Synergy between defects, charge neutrality and energy filtering in hyper-doped nanocrystalline materials for high thermoelectric efficiency

Xanthippi Zianni,∗a and Dario Narducci b

Breaking the conventional decrease of the Seebeck coefficient with increasing conductivity would be a significant progress towards large thermoelectric power factor enhancement and high thermoelectric efficiency. We report on a mechanism identified in hyper-doped nanocrystalline Si films that can lead to this task: a transition from dominant ionized impurity scattering to dominant phonon scattering upon thermal annealing at high annealing temperature \(T_a \) that takes place to fulfill charge neutrality. We show that the synergy between charge neutrality and energy filtering activated by thermal annealing of the originally defected nanocrystalline sample leads to high mobility, simultaneous increase of the conductivity and the Seebeck coefficient and large enhancement of the thermoelectric power factor. This is demonstrated by means of advanced theoretical modeling and excellent quantitative agreement with the experiment. Our work provides interpretation of so far not understood observations in nanocrystalline Si and indicates a new route for engineering Si as well as other nanostructured materials for high thermoelectric efficiency.

1 Introduction

Simultaneous increase of the conductivity and the Seebeck coefficient is a non-conventional behavior and has been rarely observed [1-10]. Conventional dependence is that the electrical conductivity, \(\sigma \), increases and Seebeck coefficient, \(S \), decreases when the carrier density increases. This dependence prohibits the thermoelectric power factor (TPF), \(\sigma S^2 \), from increasing above a certain value that is material-dependent and occurs at an optimal carrier concentration. Nevertheless, enhancement of the TPF would be needed for efficient thermoelectric (TE) energy conversion, in particular in materials with high thermal conductivity. Silicon for instance has a relatively large TPF of the order of 1 mW K\(^{-2}\)m\(^{-1}\). However, its high thermal conductivity \(\kappa \) (\(\sim \) 140 Wm\(^{-1}\)K\(^{-1}\) at room temperature) keeps Si TE figure of merit \(ZT = \sigma S^2 T / \kappa \) (where \(T \) is the absolute temperature) from exceeding \(\sim 0.01 \) at room temperature. Decrease of the thermal conductivity has been shown in nanostructures where additional scattering mechanisms, such as boundary scattering, dominate over the bulk-like ones. In nanostructures, deviation from the bulk-like behavior would also affect the electron transport properties and could change the relations breaking the conventional inter-dependence of the conductivity and the Seebeck coefficient would be a considerable progress towards increasing the TPF and the TE efficiency. However, it has been seldom achieved and even then not completely understood. Energy filtering is a strategy commonly considered prosperous for increasing the TPF because it increases Seebeck coefficient. It is well-known effect and has been widely studied by many experiments and by theoretical models [11-31]. Nonetheless, it has been shown so far not adequate for a breakthrough in the field of thermoelectrics.

We analyzed the \(T \)-dependence of the hole transport properties measured in highly \(B \)-doped nanocrystalline Si (nc-Si) thin films.
where it was observed a simultaneous increase of the conductivity and the Seebeck coefficient upon thermal annealing above 800°C resulting in remarkably high TPF reaching 17 mW/mK² [6-9]. For a thermal conductivity of 10 Wm⁻¹K⁻¹ this would imply a figure of merit of 0.5 around room temperature. The observation was confirmed in a series of experiments (for a review see Ref.15). The Seebeck coefficient enhancement was ascribed to the formation of energy barriers due to the precipitation of a secondary boron-rich phase at grain boundaries [29,30,32]. The effect of the formation of a second phase around the grain boundaries was confirmed in a series of experiments (for a review see Ref.15).
Bulk-like scattering mechanisms determine the relaxation time and the mobility of carriers in the grains. This is justified since hole mean free path (<10 nm) is smaller than the grains width (~50nm). The conductivity and the Seebeck coefficient are determined by bulk-like scattering and energy filtering at grain boundaries. Energy filtering takes place due to energy barriers formed by charge trapped at grain boundaries defects. Defects can be of different types including lattice distortions, precipitates, etc. This mechanism has been taken into account using the single-barrier theoretical models. The hole mean free path (equation 4.2) is smaller than the grains width (~50 nm). The conductivity and the Seebeck coefficient are estimated by applying the electrostatic charge neutrality condition for the doping concentration (Supplementary Information). This implies that an additional source of p-doping is present in the sample. We assumed that this source is defects acting as electron traps and leading to extra p-doping. The presence of defects explained the observed weak T-dependence of the hole concentration (Figure 2) due to Fermi level pinning. This mechanism can take place at interfaces and in highly doped samples with significant lattice distortion and high concentration of defects [41, 42]. In sample A, heavy boron-doping by ion implantation caused lattice distortion and formation of extended defects in the grains and grain boundaries that pinned the Fermi level. The magnitude and the T-dependence of the hole concentration have been indeed quantitatively interpreted by assuming Fermi level pinned at $E_F = -0.076eV$ with respect to the valence band edge. The comparison between the calculated and the measured hole concentrations is shown in Figure 2. Very good agreement was found.

Our assumption was additionally confirmed by using the estimated E_F to calculate the mobility and the conductivity that were found in agreement with the corresponding data. To interpret the measurements, we further analyzed the mobility and conductivity data. The measured mobility was lower than that theoretically expected for hole concentration $2 \times 10^{20} \text{cm}^{-3}$ (Figure 3). We attributed this to enhanced scattering by ionized impurities (including dopants and defects). The concentration of ionized impurities was estimated at each temperature by fitting the mobility data and is shown in Figure S2 of the Supplementary Information. These concentrations were used to calculate the conductivity and very good agreement was found with the measured conductivities in the whole T-range (Figure 3). It is concluded that the transport properties of sample A are fully interpreted by the presence of defects and dominant ionized impurity scattering.

3 Results and Discussion

The measured properties are shown in the figures of this paper along with the corresponding calculated properties. We refer to the samples as: sample A (untreated sample), sample B (annealed at 700°C), sample C (annealed at 950°C), sample D (annealed at 1000°C). In all figures, we use stars for the calculated values and dots for experimental data: black for sample A, green for sample B, blue for sample C and red for sample D.

3.1 The presence of defects

In the untreated sample (sample A), the carrier concentration measured at 300K was $2 \times 10^{20} \text{cm}^{-3}$ (Figure 2). This concentration is higher than the expected concentration of $0.56 \times 10^{20} \text{cm}^{-3}$ estimated by applying the electrostatic charge neutrality condition for the doping concentration (Supplementary Information). This implies that an additional source of p-doping is present in the sample. We assumed that this source is defects acting as electron traps and leading to extra p-doping. The presence of defects explained the observed weak T-dependence of the hole concentration (Figure 2) due to Fermi level pinning. This mechanism can take place at interfaces and in highly doped samples with significant lattice distortion and high concentration of defects [41, 42]. In sample A, heavy boron-doping by ion implantation caused lattice distortion and formation of extended defects in the grains and grain boundaries that pinned the Fermi level. The magnitude and the T-dependence of the hole concentration have been indeed quantitatively interpreted by assuming Fermi level pinned at $E_F = -0.076eV$ with respect to the valence band edge. The comparison between the calculated and the measured hole concentrations is shown in Figure 2. Very good agreement was found.

Upon thermal annealing at 700°C (sample B), the hole concentration decreased to $1.0 \times 10^{20} \text{cm}^{-3}$ remaining nearly T-independent (green symbols in Figure 2). In general terms, thermal post-processing is aimed to facilitate dopant diffusion throughout the material and to annihilate extended defects. Thermal annealing at 700°C seems indeed starting to repair defects: our theoretical analysis on the hole concentration data indicated lower impurity concentration in the grains of sample B (Figure S2) as well as weaker Fermi level pinning compared to sample A, with E_F shifting to 0.06eV. It should be noted that although the hole concentration and the ionized impurity concentrations are lower in sample B, the mobility is also lower opposing the bulk-like behavior (also shown for reference in Figure 3). This is explained by the shift of the Fermi level closer to the top of the valence band in sample B compared to sample A. Similarly as for sample A, the mobility data of sample B are very well interpreted by the calculations (Figure 3). Furthermore, we identified an additional effect of the thermal annealing on the defects distribution across the polycrystalline material that was of major importance in interpreting the observed thermoelectric behavior. Defects within the grains should repair more easily upon thermal annealing than defects at the grain boundaries where they are more extended. Thus, less defects and hence also less ionized defects would remain in the core of the grains after thermal an-
nealing. This implies that more defects should get ionized at the grain boundaries to satisfy the overall charge neutrality. Ionized defects at the grain boundaries would then form energy barriers for holes and decrease the conductivity. Indeed, a decreased conductivity was measured in sample B after annealing at 700°C. The measured conductivity was perfectly interpreted in the whole temperature range by assuming energy barrier height \(\sim 2 k_B T \) (Figure 3). The energy barrier height increases with increasing \(T \) because the ionized defects concentration also increases with \(T \). The formation of energy barriers consistently explains the observed increase of the Seebeck coefficient upon thermal annealing (Figure 5). It can be concluded that thermal annealing at low-\(T_a \), decreases the concentration of defects in the grains and acts towards un-pinning the Fermi level. In addition, it increases the concentration of ionized defects at the grain boundaries forming energy barriers for holes.

3.3 Scattering mechanism transition

Upon thermal annealing at higher \(T_a \), 950°C and 1000°C, a major change was observed in all properties as shown by hole concentration, mobility and conductivity in samples C and D (Figures 2 and 4).

First, hole concentration decreased significantly upon thermal annealing, also showing a stronger \(T \)-dependence compared with samples A and B (Figure 2). This behavior is explained by the assumed big decrease of defects in the grains upon thermal annealing at high \(T_a \) and Fermi level unpinning. Furthermore, mobility is not anymore \(T \)-independent as it was in samples A and B due to strong ionized impurity scattering (Figure 4). It decreases with increasing \(T \) as it would be expected due to phonon scattering. Dominant phonon scattering also explains the observed conductivity decrease with increasing \(T \) shown in Figure 4 above a characteristic temperature \(T^* \) where the conductivity reaches a maximum. The conductivity shows a non-monotonic \(T \)-dependence. Below \(T^* \), it increases with increasing \(T \). This is because at low temperatures the effect of the increase of the hole concentration with increasing \(T \) overcomes the effect of phonon scattering in the conductivity due to small phonon population. At higher \(T \), the phonon population increases and scatters holes more drastically so that the conductivity decreases with increasing \(T \). The model and the calculations fully interpret the measured mobility and conductivity as it can be seen in Figure 4. It is concluded that a transition from dominant impurity scattering in the grains of samples A and B to dominant phonon scattering in the grains of samples C and D takes place upon thermal annealing at high \(T_a \).

In samples C and D, all transport properties show similar behavior, differing only quantitatively from each other. This indicates that the effects taking place upon thermal annealing are enhanced with increasing \(T_a \). Thermal annealing at higher \(T_a \) decreases more effectively the concentration of defects in the grains and this is why the mobility and conductivity are larger in sample D than in sample C. The gradual dominance of phonon scattering over impurity scattering from sample A to sample D, upon thermal annealing at higher \(T_a \) explains the gradually more pronounced non-monotonic behavior of the conductivity in the samples. Moreover, more defects get ionized at the grain boundaries and higher energy barriers are formed upon thermal annealing at higher \(T_a \). This effect has been accommodated in our modeling by lower ionized impurity concentration and higher energy barriers in sample D than in sample C. The corresponding parame-

Figure 3 Temperature dependence of (a) the mobility and (b) the conductivity in the low-\(T_a \) regime (samples A and B). The dots are for experimental data and the stars for theoretical calculations. The squares are for the calculated \(T \)-dependence of the mobility in a wide hole concentration range shown for reference. The dashed lines are eye guidelines.

Figure 4 Temperature dependence of (a) the mobility and (b) the conductivity for the four samples. Dots are for the experiment and stars for the calculations.
3.4 Simultaneous increase of the mobility, conductivity and Seebeck coefficient

The Seebeck coefficient of the samples was measured at 300 K and is shown together with the mobility and the conductivity in Figure 5.

![Fig. 5 Simultaneous increase of the transport properties above T_a (~800°C). The mobility (left y-axis of (a)), the conductivity (left y-axis of (b)) and Seebeck coefficient (right y-axes) at 300 K. Dots are for measurements and stars for calculations. The dashed lines are eye guidelines. The average energy barrier height for each sample was estimated by the T-dependences of the mobility and conductivity (Figure 4).](image)

The Seebeck coefficient was calculated for each sample assuming an average barrier height estimated by the T-dependences of the mobility and the conductivity. As seen in the previous sections, Seebeck coefficient increases with increasing annealing temperature due to the formation of higher energy barriers at the grain boundaries and more effective energy filtering. This is to be expected. The conductivity though shows an unexpected behavior above a critical annealing temperature. First, it decreases with thermal annealing (the conductivity of sample B is lower than that of the untreated sample A) as expected due to the formation of energy barriers that filter out holes and decrease the mobile hole concentration. This is the well-known effect that takes place upon energy filtering of mobile carriers: the conductivity decreases and the Seebeck coefficient increases. Then, upon thermal annealing at even higher T_a (in samples C and D), the conductivity increases while the energy barriers get gradually higher. This non-conventional behavior is explained by the transition from dominant ionized impurity scattering to dominant phonon scattering in the grains and by the increase of the mobility (as discussed in a previous paragraph). The transition takes place upon the formation of higher energy barriers at the grain boundaries. Therefore, it is concluded that the concurrent scattering mechanism transition and the increasing energy filtering upon thermal annealing explain the simultaneous increase of the mobility, the conductivity and the Seebeck coefficient above a threshold T_a that is estimated at $\sim 800^\circ$C.

The Seebeck coefficient of the polycrystalline film where a distribution of energy barrier heights exists, is larger than that estimated assuming an average energy barrier (respectively shown by dots and stars in Figure 5). While effective-grain and average energy barrier are adequate approximations to interpret the conductivity of a polycrystalline material [12], they are not adequate approximations for the Seebeck coefficient, which is more sensitive than the conductivity to the fluctuations of the energy distribution of carriers due to non-uniformity. Thus, for the Seebeck coefficient the effect of non-uniformity cannot be accommodated within effective medium models assuming an average barrier height or a distribution of barrier heights (e.g. a Gaussian distribution as in [43]) and uniform energy distribution of carriers. An extra enhancement of Seebeck coefficient is indeed shown in our nanocrystalline samples. This effect is more pronounced in samples C and D where higher energy barriers are formed upon thermal annealing. The energy distribution of carriers should be sensibly taken into account in a more involved model to provide a fully quantitative interpretation of the Seebeck coefficient data when energy filtering occurs in complex-morphology materials. Our work shows that in such materials, the discrepancy between the Seebeck coefficient from that assuming an average energy barrier estimated by the conductivity and the mobile carrier concentration in the sample, provides a measure of the non-uniform distribution of energy barriers in the material.

4 Conclusions and Outlook

...update energy filtering by energy barriers. The use of an involved model for scattering and the charge neutrality condition were crucial in quantitatively and consistently interpreting the experimental data. The simulations provided estimations of the involved parameters. The fitting performed throughout the simulation was at each stage subject to validation since multiple properties and dependences had to be non-trivially interpreted. This led to clear evidence of a transition from dominant ionized impurity scattering in the defected grains to dominant phonon scattering upon thermal annealing at higher T_a due to defects repair in the grains. This transition occurs concurrently with the population of more electron traps at grain boundaries so that charge neutrality is fulfilled. Charges at grain boundaries set up energy barriers and energy filtering of carriers. Hence, a unique synergy between charge neutrality and
energy filtering activated by thermal annealing of the originally defected sample leads to high mobility, conductivity and Seebeck coefficient and large TPF.

The interpretation of the processes underlying the measured remarkable enhancement of the TPF by a factor 15 (i.e. up to 17 mWK$^{-2}$m$^{-1}$) at 300K can be used to control and optimize the fabrication conditions and prototype.

Conflicts of interest

There are no conflicts to declare.

1. C. B. Vining, The Thermoelectric Properties of Boron-Doped Silicon and Silicon-Germanium in the As-Hot Pressed Conditions, JPL/Calif. Inst. of Tech. technical report, 1988.
2. C. B. Vining, W. Laskow, J. O. Hanson, R. R. Van der Beck and P. D. Gorsuch, J. Appl. Phys. 69, 4333 (1991)
3. Yong Dua, Shirley Z. Shen, Weidong Yang, Richard Donelson, Kefeng Cai, Philip S. Casey Synthetic Metals 161, 2688 (2012)
4. Congcong Liu, Jingkun Xu, Baoyang Lu, Ruirui Yue, and Kefeng Cai, Philip S. Casey Synthetic Metals 161, 2688 (2012)
5. J. Sun, M.-L. Yeh, B. J. Jung, B. Zhang, J. Feser, A. Majumdar, and H. E. Katz, Macromolecules, 43, 2897 (2010)
6. D. Narducci, E. Selezneva, A. Arcari, G. F. Cerofolini, E. Romano, R. Tonini, and G. Ottaviani, MRS Proceedings 1314, mrsf10-1314-ll05-16 (2011)
7. D. Narducci, E. Selezneva, G. F. Cerofolini, S. Fraboni, and G. Ottaviani, AIP Conf. Proc. 1449, 311 (2012)
8. D. Narducci, E. Selezneva, G. Cerofolini, S. Fraboni, and G. Ottaviani, J. Appl. Phys. 115, 035102 (2014)
9. N. Neophytou, X. Zianii, H. Kosina, S. Frabboni, B. Lorenzi, D. Narducci, Nanotechnology 24, 205402 (2013)
10. A. Samarelli, L. F. Llin, S. Cecchi, J. Frigerio, T. Etzelstorfer, E. Muller, Y. Zhang, J. R. Watling, D. Chrastina, G. Isella, J. Stangl, J. P. Hague, J. M. R. Weaver, P. Dobson, and D. J. Paul, J. Appl. Phys. 113, 233704 (2013)
11. A. Popescu, L. M. Woods, J. Martin, and G. S. Nolas, Phys. Rev. B 79, 205302 (2009)
12. S. K. Bux, R. G. Blair, P. K. Gogna, H. Lee, G. Chen, M. S. Dresselhaus, R. B. Kaner, and J.-P. Fleurial, Adv. Funct. Mater. 19, 24452452 (2009)
13. R. Kim and M. S. Lundstrom, J. Appl. Phys. 110, 034511 (2011)
14. M. Bachmann, M. Czerner, and C. Heiliger, J. Electron. Mater. 40, 577 (2011)
15. M. Bachmann, M. Czerner, and C. Heiliger, Phys. Rev. B 86, 115320 (2012)
16. Y. Kajikawa, J. Appl. Phys. 112, 123713 (2012)
17. L.-P. Scheller and N. H. Nickel, J. Appl. Phys. 112, 013713 (2012)
18. A. Samarelli, L. F. Llin, S. Cecchi, J. Frigerio, T. Etzelstorfer, E. Muller, Y. Zhang, J. R. Watling, D. Chrastina, G. Isella, J. Stangl, J. P. Hague, J. M. R. Weaver, P. Dobson, and D. J. Paul, J. Appl. Phys. 113, 233704 (2013)
19. N. Neophytou, X. Zianii, H. Kosina, S. Frabboni, B. Lorenzi, D. Narducci, Nanotechnology 24, 205402 (2013)
20. A. J. Minnich, H. Lee, X. W. Wang, G. Joshi, M. S. Dresselhaus, Z. F. Ren, G. Chen, and D. Vashaee, Phys. Rev. B 80, 155327 (2009)
21. A. Popescu, L. M. Woods, J. Martin, and G. S. Nolas, Phys. Rev. B 79, 205302 (2009)
22. S. K. Bux, R. G. Blair, P. K. Gogna, H. Lee, G. Chen, M. S. Dresselhaus, R. B. Kaner, and J.-P. Fleurial, Adv. Funct. Mater. 19, 24452452 (2009)
23. R. Kim and M. S. Lundstrom, J. Appl. Phys. 110, 034511 (2011)
24. M. Bachmann, M. Czerner, and C. Heiliger, J. Electron. Mater. 40, 577 (2011)
25. M. Bachmann, M. Czerner, and C. Heiliger, Phys. Rev. B 86, 115320 (2012)
26. Y. Kajikawa, J. Appl. Phys. 112, 123713 (2012)
27. L.-P. Scheller and N. H. Nickel, J. Appl. Phys. 112, 013713 (2012)
28. A. Samarelli, L. F. Llin, S. Cecchi, J. Frigerio, T. Etzelstorfer, E. Muller, Y. Zhang, J. R. Watling, D. Chrastina, G. Isella, J. Stangl, J. P. Hague, J. M. R. Weaver, P. Dobson, and D. J. Paul, J. Appl. Phys. 113, 233704 (2013)
29. N. Neophytou, X. Zianii, H. Kosina, S. Frabboni, B. Lorenzi, D. Narducci, Nanotechnology 24, 205402 (2013)
30. D. Narducci, B. Lorenzi, X. Zianii, N. Neophytou, S. Frabboni, G. C. Gazzadi, A. Roncaglia and F. Suriano, Phys. Status Solidi A 211, 1255 (2014)
31. X. Zianii and D. Narducci, J. Appl. Phys. 117, 035102 (2015)
32. D. Narducci, S. Frabboni and X. Zianii, J. Mater. Chem. C 3, 12176 (2015)
33. C. Song et al., Appl. Surf. Sci., 257, 1337 (2010)
34. C. Jacoboni and L. Reggiani, Rev. Mod. Phys. 55, 645 (1983)
35. M. Lundstrom, Fundamentals of Carrier transport (Cambridge University Press, 2000)
36. H. Kosina and G. Kaiblinger-Grujin, Solid-State Electronics 42, 331 (1998)
37. http://www.ioffe.ru/SVA/NSM/Semicond/
38. A. Stranz, J. Kaehler, A. Waag and E. Peiner, J. Electron. Mater. 42, 2381 (2013)
39. Sheng S. Li, Solid State Electronics 21,1109 (1978)
40. T. F. Lee and T. C. McGill, Journal of Applied Physics 46, 373 (1975)
41. D. J. Chadi, P. H. Citrin, C. H. Park, D. L. Adler, M. A. Marcus, and H.-J. Gossmann, Physical Review Letters 79, 4834 (1997)
42. J Robertson, L Lin, Technical Digest - International Electron Devices Meeting, IEDM 2009, Article number 5424406, Pages 6.1.1-6.1.4 (2009)
43. Y. Kajikawa, Journal of Applied Physics 114, 053707 (2013)