The Distribution of Myosin II in Dictyostelium discoideum Slug Cells
Susannah Elliott, Phil. H. Vardy, and Keith L. Williams
School of Biological Sciences, Macquarie University, Sydney NSW 2109 Australia

Abstract. While the role of myosin II in muscle contraction has been well characterized, less is known about the role of myosin II in non-muscle cells. Recent molecular genetic experiments on Dictyostelium discoideum show that myosin II is necessary for cytokinesis and multicellular development. Here we use immunofluorescence microscopy with monoclonal and polyclonal antimyosin antibodies to visualize myosin II in cells of the multicellular D. discoideum slug.

Myosin II is found in all myocytes and in most eukaryotic cells (Korn and Hammer, 1988; Warrick and Spudich, 1987) where it is implicated in cytokinesis (Fujiiwara and Pollard, 1976; De Lozanne and Spudich, 1987; Knecht and Loomis, 1987; Kitanishi-Yumura and Fukui, 1989), the control of cell shape (Wessels et al., 1988), the motility of cells (Yumura et al., 1984; Rubino et al., 1984; Spudich and Spudich, 1982; Honer, 1988), the maintenance of cell polarity (Fukui et al., 1990), and the capping of membrane receptor proteins (Pasternak et al., 1989). In multicellular organisms, myosin II may also play an important role in cell-cell interactions. Studies suggest that actomyosin bands are responsible for folding sheets of epithelia during gastrulation (Odell et al., 1981; Lee et al., 1983) and that myosin II is involved in both mouse morula compaction (Sobel, 1983; 1984) and resistance to stress in the embryonic chick area opaca (Monnet-Tschudi and Kucera, 1988). Other studies involving gene disruption indicate that myosin II is necessary for normal multicellular development in Dictyostelium discoideum (see below).

D. discoideum is a simple, mobile eukaryote that can exist as an amoeba or as a multicellular aggregate (Bonner, 1967; Raper, 1984). D. discoideum thus lends itself to the study of both single cells and three-dimensional tissues. The cytoskeletal proteins of individual amoebae have been widely studied (Spudich and Spudich, 1982; Rubino et al., 1984; Fukui et al., 1987; Condeelis et al., 1987; Knecht and Loomis, 1987; De Lozanne and Spudich, 1987; Gerisch et al., 1989), however, those in multicellular aggregates have not.

Mutant D. discoideum cells that lack myosin II survive and undergo (albeit slow) amoeboid movement; such cells differentiate into the two types which normally constitute a slug (prestalk and prespore cells) and they aggregate to form loose mounds of cells (Knecht and Loomis, 1987; De Lozanne and Spudich, 1987; Wessels et al., 1988; Peters et al., 1988; Manstein et al., 1989). At this point, development is blocked: aggregates of myosin-deficient mutants fail to become mobile—they do not form slugs with normal three-dimensional characteristics (Wessels et al., 1988). This developmental block may be a result of diminished control over cell shape (Knecht and Loomis, 1987; Solomon, 1987). Conversely, the developmental block could relate to the lack of myosin II as a powerful contractile protein which enables groups of cells to undergo coordinated movements in three dimensions.

Here we study the role of myosin II in the development and locomotion of wild-type D. discoideum slugs. The distribution of myosin II in prestalk cells indicates that cells may be coordinated to effect distortion of the aggregate into its characteristic shape and to direct movement of the slug. We speculate that myosin II is a key molecule for the development of multicellular organisms and three-dimensional tissues.

Materials and Methods
Development of Slugs
A wild-type strain of D. discoideum (WS380B; Erdos et al., 1973) was used for all experiments. Slugs were prepared by placing small mounds of amoebae and bacteria (Klebsiella aerogenes) on water agar plates (covered Petri dishes containing 1.5% wt/vol agar) (Calbiochem-Behring Corp., San Diego, CA) in water with 250 µg/ml dihydrostreptomycin sulphate. Plates were enclosed in black polyvinyl chloride containers in an illuminated room at 21 ± 1°C and 70-80% relative humidity. Slugs developed and migrated across the agar towards light entering a 3-mm hole in the side of each container.

Preparation of Sections
To fix slugs for myosin II immunostaining, we adapted the method of Fukui et al. (1987) for single amoebae. Cubes of agar (each measuring ∼3 mm in length and bearing a single 2-4 d-old slug, which comprised ∼10⁶ cells)
The antibodies used in this study were directed against myosin II from *D. discoideum* amoebae. Two mAbs were used: M342, which is specific for filamentous myosin II and M151, which recognizes both filamentous and monomeric myosin II (Reines and Clarke, 1985b). To confirm the specificity of these antibodies for myosin II in slug cells, we analyzed Western blots. With M342, M151, and polyclonal antibody, a prominent band of ~240 kD was visible (Fig. 1). This band is identical to that observed with vegetative amoebae (data not shown; see Reines and Clarke, 1985a,b; Carboni and Condeelis, 1985). Both polyclonal and monoclonal antibodies produced similar results in immunofluorescence experiments, although sections treated with the polyclonal antibody were brighter. It is concluded that these antibodies retain their specificity for myosin II in the developing *D. discoideum* slug.

Fixation of Slugs for Myosin II Localization

Fixation of the *D. discoideum* slug for immunocytochemistry of myosin II is more complex than for single amoebae. The main concern is that the fixative penetrates the aggregate sufficiently to preserve myosin in the inner cells. We tried the following fixation techniques commonly used to localize various prespore antigens within the slug: 4% paraformaldehyde in PBS at room temperature for 2 h or more; 3% paraformaldehyde and 0.5% glutaraldehyde in PBS at room temperature for 2 h or more; 100% methanol at -15°C for 15-20 min. None of these techniques preserved myosin II (apparent by the poor signal observed in immunofluorescence experiments). Since the Fukui group has perfected techniques for localizing myosin in single amoebae and 2-dimensional sheets of cells during aggregation (Fukui et al., 1987; Yumura et al., 1984; Yumura and Fukui, 1985), we adapted their technique to visualize myosin in the slug. By tripling the fixation time and adding a snap-freezing step (see methods for full details), we were able to obtain good preservation of myosin throughout the slugs (see below). All cryosections displayed in this report were prepared using this technique.

Myosin II Distribution within Slug Cells

Twenty slugs were sectioned and labeled and results from five slugs are shown in Figs. 2, 3, and 4. As expected, all cells examined were found to contain myosin II. However, cells within the anterior of the slug and those at the periphery reacted more intensely with antmyosin antibodies than cells within the posterior (Fig. 2 a; Fig. 3 a, b, and c). This difference is not always readily apparent in low-power micrographs and is best seen at higher magnification (Fig. 3 d). Cells along the ventrum of the slug were always intensely labeled with antmyosin antibodies, although the thickness of this layer varied (1-10 cells) both between slugs and along individual slugs. Sometimes a substantial pillow-shaped group of strongly labeled cells was observed in the midventral region (Fig. 2 a). Along the dorsum, cells were usually intensely labeled, forming a (sometimes incomplete) layer one to two cells thick; Fig. 3, a, b, and c). Control sections
showed no difference between anterior (and peripheral) cells and those in the inner posterior of the slug (Fig. 2 c). The intense labeling of peripheral cells is not a fixation artifact. Frozen slugs were snapped in half and exposed to the fixative: cells at the snapped edge reacted similarly to their counterparts in whole slugs (Fig. 4 e). Cells within the anterior of the slug show strong cortical labeling (see Figs. 2 a, 3 a, and 4 a), indicating that myosin II inside the slug has been well preserved by the fixation technique employed. Therefore the diffuse cytoplasmic staining of cells in the prespore area of the slug is unlikely to be an artifact of poor fixation.

To determine whether the areas of intense antimyosin labeling corresponded with the distribution of prestalk cells in the slug, we labeled adjacent sections with MUD62, a mAb specific to prespore cells (Champion et al., submitted). Antimyosin antibodies and MUD62-labeled complementary areas of the slug (Figs. 2, a and b), indicating that the intense myosin labeling was restricted to prestalk cells.

Cell Shape

Cells deep within the slug are irregularly spheroidal (Figs. 3 and 4); however cells at the periphery are flattened (almost squamous) and tightly packed, forming an epithelium-like layer (Fig. 4). This is particularly apparent along the dorsum (Fig. 4, a and b). Frozen sections often tear along the border between the dorsal "epithelium" and underlying cells (as if peripheral cells were more tightly bound to each other than to the inner cells).

Intracellular Localization of Myosin II

We define the orientation of each cell with respect to the slug; thus the posterior cortex of a cell is that part of the cor-
The Journal of Cell Biology, Volume 115, 1991

1270

Degree of Myosin Concentration

Within peripheral cells, there is considerable variation in the degree to which myosin is concentrated in the cortex. Most frequently, myosin can be seen in one half of the cortex. When a cell is cut in the midline, treatment with antmyosin antibodies produces a U-shape; (Fig. 4 b, arrows). Occasionally, myosin occupies more than one half of the cortex and antibody treatment produces a C shape (Fig. 4 c, arrows). Often, myosin occupies less than one half of the cortex and the cell appears highly polar; a collection of such (highly polarized) cells is a distinct feature at the rear of all slugs observed, where cells are oriented like a series of fish scales (Fig. 4 d). Such polarized cells resemble amoebae in aggregation streams and single amoebae undergoing directed locomotion (Yumura et al., 1984).

Discussion

At different times of its life cycle D. discoideum is unicellular or multicellular; the organism may exist as an isolated amoeba or as a mobile aggregate of cells (the slug). This duality implies that there is much in common between the two stages of development, e.g., the isolated cell and the aggre-

Figure 3. The distribution of myosin II-polarized cells within the slug (mAb M151). The line drawing indicates the source of these fluorescent micrographs (which originate from transverse frozen sections of a single slug); hatching indicates the agar substrate. (a) At the anterior of the slug myosin II is localized to the cortex of both peripheral cells (arrow) and inner cells (x). (b) The middle of the slug. In contrast to the inner cells, myosin II is clearly apparent in dorsolateral cells (closed arrow) and most clearly apparent in ventral cells (between the open arrows). (c) In the posterior region of the slug (anterior of the rump) strongly labeled cells are confined to the ventrum (between open arrows) and are less apparent along the dorsum (closed arrow). (d) Enlargement of the ventrum of (c). The postero-ventral layer of myosin II-polarized cells varies in thickness (see also Fig. 2 b (small arrow). In (longitudinal) cross section, posteroventral cells show a localization of myosin in the cortex (arrows). These cells appear annular when sliced through their posterior cortex and C shaped when sliced through their midline. When a cross section is taken through the anterior of such polarized cells they appear unlabeled. Bars: (a-c) 50 μm; (d) 15 μm.
gate may use a common locomotory mechanism; slug movement may result from the collective action of individual amoebae within the aggregate (see Odell and Bonner, 1986). Indeed, the polarized distribution of myosin II in some slug cells closely resembles that observed in individual chemotaxing amoebae. The fact that only anterior and peripheral cells display this similarity, however, suggests that the slug is not simply a collection of individually motile amoebae. Peripheral cells differ from inner cells in their shape as well as their distribution of myosin II, implying that the slug is a true tissue and that there may be a division of (locomotory) labor between prestalk and prespore cell groups (Williams et al., 1986; Odell and Bonner, 1986). The concentration of myosin II in prestalk cells suggests that they are supplying the major motive force for slug migration. This is consistent with earlier findings that prestalk cells have greater motive force than prespore cells (Inouye and Takeuchi, 1979) and that prestalk cells diminish in size during slug migration (Voet et al., 1984). To further explore these ideas, it is important to understand the role of myosin II in the movement of isolated D. discoideum amoebae.

In an amoeba undergoing directed locomotion, myosin II is localized to the posterior cortex, and myosin I is localized to the leading edge (Yumura et al., 1984; Rubinob et al., 1984; Fukui et al., 1989). On the other hand, actin is localized to both the posterior and anterior of cells. This has led researchers (Yumura et al., 1984; Yumura and Fukui, 1985; for review see Fukui and Yumura, 1986) to propose that actin polymerization (possibly together with myosin I) effects the projection of pseudopodia at the leading edge of the cell (Rubinob et al., 1984; Newell, 1986; Hall et al., 1988). It has been proposed that the projected leading edge then adheres to the substratum and contraction of actin and myosin II effects the advancement of the cell body (towards the leading edge) (Yumura et al., 1984; Yumura and Fukui, 1985; for review see Fukui and Yumura, 1986). Many researchers have abandoned the latter part of this model because locomotion has been demonstrated in myosin II-deficient cells (Knecht and Loomis, 1987; Delozanne and Spudich, 1987; Manstein et al., 1989). Several influential cell-biology texts (Alberts et al., 1989; Darnell et al., 1990) no longer include myosin II in discussions of amoeboid movement. However, although cells without myosin II do move, they are morphologically atypical and migrate at less than half the speed of their normal counterparts (Wessels et al., 1988; Peters et al., 1988). That they are capable of movement indicates that cells may possess more than one mechanism for locomotion. Nevertheless, a role for myosin II in cell motility should not be dismissed and the elucidation of this role will undoubtably lead to a better understanding of myosin II function in multicellular development.

In this study, we have shown that cells at the periphery of the D. discoideum slug (with their polarized distribution of myosin II and elongated shape) resemble single motile amoebae. The shape of isolated amoebae has been found to relate to speed of motility: elongated cells are more directed and so move faster than more rounded cells (Futrelle, 1982; Varnum and Soll, 1984). The posterior localization of myosin II in isolated amoebae has been associated with directed movement (Yumura et al., 1984). Thus, the results reported here may indicate that peripheral cells are undergoing active migration and the inner cells are moving passively, although this relies heavily on extrapolation from amoebae in isolation to cells within the slug.

Assuming that myosin II distribution in slug cells reflects their direction of movement, peripheral cells appear as though they are moving anteriorly and inwardly with respect to the slug. Thus these cells could be exerting longitudinal and centripetal forces on the slug interior (see Williams et al., 1986). Similar inwardly directed contractile forces have been proposed by Yumura et al. (1984) for aggregating amoebae. In the mouse morula, cortical myosin is thought to exert a centrally directed force which results in compaction of the cell mass (Sobel, 1983, 1984). During early Drosophila embryogenesis a polarized distribution of myosin II within epithelial cells is associated with the coordinated changes in cell shape that occur during gastrulation (Young et al., 1991). Peripheral cells in the D. discoideum slug are flattened and tightly adherent, resembling an epithelial sheet. We propose that they are involved in coordinated contractions that result in the movement of the whole organism. How peripheral prestalk cells could move the whole slug is unclear but such movement may involve contraction of actomyosin in longitudinally and/or circumferentially linked cells (Williams et al., 1986; Vardy et al., 1986; Breen et al., 1987).

On the other hand, it may be that peripheral cells act merely to maintain the shape and integrity of the slug rather than to effect its locomotion. This could be like a "shell" of cells under tension which contain the inner cells during slug migration. Myosin-rich cells surrounding the area pellucida in the chick embryo are thought to resist stress generated by migrating cells in the outer area opaca (Monnet-Tschudi and Kucera, 1988). These authors suggest that such cells may protect the inner area pellucida in which morphogenetic movements take place. In the D. discoideum slug, the peripheral layer of cells may also have a protective function. These suggestions are not mutually exclusive: peripheral cells may play both protective and locomotory roles. Such roles would explain the behavior of cells lacking myosin II: they both fail to form the "proper" slug shape and migrate (Wessels et al., 1988; Peters et al., 1988).

How is myosin II concentrated in the cortex of anterior and peripheral cells and distributed homogeneously in the cytoplasm of other cells? This difference may be a response to cyclic AMP which is believed to be secreted by the tip of the slug (Schaap, 1986; Darcy and Fisher, 1990). It has been suggested that prestalk cells remain responsive to cAMP throughout development whereas prespore cells lose much of their cAMP sensitivity after aggregation (Garrod, 1974; Mee et al., 1986); thus high levels of Ca2+ within prestalk cells would be expected (Abe and Maeda, 1989) resulting in the stimulation of cyclic GMP and the accumulation of cortical myosin (Nachmias et al., 1989; Newell et al., 1990). The polarized distribution of myosin II in peripheral cells may also be related to their proximity to the slime sheath. This could be similar to the way in which extracellular matrices in higher eukaryotes influence the organization of the cytoskeleton of cells with which they are in contact.

We predict that the migration of the D. discoideum slug involves the coordinated movement of a specialized subpopulation of cells. A similar division of labor may pertain elsewhere during morphogenesis when sheets of cells undergo complex movements. For a subset of cells to move other
Figure 4. The polarization of myosin II within slug cells. The line drawing indicates the source of the micrographs (which originate from sagittal frozen sections of several different slugs). (a) The nose of the slug (mAb M342). Peripheral cells are flat and tightly packed as in an epithelium; in these (anterior and dorsal) cells, myosin II is localized to the posterior and outer cortex (arrows). Inner cells are less tightly packed and more isodiametric in shape; in these cells, myosin II is localized to the (entire) cortex of each cell (x). (b) The (postero) dorsum of the slug (Monoclonal antibody M151). In the peripheral (epithelium-like) layer, myosin II is localized to the posterior and outer cortex of flat, tightly packed cells (arrows); however, in the less tightly packed (and more isodiametric) inner cells, myosin is evenly dis-
cells, a strong motor is required. Myosin II has the ability to form thick filaments in vivo (Yumura and Fukui, 1985) and, together with F-actin, is a powerful force generator (Sheetz and Spudich, 1983). We suggest that cells without myosin II cannot form a migratory slug because they are not strong enough to move other cells (although other non-myosin II based motors may be adequate for the movement of single cells). In any three-dimensional tissue, changes in the shape of individual cells must be coordinated to maintain the integrity of the whole tissue (Odel et al., 1981). We further predict that amoebae may require myosin II to control their shape in order to effectively participate in the coordinated movement of a cellular society. It is interesting to speculate that multicellular organisms capable of coordinated movement did not develop until the evolution of a powerful myosin-based motor.

We thank Margaret Clarke (Oklahoma Medical Research Foundation, Oklahoma City, OK) and John Condeelis (Albert Einstein College of Medicine, New York) for the gift of the antismyosin mAbs, M151 and M342, and the affinity purified anti-D. discoideum myosin polyclonal antibody, respectively, and Brett Hambley for the purified rabbit skeletal muscle myosin. We also thank Jim and Annamma Spudich and Edmond Breen for helpful discussions.

Susannah Elliott is the recipient of an Australian Postgraduate Research Award. This research was supported by Macquarie University and an ARC program grant to Keith Williams.

Received for publication 3 May 1991 and in revised form 21 June 1991.

References

Abe, T., and Y. Maeda. 1989. The prestalk/prespore differentiation and polarized cell movement in D. discoideum slugs: a possible involvement of the intracellular Ca2+ concentration.

Protoplasma. 151:175–178.

Alberts, B., D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson. 1989.

A Molecular Biology of the Cell. Garland, New York/London. 672 pp.

Bonner, J. T. 1967. The Cellular Slime Molds. Princeton University Press, Princeton, NJ.

Breen, E. J., P. H. Vardy, and K. L. Williams. 1987. Movement of the multicellular slug stage of D. discoideum: an analytical approach. Devel. 101:313–321.

Carboni, J., and S. Condeelis. 1985. Ligand induced changes in the location of actin, myosin, 95K (alpha actin) and 120K protein in amoebae of D. discoideum. J. Cell Biol. 100:1884–1893.

Condeelis, J., S. Ogihara, H. Bennett, J. Carboni, and A. Hall. 1987. Ultrastructural localization of cytoskeletal proteins in amoebae of D. discoideum. Meth. Cell Biol. 28:191–207.

Darcy, P. K., and R. F. Fisher. 1990. Pharmacological evidence for a role for cyclic AMP signaling in D. discoideum slug behaviour. J. Cell Sci. 96:661–667.

Darbell, J., H. Lodish, and D. Baltimore. 1990. Molecular Cell Biology. Scientific American Books Inc., second edition. 885–891.

De Lozanne, A., and J. A. Spudich. 1987. Disruption of the D. discoideum myosin heavy chain gene by homologous recombination. Science (Wash. DC). 236:1086–1091.

Erdos, G. W., K. B. Raper, and L. K. Vogen. 1973. Mating types and macrocyst formation in D. discoideum. Proc. Natl. Acad. Sci. USA. 70:1828–1830.

Fujiwara, K., and T. D. Pollard. 1976. Fluorescent antibody localization of myosin in the cytoplasm, cleavage furrow, and mitotic spindle of human cells. J. Cell Biol. 71:948–957.

Fukui, Y., and S. Yumura. 1986. Actomyosin dynamics in chemotactic movement of D. discoideum. Cell Motil. and Cytoskeleton. 6:662–673.

Fukui, Y., S. Yumura, and T. K. Yumura. 1987. Agar-overlay immunofluorescence: high-resolution studies of cytoskeletal components and their changes during chemotaxis. Methods Cell Biol. 28:347–356.

Fukui, Y., T. J. Lynch, H. Brzeska, and E. D. Korn. 1989. Myosin I is located at the leading edges of locomoting D. discoideum amoebae. Nature (Lond.). 338:328–331.

Fukui, Y., A. De Lozanne, and J. A. Spudich. 1990. Structure and function of the cytoskeleton of a D. discoideum myosin-defective mutant. J. Cell Biol. 10:367–378.

Futcher, B. R., J. Traut, and W. G. McKee. 1982. Cell behavior in D. discoideum: reaggregation response to localized cyclic AMP pulses. J. Cell Biol. 92:807–821.

Garrod, D. R. 1974. The cellular basis of movement of the migrating germ of the slime mould D. discoideum: chemotactic reaggregation behaviour of germ cells. J. Embryol. Exp. Morph. 32:57–68.

Gerisch, G., J. E. Segall, and E. Wallraf. 1989. Isolation and behavioral analysis of mutants defective in cytoskeletal proteins. Cell Motil. and Cytoskeleton 15:45–79.

Grant, W. N., and K. L. Williams. 1983. Monoclonal antibody characterization of slime sheath: the extracellular matrix of D. discoideum. EMBO (Eur. Mol. Biol. Organ.) J. 2:935–940.

Hall, A. L., A. Schlein, and J. Condeelis. 1988. Relationship of pseudopod extension to chemotactic hormone-induced actin polymerization in ameboid cells. J. Cell Biol. 37:285–299.

Honer, B., S. Citi, J. Kendrick-Jones, and B. M. Jockusch. 1988. Modulation of cellular activity by antibodies against myosin. J. Cell Biol. 107:2181–2189.

Inouye, K., and I. Takeuchi. 1980. Motive force of the migrating pseudopodium of the cellular slime mould D. discoideum. J. Cell Sci. 41:53–64.

Kitanishi-Yumura, T., and Y. Fukui. 1989. Actomyosin organization during cytokinesis: reversible translocation and directional redistribution in D. discoideum. Cell Motil. & Cytoskeleton. 12:78–89.

Knecht, D. A., and W. F. Loomis. 1987. Antisense RNA inactivation of myosin heavy chain gene expression in D. discoideum. Science (Wash. DC). 236:1081–1086.

Kolega, J. 1986. Effects of mechanical tension on purposive activity and microfilament and intermediate filament organization in an epidermal epithelium moving in culture. J. Cell Biol. 102:1400–1411.

Korn, E. D., and J. A. Hammer. 1988. Myosins of nonmuscle cells. Ann. Rev. Biophys. Biophys. Chem. 17:23–45.

Kreft, M. L. Voet, J. H. Gregg, G. Mairhofer, and G. J. Keshet. 1988. Evidence that positional information is used to establish the prestalk-prespore pattern in D. discoideum aggregates. EMBO (Eur. Mol. Biol. Organ.) J. 7:303–206.

Lee, H., M. C. Kosciuk, R. G. Nagele, and J. Roisen. 1983. Studies on the mechanism of neurulation in the chick: possible involvement of myosin in elevation of neural folds. J. Exp. Zool. 225:449–457.

Mankin, D. J., M. A. Titus, A. De Lozanne, and J. A. Spudich. 1989. Gene replacement in D. discoideum: generation of a myosin null mutant. EMBO (Eur. Mol. Biol. Organ.) J. 8:923–932.

Mee, J. D., D. M. Tortolo, and M. B. Coukell. 1986. Chemotaxis-associated properties of separated prestalk and prespore cells of D. discoideum. Biochem. Cell Biol. 64:722–732.

Moffet-Thschudi, F., and P. Kecskemety. 1988. Myosin, tubulin and laminin immunoreactivity in the ectoderm of the growing area opaca of the chick embryo. Anat. Embryol. 179:157–164.

Nagawaki, V. T., Y. Fukui, and J. A. Spudich. 1989. Chemostimulated-elicited translocation of myosin in motile D. discoideum. Cell Motil. & Cytoskeleton. 13:158–169.

Newell, P. C. 1986. The role of actin polymerization in amebal chemotaxis. Biorays. 5:208–212.

Newell, P. C., G. C. Europe-Finner, G. Lui, B. Gammon, and C. A. Wood. 1990. Signal transduction for chemotaxis in D. discoideum amoebae. Sem. Cell Biol. 1:105–113.

Odel, G. M., and J. T. Bonner. 1986. How the D. discoideum grex crawls. Phil. Trans. Roy. Soc. Lond. 312:487–525.

Odel, G. M., G. Oster, P. Alberch, and B. Burnside. 1981. The mechanical basis of morphogenesis. I. Epithelial folding and invagination. Dev. Biol. 85:446–462.

Pasternak, C. J., A. Spudich, and E. L. Elson. 1989. Capping of surface receptors and concomitant cortical tension are generated by conventional myosin. Nature (Lond.). 341:549–551.

Peters, J. M., D. A. Knecht, W. F. Loomis, A. De Lozanne, J. A. Spudich, and P. J. M. Van Haastert. 1988. Signal transduction, chemotaxis, and cell aggregation in D. discoideum cells without myosin. Dev. Biol. 128:158–163.

Raper, K. B. 1984. The D. discoideums. Princeton University Press, Princeton, NJ.
Reines, D., and M. Clarke. 1985a. Quantitative immunochemical studies of myosin in Dictyostelium discoideum. *J. Biol. Chem.* 260:1133-1140.

Reines, D., and M. Clarke. 1985b. Immunochemical analysis of the supramolecular structure of myosin in contractile cytoskeletons of Dictyostelium amoebae. *J. Biol. Chem.* 260:14248-14254.

Rubino, S., M. Fighetti, E. Unger, and P. Cappuccinelli. 1984. Location of actin, myosin and microtubular structures during directed locomotion of Dictyostelium amoebae. *J. Cell Biol.* 98:382-390.

Schaap, P. 1986. Regulation and pattern in the cellular slime molds. *Differentiation.* 33:1-16.

Sheetz, M. P., and J. A. Spudich. 1983. Movement of myosin-coated fluorescent beads on actin cables in vitro. *Nature (Lond.)*. 303:31-35.

Sobel, J. S. 1983. Cell-cell contact modulation of myosin organization in the early mouse embryo. *Dev. Biol.* 100:207-213.

Sobel, J. S. 1984. Myosin rings and spreading in mouse blastomeres. *J. Cell Biol.* 99:1145-1150.

Solomon, F. 1987. What myosin might do. *Science (Wash, DC.)* 236:1043-1044.

Spudich, J. A., and A. Spudich. 1982. Cell Motility. In The Development of *Dictyostelium discoideum*. Academic Press, Orlando, FL. 169-194.

Vardy, P. H., L. R. Fisher, E. Smith, and K. L. Williams. 1986. Traction proteins in the extracellular matrix of Dictyostelium discoideum slugs. *Nature (Lond.)*. 320:526-529.

Varmun, B., and D. R. Soll. 1984. Effects of cAMP on single cell motility in *Dictyostelium*. *J. Cell Biol.* 99:1151-1155.

Voet, L., M. Krefti, H. Mairhofer, and K. L. Williams. 1984. An assay for pattern formation in *Dictyostelium discoideum* using monoclonal antibodies, flow cytometry and subsequent data analysis. *Cytochemistry.* 5:26-33.

Warrick, H. M., and J. A. Spudich. 1987. Myosin structure and function in cell motility. *Annu. Rev. Cell Biol.* 3:379-421.

Wessels, D., D. R. Soll, D. Knecht, W. F. Loomis, A. De Lozanne, and J. A. Spudich. 1988. Cell motility and chemotaxis in *Dictyostelium* amoeba lacking myosin heavy chain. *Dev. Biol.* 128:164-177.

Williams, K. L., P. H. Vardy, and L. A. Segel. 1986. Cell migrations during morphogenesis: some clues from the slug of *Dictyostelium discoideum*. *Bioessays.* 5:148-152.

Young, P. E., T. C. Pesacreta, and D. P. Kiehart. 1991. Dynamic changes in the distribution of cytoplasmic myosin during *Drosophila* embryogenesis. *Development.* 111:1-14.

Yumura, S., and Y. Fukui. 1985. Reversible cyclic AMP-dependent change in distribution of myosin thick filaments in *Dictyostelium*. *Nature (Lond.)*. 314:194-196.

Yumura, S., H. Mori, and Y. Fukui. 1984. Localization of actin and myosin for the study of ameboid movement in *Dictyostelium* using improved immunofluorescence. *J. Cell Biol.* 99:894-899.