Preclinical and Clinical Evidence of Therapeutic Agents for Paclitaxel-Induced Peripheral Neuropathy

Takehiro Kawashiri 1,*, Mizuki Inoue 1, Kohei Mori 1, Daisuke Kobayashi 1, Keisuke Mine 1, Soichiro Ushio 2, Hibiki Kudamatsu 1, Mayako Uchida 3, Nobuaki Egashira 4 and Takao Shimazoe 1

Abstract: Paclitaxel is an essential drug in the chemotherapy of ovarian, non-small cell lung, breast, gastric, endometrial, and pancreatic cancers. However, it frequently causes peripheral neuropathy as a dose-limiting factor. Animal models of paclitaxel-induced peripheral neuropathy (PIPN) have been established. The mechanisms of PIPN development have been elucidated, and many drugs and agents have been proven to have neuroprotective effects in basic studies. In addition, some of these drugs have been validated in clinical studies for their inhibitory PIPN effects. This review summarizes the basic and clinical evidence for therapeutic or prophylactic agents for PIPN. In pre-clinical research, many reports exist of neuropathy inhibitors that target oxidative stress, inflammatory response, ion channels, transient receptor potential (TRP) channels, cannabinoid receptors, and the monoamine nervous system. Alternatively, very few drugs have demonstrated PIPN efficacy in clinical trials. Thus, enhancing translational research to translate pre-clinical research into clinical research is important.

Keywords: paclitaxel; peripheral neuropathy; preclinical data; clinical evidence; adverse effects

1. Introduction

Paclitaxel and albumin-bound paclitaxel are important drugs in the treatment of ovarian [1,2], non-small cell lung [3,4], breast [5–7], gastric [8,9], endometrial [10], and pancreatic [11] cancers. However, they cause peripheral neuropathy as an adverse event. In paclitaxel-induced peripheral neuropathy (PIPN), many patients develop sensory abnormalities (e.g., numbness, pain, and burning sensation in the hands and feet) [12]. PIPN is a dose-limiting factor that causes difficulty in continuing cancer chemotherapy [13]. However, no evidence-based prophylactic agents for PIPN were noted [14]. Since the late 1990s, many studies on the mechanism and therapeutic or prophylactic agents using PIPN animal models have been reported [15–17]. In addition, the mechanisms of PIPN development have been gradually clarified [18]. This study reviewed the preclinical and clinical evidence of therapeutic or prophylactic agents for PIPN.

2. Methods

2.1. Preclinical Evidence

All articles found in PubMed with the search term “paclitaxel neuropathy or paclitaxel neurotoxicity” were surveyed. The last search date was 30 April 2021. Clinical studies and
reports that did not include information on therapeutic agents were excluded from the analysis. Articles referring to the effects of local rather than systemic administration and articles published before 2015 were also excluded. Information on the name and dosage of the drugs that showed statistically significant improvement, mechanism of action, and the animal species in which they were used were extracted in the surveyed papers.

2.2. Clinical Evidence

The articles found in PubMed with the search term “paclitaxel neuropathy or paclitaxel neurotoxicity” limited to “Randomized Controlled Trial” and “Meta-Analysis” were analyzed. The last search date was 30 April 2021. Reports other than trials about peripheral neuropathy were excluded. Moreover, information such as the investigational drug and its dosage, chemotherapy received by the patient, study design, number of patients, and results were collected.

3. Results

3.1. Therapeutic Agents in Preclinical Evidence

In PubMed, 2667 articles were found when using the search term “paclitaxel neuropathy or paclitaxel neurotoxicity”. Of these, 150 articles reported on drugs that inhibit PIPN in animal studies. The following is a summary of the drugs that had therapeutic PIPN effects in these basic studies (Table 1).
Therapeutic Targets	Therapeutic Agents	Dose	Animals	Symptoms that Showed Improvement	Mechanisms	References
Oxidative stress and mitochondrial dysfunction	Anakinra, IL-1β antagonist	50–100 mg/kg, i.p.	Rats	Pain threshold	Reductions of MDA, MPO and IL-1β and increase in GSH in paws	[19]
	Antimycin A	0.2–0.6 mg/kg, i.p.	Rats	Mechanical hypersensitivity	Inhibition of mitochondrial complex III	[20]
	Curcumin	100–200 mg/kg, p.o.	Rats	Histological changes in spinal cord and sciatic nerve	Reduction of NF-κB, TNF-α, IL-6, iNOS and GFAP, p53, caspase-3, Apaf-1, LC3A, LC3B and beclin-1, and increase in Nrf2, HO-1, NQO1, Bcl-2, and Bcl-xL.	[21]
	Divya-Peedantak-Kwath, a herbal decoction	69–615 mg/kg, p.o.	Mice	Thermal hyperalgesia, mechanical allodynia and hyperalgesia, and axonal degeneration	Suppression of oxidative stress and inflammation	[22]
	Duloxetine	10–30 mg/kg, i.p.	Mice	Mechanical hyperalgesia and thermal nociception	Inhibiting PARP and p53 activation and regulating Bcl-2 family to reverse oxidative stress and apoptosis	[23]
	Evodiamine	5 mg/kg	Rats	Mechanical hypersensitivity and thermal hypersensitivity	Downregulation of inflammatory and chemoattractant cytokines (IL-1β, IL-6, TNF-α, and MCP-1), oxidative stress, and mitochondrial dysfunction in DRG.	[24]
	Flavonol	25–200 mg/kg, s.c.	Mice	Tactile allodynia, cold alldodynia and thermal hyperalgesia	Inhibitions of TNF-α, IL-1β and free radicals	[25]
	Ghrelin	300 nmol/kg, i.p.	Mice	Mechanical sensitivity, thermal sensitivity, DRG damage (ATF-3 positive cells), and density of IENF	Decreases in plasma oxidative and nitrosative stress and increases in UCP2, SOD2, and PGC-1α	[26]
	GKT137831, a NOX4 inhibitor	1 mg/kg, i.p.	Rats	Mechanical sensitivity and thermal sensitivity	Decreases of proinflammatory cytokines (IL-1β, IL-6, and TNF-α) in the DRG	[27]
	Lacosamide	30 mg/kg, p.o.	Rats	Thermal hyperalgesia and cold alldodynia	Upregulation of total antioxidant capacity and NGF, and downregulation of NF-κB p65, TNF-α, active caspase-3, Notch1 receptor, p-p38, and IL-6/p-JAK2/p-STAT3	[28]
	Melatonin	5–50 mg/kg, p.o.	Rats	Mechanical sensitivity	Reduction of mitochondrial damage	[29]
Therapeutic Targets	Therapeutic Agents	Dose	Animals	Symptoms that Showed Improvement	Mechanisms	References
---------------------	-------------------	------	---------	----------------------------------	------------	------------
Nicotinamide riboside	200 mg/kg, p.o.	Rats	Tactile hypersensitivity	N.A.	[30]	
Phenyl-N-tert-butyl-nitrone	100 mg/kg, i.p.	Mice	Mechanical hypersensitivity	N.A.	[31]	
Pregabalin	30 mg/kg, p.o.	Rats	Thermal hyperalgesia and cold allodynia	Upregulation of total antioxidant capacity and NGF, and downregulation of NF-kB p65, TNF-α, active caspase-3, Notch1 receptor, p-p38, and IL-6/p-JAK2/p-STAT3	[28]	
Rosuvastatin	10 mg/kg, i.p.	Mice	Thermal hyperalgesia, cold hyperalgesia, and mechanical allodynia	Downregulations of IL-1β, oxidative stress	[32]	
Rotenone	1–5 mg/kg, i.p.	Rats	Mechanical hypersensitivity	Inhibition of mitochondrial complex I	[20]	
Tempol, a mimetic of SOD	20 mg/kg, i.p.	Rats	Mechanical sensitivity and thermal sensitivity	Decreases of proinflammatory cytokines such as IL-1β, IL-6 and TNF-α in the DRG	[27]	
Trimethoxy flavones	25–200 mg/kg, s.c.	Mice	Tactile allodynia, cold allodynia, and thermal hyperalgesia	Inhibitions of TNF-α, IL-1β and free radicals	[33]	
Umbelliprenin, a prenylated coumarin	12.5–25 mg/kg, i.p.	Mice	Thermal hyperalgesia	Decrease in serum IL-6 levels and oxidative stress	[34]	
Vitamin C	500 mg/kg, i.p.	Rats	Mechanical sensitivity and thermal sensitivity	Decreases of proinflammatory cytokines (IL-1β, IL-6 and TNF-α) in the DRG	[27]	
3-Hydroxyflavone	25–75 mg/kg, i.p.	Rats	Tactile alldodynia, cold alldodynia, thermal hyperalgesia, and heat-hyperalgesia	Suppressions of TNF-α, IL-1β, IL-6, CGRP, and substance P in the spinal cord, and inhibition of the receptor of substance P	[35]	
AMD3100, a CXCR4 antagonist	8 mg/kg, i.p.	Mice	Mechanical alldodynia	N.A.	[36]	
Anakinra, IL-1β antagonist	50–100 mg/kg, i.p.	Rats	Pain threshold	Reductions of MDA, MPO and IL-1β and increase in GSH in paws	[19]	
Table 1. Cont.

Therapeutic Targets	Therapeutic Agents	Dose	Animals	Symptoms that Showed Improvement	Mechanisms	References
Anti-HMGB1-neutralizing	1 mg/kg, i.p.	Mice	Mechanical allodynia	N.A.	[36]	
antibody			Mechanical hyperalgesia, cold hyperalgesia, and sensory nerve compound action potential amplitude	Regulation of PPAR-α expression and decrease neuroinflammation in DRG	[38]	
Berberine	5–20 mg/kg, i.p.	Mice	Thermal hyperalgesia	N.A.	[37]	
Choline-fenofibrate	6–24 mg/kg, i.p., 15–60 mg/kg, p.o.	Mice	Mechanical hyperalgesia, cold hyperalgesia, and sensory nerve compound action potential amplitude	Reductions of NF-κB, TNF-α, IL-6, iNOS and GFAP, p53, caspase-3, Apaf-1, LC3A, LC3B and beclin-1, and increase in Nrf2, HO-1, NQO1, Bcl-2, and Bcl-xL.	[38]	
Curcumin	100–200 mg/kg, p.o.	Rats	Histological changes in the spinal cord and sciatic nerve	Suppressions of oxidative stress and inflammation	[21]	
Divya-Peedantak-Kwath, a	69–615 mg/kg, p.o.	Mice	Thermal hyperalgesia, mechanical allodynia and hyperalgesia, and axonal degeneration	Decreases in NF-κB, p-p38, IL-6, and TNF-α in DRG	[40]	
herbal decoction						
Duloxetine	30 mg/kg/day, i.p.	Mice	Mechanical hyperalgesia, thermal hyperalgesia, and loss of IENF	Suppression of spinal cord astrocyte activation	[40]	
ESI-09, a Epac inhibitor	20 mg/kg, p.o.	Mice	Mechanical allodynia and number of IENF		[40]	
Etanercept	2 mg/kg, i.p.	Rats	Mechanical hypersensitivity and cold hypersensitivity	Blocking of TNF-α signaling	[41]	
Evodiamine	5 mg/kg	Rats	Mechanical hypersensitivity and thermal hypersensitivity	Downregulation of inflammatory and chemoattractant cytokines (IL-1β, IL-6, TNF-α, and MCP-1), oxidative stress, and mitochondrial dysfunction in DRG.	[24]	
Fenofibrate	Diet with 0.2% or 0.4% fenofibrate	Mice	Mechanical allodynia, SNAP amplitude, and intra-epidermal nerve fibers density	Regulation of PPAR-α expression and reduction in neuroinflammation	[42]	
Fenofibrate	100–150 mg/kg, i.p., 300–600 mg/kg, p.o.	Mice	Mechanical hyperalgesia, cold hyperalgesia, and sensory nerve compound action potential amplitude	Regulation of PPAR-α expression and decrease neuroinflammation in DRG	[38]	
Therapeutic Targets	Therapeutic Agents	Dose	Animals	Symptoms that Showed Improvement	Mechanisms	References
---------------------	--------------------	------	---------	----------------------------------	------------	------------
Fenofibric acid	6–24 mg/kg, i.p., 30–90 mg/kg, p.o.	Mice	Mechanical hyperalgesia, cold hyperalgesia, and sensory nerve compound action potential amplitude	Regulation of PPAR-α expression and decrease neuroinflammation in DRG	[38]	
Flavonol	25–200 mg/kg, s.c.	Mice	Tactile allodynia, cold allodynia, and thermal hyperalgesia	Inhibitions of TNF-α, IL-1β and free radicals	[25]	
FPS-ZM1, a RAGE antagonist	1 mg/kg, i.p.	Mice	Mechanical allodynia	N.A.	[36]	
GKT137831, a NOX4 inhibitor	1 mg/kg, i.p.	Rats	Mechanical sensitivity and thermal sensitivity	Decreases of proinflammatory cytokines (IL-1β, IL-6, and TNF-α) in the DRG	[27]	
Human intravenous immunoglobulin	1 g/kg, i.v.	Rats	Mechanical allodynia, loss of IENF, and distal axonal degeneration	Suppression of the axonopathy with macrophage infiltration	[43]	
Icariin	100 mg/kg, p.o.	Rats	Mechanical allodynia	Downregulations of TNF-α, IL-1β, IL-6 and astrocyte activation in spinal cord via SIRT1 activation	[44]	
IL-1 receptor antagonist	3 mg/kg, i.p.	Rats	Mechanical hypersensitivity and cold hypersensitivity	Decreases in PI3K, p-Akt, and inflammatory cytokines in the DRG	[41]	
JTC-801	0.01–0.05 mg/kg, i.v.	Rats	Mechanical allodynia	Upregulation of total antioxidant capacity and NGF, and downregulation of NF-κB p65, TNF-α, active caspase-3, Notch1 receptor, p-p38, and IL-6/p-JAK2/p-STAT3	[28]	
Lacosamide	30 mg/kg, p.o.	Rats	Thermal hyperalgesia and cold allodynia	Decrease in inflammatory cytokines including IL-1β and TNF-α in the DRG	[46]	
Losartan	20–100 mg/kg, i.p.	Rats	Mechanical hyperalgesia	Attenuations of neuroinflammatory changes and expression of pro-resolving markers (arginase 1 and IL-10) indicating a possible shift in macrophage polarization	[47]	
Therapeutic Targets	Therapeutic Agents	Dose	Animals	Symptoms that Showed Improvement	Mechanisms	References
---	---	---------------	---------	----------------------------------	--	------------
Low-molecular-weight heparin, a rage antagonist	2.5 mg/kg, i.p.	Mice		Mechanical allodynia	N.A.	[36]
LPS-R, a TLR4 antagonist	0.5 mg/kg, i.p.	Mice		Mechanical allodynia	N.A.	[36]
MDA7, a CB₂ agonist	15 mg/kg, i.p.	Rats		Mechanical allodynia	Downregulations of IRF8, P2X₄, CaMKIIα, p-CREB, FosB, BDNF, GluR1 and NR2B, and increase in the expression of K⁺-Cl⁻ cotransporter	[48]
MJN110, a MAGL inhibitor	4–40 mg/kg, i.p.	Mice		Mechanical allodynia	Downregulations of MCP-1, CCL2 and p-p38 in DRG as well as MCP-1 in the spinal dorsal horn	[49]
Polaprezinc	3 mg/kg, p.o.	Rats		Thermal hyperalgesia and cold	Upregulation of total antioxidant capacity and NGF, and downregulation of NF-kB p65, TNF-α, active caspase-3, Notch1 receptor, p-p38, and IL-6/p-JAK2/p-STAT3	[50]
Pregabalin	30 mg/kg, p.o.	Rats		Thermal hyperalgesia and cold	Decreases of IL-1β, IL-6, TNF-α, substance P and CGRP in DRG.	[28]
Rapamycin	5 mg/kg, i.p.	Rats		Mechanical hypersensitivity and	Decreases of IL-1β, IL-6, TNF-α, substance P and CGRP in DRG.	[51]
Reparixin	8 mg/hr/kg using micro-osmotic pumps	Rats		Mechanical allodynia and cold	Inhibition of IL-8/CXCR1/2 pathway and suppressions of p-FAK, p-JAK2/p-STAT3, and PI3K-p-cortactin activation	[52]
Rosuvastatin	10 mg/kg, i.p.	Mice		Thermal hyperalgesia, cold	Downregulations of IL-1β and oxidative stress	[32]
S504393, a CCR2 antagonist	5 mg/kg, i.p.	Rats		Mechanical hypersensitivity and	N.A.	[41]
Siwei Jianbu decoction	5–10 g/kg, i.g.	Mice		Mechanical hyperalgesia and	Inhibiting the JNK, ERK1/2 phosphorylation, NF-κB, TNF-α, IL-1β, and IL-6.	[53]
Table 1. Cont.

Therapeutic Targets	Therapeutic Agents	Dose	Animals	Symptoms that Showed Improvement	Mechanisms	References
TAK242, a TLR4 antagonist	TAK242, a TLR4 antagonist 1–3 mg/kg, i.p.	Rats		Mechanical hypersensitivity	Antagonism of TLR4	[54]
TAK242, a TLR4 antagonist	TAK242, a TLR4 antagonist 3 mg/kg, i.p.	Mice		Mechanical allodynia	N.A.	[55]
Tempol, a mimetic of SOD	Tempol, a mimetic of SOD 20 mg/kg, i.p.	Rats		Mechanical sensitivity and thermal sensitivity	Decreases of proinflammatory cytokines (IL-1β, IL-6 and TNF-α) in the DRG	[27]
Thrombomodulin alfa	Thrombomodulin alfa 1–3 mg/kg, i.p.	Mice		Mechanical allodynia	N.A.	[36]
Trimethoxy flavones	Trimethoxy flavones 25–200 mg/kg, s.c.	Mice		Tactile allodynia, cold alodynia, and thermal hyperalgesia	Inhibitions of TNF-α, IL-1β and free radicals	[33]
Umbelliprenin, a prenylated coumarin	Umbelliprenin, a prenylated coumarin 12.5–25 mg/kg, i.p.	Mice		Thermal hyperalgesia	Decreases in serum IL-6 levels and oxidative stress	[34]
Vitamin C	Vitamin C 500 mg/kg, i.p.	Rats		Mechanical sensitivity and thermal sensitivity	Decreases of proinflammatory cytokines (IL-1β, IL-6 and TNF-α) in the DRG	[27]
β-caryophyllene, a CB2 agonist	β-caryophyllene, a CB2 agonist 25 mg/kg, p.o.	Mice		Mechanical allodynia	Through CB2-activation in the CNS and posterior inhibition of p38 MAPK/NF-κB activation and cytokine release	[56]
3-Carboxyphenyl isothiocyanate	3-Carboxyphenyl isothiocyanate 1.33–13.31 μmol/kg, s.c.	Mice		Cold hypersensitivity	Release H2S activating Kv7 channel	[57]
Allyl isothiocyanate	Allyl isothiocyanate 1.33–13.31 μmol/kg, s.c.	Mice		Cold hypersensitivity	Release H2S activating Kv7 channel	[57]
Phenyl isothiocyanate	Phenyl isothiocyanate 4.43–13.31 μmol/kg, s.c.	Mice		Cold hypersensitivity	Release H2S activating Kv7 channel	[57]
Retigabine	Retigabine 10 mg/kg, i.p.	Rats		Mechanical allodynia, IENF density, and morphological alteration of mitochondria in peripheral nerve	Specific KCNQ/Kv7 channel opener	[58]
Sodium hydrosulfide hydrate	Sodium hydrosulfide hydrate 13.31–38 μmol/kg, s.c.	Mice		Cold hypersensitivity	Release H2S activating Kv7 channel	[57]
ML218, a T-type calcium channel blocker	ML218, a T-type calcium channel blocker 1–10 mg/kg, i.p.	Rats		Mechanical hypersensitivity	Inhibition of Cav3.2	[54]
Therapeutic Targets	Therapeutic Agents	Dose	Animals	Symptoms that Showed Improvement	Mechanisms	References
---------------------	-------------------	------	---------	----------------------------------	------------	-----------
TRP channel	RQ-0311651, a T-type calcium channel blocker	10–40 mg/kg, i.p.	Mice and rats	Mechanical hyperalgesia	Block of Cav3.1/Cav3.2 T channels	[59]
	AMG9810	30 mg/kg, p.o.	Rats	Mechanical allodynia, hyperalgesia, and thermal hyperalgesia	TRPV1 antagonism	[60]
	Capsazepine	30 mg/kg, s.c.	Rats	Thermal hyperalgesia	TRPV1 antagonism	[61]
	HC-067047, a TRPV4 antagonist	10 mg/kg, i.p.	Mice	Mechanical hyperalgesia	TRPV4 antagonism	[62]
	Quercetin	20–60 mg/kg, i.p.	Rats and mice	Heat hyperalgesia and mechanical allodynia	Suppression of PKCε and TRPV1 in the spinal cords and DRG	[63]
	Ruthenium red	3 mg/kg, s.c.	Rats	Thermal hyperalgesia	TRP antagonism	[61]
	SB-366791, a TRPV1 antagonist	0.5 mg/kg, i.p.	Mice	Visceral nociception, mechanical hypersensitivity and heat hypersensitivity	TRPA1 antagonism	[55]
	Tabernaemontana catharinensis ethyl acetate fraction	100 mg/kg, p.o.	Mice	Mechanical allodynia	TRPA1 antagonism	[64]
Glutamate	Memantine	1–5 mg/kg	Rats	Mechanical hypersensitivity	Antagonism of NMDA receptor	[65]
	Valproate	200 mg/kg, i.p.	Rats	Mechanical allodynia	Suppressions HDAC2 upregulation, glutamate accumulation, and the corresponding changes in EAAT2/VGLUT/synaptophysin expression and HDAC2/YY1 interaction	[66]
	Cilostazol	Diet containing 0.3% cilostazol	Mice	Mechanical hyperalgesia and Schwann cell dedifferentiation within the sciatic nerve	Differentiation of Schwann cells via a mechanism involving cAMP/Epac signaling	[67]
	Minoxidil	25–50 mg/kg, i.p.	Mice	Mechanical hyperalgesia, thermal sensitivity, and damages of sciatic nerve	Suppression of neuroinflammation (macrophage and microglia) recruitments and remodeling of intracellular calcium homeostasis in DRG	[68]
Therapeutic Targets	Therapeutic Agents	Dose	Animals	Symptoms that Showed Improvement	Mechanisms	References
---------------------	--------------------	------	---------	----------------------------------	------------	------------
Cannabinoid receptor	Cannabidiol	1–20 mg/kg, i.p.	Mice	Mechanical sensitivity	N.A.	[69]
	Cannabidiol	2.5–25 mg/kg, i.p., p.o.	Mice	Mechanical alldynia	N.A.	[70]
	JZL184, a MAGL inhibitor	4–40 mg/kg, i.p.	Mice	Mechanical alldynia	N.A.	[49]
	KLS-13019	2.5–25 mg/kg, i.p.	Mice	Mechanical alldynia	N.A.	[70]
	MJN110, a MAGL inhibitor	4–40 mg/kg, i.p.	Mice	Mechanical alldynia	Downregulations of IRF8, P2X4, CaMKIIα, p-CREB, FosB, BDNF, GluR1 and NR2B, and increase in the expression of K^+−Cl^-cotransporter	[48]
	MJN110, a MAGL inhibitor	4–40 mg/kg, i.p.	Mice	Mechanical alldynia	Downregulations of monocyte chemoattractant protein-1 (MCP-1 and CCL2) and p-p38 MAPK in dorsal root ganglia as well as MCP-1 in the spinal dorsal horn	[49]
	URB597, a centrally penetrant FAAH inhibitor	1 mg/kg, i.p.	Mice	Mechanical hypersensitivity and cold hypersensitivity	Inhibition of FAAH, the major enzyme catalyzing the degradation of anandamide, an endocannabinoid, and other fatty acid amides	[71]
	URB937, a peripherally restricted FAAH inhibitor	1 mg/kg, i.p.	Mice	Mechanical hypersensitivity and cold hypersensitivity	Inhibition of FAAH, the major enzyme catalyzing the degradation of anandamide, an endocannabinoid, and other fatty acid amides	[71]
	β-caryophyllene, a CB2 agonist	25 mg/kg, p.o.	Mice	Mechanical alldynia	CB2-activation in the CNS and posterior inhibition of p38 MAPK/ NF-κB activation and cytokine release	[56]
	∆9-THC	2.5–20 mg/kg, i.p.	Mice	Mechanical sensitivity	N.A.	[69]
Opioid receptor	Morphine	3–6 mg/kg, p.o.	Mice	Mechanical alldynia	N.A.	[72]
	Oxycodone	24 mg/kg/day, p.o.	Mice	Mechanical alldynia	N.A.	[72]
Monoamines	SR-17018	1–48 mg/kg/day, p.o.	Mice	Mechanical alldynia	N.A.	[72]
	Bee venom acupuncture	1 mg/kg, s.c.	Rats	Mechanical hyperalgesia	Via spinal α2-adrenergic receptor	[73]
Therapeutic Targets	Therapeutic Agents	Dose	Animals	Symptoms that Showed Improvement	Mechanisms	References
------------------------------	-----------------------------	-----------------------------	---------	--	--	------------
	Bee venom acupuncture	0.25–2.5 mg/kg, i.p.	Mice	Cold alldynia and mechanical alldynia	Via the spinal noradrenergic and serotonergic mechanism	[74]
	Quetiapine	10–15 mg/kg, p.o.	Mice	Heat hyperalgesia, mechanical alldynia, and cold alldynia	Via α2-adrenoceptors	[75]
	Reboxetine	10 mg/kg, i.p.	Rats	Mechanical alldynia and cold hyperalgesia	α2-AR mediated antinociception at the spinal cord	[76]
	Venlafaxine	40–60 mg/kg, s.c.	Mice	Cold alldynia and mechanical alldynia	Via the spinal noradrenergic and serotonergic mechanism	[74]
Acetylcholine receptor	Nicotine	0.6–0.9 mg/kg, i.p. or 24 mg/kg, s.c.	Mice	Mechanical alldynia and density of IENF	Via α7 nicotinic acetylcholine receptor	[77]
	Pirenzepine	10 mg/kg, s.c.	Mice	Mechanical sensitivity and thermal sensitivity	Muscarinic ACh type 1 receptor (M1R) antagonism	[78]
	R-47, an α7 nAChR silent agonist	5–10 mg/kg, i.p.	Mice	Mechanical hypersensitivity, loss of IENF and morphological changes of microglia	N.A.	[79]
	α-Conotoxin RglA4	80 µg/kg, s.c.	Rats	Mechanical alldynia	N.A.	[80]
cAMP/PKA	ESI-09, a Epac inhibitor	20 mg/kg, p.o.	Mice	Mechanical alldynia and number of IENF	Suppression of spinal cord astrocyte activation	[40]
PKC	HOE140, a kinin B2 antagonist	50 nmol/kg, i.p.	Mice	Mechanical hyperalgesia	Inactivation of PKCε	[62]
	DALBK, a kinin B1 antagonist	150 nmol/kg, i.p.	Mice	Mechanical hyperalgesia	Inactivation of PKCε	[62]
	Tamoxifen	30 mg/kg, p.o.	Mice	Mechanical alldynia cold alldynia	Inhibition of PKC/ERK pathway	[81]
MAPK	Duloxetine	30 mg/kg/day, i.p.	Mice	Mechanical hyperalgesia, thermal hyperalgesia, and loss of IENF	Decreases in NF-κB, p-p38, IL-6, and TNF-α in DRG	[39]
	Duloxetine	10–30 mg/kg, p.o.	Mice	Mechanical alldynia and cold alldynia	Inhibiting ERK1/2 phosphorylation in spinal cord	[82]
	Gabapentin	30–100 mg/kg, p.o.	Mice	Mechanical alldynia and cold alldynia	Inhibiting ERK1/2 phosphorylation in spinal cord	[82]
Therapeutic Targets	Therapeutic Agents	Dose	Animals	Symptoms that Showed Improvement	Mechanisms	References
---------------------	-------------------------------------	---------------	---------	---	---	------------
Lacosamide	30 mg/kg, p.o.	Rats	Thermal hyperalgesia and cold allodynia	Upregulation of total antioxidant capacity and NGF, and downregulation of NF-kB p65, TNF-α, active caspase-3, Notch1 receptor, p-p38, and IL-6/p-JAK2/p-STAT3	[28]	
MJN110, a MAGL inhibitor	4–40 mg/kg, i.p.	Mice	Mechanical allodynia	Downregulations of MCP-1, CCL2 and p-p38 in DRG as well as MCP-1 in the spinal dorsal horn	[49]	
PD0325901	30 mg/kg, p.o.	Mice	Mechanical allodynia and cold allodynia	Inhibiting ERK1/2 phosphorylation in spinal cord	[82]	
Lacosamide	30 mg/kg, p.o.	Rats	Thermal hyperalgesia and cold allodynia	Upregulation of total antioxidant capacity and NGF, and downregulation of NF-kB p65, TNF-α, active caspase-3, Notch1 receptor, p-p38, and IL-6/p-JAK2/p-STAT3	[28]	
Siwei Jianbu decoction	5–10 g/kg, p.o.	Mice	Mechanical hyperalgesia and thermal nociception	Inhibiting the JNK, ERK1/2 phosphorylation, NF-κB, TNF-α, IL-1β, and IL-6	[53]	
Tamoxifen	30 mg/kg, p.o.	Mice	Mechanical allodynia cold alldynia	Inhibition of PKC/ERK pathway	[81]	
Trametinib	0.5 mg/kg	Mice	Mechanical and cold alldynia	Inhibition of the MEK/ERK pathway	[83]	
β-caryophyllene, a CB2 agonist	25 mg/kg, p.o.	Mice	Mechanical alldynia	Through CB2-activation in the CNS and posterior inhibition of p38 MAPK/NF-κB activation and cytokine release	[56]	
OATP1B2	Nilotinib 100 mg/kg, p.o.	Mice	Mechanical alldynia	Inhibition of paclitaxel intake to neuron via OATP1B2 inhibition	[84]	
mTOR	Rapamaycin 5 mg/kg, i.p.	Rats	Mechanical hypersensitivity and thermal hypersensitivity	Decreases of IL-1β, IL-6, TNF-α, substance P and CGRP in DRG.	[51]	
AM9053, a NAAA inhibitor	1–10 mg/kg, i.p.	Mice	Mechanical alldynia	N.A.	[85]	
Aucubin	15–50 mg/kg, i.p.	Mice	Mechanical alldynia	N.A.	[86]	
Therapeutic Targets	Therapeutic Agents	Dose	Animals	Symptoms that Showed Improvement	Mechanisms	References
---------------------	--------------------	------	---------	-----------------------------------	------------	-----------
Aucubin	50 mg/kg, i.p.	Mice	Mechanical allodynia	Inhibition of ER stress in peripheral Schwann cells	[87]	
Bogijetong decoction, a herbal drug formulation	400 mg/kg, p.o.	Rats	Heat sensitivity	Improvement of morphological abnormalities in the sciatic nerve axons and DRG tissue	[88]	
DALBK, a kinin B1 antagonist	150 nmol/kg, i.p.	Mice	Mechanical allodynia	Antagonism of kinin B1 receptor	[89]	
FR173657, a kinin B2 antagonist	100 nmol/kg, i.p.	Mice	Mechanical allodynia	Antagonism of kinin B2 receptor	[89]	
Gelsemium sempervirens	1 mL, i.p.	Rats	Mechanical alldonya, mechanical hyperalgesia, cold alldonya, and density of IENF	N.A.	[90]	
HOE140, a kinin B2 antagonist	100 nmol/kg, i.p.	Mice	Mechanical alldonya	Antagonism of kinin B2 receptor	[89]	
Iridoids isolated from Viticis Fructus	15 mg/kg	Mice	Mechanical alldonya	N.A.	[91]	
Lepidium meyenii	0.5–10 mg/kg, p.o.	Rats	Cold hypersensitivity	N.A.	[92]	
Metformin	200 mg/kg, i.p.	Mice	Mechanical hypersensitivity	Activation of AMPK	[93]	
Narciscasine	1 mg/kg, p.o.	Mice	Mechanical hypersensitivity	Activation of AMPK	[93]	
Neoline	10 mg/kg/day, s.c.	Mice	Mechanical hyperalgesia	N.A.	[94]	
Nicotinamide riboside	200 mg/kg, p.o.	Rats	Mechanical hyperalgesia and cold hyperalgesia	N.A.	[95]	
NO-711, a GAT-1 inhibitor	3 mg/kg, i.p.	Mice	Thermal hyperalgesia and cold alldonya	Inhibition of GAT-1	[96]	
Processed aconite root	1 g/kg/day, s.c.	Mice	Mechanical hyperalgesia	N.A.	[94]	
Recombinant human soluble thrombomodulin	3–10 mg/kg, i.p.	Rats	Mechanical hyperalgesia	Inactivation of HMGB1	[97]	
Rikkunshito	0.3–1 mg/kg, p.o.	Mice	Mechanical hyperalgesia	Suppression of p-NF-κB in spinal cord	[98]	
Therapeutic Targets	Therapeutic Agents	Dose	Animals	Symptoms that Showed Improvement	Mechanisms	References
---------------------	--------------------	------	---------	---------------------------------	------------	------------
Salicylidene salicylhydrazide	50–75 mg/kg, i.p.	Mice	Mechanical allodynia and cold allodynia	N.A.	[99]	
Sargassum glaucescens from the Persian Gulf	100–200 mg/kg, i.p.	Mice	Cold allodynia	N.A.	[100]	
SLAB51, a probiotic formulation	1.5 g (200 billion of bacteria) in 10 mL of drinking water	Mice	Mechanical allodynia and hyperalgesia	Increases in the expression of opioid and cannabinoid receptors in spinal cord, reduction in nerve fiber damage in the paws and modulation of the serum proinflammatory cytokines concentration	[101]	
SSR240612, a kinin B1 antagonist	150 nmol/kg, i.p.	Mice	Mechanical allodynia	Antagonism of kinin B1 receptor	[89]	
Staurosporine	0.1 mg/kg, i.p.	Mice	Mechanical allodynia	Inhibitory of PI3K signaling pathway	[102]	
Telmisartan	5–10 mg/kg, i.p.	Mice	Mechanical hyperalgesia and thermal hyperalgesia	Inhibition of CYP2J isozymes and reductions of EpOME in DRGs and plasma	[103]	
Terfenadine	1–2 mg/kg	Mice	Mechanical hyperalgesia	Inhibition of CYP2J isozymes	[103]	
Wortmannin	0.6 mg/kg, i.p.	Mice	Mechanical hyperalgesia	Inhibitory of PI3K signaling pathway	[102]	

Abbreviations: Ach, acetylcholine; AMPK, AMP-activated protein kinase; Apaf-1, apoptosis protease-activating factor 1; ATF-3, activating transcription factor 3; Bcl-2, B-cell lymphoma-extra-large; BDNF, brain derived neurotrophic factor; CaMKIIα, calmodulin-dependent protein kinase IIα; CCL2, C-C motif chemokine ligand 2; CCR2, C-C motif chemokine receptor 2; CGRP, calcitonin gene-related peptide; CREB, cAMP response element binding protein; CXCR, C-X-C motif chemokine receptor; CYP2J, Cytochrome P450 2J; DRG, dorsal root ganglia; EAAT2, excitatory amino acid transporter 2; Epac, exchange protein directly activated by cAMP; EpOME, epoxyoctadecamonoenoic acids; ER, endoplasmic reticulum; ERK, extracellular signal-regulated kinase; FAAH, fatty-acid amide hydrolase; FosB, FBj murine osteosarcoma viral oncogene homolog B; GAT-1, gamma-aminobutyric acid (GABA) transporter 1; GFAP, glial fibrillary acidic protein; GluR1, glutamate ionotropic receptor AMPA type subunit 1; GSH, glutathione; HDAC2, histone deacetylase 2; HMGB1, high mobility group box 1; HO-1, heme oxygenase 1; i.p., intraperitoneal; i.v., intravenous; IENF, intra-epidermal nerve fibers; IL-10, interleukin-10; IL-1β, interleukin-1 beta; IL-6, interleukin-6; IL-8, interleukin-8; iNOS, inducible nitric oxide synthase; IRS, insulin regulatory factor 8; JNK, c-Jun N-terminal kinase; MAGL, monoacylglycerol lipase; MAPK, mitogen-activated protein kinase; MCP-1, monococyte chemotactic protein 1; MDA, malondialdehyde; MEK, mitogen-activated protein kinase; MPO, myeloperoxidase; NAAA, N-acylethanolamine-hydroryzingly acid amidase; NAcChR, nicotinic acetylcholine receptor; NF-κB, nuclear factor kappa-B; NMDA, N-methyl-D-aspartate; NOX4, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4; NQO1, NAD(P)H dehydrogenase [quinone] 1; NR2B, N-methyl D-aspartate (NMDA) receptor subtype 2B; Nrf2, nuclear factor-erythroid 2-related factor 2; OATP1B2, organic anion-transporting polypeptide 1b2; p.Akt, phospho-protein kinase B; PARP, poly ADP-ribose polymerase; p-CREB, phospho-CAMP response element binding protein; p-FAK, phospho-focal adhesion kinase; PGC-1α, peroxisome proliferator activated receptor γ coactivator-1; PI3K, phosphatidylinositol-3-kinase; p-STAT3, phospho-signal transducer and activator of transcription 3; RAGE, receptor for advanced glycation endproducts; s.c., subcutaneous; SIRT1, sirtuin-1; SNAP, sensory nerve action potential; SNCV, sensory nerve conduction velocity; SOD, superoxide dismutase; TLR4, Toll-like receptor 4; TNF-α, tumor necrosis factor-α; TRP, transient receptor potential; TRPA1, transient receptor potential ankyrin 1; TRPV1, transient receptor potential vanilloid 1; TRPV4, transient receptor potential vanilloid 4; UCP2, uncoupling protein 2; VGLUT, vesicular glutamate transporter 3; YY1, Yin-Yang 1.
3.1.1. Antioxidants and Mitochondria-Protective Agents

Many previous preclinical reports support that oxidative stress and mitochondrial dysfunction play a role in PIPN [31,104–106]. Vitamin C, rotenone, tempol, and curcumin which are widely known for their antioxidant effects, have been reported to alleviate PIPN in rodents [20,21,27]. Among the approved drugs, duloxetine, lacosamide, pregabaline, and rosuvastatin have also been reported to reverse PIPN via their antioxidant effects [23,28,32]. Moreover, many agents, which have antioxidant effects, inhibit PIPN in preclinical studies [19,22,24–26,29–31,33,34].

3.1.2. Anti-Inflammatory Agents

Inflammatory cytokines (e.g., interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α)) and chemokines (e.g., chemokine (C-X-C motif) ligand (CXCL) family) were elevated in the peripheral sites, spinal cord, and of paclitaxel-treated animals, and many agents reduced the peripheral neuropathy symptoms via their anti-inflammatory effects [19,21,22,24,25,27,28,32–39,41,42,44–47,49–54,56]. Activations of astrocytes and microglia were also observed in the spinal dorsal horn after paclitaxel administrations, and many agents including minocycline attenuated PIPN via the inhibition of these spinal changes and prevented neurological damage [40,43,44,48].

3.1.3. Ion Channel Inhibitors and Activators

Some activators of potassium channels, especially Kv7, have been shown to suppress PIPN [57,58]. Focusing on calcium channels, T-type calcium channel blockers have been reported to alleviate PIPN symptoms [54,59].

3.1.4. Transient Receptor Potential (TRP) Modulators

Temperature-sensitive cation channels (e.g., transient receptor potential vanilloid 4 (TRPV4), transient receptor potential vanilloid 1 (TRPV1), and transient receptor potential ankyrin 1 (TRPA1)) have been reported to be involved in PIPN [61,107–109]. Many drugs have also been reported to improve PIPN by downregulating or inhibiting TRP channels [55,60–64].

3.1.5. Cannabinoid Receptor Agonists

Many studies have shown that cannabinoid receptor agonists and related substances can suppress PIPN symptoms [48,49,56,69–71]. In particular, some reports exist that selective CB2 agonists have an ability to suppress PIPN [48,56].

3.1.6. Modulators of Monoamine Nervous System

Monoamines, including noradrenaline and serotonin, play an important role in the descending pain inhibitory system [110]. Some drugs and agents (e.g., quetiapine, reboxetine, venlafaxine, and bee venom) also showed analgesic effects by modulating the monoamine nervous system in the PIPN animal models [73–76].

3.1.7. Others

In addition to the aforementioned, many other drugs have been identified to reduce PIPN via several therapeutic targets, such as glutamate nerve systems [65,66], phosphodiesterase (PDE) [67,68], opioid receptors [72], acetylcholine receptor [77–80], cAMP/protein kinase A (PKA) signal [40], protein kinase C (PKC) [62,81], mitogen-activated protein kinase (MAPK) [28,39,49,53,56,81–83], organic anion-transporting polypeptide 1b2 (OATP1B2) [84], mammalian target of rapamycin (mTOR) [51], and others [85–103], at the pre-clinical research level.

3.2. Therapeutic Agents in Clinical Evidence

In PubMed, 1175 articles were found when using the search term “paclitaxel neuropathy or paclitaxel neurotoxicity” limited to “Randomized Controlled Trial” and “Meta-
Analysis”. After excluding reports other than about PIPN, the authors found 19 reports considered to be clinically important. A summarized list of the representative randomized controlled trials and meta-analyses on prophylactic and therapeutic agents for PIPN is shown below in Table 2.
Table 2. The therapeutic drugs for paclitaxel-induced peripheral neuropathy in clinical experiments.

Investigational Drug	Dose (Preventive or Curative)	Chemotherapy	Study Design	Patient Number	Summary	References
Acetyl-L-carnitine	3000 mg daily, p.o. (preventive)	Taxanes	Randomized, double-blind, placebo-controlled, multicenter study	409	Significant reduction in NTX scores (worsening of peripheral neuropathy) >2 years	[111]
Amifostine	910 mg/m², i.v., before the paclitaxel administration (preventive)	Carboplatin/paclitaxel	Randomized, controlled study	38	Significant improvements in paresthesia and sensory motor impairment.	[112]
Amifostine	910 mg/m², i.v., before the paclitaxel administration (preventive)	Paclitaxel	Randomized, controlled study	37	No significant difference in any of the measures of neurotoxicity.	[113]
Gabapentin	40 mg daily, p.o. (20 mg/day for the first week) (curative)	Oxaliplatin, paclitaxel, vincristine, or bortezomib	Randomized, open-label, crossover study (vs vitamin B12)	34	Significant improvements in numbness and pain	[114]
Duloxetine	60 mg/day, p.o., (30 mg/day for the first week) (curative)	Taxane or platinum	Randomized, double-blind, placebo-controlled, crossover study	231	In all patients, RRs (95% CI) of experiencing 30% and 50% pain reduction were 1.96 (1.15–3.35) and 2.43 (1.11–5.30), respectively In taxane-treated patients, RRs (95% CI) of experiencing 30% and 50% pain reduction were 0.97 (0.41–2.32) and 1.22 (0.35–4.18), respectively (not significant)	[115]
Gabapentin	900 mg daily, p.o., (preventive)	Paclitaxel	Randomized, double-blind, placebo-controlled study	40	Significant improvements in the incidence of grades 2–3 neuropathy and NCV changes	[116]
Glutamate	1500 mg daily, p.o., (preventive)	Paclitaxel	Randomized, double-blind, placebo-controlled study	43	No significant difference in the frequency of signs or symptoms between the two groups	[117]
Glutathione	1.5 g/m², i.v., immediately before chemotherapy (preventive)	Carboplatin/paclitaxel	Randomized, double-blind, placebo-controlled study	185	No significant differences in acute pain score and EORTC QLQ-CIPN20 scores compared to the placebo group	[118]
Investigational Drug	Dose (Preventive or Curative)	Chemotherapy	Study Design	Patient Number	Summary	References
----------------------	-------------------------------	--------------	--------------	----------------	--	------------
Minocycline	200 mg daily, p.o., (preventive)	Paclitaxel	Randomized, double-blind, placebo-controlled, multicenter study	47	Significant improvements in acute pain score. No significant differences in sensory neuropathy score of the EORTC QLQ-CIPN20 compared to the placebo group.	[119]
N-acetyl cysteine	1200 mg daily or twice daily, p.o., (preventive)	Paclitaxel	Randomized, controlled, open label study	75	Significant improvements in incidence of grades 2–3 neuropathy, mTNS, and QOL scores. Significant increase in serum NGF and decrease in serum MDA.	[120]
Omega-3 fatty acid	1920 mg daily, p.o., (preventive)	Paclitaxel or oxaliplatin	Meta-analysis	116 (two trials)	Significant improvements in the incidence of peripheral neuropathy and SNAP amplitudes.	[121]
Omega-3 fatty acid	1920 mg daily, p.o., (preventive)	Paclitaxel	Randomized, double-blind, placebo-controlled study	57	Significant improvements in neuropathy incidence.	[122]
Oral nutritional supplement containing EPA	p.o., (preventive)	Paclitaxel or cisplatin/carboplatin	Randomized, controlled study	92	Significant improvement in neuropathy.	[123]
PARP inhibitors (olaparib or veliparib)	N.A.	Paclitaxel	Meta-analysis	843 (five trials)	Did not reduce the risk of chemotherapy-induced peripheral neuropathy.	[124]
Pregabalin	150 mg daily, p.o., (curative)	Paclitaxel or docetaxel	Randomized, double-blind, controlled study (vs duloxetine group)	82	Improvements in NCI-CTCAE grade and PNQ scores were more significant with pregabalin in comparison to duloxetine.	[125]
Pregabalin	150 mg daily, p.o., (preventive)	Paclitaxel	Randomized, double-blind, placebo-controlled, multicenter study	46	No significant differences in acute pain score and EORTC QLQ-CIPN20 scores compared to the placebo group.	[126]
Investigational Drug	Dose (Preventive or Curative)	Chemotherapy	Study Design	Patient Number	Summary	References
----------------------	-------------------------------	--------------	--------------	----------------	---------	------------
Recombinant human LIF	2 or 4 µg/kg, s.c., (preventive)	Carboplatin/paclitaxel	Randomized, double-blind, placebo-controlled study	117	No significant difference in CPNE or any of the individual neurologic testing variables	[127]
Vitamin E	600 mg daily, p.o., (preventive)	Paclitaxel	Randomized, controlled study	32	Significant improvements in the incidence of neuropathy and PNP scores	[128]
	600 mg daily, p.o., (preventive)	Cisplatin or paclitaxel	Randomized, controlled study	31	Significant improvements in incidence and neuropathy scores	[129]

Abbreviations: 95% CI, 95% confidence interval; CPNE, composite peripheral nerve electrophysiology; EORTC QLQ-CIPN20, European Organisation for Research and Treatment of Cancer, Quality of Life-Chemotherapy-Induced Peripheral Neuropathy 20; EPA, eicosapentaenoic acid; LIF, leukemia inhibitory factor; MDA, malondialdehyde; mTNS, modified total neuropathy score; NCI-CTCAE, National Cancer Institute-Common Terminology Criteria for Adverse Events; NCV, nerve conduction velocity; NGF, nerve growth factor; NTX score, neurotoxicity score; PARP, poly ADP-ribose polymerase; PNP score, peripheral neuropathy score; PNQ, patient neurotoxicity questionnaire; QOL, quality of life; RR, relative risk; SNAP, sensory nerve action potential.
Duloxetine was tested in a randomized, double-blind, placebo-controlled, crossover trial, for its ability to treat neuropathy in patients with taxane or platinum [115]. In this study, relative risks (RRs) (95% confidence interval (95% CI)) of experiencing 30% and 50% pain reduction were 1.96 (1.15–3.35) and 2.43 (1.11–5.30), respectively. However, in a subanalysis in taxane-treated patients, RRs (95% CI) of experiencing 30% and 50% pain reduction were 0.97 (0.41–2.32) and 1.22 (0.35–4.18), respectively (not significant). Duloxetine significantly improved numbness and pain compared with vitamin B12 in a randomized, open-label, crossover study of patients who received chemotherapy including other anticancer drugs, as well as paclitaxel [114].

Pregabalin significantly improved the grade and score of taxane-related neuropathy compared with duloxetine in a randomized, double-blind, controlled study [125]. Moreover, pregabalin did not improve treatment-related pain and neuropathy scores related to paclitaxel in a randomized, double-blind, placebo-controlled, multicenter study [126]. Gabapentin was reported to significantly reduce the incidence of grade ≥2 PIPN and changes in nerve conduction velocity (NCV) in a randomized, double-blind, placebo-controlled study [122].

Omega-3 fatty acids significantly improved the incidence of peripheral neuropathy associated with paclitaxel administration in a randomized, double-blind, placebo-controlled study [122]. In a meta-analysis that included not only paclitaxel-treated patients but also oxaliplatin-treated patients, the suppressive effects of omega-3 fatty acids on neuropathy were significant [121]. Vitamin E significantly improved the incidence and scores of neuropathies in both a randomized, controlled study of patients with paclitaxel [128] and patients with paclitaxel or cisplatin [129]. Amifostine significantly improved paresthesia and sensory motor impairment in a randomized controlled study of paclitaxel/carboplatin-treated patients [112]. However, it did not significantly improve neuropathy in a randomized controlled study of paclitaxel-treated patients [113]. Additionally, minocycline, N-acetylcysteine, and eicosapentenoic acid (EPA) have been reported to improve peripheral neuropathy associated with paclitaxel [119,120,123]. Moreover, glutamate, glutathione, poly ADP-ribose polymerase (PARP) inhibitors, and human leukemia inhibitory factor (LIF) did not show any significant effect on PIPN in randomized controlled trials or meta-analyses [117,118,124,127]. Long-term administration of acetyl-L-carnitine significantly worsened taxane-related peripheral neuropathy in a randomized, double-blind, placebo-controlled, multicenter study [111].

As described above, few drugs have shown clear therapeutic PIPN effects in clinical trials. Thus, according to the clinical practice guideline updated by the American Society of Clinical Oncology in 2020, no agents have yet to be recommended for preventing chemotherapy-induced peripheral neuropathy and only duloxetine may be used as a treatment for neuropathy [14].

4. Discussion

The PIPN mechanism has been recently elucidated in basic studies, and many drugs and agents targeting this mechanism have been explored and identified for PIPN therapy or prophylaxis [18]. In particular, many inhibitors of neuropathy targeting oxidative stress, inflammatory response, ion channels, TRP channels, cannabinoid receptor, and monoamine nervous system have been identified as candidates for inhibiting PIPN in animal research. In particular, more reports of inhibitors targeting peripheral and central inflammatory responses, TRP channels, and cannabinoid receptors were noted compared with pre-clinical research reports on oxaliplatin-induced peripheral neuropathy [130]. Targeting these may be useful in the search for PIPN-specific therapeutics.

Alternatively, very few drugs have shown the efficacy for PIPN in clinical trials. The American Society of Clinical Oncology’s clinical practice guideline states that only duloxetine can be used for the treatment of chemotherapy-induced peripheral neuropathy [14]. In a randomized double-blind placebo-controlled crossover study, duloxetine has been reported to improve neuropathic pain caused by taxanes and platinum [115]. However, a
subanalysis of that study also showed a weak inhibitory effect of duloxetine on taxanes in neuropathic pain [115]. Thus, few evidence-based treatments for PIPN were noted.

Most clinical studies examined the preventive rather than curative effects on PIPN. Meanwhile, pre-clinical studies have explored many therapeutic targets for PIPN. Of these, agents on the therapeutic targets that inhibit pain or sensory abnormalities, such as K channel, Ca channel, TRP channels, glutamate, cannabinoid receptors, opioid receptors, and monoamine nervous system, may have curative effects on PIPN that has already developed. More information on the clinical studies of these agents will make it possible to approach PIPN from both a preventive and curative perspective.

While many drugs have been reported in pre-clinical research as having the potential to inhibit the PIPN, few drugs have developed sufficient evidence in clinical studies. The valley of death between basic studies and clinical applications is caused by many issues, including the difference between clinical symptoms and animal assessment methods, the cost and time of conducting clinical research, safety considerations in clinical application, and the lack of collaboration between basic and clinical researchers. Thus, promoting translational research, that is, to bridge pre-clinical research to clinical research is important.

Author Contributions: Conceptualization, T.K.; methodology, T.K., D.K., N.E., and T.S.; investigation, T.K., M.I., K.M. (Kohei Mori), K.M. (Keisuke Mine), and H.K.; writing—original draft preparation, T.K.; writing—review and editing, D.K., S.U., M.U., and N.E.; project administration, T.S.; funding acquisition, T.K. All authors have read and agreed to the published version of the manuscript.

Funding: This work was partly supported by JSPS KAKENHI (JP20K07198) and Fukuoka Public Health Promotion Organization Cancer Research Fund.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is not applicable to this article.

Conflicts of Interest: The authors declare that they have no conflict of interest to this work.

Abbreviations

95% CI 95% confidence interval
Ach acetylcholine
AMPK AMP-activated protein kinase
Apaf-1 apoptosis protease-activating factor 1
ATF-3 activating transcription factor 3
Bcl-2 B-cell lymphoma 2
Bcl-xL B-cell lymphoma-extra large
BDNF brain derived neurotrophic factor
CaMKIIα calmodulin-dependent protein kinase IIα
CCL2 C-C motif chemokine ligand 2
CCR2 C-C motif chemokine receptor 2
CGRP calcitonin gene-related peptide
CPNE composite peripheral nerve electrophysiology
CREB cAMP response element binding protein
CXCL C-X-C motif chemokine ligand
CXR C-X-C motif chemokine receptor
CYP2J Cytochrome P450 2J
DRG dorsal root ganglia
EAAT2 excitatory amino acid transporter 2
EORTC QLQ-CIPN20 European Organisation for Research and Treatment of Cancer: Quality of Life-Chemotherapy-Induced Peripheral Neuropathy 20
EPA eicosapentaenoic acid
Epac exchange protein directly activated by cAMP
EpOME epoxyoctadecamonoenoic acids
ER endoplasmic reticulum
ERK extracellular signal-regulated kinase
FAAH fatty-acid amide hydrolase
FosB FBJ murine osteosarcoma viral oncogene homolog B
GAT-1 gamma-aminobutyric acid (GABA) transporter 1
GFAP glial fibrillary acidic protein
GluR1 glutamate ionotropic receptor AMPA type subunit 1
GSH glutathione
HDAC2 histone deacetylase 2
HMGB1 high mobility group box 1
HO-1 heme oxygenase 1
t.p. intraperitoneal
i.v. intravenous
IENF intra-epidermal nerve fibres
IL-10 interleukin-10
IL-1β interleukin-1 beta
IL-6 interleukin-6
IL-8 interleukin-8
iNOS inducible nitric oxide synthase
IRF8 interferon regulatory factor 8
JNK c-Jun N-terminal kinase
LIF leukaemia inhibitory factor
MAGL monoacylglycerol lipase
MAPK mitogen-activated protein kinase
MCP-1 monocyte chemotactic protein 1
MDA malondialdehyde
MEK mitogen-activated protein kinase kinases
MPO myeloperoxidase
mTNS modified total neuropathy score
mTOR mammalian target of rapamycin
NAAA N-acylethanolamine-hydrolyzing acid amidase
nAChR nicotinic acetylcholine receptor
NCI-CTCAE National Cancer Institute-Common Terminology Criteria for Adverse Events
NCV nerve conduction velocity
NF-κB nuclear factor kappa-B
NGF nerve growth factor
NMDA N-methyl-D-aspartate
NOX4 nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4
NQO1 NAD[P]H dehydrogenase [quinone] 1
NR2B N-methyl D-aspartate (NMDA) receptor subtype 2B
Nrf2 nuclear factor-erythroid 2-related factor 2
NTX score neurotoxicity score
OATP1B2 organic anion-transporting polypeptide 1b2
p.o. per os
p-Akt phospho-protein kinase B
PARP poly ADP-ribose polymerase
p-CREB phospho-cAMP response element binding protein
PDE phosphodiesterase
p-FAK phospho-focal adhesion kinase
PGC-1α peroxisome proliferator-activated receptor γ coactivator-1
PI3K phosphatidylinositol-3-kinase
PIP N-acylethanolamine-hydrolyzing acid amidase
p-JAK2 phospho-janus kinase 2
PKA protein kinase A
PKC protein kinase C
p-NF-κB phospho-nuclear factor kappa-B
PNP score peripheral neuropathy score
PNQ patient neurotoxicity questionnaire
References

1. Ozols, R.F.; Bundy, B.N.; Greer, B.E.; Fowler, J.M.; Clarke-Pearson, D.; Burger, R.A.; Mannel, R.S.; DeGeest, K.; Hartenbach, E.M.; Baergen, R. Phase III Trial of Carboplatin and Paclitaxel Compared with Cisplatin and Paclitaxel in Patients with Optimally Resected Stage III Ovarian Cancer: A Gynecologic Oncology Group Study. *J. Clin. Oncol.* 2003, 21, 3194–3200. [CrossRef]

2. Du Bois, A.; Lück, H.-J.; Meier, W.; Adams, H.-P.; Möbus, V.; Costa, S.; Bauknecht, T.; Richter, B.; Warm, M.; Schröder, W.; et al. A Randomized Clinical Trial of Cisplatin/Paclitaxel Versus Carboplatin/Paclitaxel as First-Line Treatment of Ovarian Cancer. *J. Natl. Cancer Inst.* 2003, 95, 1320–1329. [CrossRef] [PubMed]

3. Ohe, Y.; Ohashi, Y.; Kubota, K.; Tamura, T.; Nakagawa, K.; Negoro, S.; Nishiwaki, Y.; Saijo, N.; Ariyoshi, Y.; Fukuoka, M. Randomized phase III study of cisplatin plus irinotecan versus carboplatin plus paclitaxel, cisplatin plus gemcitabine, and cisplatin plus vinorelbine for advanced non-small-cell lung cancer: Four-Arm Cooperative Study in Japan. *Ann. Oncol.* 2006, 18, 317–323. [CrossRef] [PubMed]

4. Socinski, M.A.; Bondarenko, I.; Karaseva, N.A.; Makhson, A.M.; Vynnychenko, I.; Okamoto, I.; Hon, J.K.; Bhar, P.; Zhang, H.; et al. Weekly nab-Paclitaxel in Combination With Carboplatin Versus Solvent-Based Paclitaxel Plus Carboplatin as First-Line Therapy in Patients With Advanced Non–Small-Cell Lung Cancer: Final Results of a Phase III Trial. *J. Clin. Oncol.* 2012, 30, 2055–2062. [CrossRef] [PubMed]

5. Sparano, J.A.; Wang, M.; Martinot, S.; Jones, V.; Perez, E.A.; Saphner, T.; Wolff, A.; Sledge, G.W.; Davidson, N.E. Weekly Paclitaxel in the Adjuvant Treatment of Breast Cancer. *N. Engl. J. Med.* 2008, 358, 1663–1671. [CrossRef]

6. Seidman, A.D.; Berry, D.; Cirrincione, C.; Harris, L.; Marcom, P.K.; Gipson, G.; Burstein, H.; Lake, D.; Shapiro, C.L.; et al. Randomized Phase III Trial of cisplatin plus irinotecan versus carboplatin plus paclitaxel, cisplatin plus gemcitabine, and cisplatin plus vinorelbine for advanced non-small-cell lung cancer: Four-Arm Cooperative Study in Japan. *Int. J. Mol. Sci.* 2021, 22, 8733.
14. Loprinzi, C.L.; Lacchetti, C.; Bleeker, J.; Cavaletti, G.; Chauhan, C.; Hertz, D.L.; Kelley, M.R.; Lavino, A.; Lustberg, M.B.; Paice, J.A.; et al. Prevention and Management of Chemotherapy-Induced Peripheral Neuropathy in Survivors of Adult Cancers: ASCO Guideline Update. *J. Clin. Oncol.* **2020**, *38*, 3325–3348. [CrossRef] [PubMed]

15. Cavaletti, G.; Tredici, G.; Braga, M.; Tazzari, S. Experimental Peripheral Neuropathy Induced in Adult Rats by Repeated Intraperitoneal Administration of Taxol. *Exp. Neurol.* **1995**, *133*, 64–72. [CrossRef]

16. Mimura, Y.; Kato, H.; Eguchi, K.; Ogawa, T. Schedule dependency of paclitaxel-induced mitochondrial dysfunction in vitro and in vivo. *Science* **2004**, *74*, 2593–2604. [CrossRef]

17. Smith, S.B.; Crager, E.S.; Mogil, J.S. Paclitaxel-induced neuropathic hypersensitivity in mice: Responses in 10 inbred mouse strains. *Life Sci.* **2004**, *74*, 2593–2604. [CrossRef]

18. Yamamoto, S.; Egashira, N. Drug Repositioning for the Prevention and Treatment of Chemotherapy-Induced Peripheral Neuropathy: A Mechanism- and Screening-Based Strategy. *Front. Pharmacol.* **2021**, *11*. [CrossRef]

19. Kuyrukuyıldız, U.; Kupeli, I.; Bedir, Z.; Ozmen, O.; Onk, D.; Suleyman, B.; Suleyman, H.; Kuyrukuyıldız, U. The Effect of Anakinra on Paclitaxel-Induced Peripheral Neuropathic Pain in Rats. *Turk. J. Anesth. Reanim.* **2017**, *44*, 287–294. [CrossRef]

20. Griffiths, L.; Flatters, S.J. Pharmacological Modulation of the Mitochondrial Electron Transport Chain in Paclitaxel-Induced Painful Peripheral Neuropathy. *J. Pain* **2015**, *16*, 981–994. [CrossRef]

21. Yardim, A.; Kandemir, F.M.; Comakli, S.; Özdemir, S.; Caglayan, C.; Mukcukler, S.; Çelik, H. Protective Effects of Curcumin Against Paclitaxel-Induced Spinal Cord and Sciatic Nerve Injuries in Rats. *Neurochem. Res.* **2021**, *46*, 379–395. [CrossRef]

22. Balkrishna, A.; Sakat, S.S.; Karumuri, S.; Singh, H.; Ueno, H.; Haldar, S.; Varshney, A. Herbal Decoction Divya-Peeditak-Kwath Alleviates Allodynia and Hyperalgesia in Mice Model of Chemotherapy-Induced Peripheral Neuropathy via Modulation in Cytokine Response. *Front. Pharmacol.* **2020**, *11*, 566490. [CrossRef] [PubMed]

23. Lu, Y.; Zhang, P.; Zhang, Q.; Yang, C.; Qian, Y.; Suo, J.; Tao, X.; Zhu, J. Duloxetine Attenuates Paclitaxel-Induced Peripheral Nerve Injury by Inhibiting p53-Related Pathways. *J. Pharmacol. Exp. Ther.* **2020**, *373*, 453–462. [CrossRef]

24. Wu, P.; Chen, Y. Evodiamine alleviates paclitaxel-induced neuropathic pain by inhibiting inflammation and maintaining mitochondrial anti-oxidant functions. *Hum. Cell* **2019**, *32*, 251–259. [CrossRef]

25. Sayeli, V.; Nadipelly, J.; Kadhirvelu, P.; Cheriyian, B.V.; Shanmugasundaram, J.; Subramanian, V. Effect of flavonol and its dimethoxy derivatives on paclitaxel-induced peripheral neuropathy in mice. *Basic Clin. Physiol. Pharmacol.* **2018**, *29*, 525–535. [CrossRef] [PubMed]

26. Ishii, N.; Tsubouchi, H.; Miura, A.; Yanagi, S.; Ueno, H.; Shiomi, K.; Nakazato, M. Ghrilin alleviates paclitaxel-induced peripheral neuropathy by reducing oxidative stress and enhancing mitochondrial anti-oxidant functions in mice. *J. Basic Clin. Physiol. Pharmacol.* **2020**, *72*, 35–42. [CrossRef] [PubMed]

27. Miao, H.; Xu, J.; Xu, D.; Ma, X.; Zhao, X.; Liu, L. Nociceptive Behavior Induced by Chemotherapeutic Paclitaxel and Beneficial Role of Antioxidative Pathways. *Physiol. Res.* **2018**, *491–500*. [CrossRef] [PubMed]

28. Al-Massri, K.F.; Ahmed, L.A.; El-Abhar, H.S. Pregabalin and lacosamide ameliorate paclitaxel-induced peripheral neuropathy via inhibition of JAK/STAT signaling and Notch-1 receptor. *Neurochem. Int.* **2018**, *120*, 164–171. [CrossRef]

29. Galley, H.F.; McCormick, B.; Wilson, K.L.; Lowes, D.; Colvin, L.; Torsney, C. Melatonin limits paclitaxel-induced mitochondrial dysfunction in vitro and protects against paclitaxel-induced peripheral neuropathic pain in the rat. *J. Pineal Res.* **2017**, *63*, e12444. [CrossRef] [PubMed]

30. Hamity, M.; White, S.R.; Walder, R.Y.; Schmidt, M.; Brenner, C.; Hammond, D.L. Nicotinamide riboside, a form of vitamin B3 and NAD+ precursor, relieves the nociceptive and aversive dimensions of paclitaxel-induced peripheral neuropathy in female rats. *Pain* **2017**, *158*, 962–972. [CrossRef]

31. Shim, H.S.; Bae, C.; Wang, J.; Lee, K.-H.; Hankerd, K.M.; Kim, H.K.; Chung, J.M.; La, J.-H. Peripheral and central oxidative stress in chemotherapy-induced neuropathy. *Mol. Pain* **2015**, *19*. [CrossRef]

32. Miranda, H.F.; Sierralta, F.; Aranda, N.; Poblete, P.; Castillo, R.L.; Noriega, V.; Prieto, J.C. Antinociception induced by rosvastatin in murine neuropathic pain. *Pharmacol. Rep.* **2018**, *70*, 503–508. [CrossRef]

33. Nadipelly, J.; Sayeli, V.; Kadhirvelu, P.; Shanmugasundaram, J.; Cheriyian, B.V.; Subramanian, V. Effect of certain trichome flavones on paclitaxel - induced peripheral neuropathy in mice. *Integr. Med. Res.* **2018**, *7*, 159–167. [CrossRef] [PubMed]

34. Shahraii, J.; Rezaee, R.; Kenar, S.M.; Nezhad, S.S.; Bagheri, G.; Jahantigh, H.; Tsarouhas, K.; Hashemzaei, M. Umbelliprenin relieves paclitaxel-induced neuropathy. *J. Pharm. Pharmacol.* **2020**, *72*, 1822–1829. [CrossRef] [PubMed]

35. Ullah, R.; Ali, G.; Subhan, F.; Naveed, M.; Khan, A.; Khan, J.; Halim, S.A.; Ahmad, N.; Zakullah; Al-Harrasi, A. Attenuation of nociceptive and paclitaxel-induced neuropathic pain by targeting inflammatory, CGRP and substance P signaling using 3-Hydroxylavone. *Neurochem. Int.* **2021**, *144*, 104981. [CrossRef]

36. Sekiguchi, F.; Domoto, R.; Nakashima, K.; Yamashita, D.; Yanamishi, H.; Tsubota, M.; Wake, H.; Nishihori, M.; Kawabata, A. Paclitaxel-induced HMGB1 release from macrophages and its implication for peripheral neuropathy in mice: Evidence for a neuroimmune crosstalk. *Neuropharmacol.* **2021**, *74*, 513–520. [CrossRef]

37. Rezaee, R.; Monemi, A.; Sadegh-Bonjar, M.A.; Hashemzaei, M. Berberine Alleviates Paclitaxel-Induced Neuropathy. *J. Pharmacop-uncure* **2019**, *22*, 90–94. [CrossRef]

38. Caillaud, M.; Patel, N.H.; White, A.; Wood, M.; Contreras, K.M.; Toma, W.; Alklaïf, Y.; Roberts, J.L.; Tran, T.H.; Jackson, A.B.; et al. Targeting Peroxisome Proliferator-Activated Receptor-α (PPAR-α) to reduce paclitaxel-induced peripheral neuropathy. *Brain Behav. Immun.* **2021**, *93*, 172–185. [CrossRef]
39. Meng, J.; Zhang, Q.; Yang, C.; Xiao, L.; Xue, Z.; Zhu, J. Duloxetine, a Balanced Serotonin-Norepinephrine Reuptake Inhibitor, Improves Painful Chemotherapy-Induced Peripheral Neuropathy by Inhibiting Activation of p38 MAPK and NF-κB. *Front. Pharmacol.* 2019, 10. [CrossRef]

40. Singhmar, P.; Huo, X.; Li, Y.; Dougherty, P.M.; Mei, F.; Cheng, X.; Heijnen, C.J.; Kavelaars, A. Orally active Epac inhibitor reverses mechanical allodynia and loss of intraepidermal nerve fibers in a mouse model of chemotherapy-induced peripheral neuropathy. *Pain* 2018, 159, 884–893. [CrossRef]

41. Al-Mazidi, S.; Alotaibi, M.; Nedjadi, T.; Chaudhary, A.; Alzoghaibi, M.; Djouhri, L. Blocking of cytokines signalling attenuates evoked and spontaneous neuropathic pain behaviours in the paclitaxel rat model of chemotherapy-induced neuropathy. *Eur. J. Pain* 2017, 22, 810–821. [CrossRef]

42. Caillaud, M.; Patel, N.H.; Toma, W.; White, A.; Thompson, D.; Mann, J.; Tran, T.H.; Roberts, J.L.; Poklis, J.L.; Bigbee, J.W.; et al. A Fenofibrate Diet Prevents Paclitaxel-Induced Peripheral Neuropathy in Mice. *Cancers* 2020, 13, 69. [CrossRef] [PubMed]

43. Meregalli, C.; Monza, L.; Chiorazzi, A.; Scali, C.; Guarnieri, C.; Fumagalli, G.; Alberti, P.; Pozzi, E.; Canta, A.; Ballarini, E.; et al. Human Intravenous Immunoglobulin Alleviates Neuropathic Symptoms in a Rat Model of Paclitaxel-Induced Peripheral Neurotoxicity. *Int. J. Mol. Sci.* 2021, 22, 1058. [CrossRef]

44. Gui, Y.; Zhang, J.; Chen, L.; Duan, S.; Tang, J.; Xu, W.; Li, A. Icaritin, a flavonoid with anti-cancer effects, alleviated paclitaxel-induced neuropathic pain in a SIRT1-dependent manner. *Mol. Pain* 2018, 14. [CrossRef]

45. Huang, J.; Chen, D.; Yan, F.; Wu, S.; Jiang, Z.; Xie, J. JTC-801 alleviates mechanical allodynia in paclitaxel-induced neuropathic pain mice. *Eur. J. Pharmacol.* 2020, 883, 173306. [CrossRef] [PubMed]

46. Kim, E.; Hwang, S.-H.; Kim, H.-K.; Abdi, S.; Kim, H.K. Losartan, an Angiotensin II Type 1 Receptor Antagonist, Alleviates Mechanical Hyperalgesia in a Rat Model of Chemotherapy-Induced Neuropathic Pain by Inhibiting Inflammatory Cytokines in the Dorsal Root Ganglia. *Mol. Neurobiol.* 2019, 56, 7408–7419. [CrossRef]

47. Kalynovska, N.; Diallo, M.; Sokatova-Kasarova, D.; Palecek, J. Losartan attenuates neuroinflammation and neuropathic pain in paclitaxel-induced peripheral neuropathy. *J. Cell. Mol. Med.* 2020, 14, 7949–7958. [CrossRef]

48. Wu, J.; Heo, M.; Bi, B.; Foss, J.F.; Naguib, M. Cannabinoid Type 2 Receptor System Modulates Paclitaxel-Induced Microglial Dysregulation and Central Sensitization in Rats. *J. Pain* 2019, 20, 501–514. [CrossRef] [PubMed]

49. Curry, Z.; Wilkerson, J.L.; Bagdas, D.; Kyte, S.L.; Patel, N.; Donvito, G.; Mustafa, M.A.; Poklis, J.L.; Niphakis, M.J.; Hsu, K.-L.; et al. Monocacylglycero Lipase Inhibitors Reverse Paclitaxel-Induced Nociceptive Behavior and Proinflammatory Markers in a Mouse Model of Chemotherapy-Induced Neuropathy. *J. Pharmacol. Exp. Ther.* 2018, 366, 169–183. [CrossRef] [PubMed]

50. Tsutsuki, K.; Kaname, T.; Shiraiishi, H.; Kawashiri, T.; Egashira, N. Polaprezinc reduces paclitaxel-induced peripheral neuropathy in rats without affecting anti-tumor activity. *J. Pharmacol. Sci.* 2016, 131, 146–149. [CrossRef]

51. Zhang, X.; Jiang, N.; Li, J.; Zhang, D.; Lv, X. Rapamycin alleviates proinflammatory cytokines and nociceptive behavior induced by chemotherapeutic paclitaxel. *Neural. Res.* 2018, 41, 52–59. [CrossRef] [PubMed]

52. Laura, B.; Elisabetta, B.; Adelchi, R.P.; Roberto, R.; Loredana, C.; Andrea, A.; Michele, D.; Castelli, V.; Antonio, G.; Marcello, A.; et al. CXCR1/2 pathways in paclitaxel-induced peripheral neuropathic pain. *Oncotarget* 2017, 8, 23188–23201. [CrossRef] [PubMed]

53. Suo, J.; Wang, M.; Zhang, P.; Lu, Y.; Xu, R.; Zhang, L.; Qiu, S.; Zhang, Q.; Qian, Y.; Meng, J.; et al. Siwei Jianbu decoction improves painful paclitaxel-induced peripheral neuropathy by modulating the NF-κB and MAPK signaling pathways. *Regen. Med. Res.* 2020, 8, 2. [CrossRef] [PubMed]

54. Li, Y.; Tatsui, C.E.; Rhines, L.D.; North, R.Y.; Harrison, D.S.; Cassidy, R.; Johansson, C.A.; Kosturakis, A.K.; Edwards, D.D.; Zhang, H.; et al. Dorsal root ganglion neurons become hyperexcitable and increase expression of voltage-gated T-type calcium channels (Cav3.2) in paclitaxel-induced peripheral neuropathy. *Pain* 2016, 156, 417–429. [CrossRef] [PubMed]

55. Rossatto, M.F.; Rigo, F.K.; Oliveira, S.M.; Guerra, G.P.; Silva, C.R.; Cunha, T.M.; Gomez, M.V.; Ferreira, J.; Trevisan, G. Participation of transient receptor potential vanilloid 1 in paclitaxel-induced acute visceral and peripheral nociception in rodents. *Eur. J. Pharmacol.* 2018, 828, 42–51. [CrossRef]

56. Segat, G.C.; Manjavachi, M.N.; Matias, D.O.; Passos, G.F.; Freitas, C.S.; da Costa, R.; Calixto, J.B. Antiallogenic effect of β-caryophyllene on paclitaxel-induced peripheral neuropathy in mice. *J. Neuropharmacol.* 2017, 125, 207–219. [CrossRef]

57. Mannelli, L.D.C.; Lucarini, E.; Micheli, L.; Mosca, I.; Ambrosino, P.; Soldovieri, M.V.; Martelli, A.; Testai, L.; Tagliatela, M.; Calderone, V.; et al. Effects of natural and synthetic isothiocyanate-based H2S-releasers against chemotherapy-induced neuropathic pain: Role of Kv7 potassium channels. *J. Neuropharmacol.* 2017, 121, 49–59. [CrossRef]

58. Li, L.; Li, J.; Zuo, Y.; Wang, D.; Frost, J.A.; Yang, Q. Activation of KCNQ Channels Prevents Paclitaxel-Induced Peripheral Neuropathy and Associated Neuropathic Pain. *J. Pain* 2018, 20, 528–539. [CrossRef]

59. Sekiguchi, F.; Kawara, Y.; Tsubota, M.; Kawakami, E.; Ozaki, T.; Kawaiishi, Y.; Tomita, S.; Kanaoka, D.; Yoshida, S.; Ohkubo, T.; et al. Therapeutic potential of RQ-00311651, a novel T-type Ca2+ channel blocker, in distinct rodent models for neuropathic and visceral pain. *Pain* 2016, 157, 1655–1665. [CrossRef]

60. Kamata, Y.; Kambe, T.; Chiba, T.; Yamamoto, K.; Kawakami, K.; Abe, K.; Taguchi, K. Paclitaxel Induces Upregulation of Transient Receptor Potential Vanilloid 1 Expression in the Rat Spinal Cord. *Int. J. Mol. Sci.* 2020, 21, 4341. [CrossRef]

61. Hara, T.; Chiba, T.; Abe, K.; Makabe, A.; Ikeno, S.; Kawakami, K.; Utsunomiya, I.; Hama, T.; Taguchi, K. Effect of paclitaxel on transient receptor potential vanilloid 1 in rat dorsal root ganglion. *Pain* 2013, 154, 882–889. [CrossRef]
62. Costa, R.; Bicca, M.A.; Manjavachi, M.N.; Segat, G.C.; Dias, F.C.; Fernandes, E.S.; Calixto, J.B. Kinin Receptors Sensitize TRPV4 Channel and Induce Mechanical Hyperalgesia: Relevance to Paclitaxel-Induced Peripheral Neuropathy in Mice. *Mol. Neurobiol.* **2017**, *55*, 2150–2161. [CrossRef]

63. Gao, W.; Zan, Y.; Wang, Z.-J.; Hu, X.-Y.; Huang, F. Quercetin ameliorates paclitaxel-induced neuropathic pain by stabilizing mast cells, and subsequently blocking PKC-dependent activation of TRPV. *Acta Pharmacol. Sin.* **2016**, *37*, 1166–1177. [CrossRef] [PubMed]

64. Brum, E.D.S.; Becker, G.; Fialho, M.F.P.; Casoti, R.; Trevisan, G.; Oliveira, S.M. TRPA1 involvement in analgesia induced by Tabernaemontana catharinensis ethyl acetate fraction in mice. *Phytomedicine* **2018**, *54*, 248–258. [CrossRef]

65. Xie, J.-D.; Chen, S.-R.; Chen, H.; Zeng, W.-A.; Pan, H.-L. Presynaptic N-Methyl-d-aspartate (NMDA) Receptor Activity Is Increased Through Protein Kinase C in Paclitaxel-induced Neuropathic Pain. *J. Biol. Chem.* **2016**, *291*, 19364–19373. [CrossRef] [PubMed]

66. Wang, X.-M.; Gu, P.; Saligan, L.; Iadarola, M.; Wong, S.S.C.; Ti, L.K.; Cheung, C.W. Dysregulation of EAAT2 and VGLUT2 Spinal Glutamate Transports via Histone Deacetylase 2 (HDAC2) Contributes to Paclitaxel-induced Painful Neuropathy. *Mol. Cancer Ther.* **2020**, *19*, 2196–2209. [CrossRef]

67. Koyanagi, M.; Imai, S.; Iwamitsu, Y.; Matsumoto, M.; Saigo, M.; Moriya, A.; Ogihara, T.; Nakazato, Y.; Yonezawa, A.; Nakagawa, S.; et al. Cilostazol is an effective causal therapy for preventing spinal paclitaxel-induced peripheral neuropathy by suppression of Schwann cell dedifferentiation. *J. Neuropharmacol.* **2021**, *188*, 108514. [CrossRef] [PubMed]

68. Chen, Y.-F.; Chen, L.-H.; Yeh, Y.-M.; Wu, P.-Y.; Chen, Y.-F.; Chang, L.-Y.; Chang, J.-Y.; Shen, M.-R. Minoxidil is a potential neuroprotective drug for paclitaxel-induced peripheral neuropathy. *Sci. Rep.* **2017**, *7*, 43566. [CrossRef] [PubMed]

69. King, K.M.; Myers, A.M.; Soroka-Monzo, A.J.; Tuma, R.F.; Tallarida, R.J.; Walker, A.E.; Ward, S.J. Single and combined effects of Venlafaxine on Paclitaxel-Induced Allodynia in Mice. *Toxins* **2019**, *12*, 1323. [CrossRef] [PubMed]

70. Foss, J.D.; Farkas, D.J.; Huynh, L.M.; Kinney, W.A.; Brenneman, D.E.; Ward, S.J. Behavioural and pharmacological effects of gabapentin and duloxetine in rats: Role of spinal cord α2-adrenoceptors. *Iran J. Basic Med. Sci.* **2017**, *20*, 566–572. [CrossRef]

71. Slivicki, R.A.; Xu, Z.; Mali, S.; Hohmann, A.G. Brain permeant and impermeant inhibitors of fatty-acid amide hydrolase suppress nociceptive transmission in mice. *Pharmacol. Res.* **2017**, *118*, 13–21. [CrossRef] [PubMed]

72. Pantouli, F.; Grim, T.W.; Schmid, C.L.; Acevedo-Canabal, A.; Kennedy, N.M.; Cameron, M.D.; Bannister, T.D.; Bohn, L.M. Comparison of morphine, oxycodone and the biased MOR agonist SR-17018 for tolerance and efficacy in mouse models of pain. *J. Neuropharmacol.* **2020**, *185*, 108439. [CrossRef]

73. Choi, J.; Jeon, C.; Lee, J.H.; Jang, J.U.; Quan, F.S.; Lee, K.; Kim, W.; Kim, S.K. Suppressive Effects of Bee Venom Acupuncture on Paclitaxel-Induced Neuropathic Pain in Rats: Mediation by Spinal α2-Adrenergic Receptor. *Toxins* **2017**, *9*, 351. [CrossRef] [PubMed]

74. Li, D.; Yoo, J.H.; Kim, S.K. Long-Lasting and Additive Analgesic Effects of Combined Treatment of Bee Venom Acupuncture and Venlafaxine on Paclitaxel-Induced Allodynia in Mice. *Toxins* **2020**, *12*, 620. [CrossRef]

75. Abed, A.; Khoshnoud, M.J.; Taghian, M.; Aliasgharzadeh, M.; Mesdaghinia, A. Quetiapine ameliorates paclitaxel-induced neuropathic pain in mice: Role of α2-adrenergic receptors. *Iran J. Basic Med. Sci.* **2017**, *20*, 1182–1188. [CrossRef]

76. Costa-Pereira, J.T.; Ribeiro, J.; Martins, I.; Tavares, I. Role of Spinal Cord α2-Adrenoceptors in Noradrenergic Inhibition of Nociceptive Transmission During Chemotherapy-Induced Peripheral Neuropathy. *Front. Neurosci.* **2020**, *13*, 1413. [CrossRef]

77. Kyte, S.L.; Toma, W.; Bagdas, D.; Meade, J.A.; Schurman, L.D.; Lichtman, A.H.; Chen, Z.-J.; Del Fabbro, E.; Fang, X.; Bigbee, J.W.; et al. Nicotine Prevents and Reverses Paclitaxel-Induced Mechanical Allodynia in a Mouse Model of CIPN. *J. Pharmacol. Exp. Ther.* **2017**, *364*, 110–119. [CrossRef] [PubMed]

78. Calcutt, N.A.; Smith, D.R.; Frizzi, K.; Sabbir, M.G.; Chowdhury, S.K.R.; Mixcoatl-Zecuatl, T.; Saleh, A.; Muttalib, N.; Van Der Ploeg, R.; Ochoa, J.; et al. Selective antagonism of muscarinic receptors is neuroprotective in peripheral neuropathy. *J. Clin. Investig.* **2017**, *127*, 608–622. [CrossRef]

79. Toma, W.; Kyte, S.L.; Bagdas, D.; Jackson, A.; Meade, J.A.; Rahman, F.; Chen, Z.-J.; Del Fabbro, E.; Cantwell, L.; Kulkarni, A.; et al. The α7 nicotinic receptor silent agonist R-47 prevents and reverses paclitaxel-induced peripheral neuropathy in mice without tolerance or altering nicotine reward and withdrawal. *Exp. Neurol.* **2019**, *320*, 113010. [CrossRef] [PubMed]

80. Huynh, P.; Giuvelis, D.; Christensen, S.; Tucker, K.L.; McIntosh, J.M. RglA4 Accelerates Recovery from Paclitaxel-Induced Neuropathic Pain in Rats. *Mar. Drugs* **2018**, *16*, 12. [CrossRef]

81. Tsubaki, M.; Takeda, T.; Matsumoto, M.; Kato, N.; Yasuhara, S.; Koomoto, Y.-I.; Imano, M.; Satou, T.; Nishida, S. Tamoxifen suppresses paclitaxel-, vincristine-, and bortezomib-induced neuropathy via inhibition of the protein kinase C/extracellular signal-regulated kinase pathway. *Tumor Biol.* **2018**, *40*. [CrossRef]

82. Kato, N.; Tateishi, K.; Tsubaki, M.; Takeda, T.; Matsumoto, M.; Tsurushima, K.; Ishizaka, T.; Nishida, S. Gabapentin and Duloxetine Prevent Oxaliplatin- and Paclitaxel-Induced Peripheral Neuropathy by Inhibiting Extracellular Signal-Regulated Kinase 1/2 (ERK1/2) Phosphorylation in Spinal Cords of Mice. *Pharmaceuticals* **2020**, *14*, 30. [CrossRef]
83. Tsubaki, M.; Takeda, T.; Matsumoto, M.; Kato, N.; Asano, R.T.; Imano, M.; Satou, T.; Nishida, S. Trametinib suppresses chemotherapy-induced cold and mechanical allodynia via inhibition of extracellular-regulated protein kinase 1/2 activation. *Am. J. Cancer Res.* **2018**, *8*, 1239–1248.

84. Leblanc, A.F.; Sprowl, J.; Alberti, P.; Chiorazzi, A.; Arnold, W.D.; Gibson, A.A.; Hong, K.W.; Pioso, M.S.; Chen, M.; Huang, K.M.; et al. OATP1B2 deficiency protects against paclitaxel-induced neurotoxicity. *J. Clin. Investig.* **2018**, *128*, 816–823. [CrossRef]

85. Toma, W.; Caillaud, M.; Patel, N.H.; Tran, T.H.; Donvito, G.; Roberts, J.; Bagdas, D.; Jackson, A.; Lichtman, A.; Gewirtz, D.A.; et al. N-acylethanolamine-hydrolyzing acid amidase: A new potential target to treat paclitaxel-induced neuropathy. *Eur. J. Pain* **2021**, *25*, 1367–1380. [CrossRef] [PubMed]

86. Andoh, T.; Kato, M.; Kitamura, R.; Mizoguchi, S.; Uta, D.; Toume, K.; Komatsu, K.; Kuraishi, Y. Prophylactic administration of an extract from Plantaginis Semen and its major component aucubin inhibits mechanical allodynia caused by paclitaxel in mice. *J. Tradit. Complement. Med.* **2016**, *6*, 305–308. [CrossRef] [PubMed]

87. Andoh, T.; Uta, D.; Kato, M.; Toume, K.; Komatsu, K.; Kuraishi, Y. Prophylactic Administration of Aucubin Inhibits Paclitaxel-Induced Mechanical Allodynia via the Inhibition of Endoplasmic Reticulum Stress in Peripheral Schwann Cells. *Biol. Pharm. Bull.* **2017**, *40*, 473–478. [CrossRef] [PubMed]

88. Ahn, S.H.; Chang, I.A.; Kim, K.-J.; Kim, C.-J.; Namgung, U.; Cho, C.-S. Bogijetong decoction and its active herbal components protect the peripheral nerve from damage caused by taxol or nerve crush. *BMCCOMPLEMENT. ALTERN. MED.* **2016**, *16*, 402. [CrossRef] [PubMed]

89. Brusco, I.; Silva, C.R.; Trevisan, G.; Gewehr, C.D.C.V.; Rigo, F.K.; Tonello, R.; Dalmolin, G.D.; Cabrini, D.D.A.; et al. Potentiation of Paclitaxel-Induced Pain Syndrome in Mice by Angiotensin I Converting Enzyme Inhibition and Involvement of Kinins. *Mol. Neurobiol.* **2016**, *54*, 7824–7837. [CrossRef]

90. Vitet, L.; Patte-Mensah, C.; Boujedaini, N.; Mensah-Nyagan, A.-G.; Meyer, L. Beneficial effects of Gelsemium-based treatment associated peripheral neuropathy. *Adv. Biomed. Res.* **2018**, *7*, 2183–2196. [CrossRef] [PubMed]

91. Yu, H.; Toume, K.; Kurokawa, Y.; Andoh, T.; Komatsu, K. Iridoids isolated from Vitis Fructus inhibit paclitaxel-induced mechanical allodynia in mice. *J. Nat. Med.* **2020**, *75*, 48–55. [CrossRef]

92. Tenci, B.; Mannelli, L.D.C.; Maresca, M.; Micheli, L.; Pieraccini, G.; Mulinacci, N.; Ghelardini, C. Effects of a water extract from Plantaginis Semen and its major component aucubin inhibits mechanical allodynia caused by paclitaxel in mice. * Tradit. Complement. Med.* **2016**, *6*, 305–308. [CrossRef] [PubMed]

93. Nishida, T.; Tsubota, M.; Kawaishi, Y.; Yamanishi, H.; Kamitani, N.; Sekiguchi, F.; Ishikura, H.; Liu, K.; Nishibori, M.; Kawabata, A. Involvement of high mobility group box 1 in the development and maintenance of chemotherapy-induced peripheral neuropathy in rats. *J. Neuropharmacol.* **2016**, *183*, 163–174. [CrossRef]

94. Toma, W.; Caillaud, M.; Patel, N.H.; Tran, T.H.; Donvito, G.; Roberts, J.; Bagdas, D.; Jackson, A.; Lichtman, A.; Gewirtz, D.A.; et al. N-acylethanolamine-hydrolyzing acid amidase: A new potential target to treat paclitaxel-induced neuropathy. *Eur. J. Pain* **2021**, *25*, 1367–1380. [CrossRef] [PubMed]

95. Andoh, T.; Kato, M.; Kitamura, R.; Mizoguchi, S.; Uta, D.; Toume, K.; Komatsu, K.; Kuraishi, Y. Prophylactic Administration of Aucubin Inhibits Paclitaxel-Induced Mechanical Allodynia via the Inhibition of Endoplasmic Reticulum Stress in Peripheral Schwann Cells. *Biol. Pharm. Bull.* **2017**, *40*, 473–478. [CrossRef] [PubMed]

96. Masocha, W.; Parvathy, S.S. Preventative and therapeutic effects of a GABA transporter 1 inhibitor administered systemically in a mouse model of paclitaxel-induced neuropathic pain. *PeerJ* **2016**, *4*, e2798. [CrossRef] [PubMed]

97. Nishida, T.; Tsubota, M.; Kawaishi, Y.; Yamanishi, H.; Kamitani, N.; Sekiguchi, F.; Ishikura, H.; Liu, K.; Nishibori, M.; Kawabata, A. Involvement of high mobility group box 1 in the development and maintenance of chemotherapy-induced peripheral neuropathy in rats. *Toxicology* **2016**, *365*, 48–58. [CrossRef]

98. Kamei, J.; Hayashi, S.; Sakai, A.; Nakamichi, S.; Kai, M.; Ikegami, M.; Ikeda, H. Rikkunshito prevents paclitaxel-induced peripheral neuropathy through the suppression of the nuclear factor kappa B (NFκB) phosphorylation in spinal cord of mice. *PLoS ONE* **2017**, *12*, e0171812. [CrossRef] [PubMed]

99. Rukh, L.; Ali, G.; Ullah, R.; Islam, N.U.; Shahid, M. Efficacy assessment of salicylidene salicylhydrazide in chemotherapy associated peripheral neuropathy. *Eur. J. Pharmacol.* **2020**, *888*, 173481. [CrossRef]

100. Vaseghi, G.; Yegdaneh, A.; Saeedi, A.; Shahmiev, T. The effect of Sargassum glaucescens from the Persian Gulf on neuropathy pain induced by paclitaxel in mice. *Adv. Biomed. Res.* **2020**, *9*, 79. [CrossRef]

101. Cuozzo, M.; Castelli, V.; Avaglano, C.; Cinini, A.; D’Angelo, M.; Cristiano, C.; Russo, R. Effects of Chronic Oral Probiotic Treatment in Paclitaxel-Induced Neuropathic Pain. *Biomedicines* **2021**, *9*, 346. [CrossRef]

102. Adamek, P.; Heles, M.; Palecek, J. Mechanical allodynia and enhanced responses to capsaicin are mediated by PI3K in a paclitaxel model of peripheral neuropathy. *J. Neuropharmacol.* **2018**, *146*, 163–174. [CrossRef]

103. Sisignano, M.; Angioni, C.; Park, C.-K.; Dos Santos, S.M.; Jordan, H.; Kuzikov, M.; Liu, D.; Zinn, S.; Hohman, S.W.; Schreiber, Y.; et al. Targeting CYP2J2 to reduce paclitaxel-induced peripheral neuropathic pain. *Proc. Natl. Acad. Sci. USA* **2016**, *113*, 12544–12549. [CrossRef] [PubMed]

104. Duggett, N.A.; Griffiths, L.; McKenna, O.E.; de Santis, V.; Yongsanguanchai, N.; Mokori, E.B.; Flatters, S.J. Oxidative stress in the development, maintenance and resolution of paclitaxel-induced painful neuropathy. *Neuroscience* **2016**, *333*, 13–26. [CrossRef] [PubMed]

105. Xiao, W.; Zheng, H.; Zheng, F.; Nuydens, R.; Meert, T.; Bennett, G. Mitochondrial abnormality in sensory, but not motor, axons in paclitaxel-evoked painful peripheral neuropathy in the rat. *Neuroscience* **2011**, *199*, 461–469. [CrossRef] [PubMed]
106. Flatters, S.J.; Bennett, G.J. Studies of peripheral sensory nerves in paclitaxel-induced painful peripheral neuropathy: Evidence for mitochondrial dysfunction. *Pain 2006*, **122**, 245–257. [CrossRef]

107. Alessandri-Haber, N.; Dina, O.A.; Yeh, J.J.; Parada, C.A.; Reichling, D.B.; Levine, J.D.; Baden, T.; Hedwig, B. Transient Receptor Potential Vanilloid 4 is Essential in Chemotherapy-Induced Neuropathic Pain in the Rat. *J. Neurosci.* **2004**, **24**, 4444–4452. [CrossRef]

108. Chen, Y.; Yang, C.; Wang, Z. Proteinase-activated receptor 2 sensitizes transient receptor potential vanilloid 1, transient receptor potential vanilloid 4, and transient receptor potential ankyrin 1 in paclitaxel-induced neuropathic pain. *Neuroscience* **2011**, **193**, 440–451. [CrossRef]

109. Boehmerle, W.; Huehnchen, P.; Lee, S.L.L.; Harms, C.; Endres, M. TRPV4 inhibition prevents paclitaxel-induced neurotoxicity in preclinical models. *Exp. Neurol.* **2018**, **306**, 64–75. [CrossRef] [PubMed]

110. Yoshimura, M.; Furue, H. Mechanisms for the Anti-nociceptive Actions of the Descending Noradrenergic and Serotonergic Systems in the Spinal Cord. *J. Pharmacol. Sci.* **2006**, **101**, 107–117. [CrossRef] [PubMed]

111. Hershman, D.L.; Unger, J.M.; Crew, K.D.; Till, C.; Greenlee, H.; Minasian, L.M.; Moinpour, C.M.; Lew, D.L.; Fehrenbacher, L.; Wade, J.L.; et al. Two-Year Trends of Taxane-Induced Neuropathy in Women Enrolled in a Randomized Trial of Acetyl-L-Carnitine (SWOG S0715). *J. Natl. Cancer Inst.* **2018**, **110**, 669–676. [CrossRef] [PubMed]

112. Kanat, O.; Evrensel, T.; Baran, I.; Coskun, H.; Zarifoglu, M.; Turan, O.F.; Kurt, E.; Demiray, M.; Gönül, G.; Manavoglu, O. Protective Effect of Amifostine Against Toxicity of Paclitaxel and Carboplatin in Non-Small Cell Lung Cancer: A Single Center Randomized Study. *Med. Oncol.* **2003**, **20**, 237–246. [PubMed]

113. Selinger, S.S.; Seisler, D.; Soori, G.; Atherton, P.J.; Pachman, D.R.; Lafky, J.; Ruddy, K.J.; Loprinzi, C.L. Can pregabalin prevent paclitaxel-associated neuropathy?—An ACCRU pilot trial. *Support. Care Cancer* **2015**, **24**, 547–553. [CrossRef] [PubMed]
127. Davis, I.D.; Kiers, L.; MacGregor, L.; Quinn, M.; Arezzo, J.; Green, M.; Rosenthal, M.; Chia, M.; Michael, M.; Bartley, P.; et al. A Randomized, Double-Blinded, Placebo-Controlled Phase II Trial of Recombinant Human Leukemia Inhibitory Factor (rhuLIF, Emfilermin, AM424) to Prevent Chemotherapy-Induced Peripheral Neuropathy. *Clin. Cancer Res.* 2005, 11, 1890–1898. [CrossRef]

128. Argyriou, A.A.; Chroni, E.; Koutras, A.; Iconomou, G.; Papapetropoulos, S.; Polychronopoulos, P.; Kalofonos, H. Preventing Paclitaxel-Induced Peripheral Neuropathy: A Phase II Trial of Vitamin E Supplementation. *J. Pain Symptom Manag.* 2006, 32, 237–244. [CrossRef] [PubMed]

129. Argyriou, A.A.; Chroni, E.; Koutras, A.; Ellul, J.; Papapetropoulos, S.; Katsoulas, G.; Iconomou, G.; Kalofonos, H. Vitamin E for prophylaxis against chemotherapy-induced neuropathy: A randomized controlled trial. *Neurology* 2005, 64, 26–31. [CrossRef] [PubMed]

130. Kawashiri, T.; Mine, K.; Kobayashi, D.; Inoue, M.; Ushio, S.; Uchida, M.; Egashira, N.; Shimazoe, T. Therapeutic Agents for Oxaliplatin-Induced Peripheral Neuropathy; Experimental and Clinical Evidence. *Int. J. Mol. Sci.* 2021, 22, 1393. [CrossRef]