Interventions for anesthetic success in symptomatic irreversible pulpitis: A network meta-analysis of randomized controlled trials

Gowri Sivaramakrishnan¹, MuneeraAlsobaiei¹, Kannan Sridharan²

¹Dental Training Department, Ministry of Health, Bahrain
²Department of Pharmacology & Therapeutics, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain

Background: Local anesthetics alone or in combination with adjuncts, such as oral medications, have routinely been used for pain control during endodontic treatment. The best clinical choice amongst the vast numbers of agents and techniques available for pain control for irreversible pulpitis is unclear. This network meta-analysis combined the available evidence on agents and techniques for pulpal anesthesia in the maxilla and mandible, in order to identify the best amongst these approaches statistically, as a basis for future clinical trials.

Methods: Randomized trials in MEDLINE, DARE, and COCHRANE databases were screened based on inclusion criteria and data were extracted. Heterogeneity was assessed and odds ratios were used to estimate effects. Inconsistencies between direct and indirect pooled estimates were evaluated by H-statistics. The Grading of Recommendation, Assessment, Development, and Evaluation working group approach was used to assess evidence quality.

Results: Sixty-two studies (nine studies in the maxilla and 53 studies in the mandible) were included in the meta-analysis. Increased mandibular pulpal anesthesia success was observed on premedication with aceclofenac + paracetamol or supplemental 4% articaine buccal infiltration or ibuprofen+paracetamol premedication, all the above mentioned with 2% lignocaine inferior alveolar nerve block (IANB). No significant difference was noted for any of the agents investigated in terms of the success rate of maxillary pulpal anesthesia.

Conclusion: Direct and indirect comparisons indicated that some combinations of IANB with premedication and/or supplemental infiltration had a greater chance of producing successful mandibular pulpal anesthesia. No ideal technique for maxillary anesthesia emerged. Randomized clinical trials with increased sample size may be needed to provide more conclusive data. Our findings suggest that further high-quality studies are required in order to provide definitive direction to clinicians regarding the best agents and techniques to use for mandibular and maxillary anesthesia for irreversible pulpitis.

Keywords: Pain; Pulpitis; Root Canal Therapy.

INTRODUCTION

Pain management is requisite for successful dental treatment. Local anesthetics alone or in combination with other agents are often used during endodontic treatment of irreversible pulpitis [1,2]. Inflammatory mediators in pulpitis provoke pain responses and inflammation and successful anesthesia is achieved in less than 20% of cases under these circumstances [3]. Systematic reviews and meta-analysis have previously compared articaine and lignocaine [4,5], the effect of pre-operative analgesics...
and those of inferior alveolar nerve block (IANB) [6,7], IANB with different agents and techniques [8], and the effect of supplemental infiltration [9]. The diversity of these reviews does not identify any single best agent and technique for the maxilla and mandible, and anesthetic failure has been a recurring concern. Consequently, clinicians have little evidence by which to direct care, and may resort to trial and error. Such inadequate pain control can lead to avoidance of dental care and fear of dental treatment.

Unfortunately, results from different meta-analysis fail to point to the best amongst various tested agents. Lignocaine, which has been commercially available for more than 60 years and is commonly used, has been reported to be more successful when used with supplemental articaine infiltration [10,11]. However, articaine infiltration alone also produced successful anesthesia in individual studies [11-13]. Oral administration of non-steroidal anti-inflammatory drugs (NSAIDs) with lignocaine inferior alveolar block (IANB) has also been shown to improve anesthetic success [6,7]. Although patient-related factors, such as medical conditions, medications for systemic conditions, anatomical factors, and psychological factors, such as fear and anxiety [1-3] play an important role, the agent and the technique that was used successful in the majority of the population should be the first option adopted by clinicians, to produce more predictable results.

In comparison to traditional meta-analysis, network meta-analysis (NMA) may offer improved understanding of the best agents and techniques to use for anesthesia for irreversible pulpitis. The NMA principle is used for direct as well as indirect comparisons between multiple treatments from individual trials, using the common comparator principle [14]. The methodology of NMA provides a means to gain insight into relations and comparisons among randomized controlled trials [14,15]. Hence, we performed an NMA to combine the available evidence on agents and techniques that produce successful pulpal anesthesia in the maxilla and mandible, in order to identify the best amongst these statistically, to form the basis for future clinical trials.

METHODS

1. **Information sources and search strategy**

The protocol for this review was registered with PROSPERO (registration number CRD42017057700). A literature search was conducted in Medline (through PubMed), Cochrane CENTRAL, and Google Scholar databases, up to April 1, 2017. The search strategy used was (((irreversible pulpitis) AND (endodontic (treatment OR therapy) OR root canal OR pulp therapy)) AND pain) AND (local (anesthesia OR anesthesia))). Only studies published in English language were considered. The reference lists from the identified articles were manually screened to identify other eligible studies. Manual searches were also conducted to identify missed studies. Two authors carried out independent search and retrieved appropriate articles.

2. **Eligibility criteria**

The criteria for inclusion were randomized controlled trials conducted in adult patients of any age and sex, with any tooth/teeth diagnosed with symptomatic irreversible pulpitis, based on subjective methods such as a pain scale and/or objective testing, using heat, cold, or electric pulp testing, and requiring endodontic treatment. Studies comparing different local anesthetic agents; techniques of administration; combination of local anesthetics with other orally administered medications, such as analgesics, nitrous oxide, acupuncture, or others were included. Traditional subjective methods of testing success of anesthesia included testing lip numbness, responsiveness of the mucosa to needle sticks, or simply commencing with the treatment and looking for a pain response [12,13]. Although objective methods, such as electric and heat/cold pulp testing are more reliable, they are more commonly used as diagnostic aids [1-4]. The primary outcome in the present meta-analysis was “no” or “mild” pain during endodontic access or canal preparation,
measured using a visual analog scale (VAS), which is also subjective, or objective negative testing, using a pulp tester. This outcome was adopted as this was the primary outcome in the majority of the included studies. Studies conducted in children, pregnant and lactating women, patients with medical conditions, anxious patients on anti-anxiety medications, patients on any other medications interfering with the action of local anesthetics or the drugs administered were excluded.

3. Study procedure and statistical considerations

After a thorough literature search by both investigators independently, a pre-tested data extraction form was created and the following data were extracted from each eligible study: trial site, year, trial methods, participants, interventions, and outcomes. Disagreement between the investigators was resolved through discussion to consensus. The present review and NMA is presented as per the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines [16]. Risk-of-bias of the included randomized trials was assessed using the Cochrane risk-of-bias tool [17]. Heterogeneity between directly compared studies was assessed using Chi-square and I² tests. The inverse variance heterogeneity model was used, as it does not require any assumptions and is more robust than the random-effects model for both direct and indirect comparisons. Direct comparison estimates were derived by pooling the data from studies that compared the same intervention. Indirect comparison pooled estimates were derived by pooling the data between the studies through a common comparator. The entire NMA was carried out using MetaXL. Odds ratios and 95% confidence intervals were used to estimate effects, as the outcome is a categorical variable. Inconsistencies between the direct and indirect pooled estimates were evaluated by H-statistics, wherein a value of < 3 was considered as minimal, 3–6 as modest, and > 6 as gross inconsistency. The Gradings of Recommendation, Assessment, Development and Evaluation (GRADE) working group approach was used to assess the quality of evidence [17].

RESULTS

1. Search results

Sixty-two studies were considered for inclusion [18-79]; 53 studies involving 4465 patients investigated the mandible [18-70], eight studies involving 442 patients investigated the maxilla [71-78], and one study [79] involving 51 patients included both maxillary and mandibular teeth. One study [48] was excluded because of disconnected network (the treatments included in this study [48] did not form a connected network, such that there was a path from each treatment to every other treatment within the whole network), and hence 61 studies were included in the final meta-analysis. The detailed search results are presented in Figure 1. Key characteristics of the included studies are represented in Table 1. Risk-of-bias assessment demonstrated low risk in all domains for most of the studies (Fig. 2).

2. Direct comparison: Pooled results for mandibular anesthetic techniques

The pooled estimates (odds ratio) for comparison of different anesthetic techniques with 2% lignocaine IANB in the mandible are presented in Figure 3. The estimates are arranged in a forest plot from the top to bottom in decreasing order of outcome success. Increased likelihood of success was observed with

- pre-medication with aceclofenac + paracetamol (odds ratio: 2.09 [95% confidence interval, CI: 0.99, 4.42]) before administering 2% lignocaine IANB
- 2% lignocaine IANB + 4% articaine buccal infiltration (BI) (2.36 [1.38, 4.03])

Other significant interventions that performed better than 2% lignocaine IANB alone include: 2% lignocaine Gow–Gates IANB (2.43 [1.10, 5.34]); mannitol + 2% lignocaine IANB (2.47 [1.08, 5.61]); 2% lignocaine IANB + BI + lingual infiltration (LI) (2.55 [1.12, 5.84]); etodolac + paracetamol before 2% lignocaine IANB (2.57 [1.14, 5.80]); nitrous oxide with 2% lignocaine IANB (2.57 [1.12, 5.90]).

Other significant interventions that performed better than 2% lignocaine IANB alone include:

- pre-medication with aceclofenac + paracetamol (odds ratio: 2.09 [95% confidence interval, CI: 0.99, 4.42]) before administering 2% lignocaine IANB
- 2% lignocaine IANB + 4% articaine buccal infiltration (BI) (2.36 [1.38, 4.03])

Other significant interventions that performed better than 2% lignocaine IANB alone include: 2% lignocaine Gow–Gates IANB (2.43 [1.10, 5.34]); mannitol + 2% lignocaine IANB (2.47 [1.08, 5.61]); 2% lignocaine IANB + BI + lingual infiltration (LI) (2.55 [1.12, 5.84]); etodolac + paracetamol before 2% lignocaine IANB (2.57 [1.14, 5.80]); nitrous oxide with 2% lignocaine IANB (2.57 [1.12, 5.90]). Other interventions (Fig. 3) also showed significant pooled
estimates; however, they were considered less precise due to their wider confidence intervals.

3. Indirect comparison: Pooled results for mandibular anesthetic techniques

The indirect comparison pooled estimates were derived using common comparator principle and are shown in Figure 4. The chances of increased success of anesthesia were observed with:

- pre-medication with ibuprofen + paracetamol before 2% lignocaine IANB (2.1 [1.02, 4.33])
- pre-medication with aceclofenac + paracetamol (2.23 [1.06, 4.72]) before 2% lignocaine IANB

Other interventions that performed better than 2%
Table 1. Key characteristics of included studies

Study NO	First author, year [reference]	Sample size/patient	Area of anesthesia	Symptomatic/Asymptomatic	Intervention	Comparator	Anesthetic agent used	Definition for anesthetic success
1	Click V, 2015 [18]	98	Mandibular molar or premolar	Symptomatic	60 patients received Gow–Gates and BNB	38 patients received Akinosi Vazirani and BNB	2% lignocaine with 1:100 000 epinephrine	access and instrument the tooth with no or mild pain, using VAS scale
2	Aggarwal, 2010 [19]	76	Mandibular molar	Symptomatic	27 patients received Gow–Gates, 25 received Vazirani-Akinosi	24 patients received IANB	4% articaine with 1:100 000 epinephrine	No pain or weak/mild pain during access and instrumentation, using VAS scale
3	Matthews, 2009 [20]	78	Mandibular molar or premolar	Symptomatic	55 patients received IAN and long buccal and supplemental BI	23 patients received IANB and long buccal	2% lignocaine with 1:100 000 epinephrine	No pain or weak/mild pain during access and instrumentation, using VAS scale
4	Aggarwal, 2011 [21]	98	Mandibular molar	Symptomatic	24 patients supplemental BI 4% articaine with 1:100 000 epinephrine, 26 patients with 1 mL/30 mg of ketorolac tromethamine, 24 patients with 1 mL/4 mg of dexamethasone	24 patients did not receive any supplemental infiltrations	24 patients received IANB with 2% lignocaine with 1:200 000 epinephrine	No pain or weak/mild pain during access and instrumentation using VAS scale
5	Razavian, 2013 [22]	40	Mandibular posterior tooth	Symptomatic	20 patients received X tip IO injection	20 patients received IANB	2% lignocaine with 1:100 000 epinephrine	No pain or weak/mild pain during access and instrumentation, using VAS scale
6	Webster, 2016 [23]	175	Mandibular molar or premolar	Symptomatic	75 patients received conventional IANB and intraosseal 1.4 mL 4% articaine with 1:100 000 epinephrine	100 patients received IANB	2% lignocaine with 1:100 000 epinephrine	No pain or weak/mild pain during access and instrumentation, using VAS scale
7	Reisman, 1997 [24]	86	Mandibular molar or premolar	Symptomatic	42 patients received IANB and IO of 1.8 ml of 3% mepivacaine	44 patients received IANB	2% lignocaine with 1:100 000 epinephrine	No pain or weak/mild pain during access and instrumentation, using VAS scale
8	Parirokh, 2014 [25]	69	Mandibular molar	Mentioned as asymptomatic but included patients with prolonged response to cold test. Hence considered symptomatic	33 patients received IANB followed by BI and intraligamentary	36 patients received IANB	2% lignocaine with 1:80 000 epinephrine	No pain or weak/mild pain during access and instrumentation, using VAS scale
9	Aggarwal, 2009 [26]	87	Mandibular molar	Symptomatic	62 patients received IANB, 31 patients received supplemental infiltrations of 2% articaine with 1:200 000 epinephrine, and 31 patients received infiltrations of 2% lignocaine with 1:200 000 epinephrine	25 patients received IANB	2% lignocaine with 1:200 000 epinephrine	No pain or weak/mild pain during access and instrumentation, using VAS scale
10	Parirokh, 2010 [27]	82	Mandibular molar	Symptomatic	55 patients received IANB and BI of 4% articaine with epinephrine 1:100 000	27 patients received IANB	2% lignocaine with 1:100 000 epinephrine	No pain or weak/mild pain during access and instrumentation, using VAS scale
11	Kanaa, 2012 [28]	100	Mandibular molar or premolar	Symptomatic	25 patients received IANB and BI of 4% articaine with epinephrine 1:100 000, 25 patients received IANB with periodontal ligament infiltration, 25 patients received IANB with IO	25 patients received IANB	2.0 mL of 2% lignocaine with 1:80,000 epinephrine	No response to the maximum stimulation (reading of 80) with the pulp tester
Study	Year	Study Type	Study Design	Patient Characteristics	Treatment Details	Outcome	Pain Description	
-------	------	------------	--------------	-------------------------	------------------	---------	-----------------	
12	2014	Mandibular	Symptomatic	63 patients received IANB 2% lignocaine with 1:80 000 epinephrine	32 patients received IANB 2% lignocaine with 1:200 000 epinephrine	Lignocaine	Pulp access and canal instrumentation into the apical third with no or mild pain	
13	2016	Mandibular	Symptomatic	50 patients received nitrous oxide/oxygen 6 L/min flow rate of 100% oxygen and IANB	50 patients received nitrous oxide/oxygen 6 L/min flow rate of 100% oxygen and IANB	3.6 ml of 2% lidocaine with 1:100 000 epinephrine	No pain or weak/mild pain during access and instrumentation, using VAS scale	
14	2012	Mandibular	Symptomatic	50 patients received Lignocaine with epinephrine	50 patients received Lignocaine with epinephrine	3.6 ml of 2% lidocaine with 1:100 000 epinephrine	No pain or weak/mild pain during access and instrumentation, using VAS scale	
15	2015	Mandibular	Symptomatic	50 patients received room air/oxygen and IANB	50 patients received room air/oxygen and IANB	1:80 000 epinephrine	No pain or weak/mild pain during access and instrumentation, using VAS scale	
16	2015	Mandibular	Symptomatic	50 patients received 1 mL distilled water (placebo) and IANB	50 patients received 1 mL distilled water (placebo) and IANB	1:80 000 epinephrine	No pain or weak/mild pain during access and instrumentation, using VAS scale	
17	2012	Mandibular	Symptomatic	50 patients received 5 mL, 63.6 mg of lignocaine with 31.9 mg epinephrine plus 1.82 mL of 0.5 mol/mL mannitol or 3 mL containing 76.4 mg of lignocaine with 3 mg epinephrine plus 1.1 mL of 0.5 mol/mL mannitol	50 patients received the same without mannitol	Lignocaine with epinephrine	No pain or weak/mild pain during access and instrumentation, using VAS scale	
18	2015	Mandibular	Symptomatic	50 patients received IANB buffered with 0.18 meq/mL sodium bicarbonate	50 patients received IANB	4% lignocaine with 1:100 000 epinephrine	No pain or weak/mild pain during access and instrumentation using VAS scale	
19	2016	Mandibular	Symptomatic	50 patients received standard IANB and BI with sodium bicarbonate	50 patients received IANB	2% lignocaine with 1:80 000 epinephrine	No pain or weak/mild pain during access and instrumentation, using VAS scale	
20	2015	Mandibular	Symptomatic	40 patients received 0.18 mL 8.4% sodium bicarbonate (8.4% weight/volume, 50 mEq/50 mL buffered IANB	40 patients received 0.18 mL of sterile distilled water with IANB	2% lidocaine with 1:80 000 epinephrine	No pain or weak/mild pain during access and instrumentation, using VAS scale	
21	2013	Mandibular	Symptomatic	40 patients received IANB and BI of 0.3 mL of 4% articaine with 1:100 000 epinephrine	40 patients received IANB and BI of 0.9 mL of 4% articaine with 1:100 000 epinephrine	2% lignocaine containing 1:100 000 epinephrine	No pain or weak/mild pain during access and instrumentation, using VAS scale	
22	2013	Mandibular	Mentioned as asymptomatic but included patients with prolonged response to cold test. Hence considered symptomatic	55 patients received 0.5 mg diclofenac and 55 patients received 400 mg ibuprofen and IANB	55 patients received placebo of lactose powder and IANB and BI	2% lignocaine containing 1:80000 epinephrine	No pain or weak/mild pain during access and instrumentation, using VAS scale	
23	2016	Mandibular	Symptomatic	23 patients received 7.5 mg of meloxicam; 23 patients received 600 mg of ibuprofen and IANB	23 patients received placebo and IANB	2% lignocaine and 1:100 000 epinephrine	No pain or weak/mild pain during access and instrumentation, using VAS scale	
Authors	Year	Type	Anesthesia	Management	Pain Scale			
---------	------	------	-------------	-------------	------------			
Aggarwal, 2010 [41]	69	Mandibular molar	Symptomatic	22 patients received 300 mg of ibuprofen, 23 patients received 10 mg of ketorolac and IANB	No pain or weak/mild pain during access and instrumentation, using VAS scale			
Jena, 2013 [42]	100	Mandibular posterior teeth	Symptomatic	20 patients received ibuprofen (800 mg), 20 patients ketorolac (10 mg), 20 patients combination of etidocaine with paracetamol (400 mg + 500 mg) and 20 patients combination of acetoclan with paracetamol (100 mg + 500 mg) and IANB	No pain or weak/mild pain during access and instrumentation, using VAS scale			
Perkinh, 2010 [43]	150	Mandibular first and second molar	Symptomatic	50 patients received 500 mg ibuprofen and 60 patients received 75 mg indomethacin and IANB	No pain or weak/mild pain during access and instrumentation, using VAS scale			
Simpson, 2011 [44]	100	Mandibular molar or premolar	Symptomatic	50 patients received either 800 mg ibuprofen or 1000 mg acetaminophen and IANB and BI	No pain or weak/mild pain during access and instrumentation, using VAS scale			
Fullmer, 2014 [45]	100	Mandibular molar or premolar	Symptomatic	50 patients received 1000 mg acetaminophen plus 10 mg hydrocodone and IANB	No pain or weak/mild pain during access and instrumentation, using VAS scale			
Ianiro, 2009 [46]	40	Mandibular molar	Symptomatic	14 patients received 1,000 mg of acetaminophen only, 13 patients received a combination of 1,000 mg of acetaminophen and 600 mg of ibuprofen and IANB	No pain or weak/mild pain during access and instrumentation, using VAS scale			
Lindemann, 2008 [47]	58	Mandibular molar or premolar	Symptomatic	30 patients received sublingual triazolam 0.25 mg	No pain or weak/mild pain during access and instrumentation using VAS scale			
Bigby, 2007 [48]	50	Mandibular posterior teeth	Symptomatic	25 patients received 36 mg meperidine and IANB	No pain or weak/mild pain during access and instrumentation using VAS scale			
Akhlagi, 2016 [49]	40	Mandibular molar	Symptomatic	20 received IANB and BI of 0.9 mL articaine. After 5 minutes, 20 patients received supplemental BI of 30 mg/mL ketorolac tromethamine	No pain or weak/mild pain during access and instrumentation, using VAS scale			
Yadav, 2015 [50]	150	Mandibular first and/or second molar	Symptomatic	75 patients received standard IANB using 1.8 mL 4% articaine with 1:100 000 epinephrine	No pain or weak/mild pain during access and instrumentation using VAS scale			
Saha, 2016 [51]	126	Mandibular posterior teeth	Symptomatic	Oral 10 mg ketorolac or 50 mg diclofenac, 84 patients received standard IANB	No pain or weak/mild pain during access and instrumentation, using VAS scale			
Khaledi, 2012 [52]	60	Mandibular molar	Symptomatic	20 patients received 0.5 mg of alprazolam and IANB	No pain or weak/mild pain during access and instrumentation, using VAS scale			
Pedro-Munoz, 2016 [53]	42	Mandibular molar	Symptomatic	21 received submucosal 50 mg tramadol and IANB	No pain or weak/mild pain during access and instrumentation, using VAS scale			
Rodriguez Wong, 2016 [54]	56	Mandibular molar	Symptomatic	28 patients received IANB with tramadol 50 mg	No pain or weak/mild pain during access and instrumentation, using VAS scale			

http://www.jdapm.org 329
Page	Prasanna, 2011 [55]	38	Mandibular molar	Symptomatic	38 patients received Oral diclofenac and 38 received lornoxicam and IANB	38 patients received placebo and IANB	2% lignocaine epinephrine	No pain or weak/mild pain during access and instrumentation, using VAS scale
39	Sood, 2014 [56]	100	Mandibular molar	Symptomatic	50 patients received 4% Articaine with 1:100 000 epinephrine	50 patients received 2% lignocaine with 1:80,000 epinephrine	Articaine and lignocaine IANB	No pain or weak/mild pain during access and instrumentation, using VAS scale
40	Fortamano,2009 [57]	40	Mandibular molar	Symptomatic	20 patients received IANB of 4% articaine with 1:100 000 epinephrine	20 patients received IANB of 2% lignocaine with 1:100 000 epinephrine	Articaine and lignocaine IANB	No pain or weak/mild pain during access and instrumentation, using VAS scale
41	Claffey, 2004 [58]	72	Mandibular molar or premolar	Symptomatic	37 patients received 4% articaine with 1:100 000 epinephrine IANB	35 patients received 2% lignocaine with 1:100 000 epinephrine	Articaine and lignocaine IANB	No pain or weak/mild pain during access and instrumentation, using VAS scale
42	Allegretti, 2016 [59]	66	Mandibular molar	Symptomatic	37 patients received 4% articaine with 1:100 000 epinephrine IANB	35 patients received 2% lignocaine with 1:100 000 epinephrine	Articaine and lignocaine IANB	No pain or weak/mild pain during access and instrumentation, using VAS scale
43	Ahmad, 2014 [60]	45	Mandibular molar	Symptomatic	15 patients received 2% lignocaine with 1:80,000 epinephrine	15 patients received 4% Articaine with 1:100000 epinephrine	Articaine or lignocaine IANB	Ability to access the pulp chamber without the patient reporting pain
44	Poom, 2011 [61]	156	Mandibular molar	Symptomatic	52 patients received IANB with 4% articaine with 1:100 000 epinephrine	52 patients received IANB with 2% lignocaine with 1:20000 epinephrine	Articaine and lignocaine	No pain or weak/mild pain during access and instrumentation, using VAS scale
45	Sherman, 2008 [62]	40	Mandibular molar	Symptomatic	20 patients received 1.7 mL of articaine by a Gow-Gates block or maxillary infiltration	20 patients received 1.8 mL of lignocaine by Gow-Gates block or maxillary infiltration	Articaine or lignocaine	No pain or weak/mild pain during access and instrumentation, using VAS scale
46	Rogers, 2014 [63]	100	Mandibular molar	Symptomatic	74 patients received IANB and supplemental BI using articaine or lignocaine	28 patients received IANB	4% articaine with 1:100 000 epinephrine	No pain or weak/mild pain during access and instrumentation, using VAS scale
47	Monteiro, 2014 [64]	50	Mandibular molar	Symptomatic	30 patients received IANB and BI of 4% articaine with 1:100 000 epinephrine	20 patients received IANB	2% lignocaine with 1:100 000 epinephrine	Ability to access and instrument the tooth with no pain or no more than mild pain
48	Bigby, 2006 [65]	49	Mandibular molar	Symptomatic	39 patients received IANB and lingual buccal injections	10 patients received IANB	4% articaine with 1:100 000 epinephrine	No or mild pain upon endodontic pain or initial instrumentation
49	Fan, 2009 [66]	80	Mandibular molar	Symptomatic	30 IANB and additional BI	30 IANB and additional PDl injections	4% articaine with 2% lignocaine	No pain or weak/mild pain during access and instrumentation using VAS scale
50	Vitortu, 2016 [67]	43	Mandibular molar	Symptomatic	21 patients received IANB 2% mepivacaine	22 patients received IANB 2% lignocaine	Mepivacaine and lignocaine	Accessed the pulp chamber without the patient reporting pain
51	Sampaio, 2012 [68]	70	Mandibular molar	Symptomatic	35 patients received 0.5% bupivacaine with 1:200 000 epinephrine	35 patients received 2% lignocaine with 1:100 000 epinephrine	Bupivacaine and lignocaine	Accessed the pulp chamber without the patient reporting pain
52	Singla, 2015 [69]	147	Mandibular molar	Symptomatic	73 patients received standard IANB and 1.8 ML BI	74 patients received standard IANB and 3.6 ML BI	4% articaine with 1:100 000 epinephrine	No pain or weak/mild pain during access and instrumentation, using VAS scale
Study of both maxillary and mandibular teeth								
--	--	---						
1. Nusstein, 1998 [79]	**51**	Mandibular or maxillary molar or premolar	Symptomatic	26 patients received IANB or BI in addition to IO	25 patients received conventional IANB or BI	2% lignocaine with 1:100 000 epinephrine	No pain or weak/mild pain during access and instrumentation using VAS scale	

IANB—inferior alveolar nerve block; BNB—buccal nerve block; BI—buccal infiltration; LI—lingual infiltration; VAS—visual analog scale; IO—intra-osseous; PSA—posterior superior alveolar

Lignocaine IANBalone were 2% lignocaine Gow–Gates IANB (2.43 [1.10, 5.34]); mannitol with 2% lignocaine IANB (2.47 [1.08, 5.61]); 4% articaine BI with 2% lignocaine IANB (2.54 [1.49, 4.32]); nitrous oxide with CIANB (2.57 [1.12, 5.9]). The estimates of other interventions are presented in Figure 4. Although significant, they were considered less precise given their wider confidence intervals. Mild inconsistencies were observed for the pooled estimates between direct and indirect comparisons, with H values ranging between 1 and 1.5. Similarly, mild-to-moderate heterogeneity was observed.

4. Indirect comparison: Pooled results for maxillary anesthetic techniques

The indirect pooled estimates for the following interventions in comparison with 2% lignocaine BI in the maxilla is shown in Figure 5: adjuvant intra-osseous 2% lignocaine; and 4% articaine BI and adjuvant fentanyl. No significant difference in the success rate of maxillary
anesthesia was observed with any of the above-mentioned approaches. Direct comparison was not attempted because of the small number of available studies. Mild to moderate heterogeneity was observed between direct and indirect comparisons using H-statistics and I² tests. This indicated that the results obtained were dependable.

5. Grading the evidence

Grading of the evidence for key comparisons was carried out based on the assessment of indirectness, inconsistency, publication bias, and imprecision of the estimates. Very low quality of evidence was observed due to serious limitations in the precision of the estimates and because publication bias could not be assessed (Table 2).

DISCUSSION

This NMA attempted to identify the best agent and technique for successful local anesthesia in the maxilla and mandible in adult patients with symptomatic irreversible pulpitis undergoing endodontic treatment. The results indicated that premedication with ibuprofen + paracetamol, or aceclofenac + paracetamol before IANB, or 2% lignocaine IANB + 4% articaine BI, produced the most successful anesthesia in the mandible. No significant difference in the success rate of maxillary anesthesia was noted with the approaches tested due to the low number of available studies.

Reports indicate that the most commonly used, conventional lignocaine IANB failed at a rate of 15–50% [13]. The most common cause of failure was poor injection technique, followed by technical errors and anatomical variability, infection and inflammation, pathological processes, and psychological causes, such as fear, apprehension, or anxiety [1,13].

Although Gow–Gates and Akinosi–Vazirani techniques showed varied anesthetic success compared with IANB in previous studies [80-82], results from the present meta-analysis showed that the Gow–Gates approach performed better than the Akinosi technique or conventional IANB. This variability can be attributed to the experience of the dentist administering the nerve block. Most dentists do not adopt this technique due to inadequate training and experience [81]. Overall, the Gow–Gates technique has been proven to have a higher likelihood of success in patients with varied anatomy, when performed by a skilled dentist. A recent study also reported increased success with a combination of the Gow–Gates technique and conventional IANB [83]. Results from previous randomized trials did not indicate significant differences in pain during injection using these techniques [83]. Other reported advantages of the adjuvant techniques, such as the Gow–Gates and Akinosi techniques, include a lower incidence of positive aspiration and decreased problems related to accessory innervation [80-83].

The use of supplemental buccal, lingual, intraosseous, and intraligamentary infiltrations as a means to deal with collateral nerve supply have also been tested in various
Anesthesia in irreversible pulpitis

Fig. 3. Forest plot for direct comparison of treatments in the mandible

randomized controlled trials, and results from pooled estimates indicate higher success [84]. Pooled results from the present review also indicate that supplemental infiltration produced better success rates. Specifically, the most successful anesthesia was produced with supplemental 4% articaine BI, followed by 2% lignocaine BI.
Fig. 4. Forest plot for indirect comparison of treatments in the mandible and LI in the mandible. Infiltration alone has been recommended in the anterior mandibular region because of the particular disadvantages of bilateral administration of blocks [84-87]. There is a paucity of data from
randomized controlled trials on the use of infiltration alone in the anterior mandible. Most dentists consider supplemental infiltration as a means to manage the collateral nerve supply, as well as in cases of block failure, according to the studies included in the present review [21,22,32].

The commonly tested agents in the studies were articaine and lignocaine. Other agents, such as bupivacaine and mepivacaine, were tested in very few trials. Results from previous studies did not show significant differences between articaine and lignocaine IANB alone [4,5], although supplemental articaine infiltration was shown to produce significant success [4,5]. Similar results were obtained in the present NMA, probably because most trials concentrated on articaine and lignocaine only. The safety profile of these drugs was reported to be similar, although articaine caused greater injection pain scores [4,5]. Other local anesthetic agents need to be studied in detail in randomized controlled trials to warrant any conclusion.

A meta-analysis on the success of IANB for teeth with irreversible pulpititis concluded that premedication with NSAIDs before IANB increased the efficacy of anesthesia [7]. Results from the present NMA specifically indicate

Fig. 5. Forest plot for indirect comparison of treatments in the maxilla

Table 2. Grading the quality of evidence for key comparisons using 2% lignocaine IANB for the success of anesthesia

Outcomes	Illustrative comparative risks	Odds ratio (95% confidence intervals)	Quality of the evidence (GRADE)
Premedication with combined ibuprofen and paracetamol	348 per 1000 522 per 1000 (328 to 685)	2.1 [1.02, 4.33]	⬠ ⬠ ⬠ ⬠ (very low: 2, 3, 4)
2% lignocaine Gow–Gates	348 per 1000 564 per 1000 (383 to 743)	2.43 [1.1, 5.34]	⬠ ⬠ ⬠ ⬠ (very low: 2, 3, 4)
Premedication with paracetamol	348 per 1000 580 per 1000 (332 to 752)	2.5 [1.03, 6.05]	⬠ ⬠ ⬠ ⬠ (very low: 2, 3, 4)
Adjuvant 4% articaine BI	348 per 1000 581 per 1000 (432 to 683)	2.54 [1.49, 4.32]	⬠ ⬠ ⬠ ⬠ (very low: 2, 3, 4)
Adjuvant 2% lignocaine BI and 2% lignocaine LI	348 per 1000 639 per 1000 (464 to 754)	3.12 [1.6, 6.08]	⬠ ⬠ ⬠ ⬠ (very low: 2, 3, 4)
Premedication with ibuprofen	348 per 1000 634 per 1000 (460 to 808)	3.46 [1.57, 7.66]	⬠ ⬠ ⬠ ⬠ (very low: 2, 3, 4)
Premedication with ketorolac	348 per 1000 710 per 1000 (459 to 905)	5.21 [1.56, 17.43]	⬠ ⬠ ⬠ ⬠ (very low: 2, 3, 4)

1—Assumed risk was the median control group risk across the studies
2—Downgraded one level as publication bias could not be assessed
3—Downgraded one level for imprecision of the estimates, as evident by the wider confidence intervals
4—Downgraded one level for low sample size

Very low quality: Marked uncertain about the estimate.
that the combination of ibuprofen + paracetamol and aceclofenac + paracetamol premedication before IANB produced the most successful anesthesia, as compared to the injection techniques alone. Other drugs that were used alone or in combination were piroxicam, naproxen, diclofenac, steroids, and benzodiazepines, prescribed 1 hour before the block. However, premedication with drugs has been tested mainly before IANB, and not in combination with any other techniques. The effect of premedication using oral drugs as a supplemental technique for pain control in irreversible pulpitis requires further investigation.

Most of the studies in the review used infiltration with or without an intraosseous injection technique. No conclusive evidence is available from the present review, mainly due to the limited number of available studies. Individual study results indicated that dentists preferred infiltration techniques in the maxilla, due to the cancellous nature of the bone, covered by a thin cortical plate, which allows easier penetration of the anesthetic solution. Furthermore, maxillary blocks were technique-sensitive [86]. This is probably the reason for fewer available clinical trials on block anesthesia in the maxilla [86]. There is a need for future studies on different anesthetic agents and techniques to allow a firm conclusion to be drawn.

The study was limited by the small sample sizes in the included studies for evaluation of each of the interventions tested, which is evident from the wider confidence intervals. Increased sample sizes in the individual trials would likely narrow the confidence interval and provide a more compelling conclusion. This NMA suggested that future clinical trials should make a strong effort to increase sample size. Given the quality of evidence and the limitations of the individual studies, the pooled data obtained via NMA does not provide confident, conclusive guidance for clinicians. Although the literature indicates that the efficacy of anesthesia differs between symptomatic and asymptomatic pulpitis [87], this was not tested in the present review. All included trials addressed symptomatic pulpitis cases only.

Publication bias could not be assessed, and other variables, such as psychological profile and characteristics of healthcare facilities, which may impact the outcome measures, were not considered.

In conclusion, the use of premedication with ibuprofen and paracetamol, or aceclofenac and paracetamol, prior to conventional 2% lignocaine IANB, or supplemental 4% articaine BI may produce the most successful anesthesia for mandibular teeth with irreversible pulpitis. This meta-analysis could not identify the most favorable technique in the maxilla, because of limited number of available studies. NMA is a powerful tool that can help to identify the best possible technique by using mixed treatment comparisons in cases of limited clinical trials. This NMA suggested that IANB with lignocaine alone may be unlikely to produce effective anesthesia in symptomatic irreversible pulpitis in the mandible, and that supplemental injections or premedication may improve the anesthetic success. Future randomized control trials should focus on the overall quality of the study, with larger sample sizes, which will more likely produce definitive conclusions.

AUTHOR ORCIDs

Gowri Sivaramakrishnan: https://orcid.org/0000-0002-5877-205X
Kannan Sridharan: https://orcid.org/0000-0003-3811-6503

AUTHOR CONTRIBUTIONS

Gowri Sivaramakrishnan: Conceptualization, Data curation, Formal analysis, Funding acquisition, Investigation, Methodology
Project administration, Resources, Software, Supervision, Validation, Visualization, Writing - original draft, Writing - review & editing
Muneera Alsobaiei: Conceptualization, Data curation, Formal analysis, Methodology, Resources, Supervision, Visualization
Kannan Sridharan: Conceptualization, Data curation, Software, Supervision, Writing - original draft, Writing - review & editing

CONFLICT OF INTEREST: None declared.

FUNDING: This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
REFERENCES

1. Boyce RA, Kirpalani T, Mohan N. Updates of topical and local anesthesia agents. Dent Clin North Am 2016: 445-71.
2. Thomas R. How pain is controlled in endodontic therapy. SAAD Dig 2015; 31: 32-7.
3. Virdee SS, Bhakta S, Seymour D. Effective anesthesia of the acutely inflamed pulp: part 2. Clinical strategies. Br Dent J 2015; 219: 439-45.
4. Kung J, McDonagh M, Sedgley CM. Does articaine provide an advantage over lignocaine in patients with symptomatic irreversible pulpitis? a systematic review and meta-analysis. J Endod 2015; 41: 1784-94.
5. Su N, Li C, Wang H, Shen J, Liu W, Kou L. Efficacy and safety of articaine versus lignocaine for irreversible pulpitis treatment: A systematic review and meta-analysis of randomised controlled trials. Aust Endod J 2016; 42: 4-15.
6. Shirvani A, Shamszadeh S, Eghbal MJ, Marvasti LA, Asgary S. Effect of preoperative oral analgesics on pulpal anesthesia in patients with irreversible pulpitis: a systematic review and meta-analysis. Clin Oral Investig 2017; 21: 43-52.
7. Li C, Yang X, Ma X, Li I, Shi Z. Preoperative oral non-steroidal anti-inflammatory drugs for the success of the IANB in irreversible pulpitis treatment: a systematic review and meta-analysis based on randomized controlled trials. Quintessence Int 2012; 43: 209-19.
8. Corbella S, Taschieri S, Mannocci F, Rosen E, Tsesis I, Del Fabbro M. Inferior alveolar nerve block for the treatment of teeth presenting with irreversible pulpitis: a systematic review of the literature and meta-analysis. Quintessence Int 2017; 48: 69-82.
9. Yadav S. Anesthetic success of supplemental infiltration in mandibular molars with irreversible pulpitis: A systematic review. J Conserv Dent 2015; 18: 182-6.
10. Brandt RG, Anderson PF, McDonald NJ, Sohn W, Peters MC. The pulpal anesthetic efficacy of articaine versus lidocaine in dentistry: a meta-analysis. J Am Dent Assoc 2011; 142: 493-504.
11. Kung J, McDonagh M, Sedgley CM. Does articaine provide an advantage over lidocaine in patients with symptomatic irreversible pulpitis? a systematic review and meta-analysis. J Endod 2015; 41: 1784-94.
12. Bahcall J, Ashrafi S, Xie Q. The importance of obtaining a pulpal and periradicular diagnosis prior to restorative treatment. Compend Contin Educ Dent 2019; 40: 27-31.
13. St George G, Morgan A, Meechan J, Moles DR, Needleman I, Ng YL et al. Injectable local anesthetic agents for dental anesthesia. Cochrane Database Syst Rev 2018; 7: DC006487.
14. Li T, Puhan MA, Vedula SS, Singh S, Dickens K. The Adhoc network meta-analysis methods meeting working group. BMC Med 2011; 9: 79.
15. Greco T, Biondi-Zoccai G, Saleh O, Pasin L, Cabrini L, Zanirillo A, et al. The attractiveness of network meta-analysis: a comprehensive systematic and narrative review. Heart Lung Vessel 2015; 7: 133-42.
16. Moher D, Liberati A, Tetzlaff J, Altman DG; The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009; 6: e1000097.
17. Higgins JPT, Green S (editors). Cochrane handbook for systematic reviews of interventions. 5.1.0 edition. Available from www.cochrane-handbook.org (last accessed on 09 Feb 2017).
18. Click V, Drum M, Reader A, Nusstein J, Beck M. Evaluation of the Gow-Gates and Vazirani-Akinosi techniques in patients with symptomatic irreversible pulpitis: a prospective randomized study. J Endod 2015; 41: 16-21.
19. Aggarwal V, Singla M, Kabi D. Comparative evaluation of anesthetic efficacy of Gow-Gates mandibular condyle anesthesia, Vazirani-Akinosi technique, buccal-plus-LIs, and conventional inferior alveolar nerve anesthesia in patients with irreversible pulpitis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010; 109: 303-8.
20. Matthews R, Drum M, Reader A, Nusstein J, Beck M. Articaine for supplemental buccal mandibular infiltration anesthesia in patients with irreversible pulpitis when the inferior alveolar nerve block fails. J Endod 2009; 35: 343-6.
21. Aggarwal V, Singla M, Rizvi A, Miglani S. Comparative
evaluation of local infiltration of articaine, articaine plus ketorolac, and dexamethasone on anesthetic efficacy of inferior alveolar nerve block with lignocaine in patients with irreversible pulpitis. J Endod 2011; 37: 445-9.

22. Razavian H, Kazemi S, Khazaei S, Jahromi MZ. X-tip intraosseous injection system as a primary anesthesia for irreversible pulpitis of posterior mandibular teeth: A randomized clinical trial. Dent Res J (Isfahan) 2013; 10: 210-3.

23. Webster S Jr, Drum M, Reader A, Fowler S, Nusstein J, Beck M. How effective is supplemental intraseptal anesthesia in patients with symptomatic irreversible pulpitis? J Endod 2016; 42: 1453-57.

24. Reisman D, Reader A, Nist R, Beck M, Weaver J. Anesthetic efficacy of the supplemental intraosseous injection of 3% mepivacaine in irreversible pulpitis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1997; 84: 676-82.

25. Parirokh M, Sadr S, Nakhaee N, Abbott PV, Askarifard S. Efficacy of supplementary buccal infiltrations and intraligamentary injections to inferior alveolar nerve blocks in mandibular first molars with asymptomatic irreversible pulpitis: a randomized controlled trial. Int Endod J 2014; 47: 926-33.

26. Aggarwal V, Jain A, Kabi D. Anesthetic efficacy of supplemental buccal and lingual infiltrations of articaine and lignocaine after an inferior alveolar nerve block in patients with irreversible pulpitis. J Endod 2009; 35: 925-29.

27. Parirokh M, Satvati SA, Sharifi R, Rekabi AR, Gorjestani H, Nakhaee N, et al. Efficacy of combining a buccal infiltration with an inferior alveolar nerve block for mandibular molars with irreversible pulpitis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010; 109: 468-73.

28. Kanaa MD, Whitworth JM, Meechan JG. A prospective randomized trial of different supplementary local anesthetic techniques after failure of inferior alveolar nerve block in patients with irreversible pulpitis in mandibular teeth. J Endod 2012; 38: 421-5.

29. Aggarwal V, Singla M, Miglani S, Kohli S. Comparison of the anesthetic efficacy of epinephrine concentrations (1 : 80,000 and 1 : 200,000) in 2% lignocaine for inferior alveolar nerve block in patients with symptomatic irreversible pulpitis: a randomized, double-blind clinical trial. Int Endod J 2014; 47: 373-9.

30. Shadmehr E, Aminozarbian MG, Akhavan A, Mahdavian P, Davoudi A. Anesthetic efficacy of lignocaine/clonidine for inferior alveolar nerve block in patients with irreversible pulpitis. Int Endod J 2016; 6: 531-9.

31. Stanley W, Drum M, Nusstein J, Reader A, Beck M. Effect of nitrous oxide on the efficacy of the inferior alveolar nerve block in patients with symptomatic irreversible pulpitis. J Endod 2012; 38: 565-9.

32. Jalali S, Moradi Majd N, Torabi S, Habibi M, Homayouni H, Mohammadi N. The effect of acupuncture on the success of inferior alveolar nerve block for teeth with symptomatic irreversible pulpitis: a triple-blind randomized clinical trial. J Endod 2015; 41: 1397-402.

33. Shetty KP, Satish SV, Kilaru KR, Sardar P, Luke AM. Comparison of anesthetic efficacy between lignocaine with and without magnesium sulfate USP 50% for inferior alveolar nerve blocks in patients with symptomatic irreversible pulpitis. J Endod 2015; 41: 431-3.

34. Kreimer T, Kiser R, Reader A, Nusstein J, Drum M, Beck M. Anesthetic efficacy of combinations of 0.5 mol/L mannitol and lignocaine with epinephrine for inferior alveolar nerve blocks in patients with symptomatic irreversible pulpitis. J Endod 2012; 38: 598-603.

35. Schellenberg J, Drum M, Reader A, Nusstein J, Fowler S, Beck M. Effect of buffered 4% lidocaine on the success of the inferior alveolar nerve block in patients with symptomatic irreversible pulpitis: a prospective, randomized, double-blind study. J Endod 2015; 41: 791-6.

36. Saatchi M, Farhad AR, Shenasa N, Haghighi SK. Effect of sodium bicarbonate buccal infiltration on the success of inferior alveolar nerve block in mandibular first molars with symptomatic irreversible pulpitis: a prospective, randomized double-blind study. J Endod 2016; 42: 1458-61.

37. Saatchi M, Khademl A, Baghaei B, Noormohammadi H. Effect of sodium bicarbonate-buffered lignocaine on the success of inferior alveolar nerve block for teeth with symptomatic irreversible pulpitis: a prospective, randomized double-blind study. J Endod 2015; 41: 33-5.
38. Dou L, Luo J, Yang D. Anesthetic efficacy of supplemental lingual infiltration of mandibular molars after inferior alveolar nerve block plus buccal infiltration in patients with irreversible pulpitis. Int Endod J 2013; 46: 660-5.
39. Shahi S, Mohktari H, Rahimi S, Yavari HR, Narimani S, Abdolrahimi M et al. Effect of premedication with ibuprofen and dexamethasone on success rate of inferior alveolar nerve block for teeth with asymptomatic irreversible pulpitis: a randomized clinical trial. J Endod 2013; 3: 160-2.
40. Shantiaee Y, Javaheri S, Movahhedian A, Eslami S, Dianat O. Efficacy of preoperative ibuprofen and meloxicam on the success rate of inferior alveolar nerve block for teeth with irreversible pulpitis. Int Dent J 2017; 67: 85-90.
41. Aggarwal V, Singla M, Kabi D. Comparative evaluation of effect of preoperative oral medication of ibuprofen and ketorolac on anesthetic efficacy of inferior alveolar nerve block with lignocaine in patients with irreversible pulpitis: a prospective, double-blind, randomized clinical trial. J Endod 2010; 36: 375-8.
42. Jena A, Shashirekha G. Effect of preoperative medications on the efficacy of inferior alveolar nerve block in patients with irreversible pulpitis: A placebo-controlled clinical study. J Conserv Dent 2013; 16: 171-4.
43. Parirokh M, Ashouri R, Rekabi AR, Nakhaee N, Pardakhti A, Askarifard S et al. The effect of premedication with ibuprofen and indomethacin on the success of inferior alveolar nerve block for teeth with irreversible pulpitis. J Endod 2010; 36: 1450-4.
44. Simpson M, Drum M, Nusstein J, Reader A, Beck M. Effect of combination of preoperative ibuprofen/acetaminophen on the success of the inferior alveolar nerve block in patients with symptomatic irreversible pulpitis. J Endod 2011; 37: 593-7.
45. Fullmer S, Drum M, Reader A, Nusstein J, Beck M. Effect of preoperative acetaminophen/hydrocodone on the efficacy of the inferior alveolar nerve block in patients with symptomatic irreversible pulpitis: a prospective, randomized, double-blind, placebo-controlled study. J Endod 2014; 40: 1-5.
46. Ianiro SR, Jeansonne BG, McNeal SF, Eleazer PD. The effect of preoperative acetaminophen or a combination of acetaminophen and Ibuprofen on the success of inferior alveolar nerve block for teeth with irreversible pulpitis. J Endod 2007; 33: 11-4.
47. Lindemann M, Reader A, Nusstein J, Drum M, Beck M. Effect of sublingual triazolam on the success of inferior alveolar nerve block in patients with irreversible pulpitis. J Endod 2008; 34: 1167-70.
48. Bigby J, Reader A, Nusstein J, Beck M. Anesthetic efficacy of lignocaine/meperidine for IANBs in patients with irreversible pulpitis. J Endod 2007; 33: 7-10.
49. Akhlaghi NM, Hormoz B, Abbott PV, Khalilak Z. Efficacy of ketorolac buccal infiltrations and inferior alveolar nerve blocks in patients with irreversible pulpitis: a prospective, double-blind, randomized clinical trial. J Endod 2016; 42: 691-5.
50. Yadav M, Grewal MS, Grewal S, Deshwal P. Comparison of preoperative oral ketorolac on anesthetic efficacy of inferior alveolar nerve block and buccal and lingual infiltration with articaine and lidocaine in patients with irreversible pulpitis: a prospective, randomized, controlled, double-blind study. J Endod 2015; 41: 1773-7.
51. Saha SG, Jain S, Dubey S, Kala S, Misuriya A, Kataria D. Effect of oral premedication on the efficacy of inferior alveolar nerve block in patients with symptomatic irreversible pulpitis: a randomized, double-blind, placebo-controlled clinical trial. J Clin Diagn Res 2016; 10: 25-9.
52. Khademi AA, Sattchi M, Minaiyan M, Rostamizadeh N, Sharafi F. Effect of preoperative alprazolam on the success of inferior alveolar nerve block for teeth with irreversible pulpitis. J Endod 2012; 38: 1337-9.
53. De Pedro-Muñoz A, Mena-Álvarez J. The effect of preoperative submucosal administration of tramadol on the success rate of inferior alveolar nerve block on mandibular molars with symptomatic irreversible pulpitis: a randomized, double-blind placebo-controlled clinical trial. Int Endod J 2017; 50: 1134-42.
54. Rodríguez-Wong L, Pozos-Guillen A, Silva-Herzog D, Chavarria-Bolaños D. Efficacy of mepivacaine-tramadol combination on the success of inferior alveolar nerve blocks in patients with symptomatic irreversible pulpitis:
55. Prasanna N, Subbarao CV, Gutmann JL. The efficacy of pre-operative oral medication of lornoxicam and diclofenac potassium on the success of inferior alveolar nerve block in patients with irreversible pulpitis: a double-blind, randomised controlled clinical trial. Int Endod J 2011; 44: 330-6.

56. Sood R, Hans MK, Shetty S. Comparison of anesthetic efficacy of 4% articaine with 1:100,000 epinephrine and 2% lignocaine with 1:80,000 epinephrine for inferior alveolar nerve block in patients with irreversible pulpitis. J Clin Exp Dent 2014; 6: 520-3.

57. Tortamano IP, Siviero M, Costa CG, Buscariolo IA, Armonia PL. A comparison of the anesthetic efficacy of articaine and lignocaine in patients with irreversible pulpitis. J Endod 2009; 35: 165-8.

58. Claffey E, Reader A, Nusstein J, Beck M, Weaver J. Anesthetic efficacy of articaine for inferior alveolar nerve blocks in patients with irreversible pulpitis. J Endod 2004; 30: 568-71.

59. Allegretti CE, Sampaio RM, Horliana AC, Armonia PL, Rocha RG, Tortamano IP. Anesthetic efficacy in irreversible pulpitis: a randomized clinical trial. Braz Dent J 2016; 27: 381-6.

60. Ahmad ZH, Ravikumar H, Karale R, Preethanath RS, Sukanaran A. Study of the anesthetic efficacy of inferior alveolar nerve block using articaine in irreversible pulpitis. J Contemp Dent Pract 2014; 15: 71-4.

61. Poorni S, Veniashok B, Senthilkumar AD, Indira R, Ramachandran S. Anesthetic efficacy of four percent articaine for pulpal anesthesia by using inferior alveolar nerve block and buccal infiltration techniques in patients with irreversible pulpitis: a prospective randomized double-blind clinical trial. J Endod 2011; 37: 1603-7.

62. Sherman MG, Flax M, Namerow K, Murray PE. Anesthetic efficacy of the Gow-Gates injection and maxillary infiltration with articaine and lignocaine for irreversible pulpitis. J Endod 2008; 34: 656-9.

63. Rogers BS, Botero TM, McDonald NJ, Gardner RJ, Peters MC. Efficacy of articaine versus lignocaine as a supplemental BI in mandibular molars with irreversible pulpitis: a prospective, randomized, double-blind study. J Endod 2014; 40: 753-8.

64. Monteiro MR, Groppo FC, Hailer-Neto F, Volpato MC, Almeida JF. 4% articaine BI versus 2% lignocaine inferior alveolar nerve block for emergency root canal treatment in mandibular molars with irreversible pulpitis: a randomized clinical study. Int Endod J 2015; 48: 145-52.

65. Bigby J, Reader A, Nusstein J, Beck M, Weaver J. Articaine for supplemental intraosseous anesthesia in patients with irreversible pulpitis. J Endod 2006; 32: 1044-7.

66. Fan S, Chen WL, Pan CB, Huang ZQ, Xian MQ, Yang ZH et al. Anesthetic efficacy of inferior alveolar nerve block plus buccal infiltration or periodontal ligament injections with articaine in patients with irreversible pulpitis in the mandibular first molar. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009; 108: 89-93.

67. Visconti RP, Tortamano IP, Buscariolo IA. Comparison of the anesthetic efficacy of mepivacaine and lidocaine in patients with irreversible pulpitis: a double-blind randomized clinical trial. J Endod 2016; 42: 1314-9.

68. Sampaio RM, Carnaval TG, Lanfredi CB, Horliana AC, Rocha RG, Tortamano IP. Comparison of the anesthetic efficacy between bupivacaine and lignocaine in patients with irreversible pulpitis of mandibular molar. J Endod 2012; 38: 594-7.

69. Singla M, Subbiya A, Aggarwal V, Vivekanandhan P, Yadav S, Yadav H, et al. Comparison of the anesthetic efficacy of different volumes of 4% articaine (1.8 and 3.6 mL) as supplemental buccal infiltration after failed inferior alveolar nerve block. Int Endod J 2015; 48: 103-8.

70. Abazarpour R, Parirokh M, Nakhaee N, Abbott PV. A comparison of different volumes of articaine for inferior alveolar nerve block for molar teeth with symptomatic irreversible pulpitis. J Endod 2015; 41: 1408-11.

71. Aggarwal V, Singla M, Miglani S, Ansari I, Kohli S. A prospective, randomized, single-blind comparative evaluation of anesthetic efficacy of posterior superior alveolar nerve blocks, buccal infiltrations and buccal plus palatal infiltrations in patients with irreversible pulpitis. J Endod 2011; 37: 1491-4.

72. Mehrvarzfar P, Pourhashemi A, Khodaei F, Bohlouli B,
Sarkarat F, Kalantar Motamedi M et al. The effect of adding fentanyl to epinephrine-containing lignocaine on the anesthesia of maxillary teeth with irreversible pulpitis: a randomized clinical trial. Iran Endod J 2014; 9: 290-4.

73. Elsharrawy EA, Elbaghdady YM. A double-blind comparison of a supplemental interligamentary injection of fentanyl and mepivacaine with 1:200,000 epinephrine for irreversible pulpitis. J Pain Symptom Manage 2007; 33: 203-7.

74. Atasoy Ulusoy ÖI, Alaçam T. Efficacy of single buccal infiltrations for maxillary first molars in patients with irreversible pulpitis: a randomized controlled clinical trial. Int Endod J 2014; 47: 222-7.

75. Srinivasan N, Kavitha M, Loganathan CS, Padmini G. Comparison of anesthetic efficacy of 4% articaine and 2% lignocaine for maxillary buccal infiltration in patients with irreversible pulpitis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009; 107: 133-6.

76. Hosseini HR, Parirokh M, Nakhaee N, V Abbott P, Samani S. Efficacy of articaine and lidocaine for buccal infiltration of first maxillary molars with symptomatic irreversible pulpitis: a randomized double-blinded clinical trial. Iran Endod J 2016; 11: 79-84.

77. Ramachandran A, Khan SI, Mohanavelu D, Kumar KS. The efficacy of pre-operative oral medication of paracetamol, ibuprofen, and acetaminophen on the success of maxillary infiltration anesthesia in patients with irreversible pulpitis: A double-blind, randomized controlled clinical trial. J Conserv Dent 2012; 15: 310-4.

78. Kanaa MD, Whitworth JM, Meechan JG. A comparison of the efficacy of 4% articaine with 1:100,000 epinephrine and 2% lignocaine with 1:80,000 epinephrine in achieving pulpal anesthesia in maxillary teeth with irreversible pulpitis. J Endod 2012; 38: 279-82.

79. Nussstein J, Reader A, Nist R, Beck M, Meyers WJ. Anesthetic efficacy of the supplemental intraosseous injection of 2% lignocaine with 1:100,000 epinephrine in irreversible pulpitis. J Endod 1998; 24: 487-91.

80. Ghoddusi J, Zarrabi MH, Daneshvar F, Naghavi N. Efficacy of IANB and Gow-Gates techniques in mandibular molars with symptomatic irreversible pulpitis: a prospective randomized double blind clinical study. Iran Endod J 2018; 13: 143-8.

81. Gow-Gates GA. The Gow-Gates mandibular block: regional anatomy and analgesia. Aust Endod J 1998; 24: 18-9.

82. Aggarwal V, Singla M, Kabi D. Comparative evaluation of anesthetic efficacy of Gow-Gates mandibular conduction anesthesia, Vazirani-Akinosi technique, buccal-lingual infiltrations, and conventional inferior alveolar nerve anesthesia in patients with irreversible pulpitis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010; 109(2): 303-8.

83. Brignardello-Petersen R. Combination of Gow-Gates and inferior alveolar nerve block may result in a higher rate of successful anesthesia than either technique alone. J Am Dent Assoc 2018; 149: 107.

84. Yadav S. Anesthetic success of supplemental infiltration in mandibular molars with irreversible pulpitis: a systematic review. J Conserv Dent 2015; 18: 182-6.

85. Chopra R, Marwaha M, Bansal K, Mittal M. Evaluation of buccal infiltration with articaine and inferior alveolar nerve block with lignocaine for pulp therapy in mandibular primary molars. J Clin Pediatr Dent 2016; 40: 301-5.

86. Ahmad M. The anatomical nature of dental paresthesia: a quick review. Open Dent J 2018; 12: 155-9.

87. Aggarwal V, Singla M, Subbiya A, Vivekanandhan P, Sharma V, Sharma R, et al. Effect of preoperative pain on inferior alveolar nerve block. Anesth Prog 2015; 62: 135-9.