Managing broilers gut health with antibiotic-free diets during subclinical necrotic enteritis

Nima K. Emami*, Mallory B. White, Ali Calik*, Emily A. Kimminau, and Rami A. Dalloul*

*Avian Immunobiology Laboratory, Department of Animal & Poultry Sciences, Virginia Tech, Blacksburg 24061, USA; †Department of Animal Nutrition & Nutritional Diseases, Faculty of Veterinary Medicine, Ankara University, Ankara 06110, Turkey; ‡Huvepharma, Inc., Technical Service, Peachtree City, GA 30269, USA; and ‡Department of Poultry Science, University of Georgia, Athens 30602, USA

ABSTRACT Necrotic enteritis (NE) caused by Clostridium perfringens is among the most important enteric diseases in poultry production. This study examined the effects of 2 probiotics (Prob) and a synbiotic (Synb) during a naturally occurring NE challenge. On the day of hatch, 1200 Cobb male broilers were randomly allocated to 5 groups (8 pens/treatment, 30 birds/pen) including 1) negative control (NC): corn-soybean meal diet; 2) positive control (PC): NC + 453 g Stafac20/907 kg feed; 3) Prob 1: NC + 453 g Prob 1/907 kg feed; 4) Prob 2: NC + 453 g Prob 2/907 kg feed; and 5) Synb: NC + 453 g Synb/907 kg feed. One day after placement, birds were challenged by a coccidia vaccine to induce NE. Feed intake and body weights were measured on day 8 (NE onset) and end of starter (day 14) and grower (28) periods. On day 8, the small intestines of 3 birds/pen were examined for NE lesions. Ileal mucosal scrapings from one bird/pen were collected on day 8 and day 28 to profile the microbiota using 16S rRNA sequencing. Data were analyzed in JMP or QIIME 2 and significance between treatments identified by LSD or linear discriminant analysis effect size (P < 0.05). The Synb group significantly lowered NE lesion scores on day 8 and reduced day 0-14 mortality by 50% compared with NC. FCR was significantly better in all the groups, whereas ADG was higher in PC, Synb, and Prob 2 groups compared with NC from day 0 to day 28. Lower lesion scores in the Synb group were accompanied by lower relative abundance of Alistipes, ASF356, Faecalibaculum, Lachnospiraceae UCG-001, Muribaculum, Oscillibacter, Parabacteroides, Rikenellaceae RC9 gut group, Ruminococcaceae UCG-014, and Ruminiclostridium 9 compared with NC on day 8. On day 28, relative abundance of Lactobacillus was lower, whereas abundance of Bacteroides, Barnesiella, Butyricicoccus, CHKC1001, Eisenbergiella, Eubacterium Hallii group, Helicobacter, Ruminococcaceae UCG-005, Ruminococcus torques group, and Sellimonas was significantly higher in the NC birds than in the Synb and Prob 2 groups. Collectively, these data indicate that during a subclinical naturally occurring NE, supplementation of specific additives could be effective in reducing intestinal lesions and mortality, and improving performance potentially through developing a signature microbial profile in the intestinal mucosal layer.

Key words: broilers, necrotic enteritis, lesion scores, microbiota, probiotic, synbiotic

INTRODUCTION Necrotic enteritis (NE) caused by Clostridium perfringens is among the most important enteric diseases in poultry production (Smith, 2011; Gaucher et al., 2015). Compared with clinical forms, the negative effects on birds’ performance and flock productivity manifested by subclinical NE are more prevalent (Shojadoost et al., 2012; Antonissen et al., 2016). Changes in microbial diversity and population could make the gut environment suitable for proliferation or pathogenesis of bacteria such as C. perfringens. Predisposing factors such as Eimeria and fishmeal would lead to disturbances in the microbiota providing a favorable ecological environment or nutrients that allows the proliferation of C. perfringens (Shojadoost et al., 2012; Antonissen et al., 2016). The use of antibiotic growth promoters (AGPs) has been an effective tool in maintaining gut health and modifying gut microbiota, thus improving bird performance and
reducing incidence of enteric diseases (Danzeisen et al., 2011; Yadav and Jha, 2019). However, AGP removal has led to an increase in NE occurrence, especially the subclinical form (Smith, 2011; Gaucher et al., 2015).

The interaction between gut microbiota and the host is critical for the development and health of the gut (Gerritsen et al., 2011; Kau et al., 2011); thus, one of the additive groups that has been tested for their efficacy as alternatives to AGP are probiotics (Caly et al., 2015). Supplementation of probiotics promotes gut health and performance by reducing the number of pathogens in the gastrointestinal tract through competitive exclusion or production of antimicrobial peptides, thus improving intestinal maturation and integrity, as well as modifying immune responses (Lau et al., 2005; M’Sadeq et al., 2015). Supplementation of a probiotic (Lactobacillus johnsonii BS15) alleviated the negative impact of subclinical NE and increased the expression of interleukin (IL)-8, while decreased that of interferon (IFN)-γ and IL-10 in the ileum with no impact on IL-2 (Wang et al., 2017). A Lactobacillus acidophilus-based probiotic improved intestinal health by decreasing the relative abundance of Escherichia-Shigella in the ileum (Li et al., 2017). The probiotic bacteria Bacillus subtilis DSM 32315 increased average body weight, ADG, and the abundance of Firmicutes, while reduced the abundance of Bacteroidetes in the ceca of broiler chickens (Ma et al., 2018). Furthermore, this probiotic reduced the abundance of potentially harmful bacteria including Vampirovibrio, Escherichia-Shigella, and Parabacteroides (Ma et al., 2018). During a subclinical NE trial, supplementation of a probiotic (L. johnsonii BS15) improved FCR and body weight gain compared with the challenged control group (Wang et al., 2017).

Despite several reports, there has not been much emphasis on multicomponent additives or comparison of these additives with probiotics as alternatives to AGP, particularly during NE challenge. In a recent study, supplementation of a multicomponent additive had no effect on NE lesions in the small intestine of broiler chickens, but improved FCR during the starter and grower periods (Calik et al., 2019). This study was conducted to evaluate and compare the effects of a synbiotic (Synb) with 2 probiotics (Prob) on performance, pathology, and ileal mucosa microbial profiles during a naturally occurring NE challenge model.

MATERIALS AND METHODS

Birds, Housing, and Diets

A total of 1,200 day-old Cobb male broiler chickens were acquired from a local hatchery. Before placement, birds were weighed in groups of 30 chicks and allocated to one of 40 floor pens with dimensions 1.2 × 1.2 m for the first 14 days and 1.2 × 2.4 m from day 15 to day 28. Birds were assigned to the 5 dietary treatments (8 pens/treatment) as follows:

1) Negative control (NC): corn-soybean meal basal diet; 2) Positive control (PC): NC + 20 g virginiamycin (453 g Stafac20)/907 kg feed; 3) Prob 1: NC + 453 g Prob 1/907 kg feed; 4) Prob 2: NC + 453 g Prob 2/907 kg feed; 5) Synb: NC + 453 g Synb/907 kg feed.

Prob 1 mainly consisted of B. subtilis DSM17299, whereas Prob 2 consisted of B. subtilis C-3102. Synb consisted of dried fermentation product of Enterococcus faecium, Pediococcus acidilactici, Bifidobacterium animals, Lactobacillus reuteri, and fructooligosaccharides as a prebiotic source. All animal protocols were approved and conducted under the guidelines of the Virginia Tech Institutional Animal Care and Use Committee (IACUC # 18-136).

The composition of the basal diet is detailed in Table 1. All the diets were prepared at the Virginia Tech feed mill and subsequently crumbled (starter period) or pelleted (grower period). Each pen was equipped with a bucket-type feeder and a nipple drinker line with fresh wood shavings as litter (7.5 cm deep). Birds had ad libitum access to water and feed from placement (day 0) until the end of the study (day 28). Lighting schedule was 24 h light for the first 3 days, reduced to 23 h light:1 h dark for day 4 to 7, and reduced further to 18 h light:6 h dark thereafter. An automatic ventilation system was used to control the environment, and temperature was maintained as follows: 32°C for the first 3 days, then gradually reduced approximately 3°C each week until it reached 23°C at the start of week 4 where it remained constant until day 28.

Necrotic Enteritis Challenge

To simulate field conditions, a unique, naturally occurring model developed by our laboratory was applied to induce subclinical NE (Calik et al., 2019; Emami et al., 2019, 2020) using a concentrated dose of a commercial coccidiosis vaccine. Briefly, this model consists of spraying a high dose (10 X) of commercial coccidiosis vaccine 24 h after bird placement, which in conjunction with the presence of C. perfringens spores in the barn environment leads to the development of a NE outbreak around 1 wk after vaccine application. For this trial, the Coccivac-B52 vaccine (containing live oocysts of Eimeria acervulina, Eimeria maxima, E. maxima MFP, Eimeria mivati, and Eimeria tenella; Merck Animal Health) was prepared at the proper concentration in the laboratory, kept on ice, and applied at the farm.

Mortality

Starting at placement, birds were monitored twice daily. For each dead bird, date, body weight, and cause of death were recorded. This procedure continued throughout the study (up to day 28) to record mortality/treatment for each period thus allowing for adjusting performance parameters for daily mortality.
Lesion Scores

On day 8, 3 birds were selected based on average body weight of each pen (24/treatment), euthanized by cervical dislocation, and the small intestines were examined for NE lesions and scored based on a 0–4 scale system (Prescott et al., 1978). Each section of the small intestine, that is, the duodenum, jejunum, and ileum, were scored separately by personnel blinded to the treatments. The lesion scoring criteria used were as follows:

- **0** = No gross lesions,
- **1** = Thin-walled or friable,
- **2** = Focal necrosis or ulceration,
- **3** = Multifocal coalescing areas (large patches) of necrosis,
- **4** = Severe extensive necrosis.

Performance

On arrival (day 0), birds were weighed in groups of 30 and assigned to each pen. Subsequently, birds were weighed on day 8 (7 days after the coccidiosis challenge, which was also the peak mortality) and at the end of starter (day 14) and grower (day 28) periods. In addition, feed consumption was also recorded on a per pen basis on day 8, day 14, and day 28. Finally, adjusted ADG, ADFI, and FCR were calculated for each period.

16S rRNA Gene Sequence, Data Processing, and Analysis

On day 8 and day 28, one bird/pen was euthanized, the ileum excised, mucosal scrapings collected, snap-frozen in liquid nitrogen, and then stored at −80°C until further analysis. DNA was extracted from mucosal scrapings using the Qiagen QIAamp PowerFecal DNA kit (Qiagen GmbH, Hilden, Germany) based on the supplier’s instructions. Quality and quantity of extracted DNA were measured using gel electrophoresis and spectrophotometer. All DNA samples were diluted to 300 ng/μL and 50 μL of each sample were sent to the Virginia Tech Biocomplexity Institute for sequencing. The V4 region of the 16S rRNA gene was amplified using the Illumina MiSeq kit V3 (600-cycle format, 25 million reads, read length 2 × 300). Earth Microbiome Project primer sets 515F (Parada et al., 2016) and 806R.
Supplementation of Synb significantly reduced lesion scores in the duodenum compared with NC (Table 3). None of the treatments significantly reduced mortality during the overall (day 0 to 28) experimental period. However, compared with NC (5.83%), both PC (2.91%) and Synb (2.91%) reduced day 0 to 28 mortality by 50% (although not statistically different due to variability among replicate pens).

Table 3. Effect of dietary probiotics (Prob) or symbiotic (Synb) supplementation on intestinal lesion scores of broiler chickens under a naturally occurring subclinical necrotic enteritis challenge.

Treatments	Duodenum	Jejunum	Ileum
NC	1.20^a	0.95^b	0.69^a
PC	1.05^b	0.38	0.02
Prob 1	1.23^b	0.72	0.04
Prob 2	0.95^b	0.45	0.00
Synb	0.75^b	0.37	0.00
SEM	0.11^a	0.09	0.01
P-value	0.038	0.073	0.231

^{a,b}Means with different letters are significantly different (<i>P </i>< 0.05).

Results

Mortality

Mortality was significantly reduced in all the groups during the day 9 to 14 period compared with NC (Table 2). None of the treatments significantly reduced mortality during the overall (day 0 to 28) experimental period. However, compared with NC (5.83%), both PC (2.91%) and Synb (2.91%) reduced day 0 to 28 mortality by 50% (although not statistically different due to variability among replicate pens).

Necrotic Enteritis Lesion Scores

Supplementation of Synb significantly reduced lesion scores in the duodenum compared with NC (Table 3). There was no significant difference in NE lesion scores in the duodenum among the other treatments. In addition, there was no difference in NE lesion scores in the jejunum and ileum among all treatments.
On day 28, α-diversity was significantly higher in NC than in Synb, whereas it was significantly higher in PC than in the Prob 1 and Synb groups (Table 5; Figure 2A). β-Diversity PCoA plots showed the Synb group having the most compositional homogeneity compared with the other groups on day 8 (Figure 1B). The NC and Prob 1 birds had lower compositional homogeneity than the Synb, Prob 2, and PC birds on day 28 (Figure 2B). α-Diversity refers to the variance within the samples of a particular group, whereas β-diversity refers to the variance among groups. Both α- and β-diversity metrics consider 2 aspects of the community: the number of different organisms in a sample (richness) and the range of abundance for each one (evenness).

PERMANOVA analyses on day 8 and day 28 revealed that the composition of microbial communities in the NC was different from than in the Prob 1, Prob 2, and Synb groups (Table 6). The relative abundance of amplicon sequence variants of ileal scrapings microbiota was analyzed at different ranking levels from phylum to genus. The dominant phyla across the groups were Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, Tenericutes, and Epsilonbacteriaceota together contributing greater than 99 and 75% of the whole phyla on day 8 and day 28, respectively (Table 7). Birds supplemented with additives had a greater abundance of Firmicutes and a lesser abundance of Bacteroidetes than the NC and PC on day 8. However, differences in relative abundance of the dominant bacterial phyla among the treatments decreased with age (Table 7).

At the genus level, relative abundance of Clostridiodae, Faecalibacterium, and Pseudomonas was significantly higher, whereas abundance of Alistipes, ASF356, Bifidobacterium, Faecalibaculum, Lachnospiraceae NK4A136 group, Lachnospiraceae UCG-001, Muribaculum, Parabacteroides, Rikenellaceae RC9 gut, and Roseburia was significantly lower in Prob 1 group than in

Table 4. Effect of dietary probiotics (Prob) or synbiotic (Synb) supplementation on broiler performance under a naturally occurring subclinical necrotic enteritis model.

Item	NC	PC	Prob 1	Prob 2	Synb	SEM	P-value
ADG, g	21.46	21.71	20.82	21.33	22.20	0.35	0.112
ADFI, g	26.87	26.46	25.34	25.98	26.56	0.40	0.091
FCR	1.49a	1.42b	1.53a	1.47b	1.40b	0.01	0.049

Table 5. Pairwise Kruskal-Wallis test for phylogenetic diversity of treatment groups using Shannon index analysis on day 8 and 28.

Sampling day	Group 1	Group 2	H	P-value	q-value
Day 8	NC	PC	0.099	0.752	0.916
	Prob 1	3.981	0.045	0.229	
	Prob 2	1.863	0.172	0.415	
	Synb	1.588	0.207	0.415	
	Prob 1	2.481	0.115	0.385	
	Prob 2	0.099	0.752	0.916	
	Synb	0.011	0.936	0.916	
	Prob 1	1.102	0.293	0.485	
	Prob 2	3.981	0.045	0.229	
Day 28	NC	PC	1.588	0.207	0.415
	Prob 1	2.481	0.115	0.385	
	Prob 2	2.161	0.141	0.235	
	Synb	4.411	0.035	0.118	
	Prob 1	3.573	0.058	0.146	
	Prob 2	4.411	0.035	0.118	
	Synb	4.863	0.027	0.118	
	Prob 1	0.705	0.400	0.445	
	Prob 2	0.705	0.400	0.445	

1Treatments include negative control (NC): corn-soybean meal basal diet; positive control (PC): NC + 20 g virginiamycin (453 g Stafac20)/907 kg diet; probiotic 1 (Prob 1): NC + 453 g Bacillus subtilis DSM17299/907 kg diet; probiotic 2 (Prob 2): NC + 453 g Bacillus subtilis C-3102/907 kg diet; synbiotic (Synb): NC + 453 g dried fermentation product of Enterococcus faecium, Pediococcus acidilactici, Bifidobacterium animalis, Lactobacillus reuteri and fructooligosaccharides/907 kg diet.

2Statistics P-value

Table 6. Dietary treatments2 Statistics

Item	NC	PC	Prob 1	Prob 2	Synb
ADG, g	53.69c	58.64a	54.69b,c	57.86a	57.30a,b
ADFI, g	78.63	81.02	76.74	80.17	80.11
FCR	1.47a	1.39b,c	1.41b	1.39b	1.40b

1Data represent the mean value of 8 replicate pens of 30 birds/pen.

a-cIn each column, means with different letters are significantly different (P < 0.05).

1Data represent the mean value of 8 replicate pens of 30 birds/pen.

a-cIn each column, means with different letters are significantly different (P < 0.05).
the NC on day 8 (Figure 3A). Furthermore, on day 28 as compared with Prob 1, NC birds had higher relative abundance of *Alistipes, Bacteroides, Butyricoccus, Erysipelatoclostridium, Faecalibacterium, Helicobacter, Negativibacillus, Phascolarctobacterium, Prevotella, Ruminococcaceae UCG-005, Ruminiclostridium 5*, and *Ruminococcus torques* group (Figure 3B). Relative abundance of *Clostridium sensu stricto 1* and *Clostridoides* was significantly higher, whereas abundance of *Alistipes, Bifidobacterium, Faecalibaculum, Lachnospiraceae UCG-001, Parabacteroides, and Odoribacter* was significantly lower in Prob 1 compared with PC on day 8 (Figure 4A). The Prob 1 group had lower relative abundance of *Alistipes, Bacteroides, Blautia, Bifidobacterium, Butyricoccus, Erysipelatoclostridium, Faecalibacterium, Faecalibaculum, Gallibacterium, Negativibacillus, Phascolarctobacterium, Prevotella 9*, and *Ruminococcaceae UCG-014* were significantly lower in Prob 2 than in NC on day 8 (Figure 5A). On day 28, relative abundance of

Figure 1. Comparison of microbial population in broilers fed various dietary supplements on day 8. (A) Shannon’s diversity index of each treatment group. The boxplots show the quartiles, median, and extremities of the values. (B) 3D PCoA plots based on weighted UniFrac distance matrix (Bray-Curtis). Each sphere represents a sample. Treatments include negative control (NC): corn-soybean meal basal diet; positive control (PC): NC + 20 g virginiamycin (453 g Stafac20)/907 kg feed; probiotic 1 (Prob 1): NC + 453 g *Bacillus subtilis* DSM17299/907 kg feed; probiotic 2 (Prob 2): NC + 453 g *B. subtilis* C-3102/907 kg feed; synbiotic (Synb): NC + 453 g dried fermentation product of *Enterococcus faecium, Pediococcus acidilactici, Bifidobacterium animalis, Lactobacillus reuteri*, and fructooligosaccharides/907 kg feed.
Lactobacillus was lower, whereas relative abundance of Bacteroides, Barnesiella, Butyricicoccus, CHKCI001, Eisenbergiella, Eubacterium hallii group, Helicobacter, Ruminococcaceae UCG-005, R. torques group, Selli- monas, and Sutterella were higher in the NC than in the Prob 2 group (Figure 5B). Relative abundance of Clostridio- diodes, Enterococcus, and Lactobacillus was significantly higher, whereas abundance of Alistipes, Bifidobacterium, Lachnospiraceae UCG-001, Odoribacter, and Parabacteroides was significantly lower in the Prob 2 group than in PC on day 8 (Figure 6A). On day 28, relative abundance of Enterococcus, Clostridio- diodes, Lactobacillus, and Tyzzerella 3 were higher, whereas relative abundance of Anaerostipes, Bacteroides, Blautia, Butyricicoccus, CHKCl001, Eisenbergiella, Erysipelatoclostridium, Faecalibacterium, Faecalibaculum, Gallibacterium, Helicobacter, Hydrotae- lae, Intestinimonas, Jeotgalicoccus, Kocuria, Microco- ccus, Negativibacillus, Pedobacter, Pseudoflavibacteria, Ruminococcaceae UCG-014, Ruminoclostridium, and Sutterella were lower in Prob 2 than in PC group (Figure 6A).

At the genus level, relative abundance of Clostridio- diodes and Tyzzerella 3 was significantly higher, whereas relative abundance of Alistipes, ASF356, Faecalibaculum, Lachnospiraceae UCG-001, Muribaculum, Oscillibacter,
Parabacteroides, Rikenellaceae RC9 gut group, Ruminococcaceae UCG-014, and Ruminiclostridium 9 was significantly lower in Synb than in NC on day 8 (Figure 7A). On day 28, relative abundance of Lactobacillus and Tyzzerella 3 was lower, whereas relative abundance of Acinetobacter, Bacteroides, Barnesiella, Jeotgalicoccus, Lachnospiraceae UCG-001, and fructooligosaccharides/907 kg diet.

Table 6. Pairwise PERMANOVA statistic based on unweighted UniFrac distance matrix on day 8 and day 28.1

Sampling day	Group 1	Group 2	Pseudo-F	p-value	q-value
Day 8	NC	PC	0.654	0.717	0.717
	Prob 1	1.925	0.040	0.156	
	Prob 2	2.069	0.048	0.156	
	Synb	1.896	0.056	0.156	
Day 28	NC	PC	1.559	0.071	0.156
	Prob 1	1.933	0.078	0.156	
	Prob 2	1.641	0.117	0.167	
	Synb	0.937	0.519	0.576	

1Treatments include: negative control (NC): corn-soybean meal basal diet; positive control (PC): NC + 20 g virginaminycin (453 g Stafe20)/907 kg diet; probiotic 1 (Prob 1): NC + 453 g Bacillus subtilis DSM17299/907 kg diet; probiotic 2 (Prob 2): NC + 453 g Bacillus subtilis C-3102/907 kg diet; probiotic 1 (Prob 1): NC + 453 g dried fermentation product of Enterococcus faecium, Pediococcus acidilactici, Bifidobacterium animalis, Lactobacillus reuteri, and fructooligosaccharides/907 kg diet.

Table 7. Comparison of microbial population in broiler chickens fed various dietary supplements on day 8 and 28 using 16S rRNA sequencing.

Dietary treatments	Relative abundance (%)	NC	PC	Prob 1	Prob 2	Synb
Day 8						
Actinobacteria	1.95	2.72	0.09	0.15	0.33	
Bacteroides	14.58	14.60	1.65	1.22	1.78	
Epsilonbacteroides	0.08	0.02	0.00	0.00	0.00	
Firmicutes	81.82	76.35	96.75	97.43	96.94	
Proteobacteria	1.39	5.99	1.09	0.90	0.80	
Tenericutes	0.04	0.15	0.33	0.00	0.05	
Day 28						
Actinobacteria	0.35	1.73	0.17	0.27	0.30	
Bacteroides	0.00	6.79	0.77	0.63	0.80	
Epsilonbacteroides	0.73	0.04	0.55	0.74	0.15	
Firmicutes	75.40	60.18	80.80	83.95	85.95	
Proteobacteria	2.27	5.22	1.48	1.23	1.13	
Tenericutes	0.09	0.17	0.02	0.08	0.01	

1Treatments include: negative control (NC): corn-soybean meal basal diet; positive control (PC): NC + 20 g virginaminycin (453 g Stafe20)/907 kg diet; probiotic 1 (Prob 1): NC + 453 g Bacillus subtilis DSM17299/907 kg diet; probiotic 2 (Prob 2): NC + 453 g Bacillus subtilis C-3102/907 kg diet; probiotic Synb (Symb): NC + 453 g dried fermentation product of Enterococcus faecium, Pediococcus acidilactici, Bifidobacterium animalis, Lactobacillus reuteri, and fructooligosaccharides/907 kg diet.

2P-values were calculated based on 999 permutation tests.

Table 8. Comparison of microbial population in broiler chickens fed various dietary supplements on day 8 and 28 using 16S rRNA sequencing.

Taxonomic category	Relative abundance (%)	NC	PC	Prob 1	Prob 2	Synb
Day 8						
Actinobacteria	1.95	2.72	0.09	0.15	0.33	
Bacteroides	14.58	14.60	1.65	1.22	1.78	
Epsilonbacteroides	0.08	0.02	0.00	0.00	0.00	
Firmicutes	81.82	76.35	96.75	97.43	96.94	
Proteobacteria	1.39	5.99	1.09	0.90	0.80	
Tenericutes	0.04	0.15	0.33	0.00	0.05	
Day 28						
Actinobacteria	0.35	1.73	0.17	0.27	0.30	
Bacteroides	0.00	6.79	0.77	0.63	0.80	
Epsilonbacteroides	0.73	0.04	0.55	0.74	0.15	
Firmicutes	75.40	60.18	80.80	83.95	85.95	
Proteobacteria	2.27	5.22	1.48	1.23	1.13	
Tenericutes	0.09	0.17	0.02	0.08	0.01	

Predicted Functions of Ileal Microbiota

Prediction of microbial functions showed distinctive patterns among the treatment groups. There were 36 and 2 pathways at KEGG level 3 with distinctive enrichment between the NC and Prob 1 groups on day 8 and day 28, respectively (Figures 9A and 9B). Among these, the NC microbiota had greater numbers of functional genes involved in LPS biosynthesis, LPS biosynthesis proteins, C5 branched dibasic acid metabolism, and biosynthesis of vancomycin group antibiotics on day 8. Figures 10A and 10B indicate 63 and 8 pathways at KEGG level 3 with distinctive enrichment between the NC and Prob 2 birds on day 8 and day 28, respectively. There were 47 and 14 pathways at KEGG level 3 with distinctive enrichment between the NC and Synb group on day 8 and day 28, respectively (Figures 11A and 11B). Among these, the Prob 2 and Synb groups had greater numbers of functional genes involved in propionate metabolism, whereas LPS biosynthesis, LPS biosynthesis proteins, bacterial secretion system, and biosynthesis of vancomycin group antibiotics were enriched in the NC compared with the Prob 2 and Synb groups on day 8. On day 28, lysine biosynthesis, cellular antigens, and transporters proteasome, peroxisome, antigen processing, and presentation were enriched in both the Synb and Prob 2 birds compared with NC. Furthermore, polyketide sugar unit biosynthesis and phosphotransferase system were enriched in Synb compared with NC.

Figures 12A and 12B illustrate 41 and 57 pathways at KEGG level 3 with distinctive enrichment between PC and Prob 1 group on day 8 and day 28, respectively.
Figure 3. Taxonomic biomarkers highlighted by linear discriminant analysis effect size (LEfSe) \((P \leq 0.05\) and LDA cutoff \(> 2.0\)) in ileal mucosa microbiota of broiler chickens challenged with a subclinical naturally occurring necrotic enteritis \((n = 8\)/treatment). LEfSe uses relative abundances to determine the biomarkers (operational taxonomic units) to explain differences between groups. (A) and (B) Taxonomic biomarkers in NC vs. Prob 1 group on day 8 and day 28, respectively. NC (negative control): corn-soybean meal basal diet; Prob 1: NC + 453 g \textit{Bacillus subtilis} DSM17299/907 kg feed. Abbreviation: LDA, linear discriminant analysis.

Figure 4. Taxonomic biomarkers highlighted by linear discriminant analysis effect size (LEfSe) \((P \leq 0.05\) and LDA cutoff \(> 2.0\)) in ileal mucosa microbiota of broiler chickens challenged with a subclinical naturally occurring necrotic enteritis \((n = 8\)/treatment). LEfSe uses relative abundances to determine the biomarkers (operational taxonomic units) to explain differences between groups. (A) and (B) Taxonomic biomarkers in PC vs. Prob 1 group on day 8 and day 28, respectively. PC (positive control): basal diet + 20 g virginiamycin (453 g Stafac20)/907 kg feed; Prob 1: basal diet + 453 g \textit{Bacillus subtilis} DSM17299/907 kg feed. Abbreviations: LDA, linear discriminant analysis.
Figure 5. Taxonomic biomarkers highlighted by linear discriminant analysis effect size (LEfSe) ($P \leq 0.05$ and LDA cutoff > 2.0) in ileal mucosa microbiota of broiler chickens challenged with a subclinical naturally occurring necrotic enteritis ($n = 8$ / treatment). LEfSe uses relative abundances to determine the biomarkers (operational taxonomic units) to explain differences between groups. (A) and (B) Taxonomic biomarkers in NC vs. Prob 2 group on day 8 and day 28, respectively. NC (negative control): corn-soybean meal basal feed; Prob 2: NC + 453 g Bacillus subtilis C-3102/907 kg feed. Abbreviation: LDA, linear discriminant analysis.

Figure 6. Taxonomic biomarkers highlighted by linear discriminant analysis effect size (LEfSe) ($P \leq 0.05$ and LDA cutoff > 2.0) in ileal mucosa microbiota of broiler chickens challenged with a subclinical naturally occurring necrotic enteritis ($n = 8$ / treatment). LEfSe uses relative abundances to determine the biomarkers (operational taxonomic units) to explain differences between groups. (A) and (B) Taxonomic biomarkers in PC vs. Prob 2 group on day 8 and day 28, respectively. PC (positive control): basal diet + 20 g virginiamycin (453 g Stafac20)/907 kg feed; Prob 2: basal feed + 453 g Bacillus subtilis C-3102/907 kg feed. Abbreviation: LDA, linear discriminant analysis.
Comparison of PC and Prob 2 group indicated 60 and 92 pathways at KEGG level 3 with distinctive enrichment on day 8 and day 28, respectively (Figures 13A and 13B). There were 34 and 80 pathways at KEGG level 3 with distinctive enrichment between PC and Synb group on day 8 and day 28, respectively (Figures 14A and 14B). The Prob 2 and Synb groups had greater numbers of functional genes involved in glycolysis/gluconeogenesis, phosphotransferase system and signal transduction mechanisms, whereas LPS biosynthesis, LPS biosynthesis proteins, and bacterial secretion system were enriched in PC compared with the Prob 2 and Synb groups on day 8. In addition, apoptosis was enriched in the Prob 2 group, whereas cell division and metabolism and biosynthesis of some amino acids were enriched in PC. On day 28, fructose and mannose metabolism, synthesis, and degradation of ketone bodies, phosphotransferase system, cysteine and methionine metabolism, lysine biosynthesis, transcription factors, dioxin degradation, Staphylococcus aureus infection, peptidases, and transporters were enriched in both the Synb and Prob 2 groups than in PC. Furthermore, bacterial invasion of epithelial cells, leucine and isoleucine degradation, calcium signaling pathway, PPAR signaling pathway, mineral absorption, LPS biosynthesis, adipocyte signaling pathway, lipid biosynthesis, proteins and vitamin B6 metabolism were enriched in PC compared with the Synb and Prob 2 groups.

DISCUSSION

Synb was the only group with better FCR during day 0 to 8 and lower NE lesion scores on day 8 compared with NC. These improvements were associated with the modified ileal microbiota in the Synb group compared with NC on day 8. Microbial balance and macro- and micro-structural integrity of the gut are pivotal for gut health, which if compromised would negatively affect digestion, absorption, and metabolism of nutrients and may lead to the onset of enteric disease (Yegani and Korver, 2008; Ritzi et al., 2014). Changes in microbial diversity and population could make the gut environment suitable for proliferation or pathogenesis of bacteria such as C. perfringens, either directly or via promoting growth of other bacterial species that may competitively exclude Clostridia. Relative abundance of Bacteroides in the ileal digesta of broiler chickens increases with NE challenge (Bortoluzzi et al., 2019). Bacteroides and Prevotellaceae can degrade mucus oligosaccharides, which results in the disruption of intestinal mucosal barrier, thus causing intestinal inflammation (Rho et al., 2005; Berry et al., 2015). Supplementation of Synb reduced the relative abundance of Bacteroides compared with NC on day 8. Dietary supplementation of a Bacillus-based probiotic partially restored relative abundance of Bacteroides in the ileal digesta of NE-challenged birds to the level of the nonchallenged group (Bortoluzzi et al., 2019).
Figure 8. Taxonomic biomarkers highlighted by linear discriminant analysis effect size (LEfSe) \((P \leq 0.05\) and LDA cutoff \(> 2.0\)) in ileal mucosa microbiota of broiler chickens challenged with a subclinically naturally occurring necrotic enteritis \((n = 8/treatment)\). LEfSe uses relative abundances to determine the biomarkers (operational taxonomic units) to explain differences between groups. (A) and (B) Taxonomic biomarkers in PC vs. Synb group on day 8 and day 28, respectively. PC (positive control): basal diet + 20 g virgimycin (453 g Stafac20)/907 kg feed; Synb: NC + 453 g dried fermentation product of Enterococcus faecium, Pediococcus acidilactici, Bifidobacterium animalis, Lactobacillus reuteri, and fructooligosaccharides/907 kg feed. Abbreviation: LDA, linear discriminant analysis.

Figure 9. Predicted functions of ileal mucosa microbiota in broiler chickens challenged with a subclinically naturally occurring necrotic enteritis at KEGG levels 3 \((n = 8/treatment)\). (A) and (B) Differentially regulated metabolic pathways in NC vs. Prob 1 group on day 8 and day 28, respectively. NC (negative control): corn-soybean meal basal diet; Prob 1: NC + 453 g Bacillus subtilis DSM17299/907 kg feed. Abbreviation: KEGG, Kyoto encyclopedia of genes and genomes.
Figure 10. Predicted functions of ileal mucosa microbiota in broiler chickens challenged with a subclinical naturally occurring necrotic enteritis at KEGG levels 3 (n = 8/treatment). (A) and (B) Differentially regulated metabolic pathways in NC vs. Prob 2 group on day 8 and day 28, respectively. NC (negative control): corn-soybean meal basal diet; Prob 2: NC + 453 g Bacillus subtilis C-3102/907 kg feed. Abbreviation: KEGG, Kyoto encyclopedia of genes and genomes.

Figure 11. Predicted functions of ileal mucosa microbiota in broiler chickens challenged with a subclinical naturally occurring necrotic enteritis at KEGG levels 3 (n = 8/treatment). (A) and (B) Differentially regulated metabolic pathways in NC vs. Synb group on day 8 and day 28, respectively. NC (negative control): corn-soybean meal basal diet; Synb: NC + 453 g dried fermentation product of Enterococcus faecium, Pedicoccus acidilactici, Bifidobacterium animalis, Lactobacillus reuteri and fructooligosaccharides/907 kg feed. Abbreviation: KEGG, Kyoto encyclopedia of genes and genomes.
Predisposing factors such as *Eimeria* would lead to disturbances in the microbiota by impacting the gastrointestinal environment, therefore allowing the proliferation of *Clostridium perfringens* by providing a favorable ecological environment and/or nutrients (Shojadoost et al., 2012; Antonissen et al., 2016). *Eimeria* infection had a marked effect on the microbiota composition in the ceca of infected birds (Stanley et al., 2014) and a coccidiosis challenge reduced the *Ruminococcaceae* family while 3 unknown *Clostridium* species were increased (Wu et al., 2014). Overgrowth of *Clostridium sensu stricto 1* and reduction in the number of *Lactobacillus* were associated with NE (Antonissen et al., 2016; Fasina et al., 2016; Li et al., 2017). Mixed *C. perfringens* and *Eimeria* challenge led to a significant increase in *Clostridium sensu stricto 1* and a reduction in *Lactobacillus* with the concurrent increase in NE lesions (Yang et al., 2019). The NC and Prob 1 groups had higher NE lesion scores as well as higher relative abundance of *Clostridium sensu stricto 1* on day 8. By contrast, Synb and Prob 2 supplementation reduced lesion scores and relative abundance of *Clostridium sensu stricto 1* andASF356 (a *Clostridium* species), while increased the abundance of *Lactobacillus* compared with NC. *Lactobacillus* is among the predominant bacterial genera in the gastrointestinal tract of broiler chickens (Wei et al., 2013). These bacteria have direct and indirect beneficial effects. Direct effects include immunomodulation via attachment and interaction with enterocytes, antagonistic activity against pathogens by production of lactate thus lowering pH and making the gastrointestinal tract environment unsuitable for acid-sensitive pathogens, and the production of bacteriostatic and bactericidal substances (Servin, 2004; Belenguer et al., 2007; Pan and Yu, 2014). Furthermore, probiotic bacteria such as *Lactobacillus* prevent adherence of pathogens to the intestinal mucosa by competitive exclusion and displacing pathogenic bacteria (Servin and Coconnier, 2003; Collado et al., 2005). Supplementation of Synb and Prob 1 increased the relative abundance of *Lactobacillus* in the ileal mucosa, which may illustrate a positive effect on gut health and performance of the birds. Likewise, supplementation of a probiotic to the diet of broiler chickens challenged with NE increased abundance of *Lactobacillaceae* and *Clostridiaceae* families in the cecal digesta compared with the challenged control group (Whelan et al., 2019).

All the additives improved FCR significantly during day 0 to 28 compared with NC. In addition, ADG significantly increased in the PC, Prob 2, and Synb groups compared with NC for the same period. Supplementation of *B. subtilis* to the diet of broiler chickens challenged with NE significantly decreased lesion scores and improved FCR compared with challenged control (Bortoluzzi et al., 2019; Sokale et al., 2019; Whelan et al., 2019). Higher abundance of *Lactobacillus* was correlated with feed intake which results in poor FCR, whereas *Faecalibacterium* was correlated with improved performance.

Figure 12. Predicted functions of ileal mucosa microbiota in broiler chickens challenged with a subclinical naturally occurring necrotic enteritis at KEGG levels 3 (n = 8/treatment). (A) and (B) Differentially regulated metabolic pathways in PC vs. Prob 1 group on day 8 and day 28, respectively. PC (positive control): basal diet + 20 g virginiamycin (453 g Stafac20)/907 kg feed; Prob 1: basal diet + 453 g *Bacillus subtilis* DSM17299/907 kg feed. Abbreviation: KEGG, Kyoto encyclopedia of genes and genomes.
Figure 13. Predicted functions of ileal mucosa microbiota in broiler chickens challenged with a subclinical naturally occurring necrotic enteritis at KEGG levels 3 (n = 8/treatment). (A) and (B) Differentially regulated metabolic pathways in PC vs. Prob 2 group on day 8 and day 28, respectively. PC (positive control): basal diet + 20 g virginiamycin (453 g Stafac20)/907 kg feed; Prob 2: basal diet + 453 g Bacillus subtilis C-3102/907 kg feed. Abbreviation: KEGG, Kyoto encyclopedia of genes and genomes.

Figure 14. Predicted functions of ileal mucosa microbiota in broiler chickens challenged with a subclinical naturally occurring necrotic enteritis at KEGG levels 3 (n = 8/treatment). (A) and (B) Differentially regulated metabolic pathways in PC vs. Synb group on day 8 and day 28, respectively. PC (positive control): basal diet + 20 g virginiamycin (453 g Stafac20)/907 kg feed; Synb: NC + 453 g dried fermentation product of Enterococcus faecium, Pediococcus acidilactici, Bifidobacterium animalis, Lactobacillus reuteri, and fructooligosaccharides/907 kg feed. Abbreviation: KEGG, Kyoto encyclopedia of genes and genomes.
FCR (Stanley et al., 2016). Despite similar FCR during day 0 to 28, relative abundance of Faecalibacterium was higher and that of Lactobacillus was lower in PC birds than in the Prob 1, Prob 2, and Synb groups on day 28. This may imply that a specific genus of bacteria might not be a good indicator of bird’s performance and health; instead, considering the whole microbial profile of the gastrointestinal tract would be a better approach. Relative abundance of Bacteroides, Barnesiella, Butyricoccus, CHKC1001, Eisenbergiella, E. hallii group, Helicobacter, Ruminococcaceae UCG-005, R. torques group, and Sellimonas was lower in the Synb and Prob 2 groups (with better FCR) than in NC on day 28. Previous reports indicate that manipulation of the gut microbiota during a NE challenge might prevent/ameliorate its negative effects. Fructooligosaccharides constitute one component of Synb. In vitro studies have shown high levels of propionate production from fructooligosaccharides fermentation (Asano et al., 2003). Absorption of propionate by the chicken cecal mucosa could improve host energy metabolism and improve production (Pineda-Quiroga et al., 2019). Dietary supplementation of a prebiotic (but not probiotic and symbiotic) to laying hens enriched cecal microbial genes involved in propanoate metabolism (Pineda-Quiroga et al., 2019). Furthermore, production of short chain fatty acids reduces the cecum pH, thus inhibiting the growth of Enterobacteriaceae (which includes Escherichia-Shigella) (van Der Wielen et al., 2000). A L. acidophilus–based probiotic improved intestinal health by decreasing the relative abundance of Escherichia-Shigella in the ileum (Li et al., 2017). The probiotic bacteria B. subtilis DSM 32315 increased the abundance of Firmicutes while reduced the abundance of Bacteroidetes in the ceca of broiler chickens (Ma et al., 2018). Furthermore, this probiotic decreased the abundance of potentially harmful bacteria including Vampirovibrio, Escherichia-Shigella, and Parabacteroides (Ma et al., 2018). Relative abundance of Lachnospiraceae, Ruminococcaceae, and unclassified family members belonging to the Clostridiales order were decreased in the cecal digesta of NE-challenged broiler chickens fed a diet supplemented with Bacillus–based probiotic compared with the challenged control. However, the abundance of Lactobacillaceae and Clostridiaceae families was significantly increased in probiotic fed birds (Whelan et al., 2019). Lower relative abundance of Escherichia-Shigella (belonging to Enterobacteriaceae) in the Synb and Prob 2 groups than PC was associated with the reduction in LPS biosynthesis, LPS biosynthesis proteins and bacterial secretion system in these birds compared with those of NC and PC as indicated by the KEGG pathway. Lipopolysaccharides induce mucosal immune responses (Lucke et al., 2018); therefore, mucosal immune response to the overgrowth of opportunistic bacteria due to the dysbiosis caused by the NE challenge might have been attenuated by the supplementation of Synb and Prob 2.

Based on the findings presented herein, we can conclude that under a naturally occurring NE challenge model, dietary supplementation of Synb to broilers could significantly reduce day 8 lesion scores and improve FCR during the peak challenge period (day 0–8). These changes might be due to modified microbiota as influenced by supplementation of the Synb additive. In addition, birds fed diets supplemented with Synb and Prob 1 had significantly better FCR and higher ADG during day 0 to 28 than NC. Better performance was associated with the modified microbiota in the Synb and Prob 1 groups on day 28, and might partially explain the protective effect of these additives against a naturally occurring subclinical NE.

ACKNOWLEDGMENTS

This work was supported, in part, by USDA-NIFA Hatch funds to the Virginia Agricultural Experiment Station, Virginia Tech.

DISCLOSURES

The authors declare no conflict of interest.

REFERENCES

Antonissen, G., V. Eeckhaut, K. Van Driessche, L. Onrust, F. Haesebroeck, R. Ducatelle, R. J. Moore, and F. Van Immerseel. 2016. Microbial shifts associated with necrotic enteritis. Avian Pathol. 45:308–312.

Apprill, A., S. McNally, R. Parsous, and L. Weber. 2015. Minor revision to V4 region SSU rRNA gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. 75:129–137.

Asano, I., K. Hamaguchi, S. Fujii, and H. Ino. 2003. In vitro digestibility and fermentation of manno-oligosaccharides from coffee mannan. Food Sci. Technol. Res. 9:62-66.

Belanger, A. S., H. Duncan, G. Holtrop, S. E. Anderson, G. E. Lobley, and H. J. Flint. 2007. Impact of pH on lactate formation and utilization by human faecal microbial communities. Appl. Environ. Microbiol. 73:6526–6533.

Berry, D., E. Mader, T. K. Lee, D. Woebken, Y. Wang, D. Zhu, M. Palatinszky, A. Schintlmeister, M. C. Schmid, B. T. Hanson, N. Shterzer, I. Mizrahi, I. Rauch, T. Decker, T. Bocklitz, J. Popp, C. M. Gibson, P. M. Fowler, W. E. Huang, and M. Wagner. 2015. Tracking heavy water incorporation for identifying and sorting active microbial cells. Proc. Natl. Acad. Sci. U. S. A. 112:E194.

Bolyen, E., J. R. Rideout, M. R. Dillon, N. A. Bokulich, C. C. Abnet, G. A. Al-Ghailith, H. Alexander, E. J. Alm, M. Arumugam, F. Asnicar, Y. Bai, J. E. Bisanz, K. Bittinger, A. Brejnrod, C. J. Brislawn, C. T. Brown, B. J. Callahan, A. M. Caraballo-Rodriguez, J. Chase, E. K. Cope, R. Da Silva, C. Diener, P. C. Dorrestein, G. M. Douglas, D. M. Durall, C. Duvallet, C. F. Edwardson, M. Ernst, M. Estaki, J. Fouquier, J. M. Gauglitz, S. M. Gibbons, D. L. Gibson, A. Gonzalez, K. Gorlick, J. Guo, B. Hillmann, S. Holmes, H. Holste, C. Huttenhower, G. A. Huttley, S. Janssen, A. K. Jarmuscha, L. Jiang, B. D. Kaehler, B. K. Kang, C. R. Keeffe, P. Keim, S. T. Kelley, D. Knights, I. Koester, T. Koscielak, J. Kreps, M. G. L. Langille, J. Lee, R. Ley, Y.-X. Liu, E. Loftfield, C. Lozupone, M. Maher, C. Marotz, B. D. Martin, D. McDonald, L. J. McIver, A. V. Melnik, J. L. Meteia, S. C. Morgan, J. T. Morton, A. T. Nsimey, J. A. Navas-Molina, L. F. Nothias, S. B. Orchanian, T. Pearson, S. L. Peoples, D. Petras, M. L. Preuss, E. Pruesse, L. B. Rasmussen, A. Rivers, M. S. Robeson, P. Rosenthal, N. Segata, M. Shaffer, A. Shiffer, R. Sinha, S. J. Song, J. R. Spear, A. D. Swafford, L. R. Thompson, P. J. Torres, P. Trimh, A. Tripathi, P. J. Turnbaugh, S. U. Hasan, J. J. J. van der Hoof, F. Vargas, Y. Vázquez-Baeza, E. Vogtmann, M. von Hippel, W. Walters, Y. Wan, M. Wang, J. Warren, K. C. Weber, C. H. D. Williamson, A. D. Willis, Z. Z. Xu, J. R. Zaneveld, Y. Zhang, Q. Zhu, R. Knight, and
