Acidic extracellular microenvironment and cancer

Yasumasa Kato1*, Shigeyuki Ozawa2, Chihiro Miyamoto3, Yojiro Maehata3, Atsuko Suzuki1, Toyonobu Maeda1 and Yuh Baba4

Abstract

Acidic extracellular pH is a major feature of tumor tissue, extracellular acidification being primarily considered to be due to lactate secretion from anaerobic glycolysis. Clinicopathological evidence shows that transporters and pumps contribute to H+ secretion, such as the Na+/H+ exchanger, the H+-lactate co-transporter, monocarboxylate transporters, and the proton pump (H+-ATPase); these may also be associated with tumor metastasis. An acidic extracellular pH not only activates secreted lysosomal enzymes that have an optimal pH in the acidic range, but induces the expression of certain genes of pro-metastatic factors through an intracellular signaling cascade that is different from hypoxia. In addition to lactate, CO2 from the pentose phosphate pathway is an alternative source of acidity, showing that hypoxia and extracellular acidity are, while being independent from each other, deeply associated with the cellular microenvironment. In this article, the importance of an acidic extracellular pH as a microenvironmental factor participating in tumor progression is reviewed.

Keywords: Acidic microenvironment, Cancer, Malignant phenotype

Introduction

The extracellular pH (pHe) of tumor tissues is often acidic [1], and acidic metabolites, e.g. lactic acid caused by anaerobic glycolysis in hypoxia, seem to be the main cause. Accumulating evidence shows that an acidic micro-environment is a regulator of cellular phenotype. Whereas Na+-HCO3- co-transporter and Cl-/HCO3- exchanger contribute a fall in intracellular pH, the Na+/H+ exchanger (NHE) [2], the H+-lactate co-transporter, monocarboxylate transporters (MCTs), and the H+-ATPase (H+ pump) are responsible for the secretion of H+ [3]. Because carbonic anhydrase (CA) is widely distributed and can form H+ by catalyzing hydration of CO2, an excess amount of CO2 production through the pentose phosphate pathway in tumor cells is an alternative cause of a lower pH [4]. Acidic pH increases not only the activation of some lysosomal enzymes with acidic optimal pH, but also the expression of some genes involved with pro-metastatic factors. When melanoma cells pretreated with an acidic medium were injected into the tail vein of mice, a significantly higher frequency of them metastasized to the lungs [5].

Thus, an acidic microenvironment is closely associated with tumor metastasis.

Acidity is found at the surface of skin and in inflammatory sites. It is also associated with bone resorption. Thus, an acidic microenvironment plays a role of homeostasis and the immune defense system. We will review the roles of acidic pH in tumor progression along with other physiological and pathological conditions.

Lactate and tumor

The “Warburg effect” is a well-accepted theory that says that tumors tend to produce lactate by using the anaerobic glycolytic pathway, even in the presence of sufficient oxygen, rather than oxidative phosphorylation for energy production [1]. High lactate levels indicate metastases, tumor recurrence, and prognosis in some cancer patients [6-9]. In the molecular mechanism relating to these clinical contributions, lactate from tumor cells contributes to their immune escape. High lactate secretion from tumor cells inhibits its export from T cells, thereby disturbing their metabolism and function [10]. Tumor-derived lactate affects inflammation and immune deficiency of tumor cells. Lactate itself functions as an intrinsic inflammatory mediator that increases interleukin (IL)-17A production by T-cells and macrophages, resulting in the promotion of chronic inflammation in
tumor microenvironments [11]. Lactate inhibits dendritic cell activation during antigen-specific autologous T-cell stimulation [12]. It also enhances the motility of tumor cells and inhibits monocyte migration and cytokine release [13]. It can contribute to angiogenesis through induction of IL-8 via nuclear factor-kB (NF-kB) [14] and induction of vascular endothelial growth factor (VEGF/VEGF-A) via hypoxia-inducible transcription factor (HIF)-1 [15]. Furthermore, lactate production contributes to radio-resistance of tumors due to its antioxidant properties [16].

Inhibition of the lactate transporter has been considered a potential new therapeutic strategy. For example, α-cyano-4-hydroxycinnamate, a specific inhibitor of the lactate transporter MCT1, suppresses tumor angiogenesis [17]. Quercetin (CYP2C9), which is an inhibitory flavonoid, inhibits lactate transport and acts as a hyper-thermic sensitizer of HeLa cells [18].

Appearance of acidic microenvironments under physiological and pathological conditions

An oncogenic transformation assay by oncogenic-virus infection shows that lactate production is correlated with an increase in the number of transformed foci by viral infection in a presence of 5% CO₂ in 95% air [19]. Since high lactate corresponds to a high proton concentration, an acidic pH is a major feature of the solid tumor tissue [1,20-22]. Lactic acid is a product of the anaerobic glycolysis including the activity of lactate dehydrogenase (LDH) 5 that generates lactic acid from pyruvate and the expression of which has been strongly associated with the poor prognosis of patients with non-small cell lung cancer [23,24] and colorectal cancers [25-27].

CO₂ is a major source of acid in glycolytically impaired mice [4]. The pentose phosphate pathway is seen as a major productive pathway for CO₂ which can be processed to H⁺ and HCO₃⁻ by the catalytic activity of CA. In osteoclasts, CA II, a CA isozyme, is a major enzyme producing H⁺ to decalcify bone hydroxapatite. Osteoclasts secrete H⁺ and create an acidic microenvironment below pH 5.5, which is critical for the bone resorption [28,29] and the proton can be secreted through H⁺-ATPase [30]. Induction of CA II expression itself is also induced by an acidic pHₐ [31]. Thus, secretion of acidic metabolites and/or the pentose phosphate pathway-mediated CO₂ production, and CA-mediated production of H₂CO₃ form acidic microenvironments.

Extracellular acidity is a pathological feature of inflammation [32] and solid tumor tissue [1,20-22]. Acidity in inflammatory tissue is due to production of proton from macrophages, whereas tumor tissue acidity is due to acidic metabolites, e.g., lactate, caused by anaerobic glycolysis under the hypoxia [20-22,33]. The acidic microenvironment acts as a trigger for pain in both inflammation [34,35] and in cancer patients [36].

Ovarian cancer G-protein-coupled receptor 1 (OGR1), a receptor for sphingosylphosphorylcholine, and GPR4, a close relative of OGR1, also act as a proton-sensing receptor in osteosarcoma cells and primary human osteoblast precursors [37]. OGR1 (GPR68) stimulates cyclooxygenase-2 expression and prostaglandin (PG) E₂ production in response to acidic pH in a human osteoblastic cell line [38]. Because PGE₂ is involved in osteoclastic differentiation of precursor cells [39], inhibition of the OGR1 signaling negatively regulates osteoclastogenesis [40]. Another type of G-protein-coupled receptor, TDAG8 (GPR65), also senses pHₐ [41,42].

Breast cancer frequently metastasizes to bone. Osteoclasts can be activated by breast cancer-derived H⁺ such that osteolysis occurs when cancer cells metastasize to bone [36]. During this process, patients feel pain through acid-sensing ion channels (ASIC) 1a, 1b and 3 [36,43,44].

An acidic pHₐ is also found in the epidermis and plays an important protective role against bacterial infection [45-47]. Using the conditional knockout (KO) mice for focal adhesion kinase (FAK) in keratinocytes, Ilic et al. [47] showed that the stratum corneum pHₐ gradient of keratinocytes in these mice had significantly more neutral pH values, and that NHE1 failed to localize to the plasma membrane [47]. Thus, FAK controls pH-dependent epidermal barrier homeostasis by regulating actin-directed NHE1 plasma membrane localization [47].

Lung liquid is acidic [48], which is worse in patients with cystic fibrosis [49], although the airway pH is not known for certain because different detecting methods have been used [50].

CA expression in cancer

CA isoforms are associated with tumor malignancy, including CA I [51], CA II [51,52], CA IX [53,54], CA XII [55], and CA XIII [56]. Among them, CA IX in particular has been well studied in association with hypoxia and tumor survival through regulating intracellular pH [53,57]. In ovarian cancer, high expression of CA IX with a concomitant increase in VEGF-A is associated with overall survival rates positively [58]. Overexpression of CA IX increases tumor cell migration and invasion [59]. CA inhibitor suppresses invasion of renal cancer cells in vitro [60]. Based on the accumulated evidence, a new therapeutic strategy targeting CA has been considered [61-63].

Acidic pHₐ activates proteinase activity and induces gene expression

Acidic pHₐ activates some proteinases. Although caries is due to some bacterial acidic metabolites, Tjärderhane et al. [64] found that host-derived pro-matrix metalloproteinase-9 (proMMP-9), proMMP-2 and proMMP-8 in saliva could be activated by acid, and thereby suggested that these MMPs contribute to the disruption of dentin in caries.
Alternatively, host derived proMMP-9 could be activated in the stomach, and this suggests it functions as a digestive enzyme for collagenous foods [65,66]. Activation of proMMP-9 by an acidic pH also occurs in a human melanoma model [67].

Lyosomal enzymes have an acidic optimal pH. Some tumor cells have the ability to secrete them, such as cathepsin B and cathepsin L [5]. Cathepsin K plays an important role in osteoclast-mediated bone resorption [68,69]; its inhibition prevents breast cancer-induced osteolysis and skeletal tumor burden [70]. Thus, osteoclast-mediated acidic pH leads to mineral dissolution and activation of cathepsins to digest bone matrix, such as type I collagen. Podgorski et al. [71] reported that SPARC/osteonecrotin, a major non-collagenous protein in bone, is digested by cathepsin K and its fragments are associated with bone-metastasis. Another lyosomal enzyme, hepsirinase, has an acidic optimal pH; it degrades heparan sulfate in the basement membrane and contributes to tumor invasion and metastasis [72,73].

Also, acidic microenvironments affect the expression of some genes, such as MMP-9 [74,75] and acidic sphingomyelinase in mouse B16 melanoma [74], platelet-derived endothelial cell growth factor (thymidine phosphorylase) in human breast cancer cells [76], the inducible isoform of nitric oxide synthase (iNOS) in macrophages [77], VEGF-A in glioma [78] and glioblastoma [79] cells, and IL-8 expression in human pancreatic adenocarcinoma [80-82] and ovarian carcinoma cells [83].

Acidic pH signal transduction pathway

Thus, although acidic pH occurs in several physiological and pathological conditions, information on its signaling remains limited. Transcription factors AP-1 and NF-κB, independent of hypoxia, have important roles in the acidic pH-induced expression of VEGF-A [78,84] and IL-8 [80-83,85]. p38 mitogen-activated protein kinase (MAPK) is involved in acidic pH signaling that induces IL-8 [85].

We also found involvement of phospholipase D (PLD) in the acidic pH-intracellular signaling to induce MMP-9 production [75,86]. Acidic pH-induced PLD activation was prolonged for at least for 24 h, different from general growth factor signaling. Inhibition of PLD activity by 1-butanol and Myr-ARF6 suppresses acidic pH-induced MMP-9 expression [87]. Acidic pH increases the steady-state levels of phosphorylated ERK1/2 and p38, and PLD inhibitors prevent these increases. Using 5′-deleted constructs of the MMP-9 promoter, we found that the acidic pH-responsive region was located at nucleotides -670 to -531, a region containing the NF-κB binding site. A mutation in the NFκB binding site reduced acidic pH-induced MMP-9 promoter activity, and NFκB activity was induced by acidic pH. Pharmacological inhibitors specific for MEK1/2 (PD098059) and p38 (SB203580) attenuated acidic pH-induced NF-κB activity and MMP-9 expression. The data suggest that PLD, MAPKs including ERK 1/2 and p38, and NF-κB mediate acidic pH signaling thereby inducing MMP-9 expression. Activation of ERK1/2 and p38, followed by the NF-κB axis, which is stimulated by tumor necrosis factor-α (TNF-α), also occurs in cholangiocarcinoma [88]. This suggests that acidic pH signaling is, at least in part, the signaling pathway for TNF-α. However, it has been reported that acidic pH activates p38, but not ERK1/2, in T-cell receptor signaling in Jurkat cells [89]. This may be cell-type specific. In a further contribution dealing with the intracellular substances of acidic pH, we have found that calcium influx triggers acidic pH-induced PLD activation and that acidic sphingomyelinase mediates acidic pH signaling to activate NF-κB independently of the PLD-MAPK pathway [74].

OGR1 stimulates cyclooxygenase-2 expression and PGE2 production in response to an acidic pH in a human osteoblastic cell line through G(q/11)/phospholipase C/protein kinase C pathway [38] and in human aortic smooth muscle cells through the phospholipase C/cyclooxygenase/PGI2 pathway [90].

Acidic pH directly affects transcription factor activity; DNA binding activity of the transcription factor, SP1, is enhanced by intracellular acidic pH [91]. Intracellular pH is maintained a constitutively neutral state but known to become transiently acidic when pH decreases to acidic. Therefore an acidic pH can activate SP1.

Acidic pH stimulates disruption of adherence junctions

When tumor cells move into their surrounding tissue, cell-cell junctions become dissociated. Acidic pH disrupts adherence junction by Src activation, resulting in E-cadherin degradation through the protein kinase Cδ pathway [92,93]. Acidic pH also induces motility of tumor cells, and inhibits monocyte migration and cytokine release [13].

Acidic pH stimulates metastatic potential

Brockton et al. [54] have shown that high stromal CA IX expression is associated with nodal metastasis. The high activity produces an acidic microenvironment that leads to increased metastatic ability of the tumor cells. We have reported that induction rate of MMP-9 secretion correlates with metastatic potential of mouse B16 melanoma clones, and an acidic pH stimulates invasion through a type-IV collagen barrier [75,86]. In human melanoma models, an acidic pH increases both migration and invasiveness in vitro, accompanied by MMP-9 activation [67]. NHE1 is also associated with the metastatic ability of tumor cells; it is accumulated in leading edge of the cell and is activated by CD44 (a hyaluronan (HA) receptor) binding to HA [94]. Because HA directs
membrane-type 1 matrix metalloproteinase (MT1-MMP) to the invasion front (invadopodia) [95,96], NHE1 might interact with MT1-MMP through CD44 at an acidic pH [97,98].

Pretreatment of the tumor cells in an acidic medium induces production of proteinases (MMPs and cathepsins) and proangiogenic factors (VEGF-A and IL-8) and promotes experimental metastasis to the lung after injection into the tail vein of nude mice [5]: elevation of pH by one unit following injection of sodium bicarbonate prevents spontaneous metastases [99]. Furthermore, using P-31 magnetic resonance spectroscopic evaluation, it was found that acidic pH in spontaneous soft tissue sarcomas predicts metastasis in dogs [100].

Acidic pH₆ sensing systems

ASICs are voltage-independent and proton-activated channels found in tumor cells and associated tumor malignancy [101]. Transient receptor potential (TRP) V isoforms, TRPV1, TRPV5 and TRPV6, also act as acid-sensitive channels [102,103]. ERK1/2 plays as a downstream target of ASICs and TRPVs [104-106]. Another subfamily of TRP, TRPM7 has proton conductivity [107]. TRPM7 regulates EGF signaling to induce STAT3 activation and vimentin expression during epithelial-mesenchymal transition [108]. OGR1 also acts as a proton-sensing receptor, stimulating inositol phosphate formation [37].

pH₆ gradient formation by H⁺ pumps and exchangers

NHE1 accumulates at the leading edge to make a pH₆ gradient associated with cell migration [109]. The Rho-ROCK pathway contributes to NHE1 activation and focal adhesions [110,111]. Protons stabilize the collagen-α2β1 integrin bond, but alkalosis, a lack of protons or an inhibited NHE activity, prevents adhesion [112]. Furthermore, the cell forms an individual pH₆ gradient to facilitate movement: i.e., at leading edge or invadopodia, cells preferentially attach to the substrate due to the acidic pH₆ induced by NHE1, while cell-matrix interaction at the rear end is weak due to a mid-alkaline pH₆ [113]. Mutation studies clearly showed that downregulation of NHE1 function suppresses cell polarity, migration, and invasion through matrigel™ [111]. Inhibition of NHE1 activity by HOE642 (cariporide) reduced migration and adhesion activities [109].

To secrete acidic metabolites, NHE1 and the H⁺-lactate co-transporter are involved [114]. H⁺-ATPase (the H⁺ pump) and cell surface ATP synthase also play a role in extracellular acidification [115,116], thereby contributing to tumor metastasis [3]. Therefore, inhibition of the H⁺ pump can be a new strategy for cancer treatment [117-119]. Angiostatin has anti-tumor efficacy by inhibiting cell surface ATP synthase activity through binding its β subunit [116]. In particular, treatment of the cells with angiostatin proved more cytotoxicity at an acidic pH₆ than a neutral pH₆.

Drug efficacy and acidic pH₆

Two analogues of camptothecin (CPT), topotecan (TPT) and irinotecan (CPT-11), have significant anti-tumor activity in the clinic, although their abilities depend on the CPT E ring lactone, which forms an inactive hydroxy acid at physiological pH. The reaction is reversible at an acidic pH₆, which provides a rationale for selectivity because many solid tumors, while creating an acidic extracellular environment, maintain a normal intracellular pH [120]. An acidic pH₆ inhibits cellular uptake of mitoxantrone and topotecan, so that elevation of pH₆ in tumor tissue enhances those drugs’ efficacy [120,121]. Because the buffer action is weaker in tumor tissue than normal tissue, NaHCO₃ has much potential to raise pH₆ relatively specifically in tumor tissue [122,123]. Acidic pH₆ also plays a role in the resistance of tumor cells to drugs by increasing the expression of p-glycoprotein, thereby increasing drug efflux [124,125]. Recently, an acidic pH₆-specific drug-releasing system has been developed [126,127]. A novel polymeric micelle constituted of 2 block copolymers of poly (L-lactic acid)-b-poly (ethylene glycol) b-poly (L-histidine) - TAT (trans-activator of transcription) and poly(L-histidine)-b-poly (ethylene glycol) increases the cytotoxicity of doxorubicin in several multidrug-resistant tumor cell lines [127]. To measure pH₆, a magnetic resonance image technique has been developed using acidic pH₆ specific probes [128,129]. Thus, clinicians should pay attention to tumor pH₆ in selecting drugs and helping to maximize their chemotherapeutic action. Vasodilating drugs, such as hydralazine and captopril, inhibit tumor growth rate in vivo by reducing tumor blood flow [130]. Although the reduction in tumor growth by those drugs also reduces the oxygen supply, it reduces pH₆. In patients given vasodilating drugs, anti-tumor drugs with weak acidic pKₐ value, such as 5-fluorouracil (5FU) and cyclophosphamide, may have increased efficacy at an acidic pH₆. In contrast, the anti-tumor drugs with weak base pKₐ values, such as doxorubicin, mitoxantrone and daunorubicin, may not be fully functioned because acidic pH₆ reduces their cytotoxicity [121,131]. In early-stage breast cancer, high CAIX is a predictive marker of doxorubicin resistance [132]. Because cis-diamminedichloroplatinum (II) (CDDP) solution has an acidic pH, NaHCO₃ is used to prevent the angialgia in the cancer patients coming from the acidic pH solution injection because it increases pH [133,134]. However, CDDP is frequently used for co-injection with other chemotherapeutic drugs, such as 5FU. In some cases, co-injection of NaHCO₃ (depends on the concentration) may reduce the clinical efficacy of 5FU + CDDP regimen.
Hyperthermia and acidic pH

Hyperthermic treatment (42.5°C) for JB-1-E plasmacytoma tumor cells in vitro enhances the colony formation index when cells are maintained at pH 6.4, regardless oxygen tensions [135]. Melanoma cells growing at low pH are sensitized to hyperthermia because of the altered intracellular pH threshold for the heat sensitization in vitro [136,137].

Conclusion

Acidic pH_{t} is toxic to many cells, including tumors [138]. However, if tumors have successfully adapted to their condition, and use it for their own cellular activation, this increases drug resistance and leads to more aggressive behavior. Therefore, management of tumor pH_{t} and inhibition of blockade of proton-sensing system are important in not only raising drug efficacy, e.g. mitoxantrone, but in preventing metastasis.

Abbreviations

pH_{t}: Extracellular pH; NHE: Na+/H+ exchanger; MCT: Monocarboxylate transporter; CA: Carbonic anhydrase; IL: Interleukin; NF-κB: Nuclear factor κB; VEGF: Vascular endothelial growth factor; HIF: Hypoxia inducible factor; LDH: Lactate dehydrogenase; OGR: Ovarian cancer G-protein-coupled receptor; PG: Prostaglandin; ASIC: Acid-sensing ion channel; KO: Knockout; FAK: Focal adhesion kinase; MMP: Matrix-metalloproteinase; iNOS: Nitric oxide synthase; PLD: Phospholipase D; MAPK: Mitogen-activated protein kinase; TNF-α: Tumor necrosis factor-α; HA: Hyaluronan; MT1-MMP: Membrane-type 1 matrix metalloproteinase; TRP: Transient receptor potential; CDDP: cis-Diaminedichloroplatinum (II).

Competing interests

The authors declare no competing financial interests.

Authors’ contributions

YK designed the manuscript. YB revised the manuscript. All authors read and approved the final manuscript.

Acknowledgements

We thank Prof. Masachi-Chang-II Lee, Eiro Kubota, Kaoru Miyazaki, and Ryu-ichiro Hata for their critical comments.

Author details

1Department of Oral Function and Molecular Biology, Ohu University School of Dentistry, 963-8611, Koriyama, Japan. 2Department of Oral Maxillofacial Surgery, Kanagawa Dental University Graduate School of Dentistry, Yokosuka, Japan. 3Department of Oral Science, Kanagawa Dental University Graduate School of Dentistry, Yokosuka, Japan. 4Department of General Clinical Medicine, Ohu University School of Dentistry, Koriyama, Japan.

Received: 25 July 2013 Accepted: 29 August 2013

Published: 3 September 2013

References

1. Warburg O, Posener K, Negelein E: Über den Stoffwechsel der Tumoren (On metabolism of tumors). Biochem Z 1924, 152:319–344.
2. Chesar M, Nicholson C: Regulation of intracellular pH in vertebrate central neurons. Brain Res 1985, 325(1–2):313–316.
3. Nishitoh T, Hata K, Nakanishi M, Morita Y, Sun-Wada GH, Wada Y, Yasaki N, Yoneida T: The αδ isom form vascular type H+–ATPase promotes distant metastasis in the mouse B16 melanoma cells. Mol Cancer Res 2011, 9(7):845–855.
4. Helmlinger G, Sckell A, Dellen M, Forbes NS, Jain RK: Acid production in glycolysis-impaired tumors provides new insights into tumor metabolism. Clin Cancer Res 2002, 8(4):1284–1291.
5. Rofstad EK, Mathiesen B, Kindem K, Galappathi K: Acidic extracellular pH promotes experimental metastasis of human melanoma cells in athymic nude mice. Cancer Res 2006, 66(13):6699–6707.
6. Biziell DM, Schroeder T, Scher RL, Walenta S, Clough RW, Dewhirst MW, Mueller-Klieser W: Elevated tumor lactate concentrations predict for an increased risk of metastases in head-and-neck cancer. Int J Radiat Oncol Biol Phys 2001, 51(2):349–353.
7. Walenta S, Chau TV, Schroeder T, Lehr HA, Kunz-Schughart LA, Fuerst A, Mueller-Klieser W: Metabolic classification of human rectal adenocarcinomas: a novel guideline for clinical oncologists. J Cancer Res Clin Oncol 2003, 129(6):521–526.
8. Walenta S, Salameh A, Lyng H, Evensen JF, Mitze M, Rofstad EK, Mueller-Klieser W: Correlation of high lactate levels in head and neck tumors with incidence of metastasis. Am J Pathol 1997, 150(2):409–415.
9. McFate T, Mohyeldin A, Lu H, Thaker J, Heniques J, Halim ND, Wu H, Schell M, Tiang TM, Teahan O, et al: Pyruvate dehydrogenase complex activity controls metabolic and malignant phenotype in cancer cells. J Biol Chem 2008, 283(33):22700–22708.
10. Fischer K, Hoffmann P, Voelli S, Meidenbauer N, Amrner J, Edinger M, Gottfried E, Schwarz S, Rothe G, Hoves S, et al: Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood 2007, 109(9):3812–3819.
11. Yabu M, Shime H, Hara H, Sato T, Matsumoto M, Seya T, Akazawa T, Inoue N: IL-23-dependent and -independent enhancement pathways of IL-17A production by lactic acid. Int Immunol 2011, 23(2):29–41.
12. Gottfried E, Kunz-Schughart LA, Ebner S, Mueller-Klieser W, Hoves S, Andreasen R, Mackensen A, Kreutz M: Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood 2006, 107(5):2013–2021.
13. Goetzke K, Walenta S, Kisiazkiewicz M, Kunz-Schughart LA, Mueller-Klieser W: Lactate enhances motility of tumor cells and inhibits monocyte migration and cytokine release. Int J Oncol 2011, 39(2):453–463.
14. Vegran F, Boldat R, Michielet C, Sonveaux P, Feron O: Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-kappaB/IL-8 pathway that drives tumor angiogenesis. Clin Cancer Res 2011, 17(7):2550–2560.
15. Hunt TK, Aslam RS, Beckert S, Wagner S, Ghanizi QP, Hussian MQ, Roy S, Sen CK: Aerobically derived lactate stimulates recravascularization and tissue repair via redox mechanisms. Antioxid Redox Signal 2007, 9(8):1115–1124.
16. Satter US, Meyer SS, Quennett V, Hoener C, Kroczer H, Fabian C, Yaromina A, Zips D, Walenta S, Baumann M, et al: Glycolytic metabolism and tumour response to fractionated irradiation. Radiother Oncol 2010, 94(1):102–109.
17. Sonveaux P, Copetti T, De Saedeleer CJ, Vegran F, Verax J, Kennedy KM, Moon EL, Dhup S, Danhier P, Fleriet F, et al: Targeting the lactate transporter MCT1 in endothelial cells inhibits lactate-induced HIF-1α activation and tumor angiogenesis. PLoS One 2012, 7(3):e39318.
18. Kim JH, Kim SH, Allees AA, Young CW, Quecinter, an inhibitor of lactate transport and a hyperthermic sensitizer of HeLa cells. Cancer Res 1984, 44(1):102–106.
19. Hatanaka M, Hanafusa H: Analysis of a functional change in membrane in the process of cell transformation by Rous sarcoma virus; alteration in the characteristics of sugar transport. Virology 1970, 41(4):647–652.
20. Kajinowski F, Vaupel P: Concurrent measurements of O_{2} partial pressures and pH values in human mammary carcinoma xenotransplants. Adv Exp Med Biol 1986, 200:609–621.
21. Martin GR, Jain RK: Noninvasive measurement of interstitial pH profiles in normal and neoplastic tissue using fluorescence ratio imaging microscopy. Cancer Res 1994, 54(21):5670–5674.
22. Helmlinger G, Yuan F, Dellam M, Jain RK: Intrastitial pH and pO_{2} gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat Med 1997, 3(2):177–182.
23. Kayser G, Kassem A, Sienel W, Schulte-Uentrop L, Mattem D, Aummann K, Stickerl E, Werrer M, Paslick B, zur Hausen A: Lactate-dehydrogenase 5 is overexpressed in non-small cell lung cancer and correlates with the expression of the transketolase-like protein 1. Diagn Pathol 2010, 5:22.
24. Koukourakis MI, Giatromanolaki A, Sivridis E, Bougioukas G, Oikolidis V, Gatter KC, Harris AL: Lactate dehydrogenase-5 (LDH-5) overexpression in human colorectal adenocarcinomas: correlation of high lactate levels in head and neck tumors with incidence of metastasis. Am J Pathol 1997, 150(2):409–415.
25. Koukourakis MI, Giatromanolaki A, Simopoulos C, Polychronidis A, Sivridis E: Lactate dehydrogenase-5 (LDH5) relates to up-regulated hypoxia gene expression. Cancer Lett 2006, 235(2):112–119.
inducible factor pathway and metastasis in colorectal cancer. Clin Exp Metastasis 2005, 22(1):25–30.

26. Koukourakis MI, Giatromanolaki A, Sivridis E, Gatter KC, Harris AL: Lactate dehydrogenase 5 expression in operable colorectal cancer: strong association with survival and activated vascular endothelial growth factor pathway—a report of the Tumour Angiogenesis Research Group. J Clin Oncol 2006, 24(26):4301–4308.

27. Koukourakis MI, Giatromanolaki A, Sivridis E, Gatter KC, Yatromanolakis T, Polfpecht G, Shi WM, Lebowich JL, Talava L, Laurent D, et al: Prognostic and predictive role of lactate dehydrogenase 5 expression in colorectal cancer patients treated with PTK787/ZK225834 (vatalanib) antiangiogenic therapy. Clin Cancer Res 2011, 17(4):4982–4990.

28. Baron R, Neff L, Louvard D, Courtay PJ: Cell-mediated extracellular acidification and bone resorption: evidence for a low pH in resorbing lacunae and localization of a 100-kD lysosomal membrane protein at the osteoclast ruffled border. J Cell Biol 1985, 101(6):2210–2222.

29. Lehnerkari P, Hentunen TA, Laitala-Leinonen T, Tuukkanen J, Vaananen HK: Phospholipase C isoforms. Exp Cell Res 1996, 227(7):3551–3562.

30. Mabashezi A, Golding S, Pagakis SN, Corkey K, Poccok AE, Ferbrer B, O’Brien MJ, Wilkins RJ, Ellor JC, Francis MJ: Expression of cation exchanger NHE and anion exchanger AE isoforms in primary human bone-derived osteoblasts. Cell Biol Int 1998, 22(7):1785–1792.

31. Biokloing DM, Fan D: Acid pH increases carbonic anhydrase II and calciotomin receptor mRNA expression in mature osteoclasts. Calcif Tissue Int 2000, 67(5):178–183.

32. Häbler C: Über den K- und Ca-Gehalt von eiter und Exsudaten und Acid pH increases carbonic anhydrase II and acidosis. Klin Wochenschr 1926, 58:1519–1527.

33. Dillan M, Helmlinger G, Yuan F, Jain RK: Fluorescence ratio imaging of intracellular pH in solid tumours: effect of glucose on spatial and temporal gradients. Br J Cancer 1996, 74(8):1206–1215.

34. Rocha-Gonzalez HH, Herrejon-Abreu EB, Lopez-Santillan FJ, Garcia-Lopez BE, Murbartian J, Granados-Soto V: Acid increases inflammatory pain in rats: Effect of local peripheral ASICs inhibitors. Eur J Pharmacol 2009, 603(1–3):56–61.

35. Steen HK, Isbournner U, Reeh PW: Pain due to experimental acidosis in human skin: evidence for non-adapting nociceptor excitation. Neurosci Lett 1995, 199(1):29–32.

36. Nagae M, Hiraga T, Wakabayashi H, Wang L, Iwata K, Yoneda T: Ostearthries play a part in pain due to the inflammation adjacent to bone. Bone 2006, 39(5):1107–1113.

37. Ludwig MG, Vanek M, Guerini D, Gasser JA, Jones CE, Junker U, Hofstetter H, Kato 2005, 20:1572.

38. Nakoneshny SC, Matthews TW, Chandarana S, Sly WS, et al: Expression of calcitonin receptor in mature osteoclasts. Bone 2006, 38(1):20473–20483.

39. Kobayashi Y, Mizoguchi T, Take I, Kurihara S, Udagawa N, Takahashi N: Expression of a novel carbonic anhydrase, CA XIII, in normal human osteoclasts. Imunotherapy 2002, 46(12):1608–1609.

40. Williams E, Martin S, Moss R, Durand A, Deen S: Expression of cation exchanger NHE1 and function of host matrix metalloproteinases in dentin matrix breakdown in caries lesions. J Dent Res 1998, 77(6):1622–1629.

41. Davis GE, Martin BM: A latent mutant, 94,000 gelatin-degrading metalloprotease induced during differentiation of HL-60

42. Ji J, Furukawa H, Gonzales EB, Gouaux E: Structure of acid-sensing ion channel 1 at 1.9 A resolution and low pH. Nature 2007, 449(7160):316–323.

43. Marples MJ: The ecology of human skin. Springfield, IL: Charles C. Thomas; 1965.

44. Behne MJ, Bary NP, Hanson KM, Aronchik I, Clegg RW, Gratton E, Feingold K, Hollesen WM, Eisma PM, Naud, TM: Neutrophil development of the stratum corneum pH gradient: localization and mechanisms leading to emergence of optimal barrier function. J Invest Dermatol 2003, 120(6):998–1006.

45. Ilic D, Mao-Qang M, Crumrine D, Dolgovan G, Laroque N, Xu P, Demerjian M, Benne LI, Lim ST, Ossovskaia V, et al: Focal adhesion kinase controls pH-dependent epidermal barrier homeostasis by regulating actin-directed Na+/H+ exchanger 1 plasma membrane localization. Am J Pathol 2007, 170(6):2055–2067.

46. Adamson TM, Boyd RD, Platt HS, Strang LB: Composition of alveolar liquid in the foetal lamb. J Physiol 1969, 204(1):119–168.
promyelocytic leukemia cells: a member of the collagenase family of enzymes. Cancer Res 1990, 50(4):1113–1120.
66. Davis GE: Identification of an abundant latent 94-kDa gelatin-degrading metalloproteinase in human saliva which is activated by acid exposure: implications for a role in digestion of collagenous proteins. Arch Biochem Biophys 1991, 286(2):551–554.
67. Martinez-Zaguilan R, Seftor EA, Seftor RE, Chu YW, Gillies RJ, Hendrix MJ: Acidic pH enhances the invasive behavior of human melanoma cells. Clin Exp Metastasis 1996, 14(2):176–185.
68. Karsdal MA, Henriksen K, Sorensen MG, Gram J, Dziegiel MH, Kato et al. Cancer Cell International
69. Nakajima M, Irimura T, Di Ferrante D, Di Ferrante N, Nicolson GL: Le Gall C, Bellahcene A, Bonnelye E, Gasser JA, Castronovo V, Green J, Zimmermann J, Clezardin P: novel gating and sensitizing mechanism of TRPV1. FEBS Lett 2002, 572(4):506–509.
70. Kato Y, Ozawa S, Tsukuda M, Kubota E, Miyazaki K, St-Pierre Y, Hata R: Acidic extracellular pH induces vascular endothelial growth factor expression by acidosis in human glioblastoma cells via ERK1/2, p38 MAPK and nuclear factor-κ B pathways. J Biol Chem 2003, 278(4):2040–2046.
71. Berdiev BK, Xia J, McLean LA, Markert JM, Gillespie GY, Mapstone TB, Naren AP, Marcus DC: Lack of pendrin HCO3 - transport elevates vestibular function. J Biol Chem 2003, 278(16):15023–15034.
72. Ishii K, Sasaki M, Hanada K, Yamaguchi J, Ikeeda H, Sato Y, Ohta T, Sato H, Nagino M, Nimura Y, et al: Phosphorylation of extracellular signal-regulated kinase 1/2, p38 mitogen-activated protein kinase and nuclear translocation of nuclear factor-κB are involved in upregulation of matrix metalloproteinase-9 by tumor necrosis factor-α. Liver Int 2009, 29(2):291–298.
73. Le Gall C, Bellahcene A, Bonnelye E, Gasser JA, Castronovo V, Green J, Zimmermann J, Clezardin P: phospholipase A2 and tumor necrosis factor-α: synergy in vivo enhances matrix metalloproteinase-9 expression in mouse metastatic melanoma cells through the phosho phospholipase D-mitogen-activated protein kinase signalling. J Biol Chem 2005, 280(1):10958–10944.
74. Hiraishi S, Fukamachi T, Sakano H, Torasa A, Sato H, Kobayashi H: Extracellular acidic conditions induce phosphorylation of ZAP-70 in Jurkat T cells. Immunol Lett 2008, 115(1):95–100.
75. Tomura H, Wang JQ, Komachi M, Damitini M, Mogi C, Tobe M, Kon J, Misawa N, Sato K, Okajima F: Prostaglandin J 2 production and cAMP accumulation in response to acidic extracellular pH through OGR1 in human aortic smooth muscle cells. J Biol Chem 2005, 280(41):34456–34464.
76. Kato Y, Irimura T, Di Ferrante D, Di Ferrante N, Nicalson GL: Heparan sulfate degradation: relation to tumor invasion and metastatic properties of mouse B16 melanoma sublines. Science 1983, 220(4597):611–613.
77. Nakaoka M, Irimura T, Di Ferrante N, Nicalson GL: Metastatic melanoma cell hemanparen. Characterization of heparan sulfate degradation fragments produced by B16 melanoma endolysosomal enzyme. J Biol Chem 1984, 259(4):2283–2290.
78. Shi Q, Le X, Wang B, Abbruzzese JL, Xiong Q, He Y, Xie K: Acidic pH-induced elevation in interleukin 8 expression by hypoxia and acidosis renders tumor-associated stress factors. J Biol Chem 2006, 281(13):11430–11436.
79. Xu L, Fukumura D, Jiang W, Wang B, Xiong Q, Xie K: Constitutive and inducible interleukin 8 expression by hypoxia and acidosis renders human pancreatic cancer cells more tumorigenic and metastatic. Clin Cancer Res 2009, 15(11):3731–3741.
80. Shi Q, Le X, Wang B, Xiong Q, Abbruzzese JL, Xiong Q, He Y, Xie K: Regulation of vascular endothelial growth factor expression by acidosis in human cancer cells. Oncogene 2001, 20(28):3751–3756.
81. Bischoff DS, Zhu JH, Miahjani NS, Yamaguchi DT: Acidic pH stimulates the production of the angiogenic CXC chemokine, CXCL8 (interleukin-8), in human adult mesenchymal stem cells via the extracellular signal-regulated kinase, p38 mitogen-activated protein kinase, and NF-κB pathways. J Cell Biochem 2008, 104(4):1378–1392.
82. Shi Q, Ozono S, Shuin T, Miyazaki K: Slow induction of gelatinase B mRNA by acidic culture conditions in mouse metastatic melanoma cells. Cancer Res 1996, 56(3):575–579.
83. Shi Q, Lambert CA, Cole AG, Mineur P, Noël A, Frankenne F, Foidart JM, Baba M, Hata RI, Miyazaki K, et al: Acidic extracellular pH induces matrix metalloproteinase-9 expression in mouse metastatic melanoma cells through the phosho phospholipase D-mitogen-activated protein kinase signalling. J Biol Chem 2005, 280(1):10958–10944.
105. Chen Y, Williams SH, McIntuly AL, Hong JH, Lee SH, Rothfusz NE, Parekh PK, Moore C, Gereau RW, Taylor AB et al: Temporomandibular joint pain: A critical role for Trpv6 in the trigeminal ganglion. Pain 2013, 154(1):1295–1304.

106. Wang G, Su J, Li Y, Feng J, Shi L, He W, Liu Y, Edaravone alleviates hypoxia-oxidative/reoxygenation-induced neuronal injury by activating ERK1/2. Neurosci Lett 2013, 543:22–27.

107. Nurrata T, Okada T, Proton conductivity through the human TRPM7 channel and its molecular determinants. J Biol Chem 2008, 283(21):15097–15103.

108. Davis FM, Azimi I, Faville RA, Peters AA, Jalink K, Putney JW Jr, Goodhill GJ, Thompson EW, Roberts-Thomson SJ, Monteith GR: Induction of epithelial-mesenchymal (EMT) in breast cancer cells is calcium signal dependent. Oncogene 2013, in press.

109. Strave L, Muller M, Fabian A, Waning J, Mally S, Noël J, Schwab A, Stock C: pH dependence of melanoma cell migration: protons extruded by NHE1 dominate protons of the bulk solution. J Physiol 2007, 575(Pt 2):351–360.

110. Tonini J, Barber DL: Na-H exchange acts downstream of RhoA to regulate integrin-induced cell adhesion and spreading. Mol Biol Cell 1998, 9(2):287–293.

111. Denker SP, Barber DL: Cell migration requires both ion exchange and cytoksetal anchoring by the Na-H exchanger NHE1. J Cell Biol 2002, 159(6):1087–1096.

112. Stock C, Gassner B, Hauck CR, Arnold H, Mally S, Eble JA, Dieterich P, Schwab A: Migration of human melanoma cells depends on extracellular pH and Na+/H+ exchange. J Physiol 2005, 567(Pt 1):225–238.

113. Krahling H, Mally S, Eble JA, Noël J, Schwab A, Stock C: The glycolycans maintains a cell surface pH nanoenvironment crucial for integrin-mediated migration of human melanoma cells. Pflugers Arch 2009, 458(6):1069–1083.

114. Cardone RA, Casavola V, Reshkin SJ: The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis. Nat Rev Cancer 2005, 5(10):786–795.

115. Montcourrier P, Silver I, Famoud R, Bird J, Rochefort H: Breast cancer cells have a high capacity to acidify extracellular milieu by a dual mechanism. Clin Exp Metastasis 1997, 15(4):382–392.

116. Chi SJ, Pirollo S: Angiotatin is directly cytotoxic to tumor cells in low extracellular pH: a mechanism dependent on cell surface-associated ATP synthase. Cancer Res 2006, 66(2):875–882.

117. Spugnini EP, Citro G, Fais S: Proton pump inhibitors as anti vacular-ATPases drugs: a novel anticancer strategy. J Exp Clin Cancer Res 2010, 29:44.

118. De Millo A, Caneschi R, Marino ML, Borghi M, Iero M, Villa A, Venturi G, Lozupone F, Lessi E, Logozzi M, et al: pH-dependent antimtor activity of proton pump inhibitors against human melanoma is mediated by inhibition of tumor acidity. Int J Cancer 2010, 127(1):207–219.

119. Weidmann RM, Von Schwarzzenberg K, Palaminessi A, Schreiner L, Kubisch R, Liebl J, Schemp C, Trauner D, Vereb G, Zahler S, et al: The V-ATPase-inhibitor archazolid abrogates tumor metastasis via inhibition of endocytic activation of the Rho-GTPase Rac1. Cancer Res 2012, 72(2):1597–15978.

120. Adams DJ, Dewhirst MW, Flowers JL, Gamcsik MP, Colvin OM, Manikumar G, Wani MC, Wall ME: Camptothecin analogs with enhanced antitumor activity at acidic pH. Cancer Chemother Pharmacol 2000, 46(4):263–271.

121. Vukovic V, Tannock IF: Influence of low pH on cytotoxicity of paclitaxel, mitoxantrone and topotecan. Br J Cancer 1997, 75(8):1167–1172.

122. Raghunand N, Mahoney BP, Gillies RJ: Tumor acidity, ion trapping and chemotherapeutics. II. pH-dependent partition coefficients predict importance of ion trapping on pharmacokinetics of weakly basic chemotherapeutic agents. Biochem Pharmacol 2003, 66(7):1219–1229.

123. Betof AS, Rabbani ZN, Hardee ME, Kim SJ, Broadwater G, Bentley PC, Snyder SA, Vujaskovic Z, Oosterwijk J, Harris LN, et al: Carbonic anhydrase IX is a predictive marker of doxorubicin resistance in early-stage breast cancer independent of HER2 and TOP2A amplification. Br J Cancer 2012, 106(5):916–922.

124. Teh BG, Kobayashi W, Nanta K, Fukui K, Kimura H: Supersensitive doxetaxel-nedaplatin combined infusion concurrent with radiation therapy in advanced oral cancers. Oral Oncol Extra 2004, 40(1):6–131.

125. Shiga K, Yokoyama J, Hashimoto S, Saijo S, Tateda M, Ogawa T, Watanabe M, Kobayashi T: Combined therapy after supersensitive arterial cisplatin infusion to treat maxillary squamous cell carcinoma. Otolaryngol Head Neck Surg 2007, 136(6):1003–1009.

126. Overgaard J, Bichel P: The influence of hypoxia and acidity on the hyperthermic response of malignant cells in vitro. Radiology 1977, 123(2):511–514.

127. Coss RA, Storck CW, Daskalakis C, Beld D, Wahl ML: Intracellular acidification abrogates the heat shock response and compromises survival of human melanoma cells. Mol Cancer Ther 2003, 2(4):383–388.

128. Coss RA, Storck CW, Wachsberger PR, Reilly J, Leeper DB, Beld D, Wahl ML: Acute extracellular acidification reduces intracellular pH, 4°C-induction of heat shock proteins and clonal survival of human melanoma cells grown at pH 6.7. Int J Hyperthermia 2004, 20(1):93–106.

129. Lan A, Lagadic-Gossmann D, Lemarie C, Brenner C, Jan G: Acidic extracellular pH shifts colorectal cancer cell death from apoptosis to necrosis upon exposure to propionate and acetate, major end-products of the human probiotic propionibacteria. Apoptosis 2007, 12(3):573–591.

Cite this article as: Kato et al: Acidic extracellular microenvironment and cancer. Cancer Cell International 2013 13:89.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

doi:10.1186/1475-2867-13-89