Parents’ Acceptance to Alveolar and Nasoalveolar Molding Appliances during Early Cleft Lip and Palate Care: A Call for High-Quality Research

Mohamed Abd El-Ghafour, Sherif A. Elkordy, Mona M. Salah Fayed, Amr Ragab El-Beialy, Faten Hussein Kamel Eid

Department of Orthodontics, Faculty of Dentistry, Cairo University, Cairo, Egypt

Abstract

AIM: Acceptance and compliance of the parents are an essential pillar in the success of pre-surgical infant orthopedics (PSIO) treatment. The aim of this systematic review is to evaluate the burden of care associated with the alveolar molding (AM) and nasoalveolar molding (NAM) appliances as experienced by the parents with unilateral complete cleft lip and palate (UCLP) infants.

METHODS: An electronic search was carried out by two reviewers in eight search engines, as well as a manual search till July 2019. Randomized controlled trials (RCTs) comparing AM/NAM appliances to controls in infants with UCLP were selected. Risk of bias was evaluated using Cochrane risk of bias assessment tool for RCTs.

RESULTS: One RCT was included in the qualitative analysis. Non-significant differences were found in the amount of mothers’ satisfaction between the intervention and control groups.

CONCLUSIONS: Insufficient low-quality evidence is available regarding the effects of AM and NAM on parents’ satisfaction and burden of care. No conclusions can be withdrawn from the existing studies. High-quality research is needed to elucidate the degree of parents’ acceptance to the molding appliances. PROSPERO registration number: CRD42016043174.

Introduction

Rationale

Cleft lip and palate (CLP) is considered the most common craniofacial anomaly in different populations [1]. Management of patients suffering from CLP can start early at infancy [2] with treatment goals of lip segments approximation, nostrils symmetry achievement, increase columellar length, and alveolar segments alignment [3]. In other words, the aim at infancy is to help the surgeons to achieve better surgical result by decreasing the severity of the cleft defect [4]. It was assumed that pre-surgical infant orthopedics (PSIO) might help in achieving these goals.

PSIO appliances were introduced in the orthodontic literature, including passive plates [5], active plates [6], pin-retained Latham’s appliance [7], and nasoalveolar molding (NAM) [3]. In 1978, Hotz et al. [8] used an intraoral plate to mold the maxillary segments before the surgical lip repair, this was only by the concept of “alveolar molding” (AM). Several years after, Grayson et al. [3] introduced the NAM concept in 1993. A nasal stent was added the intraoral plate to mold the nasal cartilage into a normal form [3] taking a further step toward achieving the PSIO goals. Both Hotz’s and Grayson’s intraoral plates were activated by addition of soft acrylic on the fitting surface at the pressure areas and grinding at the relief areas.

From all the steps of CLP management protocol, the step of PSIO is considered as the most doubtful. The researchers’ recommendations of PSIO usage were swinging between strong promoters [9], [10], [11], [12] and heavy opponents [5], [13], [14], [15], [16]. According to the latest systematic reviews [17], [18], [19], [20], NAM was considered as the most effective type of PSIO, depending on the available low-quality evidence.

Because of the handicapping nature of the infants, the success of PSIO depends mainly on the parents’ positive interaction and commitment. Several studies [16], [21], [22], [23], [24], [25], [26], [27] evaluated the parents’ satisfaction while dealing with the PSIO. They measured the amount of load on the parents, while carrying out the procedures of taking care of their child in this period. Some of those studies [25], [26] found that there is an increased burden on the parents, while others [16], [24] did not support this finding. In addition, some authors [21], [23] found that the parents were...
Parents' satisfaction to nasoalveolar molding: Systematic review

Abd El-Ghafour et al.

Parents Satisfaction to Nasoalveolar Molding: Systematic Review

July 2019

Search strategy used

Results

Table 1: The electronic databases searched, the search strategies used, and the corresponding results

Electronic database	Date	Search strategy used	Results
PubMed	July 2019	(Cleft lip and palate OR cleft lip OR cleft palate OR unilateral OR cleft alveolus) AND Nasoalveolar molding	860
Cochrane library	July 2019	OR cleft gap OR alveolar notch OR alveolar cleft AND Nasoalveolar molding	107
LILACS	July 2019	OR nasoalveolar molding OR NAM OR Pre-surgical Nasoalveolar molding OR	51
Scopus	July 2019	nasoalveolar molding OR PNAM OR Pre-surgical appliance OR Pre-surgical appliance	175
Wiley online Library	July 2019	device OR Pre-surgical orthopedics OR Pre-surgical appliance OR Nasal stents	23
Web of Science	July 2019	OR nasoalveolar molding OR alveolar molding OR alveolar molding	429
Ovid	July 2019	nasal alveolar molding OR nasal alveolar molding	8
ScienceDirect	July 2019		237

Open Access Maced J Med Sci. 2020 May 09; 8(1):58-64.
to detect attrition bias, while the sixth item is selective reporting for the reporting bias recognition. Finally, the seventh item is to evaluate any other sources of bias found by the reviewers; mostly the absence of sample size calculation was considered in this item. Three decisions to be made; either low, unclear, or high risk of bias and if a study receives a single unclear or high risk of bias the whole study takes the same evaluation.

Summary measures and synthesis of results

According to the Cochrane Handbook for systematic Reviews of interventions [29], the possible heterogeneity between the included studies was assessed in its three forms; clinical, methodological, and statistical heterogeneity. Clinical heterogeneity was assessed by comparing the demographic data of the included studies. Methodological heterogeneity was evaluated by appraisal of the followed AM/NAM protocol. In the current review, statistical heterogeneity was not assessed due to the inability to perform a meta-analysis.

Table 2: Inclusion and exclusion criteria

Category	Inclusion criteria	Exclusion criteria
Participants	a. Patients younger than 1 month at start of treatment.	a. Patients older than 30 days at start of treatment.
	b. Infants with unilateral complete cleft lip and palate.	b. Infants with unilateral incomplete cleft lip and palate.
	c. Bilateral cleft lip and palate cases.	
Intervention	Any technique of nasoalveolar molding	All other pre-surgical infant orthopedic devices including reversed expansion screws, pins (Latham appliance).
Comparator	Presence of no molding control group.	Absence of no molding control group.
Outcomes	Parents’ burden of care, including their ability to handle the appliance and their psychological status during NAM treatment.	Any other outcomes.
Study design	a. Randomized controlled trials (RCTs).	a. Prospective controlled clinical trials (CCTs).
	b. Quasi randomized controlled trials (quasi-RCTs).	b. Retrospective studies.
Language restriction	Only studies written in English language.	

Table 3: Data extraction sheet of the included study

Study	Study Design and setting	Total number of patients	Patients’ age and characteristics	NAM Technique	AM or NAM (Presence of nasal stent)	Follow-up period	Types of Records	Pre-surgical records	Lip closure	Post-surgical records	Outcome
1	Prath et al. [16] 2008	RCT/ In three participating academic cleft palate centers in the Netherlands: Rotterdam, Amsterdam and Nijmegen.	48	2 weeks/ Complete UCLP infants born at term, both parents Caucasian and fluent in the Dutch language, and trial entrance within 2 weeks after birth.	Combined treatment	No	12 months	Questionnaire	T1*: at 6 wk.	T3: at 25 wk.	Parents Satisfaction
2	Prath et al. [16] 2008	C	Results from this study show that infant orthopedics, with a passive plate during the first year of life, in children with a unilateral cleft lip and palate has no influence on the mothers’ satisfaction in motherhood.								

Risk of bias across studies

For assessment of publication bias, standard funnel plots and contoured enhanced funnel plots were planned to be used, only when more than ten studies included in the meta-analysis [29].

The Grades of Recommendation, Assessment, Development, and Evaluation (GRADE) [30], [31] was the tool used to assess the overall quality of evidence for each of the main outcomes. Evaluation of the methodological quality of the studies, the directness of evidence, the inconsistency, the precision of effect estimates, and the risk of publication bias were assessed using the GRADE profiler. The certainty of evidence was interpreted in four categories; very low quality, low quality, moderate quality, and high quality. Very low quality was defined as a study that is very unlikely to have an important impact on the confidence in the estimate of effect and is likely to change the estimate. Moderate quality, further research will have an important impact on the confidence in the estimate and may change it. High quality, the confidence in the estimate is high and new research is very unlikely to change this estimate.

Additional analysis

No additional analyses were performed in the presented systematic review.

Results

Study selection and characteristics

The electronic search resulted in 1917, while the manual search produced 27 studies (Figure 1). After
duplicates removal using Mendeley Desktop software (version 1.13.8), 1183 articles were subjected to screening by title and abstract. After 1178 exclusions, five studies were read in full text. As a result of full text screening, four articles [21], [22], [23], [24] were excluded with reasons (Table 4) and one study [16] met the inclusion criteria and were included in the qualitative analysis.

The included study [16] was measuring the mother’s satisfaction while dealing with the Hotz molding plate.

Risk of bias within studies

The Cochrane risk of bias assessment tool [28] was used for the included RCT [16] (Table 5). Seven criteria were evaluated for the included RCT. For the random sequence generation, blinding of outcome assessment, incomplete outcome data and selective reporting, the included RCT was with low risk of bias. For the allocation concealment, blinding of outcome assessment and other risks, it recorded unclear risk of bias. The overall risk of bias of the included RCT was reached to be unclear risk of bias.

Table 4: Excluded papers with reasons

Article	Reason for exclusion
Sischo et al. [21] 2015	No control group
Sischo et al. [22] 2016	Mixed unilateral and bilateral CLP
Broder et al. [23] 2016	Mixed unilateral and bilateral CLP
Hopkin et al. [24] in 2016	No control group and retrospective study

CLP: Cleft lip and palate.
Results of individual studies, meta-analysis, and additional analyses

The parents’ satisfaction was reported in only one RCT [16] and they found no difference between molding and no molding groups. The range of the mean scores for the individual items on the questionnaires for both groups ranged between 1.1 and 2.4. Mothers appear to be satisfied in motherhood, least satisfied with the available time for themselves, and very satisfied with hugging and walking their babies. No differences were found between groups. In the current systematic review, no meta-analyses were performed.

Risk of bias across studies

The GRADE approach for rated the available evidence as low quality for the assessed outcome (Table 6). Low quality evidence was found for parents’ satisfaction at T2 and T3.

Discussion

Controversies exist regarding the inclusion of PSIO in the followed CLP treatment protocols in the cleft centers around the world [2]. Management of infants in their 1st weeks in life is very difficult on both the parents and healthcare providers. Since that the parents are the main performers in the NAM treatment, the aim of this systematic review are to evaluate their responses with such a treatment.

A preplanned inclusion criteria were set. Studies discussed both AM and NAM appliances were included, as alveolar molding is a common step in both types. To increase the validity of this systematic review’s results, only RCTs were included. An important inclusion criterion was strictly followed, was the presence of control group for comparison.

Summary of evidence

After the systematic search, only one RCT [16] was found fitting into the inclusion criteria. This RCT made on the mothers of 48 infants with UCLP divided into 24 using Hotz plate versus 24 controls. In this study, nasal stents were not used.

In the solely found RCT [16], no differences were found between groups regarding the mother’s response to her child with and without molding. The presence of one study was insufficient to conclude the real effect of the appliances’ usage on the parents especially that, this single article did not discuss the burden of appliance posed itself, the parents’ stress and anxiety of the parents nor the effect on the fathers.

The four excluded studies [21], [22], [23], [24] evaluated the caregiver responses to the NAM appliance treatment phase. Unfortunately, these studies mixed the unilateral and bilateral cleft infants, in addition to the lack of the control group in two studies [21], [24] and that is why they were excluded from the current systematic review.

Despite of the indifferent results between the treated and the control groups in the included study [16], the excluded studies [21], [22], [23], [24] reached different conclusions. The excluded studies found a positive impact on the parents with children treated with NAM appliances. They concluded that completing the NAM treatment was often associated with positive factors such as increased empowerment, self-esteem, and bonding with their child [21], [22], in addition to more acceptable esthetic outcomes [23].

Surprisingly, none of available articles evaluated the ability of the parents to handle the

Table 5: Assessment of risk of bias for the included RCT using Cochrane risk of bias assessment tool

Study	Random sequence	Allocation concealment	Blinding of participants and researchers	Blinding of outcome assessment	Incomplete outcome data	Selective reporting	Other bias	Overall risk of bias
Prahl et al.	Low	Unclear	Low	Unclear	Low	Low	Unclear	Unclear
[16] 2008								

Table 6: GRADE summary of findings table for the main outcomes of the systematic review

Outcomes	Anticipated absolute effects (95% CI)	Risk with Alveolar and Nasoalveolar Molding	No of participants	Certainty of the evidence (GRADE)	Comments
Parent Satisfaction (Parent Satisfaction) assessed with: Questionnaire Scale from: 1 to 4 follow-up: up to 58 weeks	Risk with Alveolar and Nasoalveolar Molding	No of participants	Certainty of the evidence (GRADE)	Comments	
48 (1 RCT)	@95-78%	LOW	Only one study found on parents satisfaction; outcome discussing only the mother’s satisfaction and found no difference between the groups	}	

¹ Unclear risk of bias in allocation concealment. ² Only 48 patients included. ³ Only 28 patients were included. ⁴ High risk of bias. ⁵ Very wide confidence interval. ⁶ Confidence interval includes no effect. ⁷ Very wide confidence interval and including no effect. ⁸ Non-randomized study. ⁹ No study high risk of bias.
NAM appliances nor measuring the degree of their acceptance to the hectic appliance. All the found studies [16], [21], [22], [23], [24] evaluated the psychological side only of the parents, missing a former step of evaluating the parents’ acceptance to the appliance itself at the very beginning.

Limitations of the available evidence

The included RCTs were of low quality and with unclear risk of bias. No meta-analyses were performed due to the scarcely data. It seems that the degree of parents’ satisfaction was not in the interest of most of the researchers.

Generalizability and applicability

A knowledge gap still exists regarding the ability of the parents to handle the appliance. More high-quality studies are strongly recommended to explore this vague point.

This systematic review spots the light on a missed outcome in the literature, which is parents’ satisfaction while dealing with AM and NAM appliances. This article will motivate the researchers to assess an unexplored outcome.

Conclusions

Based on the available low-quality evidence, no conclusions can be withdrawn for the effect of AM or NAM on parents’ burden of care and NAM appliance acceptance. Insufficient evidence is currently available regarding the effects of AM and NAM on infants with UCLP, especially for parents’ satisfaction.

Implications for research

1. Further well-designed high quality RCTs are needed to evaluate parents’ satisfaction with and without NAM.
2. Post-surgical records should be available to determine the effect on the parents after lip repair.
3. The presence of control group is strongly advisable to reach true results about the burden of care.
4. Standardization of evaluation time points and the used questionnaires is important factors to allow for future pooling of data for the unevaluated outcomes.

References

1. Mossey PA, Modell B. Epidemiology of oral clefts 2012: An international perspective. Front Oral Biol. 2012;16:1-8. PMid:22759666
2. Colbert SD, Green B, Brennan PA, Mercer N. Contemporary management of cleft lip and palate in the United Kingdom. Have we reached the turning point? Br J Oral Maxillofac Surg. 2015;53(7):594-8. https://doi.org/10.1016/j.bjoms.2015.06.010 PMid:26130590
3. Grayson BH, Cutting C, Wood R. Preoperative columnella lengthening in bilateral cleft lip and palate. Plast Reconstr Surg. 1993;92(7):1422-3. PMid:8248436
4. Rubin MS, Clouston S, Ahmed MM, M Lowe K, Shetye PR, Broder HL, et al. Assessment of presurgical clefts and predicted surgical outcome in patients treated with and without nasoalveolar molding. J Craniofac Surg. 2015;26(1):71-5. https://doi.org/10.1097/pcs.0000000000001233 PMid:25534051
5. Prahl C, Kuijpers-Jagtman AM, van’t Hof MA, Prahl-Andersen B. A randomised prospective clinical trial into the effect of infant orthopaedics on maxillary arch dimensions in unilateral cleft lip and palate (Dutchclip). Eur J Oral Sci. 2001;109(5):297-305. https://doi.org/10.1034/j.1600-0722.2001.00056 PMid:11695749
6. McNEIL CK. Orthodontic procedures in the treatment of congenital cleft palate. Dent Rec (London). 1950;70(5):126-32. PMid:24537837
7. Latham RA, Kusy RP, Georgiade NG. An extraorally activated expansion appliance for cleft palate infants. Cleft Palate J. 1976;13:253-61. https://doi.org/10.1097/00006534-197803000-00085 PMid:780004
8. Hotz MM, Gnoinski WM, Nussbaumer H, Kistler E. Early maxillary orthopedics in CLP cases: Guidelines for surgery. Cleft Palate J. 1978;15(4):405-11. PMid:281285
9. El-Haddad A. Evaluation of Presurgical Orthopedic Appliances in Early Management of Unilateral Cleft Lip and Palate. PhD Thesis, Cairo University; 2005. p. 1-160.
10. Adachi K, Togashi S, Yanagawa T, Ishibashi N, Goto T, Yamagata K, et al. Presurgical orthopedic treatment ameliorates postoperative nasal deformity after cheiloplasty. Ann Plast Surg. 2013;71(2):170-5. https://doi.org/10.1097/sap.0b013e318246814e PMid:23123612
11. Karube R, Sasaki H, Togashi S, Yanagawa T, Nakane S, Ishibashi N, et al. A novel method for evaluating postsurgical results of unilateral cleft lip and palate with the use of Hausdorff distance: Presurgical orthopedic treatment improves nasal symmetry after primary cheiloplasty. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;114(6):704-11. https://doi.org/10.1016/j.ooo.2012.01.042 PMid:22906581
12. Shetty V, Agrawal RK, Sailer HF. Long-term effect of presurgical nasoalveolar molding on growth of maxillary arch in unilateral cleft lip and palate: Randomized controlled trial. Int J Oral Maxillofac Surg. 2017;46(8):977-87. https://doi.org/10.1016/j.ijom.2017.03.006 PMid:28416097
13. Prahl C, Kuijpers-Jagtman AM, Van ’t Hof MA, Prahl-Andersen B. A randomized prospective clinical trial of the effect of infant orthopedics in unilateral cleft lip and palate: Prevention of collapse of the alveolar segments (Dutchcleft). Cleft Palate Craniofac J. 2003;40(4):337-42. https://doi.org/10.1597/1545-1569(2003)040<0337:arpcto>2.0.co;2 PMid:12846598

14. Prahl C, Kuijpers-Jagtman AM, Van ’t Hof MA, Prahl-Andersen B. Infant orthopedics and facial appearance: A randomized clinical trial (Dutchcleft). Cleft Palate Craniofac J. 2005;42(2):171-7. https://doi.org/10.1597/03-111.1 PMid:15748132

15. Prahl C, Prahl-Andersen B, Van ‘t Hof MA, Kuijpers-Jagtman AM. Infant orthopedics and facial appearance: A randomized clinical trial (Dutchcleft). Cleft Palate Craniofac J. 2006;45(6):659-64. https://doi.org/10.1597/05-139 PMid:17105328

16. Prahl C, Prahl-Andersen B, Van’t Hof MA, Kuijpers-Jagtman AM. Presurgical orthopedics and satisfaction in motherhood: A randomized clinical trial (Dutchcleft). Cleft Palate Craniofac J. 2008;45(3):284-8. https://doi.org/10.1597/07-045.1 PMid:18452361

17. Papadopoulos MA, Koumpridou EN, Vakalis ML, Papageorgiou SN. Effectiveness of pre-surgical infant orthopedic treatment for cleft lip and palate patients: A systematic review and meta-analysis. Orthod Craniofac Res. 2012;15(4):207-36. https://doi.org/10.1111/j.1601-6343.2012.01552.x PMid:23020693

18. Abbott MM, Meara JG. Nasoalveolar molding in cleft care: Is it efficacious? Plast Reconstr Surg. 2012;130(3):659-66. PMid:22929251

19. van der Heijden P, Dijkstra PU, Stellingsma C, van der Laan BF, Korsten-Meijer AG, Goorhuis-Brouwer SM. Limited evidence for the effect of presurgical nasoalveolar molding in unilateral cleft on nasal symmetry: a call for unified research. Plast Reconstr Surg. 2013;131(1):63e-71e. https://doi.org/10.1097/PRS.0b013e318267d4a5 PMid:23271555

20. Uzel A, Alparslan ZN. Long-term effects of presurgical infant orthopedics in patients with cleft lip and palate: A systematic review. Cleft Palate Craniofac J. 2011;48(5):587-95. https://doi.org/10.1597/10-008 PMid:20858135

21. Sischo L, Broder HL, Phillips C. Coping with cleft: A conceptual framework of caregiver responses to nasoalveolar molding. Cleft Palate Craniofac J. 2015;52(6):640-50. https://doi.org/10.1597/14-113 PMid:25225840

22. Sischo L, Clouston SA, Phillips C, Broder HL. Caregiver responses to early cleft palate care: A mixed method approach. Health Psychol. 2016;35(5):474-82. https://doi.org/10.1037/hea000262 PMid:26280177

23. Broder HL, Flores RL, Clouston S, Kirschner RE, Garfinkle JS, Sischo L, et al. Surgeon’s and Caregivers’ Appraisals of Primary Cleft Lip Treatment with and without Nasoalveolar Molding: A Prospective Multicenter Pilot Study. Plast Reconstr Surg. 2016;137(3):338-45. https://doi.org/10.1097/01.pr.0000479979.83169.57 PMid:26910677

24. Hopkins EE, Gazea E, Marazita ML. Parental experience caring for cleft lip and palate infants with nasoalveolar moulding. J Adv Nurs. 2016;72(10):2413-22. https://doi.org/10.1111/jan.12994 PMid:27144851

25. Chen YF, Liao YF. A modified nasoalveolar molding technique for correction of unilateral cleft nose deformity. J Craniomaxillofac Surg. 2015;43(10):2100-5. https://doi.org/10.1016/j.jcms.2015.10.003 PMid:26541749

26. Rau A, Ritschel LM, Mücke T, Wolff KD, Loeffelbein DJ. Nasoalveolar molding in cleft care—experience in 40 patients from a single centre in Germany. PLoS One. 2015;10(3):e0118103. https://doi.org/10.1371/journal.pone.0118103 PMid:25734553

27. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Med. 2009;6(7):e1000100. https://doi.org/10.1371/journal.pmed.1000100 PMid:19621070

28. Higgins JP, Altman DG, Getzsche PC, Jüni P, Moher D, Oxman AD, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928. https://doi.org/10.1136/bmj.d5928 PMid:22008217

29. Higgins J, Green S. Cochrane Handbook for Systematic Reviews of Interventions. Oxford: The Cochrane Collaboration and John Wiley and Sons Ltd.; 2006.

30. Guyatt GH, Oxman AD, Schünemann HJ, Tugwell P, Knottnerus A. GRADE guidelines: A new series of articles in the Journal of Clinical Epidemiology. J Clin Epidemiol. 2011;64(4):380-2. https://doi.org/10.1016/j.cej.2010.09.011 PMid:21185693

31. Schünemann H, Brožek J, Guyatt G, Andrew O. GRADE Handbook; 2013. Available from: https://www.gdt.gradepro.org/app/handbook/handbook.html.