Analysis of volatile compounds from three species of *Atractylodes* by Gas Chromatography-Mass Spectrometry

Jin Plao1, Soon Sung Lim2, Haeng Hoon Kim3, Sook Young Lee4,5,* Sang Un Park5,*

1Department of Agriculture, College of Agriculture, Yanbian University, Yanji, China, 2Department of Food Science and Nutrition and Institute of Natural Medicine, Hallym University, Chuncheon, 200-702, Korea, 3Department of Well-being Resources, Sunchon National University, Suncheon, Jeollanam-do 57922, Korea, 4Marine Bio Research Center, Chosun University, 61-220 Myeongsasimni, Sinji-myeon, Wando-gun 59146, Jeollanamdo, Korea, 5Department of Crop Science and Department of Smart Agriculture Systems, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea

ABSTRACT

A total of 99 different volatile compounds were detected through Gas Chromatography-Mass Spectrometry (GC-MS) from three species of *Atractylodes*, namely *Atractylodes lancea*, *Atractylodes japonica*, and *Atractylodes chinensis*. Thirteen volatile flavor compounds i.e. acid, alcohol, aldehyde, alkane, alkenol, ester, ketone, monoterpen, oxygenated monoterpenes, sesquiterpen, oxygenated sesquiterpene, and oxygenated interpenoid detected from different species of *Atractylodes*. It was observed that all the species contained 38 common compounds, while *A. lancea* contained 7 unique compounds, *A. japonica* has 4 unique compounds, and *A. chinensis* hold 6 compounds not detected in the other extracts. In addition, essential oils from *A. lancea* and *A. japonica* possessed 11 compounds in common, and *A. lancea* and *A. chinensis* possessed 19 compounds in common. The remaining 14 compounds were detected only in *A. japonica* and *A. chinensis*. The total content of all components in the species was comparable, with 82.528%, 81.766%, and 81.799% of volatile components being detected for *A. lancea*, *A. japonica*, and *A. chinensis*, respectively. Curzerene was found to be the most predominant compound in both *A. lancea* (14.1%) and *A. chinensis* (16.7%), while murolan-3,9(11)-dien-10-peroxy was found predominantly in *A. japonica* (16.8%). The present study suggests that the identified volatile compounds may possess important biological properties, and could be suitable for application in both oriental medicines and the pharmaceutical industry.

KEYWORDS: Volatile compounds, medicinal plants, *Atractylodes chinensis*, *Atractylodes japonica*, *Atractylodes lancea*, essential oil, GC-MS analysis

INTRODUCTION

Volatile organic compounds (VOC), generally lipophilic liquids with high steam pressures, symbolize the largest group of natural products in plants. These types of compounds cover multiple effects on both floral and vegetative tissues in many plant species (Pichersky et al., 2006). Usually, much floral volatiles provide to attract pollinators and also do something as guards for precious reproductive parts of plants against harmful pathogens, parasites, and herbivores (Dudareva et al., 2004). In most cases, vegetative volatiles engages in the signaling of interplant or inner plant organs and plant defense against pathogens, heat, and oxidative stress (Unsicker et al., 2009). In addition, numerous aromatic plants have been used as flavorings, preservatives, and herbal remedies (Pichersky et al., 2006).

Atractylodes is one of an important genus belongs to the family *Asteraceae* and is composed of eight species of perennial medicinal plants widely distributed in East Asia (Willis, 1966). Some species of the *Asteraceae* family, including *Atractylodes lancea*, *A. japonica*, and *A. chinensis*, are well known for their use in traditional Chinese medicine. Essential oils are the main active constituents of *Atractylodes* spp., with previous studies examining volatile oil biosynthesis in some species of *Atractylodes*. It was reported that one of the endophytic *Acinetobacter* sp. ALEB16A enhanced the biosynthesis of volatile components in *A. lancea* (Wang et al., 2015). Inoculation with the endophytic fungus of *Gilmaniella* sp. AL12 boosted the actions of total protein phosphorylation needed for endophyte-induced volatile oil production in *A. lancea* (Ren and Dai, 2012). It proclaimed that jasmonic acid performs in NO- and H₂O₂-
mediated volatile oil accumulation as a downstream signaling molecule in A. lancea provoked by endophytic fungi (Ren and Dai, 2012). The existence of a fungal elicitor might therefore considerably enhance the content of volatile oil in A. lancea (Zhang et al., 2008). Furthermore, it was reported that the geographical disparity for the active components in rhizome essential oils of A. lancea and A. chinensis imitates mainly for genetic variability (Takeda et al., 1996).

It was also reported that essential oil from Atractylodes spp. showed an insecticidal activity and postponed gastric emptying in stress-induced rats (Zhang et al., 2008). The governing actions on delayed gastric emptying from the essential oil in Atractylodes lancea are mostly owing to the reduction of the release of the central corticotropin-releasing factor (Zhang et al., 2008). Besides, these essential oil from Atractylodes chinensis (DC.) Koidz showed strong insecticidal activity which works well against Drosophila melanogaster L. (Chu et al., 2011). It has been previously reported that plants belonging to the Atractylodis genus are rich in volatile compounds and essential oils, including sesquiterpenes and polyacetylenes. In particular, A. lancea is used in Chinese patent medicines (Chen et al., 2007; Xie et al., 2008). These essential oils and volatile compounds can be used in anti-inflammatory, anticonvulsant, sedative, analgesic, antianoxic, antiviral, and anti-hepatotoxic treatments (Guo et al., 2006).

As these species showed lots of inevitable biological properties, therefore this study was undertaken to identify different volatile components present in A. lancea, A. japonica, and A. chinensis, and compared the characteristics of each component using gas chromatography-mass spectrometry.

MATERIALS AND METHODS

Identification of Different Volatile Compounds Through Headspace Solid-phase Microextraction Technique

Three species of Atractylodes were collected from a different area of China i.e. Atractylodes lancea Thunb. was collected from Wuhan, Hubei, Atractylodes japonica Koidz was from Yanji, Jilin, and Atractylodes chinensis Koidz was from Zhangjiajie, Hunan. After collection, samples were weighed and immediately taken into a vial containing a headspace of 25mL. For the absorption of volatile compounds, a fused-silica fiber coated having a 75μm layer of carboxen/poly dimethyl siloxane (CAR/PDMS) was utilized. The fiber was opened to the headspace of the vial maintaining 25 °C for about 20 min, after that it was eliminated from the vial and initiated directly into the GC injector. Here thermal desorption analysis was conducted at 250 °C for 5 min. The compounds were identified from their mass spectra and the quantitative detection was calculated by utilizing peak areas of the compounds. Standards for GC-MS were collected from the National Institute of Standards and Technology (NIST).

GC and GC-MS Analysis

Herewith an Agilent 6890N GC mainframe connected with an HP-5 fused-silica capillary column (30 m × 0.32mmID, 0.25 μm film thickness), as well as the flame ionization detector (FID) (Agilent, USA) the GC analysis was done. Temperatures of both injector and detector for each analysis were placed at 250 °C and 280 °C, respectively. As the carrier gas, here nitrogen was used maintaining a flow rate of 1.0 mL/min. The column temperature was retained at 50 °C for 5 min and was then modified as follows: 1) Ramp from 50 °C to 260 °C at a rate of 3 °C min⁻¹; 2) Ramp from 260 °C to 280 °C at a rate of 10 °C min⁻¹; 3) Hold at 280 °C for 5 min.

GC-MS analysis was conducted on GC/MSD Polaris Q (Thermo Finnigan, USA) prepared with an HP-5 fused-silica capillary column (30 m × 0.32nmID, 0.25μm film thickness) (Agilent, USA). Here as the carrier gas, Helium was utilized giving a flow rate of 1.0mLmin⁻¹. An electron ionization system having a 70eV system energy, a 250μA trap current, and an ion source at 200 °C was used for GC-MS detection.

Samples Identification

The respective compounds were identified by contrasting the mass spectra also with the data of NIST and WILLY library of the GC-MS system as well as the data from the literature. Total ion current chromatograms were measured following the mass range 40–400amu.

RESULTS

Composition of Essential Oil

GC-MS analysis assisted to detect 99 volatile compounds from three different species of Atractylodes by evaluating their GC-MS spectra with standard compounds as well as with previous literature reports (Yosioka et al., 1976; Chen et al., 2009; Wang et al., 2012). A total of 99 volatile compounds were detected in A. lancea, A. japonica, and A. chinensis (Table 1). Among the 99 volatile compounds, six compounds, i.e. 3-octen-5-yne, 5-butyl-1,3-cyclohexadiene, caryophyllene, cubenol, 1,2,3,3a,4,5,6,7-octahydro-1,4-dimethyl-7-(1-methylethenyl)-[1R-(1S,2R)-azulene, and (3S,6S,6aS,9aR,9bR)-azuleno [4,5-b]furan-2,9-dione, were detected only in A. lancea. In the case of A. japonica, four unique compounds were detected i.e. β-curcumene, decahydro-1,5,5,8a-tetramethyl-[1s-(1α,3β,4α,7β,8α)]-1,4-methanoazulen-7-ol, 3-hydroxy-7-isopropenyl-1,4a-dimethyl-2,3,4,4a,5,6,7,8-octahydrophthalan-2-yl acetate, and methyl 9,11-octadecadienoate. In addition, six volatile compounds, namely α-phellandrene, 1-methyl-3-(1-methylthyl)benzene, 6-isopropylidene-1-methyl-bicyclo[3.1.0]hexane, β-copaene, ledene oxide-(II), and longiverbenone were found only in A. chinensis. Furthermore, 11 of the 99 compounds, namely 2,5-dimethyl-3-methylene-1,5-heptadiene, α-ethyl-α-2,5,7-octatrienyl-benzemethanol, decahydro-1,1,3a-trimethyl-7-methylene-[1aS-(1α,3α,7α,7b,7a)]-1H-cyclopropa[a]naphthalene, 1-ethenyl-1-methyl-2,4-bis(1-methylene)-15S-(1α,2β,4β)-cyclohexane, α-acorenol, γ-eudesmol, 1,2,3,4,4a,5,6,8a-octahydro-α,α,4a,8-tetramethyl-[2R-(2α,4α,8αβ)]-2-naphthalenemethanol, neocurdiene,
Table 1: Volatile compounds and their quantities in *Atractylodes* spp., determined by solid-phase microextraction (SPME).

No	Compounds	Retention time (min)	Peak area (%)	Class of chemical/Chemical formula			
1	3-Octen-5-yne	11.392	9.007	-	Alkyne C8H16		
2	γ-Terpinene	13.613	-	0.053	Monoterpene C10H16		
3	D-Limonene	13.801	0.585	-	Monoterpene C10H16		
4	α-Phellandrene	14.447	-	0.211	Monoterpene C15H24		
5	5-Butyl-1,3-cyclohexadiene	14.515	0.509	-	Alkene C15H18		
6	2-Carene	15.615	2.273	0.426	Monoterpene C15H24		
7	1-Methyl-3-(1-methylethyl)benzene	15.761	-	-	Monoterpene C16H16		
8	α-Ylangene	16	0.748	-	Monoterpene C16H20		
9	2,5-Dimethyl-3-methylene-1,5-heptadiene	16.483	0.091	0.239	Monoterpene C16H20		
10	4-Terpinyl acetate	17.028	0.463	-	8.205	Oxygenated monoterpenes C20H30O2	
11	6-Isopropyliden-1-methylbicyclo[3.1.0]hexane	17.218	-	-	Monoterpenes C16H20		
12	1,5,5,6-Tetramethyl-1,3-cyclohexadiene	17.502	0.245	-	Monoterpenes C16H20		
13	m-Phenethylbenzonitrile	18.24	0.643	0.028	Other C10H13N		
14	1,2-Ethandiol monobenzoate	18.498	0.086	-	1.318	Ester C10H13O2	
15	2-Bromomethyl benzoate	18.969	0.096	0.953	0.115	Ester C10H13BrO	
16	α-Ethyl-α-(2,5,7-octatrienyl)benzenemethanol	18.811	0.171	0.135	Alcohol C16H20O		
17	2,6-Pyrindinedicarboxaldehyde	19.202	0.155	-	0.302	Alddehyde C7H8O2	
18	3,6-Diethyl-3,6-dimethyl-trans-tricyclo[3.1.0.0(2,4)]hexane	21.164	0.193	-	0.647	Alkane C15H20	
19	Longifolene-(V4)	26.417	0.232	-	0.359	Sesquiterpenes C20H30	
20	1R,4R,7R,11R-1,3,4,7-Tetramethyltricyclo[5.3.1.0(4,11)]undec-2-ene	32	0.171	0.312	0.386	Sesquiterpenes C20H30	
21	Decahydo-1,1a,3a-trimethyl-7-methylene-[1aS-(1aα,3aα,7aβ)]:1 H-cyclopenta[α]naphthalene	32.153	0.37	0.034	-	Sesquiterpenes C20H30	
22	2,2-Bis-(3,5-dimethoxybenzyl)-5,7-dimethyloxindan-1-one	32.353	0.277	0.143	0.125	Ketone C20H20O2	
23	4-Ethenyl-4-methyl-3-(1-methylethyl)-1-(methylethyl)- (3R)-trans-cyclohexene	32.636	1.306	-	0.27	Sesquiterpenes C20H30	
24	α-Guaiae	32.847	0.092	0.959	0.65	Sesquiterpenes C20H30	
25	[(2,4,6-Triethylbenzyl)thio]acetic acid	33.096	-	0.033	0.286	Acid C15H22O2S	
26	(-)-Isoromandendrene-(V)	34.045	0.189	0.118	0.108	Sesquiterpenes C20H30	
27	(32,82)-4,8,11,11-Tetramethylbicyclo[7.2.0]undeca-3,8-diene	34.262	2.193	1.586	1.159	Sesquiterpenes C20H30	
28	1,2,3,3a,4,4,6,7-Octahydro-1,4-dimethyl-7-(1- (1-methylallyl)-(1R-(1a,3aα,4α,7β)]-azulene	34.513	2.862	-	-	Sesquiterpenes C20H30	
29	α-Eudesmol	34.673	0.846	2.004	1.696	Oxygenated sesquiterpenes C20H30O	
30	Isoeudesmol	34.796	-	0.215	0.062	Sesquiterpenes C20H30	
31	1-Ethenyl-1-methyl-2,4-bis(1-methylethyl)-[15-(1a,2b,4b)]-cyclohexane	34.942	0.076	0.029	-	Sesquiterpenes C20H30	
32	δ-Selinene	35.323	2.859	-	0.06	Sesquiterpenes C20H30	
33	1,5,9-Trimethyl-1,5,9-cyclodecatriene	35.488	-	1.733	1.238	Sesquiterpenes C20H30	
34	3-Methyl-2-(2,4-pentadienyl)-(Z)-2-cyclopenten-1-one	35.888	3.328	3.039	1.372	Ketone C14H20O	
35	Caryophyllene	36.104	0.072	-	-	Sesquiterpenes C20H30	
36	1-Ethenyl-1-methyl-2-(1-methylethyl)-4-(1- (1-methylallyl)-cyclohexene	36.191	3.558	0.081	0.039	Sesquiterpenes C20H30	
37	γ-Elemene	36.509	0.096	4.336	1.883	Sesquiterpenes C20H30	
38	α-Acoranol	37.072	1.103	0.853	-	Oxygenated sesquiterpenes C20H30O	
39	2,6,6,9-Tetramethyl-(1R,2S,7R,8R)-tricyclo[5.4.0.0(2,8)]undec-9-ene	37.36	-	1.012	0.553	Sesquiterpenes C20H30	
40	(1αR-1αa,4αa,7αβ,7β)trans-decahydro-1,1,7-trimethyl- 4-methylene, 1H-cyclopenta[α]azulen-7-ol	37.759	0.438	0.033	0.027	Oxygenated sesquiterpenes C20H30	
41	2-Isopropenyl-4α,8-dimethyl-1,2,3,4a,5,6,7-octahydroanthracene	38.313	0.186	0.901	3.871	Sesquiterpenes C20H30	
42	1-Methyl-5-methoxy-8-(1-methylethyl)-[5-(E,E)]-1,6-cycloaddene	38.437	1.259	-	0.125	0.531	Sesquiterpenes C20H30
43	11-Isopropylidenetricyclo[4.3.1.1(2,5)]undec-3-ene-10-one	38.656	0.659	2.049	0.73	Oxygenated sesquiterpenes C20H30	
44	1,5,5,8a-Tetramethyl-decahydro-(1S-(1α,2a,3α,4a,8a,9β)]-1,2,4-methanoazulene	38.935	-	0.318	0.356	Sesquiterpenes C20H30	
45	β-Curcumene	39.314	-	0.078	-	Sesquiterpenes C20H30	

(Contd...)
No	Compounds	Retention time (min)	Peak area (%)	Class of chemical	Chemical formula		
		Atractylodes lancea	Atractylodes japonica	Atractylodes chinensis			
		(Thunb)	(Koidz)	(Koidz)			
46	β-Bisabolene	39.438	0.141	0.055	0.112	Sesquiterpene	C_{25}H_{30}O
47	β-Copaene	39.56	-	-	0.309	Sesquiterpene	C_{25}H_{30}O
48	Isocaryophyllene	39.831	-	0.054	0.032	Sesquiterpene	C_{25}H_{30}O
49	3-(1,5-Dimethyl-4-hexenyl)-6-methylene cyclohexene	39.923	1.238	0.566		Sesquiterpene	C_{25}H_{30}O
50	Cubedol	40.103	0.993	-	0.396	Oxygenated sesquiterpene	C_{25}H_{30}O
51	Guaia-3,9-diene	40.434	2.785	-	2.937	Sesquiterpene	C_{15}H_{20}O
52	Selina-3,7(11)-diene	40.524	-	6.62	0.803	Sesquiterpene	C_{15}H_{20}O
53	2-(3-Isopropyl-4-methyl-pent-3-en-1-ynyl)-2-methyl-cyclobutanone	40.766	0.123	0.053		Oxygenated sesquiterpene	C_{15}H_{20}O
54	γ-Himachalene	40.832	0.343	0.605	0.157	Sesquiterpene	C_{25}H_{30}O
55	Dehydroaromadendrene	41.318	0.373	1.478	1.425	Sesquiterpene	C_{25}H_{30}O
56	Calarene epoxide	41.593	0.582	1.036	0.396	Oxygenated sesquiterpene	C_{25}H_{30}O
57	1-Hydroxy-1,7,7-dimethyl-4-isopropyl-2,7-cyclododecadiene	42.3	0.576	0.224	0.265	Oxygenated sesquiterpene	C_{25}H_{30}O
58	Decahydro-1,5,5,8a-tetramethyl-[1s-(1α,3αj,4αa,7β,8βj)]-1,4-methanoazulene-7-ol	42.521	-	0.084	-	Oxygenated sesquiterpene	C_{15}H_{20}O
59	Dihydrocurcurbitacin B	42.706	0.331	0.176	0.312	Oxygenated Triterpenoids	C_{25}H_{48}O
60	Epiglobulol	43.201	0.296	0.06	0.196	Oxygenated sesquiterpene	C_{25}H_{30}O
61	2,2,6-Trimethyl-1-(3-methyl-1,3-butadienyl)-5-methylene-octahydro-1-(4,1.0)heptane	43.464	-	0.191	0.104	Oxygenated sesquiterpene	C_{25}H_{30}O
62	Cubenol	43.558	0.092	-	-	Oxygenated sesquiterpene	C_{25}H_{30}O
63	4-epi-Cubedol	43.863	0.118	-	0.081	Oxygenated sesquiterpene	C_{25}H_{30}O
64	Guaiol	44.138	5.006	-	0.075	Oxygenated sesquiterpene	C_{25}H_{30}O
65	γ-Eudesmol	44.354	0.325	0.33	-	Oxygenated sesquiterpene	C_{25}H_{30}O
66	Decahydro-α,α,4a-trimethyl-8-methylene-[2R-(2a,4a,6aβ)-2-naphthalenemethanol	44.608	3.62	0.153	2.515	Oxygenated sesquiterpene	C_{25}H_{30}O
67	Curzerene	44.991	14.179	3.558	16.729	Oxygenated sesquiterpene	C_{25}H_{30}O
68	1,2,3,4,4a,5,6b,8a-Octahydro-α,α,4a,8-tetramethyl-[2R-(2a,4a,6aβ)-2-naphthalenemethanol	45.199	1.225	0.288	-	Oxygenated sesquiterpene	C_{25}H_{30}O
69	3-Hydroxy-7-isopropenyl-1,4a-dimethyl-2,3,4,4a,5,6,7,8-octahydroxynaphthalen-2-yl acetate	45.454	-	0.568	-	Ester	C_{25}H_{30}O
70	Fenretinide	45.713	-	0.214	0.762	Other Oxygenated sesquiterpene	C_{25}H_{30}O NO
71	Ambrosin	45.795	0.412	0.079	1.271	Other Oxygenated sesquiterpene	C_{25}H_{30}O OX
72	Diepicedrene-1-oxide	46.31	-	0.091	0.137	Oxygenated sesquiterpene	C_{25}H_{30}O
73	6-Isopropenyl-4,8a-dimethyl-1,2,3,5,6,7,8a-octahydroxynaphthalen-2,3-diol	46.482	1.817	-	1.216	Oxygenated sesquiterpene	C_{25}H_{30}O
74	[1,1’-Biphenyl]-4-carboxylic acid	46.916	0.079	0.028	0.148	Other Oxygenated sesquiterpene	C_{25}H_{30}O ClO
75	Ledene oxide-(II)	47.443	-	-	0.185	Oxygenated sesquiterpene	C_{25}H_{30}O
76	Murolan-3,9(11)-diene-10-peroxy	47.604	0.658	16.883	0.992	Oxygenated sesquiterpene	C_{25}H_{30}O
77	Longiverbenone	47.747	-	-	0.031	Oxygenated sesquiterpene	C_{25}H_{30}O
78	Neocurdiine	48.044	0.239	0.778	-	Oxygenated sesquiterpene	C_{25}H_{30}O
79	[1,1’-Biphenyl]-4-carboxaldehyde	48.798	0.51	-	2.647	Aldehyde	C_{15}H_{10}O
80	(3F,5Z,7E)-9,10-Secocholesta-5,7,10(19)-triene-3,24,25-triol	49.388	0.227	-	0.937	Other	C_{25}H_{30}O
81	2-Methyl-4-(1,3,3-trimethyl-7-oxabicyclo[4.1.0]hept-2-yl)-3-buten-2-ol	49.676	0.275	0.066	0.056	Oxygenated sesquiterpene	C_{25}H_{30}O

(Contd...)
Table 1: (Continued)

No	Compounds	Retention time (min)	Peak area (%)	Class of chemical	Chemical formula	
82	Decahydro-6,9a-dimethyl-3-methylene-, (3α,6S,6aS,9αR,9bR)-azulenol(4,5-b)furan-2,9-dione	50.251	0.385	-	Oxygenated	C₂₉H₂₅O₄
83	trans-Longipinocarveol	50.734	0.163	-	Oxygenated	C₂₉H₂₃O
84	7,8-Dihydroxymethyl)-5-methyl-2-isopropyl-spiro-6-(bicyclo[3.2.1]octane)-2'-oxirane	51.739	0.132	-	Oxygenated	C₂₉H₂₃O
85	(10α-Hydroxy-3α-methoxy-2,10-dimethyl-3,8-dioxo-4,6a,7,9,10,10b-hexahydrobenzo(e)azulen-5-yl)methyl acetate	52	2.803	-	Ester	C₂₅H₂₄O₄
86	7,8,15,16-Tetramethyl-1,9-dioxacyclohexadeca-4,13-diene-2,10-dione	52.709	0.126	-	Ketone	C₂₇H₂₄O₄
87	5-Methyl-1,2,6,6-trimethyl-2,4-cyclohexadien-1-yl)-1,4-hexadien-3-one	52.955	3.01	0.024	Ketone	C₂₇H₂₄O₆
88	n-Hexadecanoic acid	53.577	0.289	0.036	Acid	C₁₈H₃₄O₂
89	Methyl Retinoate	55.155	0.197	0.086	Ester	C₁₈H₂₀O₂
90	Androgapholide	55.555	0.278	-	Ketone	C₂₁H₁₄O
91	4,4'-Dimethyl-2,2'-dimethylenecyclohexyl-3,3'-diene	56.561	0.248	0.374	Alkene	C₂₇H₃₄O
92	(6α,9-Dihydroxy-6-methyl-3-methylidene-2-oxo-3a,4,5,6,7,8,9,9b-octahydroazulen-4,5-bifuran-9-yl)methyl acetate	57.98	0.067	0.149	Ester	C₂₃H₂₄O₆
93	Propoxyphene	61.099	1.077	-	Ketone	C₂₂H₂₉O₆
94	9,10-dihydro-9,10(1′,1′)-benzenoanthracene	64.218	0.042	4.39	Alkene	C₂₃H₂₄O
95	3-(4-Methoxyphenyl)-2-ethylhexyl-2-propanoate	64.58	0.249	1.622	Ester	C₂₃H₂₄O₂
96	2-(4-Diethylaminophenyliminophenyl)methanol	66.929	0.154	1.272	Acid	C₂₃H₂₄N₂
97	9-Cycloheptatrienylidene-9,10-dihydro-10-oxygenated triterpenoid	74.656	-	1.87	Ketone	C₂₃H₂₄O
98	Methyl 9,11-decadienoate	78.213	-	5.221	Ketone	C₂₃H₂₄O
99	N-(3,6-dichloro-2,7-bis(2-diethylnitrooxy)fluoren-9-ylidene)(amino)-2,2-dimethylpropanamide	78.587	0.669	9.382	Other	C₂₃H₂₃N₃O₄

| Total | 82.528 | 81.766 | 81.799 |

7,8-di(hydroxymethyl)-5-methyl-2-isopropyl-spiro-6-(bicyclo[3.2.1]octane)-2'-oxirane, methyl retinoate, and N-[3,6-dichloro-2,7-bis(2-diethylnitrooxy)fluoren-9-ylidene](amino)-2,2-dimethylpropanamide were observed both in A. lancea and A. japonica samples. Both in A. japonica and A. chinensis further 14 compounds were detected, namely α-terpinene, [(2,4,6-trithylenzoil)thio]acetic acid, isocarophyllene, 1,5,9-trimethyl-1,5,9-cyclododecatriene, 2,6,6,9-tetramethyl-(1R,2S,7R,8R)-tricyclo-[5,4,0.0(2,8)]undec-9-ene, 1,5,5,5a-tetramethyldecahydro-[1S-(1α,2α,3αβ,4α,5αβ,9βR)]-1,2,4-methanoazulene, isocarophyllene, 3-(1,5-dimethyl-4-hexenyl)-6-methylene-cyclohexene, selina-3,7(11)-diene, 2-(3-isopropyl-4-methylpent-3-en-1-ynyl)-2-methyl-cyclobutane, 2,2,6-trimethyl-1-(3-methyl-1,3-buta dienyl)-5-methylene-7-oxabicyclo[4,1,0]heptane, fenretine, diisopropenyl-1-oxide, and 9-cycloheptatrienylidene-9,10-dihydro-10-oxygenated triterpenoid. The remaining compounds, i.e. D-limonene, α-ylangene, 4-terpinenyl acetate, 1,5,5,6-tetramethyl-1,3-cyclohexadiene, 1,2-ethanedion mono benzoxazole, 2,6-pyridinedicarboxaldehyde, 3,6-diethyl-3,6-dimethyl-trans-tricyclo-[3,1.0.0(2,4)] hexane, longifolene-(V4), 4-ethyl-4-methyl-1-(1-methylethyl)-1-(methylthyl)-(3R-trans)-cyclohexene, δ-selinene, guaia-3,9-diene, 4-epi-cubedol, guaiol, 6-isopropenyl-4,8a-dimethyl-1,2,3,5,6,7,8,8-octahydroanthalene-2,3-diol, [1,1'-biphenyl]-4-carboxaldehyde, (3β,5Z,7E)-9,10-secocholesta-5,7,10(19)-triene-3,24,25-triol, (10α-hydroxy-3α-methoxy-2,10-dimethyl-3,8-dioxo-4,6a,7,9,10,10b-hexahydrobenzo(e)azulen-5-yl)methyl acetate, androgapholide, and propoxyphene, were detected both in A. lancea and A. chinensis. Considering all 99 volatile compounds, the total amounts contained in each of the three Atractylode species were comparable, with values of 82.528%, 81.766%, and 81.799% calculated for A. lancea, A. japonica, and the most abundant volatile and A. chinensis, respectively. Among these compounds detected in A. lancea were curzerene (14.1%) and 3-octen-5-yn-1-one (9.01%), while murolan-3(11)-diene-10-peroxy (16.8%) was the most abundant volatile in A. japonica. The most abundant compounds in A. chinensis were curzerene (16.7%), γ-terpinene (10.3%), N-[3,6-dichloro-2,7-bis(2-diethylnitrooxy)fluoren-9-ylidene](amino)-2,2-dimethylpropanamide (9.4%), and 4-terpinenyl acetate (8.2%).

Numbers of Volatile Flavor Compounds and their Quantities (%) in Different species of Atractylodes

There are 13 volatile flavor compounds i.e. acid, alcohol, aldehyde, alkane, alkene, alkyne, ester, ketone, monoterpen, oxygenated monoterpen, sesquiterpene, oxygenated sesquiterpene, and oxygenated triterpenoid detected from different species of Atractylodes (Table 2). The Table 2. The highest amount of acid was too low within the species where no alcohol was found in A. chinensis. The highest amount of oxygenated sesquiterpe, alkane, monoterpe, and oxygenated monoterpe types volatile flavor compounds were
Table 2: Numbers of volatile flavor compounds in Atractylodes spp.

Class of chemical components	Atractylodes lancea Thunb	Atractylodes japonica Koidz	Atractylodes chinensis Koidz
Acid	2	3	3
Alcohol	1	1	1
Aldehydes	2	0	0
Alkane	1	0	0
Alkene	3	2	2
Alkylene	1	0	0
Ester	6	6	5
Ketone	6	5	5
Monoterpenes	4	3	4
Oxygenated monoterpenes	1	1	0
Sesquiterpenes	20	21	24
Oxygenated sesquiterpenes	23	21	20
Oxygenated triterpenoids	1	1	1
Other	4	4	4
Total	75	82	76

found in A. chinensis. The levels of accumulation of alcohol, alkene, ketone, and oxygenated sesquiterpenes were found to be the highest amount in A. lancea. The species A. japonica contained the highest amount of alkane, ester and sesquiterpene. Among the volatile flavor compounds oxygenated sesquiterpene dominated over other volatile flavors compounds irrespective of species. The species A. lancea, A. japonica, and A. chinensis contained 23, 21, and 20 oxygenated sesquiterpenes, having 41.37%, 35.50%, and 32.75% of total volatile flavor compounds, respectively. After oxygenated sesquiterpene, the second-largest accumulated volatile flavor compounds were sesquiterpene. Here the contained of sesquiterpene was 26.77%, 24.13%, and 22.49% in the A. japonica, A. lancea, and A. chinensis, respectively. Volatile flavor compounds alkene was detected only in the species of A. lancea having 10.91% of total volatile flavor compounds. The amount of ester was 10.32%, 4.24%, and 3.55% in the A. japonica, A. lancea, and A. chinensis, respectively.

DISCUSSION

The essential oils and volatile compounds derived from the A. lancea, A. japonica, and A. chinensis species have been reported to have therapeutic value in Chinese medicine. The present study identified 99 volatile compounds from these plants using GC-MS, by quantifying each volatile compound in the three species. Interestingly, it was found that although all extracts contained 38 common compounds, each extract also contained volatiles unique to that particular species. It was found that the variation in the quantity of these compounds depends on the location of the collected samples as well as the differences of species. A total of 77 volatile compounds were detected in total having 13 monoterpensoids, 19 sesquiterpenoids, and others in Mentha species (Park et al., 2016). In another study (Zouaoui et al., 2020) reported that a total of 91 volatile organic compounds (VOC): 39 VOC were identified in *Thymusalgeriensis* (with dominance of β-myrcene = 13.78%, camphor = 12.92%, linalyl acetate = 9.11%), 37 VOC in *Artemisiscampestris* (β-farnesene = 14.17%, β-myrcene = 13.84%); 50 VOC in *Juniperusphoenixica* (α-pinene = 27.18%); 42 VOC in *Teucriumpolium* (α-guaiene = 11.53%, trans-caryophyllene = 9.49%, γ-elemene = 9.25%), 45 VOC in *Rosmarinus officinalis* (camphor = 17.46%, trans-caryophyllene = 14.83%); and 41 in *Artemisia herba-alba* (α-thujone = 24.59%, β-thujone = 13.73%). In *Artemisia herba-alba* growing in the region of biskra, α-thujone (24.59%) and β-thujone (13.73%) were the major compounds, followed by verbene (8.50%), sabdol (7.51%), carvone (5.05%), and p-cineole (4.81%). These results are partially similar to those reported by (Belhadj et al., 2014) that used plant samples from different regions (Benifouda, Bougaa, Boussaada, and Bouteahl) of Algeria; and from the region of Busirah (Jordan) (Abu-Darwish et al., 2015). Here in this study, a total of 99 different volatile compounds have been detected which indicated variation of volatile compounds might vary with the variation of region. The nature of volatile compounds varied from species to species. α-pinene (27.18%) was the major compound in *Juniperus phoenixica* growing in drylands of Algeria. It is followed by β-citronellol (6.15%), δ-3-carene (4.78%), β-farnesene (4.71%), α-terpineol (4.12%), germacrene D (3.50%), δ-cadinene (3.26%), and geranyl acetone (3.01%). These results are in agreement with those described by (Mazari et al., 2010) in the region of Sidi Safi (Tlemcen, Algeria) and in the region of Angad (Oujda, Morocco) (Ait-Ouazzou et al., 2012). The major VOC in *Teucriumpolium* were α-guaiene (11.35%), trans-caryophyllene (9.49%), and γ-elemene (9.25%). These are followed by β-farnesene (7.56%), farnesol (6.14%), allo-aromandendrene (4.34%), δ-guaiene (4.21%), geranyl acetone (3.65%) and α-gurjene (3.56%). Octyl acetate (24.22 to 33.16%), 2-undecanone (12.43 to 23.82%), and 2-nonanone (11.41 to 41.69%) were found to be major components of the volatiles extracted by hydro distillation or head-space method of two populations of *Ruta chalepensis* L. (Rutaceae) (Fakhfakh et al., 2012), whereas in this study curzerene was found to be the most predominant compound in both A. lancea (14.1%) and A. chinensis (16.7%), while murolan-3,9-(11)-diene-10-poyroxy was found predominantly in A. japonica (16.8%). Our findings are in agreement with many previous studies that applied the same procedures for the extraction and detection of volatile compounds. For instance, when GC-MS was used, the number of VOC was 61 compounds in *Teucriumpolium* (Gholivand et al., 2015) and 42 compounds in *Rhaponticumacaule* roots (Benyelles et al., 2014). The chemical composition of *Thymusalgeriensis* is marked by the presence of β-myrcene (13.78%), camphor (12.92%), and linalyl acetate (9.11%) as the major constituents, followed by p-cineole (6.31%), β-farnesene (5.23%), terpineol (5.07%), bornyl acetate (4.79%), α-pinene (4.65%) and camphene (4.61%). These results are partially in line with those reported by (Zouaoui et al., 2011) and (Ali et al., 2012). According to (Ali et al., 2015), there is a large quantitative and qualitative variation in VOC between leaves, stems, and roots of the same plant species. In *Artemisiscampestris* growing in Algerian drylands, the major VOC are β-farnesene (14.17%) and β-myrcene (13.84%) followed by α-cedrene (7.88%), germacrene D (7.25%), α-pinene (4.63%);
and β-pinene (4.21%). These results are partially in line with those reported by (Ghorab et al., 2015) and (Al Jahid et al., 2016). The slight quantitative difference in contents of major VOC may be due to genetic variation and geographical origin of plant material; knowing that (Al Jahid et al., 2016) collected samples from Saharan zones of Morocco, whereas (Ghorab et al., 2013) harvested plants from semi-arid areas of Algeria. Besides, differences in VOC contents between studies can be related to differences in extraction method, analysis conditions or even the vegetal organ analyzed ‘leaves in (Al Jahid et al., 2016)’ or the freshness of plant materials, as (Ghorab et al., 2013) used fresh plants in VOC screening while most studies use dried plant materials.

The present study suggests that the identified volatile compounds may possess important biological properties, and could be suitable for application in both oriental medicines and the pharmaceutical industry. This report, therefore, presents further information regarding the quantification and abundance of these volatile compounds, which are expected to possess a range of important biological properties, and could there be useful for application in oriental medicine in countries such as Korea and China.

CONCLUSION

Based on these results, it is suggested that the Atractylodes species and their identified volatile compounds may possess important biological properties, and could be suitable for application in both oriental medicines and in the pharmaceutical industry. Appropriate separation of the components within these essential oils may lead to the development of new drug targets or therapeutic treatments.

REFERENCES

Abu-Darwish, M., Cabral, C., Gongalves, M., Cavaleiro, C., Cruz, M., Effert, T., and Salgueiro, L. (2016). Artemisia herba-alba essential oil from Buseirah (South Jordan): Chemical characterization and assessment of safe antifungal and anti-inflammatory doses. Journal of Ethnopharmacology, 174, 153-160. https://doi.org/10.1016/j.jep.2015.08.005

Ait-Ouazzou, A., Lorán, S., Elouakhdar, H., Benyelles, B., Allali, H., Dib, M. E., Djabou, N., Tabti, B., and Costa, J. (2014). Essential oil from Rhaponticum acaule L. roots: Comparative study using HS-SPME/GC/GC–MS and hydrodistillation techniques. Journal of Saudi Chemical Society, 18(6), 972-976. https://doi.org/10.1016/j.jscs.2011.12.001

Chen, Q., Li, P., Yang, H., Li, X., Zhu, J., and Chen, F. (2009). Identification of volatile compounds of Atractylodes lancea rhizoma using supercritical fluid extraction and GC–MS. Journal of Separation Science, 32(18), 3152-3166. https://doi.org/10.1002/jssc.200900210

Chen, Y., Chou, G., and Wang, Z. (2007). Simultaneous determination of polyacetylene compounds in Cangzhu by reversed-phase high-performance liquid chromatography. Se Pu (Chinese Journal of Chromatography), 25(1), 84-97.

Chu, S. S., Jiang, G. H., and Liu, Z. L. (2011). Insecticidal compounds from the essential oil of Chinese medicinal herb Atractylodes chinensis. Pest Management Science, 67, 1253-1257. https://doi.org/10.1002/ps.2180

Dudareva, N., Pichersky, E., and Gershenzon, J. (2004). Biochemistry of plant volatiles. Plant Physiology, 135, 1893-1902. https://doi.org/10.1104/pp.104.049981

Fakhfakh, N., Zouari, S., Zouari, M., Loussyaf, Z., and Zouari, N. (2012). Chemical composition of volatile compounds and antioxidant activities of essential oil, aqueous and ethanol extracts of wild Tunisian Ruta chalepensis L. (Rutaceae). Journal of Medicinal Plants Research, 6(4), 593-600. https://doi.org/10.5897/JMPR11.1121

Gholivand, M. B., Piryaei, M., Abolghasemi, M. M., and Maasoumi, S. M. (2013). Rapid analysis of volatile components from Teucrium polium L. by nanoporous silica-polyaniline solid phase microextraction fibre. Phytochemical Analysis, 24, 69-74. https://doi.org/10.1002/pca.2382

Ghorab, H., Lagguone, S., Kabouche, A., Sennra, Z., and Kabouche, Z. (2013). Essential oil composition and antibacterial activity of Artemisia campestris L. from Khenechala (Algeria). Der Pharmacia Lett, 5(2), 189-192.

Guo, F.-Q., Huang, L.-F., Zhou, S.-Y., Zhang, T.-M., and Liang, Y.-Z. (2006). Comparison of the volatile compounds of Atractylodes medicinal plants by headspace solid-phase microextraction-gas chromatography–mass spectrometry. Analytica Chimica Acta, 570(1), 73-78. https://doi.org/10.1016/j.aca.2006.04.006

Mazari, K., Bendimerad, N., and Bekchechi, C. (2010). Chemical composition and antimicrobial activity of essential oil isolated from Algerian Juniperus phoenicea L. and Cupressus sempervirens L. Journal of Medicinal Plants Research, 4(10), 959-964.

Park, Y. J., Baskar, T. B., Yeo, S. K., Arasu, M. V., Al-Dhabi, N. A., Lim, S. S., and Park, S. U. (2016). Chemical composition of volatile compounds and in vitro antimicrobial activity of nine Mentha spp. SpringerPlus, 5(1), 1-10. https://doi.org/10.1186/s40064-016-3263-1

Pichersky, E., Noel, J. P., and Dudareva, N. (2006). Biosynthesis of plant volatiles: nature’s diversity and ingenuity. Science, 317(5802), 808-811. https://doi.org/10.1126/science.1118510

Ren, C.-G., and Dai, C.-C. (2012). Jasmonic acid is involved in the signaling pathway for fungal endophyte-induced volatile oil accumulation of Atractylodes lancea plantlets. BMC Plant Biology, 12(128), 1-11. https://doi.org/10.1186/1471-2229-12-128

Takeda, O., Miki, E., Terabayashi, S., Okada, M., Lu, Y., He, H.-S., and He, S.-A. (1996). A comparative study on essential oil components of wild and cultivated Atractylodes lancea and A. chinensis. Planta Medica, 62(5), 444-449. https://doi.org/10.1055/s-2006-859536

Unsicker, S. B., Kunert, G., and Gershenzon, J. (2009). Protective perfumes: the role of vegetative volatiles in plant defense against herbivores. Current Opinion in Plant Biology, 12(4), 479-485. https://doi.org/10.1016/j.pbi.2009.04.001

Wang, X. M., Yang, B., Ren, C. G., Wang, H. W., Wang, Y. J., and Dai, C. C. (2015). Involvement of abscisic acid and salicylic acid in signal cascade regulating bacterial endophyte-induced volatile oil biosynthesis in plantlets of Atractylodes lancea. Physiologia Plantarum, 153(1), 30-42. https://doi.org/10.1111/ppl.12236

Wang, Y., Dai, C.-C., Cao, J.-L., and Xu, D.-S. (2012). Comparison of the effects of fungal endophyte Gilmaniella sp. and its elicitor on Atractylodes lancea plantlets. World Journal of Microbiology and Biotechnology, 28, 575-584. https://doi.org/10.1007/s11274-011-0850-2

Piao et al.
Willis, J. C. (1966). A dictionary of the flowering plants and ferns. A dictionary of the flowering plants and ferns. Science, 157(3789), 1289. https://doi.org/10.1126/science.157.3789.674-a

Xie, Y. L., Li, Z. M., Huang, M. Q., Su, Z. R., and Su, X. P. (2008). Determination of arctylodin and arctylone from the rhizomes of Atractylodes lancea by GC. Chinese Traditional and Herbal Drugs, 39, 614-615.

Yosioka, I., Nishino, T., Tani, T., and Kitagawa, I. (1976). On the constituents of the rhizomes of Atractylodes lancea DC var. chinensis KITAMURA ("Jin-changzhu") and Atractylodes ovata DC ("Chinese baizhu"). The gas chromatographic analysis of the crude drug "Zhu". Yakugaku zasshi: Journal of the Pharmaceutical Society of Japan, 96(10), 1229-1235.

Zhang, H., Han, T., Sun, L. -N., Huang, B. -K., Chen, Y. -F., Zheng, H. -C., and Qin, L. -P. (2008). Regulative effects of essential oil from Atractylodes lancea on delayed gastric emptying in stress-induced rats. Phytomedicine, 15(8), 602-611. https://doi.org/10.1016/j.phymed.2008.02.005

Zouaoui, N., Chenchouri, H., Bouguerra, A., Massouras, T., and Barkat, M. (2020). Characterization of volatile organic compounds from six aromatic and medicinal plant species growing wild in North African drylands. NFS Journal, 18, 19-28. https://doi.org/10.1016/j.nfs.2019.12.001

Zouari, N., Fakhfakh, N., Zouari, S., Bougatef, A., Karray, A., Neffati, M., and Ayadi, M. (2011). Chemical composition, angiotensin I-converting enzyme inhibitory, antioxidant and antimicrobial activities of essential oil of Tunisian Thymus algeriensis Boiss. et Reut. (Lamiaceae). Food and Bioproducts Processing, 89(4), 257-265. https://doi.org/10.1016/j.fbpp.2010.11.006