Effect of Ganoderma lucidum fermentation on the content and α-glucosidase inhibitory activity of mulberry leaves flavonoid

Xinyu Hu *
Shandong Agricultural University, Tai’an, Shandong, China
* Corresponding Author Email: xinyuhu@sdau.edu.cn

Abstract. Diabetes is now a worldwide disease that has a negative impact on human health. As a result, the search for low-cost, safe, and effective diabetes treatment drugs derived from natural medicinal plants has become a research priority. Mulberry leaf (ML) flavonoids have been proven to be a highly effective α-glucosidase inhibitor and have a good effect on the treatment of diabetes. The solid state fermentation of Ganoderma lucidum utilizing ML as substrate was explored in this study with the goal of increasing the concentration and glucosidase inhibitory effect of mulberry leaf flavonoid (MLF). The results indicated that fermented by G. lucidum for 8 d could increase the content of MLF from 1.596 mg/ml to 4.736 mg/ml. Meanwhile, the polysaccharide in ML would be degraded and utilized as nutrients to support the cell growth of G. lucidum. The inhibitory rate of MLF on α-glucosidase was significantly enhanced by fermentation. During the concentration of 10 μg/ml, the α-glucosidase inhibition rate of MLF was enhanced from 45.31 ± 2.24% to 73.46 ± 3.28% when fermented by G. lucidum for 8 d. Moreover, it was found that the inhibition type of MLF would change from competitive inhibition to mixed-type inhibition. This study will serve as a reference for microbial fermentation and enrichment of medicinal plant active components, as well as a contribution to the high-value-added use of mulberry leaf resources.

Keywords: Mulberry leaves, Diabetes mellitus, Flavonoid, α-Glucosidase inhibitory activity, Ganoderma lucidum, Microbial fermentation.

1. Introduction

Diabetes is a metabolic disorder caused by genetic factors, immune disorders, microbial infections, and other pathogenic factors that cause hypoplasia and insulin resistance in the body[1]. It was reported that type II diabetes (T2DM), mainly caused by the insulin resistance and β-cell dysfunction accounted for more than 90% of diabetes cases and affected more than 400 million people worldwide[2,3]. For decades, the global diabetes situation has been severe, and the prevalence and mortality have been slowly increasing[4]. According to the International Diabetes Federation (IDF), more than 463 million people in the world have diabetes, and that number is expected to climb to 700 million by 2045[5,6].

With the rising prevalence of diabetes, many anti-diabetic drugs (ADMs) have been developed. These include insulin secretagogues (sulfonylureas and non-sulfonylureas), biguanides, α-glucosidase inhibitors, and thiazolidinediones (insulin sensitizers)[7]. By decreasing the activity of glucosidase on the small intestine mucosa, alpha-glucosidase inhibitors prevent glucose absorption[8]. Acarbose, miglitol, and voglibose are the most commonly used glucosidase inhibitors in clinical practice today. However, their efficacy is still controversial due to their possible adverse side effects such as bloating, flatulence, and asthma or diarrhea[9]. Compared with synthetic inhibitors, natural compounds originate from medicinal plants have advantages in terms of safety, diversity and economy, and thereby received increasing attention worldwide[10].

Presently, the α-glucosidase inhibitory activity of several medicinal and edible homologous plants such as astragalus, mulberry leaves, angelica, ginseng, tea and pumpkin have been confirmed[9]. Among them, mulberry leaf (ML) is a Chinese herbal medicine with huge resources, which has been used for treatment of diabetes since ancient times. Therefore, it has a good development prospect to extract hypoglycemic active substances from ML and make hypoglycemic products[11].
Modern research indicates that ML contains a variety of active compounds with glucosidase inhibitory activity, such as polysaccharides, flavonoids, and alkaloids [12], which have a variety of biological activities, including hypoglycemic, hypolipidemic, antioxidant, and anti-aging properties [13]. Mulberry leaf is a popular traditional Chinese medicine [14] that has anti-diabetic and anti-inflammatory properties [15]. The annual harvest of mulberry leaves can exceed 20 tons per hectare due to the rapid development of mulberry plants. Mulberry leaves, on the other hand, were only used 1-3 percent of the time [16]. As a result, increasing the amount of active chemicals in mulberry leaves is critical. Microbial fermentation technology is widely used for enhancing the content and activity of active ingredients in the medicinal plants [17, 18]. Solid state fermentation (SSF) is often used in the processing of traditional Chinese medicine [19]. Ganoderma lucidum is a kind of porous fungi and its polysaccharide is a good hypoglycemic active component [20]. Therefore, the SSF of Ganoderma lucidum was examined utilizing ML as a substrate in order to improve the flavonoids content and improve the glucosidase inhibitory activity of mulberry leaves in this work.

2. Materials and approaches

2.1. Materials and reagents

The China Center of Industrial Culture Collection sold Ganoderma lucidum (CICC 14029), (CICC, Beijing, China). Mulberry leaves were purchased from Shangluo City, Shaanxi Province. Aladdin Biochemical Technology Co., Ltd provided the acarbose (Shanghai, China). Yuanye Biotechnology Co., Ltd provided glucosidase (from yeast), rutin standard, and pNPG (4-nitrophenyl—D-glucopyranoside) (Shanghai, China). Other traditional reactants were acquired from Sinopharm Chemical Reagent Co., Ltd. (Beijing, China) and were analytical grade unless otherwise noted.

2.2. Mulberry leaf fermentation in solid state

Preparation of G. lucidum seed liquid: potato juice-glucose liquid medium, shake cultured for 3-5 days (28-30℃, 180-200 rpm), and then used for fermentation inoculation. The inoculum of G. lucidum was prepared by cultivated at 28-30℃ for 3-5 d.

Mulberry leaf medium was prepared by mixing 0.5 g maize flour and 0.5 g bran into 8 g fresh ML, then adding distilled water to achieve a solid-to-liquid ratio of 1:3. The mixture was autoclaved for 20 minutes at 115℃ after being thoroughly mixed.

The SSF of G. lucidum on mulberry leaf medium: 10% of the G. lucidum inoculum was inoculated into mulberry leaf medium to make the final S/L to 1:4. The mixture was then statically cultured at 28℃, with samples obtained at 0, 2, 4, 6, and 8 days. The control group was those who were not injected with G. lucidum. Each experiment was run in three different ways.

2.3. Extraction and purification of flavonoids

Total flavonoids were extracted and assayed in ML according to the instructions below [21]. Two gram (accurated to 0.001 g) of the samples were accurately added with 20 ml of 70% ethanol solution. After that, the mixture was ultrasonically extracted for 20 minutes at 50℃, and the filtrate was collected by filtration. The precipitate was extracted again, and the filtrations were combined to obtain the crude mulberry leaf total flavonoid extracts. The pH of the aforementioned extract was then corrected to 2.5 using 6 M HCl, and the precipitate was collected by centrifugation at 8000 rpm for 10 minutes. Finally, the mulberry leaf flavonoid extract (MLF) was obtained by dissolved the precipitate in 70% ethanol.

2.4. Determination of flavonoids

Mix 2 mL MLF with 0.3 mL 5 percent sodium nitrite solution evenly and let aside for 6 minutes at room temperature. Then 0.3 mL of 10% aluminum nitrate solution was added and statically reacted for another 6 minutes at room temperature. The sodium hydroxide solution (4 wt%) was then added.
and diluted to 10 ml with 70% ethanol. The absorbance at 510 nm was measured using a 754PC UV-Visible Spectrophotometer (JingHua Technology Co., Ltd., Shanghai, China) with rutin as the standard.

2.5. Analysis of Inhibitory Rate of Flavonoids on α-Glucosidase

On a 96-well plate, the inhibitory efficiency of MLF on-glucosidase was evaluated using a microplate reader (MB-96B, Chenghuai technology Co., LTD., Suzhou, China) [22,23]. First, different volume of PBS buffer (pH 6.8) was added to the 96-well plate according to Table 1. Each group's absorbance at 405 nm was measured at the end of the procedure. Formula was used to compute the inhibition rate of glucosidase (1). The IC50 value was established as the inhibitor concentration required to inhibit 50% of enzyme activity.

\[
\text{Inhibition rate(\%)} = \frac{(A_C - A_B) - (A_S - A_{SB})}{(A_C - A_B)} \times 100\% (1)
\]

The absorbance at 405 nm of the blank group, control group, sample blank group, and sample group, respectively, is AB, AC, AS, and ASB.

Table 1. Measurement and adding order of each reagent

| Reagents                      | Blank group | Control group | Sample blank group | Sample group |
|-------------------------------|-------------|---------------|--------------------|--------------|
| PBS solution (μl)             | 80          | 70            | 60                 | 50           |
| Inhibitor/Sample (μl)         | 0           | 0             | 20                 | 20           |
| α-glucosidase solution (μl)   | 0           | 10            | 0                  | 10           |
| Mixed evenly and activated at 37°C for 15 min |              |               |                    |              |
| pNPG substrate (μl)           | 20          | 20            | 20                 | 20           |
| Mixed evenly and reacted at 37°C for 30 min |              |               |                    |              |
| Sodium carbonate solution (μl)| 100         | 100           | 100                | 100          |

2.6. Kinetic analysis of flavonoids inhibiting α-glucosidase

To investigate the inhibitory effect of flavonoid extracts obtained from unfermented or fermented mulberry leaves on the formation of p-nitrophenol (PNP), the reactions containing 1 U/mL α-glucosidase and 10 mM pNPG were recorded at different flavonoid concentrations. Record the absorbance change within 30 min. The substrate pNPG concentrations in kinetic tests were 2.5 mM, 5 mM, 7.5 mM, and 10 mM, whereas the inhibitor concentrations were 2 g/ml, 6 g/ml, and 10 g/ml. The kind of inhibition was determined by graphing the enzyme reaction rate versus substrate concentration at various concentrations of mulberry leaf flavonoid extracts in a double-reciprocal plot (inhibitors).

The competitive inhibition mechanism and mixed-type inhibitory mechanism of mulberry leaf flavonoids on-glucosidase were studied using double reciprocal formula (2) and (3), respectively. [24,25].

\[
\frac{1}{V} = \frac{1}{V_{max}} + \frac{K_m}{V_{max}[S]} \left(1 + \frac{[I]}{K_i}\right) (2)
\]

\[
\frac{1}{V} = \frac{K_m}{V_{max}} \left(1 + \frac{[I]}{K_i}\right) \left(\frac{1}{[S]} + \frac{1}{V_{max}} \left(1 + \frac{[I]}{K_{is}}\right)\right) (3)
\]

Where Ki is the enzyme-substrate complex binding inhibition constant. The Y-intercept vs. [I] secondary plots are linearly fitted.

3. Result and discussion

3.1. Effect of fermentation time on flavonoid content

The variation of the content and biological activity of flavonoids in mulberry leaves was investigated in this paper. Previous studies have shown that the selected Ganoderma lucidum
fermentation has the best promotion effect on the production of DNJ (an alkaloid) in mulberry leaves[26]. Of course, microbial fermentation experiments must also be carried out under the optimal culture time and conditions[27]. In a study on microbial fermentation of Rhizoma Paridis, it was found that microbial fermentation significantly increased the total flavonoid content in Rhizoma Paridis[28]. So some scholars use three kinds of Bacillus to ferment mulberry leaves and measure the content of flavonoids[29]. The results showed that with the prolongation of fermentation time, the content of total flavonoids also tended to accumulate gradually. However, different microbial fermentations have different effects on the promotion of active substances in plants[13].

The concentrations of flavonoids and polysaccharides in mulberry leaves were determined at different fermentation time periods in this study, as shown in Fig 1. The results showed that the quantity of flavonoids in mulberry leaves increased and then decreased as the fermentation progressed, peaking at 8 days. The fermentation reduced the amount of polysaccharides in mulberry leaves. It could be inferred that this situation was caused by the full utilization of polysaccharides in mulberry leaves by microorganisms.

![Figure 1. The variation of flavonoids and polysaccharides in mulberry leaves changes during G. lucidum fermentation.](image)

3.2. The effect of fermented mulberry leaf flavonoids on the inhibition rate of α-glucosidase

α-glucosidase is a key enzyme that affects blood sugar levels in the body and is one of the most important carbohydrate hydrolases[30]. Flavonoids are suitable materials for studying the specificity of α-glucosidase inhibition because they have a tricyclic structure and chemical structural changes[31]. The quantity of flavonoids in mulberry leaves and the inhibition rate of α-glucosidase before and after 8 days of G. lucidum fermentation were measured in this study. The results indicated that the flavonoids obtained from the mulberry leaves fermented for 8d gave the highest inhibitory rate on α-glucosidase activity (Fig. 2). Flavonoids isolated from unfermented and fermented mulberry leaves have IC50 values of 0.011 and 0.004, respectively. The higher the inhibitory action against α-glucosidase, the lower the IC50 value[32]. It is well known that mulberry leaf is known for its anti-diabetic activity and it has been used as a tea and drink. The results of this experiment show that the inhibitory activity of flavonoids from fermented mulberry leaves on α-glucosidase is better than that of unfermented mulberry leaves; it shows that the flavonoids extracted from mulberry leaves after fermentation have good regulating and therapeutic effects on obesity and diabetes caused by hyperglycemia. There have also been research comparing the inhibitory effect of flavonoids and acarbose on α-glucosidase, with the results showing that flavonoids had higher inhibitory activity than acarbose[33].
Scholars studied the effect of extracts from mulberry leaves fermented by microorganisms such as lactic acid bacteria on the inhibition rate of glucosidase in a study. Its 1mg/ml mulberry leaf mixed extract can achieve a maximum inhibition rate of 75% [34], and this experiment can achieve an inhibition rate of more than 80% at a lower concentration of brass. In another study, scholars have concluded that quercetin, myricetin, fisetin and quercetin have strong inhibitory effects on α-glucosidase at 0.1 mM. IC50 was 4, 8, 8 and 20μM, respectively. It can be seen that if different kinds of flavonoids are studied separately, their inhibition rates of α-glucosidase are also different [35].

**Figure 2.** The inhibition of α-glucosidase in mulberry leaves flavonoid isolated from various mulberry leaves (■ Unfermented mulberry leaves; ● 8d-fermented mulberry leaves)

### 3.3. Analysis of the inhibition types of mulberry leaf flavonoids on α-glucosidase

In the existing research conclusions, flavonoids in different fermentation states showed different inhibitory properties, different inhibition constants (Ki) and inhibitory mechanisms to α-glucosidase [36, 37]. The inhibition types of flavonoids mainly include competitive inhibition, non-competitive inhibition and mixed inhibition [38, 39].

The double-reciprocal graph of the reaction rate of the enzyme and the substrate concentration under different mulberry leaf flavonoid (inhibitor) concentrations were shown in Figure 3 and Figure 4. All lines have a longitudinal intercept of 1/Vmax and a transverse distance of −1/Km. The maximum reaction rate (Vmax) in Figure 3 is unchanged, because the inhibition can be relieved by increasing the substrate concentration, and the Michaelis constant (Km) increases with the increase of the inhibitor concentration, so it can be inferred that the unfermented mulberry leaf flavonoids. Competitive inhibition of α-glucosidase is the sort of inhibition that occurs. Another study found that 7 of the 9 flavonoid enzyme combinations with a predicted binding point of 1 exhibit a competitive inhibition mechanism [40]. Therefore, the flavonoids in unfermented mulberry leaves should theoretically be competitively inhibited as a whole.

It can be seen from Figure 4 that the Vmax of the enzymatic reaction with the inhibitor was decreased, and the Km was increased. The cross-sectional distance of the line with the inhibitor decreases in the double-reciprocal graph, while the vertical intercept increases, and all the lines intersect in the second quadrant, indicating that the type of inhibition of glucosidase by mulberry leaf flavonoids after fermentation is mixed. The addition of the inhibitor also reduced glucosidase activity. The researchers discovered that when Ki Ksi, the flavonoids' inhibitory mode on glucosidase was mixed inhibition in several other investigations [41, 42]. For this experiment, the same conclusion may be drawn: the inhibition mode is mixed. This is because the increase in inhibitor concentration reduces the Vmax value and increases the Km value, resulting in a decrease inα-glucosidase activity.
3. Inhibition type curve of mulberry leaf flavonoids before fermentation

4. Inhibition type curve of mulberry leaf flavonoids after fermentation

4. Conclusion

As the prevalence of diabetes increases, it poses a huge threat to human health. The goal of this study is to increase the glucosidase inhibition rate of mulberry leaves by enriching hypoglycemic components using solid state fermentation of Ganoderma lucidum. The flavonoid concentration of mulberry leaf increased by 197.11 percent when compared to unfermented mulberry leaf, according to the findings. The glucosidase inhibition rate of mulberry leaf flavonoid isolated from 8d-fermented mulberry leaf and unfermented mulberry leaf was 73.46% and 45.31% at a concentration of 10 g/ml. Meanwhile, G. lucidum fermentation may shift the inhibitory types of mulberry leaf flavonoids on-glucosidase from competitive to mixed-type inhibition. This paper will provide a new method to increase the content of hypoglycemic components in mulberry leaves and improve its hypoglycemic effect.

References

[1] Skyler, J.S., Diabetes Mellitus: Pathogenesis and Treatment Strategies. ChemInform 2004, 35(42).
[2] Zheng, D.; Dou, J.; Liu, G.; Pan, Y.; Yan, Y.; Liu, F.; Gaisano, H. Y.; Lu, J.; He, Y., Association Between Triglyceride Level and Glycemic Control Among Insulin-Treated Patients With Type 2 Diabetes. The Journal of Clinical Endocrinology & Metabolism 2018.
[3] Michael;Stumvoll;and;Barry;Goldstein;and;Timon;van,Type 2 diabetes: principles of pathogenesis and therapy. Lancet 2005.

[4] Hu,F.B.;Ley,S.H.;Zheng,Y., Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. 2013.

[5] Sun,J.;Ren,J.;Hu,X.;Hou,Y.;Yang,Y., Therapeutic effects of Chinese herbal medicines and their extracts on diabetes.

[6] Dahlquist, G.; Dodd, S.; Patterson, C.; Cho, N.; Hirst, M.; Aguere, F.; Kodricbrown,A.; Dunning,T.; Magliano,D.; Hwang,C., Diabetes Atlas. 2009.

[7] Nath,M.;Bhattacharjee,K.;Choudhury,Y., Pleiotropic effects of anti-diabetic drugs: A comprehensive review. European Journal of Pharmacology 2020, 884, 173349.

[8] Dhomeja,M.;Gupta,P., Synthetic heterocyclic candidates as promising α-glucosidase inhibitors: An overview. European Journal of Medicinal Chemistry 2019.

[9] Josse, R.G.; Chiasson,J.L.; Ryan,E.A.; Lau,D.; Meneilly,G.S., Acarbose in the treatment of elderly patients with type 2 diabetes. Diabetes Research & Clinical Practice 2003, 59(1), 37-42.

[10] Shabab,S.; Gholamnezhad,Z.; Mahmoudabady,M., Protective effects of medicinal plant against diabetes induced cardiac disorder: A review. Journal of Ethnopharmacology 2020, 265(1), 113328.

[11] Cao,Y.; Jiang,W.; Bai,H.; Li,J.; Wang,S., Study on active components of mulberry leaf for the prevention and treatment of cardiovascular complications of diabetes. Journal of Functional Foods 2021, 83(4), 104549.

[12] Liu,L., The Rudiment Study on Nutritive Value and Active Substance for Mulberry Leaf. Journal of Tarim University 2010.

[13] Hui,Q.C.; Pei,L.T.; Ni,J.A.; Hui,Y.T., Submerged fermentation improves bioactivity of mulberry fruits and leaves - ScienceDirect. Chinese Herbal Medicines 2021.

[14] Park,Y.H.; An,M.; Kim,J.K.; Lim,Y.H., Antibiotesity effect of ethanolic extract of Ramulus mori in differentiated 3T3-L1 adipocytes and high-fat diet-induced obese mice. Journal of Ethnopharmacology 2020, 251.

[15] Józefczuk,J.; Malikowska,K.; Glapa,A.; Stawińska-Witoszyńska,B.; Nowak,J.K.; Bajerska,J.; Lisowska,A.; Walkowiak,J., Mulberry leaf extract decreases digestion and absorption of starch in healthy subjects— A randomized, placebo-controlled, crossover study. Advances in Medical Sciences 2017.

[16] Cai,M.; Mu,L.; Wang,Z.L.; Liu,J.Y.; Liu,T.L.; Wanapat,M.; Huang,B.Z., Assessment of mulberry leaf as a potential feed supplement for animal feeding in P.R. China. Asian-Australasian Journal of Animal Sciences 2019, 32(8).

[17] Na,G.; Ywz,A.; Ywj,A.; Hkl,A.; Zml,B.; Wei,W.A.; Chs,D.; Yjf,A., Improvement of flavonoid aglycone and biological activity of mulberry leaves by solid-state fermentation. Industrial Crops and Products 148.

[18] Long,X.; Liao,S.; Tenggen,H.U.; Zou,Y.; Qian,L.I.; Erna,L.I.; Pang,D.; Shen,W.; Amp,S., Study on Preparation of Low-Sugar Mulberry Extract Powder Based on Microbial Fermentation. Journal of Food Science and Technology 2019.

[19] Babu,K.R.; Satyanarayana,T., α-Amylase production by thermophilic Bacillus coagulans in solid state fermentation. Process Biochemistry 1995, 30(4), 305-309.

[20] Wsab,C.; Cxb,D.; Ty,B.; Yz,B.; Hh,B.; Tx,B.; RI,B.; Lh,B.; Xl,B.; Yx,B., A polysaccharide isolated from Ganoderma lucidum ameliorates hyperglycemia through modulating gut microbiota in type 2 diabetic mice. 2021.

[21] Cao,J.; Zhang,X.Y.; Zhou,B.; Yu,L.U.; Chu,F.Y., Study on the Extraction Technology of Total Flavones from Mulberry Leaves. Food and Fermentation Sciences & Technology 2019.

[22] A,D.H.; B,S.S.; C,A.Z.; C,B.B., α-Glucosidase inhibitory effect of Potentilla astracanica and some isoflavones: Inhibition kinetics and mechanistic insights through in vitro and in silico studies. International Journal of Biological Macromolecules 2017, 105, 1062-1070.

[23] Majouli,K.; Hila,M.B.; Hamdi,A.; Flamini,G.; Kenani,A., Antioxidant activity and α-glucosidase inhibition by essential oils from Hertia cheirifolia (L.). Industrial Crops & Products 2016, 82, 23-28.

[24] Luis,A., Chapter 14-Enzymatic catalysis. 2021, 409-439.
[25] Zeng, L.; Zhang, G.; Lin, S.; Gong, D., Inhibitory Mechanism of Apigenin on α-Glucosidase and Synergy Analysis of Flavonoids. Journal of Agricultural & Food Chemistry 2016, acs.jafc.6b02314.

[26] Yun-Gang; Jiang; Chu-Yan; Wang; Chao; Jin; Jun-Qiang; Jia; Xijie; Guo, Improved 1-Deoxynojirimycin (DNJ) production in mulberry leaves fermented by microorganism. Brazilian Journal of Microbiology 2014.

[27] O.K.; W.a.k.J.; H.K.; G.S.; Y.K., Characterization of DNJ production for large-scale fermentation of mulberry leaf.

[28] Chen, D.; Zhao, Y.; Yang, Z.; Zhang, Z.; University, S.M., Changes in Active Components before and after Microorganism Fermentation of Rhizoma Paridis (Chonglou). Medicinal Plant Research: English edition 2018, 9(4), 3.

[29] Yu, Y.; Jia, Y.N.; Lu, H.P.; Lu, T.L.; Xiao, W.; Zeng, L.S.; Xu, L., In Effects on active ingredient contents and antioxidant bioactivities of mulberry leaves by fermentation with bacillus sp. Proceedings of the 12th Symposium on Silkworm Genetics and Breeding (Abstract), 2016.

[30] Kumar, V.; Prakash, O.; Kumar, S.; Narwal, S., α-glucosidase inhibitors from plants: A natural approach to treat diabetes. Pharmacognosy Reviews 2011, 5(9), 19-29.

[31] Jl, A.; Mgfb, C.; Brh, A., Structural requirements of flavonoids for the selective inhibition of α-amylase versus α-glucosidase. Food Chemistry 2021.

[32] Ryu, H.W.; Lee, B.W.; Curtis-Long, M.J.; Jung, S.; Ryu, Y. B.; Lee, W.S.; Park, K.H., Polyphenols from Broussonetia papyrifera displaying potent alpha-glucosidase inhibition. Journal of Agricultural & Food Chemistry 2010, 58(1), 202-8.

[33] Hartika, R., α-Glucosidase inhibitory effect of flavonoid extracts from crown of god fruit. Ipb 2009.

[34] Liu, M.; Hou, S.; Zhong, Y.; Guo, Y.; Ziyi, L.I.; Xinyu, H.U., A method of efficiently increasing the α-glucosidase inhibitor content in fresh mulberry leaves by the solid-state fermentation. 2020.

[35] Iio, M.; Yoshioka, A.; Imayoshi, Y.; Koriyama, C.; Moriyama, A., Effect of flavonoids on ALPHΑ-glucosidase and BETA-fructosidase from yeast. Agricultural & Biological Chemistry 1984, 48(6), 1559-1563.

[36] Sun, H.; Song, X.; Tao, Y.; Li, M.; Yang, K.; Zheng, H.; Jin, Z.; Dodd, R.H.; Pan, G.; Lu, K., Synthesis & α-glucosidase inhibitory & glucose consumption-promoting activities of flavonoids– coumarin hybrids. Future Medicinal Chemistry 2018, fmc-2017-0293.

[37] Zhang, X.; Shen, J.; Zhao, C.C.; Shao, J.H., A New Flavonoid Glycoside with α-Glucosidase Inhibitory Activity from Galium Verum. Chemistry of Natural Compounds 2020, 56(1), 1-3.

[38] Lu, D.; Sari, S.; Barut, B.; ?zel, A., Discovery of potenta-glucosidase inhibitor flavonols: Insights into mechanism of action through inhibition kinetics and docking simulations. Bioorganic Chemistry 2018, 79, 257-264.

[39] Minh, Anh; Thu; Phan; and; Jin; Wang; and; Jingyi; Tang, Evaluation of α-glucosidase inhibition potential of some flavonoids from Epimedium brevicornum. Lwt Food Science & Technology 2013.

[40] Jongbin; Lim; Xiaowei; Zhang; Mario, G.; Ferruzzi; Bruce, R.; Hamaker, Starch digested product analysis by HPAEC reveals structural specificity of flavonoids in the inhibition of mammalian α-amylase and α-glucosidases. Food Chemistry 2019.

[41] Jy, A.; Xw, A.; Cz, A.; Lun, M.B.; Tao, W.B.; Yz, C.; Xin, P., Comparative study of inhibition mechanisms of structurally different flavonoid compounds on α-glucosidase and synergistic effect with acarbose. ScienceDirect. Food Chemistry 2021, 347.

[42] Liu, S.; Li, D.; Huang, B.; Chen, Y.; Lu, X.; Wang, Y., Inhibition of pancreatic lipase, α-glucosidase, α-amylase, and hypolipidemic effects of the total flavonoids from Nelumbo nucifera leaves. Journal of Ethnopharmacology 2013, 149(1), 263-269.