Reciprocal Feature Learning via Explicit and Implicit Tasks in Scene Text Recognition

Hui Jiang, Yunlu Xu, Zhanzhan Cheng, Shiliang Pu, Yi Niu, Wenqi Ren, Fei Wu, Wenming Tan
Hikvision Research Institute, Hangzhou, China
Zhejiang University, Hangzhou, China
Background

Method

Experiment
Background

Scene Text Recognition Feat Single-Task Learning

- CTC-Based
- Attention-Based

Scene Text Recognition Feat Multi-Task learning

- Additional information from another task or detailed supervision
- Exploiting original tasks and supervision
Background

Drawback of current solution

- Single Task solution
 - Limited Performance
 - Add extra annotations

Multi-Task solution

- Immature Technology Application
- Ignore the relation between tasks
- Task competition

Motivation

- Excavate implicit information from existing annotations to training a auxiliary task
- Excavate and utilize the relation between tasks to improve the performance
Method

Overall Architecture

- Backbone
- Character Counting Branch (CNT)
- Text Recognition Branch (RCG)
- Reciprocal Feature Adaptor (RF-Adaptor)
Method

Character Counting Branch

Text is a **hierarchically** information carrier

\[
T: 1 \text{ h : 1 e : 1 n : 1}
\]

Then

\[
\begin{align*}
T & \quad \text{Th} \quad \text{The} \quad \text{Then} \\
4 &
\end{align*}
\]

Text length is a facilitated information in text information and correlate to the text recognition task

\[
L_{\text{cnt}} = \begin{cases}
MSE(\hat{y}_{\text{cnt}}, y_{\text{cnt}}) & \text{if Regression} \\
\text{CrossEntropy}(\hat{y}_{\text{cnt}}, y_{\text{cnt}}) & \text{if Classification}
\end{cases}
\]

Metric

\[
\begin{align*}
RMSE & = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (\hat{c}_i - c_i)^2} \\
\text{relRMSE} & = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \frac{(\hat{c}_i - c_i)^2}{c_i + 1}}
\end{align*}
\]
Method

🌟 Reciprocal Feature Adaptor

Transfer the bi-directional complementary data from one to the other, assembling features and adapting to task

- Feature Fusion

 - RCG contains more information than CNT, replenish information via ⊕
 - CNT is feature selector like a learnable gate to suppress the noise via ⊗

- Feature Strengthen

 - Apply different self-enhancement module to strengthen the feature
Performance Summary

Compared with SOTA solution

Methods	Year	Training data	Benchmark	Avg. Acc			
			HII, SVT, IC03, IC13, IC15, SVTP, CT	Regular	Irregular		
CRNN [27]	2016	MJ	78.2, 80.8, 89.4	-	-		
AON [5]	2018	MJ+ST	87.0, 82.8, 91.5	-	73.0, 76.8		
NRTR [26]	2018	MJ+ST	90.1, 91.5, 94.7	79.4, 86.6	80.9, 82.3		
ASTER [28]	2019	MJ+ST	93.4, 89.5, 94.5	91.8, 78.5	79.5, 92.3		
TPS-Bilstm-Attn [1]	2019	MJ+ST	87.9, 87.5, 94.9	93.6, 77.6	79.2, 91.0	76.9	
AutoSTR [40]*	2020	MJ+ST	94.7, 90.9, 93.3, 94.2	81.8, 81.7	-	93.2, -	
RobustScanner [39]+	2020	MJ+ST	**95.3**, 88.1	-	-	79.5, **90.3**	-
Bilstm-Attn [1]3	2019	MJ+ST	93.7, 89.0, 92.3, 93.2	79.3, 81.2	80.6, 92.1	80.4	
Bilstm-Attn w. RF-L	-	MJ+ST	94.1, 88.6, 94.9	**94.5**, 82.4	82.0, 82.6	93.0 (+0.9)	**82.4** (+2.0)
DAN [35]4	2020	MJ+ST	93.4, 87.5, 94.2, 93.2	75.6, 80.9	78.0, 92.1	78.2	
DAN w. RF-L	-	MJ+ST	94.0, 87.7, 93.6, 93.5	76.7, 84.7	77.8, 92.2 (+0.1)	79.7 (+1.5)	

Samples

| w.o RF-L | evil | gujarat | evil | gujarat | laugh | squiris |
| w. RF-L | pipinang | alibaba | change | before |

Samples
w.o RF-L
w. RF-L
Experiment

🌟 Ablation Summary

- CNT Implementation Ablation

Methods	w.o. Class Balance	w. Class Balance
	Regular² Irregular	Regular Irregular
CE	89.5 78.5	93.2 83.5
Regression	93.3 82.3	94.6 84.5

- CNT Implementation compared with ACE

Methods	Auxiliary	CNT RCG	RCG Accuracy (%)	CNT RMSE
ACE	IIT	SVT	IC03	IC15
w. RCG (RF-L)	√	87.5 81.8 89.9 67.5	0.477 0.963 0.555 0.889	
w. CNT (RF-L)	√	88.4 83.8 90.2 70.0	0.323 0.890 0.518 0.896	

- Generalization Ablation

Methods	Encoder	Decoder	w. CNT (RF-L)	IIT	SVT	IC03	IC13	IC15	SVTP	CT	Avg.Gain
IIT	VGG	Bilstm-Attn	√	91.2 85.5 92.6 92.1 77.5 77.7 73.6							
	VGG	Bilstm-Attn		91.8 86.9 92.9 92.9 78.0 78.9 74.7	+0.9						
SVT	ResNet	Bilstm-Attn	√	93.7 89.0 92.3 93.2 79.3 81.2 80.6							
IC03	ResNet	Bilstm-Attn		94.1 88.4 94.5 94.5 81.9 82.0 82.6	+1.2						
IC13	ResNet	CTC	√	91.7 85.8 91.5 91.7 74.1 73.2 76.7							
IC15	ResNet	CTC		92.1 86.9 92.1 92.4 76.5 75.8 78.9	+1.5						
SVTP	ResNet	Paral-Attn	√	90.0 82.8 87.6 89.0 72.4 71.0 73.3							
CT	ResNet	Paral-Attn		90.3 85.8 92.2 93.0 73.8 75.8 77.8	+3.8						
Ablation Summary

- Optimization Ablation

Methods	Branch	Direction	Benchmark	Avg. Acc
	RCG	RCG CNT	R2C R2C H1T SVT IC03 IC13 IC15 SVTP CT	
RCG	✓	✓	90.0 82.8 87.6 89.0 72.4 71.0 73.3	81.3
RCG w. CNT (JT-L)	✓	✓	89.6 83.9 92.6 91.7 72.6 74.0 78.1	82.4(+1.1)
RCG w. Fixed CNT (RF-L)	✓	✓	✓ 90.2 86.7 92.2 91.6 73.2 76.0 79.5	82.8(+1.5)
RCG w. CNT (Unidirectional RF-L)	✓	✓	✓ 90.7 86.6 92.6 91.2 73.2 76.0 80.2	82.9(+1.7)
RCG w. CNT (Bidirectional RF-L)	✓	✓	✓ 90.3 85.8 92.2 93.0 73.8 75.8 77.8	83.3(+2.0)
CNT	✓	✓	92.5 93.0 96.3 95.6 84.2 85.0 85.8	89.4
CNT w. RCG (JT-L)	✓	✓	✓ 93.0 94.3 96.2 96.1 84.9 86.4 83.7	89.8(+0.4)
CNT w. Fixed RCG (RF-L)	✓	✓	✓ 91.6 92.9 96.5 96.0 86.0 87.3 87.2	89.9(+0.5)
CNT w. RCG (Unidirectional RF-L)	✓	✓	✓ 92.6 93.5 96.6 95.2 86.0 86.7 89.6	90.0(+0.6)
CNT w. RCG (Bidirectional RF-L)	✓	✓	✓ 93.5 94.0 96.7 95.7 85.5 86.7 88.9	90.3(+0.9)
Thank you