The incidence of kryptoracemic crystallization in [Co[III](tren)XY]⁺ compounds: The case of cis-[Co[III](tren)Cl₂]Cl·H₂O

Mina Mikhal 1, Mary Hanna 1, Evana Halaka 1, Ivan Bernal 1,2 and Roger Lalancette 1,*

1 Carl A. Olson Memorial Laboratories, Department of Chemistry, Rutgers University, 73 Warren St., Newark, NJ, 07102 USA
2 Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, 2050 Johannesburg, ZA, South Africa

* Corresponding author at: Carl A. Olson Memorial Laboratories, Department of Chemistry, Rutgers University, 73 Warren St., Newark, NJ, 07102 USA.
e-mail: rogerlal@newark.rutgers.edu (R. Lalancette).

ABSTRACT

We are evaluating the proposition that compounds with pronounced tendencies to crystallize as kryptoracemates contain molecular fragments responsible for such a property. Why Sóhncke space groups display such a tendency is not currently known, but one such fragment is the [tris(2-aminoethyl)amine-N,N',N''] ligand when attached to cobalt(III). Therefore, proceeding to test the concept further, we examined the title compound and found a previously unknown kryptoracemic species, described in what follows. It seems then that the prescription has some merit and should be examined further inasmuch as guidelines for the occurrence of kryptoracemic crystallization are scant, if any exist. Crystal data for C₆H₂OCl₃CoN₄O: monoclinic, space group P2₁ (no. 4), a = 7.6672(3) Å, b = 15.7153(5) Å, c = 10.7170(4) Å, β = 92.964(2)°, V = 1289.59(8) Å³, Z = 4, T = 100(2) K, μ(CuKα) = 16.026 mm⁻¹, Dcalc = 1.697 g/cm³, 13406 reflections measured (8.26° ≤ 2θ ≤ 133.402°), 3976 unique (Rint = 0.0300, Rw = 0.0519) which were used in all calculations. The final R₁ was 0.0220 (I > 2σ(I)) and wR₂ was 0.0459 (all data).

1. Introduction

In 1995 [1], a new mode of crystallization was described, which was labeled "kryptoracemic crystallization", alluding to the fact that a racemic pair was "hidden or buried" (in a krypt) in a Sóhncke space group. In time, additional examples were added to the list of crystals in that class, as example IKERUL02 [2], and in the appearance of two reviews [3,4] recording examples of coordination compounds, organometallic, and organic species. Pertinent additional comments can be found in reference [5]. Interested readers are encouraged to peruse sources [1-5] to get an idea of the classes of compounds undergoing such crystallization modes, and of the variety of examples within those classes.

In the past, we have explored the concept that various recognizable factors may influence kryptoracemic and related modes of crystallization of chemical species, using a rather broad approach, and while concentrating on just species of composition [CoN₄(XY)], where N₄ is any combination of amines occupying four sites of an octahedral Co(III) cation, we found many examples [3,5]. Here, we limit ourselves to [Co[III](tren)(X)(Y)]⁻·counter-ions, if any] to produce kryptoracemates, given that X and Y are monodentate ligands and three = tris(2-aminoethyl)amine. From the vantage point of our previous experiences, we have begun to discern certain patterns which may be useful, as orderly guides, in predicting crystallization pathways - a very desirable goal, if for no other reason than there are few, if any, orderly guides available now. Some very useful, but somewhat dated references are, for example, the monographs by Bernstein [6] and by Jacques, Collet & Wilen [7], which we recommend for those beginning inquiries of their own. Some attempts, limited to predicting crystallization modes by analogy to cases where it does occur, have been made previously, with limited but encouraging results in NIXGIR [8] and FILERQ [9].

2. Experimental

2.1. Materials

The chemicals used are all available from Sigma-Aldrich and were used without further purification.

2.2. Synthetic procedure and crystal growth

The synthesis of the title compound began with the preparation of the precursor [Co[III](tren)(NO₃)₃]Cl. This came...
Table 1. Crystal data and structure refinement for cis-[CoIII(tren)Cl2]Cl·H2O.

Property	Value
Empirical formula	C16H18Cl6CoN4ClH3O
Formula weight	329.54
Temperature (K)	100(2)
Crystal system	Monoclinic
Space group	P21
a (Å)	7.6672(3)
b (Å)	15.7153(5)
c (Å)	10.7170(4)
β (°)	92.964(2)
Volume (Å³)	1289.59(8)
Z	4
μ (mm⁻¹)	16.026
F(000)	680.0
Crystal size (mm³)	0.279 x 0.254 x 0.232
Radiation	CuKα (λ = 1.54178 Å)
2θ range for data collection (°)	8.26 to 133.402
Index ranges	-8 ≤ h ≤ 9, -18 ≤ k ≤ 18, -12 ≤ l ≤ 12
Independent reflections	3976 [RI= 0.0300, wR2 = 0.0519]
Data/restraints/parameters	3976/1/320
Goodness-of-fit on F²	0.888
Absorption correction	Numerical
Tmin, Tmax	0.054, 0.243
Final R indexes [I>2σ (I)]	R₁ = 0.0225, wR₂ = 0.0459
Final R indexes [all data]	R₁ = 0.0235, wR₂ = 0.0455
(sin θ/λ)max (Å⁻¹)	0.596
Largest diff. peak/hole (e Å⁻³)	0.37/0.24
Flack parameter	-0.004(3)
H-atoms treatment	Treated by a mixture of independent and constrained refinement
Computer programs	SAINT [11], APEX2 [12], SADABS [13], SHELXL [14], DIAMOND [15]

CCDC number: 1978094

Figure 1. The two cations, chloride anions, and waters of crystallization as observed in cis-[CoIII(tren)Cl2]Cl·H2O.

2.3. X-ray diffraction study, solution and refinement of the data

A crystal of compound cis-[CoIII(tren)Cl2]Cl·H2O was mounted on a Bruker APEXII X-ray diffractometer using graphite-monochromated CuKα (λ = 1.54178 Å) radiation, oriented, and data were collected using ω and φ scans. After data collection at 100 K using an Oxford Cryostream, the crystal was brought to 296 K and reoriented. The cell was essentially the same, except for slight changes due to increased temperature. Data processing, Lorentz-polarization, and face-indexed numerical absorption corrections were performed using SAINT, APEX, and SADABS computer programs [11-13]. The structure was solved by direct methods and refined by full-matrix least-squares methods on F² using the SHELXTL V6.14 program package (Figure 1) [14]. All non-hydrogen atoms were refined with anisotropic displacement parameters; the H atoms of the nitrogen atoms and the oxygen atoms were refined positionally. For cis-[CoIII(tren)Cl]Cl·H2O, the structural and refinement parameters and the CCDC deposition number can be found in Table 1.

from the process of Uprety et al., 2018 [10]. 7.267 g of NaNO2 was added to a solution of 11.992 g of CoCl2·6H2O in 10 mL deionized water in a 100 mL side-arm flask. To this solution, 4.4 mL of 32% HCl and 7.5 mL tris-(2-aminoethyl)amine (tren) in 10 mL deionized water were added and placed in an ice bath until the solution was ice-cold. Then air was pulled through the solution for 2 hours to oxidize the cobalt(II) to cobalt(III). A yellow-brown product was observed. The product was collected by suction filtration and recrystallized from a minimum amount of warm water (enough to dissolve the crystallized product); the crystals were then collected by suction filtration and washed with cold deionized water. After leaving this solution to crystallize, it was isolated by vacuum filtration and washed with cold deionized water. The precipitate appeared to be purple in color. Note that our product molecular formula is different from that described in Uprety’s paper [10]; our complex has H2O of crystallization instead of hydroxonium chloride, H3O+Cl⁻.
The bond lengths, bond angles, and hydrogen bonding values are summarized in Tables 2-4. Figures were drawn using the graphics program DIAMOND [15]. In this article, six-letter acronyms used by CSD [16], such as IKERUL, are provided for the convenience of the interested reader who wishes to further examine the data provided here. Thus, access to the CSD entry will be automatic.

3. Results and discussion

A view of the contents of the asymmetric unit in cis-[Co(tren)Cl2]Cl·H2O is given in Figure 1. Figure 2 depicts the packing of two pairs of the cations alone. Their center of mass is located at 0.2453, 0.2416, 0.2333 (see further, Figure 3). Note that in the polar space group, P21, the y-coordinate of the origin is arbitrary, and must be fixed.

The fact that there is a pseudo-inversion center relating the cations does not limit that relationship to them alone. The entire unit cell, depicted in Figure 3, also demonstrates that such a relationship exists for the overall contents of the lattice. In fact, the lattice, as a whole, is closer to a true inversion center of a higher symmetry supergroup. Note in that regard that the Flack parameter (Table 1) assures that the space group belongs in the Sohncke class. Using an overlay technique, Figure 4 illustrates the stereochemical difference(s) between the cations present in an overlay of the cations in cis-[Co(tren)Cl2]Cl·H2O. For comparison, Figure 5 depicts a comparable overlay for the cations in IKERUL02, which was one of the earliest kryptoracemates described [1,2].

Inasmuch as it is difficult to observe differences in superimposed 3D objects when depicted in 2D, we illustrate their difference by the torsional angles of their respective Tren ligands in Table 5.

While there is a very close racemic relationship between the first two sets, the last pair is very far from that, given that there is no inversion of sign. Thus, effectively, they differ from being a racemic pair by 77.86°.

![Figure 2. Center of mass is at the intersection of the dotted lines. The center of mass is located at 0.2453, 0.2416, 0.2333.](image)

![Image](image)
Table 4. H-bonding interactions in cis-[CoIII(tren)Cl2]Cl·H2O.

D-H-A	D-H (Å)	H-A (Å)	D-A (Å)	\(\angle \) D-H-A (°)
N4-H6-O2\(i\)	0.83(4)	2.17(5)	2.977(5)	163(4)
N4-H5-Cl3	0.92(5)	2.42(4)	3.263(3)	152(4)
N3-H4-Cl6\(ii\)	1.00(4)	2.40(4)	3.307(3)	150(3)
N3-H3-Cl5\(ii\)	0.83(4)	2.12(5)	2.901(5)	156(4)
N8-H12-Cl6\(iii\)	0.92(4)	2.54(4)	3.380(3)	154(3)
N8-H11-Cl2	0.88(4)	2.56(4)	3.413(3)	165(4)
N6-H8-Cl2	0.97(4)	2.78(4)	3.426(4)	143(4)
N6-H7-Cl5\(iv\)	1.00(4)	2.24(4)	3.231(4)	169(3)
N2-H2-Cl1	0.83(4)	2.54(4)	3.293(4)	110(3)
N2-H1-Cl6\(ii\)	0.86(4)	2.40(4)	3.244(4)	170(4)
N7-H10-Cl5\(iv\)	0.76(4)	2.61(5)	3.302(4)	154(4)
N7-H9-O1\(i\)	0.96(4)	2.38(4)	3.223(6)	146(3)
O1-H13-Cl1	0.93(7)	2.24(7)	3.164(3)	175(6)
O1-H14-Cl5\(iv\)	1.01(6)	2.42(7)	3.403(4)	164(5)
O2-H15-Cl5\(iv\)	0.77(5)	2.40(5)	3.160(3)	167(5)
O2-H16-Cl6\(iv\)	0.77(5)	2.33(5)	3.088(3)	172(5)

Symmetry codes: \(i = x, y, z + 1; ii = -x, y + 1/2, z; iii = x + 1, y, z; iv = x, y, z. \)

Table 5. Torsional angles of tren observed for cations 1 and 2.

Atoms	Angle (°)	Atoms	Angle (°)
N1-C1-C2-N2	-41.28	N5-C8-C7-N6	41.28
N1-C3-C4-N3	41.43	N5-C9-C10-N7	39.56
N1-C5-C6-N4	38.30		

Figure 3. Packing diagram of the unit cell for cis-[CoIII(tren)Cl2]Cl·H2O. The center of mass located at 0.5028, 0.4915, 0.5072 is a pseudo-inversion center which is remarkably close to ½, ½, ½. Dotted lines have been omitted to avoid cluttering. This diagram displays the characteristic kryptoracemic packing described previously \[1-5\]; e.g., the center of mass is expected to be near a special position of a centrosymmetric supergroup.

Figure 4. Overlay of cation 2 onto cation 1. The differences appear tiny and it is difficult to separate the images of chemically related atoms, except for some of the hydrogen atoms.

Figure 5. The stereochemical differences between the cations present in IKERUL02, which was one of the earliest kryptoracemates described [2].
4. Conclusions

We began with the premise that experimentally observed examples of interesting modes of crystallization of a given substance may be used as clues for which other related species may crystallize likewise [8], and having the example of IKERUL02 [2] as a guide, we tested that premise with cis-[GoII(tren)Cl\textsubscript{2}]CH\textsubscript{3}OH. It is encouraging that both are kryptonalicates [1].

To demonstrate the effectiveness of the ideas, a first series of derivatives of 3d metals, using variations of the monodentate ligands at the fifth and sixth positions, as well as tren derivatives of 3d metals, using variations of the charge-compensating anions.

Acknowledgements

We acknowledge the National Science Foundation for NSF-CRIF Grant No. 0443538 for part of the purchase of the X-ray diffractometer.

Supporting information

CCDC-1978094 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44(0)1223-336033.

Disclosure statement

Conflict of interest: The authors have declared that no competing interests exist.

Author contributions: Mina Mikhael, Mary Hanna, and Evana Halaka are undergraduate students who prepared the complexes under the direct supervision of Roger Lalancette. Ivan Bernal and Roger Lalancette wrote the manuscript.

Ethical approval: All ethical guidelines have been adhered.

Sample availability: Samples of the compounds are available from the author.

ORCID

Mina Mikhael
http://orcid.org/0000-0002-6630-7553
Mary Hanna
http://orcid.org/0000-0001-7124-3702
Evana Halaka
http://orcid.org/0000-0001-8565-3892
Ivan Bernal
http://orcid.org/0000-0002-8168-5907
Roger Lalancette
http://orcid.org/0000-0003-3470-532X

References

[1]. Bernal, I. The American Crystallographic Association Annual Meeting, Abstract 4a. 1. e, Montreal, Quebec, Canada, 1995.
[2]. Saha, M. K.; Fronczek, F. R.; Rees, L. H.; Bernal, I. Inorg. Chem. Commun. 2003, 6, 983-988.
[3]. Bernal, I.; Watkins, S. F. Acta Cryst. C 2015, 71, 216-221.
[4]. Fabian, L.; Brock, C. P. Acta Cryst. B 2010, 66, 94-103.
[5]. Bernal, I.; Lalancette, R. A. C. R. Chimie 2015, 18, 929-934.
[6]. Bernstein, J. Polymorphism in Molecular Crystals, New York: Oxford University Press, 2002.
[7]. Jacques, J.; Collet, A.; Wilen S. Enantiomers, Racemates and Resolutions, New York: John Wiley & Sons, 1981.
[8]. Bernal, I.; Cai, J.; Massoud, S. S.; Watkins, S. F.; Fronczek, F. R. J. Coord. Chem. 1996, 38(1-2), 165-181.
[9]. Cai, J.; Myrczek, J.; Chun, H.; Bernal, I. J. Chem. Soc., Dalton. Trans. 1998, 24, 4155-4160.
[10]. Uprety, B.; Ardernne, C.; Bernal, I. Eur. J. Inorg. Chem. 2018, 47, 5058-5067.
[11]. Bruker (2008). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
[12]. Bruker (2009). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
[13]. Sheldrick, G. M. SADABS. University of Gottingen, Germany, 1996.
[14]. Sheldrick, G. M. Acta Cryst. C 2015, 71, 3-8.
[15]. Diamond - Crystal and Molecular Structure Visualization, Crystal Impact - H. Putz and K. Brandenburg GbR, Kreuzherrenstr. 102, 53227 Bonn, Germany.
[16]. Groom, C. R.; Bruno, I. J.; Lightfoot, M. P.; Ward, S. C. Acta Cryst. B 2016, 72, 171-179.