History of Mathematics in the Turkish Middle School Mathematics Curriculum and Textbooks

Gülçin TAN-ŞİŞMAN a*, Büşra KİREZ a

aHacettepe Üniversitesi, Eğitim Fakültesi, Ankara/TÜRKİYE

Article Info

DOI: 10.14812/cuefd.361176

Article history:
Received 04.12.2017
Revised 05.04.2018
Accepted 09.04.2018

Keywords:
History of Mathematics, Turkish Middle School Mathematics Curriculum, Turkish Mathematics Textbooks.

Abstract

The purpose of this study was to analyze how the history of mathematics incorporated into Turkish middle school mathematics curriculum (5th-8th grades) and textbooks. The data were collected through document analysis from the Turkish middle school mathematics curriculum guide (5th-8th grades) and six Turkish middle school mathematics textbook series approved by the National Board of Education. According to the results gathered from the math curriculum, only one reference of the history of mathematics was found in the sixth-grade learning objectives and a few suggestions acknowledging the use of the history of mathematics in the learning and teaching process. No trace of the history of mathematics found in the content and assessment aspects of the curriculum. Further, the total number of the instances of the history of mathematics found in the six Turkish middle school mathematics textbooks for 5th-8th grade is only twenty-seven. Most of the references found in the math textbooks were placed in the introduction part of the topic. Based on the findings, it is obvious that the history of mathematics was used like a rarely-found appetizer both in the curriculum and the textbooks.

Ortaokul Matematik Dersi Öğretim Programı ve Matematik Ders Kitaplarında Matematik Tarihi

Makale Bilgisi

DOI: 10.14812/cuefd.361176

Makale Geçmişi:
Geliş 04.12.2017
Düzeltme 05.04.2018
Kabul 09.04.2018

Anahtar Kelimeler:
Matematik Tarihi, Ortaokul Matematik Dersi Öğretim Programı, Matematik Ders Kitapları.

Öz

Bu çalışmanın amacı, matematik tarihine Türkiye’de ortaokul düzeyindeki matematik dersi öğretim programında (5-8. Siniflar) ve ortaokul matematik dersi kitaplarında nasıl yer verildiğini analiz etmektedir. Araştırma verileri ortaokul matematik dersi öğretim programı klavuzundan ve Milli Eğitim Bakanlığı tarafından onaylanmış olan ortaokul matematik dersi kitaplarından doküman incelemesi yoluyla elde edilmiştir. Ortaokul matematik dersi öğretim programının öğelerine ilişkin buğulara göre, 6.sınıf kanunlarında matematik tarihinin ilişkin sadece bir referans ve öğrenme-öğretim durumlarında ise matematik tarihine yönelik bazı öneri nitelikinde fikdeler bulunmaktadır. İçerik ve ölçme-değerlendirme durumlarında ise matematik tarihine ilişkin hiçbir buğula rastlanmamıştır. Ayrıca 5-8.sınıf ortaokul matematik dersi kitaplarında matematik tarihine ilişkin toplamda yirmi tane örnek tespit edilmiştir. Matematik dersi kitaplarında tespit edilen örneklerin çoğu, konuların giriş kısımlarında yer almaktadır. Elde edilen buğulara göre, matematik tarihine hem programda hem de ders kitaplarında nadir bulunan bir çerez nitelikinde ele alındığı açıktır.

* Author: gulcintans@gmail.com
Introduction

As a human endeavor and a rich cultural background, mathematics is one of the fundamental school subjects more than four thousand years of history. While it is widely acknowledged that mathematics is a science involving the aspects of daily and professional life, most of the students believe that mathematics is only about numbers, theorems, symbols, and procedures. One of the reasons behind the belief that math is a mechanical subject might be due to the ways in which students experience and engage with mathematics. As McCartney (2012, p.5) argued “Mathematics is usually, and of course correctly, presented ‘ready-made’ to students, ... However, like any other academic subject, mathematics has a history which is rich in astonishing breakthroughs, false starts, misattributions, confusions and dead-ends.” History of mathematics is defined as an immense range of study field concerning the processes of growth and advancements in mathematical knowledge through focusing on the sources of discoveries in mathematics, the accomplishments, problems, thoughts of well-known mathematicians (Burton, 2003; Eves, 1990; Katz, 1993; Otte, 2007; Yee & Chapman, 2011).

Focusing on the integration of the history of mathematics, the ignored part of school mathematics, may foster students’ cognitive and affective growth. Fried (2001) argued that history of mathematics (a) reveals humanistic aspects of mathematics; (b) makes mathematics interesting, more understandable and approachable; and (c) indicates the origin of mathematical concepts and procedures. Besides, several research studies on the integration of history of mathematics into mathematics education have indicated that history of mathematics has potential to promote more positive students attitudes (Furinghetti, 2000; Liu, 2003; Marshall, 2000; McBride & Rollins, 1977) as well as to facilitate meaningful understanding of mathematical concepts, procedures and problems through the use of alternative examples, solution processes, strategies and methods from the history (Heifgott, 2004; Ho, 2008; Kleiner, 2001). Further, the multicultural nature of mathematics might be enhanced by the integration of history of mathematics (Ernest, 1988). According to Jankvist, (2009) “There can be no learning of mathematics without history” (p.238). The findings of many studies have not only supported to the use of history of mathematics in the learning and teaching process and also indicated many benefits for teachers and students from elementary to college level (Albayrak, 2011; Başbüyük, 2012; Bayam, 2012; Bellomo & Werheimer, 2010; Ersoy & Öksüz, 2016; Fauvel, 1991; Hagerty, Smith & Goodwin, 2007; Jankvist, 2009a; Kaye, 2008; Leng, 2006; Lim, 2011; Liu & Niess, 2006).

Considering a range of well-known arguments in favor of integration of history of mathematics in classrooms (Fauvel, 1991; Fauvel & Van Maanen, 2000; Jankvist, 2009), the first question might be the following: "What is the official document indicating the history of mathematics aimed to be integrated into the teaching and learning of mathematics?" The first possible answer might be “formal/intended curriculum”. Posner (1995) defined formal curriculum as an official curriculum “described in formal documents” (p.12). Similarly, Porter and Smitson (2001, p.2) characterized formal curriculum as policy tools including “curriculum standards, frameworks, or guidelines that outline the curriculum teachers are expected to deliver”. In this respect, formal curriculum might be considered as an officially-written document that specifies what/how students are expected to learn and what/how teachers are expected to teach and assess. The second possible answer for the question raised above might be “textbooks” since they are curriculum materials produced to support curriculum as well as instruction. According to the Mullis, Martin, Foy, and Arora’s study (2012), mathematics textbooks are one of the main instructional sources of teachers in many countries. Previous research has clearly indicated that math textbooks play a central role in translating the intended curriculum into the opportunities to learn in classrooms (Arseven, 2003; Başer, 2012; Collopy, 2003; Fan, Zhu, & Miao, 2013; Reys, Reys, Lapan, Holliday, & Wasman, 2003; Tan-Şişman & Akkaya, 2017; Tyson & Woodward, 1989; Woodward & Elliott, 1990). Valverde, Bianchi, Wolfe, Schmidt, and Houang (2002) conceptualized textbooks by using the term “potentially implemented curriculum” serving as a bridge between the intended and the implemented curriculum. In this sense, curriculum and textbooks are considered as the initial parts of mathematics education and they are one of the primary sources indicating the extent to which history of mathematics is taken into account by decision-makers and curriculum developers.
Although the integration of history of mathematics has continued to receive a great deal of attention over the last decades, especially after the publication of Fauvel and Van Maanen’s edited book (2000) “History in Mathematics Education: An ICMI Study”, there has been a little effort to incorporate the historical dimension of mathematics both in mathematics curriculum and textbooks (Ho, 2008; Xenofontos & Papadopoulos, 2015). As seen in Table 1, the contemporary studies on history of mathematics have been conducted with different participants (e.g. middle school students, math teachers, etc.), various research designs (qualitative, quantitative and mixed) as well as focused on different aspects (e.g. beliefs, attitudes, knowledge level, etc.).

Table 1.
The contemporary studies on the integration of history of mathematics

Authors & Year	Subjects	Focus of history of mathematics (HoM)	Method	Findings
Ersoy & Öksüz, 2016	4th grade students	Effects of HoM on achievement, retention and motivation	Quantitative	Positive effect on achievement, retention and motivation
Ju, Moon, & Song, 2016	7th grade math textbooks	Analysis of HoM in Korean math textbooks	Qualitative	Introduction of HoM in a variety of ways, but limited to stimulate students’ higher order thinking
Xenofontos & Papadopoulos, 2015	7th-9th grade math textbooks	Analysis of the ways of HoM integrated math textbooks of Cyprus and Greece	Qualitative	Utilization of HoM through mostly biographical, the HoM tasks included both lower and higher cognitive demands Limited use of HoM, only a few examples supporting deeper understanding or analytical thinking
Erdoğan, Eşmen & Fındık, 2015	5th-8th grade math textbooks	Analysis of use of HoM in textbooks	Qualitative	Limited use of HoM, only a few examples supporting deeper understanding or analytical thinking
Povey, 2014	Lecturers of HoM course	Opinions about use of HoM in initial teacher education	Qualitative	Positive the contributions of the studying HoM to the prospective math teachers
Bayam, 2013	6th grade students	Students’ views about HoM	Qualitative	Positive views
Gazit, 2013	Prospective & Math teachers	The knowledge level about the concepts, topics and characters from HoM	Quantitative	A lack of knowledge about HoM found in all groups
Göktepe & Özdemir, 2013	8th grade students	Opinions about the HoM integrated instruction	Qualitative	Positive opinions
Alpaslan, Işıksal & Haser, 2014	Pre-service math teachers	Attitudes and beliefs about the use of HoM and the level of knowledge of HoM	Quantitative	Positive attitudes and beliefs, moderate level of knowledge of HoM
Aydoğdu & Yüksel, 2013	Pre-service math teachers	Relationship between creativeness and attitudes and beliefs towards HoM	Quantitative	Low level of relationship between creativeness, attitudes and beliefs towards HoM
Baki & Bütüner, 2013	6-8th grade textbooks	The ways of using HoM in textbooks	Qualitative	Limited use of HoM
Bayam, 2012	6th grade students	Effect of HoM on mathematics achievement and attitudes	Mixed	Positive effect on achievement, no significant difference in attitude.
Başıbüyük, 2012	College students	HoM integrated instruction	Quantitative	Significant difference in attitude and achievement
Table 1.
The current studies on the integration of history of mathematics (cont’d)

Authors & Year	Subjects	Focus of history of mathematics (HoM)	Method	Findings
Özdemir, Gökтеpe & Kepçeoğlu, 2012	11th grade students	Use of HoM in geometric proofing	Qualitative	Increase in geometric proof skills
Panasuk & Horton, 2012	Math teachers	Perceptions and the factors related to the integration of the HoM	Quantitative	A lack of knowledge and confidence in HoM, time, testing, resources found as factors
Clark, 2012	Pre-service math teachers	Impact of the study of the HoM on mathematical knowledge for teaching	Qualitative	Positive impacts on the pre-service teachers’ pedagogical knowledge
Yenilmez, 2011	Pre-service math teachers	Opinions about the HoM course	Quantitative	Positive opinions about the course
Burns, 2010	Pre-service math teachers	Views’ about the use of HoM and the role of HoM	Mixed	Positive views and changes in beliefs about incorporation of HoM in math lessons
Gürsoy, 2010	Pre-service math teachers	Attitudes and beliefs about the use of HoM in teaching of math	Mixed	Positive attitudes and beliefs
Huntley & Flores, 2010	Pre-service math teachers	Views’ about the HoM course to develop math knowledge for teaching	Qualitative	Positive opinions and contributions
Jankvist, 2010	Secondary school students	Reflections about the meta-issues of mathematics and its history	Quantitative	The students were capable of discussing and reflecting upon meta-issues of mathematics and its history.
Thomaidis & Tzanakis, 2009	7th-9th grade math textbooks	Analysis of use of HoM in Greek high school math textbooks	Qualitative	Numerous historical examples of math, but including errors, obscurities, or omissions
Baki & Güven, 2009	Pre-service math teachers	Experiences related to use of Dynamic Geometry Program when solving the quadratic equation with Khayyam Method	Qualitative	Positive feelings, recognition of the Khayyam’s math, making relations between modern math and Khayyam’s era
Smestad, 2008	Math teachers	Conceptions’ about HoM in the curriculum	Qualitative	Different conceptions about HoM, different use of HoM with different degrees
Tözüyurt, 2008	Senior high school students	Opinions about the HoM integrated instruction	Qualitative	Positive opinions
İdikut, 2007	7th grade students	Effects of HoM on achievement and attitudes	Quantitative	Positive effect on achievement, no significant difference in attitude
Smestad, 2000	Norwegian math textbooks	Analysis of HoM in Norwegian textbooks	Qualitative	A very limited use of HoM some of them inaccurate, based on myths.

However, as seen in the Table 1, a few studies were focused on the use of historical foundations of mathematical thinking in the mathematics textbooks (Baki & Bütüner, 2013; Erdoğan, Eşmen & Findik, 2015; Smestad, 2000; Thomaidis & Tzanakis, 2009; Xenofontos & Papadopoulos, 2015). Besides, the
lines of several reports have also revealed a little effort to incorporate the historical dimension of mathematics both in elementary and middle school mathematics curriculum and textbooks (Ho, 2008; Radford, Furingetti & Katz, 2007; Xenofontos & Papadopoulos, 2015). In the light of these issues, the purpose of the study was to analyze the Turkish middle school mathematics curriculum and mathematics textbooks in terms of how the history of mathematics was addressed. Indeed, the present study essentially sought to answer the following questions:

1. How is the history of mathematics addressed in the main components of Turkish middle school mathematics curriculum, namely, learning objectives, content, delivery, and assessment process?

2. How the history of mathematics is addressed in the Turkish middle school mathematics textbooks?

It is believed that the results of this study will be valuable for curriculum developers, scholars, and teachers who would like to search an example of the mathematics curriculum and textbooks within the historical perspective. It is also believed that the results may contribute to the ongoing research by giving an example from the Turkish educational context. Although the focus of the study was not on the implementation of the curriculum as well as the use of the textbooks in classrooms, the results may also shed light on the relationship between the intentions about the use of the history of mathematics as stated in the official curriculum and the indications of the potential learning opportunities related to the history of mathematics as included in the textbooks, in essence, as in the “potentially implemented curriculum” (to use Valverde, et al.’s words [2002, p.13]).

Before moving to the next parts, it is believed that the general information about the national setting of mathematics education in Turkey, where the study stems from, might be useful starting point for a better understanding. Turkish education system has a highly centralized governance structure and the Ministry of National Education (MONE) is the main body for planning, programming, executing, monitoring and controlling all educational services including curriculum development and approval of textbooks. In 2005, the striking curricular change was made in order to develop a more learner-centered curriculum and a more constructivist way of learning. In 2012, with the announcement of the new law, the length of compulsory education was increased from 8 to 12 years and redefined the system into 3 levels (12-years compulsory education covering 4-years elementary, 4-years middle and 4-years high school). As a result of this structural reform, the MONE had to make the second important curricular revision. The revised Turkish middle school mathematics curriculum (5th-8th grade) was put into implementation during the 2013-2014 academic year. The goal of the revised mathematics curriculum is stated as to provide a learning environment in which students will gain mathematical knowledge and skills required by the 21st century (MONE, 2013). With regard to the content, there are five main learning strands, namely, numbers and operations; geometry and measurement; algebra; data analysis; and probability. In addition, the development of students’ problem solving skills, mathematical processing skills (e.g. reasoning, communication, etc.), affective dimensions (attitude, self-confidence, self-regulation, etc.), and psychomotor skills are highly emphasized issues in the curriculum.

Method

This study was designed to analyze how the history of mathematics occupied in the Turkish middle school mathematics curriculum and math textbooks. For this purpose, data were collected through document analysis. The first main data source of the study was the Turkish middle school mathematics curriculum (5th-8th grades), namely the official curriculum document. The second main data sources were the Turkish middle school mathematics textbooks approved by MONE during the 2015-2016 academic year. There are totally six approved textbooks and all of them were included in the document analysis. All of the data sources are available on the MONE’s official website. The detailed information about the textbooks is provided in Table 2.
Before the data analysis process, two frameworks were developed by the researchers. The first framework, as given in the Table 3, was developed to analyze the official mathematics curriculum in terms of the main components, namely, learning objectives, content, delivery, and assessment. More specifically, the attention is here on where (objectives, content, delivery, and assessment) and how (compulsory or suggested expressions) the history of mathematics incorporated in the curriculum.

The second framework, as given in the Table 4, was developed for the analysis of the math textbooks. It has two parts as the place of utilization and the way of expression. The former is focused on where the references to the history of mathematics used in the textbooks (e.g. introduction activities, explanation of the topic to be learned, closure activities, or off-topic information). The latter part, the ways of expression, is based on the Xenofontos and Papadopoulos’s (2015) framework. It has four categories: (1) simple historical/biographical references; (2) solution/evidence of a method including historical pieces; (3) mathematical tasks of purely cognitive elements that require a numerical solution, explanation or proof and (4) discussion/projects relating the history of mathematics with life outside mathematics. According to Xenofontos and Papadopoulos (2015), while the references clustered under the first and second categories just present encyclopedic pieces of information without posing any question to students, the references under the third and fourth categories present historical dimension of mathematics through tasks, discussions and/or projects that asked students to produce solutions or answers.
Table 4.
The framework for the textbook analysis (cont’d)

How is the HoM incorporated in the textbook?
The ways of expression
Simple historical /biographical references
Solution/proof of a method/formula
Mathematical tasks
Discussion/project tasks

In order to find out all relevant data (i.e. the references to the history of mathematics), the official curriculum and the textbooks in each grade level were carefully examined line by line according to the frameworks. During the analysis process, the researchers coded the data independently and then both sets of data were compared to establish consistency in the assignment of codes to the same category.

Results

The results gathered from the analysis of the Turkish middle school mathematics curriculum and six Turkish middle school mathematics textbooks were presented in line with two main research questions.

The History of Mathematics in the Turkish Middle School Mathematics Curriculum

The major focus of the content analysis here was to identify all instances of the history of mathematics in the Turkish Middle School Mathematics Curriculum (TMMC). Hence, learning objectives, content, delivery, and assessment aspects of the curriculum were analyzed according to the framework. The findings gathered from the content analysis are summarized in Table 5.

Table 5.
The instances of the HoM in the curriculum

The components of curriculum	Instances of the HoM found in the curriculum	The ways of expression
Learning Objectives	1 objective (6th grade)	Compulsory
Content/Strands	No instances found	---
Learning and teaching	The use of famous mathematicians’	Suggested
process	biographies, and their contributions to the	
	field	
Assessment process	No instances found	---

Considering the learning objectives from 5th to 8th grades, the following sixth-grade objective (see Figure 1) was the only instance of the history of mathematics: “determine prime numbers and their properties”. The explanation of this learning objective required for “using the Sieve of Eratosthenes to find all primes up to 100” (TMMC, 6th grade, p. 13). Based on the explanation statement, it can be said that the way of expression is compulsory. In other words, use of the Sieve of Eratosthenes is the main requirement for achieving this learning objective.

Figure 1. The objective and its explanation requiring the use of the Sieve of Eratosthenes (TMMC, 6th grade, p. 13)
With regard to the content, among five main learning strands (i.e. numbers and operations; geometry and measurement; algebra; data analysis; and probability), no trace of the history of mathematics was found. As seen in Table 5, the history of mathematics was also reflected in the learning and teaching process. In the curriculum guide, under the title of “The Use of Information related to the Development of Mathematics” (see Figure 2), it was acknowledged that providing information about famous mathematicians’ biographies, and their contributions to the field might affect students’ attitudes towards mathematics positively. It is also stated that mathematics instruction should place emphasis on the contributions of Atatürk, the founder of the Turkish Republic. For instance, he is the author of the first geometry book written in Turkish as well as introduced the standard units of measurement. Since these explanations about the integration of history of mathematics with learning and teaching of mathematics are given in the form of suggestions, the way of expression of learning and teaching process is not compulsory activities. Like the content aspect of the curriculum, no trace of the history of mathematics was found in the assessment part of TMMC.

Figure 2. The extract from the Use of Information related to the Development of Mathematics (TMMC, 2013 p. VIII)

The History of Mathematics in the Turkish Middle School Mathematics Textbooks

The aim of the content analysis here was to identify all instances of the history of mathematics in the six Turkish middle school mathematics textbooks. Totally 1995 pages of the six middle school mathematics textbooks were analyzed by line by line. The total number of the HoM-related pages for all grades and all textbooks was found about thirty-five pages. Further, the total instances of the HoM found in the six middle school mathematics textbooks was only twenty-seven. The results obtained from the textbook analysis are summarized in Table 6.

Table 6.

The place of utilization	Simple historical / biographical references	Solution / proof of a method/ formula	Mathematical tasks	Discussion / projects	Total
Introduction activities	9	–	3	2	14
Presenting topic to be learned	–	3	–	–	3
Closure activities	6	–	1	–	7
Off-topic extra information	3	–	–	3	3
Total	**18**	**3**	**4**	**2**	**27**

...
Considering the grade levels, the history of mathematics was mostly taken into consideration in the eighth grade, totally 12 references were found in two different textbooks. Surprisingly, as given in Table 7, no trace of the history of mathematics was found in the seventh-grade textbook. By sixth grade, 8 references and by fifth grade 7 references were determined.

Table 7.
The number of the instances of HoM by grades

Grades	Introduction	The place of utilization	Closure	Off-topic information
5th	-	-	7	-
6th	4	1	-	3
7th	-	-	-	-
8th	10	2	-	-
Total	14	3	7	3

According to the findings, the references related to the HoM were mostly placed in the introduction part of the topic. Figure 3 and 4 are given as examples of the use of the HoM at beginning of the mathematical topics.

Figure 3. A short biography of Eratosthenes (Dikey, 6th grade, p. 39)

Figure 4. A short information about Atatürk and his contributions to geometry (Sevgi, 8th grade, p. 82)

Apart from one reference from the sixth-grade and two references from eighth-grade textbooks, there was no evidence indicating the history of mathematics used while presenting the topic, concept, skill, or formula to be learned in the textbook series. Figure 5 indicates that the Sieve of Eratosthenes was used while presenting the topic of prime numbers that was also explicitly stated in the curriculum. In Figure 6, a short description about the Pascal triangle and its construction were given.
Besides, only the fifth-grade textbooks included in the references related to the HoM at the end of the topic. Figure 7 provides example of the HoM placed in the closure part that was related to William Playfair and his invention of the bar chart given at the end of the data analysis and interpretation topic. Another example as given in the Figure 8 provides brief information about the first use of parenthesis in mathematics by Christopher Clavius in 1608 and by Albert Girard in 1629.

Moreover, the historical dimension of mathematics were also used as off-topic extra information (i.e. not related to topic or learning objective). According to results, only 3 references were found in the sixth-grade textbook. Figure 9 indicates the use of the HoM as an off-topic information about Cahit Arf, a world-famous Turkish mathematician, in the data analysis topic.

The findings concerning how the history of mathematics is integrated in the textbooks indicated that the history of mathematics was expressed mostly in the way of historical or biographical references. As seen in Table 8, out of 27 references, 18 of them were expressed in the form of either simple historical or biographical information.
Table 8.
The number of the HoM references according to the ways of expression by grades

Grades	No question(s) for student(s)	Posing question(s) to student(s)	Total	
	Simple historical/ biographical references	Solution /proof of a method/ formula	Mathematical tasks	Discussion/ projects
5th	6	1	1	7
6th	5	1	1	8
7th	7	2	2	12
8th	18	3	4	27

The examples of the references expressed in the form of simple historical or biographical information are provided in Figure 10 and 11.

According to the results, a few number of references to the history of a mathematical method or formula containing a solution or proof without posing any question to student(s) were included in the mathematics textbooks. Figure 5 (The Sieve of Eratosthenes) and Figure 6 (Pascal’s Triangle) exemplify how the historical references to a method and its solution process used in the textbooks. Moreover, the findings clearly indicated that the references asking students to interact with the history of mathematics were rarely included in the textbooks. Only four references related to mathematical tasks of purely cognitive elements requiring a numerical solution, explanation or proof and two references related to discussion/project tasks connecting the history of mathematics with life outside mathematics were found. Examples of these references are shown in Figures 12 and 13 respectively. Figure 12 illustrates an example of mathematical task that provides short biographical information about Pythagoras and then, asks students to explain the following question: “The Pythagorean theorem was used in the given triangle. Based on the provided information, please explain the Pythagorean theorem”. In Figure 13, an example of discussion/project tasks, a short historical information about the Ancient Egyptian Number System and the table indicating what the Egyptian hieroglyphics (symbols) represent in our decimal system as well as their descriptions are provided. Afterward, students are invited to discuss the difficulties to perform calculations (addition, subtraction, multiplication, and division) by using Egyptian hieroglyphics. In order to complete this task, students need to collect information about how Egyptians carry out calculations.
Discussion & Conclusion

In the present study, the findings clearly indicated that both the curriculum and the textbooks are attentive to the inclusion of historical aspect of mathematics. Considering the learning objectives of the TMMC, the official curriculum, there is only one objective addressed the history of mathematics explicitly. In the learning and teaching aspect of the TMMC, the important role of the history of mathematics is clearly acknowledged under the title of “The Use of Information related to the Development of Mathematics”. Nonetheless, no trace of the history of mathematics was found in the content and the assessment components of the TMMC. Based on this result, it is obvious that although the role of HoM in mathematics education is taken into consideration, its integration could not be fully reflected in the components of the TMMC. In this respect, the results of the present study call for a mathematics curriculum in which all aspects from learning objectives to assessment are well-balanced in terms of historical dimensions of mathematics so that students are provided with learning opportunities to meaningfully engage with mathematics as well as extend beyond rote application of procedures. As Lingard (2000) stated “Inclusion of some history of mathematics in the school curriculum increases student motivation and achievement by humanizing the subject, emphasizing on the continuous development of math and foster an appreciation of the multicultural inheritance and culturally dependent nature of the subject” (p.16). In a similar vein, Bidwell (1993) used “island” metaphor for the mathematics instruction without its history where students perceive mathematics as “closed, dead, emotionless and all discovered” (p. 461) subject. However, the integration of the history of mathematics clearly help us to “rescue students from the island of mathematics and relocate them on the mainland of life that contains mathematics that is open, alive, full of emotion, and always interesting” (Bidwell, 1993, p. 461). Towards this aim, the history of mathematics might be connected with all main dimensions of math curriculum and become more visible and attractive for teachers and textbook writers.

Furthermore, the findings emerged from the analysis of the six Turkish middle school mathematics textbooks (for 5th-8th grades) indicated that the total page number of six textbook is 1995 and a middle school student will meet about 35 pages of history of mathematics during his/her four-year middle school process. In this respect, the inclusion of the historical dimensions of mathematics in the textbooks, namely the potentially implemented curriculum, is very limited. Smestad (2000) made a similar point with respect to the Norwegian math textbooks and found that a student will meet about 36 pages of history of mathematics in his/her ten-year schooling process. Another indicator of limited use of HoM in the textbooks is the total number of the HoM-related instances that was found only twenty-seven. Considering the grade levels, no trace of the history of mathematics was found in the seventh-grade textbook. It might be interpreted that although fifth and sixth graders have little chance to see the need or rationale behind development of a mathematical concept/theorem/rule through historical perspective of math, in seventh grade, there is no chance offered for students to continue seeing mathematics as an organic whole.
Besides, more than half of the HoM-related references in the textbooks were presented in the form of encyclopedic pieces of information. Similar results were demonstrated in previous research as well. Xenofontos and Papadopoulos's (2015) study, for instance, made a similar point with respect to the use of the history of mathematics in the Cypriot and Greek mathematics textbooks. According to Baki and Bütüner's (2013) study, the history of mathematics was mostly expressed through the short life stories and pictures of mathematicians in elementary school mathematics textbooks. In this respect, the findings of the current study clearly indicated that the references that ask students to interact with the history of mathematics were rarely included in the textbooks. One of the possible reasons behind the perfunctory attention given to the history of mathematics in the textbooks might be due to the curriculum itself. Especially such countries as Turkey, having a highly centralized educational system, a national curriculum is usually embodied in nation-wide unified textbooks. Thus, the extent to which the historical aspect of mathematics is occupied in the curriculum directly affects the scope of the historical elements in mathematics textbooks. To sum up, the findings of the present study indicated that although the TMMC and the middle school math textbooks value the history of mathematics, there are rather shallow and superficial mentions of the history of mathematics in terms of quantity and quality.
Giriş

İnsanoğlunun çabasıyla harmanlanmış zengin kültürel bir birikim olarak matematik, yaklaşık dört bin yılından beri, en temel dersler arasında okul programlarında yer almaktadır. Matematik, günlük ve mesleki yaşamla iç içe, sürekli gelişen canlı bir bilim dalı olmasına rağmen, çoğu öğrenci matematiğin donuk, mekanik, soyut, sadexe sayılar, teoremler, semboller ve prosedürlerle ilgili olduğunu inanmaktadır. Matematiğin mekanik bir yapıda olduğu inancının ardındaki nedenlerden biri, öğrencilerin matematik ile nasıl ve ne düzeyde bir deneyim ve etkileşim yaşadıklarıdır. McCartney’ın (2012) belirttiği gibi “Matematik öğrencilere genellikle ve elbette doğru olarak “hazır” bir şekilde sunuluyor... Ancak, diğer disiplinlerde olduğu gibi, matematiğin yanlış başlangıçlar, yanlış anlaşılmalar, karışıklıklar ve çıkmazlarla dolu şaşırtıcı ve çığır açan bir tarihi vardır” (s.5). Matematiğin tarihi, matematikteki keşiflerin kaynakları, başarlar/başarısızlıklar, sorunlar, ünlü matematikçilerin düşünceleri ve deneyimlerine odaklanarak, matematik bilgisinin gelişim ve ilerlemeye süreçleri ile ilgili çok geniş bir çalışma alanı olarak tanımlanmaktadır (Burton, 2003; Eves, 1990; Katz, 1993; Otte, 2007; Yee ve Chapman, 2011).

Genellikle okul matematiğinde göz ardı edilen kısım olan matematik tarihi, öğrenme-öğretme süreciyle bütünleştirildiğinde, öğrencilerin hem bilisel hem de duyuşal gelişimini destekleyici bir rol sahiptir. Fried (2001) matematik tarihinin (a) matematiğin insani yönlerini vurguladığını; (b) matematiği ilginç, daha anlaşılır ve ulaşılabilir kıldığını ve (c) matematiksel işlemlerin geçmişini ortaya koyduğunu belirtmektedir. Ayrıca, matematik tarihinin matematik eğitimiyle bütünleştirilmesiyle ilgili birçoğu araştırma, öğrenme-öğretim sürecinde matematik tarihinin kullanımının, öğrencilerin matematiğe yönelik tutumlarını olumlu yönde etkilediğini ve eğitimde bir rol oynamasını cool (Ernest, 1988). Jankvist’e (2009) göre, “Tarih olmadan, matematik öğrenilemez” (s.238). Alan yazındaki birçok araştırma matematik tarihinin öğrenme-öğretim sürecinde matematiğin gelişim ve ilerleme süreçleri ile zenginleştirici özelliğinin yanında, ilkokuldan yükseköğretime kadar öğrencilere çok farklı katkıları olduğunu da ortaya koyuyor (Albayrak, 2011; Başbuğ, 2012; Bayam, 2012; Bellomo ve Werheimer, 2010; Eroş ve Öksüz, 2016; Fauvel, 1991; Hagerty, Smith ve Goodwin, 2007; Jankvist, 2009a; Kaye, 2008; Leng, 2006; Lim, 2011; Liu ve Niess, 2006).

Matematik tarihinin, öğrenme-öğretim süreciyle bütünleştirilmesiyle destekleyici ve etkileyici bir rol oynaması, matematik tarihinin öğretimsel ve öğretici rolüne de önemli katkısı yapar (Fauvel, 1991; Fauvel ve Van Maanen, 2000; Jankvist, 2009), yanılışları gidermek için bir araç olabilir. “Resmi/hedeflenen” matematik dersi öğretim programı olarak tanımlanır. Posner (1995) resmi/hedeflenen programı “resmi otoriteler tarafından onaylanması yazılı bir dokuman” (s.12) olarak tanımlamıştır. Benzer şekilde Porter ve Smits (2001, s.2) resmi programı, “standartlar, çerçeveler veya yönergeler doğrultusunda öğretmenden uygulama aktarması beklenen” politik bir belge olarak betimlemiştir. Bu bağlamda, resmi/hedeflenen program öğrencilerin ve öğretmenlerin, matematiğin, öğrenme-öğretim sürecinin ve matematiksel düşünceyi zenginleştirmesinde önemli bir rol oynaması gerektiğini göstermektedir (Arseven, 2003; Albayrak, 2011; Baştıbu, 2012; Collopy, 2003; Fan, Zhu, ve Miao, 2013; Reys, Reys, Lapan, Holliday, ve Wasman, 2003; Tan-Assad ve Akkaya, 2017; Tyson ve Woodward, 1989; Woodward ve...
Elliott, 1990). Valverde, Bianchi, Wolfe, Schmidt ve Houang (2002) ders kitaplarını "potansiyel olarak uygulanan program" ifadesi ile tanımlayarak, resmi program ve uygulanan program arasında bir köprü görevi üstlendiğini ifade etmişlerdir. Bu bağlamda, program ve ders kitapları, matematik eğitiminde matematik tarihinin carar vericiler ve program geliştirme komisyonu tarafından nasıl ve ne düzeyde dikkate alındığını gösteren temel bileşenler olarak düşünülebilir.

Matematik tarihinin matematik eğitiminde kullanıımı, özellikle Fauvel ve Van Maanen (2000) editörlüğünde hazırlanan "Matematik Eğitiminde Tarih: Bir ICMI Çalışması" adlı kitabin yayınlanması sonrada giderek artan bir ilgi görmeye devam etse de, hem program hem de ders kitaplarındaki matematik tarihinin ilişkin yürütülen araştırmaların olduğu sürpriz olduğu görülmektedir (Ho, 2008; Xenofontos ve Papadopoulos, 2015). Tablo 1'de verildiği gibi, matematik tarihinin matematik eğitiminde kullanıma ilişkin yapılan güncel çalışmalar farklı katılımcılarla (örn. ortaokul öğrencileri, matematik öğretmenleri, vb.), çeşitli araştırma yöntemleri (örn. nitel, nicel, karma) ile farklı yönlere (örn. inançlar, tutumlar, bilgi düzeyi, vb.) odaklandığı görülmektedir.

Tablo 1.
Matematik tarihinin matematik eğitiminde kullanıma ilişkin yapılan güncel çalışmaları

Arastirmacilar ve Yil	Cagisma grubu/veri kaynagi	Matematik Tarihinin (MT) Arastirmadaki Odogu	Yontem	Sonuclar
Ersoy ve Oksuz, 2016	4.sınıf ogrenciler	MT'nin basari, motivasyon ve kalicilga etkisi	Nitel	Basari, kalicilik ve motivasyon üzerinde olumu etki
Ju, Moon, ve Song, 2016	7.sinfi ders kitaplari	Kore matematik ders kitaplariinda MT	Nitel	Ogrencilerin ust düzey dusunme becerilerini etkien klimda yetersiz fakat cehiti cektilerinde MT kullanini
Xenofontos ve Papadopoulos, 2015	7-9 sinif matematik ders kitiplari	Guney Kibris ve Yunanistan matematik ders kitaplariinda MT	Nitel	Basin ve ust düzey dusunme geregikten ve coğunlukla biyografik örnekler yer verilen MT
Erdogan, Eshmen ve Finvik, 2015	5-8 sinif matematik ders kitiplari	MT'nin ders kitaplandaki kullanimi	Nitel	Sınırlı düzeyde MT kullanını, çok az sayda üst düzey dusanme geregikten MT örnekleri
Povey, 2014	MT dersi veren ogretim elemanlar	MT'nin hizmet oncesi ogretmen yetisirmedeki kullanima iliskin goruisler	Nitel	Olumu katiklar
Bayam, 2013	6.sinif ogrenciler	MT'ne iliskin goruisler	Nitel	Olumu goruisler
Gazit, 2013	Matematik ogretmenleri ogretmen adaylari	MT'ne iliskin bilgi duzeyleri	Nitel	Her iki grupta da dusuk bilgi duzeysi
Goktepe ve Ozdemir, 2013	8.sinif ogrenciler	MT ile desteklenmis matematik dersine iliskin goruisler	Nitel	Olumu goruisler
Alpaslan, Isiksal ve Haser, 2014	Matematik ogretmen adaylari	MT'nin kullanima iliskin inanc ve tutumlar; MT'ne yonelik bilgi duzeyleri	Nitel	Olumu tutum ve inancar, Orta bilgi duzeysi
Aydugu dogdu ve Yuksel, 2013	Matematik ogretmen adaylari	Yaratici sillik MT'ne iliskin tutum ve inancar arasindaki iliski	Nitel	Yaratici sillik MT'ne iliskin tutum ve inancar arasindaki dusuk duzeeye iliski
Baki ve Butuner, 2013	6-8.sinif matematik	MT'nin ders kitaplandaki kullanimi	Nitel	Sınırlı kullanim
Tablo 1.
Matematik tarihinin matematik eğitiminde kullanımına ilişkin yapılan güncel çalışmalar (devamı)

Araştırmacilar ve Yılı	Çalışma grubu/veri kaynağı	Matematik tarihinin (MT) araştırmasındaki odak	Yöntem	Sonuçlar
bayam, 2012	6.sınıf öğrencileri	MT’nin başarı ve tutum üzerindeki etkisi	Karma	Sadece başarı üzerinde etkisi
Başbuğ, 2012	Üniversite öğrencileri	MT destekli öğretimdeki başarı ve tutum üzerindeki etkisi	Nicel	Başarı ve tutum üzerinde etkisi
Özdemir, Göktepe ve Kepçeoglu, 2012	11.sinif öğrencileri	MT’nin geometrik ispatlamada kullanımı	Nitel	Geometrik ispatlama becerilerinde gelişim
Panasuk ve Horton, 2012	Matematik öğretmenleri	MT’nin ilişkili algılar ve MT kullanımını etkileyen faktörler	Nicel	MT ne ilişkin yetersiz bilgi düzeyi ve düşük özgüven
Clark, 2012	Matematik öğretmen adayları	MT’nin pedagojik alan bilgisine katkıları	Nitel	Olumu katkı
Yenilmez, 2011	Matematik öğretmen adayları	MT dersine ilişkin görüşler	Nicel	Olumu görüşler
Burns, 2010	Matematik öğretmen adayları	MT’nin lise matematik tarihinin ve rolüne ilişkin görüşlerdeki etkisi	Karma	MT’nin kullanım ve rolüne ilişkin görüş ve inançlarda etkisi
Gürsoy, 2010	Matematik öğretmen adayları	MT’nin kullanımında ilişkin tutum ve inançlar	Karma	Olumu tutum ve inançlar
Huntley ve Flores, 2010	Matematik öğretmen adayları	MT dersinin pedagojik alan bilgisine katkıına ilişkin görüşler	Nitel	Olumu katkılar ve görüşler
Jankvist, 2010	Lise öğrencileri	Matematikin meta-konularına ve tarihine dair dönüşcülerde değişimi	Nitel	Olumu değişimler
Thomaidis ve Tzanakis, 2009	7-9.sınıf matematik ders kitapları	Yunanistan lise matematik ders kitaplarında MT’nin kullanımı	Nitel	Çok sayıda MT kullanımı, ancak MT kullanımının hatalı, belirsizlik yaratı veya eksik bilgi içermesi
Baki ve Güven, 2009	Matematik öğretmen adayları	Khayyam Metodu ile ikinci dereceden denklem çözümünde dinamik geometri programının kullanımı ile ilgili deneyimler	Nicel	Khayyam’ın katkılarına ilişkin farklılık, olumu deneyimler, geçmiş ve günümüzdeki matematikle bağlantılar
Smestad, 2008	Matematik öğretmenleri	Programdaki MT’nin ilişkini başarı açları	Nitel	Programdaki MT’ye ilişkin farklı kavramsal ve uygulamalar
Tözluyurt, 2008	Lise öğrencileri	MT destekli izleyicilerine ilişkin görüşler	Nitel	Olumu görüşler
İdikut, 2007	7.sinif öğrencileri	MT’nin başarı ve tutuma etkisi	Nicel	Sadece başarıya ilişkin olumlu etki
Smestad, 2000	Norveç matematik	Norveç ders kitaplarında MT kullanımı	Nitel	Çok sınırli MT kullanımı, bazlarında yaniş ve hatalı
Ancak, Tablo 1’de de görüldüğü gibi, alan yazında matematik ders kitaplarında matematiksel düşünmenin, tarihsel temellerine odaklanan oldukça sınırlı sayıda çalışma (Baki ve Bütüner, 2013; Erdoğan, Eşmen ve Fındık, 2015; Smestad, 2000; Thomaidis ve Tzanakis, 2009; Xenofontos ve Papadopoulos, 2015) bulunmaktadır. Ayrıca, matematik tarihini konu alan çeşitli raporlarda, gerek ilkokul gerekse ortaokul matematik programları ve ders kitaplarında matematiğin tarihsel boyutunun bütünleştirilmesine ilişkin çabaların Thưetsiz olduğu görüşülmektedir (Ho, 2008; Radford, Furingetti ve Katz, 2007; Xenofontos ve Papadopoulos, 2015). Bu bilgiler içinde, bu araştırmanın amacı, 2013 ortaokul matematik dersi (5, 6, 7 ve 8.siniflar) öğretim programında ve ortaokul matematik ders (5, 6, 7 ve 8.siniflar) kitaplarında, matematik tarihine nasıl yer verildiğini incelenmesidir. Bu kapsamda araştırımda yanıt aranan sorular şunlardır:

1. 2013 Ortaokul Matematik Dersi (5-8.siniflar) Öğretim Programının temel öğelerinde (kazanımlar, içerik, eğitim durumları ve sınama durumları) matematik tarihine nasıl yer verilmiştir?

2. Ortaokul matematik ders (5-8.siniflar) kitaplarında matematik tarihine nasıl yer verilmiştir?

Bu araştırmadan elde edilen bulguların, matematik dersi öğretim programı ve ders kitaplarının, matematik tarihi perspektifinden yansımalarına odaklanan önemli katkılar sunması beklenmektedir. Ayrıca, Türkiye’de ortaokul matematik eğitimindeki matematik tarihinin ders kitaplarında daha fazla yer alması, matematik tarihi perspektifinden öğrencilerin matematik tarihine daha fazla odaklanmasına olanak sağlayacaktır. Bu araştırmanın kapsami, öğrencilerin matematik tarihine odaklanan bilgi ve öğrenme deneyimlerini artırmakta ve matematik tarihine olan ilgiyi ve ilgili bilgilerin öğrenilmesini teşvik etmektedir. Bu araştırmadaki bulguların, matematik tarihine odaklanan amaçlı ders kitaplarının matematik tarihine odaklanan bilgi ve öğrenme deneyimlerini artırmaları için önemli bir katkı sunmaktadır.
olduğundan dolayı doküman incelemesi yoluyla veri toplanmıştır. Bu kapsamda, araştırmanın temel veri kaynakları, Talim ve Terbiye Kurulu Başkanlığı tarafından 2013-2014 öğretim yılından itibaren kademeli olarak uygulanmak üzere kabul edilen ortaokul matematik dersi (5-8. sınıflar) öğretim programı ile 2015-2016 eğitim-öğretim yılında MEB tarafından hazırlanan devlet okullarında okutulacak ortaokul matematik dersi (5-8. sınıflar) kitapları listesindeki tüm ders kitaplarından. Araştırma kapsamında incelenen ders kitaplarına ilişkin detaylı bilgiler Tablo 2'de sunulmuştur.

Tablo 2.
Araştırma kapsamında incelenen ders kitaplarına ilişkin bilgiler

Sınıf düzeyi	Yayınenevi	Toplam sayfa sayısı
5. sınıf	MEB	588 (2 cilt)
	Özgün	264
6. sınıf	Dikey Yayıncılık	264
7. sınıf	Tutku	354
8. sınıf	MEB	263
	Sevgi	262
Toplam	6 ders kitabı	1995

Çalışmada, araştırmacılar tarafından geliştirilen iki farklı yönerge kullanılarak veri setinin analizi yürütülmüştür. Bu yönergelerden ilk olan öğretim programı analiz yönergesi, matematik tarihinin programda nerede (kazanımlar, içerik, öğrenme-öğretim süreci ve ölçme-değerlendirme) ve nasıl (zorunluluk/öneri) ele alınlığının ortaya konulmasına yönelik olarak hazırlanmıştır. Tablo 3'te öğretim programı analiz yönergesi verilmiştir.

Tablo 3.
Öğretim programı analiz yönergesi

Öğretim programında matematik tarihi hangi öğe kapsamında ele alınmıştır?	Öğretim programının öğeleri
	Kazanımlar
	İçerik
	Eğitim durumları (Ögrenme-öğretim süreci)
	Sinama durumları (Ölçme-değerlendirme)

Öğretim programında matematik tarihi nasıl ele alınmıştır?	Yansıtılma şekli
	Zorunlu
	Öneri

Tablo 4'te verilen ikinci yönerge ise, ders kitaplarında matematik tarihinin nerede ve nasıl kullanıldığınin incelenmesi amacıyla geliştirilmiştir. Yönergenin ilk kısmı, ders kitaplarının hangi bölümlerinde (örn: unite/konu başlangıcıda, konu anlatımında, konu sonunda veya ek bilgi olarak) matematik tarihine yer verildiğinin tespit edilmesine yöneliktir. Yönergenin ikinci kısmında ise, ders kitaplarında matematik tarihinin nasıl kullanıldığı ortaya konulmasına amaçlanmıştır. Bu bölümdeki sınıflandırmalar, Xenofontos and Papadopoulos’un (2015) (1) basit tarihi/biyografik örnekler; (2) bir formül veya kuralın ispatında/cozümünde kullanılan tarihi öğeler; (3) bilişsel öğelerden oluşan bir matematiksel çözüm, açıklama ya da ispat gereken matematik tarihi içeren matematiksel görevler ve (4) matematik tarihi ile günlük yaşamındaki matematikili ilişkilendiren tartışma veya projeler olarak geliştirdiği kategoriler kapsamında oluşturulmuştur.

205
Tablo 4.
Matematik ders kitapları analiz yönergeleri

Kullanım yeri	Kullanım şekli
Matematik tarihine ilişkin öğeler ders kitaplarının hangi bölümünde yer verilmiştir?	Kullanım şekli Basit tarihi/biyografik örnekler
	Formül veya kuralın ispatında/çözümüne yönelik açıklamalar
	Matematiksel görevler
	Tartışma/projeler

Bu yönergeler doğrultusunda ortaokul matematik dersi öğretim programı ve ortaokul matematik ders kitaplarındaki matematik tarihine ilişkin tüm referansların ortaya konulması amacıyla araştırmacılar tarafından satır satır incelenmiştir. Veri analizi sürecinde, tüm veri seti araştırmacılar tarafından yönergeler doğrultusunda ayrı ayrı kodlandıkları sonra, elde edilen kodlamalar birbiriyle karşılaştırılarak uyumuğu kontrol edilmiştir.

Bulgular

Ortaokul matematik dersi öğretim programındaki ve matematik ders kitaplarındaki matematik tarihinin kullanımına ilişkin olarak yürütülen veri analizinden elde edilen bulgular, araştırma soruları paralelinde sunulmuştur.

Ortaokul Matematik Dersi Öğretim Programında Matematik Tarihinin Yeri

Ortaokul matematik dersi öğretim programında (OMÖP) yer verilen matematik tarihiyle ilgili tüm bileşenlerin ortaya konulmasına amacıyla kazanımlar, içerik, eğitim durumları ve sınav durumları kapsamında yapılan içerik analizinden elde edilen bulgular Tablo 5'te özetlenmiştir.

Tablo 5.
Öğretim programında yer verilen matematik tarihine ilişkin bulgular

Programın öğeleri	Programdaki kullanımı	Kullanım şekli
Kazanımlar	6.1.2.3 nolu kazanıma ilişkin açıklama	Zorunlu
İçerik (öğrenme alanları)	Hiçbir göstergeye rastlanamamıştır.	------
Eğitim durumları	Hiçbir göstergeye rastlanamamıştır.	------
(Öğrenme-öğretim süreci)	Hiçbir göstergeye rastlanamamıştır	------
Sinama durumları	Hiçbir göstergeye rastlanamamıştır	------

5-8.sinif kazanımları incelendiğinde, matematik tarihine ilişkin tek örnek “Asal sayıları özellikleriyle belirler” kazanıma ait açıklamada (Şekil 1) ifade edilen “Eratosthenes (eratosthen) Kalburu Yardımlıla 100’e kadar olan asal sayılar bulunur.” açıklaması incelendiğinde, Eratosthen Kalburu’nun kullanımı bir öneriden çok, mutlaka yer verilmesi gereken bir durum olarak ifade edilmiştir.

Şekil 1. Eratosthenes (Eratosthen) Kalburu Yardımlıla 100’e kadar olan asal sayılar bulunur. (OMÖP,2013; 6.sinif, s. 13)
Öğretim programının içerik öğesi kapsamında sayılar ve işlemler, cebir, geometri ve ölçme, veri işleme ve olasılık olmak üzere beş temel öğrenme alanında matematik tarihine ilişkin hiçbir ifadeye rastlanılmamıştır. Tablo 5’te verildiği gibi, eğitim durumları (öğrenme-öğretme süreci) öğesinde “Programda Matematiğin Gelişimine İlişkin Bilgilendirmelerin Kullanılması” başlığı (Şekil 2) altında ünlü matematikçilerin biyografilerinin, matematiğe olan katkılarının derslerde ele alınmasını öğrencilerin matematiğe yönelik olumlu tutum gelişmesine sağlayacağı ifade edilmiştir. Ayrıca Atatürk’ün matematik alanında sağladığı katkıları matematik öğretim sürecinde yer verilmesi vurgulanmıştır. Eğitim durumlarında matematik tarihinin yansıtılma şekline ilişkin ifadeler incelendiğinde ise, bu ifadelerin öğretmenlere sunulan öneri ve tavsiye niteliğinde olduğu görülmüştür. Öğretim programının ölçme-değerlendirme durumlarında ise matematik tarihine ilişkin bir göstergeye rastlanamamıştır.

Şekil 2. Programda Matematiğin Gelişimine İlişkin Bilgilendirmelerin Kullanılması (OMÖP), 2013 s. VIII)

Ortaokul Matematik Ders Kitaplarında Matematik Tarihinin Yeri

Araştırma kapsamında incelenen 6 ortaokul matematik ders kitaplarındaki matematik tarihine ilişkin tüm örneklerin ortaya konulmasına yönelik olarak yürütülen içerik analizinden elde edilen bulgulara göre, tüm sınıf seviyeleri (5.-8.sınıflar) kapsamında incelenen toplam 1995 sayfadan, matematiğe ilişkin örneklerin yer verildiği toplam sayfa sayısı 35’tir. Analiz kapsamında dâhil edilen toplam 6 ortaokul matematik ders kitapında tespit edilen matematik tarihine ilişkin toplam örnek sayısı ise sadece 27’dir. Ders kitaplarının analizinden elde edilen bulgular Tablo 6’da özetlenmiştir.

Tablo 6.

Kullanım şekli	Basit tarihi/ biyografik örnekler	Formül/kuralın ispatında/ çözümüne yönelik açıklamalar	Matematiksel görevler	Tartışma/ projeler	Toplam
Konu başlangıcında	9	–	3	2	14
Konu anlatımı	–	3	–	–	3
Konu sonunda	6	–	1	–	7
Ek bilgi/konu dışı bilgi	3	–	–	–	3
Toplam	**18**	**3**	**4**	**2**	**27**
Ders kitaplarında yer verilen matematik tarihine ilişkin örneklerin sınıf düzeyleri açısından dağılımı incelendiğinde, en fazla örneğe (f=12) 8. sınıf matematik ders kitaplarında rastlanmıştır. Tablo 7'de verildiği gibi, 7. sınıf matematik ders kitabında, matematik tarihine yönelik hiçbir bulguya rastlanamazken; 6. sınıfta sekiz; 5. sınıf matematik ders kitaplarında ise yedi gösterge tespit edilmiştir.

Tablo 7.
Ders kitaplarında yer verilen matematik tarihine ilişkin göstergelerin sınıf düzeyine göre dağılımı

Sınıf düzeyi	Konu başlangıcında	Konu anlatımında	Konu sonunda	Ek bilgi	Toplam
5. sınıf	–	7	–	–	7
6. sınıf	4	1	3	–	8
7. sınıf	–	–	–	–	–
8. sınıf	10	2	–	3	12
Toplam	14	3	7	3	27

İçerik analizinden elde edilen bulgulara göre, ders kitaplarından matematik tarihi en fazla konu başlangıçlarında kullanılmıştır. Matematik tarihinin konu başlangıcında kullanılma indisinde ilişkin örnekler Şekil 3 ve 4'te yer verilmiştir.

Şekil 3. Erastosten'in kısa biyografisi,
(Dikey, 6.sınıf, s. 39)

Şekil 4. Atatürk'ün geometriye katkıları
(Sevgi, 8.sınıf, s. 82)

6. sınıf ders kitabında tespit edilen bir örnek ve 8. sınıf ders kitabında tespit edilen ikinci örnek dışında, matematik tarihinin, konu anlatımında kullanılıldığı herhangi bir örneğe rastlanılmamıştır. Şekil 5'te 6. sınıf ders kitabında yer verilen Erastosten Kalburu'nun asal sayıları konusunun açıklaması ve Şekil 6'da ise 8. sınıf ders kitabındaki Paskal Üçgeninin oluşturulmasına ilişkin verilen açıklama sunulmuştur.

Şekil 5. Erastosten Kalburu
(Dikey, 6.sınıf, s. 41)

Şekil 6. Paskal Üçgeni
(MEB, 8.sınıf, s. 78)
Bunlara ek olarak, matematik tarihinin konu sonunda kullanımına ilişkin örnekler sadece 5.sınıf ders kitaplarında rastlanmıştır. Şekil 7’de veri analizi ve yorumlama konusunun sonunda William Playfair ve sütun grafiğine ilişkin açıklamaların yer aldığı; Şekil 8’de de parantez işaretinin matematikte kullanımına ilişkin açıklamaların yer aldığı örnekler sunulmuştur.

Ders kitaplarında matematik tarihinin ek bilgi veya konu dışı bilgilerine ilişkin sadece 6.sınıf düzeyinde 3 örnek tespit edilmiştir. Şekil 9’da dünyaca ünlü Türk matematikçi Cahit Arf’ın biyografisi, veri analizi konusunun sonunda ek bilgi olarak verilmiştir.

Matematik tarihinin basit tarihi veya biyografik bilgiler formunda kullanımına ilişkin örnekler Şekil 10 ve Şekil 11’de sunulmuştur.

Sınıf düzeyi	Basit tarihi/ biyografik örnekler	Formül/kuralın ispatında/çözümüne yönelik açıklamalar	Matematiksel görevler	Tartışma/ projeler	Toplam
5.sınıf	6	–	1	–	7
6.sınıf	5	1	1	1	8
7.sınıf	–	–	–	–	–
8.sınıf	7	2	2	1	12
Toplam	18	3	4	2	27

Matematik tarihinin basit tarihi veya biyografik bilgiler formunda kullanımına ilişkin örnekler Şekil 10 ve Şekil 11’de sunulmuştur.
Ders kitaplarından elde edilen diğer bir bulgu ise, matematik tarihini deneyimlememesine ilişkin sunulan fırsatlarla oldukça yetersiz olduğu tespit edilmiştir. Bu bağlamda, matematik tarihini öğrenciden bir matematiksel çözüm, açıklama ya da ispat yapması gereken matematiksel görevler kapsamında kullanılsa da sadece 4 örnekle tespit edilmiştir; matematik tarihi ile günlük yaşamındaki matematikliyi ilgilendiren tartışma/projelerin kullanılsa da sadece 2 örnekle rastlanmıştır. Bunlara iliskin olarak Şekil 12’de verilen örnekte, öğrencilere matematiksel görev olarak öğrencilere Pisagor Bağıntısı kuralının açıklanmasını, Şekil 13’te ise Eski Mısırlıları sayısını kullanmayı,いろ san sistemine ilişkin kısa bir açıklama verildikten sonra öğrencilere, bu sistem kullanarak dört işlem yapmanın zorlukları neler olabilir s orusu yöneltilmiştir. Bu tartışma sorununun cevaplanabilmesi için öğrencilere hem Eski Mısırlıları sayısını hem de günümüzdeki kullanımına ilişkin degerlendirme yapmaları istenmiştir.

Tartışma ve Sonuç

Matematik tarihinin, ortaokul matematik dersi (5-8.siniflar) öğretim programı ve ortaokul matematik dersi (5-8.siniflar) kitaplarından durumunun incelenmesi amacıyla yürütülen bu çalışmadan elde edilen bulgular, hem program hem de ders kitaplarında matematığın tarihsel boyutuna yer verildiğini göstermiştir. Öğretim programının kazanımlarına ilişkin elde edilen sonuçlarda, sadece tek bir kazanıma ait açıklamada doğrudan matematik tarihine yer verildiği tespit edilmiştir. Eğitim durumlarda ise “Programda Matematığın Gelişimi Lişinin BilgiUyandırılmalarına Kullanılması” başlığı altında matematik tarihini öğrencilere destekleyici öneriler sunulmuştur. İçerik ve ölçme-değerlendirme öğelerinde ise matematik tarihini ilişkin hiçbir duruma rastlanlamamıştır. Elde edilen sonuçlara göre, öğretim programında matematik tarihini matematik eğitimindeki rolünün dikkate alınmasına rağmen, matematik tarihini programın öğeleriyle tam ve kapsamlı olarak bütünleştirilmesi gerektiğini belirtmiştir. Bu sonuç, programın kazanımlarından, değerlendirmeye ögesine kadar tüm öğelerinde matematik tarihini dengeli bir şekilde harmanlansması gerektiği işaret etmektedir. Matematik tarihile bütünleştirilmiş bir öğretim programı, öğrencilere anlamlı öğrenme deneyimlerinin sağlanması adına oldukça önemlidir. Lingard’ın (2000) da ifade ettiği gibi “Matematik tarihinin programında dâhil edilmesi öğrencinin motivasyonunu ve bağımsız artıracak, matematığın gelisme açık yapısına vuruç yapacak ve matematığın çok kültürli mirasını ve konuların kültürle boyutunun takdir etmesini sağlayacaktır.” (s. 16). Benzer şekilde Bidwell (1993) matematik tarihine yer vermeyen öğretimi “ada” metaforu ile ögendeleştirdi, bu adadaki öğrencilerin matematığın “sınırları” beli, cansız, düşüyulardan arındır ve tamamen keşfedilmiş” (s.461) olarak algılandı; fakat matematik tarihinin öğretimi entegrayonu ile “öğrencilerin bu matematik adadında kurtarılacak; sonsuz, canlı, düşürü dolu ve keşfedilmeyi bekleyen matematığın anavatanına yerleştirilmelerine” yardımı olacağını ifade etmiştir. Bu amaca yönelik olarak matematik tarihini, öğretim programının tüm öğelerine ilgilendirilmesi; aynı zamanda da öğretmenler ve ders kitabi yazarları için daha dikkat çekici hale getirilmesi önerilebilir.
Ayrıca, çalışma kapsamında incelenen 6 ortaokul matematik ders kitaplarındaki toplam sayfa sayısının 1995 olmasına rağmen, sadece 35 sayfada matematik tarihi ilişkin göstergeye rastlanmasması, öğrencilerin dört yıllık ortaokul eğitimleri boyunca matematik tarihi ilişkin deneyimlerinin oldukça sınırlı olacağını en güçlü göstergelerinden biridir. Alan yazında benzer bir bulguya Norveç matematik ders kitaplarındaki matematik tarihinin incelendiği bir çalışmada da (Smestad, 2000) rastlanmıştır. Bunlara ek olarak, dersi kitaplarında matematik tarihi ilişkin tespit edilen toplam örneğin sadece 27 olması, ders kitaplarındaki matematik tarihinin oldukça sınırlı olarak kullanıldığını açıkça ortaya koyan bir diğer sonuçtır. Sınıf düzeyleri dikkate alındığında ise, 7.sınıf ders kitaplarında matematik tarihinin hissiz hiçbir örneğe rastlanlamamıştır. Bu sonuçtan hareketle, 5 ve 6.sınıf öğrencilerinin sınırlı düzeyde de olsa matematiksel bir kavram, formül veya kuralın gelişimini, dayanıklı temelleri matematik tarihi perspektifi açısından deneyimleme şansı sahip oldukları, 7.sınıfda geldiklerinde matematik tarihi ile karşılaşma şansının tamamen ortadan kalktığı şeklinde yorumlanabilir. Diğer bir deyişle, ders kitaplarındaki bu kopukluk, öğrencilerin matematiği, tarihi yapıştı birlikte bir bütün olarak anlamlandırma sürecine olumsuz yönde etkileyebilir.

Bunlara ek olarak, ders kitaplarında matematik tarihinin kullanımına yönelik olarak tespit edilen göstergelerin yarısından fazlasının anıkskedup bilgiler formunda kullanıldığını görürnmuştur. Alan yazındaki farklı çalışmalarda da bu sonuçu destekleyen bulgular elde edilmişdir. Örneğin Xenofontos ve Papadopulos (2015), Güney Kıbrıs ve Yunanistan’dan kullanılan matematik ders kitaplarında, matematik tarihinin benzer şekilde ele alınmadığına dehsonmiştir. Baki ve Bütüner’in (2013) çalışmasında elde edilen bulgulara da matematik tarihinin ders kitaplarında çoğunlukla kısa biyografik bilgiler ve matematikçilerin resimleri kapsamında yer verildiği tespit edilmişdir. Bu bağlamda araştırmadan elde edilen bu sonuçlarla, ders kitaplarında öğrencilerin matematik tarihinin deneyimlemesi ve etkileşim kurmasını kapsamında örneklere nadiren yer verildiği açıkça ortaya konmuştur. Bu durumun olması temel sebeplerinden biri öğretim programının kendi içindeki kaynaklı olabilir. Özellikle Türkiye gibi merkezi bir eğitim sisteminin sahip olan ülkelerde, var olan tek bir resmi program öğretime otoriterlerce onaylanmış ders kitaplarında hayat bulmaktadır. Bundan dolayı da, resmi programda yer verilen matematik tarihinin kapsamı ve derinliği, ders kitaplarında yer alan matematik tarihi öğelerinin de derinliğinde ve çeşitliliğinde doğrudan belirleyici rol üstlenmektedir. Sonuç olarak, matematik tarihine hem öğretim programında hem de ders kitaplarında yer verilme durumunun niteliğine ve niceliğine açısından oldukça yüzeysel ve yetersiz olduğu görülmektedir.
References

Albayrak, Ö. (2011). Effects of history of mathematics integrated instruction on mathematics self-efficacy and achievement. Unpublished master thesis, Boğaziçi University, İstanbul.

Alpaslan, M., İşiksal, M., & Hasar, C. (2014). Pre-service mathematics teachers’ knowledge of history of mathematics and their attitudes and beliefs towards using history of mathematics in mathematics education. Science & Education, 23(1), 159-183.

Arseven, A. (2003). İlköğretim 7. sınıf matematik ders kitaplarına ilişkin öğretmen, öğrenci ve uzman görüşleri. Unpublished master thesis, Hacettepe University, Ankara.

Aydoğdu, N., & Yüksel, İ. (2013). The relationship between prospective mathematics teachers’ beliefs and attitudes towards history of mathematics and their creativeness level. Journal of Research in Education and Teaching, 2(4), 186-194.

Baki, A., & Güven, B. (2009). Khayyam with Cabri: Experiences of pre-service mathematics teachers with Khayyam’s solution of cubic equations in dynamic geometry environment. Teaching mathematics and Its Applications, 28, 1-9.

Baki, A., & Bütüner, S., Ö. (2013). The ways of using the history of mathematics in 6th, 7th and 8th grade mathematics textbooks. Elementary Education Online, 12(3), 849-872.

Başer, N. (2012). İlköğretim öğretmenlerinin matematik ders kitaplarını kullanma yolları ve onların öğrencilerinin matematik ders kitaplarını kullanma yolları ve matematik ders kitabı hakkındaki görüşleri. (Unpublished master thesis). Middle East Technical University, Ankara

Başıbüyük, K. (2012). The use of mathematics history in mathematics courses: İbrahim Hakkı perspective and Babylonian method sample. Unpublished master thesis, Atatürk University, Erzurum.

Bayam, S., B. (2012). The impact of a knowledge of the history of mathematics on primary school student mathematics achievement and attitudes. Unpublished master thesis, Kastamonu University, Kastamonu.

Bayam, S., B. (2013). The views of students aged 12 about activities for history of mathematics included in mathematics curriculum. Paper presented at Eighth Congress of European Research in Mathematics Education, Antalya, Turkey.

Bellomo, C., & Wertheimer, C. (2010). A discussion and experiment on incorporating history into the mathematics classroom. Journal of College Teaching & Learning, 7(4), 19-24.

Bidwell, J., K. (1993). Humanize your classroom with the history of mathematics. Mathematics Teacher, 86, 461-464.

Burns, B., A. (2010). Pre-service teachers’ exposure to using the history of mathematics to enhance their teaching of high school mathematics. Issues in the Undergraduate Mathematics Preparation of School Teachers: The Journal, 4, 1-9.

Burton, D., M. (2003). The history of mathematics: An introduction (5th ed.). New York, NY: McGraw-Hill.

Clark, K., M. (2012). History of mathematics: Illuminating understanding of school mathematics concepts for prospective mathematics teachers. Educational Studies in Mathematics, 81(1), 67-84

Collopy, R. (2003). Curriculum materials as a professional development tool: How a mathematics textbook affected two teachers’ learning. The Elementary School Journal, 103(3), 287-311.

Erdoğan, A., Eşmen, E., & Findik, S. (2015). Ortaokul matematik ders kitaplarında matematik tarihinin yeri: ekolojik bir analiz. Marmara University Atatürk Eğitim Fakültesi Eğitim Bilimleri Dergisi, 42(42), 239-259.

Ernest, P. (1998). The history of mathematics in the classroom. Mathematics in School, 27(4). 25-31.

Ersoy, E., & Öksüz, C. (2016). İlkokul 4. sınıflarda matematik tarihi kullanılanın öğrenciler üzerindeki etkileri. İlköğretim Online, 15(2).
Eves, H. (1990). An introduction to the history of mathematics (6th ed.). San Francisco, CA: Saunders.

Fan, L., Zhu, Y., & Miao, Z. (2013). Textbook research in mathematics education: Development status and directions. ZDM, 45(5), 633-646.

Fauvel, J. (1991). Using history in mathematics education. For the Learning of Mathematics, 11(2), 3-6.

Fauvel, J. & Van Maanen, J. (Eds.) (2000). History in mathematics education-The ICMI study. Dordrecht: Kluwer Academic.

Fried, M. N. (2001). Can mathematics education and history of mathematics coexist? Science & Education, 10, 391-408.

Furinghetti, F. (2000). The history of mathematics as a coupling link between secondary and university teaching. International Journal of Mathematical Education in Science and Technology, 31(1), 43-51.

Gazit, A. (2013). What do mathematics teachers and teacher trainees know about the history of mathematics? International Journal of Mathematical Education in Science and Technology, 44(4), 501-512.

Göktepe, S. & Özdemir, A. Ş. (2013). An example of using history of mathematics in classes. European Journal of Science and Mathematics Education, 1(3), 125-136.

Gürsoy, K. (2010). A survey of prospective mathematics teachers’ beliefs and attitudes towards using the history of mathematics in teaching. Unpublished master thesis, Karadeniz Technical University, Trabzon.

Hagerty, G. W., Smith, S. & Goodwin, D. (2007). The unique effects of including history in college algebra. Convergence: Where Mathematics, History and Teaching Interact, 4.

Helfgott, M. (2004). Two examples from the natural sciences and their relationship to the history and pedagogy of mathematics. Mediterranean Journal for Research in Mathematics Education, 3(1–2), 147–164.

Ho, W. K. (2008). Using history of mathematics in the teaching and learning of mathematics in Singapore. In Proceedings of 1st RICE (pp. 1-38), Singapore: Raffles Junior.

Huntley, M. A., & Flores, A. (2010). A history of mathematics course to develop prospective secondary mathematics teachers’ knowledge for teaching. PRIMUS: Problems, Resources, and Issues in Mathematics Undergraduate Studies, 20, 603-616.

İdikut, N. (2007). The effect of benefiting from history in education of mathematics on the student’s attitudes towards mathematics and their success on it. Unpublished master thesis, Yüzüncü Yıl University, Van.

Jankvist, U. T. (2009). A categorization of the “whys” and “hows” of using history in mathematics education. Educational Studies in Mathematics, 71(3), 235-261.

Jankvist, U. T. (2009a). Using history as a goal in mathematics education. Unpublished doctoral dissertation, Roskilde University, Roskilde.

Jankvist, U. T. (2010). An empirical study of using history as a ‘goal’. Educational Studies in Mathematics, 74(1), 53-74.

Ju, M. K., Moon, J. E., & Song, R. J. (2016). History of mathematics in Korean mathematics textbooks: Implication for using ethnomathematics in culturally diverse school. International Journal of Science and Mathematics Education, 14(7), 1321-1338.

Katz, V. J. (1993). A history of mathematics: An introduction. NY: Harper Collins.

Kaye, E. (2008). The aims of and responses to a history of mathematics video conferencing project for schools, In Proceedings of the British for Research into learning mathematics, 28(3).

Kleiner, I. (2001). History of the infinitely small and the infinitely large in calculus. Educational Studies in Mathematics, 48, 137-174.
Leng, N. W. (2006). Effects of an ancient Chinese mathematics enrichment programme on secondary school students’ achievement in mathematics. *International Journal of Science and Mathematics Education, 4*, 485-511.

Lim, S. Y. (2011). Effects of using history of mathematics on junior college students’ attitudes and achievement, In *Proceedings of AAMT-MERGA Conference 2011 Mathematics: Traditions and New Practices*, 455-463.

Lingard, D. (2000). The history of mathematics: An essential component of mathematics curriculum at all levels. *Australian Mathematics Teacher, 56*(1), 40-44.

Liu, P. (2003). Do teachers’ need to incorporate the history of mathematics in their teaching? *Mathematics Teacher, 96*(6), 416-421.

Liu, P., & Niess, M. L. (2006). An exploratory study of college students’ views of mathematical thinking in a historical approach calculus course. *Mathematical Thinking and Learning, 8*(4), 373-406.

Marshall, G. L. (2000). *Using history of mathematics to improve secondary students’ attitudes toward mathematics*. (Unpublished doctoral dissertation), Illinois State University, Normal, IL.

McCride, C. C., & Rollins, H. J. (1977). The effects of history of mathematics on attitudes toward mathematics of college algebra students. *Journal for Research in Mathematics Education, 8*(1), 57-61.

McCartney, M. (2012). *History of mathematics in the higher education curriculum*. Maths, Stats and OR Network and HESTEM project report. http://uir.ulster.ac.uk/22942/1/HistoryofMaths.pdf

MONE, (2013). *Turkish national middle school mathematics curriculum (5th-8th grades)*. Ankara: MONE

Mullis, I. V. S., Martin, M.O., Foy, P., & Arora, A. (2012). *TIMSS 2011 International results in mathematics*. Chestnut Hill, MA: Boston College

Otte, M. (2007). Mathematical history, philosophy and education. *Educational Studies in Mathematics, 66*(2), 243-255.

Özdemir, A. Ş., Göktepe, S., & Kepçeoglu, İ. (2012). Using mathematics history to strengthen geometric proof skills. *Procedia Social and Behavioral Sciences, 46*, 1177-1181.

Panasuk, R. M., & Horton, L. B. (2012). Integrating history of mathematics into curriculum: What are the chances and constraints? *International Electronic Journal of Mathematics Education, 7*(1), pp.3-20.

Porter, A. C., & Smithson, J. L. (2001). Are content standards being implemented in the classroom? A methodology and some tentative answers. In S. H. Fuhrman (Ed.), *From the capitol to the classroom: Standards-based reform in the states* (pp. 60-80). Chicago: University of Chicago Press.

Posner, G. J. (1995). *Analyzing the curriculum* (2nd ed.). New York: McGraw-Hill.

Povey, H. (2014). Walking in a foreign and unknown landscape: Studying the history of mathematics in initial teacher education. *Science & Education, 23*(1), 143-157.

Radford, L., Furinghetti, F., & Katz, V. (2007). The topos of meaning or the encounter between past and present. *Educational Studies in Mathematics, 66*(2). pp. 107-110.

Reys, R., Reys, B., Lapan, R., Holliday, G., & Wasman, D. (2003). Assessing the impact of “standards”-based middle grades mathematics curriculum materials on student achievement. *Journal for Research in Mathematics Education, 34*(1), 74-95.

Smedstad, B. (2000). History of mathematics in Norwegian textbooks. In *Ninth International Congress on Mathematics Education, Tokyo, Japan*.

Smedstad, B. (2008). Teachers’ conceptions of history of mathematics. Retrieved on 12, March, 2016, from http://home.hio.no/~bjorsme/HPM2008paper.pdf

Tan-Sisman, G. & Akkaya, G. (2017). The appropriateness of the ninth grade mathematics textbooks regarding the high school mathematics curriculum [Ortaöğretim dokuzuncu sınıf matematik dersi].
kitaplarının öğretim programına uygunluğu açısından incelenmesi]. Pamukkale University Journal of Education [Pamukkale Üniversitesi Eğitim Fakültesi Dergisi], 42, 1-14.

Thomaidis, Y. & Tzanakis, C. (2009). The implementation of the history of mathematics in the new curriculum and textbooks in Greek secondary education. Dins: Working group, 15, 139-151.

Tözluyurt, E. (2008). The perceptions of senior high students regarding the lessons, in which activities chosen from history of mathematics are used on the subject of numbers learning area. (Unpublished master thesis). Gazi University, Ankara

Tyson, H. & Woodward, A., (1989). Why students aren’t learning very much from textbooks. Educational Leadership, 47(3), 14-17

Valverde, G. A., Bianchi, L. J. , Wolfe, R. G., Schmidt, W. H., & Houang, R. T. (2002). According to the book. Using TIMSS to investigate the translation of policy in to practice through the World of textbooks. Dordrecht: Kluwer Academic Publishers.

Woodward, A., & Elliott, D. L. (1990). Textbooks: Consensus and controversy. Chicago: National Society for the Study of Education.

Xenofontos, C., & Papadopoulos, C. E. (2015). Opportunities of learning through the history of mathematics: the example of national textbooks in Cyprus and Greece. International Journal for Mathematics Teaching & Learning, 1-18. Retrieved on 9 November, 2017, from http://www.cimt.plymouth.ac.uk/journal/xenofontos.pdf

Yee, L. S., & Chapman, E. (2011). Using history to enhance student learning and attitudes in Singapore mathematics classrooms. Education Research and Perspectives, 37, 110-132.

Yenilmez, K. (2011). Prospective mathematics teachers’ opinions about the history of mathematics course. Pamukkale University Journal of Education, 30, 79-90.

Acknowledgements or Notes - This is the extended version of the paper presented in the 13th International Congress of Mathematics Education (ICME-13), Hamburg, Germany on 24-31 July, 2016.