Fluorouracil Bolus Use in Infusional Regimens Among Oncologists—A Survey by Brazilian Group of Gastrointestinal Tumors

Renata D. Peixoto, MD, PhD; Anelisa K. Coutinho, MD; Rui Fernando Weschenfelder, MD; Gabriel Prolla, MD, PhD; Duilio Rocha, MD, PhD; Aline Chaves Andrade, MD; Juliana Florinda Rego, MD, PhD; Gustavo dos Santos Fernandes, MD; Marcela Crosara, MD; Paulo Marcelo Hoff, MD, PhD; Rodrigo Dienstmann, MD, PhD; Matheus Costa e Silva, MD; and Rachel P. Riechelmann, MD, PhD

PURPOSE The utility of administering fluorouracil (5-FU) in bolus in regimens of infusional 5-FU has been questioned. We aimed to quantify the use of 5-FU bolus in infusional regimens for gastrointestinal malignancies among Brazilian oncologists.

METHODS This was a cross-sectional electronic survey composed of eight multiple-choice questions sent to Brazilian oncologists during 14 days in February 2021. The survey instrument collected demographic data of participants and assessed practices in terms of 5-FU bolus use. We evaluated the association of demographic variables and 5-FU prescribing patterns with Fisher’s exact test (odds ratio [OR]).

RESULTS The survey was completed by 332 medical oncologists. Overall, 37% were experienced oncologists and 32% were gastrointestinal specialists. In the first-line metastatic and in the adjuvant settings, 40% and 67% of oncologists always prescribe 5-FU bolus in infusional regimens, respectively. Experienced oncologists more frequently omit 5-FU bolus when compared with early-career oncologists, both in the metastatic (41% vs 26%; OR, 1.98; P = .005) and adjuvant settings (28% vs 14%; OR, 2.32; P = .003). In addition, more GI specialists remove 5-FU bolus when compared with generalists, but only in the metastatic setting (44% vs 25%; OR, 2.33; P = .001). GI specialists are more likely to consider that treatment efficacy is not affected by 5-FU bolus withdrawal than are generalists (89% vs 75%; OR, 2.65; P = .003). Most respondents (67%) keep leucovorin at the same doses when omitting 5-FU bolus, and only 16% always recommend dihydropyrimidine dehydrogenase testing.

CONCLUSION Our survey indicates that experience in oncology practice and percentage of time dedicated to treat GI cancers influence the prescription of 5-FU bolus in Brazil, with more frequent omission of it among experienced gastrointestinal specialists, particularly in the metastatic setting.

JCO Global Oncol 7:1270-1275. © 2021 by American Society of Clinical Oncology

Creative Commons Attribution Non-Commercial No Derivatives 4.0 License
CONTEXT

Key Objective

How frequently do oncologists remove fluorouracil (5-FU) bolus in infusional regimens? In the first-line metastatic setting, 40% of oncologists in Brazil always prescribe 5-FU bolus in infusional regimens, as compared with 67% in the adjuvant scenario.

Knowledge Generated

Omission of 5-FU bolus is more frequent among experienced oncologists and those who dedicate more than 50% of their practice to treat gastrointestinal cancers.

Relevance

Given the potential to decrease costs and toxicities, more studies are needed to explore patient- and health care–related factors associated with the use of 5-FU bolus and leucovorin in patients with gastrointestinal cancers and the true efficacy of those drugs in infusional regimens.

questions sent to Brazilian medical oncologists through social media (WhatsApp, Instagram, and Facebook) by the board of directors of GTG during 14 days in February 2021. Each question allowed only one answer by respondent.

The survey instrument collected demographic data of participants and assessed current practices in terms of 5-FU bolus use. Participants with > 10 years in oncology practice were considered experienced (early career otherwise) and those with > 50% of their clinical practice dedicated to treat patients with GI malignancies were deemed specialists (generalists otherwise).

Descriptive statistics were used to summarize the results. We evaluated associations of demographic variables and 5-FU prescribing patterns with Fisher’s exact test, reporting respective odds ratios (ORs) of comparisons between groups. Two logistic regression models were performed to evaluate factors associated with 5-FU bolus withdrawal. Independent variables (experienced vs young oncologist; GI specialist vs generalist oncologist) with P < .05 were entered in the multivariable analyses. Final P values < .05 were considered significant.

RESULTS

The survey was completed by 332 medical oncologists from across the country. The description of the eight questions with their answers in terms of number and percentages is shown in Table 1.

Overall, 37% were experienced oncologists and 32% were GI specialists. In the first-line metastatic setting, 40% of the oncologists always prescribe 5-FU bolus in infusional regimens, whereas 19% never prescribe it. Meanwhile, in the adjuvant setting, 67% of the respondents always prescribe 5-FU bolus when initiating infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX) regimens and 13% never prescribe it, as shown in Figure 1.

Experienced oncologists more frequently omit 5-FU bolus when compared with early-career oncologists, both in the metastatic (41% vs 26%; OR, 1.98; P = .005) and adjuvant settings (28% vs 14%; OR, 2.32; P = .003). In addition, more GI specialists remove 5-FU bolus when compared with generalists in the metastatic setting (44% vs 25%; OR, 2.33; P = .001), but not in the adjuvant setting (21% vs 19%; OR, 1.17; P = .66; Fig 1).

The most frequent reason to omit 5-FU bolus was toxicity (97%), and most respondents (67%) keep LV at the same doses when omitting 5-FU bolus, whereas 26% of the oncologists remove it. Overall, 80% of the participants consider that removing 5-FU bolus does not compromise effectiveness of infusional 5-FU regimens. GI specialists are more likely to consider that the treatment efficacy is not affected by 5-FU bolus omission than generalist oncologists (89% vs 75%; OR, 2.65; P = .003).

Most respondents (56%) never test patients for dihydropyrimidine dehydrogenase (DPYD) deficiency before starting capecitabine or 5-FU. Only 16% of oncologists always recommend DPYD testing before prescribing fluoropyrimidines, without differences between GI specialists and generalists or experienced and early-career physicians. Only one oncologist (< 1%) was not aware of the DPYD test.

DISCUSSION

The present survey demonstrates that less than half (40%) of oncologists in Brazil always administer 5-FU bolus when first prescribing FOLFOX or fluorouracil, leucovorin, and irinotecan (FOLFIRI) to patients with metastatic cancer. In the adjuvant setting, 67% of them always prescribe 5-FU bolus when initiating adjuvant FOLFOX. We believe that less oncologists prescribe 5-FU bolus for metastatic disease since the goal of treatment is not cure. At the same time, concerns with toxicity tend to be higher in the metastatic setting. Experienced oncologists and GI specialists were independently more likely to omit 5-FU bolus. To our knowledge, no other study has investigated the rate of 5-FU bolus use in oncology clinical practice.

In gastrointestinal cancers, a variety of dosage schedules of FOLFOX and FOLFIRI have been used over time, with or without a monoclonal antibody. Nowadays, mFOLFOX6, which consists of biweekly oxaliplatin (85 mg/m²), LV
(400 mg/m²), and 5-FU (400 mg/m² administered by intravenous bolus, followed by 2,400 mg/m² given as a 46-hour continuous infusion), is the most commonly prescribed regimen, both in clinical practice and in randomized clinical trials. When FOLFIRI is concerned, biweekly irinotecan (180 mg/m²), LV (400 mg/m²), and 5-FU (400 mg/m² administered by intravenous bolus, followed by 2,400 mg/m² given as a 46-hour continuous infusion) is the usually prescribed regimen.

Whenever a patient develops hematologic toxicity, most oncologists remove 5-FU bolus from the infusional schedules. In parallel, more fragile patients tend to begin doublet regimens without 5-FU bolus to reduce the incidence of toxicities. Over time, many GI specialists

| TABLE 1. Description of the Eight Questions and Frequency of Answers |
|---|---|
| Questions | No. (%) |
| 1. How long have you been practicing medical oncology? (years) | |
| < 5 | 110 (33) |
| 5-10 | 98 (30) |
| 11-20 | 77 (23) |
| > 20 | 47 (14) |
| 2. What percentage of your practice time is dedicated to treat gastrointestinal cancers? | |
| < 25 | 95 (29) |
| 25%-49% | 129 (39) |
| 50%-75% | 64 (19) |
| > 75% | 44 (13) |
| 3. In the treatment of metastatic disease, considering a patient who will start FOLFOX or FOLFIRI in first line, do you use bolus of 5-FU on D1? | |
| Never | 63 (19) |
| Rarely | 42 (13) |
| Sometimes | 93 (28) |
| Always | 134 (40) |
| 4. In the adjuvant setting, considering a patient who will start FOLFOX, do you use 5-FU bolus on D1? | |
| Never | 44 (13) |
| Rarely | 21 (6) |
| Sometimes | 45 (14) |
| Always | 222 (67) |
| 5. What is the main reason for removing 5-FU bolus? | |
| Reducing costs | 2 (1) |
| Reducing the patient’s stay at the clinic or hospital | 8 (2) |
| Reducing toxicity | 322 (97) |
| 6. When you remove 5-FU bolus, what do you do with leucovorin (folinic acid)? | |
| I remove it | 86 (26) |
| I reduce its dose | 22 (7) |
| I keep it at the same dose | 224 (67) |
| 7. In terms of effectiveness of FOLFOX and FOLFIRI regimens, do you feel comfortable removing 5-FU bolus? | |
| No | 68 (20) |
| Yes | 264 (80) |
| 8. Do you usually test patients for DYPD deficiency before starting 5-FU or capecitabine? | |
| Never | 185 (56) |
| I don’t know the test | 1 (0) |
| I only recommend it for high-risk groups (eg, elderly) | 94 (28) |
| I always recommend DYPD testing | 52 (16) |

Abbreviations: DYPD, dihydropyrimidine dehydrogenase; FOLFOX, infusional fluorouracil, leucovorin, and oxaliplatin; FOLFIRI, fluorouracil, leucovorin, and irinotecan; FU, fluorouracil.
abandoned 5-FU bolus in infusional regimens, despite the absence of comparative trials.

A Japanese retrospective study aimed to compare mFOLFOX6 plus bevacizumab with mFOLFOX7 (without 5-FU bolus) plus bevacizumab in 39 patients with metastatic colorectal cancer to assess the clinical relevance of omitting bolus 5-FU.6 Given the better toxicity profile and similar clinical outcomes, the authors raised the question whether bolus 5-FU could definitely be omitted when prescribing FOLFOX. Although the omission of 5-FU bolus has never been directly tested against its use, mFOLFOX7 (without 5-FU bolus) has already been part of some phase III trial arms. In the CONcePT trial, which evaluated the role of intermittent oxaliplatin, both arms included mFOLFOX7 with bevacizumab.7 In this study, only 2% of the patients developed severe myelosuppression.

More recently, a retrospective study compared clinical outcomes of 133 patients with metastatic colorectal cancer who received mFOLFOX6 with or without bolus 5-FU) showed no impact of 5-FU bolus omission on median PFS, or neutropenia. A significantly inferior OS for the group who did not receive bolus 5-FU (median 2.5 v 1.8 years) was observed in the univariable analysis, but this was not confirmed in the model adjusted for tumor sidedness and performance status.5 Given the retrospective nature of these studies and the fact that oncologists typically omit 5-FU bolus in older and more frail patients, results may have been influenced by these variables.

Interestingly, the majority of the participants consider that omitting 5-FU bolus does not compromise effectiveness of infusional regimens. The question of what to do with LV when omitting 5-FU bolus in infusional regimens should also be further investigated, since LV increases efficacy of 5-FU bolus when this is used alone, but the role in infusional regimens is less clear.8 In our survey, besides the 40% of respondents who maintain 5-FU bolus when starting FOLFOX or FOLFIRI, only 26% of the oncologists remove LV when 5-FU bolus is not used. The EORTC 40952 phase III trial with 497 treatment-naive patients with metastatic colorectal cancer evaluated the impact of LV during a weekly infusional 5-FU regimen on OS. Patients were randomly assigned to one of the three arms: 24-hour infusional 5-FU with or without LV (500 mg/m²) or bolus 5-FU and LV (Mayo Clinic schedule). Median PFS was significantly longer for infusional 5-FU with LV (5.6 months)

FIG 1. Prescribing patterns of 5-FU bolus in (A and C) metastatic and (B and D) adjuvant settings according to time dedicated to treat gastrointestinal malignancies and years of oncology practice. FU, fluorouracil.

	Never use 5-FU bolus	Always or sometimes use 5-FU bolus
Specialist	48 (44.4%)	60 (55.6%)
Generalist	57 (25.4%)	167 (74.6%)
Experienced	51 (41.1%)	73 (58.9%)
Less Experienced	54 (26%)	154 (74%)

	Never use 5-FU bolus	Always or sometimes use 5-FU bolus
Specialist	23 (21.3%)	85 (78.7%)
Generalist	42 (18.8%)	182 (81.3%)
Experienced	35 (28.2%)	89 (71.8%)
Less Experienced	30 (14.4%)	178 (85.6%)
versus bolus 5-FU and LV (4.1 months) and infusional 5-FU without LV (4.0 months), with a P value of .029. Response rate was also numerically higher, albeit not significantly different, for the addition of LV on infusional 5-FU.9 There was no gain in OS, but increased toxicity was observed among those who received infusional 5-FU with LV in comparison with infusional 5-FU alone, with more grade 3 or 4 diarrhea (22% v 6%). Therefore, it seems that omitting 5-FU bolus of infusional 5-FU regimens is harmless, but LV should be maintained—although the optimal dosage is debatable.

Removing 5-FU bolus brings down the costs. Not only the entire regimen will cost less, but it is also expected that fewer patients will require hospitalization. In developing countries, such as ours, this is an even more important matter. We have also found that DPYD testing is low in Brazilian routine practice before fluoropyrimidine initiation, which possibly reflects the costs associated with the test. Deficiency of DPD affects approximately 5% of the global population. In these patients, the lack of enzymatic activity increases the half-life of fluoropyrimidines, resulting in excess drug accumulation and toxicity.10 It has been recommended that fluoropyrimidines should be omitted or dose-reduced in patients carrying DPYD genetic variants conferring an increased risk of toxicity. However, oncology societies disagree on recommending systematic testing and no Brazilian statement has been made so far.

Our study has some limitations. Because the e-mailing of our survey was not centralized, we did not have the total number of oncologists who received it. Thus, the survey response rate could not be calculated. In addition, because the GTG directors sent the survey to their contacts, the study sample likely reflects oncologists mostly interested in GI cancers. In this regard, the external validity of our study could be confirmed in a larger sample since it is possible that our results may be overestimated in terms of 5-FU bolus omission—as generalists tend to maintain 5-FU bolus more often than do GI specialists.

Given the potential to decrease costs and toxicities, more studies are needed to explore patient- and health care–related factors associated with the use of 5-FU bolus and LV in gastrointestinal cancers.

In conclusion, our survey demonstrates that longer experience in oncology practice and higher percentage of time dedicated to treat GI cancers influence the prescription of 5-FU bolus in Brazil, with more frequent omission among experienced oncologists and GI specialists, particularly in the metastatic setting. DPYD testing is very low in routine practice before fluoropyrimidine initiation.

AFFILIATIONS

1Centro Paulista de Oncologia, Sao Paulo, Brazil
2Clínica AMO: GEM Assistencia Medica Especializada Sociedade Simples Ltda, Salvador, Brazil
3Moinhos de Vento Hospital: Hospital Moinhos de Vento, Porto Alegre, Brazil
4PUCRS: Pontificia Universidade Catolica do Rio Grande do Sul, Porto Alegre, Brazil
5Rede D’Or Sao Luiz, Fortaleza, Brazil
6Onocentro, Belo Horizonte, Brazil
7Onofre Lopes University Hospital: Hospital Universitario Onofre Lopes, Natal, Brazil
8Hospital Sirio-Libanes, Brasilia, Brazil
9Rede D’Or: Rede D’Or Sao Luiz, Sao Paulo, Brazil
10Hospital AC Camargo: ACCamargo Cancer Center, Sao Paulo, Brazil

CORRESPONDING AUTHOR

Renata D. Peixoto, MD, PhD, Centro Paulista de Oncologia, Av. Faria Lima, 4300, 6th floor, Sao Paulo 04538-132, Brazil; e-mail: renatadalpino@gmail.com.

AUTHOR CONTRIBUTIONS

Conception and design: Renata D. Peixoto, Anelisa K. Coutinho, Rachel P. Riechelmann
Administrative support: Renata D. Peixoto, Anelisa K. Coutinho, Rachel P. Riechelmann, Rui F. Weschenfelder, Gabriel Prolla
Provision of study materials or patients: All authors
Data analysis and interpretation: All authors
Manuscript writing: All authors
Final approval of manuscript: All authors
Accountable for all aspects of the work: All authors

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

The following represents disclosure information provided by the authors of this manuscript. All relationships are considered compensated unless otherwise noted. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO’s conflict of interest policy, please refer to www.asco.org/rwc or ascopubs.org/go/authors/author-center.

Open Payments is a public database containing information reported by companies about payments made to US-licensed physicians (Open Payments).

Anelisa K. Coutinho
Consulting or Advisory Role: Amgen, Bayer, Roche/Genentech, Merck Serono, MSD Oncology, Sanofi/Aventis, Servier, United Medical
Speakers’ Bureau: Amgen, Bayer, Lilly, Roche/Genentech, Merck Serono, MSD Oncology, Roche Molecular Diagnostics, Sanofi/Aventis, Novartis, Servier, United Medical, Johnson & Johnson/Janssen, AstraZeneca
Research Funding: Bristol Myers Squibb, Servier
Rui Fernando Weschenfelder
Honoraria: Bayer, Lilly, MSD, Ipsen, Novartis
Consulting or Advisory Role: Bayer, Lilly, MSD, Novartis, Ipsen
Duilio Rocha
Consulting or Advisory Role: Novartis
Speakers’ Bureau: Novartis, Ipsen, Bayer, Merck Serono, United Medical, Servier
Aline Chaves Andrade
Speakers’ Bureau: Roche, MSD Oncology, Bayer
Gustavo dos Santos Fernandes
Honoraria: Roche, MSD Oncology, Bayer
Fluorouracil Bolus Use Among Brazilian Oncologists

Research Funding: Roche, Memorial Sloan-Kettering Cancer Center, BMS

Travel, Accommodations, Expenses: Roche

Paulo Marcelo Hoff

Leadership: Oncologia D’Or

Stock and Other Ownership Interests: OncoStar Oncology Clinics

Consulting or Advisory Role: United Health Group, Bayer, Lilly, Exelixis

Research Funding: Bayer, MSD Oncology, Novartis, Exelixis, Roche/Genentech, AstraZeneca/MedImmune, Lilly

Rodrigo Dienstmann

Employment: Oncoclínicas

Consulting or Advisory Role: Roche, Boehringer Ingelheim

Speakers’ Bureau: Roche, Ipsen, Sanofi, MSD Oncology, Servier, Amgen, Libbs

Research Funding: Merck

Matheus Costa e Silva

Employment: Grupo Oncoclínicas, Rede D’Or São Luiz

Consulting or Advisory Role: Novartis, Amgen, MSD Oncology, Servier, Roche/Genentech

Research Funding: Bayer, Roche/Genentech, Ipsen, Astellas Pharma

Rachel P. Riechelmann

Employment: Grupo Oncoclínicas, Rede D’Or São Luiz

Consulting or Advisory Role: Bayer, Roche/Genentech, Ipsen, Astellas Pharma

Research Funding: Bayer, Roche/Genentech, Ipsen, Astellas Pharma

No other potential conflicts of interest were reported.

REFERENCES

1. Longley DB, Harkin DP, Johnston PG: 5-fluorouracil: Mechanisms of action and clinical strategies. Nat Rev Cancer 3:330-338, 2003
2. Heidelberger C, Chaudhuri NK, Danneberg P, et al: Fluorinated pyrimidines, a new class of tumour-inhibitory compounds. Nature 179:663-666, 1957
3. de Gramont A, Bosset JF, Milian C, et al: Randomised trial comparing monthly low-dose leucovorin and fluorouracil bolus with bimonthly high-dose leucovorin and fluorouracil bolus plus continuous infusion for advanced colorectal cancer: A French Intergroup study. J Clin Oncol 15:808-815, 1997
4. Basilio A, Shah A, Sommerer K, et al: Impact of empirically eliminating 5-fluorouracil (5-FU) bolus and leucovorin (LV) in patients with metastatic colorectal cancer (mCRC) receiving first-line treatment with mFOLFOX6. J Clin Oncol 38, 2020 (suppl; abstr 4022)
5. Shaib WL, A Draper, Kalu K, et al: Survival analysis of colorectal cancer patients treated with first-line modified FOLFOX6 with or without bolus fluorouracil. J Clin Oncol 39, 2021 (suppl; abstr 35)
6. Yoshida Y, Hasegawa J, Nezu R, et al: Clinical significance of bolus 5-fluorouracil for recurrent or metastatic colorectal cancer treated with FOLFOX+ BevacizumabTherapy. Gan To Kagaku Ryoho 38:1293-1296, 2011
7. Grothey A, Hart LL, Rowland KM, et al: Intermittent oxaliplatin (oxali) administration and time-to-treatment-failure (TTF) in metastatic colorectal cancer (mCRC): Final results of the phase III CONCePT trial. J Clin Oncol 26, 2008 (suppl; abstr 4010)
8. Thirion P, Michiels S, Pignon JP, et al: Modulation of fluorouracil by leucovorin in patients with advanced colorectal cancer: An updated meta-analysis. J Clin Oncol 22:3766-3775, 2004
9. Köhne CH, Wils J, Lorenz M, et al: Randomized phase III study of high-dose fluorouracil given as a weekly 24-hour infusion with or without leucovorin versus bolus fluorouracil plus leucovorin in advanced colorectal cancer: European Organization of Research and Treatment of Cancer Gastrointestinal Group Study 40952. J Clin Oncol 21:3721-3728, 2003
10. Lee A, Ezzeldin H, Fourie J, et al: Dihydropyrimidine dehydrogenase deficiency: Impact of pharmacogenetics on 5-fluorouracil therapy. Clin Adv Hematol Oncol 2:527-532, 2004