Random walk in a finite directed graph subject to a synchronizing road coloring

Kouji Yano and Kenji Yasutomi

Keywords and phrases: Markov chain, random walk, entropy, road coloring, coupling from the past.
AMS 2010 subject classifications: Primary 60J10; secondary 05C81; 37H10.

Abstract

A constructive proof is given to the fact that any ergodic Markov chain can be realized as a random walk subject to a synchronizing road coloring. Redundancy (ratio of extra entropy) in such a realization is also studied.

1 Introduction

A random walk in \mathbb{R} is a process $(S_n)_{n \geq 0}$ which may be represented as

$$S_n = \xi_n + \xi_{n-1} + \cdots + \xi_1 + S_0, \quad n \geq 1$$

(1.1)

for some sequence $(\xi_n)_{n \geq 1}$ of IID (i.e., independent and identically distributed) random variables being independent of S_0. Note that equation (1.1) is equivalent to the recursion relation

$$S_n = \xi_n + S_{n-1}, \quad n \geq 1.$$

(1.2)

We may introduce a natural analogue of random walk taking values in a finite set V, say, $\{1, \ldots, m\}$. Let Σ denote the set of all mappings of V into itself. A random walk in V is a pair of processes $\{(X_n)_{n \geq 0}, (\phi_n)_{n \geq 1}\}$ such that $(\phi_n)_{n \geq 1}$ is a sequence of IID random variables taking values in Σ and being independent of X_0 and such that

$$X_n = (\phi_n \circ \phi_{n-1} \circ \cdots \circ \phi_1)(X_0), \quad n \geq 1.$$

(1.3)

Note that equation (1.3) is equivalent to the recursion relation

$$X_n = \phi_n(X_{n-1}), \quad n \geq 1.$$

(1.4)

It is obvious that, for each $n \geq 1$, the random variable ϕ_n is independent of $\sigma(X_j, \phi_j : j \leq n-1)$, since each X_j is measurable with respect to $\sigma(X_0, \phi_1, \ldots, \phi_j)$.

It is now natural to extend the index set to \mathbb{Z}, the set of all integers, as follows.

1 Graduate School of Science, Kyoto University, Kyoto, JAPAN.
2 The research of this author was supported by KAKENHI (20740060).
3 Graduate School of Science and Engineering, Ritsumeikan University, Kusatsu, JAPAN.
Definition 1.1. A random walk in V parametrized by Z is a pair of processes $\{(X_n)_{n \in Z}, (\phi_n)_{n \in Z}\}$ which satisfies the following conditions:

(i) $(\phi_n)_{n \in Z}$ is a sequence of IID random variables taking values in Σ;
(ii) for each $n \in Z$, the random variable ϕ_n is independent of $\sigma(X_j, \phi_j : j \leq n - 1)$;
(iii) $X_n = \phi_n(X_{n-1})$ holds almost surely for all $n \in Z$.

If ϕ_n's have common law μ on Σ, such a random walk is called a μ-random walk.

Our μ-random walk may also be called a random walk in a finite directed graph subject to a road coloring. The reason will be explained in Section 5. Each element of V will be called a site.

Proposition 1.2. For any Markov chain $(Y_n)_{n \in Z}$ in V, there exists a mapping law μ.

A proof by means of rational approximation can be found in $[9]$. We shall give its constructive proof in the next section.

Note that, for a given Markov chain, there may exist several mapping laws. We may expect that we can take a nice mapping law in the following sense.

Definition 1.3. Let μ be a probability law on Σ and denote by $\text{Supp}(\mu)$ the support of μ. We say that μ is synchronizing (or simply sync) if there exists a finite sequence $\sigma_1, \ldots, \sigma_p$ of elements of $\text{Supp}(\mu)$ such that $\sigma_p \circ \sigma_{p-1} \circ \cdots \circ \sigma_1$ maps V into a singleton.

Note that a μ-random walk associated with a sync mapping law is utilized in Propp–Wilson’s sampling method of stationary law, which is called coupling from the past; we shall mention it briefly in Section 4.

Suppose that μ is sync and let $\{(X_n)_{n \in Z}, (\phi_n)_{n \in Z}\}$ be a μ-random walk. We may assume without loss of generality that for any $x \in V$ there exists $\sigma \in \text{Supp}(\mu)$ such that $x \in \sigma(V)$; in fact, the Markov chain $(X_n)_{n \in Z}$ never visits such sites $x \in V$ that $x \notin \sigma(V)$ for any $\sigma \in \text{Supp}(\mu)$. Then we see that the Markov chain $(X_n)_{n \in Z}$ is ergodic, i.e., the following two conditions hold (see, e.g., $[5]$):
(i) the Markov chain is \emph{irreducible}, i.e., \(P(X_0 = x) > 0\) for all \(x \in V\) and for any \(x, y \in V\) there exists \(n \geq 1\) such that \(P(X_n = y|X_0 = x) > 0\);

(ii) the Markov chain is \emph{aperiodic}, i.e., for any \(x \in V\), the greatest common divisor of \(\{n \geq 1 : P(X_n = x|X_0 = x) > 0\}\) is one.

The condition (i) is obvious. The condition (ii) may be verified as follows. Let \(x \in V\). Take \(a \in V\) such that \(\sigma_p \circ \cdots \circ \sigma_1(V) = \{a\}\) and take \(q \geq 1\) such that \(P(X_q = x|X_0 = a) > 0\). Then the set \(\{n \geq 1 : P(X_n = x|X_0 = x) > 0\}\) contains all integers greater than \(p + q\), and hence its greatest common divisor is one.

The following theorem asserts that the converse is also true.

\textbf{Theorem 1.4} \cite{9}. \textit{Suppose that \((Y_n)_{n \in \mathbb{Z}}\) is an ergodic Markov chain. Then there exists a sync mapping law.}

To prove Theorem \ref{Theorem 1.4} the authors in \cite{9} utilized a profound graph-theoretic theorem, which was recently obtained by Trahtman \cite{7}, the complete solution to the \emph{road coloring problem}; we shall explain it briefly in Section \ref{Section 5}. In this chapter, we would like to give an elementary, self-contained and constructive proof of Theorem \ref{Theorem 1.4} without using Trahtman’s theorem.

The remainder of this chapter is as follows. In Section \ref{Section 2} we give constructive proofs to Proposition \ref{Proposition 1.2} and Theorem \ref{Theorem 1.4}. In Section \ref{Section 3} we study redundancy in random walk realization of a Markov chain. In Section \ref{Section 4} we mention the coupling from the past. In Section \ref{Section 5} we explain how our random walk is related to road coloring. In Section \ref{Section 6} we provide a summary and conclusion.

\section{A constructive proof of existence of sync mapping law}

A matrix \(Q = (q_{x,y})_{x,y \in V}\) with non-negative entries is called a \emph{transition matrix} if

\[
\sum_{y \in V} q_{x,y} = 1 \quad \text{for all } x \in V. \tag{2.7}
\]

We give a constructive proof of Proposition \ref{Proposition 1.2} for later use.

\textbf{A constructive proof of Proposition \ref{Proposition 1.2}.} It suffices to show that, for any transition matrix \(Q\), there exists a mapping law \(\mu\) for \(Q\), i.e.,

\[
q_{x,y} = \mu(\sigma \in \Sigma : \sigma(x) = y), \quad x, y \in V. \tag{2.8}
\]

We define

\[
E(Q) = \{(x, y) \in V \times V : q_{x,y} > 0\}. \tag{2.9}
\]
Let us prove the result by induction of $\sharp E(Q)$, where $\sharp A$ stands for the number of elements of A. It is obvious by (2.7) that $\sharp \{y \in V : q_{x,y} > 0 \} \geq 1$ for all $x \in V$, and hence that $\sharp E(Q) \geq \sharp V$.

Suppose that $\sharp E(Q) = \sharp V$. Then, by (2.7), it holds that $\sharp \{y \in V : q_{x,y} > 0 \} = 1$ for all $x \in V$. This shows that there exists $\sigma \in \Sigma$ such that

$$q_{x,y} = \begin{cases} 1 \quad \text{if } y = \sigma(x), \\ 0 \quad \text{otherwise.} \end{cases}$$

(2.10)

Thus the Dirac mass at σ is as desired.

Let $k > \sharp V$ and suppose that all transition matrix Q such that $\sharp E(Q) < k$ admits a mapping law. Let Q be a transition matrix such that $\sharp E(Q) = k$. Write

$$\varepsilon = \min \{q_{x,y} : (x, y) \in E(Q)\}.$$

(2.11)

Since $\sharp E(Q) > \sharp V$, we see that $0 < \varepsilon < 1$. Take $(x, y) \in E(Q)$ such that $\varepsilon = q_{x,y}$, and take $\sigma \in \Sigma$ such that $(x, \sigma(x)) \in E(Q)$ for all $x \in V$. Define $\tilde{Q} = (\tilde{q}_{x,y})_{x,y \in V}$ by

$$\tilde{q}_{x,y} = \frac{1}{1 - \varepsilon} (q_{x,y} - \varepsilon 1_{\{\sigma(x) = y\}}).$$

(2.12)

Then we see that \tilde{Q} is a transition matrix and that $\sharp E(\tilde{Q}) < k$. Now, by the assumption of the induction, we see that \tilde{Q} admits a mapping law $\tilde{\mu}$. Therefore we conclude that $(1 - \varepsilon)\tilde{\mu} + \varepsilon \delta_\sigma$ is a mapping law for Q. The proof is now complete. \(\square\)

Utilizing Proposition 1.2 we give a constructive proof of Theorem 1.4.

A constructive proof of Theorem 1.4. Let Q be the transition matrix of an ergodic Markov chain. Then we see that there exists $r \geq 1$ such that the r-th product Q^r has positive entries.

Take $x_0 \in V$ arbitrarily and set $V_r = \{x_0\}$. If V_k is defined for $k = r, r-1, \ldots, 1$, define V_{k-1} recursively by

$$V_{k-1} = \{x \in V : (x, y) \in E(Q) \text{ for some } y \in V_k\},$$

(2.13)

where $E(Q)$ has been defined in (2.9). Note that

$$\sharp V_r \leq \sharp V_{r-1} \leq \cdots \leq \sharp V_0.$$

(2.14)

Since Q^r has positive entries, we see that $V_0 = V$.

For $k = r, r-1, \ldots, 1$, we pick $\sigma_k \in \Sigma$ so that $\sigma_k(x) \in V_k$ if $x \in V_{k-1}$ and $(x, \sigma_k(x)) \in E(Q)$ if $x \not\in V_{k-1}$. We then have

$$\sigma_r \circ \sigma_{r-1} \circ \cdots \circ \sigma_1 (V) = \{x_0\}.$$

(2.15)
Let $\mu^{(1)}$ denote the uniform law on $\{\sigma_1, \ldots, \sigma_r\}$. Then we see that $\mu^{(1)}$ is a sync mapping law for a transition matrix $Q^{(1)} = (q^{(1)}_{x,y})_{x,y \in V}$ where

$$q^{(1)}_{x,y} = \mu^{(1)}(\sigma \in \Sigma : y = \sigma(x)) = \frac{1}{r} \sum_{k=1}^{r} 1_{\{y = \sigma_k(x)\}}. \quad (2.16)$$

Write

$$\varepsilon = \min \{ q_{x,y} : (x, y) \in E(Q) \} > 0 \quad (2.17)$$

and define $Q^{(2)} = (q^{(2)}_{x,y})_{x,y \in V}$ by

$$q^{(2)}_{x,y} = \frac{1}{1 - \varepsilon} (q_{x,y} - \varepsilon q^{(1)}_{x,y}). \quad (2.18)$$

Then $Q^{(2)}$ is a transition matrix, so that we may obtain a mapping law $\mu^{(2)}$ for $Q^{(2)}$ in the constructive way of the proof of Proposition 1.2 given above.

Now we define

$$\mu = \varepsilon \mu^{(1)} + (1 - \varepsilon) \mu^{(2)}, \quad (2.19)$$

which we have proved that is a sync mapping law for Q. The proof is therefore complete. \(\square\)

3 Redundancy in random walk realization

The uncertainty associated with information source may be measured by entropy (see, e.g., [2]). A Markov chain $Y = (Y_n)_{n \in \mathbb{Z}}$ with transition matrix $Q = (q_{x,y})_{x,y \in V}$ and with stationary law λ has its entropy given by

$$h(Y) = - \sum_{x,y \in V} \lambda(x) q_{x,y} \log q_{x,y}, \quad (3.20)$$

where we adopt the binary logarithm $\log = \log_2$ for simplicity, and follow the usual convention: $0 \log 0 = 0$. For a probability law μ on Σ, an IID sequence $\phi = (\phi_n)_{n \in \mathbb{Z}}$ with common law μ has its entropy given by

$$h(\phi) = h(\mu) = - \sum_{\sigma \in \Sigma} \mu(\sigma) \log \mu(\sigma). \quad (3.21)$$

A μ-random walk $(X, \phi) = \{(X_n)_{n \in \mathbb{Z}}, (\phi_n)_{n \in \mathbb{Z}}\}$ with stationary law λ is a Markov chain whose transition matrix $\overline{Q} = (\overline{q}(x,\nu),(y,\sigma))_{(x,\nu),(y,\sigma) \in V \times \Sigma}$ and stationary law $\overline{\lambda}$ given by

$$\overline{q}(x,\nu),(y,\sigma) = \mu(\sigma)1_{\{y = \sigma(x)\}}, \quad \overline{\lambda}((x, \nu)) = \mu(\nu)\lambda(w \in V : x = \nu(w)). \quad (3.22)$$
Now its entropy \(h(X, \phi) \) is computed as
\[
 h(X, \phi) = - \sum_{(x, \nu), (y, \sigma) \in V \times \Sigma} \lambda((x, \nu)) \overline{q}_{(x, \nu), (y, \sigma)} \log \overline{q}_{(x, \nu), (y, \sigma)} \tag{3.23}
\]
\[
 = - \sum_{x, y \in V, \sigma \in \Sigma} \left\{ \sum_{\nu \in \Sigma} \mu(\nu) \lambda(x \in V : x = \nu(w)) \right\} 1_{\{y=\sigma(x)\}} \mu(\sigma) \log \mu(\sigma) \tag{3.24}
\]
\[
 = - \sum_{x \in V, \sigma \in \Sigma} \lambda(x) \left\{ \sum_{y \in V} 1_{\{y=\sigma(x)\}} \right\} \mu(\sigma) \log \mu(\sigma) \tag{3.25}
\]
\[
 = - \sum_{x \in V} \lambda(x) \left\{ \sum_{\sigma \in \Sigma} \mu(\sigma) \log \mu(\sigma) \right\} \tag{3.26}
\]
\[
 = - \sum_{\sigma \in \Sigma} \mu(\sigma) \log \mu(\sigma). \tag{3.27}
\]

Thus we obtain
\[
 h(X, \phi) = h(\phi) = h(\mu). \tag{3.28}
\]

If the Markov chain \(Y \) is identical in law to \(X \) for some \(\mu \)-random walk \((X, \phi)\), we have
\[
 h(\mu) \geq h(Y). \tag{3.29}
\]

In fact, by (2.8), we have \(\mu(\sigma) \leq q_{x,y} \) if \(y = \sigma(x) \), and hence we see that
\[
 h(\mu) = - \sum_{x \in V} \lambda(x) \sum_{\sigma \in \Sigma} \mu(\sigma) \log \mu(\sigma) \tag{3.29}
\]
\[
 = - \sum_{x, y \in V} \lambda(x) \sum_{\sigma \in \Sigma : y=\sigma(x)} \mu(\sigma) \log \mu(\sigma) \tag{3.30}
\]
\[
 \geq - \sum_{x, y \in V} \lambda(x) \sum_{\sigma \in \Sigma : y=\sigma(x)} \mu(\sigma) \log q_{x,y} \tag{3.31}
\]
\[
 = - \sum_{x, y \in V} \lambda(x) q_{x,y} \log q_{x,y} = h(Y). \tag{3.32}
\]

The inequality (3.28) shows that any \(\mu \)-random walk realization of \(Y \) requires some extra entropy, the extent of which may be measured by
\[
 r(\mu; Y) := \frac{h(\mu) - h(Y)}{h(\mu)}. \tag{3.33}
\]

This quantity \(r(\mu; Y) \) is called the (relative) redundancy in the \(\mu \)-random walk realization of the Markov chain \(Y \). We denote the totality of all possible redundancies by
\[
 \rho(Y) = \{ r(\mu; Y) : \mu \text{ is a mapping law for } Y \}. \tag{3.34}
\]

Theorem 3.1. For a Markov chain \(Y \), the following assertions hold:

(i) the set \(\rho(Y) \) has finite minimum \(r(Y) \geq 0 \) and maximum \(R(Y) \leq 1 \);
(ii) for any \(r(Y) \leq r \leq R(Y) \), there exists a mapping law \(\mu \) for \(Y \) such that \(r(\mu; Y) = r \).

Moreover, if \(Y \) is ergodic, then the following assertion also holds:

(iii) for any \(r(Y) < r < R(Y) \), there exists a sync mapping law \(\mu \) for \(Y \) such that \(r(\mu; Y) = r \).

Proof. Let us remark on several basic facts about the entropy. Since \(\Sigma \) is a finite set, the totality of probability measures on \(\Sigma \), which is denoted by \(\mathcal{P}(\Sigma) \), is equipped with the total variation topology. It is well-known that \(\mathcal{P}(\Sigma) \) is compact and that \(\mu_n \rightarrow \mu \) if and only if \(\mu_n(\sigma) \rightarrow \mu(\sigma) \) for all \(\sigma \in \Sigma \). By definition (3.24), the function \(\mathcal{P}(\Sigma) \ni \mu \mapsto h(\mu) \) is continuous.

(i) Let \(\mathcal{P}(Y) \) denote the set of all mapping laws for \(Y \). It is obvious that \(\mathcal{P}(Y) \) is a compact convex subset of \(\mathcal{P}(\Sigma) \). Since \(h(\mu) \geq h(Y) > 0 \) for all \(\mu \in \mathcal{P}(Y) \), and since \(t \mapsto (t-h(Y))/t \) is continuous in \(t \geq h(Y) \), we see that \(\mathcal{P}(Y) \ni \mu \mapsto r(\mu; Y) \) is continuous. Hence we see that the set \(\rho(Y) \) has finite minimum \(r(Y) \) and maximum \(R(Y) \).

(ii) Take \(\mu^{(1)}, \mu^{(2)} \in \mathcal{P}(Y) \) such that \(r(Y) = r(\mu^{(1)}; Y) \) and \(R(Y) = r(\mu^{(2)}; Y) \). Let \(0 \leq p \leq 1 \). Then \(\mu_p := p\mu^{(1)} + (1-p)\mu^{(2)} \) also belongs to \(\mathcal{P}(Y) \). Since \([0,1] \ni p \mapsto r(\mu_p; Y)\) is continuous, we see that \(\rho(Y) \) contains all \(r \) such that \(r(Y) < r < R(Y) \). Thus we obtain (ii).

(iii) Suppose that \(Y \) is ergodic. Theorem 1.4 implies that there exists a sync mapping law \(\mu^{(0)} \) for \(Y \). Let \(r(Y) < r < R(Y) \) and take \(r^{(1)}, r^{(2)} \) such that \(r(Y) < r^{(1)} < r \) and \(r < r^{(2)} < R(Y) \). By (ii), we may take mapping laws \(\mu^{(1)} \) and \(\mu^{(2)} \) for \(Y \) such that \(r(\mu^{(1)}; Y) = r^{(1)} \) and \(r(\mu^{(2)}; Y) = r^{(2)} \). Now we may take \(\varepsilon > 0 \) small enough such that

\[
\begin{align*}
 r((1-\varepsilon)\mu^{(1)} + \varepsilon\mu^{(0)}; Y) &< r((1-\varepsilon)\mu^{(2)} + \varepsilon\mu^{(0)}; Y).
\end{align*}
\]

Hence we may take \(0 < p < 1 \) such that the mapping law \(\mu \) defined by

\[
\mu = (1-\varepsilon)(p\mu^{(1)} + (1-p)\mu^{(2)}) + \varepsilon\mu^{(0)}
\]

satisfies \(r(\mu; Y) = r \). This shows that \(\mu \) is a sync mapping law for \(Y \). Therefore the proof is complete.

Example 3.2. Let \(V = \{1, 2, 3\} \) and let

\[
Q = \begin{bmatrix}
 q_{1,1} & q_{1,2} & q_{1,3} \\
 q_{2,1} & q_{2,2} & q_{2,3} \\
 q_{3,1} & q_{3,2} & q_{3,3}
\end{bmatrix} = \begin{bmatrix}
 0 & 0 & 1 \\
 1/2 & 0 & 1/2 \\
 1/2 & 1/2 & 0
\end{bmatrix}.
\]

(3.37)

The Markov chain \(Y \) with transition matrix \(Q \) has a unique stationary law

\[
\lambda = [\lambda(1), \lambda(2), \lambda(3)] = \frac{1}{9} [3, 2, 4].
\]

(3.38)
A simple computation leads to \(h(Y) = 2/3 \). For a mapping law \(\mu \) for \(Y \), elements which may possibly be contained in \(\text{Supp}(\mu) \) are the following four:

\[
\begin{align*}
\sigma^{(1)} &= \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \\
\sigma^{(2)} &= \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, \\
\sigma^{(3)} &= \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}, \\
\sigma^{(4)} &= \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}.
\end{align*}
\]

(3.39)

Set \(p = \mu(\sigma^{(1)}) \). A simple computation leads to

\[
\mu(\sigma^{(2)}) = p, \quad \mu(\sigma^{(3)}) = \mu(\sigma^{(4)}) = 1/2 - p.
\]

(3.40)

Thus we obtain

\[
h(\mu) = 2f(p) + 2f(1/2 - p),
\]

(3.41)

where \(f(t) = -t \log t \). Since the variable \(p \) may vary in \([0, 1/2]\), we see that \(h(\mu) \) ranges \([1, 2]\), where the minimum \(h(\mu) = 1 \) is attained at \(p = 0 \) and \(1/2 \) and the maximum \(h(\mu) = 2 \) at \(p = 1/4 \). Hence we obtain

\[
r(Y) = 1/3, \quad R(Y) = 2/3.
\]

(3.42)

In this case, for all \(p \in [0, 1/2] \), the mapping law \(\mu \) is sync; in fact, \(\sigma^{(1)} \circ \sigma^{(2)}(V) = \{1\} \) and \(\sigma^{(3)} \circ \sigma^{(4)} \circ \sigma^{(4)} \circ \sigma^{(3)}(V) = \{3\} \).

Before closing this section, we mention the following theorem, which provides a necessary and sufficient condition for zero minimum redundancy.

Theorem 3.3 ([9]). Suppose that \(Y \) is ergodic. Then \(r(Y) = 0 \) if and only if \(Y \) is \(p \)-uniform, i.e., there exists a probability law \(\nu \) on \(V \) and a family \(\{\tau_x : x \in V\} \) of permutations of \(V \) such that

\[
q_{x,y} = \nu(\tau_x(y)), \quad x, y \in V.
\]

(3.43)

For the proof of Theorem 3.3 see [9].

4 Coupling from the past

In some practical problems, we sometimes need to simulate the stationary law of an ergodic Markov chain. As a powerful method for the simulation, Propp–Wilson’s coupling from the past is widely known; see [6] and also [3] and [4]. The fundamental idea is to utilize a random walk realization associated with a sync mapping law. Let us explain it briefly.

Let an ergodic Markov chain be given and suppose that we find a sync mapping law \(\mu \) for the Markov chain. Then a \(\mu \)-random walk \(\{(X_n)_{n \in \mathbb{Z}}, (\phi_n)_{n \in \mathbb{Z}}\} \) is a realization of the Markov chain. Let \((\sigma_1, \ldots, \sigma_p) \) be a finite sequence of elements of \(\text{Supp}(\mu) \) such that
\(\sigma_p \circ \cdots \circ \sigma_1(V) \) is a singleton. The latest time when the exact sequence \((\sigma_p, \sigma_{p-1}, \ldots, \sigma_1)\) can be found in \((\phi_0, \phi_{-1}, \ldots)\) will be denoted by

\[
T = \sup \{ k \in \mathbb{Z} : 0 \geq k + p - 1, \ \phi_{k+p-1} = \sigma_p, \ldots, \phi_k = \sigma_1 \}. \tag{4.44}
\]

Here we understand that \(\sup \emptyset = -\infty \). Note that \(T \) is finite almost surely. This random time \(T \) plays a role of stopping time in the sense that

\[
\{ T = k \} \in \sigma (\phi_0, \phi_{-1}, \ldots, \phi_k) \quad \text{for} \quad 0 \geq k + p - 1. \tag{4.45}
\]

Since \(\sigma_p \circ \cdots \circ \sigma_1(V) \) is a singleton, we see that \(\phi_0 \circ \phi_{-1} \circ \cdots \circ \phi_T \) maps \(V \) into a singleton. Thus it holds that

\[
X_0 = \phi_0 \circ \phi_{-1} \circ \cdots \circ \phi_T(x) \quad \text{a.s.} \tag{4.46}
\]

for all \(x \in V \). This shows the following: We pick a sequence \(f_0, f_{-1}, \ldots \) from the law \(\mu \) up to the latest time \(T \) when \((f_{T+p-1}, \ldots, f_T) = (\sigma_p, \ldots, \sigma_1) \). Then the resulting site \(f_0 \circ f_{-1} \circ \cdots \circ f_T(x) \), which does not depend on the choice of \(x \in V \), is a sample point from the stationary law, which is as desired.

This method can be applied to simulate a Gibbs distribution. In this case, a sync mapping law can be constructed with the help of monotonicity structure of the state space \(V \).

Remark 4.1. The identity (4.46) implies that, for each \(n \in \mathbb{Z} \), the random variable \(X_n \) is measurable with respect to \(\sigma (\phi_j : j \leq n) \). One can ask what happens when \(\mu \) is not sync. The following theorem answers this question.

Theorem 4.2 (Yano [8]). Suppose that the Markov chain \((X_n)_{n \in \mathbb{Z}} \) is ergodic and that \(\mu \) is not sync. Then, for each \(n \in \mathbb{Z} \), the random variable \(X_n \) is not measurable with respect to \(\sigma (\phi_j : j \leq n) \).

For the proof of Theorem 4.2 see [8].

5 Random walk and road coloring

Let us explain how our \(\mu \)-random walk is related to road coloring.

First, let us introduce some notations in graph theory. A finite directed graph is the pair \((V, A)\) of finite sets \(V \) and \(A \) associated with mappings \(i : A \to V \) and \(t : A \to V \). Each element of \(V \) will be called a site (or a node) and each element \(a \) of \(A \) will be called a (oneway) road (or an arrow) which runs from \(i(a) \) to \(t(a) \). For \(a \in A \), the site \(i(a) \) (resp. \(t(a) \)) will be called the initial (resp. terminal) site of \(a \). For \(x \in V \), the number of roads running from \(x \), namely,

\[
O(x) = \sharp \{ a \in A : i(a) = x \}, \tag{5.47}
\]
will be called the outdegree at the site x. If $O(x)$ does not depend on $x \in V$, the directed graph (V, A) is called of constant outdegree. A path from $x \in V$ to $y \in V$ is a word $w = (a_1, \ldots, a_n)$ of roads such that a_1 runs from x to $i(a_2)$, a_2 to $i(a_3)$, \ldots, a_{n-1} to $i(a_n)$, and a_n to y. The number $L(w) = n$ is called the length of the path $w = (a_1, \ldots, a_n)$. The directed graph (V, A) is called strongly connected if, for any $x, y \in V$, there exists a path from x to y. The directed graph (V, A) is called aperiodic if, for any $x \in V$, the greatest common divisor of the set of $L(w) \geq 1$ among all paths w from x to itself is one.

Second, we introduce some notations in road coloring. Suppose that (V, A) is of constant outdegree and denote the common outdegree by d. A road coloring of (V, A) is a partition of A into d disjoint subsets $C = \{c_1, \ldots, c_d\}$ such that, for each $x \in V$, each color c_k contains one and only one road whose initial site is x. For a finite sequence $s = (c_1, \ldots, c_p)$ of elements of C, a path $w = (a_1, \ldots, a_p)$ is said to be along s if $a_k \in c_k$ for all $k = 0, 1, \ldots, p$. The following notion originates Adler, Goodwyn and Weiss [1].

Definition 5.1. A road coloring C of (V, A) is called sync if there exists a finite sequence c_1, \ldots, c_p of elements of C such that all paths along (c_1, \ldots, c_p) have common terminal site.

Let us give an example.

Example 5.2. Let $V = \{1, 2, 3\}$ and $A = \{a^{(x,k)} : x \in V, k = 1, 2\}$ and define the initial and terminal sites of each road as follows:

	$a^{(1,1)}$	$a^{(2,1)}$	$a^{(3,1)}$	$a^{(1,2)}$	$a^{(2,2)}$	$a^{(3,2)}$
$i(a)$	1	2	3	1	2	3
$t(a)$	3	3	1	3	1	2

Take the road coloring $C = \{c^{(1)}, c^{(2)}\}$ defined by

$c^{(1)} = \{a^{(x,1)} : x \in V\}$, $c^{(2)} = \{a^{(x,2)} : x \in V\}$. (5.49)

Now it is obvious that the road coloring C is sync; in fact, all paths along $(c^{(1)}, c^{(2)}, c^{(2)}, c^{(1)})$ have common terminal site 3.

Third, we recall the road coloring problem. If a directed graph (V, A) of constant outdegree admits a sync road coloring, then it is necessarily strongly connected and aperiodic. The converse was posed as a conjecture by Adler, Goodwyn and Weiss [1], which had been called the road coloring problem until it was completely solved by Trahtman [7].

Theorem 5.3 (Trahtman [7]). A directed graph which is of constant outdegree, strongly connected, and aperiodic, does admit a sync road coloring.

Fourth, let us explain how to understand our μ-random walk by means of road coloring. Let μ be a probability law on Σ. Since Σ is a finite set, the support of μ may be written as $\{\sigma^{(1)}, \ldots, \sigma^{(d)}\}$. We define the set A of roads as the totality of $a^{(x,k)}$ for $x \in V$ and
$k = 1, \ldots, d$ where $a^{(x,k)}$ runs from x to $\sigma^{(k)}(x)$. Thus the law μ induces naturally the road coloring $C = \{c^{(1)}, \ldots, c^{(d)}\}$ such that

$$c^{(k)} = \{a^{(x,k)} : x \in V\}. \quad (5.50)$$

It is now obvious that the probability law μ is sync in the sense of Definition 1.3 if and only if the road coloring C is sync in the sense of Definition 5.1.

For a μ-random walk (X, ϕ), the process X moves from site to site in the directed graph (V, A) via the equation $X_n = \phi_n(X_{n-1})$, being driven by the colors of roads indicated by ϕ which are randomly chosen from the road coloring C induced by μ. Thus we may call (X, ϕ) a μ-random walk in the directed graph (V, A) subject to the road coloring C.

Let Y be a Markov chain and suppose that Y is realized as X of a μ-random walk (X, ϕ) in the directed graph (V, A) subject to the road coloring C induced by μ. Then, to each edge $(x, y) \in E(Y)$, there corresponds at least one road a which runs from x to y. For example, consider Example 3.2 with $p = 0$. In this case, we have $\text{Supp}(\mu) = \{\sigma^{(3)}, \sigma^{(4)}\}$, and

$$E(Y) = \{(1, 3), (2, 1), (2, 3), (3, 1), (3, 2)\}. \quad (5.51)$$

The set A of roads induced by μ is given as $A = \{a^{(x,k)} : x \in V, k = 1, 2\}$, where the initial and terminal sites of each road are given as (5.48). Then we find that the road coloring induced by μ is nothing else but $C = \{c^{(1)}, c^{(2)}\}$ given as (5.49) in Example 5.2, where we note that $\sigma^{(3)}$ and $\sigma^{(4)}$ correspond to $c^{(1)}$ and $c^{(2)}$, respectively. Note that there exist two roads $a^{(1,1)}$ and $a^{(1,2)}$ which run from 1 to 3, which are colored differently from each other. See Figure 1 below for the illustration.

![Figure 1](image-url)

6 Conclusion

We have introduced a random walk in a finite set as a stochastic evolutionary process driven by a IID sequence of mappings. It can be understood as a random walk in a finite directed graph moving according to random road colors. Any ergodic Markov chain is proved to be realized, in a constructive way, by a random walk associated with a sync mapping law. The redundancy in random walk realization with a sync mapping law can be as close as desired to the minimum redundancy.
References

[1] R. L. Adler, L. W. Goodwyn, and B. Weiss. Equivalence of topological Markov shifts. *Israel J. Math.*, 27(1):48–63, 1977.

[2] P. Billingsley. *Ergodic theory and information*. Robert E. Krieger Publishing Co., Huntington, N.Y., 1978. Reprint of the 1965 original.

[3] O. Häggström. *Finite Markov chains and algorithmic applications*, volume 52 of *London Mathematical Society Student Texts*. Cambridge University Press, Cambridge, 2002.

[4] D. A. Levin, Y. Peres, and E. L. Wilmer. *Markov chains and mixing times*. American Mathematical Society, Providence, RI, 2009. With a chapter by James G. Propp and David B. Wilson.

[5] J. R. Norris. *Markov chains*, volume 2 of *Cambridge Series in Statistical and Probabilistic Mathematics*. Cambridge University Press, Cambridge, 1998. Reprint of 1997 original.

[6] J. G. Propp and D. B. Wilson. Exact sampling with coupled Markov chains and applications to statistical mechanics. In *Proceedings of the Seventh International Conference on Random Structures and Algorithms (Atlanta, GA, 1995)*, volume 9, pages 223–252, 1996.

[7] A. N. Trahtman. The road coloring problem. *Israel J. Math.*, 172:51–60, 2009.

[8] K. Yano. Random walk in a finite directed graph subject to a road coloring. Preprint, arXiv:1005.0079, 2010.

[9] K. Yano and K. Yasutomi. Realization of ergodic markov chain as a random walk subject to a synchronizing road coloring. *J. Appl. Probab.*, to appear. Preprint, arXiv:1006.0534, 2010.