INTRODUCTION

Hemoglobin is an important index of hematology. At present, it is difficult to achieve accuracy in clinical practice, because of the lack of a unified standard of the normal reference value of hemoglobin of middle-aged women in China. Many researchers have measured the normal reference value of local hemoglobin of middle-aged women [1-86]. No reports on the relationship between the normal reference value of hemoglobin of middle-aged women and altitude have been found. By means of correlation and univariate linear regression analysis, research on the relationship between the normal reference value of hemoglobin of middle-aged women and altitude has shown that there are certain regular patterns between the normal reference value of hemoglobin of middle-aged women and altitude.

MATERIALS

The normal reference value of hemoglobin of middle-aged women

The normal reference values of hemoglobin of healthy middle-aged women
from various administrative units (hospitals, research institutes, and universities) have been collected in China. They include the normal reference values of hemoglobin of 25,917 middlescent women tested in 268 units. The ages of the volunteers ranged from 26 to 45 years old. It is a mean value of hemoglobin of middlescent women in each area, and 50 to 210 random samples were studied in every area. The determination of the normal reference value of hemoglobin of middlescent women is performed according to the hemoglobincyanide method \[87\]. In this routine method: first, add 20 µl whole blood into 5 ml HiCN reagent; next, mix the two kinds of liquid completely and rest the mixture standing for 5 minutes; then, use a spectrophotometer that has been zeroed with HiCN reagent at a wavelength of 540 nanometers and a light path of 1.0 centimeter to determine absorbency; and last, use the concerned formula to calculate the hemoglobin. The normal reference values of hemoglobin of middlescent women are expressed in g/l.

Altitude

Altitude figures come from relevant geographical works and dictionaries [88-89]. The altitude is the height above sea level, and its unit is meter (m).

REGRESSION ANALYSIS

Correlation analysis

By using the method of mathematical correlation analysis [90], single correlation coefficients between the normal reference value of hemoglobin of middlescent women and the altitude can be calculated: \(r = 0.827 \). Degrees of freedom \(N - 2 = 268 - 2 = 266 \), critical value of correlation coefficient is obtained from tables: \(r_{0.01} = 0.159 \). If \(|r|\) is higher than 0.159, it means the correlation is quite significant.

Regression equation

By using the method of univariate linear regression analysis, one regression equation is inferred according to the nor-
mal reference value of hemoglobin of mid-
dlescent women and altitude (Figure 1).

\[\hat{Y} = 125.5 + 0.008057X \pm 18.5 \]

In the above equation, \(\hat{Y} \) is the normal reference value of hemoglobin in of mid-
dlescent women (g/l); \(X \) is the altitude (m); 18.5 is the value of the 1.96 residual standard deviations [91].

DISCUSSION

From single correlation coefficients, it is found that the normal reference value of hemoglobin of middlescent women increases with altitude, and the correlation is quite significant. As altitude rises, the air becomes thin, and the oxygen content gradually reduces. In response to the lack of oxygen, the amount of red blood cells in the human body gradually increases. It induces a rise of the normal reference value of hemoglobin of middlescent women [92].

If the altitude of a particular area in China is known, the normal reference values of hemoglobin of middlescent women in this area can be calculated according to the regression equation. For example, in the Beijing area, the altitude is 31.2 m. By means of the regression equation, the following can be calculated:

\[\hat{Y} = 125.5 + 0.008057 \times 31.2 \pm 18.5 \]
\[= 125.8 \pm 18.5 \]

So, the calculated normal reference value of hemoglobin of middlescent women can be obtained, and the normal reference value of hemoglobin of middlescent women is 125.8 ± 18.5 g/l.

DIVISION

The topographical outline of China is a three-step, west-east staircase. According to the normal reference value of hemoglobin of middlescent women, and taking the altitude as the main differentiat-
ing factor, China can be divided into three districts.

Qingzang District

The highest western area, 4,000 m above sea level, includes the Qingzang plateau. It includes the Tibet Autonomous Region and Qinghai Province. Its altitude is the highest, so its hemoglobin is the highest in China. Take the Lhasa area as an example: the altitude there is 3,658 m. Using the regression equation, the calculated normal reference value of hemoglobin of middlescent women can be obtained as follows: 155.0 ± 18.5 g/l.

Central District

Further to the east, behind the Kunlun Mountains and Qilian Mountains on the plateaus northern edge and the Hengduan Mountains on its eastern edge, the land slopes down to highlands and basins (2,000 to 1,000 m above sea level). This district includes Sichuan Province, Chongqing city, Guizhou Province, Yunnan Province, Shaanxi Province, Gansu Province, the Xinjiang Uygur Autonomous Region, the Ningxia Hui Autonomous Region, the Inner Mongolia Autonomous Region and Shanxi Province. Its altitude is medium, so its hemoglobin is at a medium range for China. For example, in the Yinchuan area, the altitude is 1111.5 m.

Using the regression equation, the calculated normal reference value of hemoglobin of middlescent women can be obtained as follows: 134.5 ± 18.5 g/l.

The Eastern District of low hemoglobin

Further to the east still, China descends further to hilly regions and plains mostly below 500 m. This district includes Taiwan Province, Hainan Province, Guangdong Province, Hongkong Special Administrative Region, Macao Special Administrative Region, the Guangxi Zhuang Autonomous Region, Shanghai city, Jiangsu Province, Zhejiang Province,
Anhui Province, Fujian Province, Jiangxi Province, Hunan Province, Hubei Province, Beijing city, Tianjin city, Hebei Province, Shandong Province, Henan Province, Liaoning Province, Jilin Province and Heilongjiang Province. Its altitude is the lowest, so its hemoglobin is the lowest in China. For example, in the Beijing area the altitude is 31.2 m. Using the regression equation, the calculated normal reference value of hemoglobin of middlescent women can be obtained as follows: 125.8 ± 18.5 g/L.

Acknowledgements: This paper is supported by the National Natural Science Foundation of China (49771007, 40141002).

REFERENCES:
1. Yao L, Liu J, and Xu G. [A Medical Manual of practical data.] Beijing: Chinese Broadcast and Television Press; 1993, pp. 843-64. [In Chinese.]
2. Li J, Wang H, and Han Z. [Blood Laboratory Science.] Shanghai: Shanghai Science and Technology Press; 1997, pp. 3-4. [In Chinese.]
3. Xiong L, Jin D, and Hu X. [Modern Common Laboratory and Clinical Practice.] Shanghai: Shanghai Scientific and Technological Documents Press; 1998, pp. 11-12. [In Chinese.]
4. Zhao G, Wang S, and Jiang Z. [Clinical Laboratory Science.] 3rd ed. Chengdu: Sichuan Science and Technology Press; 1997, 45-6. [In Chinese.]
5. Wu X, Zhong R, and Lu Y. [Evaluation of Clinical Laboratory Results.] Beijing: People's Hygiene Press; 2000, pp. 7-8. [In Chinese.]
6. Ye Y, Wang Y, and Kong X. [Operative Rules of Clinical Laboratory in the Whole Country.] 2nd ed. Nanjing: Southeast University Press; 1997, pp. 2-3. [In Chinese.]
7. Zhang X, Yu L, and Xin W. [Selected Papers from Qinghai People's Hospital.] Xining: Qinghai People's Press; 1997, pp. 640-1. [In Chinese.]
8. Zhang Y, Wang Y, and Liu X. [Man and High Altitude.] Xining: Qinghai People's Press; 1996, pp. 87-107. [In Chinese.]
9. Lu Y, Li k, and Yi Z. [High Altitude Medicine and Physiology.] Tianjin: Tianjin Scientific Translation Company; 1995, 145-7. [In Chinese.]
10. Zhong G, Deng Q, and Lu Z. [Physiology.] 3rd ed. Beijing: People's Hygiene Press; 1998, pp. 30-1. [In Chinese.]
11. Shen Y, Tang C, and Tian Z. [A Manual of Clinical Laboratory.] Nanjing: Jiangsu Science and Technology Press; 1993, pp. 9-11. [In Chinese.]
12. Huilin Y. [A Manual of Normal Value on Clinical Laboratory.] Shantou: Shantou University Press; 1996, pp. 1-2. [In Chinese.]
13. Zhu L, Wang S, and Zhao X. [A Brief New Manual of Reference Value on Medical Laboratory.] Beijing: Chinese Science and Technology Press; 1998, pp. 1-2. [In Chinese.]
14. Lu G, Song Z, and Luan W. [Normal Value of New Clinical Laboratory], 2nd ed. Qingdao: Qingdao Press; 1997, pp. 1-2. [In Chinese.]
15. Li S, Cheng M, and Gu W. [A Speedy Manual of Medical Normal Value and its Clinical Significance.] Beijing: Xueyuan Press; 1993, pp. 6-7. [In Chinese.]
16. Yang Z, Li Q, and Yang H. [A New Manual of Clinical Medical Data.] Beijing: Jindun Press; 2000, pp. 134-5. [In Chinese.]
17. Wu J, Dai L, and Liu Y. [Reference Value of Practical Medical Laboratory and Analysis of Abnormal Result.] Beijing: Peoples Hygiene Press; 1998, pp. 1-2. [In Chinese.]
18. Zhenhua Y, Xukai Z, and Bing H. [Brief Reference Value of Clinical Laboratory and Diseases], 2nd ed. Beijing: Chinese Society Press; 1998, pp. 102-103. [In Chinese.]
19. Ji J, Ji Y, and Xu F. [One Hundred Wonders of Assay Examination.] Nanjing: Jiangsu Science and Technology Press; 1993, pp. 18-20. [In Chinese.]
20. Cai T and Xu S. [How to Read Laboratory Sheet], 2nd ed. Hefei: Anhui Science and Technology Press; 1998, pp. 4-7. [In Chinese.]
21. Chen H, Lu J, and Chen B. [How to Understand Laboratory Sheet.] Beijing: Jindun Press; 2000, pp. 3-4. [In Chinese.]
22. Zhang B, Hu Z, and Dong X. [A Practical Manual of Clinical Laboratory.] Beijing: Army Medical Science Press; 2001, pp. 1-2. [In Chinese.]
23. Qiu J, Lu X, and Chen J. [Doctors Teach You to Understand Laboratory Sheet.] Guangzhou: Guangdong Traveling Press; 2001, pp. 4-5. [In Chinese.]
24. Chen J and Zhu D. [How to Understand Laboratory Sheet], 3rd ed. Beijing: People's Hygiene Press; 2001, pp. 3-4. [In Chinese.]
25. Zuo Q, Liu Y, and Hu Z. [Teach You to Understand Laboratory Sheet], 2nd ed.
26. Song Y, Yan S, and Li Y. [A Necessary Book to Read When Going to See the Doctor and Have a Chemical Examination.] Beijing: Rural Readings Press; 2000, pp. 63-4. [In Chinese.]

27. He H, Jiang J, and Qin J. [Modern Laboratory Medicine and Clinic.] Shanghai: Tongji University Press; 2001, pp. 1-2. [In Chinese.]

28. Mi S, Fan Z, and Chi F. [Doctors Explain in Details How to Understand Laboratory Sheet.] Beijing: Chinese Labor and Societal Protection Press; 2000, pp. 2-3. [In Chinese.]

29. Lu H, Wang J, and Wang Y. [A Manual of Clinical Common-used Assisting Laboratory.] Beijing: People's Hygiene Press; 2001, pp. 1-2. [In Chinese.]

30. Chen Y, Lin Z, and Zhang D. [A Laboratory Manual of Consulting Doctors.] Shanghai: Shanghai Scientific and Technological Documents Press; 2001, pp. 16-17. [In Chinese.]

31. Deng Q, Wang S, and Wei M. [An Abbreviation Manual of Practical Medical Laboratory.] Chongqing: Chongqing University Press; 2001, pp. 156-157. [In Chinese.]

32. Cai G, Zhao S, and Ye W. [A Manual of Reference Value on the Latest Medical Laboratory.] Shanghai: Shanghai Dictionary Press; 2001, pp. 1-2. [In Chinese.]

33. Medical matters agency in Beijing Xiehe Hospital. [Clinical Laboratory and a Laboratory Manual.] Beijing: Chinese Xiehe Medical University Press; 1996, pp. 1-2. [In Chinese.]

34. Duan Y, Wang Z, and Zhang G. [A Manual of Clinical Common-used Laboratory Examination and Diagnosis.] Changsha: Hunan Science and Technology Press; 2001, pp. 1-2. [In Chinese.]

35. Hu L and Yang S. [A Normal Value Manual of Clinical Laboratory and Examination.] 2nd ed. Tianjin: Tianjin Science and Technology Press; 2001, pp. 1-2. [In Chinese.]

36. Xiang X, Peng J, and Zhang M. [A Practical Manual of Clinical Laboratory.] 3rd ed. Guangzhou: Guangdong Science and Technology Press; 2001, pp. 1-2. [In Chinese.]

37. Kong X. [A Normal Reference Value Manual of Common-used Clinical Laboratory.] Beijing: Army Medical Science Press; 2002, pp. 1-2. [In Chinese.]

38. Wang L, Wang J, and Yi J. [A Handbook of Medical Laboratory.] Shijiazhuang: Hebei Science and Technology Press; 1999, pp. 18-9. [In Chinese.]

39. Ji C, Dou J, and Wang T. [How to Read Reports of Clinical Laboratory.] Beijing: Army Medical Science Press; 2002, pp. 2-4. [In Chinese.]

40. Mei Z, Pan B, and Chen X. [A Manual of the Laboratory Clinical Laboratory.] Changsha: Hunan Science and Technology Press; 2001, pp. 28-29. [In Chinese.]

41. Jiang Z, Wei M, and Wu C. [A Manual of Common-used Clinical Assay.] Chongqing: Chongqing Press; 2002, pp. 1-2. [In Chinese.]

42. Yu X and Wang Z. [Directions of Laboratory Sheet], 2nd ed. Hangzhou: Hangzhou Press; 2001, pp. 3-4. [In Chinese.]

43. Zhang S, Jin D, and Ma J. [Teach You to Understand Laboratory Sheet.] Shanghai: Shanghai Chinese Medical University Press; 2001, pp. 33-35. [In Chinese.]

44. Zhang D, Wang R, and Ye Z. [A Normal Value Manual of Modern Clinical Laboratory.] Hefei: Anhui Science and Technology Press; 2001, pp. 5-6. [In Chinese.]

45. A physiological team of nutrient investigation in Anhui. [Hemoglobin of normal people in Anhui.] Anqing Med 1983;2:6-9. [In Chinese.]

46. An assisting team of the practice of analytical instrument of blood in Beijing. [Investigation into the range of normal reference of venous blood and various blood cells parameter of adults in Beijing.] Chin J Med Lab Sci 1996;19:179-81. [In Chinese.]

47. A physiological team of nutrient investigation in Anhui. [Hemoglobin of normal people in Anhui.] Anqing Med 1983;2:6-9. [In Chinese.]

48. An assisting team of the practice of analytical instrument of blood in Beijing. [Investigation into the range of normal reference of venous blood and various blood cells parameter of adults in Beijing.] Chin J Med Lab Sci 1996;19:179-81. [In Chinese.]

49. Li C, Zhu J, and Yi S. [The comparison of blood cells parameter laboratory of digital blood and venous blood of 200 examples of healthy adults.] Chin J Med Lab Sci 1997;20:46-7. [In Chinese.]

50. Ma X, Liang H, and Wang M. [Investigation into hemoglobin and RBC in Beijing area and their changes in different seasons.] Med J Chin People Armed Police Forces 1993;4:205-7. [In Chinese.]

51. Liu F, Qin X, and Lei J. [The normal reference value of red cells indices.] J Postgrad Ed Coll Army Doct 1992;13:173. [In Chinese.]
52. Wang G, Pan Y, and Zhao D. [Investigation into reference value of venous blood cells parameter of 1580 examples of healthy people in Lanzhou area.] J Postgrad Ed Lab Med 1998;5:17-8. [In Chinese.]
53. Deng W, Zhang Z, and Du X. [Analysis of hemoglobin level of normal people in Guangdong with the hemoglobin-cyanide method.] J Math Phys Med 1995;8:185-6. [In Chinese.]
54. Li X. [Report on hemoglobin of 1761 examples of healthy adults with XK-II hemoglobin instrument.] Prof Med 1996;23:57. [In Chinese.]
55. Duan Z, Huang Y, and Hu J. [Investigation into the range of normal reference value of venous blood cells of adults.] Shaanxi J Med Sci 1999;14(suppl):171-2. [In Chinese.]
56. Xia S, Yang Z, and Li J. [Investigation into hemoglobin of healthy people in Guiyang.] J Guiyang Med Coll 1995;20:138-9. [In Chinese.]
57. Wang Q, Yang X, and Dong H. [Discussion of normal value of hemoglobin of adults in Jiamusi.] J Jiamusi Med Coll 1993;16:12. [In Chinese.]
58. Sun D, Wang T, and Liu Z. [Investigation into reference value of common-used indices of venous blood of 1808 healthy people.] Shanghai J Med Lab Sci 2001;16:102-4. [In Chinese.]
59. He X, Zhang Y, and Liao C. [Comparison of analytical results of red cells of digital blood and venous blood with automatic analysis instrument.] Cent Chin Med J 1999;23:238-9. [In Chinese.]
60. Zhang L and Wang J. [Accuracy and accurate evaluation of MEK-4200A blood analysis instrument and normal reference value.] J Jilin Med Coll 1996;16:20-1. [In Chinese.]
61. Jiang R, Gong D, and Li Z. [Investigation into normal reference value of hemoglobin with the hemoglobin-cyanide method.] Chin J Clin Lab Sci 1988;6:163. [In Chinese.]
62. Wang Y and, Zhao W. [Comparison of hemoglobin parameter of different blood resources.] J Postgrad Educ Lab Med 1995;2:82. [In Chinese.]
63. Wang Y and Zhao W. [Six blood indices of blood-contributors in XuZhou and their comparison with normal people.] J Postgrad Ed Lab Med 1996;3:78. [In Chinese.]
64. Li S and Fan H. [Result comparison of measurement of blood samples of white cells, red cells and hemoglobin in different parts.] Chin J Hematol 1988;9:236-7. [In Chinese.]
65. Feng Y and Yang M. [Measurement of hemoglobin of normal people in Qinghai plateau at different altitudes and its analysis.] Tibetan J Med 2000;21:2-3. [In Chinese.]
66. Lu C, Wang Y, and Song A. [Research on relativity between estradiol level and age and hemoglobin of people in plateau area.] J High Alt Med 1995;5:18-20. [In Chinese.]
67. Ren W and Cao X. [Result report on 15 indices of blood of 887 examples of healthy people with F-800 blood analytical instrument.] Shaanxi J Med Lab Sci 1995;10(suppl):119. [In Chinese.]
68. Ren W and Cao X. [Taste of the use of F-800 blood cells analytical instrument.] Qinghai Med J 1996;26:49. [In Chinese.]
69. Zhao L. [Investigation into hemoglobin of healthy adults of Tibetan and Han nationalities in Yushu and Guoluo area.] J High Alt Med 1991;1:63. [In Chinese.]
70. Zhao M, Du J, and Wang X. [Result comparison of hemoglobin in different ways of mensuration.] Shaanxi J Med Lab Sci 2001;16(suppl):138. [In Chinese.]
71. Wen R. [Comparison of normal value of hemoglobin with the hemoglobin-cyanide method and the method of Sahli laws.] J Changzhi Med Coll 1997;11:139-40. [In Chinese.]
72. Du H and Zhang X. [Result comparison of blood cells parameter of digital blood and venous blood of 100 examples of healthy adults.] Shaanxi J Med Lab Sci 2001;16(suppl):121-2. [In Chinese.]
73. Xu J. [Discussion of normal reference value of venous blood with blood analytical instrument.] Shanghai J Med Lab Sci 1996;11:166-7. [In Chinese.]
74. Tao Y, Chen B, and Ni F. [Normal value of hemoglobin with the hemoglobin-cyanide method.] Chin J Hematol 1984;5:240-51. [In Chinese.]
75. Tao D, Sun X, and Chen X. [Investigation into seven indices of surrounding blood of 500 healthy people in Chengdu area.] Chin J Hematol 1987;8:511. [In Chinese.]
76. Guo Y, Yang F, and K. [Analysis of hemoglobin of 1067 examples of healthy adults in Mianyang.] Prof Hyg Dis 1998;13:27. [In Chinese.]
77. Zhang H, Wen D, and Wu M. [Measurement of hemoglobin value with the hemoglobin-cyanide method.] Chin J Hematol 1988;9:426. [In Chinese.]
78. Zhang H, Wen D, and Wu M. [Measurement of reference value of hemoglobin of normal value with the hemoglobin-cyanide method.] J Air Force Med 1989;1:36-8. [In Chinese.]
79. Chen S, Liao H, and Yuan Z. [Investigation into hemogram of 4017 healthy people in Kunming area.] Yunnan Med 1989;3:152. [In Chinese.]

80. Li X. [Investigation into normal reference value of whole blood in Qujing area.] Chin J Clin Lab Sci 1998;16(suppl):96-7. [In Chinese.]

81. Kong F, Zhang D, and Zhang X. [Discussion of reference value of parameter of twig blood cells with blood cells analytical instrument.] Shaanxi J Med Lab Sci 1998;13(suppl):190-1. [In Chinese.]

82. Xiushu W. [Investigation into hemoglobin of 232 examples of traffic policemen.] Prof Med 1997;24:50. [In Chinese.]

83. Sun Z, Yan S, Pan W. [Changes of hemoglobin of old people in Xining and Hangzhou and its comparison with young people.] High Alt Med J 1994;4:7-10. [In Chinese.]

84. Huang X and Li W. [Changes of blood parameter of normal females in physiological menses period.] Shaanxi J Med Lab Sci 1999;14(suppl):174-5. [In Chinese.]

85. Bo X, Li H, and Ma H. [Investigation into the reference range of parameter of respective cell of healthy adults of autonomic county of Tujia nationality in Qianjiang of Chongqing.] Jiangxi J Med Lab Tech 2001;19:114, 81. [In Chinese.]

86. Chen W, Hu B, and Deng G. [Investigation into the reference range of respective parameter of venous blood cells of 3015 example of healthy adults in Chongqing.] Chin J Lab Med 2000;23:48. [In Chinese.]

87. Ye Y, Wang Y, and Kong X. [Operative Rules of Clinical Laboratory in the Whole Country.], 2nd ed. Nanjing: Southeast University Press; 1997, pp. 2-3. [In Chinese.]

88. Yan C, Yan J, and Song J. [The Big Dictionary of Cities and Counties in China.] Beijing: Chinese Central Communist Party School Press; 1991, pp. 1-1446. [In Chinese.]

89. Zhao J, Chen C, and Wu G. [Geography of China.] Beijing: High Educational Press; 1999, pp. 1-382. [In Chinese.]

90. Zhang C and Yang B. [Basic Theory of Meterological Geography], 2nd ed. Beijing: High Educational Press; 1991, pp. 86-129. [In Chinese.]

91. Zhou S, Yan Y, and Yang T. [Science of Hygiene Statistics], 2nd ed. Beijing: People's Hygiene Press; 1995, pp. 129-60. [In Chinese.]

92. Ge M. [The relationship between reference value of erythrocyte sedimentation rate and geographical factors.] Biosci Rep 2001;21:287-92. [In Chinese.]