A solution of delay differential equations via Picard–Krasnosel’skii hybrid iterative process

Abstract The purpose of this paper is to introduce Picard–Krasnosel’skii hybrid iterative process which is a hybrid of Picard and Krasnosel’skii iterative processes. In case of contractive nonlinear operators, our iterative scheme converges faster than all of Picard, Mann, Krasnosel’skii and Ishikawa iterative processes in the sense of Berinde (Iterative approximation of fixed points, 2002). We support our analytic proofs with a numerical example. Using this iterative process, we also find the solution of delay differential equation.

Mathematics Subject Classification 47H09 · 47H10 · 49M05 · 54H25

1 Introduction and preliminaries

Throughout this paper, \(\mathbb{N} \) denotes the set of all positive integers.

Let \(C \) be a nonempty convex subset of a normed space \(E \) and \(T : C \rightarrow C \) a mapping. The mapping \(T : C \rightarrow C \) is said to be a contraction if

\[
\|Tx - Ty\| \leq \delta\|x - y\| \quad \text{for each} \quad x, y \in C \quad \text{and} \quad \delta \in (0, 1).
\]

(1.1)

\(F(T) \) stands for the set of fixed points of \(T \).
The Picard or successive or repeated function iterative process [30] is defined by the sequence \(\{ u_n \} \) as follows:

\[
\begin{align*}
 u_1 &= u \in C, \\
 u_{n+1} &= Tu_n, \quad n \in \mathbb{N}.
\end{align*}
\] (1.2)

The Mann iterative process [26] is defined by the sequence \(\{ v_n \} \):

\[
\begin{align*}
 v_1 &= v \in C, \\
 v_{n+1} &= (1 - \alpha_n)v_n + \alpha_n Tv_n, \quad n \in \mathbb{N},
\end{align*}
\] (1.3)

where \(\{ \alpha_n \} \) is appropriately chosen sequence in \((0, 1)\). This is a one-step iterative process.

The Krasnoselskii iterative process [25] is defined by the sequence \(\{ s_n \} \) as follows:

\[
\begin{align*}
 s_1 &= s \in C, \\
 s_{n+1} &= (1 - \lambda)s_n + \lambda Ts_n, \quad n \in \mathbb{N},
\end{align*}
\] (1.4)

where \(\lambda \in (0, 1) \). This is an averaging process.

The sequence \(\{ z_n \} \) defined by

\[
\begin{align*}
 z_1 &= z \in C, \\
 z_{n+1} &= (1 - \alpha_n)z_n + \alpha_n Ty_n, \\
 y_n &= (1 - \beta_n)z_n + \beta_n Tz_n, \quad n \in \mathbb{N}
\end{align*}
\] (1.5)

is known as Ishikawa iterative process [22], where \(\{ \alpha_n \} \) and \(\{ \beta_n \} \) are appropriately chosen sequences in \((0, 1)\).

Most of the physical problems of applied sciences and engineering are usually formulated in the form of fixed point equations. The study of iterative processes to approximate the solution of these equations is an active area of research (see e.g., [1,23,24,28,29] and the references therein). The Picard iterative scheme is one of the simplest iteration scheme used to approximate the solution of fixed point equations involving nonlinear contractive operators. Chidume and Olaleru [13] established some interesting fixed points results using the Picard iteration process. Chidume [12] generalized and improved the results in [3]. Chidume et al. [11] established some convergence theorems for multivalued nonexpansive mappings for a Krasnoselskii-type sequence which is known to be superior to the Mann-type and Ishikawa-type iterations (see [11]). Okeke and Abbas [28] proved the convergence and almost sure \(T \)-stability of Mann-type and Ishikawa-type random iterative schemes.

Recently Khan [24] introduced the Picard–Mann hybrid iterative process. This new iterative process for one mapping case is given by the sequence \(\{ m_n \} \) as follows:

\[
\begin{align*}
 m_1 &= m \in C, \\
 m_{n+1} &= Tz_n, \\
 z_{n+1} &= (1 - \alpha_n)m_n + \alpha_n Tm_n, \quad n \in \mathbb{N},
\end{align*}
\] (1.6)

where \(\{ \alpha_n \} \) is an appropriately chosen sequence in \((0, 1)\).

Motivated by the facts above, we now introduce the Picard–Krasnoselskii hybrid iterative process defined by the sequence \(\{ x_n \} \):

\[
\begin{align*}
 x_1 &= x \in C, \\
 x_{n+1} &= Ty_n, \\
 y_n &= (1 - \lambda)x_n + \lambda Tx_n, \quad n \in \mathbb{N},
\end{align*}
\] (1.7)

where \(\lambda \in (0, 1) \).

Let \(\{ u_n \} \) and \(\{ v_n \} \) be two fixed point iteration processes that converge to a certain fixed point \(p \) of a given operator \(T \). The sequence \(\{ u_n \} \) is better than \(\{ v_n \} \) in the sense of Rhoades [31] if

\[
\| u_n - p \| \leq \| v_n - p \|, \quad \text{for all } n \in \mathbb{N}.
\]

The following definitions are due to Berinde [6].
Definition 1.1 [6] Let \(\{ a_n \} \) and \(\{ b_n \} \) be two sequences of real numbers converging to \(a \) and \(b \), respectively. The sequence \(\{ a_n \} \) is said to converge faster than \(\{ b_n \} \) if
\[
\lim_{n \to \infty} \frac{|a_n - a|}{|b_n - b|} = 0.
\] (1.8)

Definition 1.2 [6] Let \(\{ u_n \} \) and \(\{ v_n \} \) be two fixed point iteration processes that converge to a certain fixed point \(p \) of a given operator \(T \). Suppose that the error estimates
\[
\|u_n - p\| \leq a_n \quad \text{for all } n \in \mathbb{N},
\|v_n - p\| \leq b_n \quad \text{for all } n \in \mathbb{N}
\]
are available, where \(\{ a_n \} \) and \(\{ b_n \} \) are two sequences of positive numbers converging to zero. If \(\{ a_n \} \) converges faster than \(\{ b_n \} \), then \(\{ u_n \} \) converges faster than \(\{ v_n \} \) to \(p \).

Several mathematicians have obtained interesting results dealing with the rate of convergence of various iterative processes (see for example, [2, 5, 7–9, 18, 20, 31, 32, 39]). Some authors have also investigated the stability of various iterative processes for certain nonlinear operators. See, for example, Dogan and Karakaya [18], Akewe et al. [3] and the references therein.

The following lemma will be needed in the sequel.

Lemma 1.3 [34] Let \(\{ s_n \} \) be a sequence of positive real numbers which satisfies:
\[
s_{n+1} \leq (1 - \mu_n) s_n.
\] (1.9)
If \(\{ \mu_n \} \subset (0, 1) \) and \(\sum_{n=1}^{\infty} \mu_n = \infty \), then \(\lim_{n \to \infty} s_n = 0 \).

Interest in the study of delay differential equations stems from the fact that several models in real-life problems involves delay differential equations. For instance, delay models are common in many branches of biological modeling (see [19]). They have been used for describing several aspects of infectious disease dynamics: primary infection [14], drug therapy [27] and immune response [16], among others. These models have also appeared in the study of chemostat models [40], circadian rhythms [33], epidemiology [17], the respiratory system [37], tumor growth [38] and neural networks [10]. Statistical analysis of ecological data (see e.g., [35, 36]) has shown that there is evidence of delay effects in the population dynamics of many species.

The aim of this paper is to introduce the Picard–Krasnoselskii hybrid iterative process and to show that this new iterative process is faster than all of Picard, Mann, Krasnoselskii and Ishikawa iterative processes in the sense of Berinde [6]. Finally, we show that our iterative process can be used to find the solution of delay differential equations.

2 Rate of convergence

In this section, we prove that the Picard–Krasnoselskii hybrid iterative process (1.7) converges at a rate faster than all of Picard iterative process (1.2), Mann iterative process (1.3), Krasnoselskii iterative process (1.4) and Ishikawa iterative process (1.5).

Proposition 2.1 Let \(C \) be a nonempty closed convex subset of a normed space \(E \) and \(T : C \to C \) a contraction mapping. Suppose that each of the iterative processes (1.2), (1.3), (1.4), (1.5) and (1.7) converges to the same fixed point \(p \) of \(T \), where \(\{ \alpha_n \} \) and \(\{ \beta_n \} \) are sequences in \((0, 1) \) such that \(0 < \alpha \leq \lambda \), \(\alpha_n, \beta_n < 1 \) for all \(n \in \mathbb{N} \) and for some \(\alpha \). Then the Picard–Krasnoselskii hybrid iterative process (1.7) converges faster than all the other four processes.

Proof Suppose that \(p \) is the fixed point of the operator \(T \). Using (1.1) and the Picard iterative process (1.2), we have
\[
\|u_{n+1} - p\| = \|Tu_n - p\|
\leq \delta \|u_n - p\|
\leq \delta \|u_{n-1} - p\|
\leq \delta^2 \|u_{n-2} - p\|
\leq \delta^n \|u_1 - p\|.
\] (2.1)
Let
\[a_n = \delta^n \|u_1 - p\|. \] (2.2)

Using (1.1) and the Mann iterative process (1.3), we obtain that
\[
\|v_{n+1} - p\| \leq (1 - a_n)\|v_n - p\| + a_n\delta\|v_n - p\|
\leq (1 - (1 - \delta)a_n)\|v_n - p\|
\leq (1 - (1 - \delta)a_n)\|v_n - p\|
\leq (1 - (1 - \delta)a)^n\|v_1 - p\|. \] (2.3)

Set
\[b_n = (1 - (1 - \delta)a)^n\|v_1 - p\|. \] (2.4)

By (1.1) and the Krasnoselskii iterative process (1.4), we get
\[
\|s_{n+1} - p\| \leq (1 - \lambda)\|s_n - p\| + \lambda\delta\|s_n - p\|
\leq (1 - (1 - \delta)\lambda)\|s_n - p\|
\leq (1 - (1 - \delta)\lambda)\|s_n - p\|
\leq (1 - (1 - \delta)\lambda)^n\|s_1 - p\|. \] (2.5)

Put
\[c_n = (1 - (1 - \delta)a)^n\|s_1 - p\|. \] (2.6)

From (1.1) and the Ishikawa iterative process (1.5), it follows that
\[
\|y_n - p\| \leq (1 - \beta_n)\|y_n - p\| + \beta_n\delta\|y_n - p\|
\leq (1 - (1 - \delta)\beta_n)\|z_n - p\| + (1 - (1 - \delta)\beta_n)\|y_n - p\|
\leq (1 - (1 - \delta)\beta_n)\|z_n - p\| + (1 - (1 - \delta)\beta_n)\|y_n - p\|
\leq (1 - (1 - \delta)\beta_n)^n\|y_1 - p\|. \] (2.7)

From (1.5), (1.1) and (2.7), we obtain that
\[
\|z_{n+1} - p\| \leq (1 - a_n)\|z_n - p\| + a_n\delta\|y_n - p\|
\leq (1 - a_n)\|z_n - p\| + a_n\delta\|y_n - p\|
\leq (1 - a_n)\|z_n - p\| + a_n\delta(1 - \beta_n)\|z_n - p\| + \beta_n\delta\|z_n - p\|
\leq (1 - a_n)\|z_n - p\| + a_n\delta(1 - \beta_n)\|z_n - p\| + \beta_n\delta\|z_n - p\|
\leq (1 - a_n)\|z_n - p\| + a_n\delta(1 - \beta_n)\|z_n - p\| + \beta_n\delta\|z_n - p\|
\leq (1 - a_n)\|z_n - p\| + a_n\delta(1 - \beta_n)\|z_n - p\| + \beta_n\delta^2\|z_n - p\|
\leq (1 - a_n)\|z_n - p\| + a_n\delta(1 - \beta_n)\|z_n - p\| + \beta_n\delta\|z_n - p\|
\leq (1 - (1 - \delta)a_n)\|z_n - p\|
\leq (1 - (1 - \delta)a_n)\|z_n - p\|
\leq (1 - (1 - \delta)a)^n\|z_1 - p\|. \] (2.8)

Let
\[e_n = (1 - (1 - \delta)a)^n\|z_1 - p\|. \] (2.9)
Using (1.1) and the Picard–Krasnoselskii hybrid iterative process (1.7), we have
\[\|x_{n+1} - p\| = \|Ty_n - p\| \]
\[\leq \delta \|y_n - p\| \]
\[\leq \delta \|(1 - \lambda)(x_n - p) + \lambda(Tx_n - p)\| \]
\[\leq \delta[(1 - \lambda)\|x_n - p\| + \lambda\delta\|x_n - p\|] \]
\[= \delta(1 - (1 - \delta)\lambda)\|x_n - p\| \]
\[\leq \delta(1 - (1 - \delta)\alpha)\|x_n - p\| \]
\[: \]
\[\leq [\delta(1 - (1 - \delta)\alpha)]\|x_1 - p\|. \tag{2.10} \]

Set:
\[h_n = [\delta(1 - (1 - \delta)\alpha)]\|x_1 - p\|. \tag{2.11} \]

We now compute the rate of convergence of our iterative process (1.7) as follows:

(i) Note that
\[\frac{h_n}{a_n} = \frac{[\delta(1 - (1 - \delta)\alpha)]\|x_1 - p\|}{\delta\|u_1 - p\|} = [(1 - (1 - \delta)\alpha)]\|x_1 - p\| \to 0 \text{ as } n \to \infty. \tag{2.12} \]

Thus, \(\{x_n\} \) converges faster than \(\{u_n\} \) to \(p \). That is, the Picard–Krasnoselskii hybrid iterative process (1.7) converges faster than the Picard iterative process (1.2) to \(p \).

(ii) Similarly,
\[\frac{h_n}{b_n} = \frac{[\delta(1 - (1 - \delta)\alpha)]\|x_1 - p\|}{(1 - (1 - \delta)\alpha)\|v_1 - p\|} = \delta^n \|x_1 - p\| \to 0 \text{ as } n \to \infty. \tag{2.13} \]

Hence, \(\{x_n\} \) converges faster than \(\{v_n\} \) to \(p \).

(iii) Clearly, \(\frac{h_n}{c_n} = \delta^n \|x_1 - p\| \to 0 \text{ as } n \to \infty. \)

(iv) Finally, \(\frac{h_n}{c_n} = \delta^n \|x_1 - p\| \to 0 \text{ as } n \to \infty. \)

This completes the proof of Proposition 2.1.

Next, we give a numerical example to support Proposition 2.1.

Example 2.2 Let \(C = [1, 10] \subseteq X = \mathbb{R} \) and \(T : C \to C \) be an operator defined by \(Tx = \sqrt{2x + 4} \) for all \(x \in C \). Choose \(\alpha_n = B_n = 2 = \lambda \) for each \(n \in \mathbb{N} \) with the initial value \(x_1 = 5 \). Clearly, \(T \) is a contraction mapping with contractive constant \(\delta = \frac{1}{\sqrt{4}} \) and \(F(T) = \{2\} \). Tables 1 and 2 show that our iterative process (1.7) converges faster than all of Picard, Mann, Krasnoselskii and Ishikawa iterative processes.

Remark 2.3 Clearly, from Tables 1 and 2, we conclude that our newly introduced iterative process (1.7) converges faster than all of Picard, Mann, Krasnoselskii and Ishikawa iterative processes, since it converges to the fixed point \(p = 2 \) of \(T \) at step 14, while the Picard, Mann, Krasnoselskii and Ishikawa iterative processes fail to converge to \(p \) at step 14.

3 Application to delay differential equations

We now employ our iterative process (1.7) to find the solution of delay differential equations.

Let the space \(C([a, b]) \) of all continuous real-valued functions on a closed interval \([a, b] \) be endowed with the Chebyshev norm \(\|x - y\|_\infty = \max_{t \in [a, b]} |x(t) - y(t)| \). It is known that \((C([a, b]), \|\cdot\|_\infty) \) is a Banach space ([21]).

In this section, we consider the following delay differential equation.
\[x'(t) = f(t, x(t), x(t - \tau)), \quad t \in [t_0, b], \tag{3.1} \]
Table 1 Comparison of the speed of convergence among various iterative processes

Step	Picard–Krasnoselskii	Picard	Krasnoselskii	Ishikawa
0	5.00000000000000	5.00000000000000	5.00000000000000	5.00000000000000
1	2.2512843540734	2.4101422641752	3.7050711320876	3.6256421770367
2	2.0240689690982	2.0661453253859	2.9781777430805	2.8852207823505
3	2.002336393861	2.0109640063486	2.5647376768450	2.4835391284559
4	2.0002271411589	2.0018256673537	2.327379038994	2.2646218411812
5	2.0000220828647	2.0003042316115	2.1902559473071	2.1449743461888
6	2.0000021469423	2.0000507039831	2.1107377043938	2.0794736882823
7	2.0000002087305	2.0000084506281	2.0645131216910	2.0435817310182
8	2.0000000202932	2.0000014084370	2.0376040081566	2.0239038614161
9	2.0000000019730	2.0000002347395	2.0219259025214	2.0131122475407
10	2.0000000001918	2.0000000391232	2.0127867814254	2.0071930196537
11	2.0000000000186	2.000000065205	2.0074578224146	2.0039460184220
12	2.0000000000018	2.000000010868	2.003500105642	2.0021647837650
13	2.00000000000002	2.00000001811	2.0025373748349	2.0011876106441
14	2.00000000000000	2.0000000302	2.0014800906259	2.0006513522465

Table 2 Comparison of the speed of convergence among various iterative processes

Step	Picard–Krasnoselskii	Mann
0	5.00000000000000	5.00000000000000
1	2.2512843540734	3.7050711320876
2	2.0240689690982	2.9781777430805
3	2.002336393861	2.5647376768450
4	2.0002271411589	2.327379038994
5	2.0000220828647	2.1902559473071
6	2.0000021469423	2.1107377043938
7	2.0000002087305	2.0645131216910
8	2.0000000202932	2.0376040081566
9	2.0000000019730	2.0219259025214
10	2.0000000001918	2.0127867814254
11	2.0000000000186	2.0074578224146
12	2.0000000000018	2.003500105642
13	2.00000000000002	2.0025373748349
14	2.00000000000000	2.0014800906259

with initial condition

\[x(t) = \varphi(t), \quad t \in [t_0 - \tau, t_0]. \quad (3.2) \]

By the solution of above problem, we mean a function \(x \in C([t_0 - \tau, t_0]\cap C^1([t_0, b], \mathbb{R}) \) satisfying (3.1), (3.2).

Assume that the following conditions are satisfied.

(C1) \(t_0, b \in \mathbb{R}, \tau > 0; \)

(C2) \(f \in C([t_0, b] \times \mathbb{R}^2, \mathbb{R}); \)

(C3) \(\varphi \in C([t_0 - \tau, b], \mathbb{R}); \)

(C4) there exist \(L_f > 0 \) such that

\[|f(t, u_1, u_2) - f(t, v_1, v_2)| \leq L_f \sum_{i=1}^{2} |u_i - v_i|, \quad \forall u_i, v_i \in \mathbb{R}, \quad i = 1, 2, \quad t \in [t_0, b]; \quad (3.3) \]

(C5) \(2L_f (b - t_0) < 1. \)
Now, we reformulate Problem (3.1), (3.2) by following integral equation:

\[
x(t) = \begin{cases}
\varphi(t), & t \in [t_0 - \tau, t_0], \\
\varphi(t_0) + \int_{t_0}^t f(s, x(s), x(s - \tau))ds, & t \in [t_0, b].
\end{cases}
\tag{3.4}
\]

Coman et al. [15] established the following results.

Theorem 3.1 Assume that conditions (C1)–(C5) are satisfied. Then Problem (3.1), (3.2) has a unique solution, say \(p \), in \(C([t_0 - \tau, b], \mathbb{R}) \cap C^1([t_0, b], \mathbb{R}) \) and

\[
p = \lim_{n \to \infty} T^n(x) \quad \text{for any } x \in C([t_0 - \tau, b], \mathbb{R}).
\tag{3.5}
\]

Next, we prove the following result using our iterative process (1.7).

Theorem 3.2 Assume that conditions (C1)–(C5) are satisfied. Then Problem (3.1), (3.2) has a unique solution \(p \) (say), in \(C([t_0 - \tau, b], \mathbb{R}) \cap C^1([t_0, b], \mathbb{R}) \) and the Picard–Krasnoselskii hybrid iterative process (1.7) converges to \(p \).

Proof Let \(\{x_n\} \) be an iterative sequence generated by the Picard–Krasnoselskii hybrid iterative process (1.7) for an operator defined by

\[
Tx(t) = \begin{cases}
\varphi(t), & t \in [t_0 - \tau, t_0], \\
\varphi(t_0) + \int_{t_0}^t f(s, x(s), x(s - \tau))ds, & t \in [t_0, b].
\end{cases}
\tag{3.6}
\]

Let \(p \) be a fixed point of \(T \). We now prove that \(x_n \to p \) as \(n \to \infty \). It is easy to see that \(x_n \to p \) for each \(t \in [t_0 - \tau, t_0] \). Now, for each \(t \in [t_0, b] \) we have

\[
\|x_n - p\|_\infty \leq (1 - \lambda)\|x_n - p\|_\infty + \lambda \|Tx_n - Tp\|_\infty \\
\leq (1 - \lambda)\|x_n - p\|_\infty + \lambda \max_{t \in [t_0 - \tau, b]} |Tx_n(t) - Tp(t)| \\
= (1 - \lambda)\|x_n - p\|_\infty + \lambda \max_{t \in [t_0 - \tau, b]} |\varphi(t_0) \\
+ \int_{t_0}^t f(s, x_n(s), x_n(s - \tau))ds - \varphi(t_0) - \int_{t_0}^t f(s, p(s), p(s - \tau))ds| \\
= (1 - \lambda)\|x_n - p\|_\infty + \lambda \max_{t \in [t_0 - \tau, b]} \int_{t_0}^t f(s, x_n(s), x_n(s - \tau))ds \\
- \int_{t_0}^t f(s, p(s), p(s - \tau))ds| \\
\leq (1 - \lambda)\|x_n - p\|_\infty + \lambda \max_{t \in [t_0 - \tau, b]} \int_{t_0}^t |f(s, x_n(s), x_n(s - \tau)) \\
- f(s, p(s), p(s - \tau))|ds \\
\leq (1 - \lambda)\|x_n - p\|_\infty + \lambda \max_{t \in [t_0 - \tau, b]} \int_{t_0}^t L_f(\|x_n(s) - p(s)\|) \\
+ |x_n(s - \tau) - p(s - \tau))|ds \\
\leq (1 - \lambda)\|x_n - p\|_\infty + \lambda \int_{t_0}^t L_f(\max_{s \in [t_0 - \tau, b]} |x_n(s) - p(s)| \\
+ \max_{s \in [t_0 - \tau, b]} |x_n(s - \tau) - p(s - \tau))|ds \\
\leq (1 - \lambda)\|x_n - p\|_\infty + \lambda \int_{t_0}^t L_f(\|x_n - p\|_\infty + \|x_n - p\|_\infty)ds \\
\leq (1 - \lambda)\|x_n - p\|_\infty + 2\lambda L_f(t - t_0)\|x_n - p\|_\infty \\
\leq [1 - (1 - 2L_f(t - t_0))\lambda]\|x_n - p\|_\infty.
\tag{3.9}
\]
Using (1.7) and (3.7), we obtain that
\[\|x_{n+1} - p\|_\infty = \|Ty_n -Tp\|_\infty \]
\[= \max_{t \in [t_0 - \tau, t_0]} \left| \int_{t_0}^t [f(s, y_n(s), y_n(s-\tau)) - f(s, p(s), p(s-\tau))]ds \right| \]
\[\leq \max_{t \in [t_0 - \tau, t_0]} \left| \int_{t_0}^t [f(s, y_n(s), y_n(s-\tau)) - f(s, p(s), p(s-\tau))]ds \right| \]
\[\leq \max_{t \in [t_0 - \tau, t_0]} \left| \int_{t_0}^t Lf(y_n(s) - p(s)) + |y_n(s-\tau) - p(s-\tau)|ds \right| \]
\[\leq 2Lf(b - t_0)\|y_n - p\|_\infty. \tag{3.10} \]

It follows from (3.7) and (3.10) that
\[\|x_{n+1} - p\|_\infty \leq 2Lf(b - t_0)[1 - (1 - 2Lf(b - t_0))\lambda]\|x_n - p\|_\infty. \tag{3.11} \]

Using condition (C5) in (3.11), we have:
\[\|x_{n+1} - p\|_\infty \leq (1 - (1 - 2Lf(b - t_0))\lambda)\|x_n - p\|_\infty. \tag{3.12} \]

Note that \((1 - (1 - 2Lf(b - t_0))\lambda) = \mu_n < 1\) and \(\|x_n - p\|_\infty = s_n\). Thus all the conditions of Lemma 1.3 are satisfied. Hence, \(\lim_{n \to \infty} \|x_n - p\|_\infty = 0\). This completes the proof of Theorem 3.2.

Remark 3.3 Theorem 3.2 generalizes and improves several known results in literature including the results of Coman et al. [15].

Acknowledgements The authors wish to thank the anonymous referees for their useful comments and suggestions which led to the improvement of the paper.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Abbas, M.; Khan, S.H.; Rhoades, B.E.: Simpler is also better in approximating fixed points. Appl. Math. Comput. **205**, 428–431 (2008)
2. Abbas, M.; Nazir, T.: A new faster iteration process applied to constrained minimization and feasibility problems. Matematicki Vesnik **66**(2), 223–234 (2014)
3. Akewe, H.; Okeke, G.A.; Olayiwola, A.F.: Convergence and stability theorems for the Picard–Mann hybrid iterative scheme for a general class of contractive-like operators. Fixed Point Theory Appl. **2016**, Article ID 66 (2015)
4. Babu, G.V.R.; Varma Prasad, K.N.V.: Mann iteration converges faster than Ishikawa iteration for the class of Zamfirescu operators. Fixed Point Theory Appl. **2006**, Article ID 49615, 6 pages (2006)
5. Berinde, V.: Iterative Approximation of Fixed Points. Elemmeride, Baia Mare (2002)
6. Berinde, V.: Picard iteration converges faster than Mann iteration for a class of quasi-contractive operators. Fixed Point Theory Appl. **2004**, Article ID 716359 (2004)
7. Berinde, V.; Berinde, M.: The fastest Kransnoselskij iteration for approximating fixed points of strictly pseudo-contractive mappings, Carpathian J. Math. **21**(1–2), 13–20 (2005)
8. Berinde, V.; Păcurar, M.: Empirical study of the rate of convergence of some fixed point iterative methods. Proc. Appl. Math. Mech. **7**, 2030015–2030016 (2007). doi:10.1002/pamm.200700254
9. Campbell, S.A.; Edwards, R.; van den Driessche, P.: Delayed coupling between two neural network loops. SIAM J. Appl. Math. **65**(1), 316–335 (2004)
10. Chidume, C.E.; Chidume, C.O.; Djitté, N.; Minjibir, M.S.: Convergence theorems for fixed points of multivalued strictly pseudocontractive mappings in Hilbert spaces. Abstract Appl. Anal. **2013**, Article ID 629468, 10 pages
11. Chidume, C.E.: Strong convergence and stability of Picard iteration sequences for a general class of contractive-type mappings. Fixed Point Theory Appl. **2014**, 233 (2014)
12. Chidume, C.E.; Olaleru, J.O.: Picard iteration process for a general class of contractive mappings. J. Niger. Math. Soc. **33**, 19–23 (2014)
14. Ciupe, S.M.; de Bivort, B.L.; Bortz, D.M.; Nelson, P.W.: Estimates of kinetic parameters from HIV patient data during primary infection through the eyes of three different models. Math. Biosci. (in press)
15. Coman, G.H.; Pavel, G.; Rus, I.; Rus, I.A.: Introduction in the Theory of Operational Equation. Ed. Dacia, Cluj-Napoca (1976)
16. Cooke, K.; Kuang, Y.; Li, B.: Analyses of an antiviral immune response model with time delays. Can. Appl. Math. Quart. 6(4), 321–354 (1998)
17. Cooke, K.L.; van den Driessche, P.; Zou, X.: Interaction of maturation delay and nonlinear birth in population and epidemic models. J. Math. Biol. 39, 332–352 (1999)
18. Dogan, K.; Karakaya, V.: On the convergence and stability results for a new general iterative process. Sci. World J. 2014, Article ID 852475, 8 pages
19. Forde, J.E.: Delay differential equation models in mathematical biology. Ph.D Dissertation, University of Michigan (2005)
20. Gürsoy, F.; Karakaya, V.: A Picard-S hybrid type iteration method for solving a differential equation with retarded argument. arXiv:1403.2546v2 [math.FA]. 28 Apr 2014
21. Hämerlin, G.; Hoffmann, K.H.: Numerical Mathematics. Springer, Berlin (1991)
22. Ishikawa, S.: Fixed points by a new iteration method. Proc. Am. Math. Soc. 44, 147–150 (1974)
23. Khan, S.H.; Kim, J.K.: Common fixed points of two nonexpansive mappings by a modified faster iteration scheme. Bull. Korean Math. Soc. 47(5), 973–985 (2010)
24. Khan, S.H.: A Picard–Mann hybrid iterative process. Fixed Point Theory Appl. 2013, 69 (2013)
25. Krasnosel’skiıı, M.A.: Two observations about the method of successive approximations. Usp. Mat. Nauk 10, 123–127 (1955)
26. Mann, W.R.: Mean value methods in iteration. Proc. Am. Math. Soc. 4, 506–510 (1953)
27. Nelson, P.W.; Murray, J.D.; Perelson, A.S.: A model of HIV-1 pathogenesis that includes an intracellular delay. Math. Biosci. 163, 201–215 (2000)
28. Okeke, G.A.; Abbas, M.: Convergence and almost sure T-stability for a random iterative sequence generated by a generalized random operator. J. Inequal. Appl. 2015, 146 (2015)
29. Phuengrattana, W.; Suantai, S.: On the rate of convergence of Mann, arbitrary interval. J. Comput. Appl. Math. 235, 3006–3014 (2011)
30. Picard, E.: Memoire sur la theorie des equations aux derivees partielles et la methode des approximations successives. J. Math. Pures Appl. 6, 145–210 (1890)
31. Rhoades, B.E.: Comments on two fixed point iteration methods. J. Math. Anal. Appl. 56(3), 741–750 (1976)
32. Rhoades, B.E.; Xue, Z.: Comparison of the rate of convergence among Picard, Mann, Ishikawa, and Noor iterations applied to quasicoincercsive maps. Fixed Point Theory Appl. 2010, Article ID 169062, 12 pages
33. Smolen, P.; Baxter, D.; Byrne, J.: A reduced model clarifies the role of feedback loops and time delays in the Drosophila circadian oscillator. Biophys. J. 83, 2349–2359 (2002)
34. Soltuz, S.M.; Otrocol, D.: Classical results via Mann–Ishikawa iteration. Revue d’Analyse Numérique et de Théorie de l’Approximation. 36(2), 195–199 (2007)
35. Turchin, P.: Rarity of density dependence or population regulation with lags. Nature 344, 660–663 (1990)
36. Turchin, P.; Taylor, A.D.: Complex dynamics in ecological time series. Ecology 73, 289–305 (1992)
37. Vielle, B.; Chauvet, G.: Delay equation analysis of human respiratory stability. Math. Biosci. 152(2), 105–122 (1998)
38. Villasana, M.; Radunskaya, A.: A delay differential equation model for tumor growth. J. Math. Biol. 47(3), 270–294 (2003)
39. Xue, Z.: The comparison of the convergence speed between Picard, Mann, Krasnosel’skiıı and Ishikawa iterations in Banach spaces. Fixed Point Theory Appl. 2008, Article ID 387036, 5 pages
40. Zhao, T.: Global periodic solutions for a differential delay system modeling a microbial population in the chemostat. J. Math. Anal. Appl. 193, 329–352 (1995)