ORIGINAl RESEARCH ARTICLE

Effects of comprehensive cardiac rehabilitation on functional capacity in a middle-income country: a randomised controlled trial

Gabriela Suellen da Silva Chaves,1 Gabriela Lima de Melo Ghisi,2,2 Sherry L Grace,2,3 Paul Oh,2 Antonio L Ribeiro,4 Raquel R Britto1

ABSTRACT

Objective Despite the growing epidemic of cardiovascular diseases in middle-income countries, there is insufficient evidence about cardiac rehabilitation (CR) in these countries. Thus, the effects of comprehensive CR on functional capacity and risk factors were investigated in Brazil, to test the hypothesis that it results in better outcomes than exercise-only or no CR.

Methods Single-blinded, randomised controlled trial with three parallel arms: comprehensive CR (exercise+education) versus exercise-only CR versus wait-list control. Eligible coronary patients were randomised in blocks of four with 1:1:1 concealed allocation. Participants randomised to exercise-only CR received 36 exercise classes; comprehensive CR group also received 24 educational sessions. The primary outcome was incremental shuttle walk test (ISWT) distance; secondary outcomes were cardiovascular risk factors. All outcomes were assessed at baseline and 6 months later. Analysis of covariance was performed on the basis of intention-to-treat (ITT) and per-protocol.

Results 115 (88.5%) patients were randomised; 93 (80.9%) were retained. There were improvements in ISWT distance from pretest to post-test with comprehensive (from 358.4±132.6 to 464.8±121.6 m; mean change=106.4, p<0.001) and exercise-only (from 391.5±118.8 to 488.1±106.3 m; mean change=106.4; p<0.001) CR, with significantly greater functional capacity with comprehensive CR versus control (ITT: mean difference=75.6±30.7 m, 95% CI 1.4 to 150.2). There were also reductions in systolic blood pressure with comprehensive CR (ITT: reduction of 6.2±17.8 mm Hg, p=0.04). There were no significant differences for other outcomes.

Conclusion Results showed clinically significant improvements in functional capacity and blood pressure with CR, and significantly greater functional capacity with comprehensive CR compared with usual care.

Trial registration number NCT02575976;Results.

INTRODUCTION

Cardiovascular diseases (CVD) are the leading cause of death globally, with >80% occurring in low-income and middle-income countries (LMICs).1 Cardiac rehabilitation (CR) is an outpatient model of care designed to mitigate this burden, through comprehensive delivery of secondary prevention.2,3 Participation in CR reduces morbidity and mortality by 20%.4 These benefits have been established in randomised controlled trials (RCTs) in high-income countries (HICs). A review of CR RCTs in LMICs identified only two,5 in China and Turkey.6,7 Oxygen consumption, walking performance and lipids were improved. While it is assumed comparable benefits could be achieved in LMICs, clearly there is a dearth of evidence to demonstrate this, despite the fact that CR is available in 54 LMICs.8 Given differences in socioeconomic context, healthcare delivery and in the nature of CR delivered in HICs versus LMICs (ie, fewer core components),8 more trials of CR in LMICs are warranted to understand the benefits that can be achieved.

Accordingly, we set out to undertake a pragmatic RCT of comprehensive (ie, exercise with education) versus exercise-only versus no CR (wait-list control) in a LMIC, to determine whether comprehensive CR results in better functional capacity and cardiovascular risk factor control, when compared with exercise-only CR or no CR. It was hypothesised that participants randomised to comprehensive CR would have significantly better outcomes than those participating in exercise-only CR or not participating.

METHODS

The protocol was registered on clinicaltrials.gov (NCT02575976), and published.9 Primary and secondary outcomes are reported here.

Study design

This was a single-blinded, single-site, pragmatic, superiority RCT with three parallel arms: comprehensive CR (education and exercise) versus exercise-only CR (no education, as delivered in Brazil) versus wait-list control. Assessments were undertaken prerandomisation and again 6 months later (in accordance with the end of CR).

Setting

Brazil was chosen as the LMIC for testing because of: (1) the great burden of CVD,1011 (2) the availability of country-specific CR guidelines1011 (there are few national CR guidelines developed in LMICs) and (3) no RCT of CR (with any outcome) in South America to our knowledge.7 The trial was undertaken in a publicly-funded academic centre, Hospital das Clínicas da UFMG, in Belo Horizonte. The wait-list control group
received usual care, which consisted of follow-up appointments with their physician as deemed medically appropriate. The standard of care for Brazilian adults with CVD does not include access to CR, given the gross lack of capacity. Participants randomised to the wait-list control arm were offered CR after 6 months.

Participants
Patients with coronary artery disease, postmyocardial infarction patients or those who had undergone percutaneous coronary intervention or coronary artery bypass graft surgery and had been referred to CR or were eligible to enrol were invited to participate. The inclusion criteria were: patients who were aged ≥18 years and living in the Belo Horizonte area. The exclusion criteria were: any comorbid physical or serious mental condition which could interfere with the ability to exercise according to CR clinical practice guidelines (ie, heart failure with ejection fraction <45%), or any visual or cognitive condition (eg, advanced dementia) which could preclude the participant from completing the questionnaires. Sample size planned was 186 patients (62 per group); calculations details are described elsewhere.

Intervention arms
The CR programme usually offers exercise only (not comprehensive). There is no charge to patients. It is delivered by physiotherapists and physicians. Participants undergo an assessment including functional capacity and risk factors at intake and again at end of the programme. CR participants received an individualised exercise prescription based on a graded exercise stress test. Participants were instructed to exercise between 50% and 80% of heart rate reserve. The exercise programme was 6 months, consisting of 36 supervised sessions offered in decreasing frequency (three times to once/week). The 1 hour exercise sessions were composed of 10 min of warm-up, 30 min of aerobic exercises (treadmill, bike and walking), 15 min of resistance training and 5 min for cool down. Patients were directed to exercise in their communities on the days they were not on site.

In the comprehensive CR arm, patients were additionally offered 24 education sessions, supported by a workbook (https://www.healthuniversity.ca/en/cardiaccollege). These were delivered in a group setting, each for 30 min, just prior to or after an exercise session. The empirically validated English version was translated and culturally adapted to Brazilian-Portuguese, using best practice methodologies. Sessions covered diet, exercise, mental health and risk factor management, and were delivered mainly by a physiotherapist (GC) and a cardiologist and dietitian.

Procedure
Consecutive patients were approached between March 2015 and April 2017 by a doctoral student (GC) at initial CR visit. With informed written consent and CR clearance from the physician (informed by intake stress test), potentially eligible patients were scheduled to come on-site to complete pretest assessments. This included the incremental shuttle walk test (ISWT, ie, indicator of functional capacity), blood pressure and adiposity. Participants were asked to bring their most recent laboratory test results for lipids and glucose. They were provided a requisition to take for lipid and glucose assessment if not current or available. Participants were also asked to complete a sociodemographic questionnaire. Clinical data were extracted from medical charts.

Eligible participants were randomised to one of the three groups. The randomisation sequence was generated by a professor not involved in the study using the randomization.com website in random blocks of four, with a 1:1:1 allocation ratio. To ensure allocation concealment, the principal investigator (RB) had the allocation sequence in a password-protected file, and only provided randomisation information to the PhD student once it was confirmed the participant was eligible. Due to the nature of the intervention, participants and the doctoral student could not be blind to treatment allocation.

Six months postrandomisation, participants were again invited to come to the study centre for another shuttle walk test, and to undertake assessments of secondary outcomes. They were provided a requisition for laboratory testing for lipids and glucose. To minimise loss to follow-up, participants were reminded by phone to come on-site for these assessments. CR use was extracted from charts. A master’s student blinded to random allocation was responsible for post-test assessments, outcome ascertainment and data entry.

MEASURES
Primary outcome: functional capacity
At pretest and 6 months later, the ISWT was performed and the walked distance, in metres (primary outcome), was recorded. The test was terminated if participants felt too breathless or fatigued to maintain the required speed to complete a 10 m shuttle interval in the time allowed.

Secondary outcomes: risk factors
The risk factors evaluated were blood pressure, body mass index, waist circumference, glucose and lipids. Blood pressure was assessed using the validated 7670–06 mobile stand (Welch Allyn, Skaneateles Falls, New York, USA). Mean systolic and diastolic blood pressure values were recorded, and hypertension was considered where values exceed 140/90 mm Hg and/or participant was taking a blood pressure-lowering medication. A weight scale and measuring tape were used to assess anthropometrics. Those with body mass index >30 kg/m² were considered obese. Waist circumference was assessed at the superior border of the iliac crest. Values >102 cm in men and 88 cm in women were considered indicative of central obesity. Glycaemia and lipid values were extracted from centre charts. Dysglycaemia was considered present where fasting blood glucose exceeded 126 mg/dL and/or participant was taking a glucose-lowering medication, and dyslipidemia was considered present where total cholesterol values exceeded 240 mg/dL and/or participant was on a lipid-lowering agent.

Statistical analyses
First, session attendance of participants in the two CR arms was explored as a manipulation check, and to support per-protocol (PP) analyses. Second, baseline sociodemographic and clinical characteristics were compared between groups to identify any chance differences that may have occurred despite random assignment, using χ² and analysis of variance as appropriate. Third, retention for the post-test ISWT was considered, and differences in the sociodemographic and clinical characteristics of participants retained versus lost to follow-up were tested using χ² and t-tests as appropriate.

Outcome analyses were performed on the basis of intention-to-treat (ITT) using last observation carried forward to mitigate bias, and PP. Change in each outcome from pretest to post-test was preliminarily considered by arm, and a paired t-test was performed.

Chaves GSdS, et al. Heart 2019;105:406–413. doi:10.1136/heartjnl-2018-313632

407
To test the hypotheses, an analysis of covariance was performed for each outcome, with group (ie, comprehensive CR vs exercise-only vs wait-list control) as the independent variable, and pretest value as a covariate, and the post-test value as the dependent variable. PP analyses were run unadjusted, and then adjusting for any sociodemographic or clinical biases based on retention. A Bonferroni post hoc test was performed where significant group differences were observed. SPSS V.24.0 was used (IBM, 2016), and p<0.05 was considered to be statistically significant.

RESULTS

Respondent characteristics

A flow diagram is shown in figure 1. Of note, some participants were not eligible for the trial because they could not get an exercise stress test. There was a cardiopulmonary technician strike from June to October of 2015. As displayed, 115 patients were randomised.

Table 1 presents the sociodemographic and clinical characteristics of participants at pretest. Overall, 62 (54.9%) achieved at least 7 metabolic equivalents of task on the stress test. Ninety-five (82.6%) were considered to have hypertension (ie, blood pressure ≥140/90 mm Hg or on a blood pressure-lowering medication), and 35 (30.4%) were obese (with 50 (45.0%) abdominally obese). Thirty (26.0%) had dysglycaemia and 79 (69.9%) dyslipidemia.

Table 1 also presents the characteristics of participants by arm. Randomisation was effective in ensuring equivalence across groups in most instances. Of note, there were no significant differences in any outcome at pretest by arm, nor on the stress test.

As also shown in figure 1, among those randomised to a CR arm, 57 (75%) initiated the programme. Three (2.6%) participants in the exercise-only and five (4.3%) in the comprehensive arms had valid clinical reasons for missing sessions. None of these events was considered to be due to the CR intervention. There were no harms or adverse events related to exercise-only or comprehensive CR.

On average, those in the exercise-only CR attended a mean of 23.6±8.5 of 36 prescribed exercise sessions (ie, 65.5%); those in the comprehensive arm attended a mean of 24.4±7.2

Figure 1 Study flow diagram. *The threshold sessions were a minimum of 24 exercise sessions and 16 education classes. CR, cardiac rehabilitation; ISWT, incremental shuttle walk test.
Table 1 Participants’ baseline sociodemographic and clinical characteristics by randomised group

n (%)/mean±SD	Wait-list control (n=39)	Exercise-only (n=39)	Comprehensive (n=37)	Total (n=115)

Sociodemographic

Sex (% male)	Wait-list control (n=39) 27 (69.2)	Exercise-only (n=39) 28 (71.8)	Comprehensive (n=37) 27 (73.0)	Total (n=115) 82 (71.3)
Age (years)	58.7±9.6	59.0±9.9	60.7±8.8	59.5±9.4
Education (% low)	28 (71.8)§	33 (84.6)§	21 (56.8)§	82 (71.3)*
Marital status (% married or equiv.)	27 (69.2)	27 (69.2)	20 (54.1)	74 (64.3)
Work status (% employed)	17 (43.6)	14 (35.9)	15 (40.5)	46 (40.0)
Monthly income (% low)	35 (89.7)	34 (87.2)	31 (83.8)	100 (87.0)

Clinical

CR indication (% yes)	Wait-list control (n=39) 35 (89.7)	Exercise-only (n=39) 37 (94.9)	Comprehensive (n=37) 35 (94.6)	Total (n=115) 107 (93.0)
Myocardial infarction	35 (89.7)	37 (94.9)	35 (94.6)	107 (93.0)
Angina	27 (69.2)	21 (53.8)	21 (56.8)	69 (60.0)
PCI	23 (59.0)	23 (59.0)	22 (59.5)	68 (59.1)
Bypass surgery	10 (25.6)	7 (17.9)	12 (32.4)	29 (25.2)
First event (% no)	8 (21.1)	8 (21.1)	12 (32.4)	28 (24.8)

Comorbidities (% yes)

Depression	Wait-list control (n=39) 7 (17.9)	Exercise-only (n=39) 7 (17.9)	Comprehensive (n=37) 7 (17.9)	Total (n=115) 6 (16.2)
Kidney disease	4 (10.3)	3 (7.7)	5 (13.5)	13 (11.3)
Liver disease	1 (2.6)	1 (2.6)	2 (5.4)	8 (7.0)
Rheumatic disease	4 (10.3)	1 (2.6)	2 (5.4)	7 (6.1)
Cancer	0¶	1 (2.6)	5 (13.5)¶	6 (5.2)*
Stroke	0	1 (2.6)	2 (5.4)	3 (2.6)
COPD	0	3 (7.7)	0	3 (2.6)

Functional capacity

Stress test (HR max, bpm)	Wait-list control (n=39) 119.0±20.3	Exercise-only (n=39) 124.8±21.4	Comprehensive (n=37) 120.4±24.2	Total (n=115) 121.4±21.9
Stress test (peak METs)	7.3±2.4	7.7±2.6	7.8±2.6	7.6±2.5
ISWT (m)	376.4±145.6	361.0±119.4	381.1±120.9	372.7±128.5

Risk factors

BP systolic (mm Hg)	Wait-list control (n=39) 117.9±17.6	Exercise-only (n=39) 117.3±24.7	Comprehensive (n=37) 123.8±15.1	Total (n=115) 119.6±19.6
BP diastolic (mm Hg)	74.6±16.0	77.2±13.0	77.0±11.0	76.4±13.5
BMI (kg/m²)	27.8±4.0	28.7±6.0	28.1±4.2	28.2±4.8
Waist circumference (cm)	94.9±9.8	96.7±10.6	96.0±11.5	95.9±10.6
Total cholesterol (mg/dL)	152.8±34.6	148.7±39.4	165.0±61.9	155.7±46.9
LDL (mg/dL)	82.5±30.2	80.4±23.7	86.4±29.7	83.1±27.9
HDL (mg/dL)	42.0±7.0	40.4±14.3	39.5±7.9	40.7±10.1
Triglycerides (mg/dL)	141.3±51.3	137.7±75.2	166.0±117.0	148.6±85.6
Glucose (fasting, mg/dL)	109.9±38.3	107.2±35.3	104.6±20.2	107.3±32.0
Sleep apnoea	5 (12.8)	4 (10.3)	4 (10.8)	13 (11.3)
Smoking (% current)	2 (5.1)	4 (10.3)	3 (8.1)	9 (7.8)

Medications

Statins	Wait-list control (n=39) 38 (97.4)	Exercise-only (n=39) 37 (94.9)	Comprehensive (n=37) 36 (97.3)	Total (n=115) 111 (98.2)
ASA	36 (94.7)	35 (92.1)	35 (97.2)	106 (94.6)
Beta-blockers	37 (97.4¶)	30 (78.9¶)	33 (91.7)	100 (89.3)*
Antiplatelets	28 (73.7)	30 (78.9)	23 (63.9)	81 (72.3)
ACE inhibitors	20 (52.6)	26 (68.4)	27 (75.0)	73 (65.2)
ARBs	12 (31.6)	8 (21.1)	6 (16.7)	26 (23.2)

*P<0.05 (analysis of variance).
†Less than four minimum wages per month.
‡P<0.05 (Bonferroni post hoc test).
¶P<0.01 (Bonferroni post hoc test).

ARP, angiotensin receptor blockers; ASA, acetylsalicylic acid; BMI, body mass index; BP, blood pressure; BPM, beats per minute; COPD, chronic obstructive pulmonary disease; CR, cardiac rehabilitation; HDL, high-density lipoprotein; HR, heart rate; ISWT, incremental shuttle walk test; LDL, low-density lipoprotein; MET, metabolic equivalent of task; PCI, percutaneous coronary intervention.

prescribed exercise sessions (ie, 67.8%), and a mean of 18.6±6.8 of 24 prescribed education sessions (ie, 77.5%). Considering a threshold of 24 exercise sessions attended and 16 education sessions attended, overall 25 (80.6%) participants in the exercise-only arm and 26 (81.2%) participants in the comprehensive arm were included in the PP analyses. As shown in figure 1, 93 (80.9%) participants were retained (ie, completed the post-test ISWT). There were no deaths at
Therefore, sensitivity analysis were performed adjusting for these variables. Of note, there were no significant retention biases in relation to study outcomes.

Functional capacity

Mean scores on the ISWT at pretest and post-test are shown by arm on an ITT and PP basis in figure 2. At pretest, participants completed a mean of 37.3±12.8 shuttles and at post-test, participants completed a mean of 44.6±14.3 shuttles (significantly lower in women; p<0.001). The main reason for ISWT termination at post-test was limb fatigue (n=73; 63.5%). There was a significant increase in ISWT distance from pretest to post-test in both CR arms, but not in the wait-list control, whether examining change on an ITT or PP basis. When adjusting for the three variables where retention bias was observed, the significant difference persisted.

As also shown in figure 2, there was a significant difference in the primary outcome by arm when examined via ITT and PP (unadjusted and adjusted). When adjusting for the three variables where retention bias was observed, the significant difference persisted. Post hoc analyses showed ISWT distance at post-test was significantly greater in the comprehensive CR arm than in the control arm (ITT mean difference (MD)=75.6, 95% CI 1.4 to 150.2; and PP_MD=94.1, 95% CI 3.3 to 184.3). No other differences were observed.

Exploratory analyses were undertaken to examine the impact of CR arm among women only. General linear model revealed a significant interaction of arm×time (ITT p=0.03; see online supplementary figure 3), again supporting the benefits of CR on functional capacity.

Risk factors

With regard to secondary outcomes, 81 (70.4%) completed the blood pressure and adiposity assessments (table 3). Due to the low number of participants that returned the lab work required, no inferences were made regarding glucose or lipids.

Mean risk factor scores at pretest and post-test are also shown by arm on an ITT and PP basis in table 3. There was no significant change from pretest to post-test in any risk factor in any arm, whether examined on the basis of ITT or PP, except for a significant reduction in systolic blood pressure in the comprehensive arm (PP). Moreover, there were no significant differences in post-test risk factor values by arm.

DISCUSSION

This first-ever RCT of CR in Latin America and third ever in a LMIC, has demonstrated that CR results in clinically meaningful improvements in functional capacity and reductions in blood pressure, and that comprehensive CR is superior to no CR in improving functional capacity. The magnitude of change found in walked distance in this study is greater than the clinically important difference of 70 m for better functional capacity.16 17 Given the association of functional capacity with mortality,20 21 these results suggest that the benefits of CR are also substantive in LMICs. These results also support the importance of delivering comprehensive CR in LMICs to ensure patients achieve the benefits associated with CR.

The hypothesis of the trial was partially supported, based on ITT, and it is suspected that there was no significant difference in functional capacity between CR arms or between exercise-only and no CR because the target sample size for the trial was not reached. Thus, further adequately powered research is needed to confirm. Results overall also suggest that comprehensive CR
is effective in risk factor management, particularly hypertension. The lack of impact of CR on adiposity indices is not surprising, given lack of impact in many CR RCTs in HICs, except where specific focus on weight loss is a feature of a programme.22 23 The impact on lipids and glucose could not be properly assessed due to limited sample size. Again, further research is warranted.

Previous meta-analyses have shown equivalent or greater benefits of exercise-only CR when compared with comprehensive CR.24 25 It is true that recommendations that CR be comprehensive are based on expert consensus (likely based on robust data showing the positive impact of each component delivered outside of the CR setting).26 It is perceived that the impact of the exercise component may be greater20 27; our group is currently testing this contention, comparing the impact of each core component head-to-head through network meta-analysis. Overall though, results of this trial point to the importance of delivering comprehensive CR in LMICs too. This has been the first trial comparing comprehensive with exercise-only CR in a LMIC, and clearly more adequately powered, multicentre trials are needed before drawing firm conclusions. However, as CR programmes are developed in LMICs due to the shift of disease burden to non-communicable diseases such as CVD,

Table 3 Risk factors in participants completing assessments both preprogramme and postprogramme

Risk factors	Per-protocol			Intention-to-treat				
	n=81			n=115				
	Pre-CR	Post-CR	Change*	Pre-CR	Post-CR	Change*		
BP systolic (mm Hg)								
Wait-list control	30	120.3±16.3	120.0±18.4	0.3	39	117.9±17.6	117.7±19.1	0.2
ECR	25	120.0±18.0	114.4±16.3	5.6	39	117.3±24.7	117.4±17.0	0.18
CCR	26	121.3±14.8	114.6±19.2	6.7*	37	123.8±15.1	117.6±19.8	6.2*
Analysis of covariance				F=1.23, p=0.55; Fadj=1.16, p=0.32				
BP diastolic (mm Hg)				F=1.14, p=0.32				
Wait-list control	30	75.3±16.3	77.0±15.3	1.7	39	74.6±16.0	75.9±15.3	1.3
ECR	25	76.0±14.4	74.2±11.9	1.8	39	77.7±13.0	77.8±12.6	0.1
CCR	26	75.7±12.0	73.7±12.7	2.0	37	77.0±11.0	75.3±12.6	1.7
Analysis of covariance				F=0.60, p=0.30; Fadj=0.55, p=0.08				
BMI (kg/m²)				F=0.50, p=0.60				
Wait-list control	30	27.8±3.9	27.8±3.5	0.04	39	27.8±4.0	27.8±3.8	0.03
ECR	25	27.5±3.9	27.5±4.3	0.06	39	28.7±6.0	28.9±6.9	0.2
CCR	26	27.7±4.0	27.8±4.6	0.1	37	28.1±4.2	28.1±4.5	0.08
Analysis of covariance				F=0.10, p=0.90; Fadj=0.02, p=0.98				
Waist circumference (cm)				F=0.15, p=0.86				
Wait-list control	28	95.0±9.2	95.9±9.4	0.1	37	94.9±9.8	94.8±9.9	0.05
ECR	24	94.8±9.4	93.0±10.0	1.8	38	96.7±10.6	95.6±10.9	1.0
CCR	25	95.8±12.5	95.5±13.4	0.3	36	96.0±11.5	95.6±11.9	0.4
Analysis of covariance				F=1.05, p=0.35; Fadj=0.94, p=0.039				

Difference between first and second assessment assessed using paired t-test.

Fadj shows results of per-protocol analysis, adjusting for age, work status and use of antiplatelets (as per retention bias in table 2).

*P<0.05.

BMI, body mass index; CCR, comprehensive CR; CR, cardiac rehabilitation; DBP, diastolic blood pressure; ECR, exercise-only CR; SBP, systolic blood pressure.

Chaves GSdS, et al. Heart. 2019;105:406–413. doi:10.1136/heartjnl-2018-313632
it is recommended that programmes be as comprehensive as resources allow.2,3
Caution is warranted in interpreting the findings of this study. First, generalisability of results is limited for several reasons. This was a single-site study (a public hospital), undertaken in one LMIC. There may have been selection bias, in that as shown with patients in HICs, patients who access CR are likely more advantaged than those who do not. Patients were recruited in a public system and had quite low income.
Second, the sample size was small and the trial may have been underpowered for the secondary outcomes. It was underpowered for the primary outcome, there was also loss to follow-up, yet a significant effect was nevertheless observed both in ITT and PP analyses.
Because of recruitment challenges such as lack of CR referral and the strike of cardiopulmonary technicians who were responsible for stress testing, the target sample size was not reached. Moreover, because most of patients did not get their blood-work done in a reasonable timeframe after the CR programme, although retention for the primary outcome was quite high, there was a very low sample size for the secondary outcomes of lipids and glucose.
Finally, only proximal outcomes were tested in the current trial. It would be preferable to have tested for differences in mortality. This would have required a larger sample size, and longer follow-up (which would be contaminated because our control arm was to be offered CR at the end of the trial for ethical reasons). However, functional capacity is closely associated with mortality,24 and given the magnitude of improvement achieved, it is probable that the benefits demonstrated herein would result in reduced mortality. On a related note, while walk tests are recommended in low-resource settings,2,4 formal treadmill testing was not undertaken in the current trial, although it is a more robust way to establish functional capacity.

CONCLUSION
Clinically significant improvements in functional capacity and blood pressure are achieved with CR, as well as significantly greater functional capacity with comprehensive CR compared with usual care. These benefits likely translate to significant reductions in mortality, although an adequately powered trial to demonstrate this is needed. Thus, advocacy for greater implementation of comprehensive CR is needed,24 with the aim of improving the care of cardiac patients in Brazil, as well as in other Latin American countries, and in LMICs more broadly.

Contributors GSDsGC, GLdEmGS, SLG and RRB: substantial contributions to the conception or design of the work; the acquisition, analysis and interpretation of data for the work. PO and ALR: substantial contributions to the conception and interpretation of data for the work.

Funding Professor RRB was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq#380378/2014-8), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG/PPM-00869-15 and BCS00290-16) and Coordination for the Improvement of Higher Education Personnel (CAPES). Dr ALR was supported in part by CNPq (Bolsa de produtividade em pesquisa, 310679/2016-8) and by FAPEMIG (Programa Pesquisador Mineiro, PPM-00428-17). Professor SLG was supported by a York University Faculty Association sabbatical fellowship and Social Science and Humanities Research Council research opportunity grant.

Competing interests None declared.

Patient consent Obtained.

Ethics approval The study was approved by the research ethics committees at Universidade Federal de Minas Gerais (UFMG), in Belo Horizonte, Brazil (#R898.235) and York University, in Toronto, Canada (#2015-172).

Provenance and peer review Not commissioned; externally peer reviewed.

REFERENCES
1 World Health Organization – WHO. Global status report on noncommunicable diseases. Geneva: WHO, 2014.
2 Grace SL, Turk-Adawi KJ, Contractor A, et al. Cardiac rehabilitation delivery model for low-resource settings. Heart 2016;102:1449–55.
3 Grace SL, Turk-Adawi KJ, Contractor A, et al. Cardiac rehabilitation delivery model for low-resource settings: an international council of cardiovascular prevention and rehabilitation consensus statement. Prog Cardiovasc Dis 2016;59:303–22.
4 Anderson L, Oldridge N, Thompson DR, et al. Exercise-Based cardiac rehabilitation for coronary heart disease: cochrane systematic review and meta-analysis. J Am Coll Cardiol 2016;67:1–12.
5 Shambuzesegaram S, Perez-Terzic C, Jiang X, et al. Cardiac rehabilitation services in low- and middle-income countries: a scoping review. J Cardiovasc Nurs 2014;29:454–63.
6 Karapolat H, Elyigor S, Zoghi M, et al. Effects of cardiac rehabilitation program on exercise capacity and chronotropic variables in patients with orthotopic heart transplant. Clin Res Cardiol 2008;97:449–56.
7 Jiang X, Sit JW, Wong TK. A nurse-led cardiac rehabilitation programme improves health behaviours and cardiac physiological risk parameters: evidence from Chengdu, China. J Clin Nurs 2007;16:1886–97.
8 Pesah E, Turk-Adawi K, Supervia M, et al. Cardiac rehabilitation delivery in low- and middle-income countries: Availability, characteristics and barriers. World NCDs Congress. Chandigarh, India. November. Int J Non Com Dis 2017;2:517–8.
9 Chaves GS, Ghisi GL, Grace SL, et al. Effects of comprehensive cardiac rehabilitation on functional capacity and cardiovascular risk factors in Brazilians assisted by public health care: protocol for a randomized controlled trial. Braz J Phys Ther 2016;20.
10 Herdy AH, López-Jímenez F, Terzic CP, et al. South American guidelines for cardiovascular disease prevention and rehabilitation. Arq Bras Cardiol 2014;103:3–11.
11 Price KJ, Gordon BA, Bird SR, et al. A review of guidelines for cardiac rehabilitation exercise programmes: Is there an international consensus? Eur J Prev Cardiol 2016;23:1715–33.
12 Anchique Santos CV, Lopez-Jimenez F, Benaim B, et al. Cardiac rehabilitation in Latin America. Prog Cardiovasc Dis 2014;57:268–75.
13 Ribeiro AL, Duncan BB, Brant LC, et al. Cardiovascular Health in Brazil: trends and perspectives. Circulation 2016;133:422–33.
14 Ghisi GLM, Scane K, Sandison N, et al. Development of an educational curriculum for cardiac rehabilitation patients and their families. J Clin Exp Cardiol 2015;6:373.
15 Ghisi GL, Grace SL, Thomas S, et al. Behavior determinants among cardiac rehabilitation patients receiving educational interventions: an application of the health action process approach. Patient Educ Couns 2015;98:612–21.
16 Beaton DE, Bombardier C, Guillemin F, et al. Guidelines for the process of cross-cultural adaptation of self-report measures. Spine 2000;25:3186–91.
17 Singh SJ, Morgan MD, Scott S, et al. Development of a shuttle walking test of disability in patients with chronic airways obstruction. Thorax 1992;47:1019–24.
18 National Institutes of Health. Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults: the evidence report. Obes Res 1998;6:51–209.
19 Houchen-Wolff L, Boyce S, Singh S. The minimum clinically important improvement in the incremental shuttle walk test following cardiac rehabilitation. Eur J Prev Cardiol 2015;22:972–8.
20 Kachur S, Chonghamthamvan K, Lavie CJ, et al. Impact of cardiac rehabilitation and exercise training programs in coronary heart disease. Prog Cardiovasc Dis 2017;60:103–14.
21 Harber MP, Kaminsky LA, Arena R, et al. Impact of Cardiorespiratory Fitness on All-Cause and Disease-Specific Mortality: Advances Since 2009. *Prog Cardiovasc Dis* 2017;60:11–20.

22 Aides PA, Savage PD, Toth MJ, et al. High-calorie-expenditure exercise: a new approach to cardiac rehabilitation for overweight coronary patients. *Circulation* 2009;119:2671–8.

23 Aides PA, Savage PD, Lischke S, et al. The effect of weight loss and exercise training on flow-mediated dilatation in coronary heart disease: a randomized trial. *Chest* 2011;140:1420–7.

24 Taylor RS, Brown A, Ebrahim S, et al. Exercise-based rehabilitation for patients with coronary heart disease: systematic review and meta-analysis of randomized controlled trials. *Am J Med* 2004;116:682–92.

25 Lawler PR, Filion KB, Eisenberg MJ. Efficacy of exercise-based cardiac rehabilitation post-myocardial infarction: a systematic review and meta-analysis of randomized controlled trials. *Am J Cardiol* 2011;107:571–84.

26 Piepoli MF, Corrà U, Adamopoulos S, et al. Secondary prevention in the clinical management of patients with cardiovascular diseases. Core components, standards and outcome measures for referral and delivery: a policy statement from the cardiac rehabilitation section of the European Association for Cardiovascular Prevention & Rehabilitation. Endorsed by the Committee for Practice Guidelines of the European Society of Cardiology. *Eur J Prev Cardiol* 2014;21:664–81.

27 Franklin BA, Lavelle CJ, Squires RW, et al. Exercise-based cardiac rehabilitation and improvements in cardiopulmonary fitness: implications regarding patient benefit. *Mayo Clin Proc* 2013;88:421–7.

28 Newman AB, Simonsick EM, Naydeck BL, et al. Association of long-distance corridor walk performance with mortality, cardiovascular disease, mobility limitation, and disability. *JAMA* 2006;295:2018–26.

29 Babu AS, Lopez-Jimenez F, Thomas RJ, et al. Advocacy for outpatient cardiac rehabilitation globally. *BMC Health Serv Res* 2016;16:471.