Root plasticity under abiotic stress

Rumyana Karlova,1 Damian Boer,1 Scott Hayes1 and Christa Testerink1,*

1 Laboratory of Plant Physiology, Wageningen University, 6700 AA Wageningen, The Netherlands
*Author for communication: christa.testerink@wur.nl
†Senior author.
All authors participated in writing the article.
The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (https://academic.oup.com/plphys/pages/general-instructions) is: Christa Testerink (christa.testerink@wur.nl).

Abstract
Abiotic stresses increasingly threaten existing ecological and agricultural systems across the globe. Plant roots perceive these stresses in the soil and adapt their architecture accordingly. This review provides insights into recent discoveries showing the importance of root system architecture (RSA) and plasticity for the survival and development of plants under heat, cold, drought, salt, and flooding stress. In addition, we review the molecular regulation and hormonal pathways involved in controlling RSA plasticity, main root growth, branching and lateral root growth, root hair development, and formation of adventitious roots. Several stresses affect root anatomy by causing aerenchyma formation, lignin and suberin deposition, and Casparian strip modulation. Roots can also actively grow toward favorable soil conditions and avoid environments detrimental to their development. Recent advances in understanding the cellular mechanisms behind these different root tropisms are discussed. Understanding root plasticity will be instrumental for the development of crops that are resilient in the face of abiotic stress.

General introduction
Climate change alters rainfall patterns and temperature, forcing ecological and agricultural systems to shift, transform or collapse (Raza et al., 2019; Chen and Gong, 2021). These changes in the environment, coupled with intensive agriculture, lead to soil degradation. Desertification (Huang et al., 2020) and salinization (Harper et al., 2021) are expected to increase in the future, threatening crop production, food security, and plant biodiversity. Soil degradation and various other abiotic stresses severely affect plant growth and account for the vast majority of global loss of crop yield (Teh and Koh, 2016). Considering the projected increase of the global human population and the increasing demand for animal protein consumption as well as the severity of present and future abiotic stresses, a major challenge will be to preserve biodiversity while sustainably feeding the global population. One approach to close the yield gap in the future is to study the adaptative abilities of different crops to abiotic stresses (Raza et al., 2019). These abilities are key to breed for more resilient crops that have the potential to counter soil degenerative processes, mitigate climate change, and produce stable yields (Duarte et al., 2013; Hasanuzzaman et al., 2014; Pessarakli and McMillan, 2014).

Plant roots provide anchorage, uptake, storage and transport of minerals and water. Plants can communicate and interact with the soil microbiome and other plants via their roots (Bao et al., 2014; Koevoets et al., 2016; Ryan et al., 2016; Anten and Chen, 2021). Roots show high developmental plasticity and often adapt to their environment. The spatiotemporal configurations of roots are referred to as their root system architecture (RSA). RSA has been defined as the geometric description of the shape (topology and distribution) of the root system (Lynch, 1995). In this review, we...
ADVANCES

- Osmotic stress regulates xylem patterning and induces suberin formation. DEEPER ROOTING 1 (DRO1) increases the gravitropism of rice roots and promotes drought tolerance.
- Salt stress reduces the root apical zone size and increases the basal zone size of tomato plants grown in soil rhizotrons, in Arabidopsis CYP79B2 and HKT1 are associated with lateral root growth maintenance under salt stress.
- ABA is required for root growth and hydrotropism in drought conditions, while halotropism is dependent on auxin redistribution and internal Na⁺/K⁺ balance.
- Formation of ROL in roots is an important trait for flooding tolerance in plants.
- Root responses to warm temperatures require brassinosteroid and auxin signaling.

include RSA traits such as root positioning, length, angle, branching, surface area (including root hairs), coverage, and diameter. Studying the RSA of crops can provide insights into the genetic background of root traits for abiotic stress tolerance (Koevoets et al., 2016). This knowledge can be applied to new breeding strategies for stress-tolerant crops with stable yields even in challenging environments. Moreover, understanding RSA plasticity can give insights into the adaptability of plant species, allowing for novel strategies for replanting plants with adapted root architecture in places with extensive soil degradation to revert this process and support ecological succession. This review is aimed at highlighting recent discoveries on the molecular and cellular mechanisms behind root developmental plasticity as well as its importance for the survival of plants under abiotic stresses.

Drought and salt

Drought and salt are some of the most widespread abiotic stresses for plants. In addition to drought caused by water deficit, water deficit may occur in saline and cold soils and even flooded soils; all conditions that limit plant water uptake makes it difficult for roots to take up water by osmosis and salt ions compete with enzymes involved in the uptake and translocation of essential nutrients within plants (Van Zelm et al., 2020). Studies have shown that supplementation of plants with micronutrients (alone or in form of biostimulants) may help to alleviate salt stress, suggesting that micronutrients may be a limiting factor to regular growth and development in saline soils (Ghasemi et al., 2014; Torabian et al., 2018; Campobenedetto et al., 2021). Salt, like drought stress, also induce changes in the soil microbial populations (Qin et al., 2016; Rath et al., 2019).

In addition to water and nutrient deficit, soil salinity also provides (ion) toxicity stress. Accumulation of salt ions leads to hampered cell cycles and cytotoxic effects (West et al., 2004). Although most toxicity effects are attributed to sodium, chloride ions can also be detrimental by inducing chlorosis, chlorophyll deficiency that hampers photosynthesis (Tavakkoli et al., 2011). Drought and salinity stress perception have been suggested to occur through osmotic signals, cell wall integrity, plasma membrane lipids and ROS sensors (Lamers et al., 2020). In roots and shoots, the most well-described signal provoked by drought is the plant hormone abscisic acid (ABA) (Takahashi et al., 2020). In roots, ABA signaling coupled with modulation of auxin biosynthesis and transport appears to mediate changes in root architecture, morphology and anatomy to minimize water loss and maximize water uptake (Korver et al., 2018; Lamers et al., 2020; Li et al., 2021).

Tropisms and root branching

Responses to water deficit

Under mild stress, architectural adaptations are tailored toward drought or salt avoidance (Figure 1). Roots grow towards areas of higher water availability, often away from the dry top-soil layers where heat and salinity stress are most severe (Comas et al., 2013; Gandullo et al., 2021). Drought generally induces a parsimonious root architecture (Lynch, 2013, 2018) with fewer axial/lateral roots and a generally deeper rooting structure (Zhan et al., 2015; Dinneny, 2019). Directional root growth toward areas of higher water is realized by investment into an elongation of roots while increasing the gravitropism response—adjusting root angles downward (Uga et al., 2013). Deeper rooting allows for efficient water capture and thereby ameliorates drought stress. Root angle is controlled by columella cells, which contain amyloplasts that sediment in the direction of gravity in the root tips. The asymmetric distribution of amyloplasts directs auxin flow to the lower side of the root. Relatively low auxin levels on the upper side of the root allow for increased elongation and the downward bending of the main root (Ge and Chen, 2019). Lateral roots, young roots, and adventitious roots (ARs) tend to grow less toward gravity. Recent
Plants respond to hypoxia by halting root growth, and stimulating stress through negative halotropism. D, Flooding: root systems of accumulation (green) and bending of the root away from the salt distribution at one side of the root, causing differential auxin (AUX) levels. Salt stress induces PIN2 internalization and re-signaling and meristem size and PR elongation as well as reducing locoqionic auxin (AUX) levels. ABA accumulation in the root tip, which inhibits GA and BR, suppresses root gravitropism. Moreover, ethylene signaling represses root elongation as well as the gravitropic response, thought to increase the tortuosity (curving nature) of the roots to increase maneuverability. ARs that grow sidewards to increase chances of improved oxygen uptake. The PR tip gravitropic response is inhibited leading to more lateral growth. This phenomenon of growth toward oxygen gradients is driven by ethylene (ET) signaling and has been referred to as aerotropism. Auxin regulates AR emergence by stimulating ethylene synthesis genes. Hypoxia induces auxin polar redistribution which leads to root bending (opposite of gravity) toward the soil surface. Hypoxia together with ethylene also induces the expression of ERFVII TFs that in turn can inhibit root bending. E, Soil compaction. For many plants, it remains unknown how plants respond to soil compaction, which is induced by agricultural practices and land management. Soil compaction leads to hypoxia, mimicking flooding stress; and leads to stimulation of ARs. Moreover, ethylene signaling represses root growth as well as the gravitropic response, thought to increase the tortuosity (curving nature) of the roots to increase maneuverability toward local cracks, soil pores, and less dense soils. Note that for water and salt gradients the image presents a directional response while in the case of submergence and compaction the root angle reflects re-orientation of the roots. Local high moisture patches are sought through active growth toward water gradients known as positive hydrotropism. Moreover, root systems branch extensively in these areas by a process called hydropatterning. The side of the root with lower water potential accumulates cytokinin (CK), stimulating cell division asymmetrically, thereby allowing curvature of the root. CK accumulates at the site of the root with low water content and induces the expression of ARR16 and ARR17, which activate asymmetric cell division, resulting in bending of the roots. ABA can also induce the expression of MIZ1 and regulate hydrotropism. The bending of root toward water is induced in the elongation zone where SnRK2.2 and MIZ1 regulate the differential growth response. C, Salt: depending on the severity of the salt concentration, salt type and plant sensitivity, root systems show positive or negative halotropism. Salt tolerant species, known as halophytes grow toward mild salt concentrations (positive halotropism), while most salt-sensitive plants, known as glycophytes, display negative halotropism. The gravitropic response is repressed. Salt stress induces ABA accumulation in the root tip, which inhibits GA and BR signaling and meristem size and PR elongation as well as reducing local auxin (AUX) levels. Salt stress induces PIN2 internalization and re-distribution at one side of the root, causing differential auxin accumulation (green) and bending of the root away from the salt stress through negative halotropism. D, Flooding: root systems of plants respond to hypoxia by halting root growth, and stimulating insights indicate that cytokinin functions as a potent repressor of gravitropic response in these root types (Waidmann and Kleine-Vehn, 2020).

Uga et al. (2013) showed that certain alleles of DEEPER ROOTING 1 (DRO1) and its homologs increase the gravitropism of rice (Oryza sativa L) roots, effectively benefiting drought stress avoidance (Kitomi et al., 2020). Both DRO1 and qSOR1 (quantitative trait locus for SOIL SURFACE ROOTING 1), belonging to the IGT gene family (named after their IGT domain), are negatively regulated by auxin (Waite and Dardick, 2021). Although their molecular function is unclear at present, it has been suggested that DRO1 and qSOR1 may have a role in establishing auxin gradients in the root tips (Waite et al., 2020). DRO1 homologs have been identified in several plant families including Arabidopsis and Prunus, and DRO1 clearly promotes deeper rooting and lateral root angle in these species (Guseman et al., 2017).

Positive hydrotropism, the bending of roots toward patches of water is another factor that influences RSA and drought tolerance (Dietrich et al., 2017; Dinneny, 2019). ABA was shown to be involved in the hydrotropism response of roots (Dinneny, 2019). ABA signaling subclass III Snf1-related kinases (SnRK2s) as well as MIZU KUSSEI1 (MIZ1) specifically expressed in the root cortex of the elongation zone are required for hydrotropism (Dietrich et al., 2017). Heterogeneous water presence at the root tip allows MIZ1 to generate a Ca2+ signal (Shkolnik et al., 2018; Tanaka-Takada et al., 2019). The Ca2+ wave travels through the phloem to the elongation zone, at which point Ca2+ becomes asymmetrically distributed according to the water gradient. Interestingly cytokinin is also asymmetrically distributed during the hydrotropism response (Chang et al., 2019; Figure 1). MIZ1 is also required for the hydrotropism-related asymmetric cytokinin redistribution. Furthermore, low ABA concentrations can induce root growth and promote hydrotropism by inhibiting the activity of PP2C phosphatases and enhancing the root apoplastic H+.
efflux via H^+-ATPase2 in both salt and drought conditions (Miao et al., 2021).

Another drought-avoidance strategy involves the control of lateral root emergence under drought through hydropatterning and xerobranching. Hydropatterning is the preferential branching of roots into areas with high water content (Bao et al., 2014; Orosa-Puente et al., 2018). Hydropatterning is independent of the ABA signaling (Bao et al., 2014), but it is dependent on AUXIN RESPONSE FACTOR 7 (ARF7). ARF7 is SUMOylated specifically on the side of the root in contact with a dry environment (Orosa-Puente et al., 2018). SUMOylation of ARF7 enhances its interaction with its repressor, IAA3 (indole-3-acetic acid). Inhibition of ARF7 by IAA3 prevents the expression of lateral root initiation genes and lateral root initiation. Xerobranching is the strong repression of lateral root formation under drought when the roots are in aerial pores in the soil (Orman-Ligeza et al., 2018). When roots lack water contact in such soil macro pores, ABA accumulates. The ABA binds to signaling PYR/PYL receptors, resulting in local auxin decrease. The ABA-induced auxin reduction could lead to the inhibition of lateral root formation (Orman-Ligeza et al., 2018; Bloch et al., 2019). However, whether ABA signaling also plays a role in lateral root formation during xerobranching remains unknown.

Coping with salinity

A marked response of the main root influencing root architecture in saline soils is halotropism (Figure 1). In roots of salt-sensitive, glycophyte species (Van Zelm et al., 2020), including Arabidopsis, tomato and Sorghum, negative halotropism (root bending away from salty environments) is a key strategy to avoid salt stress. Halotropism is dependent on auxin redistribution in the root tip (Galvan-Ampudia et al., 2013; van den Berg et al., 2016). The plasma membrane auxin transporter PIN2 relocalizes in a polar manner upon encountering salt. PIN2 promotes a relative reduction in auxin levels on the saline side of the root and enhanced bending away from salinity. PIN2 relocalization is associated with clathrin-mediated endocytosis and controlled by phospholipase PLDζ2 (Galvan-Ampudia et al., 2013; Korver et al., 2020). A Genome-Wide Association Study (GWAS) into natural variation of halotropism within Arabidopsis identified AtDOB1 and AtCHX13 as additional players in the response (Deolou-Ajayi et al., 2019). Both genes are upregulated under salt stress, and both appear to be involved in Na^+/?K^+ homeostasis, suggesting that internal ion homeostasis is likely a key factor underlying the halotropism response (Galvan-Ampudia et al., 2013; Pierik and Testerink, 2014; Szepesi, 2020). Interestingly, several salt-tolerant, halophyte species such as Brassica indica and Limonium bicolor, show positive halotropism in heterogenous mild saline soils (Shelef et al., 2010; Leng et al., 2019). It remains unknown whether similar molecular mechanisms regulate halotropism in the roots of these species.

When challenged with high salt stress, the growth of primary and lateral roots is arrested. This arrest shows interesting temporal dynamics. Both root types first enter a quiescent phase (QP) (Geng et al., 2013; Julkowska and Testerink, 2015; Van Zelm et al., 2020). In Arabidopsis, the QP generally lasts longer in lateral roots than primary roots (PRs) (Duan et al., 2013) and is established by ABA-dependent (Zhao et al., 2014) inhibition of gibberellic acid (GA) and brassinosteroid (BR) signaling (Geng et al., 2013). Following the QP (lasting hours to several days), is a recovery phase with increased GA, BR and JA signaling and reduced ABA signaling, and this leads to a partial recovery of growth during salt stress (Geng et al., 2013). This partial growth recovery is likely due to the decrease of root meristem size (Duan et al., 2013). Upon salt stress, ROS accumulation is linked to the programmed cell death at vital meristematic tissues in the root tips (West et al., 2004) and it is thought that this acts to protect the quiescent center from damage. A large-scale natural variation study in Arabidopsis (Julkowska et al., 2017), indicated that salt stress increases the variance in primary and lateral root growth between accessions. Subsequent GWAS studies indicated that natural variation in CYP79B2 and HKT1 (high-affinity Potassium Transporter 1) is associated with lateral root growth maintenance under salt stress. HKT1 is a sodium transporter that had been previously associated with salt tolerance in several plant species (Moller et al., 2009; Munns et al., 2012; Ali et al., 2019). While high HKT1 expression is generally considered positive for salt stress tolerance in crops, it can be detrimental to root growth in young seedlings, due to the accumulation of toxic Na^+ ions in their roots. CYP79B2 on the other hand promotes the biosynthesis of IAOx, a precursor of the plant hormone auxin (IAA; Korver et al., 2018). CYP79B2 is expressed in root zones where lateral roots emerge, and mutant lines lacking both CYP79B2 and its homolog CYP79B3 have shorter and less dense lateral roots, specifically under high salt conditions (Julkowska et al., 2017).

Defining a salt tolerance root ideotype is difficult. In a study with a limited set of Arabidopsis accessions, root systems with many, short lateral roots resulted in a lower internal shoot Na^+/K^+ ratio (Julkowska et al., 2014). In a more natural soil-rhizotron setup, salt stress was shown to significantly reduce the root apical zone size and strongly increased the basal zone size of tomato, resulting in the placement of lateral roots in the deeper zones of the soil with lower salt accumulation (Gandullo et al., 2021). Interestingly, a positive association between the root branched zone and the root K^+/Na^+ ratio was observed. In soil conditions, it is likely that the best adapted root system is the one that efficiently avoids saline environments by both root direction and placement and outgrowth of lateral roots. On the other hand, (Kitomi et al., 2020) showed that a shallower root growth angle could be beneficial for salt tolerance in rice based on the qSOR1 loss-of-function mutants. Studying the molecular and cellular basis behind these changes may provide further insights into how plants cope with heterogeneous salt environments.
**Root plasticity under abiotic stress**

**Root anatomical changes**
Drought and salt induce also anatomical changes in the roots (Klein et al., 2020; Van Zelm et al., 2020). For example under drought, cortical tissue with fewer, but large cell files is beneficial anatomy conferring tolerance (Chimungu et al., 2014; Colombi et al., 2019). Cortical tissues can be converted into porous aerenchyma tissue (Lee et al., 2016; Klein et al., 2020) in which cortical cells are lysed, creating an intercellular cell-less space that requires little energy to maintain. This process also releases nutrients to the surrounding cells and is prevalent in older roots that are no longer taking up water efficiently. The formation of lysigenous aerenchyma is also stimulated under salt stress (Silva et al., 2021).

Under both drought and salt stress, the biosynthesis and deposition of suberin is stimulated in PRs, in particular in the endodermis and exodermis layers where suberin limits radial water loss (Lynch, 2018; Van Zelm et al., 2020; Siddiqui et al., 2021). Studies in the grape show that generally enhanced suberin biosynthesis of the root system are associated with increased drought tolerance (Yıldırım et al., 2018), while suberin layers in fine roots (roots $< 2$ mm) may increase susceptibility to drought. The benefit of suberin may therefore be root-type specific (Yıldırım et al., 2018; Cuneo et al., 2020). Studies comparing wild barley with domesticated cultivars indicate that wild barley has more suberin deposition in the exodermis under drought, similar to other drought-adapted species (Kreszies et al., 2020; Yang et al., 2020). Suberin is shown to function in salt exclusion, as a barrier in the endodermis (Ranathunge and Schreiber, 2011; Barberon et al., 2016). The suberin deficient mutant cyp86a1 is salt-sensitive compared with the wild-type and accumulates more Na$^+$ ions (Wang et al., 2020a). The most well-described TFs controlling suberization belong to the MYB family (Baldoni et al., 2015; Zhang et al., 2020a). MYB41 is upregulated by drought stress, salt stress and ABA, and stimulates suberin biosynthesis and deposition in Arabidopsis and grapevine. MYB41 regulates the expression of genes associated with the biosynthesis pathways of suberin and other waxy compounds that prevent water loss during salt stress (Kosma et al., 2014). Another salt stress-responding MYB TF, SUBERMAN (MYB39) enhances suberin deposition in the endodermis (Cohen et al., 2020). Other salt/drought stress induced TFs such as NACs (Jeong et al., 2013; Dudhate et al., 2021) and WRKYs (Krishnamurthy et al., 2020) have also been shown to stimulate the suberin biosynthesis pathway. ABA appears to promote suberization whereas ethylene represses this process (Barberon et al., 2016).

Lignin deposition is widely reported to enhance drought tolerance by forming a water-resistant barrier around mature xylem tissue (Xu et al., 2017; Liu et al., 2018; Sharma et al., 2020). Interestingly, mutants overexpressing lignin biosynthesis genes often additionally show longer PRs (Li et al., 2020; Xu et al., 2020). Like suberin, lignin biosynthesis is regulated by MYB TFs (Baldoni et al., 2015). During drought stress, xylem vessel size was shown to increase, and these large xylem vessels are responsible for increased root conductivity (Tan et al., 2020). Such root xylem distributions have been proposed to provide high hydraulic conductance while reducing the risk of hydraulic failure (Li et al., 2021). Large xylem cells with high conductivity can allow for deeper rooting (Strock et al., 2020), but under prolonged stress, most drought-tolerant crops opt for numerous small xylem vessels (Klein et al., 2020; Ramachandran et al., 2020; Strock et al., 2020), which can have big consequences for plant survival under drought (Scoffoni et al., 2017; Levionnois et al., 2020). In poplar salt stress resulted in reduced xylem cells and vessel diameters (Junghans et al., 2006), while in tomato roots lignified xylem cells increased under salt stress (Sánchez-Aguayo et al., 2004). In Arabidopsis, Shinohara et al., (2019) showed that a thermospermine-deficient mutant salt hypersensitivity is linked to excessive xylem development, which suggests an opposite effect of salt compared with drought stress on xylem formation.

The development of the xylem in the roots is controlled also by ABA. Drought-induced ABA accumulation activates microRNAs 165 (miR165) and miR166 to repress class III HD-ZIP TFs. Class III HD-ZIPs repress xylem formation and so their inhibition leads to the additional proto-xylem formation during drought stress (Ramachandran et al., 2018). In olive trees, salt induces thickening of the high suberin cork layer in roots. This cork (periderm) layer strongly accumulates salts and reduces salt levels in the inner, salt-susceptible layers of the roots (Campilho et al., 2020; Tan et al., 2020). Many species have the ability and the molecular framework to develop periderm tissue (Wunderling et al., 2018). Yet, little is known about the potential contribution of the periderm to abiotic stresses such as salt in non-woody plants. In addition to promoting root thickening, salt also accelerates root differentiation (Byrt et al., 2018). In salt-treated plants, the formation of the endodermis, Caspian strip, and exodermis layers starts closer to the root tip (Davis et al., 2014; Van Zelm et al., 2020).

**Root hair formation in salt and drought**
In addition to the adjustment of primary and lateral roots, recent research indicates the importance of root hair growth and development under drought and salt. Enhancement of root hair length and density has been reported to be a key factor in conferring drought tolerance in crops (Cheng et al., 2016; Zhang et al., 2020b). Root hairs enhance the root surface area (Segal et al., 2008; Lynch, 2018) and may mediate higher penetrability on harder substrates (reviewed by Salazar-Henao et al., 2016). Several genes influencing root hair formation under droughts such as EXPB7 (He et al., 2015) and WOX11 (Cheng et al., 2016) also affect multiple traits conferring drought tolerance. The GLABRA2 TF negatively regulates root hair growth in response to osmotic stress (Wang et al., 2020b). Under salt stress, both root hair length and density were shown to be decreased (Wang et al., 2008; Robin et al., 2016). It has been proposed that the Salt Overly Sensitive (SOS) pathway is involved in salt-responsive root hair modulation. sos1-3 lines show...
dramatically reduced root hair length or root hair density under salt (Wang et al., 2008). Overexpression of *Triptychon* (TRY) TFs from the halophyte *Limonium bicolor* in Arabidopsis (Leng et al., 2020) showed their involvement in the salt tolerance root hair development pathway.

**Heat and cold**

For every species of plant, there is a range of temperatures at which growth is permitted. Temperatures above this range (heat stress) and temperatures below this range (cold stress) generally inhibit growth (McMichael and Burke, 1998). Thermodormogenesis is the effect of ambient (mild) temperatures on plant morphology. In Arabidopsis, growth temperatures of around 12°C to 28°C are typically considered as thermomorphogenic. Ambient temperature perception in the shoot is relatively well understood (Hayes et al., 2020). Shoot thermodormogenesis is controlled through the temperature-sensitive function of the phytochrome B photoreceptor. Given that phytochrome B requires light for its activation and the (mature) root is located underground, it is probable that other temperature sensors are utilized in the root. Recently, it was shown that the circadian clock component ELF3 also functions as a shoot temperature sensor (Jung et al., 2020). At warm temperatures, ELF3 undergoes phase separation to an inactive state. This process is presumably independent of light and so could conceptually play a role in root thermomorphogenesis. Another recent article showed a temperature signaling mechanism that requires the mitogen-activated protein kinase kinase kinase MAP4K4, TOT3. The TOT3 pathway is independent of phyB and also has the potential to act in the root (Vu et al., 2021). There appears to be a genetic linkage between shoot and root elongation at warm temperatures (Gaillochet et al., 2020), but dissected roots are also capable of responding to temperature cues (Bellstaedt et al., 2019). This suggests that root elongation at ambient warm temperatures may be governed both directly by signaling events in the root, and indirectly through signaling events in the shoot.

Outside of the ambient temperature range (during heat or cold stress), there are numerous potential sensors. Heat stress interferes with protein folding, ion channel activity, cell membrane integrity and enzyme function. All of these signals could conceivably contribute to root growth arrest during heat stress. In Arabidopsis shoots, sudden exposure to heat stress is associated with Ca\(^{2+}\) and ROS waves (Hayes et al., 2020). Ca\(^{2+}\) and ROS waves are observed in response to multiple environmental stresses, and it is feasible that they are involved in the inhibition of root growth under heat stress. Recently two cold sensing mechanisms were identified. In Arabidopsis shoots, mRNA translation rates drop dramatically on exposure to cold temperatures (Guillaume-Schöpfer et al., 2020). The inhibition of translation is coupled with an increase in intracellular free Ca\(^{2+}\). Intracellular Ca\(^{2+}\) activates CAMTA transcription factors and leads to the induction of cold-induced genes. Strikingly, chemical inhibition of translation has a similar effect on intracellular free Ca\(^{2+}\) and CAMTA-dependent gene expression. It has been proposed that cold temperatures reduce the translational efficiency of ribosomes and this promotes Ca\(^{2+}\) release and downstream signaling events (Guillaume-Schöpfer et al., 2020). This work was based on whole seedlings, but given that cold stress also provokes transient increases in intracellular Ca\(^{2+}\) in the root (Choi et al., 2014), a similar mechanism may play a role in cold stress-mediated root inhibition.

Another recent study found that reduced growth rates at cold temperatures can act as a signal itself (Zhao et al., 2020). NTL8 (a transcription factor that promotes vernalization) accumulates in cold grown roots, without changes in gene expression or protein stability. Modeling approaches demonstrated that reduced cell elongation at cool temperatures reduces the cellular dilution of NTL8 in the root tip. This conclusion was supported by the fact that several pharmacological agents that suppress root growth also led to NTL8 accumulation. It is not clear whether NTL8 accumulation plays a role in repressing root elongation at cool temperatures, but the same concept would likely hold for any long-lived protein. Moreover, it’s feasible that a similar mechanism contributes to root morphology under any stress that reduces root elongation.

**The effect of temperature on root architecture**

At cool temperatures (around 12°C–20°C) Arabidopsis roots develop a compact structure, whereas at warm temperatures (around 21°C–28°C) roots increasingly adopt an elongated, open architecture. Both heat and cold stress generally inhibit root elongation, but in field conditions, they are unlikely to result in the same root architecture. Temperature extremes are normally preceded by warm or cool periods through which root growth is permitted. A heat-stressed root is, therefore, more likely to have an elongated structure and cold stressed root is more likely to be compact.

Warm ambient temperatures promote primary/seminal root elongation in diverse monocots and dicots (Al-Ani and Hay, 1983; McMichael and Burke, 1998; Yang et al., 2017; Figure 1). In Arabidopsis and maize, warm temperature increases cell elongation rates in the root elongation zone (Pahlavanian and Silk, 1988; Nagel et al., 2009; Yang et al., 2017), and reduces root meristem size (Nagel et al., 2009; Martins et al., 2017; Yang et al., 2017). Arabidopsis main roots are slightly thinner at warm temperatures (Yang et al., 2017), but in maize, the opposite trend has been observed (Pahlavanian and Silk, 1988). Warm temperature promotes lateral root development in many species (McMichael and Burke, 1998; Nagel et al., 2009; Wang et al., 2016), but its effect on lateral root elongation is species-specific. Lateral root elongation was enhanced at warm temperatures in cotton and sunflower, but not affected in maize (McMichael and Burke, 1998; Nagel et al., 2009; Waidmann et al., 2020). In soybean and oilseed rape, warm temperatures increased...
the angle between primary and lateral roots, resulting in a more open structure (Kaspar et al., 1981; Nagel et al., 2009). In Arabidopsis, warm temperatures promoted lateral root gravitropism, resulting in a deeper and more vertically oriented root system (Rellan-Alvarez et al., 2015).

The adaptive benefit of RSA changes at warm temperature effects is an open question. There is a negative correlation between temperature and water availability (Livneh and Hoerling, 2016). High temperature increases evaporation from soils and evapotranspiration through plants. The reduced transpiration of plants during drought stress may induce also heat stress in the leaves (Lamaoui et al., 2018). It may be that the elongated structure adopted by roots at warm temperature serves to enhance water uptake (Uga et al., 2013). Intriguingly, mild drought has a similar effect on root architecture as ambient warm temperatures (Rellan-Alvarez et al., 2015). It has even been postulated, that temperature sensing in the roots could have derived from a drought sensing pathway (Ludwig et al., 2021), although experimental evidence of this is currently lacking.

Temperature extremes are predicted to become more common in the future and optimizing the RSA of crops may help to increase their heat tolerance. A recent study on the temperature-stress resilience of plants on a global scale found that (as with animals) there is more variation in the ability of plants to survive cold stress than heat stress (Lancaster and Humphreys, 2020). The authors found that there is much more variation in cold stress tolerance than warm stress tolerance in plants. This suggests that there are many different pathways that plants can acquire cold tolerance, but that the development of heat tolerance is more difficult. Breeding plants for heat tolerance may therefore present a sizable challenge.

Temperature signaling in the root

PR elongation in Arabidopsis is the most well-characterized root response to ambient warm temperature. Even so, there is still only limited information on how this developmental process is regulated. Warm temperatures promote auxin signaling at the root tip (Zhu et al., 2015; Wang et al., 2016; Feraru et al., 2019; Sun et al., 2020). It appears that brassinosteroid signaling is also involved, but its directionality is debated. Some evidence implies that brassinosteroid signaling is reduced at warm temperature (Martins et al., 2017), whereas evidence from other studies implies that brassinosteroid signaling is increased (Sun et al., 2020). These conflicting results could be explained by the tissue-specific nature of brassinosteroid signaling. In the epidermis, brassinosteroid promotes PR elongation, whereas in the stele brassinosteroid represses elongation (Vragovic et al., 2015). Investigation of the tissue-specific effects of temperature on brassinosteroid signaling may help to resolve this point. Warm temperatures promote the transcription of heat shock protein (HSP) chaperones. HSP90.1 has been shown to promote the stability of the auxin receptor TIR1 (Wang et al., 2016) and the negative regulator of brassinosteroid signaling BIN2 (Samakovli et al., 2014) and so HSP90.1 probably contributes to ambient temperature signaling in the root.

Currently, very little is known about how warm temperatures promote lateral root development. It is feasible that (as in the PR tip) increased auxin signaling is required. Lateral root initiation requires the rephasing of the circadian clock (Voss et al., 2015) and so the warm temperature-mediated inactivation of clock-component ELF3 could well play a role. To our knowledge, there are no studies on the mechanism of warm temperature-mediated inhibition of root gravitropism. Further investigation into this phenotype may yield interesting insights into the control of root thermomorphogenesis.

Flooding

Flooding is the collective term of two distinct abiotic stresses; soil waterlogging and submergence. Flooding has a multitude of detrimental effects on plant growth and development (reviewed by Sauter, 2013). One of the predominant stress factors in a flooded environment is the inhibition of gas diffusion, leading to oxygen deficiency (hypoxia). Hypoxia hampers respiration and limits energy production. Reduced energy production leads to reduced uptake of nutrients, (Martínez-Alcántara et al., 2012) and water, and metabolic imbalance. Hypoxia also inhibits root hydraulic conductivity, restricting water uptake despite environmental excess. Following flooding, re-exposure of plants to oxygen additionally results in oxidative damage (Tamang and Fukao, 2015; Yuan et al., 2017; Yeung et al., 2018; Da-Silva and do Amarante, 2020).

One of the first signals of hypoxia is the rapid accumulation of ethylene around the roots, due to reduced gas diffusion. The accumulation of ethylene acts to promote root meristem hypoxia tolerance (Sasidharan and Voesenek, 2015; Hartman et al., 2019). During postflooding recovery the hormone jasmonate (JA) accumulates rapidly in Arabidopsis rosettes. The transcription factor MYC2 is upregulated upon JA accumulation, which in turn stimulates genes involved in antioxidant synthesis pathways (Yuan et al., 2017). JA-mediated antioxidant synthesis likely limits oxidative damage in these conditions (Yuan et al., 2017; Yeung et al., 2018). Curiously, during post-flooding recovery, ethylene seems to act as a negative regulator of the recovery by enhancing chlorophyll breakdown, water loss and senescence (Yeung et al., 2018). It is currently unclear if these signaling pathways in rosettes also apply to the root. Considering that the JA has a well-established role in defense against biotic stress, it is likely that the reoxygenation response overlaps with known biotic defense responses (Zhou et al., 2019).

Root angle and branching during flooding

The majority of RSA adaptations during flooding are directly related to maximizing oxygen uptake, controlling oxygen loss (Sauter, 2013). The first response to hypoxia includes a stop in both the formation and elongation of lateral roots.
These responses are driven by ethylene signaling (Sauter, 2013; Yamauchi et al., 2018; Lamers et al., 2020). The formation of lateral oxygen roots is repressed by ERF-TFs. RAP2.12 and HRE2 have been shown to bind and repress the expression of genes involved in lateral root primordia formation, such as LBD16, interfering with local auxin signaling that promote lateral root formation (Shukla et al., 2019).

Under flooding stress, plants also invest in ARs formation. ARs are roots that are formed post-embryonically from organs other than the root, such as the stem. Although certain plants can form ARs constitutively, de novo AR formation is particularly stimulated under flooding (Eysholdt-Derzso and Sauter, 2019). AR formation and elongation allows the root system to grow toward oxygen-rich surfaces or even the atmosphere (aerial AR), as AR growth angles differ from regular root types (Eysholdt-Derzso and Sauter, 2019). In rice, ARs have been reported to grow toward the surface (Lin and Sauter, 2018, 2019) enabling ethylene venting and re-aeration (Figure 1). Polar auxin redistribution by PIN1 and PIN2 in the root tip of ARs are involved in this process (Lin and Sauter, 2019). Moreover, ARs provide additional anchorage post-flooding and benefit nutrient uptake (Zhang et al., 2017; Eysholdt-Derzso and Sauter, 2019).

Anatomically, flood induced ARs are relatively cost-efficient due to their low density of energy-demanding cells; they appear to be the major environmental stimulus for ROL barrier formation (Colmer et al., 2019). ROL barriers are predominantly reported to be formed in ARs of wetland plants (Kotula et al., 2017). Pedersen et al. (2021a) found ROL formation in lateral roots in teosinte (Zea nicaraguensis), a flooding-tolerant plant. In the future, the genetic background for this trait (Watanabe et al., 2017) might provide important insights on flood tolerance through ROL barrier development.

**Discussion and perspectives**

In the recent years, many discoveries have been made concerning the molecular mechanisms and signaling of abiotic stresses perception in plants (Lamers et al., 2020). How abiotic stress perception impacts root plasticity is still an open question. Recently, several advances have been reported, including the discovery of DRO1 as a regulator of root angle, ABA controlled root growth, molecular mechanisms affecting halotropism and hydrotropism under salt and drought stress, ABA-mediated changes in xylem patterning during osmotic stress, the role of ROL barriers during flooding in teosinte and Glabra2-dependent root hair growth under drought and salt stress.

Some of the molecular regulations involved in the root tropisms under different stresses are less understood. An example is the interaction between ABA-dependent and cytokinin-dependent hydrotropism. It was shown that MIZ1 is induced by both ABA and cytokinin and thus could be the link between the two pathways regulating PR hydrotropism response. The role of ABA signaling in lateral root development during xerobranching needs to be addressed as well.

Furthermore, little is known about the molecular control of root thermomorphogenesis as well as on the mechanism of warm temperature-mediated inhibition of root gravitropism. In natural soils under drought stress, roots need to
adapt their architecture and respond to drought, heat, and even soil compaction stresses at the same time. The links and molecular interaction between these soil stresses need further investigation.

So far only a handful of GWAS studies have been performed to identify root traits related to abiotic stress resilience. Moreover, this knowledge is restricted mainly to the model species Arabidopsis and performed in vitro and in controlled climate conditions. An interesting question is how the RSA plasticity of different crops contributes to their survival under abiotic stress conditions. For example, although tuber plants like potatoes are very important crops agronomically, research on the importance of their RSA for the resilience to abiotic stresses is limited. To identify whether the gene regulatory networks controlling root architecture under different abiotic stresses are conserved between species or translatable from the model plant Arabidopsis into crops species, it will be interesting to compare if the hydrotropism and other root tropism responses are regulated by the same molecular mechanisms and hormonal cross talks like shown for the model species Arabidopsis. The discovery of root traits in crops associated with resilience to abiotic stress(es) will lead to new breeding strategies and selected genotypes that can grow and produce a stable yield in less favorable or changing environmental conditions. These robust crops could grow better in saline or dry soil with fewer nutrients which will help to close the yield gap in the future and reduce the use of freshwater resources. The recent emergence of molecular technologies including single-cell sequencing, CRISPR/Cas9 genome editing as well as tissue- and cell-specific promoters studies for imaging of cellular processes will greatly contribute to our understanding of crop root plasticity under stress (Shulse et al., 2019; Kajala et al., 2021; Lyzenga et al., 2021).

In the field, crops are grown in soil and experience different mild or severe stresses at the same time. However, little is known about how the soil quality, soil type and availability of nutrients and soil structure influences plant root traits (bending of the roots, root angle) and adaptations in crops (see Outstanding Questions). Recently it was shown that the growth of roots in compact soils is inhibited due to the accumulation of ethylene (Pandey et al., 2021), mimicking the pathway controlling hypocotyl emergence from compact soil (Shi et al., 2016). In addition, the root phenotype Multiseriate cortical sclerenchyma (MCS) associated with the ability to penetrate compacted soils was identified in maize and wheat. Interestingly MCS formation could be induced by exogenous ethylene (Schneider et al., 2021). Another potential root adaptive mechanism, root circumnutation (the ability of the root to undergo helical movement) and its molecular regulation were recently revealed (Taylor et al., 2021). Root circumnutation was proposed to serve as an adaptation of the PR to penetrate hard soils and to avoid obstacles in the soil. In rice, HK1 (histidine kinase-1 gene) was shown to be involved in the regulation of root circumnutation. Interestingly and in line with the proposed role of root circumnutation, the hkl mutant is unable to explore/penetrate efficiently artificial solid surfaces or clay particles compared with the wild type rice roots.

Although it has been shown that abiotic stresses like drought and salt can change the rhizosphere community of the roots in different crops (Zhang et al., 2018; Hartman and Tringe, 2019), how RSA could influence the recruitment of beneficial root microbiome under abiotic stress remains to be discovered (see Outstanding questions). Another important direction of research is to understand the molecular mechanism of root-microbial interactions, the role of root exudates in this interaction and presence of abiotic stress or a combination of stresses. Future research should address the question of how crop RSA modulation interacts with the soil microbiome under stress. In summary, to understand the underlying mechanisms of plant root plasticity for the survival of crops under abiotic stresses, further research is needed to study root adaptations to single stresses in different environments (soil type, quality, and microbiome) and to multiple simultaneous stresses.

**Funding**

This work was supported by the Dutch Research Council (NWO/OCW), as part of the MiCrop Consortium Programme, Harnessing the second genome of plants (grant number 024.004.014) and by NWO-TTW-H.I.P. (grant 16893 to C.T.). We also acknowledge support by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No. 771134, ERA-NET Cofund SusCrop grant, being part of the Joint Programming Initiative on Agriculture, Food Security and Climate Change (FACCE-JPI) to C.T. and R.K., and a Wageningen Graduate Schools Grant/Award: Postdoctoral Talent Programme to S.H.
Conflict of interest statement. The authors declare that there is no conflict of interest.

References

Al-Ani MKA, Hay RKM (1983) The influence of growing temperature on the growth and morphology of cereal seedling root systems. J Exp Bot 34: 1720–1730

Ali A, Maggio A, Bressan RA, Yun D-J (2019) Role and functional differences of HKT1-type transporters in plants under salt stress. Int J Mol Sci 20: 1059

Anten NP, Chen BJ (2021) Detect thy family: mechanisms, ecology and agricultural aspects of kin recognition in plants. Plant Cell Environ 44: 1059–1071

Baldoni E, Genga A, Cominelli E (2015) Plant MYB transcription factors: their role in drought response mechanisms. Int J Mol Sci 16: 15811–15851

Bao Y, Aggarwal P, Robbins NE, Sturrock CJ, Thompson MC, Tan HQ, Tham C, Duan L, Rodriguez PL, Vernoux T (2014) Plant roots use a patterning mechanism to position lateral root branches toward available water. Proc Nat Acad Sci 111: 9319–9324

Barberon M, Vermeer JEM, De Bellis D, Wang P, Naseer S, Andersen TG, Humbel BM, Nawrath C, Takano J, Salt DE (2016) Adaptation of root function by nutrient-induced plasticity of endodermal differentiation. Cell 164: 447–459

Bellstaedt J, Trenner J, Lippmann R, Poeschl Y, Zhang X, Friml J, Quint M, Delker C (2019) A mobile auxin signal connects temperature sensing in cotyledons with growth responses in hypocotyls. Plant Physiol 180: 757–766

Bian S, Jiang Y (2009) Reactive oxygen species, antioxidant enzyme activities and gene expression patterns in leaves and roots of Kentucky bluegrass in response to drought stress and recovery. Sci Hortic 120: 264–270

Bloch D, Puli MR, Mosquana A, Yalovsky S (2019) Abiotic stress modulates root patterning via ABA-regulated microRNA expression in the endodermis initials. Development 146: dev177097

Byrt CS, Munns R, Burton RA, Gillilah M, Wege S (2018) Root cell wall solutions for crop plants in saline soils. Plant sci 269: 47–55

Calvo-Polanco M, Sørensen J, Zwiak J (2012) Role of adventitious roots in water relations of tamarack (Larix laricina) seedlings exposed to flooding. BMC Plant Biol 12: 99

Campilho A, Nieminen K, Ragni L (2020) The development of the periderm: the final frontier between a plant and its environment. Curr Opin Plant Biol 53: 10–14

Campobenedetto C, Mannino G, Beekwilder J, Contartese V, Karlova R, Berta CM (2021) The application of a biostimulant based on tannins affects root architecture and improves tolerance to salinity in tomato plants. Sci Rep 11: 354

Chang J, Li X, Fu W, Wang J, Yong Y, Shi H, Ding Z, Kui H, Gou X, He K (2019) Asymmetric distribution of cytokinins determines root hydrotropism in Arabidopsis thaliana. Cell Res 29: 984–993

Chen S, Gong B (2021) Response and adaptation of agriculture to climate change: evidence from China. J Dev Econ 148: 102567

Cheng S, Zhou D-X, Zhao Y (2016) WUSCHEL-related homeobox gene WOX11 increases rice drought resistance by controlling root hair formation and root system development. Plant Signal Behav 11: e1130198

Chimungu JG, Brown KM, Lynch JP (2014) Reduced root cortical cell file number improves drought tolerance in maize. Plant Physiol 166: 1943–1955

Choi WG, Toyota M, Kim SH, Hillery R, Gilroy S (2014) Salt stress-induced Ca2+ waves are associated with rapid, long-distance root-to-shoot signaling in plants. Proc Natl Acad Sci U S A 111: 6497–6502

Cohen H, Feduyk V, Wang C, Wu S, Aharoni A (2020) SUBERMAN regulates developmental suberization of the Arabidopsis root endodermis. Plant J 102: 431–447

Colmer TD, Kotula L, Malik A, Takahashi H, Konnerup D, Nakazono M, Pedersen O (2019) Rice acclimation to soil flooding: low concentrations of organic acids can trigger a barrier to radial oxygen loss in roots. Plant Cell Environ 42: 2183–2197

Colombi T, Herrmann AM, Vallenback P, Keller T (2019) Cortical cell diameter is key to energy costs of root growth in wheat. Plant Physiol 180: 2049–2060

Comas L, Becker S, Cruz VMV, Byrne PF, Dierig DA (2013) Root traits contributing to plant productivity under drought. Front Plant Sci 4: 442

Correa J, Postma JA, Watt M, Wojciechowski T (2019) Soil compaction and the architectural plasticity of root systems. J Exp Bot 70: 6019–6034

Cuney IF, Barrios-Masias F, Knipfer T, Uretsky J, Reyes C, Lenain P, Brodersen CR, Walker MA, McElrone AJ (2020) Differences in grapevine rootstock sensitivity and recovery from drought are linked to fine root cortical lacunae and root tip function. New Phytol 229: 272–283

Da-Silva CJ, do Amarante L (2020) Time-course biochemical analyses of soybean plants during waterlogging and reoxygenation. Environ Exp Bot 180: 104242

Davis L, Sumner M, Stasolla C, Renault S (2019) Asymmetric cytokinin distribution in hypocotyls. Plant Physiol 170: 957–960

Deolou-Ajayo AO, Meyer AJ, Haring MA, Julkowska MM, Testerink C (2019) Genetic loci associated with early salt stress responses of roots. Iscience 21: 458–473

Dietrich D, Pang L, Kobayashi A, Foadar J, Boudouf V, Bhosale R, Antoni R, Nguyen T, Hiratsuka S, Fujii N (2017) Root hydrotropism is controlled via a cortex-specific growth mechanism. Nat Plants 3: 17057

Dinneny JR (2019) Developmental responses to water and salinity in root systems. Ann Rev Cell Dev Biol 35: 239–257

Duan L, Dietrich D, Ng CH, Chan PMY, Bhalerao R, Bennett MJ, Dinneny JR (2013) Endodermal ABA signaling promotes lateral root quiescence during salt stress in Arabidopsis seedlings. Plant Cell 25: 324–341

Duarte CM, Losada IJ, Hendriks IE, Mazarrasa I, Marbà N (2013) The role of coastal plant communities for climate change mitigation and adaptation. Nat Clim Change 3: 961–968

Dudhate A, Shinde H, Yu P, Tsugama D, Gupta SK, Liu S, Takano T (2021) Comprehensive analysis of NAC transcription factor family uncovers drought and salinity stress response in pearl millet (Pennisetum glaucum). BMC Genomics 22: 1–15

Eysholdt-Derzso E, Sauter M (2017) Root bending is antagonistically affected by hypoxia and ERF-mediated transcription via auxin signaling. Plant Physiol 175: 412–423

Eysholdt-Derzso E, Sauter M (2019) Hypoxia and the group VII ethylene response transcription factor HRE2 promote adventitious root elongation in Arabidopsis. Plant Biol 21: 103–108

Feraru E, Feraru MI, Barbez E, Waidmann S, Sun L, Gaidora A, Korver RA, Nguyen T, Hiratsuka S, Fujii N (2019) PILS6 is a temperature-sensitive regulator of nuclear auxin input and organ growth in Arabidopsis thaliana. Proc Nat Acad Sci U S A 116: 3893–3898

Garlocher C, Burko Y, Platre MP, Zhang L, Simura J, Willige BC, Kumar SV, Ljung K, Chory J, Busch W (2020) HYS and phytodiversity complementary shoots-to-root coordination during thermomorphogenesis in Arabidopsis. Development 147

Galvan-Ampudia CS, Julkowska MM, Darwish E, Gandullo J, Colmer TD, Testerink C (2013) Halotropism is a response of plant roots to avoid a saline environment. Curr Biol 23: 2044–2050

Gandullo J, Ahmad S, Darwish E, Karlova R, Testerink C (2021) Phenotyping tomato root developmental plasticity in response to salinity in soil rhizotrons. Plant Phenomics 2021: 2760532
changes in xylem anatomy and auxin physiology. Plant Cell Environ 29: 1519–1531

Kajala K, Gouran M, Shaar-Moshe L, Mason GA, Rodriguez-Medina J, Kawa D, Pauluzzi G, Reynoso M, Canto-Pastor A, Manzano C, et al. (2021) Innovation, conservation, and repurposing of gene function in root cell type development. Cell 184: 3333–3348 e3319

Kasper TC, Woolley DG, Taylor HM (1981) Temperature effect on the Inclination of lateral roots of soybeans. Agronomy J 73: 385–385

Kitomi Y, Hanzawa E, Kuya N, Inoue H, Haru N, Kawai S, Kanno N, Endo M, Sugimoto K, Yamazaki T (2020) Root angle modifications by the DRO1 homolog improve rice yields in saline paddy fields. Proc Natl Acad Sci U S A 117: 21242–21250

Klein SP, Schneider HM, Perkins AC, Brown KM, Lynch JP (2020) Multiple integrated root phenotypes are associated with improved drought tolerance. Plant Physiol 183: 1011–1025

Koevoets IT, Venema JH, Elzenga JTM, Testerink C (2016) Roots withstanding their environment: exploiting root system architecture responses to abiotic stress to improve crop tolerance. Front Plant Sci 7: 1335–1335

Korver RA, Koevoets IT, Testerink C (2018) Out of shape during stress: a key role for auxin. Trends Plant Sci 23: 783–793

Korver RA, van den Berg T, Meyer AJ, Galvan-Ampudia CS, Ten Tusscher KH, Testerink C (2020) Halotropism requires phospholipase D1C1-mediated modulation of cellular polarity of auxin transport carriers. Plant Cell Environ 43: 143–158

Kosma DK, Murmu J, Raiez FM, Santos P, Bourgault R, Molina I, Rowland O (2014) AtMYB41 activates ectopic suberin synthesis and assembly in multiple plant species and cell types. Plant J 80: 216–229

Kotula L, Schreiber L, Colmer TD, Nakazono M (2017) Anatomical and biochemical characterization of a barrier to radial O2 loss in adventitious roots of two contrasting Hordeum marinum accessions. Funct Plant Biol 44: 845–857

Kresszies T, Eggels S, Kresszies V, Osthoff A, Shellakkutti N, Baldauf JA, Zeisler-Diehl VV, Hochholdinger F, Ranathunge K, Schreiber L (2020) Seminal roots of wild and cultivated barley differentially respond to osmotic stress in gene expression, suberization, and hydraulic conductivity. Plant Cell Environ 43: 344–357

Krishnamurthy P, Vishal B, Ho WJ, Lok FCJ, Lee FSM, Kumar PP (2020) Regulation of a cytochrome P450 gene CYP94B1 by WRKY33 transcription factor controls apospatic barrier formation in roots to confer salt tolerance. Plant Physiol 184: 2199–2215

Lai W-L, Zhang Y, Chen Z-H (2012) Radial oxygen loss, photosynthesis, and nutrient removal of 35 wetland plants. Ecol Eng 39: 24–30

Lamaoui M, Jemo M, Datla R, Bekkaoui F (2018) Heat and drought stresses in crops and approaches for their mitigation. Front Chem 6: 26

Lamers J, van der Meer T, Testerink C (2020) How plants sense and respond to stressful environments. Plant Physiol 182: 1624–1635

Lancaster LT, Humphreys AM (2020) Global variation in the thermal tolerances of plants. Proc Natl Acad Sci U S A 117: 13580–13587

Lee D-K, Jung H, Jang J, Jeong JS, Kim YS, Ha S-H, Do Choi Y, Kim J-K (2016) Overexpression of the OsERF71 transcription factor alters rice root structure and drought resistance. Plant Physiol 172: 575–588

Leng B, Geng F, Dong X, Yuan F, Wang B (2019) Sodium is the critical factor leading to the positive halotropism of the halophyte Limonium bicolor. Plant Biosyst 153: 544–551

Leng B, Wang X, Yuan F, Zhang H, Lu C, Chen M, Wang B (2020) Heterologous expression of the Limonium bicolor MYB transcription factor LbTRY in Arabidopsis thaliana increases salt sensitivity by modifying root hair development and osmotic homeostasis. Plant Sci 302: 110704
plains: from cellular responses to long-distance intercellular communication. Front Plant Sci 11: 1407

Tamang BG, Fukao T (2015) Plant adaptation to multiple stresses during submergence and following desubmergence. Int J Mol Sci 16: 30164–30180

Tan J, Ben-Gal A, Shtein I, Bustan A, Dag A, Erel R (2020) Root structural plasticity enhances salt tolerance in mature olives. Environ Exp Bot 179: 104224

Tanaka-Takada N, Kobayashi A, Takahashi H, Kamiya T, Kinoshita T, Maeshima M (2019) Plasma membrane-associated Ca2+/binding protein PCaP1 is involved in root hydrotropism of Arabidopsis thaliana. Plant Cell Physiol 60: 1331–1341

Tavakoli E, Fatehi F, Coventry S, Rengasamy P, McDonald GK (2011) Additive effects of Na+ and Cl−ions on barley growth under salinity stress. J Exp Bot 62: 2189–2203

Taylor I, Lehner K, McCaskey E, Nirmal N, Ozkan-Aydin Y, Murray-Cooper M, Jain R, Hawkes EW, Ronald PC, Goldman DL, et al. (2021) Mechanism and function of root circumnutation. Proc Natl Acad Sci U S A 118: e2018940118

Teh SY, Koh HL (2016) Climate change and soil salinization: impact on agriculture, water and food security. Int J Agric For Plant Sci 2: 1–9

Torabian S, Zahedi M, Khoshgoftarmanesh A (2018) Effects of Foliar Spray of Two Kinds of Zinc Oxide On the Growth and Ion Concentration of Sunflower Cultivars Under Salt Stress. J Plant Nutr 39: 172–180

Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, Kitomi Y, Inukai Y, Ono K, Kanno N (2013) Control of root system architecture by deeper rooting 1 increases rice yield under drought conditions. Nat Genet 45: 1097–1102

van den Berg T, Korver RA, Testerink C, ten Tusscher KH (2016) Modeling hydrotropism: a key role for root tip architecture and flux-loop remodeling in redistributing auxin. Development 143: 3350–3362

Van Zelm E, Zhang Y, Testerink C (2020) Salt tolerance mechanisms of plants. Annu Rev Plant Biol 71: 403–433

Velocci A, Fattorini L, Della Rovere F, Sofo A, D’angelì S, Betty C, Falasca G, Altamura M (2016) Ethylene and auxin interaction in the control of adventitious rooting in Arabidopsis thaliana. J exp bot 67: 6445–6458

Vidoz ML, Mignolli F, Aispuru HT, Mrogoński LA (2016) Rapid formation of adventitious roots and partial ethylene sensitivity result in faster adaptation to flooding in the aerial roots (aer) mutant of tomato. Sci Hortic 201: 130–139

Voss U, Wilson MH, Kenobi K, Gould PD, Robertson FC, Peer WA, Lucas M, Wauron K, Casimiro I, Holman TJ, et al. (2015) The circadian clock rephases during lateral root organ initiation in Arabidopsis thaliana. Nat Commun 6: 7641

Vragovic K, Sela A, Friedlander-Shani L, Fridman Y, Hacham Y, Vidoz ML, Tom R, Atzmon A, Koch G, Dardick C, et al. (2018) Root plasticity under abiotic stress. Plant Physiol 174: 743–757

Waidmann S, Kleine-Vehn J (2020) Same same, but different: growth responses of primary and lateral roots. J exp bot 71: 882–886

Waidmann S, Sarkel E, Kleine-Vehn J (2020) Same same, but different: growth responses of primary and lateral roots. J exp bot 71: 2397–2411

Waite JM, Collum TD, Dardick C (2020) AtDRO1 is nuclear localized in root tips under native conditions and impacts auxin localization. Plant Mol Biol 103: 1–14

Waite JM, Dardick C (2021) The roles of the IG7 gene family in plant architecture: past, present, and future. Curr Opin Plant Biol 59: 101983
Wang P, Wang C-M, Gao L, Cui Y-N, Yang H-L, de Silva NDG, Ma Q, Bao A-K, Flowers TJ, Rowland O, Wang S-M (2020a) Aliphatic suberin confers salt tolerance to Arabidopsis by limiting Na+ influx, K+ efflux and water backflow. Plant Soil 448: 603–620

Wang R, Zhang Y, Kieffer M, Yu H, Kepinski S, Estelle M (2016) HSP90 regulates temperature-dependent seedling growth in Arabidopsis by stabilizing the auxin co-receptor F-box protein TIR1. Nat Commun 7: 10269

Wang X, Bi S, Wang L, Li H, Gao B-a, Huang S, Qu X, Cheng J, Wang S, Liu C (2020b) GLABRA2 regulates actin bundling protein VILLIN1 in root hair growth in response to osmotic stress. Plant Physiol 184: 176–193

Wang Y, Zhang W, Li K, Sun F, Han C, Wang Y, Li X (2008) Salt-induced plasticity of root hair development is caused by ion disequilibrium in Arabidopsis thaliana. J Plant Res 121: 87–96

Watanabe K, Takahashi H, Sato S, Nishiuchi S, Omori F, Malik AI, Colmer TD, Mano Y, Nakazono M (2008) A major locus involved in the formation of the radial oxygen loss barrier in adventitious roots of teosinte Zea nica guaraguensis is located on the short-arm of chromosome 3. Plant Cell Environ 40: 304–316

West G, Inzé D, Beemster GT (2004) Cell cycle modulation in the response of the primary root of Arabidopsis to salt stress. Plant Physiol 135: 1050–1058

Wunderling A, Ripper D, Barra-Jimenez A, Mahn S, Sakaj K, Targem MB, Ragni L (2018) A molecular framework to study periderm formation in Arabidopsis. New Phytol 219: 216–229

Xu C, Fu X, Liu R, Guo L, Ran L, Li C, Tian Q, Jiao B, Wang B, Luo K (2017) PtoMYB170 positively regulates lignin deposition during wood formation in poplar and confers drought tolerance in transgenic Arabidopsis. Tree Physiol 37: 1713–1726

Xu W, Tang W, Wang C, Ge L, Sun J, Qi X, He Z, Zhou Y, Chen J, Xu Z (2020) SiMYB56 confers drought stress tolerance in transgenic rice by regulating lignin biosynthesis and ABA signaling pathway. Front Plant Sci 11: 785

Yamauchi T, Takahashi H, Sato S, Nishiuchi S, Omori F, Malik AI, Colmer TD, Mano Y, Nakazono M (2017) A major locus involved in the formation of the radial oxygen loss barrier in adventitious roots of teosinte Zea nica guaraguensis is located on the short-arm of chromosome 3. Plant Cell Environ 40: 304–316

West G, Inzé D, Beemster GT (2004) Cell cycle modulation in the response of the primary root of Arabidopsis to salt stress. Plant Physiol 135: 1050–1058

Wunderling A, Ripper D, Barra-Jimenez A, Mahn S, Sakaj K, Targem MB, Ragni L (2018) A molecular framework to study periderm formation in Arabidopsis. New Phytol 219: 216–229

Xu C, Fu X, Liu R, Guo L, Ran L, Li C, Tian Q, Jiao B, Wang B, Luo K (2017) PtoMYB170 positively regulates lignin deposition during wood formation in poplar and confers drought tolerance in transgenic Arabidopsis. Tree Physiol 37: 1713–1726

Xu W, Tang W, Wang C, Ge L, Sun J, Qi X, He Z, Zhou Y, Chen J, Xu Z (2020) SiMYB56 confers drought stress tolerance in transgenic rice by regulating lignin biosynthesis and ABA signaling pathway. Front Plant Sci 11: 785

Yamauchi T, Colmer TD, Pedersen O, Nakazono M (2018) Regulation of root traits for internal aeration and tolerance to soil waterlogging-flooding stress. Plant Physiol 176: 1118–1130

Yamauchi T, Rajhi I, Nakazono M (2011) Lyssigenous aerenchyma formation in maize root is confined to cortical cells by regulation of genes related to generation and scavenging of reactive oxygen species. Plant Signal Behav 6: 759–761

Yamauchi T, Tanaka A, Inahashi H, Nishizawa NK, Tsutsumi N, Inukai Y, Nakazono M (2019) Fine control of auxichroma and lateral root development through AUX/IAA- and ARF-dependent auxin signaling. Proc Natl Acad Sci U S A 116: 20770–20775

Yamauchi T, Tanaka A, Tsutsumi N, Inukai Y, Nakazono M (2020) A role for auxin in ethylene-dependent inducible aerenchyma formation in rice roots. Plants 9: 610

Yang X, Dong G, Palaniappan K, Mi G, Baskin T (2017) Temperature-compensated cell production rate and elongation zone length in the root of Arabidopsis thaliana. Plant Cell Environ 40: 264–276

Yang Y, Guo Y, Zhong J, Zhang T, Li D, Ba T, Xu T, Chang L, Zhang Q, Sun M (2020) Root physiological traits and transcriptome analyses reveal that root zone water retention confers drought tolerance to Opisthopappus taihangensis. Sci Rep 10: 1–14

Yeung E, van Veen H, Vasishht D, Paiwa ALS, Hummel M, Rankenberg T, Steffens B, Steffen-Heins A, Sauter M, de Vries M (2018) A stress recovery signaling network for enhanced flooding tolerance in Arabidopsis thaliana. Proc Nat Acad Sci U S A 115: E6085–E6094

Yildırım K, Yağcı A, Sucu S, Tunç S (2018) Responses of grapevine rootstocks to drought through altered root system architecture and root transcriptomic regulations. Plant Physiol Biochem 127: 256–268

Yuan L-B, Dai Y-S, Xie L-J, Yu L-J, Zhou Y, Lai Y-X, Yang Y-C, Xu L, Chen Q-F, Xiao S (2017) Jasmonate regulates plant responses to postsubmergence reoxygenation through transcriptional activation of antioxidant synthesis. Plant Physiol 173: 1864–1880

Zhan A, Schneider H, Lynch JP (2015) Reduced lateral root branching density improves drought tolerance in maize. Plant Physiol 168: 1603–1615

Zhang J, Zhang B, Liu Y, Guo Y, Shi P, Wei G (2018) Distinct large-scale biogeographic patterns of fungal communities in bulk soil and soybean rhizosphere in China. Sci Total Environ 644: 791–800

Zhang L, Merlin I, Pascal S, Bert PF, Domergue F, Gambetta GA (2020a) Drought activates MYB41 orthologs and induces suberization of grapevine fine roots. Plant Direct 4: e00278

Zhang Q, Huber H, Beljaars SJ, Birnbaum D, de Best S, de Kroon H, Visser EJ (2017) Benefits of flooding-induced aquatic adventitious roots depend on the duration of submergence: linking plant performance to root functioning. Ann Bot 120: 171–180

Zhang X, Mi Y, Mao H, Liu S, Chen L, Qin F (2020b) Genetic variation in ZmTIP1 contributes to root hair elongation and drought tolerance in maize. Plant Biotechnol J 18: 1271–1283

Zhao Y, Antoniou-Kouroumiot RL, Calder G, Dean C, Howard M (2020) Temperature-dependent growth contributes to long-term cold sensing. Nature 583: 825–829

Zhao Y, Xing L, Wang X, Hou Y-J, Gao J, Wang P, Duan C-G, Zhu X, Zhu J-K (2014) The ABA receptor PYL8 promotes lateral root growth by enhancing MYB77-dependent transcription of auxin-responsive genes. Sci Signal 7: ra53–ra53

Zhou W, Lozano-Torres JL, Biliou I, Zhang X, Zhai Q, Smant G, Li C, Scheres B (2019) A jasmonate signaling network activates root stem cells and promotes regeneration. Cell 177: 942–956.e914

Zhu J, Zhang SX, Wang WS, Gong W, Liu WC, Chen HG, Xu HH, Lu Y (2015) Low temperature inhibits root growth by reducing auxin accumulation via ARR112. Plant Cell Physiol 56: 727–736