Antimicrobial activities of some narrow endemic gypsophytes

Esma Ocak¹, Şule İnci², Derviş Öztürk³, Sanem Akdeniz Şafak⁴, Ebru Özdeniz⁵, Sevda Kırbağ², Ahmet Harun Evren², Latif Kurt⁵

¹Osmangazi University, Faculty of Science and Literacy, Department of Chemistry, Eskişehir, Turkey
²Fırat University, Faculty of Science, Department of Biology, Elazığ, Turkey
³Osmangazi University, Mahmudiye Horse Breeding Vocational School, Eskişehir, Turkey
⁴Aksaray University, Faculty of Science and Literacy, Department of Biology, Aksaray, Turkey
⁵Ankara University, Faculty of Science, Department of Biology, Ankara, Turkey

ORCID IDs of the authors: E.O.0000-0002-9085-4151; Ş.I.0000-0002-4022-5269; D.Ö.0000-0001-7189-7407; S.A.Ş.0000-0002-7660-9109; E.Ö.0000-0003-4082-3071; S.K.0000-0002-4337-8236; A.H.E.0000-0003-1598-3065; L.K.0000-0003-1598-3065

Cite this article as: Ocak, E., İnci, S., Ozturk, D., Akdeniz Safak, S., Ozdeniz, E., Kırbağ, S. … Kurt, L. (2021). Antimicrobial activities of some narrow endemic gypsophytes. İstanbul Journal of Pharmacy, 51(1), 118-122.

ABSTRACT

Background and Aims: In this study, antimicrobial activities of extracts obtained from narrowly dispersed local endemic gypsophytes grown in extreme habitats were investigated for the first time. The aim of this study was to analyze antimicrobial effects of narrow endemic plants that are Thymus ekimii Yıldırımli, Verbascum gypsicola Vural & Aydogdu, Glaucium secmenii Yıldırımli and Psephellus erzincani Wagenitz & Kandemir.

Methods: Antimicrobial activity of T. ekimii, V. gypsicola, G. secmenii and P. erzincani were determined according to the disk diffusion method. The microorganisms used for the present investigation; gram positive bacteria, gram negative bacteria and yeasts (Bacillus megaterium DSM32, Escherichia coli ATCC25922, Candida albicans FMC17).

Results: According to the results obtained, P. erzincani showed the best antimicrobial activity against B. megaterium DSM32 (23 mm), E. coli ATCC25922 (15 mm) and C. albicans FMC17 (23 mm), respectively.

Conclusion: This study showed that extracts of these endemic plants have the potential for use as antimicrobial agents, especially P. erzincani.

Keywords: Thymus ekimii, Verbascum gypsicola, Glaucium secmenii, Psephellus erzincani, antimicrobial activity, gypsophyte

INTRODUCTION

The increasing resistance of bacteria to clinical antibiotics necessitates the development of new agents in the treatment of diseases. Therefore, antibacterial and antifungal effects of herbal preparations are very important due to the high incidence of antibiotic resistance in treatment (Mummed, Abraha, Feyera, Nigusse, & Assefa, 2018). Some studies showed that plants can be successful in overcoming antibiotic resistance with combinatorial approaches (Van Vuuren & Viljoen, 2011; Hutchings & Cock, 2018; Blonk & Cock, 2019). Today, 80% of the active substances used in the treatment of infectious diseases are thought to be vegetable-oriented (Özdek, Seçkin, & Çibuk, 2020). Therefore, the use of plant extracts as an antioxidant and antimicrobial agent has been expanded in recent years.

Among the leading countries of the temperate zone, Turkey has a lot of floristic diversity and endemism. Therapeutic uses of plants are based on ancient times. It has been found mainly by trial and error in Anatolia as well as all over the world and medi-
tically important plants have been widely used in traditional folk medicine for many centuries. It is known that some widespread endemic species have different antimicrobial effects (Yiğit, Kandemir, & Yiğit, 2002; Buruk, Sokmen, Aydin, & Erturk, 2006; Dulger, 2006; Benli, Güney, Bingöl, Geven, & Yiğit, 2007; Benli, Yiğit, Geven, Güney, & Bingöl, 2009; Türker, Birinci Yıldırım, Pehlivan Karakaş, & Köylüoğlu, 2009). While recent studies on antimicrobial activity are mostly concentrated on widespread endemic species, in this study, the antimicrobial effects of the gypsophyte species developing in gypseous soils, which are extremely arid, were examined (Wagenitz, & Kandemir, 2008; Yıldırım, 2012).

T. ekimii is a member of the Lamiaceae family and it is known that this family species is used in food and cosmetics as well as in the pharmaceutical industry (Bekut et al., 2018). It is known that *Thymus* L. (thyme) is used as a spice in meals and facilitates digestion. It is used by local people for cramps, disinfection, and as an expectorant. In studies, it has been determined that there are biological activities such as antioxidant, antiseptic, and antimicrobial (Benli & Yiğit, 2005).

Some species of the genus *Verbascum* L., including *V. gypsicola*, have been used extensively for centuries to treat internal and external infections. It is traditionally used by local people as a tea, and is believed to have a chest loosening and expectorant effect. In addition, some species of the *Verbascum* L. genus have biological effects such as antimalarial, antiviral, antitumor, antinociceptive, wound-healing, antimicrobial, anthelmintic, sedative, pre-anesthetic, and anti-inflammatory (Civelek, 2018).

The genus *Glaucium* Mill., which includes the species *G. secmenii*, has been used by local people for food and medical purposes. Some species’ seeds, green parts, and petals are used. It is stated in some studies that it is effective in colds, bronchitis, and in conditions such as expectorant and for insomnia (Saraç et al., 2018).

There are not many studies on the antimicrobial activities of taxa belonging to the genus *Psephellus* Cass., which also includes the *P. erzincani* species, and some species have been examined for their cytotoxic, antioxidant and anti-inflammatory activities (Korkmaz et al., 2019; Demiroz, Nalbantsoy, Aydin, & Baykan, 2020). The genus *Psephellus* has been separated from *Centaurea*, and some *Centaurea* species are used for fever, diabetes, hemorrhoids, and peptic ulcers for therapeutic purposes among people. In pharmacological and phytochemical studies, antioxidant, antimicrobial, and antipyretic properties have been determined in many different *Centaurea* species (Korkmaz et al., 2019).

In this study, it was aimed to determine the antimicrobial activities of the extracts obtained from a methanol solvent of local gypsophyte endemics *T. ekimii*, *V. gypsicola*, *G. secmenii* and *P. erzincani*.

MATERIALS AND METHODS

Collection and identification of plant material

The common feature of plants is that they are local endemic species spread on gypsum soils, which are extremely excavated arid habitats for plant life. Plant materials were diagnosed using Flora of Turkey and East Aegean Islands (Ekim 2000). Identified plant samples were checked in the ANK Herbarium, and the doublet of the plants was preserved in the ANK Herbarium (Table 1).

Extract of plant material

T. ekimii, *G. secmenii*, *V. gypsicola*, *P. erzincani* were dried and after milling added to the 40 mL 98% methanol by weighing 1 g for each sample.

Each sample was kept on a rotary shaker at 100 rpm for 72 hours to obtain the extract. It was then filtered using Whatman filter paper and stored at 4°C for further study. Then 20 µL (500 µg/L) extracts were injected into 6 mm diameter empty antibiotic discs (Erecevit Sönmez, Kerbaş, & Inci, 2019).

Test microorganisms

In this study; *Escherichia coli* ATCC 25322 and *Bacillus megaterium* DSM32 as bacteria, and *Candida albicans* FMC17 as fungi were used. Microorganism cultures were obtained from the Firat University, Faculty of Science, Department of Biology, Microbiology Laboratory culture collection.

Preparation of microorganism cultures and testing of antimicrobial effect

The antimicrobial activity of extracts of plant samples obtained using methanol was determined according to the disk diffusion method (Collins & Lyne, 1989).

Table 1. The location and GPS coordinates and elevation of species extracted

Species	Locality, Collector and Number of plants	Elevation (m)
Thymus ekimii Yıldırımlı	Between Aşağıkepen and Kepen villages / Eskişehir 39°22'10.0" N 031°29 09.1" E, 05.06.2020 Kurt, L., 15214	938
Glaucium secmenii Yıldırımlı	Ankara- Eskişehir road side / Eskişehir 39°33'51.4" N 031°48'27.9" E, 05.06.2020 Kurt, L., 14938	988
Verbascum gypsicola Vural & Aydogdu	Beypazarı- Nallıhan road, near Çayrhan / Ankara 40°06′24.3" N 031°43′45.5" E, 06.06.2020 Kurt, L., 15583	611
Psephellus erzincani Wagenitz & Kandemir	Ilıc-Divrigi road, near Bagistas village / Erzincan 39°27′02.1" N 038°28′52.4″ E, 12.06.2020 Kurt, L., 14701	889
Bacterial strains (E. coli ATCC25322, B. megaterium DSM32), were incubated in Nutrient Buyyon (Difco) for 24 hours at 35±1°C and the yeast strain (C. albicans FMC17) was incubated at 25±1°C for 48 hours in Malt Extract Buyyon (Difco). Cultures grown in broth medium were adjusted to the 0.5 McFarland standard. The culture of prepared bacteria and yeast in broth are as follows; Mueller Hinton Agar and Yeast Malt Extract Agar were inoculated with 1% (10⁶ cells/mL of bacteria, 10⁴ cells/mL yeast and cells/mL as per Mc Farland standard) and after shaking well, 25 ml were placed in sterile petri dishes with a diameter of 9 cm and homogeneous dispersion was provided.

Six mm diameter antimicrobial discs (Oxoid), each of which was absorbed 20 µl of different extracts, were placed in the solidified agar medium aseptically.

After the petri dishes prepared in this way were kept at 4°C for 1.5-2 hours, the bacteria grafted plates were incubated at 37±0.1°C for 24 hours, and the yeast-grafted plates at 25±0.1°C for 72 hours.

As a control, different standard discs were used for bacteria (Piperacillin/Tozabactam 110 µg/disk) and yeasts (Mycostatin 30 µg/disk).

Inhibition zones formed on the medium at the end of the period were evaluated in mm.

RESULTS AND DISCUSSION

The antimicrobial effects of T. ekimii, G. secmenii, V. gypsicola, P. erzincani methanol extracts against B. megaterium DSM32, E. coli ATCC25322 and C. albicans FMC17 are shown in Table 2. Mycostatin (30 µg/disk) used for yeasts created a 15 mm inhibition zone against C. albicans FMC17. Piperacillin/Tozabactam (110 µg/disk) prevented the growth of tested bacteria at different rates (25-38 mm inhibition zone).

Against B. megaterium DSM32 T. ekimii, G. secmenii and V. gypsicola formed a 11 mm and 8 mm zone diameter respectively, while the inhibition zone of P. erzincani was measured at 23 mm (Figure 1). It has been determined that T. ekimii, G. secmenii, V. gypsicola, P. erzincani prevent the development of E. coli ATCC25322 at different rates (7-15 mm) (Figure 2). T. ekimii, G. secmenii, V. gypsicola and P. erzincani species formed 14 mm, 12 mm, 7 mm and 23 mm inhibition zones against C. albicans FMC17, respectively (Figure 3). According to the results obtained, the P. erzincani extract showed the best antimicrobial activity against B. megaterium DSM32 (23 mm), E. coli ATCC25322 (15 mm) and C. albicans FMC17 (23 mm).

Table 2. Antimicrobial effects of T. ekimii, G. secmenii, V. gypsicola and P. erzincani.

	Diameter of Inhibition Zone (mm)		
	Bacillus megaterium DSM32	Escherichia coli 2532ZATCC	Candida albicans FMC17
Thymus ekimii	11	10	14
Glaucium secmenii	11	10	12
Verbascum gypsicola	8	7	7
Psephellus erzincani	23	15	23
Control	25	38	15
The antimicrobial activity of some Thymus species have been shown in other previous studies. In the studies conducted, it was determined that essential oils obtained from *Thymus algeriensis* prevent the development of *S. aureus* ATCC25923, *B. subtilis* 166, *S. enteridis* ATCC502, *E. coli* GM109, *P. aeruginosa* and *L. monocytogenes* at different rates (9-74 mm inhibition zone) (Guesmi, Mouna, Mondher, & Ahmed, 2014). In a different study, the antimicrobial effect of essential oils of *T. vulgaris* L. against different strains of *E. coli* 25922 was determined as 22.7-2.8 µl ml^-1^, and antimicrobial effect against different strains of *S. aureus* ATCC25923, ATCC6538 as 11.4-45.4 µl ml^-1^. It has been reported that essential oils of the same species show 0.11 ml^-1^ antimicrobial activity against different strains of *C. albicans* ATTC10231 (Bogavac et al., 2015). The essential oils of *Thymus longicaulis* subsp. longicaulis have been found to have an antimicrobial effect of 0.781 µg/ml against *S. aureus* ATCC25923 and 0.098 µg/ml against *E. coli* and *C. albicans* DSMZ1386 (Demiryapın, 2020). It was determined that *Thymus serpiillum* ethanol, methanol, and water extracts did not prevent the development of *E. coli* ATCC11229 at a concentration of 150 mg/ml, and the ethanol and methanol extract prevent the development of *C. albicans* RSKK02029 (8 mm inhibition zone) (Ökmen, Arslan, Yurkun, Mammadkhani, & Ceylan, 2017). The essential oils of *Thymus vulgaris* have been reported to have 49.27±7.26 mm against *S. aureus* NCTC8530 and 39.55±0.52 mm against *E. coli* B2L21 (Kiliç, 2019).

The antimicrobial effects of methanol, ethanol, and water extracts of *Verbascum degeni* against some hospital pathogens were investigated. In the results obtained, while methanol extract formed an inhibition zone of 20±1.6 mm against *S. aureus*, ethanol extract formed an inhibition zone of 21±1.5 mm, and no inhibition zone was observed in water extract (Avşar, Keskin, & Berber, 2016).

While the water extract of *Glaucomium grandiflorum* Boiss. & Huet var. *grandiflorum* has antimicrobial effects >5 mg/ml against *E. coli* ATCC25922, 0.625 mg/ml against *S. aureus* ATCC29213 and >5 mg/ml against *C. albicans* ATCC10231, ethanol extract against the same microorganisms showed antimicrobial effects >5 mg/ml, 5 mg/ml and 1.25 mg/ml, respectively (Saraç et al., 2018).

Many microorganisms that harm human health show resistance to drugs due to using unnecessary and wrong antibiotics. Therefore, there is a need to discover new substances from natural sources, including plants. In this study, the antimicrobial activity of gypsophytes grown in gypsiferous soils, which are extreme habitats for plants, were investigated. The species discussed in this study are local endemic gypsophytes and their antimicrobial activities were examined for the first time. It has been predicted that species growing in extreme habitats may have high antimicrobial activities.

Among the four gypsophytes examined in this study, *P. erzincani* extract showed the best antimicrobial activity against *B. megaterium* DSM32 (23 mm), *E. coli* ATCC25322 (15 mm) and *C. albicans* FMC17 (23 mm). Investigating the antimicrobial activities of species grown in extreme habitats may lead to new antibiotic research.

The results obtained show that antimicrobial effects of *T. ekimii*, *V. gypsicola*, *G. secmenii* and *P. erzincani* are different from *Thymus algeriensis*, *T. vulgaris*, *T. longicaulis* subsp. *longicaulis*, *T. serpiillum*, *Glaucomium grandiflorum* var. *grandiflorum* in literature. As a result of the adaptation of these plants (*T. ekimii, V. gypsicola*, *G. secmenii* and *P. erzincani*) to extreme habitats (gypsum soils etc.), their defense systems are well developed and have a high resistance against drought, bacteria, viruses, and other pathogens. Therefore, it is very important that research of the antimicrobial effects of plant species living in these extreme conditions and their use as an antimicrobial agent against microorganisms receive further investigation and study.

In conclusion, these four narrow endemic plants, especially *P. erzincani*, have the potential for use as antimicrobial agents. Endemic plant species as antimicrobial agents are substantial in pharmacology and more investigation is necessary in terms of contributing to the literature.

Conflict of Interest: The authors have no conflict of interest to declare.

Financial Disclosure: Authors declared no financial support.

REFERENCES

- Benli, M., Keskin, H., & Berber, I. (2016). Hastane infeksiyonlarından izole edilen mikroorganizmaları karşı bazı bitki ekstraktlarının antimikrobiyal aktivitesi. [Antimicrobial Activity of Some Plant Extracts against Microorganisms Isolated from Hospital Infections]. *International Journal of Pure and Applied Sciences*, 2(1), 22-29.
- Bekut, M., Brkic, S., Kladar, N., Dragovic, G., Gavaric, N., & Božin, B. (2018). Potential of selected Lamiaceae plants in (anti)retroviral therapy. *Pharmacological Research*, 133, 301–314. https://doi.org/10.1016/j.phrs.2017.12.016
- Benli, M., & Yiğıt, N. (2005). Ülkemizde yaygın kullanımı olan kekik bitkinin antimikrobiyal etkisi. [Antimicrobial Activity of Some Plant Extracts against Microorganisms Isolated from Hospital Infections]. *Orlab On-Line Mikrobiyoloji Dergisi*, 3(8), 1-8.
- Benli, M., Güney, K., Bingöl, Ü., Geven, F., & Yiğıt, N. (2007). Antimicrobial activity of some endemic plant species from Turkey. *African Journal of Biotechnology*, 6(15), 1774-1778.
Hutchings, A., & Cock, I.E. (2018). An interactive antimicrobial.

Erecevit Sönmez P., Kırbağ S., & İnci Ş. (2019). Antifungal and Anti-inflammatory properties of Pittosporum angustifolium Lodd. extracts with conventional antimicrobials. Journal of Integrative Medicine, 17, 261–272. https://doi.org/10.1016/j.jim.2019.03.006

Buruk, K., Sokmen, A., Aydin, F., & Erturk, M. (2006). Antimicrobial activity of some endemic plants growing in the Eastern Black Sea Region, Turkey. Fitoterapia, 77, 388–391. https://doi:10.1016/j.fi.tote.2006.03.002

Civelek, ED. (2018). Verbascum pyramidatum Dieb. Üzerinde Farmakognozik Araştırmalar in Hacettepe University, (Master’s Thesis). Retrieved from http://www.openaccess.hacettepe.edu.tr

Collins, C.H., Lyne, P.M., Grange, J.M. & Flkinham III, J.O. (2004). antibacterial Effect of Dodder (Cuscuta denowia Will.) from eastern Turkey. Erzincan Eğitim Fakültesi Dergisi, 4(2), 77-81. https://doi.org/10.1155/2018/1862401

Korkmaz, M., Ozlem Sener, S.O., Balturk, N., Kantul, A., & Sayan, E. (2018). digitalis lamarckii microbial activity of endemic plants growing in the Eastern Black Sea Region, Turkey. Digitalis lamarckii microbial activity of endemic plants growing in the Eastern Black Sea Region, Turkey. Van Veterinary Journal, 1, 1-7. https://doi.org/10.36483/vanvetj.651515

Türker, H., Birinci Yıldırım, A., Pehlivan Karakaş, F., & Köylüoğlu, H. (2020). Investigation of Antimicrobial Effects of Amygdalus trichamygdalus (Sweet Almond) and Amygdalus nana L. (Bitter Almond) Plants. Van Veterinary Journal, 31(1), 21-26. https://doi:10.36483/vanvetj.651515

Saraç, H., Daştan, T., Durukan, H., Durna Daştan, S., Demirbaş, A., & Karaköy, T. (2018). Kirmızı Gelincik (Fam: Papaveraceae, Glau- cium grandiflorum Boiss & Huet var. grandiflorum) Bitkisinin Farklı Özütlere-aprotemik ve Antioksidan Aktiviteleri. Elektronik Mikrobiyoloji Dergisi, 15(1): 16-28.

Özdek, U., Seçkin, H., & Çibuk, S. (2020). Investigation of Antimicrobial Effects of Amygdalus trichamygdalus (Sweet Almond) and Amygdalus nana L. (Bitter Almond) Plants. Van Veterinary Journal, 31(1), 21-26. https://doi:10.36483/vanvetj.651515

Kılıç, Ö. (2019). Bazı Birkürede Uçucu Yağların Biyoaktif ve Antibakteriyel Özelliklerinin Araştırılması in Ordu University, (Master’s Thesis). Retrieved from http://earsiv.odu.edu.tr

Van Vuuren, S., & Viljoen, A. (2011). Plant-based antimicrobial.

Turker, H., Birinci Yıldırım, A., Pehlivan Karakaş, F., & Köylüoğlu, H. (2009). Antibacterial Activities of Extracts from Some Turkish En- demic Plants on Common Fish Pathogens. Turkish Journal of Biol- ogy, 33, 73-78. https://doi:10.3906/biy-0805-18

Van Vuuren, S., & Viljoen, A. (2011). Plant-based antimicrobial studies—methods and approaches to study the interaction be- tween natural products. Planta Medica, 77(11),1168–82. http: dx.doi.org/10.1055/s-0030-1250736

Wagenitz, G., & Kandemir, A. (2008). Two new species of the ge- nus Psephellus (Compositae, Cardueae) from eastern Turkey. Will- denowia, 38, 521-526.

Yıldırım, Ş. (2012). The heaven of gypsophilous phytodiversity of Turkey: Kepen, Sivrihisar, Eskisehir, Turkey, 13 taxa as new. The Herb Journal of Systematic Botany, 19(2), 1-51.

Yiğit, D., Kandemir, A., & Yiğit, N. (2002). Antimicrobial Activity of Some Endemic Plants (Salvia cryptantha, Origanum acutidens, Thymus sipyleus spp. sipyleus). Erzincan Eğitim Fakültesi Dergisi, 4(2), 77-81.