Factors related to falls in active women over 50 years old: associated clinical and functional aspects

Abstract

Falling is a public health problem as it results in physical, psychosocial and economic damage. Identifying factors related to the risk of falling in a given population allows for the development of more specific preventive activities. The objective of this study was to associate clinical and functional characteristics with the recent history of falls in middle-aged and elderly women. A total of 152 physically active women participated in the study, 50 of whom have reported one or more falls in the last twelve months. Self-reported clinical comorbidities and motor functionality were verified using the 30'' Chair Stand Test (30CST) and the Balance Evaluation System Test (BESTest). Spearman correlation and a logistic regression analysis with the forward stepwise method were applied, considering p≤0.05. Age was inversely correlated with all BESTest items. Independent variables that were predictors of past falls were: number of comorbidities (p=0.017), performing 8 repetitions or less in the 30CST (p=0.036), having a score of 86.7% (13 points) or less in BESTest I (p=0.038), with a score of 73.3% (11 points) or less in BESTest V (p=0.050). There was an association between a history of falls and changes in muscle strength of the lower limbs and postural balance, related to biomechanical restrictions and sensory orientation in women in the study’s age group. It is concluded that, women over 50 years old, physically active, with a history of falls, demonstrate that the number of comorbidities and the lower motor performance are factors associated with the risk of falling.

Key words: Health of the Elderly. Adult Health. Postural balance. Muscle strength.

INTRODUCTION

Falling is a public health problem, since 17% of the population over 55 years old reports having fallen during the last year and, after a decade of life, this number can increase to up to 60%.1,2 It is characterized as a serious event among the elderly, as it results in both physical and tissue damage, injuries, fractures and functional decline, as well as psychosocial damage, such as increased dependence and fear of falling, isolation and loss of autonomy.3

Elderly people who have muscle weakness, vertigo, gait and balance disorders, foot problems, visual, auditory, cognitive and sensory deficits, are more susceptible to falling.4-8 The 30” Chair Stand Test (30CST) and the Balance Evaluation System Test (BESTest) are tools aimed at tracking these disorders and predicting the risk of falling.9-11

DOI: 10.15343/0104-7809.202044183192

* Universidade Estadual de Goiás - UEG. Goiânia/GO, Brasil.
** Universidade de Brasília - UnB. Brasília/DF, Brasil.
*** Instituto Euro Americano de Educação e Tecnologia - UNEURO. Brasília/DF, Brasil.
E-mail: marianafemoreira@hotmail.com
Being a woman is considered a risk factor for falling, justified by the presence of a higher risk of tripping and a higher frequency of falls when compared to men of the same age group1, 12-15. Women make up the largest portion of the Brazilian and world population16, such facts endorse the motivation to carry out studies focused exclusively on this population.

The 30CST performance is a useful indicator in the diagnosis of disability in elderly populations, and it is simple, practical and quick to be carried out in research and clinical care centers17. This test provides an indirect measurement of strength and functionality of the lower limbs, which allows it to be potentially associated with measures to prevent falls in the elderly9.

BESTest is a broad, reliable and valid tool for assessing balance in the elderly18. The several sections of tests, when analyzed together, allow to associate and identify factors related to the risk of falling in the elderly19. This test allows the evaluator to perform static and dynamic analyses that reflect the individual’s stability.

Performing physical exercises minimizes the risk and the history of falls in the elderly20 but does not completely prevent its occurrence. The fall and the factors associated with this event in women starting from 50 years old, in transition to elderly life, who have the habit of performing regular physical activity, has been rarely addressed in the literature. This is because, it is believed that this age group is minimally affected by the risk of falling, as well as being protected by the practice of exercises, widely spread as a fundamental preventive factor.

Thus, there is a gap in the literature of evidence from tests that are sensitive in screening for the risk of falling in this population. It is believed that BESTest, both in the individual interpretation of its sections and in its final sum, and the 30CST aim to identify the presence of functional deficits related to falls in an age group considered to be at a low risk of falling15.

Thus, the objective was to associate clinical and functional characteristics to the recent history of falls in middle-aged and elderly women active in the community.

METHODOLOGY

Cross-sectional analytical study, unpaired control case, carried out at the Movement Laboratory of Dr. Cláudio de Almeida Borges, installed at the College of Sports - ESEFFEGO, at Goiás State University (UEG), from January 2016 to December 2017.

A sample calculation was made for logistic regression, considering 4 independent variables (covariates k) and a proportion (p) of 32.5% of fallers, obtained from the study by Santos et al. (2013)17. The formula n=10k/p suggested by Long (1997)21 was used to guarantee a power of 80% and an alpha error of 5%. The minimum sample for this study should be 124 participants, where n=(10*4)/0.325.

The sample selection included women enrolled in the UEG Open University Program (UNATI). They were included in the study under the following criteria: a score greater than or equal to 17 regardless of the influence of education on the Mini Mental State Examination (MMSE)22, 23 and the signed informed consent form (ICF).

Exclusion criteria were the use of lower limb prostheses (or endoprostheses), the report of acute crises of vertiginous syndromes close to the date of the assessment and the use of alcoholic drinks up to 24 hours prior to data collection24.

The MMSE was applied to track cognitive losses, resulting in a score of a maximum of 30 points. Higher score values indicate higher cognitive performance. The cutoff of 24 points was suggested for people with over 9 years of education and 17 points for those with less
The following instruments were used for motor assessment: anamnesis, 30CST and BESTest.

The anamnesis provided identification data (age, date of birth, sex and telephone number), anthropometric data on weight, height, body mass index (BMI), which physical exercises were performed during that period (type of physical activity and how long ago it was performed), history of falls in the last twelve months, use of legal and illegal drugs, use of medication and surgical history.

The 30CST indirectly assesses strength and resistance of the lower limbs by recording the number of executions of sitting and rising from a chair for 30 seconds, without using the upper limbs. The number of repetitions performed was recorded and corresponded to the final score, being directly proportional to the individual’s functional performance. A score less than or equal to 9 indicated dependence on the performance of daily activities, since the score above this cutoff point was interpreted as a synonym for functional independence.

BESTest verifies postural balance through 27 items covered in 6 different sections: Biomechanical Restrictions, Stability/Vertical Limits, Anticipatory Postural Adjustments, Postural Responses, Sensory Guidance and Stability During Marching. To interpret the data, each item had a score ranging from 0 to 3, with 3 being the best performance. Each section had its score, which was transformed into a percentage. The maximum score was 118, also transformed into a percentage, with higher percentage values indicating a better balance.

All quantitative variables were assessed by the Kolmogorov-Smirnov test, to test the normality of the data distribution. Only age results showed normal distribution, as shown in table 1.

To prove correlation between age, 30CST and BESTest (association between quantitative variables), Spearman’s correlation was used, appropriate for non-normal distributions.

To better define which independent variables would be associated with the faller’s status (dependent variable), a logistic regression analysis was performed using the forward stepwise method (conditional), considering independent variables as all other qualitative and quantitative variables. Logistic regression is the most appropriate statistical technique, since the distribution of most independent variables and the number of falls (dependent variable) was not normal, which makes multiple linear regression unfeasible. The forward stepwise method introduces the significant independent variables in each step, adjusting the logistic regression model, in order to obtain the equation with better predictive capacity and eliminating non-significant variables.

In order to improve the logistic regression technique, as recommended by Fávero et al. (2009), the scaling motor variables were transformed into categorical ones: for the 30CST and all BESTest sections (including total value), several cutoff scores were established, with values that varied from the score immediately above the minimum value to the score immediately less than the maximum value. For example, in the case of BESTest I, the cutoff points ranged from 6 points (40%) to 14 points (93.3%); in the 30CST, 6 to 20 repetitions, and so on. In this transformation of the variables, if the participant had a value equal to or less than the cutoff point, she was classified as having a risk of falling, respectively, and vice versa.

The ethical and legal aspects of Resolution 466/127 were strictly followed, the project was presented and approved by the Research Ethics Committee (CEP) of the Federal University of Goiás (UFG), according to opinion No. 741.298/2014.
RESULTS

The sample consisted of 152 women, 50 of whom reported having fallen once or more in the previous twelve months and 102 did not report the occurrence of this event. Regardless of the report of falling, the selection and distribution of the sample sought homogeneity related to age and body mass index (BMI) among the participants. All performed at least one exercise or regular physical activity at least twice a week, such as gymnastics, walking, weight training, Pilates, water aerobics, volleyball or yoga, some had not yet finished the first month of practicing the activity, while others had already done it on average for four years. The homogeneity between groups is shown in Table 2.

Age was inversely and significantly correlated with all BESTest items, suggesting that the older the age, the worse the performance on this postural balance scale (Table 3). BESTest is probably sensitive to the physiological changes of aging in this physically active female population. There was a weak significant correlation between the 30CST and BESTest items I and VI, indicating that greater functional power of the lower limbs correlates with better balance performance related to biomechanical restrictions and stability during gait. Correlations whose p (Spearman’s Rho) has a value between 0.1 and 0.29 had a weak effect size, and a value between 0.3 to 0.49 had a moderate effect size.

According to the logistic regression, in the studied population, only the following independent variables are predictors of previous falls: number of comorbidities (concomitant diseases), performing 8 repetitions or less in the 30CST, having a score of 86.7% (13 points) or less on BESTest I, and score 73.3% (11 points) or less on BESTest V (Table 4). The other variables were excluded from the equation, through the conditional method, as they have no statistical significance. The logistic regression equation explains 20.2% of the data, according to R^2 Nagelkerke.

The equation for calculating risk in the studied population, derived from logistic regression, is

$$P = \frac{1}{1 + e^{-\text{logit}}}$$

$logit = -2.310 + (0.368 \times \text{QDR}) + (1.252 \times \text{TSL}) + (0.951 \times \text{B}_I) + (0.853 \times \text{B}_V)$

- P is proportion;
- NDR is the number of diseases reported (the exact number);
- 30CST is the classification of the individual as incapable when she had a 30CST value ≤ 9 (value to be assigned in the equation: 1), or as capable if she had a 30CST value > 9 (value to be attributed in the equation: 0);
- B_I is the classification of equilibrium by BESTest I with values ≤ 13 (value to be assigned in the equation: 1) or values > 13 (value to be assigned in the equation: 0);
- B_V is the classification of equilibrium by BESTest V with values ≤ 11 (value to be assigned in the equation: 1) or values > 11 (value to be assigned in the equation: 0).

Proportions above 0.2863 (cut-off point) are likely to predict previous falls with 68% sensitivity and 59.8% specificity in this population. It is possible to use this regression in Microsoft Office Excel® using the following formula (without copying quotes), which must be pasted in the spreadsheet cell:

\[=1/(1+((\text{POTÊNCIA(EXP(1)));(-((-2,31)+(0,368*\text{QDR})+(1,252*\text{30CST})+(0,951*\text{B}_I)+(0,853*\text{B}_V))))))]].\]
Table 1- Tests of normality of the distribution of variables (Goiânia-GO, February - August 2017)

VARIABLE	p value*	Distribution	VARIABLE	p value*	Distribution
Age	0.200	Normal	30CST	<0.001	Not normal
BMI	0.036	Not normal	BESTest I	<0.001	Not normal
MEEM	<0.001	Not normal	BESTest II	<0.001	Not normal
Time of physical exercise	<0.001	Not normal	BESTest III	<0.001	Not normal
Number of types of physical activity practiced	<0.001	Not normal	BESTest IV	<0.001	Not normal
Number of reported diseases	<0.001	Not normal	BESTest V	<0.001	Not normal
Number of reported surgeries	<0.001	Not normal	BESTest VI	<0.001	Not normal
Number of falls in the last 12 months	<0.001	Not normal	BESTest total	<0.001	Not normal

* Kolmogorov-Smirnov test

Table 2- Distribution of the values of age, BMI, MMSE and time of physical exercise, among participants with and without a history of fall(s) (Goiânia-GO, February - August 2017)

	NO FALL HISTORY	WITH FALL HISTORY	p value								
	Min	Q1	Med	Q3	Max	Min	Q1	Med	Q3	Max	
Age (years)	50.0	63.0	68.0	73.0	85.0	50.0	61.8	67.5	72.3	80.0	0.677
BMI (kg/m2)	18.9	23.9	26.2	29.2	44.1	15.4	24.8	27.1	30.0	41.7	0.210
MEEM (score)	12.0	27.0	29.0	29.8	30.0	21.0	25.8	28.0	29.0	30.0	0.161
Physical exercise time (months)	0.0	6.0	24.0	81.0	348.0	0.0	12.0	42.0	99.0	240.0	0.329

Legend: Min.: Minimum; Max.: Maximum; Q1: first quartile; Q3: third quartile; Med: median.
* Significance in the Mann-Whitney test, for comparison of non-normal distributions
Table 3 - Correlations between age, 30CST and BESTest (Goiânia, GO, February - August 2017)

VARIABLE	Correlation test	Age	30CST
30CST	Spearman's Rho	-0.115	1.000
	p value (bilateral)	0.160	.
BESTest I (%)	Spearman's Rho	-0.229	0.167
Restrições biomecânicas	p value (bilateral)	0.005	0.040
BESTest II (%)	Spearman's Rho	-0.199	0.106
Limites da estabilidade/ verticalidade	p value (bilateral)	0.014	0.195
BESTest III (%)	Spearman's Rho	-0.326	0.132
Ajustes posturais antecipatórios	p value (bilateral)	<0.001	0.106
BESTest IV (%)	Spearman's Rho	-0.201	-0.028
Respostas posturais	p value (bilateral)	0.013	0.735
BESTest V (%)	Spearman's Rho	-0.170	-0.022
Orientação sensorial	p value (bilateral)	0.037	0.789
BESTest VI (%)	Spearman's Rho	-0.219	0.158
Estabilidade durante a marcha	p value (bilateral)	0.007	0.051
BESTest (%)	Spearman's Rho	-0.401	0.126
Total da pontuação	p value (bilateral)	<0.001	0.122

Significant correlations in bold and italics.

Table 4 - Logistic regression using the historical variable of previous falls (Goiânia, GO, February – August 2017)

VARIABLE IN THE EQUATION	MODEL SUMMARIZATION				
Variable	B	Wald	p-value	R² Nagelkerke	0.202
History of falling	-0.713	17.055	<0.001*		
Number of reported diseases	0.368	5.676	0.017		
30CST rating ≤ 8	1.252	4.381	0.036	Sensibilidade 68,0%	
BESTest I ≤ 86.7	0.951	4.287	0.038	Especificidade 59,8%	
BESTest V ≤ 73.3	0.853	3.843	0.050	Acurácia 62,5%	
Constant	-2.310	23.821	<0.001	Ponto de corte 0,2863	

OMNIBUS TESTS OF MODEL COEFFICIENTS	CURVA ROC			
Step 4	X²	p-value	Area	p-value
Step	23.875	<0.001		
Block	23.875	<0.001	0.717	<0.001
Model	23.875	<0.001		

* The regression equation is statistically significant.
It is known that BESTest is valid to differentiate adult who fall from those who do not fall, in a population over 50 years old27. In this study, in the population of middle-aged or elderly women who perform regular physical exercises, there was an association between the previous history of falling in the previous twelve months and the alteration of the muscular strength of the lower limbs and the postural balance related to biomechanical restrictions and sensory orientation assessed respectively by the 30CST, BESTest section I and V tests. It is possible that these independent variables are capable of predicting a greater chance of future falls, although the analysis was not performed.

It can be seen that the cutoff point of the 30CST for predicting falls in this study, of 8 repetitions, is slightly lower than the score proposed by Santos et al. (2013)17, to predict that an elderly woman is functionally dependent in basic activities of daily living (9 repetitions).

The variation of motor actions and reactions that an individual may present during the execution of a task is indicative of his performance and can be defined as motor variability. The interpretation of motor variability is dependent on the function evaluated; for example in new tasks, the greater the variation, the better the indication of learning and the establishment of preferences for execution, as the motor experience will be more intense in the face of the new challenge. In usual daily and functional activities, the lower the motor variability, the greater the energy savings and the better efficiency will be at the end of the task28.

The participants who reported not having fallen during the previous year demonstrated less motor variability, that is, greater efficiency in the repetitions, reactions and adaptations required in section I of the BESTest, reflecting on a skeletal muscle performance superior to the participants with a previous history of falling. The increase in body sway on the support base can be referred to as the increase in motor variability in balance assessments, showing a direct relationship with the incidence of falls in the elderly29.

Sensory orientation, evaluated in section V of the BESTest, describes the interactions of the sensory system that the participant has; this system being one of the factors that affect postural control, resulting in instabilities for daily functions18. The modified clinical test of sensory interaction in the balance (mCTSIB) is part of the evaluation proposed in section V of BESTest. However, it also has an independent application capable of identifying, for example, that osteoporotic elderly women with a history of falls in the last 12 months have worse balance and postural control in relation to osteoporotic women without the same record30.

BESTest sections II, III, IV and VI were not able to differentiate women with a history of falling from those without a history of falls. Below, some clinical tests similar to the tasks described in the aforementioned BESTest steps are described in order to broaden the understanding of the assessment objective of each subcategory of that test.

The previous functional reach test, present in section II of BESTest as functional reach forward, was applied in the study by Campos, Vianna and Campos (2013)31, and they also did not significantly correlate with the occurrence of falls in an elderly population predominantly female and healthy.

Regarding the anticipatory postural adjustments evaluated in section III of BESTest, the items “stand on one leg” and “alternately
place the feet on a step”, are similar to tests carried out within the BERG Balance Scale. Both the BESTest and BERG Balance Scale are capable of identifying risk of falling in institutionalized older adults. Strong scientific evidence associated with their respective applications in samples that practice physical activity and live independently in the community had not yet been found.

Considered part of postural control, balance compensates for internal and external disturbances through postural responses, ensuring stability. Section IV of BESTest assesses these postural responses and corresponds to a series of external stimuli applied to the individual by the evaluator, similar to the one performed in a dynamic computerized posturography. It is possible to distinguish elderly fallers from non-fallers by means of dynamic computerized posturography. However, in this study, the postural responses in section IV of BESTest did not discriminate the sample in relation to the history of falls, considering that women are physically active.

Stability During March is the title of section VI of the BESTest and describes an application protocol similar to the Timed Up and Go and Tinetti Balance Test (Performance Oriented Mobility Assessment - POMA). Karuka, Silva and Navega (2011) analyzed the agreement between the Previous Functional Reach Test, the BERG Balance Scale, the Timed Up and Go test and the Tinetti Balance Test for the study of body balance in the elderly. They concluded that these aforementioned tests are complementary and need to be applied together to better assess balance in elderly women.

It is believed that BESTest’s proposal is to bring together the neuromusculoskeletal elements already described in the literature as influencing balance and proposing, in a single assessment instrument, the combination of these different tests described, in a single component. Thus, the clinical needs for better investigation of the balance function in the elderly are met.

This study exposes possibilities of continuity and replication, given the number of instruments mentioned that have similar purposes with peculiar characteristics and the growing need for optimization and accuracy during clinical investigations of the motor behavior of people transitioning to an elderly life; addressed here as starting from fifty years old. The broad age spectrum observed in the results was a limitation of the study.

CONCLUSION

The number of reported diseases and the level of strength and balance, detected by the study instruments, are independent variables associated with the recent history of falls in middle-aged and elderly women active in the community.

It is suggested that, when applying and interpreting the BESTest, the examiner considers the values obtained in each section, not only the final total score, to evaluate women starting from 50 years of age. It is possible, that these independent variables can also predict future falls in this population; however, it is necessary that prospective studies be carried out to confirm this hypothesis.
1. Canhada S, Prato F, Maffei S, Li DA, Aparecido M, Cabrera S. Frequência e fatores associados a quedas em adultos com 55 anos e mais. Rev Saude Publica. 2017;51:1–11.
2. Buksmann S, Vilela ALS, Pereira SRM, Lino VS, Santos VH. Sociedade Brasileira de Geriatria e Gerontologia. Projeto Diretrizes: quedas em idosos: prevenção. São Paulo: Associação Médica Brasileira, Conselho Federal de Medicina; 2008. Disponível em: https://shgg.org.br/publicacoes-cientificas/diretrizes-e-guidelines/
3. Maia BC, Viana PS, Arantes PMM, Alencar MA. Consequências das quedas em idosos vivendo na comunidade. Rev Bras Geriatr e Gerontol. 2011;14(2):381–93.
4. Tinetti ME, Speechley M, Ginter SF. Risk factors for falls among elderly persons living in the community. N Engl J Med. 1988;319(26):1701–7.
5. Lee A, Lee KW, Kung P. Preventing falls in the geriatric population. Perm J. 2013;17(4):37–9.
6. Dionyssiotis Y. Analyzing the problem of falls among older people. Int J Ger Med. 2012;5:805–13.
7. Downton JH, Andrews K. Prevalence, characteristics and factors associated with falls among the elderly living at home. Aging Clin Exp Res. 1999;33(3):219–28.
8. Pasquetti P, Apicella L, Mangone G. Pathogenesis and treatment of falls in elderly. Clin Cases Miner Bone Metab. 2014;11(3):222–5.
9. Applebaum E V., Breton D, Feng ZW, Ta AT, Walsh K, Chasse K, et al. Modified 30-second Sit to Stand test predicts falls in a cohort of institutionalized older veterans. PLoS One. 2017;12(5):1–13.
10. Bohannon RW, Bubela DJ, Magasi SR, Wang YC, Gershon RC. Sit-to-stand test: Performance and determinants across the age-span. Isokinet Exerc Sci. 2010;18(4):235–40.
11. Horák FB, Wrisley DM, Frank J. The Balance Evaluation Systems Test (BESTest) to Differentiate Balance Deficits. Phys Ther. 2009;89(5):484–98.
12. Santos SC, de Figueiredo DMP. Predictors of the fear of falling among community-dwelling elderly Portuguese people: An exploratory study. Cienc e Saude Coletiva. 2019;24(1):77–86.
13. Santos Nascimento J, Mara D, Tavares S. Prevalência e fatores associados a quedas em idosos prevalence and factors associated with falls in the elderly. Rev Saude Publica. 2011;45(6):1070–8.
14. Garman CR, Franck CT, Nussbaum MA, Madigan ML. A bootstrapping method to assess the influence of age, obesity, gender, and gait speed on probability of tripping as a function of obstacle height. J Biomech. 2015;48(6):1229–32.
15. Gervásio FM, Santos GA, Ribeiro DM, Menezes RL de. Medidas temporoespaciais indicativas de quedas em mulheres saudáveis entre 50 e 70 anos avaliadas pela análise tridimensional da marcha. Fisioter e Pesqui. 2016;23(4):358–64.
16. Instituto Brasileiro de Geografia e Estatística (IBGE). Síntese de indicadores sociais: uma análise das condições de vida da população brasileira. Coordenação de População e Indicadores Sociais. Rio de Janeiro: IBGE; 2016.
17. Santos RG dos, Tribess S, Meneguchi J, Bastos LLA da G, Damaio R, Junior JSV. Força de membros inferiores como indicador de incapacidade funcional em idosos. Revista de Fisioterapia. 2013;19(3):35–42.
18. Maia AC. Tradução e adaptação para o português - Brasil do Balance Evaluation Systems Test e do Minibestest e análise de suas propriedades psicométricas em idosos e indivíduos com doença de parkinson. Universidade Federal de Minas Gerais; 2012. Disponível em: http://dspace.ufmg.br/dspace/bitstream/1843/BUOS-8VXGHG/1/dissertacao_anglica_campos_maia.pdf
19. Anson E, Thompson E, Ma L, Jeka J. Reliability and fall risk detection for the BESTest and Mini-BESTest in older adults. J Geriatr Phys Ther. 2019;42(2):81–5.
20. Franciulli PM, Souza PA, Soares PNC, Silva VN, Severino YTN, dos Santos YG, et al. Comparison of the risk of falls between elderly people who practice physical exercises and who are sedentary and the relationship between balance and muscle strength variables. O Mundo da Saúde. 2019;43(2):360–73.
21. Long RS. Regression models for categorical and limited dependent variables: advanced quantitative techniques in the social sciences. Vol. 7, Sage Publications. 1997.
22. Chaves MLF. Testes de avaliação cognitiva : Mini-Exame do Estado Mental. 2008. Disponível em: http://www.cadastro.abneuro.org/site/arquivos_cont/8.pdf
23. Brucki SMD, Nitirin R, Caraimelli P, Bertolucci PHF, Okamoto IH. Sugestões para o uso do mini-exame do estado mental no Brasil. Arq Neuropsiquiatr. 2003;61(3 B):777–81.
24. Ribeiro DM, Bueno GAS, Gervásio FM, Menezes RL de. Foot-ground clearance characteristics in women: a comparison across different ages. Gait Posture. 2019;69:121–5.
25. Fávero LP, Belfione P, Silva FL, Chan BL. Análise de dados: modelagem multivariada para tomada de decisões. Elsevier; 2009.
26. Cohen J. Statistical Power Analysis for the Behavioral Sciences. 1988.
27. O’Hoski S, Sibley KM, Brooks D, Beauchamp MK. Construct validity of the BESTest, mini-BESTest and briefBESTest in adults aged 50 years and older. Gait Posture. 2015;42(3):301–5.
28. Sririvasan D, Mathiassen SE. Motor variability in occupational health and performance. Clin Biomech. 2012;27(10):979–93.
29. Rath R, Wade MG. The two faces of postural control in older adults: stability and function. EBioMedicine. 2017;21:5–6.
30. Menezes SRF de, Burke TN, Marques AP. Equilíbrio, controle postural e força muscular em idosas osteoporóticas com e sem
quedas. Fisioter e Pesqui. 2012;19(1):26–31.
31. Campos MPS, Vianna LG, Campos A da R. Os testes de equilíbrio Alcance Funcional e “Timed Up and Go” e o risco de quedas em idosos. Kairós Gerontol. 2013;16(4):125–38.
32. Viveiro LAP, Gomes GCV, Bacha JMR, Carvas Junior N, Kallas ME, Reis M, et al. Reliability, validity, and ability to identify fall status of the Berg Balance Scale, Balance Evaluation Systems Test (BESTest), Mini-BESTest, and Brief-BESTest in older adults who live in nursing home. J Geriatr Phys Ther. 2018;1.
33. Ivanenko Y, Gurfinkel VS. Human postural control. Front Neurosci. 2018;12:1–9.
34. Müjdeci B, Aksoy S, Atas A. Evaluation of balance in fallers and non-fallers elderly. Braz J Otorhinolaryngol. 2012;78(5):104–9.
35. Alexandre TS, Meira DM, Rico NC, Mizuta SK. Acurácia do Timed Up and Go Test para rastrear risco de quedas em idosos da comunidade. Brazilian J Phys Ther. 2012;16(5):381–8.
36. Lima JP, Brian F. Aplicação do teste de Poma para avaliar risco de quedas em idosos. Geriatr Gerontol Aging. 2012;6(2):200–11.
37. Karuka AH, Silva JAMG, Navega MT. Análise da concordância entre instrumentos de avaliação do equilíbrio corporal em idosos. Rev Bras Fisioter. 2011;15(6):460–6.
Resumo

A queda é um problema de saúde pública pois resulta em danos físicos, psicossociais e econômicos. Identificar fatores relacionados ao risco de cair em uma determinada população permite desenvolver atividades preventivas mais específicas. Objetivou-se associar características clínicas e funcionais ao histórico recente de queda em mulheres de meia idade e idosas. Participaram do estudo 152 mulheres ativas fisicamente, sendo que 50 destas, possuem relato de queda (s) nos últimos doze meses. Verificou-se o autorrelato de comorbidades clínicas e a funcionalidade motora por meio do Teste de Sentar e Levantar da Cadeira por 30’’ (TSL) e do Balance Evaluation System Test (BESTest). Aplicou-se correlação de Spearman e uma análise de regressão logística com método foward stepwis, considerando-se p≤0,05. A idade correlacionou-se inversamente com todos os itens do BESTest. Foram variáveis independentes preditoras de queda (s) pregessa (s): número de comorbidades (p=0,017), ter desempenho de 8 repetições ou menos no TSL (p=0,036), ter pontuação de 86,7% (13 pontos) ou menos no BESTest I (p=0,038), sendo indicio ter pontuação de 73,3% (11 pontos) ou menos no BESTest V (p=0,050). Houve associação entre o histórico de queda e a alteração da força muscular dos membros inferiores e do equilíbrio postural, relacionado às restrições biomecânicas e à orientação sensorial nas mulheres em transição etária do estudo. Conclui-se que, mulheres a partir de 50 anos, ativas fisicamente, com histórico de quedas, apresentam como fatores associados ao risco de cair o número de comorbidades e o menor desempenho motor.

Palavras-chave: Saúde do Idoso. Saúde do Adulto. Equilíbrio Postural. Força Muscular.

INTRODUÇÃO

A queda é um problema de saúde pública, pois, 17% da população acima de 55 anos relata ter caído durante o último ano e, após uma década de vida, esse número pode aumentar para até 60%. Caracteriza-se como um evento grave entre os idosos, pois resulta tanto em danos físicos como lesões teciduais, ferimentos, fraturas e declínio funcional, quanto em danos psicossociais, como aumento da dependência e do medo de cair, isolamento e perda da autonomia.

Idosos que apresentam fraqueza muscular, vertigem, distúrbios da marcha e equilíbrio, problemas nos pés, déficits visuais, auditivos, cognitivos e sensoriais, são mais suscetíveis a cair. O Teste de Sentar e Levantar da Cadeira por 30’’ (TSL) e o Balance Evaluation System Test (BESTest) são ferramentas direcionadas ao rastreamento desses distúrbios e à previsão do risco de queda nesta população.
Ser mulher é considerado como fator de risco para cair, justificado pela presença de maior risco de tropeçar e maior frequência de quedas quando comparadas a homens da mesma faixa etária. As mulheres compõem a maior parcela da população brasileira e mundial, tais fatos endossam a motivação de se realizar estudos focados exclusivamente neste público.

O TSL é simples, prático e rápido de ser realizado em pesquisas e atendimentos clínicos, cujo desempenho é um indicador útil no diagnóstico da incapacidade em populações idosas. Esse teste fornece uma medida indireta de força e funcionalidade de membros inferiores, o que permite associá-lo potencialmente a medidas de prevenção de quedas em idosos.

O BESTest é uma ferramenta ampla, confiável e válida para avaliação do equilíbrio em idosos. Possui diversas seções de testes que, quando analisadas em conjunto, permitem associar e identificar fatores relacionados ao risco de cair em idosos. Esse teste possibilita ao avaliador realizar análises estáticas e dinâmicas que refletem a estabilidade do indivíduo.

Realizar exercícios físicos minimiza o risco e o histórico de queda em idosos, mas não evita completamente a ocorrência do mesmo. A queda e os fatores associados a este evento em mulheres a partir dos 50 anos, em fase de transição para a vida idosa, que possuem o hábito de realizar atividade física regular, foi pouco abordado na literatura. Isto porque, acredita-se que esta faixa etária é minimamente afetada pelo risco de cair, bem como é protegida pela prática de exercícios, amplamente difundida como fator preventivo fundamental.

Desta forma, evidencias da aplicação de testes que sejam sensíveis na triagem de risco de queda a esta população é uma lacuna na literatura. Acredita-se que o BESTest, tanto na interpretação individual das suas seções quanto na sua somatória final, e o TSL visam identificar presença de déficit funcional relacionado ao evento queda em uma faixa etária considerada de baixo risco para cair.

Assim objetivou-se associar características clínicas e funcionais ao histórico recente de queda em mulheres de meia idade e idosas ativais na comunidade.

METODOLOGIA

Estudo transversal analítico, caso controle não pareado, realizado no Laboratório do Movimento Dr. Cláudio de Almeida Borges, instalado na Faculdade do Esporte - ESEFFEGO, da Universidade Estadual de Goiás (UEG), no período de janeiro de 2016 a dezembro de 2017. Foi feito um cálculo amostral, para regressão logística, considerando 4 variáveis independentes (covariáveis k) e uma proporção (p) de 32,5% de caidoras, obtida do estudo de Santos et al. (2013). Utilizou-se a fórmula n=10k/p sugerida por Long (1997), para garantir um poder de 80% e um erro alfa de 5%. A amostra mínima deste estudo deveria ser 124 participantes, em que n=(10*4)/0,325.

A seleção da amostra contou com as mulheres inscritas no programa Universidade Aberta à Terceira Idade (UNATI) da UEG. Elas foram incluídas no estudo sob os seguintes critérios: pontuação maior ou igual a 17 independentemente da influência da escolaridade no Mini Exame do Estado Mental (MEEM) e o termo de consentimento livre e esclarecido (TCLE) devidamente assinado.

Foram critérios de exclusão: o uso de próteses (ou endopróteses) de membros inferiores, o relato de crises agudas de síndromes vertiginosas próximas a data da avaliação e o uso de bebida alcoólica até 24 hrs antecedentes à realização da coleta de dados.
O MEEM foi aplicado para rastrear perdas cognitivas, resulta em um escore de no máximo 30 pontos. Os valores mais altos do escore indicam maior desempenho cognitivo. Sugere-se o ponto de corte 24 para pessoas com escolaridade acima de 9 anos e 17 para aqueles com menor escolaridade.

Os seguintes instrumentos foram utilizados para avaliação motora: anamnese, TSL e BESTest.

A anamnese fornece dados de identificação (idade, data de nascimento, sexo e telefone para contato), dados antropométricos de peso, altura, índice de massa corporal (IMC), quais exercícios físicos realizava naquele período (tipo de atividade física e há quanto tempo realizava), histórico de quedas nos últimos doze meses, uso de drogas lícitas e ilícitas, uso de medicamentos e histórico cirúrgico.

O TSL avalia indiretamente força e resistência dos membros inferiores ao registrar o número de execuções do ato de sentar e levantar de uma cadeira por 30 segundos, sem a utilização dos membros superiores. O número de repetições executadas é registrado e corresponde a pontuação final, sendo diretamente proporcional ao desempenho funcional do indivíduo, pontuação menor ou igual a 9 indica dependência na realização de atividades diárias, já a pontuação superior a esse ponto de corte é interpretada como sinônimo de independência funcional.

O BESTest verifica o equilíbrio postural por meio de 27 itens abordados em 6 seções distintas: Restrições Biomecânica, Limites da Estabilidade/Verticalidade, Ajustes Posturais Antecipatórios, Respostas Posturais, Orientação Sensorial e Estabilidade Durante a Marcha. Para sua interpretação, cada item tem uma pontuação variando de 0 a 3 sendo que, 3 consiste no melhor desempenho. Cada seção tem sua pontuação, que é transformada em porcentagem. A pontuação máxima é 118, também transformada em porcentagem, sendo que valores percentuais maiores indicam melhor equilíbrio.

Todas as variáveis quantitativas foram avaliadas pelo teste de Kolmogorov-Smirnov, para testar a normalidade da distribuição dos dados. Só os resultados de idade apresentaram distribuição normal, conforme tabela 1.

Para provar correlação entre a idade, TSL e BESTest (associação entre variáveis quantitativas), foi utilizada a correlação de Spearman, apropriada para distribuições não normais.

Para definir melhor quais seriam variáveis independentes associadas com o status de caidor (variável dependente), foi feita uma análise de regressão logística com método forward stepwise (condicional), considerando variáveis independentes todas as outras variáveis qualitativas e quantitativa. A regressão logística é a técnica estatística mais apropriada, visto que a distribuição da maioria das variáveis independentes e da quantidade de quedas (variável dependente) não é normal, o que inviabiliza a regressão linear múltipla. O método forward stepwise vai introduzindo as variáveis independentes significativas em cada passo, ajustando o modelo de regressão logística, a fim de obter a equação com melhor capacidade preditiva e eliminando variáveis não significativas.

A fim de melhorar da técnica de regressão logística, como recomendado por Fávero et al. (2009), as variáveis motoras escalares foram transformadas em categóricas: para o TSL e todas as seções do BESTest (inclusive valor total), foram estabelecidas várias pontuações de corte, com valores que variavam da pontuação imediatamente superior ao valor mínimo à pontuação imediatamente inferior ao valor máximo. Por exemplo, no caso do BESTest I, os pontos de corte variaram de 6 pontos (40%) a 14 pontos (93,3%); no do TSL, de 6 a 20 repetições, e assim por diante. Nessa transformação das variáveis, se a participante apresentava valor igual ou inferior ao ponto
RESULTADOS

A amostra composta por 152 mulheres, das quais 50 relataram ter caído uma vez ou mais nos últimos doze meses e 102 não relataram a ocorrência deste evento. Independente do relato de queda(s), a seleção e distribuição da amostra buscou uma homogeneidade relacionada à idade e índice de massa corporal (IMC) entre as participantes. Todas realizavam ao menos um exercício ou atividade física regular no mínimo duas vezes por semana, como ginástica, caminhada, musculação, pilates, hidroginástica, voleibol ou ioga, algumas ainda não haviam terminado o primeiro mês de prática da atividade, enquanto outras já realizavam em média à quatro anos. A homogeneidade entre grupos é demonstrada pela Tabela 2.

A idade correlacionou-se inversa e significativamente com todos os itens do BESTest, sugerindo que quanto maior a idade, pior o desempenho nessa escala de equilíbrio postural (Tabela 3). Provavelmente o BESTest é sensível às alterações fisiológicas do envelhecimento nessa população feminina fisicamente ativa. Houve correlação significativa fraca entre o TSL e os itens I e VI do BESTest, sinalizando que maior potência funcional dos membros inferiores se correlaciona com melhor desempenho de equilíbrio relacionado a restrições biomecânicas e estabilidade durante a marcha. As correlações cujo \(\rho \) (Rho de Spearman) apresenta valor entre 0,1 e 0,29 tem tamanho de efeito fraco, e valor entre 0,3 a 0,49 tem tamanho de efeito moderado 26.

Conforme a regressão logística, na população estudada, derivada da regressão logística, é

\[
P = \frac{1}{1 + e^{-\logit}}
\]

\(\logit = -2,310 + (0,368 * \text{QDR}) + (1,252 * \text{TSL}) + (0,951 * \text{B}_I) + (0,853 * \text{B}_V) \)

- \(P \) é proporção;
- \(\text{QDR} \) é a quantidade de doenças relatadas (o número exato);
- \(\text{TSL} \) é a classificação do indivíduo como incapaz quando tem TSL com valor \(\leq 9 \) (valor a ser atribuído na equação: 1), ou como capaz se tem TSL >9 (valor a ser atribuído na equação: 0);
- \(\text{B}_I \) é a classificação do equilíbrio pelo BESTest I com valores \(\leq 13 \) (valor a ser atribuído na equação: 1) ou valores >13 (valor a ser atribuído na equação: 0);
- \(\text{B}_V \) é a classificação do equilíbrio pelo BESTest V com valores \(\leq 11 \) (valor a ser atribuído na equação: 1) ou valores >11 (valor a ser atribuído na equação: 0).

Proporções acima de 0,2863 (ponto de corte) tem probabilidade prever quedas pregressas com
68% de sensibilidade e 59,8% de especificidade nessa população.

É possível utilizar essa regressão no Microsoft Office Excel® através da seguinte fórmula (sem copiar aspas), que deve ser colada na célula da planilha:

```
=1/(1+(POTÊNCIA(EXP(1);(-(2,31)+(0,368*QDR)+(1,252*TSL)+(0,951*B_I)+(0,853*B_V)))))).
```

Tabela 1 - Testes de normalidade da distribuição de variáveis (Goiânia-GO, fevereiro – agosto 2017)

VARIÁVEL	p valor*	Distribuição	VARIÁVEL	p valor*	Distribuição
Idade	0,200	Normal	TSL	<0,001	Não normal
IMC	0,036	Não normal	BESTest I	<0,001	Não normal
MEEM	<0,001	Não normal	BESTest II	<0,001	Não normal
Tempo de prática de exercício físico	<0,001	Não normal	BESTest III	<0,001	Não normal
Quantidade de tipos de atividade física praticada	<0,001	Não normal	BESTest IV	<0,001	Não normal
Quantidade de doenças relatadas	<0,001	Não normal	BESTest V	<0,001	Não normal
Quantidade de cirurgias relatadas	<0,001	Não normal	BESTest VI	<0,001	Não normal
Número de quedas nos últimos 12 meses	<0,001	Não normal	BESTest total	<0,001	Não normal

Legenda: IMC: índice de massa corporal; MEEM: Mini Exame do Estado Mental; TSL: Teste de Sentar e Levantar da Cadeira por 30°; BESTest: Balance Evaluation System Test. * Significância no Teste de Kolmogorov-Smirnov.

Tabela 2 - Distribuição dos valores de idade, IMC, MEEM e tempo de exercício físico, entre as participantes com e sem histórico de quedas (Goiânia-GO, fevereiro – agosto 2017)

	SEM HISTÓRICO DE QUEDA	COM HISTÓRICO DE QUEDA(S)									
	Mín	Q1	Med	Q3	Máx	Mín	Q1	Med	Q3	Máx	Valor de p*
Idade (anos)	50,0	63,0	68,0	73,0	85,0	50,0	61,8	67,5	72,3	80,0	0,677
IMC (kg/m2)	18,9	23,9	26,2	29,2	44,1	15,4	24,8	27,1	30,0	41,7	0,210
MEEM (escore)	12,0	27,0	29,0	29,8	30,0	21,0	25,8	28,0	29,0	30,0	0,161
Tempo de prática de exercício físico (meses)	0,0	6,0	24,0	81,0	348,0	0,0	12,0	42,0	99,0	240,0	0,329

Legenda: Mín.: Mínimo; Máx.: Máximo; Q1: primeiro quartil; Q3: terceiro quartil; Med: mediana. * Significância no Teste de Mann-Whitney, para comparação de distribuições não normais.
Tabela 3 - Correlações entre idade, TSL e BESTest (Goiânia-GO, fevereiro – agosto 2017)

VARIÁVEIS	Teste de correlação	Idade	TSL
TSL	Rho de Spearman	-0,115	1,000
	p valor (bilateral)	0,160	
BESTest I (%)	Rho de Spearman	-0,229	0,167
Restrições biomecânicas	p valor (bilateral)	0,005	0,040
BESTest II (%)	Rho de Spearman	-0,199	0,106
Limites da estabilidade/ verticalidade	p valor (bilateral)	0,014	0,195
BESTest III (%)	Rho de Spearman	-0,326	0,132
Ajustes posturais antecipatórios	p valor (bilateral)	<0,001	0,106
BESTest IV (%)	Rho de Spearman	-0,201	0,028
Respostas posturais	p valor (bilateral)	0,013	0,735
BESTest V (%)	Rho de Spearman	-0,170	0,022
Orientação sensorial	p valor (bilateral)	0,037	0,789
BESTest VI (%)	Rho de Spearman	-0,219	0,158
Estabilidade durante a marcha	p valor (bilateral)	0,007	0,051
BESTest (%)	Rho de Spearman	-0,401	0,126
Total da pontuação	p valor (bilateral)	<0,001	0,122

Legenda: Correlações significativas em negrito e itálico. TSL: Teste de Sentar e Levantar da Cadeira por 30”; BESTest: Balance Evaluation System Test. Correlações significativas em negrito e itálico.

Tabela 4 - Regressão logística a partir da variável histórico pregresso de quedas (Goiânia-GO, fevereiro – agosto 2017)

VARIÁVEIS NA EQUAÇÃO

Variáveis	B	Wald	p-valor
Histórico pregresso de queda(s)	-0,713	17,055	<0,001*
Quantidade de doenças relatadas	0,368	5,676	0,017
Classificação TSL ≤ 8	1,252	4,381	0,036
BESTest I ≤ 86,7	0,951	4,287	0,038
BESTest V ≤ 73,3	0,853	3,843	0,050
Constante	-2,310	23,821	<0,001

SUMARIZAÇÃO DO MODELO

SUMARIZAÇÃO DO MODELO	R² Nagelkerke	0,202

TABELA DE CLASSIFICAÇÃO

Classificação	Sensibilidade	Especificidade	Acurácia
TSL ≤ 8	68,0%	59,8%	62,5%
BESTest I ≤ 86,7	Sensibilidade 68,0%	Especificidade 59,8%	Acurácia 62,5%
BESTest V ≤ 73,3	Sensibilidade 68,0%	Especificidade 59,8%	Acurácia 62,5%

CURVA ROC

Área	p-valor
0,717	<0,001

Legenda: TSL: Teste de Sentar e Levantar da Cadeira por 30”; BESTest: Balance Evaluation System Test.

*pA equação de regressão é estatisticamente significativa.
Sabe-se que o BESTest é válido para diferenciar adultos caídos de não caídos, numa população com mais de 50 anos. Nesta pesquisa, na população de mulheres adultas de meia idade ou idosas que realizam exercício físico regular, houve associação entre o histórico progresso de queda(s) nos últimos doze meses e a alteração da força muscular dos membros inferiores e do equilíbrio postural relacionado às restrições biomecânicas e à orientação sensorial, avaliados respectivamente pelos testes TSL, BESTest seção I e V. Possivelmente essas variáveis independentes são capazes de predizer uma maior possibilidade de quedas futura, apesar de não ser a análise realizada.

Percebe-se que o ponto de corte do TSL para predição de quedas neste estudo, de 8 repetições, é ligeiramente inferior à pontuação proposta por Santos et al. (2013), para prever que uma idosa é dependente funcional nas atividades básicas da vida diária (9 repetições).

A variação de ações e reações motoras que um indivíduo apresenta durante a execução de uma tarefa é indicativa de seu desempenho e pode ser definida como variabilidade motora. A interpretação da variabilidade motora é dependente da função avaliada, pois em tarefas novas, quanto maior variação, melhor indicativo de aprendizagem e estabelecimento de preferências para execução, pois mais intensa será a experiência motora frente ao novo desafio. Já em atividades habituais e funcionais diárias, quanto menor a variabilidade motora, maior a economia de energia e melhor eficiência ao final da tarefa.

As participantes que relataram não ter caído durante o último ano demonstraram menor variabilidade motora, ou seja, maior eficiência nas repetições, reações e adaptações exigidas na seção I do BESTest, repercutindo em um desempenho músculo esquelético superior às participantes com histórico progresso de queda(s). O aumento da oscilação corporal sobre a base de apoio pode ser referido como o aumento da variabilidade motora em avaliações de equilíbrio, apresentando relação direta com a incidência de queda em idosos.

A orientação sensorial, avaliada na seção V do BESTest, descreve as interações do sistema sensorial que a participante apresenta, sendo este sistema um dos fatores que afetam o controle postural, resultando em instabilidades para funções diárias. O teste clínico modificado de interação sensorial no equilíbrio (mCTSIB) é parte da avaliação proposta na seção V do BESTest, mas também possui aplicação independente capaz de identificar, por exemplo, que idosas osteoporóticas com histórico de quedas nos últimos 12 meses possuem pior equilíbrio e controle postural em relação às osteoporóticas sem o mesmo histórico.

As seções II, III, IV e VI do BESTest, não foram capazes de diferenciar as mulheres com histórico de queda (s) daquelas sem histórico de queda. A seguir, descreve-se alguns testes clínicos semelhantes às tarefas descritas nas etapas supracitadas do BESTest no intuito de ampliar o entendimento do objetivo de avaliação de cada subcategoria do referido teste.

O teste alcance funcional anterior, presente na seção II do BESTest como alcance funcional para frente, foi aplicado no estudo de Campos, Vianna e Campos (2013) e também não se correlacionou significativamente com a ocorrência de quedas em uma população idosa predominantemente feminina e hígida.
assemelham-se a testes realizados dentro da Escala de Equilíbrio de BERG, sendo ambos, BESTest e Escala de Equilíbrio de BERG, capazes de identificar risco de queda em adultos mais velhos institucionalizados. Ainda não havia sido encontrada fortes evidências científicas associadas a suas respectivas aplicações em amostras que praticam atividade física e vivem de forma independente na comunidade.

Considerado parte do controle postural, o equilíbrio compensa perturbações internas e externas por meio de respostas posturais, assegurando estabilidade. A seção IV do BESTest avalia essas respostas posturais e corresponde a uma série de estímulos externos aplicados sobre o indivíduo pelo avaliador, semelhantes ao realizado em uma posturografia dinâmica computadorizada. É possível distinguir idosos caidores de não caidores por meio da posturografia dinâmica computadorizada. Entretanto, neste estudo, as respostas posturais da seção IV do BESTest não discriminaram a amostra em relação ao histórico de queda, considerando-se que as mulheres são fisicamente ativas.

Estabilidade Durante a Marcha nomeia a seção VI do BESTest, e descreve um protocolo de aplicação semelhante aos testes Timed Up and Go e Teste de Equilíbrio de Tinetti (Performance Oriented Mobility Assessment - POMA). Karuka, Silva e Navega (2011) analisaram a concordância entre o Teste de Alcance Funcional Anterior, a Escala de Equilíbrio de BERG, o teste Timed Up and Go e o Teste de Equilíbrio de Tinetti para o estudo do equilíbrio corporal em idosos. Eles concluíram que os testes citados são complementares e necessitam de aplicação conjunta para melhor avaliar o equilíbrio em idosas.

Acredita-se que a proposta do BESTest seja reunir os elementos neuromusculoesqueléticos já descritos na literatura como influenciadores do equilíbrio e propor, em um só instrumento de avaliação, a junção desses diferentes testes descritos, em uma única vertente. Dessa forma, atende-se às necessidades clínicas de melhor investigação da função equilíbrio em idosos.

Este estudo expõe possibilidades de continuidade e replicação, visto a quantidade de instrumentos mencionados que apresentam finalidades semelhantes com características peculiares e a crescente necessidade de otimização e acurácia durante investigações clínicas do comportamento motor de pessoas em transição etária para a vida idosa, aqui abordadas a partir dos cinquenta anos. O amplo espectro etário observado nos resultados foi uma limitação do estudo.

CONCLUSÃO

A quantidade de doenças relatas e o nível de força e equilíbrio, detectados pelos instrumentos do estudo, são variáveis independentes associadas ao histórico recente de queda em mulheres de meia idade e idosas ativas na comunidade.

Sugere-se que, ao aplicar e interpretar o BESTest, o examinador considere os valores obtidos em cada seção, não somente a sua pontuação total final, para avaliar mulheres a partir dos 50 anos de idade. Possivelmente essas variáveis independentes também podem predizer quedas futuras nessa população, porém é necessário que estudos prospectivos sejam realizados para confirmar essa hipótese.
REFERÊNCIAS

1. Canhada S, Prato F, Maifei S, Li DA, Aparecido M, Cabrera S. Frequência e fatores associados a quedas em adultos com 55 anos e mais. Rev Saude Publica. 2017;51(1):1–11.
2. Buksman S, Villela ALS, Pereira SRM, Lino VS, Santos VH. Sociedade Brasileira de Geriatria e Gerontologia. Projeto Diretrizes: quedas em idosos; prevenção. São Paulo: Associação Médica Brasileira, Conselho Federal de Medicina; 2008. Disponível em: https://sbgg.org.br/publicacoes-cientificas/diretrizes-e-guidelines/
3. Maia BC, Viana PS, Arantes PMM, Alencar MA. Consequências das quedas em idosos vivendo na comunidade. Rev Bras Geriatr e Gerontol. 2011;14(2):381–93.
4. Tinetti ME, Speechley M, Ginter SF. Risk factors for falls among elderly persons living in the community. N Engl J Med. 1988;319(26):1701–7.
5. Lee A, Lee KW, Khang P. Preventing falls in the geriatric population. Perm J. 2013;17(4):37–9.
6. Dionysiotis Y. Analyzing the problem of falls among older people. Int J Ger Med. 2012;5:805–13.
7. Dowton JH, Andrews K. Prevalence and factors associated with falls among the elderly living at home. Aging Clin Exp Res. 1991;3(3):219–28.
8. Pasquetti P, Apicella L, Mangone G. Pathogenesis and treatment of falls in elderly. Clin Cases Miner Bone Metab. 2014;11(3):222–5.
9. Applebaum E V., Breton D, Feng ZW, Ta AT, Walsh K, Chassé K, et al. Modified 30-second Sit to Stand test predicts falls in a cohort of institutionalized older veterans. PLoS One. 2017;12(5):1–13.
10. Bohannon RW, Bubela DJ, Magasi SR, Wang YC, Gershon RC. Sit-to-stand test: Performance and determinants across the age-span. Isokinet Exerc Sci. 2010;18(4):235–40.
11. Horak FB, Wrisley DM, Frank J. The Balance Evaluation Systems Test (BESTest) to Differentiate Balance Deficits. Phys Ther. 2009;89(5):484–98.
12. Dos Santos SCA, de Figueiredo DMP. Predictors of the fear of falling among community-dwelling elderly Portuguese people: An exploratory study. Cienc e Saude Coletiva. 2019;24(1):77–86.
13. Santos Nascimento J, Mara D, Tavares S. Prevalência e fatores associados a quedas em idosos prevalência e fatores associados with falls in the elderly. Artig Orig Texto Context Enferm. 2016;25(2):1–9.
14. Garman CR, Franck CT, Nussbaum MA, Madigan ML. A bootstrapping method to assess the influence of age, obesity, gender, and gait speed on probability of tripping as a function of obstacle height. J Biomech. 2015;48(6):1229–32.
15. Gervásio FM, Santos GA, Ribeiro DM, Menezes RL de. Medidas temporoespaciais indicativas de quedas em mulheres saudáveis entre 50 e 70 anos avaliadas pela análise tridimensional da marcha. Fisioter Pesqui. 2016;23(4):358–64.
16. Instituto Brasileiro de Geografia e Estatística (IBGE). Síntese de indicadores sociais: uma análise das condições de vida da população brasileira. Coordenação de População e Indicadores Sociais. Rio de Janeiro: IBGE; 2016.
17. Santos RG dos, Tribess S, Meneguci J, Bastos LLA da G, Damiao R, Junior JSV. Força de membros inferiores como indicador de incapacidade funcional em idosos. Mestr. Rev Educ Fis. 2013;19(3):35–42.
18. Maia AC. Tradução e adaptação para o português - Brasil do Balance Evaluation Systems Test e do Mini-BESTest e análise de suas propriedades psicométricas em idosos e indivíduos com doença de parkinson. Universidade Federal de Minas Gerais; 2012. Disponível em: http://dspace.lcc.ufmg.br/dspace/bitstream/1843/BUOS-8VXGHG/1/disserta_o_anglica_campos_maia.pdf
19. Anson E, Thompson E, Ma L, Jeka J. Reliability and fall risk detection for the BESTest and Mini-BESTest in older adults. J Geriatr Phys Ther. 2019;42(2):1–5.
20. Franciulli PM, Souza PA, Soares PNC, Silva VN, Severino YTN, dos Santos YG, et al. Comparison of the risk of falls between elderly people who practice physical exercises and who are sedentary and the relationship between balance and muscle strength variables. O Mundo da Saúde. 2019;43(2):360–73.
21. Long RS. Regression models for categorical and limited dependent variables: advanced quantitative techniques in the social sciences. Vol. 7, Sage Publications. 1997.
22. Chaves MLF. Testes de avaliação cognitiva : Mini-Exame do Estado Mental. 2008. Disponível em: http://www.cadastro.abneuro. org/site/arquivos_cont/8.pdf
23. Brucki SMD, Nitir R, Caramelli P, Bertolucci PHF, Okamoto IH. Sugestões para o uso do mini-exame do estado mental no Brasil. Arq Neuropsiquiatr. 2003;61(3 B):777–81.
24. Ribeiro DM, Bueno GAS, Gervásio FM, Menezes RL de. Foot-ground clearance characteristics in women: a comparison across different ages. Gait Posture. 2019;69:121–5.
25. Fávero LP, Belfione P, Silva FL, Chan BL. Análise de dados: modelagem multivariada para tomada de decisões. Elsevier. 2008;26. Cohen J, Statistical Power Analysis for the Behavioral Sciences. 1988.
26. O’Hoski S, Sibley KM, Brooks D, Beauchamp MK. Construct validity of the BESTest, mini-BESTest and briefBESTest in adults aged 50 years and older. Gait Posture. 2015;42(3):301–5.
27. Srinivasan D, Mathiassen SE. Motor variability in occupational health and performance. Clin Biomech. 2012;27(10):979–93.
28. Rath R, Wade MG. The two faces of postural control in older adults: stability and function. EBioMedicine. 2017;21:5–6.
29. Menezes SRF de, Burke TN, Marques AP. Equilíbrio, controle postural e força muscular em idosas osteoporóticas com e sem...
31. Campos MPS, Vianna LG, Campos A da R. Os testes de equilíbrio Alcâncio Funcional e “Timed Up and Go” e o risco de quedas em idosos. Kairós Gerontol. 2013;16(4):125–38.
32. Viveiro LAP, Gomes GCV, Bacha JMR, Carvas Junior N, Kallas ME, Reis M, et al. Reliability, validity, and ability to identity fall status of the Berg Balance Scale, Balance Evaluation Systems Test (BESTest), Mini-BESTest, and Brief-BESTest in older adults who live in nursing home. J Geriatr Phys Ther. 2018;1.
33. Ivanenko Y, Gurfinkel VS. Human postural control. Front Neurosci. 2018;12:1–9.
34. Müjdeci B, Aksoy S, Atas A. Evaluation of balance in fallers and non-fallers elderly. Braz J Otorhinolaryngol. 2012;78(5):104–9.
35. Alexandre TS, Meira DM, Rico NC, Mizuta SK. Acurácia do Timed Up and Go Test para rastrear risco de quedas em idosos da comunidade. Brazilian J Phys Ther. 2012;16(5):381–8.
36. Lima JP, Brian F. Aplicação do teste de Poma para avaliar risco de quedas em idosos. Geriatr Gerontol Aging. 2012;6(2):200–11.
37. Karuka AH, Silva JAMG, Navega MT. Análise da concordância entre instrumentos de avaliação do equilíbrio corporal em idosos. Rev Bras Fisioter. 2011;15(6):460–6.