Adding Maximum Standard Uptake Value of Primary Lesion and Lymph Nodes in 18F-Fluorodeoxyglucose PET Helps Predict Distant Metastasis in Patients with Nasopharyngeal Carcinoma

Qi Shi¹*, Zhongyi Yang²*, Yingjian Zhang², Chausu Hu¹*

¹ Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China, ² Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China

Abstract

Objective: To find out the most valuable parameter of 18F-Fluorodeoxyglucose positron emission tomography for predicting distant metastasis in nasopharyngeal carcinoma.

Methods: From June 2007 through December 2010, 43 non-metastatic NPC patients who underwent 18F-Fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) before radical Intensity-Modulated Radiation Therapy were enrolled and reviewed retrospectively. PET parameters including maximum standardized uptake value (SUVmax), mean standardized uptake value (SUVmean), metabolic tumor volume (MTV), and total lesion glucose (TLG) of both primary tumor and cervical lymph nodes were calculated. Total SUVmax were recorded as the sum of SUVmax of primary tumor and cervical lymph nodes. Total SUVmean, Total MTV and Total TLG were calculated in the same way as Total SUVmax.

Results: The median follow-up was 32 months (range, 23–68 months). Distant metastasis was the main pattern of treatment failure. Univariate analysis showed higher SUVmax, SUVmean, MTV, and TLG of primary tumor, Total SUVmax, Total MTV, Total TLG, and stage T3-4 were factors predicting for significantly poorer distant metastasis-free survival (p = 0.042, p = 0.008, p = 0.023, p = 0.023, p = 0.024, p = 0.033, p = 0.016, p = 0.015). In multivariate analysis, Total SUVmax was the independent predictive factor for distant metastasis (p = 0.046). Spearman Rank correlation analysis showed mediate to strong correlation between Total SUVmax and SUVmax-T, and between Total SUVmax and SUVmax-N (Spearman coefficient: 0.568 and 0.834; p = 0.000 and p = 0.000).

Conclusions: Preliminary results indicated that Total SUVmax was an independently predictive factor for distant metastasis in patients of nasopharyngeal carcinoma treated with Intensity-Modulated Radiation Therapy.

Introduction

Nasopharyngeal carcinoma (NPC) is one of the most endemic head and neck cancer in Southeast Asia and East Asia. The radiotherapy has been used as a treatment of the choice for NPC since the middle of the last century. With the advancing of the radiation technologies, such as Intensive-Modulated Radiation Therapy (IMRT), and concurrent chemoradiotherapy, the loco-regional control and survival of NPC[1,2] have improved significantly. It has also reduced the normal tissue toxicities as well. However, the distant metastasis is the main obstacle for further improving the treatment outcomes [3–5].

To date, the AJCC (American Joint Committee on Cancer) staging system has been considered as the most important prognostic factor [6–8]. However, this system is mainly based on the anatomic imaging studies and clinical physical examines. With the new diagnostic tools available, clinicians are looking for more prognostic factors which predict treatment outcome more accurately and guide the individualized treatments, and thus improve the prognosis.

18F-Fluorodeoxyglucose positron emission tomography (18FDG PET) has been wildly used in the initial diagnosis and staging workup for newly diagnosed malignancies, including NPC patients. It is still questionable that whether 18F-FDG PET is more valuable in detecting the primary tumor and cervical lymph nodes metastases of head and neck cancer comparing with computed tomography (CT) or other imaging studies [9–13]. A
few studies have showed the higher sensitivity and specificity in regarding the detecting of distant metastasis [14–19].

As a functional imaging study, 18F-FDG PET may have a predictive value in long-term prognosis. The studies [19–21] have found the prognostic value of 18F-FDG PET for head and neck cancer. Researches of its prognostic value for nasopharyngeal carcinoma have also been conducted recently. The relationship between SUVmax (maximum standardized uptake value) and prognosis of NPC is most interested. Some studies have suggested that higher uptake value is correlated with poorer DMFS (distant metastasis-free survival), DFS (disease-free survival) and OS (overall survival) [22–25]. In addition, MTV (metabolic tumor volume) and TLG (total lesion glucose) of primary tumor were observed to be negatively correlated with DFS and OS [26–28].

18F-FDG PET can provide more functional information by various parameters. The most clinical studies have only utilized the traditional factors such as SUVmax and MTV. In order to get the more benefits from the 18F-FDG PET, we measured SUVmax, SUVmean (mean standardized uptake value), MTV and TLG of primary tumor and metastatic lymph nodes. Total SUVmax, Total SUVmean, Total MTV and Total TLG, which represented the overall metabolic activity of both primary lesion and lymph nodes, were also been calculated.

Materials and Methods

Ethics Statement

This study was approved by the Research Ethics Committee of Fudan University Shanghai Cancer Center and was performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and all subsequent revisions. All patients provided their written informed consent to participate in the study.

Patients and pretreatment evaluation

From June 2007 to December 2010, 43 patients with NPC diagnosed and treated in our hospital were enrolled and reviewed retrospectively. The inclusion criteria were as following: (1) biopsy-proven primary nasopharyngeal carcinoma; (2) with pretreatment magnetic resonance imaging (MRI) of the nasopharynx and neck, and whole-body 18F-FDG PET/CT; (3) receiving radiotherapy in our institute; (4) the age was from 18 to 70 years old; (5) with completed medical history. The exclusion criteria were as follows: (1) with distant metastasis proven by clinical or radiologic evidence; (2) previously radiotherapy, chemotherapy or surgery of other anti-cancer treatment before undergoing whole-body 18F-FDG PET/CT; (3) any other primary malignant tumor previously diagnosed, or combined concurrently; (4) with diabetes mellitus. All patients were staged according to 2010 UICC/AJCC (Union for International Cancer Control/American Joint Committee on Cancer) staging system.

Pretreatment evaluation were composed of complete medical history, physical examination, indirect or fiberoptic endoscopic examination of nasopharynx, biopsy of the neoplasm in nasopharynx, MRI scans of nasopharynx and neck, and whole-body 18F-FDG PET/CT.

PET/CT imaging and imaging interpretation

18F-FDG was produced by cyclotron (Siemens CTI RDS Eclips ST, Knoxville, Tennessee, USA) using Explora FDG4 module in our center. Radiochemical purity was over 95%.

All the patients were requested to fast at least 4 h before 18F-FDG PET/CT scan. At the time of the tracer injection (dosage: 7.4 MBq/kg), patients’ serum glucose should be controlled between 3.9 mmol/L and 7.1 mmol/L. Before and after injection, patients were kept lying comfortably in a quiet, dimly lit room. Scanning was initiated 1 h after administration of the tracer. The images were obtained on a Siemens biograph 16HR PET/CT scanner (Knoxville, Tennessee, USA). The transaxial intrinsic spatial resolution was 4.1 mm (full-width at half-maximum) in the center of the field of view. The data acquisition procedure was as follows: CT scanning was first performed, from the proximal thighs to head, with 120 kV, 80–250 mA, pitch 3.6, rotation time 0.5. Immediately after CT scanning, a PET emission scan that covered the identical transverse field of view was obtained. Acquisition time was 2–3 min per table position. PET image data sets were reconstructed iteratively by applying the CT data for attenuation correction, and coregistered images were displayed on a worksta-

A multimodality computer platform (Syngo, Siemens, Knoxville, Tennessee, USA) was used for image review and manipu-

Quantification of glucose metabolic activity was obtained using the Standardized Uptake Value (SUV) normalized to body weight. The maximum and mean SUV for primary tumor (SUVmax-T, SUVmean-T) and neck lymph nodes (SUVmax-N, SUVmean-N) were calculated. Besides, MTV was also recorded. The boundaries were drawn large enough to include the primary tumor within the nasopharynx or lymph nodes in the axial, coronal, and sagittal PET images. To define the contouring margins around the target, we used an SUV of 2.5 based on the experience of previous investigators [26,27,29,30]. The contour around the target lesion inside the boundaries was automatically produced and the voxels presenting SUV intensity of greater than 2.5 within the contouring margin were incorporated to define the MTV. TLG was calculated according to the following formula: TLG = SUVmean×MTV. MTV and TLG of primary tumor were recorded as MTV-T, TLG-T, and those of the sum of all neck lymph nodes were recorded as MTV-N, TLG-N. Total SUVmax were recorded as the sum of SUVmax of primary tumor and cervical lymph nodes. Total SUVmean, Total MTV and Total TLG were calculated in the same way as Total SUVmax. Parameters of retropharyngeal lymph nodes were calculated as those of cervical lymph nodes.

Radiotherapy

Intensity-Modulated Radiation Therapy (IMRT)

Patients were immobilized in the supine position with a thermoplastic mask. CT simulation was performed after immobilization, obtaining 3-mm slices from the anterior cluidoid process to the hyoid bone, and 5-mm slices from the hyoid bone to 2 cm below the sternoclavicular joint. The gross tumor volume (GTV) included primary tumor and enlarged RLNs. The clinical target volume (CTV) included bilateral coverage of levels II, III, VA and RLNs. The CTV should also cover the entire nasopharynx, parapharyngeal space, clivus, base of skull, pterygoid fossa, posterior half of ethmoidal sinus, inferior sphenoid sinus, and posterior third of nasal cavity and maxillary sinuses. A margin of 3–5 mm around GTV and CTV should be added to account for the patient motion and set-up error. The total dose to primary tumor was 66 Gy in 30 fractions for T1 or T2 disease, 70.4 Gy in 32 fractions for T3 or T4 lesion. A total dose of 60 Gy was delivered to the CTV in 30–32 fractions.

Boost

Residual disease diagnosed by clinical examination or MRI was boosted. Brachytherapy was used for superficial lesion, with a dose of 6–16 Gy in one or two weekly fractions. More advanced disease was boosted by small field, including IMRT, 3D-
RT, 2D-RT and stereotactic radio-surgery and the dose was 6–8 Gy.

Chemotherapy
There were several regimens of neoadjuvant chemotherapy and adjuvant chemotherapy in our institution, including PF, TPF and GP. The TPF protocol consisted of docetaxel 75 mg/m² IV on day 1, cisplatin 75 mg/m² IV on day 1, and 5-fluorouracil (5-FU) 500 mg/m² d continuously IV on day 1–5. The PF protocol consisted of cisplatin 75 mg/m² IV on day 1 and 5-FU 500 mg/m² d continuously IV on day 1–5. The GP regimen included cisplatin 75 mg/m² d IV on day 1 and gemcitabine 1000 mg/m² IV on day 1, 8. Regimens were repeated every 3 weeks for 2 cycles as neoadjuvant chemotherapy. This was followed by cisplatin 40 mg/m² IV weekly during radiation. Adjuvant chemotherapy were repeated every 3–4 week for 3 cycles.

Follow-up
The follow-up period was from the first day of initiation of treatment until death or last visit. The median follow-up period was 32 months (range, 23–68 months).

Patients were followed every 3 months in the first two year, then every 6 months in the following three years and then, once a year thereafter. In each visit, medical history was collected, physical examinations including nasopharyngoscopy were performed. Nasopharyngeal MRI was performed 3 months and 1 year after completion of radiotherapy, and every 6 months in the second to fifth year, and then yearly thereafter. The following tests were done at least once a year: chest CT or X-ray, abdominal sonography, and bone scan when clinically indicated. Late toxicities were evaluated according to the toxicity criteria of the RTOG [6].

Statistical analysis
All analyses were performed by using the SPSS software, version 19.0. The actuarial rates were estimated by the Kaplan–Meier method [31]. The primary endpoint was DMFS, and the secondary endpoints were PFS (progression-free survival) and OS. All the endpoints were defined as the interval from the date of initiation of treatment to the date of the failure or death, or last follow-up. Disease progression was defined as the developing of local or regional recurrence, or distant metastasis. The parameters of FDG PET used in statistical analysis included: SUVmax-T, SUVmean-T, MTV-T, TLG-T, SUVmax-N, Total SUVmax, Total SUVmean, Total MTV and Total TLG. The best cut-off values of SUVmax, SUVmean, MTV and TLG, which showed the best trade-off between sensitivity and specificity for DMFS, were determined by receiver operating characteristic (ROC) analysis following the method of Metz [32]. The survival curves were compared with the log-rank test. Independent sample T test

Table1. Patient characteristics.
Number of patients
Age
Median
Range
Sex
Male
Female
Pathology
WHO II
WHO III
AJCC stage
I-II
III-IV
T stage
T1-2
T3-4
N stage
N0-1
N2-3
Concurrent chemotherapy
Yes
No
Patterns of chemotherapy
None
NAC
NAC+AC
NAC+CCRT

Abbreviation: NAC, neoadjuvant chemotherapy; AC, adjuvant chemotherapy; CCRT, concurrent chemoradiotherapy.

doi:10.1371/journal.pone.0103153.t001
was used to test whether there were significant differences in the value of above PET parameters between patients of different clinical stages, and Mann-Whitney test was used when heterogeneity of variance existed. Multivariate analyses with the Cox proportional hazards model [33] were used to test for independent significance by backward elimination of insignificant explanatory variables of the different parameters.

Results

Patient characteristics and treatment outcome

There were 43 patients enrolled in this study. The patient characteristics are listed in Table 1. At the time of this study, 4 patients had died and 39 were alive, 4 experienced local recurrence and 2 experienced nodal recurrence, and distant metastases occurred in 8 patients (Table 2). Distant metastasis is the main treatment failure, and the common sites of distant failure were liver, lung and bone. The 3-year DMFS, PFS, and OS were 81.0%, 69.1% and 83.2%, respectively.

Differences in PET parameters between patients with different characteristics

MTV-T, TLG-T, Total SUVmax, Total SUVmean, Total MTV and Total TLG of patients with stage III-IVB (according to 2010 AJCC staging system) diseases were significantly higher than those with stage I-II diseases (p value were 0.001, 0.001, 0.022, 0.008, 0.000 and 0.016, respectively). MTV-T, SUVmax-N, Total SUVmax, Total SUVmean, Total MTV and Total TLG of patients with N2-3 diseases were also higher than those with N0-1 diseases (p = 0.029, p = 0.002, p = 0.000, p = 0.000, p = 0.000 and p = 0.002, respectively). Patients with T3-4 diseases showed higher MTV-T, TLG-T and Total MTV than those with T1-2 diseases (p = 0.000, p = 0.000 and p = 0.007, respectively). There was no difference was observed in PET parameters among sex, age or pathology. Figure 1 showed the PET/CT images of two different patients.

Cut-off values of PET parameters

As DMFS was the primary endpoint, we took the values of PET parameters showing the best trade-off between sensitivity and specificity for DMFS as the best cut-off values, which were determined by receiver operating characteristic (ROC) analysis. The best cut-off values of SUVmax-T, SUVmean-T, MTV-T, TLG-T, SUVmax-N, MTV-N, TLG-N, Total SUVmax, Total SUVmean, Total MTV, Total TLG were 8.70, 4.30, 3.00, 12.71, 58.08, 6.40, 27.14, 16.04, 49.79 and 235.46, respectively.

Univariate analysis of factors for survival

The summarized results of univariate analysis were listed in Table 3. Patients met any of the following factors including lower SUVmax-T (SUVmax-T ≤ 8.70), SUVmean-T (SUVmean-T ≤ 4.30), MTV-T (MTV-T ≤ 12.71), TLG-T (TLG-T ≤ 58.08), Total SUVmax (Total SUVmax ≤ 27.14), Total MTV (Total MTV ≤ 49.79) or Total TLG (Total TLG ≤ 235.46) had a better DMFS (p = 0.042, p = 0.008, p = 0.023, p = 0.023, p = 0.024, p = 0.033, p = 0.016) (Figure 2). Patients with a lower Total SUVmean (Total SUVmean ≤ 16.04) only showed a trend of better DMFS (p = 0.074). Those with SUVmax-N ≤ 6.40 had a better PFS (p = 0.027), but patients with Total TLG ≤ 235.46 were observed only a trend of better PFS (p = 0.084). In addition, patients with a lower SUVmax-T (SUVmax-T ≤ 4.30) or MTV-T (MTV-T ≤ 12.71) had a relatively higher OS (p = 0.079, p = 0.073). Those with a lower SUVmax-N (SUVmax-N ≤ 6.40) showed no change in DMFS, PFS and OS. Among other clinical and pathological factors including sex, age (age ≥ 41.5 vs age ≤ 41.5), T stage, N stage, overall stage, receiving concurrent

Table 2. Patterns of failure.

Failure	Number of patients	%
Local recurrence	2	4.65
Nodal recurrence	2	4.65
Distant metastasis	6	13.95
Local recurrence & distant metastasis	2	4.65
Death	4	9.30

doi:10.1371/journal.pone.0103153.t002
chemoradiotherapy or not, and patterns of chemoradiotherapy, only patients with T1-2 diseases had a better DMFS (p = 0.015) and OS (p = 0.035) than T3-4 patients, and showed a trend of better PFS (p = 0.085).

Multivariate analysis of independent factors for survival

Factors including SUVmax-T, SUVmean-T, MTV-T, TLG-T, Total SUVmax, Total MTV, Total TLG, T stage, which were proved by univariate analysis to have the potential affecting DMFS were included in the Cox proportional hazard model. Hazard ratio (represented by EXP(B) in Table 4) of SUVmean-T, MTV-T, Total SUVmax and Total TLG were larger than 1. But only Total SUVmax had a p value less than 0.05 (p = 0.046). Thus, the result indicated that Total SUVmax is the independently predictive factor for DMFS (Hazard ratio: 2.623, Confidence interval of hazard ratio: 1.018 - 6.755, p = 0.046) (Table 4).

Similarly, SUVmean-T, the potential factor proved by univariate analysis, and Total TLG and T stage, which led to trends of changes in PFS were included into the Cox proportional hazard model, and SUVmean-T were showed to be the independently predictive factor for PFS (Hazard Ratio: 2.028, Confidence interval of hazard ratio: 1.052 – 3.911, p = 0.035) (Table 4).

Spearman Rank correlation analysis

Total SUVmax showed moderate to strong correlation with SUVmax-T and SUVmax-N (Spearman Rank coefficient: 0.399, p = 0.009). There was especially strong correlation between SUVmean-T and SUVmax-T (Pearson coefficient: 0.905, p = 0.000), and moderate to strong correlation was observed between SUVmax-T and MTV-T, or between SUVmean-T and TLG-T (Pearson coefficient: 0.474 and 0.621, respectively; p = 0.001 and p = 0.000, respectively).

Discussion

The prognostic factors for malignant tumor have always been attracting a lot of attention, for their potential of guiding the clinicians to conduct personalized treatments for every patients. 18F-FDG PET, as a functional imaging, is promising to provide the bio-metabolic information of the tumor to clinical doctors. The FDG PET is considered as a non-invasive functional imaging study. It could provide more biological characters of tumors, such as cell viability, proliferative activity, hypoxia, low apoptosis rate, and p53 over-expression [34].

Our study has utilized the metabolic information of FDG PET, and tried to find the most valuable parameters for treatment outcome of nasopharyngeal carcinoma from SUVmax-T, SUVmean-T, MTV-T and TLG-T of primary tumor, SUVmax-N of metastatic lymph nodes, and Total SUVmax, Total SUVmean, Total MTV and Total TLG.

There were several studies focusing on the predictive value of FDG PET for distant metastasis of NPC after treatment. These studies limited by analyzing no more than two PET parameters, and always focused on traditional parameters. Among the parameters, SUVmax received the most attention. Lee analyzed 41 patients of NPC who had received radical radiotherapy and found that those with lower SUVmax had better DFS (disease-free survival) [22]. The research conducted by Xie also indicated a similar conclusion that the higher the SUVmax of primary tumor, the lower the DFS and OS [24]. However, the two studies failed to
Variable	Number of patients	3-year DMFS(%)	P	3-year PFS(%)	P	3-year OS (%)	P
Age	≧45	22	77.3	0.491		67.5	0.574
	>45	21	85.0	0.192		64.8	0.871
Sex	Male	32	80.6	0.080		78.1	0.192
	Female	11	81.8	0.192		41.6	0.909
AJCC stage	I-II	11	90.9	0.367		72.7	0.986
	III-IVB	32	77.4	0.015		67.6	0.221
	T1-T2	22	95.5	0.015		81.3	0.085
	T3-T4	21	65	0.015		55.6	0.015
	N0-N1	17	82.4	0.949		70.6	0.657
	N2-N3	26	80	0.949		67.8	0.233
Concurrent chemo	Yes	19	78.9	0.745		61.4	0.598
	No	24	82.6	0.194		74.2	0.810
Patterns of chemo	None	6	100	0.015		100	0.194
	NAC	6	100	0.015		62.5	0.015
	NAC+AC	12	63.6	0.015		66.7	0.015
	NAC+CCRT	19	78.9	0.015		76.7	0.015
Pathology	WHO II	8	75	0.065		46.9	0.293
	WHO III	35	82.4	0.065		73.3	0.293
SUVmax-T	≧8.69	13	100	0.042		84.6	0.205
	>8.69	30	72.4	0.042		60.6	0.205
SUVmean-T	≧4.29	19	100	0.008		89.5	0.008
	>4.29	24	66.7	0.008		53.8	0.008
MTV-T	≧12.70	15	100	0.023		70	0.023
	>12.70	28	70.4	0.023		71.4	0.023
TLG-T	≧58.08	15	100	0.023		79.4	0.023
	>58.08	28	70.4	0.023		62.5	0.023
SUVmax-N	≧6.39	27	88.5	0.117		74.1	0.117
	>6.39	16	68.8	0.117		61.1	0.117
Total SUV/mean	≧27.13	21	95.2	0.024		77.1	0.024
	>27.13	22	66.7	0.024		62.9	0.024
Total SUV	≧16.04	24	91.3	0.074		75.8	0.074
	>16.04	19	68.4	0.074		61.6	0.074
Total MTV	≧49.79	25	92.0	0.033		72.1	0.033
	>49.79	18	64.7	0.033		66.7	0.033
Total TLG	≧235.46	22	95.5	0.016		77.7	0.016
	>235.46	21	65.0	0.016		61.1	0.016

Bold numbers, indicated there was statistically significant difference (p value <0.05).
doi:10.1371/journal.pone.0103153.t003
point out the definite pattern of treatment failure (for example, local recurrence or distant metastasis). These studies were limited by unable to guide treatments. Chan and Hung conducted further studies and found that SUVmax was correlated with DMFS. The results of Chan indicated that the 5-year DMFS in stage IVa–b patients with SUVmax >12.0 was significantly lower than that in stage I–III patients with SUVmax≤12 (p = 0.0001) [23]. The conclusion of Hung showed that both SUVmax of the primary tumor and that of neck lymph nodes were independent prognostic factors for DMFS in NPC patients treated with IMRT [25]. Nevertheless, our study revealed that SUVmax-T, SUVmean-T, MTV-T, TLG-T, Total SUVmax, Total MTV, Total TLG and T stage were all proved to be potential factors negatively affected the 3-year DMFS in univariate analysis, after included into Cox proportional hazards model, only Total SUVmax was the independently prognostic factor for DMFS. Moreover, in Spearman Rank correlation analysis, Total SUVmax, as a parameter reflecting total tumor burden, showed moderate to strong correlation with SUVmax-T and SUVmax-N. So it is reasonable to hypothesize that Total SUVmax was the parameter most directly correlated with DMFS. As none of previous studies included Total SUVmax into analysis, they finally drew conclusion that SUVmax of primary tumor or cervical lymph nodes was the most valuable predictive parameter of patients with NPC, and might have been insufficient. The result of our study indicates that patients with higher Total SUVmax may have higher risk of developing distant metastasis, and need more aggressive systematic treatment.

The multivariate analysis from this study also discovered that mean standardized uptake value of primary tumor (SUVmean-T) was independent factor for PFS and OS. However, this result should be interpreted with caution, as all of optimal cut-off values of PET parameters by ROC analysis were based on the best trade-off between sensitivity and specificity for DMFS, not for PFS or OS.

In our study, all patients were treated with IMRT, and half of the patients received concurrent chemoradiotherapy. The distant metastasis remained the main pattern of treatment failure. It confirmed the previous studies that IMRT and concurrent chemotherapy have greatly improved the local-regional control of NPC, without a major impact on distant metastasis [3-5]. There was a randomized phase II trial reported the results in stage III-IVB NPC patients, comparing CCRT with or without neoadjuvant docetaxel and cisplatin. This clinical trial confirmed that the neoadjuvant chemotherapy is beneficial for improving DMFS and OS [35]. Meanwhile, there are several studies having similar conclusion. The treatment related toxicities were tolerable [36,37]. In addition to chemotherapy, biological target therapy is newer type of systematic treatment. The Radiation Therapy Oncology Group have conducted a study of concurrent chemoradiotherapy followed by adjuvant chemotherapy with bevacizumab (RTOG 0615). The results indicated that the therapy is feasible and may delay the progression of subclinical distant disease [38]. Another phase II clinical trial of cetuximab with concurrent chemoradiotherapy in locoregionally advanced NPC also showed that the strategy is feasible. The preliminary rate was favorable comparing with historic data [39]. It is our opinion that should the patients with high risk of distant metastasis be predicted by Total SUVmax of FDG PET, more aggressive systematic treatment could be considered in these patients.

There are still limitations in this study. As it is a retrospective study, there exist defects in data completeness and comparability. The total amount of patients enrolled in was relatively small. With the accumulation of patients and follow-up period, we will conduct further analysis with more patients and longer follow-up period on the basis of the current preliminary results. It is possible that we may find more valuable parameters of FDG PET for the predicting the prognosis of NPC patients, and thus help to guide personalizing treatment of NPC better.

In conclusion, the preliminary results of our study showed that Total SUVmax was an independently predictive factor for distant metastasis in NPC patients. This may assist the clinicians to conduct personalized treatment that is more aggressive in these patients.

Endpoint	Variable	\(B\)	\(P\) value	\(\text{EXP}(B)\)	95% CI for \(\text{EXP}(B)\)
DMFS	SUVmax-T	-9.221	0.055	0.000	0.000–1.196
	SUVmean-T	59.839	0.055	9.725E25	0.301–3.142E52
	MTV-T	3.946	0.061	51.703	0.840–318.561
	TLG-T	-0.861	0.61	0.423	0.172–1.039
	Total SUVmax	0.964	0.046	2.623	1.018–6.755
	Total MTV	-1.118	0.065	0.327	0.100–1.072
	Total TLG	0.187	0.066	1.206	0.988–1.473
	T stage	-164.227	0.059	0.000	0.000–368.385
PFS	SUVmean-T	0.405	0.026	1.499	1.049–2.144
	Total TLG	0.000	0.891	1.000	0.997–1.002
	T stage	-1.854	0.089	0.157	0.019–1.326
OS	SUVmean-T	0.707	0.035	2.028	1.052–3.911
	MTV-T	-0.022	0.495	0.979	0.919–1.042
	T stage	-11.991	0.952	0.000	0.000–1.30E163

* \(B\) represented the regression coefficient for each variable in Cox model.

** \(\text{EXP}(B)\) represented the hazard ratio (HR) of each variable.
Bold numbers, indicated there was statistically significant difference (\(p\) value <0.05).
Abbreviation: CI, Confidence Interval.

doi:10.1371/journal.pone.0103153.t004
Acknowledgments
We thank our colleagues in Department of Radiation Oncology and Department of Nuclear Medicine of Fudan University Shanghai Cancer Center for helpful comments and other assistance.

References
1. Liu MT, Huie CY, Chang TH, Lin JP, Huang CC, et al. (2003) Prognostic factors affecting the outcome of nasopharyngeal carcinoma. Jpn J Clin Oncol 33(10): 501–308.
2. Mao YP, Liao SB, Liu LZ, Chen Y, Sun Y, et al. (2006) The N staging system in nasopharyngeal carcinoma with radiotherapy oncology group guidelines for lymph node level based on magnetic resonance imaging. Clin Cancer Res 12(22): 7497–7503.
3. Lee N, Xia P, Quevie JM, Salamaen K, Pooin I, et al. (2002) Intensity-modulated radiotherapy in the treatment of nasopharyngeal carcinoma: an update of the UCSF experience. Int J Radiat Oncol Biol Phys 53(1): 12–22.
4. Kam MK, Tro PM, Chau RM, Cheung KY, Choi PH, et al. (2004) Treatment of nasopharyngeal carcinoma with intensity-modulated radiotherapy: the Hong Kong experience. Int J Radiat Oncol Biol Phys 60(5): 1440–1450.
5. Lee N, Harris J, Garden AS, Straube W, Glisson B, et al. (2009) Intensity-modulated radiation therapy with or without chemotherapy for nasopharyngeal carcinoma: radiation therapy oncology group phase II trial 0225. J Clin Oncol 27(22): 3604–3609.
6. Edge SB, Byrd DR, Compton CC, Fritz AG, Greene FL, et al. (2009) AJCC Cancer Staging Manual, 7th edition. Philadelphia: Lippincott-Raven. pp. 6–8.
7. Ho JH (1976) Stage classification of nasopharyngeal carcinoma: a review. IARC Sci Publ 20: 99–113.
8. Min H, Hong M, Ma J, Zhang E, Zheng Q, et al. (1994) A new staging system for nasopharyngeal carcinoma in China. Int J Radiat Oncol Biol Phys 30(3): 1037–42.
9. Kitagawa Y, Nishizawa S, Sano K, Ogasawara T, Nakamura M, et al. (2003) Prospective Comparison of 18F-FDG PET with Conventional Imaging Modalities (MRI, CT, and 67G Scintigraphy) in Assessment of Combined Intraarterial Chemotherapy and Radiotherapy for Head and Neck Cancer. J Nucl Med 44(2): 198–206.
10. Jeong HS, Baek CH, Son YI, Kyung Lee D, et al. (2007) Use of [18F]fluorodeoxyglucose positron emission tomography standardized uptake value of neck lymph nodes predicts neck cancer control and survival rates in patients with oral cavity squamous cell carcinoma and pathologically positive lymph nodes. Int J Radiat Oncol Biol Phys 74(4): 1054–61.
11. Lee SW, Nam SY, Im KG, Kim J5, Choi EK, et al. (2008) Prediction of prognosis using standardized uptake value of 2-[18F] fluoro-2-deoxy-D-glucose positron emission tomography for nasopharyngeal carcinomas. Radiotherapy and Oncol 87(2): 211–216.
12. Chang SC, Chang YJ, Wang HM, Lin CY, Ng SH, et al. (2009) Prediction for distant failure in patients with stage M0 nasopharyngeal carcinoma: The role of standardized uptake value. Oral Oncol 45(1): 52–58.
13. Lee NY, Zhang Q, Pfister DG, Kim J, Garden AS, et al. (2012) Prognostic value of 18F-FDG PET/CT before and after radiotherapy for locally advanced nasopharyngeal carcinoma. Ann Oncol 23(5): 1078–1082.
14. Xie P, Yue JB, Fu Z, Feng R, Yu JM (2010) Prognostic value of 18F-FDG PET/CT and carotid duplex ultrasonography for nasopharyngeal carcinoma. Int J Radiation Oncol Biol Phys 77(6): 1701–1708.
15. Kong SC, Chang JT, Lin CY, Ng SH, Wang HM, et al. (2011) Clinical utility of 18F-FDG PET parameters in patients with advanced nasopharyngeal carcinoma: predictive role for different survival endpoints and impact on prognostic stratification. Nucl Med Commun 32(11): 990–996.
16. Chang KP, Tsang NM, Liao CT, Hsu CL, Chung MJ, et al. (2012) Prognostic Significance of 18F-FDG PET Parameters and Plasma Epstein-Barr Virus DNA load in Patients with Nasopharyngeal Carcinoma. J Nucl Med 53(1): 21–26.
17. Kong SC, Chang JT, Lin CY, Ng SH, Wang HM, et al. (2010) Preoperative value of [18F]18F-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography predicts short-term outcome to radiotherapy with or without chemotherapy in pharyngeal cancer. J Clin Cancer Res 15(10): 5681–8.
18. Seol YM, Kwon BR, Song MK, Choi YJ, Shin HJ, et al. (2010) Measurement of tumor volume by PET to evaluate prognosis in patients with head and neck cancer treated by chemoradiotherapy. Acta Oncol 49(2): 201–8.
19. Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete observations. J Am Stat Assoc 53(282): 457–481.
20. Cox DR (1972) Regression models and life tables. JR Stat Soc Ser B 34(2): 187–220.
21. Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete observations: II. The role of censored observations. J Am Stat Assoc 53(282): 457–481.
22. Metz CE (1986) ROC methodology in radiologic imaging. Invest Radiol 21(9): 720–733.
23. Cox DR (1972) Regression models and life tables. JR Stat Soc Ser B 34(2): 107–220.
24. Allal AS, Sloman DO, Kebdani T, Allaoua M, Lehmann W, et al. (2004) Standardized uptake value of 2-[18F] fluoro-2-deoxy-D-glucose in predicting outcome in head and neck carcinomas treated by radiotherapy with or without chemotherapy. J Clin Oncol 20(5): 1390–1401.
25. Allal AS, Sloman DO, Kebdani T, Allaoua M, Lehmann W, et al. (2004) Prediction of outcome in head-and-neck cancer patients using the standardized uptake value of 2-[18F] fluoro-2-deoxy-D-glucose. Int J Radiat Oncol Biol Phys 59(5): 1295–1300.
26.风景区 CT before and after radiotherapy for locally advanced nasopharyngeal carcinoma: an update of the radiotherapy oncology group phase II trial of concurrent cisplatin-radiotherapy with or without neoadjuvant docetaxel and cisplatin in advanced nasopharyngeal carcinomas. J Clin Oncol 27(2): 242–249.
27. Kong L, Lu JI, Hu C, Guo Y, Niu X, et al. (2012) Neoadjuvant Chemotherapy With TPF Regimen Followed by Concurrent Chemoradiation for Locoregionally Advanced Stage Nasopharyngeal Carcinoma. Int J Radiat Oncol Biol Phys 84(3): 487.
28. Zhou Y, Zhou Y, Xie C, Wang X, Zhou F, et al. (2012) Phase II Trial of Detaexal and Cisplatin Neoadjuvant Chemotherapy Followed by Intensity Modulated Radiation Therapy With Concurrent Cisplatin in Advanced Nasopharyngeal Carcinoma. Int J Radiat Oncol Biol Phys 83(3): 207.
29. Lee NY, Zhang Q, Pfister DG, Kim J, Garden AS, et al. (2012) Addition of bevacizumab to standard chemoradiation for locoregionally advanced nasopharyngeal carcinoma [RTOR 0615]: a phase 2 multi-institutional trial. Lancet Oncol 13(2): 172–180.
30. Mab BB, Kam MK, Leung SF, Hui EP, King AD, et al. (2012) A phase II study of concurrent cetuximab-cisplatin and intensity-modulated radiotherapy in locoregionally advanced nasopharyngeal carcinoma. Ann Oncology 23(5): 1297–1292.
31. Al Allal AS, Sloman DO, Kebdani T, Allaoua M, Lehmann W, et al. (2004) Standardized uptake value of 2-[18F] fluoro-2-deoxy-D-glucose in predicting outcome in head and neck carcinomas treated by radiotherapy with or without chemotherapy. J Clin Oncol 20(5): 1390-1401.
32. Allal AS, Sloman DO, Kebdani T, Allaoua M, Lehmann W, et al. (2004) Prediction of outcome in head-and-neck cancer patients using the standardized uptake value of 2-[18F] fluoro-2-deoxy-D-glucose. Int J Radiat Oncol Biol Phys 59(5): 1295-1300.
33. Al Allal AS, Sloman DO, Kebdani T, Allaoua M, Lehmann W, et al. (2004) Standardized uptake value of 2-[18F] fluoro-2-deoxy-D-glucose in predicting outcome in head and neck carcinomas treated by radiotherapy with or without chemotherapy. J Clin Oncol 20(5): 1390-1401.
34. Allal AS, Sloman DO, Kebdani T, Allaoua M, Lehmann W, et al. (2004) Prediction of outcome in head-and-neck cancer patients using the standardized uptake value of 2-[18F] fluoro-2-deoxy-D-glucose. Int J Radiat Oncol Biol Phys 59(5): 1295-1300.