(N)LSP Decays and Gravitino Dark Matter Relic Abundance in Big Divisor (nearly) SLagy $D3/D7 \mu$-Split SUSY

Mansi Dhuria and Aalok Misra
Department of Physics, Indian Institute of Technology, Roorkee - 247 667, Uttaranchal, India

Abstract

Using the (nearly) Ricci-flat Swiss-Cheese metric of [1], in the context of a mobile space-time filling $D3$-brane restricted to a nearly special Lagrangian sub-manifold (in the large volume limit, the pull-back of the Kähler form close to zero and the real part of the pull-back of $e^{-i\theta}$, $\theta = \pi/2$ times the nowhere-vanishing holomorphic three-form providing the volume form on the three-cycle) of the "big" divisor with (fluxed stacks of) space-time filling $D7$-branes also wrapping the "big" divisor (corresponding to a local minimum), we provide an explicit identification of the electron and the u-quark, as well as their $SU(2)_L$-singlet cousins, with fermionic super-partners of four Wilson line moduli; their superpartners turn out to be very heavy, the Higgsino-mass parameter turns out to be large, one obtains one light (with a mass of 125 GeV) and one heavy Higgs and the gluino is long lived (from a collider point of view) providing a possible realization of "μ-Split Supersymmetry". By explicitly calculating the lifetimes of decays of the co-NLSPs - the first generation squark/slepton and a neutralino - to the LSP - the gravitino - as well as gravitino decays, we verify that BBN constraints relevant to the former as well as the requirement of the latter to be (more than) the age of the universe, are satisfied. For the purpose of calculation of the gravitino relic density in terms of the neutralino/slepton relic density, we evaluate the latter by evaluating the netralino/slepton (co-)annihilation cross sections and hence show that the former satisfies the requirement for a Dark Matter candidate.

1 email: mansidph@iitr.ernet.in
2 e-mail: aalokfph@iitr.ernet.in
1 Introduction

It is challenging to provide a suitable choice of vacuum (local minimum) of string theory to infer various cosmological and phenomenological issues, and other fundamental physics. One of the most exciting unresolved issues in particle physics and cosmology is the nature of dark matter (DM) in the Universe. Over the years, astronomical and cosmological observations have put significant constraints on its expected properties. The recent Wilkinson Microwave Anisotropy Probe (WMAP) observations provide the relic abundance of a cold dark matter (CDM) [2] to be $\Omega_{\text{CDM}} h^2 = 0.1109 \pm 0.0056$. Theoretical status of DM generally emerges in the context of theories beyond Standard Model. It is well known that supersymmetric models with conserved R-parity contain one stable neutralino which is a candidate for cold dark matter. However, in models coupled to gravity and even in other scenarios of supersymmetry breaking mediation including gauge mediation, the gravitino (the supersymmetric partner of Graviton) stands out as probably the most natural and attractive candidate for the LSP and DM although it generically suffers from a well-known “cosmological gravitino problem” [3] the resolution of which depends on whether one considers gravitino to be LSP or unstable particle. The long-lived gravitino’s are generated in the early Universe. In the standard big-bang cosmology, they were in thermal equilibrium and then because of their weak gravitational interactions, frozen out while they were relativistic. In this case their abundance might overclose the Universe. Even if during inflationary epoch of the universe, primordial abundance of gravitino is completely diluted, the problem can not be solved because gravitinos are regenerated in the thermal bath after the reheating if the reheating temperature is high enough though overclosure of universe by dark matter constrain the exact value of reheating temperature [4, 5, 6]. However, in addition to it, the production of gravitino also depends on non-thermal production mechanism, the abundance of which is independent of the reheating temperature, i.e $\Omega_{\text{total}}^{3/2} = \Omega_{\text{th}}^{3/2} + \Omega_{\text{NLSP}}^{3/2}$. Generically in case of heavy gravitino, reheating temperature is low enough to produce appropriate abundance of Gravitino. Therefore sufficient number of gravitinos can be produced after NLSP decays to gravitino after its decoupling from the thermal plasma [7]. In other words, annihilation density does not depend on freeze out of gravitino (which causes a gravitino problem), instead depends on freeze out of NLSP. Hence relic density of gravitino is given by relic density of NLSP [7, 8] according to the relation $\Omega_{\tilde{G}} = \frac{m_{3/2}}{m_{\tilde{G}}} \Omega_{3/2}$. Therefore it is interesting to study the thermal cross-section and hence relic density of the (co-)NLSP(s) to get the right order of relic density of gravitino.

In spirit of above discussion, the purpose of present work is to give the signatures of gravitino as a potential dark matter in the context of the large volume limit of type IIB (“big divisor”) D3/D7 Swiss cheese phenomenology. The consistent compactification scheme and phenomenological features of the model were initiated in [9, 10] and “μ split-SUSY scenario”-like realization of the same was shown to be possible to be realized in [11] where in addition to getting one light Higgs (one of the primary motivation of μ split SUSY Scenario), we evaluated the life time of gluino which came out to be long and hence satisfied one of the important phenomenological features of μ split-SUSY scenario. In general, stability of LSP is governed by conserved R-parity in most of the supersymmetric models. However, in this paper, we have considered stability of the gravitino as an LSP in absence of R-parity conservation. We argue that, even in the presence of non-zero R-parity violating couplings, large squark masses help to reduce the decay width and hence the lifetime of the gravitino decays become very long, typically of or larger than the age of the Universe. The explicit calculation of matrix amplitudes and hence life times of N(LSP) candidates requires the complete identification of the SM particles. Therefore we build up a set up which is able to provide an explicit identification of the first generation $SU(2)_L$ leptonic and quark doublets as well as their $SU(2)_L$-singlets, with fermionic
super-partners of four Wilson line moduli. Further, soft SUSY parameters obtained in the context of gravity mediation provides sleptons and gaugino/lightest neutralino (being almost degenerate in mass) as co-NLSPs while gravitino naturally appears as Lightest Supersymmetric particle (LSP) which traditionally can be considered as viable dark matter candidate. The more explicit realization of the same requires life time of the LSP to be around and preferably more than the age of the universe.

The organization of the paper is as follows: In section 2, we start off with details of an improved version of the large volume scenario set up discussed in [9]. Here, we construct four harmonic distribution one-forms supported on a sub-locus of big divisor localized along the mobile space-time filling $D3$-brane, and by utilizing the geometric Kähler potential of [1] we show that the aforementioned sub-locus in the large volume limit is nearly a special Lagrangian sub-manifold of the “big” divisor. By calculating the intersection matrix valued in the Wilson line moduli sub-space $a_{I=1,...,h^0_+(\Sigma_B)}$, appearing in Kähler coordinate T_B, we write (the Kähler sector of the) Kähler potential that includes four Wilson line moduli a_1, a_2, a_3, a_4 and two position moduli of a mobile space-time filling $D3$-brane restricted to the abovementioned (nearly) SLag (corresponding to a local minimum); for the purposes of evaluation of “physical”/normalized Yukawa couplings, soft supersymmetry breaking parameters, etc., this Kähler potential is diagonalized to produce the A_I, Z_i-basis. Further, the estimate of the Dirac mass terms appearing in the $\mathcal{N} = 1$ supergravity action of [12] calculated from superpotential and Kähler potential suggest that the fermionic superpartners of A_1 and A_3 correspond respectively to the first generation leptons: e_L and e_R, and the fermionic superpartners of A_2 and A_4 correspond respectively to the first generation quarks: u_L and u_R. We also provide explicit bi-fundamental representations for the four Wilson line moduli and two $D3$-brane position moduli (after having turned on appropriate two-form fluxes on the $D7$-brane world volume decomposing adjoint-valued matter fields into bi-fundamental matter fields) and speculate about the possible modification in the relevant $\mathcal{N} = 1$ chiral coordinate in the presence of the same. We also show that the (effective) physical Yukawas change only by $\mathcal{O}(1)$ under an RG-flow from the string to the EW scale. Building up on this identification, we have evaluated the contribution of various three-point vertices in the context of gauged $\mathcal{N} = 1$ supergravity action, in section 3,4 and 5. In section 3, in order to meet the requirement of an appropriate DM candidate, we calculate life time of three-body R-parity violating decays of gravitino LSP which comes out to be more than the age of the Universe. In 4.1 and 4.3, we study decay width and life time of two-body and hadronic three-body decays of gauginos (NLSP) and co-NLSPs (sleptons/squarks), life times of which, except for gluino-to-Goldstino decay, ensure that energy release from both gauge boson and hadronic decays do not spoil the the predictions arising from Big Bang Nucleosynthesis (BBN) and cosmic microwave background, etc.; gluino is hence ruled out as an NLSP. In section 4.2, we consider R-parity violating decays of (Wino/Bino-dominated)neutralino to ordinary particles (even R-parity) which do not affect the abundance of gravitino produced by neutralino decays into gravitino if the decay life time of the former is more than the life time of the latter. The more exact determination also requires that relic density of dark matter must be compatible with present observations and should not overclose the Universe. Therefore, in order to be able to perform a reliable comparison between theoretical predictions and improving measurements of the relic abundance from underground DM searches, in section 5, we calculate the relic density of co-NLSP’s and hence relic abundance of gravitino. Strictly speaking, we consider very conservative approach where one assumes that decays of NLSP’s account for almost all of the dark matter of the Universe. Utilizing extensively the results of [13], [14] for providing the exact analytical expressions of various annihilation channels of neutralino and slepton, we obtain estimates of thermal cross-section and hence relic density of N(LSP) candidates. Section 6 has the conclusions. There are five appendices; appendix A has some
details of the geometric Kähler potential calculation. Appendix B describes the evaluation of various intersection numbers $C_{I,J}$ corresponding to four Wilson line moduli. Appendix C has details of calculations of various soft supersymmetry breaking parameters and the fact that it is possible to obtain around 10^2 GeV masses for W/Z vector gauge bosons and 125 GeV for the light Higgs. Appendix D includes expansions of moduli space metric and its derivatives w.r.t each moduli up to terms linear in the fluctuations about their extremum values of the Wilson line and D3-position moduli. Lastly, in appendix E, we have given the intermediate steps of calculation of matrix amplitudes corresponding to $l \rightarrow l'GV$ decay.

2 Setup

From Sen’s orientifold-limit-of-F-theory point of view corresponding to type IIB compactified on a Calabi-Yau three fold Z-orientifold with $O3/OT$ planes, one requires an elliptically fibered Calabi-Yau four-fold X_4 (with projection π) over a 3-fold $B_3(= CY_3$–orientifold) where B_3 is taken be an n-twisted $\mathbb{C}P^1$-fibration over $\mathbb{C}P^2$ such that pull-back of the divisors in CY_3 automatically satisfy Witten’s unit-arithmetic genus condition. For $n = 6$ [15], the Calabi-Yau three-fold Z then turns out to be a unique Swiss-Cheese Calabi Yau in $\mathbb{WCP}^4_{[1,1,1,6,9]}(x_1 : x_2 : x_3 : x_4 : x_5)$ given by a smooth degree-18 hypersurface in $\mathbb{WCP}^4[1,1,1,6,9]$; the exceptional divisor corresponding to resolution of a \mathbb{Z}_3-singularity $x_1 = x_2 = x_3 = 0$, via the monomial-divisor map, is encoded as the $\phi x_1^6x_2^6x_3^6(\phi$ being an involutively odd complex structure modulus) polynomial deformation in the defining hypersurface.

Also, throughout we will be working in the non-singular coordinate patch $x_2 = 1$ in the large volume limit of the Swiss-Cheese Calabi-Yau.

In the presence of a space-time filling D3-brane and a space-time filling D7-brane wrapping Σ_B, the Kähler potential relevant to all the calculations in this paper (without being careful about $O(1)$ constant factors):

$$K \sim -2\ln\left[\left(\sigma_B + \bar{\sigma}_B - \gamma K_{\text{geom}}\right)^{\frac{3}{2}} - (\sigma_S + \bar{\sigma}_S - \gamma K_{\text{geom}})^{\frac{3}{2}}\right] + \frac{\chi}{2} \sum_{m,n \in \mathbb{Z}^2/(0,0)} \frac{(\tau - \bar{\tau})^{\frac{3}{2}}}{(2i)^{\frac{1}{2}}|m+n\tau|^3} - 4 \sum_{\beta \in H_2^+(CY_3,\mathbb{Z})} n_{\beta} \sum_{m,n \in \mathbb{Z}^2/(0,0)} \frac{(\tau - \bar{\tau})^{\frac{3}{2}}}{(2i)^{\frac{1}{2}}|m+n\tau|^3} \cos(mk.B + nk.c),$$

(1)

will be rewritten in terms of the $\mathcal{N} = 1$ chiral coordinates: $T_{a=B,S}, \mathcal{G}^{a=1,2}, \zeta^A, z^{i=1,2}$ (See [16, 9] for definitions of all) - in particular:

$$\sigma_\alpha \sim T_\alpha - \left(i \kappa_{abc} c^b B^c + \kappa_\alpha + \frac{i}{(\tau - \bar{\tau})}\kappa_{abc} G^b (G^c - \bar{G}^c)\right) + i \delta^B_\alpha \kappa_3^2 \mu_7 l^2 C_{\alpha}^{I,J} a_I a_J + \frac{3i}{4} \delta_\alpha^B \tau Q_J + i \mu_3 l^2 (\omega_\alpha)_{ij} z^i \left(z^j - \frac{1}{2} z\bar{z} \langle \mathcal{P}_\alpha \rangle \right),$$

(2)

where

- κ_4 is related to four-dimensional Newton’s constant, μ_3 and μ_7 are D3 and D7-brane tensions;
- κ_{aab}’s are triple intersection integers of the CY orientifold;
- c^a and b^a are coefficients of RR and NS-NS two forms expanded in odd basis of $H^{(1,1)}_{\bar{\partial},-}(CY)$;
\[C^I_\alpha = \int_{\Sigma^B} i^* \omega_\alpha \wedge A^I \wedge A^I, \omega_\alpha \in H^{(1,1)}(CY_3) \text{ and } A^I \text{ forming a basis for } H^{(0,1)}(\Sigma^B) \text{ - immersion map is defined as: } i : \Sigma^B \hookrightarrow CY_3, i^* R^I_\alpha \text{ is defined via a Kaluza-Klein reduction of the } U(1) \text{ gauge field (one-form) } A(x, y) = A_\mu(x) dx^\mu P_-(y) + A_I (y) + \bar{a}_I (y) \bar{A}^I (y), \text{ where } P_-(y) = 1 \text{ if } y \in \Sigma^B \text{ and } -1 \text{ if } y \in \sigma(\Sigma^B); \]

\[z^2, \bar{a} = 1, \ldots, h^2(\Sigma^B), \text{ are } D = 4 \text{ complex structure deformations of the CY orientifold, } (P_\bar{\alpha})_j^i = \frac{1}{|\Sigma^B|^2} \Omega^k_j (\chi_a) \delta_{ij}, \text{ i.e., } P : TCY_3^{(1,0)} \rightarrow TCY_3^{(0,1)} \text{ via the transformation: } z^i \xrightarrow{c.s. \text{ deform}} z^i + \frac{\phi}{2} \delta^i_j (P_\bar{\alpha})_j^i \bar{z}^j, \text{ } z^i \text{ are scalar fields corresponding to geometric fluctuations of D3-brane inside the Calabi-Yau and defined via: } z(x) = z^i(x) \partial_i + \bar{z}^i(\bar{x}) \bar{\partial}_i, \text{ and} \]

\[Q_\bar{f} = l^2 \int_{\Sigma^B} \bar{f} \wedge \bar{f}, \text{ where } \bar{f} \in \bar{H}^2(\Sigma^B) = \text{coker } \left(H^2(CY_3) \xrightarrow{\bar{\partial}} H^2(\Sigma^B) \right). \]

The closed string moduli-dependent Kähler potential, includes perturbative (using [17]) and non-perturbative (using [18]) \(\alpha' \)-corrections. Written out in (discrete subgroup of) \(SL(2, \mathbb{Z}) \) (expected to survive orientifolding)-covariant form, the perturbative corrections are proportional to \(\chi(CY_3) \) and non-perturbative \(\alpha' \) corrections are weighted by \(\{ n^0 \} \), the genus-zero Gopakumar-Vafa invariants that count the number of genus-zero rational curves \(\beta \in H^2(CY_3, \mathbb{Z}) \). In fact, the closed string moduli-dependent contributions are dominated by the genus-zero Gopakumar-Vafa invariants which using Castelnuovo’s theory of moduli spaces can be shown to be extremely large for compact projective varieties [19] such as the one used.

Based on the study initiated in [11] [12], one us (AM), inspired by the Donaldson’s algorithm - see [20] - had obtained in [11], an estimate of a nearly Ricci-flat Swiss Cheese metric for points finitely separated from \(\Sigma^B \) based on the following ansatz:

\[
K = \ln \left[h^\frac{2}{24} z_4^2 \bar{z}_4^2 + h^\frac{2}{4} \sqrt{4} z_4 \bar{z}_4 + h^\frac{2}{2} V^{3/36} (z_1 + \bar{z}_1 + z_2 + \bar{z}_2) + h^\frac{2}{2} V^{11/18} (z_1 \bar{z}_1 + z_2 \bar{z}_2) + h^\frac{2}{2} V^{7/12} (z_2 \bar{z}_2 + z_1 \bar{z}_1 + z_2 \bar{z}_1 + z_1 \bar{z}_2) + h^\frac{2}{2} V^{17/36} (z_1 \bar{z}_4 + z_2 \bar{z}_4 + z_1 \bar{z}_4 + z_2 \bar{z}_4) + h^\frac{2}{2} V^{5/12} (z_1 \bar{z}_4 z_2 z_4 + z_2 \bar{z}_4 z_1 z_4 + z_2 \bar{z}_4 z_1 z_4 + z_1 \bar{z}_4 z_2 z_4) + h^\frac{2}{2} V^{11/36} (z_1 \bar{z}_4 z_2 z_4 + (z_1 + \bar{z}_1) z_2 z_4 + (z_2 + \bar{z}_2) z_1 z_4) + h^\frac{2}{2} V^{5/18} (z_1 \bar{z}_4 z_2 z_4 + z_1 \bar{z}_4 z_2 z_4 + z_2 \bar{z}_4 z_1 z_4 + z_2 \bar{z}_4 z_1 z_4) + h^\frac{2}{2} V^{1/2} (z_1 \bar{z}_4 z_2 z_4 + z_2 \bar{z}_4 z_1 z_4 + z_1 \bar{z}_4 z_2 z_4 + z_2 \bar{z}_4 z_1 z_4) + |z_1|^2 (z_4 + \bar{z}_4) + |z_2|^2 (z_4 + \bar{z}_4) + \sqrt{3} V \right].
\]

From [13], one sees that \(h^{11} \sim h^{\frac{2}{3}} z_4^4 V^{\frac{1}{3}} \). Using (23), one can show that:

\[
R_{z_4 \bar{z}_4} \sim \frac{\sum^8_{n=0} a_n \left(h^{\frac{2}{3}} z_4^4 \right)^n \sqrt{V} = 0, \text{ as was assumed, one (of the eight values of) } h^{\frac{2}{3}} z_4^4, \text{ up to a trivial Kähler transformation, turns out to be } V^{-\frac{1}{2}}, V \sim 10^6. \text{ Curiously, from GLSM-based analysis, we had seen in [9] that on } \Sigma_B(z_4 = 0), \text{ the argument of the logarithm received the most dominant
contribution from the FI-parameter $r_2 \sim V^4_5$ which using this value of $h^{2,2}_{\mathbb{Z}}$, is in fact, precisely what one obtains even now. Using this value of $h^{2,2}_{\mathbb{Z}}$, one obtains: $R_{z_1 z_4}, R_{z_4 z_4} \sim 10^{-1}$. Further, as has been assumed that the metric components g_{z_1, z_2} are negligible as compared to g_{z_1, z_4} - this was used in [10] in showing the completeness of the basis spanning $H_{-}^{1,1}$ for a large volume holomorphic isometric involution restricted to [5], $z_1 \rightarrow -z_1, z_{2,3} \rightarrow z_{2,3}$, which is now born out explicitly, wherein the latter turn out to about 10% of the former. One does not need the aforementioned restriction on the geometric Swiss-Cheese metric for large volume involutions restricted to [5], of the following type. In the $u_2 \neq 0$-coordinate patch, the defining degree-18 hypersurface in $\text{WCP}^4_{1,1,1,6,9}(u_1 : u_2 : u_3 : u_4 : u_5)$ can be written as: $1 + z_1^{18} + z_2^{18} + z_3^3 - \psi z_1 z_2 z_3 z_4 - \phi z_1^6 z_2^6 = 0, z_1 = \frac{u_1}{u_2}, z_2 = \frac{u_3}{u_2}, z_3 = \frac{u_4}{u_2}, z_4 = \frac{u_5}{u_2}$.

The same can be rewritten as: $(iz_4)^2 - \psi z_1 z_2 z_3 z_4 = z_3^3 + \phi z_1^6 z_2^6 - z_1^{18} - z_2^{18}$. This is can therefore be thought of as the following Weierstrass variety: $\text{CP}^2(z_1, z_2)$,

assuming that the complex structure modulus ψ has been stabilized to an infinitesimal value so that one can disregard the polynomial deformation proportional to ψ, and defining $\chi_{1,2} = \frac{z_1^6}{z_1^2}$, this elliptic involution restricted to (5), in showing the completeness of the basis spanning $H_{-}^{1,1}$ for the large volume involution: $z_1 \rightarrow -z_1, z_{2,3} \rightarrow z_{2,3}$.

The same can be rewritten as: $\psi z_1 z_2 z_3 z_4 = z_3^3 + \phi z_1^6 z_2^6 - z_1^{18} - z_2^{18}$. This is can therefore be

the following Weierstrass variety:

\[
\text{CP}^2(z_1, z_2)
\]

fibration structure can thought also as of: (Complex curve) $C(\chi_1) \rightarrow \text{CP}^2(\chi_1, \chi_2), \downarrow \pi'$

corresponding to $(iz_4)^2 \approx z_3^3 + \phi \chi_1 \chi_2 - \chi_1^3 - \chi_2^3$. Alternatively, one can also think of the Weierstrass variety as:

\[
\text{CP}^2(-z_3, \chi_2), \downarrow \pi', \text{CP}^1(\chi_2)
\]

(-$\chi_1^3 + \phi \chi_1 \chi_2 + z_3^3 - \chi_2^3$. Therefore, near [5], one can define a large volume holomorphic involution: $\chi_1 \leftrightarrow -z_3, \phi \rightarrow -\phi$(the fact that complex structure modulus ϕ is involutively odd, is also used in [2]).

After $z_i \rightarrow z_i + V^\dagger_\chi$ and $a_I \rightarrow a_I + \langle a_I \rangle$, the EW symmetry is spontaneously broken to $U(1)_{em}$. We therefore require to construct four harmonic distribution one-forms A_I localized on a sub-locus of Σ_B:

\[
C_3 : |z_1| \sim V^\dagger_\phi, |z_2| \sim V^\dagger_\phi, |z_3| \sim V^\dagger_\phi.
\]

This is a toroidal three-cycle and the Calabi-Yau can be thought as a T^3(swept out by $(\arg z_1, \arg z_2, \arg z_3)$)-fibration over a large base $(|z_1|, |z_2|, |z_3|)$; precisely apt for application of mirror symmetry as three T-dualities a la S(trominger) Y(au) Z(aslow) [21]. Interestingly, [5] is almost a s(pacial) Lag(rangian) sub-manifold. The requirements for the same are that $f^*J = 0$, $f^*\Omega = e^{i\theta} \text{vol}(C_3)$, where $f : C_3 \rightarrow CY_3$ [22]. Let us see if these requirements hold up. Using the geometric Kähler potential of [23], the geometric metric near C_3 is estimated to be:

\[
g_{ij} \sim \frac{O(10^{-1})}{2} \begin{pmatrix}
\frac{1}{V^\dagger_\phi} & \frac{1}{V^\dagger_\phi} & \frac{1}{V^{7/36}} \\
\frac{1}{V^{7/36}} & \frac{1}{V^\dagger_\phi} & \frac{1}{V^{7/36}} \\
\frac{1}{V^{7/36}} & \frac{1}{V^{7/36}} & \frac{1}{V^\dagger_\phi}
\end{pmatrix},
\]

which justifies the assumption made in [10] about the block-diagonal form of g_{ij}. The same was necessary in explicitly demonstrating $h^{1,1}_{\mathbb{Z}} \neq 0$ in [10] for the large volume involution: $z_1 \rightarrow -z_1, z_{2,3} \rightarrow$
$z_{2,3}$. The most non-trivial example of involutions which are meaningful only at large volumes is mirror symmetry implemented as three T-dualities in \[21\] (Also see the first paragraph of section 4.3 of \[23\] for implementation of SYZ proposal and importance of large base for doing so); mirror symmetry could be thought of as an involution since the mirror of a mirror is the original manifold.

1. Using \[6\], one sees that:

$$f^*(ds_0^2) \sim 0.05 \left[\sum_{i,j=1}^2 \mathcal{V}^{-\frac{1}{10}} (dz_id\bar{z}_j) + \mathcal{V}^{-\frac{1}{5}} |dz_3|^2 \right]_{C_X}$$

$$\sim 0.05 \left[\sum_{i,j=1}^2 d(argz_i)d(arg\bar{z}_j) + d(argz_3)d(arg\bar{z}_3) \right]. \quad (7)$$

This implies $f^*J \sim 0.05$, which is small.

2. In the $u_2 \neq 0$-coordinate patch with $z_1 = \frac{u_1}{u_2}$, $z_2 = \frac{u_1}{u_2}$, $z_3 = \frac{w_1}{u_2}$, $z_4 = \frac{w_3}{u_2}$, by the Griffiths residue formula, one obtains:

$$\Omega = \frac{dz_1 \wedge dz_2 \wedge dz_4}{\frac{\partial P}{\partial z_3}} = \frac{dz_1 \wedge dz_2 \wedge dz_4}{3z_3^2 - \psi z_1z_2z_4}. \quad (8)$$

The coordinate z_4 can be solved for using:

$$z_4 = \frac{\psi z_1z_2z_3 \pm \sqrt{\psi^2(z_1z_2z_3)^2 - 4(1 + z_1^{18} + z_2^{18} + z_3^{18} - \phi(z_1z_2)^6)}}{2} \sim \psi V^{\frac{2}{3}} \pm iV^{\frac{1}{4}}, \quad (9)$$

which implies that the T^3 will never degenerate as the roots will never coincide:

$$dz_4 \sim dz_3 \left(\frac{\psi z_1z_2}{2} \pm \frac{2\psi^2z_1^2z_2^2z_3 - 12z_3^2}{4\sqrt{\psi^2(z_1z_2z_3)^2 - 4(1 + z_1^{18} + z_2^{18} + z_3^{18} - \phi(z_1z_2)^6)}} \right) + (...)dz_1 + (...)dz_2$$

$$\sim \left(\frac{\psi z_1z_2}{2} \pm 1.5i \frac{z_3^2}{\sqrt{1 + z_2^{18} + z_3^{18} + z_3^{18}}} \right) dz_3 + (...)dz_1 + (...)dz_2, \text{ near } (9), |\psi| << 1, |\phi| << 1. \quad (10)$$

Therefore, restricted to \[5\] and substituting \[9\] and \[10\] in \[8\], one obtains:

$$\Omega \sim \frac{\psi V^{\frac{2}{3}} \pm 1.5iV^{\frac{1}{4}}}{3V^{\frac{1}{6}} - \psi V^{\frac{1}{10}} \left[\psi V^{\frac{2}{3}} \pm iV^{\frac{1}{4}} \right]} dz_1 \wedge dz_2 \wedge dz_3$$

$$\sim \left(\frac{\psi V^{\frac{2}{3}} \pm 1.5iV^{\frac{1}{4}}}{3} \right) \pm 0.5iV^{-\frac{5}{6}} dz_1 \wedge dz_2 \wedge dz_3. \quad (11)$$

Hence, if one could estimate the pull-back of the nowhere vanishing holomorphic three-form as:

$$f^*\Omega \sim \left(\frac{\psi}{3}V^{-\frac{5}{6}} + \frac{1}{10} + 0.5iV^{-\frac{1}{2}} \right) d(argz_1) \wedge d(argz_2) \wedge d(argz_3) \bigg|_{V \sim 10^6}$$

$$\sim (0.2\psi \pm 0.3i) d(argz_1) \wedge d(argz_2) \wedge d(argz_3), \quad (12)$$
and:

$$\text{vol}(C_3) \sim \sqrt{f^*g^*}(dz_1 \wedge dz_2 \wedge dz_3)$$

$$\sim \sqrt{(0.05)^3} \mathcal{V}^{1/2} d(\arg z_1) \wedge d(\arg z_2) \wedge d(\arg z_3) \bigg|_{\mathcal{V} \sim 10^6}$$

$$\sim 0.2d(\arg z_1) \wedge d(\arg z_2) \wedge d(\arg z_3),$$ \hspace{1cm} (13)

then relative to a phase $e^{-it}, \theta = \frac{i}{2}$, $\Im (f^*e^{-it}\Omega) \sim 0.2\psi d(\arg z_1) \wedge d(\arg z_2) \wedge d(\arg z_3)$, which for $|\psi| << 1$, is close to zero; (equivalently)$\Re (f^*e^{-it}\Omega) \sim \text{vol}(C_3)$. This implies that C_3 is nearly/almost a special Lagrangian sub-manifold [24].

Following our previous constructions in [9,10], the harmonic distribution one-forms can be constructed by integrating:

$$dA_I = (P_{\Sigma_B}(z_1, z_2)) I dz_1 \wedge dz_2,$$ \hspace{1cm} (14)

with $I = 1, 2(\text{done}), 3, 4$ where

$$A_I \sim \delta \left([z_3] - \mathcal{V}^{1/2}\right) \delta \left([z_1] - \mathcal{V}^{1/2}\right) \delta \left([z_2] - \mathcal{V}^{1/2}\right) [\omega_I(z_1, z_2)dz_1 + \bar{\omega}_I(z_1, z_2)dz_2].$$ \hspace{1cm} (15)

From [14], one sees that A_I is harmonic only on Σ_B and not at any other generic locus in the Calabi-Yau manifold; [15] shows that A_I are distribution one-forms on Σ_B localized along the $D3$-brane which is localized on the three-cycle C_3 of [3].

Writing $A_I(z_1, z_2) = \omega_I(z_1, z_2)dz_1 + \bar{\omega}_I(z_1, z_2)dz_2$ where $\omega(-z_1, z_2) = \omega(z_1, z_2), \bar{\omega}(-z_1, z_2) = -\bar{\omega}(z_1, z_2)$ and $\partial_1 \bar{\omega} = -\partial_2 \omega$, one obtains:

$$A_1(z_1, z_2, z_3 \sim \mathcal{V}^{1/2}) \sim -z_1^{18}z_2^{19}dz_1 + z_1^{19}z_2^{18}dz_2,$$

$$A_2(z_1, z_2, z_3 \sim \mathcal{V}^{1/2}) \sim -\left(\frac{z_2^{19}}{19} + z_1^{18}z_2\right) dz_1 + \left(\frac{z_1^{19}}{19} + z_2^{18}z_1\right) dz_2,$$

$$A_3(z_1, z_2, z_3 \sim \mathcal{V}^{1/2}) \sim -\left(\frac{z_2^{55}}{55} + 3\frac{z_2^{37}}{37} \left(\sqrt{V} + z_1^{18}\right) + z_2 \left(\sqrt{V} + z_1^{18}\right)^3 + \frac{z_1^{29}}{19} \left(3V + 6\sqrt{V}z_1^{18} + 3z_1^{36}\right)\right) dz_1 + (1 \leftrightarrow 2)$$

$$\sim -z_1^{18}z_2^{37}dz_1 + (1 \leftrightarrow 2),$$

$$A_4(z_1, z_2, z_3 \sim \mathcal{V}^{1/2}) \sim -z_1^{36}z_2^{18}dz_1 + z_2^{36}z_1^{18}dz_2.$$

Utilizing above, one can calculate the intersection numbers $C_{I, J}$ corresponding to set of four Wilson line moduli. The resultant contribution of various $C_{I, J}$’s are given in appendix B.

Let us now look at the term quadratic in the $D3$-brane position moduli in $T_{a=B,S}$ which is given by:

$$(\omega_\alpha)_{i\bar{j}}z_i^j \left(\bar{z}_j^i - \frac{i}{2}(P_\alpha)^{\bar{i}}_{\bar{j}} \bar{z}_\bar{i}^\bar{j}\right),$$ \hspace{1cm} (17)

where

$$(P_\alpha)^{\bar{i}}_{\bar{j}} = \frac{\Omega^{k\bar{m}}(\chi_\alpha)_{k\bar{m}l}}{||\Omega||^2} \sim g_{i\bar{j}k\bar{l}} g^{k\bar{m}i\bar{l}} \Omega_{j_1k_1m_1} \Omega_{\bar{j}_1\bar{k}_1\bar{m}_1} (\chi_\alpha)_{k\bar{m}l}$$ \hspace{1cm} (18)

As ω_α forms a basis of $H^{1,1}_{+}(CY_3)$ and χ_α forms a basis of $H^{-1,1}_{-}(CY_3)$, this does not therefore depend on the choice of the divisor α. By Griffith’s residue formula, $\Omega = \Omega_{124}dz_1 \wedge dz_2 \wedge dz_4$ where

$$\Omega_{124} = \frac{1}{\frac{\partial P(z_1, z_2, z_3, z_4)}{\partial z_3} = \frac{1}{3z_3^2 - \psi z_1 z_2 z_4}},$$ \hspace{1cm} (19)
From \(P(z_1, z_2, z_3, z_4) = 0 \), one obtains:

\[
z_3 \sim \frac{\psi z_1 z_2 z_4}{\left(-z_1^{18} + z_2^{18} + z_4^{2} - \phi z_1^6 z_2^6 + \sqrt{\left(\psi z_1 z_2 z_4 \right)^3 + \left(z_1^{18} + z_2^{18} + z_4^{2} - \phi z_1^6 z_2^6 \right)^2} \right)^\frac{1}{4}}
\]

\[
+ \left(-z_1^{18} + z_2^{18} + z_4^{2} - \phi z_1^6 z_2^6 + \sqrt{\left(\psi z_1 z_2 z_4 \right)^3 + \left(z_1^{18} + z_2^{18} + z_4^{2} - \phi z_1^6 z_2^6 \right)^2} \right)^\frac{1}{4},
\]

(20)

which for \(z_{1,2} \sim V^\frac{1}{6}, z_4 \sim V^\frac{1}{2} \) yields \(z_3 \sim V^\frac{1}{6} \). Hence,

\[
\Omega_{124} \sim V^{-\frac{1}{2}}.
\]

(21)

The polynomial deformation coefficient \(\psi \) is a complex structure deformation modulus and given that it must be of the type \(z^\bar{a} \), i.e., odd under the holomorphic isometric involution \(\sigma : z_1 \to -z_1, z_2, \bar{a} \to \bar{a}, \sigma : \psi \to -\psi \). So, given that \(\sigma^2 \Omega = -\Omega \), hence \(\sigma : \Omega_{124} \to \Omega_{124} \).

Now,

\[
\frac{1}{2} \left(\overline{\partial_\psi} \right)^{\frac{1}{2}} \sim \left| \frac{\chi \varpi}{\Omega_{124}} \right| \frac{V^{\frac{1}{3}}}{2} \bigg| \bigg|_{V \leq 10^6} \sim O(10).
\]

(22)

Assuming the complex structure moduli \(z^\bar{a} \) are stabilized at values: \(O(10) z^\bar{a} \sim O(1) \) for \(V \lesssim 10^6 \), one sees that contribution quadratic in \(z^i \bar{z}^j \) goes like \((\omega_a)_{ij}(z^i \bar{z}^j)\). \(\omega_{B,S} \) are Poincare-duals of \(\Sigma_{B,S} \) respectively. Hence, \(\omega_{B,S} = \delta(P_{B,S}) dP_{B,S} \bigg| \delta(P_{B,S}) dP_{S,B,S} \bigg| \).

- Noting that \(i^a_B dz_3 \sim \frac{\varphi_{z1} z_1 \left(z_1 spin + z_2^{18} + z_3^3 = \phi z_1^6 z_2^6 \right)}{\left(\varphi_{z1} z_1 - 1 \right)^2} \), which near \(z_{1,2} \sim V^{\frac{1}{6}} \) implies \(dz_3 \sim V^{\frac{1}{6}} (dz_1 + dz_2) \). Hence, near \(z_{1,2} \sim \frac{V^{\frac{1}{2}}}{V^{\frac{1}{2}}} \), \(\omega_B \sim \frac{V^{\frac{1}{2}}}{2}(dz_1 + dz_2) \).

- Noting that \(i^a_S dz_4 \sim \frac{\varphi_{z1} z_1 \left(z_1 spin + z_2^{18} + z_4^2 = \phi z_1^6 z_2^6 \right)}{\left(\varphi_{z1} z_1 - 1 \right)^2} \), which near \(z_{1,2} \sim V^{\frac{1}{6}} \) implies \(dz_4 \sim V^{\frac{1}{2}} (dz_1 + dz_2) \). Again, hence \(z_{1,2} \sim \frac{V^{\frac{1}{2}}}{V^{\frac{1}{2}}} \), \(\omega_S \sim \frac{V^{\frac{1}{2}}}{2}(dz_1 + dz_2) \).

We hence see that \((\omega_B)_{ij} \sim (\omega_S)_{ij} \sim O(1) \) near \(z_{1,2} \sim \frac{V^{\frac{1}{2}}}{2} \).

Therefore, near \(c^a, b^a \sim \frac{1}{n{k^a}} < 1 \) (in units of \(M_p = 1 \), \(n \sim O(1), k^a \sim O(10), \)

\[
K_{M_p^2} \sim -2ln \left[\left(\frac{T_B^{\frac{1}{2}} + \overline{T_B}}{M_p} \right) - \left(\mu_3^2 \left(|z_1|^2 + |z_2|^2 + z_1 \overline{z}_2 + z_2 \overline{z}_1 \right) + V^{\frac{1}{2}} \left(a_1 \overline{a}_2 + h.c. \right) + V^{\frac{1}{2}} \left(a_2 \overline{a}_2 + h.c. \right) + V^{\frac{1}{2}} \left(a_3 \overline{a}_3 + h.c. \right) \right) ^{3/2} \right]^{3/2} + \sum n^0_{\beta}(...) \right),
\]

(23)
One can argue that near
\[\left| z_{1,2} \right| \sim V^\frac{2}{3} M_p, \left| z_3 \right| \sim V^\frac{1}{3} M_p, |a_1| \sim V^{-\frac{2}{3}} M_p, |a_2| \sim V^{-\frac{1}{3}} M_p, |a_3| \sim V^{-\frac{2}{3}} M_p, |a_4| \sim V^{-\frac{1}{3}} M_p, \zeta^4 = 0; \]
\[G^a \sim \frac{\sigma^{(1)}}{\sigma^{(3)}} M_p \]
one obtains a local meta-stable dS-like minimum corresponding to the positive minimum of the potential
\[e^{K G^a T_s T_s} |D T_s W|^2 \] stabilizing vol\((\Sigma_B) \sim \Re(\sigma_B) \sim V^\frac{2}{3}, \text{vol}\((\Sigma_S) \sim \Re\sigma_S \sim V^\frac{1}{3}\) such that \(\Re(T)_S \sim V^\frac{1}{3}\) and in the dilute flux approximation:
\[
\frac{1}{g^2_{j=SU(3) \text{ or } SU(2)}} = \Re(T_B) + \ln \left(P(\Sigma_S)|_{D3|\Sigma_B} \right) + \ln \left(\bar{P}(\Sigma_S)|_{D3|\Sigma_B} \right) + \mathcal{O} \left(U(1) - \text{Flux}_j \right) \sim V^\frac{1}{3}. \tag{24}
\]
Indeed, near the aforementioned stabilized values of the open string moduli,
\[
|C_{11}|a_1|^2| \sim V^\frac{2}{3}, \quad |C_{12} (a_1 \bar{a}_2 + h.c.)| \sim V^\frac{1}{3}, \quad |C_{13} (a_1 \bar{a}_3 + h.c.)| \sim V^\frac{2}{3},
\]
\[
|C_{14} (a_1 \bar{a}_4 + h.c.)| \sim V^\frac{2}{3}, \quad |C_{22} |a_2|^2| \sim V^{-\frac{2}{3}}, \quad |C_{23} (a_2 \bar{a}_3 + h.c.)| \sim V^\frac{1}{3},
\]
\[
|C_{24} (a_2 \bar{a}_4 + h.c.)| \sim V^\frac{1}{3}, \quad |C_{33} |a_3|^2| \sim V^\frac{2}{3}, \quad |C_{34} (a_3 \bar{a}_4 + h.c.)| \sim V^\frac{2}{3},
\]
\[
|C_{44}|a_4|^2| \sim V^\frac{2}{3}, \tag{25}
\]
we see that there is the possibility that:
\[
\text{Vol}(\Sigma_B) + C_{Ij} a_I \bar{a}_j + h.c. \sim V^\frac{1}{3}, \tag{26}
\]
and hence (24) could be implemented.

To obtain the “physical”/normalized Yukawa couplings, soft SUSY breaking parameters, vertices later in the paper, etc., one needs to diagonalize the matrix generated from the mixed double derivative of the Kähler potential, the same given as under:
\[
\begin{pmatrix}
 a_{11} & a_{12} & a_{13} & a_{14} & a_{15} & a_{16} \\
 a_{12} & a_{22} & a_{23} & a_{24} & a_{25} & a_{26} \\
 a_{13} & a_{23} & a_{33} & a_{34} & a_{35} & a_{36} \\
 a_{14} & a_{24} & a_{34} & a_{44} & a_{45} & a_{46} \\
 a_{15} & a_{25} & a_{35} & a_{45} & a_{55} & a_{56} \\
 a_{16} & a_{26} & a_{36} & a_{46} & a_{56} & a_{66}
\end{pmatrix} \tag{27}
\]
With \(V \sim 10^5\) and some fine tuning in \(a_{11,12,22,14,13,23,24,36,44,46,56,66}\), the numerical eigenvalues are estimated to be:
\[
10^{12}, 10^7, 10^4, 10^{-2}, 10^{-3}, 10^{-5}, \tag{28}
\]
with the corresponding eigenvectors given by:

\[A_4 \sim a_4 + V^{-\frac{18}{5}} a_3 + V^{-\frac{2}{5}} a_1 + V^{-\frac{3}{5}} a_2 + V^{-2} (z_1 + z_2); \]
\[A_3 \sim -a_3 + V^{-\frac{3}{5}} a_4 - V^{-\frac{1}{5}} a_1 - V^{-\frac{2}{5}} a_2 + V^{-\frac{3}{5}} (z_1 + z_2); \]
\[A_1 \sim a_1 - V^{-\frac{3}{5}} a_3 + V^{-1} a_2 - V^{-\frac{2}{5}} a_4 + V^{-\frac{3}{5}} (z_1 + z_2); \]
\[A_2 \sim -a_2 - V^{-1} a_1 + V^{-\frac{7}{5}} a_3 - V^{-\frac{2}{5}} (z_1 + z_2); \]
\[Z_2 \sim \frac{(z_1 + z_2)}{\sqrt{2}} - V^{-\frac{6}{5}} a_1 + V^{-\frac{1}{5}} a_2 + V^{-\frac{2}{5}} a_3 + V^{-2} a_4; \]
\[Z_1 \sim \frac{(z_1 - z_2)}{\sqrt{2}} - V^{-\frac{6}{5}} a_1 + V^{-\frac{3}{5}} a_2 + V^{-\frac{3}{5}} a_3 + V^{-2} a_4. \]

(29)

The system of equations (29) can be solved to yield:

\[z_1 \sim \frac{(Z_2 - Z_1)}{\sqrt{2}} - V^{-\frac{6}{5}} A_1 - V^{-\frac{3}{5}} A_2 + V^{-\frac{2}{5}} A_3 + V^{-2} A_4; \]
\[z_2 \sim -\frac{(Z_2 + Z_1)}{\sqrt{2}} - V^{-\frac{6}{5}} A_1 - V^{-\frac{3}{5}} A_2 + V^{-\frac{2}{5}} A_3 + V^{-2} A_4; \]
\[a_1 \sim V^{-\frac{6}{5}} Z_1 + V^{-\frac{7}{5}} Z_2 - A_1 - \frac{A_2}{\sqrt{V}} + V^{-\frac{3}{5}} A_3 + V^{-\frac{2}{5}} A_4; \]
\[a_2 \sim V^{-\frac{3}{5}} Z_1 + \frac{Z_2}{\sqrt{V}} - \frac{A_1}{\sqrt{V}} + A_2 - V^{-\frac{7}{5}} A_3 + V^{-\frac{2}{5}} A_4; \]
\[a_3 \sim V^{-\frac{2}{5}} Z_1 + V^{-\frac{9}{5}} Z_2 - V^{-\frac{2}{5}} A_1 - V^{-\frac{7}{5}} A_2 - A_3 + V^{-\frac{2}{5}} A_4; \]
\[a_4 \sim \frac{Z_1}{\sqrt{V}} + V^{-\frac{11}{5}} Z_2 + \frac{A_1}{\sqrt{V}} - V^{-\frac{9}{5}} A_2 + V^{-\frac{2}{5}} A_3 + A_4. \]

(30)

The non-perturbative superpotential we will be using is given by:

\[W \sim \left(1 + z_1^{18} + z_2^{18} + \left(3\phi_0 z_1^{6} z_2^{6} - z_1^{18} - z_2^{18}\right)\frac{v}{3\phi_0 z_1^{6} z_2^{6}}\right)^{n^s} e^{-n^s \text{vol}(\Sigma_S) - \mu_3 (\alpha S z_1^2 + \beta S z_2^2 + \gamma S z_1 z_2)}. \]

(31)

For \(n^s = 2 \), \(\text{vol}(\Sigma_S) \) and \(z_i \) were stabilized at around \(\sqrt{\text{vol}} \) and \(\sqrt{\text{vol}} \). Now, considering fluctuations in \(z_i : z_i \rightarrow \sqrt{\text{vol}} + \delta z_i \), with the fluctuations expressible in terms of \(\delta Z_{1,2}, \delta A_{1,2,3,4} \) using (30), and with the understanding that \(\sqrt{\text{vol}} (1 + \alpha S + \beta S + \gamma S) \sim \ln \mathcal{V} \), one obtains the following non-zero physical effective Yukawa couplings:

\[\hat{Y}_{C_{1}C_{1}C_{k}}^{\text{eff}} \equiv \frac{e^{\phi_{\Sigma_{S}}}}{\sqrt{v_{C_{1}C_{1}}} R_{C_{1}C_{1}C_{k}} R_{C_{1}C_{k}}}, C_i \text{ being an open string modulus which for us is } \delta Z_{1,2}, \delta A_{1,2,3,4}, \text{ where, e.g., } Y_{\Sigma,A_{1/2}A_{3/4}}^{\text{eff}} \text{ is the } O(Z_i)\text{-coefficient in the following mass term in the } \mathcal{N} = 1 \text{ SUGRA action of [12]: } e^{\frac{K}{2}} D_{A_{1/2}} D_{A_{3/4}} \tilde{W} \tilde{X}^{A_{1/2} A_{3/4}}. \]

Using (30), and:

\[e^{\frac{K}{2}} D_{A_{1/2}} D_{A_{1/2}} W = \sqrt{V}, e^{\frac{K}{2}} D_{A_{1/2}} D_{A_{2/4}} W = \sqrt{V}, e^{\frac{K}{2}} D_{A_{2/4}} D_{A_{2/4}} W = \sqrt{V}, e^{\frac{K}{2}} D_{A_{1/2}} D_{A_{3/4}} W = \sqrt{V}, e^{\frac{K}{2}} D_{A_{3/4}} D_{A_{3/4}} W = \sqrt{V}, e^{\frac{K}{2}} D_{A_{2/4}} D_{A_{3/4}} W = \sqrt{V}, e^{\frac{K}{2}} D_{A_{3/4}} D_{A_{3/4}} W = \sqrt{V}, e^{\frac{K}{2}} D_{A_{2/4}} D_{A_{2/4}} W = \sqrt{V}, e^{\frac{K}{2}} D_{A_{1/2}} D_{A_{3/4}} W = \sqrt{V}, e^{\frac{K}{2}} D_{A_{3/4}} D_{A_{1/2}} W = \sqrt{V}, e^{\frac{K}{2}} D_{A_{2/4}} D_{A_{1/2}} W = \sqrt{V}, e^{\frac{K}{2}} D_{A_{2/4}} D_{A_{3/4}} W = \sqrt{V}, e^{\frac{K}{2}} D_{A_{3/4}} D_{A_{2/4}} W = \sqrt{V}, \]

(32)
one can verify that $e^{\frac{K}{\lambda}}D_{A_1}D_{A_1}\bar{W} \sim e^{\frac{K}{\lambda}}D_{a_1}D_{a_1}\bar{W}$. Now, $\left(e^{\frac{K}{\lambda}}D_{A_1}D_{\Sigma}\bar{W} \right) \chi^{\lambda}_{L} = \left(e^{\frac{K}{\lambda}}D_{T}D_{J}\bar{W} \right) \chi^{T}_{L} \chi^{J}_{R}$, where $\lambda/\Sigma\text{ index } A_1, Z_J$ and $I/J\text{ index } a_1, z_I$. What is interesting is that using (29), (30), e.g.,

$$
\left(e^{\frac{K}{\lambda}}D_{A_{1,2}}D_{\bar{A}_{3,4}}\bar{W} \right) \chi^A_{L} \chi^3_{R}, \sim \left(e^{\frac{K}{\lambda}}D_{a_{1,2}}D_{\bar{a}_{3,4}}\bar{W} \right) \chi^a_{L} \chi^a_{R}.
$$

This implies that the mass terms, in the large volume limit, are invariant under diagonalization of the open string moduli.

- \[\mathcal{O}(Z_i) \text{ term in } e^{\frac{K}{\lambda}}D_{A_1}D_{A_1}W \quad \frac{O(Z_i)}{\sqrt{K_{Z_i,\bar{Z}_i}K_{A_1,\bar{A}_1}K_{A_3,\bar{A}_3}}} \equiv \tilde{Y}_{Z_1,A_1A_3} \sim 10^{-3} \times \nu^{-\frac{1}{2}}, \] (34)

which implies that for $V \sim 10^{5}$, $\langle Z_i \rangle \sim 246 GeV$, $\langle Z_i \rangle \tilde{Y}_{Z_1,A_1A_3} \sim MeV$ - about the mass of the electron!

- \[\mathcal{O}(Z_i) \text{ term in } e^{\frac{K}{\lambda}}D_{A_2}D_{A_4}W \quad \frac{O(Z_i)}{\sqrt{K_{Z_i,\bar{Z}_i}K_{A_2,\bar{A}_2}K_{A_4,\bar{A}_4}}} \equiv \tilde{Y}_{Z_1,A_1A_3} \sim 10^{-3} \times \nu^{-\frac{1}{2}}, \] (35)

which implies that for $V \sim 10^{5}$, $\langle Z_i \rangle \sim 246 GeV$, $\langle z_i \rangle \tilde{Y}_{Z_1,A_1A_2} \sim 10 MeV$ - close to the mass of the up quark!

There is an implicit assumption that the vev of the D3-brane position moduli, identified with the neutral components of two Higgs doublets, can RG-flow down to 246GeV - that the same is possible was shown in [10]. The RG-flow of the effective physical Yukawas are expected to change by $O(1)$ under an RG flow from the string scale down to the EW scale. This can be motivated by looking at RG-flows of the physical Yukawas $\tilde{Y}_{\Lambda \Sigma,\Delta}$ in MSSM-like models:

$$
\frac{d\tilde{Y}_{\Lambda \Sigma,\Delta}}{dt} = \gamma^\Lambda_{\Sigma,\Delta} \tilde{Y}_{\Lambda \Sigma,\Delta} + \gamma^\Sigma_{\Lambda,\Sigma} \tilde{Y}_{\Lambda \Sigma,\Delta} + \gamma^\Sigma_{\Lambda,\Sigma} \tilde{Y}_{\Lambda \Sigma,\Delta}, \quad (36)
$$

where the anomalous dimension matrix γ^Λ_Λ at one loop, is defined as:

$$
\gamma^\Lambda_\Lambda^\alpha = \frac{1}{32\pi^2} \left(\tilde{Y}_{\Lambda \Psi} \psi \tilde{Y}_{\Psi \Psi}^* - 2 \sum_{(a)} \frac{g^2_{(a)}}{\langle \Phi_\Lambda \rangle} \delta^\alpha_\Lambda \right), \quad (37)
$$

where (a) indexes the three gauge groups and Λ, etc. index the diagonalized basis fields A_1, Z_i. Using
one can show that at M_s (string scale):
\begin{align*}
\hat{Y}_{Z_1,z_1 z_2} &\sim V^\frac{\beta_1}{\Lambda}, \quad \hat{Y}_{Z_1,z_1 A_1} \sim V^{-\frac{31}{40}}, \quad \hat{Y}_{Z_1,z_1 A_2} \sim V^{-\frac{31}{40}}, \quad \hat{Y}_{Z_1,z_1 A_3} \sim V^{-\frac{43}{40}}, \\
\hat{Y}_{Z_1,z_1 A_4} &\sim V^{-\frac{37}{40}}, \quad \hat{Y}_{Z_2,z_2 A_4} \sim V^{-\frac{37}{40}}, \quad \hat{Y}_{Z_3,z_3 A_2} \sim V^{-\frac{44}{40}}, \quad \hat{Y}_{Z_3,z_3 A_3} \sim V^{-\frac{25}{40}}.
\end{align*}
\[d\hat{Y}_{\Lambda \Sigma \Delta} = -\frac{2 \sum_{(a)} g^2_{(a)} C_{(a)}(\Phi \Gamma) \delta_{\Lambda}^A \hat{Y}_{\Lambda \Sigma \Delta}}{32\pi^2}. \] (38)

From (38), one sees that $\hat{Y}_{Z_1,z_1 z_1}(M_s) \sim V^\frac{\beta_1}{\Lambda}$ is the most dominant physical Yukawa at the string scale. Hence,
\[\hat{Y}_{\Lambda \Sigma \Delta} \sim \hat{Y}_{\Lambda \Sigma \Delta}(M_s) \sim \frac{1}{32\pi^2} \frac{\sum_{(a)} g^2_{(a)} C_{(a)}(\Phi \Gamma) \delta_{\Lambda}^A \hat{Y}_{\Lambda \Sigma \Delta}}{32\pi^2}. \] (39)

Now, the first term in (39) is volume suppressed as compared to the second term at M_s; let us assume that the same will be true up to the EW scale. Using the one-loop solution for $\frac{g^2_{(a)}(t)}{16\pi^2} = \frac{\beta_{(a)}(t)}{\Lambda \Sigma \Delta(t)}$ in (39) and therefore (38), one obtains:
\[
\frac{d\hat{Y}_{\Lambda \Sigma \Delta}}{dt} \sim -2 \left(\sum_{(a)} C_{(a)}(\Lambda) \frac{\beta_{(a)}(t)}{1 + \beta_{(a)} t} + \sum_{(a)} C_{(a)}(\Sigma) \frac{\beta_{(a)}(t)}{1 + \beta_{(a)} t} + \sum_{(a)} C_{(a)}(\Delta) \frac{\beta_{(a)}(t)}{1 + \beta_{(a)} t} \right),
\] (40)
whose solution yields:
\[
\hat{Y}_{\Lambda \Sigma \Delta}(t) \sim \hat{Y}_{\Lambda \Sigma \Delta}(M_s) \prod_{(a)=1}^{3} \left(1 + \beta_{(a)} t \right) \frac{-2 \left(C_{(a)}(\Lambda) + C_{(a)}(\Sigma) + C_{(a)}(\Delta) \right)}{\gamma_{(a)}}.
\] (41)

The solution (41) justifies the assumption that all $\hat{Y}_{\Lambda \Sigma \Delta}$s change only by $O(1)$ as one RG-flows down from the string to the EW scale.

A similar argument for the RG-evolution of $\hat{Y}_{Z_1,z_1 A_1,s}$ would proceed as follows. We will for definiteness and due to relevance to the preceding discussion on lepton and quark masses, consider $d\hat{Y}_{Z_1,z_1 A_1}^{\text{eff}}/dt$ and $d\hat{Y}_{Z_1,z_1 A_2}^{\text{eff}}/dt$. Now,
\[d\hat{Y}_{Z_1,z_1 A_1}^{\text{eff}}/dt = \gamma_{Z_1}^A \hat{Y}_{A_1 A_1} + \gamma_{A_1}^A \hat{Y}_{Z_1 A_1 A_1} + \gamma_{A_1}^A \hat{Y}_{A_1 A_1 A_1}, \] (42)
where:
\[
\gamma_{Z_1}^A \equiv \hat{Y}_{Z_1 A_1} \hat{Y}_{A_1 A_1} \hat{Y}_{A_1 A_1} \sim \hat{Y}_{Z_1,z_1 z_1}, \text{ etc.}, \] (43)

and
implying:

\[
\frac{d\hat{Y}_{\text{eff}}^{A_1A_3}}{dt} \ni \hat{Y}_{Z_1Z_1Z_1} \hat{Y}_{Z_1Z_1Z_1} \hat{Y}_{Z_1A_1A_3} + \hat{Y}_{Z_1Z_1Z_1} \hat{Y}_{\bar{Z}_1A_1A_3} + \hat{Y}_{Z_1Z_1Z_1} \hat{Y}_{\bar{Z}_1A_4A_3} + \hat{Y}_{Z_1Z_1Z_1} \hat{Y}_{\bar{Z}_1A_4A_3},
\]

(44)

and a similar equation for \(\frac{d\hat{Y}_{\text{eff}}^{A_2A_4}}{dt} \). Using (38) and:

\[
e^{\frac{\Lambda}{2}} D_{a_1/2} D_{a_3/4} W \ni \gamma^{-\frac{1}{2}} (z_i - \gamma^{-\frac{1}{2}}) + \gamma^{-\frac{1}{2}} (a_1 - \gamma^{-\frac{1}{2}}) + \gamma^{-\frac{1}{2}} (a_2 - \gamma^{-\frac{1}{2}})
\]

(45)

and (44), one sees that at \(M_s \):

\[
\gamma^A Z_1 \hat{Y}_{\text{eff}}^{A_1A_3} + \gamma^A Z_1 \hat{Y}_{\text{eff}}^{A_1A_3} + \gamma^A Z_1 \hat{Y}_{\text{eff}}^{A_1A_3} \ni \frac{\gamma^{\frac{1}{2}} + \frac{1}{2} - \frac{1}{9}}{\sqrt{K_{Z_1Z_1} K_{A_1A_4} K_{A_1A_4}}} \sim V^{-\frac{143}{355}}.
\]

(46)

Hence, at the string scale, the anomalous dimension matrix contribution is sub-dominant as compared to the gauge coupling-dependent contribution, and by a similar assumption (justified by the solution below)/reasoning:

\[
\hat{Y}_{\text{eff}}^{A_3} (t) \sim \hat{Y}_{\text{eff}}^{A_3} (M_s) \prod_{(a)=1}^{3} (1 + \beta_{(a)} t) \frac{-2(C_{(a)}(\Lambda) + C_{(a)}(\Sigma) + C_{(a)}(\Delta))}{\gamma_{(a)}}.
\]

(47)

This suggests that possibly, the fermionic superpartners of \(A_1 \) and \(A_3 \) correspond respectively to \(\epsilon_L \) and \(\epsilon_R \) and the fermionic superpartners of \(A_2 \) and \(A_4 \) correspond respectively to the first generation \(u_L \) and \(u_R \).

We also calculate masses of all superpartners corresponding to each wilson line moduli, position moduli and gaugino/Higgsino’s appearing in the set up. The details of calculations of the same are given in appendix C and results of masses of all SM as well as superpartners are summarized in table 4.

We will consider four stacks of D7-branes: a stack of 3, a stack of 2 and two stacks of 1. The matter fields: L-quarks and their superpartners will be valued in the bifundamentals \((3, 2)\) under \(SU(3)_c \times SU(2)_L \); the L-leptons and their superpartners will be valued in the bifundamentals \((2, -1)\) of \(SU(2)_L \times U(1)_Y \). Before the fluxes (48) are turned on, the Wilson line moduli are valued in the adjoint of \(U(7) \). With the following choice of fluxes:

\[
F = \begin{pmatrix}
 f_1 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & f_1 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & f_1 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & f_2 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & f_2 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & f_3 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & f_4
\end{pmatrix},
\]

(48)
Physical µ-terms	$\mu_{Z_i Z_i} \sim V^{\frac{2}{3}} m_3^2$
Physical $\hat{\mu} B$-terms	$(\hat{\mu} B)_{Z_1 Z_2} \sim V^{\frac{2}{3}} m_3^2$

Table 1: Mass scales of first generation of SM as well supersymmetric and soft SUSY parameters

the $U(7)$ is broken down to $U(3) \times U(2) \times U(1) \times U(1)$. So, the bifundamental Wilson line super-moduli \mathcal{A}_I will be represented as:

$$\mathcal{A}_I = \sum a_I^{ab} e_{ab} + \sum \theta a_I^{ab} e_{ab}, \quad [(a, b) = 1, ..., 7],$$

where $(e_{ab})_{ij} = \delta_{ai} \delta_{bj}$. Hence,

$$\mathcal{A}_1 = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \tilde{\nu}_e + \theta \nu_e & 0 \\
0 & 0 & 0 & 0 & \tilde{e} + \theta e & 0 & 0 \\
0 & 0 & \tilde{\nu}_e + \theta \nu_e & \tilde{e} + \theta e & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix};$$

$$\mathcal{A}_2 = \begin{pmatrix}
0 & 0 & 0 & \tilde{u} + \theta u & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\tilde{u} + \theta u^\dagger & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}.$$
\[
A_3 = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \tilde{e}_R + \theta e_R & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \tilde{e}_R + \theta e_R & 0 & 0 & 0 \\
\end{pmatrix}.
\]

(52)

\[
A_4 = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & \tilde{u}_R + \theta u_R & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\tilde{u}_R + \theta u_R & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{pmatrix}.
\]

(53)

Unlike the \(A_I\) which correspond to matter fields corresponding to open strings stretched between two stacks of \(D7\) branes (with different two-form fluxes turned on their world volumes), the Higgses would arise as a geometric moduli corresponding to the fluctuations in the position of the mobile space-time filling \(D3\)-brane.

Now, we will see if one can construct appropriate \(a_I\) (bi-fundamental) and \(z_i\)(mimicking bi-fundamental fields) such that \((29), (50) - (53)\), as well as:

\[
Z_1 = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \tilde{H}_u + \theta \tilde{H}_u & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \tilde{H}_u + \theta \tilde{H}_u & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{pmatrix},
\]

(54)

and

\[
Z_2 = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \tilde{H}_d + \theta \tilde{H}_d & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \tilde{H}_d + \theta \tilde{H}_d & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{pmatrix},
\]

(55)
are satisfied. Guided by (49), we will make the following ansatz for a_I and z_i:

$$a_I = \begin{pmatrix} 0 & 0 & 0 & a_I^{14} & a_I^{15} & a_I^{16} & a_I^{17} \\
0 & 0 & 0 & a_I^{24} & a_I^{25} & a_I^{26} & a_I^{27} \\
0 & 0 & 0 & a_I^{34} & a_I^{35} & a_I^{36} & a_I^{37} \\
0 & 0 & 0 & a_I^{44} & a_I^{45} & a_I^{46} & a_I^{47} \\
0 & 0 & 0 & a_I^{54} & a_I^{55} & a_I^{56} & a_I^{57} \\
0 & 0 & 0 & a_I^{64} & a_I^{65} & a_I^{66} & a_I^{67} \\
0 & 0 & 0 & a_I^{74} & a_I^{75} & a_I^{76} & a_I^{77} \\
0 & 0 & 0 & a_I^{84} & a_I^{85} & a_I^{86} & a_I^{87} \\
0 & 0 & 0 & a_I^{94} & a_I^{95} & a_I^{96} & a_I^{97} \\
0 & 0 & 0 & a_I^{104} & a_I^{105} & a_I^{106} & a_I^{107} \end{pmatrix},$$

$$z_i = \begin{pmatrix} z_i^{14} & z_i^{15} & z_i^{16} & z_i^{17} \\
0 & z_i^{24} & z_i^{25} & z_i^{27} \\
0 & z_i^{34} & z_i^{35} & z_i^{37} \\
0 & 0 & z_i^{46} & z_i^{47} \\
0 & 0 & z_i^{56} & z_i^{57} \\
0 & 0 & 0 & z_i^{67} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \end{pmatrix}. \tag{56}$$

Using (56) in (29), one obtains $17 \times 6 = 102$ equations in 102 variables. The same can be solved (using Mathematica) to yield the following solution:

$$a_1 = \begin{pmatrix} 0 & 0 & 0 & \xi_1^{14} \nu^{-\frac{5}{3}} u_L & 0 & 0 & 0 & 0 & \xi_1^{17} \nu^{-\frac{4}{5}} \bar{u}_R \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \xi_1^{14} \nu^{-\frac{5}{3}} u_L & 0 & 0 & 0 & 0 & \xi_1^{17} \nu^{-\frac{4}{5}} \bar{u}_R \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \xi_1^{14} \nu^{-\frac{5}{3}} u_L & 0 & 0 & 0 & 0 & \xi_1^{17} \nu^{-\frac{4}{5}} \bar{u}_R \end{pmatrix},$$

$$a_2 = \begin{pmatrix} 0 & 0 & 0 & 0.3 \xi_2^{14} \bar{u}_L & 0 & 0 & 0 & 0 & \xi_2^{17} \nu^{-\frac{4}{5}} \bar{u}_R \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \xi_2^{14} \nu^{-\frac{5}{3}} u_L & 0 & 0 & 0 & 0 & \xi_2^{17} \nu^{-\frac{4}{5}} \bar{u}_R \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \xi_2^{14} \nu^{-\frac{5}{3}} u_L & 0 & 0 & 0 & 0 & \xi_2^{17} \nu^{-\frac{4}{5}} \bar{u}_R \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \xi_2^{14} \nu^{-\frac{5}{3}} u_L & 0 & 0 & 0 & 0 & \xi_2^{17} \nu^{-\frac{4}{5}} \bar{u}_R \end{pmatrix},$$

$$a_3 = \begin{pmatrix} 0 & 0 & 0 & \xi_3^{14} \bar{u}_R & 0 & 0 & 0 & 0 & \xi_3^{17} \nu^{-\frac{4}{5}} \bar{u}_R \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \xi_3^{14} \bar{u}_R & 0 & 0 & 0 & 0 & \xi_3^{17} \nu^{-\frac{4}{5}} \bar{u}_R \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \xi_3^{14} \nu^{-\frac{5}{3}} u_L & 0 & 0 & 0 & 0 & \xi_3^{17} \nu^{-\frac{4}{5}} \bar{u}_R \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \xi_3^{14} \nu^{-\frac{5}{3}} u_L & 0 & 0 & 0 & 0 & \xi_3^{17} \nu^{-\frac{4}{5}} \bar{u}_R \end{pmatrix},$$

$$a_4 = \begin{pmatrix} 0 & 0 & 0 & \xi_4^{14} \bar{u}_R & 0 & 0 & 0 & 0 & \xi_4^{17} \nu^{-\frac{4}{5}} \bar{u}_R \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \xi_4^{14} \nu^{-\frac{5}{3}} u_L & 0 & 0 & 0 & 0 & \xi_4^{17} \nu^{-\frac{4}{5}} \bar{u}_R \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \xi_4^{14} \nu^{-\frac{5}{3}} u_L & 0 & 0 & 0 & 0 & \xi_4^{17} \nu^{-\frac{4}{5}} \bar{u}_R \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \xi_4^{14} \nu^{-\frac{5}{3}} u_L & 0 & 0 & 0 & 0 & \xi_4^{17} \nu^{-\frac{4}{5}} \bar{u}_R \end{pmatrix}. \tag{56}$$
In (57) and (58), $\xi^{ab}_{IJ}, 1 \leq a \leq 6, 1 \leq b \leq 7$ are $O(1)$ numbers. Now, from (12), the intersection matrix can be written as:

$$C^{IJ} = \begin{pmatrix}
c_{11} V^{10/9} & c_{12} V^{11/18} & c_{13} V^{29/18} & c_{14} V^{19/9} \\
c_{12} V^{11/18} & c_{22} V^{19/9} & c_{23} V^{10/9} & c_{24} V^{29/18} \\
c_{13} V^{29/18} & c_{23} V^{10/9} & c_{33} V^{10/9} & c_{34} V^{47/18} \\
c_{14} V^{19/9} & c_{24} V^{29/18} & c_{34} V^{47/18} & c_{44} V^{28/9}
\end{pmatrix},$$

(59)

where $c_{ab}, 1 \leq a, b \leq 4$ are $O(1)$ numbers. Assuming that the complex structure moduli $z_i^{\alpha=1,\ldots,5}(CY_3)$ are stabilized at very small values, which is in fact already assumed in writing (2) which has been written upon inclusion of terms up to linear in the complex structure moduli, let us define a modified intersection matrix in the $a_I - z_i$ moduli space:

$$C^{IJ}_c = C^{IJ}, \ I = I, J = J;$$

$$C^{IJ}_c = \mu_3 (2 \pi \alpha')^2 (\omega_i)^{ij}, \ I = i, J = j;$$

$$C^{IJ}_c = 0, \ I = I, J = j, \text{ etc.}$$

(60)

Now, from (57) and (58), one can show that for $|z_i| \sim 0.8 V^{1/3}, \ V \sim 10^5$:

$$C^{IJ}_c T_r(M_M^I) \sim C^{a_I \bar{a}_I} |\tilde{e}_L|^2 + C^{a_2 \bar{a}_2} |\bar{u}_L|^2 + C^{a_3 \bar{a}_3} |\tilde{e}_R|^2 + C^{a_4 \bar{a}_4} |\bar{u}_R|^2 + \mu_3 (2 \pi \alpha')^2 |H_u|^2, \text{(61)}$$
where $\mathcal{M}_I \equiv a_I, z_i$. Now, using (29), one can show that in the large volume limit: $C^A_I A_J \sim C^{a_I a_J}, C^Z_i \tilde{Z}_j \sim C^{z_i \tilde{z}_j}$. Clubbing together the Wilson line moduli and the D3-brane position moduli into a single vector: $\mathcal{M}_\Lambda \equiv A_I, \tilde{Z}_i$, then one sees from (50) - (55), and (61):

$$C^{\Lambda \Sigma} T_r (\mathcal{M}_\Lambda \mathcal{M}_I^I) \sim C_{I J} T_r (\mathcal{M}_I \mathcal{M}_J^I).$$

(62)

In the large volume and rigid limit of $\Sigma_B(\zeta^A = 0$ which corresponds to a local minimum), perhaps $C^{\Lambda \Sigma} T_r (\mathcal{M}_\Lambda \mathcal{M}_I^I)$ is invariant under moduli transformations in the $(A_I, Z_i)/(a_I, z_i)$-subspace of the open-string moduli space, which would imply that $C^{I J} a_I a_J + \mu_3 (\alpha')^2 (\omega_B)_{ij} z^i \tilde{z}^j$ for multiple D7-branes, in a basis that diagonalizes $g_{M I M J}$ at stabilized values of the open string moduli, is replaced by (61).

For the purpose of evaluation of (N)LSP decays in the subsequent sections, we will be using the following terms (written out in four-component notation or their two-component analogs and utilizing/generalizing results of [16]) in the $\mathcal{N} = 1$ gauged supergravity action of Wess and Bagger [12] with the understanding that $m_{\text{moduli}} << m_{\text{KK}} \lesssim 10^{14} \text{GeV}$, and that for multiple D7-branes, the non-abelian gauged isometry group, corresponding to the killing vector $6i\kappa_3^2 \mu_7 (2\pi\alpha') Q_B \partial T_B, Q_B = (2\pi\alpha') \int_{\Sigma_B} i^* \omega_B \wedge P - f$ arising due to the elimination of of the two-form axions $D_B^{(2)}$ in favor of the zero-form axions ρ_B under the KK-reduction of the ten-dimensional four-form axion [16] (which results in a modification of the covariant derivative of T_B by an additive shift given by $6i\kappa_3^2 \mu_7 (2\pi\alpha') T_r (Q_B A_\mu)$) can be identified with the SM group (i.e. A_μ is the SM-like adjoint-valued gauge field [12]):

$$
\mathcal{L} = g_{YM} g_{T_B} \mathcal{T}_r \left(X_{T_B}^2 / L \right) \left[\partial \chi_L + \Gamma^I_{M J} \partial a^M \chi_L + \frac{1}{4} \left(\partial a_M K \partial a_M - \text{c.c.} \right) \chi_L^I \right] \\
+ \frac{e^K}{2} \left(D_L D_J \mathcal{W} \right) T_r \left(X_{T_B}^2 / L \right) + g_{T_B} \mathcal{T}_r \left[\left(\partial \mu T_B - A_\mu X_{T_B} \right) \left(\partial \mu T_B - A_\mu X_{T_B} \right) \right] \\
+ g_{T_B} \mathcal{T}_r \left(X_{T_B}^2 A_\mu \chi_L^I \gamma^\mu \gamma^\nu \gamma^\rho \psi_{M \nu} \mathcal{W} \right) + \tilde{\psi}_{L M} \mu^\rho \lambda^\mu \lambda_{\tilde{g}}, L F_{\lambda \rho} + \tilde{\psi}_{L M} \lambda^\rho \lambda^\mu \lambda_{\tilde{g}}, L W^+ W^- \\
+ \mathcal{T}_r \left[\lambda_{\tilde{g}}, L \mathcal{A} \left(6\kappa_3^2 \mu_7 (2\pi\alpha') Q_B K + 12\kappa_3^2 \mu_7 (2\pi\alpha') Q_B B \right) \right] \\
+ \frac{e^K}{\kappa_4^2} \mathcal{G}_{T_B} T_B \left(6i\kappa_3^2 \mu_7 (2\pi\alpha') \mathcal{T}_r \left[Q_B A_\mu \partial \mu \left(\kappa_3^2 \mu_7 (2\pi\alpha')^2 C_{I J} a_I a_J \right) \right] \right) + \text{h.c.,} \\
(63)
$$

To evaluate the contribution of various 3-point interaction vertices in context of $\mathcal{N} = 1$ supergravity defined above, one needs to evaluate the full moduli space metric in fluctuations linear in different kind of moduli corresponding to different SM particles. The expansion of moduli space metric, its inverse and derivatives w.r.t to each moduli in terms of fluctuations linear in $z_i \rightarrow z_i + V^{\pm} M_p, a_1 \rightarrow a_1 + V^{\mp} M_p, a_2 \rightarrow a_2 + V^{-1} M_p, a_3 \rightarrow a_3 + V^{-1} M_p, a_3 \rightarrow a_3 + V^{-1} M_p$ are given in appendix D. One can show that near (53) along which $|z_1|$ and $|z_2|$ are on the same footing.

3As explained in [16], one of the two Pecci-Quinn/shift symmetries along the RR two-form axions ϵ^ρ and the zero-form axion ρ_B gets gauged due to the dualization of the Green-Schwarz term $\int_{\Sigma_B^{\cdots}} dD_B^{(2)} \wedge A$ coming from the KK reduction of the Chern-Simons term on $\Sigma_B \cup \sigma(\Sigma_B) - D_B^{(2)}$ being an RR two-form axion. In the presence of fluxes [43] for multiple D7-brane fluxes, the aforementioned Green-Schwarz is expected to be modified to $T_r \left(Q_B \int_{\Sigma_B^{\cdots}} dD_B^{(2)} \wedge A \right)$, which after dualization in turn modifies the covariant derivative of T_B and hence the Killing isometry.
3 Gravitino Decays

The generation of mass scales of superpartners and realization of μ split SUSY in the context of Big Divisor $D3 - D7$ type IIB string compactifications provides us with the gravitino as the L(ightest) S(upersymmetric) P(article) and sleptons/squarks as N(ext-to) L(ightest) S(upersymmetric) P(article)s with (Bino/Wino-type)gaugino/(Bino/Wino-type)gaugino-dominant neutralino, in the dilute-flux approximation, only differing in their masses by an $O(1)$ factor. This helps in shedding some light on identifying a viable dark matter candidate in this framework. Decays of the gravitino, are, in general, driven by any of the trilinear R-violating couplings which necessarily involve squark or slepton as propagators. In MSSM, stability of LSP is governed by conserved R-parity however same is not a restrictive condition in “μ split SUSY”. Some of the R-parity-violating interactions are not necessarily negligible and the consideration of LSP to be a viable dark matter candidate needs the contribution of the same to be evaluated. Here, the large squark masses in μ-split SUSY helps to suppress the decay width. In BSM/2HDM models, one considers R-parity violating coupling generated from R-parity violating superpotential. However, here we consider the possible R-parity violating couplings in the effective $N = 1$ gauged supergravity action and by evaluating the same, we explicitly calculate the decay width and hence life time of gravitino.

In this section, we discuss R-parity violating two-body and three-body gravitino decays and show that the corresponding lifetimes are either of the order or more than the age of the universe which supports the argument that gravitino can exist as a viable dark matter candidate.

3.1 Two-Body Gravitino Decays

We discuss the decays of the gravitino into neutrino and gauge bosons as well as the light Higgs and neutrinos.

Figure 1: Two-body gravitino decay: $\psi_\mu \rightarrow \nu + \gamma$
In $\mathcal{N} = 1$ SUGRA the gaugino-⟨sneutrino⟩-neutrino vertex, Fig. 16, is given by:

$$O(a_1) - \text{term in } \frac{g_Y M g T_{a_1}}{\sqrt{K_{A_1 A_1}}} X^{T a} \sim \frac{V_{-\frac{11}{9}}}{10^4}.$$ \hspace{1cm} (64)

Similarly the gravitino-gauge-boson-⟨\tilde{\nu}⟩ - ν-vertex in the $\mathcal{N} = 1$ SUGRA Lagrangian is given by the $O(a_1)$-term in $g_Y M g T_{a_1} X^{T a} Z^0 / A_\mu \bar{\nu}^\gamma \gamma^\mu \bar{\nu}^\nu$, which is:

$$g_Y M g a_1 \bar{\nu} T_{B} X^{T B} Z^0 / A_\mu \bar{\nu}^\gamma \gamma^\mu \bar{\nu}^\nu \sim \frac{V_{-\frac{11}{9}}}{10^4}.$$ \hspace{1cm} (65)

We have a gaugino mass degeneracy (up to $O(1)$ factors) implying: $M_{\lambda_1} \sim M_{\lambda_2}$. One hence gets a very small decay width and an extremely enhanced lifetime.

Again, using (64) and [25], the decay width for $\psi_\mu \rightarrow \gamma + \nu_e$ is given by:

$$\Gamma (\psi_\mu \rightarrow \gamma + \nu_e) \sim \frac{1}{64\pi} \left(\frac{\langle A_1 \rangle}{\langle Z_i \rangle} \right)^2 \frac{m_3^{3/2}}{M_p^2} \left| U_{\gamma Z} \right|^2 \left(\frac{V_{-\frac{11}{9}}}{10^4} \right)^2 \sim \frac{1}{64\pi} \left(\frac{\langle A_1 \rangle}{\langle Z_i \rangle} \right)^2 \frac{m_3^{3/2}}{M_p^2} \left(\frac{V_{-\frac{11}{9}}}{10^4} \right)^2 m_2^2 M_{\lambda_1} M_{\lambda_2} \sin^2 \theta_W \cos^2 \theta_W \left(\frac{V_{-\frac{11}{9}}}{10^4} \right)^2.$$ \hspace{1cm} (65)

Using $M_Z \sim 90 \text{GeV}$; $m_\lambda \sim \sqrt{2} m_3$ and $\bar{\nu}_{Z_1, Z_2} \sim \nu m_3$ from equations (B13) and (B25),

$$\Gamma \sim \frac{\sqrt{\frac{1}{2} - \frac{6}{11} - \frac{22}{9}}}{64\pi \times 10^8} \times \mathcal{O}(1) M_p.$$ \hspace{1cm} (66)

Using $M_Z \sim 90 \text{GeV}; m_\lambda \sim \sqrt{2} m_3$ and $\bar{\nu}_{Z_1, Z_2} \sim \nu m_3$ from equations (B13) and (B25),

$$\Gamma \sim \frac{\sqrt{\frac{1}{2} - \frac{6}{11} - \frac{22}{9}}}{64\pi \times 10^8} \times \mathcal{O}(1) M_p.$$ \hspace{1cm} (67)

\hspace{1cm}
Figure 3: Two-body gravitino decay: $\psi_\mu \rightarrow Z^0 + \nu$

Figure 4: Two-body gravitino decay: $\psi_\mu \rightarrow h + \nu$
This, for $V \sim 10^5$ yields $\tau \sim 10^{22}s$. The mass-like insertion is given by $m_{\tilde{h}}^2$, which is the coefficient of \tilde{h} in the $N = 1$ SUGRA action. To estimate this, we note that near $|z_1| \sim |z_2| \sim 0.7 V^{5/9}, |a_1| \sim V^{−7/9}, |a_2| \sim V^{−14/9}, |a_3| \sim V^{−13/18}, |a_4| \sim V^{−11/9}$, the potential can be approximated by

$$V \sim e^2 G T S \bar{T} S W^2 \sim z^{72} e^{−2n s} \left(\frac{V^{1/3}}{\sqrt{K_1 Z_1 \bar{K}_{A_1 A_1}}} \right)^2 \sim z^{72} e^{−2n s} \left(\frac{V^{1/3}}{\sqrt{K_1 Z_1 \bar{K}_{A_1 A_1}}} \right)^2,$$

(68)

The coefficient of the $O((z−0.6 V^{5/9})(a_1−V^{−7/9})) / \sqrt{K_1 Z_1 \bar{K}_{A_1 A_1}}$ in (68) turns out to be:

$$m_{\tilde{h}}^2 \sim V^{23/9} m_{3/2}^2 \times 10^{−16}.$$

(69)

The gravitino-gaugino-Higgs vertex: will be given by the following term in the $N = 1$ SUGRA action:

$$g_{YM} D^\mu \psi_\mu \gamma^\nu \gamma^\lambda L H_0^0,$$

(70)

Hence, the second diagram involving a gaugino NLSP, does not contribute. However, if the gaugino is replaced by a neutralino, then the Higgsino-component of this neutralino will contribute via the term:

$$g_{Z_1 Z_1} \partial_\nu Z_1 \bar{\psi}_\nu R \gamma^\nu \gamma^\mu \bar{H}_L^0 + h.c.$$

(71)

in $N = 1$ SUGRA action. This yields a vertex:

$$\tilde{f} g_{Z_1 Z_1} \gamma_\mu \bar{\psi}_\nu R \gamma^\nu \gamma^\mu \bar{H}_L^0 \sim \tilde{f} \gamma_\mu \bar{H}_L^0.$$

(72)

Further, the Higgsino-$\tilde{\nu}_e$-ν_e vertex will be given by $O(a_1−z_i)$ term in $e^2 \left(D_{\bar{a}_1} D_{\bar{z}_i} W \right) \tilde{\nu}_e L \bar{H}_R^0$, which after assigning $\langle z_i \rangle$ a value of $\sim V^{5/9}$ yields:

$$\tilde{f} V^{−5/9} \langle \nu_e \rangle.$$

(73)
Hence, using (72), (73) and [25]:

\[
\Gamma (\psi_\mu \rightarrow h + \nu_e) \sim \frac{1}{384\pi} \left(\frac{m^3_{3/2}}{M_p^2} \right) \left| \frac{m^2_{\nu_e h}}{m^2_h - m^2_{\nu_e}} + \sin \beta \cos \beta \frac{m^2_Z}{M_5 \mu Z_1 Z_2} \langle \nu_e \rangle \right|^2 \left(m^2_\tilde{\nu}_e h - m^2_{\tilde{\nu}_e} \right) \left(e^{\pm i/192} \right) V \sim 10^{-60} M_p,
\]

which yields a lifetime of around \(10^{17}\) s.

3.2 Three-Body R-parity Violating Gravitino Decays

In this subsection we will be considering gravitino decays involving three types of R-parity violating vertices that appear in R-parity violating superpotentials [24]:

\[
W_{\tilde{R}_p} = \lambda_{ijk} L_i L_j E^c_k + \lambda'_{ijk} L_i Q_j D^c_k + \lambda''_{ijk} U^c_i D^c_j D^c_k + \mu_i H L_i.
\]

Decays involving \(\lambda_{ijk}\) coupling

- Using the same approach as discussed to calculate R-parity violating interaction term in the previous (sub)section(s), the \(\tilde{\nu}_{iL} - e_{jL} - e_{kR}\) vertex corresponding to Fig. 20(a) is given by considering the contribution of following term:

\[
\mathcal{L} = \frac{e^{\pm 6i/192}}{2} (D_{A_1} D_{A_3} W) \bar{\chi}^{A_1} \chi^{A_3},
\]

where

\[
D_{a_1} D_{a_3} W = \partial_{a_1} \partial_{a_3} W + (\partial_{a_1} \partial_{a_3} K) W + \partial_{a_1} K D_{a_3} W + \partial_{a_3} K D_{a_1} W - (\partial_{a_1} K \partial_{a_3} K) W - \Gamma^k_{a_1 a_3} D_k W,
\]

where \(a_3, z_i\) correspond to undiagonalized moduli fields. By expanding above in the fluctuations linear in \(a_1 \rightarrow a_1 + \mathcal{V}^{-6/192} M_p\), on simplifying

\[
e^{\pm 6i/192} D_{a_1} D_{a_3} W \sim \mathcal{V}^{-6/192} \delta a_1
\]

Utilizing above, the \(\tilde{\nu}_{iL} - e_{jL} - e_{kR}\) vertex will be given by

\[
e^{\pm 6i/192} D_{A_1} D_{A_3} W \chi^{A_1} \chi^{A_3} \sim e^{\pm 6i/192} D_{A_1} D_{A_3} W \chi^{A_1} \chi^{A_3} \sim \mathcal{V}^{-6/192} \delta A_1 \chi^{A_1} \chi^{A_3}
\]
and physical vertex will be given as
\[
C\tilde{\nu}_iL e_jLe_kR \sim \frac{\sqrt{K_{A_1A_1}\bar{K}_{A_1A_1}\bar{K}_{A_3A_3}}}{V^{-\frac{19}{12}}} \sim V^{-\frac{19}{12}} \sim \sqrt{V^{72}} V^{-\frac{7}{4}}, \text{for } V \sim 10^5. \tag{75}
\]

• Similarly, \(\tilde{e}_jL - \nu_iL - e_kR\) vertex of Fig. 20(b) is same as \(\tilde{\nu}_iL - e_jL - e_kR\) vertex corresponding to Fig. 20(a) and given as:
\[
C\tilde{e}_jL\nu_iLe_kR \sim C\tilde{\nu}_iL e_jLe_kR \sim V^{-\frac{7}{4}}. \tag{76}
\]

• The \(\tilde{e}_kR - \tilde{\nu}_iR - e_jL\) vertex corresponding to Fig. 20(c) comes from:
\[
\frac{e^2K}{2} (D_{A_1} D_{A_1} W) \chi^A_{c_1} \chi^{A_1}. \tag{77}
\]
In terms of undiagonalized basis,
\[
D_{a_1} D_{a_1} W = (\partial_{a_1} \partial_{a_1} K) W + \partial_{a_1} KD_{a_1} W + \partial_{a_1} K D_{a_1} W - (\partial_{a_1} K \partial_{a_1} K) W.
\]
By expanding above in the fluctuations linear in \(a_3 \rightarrow a_3 + V^{-\frac{19}{12}} M_p\) by utilizing equations (27) and (31), on simplifying
\[
\frac{e^2K}{2} D_{a_1} D_{a_1} W \sim V^{-\frac{7}{4}} \delta a_3,
\]
implying that the lepton-squark-quark vertex is given by:
\[
\frac{e^2K}{2} D_{A_1} D_{A_1} W \chi^A_{c_1} \chi^{A_1} \sim \frac{e^2K}{2} D_{A_1} D_{A_1} W \chi^A_{c_1} \chi^{A_1} \sim \left(V^{-\frac{1}{2}} \delta A_3\right) \chi^A_{c_1} \chi^{A_1}, \tag{77}
\]
and physical vertex will be given as:
\[
C\tilde{e}_kR\tilde{\nu}_iLe_jL \sim \frac{\sqrt{K_{A_1A_1}\bar{K}_{A_1A_1}\bar{K}_{A_3A_3}}}{V^{-\frac{1}{2}}} \sim V^{-\frac{1}{2}} \sim V^{-\frac{7}{4}}, \text{for } V \sim 10^5. \tag{78}
\]
Now, the matrix amplitude for all three Feynman diagrams corresponding to Fig. 20 will be given as:
\[
|M|^2 = |M_a + M_b + M_c|^2 \tag{79}
\]
The analytical results for the full matrix amplitude summed over spins in terms of pure and cross terms are given in [26]. Utilizing their results, we will estimate matrix amplitude for all for both pure and cross terms to calculate decay width for the process \(\psi \mu \rightarrow \nu_i e_j \tilde{e}_k\) in our set up. Strictly speaking, we will be neglecting fermion mass as compared to gravitino and squark masses. Introducing kinematic variables
\[
2p(\nu_i) \cdot p(e_j) = (1 - z_{e_k})m_{3/2}^2, \quad 2p(e_j) \cdot p(e_k) = (1 - z_{\nu_i})m_{3/2}^2, \quad 2p(\nu_i) \cdot p(e_k) = (1 - z_{e_j})m_{3/2}^2. \tag{80}
\]
In view of above, we can express the following definitions in terms of kinematic variables as given below:

\[
m_{ij}^2 = (p(\nu_i) + p(e_j))^2 \sim 2p(\nu_i)p(e_j) = (1 - z_{e_i})m_{3/2}^2
\]

\[
m_{jk}^2 = (p(e_j) + p(\nu_k))^2 \sim 2p(e_j)p(\nu_k) = (1 - z_{\nu_i})m_{3/2}^2
\]

\[
m_{ik}^2 = (p(\nu_i) + p(e_k))^2 \sim 2p(\nu_i)p(e_k) = (1 - z_{e_i})m_{3/2}^2,
\]

utilizing the form of expressions given in the appendix of [20]

\[
|M_{\alpha}|^2 = \frac{1}{3} \frac{(\tilde{C}^{\nu_L, \nu_{L} L, \nu_{R}})^2}{M_{pl}^2} \frac{(m_{3/2}^2 - m_{e_k}^2 + m_{\nu_i}^2)(m_{j_k}^2 - m_{e_i}^2 - m_{e_k}^2)}{4m_{3/2}^2} \left(\frac{m_{j_k}^2 + m_{e_k}^2 - m_{\nu_i}^2}{4m_{3/2}^2} - m_{j_k}^2 \right),
\]

(82)

After simplifying using [106], we have

\[
|M_{\alpha}|^2 \approx \frac{1}{3} \frac{(\tilde{C}^{\nu_L, \nu_{L} L, \nu_{R}})^2}{M_{pl}^2} \left[z_{\nu_i}(1 - z_{e_i}) \left(\frac{z_{e_i}^2}{4} \right) \right]
\]

(83)

Here we have neglected gravitino mass as compared to sfermion mass. With same steps of similar procedure, we have

\[
|M_{\beta}|^2 = \frac{1}{3} \frac{(\tilde{C}^{\nu_R, \nu_{R} \nu_{R}})^2}{M_{pl}^2} \frac{(m_{j_k}^2 - m_{e_k}^2 + m_{\nu_i}^2)(m_{j_k}^2 - m_{e_i}^2 - m_{e_k}^2)}{4m_{3/2}^2} \left(\frac{m_{j_k}^2 + m_{e_k}^2 - m_{\nu_i}^2}{4m_{3/2}^2} - m_{j_k}^2 \right)
\]

\[
\approx \frac{1}{3} \frac{(\tilde{C}^{\nu_R, \nu_{R} \nu_{R}})^2}{M_{pl}^2} \left[z_{e_k}(1 - z_{e_i}) \left(\frac{z_{e_k}^2}{4} \right) \right]
\]

(84)

\[
|M_{\gamma}|^2 = \frac{1}{3} \frac{(\tilde{C}^{\nu_L, \nu_{L} \nu_{R}})^2}{M_{pl}^2} \frac{(m_{j_k}^2 - m_{e_k}^2 + m_{\nu_i}^2)(m_{j_k}^2 - m_{e_i}^2 - m_{e_k}^2)}{4m_{3/2}^2} \left(\frac{m_{j_k}^2 + m_{e_k}^2 - m_{\nu_i}^2}{4m_{3/2}^2} - m_{j_k}^2 \right)
\]

\[
\approx \frac{1}{3} \frac{(\tilde{C}^{\nu_L, \nu_{L} \nu_{R}})^2}{M_{pl}^2} \left[z_{e_k}(1 - z_{e_i}) \left(\frac{z_{e_k}^2}{4} \right) \right]
\]

(85)

\[
2Re(M_{\alpha}M_{\beta}^*) = \frac{1}{3} \frac{(\tilde{C}^{\nu_L, \nu_{L} L, \nu_{R}})^2}{M_{pl}^2} \frac{C^{\tilde{C}^{\nu_L, \nu_{L} L, \nu_{R}}}}{C^{\nu_R, \nu_{R} \nu_{R}}} \left[(m_{j_k}^2m_{e_k}^2 - m_{j_k}^2m_{e_k}^2m_{e_k}^2 - m_{\nu_i}^2m_{\nu_i}^2) \right]
\]

\[
\left(m_{3/2}^2 + m_{e_k}^2 - m_{\nu_i}^2 - m_{e_i}^2 \right) - \frac{1}{2m_{3/2}^2} \left(m_{3/2}^2 + m_{j_k}^2 - m_{\nu_i}^2 \right)
\]
\[
\frac{(m_{3/2}^2 + m_{i k}^2 - m_{e_j}^2)}{2} + \frac{1}{2}(m_{i j}^2 - m_{\nu_1}^2 - m_{e_j}^2)(m_{j k}^2 - m_{e_j}^2 - m_{e_k}^2)
\]
\[
\frac{(m_{i k}^2 - m_{\nu_1}^2 - m_{e_k}^2)}{2} - m_{\nu_1}^2 (m_{j k}^2 - m_{e_j}^2 - m_{e_k}^2)^2 - \frac{m_{e_j}^2}{2} (m_{i k}^2 - m_{\nu_1}^2 - m_{e_k}^2)^2
\]
\[
- \frac{m_{e_k}^2}{2} (m_{i j}^2 - m_{\nu_1}^2 - m_{e_j}^2)^2 + 2m_{\nu_1}^2 m_{e_j}^2 m_{e_k}^2
\]
\[
\sim \frac{2}{3} \left(\frac{C^{\bar{e}_{i L} e_{j L} e_{k R}} C^{\bar{e}_{i L} \nu_{L} e_{R}}}{M_{PL}^2 m_{\nu_1}^2 m_{e_j L}^2} \right) (1 - z_{\nu_1})(1 - z_{e_j})(-1 - z_{e_k} + 2z_{e_j} + 2z_{e_k} - z_{\nu_1}z_{e_k})
\]
(86)

\[
2 \text{Re}(M_{\nu_1} M_{e_1}^\dagger) = \frac{1}{3} \frac{C^{\bar{e}_{i L} e_{j L} e_{k R}} C^{\bar{e}_{i L} \nu_{L} e_{R}}}{M_{PL}^2 (m_{i k}^2 - m_{e_j L}^2)(m_{i j}^2 - m_{e_k L}^2)} \left[(m_{i j}^2 m_{i k}^2 - m_{3/2}^2 m_{\nu_1}^2 - m_{e_j}^2 m_{e_k}^2)
\right.
\]
\[
\left. + \frac{1}{2} \left(m_{i j}^2 - m_{\nu_1}^2 - m_{e_j}^2 \right) \left(m_{j k}^2 - m_{e_j}^2 - m_{e_k}^2 \right)^2 - \frac{m_{e_j}^2}{2} (m_{i k}^2 - m_{\nu_1}^2 - m_{e_k}^2)^2
\]
\[
- \frac{m_{e_k}^2}{2} (m_{i j}^2 - m_{\nu_1}^2 - m_{e_j}^2)^2 + 2m_{\nu_1}^2 m_{e_j}^2 m_{e_k}^2
\]
\[
\sim \frac{2}{3} \left(\frac{C^{\bar{e}_{i L} e_{j L} e_{k R}} C^{\bar{e}_{i L} \nu_{L} e_{R}}}{M_{PL}^2 m_{\nu_1}^2 m_{e_j L}^2} \right) (1 - z_{\nu_1})(1 - z_{e_j})(-1 - z_{e_k} + 2z_{e_j} + 2z_{e_k} - z_{\nu_1}z_{e_k}),
\]
(87)

\[
2 \text{Re}(M_{\nu_1} M_{e_1}^\dagger) = \frac{1}{3} \frac{C^{\bar{e}_{i L} e_{j L} e_{k R}} C^{\bar{e}_{i L} \nu_{L} e_{R}}}{M_{PL}^2 (m_{j k}^2 - m_{\nu_1}^2)(m_{i j}^2 - m_{e_k L}^2)} \left[(m_{i j}^2 m_{j k}^2 - m_{3/2}^2 m_{e_j}^2 - m_{\nu_1}^2 m_{e_k}^2)
\right.
\]
\[
\left. + \frac{1}{2} \left(m_{i j}^2 - m_{\nu_1}^2 - m_{e_j}^2 \right) \left(m_{j k}^2 - m_{e_j}^2 - m_{e_k}^2 \right)^2 - \frac{m_{e_j}^2}{2} (m_{j k}^2 - m_{\nu_1}^2 - m_{e_k}^2)^2
\]
\[
- \frac{m_{e_k}^2}{2} (m_{i j}^2 - m_{\nu_1}^2 - m_{e_j}^2)^2 + 2m_{\nu_1}^2 m_{e_j}^2 m_{e_k}^2
\]
\[
\sim \frac{2}{3} \left(\frac{C^{\bar{e}_{i L} e_{j L} e_{k R}} C^{\bar{e}_{i L} \nu_{L} e_{R}}}{M_{PL}^2 m_{\nu_1}^2 m_{e_j L}^2} \right) (1 - z_{\nu_1})(1 - z_{e_k})(-1 - z_{\nu_1} + 2z_{\nu_1} + 2z_{e_k} - z_{\nu_1}z_{e_k}),
\]
(88)
Utilizing the results from (82)-(88), (79) one gets the following form:

\[
|M|^2 = \frac{1}{3} \left(\frac{C_{\tilde{v}_L \tilde{v}_L e e R}}{M_{pl} m_{\tilde{v}_L}^2} \right)^2 \left(z_{\nu_i} (1 - z_{\nu_i}) \left(\frac{z_{\nu_i}^2}{4} \right) + \frac{1}{3} \left(\frac{C_{\tilde{v}_L \tilde{v}_L e e R}}{M_{pl} m_{\tilde{e}_{jL}}^2} \right)^2 \left(z_{\nu_j} (1 - z_{\nu_j}) \left(\frac{z_{\nu_j}^2}{4} \right) \right)
\]

\[
+ \frac{1}{3} \left(\frac{C_{\tilde{v}_L \tilde{v}_L e e R}}{M_{pl} m_{\tilde{e}_{kR}}^2} \right)^2 \left(z_{\nu_k} (1 - z_{\nu_k}) \left(\frac{z_{\nu_k}^2}{4} \right) \right)
\]

\[
+ \frac{2}{3} \left(\frac{C_{\tilde{v}_L \tilde{v}_L e e R}}{M_{pl} m_{\tilde{v}_L}^2} \right) \left(\frac{C_{\tilde{v}_L \tilde{v}_L e e R}}{M_{pl} m_{\tilde{e}_{jL}}^2} \right) \left(1 - z_{\nu_i} \right) \left(1 - z_{\nu_j} \right) \left(1 - z_{\nu_k} \right) \left(-1 + z_{\nu_i} + 2 z_{\nu_j} + z_{\nu_k} \right)
\]

\[
+ \frac{2}{3} \left(\frac{C_{\tilde{v}_L \tilde{v}_L e e R}}{M_{pl} m_{\tilde{v}_L}^2} \right) \left(\frac{C_{\tilde{v}_L \tilde{v}_L e e R}}{M_{pl} m_{\tilde{e}_{jL}}^2} \right) \left(1 - z_{\nu_i} \right) \left(1 - z_{\nu_k} \right) \left(-1 + z_{\nu_i} + 2 z_{\nu_k} + z_{\nu_j} \right)
\]

\[
+ \frac{2}{3} \left(\frac{C_{\tilde{v}_L \tilde{v}_L e e R}}{M_{pl} m_{\tilde{v}_L}^2} \right) \left(\frac{C_{\tilde{v}_L \tilde{v}_L e e R}}{M_{pl} m_{\tilde{e}_{jL}}^2} \right) \left(1 - z_{\nu_j} \right) \left(-1 + z_{\nu_j} + 2 z_{\nu_i} + z_{\nu_k} \right) + \frac{2}{3} \left(\frac{C_{\tilde{v}_L \tilde{v}_L e e R}}{M_{pl} m_{\tilde{v}_L}^2} \right) \left(\frac{C_{\tilde{v}_L \tilde{v}_L e e R}}{M_{pl} m_{\tilde{e}_{jL}}^2} \right) \left(-1 + z_{\nu_j} + 2 z_{\nu_i} + z_{\nu_k} \right) \left(1 - z_{\nu_j} \right).
\]

The differential decay rate follows:

\[
\frac{d^2 \Gamma}{d z_{\nu_j} d z_{\nu_k}} = \frac{N_c m_{3/2}}{2^{8/3}} \left(\frac{1}{2} \sum_{\text{spins}} |M|^2 \right)
\]

Putting the result of $|M|^2$ from above,

\[
\frac{d^2 \Gamma}{d z_{\nu_j} d z_{\nu_k}} \sim \frac{N_c m_{3/2}}{2^{9/3}} \frac{1}{3} \left(\frac{C_{\tilde{v}_L \tilde{v}_L e e R}}{M_{pl} m_{\tilde{v}_L}^2} \right)^2 \left(z_{\nu_i} (1 - z_{\nu_i}) \left(\frac{z_{\nu_i}^2}{4} \right) + \frac{1}{3} \left(\frac{C_{\tilde{v}_L \tilde{v}_L e e R}}{M_{pl} m_{\tilde{e}_{jL}}^2} \right)^2 \left(z_{\nu_j} (1 - z_{\nu_j}) \left(\frac{z_{\nu_j}^2}{4} \right) \right)
\]

\[
+ \frac{1}{3} \left(\frac{C_{\tilde{v}_L \tilde{v}_L e e R}}{M_{pl} m_{\tilde{e}_{kR}}^2} \right)^2 \left(z_{\nu_k} (1 - z_{\nu_k}) \left(\frac{z_{\nu_k}^2}{4} \right) \right)
\]

\[
+ \frac{2}{3} \left(\frac{C_{\tilde{v}_L \tilde{v}_L e e R}}{M_{pl} m_{\tilde{v}_L}^2} \right) \left(\frac{C_{\tilde{v}_L \tilde{v}_L e e R}}{M_{pl} m_{\tilde{e}_{jL}}^2} \right) \left(1 - z_{\nu_i} \right) \left(1 - z_{\nu_j} \right) \left(1 - z_{\nu_k} \right) \left(-1 + z_{\nu_i} + 2 z_{\nu_j} + z_{\nu_k} \right)
\]

\[
+ \frac{2}{3} \left(\frac{C_{\tilde{v}_L \tilde{v}_L e e R}}{M_{pl} m_{\tilde{v}_L}^2} \right) \left(\frac{C_{\tilde{v}_L \tilde{v}_L e e R}}{M_{pl} m_{\tilde{e}_{jL}}^2} \right) \left(1 - z_{\nu_i} \right) \left(1 - z_{\nu_k} \right) \left(-1 + z_{\nu_i} + 2 z_{\nu_k} + z_{\nu_j} \right)
\]

\[
+ \frac{2}{3} \left(\frac{C_{\tilde{v}_L \tilde{v}_L e e R}}{M_{pl} m_{\tilde{v}_L}^2} \right) \left(\frac{C_{\tilde{v}_L \tilde{v}_L e e R}}{M_{pl} m_{\tilde{e}_{jL}}^2} \right) \left(1 - z_{\nu_j} \right) \left(1 - z_{\nu_i} \right) \left(-1 + z_{\nu_j} + 2 z_{\nu_i} + z_{\nu_k} \right)
\]

\[
+ \frac{2}{3} \left(\frac{C_{\tilde{v}_L \tilde{v}_L e e R}}{M_{pl} m_{\tilde{v}_L}^2} \right) \left(\frac{C_{\tilde{v}_L \tilde{v}_L e e R}}{M_{pl} m_{\tilde{e}_{jL}}^2} \right) \left(1 - z_{\nu_i} \right) \left(1 - z_{\nu_j} \right) \left(1 - z_{\nu_k} \right)
\]

\[
(91)
\]

Using the same approach as given in (203),

\[
0 < z_{\nu_j} < 1, 1 - z_j < z_{\nu_k} < 1.
\]

and using the numerical estimates of masses, $m_{3/2} \sim V^{-2} M_p, m_{\tilde{v}_L}^2 = m_{\tilde{e}_{jL}}^2 = m_{\tilde{e}_{kR}}^2 \sim m_A \sim V_{1/2} \sim m_3/2$ as given in equation (B21), after integrating, decay width reduces to

\[
\Gamma \sim \frac{N_c m_{3/2}}{2^{9/3} M_{pl} V^{2/3} m_{3/2}^2} \left[\left(\frac{C_{\tilde{v}_L \tilde{v}_L e e R}}{M_{pl} m_{\tilde{v}_L}^2} \right)^2 + \left(\frac{C_{\tilde{v}_L \tilde{v}_L e e R}}{M_{pl} m_{\tilde{e}_{jL}}^2} \right)^2 + \left(\frac{C_{\tilde{v}_L \tilde{v}_L e e R}}{M_{pl} m_{\tilde{e}_{kR}}^2} \right)^2 + \frac{3}{4} \left(\frac{C_{\tilde{v}_L \tilde{v}_L e e R}}{M_{pl} m_{\tilde{v}_L}^2} \right) \left(\frac{C_{\tilde{v}_L \tilde{v}_L e e R}}{M_{pl} m_{\tilde{e}_{jL}}^2} \right) + \left(\frac{C_{\tilde{v}_L \tilde{v}_L e e R}}{M_{pl} m_{\tilde{e}_{jL}}^2} \right) \left(\frac{C_{\tilde{v}_L \tilde{v}_L e e R}}{M_{pl} m_{\tilde{e}_{kR}}^2} \right) \right].
\]

(93)
Figure 7: Three-body gravitino decays involving $\kappa_{\rho l} \chi_{ijk}^\rho$ coupling

Utilizing the set of results given in equation no (75) - (78), decay width simplifies to

$$\Gamma \sim \frac{N_c m_{\tilde{\nu}}^7}{(2^{9.3} \cdot 120)^{3/2} M_{pl}^2 V^2 m_{\tilde{\nu}}^{3/2}} (V^{-7/2})$$

$$\sim \frac{1}{10^6} \frac{V^{-3/2} m_{\tilde{\nu}}^{3/2}}{M_{pl}^2} \sim 10^{-45.5} GeV; \text{for } V \sim 10^5.$$ \hspace{1cm} (94)

Life time will be given as

$$\tau = \frac{\hbar}{\Gamma} \sim \frac{10^{-34} Jsec}{10^{-45.5} GeV} \sim O(10^{21}) \text{sec.} \hspace{1cm} (95)$$

Decays involving χ_{ijk}^ρ coupling

- The $\tilde{\nu}_L - d_{jL} - d_{kR}$ vertex corresponding to figure 3(a) and $\tilde{l}_L - u_L - d_{cL}$ vertex calculated in section 4 get identified with same set of moduli space superfields and given by similar interaction vertex. Therefore contribution of $\tilde{\nu}_L - d_{jL} - d_{kR}$ vertex is same as $\tilde{l}_L - u_L - d_{cL}$ given in (175).

$$C_{\tilde{\nu}_L d_{jL} d_{kR}} \sim V^{-\frac{7}{2}} \tilde{\nu}_L d_{jL} d_{kR}, \text{for } V \sim 10^5 \hspace{1cm} (96)$$

- The $\tilde{d}_{jL} - \nu_{iL} - d_{kR}$ vertex corresponding to figure 3(b) and $\tilde{u}_L - l_L - d_{cL}$ vertex calculated in section 4 get identified with same set of moduli space superfields and given by similar interaction vertex. Therefore contribution of $\tilde{d}_{jL} - \nu_{iL} - d_{kR}$ vertex is same as $\tilde{u}_L - l_L - d_{cL}$ given in (190)

$$C_{\tilde{d}_{jL} \nu_{iL} d_{kR}} \sim V^{-\frac{7}{2}}, \text{for } V \sim 10^5 \hspace{1cm} (97)$$

- This time, $\tilde{d}_{kR} - \tilde{\nu}_{iR} - d_{jL}$ vertex corresponding to Fig. 21(c) and $\tilde{d}_R - l_L - u_L$ vertex calculated in section 4 get identified with same set of moduli space superfields and given by similar interaction vertex. Hence, contribution of $\tilde{d}_{kR} - \tilde{\nu}_{iR} - d_{jL}$ vertex is a same as $\tilde{d}_R - l_L - u_L$ given in (183)

$$C_{\tilde{d}_{kR} \tilde{\nu}_{iR} d_{jL}} \sim V^{-\frac{7}{2}}, \text{for } V \sim 10^5 \hspace{1cm} (98)$$

The analytical result of matrix amplitude for all three Feynman diagrams corresponding to Fig. 21 is same as calculated in Fig. 20 by replacing $m_{\tilde{\nu}_L} \rightarrow m_{\tilde{\nu}_L} (m_{\tilde{e}_L})$, $m_{\tilde{e}_jL} \rightarrow m_{\tilde{d}_{jL}} (m_{\tilde{e}_jL})$ and $m_{\tilde{e}_{kR}} \rightarrow m_{\tilde{d}_{kR}} (m_{\tilde{d}_{kR}})$ and $C_{\tilde{e}_{jL}} \rightarrow C_{\tilde{e}_{jL}} d_{jL} d_{kR}, C_{\tilde{e}_{jL} \nu_{iL} d_{kR}} \rightarrow C_{\tilde{d}_{jL} \nu_{iL} d_{kR}}, C_{\tilde{e}_{kR} \nu_{iL} d_{jL}} \rightarrow C_{\tilde{d}_{kR} \nu_{iL} d_{jL}}$. Doing
so and using same numerical estimates of masses, $m_{3/2} \sim \sqrt{s} M_p$, $m_{\nu}^2 = m_{\tilde{d}_{jL}}^2 = m_{\tilde{d}_{kR}}^2 \sim \sqrt{s} m_{3/2}$ in our set up, after integrating, decay width reduces to

$$
\Gamma \sim \frac{N_c m_{3/2}^7}{(2^{3.120}) \pi^3 M_p^2 \cdot V^2 m_{3/2}^4} \left[(C_{\tilde{d}_{jL} d_{kR} d_{jL}})^2 + (C_{\tilde{d}_{jL} \nu_{jL} d_{kR}})^2 + (C_{d_{kR} \bar{\nu}_{jL} d_{jL}})^2 + \frac{3}{4} \left((C_{\tilde{d}_{jL} d_{kR} d_{jL}} \cdot C_{d_{jL} \nu_{jL} d_{kR}} + (C_{d_{jL} \nu_{jL} d_{kR}} \cdot C_{d_{kR} \bar{\nu}_{jL} d_{jL}} + (C_{\tilde{d}_{jL} d_{kR} d_{jL}} \cdot C_{d_{kR} \bar{\nu}_{jL} d_{jL}}) \right) \right],
$$

(99)

Utilizing the set of results given in equation no (75) - (78), decay width simplifies to

$$
\Gamma \sim \frac{N_c m_{3/2}^7}{(2^{3.120}) \pi^3 M_p^2 \cdot V^2 m_{3/2}^4} (\sqrt{s} m_{3/2}) \sim \frac{1}{10^6} \frac{1}{M_p^2} \sim 10^{-44} GeV; \text{ for } \sqrt{s} \sim 10^5
$$

(100)

Life time will be given as

$$
\tau = \frac{\hbar}{\Gamma} \sim \frac{10^{-34}}{10^{-44} GeV} \sim O(10^{20}) \text{ sec}
$$

(101)

Decays mediated via λ_{ijk}'' coupling

- The $\tilde{u}_{iR} - d_{jR} - d_{kL}$ vertex corresponding to Fig. 22(a) arises from:

$$
\frac{e^2}{2} (D_{\Delta_1} D_{\Delta_4} W) \chi^A_{\Delta_4} \chi^A_{\Delta_1}.
$$

In terms of undiagonalized basis,

$$
D_{\Delta_4} D_{\Delta_4} W = (\partial_{\Delta_4} \partial_{\Delta_4} K) W + \partial_{\Delta_4} K D_{\Delta_4} W + \partial_{\Delta_4} K D_{\Delta_4} W - (\partial_{\Delta_4} K \partial_{\Delta_4} K) W.
$$

By expanding above in the fluctuations linear in $a_4 \rightarrow a_4 + \sqrt{s} \frac{V}{M_p}$ by utilizing equations (27) and (31), on simplifying one obtains:

$$
\frac{e^2}{2} D_{\Delta_4} D_{\Delta_4} W \sim \sqrt{s} \delta a_4
$$

(29)
implying that the contribution of quark-squark-quark vertex is given as under:

\[
e^{\frac{K}{2}} D_{A_4} D_{A_4} W^\chi A_i^i \chi A_i^i \sim e^{\frac{K}{2}} D_{A_4} D_{A_4} W^\chi A_i^i \chi A_i^i \sim \left(\frac{\chi A_i^i}{A_4^i} \right) \chi A_i^i \chi A_i^i,
\]

(102)

and the physical vertex will be given as following:

\[
C^\tilde{u}_i R d_j R d_{kL} \sim \frac{\chi A_i^i}{\sqrt{K_{A_4 A_4} K_{A_4 A_4} K_{A_4 A_4}}} \sim \frac{\chi A_i^i}{\sqrt{10^{36}}} \sim \chi A_i^i u_i R d_j R d_{kL}, \text{for } \chi A_i^i \sim 10^5.
\]

(103)

- Similarly, the \(d_j R - d_{kL} - u_{iR} \) vertex of Fig. 21(b) is same as \(u_i R - d_j R - d_{kL} \) vertex corresponding to Fig. 21(a) and is given as under:

\[
C^d_j R d_{kL} u_{iR} \sim C^\tilde{u}_i R d_j R d_{kL} \sim \chi A_i^i u_i R d_j R d_{kL}, \text{for } \chi A_i^i \sim 10^5.
\]

(104)

Again, introducing kinematic variable

\[
2p(u_i) \cdot p(d_j) = (1 - z_{d_k})m_{3/2}, \quad 2p(d_j) \cdot p(d_k) = (1 - z_{u_i})m_{3/2}, \quad 2p(u_i) \cdot p(d_k) = (1 - z_{d_j})m_{3/2},
\]

(105)

and

\[
m_{ij} = (p(u_i) + p(d_j))^2 \sim 2p(u_i) \cdot p(d_j) = (1 - z_{d_k})m_{3/2}^2,
\]

\[
m_{jk} = (p(d_j) + p(d_k))^2 \sim 2p(d_j) \cdot p(d_k) = (1 - z_{u_i})m_{3/2}^2,
\]

\[
m_{ik} = (p(u_i) + p(d_k))^2 \sim 2p(u_i) \cdot p(d_k) = (1 - z_{d_j})m_{3/2}^2,
\]

(106)

Here also, utilizing the form of expressions given in the appendix of [26] for \(\lambda_{ij}^\gamma \) coupling, the full analytical result of the squared amplitude summed over the spins for the gravitino decay reaction

\[
\psi_{\mu} \rightarrow u_i d_j d_k
\]

is the sum of the following squared amplitude and interference teramas:

\[
|M_a|^2 = \frac{N_c!}{3} \frac{(C^{u_i R u_i R} C^{\tilde{u}_i R d_j R d_{kL}})^2}{M^2(m_{ij}^2 - m_{ik}^2 + m_{jk}^2)(m_{ik}^2 - m_{ij}^2 - m_{jk}^2)} \left(\frac{m_{3/2}^2 + m_{3/2}^2 - m_{3/2}^2}{4m_{3/2}^2} - m_{3/2}^2 \right) \sim \frac{1}{3} \frac{(C^{u_i R d_j R d_{kL}})^2}{M_{pl}^2 m_{3/2}^2} [z_{u_i} (1 - z_{u_i}) (\frac{z_{d_j}}{4})]
\]

(107)

\[
|M_b|^2 = \frac{4N_c!}{3} \frac{(C^{d_j R u_i R d_{kL}})^2}{M^2(m_{ij}^2 - m_{ij}^2)^2(m_{3/2}^2 - m_{3/2}^2)(m_{3/2}^2 - m_{3/2}^2 - m_{3/2}^2)} \left(\frac{1}{3} \frac{(C^{d_j R u_i R d_{kL}})^2}{M_{pl}^2 m_{3/2}^2} [z_{d_j} (1 - z_{d_j}) (\frac{z_{d_j}}{4})] \right),
\]

(108)

\[
2Re(M_a M_b^*) = \frac{2N_c!}{3} \frac{(C^{u_i R d_j R d_{kL}} \cdot C^{d_j R u_i R d_{kL}})^2}{M^2(m_{ij}^2 - m_{ij}^2)(m_{ik}^2 - m_{ik}^2 - m_{ik}^2)} \left(m_{ik}^2 m_{jk}^2 - m_{3/2}^2 m_{ik}^2 - m_{3/2}^2 m_{ik}^2 \right)
\]

(109)
Utilizing the set of results given in equation no (103) - (104), decay width simplifies to

\[
\Gamma \sim \frac{N_c m_{3/2}^7}{(2^9 \cdot 3 \cdot 120) \pi^3 M_{pl}^2 \mathcal{V}^2 m_{3/2}^{1/2}} \left(\left(C_{iR} \tilde{d}_j R^e \tilde{d}_k R \right)^2 + \left(C^{d_j R \tilde{u}_R R^e}_{kR} \right)^2 + \frac{3}{4} \left(C_{iR} \tilde{d}_j R^e \tilde{d}_k R \cdot C^{d_j R \tilde{u}_R R^e}_{kR} \right) \right)
\]

(110)

Utilizing the set of results given in equation no (103) - (104), decay width simplifies to

\[
\Gamma \sim \frac{N_c m_{3/2}^7}{(2^9 \cdot 3 \cdot 120) \pi^3 M_{pl}^2 \mathcal{V}^2 m_{3/2}^{1/2}} \left(\left(C_{iR} \tilde{d}_j R^e \tilde{d}_k R \right)^2 + \left(C^{d_j R \tilde{u}_R R^e}_{kR} \right)^2 + \frac{3}{4} \left(C_{iR} \tilde{d}_j R^e \tilde{d}_k R \cdot C^{d_j R \tilde{u}_R R^e}_{kR} \right) \right)
\]

(110)

\[
\Gamma \sim \frac{N_c m_{3/2}^7}{(2^9 \cdot 3 \cdot 120) \pi^3 M_{pl}^2 \mathcal{V}^2 m_{3/2}^{1/2}} \left(\mathcal{V}^{-\frac{73}{15}} \cdot \frac{m_{3/2}^3}{M_{pl}^2} \right) \sim 10^{-42} GeV \text{; for } \mathcal{V} \sim 10^5,
\]

(111)

and therefore the life time will be given by:

\[
\tau = \frac{\hbar}{\Gamma} \sim \frac{10^{-34} \text{ J sec}}{10^{-42} \text{ GeV}} \sim O(10^{18}) \text{ sec}.
\]

(112)

4 NLSP Decays

With in the approach of considering non-thermal production of Gravitino(LSP), all of the dark matter density are produced by non thermal decays of NLSP decaying into LSP and therefore, it is important to determine whether life time of these decays do not affect standard abundance of D, 3He, 4He, and 7Li, and hence predictions of BBN. The Big bang nucleosynthesis predicts the universal abundances of D, 3He, 4He, and 7Li, essentially fixed by average lifetime \(\tau \sim 180 \text{ sec} \). In our study, we are considering both radiative as well as hadronic decay modes of N(LSP)'s. Therefore, if life time of NLSP’s are more than \(10^2 \), the high energy photons emitted via radiative decay might destroy the abundance of light elements by inducing photo-dissociation of same, hence reducing the standard baryon-to-photon ratio and resulting in baryon-poor universe. Similarly, during the hadronic decay, the released hadronic energy can produce mesons/charged pions causing interconversions between background proton and neutron \((p / n)\) conversion that alters the neutron-to-proton ratio, resulting in the change of 4He abundance and hence destroying this success of standard BBN. The bounds on primordial abundance of late decaying particle, taking into account hadronic decay mode of the same, have been discussed in detail in [27].

In view of the above discussion, we explicitly calculate the decay widths and hence life times for possible NLSP candidates. The table of mass spectrum given in table 1 suggests that sleptons/squarks and \((\text{Bino}/\text{Wino-type})\tilde{g} \text{auino}/(\text{Bino}/\text{Wino-type})\tilde{g} \text{auino}-\text{dominant neutralino exists as}
N(extend-to) L(ightest) S(upersymmetric) P(article)s in the dilute-flux approximation. The diagonalization of neutralino mass matrix for the four-Wilson-line-moduli setup, similar to [11] corresponds to smallest eigenvalue of neutralino of the order $\sqrt{n/2}$, (similar as gaugino mass) given by the following eigenvector:

$$\tilde{\chi}_3^0 \sim -\lambda^0 + \tilde{f} \left(\tilde{H}^0_1 + \tilde{H}^0_2 \right) + \text{charge conjugate},$$

(113)

where $\tilde{H}^0_1, \tilde{H}^0_2$ are the Higgsinos. We will first evaluate the lifetimes corresponding to two- and three-body decays of Wino/Bino-type gauginos/Neutralino and gluino decay to gravitino(LSP) followed by the lifetime corresponding to two- and three-body decays of the slepton to gravitino(LSP). In addition to this, there is a possibility for neutralino to directly decay into ordinary quarks via R-parity violating three-body decays and hence affect the abundance of gravitino produced by neutralino. Due to the presence of two competing kind of decays, results of life time of both will decide, whether decay of neutralino into ordinary quarks effects the abundance of gravitino or not. To verify the same, we have also evaluated the three-body decay diagrams of neutralino in the context of $\mathcal{N} = 1$ Supergravity action.

4.1 Gaugino Decays

In this sub-section, we discuss two- and three-body decay modes of the Wino/Bino-type gauginos as well as the gluino.

4.1.1 Two- and Three-Body Gaugino(Wino/Bino) Decays

The relevant gravitino-gaugino-photon/Z-boson vertex in the $\mathcal{N} = 1$ SUGRA action of [12] is obtained from $\frac{1}{M_p} \bar{\psi}_\rho \sigma^{\mu\nu} \gamma^\rho \lambda^{(a)}_L F^{(a)}_{\mu\nu}$, (a) corresponding to the three gauge groups. The decay width for $\tilde{B} \to \psi_\mu + \gamma$ is given by (See (28)):

$$\Gamma \left(\tilde{B} \to \psi_\mu + \gamma \right) = \frac{\cos^2 \theta_W}{48 \pi M_p^2} \frac{m_\tilde{B}^5}{m_{3/2}^2} \left(1 - \frac{m_{3/2}^2}{m_\tilde{B}^2} \right)^3 \left(1 + 3 \frac{m_{3/2}^2}{m_\tilde{B}^2} \right) \sim \frac{m_\tilde{B}^5}{m_{3/2}^2 M_p^2}$$

(114)

For $m_\tilde{B} \sim m_\tilde{g} \sim \sqrt{n/2} m_3$ as given in equation (B13) and $m_{3/2} \sim \sqrt{-2} M_p$ for $n^s = 2$, above decay process implies a lifetime of Bino (\tilde{B}) of around 10^{-30} s.
Similarly, the decay width for $\tilde{B} \rightarrow \psi_\mu + Z$ is given by (See [28]):

\[
\Gamma (\tilde{B} \rightarrow \psi_\mu + Z) = \frac{\cos^2 \theta_W}{48\pi M_p^2 m_{3/2}^2} \sqrt{1 - 2 \left(\frac{m_{3/2}^2}{m_B^2} + \frac{m_Z^2}{m_B^2} \right) + \left(\frac{m_{3/2}^2}{m_B^2} - \frac{m_Z^2}{m_B^2} \right)^2}
\times \left[\left(1 - \frac{m_{3/2}^2}{m_B^2} \right)^2 \left(1 + 3 \frac{m_{3/2}^2}{m_B^2} \right) - \frac{m_Z^2}{m_B^2} \left\{ 3 + \frac{m_{3/2}^2}{m_B^2} \left(m_{3/2}^2/12 \right) - \frac{x_Z^2}{x_B^2} \left(3 - \frac{m_{3/2}^2/2}{m_B^2} - \frac{m_Z^2}{m_B^2} \right) \right\} \right]
\sim \frac{m_{3/2}^5}{m_{3/2}^2 M_p^2} \sim \mathcal{V}^{-\frac{5}{4}} M_p.
\]

(115)

So, (115) implies a lifetime of around 10^{-30}s.

The gauge boson-quark-anti-quark vertex will be accompanied by $g_{A_2 A_2}g_{YM}(X^B K + iD^B)$ and value of the same has been shown to be same as its SM value i.e $\mathcal{O}(1)$ in [29]. Using further the results of [28] and gaugino mass $\lambda^0 \sim \mathcal{V}^{\frac{5}{4}} m_\chi^2$ from equation (113), one obtains the following result for the decay width $\lambda^0 \rightarrow \psi_\mu + u + \bar{u}$:

\[
\Gamma (\lambda^0 \rightarrow \psi_\mu + u + \bar{u}) \sim \frac{g_{YM}^2 m_{3/2}^{5/2}}{32 (2\pi)^{3/2} m_{3/2}^2 M_p^2} \sim 10^{-17} M_p \sim \mathcal{O}(10),
\]

(116)

which yields a lifetime of around 10^{-25}s.

We will now discuss three-body gaugino decays into gravitino mediated by squarks. To avoid channel overlap, for simplicity, we will assume that the gaugino decays mediated by vector bosons and those mediated by squarks, involve different gauginos. Utilizing the conditions $\psi_{\mu}^{(+)} \gamma^\mu = \gamma^\mu \psi_{\mu}^{(-)} = 0$, the amplitudes for the above two diagrams can be written as:

\[
M_{(a)} \sim 2 p_\mu^\mu \frac{1}{M_p} \left(\bar{u}(p_q) \psi_\mu^{(+)\dagger} (p_\psi) \right) \left(\frac{i}{p_q^2 - m_q^2 + i\epsilon} \right) \left(\bar{u}(p_q) V_{\lambda-q-\bar{q} \lambda^{(+)\dagger}} \right)
\]

\[
M_{(b)} \sim 2 p_\mu^\mu \frac{1}{M_p} \left(\bar{u}(p_q) \psi_\mu^{(-}\dagger) (p_\psi) \right) \left(\frac{i}{p_q^2 - m_q^2 + i\epsilon} \right) \left(\lambda^{(-}\dagger V_{\lambda-q-\bar{q} v}(p_q) \right),
\]

(117)
\[V_{\lambda-q-\bar{q}} \sim \frac{f}{\sqrt{2}}V^{-\frac{1}{2}} \] being the gaugino-quark-squark vertex. From (117), one obtains the following helicities averaged sum:

\[
\sum_{s_\psi=\pm\frac{1}{2}, \pm\frac{1}{2}, s_q, s_{\bar{q}}, s_{\lambda g} = \pm\frac{1}{2}} M_{a)} M^\dagger_{(a)} \sim |V_{\lambda-q-\bar{q}}|^2 \frac{p_{q}^\mu p_{\bar{q}}^\nu}{M_p^2} \text{Tr} \left[\mathcal{P}^{(\pm)}_{\mu\nu} \left(-\not{p}_{q} + m_{\bar{q}} \right) \right] \text{Tr} \left[\left(\not{p}_{\lambda g} + m_{\lambda g} \right) \left(\not{p}_{q} + m_{\bar{q}} \right) \right],
\]

and utilizing \(\bar{u}(p_q)\psi^{(-)}_{\mu}(p_\psi) = -\psi^{(\dagger)}_{\mu}(p_\psi)v(p_q), \lambda^{(-)}_{\bar{g}} v(p_q) = -\bar{u}(p_q)\lambda^{(\dagger)}_{\bar{g}} \) to rewrite \(M_{b)} \) and therefore obtain:

\[
\sum_{s_\psi=\pm\frac{1}{2}, \pm\frac{1}{2}, s_q, s_{\bar{q}}, s_{\lambda g} = \pm\frac{1}{2}} \text{Re} M_{(a)} M^\dagger_{(b)} \sim |V_{\lambda-q-\bar{q}}|^2 \frac{p_{q}^\mu p_{\bar{q}}^\nu}{M_p^2} \text{Tr} \left[\mathcal{P}^{(\pm)}_{\mu\nu} \left(-\not{p}_{q} + m_{\bar{q}} \right) \right] \text{Tr} \left[\left(\not{p}_{\lambda g} + m_{\lambda g} \right) \left(\not{p}_{q} + m_{\bar{q}} \right) \right].
\]

In (117) - (119), the positive and negative energy gravitino projectors are given by:

\[
\mathcal{P}^{(\pm)} \equiv - \left(\not{p}_{3/2} \pm m_{3/2} \right) \left[\left(\eta_{\mu\nu} - \frac{p_{3/2,\mu} p_{3/2,\nu}}{m_{3/2}^2} \right) - \frac{1}{3} \left(\eta_{\mu\sigma} - \frac{p_{3/2,\mu} p_{3/2,\sigma}}{m_{3/2}^2} \right) \right] \eta_{\nu\lambda} - \frac{p_{3/2,\lambda} p_{3/2,\nu}}{m_{3/2}^2},
\]

A typical term that one would need to calculate is:

\[
\frac{1}{2} \text{Tr} \left[\mathcal{P}^{(\pm)}_{\mu\nu} \left(\eta_{\mu\nu} - \frac{p_{3/2,\mu} p_{3/2,\nu}}{m_{3/2}^2} \right) \eta_{\nu\lambda} - \frac{p_{3/2,\lambda} p_{3/2,\nu}}{m_{3/2}^2}, \eta = \pm \right] \text{ corresponding to } p_{\eta} = p_{\bar{q}}/p_{q}
\]

\[
\sim 4 \left\{ \left(m_{3/2}^2 - \frac{(p_{\bar{q}} \cdot p_{3/2})^2}{m_{3/2}^2} \right) (\eta p_{3/2} \cdot p_{\eta} \pm m_{3/2} m_{\eta}) \right. \\
- \left(p_{\mu}^\mu - \frac{p_{\bar{q}} \cdot p_{3/2} p_{\mu}^\mu}{m_{3/2}^2} \right) \left(\eta p_{\mu} - \frac{p_{\bar{q}} \cdot p_{3/2} p_{3/2,\mu}}{m_{3/2}^2} \right) \left(\eta \frac{p_{3/2} \cdot p_{3/2}}{m_{3/2}} \pm m_{3/2} m_{\eta} \right) \right\}.
\]
a can be identified with Wilson line modulus. In the four Wilson line moduli framework where the first generation left handed quarks get identified with right set of wilson line moduli. The earlier discussion was made with an ambiguity in identifying the quarks with right set of wilson line moduli. In this sub-section, we will readdress the gluino decays in the light of previous discussion done in [11].

4.1.2 Gluino Decays Revisited

\[
\Gamma \left(\tilde{W} \to q + \bar{q} + \psi_\mu \right) \approx \begin{align*}
\text{Max} & \left[\frac{1}{m_3^2} \int_{s_{23}=m_{3/2}^2}^{m_3^2} ds_{23} \int_{s_{13}=m_{3/2}^2}^{m_3^2-s_{23}} ds_{13} \left| V_{\lambda} \tilde{q} \cdot \bar{q} \cdot m_\lambda \right|
ight] \end{align*}
\]

\[\sim \text{Max} \left(10^{-32}, 10^{-30}, 10^{-32} \right) M_p = 10^{-28} M_p, \]

implying that the corresponding lifetime would be \(10^{-15}s\).

In the approximation, \(m_W \approx 0\), \(m_{3/2} \approx 0\) (valid in the limit of masses \(m_W \sim \frac{3}{2} M_\lambda\) and \(m_{3/2} \sim \lambda^{-2} M_p\) as given in equation (113)), the decay width for \(\tilde{W}^0 \to \psi_\mu + W^+ + W^-\) is given by (See [28]):

\[
\Gamma \left(\tilde{W}^0 \to \psi_\mu + W^+ + W^- \right) \approx \frac{g_{YM}^2 m_W^0}{34560 (2\pi)^3 m_{3/2}^4 M_p^2} \sim \frac{V^{-8} M_p^5}{M_W^4},
\]

which implies a lifetime of around \(10^{-66}s\). Treating the Wino/Bino gauginos as the co-NLSPs, we hence conclude that the two- and three-body gaugino decays into the gravitino (LSP), respect the BBN bounds. If one were to calculate similar neutralino decays into the gravitino, then for the Higgsino contribution to the neutralino-gauge-gravitino vertex, one will have the following suppression factor: \(\tilde{f} (f V^{-\frac{2}{3}}) \times \mathcal{O}(z_i)\) term in \(g_{YM} \frac{g_{\mu z_i}}{\sqrt{\lambda z_i}} \times \frac{z_i}{M_p}\), which is \(\tilde{f}^2 V^{-\frac{2}{3}} \times \frac{\sqrt{\lambda}}{M_p}\). For \(V \sim 10^5\), this is approximately, \(10^{-17}\). The corresponding gaugino-gauge-gravitino vertex will, without worrying about the gamma matrices, be of \(\mathcal{O} \left(\frac{f}{M_p} \right)\). Now, even at low \(Z\)-momenta, this is around \(10^{-16}\) for \(M_Z \sim 10^2 GeV\). Hence, the neutralino and gaugino decay (e.g., into gravitino and \(Z\) boson) widths, will approximately be the same.

4.1.2 Gluino Decays Revisited

In this sub-section, we will readdress the gluino decays in the light of previous discussion done in [11]. The earlier discussion was made with an ambiguity in identifying the quarks with right set of wilson line moduli. In the four Wilson line moduli framework where the first generation left handed quarks can be identified with Wilson line modulus \(a_2\) (strictly speaking \(A_2\)) and the first generation right handed quarks get identified with \(a_4\) (strictly speaking \(A_4\)) as mentioned above, by recalculating the
moduli space metric, we briefly estimate gluino decay life time results for tree-level as well as one-loop decays into neutralino and Goldstino, the long life time of which not only provides another signature of μ-split supersymmetry, the gluino decay into Goldstino (longitudinal component of gravitino) also demonstrates the invalidity of gluino as an appropriate NLSP from point of view of Dark Matter(LSP) production of Goldstino from neutralino.

\[
\tilde{g} \rightarrow q\bar{q}\tilde{\chi}_n
\]

We first discuss gluino three-body decays that involve the process like $\tilde{g} \rightarrow q\bar{q}\tilde{\chi}_n$ - \tilde{g} being a gaugino, q/\bar{q} being quark/anti-quark and $\tilde{\chi}_n$ being a neutralino. More specifically, e.g., the gluino decays into an anti-quark and an off-shell squark and the off-shell squark decays into a quark and neutralino. The Feynman diagrams involve gluino-quark/antivertex- squark vertex and neutralino-quark/antiquark-squark vertex. The gluino-quark/antiquark- squark in gauged supergravity action as also given in \[186\], is proportional to:

\[
G_{\tilde{q},\bar{q}_2} \sim fV^{-4/5}\tilde{q}_{iJ}q_{qI}\lambda_{\tilde{g}}, \lambda_{\tilde{g}} \text{corresponds to gluino}
\]

and from \[187\], contribution of physical neutralino-quark/antiquark-squark is proportional to

\[
X_{\tilde{q}}^{q/\bar{q}} \sim fV^{-4/5}\tilde{q}_{iJ}q_{qI}\tilde{\chi}_0^3
\]

Using RG analysis of coefficients of the effective dimension-six gluino decay operators as given in \[31\], it was shown in \[11\] that these coefficients at the EW scale are of the same order as that at the squark mass scale.

The analytical formulae to calculate decay width for three-body tree-level gluino decay channel as given in \[30\] is:-

\[
\Gamma(\tilde{g} \rightarrow \chi_n^i q_i \bar{q}_j) = \frac{g_s^2}{256\pi^3 M_3} \sum_{i,j} \int ds_{13} ds_{23} \frac{1}{2} \Re \left(A_{ij}(s_{23}) + B_{ij}(s_{13}) - 2\epsilon_n \epsilon_g C_{ij}(s_{23}, s_{13}) \right)
\]

where the integrand is the square of the spin-averaged total amplitude and $i, j = 1, 2, \ldots, 6$ are the indices of the squarks mediating the decay. The limits of integration in \[126\] are given in \[11\]. The A_{ij} terms in \[126\] represent the contributions from the gluino decay channel involving gluino\rightarrowsquark+quark and squark\rightarrowneutralino+anti-quark, whereas the B_{ij} terms come from channel gluino\rightarrowsquark+anti-quark.
Figure 14: Diagrams contributing to one-loop two-body gluino decay

and squark→neutralino+quark. The same are defined in [11]. Utilizing the results as given in (124) and (125), $A_{ij} \left(\text{Tr} \left[G_q G_{\tilde{q}} \right] \right) \sim \tilde{f}_4 V^{-\frac{16}{5}}$, $B_{ij} \left(\text{Tr} \left[G_{\tilde{q}} X_q X_{\tilde{q}} \right] \right) \sim \tilde{f}_4 V^{-\frac{16}{5}}$, $C \left(\text{Tr} \left[G_{\tilde{q}} G_q X_{\tilde{q}} X_q \right] \right) \sim \tilde{f}_4 V^{-\frac{16}{5}}$. Substituting these values for various vertex elements and solving equation (126) by using the same limits of integration as given in [11], dominating contribution of decay width is:

$$\Gamma(\tilde{g} \rightarrow \chi^0 n \tilde{q}_J) \sim \frac{g_s^2}{256\pi^3 V^2 m_3^3} \left[\tilde{f}_4 V^{-\frac{16}{5}} m_4^4 + \tilde{f}_4 V^{-\frac{16}{5}} V^{-\frac{16}{25}} m_4^4 + \tilde{f}_4 V^{-\frac{16}{5}} \frac{1}{f} m_4^4 \right]$$

$$\sim \frac{g_s^2}{256\pi^3 V^2 m_3^3} \left(\tilde{f}_4 V^{-\frac{16}{5}} \frac{1}{f} m_4^4 \right) \sim O(10^{-4}) \tilde{f}_4 V^{-\frac{16}{5}} M_p$$

$$\sim O(10^{-5}) \tilde{f}^4 GeV \quad (127)$$

Considering $f^2 \sim 10^{-10}$ as calculated in [11] in dilute flux approximation, decay width of gluino i.e equation (127) becomes: $\Gamma(\tilde{g} \rightarrow \chi^0 n \tilde{q}_J) \sim O(10^{-10}) \tilde{f}^4 < O(10^{-25}) GeV$. Further, Life time of gluino is given as

$$\tau = \frac{\hbar}{\Gamma} \sim \frac{10^{-34} J sec}{10^{-5} \tilde{f}^4 GeV} \sim \frac{10^{-19}}{\tilde{f}^4} > 10^1 sec \quad (128)$$

$\tilde{g} \rightarrow \tilde{\chi}^0_3 + g$ Relevant to Figs.4(a) and 4(b), the gluino-quark-squark vertex and the neutralino-quark-squark vertex will be given by (124)-(125). As explained in [11], the quark-quark-gluon vertex relevant to
figure 4, from [12] is given by:

\[g_{IJ} \bar{\chi}^I \sigma \cdot A \Im (X^B K + iD^B) \chi^J, \]

\[\sim g_{YM} g_{A_2 \tilde{A}_2} \bar{\chi}^{A_2} \sigma \cdot A \left\{ 6\kappa_B^2 \mu T_2 \pi \alpha' Q_B K + \frac{12\kappa_B^2 \mu T_2 \pi \alpha' Q_B v^B}{V} \right\} \] (129)

\(\chi^{A_2} \) and \(\bar{\chi}^{A_2} \) to quarks and antiquarks. \(X = X^B \partial_B = -12i\pi \alpha' \kappa_B^2 \mu T_2 \pi \alpha' Q_B \partial_T \) corresponding to the killing isometry vector and \(D \) term generated is given by:

\[D^B = \frac{4\pi \alpha' \kappa_B^2 \mu T_2 \pi \alpha' Q_B v^B}{V} \] (130)

Utilizing value of \(g_{A_2 \tilde{A}_2} \sim \mathcal{V} \bar{\chi} \), \(v^B \sim \mathcal{V} \), \(Q_B \sim \mathcal{V} (2\pi \alpha')^2 \tilde{f} \), it has been shown in [29] that quark-gluon-vertex will be of \(O(1) \).

The gauge kinetic term for squark-squark-gluon vertex, relevant to Fig.4(b) will be given by \(\frac{1}{\kappa_B^2 V} G^{\sigma B} \nabla_{\mu} T_2 \nabla^{\mu} \tilde{T}_B \). Using the value of \(G^{\sigma B} (EW) = \mathcal{V} \tilde{f} \) (for detailed explanation, see [29]), the given term generates the required squark-squark-gluon vertex as follows:

\[\frac{6i\kappa_B^2 \mu T_2 \pi \alpha' Q_B G^{\sigma B} B}{\kappa_B^2 V^2} A^{\mu} \partial_\mu (\kappa_B^2 \mu T_2 \pi \alpha')^2 C_{2 \mu} \tilde{A}_2 \tilde{A}_2 \] \(\sim \mathcal{V} (2\pi \alpha')^2 \tilde{f} \) (for \(\mathcal{V} \sim 10^5 \))

In [11], it has been discussed that behavior of Wilson coefficients corresponding to two-body gluino decay does not change much upon RG evolution to EW scale. Using the vertices calculated above relevant to Figs. 4(a) and 4(b), and the Feynman rules of [32], one obtains for the scattering amplitude:

\[\mathcal{M} \sim \tilde{f}^3 M_p \int \frac{d^4 k}{(2\pi)^4} \times \mathcal{V}^{-\frac{1}{2}} \left(i \tilde{\sigma} \cdot \frac{k}{k^2 - m_q^2 + i\epsilon} \right) \left(\mathcal{V}^{-\frac{1}{2}} \right) \left(\frac{i}{(k - p_{\tilde{g}})^2 - m_q^2 + i\epsilon} \right) \]

\[\times \left(\frac{\mathcal{V}_1 \mathcal{V}_2}{\sqrt{\mathcal{V}}} \right) \left(\frac{i}{(k - p_{\tilde{g}})^2 - m_q^2 + i\epsilon} \right) \left(\mathcal{V}^{-\frac{1}{2}} \right) \left(\frac{i \tilde{\sigma} \cdot \frac{k}{k^2 - m_q^2 + i\epsilon}}{(k - p_{\tilde{g}})^2 - m_q^2 + i\epsilon} \right) \]

\[+ \tilde{f}^2 M_p \int \frac{d^4 k}{(2\pi)^4} \times \mathcal{V}^{-\frac{1}{2}} \left(\frac{i}{(k + p_{\tilde{g}})^2 - m_q^2 + i\epsilon} \right) \left(\mathcal{V}^{-\frac{1}{2}} \right) \left(\frac{i \tilde{\sigma} \cdot \frac{k}{k^2 - m_q^2 + i\epsilon}}{(k + p_{\tilde{g}})^2 - m_q^2 + i\epsilon} \right) \]

\[\times \left(\frac{i \tilde{\sigma} \cdot \frac{k - p_{\tilde{g}}}{(k - p_{\tilde{g}})^2 - m_q^2 + i\epsilon}} \right) \] (132)
Figure 15: Different vertices relevant to one-loop gluino decay
Using the 1-loop integrals of [33]:

\[
\frac{1}{i} \int \frac{d^4k}{(2\pi)^4} \frac{(k_\mu, k_\nu)}{(k^2 - m_1^2 + i\epsilon)(k + p_1)^2 - m_2^2 + i\epsilon}(k + p_1 + p_2)^2 - m_3^2 + i\epsilon] = 4\pi^2 \left[p_{1\mu} C_{11} + p_{2\mu} C_{12}, p_{1\mu} p_{1\nu} C_{21} + p_{2\mu} p_{2\nu} C_{22} + (p_{1\mu} p_{2\nu} + p_{1\nu} p_{2\mu}) C_{23} + \eta_{\mu\nu} C_{24} \right];
\]

(a) \(m_1 = m_q, m_2 = m_3 = m_{q_1}; \ p_1 = -p_{\chi_3^0}, p_2 = -p_{\xi_3}; \)

(b) \(m_1 = m_3 = m_q, m_2 = m_{q_1}; \ p_1 = p_{\chi_3^0}, p_2 = -p_{\xi_3}. \) (133)

The one loop three point functions \(C_{ij} \)’s relevant for cases (a) and (b) have been calculated in [11] and are given as under:

\[
C_{24}^{(a)} = O(10^6), C_{24}^{(b)} = O(10^6);
C_{11}^{(a)} = \frac{1}{4\pi^2} \times 10^{-21} \sim O(1) \times 10^{-23} \text{GeV}^{-2};
C_{11}^{(b)} = O(10) \times 10^{-16} \text{GeV}^{-2};
C_{12}^{(a)} = O(10) \times 10^{-16} \text{GeV}^{-2};
C_{21}^{(b)} = C_{22}^{(b)} = C_{23}^{(b)} \sim O(1) \times 10^{-10} \text{GeV}^{-2};
C_{0}^{(b)} = \frac{1}{4\pi^2} \times 10^{-21} \sim O(1) \times 10^{-23} \text{GeV}^{-2}. \) (134)

Now, equation [132] can be evaluated to yield:

\[
\bar{u}(p_{\chi_3^0}) \left(\tilde{f}^3 V^{-0.4} \left[\bar{\sigma} \cdot p_{\chi_3^0} C_{11}^{(a)} + \bar{\sigma} \cdot p_{g_\mu} C_{12}^{(a)} \right] + \left[\bar{\sigma} \cdot p_{\chi_3^0} \epsilon \cdot p_{\chi_3^0} C_{21}^{(a)} + \bar{\sigma} \cdot p_{g_\mu} \epsilon \cdot p_{\chi_3^0} C_{22}^{(a)} + \bar{\sigma} \cdot \epsilon C_{24}^{(a)} \right] \right)
\]

+ \(f^2 V^{-1.6} \left[-\left(\bar{\sigma} \cdot p_{\chi_3^0} C_{11}^{(b)} + \bar{\sigma} \cdot p_{g_\mu} C_{12}^{(b)} \right) \bar{\sigma} \cdot \epsilon \bar{\sigma} \cdot p_{g_\mu} + \bar{\sigma} \cdot p_{\chi_3^0} \epsilon \cdot \bar{\sigma} \cdot p_{\chi_3^0} C_{21}^{(b)} + \bar{\sigma} \cdot p_{g_\mu} \epsilon \cdot \bar{\sigma} \cdot p_{g_\mu} C_{22}^{(b)} + \left(\bar{\sigma} \cdot p_{\chi_3^0} \bar{\sigma} \cdot \epsilon \bar{\sigma} \cdot p_{\chi_3^0} C_{23}^{(b)} + \bar{\sigma} \mu \bar{\sigma} \cdot \epsilon \sigma C_{24}^{(b)} \right) \right) u(p_\xi), \) (135)

which equivalently could be rewritten as:

\[
\bar{u}(p_{\chi_3^0}) \left[\bar{\sigma} \cdot A + \bar{\sigma} \cdot p_{\chi_3^0} \bar{\sigma} \cdot \epsilon \sigma \cdot B_1 + \bar{\sigma} \cdot p_{g_\mu} \bar{\sigma} \cdot \epsilon \sigma \cdot B_2 + D_3 \bar{\sigma} \mu \bar{\sigma} \cdot \epsilon \sigma C_{24}^{(b)} \right] u(p_\xi), \) (136)

where

\[
A^\mu \equiv \tilde{f}^3 V^{-0.4} \left[\bar{p}_{\chi_3^0} \mu \cdot p_{\chi_3^0} \left(2C_{11}^{(a)} + C_{21}^{(a)} \right) + \bar{p}_{g_\mu} \mu \cdot p_{\chi_3^0} \left(C_{12}^{(a)} + C_{22}^{(a)} \right) + \epsilon^\mu C_{24}^{(a)} \right];
B_1^\mu \equiv \tilde{f}^2 V^{-1.6} \left[-\bar{p}_{g_\mu} \left(C_{11}^{(b)} + C_{12}^{(b)} + C_{22}^{(b)} - C_{23}^{(b)} \right) + \bar{p}_{\chi_3^0} \left(C_{21}^{(b)} + C_{22}^{(b)} - 2C_{23}^{(b)} \right) \right];
B_2^\mu \equiv \tilde{f}^2 V^{-1.6} \left[\bar{p}_{g_\mu} \left(C_{12}^{(b)} + C_{22}^{(b)} \right) + \bar{p}_{\chi_3^0} \left(C_{22}^{(b)} - C_{23}^{(b)} \right) \right];
D_3 \equiv \tilde{f}^2 V^{-1.6} \right) (137)
Replacing \(\bar{u}(p_{\chi_3}^0)\bar{\sigma} \cdot p_{\chi_3}^0 \) by \(m_{\chi_3} \bar{u}(p_{\chi_3}^0) \) and \(\bar{\sigma} \cdot p_{\bar{g}}u(p_{\bar{g}}) \) by \(m_{\bar{g}} \), and using \(\epsilon \cdot p_{\chi_3}^0 = 0 \), be simplified to:

\[
M \sim \bar{u}(p_{\chi_3}^0) \left[A\bar{\sigma} \cdot \epsilon + B_1\bar{\sigma} \cdot \epsilon \bar{\sigma} \cdot p_{\chi_3}^0 + B_2\bar{\sigma} \cdot p_{\bar{g}}\bar{\sigma} \cdot \epsilon + D_1\bar{\sigma} \cdot p_{\bar{g}}\bar{\sigma} \cdot \epsilon \bar{\sigma} \cdot p_{\chi_3}^0 + D_3\bar{\sigma} \cdot \epsilon \bar{\sigma} \cdot \epsilon \bar{\sigma} \cdot p_{\chi_3}^0 + D_3\bar{\sigma} \cdot \epsilon \bar{\sigma} \cdot \epsilon \bar{\sigma} \cdot C_{24}^{(b)} \right] u(p_{\bar{g}}),
\]

where

\[
A \equiv \mathcal{V}^{-0.4} \tilde{f}^3 C_{24}^{(a)} - m_{\bar{g}}m_{\chi_3} \mathcal{V}^{-1.6} \tilde{f}^2 \left\{ C_{11}^{(b)} + 2C_{12}^{(b)} + C_{23}^{(b)} - C_{22}^{(b)} \right\},
\]

\[
B_1 \equiv \mathcal{V}^{-1.6} \tilde{f}^2 \left(C_{11}^{(b)} + 2C_{12}^{(b)} + C_{21}^{(b)} \right) m_{\chi_3},
\]

\[
B_2 \equiv \mathcal{V}^{-1.6} \tilde{f}^2 \left(C_{12}^{(b)} + C_{22}^{(b)} \right) m_{\bar{g}},
D_1 \equiv \mathcal{V}^{-1.6} \tilde{f}^2 \left(-C_{12}^{(b)} - C_{23}^{(b)} \right).
\]

Utilizing values of C’s calculated in (131),

\[
A \sim \mathcal{O}(10^5) \tilde{f}^2, B_1 \sim \mathcal{O}(10^{-7}) \tilde{f}^2 GeV^{-2}, B_2 \sim \mathcal{O}(10^{-7}) \tilde{f}^2 GeV^{-2}, D_1 \sim \mathcal{O}(10^{-18}) \tilde{f}^2 GeV^{-2}, D_3 \sim \mathcal{V}^{-1.6} \tilde{f}^2;
\]

\[
\sum_{\bar{g} \text{ and } \chi_3^0 \text{ spins}} |M|^2 \sim Tr \left(\sigma \cdot p_{\chi_3}^0 \left[A\bar{\sigma} \cdot \epsilon + B_1\bar{\sigma} \cdot \epsilon \bar{\sigma} \cdot p_{\chi_3}^0 + B_2\bar{\sigma} \cdot p_{\bar{g}}\bar{\sigma} \cdot \epsilon + D_1\bar{\sigma} \cdot p_{\bar{g}}\bar{\sigma} \cdot \epsilon \bar{\sigma} \cdot p_{\chi_3}^0 + D_3\bar{\sigma} \cdot \epsilon \bar{\sigma} \cdot \epsilon \bar{\sigma} \cdot C_{24}^{(b)} \right] \right), \]

which at:

\[
p_{\chi_3}^0 = \sqrt{m_{\chi_3}^2 c^4 + \rho^2}, p_{\bar{g}}^0 = p_{\chi_3}^0 = p_{\chi_3}^0 = \rho = \frac{c}{\sqrt{3}} \frac{m_{\bar{g}}^2 - m_{\chi_3}^2}{2m_{\bar{g}}},
\]

yields:

\[
\frac{1}{256} m_{\bar{g}}^2 \left[6m_{\bar{g}}^2 (B_1 + D_1 m_{\bar{g}})^2 + \left\{ 8A_1 + 16D_3 C_{24} + m_{\bar{g}} \left(\left(5 + \sqrt{3} \right) B_1 + 8B_2 + \left(5 + \sqrt{3} \right) D_1 m_{\bar{g}} \right) \right\}^2 \right],
\]

in the rest frame of the gluino.

Incorporating results of (139) in equation (143), one gets

\[
\sum_{\bar{g} \text{ and } \chi_3^0 \text{ spins}} |M|^2 \sim 0.2D_1^2 m_{\bar{g}}^6
\]

Now, using standard two-body decay results (See [34]), the decay width \(\Gamma \) is given by the following expression:

\[
\Gamma = \frac{\sum_{\bar{g} \text{ and } \chi_3^0 \text{ spins}} |M|^2 (m_{\bar{g}}^2 - m_{\chi_3}^2)}{16\pi h m_{\bar{g}}^3}
\]
Using result of (140): $D_1 \sim O(10^{-18}) \tilde{f}^2 \text{GeV}^{-2}$ and $m_{\tilde{g}} \sim \sqrt{\frac{4}{3}} M_p \text{ GeV}$, $m^2_{\tilde{\chi}_0} \sim m^2_{\tilde{g}} + m_{\tilde{g}} \tilde{f}^2 \text{GeV}^2 / m_{pl}$.

The two body decay width is given as:

$$
\Gamma = \frac{(0.2)D_1^2 m_\tilde{g}^6}{16\pi m^3_{\tilde{g}}} \sim O(10^{-18}) \tilde{f}^4 \text{GeV}^6 / m^3_{\tilde{g}} \sim 10^{-14} \tilde{f}^4 \text{GeV}
$$

(146)

Considering $\tilde{f} < 10^{-5}$ as calculated above, $\Gamma < 10^{-24}$ GeV. Life time of gluino is given as:

$$
\tau = \frac{\hbar}{\Gamma} \sim \frac{10^{-34}}{10^{-4} f^4 \text{GeV}} \sim \frac{10^{-20}}{f^6 \text{sec}} > 10^{30} \text{sec}
$$

(147)

Gluino (\tilde{g}) decays into Goldstino (\tilde{G})

We now consider the three-body decay of the gluino into Goldstino and a quark and anti-quark: $\tilde{g} \rightarrow \tilde{G} + q + \bar{q}$. The Feynman diagrams corresponding to this particular decay are shown in Fig. 8.

The gluino-(anti-)quark-squark vertex will again be given by (186). The gravitino-quark-squark vertex would come from a term of type $\bar{\psi} \sigma^{\mu} \bar{q} L q L$, which in $N = 1$ gauged supergravity lagrangian of [12] is given by:

$$
- g_{IJ} \left(\partial_{\mu} \tilde{A}^J \right) \chi^l \sigma^{\nu} \bar{\sigma}_{\mu} \psi_{\nu} - \frac{i}{2} e^{\frac{K}{2}} (D_{I} W) \chi^l \sigma^{\mu} \bar{\psi}_{\mu} + \text{h.c.}
$$

(148)

From [35], the gravitino field can be decomposed into the spin-\(\frac{3}{2}\) Goldstino field \tilde{G} via:

$$
\psi_{\nu} = \rho_{\nu} + \sigma_{\nu} \tilde{G}, \quad \tilde{G} = -\frac{1}{3} \sigma^{\mu} \psi_{\mu}
$$

(149)

ρ_{ν} being a spin-\(\frac{3}{2}\) field. Hence, the Goldstino-content of (148), using $\sigma^{\nu} \sigma^{\mu} \sigma_{\nu} = -2 \sigma^{\mu}$, is given by:

$$
2g_{IJ} \chi^l \left(\partial_{\mu} \tilde{A}^J \right) \bar{\sigma}^{\mu} \tilde{G} + \frac{3i}{2} e^{\frac{K}{2}} (D_{I} W) \chi^l \tilde{G} + \text{h.c.}
$$

(150)

Now, utilizing:

$$
g_{A_2 \tilde{A}_2} \sim \nu^{-\frac{2}{3}} \text{ and } e^{\frac{K}{2}} D_{A_2} W \bigg|_{A_2 \rightarrow A_2 + \nu^{-\frac{2}{3}} A_2} \sim \nu^{-\frac{7}{3}} A_2
$$

(151)
For this particular case:

\[\frac{\mathcal{V} A_2 \chi I \tilde{G}}{\sqrt{K_{A_2 A_2}^2/K_{A_2 A_2}}} \sim O(10^2) \mathcal{V}^{-\frac{37}{18}} \sim \mathcal{V}^{-\frac{45}{37}} \text{ for } \mathcal{V} \sim 10^5 \]

Figure 17: The Goldstino-quark-squark vertex

one obtains:

\[
2q_{A_2 \tilde{A}} \chi^I \left(\frac{q_{A_2} + p_{\tilde{G}}}{M_p} \right) \frac{3i}{2} e^{\frac{\psi}{2}} (D_{A_2} W) \chi^I \tilde{G} + \text{h.c.} \\
\sim \mathcal{V}^{-\frac{5}{9}} \chi^I \left(\frac{m_G}{M_p} \right) A_2 \tilde{G} + \mathcal{V}^{-\frac{5}{9}} \chi^I \left(\frac{m_{q_{A_2}}}{M_p} \right) A_2 \chi^I \tilde{G} \sim \mathcal{V}^{-\frac{37}{18}} A_2 \chi^I \tilde{G} \quad (152)
\]

for \(m_{q_{A_2}} \sim O(10) \text{MeV}, m_G \sim 0 \) and \(\mathcal{V} \sim 10^5 \)

The physical Goldstino-quark-squark vertex will be given as:

For this particular case:

\[
A_{ij} \left(\text{Tr} \left[G_{q_{A_2}}^{q_{A_2}} \tilde{G}_{q_{A_2}}^{q_{A_2}} \right] \text{Tr} \left[\tilde{G}_{q_{A_2}}^{q_{A_2}} \tilde{G}_{q_{A_2}}^{q_{A_2}} \right] \right) \sim f^2 \mathcal{V}^{-\frac{5}{9}} \mathcal{V}^{-\frac{45}{193}} \sim f^2 \mathcal{V}^{-5}, \\
B_{ij} \left(\text{Tr} \left[G_{q_{A_2}}^{q_{A_2}} \tilde{G}_{q_{A_2}}^{q_{A_2}} \right] \text{Tr} \left[\tilde{G}_{q_{A_2}}^{q_{A_2}} \tilde{G}_{q_{A_2}}^{q_{A_2}} \right] \right) \sim f^2 \mathcal{V}^{-\frac{5}{9}} \mathcal{V}^{-\frac{45}{193}} \sim f^2 \mathcal{V}^{-5} \\
C \left(\text{Tr} \left[G_{q_{A_2}}^{q_{A_2}} \tilde{G}_{q_{A_2}}^{q_{A_2}} \right] \text{Tr} \left[\tilde{G}_{q_{A_2}}^{q_{A_2}} \tilde{G}_{q_{A_2}}^{q_{A_2}} \right] \right) \sim f^2 \mathcal{V}^{-\frac{5}{9}} \mathcal{V}^{-\frac{45}{193}} \sim f^2 \mathcal{V}^{-5}
\]

Limits of integration as given in [11] are:

\[s_{23 \max} = \left(\mathcal{V}^{\frac{5}{9}} m_{\tilde{q}} - m_q \right)^2, \quad s_{23 \min} = m_{\tilde{q}}^2, \]

\[s_{13 \max} = \mathcal{V}^{\frac{5}{9}} m_{\tilde{q}}^2 - s_{23}, \quad s_{13 \min} = 0 \]

where \(m_{\tilde{q}} = \mathcal{V}^{\frac{5}{9}} m_{\tilde{q}} \sim 10^{11} \text{GeV}, m_{\tilde{G}} = 0 \). Utilizing the values of vertex elements calculated above and from [126], we can calculate decay width for Gluino in this particular case.

\[
\Gamma(\tilde{g} \rightarrow \chi^0 q_{\tilde{q}}, q_{\tilde{q}}) \sim \frac{g^2_s}{256 \pi^3 \mathcal{V}^{\frac{5}{2}} m_{\tilde{q}}^4} \left[-f^2 \mathcal{V}^{-5} m_{\tilde{q}}^4 \mathcal{V}^{\frac{5}{7}} + f^2 \mathcal{V}^{-5} \mathcal{V}^{\frac{5}{2}} m_{\tilde{q}}^4 - f^2 \mathcal{V}^{-5} \mathcal{V}^{\frac{5}{2}} m_{\tilde{q}}^4 \right] \\
\sim \frac{g^2_s}{256 \pi^3 \mathcal{V}^{\frac{5}{2}} m_{\tilde{q}}^4} (f^2 \mathcal{V}^{-5} \mathcal{V}^{\frac{5}{2}} m_{\tilde{q}}^4) \\
\sim O(10^{-4}) \mathcal{V}^{-\frac{11}{3}} m_{\tilde{q}} f^2 \text{GeV} < 10^{-17} f^2 \text{GeV} < O(10^{-25}) \text{GeV} \quad (153)
\]
The life time of gluino is given as:
\[
\tau = \frac{\hbar}{\Gamma} \sim \frac{10^{-34} J_{sec}}{10^{-17} f^2 GeV} \sim \frac{10^{-7}}{f^2} > 10^3 sec
\] \hspace{1cm} (154)

We now consider the two-body decay of the gluino into a Goldstino and a gluon:

The matrix element for the above will be given by:
\[
\mathcal{M} \sim \tilde{f}^2 \int \frac{d^4k}{(2\pi)^4} \times \mathcal{V}^{-\frac{4}{3}} \left(\frac{i\sigma \cdot k}{k^2 - m_q^2 + i\epsilon} \right) \left(\mathcal{V}^{-\frac{4}{3}} \frac{i}{(k - p_G)^2 - m_q^2 + i\epsilon} \right) \times \left(\mathcal{V}^{\frac{1}{3}} \varepsilon \cdot (2k - p_G + p_g) \right) + \tilde{f} \int \frac{d^4k}{(2\pi)^4} \times \mathcal{V}^{-\frac{4}{3}} \left(\frac{i\sigma \cdot k}{k^2 - m_q^2 + i\epsilon} \right) \left(\mathcal{V}^{-\frac{4}{3}} \frac{i}{(k + p_G)^2 - m_q^2 + i\epsilon} \right) \times \left(\frac{i\sigma \cdot (k - p_{g\mu})}{(k - p_{g\mu})^2 - m_q^2 + i\epsilon} \right)
\] \hspace{1cm} (155)

As discussed in [11], the Wilson coefficients corresponding to Gluino-Goldstino- Gluon coupling do not change much upon RG evolution to EW scale. The matrix amplitude in equation (155) can be written as:
\[
\tilde{f}^2 \mathcal{V}^{-1.2} \left\{ \sigma \cdot p_G C_{11}^{(a)} + \sigma \cdot p_{g\mu} C_{12}^{(a)} \right\} (2\varepsilon \cdot p_G) + \left\{ \sigma \cdot p_G \varepsilon \cdot p_G C_{21}^{(a)} + \sigma \cdot p_{g\mu} \varepsilon \cdot p_G C_{22}^{(a)} + \sigma \cdot C_{24}^{(a)} \right\} \\
+ \tilde{f} \mathcal{V}^{-2.4} \left\{ - \left(\sigma \cdot p_G C_{11}^{(b)} + \sigma \cdot p_{g\mu} C_{12}^{(b)} \right) \sigma \cdot \varepsilon \sigma \cdot p_{g\mu} + \sigma \cdot p_G \sigma \cdot \varepsilon \sigma \cdot p_G C_{21}^{(b)} + \sigma \cdot p_{g\mu} \sigma \cdot \varepsilon \sigma \cdot p_{g\mu} C_{22}^{(b)} \\
- \left(\sigma \cdot p_G \sigma \cdot \varepsilon \sigma \cdot p_{g\mu} + \sigma \cdot p_{g\mu} \sigma \cdot \varepsilon \sigma \cdot p_G C_{23}^{(b)} + \sigma \cdot \varepsilon \sigma \cdot p_{g\mu} C_{24}^{(b)} \right) \right\} ,
\] \hspace{1cm} (156)

which equivalently could be rewritten as:
\[
\tilde{u}(p_G) \left[\sigma \cdot A + \sigma \cdot p_G \sigma \cdot \varepsilon \sigma \cdot B_1 + \sigma \cdot p_{g\mu} \sigma \cdot \varepsilon \sigma \cdot B_2 + D_4 \sigma \mu \sigma \cdot \varepsilon \sigma \mu C_{24}^{(b)} \right] u(p_g),
\] \hspace{1cm} (157)
where
\[A^\mu \equiv \mathcal{V}^{-1.2} \bar{f}^2 \left[p_G^\mu \epsilon \cdot p_G \left(2C^{(a)}_{12} + C^{(a)}_{23} \right) + p_{g\mu} \epsilon \cdot p_G \left(C^{(a)}_{12} + C^{(a)}_{23} - C^{(b)}_{22} \right) + \epsilon^\mu C^{(a)}_{24} \right]; \]
\[B_1^\mu \equiv \mathcal{V}^{-2.4} \bar{f} \left[-p_{g\mu} \left(C^{(b)}_{12} + C^{(b)}_{23} - C^{(b)}_{22} \right) + p_G^\mu \left(C^{(b)}_{21} + C^{(b)}_{22} - 2C^{(b)}_{23} \right) \right]; \]
\[B_2^\mu \equiv \mathcal{V}^{-2.4} \bar{f} \left[p_{g\mu} \left(C^{(b)}_{12} + C^{(b)}_{23} \right) + p_G^\mu \left(C^{(b)}_{22} - C^{(b)}_{23} \right) \right]; \]
\[D_4 \equiv \mathcal{V}^{-2.4} \bar{f}. \] (158)

This time around replacing \(\bar{u}(p_G) \bar{\sigma} \cdot p_G \) by 0 and \(\bar{\sigma} \cdot p_\bar{g} u(p_\bar{g}) \) by \(m_\bar{g} u(p_\bar{g}), \) (157) can be rewritten as:
\[\bar{u}(p_G) \left(A_2 \bar{\sigma} \cdot \epsilon + B_3 \bar{\sigma} \cdot p_\bar{g} \bar{\epsilon} \cdot \epsilon + D_2 \bar{\sigma} \cdot p_\bar{g} \bar{\epsilon} \cdot \epsilon + D_4 \bar{\sigma} \cdot \epsilon + \epsilon^\mu C^{(b)}_{24} \right) u(p_\bar{g}), \] (159)

where
\[A_2 \equiv \mathcal{V}^{-1.2} \bar{f}^2 C^{(a)}_{24} ; B_3 \equiv \mathcal{V}^{-2.4} \bar{f} M_\bar{g}(C^{(b)}_{12} + C^{(b)}_{23}) \]
\[D_2 \equiv \mathcal{V}^{-2.4} \bar{f} \left(-C^{(b)}_{12} + C^{(b)}_{23} \right) ; D_4 \equiv \mathcal{V}^{-2.4} \bar{f}. \] (160)

Results of various C’s functions required for this particular case similar to the ones given in [11] are:
\[C^{(a)}_{24} = C^{(b)}_{24} \sim O(1); \]
\[C^{(a)}_0 \sim O(10) \times 10^{-22} \text{GeV}^{-2}; \]
\[C^{(b)}_{12} \sim O(10) \times 10^{-22} \text{GeV}^{-2}; \]
\[C^{(b)}_1 \sim O(10) \times 10^{-22} \text{GeV}^{-2}; \]
\[C^{(b)}_{22} = C^{(b)}_{23} \sim O(10) \times 10^{-22} \text{GeV}^{-2}; \]
\[C^{(b)}_0 \sim O(10) \times 10^{-22} \text{GeV}^{-2}. \] (161)

Utilizing (161), one gets: \(A_2 \equiv 10^{-6} \bar{f}^2, B_3 \equiv (10^{-23} \bar{f}) \text{GeV}^{-1}, D_2 \equiv (10^{-34} \bar{f}) \text{GeV}^{-2}, D_4 \equiv \mathcal{V}^{-2.4} \bar{f} \)
\[\sum_{\bar{g} \text{ and } \bar{G} \text{ spins}} |\mathcal{M}|^2 \sim Tr \left(\sigma \cdot p_G \left[A_2 \bar{\sigma} \cdot \epsilon + B_3 \bar{\sigma} \cdot p_\bar{g} \bar{\epsilon} \cdot \epsilon + D_2 \bar{\sigma} \cdot p_\bar{g} \bar{\epsilon} \cdot \epsilon + D_4 \bar{\sigma} \cdot \epsilon + \epsilon^\mu C^{(b)}_{24} \right] \right) \]
\[\times \sigma \cdot p_\bar{g} \left[A_2 \bar{\sigma} \cdot \epsilon + B_3 \bar{\sigma} \cdot p_\bar{g} \bar{\epsilon} \cdot \epsilon + D_2 \bar{\sigma} \cdot p_\bar{g} \bar{\epsilon} \cdot \epsilon + D_4 \bar{\sigma} \cdot \epsilon + \epsilon^\mu C^{(b)}_{24} \right] \right)^1, \] (162)

which at:
\[p_G^0 = m_\bar{g}/2, p_G^1 = p_G^2 = p_G^3 = \frac{m_\bar{g}}{2\sqrt{3}}, \] (163)

yields:
\[m_\bar{g}^2 \left[D_2^2 m_\bar{g}^4 + \frac{1}{6} \left(6A_2 + 12D_4 C^{(b)}_{24} + m_\bar{g} \left(6B_3 + \left(3 + \sqrt{3} \right) D_2 m_\bar{g} \right) \right)^2 \right] \sim \bar{f}^4 A_2^2 m_\bar{g}^2. \] (164)

So, using results from [34], the decay width comes out to be equal to:
\[\Gamma = \frac{\sum_{\bar{g} \text{ and } \bar{G} \text{ spins}} |\mathcal{M}|^2}{16\pi \hbar m_\bar{g}} \sim O(10^{-1}) A_2^2 m_\bar{g} \sim 10^{-2} \bar{f}^4 \text{GeV}. \] (165)
Figure 19: Feynman diagrams for the R-parity violating decays of Neutralino χ^0_3.

Considering value of $f^2 \sim 10^{-10}$, $\Gamma < 10^{-22}$ GeV. Life time of gluino is given as:

$$\tau = \frac{h}{\Gamma} \sim \frac{10^{-34} \text{J sec}}{10^{-2} f^4 \text{GeV}} \sim \frac{10^{-21}}{f^4} \text{sec} > 10^{-1} \text{sec}$$

(166)

4.2 R-Parity Violating Neutralino Decays

In the following we will be discussing the decay width of tree level decay diagrams of neutralino mediated by sleptons/squarks, Higgs and gauge Bosons.

Decays mediated via squarks and sleptons

Now, we evaluate all possible neutralino decays which are mediated by squarks/sleptons and also involve R-parity violating vertices as shown in Fig. 12. The life time calculation requires the evaluation of various matrix amplitudes corresponding to various decay channels. In particular, to evaluate the contribution of neutralino-squark-quark/neutrino-slep-lepton, we will explicitly work out squark-quark-Higgsino vertex replacing the Higgsino by $f^0 \tilde{\chi}^0_3$, and then add these contributions. To calculate the contribution of various interaction vertices shown in Fig.12 in the context of $N = 1$ gauged supergravity, one needs to consider the following terms of gauged supergravity action of Wess and Bagger [12].

$$\mathcal{L} = g_Y M g_{\alpha J} X^\alpha \chi^j \lambda^j + ig_{i J} \chi^i \left[\tilde{\sigma} \cdot \partial \chi^i + \Gamma^i_{Lj} \tilde{\sigma} \cdot a^L \chi^j + \frac{1}{4} (\tilde{\sigma} a_L K \tilde{\sigma} \cdot a_L - \text{c.c}) \chi^i \right]$$

$$+ \frac{e K}{2} \left(D_i D_J W \right) \chi^i \chi^j + \text{h.c.},$$

(167)

where, X^α corresponds to the components of a killing isometry vector. From here, one notes that
\[X^\alpha = -6i q_1^2 \mu_7 Q_\alpha , \] where \(\alpha = B, Q_\alpha = 2\pi \alpha' \int \rho_i \ i^* \omega_i \wedge P_- \) where \(P_- \) is a harmonic zero-form on \(\Sigma_B \) taking value +1 on \(\Sigma_B \) and -1 on \(\sigma(\Sigma_B) - \sigma \) being a holomorphic isometric involution as part of the Calabi-Yau orientifold - and \(\tilde{X} \) Fermion-sfermion-fermion/anitifermion vertices

As discussed above, the neutralino-lepton-slepton vertex corresponding to Fig. 11(a), is given by

\[Higgsino-fermion/anitifermion-sfermion \]

Since neutralino is of Majorana nature, in two-component notation, the contribution of Higgsino-lepton-slepton vertex in gauged supergravity action of Wess and Bagger [12], is given by

\[\frac{\epsilon^2}{2} (D_{\bar{z}_i} D_{\bar{A}_1} W) \chi^{z_i, \chi^{cA_1}} + g^{\bar{I}A_1} \chi^{z_i} \left[\bar{\sigma} \cdot \partial \chi^{cA_1} + \bar{\Gamma}_{A_1} \bar{\partial}_A \chi^{A_1} + \frac{1}{4} (\partial_{A_1} K \bar{\sigma} \cdot A_1 - \text{c.c.}) \chi^{cA_1} \right] \]

\(\chi^z \) is \(SU(2)_L \) higgsino, \(\chi^{A_1} \) corresponds to \(SU(2)_L \) electron and \(\bar{A}_1 \) corresponds to left-handed squark and \(g^{\bar{I}A_1} = 0 \).

Strictly speaking, \(SU(2) \) EW symmetry gets spontaneously broken for Higgsino-lepton-slepton vertex, however the effective Lagrangian respects two-component notation, the contribution of Higgsino-lepton-slepton vertex in gauged supergravity action of Wess and Bagger [12], is given by

\[D_i D_j W = \partial_i \partial_j W + (\partial_i \partial_j K) W + \partial_i K D_j W + \partial_j K D_i W - \left(\partial_i K \partial_j K \right) W - \Gamma_{ij}^k D_k W. \] (168)

Higgsino-fermion/anitifermion-sfermion + Higgsino-fermion/anitifermion-sfermion + Fermion-sfermion-fermion/anitifermion vertices

- As discussed above, the neutralino-lepton-slepton vertex corresponding to Fig. 11(a), is given by considering the contribution of gaugino-slepton-lepton vertex with a small admixture of higgsino-lepton-slepton vertex as given in equation (113). Since neutralino is of Majorana nature, in two-component notation, the contribution of Higgsino-lepton-slepton vertex in gauged supergravity action of Wess and Bagger [12], is given by

\[e^{\frac{K}{2}} ((\partial_i \partial_{a_1} K) W + \partial_i K D_{a_1} W + \partial_{a_1} K D_i W - (\partial_i K \partial_{a_1} K) W) \chi^{z_i, \chi^{cA_1}} \sim V^{-\frac{3}{8}} z_i (a_1 - V^{-\frac{7}{8}} M_p). \] (169)

As shown in [33]

\[e^{\frac{K}{2}} D_i D_{a_1} W \sim \mathcal{O}(1) e^{\frac{K}{2}} D_i D_{a_1} W; \]

Higgsino-lepton-slepton vertex will hence be given as:

\[e^{\frac{K}{2}} D_i D_{a_1} W \chi^{z_i, \chi^{cA_1}} \sim e^{\frac{K}{2}} D_i D_{a_1} W \chi^{z_i, \chi^{cA_1}} \sim V^{-\frac{3}{8}} z_i \delta_{a_1} A_1 \chi^{z_i, \chi^{cA_1}}; \]

\(A_1 \) corresponds to left-handed slepton. The contribution of physical Higgsino-lepton-slepton vertex after giving VEV to \(Z_I \) will be given as:

\[C^{\tilde{H}_L^0 l_1 l_2} \sim \frac{V^{-\frac{3}{8}} z_i}{\sqrt{K_{A_1} l_2 K_{A_1} l_2 K_{A_1} l_2}} \sim V^{-\frac{3}{8}}, \] (170)
2. The interaction vertex corresponding to gaugino-lepton-slepton vertex is given by

\[g_Y M g_{T\bar{T}B} X^B \chi^J \lambda_9 + \partial_{a_1} T_B D^B \bar{\chi}^{\bar{a}_1} \lambda_9. \]

Utilizing (B1) and \(X^B = -6i \kappa^2 \mu_7 Q_{T_B}, \kappa^2 \mu_7 \sim \frac{1}{\sqrt{2}}, g_Y M \sim V^{-\frac{3}{2}}, Q_{T_B} \sim V^{\frac{3}{2}} (2 \pi \alpha')^2 \tilde{f}, g_Y M g_{T_B \bar{a}_1} \rightarrow -V^{-\frac{3}{2}} a_1 \) and

\[g_Y M g_{T_B \bar{A}_1} \sim V^{-\frac{3}{2}} (A_1 - V^{-\frac{3}{2}} M_p), \]

Using \(T_B = Vol(\sigma_B) - C_{Ij} a I \bar{a}_j + h.c. \), (intersection matrices \(C_{Ij} \) are given in appendix B), \(\partial_{a_1} T_B \rightarrow V^{\frac{3}{2}} (a_1 - V^{-\frac{3}{2}}) \) and the dominant contribution to the physical gaugino-lepton-slepton vertex is proportional to:

\[C^{3lL \bar{L}} \sim \frac{g_Y M g_{T_B \bar{A}_1}}{\sqrt{K_{A_1 \bar{A}_1}}} X^{T_B} \sim V^{-\frac{3}{2}} \tilde{f} \sim V^{-1}. \] (171)

3. Keeping in mind the fact that physical neutralino eigenstate \(\chi_3^0 \) is largely a gaugino with a small admixture of Higgsino in our set up, by adding the contribution of (170) and (171) as according to (113), the physical neutralino-lepton-slepton vertex is given as:

\[C^{3lL \bar{L}} : \tilde{f} V^{-1} \delta A_1 \lambda_9 \bar{\chi}^{\bar{A}_1} + \tilde{f} \frac{\nu}{m_D} (V^{-\frac{3}{2}}) \delta A_1 \chi^I \bar{\chi}^{\bar{A}_1} \sim \tilde{f} (V^{-1}) \chi_3^0 l \bar{L} \text{ for } V \sim 10^5. \] (172)

- The quark-quark-slepton vertex corresponding to Fig. 11(a) in gauged supergravity action is given by the following term: \(e^{K/2} D \frac{A_2}{A_4} D \frac{A_4}{W} \chi^{A_2} \chi^{A_4} \). In terms of undiagonalized basis, consider

\[D_{a_2} D_{a_4} W = (\partial_{a_2} \partial_{a_4} K) W + \partial_{a_2} KD_{a_4} W + \partial_{a_4} KD_{a_2} W - (\partial_{a_2} K \partial_{a_4} K) W. \]

Using equations (27) and (31):

\[e^{K/2} ((\partial_{a_2} \partial_{a_4} K) W + \partial_{a_2} KD_{a_4} W + \partial_{a_4} KD_{a_2} W - (\partial_{a_2} K \partial_{a_4} K) W) \sim V^{-\frac{3}{2}} + V^{\frac{1}{2}} \delta a_1. \] (173)

From (173), picking up the component of fluctuations linear in \(a_1 \) and from (33)

\[e^{K/2} D \frac{A_2}{A_4} D \frac{A_4}{W} W \sim O(1)e^{K/2} D_{a_2} D_{a_4} W, \]

one gets the contribution of quark-slepton-quark vertex as:

\[e^{K/2} D \frac{A_2}{A_4} D \frac{A_4}{W} W \chi^{A_2} \chi^{A_4} \sim e^{K/2} D_{a_2} D_{a_4} W \chi^{A_2} \chi^{A_4} \sim \left(V^{-\frac{3}{2}} \delta A_1 \right) \chi^{A_2} \chi^{A_4}. \] (174)

The physical quark-slepton-quark vertex is given by

\[C_{3lL \bar{L} uL} \sim \frac{V^{-\frac{3}{2}}}{\sqrt{K_{A_2 A_4} K_{A_1 A_1} K_{A_4 A_4}}} \sim (10)^{-\frac{15}{2}} V^{-\frac{3}{2}} \sim V^{-\frac{3}{2}} \text{ for } V \sim 10^5. \] (175)
• The contribution of Higgsino-quark-squark relevant to the Neutralino-quark-squark vertex of Fig. 11(b) is given by:

\[
\frac{e^2}{\sqrt{2}} (D_1 D_{A_4} W) \bar{\chi}^i \chi^{A_4} + ig_{A_4} \bar{\chi} \left[\bar{\sigma} \cdot \partial \chi^{A_4} + \Gamma^A_{A_4 A_4} \bar{\sigma} \cdot \partial A_4 \chi^{A_4} + \frac{1}{4} (\partial A_4 K \bar{\sigma} \cdot A_4 - \text{c.c.}) \chi^{A_4} \right].
\]

Working in diagonalized basis, \(g_{A_4} = 0\).

Now consider

\[
D_1 D_{A_4} W = \partial_1 a_{4} W + (\partial_1 K a_{4} K) W + \partial_1 K D_{A_4} W + \partial_1 K D_1 W - (\partial_1 K a_{4} K) W - \Gamma_{KA_4 D_{K}W},
\]

where \(a_{4}, z_{i}\) correspond to undiagonalized moduli fields.

1. Considering \(a_{4} \rightarrow a_{4} + \mathcal{V}^{-\frac{11}{2}} M_{pl}\) and utilizing (122), (133) and (177), one gets:

\[
\Gamma^a_{z_{i}a_{4}} \sim \mathcal{V}^{-\frac{11}{2}} - \mathcal{V}^{-\frac{11}{2}} \delta a_{4}, \Gamma^a_{z_{i}a_{4}} \sim \mathcal{V}^{-\frac{11}{2}} + \mathcal{V}^{-\frac{11}{2}} \delta a_{4}, \Gamma^a_{z_{i}a_{4}} \sim \mathcal{V}^{-\frac{11}{2}} + \mathcal{V}^{-\frac{11}{2}} \delta a_{4}.
\]

Next, using equations (177), (178), one obtains:

\[
\frac{e^2}{\sqrt{2}} (\Gamma^a_{z_{i}a_{4}} D_{z_{i}} W + \Gamma^a_{z_{i}a_{4}} a_{4} W + \Gamma^a_{z_{i}a_{4}} D_{a_{4}} W + \Gamma^a_{z_{i}a_{4}} a_{4} D_{a_{4}} W + \Gamma^a_{z_{i}a_{4}} a_{4} W) \sim \left(\mathcal{V}^{-\frac{11}{2}} + \mathcal{V}^{-\frac{11}{2}} \delta a_{4}\right)
\]

and

\[
e^2 (\partial_1 K a_{4} K) W + \partial_1 K D_{a_{4}} W + \partial_1 K D_1 W - (\partial_1 K a_{4} K) W \chi^{i} a_{4} \sim \mathcal{V}^{-\frac{11}{2}} + \mathcal{V}^{-\frac{11}{2}} \delta a_{4} \chi^{i} a_{4}.
\]

Utilizing equation (177) and (178), picking up the component linear in fluctuation \(\delta a_{4}\), contribution of Higgsino-quark-squark vertex will be

\[
e^2 D_{A_4} W a_{4} \chi^{i} \chi^{A_4} \sim e^2 D_{A_4} W a_{4} \chi^{i} \chi^{A_4} \sim \mathcal{V}^{-\frac{11}{2}} \delta A_4 \chi^{i} \chi^{A_4}
\]

and physical Higgsino-quark-squark takes the form as below:

\[
C^{H}_{L_4, i} d_R \sim \frac{\mathcal{V}^{\frac{11}{2}}}{\sqrt{K_{z_{i}z_{i}} K A_4 A_4 K A_4 A_4}} \sim \left[(10)^{-\frac{19}{2}} \mathcal{V}^{\frac{21}{2}}\right] \sim \mathcal{V}^{-\frac{11}{2}}.
\]

2. The interaction vertex corresponding to gaugino-quark-squark vertex is given by

\[
g_{YM} g_{A_4} T_B \chi^{i} \chi^{A_4} \lambda_{i}.
\]

For a Kähler moduli space, \(g_{A_4} T_B = 0\) i.e the gaugino-quark-squark vertex does not contribute to this particular vertex.

3. In view of above, the physical neutralino-quark-squark vertex as according to equation (113) is given as:

\[
C^0 \tilde{d}_{L_4} \tilde{d}_R : \tilde{f} \frac{\mathcal{V}^{-\frac{11}{2}}}{m_{pl}} \mathcal{V}^{-\frac{11}{2}} \delta a_{4} \tilde{d}_{L_4} \chi^{i} \sim \tilde{f} \frac{\mathcal{V}^{-\frac{11}{2}}}{m_{pl}} \mathcal{V}^{-\frac{11}{2}} \delta \tilde{d}_{L_4} \tilde{d}_R.
\]
• The lepton-squark-quark vertex corresponding to Fig. 11(b) is given by considering the contribution \(\frac{e^2}{2} (\mathcal{D}_a \mathcal{D}_a \mathcal{W}) \chi^{cA_1} \chi^{A_2} + \frac{e^2}{2} (\mathcal{D}_a \mathcal{D}_a \mathcal{W}) \chi^{A_1} \chi^{cA_2} \). In terms of undiagonalized basis

\[
\mathcal{D}_{a1} \mathcal{D}_{a2} \mathcal{W} = (\partial_{a1} \partial_{a2} K) W + \partial_{a1} K \mathcal{D}_{a2} W + \partial_{a2} K \mathcal{D}_{a1} W - (\partial_{a1} K \partial_{a2} K) W
\]

and

\[
\mathcal{D}_{a1} \mathcal{D}_{a2} \mathcal{W} = (\partial_{a1} \partial_{a2} K) W + \partial_{a1} K \mathcal{D}_{a2} W + \partial_{a2} K \mathcal{D}_{a1} W - (\partial_{a1} K \partial_{a2} K) W
\]

Utilizing \(a_4 \to a_4 + \frac{\nu_{-1}}{T} \) and equations (27), (31), on solving,

\[
e^\frac{K}{2} (\partial_{a1} \partial_{a2} K) W + \partial_{a1} K \mathcal{D}_{a2} W + \partial_{a2} K \mathcal{D}_{a1} W - (\partial_{a1} K \partial_{a2} K) W \chi^{a1} \chi^{a2} \sim \left(\nu^{-1} + \frac{1}{\nu} \delta a_4 \right) \chi^a \chi^b \]

\[
e^\frac{K}{2} (\partial_{a1} \partial_{a2} K) W + \partial_{a1} K \mathcal{D}_{a2} W + \partial_{a2} K \mathcal{D}_{a1} W - (\partial_{a1} K \partial_{a2} K) W \chi^a \chi^{a2} \sim \left(\nu^{-1} + \frac{1}{\nu} \delta a_4 \right) \chi^a \chi^{a2}.
\]

From (181), one gets the contribution of lepton-squark-quark vertex as :

\[
e^\frac{K}{2} \mathcal{D}_{a1} \mathcal{D}_{a2} W \chi^{a1} \chi^{a2} + e^\frac{K}{2} \mathcal{D}_{a1} \mathcal{D}_{a2} W \chi^{a1} \chi^{a2} \sim \left(\nu^{-1} + \frac{1}{\nu} \delta a_4 \right) \chi^a \chi^b + \left(\nu^{-1} + \frac{1}{\nu} \delta a_4 \right) \chi^a \chi^{a2}.
\]

and the physical lepton-squark-quark vertex is given by

\[
C^{\nu,\nu_{RL}} \sim \frac{\nu^{-1}}{\sqrt{K_{A_1 A_1} K_{A_2 A_2} K_{A_4 A_4}}} + \frac{\nu^{-1}}{\sqrt{K_{A_1 A_1} K_{A_2 A_2} K_{A_4 A_4}}} \sim \nu^{-\frac{1}{2}}.
\]

• The Neutralino-quark-squark vertex of Fig. 11(c) is given as considering the contribution of

\[
e^\frac{K}{2} \mathcal{D}_{a1} \mathcal{D}_{a2} W \chi^1 \chi^{cA_2} + i g \bar{Z}_i \bar{A}_2 \chi^1 \left[\bar{\sigma} \cdot \partial + \Gamma_{A_2 A_2} \bar{\sigma} \cdot \partial A_2 \chi^{cA_2} + \frac{1}{4} (\partial_{A_2} K \bar{\sigma} \cdot A_2 - c.c.) \chi^{cA_2} \right]
\]

\(\chi^1 \) is \(SU(2)_L \) higgsino, \(\chi^{A_2} \) corresponds to \(SU(2)_L \) quark and \(A_2 \) corresponds to left-handed squark. and \(g_{fA_2} = 0 \).

In terms of undiagonalized basis, consider

\[
\mathcal{D}_i \mathcal{D}_{a2} \mathcal{W} = (\partial_i \partial_{a2} K) W + \partial_i K \mathcal{D}_{a2} W + \partial_{a2} K \mathcal{D}_i W - (\partial_i K \partial_{a2} K) W
\]

where \(a_2, z_i \) correspond to undiagonalized moduli fields.

1. Considering \(a_2 \to a_2 + \nu^{-\frac{1}{2}} M_p \), using equations (27), (31) and picking up the component linear in \(z_i \) as well as fluctuations of \(a_2 \) i.e. \((a_2 - \nu^{-\frac{1}{2}} M_p) \), one gets

\[
e^\frac{K}{2} ((\partial_i \partial_{a2} K) W + \partial_i K \mathcal{D}_{a2} W + \partial_{a2} K \mathcal{D}_i W - (\partial_i K \partial_{a2} K) W) \sim (\nu^{-\frac{20}{9}}) z_i \delta a_2.
\]

Using (33):

\[
e^\frac{K}{2} \mathcal{D}_i \mathcal{D}_{a2} W \sim O(1) e^\frac{K}{2} \mathcal{D}_i \mathcal{D}_{a2} W,
\]

the Higgsino-quark-squark vertex will be given as

\[
e^\frac{K}{2} \mathcal{D}_i \mathcal{D}_{a2} W \chi^1 \chi^{cA_2} \sim e^\frac{K}{2} \mathcal{D}_i \mathcal{D}_{a2} W \chi^1 \chi^{cA_2} \sim -\nu^{-\frac{20}{9}} Z_i \delta A_2 \chi^1 \chi^{cA_2};
\]

\(A_2 \) correspond to left- handed squark and the contribution of physical Higgsino-quark-squark vertex will be given as:

\[
C^{H_{i,UL}U_L} \sim \frac{\nu^{-\frac{20}{9}} < Z_i >}{\sqrt{K_{Z_i Z_i} K_{A_2 A_2} K_{A_2 A_2}}} \sim \nu^{-\frac{1}{2}}.
\]
2. As discussed for gaugino lepton-slepton vertex in Figure (a), the gaugino-quark-squark vertex is given by
\[g_{YM}g_B X^B \bar{\chi}^C \lambda_{\alpha} + \partial_{\alpha} T_B D_B \bar{\chi}^{\alpha_1} \chi^0. \]
Utilizing (31) and \(X^B = -6i\kappa_3^{2} \mu_7 Q_B, \kappa_3^{2} \mu_7 \sim \frac{1}{\sqrt{2}}, g_{YM} \sim \sqrt{\frac{-\tilde{f}}{2}}, Q_B \sim \sqrt{\frac{2}{2}(2\pi a')^2 \tilde{f}}, \) This time,
\[g_{YM}g_B \delta_{a_2} \rightarrow -\sqrt{\frac{2}{2}}(a_2 - \sqrt{\frac{2}{2}}), \partial_{\alpha} T_B \rightarrow \sqrt{\frac{2}{2}}(a_2 - \sqrt{\frac{2}{2}}) \]
The dominant contribution to the physical gaugino-quark-squark vertex is proportional to :
\[C^{\lambda_3 u_u L} \sim \frac{\sqrt{2}}{2} \frac{1}{\sqrt{\tilde{K}_{A_2} A_2}} \sim \tilde{f} \left(\sqrt{2} \right). \] (186)

Following equation number (113), the neutralino-squark vertex will be given by :
\[C^{\lambda_3 u_u L} \sim C^{\lambda_3 u_u L} + \tilde{f} \sqrt{2} \frac{V}{m_{pl}} C^{\tilde{f} u_u L L} \sim \tilde{f} \sqrt{2} \chi^{0} \lambda_3 u_u L. \] (187)

- The lepton-squark-quark corresponding to Fig. 11(c) is given by considering the contribution of \(e^\frac{K}{2} (D_{\alpha_1} D_{\alpha_4} W) \chi^{A_1} \chi^{A_4} \) in gauged supergravity action. In terms of undiagonalized basis,
\[D_{\alpha_1} D_{\alpha_4} W = (\partial_{\alpha_1} \partial_{\alpha_4} K) W + \partial_{\alpha_1} K D_{\alpha_4} W + \partial_{\alpha_4} K D_{\alpha_1} W - (\partial_{\alpha_1} K \partial_{\alpha_4} K) W. \]
Utilizing equations (27) and (31), one obtains:
\[e^\frac{K}{2} \left((\partial_{\alpha_1} \partial_{\alpha_4} K) W + \partial_{\alpha_1} K D_{\alpha_4} W + \partial_{\alpha_4} K D_{\alpha_1} W - (\partial_{\alpha_1} K \partial_{\alpha_4} K) W \right) \sim \sqrt{\frac{2}{2}} + \sqrt{\frac{2}{2}} \delta a_2. \] (188)
From (188), picking up the component of fluctuations linear in \(a_2 \) and from (33) using:
\[e^\frac{K}{2} D_{\alpha_1} D_{\alpha_4} W \sim O(1)e^\frac{K}{2} D_{\alpha_1} D_{\alpha_4} W, \]
one gets the contribution of lepton-squark-quark vertex as :
\[e^\frac{K}{2} D_{\alpha_1} D_{\alpha_4} W \chi^{A_1} \chi^{A_4} \sim e^\frac{K}{2} D_{\alpha_1} D_{\alpha_4} W \chi^{A_1} \chi^{A_4} \sim \left(\sqrt{\frac{2}{2}} \delta A_2 \right) \chi^{A_1} \chi^{A_4}. \] (189)
The physical lepton-squark-quark vertex is given by
\[C^{\lambda_e L_L L} \sim \frac{\sqrt{2}}{2} \frac{1}{\sqrt{\tilde{K}_{A_2} A_2 H_{A_2 L} A_2}} \sim (10)^{-\frac{12}{2}} \sqrt{\frac{2}{2}} \sim \sqrt{\frac{2}{2}} \text{for } V \sim 10^5. \] (190)

Now, working in two component notation, in order to calculate the decay width, we will be using the decay width formula as given by H. Dreiner et al. in [32]. Because of Majorana nature of neutralino, we are considering both right handed as well as left handed incoming neutralino though the dominant contribution occurs in case of vertices corresponding to right handed neutralino. Henceforth, we will be using incoming right handed neutralino in the matrix amplitude calculation.

Guided by their notations, right handed incoming and left handed outgoing are denoted by wave function \(y^\dagger_\lambda \equiv y^\dagger (\vec{p}_1, \lambda_1), x^\dagger_\lambda \equiv x^\dagger (\vec{p}_1, \lambda_1), x^\dagger_\lambda \equiv x^\dagger (\vec{p}_u, \lambda_u), \) and \(x^\dagger_\lambda \equiv x^\dagger (\vec{p}_u, \lambda_u), \) respectively. Using the
\[\tilde{f}V^{-1}\chi_{3}^{0}l_{L}\tilde{l}_{L} \]

\[V^{-\frac{2}{3}}d_{L}^{c}\tilde{l}_{L}u_{L} \]

\[(\tilde{f} \frac{v}{m_{pl}}V^{-\frac{1}{4}})\chi_{3}^{0}d_{L}^{c}\tilde{d}_{R} \]

\[V^{-\frac{2}{3}}l_{L}\tilde{d}_{R}u_{L} \]

\[\tilde{f}V^{-\frac{3}{5}}\chi_{3}^{0}u_{L}\tilde{u}_{L} \]

\[V^{-\frac{2}{3}}l_{L}\chi_{3}^{c}\chi_{L}^{L} \]
numerical estimate of vertices as calculated in set of equations \[172, 175, 180, 183, 187, 190\] for all three Feynman diagrams, the corresponding contributions to the decay amplitude is:

\[
M_1 = \bar{f}V^{-1}\bar{V}^{-\frac{2}{3}} \left(\frac{i}{(p_1 - k_1)^2 - m_{\ell L}^2} \right) y^{\dagger}_i x^+_i x^+_d x_d
\]

\[
iM_2 = \bar{f}V^{-1}\bar{V}^{-\frac{2}{3}} \left(\frac{i}{m_{pl} (p_1 - k_1)^2 - m_{\ell R}^2} \right) y^{\dagger}_i x^+_d x^+_u x_u
\]

\[
iM_3 = \bar{f}V^{-1}\bar{V}^{-\frac{2}{3}} \left(\frac{i}{m_{uL}^2 (p_1 - k_1)^2 - m_{uL}^2} \right) y^{\dagger}_i x^+_d x^+_u x_u.
\]

Neglecting all of the final state fermion masses, one can express kinematic variables in the form as given below:

\[
z_l \equiv 2p_1 \cdot k_1 / m_{\chi_3}^2 = 2E_l / m_{\chi_3}, z_d \equiv 2p_1 \cdot k_d / m_{\chi_3}^2 = 2E_d / m_{\chi_3} \quad z_u \equiv 2p_1 \cdot k_u / m_{\chi_3}^2 = 2E_u / m_{\chi_3}.
\]

and the total matrix amplitude can be rewritten as:

\[
M = c_1 y^{\dagger}_i x^+_i x^+_d x_d + c_2 y^{\dagger}_i x^+_d x^+_u x_u + c_3 y^{\dagger}_i x^+_u x^+_d x_d,
\]

where for \(m_{\chi_3} \sim \sqrt[3]{m_{\tilde{g}}} \) and \(m_{\ell L} \sim m_{\ell R} \sim m_{\tilde{u}L} \sim m_{\tilde{u}R} \sim \sqrt[3]{m_{\tilde{g}}} m_{\tilde{g}} \) as given in equations \[B13\] and \[B21\]

\[
c_1 \equiv \bar{f}V^{-\frac{2}{3}}(1 - z_l) \quad n_2 \equiv \bar{f}V^{-\frac{2}{3}}(1 - z_d) \quad n_3 \equiv \bar{f}V^{-\frac{2}{3}}(1 - z_u)
\]

As explained in \[32\], by applying Fierz identity, one can reduce the number of terms:

\[
M = (c_1 - c_3) y^{\dagger}_i x^+_i x^+_d x_d + (c_2 - c_3) y^{\dagger}_i x^+_d x^+_u x_u.
\]

and

\[
|M|^2 = |c_1 - c_3| y^\dagger_i x^+_i x_d y^\dagger_i x^+_d x_u + |c_2 - c_3| y^\dagger_i x^+_d x_d y^\dagger_i x^+_d x_u x_l
\]

\[
-2\text{Re}[(c_1 - c_3)(c_2^* - c_3^*) y^\dagger_i x^+_i x_d x_u x_l x_d]
\]

Summing over the fermion spins by using following identities,

\[
\sum_s x^\alpha_\alpha(p, s) x_\beta^\dagger(p, s) = +p \cdot \sigma_{\alpha\beta}, \sum_s x_\beta^\dagger(p, s) x^\beta(p, s) = +p \cdot \sigma_{\alpha\beta}, \sum_s y_\beta^\dagger(p, s) y^\beta(p, s) = +p \cdot \sigma_{\alpha\beta}
\]

\[
\sum_s y^\alpha(p, s) y_\beta^\dagger(p, s) = +p \cdot \sigma_{\alpha\beta}
\]

one obtain:

\[
\sum_{\text{spins}} |M|^2 = |c_1 - c_3|^2 \text{Tr}[k_1 \cdot \sigma p_1 \cdot \sigma] \text{Tr}[k_d \cdot \sigma k_u \cdot \sigma] + |c_2 - c_3|^2 \text{Tr}[k_d \cdot \sigma p_1 \cdot \sigma] \text{Tr}[k_u \cdot \sigma k_1 \cdot \sigma]
\]

\[
-2\text{Re}[(c_1 - c_3)(c_2^* - c_3^*) \text{Tr}[k_1 \cdot \sigma k_u \cdot \sigma k_d \cdot \sigma p_1 \cdot \sigma]]
\]

\[53\]
Applying the trace formulae and using
\[+2k_l \cdot k_d = (1 - z_u)m_{\tilde{\chi}^0_1}^2, \quad +2k_l \cdot k_u = (1 - z_d)m_{\tilde{\chi}^0_1}^2, \quad +2k_d \cdot k_u = (1 - z_l)m_{\tilde{\chi}^0_1}^2. \] (200)

\[
\sum_{\text{spins}} |\mathcal{M}|^2 = 4|c_1 - c_3|^2 p_i \cdot k_l k_d k_u + 4|c_2 - c_3|^2 p_i \cdot k_l k_d k_u
\]
\[-4\text{Re}[(c_1 - c_3)(c_3^* - c_1^*)](k_l \cdot k_u p_i \cdot k_d + p_i \cdot k_l k_d k_u - k_l \cdot k_d p_i \cdot k_u)
\]
\[= m_{\tilde{\chi}^0_1}^4 [(c_1^2 z_l (1 - z_l) + |c_2|^2 z_d (1 - z_d) + |c_3|^2 z_u (1 - z_u))
\-2\text{Re}[c_1 c_2^*(1 - z_l)(1 - z_d) - 2\text{Re}[c_1 c_3^*(1 - z_l)(1 - z_u)]
\-2\text{Re}[c_2 c_3^*(1 - z_d)(1 - z_u)]], \] (201)

The differential decay rate follows:
\[
\frac{d^2 \Gamma}{dz_l dz_d} = \frac{N_c m_{\chi}^5}{2^8 \pi^3} \left(\frac{1}{2} \sum_{\text{spins}} |\mathcal{M}|^2 \right), \] (202)

where \(N_c = 3\) and the kinematic limits are
\[0 < z_l < 1, 1 - z_l < z_d < 1.\] (203)

Adopting the technique as used in [32], the total decay width for the above Feynman diagrams is given as:
\[
\Gamma = \frac{N_c m_{\chi}^5}{2^8 \cdot 3 \pi^3} \left(|c_1^*|^2 + |c_2^*|^2 + |c_3^*|^2 - 2\text{Re}[c_1^* c_2^* c_3^*] \right), \] (204)

where \(c_i^*\), \(i = 1, 2, 3\) are obtained from \(c_i\)'s by integrating \(z_l, z_d\) in the aforementioned limits. Therefore, on simplifying, the result comes out to be
\[
\Gamma \sim \frac{3 \sqrt{3} \frac{m_{\chi}^5}{2} f_1^2, \mathcal{V}^{-\frac{7}{12}}}{2^8 \cdot 3 \pi^3 \sqrt{3} m_{\chi}^5} \sim 10^{-4} f_1^2, \mathcal{V}^{-\frac{7}{12}} m_{\chi}^5 f_1^2 \sim 10^{-18} f_1^2 \] (205)

In dilute flux approximation, considering \(f_1^2 < 10^{-8}\), life time of neutralino:
\[
\tau = \frac{h}{\Gamma} \sim \frac{10^{-34} J_{sec}}{10^{-18} f_1^2} \sim \frac{10^{-34} J_{sec}}{10^{-26} GeV} > O(10^3) \text{sec} \] (206)

4.3 Two-Body Slepton/Squark Decays

The decay width for \(\tilde{t}/\tilde{q} \rightarrow l/q + \psi_\mu\) in our set up is given by:
\[
\Gamma (\tilde{t}/\tilde{q} \rightarrow l/q + \psi_\mu) \sim \frac{m_{l/q}}{m_{\chi/\Psi}^5} \sim \mathcal{V}^{-\frac{7}{12}} M_p, \] (207)

implying a lifetime of around \(10^{-25.5}\) s, satisfying the BBN constraints.
Figure 21: Two-Body Slepton/Squark Decay

(a) \(\tilde{l} \rightarrow \tilde{G} l \)

(b) \(\tilde{l} \rightarrow \tilde{V} \psi \), \(\psi \rightarrow l' \)

(c) \(\tilde{l} \rightarrow \chi_3 V \), \(\chi_3 \rightarrow l' \)

(d) \(\tilde{l} \rightarrow \psi \psi \), \(\psi \rightarrow l' \)

Figure 22: Three-body slepton decays
4.4 Three-Body Slepton Decays

As explained in [36], the following set of effective operators are relevant to three-body slepton decays:

\[
\begin{align*}
O_1 &= \bar{p}_l \gamma \tilde{G}^c \gamma^* p_V \epsilon^* \\
O_2 &= \bar{p}_l \gamma \tilde{G}^c \gamma^* p_{\tilde{G}}^c \epsilon^* \\
O_3 &= \bar{p}_l \gamma \tilde{G}^c \gamma^* p_{\tilde{G}}^c \epsilon^* \\
O_4 &= i \bar{p}_l \gamma \epsilon^* p_V \tilde{G}^c \\
O_5 &= i \bar{p}_l \gamma \epsilon^* p_V \tilde{G}^c \\
O_6 &= i \bar{p}_l \gamma \epsilon^* p_V \tilde{G}^c \\
O_7 &= i \bar{p}_l \gamma \epsilon^* p_V \tilde{G}^c \\
O_8 &= i \bar{p}_l \gamma \epsilon^* \tilde{G}^c \\
O_9 &= i \bar{p}_l \gamma \epsilon^* \tilde{G}^c \\
O_{10} &= i \bar{p}_l \gamma \epsilon^* \tilde{G}^c ,
\end{align*}
\]

(208)

where \(\epsilon_\mu \) is the polarization of gauge boson \(V \). Notice that for an on-shell gravitino in the final state, \(O_3 = 0 \) by using the gravitino equation of motion.

Using the following volume-suppression factors in various vertices in Fig. 14(a)-(d) above:

\[
\begin{align*}
\tilde{l} - \tilde{G} - l \text{ vertex: } & \frac{g_{A_1A_1}}{K_{A_1A_1}} = 1; \\
l - l' - V \text{ vertex: } & \frac{g_{A_1A_1}}{K_{A_1A_1}} \tilde{f} V^{-\frac{2}{3}} l n V; \\
\tilde{l} - \tilde{l} - V \text{ vertex: } & \left(\frac{K_{A_1A_1}^2}{\tilde{f} V^{-2}} \right) \sqrt{\frac{s_{13} s_{23}^2}{K_{A_1A_1}^2}} \sim \frac{\tilde{f} V^{-2}}{10^4}; \\
\tilde{l} - l' - \tilde{G} \text{ vertex: } & \frac{g_{A_1A_1}}{K_{A_1A_1}} = 1,
\end{align*}
\]

(209)

and the operators of (208), the matrix elements for three-body slepton decay [diagrams (a)-(d)] are

\[
\begin{align*}
\mathcal{M}_l^V & \sim \tilde{f} V^{-\frac{11}{3}} \frac{1}{s_{23}} (2O_1 - O_5) \\
\mathcal{M}_l^{V_1} & \sim \tilde{f} V^{-2} \frac{1}{10^4 M_p m_{\tilde{G}}^2 + m_{\tilde{V}}^2} (O_2 + O_3) \\
\mathcal{M}_l^{V_2} & \sim \sum_i 10 \frac{\tilde{f} V^{-\frac{2}{3}}}{M_p} \frac{1}{s_{13} - s_{\chi_3}} [m_{\chi_3} (O_4 - O_9) - 4 (O_6 + O_7 - O_{10}) + m_{\tilde{V}}^2 O_5] \\
\mathcal{M}_l^{V_3} & \sim \tilde{f} V^{-\frac{11}{9}} \frac{1}{10^4 M_p} O_8 ,
\end{align*}
\]

(210)

where \(\chi_3 \) denotes the lightest neutralino in our set up, and

\[
s_{12} = (p_{\tilde{G}} + p_V)^2, \quad s_{13} = (p_{\tilde{G}} + p_V)^2, \quad s_{23} = (p_V + p_V)^2 .
\]

(211)
Notice that \(s_{12} + s_{13} + s_{23} = m_{\tilde{l}_1}^2 + m_{\tilde{G}}^2 + m_{\tilde{Z}}^2 \).

The differential decay width is

\[
d\Gamma = \frac{1}{(2\pi)^3} \frac{1}{32m_{\tilde{l}}^3} |M|^2 dm_{13}^2 dm_{23}^2 ,
\]

where \(M = M_{\tilde{t}_V} + M_{\tilde{b}_V} + M_{\tilde{l}_V} + M_{\tilde{f}_V} \).

The sum of the matrix elements can be written as

\[
\mathcal{M}(\tilde{l}_h \rightarrow l'V\tilde{G}) = M_{\tilde{t}_V} + M_{\tilde{b}_V} + M_{\tilde{l}_V} + M_{\tilde{f}_V} = \sum_{i=1...10} M_i O_i ,
\]

where the \(M_i \) can be read off from Eqs. (210) above as:

\[
M_{1,5} \sim \frac{\bar{f}V\frac{-i}{4}}{M_p s_{23}}; \quad M_{2,3} \sim \frac{(\bar{f}V\frac{-i}{4})}{M_p (m_{\tilde{f}_V}^2 - s_{13} - s_{23})} ; \\
M_{4,9} \sim \frac{m_{\chi}(10\bar{f}V\frac{-i}{4})}{M_p(s_{13} - m_{\tilde{f}_V}^2)}; \quad M_{6,7,10} \sim \frac{M_{4,9}}{m_{\chi}} ; \\
M_8 \sim \frac{1}{M_p} \left(\frac{m_{\tilde{l}_1}^2}{s_{13} - m_{\chi}^2} \frac{(10\bar{f}V\frac{-i}{4})}{s_{13} - m_{\chi}^2} + \frac{\bar{f}V\frac{-i}{4}}{10^4} \right) .
\]

The squared matrix element is

\[
|\mathcal{M}(\tilde{l}_h \rightarrow l'V\tilde{G})|^2 = \sum_{i=1...10} |M_i|^2 O_{i,i} \\
+ \sum_{i,j=1...10}^{i<j} \text{Re}(M_i M_j^*) O_{i,j}^{re} + \sum_{i,j=1...10}^{i<j} \text{Im}(M_i M_j^*) O_{i,j}^{im} .
\]

All the \(M_i \) are real except for \(M_8 \), which has both real and imaginary components. The only non-zero contributions to the last term in Eq. (215) come from \(\text{Im}(M_i M_j^*) \) \((i < 8)\) and \(\text{Im}(M_8 M_j^*) \) \((j > 8)\). The resultant contribution of the same are evaluated in appendix E. Utilizing that,

\[
\Gamma (\tilde{l} \rightarrow l' + \tilde{G} + V) \sim \int_{m_{\tilde{f}_V}^2/2}^{2m_{\tilde{l}}^2} ds_{13} \int_{m_{\tilde{f}_V}^2}^{m_{\tilde{l}}^2} ds_{23} \frac{\text{Re}(M_4 M_8^*) O_{4,8}^{re}}{m_{\tilde{l}}^2} \sim 10^{-15} M_p,
\]

implying that the associated life-time of this decay is about \(10^{-28} \) s, which respects the BBN constraints. The summarized results of life-time of various (N)LSP candidates are given in table 2.

5 Relic abundance of Gravitino dark matter candidate

As discussed in section 4, explicit calculations yielding the gravitino-decay life time of the same order or greater than age of the universe, justifies taking gravitino to be a viable dark matter candidate in our setup. Keeping in mind the fact that relic density of dark matter particle should be within the limits provided by recent WMAP observations and other direct and indirect experiments, this
Decay channels

Decay channels	Average life time
Gaugino decays: $\tilde{B} \rightarrow \psi_\mu Z/\gamma$	10^{-30} s
$\tilde{B} \rightarrow \psi_\mu u\bar{u}$	10^{-13} s
$\tilde{W} \rightarrow \psi_\mu u\bar{u}$	10^{-25} s
$\tilde{W}^0 \rightarrow \psi_\mu W^+W^-$	10^{-66} s
Gluino decays: $\tilde{g} \rightarrow \chi^0_n q_j \bar{q}_j$	10^{-1} s
$\tilde{g} \rightarrow \chi^0_3 g$	10^{-10} s
$\tilde{g} \rightarrow \psi_\mu q_j \bar{q}_j$	10^{-3} s
$\tilde{g} \rightarrow \psi_\mu g$	10^{-1} s
RPV Neutralino decay: $\chi^0_3 \rightarrow ude^-$	10^{-1} s
Slepton decays: $l \rightarrow l' GV$	10^{-28} s
$l/\tilde{q} \rightarrow l/q\psi_\mu$	$10^{-25.5}$ s
Gravitino decays: $\psi_\mu \rightarrow h\nu_e$	10^{-14} s
$\psi_\mu \rightarrow \nu\gamma, \nu Z$	10^{-22} s
$\psi_\mu \rightarrow L_i L_j E^c_k$	10^{-21} s
$\psi_\mu \rightarrow L_i Q_j D^c_k$	10^{-20} s
$\psi_\mu \rightarrow U^c_i D^c_j D^c_k$	10^{-18} s

Table 2: Life time estimates of various N(LSP) decay channels

section is devoted to calculating the relic-abundance of the gravitino as a dark matter particle. The constraints on the cosmological gravitino abundance have been discussed in [37]. Assuming that reheating temperature will be low enough to produce an appropriate amount of dark matter in case of heavy gravitino, we focus on the case of gravitinos produced only in the decays of co-NLSPs and show that the same are produced in sufficient numbers to constitute all of non-baryonic dark matter. The mass scales and life time estimates of sleptons and neutralino discussed in section 2 and 3 manifestly indicate the same to be valid co-NLSP’s which freeze out with appropriate thermal relic density before decaying and then eventually decay into the gravitino. Therefore, gravitino then inherits much of the relic density of the neutralino/slepton.

5.1 Neutralino density calculation

The number density of cold relic density (CDM) from the early universe depends sensitively on the annihilation cross section of such particles. Amongst the various approaches to calculate the thermal cross section given in the literature, we rely on the partial-wave expansion approach used in [13] to calculate the annihilation cross section for each possible process. Since the μ-split SUSY set up discussed in section 2 includes only neutral light Higgs boson; heavy Higgs boson and similarly superpartners of neutral particles (i.e only Neutralino), we consider possible annihilation channels which proceed via these particles only. The important channels that we will be discussing are: $\chi^0_3 \chi^0_3 \rightarrow hh$, $\chi^0_3 \chi^0_3 \rightarrow ZZ$, $\chi^0_3 \chi^0_3 \rightarrow f\bar{f}$.

The general procedure which is being followed in partial wave expansion approach, is given as follows. As given in [35], in QFT, the general cross-section is given as

$$\sigma v_{\text{Mol}} = \frac{1}{4E_1 E_2} \int d|\mathbf{LIPS}| |\mathbf{M}|^2$$ \hspace{1cm} (217)
where
\[dLIPS = (2\pi)^4 \delta^4(p_1 + p_2 - \sum p_j) \prod \int \frac{d^3 p_1}{(2\pi)^3 2\pi_0}. \]

The thermally-averaged product of the neutralino pair-annihilation cross section and their relative velocity \(\langle \sigma v_{\text{Møl}} \rangle \) is given as \[13\] \[38\]
\[\langle \sigma v_{\text{Møl}} \rangle(T) = \int \frac{d^3 p_1 d^3 p_2 \sigma_{v_{\text{Møl}}} e^{-E_1/T} e^{-E_2/T}}{d^3 p_1 d^3 p_2 e^{-E_1/T} e^{-E_2/T}}, \]
where \(p_1 = (E_1, \mathbf{p}_1) \) and \(p_2 = (E_2, \mathbf{p}_2) \) are the 4-momenta of the two colliding particles, and \(T \) is the temperature of the bath. Given the complexity of the general cross section, it is difficult to solve analytically. Alternatively, one finds a way to get the solution by expressing \(\langle \sigma v_{\text{Møl}} \rangle \) in terms of \(x = \frac{T}{M} \). For this, one defines:
\[w(s) = \frac{1}{4} \int dLIPS |M|^2 = E_1 E_2 \sigma_{v_{\text{Møl}}}. \]

Incorporating the value of \(\sigma_{v_{\text{Møl}}} \) in equation (219),
\[\langle \sigma v_{\text{Møl}} \rangle(T) = \int \frac{d^3 p_1 d^3 p_2 w(s) e^{-E_1/T} e^{-E_2/T}}{d^3 p_1 d^3 p_2 E_1 E_2 e^{-E_1/T} e^{-E_2/T}}. \]

By defining change of variables discussed in \[38\], i.e. expressing momentum and energy in terms of \(x \), carrying over the integration in terms of \(x \), \(\langle \sigma v_{\text{Møl}} \rangle \) takes the form given below:
\[\langle \sigma v_{\text{Møl}} \rangle = \frac{1}{m^2} \left[w - \frac{3}{2} (2w - w') x + O(x^2) \right]_{s=4m^2} \equiv a + bx + O(x^2). \]

The coefficients \(a \) and \(b \) summed over all possible final states \(f_1 f_2 \) are defined in \[13\], and given as:
\[a = \sum_{f_1 f_2} \frac{c \theta \left(4M^2 - (m_{f_1} + m_{f_2})^2 \right)}{M_R^2} \sigma_{v_{\text{Møl}}} \bar{b}_{f_1 f_2}, \]
\[b = \sum_{f_1 f_2} \frac{c \theta \left(4M^2 - (m_{f_1} + m_{f_2})^2 \right)}{M_R^2} \sigma_{v_{\text{Møl}}} \bar{v}_{f_1 f_2} \left\{ -3 + \frac{3}{4} \eta_{f_1 f_2} \left(\frac{m_{f_1}^2 + m_{f_2}^2}{2M^2_R} + \frac{(m_{f_1}^2 - m_{f_2}^2)^2}{8M^4_R} \right) \right\} \}

The analytic expressions of \(a \) and \(b \) are given for the \(s \), \(t \) and \(u \) channels of various possible annihilation processes are given in \[13\]. For the paper to be self-contained, we directly quote the forms of analytical expressions and utilizing the same, we calculate the numerical estimates of \(a \) and \(b \) for all kinematically possible annihilation processes in our set up.

The idea is to first calculate the required vertices corresponding to different annihilation processes in the context of \(N = 1 \) gauged supergravity action and then use their estimates to calculate \(a \) and \(b \) coefficients. Following the same formalism as used in section 3 and 4, utilizing the gauged supergravity action of Wess and Bagger, we obtain the numerical estimates of required vertices.

The physical eigenstates of neutralino mass matrix in the context of gauged supergravity action are given as:
\[\tilde{\chi}_1^0 \sim -\frac{\tilde{\eta}_0^0 + \tilde{\eta}_2^0}{\sqrt{2}}; \text{ mass } \sim \mathcal{V}^{-\frac{35}{36}} M_p > m_{\tilde{\chi}_1}, \]
\[\tilde{\chi}_2^0 \sim (\tilde{\eta}_0^0 + \frac{\nu}{m_{pl}} \lambda_0^0 + \tilde{\eta}_0^0 + \tilde{\eta}_2^0); \text{ mass } \sim \mathcal{V}^{-\frac{35}{36}} M_p > m_{\tilde{\chi}_2}; \text{ CP : - }, \]
\[\tilde{\chi}_3^0 \sim -\lambda^0 + (\tilde{\eta}_0^0 + \frac{\nu}{m_{pl}} \lambda_0^0) \left(\tilde{\eta}_0^0 + \tilde{\eta}_2^0 \right); \text{ mass } \sim \mathcal{V}^{-\frac{4}{3}} M_p > m_{\tilde{\chi}_3}. \]
Figure 23: Feynman diagrams for $\chi_3^0 \chi_3^0 \rightarrow hh$ via s–channel Higgs exchange and t-channel χ_i^0 exchange.

Utilizing (223),

\[
C_{\chi_3^0 \chi_3^0 h} = C_{\lambda^0 \tilde{H}_0^0 h} + \left(\tilde{f}_V \frac{v}{m_{pl}} \right) C_{\lambda^0 \tilde{H}_0^0 h},
\]

\[
C_{\chi_3^0 \chi_3^0 h} = (\tilde{f}_V \frac{v}{m_{pl}}) C_{\lambda^0 \tilde{H}_0^0 h} + \left(\tilde{f}_V \frac{v}{m_{pl}} \right) C_{\lambda^0 \tilde{H}_0^0 h},
\]

\[
C_{\chi_3^0 \chi_3^0 h} = C_{\lambda^0 \chi_3^0 h} + \left(\tilde{f}_V \frac{v}{m_{pl}} \right) C_{\lambda^0 \tilde{H}_0^0 h} + \left(\tilde{f}_V \frac{v}{m_{pl}} \right) C_{\lambda^0 \tilde{H}_0^0 h},
\]

where \tilde{H}_0^0 is physical Higgsino and the physical light Higgs is defined as $h = \frac{H_0^0 - H_0^0}{\sqrt{2}}$.

Higgsino-higgsino- Higgs vertex

\[
\mathcal{L} = \frac{e^K}{2} (D_{z_1} D_{z_1} W) \chi_L z_1 \chi_R z_1 + ig_{z_1} z_1 \chi_L z_1 \left[\gamma \cdot \partial \chi_L z_1 + \Gamma_{z_1} z_1 \gamma \cdot \partial \chi_L z_1 + \frac{1}{4} (\partial_{z_1} K \gamma \cdot z_1 - \text{c.c.}) \chi_L z_1 \right];
\]

$\chi_L z_1 / \chi_R z_1$ corresponds to left-/right-handed components of the Higgsino. In terms of undiagonalized basis,

\[
D_{z_1} D_{z_1} W = (\partial_{z_1} \partial_{z_1} W) + (\partial_{z_1} \partial_{z_1} K) W + \partial_{z_1} K D_{z_1} W + \partial_{z_1} K D_{z_1} W - (\partial_{z_1} K \partial_{z_1} K) W + \Gamma_{z_1 z_1} K D_{z_1} W.
\]

Since SU(2)$_L$ symmetry gets spontaneously broken for Higgsino-Higgsino-Higgs vertex, therefore the idea is to expand above term quadratic in z_i such that one of the two z_is acquires a VEV. Utilizing $z_i \rightarrow z_i + \mathcal{V}^{1/2} M_p$ and thereafter solving with the help of equations (27) and (31), one has

\[
\frac{e^K}{2} D_{z_1} D_{z_1} W \sim \mathcal{V}^{-1/2} (z_i) \delta z_i
\]

\[\text{Working in the sublocus, where position moduli } z_1 \text{ and } z_2 \text{ are considered to be equivalent, for notational simplification, we will write Higgsino superfield } \chi_{\sqrt{2}(z_1+z_2)} \sim \chi^{z_i}.\]
Following (33), $e^{\frac{g}{\sqrt{2}} D_{Z_i} D_{Z_i}} W \sim O(1) e^{\frac{g}{\sqrt{2}} D_{Z_i} D_{Z_i}} W$, implying:

$$e^{\frac{g}{\sqrt{2}} D_{Z_i} D_{Z_i}} W Z_i^{\frac{3}{2}} \bar{Z}_{R} \sim \left(V^{-\frac{16}{5}} (Z_i) \right) \delta Z_i L_{Z_i}^{\frac{2}{2}} \bar{Z}_{R} \sim \left(V^{-\frac{7}{5}} (Z_i) \right) \delta Z_i L_{Z_i}^{\frac{2}{2}} \bar{Z}_{R}. \quad (225)$$

Using $Z_i \sim \mathcal{V} m_{3/2}$ for the Higgsino mass (see appendix B) and $m_{3/2} = \mathcal{V}^{-2} M_p$, one obtains:

$$g_{Z_i, Z_i, \chi_L} \delta Z_i \gamma \cdot \partial_{Z_i} Z_i \sim O(1) g_{Z_i, Z_i, \chi_L} \delta Z_i \gamma \cdot \partial_{Z_i} Z_i \sim \mathcal{V}^{-\frac{7}{5}} (Z_i) \delta Z_i L_{Z_i}^{\frac{2}{2}} \bar{Z}_{R} \sim \mathcal{V}^{-\frac{7}{5}} (Z_i) \delta Z_i L_{Z_i}^{\frac{2}{2}} \bar{Z}_{R};$$

$$g_{Z_i, Z_i, \chi_L} \Gamma_{Z_i, Z_i, \chi_L} \delta Z_i \gamma \cdot \partial_{Z_i} Z_i \sim \mathcal{O}(1) g_{Z_i, Z_i, \chi_L} \delta Z_i L_{Z_i}^{\frac{2}{2}} \bar{Z}_{R} \sim \mathcal{O}(1) g_{Z_i, Z_i, \chi_L} \delta Z_i L_{Z_i}^{\frac{2}{2}} \bar{Z}_{R} \sim \mathcal{V}^{-\frac{7}{5}} (Z_i) \delta Z_i L_{Z_i}^{\frac{2}{2}} \bar{Z}_{R}.$$

Incorporating results of (225) and (226), the physical Higgsino-Higgsino-Higgs vertex will be given as

$$C_{H^0 H^0 h} = \frac{1}{\sqrt{(K_{Z_i, Z_i})^4}} \left[(V^{-\frac{7}{5}}) + (V^{-2} + V^{-\frac{7}{5}}) \right] \sim V^{\frac{1}{4}}. \quad (227)$$

Gaugino-Higgsino-Higgs vertex

$$L = g_{Y M} g_{B Z_i} X^B \bar{Z}_{i, \chi_L} + \partial_{Z_i} T_B D^B \bar{H}^i \lambda \chi_{L}. \quad (228)$$

Expanding the same in the fluctuations linear in δZ_i, we have

$$g_{Y M} g_{T_B Z_i} X^B = \tilde{f} V^{-2} \delta Z_i \partial_{Z_i} T_B D^B B \sim \tilde{f} V^{-\frac{4}{5}} \delta Z_i. \quad (229)$$

The physical Gaugino-Higgsino-Higgs vertex works out to yield:

$$C^{h H^0 H^0} = \frac{V^{-\frac{4}{5}} \tilde{f}}{\sqrt{(K_{Z_i, Z_i})}} \sim \tilde{f} (10^5 V^{-\frac{4}{5}}) \sim \tilde{f} V^{-\frac{4}{5}}. \quad (230)$$

Gaugino-Gaugino-Higgs vertex

$$L = i \bar{\lambda}_i \gamma^m \frac{1}{4} (K_{Z_i, \partial_m Z_i} \chi_L \bar{\lambda}_L \chi_L) \lambda \chi_{L}. \quad (231)$$

where λ_L corresponds to gaugino. Here also, the aforementioned vertex does not preserve $SU(2)_L$ symmetry - one has to obtain the term linear in z_i. In terms of undiagonalized basis, $\partial_{Z_i} K \sim V^{-\frac{4}{5}} (Z_i)$, and using $\partial_{Z_i} K \sim O(1) \partial_{Z_i} K$, we have: $\partial_{Z_i} K \sim V^{-\frac{4}{5}} (Z_i)$, incorporating the same

$$C^{h \lambda_i \lambda_i} : \frac{V^{-\frac{4}{5}} (Z_i) \bar{\lambda}_i \partial_{Z_i} \lambda_i}{\sqrt{(K_{Z_i, Z_i})}} \sim 10^5 V^{-\frac{22}{35}} h \bar{\lambda}_i \chi_L \bar{\lambda}_L \chi_L \sim V^{-\frac{22}{35}} h \bar{\lambda}_i \chi_L \bar{\lambda}_L \chi_L \sim \frac{m_{3/2} \lambda_L}{M_p} \sim V^{-\frac{22}{35}} h \bar{\lambda}_i \chi_L \bar{\lambda}_L \chi_L \quad (232)$$

61
Higgs-Higgs-Higgs vertex: The value of effective Higgs triple interaction vertex in SM is given by
\[C^{hhh} \sim \frac{M_h^2}{v^2}, \] where \(v \) is electroweak VEV.

Now, using the set of results given in equation no (227), (230) and (232), the contribution of vertices appearing in equation (224) are as follows:

\[C^{0,0}_h = \int \mathcal{V}^{-\frac{1}{2}} \mathcal{V}^{1,1}_h \mathcal{V}^{-\frac{3}{2}}_h, \] where \(\mathcal{V}^\pm_0 \) are as follows:

\[\Gamma_{h,HH} \]

Utilizing the value of mass \(m_3 \) provided in [13], the coefficients in our setup just by using (and quoting verbatim below) the form of analytical results provided in [14].

s-channel Higgs-boson \((h, H)\) exchange:

The analytic expressions of \(\bar{a}_{hh} \) and \(\bar{b}_{hh} \) corresponding to Fig. 23 are given as:

\[\bar{a}_{hh}^{(h, H)} = 0, \] \[\bar{b}_{hh}^{(h, H)} = \frac{3}{64\pi} \left[\sum_{r=h, H} \left(\frac{C^{hhh} C^{0,0}_h}{4m_0^2 - m_r^2 + i\Gamma_r m_r} \right)^2 \right]. \]

Expanding the summation

\[\bar{b}_{hh}^{(h, H)} = \frac{3}{64\pi} \left[\int \mathcal{V}^{-\frac{1}{2}} \mathcal{V}^{1,1}_h \mathcal{V}^{-\frac{3}{2}}_h \right]. \]

Utilizing the value of mass \(m_h = 125 GeV \) and \(m_H \sim \mathcal{V}^\pm_0 \) as calculated in appendix B, \(m_3 \sim \mathcal{V}^\pm_0 \) and \(C^{hhh} \sim 10^2 GeV, C^{0,0}_h \sim \mathcal{V}^\pm_0 \) from above, after simplifying, we have

\[\bar{b}_{hh}^{(h, H)} \sim \frac{3}{64\pi} \left[\int \mathcal{V}^{-\frac{1}{2}} \mathcal{V}^{1,1}_h \mathcal{V}^{-\frac{3}{2}}_h \right]. \]

Here we assume that \(\Gamma_{h,HH} < m_{h,H} \) in our setup.

Neutralino \((\chi^0_i)\) exchange:

\[\bar{a}_{hh}^{(\chi^0_i)} = 0, \]

\[\bar{b}_{hh}^{(\chi^0_i)} = \frac{1}{16\pi} \sum_{i,j=1}^3 \left(C^{\chi^0_i,\chi^0_j,hh} \right)^2 \left(C^{\chi^0_i,\chi^0_j,hh^*} \right)^2 \frac{1}{\Delta_{hi} \Delta_{hj}} \times \left[4m_3^2 (m_3^2 - m_h^2)^2 + 4m_3 (m_3^2 - m_h^2) (m_\chi^0 + m_\chi^0) \Delta_{hi} \right] \]

\[+ 3 (m_\chi^0 + m_\chi^0) (m_\chi^0 + m_\chi^0) \Delta_{hi} \Delta_{hj}, \]
where $\Delta_{hi} \equiv m_h^2 - m^2_{\chi_i^0} - m^2_{\chi_i^0}$. Utilizing the values of masses given above, $\Delta_{h1} \equiv m_h^2 - m^2_{\chi_3^0} - m^2_{\chi_1^0} \sim \mathcal{V}^2 m_\tau^2$, $\Delta_{h2} \equiv m_h^2 - m^2_{\chi_2^0} - m^2_{\chi_2^0} \sim \mathcal{V}^2 m_\tau^2$, $\Delta_{h3} \equiv m_h^2 - m^2_{\chi_3^0} - m^2_{\chi_3^0} \sim \mathcal{V}^2 m_\tau^2$ and

$$
\tilde{b}_{hh}^{(\chi^0)} = \frac{1}{16\pi} (C_{\chi_3^0, h}^0 h)^2 (C_{\chi_3^0, h}^0 h)^2 \frac{1}{\Delta_{h1}^2 \Delta_{h1}^2} \times \left[4 m_{\chi_3^0}^2 (m_{\chi_3^0}^2 - m_h^2)^2 + 4 m_{\chi_3^0}^2 (m_{\chi_3^0}^2 - m_h^2) (m_{\chi_3^0} + m_{\chi_1}^0) \Delta_{h1} + 3 (m_{\chi_3^0}^2 - m_h^2) (m_{\chi_3^0} + m_{\chi_1}^0) \Delta_{h1} \Delta_{h2} + (C_{\chi_3^0, h}^0 h)^2 (C_{\chi_3^0, h}^0 h)^2 \frac{1}{\Delta_{h2}^2 \Delta_{h2}^2} \times \left[4 m_{\chi_3^0}^2 (m_{\chi_3^0}^2 - m_h^2)^2 + 4 m_{\chi_3^0}^2 (m_{\chi_3^0}^2 - m_h^2) (m_{\chi_3^0} + m_{\chi_1}^0) \Delta_{h1}
\right. \\
+ 3 (m_{\chi_3^0}^2 - m_h^2) (m_{\chi_3^0} + m_{\chi_1}^0) \Delta_{h1} \Delta_{h3} + (C_{\chi_3^0, h}^0 h)^2 (C_{\chi_3^0, h}^0 h)^2 \frac{1}{\Delta_{h3}^2 \Delta_{h3}^2} \times \left[4 m_{\chi_3^0}^2 (m_{\chi_3^0}^2 - m_h^2)^2 + 4 m_{\chi_3^0}^2 (m_{\chi_3^0}^2 - m_h^2) (m_{\chi_3^0} + m_{\chi_1}^0) \Delta_{h1}
\right. \\
+ 3 (m_{\chi_3^0}^2 - m_h^2) (m_{\chi_3^0} + m_{\chi_1}^0) \Delta_{h1} \Delta_{h3} + (C_{\chi_3^0, h}^0 h)^2 (C_{\chi_3^0, h}^0 h)^2 \frac{1}{\Delta_{h3}^2 \Delta_{h3}^2} \times \left[4 m_{\chi_3^0}^2 (m_{\chi_3^0}^2 - m_h^2)^2 + 4 m_{\chi_3^0}^2 (m_{\chi_3^0}^2 - m_h^2) (m_{\chi_3^0} + m_{\chi_1}^0) \Delta_{h1}
\right. \\
+ 3 (m_{\chi_3^0}^2 - m_h^2) (m_{\chi_3^0} + m_{\chi_1}^0) \Delta_{h1} \Delta_{h3} + 3 (m_{\chi_3^0} + m_{\chi_1}^0) (m_{\chi_1}^0 + m_{\chi_3}^0) (m_{\chi_3}^0 + m_{\chi_3}^0) \Delta_{h3} \Delta_{h3}
\right. \\
\sim \frac{1}{16\pi} \left[(f^4 \mathcal{V}^{-\frac{1}{2}}) \frac{1}{m_{\chi_1}^2} + (f^4 \mathcal{V}^{\frac{1}{2}} \frac{v^2}{m_{pl}^2}) \frac{1}{m_{\chi_1}^2 m_{\chi_3}^2} + (f^4 \mathcal{V}^{-\frac{1}{2}} \frac{v^2}{m_{pl}^2}) \frac{1}{m_{\chi_1}^2 m_{\chi_3}^2} + (f^4 \mathcal{V}^{\frac{1}{2}} \frac{v^2}{m_{pl}^2}) \frac{1}{m_{\chi_1}^2 m_{\chi_3}^2}
\right. \\
+ (f^4 \mathcal{V}^{\frac{1}{2}} \frac{v^2}{m_{pl}^2}) \frac{1}{m_{\chi_1}^2 m_{\chi_3}^2} + (f^4 \mathcal{V}^{\frac{1}{2}} \frac{v^2}{m_{pl}^2}) \frac{1}{m_{\chi_1}^2 m_{\chi_3}^2} \right]
\sim \frac{1}{16\pi} \times O(10)^{-42} \text{GeV}^{-2} \text{ for } \mathcal{V} \sim 10^5 \text{ and } \tilde{f} \sim 10^{-4}. \tag{240}
$$

Higgs (h, H)–neutralino (χ^0) interference term:

$$
\tilde{a}_{hh-\chi^0}^{(h, H-\chi^0)} = 0, \tag{241}
$$

$$
\tilde{b}_{hh-\chi^0}^{(h, H-\chi^0)} = \frac{1}{16\pi} \sum_{i=1}^{3} \text{Re} \left[\sum_{r=h, H} \left(\frac{C_{hhr}^0 C_{hhr}^0 h}{4 m_{\chi_3}^2} \right) \frac{1}{m_{\chi_{i}}^2} \right] \frac{1}{\Delta_{hi}^2} \times \left[m_{\chi_{i}}^2 \Delta_{hi}^2 \right]. \tag{242}
$$

$$
\text{Re} \left[\sum_{r=h, H} \left(\frac{C_{hhr}^0 C_{hhr}^0 h}{4 m_{\chi_3}^2} \right) \right] \sim \left(\frac{C_{hhr}^0 C_{hhr}^0 h}{4 m_{\chi_3}^2} \right) \frac{1}{m_{\chi_3}^2} \sim \frac{10^2 \mathcal{V}^{-\frac{35}{36}}}{m_{\chi_3}^2} + \frac{10^2 \mathcal{V}^{-\frac{35}{36}}}{m_{h}^2} \sim \mathcal{V}^{-\frac{17}{36}}. \tag{243}
$$
Utilizing results of equations (237), (240), (244), we get

Expanding this, we get

$$\bar{b}_{hh}^{(h,H - \chi^0)} = \frac{1}{16\pi} \frac{\mathcal{V}^{-\frac{17}{30}}}{m_{\chi_3}^2} \left[\frac{(C H^0 H^0)^2 (2 m_{\chi_3}^2 - m_H^2) + 3 (m_{\chi_3} + m_{\chi_1}) \Delta_{h1}}{\Delta_{h1}} \right] + \frac{(C H^0 H^0)^2 (2 m_{\chi_3}^2 - m_H^2) + 3 (m_{\chi_3} + m_{\chi_1}) \Delta_{h2}}{\Delta_{h2}} + \frac{(C H^0 H^0)^2 (2 m_{\chi_3}^2 - m_H^2) + 3 (m_{\chi_3} + m_{\chi_1}) \Delta_{h3}}{\Delta_{h3}}$$

$$\sim \frac{1}{16\pi} \frac{\mathcal{V}^{-\frac{17}{30}}}{m_{\chi_3}^2} \left[\frac{(f \mathcal{V}^{-\frac{1}{2}})^2 (3 m_{\chi_3}^2)}{4 m_{\chi_3}^4} \right] + \frac{f^2 \mathcal{V}^{-\frac{13}{2}} v^2 (3 m_{\chi_3}^2)}{4 m_{\chi_3}^4} + \frac{(f \mathcal{V}^{-\frac{25}{30}})^2 (5 m_{\chi_3}^2)}{m_{\chi_3}^4} \Delta_{h2} \sim \frac{1}{16\pi} \times O(10)^{-26} GeV^{-2} \text{ for } \mathcal{V} \sim 10^5. \quad (244)$$

Utilizing results of equations (237), (240), (244),

$$\bar{b}_{hh} = \bar{\tilde{b}}_{hh}^{(h,H)} + \bar{\tilde{b}}_{hh}^{(\chi^0)} + \bar{\tilde{b}}_{hh}^{(h,H - \chi^0)} \sim O(10)^{-26} GeV^{-2}$$

$$\bar{a}_{hh} = \bar{\tilde{a}}_{hh}^{(h,H)} + \bar{\tilde{a}}_{hh}^{(\chi^0)} + \bar{\tilde{a}}_{hh}^{(h,H - \chi^0)} = 0. \quad (245)$$

$$C H^0 H^0 = (f \mathcal{V}^{-\frac{1}{2}} \frac{v}{m_{pl}}) C H^0 H^0 Z,$$

$$C H^0 H^0 = (f \mathcal{V}^{-\frac{1}{2}} \frac{v}{m_{pl}}) (C \lambda^0 \lambda^0 Z + C H^0 H^0 Z),$$

$$C H^0 H^0 = C \lambda^0 \lambda^0 Z + (f^2 \mathcal{V}^{-\frac{13}{2}} \frac{v^2}{m_{pl}^2}) C H^0 H^0 Z \quad (246)$$

Z Boson-Higgs-Z Boson vertex The effective vertex has been calculated in [29] by using gauge kinetic term $Re(T_B) F^2$ and the value of the same has been shown to be same as given by Standard model i.e $C_{ZZH} \sim \frac{M_Z^2}{v^2}$.

Higgsino-Higgsino- Z Boson vertex

$$\mathcal{L} = g_{ZLZ} \bar{\chi}^{\dagger} \chi^Z \bar{\chi}^{\dagger} \chi^Z,$$ \quad (247)
\(\chi^{z_1}\) corresponds to Higgsino, \(X = X^B \partial_B = -12i\pi\alpha'\kappa_3^2\mu_7 Q_B \partial_{TB}\) corresponds to the killing isometry vector and the corresponding \(D\) term generated is given by:

\[
D^B = \frac{4\pi\alpha'\kappa_3^2\mu_7 Q_B v^B}{V}.
\]

(248)

Utilizing \(g_{Z_1 Z_1} \sim \mathcal{O}(1) g_{z_1 z_1} \sim \mathcal{O}(V^{-\frac{2}{\alpha}})\) as given in (131) as well as \(v^B \sim \mathcal{O}(V^{\frac{1}{2}})\) and \(Q_B \sim \mathcal{O}(2\pi\alpha')^{\frac{2}{3}}\), yields value of physical Higgsino-Higgsino- \(Z\) Boson vertex as:

\[
C \bar{h}^0 h^0 Z \sim \left(\mathcal{O}\right) \sim \left(\mathcal{O}(10^5) \mathcal{O}^{-\frac{22}{18}}\right) \sim \mathcal{O}(10^{-5}).
\]

(249)

Gaugino-gaugino-\(Z\) Boson vertex

\[
\mathcal{L} = \bar{\lambda} L Z \text{ Im } (X^B K + iD^B) \lambda^L,
\]

\[
\sim \bar{\lambda} \gamma \cdot A \left\{ 6\kappa_3^2\mu_7 2\pi\alpha' Q_B K + \frac{12\kappa_3^2\mu_7 2\pi\alpha' Q_B v^B}{V} \right\} \lambda^L
\]

(250)

\(\lambda^L\) corresponds to gaugino. Again, Utilizing values of \(v^B \sim \mathcal{O}(V^{\frac{1}{2}})\) and \(Q_B \sim \mathcal{O}(2\pi\alpha')^{\frac{2}{3}}\), yields value of physical Gaugino-gaugino-\(Z\) Boson vertex as:

\[
C \bar{\lambda}^0 \lambda^0 Z \sim \left(\mathcal{O}\right) \sim \left(\mathcal{O}(10^5) \mathcal{O}^{-\frac{22}{18}}\right) \sim \mathcal{O}(10^{-5}).
\]

(251)

Using set of results given in equation no (250) and (251), the contribution of vertices appearing in equation (252) are as follows:

\[
C \bar{\chi}^0 \chi^0 Z = \mathcal{O} \sum_{r=h, H} \left(\frac{2}{m_{pl}} \right) \mathcal{O}(V^{\frac{2}{3}}),
\]

\[
C \bar{\chi}^3 \chi^3 Z = \mathcal{O} \sum_{r=h, H} \left(\frac{2}{m_{pl}} (\mathcal{O} + \mathcal{O}) \mathcal{O}(V^{\frac{2}{3}}),
\]

\[
C \bar{\chi}^3 \chi^3 Z = \mathcal{O} \sum_{r=h, H} \left(\frac{2}{m_{pl}} \mathcal{O}(V^{\frac{2}{3}}),
\]

(252)

Again, using (and quoting verbatim) the analytical expressions needed to calculate partial wave coefficients for \(\mathcal{O}^0 \mathcal{O}^0 \rightarrow ZZ\) annihilation process, we will estimate the values of same in our set up.

Higgs–boson \((h, H)\) exchange:

\[
\tilde{a}_{ZZ}^{(h, H)} = 0,
\]

(253)

\[
\tilde{b}_{ZZ}^{(h, H)} = \frac{3}{64\pi} \sum_{r=h, H} \left(\frac{2}{m_{pl}} \mathcal{O}(V^{\frac{2}{3}}),
\]

(254)

Expanding the summation

\[
\tilde{b}_{ZZ}^{(h, H)} = \frac{3}{64\pi} \left| \frac{C\bar{Z}h h^0 \chi^0 \chi^0_{h}}{4m_{\chi^0}^2 - m_{\chi^0}^2 + i\Gamma_{m_{\chi^0}}} + \frac{C\bar{Z}H H^0 \chi^0 \chi^0_{H}}{4m_{\chi^0}^2 - m_{\chi^0}^2 + i\Gamma_{m_{\chi^0}}} \right| \mathcal{O}(V^{\frac{2}{3}}).
\]

(255)
Utilizing the value of mass $m_h = 125 GeV$, $m_H \sim V^{-\frac{55}{2}} M_p$, $m_{\chi_3} \sim V^{-\frac{1}{3}} M_p$, $m_Z \sim 90 GeV$ and $C^{ZH} \sim 10^2$, $C^{3 \chi_3 \chi_3 h} \sim V^{-\frac{35}{36}}$ from above, after simplifying, we have:

$$\bar{b}_{(h,H)}^{zz} \sim \frac{3}{64 \pi} \left(\frac{10^2 V^{-\frac{35}{36}}}{4 m_{\chi_3}^2} + \frac{10^2 V^{-\frac{35}{36}}}{m_Z^2} \right) \frac{2 m_{\chi_3}^4}{m_Z^2} \sim \frac{3}{64 \pi} \left(\frac{10^2 V^{-\frac{35}{36}}}{4 m_{\chi_3}^2} \right) \frac{2 m_{\chi_3}^4}{m_Z^2} \sim O(10)^{-16} GeV^{-2} \text{ for } V \sim 10^5. \quad (256)$$

Here we assume that $\Gamma_{h,H} < m_{h,H}$ in our set up.

- **neutralino (χ_i^0) exchange:**

$$\bar{a}^{(i)}_{ZZ} = \frac{1}{4 \pi} \sum_{ij=1}^3 |C^{\chi_i^0 \chi_j^0 Z}|^2 |C^{\chi_i^0 \chi_j^0 Z}|^2 \frac{(m_{\chi_i}^2 - m_{\chi_j}^2)}{\Delta Z_i \Delta Z_j},$$

$$\sim \frac{1}{4 \pi} \left[|C^{\chi_1 \chi_3^0 Z}|^2 |C^{\chi_1 \chi_3^0 Z}|^2 \frac{m_{\chi_2}^2}{\Delta Z_1 \Delta Z_3} + |C^{\chi_1 \chi_3^0 Z}|^2 |C^{\chi_1 \chi_3^0 Z}|^2 \frac{m_{\chi_2}^2}{\Delta Z_1 \Delta Z_3} + |C^{\chi_3 \chi_1^0 Z}|^2 |C^{\chi_3 \chi_1^0 Z}|^2 \frac{m_{\chi_2}^2}{\Delta Z_1 \Delta Z_3} \right] \quad (257)$$

where $\Delta Z_i \equiv m_{Z_i}^2 - m_{\chi_i}^2 - m_{\chi_i}^2$. For the given neutralino mass eigenstates, $\Delta Z_1 \equiv m_{Z_1}^2 - m_{\chi_1}^2 - m_{\chi_1}^2 \sim -V^2 m_3^2$, $\Delta Z_2 \equiv m_{Z_2}^2 - m_{\chi_3}^2 - m_{\chi_3}^2 \sim -V^2 m_3^2$, $\Delta Z_3 \equiv m_{Z_3}^2 - m_{\chi_3}^2 - m_{\chi_3}^2 \sim -2V^2 m_3^2$. Using above values and couplings given in (252), (257) reduces to

$$\bar{a}^{(i)}_{ZZ} \sim \frac{1}{4 \pi} m_{\chi_i}^4 \frac{f^4 V^{-\frac{2\alpha}{2}}}{V^2 m_3^4} \sim O(10)^{-54} GeV^{-2}. \quad (258)$$

As from [13], the analytical expression of $\bar{a}^{(i)}_{ZZ}$ is defined as following:

$$\bar{b}^{(i)}_{ZZ} = \frac{1}{16 \pi} \sum_{ij=1}^3 \frac{1}{m_{Z_1}^2 \Delta Z_1 \Delta Z_2} \times |C^{\chi_i \chi_j^0 Z}|^2 |C^{\chi_i \chi_j^0 Z}|^2 \left[D_{ij}^{(1)} \Delta Z_i + D_{ij}^{(2)} \Delta Z_i \Delta Z_j + D_{ij}^{(3)} \Delta Z_i \Delta Z_j + D_{ij}^{(4)} \Delta Z_i \Delta Z_j \right], \quad (259)$$

where

$$D_{ij}^{(1)} = 16 m_{\chi_i}^2 m_{Z_1}^2 \{m_{Z_2}^2 - m_{\chi_i}^2\}^2,$$

$$D_{ij}^{(2)} = 4 m_{\chi_i}^2 \{m_{Z_2}^2 - m_{\chi_i}^2\} \{3 m_{Z_4}^2 + 4 m_{\chi_i}^2 m_{\chi_j}\} + 4 m_{\chi_i}^2 \{4 m_{\chi_i}^2 + m_{\chi_i}^2 m_{\chi_j} + 6 m_{\chi_i} m_{\chi_j}\},$$

$$D_{ij}^{(3)} = -4 m_{\chi_i}^2 \{m_{Z_2}^2 - m_{\chi_i}^2\} \{4 m_{\chi_i}^2 m_{\chi_j} + m_{Z_4}^2 (7 m_{\chi_i} + 3 m_{\chi_j} + 6 m_{\chi_j})\} + m_{Z_4}^2 \{4 m_{\chi_i}^2 - m_{\chi_i}^2 m_{\chi_j} m_{\chi_j} - m_{\chi_i}^2 (m_{\chi_i}^2 + 5 m_{\chi_j})\},$$

$$D_{ij}^{(4)} = 8 m_{Z_4}^2 + 2 m_{Z_4}^2 \{4 m_{\chi_i}^2 - m_{\chi_i}^2 m_{\chi_j} + 5 m_{\chi_i} m_{\chi_j} + 2 m_{\chi_i} m_{\chi_j}\} + m_{Z_4}^2 \{4 m_{\chi_i}^2 + 3 m_{\chi_j} m_{\chi_j} + 2 m_{\chi_i} m_{\chi_j}\} + m_{Z_4}^2 \{4 m_{\chi_i}^2 + 9 m_{\chi_i} m_{\chi_j} + 5 m_{\chi_i} m_{\chi_j}\}. \quad (260)$$
Solving above,

\[D_{11}^{(1)} \sim D_{12}^{(1)} \sim D_{13}^{(1)} \sim D_{23}^{(1)} \sim D_{33}^{(1)} \equiv m_Z^4 \mathcal{V}^4 m_\frac{3}{2} \]

\[D_{11}^{(2)} \sim D_{12}^{(2)} \equiv \mathcal{V}_Z^4 m_{10}^4, D_{13}^{(2)} \sim D_{23}^{(2)} \equiv \mathcal{V}_H^4 m_{10}^4, D_{33}^{(2)} \sim \mathcal{V}_H^4 m_{10}^4 \]

\[D_{11}^{(3)} \sim D_{12}^{(3)} \equiv \mathcal{V}_Z^4 m_{\frac{5}{2}}^4, D_{13}^{(3)} \equiv D_{23}^{(3)} \sim \mathcal{V}_H^4 m_{\frac{5}{2}}^4, D_{33}^{(3)} \sim \mathcal{V}_H^4 m_{\frac{5}{2}}^4 \]

\[D_{11}^{(4)} \sim D_{12}^{(4)} \equiv \mathcal{V}_Z^4 m_6^4, D_{13}^{(4)} \equiv D_{23}^{(4)} \sim \mathcal{V}_H^4 m_6^4, D_{33}^{(4)} \sim \mathcal{V}^4 m_6^4. \tag{261} \]

Now, incorporating results of equations \[261\], \(\Delta Z_{1,2,3}\) and \(252\) in \(259\), the same reduces to:

\[\overline{b}_{ZZ}^{(h)} \sim O(10)^{-14} \text{GeV}^{-2}. \tag{262} \]

- **Higgs \((h, H)\)-neutralino \((\chi_0^0)\) interference term:**

\[\overline{a}_{ZZ}^{(h, H - \chi^0)} = 0, \]

\[\overline{b}_{ZZ}^{(h, H - \chi^0)} = \frac{1}{16 \pi} \sum_{i=1}^{3} \text{Re} \left[\left(\sum_{r=h, H} \frac{C_{ZZ r} C_{S X^0 X^0 r}}{4 m_{X_3}^2 - m_r^2 + i \Gamma_r m_r} \right)^* \right] \frac{1}{m_Z^4 \Delta Z_i^2} C_X^3 X_3^0 r \]

\[\times \left\{ 2 m_{X_3}^2 (m_{X_3}^2 - m_Z^2) \left[-3 m_Z^2 - 4 m_{X_3}^2 m_{X_3}^4 + 2 m_Z^2 m_{X_3}^4 (m_{X_3} + m_{X_3}) \right] + \Delta Z_i \left[-4 m_{X_3}^4 (2 m_{X_3}^2 + 3 m_{X_3}^4) + 2 m_Z^2 m_{X_3}^2 (5 m_{X_3} + 6 m_{X_3}) - m_Z^2 (5 m_{X_3} + 9 m_{X_3}) \right] \right\}. \tag{263} \]

Utilizing results for \(\Delta Z_{1,2,3}\) and \(252\), the same reduces to

\[\overline{b}_{ZZ}^{(h, H - \chi^0)} = \frac{1}{16 \pi} \frac{m_{X_3}^3}{m_Z^4} \sum_{i=1}^{3} \text{Re} \left[\left(\sum_{r=h, H} \frac{C_{ZZ r} C_{S X^0 X^0 r}}{4 m_{X_3}^2 - m_r^2 + i \Gamma_r m_r} \right)^* \right] C_X^3 X_3^0 r M_p \]

\[\sim \frac{1}{16 \pi} \frac{V^2 m_3^3}{m_Z^4} \left(\frac{C_{ZZ h} (C_{S h} h_3)^2}{4 m_{X_3}^2 - m_h^2 + i \Gamma_h m_h} + \frac{C_{ZZ H} (C_{S h} h_3)^2}{4 m_{X_3}^2 - m_H^2 + i \Gamma_H m_H} \right) M_p. \tag{264} \]

Utilizing the value of mass \(m_h = 125 \text{GeV}, m_H \sim V^{-\frac{16}{5}} M_p, m_{X_3} \sim V^{-\frac{1}{5}} M_p, m_Z \sim 90 \text{GeV}\) and \(C_{ZZ h} \sim C_{ZZ H} \sim 10^2, C_X^3 X_3^0 \sim V^{-\frac{16}{5}} \) from above, after simplifying, we have:

\[\overline{b}_{ZZ}^{(h, H - \chi^0)} \sim \frac{1}{16 \pi} \frac{V^2 m_3^3}{m_Z^4} \left(\frac{10^2 V^{-\frac{16}{5}}}{4 m_{X_3}^2} + \frac{10^2 V^{-\frac{16}{5}}}{m_Z^2} \right) \sim \frac{1}{16 \pi} \frac{m_3^3}{m_Z^4} \left(\frac{10^2}{4 m_{X_3}^2} \right) \]

\[\sim O(10)^{-10} \text{GeV}^{-2} \text{ for } V \sim 10^5. \tag{265} \]

Here we assume that \(\Gamma_{h, H} < m_{h, H}\) in our set up. Utilizing results of equations \(256, 258, 262, 265\),

\[\overline{b}_{ZZ} = \overline{b}_{ZZ}^{(h)} + \overline{b}_{ZZ}^{(h, H - \chi^0)} \sim O(10)^{-10} \text{GeV}^{-2}; \tag{266} \]

67
Higgs-Fermion-Fermion Interaction

Fig. 25 involves the s-channel Higgs boson (h, H) and Z boson exchange and the t- and u-channel sfermion (\tilde{f}_u) exchange. To get the estimate of thermal cross-section for this process, one needs to evaluate the following partial wave coefficients:

$$
\tilde{a}_{f f} = \tilde{a}^{(h, H)}_{f f} + \tilde{a}^{(Z)}_{f f} + \tilde{a}^{(h, H - \tilde{f})}_{f f} + \tilde{a}^{(Z - \tilde{f})}_{f f},
$$

$$
\tilde{b}_{f f} = \tilde{b}^{(h, H)}_{f f} + \tilde{b}^{(Z)}_{f f} + \tilde{b}^{(h, H - \tilde{f})}_{f f} + \tilde{b}^{(Z - \tilde{f})}_{f f}.
$$

We have calculated below the interaction vertices corresponding to s and t channel of $\chi^0_3 \chi^0_3 \to f \tilde{f}$.

$$
\mathcal{L} \equiv ig_{A_i \tilde{A}_j} \bar{\chi}^{\tilde{A}_j} L \left[\partial \chi^{A_i} L + \Gamma^{A_i}_{\bar{Z}_i A_j} \partial \bar{Z}_i \chi^{A_i}_L + \frac{1}{4} (\partial Z_i K \bar{\phi} - \text{c.c.}) \chi^{A_i}_L \right]
$$

$\chi^{A_i}_L, I = 1, 2$ corresponding to first generation of Left-handed leptons and Left-handed quarks.

Higgs-lepton-lepton interaction

Utilizing $z_1 = \delta_{z_1} + \sqrt{\frac{p}{M_p}}$, for lepton mass $m_{\chi A} \sim O(1) MeV$ and $m_{3/2} = \sqrt{2} M_p$, $g_{a_1 a_1} \to \frac{\sqrt{2} (z_1)}{M_p \delta_{z_1}}, \Gamma^{a_1}_{\bar{z}_1 a_1} \to \frac{\sqrt{2} (z_1)}{M_p \delta_{z_1}}, \partial Z_i K \to \frac{\sqrt{2} (z_1)}{M_p}$, one gets:

$$
g_{A_i \tilde{A}_j} \partial \chi^{A_i} \partial \bar{\chi}^{\tilde{A}_j} \sim O(1) g_{a_1 a_1} \bar{\chi}^{\tilde{A}_j} \partial \chi^{A_i} \partial \partial \bar{\chi}^{\tilde{A}_j} \partial \chi^{A_i} \sim \sqrt{2} (z_1) M_p \delta Z_i \bar{\chi}^{\tilde{A}_j} \partial \chi^{A_i} \partial \chi^{A_i};
$$

$$
g_{A_i \tilde{A}_j} \Gamma^{A_i}_{\bar{z}_i a_1} \partial \bar{Z}_i \chi^{A_i} \sim O(1) g_{a_1 a_1} \Gamma^{a_1}_{\bar{z}_1 a_1} \partial \bar{Z}_i \chi^{A_i} \partial \partial \bar{Z}_i \chi^{A_i} \sim \sqrt{2} (z_1) M_p \delta Z_i \bar{\chi}^{\tilde{A}_j} \partial \chi^{A_i} (\bar{\phi}^{A_i} + \bar{\phi}^{A_i}) \chi^{A_i};
$$

$$
g_{A_i \tilde{A}_j} \partial \chi^{A_i} \partial Z_i \chi^{A_i} \sim \sqrt{2} (z_1) M_p \delta Z_i \bar{\chi}^{\tilde{A}_j} \partial \chi^{A_i} (\bar{\phi}^{A_i} + \bar{\phi}^{A_i}) \chi^{A_i};
$$

$$
g_{A_i \tilde{A}_j} \frac{1}{4} (\partial Z_i K \gamma \cdot \bar{Z}_i - \text{c.c.}) \chi^{A_i} \sim O(1) g_{a_1 a_1} \partial \bar{Z}_i K \bar{\chi}^{\tilde{A}_j} \partial \bar{Z}_i \chi^{A_i} \sim \sqrt{2} (z_1) M_p \delta Z_i \bar{\chi}^{\tilde{A}_j} (\bar{\phi}^{A_i} + \bar{\phi}^{A_i}) \chi^{A_i};
$$

$$
\sim \sqrt{2} (z_1) M_p \delta Z_i \bar{\chi}^{\tilde{A}_j} (\bar{\phi}^{A_i} + \bar{\phi}^{A_i}) \chi^{A_i}.
$$
Incorporating results of (270) in (269), the physical Higgs-lepton-lepton vertex will be given as

\[C^{A_{1L}A_{1L}h} = \frac{1}{\sqrt{(K_{Z_1}Z_1^2)(K_{A_{1A_{1}}})^2}} \left[V^{-\frac{2}{3}} \right] \sim 10^1 \left[V^{-\frac{2}{3}} \right] \sim O(1). \]

Higgs-quark-quark interaction

Utilizing \(g_{a_2a_2} \tilde{A}_L \tilde{A}_L \), \(\tilde{A}_L \tilde{A}_L \), \(\tilde{A}_L \tilde{A}_L \) correspond to the killing isometry vector and \(g_{a_2a_2} \rightarrow \frac{\gamma - \frac{r}{2}(z_1)}{M_p}, \Gamma_{z_1} \rightarrow \frac{\gamma - \frac{r}{2}(z_1)}{M_p}, \partial z_i K \rightarrow \frac{\gamma - \frac{r}{2}(z_1)}{M_p} \), one gets:

\[g_{A_2A_2} \tilde{A}_L \tilde{A}_L \gamma \chi_{L} \sim O(1) g_{a_2a_2} \tilde{A}_L \tilde{A}_L \gamma \chi_{L} \sim \frac{\gamma - \frac{r}{2}(z_1)}{M_p} \delta Z_i \chi_{L} \tilde{A}_L \gamma \chi_{L} \sim \frac{\gamma - \frac{r}{2}(z_1)}{M_p} \delta Z_i \chi_{L} \tilde{A}_L \gamma \chi_{L} \sim \frac{\gamma - \frac{r}{2}(z_1)}{M_p} \delta Z_i \chi_{L} \tilde{A}_L \gamma \chi_{L} \]

\[\sim \frac{\gamma - \frac{r}{2}(z_1)}{M_p} \delta Z_i \chi_{L} \tilde{A}_L \gamma \chi_{L} \]

Incorporating results of (272) in (269), the physical Higgs-quark-quark vertex will be given as

\[C^{A_{2L}A_{2L}h} = \frac{1}{\sqrt{(K_{Z_2}Z_2^2)(K_{A_{2A_{2}}})^2}} \left[V^{-\frac{2}{3}} \right] \]

\[\sim 10^{-7} \left[V^{-\frac{2}{3}} \right] \sim V^{-\frac{2}{3}}. \]

We would estimate:

\[C^{f f h} = \text{Max} \left[C^{A_{1L}A_{1L}h}, C^{A_{2L}A_{2L}h} \right] \sim O(1). \]

Fermion-fermion - Z Boson vertex

\[L \equiv g_{A_{1A_{1}}} \chi^{A_{1}A_{1}} \gamma \cdot A \text{ Im } (X^{B} K + i D^{B}) \chi^{A_{1}} + g_{A_{2A_{2}}} \bar{\chi}^{A_{2}A_{2}} \gamma \cdot A \text{ Im } (X^{B} K + i D^{B}) \chi^{A_{2}}, \]

\(\chi^{A_{1}} \) correspond to first generation of leptons and quarks, \(X = X^{B} \partial_B = -12i\pi' \kappa^2 \mu^2 Q_B \partial_B \) corresponds to the killing isometry vector and \(D \) term generated is given by:

\[D^{B} = \frac{4\pi' \kappa^2 \mu^2 Q_B v_B}{\sqrt{V}}. \]

Utilizing \(g_{A_{1}A_{1}} \sim O(1) g_{a_1a_1} \sim \nabla^2 \), \(g_{A_{2}A_{2}} \sim O(1) g_{a_2a_2} \sim \nabla^2 \) as given in [31] as well as \(v^{B} \sim \nabla^2 \) and \(Q_B \sim \nabla^2 (2\pi' \kappa^2)^2 \bar{f} \), the contribution of physical fermion-fermion - Z Boson vertex \(C^{f f Z} \sim O(1) \) (see detailed explanation as given in [29]).

Quoting the analytical expressions as given in [13]:

- **Higgs-boson (h, H) exchange:**

\[\overrightarrow{a}_{f f}^{(h, H)} = 0, \]

\[\overrightarrow{b}_{f f}^{(h, H)} = \frac{3}{4 \pi} \sum_{r=h, H} \frac{C^{f f r} \chi^{A_{1}}_{A_{1}} \chi^{A_{2}}_{A_{2}}}{4m_{A_{1}}^2 - m_{r}^2 + i \Gamma_{r} m_{r}} \left(m_{A_{1}}^2 - m_{r}^2 \right). \]
Expanding the summation

\[\tilde{b}_{ff}^{(h,H)} = \frac{3}{64 \pi} \left| \frac{C_{ff} h C_{\bar{\chi}_{\chi}^{0} h}}{4 m_{\chi_{3}^{0}}^2 - m_{h}^2 + i \Gamma_{h} m_{h}} + \frac{C_{h h} H C_{\bar{\chi}_{\chi}^{0} H}}{4 m_{\chi_{3}^{0}}^2 - m_{H}^2 + i \Gamma_{H} m_{H}} \right|^2 (m_{\chi_{3}^{0}}^2 - m_{f}^2). \]

(279)

Again, utilizing the value of masses as given in above cases and \(C_{ff} h \sim O(1), C_{\bar{\chi}_{\chi}^{0} h} \sim \bar{\chi}_{\chi}^{0} H \sim \mathcal{V}^{- \frac{35}{36}} \) from above, after simplifying, we have:

\[\tilde{b}_{ff}^{(h,H)} \sim \frac{3}{64 \pi} \left| \frac{\mathcal{V}^{- \frac{35}{36}}}{4 \sqrt{\frac{8}{\pi} m_{pl}^2}} + \frac{\mathcal{V}^{- \frac{35}{36}}}{4 \sqrt{\frac{8}{\pi} m_{pl}^2}} \right|^2 (m_{\chi_{3}^{0}}^2 - m_{f}^2) \sim \frac{3}{64 \pi} \left(\frac{\mathcal{V}^{- \frac{35}{36}}}{\sqrt{\frac{8}{\pi} m_{pl}^2}} \right)^2 \mathcal{V}^{- \frac{8}{\pi} m_{pl}^2} \]

\[\sim O(10)^{-46} GeV^{-2} \text{ for } \mathcal{V} \sim 10^5. \]

(280)

- **Z–boson exchange:**

\[\tilde{a}_{ff}^{(Z)} = \frac{1}{2 \pi} \left| \frac{C_{ff} Z C_{\chi_{\chi}^{0} Z}}{4 m_{\chi_{3}^{0}}^2 - m_{Z}^2 + i \Gamma_{Z} m_{Z}} \right|^2 \frac{m_{Z}^2 (m_{Z}^2 - 4 m_{\chi_{3}^{0}}^2)^2}{m_{Z}^4}. \]

(281)

Utilizing the value of mass as given above, and \(C_{ff} Z \sim O(1), C_{\bar{\chi}_{\chi}^{0} Z} \sim \bar{\chi}_{\chi}^{0} Z \sim \mathcal{V}^{- \frac{35}{36}} \) from above, after simplifying, we have

\[\tilde{a}_{ff}^{(h,H)} \sim \frac{3}{64 \pi} \left| \frac{\mathcal{V}^{- \frac{35}{36}}}{4 \sqrt{\frac{8}{\pi} m_{pl}^2}} + \frac{\mathcal{V}^{- \frac{35}{36}}}{4 \sqrt{\frac{8}{\pi} m_{pl}^2}} \right|^2 \frac{m_{Z}^2 (m_{Z}^2 - 4 m_{\chi_{3}^{0}}^2)^2}{m_{Z}^4} \sim \frac{3}{64 \pi} \left(\frac{\mathcal{V}^{- \frac{35}{36}}}{\sqrt{\frac{8}{\pi} m_{pl}^2}} \right)^2 \frac{m_{Z}^2 (4 m_{\chi_{3}^{0}}^4)}{m_{Z}^4} \]

\[\sim O(10)^{-25} GeV^{-2} \text{ for } \mathcal{V} \sim 10^5; \]

(282)

- **sfermion (\(\tadag \)) exchange:**

\[\tilde{a}_{ff}^{(\tadag)} = \frac{1}{32 \pi} \sum_{a,b} \frac{(m_{f} C_{+}^{\alpha} + m_{\chi_{3}^{0}} D_{+}^{\alpha}) (m_{f} C_{+}^{\beta} + m_{\chi_{3}^{0}} D_{+}^{\beta})}{\Delta_{f_{a}} \Delta_{f_{b}}}, \]

(284)
a is the index for sfermion mass eigenstates so that \(a = 1,..6 \) for squark and charged sleptons and \(a = 1,..3 \) corresponds for sneutrino, and:

\[
C^a_\pm = |\Lambda^a_{fL}f| \pm |\Lambda^a_{fR}f|,
\]

\[
D^a_\pm = \Lambda^a_{fL} (\Lambda^a_{fR})^\ast \pm (\Lambda^a_{fL}f)^\ast \Lambda^a_{fR};
\]

\(\Lambda^a_{fL} \) corresponds to the Neutralino-fermion-sfermion interactions mediated by L-handed squarks/sleptons and \(\Lambda^a_{fR} \) corresponds to the Neutralino-fermion-sfermion interactions mediated by R-handed squarks/sleptons.

Using results from section 3: \(\chi^3_{0L} \Leftrightarrow \tilde{f}\nu^{-\frac{1}{2}}, \chi^3_{0L} \Leftrightarrow \tilde{f}\nu^{-\frac{1}{2}} \). With exactly similar procedure, we find: \(\chi^3_{0L} \Leftrightarrow \tilde{f}\nu^{-\frac{1}{2}}, \chi^3_{0L} \Leftrightarrow \tilde{f}\nu^{-\frac{1}{2}} \). Utilizing above

\[
\sum a C^a_\pm = \text{Max} \left(\left| \chi^3_{0L} \right|^2 + \left| \chi^3_{0L} \right|^2, \left| \chi^3_{0L} \right|^2 + \left| \chi^3_{0L} \right|^2 \right) \sim \tilde{f}^2 \nu^{1-1}
\]

\[
\sum a D^a_\pm = \text{Max} \left(\left| \chi^3_{0L} \right|^2 \left(\chi^3_{0L} \right)^\ast, \left| \chi^3_{0L} \right|^2 \left(\chi^3_{0L} \right)^\ast \right) \pm \text{c.c.} \sim \tilde{f}^2 \nu^{-\frac{13}{10}}
\]

and

\[
\Delta_{\tilde{f}_a} \equiv m^2_{\tilde{f}} - m^2_{\chi^3} - m^2_{\tilde{f}} \sim -m^2_{\chi^3}.
\]

Considering only first two generations quarks/sleptons and assuming the universality in scalar masses for first two generations quarks/sleptons, equation (281) reduces to the following simplified form:

\[
\frac{\text{a}(\tilde{f})}{ff} = \frac{1}{\pi} \left(\frac{m_f \tilde{f}^2 \nu^{-1} + m_{\chi^3} \tilde{f}^2 \nu^{-\frac{1}{2}}}{m^4_{\chi^3}} \right) \sim 10^{-52} GeV^{-2}, \text{for } m_{\chi^3} \sim \nu^{-\frac{1}{2}} M_p \text{ and } \nu \sim 10^{5}.
\]

Now, utilizing the numerical estimates of coupling summed over first two generation of squarks/sleptons given above, we will evaluate the value of \(\text{b}(\tilde{f})_{ff} \). Using (and quoting verbatim) the form of expression from [13]:

\[
\text{b}(\tilde{f})_{ff} = \frac{1}{64 \pi} \sum_{a,b} \frac{1}{\Lambda^3_{f_a} \Lambda^3_{f_b}} \left\{ C^a_+ C^b_- \left[8 m^2_{\chi^3} m^2_{\xi^3} (m^2_{\xi^3} - m^2_{\xi^3}) \Delta^2_{\tilde{f}_a} \right.
ight.

-4 m^2_{\chi^3} (m^2_{\xi^3} + m^2_{\xi^3} - m^2_{\xi^3} - 2 m^4_{\xi^3}) \Delta^2_{\tilde{f}_a} \Delta_{\tilde{f}_b}

+4 m^2_{\chi^3} (m^2_{\xi^3} + 2 m^2_{\xi^3}) \Delta^2_{\tilde{f}_a} \Delta_{\tilde{f}_b} + 4 (m^2_{\xi^3} - m^2_{\xi^3}) \Delta^2_{\tilde{f}_a} \Delta^2_{\tilde{f}_b}

\left.+ D^a_+ D^b_- \left[8 m^4_{\chi^3} (m^2_{\xi^3} - m^2_{\xi^3}) \Delta^2_{\tilde{f}_a} + 4 m^4_{\chi^3} (m^4_{\xi^3} + m^2_{\xi^3} m^2_{\xi^3} - m^4_{\xi^3}) \Delta_{\tilde{f}_a} \Delta_{\tilde{f}_b}

+4 m^2_{\chi^3} (m^2_{\xi^3} - 2 m^2_{\xi^3}) \Delta^2_{\tilde{f}_a} \Delta_{\tilde{f}_b} - 3 (m^2_{\xi^3} - 3 m^2_{\xi^3}) \Delta^2_{\tilde{f}_a} \Delta^2_{\tilde{f}_b}

\left.+ C^a_- C^b_- \left[8 m^2_{\chi^3} (m^2_{\xi^3} - m^2_{\xi^3}) \Delta_{\tilde{f}_a} \Delta_{\tilde{f}_b} + 8 m^2_{\chi^3} (m^2_{\xi^3} - m^2_{\xi^3}) \Delta^2_{\tilde{f}_a} \Delta_{\tilde{f}_b}

+2 (m^2_{\xi^3} + 2 m^2_{\xi^3}) \Delta^2_{\tilde{f}_a} \Delta^2_{\tilde{f}_b}

\right.+ D^a_+ D^b_- \left[8 m^4_{\chi^3} (m^2_{\xi^3} - m^2_{\xi^3}) \Delta^2_{\tilde{f}_a} + 12 m^4_{\chi^3} (m^4_{\xi^3} - m^2_{\xi^3}) \Delta_{\tilde{f}_a} \Delta_{\tilde{f}_b}

+3 \Delta^2_{\tilde{f}_a} \Delta^2_{\tilde{f}_b} - 2 (m^2_{\xi^3} - 4 m^2_{\xi^3}) \Delta_{\tilde{f}_a} \Delta^2_{\tilde{f}_b}

-6 (m^2_{\xi^3} - 2 m^2_{\xi^3}) \Delta^2_{\tilde{f}_a} \Delta_{\tilde{f}_b} \right]\right\}.
\]
for $m_{\chi_3} \sim V^{-\frac{\pi}{4}} M_p$, $\Delta_{\tilde{f}_a} \sim -m_{\chi_3}^2$, after solving, one gets:

$$\bar{b}_{ff} \equiv \frac{1}{\pi} \times \frac{\tilde{f} \bar{V}^{-2}}{m_{\chi_3}^2} \sim O(10)^{-48} GeV^{-2}. \quad \text{(289)}$$

- **Higgs (h, H)–sfermion (\tilde{f}_a) interference term:**

$$\bar{a}^{(h, H-\tilde{f})}_{ff} = 0, \quad \text{(290)}$$

$$\bar{b}^{(h, H-\tilde{f})}_{ff} = \frac{1}{8\pi} \sum_a \text{Re} \left[\sum_{r=h, H} \frac{C_{ff}^{fr} C_{Xr}^{Xr}}{4 m_{\chi_3}^2 - m_r^2 + i \Gamma_r m_r} \right] \left(m_{\chi_3}^2 - m_f^2 \right) \Delta_{\tilde{f}_a}^2 \quad \text{(291)}$$

expanding summation

$$\sim \frac{1}{8\pi} \left[\frac{C_{ffh} C_{X\chi_3 h}^{Xh}}{4 m_{\chi_3}^2 - m_h + i \Gamma_h m_h} + \frac{C_{hH} C_{X\chi_3 h}^{Xh}}{4 m_{\chi_3}^2 - m_H + i \Gamma_H m_H} \right] \left(m_{\chi_3}^2 - m_f^2 \right) \Delta_{\tilde{f}_a}^2$$

$$\times \left[C^a_+ 2 m_f m_{\chi_3}^2 + D^a_+(2 m_{\chi_3}^2 + 3 \Delta_{\tilde{f}_a}) \right]$$

$$\sim \frac{1}{\pi} \left[\frac{V^{-\frac{3 \pi}{8}}}{4 m_{\chi_3}^2 - m_f^2} + \frac{V^{-\frac{3 \pi}{8}}}{m_f^2} \right] \bar{V}^{-\frac{3 \pi}{8}} \tilde{f}^2 \sim \frac{1}{\pi} \tilde{f}^2 \bar{V}^{-\frac{3 \pi}{8}} \left(\frac{m_{\chi_3}}{m_{pl}} \right)$$

$$\sim O(10)^{-47} GeV^{-2} \text{ for } V \sim 10^5. \quad \text{(292)}$$

- **Z–sfermion (\tilde{f}_a) interference term:**

$$\bar{a}^{(Z-\tilde{f})}_{ff} = -\frac{1}{4\pi} \sum_a \text{Re} \left[\frac{C_{ffZ} C_{X\chi_3 Z}^{XZ}}{4 m_{\chi_3}^2 - m_Z^2 + i \Gamma_Z m_Z} \right] \frac{m_f (m_Z^2 - 4 m_{\chi_3}^2)}{m_Z^2} \frac{m_f C^a_+ + m_{\chi_3} D^a_+}{\Delta_{\tilde{f}_a}}; \quad \text{(293)}$$

utilizing the value of mass $m_Z = 90 GeV$, $m_{\chi_3} \sim \sqrt{\frac{3}{2}} m_{3/2} \sim V^{-\frac{3 \pi}{8}} M_p$; $C_{ffZ} \sim O(1), C_{X\chi_3 Z} \sim \tilde{f} \bar{V}^{-\frac{3 \pi}{8}}$ and equation no (287), after simplifying, we have

$$\bar{a}^{(Z-\tilde{f})}_{ff} = -\frac{1}{4\pi} \left[\frac{\tilde{f} \bar{V}^{-\frac{3 \pi}{8}}}{4 m_{\chi_3}^2} \right] \frac{m_f (m_Z^2 - 4 m_{\chi_3}^2)}{m_Z^2} \frac{m_f C^a_+ + m_{\chi_3} D^a_+}{\Delta_{\tilde{f}_a}};$$

$$\sim O(10)^{-38} GeV^{-2} \quad \text{(294)}$$
\[\tilde{b}_{ff}^{(Z-\bar{f})} = -\frac{1}{8\pi} \sum_a \text{Re} \left[\frac{C_{X_a}^{\alpha} \chi_d^{\alpha} Z}{(4m_{\chi_3}^2 - m_Z^2 + i\Gamma_Z m_Z)^2} \right] \frac{1}{m_Z^2 \Delta_{fa}^2} \times \left\{ C_+^f \left[2m_Z^2 \Delta_{fa} [2m_{\chi_3}^2 (m_{\chi_3}^2 + \Delta_{fa}^2) + m_f^2 (-2m_{\chi_3}^2 + \Delta_{fa}^2)] \right] + C_-^f \left\{ 2m_f^2 \left[m_{\chi_3}^2 - m_f^2 \right] (m_{\chi_3}^2 - 4m_{\chi_3}^2) P_Z m_{\chi_3}^2 \left[m_f^2 (m_{\chi_3}^2 + 2m_{\chi_3}^2 (m_Z^2 - 6m_f^2)) P_Z \Delta_{fa} \right. \\
+ 2m_Z \left(-m_Z \left(m_{\chi_3}^2 - m_f^2 \right) \left(m_{\chi_3}^2 - 4m_{\chi_3}^2 \right) + i\Gamma_Z \left[m_{\chi_3}^2 m_{\chi_3}^2 - m_f^2 (m_{\chi_3}^2 + 3m_{\chi_3}^2) \right] \Delta_{fa}^2 \right) \\
+ m_f m_{\chi_3}^2 D_+^2 \left[4m_f^2 \left(m_{\chi_3}^2 - m_f^2 \right) (m_{\chi_3}^2 - 4m_{\chi_3}^2) P_Z + 2 \left(6m_Z^2 m_{\chi_3}^2 - 16 \left(m_{\chi_3}^4 - m_f^2 (3m_Z^2 - 4m_{\chi_3}^2) \right) P_Z \Delta_{fa} \right. \\
\left. - 3 \left((m_{\chi_3}^2 - 4m_{\chi_3}^2)^2 - i m_Z \Gamma_Z (m_{\chi_3}^2 + 6m_{\chi_3}^2) \right) \Delta_{fa}^2 \right] \} \right\} \right] ; \]

where \(P_Z \equiv 4m_{\chi_3}^2 - m_Z^2 + i\Gamma_Z m_Z \). Again using the numerical values of masses and relevant couplings and assuming \(\Gamma_Z m_Z << m_{\chi_3}^2 \), the above expression reduces to

\[\tilde{b}_{ff}^{(Z-\bar{f})} = O(10)^{-46} \text{GeV}^{-2}. \]

(296)

Utilizing the results from equation no (280), (283), (289), (292), (296) and (282), (294):

\[\tilde{b}_{ff} = \tilde{b}_{ff}^{(h,H)} + \tilde{b}_{ff}^{(Z)} + \tilde{b}_{ff}^{(\bar{f})} + \tilde{b}_{ff}^{(\bar{f},H-\bar{f})} + \tilde{b}_{ff}^{(Z-\bar{f})} \sim O(10)^{-34} \text{GeV}^{-2}; \]

(297)

\[\tilde{a}_{ff} = \tilde{a}_{ff}^{(h,H)} + \tilde{a}_{ff}^{(Z)} + \tilde{a}_{ff}^{(\bar{f})} + \tilde{a}_{ff}^{(\bar{f},H-\bar{f})} + \tilde{a}_{ff}^{(Z-\bar{f})} \sim O(10)^{-25} \text{GeV}^{-2}. \]

(298)

Relative velocity \(v_{f_1f_2} \) is defined as

\[v_{f_1f_2} \equiv \left[1 - \frac{(m_{f_1} + m_{f_2})^2}{4m_{\chi_3}^2} \right]^{1/2} \left[1 - \frac{(m_{f_1} - m_{f_2})^2}{4m_{\chi_3}^2} \right]^{1/2}. \]

(299)

For \(f_1, f_2 = hh, v_{hh} \equiv 1 \), \(f_1, f_2 = ZZ, v_{ZZ} \equiv 1 \), \(f_1, f_2 = f\bar{f}, v_{f\bar{f}} \equiv 1 \). Having estimated the partial wave coefficients for each possible annihilation processes, summing up their contribution as according to (223):

\[a = \tilde{a}_{hh} + \tilde{a}_{ZZ} + \tilde{a}_{f\bar{f}} \equiv O(10)^{-25} \text{GeV}^{-2} \]

\[b = \tilde{b}_{hh} + \tilde{b}_{ZZ} + \tilde{b}_{f\bar{f}} \equiv O(10)^{-10} \text{GeV}^{-2} \]

(300)

\[J(x_f) \equiv \int_0^{x_f} dx (\sigma v_{\text{coll}})(x) = \int_0^{x_f} dx (a + bx_f) = ax_f + \frac{b x_f^2}{2} \]

(301)

where \(x = T/m_{\chi} \). The value of \(x_f \) can be calculated by solving iteratively the equation

\[x_f^{-1} = \ln \left(\frac{m_{\chi}}{2\pi^3} \sqrt{\frac{45}{2g_s G_N}} (\sigma v_{\text{coll}})(x_f) x_f^{1/2} \right), \]

(302)
where \(g_* \) represents the effective number of degrees of freedom at freeze-out \((\sqrt{g_*} \approx 9) \). Solving above equation, \(x_f \equiv T_f/m_{\chi_0^3} \) comes out to be around \(1/33 \)

The analytical expression of relic abundance is given as \[\Omega_{\chi h^2}^\chi = \frac{1}{\mu^2 \sqrt{g_*} J(x_f)} \] (303)

where \(\mu = 1.2 \times 10^5 GeV \) For \(J(x_f) \sim a(x_f) + b x_f^2 \sim 10^{-10} x_f^2 GeV^{-2} \) and \(x_f = \frac{1}{33} \sqrt{g_*} = 9, \)

\[\Omega_{\chi h^2}^\chi \sim \frac{2 \cdot (33)^2}{1.44 \times 10^{10} \cdot 9 \cdot 10^{-10}} \equiv 168. \] (304)

For \(m_{\tilde{3}} \sim V^{-2} m_{pl} \sim 10^8 GeV \) and \(m_{\chi_0^3} \sim V_{\tilde{3}} m_{\tilde{3}} \sim 10^{11} GeV \) as given in table 1, relic abundance of gravitino is given as :

\[\Omega_G h^2 = \Omega_{\chi h^2}^\chi m_{\tilde{3}} \frac{m_{\chi_0^3}}{m_{\chi_0^3}^2} = \Omega_{\chi h^2}^\chi V_{\tilde{3}}^2 \sim 0.16, \] (305)

clearly a very desirable value!

5.2 Slepton relic density calculations

For the case of slepton NLSPs, the dominant annihilation channel possible in our set up are: \(\tilde{\ell}_a \tilde{\ell}_b^* \to ZZ, \tilde{\ell}_a \tilde{\ell}_b^* \to Zh, \tilde{\ell}_a \tilde{\ell}_b^* \to hh, \tilde{\ell}_a \tilde{\ell}_b^* \to \gamma \gamma, \tilde{\ell}_a \tilde{\ell}_b^* \to \gamma h, \tilde{\ell}_a \tilde{\ell}_b^* \to ll. \)

The analytical expressions for \(\tilde{w}(s) \) are given in 14. Once again, the approach is to first calculate required vertices in the context of \(\mathcal{N} = 1 \) gauged supergravity and then utilize the same to calculate partial wave coefficients.

(a) \(\tilde{\ell}_a \tilde{\ell}_b^* \to ZZ \)

Slepton-slepton- Higgs vertex

Expanding effective supergravity potential \(V = \exp^K G^{T_S T_S} |D_{T_S} W|^2 \) in the fluctuations around \(Z_i \to \tilde{Z}_i + V_{\tilde{Z}_i} M_p, A_1 \to A_1 + V_{\tilde{A}_1} M_p \), contribution of term quadratic in \(A_1 \) as well as \(\tilde{Z}_i \) is of the order \(V_{\tilde{Z}_i} \frac{M_p}{M_p} < Z_i > \), which after giving VEV to one of the \(Z_i \), will be given as:

\[C_{\tilde{\ell}_a \tilde{\ell}_b h} \sim \frac{1}{\sqrt{(K_{\tilde{Z}_i} \tilde{Z}_i)^2 (K_{\tilde{A}_1} \tilde{A}_1)^2}} \left[V_{\tilde{Z}_i} \frac{M_p}{M_p} < Z_i > \tilde{Z}_i A_1 A_1 \right] \sim O(V_{\tilde{Z}_i}^{\frac{M_p}{M_p}}). \] (306)
Quoting directly the analytical expressions given in [14], we obtain a numerical estimate of
\(\bar{w} \) in Fig.26 will be given by:

\[
\partial_{\bar{A}_1} \partial_{\bar{A}_1} G_{\mathcal{T}_B \mathcal{T}_B} X^{\mathcal{T}_B} X^{\mathcal{T}_B} A_\mu A_\nu.
\]

As given in equation (B9)

\[
\partial_{\bar{A}_1} \partial_{\bar{A}_1} G_{\mathcal{T}_B \mathcal{T}_B} \sim O(1) \partial_{\bar{A}_1} \partial_{\bar{A}_1} G_{\mathcal{T}_B \mathcal{T}_B} \sim \mathcal{V}^{-\frac{4}{7}} A_1^4 A_1,
\]

\(X = X^B \partial_B = -12i\pi \alpha' \kappa_4^2 \mu_7 Q_B \partial_{\mathcal{T}_B} \sim \mathcal{V}^{-\frac{4}{7}}. \)

Incorporating values from above, the physical Slepton-slepton-\(Z \) Boson-\(Z \) Boson vertex is proportional to

\[
C_{\tilde{t}_{\tilde{a}\tilde{t}_{\bar{a}}}ZZ} \sim \frac{\mathcal{V}^{-\frac{4}{7}} f^2 \mathcal{V}^{-\frac{4}{7}}}{\sqrt{(K_{A_1, A_1})^2}} \sim \frac{f^2 \mathcal{V}^{-\frac{4}{7}}}{O(10)^4} \sim f^2 \mathcal{V}^{-3}.
\]

Slepton- slepton- \(Z \) Boson vertex

The gauge kinetic term for slepton-slepton- \(Z \) Boson vertex, relevant to the second Feynman graph in Fig.26 will be given by

\[
\mathcal{V} = \kappa_4^2 2 \pi \alpha' \mu_7 Q_B \mathcal{T}_B \mathcal{T}_B. \]

This implies that the following term generates the required slepton-slepton-\(Z \) Boson vertex:

\[
\frac{6i \kappa_4^2 \mu_7 2 \pi \alpha' Q_B G_{\mathcal{T}_B \mathcal{T}_B}}{\kappa_4^2 \mathcal{V}^2} \kappa_4^2 A^\mu \partial_\mu \left(\kappa_4^2 \mu_7 (2 \pi \alpha')^2 C_{11} \tilde{A}_1 \tilde{A}_1 \right) \frac{G_{\mathcal{T}_B \mathcal{T}_B} \sim \mathcal{V}^{\frac{4}{7}}}{G_{\mathcal{T}_B \mathcal{T}_B} \sim \mathcal{V}^{\frac{4}{7}}} \frac{\mathcal{V}^{\frac{4}{7}}}{\sqrt{(K_{A_1, A_1})^2}} \sim f \mathcal{V}, \text{ for } \mathcal{V} \sim 10^5.
\]

Quoting directly the analytical expressions given in [14], we obtain a numerical estimate of \(\bar{w} \):

\[
\bar{w}_{\tilde{t}_{\tilde{a}\tilde{t}_{\bar{a}}}ZZ} = \bar{w}_{h,H,P} + \bar{w}_{h,H,P-\tilde{t}} + \bar{w}_{h,H,P-\bar{t}}.
\]

• **Higgs \((h, H) \) exchange (+ Point interaction):**

\[
\bar{w}_{h,H,P} = \sum_{r=h,H} \frac{C_{ZZr} \mathcal{V}^{\frac{4}{7}}}{s - m_r^2 + i\Gamma_r m_r} \left[\frac{s^2 - 4m_r^2 s + 12m_r^4}{8m_r^2} \right] \mathcal{V}^{-3} \left| \frac{(10^2 \mathcal{V}^{-\frac{4}{7}}) m_{pl}}{s - m_r^2 + i\Gamma_r m_r} + \frac{(10^2 \mathcal{V}^{-\frac{4}{7}}) m_{pl}}{s - m_r^2 + i\Gamma_r m_r} - \bar{f}^2 \mathcal{V}^{-3} \right|^2 \frac{s^2 - 4m_r^2 s + 12m_r^4}{8m_r^2}.
\]
• slepton ($\tilde{\ell}$) exchange:

$$\tilde{w}_{Z \tilde{Z}} = \frac{1}{m_Z^2} \sum_{c,d=1}^2 C_{\tilde{\ell}c, Z} C_{\tilde{\ell}d, Z} C_{\tilde{\ell}d, Z*} C_{\tilde{\ell}c, Z*}$$

$$\times \left[T_4 - 2(m_{\tilde{\ell}_a}^2 + m_{\tilde{\ell}_b}^2 + 2m_Z^2)T_3 + [m_{\tilde{\ell}_a}^4 + m_{\tilde{\ell}_b}^4 + 4m_{\tilde{\ell}_a}^2 m_{\tilde{\ell}_b}^2 + 2m_Z^2(m_{\tilde{\ell}_a}^2 + m_{\tilde{\ell}_b}^2 + 3m_Z^2)]T_2 \right.$$

$$-2[(m_{\tilde{\ell}_a}^2 + m_{\tilde{\ell}_b}^2)(m_{\tilde{\ell}_a}^2 m_{\tilde{\ell}_b}^2 - m_Z^4) + m_Z^2(m_{\tilde{\ell}_a}^4 + m_{\tilde{\ell}_b}^4 - 4m_{\tilde{\ell}_a}^2 m_{\tilde{\ell}_b}^2 + 2m_Z^4)]T_1$$

$$+ (m_{\tilde{\ell}_a}^2 - m_{\tilde{\ell}_b}^2)^2(m_{\tilde{\ell}_a}^2 - m_{\tilde{\ell}_b}^2)^3 T_0 - \mathcal{Y}_4 + [s(m_{\tilde{\ell}_a}^2 + m_{\tilde{\ell}_b}^2 - 2m_Z^2) - 2(m_{\tilde{\ell}_a}^2 - m_{\tilde{\ell}_b}^2)(m_{\tilde{\ell}_a}^2 - m_{\tilde{\ell}_b}^2)]\mathcal{Y}_2$$

$$\left. - [s^2(m_{\tilde{\ell}_a}^2 + m_{\tilde{\ell}_b}^2)(m_{\tilde{\ell}_a}^2 m_{\tilde{\ell}_b}^2 + 3m_Z^4(m_{\tilde{\ell}_a}^4 + m_{\tilde{\ell}_b}^4 - 3m_Z^4(m_{\tilde{\ell}_a}^2 + m_{\tilde{\ell}_b}^2) + 2m_Z^2)\right.$$

$$+ (m_{\tilde{\ell}_a}^2 - m_{\tilde{\ell}_b}^2)^2(m_{\tilde{\ell}_a}^2 - m_{\tilde{\ell}_b}^2)^2]\mathcal{Y}_0 \right].$$

(313)

Considering only first-generation squarks,

$$\sum_{c,d=1}^2 C_{\tilde{\ell}c, Z} C_{\tilde{\ell}d, Z} C_{\tilde{\ell}d, Z*} C_{\tilde{\ell}c, Z*} \sim \tilde{f}^4 \mathcal{V}^4$$

(314)

(313) yields:

$$\tilde{w}_{Z \tilde{Z}} = \frac{f^4 \mathcal{V}^4}{m_Z^2} \left[T_4 - 4m_{\tilde{\ell}_a}^2 T_3 + 6m_{\tilde{\ell}_a}^4 T_2 - 4m_{\tilde{\ell}_a}^6 T_1 + m_{\tilde{\ell}_a}^8 T_0 - \mathcal{Y}_4 + [2m_{\tilde{\ell}_a}^2 m_{\tilde{\ell}_b}^2 - 2m_{\tilde{\ell}_a}^4] \mathcal{Y}_2 - \right.$$

$$\left. [s^2m_{\tilde{\ell}_a}^4 - 2sm_{\tilde{\ell}_a}^6 + m_{\tilde{\ell}_a}^8] \mathcal{Y}_0 \right].$$

(315)

$\mathcal{T}_4, \mathcal{T}_3, \mathcal{Y}_0...$ etc are auxiliary functions defined in the appendix of [14]. Given that $m_{\tilde{\ell}_a}^2 \sim \mathcal{V}^{-3} M_p^2$ from equation (B21) and $m_Z \sim 90$ GeV, on solving and simplifying the same, we get

$$\mathcal{T}_0 = \frac{1}{-\mathcal{V}^{4\frac{5}{2}} - 4\mathcal{V}^5 + (\mathcal{V}^{\frac{21}{4}} + s) \mathcal{V}^{\frac{13}{4}} + \mathcal{V}^\frac{5}{2}}$$

$$\sqrt{s - 4\mathcal{V}^\frac{5}{2}} \sqrt{s - 4\mathcal{V}^{\frac{21}{4}}} \mathcal{V}^{\frac{13}{4}} + (-4\mathcal{V}^{\frac{13}{4}} + s\mathcal{V}^{\frac{21}{4}} + 1) \log \left(s - 2\mathcal{V}^{\frac{5}{2}} - s - 4\mathcal{V}^5 \left(\mathcal{V}^{\frac{21}{4}} + s\mathcal{V}^{\frac{21}{4}} + 1 \right) \sqrt{s - 4\mathcal{V}^{\frac{21}{4}}} \right)$$

$$\mathcal{T}_1 \equiv \frac{1}{\sqrt{s - 4\mathcal{V}^{\frac{5}{2}} (-4\mathcal{V}^{\frac{13}{4}} + s\mathcal{V}^{\frac{21}{4}} + 1) \sqrt{s - 4\mathcal{V}^{\frac{21}{4}}}};$$

$$\mathcal{T}_2 \equiv -4 \left(\sqrt{s - 4\mathcal{V}^\frac{5}{2}} \sqrt{s - 4\mathcal{V}^{\frac{21}{4}}} \left(\mathcal{V}^{\frac{13}{4}} + s\mathcal{V}^{\frac{21}{4}} \right) \mathcal{V}^\frac{5}{2} + (-8\mathcal{V}^{\frac{13}{4}} + 2s\mathcal{V}^{\frac{21}{4}}) \log \left(s - 2\mathcal{V}^{\frac{5}{2}} - s - 4\mathcal{V}^5 \left(\mathcal{V}^{\frac{21}{4}} + s\mathcal{V}^{\frac{21}{4}} + 1 \right) \sqrt{s - 4\mathcal{V}^{\frac{21}{4}}} \right) \right)$$

$$\sqrt{s - 4\mathcal{V}^{\frac{5}{2}} \sqrt{s - 4\mathcal{V}^{\frac{21}{4}}} (16\mathcal{V}^5 - 4s\mathcal{V}^{\frac{21}{4}} - 4\mathcal{V}^{\frac{5}{2}})};$$

$$\mathcal{T}_3 \equiv 2 \left(6 (4\mathcal{V}^{\frac{13}{4}} - s\mathcal{V}^{\frac{21}{4}}) \log \left(s - 2\mathcal{V}^{\frac{5}{2}} - s - 4\mathcal{V}^5 \sqrt{s - 4\mathcal{V}^{\frac{21}{4}}} \left(-2\mathcal{V}^{11} - 6s\mathcal{V}^{\frac{21}{4}} + s^2\mathcal{V}^{\frac{21}{4}} \right) \right) \right) \mathcal{V}^{10} + \sqrt{s - 4\mathcal{V}^{\frac{5}{2}} \sqrt{s - 4\mathcal{V}^{\frac{21}{4}}} (16\mathcal{V}^5 - 4s\mathcal{V}^{\frac{21}{4}} - 4\mathcal{V}^{\frac{5}{2}})};$$

$$\sqrt{s - 4\mathcal{V}^{\frac{5}{2}} \sqrt{s - 4\mathcal{V}^{\frac{21}{4}}} (16\mathcal{V}^5 - 4s\mathcal{V}^{\frac{21}{4}} - 4\mathcal{V}^{\frac{5}{2}})}.$$
\[T_4 \equiv 4 \log \left(\frac{s-2V^\frac{5}{3} - \sqrt{s-4V^\frac{5}{3}} \sqrt{s-4V^\frac{21}{5}}}{s-2V^\frac{5}{3} + \sqrt{s-4V^\frac{5}{3}} \sqrt{s-4V^\frac{21}{5}}} \right) V^\frac{5}{3} \]
\[+ \frac{1}{3} \left(\frac{3V^\frac{26}{5}}{-4V^\frac{17}{5} + sV^\frac{13}{5}} + 18V^\frac{42}{5} - 7sV^\frac{17}{5}V^\frac{4}{5} + s^2 \right) ; \]
\[\mathcal{Y}_0 \equiv \frac{2 \log \left(\frac{s-2V^\frac{5}{3} - \sqrt{s-4V^\frac{5}{3}} \sqrt{s-4V^\frac{21}{5}}}{s-2V^\frac{5}{3} + \sqrt{s-4V^\frac{5}{3}} \sqrt{s-4V^\frac{21}{5}}} \right)}{\sqrt{s-4V^\frac{5}{3}} (s-2V^\frac{5}{3}) \sqrt{s-4V^\frac{21}{5}}}; \]
\[\mathcal{Y}_2 \equiv \frac{2 \left(s - V^\frac{5}{3} \left(V^\frac{17}{5} + 2 \right) \right) \log \left(\frac{s-2V^\frac{5}{3} - \sqrt{s-4V^\frac{5}{3}} \sqrt{s-4V^\frac{21}{5}}}{s-2V^\frac{5}{3} + \sqrt{s-4V^\frac{5}{3}} \sqrt{s-4V^\frac{21}{5}}} \right) V^\frac{21}{5}}{\sqrt{s-4V^\frac{5}{3}} (s-2V^\frac{5}{3}) \sqrt{s-4V^\frac{21}{5}}} + 1; \]
\[\mathcal{Y}_4 \equiv \frac{1}{6} \left(-s^2 + 2V^\frac{5}{3} \left(5V^\frac{17}{5} + 2 \right) s - 2 \left(6V^\frac{22}{5} + 8V^5 + 3V^\frac{5}{3} \right) \right) . \]

- Higgs (h, H) (+ Point) – slepton (\bar{\ell}_c) interference:

\[\bar{w}^{(h,H,P-\bar{\ell})}_{ZZ} = \frac{1}{2m_Z} \sum_{c=1}^{2} \text{Re} \left[\left(\sum_{r=h,H} C^{zz}_r C^{\bar{\ell}_r \bar{\ell}_a} - C^{\bar{\ell}_r \bar{\ell}_a ZZ} \right) C^{\bar{\ell}_b \bar{\ell}_c} C^{\bar{\ell}_d \bar{\ell}_c} \right] \times \left[s^2 + s(m^2_{\bar{\ell}_a} + m^2_{\bar{\ell}_b} - 2m^2_{\bar{\ell}_c} - 4m^2_Z) + 2m^2_Z(m^2_{\bar{\ell}_a} + m^2_{\bar{\ell}_b} - 2m^2_{\bar{\ell}_c} - 2m^2_Z) \right. \]
\[\left. - 2s(m^2_{\bar{\ell}_a} - m^2_{\bar{\ell}_b} - m^2_{\bar{\ell}_c} - m^2_Z)(m^2_{\bar{\ell}_a} - m^2_{\bar{\ell}_b} - m^2_{\bar{\ell}_c} - m^2_Z) \right] \times \left[2m^2_Z(m^2_{\bar{\ell}_a} + m^2_{\bar{\ell}_b} - m^2_{\bar{\ell}_c} - m^2_{\bar{\ell}_d} + m^2_Z(m^2_{\bar{\ell}_a} - m^2_{\bar{\ell}_c} - m^2_{\bar{\ell}_d} - 2m^2_Z) \right. \]
\[\left. - m^2_Z(m^2_{\bar{\ell}_a} + m^2_{\bar{\ell}_b} - m^2_{\bar{\ell}_d}) \right] \right] F . \tag{316} \]

Using the universality in squark masses as obtained in Appendix B, the simplification leads to:

\[\bar{w}^{(h,H,P-\bar{\ell})}_{ZZ} \equiv \frac{1}{2m_Z} \text{Re} \left[\left(\sum_{r=h,H} \frac{(10^2V^- \frac{17}{5} m_{pl})}{s - m^2_r + i\Gamma_r m_r} - \tilde{f}^3 V^- 3 \right) \right] \left(\tilde{f}^2 V^2 \right) \]
\[\times \left[(s^2 - 4sm^2_Z + 4m^2_Z) - 2(sm^2_Z - 8m^2_Z) \right] F . \tag{317} \]

where

\[F \equiv \frac{\log \left(\frac{s-2V^\frac{5}{3} - \sqrt{s-4V^\frac{5}{3}} \sqrt{s-4V^\frac{21}{5}}}{s-2V^\frac{5}{3} + \sqrt{s-4V^\frac{5}{3}} \sqrt{s-4V^\frac{21}{5}}} \right)}{\sqrt{s-4V^\frac{5}{3}} \sqrt{s-4V^\frac{21}{5}}}. \]
Figure 27: Feynman diagrams for $\tilde{\ell}_a\tilde{\ell}_b^* \to Zh$ via s–channel Higgs exchange and t-channel $\tilde{\ell}_c$ exchange.

Summing up the contribution of \tilde{w} for all s, t and u-channels as according to equation (311):

$$\tilde{w}_{ZZ}|_{s=(4m_{\tilde{a}}^2)} \sim V_{zz}^{34}, \tilde{w}'_{ZZ}|_{s=(4m_{\tilde{a}}^2)} \sim V_{zz}^{13}. \quad (318)$$

The “reduced” coefficients \tilde{a}_{ZZ} and \tilde{b}_{ZZ} will be given by [5]

$$\tilde{a}_{ZZ} \sim \frac{1}{32\pi m_{\tilde{a}}^2} V_{zz}^{34} \sim 10^{10} \text{ GeV}^{-2}, \quad \tilde{b}_{ZZ} \sim \frac{3}{64\pi m_{\tilde{a}}^2} V_{zz}^{34} \sim 10^{-10} \text{ GeV}^{-2}. \quad (319)$$

(b) $\tilde{\ell}_a\tilde{\ell}_b^* \to Zh$

The process $\tilde{\ell}_a\tilde{\ell}_b^* \to Zh$ involves the s–channel Z–boson exchange, and the t– and u–channel slepton ($\tilde{\ell}_a$, $a = 1, 2$) exchange:

$$\tilde{w}_{\tilde{\ell}_a\tilde{\ell}_b^* \to Zh} = w_{Zh}^Z + w_{Zh}^s + w_{Zh}^u. \quad (320)$$

- Z exchange:

$$\tilde{w}_{Zh}^Z = \frac{1}{12m_Z^6} \left| \frac{C_{ZH} C_{\tilde{\ell}_a\tilde{\ell}_b^* Z}}{s - m_Z^2 + i\Gamma_Z m_Z} \right|^2 \times \left[s^2 \left(3(m_{\tilde{a}}^2 - m_{\tilde{b}}^2)^2 + m_Z^4 \right) - 2s \left(3(m_{\tilde{a}}^2 - m_{\tilde{b}}^2)^2(m_Z^2 + 2m_Z^2) + m_Z^4(m_{\tilde{a}}^2 + m_{\tilde{b}}^2 + m_h^2 - 5m_Z^2) \right) \\
+ m_Z^4 \left((m_h^2 - m_Z^2)^2 + 4(m_{\tilde{a}}^2 + m_{\tilde{b}}^2)(m_h^2 - 5m_Z^2) \right) \right] + \left(m_{\tilde{a}}^2 - m_{\tilde{b}}^2 \right)^2 (3m_Z^4 + 6m_Z^2m_h^2 + 19m_Z^6) \\
- \frac{2}{s} m_Z^2 \left((m_{\tilde{a}}^2 - m_{\tilde{b}}^2)^2(3m_h^2 - 2m_Z^2m_h^2 + m_h^4 + m_Z^2(m_h^2 - m_Z^2)^2(m_{\tilde{a}}^2 + m_{\tilde{b}}^2)) \right) + \frac{4}{s^2} m_Z^4(m_h^2 - m_Z^2)^2(m_{\tilde{a}}^2 - m_{\tilde{b}}^2)^2 \right]. \quad (321)$$

For $C_{ZH} \sim \frac{m_h^2}{v}, C_{\tilde{\ell}_a\tilde{\ell}_b^* Z} \sim f\sqrt{\nu}$ and assuming universality in slepton masses; after simplification, above expression reduces to:

$$\tilde{w}_{Zh}^Z = \frac{1}{12m_Z^6} \left| \frac{10^2 f\sqrt{\nu}}{s - m_Z^2 + i\Gamma_Z m_Z} \right|^2 \times \left[s^2 m_Z^4 - 4s m_{\tilde{a}}^2 m_Z^4 + 8s m_{\tilde{a}}^2 m_{\tilde{b}}^2 m_h^2 - \frac{2}{s} m_{\tilde{a}}^2 m_{\tilde{b}}^2 m_h^4 \right]. \quad (322)$$

Here, we are considering: $f \sim 10^{-5}$
\[\tilde{w}_{Z\ell} = \frac{1}{m_Z^2} \sum_{c,d=1}^{2} C_{\tilde{\ell}_c Z} C_{\tilde{\ell}_d h} C_{\tilde{\ell}_c Z} C_{\tilde{\ell}_d h} \left[T_2^t - 2(m_{\ell_c}^2 + m_Z^2)T_1^t + (m_{\ell_c}^2 - m_Z^2)^2 T_0^t \right] + \frac{1}{m_Z^2} \sum_{c,d=1}^{2} C_{\tilde{\ell}_c Z} C_{\tilde{\ell}_d h} C_{\tilde{\ell}_c h} C_{\tilde{\ell}_d h} \left[T_2^u - 2(m_{\ell_c}^2 + m_Z^2)T_1^u + (m_{\ell_c}^2 - m_Z^2)^2 T_0^u \right] + \frac{1}{m_Z^2} \Re \sum_{c,d=1}^{2} C_{\tilde{\ell}_c Z} C_{\tilde{\ell}_d h} C_{\tilde{\ell}_c h} C_{\tilde{\ell}_d h} \left[T_2^t - 2(m_{\ell_c}^2 + m_Z^2)T_1^t + (m_{\ell_c}^2 - m_Z^2)^2 T_0^t \right] \times \left[-2\mathcal{Y}_2 + \frac{1}{s}(s - m_h^2 + m_Z^2)(m_{\ell_c}^2 - m_{\ell_b}^2)\mathcal{Y}_1 + \left\{ s(m_{\ell_c}^2 + m_{\ell_b}^2 - 2m_Z^2) - (m_{\ell_c}^4 + m_{\ell_b}^4) - 2m_Z^2m_h \right\} + (3m_{\ell_c}^2 - m_h^2)(m_{\ell_c}^2 + m_{\ell_b}^2) + \frac{1}{s}(m_h^2 - m_Z^2)(m_{\ell_c}^2 - m_{\ell_b}^2)^2 - \frac{1}{2s^2}(m_h^2 - m_Z^2)^2(m_{\ell_c}^2 - m_{\ell_b}^2)^2 \} \mathcal{Y}_0 \right]. \] (323)

Assuming universality in slepton masses of first two generations

\[\sum_{c,d=1}^{2} C_{\tilde{\ell}_c Z} C_{\tilde{\ell}_d h} C_{\tilde{\ell}_c h} C_{\tilde{\ell}_d h} \sim \sum_{c,d=1}^{2} C_{\tilde{\ell}_c Z} C_{\tilde{\ell}_d h} C_{\tilde{\ell}_c h} C_{\tilde{\ell}_d h} \sim \sum_{c,d=1}^{2} C_{\tilde{\ell}_c Z} C_{\tilde{\ell}_d h} C_{\tilde{\ell}_c h} C_{\tilde{\ell}_d h} \equiv \tilde{f}^2\mathcal{V}^{-\frac{38}{15}}m_p^2. \]

Therefore, (323) reduces to:

\[\tilde{w}_{Z\ell} \sim \frac{\tilde{f}^2\mathcal{V}^{-\frac{38}{15}}m_p^2}{m_Z^2} \times \left[(T_2^t + T_2^u) - m_{\ell_c}^2(T_1^t + T_1^u) + m_{\ell_c}^4(T_0^t + T_0^u) - 2\mathcal{Y}_2 + (2\mathcal{S}_{\tilde{\ell}_1}^2 - 2m_{\ell_c}^4)\mathcal{Y}_0 \right]. \] (324)

\[\tilde{w}_{Z\ell} = \frac{1}{m_Z^2} \Re \sum_{c=1}^{2} \left(\frac{C_{Z\tilde{\ell}_c Z} C_{\tilde{\ell}_c h}}{s - m_{\ell_c}^2 + i\Gamma_{Zm_Z}} \right)^* \left[C_{\tilde{\ell}_c Z} C_{\tilde{\ell}_c h} \left\{ - (s - m_h^2)(m_{\ell_c}^2 - m_{\ell_b}^2) \right\} + 2m_Z^2(m_{\ell_c}^2 - m_{\ell_b}^2) + \frac{1}{s}(m_h^2 - m_Z^2)(m_{\ell_c}^2 - m_{\ell_b}^2)^2 \right] \mathcal{F}^t \right\} + C_{\tilde{\ell}_c h} C_{\tilde{\ell}_c Z} \left\{ (s - m_h^2)(m_{\ell_c}^2 - m_{\ell_b}^2) + 2m_Z^2(m_{\ell_c}^2 - m_{\ell_b}^2) + \frac{1}{s}(m_h^2 - m_Z^2)(m_{\ell_c}^2 - m_{\ell_b}^2) \right\} + \left[- s(m_{\ell_c}^2 - m_{\ell_b}^2 - m_Z^2)(m_{\ell_c}^2 - m_{\ell_b}^2) + m_Z^2(3m_{\ell_b}^2 + m_{\ell_c}^2 + 3m_{\ell_b}^2) - 3m_{\ell_c}^4 + m_Z^2(4m_{\ell_b}^2 + m_{\ell_c}^2 - m_Z^2) \right] \mathcal{F}^u \right\} \right]. \] (325)

For \(C_{Z\tilde{\ell}_c Z} \sim 10^2, C_{\tilde{\ell}_c h} \sim \tilde{f}\mathcal{V}, C_{\tilde{\ell}_c h} \sim \mathcal{V}^{-\frac{38}{15}}, \) after simplification, (325) reduces to

\[\tilde{w}_{Z\ell} \equiv \frac{1}{m_Z^2} \Re \sum_{c=1}^{2} \left(\frac{(10^2\tilde{f}\mathcal{V})M_p}{s - m_{\ell_c}^2 + i\Gamma_{Zm_Z}} \right)^* \left[C_{\tilde{\ell}_c Z} C_{\tilde{\ell}_c h} \left[4m_Z^4 + (2m_{\ell_c}^2 - m_{\ell_b}^2)(m_{\ell_c}^2 - m_{\ell_b}^2) \right] \mathcal{F}^t + \mathcal{F}^u \right] \right] \]
Figure 28: Feynman diagrams for $\tilde{\ell}_a\tilde{\ell}_b \to \gamma\gamma$ via point interaction and t-channel $\tilde{\ell}_c^*$ exchange.

where

$$F^t \sim F^u \equiv \frac{3 \log \left(\frac{3s-8V^4 + \sqrt{3s-2(4+\sqrt{15})V^4 \sqrt{s-4V^2}}} {3s-8V^4 + \sqrt{3s-2(4+\sqrt{15})V^4 \sqrt{s-4V^2}}} \right)} {\sqrt{3s+2(-4+\sqrt{15})V^4 \sqrt{3s-2(4+\sqrt{15})V^4 \sqrt{s-4V^2}}}}.$$

Summing up the contribution of \bar{w} for all s, t and u-channels as according to equation (325)

$$\bar{w}_{Zh}|_{s=(4m^2_a)} \sim V_{\Gamma}^{34}, \text{ } \bar{w}_Z^\gamma|_{s=(4m^2_a)} \sim V_{\Gamma}^{34}.$$

(326)

The “reduced” coefficients \bar{a}_{Zh} and \bar{b}_{Zh} will be given by

$$\bar{a}_{Zh} \sim \frac{1}{32\pi m_{\tilde{\ell}_a}^2} V_{\Gamma}^{34} \sim 10^{-11} GeV^{-2}; \text{ } \bar{b}_{Zh} \sim \frac{3}{64\pi m_{\tilde{\ell}_a}^2} V_{\Gamma}^{34} \sim 10^{-21} GeV^{-2}.$$

(327)

(c)$\tilde{\ell}_a\tilde{\ell}_b \to \gamma\gamma$

The four–point contact interaction needs to be included along with the t– and u–channel slepton ($\tilde{\ell}_a$, a = 1, 2) exchange:

$$\bar{w}_{\tilde{\ell}_a\tilde{\ell}_b \to \gamma\gamma} = \bar{w}_{\gamma\gamma}^{(P)} + \bar{w}_{\gamma\gamma}^{(P-)} + \bar{w}_{\gamma\gamma}^{(P+)}.$$

- Contact interaction:

$$\bar{w}_{\gamma\gamma}^{(P)} \sim (C_{\tilde{\ell}_a\tilde{\ell}_b\gamma})^2 \sim e^4(f^2V^{-3})^2 \delta_{ab}.$$

(328)

- slepton ($\tilde{\ell}_a$) exchange:

$$\bar{w}_{\gamma\gamma}^{(P-)} = \bigg((C_{\tilde{\ell}_a\tilde{\ell}_b\gamma})^4 \delta_{ab} \bigg) \left[4(T_2 + 2m_{\tilde{\ell}_a}^2 T_1 + m_{\tilde{\ell}_a}^4 T_6) - (s - 4m_{\tilde{\ell}_a}^2)^2 \gamma_0 \right] \sim f^4 V^4 \left[4(T_2 + 2m_{\tilde{\ell}_a}^2 T_1 + m_{\tilde{\ell}_a}^4 T_6) - (s - 4m_{\tilde{\ell}_a}^2)^2 \gamma_0 \right]$$

(329)

where

$$T_0 \equiv \frac{1}{V^{21/5} (V^{21/5} + s) - V^{42/5}}; \text{ } T_1 \equiv \frac{\log \left(\frac{\sqrt{s} - \sqrt{s-4V^{21/5}}}{\sqrt{s} + \sqrt{s-4V^{21/5}}} \right)} {\sqrt{s} \sqrt{s-4V^{21/5}}} + \frac{1}{s}.$$

80
\[\tilde{\ell}_a(p_1) \rightarrow h(p_3)\]

\[\tilde{\ell}_b(p_2) \gamma(p_4)\]

Figure 29: Feynman diagrams for \(\tilde{\ell}_a \tilde{\ell}_b \rightarrow h \gamma\) via t-channel \(\tilde{\ell}_c\) exchange.

\[\mathcal{T}_2 \equiv 2 \log \left(\frac{\sqrt{s - \sqrt{s - 4V^{21/5}}}}{\sqrt{s - 4V^{21/5}}} \right) V^{21/5} + \frac{V^{21/5}}{s} + 1; \gamma_0 \equiv 2 \log \left(\frac{\sqrt{s - \sqrt{s - 4V^{21/5}}}}{\sqrt{s - 4V^{21/5}}} \right) s^{3/2} \sqrt{s - 4V^{21/5}}\]

- Contact – slepton (\(\tilde{\ell}_c\)) interference:

\[\tilde{w}_{\gamma\gamma}^{(P-\tilde{\ell})} = 2 C_{\tilde{t}_a \tilde{t}_b, \gamma}(C_{\tilde{t}_a \tilde{t}_b, \gamma})^2 \bar{e}_a \delta \left[-4 + (s - 8m_{\tilde{t}_a}^2) F \right] \sim (\hat{f}^4 \gamma^{-1}) \bar{e}_a \delta \left[-4 + (s - 8m_{\tilde{t}_a}^2) F \right]\]

and

\[\mathcal{F} \equiv \frac{\log \left(\frac{\sqrt{s - \sqrt{s - 4V^{21/5}}}}{\sqrt{s - 4V^{21/5}}} \right)}{\sqrt{s - 4V^{21/5}}}\]

Summing up the contribution of \(\tilde{w}\) for all channels: \(\text{(328)}\)

\[\tilde{w}_{\gamma\gamma} \big|_{s = (4m_{\tilde{t}_a}^2)} \sim V^{21/5}_\gamma, \tilde{w}_{\gamma\gamma} \big|_{s = (4m_{\tilde{t}_a}^2)} \sim \mathcal{O}(1),\]

the “reduced” coefficients \(\tilde{a}_{\gamma\gamma}\) and \(\tilde{b}_{\gamma\gamma}\) will be given by

\[\tilde{a}_{\gamma\gamma} \sim \frac{1}{32\pi m_{\tilde{t}_a}^2} V^{21/5}_\gamma \sim 10^{-2} GeV^{-2}; \tilde{b}_{\gamma\gamma} \sim \frac{3}{64\pi m_{\tilde{t}_a}^2} \mathcal{F}(1) \sim 10^{-23} GeV^{-2}.\]

\((c)\tilde{\ell}_a \tilde{\ell}_b \rightarrow \gamma h\)

- slepton (\(\tilde{\ell}_c\)) exchange:

With

\[\tilde{w}_{\gamma\gamma} \tilde{\ell}_a \tilde{\ell}_b \rightarrow \gamma h = \tilde{w}_{\gamma\gamma}^{(\tilde{\ell})} :\]

\[\tilde{w}_{\gamma\gamma}^{(\tilde{\ell})} = -2 |C_{\tilde{t}_b \tilde{t}_a, \gamma}|^2 |C_{\tilde{t}_b \tilde{t}_a, h}|^2 \left[(T_{\tilde{t}^u}^u + m_{\tilde{t}_a}^2 T_{\tilde{t}_a}^0) + (T_{\tilde{t}_b}^u + m_{\tilde{t}_b}^2 T_{\tilde{t}_b}^0) + (s + m_{\tilde{t}_a}^2 - 2m_{\tilde{t}_a}^2 - 2m_{\tilde{t}_b}^2) \gamma_0 \right] \]

\[\sim (\hat{f} V^{-19/15})^2 \left[(T_{\tilde{t}^u}^u + m_{\tilde{t}_a}^2 T_{\tilde{t}_a}^0) + (T_{\tilde{t}_b}^u + m_{\tilde{t}_b}^2 T_{\tilde{t}_b}^0) + (s + m_{\tilde{t}_a}^2 - 4m_{\tilde{t}_b}^2) \gamma_0 \right]\]
where

\[T_0^t \equiv \mathcal{V} \frac{s^{42}}{s \sqrt{s}} + s \left(\mathcal{V}^{21/5} - \mathcal{V}^4 + s \right) \mathcal{V}^{21/5} + \left(-2 s \mathcal{V}^{21/5} + \mathcal{V}^8 - s \mathcal{V}^4 \right) \mathcal{V}^{21/5}, \]

\[T_0^u \equiv \mathcal{V} \frac{s^{42}}{s \sqrt{s}} + s \left(\mathcal{V}^{21/5} - \mathcal{V}^4 + s \right) \mathcal{V}^{21/5} + \left(-2 s \mathcal{V}^{21/5} + \mathcal{V}^8 - s \mathcal{V}^4 \right) \mathcal{V}^{21/5}, \]

\[T_1^t \equiv \mathcal{V} \frac{\log \left(\frac{s - \sqrt{s} - \mathcal{V}^{21/5} \left(-1 - \sqrt{s} - 4 \sqrt{\mathcal{V}^{21/5} - s} \right) \mathcal{V}^{21/5}}{s - \sqrt{s} + \mathcal{V}^{21/5} \left(-1 - \sqrt{s} - 4 \sqrt{\mathcal{V}^{21/5} - s} \right) \mathcal{V}^{21/5}} \right)}{\sqrt{1 - \mathcal{V}^4 - s - \mathcal{V}^{21/5} \sqrt{s - \mathcal{V}^4}}}, \]

\[T_1^u \equiv \mathcal{V} \frac{\log \left(\frac{s - \sqrt{s} - \mathcal{V}^{21/5} \left(-1 - \sqrt{s} - 4 \sqrt{\mathcal{V}^{21/5} - s} \right) \mathcal{V}^{21/5}}{s - \sqrt{s} + \mathcal{V}^{21/5} \left(-1 - \sqrt{s} - 4 \sqrt{\mathcal{V}^{21/5} - s} \right) \mathcal{V}^{21/5}} \right)}{\sqrt{1 - \mathcal{V}^4 - s - \mathcal{V}^{21/5} \sqrt{s - \mathcal{V}^4}}}, \]

\[Y_0 \equiv \mathcal{V} \frac{2 \log \left(\frac{s - \sqrt{s} - \mathcal{V}^{21/5} \left(-1 - \sqrt{s} - 4 \sqrt{\mathcal{V}^{21/5} - s} \right) \mathcal{V}^{21/5}}{s - \sqrt{s} + \mathcal{V}^{21/5} \left(-1 - \sqrt{s} - 4 \sqrt{\mathcal{V}^{21/5} - s} \right) \mathcal{V}^{21/5}} \right)}{\sqrt{1 - \mathcal{V}^4 - s - \mathcal{V}^{21/5} \sqrt{s - \mathcal{V}^4}}}. \]

For \(s = 4 m_{\ell_a}^2 \)

\[\tilde{w}_{\gamma h} \big|_{s = (4 m_{\ell_a}^2)} \sim \mathcal{V}^{-\frac{41}{8}}, \tilde{w}_{\gamma h}^{ZZ} \big|_{s = (4 m_{\ell_a}^2)} \sim \mathcal{V}^{-\frac{13}{8}}. \] (335)

The “reduced” coefficients \(\tilde{a}_{\gamma h} \) and \(\tilde{b}_{\gamma h} \) will be given by

\[\tilde{a}_{\gamma h} \sim \frac{1}{32 \pi m_{\ell_a}^2} \mathcal{V}^{-\frac{41}{8}} \sim 10^{-83} GeV^{-2}; \tilde{b}_{\gamma h} \sim \frac{3}{64 \pi m_{\ell_a}^2} \mathcal{V}^{-\frac{13}{8}} \sim 10^{-87} GeV^{-2}. \] (336)

(d) \(\bar{\ell}_a \bar{\ell}_b \to hh \)

Now,

\[\tilde{w}_{\ell_a \ell_b \to hh} = \tilde{w}_{(h,h,P)}^{(h,h,P)} + \tilde{w}_{hh}^{(h,h,P)} + \tilde{w}_{hh}^{(h,h,P-\ell)} \] (337)

where

- **Higgs** \((h,H)\) exchange (+ Point interaction):
The contribution of T hence A is of the same order as $\frac{m^4}{\Lambda^9}$. Therefore, after simplifying, we have

$$w_{hh}^{(h,H,P)} = \left| \sum_{r=h,H} \frac{C_{hh}C_{\ell_r^a\ell_4^r}}{s - m_r^2 + i\Gamma_r m_r} - C_{\ell_r^a\ell_{hh}} \right|^2. \quad (338)$$

For $m_h = 125 GeV$, $m_H \sim \sqrt{\frac{m_h}{2}}$, $m_{\chi_0} \sim \sqrt{\frac{m_h}{2}} \sim \sqrt{\frac{4}{3} M_p}$, and $C_{hhh} \sim \frac{m_h^2}{\Lambda^9}$, $C_{\ell_h^a\ell_h^b} \sim C_{\ell_a^a\ell_b^b} \sim \sqrt{\frac{4}{3} M_p}$ from above, after simplifying, we have

$$w_{hh}^{(h,H,P)} = \left| \frac{(10^2 \cdot \sqrt{\frac{4}{3}} m_{pl})}{s - m_h^2 + i\Gamma_h m_h} + \frac{(10^2 \cdot \sqrt{\frac{4}{3}} m_{pl})}{s - m_H^2 + i\Gamma_H m_H} - \sqrt{\frac{4}{3}} \right|^2. \quad (339)$$

- slepton ℓ_c exchange:

$$w_{hh}^{(\ell_c)} = \sum_{c,d=1}^2 C_{\ell_c^a\ell_d^c} C_{\ell_c^a\ell_d^c} \tau_0^c + \sum_{c,d=1}^2 C_{\ell_c^a\ell_d^c} C_{\ell_c^a\ell_d^c} \tau_0^c - 2Re \sum_{c,d=1}^2 C_{\ell_c^a\ell_d^c} C_{\ell_c^a\ell_d^c} \tau_0^c. \quad (340)$$

Strictly speaking we are considering first generation of squarks which get identified with same modulus A_1. Therefore,

$$\sum_{c,d=1}^2 C_{\ell_c^a\ell_d^c} C_{\ell_c^a\ell_d^c} \tau_0^c \sim (\sqrt{\frac{4}{3}})^4 \sim \sqrt{\frac{4}{3}} M_p^4. \quad (340)$$

Hence

$$w_{hh}^{(\ell_c)} = \sqrt{\frac{4}{3}} (\tau_0^c + \tau_0^c - \tau_0^c) M_p^4. \quad (341)$$

The contribution of $\tau_0^c, \tau_0^c, \tau_0^c$ for $\ell_a \ell_b^* \to hh$ is of the same order as $\ell_a \ell_b^* \to ZZ$.

- Higgs (h,H) (+ Point) – slepton (ℓ_c) interference:

$$w_{hh}^{(h,H,P,\ell)} = 2Re \sum_{c=1}^2 \left(\sum_{r=h,H} \frac{C_{hh}C_{\ell_c^a\ell_r^c}}{s - m_r^2 + i\Gamma_r m_r} - C_{\ell_r^a\ell_{hh}} \right) \left[C_{\ell_c^a\ell_h^c} C_{\ell_c^a\ell_h^c} \mathcal{F}^c + C_{\ell_c^a\ell_h^c} C_{\ell_c^a\ell_h^c} \mathcal{F}^u \right], \quad (342)$$
Figure 31: Feynman diagram for $\tilde{\ell}_a \tilde{\ell}_b^* \rightarrow hh$ via t-channel $\tilde{\ell}_c$ exchange.

which expanding and incorporating in the values for the couplings,

$$
\tilde{w}_{hh}^{(h,H,P-\tilde{\ell})} = 2V^{-\frac{68}{15}} \frac{\left((10^2, V^{-\frac{34}{15}}) m_{pl} \right)}{s - m_{\tilde{\ell}}^2 + i\Gamma_{\tilde{\ell}} m_{\tilde{\ell}}} + \frac{\left((10^2, V^{-\frac{34}{15}}) m_{pl} \right)}{s - m_{\tilde{\ell}}^2 + i\Gamma_{\tilde{\ell}} m_{\tilde{\ell}}} - V^{-\frac{44}{15}} \left[F^t + F^u \right]
$$

where $F^t = F^u \equiv \log \left(\frac{-4V^2 - 2V^{2/5} + s - \sqrt{s - 4V^2}/\sqrt{s - 12V^2}}{s - 4V^{2/5}/\sqrt{s - 12V^2}} \right)$. (343)

Summing up the contribution of \tilde{w} for all channels:

$$
\tilde{w}_{hh}\big|_{s=(4m_{\tilde{\ell}}^2)} \sim V^{-3}, \tilde{w}_{hh}\big|_{s=(4m_{\tilde{\ell}}^2)} \sim V^{-\frac{36}{5}},
$$

and the “reduced” coefficients \tilde{a}_{hh} and \tilde{b}_{hh} will be given by

$$
\tilde{a}_{hh} \sim \frac{1}{32\pi m_{\tilde{\ell}}^2} V^{-3} \sim 10^{-37} GeV^{-2}, \tilde{b}_{hh} \sim \frac{3}{64\pi m_{\tilde{\ell}}^2} V^{-\frac{36}{5}} \sim 10^{-48} GeV^{-2} \quad (345)
$$

(e) $\tilde{\ell}_a \tilde{\ell}_b \rightarrow \ell \ell$

This process proceeds only t- and u-channel neutralino ($\chi_i^0, i = 1,2,3$) exchange ($\tilde{w}_{\ell_a \ell_b \rightarrow \ell \ell} = \tilde{w}_{\ell a}(\chi_i^0)$).

- neutralino (χ_i^0) exchange:

$$
\tilde{w}_{\ell_a \ell_b \rightarrow \ell \ell}^{(X_i^0)} = \sum_{i,j=1}^{3} \left[D_{LRLR}^{abij} m_{\chi_i^0} m_{\chi_j^0} (s - 2m_{\ell}^2) \mathcal{T}_0 + 2m_{\ell}^2 \left[D_{LRLR}^{abij} m_{\chi_i^0} m_{\chi_j^0} \mathcal{T}_0 + D_{LRLR}^{abij} \mathcal{T}_1 \right] + D_{LRLR}^{abij} \left[- \mathcal{T}_2 - (s - m_{\ell_a}^2 - m_{\ell_b}^2) \mathcal{T}_1 \right]
-(m_{\ell_a}^2 - m_{\ell_b}^2)(m_{\ell_a}^2 - m_{\ell_b}^2) \mathcal{T}_0 \right] - m_{\ell} m_{\chi_i^0} D_{LRLR}^{abij} \mathcal{T}_0 + D_{LRLR}^{abij} \mathcal{T}_1 \right]
-m_{\ell} m_{\chi_i^0} \left[D_{LRLR}^{abij} \mathcal{T}_0 + D_{LRLR}^{abij} \mathcal{T}_1 \right]
\right]
+ \frac{1}{2} \sum_{i,j=1}^{3} \left[-2 D_{LRLR}^{abij} m_{\chi_i^0} m_{\chi_j^0} (s - 2m_{\ell}^2) \mathcal{Y}_0 + 4D_{LRLR}^{abij} m_{\chi_i^0} m_{\chi_j^0} m_{\chi_i^0} m_{\chi_j^0} m_{\chi_i^0} m_{\chi_j^0} (s - 2m_{\ell}^2 + m_{\ell_a}^2 - m_{\ell_b}^2) \mathcal{Y}_0
+ 2D_{LRLR}^{abij} \left[- (s - m_{\ell_a}^2 - m_{\ell_b}^2) \mathcal{Y}_1
+ m_{\ell} m_{\chi_i^0} D_{LRLR}^{abij} \mathcal{Y}_1 + (s + m_{\ell_a}^2 - m_{\ell_b}^2 - 4m_{\ell}^2) \mathcal{Y}_0 \right]
+ m_{\ell} m_{\chi_i^0} D_{LRLR}^{abij} \mathcal{Y}_1 + (s + m_{\ell_a}^2 - m_{\ell_b}^2 - 4m_{\ell}^2) \mathcal{Y}_0 \right]
+ D_{LRLR}^{abij} \left(\mathcal{Y}_1 - (s - m_{\ell_a}^2 + m_{\ell_b}^2 - 4m_{\ell}^2) \mathcal{Y}_0 \right) \right].
$$

(346)
The “reduced” coefficients

\[D^{abij}_{LLLL} = C_L^{0} C_L^{0} C_L^{0} C_L^{0} + (L \to R), \]
\[D^{abij}_{LLRR} = C_L^{0} C_L^{0} C_L^{0} C_L^{0} \quad (L \leftrightarrow R), \]
\[D^{abij}_{LRLR} = C_L^{0} C_L^{0} C_L^{0} C_L^{0} \quad (L \leftrightarrow R), \]
\[D^{abij}_{LLRL} = C_L^{0} C_L^{0} C_L^{0} C_L^{0} \quad (L \leftrightarrow R), \]
\[D^{abij}_{RLRL} = C_L^{0} C_L^{0} C_L^{0} C_L^{0} \quad (L \leftrightarrow R), \]
\[D^{abij}_{RLLL} = C_L^{0} C_L^{0} C_L^{0} C_L^{0} \quad (L \leftrightarrow R). \]

(347)

Given that \(m_{\chi_3} \sim V^{-\frac{1}{2}} M_p, m_{\chi_0} \sim V^{-1} M_p, C_{R}^{0} C_{a}^{0} \sim \bar{f} V^{-\frac{1}{2}}, C_{R}^{0} C_{a}^{0} \sim \bar{f} V^{-\frac{12}{11}}, \) by expanding summation, the above expression reduces to

\[\bar{\omega}(\chi^0)_{\ell a} \sim \frac{\sqrt{s}}{2s^{3/2}2^{\frac{21}{2}} \sqrt{s-4^{\frac{21}{11}}}} \left(8sV^{2} - 160V^{\frac{31}{11}} \right) - 2 \left(-160\bar{V}^{\frac{31}{11}} + 9s^{2} + 8V^{\frac{31}{11}} \right) \log \left(\frac{\sqrt{s}-\sqrt{s-4^{\frac{21}{11}}}}{\sqrt{s}+\sqrt{s-4^{\frac{21}{11}}}} \right). \]

For \(s = 4m_{\ell a}^{2} \)

\[\bar{\omega}(\chi^0)_{\ell a} \sim \frac{1}{32\pi m_{\ell a}^{2}} V^{-\frac{10}{5}} \sim 10^{-41} GeV^{-2}; \bar{\omega}(\chi^0)_{\ell a} \sim \frac{3}{64\pi m_{\ell a}^{2}} V^{-8} \sim 10^{-62} GeV^{-2}. \]

(348)

The “reduced” coefficients \(\bar{a}_{\ell \ell} \) and \(\bar{b}_{\ell \ell} \) will be given by

\[\bar{a}_{\ell \ell} \sim \frac{1}{32\pi m_{\ell a}^{2}} V^{-\frac{10}{5}} \sim 10^{-41} GeV^{-2}; \bar{b}_{\ell \ell} \sim \frac{3}{64\pi m_{\ell a}^{2}} V^{-8} \sim 10^{-62} GeV^{-2}. \]

(349)

Summing up the contribution of partial wave coefficients for each possible annihilation processes:

\[a_{\ell a \ell a \to f_1 f_2} = \bar{a}_{\ell a \ell a \to f_1 f_2} = \bar{a}_{\ell a \ell a \to f_1 f_2} \equiv O(10)^{11} GeV^{-2}, \]
\[b_{\ell a \ell a \to f_1 f_2} = \bar{b}_{\ell a \ell a \to f_1 f_2} = \bar{b}_{\ell a \ell a \to f_1 f_2} \equiv O(10)^{-10} GeV^{-2}. \]

(350)

and

\[J(x_f) = \int_{0}^{x_f} dx \langle \sigma v_{\text{Mam}} \rangle (x) = \int_{0}^{x_f} dx (a + bx_f) = ax_f + \frac{x_f^2}{2}, \]

where \(x = T/m_{\ell a}. \)

Using the analytical expression of relic abundance as given in (303)

\[\Omega_{\ell a} = \frac{1}{\mu^2 \sqrt{g_*} J(x_f)} \]

(351)
where $\mu = 1.2 \times 10^5 GeV$. For $J(x_f) \sim a(x_f) + b^2 x_f^2 \sim 10^{11} x_f GeV^{-2}$ and $x_f = \frac{1}{33}$, $\sqrt{g_s} = 9$

$$\Omega_{\tilde{\chi}} \sim \frac{33}{1.44 \times 10^{10} \cdot 9 \cdot 10^{11}} \equiv 10^{-20}, \quad (352)$$

for $m_{\tilde{\chi}} \sim 10^8 GeV$ and $m_{\tilde{\chi}} \sim \sqrt{3} m_{\tilde{\chi}}$, relic abundance of gravitino will be given as:

$$\Omega_{\tilde{G}} = \Omega_{\tilde{\chi}} \times \frac{m_{\tilde{\chi}}}{m_{\tilde{\chi}}} = 10^{-20} \times \sqrt[3]{V} \sim 10^{-22} \text{ for } V \sim 10^5. \quad (353)$$

From (305) and (353), it appears that relic abundance of gravitino turns out to be extremely suppressed in case of slepton (NLSP) (co-)annihilations as compared to relic abundance of gravitino in case of neutralino (NLSP) annihilations, for almost similar value of thermal cross-section.

6 Results and Discussion

In most of the supersymmetric models, gravitino appears as most natural candidate of dark matter, the stability of which is governed by R-parity conservation that was initially proposed to explain the non-observation of proton decays in collider physics. However in split SUSY models, the constraints appearing from R-parity conservation are relaxed because of the fact that high scalar masses help to avoid the fast proton decay. Therefore it is interesting to see if gravitino appears as a stable dark matter candidate by taking into consideration trilinear R-parity violating couplings.

Large volume Swiss-Cheese type IIB compactifications [42] have been of wide interest, both from cosmological as well as phenomenological points of view. In this paper, we have investigated, in detail, the possibility of gravitino as a viable dark matter candidate in the framework of “L(arge) V(olume) cosmological as well as phenomenological points of view. In this paper, we have investigated, in detail, the W/Z-bosons, under a similar RG flow. Building up on this set up, we have also evaluated masses of all supersymmetric as well as soft SUSY breaking parameters obtainable from bulk F-terms in the
context of gravity mediation. Using RG-flow solutions of scalar masses, similar to the ones for a single Wilson line modulus set up of [40], one can again show that values of same do not change from string scale down to EW scale. On evaluation of the soft supersymmetry breaking parameters, we find a universality in the squarks/sleptons masses and assuming non-universality in the D3-brane position moduli (to be identified with the neutral components of the Higgs doublets) masses, on diagonalizing the Higgs mass matrix we obtain, at the EW scale, one light Higgs of the order 125\(\text{GeV} \) and one heavy Higgs while the Higgsino mass parameter comes out to be heavy. The lightest neutralino is predominantly gaugino(Wino/Bino)-type formed by linear a combination of gaugino and Higgsino. The mass scales of various SM and superpartners are given in table 1. After calculating the masses of various SM and their superpartners, it appears that gravitino is the Lightest Supersymmetric particle (LSP) for Calabi-Yau volume \(V \sim 10^5 \) which motivates the query: can we have gravitino DM in gravity mediation scenarios?

In big bang cosmology, gravitino population depends on two kinds of mechanisms: thermal as well as non-thermal production. We assume that reheating temperature is low enough to produce the effective relic abundance of gravitino in agreement with experimental observations, therefore almost all of the gravitinos are produced by electromagnetic as well as hadronic decays of unstable NLSP. The scale of masses of various superpartners suggest that because of an \(O(1) \) difference between the masses of the sleptons/squarks and the lightest neutralino and given that in our calculations we have not bothered about such \(O(1) \) factors, both can exist as valid NLSP candidate if life-times of the same are such that they do not spoil the bounds given by Big Bang Nucleosynthesis(BBN). Based on this fact, by considering the contributions of all required couplings in \(N = 1 \) gauged supergravity action and assuming that similar to the aforementioned effective Yukawa couplings, there is only an \(O(1) \) multiplicative change in the three-point interaction vertices in RG-flowing from the string to the EW scales, in section 3, we have estimated the mean lifetime by calculating two-body and three-body decay widths of Gravitino decaying into SM particles, which in case of two-body decays, comes out to be \(10^{17} \) seconds and in case of three-body decays, comes out to be \(10^{21} \) seconds, i.e., greater than the age of the universe and hence satisfies the requirement of an appropriate DM candidate. In section 4.1 we have discussed in detail the leading two body decays of gaugino/neutralino \(\tilde{B} \rightarrow \psi_{\mu}Z, \mu \gamma \) and three body \(\tilde{A}_{12} \rightarrow \psi_{\mu}u\bar{u}, \psi_{\mu}W^+W^- \) decays and determine that life-time of these decays comes out to be too short to affect the prediction of BBN. In 4.1.2, we have (re)calculated the tree-level as well as one-loop gluino decays into neutralino as well as Gravitino/Goldstino in four-Wilson-line-moduli set up, large life time(s) of which satisfy one of the important phenomenological features of “\(\mu \)- split SUSY” but can not be considered as an appropriate NLSP’s because late decays of the same into Goldstino(longitudinal component of Gravitino) can surely elude the constraints coming from BBN. Furthermore, since we are considering R-parity violating couplings into account, in addition to NLSP decaying into LSP, there might be chances that neutralino(NLSP) directly decays into SM particles via R-parity violating couplings and hence affect the relic abundance of gravitino produced by neutralino. To ensure that this does not happen, in 4.2, we have studied in detail the three-body decay width of three-body decay of neutralino into SM particles \(\chi_3^0 \rightarrow u_L\bar{d}_Rl_L \), which comes out to be very much less than the two- and three-body decay widths of ordinary neutralino decays into LSP. Therefore, we show that R-parity violating couplings do not affect relic abundance of gravitino. On a similar ground, we have calculated three body decay width of sleptons \(\tilde{l} \rightarrow Gl, \tilde{l} \rightarrow l'GV \), which similar to neutralino decays are short enough to affect bounds on BBN. The numerical estimates of various N(LSP)'s are provided in table 1. In short, the explicit calculation of life times of both, LSP and NLSP, confirms that gravitino can be considered as an appropriate dark matter candidate. However this is not the end of the story. The viable dark matter candidate should also have the right
order of relic abundance in the range provided by WMAP data and other direct as well as indirect experiments. With the assumption that the next-lightest supersymmetric particle (NLSP) freezes out with its thermal relic density before decaying to the gravitino and then eventually decays to gravitino, relic density of gravitino will be completely given in terms of relic density of NLSP. Therefore, in section 5, utilizing the partial wave expansion approach, we explicitly calculate thermal annihilation cross-section of sleptons and neutralino which ultimately give gravitino relic abundance from sleptons to be extremely suppressed while the same from neutralino comes out to be 0.16, almost in agreement with the value of $\Omega_c h^2$ suggested by the WMAP 7-year CMB anisotropy observation [2].

We repeatedly mention that all the above results are simply dependent on dilute \tilde{f}-fluxes and Calabi-Yau volume V which we have fixed to be around 10^{-4} and 10^5 respectively in the paper. The lower bound on $\tilde{f} \sim 10^{-4}$ appears by imposing that the flux-dependent D-term potential is sub-dominant as compared to the F-term potential in the dilute flux approximation (see [11]). Though one could have chosen a viable range of \tilde{f}s satisfying the lower bound of $\tilde{f} \sim 10^{-4}$, the justification behind choosing a particular value of $\tilde{f} \sim 10^{-4}$ is because of getting the right amount of relic abundance of Gravitino. The justification behind constraining a value of Calabi-Yau V to be of the order 10^5 is based on the right identification of Wilson line moduli and position moduli with Standard Model particle spectrum. The masses of first-generation leptons and quarks are generated from Yukawa couplings only for a particular value of Calabi-Yau $V \sim 10^5$ in the set-up.

An interesting outcome of our current project is that for trilinear R-parity violating couplings λ'_{ijk} (to be interpreted as an effective Yukawa couplings in $\mathcal{N} = 1$ gauged supergravity evaluated in 4) $\sim V^{-\frac{45}{32}}$ and λ''_{ijk} (to be interpreted as an effective Yukawa couplings in $\mathcal{N} = 1$ gauged supergravity evaluated in 4) $\sim V^{-\frac{43}{30}}$, according to the analytic expression given in [41], the rough estimate of proton decay width comes out to be

$$\Gamma_{p \rightarrow e^+ \pi^-} \sim m^5_{\text{proton}} \frac{|\lambda'_{ijk} \lambda''_{ijk}|^2}{m^4_{\tilde{q}I}} \sim V^{-6.1} \sim 10^{-73} \text{GeV},$$

thus giving life time of about 10^{42} years, which explicitly governs the stability of proton in the presence of small R-parity violating couplings discussed in μ-split SUSY scenario.

To summarize, we conclude that the gravitino qualifies as a potential dark matter candidate in Large volume “μ split SUSY” scenario.

Acknowledgements

MD is supported by a CSIR Senior Research Fellowship. One of us (MD) would like to thank DESY, Hamburg, for financial support and hospitality where part of this work was done, as well as the opportunity to present the results at the International School on Strings and Fundamental Physics, DESY, Hamburg, July 1 - 13, 2012. AM would like to thank Purdue University, McGill University and the Abdus Salam ICTP (under the regular associateship program) for their kind hospitality and support where part of this work was done, and would also thank P.Ouyang for informative discussions. We would also acknowledge participation of J.Beuria in earlier stages of the project.
A Geometric Kähler Potential

The crux of the Donaldson’s algorithm is that the sequence

\[
\frac{1}{k\pi} \partial_i \bar{\partial}_j \left(\ln \sum_{\alpha,\beta} h_{\alpha\beta} s_\alpha \overline{s_\beta} \right)
\]

on \(P(\{z_i\}) \), in the \(k \to \infty \)-limit - which in practice implies \(k \sim 10 \) - converges to a unique Calabi-Yau metric for the given Kähler class and complex structure; \(h_{\alpha\beta} \) is a balanced metric on the line bundle \(\mathcal{O}_P(\{z_i\})(k) \) (with sections \(s_\alpha \)) for any \(k \geq 1 \), i.e.,

\[
T(h)_{\alpha\beta} \equiv \frac{N_k}{\sum_{j=1}^{w_j} \sum_{i} s_\alpha(p_i) s_\beta(p_i) w_i}{h_{\alpha\beta}},
\]

where the weight at point \(p_i \), \(w_i \sim \frac{\varphi(p_i)}{\Omega_{\Delta^3}} \) with the embedding map \(i : P(\{z_i\}) \hookrightarrow \text{WCP}^4 \) and the number of sections is denoted by \(N_k \). The defining hypersurface of the Swiss-Cheese Calabi-Yau in the \(x_2 = 1 \)-coordinate patch in \(\text{WCP}^4 \) is given by:

\[
1 + z_1^{18} + z_2^{18} + z_3^3 + z_4^2 - \psi z_1 z_2 z_3 z_4 - 3\phi z_1^6 z_2^6 = 0.
\]

(A1)

In the large volume limit, the above can be satisfied if, e.g., \(1 + z_1^{18} + z_2^{18} \sim -z_3^3, z_4^2 \sim \psi z_1 z_2 z_3 z_4 + 3\phi z_1^6 z_2^6 \).

For \(z_{1,2} \sim V_{\frac{1}{\pi}}, \) one sees the same are satisfied for \(z_{3,4} \sim V_{\frac{1}{\phi}} \) provided \(\psi \varphi \sim 3\phi \). Therefore:

\[
\begin{align*}
\tilde{h}_{1\bar{z}_1} &\sim \frac{V_{\frac{3}{\pi}}}{h^{\frac{2}{3}} z_1^2 V_{\frac{1}{\phi}}} \\
\tilde{h}_{1\bar{z}_2} &\sim \frac{V_{\frac{3}{\pi}}}{h^{\frac{2}{3}} z_2^2 V_{\frac{1}{\phi}}} \\
\tilde{h}_{1\bar{z}_3} &\sim \frac{V_{\frac{3}{\pi}}}{h^{\frac{2}{3}} z_3^2 V_{\frac{1}{\phi}}} \\
\tilde{h}_{1\bar{z}_4} &\sim \frac{V_{\frac{3}{\pi}}}{h^{\frac{2}{3}} z_4^2 V_{\frac{1}{\phi}}} \\
\tilde{h}_{2\bar{z}_1} &\sim \frac{V_{\frac{3}{\pi}}}{h^{\frac{2}{3}} z_1^2 V_{\frac{1}{\phi}}} \\
\tilde{h}_{2\bar{z}_2} &\sim \frac{V_{\frac{3}{\pi}}}{h^{\frac{2}{3}} z_2^2 V_{\frac{1}{\phi}}} \\
\tilde{h}_{2\bar{z}_3} &\sim \frac{V_{\frac{3}{\pi}}}{h^{\frac{2}{3}} z_3^2 V_{\frac{1}{\phi}}} \\
\tilde{h}_{2\bar{z}_4} &\sim \frac{V_{\frac{3}{\pi}}}{h^{\frac{2}{3}} z_4^2 V_{\frac{1}{\phi}}} \\
\tilde{h}_{3\bar{z}_1} &\sim \frac{V_{\frac{3}{\pi}}}{h^{\frac{2}{3}} z_1^2 V_{\frac{1}{\phi}}} \\
\tilde{h}_{3\bar{z}_2} &\sim \frac{V_{\frac{3}{\pi}}}{h^{\frac{2}{3}} z_2^2 V_{\frac{1}{\phi}}} \\
\tilde{h}_{3\bar{z}_3} &\sim \frac{V_{\frac{3}{\pi}}}{h^{\frac{2}{3}} z_3^2 V_{\frac{1}{\phi}}} \\
\tilde{h}_{3\bar{z}_4} &\sim \frac{V_{\frac{3}{\pi}}}{h^{\frac{2}{3}} z_4^2 V_{\frac{1}{\phi}}} \\
\tilde{h}_{4\bar{z}_1} &\sim \frac{V_{\frac{3}{\pi}}}{h^{\frac{2}{3}} z_1^2 V_{\frac{1}{\phi}}} \\
\tilde{h}_{4\bar{z}_2} &\sim \frac{V_{\frac{3}{\pi}}}{h^{\frac{2}{3}} z_2^2 V_{\frac{1}{\phi}}} \\
\tilde{h}_{4\bar{z}_3} &\sim \frac{V_{\frac{3}{\pi}}}{h^{\frac{2}{3}} z_3^2 V_{\frac{1}{\phi}}} \\
\tilde{h}_{4\bar{z}_4} &\sim \frac{V_{\frac{3}{\pi}}}{h^{\frac{2}{3}} z_4^2 V_{\frac{1}{\phi}}}
\end{align*}
\]

(A2)
which on being inverted gives:

\[
 h^{\alpha \bar{\beta}} \sim \left(\begin{array}{cccc}
 h^{11} & h^{12} & h^{13} & h^{1\bar{4}} \\
h^{21} & h^{22} & h^{23} & h^{2\bar{4}} \\
h^{31} & h^{32} & h^{33} & h^{3\bar{4}} \\
h^{41} & h^{42} & h^{43} & h^{4\bar{4}} \\
 \end{array} \right)
\]

Using (A3), one hence obtains the Kähler potential ansatz of (23).

B Evaluation of intersection numbers \(C^{I \bar{J}} \)

The contribution of various intersection numbers \(C^{I \bar{J}} \) corresponding to four Wilson line moduli formed by including four D7-branes overlapping the big "Divisor" can be calculated by evaluating \(C^{I \bar{J}} = \int \omega_{\alpha} \wedge A^{I} \wedge A^{\bar{J}} \) where values of \(A^{I=1,2,3,4} \) are given in equation no (10). Utilizing their expressions, resultant contribution of various \(C_{I \bar{J}} \)'s are given as below:

\[
 C_{1\bar{1}} \sim \frac{1}{V} \int z_{1}^{18} z_{2}^{19} \delta \left(|z_{1}| - \mathcal{V}^{\frac{1}{36}} \right) \delta \left(|z_{2}| - \mathcal{V}^{\frac{1}{36}} \right) dzdz_{1} \wedge dz_{2},
\]

which using \(dzdz_{1} \wedge dz_{2} \wedge dz_{2} \sim |z_{1}|d|z_{1}| \wedge d(argz_{1}) \wedge |z_{2}|d|z_{2}| \wedge d(argz_{2}) \) yields:

\[
 C_{1\bar{1}} \sim \frac{1}{V} \int |z_{1}|^{36} \delta (|z_{1}| - \mathcal{V}^{\frac{1}{36}}) d|z_{1}| \int |z_{2}|^{38} \delta (|z_{2}| - \mathcal{V}^{\frac{1}{36}}) d|z_{2}|
\sim \mathcal{V}^{\frac{1}{36} + \frac{1}{36} - 1} = \mathcal{V}^{\frac{1}{36}};
\]

\[
 C_{22} \sim \frac{1}{V} \int z_{1}^{18} z_{2}^{19} \delta \left(|z_{1}| - \mathcal{V}^{\frac{1}{36}} \right) \delta \left(|z_{2}| - \mathcal{V}^{\frac{1}{36}} \right) dzdz_{1} \wedge dz_{2} \wedge dz_{2}
\sim \frac{1}{V} \int |z_{1}|^{36} |z_{1}| \delta \left(|z_{1}| - \mathcal{V}^{\frac{1}{36}} \right) d|z_{1}| \int |z_{2}|^{38} |z_{2}| \delta \left(|z_{2}| - \mathcal{V}^{\frac{1}{36}} \right) d|z_{2}|
\sim \mathcal{V}^{\frac{1}{36} + \frac{3}{36} - 1} = \mathcal{V}^{\frac{1}{6}};
\]

where \(\mathcal{V} \) is a volume of the moduli space.
\(C_{12} \sim \frac{1}{\mathcal{V}} \int z_1^{18} z_2^{19} z_3^{18} z_2 \delta \left(|z_1| - \mathcal{V}^{1/2} \right) \delta \left(|z_2| - \mathcal{V}^{1/2} \right) dz_1 \wedge d\bar{z}_1 \wedge dz_2 \wedge d\bar{z}_2 \\
\sim \frac{1}{\mathcal{V}} \int |z_1|^{30} |z_1| \delta \left(|z_1| - \mathcal{V}^{1/2} \right) d|z_1| \int |z_2|^{20} |z_2| \delta \left(|z_2| - \mathcal{V}^{1/2} \right) d|z_2| \\
\sim \mathcal{V}^{34+21-1} \mathcal{V}^{21} \\
C_{13} \sim \frac{1}{\mathcal{V}} \int z_1^{18} z_2^{19} z_3^{37} z_2 \delta \left(|z_1| - \mathcal{V}^{1/2} \right) \delta \left(|z_2| - \mathcal{V}^{1/2} \right) dz_1 \wedge d\bar{z}_1 \wedge dz_2 \wedge d\bar{z}_2 \\
\sim \frac{1}{\mathcal{V}} \int |z_1|^{30} |z_1| \delta \left(|z_1| - \mathcal{V}^{1/2} \right) d|z_1| \int |z_2|^{56} |z_2| \delta \left(|z_2| - \mathcal{V}^{1/2} \right) d|z_2| \\
\sim \mathcal{V}^{34+37-1} \mathcal{V}^{34} \\
C_{23} \sim \frac{1}{\mathcal{V}} \int z_1^{18} z_2^{19} z_3^{37} z_2 z_2 \delta \left(|z_1| - \mathcal{V}^{1/2} \right) \delta \left(|z_2| - \mathcal{V}^{1/2} \right) dz_1 \wedge d\bar{z}_1 \wedge dz_2 \wedge d\bar{z}_2 \\
\sim \frac{1}{\mathcal{V}} \int |z_1|^{30} |z_1| \delta \left(|z_1| - \mathcal{V}^{1/2} \right) d|z_1| \int |z_2|^{38} |z_2| \delta \left(|z_2| - \mathcal{V}^{1/2} \right) d|z_2| \\
\sim \mathcal{V}^{34+38-1} \mathcal{V}^{34} \\
C_{41} \sim \frac{1}{\mathcal{V}} \int z_1^{36} z_2^{37} z_3^{36} z_2 \delta \left(|z_1| - \mathcal{V}^{1/2} \right) \delta \left(|z_2| - \mathcal{V}^{1/2} \right) dz_1 \wedge d\bar{z}_1 \wedge dz_2 \wedge d\bar{z}_2 \\
\sim \frac{1}{\mathcal{V}} \int |z_1|^{72} |z_1| \delta \left(|z_1| - \mathcal{V}^{1/2} \right) d|z_1| \int |z_2|^{74} |z_2| \delta \left(|z_2| - \mathcal{V}^{1/2} \right) d|z_2| \\
\sim \mathcal{V}^{54+57-1} \mathcal{V}^{54} \\
C_{24} \sim \frac{1}{\mathcal{V}} \int z_1^{18} z_2^{19} z_3^{36} z_2 \delta \left(|z_1| - \mathcal{V}^{1/2} \right) \delta \left(|z_2| - \mathcal{V}^{1/2} \right) dz_1 \wedge d\bar{z}_1 \wedge dz_2 \wedge d\bar{z}_2 \\
\sim \frac{1}{\mathcal{V}} \int |z_1|^{54} |z_1| \delta \left(|z_1| - \mathcal{V}^{1/2} \right) d|z_1| \int |z_2|^{38} |z_2| \delta \left(|z_2| - \mathcal{V}^{1/2} \right) d|z_2| \\
\sim \mathcal{V}^{54+38-1} \mathcal{V}^{54} \\
C_{34} \sim \frac{1}{\mathcal{V}} \int z_1^{18} z_2^{37} z_3^{36} z_2 \delta \left(|z_1| - \mathcal{V}^{1/2} \right) \delta \left(|z_2| - \mathcal{V}^{1/2} \right) dz_1 \wedge d\bar{z}_1 \wedge dz_2 \wedge d\bar{z}_2 \\
\sim \frac{1}{\mathcal{V}} \int |z_1|^{54} |z_1| \delta \left(|z_1| - \mathcal{V}^{1/2} \right) d|z_1| \int |z_2|^{74} |z_2| \delta \left(|z_2| - \mathcal{V}^{1/2} \right) d|z_2| \\
\sim \mathcal{V}^{54+74-1} \mathcal{V}^{54} \\
(B2)
C Moduli space metric

On expanding moduli space metric in the fluctuations linear in $z_i=1,2$ and $a_i=1,2,3,4$ about their stabilized values given above in the paper, the expressions for moduli space metric, its inverse and its derivatives w.r.t each moduli are quoted below.

\[
g_{AB} \sim \begin{pmatrix} \frac{1}{43} & \frac{1}{27} & \frac{1}{17} & \frac{1}{9} & \frac{1}{55} & \frac{1}{29} & \frac{1}{11} & \frac{1}{65} \\ \frac{1}{27} & \frac{1}{17} & \frac{1}{13} & \frac{1}{9} & \frac{1}{11} & \frac{1}{19} & \frac{1}{29} & \frac{1}{65} \\ \frac{1}{17} & \frac{1}{13} & \frac{1}{11} & \frac{1}{9} & \frac{1}{19} & \frac{1}{29} & \frac{1}{65} & \frac{1}{65} \\ \frac{1}{9} & \frac{1}{55} & \frac{1}{29} & \frac{1}{11} & \frac{1}{65} & \frac{1}{65} & \frac{1}{65} & \frac{1}{65} \\ \frac{1}{17} & \frac{1}{13} & \frac{1}{11} & \frac{1}{9} & \frac{1}{19} & \frac{1}{29} & \frac{1}{65} & \frac{1}{65} \\ \frac{1}{13} & \frac{1}{11} & \frac{1}{19} & \frac{1}{29} & \frac{1}{65} & \frac{1}{65} & \frac{1}{65} & \frac{1}{65} \\ \frac{1}{9} & \frac{1}{55} & \frac{1}{29} & \frac{1}{11} & \frac{1}{65} & \frac{1}{65} & \frac{1}{65} & \frac{1}{65} \\ \frac{1}{55} & \frac{1}{29} & \frac{1}{11} & \frac{1}{65} & \frac{1}{65} & \frac{1}{65} & \frac{1}{65} & \frac{1}{65} \end{pmatrix} \delta z_1 +
\]

\[
\left(\frac{1}{43} \right) \delta a_1 + \left(\frac{1}{27} \right) \delta a_2 + \left(\frac{1}{17} \right) \delta a_3 + \left(\frac{1}{9} \right) \delta a_4 \quad (B1)
\]

\[
g_{AB} \sim \begin{pmatrix} \frac{1}{13} & \frac{1}{11} & \frac{1}{9} & \frac{1}{55} & \frac{1}{29} & \frac{1}{11} & \frac{1}{65} & \frac{1}{65} \\ \frac{1}{11} & \frac{1}{9} & \frac{1}{55} & \frac{1}{29} & \frac{1}{11} & \frac{1}{65} & \frac{1}{65} & \frac{1}{65} \\ \frac{1}{9} & \frac{1}{55} & \frac{1}{29} & \frac{1}{11} & \frac{1}{65} & \frac{1}{65} & \frac{1}{65} & \frac{1}{65} \\ \frac{1}{13} & \frac{1}{11} & \frac{1}{9} & \frac{1}{55} & \frac{1}{29} & \frac{1}{11} & \frac{1}{65} & \frac{1}{65} \\ \frac{1}{11} & \frac{1}{9} & \frac{1}{55} & \frac{1}{29} & \frac{1}{11} & \frac{1}{65} & \frac{1}{65} & \frac{1}{65} \\ \frac{1}{9} & \frac{1}{55} & \frac{1}{29} & \frac{1}{11} & \frac{1}{65} & \frac{1}{65} & \frac{1}{65} & \frac{1}{65} \\ \frac{1}{55} & \frac{1}{29} & \frac{1}{11} & \frac{1}{65} & \frac{1}{65} & \frac{1}{65} & \frac{1}{65} & \frac{1}{65} \\ \frac{1}{13} & \frac{1}{11} & \frac{1}{9} & \frac{1}{55} & \frac{1}{29} & \frac{1}{11} & \frac{1}{65} & \frac{1}{65} \end{pmatrix} \delta z_1 +
\]

\[
\left(\frac{1}{13} \right) \delta a_1 + \left(\frac{1}{11} \right) \delta a_2 + \left(\frac{1}{9} \right) \delta a_3 + \left(\frac{1}{55} \right) \delta a_4 \quad (B2)
\]

\[
\partial_{z_1} g_{AB} \sim \begin{pmatrix} \frac{1}{13} & \frac{1}{11} & \frac{1}{9} & \frac{1}{55} & \frac{1}{29} & \frac{1}{11} & \frac{1}{65} & \frac{1}{65} \\ \frac{1}{11} & \frac{1}{9} & \frac{1}{55} & \frac{1}{29} & \frac{1}{11} & \frac{1}{65} & \frac{1}{65} & \frac{1}{65} \\ \frac{1}{9} & \frac{1}{55} & \frac{1}{29} & \frac{1}{11} & \frac{1}{65} & \frac{1}{65} & \frac{1}{65} & \frac{1}{65} \\ \frac{1}{13} & \frac{1}{11} & \frac{1}{9} & \frac{1}{55} & \frac{1}{29} & \frac{1}{11} & \frac{1}{65} & \frac{1}{65} \\ \frac{1}{11} & \frac{1}{9} & \frac{1}{55} & \frac{1}{29} & \frac{1}{11} & \frac{1}{65} & \frac{1}{65} & \frac{1}{65} \\ \frac{1}{9} & \frac{1}{55} & \frac{1}{29} & \frac{1}{11} & \frac{1}{65} & \frac{1}{65} & \frac{1}{65} & \frac{1}{65} \\ \frac{1}{55} & \frac{1}{29} & \frac{1}{11} & \frac{1}{65} & \frac{1}{65} & \frac{1}{65} & \frac{1}{65} & \frac{1}{65} \\ \frac{1}{13} & \frac{1}{11} & \frac{1}{9} & \frac{1}{55} & \frac{1}{29} & \frac{1}{11} & \frac{1}{65} & \frac{1}{65} \end{pmatrix} \delta z_1 +
\]

\[
\left(\frac{1}{13} \right) \delta a_1 + \left(\frac{1}{11} \right) \delta a_2 + \left(\frac{1}{9} \right) \delta a_3 + \left(\frac{1}{55} \right) \delta a_4 \quad (B3)
\]
\[\partial_{\alpha_3} g_{\vec{A} \vec{B}}(z_1) \sim \left(\begin{array}{cccccc} \sqrt{7}/36 & 81 & 1 & \sqrt{7}/36 & \gamma^{47}/36 \\ 81 & 7/36 & 2/3 & \sqrt{7}/36 & \gamma^{5}/36 \\ 1 & 2/3 & \sqrt{7}/36 & \gamma^{7}/36 & \gamma^{13}/36 \\ \sqrt{7}/36 & \gamma^{7}/36 & \gamma^{5}/36 & \gamma^{13}/36 & \gamma^{8}/3 \\ \gamma^{13}/36 & \gamma^{7}/36 & \gamma^{5}/36 & \gamma^{13}/36 & \gamma^{8}/3 \\ \end{array} \right) + \left(\begin{array}{cccccc} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ \end{array} \right) \delta z_1 + \left(\begin{array}{cccccc} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ \end{array} \right) \delta a_1 + \left(\begin{array}{cccccc} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ \end{array} \right) \delta a_2 + \left(\begin{array}{cccccc} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ \end{array} \right) \delta a_3 + \left(\begin{array}{cccccc} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ \end{array} \right) \delta a_4 \] (B6)

\[\partial_{\alpha_4} g_{\vec{A} \vec{B}} \sim \left(\begin{array}{cccccc} \sqrt{7}/9 & \sqrt{7}/36 & \sqrt{7}/19 & \gamma^{5}/36 & \gamma^{7}/36 \\ \sqrt{7}/36 & \gamma^{7}/36 & \gamma^{5}/36 & \gamma^{7}/36 & \gamma^{13}/36 \\ \gamma^{7}/36 & \gamma^{7}/36 & \gamma^{5}/36 & \gamma^{7}/36 & \gamma^{13}/36 \\ \gamma^{7}/36 & \gamma^{7}/36 & \gamma^{5}/36 & \gamma^{7}/36 & \gamma^{13}/36 \\ \gamma^{7}/36 & \gamma^{7}/36 & \gamma^{5}/36 & \gamma^{7}/36 & \gamma^{13}/36 \\ \end{array} \right) + \left(\begin{array}{cccccc} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ \end{array} \right) \delta z_1 + \left(\begin{array}{cccccc} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ \end{array} \right) \delta a_1 + \left(\begin{array}{cccccc} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ \end{array} \right) \delta a_2 + \left(\begin{array}{cccccc} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ \end{array} \right) \delta a_3 + \left(\begin{array}{cccccc} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ \end{array} \right) \delta a_4 \] (B7)

D Evaluation of matrix elements corresponding to $\tilde{l} \to l' \tilde{G} V$ decay

Expressions for $O_{i,j}$, $O_{i,j}^{\text{re}}$, $O_{i,j}^{\text{im}}$ ($i < 8$) and $O_{i,j}^{\text{im}}$ ($j > 8$), and the corresponding contributions to $\int d_{s_1} ds_{23} |\mathcal{M}|^2_{m_{\tilde{l}}} \,$ (using $m_{\tilde{G}} \sim m_{\tilde{3}} \sim \mathcal{V}^{-2} m_{pl}$ and $m_{\tilde{l}} \sim \mathcal{V}_{\tilde{4}} m_{\tilde{3}}$) from equations (B13) and (B21) are

94
given as under:

\[
O_{1,1} = -\frac{4}{3m^2_G m^2_V} \left[m^2_G m^2_l - (p_G \cdot p_l)^2 \right] \left[m^2_G - p_G \cdot p_l + p_G \cdot p_V \right] \\
\times \left[m^2_G m^2_V + m^2_l m^2_V - 2m^2_G p_G \cdot p_l - (p_G \cdot p_V)^2 + 2p_G \cdot p_V p_l \cdot p_V - (p_l \cdot p_V)^2 \right],
\]

\[
\int_{m^2_{3/2}}^{m^2_1} \int_{m^2_{3/2}}^{m^2_1} \frac{|M_1|^2 O_{1,1}}{m^2_l} \sim \left(\tilde{f} \sqrt{\frac{v}{v_0}} \right)^2 \left(\sqrt{\frac{v}{v_0}} \right)^{-\frac{1}{2}} M_p \sim 10^{-16.5} M_p;
\]

\[
O_{2,2} = -\frac{4}{3m^2_G m^2_V} \left[m^2_G - p_G \cdot p_l + p_G \cdot p_V \right] \left[m^2_l m^2_V - (p_l \cdot p_V)^2 \right] \\
\times \left[- (p_G \cdot p_l)^2 + 2p_G \cdot p_l p_G \cdot p_V - (p_G \cdot p_V)^2 + m^2_G \left(m^2_l + m^2_V - 2p_l \cdot p_V \right) \right],
\]

\[
\int_{m^2_{3/2}}^{m^2_1} \int_{m^2_{3/2}}^{m^2_1} \frac{|M_2|^2 O_{2,2}}{m^2_l} \sim \left(\tilde{f} \sqrt{\frac{v}{v_0}} \right)^2 \left(\sqrt{\frac{v}{v_0}} \right)^{-\frac{1}{2}} M_p \sim 10^{-21} M_p;
\]

\[
O_{3,3} = 0;
\]

\[
O_{4,4} = \frac{4}{3m^2_G m^2_V} \left[m^2_G m^2_V - (p_G \cdot p_V)^2 \right] \\
\times \left[m^2_G m^2_V - m^2_G p_G \cdot p_l + 2 (p_G \cdot p_V)^2 + p_G \cdot p_V (3m^2_G - 2p_l \cdot p_V) \right],
\]

\[
\int_{m^2_{3/2}}^{m^2_1} \int_{m^2_{3/2}}^{m^2_1} \frac{|M_4|^2 O_{4,4}}{m^2_l} \sim \left(10 \tilde{f} \sqrt{\frac{v}{v_0}} \right)^2 \left(\sqrt{\frac{v}{v_0}} \right)^{-\frac{1}{2}} M_p \sim 10^{-18} M_p;
\]

(B1)
\[O_{5.5} = -\frac{4}{3m_G^2} \left[m_G^2 m_V^2 - (p_G \cdot p_V)^2 \right] \]
\[\times \left[m_G^2 m_V^2 - m_V^2 p_G \cdot p_I - 4 \left(p_G \cdot p_V \right)^2 + p_G \cdot p_V \left(-3m_G^2 + 4p_I \cdot p_V \right) \right], \]
\[\int_{m^2_{3/2}}^{2m^2_{3/2}} ds_{13} \int_{m_V^2}^{m^2} ds_{23} \frac{|M_5|^2 O_{5.5}}{m^3_i} \sim \left(10 \tilde{f}V^{-\frac{3}{2}} \right)^2 V^{-\frac{3}{2}} M_p \sim 10^{-16.5} M_p; \]

\[O_{6.6} = -\frac{4}{3m_G^2} \left[m_G^2 m_Z^2 - (p_G \cdot p_V)^2 \right] \]
\[\times \left[m_G^2 m_V^2 - m_V^2 p_G \cdot p_I - 4 \left(p_G \cdot p_V \right)^2 + p_G \cdot p_V \left(-3m_G^2 + 4p_I \cdot p_V \right) \right], \]
\[\int_{m^2_{3/2}}^{2m^2_{3/2}} ds_{13} \int_{m_V^2}^{m^2} ds_{23} \frac{|M_6|^2 O_{6.6}}{m^3_i} \sim \left(10 \tilde{f}V^{-\frac{3}{2}} \right)^2 V^{-\frac{3}{2}} M_p \sim 10^{-35} M_p; \]

\[O_{7.7} = \frac{4}{3m_G^2 m_V^2} \left[m_G^2 m_V^2 - (p_G \cdot p_V)^2 \right] \]
\[\left\{ m_G^4 m_V^2 + 2m_G^2 \left(p_G \cdot p_V \right)^2 + 4p_G \cdot p_V^3 - p_G \cdot p_I \left[m_G^2 m_V^2 + 4 \left(p_G \cdot p_V \right)^2 \right] \right. \]
\[- m_G^2 p_G \cdot p_V \left(m_V^2 - 2p_I \cdot p_V \right) \}, \]
\[\int_{m^2_{3/2}}^{2m^2_{3/2}} ds_{13} \int_{m_V^2}^{m^2} ds_{23} \frac{|M_7|^2 O_{7.7}}{m^3_i} \sim \left(10 \tilde{f}V^{-\frac{3}{2}} \right)^2 V^{-\frac{3}{2}} M_p \sim 10^{-16.6} M_p; \]

\[O_{8.8} = -\frac{4}{3m_G^2 m_V^2} \left[m_G^2 - p_G \cdot p_I + p_G \cdot p_V \right] \left[2m_G^2 m_V^2 + \left(p_G \cdot p_V \right)^2 \right], \]
\[\int_{m^2_{3/2}}^{2m^2_{3/2}} ds_{13} \int_{m_V^2}^{m^2} ds_{23} \frac{|M_8|^2 O_{8.8}}{m^3_i} \sim 10^{-27.5} M_p; \]

\[O_{9.9} = \frac{4}{3m_G^2 m_V^2} \left[2m_G^2 m_V^2 + (p_G \cdot p_V)^2 \right] \]
\[\times \left[m_G^2 m_V^2 - m_V^2 p_G \cdot p_I - 2 \left(p_G \cdot p_V \right)^2 - p_G \cdot p_V \left(m_G^2 - 2p_I \cdot p_V \right) \right], \]
\[\int_{m^2_{3/2}}^{2m^2_{3/2}} ds_{13} \int_{m_V^2}^{m^2} ds_{23} \frac{|M_9|^2 O_{9.9}}{m^3_i} \sim \left(10 \tilde{f}V^{-\frac{3}{2}} \right)^2 V^{-\frac{3}{2}} M_p \sim 10^{-18} M_p; \]

\[O_{10.10} = \frac{4}{3m_G^2 m_V^2} \left[2m_G^2 m_V^2 + (p_G \cdot p_V)^2 \right] \]
\[\left\{ m_G^4 m_V^2 - 2m_G^2 \left(p_G \cdot p_V \right)^2 - 4 \left(p_G \cdot p_V \right)^3 \right. \]
\[+ p_G \cdot p_I \left[-m_G^2 m_V^2 + 4 \left(p_G \cdot p_V \right)^2 \right] + m_G^2 p_G \cdot p_V \left(3m_V^2 - 2p_I \cdot p_V \right) \}, \]
\[\int_{m^2_{3/2}}^{2m^2_{3/2}} ds_{13} \int_{m_V^2}^{m^2} ds_{23} \frac{|M_{10}|^2 O_{10.10}}{m^3_i} \sim \left(10 \tilde{f}V^{-\frac{3}{2}} \right)^2 V^{-\frac{3}{2}} M_p \sim 10^{-16.6} M_p; \]
\[O_{1,2}^{\text{re}} = \frac{8}{3m_G^2 m_V^2} \left[m_G^2 - p_G \cdot p_V + p_G \cdot p_V \right] ; \]
\[\times \left[- (p_G \cdot p_V)^2 + p_G \cdot p_V p_G \cdot p_V + m_G^2 \left(m_I^2 - p_I \cdot p_V \right) \right] \]
\[\times \left[-m_I^2 m_V^2 + m_2^2 p_G \cdot p_V - p_G \cdot p_V p_V + (p_I \cdot p_V)^2 \right] . \]
\[\int_{m_I^2 + m_V^2}^{2m_I^2 + m_V^2} ds_{13} \int_{m_V^2}^{m_I^2} ds_{23} \frac{\text{Re} (M_1 M_2) O_{1,2}^{\text{re}}}{m_I^3} \sim 10^{-26} M_p; \]
\[O_{1,4}^{\text{re}} = O_{1,4}^{\text{re}} = 0 \quad \text{(B3)} \]
\[O_{1,5}^{\text{re}} = \frac{8}{3m_G^2} \left[m_G^2 m_I^2 - (p_G \cdot p_I)^2 \right] \left[- (p_G \cdot p_V)^2 + m_G^2 \left(m_I^2 - p_I \cdot p_V \right) \right] \]
\[+ p_G \cdot p_V \left(-m_I^2 + p_I \cdot p_V \right) + p_G \cdot p_I \left(-m_I^2 + p_G \cdot p_V + p_I \cdot p_V \right) , \]
\[\int_{m_I^2 + m_G^2}^{2m_I^2 + m_V^2} ds_{13} \int_{m_V^2}^{m_I^2} ds_{23} \frac{\text{Re} (M_1 M_1) O_{1,5}^{\text{re}}}{m_I^3} \sim f^2 V^{-\frac{1}{2}} - \frac{1}{2} \sim 10^{-16.5} M_p; \]
\[O_{1,6}^{\text{re}} = O_{1,7}^{\text{re}} = O_{1,8}^{\text{re}} = O_{1,9}^{\text{re}} = O_{1,10}^{\text{re}} = 0 \quad \text{(B4)} \]
\[O_{2,3}^{\text{re}} = O_{2,4}^{\text{re}} = 0 \]
\[O_{2,5}^{\text{re}} = \frac{4}{3m_G^2} \left[(p_G \cdot p_I)^2 \left[m_G^2 m_V^2 + 2 \left(m_I^2 - m_V^2 \right) p_G \cdot p_V \right] \right] \]
\[+ 2 (p_G \cdot p_I)^2 \left(m_V^2 - p_I \cdot p_V \right) - 2 p_G \cdot p_I \left((p_G \cdot p_V)^2 \left(m_I^2 - p_I \cdot p_V \right) \right] \]
\[+ m_G^2 \left(m_I^2 - p_I \cdot p_V \right) \left(m_V^2 - p_I \cdot p_V \right) + m_G^2 p_G \cdot p_V p_I \cdot p_V \]
\[+ m_G^2 \left(m_I^2 \left(p_G \cdot p_V \right)^2 - 2 p_G \cdot p_V \left(m_V^2 - p_I \cdot p_V \right) \right] \]
\[+ m_G^2 \left(-m_I^2 m_V^2 + \left(p_V \cdot p_V \right)^2 \right) \right] , \]
\[\int_{m_I^2 + m_G^2}^{2m_I^2 + m_V^2} ds_{13} \int_{m_V^2}^{m_I^2} ds_{23} \frac{\text{Re} (M_2 M_5) O_{2,5}^{\text{re}}}{m_I^3} \sim 10^{-37} M_p; \]
\[O_{2,6}^{\text{re}} = O_{2,7}^{\text{re}} = O_{2,8}^{\text{re}} = O_{2,9}^{\text{re}} = O_{2,10}^{\text{re}} = 0 \quad \text{(B5)} \]
\[O_{3,4}^{\text{re}} = O_{3,5}^{\text{re}} = O_{3,6}^{\text{re}} = O_{3,7}^{\text{re}} = O_{3,8}^{\text{re}} = O_{3,9}^{\text{re}} = O_{3,10}^{\text{re}} = 0 \quad \text{(B6)} \]
\[O_{4,5}^{\text{re}} = 0; \]
\[O_{4,6}^{\text{re}} = \frac{8}{m_G} \left[m_G^2 m_V^2 - (p_G \cdot p_V)^2 \right] \left[m_V^2 + p_G \cdot p_V - p_I \cdot p_V \right] , \]
\[\int_{m_G^2 + m_V^2}^{2m_I^2 + m_V^2} ds_{13} \int_{m_V^2}^{m_I^2} ds_{23} \frac{\text{Re} (M_1 M_6) O_{4,6}^{\text{re}}}{m_I^3} \sim f^2 V^{-\frac{1}{18}} M_p \sim 10^{-42} M_p; \]
\[O_{4,7}^{\text{re}} = \frac{8}{m_G} \left[m_G^2 - p_G \cdot p_I + p_G \cdot p_V \right] \left[m_G^2 m_V^2 - (p_G \cdot p_V)^2 \right] , \]
\[\int_{m_G^2 + m_V^2}^{2m_I^2 + m_V^2} ds_{13} \int_{m_V^2}^{m_I^2} ds_{23} \frac{\text{Re} (M_4 M_7) O_{4,7}^{\text{re}}}{m_I^3} \sim \left(f V^{-\frac{1}{2}} \right) V^{-\frac{26}{9}} M_p \sim 10^{-36} M_p; \quad \text{(B7)} \]
\[\mathcal{O}_{4,8}^e = \frac{8}{3m_G m_V^2} \left[-m_V^2 \left(m_G^2 - 2p_G \cdot p_V \right) p_G \cdot p_V + p_G \cdot p_V^3 \right. \\
+ m_G^2 G_V \left(m_V^2 - p_i \cdot p_V \right) - (p_G \cdot p_V)^2 \left(m_V^2 + p_i \cdot p_V \right) \right], \\
\int_{m^2_V}^{2m^2_V} \int_{m^2_V}^{2m^2_V} \frac{\text{Re} \left(\mathcal{M}_4 \mathcal{M}_8 \right) \mathcal{O}_{4,8}^e}{m^3_i} \sim 10^{-15} M_p; \\
\mathcal{O}_{4,9}^e = \frac{8}{3m_G^2 m_V^2} \left[m_G^4 m_V^4 + m_G^2 m_V^2 p_G \cdot p_V + m_G^2 m_V^2 (p_G \cdot p_V)^2 - 2 (p_G \cdot p_V)^4 \\
- m_V^2 p_G \cdot p_V \left(m_G^2 + (p_G \cdot p_V)^2 \right) + (p_G \cdot p_V)^3 \left(m_G^2 - 2p_i \cdot p_V \right) \right], \\
\int_{m^2_V}^{2m^2_V} \int_{m^2_V}^{2m^2_V} \frac{\text{Re} \left(\mathcal{M}_4 \mathcal{M}_9 \right) \mathcal{O}_{4,9}^e}{m^3_i} \sim \left(10^2 \mathcal{V}^{-\frac{3}{2}} \right)^2 \mathcal{V}^2 M_p \sim 10^{-20} M_p; \\
\mathcal{O}_{4,10}^e = \frac{8}{3m_G} \left\{ m_G^4 m_V^2 - m_G^2 (p_G \cdot p_V)^2 - 3p_G \cdot p_V^3 + p_G \cdot p_i \left[-m_G^2 m_V^2 + 3 (p_G \cdot p_V)^2 \right] \\
+ m_G^2 p_G \cdot p_V \left(3m_G^2 - 2p_i \cdot p_V \right) \right\}, \\
\int_{m^2_V}^{2m^2_V} \int_{m^2_V}^{2m^2_V} \frac{\text{Re} \left(\mathcal{M}_4 \mathcal{M}_{10} \right) \mathcal{O}_{4,10}^e}{m^3_i} \sim \left(10^2 \mathcal{V}^{-\frac{3}{2}} \right)^2 \mathcal{V}^{-\frac{17}{2}} M_p \sim 10^{-24} M_p; \\
\mathcal{O}_{5,6}^e = \mathcal{O}_{5,7}^e = \mathcal{O}_{5,9}^e = \mathcal{O}_{5,10}^e = 0 \\
\mathcal{O}_{6,7}^e = \frac{8}{3m_G} \left[m_G^2 m_V^2 - (p_G \cdot p_V)^2 \right] \\
\times \left[\left(3m_G^2 - 2p_G \cdot p_i \right) p_G \cdot p_V + 2 (p_G \cdot p_V)^2 + m_G^2 \left(m_V^2 - p_i \cdot p_V \right) \right], \\
\int_{m^2_V}^{2m^2_V} \int_{m^2_V}^{2m^2_V} \frac{\text{Re} \left(\mathcal{M}_6 \mathcal{M}_7 \right) \mathcal{O}_{6,7}^e}{m^3_i} \sim \left(10^2 \mathcal{V}^{-\frac{3}{2}} \right)^2 \mathcal{V}^{-\frac{17}{2}} M_p \sim 10^{-33} M_p; \\
\mathcal{O}_{6,8}^e = -\frac{8}{3m_G} \left[m_G^4 m_V^2 - m_G^2 (p_G \cdot p_V)^2 + (p_G \cdot p_V)^3 \\
- p_G \cdot p_V \left(m_G^2 m_V^2 + (p_G \cdot p_V)^2 \right) - m_G^2 p_G \cdot p_V \left(m_V^2 - 2p_i \cdot p_V \right) \right], \\
\int_{m^2_V}^{2m^2_V} \int_{m^2_V}^{2m^2_V} \frac{\text{Re} \left(\mathcal{M}_6 \mathcal{M}_8 \right) \mathcal{O}_{6,8}^e}{m^3_i} \sim 10^{-27} M_p; \\
\mathcal{O}_{6,9}^e = \frac{8}{3m_G} \left[m_V^2 \left(3m^2_G^2 - 2p_G \cdot p_i \right) p_G \cdot p_V - 3 (p_G \cdot p_V)^3 \\
+ (p_G \cdot p_V)^2 \left(m_G^2 - 3p_i \cdot p_V \right) + m_G^2 m_V^2 \left(m_G^2 - p_i \cdot p_V \right) \right], \\
\int_{m^2_V}^{2m^2_V} \int_{m^2_V}^{2m^2_V} \frac{\text{Re} \left(\mathcal{M}_6 \mathcal{M}_9 \right) \mathcal{O}_{6,9}^e}{m^3_i} \sim \left(10^2 \mathcal{V}^{-\frac{3}{2}} \right)^2 \mathcal{V}^{-\frac{17}{2}} M_p \sim 10^{-38} M_p; \quad (B8) \]
\[\mathcal{O}_{6,10}^{\text{re}} = \frac{8}{3m_G^2} \left[m_G^4 m_V^2 p_G \cdot p_V - \left(m_G^2 - 2p_G \cdot p_I \right) \left(p_G \cdot p_V \right)^3 - 2 \left(p_G \cdot p_V \right)^4
ight. \\
+ \left. m_G^4 m_V^2 \left(m_V^2 - p_I \cdot p_V \right) + m_G^2 \left(p_G \cdot p_V \right)^2 \left(m_V^2 - p_I \cdot p_V \right) \right] , \\
\int_{m_{3/2}^2}^{2m_{3/2}^2} ds_{13} \int_{m_V^2}^{m_V^2} ds_{23} \frac{\text{Re} \left(\mathcal{M}_{6,10} \right) \mathcal{O}_{6,10}^{\text{re}}}{m_i^3} \sim \left(10 \tilde{f} \mathcal{V}^{3/2} \right)^2 \mathcal{V}^{-22/5} M_p \sim 10^{-33} M_p ; \]

\[\mathcal{O}_{7,8}^{\text{re}} = \frac{8}{3m_G^2 m_V^2} \left[m_G^4 m_V^2 p_G \cdot p_V - \left(m_G^2 - 2p_G \cdot p_I \right) \left(p_G \cdot p_V \right)^3 - 2 \left(p_G \cdot p_V \right)^4
ight. \\
+ \left. m_G^4 m_V^2 \left(m_V^2 - p_I \cdot p_V \right) + m_G^2 \left(p_G \cdot p_V \right)^2 \left(m_V^2 - p_I \cdot p_V \right) \right] , \\
\int_{m_{3/2}^2}^{2m_{3/2}^2} ds_{13} \int_{m_V^2}^{m_V^2} ds_{23} \frac{\text{Re} \left(\mathcal{M}_{7,8} \right) \mathcal{O}_{7,8}^{\text{re}}}{m_i^3} \sim 10^{-17.5} M_p ; \]

\[\mathcal{O}_{7,9}^{\text{re}} = \frac{8}{3m_G^2} \left[m_G^4 m_V^2 - m_G^2 (p_G \cdot p_V)^2 + \left(p_G \cdot p_V \right)^3
ight. \\
- \left. p_G \cdot p_I \left(m_G^2 m_V^2 + \left(p_G \cdot p_V \right)^2 \right) - m_G^2 p_G \cdot p_V \left(m_V^2 - 2p_I \cdot p_V \right) \right] , \\
\int_{m_{3/2}^2}^{2m_{3/2}^2} ds_{13} \int_{m_V^2}^{m_V^2} ds_{23} \frac{\text{Re} \left(\mathcal{M}_{7,9} \right) \mathcal{O}_{7,9}^{\text{re}}}{m_i^3} \sim \left(10 \tilde{f} \mathcal{V}^{3/2} \right)^2 \mathcal{V}^{-28/5} M_p \sim 10^{-24} M_p ; \]

\[\mathcal{O}_{7,10}^{\text{re}} = \frac{8}{3m_G^2 m_Z^2} \left\{ m_G^6 m_V^4 + m_G^4 m_V^2 p_G \cdot p_V + m_G^2 m_V^4 (p_G \cdot p_V)^2
ight. \\
- \left. 2m_G^4 \left(p_G \cdot p_V \right)^4 - 4 \left(p_G \cdot p_V \right)^5 \right\} \\
\int_{m_{3/2}^2}^{2m_{3/2}^2} ds_{13} \int_{m_V^2}^{m_V^2} ds_{23} \frac{\text{Re} \left(\mathcal{M}_{7,10} \right) \mathcal{O}_{7,10}^{\text{re}}}{m_i^3} \sim \left(10 \tilde{f} \mathcal{V}^{3/2} \right)^2 \mathcal{V}^{2/5} M_p \sim 10^{-16.6} M_p ; \]

\[\mathcal{O}_{8,9}^{\text{re}} = \frac{8}{3m_G^2 m_V^2} \left[2m_G^2 m_V^2 \left(p_G \cdot p_V \right)^2 \right] \left[m_V^2 + p_G \cdot p_V - p_I \cdot p_V \right] , \\
\int_{m_{3/2}^2}^{2m_{3/2}^2} ds_{13} \int_{m_V^2}^{m_V^2} ds_{23} \frac{\text{Re} \left(\mathcal{M}_{8,9} \right) \mathcal{O}_{8,9}^{\text{re}}}{m_i^3} \sim 10^{-25.5} M_p ; \]

\[\mathcal{O}_{8,10}^{\text{re}} = \frac{8}{3m_G^2 m_V^2} \left[2m_G^2 m_V^2 + \left(p_G \cdot p_V \right)^2 \right] \\
\times \left[- \left(m_G^2 - 2p_G \cdot p_I \right) p_G \cdot p_V - 2 \left(p_G \cdot p_V \right)^2 + m_G^2 \left(m_V^2 - p_I \cdot p_V \right) \right] , \\
\int_{m_{3/2}^2}^{2m_{3/2}^2} ds_{13} \int_{m_V^2}^{m_V^2} ds_{23} \frac{\text{Re} \left(\mathcal{M}_{8,10} \right) \mathcal{O}_{8,10}^{\text{re}}}{m_i^3} \sim 10^{-18.5} M_p ; \]

\[\mathcal{O}_{9,10}^{\text{re}} = \frac{8}{3m_G^2} \left[m_G^2 - p_G \cdot p_I + p_G \cdot p_V \right] \left[2m_G^2 m_V^2 + \left(p_G \cdot p_V \right)^2 \right] , \\
\int_{m_{3/2}^2}^{2m_{3/2}^2} ds_{13} \int_{m_V^2}^{m_V^2} ds_{23} \frac{\text{Re} \left(\mathcal{M}_{9,10} \right) \mathcal{O}_{9,10}^{\text{re}}}{m_i^3} \sim \left(10 \tilde{f} \mathcal{V}^{3/2} \right)^2 \mathcal{V}^{-28/5} M_p \sim 10^{-24} M_p ; \]

(B9)
\[\mathcal{O}_{1,8}^{im} = -\frac{8}{3m_G^2 m_V^2} \left(\frac{m_G^2 - p_G \cdot p_I + p_G \cdot p_V}{m_V^2} \right) \left\{ \left[m_I^2 m_V^2 - (p_I \cdot p_V)^2 + (p_G \cdot p_V)(p_I \cdot p_V) \right] m_G^2 \right. \\
- m_V^2 (p_G \cdot p_I)^2 + (p_G \cdot p_I)(p_G \cdot p_V)(p_I \cdot p_V - p_G \cdot p_V) \left\} \int_{m_{1/2}^2}^{2m_I^2} ds_{13} \int_{m_V^2}^{m_{1/2}^2} ds_{23} \frac{3m (\mathcal{M}_1 \mathcal{M}_3^2) \mathcal{O}_{1,8}^{im}}{m_i^3} \sim 10^{-44} M_p; \]

\[\mathcal{O}_{2,8}^{im} = -\frac{8}{3m_G^2 m_V^2} \left(\frac{m_G^2 - p_G \cdot p_I + p_G \cdot p_V}{m_V^2} \right) \left\{ \left[m_I^2 m_V^2 - (p_I \cdot p_V)^2 + (p_G \cdot p_V)(p_I \cdot p_V) \right] \right. \\
- (p_G \cdot p_V)^2 p_I \cdot p_V + (p_G \cdot p_I)(p_G \cdot p_V)(m_G^2 + p_I \cdot p_V) \left\} \int_{m_{1/2}^2}^{2m_I^2} ds_{13} \int_{m_V^2}^{m_{1/2}^2} ds_{23} \frac{3m (\mathcal{M}_2 \mathcal{M}_3^2) \mathcal{O}_{2,8}^{im}}{m_i^3} \sim 10^{-33} M_p; \]

\[\mathcal{O}_{3,8}^{im} = \mathcal{O}_{4,8}^{im} = 0 \]

\[\mathcal{O}_{5,8}^{im} = \frac{8}{3m_G^2} \left\{ \left[\left(p_G \cdot p_I - m_G^2 \right) p_G \cdot p_V m_G^2 - (p_G \cdot p_I)(p_G \cdot p_V) \right] \right. \\
+ p_G \cdot p_V \left[p_G \cdot p_I m_G^2 + \left(p_I \cdot p_V - 2m_I^2 \right) m_G^2 + (p_G \cdot p_I)^2 \right] \left\} \int_{m_{1/2}^2}^{2m_I^2} ds_{13} \int_{m_V^2}^{m_{1/2}^2} ds_{23} \frac{3m (\mathcal{M}_5 \mathcal{M}_3^2) \mathcal{O}_{5,8}^{im}}{m_i^3} \sim 10^{-38} M_p; \]

\[\mathcal{O}_{6,8}^{im} = \mathcal{O}_{7,8}^{im} = \mathcal{O}_{8,9}^{im} = \mathcal{O}_{8,10}^{im} = 0 . \quad (B10) \]

E \(K_{T_B \tilde{T}_B} \), the Massive Gauge Boson mass and Soft SUSY Parameters

Miscellania

The relevant term in the \(N = 1 \) SUGRA action of [12], assuming that for multiple D7-brane stacks, the non-abelian killing isometry of the moduli space gets identified with the SM gauge group, the mass squared of the W/Z-bosons are given by: \(g_{T_B \tilde{T}_B} \left(X^{T_B} \right)^2 \). Now,

\[G_{T_B \tilde{T}_B} \sim \frac{1}{\sqrt{T_B + \tilde{T}_B - C_{L I} a_{l I} \tilde{a}_{l I} - \mu_3 \ell^2 \mathcal{V}_{\mathcal{H}}} \Sigma} - \frac{3 \left(T_B + \tilde{T}_B - C_{L I} a_{l I} \tilde{a}_{l I} - \mu_3 \ell^2 \mathcal{V}_{\mathcal{H}} \right)}{\Sigma^2}, \quad (B1) \]

where \(\Sigma \equiv \left(T_B + \tilde{T}_B - C_{L I} a_{l I} \tilde{a}_{l I} - \mu_3 \ell^2 \mathcal{V}_{\mathcal{H}} \right)^{\frac{1}{2}} - \left(T_B + \tilde{T}_B - \mu_3 \ell^2 \mathcal{V}_{\mathcal{H}} \right)^{\frac{1}{2}} + \sum_{\beta} n_0^{\beta}(...) \). So, to get a mass of 90 GeV or so at the EW scale, one needs to show that (B1) can RG-flow down to the required very small value of the square of the same; lets call this small value as \(G_{T_B \tilde{T}_B}^{EW} \sim 10^{-20} \). This would imply the following relation between \(T_B \equiv T_B + \tilde{T}_B - C_{L I} a_{l I} \tilde{a}_{l I} - \mu_3 \ell^2 \mathcal{V}_{\mathcal{H}} \) and \(\Sigma \):

\[\frac{1}{\sqrt{T_B}} - \frac{3T_B}{\Sigma^2} = G_{T_B \tilde{T}_B}^{EW} \]

or \(\Sigma^2 = \frac{3T_B}{\sqrt{T_B}} + \frac{3T_B}{\Sigma} = 0 \), \((B2) \)
whose valid solution is given by:

\[
\Sigma = \frac{1}{2} \left(\frac{1}{G_{TbTB}^2 \sqrt{T_B}} - \sqrt{1 - \frac{12T_B}{G_{TbTB}^2}} \right) \approx 3 T_B^3 + 9 T_B^2 G_{TbTB}^2 + O(G_{TbTB}^2).
\]
(B3)

The above is equivalent to:

\[
T_B(EW) \sim 0.6 \nu^\frac{3}{2},
\]
(B4)

which can be satisfied, e.g., if

\[
\langle a_I \rangle(EW) \sim \frac{1}{O(1)} \langle a_I \rangle(M_S).
\]
(B5)

Now,

\[
\partial \phi G_{TbTB} \sim -\frac{C_{ijk}a^j}{2T_B^2} - \frac{9C_{ijk}a^j}{2\Sigma^2} + \frac{T_B^2 \Sigma}{\Sigma^3}.
\]
(B6)

Similarly

\[
\partial \phi G_{TbTB} \sim -\frac{\mu_3 l^2 \bar{z}^j}{2T_B^2} + \frac{9\mu_3 l^2 \bar{z}^j}{2\Sigma^2} + \frac{T_B^2 \mu_3 l^2 \bar{z}^j}{\Sigma^3}.
\]
(B7)

Therefore,

\[
\partial \phi \partial a G_{TbTB} \sim \frac{C_{ikj}}{2T_B^2} + \frac{3C_{ijk}a^j C_{Lk}a^L}{2T_B^2} + \frac{9C_{ijk}a^j C_{Lk}a^L}{\Sigma^2 T_B} - \frac{9C_{ikj}a^j}{2\Sigma^2} + \frac{27 \mu_3 l^2 \bar{z}^j}{2\Sigma^2 \sqrt{T_B}} + \frac{9C_{ikj} \sqrt{T_B}}{\Sigma^3}.
\]
(B8)

Now, for \(I = K = a_1, C_{Lk} \langle a^L \rangle(M_S) \sim \nu^\frac{3}{2} \); which because of (B5), implies that at the EW scale,

\[
\partial \phi \partial a G_{TbTB} \bigg|_{\Sigma(EW) \sim 3T_B^2(EW), T_B(EW) \sim 0.6 \nu^\frac{3}{2}} \sim \nu^{-\frac{5}{2}}.
\]
(B9)

Similarly

\[
\partial \phi \partial a G_{TbTB} \sim \frac{\mu_3 l^2}{2T_B^2} + \frac{3 (\mu_3 l^2)^2 \bar{z}^j \bar{z}^l}{4} + \frac{9 (\mu_3 l^2)^2 \bar{z}^j \bar{z}^l}{\Sigma^2 \sqrt{T_B}} - \frac{\mu_3 l^2}{\Sigma^2} + \frac{27 (\mu_3 l^2)^2 \bar{z}^j \bar{z}^l}{2\Sigma^2 T_B} - \frac{T_B^2 \mu_3 l^2}{\Sigma^3}.
\]
(B10)

Now, for \(i = k = z_1 \), at the EW scale will be

\[
\partial \phi \partial a G_{TbTB} \bigg|_{T_B(EW) \sim 0.6 \nu^\frac{3}{2}} \sim \frac{\mu_3 l^2}{2T_B^2 \Sigma} \bigg|_{T_B(EW) \sim 0.6 \nu^\frac{3}{2}} \sim \nu^{-2}.
\]
(B11)
We will briefly describe evaluation of various soft supersymmetry breaking parameters in our current setup involving four Wilson line moduli. To begin with, in order to evaluate the gaugino masses, one needs to evaluate the bulk F-terms which in turn entails evaluating the bulk metric. Writing the Kähler sector of the Kähler potential as: $K \sim -2\ln \left[(\sigma_B + \sigma_{\text{geom}})^{\frac{1}{2}} - (\sigma_S + \sigma_{\text{geom}})^{\frac{1}{2}} + \sum_{\beta \in \mathcal{Z}_2^i} \eta_{ij} \sum_{(n,m)} \cos (ink \cdot (G - \bar{G})g_s + mK \cdot (G + \bar{G}))\right]$, and working near $\sin (ink \cdot (G - \bar{G})g_s + mK \cdot (G + \bar{G})) = 0$ corresponding to a local minimum - generates the following components of the bulk metric: $G_{m\bar{n}} \sim \left(\begin{array}{ccc} V^{-\frac{3}{2}} & V^{-\frac{1}{2}} & 0 \\ V^{-\frac{1}{2}} & V^{-\frac{1}{2}} & 0 \\ 0 & 0 & \mathcal{O}(1) \end{array} \right)$, which therefore produces

the following inverse: $G^{m\bar{n}} \sim \left(\begin{array}{ccc} V^{\frac{3}{2}} & V^{\frac{1}{2}} & 0 \\ V^{\frac{1}{2}} & V^{\frac{1}{2}} & 0 \\ 0 & 0 & \mathcal{O}(1) \end{array} \right)$. Given that bulk F-terms are defined as:

$$F^m = \epsilon^K G^{m\bar{n}} D_n \bar{W},$$

one obtains:

$$F^{\sigma S} \sim V^{-\frac{3}{2}} M_p^2, \quad F^{\sigma B} \sim V^{-\frac{3}{2}} M_p^2, \quad F^{G_a} \sim V^{-\frac{3}{2}} M_p^2,$$

implying that the gaugino mass is:

$$m_{\tilde{g}} = \frac{F^m \partial_m T_B}{\Re T_B} \lesssim V^{\frac{3}{2}} m_{3/2},$$

where the gravitino mass, $m_{3/2} \sim V^{-\frac{3}{2}} M_p$.

To calculate the mixed double derivatives of the Kähler potential (23) with respect to (29), we use (30) and:

$$\partial_{z_k} K = \frac{\sqrt{T_B} h_{3i} z_i}{\Sigma} - \frac{\sqrt{T_B} h_{3i} z_i}{\Sigma^2},$$

$$\partial_{z_k} \partial_{z_j} K = \frac{\mu_{3i} z_i z_j}{\sqrt{T_B} \Sigma} - \frac{\sqrt{T_B} h_{3i} z_i z_j}{\Sigma^2} + \frac{\sqrt{T_B} h_{3i} \delta_{ij}}{\Sigma},$$

$$\partial_{z_k} \partial_{\bar{a}_j} K = \frac{\mu_{3i} C^{Ij} a_j}{\Sigma \sqrt{T_B}} - \frac{\sqrt{T_B} h_{3i} z_i C^{Ij} a_j}{\Sigma^2} + \frac{\sqrt{T_B} h_{3i} C^{Ij} a_j}{\Sigma^2},$$

$$\partial_{a_k} K = \frac{\sqrt{T_B} C^{Ij} a_j}{\Sigma},$$

$$\partial_{a_k} \partial_{\bar{a}_j} K = \frac{\mu_{3i} C^{Ij} a_j}{\Sigma \sqrt{T_B}} - \frac{\sqrt{T_B} h_{3i} z_i C^{Ij} a_j}{\Sigma^2} + \frac{\sqrt{T_B} C^{Ij} a_j}{\Sigma},$$

we see that:

$$\partial_{z_k} \partial_{z_j} K = \frac{\partial_{z_k} \partial_{z_j} K}{\partial_{z_i} \partial_{z_j}} \partial_{z_k} \partial_{\bar{a}_j} K + \frac{\partial_{a_k} \partial_{\bar{a}_j} K}{\partial_{z_i} \partial_{z_j}} \partial_{a_k} \partial_{\bar{a}_j} K + \frac{\partial_{z_k} \partial_{\bar{a}_j} K}{\partial_{z_i} \partial_{z_j}} \partial_{z_k} \partial_{\bar{a}_j} K + \frac{\partial_{z_i} \partial_{\bar{a}_j} K}{\partial_{z_i} \partial_{z_j}} \partial_{z_i} \partial_{\bar{a}_j} K,$$

$$\sim \frac{\sqrt{T_B} h_{3i} z_i}{\Sigma} \sim V^{-\frac{3}{2}},$$

(B13)
implying:
\[
\partial_{\sigma_B} \left(\partial_{Z_i} \bar{Z}_j K \right) \sim \frac{T_B \mu_3 l^2}{\Sigma^2} \sim V^{-\frac{4}{3}},
\]
\[
\partial_{\sigma_B} \partial_{\sigma_B} \left(\partial_{Z_i} \bar{Z}_j K \right) \sim V^{-2 \mu_3 l^2},
\]
\[
\partial_{\sigma_B} \partial_{\sigma_B} \left(\partial_{Z_i} \bar{Z}_j K \right) \sim V^{-\frac{24}{5}} \mu_3 l^2,
\]
\[
\partial_{\sigma_B} \partial_{\sigma_B} \left(\partial_{Z_i} \bar{Z}_j K \right) \sim V^{-\frac{44}{5}} \mu_3 l^2,
\]
\[
\partial_{\sigma_B} \partial_{\sigma_B} \left(\partial_{Z_i} \bar{Z}_j K \right) \sim \partial_{\sigma_B} \partial_{\sigma_B} \left(\partial_{Z_i} \bar{Z}_j K \right) = 0,
\]
\[
\partial_{\sigma_B} \partial_{\sigma_B} \left(\partial_{Z_i} \bar{Z}_j K \right) \sim V^{-\frac{4}{3}}. \tag{B16}
\]

From (B12) and (B16), one obtains:
\[
|F^\sigma|^2 \partial_{\sigma_S} \partial_{\sigma_S} \ln \left(\partial_{Z_i} \bar{Z}_j K \right) \sim V^{-\frac{50}{3}},
\]
\[
|F^\sigma|^2 \partial_{\sigma_B} \partial_{\sigma_B} \ln \left(\partial_{Z_i} \bar{Z}_j K \right) \sim V^{-\frac{32}{3}},
\]
\[
F^\sigma \bar{F}^\sigma \partial_{\sigma_B} \partial_{\sigma_B} \ln \left(\partial_{Z_i} \bar{Z}_j K \right) \sim V^{-\frac{50}{3}},
\]
\[
F^\sigma \bar{F}^\sigma \partial_{\sigma_B} \partial_{\sigma_B} \ln \left(\partial_{Z_i} \bar{Z}_j K \right) \sim V^{-4}, \tag{B17}
\]

implying that
\[
m_{Z_i} \sim V^{\frac{50}{3}} m_{3/2}. \tag{B18}
\]

Similarly, utilizing:
\[
\partial_{A_i} \bar{A}_j K = \frac{\partial A_i}{\partial A_1} \frac{\partial A_j}{\partial A_1} \partial_{A_1} \bar{A}_j K + \frac{\partial A_i}{\partial A_1} \frac{\partial \bar{A}_j}{\partial A_1} \partial_{A_1} \bar{A}_j K + \frac{\partial A_i}{\partial A_1} \frac{\partial \bar{A}_j}{\partial A_1} \partial_{A_1} \bar{A}_j K + \frac{\partial A_i}{\partial A_1} \frac{\partial \bar{A}_j}{\partial A_1} \partial_{A_1} \bar{A}_j K
\]
\[
\sim \frac{V^{\frac{50}{3}} \sqrt{T_B}}{\Sigma}, \tag{B19}
\]

along with:
\[
|F^\sigma|^2 \partial_{\sigma_S} \partial_{\sigma_S} \ln \left(\partial_{A_i} \bar{A}_j K \right) \sim V^{-\frac{107}{36}},
\]
\[
|F^\sigma|^2 \partial_{\sigma_B} \partial_{\sigma_B} \ln \left(\partial_{A_i} \bar{A}_j K \right) \sim V^{-\frac{32}{9}},
\]
\[
F^\sigma \bar{F}^\sigma \partial_{\sigma_B} \partial_{\sigma_B} \ln \left(\partial_{A_i} \bar{A}_j K \right) \sim V^{-\frac{32}{9}},
\]
\[
F^\sigma \bar{F}^\sigma \partial_{\sigma_B} \partial_{\sigma_B} \ln \left(\partial_{A_i} \bar{A}_j K \right) \sim V^{-4}, \tag{B20}
\]

yields:
\[
m_{A_1} \sim \sqrt{V^{\frac{50}{3}}} m_{3/2}. \tag{B21}
\]
Due to the logarithmic derivatives in the definition of the open moduli masses, in fact, one can show that there is a universality in the open moduli masses and that $m_{A_i} \sim \sqrt{V}m_{3/2}$.

We now show that the universality in the trilinear A-couplings that was seen in the case of the $D3$-brane position moduli and a single Wilson line modulus in [11], is preserved even for the current four-Wilson-line moduli setup.

Using,

$$A_{IJK} = F^m \left(\partial_m K + \partial_m \ln Y_{IJK} + \partial_m \ln \left(K_{IJK} K_{IJK} \right) \right),$$

and noting:

$$F^m \partial_m K \sim \mathcal{V}^{-\frac{35}{38}},$$

$$F^m \partial_m \ln Y_{IJK} \bigg|_{\sin(ink \cdot (G - \bar{G}) g_s + mk \cdot (G + \bar{G})) = 0} \sim \mathcal{V}^{-\frac{35}{38}},$$

$$F^m \partial_m \ln \left(K_{IJK} K_{IJK} \right) \bigg|_{\sin(ink \cdot (G - \bar{G}) g_s + mk \cdot (G + \bar{G})) = 0} \sim \mathcal{V}^{-\frac{4}{5}},$$

$$F^m \partial_m \ln K_{A_1 A_2 A_3} = F^m \partial_m \ln K_{A_2 A_3 A_1} = F^m \partial_m \ln K_{A_3 A_1 A_2} = \mathcal{V}^{-2},$$

one sees that one obtains a universal trilinear A-coupling:

$$A_{IJK} \sim \mathcal{V}^{-\frac{35}{38}} m_{3/2} \sim \mu Z_1 Z_2.$$ \hspace{1cm} (B24)

One can show that

$$\mu Z_1 Z_2 = \frac{\kappa}{\sqrt{K_{Z_1 Z_2 Z_2}}} \sim \mathcal{V}^{-\frac{35}{38}} m_{3/2}. $$ \hspace{1cm} (B25)

Further,

$$(\mu B)_{Z_1 Z_2} = \frac{e^{-i \arg(W)} + \frac{\kappa}{2}}{\sqrt{K_{Z_1 Z_1 Z_2 Z_2}}} F^m \left(\partial_m K \mu_{Z_2 Z_2} + \partial_m \mu_{Z_1 Z_2} - \mu_{Z_2 Z_2} \partial_m \ln \left(K_{Z_1 Z_1 Z_2 Z_2} \right) \right)$$

$$\sim \mu Z_1 Z_2 \left(F^m \partial_m K + F^m \partial_m \ln \left(K_{Z_1 Z_1 Z_2 Z_2} \right) \right)$$

$$\sim \mathcal{V}^{-\frac{35}{38}} m_{3/2} \sim \mu Z_1 Z_2.$$ \hspace{1cm} (B26)

an observation which was very useful in obtaining a light Higgs of mass 125 GeV for a two Wilson line moduli set up of [11] - a conclusion which is still true using the same as shown below.

The Higgs masses after soft supersymmetry breaking is given by $(m_{Z_1}^2 + \mu_{Z_1}^2)^{1/2}$ (where m_z's correspond to mobile $D3$- Brane position moduli masses (to be identified with soft Higgs scalar mass parameter)) and the Higgsino mass is given by μ_{Z_1}. Had the supersymmetry been unbroken, Higgs(sino) masses would have had degenerate with coefficient μ_{Z_1}. Nevertheless we have defined SUSY breaking but we are still justified to use RG flow equation solutions because $\mu_{Z_1} >> m_{Z_1}$. However, due to lack of universality in moduli masses but universality in trilinear A_{ijk} couplings, we need to use solution of RG flow equation for moduli masses as given in [33].

$$m_{Z_1}^2(t) = m_{Z_1}^2(1 + \delta_1) + m_{1/2}^2 g(t) + \frac{3}{5} S_0 p,$$ \hspace{1cm} (B27)
where
\[S_0 = Tr(Y m^2) = m_Z^2 - m_{\tilde{Z}}^2 + \sum_{i=1}^{n_g} (m_{\tilde{q}_L}^2 - 2m_{\tilde{u}_R}^2 + m_{\tilde{d}_R}^2 - m_{\tilde{t}_L}^2 + m_{\tilde{r}_R}^2) \]
(B28)

in which all the masses are at the string scale and \(n_g \) is the number of generations. \(p \) is defined by
\[p = \frac{5}{6\pi}[1 - \left(\frac{\alpha_1(t)}{\alpha_1(M_S)} \right)] \]
where \(\alpha_1 \equiv g_1^2/(4\pi)^2 \) and \(g_1 \) is the U(1)\(_Y \) gauge coupling constant. Further,
\[m_{\tilde{Z}_2}^2(t) = m_0^2\Delta_{\tilde{Z}_2} + m_{1/2}^2 e(t) + A_0 m_{1/2} f(t) + m_2^2 h(t) - k(t) A_0^2 - \frac{3}{5} S_0 p \]
(B29)

where \(\Delta_{\tilde{Z}_2} \) is given by
\[\Delta_{\tilde{Z}_2} = \frac{(D_0 - 1)}{2}(\delta_2 + \delta_3 + \delta_4) + \delta_2; D_0 = 1 - 6\mathcal{Y}_t \frac{F(t)}{E(t)} \]
(B30)

Here \(\mathcal{Y}_t \equiv \tilde{Y}_t^2(M_S)/(4\pi)^2 \) where \(\tilde{Y}_t(M_S) \) is the physical top Yukawa coupling at the string scale which following [44] will be set to 0.08, and
\[E(t) = (1 + \beta_3 t)\frac{\tan^4}{\pi^4} (1 + \beta_2 t)\frac{\tan^4}{\pi^4} (1 + \beta_1 t)\frac{\tan^4}{\pi^4} \]
(B31)

In equation [B31] \(\beta_i \equiv \alpha_i(M_S) b_i/(4\pi) \) (\(\alpha_1 = (5/3)\alpha_Y \)), \(b_i \) are the one loop beta function coefficients defined by \((b_1, b_2, b_3) = (33/5, 1, -3) \), and \(F(t) = \int_0^t E(t) dt \).

In the dilute flux approximation, \(g_1^2(M_S) = g_3^2(M_S) = g_3^2(M_S) \). To ensure \(E(t) \in \mathbb{R} \), the \(SU(3) \)-valued \(1 + \beta_3 t > 0 \), which for \(t = 57 \) implies that \(g_3^2(M_S) < \frac{(4\pi)^2}{(2\pi)^2} \sim \mathcal{O}(1) \). Hence, \(g_3^2(M_S) = 0.4 \) is what we will be using (See [11]). From [B27], the previous results in this appendix, one sees that:
\[m_{\tilde{Z}_1}^2(M_{EW}) \sim m_{\tilde{Z}_1}(M_S) + (0.39)\sqrt{4} m_{3/2}^3 + \frac{1}{22} \frac{19\pi}{100} \times S_0, \]
(B32)

and
\[m_{\tilde{Z}_2}^2(M_{EW}) \sim (0.32)\sqrt{4} m_{3/2}^3 + (-0.03)n^s \tilde{\mu}_{\tilde{Z}_1} \tilde{\mu}_{\tilde{Z}_2} \sqrt{4} m_{3/2}^3 + (0.96)m_0^2 - (0.01)(n^s)^2 \tilde{\mu}_{\tilde{Z}_1} \tilde{\mu}_{\tilde{Z}_2} - \frac{19\pi}{2200} \times S_0, \]
(B33)

where we used \(A_{\tilde{Z}_1, \tilde{Z}_2, \tilde{Z}_1} \sim n^s \tilde{\mu}_{\tilde{Z}_1} \tilde{\mu}_{\tilde{Z}_2} \) [B24]. The solution for RG flow equation for \(\tilde{\mu}^2 \) to one loop order is given by [B3]:
\[\tilde{\mu}_{\tilde{Z}_1, \tilde{Z}_1}^2 = -\left[m_0^2 C_1 + A_0^2 C_2 + m_2^2 C_3 + m_1 A_0 C_4 - \frac{1}{2} M_Z^2 + \frac{19\pi}{2200} \left(\frac{\tan^2 \beta + 1}{\tan^2 \beta - 1} \right) S_0 \right], \]
(B34)

wherein
\[C_1 = \frac{1}{\tan^2 \beta - 1} \left(1 - \frac{3D_0 - 1}{2} \tan^2 \beta \right) + \frac{1}{\tan^2 \beta - 1} \left(\delta_1 - \delta_2 \tan^2 \beta - \frac{D_0 - 1}{2} (\delta_2 + \delta_3 + \delta_4) \tan^2 \beta \right); \]
\[C_2 = -\frac{\tan^2 \beta}{\tan^2 \beta - 1} k(t); C_3 = -\frac{1}{\tan^2 \beta - 1} (g(t) - \tan^2 \beta e(t)); C_4 = -\frac{\tan^2 \beta}{\tan^2 \beta - 1} f(t), \]
(B35)

and where the functions \(e(t), f(t), g(t), k(t) \) are as defined in the appendix of [11]. In the large \(\tan \beta \) (but less than 50)-limit and assuming \(\delta_1 = \delta_2 = 0 \), one sees that:
\[\tilde{\mu}_{\tilde{Z}_1, \tilde{Z}_2}^2 \sim -m_0^2 - (0.01)(n^s)^2 \tilde{\mu}_{\tilde{Z}_1, \tilde{Z}_2}^2 + (0.32)\sqrt{4} m_{3/2}^3 - 1/2 M_Z^2 + (0.03)\sqrt{4} n^s \tilde{\mu}_{\tilde{Z}_1, \tilde{Z}_2} m_{3/2}^3 + \frac{19\pi}{2200} S_0 \]
(B36)
From (B33) and (B36) one therefore sees that the mass-squared of one of the two Higgs doublets, $m_{H_2}^2$, at the EW scale is given by:

$$m_{H_2}^2 = m_{Z_2}^2 + \hat{\mu}_{Z_2}^2 = 2m_0^2 - (0.06)\sqrt{n^s} \hat{\mu}_{Z_1, Z_2} m_{3/2} + \frac{1}{2}M_{EW}^2 - \frac{19\pi}{1100}S_0. \quad (B37)$$

From [9], we notice:

$$\sqrt{n^s} \hat{\mu}_{Z_1, Z_2} m_{3/2} \sim m_0^2, \quad (B38)$$

using which in (B37), one sees that for an $O(1)$ n^s,

$$m_{H_2}^2(M_{EW}) \sim 1.94m_0^2 + \frac{1}{2}M_{EW}^2 - \frac{19\pi}{1100}S_0 \quad (B39)$$

We have assumed at $m_{Z_2}^2(M_s) \sim m_0^2$ (implying $\delta_2 = 0$ but $\delta_{1,3,4} \neq 0$). Further,

$$m_{H_1}^2(M_{EW}) = \left(m_{Z_2}^2 + \hat{\mu}_{Z_2}^2 \right)(M_{EW}) \sim m_{Z_2}^2(M_s)(1 + \delta_1) + \frac{1}{2}M_{EW}^2 + m_0^2 - (0.03)\sqrt{n^s} \hat{\mu}_{Z_1, Z_2} m_{3/2}$$

$$(+ (0.01)(n^s)^2 \hat{\mu}_{Z_1, Z_2} \sim (1.97 + \delta_1)m_0^2 + \frac{1}{2}M_{EW}^2 + (0.01)(n^s)^2 \hat{\mu}_{Z_1, Z_2} m_{3/2}) \quad (B40)$$

By assuming $(\hat{\mu}B)_{Z_1, Z_2} \sim \hat{\mu}_{Z_1, Z_2}$ - see (B26) - to be valid at the string and EW scales, the Higgs mass matrix at the EW-scale can thus be expressed as:

$$\left(\begin{array}{cc} m_{H_1}^2 & \hat{\mu}B \\ \hat{\mu}B & m_{H_2}^2 \end{array} \right) \sim \left(\begin{array}{cc} m_{H_1}^2 & \xi \hat{\mu}^2 \\ \xi \hat{\mu}^2 & m_{H_2}^2 \end{array} \right), \quad (B41)$$

ξ being an appropriately chosen $O(1)$ constant - see (B45). The eigenvalues are given by:

$$\frac{1}{2}\left(m_{H_1}^2 + m_{H_2}^2 \pm \sqrt{(m_{H_1}^2 - m_{H_2}^2)^2 + 4\xi^2 \hat{\mu}^4} \right). \quad (B42)$$

As (for $O(1)$ n^s)

$$m_{H_1}^2 + m_{H_2}^2 \sim (3.91 + \delta_1)m_0^2 - 0.06S_0 + ...$$

$$m_{H_1}^2 - m_{H_2}^2 \sim (0.03 + \delta_1)m_0^2 + 0.06S_0 + ..., \quad (B43)$$

one sees that the eigenvalues are:

$$(3.91 + \delta_1)m_0^2 - 0.06S_0 + ... \pm \sqrt{(0.03 + \delta_1)m_0^2 + 0.06S_0 + ...}^2 + \xi^2 \left(1.94m_0^2 - 0.06S_0 \right)^2. \quad (B44)$$

Hence, assuming non universality w.r.t. to both D3-brane position moduli masses ($m_{Z_{1,2}}$) and squark/slepton masses, if S_0 and ξ are fine tuned as follows:

$$(0.03 + \delta_1)m_0^2 \sim -0.06S_0 \quad \text{and} \quad \xi \sim 2 + \frac{1}{8}\frac{m_{EW}^2}{m_0^2}, \quad (B45)$$

one sees that one obtains one light Higgs doublet (corresponding to the negative sign of the square root) and one heavy Higgs doublet (corresponding to the positive sign of the square root). Note, however, that the squared Higgsino mass parameter $\hat{\mu}_{Z_1, Z_2}$ then turns out to be heavy with a value, at the EW scale of around 0.01$\sqrt{m_{3/2}}$ i.e to the order of squark/slepton mass squared scale which is possible in case of μ split SUSY scenario discussed above. This shows the possibility of realizing μ split SUSY scenario in the context of LVS phenomenology named as large volume “μ-split SUSY” scenario.
References

[1] Local D3/D7 μ-Split SUSY, 125 GeV Higgs and Large Volume Ricci-Flat Swiss-Cheese Metrics: A Brief Review, (Invited Review) Mod. Phys. Lett. A 27, 1230013 (2012) [arXiv:hep-th/1203.2948].

[2] N. Jarosik et al Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Sky Maps, Systematic Errors, and Basic Results, Astrophys. J. Suppl. 192 (2011) 14 [arXiv:astro-ph/1001.4744].

[3] G. Moreau and M. Chemtob, R-parity violation and the cosmological gravitino problem, Phys. Rev. D65 (2002) 024033 [arXiv:hep-ph/0107286].

[4] M. Bolz, A. Brandenburg, W. Buchmüller, Thermal Production of Gravitinos, Nucl. Phys. B606:518-544,2001; Erratum-ibid. B790:336-337,2008 [arXiv:hep-ph/0107286].

[5] Vyacheslav S. Rychkov, Alessandro Strumia, Thermal production of gravitinos Phys. Rev. D75:075011,2007 [arXiv:hep-ph/0701104].

[6] Raghavan Rangarajan and Narendra Sahu, Gravitino production in an in?ationary Universe and implications for leptogenesis, Mod. Phys. Lett. A23:427-436,2008 [arXiv:hep-ph/0606228].

[7] Fei Wang, Wenyu Wang, Jin Min Yang, Gravitino dark matter from gluino late decay in split supersymmetry, Phys. Rev. D72 (2005) 077701 [arXiv:hep-ph/0507172].

[8] Jonathan L. Feng, Shufang Su, Fumihiro Takayama, Supergravity with a Gravitino LSP, Phys. Rev. D70:075019,2004 [arXiv:hep-ph/0404231].

[9] A. Misra, P. Shukla, Swiss Cheese D3-D7 Soft SUSY Breaking, Nuclear Physics B 827 (2010) 112 [arXiv:hep-th/0906.4517].

[10] A. Misra and P. Shukla, On 'Light' Fermions and Proton Stability in 'Big Divisor' D3/D7 Swiss Cheese Phenomenology, Eur. Phys. J. C (2011) 71:1662 [arXiv:hep-th/1007.1157].

[11] M. Dhuria and A. Misra, Towards Large Volume Big Divisor D3-D7 'μ-split Supersymmetry' and Ricci-Flat Swiss-Cheese Metrics, and Dimension-Six Neutrino Mass Operators, Nucl. Phys. B 855, 439 (2012) [arXiv:hep-th/1106.5359].

[12] J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton, USA: Univ. Pr. (1992) 259 p.

[13] T. Nihei, L. Roszkowski, R. Ruiz de Austri, Exact Cross Sections for the Neutralino WIMP Pair-Aannihilation, JHEP 0203 (2002) 031 [arXiv:hep-ph/0202009].

[14] T. Nihei, L. Roszkowski, R. Ruiz de Austri Exact Cross Sections for the Neutralino-Slepton Coannihilation, JHEP0207:024,2002 [arXiv:hep-ph/0206266].

[15] F. Denef, M. R. Douglas and B. Florea, Building a better racetrack, JHEP 0406, 034 (2004), [arXiv:hep-th/0404257].

[16] H. Jockers, The effective action of D-branes in Calabi-Yau orientifold compactifications, Fortsch. Phys. 53, 1087 (2005) [arXiv:hep-th/0507042].
[17] K. Becker, M. Becker, M. Haack and J. Louis, *Supersymmetry breaking and alpha’-corrections to flux induced potentials*, JHEP 0206, (2002) 060 [arXiv:hep-th/0204254].

[18] T. W. Grimm, *Non-Perturbative Corrections and Modularity in N=1 Type IIB Compactifications*, JHEP 0710 (2007) 004, [arXiv:hep-th/0705.3253].

[19] M. -x. Huang, A. Klemm and S. Quackenbush, *Topological string theory on compact Calabi-Yau: Modularity and boundary conditions*, Lect. Notes Phys. 757, 45 (2009) [hep-th/0612125].

[20] V. Braun, T. Brelidze, M. R. Douglas and B. A. Ovrut, *Calabi-Yau Metrics for Quotients and Complete Intersections*, JHEP 0805, 080 (2008), [arXiv:hep-th/0712.3563].

[21] A. Strominger, S. -T. Yau and E. Zaslow, *Mirror symmetry is T duality*, Nucl. Phys. B 479, 243 (1996) [hep-th/9606040].

[22] K. Becker, M. Becker and A. Strominger, *Five-branes, membranes and nonperturbative string theory*, Nucl. Phys. B 456, 130 (1995) [hep-th/9507158].

[23] F. Chen, K. Dasgupta, P. Franche, S. Katz and R. Tatar, *Supersymmetric Configurations, Geometric Transitions and New Non-Kahler Manifolds*, Nucl. Phys. B 852, 553 (2011) [arXiv: hep-th/1007.5316].

[24] S. Kachru and J. McGreevy, *Supersymmetric three cycles and supersymmetry breaking*, Phys. Rev. D 61, 026001 (2000) [hep-th/9908135].

[25] M. Grefe, *Neutrino signals from gravitino dark matter with broken R-parity*, DESY-THESIS-2008-043.

[26] G. Moreau and M. Chemtob, *R-parity violation and the cosmological gravitino problem*, Phys. Rev. D 65, 024033 (2002) [hep-ph/0107286].

[27] M. Kawasaki, K. Kohri, T. Moroi *Big-Bang Nucleosynthesis and Hadronic Decay of Long-Lived Massive Particles* Phys.Rev. D71 (2005) 083502 [astro-ph/0408426]

[28] J. Hasenkamp, *General neutralino NLSP with gravitino dark matter vs. big bang nucleosynthesis*, DESY-THESIS-2009-016.

[29] M. Dhuria, A. Misra, *A Healthy Electron/Neutron EDM in D3/D7 μ-Split SUSY*, [arXiv:hep-ph/1308.3233].

[30] M. Toharia, James D. Wells, *Gluino decays with heavier scalar superpartners*, JHEP0602:015,2006, [arXiv:hep-ph/0503175].

[31] P. Gambino, G. F. Giudice, P. Slavich, *Gluino Decays in Split Supersymmetry*, Nucl. Phys. B726, 35-52 (2005).

[32] H. K. Dreiner, H. E. Haber and S. P. Martin, *Two-component spinor techniques and Feynman rules for quantum field theory and supersymmetry*, Phys. Rept. 494, 1 (2010), [arXiv:hep-ph/0812.1594].

[33] G. Passarino and M. J. G. Veltman, *One Loop Corrections for e+ e- Annihilation Into mu+ mu- in the Weinberg Model*, Nucl. Phys. B 160, 151 (1979).
[34] D. Griffiths, *Introduction to Elementary Particles*, John Wiley & Sons Inc (March 15, 1987).

[35] S. M. Carroll, D. Z. Freedman, M. E. Ortiz and D. N. Page, *Physical states in canonically quantized supergravity*, Nucl. Phys. B 423, 661 (1994) [arXiv:hep-th/9401155].

[36] J. L. Feng, S. -f. Su and F. Takayama, *SuperWIMP gravitino dark matter from slepton and sneutrino decays*, Phys. Rev. D 70, 063514 (2004) [arXiv:hep-ph/0404198].

[37] M. Yu. Khlopov, A. D. Linde, *Is it easy to save gravitino?* Phys. Lett. (1984), V. 138B, PP. 265-268.

[38] M. Srednicki, R. Watkins, Keith A. Olive *Calculations of Relic Densities in the Early Universe*, Nucl. Phys. B310 (1988) 693.

[39] James D. Wells, *In *Kane, G.L. (ed.): Perspectives on supersymmetry II* 269-287 arXiv:hep-ph/9708285*

[40] A. Misra and P. Shukla, *Soft SUSY breaking parameters and RG running of squark and slepton masses in large volume Swiss Cheese compactifications*, Phys. Lett. B 685, 347 (2010) [arXiv:hep-th/0909.0087].

[41] S. P. Martin, *A Supersymmetry primer*, In *Kane, G.L. (ed.): Perspectives on supersymmetry II* 1-153 [hep-ph/9709356].

[42] V. Balasubramanian, P. Berglund, J. P. Conlon and F. Quevedo, *Systematics of moduli stabilisation in Calabi-Yau flux compactifications*, JHEP 0503, 007 (2005) [hep-th/0502058]; A. Misra and P. Shukla, *Moduli stabilization, large-volume dS minimum without D3-bar branes, (non-)supersymmetric black hole attractors and two-parameter Swiss cheese Calabi-Yau’s*, Nucl. Phys. B 799, 165 (2008) [arXiv:0707.0105 [hep-th]].

[43] P. Nath, R. Arnowitt, *Non-universal Soft SUSY Breaking and Dark Matter*, arXiv:hep-ph/9801259.

[44] L. E. Ibàñez, C. López and C. Muñoz, *The low-energy supersymmetric spectrum according to N = 1 supergravity guts*, Nuclear Physics B Volume 256, 1985