SOME NUMERICAL RADIUS INEQUALITIES

MOHAMMAD W. ALOMARI

Abstract. In this work, a pre-Grüss inequality for positive Hilbert space operators is proved. So that, some numerical radius inequalities are proved. On the other hand, based on a non-commutative Binomial formula, a non-commutative upper bound for the numerical radius of the summand of two bounded linear Hilbert space operators is proved. A commutative version is also obtained as well.

1. Introduction

Let $\mathcal{B}(\mathcal{H})$ be the Banach algebra of all bounded linear operators defined on a complex Hilbert space $(\mathcal{H}; \langle \cdot, \cdot \rangle)$ with the identity operator $1_{\mathcal{H}}$ in $\mathcal{B}(\mathcal{H})$. A bounded linear operator A defined on \mathcal{H} is selfadjoint if and only if $\langle Ax, x \rangle \in \mathbb{R}$ for all $x \in \mathcal{H}$. The spectrum of an operator A is the set of all $\lambda \in \mathbb{C}$ for which the operator $\lambda 1_{\mathcal{H}} - A$ does not have a bounded linear operator inverse, and is denoted by $\text{sp}(A)$. Consider the real vector space $B_{sa}(\mathcal{H})$ of self-adjoint operators on \mathcal{H} and its positive cone $B_{sa}(\mathcal{H})^{+}$ of positive operators on \mathcal{H}. Also, $B_{sa}(I)$ denotes the convex set of bounded self-adjoint operators on the Hilbert space \mathcal{H} with spectra in a real interval I. A partial order is naturally equipped on $B_{sa}(\mathcal{H})$ by defining $A \leq B$ if and only if $B - A \in B_{sa}(\mathcal{H})^{+}$. We write $A > 0$ to mean that A is a strictly positive operator, or equivalently, $A \geq 0$ and A is invertible. When $\mathcal{H} = \mathbb{C}^n$, we identify $B_{sa}(\mathcal{H})$ with the algebra $\mathcal{M}_{n \times n}$ of n-by-n complex matrices. Then, $\mathcal{M}_{n \times n}^{+}$ is just the cone of n-by-n positive semidefinite matrices.

For a bounded linear operator T on a Hilbert space \mathcal{H}, the numerical range $W(T)$ is the image of the unit sphere of \mathcal{H} under the quadratic form $x \rightarrow \langle Tx, x \rangle$ associated with the operator. More precisely,

$$W(T) = \{\langle Tx, x \rangle : x \in \mathcal{H}, \|x\| = 1\}$$

Also, the (maximum) numerical radius is defined by

$$w_{\text{max}}(T) = \sup_{\|x\| = 1} |\langle Tx, x \rangle| =: w(T)$$

and the (minimum) numerical radius is defined to be

$$w_{\text{min}}(T) = \inf_{\|x\| = 1} |\langle Tx, x \rangle| .$$

The spectral radius of an operator T is defined to be

$$r(T) = \sup \{ |\lambda| : \lambda \in \text{sp}(T) \}$$

We recall that, the usual operator norm of an operator T is defined to be

$$\|T\| = \sup \{ \|Tx\| : x \in H, \|x\| = 1 \} .$$

and

$$\ell(T) = \inf \{ \|Tx\| : x \in \mathcal{H}, \|x\| = 1 \}$$

$$= \inf \{ |\langle Tx, y \rangle| : x, y \in \mathcal{H}, \|x\| = \|y\| = 1 \} .$$
it is well known that \(w(\cdot) \) defines an operator norm on \(\mathcal{B}(\mathcal{H}) \) which is equivalent to operator norm \(\| \cdot \| \). Moreover, we have

\[
1 \frac{1}{2} \| T \| \leq w(T) \leq \| T \|
\]

for any \(T \in \mathcal{B}(\mathcal{H}) \). The inequality is sharp.

In 2003, Kittaneh [11] refined the right-hand side of (1.1), where he proved that

\[
w(T) \leq \frac{1}{2} \left(\| T \| + \| T^2 \|^{1/2} \right)
\]

for any \(T \in \mathcal{B}(\mathcal{H}) \).

After that in 2005, the same author in [10] proved that

\[
\frac{1}{4} \| A^* A + A A^* \| \leq w^2(A) \leq \frac{1}{2} \| A^* A + A A^* \|.
\]

The inequality is sharp. This inequality was also reformulated and generalized in [7] but in terms of Cartesian decomposition.

In 2007, Yamazaki [19] improved (1.1) by proving that

\[
w(T) \leq \frac{1}{2} \left(\| T \| + w(T) \right) \leq \frac{1}{2} \left(\| T \| + \| T^2 \|^{1/2} \right),
\]

where \(\bar{T} = |T|^{1/2}U|T|^{1/2} \) with unitary \(U \).

In 2008, Dragomir [5] (see also [4]) used Buzano inequality to improve (1.1), where he proved that

\[
w^2(T) \leq \frac{1}{2} \left(\| T \| + w(T^2) \right).
\]

This result was also recently generalized by Sattari et al. in [17].

In [2], Dragomir studied the Čebyšev functional

\[
C(f, g; A; x) = \langle f(A) g(A)x, x \rangle - \langle f(A)x, g(A)x \rangle
\]

for any selfadjoint operator \(A \in \mathcal{B}(H) \) and \(x \in H \) with \(\| x \| = 1 \). In particular, we have

\[
C(f, f; A; x) = \langle f^2(A)x, x \rangle - \langle f(A)x, f(A)x \rangle^2.
\]

In the several works, Dragomir proved various bounds for the Čebyšev functional. The most popular result concerning continuous synchronous (asynchronous) functions of selfadjoint linear operators in Hilbert spaces, which reads

Theorem 1. Let \(A \in \mathcal{B}(\mathcal{H})_{sa} \) with \(\sigma(A) \subset [\gamma, \Gamma] \) for some real numbers \(\gamma, \Gamma \) with \(\gamma < \Gamma \). If \(f, g : [\gamma, \Gamma] \to \mathbb{R} \) are continuous and synchronous (asynchronous) on \([\gamma, \Gamma] \), then

\[
\langle f(A) g(A)x, x \rangle \geq (\leq) \langle g(A)x, x \rangle \langle f(A)x, x \rangle
\]

for any \(x \in H \) with \(\| x \| = 1 \).

This result was generalized recently by the author of this paper in [1]. For more related results concerning Čebyšev–Grüss type inequalities we refer the reader to [3], [14] and [15].

2. The Results

The following pre-Grüss inequality for linear bounded operators in inner product Hilbert spaces is valid.

Theorem 2. Let \(A \in \mathcal{B}(\mathcal{H})^+ \). If \(f, g \) are both measurable functions on \([0, \infty) \), then we have the inequality

\[
|C(f, g; A; x)| \leq C^{1/2}(f; f; A; x)C^{1/2}(g, g; A; x)
\]
for any $x \in H$. In other words, we may write

$$|\langle f(A)g(A)x,x \rangle - \langle f(A)x,x \rangle \langle g(A)x,x \rangle| \leq \left(\langle f^2(A)x,x \rangle - \langle f(A)x,x \rangle^2 \right)^{1/2} \left(\langle g^2(A)x,x \rangle - \langle g(A)x,x \rangle^2 \right)^{1/2}$$

Proof. It’s not hard to show that

$$C(f,g;A;x) = \frac{1}{2} \int_0^\infty \int_0^\infty (f(t) - f(s))(g(t) - g(s)) \, d\langle E_t x,x \rangle \, d\langle E_s x,x \rangle$$

Utilizing the triangle inequality in (2.2) and then the Cauchy–Schwarz inequality, we get

$$|C(f,g;A;x)| = \frac{1}{2} \int_0^\infty \int_0^\infty |f(t) - f(s)||g(t) - g(s)| \, d\langle E_t x,x \rangle \, d\langle E_s x,x \rangle$$

$$\leq \frac{1}{2} \left(\int_0^\infty \int_0^\infty |f(t) - f(s)|^2 \, d\langle E_t x,x \rangle \, d\langle E_s x,x \rangle \right)^{1/2} \times \left(\int_0^\infty \int_0^\infty |g(t) - g(s)|^2 \, d\langle E_t x,x \rangle \, d\langle E_s x,x \rangle \right)^{1/2}$$

$$= \frac{1}{2} \left(\int_0^\infty d\langle E_s x,x \rangle \int_0^\infty f^2(t) \, d\langle E_t x,x \rangle - 2 \int_0^\infty f(t) \, d\langle E_t x,x \rangle \int_0^\infty f(s) \, d\langle E_s x,x \rangle \right)^{1/2}$$

$$+ \int_0^\infty d\langle E_t x,x \rangle \int_0^\infty f^2(s) \, d\langle E_s x,x \rangle \right)^{1/2} \times \left(\int_0^\infty d\langle E_s x,x \rangle \int_0^\infty g^2(t) \, d\langle E_t x,x \rangle - 2 \int_0^\infty g(t) \, d\langle E_t x,x \rangle \int_0^\infty g(s) \, d\langle E_s x,x \rangle \right)^{1/2}$$

$$+ \int_0^\infty d\langle E_t x,x \rangle \int_0^\infty g^2(s) \, d\langle E_s x,x \rangle \right)^{1/2}$$

$$= \left(1_{\mathcal{H}} \cdot \int_0^\infty f^2(t) \, d\langle E_t x,x \rangle - \left(\int_0^\infty f(t) \, d\langle E_t x,x \rangle \right)^2 \right)^{1/2}$$

$$\times \left(1_{\mathcal{H}} \cdot \int_0^\infty g^2(t) \, d\langle E_t x,x \rangle - \left(\int_0^\infty g(t) \, d\langle E_t x,x \rangle \right)^2 \right)^{1/2}$$

$$= \left(\langle f^2(A)x,x \rangle - \langle f(A)x,x \rangle^2 \right)^{1/2} \left(\langle g^2(A)x,x \rangle - \langle g(A)x,x \rangle^2 \right)^{1/2}$$

for any $x \in \mathcal{H}$, which gives the desired result (2.1). \qed

Corollary 1. Let $A \in \mathcal{B}(\mathcal{H})^+$. Then

$$|\langle Ax,x \rangle - \langle A^\alpha x,x \rangle \langle A^{1-\alpha} x,x \rangle|$$

$$\leq \left(\langle A^{2\alpha}x,x \rangle - \langle A^\alpha x,x \rangle^2 \right)^{1/2} \left(\langle A^{2(1-\alpha)}x,x \rangle - \langle A^{1-\alpha} x,x \rangle^2 \right)^{1/2}$$

for any $x \in \mathcal{H}$ and all $\alpha \in \left[0, \frac{1}{2} \right]$.

Theorem 3. Let $A \in \mathcal{B}(\mathcal{H})^+$. If f,g are both measurable functions on $[0,\infty)$, then we have the inequality

$$w_{\max}(f(A)g(A)) - w_{\min}(f(A)) \cdot w_{\min}(g(A))$$

$$\leq \left[\|f(A)\|^2 - \ell^2 \left(f^{1/2}(A) \right) \right]^{1/2} \cdot \left[\|g(A)\|^2 - \ell^2 \left(g^{1/2}(A) \right) \right]^{1/2}$$

(2.3)
Proof. Using the basic triangle inequality \(|a| - |b| \leq |a - b|\), we have from (2.1) that
\[
|\langle (f (A) g (A) x, x) \rangle - |\langle (f (A) x, x) \rangle g (A) x, x)| |\langle g (A) x, x) | |g (A) x, x)| |
\leq |\langle f (A) g (A) x, x) - f (A) x, x) g (A) x, x)|
\leq \left(\langle f^2 (A) x, x) - f (A) x, x) \right)^{1/2} \left(g^2 (A) x, x) - g (A) x, x) \right)^{1/2}
\]
Taking the supremum over \(x \in \mathcal{H} \), we obtain
\[
\sup_{\|x\|=1} |\langle f (A) g (A) x, x) - |\langle f (A) x, x) g (A) x, x)| |
\leq \sup_{\|x\|=1} |\langle f (A) g (A) x, x) - f (A) x, x) g (A) x, x)|
\leq \sup_{\|x\|=1} |\langle f (A) g (A) x, x) - \inf_{\|x\|=1} |\langle f (A) x, x) g (A) x, x)| |
\leq \sup_{\|x\|=1} |\langle f (A) g (A) x, x) - \inf_{\|x\|=1} |\langle f (A) x, x) g (A) x, x)| |
\leq \sup_{\|x\|=1} \left[|\langle f (A) x, x) - f (A) x, x) g (A) x, x)| \right]^{1/2} \cdot \sup_{\|x\|=1} \left[|g (A) x, x) - g (A) x, x)| \right]^{1/2}
\leq \left[\sup_{\|x\|=1} |f (A) x, x) | ^2 - \inf_{\|x\|=1} |f (A) x, x) | ^2 \right]^{1/2} \cdot \left[\sup_{\|x\|=1} |g (A) x, x) | ^2 - \inf_{\|x\|=1} |g (A) x, x) | ^2 \right]^{1/2}
= \left[\|f (A) \|^2 - \ell^2 \left(f^{1/2} (A) \right) \right]^{1/2} \cdot \left[\|g (A) \|^2 - \ell^2 \left(g^{1/2} (A) \right) \right]^{1/2}.
\]
It follows that
\[
w_{\text{max}} (f (A) g (A) - w_{\text{min}} (f (A)) w_{\text{min}} (g (A))
\leq \left[\|f (A) \|^2 - \ell^2 \left(f^{1/2} (A) \right) \right]^{1/2} \cdot \left[\|g (A) \|^2 - \ell^2 \left(g^{1/2} (A) \right) \right]^{1/2},
\]
or equivalently we have
\[
w_{\text{max}} (f (A) g (A) - w_{\text{min}} (f (A)) \cdot w_{\text{min}} (g (A))
\leq \left[\|f (A) \|^2 - \ell^2 \left(f^{1/2} (A) \right) \right]^{1/2} \cdot \left[\|g (A) \|^2 - \ell^2 \left(g^{1/2} (A) \right) \right]^{1/2},
\]
which proves the desired result. \(\square\)

Corollary 2. Let \(A \in S (\mathcal{H})^+ \). Then,
\[
\begin{aligned}
(2.4) \quad & w_{\text{max}} (A) - w_{\text{min}} (A^\alpha) \cdot w_{\text{min}} (A^{1-\alpha}) \leq \left[\|A^\alpha \|^2 - \ell^2 \left(A^{1/2} \right) \right]^{1/2} \cdot \left[\|A^{1-\alpha} \|^2 - \ell^2 \left(A^{1/2} \right) \right]^{1/2} \\
\end{aligned}
\]
for each \(x \in \mathcal{H} \). In particular, we have
\[
\begin{aligned}
(2.5) \quad & w_{\text{max}} (A) - w_{\text{min}}^2 \left(A^{1/2} \right) \leq \left[\|A^{1/2} \|^2 - \ell^2 \left(A^{1/4} \right) \right]
\end{aligned}
\]
for each \(x \in \mathcal{H} \).

Corollary 3. Let \(A \in S (\mathcal{H})^+ \). If \(f \) is measurable functions on \([0, \infty)\), then we have the inequality
\[
\begin{aligned}
(2.6) \quad & w_{\text{max}} \left(f^2 (A) \right) - w_{\text{min}}^2 (f (A)) \leq \|f (A) \|^2 - \ell^2 \left(f^{1/2} (A) \right)
\end{aligned}
\]
for each \(x \in \mathcal{H} \).

A generalization of (2.5) can be deduced from (2.6) as follows:
Corollary 4. Let $A \in \mathcal{B}(\mathcal{H})^+$. Then, for any $p > 0$ the inequality
\begin{equation}
\begin{split}
w_{\text{max}}(A^{2p}) - w_{\text{min}}^2(A^p) & \leq \|A^p\|^2 - \ell^2 \left(A^{p/2} \right) \\
\end{split}
\end{equation}
holds for each $x \in \mathcal{H}$.

The Schwarz inequality for positive operators reads that if A is a positive operator in $\mathcal{B}(\mathcal{H})$, then
\begin{equation}
\begin{split}
|\langle Ax, y \rangle|^2 & \leq \langle Ax, x \rangle \langle Ay, y \rangle, \quad 0 \leq \alpha \leq 1.
\end{split}
\end{equation}
for any vectors $x, y \in \mathcal{H}$.

In 1951, Reid [16] proved an inequality which in some senses considered a variant of Schwarz inequality. In fact, he proved that for all operators $A \in \mathcal{B}(\mathcal{H})$ such that A is positive and AB is selfadjoint then
\begin{equation}
\begin{split}
|\langle ABx, y \rangle| & \leq \|B\| \langle Ax, x \rangle,
\end{split}
\end{equation}
for all $x \in \mathcal{H}$. In [8], Halmos presented his stronger version of Reid inequality (2.9) by replacing $r(B)$ instead of $\|B\|$.

In 1952, Kato [9] introduced a companion inequality of (2.8), called the mixed Schwarz inequality, which asserts
\begin{equation}
\begin{split}
|\langle Ax, y \rangle|^2 & \leq \left| |A|^{2\alpha} x, x \right| \left| |A^*|^{2(1-\alpha)} y, y \right|, \quad 0 \leq \alpha \leq 1.
\end{split}
\end{equation}
for all positive operators $A \in \mathcal{B}(\mathcal{H})$ and any vectors $x, y \in \mathcal{H}$, where $|A| = (A^* A)^{1/2}$.

In 1988, Kittaneh [13] proved a very interesting extension combining both the Halmos–Reid inequality (2.9) and the mixed Schwarz inequality (2.10). His result reads that
\begin{equation}
\begin{split}
|\langle ABx, y \rangle| & \leq r(B) \|f(|A|) x\| \|g(|A^*|) y\|
\end{split}
\end{equation}
for any vectors $x, y \in \mathcal{H}$, where $A, B \in \mathcal{B}(\mathcal{H})$ such that $|A|B = B^* |A|$ and f, g are nonnegative continuous functions defined on $[0, \infty)$ satisfying that $f(t)g(t) = t \ (t \geq 0)$. Clearly, choose $f(t) = t^\alpha$ and $g(t) = t^{1-\alpha}$ with $B = 1_{\mathcal{H}}$ we refer to (2.10). Moreover, choosing $\alpha = \frac{1}{2}$ some manipulations refer to Halmos version of Reid inequality.

Theorem 4. Let $A \in \mathcal{B}(\mathcal{H})$. If f, g are both positive continuous and $f(t)g(t) = t$ for all $t \in [0, \infty)$, then we have the inequality
\begin{equation}
\begin{split}
w_{\text{max}}(A) - w_{\text{min}}(f(A)) \cdot w_{\text{min}}(g(A)) & \leq \frac{1}{2} \left[f^2(|A|) + g^2(|A^*|) \right] - \ell^2 \left(f^{1/2}(A) \right) : \ell^2 \left(g^{1/2}(A) \right).
\end{split}
\end{equation}
Proof. Since $f(t)g(t) = t$ for all $t \in [0, \infty)$, then from the proof of Theorem 3 we have
\begin{equation}
\begin{split}
& \sup \limits_{\|x\|=1} \left\{ |\langle f(A)g(A) x, x \rangle| - |\langle f(A) x, x \rangle| \right\} |\langle g(A) x, x \rangle| \\
& \leq \sup \limits_{\|x\|=1} |\langle f(A)g(A) x, x \rangle| - \inf \limits_{\|x\|=1} \left\{ |\langle f(A) x, x \rangle| \right\} |\langle g(A) x, x \rangle| \\
& = \sup \limits_{\|x\|=1} |\langle Ax, x \rangle| - \inf \limits_{\|x\|=1} |\langle f(A) x, x \rangle| \cdot \inf \limits_{\|x\|=1} |\langle g(A) x, x \rangle| \quad \text{(by (2.11)) with } B = 1_{\mathcal{H}} \} \\
& \leq \sup \limits_{\|x\|=1} \left\{ f^2(|A|) x, x \right\}^{1/2} \left\{ g^2(|A^*|) x, x \right\}^{1/2} - \inf \limits_{\|x\|=1} |\langle f(A) x, x \rangle| \cdot \inf \limits_{\|x\|=1} |\langle g(A) x, x \rangle| \\
& \leq \sup \limits_{\|x\|=1} \left\{ f^2(|A|) x, x \right\}^{1/2} \left\{ g^2(|A^*|) x, x \right\}^{1/2} - \inf \limits_{\|x\|=1} |\langle f(A) x, x \rangle| \cdot \inf \limits_{\|x\|=1} |\langle g(A) x, x \rangle| \\
& \leq \frac{1}{2} \sup \limits_{\|x\|=1} \left\{ \left[f^2(|A|) + g^2(|A^*|) \right] x, x \right\} - \inf \limits_{\|x\|=1} |\langle f(A) x, x \rangle| \cdot \inf \limits_{\|x\|=1} |\langle g(A) x, x \rangle|
\end{equation}
which proves the required result.\qed
Corollary 5. Let \(A \in \mathcal{B}(\mathcal{H})^+ \). If \(f, g \) are both positive continuous and \(f(t)g(t) = t \) for all \(t \in [0, \infty) \). Then

\[
(2.13) \quad w_{\max}(A) - w_{\min}(A^\alpha) \cdot w_{\min}(A^{1-\alpha}) \leq \frac{1}{2} \left\| \left| A^{\alpha} + |A^\star|^2(1-\alpha) \right| \right\| - \ell^2 \left(A^{\frac{\alpha}{2}} \right) \cdot \ell^2 \left(A^{\frac{1-\alpha}{2}} \right)
\]

In particular, we have

\[
(2.14) \quad w_{\max}(A) - w_{\min}(A^{1/2}) \leq \frac{1}{2} \left\| |A| + |A^\star| \right\| - \ell^4 \left(A^{1/4} \right)
\]

Theorem 5. Let \(A, B \in \mathcal{B}(\mathcal{H}) \). Then,

\[
(2.15) \quad w \left((A + B)^2 \right) \leq w \left(A^2 \right) + w \left(B^2 \right) + \frac{1}{4} \min \left\{ w \left(BA^2B \right) + \| AB \|^2, w \left(AB^2A \right) + \| BA \|^2 \right\}
\]

Proof. Let us first note that the Dragomir refinement of Cauchy-Schwarz inequality reads that

\[
\langle \langle x, y \rangle \rangle \leq |\langle x, e \rangle \langle e, y \rangle | + |\langle x, y \rangle - \langle x, e \rangle \langle e, y \rangle | \leq \| x \| \| y \|
\]

for all \(x, y, e \in \mathcal{H} \) with \(\| e \| = 1 \).

It’s easy to deduce the inequality

\[
(2.16) \quad |\langle x, e \rangle \langle e, y \rangle | \leq \frac{1}{2} \left(|\langle x, y \rangle | + \| x \| \| y \| \right)
\]

Utilizing the triangle inequality we have

\[
(2.17) \quad \left| \left\langle (A + B)^2, x, x \right\rangle \right| \leq |\langle A^2x, x \rangle | + |\langle ABx, x \rangle | \| x, A^*B^*x \rangle | + |\langle B^2x, x \rangle |
\]

so that by setting \(e = u, x = ABu, y = A^*B^*u \) in (2.16) we get

\[
|\langle ABu, u \rangle \langle u, A^*B^*u \rangle | \leq \frac{1}{2} \left(|\langle ABu, A^*B^*y \rangle | + \| ABu \| \| A^*B^*u \| \right)
\]

Substituting in (2.17) and taking the supremum over all unit vector \(x \in \mathcal{H} \) we get

\[
w \left((A + B)^2 \right) \leq w \left(A^2 \right) + w \left(B^2 \right) + \frac{1}{2} \left(w \left(BA^2B \right) + \| AB \|^2 \right)
\]

Replacing \(B \) by \(A \) and \(A \) by \(B \) in the previous inequality we get that

\[
w \left((B + A)^2 \right) \leq w \left(B^2 \right) + w \left(A^2 \right) + \frac{1}{2} \left(w \left(AB^2A \right) + \| BA \|^2 \right)
\]

Adding the above two inequalities we get the desired result. \(\square \)

Corollary 6. Let \(A \in \mathcal{B}(\mathcal{H}) \). Then,

\[
(2.18) \quad w \left(A^2 \right) \leq \frac{1}{8} \left(w \left(A^4 \right) + \| A^2 \|^2 \right)
\]

Proof. Setting \(A = B \) in (2.15) we get the desired result. \(\square \)

Let \(\mathcal{A} \) be an associative algebra, not necessarily commutative, with identity \(1_{\mathcal{A}} \). For two elements \(A \) and \(B \) in \(\mathcal{A} \), that commute; i.e., \(AB = BA \). It’s well known the Binomial Theorem reads that

\[
(2.19) \quad (A + B)^n = \sum_{k=0}^{n} \binom{n}{k} A^k B^{n-k}
\]

In [18], Wyss derived an interesting non-commutative Binomial formula for commutative algebra \(\mathcal{A} \) with identity \(1_{\mathcal{A}} \). Denotes \(\mathcal{L}(\mathcal{A}) \) the algebra of linear transformations from \(\mathcal{A} \) to \(\mathcal{A} \). Let \(A, X \in \mathcal{A} \), the element (commutator) \(d_A \) in \(\mathcal{L}(\mathcal{A}) \) is defined by

\[
d_A \left(X \right) = [A, X] = AX - XA.
\]

It follows that, \(A \) and \(d_A \) are element of \(\mathcal{L}(\mathcal{A}) \). Moreover, \(A \) can be looked upon as an element in \(\mathcal{L}(\mathcal{A}) \) by \(A(X) = AX \), which is the left multiplication.

The following properties are hold [18]:

1. \(A \) and \(d_A \) commute; i.e., \(A d_A(X) = d_A A(X) \).
(2) d_A is a derivation on \mathcal{A}; i.e., $d_A(XY) = (d_A X) Y + X (d_A Y)$.
(3) $(A - d_A) X = X A$.
(4) The Jacobi identity $d_A d_B (C) + d_B d_C (A) + d_C d_A (B) = 0$ holds.

Using these properties Wyss proved the following non-commutative version of Binomial theorem [18]:

\[(A + B)^n = \sum_{k=0}^{n} \binom{n}{k} \left\{ (A + d_B)^{k} 1_{\mathcal{A}} \right\} B^{n-k} \]

for all elements A, B in the associative algebra \mathcal{A} with identity $1_{\mathcal{A}}$.

We write

\[(A + d_B)^n 1_{\mathcal{A}} = A^n + D_n (B, A) \]

For a commutative algebra, $D_n (B, A)$ is identically zero. We thus call $D_n (B, A)$ the essential non-commutative part. Moreover, $D_n (B, A)$ satisfies the following recurrence relation

\[D_{n+1} (B, A) = d_B A^n + (A + d_B) D_n (B, A), \quad n \geq 0\]

with $D_0 (B, A) = 0$.

A non-commutative upper bound for the summand of two bounded linear Hilbert space operators is proved in the following result.

Theorem 6. Let $A, B \in \mathcal{B} (H)$. If f, g are both positive continuous and $f(t)g(t) = t$ for all $t \in [0, \infty)$. Then

\[(2.22) \quad w ((A + B)^n) \leq \frac{1}{2} \sum_{k=0}^{n} \binom{n}{k} \left\{ (A + d_B)^{k} 1_{\mathcal{A}} \right\} B^{n-k} \]

where $d_B (A) = [B, A] = BA - AB$ and $d_B^* (A) = [B, A]^* = A^* B^* - B^* A^*$.

Proof. By Utilizing the triangle inequality in (2.20) and by employing (2.11) we have

\[|\langle (A + B)^n x, y \rangle| \]

\[= \left| \left\langle \left(\sum_{k=0}^{n} \binom{n}{k} \left\{ (A + d_B)^{k} 1_{\mathcal{A}} \right\} B^{n-k} \right) x, y \right\rangle \right| \]

\[\leq \sum_{k=0}^{n} \binom{n}{k} \left| \left\langle \left((A + d_B)^{k} 1_{\mathcal{A}} \right) B^{n-k} x, y \right\rangle \right| \]

\[\leq \sum_{k=0}^{n} \binom{n}{k} \left\| f \left(\left\{ (A + d_B)^{k} 1_{\mathcal{A}} \right\} B^{n-k} \right) \right\| \cdot \left\| g \left(\left\{ (B^{n-k})^{*} \left\{ (A + d_B)^{k} 1_{\mathcal{A}} \right\}^{*} \right\} \right) \right\| \]

\[\leq \sum_{k=0}^{n} \binom{n}{k} \left\langle f \left(\left\{ (A + d_B)^{k} 1_{\mathcal{A}} \right\} B^{n-k} \right) x, x \right\rangle^{1/2} \left\langle g \left(\left\{ (B^{n-k})^{*} \left\{ (A + d_B)^{k} 1_{\mathcal{A}} \right\}^{*} \right\} \right) y, y \right\rangle^{1/2} \]

\[\leq \frac{1}{2} \sum_{k=0}^{n} \binom{n}{k} \left[\left\langle f \left(\left\{ (A + d_B)^{k} 1_{\mathcal{A}} \right\} B^{n-k} \right) x, x \right\rangle + \left\langle g \left(\left\{ (B^{n-k})^{*} \left\{ (A + d_B)^{k} 1_{\mathcal{A}} \right\}^{*} \right\} \right) y, y \right\rangle \right], \]

where the last inequality follows by applying AM-GM inequality. Hence, by letting $y = x$, we get

\[|\langle (A + B)^n x, x \rangle| \]

\[\leq \frac{1}{2} \sum_{k=0}^{n} \binom{n}{k} \left[\left\langle f \left(\left\{ (A + d_B)^{k} 1_{\mathcal{A}} \right\} B^{n-k} \right) x, x \right\rangle + \left\langle g \left(\left\{ (B^{n-k})^{*} \left\{ (A + d_B)^{k} 1_{\mathcal{A}} \right\}^{*} \right\} \right) x, x \right\rangle \right] \]

\[\leq \frac{1}{2} \sum_{k=0}^{n} \binom{n}{k} \left\langle f \left(\left\{ (A + d_B)^{k} 1_{\mathcal{A}} \right\} B^{n-k} \right) + g \left(\left\{ (B^{n-k})^{*} \left\{ (A + d_B)^{k} 1_{\mathcal{A}} \right\}^{*} \right\} \right) x, x \right\rangle. \]
Taking the supremum over all unit vector $x \in \mathcal{H}$ we get the required result. \hfill \Box

Remark 1. Taking the supremum over all unit vectors $x, y \in \mathcal{H}$ in the proof of Theorem 6 we get the following power norm inequality:

$$\| (A + B)^n \| \leq \frac{1}{2} \sum_{k=0}^{n} \binom{n}{k} \left\| f \left(\{ (A + d_B)^k \} B^{n-k} \right) + g \left(\{ (B^{n-k})^* (A + d_B)^k \}^* \right) \right\|$$

for all $A, B \in \mathcal{B} (\mathcal{H})$.

Corollary 7. Let $A, B \in \mathcal{B} (\mathcal{H})$. If f, g are both positive continuous and $f(t)g(t) = t$ for all $t \in [0, \infty)$. Then

$$w (A + B) \leq \frac{1}{2} \left\| f (|B|) + g (|B^*|) + f (|A + d_B A|) + g (|(A^* + A^* d_B^*)|) \right\|$$

where $d_B (A) = [B, A] = BA - AB$ and $d_B^* (A) = [B, A]^* = A^* B^* - B^* A^*$.

Proof. Setting $n = 1$ in (2.22) we get that

$$w (A + B) \leq \frac{1}{2} \left\| f (|B|) + f (|A + d_B A|) + f (|A + d_B A|) + f (|A + d_B A|) + g (|(A^* + A^* d_B^*)|) \right\|$$

Making use of (2.21), we have

$$(A + d_B) 1_{\mathcal{H}} = A + D_1 (B, A) = A + d_B A,$$

and

$$(A + d_B)^* 1_{\mathcal{H}} = (A^* + d_B^*) 1_{\mathcal{H}} = A^* + D_1 (B^*, A^*) = A^* + A^* d_B^*.$$

Hence,

$$w (A + B) \leq \frac{1}{2} \left\| f (|B|) + f (|A + d_B A|) + g (|(A^* + A^* d_B^*)|) \right\|$$

which gives the required result. \hfill \Box

Remark 2. As noted in Remark 1 and deduced in Corollary 7, we may observe that

$$\| A + B \| \leq \frac{1}{2} \left\| f (|B|) + f (|A + d_B A|) + g (|(A^* + A^* d_B^*)|) \right\|$$

$A, B \in \mathcal{B} (\mathcal{H})$.

Corollary 8. For $A, B \in \mathcal{B} (\mathcal{H})$ that commute. If f, g are both positive continuous and $f(t)g(t) = t$ for all $t \in [0, \infty)$. Then

$$w ((A + B)^n) \leq \frac{1}{2} \sum_{k=0}^{n} \binom{n}{k} \left\| f (|A^k B^{n-k}|) + g \left((B^{n-k})^* (A^k)^* \right) \right\|.$$

In particular, we have

$$w (A + B) \leq \frac{1}{2} \left\| f (|B|) + f (|A|) + g (|A^*|) \right\|.$$

Proof. Since $AB = BA$, then $d_B = 0$ in (2.23). Alternatively, we may use (2.19) and proceed as in the proof of Theorem 6. \hfill \Box

Remark 3. As in the same way we previously remarked, for $A, B \in \mathcal{B} (\mathcal{H})$ that commute, we can have

$$\| (A + B)^n \| \leq \frac{1}{2} \sum_{k=0}^{n} \binom{n}{k} \left\| f (|A^k B^{n-k}|) + g \left((B^{n-k})^* (A^k)^* \right) \right\|.$$

In particular,

$$\| A + B \| \leq \frac{1}{2} \left\| f (|B|) + f (|A|) + g (|A^*|) \right\|.$$
Setting \(f(t) = t^\alpha \) and \(g(t) = t^{1-\alpha} \) for all \(\alpha \in [0,1] \), in the last inequality above we get
\[
\|A + B\| \leq \frac{1}{2} \left\| |B|^\alpha + |B^*|^{1-\alpha} + |A|^\alpha + |A^*|^{1-\alpha} \right\|.
\]

In special case for \(\alpha = \frac{1}{2} \) we have,
\[
\|A + B\| \leq \frac{1}{2} \left\| |B|^{1/2} + |B^*|^{1/2} + |A|^{1/2} + |A^*|^{1/2} \right\|.
\]

Corollary 9. For \(A \in B(\mathcal{H}) \). If \(f, g \) are both positive continuous and \(f(t)g(t) = t \) for all \(t \in [0,\infty) \).

Then
\[
(2.25) \quad w(A^n) \leq \frac{1}{2} \left(\|f(|A^n|) + g(|(A^n)^*|)\right)
\]

Proof. Setting \(B = 0 \) in (2.22) we get the desired result. In another way, one may set \(B = A \) in Corollary 8, so that we get
\[
w(A^n) \leq \frac{1}{2^n} \left(\|f(|A^n|) + g(|(A^n)^*|)\right) \cdot \sum_{k=0}^{n} \left(\begin{array}{c} n \\ k \end{array} \right),
\]
but since \(\sum_{k=0}^{n} \left(\begin{array}{c} n \\ k \end{array} \right) = 2^n \), then we get the required result. \(\square \)

Corollary 10. Let \(A \in B(\mathcal{H}) \). Then,
\[
(2.26) \quad w(A^n) \leq \frac{1}{2} \left(\left\| A^n \right\|^\alpha + \left\| (A^n)^* \right\|^{1-\alpha} \right).
\]

In particular, we have
\[
(2.27) \quad w(A) \leq \frac{1}{2} \left(\left\| A \right\|^\alpha + \left\| A^* \right\|^{1-\alpha} \right).
\]

Proof. Setting \(f(t) = t^\alpha \) and \(g(t) = t^{1-\alpha} \) in (2.25). \(\square \)

Corollary 11. Let \(A \in B(\mathcal{H}) \). Then,
\[
(2.28) \quad w(A) \leq \frac{1}{2} (\|A\| + \|A\|) \leq \frac{1}{4} \left(1 + \|A\| + \sqrt{\|A\|^2 - 4 \|A\|} \right)
\]

Proof. Letting \(\alpha = 1 \) in (2.27), we get the first inequality. The second inequality follows by employing the norm estimates [12]:
\[
\|A + B\| \leq \frac{1}{2} \left(\|A\| + \|B\| + \sqrt{\|A\|^2 - \|B\|^2 + 4 \|A^{1/2}B^{1/2}\|^2} \right),
\]
and then
\[
\left\| A^{1/2}B^{1/2} \right\| \leq \|AB\|^{1/2}.
\]

in the first inequality and use the fact that \(\|A\| = \|A\| \). In other words, we have
\[
\|A\| + \|A\| \leq \frac{1}{2} \left(\|A\| + \|A\| + \sqrt{\left(\|A^{1/2}\|\right)^2 - 1)^2 + 4 \|A^{1/2}1\|}\right) = \frac{1}{2} \left(1 + \|A\| + \sqrt{\|A\|^2 - 1)^2 + 4 \|A\|}\right)
\]
which proves the required result. \(\square \)
References

[1] M.W. Alomari, Pompeiu–Čebyșev type inequalities for selfadjoint operators in Hilbert spaces, *Adv. Oper. Theory*, 3 no. 3 (2018), 9–22.

[2] S.S. Dragomir, Čebyšev’s type inequalities for functions of selfadjoint operators in Hilbert spaces, *Linear and Multilinear Algebra*, 58 (7–8) (2010), 805–814.

[3] S.S. Dragomir, Operator inequalities of the Jensen, Čebyšev and Grüss type, Springer, New York, 2012.

[4] S.S. Dragomir, Inequalities for the Numerical Radius of Linear Operators in Hilbert Spaces, SpringerBriefs in Mathematics, 2013.

[5] S.S. Dragomir, Some inequalities for the norm and the numerical radius of linear operator in Hilbert spaces, *Tamkang J. Math.*, 39 (1) (2008), 1–7.

[6] S.S. Dragomir, Some refinements of schwarz inequality, *Simposional de Math Si Appl.* Polytechnical Inst Timisoara, Romania, 12 (1985), 13–16.

[7] M. El-Haddad and F. Kittaneh, Numerical radius inequalities for Hilbert space operators. II. *Studia Math.*, 182 (2) (2007), 133–140.

[8] P.R. Halmos, *A Hilbert space problem book*, Van Nostrand Company, Inc., Princeton, N.J., 1967.

[9] T. Kato, Notes on some inequalities for linear operators, *Math. Ann.*, 125 (1952), 208–212.

[10] F. Kittaneh, Numerical radius inequalities for Hilbert space operators, *Studia Math.*, 168 (1) (2005), 73–80.

[11] F. Kittaneh, A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix, *Studia Math.*, 158 (2003), 11–17.

[12] F. Kittaneh, Norm inequalities for certain operator sums, *J. Funct. Anal.* 143 (2) (1997), 337–348.

[13] F. Kittaneh, Notes on some inequalities for Hilbert Space operators, *Publ. Res. Inst. Math. Sci.*, 24 (2) (1988), 283–293.

[14] J.S. Matharu and M.S. Moslehian, Grüss inequality for some types of positive linear maps, *J. Operator Theory*, 73 (1) (2015), 265–278.

[15] M.S. Moslehian and M. Bakherad, Chebyshev type inequalities for Hilbert space operators, *J. Math. Anal. Appl.*, 420 (2014), no. 1, 737–749.

[16] W. Reid, *Symmetrizable completely continuous linear transformations in Hilbert space*, Duke Math., 18 (1951), 41–56.

[17] M. Sattari, M.S. Moslehian and T. Yamazaki, Some genaralized numerical radius inequalities for Hilbert space operators, *Linear Algebra Appl.*, 470 (2014), 1–12.

[18] W. Wyss, Two non-commutative binomial theorems, Preprint (2017). https://arxiv.org/abs/1707.03861

[19] T. Yamazaki, On upper and lower bounds of the numerical radius and an equality condition, *Studia Math.*, 178 (2007), 83–89.

Department of Mathematics, Faculty of Science and Information Technology, Irbid National University, 2600 Irbid 21110, Jordan.

E-mail address: mwormath@gmail.com