Angiogenesis in multiple sclerosis and experimental autoimmune encephalomyelitis

Francesco Girolamo¹, Cristiana Coppola¹, Domenico Ribatti¹²† and Maria Trojano¹*†

Abstract

Angiogenesis, the formation of new vessels, is found in Multiple Sclerosis (MS) demyelinating lesions following Vascular Endothelial Growth Factor (VEGF) release and the production of several other angiogenic molecules. The increased energy demand of inflammatory cuffs and damaged neural cells explains the strong angiogenic response in plaques and surrounding white matter. An angiogenic response has also been documented in an experimental model of MS, experimental allergic encephalomyelitis (EAE), where blood–brain barrier disruption and vascular remodelling appeared in a pre-symptomatic disease phase. In both MS and EAE, VEGF acts as a pro-inflammatory factor in the early phase but its reduced responsivity in the late phase can disrupt neuroregenerative attempts, since VEGF naturally enhances neuron resistance to injury and regulates neural progenitor proliferation, migration, differentiation and oligodendrocyte precursor cell (OPC) survival and migration to demyelinated lesions. Angiogenesis, neurogenesis and oligodendroglia maturation are closely intertwined in the neurovascular niches of the subventricular zone, one of the preferential locations of inflammatory lesions in MS, and in all the other temporary vascular niches where the mutual fostering of angiogenesis and OPC maturation occurs. Angiogenesis, induced either by CNS inflammation or by hypoxic stimuli related to neurovascular uncoupling, appears to be ineffective in chronic MS due to a counterbalancing effect of vasocostrictive mechanisms determined by the reduced axonal activity, astrocyte dysfunction, microglia secretion of free radical species and mitochondrial abnormalities. Thus, angiogenesis, that supplies several trophic factors, should be promoted in therapeutic neuroregeneration efforts to combat the progressive, degenerative phase of MS.

Keywords: Angiogenesis, Blood–Brain Barrier, Experimental Autoimmune Encephalomyelitis, Multiple Sclerosis, Neuroprotection, Neurovascular uncoupling, Neurovascular unit, Vascular Endothelial Growth Factor

Angiogenesis in MS

Multiple Sclerosis (MS) is an autoimmune demyelinating disease of the Central Nervous System (CNS) whose cause remains elusive. An inappropriate recognition of an autoantigen on myelinated nerve fibers recruits macrophages and lymphocytes in the CNS, leading to white and grey matter demyelination. Other pathological hallmarks of the disease are gliosis, axon degeneration and remyelination attempts.

An altered Blood–Brain Barrier (BBB) permeability, with a subsequent transmigration of lymphocytes and mediators into the CNS, is an early event in the MS pathogenesis. Local breakdown of BBB has been demonstrated, as gadolinium-DTPA enhancement (gd.e.) on T1 weighted magnetic resonance imaging (MRI), to precede other clinical signs and to be a prominent event in disease progression [1,2]. BBB incompetence has also been documented as an altered expression of endothelial tight junction proteins, changes of vascular basement membrane (BM) molecules and pericytes in acute and progressive MS forms [3-10]. Localized BBB disruption could precede the development of typical demyelinating lesions associated with inflammatory cuffs around veins or venules [1,2,11,12]. However, macrophage infiltration also seems possible across a preserved BBB for humoral factors (marked by the absence of gd.e.), as already demonstrated in MS [13,14] and EAE [15]. The increased BBB permeability is primarily, but not only, driven by the release of Vascular Endothelial Growth Factor (VEGF)/vascular permeability factor [16], that also regulates vessel growth and is chemotactic for monocytes and lymphocytes, promoting neuroinflammation [17-19]. Other BBB permeability promoting factors such as interferon-γ (IFN-γ), tumour...
necrosis factor-α (TNF-α) and interleukin-1 (IL-1) have been described in MS [reviewed in 7] (Table 1).

So-called sprouting angiogenesis, the formation of new vessels from pre-existing ones, is a strictly controlled process during tissue repair and regeneration to provide the necessary oxygen and nutrients for an area with increased cellular needs. Angiogenesis is a vital process in growth and organ development; it is active in developing human CNS [20] but quiescent in adult human brain [21]. Endothelial cell proliferation and a consistent increase of vascular networks due to angiogenesis have been investigated and found in MS demyelinating lesions only by two groups [22,23] and much remains to be demonstrated about the regulation and significance of angiogenesis in MS.

Increased angiogenesis is a common feature of several neurological conditions, with detrimental effects as observed in Alzheimer's disease (AD) [24], Parkinson's disease (PD) [25] and brain tumours [26], whereas a beneficial effect of angiogenesis has been proposed in cerebrovascular ischemic and traumatic brain injury [27]. In MS lesions and in surrounding normal-appearing white matter (NAWM) and grey matter (NAGM), an angiogenic response has been suggested to contribute to disease progression [28] or, alternatively, to remission after relapses.

Ever since the first descriptions of MS disease signs, the vascular component has been acknowledged as an important element to understand the disease pathogenesis [29-33]; breakdown of the BBB in MS lesions was first described by Broman [34]. Acute and chronic demyelinating lesions and even NAWM of MS patients show blood vessels with a glomeruloid morphology [35], class II MHC antigen expression, intramural fibrin, hemosiderin, and collagen deposition, vessel wall hyalinization, evidence of thrombi and haemorrhages and iron accumulation [36], all features consistent with angiogenesis and endothelial cell proliferation [23,37].

One explanation of the angiogenic response seen in NAWM may be an effect of the increased energy demand for impulse conduction along excitable demyelinated axons, together with a reduced axonal ATP production due to mitochondrial dysfunction, both inducing a chronic state of ‘virtual’ hypoxia in chronically demyelinated axons [38]. Meanwhile, chronic inflammation itself is pro-angiogenic and, in turn, VEGF is a pro-inflammatory factor.

Angiogenesis in EAE

A good animal model for MS is experimental allergic encephalomyelitis (EAE). It can be induced by immunization using antigens derived from myelin. These antigens elicit an acute demyelinating process driven by T cells and macrophages which can have a chronic relapsing course quite similar to MS. Several reports indicate early BBB breakdown in the CNS of EAE [39-44]. Increased vessel density has been documented in different experimental models, including EAE induced in the mouse [40,45,46], guinea pig [47-49], and Lewis rat during the relapse phase [50]. Figure 1 shows our results on EAE induced by MOG(35-55) immunization in C57Bl/6J cerebral cortex vasculature, demonstrating an increased angiogenesis (cumulative vessel length) as compared to control mice.

Boroujerdi and co-worker [40] demonstrated that vascular remodelling is an early process in MOG-induced EAE, because increased vessel areas and endothelial proliferation appeared evident as early as 4 days post-immunization (dpi), in a pre-symptomatic disease phase, while the onset

Angiogenesis related molecules	Serum	CSF	PBMCs
VEGF-A	↑	↓	↓
VEGF-D	↑		
VEGF-R3	↑		
Angiopoietin-2	↑		
Basic FGF	↑		[257]
Endothelin-1	↑	↑	
Nitric oxide and NOS	↑	↑	
TNF-α	↑	↑	
TGF-β	↑		
IFN-γ	↑		
MMP-2	↑		
MMP-9	↑		
TIMP-1	↑		
sCD146	↑		
of symptoms occurred around 14 dpi. In the EAE, VEGF is expressed by astrocytes, monocytes and activated Th1 lymphocytes, all contributing to BBB breakdown [35,39,51]. Other studies have confirmed increased angiogenesis, severe inflammation and activated VEGF signalling in inflamed lesions [35,46,47,50,52]. VEGF increases inflammation in those areas injected with exogenous VEGF in MBP-immunized animals [35]. In addition, the expression of VEGF is demonstrated in dorsal root ganglion neurons and dorsal column axons in spinal cord, implying that it may act as a neuromodulator [45]. During EAE, an increased neuronal VEGF expression has been described in the early phase but decreased expression in the late phase [45]. Another study reported a decreased VEGF level not only in neurons but also in astroglia in a rat EAE experimental model [53]. A VEGF decrease may be caused by neuronal dysfunction, as already demonstrated in epilepsy by McCloskey et al. [54]. Astroglial production of VEGF is enhanced in pathological conditions, including human astrocytoma [55] and MS and EAE, to promote angiogenesis and glial survival [50]. The striking differences of VEGF expression levels and cell sources among different studies could be explained by the use of different EAE models as regards immunization protocol, animal species and strain employed.

The role of VEGF in MS pathogenesis

Accumulating evidence indicates a role for VEGF in the pathogenesis of MS. VEGF-A, mainly secreted by astrocytes and neurons but also by cerebral endothelial cells and leukocytes, binds its receptors, VEGF-R1 and VEGF-R2, expressed on different cell types including endothelial cells, astrocytes, neurons, microglia, leukocytes [19,39,45,47,50,53,56,57]. An elevated VEGF expression was detected in reactive astrocytes of both active and inactive chronic demyelinated lesions [35], in NAWM from post mortem MS brains [58], and in sera of MS patients during clinical disease relapses [59], and is correlated with the length of spinal cord lesions [12].

VEGF, acting as a pro-inflammatory factor, can cause CNS injury. The effect of VEGF in other disease models could also shed light on the MS pathogenesis. In an ischemia-reperfusion model, inhibiting the activity of endogenous VEGF reduces the size of lesions [60], whereas exogenous administration of VEGF exacerbates CNS injury [35,57,61]. However, in experimental conditions, the administration of VEGF to the CNS can be beneficial or detrimental depending on the rat strain, VEGF dose and, especially, timing [61,62].

In the late MS phase, VEGF-A, acting as a neuroprotective agent for neurons and neural progenitors, is
decreased in the cerebrospinal fluid (CSF) of MS patients and also in peripheral blood mononuclear cells (PBMC) from secondary progressive MS (SP-MS) patients [53,63]. In addition, reduced levels of VEGF are associated with EAE, as already mentioned [45,53,64], and also with amyotrophic lateral sclerosis (ALS), a human neurodegenerative disease [65-67].

VEGF is released for neuroprotection purposes, enhances axonal growth and neuronal resistance to injury of cultured neurons [68], but at the same time it induces the dismantling of BBB tight junctions [69].

VEGF-A is mitogenic for astrocytes [70], and reactive astrocytes play a pivotal role in the healing process after spinal cord injury [71]. VEGF-R1 and R2 are upregulated on microglia and other antigen presenting cells after CNS trauma, suggesting a modulating role of VEGF in CNS immune surveillance [72].

VEGF induces anti-inflammatory effects and down-regulation of a broad set of inflammatory cytokines and chemokines in microglia/macrophages, and this immunosuppression is linked to the plasticity-promoting action of VEGF [73]. But VEGF-A also recruits monocytes via VEGF-R1, inducing inflammation and BBB breakdown in rat brain [19], as well as being chemotactic for T-cells and macrophages [74]. T cells express VEGF and VEGF-R2, fostering the transition toward the Th1 phenotype; an upregulation of Th1 lymphocytes in hypoxic tissue damage [81]. HIF-1α is also increased in EAE mice, together with other genes involved in cell migration across the BBB [46].

Platelet-derived growth factor (PDGF) and basic fibroblast growth factor (bFGF) contribute to angiogenesis [82] and oligodendrocyte progenitor growth and differentiation after demyelination [83]. Serum levels of bFGF were significantly increased in MS patients, while PDGF showed no significant change [12].

Inflammatory molecules found in MS, including IFN-γ and TNF-α, are also pro-angiogenic factors [84]. Endothelin-1 (ET-1) is another pro-angiogenic factor that is significantly elevated in MS patients [85], and antagonizing the ET-1 receptor ameliorates acute EAE [86]. Angiopoietin-2 (Ang-2) is increased in neurons, glia and inflammatory cells during EAE [45,64]. Endothelial α5β1 integrin, involved in endothelial proliferation in hypoxic conditions [87], is transiently upregulated in EAE [40]. Gene expression analysis of the laser-captured microvascular compartment of active lesions from MS autopsy samples has shown an increased expression of matrix metalloprotease-14 (MMP-14), MMP-2, ADAM17, VEGF-A, and VEGF-R1 [88]. Other inflammatory mediators such as TNF-α, IL-8, transforming growth factor-β (TGF-β), and MMP-9 released by immune cells induce angiogenesis [51] and, in turn, new vessel walls are easily permeable to immune cell transmigration and foster adhesion and cytokine molecules expression [89].

Overlapping signalling mechanisms among angiogenesis and neurogenesis, plasticity and repair

Compelling evidence shows a coordinated interaction between the nervous and the vascular systems during development and in adult brain [90]. This interaction is responsible for the creation of a specialized perivascular microenvironment called the neurovascular niche, in which neural and glial progenitors develop, proliferate and differentiate. Adult neurogenesis primarily occurs in the subgranular zone (SGZ) in the hippocampus and the subventricular zone (SVZ) of the anterior horn of lateral ventricles. During regeneration, as well as during development, angiogenesis and neurogenesis are closely related; the molecular mediators of neurogenesis and angiogenesis overlap and cell-cell signalling between brain endothelium and neural precursors sustains ongoing angiogenesis and neurogenesis [91,92]. This crosstalk is mediated by soluble signals secreted mainly by endothelial cells [93,94]. These molecules, affecting both neural and vascular function, have been called

Other angiogenic molecules potentially involved in MS and EAE angiogenesis

Hypoxia inducible factor (HIF-1α) dimerizes with HIF-1β and the complex translocation to the nucleus promotes VEGF transcription [80]. The VEGF-A gene contains a hypoxia responsive element that binds HIF-1α [80]. An increased expression of HIF-1α was demonstrated in MS lesions showing histopathological features of hypoxic tissue damage [81]. HIF-1α is also increased in EAE mice, together with other genes involved in cell migration across the BBB [46].
‘angioneurins’ [95], classified as angiogenic molecules, morphogens and growth factors; in the latter group the prototypical factor is VEGF. Endogenous VEGF, abundantly secreted by the ventricular neuroepithelium, regulates neural progenitor proliferation, migration, differentiation and the composition of neurons [96]. In adulthood, VEGF signals transmitted by VEGF-R2 and R3 enhance cell proliferation in the SVZ and SGZ by induction after voluntary motor activity [97]. Several findings implicate VEGF as a neuronal survival factor via VEGF-R1 signalling [98], and also a factor promoting oligodendrocyte precursor cell (OPC) survival and migration during axon guidance, thanks to VEGF-R2 and R3 expression [99]. Both angiogenic and neurogenic responses to VEGF are attenuated in the aged mouse brain [100]. Finally, VEGF may impact neuro-vascular interactions through alterations of the extracellular matrix molecule (ECM) composition, particularly of integrins and their ligands [101] and of SDF1/CXCR4 expression [102]. This ligand/receptor interaction is critically involved in OPC differentiation and remyelination in a model of toxic demyelination [103]. The ECM of vascular endothelial cells can trap FGF-2 (bFGF), which facilitates neurogenesis [104] and promotes OPC migration to demyelinated lesions [105]. Epidermal growth factor (EGF), pigment epithelium-derived factor (PEDF) and TGF-α have been implicated in adult neurogenesis and oligodendrogenesis [95,106]. EGF and FGF receptors co-activation is required for the maintenance of neural stem cells (NSCs) and progenitor cells in the adult SVZ [107,108]. However, prolonged exposure to EGF induces oxidative neuronal death and astrocyte commitment from NSCs [109] and a higher secretion of EGF has been demonstrated in PBMCs of patients with relapsing remitting MS (RR-MS) [110]. Neurotrophins such as nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) reciprocally promote angiogenesis [111,112], and higher amounts of both have been detected in CSF from MS patients [113,114]. BDNF and its receptor tyrosine kinase (gp145trkB) have been involved in immune-mediated neuroprotection in MS lesions [115,116]. In other situations, vessels act as guidance templates for axons, releasing guidance cues such as VEGF, artemin, neurotrophin-3 or ET-3 [117].

VEGF-Rs cooperate with the Notch pathway during vascular patterning and also neurogenesis [118]. Notch-1 and Notch-4 receptors, as well as Jagged-1, delta like 1 (Dll-1), and Dll-4 ligands of Notch, are expressed in endothelial cells [119]. In adult brain, the Notch pathway is expressed in SVZ and SGZ NSCs and regulates the maintenance of an undifferentiated state [120]. In addition, Notch–expressing NSCs are closely juxtaposed to local blood vessels, and able to directly bind Dll-4 and Jagged-1 exposed on the endothelial cells, where a decreased pericyte coverage exists [121]. MS demyelinated lesions contain Notch-expressing OPCs and modulation of the Notch pathway in EAE enhances remyelination and clinical recovery [122].

Wnt/β-catenin and Sonic HedgeHog (SHH) morphogen signalings both regulate embryonic neurogenesis and angiogenesis [123,124] and are variably associated with the remyelination process [125] and BBB integrity [126]. Nogo-A is an axonal growth inhibitor, and negative regulator of CNS angiogenesis [127]; anti-Nogo IgGs have been shown to suppress EAE through an immunomodulatory activity and the removal of remyelination obstacles between axons and new myelinating membranes [128].

Netrin-1 is a matrix-bound molecule interacting with different receptors (UNC and DCC, certain integrins, DSCAM - Down’s syndrome cell adhesion molecule and adenosine receptor AR2b) involved in axon guidance and angiogenic blood vessel guidance [reviewed in 91], that has been shown to inhibit migration of oligodendrocyte precursor cells into the demyelinated lesions [129]. Ephrins and their Eph receptors are short range axon guidance molecules, expressed in developing vessels and critical for their maintenance [reviewed in 91], that have shown different expression profiles in several CNS cytotypes of MS patients [130]. The specific receptor EphA4 has been implicated in the onset and a more severe course of EAE, probably due to increased axon damage during demyelination [131]. Also semaphorins and their receptors,plexins and neuropilins, regulate both axon guidance and angiogenic vessel branching and extension [reviewed in 91], and are crucially involved in remyelination failure in MS [132,133], dysregulation of T cell responses and the maintenance of tolerance in EAE [134,135].

Ang-1 and −2 also play an angiogenic role, together with VEGF, during blood vessel formation and stimulate proliferation and migration of neural precursor cells (NPCs) [90,136]. The expression level of Ang-2 is increased in RR-MS patients sera (Table 1) and in EAE mice spinal cord [45,64].

Erythropoietin (EPO) promotes angiogenesis, VEGF secretion and VEGF-R2 expression on the cerebral endothelium and also CNS neurogenesis, directly via the EPO receptor and indirectly via BDNF-increased secretion and/or suppression of cytokine signalling [137]. The relevant neuroprotective, proangiogenic and anti-inflammatory potential of EPO in MS/EAE is discussed below. In addition, oestrogen and androgen promote angiogenesis and neurogenesis after CNS injury [138,139]. EAE studies with various sexual hormones or estrogen receptor (ER) ligand treatments led to clinical disease protection, as well as protection against CNS inflammation, demyelination and axonal loss [reviewed in 138]. ERβ ligand may not only prevent demyelination, but also promote remyelination [140]. In a pathological situation (stroke), nitric oxide (NO) has a dual role in promoting angiogenesis and
neurogenesis [141,142] and its action is closely linked to VEGF and BDNF expression in endothelial cells [143]. Recent studies have revealed that a hypoxic gradient is an adequate stimulus to foster angiogenesis and neurogenesis, upregulating HIF-1 [144]. Somatic stem cells reside within hypoxic niches, where low oxygen prevents oxidative stress and premature differentiation [145]. Moreover, NSCs have been observed to migrate to brain regions where active angiogenesis is occurring in neurological diseases [90], creating a temporary vascular niche where the angiogenesis and neuroreparative processes are reciprocally fostered [146]. In the context of mutual relationships between different cells of the neurovascular unit, endothelial cells of microvessels have shown to provide trophic support for OPCs [147]. During development, OPCs migrate from the ventricular zone to their destination and then differentiate into myelinating oligodendrocytes. OPCs are also widely distributed in adult human brain and MS lesions [148] and are guided to repair demyelinated axons [149]. Endothelial cells actively support the maintenance of OPCs, acting directly through endothelin B receptors expressed by OPCs [150]. Several growth factors, such as PDGF-α, bFGF, hepatocyte growth factor (HGF), are known to induce proliferation and differentiation of OPCs, but VEGF produced by cerebral endothelial cells has a unique migration-promoting effect on OPCs [99]. Thus, VEGF is a biphasic mediator in the neurovascular response to demyelinating injury; during the early inflammatory phase it promotes BBB permeability, and in the chronic phase, accelerates not only angiogenesis, neurogenesis but also oligodendrocyte lineage plasticity and repair. In fact, exposure of endothelial cells to sublethal levels of oxidative stress abrogates their support of OPC viability [147] and this could explain why OPC differentiation into myelinating oligodendrocytes seems to be blocked or ineffective in MS. Additionally, in response to injury, activated astrocytes release bursts of ATP and induce hypertrophy of their vascular endfeet [137]. This locally increased ATP and decreased oxygen potentiates NSC expansion by upregulating VEGF, EGF, FGF-2 and NO [151] but delaying differentiation. Angiogenic perivascular demyelinated lesions show local inflammation also in the proximity of the lateral ventricles SVZ, and the effects of released inflammatory mediators on the neurovascular niches may be profound in this area, that is one of the preferential locations of demyelinating inflammatory lesions in MS [152]. Persistent brain inflammation, induced by immune cells targeting myelin, extensively alters the proliferative and migratory properties of SVZ-resident stem cells (NPCs and OPCs) [153,154], and could justify the limited repair mechanisms observed after a long disease duration in MS patients (Figure 2). In addition, MS CSF contains a panoply of humoral signals that could interfere with the ependymal cells and consequently the subependymal neurogenic cells [155].

Chronic hypoperfusion, hypoxia and angiogenesis

Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT) studies have shown a decreased cerebral blood flow (CBF) in grey and white matter of MS patients [156,157]. Non conventional magnetic resonance (MR) techniques, such as proton MR spectroscopy and magnetization transfer resonance, have demonstrated diffuse pathological changes affecting both NAWM and NAGM in MS patients. Perfusion weighted imaging showed a significant CBF reduction and prolonged transit time throughout the NAWM of a group of RR-MS patients [158], and also involving NAGM [159]. Furthermore, CBF and cerebral blood volume (CBV) were reduced in primary progressive (PP-MS) patients [160,161]. A decreased blood flow has been speculatively proposed as a cause of leukocyte infiltration crossing the venule wall of WM [162] but CNS hypoperfusion could actually be a consequence of disease progression. Acute lesions visible as local gd.e. areas on T1 weighted MRI were characterized by increased CBF and CBV [163,164]. However, more evolved MR parameters for nervous tissue angiogenesis such as time-dependent changes in 1/T1 (R1), used to form maps of blood-to-brain transfer constant of Gd-DTPA (K1), ICAM-1 micron-sized particles of iron oxides, in addition to magnetization transfer parameters such as T1sat and kinv [165], could be used to further investigate MS angiogenesis in vivo. Our opinion is that BBB incompetence, demonstrated by gd.e., could reveal the same MRI sign both in early, immature angiogenic microvessels and in inflamed venules. In fact, possible evidence of the presence of angiogenesis in MS could be the appearance of “ring enhancement” at the periphery, but not in the centre, of chronic active lesions during contrast-enhanced MRI [166]. Nevertheless, ring enhancing lesions are unusual in progressive MS and, in general, gd.e. is able to detect venular BBB incompetence in acute MS lesions containing both early angiogenic vessels and infiltration of immune cells. Chronic lesions and the remaining NAWM and NAGM appeared hypoperfused due to a reduced axonal activity [167], with a lower K’ release in the periaxonal and perivascular space, reduced astrocyte metabolism [168] and reduced arteriolar vasodilatation [169] (Figure 2C). In this context it is not surprising to find elevated VEGF signalling [58], increased vessel density and angiogenic endothelial cells in MS chronic demyelinated lesions and NAWM [22] as a frustrated attempt to overcome the chronic hypoperfusion.

In short, angiogenesis and an increased vascular blood flow could dominate the early inflammatory phase of lesion formation, whereas, despite an increased vessel...
density, hypoperfusion could characterize the late degenera-
tive phase, featuring a limited efficiency of endogenous
neuroprotective mechanisms, by which angiogenesis, in-
creased cerebral blood flow and neurorepair should be fur-
ther promoted. This notion could be extended, since
raised perfusion was higher in the WM of RR-MS at onset,
before therapy, whereas hypoperfusion was more promi-
ent in the PP-MS group [161], consistently associated with
axonal loss, minor inflammatory signs and resistance to
the available immunomodulatory drugs [170].

The role of hypoxia in inflammatory lesions of both MS
and EAE may be compound, since chronic mild hypoxia
(10% O₂) has a beneficial effect in the acute and chronic phases in MOG-induced mouse EAE [171]. This effect is due to the promotion of tissue survival but also to the modulation of immune mechanisms: pericytes produce anti-inflammatory eicosanoid prostaglandin D2, endothelial cells release TGF-β which promotes the differentiation of T regulatory cells, and astrocytes express HIF-1α [172]. One of the most consistent differences in gene expression between secondary progressive (SP-MS) patients and healthy controls was enhancement of HIF-1α and its downstream components [58]. In this specific inflammatory condition, the increased expression of HIF-1α and VEGF promoting angiogenesis/arrestigenic and normalizing oxygen levels could be counterbalanced by other molecules, such as reactive oxygen species (ROS) [173-175], nitric oxide intermediates and peroxynitrite (RNS) [176]. These molecules could be responsible for mitochondrial dysfunction [173], distal oligodendropathy [177], apoptotic-like cell death and axonal injury [178]. In MS patients, these pathologic mechanisms are associated with astrocyte dysfunction [167-169], which could explain the arteriolar vasoconstriction in the presence of high metabolic demands (neurovascular uncoupling), accounting for severe hypoperfusion state as to result in hypoxia, and ultimately responsible for disease progression. In fact, the level of VEGF expression in resident astrocytes and neurons appears increased in progressive MS patients [35,58], as well as in RR-MS [35], and a reduced level of VEGF has been detected only in non-resident mononuclear cells in CSF and peripheral blood [53,63]. This latter evidence could be compatible with the hypothesis of a true histotoxic hypoxia, as well as the observed lactate increase in CSF and serum of MS patients [179,180]. Another important pathogenic aspect of chronic progressive MS could be mitochondrial dysfunction, aggravating the nervous tissue distress caused by hypoxic injury [177]. Inflammatory cells (especially macrophages and activated microglia) releasing ROS and RNS [173,176,181] provoke clonally expanded mitochondrial DNA deletions responsible for respiratory chain defects detected in MS patients [182,183] and a consequently inevitably decreased ATP synthesis.

Finally, cerebral hypoperfusion in MS patients might be aggravated by ET-1 [85,184,185], together with alterations in the renin-angiotensin-aldosterone-system detected in MS patients such as decreased CSF angiotensin II levels [186], increased serum angiotensinogen converting enzyme [187] and up-regulation of angiotensin II receptor type 1 on myelin-autoreactive CD4⁺ T cells and monocytes of MS brain lesions [188].

Therapeutic potential of targeting angiogenesis

Although angiogenesis is likely not the first event in the pathogenesis of MS, its changing role in the different phases of disease progression makes it an important and underestimated target in therapeutic options. The current concept of the natural history of MS refers to a combination of two phenomena underlying the two phases of MS, namely an inflammatory process in the remitting phase and a neurodegenerative process in the progressive phase. The secondary progressive phase of MS is primarily caused by axonal degeneration following demyelination. The potential advantages of inhibiting angiogenesis in the early phase of MS could stem from reducing the vascular supply of nutrients and inflammatory cells to the demyelinating lesions, halting the production of endothelial-derived pro-inflammatory molecules [189]. This approach could be proposed only in aggressive acute relapsing MS, where immunosuppression could be associated with specific antiangiogenic therapy. Considering the central role of VEGF signalling in pathological angiogenesis during the early MS phase, anti-VEGF therapy should be highly beneficial in the aggressive MS-subtype. We will briefly discuss some of these strategies, but do not propose to provide an exhaustive review of the literature.

Bevacizumab, a monoclonal anti-VEGF antibody approved for renal, ovarian, lung and mammary glands malignancies, that has been proven to ameliorate EAE [64], is now being tested in a clinical trial in a group of patients with neuromyelitis optica, an aggressive disease mimicking MS (ClinicalTrials.gov Identifier: NCT01777412). Nevertheless, experimental inhibition of VEGF signalling using another neutralizing antibody decreased angiogenesis and astroglial proliferation, but led to greater neurodegeneration in a model of stab wound injury of the CNS [190]. In murine MOG-EAE, antagonizing VEGF-R2 with Semaxinib (SU5416) was effective only in the acute inflammatory phase of the disease, but not in the chronic, degenerative phase [46]. In addition, Bouerat et al. [191] demonstrated a high efficacy of several anti-VEGF-R2 analogues and pro-drugs in an EAE model. Systemic administration of cavtratin, a selective eNOS inhibitor that can abrogate VEGF signalling, reverted neurologic deficits in EAE mice [39].

Bortezomib, a proteasome inhibitor, could be useful to treat MS considering its potent anti-lymphocytic and antiangiogenic activity [192]. Thalidomide, and its analogue lenalidomide, are known to inhibit TNF-α, VEGF and IL-6 production [193]. Thus, the use of thalidomide in MS has been suggested, considering its protective action against endothelial damage induced by TNF-α [194,195], reduced leukocyte chemotaxis and phagocyte activity [196], inhibition of IFN-γ and IL-12 [197], co-stimulation of CD8⁺ lymphocytes [198]. Thalidomide has been demonstrated to restore BBB tightness and to protect the CNS in two experimental models of brain toxicity [199]. In the MOG-induced EAE model, N-(aminopropyl)-4-
amino thalidomide is a promising therapeutic tool, able to reverse clinical and histological signs of EAE [36,200].

Corticosteroids stabilize the BBB [201] and inhibit angiogenesis in tumours [202] and chronic inflammation [203] (Table 2).

IFN-β displays anti-angiogenic and BBB stabilizing properties [84,204,205]. Glatiramer Acetate (GA; copolymer 1), a mixture of synthetic peptides mimicking myelin basic protein, used as a first-line treatment option for RR-MS, inhibits a tryptophanyl-tRNA synthetase known to modulate angiogenic signalling [206,207]. The selective adhesion molecule inhibitor Natalizumab, which binds integrin-α4 on endothelial cells and blocks the VCAM-1 driven transmigration of immune cells sensitized against myelin antigen from the vessel lumen to the neuropil across the BBB, precludes VEGF-induced angiogenesis [208,209]. Fingolimod (FTY720), an immunomodulator that acts on sphingosine 1-phosphate (S1P) receptors, is the first oral drug approved for the treatment of RR-MS. Downmodulation of S1P receptor type 1 (S1P1) prevents the release of lymphocytes from lymph nodes into the lymphatic vessels and vascular recirculation to the CNS, reduces astrogliosis, restores BBB function, and inhibits angiogenesis during chronic neuroinflammation, also via inhibiting PDGF-B-induced migration of vascular smooth muscle cells [210-212]. Alemtuzumab, recently licensed for the treatment of MS, is a humanized monoclonal antibody directed against CD52, a protein that is widely distributed on the surface of lymphocytes and monocytes and is also an anti-angiogenic molecule [213]. Teriflunomide, an inhibitor of the mitochondrial enzyme dihydroorotate dehydrogenase, which is critically involved in pyrimidine synthesis, inhibits immune cell proliferation but shows only an indirect antiangiogenic activity. Dimethyl fumarate is the active compound of BG-12, recently licensed for the treatment of RR-MS; its activity is predominantly mediated via activation of the nuclear factor (erythroid-derived 2)–like 2 (Nrf2) antioxidant response pathway [214]. BG-12 also modulates immune-cell responses, suppresses proinflammatory-cytokine production and inhibits angiogenesis [215] (Table 2).

Immunosuppressive therapies (i.e. mitoxantrone, cyclophosphamide), used to revert the aggressive course of MS, also exert an anti-angiogenic activity [216,217]. A chemotherapeutic agent, cladribine, effective but unsafe in MS, decreases the level of angiogenic factors [218]. Mycophenolate mofetil is an immunosuppressive agent, sometimes used as a disease-modifying therapy for MS, that can stabilize aggressive MS patients, and shows an anti-angiogenic activity [219]. Minocycline has been effective in EAE [220]; it is an anti-angiogenic drug in tumours [221], decreases VEGF and MMP-9 [222,223] and has been tested in combination with IFN-β (NCT01134627) and GA (NCT00203112) [224].

To date, disease modifying drugs have been shown to have little impact on the natural course of the progressive phase of MS. The development of add-on treatments targeting axonal repair and remyelination and/or slowing disease progression through neuroprotection/neuroregeneration remains the most important goal in the clinical management of chronic progressive MS [225,226]. As the endogenous neuroregenerative response can be suppressed by inflammation or exhaustion, delivery of neurovascular factors by mesenchymal, foetal or bone marrow-derived stem cells could increase endogenous repair, angiogenesis, neuronal and axonal survival and oligodendrocyte maturation and myelin synthesis. The multitasking vascular and neuroprotective effects of VEGF show promise for therapeutic use in neurodegenerative disorders such as ALS, PD, AD and, eventually, progressive MS [227-229], when its harmful vascular side effects can be restricted. Intra-cerebroventricular delivery of recombinant VEGF protein improves motor performance and survival in a rodent model of ALS [230]. In a stroke model, exogenous VEGF administration increases neurogenesis of the SVZ, only after 28 days, without concomitant angiogenesis, demonstrating that a specific VEGF isoform could protect neurons independently of the endothelial cell influence [231]. In the EAE model, despite several reports of an improved clinical score after early VEGF inhibition, one study [232] demonstrated that pertussis toxin stimulated VEGF expression and that VEGF neuroprotection could

Table 2 Currently used disease-modifying agents and acute exacerbation medications with an anti-angiogenic property

Chemical name	Brand name	References related to anti-angiogenic activity
Alemtuzumab1	Lemtrada	[213]
Cyclophosphamide2	Endoxan, Cytoxan, Neosar, Procytox, Revimmune	[217]
Dexamethasone	Decadron	[203]
Methylprednisolone	Solu-Medrol	[203]
Dimethyl fumarate	Tecfidera	[215]
Fingolimod	Gilenya	[210-212]
Glatiramer acetate	Copaxone	[206,207]
Interferon β-1a	Avonex, Rebif	[84,204,205]
Interferon β-1b	Betaferon, Extavia	
Mitoxantrone	Novantrone	[216]
Natalizumab	Tysabri	[208,209]
Teriflunomide	Aubagio	Only indirect evidence derived from anti-lymphocytes activity

1licensed for MS therapy by the European Medicine Agency (EMA) but rejected by the Food and Drugs Administration (FDA), USA; 2not licensed but used in clinical practice.
be responsible for milder disease. VEGF may have different effects in different cell types depending on different splice variants [233]. The endogenous splice isoform VEGF-A165b has shown a potent neuroprotective effect in hippocampal and cerebro-cortical neurons (mediated by VEGFR2 and neuropilin-1 co-stimulation) with no pro-permeability property [78,234]. This isoform may be an interesting add-on therapy option against axon damage in progressive MS, with fewer adverse vascular effects. Another interesting approach could be to specifically inhibit vascular permeability without affecting the endogenous neuroprotective effect of VEGF. This approach has been successfully investigated in EAE mice using angiostatin [235], cavtratin [39], anti-microRNA-155 [236] and needs to be replicated in humans.

A protective effect of vitamin D on the risk of MS has been demonstrated [237] and several trials suggested beneficial effects of vitamin D supplementation. Vitamin D3 promotes angiogenesis in endothelial cell cultures [238]. Atorvastatin, pravastatin and simvastatin have both anti- and pro-angiogenic activities depending on the dose, specific angiogenic stimulus, and angiogenesis mechanism in the specific disease local microenvironment [239,240]. They have been tested as neurorepair attempts in several randomized clinical trials in combination with IFN-β and GA [241-244].

Because neurons, oligodendrocytes and blood vessels are involved in the pathogenesis of MS, it would be better to use the same compound to treat all involved systems. Apart from VEGF, other molecules can stimulate neurogenesis, oligodendrogenesis and angiogenesis. The first is thyroxine (T4), that can decrease EAE severity [245] increase NGF and promote neurogenesis and remyelination. Other potential treatment options in selected MS patients could be sexual hormones added to an immunomodulator [138]. Among potential candidate compounds for neuroprotection/neuroregeneration and angiogenesis modulators in progressive MS, EPO appears very promising. EPO possesses properties that could address several of the pathophysiological mechanisms involved in progressive MS, being an anti-apoptotic and anti-oxidative molecule, promoting neurite outgrowth and axonal repair, neurogenesis, angiogenesis and BBB integrity (reviewed in [246]). In addition, EPO treatment could temporarily decrease iron stores within the CNS, possibly providing an additional beneficial effect in chronic progressive MS patients. Excess iron may have several deleterious effects on axons, including iron-catalyzed production of ROS and RNS causing oxidative tissue injury. Iron accumulation may also alter oligodendrocyte activities (reviewed in [246]). Recombinant human EPO treatment has already proven safe and effective in severely affected MS patients [247-249]. Testing in clinical trials of EPO variants developed to minimize the risk of thromboembolism is a promising research field.

Concluding remarks

In MS as well as in EAE, CNS lesions and surrounding NAWM/NAGM are characterized by different vascular changes in the different disease phases. In the acute demyelinating phase, there is a complex balance between vessel modulators released by inflammatory cells and hypoxia of more distant nervous tissue from blood microvessels that could be affected by localized vasogenic swelling due to the VEGF-induced altered vascular permeability [250,251]. A reduced axon activity could cause hypoperfusion and hypoxia also in the chronic disease phase (Figure 2).

Blocking VEGF signalling and angiogenesis reduced clinical and pathological signs of disease in the early phase in an animal model of MS [39,46,64,190,191]. EAE model experiments have shown that hypoxic pre-conditioning reduced the clinical severity and leukocyte infiltration thanks to increased levels of VEGF, TGF-β, IL-10 [171,172]. However, aberrant angiogenesis and localized regression of the microvasculature can contribute to brain hypoperfusion and neurovascular uncoupling [252]. In this context, the timing of vascular remodelling and growth factors release could be crucial. In early demyelinating lesions, remodelling is harmful and exacerbates the disease. Nevertheless, in chronic disease phases, angiogenesis, and especially the neuroprotective properties of VEGF, might be highly beneficial. An alternative therapeutic agent for this neurodegenerative condition with a lesser influence on cell types other than neurons, and also lacking pro-permeability/angiogenic properties, may be VEGF-A165b [78,234].

Angiogenesis, induced either by CNS inflammation or by hypoxia, provides trophic factors for tissue remodelling [91,253]. In a chronic hypoxia model of cerebrovascular disease, angiogenesis proceeds in the absence of BBB leakage, being associated with increased tight junction protein expression [254]; this demonstrates that angiogenesis is not indissolubly linked to BBB breakdown. In addition, resolution of impeded angiogenesis in neural stem cell niches in the SVZ would increase oxygen levels and could also promote differentiation of oligodendrocyte precursors.

Future therapeutic efforts should be based less on a total block of angiogenesis, and more on titration of the response to produce new vessels with a functional integrity. These therapeutic options could be promising for application in MS, even if the angiogenic component of MS has still to be fully explained. To determine whether there is a correlation between clinical benefit and levels of angiogenic molecules, studies comparing clinical signs and circulating angiogenic markers in treated or untreated MS patients over time are currently ongoing, together with studies exploring angiogenesis-promoting molecules versus antiangiogenic drugs in late stage chronic MOG-induced EAE. In addition, clinical trials exploring combination therapy with an MS subtype-oriented
immunomodulator/immunosuppressive agent added to an angiogenic/neuroprotective molecule during the progressive phase of MS could be warranted.

Abbreviations
AD: Alzheimer’s disease; ADAM17: Disintegrin and metalloproteinase domain-containing protein 17; ALS: Amyotrophic lateral sclerosis; Ang: Angiopoietin; AR: Adenosine receptor; ATP: Adenosine triphosphate; BBB: Blood–Brain Barrier; BDNF: Brain-derived neurotrophic factor; bFGF: Basic Fibroblast Growth Factor; BM: Basement membrane; Ca: Calcium; CBF: Cerebral blood flow; CBV: Cerebral blood volume; CD: Cluster of differentiation; CNS: Central Nervous System; cs: Clinical score; CSF: Cerebrospinal fluid; ctrl: Control; CvX: Connexin43; CXCR4: Chemokine (C-X-C motif) receptor 4; DII: Delta like; dpi: Days post- immunization; DSCAM: Down’s syndrome cell adhesion molecule; EAE: Experimental allergic encephalomyelitis; ECM: Extracellular matrix molecule; EGF: Epidermal Growth Factor; ENOS: endothelial Nitric Oxide Synthetase; EPO: Erythropoietin; ET: Endothelin; GA: Glutamate; HIF: Hypoxia Inducible Factor; ICAM-1: Intercellular adhesion molecule 1; IFN: Interferon; IgG: Immunoglobulin G; IL: Interleukin; LV: Lateral ventricle; MBP: Myelin basic protein; MHC: Major Histocompatibility Complex; MIP-1α: Macrophage inflammatory proteins 1α; MOG: Myelin Oligodendrocyte Glycoprotein; MRI: Magnetic resonance imaging; MS: Multiple sclerosis; NAGM: Normal-appearing grey matter; NAWM: Normal-appearing white matter; NGF: Nerve Growth Factor; NO: Nitric oxide; NPC: Normal-appearing precursor cell; Nrf2: Nuclear factor 1 factor (erythroid-derived 2)—like 2; NSC: Neural stem cells; NVU: Neurovascular unit; OEC: Oligodendrocyte precursor cell; PBM: Peripheral mononuclear cells; PDGF: Platelet-Derived Growth Factor; PECAM-1: Platelet endothelial cell adhesion molecule-1; PEDF: Pigment Epithelium-Derived Factor; PET: Positron Emission tomography; PP-MS: Primary progressive MS patients; RNA: Ribonucleic acid; ROS: Reactive oxygen species; RR-MS: Relapsing remitting MS; S1P: Sphingosine 1-phosphate; SDF1: Stromal cell-Derived Factor 1; SFK: Src Family Kinase; SGC: Subgranular zone; SHH: Sonic Hedgehog; SPECT: Single photon emission computed tomography; SS: Secondary progressive MS patients; TMZ: Temozolomide; TJ: Tight junction; TNF: Tumour necrosis factor; tRNA: transfer ribonucleic acid; VEGF: Vascular Endothelial Growth Factor; VEGFR: Vascular Endothelial Growth Factor Receptor; WM: White matter.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
FG and CC carried out the EAE experiments, the morphometric and statistical analyses; DR and MT conceived of the study. FG, CC, DR and MT drafted the manuscript. All authors read and approved the final manuscript.

Acknowledgements
Prof. L. Roncalli (Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari, Italy) is gratefully acknowledged for his critical review of the article. We thank M.V.C. Pragnell, BA, for linguistic help.

Author details
1Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari ‘Aldo Moro’, Piazza Giulio Cesare, 11, 70124 Bari, Italy.
2National Cancer Institute ‘Giovanni Paolo II’, via O. Flacco, 65, 70124 Bari, Italy.

Received: 26 May 2014 Accepted: 9 July 2014
Published: 22 July 2014

References
1. Brück W, Bittch A, Kolenda H, Brück V, Stiefel M, Lassmann H (1997) Inflammatory central nervous system demyelination: correlation of magnetic resonance imaging findings with lesion pathology. Ann Neurol 42:783–793
2. Kermode AG, Thompson AJ, Tofts P, MacManus DG, Kendall BE, Kingsley DP, Moseley FJ, Rudge P, McDonald WI (1990) Breakdown of the blood–brain barrier precedes symptomatic disease and other MRI signs of new lesions in multiple sclerosis. Pathogenetic and clinical implications. Brain 113:1477–1489
3. Alvarez JJ, Carya R, Prat A (2011) Disruption of central nervous system barriers in multiple sclerosis. Biochim Biophys Acta 812:253–264
4. Claudio L, Raine CS, Bronson CT (1996) Evidence of persistent blood–brain barrier abnormalities in chronic progressive multiple sclerosis. Acta Neuropathol 90:228–238
5. Kirk J, Plumb J, Mirakhr M, McQuaid S (2003) Tight junctional abnormality in multiple sclerosis white matter affects all calibers of vessel and is associated with blood–brain barrier leakage and active demyelination. J Pathol 201:319–327
6. McQuaid S, Kirk JT (2005) The blood–brain barrier disruption in multiple sclerosis. Int Congress Series 1272:235–243
7. Minagar A, Alexander JS (2003) Blood–brain barrier disruption in multiple sclerosis. Mult Scler 9:540–549
8. Plumb J, McQuaid S, Mirakhr M, Kirk J (2002) Abnormal endothelial tight junctions in multiple sclerosis-associated inflammatory cuffs: Potential role in influx and transport of leukocytes. J Neuropathol Exp Neurol 61:722–729
9. van Horsen J, Bo L, Vos CM, Vratan I, de Veth HE (2005) Basement membrane proteins in multiple sclerosis-associated inflammatory cuffs: Potential role in influx and transport of leukocytes. J Neuropathol Exp Neurol 64:902–942
10. Gay D, Esiri M (1991) Blood–brain barrier damage in acute multiple sclerosis plaques. An immunocytochemical study. Brain 114:557–572
11. Su J, Oscogawa M, Matsuka T, Minohara T, Tanaka M, Iizhu T, Mihara F, Tanawale, Ki, K (2006) Upregulation of vascular growth factors in multiple sclerosis: correlation with MRI findings. J Neurol Sci 243:30–34
12. Dozzetti V, Brochet B, Dexeus MS, Lagoarde, L, Barron, B, Calle, JM, Petz K (2006) MRI imaging of relapsing multiple sclerosis patients using ultra-small-particle iron oxide and compared with gadolinium. Am J Neuroradiol 27:1000–1005
13. Vellina MM, Engberink RD, Seewann A, Pouwels P, Wattjes M, van der Pol S, Peering C, Polman CH, de Veth HE, Geverts J, Barkhof F (2008) Plurifunction of inflammation in multiple sclerosis shown by ultra-small iron oxide particle enhancement. Brain 131:800–807
14. Ladewig G, Jestaedt L, Miskelwitz B, Solymosi L, Toyka K, Bendzus M, Stoll G (2009) Spatial diversity of blood–brain barrier alteration and macrophage invasion in experimental autoimmune encephalomyelitis: a comparative MRI study. Exp Neurol 220:207–211. doi:10.1016/j.expneurol.2009.08.027
15. Mayhan WG (1999) VEGF increases permeability of the blood–brain barrier via a nitric oxide synthase/GDP-dependent pathway. Am J Physiol 276:C1148
16. Oldfield EH, Merrill MJ (1999) Vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood 87:3343
17. Wosik K, Carya R, Dodelet-Dervilis A, Berthelet F, Bernard M, Moundrian R, Bouthiller A, Reudelhuber TL, Prat A (2007) Angiotensin II controls occludin function and is required for blood brain barrier maintenance: relevance to multiple sclerosis. J Neurol 27:902–942
18. Gay D, Esiri M (1991) Blood–brain barrier damage in acute multiple sclerosis plaques. An immunocytochemical study. Brain 114:557–572
25. Desai Bradaric B, Patel A, Schneider JA, Carvey PM, Hendey B (2012) Evidence for angiogenesis in Parkinson’s disease, incidental Lewy body disease, and progressive supranuclear palsy. J Neural Transm 119:59–71

26. Plate KH, Scholt A, Dumont DJ (2012) Tumor angiogenesis and anti-angiogenic therapy in malignant gliomas revisited. Acta Neurochir 124:765–775

27. Xiong M, Elson G, Legarda D, Leibovich SJ (1998) Production of vascular endothelial growth factor by murine macrophages—regulation by hypoxia, lactate, and the inducible nitric oxide synthase pathway. Am J Pathol 153:587–598

28. Papadaki EZ, Simos PG, Mastorodemos VC, Panou T, Maris TG, Karantanas AH, Plaitakis A (2014) Regional MRI perfusion measures predict motor/ executive function in patients with Clinically-Isolated Syndrome. Behav Neurol http://dx.doi.org/10.1155/2014/252419

29. Fog T (1965) The topography of plaques in multiple sclerosis. With special reference to cerebral plaques. Acta Neurol Scand 41(Suppl):151–161

30. Macchi G (1954) The pathology of the blood vessels in multiple sclerosis. Archiv für Pathologische Anatomie und Physiologie und für klinische Medizin 264:47

31. Putnam TJ (1933) The pathogenesis of multiple sclerosis: a possible vascular factor. N Engl J Med 209:786–790

32. Rindfleisch E (1863) Histologische Details zu der grauen degeneration von Gehirn und Rückenmark. Virchow’s Archiv für Pathologische Anatomie und Physiologie und für klinische Medizin 26:47

33. Schenker M (1943) Histogenesis of the early lesions of multiple sclerosis. 1. Significance of the vascular changes. Arch Neurol Psychiat 49:178

34. Broman T (1947) Supravital analysis of disorders in the cerebral vascular system. Ups J Med Sci 26:131–184

35. Proescholdt MA, Jacobson S, Tresser N, Oldfield EH, Merrill MJ (2002) Significance of the vascular changes. Arch Neurol Psychiat 49:178

36. Karlik SJ, Roscoe WA, Patinote C, Contino-Pepin C (2012) Targeting vascular endothelial growth factor (VEGF) expression in motor neurons and its electrophysiological effects. Brain Res Bull 76:36–44

37. Kirk S, Frank JA, Karlik S (2004) Angiogenesis in multiple sclerosis: is it good, bad, or an epiphenomenon? J Neurol Sci 217:125–130

38. Trapp BD, Stys PK (2009) Virtual hypoxia and chronic necrosis of demyelinated axons in multiple sclerosis. Lancet Neurol 8:280–291

39. Argaw AT, Asp L, Zhang J, Navashina K, Pham T, Mariani JN, Mahase S, Dutta DJ, Seto J, Kramer EG, Ferrara N, John GR (2012) Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease. J Clin Invest 122:2454

40. Kirk S, Karlik SJ (2003) VEGF and vascular changes in chronic multiple sclerosis and experimental autoimmune encephalomyelitis. J Neuropathol Exp Neurol 61:914–925

41. Daniel PM, Lam DK, Pratt OE (1981) Changes in the effectiveness of the blood–brain and blood–spinal cord barriers in experimental allergic encephalomyelitis. J Neurol Sci 52:11–21

42. Errede M, Girolamo F, Ferrara G, Strippoli M, Morando S, Boldrin V, Rizzi M, Uccelli A, Perris R, Bendotti C, Salmona M, Roncali L, Virgintino D (2012) Bevacizumab diminishes experimental autoimmune encephalomyelitis by a modifier of amyotrophic lateral sclerosis in mice; increased vessel expression of fibronectin and the αvβ3 integrin. J Neuroimmunol 167:53–63

43. Mor F, Quintana FJ, Cohen IR (2004) Angiogenesis-inflammation cross-talk: vascular endothelial growth factor is secreted by activated T cells and induces Th1 polarization. J Immunol 172:4618–4623

44. MacMillan CJ, Furlong SJ, Doucette CD, Chen PL, Hoskin DW, Easton AS (2012) Bevacizumab diminishes experimental autoimmune encephalomyelitis by inhibiting spinal cord angiogenesis and reducing peripheral T-cell responses. J Neuropathol Exp Neurol 71:983–999

45. Sobel RA, Blanchette BW, Bhan AK, Colvin RB (1984) The immunopathology of experimental allergic encephalomyelitis. II. Endothelial cell la increases prior to inflammatory cell infiltration. J Immunol 132:2402–2407

46. Broman T (2002) Supravital analysis of disorders in the cerebral vascular system. Ups J Med Sci 26:131–184

47. Plate KH, Scholz A, Dumont DJ (2012) Tumor angiogenesis and anti-angiogenic therapy in malignant gliomas revisited. Acta Neurochir 124:765–775

48. Piraino PS, Yednock TA, Messersmith EK, Pleiss MA, Freedman SB, Hammond AH, Plaitakis A, van Lookeren Campagne M, Ferrara G, Strippoli M, Morando S, Boldrin V, Rizzi M, Uccelli A, Perris R, Bendotti C, Salmona M, Roncali L, Virgintino D (2012) Bevacizumab diminishes experimental autoimmune encephalomyelitis by a modifier of amyotrophic lateral sclerosis in mice; increased vessel expression of fibronectin and the αvβ3 integrin. J Neuroimmunol 167:53–63

49. Theoharides TC, Constantindou AD (2007) Corticotropin-releasing hormone and the blood–brain barrier. Front Biosci 12:1615–1629

50. van Bruggen N, Thibodeaux H, Palmer JT, Lee WP, Fu L, Caubs I, Bums D, Gerfl R, Williams SP, van Lookeren Campagne M, Ferrara G (1999) VEGF antagonism reduces astrocyte formation and tissue damage after ischemia/reperfusion injury in the mouse brain. J Clin Invest 104:1613–1620

51. Benton RL, Whittemore SR (2003) VEGF165 therapy exacerbates secondary damage following spinal cord injury. Neurochem Res 28:1693–1703

52. van Bruggen N, Thibodeaux H, Palmer JT, Lee WP, Fu L, Caubs I, Bums D, Gerfl R, Williams SP, van Lookeren Campagne M, Ferrara G (1999) VEGF antagonism reduces astrocyte formation and tissue damage after ischemia/reperfusion injury in the mouse brain. J Clin Invest 104:1613–1620

53. Iacobaeus E, Amoudruz P, Ström M, Khademi M, Brundin L, Hillert J, Kockum I, Malmström V, Olsson T, Tham E, Pielb F (2011) The expression of VEGF-A is down regulated in peripheral blood mononuclear cells of patients with secondary progressive multiple sclerosis. PLoS One 6:e19138

54. MacMillan CJ, Furlong SJ, Doucette CD, Chen PL, Hoskin DW, Easton AS (2012) Bevacizumab diminishes experimental autoimmune encephalomyelitis by inhibiting spinal cord angiogenesis and reducing peripheral T-cell responses. J Neuropathol Exp Neurol 71:983–999

55. Lambrechts D, Storkebaum E, Morimoto M, Del-Favero J, Desmet F, Marklund S, Iacobaeus E, Amoudruz P, Ström M, Khademi M, Brundin L, Hillert J, Kockum I, Malmström V, Olsson T, Tham E, Pielb F (2011) The expression of VEGF-A is down regulated in peripheral blood mononuclear cells of patients with secondary progressive multiple sclerosis. PLoS One 6:e19138
67. Storkobaum E, Lambrecht D, Dewermer M, Moreno-Murciano MP, Appelmann S, Oh H, Van Damme P, Rutten B, Man WV, De Moel M, Wynn S, Manika D, Vermeulen K, Van Den Bosch L, Mertens N, Schmitz C, Robberecht W, Conway EM, Collen D, Moons L, Carmeliet P (2005) Treatment of motoneuron degeneration by intracerebroventricular delivery of VEGF in a rat model of ALS. Nat Neurosci 8:85–90.

68. Sondell M, Lundborg G, Kanje M (1999) Vascular endothelial growth factor has neurotrophic activity and stimulates axonal outgrowth, enhancing cell survival and Schwann cell proliferation in the peripheral nervous system. J Neurosci 19:5731–5740.

69. Argaw AT, Gutfein BT, Zhang Y, Zameer A, John GR (2009) VEGF-mediated disruption of endothelial CLN-5 promotes blood-brain barrier breakdown. Proc Natl Acad Sci U S A 106:1977–1982.

70. Rosenstein JM, Krum JM (2004) New roles for VEGF in nervous tissue beyond blood vessels. Exp Neurol 187:246–253.

71. Okada S, Nakamura M, Katoch H, Miyao T, Shimmako T, Ishi H, Yamane J, Yoshimura A, Iwamoto Y, Toyama Y, Okano H (2006) Conditional ablation of Stat3 or Socs3 discloses a dual role for reactive astrogliosis after spinal cord injury. Nat Med 12:829–834.

72. Choi JS, Kim HY, Cha JH, Choi JY, Park SJ, Jeong CH, Jeun SS, Lee MY (2007) Upregulation of vascular endothelial growth factor receptors Flk-1 and Flk-1 following acute spinal cord contusion in rats. J Histochim Cytoch 55:821–830.

73. Herz J, Reitmer R, Hagen S, Reinbooth BS, Guo Z, Zechariah A, Eilai A, Doepptine TR, Bascaguppili M, Pluchino S, Klici U, Klici E, Hermann DM (2012) Intracerebroventricularly delivered VEGF promotes periventricular cortical plasticity after focal cerebral ischemia via mechanisms involving anti-inflammatory actions. Neurobiol Dis 45:1077–1085.

74. Heil M, Clauss M, Suzuki K, Buschmann IR, Willuweit A, Fischer S, Schaper W (2004) Vascular endothelial growth factor (VEGF) stimulates monocyte migration through endothelial monolayers via increased integrin expression. Eur J Cell Biol 79B:850–857.

75. Ishizu T, Ogojama M, Mei F, Kikuchi H, Tanaka M, Takakura Y, Minchena M, Murai H, Mihara F, Tanawaki T, Kira J (2005) Intrathecal activation of the IL-17A-L8 axis in optoscleral multiple sclerosis. Brain 128:888–1002.

76. Cho ML, Jung YO, Moon YM, Min SY, Yoon CH, Lee SH, Park SH, Cho CS, Page DM, Kim HY (2006) Interleukin-18 induces the production of vascular endothelial growth factor (VEGF) in rheumatoid arthritis synovial fibroblasts via AP-1-dependent pathways. Immunol Lett 103:159–166.

77. Suarez S, Ballmer-Hofer K (2001) VEGF transiently disrupts gap junctional communication in cell junctions. J Cell Sci 114:1229–1235.

78. Beazley-Long N, Hua J, Jehle T, Hulse RP, Dersch R, Lehrling C, Bevan H, Qiu Y, Kazanis I, Lathia JD, Vadakkan TJ, Raborn E, Wan R, Mugral MR, Eckley DM, O’Dohr TR, Bacigaluppi M, Pluchino S, Kilic U, Kilic E, Hermann DM (2012) Intracerebroventricularly delivered VEGF promotes periventricular cortical plasticity after focal cerebral ischemia via mechanisms involving anti-inflammatory actions. Neurobiol Dis 45:1077–1085.

79. Heil M, Clauss M, Suzuki K, Buschmann IR, Willuweit A, Fischer S, Schaper W (2004) Vascular endothelial growth factor (VEGF) stimulates monocyte migration through endothelial monolayers via increased integrin expression. Eur J Cell Biol 79B:850–857.

80. Suarez S, Ballmer-Hofer K (2001) VEGF transiently disrupts gap junctional communication in cell junctions. J Cell Sci 114:1229–1235.

81. Beazley-Long N, Hua J, Jehle T, Hulse RP, Dersch R, Lehrling C, Bevan H, Qiu Y, Kazanis I, Lathia JD, Vadakkan TJ, Raborn E, Wan R, Mugral MR, Eckley DM, O’Dohr TR, Bacigaluppi M, Pluchino S, Kilic U, Kilic E, Hermann DM (2012) Intracerebroventricularly delivered VEGF promotes periventricular cortical plasticity after focal cerebral ischemia via mechanisms involving anti-inflammatory actions. Neurobiol Dis 45:1077–1085.

82. Heil M, Clauss M, Suzuki K, Buschmann IR, Willuweit A, Fischer S, Schaper W (2004) Vascular endothelial growth factor (VEGF) stimulates monocyte migration through endothelial monolayers via increased integrin expression. Eur J Cell Biol 79B:850–857.
112. Kim H, Li Q, Hempstead BL, Madri JA (2004) Paracrine and autocrine functions of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in brain-derived endothelial cells. J Biol Chem 279:33538–33546
113. Mashayekhi F, Salehi Z, Jamaltahed HR (2012) Quantitative analysis of cerebrospinal fluid brain derived neurotrophic factor in the patients with multiple sclerosis. Acta Med Iran 55:83–86
114. Laudiero LB, Able I, Levi-Montalcini R, Buttneri C, Schütter D, Gillessen S, Otten U (1992) Multiple sclerosis patients express increased levels of beta-nerve growth factor in cerebrospinal fluid. Neurosci Lett 147:7–12
115. Stadelmann C, Kerschensteiner M, Miegela T, Brück W, Hohlfeld R, Lassmann H (2002) BDNF and gpl40 in multiple sclerosis brain lesions: neuroprotective interactions between immune and neuronal cells. Brain 125:735–85
116. Mashayekhi F, Salehi Z, Jamalzadeh HR (2012) Quantitative analysis of severity of experimental autoimmune encephalomyelitis (EAE). PLoS One 8: doi:10.1371/journal.pone.0031013713
117. Larrivée B, Freitas C, Suchting S, Brunet I, Eichmann A (2009) Guidance of neural progenitor cultures. Exp Cell Res 313:572–587
118. Xie C, Li Z, Zhang GX, Guan Y (2013) Wnt signaling in remyelination in multiple sclerosis, friend or foe? Mol Neurobiol. doi:10.1007/s12032-013-8584-6
119. Alvarez JL, Dodelet-Diventier A, Kebir H, Ireggian P, Fabre PJ, Teroue S, SABBAGH M, Wosik O, Bourbourière L, Bernard M, van Hornes J, de Vries HE, Charron U, 2012. The Hedgehog pathway promotes blood–brain barrier integrity and CNS immune quiescence. Science 334:1727–1731. doi:10.1126/science.1206936
120. Wälchli T, McQualter JL, Zheng B, Ho PP, Jordan KA, Murray BM, Barres B, Tessier-Lavigne M, Bernard CC (2004) The neurite outgrowth inhibitor Nogo A is involved in autoimmune-mediated demyelination. Nat Neurosci 7:355–361
121. Bin JM, Rajasekharan S, Kuhlmann T, Hanes J, Marcal N, Han D, Rodrigues SP, Leong SY, Newcombe J, Antel JP, Kennedy TE (2013) Full-length and fragmented ntn1 in multiple sclerosis plaques are inhibitors of oligodendroglial progenitor cell migration. Am J Pathol 183:673–680
122. Sobel RA (2005) Ephrin A receptors and ligands in lesions and normal-appearing white matter in multiple sclerosis. Brain Pathol 15:35–45
123. Munro KM, Dixon KJ, Giese MM, Jonas A, Kemper D, Doherty W, Fabri LJ, Owczarek CM, Pearse M, Boyd AW, Kilpatric TP, Butzkueven H, Trumlewe AM (2013) EphA4 receptor tyrosine kinase is a modulator of onset and disease severity of experimental autoimmune encephalomyelitis (EAE). PLoS One 8:e55948. doi:10.1371/journal.pone.0055948
124. Syed YA, Hand E, Möbus W, Zhao C, Hofer M, Nave KA, Kotter MR (2011) Inhibition of CNS remyelination by the presence of semaphorin 3A. J Neurosci 31:3719–3728
125. Williams A, Piatton G, Agrost MS, Belhadi H, Thalaunin M, Petermann F, Thomas JL, Zalc B, Lubetzki C (2007) Semaphorin 3A and 3 F: key players in myelin repair in multiple sclerosis? Brain 130:2554–2565
126. Okuno T, Nakatani Y, Kurnanoglu A (2011) The role of immune semaphorins in multiple sclerosis. FEBS Lett 585:3829–3835
127. Walochnik J, Aigrot MS, Belhadi A, Théaudin M, Petermann F, Okuno T, Nakatani Y, Kurnanoglu A (2011) Angiopoetin 2 mediates the differentiation and migration of neural progenitor cells in the subventricular zone after stroke. J Biol Chem 284:2680–2689
128. Wang L, Zhang Z, Wang Y, Zhang R, Chopp M (2004) Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats. Stroke 35:1732–1737
129. Spence RD, Yokshull RR (2012) Neuroprotective effects of estrogens and androgens in CNS inflammation and neurodegeneration. Front Neuroendocrinol 33:105–115. doi:10.1016/j.yfrne.2011.12.001
130. Suzuki S, Gerhold LM, Böttner M, Rau SW, Dely Cruz Y, Zhang R, Hu Y, Ju J, Cashion AB, Kindy MS, Merchenthaler I, Gage FH, Wise PM (2007) Estriol enhances neurogenesis following ischemic stroke through estrogen receptors alpha and beta. J Comp Neurol 500:1046–1075
131. Greenberg DA, Jin K (2005) From angiogenesis to neuropathology. Nature 437:109–115. doi:10.1038/nature04137
132. Mohyeldin A, Garzon-Muvdi T, Quinones-Hinojosa A (2010) Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell 7:170–171.
133. Larrivée B, Freitas C, Suchting S, Brunet I, Eichmann A (2009) Guidance of neural progenitor cultures. Exp Cell Res 313:572–587
134. B所需内容
174. Haider L, Fischer MT, Frischer JM, Bauer J, Höftberger R, Botond G, Lu F, Selak M, O'Connor J, Croul S, Lorenzana C, Butunoi C, Kalman B (2000) Dore-Duffy P, Wencel M, Katyshev V, Cleary K (2011) Chronic mild hypoxia: a novel therapeutic approach in EAE. J Neurol Sci 333:88

168. Steen C, Wilczak N, Hoogduin JM, Koch M, De Keyser J (2010) Reduced angiogenesis after embolic stroke in rat using MRI. Neuroimage 28:698–707

160. Adhya S, Johnson G, Herbert J, Jaggi H, Babb JS, Grossman RI, Inglese M (1997) Serum angiotensin-converting enzyme in multiple sclerosis. Arch Neurol 54:1012–1015

161. Rashid W, Parkes LM, Ingle GT, Chard DT, Toosy AT, Altmann DR, Symms M, Clerici M, Comi G, Rovaris M, Furlan R (2014) Oxidative stress is differentially elevated in normal appearing white matter. Radiology 231:645–652

157. Swank RL, Roth JS, Woody DC, Jr (1983) Cerebral blood flow and red cell delivery in normal subjects and in multiple sclerosis. Neurosurgery 5:37–59

158. Law M, Saindane AM, Ge Y, Babb JS, Johnson G, Mannion LJ, Herbert J, Grossman RI (2004) Microvascular abnormality in relapsing-remitting multiple sclerosis: perfusion MR imaging findings in normal-appearing white matter. Radiology 213:645–652

159. Varga AW, Johnson G, Babb J, Herbert J, Grossman RI, Ingole M (2006) Pattern of hemodynamic impairment in multiple sclerosis: dynamic susceptibility contrast perfusion MR imaging at 3.0 T. Neuroimage 33:1025–1035

163. Haselhorst R, Kappos L, Bleeeun D, Scheffler K, Möri D, Rudu DW, Sewig J (2000) Dynamic susceptibility contrast MR imaging of plaque development in multiple sclerosis: application of an extended blood–brain barrier leakage correction. J Magn Res Imaging 11:495–505

164. Wuerfel J, Bellmann-Strabelli J, Brunner P, Aktas D, McFarland H, Villringer A, Zipp F (2004) Changes in cerebral perfusion precede plaque formation in multiple sclerosis: a longitudinal perfusion MRI study. Brain 127:111–119

165. Jiang Q, Zhang ZG, Ding GL, Zhang L, Ewing JR, Wang L, Zhang R, Li L, Lu M, Meng H, Arbab AS, Hu J, Li QJ, Pourabdollah Nejad DS, Athiraman H, Chopp M (2005) Investigation of neural progenitor cell induced angiogenesis after embolic stroke in rat using MRI. Neuroimage 28:698–707

152. De Keyser J, Steen C, Mostert JP, Koch MW (2003) Oxygenation and perfusion of the cerebral white matter in multiple sclerosis: possible mechanisms and pathophysiological significance. J Cereb Blood Flow Metab 23:1645–1651

153. Steen C, Wilczak H, Hoogduin JM, Koch M, De Keyser J (2010) Reduced creatine kinase B activity in multiple sclerosis normal appearing white matter. PLoS One 5:e10811

154. Dhaeseleer M, Cambron M, Vanopdenbosch L, De Keyser J (2011) Vascular aspects of multiple sclerosis. Lancet Neurol 10:657–666

155. Bruç W, Luchinetti C, Lassmann H (2002) The pathology of primary progressive multiple sclerosis. Mult Scler 8:542–548

156. Dore-Duffy P, Wencel M, Katchev V, Cleary K (2011) Chronic mild hypoxia ameliorates chronic inflammatory activity in myelin oligodendrocyte glycoprotein (MOG) peptide induced experimental autoimmune encephalomyelitis (EAE). Adv Exp Med Biol 701:165–173

157. Esen N, Serkin Z, Dore-Duffy P (2013) Induction of vascular remodeling: a novel therapeutic approach in EAE. J Neurosci 33:88–92

158. Lu F, Selak M, O'Connor J, Croul S, Lorenzana C, Butunoi C, Kalman B (2000) Oxidative damage to mitochondrial DNA and activity of mitochondrial enzymes in chronic active lesions of multiple sclerosis. J Neurosci 17:99–103

159. Häider L, Fischer MT, Frischer JM, Bauer J, Höftberger R, Botond G, Estebauer H, Binder CJ, Wittum JL, Lassmann H (2011) Oxidative damage to mitochondrial DNA in patients with multiple sclerosis. J Neuropathol Exp Neurol 70:1293–1303

160. Amorini AM, Nociti V, Petzold A, Gasperini C, Quartuccio E, Lazzarino G, Di Pietro L, Belli A, Signorotti S, Vagnozzi R, Lazzarino G, Tavazzai B (2014) Serum lactate as a novel potential biomarker in multiple sclerosis. Biochim Biophys Acta 1842:1137–1143. doi:10.1016/j.bbadis.2014.04.005

161. Simone IL, Federico F, Tognetto C, Liguori M, Giannini P, Picciola E, Natile G, Livrea P (1996) High resolution proton MR spectroscopy of cerebrospinal fluid in MS patients. Comparison with biochemical changes in demyelinating plaques. J Neurosci 14:182–190

162. Fischer MT, Sharma R, Liu JH, Haid J, Frischer JM, Drexhage H, Mahad D, Bradi M, van Horsen J, Lassmann H (2012) NADPH oxidase expression in active multiple sclerosis lesions in relation to oxidative tissue damage and mitochondrial injury. Brain 135:886–899. doi:10.1093/brain/awr012

163. Campbell GR, Krasnyev Y, Krishnan KJ, Ohno N, Zabreva I, Trapp BD, Newcombe J, Reynolds R, Lassmann H, KhraPko K, Turnbull DM, Mahad DJ (2012) Clonally expanded mitochondrial DNA deletions within the choroid plexus in multiple sclerosis. Acta Neuropathol 124:209–220. doi:10.1007/s00401-012-1001-9

164. Pandit A, Vaidal J, Houston S, Freeman E, McDonough J (2009) Impaired regulation of electron transport chain subunit genes by nuclear response factor 2 in multiple sclerosis. J Neurol Sci 279:14–20. doi:10.1016/j.jns.2009.07.009

165. Pache M, Kaiser HJ, Alkalbedshavill N, Lienert C, Dubler B, Kappos L, Flammer J (2003) Extracranial blood flow and endothelin-1 plasma levels in patients with multiple sclerosis. Eur Neurol 49:164–168

166. Speciale L, Sarafidou M, Ruzzante S, Caputo D, Mancuso R, Calvo MG, Guerini FR, Ferrante P (2000) Endothelin and nitric oxide levels in cerebrospinal fluid of multiple sclerosis patients. J Neurol 247:656–66

167. Matsuishi T, Ishob N, Kawajir M, Mugi M, Tsukuda K, Horuchi M, Ohaygi Y, Kira J (2010) CSF angiotensin II and angiotensin-converting enzyme levels in anti-aquaporin-4 autoimmunity. J Neurol Sci 295:41–45

168. Constantinescu NS, Goodman MB, Grossman RI, Mannion LJ, Cohen JA (1997) Serum angiotensin-converting enzyme in multiple sclerosis. Arch Neurol 54:1012–1015

169. Patten M, Youssouf S, Hur EM, Ho PP, Ham MH, Lanz TV, Phillips K, Goldstein MJ, Bhat R, Raine CS, Sobel RA, Steinman L (2009) Blocking angiotensin-converting enzyme induces potent regulatory T cells and modulates Th1- and TH17-mediated autoimmunity. Proc Natl Acad Sci U S A 106:14948–14953

170. Griffioen AW, Molenaar G (2000) Angiogenesis: potentials for pharmacologic intervention in the treatment of cancer, cardiovascular diseases, and chronic inflammation. Pharmacol Rev 52:227–268

171. Krum RM, Khaibullina A (2003) Inhibition of TNF-alpha synthesis with thalidomide for prevention of acute exacerbations and altering the natural history of multiple sclerosis. Med Hypotheses 53:76–77

172. Sharief MK, Thompson EJ (1992) In vivo relationship of tumor necrosis factor-alpha to blood–brain barrier damage in patients with active multiple sclerosis. J Neuroimmunol 38:27–33

173. Faure M, Lejeune JP, Croul S, Lorenzana C, Butunoi C, Kalman B (2000) Oxidative damage to mitochondrial DNA and activity of mitochondrial enzymes in chronic active lesions of multiple sclerosis. J Neurosci 17:99–103

174. Gironi M, Bangi M, Mariani E, Curciano C, MendoPoz L, Cavaretta R, Sarella M, Clerici M, Comi G, Novais M, Furlan R (2014) Oxidative stress is differentially present in multiple sclerosis courses, early evident, and unrelated to treatment. J Immunol 2014:61863. doi:10.1155/2014/61863

175. Bolanos JP, Almeida A, Stewatt V, Peuchen S, Land JM, Clark JB, Heales SJ (1997) Nitric oxide-mediated mitochondrial damage in the brain: mechanisms and implications for neurodegenerative diseases. J Neurochem 68:2227–2240

176. Vanouel-Eremaia H, Kappos L, Kemelk B, Stadelmann C, Steffen C, Brück W, Luchinetti C, Schmidauber M, Jellung K, Lassmann H (2003) Preferential loss of myelin-associated glycoprotein reflects hypoxia-like white matter damage in stroke and inflammatory brain diseases. J Neuropathol Exp Neurol 62:25–33

177. Redford ED, Kappor R, Smith KJ (1997) Nitric oxide donors reversibly block axonal conduction. demyelinated axons are especially susceptible. Brain 120:2419–24177
200. Contino-Pépin C, Parat A, Périto S, Lenor C, Vidal M, Galons H, Karlš K, Pucci B (2009) Preliminary biological evaluations of new thalidomide analogues for multiple sclerosis application. Bioorg Med Chem Lett 19:876–881

201. MacLean HJ, Freedman MS (2001) Immunologic therapy for relapsing–remitting multiple sclerosis. Curr Neurol Neurosci Rep 1:277–85

202. Folkman J, Langner L, Linhardt RJ, Haudenschild C, Taylor S (1983) Angiogenesis inhibition and tumor regression caused by heparin or a heparin fragment in the presence of cortisone. Science 221:719–725

203. Nauck M, Karakulakis G, Perruchoud AP, Papakonstantinou E, Roth M (1998) C-reactive protein inhibits the expression of the vascular endothelial growth factor gene in human vascular smooth muscle cells. Eur J Pharmacol 341:309–315

204. Jablonska J, Leschner S, Westphal K, Lienenklaus S, Weiss S (2010) Neutrophils and angiogenesis during blood–brain-barrier damage. Brain Pathol 19:254–266

205. Taylor KL, Leaman DW, Grane R, Mecht H, Borden EC, Lindner DJ (2008) Identification of interferon-beta-stimulated genes that inhibit angiogenesis in vitro. J Interferon Cytokine Res 28:733–740

206. Elsw DL, Schmell P (2002) Activation of angiogenic signaling pathways by two human RNA synthetases. Biochemistry 41:13344–13349

207. Thamilarasan M, Hecker M, Goetscher RH, Paap BK, Schröder I, Koczan D, Thiesen HJ, Tetzl UK (2013) Glutamatergic acetate treatment affects on gene expression in monocytes of multiple sclerosis patients. J Neuroinflammation 10:126. doi:10.1186/1742-2094-10-126

208. Jin H, Su J, Gurny-Susini B, Kleeman J, Vanner J (2006) Integrin alpha4beta1 promotes monocyte trafficking and angiogenesis in tumors. Cancer Res 66:2146–2152

209. Podar K, Zimmerhreck A, Fukunishi M, Tonon G, Hainz U, Tai YT, Valler S, Halama N, Jäger D, Olson DL, Sattler M, Chauhan D, Anderson KC (2011) The selective adhesion molecule inhibitor Natalizumab decreases multiple myeloma cell growth in the bone marrow microenvironment: therapeutic implications. Br J Haematol 155:438–448

210. Foster CA, Mechtcheriakova D, Storch MK, Balatoni B, Howard LM, Bornancin F, Azzouz M, Ralph GS, Storkebaum E, Walmsley LE, Mitropoulos KA, Kingsman SM, Carmeliet P, Mazaraki ND (2004) VEGF delivery with retrogradely transported lentivector prolongs survival in a mouse ALS model. Nature 429:413–417

211. Sun Y, Jin X, Xie L, Chils J, Mao XQ, Logvinova A, Greenberg DA (2003) VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest 111:1843–1851

212. Tang Z, Yin JX, Han P, Gan Y, Coons SW, Wang C, Maalolf M, Shi J (2013) Pertussis toxin attenuates experimental autoimmune encephalomyelitis by upregulating neuronal vascular endothelial growth factor. Neuroreport 24:469–475. doi:10.1097/WNR.0b013e3283619e68

213. Nowak DG, Woollard J, Amin EM, Konopatskaya O, Saleem MA, Churchill AJ, Lademond MR, Harper SJ, Bates DO (2008) Expression of pro- and anti-angiogenic isoforms of VEGF is differentially regulated by splicing and growth factors. J Cell Sci 121:3487–3495. doi:10.1242/jcs.016410

214. Magnussen AL, Rennel ES, Hua J, Bevan HS, Bevan JD, Lefthimal C, Gammons M, Floege J, Harper SJ, Agostini HT, Bates DO, Churchill AJ (2010) VEGF-A165b is cytotoxic and antiangiogenic in the retina. Invest Ophthalmol Vis Sci 51:4273–4281. doi:10.1167/iovs.09-4296

215. MacMillan CJ, Doucette CD, Warford J, Lurton SJ, Hoeksin DW, Easton AS (2014) Murine experimental autoimmune encephalomyelitis is diminished by treatment with the angiogenesis inhibitors B20.4.1.1 and angiotatin 1–R. PLoS One 9:e89770

216. Lopez-Ramirez MA, Wu D, Pyyke G, Simpson JF, Riekerker A, King-Robson J, Kay O, de Vries HE, Hirtse MC, Sharrack B, Baker D, Male DK, Michael GJ, Romero IA (2014) MicroRNA-155 negatively affects blood–brain barrier function during neuroinflammation. FASEB J. doi:10.1096/fasebj.24-28880.13-248880

217. Munger KL, Zhang SM, O'Reilly E, Hemán MA, Olek MJ, Willcot WC, Ascherio A (2004) Vitamin D intake and incidence of multiple sclerosis. Neurology 62:606–615

218. Grundmann M, Haidar M, Placzko S, Niendorf R, Darashchonak N, Hubel CA, von Versen-Höynck F (2012) Vitamin D improves the angiogenic properties of endothelial progenitor cells. J Physiol 590:461–476. doi:10.1113/jphysiol.2012.249820

219. Romero IA (2014) MicroRNA-155 negatively affects blood–brain barrier function during neuroinflammation. FASEB J. doi:10.1096/fasebj.24-28880.13-248880

Page 16 of 17
synergy by combination of atorvastatin and glitazamide acetate in treatment of CNS autoimmunity. J Clin Invest 116:1037–1044

244. Sorensen LS, Lycke J, Erlinna JP, Edland A, Wu X, Frederiksen JL, Oturai A, Malmström C, Stenager E, Sellebjerg F, Sondergaard HB, SIMCOMBIN study investigators (2011) Simvastatin as add-on therapy to interferon β-1a for relapsing-remitting multiple sclerosis (SIMCOMBIN study): a placebo-controlled randomised phase 4 trial. Lancet Neurol 10:691–701

245. Dell’Acqua ML, Lorenzini L, D’Intino G, Sivilia S, Pasqualetti P, Panetta V, Paradisi M, Filippi MM, Baiguera C, Pizzi M, Giardino L, Rossini PM, Calzà L (2012) Functional and molecular evidence of myelin- and neuroprotection by thyroid hormone administration in experimental allergic encephalomyelitis. Neuropathol Appl Neurobiol 38:545–570. doi:10.1111/j.1365-2990.2011.01228.x

246. Bartels C, Spate K, Krampke H, Ehrenreich H (2008) Recombinant human Erythropoietin: novel strategies for neuroprotective/neuro-regenerative treatment of multiple sclerosis. Ther Adv Neurol Disord 1:193–206. doi:10.1177/1753103408098422

247. Créange A, Lefauscher JP, Baileyguier MO, Galactéros F (2013) Iron depletion induced by bloodletting and followed by rHuEPO administration as a therapeutic strategy in progressive multiple sclerosis: a pilot, open-label study with neurophysiological measurements. Neuropharmacology Clin 43:303–312. doi:10.1016/j.neuci.2013.09.004

248. Ehrenreich H, Fischer B, Norra C, Schellenberger F, Stender N, Steffel M, Sireń AL, Paulus W, Nave KA, Gold R, Bartels C (2007) Exploring recombinant human erythropoietin in chronic progressive multiple sclerosis. Brain 130:2577–2588

249. Najmi Vazanfer N, Najmi Vazanfer F, AsMini AR, Rezai N, Sahraian MA (2014) Efficacy of combination therapy with erythropoietin and methyprednisolone in clinical recovery of severe relapse in multiple sclerosis. Acta Neurol Belg 114:114. doi:10.1007/s13760-014-0286-y

250. Balasov KE, Aung LL, Dhib-Jalbut S, Keller IA (2011) Acute multiple sclerosis lesion: conversion of restricted diffusion due to vasogenic edema. J Neuroimaging 21:202–204. doi:10.1111/j.1552-6569.2009.00443.x

251. Tievsky AL, Ptak T, Farkas J (1999) Investigation of apparent diffusion coefficient and diffusion tensor anisotrophy in acute and chronic multiple sclerosis lesions. AJNR Am J Neuroradiol 20:1491–1499

252. Zlokovic BV (2008) The blood–brain barrier in health and disease. Nat Rev Neurosci 9:178–201

253. Muramatsu R, Takahashi C, Miyake S, Fujihora H, Mochizuki I, Yamashita T (2012) Angiogenesis induced by CNS inflammation promotes neuronal remodeling through vessel-derived prostacyclin. Nat Med 18:1658–1667

254. Li L, Welser JV, Dore-Duffy P, del Zoppo GJ, Lamanna JC, Milner R (2010) In the hypoxic central nervous system, endothelial cell proliferation is followed by astrocyte activation, proliferation, and increased expression of the alpha 6 beta 1a integrin and dystroglycan. Glia 58:1157–1167

255. Palava F, Marado D, Mascarenhas-Melo F, Sereno J, Tievsky-Lemos E, Nunes GC, Corrêas G, Teixeira F, Reis F (2013) New markers of early cardiovascular risk in multiple sclerosis patients: oxidized-LDL correlates with clinical staging. Dis Markers 34:303–317. doi:10.3233/DMA-130979

256. Chaitanya GV, Omura S, Sato F, Martinez NE, Minagar A, Ramanathan M, Gutmann BW, Zivadinov R, Tsuchoda I, Alexander JS (2013) Inflammation induces neuro-lymphatic protein expression in multiple sclerosis brain microvascular endothelial cells. J Neuroinflammation 10:125. doi:10.1186/1742-2094-10-125

257. Sarchielli P, Di Filippo M, Ercolini MW, Chiasserini D, Mottana A, Bonucci M, Tenaglia S, Eusebi P, Calabresi P (2008) Fibroblast growth factor-2 levels are elevated in the cerebrospinal fluid of multiple sclerosis patients. Mult Scler 15:547–554

258. Lee MA, Palace J, Stabler G, Ford J, Gearing A, Miller K (1999) Serum gelatinase B, TIMP-1 and TIMP-2 levels in multiple sclerosis. A longitudinal clinical and MRI study. Brain 122:191–197

259. Fainardi E, Castelazzi M, Tamborino C, Trentini A, Manfrinato MC, Baldi E, Tola MR, Dallochio F, Granieri E, Bellini T (2009) Potential relevance of cerebrospinal fluid and serum levels and intrathecal synthesis of active matrix metalloproteinase-2 (MMP-2) as markers of disease remission in patients with multiple sclerosis. Mult Scler 15:547–554

260. Bar-Or A, Nuttall RK, Daddy M, Alter A, Kim HJ, Ifergan I, Pennington CJ, Bourgon P, Edwards DR, Yong W (2003) Analyses of all matrix metalloproteinase members in leukocytes emphasize monocyes as major inflammatory mediators in multiple sclerosis. Brain 126:2738–2749

261. Lee MA, Palace J, Stabler G, Ford J, Gearing A, Miller K (1999) Serum gelatinase B, TIMP-1 and TIMP-2 levels in multiple sclerosis. A longitudinal clinical and MRI study. Brain 122:191–197

262. Fainardi E, Castelazzi M, Bellini T, Manfrinato MC, Baldi E, Casetta I, Paolino E, Granieri E, Dallochio F (2006) Cerebrospinal fluid and serum levels and intrathecal production of active matrix metalloproteinase-9 (MMP-9) as markers of disease activity in patients with multiple sclerosis. Mult Scler 12:294–301

263. Leppert D, Ford J, Stabler G, Grygar C, Lennert C, Huber S, Miller KM, Hauser SL, Kappos L (1998) Matrix metalloproteinase-9 (gelatinase B) is selectively expressed in CSF during relapses and stable phases of multiple sclerosis. Brain 121:2327–2374

264. Boz C, Ozmenoglu M, Veloglu S, Kilinc K, Oren A, Alioglu Z, Antunayoglu V (2006) Matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of matrix metalloproteinase (TIMP-1) in patients with relapsing-remitting multiple sclerosis treated with interferon beta. Clin Neurol Neurosurg 108:124–1248

265. Bomprezzi R, Rigney M, Kim S, Bittmer ML, Khan J, Chen Y, Bilaklou A, Yu A, Bielekova B, Weltert PS, Martin R, McFarland H, Trent JM (2003) Gene expression profile in multiple sclerosis patients and healthy controls: identifying pathways relevant to disease. Hum Mol Genet 12:191–2199

266. Duan H, Luo Y, Hao H, Feng L, Zhang Y, Lu D, Xing S, Feng J, Yang D, Song L, Yan X (2013) Soluble CD146 in cerebrospinal fluid of active multiple sclerosis. Neurosci Lett 526:21–26. doi:10.1016/j.neulet.2013.01.020