Uniting low-scale leptogeneses

Juraj Klarić,1 Mikhail Shaposnikov,1 and Inar Timiryasov1

1Institute of Physics, Laboratory for Particle Physics and Cosmology, École polytechnique fédérale de Lausanne, CH-1015 Lausanne, Switzerland

In this work we demonstrate that what was previously considered as different mechanisms of baryon asymmetry generation involving two right-handed Majorana neutrinos with masses far below the GUT scale—leptogenesis via neutrino oscillations and resonant leptogenesis—are actually united. We show that the observed baryon asymmetry can be generated for all experimentally allowed values of the right-handed neutrino masses above $M_N \gtrsim 100$ MeV. Leptogenesis is effective in a broad range of the parameters, including mass splitting between two right-handed neutrinos as big as $\Delta M_N / M_N \sim 0.1$, as well as mixing angles between the heavy and light neutrinos large enough to be accessible to planned intensity experiments or future colliders.

Introduction. Flavor oscillations of neutrinos is the only laboratory tested phenomenon pointing on the incompleteness of the Standard Model (SM). The presence of the ordinary baryonic matter in the observed amounts cannot be explained within the SM as well (see, e.g. review [1]). The minimal renormalisable extension of the SM contains two or more gauge singlet right-handed neutrinos which allow for a Dirac mass matrix m_D for the neutrinos. These singlet right-handed neutrinos are the only particles which can have Majorana masses with the mass matrix M_M. Quantum field theory suggests that these mass terms—like any other coefficients in front of renormalisable operators—should be determined experimentally. Remarkably, diagonalising the common neutrino mass matrix one finds that if $M_M \gg m_D$, the mass matrix of left-handed neutrinos is $m_\nu \simeq -m_D^2 / M_M$. This is the famous seesaw formula [2–7]. An important consequence of the theory is the mixing between the light neutrinos and the heavier ones. This mixing allows the right-handed neutrinos to interact with the rest of the SM, so from the experimental point of view they behave like heavy neutral leptons (HNLs). The search for HNLs is an important part of physics programs of most accelerator experiments, both operating [8–14] and planned [15–21]. The capability of explaining neutrino masses strongly motivates HNL searches. However, there are other intriguing consequences of the theory outlined above. Yukawa couplings of right-handed neutrinos can carry new sources of CP violation, while HNLs themselves deviate from equilibrium in one way or another. Sphaleron processes in the early Universe provide violation of the baryon number [22]. Therefore the Sakharov conditions can be satisfied and generation of the Baryon Asymmetry of the Universe (BAU) is possible. HNLs interact only with leptons, so it is the lepton asymmetry which is generated and transferred to the baryon sector by the sphaleron processes. This mechanism is known as leptogenesis.1 The suggestion along these lines was proposed by Fukugita and Yanagida [24] who considered very heavy right-handed neutrinos with masses above 10^9 GeV [25]. The mass scale of leptogenesis can be significantly lowered if two HNLs are nearly degenerate in mass, this phenomenon was dubbed resonant leptogenesis [26–33]. Later it was realized that GeV-scale right-handed neutrinos can also generate the BAU in leptogenesis via oscillations [34, 35] (for more recent work see e.g. [36–67]). Both scenarios require two HNLs with nearly degenerate masses.2 The absence of a preferred mass scale of leptogenesis calls for a vast and diverse search program. High intensity frontier experiments, especially SHiP [15], provide an unparalleled opportunity if M is in a few GeV region, whereas future colliders, such as FCC-ee [21, 75–77], or CEPC [76, 77] will cover a significant portion of the parameter space of heavier HNLs.

Resonant leptogenesis and leptogenesis via oscillations. After inflation the baryon and lepton numbers of the Universe as well as the number of HNLs may well be zero, and we will assume that this is indeed the case [78].3 The baryon asymmetry of the Universe in both leptogeneses is produced in a set of processes including scatterings, decays, coherent oscillations of HNLs, and anomalous sphaleron transitions.

The conceptual difference between the two leptogeneses is the moment in the history of the Universe when the asymmetry is generated. In resonant leptogenesis the BAU is generated when the temperature drops below the heavy neutrino mass, $T \lesssim M_N$, and the neutrinos begin to decay out of equilibrium.

1 Let us note in passing that transfer of asymmetry from the lepton sector is efficient at temperatures exceeding $\simeq 130$ GeV [23]. This means that HNLs responsible for leptogenesis serve as a unique probe of the very early Universe.

2 The mass degeneracy of two HNLs is an interesting feature from the theoretical point of view as it may be a result of a global leptonic symmetry - in this case a pair of Majorana neutrinos N can be joined into a quasi-Dirac fermion. An interesting feature is that it also allows for sizable mixings $\Theta_{\nu L}$ in a technically natural way [36, 68–74].

3 This is not necessarily so if the νMSM is supplemented by higher dimensional operators [79, 80].
As conversion between lepton and baryon number requires fast electro-weak sphaleron processes – this implies a lower bound on the heavy neutrino masses around $M_N \sim T_{\text{sp}} \simeq 130 \text{ GeV}$ [23]. Indeed, this is close to the lowest heavy neutrino mass for which resonant leptogenesis was studied in [81]. On the other hand, in baryogenesis via neutrino oscillations, the BAU is primarily produced during the equilibration of the heavy neutrinos. It has been argued that baryogenesis via oscillation only works when M_N is below M_W [75], since the equilibration rate of the heavy neutrinos generically exceeds the Hubble rate when $M_N \sim T$, as the neutrinos are become heavy enough to decay into W and Z bosons. One simply arrives at the conclusion that these are two genuinely different mechanisms of leptogenesis. In this letter we show for the first time that this is not the case, and that leptogenesis with two HNLs is operative for all values M_N larger than a fraction of GeV.

To avoid confusion with terminology of oscillations and resonances (present in both mechanisms), in the remainder of the text, we borrow the language often used for dark matter production mechanisms, and refer to the two mechanisms as: freeze-in leptogenesis, which corresponds to leptogenesis via oscillations, where the BAU is mainly generated during the production of the HNLs; and freeze-out leptogenesis, which corresponds to conventional resonant leptogenesis, where the majority of the BAU is generated during their out-of-equilibrium decays.

A unified picture. The first question one may ask when comparing the two mechanisms is whether the equations governing the production of the BAU are the same. There have been several approaches to deriving the evolution equations for resonant leptogenesis and leptogenesis via oscillations. In the case of resonant leptogenesis the perturbative computation leads to a divergent heavy neutrino decay asymmetry in the limit of exactly degenerate heavy neutrinos, see, e.g. [26]. This can be understood as a breakdown of the usual perturbation theory, since the unstable heavy neutrinos cannot appear as asymptotic S-matrix states. After the initial developments [26, 28, 30–32, 82, 83], the studies of resonant leptogenesis have taken a more formal turn with the goal of deriving the evolution equations from first principles, in particular using methods from non-equilibrium QFT, in particular the closed-time-path (CTP) formalism [84–101]. For leptogenesis via neutrino oscillations, where the neutrinos are close to relativistic, the equations are often derived by generalizing the treatment of Sigl and Raffelt [102] of relativistic mixed neutrinos to the scenario with additional heavy states [34, 35]. The same type of equations can be derived in the CTP formalism [93] if we assume a common mass shell for the two heavy neutrinos. This approach has successfully been used in studies of both resonant leptogenesis [103] and leptogenesis via neutrino oscillations [55], by taking the non-relativistic and relativistic limits respectively. The importance of non-relativistic corrections to leptogenesis via oscillations was pointed out in [51, 59, 60]. The equations that we use in the remainder of this work are a generalization of the ones used in [59, 64] to the non-relativistic case (cf refs. [66, 104]), and are consistent with the equations derived for resonant leptogenesis [93]:

$$i \frac{d\Delta_\alpha}{dt} = -2i \frac{\mu_\alpha}{T} \int \frac{d^3k}{(2\pi)^3} \text{Tr} [\Gamma_\alpha (f_N - f_N)] + i \int \frac{d^3k}{(2\pi)^3} \text{Tr} [\dot{\Gamma}_\alpha (\tilde{\rho}_N - \rho_N)],$$

$$i \frac{d\rho_N}{dt} = [H_N, \rho_N] - i \frac{\mu_\alpha}{T} \sum_\alpha \left \{ \delta \frac{\mu_\alpha}{T} f_N (1 - f_N) \right \},$$

$$i \frac{d\tilde{\rho}_N}{dt} = -[H_N, \tilde{\rho}_N] - i \frac{\mu_\alpha}{T} \sum_\alpha \left \{ \delta \frac{\mu_\alpha}{T} f_N (1 - f_N) \right \},$$

where $n_{\Delta_\alpha} \equiv \Delta_\alpha - B/3$ are the lepton asymmetries which can be related to the chemical potentials through the susceptibility matrix $\mu_\beta = \omega_{\alpha\beta} n_{\Delta_\alpha}$, and ρ_N and $\tilde{\rho}_N$ are the matrices of the heavy neutrino number densities. The equations are governed by the equilibration matrices $\Gamma = \sum_\alpha \Gamma_\alpha$ and $\tilde{\Gamma} = \sum_\alpha \dot{\Gamma}_\alpha$, the effective Hamiltonian H_N describing the neutrino oscillations and $(f_N = 1)$. The rates entering eq. (1) pose the main theoretical challenge. A lot of effort has been made to compute them at high temperatures [40, 42, 107–110], however, the rates in the literature are typically helicity-averaged. For relativistic HNLs the rate is helicity-dependent and requires a more careful calculation [50, 60, 63]. The helicity-dependent rates have only been calculated in the relativistic limit, and cannot be applied in the intermediate regime, which is crucial to connect the two mechanisms. In ref. [111] we approximate the rate Γ and show that the results are insensitive to the details of such estimates.

4 Another important distinction is that the equations from ref. [99] contain the so-called effective Yukawa couplings [31, 33]. Their purpose is to remedy the breakdown of the density matrix description when the heavy neutrino energy differences become hierarchical. However, since we focus our study on the quasi-degenerate regime of leptogenesis, we assume these effects may be neglected [105, 106].
Parameter space of leptogenesis. The system of equations (1) needs to be solved numerically to obtain an accurate estimate of the BAU. Solving momentum-averaged equations (see [41, 63]), we perform a parameter scan over the masses and mixing angles consistent with the observed light neutrino masses using the Casas-Ibarra parametrization [112].

The neutrino flavor eigenstates can be expressed as $\nu_\alpha = U_{\alpha i} \nu_i + \Theta_{\alpha I} N_I$, where ν_i and N_I are light and heavy mass eigenstates with masses m_i and M_I respectively. $U_{\alpha i}$ is the PMNS matrix and $\Theta_{\alpha I}$ is the mixing between active neutrinos and HNLs. Here we consider the case of two HNLs5 which is compatible with the neutrino oscillation data, so $I = 1, 2$ and $M_{1,2} = M \pm \Delta M$. It is convenient to characterize the overall strength of the mixing using $|U|^2 = \sum_{\alpha I} |\Theta_{\alpha I}|^2$. The see-saw requires that $|U|^2 \geq \sum m_i/M$, whereas demanding successful leptogenesis sets up an upper bound on $|U|^2$. In fig. 1 we show the region in the parameter space where the observed value of the BAU can be generated. As one can see, the results depend on the neutrino mass hierarchy.6 One can show [111] that the allowed region extends to heavier masses and both upper and lower bounds scale as $|U|^2 \propto 1/M$. This scaling breaks down around $M \sim 10^7$ GeV due to flavor effects [114–119], as well as the maximal mass splitting becoming of order $\Delta M/M \sim O(1)$, which leads to a breakdown of the quasiparticle approximation used to derive the quantum kinetic equations. As one can see in fig. 1, there is a continuous region in the $U^2 - M$ plane where leptogenesis in its seemingly different incarnations is operative.

Regimes of leptogenesis. As we can see from fig. 1, there is no clear separation between the two leptogeneses. We distinguish between them based on when the majority of the asymmetry is generated, i.e. during freeze-in or freeze-out. To fully separate these regimes, we consider different initial conditions for the heavy neutrinos. For the freeze-out parameter space we start with thermalized heavy neutrinos, and rely purely on their out-of equilibrium decays. Similarly, for freeze-in leptogenesis, we artificially turn off the terms driving the heavy neutrinos out of equilibrium. Of course, the physical solution relies on the presence of both effects. The comparison between these three “parameter spaces” is shown in figure fig. 2.

Perhaps surprisingly, we find that both regimes extend beyond the masses we would naively associate with them. Freeze-in leptogenesis extends far beyond M_W, and freeze-out leptogenesis is possible already for masses as low as 5 GeV.7 This statement can be quantified in the following way. If one starts from the thermal initial conditions for HNLs, then only freeze-out can contribute. This is shown by the red dashed line in fig. 2. On the other hand, we can set to zero the time derivative of the equilibrium distribution ρ_{N}^{eq}, which we refer to as a source term. In this case there is no deviation from equilibrium during freeze-out and all asymmetry is generated during freeze-in, see the green dotted line in fig. 2. The main ingredients which make the overlap of these regimes possible are: (i) flavor hierarchical washout; (ii) deviation from the equilibrium due to the expansion of the Universe; (iii) approximate lepton number conservation.

When the heavy neutrino masses are of the same order as the temperature, the ratio of the equilibration and Hubble rates is in general quite large, with the smallest value for normal hierarchy around $O(30)$. Naively this would lead us to expect that any asymmetries generated during freeze-in would be erased by the strong washout. However, the washout rate of a particular lepton flavor can be several orders of magnitude smaller than the equilibration rate for the heavy neutrinos. The presence of a flavor hierarchical washout is almost completely determined by the CP-violating phase δ and the

5 The third HNL—if it exists—could be light and very weakly coupled [36], which makes it a perfect dark matter candidate as it the case in the eMSM [35, 43, 45, 66, 113].

6 In the case of two HNLs which we consider here, the lightest active neutrino is almost massless and the neutrino mass spectrum is hierarchical.

7 GeV-scale freeze-out leptogenesis was already studied in [51], however, using the usual Boltzmann equations which are not appropriate in this mass regime.
Majorana phases from the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix as parametrised in [120]. It can range from $\mathcal{O}(10^{-3})$ to $\mathcal{O}(10^{-1})$ for NH, while it can be as small as $\mathcal{O}(10^{-4})$, or completely non-hierarchical in the case of IH. For large masses of HNLs, freeze-in leptogenesis crucially depends on the presence of such hierarchies (cf. [121], where the importance of a hierarchical washout was pointed out in the 3 HNL case). Furthermore, we find that freeze-in is the dominant mechanism when the mass splitting between the heavy neutrinos is sizable $\Delta M_N/M_N \sim \mathcal{O}(10^{-2})$, as demonstrated in fig. 3.

At the same time, we find successful freeze-out leptogenesis at the few GeV-scale. The main reason behind this effect is that the decay asymmetries of the heavy neutrinos can be close to $\mathcal{O}(1)$. The deviation from equilibrium caused by the heavy neutrino freeze-out in such a scenario will be suppressed by $10^{-3}M^2/T^2$, and can still lead to the observed baryon asymmetry.

Finally, we also find that even in the absence of flavor hierarchical washout, large mixing angles remain viable for heavy neutrino masses above M_W. The main reason behind this observation is the presence of an **approximately conserved lepton number**. If the pair of heavy Majorana neutrinos is close to degenerate in mass, they can be combined into a single pseudo-Dirac neutrino which can carry a lepton number. This type of scenario was studied as a technically natural way of adding light right-handed neutrinos to the SM [36, 68–74]. However, the importance of an approximate lepton number in preventing large washout during leptogenesis was first noted in [122]. The small parameter determining the conservation of this lepton number is the ratio of the heavy neutrino mass splitting and their interaction (decay) rate.

Discussion and conclusions. In this work we investigate the similarities and differences between resonant leptogenesis and leptogenesis through neutrino oscillations in the minimal extension of the standard model by two HNLs. We find that the two mechanisms are closely related, and that the equations needed to describe the two mechanisms are in fact the same. Since the defining feature of resonant leptogenesis, namely the resonant production of the baryon asymmetry is also present in leptogenesis via neutrino asymmetry, we focus on the major difference between the two mechanisms, namely the question whether the majority of the BAU is produced during the freeze-in, or freeze-out of the heavy neutrinos.

We found significant overlap between the two regimes, namely, freeze-in leptogenesis turns out to play a major role in generating the BAU even for TeV and heavier Majorana neutrinos. This regime mainly coincides with relatively large $\Delta M_N/M_N \sim 10^{-3}$ mass splitting, compared to the one optimal for a resonant enhancement $\Delta M_N/M_N \sim 10^{-11}$. Furthermore, the fact that the freeze-in regime extends large masses implies a strong dependence on the initial condition which was typically absent in resonant leptogenesis.

On the other hand, we also find that freeze-out leptogenesis remains viable for masses as low as $M = 5$ GeV. This can be understood through the large decay efficiency of the HNLs, as a suppression factor of $M^2/T^2 \sim 10^{-3}$ is not sufficiently small to prevent baryogenesis.

Together, these two parametric regimes span all experimentally allowed masses for the heavy neutrinos, from a fraction of GeV, to M_W, and beyond.
Acknowledgments. We thank Marco Drewes, Shintaro Ejima, Björn Garbrecht, Jacopo Ghiglieri, Mikko Laine, and Apostolos Pilaftsis for helpful comments and discussions. This work was supported by ERC-AdG-2015 grant 694896 and by the Swiss National Science Foundation Excellence grant 200020B_182864.

[1] Laurent Canetti, Marco Drewes, and Mikhail Shapiro-
nikov, “Matter and Antimatter in the Universe,” New J. Phys. 14, 095012 (2012), arXiv:1204.4186 [hep-ph].

[2] Peter Minkowski, “μ → eγ at a Rate of One Out of 10⁹ Muon Decays?” Phys. Lett. 67B, 421–428 (1977).

[3] Tsutomu Yanagida, “Horizontal gauge symmetry and masses of neutrinos,” Proceedings: Workshop on the Unified Theories and the Baryon Number in the Universe: Tsukuba, Japan, February 13-14, 1979, Conf. Proc. C7902131, 95–99 (1979).

[4] Murray Gell-Mann, Pierre Ramond, and Richard Slan-
sky, “Complex Spinors and Unified Theories,” Super-
gravity Workshop Stony Brook, New York, September 27–28, 1979, Conf. Proc. C790927, 315–321 (1979), arXiv:1306.4669 [hep-th].

[5] Rabindra N. Mohapatra and Goran Senjanovic, “Neu-
trino Mass and Spontaneous Parity Nonconservation,” Phys. Rev. Lett. 44, 912 (1980).

[6] J. Schechter and J. W. F. Valle, “Neutrino Masses in SU(2) x U(1) Theories,” Phys. Rev. D22, 2227 (1980).

[7] J. Schechter and J. W. F. Valle, “Neutrino Decay and Spontaneous Violation of Lepton Number,” Phys. Rev. D25, 774 (1982).

[8] D. Liventsev et al. (Belle), “Search for heavy neutrinos at Belle,” Phys. Rev. D87, 071102 (2013), [Erratum: Phys. Rev. D95, no.9, 099903(2017)], arXiv:1301.1105 [hep-ex].

[9] Roel Asij et al. (LHCb), “Search for Majorana neutrinos in B⁻ → π⁺μ⁻μ⁻ decays,” Phys. Rev. Lett. 112, 131802 (2014), arXiv:1401.5361 [hep-ex].

[10] A. V. Artamonov et al. (E949), “Search for heavy neu-
trinos in K⁺ → μ⁺νμ decays,” Phys. Rev. D91, 052001 (2015), [Erratum: Phys. Rev. D91, no.5, 059903(2015)], arXiv:1411.3963 [hep-ex].

[11] Georges Aad et al. (ATLAS), “Search for heavy Ma-
jorana neutrinos with the ATLAS detector in pp col-
lisions at √s = 8 TeV,” JHEP 07, 162 (2015), arXiv:1506.06020 [hep-ex].

[12] Vardan Khachatryan et al. (CMS), “Search for heavy Majorana neutrinos in μ⁺μ⁻+ jets events in proton-proton collisions at √s = 8 TeV,” Phys. Lett. B748, 144–166 (2015), arXiv:1501.05566 [hep-ex].

[13] Albert M Sirunyan et al. (CMS), “Search for heavy neutral leptons in events with three charged leptons in proton-proton collisions at √s = 13 TeV,” Phys. Rev. Lett. 120, 221801 (2018), arXiv:1802.02965 [hep-ex].

[14] Iryna Boiarska, Kyrillo Bondarenko, Alexey Bo-
yarsky, Shintaro Ejima, Maksym Ovchynnikov, Oleg Ruchayskiy, and Inar Timiryasov, “Probing baryon asymmetry of the Universe at LHC and SHIP,” (2019), arXiv:1902.04535 [hep-ph].

[15] Sergey Alekhin et al., “A facility to Search for Hidden Particles at the CERN SPS: the SHIP physics case,” Rept. Prog. Phys. 79, 124201 (2016), arXiv:1504.04855 [hep-ph].

[16] Vladimir V. Gligorov, Simon Knapen, Michele Papucci, and Dean J. Robinson, “Searching for Long-lived Particles: A Compact Detector for Exotics at LHCb,” Phys. Rev. D97, 015023 (2018), arXiv:1708.09395 [hep-ph].

[17] Jonathan L. Feng, Itah Galon, Felix Kling, and Sebastian Trojanowski, “ForW ard Search Experi-
ment at the LHC,” Phys. Rev. D97, 035001 (2018), arXiv:1708.09389 [hep-ph].

[18] Felix Kling and Sebastian Trojanowski, “Heavy Neutral Leptons at FASER,” Phys. Rev. D97, 095016 (2018), arXiv:1801.08947 [hep-ph].

[19] Marco Drewes, Jan Hajer, Juraj Klaric, and Gaia Lan-
franchi, “NA62 sensitivity to heavy neutral leptons in the low scale seesaw model,” JHEP 07, 105 (2018), arXiv:1801.04207 [hep-ph].

[20] Richard Keith Ellis et al., “Physics Briefing Book,” (2019), arXiv:1910.11775 [hep-ex].

[21] A. Abada et al. (FCC), “FCC Physics Opportunities,” Eur. Phys. J. C79, 474 (2019).

[22] V. A. Kuzmin, V. A. Rubakov, and M. E. Shapiro-
nikov, “On the Anomalous Electroweak Baryon Num-
ber Nonconservation in the Early Universe,” Phys. Lett. B155, 35 (1985).

[23] Michela D’Onofrio, Kari Rummukainen, and An-
ders Tranberg, “Sphaleron Rate in the Minimal Standard
Model,” Phys. Rev. Lett. 113, 141602 (2014), arXiv:1404.3565 [hep-ph].

[24] M. Fukugita and T. Yanagida, “Baryogenesis Without
Grand Unification,” Phys. Lett. B174, 45–47 (1986).

[25] Sacha Davidson and Alejandro Ibarra, “A Lower bound on the right-handed neutrino mass from leptogenesis,” Phys. Lett. B535, 25–32 (2002), arXiv:hep-ph/0202239 [hep-ph].

[26] Jiang Liu and Gino Segre, “Reexamination of generation of baryon and lepton number asymmetries by heavy particle decay,” Phys. Rev. D48, 4609–4612 (1993), arXiv:hep-ph/9304241 [hep-ph].

[27] Marion Flanz, Emmanuel A. Paschos, and Utpal
Sarkar, “Baryogenesis from a lepton asymmetric
universe,” Phys. Lett. B345, 248–252 (1995), [Er-
ratum: Phys. Lett.B345,487(1996); Erratum: Phys. Lett.
B382,447(1996)], arXiv:hep-ph/9411366 [hep-ph].

[28] Marion Flanz, Emmanuel A. Paschos, Utpal Sarkar, and Jan Weiss, “Baryogenesis through mixing of heavy Majorana neutrinos,” Phys. Lett. B389, 693–699 (1996), arXiv:hep-ph/9607310 [hep-ph].

[29] Laura Covi, Esteban Roulet, and Francesco Vissani, “CP violating decays in leptogenesis scenarios,” Phys. Lett. B384, 169–174 (1996), arXiv:hep-ph/9605319 [hep-ph].

[30] Laura Covi and Esteban Roulet, “Baryogenesis from mixed particle decays,” Phys. Lett. B399, 113–118 (1997), arXiv:hep-ph/9701154 [hep-ph].

[31] Apostolos Pilaftsis, “CP violation and baryogenesis due to heavy Majorana neutrinos,” Phys. Rev. D56, 5431–5451 (1997), arXiv:hep-ph/9707235 [hep-ph].

[32] W. Buchmuller and M. Plumacher, “CP asymmetry in Majorana neutrino decays,” Phys. Lett. B431, 354–362 (1998), arXiv:hep-ph/9710460 [hep-ph].

[33] Apostolos Pilaftsis and Thomas E. J. Underwood, “Res-
onant leptogenesis,” Nucl. Phys. B692, 303–345 (2004), arXiv:hep-ph/0309342 [hep-ph].
[34] Evgeny K. Akhmedov, V. A. Rubakov, and A. Yu. Smirnov, “Baryogenesis via neutrino oscillations,” Phys. Rev. Lett. 81, 1359–1362 (1998), arXiv:hep-ph/9803255 [hep-ph].
[35] Takehiko Asaka and Mikhail Shaposhnikov, “The νMSM, dark matter and baryon asymmetry of the universe,” Phys. Lett. B620, 17–26 (2005), arXiv:hep-ph/0505013 [hep-ph].
[36] Mikhail Shaposhnikov, “A Possible symmetry of the nuMSM,” Nucl. Phys. B763, 49–59 (2007), arXiv:hep-ph/0605047 [hep-ph].
[37] Mikhail Shaposhnikov, “The nuMSM, leptonic asymmetries, and properties of singlet fermions,” JHEP 08, 008 (2008), arXiv:0804.4542 [hep-ph].
[38] Laurent Canetti and Mikhail Shaposhnikov, “Baryon Asymmetry of the Universe in the NuMSM,” JCAP 1009, 001 (2010), arXiv:1006.0133 [hep-ph].
[39] Takehiko Asaka and Hiroyuki Ishida, “Flavour Mixing of Neutrinos and Baryon Asymmetry of the Universe,” Phys. Lett. B692, 105–113 (2010), arXiv:1004.5491 [hep-ph].
[40] Alexey Anisimov, Denis Besak, and Dietrich Bodeker, “Thermal production of relativistic Majorana neutrinos: Strong enhancement by multiple soft scattering,” JCAP 1103, 042 (2011), arXiv:1012.3784 [hep-ph].
[41] Takehiko Asaka, Shintaro Eijima, and Hiroyuki Ishida, “Kinetic Equations for Baryogenesis via Sterile Neutrino Oscillation,” JCAP 1202, 021 (2012), arXiv:1112.5565 [hep-ph].
[42] Denis Besak and Dietrich Bodeker, “Thermal production of ultrarelativistic right-handed neutrinos: Complete leading-order results,” JCAP 1203, 029 (2012), arXiv:1202.1288 [hep-ph].
[43] Laurent Canetti, Marco Drewes, and Mikhail Shaposhnikov, “Sterile Neutrinos as the Origin of Dark and Baryonic Matter,” Phys. Rev. Lett. 110, 061801 (2013), arXiv:1204.3902 [hep-ph].
[44] Marco Drewes and Björn Garbrecht, “Leptogenesis from a GeV Seesaw without Mass Degeneracy,” JHEP 03, 096 (2013), arXiv:1206.5537 [hep-ph].
[45] Laurent Canetti, Marco Drewes, Tibor Frossard, and Mikhail Shaposhnikov, “Dark Matter, Baryogenesis and Neutrino Oscillations from Right Handed Neutrinos,” Phys. Rev. D87, 093006 (2013), arXiv:1208.4607 [hep-ph].
[46] Brian Shuve and Itay Yavin, “Baryogenesis through Neutrino Oscillations: A Unified Perspective,” Phys. Rev. D89, 075014 (2014), arXiv:1401.2459 [hep-ph].
[47] D. Bodeker and M. Laine, “Kubo relations and radiative corrections for lepton number washout,” JCAP 1405, 041 (2014), arXiv:1403.2755 [hep-ph].
[48] Asmaa Abada, Giorgio Arcadi, Valerie Domecke, and Michele Lucente, “Lepton number violation as a key to low-scale leptonogenesis,” JCAP 1511, 041 (2015), arXiv:1507.06215 [hep-ph].
[49] P. Hernández, M. Kekic, J. López-Pavón, J. Racker, and N. Rius, “Leptogenesis in GeV scale seesaw models,” JHEP 10, 067 (2015), arXiv:1508.03676 [hep-ph].
[50] J. Ghiglieri and M. Laine, “Neutrino dynamics below the electroweak crossover,” JCAP 1607, 015 (2016), arXiv:1605.07720 [hep-ph].
[51] Thomas Hambye and Daniele Teresi, “Higgs doublet decay as the origin of the baryon asymmetry,” Phys. Rev. Lett. 117, 091801 (2016), arXiv:1606.00017 [hep-ph].
[52] Thomas Hambye and Daniele Teresi, “Baryogenesis from L-violating Higgs-doublet decay in the density-matrix formalism,” Phys. Rev. D 96, 015031 (2017), arXiv:1705.00016 [hep-ph].
[53] Marco Drewes and Shintaro Eijima, “Neutrinoless double β decay and low scale leptonogenesis,” Phys. Lett. B763, 72–79 (2016), arXiv:1606.06221 [hep-ph].
[54] Takehiko Asaka, Shintaro Eijima, and Hiroyuki Ishida, “On neutrinoless double beta decay in the νMSM,” Phys. Lett. B762, 371–375 (2016), arXiv:1606.06686 [hep-ph].
[55] Marco Drewes, Björn Garbrecht, Dario Gueter, and Juraj Klaric, “Leptogenesis from Oscillations of Heavy Neutrinos with Large Mixing Angles,” JHEP 12, 150 (2016), arXiv:1606.06690 [hep-ph].
[56] P. Hernández, M. Kekic, J. López-Pavón, J. Racker, and J. Salvado, “Testable Baryogenesis in Seesaw Models,” JHEP 08, 157 (2016), arXiv:1606.06719 [hep-ph].
[57] Marco Drewes, Björn Garbrecht, Dario Gueter, and Juraj Klaric, “Testing the low scale seesaw and leptonogenesis,” JHEP 08, 018 (2017), arXiv:1609.09069 [hep-ph].
[58] Takehiko Asaka, Shintaro Eijima, Hiroyuki Ishida, Ko-suke Minogawa, and Tomoya Yoshii, “Initial condition for baryogenesis via neutrino oscillation,” Phys. Rev. D96, 083010 (2017), arXiv:1704.02692 [hep-ph].
[59] Shintaro Eijima and Mikhail Shaposhnikov, “Fermion number violating effects in low scale leptonogenesis,” Phys. Lett. B771, 288–296 (2017), arXiv:1703.06085 [hep-ph].
[60] J. Ghiglieri and M. Laine, “GeV-scale hot sterile neutrino oscillations: a derivation of evolution equations,” JHEP 05, 132 (2017), arXiv:1703.06087 [hep-ph].
[61] S. Eijima, M. Shaposhnikov, and I. Timiryasov, “Freeze-out of baryon number in low-scale leptonogenesis,” JCAP 1711, 030 (2017), arXiv:1709.07834 [hep-ph].
[62] Stefan Antusch, Eros Cazzato, Marco Drewes, Oliver Fischer, Björn Garbrecht, Dario Gueter, and Juraj Klaric, “Probing Leptogenesis at Future Colliders,” JHEP 09, 124 (2018), arXiv:1710.03744 [hep-ph].
[63] J. Ghiglieri and M. Laine, “GeV-scale hot sterile neutrino oscillations: a numerical solution,” JHEP 02, 078 (2018), arXiv:1711.08469 [hep-ph].
[64] S. Eijima, M. Shaposhnikov, and I. Timiryasov, “Parameter space of baryogenesis in the νMSM,” JHEP 07, 077 (2019), arXiv:1808.10833 [hep-ph].
[65] J. Ghiglieri and M. Laine, “Precision study of GeV-scale resonant leptonogenesis,” JHEP 02, 014 (2019), arXiv:1811.01971 [hep-ph].
[66] J. Ghiglieri and M. Laine, “Sterile neutrino dark matter via GeV-scale leptonogenesis?” JHEP 07, 078 (2019), arXiv:1905.08814 [hep-ph].
[67] J. Ghiglieri and M. Laine, “Sterile neutrino dark matter via coinciding resonances,” JCAP 2007, 012 (2020), arXiv:2004.10766 [hep-ph].
[68] D. Wyler and L. Wolfenstein, “Massless Neutrinos in Left-Right Symmetric Models,” Nucl. Phys. B218, 205–214 (1983).
[69] R. N. Mohapatra and J. W. F. Valle, “Neutrino Mass and Baryon Number Nonconservation in Superstring Models,” Sixty years of double beta decay: From nuclear physics to beyond standard model particle physics, Phys. Rev. D34, 1642 (1986).
Number,” Nucl. Phys. B312, 492–508 (1989).
[71] M. C. Gonzalez-Garcia and J. W. F. Valle, “Fast Decaying Neutrinos and Observable Flavor Violation in a New Class of Majoron Models,” Phys. Lett. B216, 360–366 (1989).
[72] Jörn Kersten and Alexei Yu. Smirnov, “Right-Handed Neutrinos at CERN LHC and the Mechanism of Neutrino Mass Generation,” Phys. Rev. D76, 073005 (2007), arXiv:0705.3221 [hep-ph].
[73] A. Abada, C. Biggio, F. Bonnet, M. B. Gavela, and T. Hambye, “Low energy effects of neutrino masses,” JHEP 12, 061 (2007), arXiv:0707.4058 [hep-ph].
[74] M. B. Gavela, T. Hambye, D. Hernandez, and P. Hernandez, “Minimal Flavour Seesaw Models,” JHEP 09, 038 (2009), arXiv:0906.1461 [hep-ph].
[75] Alain Blondel, E. Graverini, N. Serra, and M. Shaposhnikov (FCC-ee study Team), “Search for Heavy Right Handed Neutrinos at the FCC-ee,” Nucl. Part. Phys. Proc. 273-275, 1883–1890 (2016), arXiv:1411.5230 [hep-ex].
[76] Stefan Antusch, Eros Cazzato, and Oliver Fischer, “Sterile neutrino searches at future e⁺e⁻, pp, and e⁻p colliders,” Int. J. Mod. Phys. A32, 1750078 (2017), arXiv:1612.02728 [hep-ph].
[77] Stefan Antusch, Eros Cazzato, and Oliver Fischer, “Displaced vertex searches for sterile neutrinos at future lepton colliders,” JHEP 12, 007 (2016), arXiv:1604.02420 [hep-ph].
[78] F. Bezrukov, D. Gorbunov, and M. Shaposhnikov, “On initial conditions for the Hot Big Bang,” JCAP 0906, 029 (2009), arXiv:0812.3622 [hep-ph].
[79] F. Bezrukov, D. Gorbunov, and M. Shaposhnikov, “Late and early time phenomenology of Higgs-dependent cutoff,” JCAP 1110, 001 (2011), arXiv:1106.5019 [hep-ph].
[80] Mikhail Shaposhnikov, Andrey Shkerin, Inar Timiryasov, and Sebastian Zell, “Einstein-Cartan Portal to Dark Matter,” (2020), arXiv:2008.11686 [hep-ph].
[81] Apostolos Pilaftsis and Thomas E. J. Underwood, “Electroweak-scale resonant leptogenesis,” Phys. Rev. D72, 113001 (2005), arXiv:hep-ph/0506107 [hep-ph].
[82] Apostolos Pilaftsis, “Heavy Majorana neutrinos and baryogenesis,” Int. J. Mod. Phys. A14, 1811–1858 (1999), arXiv:hep-ph/9812256 [hep-ph].
[83] Apostolos Pilaftsis, “Resonant CP violation induced by particle mixing in transition amplitudes,” Nucl. Phys. B504, 61–107 (1997), arXiv:hep-ph/9702393 [hep-ph].
[84] Wilfried Buchmuller and Stefan Fredenhagen, “Quantum mechanics of baryogenesis,” Phys. Lett. B483, 217–224 (2000), arXiv:hep-ph/0004145 [hep-ph].
[85] Andrea De Simone and Antonio Riotto, “On Resonant Leptogenesis,” JCAP 0708, 013 (2007), arXiv:0705.2183 [hep-ph].
[86] Andrea De Simone and Antonio Riotto, “Quantum Boltzmann Equations and Leptogenesis,” JCAP 0708, 002 (2007), arXiv:hep-ph/0703175 [hep-ph].
[87] M. Garny, A. Hohenegger, A. Kartavtsev, and M. Lindner, “Systematic approach to leptogenesis in nonequilibrium QFT: Self-energy contribution to the CP-violating parameter,” Phys. Rev. D80, 125027 (2009), arXiv:0909.1559 [hep-ph].
[88] M. Garny, A. Hohenegger, A. Kartavtsev, and M. Lindner, “Systematic approach to leptogenesis in nonequilibrium QFT: Self-energy contribution to the CP-violating parameter,” Phys. Rev. D81, 085027 (2010), arXiv:0911.4122 [hep-ph].
[89] Alexey Anisimov, Wilfried Buchmuller, Marco Drewes, and Sebastián Mendizabal, “Leptogenesis from Quantum Interference in a Thermal Bath,” Phys. Rev. Lett. 104, 121102 (2010), arXiv:1001.3856 [hep-ph].
[90] Martin Beneke, Bjorn Garbrecht, Matti Herranen, and Pedro Schwaller, “Finite Number Density Corrections to Leptogenesis,” Nucl. Phys. B838, 1–27 (2010), arXiv:1002.1326 [hep-ph].
[91] Mathias Garny, Alexander Kartavtsev, and Andreas Hohenegger, “Leptogenesis from first principles in the resonant regime,” Annals Phys. 328, 26–63 (2013), arXiv:1112.6428 [hep-ph].
[92] Satoshi Iso, Kengo Shimada, and Masato Yamanaka, “Kadanoff-Baym approach to the thermal resonant leptogenesis,” JHEP 04, 062 (2014), arXiv:1312.7680 [hep-ph].
[93] Bjorn Garbrecht and Matti Herranen, “Effective Theory of Resonant Leptogenesis in the Closed-Time-Path Approach,” Nucl. Phys. B861, 17–52 (2012), arXiv:1112.5954 [hep-ph].
[94] Matti Herranen, Kimmo Kainulainen, and Pyry Matti Rahkila, “Coherent quantum Boltzmann equations from cQPA,” JHEP 12, 072 (2010), arXiv:1006.1929 [hep-ph].
[95] Christian Fidler, Matti Herranen, Kimmo Kainulainen, and Pyry Matti Rahkila, “Flavoured quantum Boltzmann equations from cQPA,” JHEP 02, 065 (2012), arXiv:1108.2309 [hep-ph].
[96] Matti Herranen, Kimmo Kainulainen, and Pyry Matti Rahkila, “Flavour-coherent propagators and Feynman rules: Covariant cQPA formulation,” JHEP 02, 080 (2012), arXiv:1108.2371 [hep-ph].
[97] Peter Millington and Apostolos Pilaftsis, “Perturbative nonequilibrium thermal field theory,” Phys. Rev. D88, 085009 (2013), arXiv:1211.3152 [hep-ph].
[98] Peter Millington and Apostolos Pilaftsis, “Perturbative Nonequilibrium Thermal Field Theory to all Orders in Gradient Expansion,” Phys. Lett. B724, 56–62 (2013), arXiv:1304.7249 [hep-ph].
[99] P. S. Bhupal Dev, Peter Millington, Apostolos Pilaftsis, and Daniele Teresi, “Flavour Covariant Transport Equations: an Application to Resonant Leptogenesis,” Nucl. Phys. B886, 569–664 (2014), arXiv:1404.1003 [hep-ph].
[100] P. S. Bhupal Dev, Peter Millington, Apostolos Pilaftsis, and Daniele Teresi, “Flavour Covariant Formalism for Resonant Leptogenesis,” Proceedings, 37th International Conference on High Energy Physics (ICHEP 2014): Valencia, Spain, July 2–9, 2014, Nucl. Part. Phys. Proc. 273-275, 268–274 (2016), arXiv:1409.8263 [hep-ph].
[101] P. S. Bhupal Dev, Peter Millington, Apostolos Pilaftsis, and Daniele Teresi, “Corrigendum to "Flavour Covariant Transport Equations: an Application to Resonant Leptogenesis",” Nucl. Phys. B897, 749–756 (2015), arXiv:1504.07640 [hep-ph].
[102] G. Sigl and G. Raffelt, “General kinetic description of relativistic mixed neutrinos,” Nucl. Phys. B406, 423–451 (1993).
nesis,” JCAP **1409**, 033 (2014), arXiv:1406.4190 [hep-ph].

[104] Dietrich Bödeker and Dennis Schröder, “Kinetic equations for sterile neutrinos from thermal fluctuations,” JCAP **02**, 033 (2020), arXiv:1911.05092 [hep-ph].

[105] Alexander Kartavtsev, Peter Millington, and Hendrik Vogel, “Lepton asymmetry from mixing and oscillations,” JHEP **06**, 066 (2016), arXiv:1601.03086 [hep-ph].

[106] Bhupal Dev, Mathias Garny, Juraj Klaric, Peter Millington, and Daniele Teresi, “Resonant enhancement in leptogenesis,” Int. J. Mod. Phys. **A33**, 1842003 (2018), arXiv:1711.02863 [hep-ph].

[107] I. Ghiso and M. Laine, “Right-handed neutrino production rate at T ≲ 160 GeV,” JCAP **1412**, 032 (2014), arXiv:1411.1765 [hep-ph].

[108] Björn Garbrecht, Frank Glowna, and Pedro Schwaller, “Scattering Rates For Leptogenesis: Damping of Lepton Flavour Coherence and Production of Singlet Neutrinos,” Nucl. Phys. B **877**, 1–35 (2013), arXiv:1303.5498 [hep-ph].

[109] Simone Biondini et al., “Status of rates and rate equations for thermal leptogenesis,” Int. J. Mod. Phys. **A33**, 1842004 (2018), arXiv:1711.02864 [hep-ph].

[110] Björn Garbrecht, Philipp Klose, and Carlos Tamarit, “Relativistic and spectator effects in leptogenesis with heavy sterile neutrinos,” JHEP **02**, 117 (2020), arXiv:1904.09956 [hep-ph].

[111] J. Klaric, M. Shaposhnikov, and I. Timiryasov, “Reconciling resonant and low-scale leptogenesis,” in preparation.

[112] J. A. Casas and A. Ibarra, “Oscillating neutrinos and $\mu \to e, \gamma$,” Nucl. Phys. **B618**, 171–204 (2001), arXiv:hep-ph/0103065 [hep-ph].

[113] Takehiko Asaka, Steve Blanchet, and Mikhail Shaposhnikov, “The nuMSM, dark matter and neutrino masses,” Phys. Lett. **B631**, 151–156 (2005), arXiv:hep-ph/0503065 [hep-ph].

[114] Asmaa Abada, Sacha Davidson, Francois-Xavier Josse-Michaux, Marta Losada, and Antonio Riotto, “Flavor issues in leptogenesis,” JCAP **0604**, 004 (2006), arXiv:hep-ph/0601083 [hep-ph].

[115] Enrico Nardi, Yosef Nir, Esteban Roulet, and Juan Rucker, “The Importance of flavor in leptogenesis,” JHEP **01**, 164 (2006), arXiv:hep-ph/0601084 [hep-ph].

[116] A. Abada, S. Davidson, A. Ibarra, F. X. Josse-Michaux, M. Losada, and A. Riotto, “Flavour Matters in Leptogenesis,” JHEP **09**, 010 (2006), arXiv:hep-ph/0605281 [hep-ph].

[117] Steve Blanchet and Pasquale Di Bari, “Flavor effects on leptogenesis predictions,” JCAP **0703**, 018 (2007), arXiv:hep-ph/0607330 [hep-ph].

[118] S. Pascoli, S. T. Petcov, and Antonio Riotto, “Connecting low energy leptonic CP-violation to leptogenesis,” Phys. Rev. **D75**, 083511 (2007), arXiv:hep-ph/0609125 [hep-ph].

[119] Andrea De Simone and Antonio Riotto, “On the impact of flavour oscillations in leptogenesis,” JCAP **0702**, 005 (2007), arXiv:hep-ph/0611357 [hep-ph].

[120] P. A. Zyla et al. (Particle Data Group), “Review of Particle Physics,” PTEP **2020**, 083C01 (2020).

[121] Björn Garbrecht, “More Viable Parameter Space for Leptogenesis,” Phys. Rev. D **90**, 063522 (2014), arXiv:1401.3278 [hep-ph].

[122] Steve Blanchet, Thomas Hambye, and Francois-Xavier Josse-Michaux, “Reconciling leptogenesis with observable mu —→ τ e gamma rates,” JHEP **04**, 023 (2010), arXiv:0912.3153 [hep-ph].