Exact results for spin dynamics and fractionization in the Kitaev Model

G. Baskaran, Saptarshi Mandal and R. Shankar
The Institute of Mathematical Sciences, CIT Campus, Chennai 600 113, India.

We present certain exact analytical results for dynamical spin correlation functions in the Kitaev Model. It is the first result of its kind in non-trivial quantum spin models. The result is also novel: in spite of presence of gapless propagating Majorana fermion excitations, dynamical two spin correlation functions are identically zero beyond nearest neighbor separation. This shows existence of a gapless but short range spin liquid. An unusual, all energy scale fractionization of a spin-flip quanta, into two infinitely massive π-fluxes and a dynamical Majorana fermion, is shown to occur. As the Kitaev Model exemplifies topological quantum computation, our result presents new insights into qubit dynamics and generation of topological excitations.

PACS numbers: 75.10.jm, 03.67.-a, 03.67.Lx, 71.10.Pm

In the field of quantum computers and quantum communications, practical realizations of qubits that are robust and escape decoherence is a foremost challenge\cite{1}. In this context Kitaev proposed\cite{2} certain emergent topological excitations in strongly correlated quantum many body systems as robust qubits. In a fault tolerant quantum computation scheme\cite{2,3,4}, Kitaev constructed a non-trivial and exactly solvable 2-dimensional spin model\cite{2} and illustrated basic ideas. In some limit it also becomes the celebrated ‘toric code’ Hamiltonian. The Kitaev model has come closer to reality, after recent proposals for experimental realizations\cite{5,6} and schemes for manipulation and detection\cite{7}. In initialisation, error correction and read out operations, it is ‘spins’ rather than emergent topological degrees of freedom that are directly accessed from outside. Thus an understanding of dynamic spin correlations is of paramount importance.

We present certain exact analytical results for time dependent spin correlation functions, in arbitrary eigenstates of the Kitaev Model. Our results are non-trivial and novel, with possible implications for new quantum computational schemes. Further our result is unique in the sense that it is the first exact result for equilibrium dynamical spin correlation functions in a non trivial 2D quantum spin model.

We show that dynamical two spin correlation functions are short ranged and vanish identically beyond nearest neighbor sites for all time t, for all values of the coupling constants J_x, J_y and J_z, even in the domain of J’s where the model is gapless. Our result shows rigorously that it is a short range quantum spin liquid and long range spin order is absent. We obtain a compact form for the time dependence, which makes the physics transparent.

Kitaev Model is known to support dynamical Majorana fermions and static π-flux eigen-excitations. We show how fractionization\cite{8,9} of a local spin-flip quanta into a bound pair of static π-flux excitations and a free Majorana fermion occurs.

In the present paper we have restricted our calculation to dynamical correlation functions for time independent Hamiltonians, in arbitrary eigen-states and thermal states. In actual quantum computations, key manipulations such as braiding involve parametric change of the Hamiltonian and adiabatic transport of topological degrees of freedom\cite{7}. In principle, some of the needed ‘non equilibrium’ dynamical correlation functions may be obtained by convolution of our results with suitable Berry phase factors.

In our work we follow Kitaev\cite{2} and use the Majorana fermion representation of spin-half operators and an enlarged Hilbert space. What is remarkable is that, because of the presence of certain local conserved quantities in the Kitaev Model, Hilbert space enlargement only produces ‘gauge copies’, without altering the energy spectrum. This luxury is absent for standard 2D Heisenberg models when studied using enlarged fermionic Hilbert space\cite{8,9}.

The Kitaev Hamiltonian is

$$H = - J_x \sum_{\langle ij \rangle, z} \sigma^z_i \sigma^z_j - J_y \sum_{\langle ij \rangle, y} \sigma^y_i \sigma^y_j - J_z \sum_{\langle ij \rangle, z} \sigma^z_i \sigma^z_j \quad (1)$$

where i, j label the sites of a hexagonal lattice, $\langle ij \rangle_a, a = x, y, z$ denotes the nearest neighbor bonds in the a’th direction. The model has no continuous global spin symmetry. All bond interactions are Ising like, albeit in different quantisation directions x, y and z, in three different bond types, making the model quantum mechanical. Further, it renders a high degree of frustration; that is, even at a classical level a given spin can not satisfy conflicting demands, from 3 neighbors, of orientations in mutually orthogonal directions. The model has a rich local symmetry. A specific product of 6 spin components in every elementary hexagon, $\sigma^x_i \sigma^x_j \sigma^z_i \sigma^z_j \sigma^y_i \sigma^y_j$ (figure 1) commutes with the full Hamiltonian. Thus there is one conserved Z_2 charge ± 1, at every dual lattice site of the hexagonal lattice. The model is exactly solvable and becomes non interacting Majorana fermions, propagating in the background of static Z_2 gauge fields. Different possible Z_2 charges separate the Hilbert space into super selected sectors. The ground state corresponds to all Z_2 charges $= +1$. In this sector, for a range of J’s, Majorana fermions are gapless, including the special point $J_x = J_y = J_z$.

Following Kitaev, we represent the spins in terms of Majorana fermions. At each site, we define 4 Majorana fermions, \(e^\alpha \), \(\alpha = 0, x, y, z \),

\[
\{ e^\alpha, e^\beta \} = 2\delta_{\alpha\beta} \tag{2}
\]

Four Majorana (real) fermions make two complex fermions, making the Hilbert space 4 dimensional. Notationally, Hilbert space dimension of a Majorana fermion is \(\sqrt{2} \), an irrational number, reminding us that Majorana fermions have to occur in pairs (leading to a \(\sqrt{2} \times \sqrt{2} = 2 \) dimensional Fock space) in physical problems.

The dimension of Hilbert space of \(N \) spins is \(2^N \). The enlarged Hilbert space has a dimension \(4^N = (\sqrt{2} \times \sqrt{2})^N \). State vectors of the physical Hilbert space satisfy the condition,

\[
D_i |\Psi\rangle_{\text{phys}} = |\Psi\rangle_{\text{phys}} \tag{3}
\]

\[
D_i \equiv c_i c_i^\dagger c_j c_j^\dagger \tag{4}
\]

The spin operators can then be represented by,

\[
\sigma_i^a = ic_i c_i^\dagger, \quad a = x, y, z \tag{5}
\]

When projected into the physical Hilbert space, the operators defined above satisfy the algebra of spin 1/2 operators, \([\sigma_i^a, \sigma_j^b] = ic_{i\alpha} \sigma^c \delta_{ij}\). The Hamiltonian written in terms of the Majorana fermions is,

\[
H = - \sum_{a=x,y,z} J_a \sum_{(ij)_a} ic_i \hat{u}_{(ij)_a} c_j, \tag{6}
\]

with \(\hat{u}_{(ij)_a} \equiv ic_i c_j^\dagger \). Kitaev showed that \([H, \hat{u}_{(ij)_a}] = 0 \) and \(\hat{u}_{(ij)_a} \) become constants of motion with eigenvalues \(u_{(ij)_a} = \pm 1 \). The variables \(u_{(ij)_a} \) are identified with static (Ising) \(Z_2 \) gauge fields on the bonds. Kitaev Hamiltonian (equation 6) has a local \(Z_2 \) gauge invariance in the extended Hilbert space. For practical purposes, the local \(Z_2 \) gauge transformation amounts to \(u_{(ij)_a} \rightarrow \tau_i u_{(ij)_a} \tau_j \), with \(\tau_i \pm 1 \). Equation \(6 \) is the Gauss law and the physical subspace is the gauge invariant sector.

In the gauge field sector we have gauge invariant \(Z_2 \) vortex charges \(\pm 1 \) (0 and \(\pi \)-fluxes), defined as product of \(u_{(ij)_a} \) around each elementary hexagonal plaquette.

Equation 6, with conserved \(\hat{u}_{(ij)_a} \) is the Hamiltonian of free Majorana fermions in the background of frozen \(Z_2 \) vortices or \(\pi \)-fluxes. Since \(Z_2 \) gauge fields have no dynamics, all eigenstates can be written as products of a state in the \(2^{2N} \) dimensional Fock space of the \(c_i \) Majorana fermions and the \((2)^{2N} \) dimensional space of \(Z_2 \) link variables. We will refer to the former as matter sector and the latter as gauge field sector. Gauge copies (eigen-states with same energy eigen-values) spanning corresponding extended Hilbert space are obtained by local gauge transformations \(u_{(ij)_a} \rightarrow \tau_i u_{(ij)_a} \tau_j \).

It turns out that if we attempt to calculate spin-spin correlation functions with the use of above free Majorana Hamiltonian and the \(Z_2 \) fields \(u_{(ij)_a} \)'s, it is difficult to proceed further.

It is here we have invented a simple but key transformation that facilitates exact computation of all spin correlation functions. We call this as ‘bond fermion’ formation. In the process we also discover a ‘quantum fractionalization’ phenomenon in the Kitaev Model, that has an unusual validity at all energy scales.

Hereinafter, we follow the convention that \(i \) in the bond \(\langle ij \rangle_a \), belongs to \(A \) and \(B \) sub-lattice. We define complex fermions on each link as,

\[
\chi_{(ij)_a} = \frac{1}{\sqrt{2}} \left(c_i^\dagger + ic_j^\dagger \right) \tag{7}
\]

\[
\chi_{(ij)_a}^\dagger = \frac{1}{\sqrt{2}} \left(c_i^a - ic_j^a \right) \tag{8}
\]

The link variables are related to the number operator of these fermions, \(\hat{u}_{(ij)_a} \equiv ic_i c_j^\dagger = 2\chi_{(ij)_a}^\dagger \chi_{(ij)_a} - 1 \). All eigenstates can therefore be chosen to have a definite \(\chi \) fermion occupation number. The Hamiltonian is then block diagonal, each block corresponding to a distinct set of \(\chi \) fermion occupation numbers. Thus all eigenstates in the extended Hilbert space take the factorized form,

\[
|\Psi\rangle = |\mathcal{M}_{\chi};\mathcal{G}\rangle \equiv |\mathcal{M}_{\chi}\rangle |\mathcal{G}\rangle \tag{9}
\]

and \(\chi_{(ij)_a}^\dagger \chi_{(ij)_a} |\mathcal{G}\rangle = n_{(ij)_a} |\mathcal{G}\rangle \tag{10} \)

where \(n_{(ij)_a} = \frac{u_{(ij)_a} + 1}{2} \) and \(|\mathcal{M}_{\chi}\rangle \) is a many body eigenstate in the matter sector, corresponding to a given \(Z_2 \) field of \(|\mathcal{G}\rangle \). In terms of bond fermions, spin operators become,

\[
\sigma_i^a = ic_i \left(\chi_{(ij)_a} + \chi_{(ij)_a}^\dagger \right) \tag{11}
\]

\[
\sigma_j^a = c_j \left(\chi_{(ij)_a} - \chi_{(ij)_a}^\dagger \right) \tag{12}
\]

Three components of a spin operator at a site, gets connected to three different Majorana fermions defined on the three different bonds ! Written in the above
form, the effect of σ_i^a on any eigen-state, which we refer to as a "spin flip", becomes clear. In addition to adding a Majorana fermion at site i, it changes the bond fermion number from 0 to 1 and vice versa (equivalently, $u_{(ij)a} \rightarrow -u_{(ij)a}$), at the bond $(ij)a$. The end result is that one π flux each is added to two plaquettes that are shared by the bond $(ij)a$ (figure 2). We denote this symbolically as

$$\sigma_i^a = ic_i \left(\chi_{(ij)a} + \chi_{(ij)\pi}^\dagger \right) \rightarrow ic_i \hat{\pi}_{(ij)a} \hat{\pi}_{(ij)a}^\dagger$$

with $\hat{\pi}_{(ij)a}$ and $\hat{\pi}_{(ij)a}$ defined as operators that add π fluxes to plaquettes 1 and 2 shared by a bond $(ij)a$ (figure 2). Further $\hat{\pi}_{(ij)a}^2 = 1$, since adding two π fluxes is equivalent to adding (modulo 2π) zero flux.

Now we wish to calculate spin-spin correlation functions in physical subspace. Since the spin operators are gauge invariant, we can compute the correlation in any gauge fixed sector and the answer will be the same as in the physical gauge invariant subspace. (We have confirmed this by a calculation in the projected physical subspace.) So we consider the 2-spin dynamical correlation functions, in an arbitrary eigen-state of the Kitaev Hamiltonian in some fixed gauge field configuration G,

$$S_{ij}^{ab}(t) = \langle \mathcal{M}_G | \langle G | \sigma_i^a(t) \sigma_j^b(0) | G \mathcal{M}_G \rangle \rangle$$

Here $A(t) \equiv e^{iHt} A e^{-iHt}$ is the Heisenberg representation of an operator A, keeping $\hbar = 1$. As discussed above,

$$\sigma_i^b(0) | G \mathcal{M}_G \rangle = c_i(0) | G^{aa} \rangle | G \mathcal{M}_G \rangle$$

$$\sigma_i^a(t) | G \mathcal{M}_G \rangle = e^{i(H-E)t} c_i(0) | G^{ab} \rangle | G \mathcal{M}_G \rangle$$

where, $| G^{ab} \rangle$ denote the states with extra π fluxes added to G on the two plaquettes adjoining the bond $(ik)\pi|(lj)\pi\rangle$ and E is the energy eigenvalue of the eigenstate $| G \rangle | G \mathcal{M}_G \rangle$. Since the Z_2 fluxes on each plaquette is a conserved quantity, it is clear that the correlation function in equation (14) which is the overlap of the two states in equations (15) and (16) is zero unless the spins are on neighbouring sites. Namely, we have proved that the dynamical spin-spin correlation has the form,

$$S_{ij}^{ab}(t) = g_{ij}(0) \delta_{a,b}, \quad ij \text{ nearest neighbors}$$

$$= 0 \quad \text{otherwise}$$

Computation of $g_{ij}(0)$ is straightforward in any eigen-state $| G \mathcal{M}_G \rangle$. For the ground state where conserved Z_2 charges are unity at all plaquettes, the equal time 2-spin correlation function for the bond $(ij)a$ is given by the analytic expression:

$$\langle \sigma_i^a \sigma_j^a \rangle \equiv S_{ij}^{aa}(0) = \frac{\sqrt{3}}{16\pi^2} \int_{BZ} \cos \theta(k_1, k_2) dk_1 dk_2$$

Where $\cos \theta(k_1, k_2) = \frac{\epsilon_k}{|E_k|}$, $E_k = \sqrt{(\epsilon_k^2 + \Delta_k^2)}$, in the Brillouin zone. $\epsilon_k = 2(J_x \cos k_1 + J_y \cos k_2 + J_z)$, $\Delta_k = 2(J_x \sin k_1 + J_y \sin k_2)$, $k_1 = k.n_1$, $k_2 = k.n_2$ and $n_{1,2} = \frac{1}{2}e_x \pm \frac{\sqrt{3}}{2}e_y$ are unit vectors along x and y type bonds.

At the point, $J_x = J_y = J_z$, we get $S^{aa}_{ij}(0) = -0.52$.

To compute $g_{ij}(0)$ we substitute for the σ's from equation (7) and (8). We choose a gauge where $u_{(ij)a} = -1$ implying $\chi_{(ij)\pi}^\dagger | G \rangle = \chi_{(ik)\pi}^\dagger | G \rangle = 0$. We note that the above conditions imposed at $t = 0$ will continue to be true at all times since the bond fermion numbers are conserved. We then have,

$$g_{ij}(0) = \langle \mathcal{M}_G | \langle G | ic_i(0) \chi_{(ij)\pi}^\dagger(0) c_j(0) | G \mathcal{M}_G \rangle \rangle$$

The time dependence evolution can be expressed in terms of the hamiltonian and noting it is diagonal in the number operators $\chi^\dagger \chi$, we get,

$$g_{ij}(0) = \langle \mathcal{M}_G | e^{iH[G^{aa}] t} ic_i(0)e^{-iH[G^{aa}] t}(-1)c_j(0) | G \mathcal{M}_G \rangle$$

where $H[G^{aa}]$ is the tight binding hamiltonian in the background of the static gauge field configuration G^{aa}. The (-1) factor is $u_{(ij)a}$. This expression can be written in terms of the time evolution under $H[G]$ as follows,

$$g_{ij}(0) = \langle \mathcal{M}_G | ic_i(0) e^{-2J_a \int_{(ij)a} u_{(ij)a}(\tau) c_j(\tau) d\tau} | G \mathcal{M}_G \rangle$$

The above equation is written in an arbitrary gauge.

We have thus derived a simple but exact expression for the spatial dependence of the two spin dynamical correlation function. We have also obtained an exact expression for the time dependence in terms of the correlation functions of non-interacting Majorana fermions in the background of static Z_2 gauge fields. Equation 20 represents the propagation of a Majorana fermion in the presence of two injected fluxes. It can be treated as an X-ray edge problem and computed in terms of the Toeplitz determinant. We will not do this now but proceed to discuss some general features of our results.

![FIG. 2: Time evolution and fractionization of a spin flip at $t = 0$ at site i, into a π-flux pair and a propagating Majorana fermion. ‘Shakeup’ of the Majorana fermion vacuum to an instantaneous addition at $t = 0$, of a π-flux pair is not shown.](image-url)
evolution of a single ‘spin-flip’ at site i given in equation \(10\). Using the notation introduced in equation \(13\) we have,

\[
\sigma_i^a |\tilde{\Psi}\rangle \equiv iC_i(t)T(e^{2u_{(ik)}a_1 J_a^k c_i(\tau) c_k(\tau) d\tau})\pi_{(ik)} a_1 \pi_{(ik)} a_2 |\tilde{\Psi}\rangle
\]

A spin-flip at site i at time \(t = 0\) is a sudden perturbation to the matter (Majorana fermion) sector, as it adds two static \(\pi\)-fluxes to adjoining plaquettes. The time ordered expression represents how a bond perturbation term, \(i2u_{(ik)}a_1 J_a c_i c_k\) evolves the Majorana fermion state, in ‘interaction representation’. At long time scale the resulting ‘shakeup’ is simple and represents a rearrangement of the Majorana fermion vacuum to added static \(\pi\)-flux pairs. The Majorana fermion, produced by a spin-flip, \(c_i(t)\) propagates freely, as a function of time.

As spin-flip at site i is a composite of a Majorana fermion and \(\pi\)-flux pair (equation 13), two spin correlation function defines the probability that we will detect the added composite at site j after a time t. As the added \(\pi\)-flux pair do not move, the above probability is identically zero, unless sites i and j are nearest neighbors and spin components are \(a = b\). This is why the spatial dependence of two spin correlation functions are sharply cut off at nearest neighbor separation. The asymptotic response to an added \(\pi\)-flux pair and free dynamics of the added Majorana fermion control the long time power law behaviour of our only non vanishing nearest neighbor two spin correlation function.

Further, for a given pair of nearest neighbor sites, only one Ising spin pair of a corresponding component is non-zero. Other pairs and cross correlation functions vanish. More specifically, for a given bond the only non zero two spin correlation function is the bond energy.

What is unusual is that the above result is true in all eigen-states of the Kitaev Model, irrespective of energies. It follows that it is valid for thermal averages too. This is an unusual result, indicating exact fractionalization occurring at all energy scales. In known models such as 1D repulsive Hubbard model or spin half Heisenberg chain, fractionalization is only a low energy asymptotic phenomenon. Our results show the \textit{all energy scale exact confinement} of the spin-flip quanta, and exact \textit{deconfinement} of the Majorana fermions in the Kitaev model.

It is interesting to see that the above is a special property of the Kitaev Model. When we perturb it by adding, for example, a magnetic field term or make bond terms non-Ising, \(\pi\)-fluxes acquire dynamics. This means that the probability amplitude of finding the composite particle intact at a farther site is finite (though exponentially small as a function of separation) and not strictly zero.

Multi spin correlation functions can be calculated in our formalism. Further, quantum entanglement, a key notion in quantum computation and quantum information, is ultimately connected with some complicated multi-spin correlation function. We have computed some entanglement measures, but do not discuss them in the present paper.

To summarise, this paper presents certain exact analytical results for the spin dynamics and a spin-flip fractionization scheme for the Kitaev Model. As this non-trivial spin model is also a model for topological quantum computation, our exact results should provide insights into qubit dynamics and possible ways of generating emergent topological qubits. Our formalism, which uses the factorized character of the eigen-functions in the extended Hilbert space, is easily adapted to the calculation of multi-spin correlation functions, which is a key step in the calculation and understanding of quantum entanglement properties.

Acknowledgement

G.B thanks Ashvin Vishwanath for bringing the Kitaev Model to his attention and tutorials.

[1] M. A. Nielsen and I. L. Chang, \textit{Quantum Computation and Quantum Information} (Cambridge University Press, Cambridge, England 2000); C. H. Bennett and D. P. DiVincenzo, Nature \textbf{404} 247 (2000); J. Preskill, Phys. Today, \textbf{52} 24 (1999); A. Yu. Kitaev, A. H. Shen and M. N. Vyalyi, \textit{Classical and Quantum Computation} (American Mathematical Society, 2002); S. Das Sarma, M. Friedman and C. Nayak, Phys. Today, \textbf{59} 32 (2006).

[2] A.Yu. Kitaev, Ann. Phys., \textbf{303} 2 (2003); \textit{ibid} \textbf{321} 2 (2006); \textit{quant-ph/9707021} and \textit{cond-mat/0506438}

[3] J. Preskill, \textit{quant-ph/9712048}

[4] M. Freedman, M. Larsen and Z. Wang, Comm. Math. Phys., \textbf{227} 605 (2002).

[5] L. M. Duan, E. Demler and M. D. Lukin, Phys. Rev. Lett., \textbf{91} 090402 (2003).

[6] A. Micheli, G. K. Brennen and P. Zoller, Nature Phys., \textbf{2} 347 (2006).

[7] C. Zhang et al., \textit{cond-mat/0609101}

[8] R. Jackiw and C. Rebbi, Phys Rev. D 13 3398(1978), S. Kivelson, J Sethna and P. Rokshar, Phys. Rev. B \textbf{38} 8865 (1978), W. P Su, J. R. Schrieffer and A. J. Heeger, Phys. Rev. Lett. \textbf{42} 1698 (1979), L. D. Faddeev and L. A. Takhtajan, Phys. Lett. A \textbf{85} 375(1981), R. B. Laughlin, Phys. Rev. Lett. \textbf{50}, 1395(1983), P. W. Anderson, Science 235,1196(1987), G. Baskaran and R. Shankar, J. Mod. Phys. Lett B \textbf{2} 1211(1988), V Kalmayer and R. B. Laughlin, Phys. Rev. Lett, \textbf{59} 2095(1987), Senthil, T. Fisher, M. P. A, Phys. Rev B \textbf{62}, 7850-7881(2000).

[9] G. Baskaran, Z. Zou and P. W. Anderson, Solid st. Commun. 63973(87).

[10] B. S. Shastry, Phys. Rev. Lett, \textbf{69} 639(1988).