Intima-media thickness in treated and untreated patients with and without familial hypercholesterolemia: A systematic review and meta-analysis

Kika van Bergen en Henegouwen, Barbara A. Hutten, Ilse K. Luirink, Albert Wiegman, Eric de Groot, D. Meeike Kusters*

Departments of Pediatrics; Epidemiology and Data Science, Amsterdam UMC Location AMC, Amsterdam; Imagelabonline and Cardiovascular, Erichem, the Netherlands

KEYWORDS
Familial hypercholesterolemia;
Hyperlipidemia;
Dyslipidemias;
Cholesterol;
Atherosclerosis;
Statins;
Lipid modifying drugs;
Ultrasound;
Intima-media thickness

Abstract: Familial hypercholesterolemia (FH) is a common genetic disorder of lipoprotein metabolism leading to premature atherosclerosis. From early onset, status and progression of atherosclerosis of the large peripheral arterial walls can be quantified by ultrasound intima-media thickness (IMT) measurements. Here we describe differences in IMT in treated and untreated FH patients versus unaffected controls over a broad age range. We conducted a systematic literature search using MEDLINE, EMBASE and Trials.gov up to April 2020 for studies addressing IMT in FH patients and controls. Our search yielded 558 articles of which 42 (6,143 participants) were included. Meta-analysis showed a mean (95%CI) difference between FH patients vs controls of 0.11 (95%CI 0.06-0.15) mm in carotid IMT (p<0.001), and 0.47 (0.19-0.74) mm in femoral IMT (p<0.001). We found a smaller mean (95%CI) difference in carotid IMT in treated FH patients vs controls: 0.05 (0.03-0.08) mm (p<0.001), than in untreated FH patients vs controls 0.12 (0.03-0.21) mm (p=0.009). When plotted against age, the mean (95%CI) difference in carotid IMT between FH patients vs controls increases with 0.0018 (-0.0007-0.0042) mm/year. This increase was smaller in treated vs untreated FH patients, when compared to controls (0.0023 (0.0021 to 0.0025) mm/year vs 0.0104 (0.0100-0.0108) mm/year, respectively). Our findings suggest that more robust earlier treatment initiation and achieving treatment targets could be beneficial to reduce cardiovascular risk in patients with FH.

© 2022 National Lipid Association. Published by Elsevier Inc.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

Introduction

Familial hypercholesterolemia (FH) is an autosomal dominantly inherited disorder of lipoprotein metabolism. The heterozygous form of the disease affects an estimated one in 250 people worldwide. Patients with FH are characterized by elevated serum low-density lipoprotein cholesterol (LDL-C) from birth onwards, and are at increased risk for premature atherosclerosis and early cardiovascular events. Statins are the preferred pharmacological therapy in patients...
with FH, and data have shown that this treatment results in reduced serum LDL-C and a clinically relevant reduction of cardiovascular disease (CVD) morbidity and mortality in a wide range of patients.5,6

Subclinical atherosclerosis can be quantified non-invasively from early life into old age, by means of ultrasound imaging of the large peripheral arterial walls. The distance between the lumen-intima and media-adventitia ultrasound interfaces represents the thickness of the two innermost wall layers (tunica intima and tunica media) and is hence called intima-media thickness (IMT).7 IMT is usually measured in the carotid and/or femoral artery.8

In cross-sectional and follow-up epidemiological studies and clinical intervention trials, IMT has been proven to be a validated surrogate marker of the status and progression of atherosclerosis, and present and future cardiovascular disease risk.9

Several studies have shown an increased carotid IMT in untreated FH patients as compared to unaffected controls, even at a very young age.10,11 However, other studies, in both untreated children12 and untreated adult FH patients,13 reported no statistically significant differences in IMT as compared to unaffected controls. Over the last decades, FH patients have been treated with lipid-lowering agents to meet stringent LDL-C targets, preferably already from the age of 8 years, in order to reduce their future CVD risk. Indeed, several studies, showed a similar carotid IMT in treated FH patients and unaffected controls upon treatment.14-16

Atherosclerosis progresses more rapidly with age in FH patients than in unaffected controls.17 Efficacious and safe lipid-lowering treatment is known to decrease atherosclerosis progression, decrease CVD risk, and thus decrease IMT change. If compared to the reference of IMT of unaffected controls, it is therefore expected IMT in absolute sense is increased in FH. Also, IMT increase with age in treated FH patients is expected to become less apparent than in untreated FH patients.18 Therefore, in this systematic review, we compared IMT between FH-patients (treated or non-treated) with unaffected controls across a broad age range.

Searches were supplemented by checking reference lists of relevant publications, recent reviews and editorials; and by consulting experts in the field.

Study selection

We determined the eligibility of retrieved studies according to predetermined criteria. If it was unclear whether the criteria were fulfilled, we decided by consensus to include a study or not.

We selected studies with an experimental or observational study design (cross sectional, case-control or cohort) that evaluated the carotid and/or femoral IMT in patients with FH and unaffected controls and were written in English. FH was defined as a genetic diagnosis or a clinical diagnosis using internationally approved criteria.19

Studies were excluded if they were duplicate reports or preliminary reports of data later presented in full; if they did not report the same protocol for IMT-measurements within one study; if homozygous FH patients were included or if the unaffected controls had relevant comorbidity which could potentially affect IMT (for example; if this cohort consisted of patients with diabetes or patients who already experienced CVD).

Data extraction

Data of selected articles were extracted by two authors independently, using a predetermined form. The following information was retrieved from the included studies: first author, year of publication and study design. In addition, for the groups with and without FH separately, we extracted information on the number of participants, age, sex, body mass index (BMI), smoker behavior (current, former), comorbidity (hypertension, diabetes), and carotid and/or femoral IMT. In the FH group we also noted whether the patients were treated or not. FH patients were considered (partly) treated if ≥50% of the patients received treatment. FH patients were considered untreated if ≤10% of the patients received treatment. Disagreements were resolved by consensus and if necessary, by the opinion of a third reviewer.

Methods

Search strategy

We conducted a systematic literature search of MEDLINE (1992 – April 2020), EMBASE (1980 – December 2018) and ClinicalTrials.gov for studies addressing the carotid and/or femoral IMT of patients with FH and unaffected controls. We used two different domains of Mesh-terms and free text words combined with ‘AND’, and in each domain the terms were combined with ‘OR’. The first domain contained terms on IMT (including all different synonyms) and the second on FH (including all different synonyms and abbreviations). The complete search strategy is given in the supplemental data (Table S1).

Critical appraisal

Two reviewers assessed the methodological quality of the included studies by using the Newcastle Ottawa Scale (NOS).20 This scale consists of three domains: selection, comparability and outcome. Each domain has its own criteria. For the domain selection three of the four criteria are: the representativeness of the exposed cohort, the selection of the controls and the ascertainment of exposure (in this case: the definition of FH). The last criterion for this domain is the demonstration that outcome of interest was not present at start study, which is not relevant for our study and we therefore decided not to assess this criterion. The criteria for the domain comparability of FH patients and unaffected controls were assessed by looking at differences regarding age, etc.
sex and other risk factors for increased IMT (hypertension, smoking, BMI and diabetes). For the domain outcome the assessed criterion was: assessment of outcome (in this case: the method of the IMT-measurement). We decided not to assess the criteria about duration and adequacy of follow-up as we are studying the effect of a genetic disease, which means that ‘the exposure to FH’ is from birth onwards. Difference in judgement by the reviewers was solved by discussion and consensus.

With a maximum score of six stars and a minimum score of zero stars, we split up the assessed studies by degree of quality: studies allocated three stars or less were considered poor quality (high risk of bias), studies allocated four stars were considered medium quality (medium risk of bias), studies allocated five stars or more were considered high quality (low risk of bias).

Statistical analysis

We performed a meta-analysis for all included studies, as well as for the studies with treated and untreated FH patients separately. For the studies that reported both baseline data and follow-up data, we only included baseline data for the overall analysis; and for the analysis for treated and untreated FH patients separately, we used baseline data for the analysis of untreated FH patients and follow-up data for treated FH patients.

We calculated for each study the mean difference in carotid IMT and 95% confidence interval (CI) between patients with FH and unaffected subjects. Because the study populations were heterogeneous regarding age, comorbidities and medication use, we decided to combine study data using a random effects model according to the method of DerSimonian and Laird. By using the method of DerSimonian and Laird, the weights of the different studies are adjusted according to the heterogeneity or the extent of variation, among the observed intervention effects. For more details on this method, we refer to DerSimonian and Laird. A Z-test was performed to test the overall effect. All tests were performed using Review Manager 5.3 (Cochrane Collaboration).

We explored the difference in annual increase in IMT between FH patients and unaffected control subjects using linear regression analysis. For this analysis, we weighted the studies based on the sample size and standard error of the mean difference in IMT between FH patients and subjects without FH. GraphPad Prism 5 was used for this analysis. P-values <0.05 were considered statistically significant.

Results

Description of the studies

Our search yielded 558 publications, of which 305 full-text articles were assessed for eligibility. Of these, 263 full-text articles had to be excluded (Figure 1). Hence, 42 studies with 6,159 participants (ranging from 29 to 772 participants per study) remained for qualitative synthesis in this review: 38 cross-sectional studies (including 4 conference abstracts) and 4 prospective cohort studies were included.

Of the 42 included studies, 39 examined the carotid IMT, one study evaluated the femoral IMT, and two studies examined both. The characteristics of the studies examining the carotid artery, are given in Table 1a. In total, 3,796 (range: 16 to 572 per study) patients with FH and 2,363 (range: 15 to 268 per study) unaffected controls were studied. The 25 studies that were published after a previous systematic review are marked with a red dot. Mean age of FH patients ranged between 8.8 to 56.9 years, and unaffected controls between 8 to 61.2 years. Of all FH patients, 49% (range: 33% to 68%) was male, and this was 47% (range: 32% to 67%) for the unaffected controls. All femoral IMT measurements were performed in the common femoral artery (CFA) and the characteristics of these studies are summarized in Table 1b. In total, 196 (range: 21 to 146 per study) patients with FH and 254 (range: 28 to 193 per study) unaffected controls were studied. Mean age of FH patients was 44.9 years (range: 42.3 to 56.9 years) and mean age of unaffected controls was 49.4 (range: 39 to 57.8 years). Of all FH patients, 52.2% (range: 51% to 58%) was male, and this was 44.9% (range: 44% to 57%) for all unaffected controls.

Mean age and/or gender was not reported in 6 studies. 2 studies did not report the mean age and gender of the control cohort. Number of males in follow-up data of cohort studies were excluded. 1 cohort study did not report the baseline data of the femoral IMT measurements, therefore we included the follow-up data. Of the FH patients that were treated with cholesterol-lowering medication, in the studies that reported on type of treatment, all were receiving statins, often in combination with other drugs. Details on type of treatment can be found in Table 1.

Methodological quality of included studies

The assessment of the methodological quality of the included studies can be found in the supplemental data (Table S2). In general, the included studies were considered of high quality: 26 studies were identified as having a low risk of bias, nine studies were identified as medium risk of bias and seven studies were identified as having a high risk of bias. The most common reason for excluding studies because of a high risk of bias was when it was unclear whether the control cohort was drawn from the same population as the FH cohort. Another common reason was that the control cohort were not comparable with the FH cohort with respect to age, gender, and comorbidity.

Difference in mean carotid IMT between subjects with and without FH

Of the 41 studies that reported on the carotid IMT in patients with FH and unaffected controls, seven studies were not included in the meta-analysis because they did not re-
Table 1 Clinical and demographic characteristics of the FH patients and subjects without FH of studies examining the IMT (ordered by publication year). Red dots represent the systematic article publications as:

First author, year (ref)	Study design	FH N	Mean age (yrs)	Male (%)	Comorbidity (%)	Smoker (%)	Treatment	IMT (mm)	Non-FH N	Mean age (yrs)	Male (%)	Comorbidity (%)	Smoker (%)	IMT (mm)
Mean carotid IMT														
Lurink (16)	Cohort	184	31.7 ± 3.2	88 (48)		Current 41	0.555 ± 0.542 – 0.567	77	31.6 ± 3.0	43 (56)				0.551 ± 0.531 – 0.570
Rodríguez-Borjabad 2018 (35)	Cross-sectional	82	9.28 ± 3.69	44 (53.8)	DM excluded	Current 19 (15)	0.42497 ± 0.07	101	10.80 ± 3.42	53 (52.6)		DM excluded	Current 55 (35)	0.42097 ± 0.06
Michikura 2017 (48)	Cross-sectional	130	53.2 ± 18.6	53 (41)	Current 28 (22)	Former 45	0.9 ± 0.5	155	61.2 ± 13.4	71 (46)		DM excluded	Current 41	0.8 ± 0.2
Braamskamp 2017 (14)	Cohort	197	12.1 ± 3.3	87 (44)	Excluded	Baseline	0.397 ± 0.049	65	12.0 ± 3.5	33 (51)		Excluded	Baseline	0.377 ± 0.045
Bos 2017 (49)	Cross-sectional	221	46 ± 15	107 (48)	Current 46 (21)	Current 72 (33)	0.58 ± 0.13	103	47 ± 16	33 (32)				0.58 ± 0.12
Hjuler Nielsen 2015 (50)	Cross-sectional	30	45.5 ± 9.1	12 (40)	Excluded	No treatment	0.64 ± 0.12	23	47 ± 10.1	8 (35)		Excluded	No treatment	0.58 ± 0.07
Kologlu 2014 (37)	Cross-sectional	38	8.8 ± 4.0	17 (45)	DM excluded	No treatment	0.49 ± 0.12	24	8.0 ± 3.6	12 (50)		DM excluded	No treatment	0.32 ± 0.07
Vlahos 2014 (36)	Cross-sectional	30	12 ± 2	17 (55)	Excluded	Excluded	0.46 ± 0.05	30	12 ± 2	17 (55)		Excluded	Excluded	0.45 ± 0.03
Walus-Miarka 2013 (43)	Cross-sectional	36	27.3 ± 6.6	36 (range)	Current 10 (27.8)	Current 2	0.60 ± 0.19	49	25.2 ± 6.7	18 (36.3)		HT 8 (16.3)	Current 15	0.53 ± 0.07
Bravo 2012 (23)	Cohort	20	41.4 ± 3.0	6 – 18 (range)	No treatment	0.7 ± 0.04	20	42.4 ± 2.3	7 (35)		Excluded	No treatment	0.5 ± 0.02	

(continued on next page)
Table 1 (continued)

First author, year	Study design	FH	Mean age (yrs)	Male (%)	Comorbidity (%)	Smoker (%)	Treatment	IMT (mm)	Non-FH	Mean age (yrs)	Male (%)	Comorbidity (%)	Smoker (%)
Caballero 2012 (53)													
Cross-sectional	36	45.7 ± 10.9	18 (50.0)	HT 3 (8.3)	Current 17 (47.2)	Statins (combined with ezetimibe)	0.94 ± 0.34	19	47.8 ± 11.3	10 (52.6)	HT 0 (0)	DM excluded	0.61 ± 0.10
Noto 2012 (30)	Cross-sectional	17	16.9 ± 5.5	12 (71)	No treatment	0.60 ± 0.02	15	0.42 ± 0.04					
Ershova 2012 (13)	Cross-sectional	32	35 ± 10	12 (37.5)	HT 7 (21.9)	Current 16 (50)	No treatment	0.64 ± 0.18	21	32 ± 11	8 (38.0)	HT 5 (23.8)	Current 8 (38)
Alipour 2012 (54)	Cross-sectional	20	55.1 ± 1.4	7 (35.0)	Current 2 (10.0)	Statins (combined with ezetimibe)	0.66 ± 0.03 (SEM)	33	55.1 ± 1.7	12 (36.4)	Current 3 (9.1)	0.56 ± 0.02 (SEM)	
Jarauta 2012 (52)	Cross-sectional	572	45.0 ± 13.6	280 (49.0)	HT 106 (18.6)	CVD 49 (8.5)	Never 313 (54.8)	Former 123 (21.5)	Statins	0.747 (0.734 – 0.759)*	200	45.5 ± 16.4	82 (40.9)
Di Salvo 2011 (29)	Cross-sectional	43	11 ± 3	27 (62.8)	HT 15 (12)	DM 2 (1.6)	Current 40 (32)	Stains (combined with ezetimibe)	0.758 ± 0.280 (median + IR)	59	47 ± 10	25 (42.4)	HT excluded
Khan 2011 (24)	Cross-sectional	40	45 ± 13	61 (48.8)	HT 15 (12)	DM 2 (1.6)	Ever 66 (41)	Ever 66 (41)	Statins	0.664 (0.648 – 0.679)	145	42.3 ± 8.7	69 (48)
Plana 2011 (31)	Cross-sectional	125	45 ± 13	61 (48.8)	HT 15 (12)	DM 2 (1.6)	Current 40 (32)	Stains (combined with ezetimibe)	0.758 ± 0.280 (median + IR)	59	47 ± 10	25 (42.4)	HT excluded
Huigen 2011 (47)	Cross-sectional	162	35.2 ± 8.7	68 (42)	HT 10 (6)	DM 1 (1)	Ever 66 (41)	Ever 66 (41)	Statins	0.664 (0.648 – 0.679)	145	42.3 ± 8.7	69 (48)
Noto 2011 (38)	Cross-sectional	55	13.7 ± 3.2	20 (36)	Excluded	Ever 66 (41)	Ever 66 (41)	Statins	0.664 (0.648 – 0.679)	145	42.3 ± 8.7	69 (48)	HT excluded
Group I	Cross-sectional	20	11.9 ± 3.9	8 (53.3)	Excluded	Excluded	No treatment	No treatment	0.57 ± 0.03	15	13.0 ± 1.4	7 (46.7)	Excluded
Group II	Cross-sectional	17	15.3 ± 2.0	5 (25)	Excluded	Excluded	No treatment	Statins	0.57 ± 0.03	15	13.0 ± 1.4	7 (46.7)	Excluded
Group III	Cross-sectional	18	14.3 ± 3.2	7 (41.2)	Excluded	Excluded	No treatment	No treatment	0.57 ± 0.03	15	13.0 ± 1.4	7 (46.7)	Excluded
Vladimirava-Kitova 2010 (57)	Cross-sectional	250	41.3 ± 0.23	59 (48.3)	HT 14 (34)	DM 1 (2.5)	Excluded	Excluded	Statins	0.77 ± 0.15	40	47.4 ± 3.9	13 (33)
Sivapalaratnam 2010 (55)	Cross-sectional	40	48.4 ± 4.2	27 (68)	HT 6 (15)	CVD 14 (35)	DM 1 (2.5)	Excluded	Excluded	Statins (combined with ezetimibe or lopid)	0.77 ± 0.15	40	47.4 ± 3.9
Riggio 2010 (12)	Cross-sectional	18	11.8 ± 2.8	6 (33)	Current 14 (34)	DM 1 (2.5)	Excluded	Excluded	Statins (combined with ezetimibe or lopid)	0.77 ± 0.15	40	47.4 ± 3.9	13 (33)

* (continued on next page)
Table 1 (continued)

First author, year (ref)	Study design	FH	Non-FH												
		N	Mean age (yrs)	Male (%)	Comorbidity (%)	Smoker (%)	Treatment	IMT (mm)	N	Mean age (yrs)	Male (%)	Comorbidity (%)	Smoker (%)	Treatment	IMT (mm)
			(range)							(range)					
Junyent 2010 (34)	Cross-sectional	431	44 (18-82) (range)	223 (51)	HT 68 (16) CVD 60 (14) DM 8 (2)	Ever 193 (44)	Statins, ezetimibe, resins or lipraites	0.70 (0.68 – 0.71)* (medians and CI)	268	49 (20-81) (range)	140 (52)	HT 24 (9) CVD 0 DM 0	Ever 81 (30)	0.61 (0.59 – 0.62)* (medians and CI)	
					HT 42 (16) CVD 42 (16) DM 5 (2)	Ever 116 (43)									
					HT 24 (15) CVD 17 (11) DM 3 (2)	Ever 76 (47)									
		269	43 (18-82) (range)	134 (50)	Never 66 (38.1) Current 45 (26.3) Former 62 (35.6)	No treatment	0.742 (0.651 – 0.898) (median and IR)*	64	42.4 ± 15.2	64 (100)	HT: 1 (1.6) CVD: 0	Never 37 (57.1) Current 10 (15.9) Former 42 (27)	0.656 (0.577 – 0.758) (median and IR)*		
Guardamagna 2009 (39)	Cross-sectional	84	10.5 ± 3.3	47 (56)	HT: 39 (23.6) CVD: 25 (14.5)	Never 85 (58.1) Current 22 (14.8) Former 20 (13.6)	No treatment	0.717 (0.628 – 0.828) (median and IR)*	81	46.0 ± 17.6	0	HT 1 (1.3) CVD 0	Never 58 (71.6) Current 12 (14.8) Former 11 (13.6)	0.590 (0.513 – 0.716) (median and IR)*	
	Cross-sectional	173	44.7 ± 11.7	173 (100)	Never 85 (38.1) Current 45 (26.3) Former 62 (35.6)	No treatment	0.742 (0.651 – 0.898) (median and IR)*	64							
Yeo 2008 (42)	Cross-sectional	32	36.0 ± 17.8	18 (56)	Excluded	Current 3 (9.4)	1.1 ± 0.9	34	42.1 ± 17.0	17 (50)	Excluded	Current 1 (2.9)	0.7 ± 0.1		
Martinez 2008 (46)	Cross-sectional	89	39 ± 14 (14 – 69)	34 (38.2)	HT 12 (13.5)	Current 13 (14.6)	Statins	0.653 ± 0.16	31	40 ± 12 (19-69)	16 (51.6)	HT 1 (3.2)	Current 3 (9.6)	0.593 ± 0.11	
Ellis 2007 (33)	Cross-sectional	30	52 (35 – 77) (median and range)	18 (60)	Excluded	Current 7 (17.9)	0.57 ± 0.13	25	30.6 ± 11.3	18 (60)	Excluded		0.48 ± 0.13		
Soljanlahti 2005 (26)	Cross-sectional	39	30.0 ± 13.6		Current 7 (17.9)	Statins	0.57 ± 0.13	25	30.6 ± 11.3	18 (60)	Excluded		0.48 ± 0.13		
					Current 7 (17.9)	Statins	0.57 ± 0.13	25	30.6 ± 11.3	18 (60)	Excluded		0.48 ± 0.13		
Wiegman 2004 (11)	Cross-sectional	201	12.9 (12.5-13.4)	90 (46.4)	HT 0 (11)	Current 22	No treatment	0.494 ± 0.051	80	13.0 (12.3-13.6)	46 (55.4)	HT 0 (11)	Current 6 (7)	0.472 ± 0.049	

(continued on next page)
First author, year (ref)	Study design	FH N	Mean age (yrs)	Male (%)	Comorbidity (%)	Smoker (%)	Treatment	IMT (mm)	Non-FH N	Mean age (yrs)	Male (%)	Comorbidity (%)	Smoker (%)	IMT (mm)	
Aggoun 2000 (27)	Cross-sectional	30	11.1 ± 2.0	Excluded	Excluded	Cholesterol-lowering drugs (cholestyramine, fenofibrate)	0.52 ± 0.03	27	11.1 ± 3.0	Excluded	0.50 ± 0.03				
Treated cohort															
Un-treated cohort															
Raal 1999 (45)	Cross-sectional	20	11 ± 2	Excluded	Excluded	0.51 ± 0.03	0.52 ± 0.03		20	11 ± 3	Excluded	0.65 ± 0.7			
Tonstad 1998 (44)	Cross-sectional	79	38.1 ± 5.3	Excluded	Excluded	Statins (combined with resins or acipimox)	0.52 ± 0.03	79	38.0 ± 5.3	Excluded	0.50 ± 0.03				
Males						CCA 0.61 ± 0.13			41	41 (100)	Excluded	0.55 ± 0.14			
Females						Bif 0.81 ± 0.15			38	38 (100)	Excluded	0.53 ± 0.07			
Smilde 1998 (28)	Cross-sectional	21	46 ± 11	CVD 14 (66.7)	Current 12 (57.1)	CCA post 0.98 ± 0.29	CCA ant 0.99 ± 0.21	Bulbus post 1.25 ± 0.35	Bulbus ant 1.25 ± 0.22	ICA post 1.08 ± 0.53	28	39 ± 11	CVD 0 DM excluded	Current 0 0.70 ± 0.09	
Virkola 1997 (25)	Cross-sectional	23	2.8 – 19 (range)	15 (65)	Excluded	CCA 0.48 ± 0.70	Bulbus 0.54 ± 0.10	Bulbus 0.55 ± 0.10	Bulbus 0.55 ± 0.09	23	2.8 - 19 (range)	15 (65)	Excluded	CCA 0.46 ± 0.06	
Tonstad 1996 (40)	Cross-sectional	90	14.0 ± 2.3	61 (67.8)	0	No treatment	CCA 0.48 ± 0.07	Bulbus 0.54 ± 0.10	Bulbus 0.55 ± 0.10	Bulbus 0.55 ± 0.09	30	14.1 ± 2.3	20 (66.7)	0	CCA 0.48 ± 0.06
Males						CCA 0.49 ± 0.07	Bulbus 0.54 ± 0.10	Bulbus 0.55 ± 0.10	Bulbus 0.55 ± 0.09	20	14.2 ± 2.3	20 (100)	0	CCA 0.48 ± 0.06	
Females						CCA 0.47 ± 0.07	Bulbus 0.51 ± 0.09	10	13.9 ± 2.4	0	0	CCA 0.42 ± 0.08			

(continued on next page)
Table 1 (continued)

Study design	FH	Non-FH								
First author, year (ref)	**FH**	**Mean age (yrs) Male (%)**	**Comorbidty (%) Smoker (%)**	**Treatment**	**IMT (mm)**	**Non-FH**	**Mean age (yrs) Male (%)**	**Comorbidty (%) Smoker (%)**	**IMT (mm)**	
Wendelhag 1996 Cohort (15)	50 (49 IMT)	56.9 ± 12.0 29 (58)	No treatment	Lipid-lowering	CCA 0.85 ± 0.22	47 (46 IMT) 57.8 ± 11.7 27 (57)	Current 9 (19)	CCA 0.78 ± 0.18	Bulbus 0.88 ± 0.26	
Wendelhag 1992 Cross-sectional (56)	51	52.2 ± 21.1	Current (24) No treatment	Lipid-lowering	0.85 ± 0.22	51	52.8 ± 11.8	Current (22)	HT 5 (9.8)	Ever: 54 (28) 0.71 ± 0.53
Junyent 2008 (59)	123	40.7 (20-76) (range) 56 (46)	Ever 38 (31)	Statins (combined with fibrates, resins)	193	49.5 (25-80) (range) 85 (44)	HT: 9 (5) DM: 0	Ever: 54 (28) 0.71 ± 0.53		
Asymptomatic FH	23	50.7 (28-70) (range) 18 (78)	Ever 12 (52)	Statins (combined with fibrates, resins)	1.39 ± 0.91					
FH with CHD	21	46 ± 11	Current 12 (57)	Statins (combined with fibrates, resins)	1.60 ± 0.72	28	39 ± 11	CVD 0 DM excluded	Current 0 0.74 ± 0.23	
Wendelhag 1996 Cohort (15)	50 (29 IMT) 56.9 ± 12.0 29 (58)	Current 10 (20)	Lipid-lowering	CCA 0.85 ± 0.22	47 (33 IMT) 57.8 ± 11.7 27 (57)	Current 9 (19)	CCA 0.78 ± 0.18	Bulbus 0.88 ± 0.26		
Baseline 5-year follow-up	N=7	1.12 ± 0.48	Ever 38 (31)	Statins (combined with fibrates, resins)	1.38 ± 0.66	47 (33 IMT) 57.8 ± 11.7 27 (57)	Current 9 (19)	CCA 0.78 ± 0.18	Bulbus 0.88 ± 0.26	

Data extracted from: 16. Luirink IK, Wiegman A, Kusters DM, Hof MH, Groothoff JW, de Groot E, et al. 20-Year Follow-up of Statins in Children with Familial Hypercholesterolemia. The New England journal of medicine. 2019;381(16):1547-56. Epub 2019/10/17.

Mean carotid IMT measured at one location (CCA).

Data are ± SDs or (95% CI) if not otherwise stated.

Only raw data is reported in Table 1. The mean carotid IMT is defined as the mean of carotid IMT measurements on multiple sections of the carotid artery right and left, if not otherwise stated.

HT: hypertension

DM: diabetes mellitus

CVD: cardiovascular disease

MI: myocardial infarct

CCA: common carotid artery

ICA: internal carotid artery

Bulbus: carotid sinus

Bif: aortic bifurcation

Post: posterior

Ant: anterior

SD: standard deviation

CI: confidence interval

SEM: standard error of the mean

Note: If there are any specific questions or need further clarification, feel free to ask!
port the participants’ age, reported only medians and interquartile ranges for IMT, baseline data of the cohorts were previously reported and therefore already included. Analyses of the pooled data of the remaining 34 studies showed a mean difference in carotid IMT between FH patients (n=2,850) and unaffected controls (n=1,851) of 0.11 mm (95% CI 0.06 to 0.15; P<0.001) (Figure 2A).

For the age category 1 to 20 years, data of 15 studies was available with a total of 974 FH patients and 579 unaffected controls. Analysis of the pooled data showed a significant difference in mean carotid IMT between FH patients and controls of 0.07 mm (95% CI 0.05 to 0.10; P<0.001).

Data of 8 studies was available for the age category 21 to 40 years with a total of 489 FH patients and 414 unaffected controls. Analysis of the pooled data showed a significant difference in mean carotid IMT between FH patients and controls of 0.06 mm (95% CI 0.03 to 0.08; P<0.001).

For the age category 41 to 60 years, data of 11 studies was available with a total of 1,387 FH patients and 858 unaffected controls. Analysis of the pooled data showed a significant difference in mean carotid IMT between FH patients and controls of 0.16 mm (95% CI 0.03 to 0.30; P=0.02).

Six studies also assessed carotid plaques, and of these showed a significantly more often occurrence of plaques in patients with FH as compared to unaffected controls. One study showed more often plaques in FH patient, but this was not significant.

Difference in mean carotid IMT between untreated or treated FH patients and unaffected subjects

Thirteen studies provided data on the mean carotid IMT in untreated FH patients (n=1,018) and unaffected controls (n=670). The vast majority of the studies showed a thicker carotid IMT in the FH patients (Figure 3A); the analysis of the pooled data resulted in a difference of 0.12 mm (95% CI 0.03 to 0.21; P=0.009).

We could use data of 13 studies to analyze the carotid IMT difference in (partly) treated FH patients (n=1,735) versus unaffected controls (n=1,010) (Figure 3B). One study split up the FH cohort in a treated and an untreated cohort, we used both data for Figure 3Ab and 3B. See Table S3 in the supplemental data for the number of treated patients per study. Analysis of the pooled data showed a significant difference in mean carotid IMT between (partly) treated FH patients and controls of 0.05 mm (95% CI 0.03 to 0.08; P<0.001), although less pronounced than in untreated FH patients versus controls.

We explored the association between age and the difference in mean carotid IMT (FH patients versus controls). Figure 4a shows the overall difference expressed against age, using data of 34 studies. Difference in IMT tends to be more distinct with increasing mean age (0.0018 mm/year; 95% CI -0.0007 to 0.0042). Figure 4b shows different regression lines for the difference in carotid IMT between controls versus untreated and untreated subjects.
A: Carotid IMT

B: Femoral IMT

Fig. 2 Forest plot of mean carotid IMT (A) and mean femoral IMT (B) in patients with FH and unaffected subjects (ordered by age). Red dots represent the newest publications (from 2010).

Discussion

In this systematic review and meta-analysis, we showed that the mean carotid IMT in (treated and untreated) FH patients is thicker in comparison with unaffected controls. In addition, we found that the mean carotid IMT in FH patients (partly) treated FH patients, respectively, using data of 24 studies. The difference in mean carotid IMT between untreated FH patients and unaffected controls shows a greater increase than the difference in mean carotid IMT between treated FH patients and unaffected controls (0.0104 mm/year, 95% CI 0.0100 to 0.0108 vs 0.0023 mm/year, 95% CI 0.0021 to 0.0025; P<0.001).

Difference in mean femoral IMT between subjects with and without FH

Three studies reported on the femoral IMT in FH patients (n=196) and unaffected controls (n=254) (Figure 2B). Pooled analysis showed a significant thicker mean femoral IMT in patients with FH patients compared to unaffected controls (mean difference: 0.47 mm 95% CI 0.19 to 0.74; P<0.001). One study also reported on femoral plaque assessment and showed significantly more often plaque occurrence in FH patients compared to unaffected controls.59

Please cite this article as: van Bergen en Henegouwen et al, Intima-media thickness in treated and untreated patients with and without familial hypercholesterolemia: A systematic review and meta-analysis, Journal of Clinical Lipidology, https://doi.org/10.1016/j.jacl.2022.01.009
increases with age to a greater extent than in unaffected controls. The difference in carotid IMT between FH patients and unaffected controls, as well as the increasing difference in carotid IMT with increasing age, is more pronounced in studies with untreated FH patients than in studies with treated patients. These results suggest that more robust or earlier treatment initiation might be beneficial to reduce cardiovascular risk in patients with FH. Lastly, we found the mean femoral IMT in FH patients is increased as compared to unaffected controls.

Our findings are in line with an earlier systematic review on this topic, in which studies from up to 2010 were included. Now a decade later, we were able to include more than 20 additional studies published after 2010, of which several studies in the pediatric age range. As it has been recommended since 2008 to start statin treatment in children from the age of 8 years, we were able to also study the effect of statin treatment on IMT after early treatment initiation.

Carotid IMT has been considered as a validated, well-established surrogate marker for cardiovascular disease and the ultrasound scan procedure is not time consuming, comfortable for participants, completely safe and can be performed at high reproducibility in a standardized fashion. In a recent large meta-analysis it was shown that although in follow-up intervention trials no associations with carotid IMT change and cardiovascular disease risk were detected, absolute mean carotid IMT was positively and robustly associated with cardiovascular disease risk.

We reported in this review on both the carotid IMT and the femoral IMT. While the carotid IMT is considered as a valid marker of cardiovascular disease risk, femoral IMT is not commonly performed. Because of the very limited number of 3 available studies that included femoral IMT data (n=3) and the lack of information on the occurrence of clinical cardiovascular disease in these studies, we can neither draw robust conclusions on the predictive value of femoral IMT data nor the relationships of femoral with carotid IMT data.

Several aspects of this review merit discussion. First of all, heterogeneity was high in several of our meta-analyses. In our study we deemed that heterogeneity was mostly due to the different ages of the study populations and the fact that both treated and untreated study cohorts were included. By dividing the population in different age groups, and by separating treated and untreated study cohorts, we tried to reduce heterogeneity. Heterogeneity may also be due to the presence of some outlying studies with results that conflict with the rest of the studies. Indeed, three of the included studies reported an extreme difference (≥0.3 mm) in carotid IMT between FH patients and unaffected controls. Although there was no obvious reason to exclude these studies, we also performed the analysis without these studies. Excluding these studies reduced heterogeneity in the analyses, and the overall mean difference in carotid IMT between FH patients and unaffected controls decreased slightly (0.08 mm [0.06 - 0.10] p<0.001). Besides that, we used a random-effects model according to the method of DerSimonian and Laird.

Fig. 3 Forest plot of mean carotid IMT in untreated FH patients versus non-FH subjects (A), and in (partly) treated FH patients versus non-FH subjects (B), (ordered by age). Red dots represent the newest publications (from 2010).
The limitation of this method is that, by estimating the degree of heterogeneity, confidence intervals are smaller than they should be to encompass full uncertainty. However, the difference in results is expected to be small when using a high number of studies for the meta-analysis.62

Secondly, the included studies all have a (slightly) different IMT-measurement protocol. Moreover, one of the included studies performed the IMT-measurements at one location of the carotid artery,15 while other studies calculated a mean carotid IMT out of multiple measurements on different sections of the carotid artery. However, the IMT of FH patients and unaffected controls within a study were performed in the same way. Additionally, two studies that were included in the meta-analyses reported IMT-measurements that were adjusted for sex, age, smoking behavior, body mass index, and/or systolic blood pressure.32,34 However, by taking the difference in carotid IMT between FH patients and unaffected controls and pooling these differences of the included studies, we deem that the different methods of measurement and adjustment for confounders have not significantly influenced our results.

Thirdly, almost all studies regarding treatment are open label studies. Randomized controlled studies would have been optimal to assess the treatment effect. However, since statin therapy is indicated in FH patients to reduce CVD, it would be unethical to have a placebo group. Because our main outcome is the difference in IMT between FH patients and unaffected controls, instead of the treatment effect in FH patients, we don’t think that this affected our results. Next to this, we considered FH patients (partly) treated if ≥50% of the patients received treatment. Ideally, 100% of the patients should be treated to draw conclusions about treatment effects, and this might have caused an underestimation of the difference in carotid IMT between ‘treated’ and ‘untreated’ FH patients. Furthermore, only one study reported information about adherence to medication.16 Assuming that not every FH patient is completely adherent, the difference in carotid IMT between treated FH patients and unaffected controls might be overestimated, and the difference between untreated and (partly adherent) treated FH patients might be underestimated. For most of the studies it is also unknown for how long FH patients had been treated. Moreover, in most cohorts of the studies, not all the FH patients were receiving treatment. This is not unique; Pijlman et al.63 and Béhiard et al.64 show that only a small part of FH patients achieves their treatment target. It is a paradox that FH patients are often undertreated while the importance of early disease management is well established, and treatment options are safe and very efficacious. The earlier treatment is initiated, and the higher the compliance, the lower is the “lifetime cholesterol exposure” and probably, the lower the cardiovascular risk. Indeed, in a recent 20-years follow-up study of early initiated statin use in FH patients in which an excellent compliance was reported, there was no statistically significant difference in carotid IMT between treated FH patients and their unaffected siblings.16 The results of our study again emphasize the need of treatment of FH patients.

Overall, we conclude that FH patients have a higher mean carotid and femoral IMT compared to unaffected controls. The fact that the difference in IMT increases with age between FH patients and unaffected controls, and is more pronounced in studies with untreated FH patients than in studies with treated patients, suggests that starting treatment already at a young age in patients with FH is preferred. However, despite treatment, IMT in treated FH patients is still thicker in comparison to subjects without FH. This sign of residual risk might suggest that more robust cholesterol lowering treatment and achieving treatment targets, or earlier treatment initiation, is needed to reduce IMT progression to non-FH conditions. Therefore, we must find and diagnose these patients, and treat them according to current guidelines.

Author declaration

The authors declared they do not have anything to disclose regarding conflict of interest with respect to this manuscript. KBH, BH and DK conceived and designed the study. KBH, BH and DK collected the data. KBH, DK, BH and EG analyzed the data. KBH, BH and DK wrote the first draft of the manuscript. EG, IL and AW contributed to writing and finalizing the manuscript. All authors read and approved the final manuscript.
Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.jacl.2022.01.009.

References

1. Goldstein JL, Brown MS. Familial hypercholesterolemia: identification of a defect in the regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity associated with overproduction of cholesterol. Proceedings of the National Academy of Sciences of the United States of America. 1973;2804–2808.
2. Sjouke B, Kusters DM, Kindt I, Besseling J, Defesche JC, Sijbrands EJ, et al. Homozygous autosomal dominant hypercholesterolaemia in the Netherlands: prevalence, genotype-phenotype relationship, and clinical outcome. Eur Heart J. 2015;36(9):560–565 Epub 2014/03/04.
3. Marks D, Thorogood M, Neil HA, Humphries SE. A review on the diagnosis, natural history, and treatment of familial hypercholesterolaemia. Atherosclerosis. 2003;168(1):1–14 Epub 2003/05/07.
4. Strayer DS, Rubin E. Rubin’s pathology: clinicopathologic foundations of medicine. Philadelphia, Pa: Wolters Kluwer Health; 2015.
5. Besseling J, Hovingh GK, Huijgen R, Kastelein JJP, Hunten BA. Statins in familial hypercholesterolemia: consequences for coronary artery disease and all-cause mortality. J Am Coll Cardiol. 2016;68(3):252–260 Epub 2016/07/16.
6. Baigent C, Keech A, Kearney PM, Blackwell L, Buck G, Pollicino C, et al. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet. 2005;366(9493):1267–1278 Epub 2005/10/11.
7. Stehouwer CDA, Koopmans RF, Maas M. Leerboek interne geneeskunde. 2017. Available from: http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nmk&AN=1626603.
8. de Groot E, van Leuven SI, Duivenvoorden R, Meuwese MC, Akdim F, Bots ML, et al. Measurement of carotid intima-media thickness to assess progression and regression of atherosclerosis. Nat Clin Pract Cardiovasc Med. 2008;5(5):280–288 Epub 2008/03/12.
9. Cheng KS, Mikhailidis DP, Hamilton G, Seifalian AM. A review of the carotid and femoral intima-media thickness as an indicator of the presence of peripheral vascular disease and cardiovascular risk factors. Cardiovasc Res. 2002;54(3):528–538 Epub 2002/05/29.
10. Kusters DM, Wiegman A, Kastelein JJ, Hunten BA. Carotid intima-media thickness in children with familial hypercholesterolemia. Circ Res. 2014;114(2):307–310 Epub 2013/11/07.
11. Wiegman A, de Groot E, Hunten BA, Rodenburg J, Gort J, Bakker HD, et al. Arterial intima-media thickness in children heterozygous for familial hypercholesterolemia. Lancet. 2004;363(9406):369–370 Epub 2004/04/09.
12. Rizzino S, Mandraffino G, Sardo MA, Judicello R, Camarda N, Imbalzano E, et al. Pulse wave velocity and augmentation index, but not intima-media thickness, are early indicators of vascular damage in hypercholesterolemic children. Eur J Clin Invest. 2010;40(3):250–257 Epub 2010/04/27.
13. Ershova AI, Balakhonova TV, Meshkov AN, Rozhkova TA, Boytsov SA. Ultrasound markers that describe plaques are more sensitive than mean intima-media thickness in patients with familial hypercholesterolemia. Ultrasound Med Biol. 2012;38(3):417–422 Epub 2012/01/21.
14. Braamskamp M, Langslet G, McCrindle BW, Cassiman D, Francis GA, Gagne C, et al. Effect of rosvuastatin on carotid intima-media thickness in children with heterozygous familial hypercholesterolemia: the CHARON study (Hypercholesterolemia in children and adolescents taking rosvuastatin open label). Circulation. 2017;136(4):359–366 Epub 2017/06/09.
15. Wendelhag I, Wiklund O, Wikstrand J. On quantifying plaque size and intima-media thickness in carotid and femoral arteries. Comments on results from a prospective ultrasound study in patients with familial hypercholesterolemia. Arterioscler Thromb Vasc Biol. 1996;16(7):843–850 Epub 1996/07/01.
16. Luitrink IK, Wiegman A, Kusters DM, Hof MH, Groothoff JW, de Groot E, et al. 20-year follow-up of statins in children with familial hypercholesterolemia. N Engl J Med. 2019;381(16):1547–1556 Epub 2019/10/17.
17. de Groot E, Hovingh GK, Wiegman A, Duriez P, Smit AJ, Frachot JC, et al. Measurement of arterial wall thickness as a surrogate marker for atherosclerosis. Circulation. 2004;109(23 Suppl 1) III33–Epub 2004/06/17.
18. Su TC, Chien KL, Jeng JS, Chen MF, Hsu HC, Tseng PL, et al. Age and gender-associated determinants of carotid intima-media thickness: a community-based study. J Atheroscler Thromb. 2012;19(9):872–880 Epub 2012/09/14.
19. FH Foundation. Diagnostic criteria for familial hypercholesterolemia. 2018. Available from: https://thefhfoundation.org/diagnostic-criteria-for-familia-hypercholesterolemia.
20. Institute OHR. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. 2014.
21. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177–188 Epub 1986/09/01.
22. Masoura C, Pitsavos C, Aznouridis K, Skoumas I, Vlachopoulos C, Stefanadis C. Arterial endothelial function and wall thickness in familial hypercholesterolaemia and familial combined hyperlipidaemia and the effect of statins. A systematic review and meta-analysis. Atherosclerosis. 2011;214(1):129–138 Epub 2010/11/16.
23. Bravo M, Collado I, Dardaneli E, Araujo M, Lipsch J, Moguilansky S. Carotid intima-media thickness in children with familial hypercholesterolemia, diabetes type 1 and obesity, compared to healthy children. Pediatr Radiol. 2012;42(5):S251–S282.
24. Khan SP, Ahmed KZ, Yaqub Z, Ghan J. Carotid intima-media thickness correlation with lipid profile in patients with familial hypercholesterolemia versus controls. J Coll Phys Surg Pak JCPSP. 2011;21(1):30–33 Epub 2011/02/01.
25. Virkola K, Posenen E, Akerblom HK, Siimes MA. Cholesterol and carotid artery wall in children and adolescents with familial hypercholesterolaemia: a controlled study by ultrasound. Acta Paediatr. 1997;86(11):1203–1207.
26. Soljanlahi S, Atti T, Lauerma K, Raininko R, Keto P, Turtola H, et al. Familial hypercholesterolemia patients treated with statins at no increased risk for intracranial vascular lesions despite increased cholesterol burden and extracranial atherosclerosis. Stroke. 2005;36(7):1572–1574 Epub 2005/06/04.
27. Aggoun Y, Bonnet D, Sidil D, Girardet JP, Brucker E, Polak M, et al. Arterial mechanical changes in children with familial hypercholesterolemia. Arterioscler Thromb Vasc Biol. 2000;20(9):2070–2075 Epub 2000/09/09.
28. Smilde TJ, van den Berknot CW, Boers GH, Wollersheim H, de Boo T, van Langen H, et al. Carotid and femoral artery wall thickness and stiffness in patients at risk for cardiovascular disease, with special emphasis on hyperhomocysteinemia. Arterioscler Thromb Vasc Biol. 1998;18(12):1958–1963 Epub 1998/12/16.
29. Di Salvo G, D’Aiello AF, Gala S, Mormile A, Castaldi B, Del Giudice EM, et al. The impact of FHC on cardiac morphology and function of children. G Ital Cardiol. 2011(3):e97.
30. Noto N, Okada T, Abe Y, Miyashita M, Kanamaru H, Karasawa K, et al. Characteristics of earlier atherosclerotic involvement in adolescent patients with Kawasaki disease and coronary artery lesions: significance of gray scale median on B-mode ultrasound. Atherosclerosis. 2012;222(1):106–109 Epub 2012/03/02.

31. Plana N, Ferre R, Merino J, Aragones G, Girona J, Heras M, et al. Heterozygous familial hypercholesterolemic patients have increased arterial stiffness, as determined using the augmentation index. J Atheroscler Thromb. 2011;18(12):1110–1116 Epub 2011/12/02.

32. Burillo E, Recalde D, Jaraata E, Fiddyment S, Garcia-Ortin AL, Mateo-Gallego R, et al. Proteomic study of macrophages exposed to oxLDL identifies a CAPG polymorphism associated with carotid atherosclerosis. Atherosclerosis. 2009;207(1):32–37 Epub 2009/05/15.

33. Ellis SM, Naounova RP, Neuwirth CK, Ekersley R, Cosgrove DO, Thompson GR, et al. Measurement of the reflectivity of the intima-medial layer of the common carotid artery improves the discriminatory value of intima-media thickness measurement as a predictor of risk of atherosclerotic disease. Ultrasound Med Biol. 2007;33(7):1029–1038 Epub 2007/04/24.

34. Junyent M, Gilabert R, Jaraata E, Nunez I, Cofan M, Civirea F, et al. Impact of low-density lipoprotein receptor mutational class on carotid atherosclerosis in patients with familial hypercholesterolemia. Atherosclerosis. 2010;208(2):437–441 Epub 2009/09/01.

35. Rodriguez-Borjabad C, Ibarrете D, Girona J, Ferre R, Feiliu A, Amigo N, et al. Lipoprotein profile assessed by 2D-1H-NMR and subclinical atherosclerosis in children with familial hypercholesterolemia. Atherosclerosis. 2018;280:117–122 Epub 2018/02/07.

36. Vlahos AP, Naka KK, Bechlioulis A, Theoharis P, Vakalis K, Moutzouri E, et al. Endothelial dysfunction, but not structural atherosclerosis, is evident early in children with heterozygous familial hypercholesterolemia. Pediatr Cardiol. 2014;35(1):63–70 Epub 2013/07/04.

37. Kologlu M, Okada T, Joakimsen KH, de Mijolla. Achilles tendon ultrasound. Atherosclerosis. 2010;208(2):580-6. Epub 2010/01/10.

38. Noto N, Okada T, Abe Y, Miyashita M, Kanamaru H, Karasawa K, et al. Changes in the textural characteristics of intima-media complex in young patients with familial hypercholesterolemia: implications for visual inspection on B-mode ultrasound. Atherosclerosis. 2012;222(2):487–492 Epub 2012/03/03.

39. Guardamagna O, Restagno G, Rolfo E, Pedeviva C, Martinis S, Abello F, et al. The type of LDL gene mutation predicts cardiovascular risk in children with familial hypercholesterolemia. J Pediatr. 2009;155(2):199–204 e2Epub 2009/05/19.

40. Tonstad S, Joakimsen O, Stensland-Bugge E, Leren TP, Ose L, Russell D, et al. Risk factors related to carotid intima-media thickness and plaque in children with familial hypercholesterolemia and control subjects. Arterioscler Thromb Vasc Biol. 1996;16(8):984–991 Epub 1996/08/01.

41. Takata M, Kawashiri MA, Nohara A, Noguchi T, Tada H, Nakanishi C, et al. 10 Atherosclerosis Supplements Conference: 15th International Symposium on Atherosclerosis. Impact of rapid development of carotid atherosclerosis in young familial hypercholesterolemia (FH): Comparison with Non-FH littermates; 2009.

42. Ye ZX, Cheng HM, Chou KR, Chang MJ. Relation of C-reactive protein and carotid intima media thickness in Taiwanese with familial hypercholesterolemia. Am J Cardiol. 2008;102(2):184–187 Epub 2008/07/08.

43. Walus-Miarka M, Wojciechowska W, Miarka P, Klocz-Badelek M, Wozniakiewicz E, Czarniecka D, et al. Intima-media thickness correlates with features of metabolic syndrome in young people with a clinical diagnosis of familial hypercholesterolemia. Kardiol Pol. 2013;71(6):566–572 Epub 2013/06/26.

44. Tonstad S, Joakimsen O, Stensland-Bugge E, Ose L, Bonaa KH. Leren TP. Carotid intima-media thickness and plaque in patients with familial hypercholesterolaemia mutations and control subjects. Eur J Clin Invest. 1998;28(12):971–979 Epub 1999/01/20.
cardiovascular risk assessment: systematic review and meta-analysis. *Atherosclerosis*. 2013;228(1):1–11 Epub 2013/02/12.

61. Lorenz MW, Gao L, Ziegelbauer K, Norata GD, Empana JP, Schmidt-mann I, et al. Predictive value for cardiovascular events of common carotid intima media thickness and its rate of change in individuals at high cardiovascular risk - Results from the PROG-IMT collaboration. *PLoS One*. 2018;13(4):e0191172 Epub 2018/04/13.

62. Higgins JPT TJ, Chandler J, Cumpston M, Li T, Page MJ, Welch VA. *Cochrane Handbook for Systematic Reviews of Interventions* editors. Cochrane; 2021 Version 6.2 (updated February 2021).

63. Pijlman AH, Huijgen R, Verhagen SN, Imholz BP, Liem AH, Kastelein JJ, et al. Evaluation of cholesterol lowering treatment of patients with familial hypercholesterolemia: a large cross-sectional study in The Netherlands. *Atherosclerosis*. 2010;209(1):189–194 Epub 2009/10/13.

64. Beliard S, Carreau V, Carrie A, Giral P, Duchene E, Farnier M, et al. Improvement in LDL-cholesterol levels of patients with familial hypercholesterolemia: can we do better? Analysis of results obtained during the past two decades in 1669 French subjects. *Atherosclerosis*. 2014;234(1):136–141 Epub 2014/03/19.