A three-dimensional q-Lie algebra of $SU_q(2)$ is realized in terms of first- and second-order differential operators. Starting from the q-Lie algebra one has constructed a left-covariant differential calculus on the quantum group. The proposed construction is inverse to the standard Woronowicz approach; the left-invariant vector fields are introduced as initial objects whereas the differential 1-forms are defined in a dual manner.
1 Introduction

Researches of non-commutative geometry of the quantum groups [1-5] led to a series of papers concerned with non-equivalent differential calculi on the quantum groups and quantum spaces. In particular, bicovariant $4D_\pm$ and left-covariant $3D$ differential calculi on the quantum group $SU_q(2)$ had been considered [3-6]. For a two-parameter deformed linear quantum group $GL_{p,q}(2)$ the corresponding covariant differential calculus on the quantum group and quantum plane was proposed as well [7 - 9]. As a rule, the standard Woronowicz approach is successfully used to construct differential calculi on quantum groups. In the framework of this approach the differential 1-forms are treated as initial basic elements whereas the vector fields are defined as dual ones. As a consequence the geometrical content of the vector fields and their connection with usual derivatives on the quantum group remain hidden.

In this paper an explicit representation of the q-Lie algebra of left-invariant vector fields on the quantum group $SU_q(2)$ is proposed in terms of first- and second-order differential operators. Using the representation one has constructed the covariant $3D$ differential calculus on the quantum group. In some sense, the construction is inverse to the standard Woronowicz approach. In Section 2 a left-covariant differential calculus on the quantum group $U_q(2)$ is presented. The main commutation relations are differed from ones considered in [7]. Here we introduce covariant tensor notations which are very convenient in constructing various covariant geometrical objects with a definite $U(1)$ charge. Section 3 deals with the left-invariant vector fields on the quantum group $SU_q(2)$. Defining relations for an exterior differential algebra complete the differential calculus. In Conclusion we determine the connection between the $SU_q(2)$ left-covariant $3D$ q-Lie algebra and the Drinfeld-Jimbo quantum enveloping algebra. Main formulas and conventions used throughout the paper are contained in Appendix.

2 Differential calculus on the quantum group $U_q(2)$

Let x^i, y_i ($i = 1, 2$) be generators (coordinates) of the function algebra $C^2_{q,q^{-1}}$ on the quantum hermitean vector space U^2_q with an involution $*: x^i = y_i$. It is...
convenient to parametrize the matrix $T^i_j \in U_q(2)$ by the coordinates x, y

$$T^i_j = \begin{pmatrix} y^1 & x^1 \\ y^2 & x^2 \end{pmatrix} = (y^i x^j). \tag{2.1}$$

We use the R-matrix formulation of quantum groups following Faddeev, Reshetikhin and Takhtajan [4]. The main commutation relation for the quantum group generators T^i_j has a standard form

$$R_{12} T_1 T_2 = T_2 T_1 R_{12}. \tag{2.2}$$

The parametrization (2.1) was introduced in the harmonic formalism [13] applied to extended supersymmetric theories and supergravities. If one imposes the unimodularity constraint

$$D \equiv \det_q T^i_j = x_i y^i = 1, \tag{2.3}$$

then the variables (x, y) will be just the quantum harmonic functions (u^\pm) on the coset $S^2_q \sim SU(2)/U(1)$ with corresponding $U(1)$ charges ± 1:

$$x^i \equiv u^{+i}, \quad y^i \equiv u^{-i}. \tag{2.4}$$

For convenience we shall not use the notations u^\pm throughout the paper keeping in mind that all geometrical objects (like coordinates, derivatives, differentials etc.) have definite $U(1)$ charges. All further consideration respects the global covariance under the action of the group $U(1)$.

Let us define the derivatives $\partial_i \equiv \frac{\partial}{\partial x^i}, \quad \bar{\partial}^j \equiv \frac{\partial}{\partial y^j}$ on the quantum group by the formulas

$$\partial_i x^j = \gamma^j_i, \quad \bar{\partial}^j y_j = \delta^j_i, \tag{2.5}$$

where γ^j_i, δ^j_i are quantum analogues to classical Kronecker symbol. The commutation relations between the coordinates and derivatives are uniquely defined (up to the symmetry connected with the exchange $q \to \frac{1}{q}$):

$$R_{12} (\partial_T)_1 (\partial_T)_2 = (\partial_T)_2 (\partial_T)_1 R_{21}, \quad (\partial_T)^i_j \equiv \begin{pmatrix} \bar{\partial}_1 & \bar{\partial}_2 \\ \partial_1 & \partial_2 \end{pmatrix}, \tag{2.6}$$

$$\partial_i x^k = \gamma^k_i + qY^m_{ni} x^m \partial_n, \quad \bar{\partial}^j y_j = \delta^j_i + q y^m \bar{\partial}_n \hat{R}^m_{nj},$$

$$\partial_i y_j = q \hat{R}^{-1}_{ji} y_k \partial_k, \quad \bar{\partial}^j x^j = \frac{1}{q} \hat{R}^{ij}_{kl} x^k \bar{\partial}^j. \tag{2.7}$$
All these relations are consistent with the quantum group structure. The definitions (2.7) do not differ from ones considered in ref. [7] on principal. Our choice is conditioned by a requirement of manifest $U_q(2)$ and $U(1)$ covariance. We consider all objects with upper (lower) indices to be transformed under the quantum group co-action Δ like classical co-(contra-)variant tensors. For instance, a second rank tensor N_{ij} will be transformed as follows

$$(N'_{ij}) = (T^\dagger)^k_i T^j_l N^l_k. \quad (2.8)$$

Hereafter the signs \otimes of tensor product are omitted for simplification in writing formulas. It should be noted that an alternative way of introducing manifest tensor notations is adoption of the left $\bar{\partial}$ and right $\overrightarrow{\partial}$ derivatives [10, 11].

Let us construct the left-invariant differential operators $\partial_a \ (a = 1, 2, 3, 4)$ on the $U_q(2)$ space:

$$\partial_1 = x_k \partial^k, \quad \partial_2 = y_k \bar{\partial}^k, \quad \partial_3 = x_k \bar{\partial}^k, \quad \partial_4 = y_k \partial^k \quad (2.9)$$

The differential operators ∂_a form a generalized q-Lie algebra of left-invariant vector fields. It is easy to check that the operators ∂_3, ∂_4 maintain the unimodularity condition $s \equiv D - 1 = 0$, i.e.

$$\partial_{3,4}(sf(x, y)) = 0. \quad (2.10)$$

Here, $f(x, y)$ is an arbitrary function. At the same time it is impossible to construct a third linearly independent left-invariant first-order differential operator obeying the condition (2.10). Consequently, one cannot realize a q-Lie algebra on the $SU_q(2)$ in terms of first-order differential operators.

Now we define an exterior differential \hat{d} by following relations

$$\hat{d} \equiv d + \bar{d}, \quad \hat{d}^2 = d^2 = \bar{d}^2 = 0$$

$$d = dx^i \gamma^{-1k}_i \partial_k, \quad \overrightarrow{\partial} = dy_i \bar{\partial}^i$$

$$d(fg) = df \cdot g + f \cdot dg, \quad \bar{d}(fg) = \bar{d}f \cdot g + f \cdot \bar{d}g$$

$$d\bar{d} + \bar{d}d = 0. \quad (2.11)$$

Here a standard Leibnitz rule for the exterior differential is used. Commutation relations for the basic differential 1-forms, coordinates and derivatives can be easily derived in a similar way as in ref. [8] taking into account full consistency with the complex structure provided by the $*$-involution. The final relations are collected in
Appendix. The left-invariant Cartan 1-forms $\omega^a(a = 1, 2, 3, 4)$ generate a basis in the space of differential forms

$$
\begin{align*}
\omega^1 &= \frac{1}{q} y_i dx^i, & \omega^2 &= q^2 x_i dy^i, \\
\omega^3 &= -y_i dy^i, & \omega^4 &= q x_i dx^i.
\end{align*}
$$

The exterior differential defined by relations (2.11) can be rewritten as follows

$$
\hat{d} = \frac{1}{D} \omega^a \partial_a.
$$

Commutation relations for the basic differential 1-forms ω^a and the Cartan-Maurer equation are derived straightforwardly using definitions (2.11) (see Appendix). Analysis of the differential calculus on $U_q(2)$ implies that one cannot directly reduce it to the differential calculus on the quantum group $SU_q(2)$.

3 Left-invariant vector fields of $SU_q(2)$ and differential calculus

To define the left-invariant vector fields on the quantum group $SU_q(2)$ we shall use the $U_q(2)$-covariant differential calculus. Let us introduce the next notations for the left-invariant 1-order differential operators in correspondence with notations of the classical harmonic approach [13]

$$
D^{++} \equiv x_i \bar{\partial}^i, \quad D^{--} \equiv -y_i \partial^i.
$$

The action of the operators D^{++}, D^{--} on the coordinates (x, y) have simple properties:

$$
\begin{align*}
D^{++} x^i &= 0, & D^{--} x^i &= y^i, \\
D^{++} y_i &= x_i, & D^{--} y_i &= 0.
\end{align*}
$$

A Leibnitz rule for these operators is simplified when acting on the functions with definite $U(1)$ charges

$$
D^{\pm \pm} (f^{(m)} g^{(n)}) = (D^{\pm \pm} f^{(m)}) g^{(n)} + q^{-m} f^{(m)} (D^{\pm \pm} g^{(n)}).
$$

As it is mentioned above, one cannot construct a q-analogue for the classical $U(1)$ generator D^0 in terms of first-order differential operators. Nevertheless, the interesting feature of non-commutative geometry is that the quantum $U(1)$ generator
D^0 does exist. The operator is realized as a left-invariant second-order differential operator

$$D^0 \equiv -x_i \partial^i - q^2 y_i \bar{\partial}^i + (1 - q^2)x_i y_k \bar{\partial}^k \partial^i.$$ (3.4)

It is not hard to check that the operator D^0 has eigenfunctions $f^{(n)}$ with eigenvalues corresponding to q-generalized $U(1)$ charge (n):

$$D^0 f^{(n)} = \{n\}_q f^{(n)},$$

$$\{n\}_q \equiv \frac{1 - q^{-2n}}{1 - q^{-2}}.$$ (3.5)

Due to that property (3.5) the algebra of functions $f^{(n)}$ with a definite $U(1)$ charge is just the function algebra on a quantum sphere $S^2_q = SU_q(2)/U(1)$. The Leibnitz rule for the operator D^0 has the next form

$$D^0(f^{(m)} g^{(n)}) = (D^0 f^{(m)}) g^{(n)} + q^{-2m} f^{(m)} D^0 g^{(n)}.$$ (3.6)

By direct checking one can verify that the operators $D^{\pm \pm 0}$ satisfy a generalized q-Lie algebra of $SU_q(2)$ [8]

$$[D^0, D^{++}] = (2)_q D^{++},$$

$$[D^0, D^{--}] = (-2)_q D^{--},$$

$$[D^{++}, D^{--}]_q^2 = D^0,$$ (3.7)

here, $[A, B]_q^s \equiv AB - q^s BA$.

It should be noted that the algebra (3.7) is valid irrespective of whether one imposes the constraint $D = 1$. An important property of the operators $D^{\pm \pm 0}$ is conservation of the unimodularity constraint

$$D^{\pm \pm 0}(D f(x, y)) \approx 0.$$ (3.8)

The last relation allows to construct the differential calculus on the $SU_q(2)$ in a consistent manner. Note, that the braiding matrix corresponding to the q-Lie algebra (3.7) is unitary and the generalized Jacobi identity is available

$$[D^0, [D^{++}, D^{--}]_q^2] + [D^{++}, [D^{--}, D^0]_q^4]_q^{-4} + q^2 [D^{--}, [D^0, D^{++}]_q^4]_q^{-2} \equiv 0.$$ (3.9)
It is easy to check another relation which is similar to Jacobi identity

\[[D^0, [D^{++}, D^{--}]] + [D^{++}, [D^{--}, D^0]] q^{-4}] q^6 + q^6[D^{--}, [D^0, D^{++}]] q^{-4}] q^{-6} \equiv 0, \]

(3.10)

Using properties of the differential operators \(D^{\pm\pm} \) we can define a covariant algebra of left-invariant vector fields \(\nabla^{\pm\pm} \) on the quantum group \(SU_q(2) \) in axiomatic way and then introduce the basic differential Cartan 1-forms as dual objects. Let us define the left-invariant vector fields \(\nabla^{\pm\pm} \) by the same relations (3.2, 3.3, 3.5, 3.6) that the operators \(D^{\pm\pm} \) obey with only exchanging \(D^{\pm\pm} \rightarrow \nabla^{\pm\pm} \). The basic left-invariant differential 1-forms \(\omega^{\pm\pm} \) are then defined as dual objects to vector fields \(\nabla^{\pm\pm} \)

\[\omega^{++}(\nabla^{--}) = 1, \quad \omega^{--}(\nabla^{++}) = q, \quad \omega^0(\nabla^0) = 1. \]

(3.11)

An exterior differential on \(SU_q(2) \) is defined in a standard manner with a usual Leibnitz rule

\[\delta \equiv \omega^{++}\nabla^{--} + \omega^{--}\nabla^{++} + \omega^0\nabla^0, \]
\[\delta(fg) = \delta f \cdot g + f \cdot \delta g, \]
\[\delta^2 = 0, \]

(3.12)

where the \(f, g \) – are arbitrary functions on the quantum group \(SU_q(2) \). Using these formulas it is not difficult to obtain all commutation relations for the differential 1-forms \(\omega^{\pm\pm} \) and corresponding Cartan-Maurer equations

\[(\omega^\alpha)^2 = 0, \quad \alpha = (++, --, 0), \quad \omega^{++}\omega^{--} = -2q^2 \omega^{--}\omega^{++}, \]
\[\omega^{\pm\pm} f^{(m)} = q^m f^{(m)} \omega^{\pm\pm}, \quad \omega^{++}\omega^0 = -q^2 \omega^0\omega^{++}, \]
\[\omega^0 f^{(m)} = q^{2m} f^{m} \omega^0, \quad \omega^{--}\omega^0 = -q^4 \omega^0\omega^{--}, \]
\[\delta \omega^{++} = (-2) q^{2} \omega^{++} \omega^0, \]
\[\delta \omega^{--} = 2 q^{2} \omega^{--} \omega^0, \]
\[\delta \omega^0 = \omega^{++} \omega^{--}. \]

(3.13)

All these relations are consistent with the unimodularity condition \(D = 1 \). An exterior algebra of the differential forms is defined straightforwardly. The final construction of the covariant differential calculus on the quantum group \(SU_q(2) \) presented here agrees with one considered in Woronowicz approach [3, 8].
4 Conclusion

Now we shall determine the explicit connection between the generalized q-Lie algebra (3.7) and the quantum enveloping Drinfeld-Jimbo algebra $U_q(su(2))$. For this purpose one considers the differential operators μ, ν on the quantum group $U_q(2)$:

$$\mu = 1 + (q^2 - 1)y_i \partial^i, \quad \nu = 1 + (1 - \frac{1}{q^2})x_i \partial^i.$$ \hfill (4.1)

These operators have simple commutation relations with the operators $D^{\pm \pm 0}$. For instance, we have the following formulae containing the operator μ

$$\mu D^{--} = q^2 D^{--} \mu, \quad \mu D^{++} = \frac{1}{q^2} D^{++} \mu,$$

$$\mu D^0 = D^0 \mu, \quad \mu \nu = \nu \mu. \hfill (4.2)$$

Equations for the ν operator have a similar form.

Let us define new operators D^{++}, D^{--}, D^0 multiplying the $D^{\pm \pm 0}$ by corresponding factors

$$D^{++} = \mu^{-\frac{1}{2}} D^{++}, \quad D^{--} = \nu^{-\frac{1}{2}} D^{--},$$

$$D^0 = \frac{1}{q} \mu \nu D^0 \equiv [\partial^0]_q. \hfill (4.3)$$

It is easy to verify that the operators $D^{\pm \pm 0}$ form just the Drinfeld-Jimbo quantum enveloping algebra $U_q(su(2))$

$$[\partial^0, D^{++}] = 2D^{++}, \quad [\partial^0, D^{--}] = -2D^{--},$$

$$[D^{++}, D^{--}] = [\partial^0]_q. \hfill (4.4)$$

The operator D^0 counts the q-generalized $U(1)$ charge when acting on the functions with a definite $U(1)$ charge (m)

$$D^0 f^{(m)} = [m]_q f^{(m)}. \hfill (4.5)$$

Observe that the way of constructing the Drinfeld-Jimbo algebra from the q-Lie algebra (3.7) is by no means unique.

We confine our consideration to a simple case of the quantum group $SU_q(2)$. However, one should expect that similar representation of the q-Lie algebra in terms of differential operators hold for other quantum groups. The q-Lie algebra (3.7) has a natural geometrical origin in our approach. It turns out to be closely connected with
a gauge covariant differential algebra of $SU_q(2)$ in constructing the non-standard Leibnitz rule. These questions will be considered in a separate paper elsewhere.

Acknowledgments

Author would like to thank B. Zupnik, A. Isaev and Ch. Devchand for useful discussions and interest to work.

A Appendix

We use the next notations for the invariant $SU_q(2)$ tensors

\[
\varepsilon^{ij} = \begin{pmatrix} 0 & 1 \\ -q & 0 \end{pmatrix}, \quad \gamma^i_j = \begin{pmatrix} q & 0 \\ 0 & \frac{1}{q} \end{pmatrix}, \\
\varepsilon_{ij} = \begin{pmatrix} 0 & 1 \\ -\frac{1}{q} & 0 \end{pmatrix}, \quad \gamma^{-1j}_i = \begin{pmatrix} \frac{1}{q} & 0 \\ 0 & q \end{pmatrix}
\]

(A.1)

\[
\varepsilon_{ik}\varepsilon^{jk} = \varepsilon_{ki}\varepsilon^{kj} = \delta^j_i, \quad \varepsilon_{ik}\varepsilon^{kj} = -\gamma^{-1j}_i, \quad \varepsilon_{ki}\varepsilon^{jk} = -\gamma^j_i
\]

The invariant metric ε_{ij} is used to raise and lower the $SU_q(2)$ indices as follows

\[
A_i = \varepsilon_{ij} A^j, \quad A^i = A_j \varepsilon^{ji}
\]

(A.2)

The R-matrix and auxiliary matrices X, Y are defined as in [7]

\[
\hat{R}_{kl}^{ij} = \hat{R}_{kl}^{ji} = \delta_i^k \delta_j^l (1 + (q - 1)\delta^{ij}) + (q - \frac{1}{q})\delta_i^k \delta_j^l \theta(i - j), \quad X_{s}^{ri} = \hat{R}_{ij}^{rs} q^{2(r-s)} = \hat{R}_{ij}^{rs} q^{2(s-r)}, \quad Y_{s}^{ri} = (\hat{R}^{-1})_{ij}^{rs} q^{2(s-r)} = (\hat{R}^{-1})_{ij}^{rs} q^{2(r-s)}, \quad Y_{it}^{jk} R_{km} = \delta_i^t \delta_j^m.
\]

(A.3)

The main commutation relations in a case of the quantum group $U_q(2)$ have the following form

\[
R_{12} dT_1 dT_2 = -dT_2 dT_1 R_{12}^{-1}, \\
dx_{1} x_2 = q R_{21} x_2 d x_1, \quad \partial_j dx^i = q X_{ij}^k dx^k \partial_k, \\\ndy_1 y_2 = \frac{1}{q} R_{12}^{-1} y_2 dy_1, \quad \bar{\partial}^i dx^j = \frac{1}{q} X_{ij}^k dx^k \bar{\partial}^j, \quad \bar{\partial}^i dy^j = \frac{1}{q} X_{ij}^k dy^k \bar{\partial}^j, \quad \partial_i dy_j = q (\hat{R}^{-1})_{ji}^k dy_k \partial_l.
\]

(A.4)
The Cartan-Maurer equations for the quantum group $U_q(2)$ can be written as follows

$$
d\omega_1 = \frac{1}{D} (\omega_3 \omega_4 + \omega_2 \omega_1), \quad d\omega_2 = -\frac{1}{D} (q^2 \omega_3 \omega_3 + \omega_1 \omega_2),
$$

$$
d\omega_3 = -\frac{1 + q^2}{q^4 D} \omega_3 \omega_2, \quad d\omega_4 = \frac{1 + q^2}{D} \omega_3 \omega_1.
$$

(A.5)
References

[1] Drinfeld V G 1986 Quantum Groups. Proceedings of the international Congress of Mathematicians (Berkeley, CA, USA) 793-820

[2] Jimbo M 1989 Int.J.Mod.Phys. A4 3759

[3] Woronowicz S L 1987 Publ. Res. Inst. Math. Sci., Kyoto University 23 117-181

[4] Faddeev L D, Reshetikhin N Yu and Takhtajan L A 1987 LOMI preprint: Quantization of Lie Groups and Lie Algebras

[5] Manin Yu I 1988 Preprint Univ. of Montreal: Quantum Groups and Non-Commutative Geometry Cent. R. Math. 1561

[6] Woronowicz S L 1989 Comm. Math. Phys. 122 125

[7] Wess J and Zumino B 1990 Nucl. Phys. (Proc. Suppl.) B18 302

[8] Schirrmacher A, Wess J and Zumino B 1991 Zeit. Ph. C49 317

[9] Isaev A P and Pyatov P N 1993 Phys. Lett. A179 81

[10] Majid S 1993 Preprint DAMTP/93-4, Univ. of Cambridge, UK: Quantum and Braided Algebras

[11] Karimipour V 1993 Preprint IPM-93-hep-th/9305118: The Quantum de Rham Complex Associated with $SL_h(2)$

[12] Ogievetsky O 1991 Preprint MPI-Ph/91-103: Differential Operators on Quantum Spaces for $GL_q(n)$ and $SO_q(n)$

[13] Galperin A, Ivanov E, Kalitzin S, Ogievetsky V and Sokatchev E 1984 Class. Quant. Grav. 1 469