Materials Research Express

PAPER

Green synthesis of p-Co$_3$O$_4$/n-ZnO composite catalyst with Eichhornia Crassipes plant extract mediated for methylene blue degradation under visible light irradiation

Setegn Geta Aragaw1, Fedlu Kedir Sabir1, Dinsefa Mensur Andoshe1 and Osman Ahmed Zelekew1

1 Department of Materials Science and Engineering, Adama Science and Technology University, Adama, Ethiopia
2 Department of Applied Chemistry, Adama Science and Technology University, Adama, Ethiopia
E-mail: osman.ahmed@astu.edu.et

Keywords: photocatalysis, ZnO, p-n junction, photogenerated, wastewater, MB dye

Abstract
The water pollution due to industrial effluents causes a great health problem. Hence, it is important to treat wastewater before discharging to the environment. In this work, water hyacinth (Eichhornia Crassipes) plant extract mediated ZnO, CO$_3$O$_4$, and p-Co$_3$O$_4$/n-ZnO composite catalysts were synthesized by green co-precipitation routes. The resulting samples were characterized by x-ray diffractometer (XRD), scanning electron microscope (SEM), Fortier transform infrared (FT-IR), and with other instruments. The catalytic activities of ZnO, CO$_3$O$_4$, and Co$_3$O$_4$/ZnO were tested for MB dye degradation under visible light irradiation. The catalytic degradation of MB with p-Co$_3$O$_4$/n-ZnO composite catalyst was 95.5%; while 72% and 79% of MB dye was degraded by ZnO and Co$_3$O$_4$ catalysts, respectively. The kinetic rate constants (k) in the degradation of MB dye with ZnO, Co$_3$O$_4$, and p-Co$_3$O$_4$/n-ZnO composite catalysts were also 0.014 min$^{-1}$, 0.018 min$^{-1}$, and 0.028 min$^{-1}$, respectively. The results showed that the presence of plant extract during the synthesis of the catalysts makes the catalyst more active and enhances the catalytic performances. Moreover, the formation of p-n junction in the p-Co$_3$O$_4$/n-ZnO catalyst also facilitates the photogenerated electron–hole separation and further enhances the catalytic efficiency. Hence, the formation of p-n junction is the key factor for enhancing the photodegradation of MB dye under visible light irradiation and the plant extract mediated catalyst synthesis also further improves its performance.

1. Introduction

Recently, the issues of getting clean water is one of the most challenging phenomenon due to increasing the growth rate of urbanization and industrialization in the globe and it may affect the living things [1]. Particularly, the releasing of hazardous organic pollutants such as dyes, pesticides, chemical warfare agents, phenol, and other organic pollutants from agricultural and industrial areas are the biggest challenges for human beings [2–6]. Due to this reason, it is advantageous to eliminate toxic and harmful pollutants from the polluted environmental areas [7–9]. Many researches have been performed to remove toxic organic and inorganic pollutants [10–12]. However, the reusability, costs, and efficiency in the treatments of wastewater are not still solved [13–15]. Therefore, the design and synthesis of cost effective and stable materials for the removal of toxic organic pollutants are needed.

Currently, photocatalysis is one of the methods used in the removal of toxic organic pollutants from wastewater [16, 17]. For this purpose, titanium dioxide (TiO$_2$) and zinc oxide (ZnO) semiconductor materials have been widely used due to their environmental friendly, photocatalytic activity, stability, and low cost [18–20]. Particularly, the exceptional properties of ZnO semiconductor permits the photocatalytic reactions on its surface effectively [20]. However, the photocatalytic activities of ZnO is limited because of its wider band gap energy (3.37 eV), high recombination rate of the photo-generated electron–hole pairs, narrow light absorption, and poor adsorption capacity [21]. Due to this reason, many researchers tried to modify the catalytic activities of
ZnO with different techniques [22, 23]. Among the techniques reported, the formation of heterogeneous p-n junctions with other semiconductor materials for the purpose of charge carriers separations and band gap engineering are well known [23, 24].

There are also many reports on the synthesis and application of n-type ZnO based semiconductor materials combined with other materials [25–28]. Diez-Pascual et al [29] synthesized the aminated poly(phenylene sulfide) and ZnO nanocomposites materials for medical applications. Silicate-bridged ZnO/BIVO₄ photocatalyst was also reported by Fu et al [30]. Shaf et al [31] also synthesized the NiO—ZnO heterostructures based photocatalyst material. The ZnO/CuO nano composite prepared with green method was also reported by Yulizar et al [32]. The Co₃O₄/ZnO nanocomposites for gas sensing applications was also reported by Bekermann et al [33]. However, the synthesis of green and plant extract mediated for different applications are still needed to improve the catalytic efficiencies.

It is also well known that the green synthesis method of catalysts has got a great attention and the resulting materials have been used in various applications [34–40]. Particularly, the green synthesis of nanomaterials had various benefits in which the method is non-toxic, easy to scale up, cost effective, and environmentally friendly [41–46]. For example, to synthesis metal nanoparticles with the required morphology and size, plant extracts could play a major role thereby acting as a natural reducing, capping, and stabilizing agent [47]. Moreover, using plant extract mediated synthesis of catalyst can also create highly porous materials and high dispersion and specific surface area [48]. This phenomenon will help to enhance the catalyst activities of the materials with facilitating the charge transfer [49].

Researchers also used different plant extracts to enhance the photocatalytic activities of semiconductors. For examples, the green synthesis of p-NiO/n-ZnO nanocomposites was reported for organic pollutant removal from wastewater [49]. The Melissa Officinalis L. leaf extract for the synthesis of CuO/ZnO was used in the reduction of 4-nitrophenol and Rhodamine B [50]. The tunable ZnO nanostructures synthesized with biosynthesis method was also used for catalytic applications [51]. The Ag–Cu decorated ZnO synthesized with green method was also used for the removal of toxic organic and detection of nitrite ions [52]. Moreover, the Eichhornia Crassipes plant has been also used for different application such as in the removal of heavy metal, biofuel production, bio-composite, supercapacitors, water purification and other applications [53–55]. However, there is no a significant research work done on Eichhornia Crassipes plant extract used for the synthesis of n-type ZnO and p-type Co₃O₄ semiconductor nanocomposite for wastewater purification.

In this work, Eichhornia Crassipes plant extract was used as a template/capping agent for the synthesis of plant extract mediated p-Co₃O₄/n-ZnO composites catalysts. The resulting composite catalysts were characterized and used for the degradation of methylene blue (MB) under visible light irradiation. Moreover, a possible degradation mechanism with p-Co₃O₄/n-ZnO composites catalysts was also proposed. It is expected that the synthesis of photocatalyst materials by using Eichhornia Crassipes plant extract as a template/capping for n-type ZnO and p-type Co₃O₄ composite catalysts will have high catalytic activities.

2. Materials and methods

2.1. Chemicals and reagent

Zinc nitrate hexahydrate (Zn(NO₃)₂.6H₂O) (Sigma Aldrich, 99%), sodium hydroxide (NaOH), cobalt nitrate (Co(NO₃)₂.6H₂O (Sigma Aldrich, 98%), and ethanol were used. All chemicals and reagents were used without further purification. Distilled water was also used throughout the experiment.

2.2. Preparation of plant extracts

Eichhornia Crassipes was collected from Koka Lake, Ethiopia. The Eichhornia Crassipes plant was first washed with tap water to remove unwanted dusts from the plant followed by distilled water. Then, the plant was subjected to dry at room temperature and crushed. The resulting 15 g of water hyacinth powder was mixed with 430 ml of distilled water and stirred at 50 °C for 1 h. The solution was filtered using filter paper and the resulting plant extract was stored for further application.

2.3. Synthesis of plant extracted mediated p-Co₃O₄/n-ZnO composite catalyst

Eichhornia Crassipes mediated synthesis of p-Co₃O₄/n-ZnO was prepared through co-precipitation method according to the reported literature [49, 56]. In a particular procedure, 40 ml of Zn(NO₃)₂.6H₂O (0.1 M) and 40 ml of Co(NO₃)₂.6H₂O (0.1 M) solutions were dropped in to 40 ml of plant extract and stirred for 2 h. Subsequently, 2 M of NaOH was dropped to form hydroxide colloidal solution. The solution was centrifuged and washed with distilled water followed by ethanol. The precipitate was dried at 60 °C and calcined at 500 °C for 2 h. For comparison purposes, the plant extract mediated ZnO and Co₃O₄ catalysts were synthesized with the
same procedure mentioned above. Scheme 1 shows the synthesis of n-type ZnO and p-type Co$_3$O$_4$ composite catalyst by using water hyacinth plant extract.

2.4. Characterization of the samples
The phase and crystallinity of ZnO, Co$_3$O$_4$ and p-Co$_3$O$_4$/n-ZnO composites samples were determined by x-ray diffraction (XRD) (Shimadzu XRD-7000) with Cu Kα radiation. The morphologies of the samples were also examined by scanning electron microscopy (SEM) equipped with EDX (COXIEM-30). Fourier transform infrared (FTIR) analysis was done by using Spectrum 65 FT-IR(PerkinElmer) in the range 4000–400 cm$^{-1}$ using KBr pellets. Shimadzu–3600 Plus UV–vis spectrophotometer was used for evaluating the degradation of MB.

2.5. Photocatalytic measurements
The photocatalytic activity measurements were performed according to the method report with modification [57]. In a particular procedure, 130 ml of MB dye (10 mg l$^{-1}$) solution was used as a pollutant. Then, 20 mg of the catalyst was dispersed in to the pollutants under stirring for 30 min in dark for adsorption–desorption equilibrium confirmation between the catalyst and pollutant. After 30 min stirring under dark, light was on and halogen lamp (250 W) was used as visible light sources. For kinetic studies, 5 ml aliquot with interval of time was taken and centrifuged. Then, the aliquot was measured with UV–vis spectrophotometer.

The stability of the p-Co$_3$O$_4$/n-ZnO photocatalyst was also checked and 77 mg of the catalyst was dispersed in to 500 ml MB (10 mg/l) solution. The mixture solution was stirred under dark for 30 min and exposed to light for 60 min. Then, 5 ml of aliquot was taken for UV–vis measurement. The remaining solution was separated from the catalyst and the supernatant solution was removed by decantation. The catalyst remained in the bottom of the beaker left was reused for the next photocatalytic reaction run with similar procedure as mentioned above.

3. Results and discussion

The crystalline structures of ZnO, Co$_3$O$_4$, and p-Co$_3$O$_4$/n-ZnO samples were characterized by using XRD and showed in figure 1. As it is showed in figure 1(a), ZnO hexagonal (wurtzite) was observed which had a good agreement with reported results (JCPDS 36-1451) [58]. Moreover, the XRD peaks in figure 1(b) located at 19.0°, 31.3°, 36.8°, 38.7°, 44.9°, 55.80°, 59.3°, 65.2°, and 77.3° also indicates the cubic phase of Co$_3$O$_4$ (JCPDS 42-1467) [59]. As it is showed in figure 1(c), both ZnO and Co$_3$O$_4$ phases were observed. The result indicates that the p-Co$_3$O$_4$/n-ZnO composite catalyst was successfully synthesized. The crystalline sizes of the ZnO and p-Co$_3$O$_4$/n-ZnO were also calculated according to the Scherrer formula [60]. The average crystalline sizes of the
ZnO and p-Co$_3$O$_4$/n-ZnO catalysts were found to be 24.62 and 16.68 nm, respectively. The result indicates that the p-Co$_3$O$_4$/n-ZnO had smaller crystalline size after p-Co$_3$O$_4$ semiconductor was incorporated.

Figure 2 shows the FT-IR spectra of the synthesized ZnO and p-Co$_3$O$_4$/n-ZnO. The absorption peaks located at 3415, 2925, and 2837 cm$^{-1}$ attribute to the stretching and bending vibrational absorptions of O–H resulted from the adsorbed water molecule [61]. Absorption bands at 1738, 1634 and 1375 cm$^{-1}$ are also attributed to the stretching vibration of NO$_3$– ions which may be originated from the reaction intermediates or residue of cobalt and zinc nitrate precursors [61, 62]. Moreover, the peaks at 665 cm$^{-1}$ and 576 cm$^{-1}$ showed the stretching vibration of Co–O, and corresponding to the tetrahedral and octahedral coordination of Co$^{2+}$ and Co$^{3+}$, respectively [63]. Similarly, the absorption peak at 425 cm$^{-1}$ represents the stretching vibrational mode of Zn–O. Thus, the presence of Co–O and Zn–O confirms that the p-Co$_3$O$_4$/n-ZnO composite was synthesized successfully.

Figure 1. XRD patterns of (a) ZnO, (b) Co$_3$O$_4$, and (c) p-Co$_3$O$_4$/n-ZnO catalysts.

Figure 2. FT-IR spectra of the synthesized ZnO and p-Co$_3$O$_4$/n-ZnO catalysts.
The surface morphologies of the samples were examined by SEM. As it is observed in figures 3(a)–(b), the morphologies of ZnO, Co3O4, composite catalysts were the clusters of close packed organization and amorphous dense masses. However, the p-Co3O4/n-ZnO shows- hampering and relatively smaller and both metal oxide pieces randomly agglomerated (figure 3(c)). Moreover, the elemental composition of synthesized catalyst was examined and the noticeable peaks for Zn, Co, and O elements were observed as it shown in figure 3(d).

The photocatalytic performances of the synthesized samples were also tested with the degradation of MB dye under visible light irradiation. Figures 4(a)–(c) indicate the photocatalytic performances of ZnO, Co3O4, and p-Co3O4/n-ZnO catalyst towards the degradation of MB. In the degradation processes, the absorbance peaks located at 664 nm were decreased when the degradation reactions time increased in the presence of catalysts. The highest catalytic degradation of MB was achieved by p-Co3O4/n-ZnO and 95.5% of MB dye was degraded within 60 min. However, only the 72% and 79% of the degradation of the MB dye was achieved by ZnO and Co3O4 catalysts, respectively. The results indicated that the presence of plant extract during the synthesis of the catalysts followed by calcinations makes the catalyst more porous and enhances the catalytic performances. It is also indicated that the adsorption of MB dye under dark was maximum and makes the pollutant concentration lower in the solution. Moreover, the degradation of MB dye with p-Co3O4/n-ZnO also further enhanced. The highest degradation efficiency of the composite catalyst might be due to the porous surface of the samples and the formation p-n junction in the catalyst system in which the electron and hole recombination rate is decreased.

As shown in figure 5a, the degradation kinetic of the MB dye was examined by the fitting data according to the equation: \[\ln \left(\frac{C_t}{C_0} \right) = -kt, \] where \(k \) is the apparent first-order rate constant; \(C_0 \) and \(C_t \) are the initial concentration and the concentration at a time \(t \). The linear correlation between irradiation time and \(\ln \left(\frac{C_t}{C_0} \right) \) indicates that the photocatalytic degradation of the MB dye shows pseudo-first-order kinetics [64]. The rate constants \(k \) in the degradation of MB dye with ZnO, Co3O4, and p-Co3O4/n-ZnO catalysts were 0.014 min\(^{-1}\), 0.018 min\(^{-1}\), and 0.028 min\(^{-1}\), respectively (figure 5b).

The reaction mechanism for the degradation of MB dye was also proposed (figure 6). When the p-type Co3O4 is coupled with n-ZnO semiconductor, a p–n heterojunction will be formed in the interface. The holes will diffuse to n-type semiconductor while the electrons will diffuse to p-type semiconductor region because of the availability of concentration gradient carriers in the interfaces [64, 65]. In the photocatalysis reaction process, the photogenerated electrons will transfer to n-type ZnO conduction band and holes will transfer to p-type Co3O4 valence band. The p–n heterojunction will be formed between Co3O4 and ZnO semiconductors.
that can facilitate the photogenerated electrons and holes separation. The electrons will interact with surface adsorbed oxygen and the holes will interact with water molecules to form active oxygen species. The resulting active oxygen species will react with organic pollutants and changed to CO₂ and H₂O. Hence, the p-Co₃O₄/n-ZnO photocatalyst could enhance the photocatalytic degradation activities of organic pollutants. Moreover, the stability of the p-Co₃O₄/n-ZnO photocatalyst was also checked as shown in the figure 7(a). After the 5th run, 89.8% of the MB dye was degraded. The XRD analysis was also performed after reused and there was no significant change from the XRD peaks as shown in figure 7(b).
4. Conclusion

The green and cost-effective method used to synthesize the *Eichhornia Crassipes* plant extract mediated p-Co$_3$O$_4$/n-ZnO composite catalyst is important. The degradation efficiency of the p-Co$_3$O$_4$/n-ZnO was the highest and 95.5% of MB dye was degraded within 60 min. However, the ZnO and Co$_3$O$_4$ catalysts degrade only 72% and 79% of the MB dye, respectively. The results indicated that using unwanted *Eichhornia Crassipes* plant extract for the synthesis of catalyst is greatly appreciated. Moreover, the formation of p-n heterojunction between, p-type Co$_3$O$_4$ and n-type ZnO semiconductors enhances the photocatalytic activities due to the photogenerated electrons and holes separation. Hence, the *Eichhornia Crassipes* plant extract mediated p-Co$_3$O$_4$/n-ZnO composite catalyst may be important in the wastewater treatment technologies.

Acknowledgments

This work was supported by Adama Science and Technology University (ASTU) under the grant No. ASTU/AS-R/001/2019.

ORCID iDs

Fedlu Kedir Sabir 🅰️ https://orcid.org/0000-0002-6235-1530
Dinsefa Mensur Andoshe 🅰️ https://orcid.org/0000-0001-9664-1344
Osman Ahmed Zelekew 🅰️ https://orcid.org/0000-0003-2633-5426
References

[1] Saxena R, Saxena M and Loach A 2020 Recent progress in nanomaterials for adsorptive removal of organic contaminants from wastewater Chem. Select 5 335–53

[2] Teh C M and Mohamed A R 2011 Roles of titanium dioxide and ion-doped titanium dioxide on photocatalytic degradation of organic pollutants (phenolic compounds and dyes) in aqueous solutions: a review J. Alloys Compd. 509 1648–60

[3] Lian X and Yan B 2018 Trace detection of organophosphorus chemical warfare agents in wastewater and plants by luminescent UIO-66 (H6) and evaluating the biomass accumulation of organophosphorus chemical warfare agents ACS Appl. Mater. Interfaces 10 14869–76

[4] Ebrahim E E, Al-Maghrali M N and Mobarki A R 2017 Removal of organic pollutants from industrial wastewater by applying photo-Fenton oxidation technology Arabian J. Chem. 10 S1674–9

[5] Gregoire C, Elsasser D, Huguenot D, Lange J, Lebeau T, Merli A, Mose R, Passeport E, Payraudeau S and Schütz T 2009 Mitigation of agricultural nonpoint-source pesticide pollution in artificial wetland ecosystems Environ. Chem. Lett. 7 205–31

[6] Herzke D, Nygård T, Berger U, Huber S and Rav N 2009 Perfluorinated and other persistent halogenated organic compounds in European shag (Phalacrocorax aristotelis) and common eider (Somateria mollissima) from Norway: a suburban to remote pollutant gradient Sci. Total Environ. 408 340–8

[7] Tian M, Dong C, Cui X and Dong Z 2016 Nickel and cobalt nanoparticles modified hollow mesoporous carbon microsphere catalysts for efficient catalytic reduction of widely used dyes RSC Adv. 6 99114–9

[8] Ahmed Zelekew O and Kuo D H 2016 A two-oxide nanodiode system made of double-layered p-type Ag2O/n-type TiO2 for rapid reduction of 4-nitrophenol PCCP 18 4403–14

[9] Zelekew O A and Kuo D H 2017 Facile synthesis of SnO2@CuO@SnO2 core heterostructures for catalytic reductions of 4-nitrophenol and 2-nitroaniline organic pollutants Appl. Surf. Sci. 393 110–8

[10] Shaamugam M, Alsalme A, Alghamdi A and Jayavel R 2013 Enhanced Photocatalytic Performance of the Graphene-V2O5 Nanocomposite in the Degradation of Methylene Blue Dye under Direct sunlight ACS Appl. Mater. Interfaces 7 14905–11

[11] Zelekew O A and Kuo D H 2017 Synthesis of a hierarchical structured NiO/NiS composite catalyst for reduction of 4-nitrophenol and organic dyes RSC Adv. 7 4153–62

[12] Zelekew O A, Kuo D H and Abdullah H 2019 Synthesis of (Sn,Zn)O(S) bimetallic oxysulfide catalyst for the detoxification of Cr(III) in aqueous solution Adv. Powder Technol. 30 3099–106

[13] Begum R, Rehan R, Farooqi Z H, Butt Z and Ashraf S 2016 Physical chemistry of catalytic reduction of nitroarenes using various nanocatalytic systems: past, present, and future J. Nanopart. Res. 18

[14] Khosravi M, Mehrad L, Jafari N, Budiashahi G and Baghdadi M 2020 Synthesis of sewage sludge-based carbon @ ZnO nanocomposite adsorbent for the removal of Ni(II), Cu(II), and chemical oxygen demands from aqueous solutions and industrial wastewater Water Environ. Res. 92 588–603

[15] Nasrollahzadeh M, Sejadzad M, Dadashi J and Ghaafari H 2020 Pd-based nanocatalysts: Plant-assisted biosynthesis, characterization, mechanism, stability, catalytic and antimicrobial activities Adv. Colloid Interface Sci. 276 102103

[16] Yu L, Zhang X, Li G, Cao Y, Shao Y and Li D 2016 Highly efficient BiO2CO3/ BiOCl photocatalyst based on heterojunction with enhanced dye-sensitization under visible light Appl. Catal., B. 187 301–9

[17] Chen X, Sun H, Zelekew O A, Zhang J, Guo Y, Zeng A, Kuo D-H and Lin J 2020 Biological renewable hemispherical-template for synthesis of visible light responsive sulfur-doped TiO2 for photocatalytic oxidation of toxic organic and As(III) pollutants Appl. Surf. Sci. 523 146511

[18] Tian J, Chen L, Yin Y, Wang X, Dai J, Zhu Z, Liu X and Wu P 2009 Photocatalyst of TiO2/ZnO nano composite film: preparation, characterization, and photodegradation activity of methyl orange Surf. Coat. Technol. 204 205–14

[19] Hernández S, Casado V, Chiodoni A, Dallorto S, Sacco A, Hidalgo D, Celasco E and Pirri C 2014 Optimization of 1D ZnO@TiO2 Core–Shell Nanostructures for Enhanced Photocatalytically Water Splitting under Solar Light Illumination ACS Appl. Mater. Interfaces 6 12153–67

[20] Tan S T, Ali Umar A and Salleh M M 2015 (001)-Faceted hexagonal ZnO nanoplate thin film synthesis and the heterogeneous catalytic reduction of 4-nitrophenol characterization J. Alloys Compd. 650 299–304

[21] Liu Z, Lu Y and Huang J 2019 A hierarchical AgO-nanoparticle /TiO2-nanotube composite derived from natural cellulose substance with enhanced photocatalytic performance Cellulose 26 6683–700

[22] Akerd M and Bahrami S H 2019 Application of heterogeneous nano-semiconductors for photocatalytic advanced oxidation of organic compounds: a review J. Environ. Chem. Eng. 7 103283

[23] Wang H, Zhang L, Chen Z, Hu J, Li S, Wang Z, Liu J and Wang X 2014 Semiconductor heterojunction photocatalyst design, construction, and photocatalytic performances Chem. Soc. Rev. 43 5234–44

[24] Wang S, Yun J H, Luo B, Buburet T, Peerakiatkhajorn P, Thaweesak S, Xiao M and Wang I 2017 Recent progress on visible light responsive phototransformations for photocatalytic Journal of Materials Chemistry A 331 1–22

[25] Ge S, Agbakpe M, Zhang W, Kuang L, Wu Z and Wang X 2015 Recovering magnetic Fe3O4-ZnO nanocomposites from algal biomass based on hydrophobicity shift under UV irradiation ACS Appl. Mater. Interfaces 7 11677–82

[26] Zhang Y, Liu X, Li Z, Zhu S, Yuan X, Cui Z, Yang X, Chu P K and Wu S 2018 Nano Ag/ZnO incorporated hydroxysypatite composite coatings: highly effective infection prevention and excellent osteointegration ACS Appl. Mater. Interfaces 10 12666–77

[27] Wang F, Li W, Gu S, Li H, Liu X and Wang M 2016 Fabrication of FeWO4@ZnWO4/ZnO heterojunction photocatalyst: synergistic effect of ZnWO4/ZnO and FeWO4@ZnWO4/ZnO heterojunction structure on the enhancement of visible-light photocatalytic activity ACS Sustainable Chem. Eng. 4 6288–98

[28] Panchal P, Paul D R, Sharma A, Hoosla D, Yadav R, Meena P and Nehra S P 2019 Phytoexudate mediated ZnO/MgO nanocomposites for photocatalytic and antibacterial activities J. Photochem. Photobiol., A 385 112049

[29] Dier-Pascual A M and Dier-Vicente A L 2014 High-performance aminated poly(phenylene sulfide)/ZnO nanocomposites for medical applications ACS Appl. Mater. Interfaces 6 10132–45

[30] Fu X, Xie M, Luan P and Jing L 2014 Effective visible–excited charge separation in silicate-bridged ZnO/BiVO4 nanocomposite and its contribution to enhanced photocatalytic activity ACS Appl. Mater. Interfaces 6 18550–7

[31] Shafi A, Ahmad N, Sultana S, Sabir S and Khan M Z 2019 Ag2S-Sensitized NiO–ZnO heterostructures with enhanced visible light photocatalytic activity and acetone sensing property ACS Omega 4 12905–18

[32] Yulizar Y, Bakri R, Apiarandano D O B and Hidayat T 2018 ZnO/CuO nanocomposite prepared in one-pot green synthesis using seed bark extract of Theobroma cacao Nano-Structures & Nano-Objects 16 300–3
Fardood S T, Forootan R, Moradnia F, Afshari Z and Ramazani A 2020 Green synthesis, characterization, and photocatalytic activity of cobalt chromite spinel nanoparticles Mater. Res. Express 7 075086

Moradnia F, Ramazani A, Fardood S T and Couranou F 2019 A novel green synthesis and characterization of tetragonal-spinel MgMnO4 nanoparticles by trigonacath gel and studies of its photocatalytic activity for degradation of reactive blue 21 dye under visible light Mater. Res. Express 6 075057

Moradnia F, Fardood S T, Ramazani A and Gupta V K 2020 Green synthesis of recyclable MgFeCrO4 spinel nanoparticles for rapid photodegradation of direct black 122 dye J. Photochem. Photobiol., A 392 112433

Attr k, Ramazani A and Fardood S T 2019 Eco-friendly synthesis of MgO, SnO, SnAlxFe2-xO4 magnetic nanoparticles and study of their photocatalytic activity for degradation of direct blue 129 dye J. Photochem. Photobiol., A 382 111942

Yeganesh M S, Kazemizadeh A R, Ramazani A, Eskandari P and Angourani H R 2020 Plant-mediated synthesis of CuFe2O4 nanoparticles using minium leavixatium and their applications as an adsorbent for removal of reactive blue 222 dye Mater. Res. Express 7 125001

Fardood S T, Moradnia F and Ramazani A 2019 Green synthesis and characterisation of ZnMnO4 nanoparticles for photocatalytic degradation of Congo red dye and kinetic study Micro & Nano Letters 14 946–956

Mehr E S, Sorbini M, Ramazani A and Fardood S T 2018 Plant-mediated synthesis of zinc oxide and copper oxide nanoparticles by using feruloyl angulata (schlecht) boiss extract and comparison of their photocatalytic degradation of Rhodamine B (RhB) under visible light irradiation J. Mater. Sci. Mater. Electron. 29 1333–40

Mohammadinejad R, Karimi S, Iravani S and Varma R S 2016 Plant-derived nanostructures: types and applications Green Chem. 18 20–52

Bhatia Pand Nath M 2020 Green synthesis of p-NiO/n-ZnO nanocomposites: excellent absorbent for removal of congo red and efficient catalyst for reduction of 4-nitrophenol present in wastewater Journal of Water Process Engineering 33 101017

Bordbar M, Negahdar N and Nasrollahzadeh M 2018 Melissa officinalis L. leaf extract assisted green synthesis of CuO/ZnO nanocomposite for the reduction of 4-nitrophenol and Rhodamine B Sep. Purif. Technol. 191 295–300

Phukan S, Bommip R, Shiripathi T and Rashid M H 2017 Green route biosynthesis of shape-tunable ZnO nanomaterials and their photocatalytic applications Photochem. Sci. 16 31137–47

Manjari G, Saran S, Radhakrishnan S, Ramesh Kumar P, Pandikumar A and DeviPriya S P 2020 Facile green synthesis of Ag–Cu decorated ZnO nanocomposite for effective removal of organic compounds and an efficient detection of nitrite ions J. Environ. Manage. 262 110282

Vijaykumar Guna M I, Anantha Prasad M G and Reddy N 2017 Water hyacinth: a unique source for sustainable materials and products ACS Sustainable Chem. Eng. 5 4478–90

Sarkar S, Guibil E, Quingruf F and SenGuta A K 2012 Polymer–supported metals and metal oxide nanoparticles: synthesis, characterization, and applications J. Nanopart. Res. 14 1–24

Jones J L, Jenkins R O and Harris P I 2018 Extending the geographic reach of the water hyacinth plant in removal of heavy metals from a temperate Northern Hemisphere river Sci. Rep. 8 1–15

Fatimah I, Pradita R Y and Nurfa Linda A 2016 Plant extract mediated of ZnO nanoparticles by using ethanol extract of mimosa pudica leaves and coffee powder Procedia Engineering 148 43–8

Chen X, Sun H, Zhang J, Ahmed Zeklew O, Lu D, Kuo D–H and Lin J 2019 Synthesis of visible light responsive iodine-doped mesoporous TiO2 by using biological renewable lignin as template for degradation of toxic organic pollutants Appl. Catal., B 252 152–63

Han N, Pan G, Zheng J, Wang R and Wang Y 2019 Co3O4–ZnO PN heterostructure Nanomaterials Film and its Enhanced Photoelectric Response to Visible Lights at Near Room Temperature Materials Research 22 1–11

Meghdadi S, Amirsar M, Ziani M, Jalili F, Jari M and Kiani M 2017 Facile synthesis of cobalt oxide nanoparticles by thermal decomposition of cobalt (ii) carbonate complexes: application as oxygen evolution reaction electrocatalyst in alkaline water Electrolysis Electrocataylsis 8 122–31

Seufel E, Puscasu M, Mertens M, Cool P and Carja G 2014 Assemblies of nanoparticles of CoO2–ZnTiLDHs and their derived mixed oxides as novel photocatalytic systems for phenol degradation Appl. Catal., B 150 157–66

Xu H, Hai Z, Diwu J, Zhang Q, Gao L, Cui D, Zang I, Liu J and Xue C 2015 Synthesis and microwave absorption properties of core–shell structured Co3O4–PANI nanocomposites J. Nanomater. 2015

Anzlovlar A, Cniak Orel Z and Kogej K 2012 Polyol-mediated synthesis of zinc oxide nanorods and nanocomposites with poly (methyl methacrylate) J. Nanomater. 2012 1–9

Liu Y, Zhang X, Wu B, Zhao H, Zhang W, Shan C, Yang J and Liu Q 2019 Preparation of ZnO/Co3O4 hollow microsphere by pollen-biological template and its application in photocatalytic degradation Chemistry Select 4 12445–54

Zelekew O A, Kuo D–H, Yassin J M, Ahmed K E and Abdullah H 2017 Synthesis of efficient silica supported TiO2/Ag2O heterostructured catalyst with enhanced photocatalytic performance Appl. Surf. Sci. 410 454–63
[65] Zhou W, Liu H, Wang J, Liu D, Du G and Cui J 2010 Ag2O/TiO2 nanobelts heterostructure with enhanced ultraviolet and visible photocatalytic activity ACS Appl. Mater. Interfaces 2 2385–92

[66] Zhang X, Wang Y, Liu B, Sang Y and Liu H 2017 Heterostructures construction on TiO2 nanobelts: a powerful tool for building high-performance photocatalysts Appl. Catal., B 202 620–41