Thermodynamics of spin systems on small-world hypergraphs

D. Bollé, R. Heylen and N.S. Skantzos

Katholieke Universiteit Leuven, Instituut voor Theoretische Fysica, Celestijnenlaan 200D, B-3001 Leuven, Belgium

We study the thermodynamic properties of spin systems on small-world hypergraphs, obtained by superimposing sparse Poisson random graphs with \(p \)-spin interactions onto a one-dimensional Ising chain with nearest-neighbor interactions. We use replica-symmetric transfer-matrix techniques to derive a set of fixed-point equations describing the relevant order parameters and free energy, and solve them employing population dynamics. In the special case where the number of connections per site is of the order of the system size we are able to solve the model analytically. In the more general case where the number of connections is finite we determine the static and dynamic ferromagnetic-paramagnetic transitions using population dynamics. The results are tested against Monte-Carlo simulations.

PACS numbers: 64.60.Cn, 05.20.-y, 89.75.-k

I. INTRODUCTION

In recent years, a large amount of work has been devoted to the study of small-world networks, mainly numerical \([\text{1]}\) with emphasis e.g. on biophysical networks \([\text{2-4]}\) or social networks \([\text{5]}\) and, to a lesser extent, analytically \([\text{8-12]}\). For recent reviews see e.g. \([\text{8-12]}\). By now, it has thus become apparent that small-world architectures can be found in many different circumstances, ranging from linguistic, epidemic and social networks to the world-wide-web.

Efficient modeling of real-world applications not only often requires a diluted random graph to describe the interaction network but, moreover, these interactions sometimes couple \(k \)-plets of agents. For instance, it has been found that the proteomic network of yeast forms a hypergraph with the proteins corresponding to vertices and the protein-complexes corresponding to hyperedges \([\text{13}]\). Other large metabolic networks like the one of \(E. \text{coli} \) have also been found to possess a small-world structure and as most of the reactions of metabolism are multi-molecular they can be represented by hypergraphs \([\text{14}]\).

Technical analysis of sparse hypergraphs is, however, involved even without superimposing small-world architectures.

A convenient way to describe the statistical physics of this type of systems is to consider diluted random graphs with \(p \)-spin interactions. In this context, a ferromagnetic model having \(3 \)-spin interactions and finite connectivity has been considered recently in \([\text{15}]\). (See also \([\text{14,17}]\)).

A complete description of a small-world system requires in addition local interactions. A simple example of the latter is the nearest-neighbor ferromagnetic Ising interaction. The inclusion of such local interactions can completely change the functioning and the dynamics of such systems. It was shown in \([\text{7}]\), e.g., that this construction significantly enlarges the region in parameter space where ferromagnetism occurs. In particular, for any choice of the value of the average connectivity, however small, the ferromagnetic-paramagnetic transition occurs at a finite temperature. Furthermore, a jump in the entropy of metastable configurations has been found \([\text{18}]\) exactly at the crossover between the small-world and the Poisson random graph structure due to the formation of disconnected clusters within the graph.

In this work we study the thermodynamic properties of such a small-world hypergraph, obtained by superimposing sparse Poisson random graphs with \(p \)-spin interactions onto a one-dimensional Ising chain with nearest-neighbor interactions. An analytic study of this model is non-trivial. The relevant disorder-averaged free energy and order parameters are calculated using replica-symmetric transfer-matrix techniques. A set of fixed-point equations for the order parameter functions is derived and solved numerically with the population dynamics algorithm \([\text{19}]\). For \(p = 2 \) we find back some of the results described in \([\text{7,20,21}]\), for \(p \geq 3 \) the physics is different. In the limit where the number of long-range short-cuts are of the order of the system size for each site we get a mean-field model for which we are able to solve the order parameters in a completely analytic way, again using transfer matrices. First-order phase transitions from the ferromagnetic to the paramagnetic phase are found for all values of \(p \), along with metastable (spindodal) transitions. Additionally, for \(p = 2 \) a second-order phase transition and a coexistence region between the two phases are found.

Monte-Carlo simulations of the system employing Glauber dynamics allow us to find the dynamic (metastable) transition-lines. Very good agreement with the theory is found when the Ising chain interactions are ferromagnetic. When they are anti-ferromagnetic we find that the dynamics becomes very slow, indicating critical slowing down in this region. The rest of this paper is

* Electronic address: desire.bolle, rob.heylen, nikos.skantzos@fys.kuleuven.be
organized as follows. In Sec. II we define the small-world model. In Sec. III A we derive the saddle-point equations for the relevant order parameter function. Sec. III B discusses the transfer-matrix analysis in the replica symmetric approximation leading to a set of fixed-point equations involving the eigenvectors. Expressions for the free energy and the physical order parameters are given in Sec. III C. There, we also discuss the continuous bifurcations from zero magnetization. Sec. IV gives the analytic solution of the fully connected version of the model. In Sec. V we numerically study the fixed-point equations and compare the results with simulations. Finally, Sec. VI contains the concluding remarks.

II. THE MODEL

Consider a system of \(N \) Ising spins \(\sigma = (\sigma_1, \ldots, \sigma_N) \), with \(\sigma_i \in \{-1, 1\} \), arranged on a one-dimensional chain \((\sigma_{N+1} = \sigma_1)\). Two different couplings are assumed to be present in this system: first, nearest-neighbor interactions of uniform strength \(J_0 \) and, secondly, sparse long-range \(p \)-spin interactions of the form \(c_{j_1, \ldots, j_p} \sigma_{j_1} \cdots \sigma_{j_p} \), \(\forall j_p \in \{1, 2, \ldots, N\} \), of uniform strength \(J \), which can be described by a hypergraph of degree \(p \). An example of such a system for \(p = 3 \) is shown in Fig. 1.

The couplings \(c_{j_1, \ldots, j_p} \) are independent identically distributed random variables, for \(j_1 < j_2 < \ldots < j_p \), taken from the following distribution

\[
P(c_{j_1, \ldots, j_p}) = c \frac{(p - 1)!}{N^{p-1}} \delta_{c_{j_1, \ldots, j_p}, 1} + \left(1 - c \frac{(p - 1)!}{N^{p-1}} \right) \delta_{c_{j_1, \ldots, j_p}, 0} \tag{1}
\]

The value \(c_{j_1, \ldots, j_p} = 1 \) indicates that the hyperedge formed by the \(p \) spins \((\sigma_{j_1}, \ldots, \sigma_{j_p})\) is present, whereas \(c_{j_1, \ldots, j_p} = 0 \) means that there is no such hyperedge present. The quantity \(c \) indicates the total number of hyperedges a spin \(\sigma \) is, on average, part of

\[
\frac{1}{N} \sum_{i} \sum_{j_1 < \ldots < j_{p-1}} c_{i, j_1, \ldots, j_{p-1}} = c \tag{2}
\]

In the small-world context one takes \(c \) to be a small number of order \(O(1) \) while \(c/N \rightarrow 0 \).

We assume that the couplings are symmetric such that for any permutation \(\pi \) in \(S_p \) (the symmetric group of \(p \) elements):

\[
c_{j_1, \ldots, j_p} = c_{\pi(j_1), \ldots, \pi(j_p)} \tag{3}
\]

Furthermore, we exclude self-interactions and hyperedges of reduced degree by stating that

\[
\forall k \neq l \in \{1, \ldots, p\} : j_k = j_l \Rightarrow c_{j_1, \ldots, j_p} = 0 \tag{4}
\]

meaning that the hyperedge does not exist when any two indices are equal.

At thermal equilibrium, such a system can be described by the Hamiltonian

\[
H(\sigma) = - \sum_i \sigma_i h_i(\sigma) \tag{5}
\]

where the local field consists of a hypergraph part and a chain part

\[
h_i(\sigma) = \frac{J}{c_p} \sum_{j_1 < \ldots < j_{p-1}} c_{i, j_1, \ldots, j_{p-1}} \sigma_{j_1} \cdots \sigma_{j_{p-1}} + \frac{J_0}{2} (\sigma_{i-1} + \sigma_{i+1}) \tag{6}
\]

We want to study the thermodynamic properties of this network structure which follow from the free energy per site

\[
f = - \lim_{N \rightarrow \infty} \frac{1}{\beta N} \log \sum_{\sigma} e^{-\beta H(\sigma)} \tag{7}
\]

where \(\beta = 1/T \) corresponds to the inverse bath temperature.
III. REPLICA-TRANSFER-MATRIX ANALYSIS

A. Saddle-point equations

We start from the free energy per spin written down in the replica approach \(^2\)

\[
- \beta f(\beta) = \lim_{N \to \infty} \lim_{n \to 0} \frac{1}{Nn} \log \langle Z^n \rangle_c
\]

\[
\langle Z^n \rangle_c = \sum_{\sigma^1, \ldots, \sigma^n} \left\langle \exp \left(-\beta \sum_{\alpha} H(\sigma^\alpha) \right) \right\rangle_c
\]

with \(\alpha = 1, \ldots, n\) the replica index and the average taken over all possible graphs \(c\) according to the distribution \(\hat{1}\), so that we obtain

\[
\langle Z^n \rangle_c = \sum_{\sigma^1, \ldots, \sigma^n} \exp \left(\beta J_0 \sum_{i,\alpha} \sigma_i^\alpha \sigma_{i+1}^\alpha \right)
\]

\[
\times \prod_{j_1 < \ldots < j_p} \left\langle \exp \left(\frac{\beta J}{c} \sum_{\alpha} c_{j_1,\ldots,j_p} \sigma_{j_1}^\alpha \ldots \sigma_{j_p}^\alpha \right) \right\rangle_c
\]

\[
= \sum_{\sigma^1, \ldots, \sigma^n} \exp \left(\beta J_0 \sum_{i,\alpha} \sigma_i^\alpha \sigma_{i+1}^\alpha \right)
\]

\[
\times \exp \left(\frac{c (p-1)!}{N^{p-1}} \sum_{j_1 < \ldots < j_p} \left(e^{\frac{\beta J}{c} \sum_{\alpha} \sigma_{j_1}^\alpha \ldots \sigma_{j_p}^\alpha} - 1 \right) \right)
\]

where we have used the fact that \(N \to \infty\) to contract the average over \(c_{j_1,\ldots,j_p}\) into an exponential.

The next step is to insert unities \(1 = \sum_{\sigma} \delta_{\sigma,\sigma}\), and \(1 = \sum_{\tau} \delta_{\tau,\tau}\), where \(\sigma, \tau\) are auxiliary vectors in replica space to arrive at

\[
\langle Z^n \rangle_c = \sum_{\sigma^1, \ldots, \sigma^n} \exp \left(\beta J_0 \sum_{i,\alpha} \sigma_i^\alpha \sigma_{i+1}^\alpha \right)
\]

\[
\times \prod_{\tau_1 \ldots \tau_p} \sum_{j_k} \delta_{\tau_i, \tau_{j_k}}
\]

\[
\times \left(e^{\frac{\beta J}{c} \sum_{\alpha} \tau_{j_1}^\alpha \ldots \tau_{j_p}^\alpha} - 1 \right)
\]

In this way we have effectively introduced an order function

\[
F(\tau) = \frac{1}{N} \sum_i \delta_{\tau, \sigma_i}
\]

that can be inserted in (12) in the usual way

\[
1 = \int \prod_{\tau} dF(\tau) d\tilde{F}(\tau) e^{i \tilde{F}(\tau)(F(\tau) - \frac{1}{N} \sum_i \delta_{\tau, \sigma_i})}
\]

to obtain

\[
\langle Z^n \rangle_c \sim \int \left[\prod_{\tau} dF(\tau) d\tilde{F}(\tau) \right] \exp \left[iN \sum_{\tau} \tilde{F}(\tau) F(\tau) \right]
\]

\[
\times \exp \left(\frac{cN}{p} \sum_{\tau_1 \ldots \tau_p} \prod_{k=1}^p F(\tau_k) \left(e^{\frac{\beta J}{c} \sum_{\alpha} \tau_{j_1}^\alpha \ldots \tau_{j_p}^\alpha} - 1 \right) \right)
\]

\[
\times \sum_{\sigma^1, \ldots, \sigma^n} \exp \left(\beta J_0 \sum_{i,\alpha} \sigma_i^\alpha \sigma_{i+1}^\alpha - i \sum_i \tilde{F}(\sigma_i) \right)
\]

We can then apply the saddle-point method resulting in

\[
\log \left(\langle Z^n \rangle_c \right) = \text{Extr}_{F, \tilde{F}} \left[i \sum_{\tau} \tilde{F}(\tau) F(\tau) \right]
\]

\[
+ \frac{c}{p} \sum_{\tau_1 \ldots \tau_p} \prod_{k=1}^p F(\tau_k) \left(e^{\frac{\beta J}{c} \sum_{\alpha} \tau_{j_1}^\alpha \ldots \tau_{j_p}^\alpha} - 1 \right)
\]

\[
+ \frac{1}{N} \log \left(\sum_{\sigma^1, \ldots, \sigma^n} e^{\beta J_0 \sum_{i,\alpha} \sigma_i^\alpha \sigma_{i+1}^\alpha - i \sum_i \tilde{F}(\sigma_i) \} \right)
\]

(16)

Derivation with respect to \(F(\psi)\) and \(\tilde{F}(\psi)\) results in the following self-consistent equation for the density \(F(\psi)\):

\[
F(\psi) = \frac{\sum_{\sigma_1 \ldots \sigma_N} \left[\frac{1}{N} \sum_i \delta_{\psi, \sigma_i} \right] \exp \left(\beta J_0 \sum_{j \alpha} \sigma_j^\alpha \sigma_{j+1}^\alpha \right) + c \sum_{j \sum_{\tau_1 \ldots \tau_{p-1}} \prod_{k=1}^{p-1} F(\tau_k) \left(e^{\frac{\beta J}{c} \sum_{\alpha} \tau_1^\alpha \ldots \tau_{p-1}^\alpha \sigma_{j}^\alpha - 1} \right) \right]}{\sum_{\sigma_1 \ldots \sigma_N} \exp \left(\beta J_0 \sum_{j \alpha} \sigma_j^\alpha \sigma_{j+1}^\alpha \right) + c \sum_{\tau_1 \ldots \tau_{p-1}} \prod_{k=1}^{p-1} F(\tau_k) \left(e^{\frac{\beta J}{c} \sum_{\alpha} \tau_1^\alpha \ldots \tau_{p-1}^\alpha \sigma_{j}^\alpha - 1} \right)}
\]

(17)
In the absence of short-range bonds, i.e., $J_0 = 0$, this expression factorizes over sites and can be reduced considerably. In our case, however, this is not possible and in order to perform the spin summations we are now required to construct transfer matrices.

B. Transfer-matrix analysis

Defining the following $2^n \times 2^n$ matrix

$$T_{\sigma,\tau}[F] = \exp \left(\beta J_0 \sum_{\alpha} \sigma^{\alpha} \tau^{\alpha} \right) \exp \left(c \sum_{\tau_1\ldots\tau_{p-1}} \prod_{k=1}^{p-1} F(\tau_k) \left(e^{\frac{\beta J}{2} \sum_{\alpha} \tau_1^{\alpha} \ldots \tau_{p-1}^{\alpha}} - 1 \right) \right)$$

(18)

Eq. (17) reads

$$F(\psi) = \sum_{j} \sum_{\sigma,\tau,\delta} \frac{\delta_{\sigma,\tau} \psi}{N} (T^{j-1}[F])_{\sigma,\tau,\delta} (T^{N-j+1}[F])_{\sigma,\tau,\delta}$$

(19)

We insert unity $1 = \sum_{\tau} \delta_{\sigma,\tau}$ and introduce the matrix $Q_{\sigma,\tau}(\psi) = \delta_{\sigma,\tau} \psi \delta_{\sigma,\tau}$ to obtain after some algebra

$$F(\psi) = \frac{\text{tr} \left(T^{N}[F] Q(\psi) \right)}{\text{tr} \left(T^{N}[F] \right)}$$

(20)

To proceed with the evaluation of the traces in (20) we remark that in the thermodynamic limit $N \to \infty$ only λ_0, the largest eigenvalue of $T[F]$ will contribute. Defining

$$\sum_{\tau} T_{\sigma,\tau}[F] u(\tau) = \lambda_0 u(\sigma)$$

(21)

$$\sum_{\tau} v(\sigma) T_{\sigma,\tau}[F] = \lambda_0 v(\tau)$$

(22)

we have that

$$T_{\sigma,\tau}^{N}[F] \approx \lambda_0^{N} u(\sigma) v(\tau)$$

(23)

and consequently

$$F(\psi) = \sum_{\sigma} \frac{u(\psi) v(\sigma)}{\lambda_0 u(\sigma) v(\sigma)}$$

(24)

So, in order to find a solution for $F(\psi)$ we need to solve the equations (21), (22) and (24).

At this point we invoke replica symmetry (RS) by assuming that $\forall \pi \in \mathcal{S}_n : F(\psi) = F(\psi)$. One way to fulfill this is to write $F(\psi)$ as follows:

$$F(\psi) = \int d\psi W(h) \prod_{\alpha=1}^{n} \frac{e^{\beta h \psi^{\alpha}}}{2 \cosh(\beta h)}$$

(25)

The density $W(h)$ is normalised. We also assume the left and right eigenvectors to be replica symmetric

$$u(\psi) = \int dx \phi(x) \prod_{\alpha=1}^{n} e^{\beta x \psi^{\alpha}}$$

(26)

$$v(\psi) = \int dy \chi(y) \prod_{\alpha=1}^{n} e^{\beta y \psi^{\alpha}}$$

(27)

This allows us to write down self-consistent equations for $\phi(x)$ and $\chi(x)$. We insert Eqs. (25) and (27) into the l.h.s. of Eq. (21) and obtain after some algebra (see the Appendix for more details) the following closed equation for $n \to 0$

$$\lambda_0 \phi(x) = \sum_{\mu=0}^{\infty} \left\{ \frac{e^{-c \mu}}{\mu!} \prod_{\alpha=1}^{\mu} \prod_{k=1}^{p-1} dh_k^{\mu} W(h_k^{\mu}) \right\} \int dx \phi(x)$$

$$\times \left[x - \frac{1}{\beta} \sum_{\nu=1}^{\mu} \text{atanh} \left(\tanh \left(\frac{\beta J}{c} \prod_{k=1}^{p-1} \tanh(\beta h_k^{\nu}) \right) \right) \right]$$

(28)

In a similar way we derive a self-consistent equation for $\chi(x)$ by inserting (25) and (27) into the l.h.s. of Eq. (22).
At this point we choose the \(\phi(x) \) and \(\chi(x) \) to be normalised. We remark that in the limit \(c \to 0, J \to 0 \) or \(p \to \infty \) equations (25) and (26) reduce correctly to those of a one-dimensional Ising chain.

Next, to find the self-consistent equation for \(W(h) \) we start from Eq. (24) and fill in the RS-assumptions (26) and (27). Requiring that the resulting expression takes the form of Eq. (25) we obtain

\[
W(h) = \int dx \, dy \, \phi(x) \chi(y) \delta(h - x - y)
\]

(30)

Finally, in order to calculate the free energy per spin we need to determine the largest eigenvalue \(\lambda_0 \) in the limit \(n \to 0 \). We start from Eq. (21), insert Eqs. (25) and (26) to obtain

\[
\lambda_0 = 1 + n \sum_{\mu = 0}^{\infty} \frac{e^{-c \mu}}{\mu!} \prod_{\nu = 1}^{p-1} \int dh_k \, W(h_k) \int dx \, \phi(x)
\]

\[
\times \left(\frac{1}{2} \sum_s (\log (G^R_s(x, \{h^*_l\})) - \log(2 \cosh((\beta h^*_x)))) \right)
\]

\[+ \mathcal{O}(n^2)\]

(31)

which is the final result. As the elements of the adjacency matrix \(e_{i_1, \ldots, i_p} \) have been taken i.i.d. one would expect the degrees at each site to be Poisson distributed. Indeed, we see that this has come out naturally from the analysis and we can associate the average over the Poisson probabilities in (28) and (29) as an average over degrees.

The order parameters of the system under study are the average magnetization which reads, recalling Eq. (25)

\[
m_{\alpha} = \left\langle \frac{1}{N} \sum_i \sigma_i^\alpha \right\rangle \quad \text{c} \quad \text{(34)}
\]

\[\text{RS} \int dh \, W(h) \tanh(\beta h) \]

(35)

with

\[
G^R_s(x, \{h^*_l\}) = \left(\sum_{\gamma = \pm 1} e^{\beta \gamma (x + J_0 s)} \right)
\]

\[
\times \prod_{\nu = 1, \gamma_1, \ldots, \gamma_{p-1}} \sum_{\nu} e^{\beta \sum_{k=1}^{p-1} h^*_k \gamma_k + \beta J_1 \gamma_1 \ldots \gamma_{p-1} s} \]

(32)

So \(\lambda_0 = 1 \) in the limit \(n \to 0 \).

C. Thermodynamics

We can now evaluate the free energy per spin. Starting from (38) and (10) we arrive at

\[
-\beta f(\beta) = \frac{c(1 - p)}{p} \prod_{k=1}^{p} \int dh_k \, W(h_k) \left[\log \left(\sum_{\tau_1, \ldots, \tau_p} e^{\beta \sum_k h_k \tau_k + \beta J \tau_1 \ldots \tau_p} \right) - \log \left(\sum_{\tau_1, \ldots, \tau_p} e^{\beta \sum_k h_k \tau_k} \right) \right]
\]

\[
+ \sum_{\mu = 0}^{\infty} \frac{e^{-c \mu}}{\mu!} \prod_{\nu = 1}^{p-1} \int dh_k \, W(h_k) \int dx \, \phi(x) \left(\frac{1}{2} \sum_s (\log (G^R_s(x, \{h^*_l\})) - \log(2 \cosh((\beta h^*_x)))) \right) \]

(33)

and the Edwards-Anderson parameter function

\[
q_{\alpha \beta} = \left\langle \left\langle \frac{1}{N} \sum_i \sigma_i^\alpha \sigma_i^\beta \right\rangle \right\rangle \quad \text{c} \quad \alpha \neq \beta \quad \text{(36)}
\]

\[
\text{RS} \int dh \, W(h) \tanh^2(\beta h) \]

(37)

We remark that due to the RS assumption \(m_\alpha = m \) for \(\forall \alpha \), \(q_{\alpha \beta} = q \) for \(\forall \alpha \neq \beta \), and \(q_{\alpha \alpha} = 1 \).

Next, in order to obtain the phase diagram we have to study the solutions of the self-consistent equations (28), (29) and (30). It is easily seen that the field-distributions \(\phi(x) = \chi(x) = W(x) = \delta(x) \) are a solution of these equations, corresponding to the paramagnetic phase according to Eq. (33). For this solution the free energy per spin reduces to

\[
-\beta f_{\text{para}}(\beta) = \frac{c}{p} \log \cosh \left(\frac{\beta J}{c} \right) + \log \cosh \left(\beta J_0 \right) + \log(2) \]

(38)
For high temperatures, this is the only solution present. Following a standard procedure in finite-connectivity theory (see, e.g., [7]) we discuss continuous bifurcations away from this solution in order to find second-order phase transitions. Since we are dealing with field-distributions this means that the fields will be narrowly distributed around zero so that we can expand the equations (37) and (38), using equation (30). In order to quantify the difference with the deltapeak-solution we assume

\[\int dh h^k \phi(h) = O(\epsilon^k) \]

\[\int dh h^k \chi(h) = O(\epsilon^k) \]

with \(|\epsilon| \ll 1\) such that

\[m = \beta \int dx \phi(x)x + \beta \int dy \chi(y)y + O(\epsilon^3) \]

(39)

\[q = \beta^2 \int dx dy \phi(x)\chi(y)(x+y)^2 + O(\epsilon^3) \]

(40)

In order to find the transition towards non-zero magnetization we look for bifurcations where the first moments become of order \(\epsilon\). Introducing \(\xi = \int dx x \phi(x)\) and \(\eta = \int dy \chi(y)\), and recalling Eqs. (28) and (29) we find the following set of self-consistent equations

\[\xi = \xi \tanh(\beta J_0) + c \tanh(\frac{\beta J}{c})(\xi + \eta)^{p-1}\beta^{p-2} \]

(41)

\[\eta = \eta \tanh(\beta J_0) \]

\[+ c \tanh(\beta J_0) \tanh(\frac{\beta J}{c})(\xi + \eta)^{p-1}\beta^{p-2} \]

(42)

For \(p > 2\) the second terms in the r.h.s. of these equations are of a higher order in \(\epsilon\) and, hence, no second-order bifurcations to a ferromagnetic phase are found. For \(p = 2\) these equations do lead to a second-order bifurcation at

\[1 = c \tanh(\frac{\beta J}{c}) \exp(2\beta J_0) \]

(43)

in agreement with [7].

Analogously, we can look for bifurcations to a spin-glass transition by expanding the second-order moments, assuming that \(\xi = \eta = 0\). Introducing \(\overline{x^2} = \int dx x^2 \phi(x)\) and \(\overline{y^2} = \int dy y^2 \chi(y)\) we get

\[\overline{x^2} = x^2 \tanh^2(\beta J_0) \]

\[+ c \tanh^2(\frac{\beta J}{c})(x+y)^2(\beta^{p-2} \]

(44)

\[\overline{y^2} = y^2 \tanh^2(\beta J_0) \]

\[+ c \tanh^2(\beta J_0) \tanh^2(\frac{\beta J}{c})(x+y)^2\beta^{p-2} \]

(45)

Again, from this we can deduce that there is no second-order spin-glass transition for \(p > 2\) but for \(p = 2\) a continuous bifurcation to \(q > 0\), \(m = 0\) occurs at

\[1 = c \tanh^2(\frac{\beta J}{c}) \cosh(2\beta J_0) \]

(46)

The \(p = 2\) results are in agreement with those of [7], where it is also argued that for \(J, J_0 \geq 0\) the second-order paramagnetic to spin-glass instability cannot occur as it will always be preceded by the ferromagnetic one when lowering the temperature. From simulation experiments we find some evidence for glassy behavior at lower temperatures for all \(p\), especially for \(\beta J_0 \leq 0\), as will be shortly discussed in Section V. There we also study first-order transitions by employing the transfer-matrix analysis developed in Sec. III A, B together with population dynamics.

IV. THE 1 + \(\infty\) DIMENSIONAL MODEL

A limiting case of the previous results is a one-dimensional Ising chain superimposed on a fully connected hypergraph. This model gets a mean-field character and can be solved analytically by using the transfer-matrix approach. In the sequel we denote this model by the 1 + \(\infty\) dimensional model.

In order to have a multipole interaction between every multiplet of \(p\) spins we must take \(c = N^{p-1}/(p-1)!\) (see e.g. equation (11)). Recalling the Hamiltonian (5) and the local field (10) this leads to the following free energy per spin

\[F = \frac{1}{2} \sum_{i,j} J_{ij} (\phi_i \phi_j + \chi_i \chi_j) + J_0 (\phi_i \chi_i) + h_i \phi_i + h_i \chi_i \]

(49)
\[-\beta f = \lim_{N \to \infty} \frac{1}{N} \log \left(\text{Tr} \exp \left(\frac{\beta J}{pN^{p-1}} \sum_{j_1} \cdots \sum_{j_p} \sigma_{j_1} \cdots \sigma_{j_p} + \beta J_0 \sum_i \sigma_i \sigma_{i+1} \right) \right) \]

\begin{align*}
&= \lim_{N \to \infty} \frac{1}{N} \log \left(\text{Tr} \int dmd\hat{m} \exp \left(i\hat{m}(m - \frac{1}{N} \sum_i \sigma_i) \exp \left(\frac{\beta JN}{p} m^p + \beta J_0 \sum_i \sigma_i \sigma_{i+1} \right) \right) \right) \\
&= \lim_{N \to \infty} \frac{1}{N} \log \left(\int dmd\hat{m} \exp \left(iN\hat{m} \hat{m} + \frac{\beta JN}{p} m^p \right) \text{Tr} \left[T^N \right] \right). \tag{49}
\end{align*}

Here T is the transfer-matrix

\[T = \begin{pmatrix} e^{-i\hat{m} + \beta J_0} & e^{-i\hat{m} - \beta J_0} \\ e^{i\hat{m} - \beta J_0} & e^{i\hat{m} + \beta J_0} \end{pmatrix} \tag{50} \]

The eigenvalues λ of this matrix are

\[\lambda_\pm(\hat{m}) = e^{\pm \beta J_0} \cosh(i\hat{m}) + (e^{2\beta J_0} \cosh^2(i\hat{m}) - 2 \sinh(2\beta J_0))^{\frac{1}{2}} \tag{51} \]

Using the fact that for $\lambda \to \infty$ $\text{Tr} \left[T^N \right] = \lambda_+^N + \lambda_-^N \approx \lambda_+^N$ we write equation \[49\] as

\[-\beta f = \lim_{N \to \infty} \frac{1}{N} \log \left(\int dmd\hat{m} \right.

\times \exp \left(iN\hat{m} \hat{m} + \frac{\beta JN}{p} m^p + N \log(i\lambda_+ \hat{m}) \right) \left. \right) \]

\[\tag{52} \]

In the limit $N \to \infty$, the fixed-point equation minimizing the free energy per spin is given by

\[m = G(m), \quad G(m) \equiv \frac{\sinh(\beta Jm^{p-1})}{\sqrt{\sinh^2(\beta Jm^{p-1}) + e^{-2\beta J_0}}} \tag{53} \]

We remark that this equation reduces to the one presented in \[20\] for $p = 2$.

To look for first-order transitions we have to find solutions to $m = G(m)$ and $1 = G'(m)$ at $m \neq 0$. In this model this can be done analytically by introducing the auxiliary variable

\[x = \beta Jm^{p-1}, \quad x \in [-\infty, \infty]/\{0\} \tag{55} \]

leading to the following two equations describing the transition line, parametrized by x:

\[\beta J_0(x) = -\frac{1}{4} \log \left(\frac{\tanh(x) \sinh^2(x)}{x(p-1) - \tanh(x)} \right) \tag{56} \]

\[\beta J(x) = x \left(\frac{x(p-1) - \tanh(x)}{x(p-1) - \tanh(x)} \right)^{\frac{1}{2}(p-1)} \tag{57} \]

We remark that in the limit $\beta J \to \infty$, the slope of $\beta J/\beta J_0$ approaches -2 and, hence, is p-independent.

For any non-zero x we can now find a pair βJ and βJ_0 at which a first order phase transition occurs. The value of the magnetization m at that point is given by equation \[55\]. These phase transition lines are plotted in Fig. 2 for several values of the degree p.

We see that no transitions occur for even p and $\beta J < 0$. Furthermore, we remark the βJ symmetry for odd p, due to the symmetry properties of the Hamiltonian \[55\] and \[1\] under the change of sign $\sigma \to -\sigma$. The ferromagnetic phase is situated to the right of the transition lines, for odd p it lies below the corresponding solid line. For increasing p, the ferromagnetic region decreases. For the special case of $p = 2$ the paramagnetic and ferromagnetic phase coexist between the first and second-order transition lines with as tri-critical point $\beta J = \sqrt{3} \approx 1.732$, $\beta J_0 = -\log(3)/4 \approx -0.275$. The latter results are in agreement with the results of \[21\] and with those of \[1\] in the case of one dimension. This analysis serves as a limiting case of our small-world model for increasingly larger values of the mean connectivity per site c.

With these considerations we immediately observe that there are no solutions for $p > 2$, but for $p = 2$ we find the solution

\[\beta J = e^{-2\beta J_0} \tag{54} \]
V. RESULTS FOR FINITE c.

The main equations describing the thermodynamics of the small-world hypergraph for finite c are Eqs. (28), (29) and (30). To solve these equations we use the population dynamics algorithm to generate field distributions together with Monte Carlo integration over the generated populations in order to obtain the physical parameters. The important parameters of this algorithm are the size of the populations and the number of iterations. The size of the populations has to be big enough to get clearly outlined distributions keeping in mind, however, that the computational time required for the algorithm to converge is linear in this parameter. In most cases we find that populations of 10000 fields give accurate results. The number of iterations per spin depends strongly on the physical parameters. It turns out that most of the time about 1000 iterations results in a reasonable accuracy. To calculate the ferromagnetic free energy it proves useful to average over several (e.g. 100) runs with different initial conditions.

From the $1 + \infty$ dimensional model solved analytically in Section 11 we learned already that the physics for $p = 2$ versus the one for $p \geq 3$ might be very different. As a benchmark test for our derivations we have reproduced some of the results for $p = 2$ found in [5, 21]. We do not repeat them here but concentrate on $p \geq 3$ in the sequel.

Starting from the paramagnetic phase and lowering the temperature, ferromagnetic solutions will start to appear, indicating a dynamical transition which appears to be first order. However, to check which of these solutions is thermodynamically stable, we need to calculate the free energy of both the $m = 0$ and $m \neq 0$ solutions. The former is given by (38), and the latter can be calculated numerically from (33). This leads to two special temperatures: the temperature where the first $m \neq 0$ solutions start to appear, also known as the spinodal point, dynamical transition or metastable transition, and the temperature where the ferromagnetic free energy becomes lower than the paramagnetic free energy, indicating the thermodynamic phase transition.

First, we calculate for general p the critical temperatures at which these transitions occur. They are plotted for the the cases $p = 3, 4$ for the model without chain contribution ($J_0 = 0$) in Fig. 4, and with chain contribution ($J_0 = 0.1$) in Fig. 5. Above the thermodynamic transition lines (T_{Tm}) we find the paramagnetic phase, below the ferromagnetic phase. Metastable ferromagnetic states can be found up until the corresponding spinodal lines (T_{ms}). For all J_0 we see that the critical temperature decreases with increasing p. For $J_0 = 0$ a higher c is required to have ferromagnetic behavior. For numerical reasons we do not consider very small T or c. The results for $p = 3$ and $J_0 = 0$ are in agreement with the T_{Tm} and T_{ms} transition lines given in [13] (note that our Hamiltonian is rescaled with a factor c).
FIG. 4: Critical temperatures as a function of the average connectivity c for the ferromagnetic-paramagnetic phase transition (T_{fm}) and the spinodal line (T_{ms}). Parameters are: $p = 3, J_0 = 0$ (solid); $p = 4, J_0 = 0$ (dotted); For all lines $T = \pm$. Furthermore, we search for the transition lines in the $\beta J - \beta J_0$ plane. These transitions between $m \neq 0$ and $m = 0$ are plotted in Fig. 4 for $p = 3, \beta J > 0$ and $c = 1, 3, 10$ (solid lines), together with the spinodal lines (dotted lines) and the theoretical result for $c \to \infty$ (dashed line), which is solved analytically in Section IV. All transitions shown here are first-order. The ferromagnetic phase is situated to the right of the transition lines and increases substantially with growing c. For bigger values of c, the transitions approach the analytically derived $c = \infty$ result. Because p is odd, the transition lines for $\beta J < 0$ are found by reflection symmetry with respect to the βJ_0 axis. Just as in the $p = 2$ case, the small-world hypergraph has its ferromagnetic transition at finite temperatures for all non-zero values of c. Analogously to the $1 + \infty$ dimensional case (see fig. 2), the ferromagnetic region decreases with increasing p, and disappears for $p \to \infty$.

Simulations have been performed for this small-world model with heat-bath dynamics and sequential updating. Our results in this perspective are somewhat limited by the nature of the phase transition: We are dealing with a very sparse system undergoing a first-order phase transition. Metastabilities will be present (as already indicated by the presence of the spinodal lines) and cause slow dynamics near the thermodynamic transition line. This in turn causes the system to show strong hysteresis effects. With these simulations we can look for the spinodal line by initializing the system in a fully magnetized state, and looking for the temperature where order disappears at long times. As a typical example the results for $p = 3, c = 3$ are plotted in Fig. 6 for 10^4 spins and different numbers of iterations. Very good agreement with the spinodal line obtained with the population dynamics solution is found in the positive βJ_0 region. When J_0 is negative however we do not find satisfactory results. This can be explained by the opposing forces at work in the system (ferromagnetic graph and antiferromagnetic chain), which will only slow the dynamics further down. We were unable to pinpoint the thermo-
dynamic phase transitions with simulations due to the effects mentioned above. The simulations show some further evidence for glassy dynamics (very large spin-spin autocorrelation times) for lower temperatures, but a detailed discussion of such non-trivial glassy behavior is beyond the scope of the present work.

FIG. 7: Phase transition lines in the $\beta J - \beta J_0$ plane for $p = 3, c = 3$. The solid line represents the spinodal line found by the population dynamics result. The triangles, circles and squares indicate the results of simulations with 10^4 spins and, respectively, $2000, 5 \times 10^4, 5 \times 10^6$ iterations per spin.

VI. DISCUSSION

In this paper, we have studied the thermodynamics of small-world hypergraphs consisting of sparse Poisson random graphs with p-spin interactions superimposed onto a one-dimensional Ising chain with nearest-neighbor interactions. Using a replica-symmetric transfer-matrix analysis and the population dynamics algorithm we have obtained the phase behavior of this system as a function of the short-range and long-range couplings. We find for $p \geq 3$ that all paramagnetic-ferromagnetic phase transitions are purely first order, in contrast with $p = 2$ where also a second order phase transition occurs. For fixed p and increasing connectivity c the ferromagnetic phase increases substantially and the transition line converges to the analytically derived result for the $1 + \infty$ dimensional model. For the latter the ferromagnetic region decreases for growing p. Using a bifurcation analysis we see that again, $p = 2$ has also a second-order transition and the first-order transition occurs only for $\beta J_0 \leq -0.275$.

Acknowledgments

We would like to thank Heinz Horner for interesting discussions. We are indebted to the referee for pointing out an error in the first version of this manuscript. This work is partially supported by the Fund for Scientific Research Flanders-Belgium.

Appendix: self-consistent equation for $\phi(x)$

In order to derive the self-consistent equation for $\phi(x)$ we insert (26) into the l.h.s. of (21) using (18)

$$\sum_\tau T_{\sigma, \tau}[F] u_0(\tau) = \sum_\tau \exp \left(\beta J_0 \sum_\alpha \sigma^\alpha \tau^\alpha + c \sum_{\tau_1...\tau_{p-1}} \prod_{k=1}^{p-1} F(\tau_k) \left(e^{\frac{\alpha}{\mu \tau} \sum_\alpha \tau_1^\alpha...\tau_{p-1}^\alpha \sigma^\alpha} - 1 \right) \right) \int dx \phi(x) e^{\beta \sum_\alpha \tau^\alpha}$$ \hspace{1cm} (58)

$$= \sum_\tau \int dx \phi(x) e^{\beta \sum_\alpha \tau^\alpha} \sum_{\alpha=1}^n \sum_{\gamma=1}^n e^{\beta J_0 \sum_\alpha \sigma^\alpha \gamma} \sum_{\mu=0}^{\infty} \frac{e^{-c}}{\mu!} \prod_{k=1}^{p-1} F(\tau_k) \left(e^{\frac{\alpha}{\mu \tau} \sum_\alpha \tau_1^\alpha...\tau_{p-1}^\alpha \sigma^\alpha} \right)$$ \hspace{1cm} (59)

$$= \left(\prod_{\alpha=1}^n \sum_{\gamma=1}^n \int dx \phi(x) e^{\beta \gamma \tau + \beta J_0 \sigma^\gamma} \gamma \sum_{\mu=0}^{\infty} \frac{e^{-c}}{\mu!} \prod_{\tau_k \tau_1...\tau_{p-1}} \prod_{\nu=1}^{\nu} \prod_{k=1}^{p-1} F(\tau_k) \left(e^{\frac{\alpha}{\mu \tau} \sum_\alpha \tau_1^\alpha...\tau_{p-1}^\alpha \sigma^\alpha} \right) \right)$$ \hspace{1cm} (60)

In the transition to (59) we have used that $F(\psi)$ is normalised to separate the term e^{-c}. We then have expanded the outermost of the remaining double exponential into a series. In (60) we have written the powers as a product over a new replica index ν. The vectors τ now have two replica indices. We also note that a poissonian factor appears. At
At this point we insert Eq. (25) to obtain

\[
\sum_{\tau} T_{\sigma, \tau}[F] u_0(\tau) = \left(\prod_{\alpha=1}^{n} \sum_{\gamma=\pm 1} \int dx \, \phi(x) e^{\beta x \gamma + \beta J_0 \sigma^\gamma} \right) \times \sum_{\mu=0}^{\infty} \left(\frac{e^{-c} e^\mu}{\mu!} \sum_{\nu=1}^{\mu} \prod_{k=1}^{\mu-1} \int dh_k^\nu W(h_k^\nu) \prod_{\alpha=1}^{n} \frac{e^{\beta h_k^\nu \gamma_\alpha}}{2 \cosh(\beta h_k^\nu)} \right) \left(\frac{\delta}{\beta} \sum_{\alpha=1}^{n} \gamma_\alpha \right)
\]

\[
= \sum_{\mu=0}^{\infty} \left(\frac{e^{-c} e^\mu}{\mu!} \prod_{k=1}^{\mu} \prod_{\nu=1}^{\mu-1} \int dh_k^\nu \frac{W(h_k^\nu)}{2 \cosh(\beta h_k^\nu)} \int dx \, \phi(x) \right) \times \prod_{\alpha=1}^{n} \left(\sum_{\gamma=\pm 1} e^{\beta \gamma (x+J_0 \sigma^\gamma)} \right) \prod_{\nu=1}^{\mu} \sum_{\gamma_1 \cdots \gamma_{\mu-1}} e^{\beta \sum_{k=1}^{\mu-1} h_k^\nu \gamma_k + \frac{\beta J_0}{c} \gamma_1 \cdots \gamma_{\mu-1} \sigma^\nu} \quad (61)
\]

We now focus on the second line of the last equation

\[
\prod_{\alpha=1}^{n} \left(\sum_{\gamma=\pm 1} e^{\beta \gamma (x+J_0 \sigma^\gamma)} \right) \prod_{\nu=1}^{\mu} \sum_{\gamma_1 \cdots \gamma_{\mu-1}} e^{\beta \sum_{k=1}^{\mu-1} h_k^\nu \gamma_k + \frac{\beta J_0}{c} \gamma_1 \cdots \gamma_{\mu-1} \sigma^\nu}
\]

\[
= \exp \left(\sum_{\alpha=1}^{n} \log (G^R_{\sigma, \alpha}(x, \{h_k^\nu\})) \right)
\]

\[
= \exp \left(\sum_{\alpha=1}^{n} \sum_{s=\pm 1} \frac{1}{2} (1 + s \sigma^\alpha) \log (G^R_{s}(x, \{h_k^\nu\})) \right)
\]

\[
= \exp \left(\frac{1}{2} \left(\sum_{s=\pm 1} s \log (G^R_{s}(x, \{h_k^\nu\})) \right) \sum_{\alpha=1}^{n} \sigma^\alpha + \frac{n}{2} \sum_{s=\pm 1} \log (G^R_{s}(x, \{h_k^\nu\})) \right) \quad (62)
\]

with (recall equation (32))

\[
G^R_{\sigma}(x, \{h_k^\nu\}) = \left(\sum_{\gamma=\pm 1} e^{\beta \gamma (x+J_0 \sigma^\gamma)} \right) \prod_{\nu=1}^{\mu} \sum_{\gamma_1 \cdots \gamma_{\mu-1}} e^{\beta \sum_{k=1}^{\mu-1} h_k^\nu \gamma_k + \frac{\beta J_0}{c} \gamma_1 \cdots \gamma_{\mu-1} \sigma^\nu} \quad (63)
\]

We take the limit \(n \to 0 \) in (62) and replace the last line of (61) with this limit

\[
\sum_{\tau} T_{\sigma, \tau}[F] u_0(\tau) = \sum_{\mu=0}^{\infty} \left(\frac{e^{-c} e^\mu}{\mu!} \prod_{k=1}^{\mu} \prod_{\nu=1}^{\mu-1} \int dh_k^\nu \frac{W(h_k^\nu)}{2 \cosh(\beta h_k^\nu)} \right) \int dx \, \phi(x) \times \exp \left(\frac{1}{2} \left(\sum_{s=\pm 1} s \log (G^R_{s}(x, \{h_k^\nu\})) \right) \sum_{\alpha=1}^{n} \sigma^\alpha \right)
\]

\[
= \int dx' \sum_{\mu=0}^{\infty} \left(\frac{e^{-c} e^\mu}{\mu!} \prod_{k=1}^{\mu} \prod_{\nu=1}^{\mu-1} \int dh_k^\nu \frac{W(h_k^\nu)}{2 \cosh(\beta h_k^\nu)} \right) \int dx \, \phi(x) \times \delta \left[x' - \frac{1}{\beta} \left(\sum_{s=\pm 1} s \log (G^R_{s}(x, \{h_k^\nu\})) \right) \right] \exp \left(\beta x' \sum_{\alpha=1}^{n} \sigma^\alpha \right) \quad (64)
\]

This expression is now of the form (26) and identifying terms leads to

\[
\lambda_0 \phi(x') = \sum_{\mu=0}^{\infty} \left(\frac{e^{-c} e^\mu}{\mu!} \prod_{k=1}^{\mu} \prod_{\nu=1}^{\mu-1} \int dh_k^\nu W(h_k^\nu) \right) \int dx \, \phi(x) \delta \left[x' - \frac{1}{\beta} \left(\sum_{s=\pm 1} s \log (G^R_{s}(x, \{h_k^\nu\})) \right) \right]
\]
where we have used additionally that \((2 \cosh(\beta h_k^\nu))^n \to 1\) when \(n \to 0\).

This equation can be simplified further as follows

\[
G_s^R(x, \{h_k^\nu\}) = \left(\sum_{\gamma=\pm 1} e^{\beta \gamma (x + J_0 \sigma)} \right)^{\mu} \prod_{\nu=1}^{\mu} \sum_{\gamma_1 \ldots \gamma_{\nu-1}} e^{\beta \sum_{k=1}^{\nu-1} h_k^\gamma + \frac{\beta}{c} \gamma_1 \ldots \gamma_{\nu-1} \sigma}
\]

\[
= 4 \cosh(\beta(x + J_0 \sigma)) \prod_{\nu=1}^{\mu} \sum_{\gamma_1 \ldots \gamma_{\nu-1}} \cosh \left(\beta h_k^\nu + \frac{\beta J_1}{c} \gamma_1 \ldots \gamma_{\nu-1} \sigma \right) e^{\beta \sum_{k=1}^{\nu-1} h_k^\gamma}
\]

\[
= 4 \exp \left(\frac{1}{2} \log(\cosh(\beta h_1^\nu + \frac{\beta J_1}{c}) \cosh(\beta h_1^\nu - \frac{\beta J_1}{c})) \right) \cosh(\beta(x + J_0 \sigma))
\]

\[
\times \prod_{\nu=1}^{\mu} \sum_{\gamma_1 \ldots \gamma_{\nu-1}} \exp \left(\gamma_2 \ldots \gamma_{\nu-1} \sigma \tanh(\beta h_1^\nu) \tanh(\frac{\beta J_1}{c}) \right) e^{\beta \sum_{k=2}^{\nu-1} h_k^\gamma}
\]

\[
= C(h_1^\nu, h_2^\nu, \ldots, h_{\nu-1}^\nu, J) \exp \left(\sum_{\nu=1}^{\mu} \sigma \tanh \left(\tanh(\frac{\beta J_1}{c}) \prod_{k=1}^{\nu-1} \tanh(\beta h_k^\nu) \right) \right)
\]

(65)

with \(C(h_1^\nu, h_2^\nu, \ldots, h_{\nu-1}^\nu, J)\) a function depending only on \(h_1^\nu, h_2^\nu, \ldots, h_{\nu-1}^\nu, J\) and \(\beta\). We finally arrive at

\[
\frac{1}{2\beta} \left(\sum_{s=\pm 1} s \log \left(G_s^R(x, \{h_k^\nu\}) \right) \right)
\]

\[
= \frac{1}{\beta} \left(\sum_{\nu=1}^{\mu} \sigma \tanh \left(\tanh(\frac{\beta J_1}{c}) \prod_{k=1}^{\nu-1} \tanh(\beta h_k^\nu) \right) + \tanh(\beta J_0 x) \right)
\]

(66)

In this way we have obtained the self-consistent equation \(25\) for \(\phi(x)\). The equation for \(\chi(x)\) can be derived in an analogous way.

From these equations we can also find the largest eigenvalue \(\lambda_0\). Keeping the factor of order \(n\) in (82) we end up with the following equation

\[
\lambda_0 \phi(x') = \sum_{\mu=0}^{\infty} e^{-\mu c} \frac{\mu!}{\mu!} \prod_{k=1}^{\nu-1} \int dh_k^\nu \left(W(h_k^\nu) \right) \int dx \phi(x)
\]

\[
\times \delta \left[x' - \frac{1}{2\beta} \left(\sum_{s=\pm 1} s \log \left(G_s^R(x, \{h_k^\nu\}) \right) \right) \right] \exp \left(\sum_{s=\pm 1} \frac{\mu n}{2} \log \left(G_s^R(x, \{h_k^\nu\}) \right) \right)
\]

(67)

When we integrate both sides over \(x'\) and expand the last exponential we find equation \(43\).
[13] E Ramadan, A Tarafdar, and A Pothen, *18th International Parallel and Distributed Processing Symposium (IPDPS’04) - Workshop 9* p. 1896

[14] A. Wagner and D. A. Fell, Proc. R. Soc. Lond. B **268**, 1803-1810 (2001)

[15] S. Franz, M. Mézard, F. Ricci-Tersenghi, M. Weigt, and R. Zecchina, Europhys. Lett. **55**, 465 (2001).

[16] A. Barrat and R. Zecchina, Phys. Rev. E **59**, 1299 (1999).

[17] F. Ricci-Tersenghi, M. Weigt and R. Zecchina, Phys. Rev. E **63**, 026702 (2001).

[18] R. Heylen, N.S. Skantzos, J. Busquets Blanco and D. Bollé, Phys. Rev. E **73**, 016138 (2006).

[19] M. Mézard and G. Parisi, Eur. Phys. J. B **20**, 217 (2001).

[20] N.S. Skantzos and A.C.C. Coolen, J. Phys. A: Math. Gen. **33**, 5785 (2000).

[21] M. Kardar, Phys. Rev. **28**, 244 (1983).

[22] M. Mézard, G. Parisi and M.A. Virasoro, *Spin Glass Theory and Beyond* (World Scientific, Singapore, 1987).