Optimization of spacer and source/channel junction to improve TFET characteristics

Garam Kim¹, JangHyun Kim², and Sangwan Kim³, a)

Abstract As the electrical characteristics of tunnel field-effect transistors (TFETs) are greatly influenced by the source junction and the gate spacer, the effects of these parameters are analyzed by technology computer-aided design simulation. As a result, it is found that an ON-state current of TFETs can be improved by +161.8% through the high-κ spacer of an appropriate length when the source junction does not overlap the edge of the spacer. In addition, it is confirmed that an intrinsic delay time which determines the high frequency characteristics is also reduced by ~65.9% because an increase of entire gate capacitance, a side effect of the high-κ spacer, is negligible.

Keywords: tunnel field-effect transistor (TFET), source/channel junction, high-κ spacer

Classification: Electron devices, circuits and modules (silicon, compound semiconductor, organic and novel materials)

1. Introduction

Recently, the demands for low power semiconductor chips are increasing in various fields such as mobile products, data centric computation and internet of things (IoT). When a supply voltage (V_{dd}) is lowered for the low power applications, it is essential to lower a subthreshold swing (S) to maintain a high ON-state current (I_{on}) and a low OFF-state current (I_{off}). However, as the metal-oxide-semiconductor field-effect transistors (MOSFETs) cannot reduce S below 60 mV/dec at room temperature due to its fundamental limitations [1, 2], several new devices such as positive feedback FETs [3, 4], negative capacitance FETs (NCFETs) [5, 6, 7], nano-electro mechanical FETs (NEMFETs) [8, 9] and tunnel FETs (TFETs) [10, 11, 12, 13, 14, 15] are being explored as alternatives. Among them, TFETs are devices using band-to-band tunneling between source and channel as a current driving mechanism, and have received much attention because of those high compatibility with conventional complementary MOS (CMOS) processes [16, 17]. In order to improve S and I_{on} of TFETs, the width of the tunneling barrier should be narrowed by making abrupt energy band bending at the source junction when the tunneling current flows. To implement this, the electric field of the gate edge applied to the source junction should be precisely adjusted. In the structure of TFETs, the location of the source junction and the spacer located on the sidewall of the gate are important factors influencing this electric field. Therefore, various researches have been conducted to analyze the effect of the source junction and the spacer on the electrical characteristics of TFETs [18, 19, 20]. However, the source junction and the spacer do not independently affect the electrical characteristics of TFETs, but are closely related to each other. Therefore, in this study, we optimize the high-κ spacer length and the source junction location considering the interactions between the two parameters precisely by using technology computer-aided design (TCAD) simulations to maximize I_{on} of TFETs. In addition, even though I_{on} is improved by applying a high-κ spacer in a specific case, gate capacitance (C_{gs}) is increased by using high-κ material in general, and as a result, transient characteristics can be deteriorated. Therefore, we also analyzed the intrinsic delay time considering the change of C_{gs}.

2. Device structure and simulation method

Fig. 1 shows the device structure and the definitions of major parameters used in this research. All of the simulations are performed based on the double gate TFET structure. The values of design parameters are summarized in Table 1. A Ge is adopted as a body material to improve I_{on} and S by using narrow bandgap and direct tunneling components [21, 22, 23, 24, 25, 26, 27]. The relative permittivity and thickness of a gate insulator are 3.9 and 2 nm, respectively. As a result, an equivalent oxide thickness (EOT) of the gate insulator is set to 2 nm. And, a channel thickness (T_B) between the gates is 10 nm for a high gate controllability. The source is set as a 1018cm$^{-3}$-doped p-type while the channel is undoped. Although the use of Ge in the channel could improve I_{on} of TFETs [27], it delivers large I_{off} and the ambipolar effect. It is known that lowering the drain doping concentration can suppress I_{off} of Ge TFET effectively [28]. Therefore, in this research, the drain is composed of a 1018cm$^{-3}$-doped n-type region to minimize I_{off} and the ambipolar effect. The relative permittivity of inter-layer dielectric (ILD) region is set to 3.9 corresponding to SiO$_2$. Since the electrical characteristics of TFETs are determined by an electric field applied to the junction between the source and the channel, the material and the length of the spacer have a significant impact on the performance of TFETs. In order to analyze this effect of the spacer,

1 Dept. of Electronic Engineering, Myongji University, Yongin 17058, Korea
2 School of Electrical Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 608-737, Korea
3 Dept. of Electrical and Computer Engineering, Ajou University, Suwon 16499, Korea
a) sangwan@ajou.ac.kr

DOI: 10.1587/elex.17.20200211
Received June 14, 2020
Accepted July 27, 2020
Publicized August 6, 2020
Copyedited September 10, 2020
the relative permittivity of the spacer is set to 22.0 corresponding to HfO$_2$ [29], and the change in the characteristics of the TFET according to the length of high-κ spacer (L_{SP}) is examined. When using the high-κ spacer, the Ge region under the high-κ spacer can also be regarded as a channel due to the high influence of the gate voltage (V_g). Therefore, the channel length (L_{CH}) is defined as the sum of the L_{SP} and the gate length (L_g), and is fixed at 50 nm. Since the position of the source junction, as well as the spacer, is an important factor in the performance of TFETs, the change of the electrical characteristics is examined while changing the length of the source/drain underlap (L_{UL}) from the channel edge (i.e., spacer edge).

Fig. 1 Basic schematic and major parameter definitions of double gate Ge TFET in this research.

| Table 1 Parameters used for TCAD simulation. |
Parameter	Value
Gate work function	4.05 eV
Equivalent oxide thickness (EOT)	2 nm
Channel thickness (T_e)	10 nm
p-type source doping concentration	10^{16} cm$^{-3}$
n-type drain doping concentration	10^{16} cm$^{-3}$
Permittivity of the ILD	3.9
Permittivity of the spacer	22.0
Channel length (L_{CH}) = L_{SP} + L_g	50 nm

To analyze the electrical characteristics of the device, TCAD simulation is performed using Synopsys Sentaurus$^\text{TM}$ [30]. For accurate extraction of the electrical characteristics, modified local density approximation (MLDA), Fermi–Dirac statistics, doping concentration dependent mobility, dynamic nonlocal band-to-band tunneling, and Schockley-Read-Hall (SRH) recombination models are used for the simulation. Since this research is conducted based on two-dimensional (2-D) simulation, all drain current characteristics are normalized by 1 μm-width.

3. Result and discussion

At first, to check the effect of the source junction location on the TFET characteristics, the change in I_{on} is examined while changing L_{UL} without the high-κ spacer (L_{SP} = 0 nm) as shown in Fig. 2(a). The I_{on} is defined as the drain current when the drain voltage (V_D) is 0.95 V and the V_g is threshold voltage (V_{th}) + 0.5 V. The V_{th} is defined as the gate voltage when the drain current is 1 nA/μm. The I_{on} of the TFET is the highest when L_{UL} is 0 nm when the source junction is exactly aligned at the channel boundary, and gradually decreases when L_{UL} is far apart or overlapped. In order to analyze the reason, the energy band at the source junction is examined as shown in Fig. 2(b). When L_{UL} is 0 nm, the electric field by the gate is effectively concentrated at the junction, resulting in steep band bending and narrow tunneling width. On the other hand, when L_{UL} < 0 nm, the electric field pulls down the energy band of the source region together. And, in the case of L_{UL} > 0 nm, the electric field does not sufficiently pull down the energy band of the channel. As a result, in all cases where the L_{UL} is not 0 nm, I_{on} decreases as the tunneling width increases.

Next, the effect of the L_{SP} on the characteristics of the TFET is examined. In order to consider the effect of the location of the source junction at the same time, the analysis is performed for each case of L_{UL} is -7 nm and 2.3 nm, respectively. As will be discussed at the end of this chapter, when the overlap between the source junction and gate edge is large (L_{UL} ≪ 0 nm), the electrical characteristics of the TFET are deteriorated by applying the high-κ spacer. Therefore, as a representative case, the analysis is performed when L_{UL} = -2 nm, which is the smallest value in this research. In contrast, when the source junction and the gate edge are underlapped, using the high-κ spacer with optimized length improves the electrical characteristics of the TFET. Therefore, the case where L_{UL} = 2.3 nm, which shows the most
improved electrical characteristics, is also analyzed.

At first, Fig. 3(a) shows the change of I_{on} according to L_{SP} when L_{UL} is 7 nm. As L_{SP} increases, I_{on} decreases gradually, and at $L_{SP} = 4.7$ nm, I_{on} decreases by 12.8% compared to the absence of the high-k spacer. The reason why I_{on} decreases as the L_{SP} increases when the source junction overlaps the high-k spacer ($L_{UL} < 0$ nm) can be confirmed by the energy band of the source junction in Fig. 3(b). As high electric field is transmitted through the high-k spacer to the source region below the spacer, unnecessary energy band bending occurs to this region, which increases the tunneling width and decreases I_{on}.

Contrary to the above, the change of I_{on} according to the change of L_{SP} when the source junction is located away from the high-k spacer ($L_{UL} = 2.3$ nm) is shown in Fig. 4(a). Initially, as I_{on} increases with increasing L_{SP}, I_{on} increases to $+157.2\%$ when $L_{SP} = 2.3$ nm compared to the absence of the high-k spacer. However, as L_{SP} becomes larger than 2.3 nm, I_{on} tends to decrease as L_{SP} increases. As shown in Fig. 4(b), during the initial increase of L_{SP} at $L_{UL} > 0$ nm, the high-k material increases the electric field applied to the source junction, resulting in abrupt energy band bending and reduced tunneling width. However, if L_{SP} increases over a certain level, the physical distance between the gate and the source junction becomes too far and the electric field decreases. As a result, the change of the energy band by the gate bias decreases and the tunneling width increases.

Summarizing the previous results with the change in L_{UL} and L_{SP}, the highest I_{on} (10.5 μA/um) can be obtained when both L_{UL} and L_{SP} are 2.3 nm. However, in order to optimize the device’s performance in high frequency (HF) range, not only I_{on} but also changes in capacitance must be considered. Fig. 5 shows the change in the entire gate capacitance (C_{gg}) with increasing L_{SP} when $L_{UL} = 2.3$ nm. L_{SP} of the appropriate length helps improve I_{on} as in the previous analysis, but the use of high-k materials increases C_{gg} as shown in Fig. 5. Although C_{gg} increases due to the use of high-k material, the amount of increase is only $+2.4\%$ when $L_{SP} = 2.3$ nm, which is very small value compared to the increase in I_{on} (+157.2%). The length of the spacer is short compared to the total length of the gate that determines capacitance with the source, channel, and drain. Therefore, the use of high-k spacer does not significantly increase C_{gg}.

In order to analyze switching characteristics of the TFET in HF range by considering the change of I_{on} and C_{gg} simultaneously, intrinsic delay time (τ) which is define as $C_{gg} \cdot V_{dd}/I_{on}$ is extracted [31]. A 0.95 V-V_{dd} is used as V_{dd} in
this research. Fig. 6 shows extracted τ with the change of L_{SP} when $L_{UL} = 2.3$ nm. Since the increase of I_{on} by L_{SP} is much larger than the increase of C_{gg}, τ becomes the smallest at $L_{SP} = 2.3$ nm where I_{on} is most improved.

Finally, the changes of I_{on} and τ due to the changes of L_{UL} and L_{SP} are summarized in Fig. 7 and Fig. 8, respectively. The highest I_{on} (10.7 A/μm) is obtained when both L_{UL} and L_{SP} are 2.3 nm, which is +161.8% higher than when L_{UL} and L_{SP} are 0 nm. Since τ is determined by the change in I_{on} rather than the change in C_{gg}, τ also becomes the smallest (24.7 ps) under the same condition, which is −65.9% smaller than when L_{UL} and L_{SP} are 0 nm.

4. Conclusion

Through TCAD simulation, the effects of source junction location and high-κ spacer length on the electrical characteristics of TFETs are investigated. In the absence of a high-κ spacer, the highest I_{on} can be obtained when the L_{UL} is 0 nm. At $L_{UL} < 0$ nm, I_{on} decreases when the high-κ spacer is applied. On the other hand, when $L_{UL} > 0$ nm, I_{on} can be improved by using appropriate length of the high-κ spacer. In this case, C_{gg} increases due to the high-κ spacer, but the intrinsic delay time is reduced by the improvement of the I_{on} as the change of C_{gg} is small compared to the increase of I_{on}.

Acknowledgments

This research was supported in part by the Brain Korea 21 Plus Project, in part by the MOTIE/KSRC under grant 10080575 (Future Semiconductor Device Technology Development Program), in part by the NRF of Korea funded by MSIT under grant NRF-2020R1G1A1007430, NRF-2019M3F3A1A03079739 and NRF-2019M3F3A1A02072091 (Intelligent Semiconductor Technology Development Program), and in part by 2019 Research Fund of Myongji University. The EDA tool was supported by the IC Design Education Center (IDEC), Korea.

References

[1] M. Lundstrom: “Device physics at the scaling limit: what matters? [MOSFETs],” IEEE International Electron Devices Meeting (2003) 31 (DOI: 10.1109/IEDM.2003.1269398).
[2] D.J. Frank, et al.: “Device scaling limits of Si MOSFETs and their application dependencies,” Proc. IEEE 89 (2001) 259 (DOI: 10.1109/5.915374).
[3] A. Padilla, et al.: “Feedback FET: a novel transistor exhibiting steep switching behavior at low bias voltages,” IEEE International Electron Devices Meetings (2008) 1 (DOI: 10.1109/IEDM.2008.4796643).
[4] S. Hwang, et al.: “$Si_{1-x}Ge_x$ positive feedback field-effect transistor with steep subthreshold swing for low-voltage operation,” J. Semicond. Technol. Sci. 17 (2017) 216 (DOI: 10.5573/JSTS.2017.17.2.216).
[5] K.-S. Li, et al.: “Sub-60mV-swing negative-capacitance FinFET without hysteresis,” IEEE International Electron Devices Meeting (2015) 22 (DOI: 10.1109/IEDM.2015.7409760).
[6] C.-I. Lin, et al.: “Effects of the variation of ferroelectric properties on negative capacitance FET characteristics,” IEEE Trans. Electron Devices 63 (2016) 2197 (DOI: 10.1109/TED.2016.2514783).
[7] F.A. McGuire, et al.: “Sub-60 mV/decade switching in 2D negative capacitance field-effect transistors with integrated ferroelectric polymer,” Appl. Phys. Lett. 109 (2016) 93101 (DOI: 10.1063/1.4966108).
[8] H. Kam, et al.: “A new nano- electro-mechanical field effect transistor (NEMFET) design for low-power electronics,” IEEE International Electron Devices Meeting (2005) 463 (DOI: 10.1109/IEDM.2005.1609380).
[9] N. Abélé, et al.: “Suspended-gate MOSFET: bringing new MEMS functionality into solid-state MOS transistor,” IEEE International Electron Devices Meeting (2005) 479 (DOI: 10.1109/IEDM.2005.1609384).
[10] A.M. Ionescu and H. Riel: “Tunnel field-effect transistors as energy-efficient electronic switches,” Nature 479 (2011) 329 (DOI: 10.1038/nature10679).
[11] W.Y. Choi, et al.: “Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec,” IEEE Electron Device
[12] S.W. Kim, et al.: “Demonstration of L-shaped tunnel field-effect transistors,” IEEE Trans. Electron Devices 63 (2015) 1774 (DOI: 10.1109/TED.2015.2472496).

[13] R. Lee, et al.: “Investigation of feasibility of tunneling field effect transistor (TFET) as highly sensitive and multi-sensing biosensors,” J. Semicond. Technol. Sci. 17 (2017) 141 (DOI: 10.5573/JSTS.2017.17.1.141).

[14] S. Park, et al.: “Impact of the double-patterning technique on the LER-induced threshold voltage variation in symmetric tunnel field-effect transistor,” IEICE Electron. Express 12 (2015) 20150349 (DOI: 10.1587/elex.12.20150349).

[15] T. Tanamoto, et al.: “SPICE simulation of 32-kHz crystal-oscillator operation based on Si tunnel TFET,” IEICE Electron. Express 17 (2020) 20200025 (DOI: 10.1587/elex.17.20200025).

[16] F. Mayer, et al.: “Impact of SOI, Si1-xGexOI and GeOI substrates on CMOS compatible tunnel FET performance,” IEEE International Electron Devices Meeting (2008) 1 (DOI: 10.1109/IEDM.2008.4796641).

[17] R. Gandhi, et al.: “CMOS-compatible vertical-silicon-nanowire gate-all-around p-type tunneling FETs with < 50-mV/decade subthreshold swing,” IEEE Electron Device Lett. 32 (2011) 1504 (DOI: 10.1109/LED.2011.2165331).

[18] C. Anghel, et al.: “Tunnel field effect transistor with increased ON current, low-k spacer and high-k dielectric,” Appl. Phys. Lett. 96 (2010) 122104 (DOI: 10.1063/1.3367880).

[19] S.H. Kim, et al.: “Germanium-source tunnel field effect transistors with record high I_on/I_off,” Symposium on VLSI Technology (2009) 178.

[20] G. Han, et al.: “Silicon-based tunneling field-effect transistor with elevated germanium source formed on (110) silicon substrate,” Appl. Phys. Lett 98 (2011) 153502 (DOI: 10.1063/1.3579242).

[21] M. Kim, et al.: “High on/off Ge-source ultrathin body strained-SOI tunnel FETs,” IEEE International Electron Devices Meeting (2014) 13.2.1 (DOI: 10.1109/IEDM.2014.7047043).

[22] S. Takagi, et al.: “III–V and Ge/strained SOI tunneling FET technologies for low power LSIs,” Symposium on VLSI Technology (2015) T22 (DOI: 10.1109/VLSIT.2015.7223687).

[23] G. Kim, et al.: “High on-current Ge-channel heterojunction tunnel field-effect transistor using direct band-to-band tunneling,” Micromachines 10 (2019) 77 (DOI: 10.3390/mi10020077).

[24] E.-H. Toh, et al.: “Device physics and design of germanium tunneling field-effect transistor with source and drain engineering for low power and high performance applications,” J. Appl. Phys. 103 (2008) 104504 (DOI: 10.1063/1.2924413).

[25] M. Salmani-Jelodar, et al.: “Optimum high-k oxide for the best performance of ultra-scaled double-gate MOSFETs,” IEEE Trans. Nanotechnol. 15 (2016) 904 (DOI: 10.1109/TNANO.2016.2583411).

[26] Synopsys, Inc.: Sentaurus Device User Guide (2015).

[27] Q. Zhang, et al.: “Fully-depleted Ge interband tunnel transistor: modeling and junction formation,” Solid State Electron. 53 (2009) 30 (DOI: 10.1016/j.sse.2008.09.010).