Candida albicans Dbf4-dependent Cdc7 kinase plays a novel role in the inhibition of hyphal development

Wei-Chung Lai1, Tschen-wei Chang1,*, Chang Hao Wu1,*, Shu-Ya Yang1, Tai-Lin Lee2, Wan Chen Li1,†, Ting Chien1,‡, Yu-Che Cheng3,‡ & Jia-Ching Shieh1,3

Candida albicans is an opportunistic human fungal pathogen. The ability to switch among multiple cellular forms is key to its pathogenesis. The Dbf4-dependent protein kinase gene *CDC7* is conserved due to its role in initiating DNA replication. Because a *C. albicans* Cdc7 (*Cacdc7*) homozygous null was not viable, we generated a *C. albicans* strain with a deleted *C. albicans* CDC7 (*CaCDC7*) allele and an expression-repressible allele. Surprisingly, cells of the strain grew as hyphae under the repressed conditions. The *in vitro* kinase assays confirmed that CaCdc7 (K232) and CaCdc7 (T437) are critical for catalytic and phosphoacceptor of activation activity, respectively. *C. albicans* cells formed hyphae when expressing either the catalytically inactive CaCdc7 (K232R) or the phosphoacceptor-deficient CaCdc7 (T437A). While CaCdc7 interacted with CaDbf4, cells of the strain in which CaCDC7 was repressed were not rescued by constitutively expressing *C. albicans* DBF4 or vice versa. We conclude that CaDBF4-dependent CaCDC7 is an essential gene suppressing the hyphal development.

Candida albicans is an opportunistic human fungal pathogen without a complete sexual cycle. The virulence of *C. albicans* stems from its ability to alter morphology from the ellipsoid blastospore to various filamentous forms1, although the ability to morphological switch and virulence might be decoupled. Switching among diverse morphological forms is influenced by many environmental factors2 and is mediated by several signaling pathways. The mechanism by which hyphal growth is controlled has largely been elucidated and was recently reviewed by Sudbery, P.E.4, but the exact roles of many genes known to regulate morphogenesis in polarized growth, cell separation, and the integration of signaling pathways to hyphal growth remain to be determined. Additionally, novel genes involved in morphogenesis remain to be uncovered to understand the overall-control network of *C. albicans*. We were particularly interested in the catalytic subunit of the serine/threonine protein kinase encoded by *CDC7* and its regulatory subunit, encoded by *DBF4*, known as Dbf4-dependent Cdc7 kinase (DDK), because they play an essential role in the initiation of DNA replication in *S. cerevisiae* and *C. albicans*. Furthermore, conservation of DDK subunits is conserved throughout evolution5. In addition to its key role in replication initiation, DDK responds to replication fork stalling6–8 and DNA damage9,10 that maintain genome integrity. Moreover, the roles of DDK are extended to many other areas, including checkpoint control, trans-lesion DNA synthesis, meiosis, chromatin reconstruction, and histone, which have been reviewed recently11. Diverse genotoxic insults, including those that block DNA replication, lead to filamentous growth in *S. cerevisiae*12–14 and *C. albicans*15–19. The genes involved in DNA replication checkpoints appear to require the induction of filamentous growth20. However, how DNA replication stress leads to filamentous growth is unclear.

1Department of Biomedical Sciences, Chung Shan Medical University, Taichung City, Taiwan, Republic of China. 2Department of Molecular Biotechnology, Da-Yah University, Changhua County, Taiwan, Republic of China. 3Department of Medical Research, Chung Shan Medical University Hospital, Taichung City, Taiwan, Republic of China. †Present address: Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China. ‡Present address: Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, Republic of China. *These authors contributed equally to this work. Correspondence and requests for materials should be addressed to J.-C.S. (email: jcs@csmu.edu.tw)
Figure 1. Schematic diagram of the comparison of C. albicans Cdc7 (CaCdc7), S. cerevisiae Cdc7 (ScCdc7), and human Cdc7 (HsCdc7). The indicated conserved subdomains of the serine/threonine kinases are shown, each of which is specified by a roman numeral (from I to XI). The subdomain VI is further separated into the subdomains VIa and Vb. The kinase insert with conserved residues (KI-0) is shown. The kinase inserts of KI-1, KI-2, and KI-3 are indicated. The positions of the essential lysine residue for catalytic activity of the three Cdc7s, CaCdc7 (K232), ScCdc7 (K76), and HsCdc7 (K90), are shown. The positions of the phosphoacceptor threonine residue for kinase activation of the three Cdc7s, CaCdc7 (T437), ScCdc7 (T281), and HsCdc7 (T376), are shown.

remains incompletely understood. Moreover, the importance or requirement of some of the key factors, such as Swe1, for DNA replication stress-induced filamentous development does not seem to be conserved between the two yeasts. Until a recent global analysis of C. albicans morphology, no reports pointed to a direct involvement of DDK in filamentation.

To verify the role of DDK in C. albicans, we have characterized CaDBF4 and C. albicans CDC7 (CaCDC7). We generated a C. albicans strain capable of repressing the expression of CaCDC7 and examined the cellular morphology when CaCDC7 is depleted. Strains constitutively expressing the catalytically inactive CaCdc7 or the phosphoacceptor-deficient CaCdc7 were generated to verify the requirement of kinase activity for cellular morphology. Additionally, the functional dependency of CaCdc7 and CaDbf4 was tested by the yeast two-hybrid assay and by constitutively expressing CaCdc7 in a CaDBF-deletion strain and vice versa.

Results and Discussion

C. albicans CDC7 is a structural homolog of S. cerevisiae CDC7. By using Blast to compare the Candida Genome Database with the entire sequence of the S. cerevisiae Cdc7 protein, a single CaCDC7 located on chromosome 2 was identified that belongs to Contig19-10183 [70303..72273] orf19.3561, Assembly 19, which has one reading frame of 1971 bp and potentially encodes a 72 kD protein of 657 amino acid residues. To analyze the structure of the protein encoded by CaCDC7, the protein sequence derived from the 1971 bp ORF was aligned and compared to other Cdc7 protein sequences across the evolutionary spectrum by ClustalW. As shown in Supplementary Fig. S1, all twelve conserved serine/threonine protein kinase subdomains as defined by Hanks, S.K., and Quinn, A.M. can clearly be identified in the protein sequence of CaCDC7. Moreover, the invariant amino acid residues in the subdomains, which are found throughout protein serine/threonine kinases, are also conserved in CaCdc7. Based on Supplementary Fig. S1, Fig. 1 was generated as a schematic diagram comparing C. albicans Cdc7 (CaCdc7), S. cerevisiae Cdc7 (ScCdc7), and human Cdc7 (HsCdc7). As shown in Fig. 1, in domain II of the ATP-binding region, CaCdc7 contains a lysine at residue 232 (K232), the same as lysine 76 (K76) in Cdc7, which is the site required for catalytic activity. In subdomain VIII of the phosphoacceptor region, CaCdc7 also contains a threonine at residue 437 (T437), equivalent to threonine 281 (T281) in ScCdc7 and threonine 376 (T376) in HsCdc7, which is the phosphorylation site for kinase activation. Additionally, the spacing between subdomains VII and VIII is worth noting, because the same region in ScCdc7 is needed for its mitotic function and is unique among all known kinases. Notably, CaCdc7 possesses Cdc7 characteristic insertions of KI-0, KI-1, KI-2, and KI-3, and distinct regions located at the N- and C-terminals. Importantly, the C-terminal tail of Cdc7 is known to be essential for interacting with Dbf4. Together with KI-2 and KI-3, such an interaction becomes efficient. Nonetheless, the functional significance of the less-conserved C-terminal tail of CaCdc7 is unclear. Unique features are also visible in CaCdc7. The most striking is an extended stretch of approximately 140 amino acid residues, which are quite hydrophobic, at the amino-terminus of CaCdc7. The region of insertion KI-2 of CaCdc7 between 355 and 393 is rich in threonine and serine (Supplementary Fig. S1). Nevertheless, the functional significance of these differences is unknown. Despite the differences between CaCdc7 and its counterparts, particularly ScCdc7, the overall organization and sequence of CaCdc7 is very similar to Cdc7. We conclude that CaCdc7 encodes a serine/threonine kinase with homology both in sequence and organization to Cdc7 across the evolutionary spectrum.

Construction of the CDC7 expression-repressible C. albicans strain. To establish the function of CaCDC7 in C. albicans, we sought to construct a Cacdc7 deletion mutant. However, as CaCDC7 encodes a protein with the structural homologue of known Cdc7 proteins whose function is the initiation of DNA replication, we predicted that the cdc7 homozygous null mutant is lethal. We addressed this issue by generating a strain with one CaCDC7 allele deleted and the other under the control of MET3 promoter (MET3p). To delete...
one CaCDC7 allele, we used the mini-Ura-blaster approach. We PCR-generated a cassette using the plasmid pDD8570 with the dpl200 flanked by URA3 as a template, together with primers having sequences homologous to URA3-dpl200 and the up- and downstream sequences of CaCDC7. We then introduced the cassette into the C. albicans auxotrophic strain BWP17 (ura3 arg4 his) to obtain strain CaCDC7+/U3− (#1). Then, CaCDC7+/U3− cells were treated with 5-FOA to obtain strain CaCDC7+U3− (#2) and MET3p-driven CaCDC7 to obtain CaCDC7 M3/U3− (#3), after which the CaCDC7 M3/U3− was treated with 5-FOA to obtain CaCDC7 M3−/− (#4). The genomic DNA from each strain was extracted and subjected to either XbaI (A) or HindIII (B) digestion before electrophoresis and Southern blotting analysis (the bottom panel). Strain CaCDC7+/−(*) was made by introducing a cassette of mini-Ura-blaster to BWP17 (CaCDC7+/+) to obtain CaCDC7+/U3−, which was then treated with 5-FOA. The CaCDC7+/−(*) is used as a control to highlight the relative positions of allele CaCDC7 and Cacdc7::dpl200. The relative positions of the probes are shown.

Figure 2. Construction of a C. albicans strain capable of repressing the expression of CaCDC7. Cells of BWP17 (CaCDC7+/+) (#1) were consecutively introduced a cassette of mini-Ura-blaster to obtain CaCDC7+/U3− (#2) and MET3p-driven CaCDC7 to obtain CaCDC7 M3/U3− (#3), after which the CaCDC7 M3/U3− was treated with 5-FOA to obtain CaCDC7 M3−/− (#4). The genomic DNA from each strain was extracted and subjected to either XbaI (A) or HindIII (B) digestion before electrophoresis and Southern blotting analysis (the bottom panel). Strain CaCDC7+/−(*) was made by introducing a cassette of mini-Ura-blaster to BWP17 (CaCDC7+/+) to obtain CaCDC7+/U3−, which was then treated with 5-FOA. The CaCDC7+/−(*) is used as a control to highlight the relative positions of allele CaCDC7 and Cacdc7::dpl200. The relative positions of the probes are shown.

CDC7 is an essential gene and depletion of CDC7 leads to hyphal growth in C. albicans. To test the repressibility of CaCDC7 in the strain CaCDC7 M3−, we grew strains CaCDC7 M3−/−, BWP17 (CaCDC7+/+), and CaCDC7+/−/− cells in SD medium with or without 2.5 mM methionine/cysteine (Met/Cys) and extracted RNA for RT-PCR analysis. The expression of CaCDC7 in the strain CaCDC7 M3− was significantly reduced under the repressed conditions compared to the de-repressed conditions (Fig. 3A), suggesting that the expression of CaCDC7 in the strain CaCDC7 M3− was solely controlled by MET3p and the other allele was deleted.

We next established the requirement for CaCDC7 in C. albicans by growing strains on selective media in the presence or absence of Met/Cys. Strain CaCDC7 M3− formed colonies in the presence of Met/Cys with wrinkled surfaces (unpublished data). The results suggested that CaCDC7 suppresses filamentous development and may not be essential. This result is consistent with our finding that repression of CaDBF4 expression leads to
filamentous growth in *C. albicans*

To confirm the necessity of *CaCDC7* in *C. albicans*, we established a *Cacdc7* homozygous null mutant. However, whereas the *Cacdc7* heterozygous null mutants were generated with ease, no *Cacdc7* homozygous null mutants were obtained. Our result is in agreement with a recent report where the functional copy of the essential *CaCDC7* gene in the heterozygous strain was governed by a tetracycline-repressible promoter to allow functional study

This result is also consistent with the *CaDBF4* data, in which *Cadbf4* homozygous null mutants were unable to survive. These results suggest that *C. albicans CDC7* and its regulator encoded *CaDBF4* gene, like their counterparts across evolutionary spectrum, possesses a conserved role in the initiation of DNA replication. In the *MET3* promoter-driven system, the difference in expression can reach 85-fold between repressed and de-repressed conditions. We reasoned that under the repressed condition, *CaCDC7* was depleted while a limited amount of *CaCdc7* was able to function, although to a lesser extent. While Cdc7 depletion substantially inhibits proliferation in cancer cells, the depletion of *CaCDC7* appeared to reduce proliferation, as the growth rate of *CaCDC7* M3/− was lower than that of its parental BWP17 when cells were grown in medium with Met/Cys (Supplementary Fig. S2). Taken together, these results suggest that the function of *CaCDC7* is tightly associated to that of *CaDBF4* in *C. albicans* and that the *CaDbf4*-dependent *CaCdc7* kinase is essential, as is its counterpart in *S. cerevisiae*.

To determine the phenotypic consequences, in particular the cellular morphology, of *CaCDC7* M3/− under the repressed condition, we grew *CaCDC7* M3/− cells in medium with or without 2.5 mM Met/Cys and examined the phenotypic consequences microscopically. The cells formed germ tubes after 4 h of repression and continued to grow as hyphae from 8 h to 24 h under the repressed condition (Fig. 3B). These observations were comparable to those of cells repressing *CaDBF4* expression, suggesting that *CaCDC7* and *CaDBF4* function as a DDK for the YTH transition and that *CaCDC7* may have an additional role in morphogenesis. To definitely determine that *CaCDC7* is the gene for suppression of the yeast-to-hypha transition, we performed a rescue assay.

Figure 3. *CaCDC7* suppresses the yeast-to-hypha transition. (A) Cells of strains *CaCDC7*+/+(BWP17), *CaCDC7*+/−, and *CaCDC7* M3/− were grown in the SD medium with required supplements in the absence (-Met/Cys) or presence (+Met/Cys) of each of 2.5 mM methionine and cysteine at 16 h prior to collection for RT-PCR to verify the repression of *CaCDC7*. The numbers shown are relative fold change in the expression of those strains to BWP17 under the de-repressed condition (-Met/Cys), normalized to ACTIN expression. (B) The same cultures were grown for the indicated times prior to the assessment of morphological alterations under the microscope. Bars represent 10 μm.
where a constitutive ACT1 promoter (ACT1p)-driven CaCDC7 was introduced into the CaCDC7 M3/− strain. These cells grew in the yeast form even in the presence of Met/Cys (Supplementary Fig. S3), confirming that CaCDC7 is responsible for the inhibition of hyphal growth in C. albicans. Together with the fact that repression of CaDBF4 expression led to filamentous growth in C. albicans29, these data suggest that the CaCDC7 and CaDBF4 encoded proteins likely act together to perform their function. The hyphal growth during the CaCDC7 or CaDBF4 depleted condition may be the consequence of constrained function that exerts as a stress condition. In S. cerevisiae, genotoxic stress conditions that reduce DNA synthesis can induce filamentous differentiation through Mec1-Rad53-Swe1-Cdc28-Clb217. However, in C. albicans, DNA damage-induced cell cycle delaying to polarized growth is only partially dependent on Swe124, suggesting that genotoxic stress-induced filamentous growth is not or is only partially mediated by Swe1 in C. albicans. However, no evidence indicates that CDC7 interacts with the above components in C. albicans. Hence, whether genotoxic stress-induced filamentous growth is mediated by CaCDC7 in C. albicans remains to be verified.

The conserved residues are essential for the catalytic activity of CaCdc7 and the phosphoacceptor of activation. To verify if the CaCDC7-encoded protein product has kinase activity and is capable of being phosphorylated, we created plasmids p6HF-ACT1p-CaCDC7, p6HF-ACT1p-CaCDC7 (K232R) and p6HF-ACT1p-CaCDC7 (T437A) capable of constitutively expressing either the wild-type CaCDC7, the catalytically inactive CaCdc7 (K232R), or the phosphoacceptor-deficient CaCdc7 (T437A) (Fig. 4A), each of which was

![Figure 4](https://example.com/figure4.png)

Figure 4. CaCdc7 possesses conserved sites for kinase catalytic activity and phosphorylation activation. (A) The alignment of subdomains II and VII among the homologues of Cdc7, revealing lysine 232 as a conserved residue for catalytic activity and threonine 437 as a conserved phosphoacceptor residue. These were used to generate the catalytically inactive CaCdc7 (K232R) or the phosphoacceptor-deficient CaCdc7 (T437A). (B) An in vitro kinase assay was used to verify that CaCdc7 (K232) and CaCdc7 (T437) are required for the catalytic activity and activation by phosphorylation. Cells of strain CaCDC7 M3/− were transformed with p6HF-ACT1p-CaCDC7, which is capable of constitutively expressing wild-type CaCdc7 (CaCDC7), catalytically inactive CaCdc7 (K232R) or the phosphoacceptor-deficient CaCdc7 (T437A). Cells of each strain were grown in SD medium with the required supplements in the presence (+ Met/Cys) of each of 2.5 mM methionine and cysteine for 12 h prior to purification of CaCdc7 for the in vitro kinase assay, followed by western blot analysis with specific antibodies to FLAG (CaCdc7-6xHisFLAG tagged), histone H1, and phosphorylated histone H1. The purified CaCdc7 was also subjected to FSBA treatment as described in the Materials and Methods. (C) Phosphorylation of CaCdc7 is activated by hydroxyurea (HU). The cells carrying p6HF-ACT1p-CaCDC7 were grown in the same conditions and media as in (B) treated with or without 0.1 mM HU for 1 h. The purified CaCdc7 from non-HU treated cells was exposed to CIP phosphatase for the indicated times as described in the Materials and Methods.
introduced into cells of the strain \(\text{CaCDC7} \text{M3}^- \). We grew cells of these strains exponentially in the medium with Met/Cys. After harvesting and lysis, each of the wild-type and mutant \(\text{CaCdc7s} \) was purified by Ni\(^{2+}\) -NTA agarose and subjected to an in vitro kinase assay. While the wild-type \(\text{CaCdc7} \) was able to phosphorylate histone H1, this phosphorylation was significantly inhibited by FSBA, which blocks the catalytic activity of a kinase (Fig. 4B). This result was consistent with the inability of catalytically inactive \(\text{CaCdc7} \) (K232R) to phosphorylate histone H1 (Fig. 4B). We noted that the FSBA appeared to block autophosphorylation of \(\text{CaCdc7} \), which was indicated by the decrease in the upper band of the \(\text{CaCdc7} \) doublet (Fig. 4B). These results confirmed that \(\text{CaCdc7} \) possesses kinase activity and that the structurally predicted K232 (Fig. 1)\(^{33,34} \) is indeed the site essential for catalytic activity. Additionally, the phosphoacceptor-deficient \(\text{CaCdc7} \) (T437A) almost lost the ability to phosphorylate histone H1 (Fig. 4B), indicating that the site is the conserved phosphorylation site (Fig. 1)\(^{33,34} \) that is required for activating kinase activity. The reduction of the upper band of the \(\text{CaCdc7} \) doublet from the purified wild-type \(\text{CaCdc7} \) in a time-dependent manner when treated with phosphatase confirmed that the upper band of the \(\text{CaCdc7} \) doublet is the phosphorylated form of \(\text{CaCdc7} \) (Fig. 4C). A reduction in the phosphorylated form of \(\text{CaCdc7} \) was observed when cells were treated with HU for 1 h before western blot analysis (Fig. 4C). This result is in agreement with the downregulation of \(S. \text{cerevisiae} \) DDK activity mediated by the phosphorylation of Dbf4 through Rad53 in \(S. \text{cerevisiae} \)\(^{12,15,43,44} \) and in Xenopus egg extracts\(^{45} \) under DNA stress, which likely resulted from inhibiting the phosphorylation site of kinase activation.

The catalytic activity of \(\text{CaCdc7} \) and the phosphorylated activation of \(\text{CaCdc7} \) are required for suppression of hyphal growth in \(\text{C. albicans} \). To investigate whether the ability of cells to suppress the YTH transition requires kinase activity and phosphorylation of DDK, \(\text{CaCDC7} \text{M3}^- \) cells containing plasmids p6HF-ACT1p- \(\text{CaCdc7} \), p6HF-ACT1p- \(\text{CaCdc7} \) (K232R), p6HF-ACT1p- \(\text{CaCdc7} \) (T437A) or the empty plasmid p6HF-ACT1p were grown in medium with or without Met/Cys. Regardless of the expression of endogenous \(\text{CaCdc7} \) under the control of MET3p being repressed or de-repressed, the expression levels of different versions of the \(\text{CaCdc7} \) protein driven under ACT1p control were similar (Fig. 5A). It was apparent that cells with
repressed MET3p-controlled endogenous CaCDC7 expression but constitutive expression of the ACT1p-driven mutants CaCdc7 (K232R) or CaCdc7 (T437A) grew as the hyphal form (Fig. S5B), which is in contrast to those expressing ACT1p-driven wild type CaCdc7, which remained as yeast cells. These results suggest that the catalytic activity of Cdc7 and the phosphorylation of Cdc7 are required for the function of CaCdc7 on the suppression of the YTH transition.

By examining cells of the strains repressing the expression of CaCDC7 in a longer time, we confirmed that the mutant strains were able to proliferate, though in a reduced rate as verified by the growth curve (Supplementary Fig. S2). The constitutive expression of CaCDC7 but none of the two CaCdc7 mutants allows recovery of this growth defect (Supplementary Fig. S2). These data indicate that cells depleted with CaCDC7 or expressing the defective CaCdc7 mutants delay the cell cycle progression. We note that cdc7 conditional mutants of S. cerevisiae show a dumbbell shape, unlike polarized growth of C. albicans expressing the CDC7 mutations. It is known that pseudohyphases are true hyphae emerge in response to cell-cycle arrest in C. albicans. Hence, the C. albicans expressing the mutant CDC7 may delay the cell cycle at the S phase. However, the cells were still able to grow, and the extension of hyphal development was more prominent at a later time point of 32 h (Supplementary Fig. S4). Moreover, because the cell cycle stage of cells expressing with CaCDC7 was different, the budded daughter cells, like the mother cells, switch to the hyphal mode of growth can grow as extended hyphal form (Fig. 5). These results suggest that cells depleted with CaCDC7 or expressing the defective CaCdc7 mutants delay in the cell cycle, which accompanies the reduced rate of hyphal extension. To assess further if CaCDC7 is required for YTH, cells of the strains, together with BWI17 were subjected to grow in 37 °C, a condition known to induce hyphal growth. As shown in the Supplementary Fig. S5A, however, the hyphal formation appeared in the CaCDC7-repressed and the CaCdc7-derepressed condition at 37 °C, suggesting that the initiation and continuation of filamentation are dependent on CaCdc7 in C. albicans. Importantly, unlike the wild-type strain SC5314, BWI17 was unable to induce hyphal development but pseudohyphae-like type when cultured in the SD minimum medium at 37 °C (Supplementary Fig. S5B).

We are not aware of any Cdc7 homologs across the evolutionary spectrum that are involved in morphogenesis until the latest report. Based on the GRACE strain collection, the report identified over a hundred strains as negative regulators of filamentation. The expression of CaCDC7 of the GRACE strain was controlled by the tet-operator; hence, cells formed filaments under the repressed condition. However, the kinase activity of CaCdc7 and its activation by phosphorylation has not been determined.

CDC7 and DBF4 are interdependent for the function of morphological control in C. albicans.

The protein products encoded by CDC7 and DBF4 function together as a DDK for the initiation of DNA replication. Although our study suggests that DDK in C. albicans plays a significant role in morphogenesis, we wondered whether the presence of C. albicans DDK functions in hypha-suppression in C. albicans. The definitive determination of how CaCdc7 and CaDbf4 constitute DDK required verification of their direct interaction. To do so, we adopted the yeast two-hybrid assay. The diploid S. cerevisiae cells were able to grow on media lacking leucine and tryptophan, indicating the presence of both plasmids based on the Gal4 DNA binding domain with the TRP1 selection marker and the LEU2 selection marker (Fig. 6A). However, only those cells expressing CaCdc7 fused with the Gal4 DNA binding domain and CaDbf4 fused with the Gal4 activation domain concurrently were able to grow on the plate without histidine (Fig. 6B). These results suggest that CaCdc7 and CaDbf4 can associate physically. Moreover, diploid S. cerevisiae cells capable of simultaneously expressing CaCdc7 fused with the Gal4 DNA binding domain and CaDbf4 fused with the Gal4 activation domain were able to grow on the plate without histidine, even in the presence of 20 mM 3-amino-1,2,4-triazole (3-AT), the inhibitor of imidazole glycerol-phosphate dehydratase encoded by the reporter gene HIS3. These results indicate that the interaction between CaCdc7 and CaDbf4 is relatively stable and thus likely to be genuine (Fig. 6C).

To assess the functional dependency between CaCDC7 and CaDBF4, we generated plasmids p6HF-ACT1p-CaCDC7 and p6HF-ACT1p-CaDBF4 that are capable of constitutively expressing either CaCDC7 or CaDBF4, and introduced them into CaDBF4 M3/−/−29 and CaCDC7 M3/−, respectively. The ability of a DDK gene that can be constitutively expressed to suppress the loss of the other DDK gene that is repressed in the presence of Met/Cys was assessed. Constitutive expression of CaCDC7 (Fig. 7A) did not suppress the loss of CaDBF4 (Fig. 7B), suggesting that the function of CaDBF4 requires the presence of CaCDC7. Similarly, constitutive expression of CaDBF4 (Fig. 7C) was unable to suppress the loss of CaCDC7 (Fig. 7D). The epistasis analyses and yeast two-hybrid assay results confirm that CaCDC7 and CaDBF4 encode proteins that form functional DDK and are functionally interdependent. Additionally, we introduced a Tet-on expression system29 into BWI17 where CaCDC7 or CaDBF4 were massively overproduced in the presence of doxycycline under serum-induced hyphal growth conditions. Cells under such conditions grew as hyphae (Supplementary Fig. S6), suggesting that either DDK control of the yeast-to-hypha transition is not via the serum-induced signaling pathway, but instead through other pathways, such as DNA replication stress, or that the blockage of serum-induced filamentous growth could be bypassed by other factors. It is equally possible that DDK control of the yeast-to-hypha transition constitutes a novel pathway.

Conclusion

In this paper, we describe the characterization of the CaCDC7 gene. To our surprise, we found that C. albicans CDC7 plays a role as a negative regulator of the YTH transition. Additionally, kinase activity is required for the function of CaCdc7 and the presence of other kinases for the function of CaCdc7. Moreover, the function of CaCdc7 is dependent on CaDbf4 for suppression of the hyphal mode of growth. To the best of our knowledge, no known role for Dbf4-dependent Cdc7 homologs across the evolutionary spectrum relevant to morphogenesis has been identified. The uncovering of CaCdc7 function in morphogenesis may be of evolutionary significance in that essential elements in the cell cycle have evolved in the direction of morphogenesis for adapting the host-pathogen...
interaction. It would be crucial to elucidate the regulation of DDK in the network controlling morphogenesis. Elucidating the regulation of DDK in the system that controls morphogenesis should lend insight into understanding why DDK is involved in morphogenesis.

Methods

General manipulation, media and growth conditions. The E. coli strain DH5α was used for routine manipulation of the plasmids, and all C. albicans strains (Table 1) were derived from the auxotrophic strain BWP17 (arg4/arg4 his1/his1 ura3/ura3). The wild-type SC5314 strain was also used. The media usage and routine growth conditions of the strains of E. coli and C. albicans were as previously described. E. coli strain DH5α was transformed with plasmid DNA by CaCl2 as described or by electroporation. C. albicans strains were transformed by the LiAc/PEG/ssDNA method or electroporation.

Strain construction. The nucleotide sequence of C. albicans was obtained from the Candida Genome Database. The CaCDC7 gene including regions flanking the protein coding sequence was PCR-generated with the primers CaCDC7-xba-F and CaCDC7-xba-R (Table 2) and genomic DNA extracted from C. albicans strain BWP17. The CaCDC7 gene was cloned into the plasmid vector pBluescript II (+) to obtain the plasmid pBII-CaCDC7. CaCDC7 was deleted in the C. albicans auxotrophic strain BWP17 with the mini-Ura-blaster cassette dpl200-URA3-dpl200 derived from pDDB5739. Briefly, the mini-Ura-blaster cassette flanked by 60 bp of upstream and downstream homology to the CaCDC7 open reading frame was amplified by PCR with the template pBII-CaCDC7 and a pair of primers, CaCDC7-Spe-F and CaCDC7-Spe-R (Table 2). The mini-Ura-blaster cassette flanked by the short homology regions of CaCDC7 was then transformed into BWP17 cells and the uridine prototrophic strains (Ura+ CaCDC7+/U3− Table 1) containing the heterozygous deletion of CaCDC7 were selected for. To allow CaCDC7 expression under the control of MET3p, a partial CaCDC7
Figure 7. Constitutive expression of *CaCDC7* cannot release the expression of repressed *CaDBF4*, nor can *CaDBF4* release expression-repressed *CaCDC7* on filamentation in *C. albicans*. Cells of strain *CaCDC7* M3/− and those with either the empty p6HF-ACT1Δp or p6HF-ACT1Δp-CaDBF4 and p6HF-ACT1Δp-CaCDC7, which are capable of constitutively expressing CaDbf4 and CaCdc7, respectively, were grown in SD medium with the required supplements in the presence (+Met/Cys) or absence (−Met/Cys) of 2.5 mM methionine and cysteine for 12 h prior to the assessment of protein expression by western blotting analysis (A) and assessment of the morphological consequences microscopically (B). Cells of strain *CaDBF4* M3/−/− (ref) and those with either the empty p6HF-ACT1Δp or p6HF-ACT1Δp-CaCDC7 and p6HF-ACT1Δp-CaDBF4, which are capable of constitutively expressing wild-type CaCdc7 and CaDbf4, respectively, were grown in the same conditions as above prior to the assessment of protein expression (C) and microscopic assessment of the morphological consequences (D). β-Actin was used as a loading control in the analyses of protein expression by western blotting. Bars represent 10 μm in the microscopic observations.

ORF (1–884 bp) flanked by a *SpeI* site was PCR generated with the template pBlII-*CaCDC7* and a pair of primers, CaCDC7-spe-F and CaCDC7-spe-R (Table 2). The PCR product was cloned into pFA-HIS1-MET3p at the *SpeI* site and the plasmid pFA-HIS1-MET3p-*CaCDC7* was obtained. Plasmid pFA-HIS1-MET3p-*CaCDC7* was linearized by digesting with a unique *EcoRI* on partial *CaCDC7* and was transformed into *CaCDC7 p* (+U3−) to generate the His+ prototrophic strain *CaCDC7* M3/U3−. To remove the *URA3* marker, the cells of *CaCDC7 M3 U3−* were then treated with 1 mg/ml 5-FOA to generate *CaCDC7 M3−* (Table 1). To repress the *CaCDC7* expression that is controlled by MET3p, strains were grown in SD medium or on a plate with 2.5 mM Met/Cys, which turns off the expression of MET3p-driven downstream genes. To allow constitutive expression of *CaCDC7* in *C. albicans* cells, the protein coding sequence of *CaCDC7* was cloned from the plasmid pBlII-*CaCDC7* with a pair of primers, CaCDC7-Sph-F and CaCDC7-Sph-R (Table 2), and introduced into plasmid p6HF-ACT1Δp-*CaDBF4*. The p6HF-ACT1Δp-*CaCDC7* and the empty plasmid p6HF-ACT1Δp were linearized with *NcoI* and introduced into *CaCDC7 M3−*. These cells were selected for *Ura*+ transformants that targeted and integrated at the *RP10* locus to generate *CaCDC7 M3−*/*CaCDC7* and *CaCDC7 M3−*/*p6HF-ACT1Δp* (Table 2), respectively. The linearized plasmids were also introduced into *CaDBF4 M3−*/*−* to obtain *CaDBF4 M3−*/*CaDBF4* and *CaDBF4 M3−*/*p6HF-ACT1Δp* (Table 2), respectively. In addition, the linearized plasmid p6HF-ACT1Δp-*CaDBF4* (manuscript submitted) was introduced into *CaCDC7 M3−* to generate *CaCDC7 M3−*/*−*.

Site-directed mutagenesis. The QuickChange™ Site-Directed Mutagenesis Kit (Stratagene, San Diego, CA) was used as instructed by the manufacturer to introduce mutations in *CaCDC7* using the plasmid p6HF-ACT1Δp-*CaCDC7*. Following site-directed mutagenesis with two pairs of primers, CaCDC7-K232R-F and CaCDC7-K232R-R and CaCDC7-T436A-F and CaCDC7-T436A-R (Table 2), the plasmids p6HF-ACT1Δp-*CaCDC7* (K232R) and p6HF-ACT1Δp-*CaCDC7* (T437A) were generated, respectively. Each of the plasmids (p6HF-ACT1Δp-*CaCDC7* (K232R), p6HF-ACT1Δp-*CaCDC7* (T437A) was NcoI-linearized and introduced into *C. albicans*.
CaDBF4−/−M3

−

CaCDC7−/−U3−

BPW17

CaCDC7+/−U3−

CaDBF4−/−M3

CaCDC7 M3/U3−

CaDBF4−/−M3

CaCDC7−/−U3−

CaDBF4−/−M3

CaCDC7+−/−U3−

CaDBF4−/−M3

CaCDC7 M3−/−

CaDBF4−/−M3

CaCDC7 M3−/−U3−

CaDBF4−/−M3

CaCDC7−/−U3−

CaDBF4−/−M3

CaCDC7+−/−U3−

CaDBF4−/−M3

CaCDC7−/−M3−

CaDBF4−/−M3

CaCDC7−/−U3−

CaDBF4−/−M3

Saccharomyces cerevisiae

Y187

MATa, ura3-52, his3-200, ade2-101, trp1-901, leu2-3, 112, gal4Δ, met−, gal80Δ, MEL1, URA3::GAL11US::GALITATA-lacZ

Reference76

AH109

MATa, trp1-901, leu2-3, 112, ura3-52, his3-200, gal4Δ, gal80Δ, LYS2::GAL11US::GALITATA-HIS3, GAL2US::GAL2TATA-ADE2, URA3::MEL1US::MEL1 TATA-lacZ

Reference76 as described in the Materials and Methods

Table 1. Strains used in this study.

Name	Sequence(5′→3′)
CaCDC7-xba-F	GAGTCTGACACCTAAAGCACATTGGTAA
CaCDC7-xho-F	CCGTCTAGAAGCAGGAGGTAGTGT
CaCDC7-URA3-F	CCTTTATGGATTTAAGAAAAAGGCTAGGTTGAGTGTCAATGCTTATGCTTATGCTTATGCTT
CaCDC7-URA3-R	GATGATGTAGAGGAGGTAGTGT
Check URA3-F	CAGGTGATGTTAAGAAAAAGGCTAGGTTGAGTGTCAATGCTTATGCTTATGCTT
CaCDC7-spe-R	GCCAATAGGGCAAGGAGGTAGTGT
CaCDC7-spe-F	GCCAATAGGGCAAGGAGGTAGTGT
CaCDC7-Sph-F	CATGCTAGAATCCTAAGATGTTGAGTGTCAATGCTTATGCTTATGCTT
CaCDC7-Sph-R	GCCAATAGGGCAAGGAGGTAGTGT
CaCDC7-probe-F	CTTTATTGAGGATTCGTGAGAATGTTGAGTGTCAATGCTTATGCTTATGCTT
CaCDC7-probe-R	GGGGGGAACGGTACATGGATTTGTGTTATGCTTATGCTTATGCTTATGCTT
CaCDC7-interminal-F-2	GGAGTGTAGAGGAGGTAGTGT
CaCDC7-BspEI-F	GCTTACAGGAGGAGGTAGTGT
CaACT1-R	AGCAGTTGAAATGTTGCTT
CaACT1-F	AGCAGTTGAAATGTTGCTT
CaACT1-R	AGCAGTTGAAATGTTGCTT
CaCDC7-K232R-F	CCTTATGGATTTAAGAAAAAGGCTAGGTTGAGTGTCAATGCTTATGCTTATGCTT
CaCDC7-K232R-R	GCCAATAGGGCAAGGAGGTAGTGT
CaCDC7-T436A-F	GCCAATAGGGCAAGGAGGTAGTGT
CaCDC7-T436A-R	GCCAATAGGGCAAGGAGGTAGTGT
CaCDC7-NcoI(hybrid)-F	CATGCTAGAATCCTAAGATGTTGAGTGTCAATGCTTATGCTTATGCTT
CaCDC7-PsiI(hybrid)-R	GCCAATAGGGCAAGGAGGTAGTGT
CaDBF4-Xmal-F	TCCCTCGCGGAGTGGCAAGGAGGTAGTGT
CaDBF4-XhoI-R	GCCAATAGGGCAAGGAGGTAGTGT

Table 2. Synthetic oligonucleotide primers used in this study. 1 Restriction enzyme sites are shaded in grey. 2 The nucleotides to be mutated are framed.

Yeast two-hybrid assay. The yeast two-hybrid assay was used. Plasmid constructs capable of expressing the Gal4 activation domain fused N-terminally to CaDbf4 (pACT2-CaDbf4) or the Gal4 DNA binding domain fused N-terminally to CaCdc7 (pGBKT7-CaCdc7) were made using genomic DNA extracted from BPW17 with the CaCdc7 M3/− and targeted and integrated at the RP10 locus to generate CaCdc7M3/−|K232R and CaCdc7M3/−|T437A, respectively.
two pairs of oligonucleotides, CaDBF4-Xmal-F and CaDBF4-Xhol-R (Table 2) and CaCDC7-NcoI(hybrid)-F and CaCDC7-PstI(hybrid)-R (Table 2), respectively. The plasmids pGBK7-CaCDC7 and pACT2-CaDBF4 were introduced into the haploid S. cerevisiae strain Y18779 and AH1109, a derivative of strain Pj69-2A\(^{60}\) resulting from the introduction of the lacZ reporter gene into Pj69-2A (Table 1), respectively, with opposite mating types and with the reporter systems HIS3, ADE2, and LacZ. These strains were used to determine the activation of the system and the interaction between CaCdc7 and CaDbf4 upon fusion to become diploid.

Isolation of genomic DNA and Southern blottting. Genomic DNA from the C. albicans strains was isolated by the MasterPureTM Yeast DNA Purification Kit (EPICENTRE). Southern blotting was performed according to standard protocols with the aid of the Rapid Downward Transfer System (TURBOBLOTTERTM) using 10 \(\mu\)g of the restriction enzyme-digested genomic DNA. The probe was generated by the PCR DIG probe synthesis kit (Roche) with a genomic DNA template extracted from BWP17 and a pair of primers, CaCDC7-Probe-F and CaCDC7-Probe-R (Table 2). The DNA on the blot was hybridized with the probe using DIG Easy Hyb (Roche). To reveal the gene deletion, the DIG Luminescent Detection Kit (Roche) was used after hybridization, and the blot was exposed to X-ray film for up to 24h as appropriate.

RT-PCR analysis. Cells were grown to mid-log phase and total RNA was extracted using the MasterPureTM Yeast RNA Purification Kit (EPICENTRE) following the manufacturer's instructions. Then, 5 \(\mu\)g of total RNA was used to generate cDNA by using the SuperScript III Reverse Transcriptase Kit (Invitrogen) following the manufacturer's instructions. The cDNA was then subjected to PCR with a pair of CaCDC7-specific primers, CaCDC7-internal-F-2 and CaCDC7-BspEI-R (Table 2), targeted downstream of the coding sequence. A 366 bp product was generated.

Immunoblot analysis. The total protein was extracted from cultured cells as previously described61. The protein was partially purified from cells bearing the p6HF-ACTIp plasmid with the open reading frame of the gene integrated at RP10 capable of generating a tagged (6 x His and FLAG) protein using Ni\(^{2+}\)-NTA-agarose beads (Qiagen Inc.) essentially as previously described62. Precipitated proteins were resolved by 10% SDS-PAGE and transferred electrophoretically to PVDF membranes (PerkinElmer, Boston, USA) and probed with a polyclonal antibody to FLAG (generous gift of Dr. Michael Edidin, University of California, San Francisco) and visualized using the SuperSignal West Pico Chemiluminescent Substrate Kit (PIERCE). The detected proteins were recorded with the Luminescent Image Analyzer (FUJIFILM LAS-1000) and analyzed by ImageGauge 3.46 and L Process v 1.96 (FUJIFILM).

In vitro kinase assay. The in vitro kinase assays using CaCdc7-6xHisFLAG and purified bovine histone H1 (Upstate) as substrates were performed using a non-radioactive assay essentially as previously described62. Briefly, the Ni\(^{2+}\)-NTA-agarose bead (Qiagen Inc.)-purified CaCdc7 was washed three times with kinase reaction buffer [25 mM Tris pH 7.5, 5 mM \(\beta\)-glycerophosphate, 2 mM DTT, 0.1 mM Na\(_2\)VO\(_4\), 10 mM MgCl\(_2\) and a serine/threonine phosphatase inhibitor cocktail (Calbiochem)] and used in the kinase reaction with 5 \(\mu\)g histone H1 as substrate in the presence of 200 \(\mu\)M ATP in a 20 \(\mu\)l kinase assay buffer. The kinase reaction was incubated at 30°C for 45 minutes, and the end products were resolved by 12% SDS-PAGE and detected by immunoblotting using an anti-Histone H1 (H11-4, Sigma; 1:500) and anti-phospho-Histone H1 (12D11, Millipore; 1:1000 monoclonal antibodies) according to the manufacturer's instructions.

Chemical treatment. Phosphatase treatment was performed with calf intestinal alkaline phosphatase (CIP) (NEB). Briefly, the Ni\(^{2+}\)-NTA-agarose bead (Qiagen Inc.)-purified CaCdc7 was washed three times with CIP buffer (1XNE Buffer 3) and resuspended in 20 \(\mu\)l CIP buffer before the addition of 20 units of CIP and incubation at 37°C for the required period of time. The CIP was inactivated by heating to 75°C for 10 minutes in the presence of 5 mM EDTA. Irreversible protein kinase inhibitor treatment was performed with 5′-fluorosulfonylbenzoyl-5′-adenosine (FSBA), essentially as previously described63. Briefly, the Ni\(^{2+}\)-NTA-agarose bead-purified CaCdc7 was subjected to three successive treatments by 1 mM FSBA (Sigma) at 30°C for 15 min in kinase buffer without DTT. The product was then washed three times with kinase buffer to eliminate the FSBA before performing the in vitro kinase assay. Hydroxyurea (HU) was used to block DNA replication, which is known to attenuate Cdc7 kinase activity15. Cells in culture were treated with 0.1 M HU before the Ni\(^{2+}\)-NTA-agarose bead purification of CaCdc7.

Cellular image observation and recording. Cells in liquid culture were visualized and recorded with a Nikon 50i microscope at 400x magnification. Colonies were photographed with a MEIJI stereoscopic microscope EMZ5 at 40x magnification.

References

1. Sudbery, P., Gow, N. & Berman, J. The distinct morphogenetic states of Candida albicans. Trends Microbiol 12, 317–324, doi: 10.1016/j.tim.2004.05.008 (2004).
2. Noble, S. M., French, S., Kohn, L. A., Chen, V. & Johnson, A. D. Systematic screens of a Candida albicans homozygous deletion library decode morphogenetic switching and pathogenicity. Nat Genet 42, 590–598, doi: 10.1038/ng.605 (2010).
3. Schinabeck, M. K. et al. Rabbit model of Candida albicans biofilm infection: liposomal amphotericin B antifungal lock therapy. Antimicrob Agents Chemother 48, 1727–1732 (2004).
4. Sudbery, P. E. Growth of Candida albicans hyphae. Nat Rev Microbiol 9, 737–748, doi: 10.1038/nrmicro2636 (2011).
5. Sherlock, G. et al. Molecular cloning and analysis of CDC28 and cyclin homologues from the human fungal pathogen Candida albicans. Mol Gen Genet 277, 2722–2785 (2005).
6. Atie-Lande, A., Gildor, T. & Kornitzer, D. Role for the SCFCDC4 Ubiquitin Ligase in Candida albicans Morphogenesis. Mol Biol Cell 16, 2772–2785 (2005).
7. Shieh, J. C., White, A., Cheng, Y. C. & Rosamond, J. Identification and functional characterization of Candida albicans CDC4. J Biomed Sci 12, 913–924, doi: 10.1007/s11373-005-9027-9 (2005).
8. Tseng, T. L. et al. Affinity purification of Candida albicans CcCd4c-associated proteins reveals the presence of novel proteins involved in morphogenesis. Biochem Biophys Res Commun 395, 152–157, doi:10.1016/j.bbrc.2010.03.162 (2010).
9. Hartwell, L. H. Three additional genes required for deoxyribonucleic acid synthesis in Saccharomyces cerevisiae. J Bacteriol 115, 966–974 (1973).
10. Jackson, A. L., Pahl, P. M., Harrison, K., Rosamond, J. & Schafani, R. A. Cell cycle regulation of the yeast Cdc7 protein kinase by association with the Dbf4 protein. Mol Cell Biol 13, 2899–2908 (1993).
11. Masai, H. & Ari, K. Cdc7 kinase complex: a key regulator in the initiation of DNA replication. J Cell Physiol 190, 287–296 (2002).
12. Zegerman, P. & Diffley, J. F. Checkpoint-dependent inhibition of DNA replication initiation by Sld3 and Dbf4 phosphorylation. Nature 467, 474–478, doi:10.1038/nature09373 (2010).
13. Sato, N., Arai, K. & Masai, H. Regulation of chromosome dynamics by Hsk1/Cdc7 kinase. Biochem Soc Trans 41, 1712–1719, doi:10.1042/BST20130217 (2013).
14. Jang, Y. W. & Kang, C. M. Induction of S. cerevisiae filamentous secretion by slowed DNA synthesis involves Mec1, Rad53 and Swei checkpoint proteins. Mol Biol Cell 14, 5116–5124, doi:10.1091/mbc.E03-07-0375 (2003).
15. McIntosh, E. M., Kunz, B. A. & Haynes, R. H. Inhibition of DNA replication in Saccharomyces cerevisiae by araCM. Curr Genet 10, 579–585 (1986).
16. Tercero, J. A. & Diffley, J. F. Regulation of DNA replication fork progression through damaged DNA by the Mec1/Rad53 checkpoint. Nature 412, 553–557, doi:10.1038/35087607 (2001).
17. Bachewich, C. & Whiteway, M. Cyclin Cln3p links G1 progression to hyphal and pseudohyphal development in Candida albicans. Eukaryot Cell 4, 95–102 (2005).
18. da Silva Dantas, A. et al. Thioreredoxin regulates multiple hydrogen peroxide-induced signaling pathways in Candida albicans. Mol Cell Biol 30, 4550–4563, doi:10.1128/MCB.00313-10 (2010).
19. Shi, Q. M., Wang, Y. M., Zheng, X. D., Lee, R. T. & Wang, Y. Critical role of DNA checkpoints in mediating genotoxic-stress-induced filamentous growth in Candida albicans. Mol Biol Cell 18, 815–826, doi:10.1091/mbc.E06-05-0442 (2007).
20. Andaluz, E., Ciudad, T., Gomez-Raja, I., Calderone, R. & Larriba, G. Rad32 depletion in Candida albicans triggers both the DNA-damage checkpoint and filamentation accompanied by but independent of expression of hypha-specific genes. Mol Microbiol 59, 1452–1472, doi:10.1111/j.1365-2958.2005.05038.x (2006).
21. Hazan, I., Sepulveda-Becerra, M. & Liu, H. Hyphal elongation is regulated independently of cell cycle in Candida albicans. Mol Biol Cell 13, 134–145, doi:10.1091/mbc.01-03-0116 (2002).
22. Umezawa, T. et al. Candida albicans protein kinase Cdc7Slp regulates cell elongation and virulence. Mol Microbiol 55, 381–395, doi:10.1111/j.1365-2958.2004.04405.x (2005).
23. Wightman, R., Bates, S., Amornrattanapan, P. & Sudbery, P. P. In Candida albicans, the Nim1 kinases Gin4 and Hsl1 negatively regulate pseudohyphal formation and Gin4 also controls septin organization. J Cell Biol 164, 581–591, doi:10.1083/jcb.200307176 (2004).
24. O’Meara, T. R. et al. Global analysis of fungal morphology exposes mechanisms of host cell escape. Nat Commun 6, 6741, doi:10.1038/ncomms7741 (2015).
25. Chien, T. et al. Candida albicans DBF4 gene inducibly duplicated by the mini-U- Blair strain is involved in hypha-suppression. Mutat Res 779, 78–85, doi:10.1016/j.mrfmmm.2015.06.013 (2015).
26. Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948, doi:10.1093/bioinformatics/btm404 (2007).
27. Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680 (1994).
28. Hanks, S. K. & Quinn, A. M. Protein kinase catalytic domain sequence database: identification of conserved features of primary structure and classification of family members. Methods Enzymol 200, 38–62 (1991).
29. Buck, V., White, A. & Rosamond, J. CDC7 protein kinase activity is required for mitosis and meiosis in Saccharomyces cerevisiae. Mol Genet Genomics 227, 452–457 (1991).
30. Sclafani, R. A. & Jackson, A. L. Cdc7 protein kinase for DNA metabolism comes of age. Mol Microbiol 11, 805–810 (1994).
31. Masai, H. et al. Human Cdc7-related kinase complex. In vitro phosphorylation of MCM by concerted actions of Cdkks and Cdc7 and that of a critical threonine residue of Cdc7 by Cdkks. J Biol Chem 275, 29042–29052, doi:10.1074/jbc.M002713200 (2000).
32. Bahman, M., Buck, V., White, A. & Rosamond, J. Characterisation of the CDC7 gene product of Saccharomyces cerevisiae as a protein kinase needed for the initiation of mitotic DNA synthesis. Biochim Biophys Acta 951, 335–343 (1988).
33. Patterson, M., Sclafani, R. A., Fangman, W. L. & Rosamond, J. Molecular characterization of cell cycle gene CDC7 from Saccharomyces cerevisiae. Mol Cell Biol 6, 1590–1598 (1986).
34. Sato, N., Arai, K. & Masai, H. Human and Xenopus cDNAs encoding budding yeast Cdc7-related kinases: in vitro phosphorylation of MCM subunits by a putative human homologue of Cdc7. Embryo J 16, 4300–4351 (1997).
35. Wilson, R. B., Davis, D., Enlow, B. M. & Mitchell, A. P. A. Recyclable Candida albicans URA3 cassette for PCR product-directed gene disruptions. Yeast 16, 65–70 (2000).
36. Care, R. S., Trevethick, J., Binley, K. M. & Sudbery, P. E. The MET3 promoter: a new tool for Candida albicans molecular genetics. Mol Microbiol 34, 792–798 (1999).
37. Cao, X. et al. MIR-630 inhibits proliferation by targeting CDC7 kinase, but maintains the apoptotic balance by targeting multiple modulators in human lung cancer A549 cells. Cell Death Dis 5, e1426, doi:10.1038/cddis.2014.386 (2014).
38. Rodriguez-Acebes, S. et al. Targeting DNA replication before it starts: Cdc7 as a therapeutic target in p53-mutant breast cancers. Am J Pathol 177, 2034–2045, doi:10.2353/ajpath.2010.100421 (2010).
39. Kihara, M. et al. Characterization of the yeast Cdc7p/Dbf4p complex purified from insect cells. Its protein kinase activity is regulated by Rad53p. J Biol Chem 275, 35051–35062, doi:10.1074/jbc.M003491200 (2000).
40. Lopez-Mosqueda, J. et al. Damage-induced phosphorylation of Sld3 is important to block late origin firing. Nature 467, 479–483, doi:10.1038/nature09377 (2010).
41. Costanzo, V. et al. An ATR- and Cdc7-dependent DNA damage checkpoint that inhibits initiation of DNA replication. Mol Cell 11, 203–213 (2003).
42. Hartwell, L. H., Mortimer, R. K., Culotti, J. & Culotti, M. Genetic Control of the Cell Division Cycle in Yeast: V. Genetic Analysis of cdc Mutants. Genetics 74, 267–286 (1973).
43. Berman, J. Morphogenesis and cell cycle progression in Candida albicans. Curr Opin Microbiol 9, 595–601, doi:10.1016/j.mib.2006.10.007 (2006).
44. Roemer, T. et al. Large-scale essential gene identification in Candida albicans and applications to antifungal drug discovery. Mol Microbiol 50, 167–181 (2003).
49. Ryan, O. et al. Global gene deletion analysis exploring yeast filamentous growth. *Science* **337**, 1353–1356, doi: 10.1126/science.1224339 (2012).
50. Lai, W. C. et al. Construction of *Candida albicans* TeT-on tagging vectors with a Ura-blast cassette. *Yeast* **28**, 253–263, doi: 10.1002/yea.1833 (2011).
51. Wilson, R. B., Davis, D. & Mitchell, A. P. Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions. *J Bacteriol* **181**, 1868–1874 (1999).
52. Gillum, A. M., Tsay, E. Y. & Kirsch, D. R. Isolation of the *Candida albicans* gene for orotidine-5′-phosphate decarboxylase by complementation of *S. cerevisiae* ura3 and *E. coli* pyrF mutations. *Mol Gen Genet* **198**, 179–182 (1984).
53. Chin, C., Lai, W. C., Lee, T. L., Tseng, T. L. & Shieh, J. C. Dissection of the *Candida albicans* Cdc4 protein reveals the involvement of domains in morphogenesis and cell fission. *J Biomed Sci* **20**, 97, doi: 10.1186/1423-0127-20-97 (2013).
54. Warren, G. & Serratt, D. Incompatibility and transforming efficiency of CotE1 and related plasmids. *Mol Gen Genet* **161**, 39–47 (1978).
55. Dower, W. J., Miller, J. F. & Ragsdale, C. W. High efficiency transformation of *E. coli* by high voltage electroporation. *Nucleic Acids Res* **16**, 6127–6145 (1988).
56. Gietz, R. D. & Woods, R. A. Yeast transformation by the LiAc/SS Carrier DNA/PEG method. *Methods Mol Biol* **313**, 107–120 (2006).
57. Becker, D. M. & Lundblad, V. Introduction of DNA into yeast cells. *Curr Protoc Mol Biol* Chapter 13, Unit13 17, doi: 10.1002/0471142727.mbb1307127 (2001).
58. Kanelo, A. et al. Tandem affinity purification of the *Candida albicans* septin protein complex. *Yeast* **21**, 1025–1033 (2004).
59. Harper, J. W., Adami, G. R., Wei, N., Keyomarsi, K. & Elledge, S. J. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. *Cell* **75**, 805–816, doi: 0092-8674(93)90499-G (1993).
60. James, P., Halladay, J. & Craig, E. A. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. *Genetics* **144**, 1423–1436 (1996).
61. Shieh, J. C. et al. Tailor-made zinc-finger transcription factors activate FLO11 gene expression with phenotypic consequences in the yeast Saccharomyces cerevisiae. *PLoS ONE* **2**, e746, doi: 10.1371/journal.pone.000746 (2007).
62. Maddika, S. et al. Akt-mediated phosphorylation of CDK2 regulates its dual role in cell cycle progression and apoptosis. *J Cell Sci* **121**, 979–988, doi: 10.1242/jcs.009530 (2008).
63. Lopez-Girona, A., Mondesert, O., Leatherwood, J. & Russell, P. Negative regulation of Cdc18 DNA replication protein by Cdc2. *Mol Biol Cell* **9**, 63–73 (1998).

Acknowledgements

The authors thank Dr. A. Mitchell (Columbia University, USA) for *C. albicans* strain BWP17 and plasmid pDDB57, Dr. A.J.P. Brown (University of Aberdeen, United Kingdom) for *C. albicans* strain SC5314, Dr. J. Wendland (Friedrich-Schiller- University, Jena, Germany) for pFA-HIS1-MET3p, and Dr. Dr. M. Niimi (National Institute of Infectious Diseases, Tokyo, Japan) for p6HF-ACT1HIS1-MET3. We gratefully acknowledge the support for this work provided by grants from the National Science Council of Taiwan, Republic of China to J.C.S. (NSC 97-2320-B-040-014-MY3 & NSC 98-2320-B-040-027-MY3), and from the National Health Research Institutes of Taiwan, Republic of China to J.C.S. (NHRI-EX99-9808SI & NHRI-EX100-9808SI).

Author Contributions

J.-C.S. conceived of and designed the study and supervised the project. Wei-Chung Lai (W.-C.L.) made critical analyses of the western blotting and the Southern blotting as well as morphological observation and growth evaluation. T.-w.C., C.-H.W. and Y.-C.C. established the initial strains and verified the phenotypes. S.-Y.Y. and T.C. constructed the strains and performed the Southern blotting analysis and microscopic observations. S.-Y.Y performed site-directed mutagenesis and the yeast two-hybrid analysis manuscript. Wan Chen Li (W.C.L.), J.-C.S. provided critical reagents and advice. All authors analyzed the data, discussed the results, and commented on the manuscript. J.-C.S. wrote the manuscript.

Additional Information

Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Lai, W.-C. et al. *Candida albicans* Dbf4-dependent Cdc7 kinase plays a novel role in the inhibition of hyphal development. *Sci. Rep.* **6**, 33716; doi: 10.1038/srep33716 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2016