The Association of Gut Microbiota with Resting Metabolic Rate in Overweight/Obese Women: A Case-Control Study

Sanaz Mehranfar
Tehran University of Medical Sciences (TUMS)

Seyed Davar Siadat
Pasteur Institute of Iran

Sara Ahmadi Badi
Pasteur Institute of Iran

Sara Hajishizari
Tehran University of Medical Sciences (TUMS)

Mir Saeed Yekaninejad
Tehran University of Medical Sciences

Cain C. T. Clark
Coventry University

Atiyyeh Motahhari
Pasteur Institute of Iran

Khadijeh Mirzaei
Tehran University of Medical Sciences (TUMS)

Research Article

Keywords: Energy expenditure, Obesity, Resting metabolic rate, Microbiota, Microbiome

Posted Date: December 8th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-1123737/v1

License: ©️️ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Purpose

Low Resting Metabolic Rate (RMR), as a risk factor for obesity, can be affected by many factors. Indeed, genetic and environmental factors are variables taken into account when predicting RMR, and may contribute to a high inter-individual variance. Besides the well-known causes of obesity, researchers have demonstrated the contribution of gut microflora in obesity and energy expenditure. Therefore, the goal of the current study was to compare the Firmicutes/Bacteroidetes ratio and the relative abundance of, Prevotellaceae, Faecalibacterium prausnitzii, bifidobacterium spp, lactobacillus spp, Akkermansia muciniphila, Bacteroides fragilis, and Escherichia coli in two groups of people with normal and low RMR in overweight/obese women in Iran.

Results

The abundance of F. prausnitzii (p>0.001), B. fragilis (P= 0.02), and Firmicutes phylum (P= 0.02) were significantly higher in the controls compared to the cases, and showed significant positive association with RMR, (β = 1.29 ×10^{-5}, P=0.01), (β = 4.13 ×10^{-6}, p= 0.04), and (β = 7.76 ×10^{-1}, p= 0.01), respectively. Regarding Lactobacilus, the results showed a significant positive association with RMR (β = 1.73 ×10^{-4}, p= 0.01).

Conclusion

Intestinal microbiota may be associated with host metabolism. Therefore, future work should investigate, using clinical trials, the impact of manipulating gut microflora to positively influence energy expenditure.

Background

Obesity, as a worldwide epidemic, continues to be increasing in prevalence in developed and developing countries [1–3]. As such, it is the fifth greatest cause of non-communicable diseases [4]. Currently, over 1 billion people around the world are overweight or obese [5], whilst, in Iran, the age-adjusted prevalence of overweight /obesity is estimated to be 42.8% and 57% in men and women, respectively [6]. Obesity is a complex and multifactorial disorder that is generally caused by chronic positive energy balance when energy intake (EI) surpasses energy expenditure (EE). Daily energy expenditure is composed of three major components: resting metabolic rate (RMR) (60 - 80%), activity-related energy expenditure (AEE) (10 - 30%), and diet-induced thermogenesis (DIT) (10%) [7, 8]. Accordingly, RMR (the largest component of EE) is the energy requirement to maintain all vital body functions without any physical activity or additional energy expenditure [9]. Moreover, according to previous studies, low RMR is known as a potential risk factor for weight gain [10, 11]. However, there is an inter-individual variation of RMR, mostly caused by fat free mass [12–16] as well as age, fat mass, and sex [13, 17]. In general, women in comparison to men [18–22], and older adults compared to young adults [20, 23, 24], have lower RMR, which can be explained by differences in their muscle mass [25, 26]. Moreover, genetics [27], insulin level, blood pressure [23], and thyroid hormones are other factors affecting RMR [23, 28, 29]. Nevertheless, there is some other unexplained variation of RMR [13, 17]. Presently, due to many etiological factors, obesity is difficult to regulate and intestinal microbiota has been posited as a new factor affecting obesity and host energy metabolism [30]. Indeed, Bäckhed et al. [31] initially suggested this association, and several further studies have highlighted the
role of gut microbiota as a crucial factor affecting energy metabolism [32, 33], whilst some others have assessed
the gut microbiota composition of obese and normal-weight subjects [34–37]. Regarding energy expenditure, in
2013, P. KOCEŁAK et al. [38] evaluated the association between gut microbiota and REE, where higher bacterial
load was found in obese compared to normal weight individuals, but no independent association was seen with
REE. In contrast, several animal studies have found that some bacteria, such as Akkermansia muciniphila [39],
Lactobacillus reuteri [40] and Lactobacillus gasseri [41] could increase energy expenditure. However, the role of
gut microbiota in the context of energy homeostasis, especially RMR, has not been clearly demonstrated in
humans so far. Therefore, we sought to compare the abundance of some bacteria in overweight/obese women
with normal and low RMR. To the best of our knowledge, this study would be the first in this context. Moreover, we
also aimed to determine the association between the abundance of such bacteria and RMR among our studied
population.

Methods

Study population

In the current matched case-control study, we enrolled 36 healthy women (18 cases and 18 controls), who had
been referred to a nutritional laboratory according a public invitation in Tehran. We used a Telegram bot and a
total of 1300 participants were signed up among which, 122 individuals were eligible samples. Finally, after
assessing their medical history, 85 volunteers were qualified for the study (Figure-1). After a follow-up period of 2–
3 months, to ensure no medication and supplementation, as well as no fluctuations in weight and other inclusion
criteria were maintained, individuals were referred to the Nutrition Laboratory of the Faculty of Nutrition and
Dietetics located at the School of Health of Tehran University of Medical Sciences for further evaluation. With
the purpose of random distribution, the participants in the case and control groups were divided into paired blocks in
terms of age, BMI, and RMR level. Each sample in the case group (low RMR) was randomly matched with a
sample in the control group (normal RMR) with a maximum difference in age ± 2 years and BMI ± 2 units.
Volunteers were randomly selected for the study based on the following inclusion criteria (for both cases and
controls): 25≤ BMI <40 (obesity and overweight), aged 18-50 years old. To ensure comparable data, we included
the following exclusion criteria: use of antibiotics (within the previous 3 months) [79], use of alcohol, smoking,
significant infection, history of diabetes, coronary, thyroid diseases or other hormonal disease and cancer. Use of
medications or treatments effective on their RMR, use of supplementary vitamins and minerals, being pregnant,
lactating or menopausal, daily or irregular intake of probiotics within the previous 2 months, history of digestive
diseases, such as inflammatory bowel disease, irritable and constipation. Also those with gastrointestinal surgery,
use of dietary supplements for weight loss during the past 6 months [38] were excluded. The inclusion and
exclusion criteria of the samples were based on the individual's medical history or their own statements. The
study protocol was approved by the Ethics Commission of Tehran University of Medical Sciences
(IR.TUMS.VCR.REC.1398.562) and prior to the study, all subjects signed a written informed consent.

Demographic questions

Demographic questions were used to collect data about characteristics such as age, smoking status, education
level, lifestyle, marital status, menopause, medical history, taking medication, supplement use etc.

Anthropometric assessment
For each participant, body composition, including weight, BMI, body fat mass (BFM), fat free mass (FFM), body fat percentage (%), waist to hip ratio and waist circumference were measured. All measurements performed by using a multi-frequency bioelectrical impedance analyzer, InBody 770 scanner (Inbody Co., Seoul, Korea). For all participants, a very low, safe electrical signal was sent from four metal electrodes through both hands and feet. The electrical signal passes quickly through water that is present in hydrated muscle tissue but meets resistance when it hits fat tissue. This resistance, known as impedance, can be measured to infer the proportion of fat free mass and fat mass. Measurement was conducted according to the manufacturer's guidance.

Resting Metabolic Rate measurements

RMR was measured by indirect calorimetry (MetaLyzer®3B, made in Germany). The RMR was assessed in the morning after a requested overnight fast (10-12 hour). It was measured under “resting conditions,” which included no prior severe exercise, and abstinence from alcohol and caffeine. The indirect calorimetry device was calibrated before each assessment. To measure RMR (m-RMR), after 20 minutes of rest, the patients assumed the supine position without movement for 30 min, and the middle 20 min was used for calculation (the first and the last 5 min were ignored). We stratified participants based on measured RMR (m-RMR) and predicted RMR values (p-RMR) [80]. Patients were defined as “hypometabolic” when their measured RMR was less than 85 % of the predicted RMR, based on the Harris and Benedict equation [81], or “normometabolic” when it was within ± 15% of the predicted RMR. During the luteal phase of the menstrual cycle, RMR typically rises and is lower during menstruation. For this purpose, indirect calorimetry performed for all premenopausal women during the follicle process [82-84].

Dietary assessments

Dietary intake was assessed by a semi-quantitative 147-item food frequency questionnaire (FFQ) that has been validated in previous work [85]. Questionnaires were completed in the presence of a trained nutritionist, and participants reported the intake frequency of each food item over the past year. Household measurements and servings were then converted into weight (grams per day). Dietary intakes were analyzed using NUTRITIONIST 4 (First Data Bank, San Bruno, CA) software for estimating energy and nutrient intake.

Physical activity assessment

For evaluating physical activity in the form of metabolic equivalent hours per week (MET-h/wk), the short form of the International Physical Activity Questionnaire (IPAQ) was used, whose Persian language version has been validated by Moghaddam et al. [86]. Scores were calculated according to the frequency and time spent on light, moderate, high, and very high-intensity activities, based on a list of common daily activities.

Blood sampling

Following a 12-hour overnight fasting, 10 cc of venous blood sample was drawn between 7 and 10:30 a.m., and immediately divided. Half of each sample was kept for 30 minutes at room temperature until clotting, then, blood samples were centrifuged at 3000 g for 20 minutes, and decanted into several separate clean micro-tubes and stored in a freezer at −80°C for further analysis.

Biochemical and hormonal assessments
All hormones were determined by using enzyme-linked immunosorbent assay (ELISA) method. Leptin, ghrelin and insulin levels were assessed using a LDN kit (Nordhorn, Germany) with a sensitivity of 0.50 ng/ml, a Crystal Day Christian Day kit with a sensitivity of 0.01 ng/ml, and an IBT kit (infitum biotech, IBT; Netherland) with a sensitivity of 0.11 μU / ml. Intra- and inter-assay coefficients of variation (CV) reported by the manufacturer for leptin, ghrelin, and insulin were 3.7– 5% and 5.9–5.8%, CV<8% and CV<10%, and 3.7-4.2%, and 3.7-4.2%, respectively.

Fecal sampling and DNA extraction

Participants were asked to collect their stool samples in a conventional laboratory plastic container dedicated to fecal sampling. The samples were moved immediately to the laboratory in ice packs and stored at -80 °C (flash frozen) upon arrival (within 2 h.), before further processing. Extraction of total bacterial DNA from 200 mg of each stool sample has been done using QIAamp The Fast DNA Stool Mini Kit (51604) (Qiagen, Hilden, Germany) was used according to manufacturer's instructions. The purity and concentration of the extracted DNA were determined by Nanodrop spectrophotometer (Thermo Scientific NanoDrop, USA) [87]. The extracted DNAs were stored at −20 °C until further analysis. By using the nucleotide BLAST in NCBI, the specificity of the primers was evaluated. The specific sequences of primers are shown in Table 1.

q-PCR analyses

The abundance of bacteria was analyzed using Quantitative real-time PCR based on SYBER green method (LightCycler® 96 SW 1.1; Roche, Germany) [35,87,88]. Each 10 μl of q-PCR reaction was composed of SYBR Premix Ex Taq II (RR820L; Takara, Japan), 0.5 μl of each of the specific 16s rRNA primers [35,87-94] (Table 1), and 1 μl of the DNA template. The q-PCR reactions were carried out in duplicate using LightCycler® 8-Tube Strips (clear; Roche). An appropriate annealing temperature was used for designing the amplification program: 1 cycle of 95 °C for 1 min, 40 cycles of denaturation at 95 °C for 5 s, then annealing at 55 °C for 30 s, and extension at 72 °C for 30 s. Finally, melting curve analysis was performed after amplification to confirm the specificity of PCR reactions, followed by 1 cycle at 95 °C for 5 s, 60 °C for 1 min, and 95 °C for 1 s.

Table 1. Primers used in this study
Target Bacteria	Forward (5´ to 3´)	Reverse (5´ to 3´)	Reference
Prevotellaceae	CACCAAGGCGACGATCA	GGATAACGCCYGGACCT	(89)
Faecalibacterium praunzitii	GGAGGAAGAGGTCTTGG	AATTCCGCTACCTCTGCACT	(88)
Bifidobacterium spp	TCGCGTCYGCTGTGAAAG	CCACATCCAGCRTCACAC	(92)
lactobacillus spp	AGCAGTAGGAATCTTCA	CACCGCTACACATGGAG	(91)
Akkermansia muciniphila	CAGCACGTGAAGGGGACCG	CCTTGCGGTTGGCTTCAGAT	(87)
Bacteroides fragilis	CTGAACCACAGAGATAGCG	CGCAAACTTTCAACAGCAGTTTA	(93)
Firmicutes	GGAGYATGTGTTGAAATTCGAAGCA	AGCTGAGCAACACGCAACATGCAC	(94)
Bacteroidetes	AAACCTCAAAGKATTGCAGG	GGTAAGGTTCTGCACAGGCCTAT	(35)
Escherichia coli	CATTGAGCTTACCCGCAGAGAAGC	CTCTACGAGACTCAAGCCTTG	(90)

Standard curve

For calculating the abundance of bacteria in each sample we made a comparison between obtained cycle threshold (CT) values with the standard curves using serial dilutions of DNA obtained from the standard strain *Escherichia coli* (ATCC 25922), with known DNA concentration. This curve enables measurement of each bacterium's DNA concentration from stool samples. As a semi-log regression line plot of CT value vs. log of DNA concentration, the standard curve is graphically represented.

Statistical analysis

The normality of the data was assessed using Kolmogorov-Smirnov test and was shown to be non-normally distributed. Categorical variables were presented as percentages, and continuous variables presented as median and interquartile range. Wilcoxon test and Chi-square or Fischer exact tests were used for comparison quantitative and qualitative variables, respectively, across the two studied groups. To assess associations between gut microbiota and RMR, linear regression was used. In an adjusted model, body fat percent was adjusted. All statistical analyses were performed using SPSS software (version 23, SPSS Inc., Chicago, IL, USA), whilst P<0.05 was, *a priori*, considered statistically significant.

Results

We identified 18 individuals with low RMR (median age of 34 years; and median BMI of 28.65) and enrolled 18 participants with normal RMR as controls (median age of 35.5 years; and median BMI of 28.55) (age and BMI were matched with cases). Participant characteristics are presented in (Table-2). The median of measured RMR was significantly higher in controls compared to cases, (median: 1511.5, IQR: 163.25 vs median: 1303.5, IQR: 291) (P<0.001). The median of age (P= 0.28), weight (P= 0.40), BMI (P= 0.11), and fat free mass (P= 0.06) were not significantly different among case and control groups. However, body fat percent was significantly different among groups, where controls had lower body fat percent (median: 40.35, IQR: 7.1) in comparison to the other
group (median: 44.4, IQR: 6.27.1) (P = 0.03). In addition, there was no difference in the median of leptin, insulin, and ghrelin levels between two groups (P = 0.83), (P = 0.31), (P = 0.30) respectively. In terms of qualitative variables, there were no significant differences in physical activity levels of cases and controls (P = 0.87). Moreover, there was no difference between energy intake and dietary intake of micro/macro nutrients and food groups among cases and controls (presented in Table-3) (P > 0.05).
Table 2
General characteristics of participants among cases and controls.

Variable	Controls N=18	Cases N=18	P-Value a
Quantitative Variables			
Age (year)	35.5 ± 10.25	34 ± 7	0.28
Height (cm)	163 ± 6	158 ± 7.25	0.07
Weight (kg)	77.25 ± 13.6	74.6 ± 14.33	0.40
Body mass index (kg/m^2)	28.55 ± 5.48	28.65 ± 4.33	0.11
m-RMR b (kcal)	1511.5 ± 163.25	1303.5 ± 291	<0.001
RMR/kg c	20.11 ± 2.68	16.85 ± 2.39	<0.001
Fat free mass (kg)	46.8 ± 5.9	43.4 ± 9.1	0.06
Body fat mass (Kg)	32.6 ± 11.6	33 ± 9.5	0.18
Body fat percent	40.35 ± 7.1	44.4 ± 6.2	0.03
Waist to hip Ratio	0.93 ± 0.1	0.92 ± 0.06	0.45
Waist circumference (cm)	96.85 ± 16.13	93.65 ± 13.83	0.65
Systolic blood pressure	98 ± 21	98.5 ± 30.5	0.45
Diastolic blood pressure	67.5 ± 16	73 ± 14.25	0.06
Leptin	20.57 ± 5.65	20.40 ± 3.74	0.83
Insulin	14.81 ± 6.53	14.05 ± 6.37	0.31
Ghrelin	1.83 ± 2.47	2.18 ± 5.69	0.30
Qualitative Variables			
Physical activity			
less or never	10(55.6)	13(72.2)	0.87
Moderate	8(44.4)	3(16.7)	
High	0	2(11.1)	

* Data are presented as median ± interquartile range or number (percent).

a P-values are from Wilcoxon test for quantitative and Fischer exact tests for qualitative variables comparisons between two groups

b Measured resting metabolic rate, c Resting metabolic rate/weight (kg)

P value <0.05 was considered statistically significant
Table 3
Dietary intake of micro/macro nutrients and food groups among cases and controls.

Variables	Controls, N=18	Cases, N=18	P-Value*
Energy (Kcal)	2102.87 ± 591.38	2261.31 ± 1020.56	0.18
Protein (g/day)	77.13 ± 33.56	88.64 ± 42.61	0.50
Carbohydrate (g/day)	287.46 ± 80.52	320.1 ± 114.56	0.23
Fat (g/day)	71.37 ± 24.6	75.76 ± 36.9	0.56
Vitamin A (RAE/day)	586.08 ± 404.11	770.39 ± 485.84	0.06
Vitamin D (µg/day)	1.38 ± 1.81	1.93 ± 1.73	0.37
Vitamin K (µg /day)	285.9 ± 291.52	348.54 ± 453.4	0.47
Vitamin E (mg/day)	10.46 ± 3.38	9.27 ± 5.05	0.45
Vitamin C (mg/day)	133.08 ± 102.17	118.06 ± 83.45	0.88
Iron (mg/day)	28.71 ± 15.86	33.87 ± 34.85	0.17
Folate (mg/day)	495.73 ± 190.6	562.06 ± 162.7	0.33
Fiber (g/day)	34.35 ± 17.51	34.13 ± 22.88	0.16
Grains (g/day)	318.05 ± 112.48	345.35 ± 126.08	0.18
Fruit (g/day)	322.95 ± 223.2	269.7 ± 371.8	0.37
Vegetables (g/day)	249 ± 236.2	323.3 ± 203.95	0.18
Beans (g/day)	33.7 ± 46.58	39.85 ± 64.4	0.68
Diary (g/day)	294.45 ± 191.43	328.95 ± 319.08	0.31
Red meat (g/day)	21.2 ± 30.2	16.4 ± 17.23	0.21
White meat (g/day)	46.4 ± 48.33	38.7 ± 26.4	0.56

* Resulted from Wilcoxon test
** Data are presented as median ± interquartile range

P value <0.05 was considered statistically significant

In Table-4, median abundance of studied bacteria and phyla are presented. The results showed that bacterial load of *F. prausnitzii* (P<0.001) and *B. fragilis* (P= 0.02) in fecal samples of control groups who had normal RMR were significantly higher compared to those with low RMR in case groups. Furthermore, *Firmicutes* abundance increased was significantly in control groups (P= 0.02). No significant difference was found in the level of *Akkermansia, lactobacillus, Bifidobactrium, Escherichia coli, Prevotella,* and *Bacteroidetes* phylum between the two groups (P > 0.05).
Table 4
Comparison of abundance of bacteria between cases and controls*.

Variables	Cases		Controls		P-Value**
	N=18	Median	Interquartile Range	N=18	Range
Bacteria					
Akkermansia muciniphil	13194.79	236804.38	15536.07	394800.43	0.35
CFU^a/gr (X10^3)					
Bacteroides fragilis	7464676.77	12736868.07	16996096.41	28344748.78	0.02
CFU/gr (X10^5)					
Bifidobacterium	1030250.00	1047720.63	1455799.41	2726496.85	0.08
CFU/gr (X10^4)					
Escherichia Coli	192403.18	1148809.48	210996.67	317666.96	0.71
CFU/gr (X10^4)					
Faecalibacterium	5340303.00	4317291.18	9682001.42	10643646.47	<0.001
CFU/gr (X10^5)					
lactobacillus	21286.19	75833.80	21723.46	40607.88	0.95
CFU/gr (X10^3)					
Prevotella	725377.63	23939856.19	282798.00	19144690.17	0.56
CFU/gr (X10^5)					
Phylum					
Fir/Bac^b	1178.15	2615.63	1926.81	1725.07	0.84
Bacteriodetes	0.07	0.10	0.10	0.05	0.23
Firmicutes	84.12	131.82	197.08	253.73	0.02
*Data are presented as median ± interquartile range					

^a Colony forming unit

^b Firmicutes/Bacteriodetes

** Wilcoxon test was used

P value <0.05 was considered statistically significant
In order to discern the association between the bacterial abundance and RMR, we conducted linear regression, in crude and adjusted models. Our crude results manifested a positive association between *F. prausnitzii* \((\beta = 1.29 \times 10^{-5}, \text{SE}= 5 \times 10^{-6}, P= 0.01) \), *B. fragilis* \((\beta = 4 \times 10^{-6}, \text{SE}= 2 \times 10^{-6}, P= 0.03) \), *lactobacillus* \((\beta = 1.61 \times 10^{-4}, \text{SE}= 5.5 \times 10^{-5}, P= 0.01) \), and *Firmicutes* \((\beta = 7.52 \times 10^{-1}, \text{SE}= 2.74 \times 10^{-1}, P=0.01) \) with RMR (Table-5). Further, after adjustment for body fat percent as a confounder (because it was significantly different between groups), the above-mentioned associations remained statistically significant (P<0.05).

Table 5

Variables	\(\beta \)-coefficient	Standard Error	P-Value*	
Akkermansia muciniphila	Crude \(a\)	3.97 \times 10^{-5}	9.1 \times 10^{-5}	0.67
	Model 1 \(b\)	3.85 \times 10^{-5}	9.3 \times 10^{-5}	0.68
Bacteroides fragilis	Crude	4 \times 10^{-6}	2 \times 10^{-6}	0.03
	Model 1	4.13 \times 10^{-6}	2 \times 10^{-6}	0.04
Bifidobactrium spp	Crude	2.44 \times 10^{-5}	1.3 \times 10^{-5}	0.06
	Model 1	2.44 \times 10^{-5}	1.3 \times 10^{-5}	0.07
Escherichia coli	Crude	-2.43 \times 10^{-5}	4 \times 10^{-5}	0.55
	Model 1	-2.42 \times 10^{-5}	4.1 \times 10^{-5}	0.56
Faecalibacterium prausnitzii	Crude	1.29 \times 10^{-5}	5 \times 10^{-6}	0.01
	Model 1	1.29 \times 10^{-5}	5 \times 10^{-6}	0.01
lactobacillus spp	Crude	1.61 \times 10^{-4}	5.5 \times 10^{-5}	0.01
	Model 1	1.73 \times 10^{-4}	5.7 \times 10^{-5}	0.01
Prevotellaceae	Crude	1.19 \times 10^{-6}	1 \times 10^{-6}	0.40
	Model 1	1.22 \times 10^{-6}	1 \times 10^{-6}	0.40
Fir/Bac\(^c\)	Crude	-1.62 \times 10^{-2}	1.77 \times 10^{-2}	0.37
	Model 1	-1.61 \times 10^{-2}	1.8 \times 10^{-2}	0.38
Bacteroidetes	Crude	1.16 \times 10^{3}	6.81 \times 10^{2}	0.10
	Model 1	1.16 \times 10^{3}	6.92 \times 10^{2}	0.10
Firmicutes	Crude	7.52 \times 10^{-1}	2.74 \times 10^{-1}	0.01
	Model 1	7.76 \times 10^{-1}	2.8 \times 10^{-1}	0.01

* Calculated using linear regression
Discussion

The finding of the current study shows that the abundance of *B. fragilis*, *F. prausnitzii*, and *Firmicutes* were higher in those with normal RMR compared to those with low RMR. Moreover we found that with an increasing abundance of *B. fragilis*, *F. prausnitzii*, lactobacillus, and *Firmicutes*, RMR concurrently increases. In order to discern the relationship between gut microbiota an obesity, numerous animal and human-based research [30, 35, 42–44] has been conducted [45]. Accordingly, studies have shown that energy homeostasis imbalances, low-grade inflammation, and insulin resistance result from dysbiosis, which can contribute to negative host metabolism regulation [46]. Moreover, since the first paper on the role of intestinal microbiota in host metabolism, including body weight regulation [31], the gut microbiome has been shown to have important functions, such as impacting on dietary energy harvesting and the control of anti-inflammatory and metabolism; indeed, any alteration in the composition of the gut microbiota may trigger and develop obesity, or vice versa [46, 47]. The rise in *Firmicutes* and decrease in *Bacteroidetes* concentrations (increase in F/B ratio) in obese vs. normal subjects has been shown in various animal and human studies [30, 48–50]. In the current study, there was no association between F/B ratio and RMR, which is concordant with the results of the previous study conducted on both normal and obese individuals [38]. However, we observed higher abundance of *Firmicutes* phylum in control groups (with normal RMR) and a positive association between this phylum and RMR. Dominancy of *Firmicutes* in people with normal RMR could be explained by some genus belonging to this phylum, such as lactobacillus spp. and Faecalibacterium prausnitzii. In fact, in this study we observed significant positive correlation between lactobacillus spp. and Faecalibacterium prausnitzii with RMR. Moreover, *Bacteroides fragilis* showed a positive correlation with RMR as well. There is a dearth of studies that have assessed the correlation between gut microbiota and RMR. Nevertheless, *F. prausnitzii* has been shown to be a butyrate producer that exhibits anti-inflammatory and protective effects against obesity [51]. Previous studies have demonstrated that consumption of fermentable carbohydrates could influence production of butyrate [52, 53]. Indeed, diets high in non-digestible carbohydrates can promote the abundance of some butyrate-producing bacteria, and thus contribute to higher levels of butyrate in plasma. Moreover, in animal studies, it has been shown that high circulation of butyrate in plasma may improve insulin sensitivity and increase energy expenditure [54, 55]. In addition, it has been proved that obese participants have reduced levels of plasma butyrate [56]. Intestinal gluconeogenesis, via the intestine-brain circuit, is activated by butyrate and propionate, thus promoting glucose regulation and metabolic benefits expressed by body weight [57]. The other mechanism by which butyrate can increase energy expenditure is via its capacity to promote thermogenesis and fatty acid oxidation by activation of 5'-AMP-activated protein kinase (AMPK), phosphorylation of peroxisome proliferator–activated receptor-gamma coactivator-1α (PGC1α) in muscle and liver, and up regulation of PGC-1α and mitochondrial uncoupling protein-1 (UCP-1) in brown adipose tissues (BAT) [58, 59]. AMPK can inhibit acetyl CoA carboxylase via phosphorylation, and consequently reduces malonyl CoA synthesis [59]. With regard to *Lactobacillus spp*, it seems that empirical results are equivocal; where some studies support its anti-obesity roles [60] while some others assert that it is obesogenic [61, 62] by considering its different genus [63]. Although, in the current study, there was no significant difference of abundance of *Lactobacillus spp* between cases and controls, a significant correlation was found between their
frequency and RMR. In fact, our study is concordant with some animal studies [40] showing that some bacteria belonging to this family can promote energy expenditure. This study verified that \(L. \) retueri 263 may have an impact on increasing energy expenditure by the up-regulation of Uncoupling protein-1 (Ucp1), presented in white adipose tissue (WAT), by a process called browning. The browning remodels the energy metabolism of WAT and converts it to a beige adipose tissue with higher energy consumption and greater thermogenesis and respiratory rate [64–66]. In other words, browning of WAT is a proposed mechanism to increase energy expenditure and decrease obesity. Moreover, Bungo Shirouchi et al. [41] asserted that \textit{Lactobacillus gasseri SBT2055 (LG2055)} can elicit anti-obesity effects via increases in carbohydrate oxidation and contribute to the increase of energy expenditure. Indeed, the increase in butyrate production by \textit{LG2055} can activate G protein-coupled receptor 41 (GPR41) and increase energy expenditure following enhancement of glucose tolerance. Indeed, research suggests that in the host, GPRs serve as receptors for free fatty acids (FFAs), among which, free fatty acid receptor 3 (FFA3/GPR41) can be activated via SCFAs, such as propionate, butyrate, and acetate [67–70]. Interestingly, animal studies have illustrated that GPR41 knockout mice have decreased energy expenditure and less glucose tolerance [71]; suggesting that short chain fatty acids (SCFAs) are able to increase the sympathetic nervous activity by GPR41, and consequently increase energy expenditure in animal models [72]. As we observed significant difference between \textit{Bacterides fragelis} abundance in both cases and controls with higher RMR, it seems that, in contrast to previous studies proposing obesogenic role of \textit{B. fragilis} [73, 74], it may impose protective effects against obesity by improving RMR. As we discussed earlier, butyrate can increase energy expenditure via aforementioned mechanisms, and \textit{B. fragilis}, that promotes mucin production, is a propionate producer, which is a precursor of butyrate [75]. In this way, a previous study found that \textit{B. fragilis}, in combination with \textit{Bifidobacterium infantis}, \textit{Eubacterium limosum}, and whole leaf extract of Aloevera, can increase production of butyrate [76]. Overall, findings have demonstrated that SCFAs can mediate the beneficial effects of prebiotics, and based on the individual microbiota, prebiotics can produce propionate or butyrate [77]. However, there is not enough human evidence to show the relationship between gut microbiota and host resting metabolic rate in overweight/obese individuals with low or normal RMR rate, and this study, for the first time, elucidates this issue. Since the composition of gut microbiota can differ based on different environmental factors, such as race, dietary intake, lifestyle, population-specific variations, and geographical area, it is necessary to determine gut microbiota pattern of each targeted population to manage obesity using proper strategies [78].

\section*{Conclusions}

In conclusion, the results of this study showed, for the first time, that despite the absence of significant differences in abundance of, \textit{A. muciniphila}, \textit{Bifidobacterium}, \textit{Prevotella}, and \textit{E. coli} between subjects with normal RMR and low RMR, the abundance of \textit{F. prausnitzii}, \textit{B. fragilis} and \textit{Firmicutes} phylum were significantly higher in fecal samples of individuals with normal RMR. In addition, based on the correlation of studied bacteria and RMR, our findings showed a positive association between \textit{F. prausnitzii}, \textit{B. fragilis} and \textit{Firmicutes} phylum, as well as \textit{lactobacillus}, with RMR. Finally, by determining the gut microbiota effectiveness on host energy expenditure, proper strategies can be designed to manage obesity based on each targeted population. The main strength of the current study is that, for the first time, the relationship between gut microbiota and resting metabolic rate in Iranian overweight/obese women by matching two important confounders, age, and BMI, has been investigated. Moreover, we assessed dietary intake, body composition, leptin, ghrelin, and insulin levels, and physical activity of all participants, allowing a comprehensive profile of all participants. Nevertheless, despite the strengths noted above, there are some limitations of the present study. Regarding the case-control design of this study, we are not
able to discern any cause and effect association between gut microbiota and energy expenditure, and further prospective longitudinal studies and clinical trials are needed. Although we matched cases and controls by age and BMI, there are likely some other confounders which might affect our findings.

Declarations

Ethics approval and consent to participate

The study protocol was approved by the Ethics Commission of Tehran University of Medical Sciences (IR.TUMS.VCR.REC.1398.562). Then, written informed consent was obtained from all patients. All methods were performed in accordance with the declaration of Helsinki.

Consent for publication

Not applicable.

Availability of data and materials

The datasets used and/or analyzed during the current study available from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests.

Funding

The research financially supported by Tehran University of Medical sciences, (Grant number 41917-161-01-98).

Authors' contributions

KHM and SDS supervised the study; SM and SH collected the data; SM, SAB and AM did experimental analysis; SM and MSY analyzed the data; SM wrote the first draft with contributions from the other authors and CCTC, revised the manuscript. All authors reviewed and commented on subsequent drafts of the manuscript.

Acknowledgements

Authors would like to thank the participants for their kind cooperation.

References

1. Collaboration NRF (2016) Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19· 2 million participants. The Lancet 387 (10026):1377–1396
2. Djalalinia S, Qorbani M, Peykari N, Kelishadi R (2015) Health impacts of obesity. Pakistan journal of medical sciences 31 (1):239
3. Forouzanfar MH, Afshin A, Alexander LT, Anderson HR, Bhutta ZA, Biryukov S, Brauer M, Burnett R, Cercy K, Charlson FJ (2016) Global, regional, and national comparative risk assessment of 79 behavioural,
environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. The lancet 388 (10053):1659–1724

4. Organization WH (2011) Fact sheet 311: Obesity and overweight. http://www.who.int/mediacentre/factsheets/fs311/en/index.html

5. Murtagh E, Collaboration NRF (2017) Worldwide trends in children’s and adolescents’ body mass index, underweight, overweight and obesity, in comparison with adults, from 1975 to 2016: A pooled analysis of 2,416 population-based measurement studies with 128.9 million participants (Pre-published version).

6. Janghorbani M, Amini M, Willett WC, Gouya MM, Delavari A, Alikhani S, Mahdavi A (2007) First nationwide survey of prevalence of overweight, underweight, and abdominal obesity in Iranian adults. Obesity 15 (11):2797–2808

7. Pinheiro Volp A, de Oliveira F, Duarte Moreira Alves R, Esteves E, Bressan J (2011) Energy expenditure: components and evaluation methods. Nutricion hospitalaria 26 (3)

8. Landsberg L (2012) Core temperature: a forgotten variable in energy expenditure and obesity? Obesity reviews 13:97–104

9. Levine JA (2002) Non-exercise activity thermogenesis (NEAT). Best Practice & Research Clinical Endocrinology & Metabolism 16 (4):679–702

10. Ravussin E, Lillioja S, Knowler WC, Christin L, Freymond D, Abbott WG, Boyce V, Howard BV, Bogardus C (1988) Reduced rate of energy expenditure as a risk factor for body-weight gain. New England Journal of Medicine 318 (8):467–472

11. Astrup A, Buemann B, Toubro S, Ranneries C, Raben A (1996) Low resting metabolic rate in subjects predisposed to obesity: a role for thyroid status. The American journal of clinical nutrition 63 (6):879–883

12. Gallagher D, Belmonte D, Deurenberg P, Wang Z, Krasnow N, Pi-Sunyer FX, Heymsfield SB (1998) Organ-tissue mass measurement allows modeling of REE and metabolically active tissue mass. American Journal of Physiology-Endocrinology And Metabolism

13. Müller MJ, Bosy-Westphal A, Klaus S, Kreymann G, Lührmann PM, Neuhäuser-Berthold M, Noack R, Pirke KM, Platte P, Selberg O (2004) World Health Organization equations have shortcomings for predicting resting energy expenditure in persons from a modern, affluent population: generation of a new reference standard from a retrospective analysis of a German database of resting energy expenditure. The American journal of clinical nutrition 80 (5):1379–1390

14. Johnstone AM, Murison SD, Duncan JS, Rance KA, Speakman JR (2005) Factors influencing variation in basal metabolic rate include fat-free mass, fat mass, age, and circulating thyroxine but not sex, circulating leptin, or triiodothyronine. The American journal of clinical nutrition 82 (5):941–948

15. Ravussin E, Lillioja S, Anderson TE, Christin L, Bogardus C (1986) Determinants of 24-hour energy expenditure in man. Methods and results using a respiratory chamber. The Journal of clinical investigation 78 (6):1568–1578

16. Cunningham JJ (1991) Body composition as a determinant of energy expenditure: a synthetic review and a proposed general prediction equation. The American journal of clinical nutrition 54 (6):963–969

17. Javed F, He Q, Davidson LE, Thornton JC, Albu J, Boxt L, Krasnow N, Elia M, Kang P, Heshka S (2010) Brain and high metabolic rate organ mass: contributions to resting energy expenditure beyond fat-free mass. The American journal of clinical nutrition 91 (4):907–912
18. Arciero PJ, Goran MI, Poehlman ET (1993) Resting metabolic rate is lower in women than in men. Journal of applied physiology 75 (6):2514–2520
19. Butte NF, Treuth MS, Mehta NR, Wong WW, Hopkinson JM, Smith EOB (2003) Energy requirements of women of reproductive age. The American journal of clinical nutrition 77 (3):630–638
20. Byrne NM, Hills AP, Hunter GR, Weinsier RL, Schutz Y (2005) Metabolic equivalent: one size does not fit all. Journal of Applied physiology
21. Dionne I, Despres J, Bouchard C, Tremblay A (1999) Gender difference in the effect of body composition on energy metabolism. International journal of obesity 23 (3):312–319
22. Henry C (2005) Basal metabolic rate studies in humans: measurement and development of new equations. Public health nutrition 8 (7a):1133–1152
23. Bosy-Westphal A, Wolf A, Bührens F, Hitze B, Czech N, Mönig H, Selberg O, Settler U, Pfeuffer M, Schrezenmeir J (2008) Familial influences and obesity-associated metabolic risk factors contribute to the variation in resting energy expenditure: the Kiel Obesity Prevention Study. The American journal of clinical nutrition 87 (6):1695–1701
24. Fukagawa NK, Bandini LG, Young JB (1990) Effect of age on body composition and resting metabolic rate. American Journal of Physiology-Endocrinology and Metabolism 259 (2):E233-E238
25. DiPIETRO L (1995) Physical activity, body weight, and adiposity: an epidemiologic perspective. Exercise and sport sciences reviews 23 (1):275–304
26. Müller M, Bosy-Westphal A, Kutzner D, Heller M (2002) Metabolically active components of fat-free mass and resting energy expenditure in humans: recent lessons from imaging technologies. Obesity reviews 3 (2):113–122
27. Bouchard C, Tremblay A, Nadeau A, Despres J, Theriault G, Boulay M, Lortie G, Leblanc C, Fournier G (1989) Genetic effect in resting and exercise metabolic rates. Metabolism 38 (4):364–370
28. Svendsen OL, Hassager C, Christiansen C (1993) Impact of regional and total body composition and hormones on resting energy expenditure in overweight postmenopausal women. Metabolism 42 (12):1588–1591
29. Spadafranca A, Cappelletti C, Leone A, Vignati L, Battezzati A, Bedogni G, Bertoli S (2015) Relationship between thyroid hormones, resting energy expenditure and cardiometabolic risk factors in euthyroid subjects. Clinical Nutrition 34 (4):674–678
30. Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI (2005) Obesity alters gut microbial ecology. Proceedings of the national academy of sciences 102 (31):11070-11075
31. Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI (2004) The gut microbiota as an environmental factor that regulates fat storage. Proceedings of the national academy of sciences 101 (44):15718-15723
32. Karlsson F, Tremaroli V, Nielsen J, Bäckhed F (2013) Assessing the human gut microbiota in metabolic diseases. Diabetes 62 (10):3341–3349
33. Tremaroli V, Bäckhed F (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489 (7415):242–249
34. Marvasti FE, Moshiri A, Taghavi MS, Riazi S, Taati M, Sadati SF, Ghaheri A, Masoomi M, Vaziri F, Fateh A (2020) The First Report of Differences in Gut Microbiota Composition between Obese and Normal Weight
35. Koliada A, Syzenko G, Moseiko V, Budovska L, Puchkov K, Perederiy V, Gavalko Y, Dorofeyev A, Romanenko M, Tkach S (2017) Association between body mass index and Firmicutes/Bacteroidetes ratio in an adult Ukrainian population. BMC microbiology 17 (1):1–6

36. Andoh A, Nishida A, Takahashi K, Inatomi O, Imaeda H, Bamba S, Kito K, Sugimoto M, Kobayashi T (2016) Comparison of the gut microbial community between obese and lean peoples using 16S gene sequencing in a Japanese population. Journal of clinical biochemistry and nutrition:15–152

37. Schwierz A, Taras D, Schäfer K, Beijer S, Bos NA, Donus C, Hardt PD (2010) Microbiota and SCFA in lean and overweight healthy subjects. Obesity 18 (1):190–195

38. Kocelak P, Zak-Goląb A, Zahorska-Markiewicz B, Aptekorz M, Zientara M, Martirosian G, Chudek J, Olszanecka-Glinianowicz M (2013) Resting energy expenditure and gut microbiota in obese and normal weight subjects. European review for medical and pharmacological sciences 17 (20):2816–2821

39. Depommier C, Van Hul M, Everard A, Delzenne NM, De Vos WM, Cani PD (2020) Pasteurized Akkermansia muciniphila increases whole-body energy expenditure and fecal energy excretion in diet-induced obese mice. Gut microbes:1–15

40. Chen L-H, Chen Y-H, Cheng K-C, Chien T-Y, Chan C-H, Tsao S-P, Huang H-Y (2018) Antiobesity effect of Lactobacillus reuteri 263 associated with energy metabolism remodeling of white adipose tissue in high-energy-diet-fed rats. The Journal of nutritional biochemistry 54:87–94

41. Shirouchi B, Nagao K, Umegatani M, Shiraishi A, Morita Y, Kai S, Yanagita T, Ogawa A, Kadooka Y, Sato M (2016) Probiotic Lactobacillus gasseri SBT2055 improves glucose tolerance and reduces body weight gain in rats by stimulating energy expenditure. British Journal of Nutrition 116 (3):451–458

42. Turnbaugh PJ, Bäckhed F, Fulton L, Gordon JI (2008) Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell host & microbe 3 (4):213–223

43. Murphy E, Cotter P, Healy S, Marques TM, O’sullivan O, Fouhy F, Clarke S, O’toole P, Quigley EM, Stanton C (2010) Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models. Gut 59 (12):1635–1642

44. Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Human gut microbes associated with obesity. nature 444 (7122):1022–1023

45. Tilg H, Moschen A (2016) Gut microbiome, obesity, and metabolic syndrome. Metabolic Syndrome: A Comprehensive Textbook:447–459

46. Newsholme P, de Bittencourt Jr PIH (2016) Gut associated bacteria are critical to metabolism, inflammation and health. Current Opinion in Clinical Nutrition & Metabolic Care 19 (4):245–249

47. de Clercq NC, Groen AK, Romijn JA, Nieuwdorp M (2016) Gut microbiota in obesity and undernutrition. Advances in nutrition 7 (6):1080–1089

48. Barlow GM, Yu A, Mathur R (2015) Role of the gut microbiome in obesity and diabetes mellitus. Nutrition in clinical practice 30 (6):787–797

49. Mathur R, Barlow GM (2015) Obesity and the microbiome. Expert Review of Gastroenterology & Hepatology 9 (8):1087–1099

50. Sweeney TE, Morton JM (2013) The human gut microbiome: a review of the effect of obesity and surgically induced weight loss. JAMA surgery 148 (6):563–569
51. Lopez-Siles M, Duncan SH, Garcia-Gil LJ, Martinez-Medina M (2017) Faecalibacterium prausnitzii: from microbiology to diagnostics and prognostics. The ISME journal 11 (4):841–852

52. Louis P, Scott KP, Duncan SH, Flint HJ (2007) Understanding the effects of diet on bacterial metabolism in the large intestine. Journal of applied microbiology 102 (5):1197–1208

53. Mahowald MA, Rey FE, Seedorf H, Turnbaugh PJ, Fulton RS, Wollam A, Shah N, Wang C, Magrini V, Wilson RK (2009) Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla. Proceedings of the National Academy of Sciences 106 (14):5859-5864

54. Gao Z, Yin J, Zhang J, Ward RE, Martin RJ, Lefevre M, Cefalu WT, Ye J (2009) Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58 (7):1509–1517

55. Manns J, Boda J (1967) Insulin release by acetate, propionate, butyrate, and glucose in lambs and adult sheep. American Journal of Physiology-Legacy Content 212 (4):747–755

56. Vice E, Privette JD, Hickner RC, Barakat HA (2005) Ketone body metabolism in lean and obese women. Metabolism 54 (11):1542–1545

57. De Vadder F, Kovatcheva-Datchary P, Goncalves D, Vinera J, Zitoun C, Duchampt A, Bäckhed F, Mithieux G (2014) Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156 (1-2):84–96

58. Donohoe DR, Garge N, Zhang X, Sun W, O’Connell TM, Burger MK, Bultman SJ (2011) The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell metabolism 13 (5):517–526

59. Kahn BB, Alquier T, Carling D, Hardie DG (2005) AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell metabolism 1 (1):15–25

60. Drissi F, Merhej V, Angelakis E, El Kaoutari A, Carrière F, Henrissat B, Raoult D (2014) Comparative genomics analysis of Lactobacillus species associated with weight gain or weight protection. Nutrition & diabetes 4 (2):e109-e109

61. Munukka E, Wiklund P, Pekkala S, Völgyi E, Xu L, Cheng S, Lyytikäinen A, Marjomäki V, Alen M, Vahtovuo J, Keinänen-Kiukaanniemi S, Cheng S (2012) Women with and without metabolic disorder differ in their gut microbiota composition. Obesity (Silver Spring, Md) 20 (5):1082–1087. doi:10.1038/oby.2012.8

62. Million M, Angelakis E, Maraninchi M, Henry M, Giorgi R, Valero R, Vialettes B, Raoult D (2013) Correlation between body mass index and gut concentrations of Lactobacillus reuteri, Bifidobacterium animalis, Methanobrevibacter smithii and Escherichia coli. International journal of obesity (2005) 37 (11):1460-1466. doi:10.1038/ijo.2013.20

63. Million M, Angelakis E, Paul M, Armougom F, Leibovici L, Raoult D (2012) Comparative meta-analysis of the effect of Lactobacillus species on weight gain in humans and animals. Microbial pathogenesis 53 (2):100–108

64. Nedergaard J, Cannon B (2014) The browning of white adipose tissue: some burning issues. Cell metabolism 20 (3):396–407

65. Wu J, Cohen P, Spiegelman BM (2013) Adaptive thermogenesis in adipocytes: is beige the new brown? Genes & development 27 (3):234–250

66. Vitali A, Murano I, Zingaretti MC, Frontini A, Ricquier D, Cinti S (2012) The adipose organ of obesity-prone C57BL/6J mice is composed of mixed white and brown adipocytes. Journal of lipid research 53 (4):619–629
67. Hara T, Kashihara D, Ichimura A, Kimura I, Tsujimoto G, Hirasawa A (2014) Role of free fatty acid receptors in the regulation of energy metabolism. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids 1841 (9):1292–1300

68. Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D, Muir AI, Wigglesworth MJ, Kinghorn I, Fraser NJ (2003) The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. Journal of Biological Chemistry 278 (13):11312–11319

69. Blad CC, Tang C, Offermanns S (2012) G protein-coupled receptors for energy metabolites as new therapeutic targets. Nature reviews Drug discovery 11 (8):603–619. doi:10.1038/nrd3777

70. Offermanns S (2014) Free fatty acid (FFA) and hydroxy carboxylic acid (HCA) receptors. Annual review of pharmacology and toxicology 54:407–434. doi:10.1146/annurev-pharmtox-011613-135945

71. Bellahcene M, O’Dowd JF, Wargent ET, Zaibi MS, Hislop DC, Ngala RA, Smith DM, Cawthorne MA, Stocker CJ, Arch JR (2012) Male mice that lack the G-protein-coupled receptor GPR41 have low energy expenditure and increased body fat content. The British journal of nutrition 109 (10):1755–1764. doi:10.1017/s0007114512003923

72. Kimura I, Inoue D, Maeda T, Hara T, Ichimura A, Miyauchi S, Kobayashi M, Hirasawa A, Tsujimoto G (2011) Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proceedings of the National Academy of Sciences of the United States of America 108 (19):8030–8035. doi:10.1073/pnas.1016088108

73. Yasir M, Angelakis E, Bibi F, Azhar El, Bachar D, Lagier JC, Gaborit B, Hassan AM, Jiman-Fatani AA, Alshali KZ, Robert C, Dutour A, Raout D (2015) Comparison of the gut microbiota of people in France and Saudi Arabia. Nutr Diabetes 5 (4):e153. doi:10.1038/nutd.2015.3

74. Neyrinck AM, Possemiers S, Druart C, Van de Wiele T, De Backer F, Cani PD, Larondelle Y, Delzenne NM (2011) Prebiotic effects of wheat arabinoxylan related to the increase in bifidobacteria, Roseburia and Bacteroides/Prevotella in diet-induced obese mice. PLoS One 6 (6):e20944. doi:10.1371/journal.pone.0020944

75. Deng H, Yang S, Zhang Y, Qian K, Zhang Z, Liu Y, Wang Y, Bai Y, Fan H, Zhao X (2018) Bacteroides fragilis prevents Clostridium difficile infection in a mouse model by restoring gut barrier and microbiome regulation. Frontiers in microbiology 9:2976

76. Pogribna M, Freeman J, Paine D, Boudreau M (2008) Effect of Aloe vera whole leaf extract on short chain fatty acids production by Bacteroides fragilis, Bifidobacterium infantis and Eubacterium limosum. Letters in applied microbiology 46 (5):575–580

77. Poeker SA, Geirnaert A, Berchtold L, Greppi A, Krych L, Steinert RE, de Wouters T, Lacroix C (2018) Understanding the prebiotic potential of different dietary fibers using an in vitro continuous adult fermentation model (PolyFermS). Scientific reports 8 (1):1–12

78. Hill JO, Wyatt HR, Peters JC (2012) Energy balance and obesity. Circulation 126 (1):126–132

79. Kong LC, Holmes BA, Cotillard A, Habi-Rachedi F, Brazeilles R, Gougis S, Gausserès N, Cani PD, Fellahi S, Bastard J-P (2014) Dietary patterns differently associate with inflammation and gut microbiota in overweight and obese subjects. PloS one 9 (10):e109434

80. Flanbaumen L, Choban PS, Bradley LR, Burge JC (1997) Changes in measured resting energy expenditure after Roux-en-Y gastric bypass for clinically severe obesity. Surgery 122 (5):943–949
81. Shaheshin M, Rezazadeh A, Jessri M, Neyestani T, Rashidkhani B (2011) Validity of predictive equations for resting energy expenditure among Iranian women. Asia Pacific journal of clinical nutrition 20 (4):646

82. Meijer G, Westerterp KR, Saris W, ten Hoor F (1992) Sleeping metabolic rate in relation to body composition and the menstrual cycle. The American journal of clinical nutrition 55 (3):637–640

83. Webb P (1986) 24-hour energy expenditure and the menstrual cycle. The American journal of clinical nutrition 44 (5):614–619

84. Benton MJ, Hutchins AM, Dawes JJ (2020) Effect of menstrual cycle on resting metabolism: A systematic review and meta-analysis. PLoS one 15 (7):e0236025

85. Mirmiran P, Esfahani FH, Mehrabi Y, Hedayati M, Azizi F (2010) Reliability and relative validity of an FFQ for nutrients in the Tehran lipid and glucose study. Public health nutrition 13 (5):654–662

86. Moghaddam MB, Aghdam FB, Jafarabadi MA, Allahverdipour H, Nikookheslat SD, Safarpour S (2012) The Iranian Version of International Physical Activity Questionnaire (IPAQ) in Iran: content and construct validity, factor structure, internal consistency and stability. World applied sciences journal 18 (8):1073–1080

87. Collado MC, Derrien M, Isolauri E, de Vos WM, Salminen S (2007) Intestinal integrity and Akkermansia muciniphila, a mucin-degrading member of the intestinal microbiota present in infants, adults, and the elderly. Applied and environmental microbiology 73 (23):7767–7770

88. Benus RF, van der Werf TS, Welling GW, Judd PA, Taylor MA, Harmsen HJ, Whelan K (2010) Association between Faecalibacterium prausnitzii and dietary fibre in colonic fermentation in healthy human subjects. British journal of nutrition 104 (5):693–700

89. Larsen N, Vogensen FK, Van Den Berg FW, Nielsen DS, Andreasen AS, Pedersen BK, Al-Soud WA, Sørensen SJ, Hansen LH, Jakobsen M (2010) Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS one 5 (2):e9085

90. Bartosch S, Fite A, Macfarlane GT, McMurdo ME (2004) Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Applied and environmental microbiology 70 (6):3575–3581

91. Kanno T, Matsuki T, Oka M, Utsunomiya H, Inada K, Magari H, Inoue I, Maekita T, Ueda K, Enomoto S (2009) Gastric acid reduction leads to an alteration in lower intestinal microflora. Biochemical and biophysical research communications 381 (4):666–670

92. Rinttilä T, Kassinen A, Malinen E, Krogius L, Palva A (2004) Development of an extensive set of 16S rDNA-targeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real-time PCR. Journal of applied microbiology 97 (6):1166–1177

93. Liu C, Song Y, McTeague M, Vu AW, Wexler H, Finegold SM (2003) Rapid identification of the species of the Bacteroides fragilis group by multiplex PCR assays using group-and species-specific primers. FEMS microbiology letters 222 (1):9–16

94. Sun H, Ni X, Song X, Wen B, Zhou Y, Zou F, Yang M, Peng Z, Zhu H, Zeng Y (2016) Fermented Yupingfeng polysaccharides enhance immunity by improving the foregut microflora and intestinal barrier in weaning rex rabbits. Applied Microbiology and Biotechnology 100 (18):8105–8120

Figures
Figure 1. Flowchart of sampling

1300 individuals signed up in the Telegram bot at the initial phase

Total eligible individuals according to initial criteria

122

Total participants after evaluating their medical history and other factors

85

After 2-3 month Run-in period, individuals underwent indirect calorimetry

45

Excluded

Remained unmatched

Could not provide stool samples

9

Cases=18

Controls=18

6

3

Figure 1

See image above for figure legend