Odonata of Maharashtra, India with Notes on Species Distribution

Ashish D. Tiple1,2 and Pankaj Korpade3
1Department of Zoology, Vidhyabharti College, Seloo, Wardha, Maharashtra, India
2Corresponding author, e-mail: ashishdttiple@yahoo.co.in
3Division of Conservation Biology, Sálim Ali Centre for Ornithology & Natural History, Coimbatore, Tamil Nadu

J. Insect Sci. (2015) 15(1): 47; DOI: 10.1093/jisesa/iev028

ABSTRACT. Odonata are freshwater insects spread world-wide. Tropical areas are high Odonata diversity areas. However, there has not been accumulation of extensive baseline data on species distribution of these insects from such places. Maharashtra, the third largest state of India, harbors a variety of land-use and occupies six biogeographic provinces. We carried out Odonata surveys in Maharashtra during 2006–2014. Compilation of all these studies along with other authenticated records resulted in a checklist of 134 species of Odonata belonging to 70 genera representing 11 families. The highest numbers of species were recorded from the Libellulidae (48 species) and Gomphidae (22 species) families. A previous study had reported 99 species of Odonata from the Maharashtra state considering records from early 1900’s to 2012. Our observations across the state add 33 species to this list. Maharashtra forms a unique source of Odonata diversity and our observations support the importance of this region in providing valuable habitats for Odonata. Here, we discuss several of the new records, how global surveys might help fill the local gap in species distributions, how secondary data deposited through crowd-sourcing can help and what it offers to conservation.

Key Words: checklist, conservation, crowd-sourcing, diversity, distributional gaps
(6) Deccan Peninsula-Deccan south (Rodgers et al. 2002). Maharashtra is divided into 35 administrative districts.

The region is flat undulating terrain, devoid of any major hill ranges. Large numbers of wetlands, such as ponds, lakes, and perennial streams, dot this landscape. The State has three well-defined seasons: monsoon (June to September), winter (October to January), and summer (February to June). The mean maximum temperature is 36.8°C, and the mean minimum temperature is 15.8°C (Hijmans et al. 2005a). Rainfall varies according to the topography of the region. Champion and Seth (1968) mention six forest types in Maharashtra: (1) tropical semi-evergreen, (2) tropical moist deciduous, (3) tropical dry deciduous, (4) tropical thorn, (5) subtropical broadleaf hill, and (6) littoral and swamp forests. Extensive tracts of evergreen and semi-evergreen forests, even though fragmented, are still present in the Western Ghats of Maharashtra. North-east Maharashtra supports few large moist deciduous and dry deciduous forest patches. A number of protected areas (PAs), reserved forests (RFs), wildlife sanctuaries (WLSS), and national parks (NPs) are spread across the state. Table 1 provides localities from which data were collected (Fig. 1).

Data Collection

Dragonflies and damselflies were collected, photographed, identified using standard taxonomic literature (Fraser 1933a, 1934, 1936; Mitra 2006) and field-guides (Subramanian 2005, Andrew et al. 2008, Nair 2011), and released during the surveys from 2006 to 2014. Secondary data were obtained from published literature (Laidlaw 1917, 1919; Fraser 1919, 1921, 1924, 1926, 1931, 1933a,b, 1934, 1936; Prasad 1996; Kulkarni et al. 2002; Kulkarni and Prasad 2002; Talmale and Kulkarni 2003, 2006; Kulkarni et al. 2004; Kulkarni and Prasad 2005; Kulkarni and Talmale 2005, 2008, 2009; Kulkarni et al. 2006a,b; Tiple et al. 2008; Babu et al. 2009; Babu and Nandy 2010; Sathe and Bhusnar 2010; Koparde et al. 2011; Aland et al. 2012; Manwar et al. 2012; Kulkarni et al. 2012; Tiple 2012a,b; Wankhede et al. 2012; Andrew 2013; Babu et al. 2013; Kulkarni and Subramanian 2013; Tijare and Patil 2012; Talmale and Tiple 2013; Tiple et al. 2013; Koparde et al. 2014, 2015; P. K., unpublished data) and authenticated records in public domain (DragonflyIndia 2014, IBP 2014). All scientific names follow Subramanian (2014). All the records up till Prasad (1996) were considered as old literature and records mentioned in literature after Prasad (1996) were considered as recent. Geographical coordinates of locations of published studies were extracted from literature (Table 1). In case of lack of data, geo-coordinates were assigned approximately near the study area. Surveyed localities were plotted on a map of Maharashtra (Fig. 1) and India land-use layer (Hijmans et al. 2005b). Land-use attributes of each locality were extracted using DIVA-GIS v7.5. Shapefiles of India, districts in India and wetland areas in India were accessed from DIVA spatial data portal (Hijmans et al. 2005b) and that of biogeographic provinces of India was obtained from India Biodiversity Portal (Rodgers et al. 2002, IBP 2014).

Results

The compilation of field studies and data from literature resulted in 134 species of Odonata, including 87 species of Anisoptera and 47 species of Zygoptera from Maharashtra. They belong to 70 genera representing 11 families (Table 2). Libellulidae was represented by the highest number of species (48), followed by Coenagrionidae (27) and Gomphidae (22). Both Euphaeidae and Cordulidae were represented by a single species. Twenty-two species were Data Deficient, and 11 were not listed in International Union of Conservation for Nature (IUCN) red-list of threatened species. Two species viz. Indothemis carnatica and Heliogomphus promelas were listed as Near Threatened. Around 50% of Data Deficient species in the list belong to Gomphidae (11 species), followed by Macromididae and Platycnemididae (three species each). Twenty five species of Anisoptera and 10 species of Zygoptera were added to the State checklist. The new Anisoptera species belong mainly to Gomphidae (nine species), Libellulidae (eight species), and Aeshnidae (four species). The 10 new species of Zygoptera, belong to Coenagrionidae (four species), Platycnemidae (four species), Euphaeidae (one species), and Lestidae (one species). In addition, 16 species have been recently recorded in single studies. Thirteen of them belong to Gomphidae (9) and Macromiididae (4). During the field-studies, two species recorded were not known from the State: Anaciaeschna jasipes and Anax imperator.

Discussion

Maharashtra supports high faunal diversity owing to its geographic position and the biogeographic zones it covers. Given the variety of macro- and micro-habitat types, it was expected that the State supports high number of Odonata species. From recent surveys and data mining, we have added 35 species to the previous list by Kulkarni et al. (2012) that included 99 species. Kulkarni et al. (2012) had counted some of the subspecies, such as Libellula lineate lineate and Libellula lineata indica or Aciagrion hisopa hisopa and Aciagrion hisopa krishna as different species in their species checklist. However, we confined our identification till species level. Recording subspecies on field is highly difficult. Hence, including subspecies in the checklist may introduce error. This difference of 35 species between previous (Kulkarni et al. 2012) and current checklist is mainly due to incomplete on-field sampling by previous researchers, which was scattered throughout the State. They undersampled various biogeographic provinces in Maharashtra. Moreover, difficulty in collection, unapproachable terrain in certain areas such as Western Ghats (mountains) or Central highlands, and limitations due to resources and expertise might have resulted in such a gap. Also Kulkarni et al. (2012) failed to incorporate records other than those published by the Zoological Survey of India. However, this work along with Prasad (1996) has been instrumental in providing the first exhaustive checklist of Odonata of Maharashtra State. Our sampling in addition to sampling done by previous researchers almost spanned the State. The sampling was not systematic and spread across seasons, because concentrated mainly in postmonsoon season when Odonata activity is at peak (Kulkarni and Subramanian 2013). The data collection was a collective effort, and sampling was highly limited due to resources and expertise. Therefore, although the current checklist significantly updates the previous ones by Prasad (1996) and Kulkarni et al. (2012), it may not be interpreted as a complete checklist of Odonata of Maharashtra.

Certain biogeographical areas such as the West coast or the Malabar plains of Western Ghats have been underrepresented in this and previous studies. The Deccan south region was not sampled at all. The Deccan peninsula-central plateau which represents the largest area of Maharashtra was fairly well-represented in all the studies, except central Maharashtra, dominated by scrub-forest and dry-deciduous forest, for which there is a serious lack of data. Similarly, the Western Ghats (mountains) have not been sampled exhaustively during the study period, despite the fact that they are also areas of high endemism (Myers et al. 2000; Subramanian 2007; Subramanian et al. 2011). This region which is rich in evergreen and semi-evergreen forest patches, even though fragmented, has been highly underrepresented in samples. Out of 74 localities from where data were compiled, only four localities represent evergreen forest areas (Table 1). The northern part of Western Ghats of Maharashtra has been also undersampled. This undersampling might be the root-cause of lack of data on species numbers and distributions (Koparde et al. 2014). It seems that most of the data on Odonata diversity from Maharashtra comes either from West Maharashtra or East and North-east Maharashtra (Fig. 1). From Central-north and North-east Maharashtra, Satpuda mountain ranges have been undersampled, even if biogeographically important areas (Hora 1949, 1953; Auden 1949; Daniels 2001; Karanth 2003). Species distribution data from these areas should be important in answering questions related to the biogeography of Indian peninsula and/or the Indian...
Table 1. Details of the study localities

Locality	Longitude	Latitude	ALT (m)	AMT (ºC)	PPT (mm)	LST
Devgad, Sindhudurg	73.3748	16.3727	14	27.2	2,529	4
Verle, Sindhudurg	73.9300	15.98918	123	27	3,628	2
Tamhini stream 1, Pune	73.4877	18.4762	723	24	3,026	2
Tamhini stream 2, Pune	73.4288	18.4442	780	23	3,371	2
Tamhini stream 3, Pune	73.4116	18.4416	408	25	3,745	2
Tamhini stream 4, Pune	73.414	18.4606	379	25	3,825	2
North Koyna WLS	73.7902	17.6813	1027	22.2	2,493	4
North Chandoli NP	73.7186	17.2401	831	23.2	2,736	2
Prakasha dam, Nandurbar	74.3524	21.5098	115	27.4	274	4
Toranmal RF, Nandurbar	74.0675	21.8155	688	24.7	897	2
Melghat tiger reserve, Amravati	77.1074	21.446	495	25.9	1,301	2
Amravati agriculture, Amravati	77.7833	20.937	552	24.9	668	4
Ghanewadi talav, Jalgaon	75.8578	19.9104	524	26.4	709	4
Ghorpad lake, Nagpur	78.6761	21.2728	384	26	1,011	3
Ghorpad lake, Nagpur	78.4585	21.2214	280	27	1,104	2
Ghorpad lake, Nagpur	79.0385	21.1931	335	26.8	1,071	2
Ghorpad lake, Nagpur	79.6059	20.8828	228	27.3	1,330	3
Kazir lake, Nandurbar	74.2334	21.3851	220	26.8	679	4
Ittadah lake, Brahmapuri, Chandapur	80.1717	20.8104	343	26.6	1,494	2
Kanha river, Nagpur	79.2271	21.2264	280	27	1,104	2
Patraj hills, Pune	73.8712	18.4433	693	24	920	4
Kawadi, Pune	74.0014	18.5074	541	25.3	580	4
Khadakwasla dam, Pune	73.7584	18.4283	605	25	1,128	4
Khindis dam, Ramtek, Nagpur	79.3207	21.3979	308	26.8	1,134	4
Koradi lake, Nagpur	79.0906	21.2565	293	27	1,045	5
Linga lake, Nagpur	79.0956	21.2576	293	27	1,054	5
Lonar lake, Buldhana	76.5083	19.9768	482	26.6	803	4
Lower Wardha dam, Amravati	78.255	20.875	281	27.5	963	4
Malkhed RF, Amravati	77.7702	20.8955	368	27.2	834	4
Marunji, Pimpri-Chinchwad, Pune	73.7144	18.6251	604	26.8	1,264	3
Mehrun lake, Jalgaon	75.5655	20.981	244	27.1	788	4
Mutha River, Pune	73.837	18.5057	560	25	768	5
Nagpur city, Nagpur	79.0768	21.1494	319	26	1,090	5
Navegaon Bandh dam, Gondia	80.133	20.923	290	26.9	1,495	2
Pashan lake, Pune	73.7825	18.5317	595	24.8	997	5
Pench tiger reserve, Nagpur	79.2279	21.7017	491	25	1,057	2
Pimpalgaon lake, Ahmadnagar	74.7629	19.2103	690	25.1	559	4
Potara river-Nagri-Warora	78.8666	20.425	212	27.6	1,162	3
Purna river Andura Karanja	77.393	20.5873	342	27.3	838	4
Sarangkheda dam, Sinnar, Nandurbar	73.9582	18.8466	684	24.3	726	4
Singhad valley, Pune	73.7759	18.3766	735	24	1,308	2
Songirpada lake, Nadurbar	74.1879	21.3226	236	26.8	721	4
Tadoba-Andhari tiger reserve, Chandrapur	79.4009	20.1999	232	27	1,342	2
Talaji hill, Pune	73.8407	18.4746	640	24.6	885	4
Umari dam, Gadchiroli	79.9368	20.0144	197	27.3	1,448	4
Urse, Pune	73.6175	18.7132	872	23	2,200	4

(continued)
Table 1. Continued

Locality	Longitude	Latitude	ALT (m)	AMT (°C)	PPT (mm)	LST
Vainganga Bhandara Bridge, Bhandara	79.6669	21.1478	254	27.1	1,265	4
Veer Sawarkar Udyan, Pimpri-Chinchwad, Pune	73.791	18.6274	568	24.9	952	5
Velhe, Pune	73.7076	18.3673	697	24.1	1,596	4
Vetal hill, Pune	73.81655	18.5284	606	24.8	892	5
Wadali lake, Amravati	77.7943	20.9252	369	27.1	836	4
Wardha river, Wardha	78.1442	20.979	287	27.4	932	4
Zilpi lake, Nagpur	78.86812	21.06376	336	26.8	1,058	4

ALT—Altitude; AMT—Annual mean temperature; PPT—Annual precipitation; LST—Landscape type; 1—Evergreen broadleaved tree cover; 2—Closed Deciduous broadleaved tree cover; 3—Deciduous shrub cover closed-open; 4—Cultivated and managed areas; 5—Artificial surfaces and associated areas

Fig. 1. Map of the surveyed localities (Hijmans et al. 2005b).
Table 2. Checklist of Odonata of Maharashtra state.

No.	Scientific name	OS	Reported by/distribution	D W T
	Suborder: Anisoptera			
1	*Anaciaeschna jaspidea* (Burmeister, 1839)	VR	Jalgaon*	1
2	*Anax guttatus* (Burmeister, 1839)	VC	Throughout Maharashtra*	1
3	*Anax immaculifrons* (Rambur, 1842)	C	Throughout Maharashtra*	1
4	*Anax imperator* (Leach, 1815)	NK	Nashik*	1
5	*Anax indicus* (Liefenck, 1815)	R	Zessin and Günther (2009)	1
6	*Anax parthenope* (Selys, 1891)	R	Fraser (1936), Tiple et al. (2008), Tiple (2012a)	1
7	*Gynacantha bayadera* (Selys, 1891)	C	Throughout Maharashtra*	1
8	*Gynacantha dravida* (Liefenck, 1960)	FC	Throughout Maharashtra*	1
9	*Gynacantha rotundata* (Navas, 1930)	VR	Navas (1930)	1
10	*Hemianax ephippiger* (Burmeister, 1839)	FC	Throughout Maharashtra*	1
	Suborder: Zygoptera			
11	*Anomogomphus heteropterus* (Selys, 1854)	R	Babu et al. (2009), Tiple et al. (2013)	1
12	*Burmagomphus pyramidalis* (Laidlaw, 1922)	R	Fraser (1934), Pradesh (1996)	1
13	*Asiagomphus nilgiricus* (Laidlaw, 1922)	UN	Sathe and Bhusnra (2010), Aland et al. (2012)	1
14	*Burmagomphus laioidwai* (Fraser, 1924)	UN	Sathe and Bhusnra (2010), Aland et al. (2012)	1
15	*Cyclogomphus vesiculosus* (Selys, 1873)	R	Fraser (1934), Prasad (1996)	1
16	*Cyclogomphus ypsilota* (Selys, 1854)	R	Fraser (1934), Pradesh (1996)	1
17	*Cyclogomphus wilkinsi* (Fraser, 1926)	R	Fraser (1919, 1924, 1926, 1931, 1934, 1943), Laidlaw (1922), Prasad (1996), Tiple et al. (2013)	1
18	*Cyclogomphus heterostylus* (Selys, 1854)	R	Fraser (1919, 1924, 1926, 1931, 1934, 1943), Laidlaw (1922), Prasad (1996), Tiple et al. (2013)	1
19	*Davidioides martini* (Fraser, 1924)	UN	Sathe and Bhusnra (2010), Aland et al. (2012)	1
20	*Cyclogomphus ypsilon* (Selys, 1873)	R	Fraser (1919, 1924, 1926, 1931, 1934, 1943), Laidlaw (1922), Prasad (1996), Satara (DragonflyIndia 2014)	1
21	*Gomphidia t-nigrum* (Selys, 1854)	R	Fraser (1919, 1924, 1926, 1931, 1934, 1943), Laidlaw (1922), Prasad (1996), Satara (DragonflyIndia 2014)	1
22	*Heliogomphus promelas* (Selys, 1873)	R	Fraser (1919, 1924, 1926, 1931, 1934, 1943), Laidlaw (1922), Prasad (1996), Satara (DragonflyIndia 2014)	1
23	*Ictinogomphus distinctus* (Ram, 1985)	R	Tiple (2012a), Tiple et al. (2013)	1
24	*Ictinogomphus angulosus* (Selys, 1854)	R	Tiple et al. (2014)	1
25	*Ictinogomphus rapax* (Rambur, 1842)	VC	Throughout Maharashtra*	1
26	*Macrognomphus annulatus* (Selys, 1854)	FC	Laidlaw (1922), Fraser (1934), Pradesh (1996), Tiple et al. (2008, 2013), Babu and Nandy 2010, Tiple (2012a), Kulkarni and Subramanian (2013)	1
27	*Macrognomphus wynaedicus* (Fraser, 1924)	UN	Sathe and Bhusnra (2010), Aland et al. (2012)	1
28	*Micrognomphus torquatus* (Selys, 1854)	R	Fraser (1934), Pradesh (1996), Kulkarni and Pradesh (2002), Nagpur*, Chandrapur*, Pune*; Kulkarni and Subramanian (2013), Raigad (DragonflyIndia 2014)	1
29	*Micrognomphus verticalis* (Selys, 1873)	UN	Fraser (1934), Pradesh (1996)	1
30	*Oncogomphus grammicus* (Rambur, 1842)	UN	Fraser (1934), Babu et al. (2009), Babu and Nandy (2010)	1
31	*Oncogomphus nigriennis* (Fraser, 1922)	VR	Koparde et al. (2014)	1
32	*Paragomphus lineatus* (Selys, 1850)	C	Throughout Maharashtra*	1
	Family: Libellulidae			
33	*Acsicosa panorpoides* (Rambur, 1842)	R	Fraser (1934), Pradesh (1996), Tiple et al. (2008, 2013), Babu and Nandy 2010, Tiple (2012a), Kulkarni and Subramanian (2013), Raigad*, Ratnagiri* and Sindhudurg*	1
34	*Aethriamanta brevipennis* (Rambur, 1842)	VC	Throughout Maharashtra*	1
35	*Brachydiplax sobrina* (Rambur, 1842)	FC	Pradesh and Ghosh (1988), Pradesh (1996), Tiple et al. (2008), Tiple (2012a), Andrew (2013)	1
36	*Brachythemis contaminata* (Fabricius, 1793)	VC	Throughout Maharashtra*	1
37	*Bradinopyga geminata* (Rambur, 1842)	FC	Fraser (1936), Pradesh (1996), Kulkarni and Talmale (2008), Tiple et al. (2008), Koparde et al. (2014, 2015), Raigad*, Ratnagiri* and Sindhudurg*	1
38	*Cratilla lineata* (Brauer, 1878)	VC	Throughout Maharashtra*	1
39	*Crocothemis servilia* (Drury, 1770)	VC	Throughout Maharashtra*	1
40	*Diplacodes lefebervii* (Rambur, 1842)	R	Pradesh (1996), Tiple et al. (2008, 2013), Tiple (2012a), Pune*	1
41	*Diplacodes nebulosa* (Fabricius, 1793)	R	Fraser (1936), Kulkarni et al. (2006a), Tiple et al. (2008), Tiple (2012a), Andrew (2013)	1
42	*Indothemis limbata* (Selys, 1891)	UN	Babu et al. (2009)	1
43	*Indothemis carnatica* (Fabricius, 1793)	R	Tiple et al. (2008), Tiple (2012a), Mumbai (DragonflyIndia 2014), Koparde et al. (2014, 2015), Kolhapur* and Pune*	1
44	*Lathrecista asiatica* (Fabricius, 1793)	C	Throughout Maharashtra*	1
45	*Neurothemis fulvia* (Drury, 1773)	C	Throughout Maharashtra*	1
46	*Neurothemis intermedia* (Rambur, 1842)	VC	Throughout Maharashtra*	1

(continued)
No.	Scientific name	OS	Reported by/distribution	D	W	T
48	Neurothemis tullia (Drury, 1773)	C	Throughout Maharashtra*	1	1	LC
49	Onychothemis testacea (Laidlaw, 1902)	R	Fraser (1936), Koparde et al. (2015), Sindhudurg*	1	1	LC
50	Orthetrum aniceps (Schneider, 1845)	UN	Prasad (1996)	1	NA	
51	Orthetrum sabina (Drury, 1773)	VC	Throughout Maharashtra*	1	1	LC
52	Orthetrum japonicum (Uhler, 1858)	VR	Babu et al. (2009)	1	1	LC
53	Orthetrum chrys (Selys, 1891)	FC	Throughout Maharashtra*	1	1	LC
54	Orthetrum glaucum (Brauer, 1865)	VC	Throughout Maharashtra*	1	1	LC
55	Orthetrum luzonicum (Brauer, 1868)	VC	Throughout Maharashtra*	1	1	LC
56	Orthetrum praunuscinum (Burmester, 1839)	VC	Throughout Maharashtra*	1	1	LC
57	Orthetrum testaceum (Burmester, 1839)	UN	Babu et al. (2009)	1	1	NA
58	Orthetrum taeniolatum (Schneider, 1845)	VC	Throughout Maharashtra*	1	1	LC
59	Orthetrum triangulare (Selys, 1878)	R	Aland et al. (2012), Koparde et al. (2015)	1	1	LC
60	Pseudopodagra sexmaculata (Fabricius, 1798)	C	Throughout Maharashtra*	1	1	LC
61	Potamarcha congener (Rambur, 1842)	VC	Throughout Maharashtra*	1	1	LC
62	Rhodothemis rufa (Rambur, 1842)	R	Fraser (1936), Tiple et al. (2008), Andrew (2013), Koparde et al. (2015), Nagpur*	1	1	LC
63	Rhyothemis variata (Linnæus, 1763)	VC	Throughout Maharashtra*	1	1	LC
64	Sympetrum fonscolombei (Selys, 1840)	UN	Kulkarni and Subramanian (2013)	1	1	LC
65	Sympternum hypomelas (Selys, 1844)	FC	Throughout Maharashtra*	1	1	LC
66	Tetrathemis platyepera (Selys, 1878)	C	Throughout Maharashtra*	1	1	LC
67	Tramea virginia (Rambur, 1842)	FC	Kulkarni et al. (2004), Tiple et al. (2008)	1	1	LC
68	Tramea limbatis (Desjardins, 1832)	C	Throughout Maharashtra*	1	1	LC
69	Trithemis aurora (Burmester, 1839)	VC	Throughout Maharashtra*	1	1	LC
70	Trithemis festiva (Rambur, 1842)	VC	Throughout Maharashtra*	1	1	LC
71	Trithemis kirbyi (Selys, 1891)	FC	Throughout Maharashtra*	1	1	LC
72	Trithemis pollinivora (Kirby, 1889)	VC	Throughout Maharashtra*	1	1	LC
73	Urothemis signata (Rambur, 1842)	FC	Throughout Maharashtra*	1	1	LC
74	Zygonyx iris (Kirby, 1869)	R	Sindhudurg (DragonflyIndia 2014); Koparde et al. (2014, 2015); Ratnagiri*	1	1	LC
75	Zyxomma petiolatum (Rambur, 1842)	VR	Koparde et al. (2014), Nagpur*	1	1	DD
76	Hylaeothemis indica (Fraser, 1946)	R	Fraser (1936), Prasad (1996), Tiple et al. (2008), Tiple et al. (2013)	1	1	NA
77	Epophthalmia frontalis (Selys, 1871)	C	Throughout Maharashtra*	1	1	LC
78	Epophthalmia vittata (Burmester, 1839)	C	Throughout Maharashtra*	1	1	LC
79	Macromia flavicincta (Selys, 1874)	VC	Throughout Maharashtra*	1	1	LC
80	Macromia flavovittata (Fraser, 1935)	UN	Sathe and Bhusnar (2010), Aland et al. (2012)	1	1	DD
81	Macromia cingulata (Rambur, 1842)	C	Throughout Maharashtra*	1	1	LC
82	Macromia indica (Fraser, 1894)	VR	Fraser (1936), Sathe and Bhusnar (2010), Aland et al. (2012), Mumbai (DragonflyIndia 2014)	1	1	DD
83	Libellago lineata (Selys, 1878)	C	Throughout Maharashtra*	1	1	LC
84	Aciagrion pallidum (Selys, 1891)	FC	Fraser (1933a, b), Prasad (1996), Tiple et al. (2008), Manwar et al. (2012), Tiple et al. (2013), Koparde et al. (2014, 2015), Pune (DragonflyIndia 2014), Ratnagiri*	1	1	LC
85	Aciagrion hisopae (Selys, 1876)	R	Fraser (1933a, b), Prasad (1996), Tiple (2012b), Koparde et al. (2014, 2015), Sindhudurg* and Satara*	1	1	LC
86	Aciagrion occidentale (Laidlaw, 1919)	R	Prasad (1996), Kulkarni and Prasad (2002), Tiple (2012a), Tiple et al. (2013), Koparde et al. (2014, 2015)	1	1	LC
87	Agriocnemis lacteola (Selys, 1840)	VR	Fraser (1936), Tiple et al. (2008), Andrew (2013), Koparde et al. (2015), Nagpur*	1	1	LC
88	Heliothis aurora (Burmester, 1839)	R	Fraser (1936), Prasad, Varshney (1995), Prasad (1996), Sathe and Bhusnar (2010), Nagpur*	1	1	LC
89	Heliothis signata (Rambur, 1842)	VC	Throughout Maharashtra*	1	1	LC
90	Agriocnemis lacteola (Selys, 1853)	C	Throughout Maharashtra*	1	1	LC
91	Aciagrion pallidum (Selys, 1891)	FC	Fraser (1933a, b), Prasad (1996), Tiple et al. (2008), Manwar et al. (2012), Tiple et al. (2013), Koparde et al. (2014, 2015), Pune (DragonflyIndia 2014), Ratnagiri*	1	1	LC
92	Aciagrion occidentale (Laidlaw, 1919)	R	Fraser (1933a, b), Prasad (1996), Tiple (2012b), Koparde et al. (2014, 2015), Sindhudurg* and Satara*	1	1	LC
93	Agriocnemis lacteola (Selys, 1877)	R	Tiple (2012a), Koparde et al. (2015), Kulkarni et al. (2012)	1	1	LC
94	Agriocnemis lacteola (Laidlaw, 1919)	FC	Fraser (1933a, b), Prasad (1996), Nagpur* and Sindhudurg*	1	1	LC

(continued)
Table 2. Continued

No.	Scientific name	OS	Reported by/distribution	D	W	T		
95	Agriocnemis splendidissima (Laidlaw, 1919)	FC	Fraser (1933a,b), Prasad (1996), Koparde et al. (2014, 2015), Nagpur*, Pune*, Satara*, and Ratnagiri*	1	NA	NA		
96	Agriocnemis pygmaea	VC	Throughout Maharashtra*	1	L	C		
98	Cercion dyeri (Fraser, 1920)	R	Fraser (1933a,b), Kulkarni and Subramanian (2013), Pune*	1	NA			
99	Paracercion calamorum	R	Fraser (1933a,b), Prasad and Varshney (1995), Prasad (1996), Tiple et al. (2013)	1	NA			
100	Paracercion malayanum (Selys, 1876)	R	Fraser (1933a,b), Prasad and Varshney (1995), Prasad (1996), Tiple et al. (2013)	1	NA			
101	Ceriagrion cerinorubellum (Brauer, 1865)	R	Fraser (1933a,b), Prasad (1996), Tiple et al. (2013)	1	L	C		
102	Ceriagrion coromandelianum (Fabricius, 1798)	VC	Throughout Maharashtra*	1	L	C		
103	Ceriagrion olivaceum (Laidlaw, 1914)	FC	Kulkarni and Subramanian (2013), Koparde et al. (2014, 2015), Raigad*, Sindhudurg*, Pune* and Ratnagiri*	1	L	C		
104	Ceriagrion rubiae (Laidlaw, 1916)	FC	Fraser (1933a,b), Sindhudurg*	1	NA			
105	Enallagma parvum (Selys, 1876)	R	Prasad (1996), Kulkarni and Prasad (2005), Tiple et al. (2008, 2013)	1	L	C		
106	Enallagma parvum (Selys, 1876)	VC	Throughout Maharashtra*	1	L	C		
107	Enallagma parvum (Selys, 1876)	VC	Throughout Maharashtra*	1	L	C		
108	Mortonagrion varralli (Fraser, 1920)	VR	Fraser (1933a,b), Tiple et al. (2008), Manwar et al. (2012); Sindhudurg*	1	DD			
109	Pseudagrion spencei (Fraser, 1922)	FC	Tiple (2012a), Tiple et al. (2013)	1	L	C		
110	Pseudagrion decorum (Rambur, 1842)	VC	Throughout Maharashtra*	1	L	C		
111	Pseudagrion decorum (Rambur, 1842)	VC	Throughout Maharashtra*	1	L	C		
112	Pseudagrion microcephalum	Kulkarni and Subramanian (2013), Raigad (DragonflyIndia 2014), Koparde et al. (2014, 2015), Nagpur*, Satara* and Sangli*	1	L	C			
113	Pseudagrion malabaricum (Fraser, 1924)	R	Tiple et al. (2013)	1	L	C		
114	Ischnura nursei (Morton, 1907)	FC	Kulkarni et al. (2004), Tiple et al. (2008, 2013), Manwar et al. (2012), Tiple (2012a), Tijare and Patil (2012), Thane (DragonflyIndia 2014), Pune* and Raigad*	1	L	C		
115	Euphaea fraseri (Laidlaw, 1920)	VR	Babu et al. (2013), Koparde et al. (2014, 2015)	1	L	C		
116	Lestes elatus	Family: Lestidae (04)	Hagen in (Selys, 1862)	FC	Prasad (1996), Tiple et al. (2008), Tiple (2012a), Kulkarni and Subramanian (2013), Koparde et al. (2011, 2012), Andrew (2013), Koparde et al. (2014, 2015), Nashik*, Pune* and Ratnagiri*	1	L	C
117	Lestes umbrinus	Family: Lestidae (04)	FC	Prasad (1996), Tiple (2012a), Kulkarni et al. (2004, 2006a,b), Tiple (2012a), Tiple et al. (2013), Koparde et al. (2014, 2015), Thane (DragonflyIndia 2014), Pune* and Raigad*	1	L	C	
118	Lestes thoracicus	Family: Lestidae (04)	FC	Prasad (1996), Tiple (2012a), Kulkarni et al. (2004, 2006a,b), Tiple (2012a), Tiple et al. (2013), Koparde et al. (2014, 2015), Thane (DragonflyIndia 2014), Pune* and Raigad*	1	L	C	
119	Lestes viridulus	Family: Lestidae (04)	FC	Prasad (1996), Tiple (2012a), Kulkarni et al. (2004, 2006a,b), Tiple (2012a), Tiple et al. (2013), Koparde et al. (2014, 2015), Thane (DragonflyIndia 2014), Pune* and Raigad*	1	L	C	
120	Copera ciliata	Family: Coperaeidae (01)	VR	Kulkarni et al. (2004), Tiple (2012a), Tiple (2012b)	1	L	C	
121	Copera vittata	Family: Coperaeidae (01)	C	Prasad (1996), Kulkarni et al. (2004, 2006a,b), Tiple (2012a), Tiple et al. (2013), Koparde et al. (2014, 2015)	1	1	L	C
122	Caconeura ramburi (Fraser, 1922)	VR	Tiple (2012a), Babu et al. (2013), Tiple et al. (2013), Koparde et al. (2014, 2015)	1	1	DD		
123	Disparoneura quadrimaculata	Family: Euphaeidae (01)	R	Fraser (1933a,b), Prasad (1996), Tiple et al. (2013), Koparde et al. (2014, 2015), Kolhapur*, Pune* and Ratnagiri*	1	1	DD	
124	Prodasineura verticalis (Selys, 1860)	FC	Fraser (1921), Tiple (2012a), Tiple et al. (2013), Koparde et al. (2014, 2015), Kolhapur*, Pune* and Ratnagiri*	1	1	LC		
125	Elattoneura nigerrima (Laidlaw, 1917)	R	Laidlaw (1917), Fraser (1924, 1933b, 1934), Prasad (1996), Koparde et al. (2015), Nagpur*, Pune, Rathnagiri, Satara and Sangli (Koparde et al., unpublished data)	1	1	DD		
126	Elattoneura tetrica	Family: Calopterygidae (03)	R	Fraser (1921), Tiple (2012a), Tiple et al. (2013), Koparde et al. (2014, 2015), Kolhapur*, Pune* and Satara*	1	L	C	
127	Protosticta hearseyi	Family: Calopterygidae (03)	VR	Koparde et al. (2014, 2015)	1	D	D	
128	Protosticta gravelyi (Laidlaw, 1915)	R	Fraser (1933a,b), Prasad and Varshney (1995), Prasad (1996), Mumbai (DragonflyIndia 2014)	1	L	C		
129	Neurobasis chinensis (Linnaeus, 1758)	R	Fraser (1934), Prasad (1996), Sindhudurg (DragonflyIndia 2014)	1	L	C		
130	Vestalis apicalis	Family: Vestallidae (02)	VR	Koparde et al. (2014, 2015)	1	L	C	
131	Vestalis gracilis (Rambur, 1842)	VC	Prasad et al. (2006a,b), Tiple et al. (2013), Koparde et al. (2014, 2015), Mumbai, Pune, Ratnagiri, and Nagpur (Koparde et al., unpublished data)	1	L	C		

OS: Occurrence status; D: Deccan Peninsula; W: Western Maharashtra (includes Western Ghats and West Coast); T: Threat status as assigned from IUCN, 2010 (NA: Not available; LC: Least concern; DD: Data deficient; VU: Vulnerable; NT: Near threatened.). Numbers in brackets are thenumbers of species in a given family; 1: presence; *: data from present field studies.
subcontinent. Such studies have been carried out using Odonata as model systems (Dijkstra 2007, Shah et al. 2012), underscoring the importance of spatial data from these regions.

Sathe and Bhusnar (2010) have listed many species, especially Gomphidae family members, which are not included in the previous literature by Fraser (1933, 1934, 1936), Prasad (1996) and Kulkarni et al. (2012) (Table 3). Recent studies by Tiple (2012a,b), Tiple et al. (2013), Kulkarni and Subramanian (2013), Koparde et al. (2014, 2015) from Maharashtra or even those from Western Ghats of Goa (Rangnekar et al. 2010, Subramanian et al. 2013, Rangnekar and Naik 2014), which is a neighbouring State, failed to record these species. Sathe and Bhusnar (2010) have listed Microgomphus longistigma (Table 3) which is most probably Merogomphus longistigma. Similarly, Orthetrum caledonicum recorded by Wankhede et al. (2012) in Pune district is not a valid species. Recent studies by Kulkarni and Subramanian (2013) and Koparde (P. K., unpublished data) in the same district did not record this species. The species list of Amba RF, that lies in Western Ghats of Maharashtra, by Sathe and Bhusnar (2010) also includes four species which have not been recorded by earlier researchers or during recent studies (Table 3). This might be because these areas were not surveyed earlier. However, authors in these articles do not mention anything specific about these species, i.e., new records to Maharashtra State, unusual sightings or taxonomic uncertainties. Koparde et al. (2014, 2015) had done a short-survey in areas around Kolhapur and Amba RF, however, they did not record species mentioned by Sathe and Bhusnar (2010) and Koparde et al. (2012, 2014, 2015) studies were short-termed, specifically in postmonsoon season, which might be a reason that they could not detect many Gomphidae. However, this study was more extensive than other studies in the same region. We failed to retrieve these species even from public data. Although it is difficult to assess their authenticity, while compiling the state checklist we have retained the species which have been recorded by Sathe and Bhusnar (2010) and Koparde et al. (2012), considering that they had been probably undersampled by other researchers.

Most of our additions belong to the family Gomphidae. This family is also represented by the highest number of Data Deficient species as well as species for which information is not available in the IUCN red-list of threatened species (Table 1). The members of this family are fast-moving insects and may have crepuscular habits. These insects are difficult to observe or collect. Many Gomphidae are already rare. Therefore, there are high chances of not detecting them during surveys. Microgomphus verticalis and Cyclogomphus vesiculosus are the only two species of Gomphidae that have not been recorded recently; whereas 10 species have been recorded only recently (Table 2). This explains the huge gap in knowledge on the distribution of Gomphidae. Although the spatial distribution may vary in time, addition of only 10 species over almost 17 yr indicates slow rate of data acquisition on Gomphidae. Lack of recent records and systematic information on population occurrences has been discussed as a major fall out in assigning conservation status to Gomphidae by many IUCN red-list assessors (Dow 2009a,b,c; Sharma 2010; Kakkasery 2011a,b; Subramanian et al. 2013, Rangnekar and Naik 2014), which is a neighbouring State, failed to record these species. Sathe and Bhusnar (2010) have listed Microgomphus longistigma (Table 3) which is most probably Merogomphus longistigma. Similarly, Orthetrum caledonicum recorded by Wankhede et al. (2012) in Pune district is not a valid species. Recent studies by Kulkarni and Subramanian (2013) and Koparde (P. K., unpublished data) in the same district did not record this species. The species list of Amba RF, that lies in Western Ghats of Maharashtra, by Aland et al. (2012) also includes four species which have not been recorded by earlier researchers or during recent studies (Table 3). This might be because these areas were not surveyed earlier. However, authors in these articles do not mention anything specific about these species, i.e., new records to Maharashtra State, unusual sightings or taxonomic uncertainties. Koparde et al. (2014, 2015) had done a short-survey in areas around Kolhapur and Amba RF, however, they did not record species mentioned by Sathe and Bhusnar (2010) and Aland et al. (2012) studies were short-termed, specifically in postmonsoon season, which might be a reason that they could not detect many Gomphidae. However, this study was more extensive than other studies in the same region. We failed to retrieve these species even from public data. Although it is difficult to assess their authenticity, while compiling the state checklist we have retained the species which have been recorded by Sathe and Bhusnar (2010) and Aland et al. (2012), considering that they had been probably undersampled by other researchers.

Most of our additions belong to the family Gomphidae. This family is also represented by the highest number of Data Deficient species as well as species for which information is not available in the IUCN red-list of threatened species (Table 1). The members of this family are fast-moving insects and may have crepuscular habits. These insects are difficult to observe or collect. Many Gomphidae are already rare. Therefore, there are high chances of not detecting them during surveys. Microgomphus verticalis and Cyclogomphus vesiculosus are the only two species of Gomphidae that have not been recorded recently; whereas 10 species have been recorded only recently (Table 2). This explains the huge gap in knowledge on the distribution of Gomphidae. Although the spatial distribution may vary in time, addition of only

Scientific name	Reported by	Reported from	TS
Gomphus nigricornis/Asiagomphus nilgiricus (Laidlaw, 1922)	Aland et al. (2012)	Amba RF, Kolhapur	DD
Macromia ellisoni (Fraser, 1924)	Aland et al. (2012)	Amba RF, Kolhapur	LC
Macromia ida (Fraser, 1924)	Aland et al. (2012)	Amba RF, Kolhapur	LC
Macromia irata (Fraser, 1924)	Aland et al. (2012)	Amba RF, Kolhapur	LC
Lamelligomphus malabaricus/Onychogomphus malabarensis (Fraser, 1924)	Sathe and Bhusnar (2010)	Kolhapur	NA
Lamelligomphus nilgiricus/Onychogomphus nilgirienis (Fraser, 1922)	Sathe and Bhusnar (2010)	Kolhapur	NA
Megalagomphus superbus (Fraser, 1931)	Sathe and Bhusnar (2010)	Kolhapur	DD
Merogomphus longistigma (Fraser, 1922)	Sathe and Bhusnar (2010)	Kolhapur	DD
Onychogomphus striatus (Fraser, 1924)	Sathe and Bhusnar (2010)	Kolhapur	DD
Microgomphus longiseta (Fraser, 1924)	Sathe and Bhusnar (2010)	Kolhapur	NA
Chlorogomphus xanthoptera (Fraser, 1919)	Sathe and Bhusnar (2010)	Kolhapur	VU
Chlorogomphus campioni (Fraser, 1924)	Sathe and Bhusnar (2010)	Kolhapur	LC
Chlorogomphus yunnanensis (Fraser, 1924)	Sathe and Bhusnar (2010)	Kolhapur	LC
Chlorogomphus yunnanensis (Fraser, 1924)	Sathe and Bhusnar (2010)	Kolhapur	LC
Chlorogomphus yunnanensis (Fraser, 1924)	Sathe and Bhusnar (2010)	Kolhapur	NA
Chlorogomphus yunnanensis (Fraser, 1924)	Sathe and Bhusnar (2010)	Kolhapur	NT
Chlorogomphus yunnanensis (Fraser, 1924)	Wankhede et al. (2012)	Pune	NA

TS: Threat status as assigned from IUCN (2010). NA: Not available; LC: Least concern; DD: Data deficient; VU: Vulnerable; NT: Near threatened.
after Prasad (1996) study. We retrieved many other spatial records of this species across Maharashtra from public domain. It seems that this underrecorded species is widespread, but patchily distributed in Maharashtra (Kopardare et al. 2015; Kopardare et al., unpublished data). This probably explains artifact of sampling and usefulness of crowd-sourcing in data collection.

Advent of field-guides and public forums has driven to the next level. Continuous data sharing among researchers through social networks has led to free flow of information and site and/or species-specific studies. However, such public forums often suffer from deposition of non-authenticated records and false presence data. If checklists of regions made by experts are referred along with records in public domain, they may result into usable species data. Field data collected by experts is of primary importance to understand changing species distributions and the causes of this change. Additional systematic field-studies across Maharashtra State covering all possible microhabitats, will provide insights into species richness and threats to them. Establishing the current checklist of Odonata needs an effort to gather species presence data across an extensive landscape. This checklist is highly likely to get modified as more data flow in across the State.

Acknowledgments

We would like to thank Dr. K.A. Subramanian (Zoological Survey of India, Kolkata) for species identification. We are grateful to DragonflyIndia for providing data.

References Cited

Aland, S. R., K. A. Subramanian, A. B. Mamblaya, and G. P. Bhawane. 2012. Diversity of odonates (Insecta/Odonata) in Amba reserve forest, Maharashtra, India. Bioinfolet 9: 254–256.
Andrew, R. J. 2013. Odonates of Zilpi Lake of Nagpur (India) with a note on the emergence of the libellulid dragonfly, Trithemis pallidinervis. J. New Biol. Rep. 2: 177–187.
Andrew, R. J., K. A. Subramanian, and A. D. Tiple. 2008. A handbook on common odonates of Central India. South Asian Council of Odonatology, Nagpur, MH.
Asia-Dragonfly. 2014. Species list - India. (http://asia-dragonfly.net/) (accessed 4 February 2014).
Auden, J. B. 1949. Oxford University Press, United Kingdom.
Babu, R., K. A. Subramanian, and S. Nandy. 2013. Endemic odonates of India. Rec. Zool. India. 347: 1–60.
Babu, R., and S. Nandy. 2010. Recorded diversity of odonates from Maharashtra, India. J. Exp. Zool. 13: 63–74.
Bybee, S. M., T. H. Ogden, M. A. Branham, and M. F. Whiting. 2008. Molecules, morphology and fossils: a comprehensive approach to odonate phylogeny and the evolution of the odonate wing. Cladistics 24: 477–514.
Champion, S. H., and S. K. Seth. 1968. A revised survey of the forest types of India. Government of India, New Delhi, India.
Daniels, R.J.R. (2001. Anisoptera) from Maharashtra. Rec. Zool. India. 108: 113–117.
Dod, R. A. 2009c. Onychogomphus grammicus. In IUCN 2013. IUCN red list of threatened species. version 2013.2. (www.iucnredlist.org) (accessed 22 May 2014).
Dow, R. A. 2009b. Microgomphus torquatus. In IUCN (2013). IUCN red list of threatened species. version 2013.2. (www.iucnredlist.org) (accessed 22 May 2014).
Dow, R. A. 2009a. Ichthynomogomphus distinctus. In IUCN (2013). IUCN red list of threatened species. version 2013.2. (www.iucnredlist.org) (accessed 22 May 2014).
DroughtIndia. 2014. Species list. (http://www.facebook.com/groups/dragonflyindia/) (accessed 4 January 2014).
Dumont, H. J., A. Vierstraete, and J. R. Vanfleteren. 2010. A molecular phylogeny of the Odonata (Insecta). Syst. Entomol. 35: 6–18.
Dijkstra, K. D. B. 2007. Gone with the wind: westward dispersal across the Indian Ocean and island speciation in Odonata (Insecta: Odonata). Syst. Entomol. 35: 6–18.
Emiliyamma, K. G., C. Radhakrishnan, and M. J. Palot. 2005. Pictorial handbook on common dragonflies and damselsfies of Kerala. Zoological Survey of India, New Delhi, India.
Fraser, F. C. 1919. Description of new Indian odonate larvae and exuviae. Rec. Indian Mus. 16: 459–467.
Fraser, F. C. 1921. A list of dragonflies from Mahabaleshwar. J. Bombay Nat. Soc. 27: 540–544.
Fraser, F. C. 1924. A survey of the Odonate (dragonfly) fauna of Western India with special remarks on the genera Macromia and Idionyx and descriptions of thirty new species with appendices I and II. Rec. Indian Mus. 26: 423–522.
Fraser, F. C. 1926. Indian Dragonflies, Part-23. J. Bombay Nat. Hist. Soc. 31: 158–171.
Fraser, F. C. 1931. Additions to the survey of the Odonata (dragonfly) fauna of Western India, with description of nine new species. Rec. Indian Mus. 33: 443–457.
Fraser, F. C. 1933a. The fauna of British India including Ceylon and Burma. Odonata, vol. I. Taylor and Francis Ltd., London, United Kingdom.
Fraser, F. C. 1933b. Indian dragonflies, Part-41. J. Bombay Nat. Hist. Soc. 36: 607–617.
Fraser, F. C. 1934. The fauna of British India including Ceylon and Burma. Odonata, vol. II. Taylor and Francis Ltd., London, United Kingdom.
Fraser, F. C. 1936. The fauna of British India including Ceylon and Burma. Odonata, vol. III. Taylor and Francis Ltd., London, United Kingdom.
Fraser, F. C. 1943. New oriental odonate larvae. Proc. Royal Entomol. Soc. London (B) 12: 81–93.
Gomez-Anaya, J. A., and R. Novelo-Gutiérrez. 2010. Richness and structure of an Odonata larval assemblage from Rio Pinolapa, Tepalcatepec, Michoacán, Mexico in relation to their habitat characteristics. Odonatologica 39: 305–318.
Hara, S. L. 1949. Satpura hypothesis of the distribution of the Malayan fauna and flora to Peninsular India, pp. 309–314. In Proceedings, National Institute of Science of India, 1949, Geological Survey of India, Bangalore, KN.
Hara, S. L. 1953. The Satpura hypothesis. Sci. Prog. 41: 245–255.
Hijmans, R. J., L. Guarino, A. Jarvis, R. O’Brien, P. Mathur, C. Bussink, M. Cruz, I. Barrantes, and E. Rojas. 2005b. Diva-GIS version 5.2 Manual. (http://www.diva-gis.org/docs/) (accessed 25 May 2014).
Hijmans, R. J., S. E. Cameron, J. L. Parra, P. G. Jones, and A. Jarvis. 2005a. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25: 1965–1978.
(IBP) India Biodiversity Portal. 2014. Dragonflies of India in India Biodiversity Portal. (http://indabdiodiversity.org/group/dragonflies_of_india/show) (accessed 25 May 2014).
IUCN. 2010. IUCN Red List of Threatened Species (ver. 2010.4). (http://www.iucnredlist.org/) (accessed 23 May 2014).
Kakkasery, F. 2011a. Asigagomphus nilgircus. In IUCN 2013. IUCN red list of threatened species. version 2013.2. (www.iucnredlist.org) (accessed 22 May 2014).
Kakkasery, F. 2011b. Chlorogomphus campioni. In IUCN 2013. IUCN red list of threatened species. version 2013.2. (www.iucnredlist.org) (accessed 22 May 2014).
Karanth, K. P. 2003. Evolution of disjunct distributions among wet-zone species of the Indian subcontinent: testing various hypotheses using a phylogenetic approach. Curr. Sci. 85: 1276–1283.
Kiran, C. G., and D. V. Raju. 2013. Dragonflies and damselflies of Kerala (keralathile thumbikal). Tropical Institute for Ecological Sciences, KL, India.
Koparde, P. P., A. Patwardhan. 2014. New records of dragonflies and damselflies (Insecta: Odonata) from the Western Ghats of Maharashtra, India. J. Threatened Taxa. 6: 5744–5754.
Koparde, P. P., P. Mhaske, and A. Patwardhan. 2015. Habitat correlates of Odonata species diversity in north Western Ghats, India. Odonatologica. 44 (in press).
Koparde, P. P., Patil, P. Sawarkar, and M. Shindikar. 2011. Birds from ashes: birddlife at flyash ponds of NTPS, Nashik, Maharashtra, India. Sacon Envis News. 7: 2–5.
Kulkarni, A. S., and K. A. Subramanian. 2013. Habitat and seasonal distribution of Odonata (Insecta) of Mula and Mutha river basins, Maharashtra, India. J. Threatened Taxa. 5: 4084–4095.
Kulkarni, P. P., and M. Prasad. 2002. Insecta: Odonata Zool. Surv. India: wetland ecosystem series no. 3: fauna of Ujani 3: 91–104.
