The Large Grey Area between ‘bona fide’ and ‘rogue’ stem cell interventions – Ethical acceptability and the need to include local variability

Abstract

This article aims to put into perspective the binary opposition between ‘scientific’ clinical research trials and ‘rogue’ experimental stem cell therapies, and to show why the ethics criteria used by the dominant science community are not suitable for distinguishing between adequate and inadequate treatment. By focusing on the grey area between clinical stem cell trials and stem cell experimentation, the experimental space where patients, medical professionals and life scientists negotiate for diverging reasons and aims, I show why idealised notions of ethics are not feasible for many stem cell scientists in low- and middle-income countries.

Drawing on fieldwork in China from 2012-2013, the article asks why ‘the unethical’ according to some is acceptable to Chinese life scientists. The case study of stem cell service provider Beike Biotech illustrates how stem cell interventions take place in a large grey area, where narrow notions of ethics are blurred with and supplanted by broader notions of ethics, co-determined by estimations of socio-economic, political and cultural understandings of risk, opportunity and benefit.

I borrow the term ‘bionetworking’, understood as the entrepreneurial aspects of scientific networks that engage in creating biomedical products, to analyse various forms of medical experimentation. I speak of the ‘externalisation’ and ‘internalisation’ of local factors, to elucidate how features of patient populations and their environments are subsumed in clinical research applications. Compared to polarized views of stem cell therapy, this approach increases the transparency of clinical interventions and broadens our understanding of why ‘stem cell tourism’ to some is ‘stem cell therapy’ to others.

Key words: China; stem cells; clinical trials; experimentation; bionetworking
Introduction

In the context of ‘stem cell tourism’, scientists and observers of ethics have made sharp distinctions between randomised controlled trials (RCTs) and ‘experimental’ stem cell therapy provision. Various forms and practices of stem cell research and therapy have been criticised, reported and analysed by social scientists and the press (e.g., McMahon & Thorsteinsdottir 2010; The Economist 2002; Sipp 2011b; Main et al 2014; Ogbogu et al 2014; Cyranoski 2012). Governments in the US, Hungary, the Netherlands, Germany, Ireland, Belize and elsewhere have closed down clinics that provide ‘unauthorised’ stem cell therapies, while others fail to stop stem cell providers from charging high fees to administer ‘unproven therapies’ (Sipp 2009). The distinctions between ‘legitimate’ and ‘illegitimate’, ‘evidence-based’ and ‘traditional’, and ‘science-based’ and ‘experimental stem cell therapies’ are subject to heated discussion among established scientists and critics. These distinctions presume that clinical stem cell interventions that are ‘unproven’ are applied only by quacks (Bharadwaj 2013): not with the aim to cure disease, but to exploit innocent victims.

Some works on the clinical application of stem cells in LMICs have emphasised the importance of analysing regenerative medicine in the context of globalisation, global politics and global governance (Webster, 2013; Zhang, 2012; Bharadwaj 2013; Chen & Gottweis 2013; Sleeboom-Faulkner & Patra 2011; Sleboom-Faulkner 2014). These and others (Salter, Zhou & Datta 2015) have especially focused on the central role of bioethics in the global hegemony of ‘Western’ stem cell science, whereby bioethics and stem cell governance have become a pawn in a global race. Rather than making another claim about the global hegemony of ‘Western’ bioethics, I aim to identify how bioethics is understood in the light of local conditions. I do this by contrasting the local socio-economic, cultural and political factors that are important in the appreciation of clinical stem cell applications, and by exploring a way to relate the polarising and normative discussions of research ethics mentioned above to local factors relevant to the bionetworks, explained in the section below.

Joseph Coates pointed out that we lack an adequate ethical framework for relations between institutions, and that raising ethical issues in an institutional context can confuse the issues that cannot be subsumed in terms of ethical guidelines (Coates 1994). Thus, a narrow focus on a narrow definition of ethics has made medical
fees, medical ethics and scientific research fraud central to thinking about ‘rogue’ experimental stem cell provision (Sipp 2009; MacMahon & Thorsteinsdottir 2010; Sipp 2011b; Main et al 2014; Ogbogu et al 2014; Cauldfield 2015). But generalising and preconceived notions of global inequality, exploitation, and human experimentation on the poor and desperate fail to take into account the variability of their institutional embedding: they are unable to capture the significance of the active roles of patients, scientists and governments that facilitate innovative clinical stem cell applications in low- and middle-income countries (LMICs). The ethics of stem cell interventions, then, need to be understood in the socio-economic context in which its gains meaning, significance and is implemented. Rather than doing away with ethics, or understanding the ethics of stem cell applications in terms of ‘rogue’ and bona fide’, this approach leads to a more realistic estimation of the meaning of ‘international ethics’ and the reasons for its lack of implementation.

Accounts of local factors underlying such applications are needed to nuance the binary that has been created between ‘good’ RCTs and ‘rogue’ stem cell experimentation (SCE) (see Table 1).

Table 1: The binary between RCT and SCE

	RCT	SCE
Reliability	Bona fide	Rogue
Quality practice	GMP, GLP, GCP	Dubious
Ethics	Informed Consent, IRB	Dishonest, no oversight
Quality results	Scientific, evidence-based	Unscientific
Benefit	For humanity	Exploitative
Procedures	Scientific protocol	Experimental
Knowledge	Generalizable	Inadequate

In practice, most forms of clinical stem cell research feature a combination of these ideal-typical features, enabled by the various experimental spaces available in countries globally (Sleeboom-Faulkner et al 2016). By putting this binary into perspective this article tries to move beyond the view that good clinical practice is a matter of money, ethics and evidence-based science. Instead, it emphasises the importance of local factors that structure the exchanges between patients and research enterprises in shaping the clinical stem cell interventions that take place. This shift of focus from a narrow approach to ethics to value realisation through exchange networks in the life sciences increases the number of factors relevant to the ethics underlying the development and practice of clinical stem cell applications.
Bionetworking

In clinical stem cell research and its applications the value of scientific knowledge, medical skills, management and materials (including laboratories, assays, serums and biologics) are realised through many kinds of knowledge and material exchanges. They are expressed in a range of commercial and trading assets, including iPR, product licensing, accreditations and scientific collaborations, and materialised in the trade of equipment and biomaterials, and clinical services. Value realisation here (Birch and Tyfield 2012) requires the strategic deployment of a range of socioeconomic relationships, entailing entrepreneurial skills, planning and management (Jones et al 2011). While the wellbeing of the patient may be central to scientists’ concerns, it is clear that there are many other factors that condition their ability to sustain their work successfully, be it in an academic department, a company or a clinic. Central to value realisation in the life sciences is the way in which exchanges are positioned in strategic networks shaped through socio-economic, political-legal and cultural factors, or, ‘bionetworking’ (Sleeboom-Faulkner & Patra 2011), also involving a myriad of non-scientific activities, including networking, lobbying, managing, trading, and collaborating to produce science. These activities encompass interactions with a wide variety of stakeholders and institutions, ranging from political agencies, corporate sponsors and subsidiary companies to patient groups, local hospitals, universities, and the media. Such ‘bionetworking’ activities, according to Sleeboom-Faulkner and Patra, can be used to justify, prepare, and realise life science research and its applications in marked localities, incentivised not just by the promise of scientific results, but also by the demand of clients, collaborative partners, funding providers and by the development of new knowledge assets (Sleeboom-Faulkner & Patra 2011). The value realisation in bionetworks differs from the notion of biovalue, which pertains to the yield of vitality produced by the biotechnical reformulation of living processes (Waldby 2002). Bionetworking refers to social entrepreneurial network activities involving biomedical research and healthcare institutions that respond to health demands and needs (Patra and Sleeboom-Faulkner 2009). A bionetwork consists of a plurality of actors engaged in ‘biotechnical ventures’ (Waldby and Mitchell 2007) working across geographical spaces, regulatory regimes and social institutions. Bionetworks relate to the entrepreneurial aspects of biomedicine, and the strategic use of the differences and similarities in the
provision of healthcare, levels of wealth, standards of scientific development, and research regulatory regimes and their implementation (Sleeboom-Faulkner & Patra 2011). The notion applies to translational scientists working with research budgets financed by the state, as well as to those working on a commercial basis.

The local shaping of clinical interventions
This article tries to shed light on the distinction between RCTs and SCE in terms of bionetworking, taking into consideration what I refer to as the internalisation and externalisation of local factors; it aims to understand the merits of clinical stem cell interventions, rather than projecting a narrow definition of bioethics onto the field. Some scientific approaches to clinical interventions, such as RCTs, emphasise the generation of scientific value rather than the value of immediate cures (Main et al 2014). A scientific approach would translate ‘local’ circumstances intervening with a clinical trial as external factors for the purpose of creating generalizable knowledge. It presumes that, only on the basis of such generalizable knowledge, science can serve the creation of efficacious therapy in the long run. This bracketing of local particularity externalises factors that define the patients and their environments as potentially intervening with the aim of universal applicability of the therapeutic product (Will & Moreira 2010). Although RCTs are usually regarded as a case in point, clinical research methods of lesser pretence also externalise local factors. For instance, the absence of Western medical knowledge among ‘subjects’ at a medical research site in, say Somalia, can be remedied - externalised - by providing research participants with training and instructions regarding the kind of hygiene required, or by temporarily housing research participants in a clinic that conforms to the ideal environment for the experimental research. It is also possible, on the other hand, to utilise the local factors that define patients and their environments to facilitate the local applicability of a therapeutic product: to internalise local factors. For instance, researchers, including those linked with RCTs, might target populations that are ‘medically naïve’, or populations that have a particular genetic or epidemiological profile. Researchers are also interested in populations with rare diseases, incurable diseases and populations that have no alternative healthcare options. Members of all of these populations can become targets for clinical interventions, and in all of these cases the aims of the intervention may be multiple, and can, in principle, include the acquisition of research results, profit, biomaterials, experience, and the expression of
compassion and duty. Thus, depending on the context and arrangements made, the application of clinical interventions are decided not only on the basis of disease conditions, but also on other factors, including the needs of scientific research projects, healthcare access, and the ability of patients to pay for treatment.

I aim to show that, if the internal logic of experimental clinical interventions cannot be explained in satisfactory terms of the in/externalisation of factors in the interest of the research and the patient (population), it may well cover up controversial aims, including the pursuit of profit at the expense of patients. By avoiding narrow bioethical approaches, we may be able to start mapping the large grey area between idealised scientific research and demonised stem cell tourism. A focus on how local factors are dealt with in an international context can help nuance the binary of RCTs and SCE (see Table 2), and enable us to understand why ‘unethical’ stem cell applications are ‘acceptable’ to some.

Table 2: The Grey Area and the Binary

	RCT	Grey Area	SCE
Reliability	Bona fide	This area is not a neat combination of the merits of RCT and demerits of SCE, as they form an illusive binary.	Rogue
Quality	GMP, GLP, GCP	Instead, we need to examine the ways in which local factors enable research to take shape through bionetworks	Unsure
Research Ethics	Informed Consent, IRB		Dishonest, no oversight
Scientific results	Generalizable		Unscientific
Benefit	All humanity		Exploitative
Procedures	Scientific protocol		Experimental
Knowledge	Universal		Inadequate

Social-science writing critical of RCTs problematizes the ways pharmaceutical companies and research institutions operate. One of the most scathing points of critique has been that RCTs proceed from idealised circumstances to further scientific knowledge, without sufficiently taking into account the local conditions in which trials take place (e.g., Will & Moreira 2010; Rajan 2006; Petryna 2009; Mirowski & Sent 2002; Fisher 2009; Dumit 2012). By externalising local variability, the medicine resulting from expensive RCTs may become unsuitable for local use (Zwarenstein & Oxman 2006; Montgomery 2010), while its adherence to ‘universal regulation’ may delay or change the direction of research.
But, in fact, some RCTs include local variability in the logic of clinical trials, comparing the effectiveness of research over a number of localities, internalising relevant difference into the trial as variables. RCTs do not just test safety and efficacy, but increasingly aim to observe the social functioning of treatments and set priorities for spending (Will & Moreira 2010). As such, clinical trials can result in clinical interventions appropriate to ‘local daily life’ rather than the fabricated ‘ideal’ conditions of universal applicability. Such clinical trials tailor-made to the circumstances of patients are also referred to as ‘pragmatic clinical trials’ (Patsopoulos 2011). The struggle to make RCTs more ‘relevant’ to real world problems and populations requires researchers to take into account institutional settings and to accommodate variation among the circumstances of patients (Will 2007). The work by Steven Epstein on the properties and designs of AIDS in the 1980s (Epstein 1996) exemplifies how new approaches can accommodate the demands and circumstances of patients to hasten results and distribute potential benefits. In the context of stem cell research, too, we observe a trend of global patient mobility and local patient demands shaping and facilitating internationally unaccepted forms of experimental stem cell therapy provision (Chen & Gottweis 2013; Salter, Zhou & Datta 2015).

In fact, over the last few years, new forms of regulation have developed that allow ‘early’ clinical interventions. For instance, in South Korea and Japan, it is now possible to start conditional marketisation of stem cell products that have only been through limited safety and efficacy testing (KFDA 2010; MFDS 2013; PMDA 2014), while in the USA and EU, regulatory spaces have been made available for the early clinical testing of ATMPs (US FDA a-c 2014; EMA 2014; MHRA 2014). It is, however, stem cell interventions that are not subject to effective regulation that have been under heavy scrutiny, and an insistence on the implementation of the standard ethics of idealised clinical trials has incapacitated translational research in LMICs, such as China and India (Rosemann & Sleeboom-Faulkner 2016; Bharadwaj 2013). Although discouraging regulatory provisions have been in place in both countries (ICMR-DBT 2012, 2013; Sui & Sleeboom-Faulkner 2015), life scientists have created alternative ways of conducting research and responding to patient demands at the same time. Internalising local conditions with respect to regulation, expertise, healthcare, patient demand, regulatory oversight, and laboratory resources, researchers have set themselves various purposes, including research, consumer
satisfaction, profit and clinical experience, whereby it has been unclear which aims, or combinations of these aims, have been prioritised.

Using the example of Beike Biotech (People’s Republic of China [PRC]), I will illustrate how a broader notion of ethics based on the ability to internalise and externalise (in/externalise) local factors can improve our understanding of the bionetworking that underlies clinical stem cell interventions.

Method and aim

‘Western’ discourses on the acceptability of clinical stem cell interventions often focus on the themes of payment, ethics and scientific evidence. Thus, asking patients for payment for clinical stem cell services and products that are not recognized by the international stem cell research community, stem cell intervention without independent research and ethical oversight, and providing stem cell interventions unsupported by scientific evidence, are regarded as unethical (Kiatponsan & Sipp 2009; Lindvall & Hyun 2009; Gunter et al 2010). To examine the application and relevance of these criteria (payment, ethics and scientific evidence) in China, in July 2012, November 2012, and March 2013, I asked 43 medical professionals, life scientists (20), medical doctors (14) and ethicists (9) for their views on the acceptability of the stem cell therapy provision services by Beike Biotech, a company widely criticised for charging exorbitant prices for unproven stem cell therapies. When told that in the eyes of foreigners Beike Biotech engages in unethical practices, the 18 interviewees that had not lived abroad showed surprise. Only those that work in both China and the US or had been abroad for over a year found Beike ‘unethical’, for reasons of charging high fees, for using unproven and unauthorised therapies, and for not having open patient records.

There is great variety in quality among stem cell research centres and therapy providers in China, and it is not easy to gauge whether therapies are evidence-based, whether patient fees cover costs or constitute profit, and whether a lack of research oversight means that unacceptable research is taking place. Nevertheless, reports exist about clinics that provide injections of cells of unclear provenance for steep fees and without scientific records for diseases widely believed to be incurable. These so-called ‘rogue’ clinics are usually contrasted with clinics that, as part of large-scale registered clinical trials, provide injections of precisely documented cells in a clinical study without charging fees. Using the notion of bionetworking, which presumes a
connection between the production of scientific knowledge regarding life and a moral economy that involves weighing political, economic and cultural values, this article shows that most treatments can be found in an ethically grey area of stem cell experimentation combining research and treatment in various forms. To do this, first, I have analysed interview materials collected from 2012 to 2013, and, second, using the theoretical notions of in/externalisation, I have analysed the ‘grey area’ of the entrepreneurial aspects of stem cell interventions under different conditions and in different settings.

The interviews were analysed by repeated readings, thematic content analysis, and the identification of significant examples, using the abductive method (Timmermans & Tavory 2012). By analysing the different views on the practices of the stem cell research and services provided by Beike Biotech, I argue that most stem cell interventions take place in a large grey area, in which narrow notions of ethics (i.e., treatment provided is based on scientific evidence, experimental treatment requires no payment, any treatment is provided under ethical oversight) are blurred with and supplanted by broader notions of ethics, co-determined by estimations of socio-economic, political and cultural understandings of risk and benefit. By probing into the externalisation and internalisation of local factors influencing both stem cell research and therapeutic products, I aim to introduce a new dimension to the appraisal of the ‘ethicality of research’. In doing this, I intend to broaden the basis for understanding what is viewed as acceptable stem cell therapy.

After a brief discussion of different forms of stem cell experimentation, I will introduce in detail the in/externalisation of local factors in clinical stem cell interventions, before introducing the case of Beike Biotech. The case study is followed by a discussion of the applied method and its shortcomings and a conclusion. The research has received ethical certification from the ethical review board at the University of Sussex.

Distinguishing between forms of stem cell experimentation

Awareness of clinical stem cell applications as bionetworks focuses our attention on the entrepreneurial aspects of research finance (e.g., research funding, science investment, treatment fees), research policies (e.g., regarding standards, expertise,
regulation, research data) and life values (e.g., values pertaining to health, bioethics, distributive justice) involved in life science innovation.

Experimental research that strictly follows scientific protocol, such as the four-phased, double-blind, randomised control trial with control groups, is designed to meet the standards of the world’s leading peer-reviewed international scientific journals. The general validity of the RCT would make these trials universally repeatable and applicable. These kinds of trials are extremely expensive, not in the least because they need to meet the highest standards of GMP, GLP and IRBs, to be conducted by trained personnel, and have supervisory mechanisms in place to work according to authorised scientific protocol. Such RCTs are thought to be ‘scientific evidence-based’ and, ultimately, most beneficial to patients. However, wherever the intervention takes place, in practice many of the formal rules for clinical application and the ‘patients’ derive from high-income countries (Hunt & Khosla 2010; Nwobike 2006).

The research ethics of translational stem cell research and stem cell therapies are difficult to delineate in a consistent manner. I started out to explore this question using a ‘research ethics continuum’ ranging from ‘rogue’ to ‘bona fide’ stem cell applications, with RCTs as one extreme and ‘snake oil’ applications as the other:

Table 3: A hypothetical research ethics continuum

Rogue	Rogue	Rogue	Rogue	Rogue	Rogue
Snake	Snake	Snake	Snake	Snake	Snake
oil	oil	oil	oil	oil	oil
stem	stem	stem	stem	stem	stem
cell	cell	cell	cell	cell	cell
experiment against payment					
Compassionate	Compassionate	Compassionate	Compassionate	Compassionate	Compassionate
treatment	treatment	treatment	treatment	treatment	treatment
Hospital	Hospital	Hospital	Hospital	Hospital	Hospital
exemption	exemption	exemption	exemption	exemption	exemption
(EMA)	(EMA)	(EMA)	(EMA)	(EMA)	(EMA)
Conditional	Conditional	Conditional	Conditional	Conditional	Conditional
marketing approval					
before evidence					
(post-marketing data collection requirement)					
Randomised	Randomised	Randomised	Randomised	Randomised	Randomised
clinical trial					
(Phase I-IV)					

Although helpful in the European context, such a continuum can also be misleading. For, what we call ‘rogue’ practices can become acceptable depending on the context in which they occur. In the case of patients with severe, intractable diseases, ‘patient-driven experimentation’ is performed in hospitals around the world. In cases where innovative cell products involve the testing of new procedures or drugs, regulatory provisions can be made. For example, doctors in Europe can now make use of the ‘hospital exemption’ (EMA 2010), while doctors in the US can test new treatments using the ‘compassionate use programmes’ (Moynihan 2012). But all of these clinical
stem cell interventions are required to follow scientific protocol, independent review by an Institutional Review Board (IRB), and ethics procedures. In the case of the hospital exemption in Europe, experimental treatment forms part of the research framework in the form of a ‘pilot-study’. Although these studies aim to systematically collect data, they are required to prioritise the welfare of the patient. In some countries, such as Spain, the number of patients involved can amount to hundreds of patients, while others only allow 10 (interview F, Leiden, April 2012). These forms of experimental treatment require doctors to weigh the benefits/costs of the new treatment against those of all other treatments available to the patient.

Another form of experimentation takes place in the context of what is often referred to as ‘stem cell tourism’ (Song 2010), where clinics provide stem cell therapies for a wide range of serious diseases for high fees (Lindvall & Hyun 2009; McMahon & Thorsteinsdóttir 2010). Especially where there is little regulatory oversight of ‘scientific’ stem cell research practices, therapies may be applied with or without quality control and at all stages of the disease. Routine use of treatment procedures makes the practitioners of this form of profit-driven therapy highly experienced in the handling and the banking of cells, and the treatment procedures employed. Providers can use this work experience to claim expertise in clinical stem cell procedures, including those that are not accepted by the prestigious scientific journals. As exemplified in the case study of Beike Biotech, discussed below, such providers have begun to set up databases (planned or post-hoc) and gather material to examine the safety and efficacy of the therapies.

Ethical research is important for the safety of patients and the protection of the reputation of scientists. But the ethicality of stem cell experimentation is difficult to gauge in universal terms of treatment fees, ethical oversight, and scientific evidence used in the literature (Lindvall & Hyun 2009; Gunter et al 2010). This is because practices such as financial payment for medical interventions, using ‘experimental therapy’ as regular therapy, and the acknowledgement of possible patient benefit from experimental research are accepted in large parts of the world.

First, financial contribution to treatment is a conventional practice, also used in countries providing first-class healthcare. Thus, pilot studies for experimental treatment usually do not charge fees, but can ask for a contribution to the direct cost of the therapy (e.g., hospital bed, medicine and nursing) and insurance. For instance, in Japan patients pay for the basic costs of new drugs that have not passed the PMDA
yet, and in the USA, the Code of Federal Regulations (CFR) 312.8 allows charging for investigational drugs under IND (GPO 2012).

Second, in many countries clinical trials, which are also experimental, are regarded as a realistic healthcare opportunity, despite the lack of evidence of the efficacy of medical interventions. Thus, in countries with low standards of healthcare provision patients may view foreign experimental medicine as their best option, even when risks are involved that are unacceptable elsewhere, and even if medicines are not guaranteed after the trial.

Third, clinical trials may have adverse effects that require family care when the RCT does not take responsibility. Thus, some RCTs address national insurance schemes first in case of adverse effect, or fall back to care by family members when no hospital care is available (personal communication, IRB member in a hospital in Suzhou, China).

Finally, some providers of stem cell interventions are more seriously interested in research results than therapy outcome, while others are not interested in either. Awareness of this ‘risk hierarchy’ makes scientists more tolerant of some than other forms of ‘rogue’ therapy provision. Thus setting up GLP/GMP clinical trials of considerable risk without government permission may be regarded as less harmful compared to driving patients into the arms of ‘rogue’ stem cell interventions (interview P, R, D March 2013; M, B, K July 2012).

These observations show that local circumstances and diverging healthcare contexts put into perspective the ethics criteria associated with idealised RCTs. There are also other, more general, reasons why the ethical appraisal of stem cell interventions cannot be defined in universal ethical terms.

First, scientific appraisal can be problematic, due to dissent among experts and their competing interests (Bianco 2013; Centre for Bionetworking 2014). When investigating plans for clinical studies, most governments find it hard to know which camps of scientists are the ‘most scientific’ or reliable. Among scientists in China there are those who support relaxed guidelines for translational medicine and others who insist on strict legislation. This situation is complicated by the systematic pressure exerted by sceptical experts who lobby for investment into public health or epidemiology (interview public health expert S, July 2012, Shanghai).
Second, patients want cures, independent of whether they are achieved through scientific knowledge, fluke, placebo or alternative treatments. To patients that cannot afford or find alternative healthcare in their country, commercial or experimental stem cell therapies may be their only option – especially if they see this as a chance for a higher quality or extension of life. A growing group of patients argues that any positive effect, even if the result of a placebo, and even if short-term, is preferable to no intervention (Chen & Gottweis 2013).

Third, many patients do not think that paid-for treatment is automatically unethical. Although making profit using experimental medicine is unethical according to some, many patients understand that those providing commercial stem cell interventions do not necessarily regard patients as a mere source of profit. Rather, they need to maintain the viability of their enterprise to help patients (personal communication spinal cord injury patient, Nov 2013).

Fourth, both patients and scientists acknowledge that experiments are needed for the advancement of science, but different locations organise these in different ways. Thus, the hospital exemption in the EU and compassionate treatment in other countries are mechanisms that allow trying out innovative treatments on a limited number of patients. Many researchers regard small-scale studies as expedient to yielding data of, for instance, innovative stem cell-based treatment for a complex and multi-systemic condition such as Parkinson’s Disease as preparation of large-scale clinical trials (Hyun 2010). Such experimental spaces are also claimed in China (interview P, March 2013).

Although conditions of poor healthcare access lead patients to opt for risky treatment, it is also true that patients from HICs and wealthy people in LMICs without conventional treatment options flock to the same stem cell therapy providers. In addition, there are patients that have invested their life savings (and more) into the desired intervention. The patients go on a ‘stem cell pilgrimage’ (Song 2010) despite warnings given by doctors and placed on the websites of the International Society for Stem Cell Research (ISSCR 2008) and the International Society for Cell Therapy (ISCT 2015) guidelines. It is clear, then, that understanding the provision of stem cell interventions requires an approach that analyses the reasons for provision and demand together.

To appreciate the workings of the bionetworks in which stem cell experimentation operates, rather than judging it by a narrow approach to bioethics,
commercial aims, and research oversight alone, it is important to understand the healthcare needs of patients and the infrastructural resources available to populations. Ethics oversight, fee-payment and scientific evidence are only some of the aspects relevant to the exchanges between patients, doctors and life scientists, which are better understood in the light of the globalisation of the healthcare industry in interaction with the ways in which localities aim to meet local needs.

The internalisation and externalisation of local factors

The binary of RCTs and SCE blinds us to the bionetworks that combine elements of both in clinical applications. The clinical interventions of RCTs would follow ‘scientific’ protocol to improve the state-of-the-art, and ultimately to create medical products that can save people’s lives. The ethicality of RCTs has however been queried, as research in LMICs requires making adjustments to field sites through the externalisation of local factors that influence the protocol of a clinical trial (Will 2007; Geissler et al 2008: 705; Rothwell 2005). Thus, a multi-centred, randomised stem cell trial for a certain non-communicable disease in a developing country needs to take into account characteristics of the patient populations and the research infrastructure. The other extreme of the binary, SCE, would exploit desperate populations by charging high payments for unproven stem cell interventions, making use of the vulnerabilities and features of the incurable, such as their desperation, naivety, lack of healthcare access, and wealth. In terms of the internalisation of local factors, these features could translate into the business prospects of ‘rogue’ stem cell interventions.

But a closer look at the internalisation and externalisation of local factors sheds light on the significance of ‘ethical oversight’, ‘fee payment’ and ‘scientific evidence’ in therapy provision, and yields insight into the process of the value realisation of clinical stem cell interventions as bionetworks. The life scientists interviewed were asked about the kinds of populations important for recruitment to test clinical stem cell applications in terms of the ‘features of patient populations’ and the ‘biomedical infrastructure’ needed (summarised in table 4). The reasons for and the priority of their interest in the features of a particular patient population and the available research infrastructure varied greatly, and were dependent on interviewees’
emphasis on the importance of research, therapy, or both, and on their views on the availability of resources. Below I explain this in terms of the in/externalisation of local factors.

Table 4. The local factors mentioned by life scientists as being important to patient recruitment for clinical research (in order of frequency mentioned):

Relevant features of patient populations	Relevance
1. Health conditions	Rarity; availability of other options
2. Wealth	Affordability of treatment
3. Insurance coverage (national/private)	To pay for adversities
4. Prognosis	Treatment survival chances; demand for end-product
5. Age	Treatment survival chances
6. Availability alternative treatment options	Treatment choice
7. Employment	Need to take time off; ability to pay
8. Sanitary conditions at home	Conducive to the intervention
9. Language ability, schooling of transport	Medical regimen, and comfort
10. Availability of nutrients	Enhances understanding instructions (If travel is necessary)
11. Family situation	Conducive to the intervention
12. Employment	After-care; support; children; Care and payment issues
13. Religious/national/ethnic identity factors	Issues of belief, gender, trust, care

Important aspects of the research infrastructure of a country/region	Relevance
1. Regulation of cell products and their clinical application	Need for permissions, equipment; ethics
2. Regulatory bureaucracy	Time and payments involved
3. Research funding	Affordability of research, equipment
4. Patient pool	Recruitment
5. Availability of medical, linguistic, scientific, and technical expertise;	To explain the research to population, administer interventions, and maintain equipment
6. Reputation of research and medical institutions	Trust of population and acknowledgment of scientific community
7. Certification laboratories and clinics	Conducive to trust and reputation
8. Sensitivity of the media	Risk scandal; advertising opportunity

Externalisation

To realise optimal research conditions, interviewed life scientists had various priorities: a location with advantageous regulation, a suitable patient disease pool, skilled collaborative partners of good reputation, certified scientific institutions, and the public acceptability of the research. Various interviewees mentioned that, in some
infrastructures, the research participants might require pre-treatment, simulating the standardised health conditions of ‘first world countries’, in preparation for the trial: after all, final products will need to reach high-demand markets. Thus, to optimise standard treatment, the participants would need to be precisely instructed (language; education) about the sanitary conditions (hygiene; diet), duration of the treatment (family circumstances), and its costs (insurance; transport; time off work or away from home).

There was awareness among most interviewees that, if and when medical products result, they might not benefit the tested population, as after the trial the population is expected to revert to its pre-trial lifestyle. Thus, even if the cost of the medical intervention would be met, the tested population may require sanitary conditions, hygiene, nutrition, knowledge, time and transportation normally not available in their everyday lives. The concern about being in the right condition to receive treatment is not just associated with RCTs, but with all modes of clinical research that require human research subjects to adopt substantial lifestyle changes, whether RCT, small-scale investigative studies, compassionate interventions, or pay-for-treatment studies (which, in addition, involve large payments, new medical regimes, suitable living environments and employment, and follow-up treatment). The availability of continued treatment or treatment for members of the tested population, interviewees pointed out, cannot be taken for granted even if financial support is available.

The evidence-based science orientation of RCTs was also criticised for creating medical products that are unaffordable due to intellectual property rights (iPR). However, medical products generated outside of RCTs can also carry iPR. For instance, Beike Biotech, who does not organise classical RCTs, promotes its 20 patents and AABB certificate (Beike Biotech 2014) in advertisements and in its negotiations with provincial biobanks and hospitals. And, Beike’s stem cell products can be just as unaffordable, as will be illustrated below.

Internalisation

The scientific basis of the research may be affected by the social and physical circumstances in which it takes place, for it is not always possible to externalise the ‘undesirable’ conditions that are part and parcel of the field site (Montgomery 2012). In such cases, they are unavoidably internalised into the research. This was clearly
recognised by the interviewees engaged in clinical trials (P March 2013; H, O Nov 2012), who indicated that research participants bring into the research their particular social conditions related to healthcare, diet, medicine, physiological idiosyncrasies, hygiene, and attitudes that shape the reaction of the experimental body, and which may influence the results of experimental research. In other words, the undesired internalisation of local conditions may be unpreventable, and introduce bias into the research, as is the case with pragmatic clinical trials (Patsopoulos 2011; Sugarman & Califf 2014).

Some local factors, including healthcare access, regulatory regimes, and the socio-cultural background of various populations, are ambiguous, as they can seem to be external to clinical stem cell interventions. They are nevertheless internalised for various reasons. For instance, the socio-cultural background or ‘ethnicity’ of a population can be pertinent to the ‘scientific logic’ of clinical research when the population is thought to be sensitive to certain chemical components in drugs. In other cases, ethnic background can be expedient to lucrative clinical stem cell research ventures when internalised strategically. Thus, if a group of patients with a certain social or ethnic background is known to lack healthcare access (cf Medpace 2013), it may become the target of patient recruitment (interview, Q July 2012). In such cases the internalisation of ethnicity serves profit-making.

Some interviewees criticised ‘irresponsible’ clinical stem cell interventions as ‘experimentation’ for ignoring the particularity of disease conditions, such as when the same stem cell intervention is applied for both Parkinson’s and Huntington’s Disease (N, Z Tianjin, Nov 2012). In this case, the variability of patients’ conditions remains ‘unmarked’. However, the failure to mark the particularity of a potential patient population also occurs in RCTs, such as when the size, ethnicity, weight, age and other physiological features of patients are not taken into account (Leichleiter 2014). Participants in RCTs may also be selected for their particular characteristics, be it genetic make-up, medical naivety, lack of alternative treatment, or absence of strict regulation in the country the RCT takes place (Sleeboom 2005; Pomfret & Nelson 2000; Petryna 2007, 2009). Even though in such cases patients may not have to pay for participation, they take a considerable medical risk and have no guarantee that any potential medical products will become available to them.
The reasons for the internalisation and externalisation of features of the targeted patient population and its environment vary, and are inherent to the bionetworks they are part of. Aspects of experimental conditions are internalised not just because they are hoped to contribute to the state-of-the-art or to benefit patients, but also because other interests play a role, such as reputation, market-share, profit, or contact networks. Similarly, knowledge of the patient’s healthcare access, insurance, education, religious belief, wealth, living conditions and family situation may all be valuable for patient recruitment purposes, while knowledge of a country’s healthcare system, regulation, patient pool, communication system, expertise, jurisprudence, insurance system and science policy are important to the location of stem cell clinics. Interviews made clear that such knowledge of localised conditions underpin the organisation of clinical stem cell application in general, including in the work of clinical research organisations (CROs), state hospitals and commercial stem cell applications.

Why Beike Biotech is ‘acceptable’

By interpreting Beike Biotechnology as a bionetwork that internalises and externalises local factors, I explain why many Chinese life scientists refer to Beike Biotech, which is often referred to as ‘unethical’, as an ‘acceptable’ provider of stem cell interventions. This case shows how Beike’s bionetworking activities enabled it to gradually evolve from being able to in/externalise only a few factors to being able to selectively pick which factors to in/externalise. Before ethically adjudicating the activities of clinical stem cell providers, understanding the stem cell interventions as part of bionetworks can help us to explain more constructively why unauthorised stem cell interventions are used in some locations but not in others.

Beike Biotechnology was set up in July 2005 in Shenzhen by Xiang Hu (Sean Hu), and the company specializes in stem cell research, clinical translation, and technology support services of adult stem cells. Since 2005, Beike has provided stem cells for clinical application to over 16,000 patients suffering from neurological, hepatic, vascular and other conditions (Beike 2014a). After receiving his PhD from Columbia University in 2001, Xiang Hu returned to Zhengzhou University, his alma mater in
China, where he focused on translational research for severely disabled patients. After he attracted capital from Hong Kong Science & Technology and Qinghua Universities (Khayashar 2007), Hu decided to set up his company in Shenzhen in the South of China. In 2006, the Shenzhen government invested 900k RMB (US$4m) into its industrial zone, to which it invited Beike to set up its headquarters, and, in 2009, Beike opened its Stem Cell Regenerative Medicine Industrial Complex in Taizhou, calling it “the world’s largest stem cell storage and processing facility” (Beike 2009).

Beike set itself an international mission:

Beike is the world’s largest stem cell provider focusing on the research, product development, and clinical translation of adult stem cells as well as immunotherapy. Our goal is to increase communication with governments foreign and domestic to bring regenerative medicine to the world.

Before 2009, in China no official permissions were needed for clinical stem cell research and no rules guided the application of experimental stem cell therapies (Sui & Sleeboom-Faulkner 2015). Until 2009, approximately one hundred stem cell companies and 400 hospitals had applied stem cell transplantation for clinical therapy against high treatment fees (Cyranoski 2012). But in 2009 the Ministry of Health enacted the Management Measures for the Clinical Use of Medical Technologies, requiring permission for stem cell clinical application. Stem cells applications were ranked as ‘category three’ medical technology, entailing the possibility of serious ethical problems, and safety and efficacy issues in need of being proven by clinical trial, though the rules did not carry punitive measures. Although the media referred to the inadequate governance of clinical stem cell research situation sporadically as ‘stem cell chaos’, and various sets of regulation were introduced (Sui & Sleeboom-Faulkner 2015), Beike Biotech continued to grow.

Nevertheless, it has been heavily criticised internationally. One critic said of Beike:

Beike is one of the biggest and baddest of all the companies that have made their millions selling untested, unregulated and uncontrolled stem cell injections to patients suffering from a wide range of serious diseases (Sipp 2011b).
But within China, Beike has also received much sympathy, if not support. Here I make use of interviews with life scientists and regulators to show why Chinese medical professionals and ethicists express confusion and surprise at hearing about the dominant image of Beike Biotech outside China as ‘unethical’.

Beike itself organises international patient recruitment through agencies for stem cell tourism, and through websites, on which it collects information about the medical records of patients, their ability to pay, their insurance coverage, and their family situation (interviews 2012-3). Most of the providing hospitals are private, and are endowed with various levels of luxury and treatment methods to cater for patients of different means and taste (hospital visits in Beijing, Shanghai, Tianjin, Guangzhou, 2012-3). Staff at Beike Biotech said that they regard the fees for the stem interventions as ‘similar to buying a car’ (Interview D, March 2013, Shenzhen), but for many patients the 30-100k RMB means a fortune. Beike employees justify prices in reference to the licencing fees that ‘American’ corporations levy from laboratories in China (ibid). At the same time, some Beike employees are dissatisfied that profits are invested into luxury items rather than into facilities for conducting research (Interview D, March 2013). Although Beike did not have Chinese Food & Drugs Administration (CFDA) permission to provide stem cell therapy, it continued conducting medical trials and providing stem cell interventions at least until my visit in 2013 (see, http://clinicaltrials.gov) through collaboration with a range of hospitals, universities and local governments. The medical trials were partly financed by provincial governments and cities, and took place in private and military hospitals. Most are run in (high-ranking) third-tier hospitals by medical doctors (interview R, Guangzhou, March 2013), which are keen on increasing the number of private patients.

Although, as mentioned, articles critical of stem cell tourism have appeared in the Chinese media (Lue 2013), Beike’s scientific image is not usually disputed. Interview responses indicate that it is mainly the scientists that have part-time jobs abroad or have resided abroad for a prolonged period of time (over a year) who are aware of the poor scientific reputation Beike has outside China: not keeping medical records for outsiders to inspect, providing unproven therapies to patients, and taking advantage of the placebo effect, not publishing its results in international science journals of reputation (e.g., Lim 2008; McCullough 2008; Johnson 2010; Tam 2011;
Brown 2012; Chen & Gottweis 2013).

The life scientists that find Beike’s enterprise acceptable treat such views as false allegations by referring to Beike Biotech’s website, articles and company events. This is a summary of their defence of Beike as acceptable:

(1) Over the last years Beike has built up a rich experience of therapy provision, simultaneously engaging in collaborative research and clinical trial, which has led to the joint publication of articles in international journals such as Journal of Translational Medicine, PlosOne and Stem Cells (also see, Beike 2013a).

(2) In 2009 Beike was visited by President Hu Jintao and Premier Wen Jiabao, who praised Beike’s scientific and therapeutic competence in comparison with the world’s most renowned life science hubs (Anon 2010).

(3) As for the placebo effect, interviewees argued that if it is true that the scientific basis of stem cell therapies is not clearly understood yet, then it is also unclear whether or not any signs of improvement are attributable to any placebo effect (interview H, J, K 1, July 2012).

(4) Although patient records have not been maintained in the past, Interviewee L said that they are being kept now, but cannot be opened for inspection by competitors and audit for reasons of iPR and patient confidentiality (interview M, July 2012). Those who want to know more were referred to Beike’s website, which has patient case studies for the world to admire (Beike 2012a).

(5) Any queries about the provenance of the stem cells used in therapy are referred to the umbilical cord blood (UCB) banks Beike runs and its connection networks (Beike 2012b). Collaboration with provincial governments in the management of provincial UCB banks and the state support it receives through grants and collaborations (Beike 2013b) were cited in indicating Beike’s reliability.

(6) Interviewees referred to the world’s ‘highest certificate for blood banking’ (AABB) Beike received in 2012 (Beike 2012c).

It is clear that over the last 10 years Beike has undergone substantial changes. Its capacity to in/externalise factors has increased. Beike has moved from a situation in which it did not have sufficient capacity to make distinctions between the various conditions of patients, use clinical methods, write publications in internationally peer-
reviewed journals, and provide rehabilitation, and it had little experience with the banking of stem cells and tissues and keeping patient records. Failing to mark patient conditions, methods and materials, Beike could not sufficiently externalise local factors to make its research ‘universally valid and repeatable’ through, for example, keeping patient records, testing drug regimes, training patients to observe medical regimes, and testing rehabilitation methods. Neither was it clear whether Beike internalised patient conditions to address research questions relevant to the particular patient populations it was targeting through pragmatic trials. It was only seen to internalise factors for lucrative purposes: patients’ financial background, their lack of alternative treatment options, and their hope.

The fact that patients had to pay for ‘experimental’ interventions, most of the life scientists I interviewed in 2012 and 2013 did not regard as unethical per se. After all, therapies falling outside China’s local healthcare provision lists were largely sold on a commercial basis, and total healthcare insurance coverage was rare. Patients were used to paying for private and authorised therapies. Furthermore, the practice of giving ‘red envelopes’ (bribes) to create goodwill is common (Yang 2007); and, while patient choice of medical doctors/surgeons has become a right in China, many patients nevertheless pay extra. The observation that Beike’s services attract ‘foreign’ patients, who until recently paid twice the amount Chinese patients did (interview D March 2013, Shenzhen), was regarded as further proof in support of the reliability of Beike’s services. Considering that there were no other affordable healthcare options for most patients, and that established life science centres did not receive permission to start Phase I trials in stem cell applications (Xinhua 2013), Beike, according to interviewees, was an obvious alternative, also for patients that do not suffer from life-threatening or intractable conditions.

Gradually, Beike’s financial and research capacity has become a substantial force in China’s regenerative medicine industry. A brief description of the evolution of one of Beike’s stem cell collaborations with Drum Tower Hospital and Jiangsu University in Jiangsu, an important link in its stem cell network regarding the study of systemic lupus erythematosus (SLE), illustrates this. The bionetwork, which has evolved since 2010, shows how Beike’s capacity to select its in/externalisation has increased dramatically (Beike 2010). After years of experience with stem cell applications, the collaborative network formulated a clinical trial, which was financed by Jiangsu Province (US$1.8 million) to develop clinical applications using
mesenchymal stem cells from umbilical cord blood to treat SLE. A division of labour emerged, whereby Beike provided the facilities, equipment, management framework, and proprietary clinical stem cell technologies for the project, and Nanjing University Medical School’s Drum Tower Hospital, experienced with clinical studies of SLE, took care of administering the human trials and enlisting of 200 patients, while Jiangsu University brought its biological research and development resources to the production and animal study phases to the project (Sun et al 2010). In 2014, the group published their study results in, among others, one of Biomed Central’s flagship journals Arthritis Research & Therapy (cf Wang et al 2014). It had recruited forty patients with SLE from four clinical centers in China and infused them intravenously with allogeneic UC MSCs at specific times, firstly, to test safety profiles, and secondly, to test clinical response. Clinical indices, including Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) score, British Isles Lupus Assessment Group (BILAG) score and renal functional indices, were also taken into account. The article shows attention to safety, clinical response and relapse to an extent that Beike would hardly have been capable of before 2009. But due to a focus on narrow definitions of bioethics, these changes occurred unobserved. While in 2012 Beike’s President Xiang (Sean) Hu was still criticised for being a Stem Cell Madman in Entrepreneur (see Note 2), in October 2013 Beike submitted the Investigational New Drug (IND) application to register their UC MSCs for clinical use to the Guangdong Province FDA and was accepted. In March 2014, the CFDA officially accepted the IND for review for clinical use (MarketWatch 2014).

This case-study of Beike Biotech shows why it is important to know how and why local factors are in/externalised into the clinical research. It allows us to discern the logic of ‘acceptability’ in its local context, such as

- Whether patients pay fees to maintain the work of doctors and researchers and exorbitant profits that disappear into the pockets of individuals;
- Whether patients are told fairy-tales or whether they are given realistic data on the therapeutic prospects;
- Whether interventions are uncontrolled try-outs or whether they are part of larger-scale research;
- The source of certifications and the quality of publications (e.g., whether a company has its own journal or publishes in widely-known journals; whether
life scientists are main authors or free-riders on articles; whether certifications are bestowed by suppliers or well-known institutions with authority).

The relation between local context and the bionetwork changes over time: the chance of its configuration can help us understand the drivers of clinical research applications and whether they fit the purported purpose.

Viewing Beike as an entrepreneurial bionetwork enabled the observation of a broad range of activities around the provision of stem cell intervention and the development of stem cell products. Beike started out using identical stem cells for many different conditions using similar methods: it internalised patient demand, including the various payment abilities and origin of patients by catering for their circumstances, and it internalised a large range of diseases by applying methods and procedures indiscriminately. Gradually, however, it built up experience, archives, and scientific capacity that improved its ability to subordinate its internalisation efforts to a systematic approach requiring externalisation. Standardisation of patient records and intervention outcomes made possible the diversification of scientific protocol, while learning enough about treatment effects to know when not to treat led to the exclusion of untreatable patients and the establishment of standard treatment regimes of rehabilitation. Beike’s efforts were made possible financially through the fees of patients and funding application efforts by scientists, which led to lucrative collaborative arrangements with hospitals, universities and governments, as a result of which Beike has become a major player in umbilical cord banking, has experience expertise on stem cell processing, and has accumulated relations with universities and hospitals that now posses extensive knowledge of stem cell applications. Whether these constitute the world’s state-of-the-art is an important question from a scientific point of view, but perhaps not most relevant to companies and institutes that wanted to improve their start-position by catching up.

Discussion - The complexity of local factors and the grey area between RCTs and SCE

Observations of the in/externalisation of aspects of experimental field sites, including data on the patient population and their living conditions, can help indicate whether experimentation contributes to research efforts and the benefit of patients. In the case
study above, I have argued that, if the internal logic of experimental clinical interventions cannot be explained satisfactorily in terms of the in/externalisation of factors in the interest of the research and the patient (population), there is a possibility that it serves controversial aims, including the pursuit of profit at the expense of patients. This method is much broader than the narrow approaches to ethics used thus far, and a step forward in an attempt to create transparency in the large grey area between RCTs and SCE. To find out whether taking into account local factors is conducive to desirable stem cell interventions, we need to know to what purpose local factors are mobilised, i.e., which aspects of patients and infrastructures are relevant to the internal logic of an experiment. Nevertheless, this method has its limitations.

First, the internalisation of patient characteristics such as environment, diet, genetic make-up, age, gender and weight can take place for various reasons. For example, the logic of a clinical trial may require information on body weight, ethnicity or gender to determine the most appropriate drug dosage. But clinical trials might also include criteria for age and body-weight with the aim of extending a patent, even though the additional knowledge gained from the trial is of no scientific significance or relevance to the patients (Angell 2004). In still other cases, the criteria for diet, genetic make-up, age, gender and weight may be seen as essential for the introduction of a therapy into a country, an argument that Japan has used in negotiations with ICH (International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use, Kuo 2007). It is important, then, to know whether the reasons for including epidemiological, social and cultural criteria are political, financial, medical, or research related.

Second, views on the effects of stem cell intervention using MSCs are contested. Some stem cell scientists accuse providers of failing to distinguish between disease profiles, such as Alzheimer Disease, diabetes, Parkinson’s Disease and Spinal Cord Injury (SCI). Some scientists regard the safety and efficacy of MSC therapies as unproven and therefore unethical if commercially provided (Bianco 2013; Bianco & Sipp 2014; Paterlini 2014). Providers justify their interventions by referring to the ability of MSCs to secrete paracrine factors and cytokines that regenerate healthy tissue (interview, Y, Nov 2012). But, according to a scientist who oversees a well-equipped lab in Shanghai (interview L, Nov 2012, Shanghai), it is by no means clear how many cells should be administered and by what method, where the cells go, and whether they home-in, transform or disappear. Other scientists, including some at
Beike (interviews D March 2013; Y, Nov 2012), say that the intervention has a short-lived effect (3-6 months at the most - interviewees Shanghai, Shenzhen, Beijing and Guangzhou). Internationally, the number of clinical trials using MSCs registered on the website clinicaltrials.gov, a US National Institute of Health database that provides patients, family members and the public with information about current ongoing clinical research studies, has increased, but the way MSCs work remains disputed. Thus, the use of MSCs in the treatment of Graft-versus-Host Disease (GvHD) was explained to me variously as fusion, transdifferentiation, and paracrine effect. In short, ‘the science’ is contested.

Third, there may be disagreement about the necessity of in/externalising local factors, as scientists might disagree about whether something is ‘particular’ and in need of externalisation. Thus, what are regarded as unsuitable diet, unsanitary conditions and clashing medical regimes might be ‘externalised’ using financial support, a ‘Western’ medical regime, nursing, antiseptic devices, and a pollution-free living space during the medical trial. But to local patients these ‘particularities’ may be part of an unquestionable daily life. These ‘particular’ conditions may need to be taken into account or be ‘internalised’ to the logic of the research plan, so that any resultant medical products will suit their way of living. Life-style factors (stress, housing, kinetic movement) and cultural factors (gender- and age-specific traditions, fasting, religious rites, conjugal habits) may have to be treated as ‘normal’ conditions for the treatment to ‘work’ under locally ‘normal’ circumstances. As for MSC interventions, rehabilitation therapy can be crucial to the efficacy of the intervention (Aoyama et al 2015), requiring patients to maintain ‘normal’ daily activities. The question of whether environmental factors are internal or external to the logic of treatment may be decisive to catering for patient demands. Indeed, it is the question underpinning new research trials in China initiated by Beike and military medical institutions advertising their trials on clinicaltrials.gov. To complicate the matter of ‘acceptability’ of stem cell interventions, clinicaltrials.gov itself has become suspect of legitimising irresponsible research (Piller 2015; Clarke et al 2010: 72).
Conclusion

During the first decade of this millennium a disjunction between the aims and means of biomedical interventions sharpened as a result of the globalisation of personal networks of scientists returning to LMICs. Chinese scientists that followed their education abroad, including Beike Biotech founder Xiang Hu, were trained in ‘Western’ laboratories and became well versed in scientific theory. When returning home, however, they landed in a very different institutional and regulatory environment, whereby the comparatively low standard of healthcare access and scientific provisions made an orientation on patients unavoidable, despite their research interests and activities. For over a decade now, an increasing number of translational stem cell researchers, such as those at Beike, have studied patient records post-hoc, and ventured to test scientific hypotheses on the basis of knowledge garnered from science journals and an increasing number of patient records. Thus, patient observations in combination with deductive reasoning have served to further knowledge in a pragmatic, experimental manner. Even what some see as educated guesswork may lack systematic data collection, the application of research/ethics regulation, and state-of-the-art equipment and conditions may be directed at developing into something that merits increasing ‘acceptability’.

In this article, I argued that there exists a large grey area between ‘bona fide’ RCTs and ‘rogue’ SCE, due to the narrow notion of ethics used in writings about clinical stem cell research and interventions. Rather than judging the acceptability of a stem cell intervention on the basis of ethical review, fee payment and scientific evidence, this article views all institutions that provide stem cell interventions as part of entrepreneurial bionetworks. The notion of bionetworking focused our attention on the entrepreneurial aspects of research finance, research policies, and life values involved in life science innovation. As illustrated by the case study of Beike Biotech, bionetworking activities pertain to the changing configuration of the in/externalisation of local factors, including features of disease populations and the environment, treatment demand, healthcare provision, wealth, regulation and state-of-the-art.

I invoked the case study of Beike Biotech to maintain that the use of narrow ‘Western’ standards for stem cell science is unsuitable for appreciating the variable conditions of stem cell science in LMICs, where many researchers are side-lined due to a lack of resources. Critics regard rebels such as Beike Biotech as unethical and
greedy, as they use a commercial agenda in the provision of stem cell products. In this context, I made use of the notion of bionetworking to examine entrepreneurial and strategic activities in life science research and clinical applications to argue that life scientists, whether commercial or state supported, all have entrepreneurial agendas, although they play out differently. In summary, I showed that: if the entrepreneurial in/externalisation of local factors by an enterprise (be it RCT, commercial provider or state institution) is unclear, hidden or exploitative, there is reason to be critical of the clinical application.

Table 5: The strategic in/externalisation of local factors in medical trials to create biomedical products

Local factors	Can be both in/externalised. E.g., healthcare, wealth, regulation, culture, disorders, hygiene, ‘medically naïve’ population
Internalisation	To adjust the research to the needs of a particular disease population *(beneficial)*; to take advantage of the vulnerability of patient groups *(exploitative)*
Externalisation	To enhance the universal validity of research by adjusting the population *(beneficial to the ‘dominant’ population; exploitative, if resulting medical products are not provided or suitable for the participating population)*

I observed how local factors are internalised and externalised through bionetworking activities. *Externalisation* excludes local features and environmental factors of a population to enhance the universal validity of research application by adjusting the population or its environment; *internalisation* utilises local features and environmental factors of a population in a research application to enable the application of research products to particular populations. The externalisation of local factors apart from in RCTs also occurs in other kinds of clinical research application, such as in investigator-led clinical trials. The internalisation of local factors, such as those of healthcare, wealth, regulation, culture and hygiene, allows the application of a limited number of principles to a diverse population. This can yield clinical interventions for particular disease populations in both exploitative and beneficial ways. While some research projects have started to internalise (utilise) local factors to adjust the research to the needs of a particular disease population, the internalisation of particular features of local populations, such as its ‘medical naivety’, disease conditions, and despair can take advantage of the vulnerability of patient groups.
Examining how the in/externalisation of local factors underpin Beike’s development, I showed how ‘unethical’ forms of internalisation have various functions, such as yielding profit, clinical experience, research results and patient data. These same functions have enabled Beike to set up stem cell banks and scientific collaborations, conduct and publish research, and engage in collaborative research with universities and hospitals. Although this does not mean that the company behaves in a way acceptable to the ‘international science community’, the company does not just sell snake oil either. I have argued that, rather than just passing judgement, it is important to understand why and how local factors are in/externalised into the clinical research: to benefit the research, the patients, or for other purposes. The configuration of the connection between local factors and the in/externalisation activities in a bionetwork over time can shed light on the local rationale behind the acceptability of clinical research.

Rather than leading to a form of ethical relativism in the field of regenerative medicine, such improved understanding should alert initiators of the creation of global research and ethical guidelines that they will affect the clinical research activities of those who are excluded from their formulation. ‘Snake-oil’ providers can be detected globally, and are broadly condemned – there is no need for a formal ethical framework against these, just a legal one. However, if ethics and research guidelines are intended for global implementation, efforts are needed to include in the regulatory process scientists from parts of the world, whose practices may be frowned upon. This will require a more realistic understanding of the ‘large grey area’ of clinical stem cell research, and a reconsideration of the terms of global competition in regenerative medicine, a field widely perceived as fraught with ethically sensitive issues.

Acknowledgments: I would like to thank the anonymous reviewers and Alex Faulkner for their insightful comments. This article has benefited from financial support provided by the European Research Council (ERC: 283219) and the Economic and Social Science Research Council ESRC: ES/I018107/1). Due to ethical concerns, supporting data other than provided cannot be made openly available.
References:

Angell, Marcia (2004) *The Truth About the Drug Companies. How they deceive us and what to do about it*. New York: Random House.

Aoyama, T., Yasuko Fujita, Katsuyuki Madoba, Manabu Nankaku, Minoru Yamada, Motoko Tomita, Koji Goto, et al (2015) Rehabilitation Program After Mesenchymal Stromal Cell Transplantation Augmented by Vascularized Bone Grafts for Idiopathic Osteonecrosis of the Femoral Head: A Preliminary Study, *Archives of Physical Medicine and Rehabilitation* 96: 532-9.

Beike (2009) Beike Biotech opens comprehensive global stem cell storage and processing facility in China. Available at: http://beikeinfocenter.com/treatment-information-hub/research-and-processing-laboratories/jiangsu-photos/ (last accessed at 19 June 2009)

Beike (2010) Beike Biotechnology, Jiangsu University and Nanjing Drum Tower Hospital Receive $1.8 Million for Human Mesenchymal Stem Cell R&D and Clinical Trials. Available at: http://beikebiotech.com/blog/2010/01/06/beike-biotechnology-jiangsu-university-and-nanjing-drum-tower-hospital-receive-1-8-million-for-human-mesenchymal-stem-cell-rd-and-clinical-trials/

Beike (2012a) Video introduction to Beike. Available at: http://beikebiotech.com/index.php?option=com_content&view=article&id=427&Itemid=100051

Beike (2012b) Stem cell banking. Available at: http://beikebiotech.com/index.php?option=com_content&view=article&id=470&Itemid=100042

Beike (2012c) Beike earns AABB Accreditation for Cord Blood and Cord Tissue Banking. Available at: http://beikebiotech.com/index.php?option=com_content&view=article&id=500:eike earns aabb accreditation for cord blood and cord tissue banking&catid=10&Itemid=100047

Beike (2013a) International publications. Available at: http://beikebiotech.com/index.php?option=com_content&view=article&id=433&Itemid=100012

Beike (2013b) Awards and recognitions. Available at: http://beikebiotech.com/index.php?option=com_content&view=article&id=461&Itemid=100025
Beike (2014a) Our Treatment. Available at: http://stemcelltreatmentnow.com/introduction-to-our-treatment/

Bharadwaj, A (2013) Ethic of consensibility, subaltern ethicality: The clinical application of embryonic stem cells in India, *BioSocieties* (2013) 8, 25–40.

Bianco, P. (2013) Don’t market stem-cell products ahead of proof. *Nature*, 18 July 2013, Vol. 499: 255.

Bianco, P & Doug Sipp (2014) Selling help not hope, *Nature*, 510: 336-7.

Birch, Kean and David Tyfield (2012) Theorizing the Bioeconomy: Biovalue, Biocapital, Bioeconomics or . . . What? *Science, Technology, & Human Values* 1-29

Brown, Carolyn (2012) Stem cell tourism poses risk. *CMAJ*. 2012 February 7; 184(2): E121–E122.

Cauldfield, T. (2015) What is stem cell tourism? Narrated by Professor Timothy Cauldfield. *CCRM*. Available at http://www.ccrm.ca/file/2468

Centre for Bionetworking (2014) Plenary Policy Panel: Standard setting, regulation and the authorisation of stem cell therapy provision. Available at: http://www.centreforbionetworking.org/global-life-science-bionetworking-cell-therapy-production-provision-policies/

Chen, Haidan & Herbert Gottweis (2013). Stem Cell Treatments in China: Rethinking the Patient Role in the Global Bio-Economy. *Bioethics* 27 (4): 194-207.

Coates, J. (1994) Ethics, the New Plague on American Civilization, *Technological Forecasting and Social Change*, 47: 345-350.

Cyranoski, D. (2012). China’s stem cell rules go unheeded. *Nature*, 484, 149-150.

Paterlini, M. (2014) A regenerative chit-chat with Michele De Luca, *Regenerative Biology*, 27 September 2014. Available at: http://www.regenerativebiology.net/index.php/arb/article/view/25852/35933

The Economist (2002) ‘Biotech’s yin and yang’, *The Economist*, Dec 12th, *The Economist*, Available at: http://economist.com/science/displaystory.cfm?story_id=1491569

EMA (European Medicines Agency) (2010) Committee for Advanced Therapies (CAT) Work Programme 2010 – 2015. EMA/CAT/235374/2010, 30 June 2010 (http://www.ema.europa.eu/docs/en_GB/document_library/Work_programme/2010/11/WC500099029.pdf)

EMA (2014). *European Medicines Agency launches adaptive licensing pilot project*
Epstein, Steven (1996) Impure Science; AIDS, activism, and the politics of knowledge. Berkeley: University of California Press

Fisher, Jill (2009) Medical Research for Hire: The Political Economy of Pharmaceutical Clinical Trials. New Brunswick, NJ: Rutgers University Press.

Geissler, W. et al (2008) ‘He is now like a brother, I can even give him some blood’ – Relational ethics and material exchanges in a malaria vaccine ‘trial community’ in The Gambia, Social Science & Medicine 67: 696-707.

Gieryn, T. (1983), ‘Boundary-work and the demarcation of science from non-science: strains and interests in professional ideologies of scientists’, American Sociological Review, 48, pp. 781–795.

Gunter, Kurt C., Arthur L. Caplan, Chris Mason, Rachel Salzman ,William E. Janssen, Karen Nichols, Luis F. Bouzas, Francesco Lanza, Bruce L. Levine, John E. J. Rasko, Akihiro Shimosaka & Edwin Horwitz (2010) Cell therapy medical tourism: Time for action (ISCT White Paper) Cytotherapy, 12: 965–968.

Hunt P. & R. Khosla (2010) Are Drug Companies Living Up to Their Human Rights Responsibilities? The Perspective of the Former UN Special Rapporteur (2002-2008). PLoS Med, 7(9): e1000330 (http://www.plosmedicine.org/article/info%3Adoi%2F10.1371%2Fjournal.pmed.1000330)

Hyun, Insoo (2010) Allowing Innovative Stem Cell-Based Therapies Outside of Clinical Trials: Ethical and Policy Challenges, Journal of Law, Medicine & Ethics, Summer 2010: 277-285.

ICMR-DBT (2012) Guidelines for Stem Cell Research (Draft). Indian Council of Medical Research. http://icmr.nic.in/stem_cell/stem_cell_guidelines.pdf.

ICMR-DBT (2013) Guidelines for Stem Cell Research. Indian Council of Medical Research. http://icmr.nic.in/guidelines/NGSCR%202013.pdf.

ISCT (2015) Regulatory Quality and Regulatory Resources. Available at: http://www.celltherapysociety.org/?page=CommunityResources

ISSCR (2008) Guidelines for the Clinical Translation of Stem Cells. Avilable at: http://www.isscr.org/docs/guidelines/isscrglclinicaltrans.pdf
Johnson, Mark (2010) The Cell Peddlers – dealing hope to desperate families. *Journal Sentinel*, 1 February 2010. Available at: http://www.jsonline.com/watchdog/watchdogreports/83179987.html

Jones, M.V., Wheeler, C., & Dimitratos, P. (2011) *International entrepreneurship in the life sciences*. Cheltenham (Glos.), Northampton (Mass): Edward Elgar Publishing Ltd.

KFDA (2010). KFDA Notification No. 2010-50, Amended on June 29, 2010. Article 41 (Fast Track Review Process). Seoul: KFDA, 82-83.

Kiatponsan, S. and Sipp, D. (2009) Monitoring and regulating offshore stem cell treatments. *Science*, 323, 1564-1565

Kuo, Wen-Hua (2007) Understanding race at the frontier of pharmaceutical regulation: an analysis of the racial difference debate at the ICH, *Journal of Law, Medicine and Ethics*, Fall 2008: 498-505.

Leichleiter, J. (2014) Closing The Diversity Gap In Clinical Trials, *Forbes*, 9 April 2014. Available at: http://www.forbes.com/sites/johnlechleiter/2014/04/09/closing-the-diversity-gap-in-clinical-trials/

Lim, Louisa (2008) Stem-cell therapy in China draws foreign patients. Available at: http://www.npr.org/templates/story/story.php?storyId=88123868

Lindvall, Olle and Inoo Hyun (2009) Medical Innovation Versus Stem Cell Tourism, *Science* 324: 1664-1665.

Lue, Minghe (2013) Ganxibao meirong: Shejie zai shiyan, Zhongguo yi fenghuang [Stem cell esthetics: The world’s experiment is China’s fad], *Nanfang Zhoumo* [Southern Weekend], 24 April 2013.

Main, H., Megan Munsie, Michael D O’Connor (2014) Managing the potential and pitfalls during clinical translation of emerging stem cell therapies. *Clinical and Translational Medicine* 3, 10.

MarketWatch (2014) Biotech Company Receives Application Approval from Chinese Food and Drug Administration. Available at: http://www.marketwatch.com/story/biotech-company-receives-application-approval-from-chinese-food-and-drug-administration-2014-07-10

McCullough, M., (2008) Stem-cell tourism troubles experts. Available at: http://articles.philly.com/2008-07-13/news/25246846_1_stem-cell-controversial-cells-george-daley
McMahon, D. & Halla Thorsteinsdóttir (2010) Regulations Are Needed for Stem Cell Tourism: Insights From China, *The American Journal of Bioethics*, 10:5, 34-36.

MedPace (2013) https://www.medpace.com/PDF/ConductingTrialsInChina.pdf

MFDS (2013). *Administrative advance notice for the revision of regulation on review and authorization of biological products* (MFDS Notification No. 2013-21, Amended on 5 April 2013) issued on 30 April 2013.

MHRA (2014). *Government response to the UK Early Access to Medicines Scheme consultation*, March 2014. Available at: http://www.bis.gov.uk/assets/biscore/innovation/docs/s/11-1429-strategy-for-uk-life-sciences.

Mirowski, P. & Esther-Mirjam Sent (2002) Introduction. *Science Bought and Sold: Essays in the Economics of Science*. Mirowski & Sent (eds.) Chicago: Chicago University Press. P. 1-66.

Montgomery, C.M. (2012) Protocols and participatory democracy in a North-South product development partnership. *Sociology of Health & Illness*, 34 (7), 1053-1069.

Moynihan, Timothy J. (2012) Consumer Health, Mayoclinic, 28 January 2012. Available online: http://www.mayoclinic.com/health/compassionate-use/AN02061

Nwobike, J. (2006) Pharmaceutical Corporations and Access to Drugs in Developing Countries. *SUR - International Journal On Human Rights*, No 4. Pp: 127-143.

Ogbogu, U. Rachul, C. & Cauldfield, T. (2013) Reassessing direct-to-consumer portrayals of unproven stem cell therapies: is it getting better? *Regenerative Medicine*, 8:3: 361-369.

Patsopoulos, Nikolaos, A. (2011) A pragmatic view on pragmatic trials, *Dialogues Clinical Neuroscience*, June; 13(2): 217–224.

Petryna, A. (2007) ‘Globalizing human subject research’, in A. Petryna, A. Lakoff & A. Kleinman (eds.), *Global Pharmaceuticals – ethics, markets, practices* (Durham & London: Duke University Press): 33-60.

Petryna, A. (2009) *When Experiments Travel*. Princeton: Princeton University Press.

Piller, Charles (2015) Law ignored, patients at risk. *Stat*. Available at: http://www.statnews.com/2015/12/13/clinical-trials-investigation/

Pomfret, John & D. Nelson (2000) An Isolated Region’s Genetic Mother Lode. Chinese Human Genome Project Millennium Pharmaceuticals Harvard School of Public Health, *Washington Post*, Wednesday, 20 December 2000, A01.
PMDA (2014). *Regulatory reform for regenerative medicine in Japan*. Available at: http://www.pmda.go.jp/english/events/2014taiwan_sympo/03-Dr_Daisaku_Sato.pdf

Rajan, K. S. (2006) *Biocapital*. Durham: Duke University Press.

Rosemann, A. & Sleeboom-Faulkner, M. (2016) New Regulation for Clinical Stem Cell Research in China – Expected Impact and Challenges for Implementation, *Regenerative Medicine*, 11(1): 5-6.

Rothwell, P. (2005) Treating individuals. External validity of randomised controlled trials: ‘To whom do the results of this trial apply?’, *Lancet*, 365, 82-93.

Salter, B, Zhou, Y. & Datta, S. (2015) Hegemony in the marketplace of biomedical innovation: Consumer demand and stem cell science, *Social Science & Medicine*, 131: 156–163

Sipp, D. (2011a) The unregulated commercialization of stem cell treatments: a global perspective. *Frontiers of Medicine*, 5: 348-355.

Sipp, D. (2011b) Stem Cell Treatment Monitor (http://sctmonitor.blogspot.co.uk/2011/01/beike-biotech-under-new-ownership.html)

Sleeboom, M. (2005) The Harvard Case of Xu Xiping: Exploitation of the People, Scientific Advance or Genetic Theft? *New Genetics and Society*, 20: 57-87.

Sleeboom-Faulkner, M. (2014) *Global Morality and Life Science Practices in Asia: Assemblages of life* (Basingstoke & New York: Palgrave MacMillan).

Sleeboom-Faulkner, M., Chekar, CK., Faulkner, A., Heitmeyer, C., Marouda, M., Rosemann, A., Chaisinthop, N., Chang, HC, Ely, A., Kato, M., Patra, PK., Su, YY., Sui, SS., Suzuki, W., and Zhang, XQ. (2016) Comparing National Home-Keeping and the Regulation of Translational Stem Cell Applications: An International Perspective. *Social Science & Medicine*. Doi:10.1016/j.socscimed.2016.01.047

Sleeboom-Faulkner, M. & P.K. Patra (2011) Experimental Stem Cell Therapy: Biohierarchies and Bionetworking in Japan and India. *Social Studies of Science*, 41(5): 696–707.

Song, Priscilla (2010) Biotech Pilgrims and the Transnational Quest for Stem Cell Cures, *Medical Anthropology*, 29(4): 384-402.

Sugarman, J. & Calif, R. (2014) Ethics and regulatory complexities for pragmatic clinical trials. *JAMA*, 311(23): 2381-2.

Sui, S. & Sleeboom-Faulkner, M. (2015) Governance of Stem Cell Research and Its
Clinical Translation in China: EASTS (9): 1–16
Sun, L., Wang, D., Liang, J., Zhang, H., Feng, X., Wang, H., et al (2010) Umbilical cord mesenchymal stem cell transplantation in severe and refractory systemic lupus erythematosus, *Arthritis & Rheumatism* 62: 2467–75.

Tam, Fiona (2011) Medicine’s wild east. Available at: http://www.scmp.com/portal/site/SCMP/menuitem.2af62ecb329d3d7733492d9253a0a0a0/?vgnextoid=88be9f37279ff210VgnVCM100000360a0a0aRCRD&ss=China&s=News

Timmermans, S.; Tavory, I. (2012) Theory Construction in Qualitative Research: From Grounded Theory to Abductive Analysis. *Sociological Theory* 30: 167-186.

US FDA (2014a) *Investigational new drug applications*. Available at: http://www.fda.gov/drugs/developmentapprovalprocess/howdrugsaredevelopedandapproved/approvalapplications/investigationalnewdrugindapplication/default.htm

US FDA (2014b) *Expedited programs for serious conditions – drugs and biologics*. Available at: http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM358301.pdf

US FDA (2014c) *Fast track, breakthrough therapy, accelerated approval and priority review*. Available at: http://www.fda.gov/forconsumers/byaudience/forpatientadvocates/speedingaccesstoimportantnewtherapies/ucm128291.htm

US GPO (United States Government Publication Office) (2012) 21 CFR 312.8 - charging for investigational drugs under an IND. http://www.gpo.gov/fdsys/granule/CFR-2012-title21-vol5/CFR-2012-title21-vol5-sec312-8/content-detail.html

Waldby, C. (2002) Stem cells, tissue cultures and the production of biovalue. *Health*, 6, 305-323.

Wang, D., Jing Li, Yu Zhang, Miaoqia Zhang, Jinyun Chen, Xia Li, et al (2014) Umbilical cord mesenchymal stem cell transplantation in active and refractory systemic lupus erythematosus: a multicenter clinical study, *Arthritis Research & Therapy*, 16: R79

Webster, A. (ed.) (2013). *The Global Dynamics of Regenerative Medicine. A Social Science Critique*. Basingstoke & New York: Palgrave MacMillan.

Will, Catherine M. (2007) The Alchemy of Clinical Trials, *BioSocieties* (2007), 2, 85-99.
Will, Catherine & Tiago Moreira (2010) *Medical Proofs, Social Experiments. Clinical trials in shifting contexts*. Farnham (UK) and Burlington (US): Ashgate.

Xinhua (2013) China to further regulate stem cell clinical experiments, 8 March 2013. Available at: http://english.peopledaily.com.cn/202936/8158848.html

Yang, Jingqing (2007) Serve the People: Communist Ideology and Professional Ethics of Medicine in China. *PhD dissertation*. Sydney: Faculty of Arts and Social Sciences, University of Technology.

Zhang, J. (2012). *The Cosmopolitanization of Science. Stem cell governance in China*. Basingstoke & New York: Palgrave MacMillan.

Zwarenstein, M. & Oxman, A. (2006) Why are so few randomized trials useful, and what can we do about it? *Clinical Epidemiology*, 59: 1125-1126.

1 http://clinicaltrials.gov/ct2/results?term=beike&Search=Search (this search has been conducted on June 25, 2013). [Last accessed: July 2, 2013].

2 See http://clinicaltrials.gov/ct2/show/NCT01393977; http://clinicaltrials.gov/ct2/show/NCT01929434).