Neuropeptides encoded by the genomes of the Akoya pearl oyster *Pinctata fucata* and Pacific oyster *Crassostrea gigas*: a bioinformatic and peptidomic survey

Michael J Stewart†, Pascal Favrel‡,3†, Bronwyn A Rotgans1, Tianfang Wang1, Min Zhao1, Manzar Sohail1, Wayne A O'Connor4, Abigail Elizur1, Joel Henry2 and Scott F Cummins1*

Abstract

Background: Oysters impart significant socio-ecological benefits from primary production of food supply, to estuarine ecosystems via reduction of water column nutrients, plankton and seston biomass. Little though is known at the molecular level of what genes are responsible for how oysters reproduce, filter nutrients, survive stressful physiological events and form reef communities. Neuropeptides represent a diverse class of chemical messengers, instrumental in orchestrating these complex physiological events in other species.

Results: By a combination of *in silico* data mining and peptide analysis of ganglia, 74 putative neuropeptide genes were identified from genome and transcriptome databases of the Akoya pearl oyster, *Pinctata fucata* and the Pacific oyster, *Crassostrea gigas*, encoding precursors for over 300 predicted bioactive peptide products, including three newly identified neuropeptide precursors PFGx8amide, RxIamide and Wx3Yamide. Our findings also include a gene for the gonadotropin-releasing hormone (GnRH) and two egg-laying hormones (ELH) which were identified from both oysters. Multiple sequence alignments and phylogenetic analysis supports similar global organization of these mature peptides. Computer-based peptide modeling of the molecular tertiary structures of ELH highlights the structural homologies within ELH family, which may facilitate ELH activity leading to the release of gametes.

Conclusion: Our analysis demonstrates that oysters possess conserved molluscan neuropeptide domains and overall precursor organization whilst highlighting many previously unrecognized bivalve idiosyncrasies. This genomic analysis provides a solid foundation from which further studies aimed at the functional characterization of these molluscan neuropeptides can be conducted to further stimulate advances in understanding the ecology and cultivation of oysters.

Keywords: *Pinctata fucata*, *Crassostrea gigas*, Molluscs, Circular dichroism, Egg-laying hormone, Feed circuit activating peptide, Gonadotropin-releasing hormone, High-performance liquid chromatography, Mass spectrometry, Neuropeptides

* Correspondence: scummins@usc.edu.au
† Equal contributors
‡ School of Science and Education, Genecology Research Center, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
Full list of author information is available at the end of the article

© 2014 Stewart et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Background

Neuropeptides encompass a diverse class of cell signaling molecules that are produced and released from neurons through a regulated secretory pathway [1]. They may function as hormones, transmitters and modulators; as modulators of neuronal activity, neuropeptides contribute to the generation of different outputs from the same neuronal circuit in a context-dependent manner [2], or organize complex motor functions [3]. Neuropeptides that act as hormones are released into the haemolymph via a network of neurohemal organs, upon which they regulate various states of physiology, including growth, metabolism, and reproduction [4].

In general, neuropeptides are generated from an immature precursor that contain an N-terminal signal sequence and single or multiple copies of bioactive peptide [5]. Mature bioactive peptides are often short with low in molecular weights (<10 kDa), the shortest and smallest being dipeptides [6,7]. Within the secretory apparatus, proteases cleave the precursor at mono- or dibasic cleavage sites [8], after which mature peptides are often further modified through post-translational modifications [9]. Conventional methods of neuropeptide characterization have involved their purification directly from neural-associated tissues in conjunction with the analysis of corresponding gene expression. Identification of cross-species neuropeptide conservation has typically relied on the use of antibody probes that bind to homologs. However, given the relative ease and affordability of genomics and mass spectrometry, the near full neuropeptide repertoire of several species has been revealed [10], even within non-model animal species [11].

One mollusc in which genomics has helped to reveal the extent of the neuropeptidome is the owl limpet, Lottia gigantea. Lottia is a marine gastropod that has emerged as a molluscan genome model following the recent sequencing of its relatively small genome. Data mining of the L. gigantea genome has revealed around 59 genes that encode for putative neuropeptides [12], most of which had been previously characterized or identified through functional testing or descriptively identified (i.e. immunohistochemistry) in other molluscs, insects or annelids. Examples of these include the tetrapeptides Ala-Pro-Gly-Trp-NH₂ (APGWamide) and Phe-Met-Arg-Phe-NH₂ (FMRFamide), as well as the egg laying hormone (ELH) and gonadotropin-releasing hormone (GnRH) [12]. While most genes encoding neuropeptides have been identified in molluscs, some that have, do share distinct homology with Drosophila, such as the putative proctolin homolog PKYMDT and allatostatin C, which are believed to be derived from neuropeptides with an early origin from either eumetazoan or bilaterian ancestors [2,10].

Most research in oysters has been devoted to understanding their widespread ecological impacts, nutrient processing, nutrition, larval settlement, and environmental factors that modulate spawning frequency and distribution. However, little is known of the metabolic neuropeptides that regulate these processes. Insight into this area has the potential to be either exploited for advances in oyster culture, or for controlling and understanding their natural biological processes which contribute to their invasiveness. Recently, genome sequence assemblies and annotations became available for Pinctata fucata and Crassostrea gigas, providing an excellent opportunity to characterize the repertoire of oyster neuropeptides [13,14].

The Akoya pearl oyster Pinctata fucata, are wide spread and can form dense populations, but are cultured primarily for their ability to produce pearls [15]. The P. fucata draft genome version 1.1 (approximately 40x coverage) became available in 2012 predicting 23,257 complete gene models and includes genes associated with shell mineralization [13], as well as reproduction-related genes involved in the process of germ cell migration; vasa, nanos, oocyte maturation, and spawning. This includes 5-hydroxytryptamine, vitellogenin and estrogen receptors [16]. On the other hand in the same year analysis of the highly polymorphic C. gigas genome and transcriptomes revealed an extensive set of genes that provides a rare glimpse of how C. gigas respond to environmental stress, and adapt to near environments, as well as giving insight perspective into the molecular mechanism of shell formation, development and reproduction [14].

In this study, we interrogated the genomes and transcriptomes of P. fucata and C. gigas to identify neuropeptide genes. To help support gene predictions, we performed comparative analysis and peptidomic investigation of C. gigas ganglia. Among those neuropeptides identified are those known to be involved in molluscan reproduction (e.g. APGWamide, egg-laying hormone and gonadotropin-releasing hormone) and growth (e.g. FMRFamide). This study provides a foundation for the experimental analysis of neuropeptides in oysters, which can be used to increase focus on the loss of associated ecosystem and food supply services that oysters contribute to the environment and human well-being.

Results and discussion

We have identified genes encoding putative full-length or partial-length neuropeptide precursors from the P. fucata and C. gigas genome, and transcriptome databases for C. gigas (Figure 1 and Additional file 1). Numerous peptides are released from these precursors, some of which were confirmed from C. gigas neural tissue by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis (Additional files 2, 3 and 4). For some of the neuropeptides, defined roles in reproduction and growth have been established and will
be discussed in the context of the newly identified oyster sequences. Database accession numbers for sequences used in this study can be found in Additional files 2 and 5.

Figure 1 Summary of identified genes encoding putative full-length or partial-length neuropeptide precursors from the *Pinctada fucata* and *Crassostrea gigas* genome, and transcriptome databases. For each neuropeptide we highlight whether a cDNA clone, a full-length ORF sequence, and MS evidence are available. We also indicate the numbers of peptides that are cleaved from the mature neuropeptide precursor, if they are amidated, acetylated, or pyroglutaminated peptides, and if a leader signal peptide is encoded.

APGWamide and FMRFamide

Molluscan APGWamide and FMRFamide precursors share a similar configuration, that is, they contain numerous tetrapeptide repeats that can vary slightly besides the
presence of a C-terminal dipeptide amidation (i.e. GWa and RFa). APGWa precursors previously described in the aquatic gastropods *Aplysia californica* [17], *Lymnaea stagnalis* [18], *Lottia gigantea* [12] contain primarily APGWa whose putative function has been reviewed by Koene 2010 [19]. The related GWa, TPWGa, KPGWa and RPGWa peptides have been identified in the cuttlefish *Sepia officinalis* [20,21] and the blue mussel *Mytilus edulis* [22,23], through HPLC and LC-ESI-MS/MS. Those studies suggest that these related variants might play a significant role in cephalopod and bivalve reproduction. We found that the Pf-APGW precursor is predicted to be cleaved at several dibasic sites, to release six RPGWa peptides (513.3 Da), three KPGWa peptides (485.3 Da) and one APGWa (470.24 Da) (Figure 2A and Additional file 2). Unfortunately no KPGW or RPGW was identified in MS analysis.

The Cg-APGW precursor encodes fewer repeats yet has a longer precursor (285 residues). When compared to other APGWa precursors of mollusc, it appears that gastropods more frequently contain the APGWa peptide rather than the TPGWa, RPGWa or KPGWa of bivalves (*P. fucata*, *C. gigas* and *M. edulis* [22]). The notable substitution of alanine (A) with threonine (T), arginine (R) or lysine (K) at position 1 in bivalves creates a peptide that is less hydrophobic [22], perhaps imparting a necessary change for it to be bioactive in oysters, mussels and cephalopods.

RFamides, which feature a C-terminal sequence –RFa, constitute one of the largest families of neuropeptides and include the FMRFa and FxRIamide [24-27]. The FMRFa peptides have been described from numerous molluscs, where they have been shown to have a diversity of roles as neurotransmitters, neuromodulators, and
neurohormones [28]. The Pf-FMRF gene encodes a precursor of 452 residues, including a 23-residue signal peptide, two FLRFa (580.36 Da), twenty FMRFa (598.31 Da), a F1RFa (580.36 Da) and a hydrophobic ALAGDAFLRFa (1078.6 Da) (Figure 2B and Additional file 2). The Cg-FMRF precursor also contains two FLRFa, although fewer FMRFa (ten) and the decapeptide, ALSGDHYIRFa was subsequently identified by mass spectrometry from the visceral ganglia. Interestingly, FMRF precursors exhibit high retention in conservation of the FMRFa with other molluscs but not FLRFa. This may be due to an evolutionary split from a common ancestral precursor [29] and could be unique to bivalves.

Quite similar to the FMRFa is FxRlamine (Additional file 1). This peptide is commonly found in lophotrochozoans [30,31], and has been also called S-Iamide peptide due to its common structure, -SSFVRIamide after it was first reported (LSSFVRIamide) in the prosobranch mollusc *Fusinus ferrugineus* [32]. Since then, partial precursors and fragments of heptapeptides all with the structural amino acid arrangement of xSSFxRI have been reported in the annelids, *Platynereis demurilii, Pomatoceros lamarkii, Capitella capitata,* and molluscs *Aplysia* and *Lottia* [31]. Here we now also report the identification of full-length precursors of FxRlamine for both oysters, *P. fucata* and *C. gigas.* The Pf-FxRla gene encodes leader 22 residue signal peptide as well as 11 unique heptapeptides all with the structural amino acid arrangement of xSSFxRI. Not only, in addition there are two longer peptides IPSSAFMRIa and PSRLGQSSFVRIa. In *C. gigas,* the Cg-FxRla gene has in addition to leader signal peptide, 14 unique FxRl peptides. The unique feature of these FxRI homologs is that they generally are missing the upstream amino acid sequence SS. Only one peptide, verified by MS analysis conformed to the xSSFxRI convention, IQQSSFIIR. Overall the significance of these peptides in molluscs and in annelids is relatively unknown. However, it has been suggested that the peptides may be involved in the regulation of gut motility of the animal [30].

Gonadotropin-Releasing Hormone and Egg-Laying Hormone

In oysters, synchronized gonad maturation and spawning is thought to occur via environmental cues, including tides and pheromonal cues released by conspecifics that initiate endogenous cues [33]. The GnRH and ELH peptides have been most well studied in relation to endogenous reproduction hormones. Although much is known about the role of GnRH in vertebrate reproduction [34], we are only just beginning to explore its function in molluscs. In molluscs, a GnRH was first identified in the *Octopus vulgaris* [35]. Later identified also in the sea slug *Aplysia californica,* it was determined that although administration of synthetic GnRH could stimulate behaviours such as inhibition of feeding, no effect on ovotestis, reproductict tract, egg-laying or penile eversion was observed [36]. However, in the scallop *Patinopecten yessoensis,* mammalian GnRH can stimulate spermatogonial proliferation [37]. Two GnRH-related peptides were later found by mass spectrometry of the *C. gigas* visceral ganglia, and gene expression analysis demonstrated a correlation with reproduction and nutritional status [38]. The Pf-GnRH and gene identified in the present study encodes for a precursor of 59 amino acids, and includes the conserved 11 residue GnRH-like peptide and C-terminal GnRH-associated peptide (GAP) (Figure 3A). The GnRH-like peptide of *P. fucata* and the previously reported *C. gigas* GnRH differ at only residue 10 (ie. His for *P. fucata* and Gln for *C. gigas*). The general organization of the GnRH precursor has been conserved throughout evolution and with the exclusion of chicken, tree shrew, fish and pri-mates, most species of vertebrate possess one or two cy-steines within the GAP (Figure 3B). In comparison with other GnRH peptides, most similarity is found within the GnRH peptide (Figure 3C), and based on phylogenetic analysis of GnRH precursors (Figure 3D) the Pf-GnRH clusters most closely with the cephalopod *Octopus vulgaris,* rather than the bivalves *C. gigas* and *Patinopectin yessoensis.*

The egg-laying hormone has received significant attention due to the nature of its function in eliciting egg laying in *A. californica,* from which it was first discovered [39]. Its gene structure is typical of many molluscan neuropeptides in that it is derived from a precursor that gets processed by processing enzymes, such as prohormone convertase [40]. The Pf-ELH gene (pfu_aug1.0_2069_1_29971) primary sequence has been described previously [16] where it encodes a 158 amino acid preprohormone consisting of a 26-residue signal peptide and two ELH-like domains (Figure 4A). Herein, we show that the Pf-ELH1 consists of a 42 amino acid basic peptide (5016.9 Da) and Pf-ELH2 consists of a 38 residue ELH-like acidic peptide (4189.11 Da), both of which are predicted to be cleaved and amidated from a common precursor at S26. The Cg-ELH was first described by Veenstra [12], revealing a precursor slightly larger (166 amino acids) than the Pf-ELH, but similarly contains two ELH-like peptides (Pf-ELH1 has 40 residues and Pf-ELH2 has 38 residues).

Schematic representations show that only oysters contain ELH peptides on the same precursor (Figure 4B) and only the *Aplysia* and *Lymnaea* ELH precursors have other known bioactive peptides [such as bag cell peptides (BCPs), caudodorsal cell peptides (CDCPs)]. Multiple sequence comparison and phylogenetic analysis of known ELH peptides shows that oyster ELH1 is most closely related to oyster ELH2 peptides (Figure 4C,D). Most conservation of ELH between molluscan species is located at the N- and C-termini, probably as these are critical for
receptor interaction. In support of this, previous structure and activity studies have used synthetic ELH analog variants to investigate egg-laying induction [39]. In that study, removal of the N-terminal amino acid or extension of the C-terminus by one residue (Gly37) caused loss of egg-laying activity. Further analysis revealed that ELH is more similar within the Aplysia family; where A. dactylomela ELH differs from A. californica (and A. brasiliana) ELH at only four positions [41]. We further compared oyster ELH to the recently identified members of the corticotropin-releasing hormone (CRH) and diuretic hormone 44 [DH44] neuropeptide families reported in other species (Figure 4C). CRH/DH44 have been implicated as being related to mollusc ELH [10], demonstrating sequence similarity within the mature peptides. For example, Aplysia ELH compared to DH44, reveals several conserved amino acid positions, including the Platynereis DH44, which is highly repetitive (13 and 16 copies) compared to mollusc ELH or insect DH44 counterparts [31]. Human CRH, with 4 identical-semi conserved residues, had the least conservation compared to mollusc ELH, and formed its own sub-
Figure 4 (See legend on next page.)
branch (Figure 4D). Nevertheless, conservation of these neuropeptides in lophotochozoans further confirms the coevolution of these peptides [10].

No ELH peptide structure model predictions or crystal structures have been reported to date. To help further studies to what may activate an ELH receptor, we undertook predictive structural analysis. Oyster ELH structure molecular models for Pf-ELH1, Pf-ELH2, Cg-ELH1 and Cg-ELH2 predict that ELH1 contains a mixture of helix, \(\alpha \)-helix, turn, beta-strand and random coil (Figure 4E). It appears that the highly conserved S4 and N6 regions exhibit more of a random-unordered structural character, while L4 is located within a helix region (i.e., \(\alpha \)-helix in Pf-ELH2, 3-10 helix in Cg-ELH1 and Cg-ELH2, respectively). For Cg-ELH2, R27 is located within random coil regions, and is adjacent to an \(\alpha \)-helix region in Cg-ELH1. Meanwhile, in Pf-ELH1 both R36 to L39 are within a C-terminal \(\alpha \)-helix, which is the same in all ELH models excluding Pf-ELH2. The potential energy as a function of time during this simulation and the backbone root-mean square distance (RMSD) relative to this structure during the course of the same simulation is shown in Additional file 6 (A-D). The representative structure of Pf-ELH1 and Cg-ELH1 occurred at 197.540 ns and 77.028 ns into the MD simulation, respectively. The representative structure of Pf-ELH2 and Cg-ELH2 resolved at 239.778 ns and 100.761 ns into the MD simulation, respectively. Subsequent analysis of the secondary structure of Pf-ELH1 based on circular dichroism (CD) spectroscopy found that the peptide was predominantly beta-strand (36%; peaks at 180-190, and 200-210 nm respectively) (Additional file 6). In addition, the spectrum (particularly the trough from 210-230 nm) indicates a consistent \(\alpha \)-helical structure with minor notable random coils throughout (17%; trough 190-200 nm).

Our LC-MS/MS analysis of C. gigas neural tissue identified an internal region of Pf-ELH1 (FIASRFPPDI) and Pf-ELH2 as well as a 36 amino acid form of Cg-ELH2 of m/z 3939 (Figure 4F). Whether this form is the biologically active form or just a slightly truncated form remains to be investigated. MS did not detect the 38-residue ELH, probably because its mass exceeds M/Z 4000, which in our analysis was the upper limit of detection.

Other neuropeptides of interest

Full-length neuropeptide precursors were identified in P. fucata and C. gigas for achatin, allatotropin, cholecystokinin (CCK)/sulfakinin (SK)-like, conopressin, elevenin, NKY, NPF/Y and LFRFa (Figure 5). Multiple sequence alignment between the oyster putative neuropeptide precursors with previously identified homolog sequences in molluscs confirms high identity within the bioactive peptide sequences and variability outside these regions. Bioactivity of the intervening sequences has not previously been described.

Achatin

The neuropeptide, achatin, was first identified in giant African snail ganglia [42] and within that animal it has both suppressing and enhancing actions on the effects of various neurotransmitters [43]. Similar to other known molluscan achatin precursors, those of Pf-achatin and Cg-achatin may be processed to release GFWD and GFGD acidic peptides.

Allatotropin

The allatotropin peptide stimulates synthesis of juvenile hormones in insects [44], where it has been most well studied. Pf-allatotropin and Cg-allatotropin encode for allatotropin precursors that can be cleaved to produce a 14 amino acid allatotropin peptide, GFRQSIIDRMGHGFa for P. fucata and GFRQSIIVDRMGHGFa for C. gigas which was confirmed by mass spectroscopy [MS] analysis. While allatotropin is highly conserved between these oysters, there is only limited similarity with other known allatotropins besides the N- and C-terminal regions.

CCK/SK

The molluscan oyster homolog genes for CCK/ SK encode for peptides of Pf-p-QGVWDFDYGLGGGRFa (1655.79 Da) and Cg-p-QGAWDYDYGLGGGRFamide (1643.74 Da) that share some similarity with sulfakinin and gastrin. An additional co-peptide of Pf-SFGDYSLGGGRFamide and Cg-FDYNFGGGRWamide is also present directly following the CCK/SK peptide. Both C. gigas peptides were confirmed by MS analysis (Additional file 3). CCK is structurally and functionally related to the gastrin hormone, both of which regulate digestion and feeding in invertebrates [45].

Conopressin

The Pf-conopressin and Cg-conopressin, encoded a single vasopressin-related conopressin precursor. Immediately following the signal peptide cleavage site is the highly
Figure 5 (See legend on next page.)
conserved N-terminal conopressin peptide, predicted to be CFIRNCPGG-NH$_2$, while the adjoining C-terminal neurophysin peptide contains 14 cysteine residues and is followed by an uncleaved copepep-homologous domain. Bivalve conopressin differs from gastropod conopressin at the most polymorphic position in the peptide: position 8. In the genetically highly polymorphic _C. gigas_, nucleotide variability even occurs at this position (A/C) changing Q to P. This polymorphic change could be due to a SNP within a population. The conjoined neurophysin-like peptide, although quite divergent, shows spatial conservation of cysteine residues throughout all molluscs as well as in vertebrates and even the NG peptide-associated neurophysins first identified in the sea urchin, _S. purpuratus_ [46]. In _Lymnaea_, conopressin controls sexual behavior [47].

Elevenin
Pf-elevenin and _Cg-elevenin_ genes encode an active elevenin peptide that is cleaved from the precursor, KPRRRFCECNPFPARRCIGVSA and RRRFGETYPFPARRCIGVSA, respectively. LC-MS/MS analysis of _C. gigas_ neural tissue identified the SPVSLLEQILNNRRRFGL peptide (Additional file 2), indicating that this is probably neural tissue identified the SPVSLLEQILNNRRRFGL peptide (Additional file 2), indicating that this is probably neural tissue. LC-MS/MS analysis of _C. gigas_ showed a bioactive peptide released from the precursor. Elevenin-like precursors have been described in _Lottia gigantea_ [12] and _Aplysia_ [48], while a similar precursor from the pyramid squid _Idiosepius_ and nematode _Caenorhabditis elegans_ are present within the NCBI Genbank database. Comparison of the oyster elevenin precursors with other molluscs and worms shows little overall conservation, even within the elevenin mature peptide, however, there is conservation of cysteine residues at positions 5 and 14.

NKY, NPY/F family
Full and partial-length _P. fucata_ and _C. gigas_ are identified in _P. fucata_ (Pfu) and _C. gigas_ (Cgi). Full-length precursor sequences were identified in both for achatin, allatotropin, CCK/SK and conopressin, elevenin, NKY, NPF/Y and LFRFa, showing high amino acid identity within bioactive peptides. A sequence logo is shown above alignments, where the height of each letter is proportional to the observed frequency of the corresponding amino acid in the alignment column.

LFRFaamide
The oyster LFRFaamide (Pf-LFRFa and Cg-LFRFa) gene encodes for multiple basic GXLL/FRFa peptides while the LFRFaamide (Pf-LFYa and Cg-LFYa) gene encodes single variant FRF/FRW peptides along with a well-conserved associated double disulphide-bridged peptide. While there was no confirmation of _C. gigas_ LFRFa peptides by LC-MS/MS, several –LFRFa peptides were. Functionally LFRFa peptides have known to inhibit electrical activity of neuroendocrine cells that control either growth and metabolism or reproduction in _L. stagnalis_ [25]. However, in the cephalopod _Sepia officinalis_, LFRFa activity is predominantly targeted to the rectum, where it increases the frequency, tonus and amplitude of rectal contractions [51]. More recently in _C. gigas_ where the receptor for this family of peptides had been characterized it has been suggested that signalling of LFRFaamide peptides through its specific receptor might play a role in the coordination of nutrition, energy storage and metabolism [52]. In this paper we thus showed the molecular existence of these different peptides by MS/MS in _C. gigas_ and confirm further via PSI-BLAST molecular analysis that LFRFa would represent functional orthologs of short neuropeptide F from insects [52].

Full and partial-length _P. fucata_ and _C. gigas_ were also identified that encoded peptides with identity to allatoxatin (SHIRKLNVIACY), buccalins (11 variants), CCAP (VFCNGFFGCSNamide, and LFCCNTGCGFamide [although these were not verified by MS analysis]) cerebrin/PDF-like (NLGTVDLSNLPDLLYRamide), FFaamide/SIF-like peptides (GMNPNMMSLFFamide) similar in structure to the FFamide found in _Lymnaea_ [53], FCAP,
GGNamide (SKCKGPWANHMCFGGNamide), LASGL-Vamide (MMMDPLASGLVa), LFRYα (SIKIPFRFa), luqin (APQWRPQGRFamide and VCVESNVPGFLFKCY), two myomodulin variants (GMPMLRLamide, PFKMLRLamide GGLSLMLRL, GLQMLRLamide, and AMPMLRLamide) and (xG/KFFRIamide), Pedal peptide, PKYMDT, sCAP (small Cardio Active Peptide)/pyrokinin-like peptides (APKYFYFPRMamide; SAFYFPRMamide); tachykinins (FGFAPMRamide, 824.01 Da; FRFTALRamide 909.09 Da), and the NdWFamide (Additional file 1). We also present for the first time the expression of opioid-like neuropeptides, considered to represent the protostome counterparts of enkephalins [2] (Additional file 1). Novel neuropeptides, considered to represent the protostome also present for the first time the expression of opioid-like (e.g. neuropeptide precursors cerebrin, PKYMDT, bursicon alpha, elevenin, allatostatin C, sCAP/Pyrokinin, NKY, GPA2 and GnRH). However, 17 of the 42 families were strongly connected to form one large central cluster; although in the central cluster some sequences were only indirectly connected via a network of transitive BLAST connections (e.g. achatin, FFamide, luqin, CCAP and PFGx8amide). Not surprisingly, the core of the central cluster represented and contained neuropeptides with abundant repetitive peptides that give rise to short tetra to dodeca amidated (e.g. APGW, LASGL, FMRF, LFy, mytilus inhibitory peptide, FFamide, PFGx8amide, myomodulin), and nonamidated neuropeptides (e.g., pedal peptide). This is similar to the observations made in a few recent cluster-based studies of neuropeptide families encompassing far larger datasets and not restricted to one phyla [2,31]. Several peripheral groups (e.g., ELH, conopressin, NPF/NPY and CCK/SK) were connected to the core, but not to other derived families. This adheres to the observation that these fringe neuropeptides represent independent divergences from one or more ancestral sequences within the core [2]. The protein family from opioid, Wx3Yamide, achatin-like, bursicon beta, GPB5, tachykinin, LFRYamide, NdWFamide did not mark in the map because i) their similarity to others was higher than 1e-5; and ii) they did not form a cluster in the map.

Glycoproteins

A glycoprotein family known as cysteine knot-forming heterodimers consisting of alpha- (GPA) and beta-subunits (GPB) are evolutionarily conserved [54]. In vertebrates the heterodimer is called thyrostimulin, composed of GPB5 and GPA2. Homologs occur in arthropods, nematode, cnidarians, and molluscs implying that this neurohormone system existed prior to the emergence of bilateral metazoans [55]. The GPB5 of the GPA2/GPB5 dimer was identified in *P. fucata* and *C. gigas* that is similar to the GPB5 subunits identified in *Aplysia, Lottia* [12] and humans [56] (Figure 6 and Additional file 1). The Pf-GPB5 and Cg-GPB5 genes encode precursors of 137 and 133 residues, respectively, and two GPB5 peptides are predicted to be cleaved from these precursors, releasing N-terminal basic GPB5 (8193.32 Da) and a C-terminal acidic GPB5 (4708.33 Da), both of which contain five cysteine residues. GPA2 was also identified from *P. fucata* and *C. gigas* (Figure 6 and Additional file 1). Cg-GPA2 is encoded by a gene in tandem with Cg-GPB5, as is the case in most species [57]. There is
spatial conservation of cysteine residues amongst molluscan GPB5/GPA2, yet only the oysters retain the KR cleavage site. Although a function for these proteins in molluscs is currently unknown, in insects, studies using the mosquito (*Aedes aegypti*) suggest that GPA2/GPB5 participates in ionic and osmotic balance, since it appears to inhibit natriuresis and promote kaliuresis [55]. Bursicon, another αβ heterodimer member of this cysteine knot family of neurohormones, was characterized in insects for its role in triggering the sclerotization of the cuticle and expansion of the wings during the final phase of metamorphosis [58]. Both α and β bursicon-related precursors are encoded by *C. gigas* genome. Cg-Bursicon-α, a 108 amino acid long peptide, shows 53% similarity with *Bombyx mori* bursicon-β subunit, though Cg-Bursicon-β (displays 46% identity with *Carcinus maenas* counterpart. Cg-Bursicon-αβ very likely binds oyster receptor Cg-LGRB with a possible growth/differentiation regulatory role during development and in the cytological changes occurring in the digestive gland [59].

Conclusions

In this study we described the identification of putative oyster neuropeptides using *in silico* genome and transcriptome database searches. The results clearly demonstrate that neuropeptide genes are conserved in bivalves, however, there are distinct differences with other molluscs. Despite a sessile mode of life and thus less intricate patterns of behavioral events, oysters have obviously retained a repertoire of neuropeptides with a complexity similar to that of other mollusc classes. The number of peptides predicted in our study supports the power of genome mining for neuropeptide gene discovery, and provides a strong foundation for future *in silico* investigations within oysters. Further research is additionally needed to validate peptide predictions through gene expression analysis as well as peptide expression identification using mass spectrometry approaches with other endocrine tissues and at different stages of development and metabolic states. To achieve this, target tissues would include the oysters visceral and cerebral ganglia, gonads and in depth *in vivo* assays of synthetic and recombinant peptides. Function must then be confirmed by bioactivity.

Methods

Gene and peptide identification

To identify target sequences, the *Pinctata fucata* (http://marinegenomics.oist.jp/genomes/download?project_id=20) and *Crassostrea gigas* (http://gigadb.org/pacific_oyster) genome [60] and gene coding region (CDS) databases were imported into the CLC Genomics Workbench (v6.0, Finlandsgade, Dk). Previously identified molluscan neuropeptides, neurohormones and precursor processing enzyme sequences were then used to query (tBLASTn and BLASTx) the databases. In parallel, open reading frames retrieved from the databases were translated and screened for the presence of recurrent KK, KR, RK, RR motifs. In many cases, *C. gigas* gene CDS predictions could be supported from transcriptome database analyses. Multiple sequence alignments were created with the Molecular Evolutionary Genetics Analysis (MEGA) software version 5.1 [61]. Derived and actual amino acid sequences were aligned, guided by chain cleavage sites and conserved cysteines, where necessary intron donor/acceptor splice sites were identified using NetGene2 [62]. Signal
sequences and cleavage sites were identified by alignments with other mollusc sequences [12,63,64] and predicted through SignalP 4.0 [5] and NeuroPred [65]. Sequence presentation and shading of multiple sequence alignments was performed using the LaTeX TEXshade package [66].

Phylogeny and neuropeptide family clustering
Phylogenetic trees were constructed using full length precursors or individual peptides with MEGAS5.1 utilizing the neighbor-joining method [67]. Unrooted trees were generated with 1000 bootstrap trials and presented with a cut-off bootstrapping value of 50. For the neuropeptide family classification, we performed a PSI-BLAST with 1 iteration using all the molluscan neuropeptides identified in this study. The sequence-similarity-based clustering approaches were further applied using CLANS [68]. All the neuropeptides sequences with no similarity to other neuropeptides were removed from the final map.

Precursor schematics and peptide modelling
Schematic diagrams of protein domain structures were prepared using the Domain Graph (DOG, version 2.0) software [69]. Protein secondary structure predictions were made using PredictProtein (http://www.predictprotein.org/), and protein 3D models were built using the Assisted Model Building with Energy Refinement (AMBER) 11 [70] with a modified procedure described elsewhere [71], in which the structures of molecular dynamic simulation were sampled every picosecond for a total of 350 nanoseconds, and a representative structure (i.e. the lowest energy structure) was obtained once the RMSD during a long time period was below ~2 Å. To characterize the secondary structure of \(P. \text{fuscata} \) ELH, CD analysis was performed using a 0.1 cm path length cell at 0.2 nm intervals with two scans (178–260 nm) averaged for each at 25°C (Jasco J-715 spectropolarimeter, JASCO, Easton, MD, USA). Lyophilized ELH was slowly dissolved in 10 mM sodium phosphate buffer (pH 6.5), centrifuged at 15,000 × g to remove precipitated protein. It was then concentrated to a volume of 0.5 ml by centrifugation at 7000 × g in a Centrifcon 3 concentrator (Amicon, Beverly, MA, USA). One more addition of buffer and concentration was performed, after which the protein was diluted with additional sodium phosphate buffer to a final concentration of 0.3 mg/ml. Far-UV CD spectra were taken at a protein concentration of 0.1 mg/L and the resultant spectra corrected for the buffer signal. The CD spectrum of \(P. \text{fuscata} \) ELH was interpreted with the program, Contin using the DICHROWEB site [72-74].

Animals and extraction of peptides from visceral ganglia and nano-LC purification
All experiments were conducted in accordance within Australian laws, and laws imparted by French counterparts, and thus required no ethics approval for the animals used in the study.

Two-year old adult \(C. \text{gigas} \) purchased from an oyster farm (Normandie, France) were used for peptide identification. Twenty animal equivalents of visceral ganglia were extracted in 0.1% trifluoroacetic acid (TFA) at 4°C and centrifuged for 30 min at 35,000 × g at 4°C. The supernatants were concentrated on Chromafix C18 solid phase extraction cartridges (Macherey-Nagel). Samples were evaporated and nano-LC purification performed as described in Bigot et al. [38].

Mass spectrometry analysis
MS analysis were carried out on an AB Sciex 5800 proteomics analyzer equipped with TOF–TOF ion optics and an OptiBeamTM on-axis laser irradiation with 1000 Hz repetition rate. The system was calibrated immediately before analysis with a mixture of des-Arg-Bradykinin, Angiotensin I, Glu1-Fibrinopeptide B, ACTH (18-39), ACTH (7-38) and mass precision was above 50 ppm. A 0.8 μl volume of the HPLC fraction was mixed with 1.6 μl volume of a suspension of CHCA matrix prepared in 50% ACN/0.1% TFA solvent. The mixture was spotted on a stainless steel OptiTOFTM 384 targets; the droplet was allowed to evaporate before introducing the target into the mass spectrometer. All acquisitions were taken in automatic mode. A laser intensity of 3000 was typically employed for ionizing. MS spectra were acquired in the positive reflector mode by summarizing 1000 single spectra (5 × 200) in the mass range from 600 to 4000 Da. MS/MS spectra were acquired in the positive MS/MS reflector mode by summarizing a maximum of 2500 single spectra (10 × 250) with a laser intensity of 3900. For the tandem MS experiments, the acceleration voltage applied was 1 kV and air was used as the collision gas. Gas pressure medium was selected as settings. The fragmentation pattern was used to determine the sequence of the peptide. Database searching was performed using the Mascot 2.3.02 program (Matrix Science) from the latest version of \(C. \text{gigas} \) transcriptome “GigasDatabase” [60] (including 1,013,570 entries) http://publiccontigbrowser. sigenae.org/9090/Crassostreagigas/index.html and \(C. \text{gigas} \) genome sequence database http://oysterdb.cn/. The variable modifications allowed were as follows: C-terminal amidation, N-terminal pyroglutamate, N-terminal acetylation, methionine oxidation and dioxidation. Mass accuracy was set to 300 ppm and 0.6 Da for MS and MS/MS mode respectively. Mascot data were then transferred to an in-house developed validation software for data filtering according to a significance threshold of Mascot score >20 and the elimination of protein redundancy on the basis of proteins being evidenced by the same set or a subset of peptides. Each peptide sequence was checked manually to
confirm or contradict the Mascot assignment. Sequences corresponding to irrelevant identifications were discarded.

Additional files

Additional file 1: Genes encoding putative full-length or partial-length neuropeptide precursors from the Pinctada fucata and Crassostrea gigas genome, and transcriptome databases for C. gigas.

Additional file 2: Summary of neuropeptide precursors and cleaved products predicted from Pinctada fucata and Crassostrea gigas. Blue colored peptides indicate those identified from visceral ganglia by mass spectrometry. Database Accession numbers for sequences used in this study.

Additional file 3: Off-line nLC-MALDI tandem MS analysis of C. gigas cerebral ganglia. MS/MS spectrum of the neuropeptides Cg-buccalin: GLDRYSFYGGLa m/z 1246.6, Cg-carbacin: NLGTVDIYLN/PLDLLYa m/z 1965, Cg-Ftamide: GMNPNWNSLFIa m/z 1270.6. Immunon, a-, b- and y-ions detected are marked.

Additional file 4: List of peptides molecularly characterized by nLC-MALDI tandem MS analysis of oyster cerebral ganglia. Peptide sequence was validated according to a significance threshold of Mascot probability based score >20 and checked manually to confirm or contradict the Mascot assignment. Naa and Caa: flanking amino and carboxy amino acids on the precursor.

Additional file 5: Complete list of neuropeptides in a FASTA format.

Additional file 6: Potential energy of Pinctada fucata and Crassostrea gigas ELH1 and ELH2 as a function of time during MD (Figures 1-4). Figure 5 shows the results of the secondary structure of PFE-LH based on CD spectroscopy.

Additional file 7: PSI-BLAST cluster map of all the molluscan neuropeptides used in this study. Nodes are colored based on protein family. Edges represent the BLAST connections of P value < 1e-5. The identifier of oyster neuropeptides is provided in Figure 1, and all molluscan neuropeptides in Additional file 2.

Abbreviations
LC: Liquid chromatography; MALDI-TOF: Matrix-assisted laser desorption/ionization time-of-flight; MS: Mass spectrometry; RMSD: Root-mean square distance; ELH: Egg-laying hormone; FCAP: Feed circuit activating peptide; GnRH: Gonadotropin-releasing hormone; GP2A: Glycoprotein alpha; GP: Glycoprotein beta; NPF: Neuropeptide F; NKY: Neuropeptide KY; NPF: Neuropeptide Y; CCK: Cholecystokinin; Sk-like: Sulfakinin.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
MJS carried out the genome analysis of P. fucata, C. gigas and other mollusks, constructed figures, tables and drafted the manuscript. PF and JH carried out proteome work and obtained funding to construct EST libraries for C. gigas where needed. BAR assembled DOG schematics, and undertook the phylogenetic analysis. TW constructed and analysed ELH protein models. MS performed circular dichromism of ELH. MZ performed the bioinformatics PSI-BLAST analysis. WO, AE, and SFC conceived the idea and obtained funding for the experiments and drafted the manuscript. All authors read and approved the final manuscript.

Acknowledgements
This work was supported by grants from the Australian Research Council (ARC), the University of the Sunshine Coast (AE, SFC), ANR (ANR-08-GENIM-0411) (PF) and EU FP7-KBBE-2009 (REPROSEED grant no. 245119) (PF, JH). Mass spectrometry analysis was performed at the technical platform “Proteogen” of SF ICORE 4206 of the University of Caen Basse-Normandie (Dr. B. Bernay). This research was undertaken with the assistance of resources provided at the NCI National Facility systems at the Australian National University through the National Computational Merit Allocation Scheme supported by the Australian Government.

Author details
1School of Science and Education, Geneecology Research Center, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia.
2Université de Caen Basse-Normandie, Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Caen 14032, France.
3CNRS UMR 7208, BOREA, Caen, France.
4Port Stephens Fisheries Institute, Locked Bag 1, Nelson Bay, New South Wales 2315, Australia.

Received: 19 May 2014 Accepted: 3 September 2014

Published: 2 October 2014

References
1. Burbach JPH: What are neuropeptides? In Neuropeptides: Methods and protocols. Edited by Merighi A. New York Humana Press; 2011:1–36.
2. Jekely G: Global view of the evolution and diversity of metazoan neuropeptide signaling. Proc Natl Acad Sci U S A 2013, 110(21):8702–8707.
3. Kim YJ, Zitman D, Galizia CG, Cho KH, Adams ME: A command chemical trigger an innate behavior by sequential activation of multiple peptidergic ensembles. Curr Biol 2006, 16(14):1395–1407.
4. Hartenstein V: The neuroendocrine system of invertebrates: a developmental and evolutionary perspective. J Endocrinol 2006, 190(3):555–570.
5. Bendtsen JD, Nielsen H, von Heijne G, Brunak S: Improved prediction of signal peptides. SignalP 3.0. J Mol Biol 2004, 340(1):783–795.
6. Hoffelt T, Broberger C, Xu ZQ, Sergeyev V, Ubink R, Diaz M: Neuropeptides—an overview. Neuropharmacology 2000, 39(8):1337–1356.
7. Hook Y, Funkeltstein L, Lu D, Barks S, Weisgrun J, Hwang SP: Proteases for processing proneuropeptides into peptide neurotransmitters and hormones. Annu Rev Pharmacol Toxicol 2008, 48:393–423.
8. Epper BA, Stoffers DA, Mains RE: The biosynthesis of neuropeptides: peptide alpha-amidation. Annu Rev Neurosci 1992, 15:157–58.
9. Mitaubeau O, Joly JS: Molecular evolution of peptidergic signaling systems in bilaterians. Proc Natl Acad Sci U S A 2013, 110(22):E2028–E2037.
10. Mirabeau O, Joly JS: Molecular evolution of peptidergic signaling systems in bilaterians. Proc Natl Acad Sci U S A 2013, 110(22):E2028–E2037.
11. Feldmesser E, Rosenwater S, Vardil A, Ben-Dor S: Improving transcriptome construction in non-model organisms: integrating manual and automated gene definition in Emiliana huxleyi. BMC Genomics 2014, 15:148.
12. Veenstra JA: Neurohormones and neuropeptides encoded by the genome of Lottia gigantea, with reference to other mollusks and insects. Gen Comp Endocrinol 2010, 167(1):86–103.
13. Takeuchi T, Kavashima T, Koyanagi R, Genfa J, Tanaka M, Ikuta T, Toguchi E, Fujimori M, Shinozato C, Hisata K, Fujie M, Usami T, Nagai K, Maeyama Y, Okamoto K, Aoki H, Ishikawa T, Masaoka T, Fujimura A, Endo K, Endo H, Nagasawa H, Kinoshita S, Akaiwa S, Watabe S, Satoh N: Draft genome of the pearl oyster Pinctada fucata: a platform for understanding bivalve biology. DNA Res 2012, 19(2):117–130.
14. Zhang G, Fang X, Guo X, Li L, Luo R, Xu F, Yang P, Zhang L, Wang X, Qi H, Xiong Z, Que H, Xie Y, Holland PW, Paps J, Zhu Y, Wu F, Chen Y, Wang L, Peng C, Meng J, Yang L, Liu J, Wen B, Zhang N, Huang Z, Zhu Q, Feng Y, Mount A, Hedgecock D, et al: The oyster genome reveals stress adaptation and complexity of shell formation. Nature 2012, 490(7418):49–54.
15. Pit JH: Feasibility of Akoya pearl oyster culture in Queensland. James Cook University: Townsville, 2004.
16. Matsumoto T, Masaoka T, Fujimura A, Nakamura Y, Satoh N, Awaji M: Reproduction-related genes in the pearl oyster genome. Zoological Science 2013, 30(10):826–850.
17. Fan X, Croll RP, Wu B, Fang L, Shen Q, Painter SD, Nagle GT: Molecular cloning of a cDNA encoding the neuropeptides AGPWamide and cerebral peptide 1: localization of AGPWamide-like immunoreactivity in the central nervous system and male reproductive organs of Aplysia. J Comp Neurol 1997, 387(1):53–62.
18. Smit AB, Jimenez CR, Dirks RW, Croll RP, Geeraerts WP: Characterization of a cDNA clone encoding multiple copies of the neuropeptide AGPWamide in the mollusk Lymnaea stagnalis. J Neurosci 1992, 12(9):1709–1715.
19. Koene JM: Neuro-endocrine control of reproduction in hermaphroditic freshwater snails: mechanisms and evolution. Front Behav Neurosci 2010, 4:167.

20. Henny J, Zatynyi C: Identification and tissue mapping of APGWamide-related peptides in Sepia officinalis using LC-ESI-MS/MS. Peptides 2002, 23(8):1037–1042.

21. Henq J, Favrel P, Bourcud-Camou E: Isolation and identification of a novel Ala-Pro-Gly-Tyr-amide-related peptide inhibiting the motility of the mature oviduct in the cuttlefish Sepia officinalis. Peptides 1997, 18(10):1469–1474.

22. Favrel P, Mathieu M: Molecular cloning of a cDNA encoding the precursor of Ala-Pro-Gly-Tyr-amide-related neuropeptides from the bivalve mollusc Mytilus edulis. Neurosci Lett 1996, 205(3):210–214.

23. Henny J, Zatynyi C, Favrel P: HPLC and electrospray ionization mass spectrometry as tools for the identification of APGWamide-related peptides in gastropod and bivalve mollusks: comparative activities on Mytilus muscles. Brain Res 2000, 862(1–2):162–170.

24. Cropper EC, Breatnach V, Vilím F, Harish O, Price DA, Rosen S, Kupfermann I: The action of RFamide neuropeptides on molluscs, with special reference to reproduction and osmoregulation. Mol Reprod Dev 2002, 63(3):217–219.

25. Hoek RM, Li KW, van Minnen J, Lodder JC, de Jong-Brink M, Smit AB, van Minakata H: Characterization of GnRH-related peptides from the Pacific oyster Crassostrea gigas. Mol Reprod Dev 2003, 69(5):531–537.

26. Walker RJ, Papaioannou S, Holden-Dye L: Possible functions of oxytocin/vasopressin-superfamily peptides in gastropod and bivalve mollusks: comparative activities on the L11 neuropeptide gene in the cephalopod Sepia officinalis. Peptides 2005, 26(5):921–927.

27. Zatynyi-Gaudin C, Bernay B, Zanuttini B, Leprince J, Vaudry H, Henry J: Identification of a new leucine-rich repeat-containing G protein-coupled receptor from a marine annelid with special reference to reproduction and osmoregulation. J Exp Zool 1999, 284(4):401–406.

28. Fujino Y, Nagahama T, Oumi T, Ukena K, Morishita F, Furukawa Y, Matsushima O, Ando M, Takahama H, Satake H, Minakata H, Nomoto K: Functions of oxytocin/vasopressin-superfamily peptides in annelids with special reference to reproduction and osmoregulation. J Exp Zool 2005, 297(3):291–307.

29. Kataoka H, Toschi A, Li JP, Carney RL, Schooley DA, Kramer SJ: Identification of an allatotropin from adult Manduca sexta. Science 1989, 243(4897):1481–1483.

30. Schoofs L, Jenson T, Nachman RJ: Sulfakinins. In Handbook of Biological Active Peptides, Volume 2. Edited by Kastin AJ. San Diego: Elsevier Press; 2013:310–314.

31. Conzelmann M, Williams EA, Krug K, Franz-Wachtel M, Macek B, Jekely G: Structure-activity studies. In Handbook of Biological Active Peptides. Volume 2. Edited by Kastin AJ. San Diego: Elsevier Press; 2013:310–314.

32. Elphick MR: NGF peptides: A novel family of neurophysin-associated neuropeptides. Gene 2010, 458:20–26.

33. Van Kesteren RR, Smit AB, Delange RP, Kits KS, Van Golen FA, Van Der Schors RC, De With ND, Burke JF, Geraerts WP: Structural and functional evolution of the vasopressin/oxytocin superfamily: vasopressin-related conopressin is the only member present in Lymnaeas, and is involved in the control of sexual behavior. J Neurosci 1995, 15(9):5989–5999.

34. Tassiu RS, Kaldany RR, Rothbard JB, Schoolein G, Scheller RH: Expression of the L11 neuropeptide gene in the Aplysia central nervous system. J Neurosci 1993, 13:3701–3720.

35. Veenastra JA: Neuropeptide evolution: neuropeptides and neuropeptide precursors predicted from the genomes of Capitella teleta and Helobdella robusta. Gen Comp Endocrinol 2011, 171(2):160–175.

36. Nasel DR, Wegener C: A comparative review of short and long neuropeptide F signaling in invertebrates: Any similarities to vertebrate neuropeptide Y signaling? Peptides 2011, 32(6):1335–1355.

37. Zatynyi-Gaudin C, Bernay B, Zanuttini B, Leprince J, Vaudry H, Henry J: Characterization of a novel LRFamide neuropeptide in the cephalopod Sepia officinalis. Peptides 2010, 31(2):207–214.

38. Bogt L, Beets I, Dubos MP, Boudry P, Schoefs L, Favrel P: Functional characterization of a short neuropeptide F-related receptor in a Lophotrochozoa, the mollusk Crassostrea gigas. J Exp Biol 2014, 217:2974–2982.

39. Li KW, el Filali Z, Van Golan FA, Geraets WP: Identification of a novel amide peptide, GLTPMNLSFLF-NH2, involved in the control of van der gersbergh motility in Lymnaea stagnalis. Eur J Biochem 1995, 229(1):70–72.

40. Sellami A, Agricola HJ, Veenastra JA: Neuroendocrine cells in Drosophila melanogaster producing GPA2/GPBS, a hormone with homology to LH FSH and TSH. Gen Comp Endocrinol 2011, 170(3):582–588.

41. Kataoka H, Toschi A, Li JP, Carney RL, Schooley DA, Kramer SJ: Identification of a new leucine-rich repeat-containing G protein-coupled receptor from a bivalve mollusc: evolutionary implications. Biochem Biophys Acta 2004, 1680(3):137–144.

42. Mendive FM, Van Loy T, Claesen Y, Poels J, Williamson M, Hauser F, Moreews F, Klopp C, Mathieu M, Boudry P, Favrel P: Generation and analysis of a new leucine-rich repeat-containing G protein-coupled receptor from a bivalve mollusc: evolutionary implications. Biochem Biophys Acta 2004, 1680(3):137–144.

43. Fleury E, Huvet A, Lelong C, de Lorgeril J, Boulo V, Gueguen Y, Bachere E, Moreews F, Klopp C, Mathieu M, Boudry P, Favrel P: Generation and expression of a new leucine-rich repeat-containing G protein-coupled receptor from a bivalve mollusc: evolutionary implications. Biochem Biophys Acta 2004, 1680(3):137–144.

44. Fleury E, Huvet A, Lelong C, de Lorgeril J, Boulo V, Gueguen Y, Bachere E, Moreews F, Klopp C, Mathieu M, Boudry P, Favrel P: Generation and expression of a new leucine-rich repeat-containing G protein-coupled receptor from a bivalve mollusc: evolutionary implications. Biochem Biophys Acta 2004, 1680(3):137–144.

45. Fleury E, Huvet A, Lelong C, de Lorgeril J, Boulo V, Gueguen Y, Bachere E, Moreews F, Klopp C, Mathieu M, Boudry P, Favrel P: Generation and expression of a new leucine-rich repeat-containing G protein-coupled receptor from a bivalve mollusc: evolutionary implications. Biochem Biophys Acta 2004, 1680(3):137–144.
61. Kumar S, Stecher G, Peterson D, Tamura K. MEGA-CC: computing core of molecular evolutionary genetics analysis program for automated and iterative data analysis. Bioinformatics 2012, 28(20):2685–2686.

62. Brunak S, Engelbrecht J, Knudsen S. Prediction of human mRNA donor and acceptor sites from the DNA sequence. J Mol Biol 1991, 220(1):49–65.

63. Floyd PD, Lui L, Moroz TP, Sweedler JV. Characterization of peptides from Aplysia using microbore liquid chromatography with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry guided purification. J Chromatogr A 1999, 830(1):105–113.

64. Hamano K, Awaji M, Usuki H. cDNA structure of an insulin-related peptide in the Pacific oyster and seasonal changes in the gene expression. J Endocrinol 2005, 187(1):55–67.

65. Southey BR, Amare A, Zimmerman TA, Rodriguez-Zas SL, Sweedler JV. NeuroPred: a tool to predict cleavage sites in neuropeptide precursors and provide the masses of the resulting peptides. Nucleic Acids Res 2006, 34(Web Server issue):W267–272.

66. Beitz E. TEXshade: shading and labeling of multiple sequence alignments using LATEX2 epsilon. Bioinformatics 2000, 16(2):135–139.

67. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987, 4(4):406–425.

68. Frickey T, Lupas A. CLANS: a Java application for visualizing protein families based on pairwise similarity. Bioinformatics 2004, 20(18):3702–3704.

69. Rin J, Wen L, Gao X, Jin C, Xue Y, Yao X. DOG 1.0: illustrator of protein domain structures. Curr Res 2009, 19(2):271–273.

70. Case DA, Darden TA, Cheatham ITE, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Paesani F, Roe DR, Roitberg A, Sagui C, Salomon-Ferrer R, Seabra G, Simmerling CL, Smith W, Swails J, Walker RC, Wang J, Wolf RM, Wu X, Kollman PA. AMBER 11. San Francisco: University of California; 2010.

71. Simmerling C, Stockbine B, Roitberg AE. All-atom structure prediction and folding simulations of a stable protein. J Am Chem Soc 2002, 124:11258–11259.

72. Whitmore L, Woollett B, Miles AJ, Janes RW, Wallace BA. The protein circular dichroism data bank, a Web-based site for access to circular dichroism spectroscopic data. Structure 2010, 18(10):1267–1269.

73. Whitmore L, Wallace BA. DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res 2004, 32(Web Server issue):W668–673.

74. Lobley A, Whitmore L, Wallace BA. DICHROWEB: an interactive website for the analysis of protein secondary structure from circular dichroism spectra. Bioinformatics 2002, 18(1):211–212.

doi:10.1186/1471-2164-15-840

Cite this article as: Stewart et al.: Neuropeptides encoded by the genomes of the Akoya pearl oyster Pinctata fucata and Pacific oyster Crassostrea gigas: a bioinformatic and peptidomic survey. BMC Genomics 2014 15:840.