Population genetic structure and morphological diversity of *Cruzia tentaculata* (Nematoda: Ascaridida), a parasite of marsupials (Didelphinae), along the Atlantic Forest on the eastern coast of South America

Renata Souza1,2, Roberto do Val Vilela2, Rosana Gentile2, Eduardo José Lopes-Torres3, Pedro Cordeiro-Estrela4, Ricardo Moratelli5, Sócrates Fraga da Costa-Neto6, Thiago dos Santos Cardoso2,6, Karina Varella7 and Arnaldo Maldonado Júnior2

1Programa de Pós-Graduação em Biodiversidade e Saúde, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4365, 21040-360, Rio de Janeiro, RJ, Brasil; 2Departamento de Biologia e Parasitologia, Faculdade de Ciências Médicas, Centro Biomédico, Universidade do Estado do Rio de Janeiro – UERJ, Rio de Janeiro, RJ, Brasil; 3Programa de Pós-graduação em Ciências Biológicas, Universidade Federal da Paraíba, Jardim Universitário, s/n, Castelo Branco III, CEP 58051-900, João Pessoa, PB, Brasil; 4Departamento de Sistemática e Ecologia, Laboratório de Mamíferos, Programa de Pós-graduação em Ciências Biológicas, Universidade Federal do Pará, Av. Brasil, 4365, 21040-360, Rio de Janeiro, RJ, Brasil; 5Fiocruz Mata Atlântica, Fundação Oswaldo Cruz, Av. Sampaio Corrêa s/n, 22713-560, Rio de Janeiro, RJ, Brasil; 6Programa de Pós-Doutorado Nota 10–2021, FAPERJ – Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Av. Erasmo Braga, 118, 20020-000, Rio de Janeiro, RJ, Brasil and 7Programa de Pós-Graduação em Biologia Parasitária (PPGBP), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Manguinhos, Rio de Janeiro, RJ, Brazil

Abstract

Cruzia tentaculata is a helminth parasite of marsupials and has a wide geographic distribution from Mexico to Argentina. The aim of this study was to analyse the genetic population structure of this nematode along the Atlantic Forest biome. *Cruzia tentaculata* specimens were recovered from *Didelphis aurita*, *Didelphis albiventris* and *Philander quica* in 9 localities. Morphological and morphometric data were investigated for phenotypic diversity among localities and hosts using multivariate discriminant analysis of principal components. Phylogenetic relationships of *C. tentaculata* were determined using maximum likelihood and Bayesian inference. The population structure was analysed by fixation indices, molecular variance analysis, Tajima’s D and Fu’s Fs neutrality tests, Mantel tests and Bayesian clustering analysis. A higher significant morphometric difference for males was observed between localities and hosts using multivariate discriminant analysis of principal components. Adaptation to different ecological conditions. Population genetic analyses suggested a pattern of evolutionary processes driven by Pleistocene glacial refugia in the northeast and southeast of the Atlantic Forest based on the distribution of genetic diversity.

Introduction

The genus *Cruzia* Travassos, 1917 comprises 10 species that parasitize the caecum and large intestine mainly of mammals but also amphibians and reptiles (Sprehn, 1932; Ruiz, 1947; Wied-Neuwied, 1826, *Didelphis marsupialis* Lund, 1841 infecting *D. marsupialis* and *Didelphis virginiana* in the USA and *Cruzia tentaculata* Travassos, 1917 infecting *Caluromys philander* (Linnaeus, 1758), *Didelphis albiventris* Lund, 1841, *Didelphis aurita* Wied-Neuwied, 1826, *D. marsupialis*, *Marmosa murina* (Linnaeus, 1758), *Metachirus musurus* (Temminck, 1824), *Metachirus nudicaudatus* (Goffroy, 1803), *Monodelphis domestica*, Wagner, 1842 and *Philander opossum* Linnaeus, 1758, with the larger geographic distribution, occurring in Argentina, Bolivia, Brazil, Colombia, Paraguay, Peru, French Guiana and Mexico (Travassos, 1922; Ruiz, 1947; Wied-Neuwied, 1826; Crites, 1956; Übelaker and Younus, 1965; Guerrero, 1971; Adnet et al., 2009; Vieira et al., 2020). Up to now, 3 species of *Cruzia* have been reported infecting marsupials in the Americas: *Cruzia cameroni* Wolfgang, 1951 infecting *Didelphis marsupialis* Linnaeus, 1758 in Trinidad, *Cruzia americana* Mapleston, 1930 infecting *D. marsupialis* and *Didelphis virginiana* in the USA and *Cruzia tentaculata* Travassos, 1917 infecting *Caluromys philander* (Linnaeus, 1758), *Didelphis albiventris* Lund, 1841, *Didelphis aurita* Wied-Neuwied, 1826, *D. marsupialis*, *Marmosa murina* (Linnaeus, 1758), *Metachirus musurus* (Temminck, 1824), *Metachirus nudicaudatus* (Goffroy, 1803), *Monodelphis domestica*, Wagner, 1842 and *Philander opossum* Linnaeus, 1758, with the larger geographic distribution, occurring in Argentina, Bolivia, Brazil, Colombia, Paraguay, Peru, French Guiana and Mexico (Travassos, 1922; Ruiz, 1947; Wied-Neuwied, 1826; Crites, 1956; Übelaker and Younus, 1965; Martinez, 1986, 1987; Caneda-Guzman, 1997; Games et al., 2003; Adnet et al., 2009; Tantaleán et al., 2010; Jiménez et al., 2011; Mollericona and Nallar, 2014; Chero et al., 2017; Zabott et al., 2017; Li, 2019; Cirino et al., 2020). *Cruzia tentaculata* is a generalist species with a monoxenous life cycle (Anderson, 2000), although the
involvement of gastropod molluscan acting as intermediate hosts has been recently reported (Ramos-de-Souza et al., 2021).

Didelphine marsupials have high abundance indices of parasitism by C. tentaculata in the Atlantic Forest, which suggests that they play an important role in the maintenance of the parasite metapopulation (Gardner, 1970; Cerqueira, 1985; Cáceres, 2012; Chemisquy and Flores, 2012; Paglia et al., 2012; Cole and Viney, 2018; Voss et al., 2018). Some processes influencing the population structure of parasites include host mobility, geographical distance between different populations, gene flow and strength of genetic drift (Cole and Viney, 2018). In addition to population genetic structure, parasite geographical variation can also be assessed at the phenotypic level by means of morphological and morphometric studies.

It has been suggested that the use of several host species allows nematodes to cross or colonize a wider range of habitats than would be possible using only a single host, and this tends to promote the genetic flow among parasite populations (Cole and Viney, 2018). The aim was to investigate the existence of cryptic species within C. tentaculata using the null hypothesis that C. tentaculata is a single, panmictic population.

We hypothesized that (i) C. tentaculata represents a panmictic population along the Atlantic Forest, infecting several species of marsupials of the subfamily Didelphinae (host generalist), suggested by the fact that D. aurita and D. albiventris have large vagility compared to other small mammals, with the ability to cross degraded areas, exploring anthropized rural and urban environments; and (ii) C. tentaculata specimens present morphological variation related to the host localities.

Materials and methods

Study areas and sample collection

Specimens of C. tentaculata were recovered from 3 species of marsupials of the subfamily Didelphinae (D. aurita, D. albiventris and P. quica). These 3 species are the most commonly found and easily captured along the Atlantic Forest on the east coast of South America. Nine different localities were sampled along the Atlantic Forest biome: the municipality of Santa Rita (SRT-PB) in the state of Paraíba, the municipalities of São Cristovão (SCR-SE) and Capela (CAP-SE) in the state of Sergipe, the municipalities of Petrópolis (PET-RJ) and Rio de Janeiro (RIO-RJ) in the state of Rio de Janeiro, the municipality of Conceição dos Ouros (CDO-MG) in the state of Minas Gerais, the municipalities of Curitiba (CUR-PR) and Ponta Grossa (PGR-PR) in the state of Paraná and the municipality of Porto Alegre (POA-RS) in the state of Rio Grande do Sul. The number of helminths studied for each locality was based on the number of hosts collected in each locality and on the parasitic load of each animal to obtain representative samples from each local population (Table 1, Fig. 1).

Marsupials were captured using Tomahawk Live Trap (Hazelhurst, Wisconsin) model 201 traps (16″ × 5″ × 5″). Each trap was baited with a generalist mixture of peanut butter, banana, oats and bacon (nut, fruit, grain and animal protein), preferring odorous items for mammals’ attraction. After capture, the marsupials were necropsied, and their organs were removed and placed separately in Petri dishes, washed in saline solution (0.9% NaCl) and dissected with the aid of a stereoscopic microscope. Specimens of C. tentaculata were recovered through examination of the host caecum and large intestine. The helminths were washed in saline solution and stored in 70% ethanol for further morphological, morphometric and molecular studies.

For morphological characterization and morphometric description, the specimens were clarified in 25% glycercinated alcohol, mounted on a slide under a coverslip, identified and measured with the aid of camera lucida attached to a Nikon Eclipse E200 MV R microscope. The identification of species by morphology and morphology was performed using articles describing species of the genus Cruzia and taxonomic keys according to Vieira et al. (2020). The morphometric characteristics analysed for males and females were the length and width of the oral capsule, length and width of the body, length and width of the oesophagus, length and width of the bulb, distance from the nerve ring and excretory pore with respect to the anterior extremity and length of the intestinal diverticulum. Only for males were the following characteristics measured: length of the spicules, length of the gubernaculum and distance from the cloaca to the posterior extremity. For females, the following characteristics were also measured: the distance from the vulva to the anterior extremity and from the anus to the posterior extremity. The specimens used in the morphometric analyses were not the same as those used in the molecular analyses and in the morphological analyses by scanning electron microscopy (SEM), so it was not possible to correlate them. For SEM analyses, the fixed nematodes were washed in 70% ethanol, dehydrated in a graded ethanol series (70–100%), critical point, dried in CO2, free-hand fractured, mounted on metallic stubs and coated with gold. The samples were analysed using a scanning electron microscope Jeol JSM 6390LV on the Electron Microscopy Platform Rudolf Barth, Instituto Oswaldo Cruz, Fiocruz.

Discriminant analysis of principal components

A discriminant analysis of principal components (DAPC) (Jombart et al., 2010) was performed to compare C. tentaculata specimen measurements among localities (PET-RJ, RIO-RJ, CUR-PR, PGR-PR, POA-RS, SCR-SE, CAP-SE, CDO-MG) and among host species (D. albiventris, D. aurita and P. quica). In this analysis, the same morphometric characteristics described above were used. The DAPC describes variations between defined groups, selecting principal components (PCs) that explain the greatest variation between groups while minimizing the variation within each group. To identify the optimal number of PCs to be retained by DAPC and select the components associated with the lowest root mean-squared error, we used cross-validation optimization (Jombart and Collins, 2015). We determined the percentage of C. tentaculata specimens correctly classified within their original group. Finally, we tested the significance of the differences found within each group using Wilks’ Lambda statistic.

DAPC analysis was performed for both male and female specimens of C. tentaculata, using only those specimens with sufficient information on morphometric measurements within each category among the groups represented by locality and host species. For male specimens, the locality of CUR-PR was removed due to its small sample size and the absence of morphometric measurements resulting from the preservation status of the material. Similarly, for female specimens, the locality of PGR-PR, POA-RS and SRT-PB and the species P. quica were removed also due to small sample size or due to poor preservation of the material, preventing the visualizations of some structures. DAPC was performed using the package adegenet (Jombart, 2008), and one-way MANOVA – Wilks’ lambda was performed using the package ’rcov’ (Todorov and Filzmoser, 2009), both in the R software environment version 4.1.2 (R Core Team, 2021).

Molecular and phylogenetic analyses

For molecular characterization, total genomic DNA of C. tentaculata specimens was isolated using the extraction kit
Table 1. Geographic locality, abbreviation, number of hosts, host species, number of specimens of *Cruzia tentaculata* used for genetic and morphometric studies separated by slash and geographic coordinates

Locality	Abbreviation	Number of hosts	Host species	Genetics/morphometry	Geographic coordinates	Locality description
Santa Rita, PB	SRT-PB	4	*D. albiventris*	6, 6, 6, 4/3, 3	07° 05’ 6.41” S, 34°57’ 0.29° O	Atlantic Forest domain seasonal eemideciduous forest characterized by a forest formation with typical Atlantic Forest species surrounded by sugarcane cultivation.
Capela, SE	CAP-SE	1	*D. albiventris*	12/6	10° 31’ 44.5” S, 37° 03’ 35.3° O	Refúgio da Vida Silvestre Mata do Junco – Atlantic Forest area of seasonal semiferal forest. Located in the countryside presented primary and secondary preserved by matrices.
São Cristovão, SE	SCR-SE	2	*D. albiventris*	1, 10/2, 4	37° 06’ 0.90” S, 10° 55’ 39.8° O	Campus São Cristóvão, Federal University of Sergipe – an urban interface environment close to disturbed forest fragments in the urban region of the city.
Petrópolis, RJ	PET-RJ	5	*D. aurita*	2, 1, 6, 1, 1/3, 2, 1	22° 29’ 9.60” S, 43° 07’ 11.3° O	Serra dos Órgãos National Park – a preserved forest area and one of the most important remnants of Atlantic Forest in Brazil, characterized by a Mountain Atlantic Forest of dense ombrophilous vegetation.
Rio de Janeiro, RJ	RIO-RJ	2	*D. aurita*	11, 10/3, 3	22° 56’ 57.0” S, 43° 15’ 32.0° O	FIOCRUZ Atlantic Forest Biological Station – an urban-sylvatic interface environment including peridomestic and disturbed forest areas in the buffer zone of the Pedra Branca State Park, the largest forest reserve in an urban region in the Americas.
Conceição dos Ouros, MG	CDO-MG	2	*D. aurita*	8, 8/3, 3	22° 24’ 42.5” S, 45° 47’ 24’ W	Fazenda Monte Alegre – Atlantic Forest remnant of mixed rainforest, isolated due to degradation promoted by anthropogenic action that transformed the landscape into a matrix of agricultural areas and pasture.
Curitiba, PR	CUR-PR	2, 3	*D. aurita*; *D. albiventris*	6, 5; 4, 4, 5/2, 6	25° 33’ 19.0” S, 49° 14’ 0.60° O	Barigui Park, Acantonamento house, Jardim Botânico Park – an environment characterized by small fragments of altered primary vegetation or secondary vegetation of subtropical forests with araucaria and some preserved areas in and around the city.
Ponta Grossa, PR	PGR-PR	1	*P. quica*	8/6	25° 04’ 45.8” S, 50.50’ 00’ 47.50’ W	Campos Gerais National Park – Atlantic Forest with remnants of Mixed Ombrophilous Forest and Savannas, the phytocenosis with high species richness, is biogeographically isolated from the other elements of the biome, constituting a possible centre of endemism.
Porto Alegre, RS	POA-RS	15	*D. albiventris*	3, 2, 3, 3, 3, 3, 3	30° 04’ 17.6” S, 51° 07’ 28.3° O	Vila Laranjeiras, Morro do Santana, Morro da Polícia and Campus UFRGS – Peridomestic areas near forest fragments in the urban region of the city.

NucleoSpin Tissue (Macherey-Nagel, Düren, Germany) according to the manufacturer’s instructions and stored at −20°C until use. Partial cytochrome c oxidase subunit 1 (MT-CO1) mitochondrial gene fragments were amplified by polymerase chain reaction (PCR) using the primer cocktail described by Prosser et al. (2013). Amplifications were performed at a final volume of 25 μL for each sample, comprising 12.5 μL of PCR Master Mix (Taq DNA polymerase 50 units mL$^{-1}$, dATP 400 μM, dGTP 400 μM, dCTP 400 μM, dTTP 400 μM, MgCl2 3 mM) (Promega, Madison, Wisconsin, United States); 10.5 μL of ultrapure water for molecular biology, 0.5 μL of sense (primers Nem_R1, Nem_R2 and Nem_R3) oligonucleotide cocktail (10 μm); and 1.0 μL of genomic DNA (~1–4 ng µL$^{-1}$). We used a Veriti Thermal Cycler (Life Technologies) thermocycler under the following thermal cycling conditions: initial denaturation at 94°C for 1 min; 5 cycles of denaturation at 94°C for 40 s, hybridization at 45°C for 40 s, and extension at 72°C for 1 min; followed by 35 cycles of denaturation at 94°C for 40 s, hybridization at 51°C for 40 s, and extension at 72°C for 1 min; and a final extension at 72°C for 5 min (Prosser et al., 2013).

The resulting amplicons were visualized using 1.5% agarose gel electrophoresis with GelRed Nucleic Acid Stain (Biotium, Hayward, California, USA) on an ultraviolet light transilluminator.

...
Successfully amplified PCR products were purified using the Illustra GFX PCR DNA and Gel Band kit (GE Healthcare, Chicago, Illinois, USA) according to the manufacturer’s instructions and sequenced using the BigDye Terminator v3.1 Cycle Sequencing kit (Applied Biosystems, USA). The reactions were prepared at a final volume of 10 μL for each sample using the primer cocktail described by Prosser et al. (2013). Sequencing reactions were performed on a Veriti Thermal Cycle (Life Technologies) thermocycler under the following cycling conditions: denaturation at 94°C for 10 s, hybridization at 50°C for 5 s and extension at 60°C for 4 min, followed by 39 repetitions of this cycle. Subsequently, cycle-sequencing product precipitation, formamide resuspension and analysis using the ABI3730xl DNA Analyzer (Applied Biosystems) were conducted at the Capillary Sequencing (SANGER) Platform of the Fiocruz Technological Platforms Network at the Oswaldo Cruz Institute (https://plataformas.fiocruz.br/unidades/RPT01A).

After sequencing, the forward and reverse sequences obtained were assembled into contigs and edited for ambiguities using the Geneious R9 software package (Kearse et al., 2012). To build our

![Fig. 1. Identification of *Cruzia tentaculata* locality and host species collections carried out along the Atlantic Forest (shaded area in the map).](image)

Table 2. Species, GenBank accession number, geographic locality and host of Ascaridida GenBank sequences used in this study

Species	Access number	Locality	Hosts	Reference
Cruzia tentaculata	OM670268 – OM670326	Brazil	Didelphis aurita	Present study
Cruzia tentaculata	OM670327 – OM670426	Brazil	Didelphis albiventris	Present study
Cruzia tentaculata	OM670427 – OM670434	Brazil	Philander quica	Present study
Cruzia tentaculata	MN842777	Brazil	Achatina fulica	Ramos-de-Souza et al. (2021)
Cruzia tentaculata	MN842778	Brazil	Achatina fulica	Ramos-de-Souza et al. (2021)
Ascaris lumbricoides	JN801161	South Korea	Human	Park et al. (2011)
Baylisascaris Schroederi	HQ671081	China	Giant panda	Xie et al. (2011)
Parascaris equorum	MF678786	China	Horse	Gao et al. (2019)
Pseudoterranova kroabei	NC_031646	Norway	Grey seal	Liu et al. (2016)
Toxascaris leonina	KC902750	Australia	Dog	Liu et al. (2014)
Toxocara cati	AM411622	China	–	Li et al. (2008)
data set, we include sequences of species representatives of the order Ascaridida Skrjabin & Shulz, 1940. As an outgroup, we added sequences of *Ascaris lumbricoides* (Linnaeus, 1758); *Baylisascaris Schroederi* (McIntosh, 1939); *Parascaris equorum* (Goeze, 1782); *Pseudoterranova krabbei* (Paggi, Mattiucci, Gibson, Berland, Nascetti, Cianchi and Bullini, 2000); *Toxascaris leonina* (Von Linstow, 1902); and *Toxocara cati* (Schrank, 1788) based on phylogenetic proximity to the Kathlaniidae family (Table 2). Then, they were aligned by multiple alignment using the MUSCLE algorithms (Edgar, 2004) on the Translator X server (Abascal et al., 2010), which employs amino acid translations to align protein-coding nucleotide sequences.

Phylogenetic analyses were performed using the maximum likelihood (ML) and Bayesian inference (BI) methods. Phylogenetic reconstructions by ML were conducted using the online web server PhyML 3.0 (Guindon et al., 2010). The selection of the nucleotide substitution model was performed with SMS (Smart Model Selection) (Lefort et al., 2017) in PhyML using the Akaike information criterion (AIC). The nucleotide replacement model selected by the AIC in PhyML SMS was GTR + R. Statistical support to evaluate the reliability of the branches was obtained by bootstrap (BP) with 1000 pseudoreplicas and the approximate likelihood-ratio test for branches (aLRT). BI analyses were conducted using the program MrBayes 3.2.6 (Ronquist et al., 1992), with independent GTR + I + G nucleotide substitution models for each codon position and unlinking base frequencies and parameters. Sampling was performed every 100 generations for 10 000 000 generations, with 4 simultaneous chains, in 2 runs, by MCMC. The robustness of the nodes was evaluated by Bayesian posterior probabilities (BPP), calculated after the removal of a burn-in fraction of 25%. To evaluate the adequacy of our sampling, we used the program Tracer 1.6 (Rambaut et al., 2014) to calculate the effective sample size (ESS) of each parameter. MrBayes was run on XSEDE using the CIPRES Science Gateway (Miller et al., 2010).

Population genetic analyses

To determine whether the genes were under selection, we performed neutrality tests to identify whether there was a deviation of the balance. Tajima’s D (Tajima, 1989) and Fu’s Fs (Fu, 1997) neutrality tests were performed for each of the previously determined groups (i.e. based on hosts and locality) in the program Arlequin 3.5.2.2 (Excoffier and Lischer, 2010). To identify population structuring, fixation indices (Fst) (Wright, 1978) were calculated to evaluate genetic differentiation between localities. Molecular variance analysis (AMOVA) (Excoffier et al., 1992) was used to analyse the genetic variability between and within groups previously defined using the program Arlequin, and we also performed a Bayesian clustering analysis implemented in the program Bayesian Analysis of Population Structure (BAPS). Haplotype networks were calculated for the *C. tentaculata* sequences using the median joining (MJ) method (Bandelt et al., 1999) in the program PopART 1.7 (Leigh and Bryant, 2015) to assess the distribution and sharing of haplotypes among populations.

The correlation between the genetic distances of all specimens of *C. tentaculata* and the geographical distances, considering all the localities studied, was investigated using the Mantel correlation test (Legendre and Legendre, 2012). A genetic distance matrix was calculated in the ‘ape’ package (Paradis and Schliep, 2019), the geographic distance matrix was calculated in the ‘fields’
Results

Morphological analysis by light, scanning electron microscopy and morphometric analysis

The measured male specimens of *C. tentaculata* have a body length ranging from 8.52 to 13.63 mm and females ranging from 10.52 to 16.13 mm. The anterior opening of the nematodes in both sexes is surrounded by 3 subtriangular lips, a dorsal lip with a pair of papillae on each side and 2 latero-ventral lips with a papilla and amphids on each side. Lips have 2 small teeth located on the inner margin. The pharynx has 3 rows each with 2 faces provided of 12 longitudinal pairs of cuticular lamellae and a tricuspid valve at the base (Fig. 2A). The oesophagus is cylindrical and long, divided into muscle and glandular portions, presenting a prebulbar dilation followed by a well-developed bulb containing 1 valve and accompanied by bulb valves at the base. The nerve ring is in the anterior oesophageal region, and the excretory pore is in the posterior third of the oesophageal region. The intestinal diverticulum is directed to the anterior region, exceeding the threshold of the oesophageal bulb. Males were curved ventrally in the posterior region, and the cloaca opening was at the caudal end. The caudal ventral region shows 10 pairs of bud-like papillae, 3 precloacal pairs, 3 ad-cloacal pairs and 4 postcloacal pairs, as well as a single papilla at the anterior edge of the cloacal opening. The spicules are sub-equal and alates, and the gubernaculum is triangular and has a slender caudal alae (Fig. 2B and C). The females are didelphic and amphidelphic, with the vulva in the preoregional region and the tail ending in a thin tip.

SEM analyses were performed to observe the cuticular lamellae of *C. tentaculata* specimens. The preparation required a longitudinal fracture of the oral capsule of some specimens. We observed 3 rows with 2 longitudinal facets with 12 pairs of well-developed cuticular lamellae (Fig. 3A and B).

Discriminant analysis of principal components

MANOVA of morphometric variables showed that female specimens of *C. tentaculata* were significantly different among localities and host species (Table 3); however, this difference was more pronounced for the former, given the lower Wilks’ lambda value for localities (Wilks’ lambda < 0.01; P < 0.01) in relation to host species (Wilks’ lambda = 0.07; P < 0.01) (Table 3). Males were significantly different among localities (Wilks’ lambda < 0.01; P < 0.01) and among hosts (Wilks’ lambda = 0.02; P = 0.05), although to a lesser extent in the latter (Table 3).

In the DAPC for female parasites, 4 principal components (PCs) were retained to discriminate host species groups, and 2 PCs were retained to discriminate locality groups. For males, 2 PCs were retained to discriminate both host species and locality groups. In each of these DAPCs, the principal components retained explained approximately >98% of the total variance. The proportion of female specimens correctly classified to their
Table 3. Morphometric divergence of *Cruzia tentaculata* male and female specimens

Group	Wilks’ lambda	Chi²-value	d.f.	P value	
Male specimens	Host species	0.02	43.36	30	0.05
	Locality	<0.01	418.95	90	<0.01
Female specimens	Host species	0.07	28.67	13	<0.01
	Locality	<0.01	107.9	65	<0.01

d.f., degrees of freedom.

Comparison between groups (host species and locality) based on values of the classical and robust one-way MANOVA – Wilks’ lambda.

Fig. 4. Population clusters for female (A) and male (B) *Cruzia tentaculata* specimens, based on DAPC along with discriminant analysis (DA) eigenvalues, showing morphometric variations between localities.
original groups was approximately 50% for localities and 86% for host species. For males, the proportion of specimens correctly classified to their original groups was approximately 57% for localities and 75% for host species.

When analysing the differences between localities, DAPC identified 2 sets of localities for females, 1 from the southeast region (RIO-RJ, PET-RJ and CDO-MG) and the other formed by the localities of the northeast region (CAP-SE and SCR-SE) and (CUR-PR) southern region (Fig. 4A). For males, 2 sets of localities were formed, 1 formed by a locality of the northeast region (SCR-SE) and a locality of the southern region (PGR-PR) and another formed by a locality of the southeast region (RIO-RJ, PET-RJ and CDO-MG) and a locality of the southern region (POA-RS) (Fig. 4B). The locality CAP-SE was isolated in the DAPC plot (Fig. 4B), indicating that the male specimens studied in this locality had unique morphometric characteristics (e.g. higher mean values of morphometric variables or lower variation of these variables among specimens in this locality compared to the others). In turn, as pointed out by MANOVA, differences between host species in DAPC were less evident than between localities, since total isolation was not observed between parasites across host species (Fig. 5A and B), which may indicate a greater degree of morphometric similarity between specimens of C. tentaculata occurring in different host species than among some localities.

The variables that best discriminated parasites between the localities for female specimens were the length of the intestinal diverticulum and the body length (Fig. 6A). For males, those variables were the length of the intestinal diverticulum, the excretory pore and the length of the oesophagus (Fig. 6B). Regarding host species, the variables that best discriminated female parasites were body length, nerve ring, oesophagus length and vulva position (Fig. 7A). For males, those variables were the length of the intestinal diverticulum, the length of the excretory pore, the length of the spicules (short and long), and the body width (Fig. 7B).

Genetic diversity indices and population structure

In the present study, among 164 partial sequences of the MT-CO1 gene of C. tentaculata studied, 144 haplotypes with 161 polymorphic sites were found, and the mean nucleotide diversity...
and haplotypic diversity were 0.03480 and 0.998, respectively. To estimate the genetic diversity indices, the *C. tentaculata* sequences were organized into groups according to the host species and localities studied (Table 4).

Three matrices were constructed. The first was generated to calculate genetic diversity indices, AMOVA, Fst, Tajima’s D and Fu’s Fs neutrality tests, and the Mantel test, containing only the sequences of *C. tentaculata* generated in the present study, totaling 164 sequences with 693 bp. The second was composed of sequences obtained in the present study and 2 sequences of *C. tentaculata* species from GenBank, totaling 166 sequences with 693 bp, used to calculate haplotype networks and the Bayesian clustering analysis. The third matrix was composed of a representative of each haplotype obtained in the present study; 2 sequences of species of *C. tentaculata* from GenBank as an ingroup, and 6 sequences from GenBank of the order Ascaridida as an outgroup, resulting in 152 sequences, each with 693 base pairs (bp) used for phylogenetic inferences.

In the ML analysis, the nucleotide replacement model selected by the AIC in PhyML SMS was GTR + R, with an estimated gamma parameter of 1.000 and variation of rates with 4 categories. The most likely tree presented an LnL of -4970.750524. The estimated base frequencies were $A = 0.15645$, $C = 0.06752$, $G = 0.26508$, and $T = 0.51095$. For BI, the estimated mean marginal probability was -4982.4043, and the median was -4982.079. The ESSs for all parameters were above 100 samples and were effectively independent, indicating the robustness of our sampling. Phylogenetic reconstructions by ML and BI resulted in equal topologies. Specimens of *C. tentaculata* formed a monophyletic group in both phylogenies ($aLRT = 0.99$; $BP-MV = 0.99$; $BPP = 1.00$). In the ML (Supplementary material) and BI (Fig. 8), the group of *C. tentaculata* was composed of parasites from *D. albiventris* in the state of Paraíba (SRT), Sergipe (CAP and SCR), Paraná (CUR), Rio Grande do Sul (POA), by parasites from *D. aurita* in the states of Rio de Janeiro (RIO and PET), Paraná (CUR) and Minas Gerais (CDO) and from *P. quicca* in the state of Paraná (PGR).

The haplotype network suggested separation of 2 groups: SRT-PB and SCR-SE (group I) and PET-RJ, RIO-RJ, POA-RS, CUR-PR, PGR-PR, SCR-SE, CAP-SE and CDO-MG (group II), separated by a genetic distance of 32 mutational steps. The sharing of haplotypes between localities and host species was observed. Haplotype H-5 was shared between the POA-RS and PET-RJ localities (Fig. 9). Haplotype H-5 was shared between *D. albiventris* and *D. aurita*. Interestingly, in the host haplotype network, there were 3 groups of haplotypes for *D. albiventris* at the periphery of the haplotypes of *D. aurita* (Fig. 10).
Regarding hosts, the AMOVA indicated higher genetic variance within host (88.85%) species than between hosts. There was a higher genetic variation between localities (52.82%) than within localities (Table 5). The value of Fst for host species was significant when compared between *D. aurita* and *D. albiventris* (0.002). For localities, the Fst values were significant between CDO-MG and SCR-SE, CDO-MG and CAP-SE, SCR-SE and POA-RS, SCR-SE and CUR-PR, SCR-SE and RIO-RJ, SCR-SE and SRT-PB, POA-RS and CUR-PR, POA-RS and SRT-PB, CUR-PR and SRT-PB, RIO-RJ and CAP-SE and CAP-SE and SRT-PB (Table 6). The neutrality tests Tajima’s *D* and Fu’s *F* were determined for each group. For the comparisons formed by the host species, *D* values were significant only for the group of *C. tentaculata* parasites from *D. aurita*, while *F* values were significant for both *D. aurita* and *D. albiventris*. Considering the localities, the *D* values were not significant. The *F* values were significant for SRT-PB, PET-RJ, RIO-RJ, CUR-PR, CDO-MG and POA-RS (Table 7). According to the population structure using BAPS, specimens of *C. tentaculata* were distributed in 5 clusters (Fig. 11).

The Mantel test indicated that approximately 68% of the genetic differentiation was explained by the spatial distance between...
Fig. 8. Phylogenetic reconstruction by Bayesian inference (BI) based on partial MT-CO1 gene sequences (693 bp) of 164 specimens of *Cruzia tentaculata*, parasites of *Didelphis albiventris* (white), *Didelphis aurita* (black), and *Philander quica* (grey) from the Atlantic Forest biome, 2 sequences of species of *Cruzia tentaculata* from GenBank and 6 sequences of other species belonging to the order Ascaridida as an outgroup. Values at nodes are the Bayesian posterior probabilities (BPP). Colours represent each locality in relation to the network of haplotypes.
the localities (correlation coefficient, r = 0.6764 P = 0.001) (Table 8, Fig. 12).

Discussion

Morphological diversity and morphometric comparison between Cruzia tentaculata

Morphological analyses performed by SEM and light microscopy confirmed the identification of the studied specimens as *C. tentaculata*, agreeing with the taxonomic key (Vieira et al., 2020) and articles discussing the species (Travassos, 1922; Adnet et al., 2009). Most studies of morphological descriptions of the species do not examine the number of cuticular lamellae. According to Ruiz (1947) and Adnet et al. (2009), *C. tentaculata* presents only 10 pairs of tooth-like structures. Crites (1956) examined 6 male specimens of *C. tentaculata* parasitic in *D. aurita* collected in Brazil and reported that specimens of *C. tentaculata* have 8–14, generally 10, cuticular lamellae. Comparing our samples with 11 specimens of *C. tentaculata* from the Helminthological collection of the Oswaldo Cruz Institute (CHIOC) (Fiocruz-CHIOC 1556 – parasitic in *Didelphis* sp. identified by Travassos; Fiocruz-CHIOC 33678 – parasitic in *Didelphis aurita* identified by Vicente & Cruz, 1997; and Fiocruz-CHIOC 35624 – parasitic of *Didelphis aurita* identified by Adnet et al., 2009), all observed specimens presented 12 pairs of cuticular lamellae similar to those observed in the specimens of the present study. These findings corroborate Crites (1956), who suggested a range of 8–14 cuticular lamellae and should be considered in the identification key of the species according to Vieira et al. (2020).

Li (2019) analysed specimens of *C. americana* collected from the marsupial *D. virginiana* in the United States using light microscopy and scanning electron microscopy for the first time. The SEM images revealed the internal structures of the pharynx of *C. americana* and the presence of pharyngeal lamellae instead of pharyngeal teeth and/or teeth-like structures. In the present study, when analysing specimens of *C. tentaculata* by light microscopy and SEM, we observed that the structures in the pharynx are thin, flattened and parallel to each other. With this, we agree that these structures are actually cuticular lamellae, previously described as denticles or teeth-like structures.

Among the species of the genus *Cruzia*, only *C. tentaculata* *C. cameroni* and *C. americana* were reported parasitizing marsupials of the subfamily Didelphidae. *Cruzia americana* differs from *C. tentaculata* because it has 15–18 cuticular lamellae in each longitudinal line and 5 pairs of postcloacal papillae, while *C. tentaculata* has 4 pairs of postcloacal papillae. In addition, *C. tentaculata* has a single papilla on the anterior edge of the cloaca, but this papilla was not found in specimens of *C. americana* (Travassos, 1922; Ruiz, 1947; Wolfgang, 1951; Crites, 1956; Adnet et al., 2009; Li, 2019). Li (2019) also reported that the intestinal diverticulum of *C. americana* is distinctly longer than that of *C. tentaculata*. *Cruzia cameroni* can be differentiated from *C. tentaculata* because it has 13–17 cuticular lamellae and distinctly larger spicules and does not have a single papilla on the anterior edge of the cloaca. In addition, *C. cameroni* has the vulva located in the equatorial region of the body, while the vulva of *C. tentaculata* is located in the pre-equatorial region.

Regarding the discriminant analyses, significant differences in morphometric traits of *C. tentaculata* were observed in both males and females either among localities or among host species. We hypothesize that these differences are related to several factors related to the coevolutionary processes of host–parasite interactions. Differences in host body size or host metabolic rates would influence the size of some helminth traits because, for having an endoparasitic way of life, they must be adapted to the host.
characteristics. Differences among localities can be attributed to distinct local ecological factors, which in turn could influence the host characteristics, as well as the free-living stages of the helminth. Such a hypothesis could only be confirmed with a more comprehensive study encompassing all the host species in which this helminth has been found and including measurements of environmental variables and host attributes.

The AMOVA showed a similar percentage of genetic variation between and within locations (51.58% and 48.42%, respectively). This fact is corroborated by the low and non-significant Fst values between localities, indicating low genetic differentiation, low geographic structure and high gene flow of the parasite populations among the studied areas. A mixture was found between the clusters (1, 3, 4 and 5), corroborating the haplotype network, the phylogenetic analyses and the low Fst values. In addition, cluster 2 recovered in BAPS was congruent with group II found in the haplotype network. However, the heterogeneity observed between populations can be attributed to geographic distance, corroborated by the Mantel test, which indicated a significant and high (68%) correlation between geographic and genetic distance, suggesting isolation by distance. Most of the genetic divergence, shown by haplotype networks, is between the northern populations and the southern ones, separated by 1200 km.

The phylogenetic analyses and the haplotype network showed that specimens of *C. tentaculata* were not correlated with the host species. In addition, the host species were also observed to share haplotypes. The pattern found in phylogenies was corroborated in the haplotype network, and no structure was observed associated with the host species of *C. tentaculata*, with AMOVA indicating greater genetic variation within each host species (88.85%).

Population structure of Cruzia tentaculata related to locality and hosts

The AMOVA showed a similar percentage of genetic variation between and within locations (51.58% and 48.42%, respectively). This fact is corroborated by the low and non-significant Fst values between localities, indicating low genetic differentiation, low geographic structure and high gene flow of the parasite populations among the studied areas. A mixture was found between the clusters (1, 3, 4 and 5), corroborating the haplotype network, the phylogenetic analyses and the low Fst values. In addition, cluster 2 recovered in BAPS was congruent with group II found in the haplotype network. However, the heterogeneity observed between populations can be attributed to geographic distance, corroborated by the Mantel test, which indicated a significant and high (68%) correlation between geographic and genetic distance, suggesting isolation by distance. Most of the genetic divergence, shown by haplotype networks, is between the northern populations and the southern ones, separated by 1200 km.

The phylogenetic analyses and the haplotype network showed that specimens of *C. tentaculata* were not correlated with the host species. In addition, the host species were also observed to share haplotypes. The pattern found in phylogenies was corroborated in the haplotype network, and no structure was observed associated with the host species of *C. tentaculata*, with AMOVA indicating greater genetic variation within each host species (88.85%).

Table 5. *Cruzia tentaculata* specimens partial MT-CO1 gene sequence genetic variability by AMOVA based on host species and localities

Source of variation	d.f.	Percentage of variation
Host		
Among hosts	2	11.15
Within hosts	161	88.85
Total	163	
Locality		
Among locality	8	51.58
Within locality	155	48.42
Total	163	

d.f., degrees of freedom.

![Median-joining haplotype network based on partial MT-CO1 gene sequences (693 bp) of *Cruzia tentaculata*, a parasite of the caecum and large intestine of *Didelphis albiventris*, *Didelphis aurita* and *Philander quica*, from this study and 2 sequences of species of *Cruzia tentaculata* from GenBank. The size of the circles represents the frequency of haplotypes. The colours of the circles represent the occurrence hosts of each haplotype.](image-url)
addition, the Fst value was very low and significant and was more evident between D. aurita and D. albiventris. Didelphine marsupials are phylogenetically close and can occur in sympatry in regions of ectopore between the Atlantic Forest and the Cerrado, showing overlap in their diets, which allows parasite sharing and therefore sharing of their haplotypes (Leite et al., 2018). In population genetic structures, the host is a key element among parasite populations that determines genetic variability and gene flow (McCoy et al., 2003), and gene flow is dependent on host displacement and encounters; thus, parasites partially share the phylogeographic history of their host (Nieberding et al., 2004, 2005).

Furthermore, the generalist characteristic of C. tentaculata infecting a wide range of host species, such as C. philander, D. marsupialis, Marmosa murinae, Metachirus myosuros, M. radiacaudatus, Monodelphis domestica and Philander opossum, may contribute to the homogenization of populations. In addition, Nascimento et al. (2018) demonstrated that D. albiventris forms structured populations along the northeast/south-southeast axis (Nascimento et al., 2018), coinciding with the results found for C. tentaculata.

López-Caballero et al. (2015) conducted a study to analyse the population structure of the helminth Oligacanthorhynchus microcephalus (Rudolph, 1819) (phylum Acanthocephala) in Didelphis marsupialis, D. virginiana and Philander opossum in central and southeastern Mexico. Phylogenetic analyses demonstrated a similar pattern to that of C. tentaculata, in which the specimens of O. microcephalus were not correlated with host species or geographical locality.

The high haplotypic diversity found in C. tentaculata was also identified in Haemonchus contortus (Rudolph, 1803), a parasite of sheep and goats (Dey et al., 2019). In the present study, of the 164 sequences of the MT-CO1 gene of C. tentaculata, 144 haplotypes with 161 polymorphic sites were corroborated by H. contortus, of which 85 sequences of the mitochondrial gene nad4 resulted in 77 haplotypes with 115 polymorphic sites. In addition, H. contortus showed a low Fst value, and high gene flow was observed among the subpopulations, similar to that observed in the analyses of C. tentaculata.

Our results showed that there is a possibility of having 2 lineages, 1 from the southeast (D. aurita) and another from the northeast (D. albiventris). The haplotype network showed the separation of the 2 groups. We believe that the centre of origin was in D. aurita (southeast) and that secondary infections infected D. albiventris (northeast), as shown in the haplotype network.

Table 6. Cruzia tentaculata specimens partial MT-CO1 gene sequences genetic variance estimation by Fst based on collection locality

Hosts	CDO-MG	PGR-PR	SCR-SE	POA-RS	CUR-PR	PET-RJ	RIO-RJ	CAP-SE	SRT-PB
D. aurita									
D. albiventris									
P. quico									
Location									
SRT-PB	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
PET-RJ	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
RIO-RJ	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
CUR-PR	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
PGR-PR	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
SCR-SE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
POA-RS	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Significant values are in bold (P < 0.05).

Table 7. Neutrality tests (Tajima’s D and Fu’s Fs), with the respective P values, of Cruzia tentaculata specimens partial MT-CO1 gene sequences grouped into host species and locality

Hosts	Tajima’s D	D	P	Fu’s F	P
D. aurita	−1.57715	0.02700	−24.3267	0.00000	
D. albiventris	0.48564	0.74400	−23.95827	0.00000	
P. quico	0.14506	0.59100	−1.70085	0.12000	
Locality					
SRT-PB	−0.66456	0.29100	−5.74522	0.02200	
PET-RJ	−1.19738	0.11500	−3.52756	0.03900	
RIO-RJ	−1.04711	0.13700	−9.82066	0.00200	
CUR-PR	−0.92703	0.18300	−8.05837	0.00500	
PGR-PR	0.14506	0.55200	−1.70085	0.14500	
SCR-SE	1.64155	0.97100	3.02980	0.89700	
CAP-SE	−0.21211	0.41500	−0.62131	0.34800	
CDO-MG	−1.41008	0.07200	−7.75106	0.00300	
POA-RS	−0.49925	0.35500	−12.44708	0.00100	

Significant values are in bold (P < 0.05).

Demographic and biogeographic history of Cruzia tentaculata

Historical events leave signatures in the DNA, and neutrality tests can infer the demographic history of populations. Significantly negative values in neutrality tests indicate that the population is in an expansion process, showing a large number of rare haplotypes. Significant positive values in neutrality tests indicate that the species has experienced a population bottleneck, that is, the lack of rare haplotypes due to a drastic reduction in population size (Hartl and Clark, 2010). In the neutrality tests of the different groups studied, some of them presented significant negative values. Considering Fu’s Fs related to the hosts D. aurita and D. albiventris and for most of the locations, the results indicated the occurrence of an expansion process, although not corroborated by Tajima’s D. However, the signature of population expansion was corroborated by the genetic diversity indices that were performed for the localities and host groups. High haplotypic diversity and low nucleotide diversity were found for the MT-CO1 gene; that is, although there were a large number of haplotypes, they differed from each other by a few nucleotide substitutions. This finding indicates a recent population expansion (Avise, 2000).

Pôrto et al. (2004) carried out an integrated study encompassing water resources, socioeconomic aspects, fauna, flora and
environmental education, particularly regarding the biodiversity of highland humid forests in the northeast Atlantic Forest (Paraíba e Pernambuco states), and reported the occurrence of endemic species as well as Amazonian species. The coastal forest in the Brazilian northeast has been identified as an important centre of endemism in South America, which is influenced by the Amazonian biota in the north (Prance, 1982, 1987) and the Atlantic Forest in southern and southeastern Brazil (Andrade-Lima, 1960, 1982). The authors reported a hypothesis for the origin of the phytophysiognomy of highland humid forests associated with climatic variations that occurred during the Pleistocene, which allowed the Atlantic Forest to occupy the Caatinga domains, followed by interglacial periods, and the formation of Atlantic Forest islands in the Caatinga domains named ‘refuges of diversity’ (Andrade-Lima, 1982). In fact, our results corroborated this hypothesis since we observed a population isolation of C. tentaculata coinciding with the historical aspects suggested for the constitution of the northeastern Atlantic Forest.

The ‘Hypothesis of refuges’ predicts that during the glacial periods, the flora and fauna of forested areas became isolated in different forest fragments (refuges), differentiating and leading to speciation. When the glacial period ended, the forests expanded, and the species met again. The Atlantic Forest has 5 areas of great genetic diversity, which correspond to forest refuges (Carnaval and Moritz, 2008). They are (1) a great refuge from the north of Espírito Santo state to the northern coast of Bahia state; (2) a large refuge in the southeast region, including the south of Rio de Janeiro state, the northeast of São Paulo state and the southeast of Minas Gerais state; (3) a small area on the coast of Alagoas and Pernambuco states; (4) a small area in Chapada Diamantina, in the interior of Bahia state; and (5) a small area in northeastern Mato Grosso do Sul state. According to Carnaval and Moritz (2008), in non-refugee areas, molecular signatures of recent expansion are expected to be found. In our analyses, the groups recovered in the haplotype networks were distributed in regions that did not correspond to refuges, which suggests the expansion of 2 lines of C. tentaculata isolated from the forest areas of refuges that expanded to other regions during interglacial periods. These findings suggest that 1 of these lineages of C. tentaculata may have migrated from the northeast (Sergipe and Paraíba states), giving rise to group I. The second lineage may have differentiated and expanded by the northeast region (Sergipe state), southeast (Rio de Janeiro and Minas Gerais states) and dispersed to the south (Paraná and Rio Grande do Sul states), giving rise to group II.

Conclusions/future directions

Some analyses, such as the Mantel test, AMOVA, the low values of Fst and the sharing of haplotypes, indicate that there is a high gene flow between the subpopulations of the Atlantic Forest, corroborating our initial hypothesis that the specimens of C. tentaculata may represent a panmictic population along the Atlantic Forest. However, we cannot affirm that the analysed individuals of C. tentaculata form a panmictic population, which is supported by the neutrality tests, morphometric differences found, and the haplotype networks, which showed the existence of 2 groups.
Thus, despite the low genetic differentiation observed, the first hypothesis cannot be confirmed with the data of the present study, unlike the second hypothesis, which was corroborated. We suggest that the morphological differences and the haplotypes grouping into two groups observed are attributed to ecological differences, which can be explained by the hypothesis of refuges. We suggest a more comprehensive study including other molecular markers to corroborate the observed patterns and the inclusion of parasite samples from the Cerrado and Amazon biomes to test the hypothesis of refuges.

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.1017/S0031182022000981.

Acknowledgements. We would like to thank the staff and students of Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatório at Fundação Oswaldo Cruz. Special thanks to Dr Paulo D’Andrea for the ICMBio licence. We thank Dra. Liliani Marília Tiepolo (UFPR) for providing samples of Ponta Grossa (Project CNPq/ICMBio/FAPs nº 18/2017; Process 421292/2017-2) and for the DNA Sequencing Platform at the Oswaldo Cruz Institute (PDTIS/FIOCRUZ). We are grateful to Rudolf Barth for the electron microscopy and Fernando de Oliveira dos Santos for helping with the map.

Author contributions. R. S., A. M. J. and R. V. V. co-designed the study. P. C.-E., R. G., R. M., R. V. V. and S. F. C.-N. conducted the biological material collections. E. J. L. T. performed the scanning electron microscopy of the parasites. R. S. and A. M. J. identified and measured the parasites. R. S. performed all molecular biology laboratory procedures. T. S. C. conducted DAPC, MANOVA and Mantel tests. R. S., R. V. V. and K. V. conducted all the genetic analyses. R. S. drafted the manuscript and A. M. J., R. G. and R. V. V. revised it. All authors have read and approved the final manuscript.

Financial support. This project was financially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq – PPBio Rede BioMA (457524/2012-0), Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro – FAPERJ (E-26/010.001597/2019), Instituto Oswaldo Cruz (IOC – FIOCRUZ), Serviço de Referência em Saúde at Fundação Oswaldo Cruz and Programa de Pós-Graduação em Biodiversidade e Saúde (IOC-FIOCRUZ). R. S. received grants from Instituto Oswaldo Cruz and from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior Brazil (CAPES) – Finance Code 001; CNPq (R. G., 304355/2018-6), (S. F. C.-N., 164846/2020-4), (R. M., 313963/2018-5); and FAPERJ (T. S. C., E-26/204.421/2021), (R. M., E-26/203.274/2017, E-26/210.254/2018, E-26/200.967/2021).

Conflict of interest. The authors declare there are no conflicts of interest.

Ethical standards. The euthanasia of marsupials followed the guidelines of the Committee on The Care and Use of Animals of the American Mammal Society (Sikes, 2016) and the Brazilian Guide to Good Practices for Euthanasia in Animals by the Committee on Ethics, Bioethics and Animal Welfare of the Federal Council of Veterinary Medicine (CFMV, 2013). Authorizations for the capture and handling of mammals were issued by the Chico Mendes Institute for Biodiversity Conservation (ICMBio/SISBIO, licence numbers 13373-1, 45839-1 and 63023-4) and the State Institute of Environment of Rio de Janeiro (INEA, licence number 020/2011). The procedures were approved by the Animal Ethics Committees of the Oswaldo Cruz Foundation and the Oswaldo Cruz Institute (CEUA-FIOCRUZ, licence number LW-39/14, and CEUA-COL, licence number L-036/2018).

Fig. 12. Mantel test result showing the correlation between genetic and geographic distances in kilometres (r: 0.6764 P = 0.001).

References

Abascal F, Zardoya R and Telford MJ (2010) TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. *Nucleic Acids Research* 38, W7–W13.

Adnet FAO, Anjos DHI, Menezes-Oliveira A and Lanfredi RM (2009) Further description of *Cruzia tentaculata* (Rudolphi, 1819) Travassos, 1917 (Nematoda: Cruzidae) by light and scanning electron microscopy. *Parasitology Research* 104, 1207–1211.

Anderson RC (2000) *Nematode Parasites of Vertebrates: Their Development and Transmission*, 2nd Edn. Wallingford, UK: CAB International.

Andrade-Lima D (1980) Estudos biogeográficos de Pernambuco. Recife: Instituto de Pesquisa Agronômica de Pernambuco. Publicação 2, 305–341.

Andrade-Lima D (1982) Present day forest refuges in northeastern Brazil. In Prance GT (ed.), *Biological diversification in the tropics*. New York: Columbia University Press, pp. 245–251.

Avise JC (2000) *Phylogeography: The History and Formation of Species*. Cambridge, MA: Harvard University Press.

Bandelt HJ, Forster P and Röhl A (1999) Median-joining networks for inferring inospecific phylogenies. *Molecular Biology and Evolution* 16, 37–48.

Cáceres NC (2012) Os Marsupiais do Brasil: Biologia, Ecologia e Conservação, 2nd Edn. Campo Grande, MS: Editora UFMS.

Caneda-Gusman I C (1997) Parasites of three species of marsupials from the “Los Tuxtlas” station and some neighbouring area, Veracruz, Mexico. *México: Universidad Nacional Autonoma de México*, pp. 193.

Carnaval AC and Moritz C (2008) Historical climate modelling predicts patterns of current biodiversity in the Brazilian Atlantic Forest. *Journal of Biogeography* 35, 1187–1201.

Cerqueira R (1985) The distribution of *Didelphis* in South America (Polyprotodontia, Didelphidae). *Journal of Biogeography* 12, 135–145.

Chemisuy MA and Flores DA (2012) Taxonomy of the southernmost populations of *Philander* (Didelphimorphia, Didelphidae), with implications for the systematics of the genus. *Zootaxa* 3481, 60–72.

Chero JD, Saéz G, Mendoza-Vidaurre C, Iannacone J and Cruces CL (2017) Helminths of the common opossum *Didelphis marsupialis* (Didelphimorphia: Didelphidae), with a checklist of helminths parasitizing marsupials from Peru. *Revista Mexicana de Biodiversidad* 88, 560–571.

Cirino BS, Costa SFD, Maldonado A and Gentile R (2020) First study on the helminth community structure of the neotropical marsupial *Metachirus*...
myosaurus (Didelphiphormia, Didelphidae). Revista Brasileira de Parasitologia Veterinária 29, 1–13. doi: 10.1590/S1984-296120200064

Cole R and Viney M (2018) The population genetics of parasitic nematodes of wild animals. Parasites & Vectors 11, 1–20.

Costa HM (1965) Crazia brasiliensis n. sp. (Nematoda-Cruzidae) parasite of Sus domestics. Archivos da Escola Superior de Veterinária 17, 61–69.

Crites JR (1956) An annotation of Cruzia americana, a nematode parasitic in the opossum, Didelphis marsupialis virginiana. Journal of Parasitology 42, 68–72.

Dey AR, Zhang Z, Begum N, Alim MA, Hu M and Alam MZ (2019) Genetic diversity patterns of Haemonchus contortus isolated from sheep and goats in Bangladesh. Infection, Genetics and Evolution 68, 177–184.

Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 1792–1797.

Excoffier L, Smouse PE and Quattro JM (1992) Analysis of molecular variance inferred from distance matrices among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479–491.

Fu Y (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915–925.

Gómez DC, Cruz RP, Vicente JJ and Pinto RM (2003) Nematode parasites of marsupials and small rodents from the Brazilian Atlantic Forest in the State of Rio de Janeiro, Brazil. Revista Brasileira de Zoologia 20, 699–707.

Guerrero R (1971) Helminhos da Hacienda ‘El Limón’, D.F. Venezuela. Nematodes of Vertebrados L. Memoria de la Sociedad de Ciencias Naturales La Salle 1, 175–230.

Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W and Gascuel O (2010) MEGAX: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10, 564–567.

Jombart T and Collins C (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Gateway Computing Environments Workshop 2010, 1–8. doi: 10.1109/GCE.2010.5676129

Kerr (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 1792–1797.

Liu GH, Zhou DH, Zhao L, Xiong RC, Liang JY and Zhu XQ (2019) Redescription of Parasitology (Oxford, England) 15, 765–779.

Parasitology and Genetic Markers. Molecular Ecology 22, 91–95.

Pinto RM and Gomes DC (1980) Contribuição ao conhecimento da fauna helminthológica da região amazônica. Nematódeos. Atas da Sociedade de Biologia do Rio de Janeiro 21, 65–79.

Pórtio KC, Cabral JJ and Tabarelli M (2004) Biogeography and Quaternary History in Tropical America. Oxford: Claredon Press, pp. 175–196.

Prosser SW, Velarde-Aguilar MG, León-Règagnon V and Hebert PD (2013) Advancing nematode barcoding: a primer cocktail for the cytochrome C oxidase subunit 1 gene from vertebrate parasite nematodes. Molecular Ecology Resources 13, 1108–1115.

Rambaut A, Suchard MA, Xie D and Drummond AJ (2014) Tracer version 1.6. 440. 433–440.

Leite YLR, Costa LP and Stallings JR (1996) Diet and vertical space use of three sympatriic opossums in a Brazilian Atlantic Forest reserve. Journal of Tropical Ecology 12, 433–440.

Li L, (2019) Redescription of Cruzia americana Maplesstone, 1930 (Nematoda: Kathiandae) a parasite of Didelphis virginiana (Kerr) (Mammalia: Didelphidae) in the USA. Systematic Parasitology 96, 433–440.

Li MW, Lin RQ, Song HQ, Wu XY and Zhu XQ (2008) The complete mitochondrial genomes for three Toxocara species of human and animal health significance. BMC Genomics 9, 1–10.

Liu GH, Zhou DH, Zhao L, Xiong RC, Liang JY and Zhu XQ (2014) The complete mitochondrial genome of Toxocara leonina: comparison with other closely related species and phylogenetic implications. Infection, Genetics and Evolution 21, 329–333.

López-Caballero J, Mata-López R, García-Varela M and De León GPP (2015) Genetic diversity of Oligacanthorhynchus microcephalus (Acanthocephala: Archiacanthocephala: Oligacanthorhynchidae), parasite of three species of opossum (Mammalia: Didelphidae) across Central and Southeastern Mexico. Contributions to Parasitology 82, 175–186.

Martínez FA (1986) Helminthofauna de los mamíferos silvestres. Trematodes. Veterinaria Argentina 3, 544–551.

Martínez FA (1987) Zoono-parasitos de mamíferos silvestres. Veterinaria Argentina 4, 266–271.

McClure SW, Boulinier T, Tirard C and Michalakis Y (2003) Host-dependent genetic structure of parasite populations: differential dispersal of seabird tick host races. Evolution 57, 288–296.

Nieves MA, Pfeiffer W and Schmutz S (2010) ape 5.0: an environment for modern phylogenetic analyses. Occasional Paper in Conservation Biology 6, 1–82.

Paradis E and Schliep K (2019) ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics (Oxford, England) 35, 526–528.

Park YC, Kim W and Park JK (2011) The complete mitochondrial genome of human parasitic roundworm, Ascaris lumbricoides. Mitochondrial DNA 22, 306–310.

Pinto RM and Gomes DC (1980) Contribuição ao conhecimento da fauna helminthológica da região amazônica. Nematódeos. Atas da Sociedade de Biologia do Rio de Janeiro 21, 65–79.

R Core Team (2021) A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria.

Ronquist F, Meslenko T, Mark PVD, Ayres DL, Darling A, Höhna S, Libosch S, Michaux JR (2010) ape 5.0: an environment for modern phylogenetic analyses. Occasional Paper in Conservation Biology 6, 1–82.

Sætre G, Pedersen JS, Fjeld A, Rose AS, Kaare H, Aasen W, Stenseth NC and Røgen KC (2011) First report of the nematode Cruzia tentaculata using molluscs as natural intermediate hosts, based on morphological and genetic markers. Parasitology 138, 137–138.

Sætre G, Pedersen JS, Fjeld A, Rose AS, Kaare H, Aasen W, Stenseth NC and Røgen KC (2011) First report of the nematode Cruzia tentaculata using molluscs as natural intermediate hosts, based on morphological and genetic markers. Parasitology 138, 137–138.

Sætre G, Pedersen JS, Fjeld A, Rose AS, Kaare H, Aasen W, Stenseth NC and Røgen KC (2011) First report of the nematode Cruzia tentaculata using molluscs as natural intermediate hosts, based on morphological and genetic markers. Parasitology 138, 137–138.

Sætre G, Pedersen JS, Fjeld A, Rose AS, Kaare H, Aasen W, Stenseth NC and Røgen KC (2011) First report of the nematode Cruzia tentaculata using molluscs as natural intermediate hosts, based on morphological and genetic markers. Parasitology 138, 137–138.

Sætre G, Pedersen JS, Fjeld A, Rose AS, Kaare H, Aasen W, Stenseth NC and Røgen KC (2011) First report of the nematode Cruzia tentaculata using molluscs as natural intermediate hosts, based on morphological and genetic markers. Parasitology 138, 137–138.
Bayesian phylogenetic inference and model choice across a large model space. *Systematic Biology* **61**, 539–542.

Ruiz JM (1947) Revisão do gênero *cruzia* (Nematoda: Oxiuroidea) e estudo das espécies brasileiras. *Thesis, Universidade de São Paulo*, 1–105.

Sprehn LVC (1932) Über einig von Dr. Eisenhart in Bolivia gesamelt Nematode. *Zoologischer Anzeiger* **100**, 273–284.

Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. *Genetics* **123**, 585–595.

Tantaleán M, Díaz M, Sánchez N and Portocarrero H (2010) Endoparásitos de micromamíferos del noroeste de Perú. 1: helmintos de marsupiais. *Revista Peruana de Biologia* **17**, 207–213.

Todorov V and Filzmoser P (2009) An object-oriented framework for robust multivariate analysis. *Journal of Statistical Software* **32**, 1–47.

Travassos L (1922) Contribuição para o conhecimento da fauna helmintológica brasileira. XVI. *Cruzia tentaculata* (Rud. 1819). *Memorias do Instituto Oswaldo Cruz* **14**, 88–94.

Ubelaker JE and Younus M (1965) A new nematode, *Cruzia tropidodipsi*, parasitic in the snake *Tropidodipsas fasciata*. *Transactions of the Kansas Academy of Science (1903–)* **68**, 194–197.

Vieira FM, Gonçalves PA, Lima SDS, Sousa BMD and Muniz-Pereira LC (2020) A new species of *Cruzia* (Ascaridida; Kathlanidae) parasitizing *Salvator merianae* (Squamata, Teiidae) from the Atlantic Forest in Brazil. *Revista Brasileira de Parasitologia Veterinária* **29**, 1–10.

Voss RS, Díaz-Nieto JF and Jansa SA (2018) A revision of *Philander* (Marsupialia: Didelphidae), part 1: *P. quica*, *P. canus*, and a new species from Amazonia. *American Museum Novitates* **2018**, 1–70. doi:10.1206/3891.1

Wahid S (1964) On the genus *Cruzia* Travassos. 1917 with a description of a new species *C. buckleyi* from a primate, *Callimico goeldii*. *Journal of Helminthology* **38**, 175–180.

Wolfgang RW (1951) Studies on the endoparasitic fauna of Trinidad mammals: VIII. Parasites of Marsupials. *Canadian Journal of Zoology* **29**, 352–373.

Wright S (1978) *Evolution and the Genetics of Populations, Volume 4. Variability Within and Among Natural Populations*. Chicago: University of Chicago Press.

Xie Y, Zhang Z, Wang C, Lan J, Li Y, Chen Z, Fu Y, Nie H, Yan N, Gu X, Wang S, Peng X and Yang G (2011) Complete mitochondrial genomes of *Baylisascaris schroederi*, *Baylisascaris athiri* and *Baylisascaris transfuga* from giant panda, red panda and polar bear. *Gene* **482**, 59–67.

Zabott MV, Pinto SB, de Marco Viott A, Gruchouskei L and de Barros Bittencourt LHF (2017) Helmintofauna de *Didelphis albiventris* (Lund, 1841) no município de Palotina, Paraná, Brasil. *Arquivos de Ciências Veterinárias e Zoologia da UNIPAR* **20**, 19–22.