GALOIS EXTENSIONS, PLUS CLOSURE, AND MAPS ON LOCAL COHOMOLOGY

AKIYOSHI SANNAI AND ANURAG K. SINGH

Abstract. Given a local domain \((R, m)\) of prime characteristic that is a homomorphic image of a Gorenstein ring, Huneke and Lyubeznik proved that there exists a module-finite extension domain \(S\) such that the induced map on local cohomology modules \(H^i_m(R) \rightarrow H^i_m(S)\) is zero for each \(i < \dim R\). We prove that the extension \(S\) may be chosen to be generically Galois, and analyze the Galois groups that arise.

1. Introduction

Let \(R\) be a commutative Noetherian integral domain. We use \(R^+\) to denote the integral closure of \(R\) in an algebraic closure of its fraction field. Hochster and Huneke proved the following:

Theorem 1.1. [HH2, Theorem 1.1] If \(R\) is an excellent local domain of prime characteristic, then each system of parameters for \(R\) is a regular sequence on \(R^+\), i.e., \(R^+\) is a balanced big Cohen-Macaulay algebra for \(R\).

It follows that for a ring \(R\) as above, and \(i < \dim R\), the local cohomology module \(H^i_m(R^+)\) is zero. Hence, given an element \([\eta]\) of \(H^i_m(R)\), there exists a module-finite extension domain \(S\) such that \([\eta]\) maps to 0 under the induced map \(H^i_m(R) \rightarrow H^i_m(S)\). This was strengthened by Huneke and Lyubeznik, albeit under mildly different hypotheses:

Theorem 1.2. [HL, Theorem 2.1] Let \((R, m)\) be a local domain of prime characteristic that is a homomorphic image of a Gorenstein ring. Then there exists a module-finite extension domain \(S\) such that the induced map
\[
H^i_m(R) \rightarrow H^i_m(S)
\]
is zero for each \(i < \dim R\).

By a generically Galois extension of a domain \(R\), we mean an extension domain \(S\) that is integral over \(R\), such that the extension of fraction fields is Galois; \(\text{Gal}(S/\text{R})\) will denote the Galois group of the corresponding extension of fraction fields. We prove the following:

2010 Mathematics Subject Classification. Primary 13D45; Secondary 13A35, 14B15, 14F17.

Key words and phrases. Characteristic p methods, local cohomology, big Cohen-Macaulay algebras, integral ring extensions, Galois extensions.

The first author was supported by the Japan Society for Promotion of Science (JSPS), and the second author by NSF grant DMS 0856044.
Theorem 1.3. Let \(R \) be a domain of prime characteristic.

1. Let \(a \) be an ideal of \(R \) and \([\eta]\) an element of \(H^1_a(R)_{\text{nil}} \) (see Section 2.3). Then there exists a module-finite generically Galois extension \(S \), with \(\text{Gal}(S/R) \) a solvable group, such that \([\eta]\) maps to 0 under the induced map \(H^1_a(R) \rightarrow H^1_a(S) \).

2. Suppose \((R, m)\) is a homomorphic image of a Gorenstein ring. Then there exists a module-finite generically Galois extension \(S \) such that the induced map \(H^i_m(R) \rightarrow H^i_m(S) \) is zero for each \(i < \dim R \).

Set \(R^{+\text{sep}} \) to be the \(R \)-algebra generated by the elements of \(R^{+} \) that are separable over \(\text{frac}(R) \). Under the hypotheses of Theorem 1.3(2), \(R^{+\text{sep}} \) is a separable balanced big Cohen-Macaulay \(R \)-algebra; see Corollary 3.3. In contrast, the algebra \(R^{\infty} \), i.e., the purely inseparable part of \(R^{+} \), is not a Cohen-Macaulay \(R \)-algebra in general: take \(R \) to be an \(F \)-pure domain that is not Cohen-Macaulay; see [HH2, page 77].

For an \(\mathbb{N} \)-graded domain \(R \) of prime characteristic, Hochster and Huneke proved the existence of a \(\mathbb{Q} \)-graded Cohen-Macaulay \(R \)-algebra \(R^{+\text{GR}} \), see Theorem 5.1. In view of this and the preceding paragraph, it is natural to ask whether there exists a \(\mathbb{Q} \)-graded separable Cohen-Macaulay \(R \)-algebra; in Example 5.2 we show that the answer is negative.

In Example 5.3 we construct an \(\mathbb{N} \)-graded domain of prime characteristic for which no module-finite \(\mathbb{Q} \)-graded extension domain is Cohen-Macaulay.

We also prove the following results for closure operations; the relevant definitions may be found in Section 2.1.

Theorem 1.4. Let \(R \) be an integral domain of prime characteristic, and let \(a \) be an ideal of \(R \).

1. Given \(z \in a^F \), there exists a module-finite generically Galois extension \(S \), with \(\text{Gal}(S/R) \) a solvable group, such that \(z \in aS \).

2. Given \(z \in a^{+} \), there exists a module-finite generically Galois extension \(S \) such that \(z \in aS \).

In Example 4.1 we present a domain \(R \) of prime characteristic where \(z \in a^{+} \) for an element \(z \) and ideal \(a \), and conjecture that \(z \notin aS \) for each module-finite generically Galois extension \(S \) with \(\text{Gal}(S/R) \) a solvable group. Similarly, in Example 4.3 we present a 3-dimensional ring \(R \) where we conjecture that \(H^2_a(R) \rightarrow H^2_a(S) \) is nonzero for each module-finite generically Galois extension \(S \) with \(\text{Gal}(S/R) \) a solvable group.

Remark 1.5. The assertion of Theorem 1.2 does not hold for rings of characteristic zero: Let \((R, m)\) be a normal domain of characteristic zero, and \(S \) a module-finite extension domain. Then the field trace map \(\text{tr}: \text{frac}(S) \rightarrow \text{frac}(R) \) provides an \(R \)-linear splitting of \(R \subseteq S \), namely

\[
\frac{1}{[\text{frac}(S) : \text{frac}(R)]} \text{tr}: S \rightarrow R.
\]
It follows that the induced maps on local cohomology $H^i_m(R) \to H^i_m(S)$ are R-split. A variation is explored in [RSS], where the authors investigate whether the image of $H^i_m(R)$ in $H^i_m(R^+)$ is killed by elements of R^+ having arbitrarily small positive valuation. This is motivated by Heitmann’s proof of the direct summand conjecture for rings (R, m) of dimension 3 and mixed characteristic $p > 0$, [He], which involves showing that the image of $H^2_m(R) \to H^2_m(R^+)$ is killed by $p^{1/n}$ for each positive integer n.

Throughout this paper, a local ring refers to a commutative Noetherian ring with a unique maximal ideal. Standard notions from commutative algebra that are used here may be found in [BH]; for more on local cohomology, consult [ILL]. For the original proof of the existence of big Cohen-Macaulay modules for equicharacteristic local rings, see [Ho].

2. Preliminary Remarks

2.1. Closure operations. Let R be an integral domain. The plus closure of an ideal a is the ideal $a^+ = aR^+ \cap R$.

When R is a domain of prime characteristic $p > 0$, we set

$$R^\infty = \bigcup_{e \geq 0} R^{1/p^e} ,$$

which is a subring of R^+. The Frobenius closure of an ideal a is the ideal $a^F = aR^\infty \cap R$. Alternatively, set

$$a^{[p^e]} = (a^{p^e} \mid a \in a) .$$

Then $a^F = \{ r \in R \mid r^{p^e} \in a^{[p^e]} \text{ for some } e \in \mathbb{N} \}$.

2.2. Solvable extensions. A finite separable field extension L/K is solvable if $\text{Gal}(M/K)$ is a solvable group for some Galois extension M of K containing L. Solvable extensions form a distinguished class, i.e.,

(1) for finite extensions $K \subseteq L \subseteq M$, the extension M/K is solvable if and only if each of M/L and L/K are solvable;

(2) for finite extensions L/K and M/K contained in a common field, if L/K is solvable, then so is the extension LM/M.

A finite separable extension L/K of fields of characteristic $p > 0$ is solvable precisely if it is obtained by successively adjoining

(1) roots of unity;

(2) roots of polynomials $T^n - a$ for n coprime to p;

(3) roots of Artin-Schreier polynomials, $T^p - T - a$.
2.3. Frobenius-nilpotent submodules. Let R be a ring of prime characteristic p. A Frobenius action on an R-module M is an additive map $F: M \rightarrow M$ with $F(rm) = r^pF(m)$ for each $r \in R$ and $m \in M$. In this case, $\ker F$ is a submodule of M, and we have an ascending sequence

$$\ker F \subseteq \ker F^2 \subseteq \ker F^3 \subseteq \ldots$$

The union of these is the F-nilpotent submodule of M, denoted M_{nil}. If R is local and M is Artinian, then there exists a positive integer e such that $F^e(M_{\text{nil}}) = 0$; see [Ly, Proposition 4.4] or [HS, Theorem 1.12].

3. Proofs

We record two elementary results that will be used later:

Lemma 3.1. Let K be a field of characteristic $p > 0$. Let a and b elements of K where a is nonzero. Then the Galois group of the polynomial $T^p + at - b$ is a solvable group.

Proof. Form an extension of K by adjoining a primitive $p - 1$ root of unity and an element c that is a root of $T^p - 1 - a$. The polynomial $T^p + at - b$ has the same roots as $(T/c)^p - (T/c) - b/c^p$, which is an Artin-Schreier polynomial in T/c. □

Lemma 3.2. Let R be a domain, and \mathfrak{p} a prime ideal. Given a domain S that is a module-finite extension of $R_{\mathfrak{p}}$, there exists a domain T, module-finite over R, with $T_{\mathfrak{p}} = S$.

Proof. Given $s_i \in S$, there exists $r_i \in R \setminus \mathfrak{p}$ such that r_is_i is integral over R. If s_1, \ldots, s_n are generators for S as an R-module, set $T = R[r_1s_1, \ldots, r_ns_n]$. □

Proof of Theorem L.3. Since solvable extensions form a distinguished class, (1) reduces by induction to the case where $F([\eta]) = 0$. Compute $H^i\Psi_R(x)$ using a Čech complex $C^\bullet(x; R)$, where $x = x_0, \ldots, x_n$ are nonzero elements generating the ideal \mathfrak{a}; recall that $C^\bullet(x; R)$ is the complex

$$0 \rightarrow R \rightarrow \bigoplus_{i=0}^{n} R_{x_i} \rightarrow \bigoplus_{i<j} R_{x_ix_j} \rightarrow \cdots \rightarrow R_{x_0 \cdots x_n} \rightarrow 0.$$

Consider a cycle η in $C^i(x; R)$ that maps to $[\eta]$ in $H^i_{\Psi_R}(R)$. Since $F([\eta]) = 0$, the cycle $F(\eta)$ is a boundary, i.e., $F(\eta) = \partial(\alpha)$ for some $\alpha \in C^{i-1}(x; R)$.

Let μ_1, \ldots, μ_m be the square-free monomials of degree $i-2$ in the elements x_1, \ldots, x_n, and regard $C^{i-1}(x; R) = C^{i-1}(x_0, \ldots, x_n; R)$ as $R_{x_0\mu_1} \oplus \cdots \oplus R_{x_0\mu_m} \oplus C^{i-1}(x_1, \ldots, x_n; R)$.

There exist a power q of the characteristic p of R, and elements b_1, \ldots, b_m in R, such that α can be written in the above direct sum as

$$\alpha = \left(\frac{b_1}{(x_0\mu_1)^q}, \ldots, \frac{b_m}{(x_0\mu_m)^q} \right).$$

Consider the polynomials

$$T^p + x_0^qT - b_i \quad \text{for } i = 1, \ldots, m,$$

and let L be a finite extension field where these have roots t_1, \ldots, t_m respectively. By Lemma 3.1, we may assume L is Galois over frac(R) with the Galois group being solvable. Let S be a module-finite extension of R that contains t_1, \ldots, t_m, and has L as its fraction field; if R is excellent, we may take S to be the integral closure of R in L.

In the module $C^{i-1}(x; S)$ one then has

$$\alpha = \left(\frac{t_1^p + x_0^q t_1}{(x_0\mu_1)^q}, \ldots, \frac{t_m^p + x_0^q t_m}{(x_0\mu_m)^q}, \ast, \ldots, \ast \right) = F(\beta) + \gamma,$$

where

$$\beta = \left(\frac{t_1}{(x_0\mu_1)^{q/p}}, \ldots, \frac{t_m}{(x_0\mu_m)^{q/p}}, 0, \ldots, 0 \right)$$

and

$$\gamma = \left(\frac{t_1}{\mu_1^q}, \ldots, \frac{t_m}{\mu_m^q}, \ast, \ldots, \ast \right)$$

are elements of

$$C^{i-1}(x; S) = S_{x_0\mu_1} \oplus \cdots \oplus S_{x_0\mu_m} \oplus C^{i-1}(x_1, \ldots, x_n; S).$$

Since $F(\eta) = \partial(F(\beta) + \gamma)$, we have

$$F(\eta - \partial(\beta)) = \partial(\gamma).$$

But $[\eta] = [\eta - \partial(\beta)]$ in $H^1_\alpha(S)$, so after replacing η we may assume that

$$F(\eta) = \partial(\gamma).$$

Next, note that γ is an element of $C^{i-1}(1, x_1, \ldots, x_n; S)$, viewed as a submodule of $C^{i-1}(x; S)$. There exits ζ in $C^{i-2}(1, x_1, \ldots, x_n; S)$ such that

$$\partial(\zeta) = \left(\frac{t_1}{\mu_1^q}, \ldots, \frac{t_m}{\mu_m^q}, \ast, \ldots, \ast \right).$$

Since

$$F(\eta) = \partial(\gamma - \partial(\zeta)),$$

after replacing γ we may assume that the first m coordinate entries of γ are 0, i.e., that

$$\gamma = \left(0, \ldots, 0, \frac{c_1}{\lambda_1^Q}, \ldots, \frac{c_l}{\lambda_l^Q} \right),$$

where Q is a power of p, the c_i belong to S, and $\lambda_1, \ldots, \lambda_l$ are the square-free monomials of degree $i - 1$ in x_1, \ldots, x_n.
The coordinate entries of \(\partial(\gamma) \) include each \(c_i/\lambda^Q_i \). Since \(\partial(\gamma) = F(\eta) \), each \(c_i/\lambda^Q_i \) is a \(p \)-th power in \(\text{frac}(S) \); it follows that each \(c_i \) has a \(p \)-th root in \(\text{frac}(S) \). After enlarging \(S \) by adjoining each \(c_i^{1/p} \), we see that \(\gamma = F(\xi) \) for an element \(\xi \) of \(C^{i-1}(x; S) \). But then
\[
F(\eta) = \partial(F(\xi)) = F(\partial(\xi)).
\]
Since the Frobenius action on \(C^i(x; S) \) is injective, we have \(\eta = \partial(\xi) \), which proves (1).

For (2), it suffices to construct a module-finite generically separable extension \(S \) such that \(\text{H}_i^m(R) \rightarrow \text{H}_i^m(S) \) is zero for \(i < \dim R \); to obtain a generically Galois extension, enlarge \(S \) to a module-finite extension whose fraction field is the Galois closure of \(\text{frac}(S) \) over \(\text{frac}(R) \).

We use induction on \(d = \dim R \), as in [HL]. If \(d = 0 \), there is nothing to be proved; if \(d = 1 \), the inductive hypothesis is again trivially satisfied since \(\text{H}_1^m(R) = 0 \). Fix \(i < \dim R \). Let \((A, \mathfrak{M})\) be a Gorenstein local ring that has \(R \) as a homomorphic image, and set
\[
M = \text{Ext}^d_{A} A^{-i}(R, A).
\]
Let \(p_1, \ldots, p_s \) be the elements of the set \(\text{Ass}_A M \setminus \{\mathfrak{M}\} \).

Let \(q \) be a prime ideal of \(R \) that is not maximal. Since \(R \) is catenary, one has
\[
\dim R = \dim R_q + \dim R/q.
\]
Thus, the condition \(i < \dim R \) may be rewritten as
\[
i - \dim R/q < \dim R_q.
\]
Using the inductive hypothesis and Lemma 3.2, there exists a module-finite extension \(R' \) of \(R \) such that \(\text{frac}(R') \) is a separable field extension of \(\text{frac}(R) \), and the induced map
\[
H_{qR_q}^{i-\dim R/q}(R_q) \rightarrow H_{qR_q}^{i-\dim R/q}(R_q')
\]
is zero. Taking the compositum of finitely many such separable extensions inside a fixed algebraic closure of \(\text{frac}(R) \), there exists a module-finite generically separable extension \(R' \) of \(R \) such that the map (3.2.1) is zero when \(q \) is any of the primes \(p_1R, \ldots, p_sR \). We claim that the image of the induced map \(H_{qR_q}^m(R) \rightarrow H_{qR_q}^m(R') \) has finite length.

Using local duality over \(A \), it suffices to show that
\[
M' = \text{Ext}_{A}^{\dim A^{-i}}(R', A) \rightarrow \text{Ext}_{A}^{\dim A^{-i}}(R, A) = M
\]
has finite length. This, in turn, would follow if
\[
M'_p = \text{Ext}_{A_p}^{\dim A^{-i}}(R'_p, A_p) \rightarrow \text{Ext}_{A_p}^{\dim A^{-i}}(R_p, A_p) = M_p
\]
is zero for each prime ideal \(p \) in \(\text{Ass}_A M \setminus \{\mathfrak{M}\} \). Using local duality over \(A_p \), it suffices to verify the vanishing of
\[
H_{pR_p}^{\dim A_p^{-\dim A+i}}(R_p) \rightarrow H_{pR_p}^{\dim A_p^{-\dim A+i}}(R'_p)
\]
for each \(p \) in \(\text{Ass}_A M \setminus \{M\} \). This, however, follows from our choice of \(R' \) since
\[
\dim A_p - \dim A + i = i - \dim A/p = i - \dim R/pR.
\]

What we have arrived at thus far is a module-finite generically separable extension \(R' \) of \(R \) such that the image of \(H^i_m(R) \to H^i_m(R') \) has finite length; in particular, this image is finitely generated. Working with one generator at a time and taking the compositum of extensions, given \([\eta]\) in \(H^i_m(R') \), it suffices to construct a module-finite generically separable extension \(S \) of \(R' \) such that \([\eta]\) maps to 0 under \(H^i_m(R') \to H^i_m(S) \).

By Theorem 1.2, there exists a module-finite extension \(R_1 \) of \(R' \) such that \([\eta]\) maps to 0 under \(H^i_m(R') \to H^i_m(R_1) \). Setting \(R_2 \) to be the separable closure of \(R' \) in \(R_1 \), the image of \([\eta]\) in \(H^i_m(R_2) \) lies in \(H^i_m(R_2)_\text{nil} \). The result now follows by (1). \(\square \)

Corollary 3.3. Let \((R, m)\) be a local domain of prime characteristic that is a homomorphic image of a Gorenstein ring. Then \(H^i_m(R^{+\text{sep}}) = 0 \) for each \(i < \dim R \).

Moreover, each system of parameters for \(R \) is a regular sequence on \(R^{+\text{sep}} \), i.e., \(R^{+\text{sep}} \) is a separable balanced big Cohen-Macaulay algebra for \(R \).

Proof. Theorem 1.3 (2) implies that \(H^i_m(R^{+\text{sep}}) = 0 \) for each \(i < \dim R \). The proof that this implies the second statement is similar to the proof of [HL, Corollary 2.3]. \(\square \)

Proof of Theorem 1.4. Let \(p \) be the characteristic of \(R \). If \(z \in a^p \), there exists a prime power \(q = p^e \) with \(z^q \in a[q] \). In this case, \(z^{q/p} \) belongs to the Frobenius closure of \(a^{[q/p]} \), and
\[
(z^{q/p})^p \in (a^{[q/p]})^{[p]}.
\]

Since solvable extensions form a distinguished class, we reduce to the case \(e = 1 \), i.e., \(q = p \).

There exist nonzero elements, \(a_0, \ldots, a_m \in a \) and \(b_0, \ldots, b_m \in R \) with
\[
z^p = \sum_{i=0}^m b_i a_i^p.
\]

Consider the polynomials
\[
T^p + a_0^pT - b_i \quad \text{for } i = 1, \ldots, m,
\]
and let \(L \) be a finite extension field where these have roots \(t_1, \ldots, t_m \) respectively. By Lemma 3.1, we may assume \(L \) is Galois over \(\text{frac}(R) \) with the Galois group being solvable. Set
\[
t_0 = \frac{1}{a_0} \left(z - \sum_{i=1}^m t_i a_i \right).
\]

(3.3.1)
Taking p-th powers, we have

$$t_0^p = \frac{1}{a_0^p} \left(\sum_{i=0}^m b_i a_i^p - \sum_{i=1}^m t_i^p a_i^p \right) = b_0 + \frac{1}{a_0^p} \sum_{i=1}^m (b_i - t_i^p) a_i^p = b_0 + \sum_{i=1}^m t_i a_i^p.$$

Thus, t_0 belongs to the integral closure of $R[t_1, \ldots, t_m]$ in its field of fractions. Let S be a module-finite extension of R that contains t_0, \ldots, t_m, and has L as its fraction field; if R is excellent, we may take S to be the integral closure of R in L. Since (3.3.1) may be rewritten as

$$z = \sum_{i=0}^m t_i a_i,$$

it follows that $z \in \mathfrak{a}S$, completing the proof of (1).

(2) follows from [SII2, Corollary 3.4], though we include a proof using (1). There exists a module-finite extension domain T such that $z \in \mathfrak{a}T$. Decompose the field extension $\text{frac}(R) \subseteq \text{frac}(T)$ as a separable extension $\text{frac}(R) \subseteq \text{frac}(T)^{+\text{sep}}$ followed by a purely inseparable extension $\text{frac}(T)^{+\text{sep}} \subseteq \text{frac}(T)$.

Let T_0 be the integral closure of R in $\text{frac}(T)^{+\text{sep}}$.

Since T is a purely inseparable extension of T_0, and $z \in \mathfrak{a}T$, it follows that z belongs to the Frobenius closure of the ideal $\mathfrak{a}T_0$. By (2) there exists a generically separable extension S_0 of T_0 with $z \in \mathfrak{a}S_0$. Enlarge S_0 to a generically Galois extension S of R. This concludes the argument in the case R is excellent; in the event that S is not module-finite over R, one may replace it by a subring satisfying $z \in \mathfrak{a}S$ and having the same fraction field.

The equational construction used in the proof of Theorem 1.4(1) arose from the study of symplectic invariants in [SII].

4. SOME GALOIS GROUPS THAT ARE NOT SOLvable

Let R be a domain of prime characteristic, and let \mathfrak{a} be an ideal of R. If z is an element of \mathfrak{a}^p, Theorem 1.4(1) states that there exists a solvable module-finite extension S with $z \in \mathfrak{a}S$. In the following example one has $z \in \mathfrak{a}^+$, and we conjecture $z \not\in \mathfrak{a}S$ for any module-finite generically Galois extension S with $\text{Gal}(S/R)$ solvable.

Example 4.1. Let a, b, c_1, c_2 be algebraically independent over \mathbb{F}_p, and set R be the hypersurface

$$\mathbb{F}_p(a, b, c_1, c_2)[x, y, z]$$

$$(zp^2 + c_1(xy)p^2 - p\zeta^2 + c_2(xy)p^2 - 1z + axp^2 + byp^2).$$

We claim $z \in (x, y)^+$. Let u, v be elements of R^+ that are, respectively, roots of the polynomials

$$T^p + c_1y^p - pT^p + c_2y^{p^2-1}T + a,$$

and

$$T^p + c_1x^p - pT^p + c_2x^{p^2-1}T + b.$$
Set S to be the integral closure of R in the Galois closure of $\frac{\text{frac}(R)(u,v)}{\text{frac}(R)}$. Then $(z - ux - vy)/xy$ is an element of S, since it is a root of the monic polynomial

$$T^p + c_1 T + c_2 T.$$

It follows that $z \in (x, y)S$.

We next show that $\text{Gal}(S/R)$ is not solvable for the extension S constructed above. Since u is a root of (4.1.1), u/y is a root of (4.1.2)

$$T^p + c_1 T + c_2 T + \frac{a}{y^{p^2}}.$$

The polynomial (4.1.2) is irreducible over $\mathbb{F}_q(c_1, c_2, a/y^{p^2})$, and hence over the purely transcendental extension $\mathbb{F}_q(c_1, c_2, a, x, y, z) = \text{frac}(R)$. Since $\text{frac}(S)$ is a Galois extension of $\text{frac}(R)$ containing a root of (4.1.2), it contains all roots of (4.1.2). As (4.1.2) is separable, its roots are distinct; taking differences of roots, it follows that $\text{frac}(S)$ contains the p^2 distinct roots of

$$T^p + c_1 T + c_2 T.$$

We next verify that the Galois group of (4.1.3) over $\text{frac}(R)$ is $GL_2(\mathbb{F}_p)$.

Quite generally, let L be a field of characteristic p. Consider the standard linear action of $GL_2(\mathbb{F}_p)$ on the polynomial ring $L[x_1, x_2]$. The ring of invariants for this action is generated over L by the Dickson invariants c_1, c_2, which occur as the coefficients in the polynomial

$$\prod_{\alpha, \beta \in \mathbb{F}_p} (T - \alpha x_1 - \beta x_2) = T^p + c_1 T + c_2 T,$$

see [Di] or [Be, Chapter 8]. Hence the extension $L(x_1, x_2)/L(c_1, c_2)$ has Galois group $GL_2(\mathbb{F}_p)$.

It follows from the above that if c_1, c_2 are algebraically independent elements over a field L of characteristic p, then the polynomial

$$T^p + c_1 T + c_2 T \in L(c_1, c_2)[T]$$

has Galois group $GL_2(\mathbb{F}_p)$.

The group $PSL_2(\mathbb{F}_p)$ is a subquotient of $GL_2(\mathbb{F}_p)$, and, we conjecture, a subquotient of $\text{Gal}(S/R)$ for any module-finite generically Galois extension S of R with $z \in aS$. For $p \geq 5$, the group $PSL_2(\mathbb{F}_p)$ is a nonabelian simple group; thus, conjecturally, $\text{Gal}(S/R)$ is not solvable for any module-finite generically Galois extension S with $z \in aS$.

Example 4.2. Extending the previous example, let a, b, c_1, \ldots, c_n be algebraically independent elements over \mathbb{F}_q, and set R to be the polynomial ring $\mathbb{F}_q(a, b, c_1, \ldots, c_n)[x, y, z]$ modulo the principal ideal generated by

$$z^{q^n} + c_1(xy)^{q^n-q^{n-1}} z^{q^{n-1}} + c_2(xy)^{q^n-q^{n-2}} z^{q^{n-2}} + \cdots + c_n(xy)^{q^n-1} z + ax^{q^n} + by^{q^n}.$$
Then $z \in (x, y)^+$; imitate the previous example with u, v being roots of

$$T^{q^n} + c_1 y^{q^n-q^{-1}} T^{q^{n-1}} + c_2 y^{q^n-q^{-2}} T^{q^{n-2}} + \cdots + c_n y^{q^n-1} T + a,$$

and

$$T^{q^n} + c_1 x^{q^n-q^{-1}} T^{q^{n-1}} + c_2 x^{q^n-q^{-2}} T^{q^{n-2}} + \cdots + c_n x^{q^n-1} T + b.$$

If S is any module-finite generically Galois extension of R with $z \in aS$, we conjecture that $\text{frac}(S)$ contains the splitting field of

$$T^{q^n} + c_1 T^{q^{n-1}} + c_2 T^{q^{n-2}} + \cdots + c_n T.$$ \hspace{1cm} (4.2.1)

Using a similar argument with Dickson invariants, the Galois group of (4.2.1) over $\text{frac}(R)$ is $\text{GL}_n(\mathbb{F}_q)$. Its subquotient $\text{PSL}_n(\mathbb{F}_q)$ is a nonabelian simple group for $n \geq 3$, and for $n = 2, q \geq 4$.

Likewise, we record conjectural examples R where $H^i_m(R) \rightarrow H^i_m(S)$ is nonzero for each module-finite generically Galois extension S with $\text{Gal}(S/R)$ solvable:

Example 4.3. Let a, b, c_1, c_2 be algebraically independent over \mathbb{F}_p, and consider the hypersurface

$$A = \frac{\mathbb{F}_p(a, b, c_1, c_2)[x, y, z]}{(z^p + c_1(xy)^p + c_2(xy)^p z^p + ax y^2 + by z^2)}.$$

Let (R, m) be the Rees ring $A[xt, yt, zt]$ localized at the maximal ideal x, y, z, xt, yt, zt. The elements $x, yt, y + xt$ form a system of parameters for R, and the relation

$$z^2 t \cdot (y + xt) = z^2 t^2 \cdot x + z^2 \cdot yt$$

defines an element $[\eta]$ of $H^2_m(R)$. We conjecture that if S is any module-finite generically Galois extension such that $[\eta]$ maps to 0 under the induced map $H^2_m(R) \rightarrow H^2_m(S)$, then $\text{frac}(S)$ contains the splitting field of

$$T^{p^2} + c_1 T^p + c_2 T,$$

and hence that $\text{Gal}(S/R)$ is not solvable if $p \geq 5$.

5. **Graded rings and extensions**

Let R be an \mathbb{N}-graded domain that is finitely generated over a field R_0. Set $R^{+\text{GR}}$ to be the $\mathbb{Q}_{\geq 0}$-graded ring generated by elements of R^+ that can be assigned a degree such that they then satisfy a homogeneous equation of integral dependence over R. Note that $[R^{+\text{GR}}]_0$ is the algebraic closure of the field R_0. One has the following:

Theorem 5.1. [HH2, Theorem 6.1] Let R be an \mathbb{N}-graded domain that is finitely generated over a field R_0 of prime characteristic. Then each homogeneous system of parameters for R is a regular sequence on $R^{+\text{GR}}$.
Let R be as in the above theorem. Since $R^{+\text{GR}}$ and $R^{+\text{sep}}$ are Cohen-Macaulay R-algebras, it is natural to ask whether there exists a \mathbb{Q}-graded separable Cohen-Macaulay R-algebra. The answer to this is negative:

Example 5.2. Let R be the Rees ring
\[
\frac{\mathbb{F}_2[x, y, z]}{(x^3 + y^3 + z^3)}[xt, yt, zt]
\]
with the \mathbb{N}-grading where the generators x, y, z, xt, yt, zt have degree 1. Set B to be the R-algebra generated by the homogeneous elements of $R^{+\text{GR}}$ that are separable over $\text{frac}(R)$. We prove that B is not a balanced Cohen-Macaulay R-module.

The elements $x, yt, y + xt$ are a system of parameters for R. Suppose, to the contrary, that they form a regular sequence on B. Since $z^2t \cdot (y + xt) = z^2t \cdot x + z^2 \cdot yt$, it follows that $z^2t \in (x, yt)B$. Thus, there exist elements $u, v \in B_1$ with
\[
(5.2.1) \quad z^2t = u \cdot x + v \cdot yt.
\]
Since $z^3 = x^3 + y^3$, we also have $z^2 = x\sqrt{xyz} + y\sqrt{yz}$ in $R^{+\text{GR}}$, and hence
\[
(5.2.2) \quad z^2t = t\sqrt{xyz} \cdot x + \sqrt{yz} \cdot yt.
\]
Comparing (5.2.1) and (5.2.2), we see that
\[
(u + t\sqrt{xyz}) \cdot x = (v + \sqrt{yz}) \cdot yt
\]
in $R^{+\text{GR}}$. But x, yt is a regular sequence on $R^{+\text{GR}}$, so there exists an element c in $[R^{+\text{GR}}]_0$ with $u + t\sqrt{xyz} = c yt$ and $v + \sqrt{yz} = cx$. Since $[R^{+\text{GR}}]_0 = \mathbb{F}_2$, it follows that $c \in R$, and hence that $\sqrt{yz} \in B$. This contradicts the hypothesis that elements of B are separable over $\text{frac}(R)$.

The above argument shows that any graded Cohen-Macaulay R-algebra must contain the elements \sqrt{yz} and $t\sqrt{xyz}$.

We next show that no module-finite \mathbb{Q}-graded extension domain of the ring R in Example 5.2 is Cohen-Macaulay.

Example 5.3. Let R be the Rees ring from Example 5.2 and let S be a graded Cohen-Macaulay ring with $R \subseteq S \subseteq R^{+\text{GR}}$. We prove that S is not finitely generated over R.

By the previous example, S contains \sqrt{yz} and $t\sqrt{xyz}$. Using the symmetry between x, y, z, it follows that $\sqrt{xyz}, \sqrt{xz}, t\sqrt{xy}, t\sqrt{yz}$ are all elements of S. We prove inductively that S contains
\[
(5.3.1) \quad x^{1-2/q}(yz)^{1/q}, \quad y^{1-2/q}(xz)^{1/q}, \quad z^{1-2/q}(xy)^{1/q},
\]
\[
tx^{1-2/q}(yz)^{1/q}, \quad ty^{1-2/q}(xz)^{1/q}, \quad tz^{1-2/q}(xy)^{1/q},
\]
for each $q = 2^e$ with $e \geq 1$. The case $e = 1$ has been settled.
Suppose S contains the elements (5.3.1) for some $q = 2^e$. Then, one has
\[
x^{1-2/q}(yz)^{1/q} \cdot ty^{1-2/q}(xz)^{1/q} \cdot (y + xt)
\]
Using as before that
\[
x^{1-2/q}(yz)^{1/q} \cdot ty^{1-2/q}(xz)^{1/q} \cdot x + x^{1-2/q}(yz)^{1/q} \cdot y^{1-2/q}(xz)^{1/q} \cdot yt.
\]
Using as before that, x, y, z is a regular sequence on S, we conclude
\[
x^{1-2/q}(yz)^{1/q} \cdot ty^{1-2/q}(xz)^{1/q} = u \cdot x + v \cdot yt
\]
for some $u, v \in S_1$. Simplifying the left hand side, the above reads
\[
(5.3.2) \quad t(xy)^{1-1/q}z^{2/q} = u \cdot x + v \cdot yt.
\]
Taking q-th roots in
\[
z^2 = x\sqrt{xz} + y\sqrt{yz}
\]
and multiplying by $t(xy)^{1-1/q}$ yields
\[
(5.3.3) \quad t(xy)^{1-1/q}z^{2/q} = ty^{1-1/q}(xz)^{1/2q} \cdot x + x^{1-1/q}(yz)^{1/2q} \cdot yt.
\]
Comparing (5.3.2) and (5.3.3), we see that
\[
(u + ty^{1-1/q}(xz)^{1/2q}) \cdot x = (v + x^{1-1/q}(yz)^{1/2q}) \cdot yt,
\]
so there exists c in $[R^{+\text{GR}}]_0 = \mathbb{F}_2$ with
\[
u + ty^{1-1/q}(xz)^{1/2q} = cyt \quad \text{and} \quad v + x^{1-1/q}(yz)^{1/2q} = cx.
\]
It follows that $ty^{1-1/q}(xz)^{1/2q}$ and $x^{1-1/q}(yz)^{1/2q}$ are elements of S. In view of the symmetry between x, y, z, this completes the inductive step. Setting
\[
\theta = \frac{xy}{z^2},
\]
we have proved that
\[
\theta^{1/q} \in \text{frac}(S) \quad \text{for each } q = 2^e.
\]
We claim $\theta^{1/2}$ does not belong to frac(R). Indeed if it does, then $(xy)^{1/2}$ belongs to frac(R), and hence to R, as R is normal; this is readily seen to be false. The extension
\[
\text{frac}(R) \subseteq \text{frac}(R)(\theta^{1/q})
\]
is purely inseparable, so the minimal polynomial of $\theta^{1/q}$ over frac(R) has the form $T^Q - \theta^{Q/q}$ for some $Q = 2^e$. Since $\theta^{1/2} \notin \text{frac}(R)$, we conclude that the minimal polynomial is $T^q - \theta$. Hence
\[
\left[\text{frac}(R)(\theta^{1/q}) : \text{frac}(R)\right] = q \quad \text{for each } q = 2^e.
\]
It follows that $[\text{frac}(S) : \text{frac}(R)]$ is not finite.

Theorem 1.2 and Theorem 1.3(2) discuss the vanishing of the image of $H^i_m(R)$ for $i < \dim R$. In the case of graded rings, one also has the following result for $H^d_m(R)$.
Proposition 5.4. Let R be an \mathbb{N}-graded domain that is infinitely generated over a field \mathbb{Q} of prime characteristic. Set $d = \dim R$. Then the submodule $[H^d_m(R)]_{\geq 0}$ maps to zero under the induced map

$$H^d_m(R) \rightarrow H^d_m(R^{GR}).$$

Hence, there exists a module-finite \mathbb{Q}-graded extension domain S of R such that the induced map $[H^d_m(R)]_{\geq 0} \rightarrow H^d_m(S)$ is zero.

Proof. Let $F^e : H^d_m(R) \rightarrow H^d_m(R)$ denote the e-th iteration of the Frobenius map. Suppose $[\eta] \in [H^d_m(R)]_n$ for some $n \geq 0$. Then $F^e([\eta])$ belongs to $[H^d_m(R)]_{n+e}$ for each e. As $[H^d_m(R)]_{\geq 0}$ has finite length, there exists $e \geq 1$ and homogeneous elements $r_1, \ldots, r_e \in R$ such that

$$F^e([\eta]) + r_1 F^{e-1}([\eta]) + \cdots + r_e [\eta] = 0. \tag{5.4.1}$$

We imitate the equational construction from [HL]: Consider a homogeneous system of parameters $\mathbf{x} = x_1, \ldots, x_d$, and compute $H^i_m(R)$ as the cohomology of the Čech complex $C^\bullet(\mathbf{x}; R)$ below:

$$0 \rightarrow R \rightarrow \bigoplus_{i=1}^d R_{x_i} \rightarrow \bigoplus_{i<j} R_{x_i x_j} \rightarrow \cdots \rightarrow R_{x_1 \cdots x_d} \rightarrow 0.$$

This complex is \mathbb{Z}-graded; let η be a homogeneous element of $C^d(\mathbf{x}; R)$ that maps to $[\eta]$ in $H^d_m(R)$. Equation (5.4.1) implies that

$$F^e(\eta) + r_1 F^{e-1}(\eta) + \cdots + r_e \eta$$

is a boundary in $C^d(\mathbf{x}; R)$, say it equals $\partial(\alpha)$ for a homogeneous element α of $C^{d-1}(\mathbf{x}; R)$. Solving integral equations in each coordinate of $C^{d-1}(\mathbf{x}; R)$, there exists a module-finite extension domain S and β in $C^{d-1}(\mathbf{x}; S)$ with

$$F^e(\beta) + r_1 F^{e-1}(\beta) + \cdots + r_e \beta = \alpha.$$

Moreover, we may assume S is a normal ring. Since $\eta - \partial(\beta)$ is an element on $\text{frac}(S)$ satisfying

$$T^e + r_1 T^{e-1} + \cdots + r_e T = 0,$$

it belongs to S. But then $\eta - \partial(\beta)$ maps to zero in $H^d_m(S)$. Thus, each homogeneous element of $[H^d_m(R)]_{\geq 0}$ maps to 0 in $H^d_m(R^{GR})$.

For the final statement, note that $[H^d_m(R)]_{\geq 0}$ has finite length. \hfill \qed

The next example illustrates why Proposition 5.4 is limited to $[H^d_m(R)]_{\geq 0}$.

Example 5.5. Let K be a field of prime characteristic, and take R to be the semigroup ring

$$R = K[x_1 \cdots x_d, \ x_1^d, \ldots, x_d^d].$$

It is easily seen that R is normal, and that $[H^d_m(R)]_n$ is nonzero for each integer $n < 0$. We claim that the induced map

$$H^d_m(R) \rightarrow H^d_m(S)$$

...
is injective for each module-finite extension ring S. For this, it suffices to check that R is a splinter ring, i.e., that R is a direct summand of each module-finite extension ring; the splitting of $R \subseteq S$ then induces an R-splitting of $H^d_m(R) \to H^d_m(S)$.

To check that R is a splinter ring, note that normal affine semigroup rings are weakly F-regular by [HH1, Proposition 4.12], and that weakly F-regular rings are splinter by [HH3, Theorem 5.25]. For more on splinters, we point the reader towards [Ma, HH3, Si3].

Acknowledgments. We thank Kazuhiko Kurano for pointing out an error in an earlier version of this manuscript.

References

[Be] D. J. Benson, *Polynomial invariants of finite groups*, London Mathematical Society Lecture Note Series *190*, Cambridge University Press, Cambridge, 1993.

[BH] W. Bruns and J. Herzog, *Cohen-Macaulay rings*, revised edition, Cambridge Studies in Advanced Mathematics *39*, Cambridge University Press, Cambridge, 1998.

[Di] L. E. Dickson, *A fundamental system of invariants of the general modular linear group with a solution to the form problem*, Trans. Amer. Math. Soc. *12* (1911), 75–98.

[HS] R. Hartshorne and R. Speiser, *Local cohomological dimension in characteristic p*, Ann. of Math. (2) *105* (1977), 45–79.

[He] R. C. Heitmann, *The direct summand conjecture in dimension three*, Ann. of Math. (2) *156* (2002), 695–712.

[Ho] M. Hochster, *Topics in the homological theory of modules over commutative rings*, CBMS Regional Conf. Ser. in Math. *24*, AMS, Providence, RI, 1975.

[HH1] M. Hochster and C. Huneke, *Tight closure, invariant theory, and the Briançon-Skoda theorem*, J. Amer. Math. Soc. *3* (1990), 31–116.

[HH2] M. Hochster and C. Huneke, *Infinite integral extensions and big Cohen-Macaulay algebras*, Ann. of Math. (2) *135* (1992), 53–89.

[HH3] M. Hochster and C. Huneke, *Tight closure of parameter ideals and splitting in module-finite extensions*, J. Algebraic Geom. *3* (1994), 599–670.

[HL] C. Huneke and G. Lyubeznik, *Absolute integral closure in positive characteristic*, Adv. Math. *210* (2007), 498–504.

[IJLL] S. B. Iyengar, G. J. Leuschke, A. Leykin, C. Miller, E. Miller, A. K. Singh, and U. Walther, *Twenty-four hours of local cohomology*, Graduate Studies in Mathematics *87*, American Mathematical Society, Providence, RI, 2007.

[Ly] G. Lyubeznik, *F-modules: Applications to local cohomology and D-modules in characteristic $p > 0$*, J. Reine Angew. Math. *491* (1997), 65–130.

[Ma] F. Ma, *Splitting in integral extensions, Cohen-Macaulay modules and algebras*, J. Algebra *116* (1988), 176–195.

[RSS] P. Roberts, A. K. Singh, and V. Srinivas, *Annihilators of local cohomology in characteristic zero*, Illinois J. Math. *51* (2007), 237–254.

[Si1] A. K. Singh, *Failure of F-purity and F-regularity in certain rings of invariants*, Illinois J. Math. *42* (1998), 441-448.

[Si2] A. K. Singh, *Separable integral extensions and plus closure*, Manuscripta Math. *98* (1999), 497–506.

[Si3] A. K. Singh, *Q-Gorenstein splinter rings of characteristic p are F-regular*, Math. Proc. Cambridge Philos. Soc. *127* (1999), 201–205.

E-mail address: sannai@ms.u-tokyo.ac.jp
Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8914 Japan

E-mail address: singh@math.utah.edu

Department of Mathematics, University of Utah, 155 S. 1400 E., Salt Lake City, UT 84112, USA