{opt}} \approx 0.1 \)
- \(\Delta/J \sim \mathcal{O}(1) \) at \(x_{\text{opt}} \)
- underdoping \((x < x_{\text{opt}}) \): \(Z > Z_N \)
- overdoping \((x > x_{\text{opt}}) \): \(Z < Z_N \)
Superconductivity is mediated by local phonons (molecular-vibrations).

Strong correlation enhances superconductivity:
- charge fluctuations are suppressed
- on-site pairing remains unscreened

Slave-bosons vs. DMFT

A similar scenario is found using Dynamical Mean-Field Theory:
M. Capone et al., Rev. Mod. Phys. 81 (2009)

- the different kinds of interactions are accurately treated on the same footing
- compared to DMFT, the computational effort is much smaller, allowing a more detailed study over a larger range of parameters
Conclusions and Perspectives

- powerful analytical tool to describe the low-energy physics of strongly correlated systems with non-trivial multiplet structure

- qualitative agreement with Dynamical Mean-Field Theory, but lower computational cost

- generalization to finite-size *mesoscopic* systems:
 - spatially dependent slave-boson amplitudes: $\varphi \to \varphi(r_i)$
 - non-homogeneous order parameters

- generalization to systems *out-of-equilibrium*:
 - time-dependent slave-boson amplitudes: $\varphi \to \varphi(t)$

 M. Behrmann, M. Fabrizio, and F. Lechermann, arXiv:1304.6013