Efficacy of a Continuous GLP-1 Infusion Compared With a Structured Insulin Infusion Protocol to Reach Normoglycemia in Nonfasted Type 2 Diabetic Patients: A Clinical Pilot Trial

Harald Sourij, MD1,2
Isabella Schmölzer, MD2,3
Eva Kettler-Schmut, MD2
Michaela Eder, MD1,2

Helga Pressl, MD3
Antonella DeCampo, MD3
Thomas C. Wascher, MD3,4

OBJECTIVE — Continuously administered insulin is limited by the need for frequent blood glucose measurements, dose adjustments, and risk of hypoglycemia. Regimens based on glucagon-like peptide 1 (GLP-1) could represent a less complicated treatment alternative. This alternative might be advantageous in hyperglycemic patients hospitalized for acute critical illnesses, who benefit from near normoglycemic control.

RESEARCH DESIGN AND METHODS — In a prospective open randomized crossover trial, we investigated eight clinically stable type 2 diabetic patients during intravenous insulin or GLP-1 regimens to normalize blood glucose after a standardized breakfast.

RESULTS — The time to reach a plasma glucose below 115 mg/dl was significantly shorter during GLP-1 administration (252 ± 51 vs. 321 ± 43 min, \(P < 0.01\)). Maximum glycemia (312 ± 51 vs. 254 ± 48 mg/dl, \(P < 0.01\)) and glycemia after 2 h (271 ± 51 vs. 168 ± 48 mg/dl, \(P = 0.012\)) and after 4 h (155 ± 51 vs. 116 ± 27 mg/dl, \(P = 0.02\)) were significantly lower during GLP-1 administration.

CONCLUSIONS — GLP-1 infusion is superior to an established insulin infusion regimen with regard to effectiveness and practicability.

From the \(1\)Division of Endocrinology and Nuclear Medicine, Department of Internal Medicine, Medical University of Graz, Graz, Austria; and the \(2\)Metabolism and Vascular Biology Research Group, Department of Internal Medicine, Medical University of Graz, Graz, Austria; the \(3\)Department of Internal Medicine, Medical University of Graz, Graz, Austria; and the \(4\)1st Department of Internal Medicine, Hanusch Hospital, Vienna, Austria.

Corresponding author: Thomas C. Wascher, thomas.wascher@medunigraz.at.

Published online ahead of print at http://care.diabetesjournals.org on 15 June 2009. DOI: 10.2337/dc09-0475.

Clinical trial registry no. NCT00859079, clinicaltrials.gov.

H.S. and I.S. contributed equally to this work.

© 2009 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
measurements or paired Student’s t-test.

The primary outcome was the time taken to reach a plasma glucose level below 115 mg/dl, and the secondary outcome parameters were plasma glucose after 2 and 4 h, as well as maximum glycemia and the number of hypoglycemic episodes. Differences of study variables were tested by using ANOVA for repeated measurements or paired Student’s t-test.

RESULTS — We investigated eight patients (five male) with a mean age of 58.2 ± 2.3 years, a BMI of 24.4 ± 1.0 kg/m², and an HbA1C of 7.3 ± 0.7%. Glucose levels at the start of infusion therapy were comparable on both days of investigation (insulin 252 ± 42 mg/dl, GLP-1 244 ± 24 mg/dl).

The primary end point (the time to reach plasma glucose below 115 mg/dl) was significantly shorter during GLP-1 administration (252 ± 51 vs. 321 ± 43 min, P < 0.01) (Fig. 1). Maximum glycemia (312 ± 51 vs. 254 ± 48 mg/dl, P < 0.01) occurred after 2 h (271 ± 51 vs. 168 ± 48 mg/dl, P = 0.012), and glycemia after 4 h (155 ± 51 vs. 116 ± 27 mg/dl, P = 0.02) were significantly higher during insulin administration in comparison with GLP-1. Glycemia after 8 h — at the end of the intervention — was comparable between both regimens (insulin 110 ± 24 mg/dl, GLP-1 103 ± 22 mg/dl, P = NS). Serum insulin levels were generally lower during GLP-1 treatment (data not shown). One symptomatic hypoglycemia occurred during insulin infusion (48 mg/dl), whereas no hypoglycemia was noted in the GLP-1 regimen. Nausea was observed in one patient during GLP-1 infusion.

CONCLUSIONS — Our study compared for the first time an established insulin infusion regimen with a GLP-1–infusion regimen in nonfasted type 2 diabetic patients regarding the efficacy to normalize hyperglycemia.

We clearly showed that glucose targets could be achieved faster with the GLP-1–based regimen in comparison with the insulin regimen, and that maximal glycemic excursions were markedly reduced. Beside the advantage in time course of lowering hyperglycemia, there is no need for frequent blood glucose measurements and subsequent dose adaptations as is required when using intravenous insulin. Our pilot study, thus, indicates that GLP-1–based regimens should be further tested in acute clinical settings (e.g., in hyperglycemic patients with acute myocardial infarction or undergoing vascular surgery where hyperglycemia was shown to predict a worse outcome) (1–6).

Until now, blood glucose lowering in this setting was performed by variable insulin infusion protocols that may cause hypoglycemia. High rates of hypoglycemia, in turn, were discussed as a possible explanation for the worse outcome of the intensive control arm (6.8 vs. 0.5% in the conventional arm) in the NICE trial (8). In addition, Kosiborod et al. (7) recently showed that the relation between mean in-hospital blood glucose and mortality rate is J-shaped, indicating that a low mean blood glucose or recurring hyperglycemic episodes are associated with a worse outcome. In that regard, a GLP-1 regimen has the clear advantage not to cause hypoglycemia.

Preserved capacity of insulin secretion is important for adequate GLP-1 action, thus type 1 diabetic subjects as well as insulin-treated type 2 diabetic patients might not respond sufficiently to GLP-1 infusion. Since postprandial hyperglycemia is the main target for GLP-1 due to additional inhibitory effects on gastrointestinal motility, our study might overestimate the therapeutic potential (11). Previous studies, however, could also demonstrate a clear beneficial effect of GLP-1 on fasting glycemia (12).

In summary, the results of our pilot trial indicate that for hyperglycemic clinically stable type 2 diabetic patients, a GLP-1–based infusion regimen is superior to an insulin-based regimen in effectiveness and practicability for reaching normoglycemia. We suggest that GLP-1–based treatment strategies should be further tested in hyperglycemic patients under conditions of acute illness with regard to effectiveness as well as clinical end points.

Acknowledgments — No potential conflicts of interest relevant to this article were reported.

References
1. Capes SE, Hunt D, Malmberg K, Gerstein HC. Stress hyperglycaemia and increased risk of death after myocardial infarction in patients with and without diabetes: a systematic overview. Lancet 2000;355:773–778
2. Krinsley JS. Association between hyperglycemia and increased hospital mortality in a heterogeneous population of critically ill patients. Mayo Clin Proc 2003;78:1471–1478
3. Malmberg K, Rydén L, Efrondic S, Herlitz J, Nicol P, Waldenström A, Wedel H, Weilin L. Randomized trial of insulin-glucose infusion followed by subcutaneous insulin treatment in diabetic patients with acute myocardial infarction (DIGAMI study): effects on mortality at 1 year. J Am Coll Cardiol 1995;26:57–65
4. Schmeltz LR, DeSantis AJ, Thyagarajan
V, Schmidt K, O’Shea-Mahler E, Johnson D, Henske J, McCarthy PM, Gleason TG, McGee EC, Molitch ME. Reduction of surgical mortality and morbidity in diabetic patients undergoing cardiac surgery with a combined intravenous and subcutaneous insulin glucose management strategy. Diabetes Care 2007;30:823–828

5. Lazar HL, Chipkin SR, Fitzgerald CA, Bao Y, Cabral H, Apstein CS. Tight glycemic control in diabetic coronary artery bypass graft patients improves perioperative outcomes and decreases recurrent ischemic events. Circulation 2004;109:1497–1502

6. Van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyniencx F, Schetz M, Vlasselaers D, Ferdinande P, Lauwers P, Bouillon R. Intensive insulin therapy in critically ill patients. N Engl J Med 2001;345:1359–1367

7. Kosiborod M, Inzucchi SE, Krumholz HM, Xiao L, Jones PG, Fiske S, Masoudi FA, Marso SP, Spertus JA. Glucometrics in patients hospitalized with acute myocardial infarction: defining the optimal outcomes-based measure of risk. Circulation 2008;117:1018–1027

8. NICE-SUGAR Study Investigators, Finfer S, Chittock DR, Su SY, Blair D, Foster D, Dhingra V, Bellomo R, Cook D, Dodek P, Henderson WR, Hébert PC, Hertzer NR, Heyland DK, McArthur C, McDonald E, Mitchell J, Myburgh JA, Norton R, Potter J, Robinson BG, Ronco JJ. Intensive versus conventional glucose control in critically ill patients. N Engl J Med 2009;360:1283–1297

9. Meier JJ, Nauck MA. Glucagon-like peptide 1 (GLP-1) in biology and pathology. Diabetes Metab Res Rev 2005;21:91–117

10. Schnell O, Schaefer O, Kleybrink S, Doering W, Standl E, Otter W. Intensification of therapeutic approaches reduces mortality in diabetic patients with acute myocardial infarction: the Munich registry. Diabetes Care 2004;27:455–460

11. Schirra J, Houck P, Wank U, Arnold R, Göke B, Katschinski M. Effects of glucagon-like peptide-1(7–36)amide on antro-pyloro-duodenal motility in the interdigestive state and with duodenal lipid perfusion in humans. Gut 2000;46:622–631

12. Nauck MA, Sauerwald A, Ritzel R, Holst JJ, Schmiegel W. Influence of glucagon-like peptide 1 on fasting glycemia in type 2 diabetic patients treated with insulin after sulfonylurea secondary failure. Diabetes Care 1998;21:1925–1931