Quantum Computation with Vibrationally Excited Molecules

Carmen M. Tesch and Regina de Vivie-Riedle

MPI für Quantenoptik, 85741 Garching, Germany

(Dated: November 3, 2021)

Abstract

A new physical implementation for quantum computation is proposed. The vibrational modes of molecules are used to encode qubit systems. Global quantum logic gates are realized using shaped femtosecond laser pulses which are calculated applying optimal control theory. The scaling of the system is favorable, sources for decoherence can be eliminated. A complete set of one and two quantum gates is presented for a specific molecule. Detailed analysis regarding experimental realization shows that the structural resolution of today’s pulse shapers is easily sufficient for pulse formation.
The possibilities offered through quantum computation have been well known for almost twenty years [1, 2]. In the last few years the first basic ideas for realization have been discussed and experimental efforts have been made using cavity quantum electrodynamics [3], trapped ions [4, 5], and nuclear magnetic resonance [6, 7].

In this Letter we demonstrate how to use vibrational modes of molecules in an ensemble for complete quantum computation processes. In an N-atomic molecule 3N-5 (or 3N-6) normal modes can be identified, and each of these normal modes can be used to define a quantum bit. Two different excitations in each mode are referred to as $|0\rangle$ and $|1\rangle$. To implement quantum logic operations in this qubit system, shaped femtosecond laser pulses in the IR-regime are used. They are designed with the help of optimal control theory (OCT) [8, 9] which are in principle realizable in pulse shaping experiments [10, 11]. Interaction between different qubits is an inherent property of the whole qubit system belonging to the same molecule. For designing globally applicable laser pulses in just one qubit, this interaction has to be suppressed; in the case of conditional gates this influence is explicitly used. Both cases can be realized in our OCT-functional.

For initial state preparation again shaped femtosecond laser pulses are used. They can be calculated with our standard OCT-algorithm which can also compensate for rotations of molecules in the gas phase. [12, 13]. Vibrational state preparation is optionally possible for the vibrationless ground state, fundamentals, overtones and combination modes. In our work the initial state preparation is a preparation of a combination mode for which maximally two shaped femtosecond laser pulses of different wavelengths are needed.

The detection of states after a computation can be achieved by applying standard laser diagnostics (for example time resolved IR-spectroscopy [14], laser induced fluorescence spectroscopy [LIF] [15], stimulated emission pumping [SEP] or resonant multi photon ionization [REMPI] [16]).

In the following part of the Letter we will show that vibrationally excited molecules provide a realistic physical system to implement a quantum computer. We will demonstrate a realization of the above ideas using acetylene (C_2H_2) as a two-qubit model system. Our new OCT-functional, laser pulses for elementary global one and two quantum gates (which form a universal quantum gate altogether [17]), and the preparation of entanglement will be presented. An analysis of the shaped femtosecond laser pulses will show that these pulses are simply structured. The problem of decoherence is discussed and a solution is found.
Error detection is also feasible.

OCT is a very powerful tool for calculating laser pulses guiding a quantum system to any selected objective, in particular the preparation of eigenstates is enabled. In this case the goal in OCT is to find a laser field $\varepsilon(t)$, which drives a system from initial states $\psi_{ik}(0) = \phi_{ik}$ at time $t = 0$ to final target states ϕ_{fk} at a fixed time $t = T$. The initial and target states correspond with the eigenstates defining our qubits. The calculated laser pulses $\varepsilon(t)$ represent the quantum gates.

Algorithmic schemes allow the formulation of the optimization problem in terms of the maximization of the functional

$$K(\psi_{ik}(t), \psi_{fk}(t), \varepsilon(t)) = \sum_k |\langle \psi_{ik}(T) | \phi_{fk} \rangle|^2 - \int_0^T \alpha |\varepsilon(t)|^2 dt$$

$$-2\Re \left[\langle \psi_{ik}(T) | \phi_{fk} \rangle \int_0^T \langle \psi_{fk}(t) | \left[\frac{i}{\hbar} [H_0 - \mu \varepsilon(t)] + \frac{\partial}{\partial t} \right] | \psi_{ik}(t) \rangle dt \right]$$

The first term gives the overlap between the laser driven wavefunction $\psi_{ik}(t)$ and the desired target states ϕ_{fk}; the second one represents the laser field $\varepsilon(t)$ which drives the system wavefunctions towards the target states. The laser field intensity is limited by the penalty factor α. The last term ensures that the time dependent Schrödinger equation is fulfilled. H_0 and the dipole moment vector field μ have been calculated ab initio, which means that all molecular characteristics of the electronic and nuclear movement and their interactions are exactly implemented in the calculations.

Varying the above functional with respect to the variables $\psi_{ik}(t)$, $\psi_{fk}(t)$, and $\varepsilon(t)$ and searching for $\delta K = 0$ leads to a set of $2k+1$ coupled differential equations. The solution is found iteratively and results in the optimal quantum gate $\varepsilon(t)$ as a self consistent solution to this system.

The new feature which is of highest importance in the context of quantum computation is the fact that we are able to optimize k transitions simultaneously with the above new functional. Its recent implementation in our algorithms enables us to calculate globally applicable quantum gates, because for each basis state of our qubit system the correct transition k is optimized, and undesired transitions can be explicitly suppressed. For example in a two-qubit system a global NOT-pulse in the second qubit has to fulfill $|00\rangle \rightarrow |01\rangle$, $|01\rangle \rightarrow |00\rangle$, $|10\rangle \rightarrow |11\rangle$ and $|11\rangle \rightarrow |10\rangle$ at the same time.

These basic principles for concrete quantum computation with vibrational modes are now
discussed for an example system: acetylene. C_2H_2 contains five normal modes ($n_1n_2n_3n_4n_5$) in the electronic ground state (n_4 and n_5 are doubly degenerate). The asymmetric CH-stretching (n_3) and the cis-bending mode (n_5) are IR-active. We have chosen them to define our two-qubit system [18] because direct experimental access is possible. One quantum in each mode is referred to as $|0\rangle$, two quanta as $|1\rangle$ (other classifications would also have been possible). Our complete two-qubit system is described with the following four basis states: $|00\rangle := (00101)$; $|10\rangle := (00201)$; $|01\rangle := (00102)$; $|11\rangle := (00202)$.

We have computed a two dimensional ab initio potential energy surface (PES) using a standard quantum chemical package (GAUSSIAN98 [19]). One system-adapted coordinate is sufficient for the description of one IR-active mode, because the relative distance between the two hydrogen atoms and the relative distance between the two carbon atoms rests constant during the motion (coordinates: $R \rightarrow$ cis-bending mode, $d \rightarrow$ asymmetric CH-stretching mode, see [12]). In order to calculate the vibrational eigenstates ϕ_{fk} we solved the nuclear Schrödinger equation for our PES on a grid applying a relaxation method followed by an additional diagonalization step [20, 21]. We calculated 80 eigenfunctions up to an energy of 23150 cm$^{-1}$ (the minimum energy is set to zero), four of them define our qubit basis. For the laser-matter-interaction we have computed the ab initio dipole moment vector field, which can be decomposed into two parts, each part being responsible for the excitation of one IR-active mode. This decomposition and the energetic spacing between the two vibrations ensure a very specific excitation of each mode (cis-bending mode 727 cm$^{-1}$ (13.75 µm), asymmetric CH-stretching mode 3289 cm$^{-1}$ (3.04 µm)). For the construction of our quantum gate $\varepsilon(t)$ the set of coupled differential equations is solved quantum dynamically applying the split operator scheme [22] for the wave packet propagations.

With our new functional we have constructed global laser pulses for the following elementary one-quantum gates: identity operation \mathbb{I} (trivial case or explicitly computed), bit flips (NOT), phase shifts of π and the Hadamard transformation in the second qubit (the case for the first qubit is analogous [23]):

$$
\mathbb{I}: \quad |0\rangle\langle 0| + |1\rangle\langle 1|
$$

$$
\text{NOT}: \quad |0\rangle\langle 1| + |1\rangle\langle 0|
$$

$$
\Pi: \quad |0\rangle\langle 0| - |1\rangle\langle 1|
$$
Hadamard \[H|0\rangle \rightarrow \frac{1}{\sqrt{2}} [|0\rangle + |1\rangle] \quad \text{and} \quad H|1\rangle \rightarrow \frac{1}{\sqrt{2}} [|0\rangle - |1\rangle] \]

As a conditional two-quantum gate we have calculated a controlled NOT (CNOT) with the first qubit acting as the control state:

\[
\begin{align*}
|00\rangle & \rightarrow |00\rangle \\
|01\rangle & \rightarrow |01\rangle \\
|10\rangle & \rightarrow |11\rangle \\
|11\rangle & \rightarrow |10\rangle
\end{align*}
\]

Exemplarily the optimized laser field for the CNOT gate is presented in Fig. 1. The first part of the figure displays the quantum gate \(\varepsilon(t) \) versus time, the second one depicts a fast Fourier transform to analyze the spectral width and components of the laser pulse. It is not Fourier limited and pulse shaping is needed to form this electric field with a broad spectral range. The last part of Fig. 1 analyzes the pulse structure in the time and frequency domain simultaneously mirroring the temporal ordering of the frequency components. The substructure is significant and rather symmetric in time.

For the realization of all our quantum gates our method needs only one single shaped laser pulse; a preceding special state preparation or pulse sequence is not necessary as in other approaches like cavity QED, trapped ions and also NMR experiments. We have analyzed the mechanism according to which our quantum gates work. In all cases not only states belonging to our qubit system, but temporarily energetically higher and lower lying vibrational levels are populated following a ladder climbing scheme. An intermediate coherent state is built up before all population is transferred into the desired eigenstates. These eigenstates are stable, no refocusing pulses are needed as in NMR quantum computing.

The ratios \(r \) (defined as \(|\langle \psi_{ik}(T)|\phi_{fk}\rangle|^2 \)) we can reach are: \(r(\text{NOT}) \geq 91\%; r(\pi) \geq 97\%; r(\text{Hadamard}) \geq 90\%; r(\text{CNOT}) \geq 90\%. \) (For comparison, in cases of state preparation with \(k = 1 \) we can always reach efficiencies of \(\geq 98\%). \) In each case the laser pulse found by the OCT-algorithm consists of several structural units, and the total laser matter interaction time is about 700 fs. The range of the frequency width is between 200 cm\(^{-1}\) (\(\pi \)-pulse) and 560 cm\(^{-1}\) (CNOT-pulse). The strength of the electric field \(e \) is moderate except for the NOT-operation, but still below the ionization limit (maximum strength: \(e(\text{NOT}) = 0.0224 \) a.u. \((7.146 \cdot 10^{13} \) W/cm\(^2\));
\(e(\pi) = 0.0057 \text{ a.u. (} 1.1597 \cdot 10^{12} \text{ W/cm}^2) \); \(e(\text{Hadamard}) = 0.0095 \text{ a.u.} (3.226 \cdot 10^{12} \text{ W/cm}^2) \); \(e(\text{CNOT}) = 0.0070 \text{ a.u.} (1.749 \cdot 10^{12} \text{ W/cm}^2) \). First investigations in other systems show that the field strengths can be lowered down \([24, 25]\).

With our OCT-algorithm we are also able to calculate pulses which create entangled states. The efficiency or fidelity of our Bell state preparation (starting at one of our basis states and proceeding via a Hadamard-state) is \(r \geq 96\% \) in each case. One part of the preparation of \(\frac{1}{\sqrt{2}} [|00\rangle + |11\rangle] \) is shown in Fig. 2.

The prepared Bell state is not a long-lived normal mode, but a superposition state. In that context it is relevant to investigate the time evolution of the corresponding wave function. In Fig. 2 and 3 we have depicted the time evolution of the real part of our wave packets after the preparation of a Bell state and a Hadamard state (of course, we have experimental access only to \(|\psi|^{2} \)). The wave functions (real and imaginary part) develop in time systematically, and \(|\psi|^{2} \) comes back in predictable intervals. Their evolution in space is confined to a certain area. Once again one does not need refocusing pulses.

To realize our calculated gates, pulse shaping techniques are needed. In the spectral range from 430 nm to 1.6 \(\mu \text{m} \) liquid crystal modulators (LCM) are already commercially available, having typically 128 discrete pixels. Powerful lasers operating in the mid-infrared already exist (free-electron laser FELIX (4-250 \(\mu \text{m} \) \([26]\)). Pulse shapers that work in the mid-IR and far-IR spectral ranges are actually under development; the development of new types of nonlinear crystals already shows promising results in those directions \([27]\). Anyhow, a realization of a pulse shaper in the mid-IR and far-IR spectral ranges will follow a pixel scheme. The mask function applied to the pulse shaper in order to generate the shaped laser pulses is the direct interface between theory and experiment. Therefore we calculated the mask functions needed to realize our quantum gates and investigated their complexity. The structure of the mask function (transmission and phase) is very simple and only a few pixels are needed. As an example the mask function for the CNOT is displayed in Fig. 4. The original pulse to be sent through the pulse shaper (Fig. 4 top) is a 171 fs strictly Fourier limited pulse (center frequency at 674 cm\(^{-1}\), FWHM 590 cm\(^{-1}\), maximum electric field strength 0.0280 a.u. (2.799 \(\cdot 10^{13} \text{ W/cm}^2))

The ratios we can achieve with our gates at this stage are rather high, but still below 100\%. We have analyzed the losses. Most result from leakage into vibrations that lie outside our chosen Hilbert space and therefore bear little disturbing influence for further
calculations. The effect is a diminishing signal when detecting results after a quantum computation process. An estimation shows that at room temperature, normal pressure and an assumed laser focus zone of 200 \(\mu m \) in diameter and 1 \(cm \) in length a few hundred quantum gates could be applied successively. This is already enough for some very useful devices (e.g. a quantum factoring engine). We have found that the losses are localized in very few specific vibrational states and can be detected there without disturbing the information stored in our qubit system. Thus error detection is possible in our proposed quantum computing model.

The context of leakage is closely connected to the topic of decoherence. One could think of two different sources of decoherence: resonances between different vibrations (anharmonic resonances and Coriolis coupling) and collisions between molecules. Recent investigations have shown that anharmonic resonances do not cause decoherence at all, but sometimes provide easier mechanisms for designing quantum gates [24, 25]. Regarding molecules in the gas phase, the number of collisions can be kept low, and typical lifetimes of vibrations are in the nanosecond regime or longer, depending on the experimental conditions. The more significant problem is motion of the molecules within the laser-matter-interaction volume and possibly out of that zone before the next laser pulse is applied. The repetition rate of the lasers is too small and diminishes the number of possible steps in a quantum computation process significantly. These problems can be avoided if fixed molecules are used. One can also think of specially designed macro-molecules adsorbed on a surface with the active centers still free to vibrate [28, 29, 30] or of molecules embedded in films [31]. Molecular design techniques for self assembling molecules are well developed at the frontier of nanotechnology [32, 33]. Rotations are also suppressed in fixed molecules, and therefore decoherence due to Coriolis coupling is precluded.

In the future, the design of macro-molecules consisting of repeated subunits, e.g. sub-systems connected through conjugated CC-bonds, might play an important role for molecular quantum computing processes. The interaction within each subunit and between the subunits is secured using the system-inherent influence of the vibrational modes upon one another as explained above. In particular, a collective vibrational mode of all subunits could be used as a data bus in such a quantum network. Every subunit and each vibrational mode has access to the same information coded in the excitation of this collective vibration. An N-atomic macro-molecule is an immense qubit system: the number of utilizable qubits scales
with 3N, in NMR and ion trap experiments with N.

In summary, vibrationally excited molecules are well suited to implement quantum computation processes. Shaped femtosecond laser pulses act as extremely fast quantum gates and can be designed by applying optimal conrol theory. The calculated laser pulses are simply structured and could be realized in an experimental surrounding where decoherence is negligible.

[1] R. Feynman, Int. J. Theor. Phys. 21, 467 (1982).
[2] D. Deutsch, Proc. R. Soc. London A 400, 97 (1985).
[3] M. Brune, F. Schmidt-Kaler, A. Maali, J. Dreyer, E. Hagley, J.M. Raimond, and S. Haroche, Phys. Rev. Lett 76, 1800 (1996).
[4] J. I. Cirac and P. Zoller, Phys. Rev. Lett. 74, 4091 (1995).
[5] H. C. Nägerl, F. Schmidt-Kaler, J. Eschner, R. Blatt, W. Lange, H. Baldauf, H. Walther, Linear ion traps for quantum information in The physics of quantum information, edited by D. Bouwmeester, A. Ekert, A. Zeilinger, Springer-Verlag Berlin Heidelberg 2000, pp. 163-176.
[6] J. A. Jones and M. Mosca, J. Chem. Phys. 109, 1648 (1998).
[7] R. Marx, A. F. Fahmy, J. M. Myers, W. Bermel, S. J. Glaser, Phys. Rev. A 62, 2000 012310-1-8.
[8] D. J. Tannor, S. A. Rice, J. Chem. Phys. 83, 5013 (1985).
[9] R. S. Judson, H. Rabitz, Phys. Rev. Lett. 68, 1500 (1992).
[10] T. Witte, D. Zeidler, K.-L. Kompa, D. Proch, M. Motzkus, Optics Lett. (2001), accepted.
[11] R. A. Kaindl, M. Wurm, K. Reimann, P. Hamm, A. M. Weiner, M. Woerner, J. Opt. Soc. Am. B 17, 2086 (2000).
[12] C. M. Tesch, K.-L. Kompa, and R. de Vivie-Riedle, Chem. Phys. 267, 173 (2001).
[13] K. Sundermann, R. de Vivie-Riedle, J. Chem. Phys. 110, 1896 (1999).
[14] R. Dziewior, K. Romey, R. Diller, Laser Chem. 19, 173 (1999).
[15] A. L. Utz, E. Carrasquillo M., J. D. Tobiason, F. F. Crim, Chem. Phys. 190, 311 (1995).
[16] T. Arusi-Parpar, R. P. Schmid, Y. Ganot, I. Bar, S. Rosenwaks, Chem. Phys. Lett. 287, 347 (1998).
[17] T. Sleator and H. Weinfurter, Phys. Rev. Lett. 74, 4087 (1995).
[18] C. M. Tesch, L. Kurtz, R. de Vivie-Riedle, Chem. Phys. Lett. 343, 633 (2001).
[19] Gaussian 98, Revision A.7, M. J. Frisch et al., Gaussian Inc., Pittsburgh PA, 1998.
[20] H. Tal-Ezer, R. Kosloff, Chem. Phys. Lett. 127, 223 (1986).
[21] D. Neuhauser, J. Chem. Phys. 93, 2611 (1990).
[22] C. Leforestier, R. H. Bisseling, C. Cerjan, M. D. Feit, R. Friesner, A. Guldberg, A. Hammerich, G. Jolicard, W. Karrlein, H.-D. Meyer, N. Lipkin, O. Roncero, R. Kosloff, Journal of Computational Physics 94, 59 (1991).
[23] C. M. Tesch, R. de Vivie-Riedle, in preparation.
[24] U. Troppmann, C. M. Tesch, R. de Vivie-Riedle, in preparation.
[25] U. Troppmann, Diploma Thesis (2002).
[26] G. van Helden, I. Holleman, M. Putter, A. J. A. van Roij, G. Meijer, Chem. Phys. Lett. 299, 171 (1999).
[27] H. Rabitz, R. de Vivie-Riedle, M. Motzkus, K.-L. Kompa, Science 288, 824 (2000).
[28] G. Meyer, S. Zöphel, K.-H. Rieder, Appl. Phys. Lett 69 (21), 3185 (1996).
[29] S. Mintova, T. Bein, Advanced Materials 13 (24), 1880 (2001).
[30] T. H. Metzger, S. Mintova, T. Bein, Microporous and Mesoporous Materials 43, 191 (2001).
[31] R. Diller, J. Herbst, K. Heyne, AMOP Frühjahrtstagung Osnabrück 2002, SYFS VIII.
[32] E. Mena-Osteritz, A. Meyer, B. M. W. Langeveld-Voss, R. A. J. Janssen, E. W. Meyer, P. Bäuerle, Angew. Chem. 112, 2792 (2000).
[33] J. K. Gimzewski, C. Joachim, Science 283, 168 (1999).
Figure captions

FIG. 1: Controlled NOT gate for a two-qubit system in vibrationally excited acetylene. Depicted are the strength of the electric field, a fast Fourier transformation, and a FROG-representation. The efficiency of the gate is $\geq 90\%$.

FIG. 2: Preparation of a Bell state: $\frac{1}{\sqrt{2}}[(00) + (10)] \rightarrow \frac{1}{\sqrt{2}}[(00) + (11)]$, efficiency $\geq 98\%$. R is the coordinate of the cis-bending mode, d describes the asymmetric CH-stretching mode. Displayed are the laser pulse and the time evolution of the real part of the wave function during the pulse and afterwards. The * indicates the initial and target state, the box labels states with the same $|\psi|^2$.

FIG. 3: Preparation of a Hadamard state: $|00\rangle \rightarrow \frac{1}{\sqrt{2}}[(00) + (01)]$, efficiency $\geq 99\%$. R is the coordinate of the cis-bending mode, d describes the asymmetric CH-stretching mode. Displayed are the laser pulse and the time evolution of the real part of the wave function during the pulse and afterwards. The * indicates the initial and target state, the box labels states with the same $|\psi|^2$.

FIG. 4: Mask function for the CNOT-gate. For explanation see text.