SINGLE SPOT IDEALS OF CODIMENSION 3 AND LONG BOURBAKI SEQUENCES

YUKIHIDE TAKAYAMA

Abstract. Let K be a field and $S = K[x_1, \ldots, x_n]$ be a polynomial ring. A single spot ideal $I \subset S$ is a graded ideal whose local cohomology $H^i_m(S/I)$, $i < \dim S/I$ and $m = (x_1, \ldots, x_n)$, only has non-trivial value N, a finite length module, at $i = \text{depth } S/I$. We consider characterization of single spot ideals in terms of (long) Bourbaki sequences. The codimension 2 case has been fairly well investigated. In this paper, we focus on the codimension 3 case.

Introduction

Let $S = K[x_1, \ldots, x_n]$ be a polynomial ring over a field K with the standard grading and let $m = (x_1, \ldots, x_n)$. All the modules and ideals in this paper are graded. A finitely generated S-module M is called a generalized Cohen-Macaulay (CM) module if the local cohomology module $H^i_m(M)$ has finite length for all $i < \dim(M)$. A ring R is a generalized CM ring if it is a generalized CM R-module. An ideal $I \subset S$ is called a generalized CM ideal if S/I is a generalized CM ring. If a generalized CM module M satisfies $\dim M = \dim S$, it is called maximal.

In this paper, we are interested in generalized CM ideals. In particular, single spot ideals. An ideal $I \subset S$ is called a single spot ideal of type (t, N) where $t = \text{depth } S/I$ and N is a finite length S-module if the local cohomology only has a non-trivial value N at dimension t, i.e.,

$$H^i_m(S/I) = \begin{cases} 0 & \text{for all } i < \dim S/I \text{ with } i \neq t \\ N & \text{if } i = t \end{cases}$$

Let $I \subset S$ be a generalized CM ideal of codim $I = r$ ($r \geq 2$). Then by Corollary 1.3 [4] we have a long Bourbaki sequence

$$0 \rightarrow F_{r-1} \rightarrow \cdots \rightarrow F_1 \rightarrow M \rightarrow I \rightarrow 0$$

with S-free modules F_i ($i = 1, \ldots, r-1$) and M is a maximal generalized CM module whose local cohomology is as follows

$$H^i_m(M) \cong \begin{cases} H^i_m(I) \cong H^{i-1}_m(S/I) & \text{if } i < n-r+1 \\ 0 & \text{if } i = n-r+1 \end{cases}$$

(1)

In this sense, the ideal I is approximated by M. Notice that the value of $H^i_m(M)$ for $i = n-r+2, \ldots, n-1$ are irrelevant to this approximation. However, the construction given in the proof of Corollary 1.3 [4] (and also Lemma 1.3 [1] in a slightly different situation) always makes the module M such that $H^i_m(M) = 0$ for $i = n-r+2, \ldots, n-1$. In this paper, we are interested in long Bourbaki sequences with approximation modules M such that $H^i_m(M)$ ($i = n-r+2, \ldots, n-1$)
are not always trivial, and study the case of codimension 3, namely the case of $H_{m}^{n-1}(M) = N$ where N is a non-trivial finite length module. Notice that in the case of codimension 2 we always have $H_{m}^{n-1}(M) = 0$.

First of all, we will give a characterization of a maximal generalized CM module M whose local cohomology is

$$H_{m}^{i}(M) = \begin{cases}
K & \text{if } i = t + 1 \\
N & \text{if } i = n - 1 \\
0 & \text{if } i < n - 2, \ i \neq t + 1
\end{cases}$$

in terms of the first syzygy of M. See Theorem 1.1. Then we consider the special case of $M = E_{t+1} \oplus E_{n-1}(d)$ where E_{j} denotes the jth syzygy module of the field K over S. We will use the notation $M(d)$, for a graded module M and $d \in \mathbb{Z}$, such that $M(d)_{i} = M_{d+i}$ (the d + ith component of M) for all $i \in \mathbb{Z}$. Our question is how we can construct a long Bourbaki sequence

$$0 \rightarrow F \rightarrow G \rightarrow E_{t+1} \oplus E_{n-1}(d) \rightarrow I(c) \rightarrow 0$$

of non-trivial type. Here a trivial type construction is as follows. First construct a long Bourbaki sequence

$$0 \rightarrow F' \xrightarrow{f} G' \xrightarrow{f} E_{t+1} \xrightarrow{\phi} I(c) \rightarrow 0$$

according to the method given in the proof of Corollary 1.3 [4] (or Lemma 1.3 [1]). Then make the direct sum

$$0 \rightarrow F' \oplus K_{n}(d) \xrightarrow{f \oplus \delta_{0}} G' \oplus K_{n-1}(d) \xrightarrow{g \oplus \delta_{n-1}} E_{t+1} \oplus E_{n-1}(d) \xrightarrow{\phi} I(c) \rightarrow 0$$

where $(K_{\ast}, \partial_{\ast})$ is the Koszul complex of the sequence x_{1}, \ldots, x_{n} over S. We will denote a base $x_{i_{1}} \wedge \cdots \wedge x_{i_{k}}$ ($1 \leq i_{1} < \cdots < i_{k} \leq n$) of the Koszul complex of the sequence x_{1}, \ldots, x_{n} by $e_{i_{1}, \ldots, i_{k}}$ or $e_{i_{1} \cdots i_{k}}$. Notice that, in the trivial type Bourbaki sequence $E_{n-1}(d)$ does not contribute to I via ϕ.

It is well known that a (short) Bourbaki sequence $0 \rightarrow F \rightarrow M \rightarrow I \rightarrow 0$ is constructed by finding 'graded basic elements' in M. See [2, 5] for the standard basic element theory and [1, 6] for graded version. However, there is no comparative notion for long Bourbaki sequences. We give a simple answer to this problem in the case of $E_{t+1} \oplus E_{n-1}(d)$ (and $M = E_{t+1}$). We will give a characterization of long Bourbaki sequences [3] in terms of elemets from $K_{t+1} \oplus K_{n-1}$ (from K_{t+1}) and from $K_{n-t-1} \oplus K_{1}$ (from K_{n-t-1}) satisfying certain conditions, which suggests a construction of the long Bourbaki sequences. See Theorem 2.2 and 2.3. In particular, non-trivial type construction is characterized by an additional condition on the elements from $K_{t+1} \oplus K_{n-1}$ (Theorem 2.7).

However, the existence of a long Bourbaki sequence [3] only means that I is a single spot ideal of codimension less than or equal to 3. We give a numerical condition to assure codim $I = 3$. See Theorem 3.5. Finally, we give some examples.

For a module $M \neq K$, we will denote the jth syzygy module over S by $\Omega_{j}(M)$. Also we use two kinds of duals, $(-)^{\vee} = \text{Hom}_{S}(-, K)$ and $(-)^{*} = \text{Hom}_{S}(-, S(-n))$.

\[0 \rightarrow F \rightarrow G \rightarrow E_{t+1} \oplus E_{n-1}(d) \rightarrow I(c) \rightarrow 0 \]

\[0 \rightarrow F' \xrightarrow{f} G' \xrightarrow{f} E_{t+1} \xrightarrow{\phi} I(c) \rightarrow 0 \]

\[0 \rightarrow F' \oplus K_{n}(d) \xrightarrow{f \oplus \delta_{0}} G' \oplus K_{n-1}(d) \xrightarrow{g \oplus \delta_{n-1}} E_{t+1} \oplus E_{n-1}(d) \xrightarrow{\phi} I(c) \rightarrow 0 \]
1. Approximation Modules of Single Spot Ideals of type \((t, K(-c))\)

In this section, we consider approximation modules \(M\) of codimension 3 single spot ideals \(I \subset S\) of type \((t, K(-c))\) in long Bourbaki sequences

\[0 \rightarrow F \rightarrow G \rightarrow M \rightarrow I(c) \rightarrow 0.\]

If we restrict ourselves to the case of \(H^m_{n-1}(M) = 0\), we have \(M = E_t \oplus H\) for some free \(S\)-module \(H\) according to Herzog, Takayama [4] and Amasaki [1]. We will now consider the general case.

Theorem 1.1. Let \(M\) be a maximal generalized CM module over \(S\) and consider its first syzygy:

\[0 \rightarrow \Omega_1(M) \rightarrow F \rightarrow M \rightarrow 0\]

and let \(g_1, \ldots, g_t\) be a minimal set of generators of \(\Omega_1(M)\) whose degrees are \(a_1, \ldots, a_t\). Also let \(N\) be a finite length module over \(S\), which may be 0. Then the following are equivalent.

(i) For \(t \leq n - 4\), we have

\[H^i_m(M) = \begin{cases} K & \text{if } i = t + 1 \\ 0 & \text{if } i \leq n - 2, i \neq t + 1 \\ N & \text{if } i = n - 1 \end{cases}\]

(ii) (a) \(\Omega_1(M) \cong \bigoplus_{i=1}^t S(-a_i)/E_{t+3}\), and

(b) \(\Omega_1(M)^* \cong N^\vee + F^*/M^*\)

Proof. We first prove \((i)\) to \((ii)\). Let \(F_*\) be a minimal free resolution of \(M\) over \(S\):

\[F_* : 0 \rightarrow F_{n-t-1} \xrightarrow{\varphi_{n-t-1}} F_{n-t-2} \rightarrow \cdots \rightarrow F_2 \xrightarrow{\varphi_2} F_1 \xrightarrow{\varphi_1} F_0 \xrightarrow{\varphi_0} M \rightarrow 0.\]

By taking the dual, we have

\[0 \rightarrow F_0^* \xrightarrow{\varphi_0^*} F_1^* \xrightarrow{\varphi_1^*} F_2^* \rightarrow \cdots \rightarrow F_{n-t-2}^* \xrightarrow{\varphi_{n-t-2}^*} F_{n-t-1}^* \rightarrow 0.\]

Then by local duality the \(j\)th cohomology of this complex is

\[\text{Ext}^j_S(M, S(-n)) \cong H_m^{n-j}(M)^\vee = \begin{cases} N^\vee & \text{if } j = 1 \\ 0 & \text{if } j \geq 2, j \neq n - t - 1 \\ K & \text{if } j = n - t - 1 \end{cases}\]

for \(j \geq 1\). Thus

\[0 \rightarrow \text{Im} \varphi_2^* \rightarrow F_2^* \rightarrow \cdots \rightarrow F_{n-t-1}^* \rightarrow K \rightarrow 0\]

is exact and \(F_2^*\) to \(F_{n-t-1}^*\) part is a begining of a minimal free resolution of \(K\), which is isomorphic to a begining of the Koszul complex \((K_*, \partial_*)\) of the sequence \(x_1, \ldots, x_{n-1}\). Namely,

\[F_{n-t-1}^* \cong K_0, \ldots, F_2^* \cong K_{n-t-3} \quad \text{and} \quad \text{Im} \varphi_2^* \cong E_{n-t-2}.\]

On the other hand, we have \(N^\vee \cong \ker \varphi_2^*/\text{Im} \varphi_1^*\) and \(E_{n-t-2} \cong \text{Im} \varphi_2^* \cong F_1^*/\ker \varphi_2^*.\) Now set \(U := \text{Coker} \varphi_1^* = F_1^*/\ker \varphi_1^*\). Then

\[U/N^\vee \cong (F_1^*/\text{Im} \varphi_1^*)/(\ker \varphi_2^*/\text{Im} \varphi_1^*) \cong F_1^*/\ker \varphi_2^* = E_{n-t-2}.\]
Thus we have
\[0 \longrightarrow N^\vee \longrightarrow U \longrightarrow E_{n-t-2} \longrightarrow 0 \]
Taking the dual, we have
\[0 \longrightarrow E^*_{n-t-2} \longrightarrow U^* \longrightarrow (N^\vee)^* \]
Since \(N \) has finite length, \(N^\vee \) has also finite length by Matlis duality, so that \((N^\vee)^* = 0\). Also \(E^*_{n-t-2} \cong E_{t+3} \) by selfduality of Koszul complex. Thus we have \(U^* \cong E^*_{t+3} \).
Then by dualizing the exact sequence
\[
\begin{array}{c}
0 \longrightarrow M^* \longrightarrow F_0^* \xrightarrow{\varphi_1^*} F_1^* \longrightarrow U^* \longrightarrow 0
\end{array}
\]
we have
\[
0 \longrightarrow E_{t+3} \longrightarrow F_1 \xrightarrow{\varphi_1} F_0 \longrightarrow M \longrightarrow 0.
\]
This proves \((ii)(a)\). Now from the short exact sequence
\[0 \longrightarrow \Omega_1(M) \longrightarrow F \xrightarrow{\varphi} M \longrightarrow 0 \]
we have the long exact sequence
\[0 \longrightarrow M^* \xrightarrow{\varphi^*} F^* \longrightarrow \Omega_1(M)^* \longrightarrow N^\vee \longrightarrow 0 \]
since we have \(\text{Ext}_S^1(M, S(-n)) \cong H_{m-1}^n(M)^n = N^\vee \) by local duality. This proves \((ii)(b)\).
Next we prove \((ii)\) to \((i)\). By \((ii)(a)\) we have a \(S \)-free resolution of \(M \):
\[0 \longrightarrow K_n \xrightarrow{\partial_n} \cdots \xrightarrow{\partial_{t+4}} K_{t+3} \xrightarrow{\partial_{t+3}} F_1 \xrightarrow{\varphi_1} F_0 \xrightarrow{\varphi_0} M \longrightarrow 0 \]
where \(F_0 \) and \(F_1 \) are \(S \)-free modules. By taking the dual, we have the complex
\[0 \longrightarrow M^* \xrightarrow{\varphi^*_0} F_0^* \xrightarrow{\varphi^*_1} F_1^* \xrightarrow{\partial^*_0} K_{t+3}^* \xrightarrow{\partial^*_1} \cdots \xrightarrow{\partial^*_n} K_n^* \longrightarrow 0 \]
Then by local duality and selfduality of Koszul complex we compute
\[
H^i_m(M) \cong \text{Ext}^i_S(M, S(-n))^\vee = \begin{cases}
K & \text{if } i = t + 1 \\
0 & \text{if } i \leq n - 2, \ i \neq t + 1
\end{cases}
\]
Now by dualizing the exact sequence
\[K_{t+3} \xrightarrow{\partial_{t+3}} F_1 \xrightarrow{\varphi_1} \text{Ker} \varphi_0 \longrightarrow 0 \]
we have
\[0 \longrightarrow (\text{Ker} \varphi_0)^* \longrightarrow F_1^* \xrightarrow{\partial^*_0} K_{t+3}^* \]
so that we have \(\Omega_1(M)^* = (\text{Ker} \varphi_0)^* \cong \text{Ker}(\partial^*_0) \). Then by the condition \((ii)(b)\) we compute
\[
\begin{align*}
H_{m-1}^n(M)^\vee & \cong \text{Ext}^1_S(M, S(-n)) = \text{Ker} \partial^*_0 / \text{Im} \varphi_1^* \\
& \cong \Omega_1(M)^* / (F_0^*/\varphi_0^*(M^*)) \\
& = N^\vee
\end{align*}
\]
as required. \(\square \)
Corollary 1.2. Let M be a maximal generalized CM module satisfying Theorem (i). Then its minimal free resolution is in the form of

$$0 \to K_n \xrightarrow{\partial_n} K_{n-1} \xrightarrow{\partial_{n-1}} \cdots \xrightarrow{\partial_{t+1}} K_{t+3} \xrightarrow{\partial_{t+3}} F_1 \xrightarrow{\varphi} F_0 \to M \to 0.$$

Notice that F_1 is a S-free module containing a submodule isomorphic to E_{t+3}.

Example 1.3. Let $M = E_{t+1} \oplus E_{n-1}$. Then $H^i_m(M)$ is as in Theorem (i) with $N = K$. Since M has a minimal free resolution $0 \to K_n \xrightarrow{\partial_n} \cdots \xrightarrow{\partial_{t+1}} K_{t+3} \xrightarrow{\partial_{t+3}} K_{t+2} \oplus K_n \xrightarrow{\partial_{t+2} \oplus \partial_n} K_{t+1} \oplus K_{n-1} \xrightarrow{\partial_{t+1} \oplus \partial_{n-1}} M \to 0$, we have $\Omega_1(M) = E_{t+2} \oplus E_n \cong G/E_{t+3}$ where $G = K_{n+2} \oplus E_n$. Thus we have Theorem (ii)(a). On the other hand, we have $\Omega_1(M)^* = E_{t+2} \oplus E_n^* \cong E_{n-t-1} \oplus S$ by selfduality of Koszul complex and $E_n \cong S(-n)$. Again by selfduality we have $(K_{t+1} \oplus K_{n-1})^*/M^* = (K_{t+1} \oplus K_{n-1})^*/(E_{t+1} \oplus E_{n-1})^* = (K_{n-t-1} \oplus K_{1})/(E_{n-t} \oplus E_2) = (K_{n-t-1} \oplus E_{n-1}) \oplus (K_{1} \oplus E_2) = E_{n-t-1} \oplus E_1 = E_{n-t} \oplus m$. Thus $\Omega_1(M)^*/(K_{t+1} \oplus K_{n-1})^*/M^* \cong S/m \cong K \cong K^\vee$ and we obtain Theorem (ii)(b).

2. LONG BOURBAKI SEQUENCES WITH APPROXIMATION MODULE $E_{t+1} \oplus E_{n-1}(d)$

In the last chapter, we considered approximation modules M satisfying the condition of Theorem (i). We now focus on a special case of $M = E_{t+1} \oplus E_{n-1}(d)$, and investigate the long Bourbaki sequences.

We will use the following well known result frequently without referring it. First of all, we will give a proof for the readers’ convenience.

Lemma 2.1. For the t-th syzygy module of K over S, we have

$$\text{rank } E_t = \binom{n-1}{t-1}$$

Proof. Let K_i be the ith Koszul complex. Then we have an exact sequence

$$0 \to K_n \xrightarrow{\partial_n} K_{n-1} \xrightarrow{\partial_{n-1}} \cdots \xrightarrow{\partial_t} K_t \to E_t \to 0$$

so that

$$\text{rank}(E_t) = \sum_{i=t}^{n} (-1)^{i-t} \text{rank}(K_i) = (-1)^t \sum_{i=t}^{n} (-1)^i \binom{n}{i} = (-1)^{t-1} \sum_{i=0}^{t-1} (-1)^i \binom{n}{i}.$$

Now set $\alpha(n, t) := \text{rank}(E_t)$. By a straightforward calculation, we have $\alpha(n, t) = \alpha(n-1, t) = \alpha(n-1, t-1)$. Thus we have

$$\alpha(n, t) = \alpha(n-1, t) + \alpha(n-1, t-1)$$

$$= (-1)^{t-1} \sum_{i=0}^{t-1} (-1)^i \binom{n-1}{i} + (-1)^{t-2} \sum_{i=0}^{t-2} (-1)^i \binom{n-1}{i} = \binom{n-1}{t-1}.$$

as required. \qed

5
2.1. Characterization of long Bourbaki Sequences. For $J, K \subset [n] = \{1, 2, \ldots, n\}$ with $J \cap K = \emptyset$ we define $\sigma(J, K) = (-1)^i$ where $i = \sharp \{(j, k) \in J \times K \mid j > k\}$.
Then we have $x_J \wedge x_K = \sigma(J, K)x_{J \cup K}$.

Now a long Bourbaki sequence with approximation module $E_{t+1} \oplus E_{n-1}(d)$ is characterized by suitable sequences from $K_{t+1} \oplus K_{n-1}$ and its dual. Namely,

Theorem 2.2. Following are equivalent.

(i) We have a long Bourbaki sequence

$$0 \longrightarrow \bigoplus_{i=1}^{p} S(-a_i) \longrightarrow \bigoplus_{i=1}^{q} S(-b_i) \longrightarrow E_{t+1} \oplus E_{n-1}(d) \longrightarrow I(c) \longrightarrow 0 \quad \text{(exact)}$$

where $I \subset S$ is a graded ideal.

(ii) We have $\beta_1, \ldots, \beta_q \in K_{t+1} \oplus K_{n-1}(d) \backslash E_{t+2} \oplus E_n(d)$ and $\varphi = (a, b)$ with $a \in A$ and $b \in B$, where

$$A = \langle \sum_{j=1}^{n-t} (-1)^{j+1} \sigma(L \backslash \{i_j\}, ([n] \setminus L) \cup \{i_j\}) x_{i_1} e_{[n] \setminus L \cup \{i_j\}}^* \mid L = \{i_1, \ldots, i_{n-t}\} \subset [n] \rangle$$

$$B = \langle (-1)^i x_{i_j} e_{[n] \setminus \{i_j\}}^* \rangle - (-1)^i x_{i_j} e_{[n] \setminus \{i_j\}}^* \rangle \mid 1 \leq i < j \leq n \rangle,$$

such that

(a) $\varphi : K_{t+1} \oplus K_{n-1}(d) \rightarrow S(-n)$ is a degree 'n + c' homomorphism and $\text{Ker}(\varphi) = \langle \beta_1, \ldots, \beta_q \rangle + E_{t+2} \oplus E_n(d)$, and

(b) we have the following diagram, with $p = q - n + 2 - \binom{n-1}{t}$

$$\begin{array}{cccc}
0 & 0 & & \\
& & \downarrow & \\
0 & \longrightarrow & \text{Ker Res}(\beta) & \longrightarrow & \text{Ker } \beta & \longrightarrow & 0 \\
& & \downarrow & \\
0 & \longrightarrow & \bigoplus_{i=1}^{p} S(-a_i) & \longrightarrow & \bigoplus_{i=1}^{q} S(-b_i) \\
& \downarrow_{\text{Res}(\beta)} & & \downarrow_{\beta} & \\
0 & \longrightarrow & \langle \beta_1, \ldots, \beta_q \rangle \cap E_{t+2} \oplus E_n(d) & \longrightarrow & \langle \beta_1, \ldots, \beta_q \rangle \\
& & \downarrow & \\
& & 0 & 0 & \\
\end{array}$$

where $\beta(g_i) = \beta_i$ for all i with g_1, \ldots, g_q the free basis of $\bigoplus_{i=1}^{q} S(-b_i)$, and $\text{Res}(\cdot)$ denotes the restriction of maps.

In this case, we have $I = \varphi(K_{t+1} \oplus K_{n-1}(d))(-c)$.
Proof. We first prove (ii) to (i). First notice that, by the selfduality of Koszul complex, we have

\[E_i \cong E_{n-i+1}^* = \partial_i^* E_{n-i+1}^* \]

\[= \left\{ \sum_{k=1}^{i} (-1)^{k+1} \sigma(J \setminus \{ j_k \}, [n] - (J \setminus \{ j_k \})) x_{j_k} e_{[n]- (J \setminus \{ j_k \})} : J = \{ j_1, \ldots, j_i \} \subset [n] \right\}. \]

See \[3\] Chapter 1.6. Thus \(\text{A} = \partial_{t+1}^* E_{t+1}^* \) and \(\text{B} = \partial_{n-1}^* E_{n-1}^* \). Then, there exists \(\bar{a} \in E_{t+1}^* \) and \(\bar{b} \in E_{n-1}^* \) such that \(a = \bar{a} \circ \partial_{t+1} \) and \(b = \bar{b} \circ \partial_{n-1} \). Then by (a) we have the diagram

\[
\begin{array}{cccccc}
0 & \rightarrow & \langle \beta_1, \ldots, \beta_q \rangle + E_{t+2} \oplus E_n(d) & \rightarrow & K_{t+1} \oplus K_{n-1}(d) & \rightarrow \phi \rightarrow S(c) \\
\delta & \downarrow & \downarrow & & \downarrow & \\
0 & \rightarrow & \langle \bar{\beta}_1, \ldots, \bar{\beta}_q \rangle & \rightarrow & E_{t+1} \oplus E_{n-1}(d) & \rightarrow \phi \rightarrow S(c)
\end{array}
\]

(5)

where \(\phi = (\bar{a}, \bar{b}) \) and \(\bar{\beta} := \partial_{t+1} \oplus \partial_{n-1}(d) \). On the other hand, we have

\[\text{Ker} \bar{\beta} \circ \beta = \left\{ \sum_{i=1}^{q} h_i g_i \mid \bar{\beta}(\sum_{i=1}^{q} h_i \beta_i) = 0, h_i \in S \right\} \]

\[= \left\{ \sum_{i=1}^{q} h_i g_i \mid \sum_{i=1}^{q} h_i \beta_i \in \text{Ker} \bar{\beta} = E_{t+2} \oplus E_n(d), h_i \in S \right\} \]

\[= \left\{ \sum_{i=1}^{q} h_i g_i \mid \beta(\sum_{i=1}^{q} h_i g_i) \in \langle \beta_1, \ldots, \beta_q \rangle \cap E_{t+2} \oplus E_n(d) \right\} \]

\[\cong \bigoplus_{i=1}^{p} S(-a_i) \]

where the last isomorphism is by (b). Notice that let \(u \in \bigoplus_{i=1}^{q} S(-b_i) \) be such that \(\beta(u) \in \langle \beta_1, \ldots, \beta_q \rangle \cap E_{t+2} \oplus E_n(d) \). Then \(u \) must be in \(\bigoplus_{i=1}^{p} S(-a_i) \). In fact, by (b) we can choose \(v \in \bigoplus_{i=1}^{p} S(-a_i) \) such that \(\text{Res}(\beta)(v) = \beta(u) \). Thus \(u - v \in \text{Ker} \beta \cong \text{Ker} \text{Res}(\beta) \), and we have \(u + v \in \text{Ker} \text{Res}(\beta) \subset \bigoplus_{i=1}^{p} S(-a_i) \) as required. Then by (3) we obtain

\[0 \rightarrow \bigoplus_{i=1}^{p} S(-a_i) \rightarrow \bigoplus_{i=1}^{q} S(-b_i) \rightarrow E_{t+1} \oplus E_{n-1}(d) \rightarrow \phi \rightarrow S(c) \quad \text{(exact)} \]

and since \(p = q - n + 2 - \binom{n-1}{t} \) we know that rank \(\text{Im} \psi = 1 \) so that we have

\[0 \rightarrow \bigoplus_{i=1}^{p} S(-a_i) \rightarrow \bigoplus_{i=1}^{q} S(-b_i) \rightarrow E_{t+1} \oplus E_{n-1} \rightarrow \phi \rightarrow I(c) \rightarrow 0 \quad \text{(exact)} \]

for the ideal \(I := \phi(E_{t+1} \oplus E_{n-1}(d))(-c) = \varphi(K_{t+1} \oplus K_{n-1}(d))(-c) \) as required.
Next we prove (i) to (ii). Given a long Bourbaki sequence
\[
0 \rightarrow \bigoplus_{i=1}^{p} S(-a_i) \xrightarrow{f} \bigoplus_{i=1}^{q} S(-b_i) \xrightarrow{g} E_{t+1} \oplus E_{n-1}(d) \xrightarrow{\phi} I(c) \rightarrow 0 \quad \text{(exact)}
\]

with a graded ideal \(I \subset S \). Then we have \(p = q - n + 2 + \binom{n-1}{t} \) since \(1 = \text{rank } I(c) = \text{rank } E_{t+1} \oplus E_{n-1}(d) - q + p \). Also since \(I(c) \subset S(c) \) we have
\[
\phi \in \text{Hom}_S(E_{t+1} \oplus E_{n-1}(d), S) = \text{Hom}_S(E_{t+1} \oplus E_{n-1}(d), S(-n))(n + c)
\]

Thus there exists a unique \((a, b) \in \partial_{t+1}^* (E_{t+1}^*) \oplus \partial_{n-1}^* (E_{n-1}^*(-d))\) such that \(\phi \circ \bar{\partial} = (a, b) \). Now we set \(\varphi = (a, b) \). Then \(E_{t+2} \oplus E_n(d) + N = \bar{\partial}^{-1}(\text{Ker } \phi)(\subset K_{t+1} \oplus K_{n-1}(d)) \) for some module \(N(\neq 0) \). Let \(\{\beta_1, \ldots, \beta_q\} \) be a minimal set of generators of \(N \). Then we have the following diagram:

\[
\begin{array}{cccccc}
0 & \rightarrow & \bigoplus_{i=1}^{q} S(-b_i) & \xrightarrow{g} & E_{t+1} \oplus E_{n-1}(d) & \xrightarrow{\phi} & I(c) & \rightarrow & 0 \\
& & \downarrow \beta & & \leftarrow \delta & & \\
0 & \rightarrow & \langle \beta_1, \ldots, \beta_q \rangle & \rightarrow & K_{t+1} \oplus K_{n-1}(d) & \xrightarrow{\varphi=(a,b)} & I(c) & \leftarrow \\
& & \downarrow & & & & \\
& & & & 0 & & \\
\end{array}
\]

Then we have obtained \(\beta_1, \ldots, \beta_q \in K_{t+1} \oplus K_{n-1}(d) \) and \((a, b) \in A \times B \) satisfying the condition (a) and the numerical condition on \(p, q, t \) and \(n \) in (b). Also we have \(I = \varphi(K_{t+1} \oplus K_{n-1}(d))(-c) \).
Now since \(\text{Ker }g = \text{Ker}(\text{Res}(\partial) \circ \beta) = \text{Im }f = \bigoplus_{i=1}^{p} S(-a_i) \) we readily have the following diagram:

\[
\begin{array}{cccccc}
0 & 0 \\
\downarrow & \downarrow \\
0 & \text{Ker }\beta \circ f & \longrightarrow & \text{Ker }\beta & \longrightarrow & 0 \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
0 & \bigoplus_{i=1}^{p} S(-a_i) & \longrightarrow & \bigoplus_{i=1}^{q} S(-b_i) & \longrightarrow & E_{t+1} \oplus E_{n-1}(d) \\
\downarrow & \beta & \downarrow & \downarrow & \downarrow & \downarrow \\
0 & \langle \beta_1, \ldots, \beta_q \rangle \cap E_{t+2} \oplus E_n(d) & \longrightarrow & \langle \beta_1, \ldots, \beta_q \rangle & \longrightarrow & E_{t+1} \oplus E_{n-1}(d) \\
& & & & \downarrow & \downarrow \\
& & & & 0 & \text{exact} \\
\end{array}
\]

Notice that since \(\text{Ker }\beta \subset \text{Ker}(\text{Res}(\partial) \circ \beta) = \text{Ker }g = \text{Im }f \) we have the exactness of the first row. Since \(\text{Im}(\beta \circ f) = \beta(\text{Ker}(\text{Red}(\partial) \circ \beta)) = \text{Ker}(\text{Res}(\partial)) = \langle \beta_1, \ldots, \beta_q \rangle \cap E_{t+2} \oplus E_n(d) \), we have a well-defined surjection

\[\beta \circ f : \bigoplus_{i=1}^{p} S(-a_i) \longrightarrow \langle \beta_1, \ldots, \beta_q \rangle \cap E_{t+2} \oplus E_n(d). \]

Thus we obtained the diagram of \((b)\) as required. \(\square \)

For any codimension 3 single spot ideal of type \((t, K(-c))\), there exists a long Bourbaki sequence with approximation module \(E_{t+1} \oplus H \) where \(H \) is a \(S \)-free module \([4, 1]\). The following is the case of \(H = 0 \), which can be proved with the same idea as that of Theorem 2.2.

Theorem 2.3. Following are equivalent.

(i) We have a long Bourbaki sequence

\[0 \longrightarrow \bigoplus_{i=1}^{p} S(-a_i) \longrightarrow \bigoplus_{i=1}^{q} S(-b_i) \longrightarrow E_{t+1} \longrightarrow I(c) \longrightarrow 0 \quad \text{(exact)} \]

where \(I \subset S \) is a graded ideal.

(ii) We have \(\beta_1, \ldots, \beta_q \in K_{t+1} \setminus E_{t+2} \) and \(\varphi \in A \) where

\[
A = \left\{ \sum_{j=1}^{n-t} (-1)^{j+1} \sigma(L \setminus \{i_j\}, ([n] \setminus L) \cup \{i_j\}) x_{i_j} e^*_{([n] \setminus L) \cup \{i_j\}} \mid L = \{i_1, \ldots, i_{n-t}\} \subset [n] \right\}
\]

such that

(a) \(\varphi : K_{t+1} \to S(-n) \) defines a degree \(n + c \) homomorphism and \(\text{Ker }\varphi = \langle \beta_1, \ldots, \beta_q \rangle + E_{t+1} \), and
(b) we we have the following diagram, with \(p = q + 1 - \binom{n-1}{t} \)

\[
\begin{array}{cccccc}
0 & \rightarrow & \text{Ker } \text{Res}(\beta) & \rightarrow & \text{Ker } \beta & \rightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \\
0 & \rightarrow & \bigoplus_{i=1}^{p} S(-a_i) & \rightarrow & \bigoplus_{i=1}^{q} S(-b_i) & \rightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \\
0 & \rightarrow & \langle \beta_1, \ldots, \beta_q \rangle \cap E_{t+2} & \rightarrow & \langle \beta_1, \ldots, \beta_q \rangle & \rightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \\
0 & & & & & & 0
\end{array}
\]

where \(\beta(g_i) = \beta_i \) for all \(i \) with \(g_1, \ldots, g_q \) the free basis of \(\bigoplus_{i=1}^{q} S(-b_i) \).

In this case, we have \(I = \varphi(K_{t+1})(n-c) \).

Corollary 2.4. There is no codimension 3 single spot ideal \(I \) of type \((0, K(-c))\) with approximation module \(E_{t+1} \) if \(t = 0 \).

Proof. Assume that there exists a codimension 3 single spot ideal \(I \subset S \) of type \((0, K(-c))\) fitting into a long Bourbaki sequence

\[
0 \rightarrow F \rightarrow G \rightarrow E_1 \rightarrow I(c) \rightarrow 0.
\]

Then by Theorem 2.3, there exist \(\beta_1, \ldots, \beta_q \in K_1 \setminus E_2 \) and \((0 \neq) \varphi \in A \) such that \(\langle \beta_1, \ldots, \beta_q \rangle + E_2 = \text{Ker}(\varphi : K_1 \rightarrow S(-n)) \). Since \(A = \langle x_1e_1^* + \cdots + x_ne_n^* \rangle \) we must have \(\beta_1, \ldots, \beta_q \in E_2 \), a contradiction. \(\square \)

Remark 2.5. In fact, the above Corollary holds for any codimension \(\geq 2 \). Here is an outline of the proof. We consider a straightforward extension of Theorem 2.3(a) to any codimension \(r \). In this case we consider long Bourbaki sequences

\[
0 \rightarrow F_{r-1} \rightarrow F_{r-2} \rightarrow \cdots \rightarrow F_1 \rightarrow E_1 \xrightarrow{\varphi} I(c) \rightarrow 0.
\]

and \(\varphi \) is determined by a nonzero element from \(A = \langle x_1e_1^* + \cdots + x_ne_n^* \rangle \).

2.2. Long Bourbaki sequences of non-trivial type.

Let \(n \geq 4 \) and \(t \leq n-4 \) and consider a long Bourbaki sequence

\[
0 \rightarrow F \xrightarrow{f} G \xrightarrow{g} E_{t+1} \oplus E_{n-1}(d) \xrightarrow{\phi} I(c) \rightarrow 0
\]

with \(c \in \mathbb{Z} \) and \(S \)-free modules \(F \) and \(G \). From this sequence, we construct the following diagram where the second row is the minimal free resolution of \(M = E_{t+1} \oplus E_{n-1}(d) \) and the third row is the mapping cone \(C(\alpha, \beta) \) of a chain map \(\alpha \oplus \beta \),
which is a free resolution of $I(c)$.

\[(7)\]

\[
\begin{array}{c}
0 \longrightarrow F \xrightarrow{f} G \xrightarrow{g} \ker \phi \longrightarrow 0 \\
\alpha \downarrow \quad \beta \downarrow \quad \phi \downarrow
\end{array}
\]

\[
0 \xrightarrow{} K_n \xrightarrow{\partial_n} \cdots \xrightarrow{\partial_{n+4}} K_{t+3} \xrightarrow{\partial_{t+3}} K_{t+2} \oplus K_n(d) \xrightarrow{\partial_{t+2}} K_{t+1} \oplus K_{n-1}(d) \xrightarrow{\partial_{t+1}} M \longrightarrow 0
\]

\[
0 \xrightarrow{} K_n \xrightarrow{\partial_n} \cdots \xrightarrow{\partial_{n+4}} F \oplus K_{t+3} \xrightarrow{\zeta} K_{t+2} \oplus K_n(d) \xrightarrow{\rho} K_{t+1} \oplus K_{n-1}(d) \xrightarrow{\phi} I(c) \longrightarrow 0
\]

where

\[
\rho : K_{t+2} \oplus K_n(d) \oplus G \xrightarrow{(a, b, c)} K_{t+1} \oplus K_{n-1}(d) \quad \xrightarrow{(\partial_{t+2}(a), \partial_n(b)) - \beta(c)}
\]

and

\[
\zeta : K_{t+3} \oplus F \xrightarrow{(a, b)} K_{t+2} \oplus K_n(d) \oplus G \quad \xrightarrow{(\partial_{t+3}(a), 0, f(b)) - \alpha(b)}
\]

Let $p_1 : K_{t+1} \oplus K_{n-1}(d) \rightarrow K_{t+1}$ and $p_2 : K_{t+1} \oplus K_{n-1}(d) \rightarrow K_{n-1}(d)$ be the first and the second projections. From the diagram \((7)\) we know $\ker \phi = \im g = (\partial_{t+1} \oplus \partial_{n-1}) \circ \beta(G)$ and then by considering the ranks of the modules in the short exact sequence

\[(8)\]

\[
0 \longrightarrow \ker \phi \longrightarrow E_{t+1} \oplus E_{n-1}(d) \xrightarrow{\phi} I(c) \longrightarrow 0
\]

we have

\[(9)\]

\[
\rank(\ker \varphi) = n - 2 + \binom{n-1}{t}.
\]

On the other hand, we have

\[(10)\]

\[
(\partial_{t+1} \circ p_1 \circ \beta)(G) \oplus (\partial_{n-1} \circ p_2 \circ \beta)(G) \supset (\partial_{t+1} \oplus \partial_{n-1}) \beta(G) = \ker \phi.
\]

Thus we have

\[(11)\]

\[
\rank I_{t+1} + \rank I_{n-1} \geq n - 2 + \binom{n-1}{t}.
\]

where $I_{t+1} := (\partial_{t+1} \circ p_1 \circ \beta)(G)(\subseteq E_{t+1})$ and $I_{n-1} := (\partial_{n-1} \circ p_2 \circ \beta)(G)(\subseteq E_{n-1}(d))$.

Since $\rank E_{t+1} = \binom{n-1}{t}$ and $\rank E_{n-1}(d) = n - 1$ we know from \((11)\) that

\[
(\rank I_{t+1}, \rank I_{n-1}) = (\binom{n-1}{t} - 1, n-1), (\binom{n-1}{t}, n-1), \text{ or } (\binom{n-1}{t}, n-2).
\]

Under this situation, we have

Lemma 2.6. Following are equivalent.
Proof. We will prove (i) to (ii). We assume that for all \(i \) we have either \(\beta(m_i) \in K_{t+1} \) or \(\beta(m_i) \in K_{n-1}(d) \) and will deduce a contradiction. First of all, we have equality in (10), and then from (11) we have

\[
\text{rank } \cdot (n-1) + \text{rank } \cdot (n+1) - 2 + \binom{n-1}{t} = \text{rank } I_{n+1} + \text{rank } I_{n-1}.
\]

Thus, we have \((\text{rank } I_{n+1}, \text{rank } I_{n-1}) = ((n-1), (n-1)) \) or \((n-1), (n-2)) \). Also, since \(\text{Ker } I = I_{n+1} \oplus I_{n-1} \), we have by (12)

\[
I(c) \cong (E_{t+1}/I_{t+1}) \oplus (E_{n-1}(d)/I_{n-1})
\]

case \((\text{rank } I_{n+1}, \text{rank } I_{n-1}) = ((n-1), (n-1))\): Since we have \(\text{rank } E_{n-1}(d)/I_{n-1} = \text{rank } E_{n-1}(d) - \text{rank } I_{n-1} = 0 \), \(E_{n-1}/I_{n-1} \) is 0 or a torsion-module. But since \(I(c) \) is torsion-free, we must have \(E_{n-1}(d)/I_{n-1} \) by (12). Thus \(\text{Ker } I = I_{n+1} \oplus E_{n-1}(d) \) and then the Bourbaki sequence (6) must be of trivial-type

\[
0 \rightarrow F' \oplus K_n \overset{f' \oplus \partial_n}{\rightarrow} G' \oplus K_{n-1} \overset{\partial_n \partial_{n-1}}{\rightarrow} E_{t+1} \oplus E_{n-1}(d) \overset{\phi}{\rightarrow} I(c) \rightarrow 0
\]

where \(0 \rightarrow F' \rightarrow G' \rightarrow I_{t+1} \rightarrow 0 \) is a \(S \)-free resolution of \(I_{t+1} \), a contradiction.

case \((\text{rank } I_{n+1}, \text{rank } I_{n-1}) = ((n-1), (n-2))\): In this case we have \(\text{rank } E_{t+1}/I_{t+1} = 0 \). Since \(E_{t+1}/I_{t+1} \subset I(c) \) and \(I(c) \) is torsion-free, we must have \(E_{t+1}/I_{t+1} = 0 \). Thus \(\text{Ker } I = E_{t+1} \oplus I_{n-1} \) and the Bourbaki sequence (6) is

\[
0 \rightarrow K_n \oplus U_n \overset{\partial_n \oplus \partial_n}{\rightarrow} \cdots \overset{\partial_n \oplus \partial_{n-1}}{\rightarrow} K_{t+1} \oplus U_{t+1} \overset{\partial_{t+1} \oplus \partial_{t+1}}{\rightarrow} E_{t+1} \oplus E_{n-1} \overset{\phi}{\rightarrow} I(c) \rightarrow 0.
\]

But then we must have \(t \geq n - 2 \), which contradicts to the assumption that \(t \leq n - 4 \).

Now we show (ii) to (i). Assume that (6) is of trivial type. Then we must have \(\beta(G) = p_1(\beta(G)) \oplus p_2(\beta(G)) \). From this we immediately obtain the required result. \(\square \)

From Lemma 2.6 we immediately have

Theorem 2.7. Under the situation of Theorem 2.6, the long Bourbaki sequence is of non-trivial type if and only if

(i) the condition Theorem 2.6 (ii) holds, and
(ii) the submodule \(N := \langle \beta_1, \ldots, \beta_q \rangle \) of \(K_{t+1} \oplus K_{n-1}(d) \) cannot be decomposed in the form of \(N = A \oplus B \) for some \((0 \neq) A \subset K_{t+1} \) and \((0 \neq) B \subset K_{n-1}(d)\)
3. Numerical Characterizations

Existence of long Bourbaki sequence as in Theorem 2.2 and 2.3 only implies that \(I \) is a single spot ideal of codimension at most 3. To assure that the codimension is exactly 3, we need additional condition. In this section, we give a numerical condition to assure \(\text{codim } I = 3 \) for long Bourbaki sequences with approximation modules \(E_{t+1} \oplus E_{n-1} \).

We assume \(n \geq 4 \) and \(t \leq n-4 \), and let \(I \subset S \) be a graded ideal fitting into a long Bourbaki sequence

\[
0 \rightarrow F \xrightarrow{f} G \xrightarrow{g} M \xrightarrow{\phi} I \rightarrow 0
\]

with \(M = E_{t+1} \oplus E_{n-1} \), \(F = \bigoplus_{i=1}^{p} S(-a_i) \) and \(G = \bigoplus_{i=1}^{q} S(-b_i) \) are \(S \)-free modules and \(c \in \mathbb{Z} \). As in Theorem 2.2 we have

\[
q = p + \binom{n-1}{t} + n - 2.
\]

Now from the sequence (13), we construct the mapping cone \(C(\alpha, \beta) \) as in (7). The cone gives a \(S \)-free resolution \(F_* \) of the residue ring \(S/I \).

\[
F_* : 0 \rightarrow F_{n-t} \rightarrow \cdots \rightarrow F_1 \rightarrow F_0 \rightarrow S/I \rightarrow 0
\]

where

\[
\begin{align*}
F_0 & = S \\
F_1 & = K_{t+1}(-c) \oplus K_{n-1}(d-c) = S(-t-1-c)^{\beta_1} \oplus S(-n+1+d-c)^n \\
F_2 & = K_{t+2}(-c) \oplus K_n(d-c) \oplus G(-c) \\
& = S(-t-2-c)^{\beta_2} \oplus S(-n+d-c) \oplus \bigoplus_{i=1}^{q} S(-b_i-c) \\
F_3 & = K_{t+3}(-c) \oplus F(-c) = S(-t-3-c)^{\beta_3} \oplus \bigoplus_{i=1}^{p} S(-a_i-c) \\
F_i & = K_{t+i}(-c) = S(-t-i-c)^{\beta_i} \quad (4 \leq i \leq n-t)
\end{align*}
\]

with \(\beta_i = \binom{n}{i+

\begin{align*}
\text{Notice that this resolution is minimal if and only if matrix representations of } \alpha \text{ and } \beta \text{ only have their entries from } \mathfrak{m}. \\
\text{Now we compute the Hilbert series } H(\mathbb{Z}/I, \lambda) \text{ of } S/I. \text{ We have}
\end{align*}

\[
H(\mathbb{Z}/I, \lambda) = \frac{Q(\lambda)}{(1-\lambda)^n}
\]

with

\[
Q(\lambda) = \sum_{i,j} (-1)^i \beta_{i,j} \lambda^j = 1 - n\lambda^{n-1+c-d} + \lambda^{n+c-d} + \sum_{i=1}^{q} \lambda^{b_i-c} - \sum_{i=1}^{p} \lambda^{a_i+c} + (-1)^t \lambda^c \sum_{i=t+1}^{n} \binom{n}{i}(-1)^i \lambda^i
\]
where $\beta_{i,j}$ are as in $F_i = \bigoplus_j S(-j)^{\beta_{i,j}}$, $(i = 0, \ldots, n - t)$. (see Lemma 4.1.13 [3]).

Since we have $H_i^m(S/I) = H_{i+1}^m(M)$ for $0 \leq i \leq n - 4$ by [1], we know that $\dim S/I \geq n - 3$, i.e., $\text{codim} I \leq 3$. To assure that $\text{codim} I \geq 3$ we must have $Q(1) = Q'(1) = Q''(1) = 0$ (see Corollary 4.1.14(a) [3]).

Proposition 3.1. $Q(1) = 0$ holds for all n, t, c and p.

Proof. We compute using (14)

$$Q(1) = \left(\binom{n-1}{t}\right) - (-1)^{t+1} \sum_{i=t+1}^{n} (-1)^i \binom{n}{i} = \left(\binom{n-1}{t}\right) - \text{rank} E_{t+1} = 0.$$

where the last equation follows from the Koszul resolution of E_{t+1}:

$$0 \rightarrow K_n \rightarrow K_{n-1} \rightarrow \cdots \rightarrow K_{t+1} \rightarrow E_{t+1} \rightarrow 0 \ (\text{exact}).$$

Proposition 3.2. $Q'(1) = 0$ holds if and only if

$$\sum_{i=1}^{q} b_i - \sum_{i=1}^{p} a_i = n^2 - (2 + d)n + c + d + \binom{n-2}{t-1} + \binom{n-1}{t} t.$$

Proof. We compute using (14)

$$Q'(1) = -n^2 + (2 + d)n - c - d + \sum_{i=1}^{q} b_i - \sum_{i=1}^{p} a_i - (-1)^{t+1} \sum_{i=t+1}^{n} (-1)^i \binom{n}{i} i.$$

and we know

$$(-1)^{t+1} \sum_{i=t+1}^{n} (-1)^i \binom{n}{i} i = (-1)^{t} \sum_{i=0}^{t} (-1)^i \binom{n}{i} i = \binom{n-2}{t-1} + \binom{n-1}{t} t$$

where the last equation is given in Example 2.3 [4].

Now before we go further, we need to show a combinatorial equation.

Lemma 3.3.

$$(-1)^{t+1} \sum_{i=t+1}^{n} (-1)^i \binom{n}{i} i^2 = \binom{n-1}{t} (t+1)^2 - \binom{n-2}{t} (2t+1) - 2 \binom{n-3}{t-1}$$

Proof. Let $A = (-1)^{t+1} \sum_{i=t+1}^{n} (-1)^i i^2$. A straightforward computation using the binomial coefficient theorem and (16) shows that

$$0 = \sum_{i=2}^{n} (-1)^i \binom{n}{i} i(i-1)$$

$$= (-1)^{t+1} A + \sum_{i=2}^{t} (-1)^i \binom{n}{i} i(i-1) - (-1)^{t+1} \left[\binom{n-2}{t-1} + \binom{n-1}{t} t \right]$$
Thus we have

\[A = \binom{n-2}{t-1} + \binom{n-1}{t}t + (-1)^t \sum_{i=2}^{t} (-1)^i \binom{n}{i} i(i-1) \]

Now we will compute the last term. Set

\[\alpha(n, t) = (-1)^t \sum_{i=2}^{t} (-1)^i \binom{n}{i} i(i-1). \]

and we compute

\[
\begin{align*}
\alpha(n, t) + \alpha(n - 1, t - 1) &= 2t^2 \binom{n-1}{t} - 2(-1)^t \sum_{i=2}^{t} (-1)^i \binom{n-1}{i} i + 2(-1)^t(n - 1) - \alpha(n - 1, t).
\end{align*}
\]

Also we have

\[
\alpha(n - 1, t - 1) + \alpha(n - 1, t) = t(t-1) \binom{n-1}{t}.
\]

Thus by using (16)

\[
\begin{align*}
\alpha(n, t) &= t(t + 1) \binom{n-1}{t} - 2(-1)^t \sum_{i=2}^{t} (-1)^i \binom{n-1}{i} i + 2(-1)^t(n - 1) \\
&= t(t + 1) \binom{n-1}{t} - 2 \left[t \binom{n-2}{t} + \binom{n-3}{t-1} + (-1)^t(n - 1) \right] \\
&\quad + 2(-1)^t(n - 1) \\
&= t(t + 1) \binom{n-1}{t} - 2t \binom{n-2}{t} - 2 \binom{n-3}{t-1}.
\end{align*}
\]

Substiting this into (17), we obtain the desired result. \(\square \)

Proposition 3.4. \(Q''(1) = 0 \) holds if and only if

\[
\sum_{i=1}^{q} b_i^2 - \sum_{i=1}^{p} a_i^2 = n^3 - (3 + 2d)n^2 + (d^2 + 4d + 1)n - c^2 - d^2 + \binom{n-1}{t}(t + 1)^2 - \binom{n-2}{t}(2t + 1) - 2 \binom{n-3}{t-1}.
\]
Proof. We compute
\[
Q''(1) = c + d - c^2 + d^2 - 2cd + (4c - 3 - d^2 - 5d + 2cd)n + (4 - 2c + 2d)n^2 - n^3 \\
- (2c - 1) \left[\binom{n-2}{t-1} + \binom{n-1}{t} \right] + \sum_{i=1}^{q} b_i^2 - \sum_{i=1}^{p} a_i^2 \\
+ (2c - 1) \left(\sum_{i=1}^{q} b_i - \sum_{i=1}^{p} a_i \right) + (-1)^t \sum_{i=t+1}^{n} (-1)^i \binom{n}{i} i^2 \\
= c^2 + d^2 - (d^2 + 4d + 1)n + (3 + 2d)n^2 - n^3 \\
+ \sum_{i=1}^{q} b_i^2 - \sum_{i=1}^{p} a_i^2 + (-1)^t \sum_{i=t+1}^{n} (-1)^i \binom{n}{i} i^2
\]
where the last equation is by Proposition 3.2. Then by Lemma 3.3 we obtain the desired result. □

To summarize, we obtain

Theorem 3.5. Let \(n \geq 4 \) and \(t \leq n - 4 \). Assume that we have the following long Bourbaki sequence

\[
0 \rightarrow \bigoplus_{i=1}^{p} S(-a_i) \rightarrow \bigoplus_{i=1}^{q} S(-b_i) \rightarrow E_{t+1} \oplus E_{n-1}(d) \rightarrow I(c) \rightarrow 0
\]

with \(I \subset S \) a graded ideal and \(c \in \mathbb{Z} \). Then we have \(\text{codim} I \leq 3 \) and the equality holds if and only if

1. \(q = p + \binom{n-1}{t-1} + n - 2; \)
2. \(\sum_{i=1}^{q} b_i - \sum_{i=1}^{p} a_i = n^2 - (2 + d)n + c + d + \binom{n-2}{t-1} + \binom{n-1}{t}t; \)
3. \(\sum_{i=1}^{q} b_i^2 - \sum_{i=1}^{p} a_i^2 = n^3 - (3 + 2d)n^2 + (d^2 + 4d + 1)n - c^2 - d^2 \)

\((n-1)^t - \binom{n-1}{t} \binom{n-2}{t-1} - \binom{n-2}{t}(2t+1) - 2 \binom{n-3}{t-1} \)

4. **Examples**

Example 4.1. We first give an application of Theorem 2.3. Namely, a single spot ideal \(I \) with approximation module \(E_{t+1} \). Let \(t = 1 \) and \(n = 6 \). Then \(A = \)
\{A_1, A_2, A_3, A_4, A_5, A_6\} = \partial_2^*(E_2^*) \subset K_2^* \text{ where}
\begin{align*}
A_1 &= x_1e_{16}^* + x_2e_{26}^* + x_3e_{36}^* + x_4e_{46}^* + x_5e_{56}^* \\
A_2 &= -x_1e_{15}^* - x_2e_{25}^* - x_3e_{35}^* - x_4e_{45}^* + x_6e_{66}^* \\
A_3 &= x_1e_{14}^* + x_2e_{24}^* + x_3e_{34}^* - x_5e_{54}^* - x_6e_{66}^* \\
A_4 &= -x_1e_{13}^* - x_2e_{23}^* + x_4e_{34}^* + x_5e_{54}^* + x_6e_{66}^* \\
A_5 &= x_1e_{12}^* - x_3e_{23}^* + x_4e_{34}^* + x_5e_{54}^* - x_6e_{66}^* \\
A_6 &= x_2e_{12}^* + x_3e_{13}^* + x_4e_{14}^* + x_5e_{15}^* + x_6e_{16}^*.
\end{align*}

Now let \(a \in A\) and \(\beta_i (i = 1, \ldots, 6)\) be as follows:
\begin{align*}
a &= x_6A_1 - x_5A_2 + x_4A_3 \\
&= x_1x_4e_{14}^* + x_1x_5e_{15}^* + x_1x_6e_{16}^* + x_2x_4e_{24}^* + x_2x_5e_{25}^* + x_2x_6e_{36}^* + x_3x_4e_{34}^* + x_3x_5e_{35}^* \\
&\quad + x_3x_6e_{66}^* \\
\beta_1 &= e_{12}, \quad \beta_2 = e_{13}, \quad \beta_3 = e_{23}, \quad \beta_4 = e_{45}, \quad \beta_5 = e_{46}, \quad \beta_6 = e_{56}\end{align*}

Then we have
\[\text{Ker}(a : K_2 \oplus K_5 \to S) = \langle \beta_1, \ldots, \beta_6 \rangle + E_3\]

and, for the map \(\beta : \bigoplus_{i=1}^6 S(-2) \to K_2 \oplus K_5\) such that \(\beta(m_i) = \beta_i (i = 1, \ldots, 6)\)
where \(\{m_i\}\) is a free basis, we obtain the diagram

\[
\begin{array}{ccc}
0 & \to & 0 \\
\downarrow & & \downarrow \\
0 & \to & \langle x_3m_1 - x_2m_2 + x_1m_3, \\
x_6m_4 - x_5m_6 + x_4m_6 \rangle & \to & \langle m_1, \ldots, m_6 \rangle \\
\downarrow & & \downarrow \\
\text{Res}(\beta) & & \beta \\
\downarrow & & \downarrow \\
0 & \to & \langle \beta_1, \ldots, \beta_6 \rangle \cap E_3 & \to & \langle \beta_1, \ldots, \beta_6 \rangle \\
\downarrow & & \downarrow \\
0 & & 0
\end{array}
\]

and a defines a degree 0 homomorphism from \(E_2\) to \(S\). Then we obtain the long Bourbaki sequence
\[
0 \to S^2(-3) \xrightarrow{f} S^6(-2) \xrightarrow{g} E_2 \xrightarrow{\varphi} I \to 0
\]
where

\[f : \quad S^2(-3) = S_{n1} \oplus S_{n2} \quad \rightarrow \quad S^6(-2) = S_{m1} \oplus \cdots \oplus S_{m6} \]

\[n1 \quad \rightarrow \quad x_3 m_1 - x_2 m_2 + x_1 m_3 \]

\[n2 \quad \rightarrow \quad x_6 m_4 - x_5 m_5 + x_4 m_6 \]

\[g : \quad S^6(-2) = S_{m1} \oplus \cdots \oplus S_{m6} \quad \rightarrow \quad \partial_2(\beta_i) \quad (i = 1, \ldots, 6) \]

\[E_2 \quad \rightarrow \quad \partial_2(e_{ij}) \quad \text{for} \quad (i, j) = (1, 2), (1, 3), (2, 3), (4, 5), (4, 6), (5, 6) \]

\[\partial_2(e_{ij}) \quad \text{for} \quad (i, j) \neq (1, 2), (1, 3), (2, 3), (4, 5), (4, 6), (5, 6) \]

and we obtain \(I = (x_1 x_4, x_1 x_5, x_1 x_6, x_2 x_4, x_2 x_5, x_2 x_6, x_3 x_4, x_3 x_5, x_3 x_6) = (x_1, x_2, x_3)(x_4, x_5, x_6) \), a codimension 3 single spot ideal of type \((1, K)\).

Example 4.2. We continue to consider the situation in Example 4.1. As an application of Theorem 2.2, we can see that the same ideal fits into a long Bourbaki sequence with approximation module \(E_{i+1} \oplus E_{n-1} = E_1 \oplus E_5 \). In this case, we must also consider \(B = \{ B_{ij} \mid 1 \leq i < j \leq 6 \} = \partial_5(E_5^*) \subset K_5^* \) where \(B_{ij} = (-1)^i x_j e_{[6]}^{*i} - (-1)^j x_i e_{[6]}^{*j} \). Then we set \(a \in A \) as in Example 4.1 and

\[b = -x_1^2 x_2 x_4 B_{14} = x_1^2 x_2 x_4^* e_{23456} + x_1^2 x_2 x_4^* e_{12356} \in B. \]

Also we set \(\beta_1, \ldots, \beta_6 \) to be the same as those in Example 4.1 and \(\beta_7 = x_1 x_2 x_4 e_{14} - e_{23456}, \beta_8 = x_1^2 x_2 e_{14} - e_{12356}, \beta_9 = e_{13456}, \beta_{10} = e_{12456}, \beta_{11} = e_{12356}, \beta_{12} = e_{12345}. \) Notice that \(\{ \beta_i \}_{i=1}^{12} \) satisfies the condition of Theorem 2.7. Then \(\varphi = (a, b) \) defines a degree 0 map on \(E_2 \oplus E_5 \), and we have

\[\text{Ker } \varphi = \langle \beta_1, \ldots, \beta_{12} \rangle + E_3 \oplus E_6 \]

and the diagram

\[
\begin{array}{ccc}
0 & \quad \quad & 0 \\
\downarrow & \quad \quad & \downarrow \\
0 & \quad \quad & \downarrow \\
\quad \quad & \quad \quad & \quad \quad \\
\downarrow & \quad \quad & \downarrow \\
\beta & \quad \quad & \beta \\
\downarrow & \quad \quad & \downarrow \\
0 & \quad \quad & 0 \\
\end{array}
\]

Then we have a long Bourbaki sequence of non-trivial type

\[0 \rightarrow S^2(-3) \oplus S(-6) \xrightarrow{f} S^6(-2) \oplus S^6(-5) \xrightarrow{g} E_2 \oplus E_5 \xrightarrow{\varphi} I \rightarrow 0 \]
where

\[f : \ S^2(-3) \oplus S(-6) = Sn_1 \oplus Sn_2 \oplus Sn_3 \quad \rightarrow \quad S^6(-2) = Sm_1 \oplus \cdots \oplus Sm_6 \]

\[n_1 \quad \rightarrow \quad x_3m_4 - x_4m_8 + x_2m_9 \]
\[n_2 \quad \rightarrow \quad -x_3m_{10} - x_5m_{11} + x_6m_{12} \]
\[n_3 \quad \rightarrow \quad x_6m_4 - x_5m_5 + x_4m_6 \]

\[g : \ S^6(-2) = Sm_1 \oplus \cdots \oplus Sm_6 \quad \rightarrow \quad \tilde{\partial}(\beta_i) \quad (i = 1, \ldots, 12) \]

\[m_i \quad \rightarrow \quad \tilde{\partial} = \partial_2 \oplus \partial_5 \]

and

\[\varphi \]
\[E_2 \quad \rightarrow \quad I \]
\[\partial_2(e_{ij}) \quad \rightarrow \quad x_i x_j \]
\[\partial_2(e_{ij}) \quad \rightarrow \quad 0 \]
\[\partial_5(e_{23456}) \quad \rightarrow \quad x_1^2 x_2 x_4^2 \]
\[\partial_5(e_{12356}) \quad \rightarrow \quad x_1^2 x_3 x_4 \]
\[\partial_5(e_{ijklm}) \quad \rightarrow \quad 0 \text{ otherwise} \]

and the ideal \(I \) is the same as that in Example 4.1. We can also check that this sequence satisfies the numerical condition in Theorem 3.5.

Example 4.3. By Corollary 2.4, we do not have a long Bourbaki sequence with an approximation module \(E_1 \) and a codimension 3 generalized CM ideal \(I \). However, there are long Bourbaki sequences with approximation modules \(E_1 \oplus E_5(d) \) for \(d \in \mathbb{Z} \), which is an application of Theorem 2.2. Let \(k = 1 \) and \(n = 6 \). Then

\[A = \langle x_1 e_1^* + \cdots + x_6 e_6^* \rangle \]
\[B = \langle B_{ij} = (-1)^i x_j e_{[6]i} - (-1)^j x_i e_{[6]j} : 1 \leq i < j \leq 6 \rangle. \]

Let \(\varphi = (a, b) \) be

\[a = x_1^3 e_1^* + x_1^2 x_2 e_2^* + x_1^2 x_3 e_3^* + x_1^2 x_4 e_4^* + x_1^2 x_5 e_5^* + x_1^2 x_6 e_6^* \]
\[b = x_5 x_6 e_{12346} + x_5 x_6 e_{12345} + x_5 x_6 e_{13456} + x_2 x_6 e_{12456} \]

Let \(\varphi = (a, b) \) be

\[a = x_1^3 e_1^* + x_1^2 x_2 e_2^* + x_1^2 x_3 e_3^* + x_1^2 x_4 e_4^* + x_1^2 x_5 e_5^* + x_1^2 x_6 e_6^* \]
\[b = x_5 x_6 e_{12346} + x_5 x_6 e_{12345} + x_5 x_6 e_{13456} + x_2 x_6 e_{12456} \]
and set $\beta_i \in K_1 \oplus K_5(1)$ to be as follows:

$$
\begin{align*}
\beta_1 &= -x_6 e_{12345} + x_5 e_{12346} \\
\beta_2 &= x_6 e_3 - x_1^2 e_{13456} \\
\beta_3 &= x_6 e_2 - x_1^2 e_{12456} \\
\beta_4 &= x_2 x_5 e_2 - x_1 e_{12345} \\
\beta_5 &= x_4 x_6 e_2 - x_1^2 e_{12346} \\
\beta_6 &= -x_6 e_{12346} + x_2^4 e_{12456} \\
\beta_7 &= e_{23456} \\
\beta_8 &= e_{12356}.
\end{align*}
$$

Notice that $\beta_i \notin E_2 \oplus E_6(1)$ for all i, i.e., the condition in Theorem 2.7 is satisfied. Then we can check

1. $\text{Ker(} \varphi : K_1 \oplus K_5(1) \to S(-6) = \langle \beta_1, \ldots, \beta_8 \rangle \oplus E_2 \oplus E_6(1) \text{ and } \varphi \text{ is a degree 8 homomorphism, and}$
2. the diagram

$$
\begin{array}{cc}
0 & 0 \\
\downarrow & \downarrow \\
0 & \text{Ker Res}(\beta) \quad \longrightarrow \quad \text{Ker } \beta \quad \longrightarrow \quad 0 \\
\downarrow & \downarrow \\
0 & F' \quad \longrightarrow \quad G \\
\text{Res}(\beta) & \beta \\
\downarrow & \downarrow \\
0 & \langle \beta_1, \ldots, \beta_8 \rangle \cap E_2 \oplus E_6(1) \quad \longrightarrow \quad \langle \beta_1, \ldots, \beta_8 \rangle \\
\downarrow & \downarrow \\
0 & 0
\end{array}
$$

where

$$
\begin{align*}
G &= \langle m_1, \ldots, m_8 \rangle = S(-5) \oplus S^4(-6) \oplus S(-8) \oplus S^2(-4) \\
F' &= \left\langle -x_1^2 m_1 + x_6 m_4 - x_5 m_5, x_2^3 m_3 - x_6^4 m_5 + x_1^2 m_6, \\
&\quad -x_2^2 m_1 - x_3 m_2 + x_5 m_3 - x_1^3 m_7 + x_1^2 x_4 m_8 \right\rangle \\
\text{Ker } \beta &= \text{Ker Res}(\beta) = \langle -x_1^2 m_1 + x_6 m_4 - x_5 m_5, x_2^3 m_3 - x_6^4 m_5 + x_1^2 m_6 \rangle
\end{align*}
$$

Thus we have a long Bourbaki sequence

$$
0 \to F \xrightarrow{f} G \xrightarrow{g} E_1 \oplus E_5(1) \xrightarrow{\phi} I(2) \to 0
$$

where $g(m_i) = \beta_i$, $i = 1, \ldots, 8$, and $F = S(-10) \oplus S^2(-7) = \langle u, v, w \rangle$ with $f(u) = x_2^3 m_3 - x_6^4 m_4 + x_1^2 m_6$, $f(v) = -x_1^2 m_1 + x_6 m_4 - x_5 m_5$, and $f(w) = -x_1^2 m_1 - x_3 m_2 + x_3 m_3 - x_1^3 m_7 + x_1^2 x_4 m_8$. The map ϕ is as follows: $\phi(x_i) = x_i x_1^2$ ($i = 1, \ldots, 6$).
\[\phi(\partial_5(e_{12345})) = x_3^5x_5, \quad \phi(\partial_5(e_{12346})) = x_2^5x_6, \quad \phi(\partial_5(e_{12356})) = 0, \quad \phi(\partial_5(e_{12456})) = x_2^5, \]

\[\phi(\partial_5(e_{13456})) = x_3^5x_6, \quad \phi(\partial_5(e_{23456})) = 0. \]

The ideal is \(I = \text{Im} \varphi = x_1^2m + (x_2^5x_6, x_2^5x_5, x_3^5, x_2x_5^5). \) Finally we can check that this Bourbaki sequence satisfies the numerical condition of Theorem 3.5.

References

[1] M. Amasaki, Basic sequences of homogeneous ideals in polynomial rings, J. Algebra 190, pp329-360, 1997.
[2] N. Bourbaki, Elements of Mathematics, Commutative Algebra, Chapter 1-7, Springer, 1989.
[3] W. Bruns and J. Herzog, Cohen-Macaulay Rings, Revised version, Cambridge University Press, 1998.
[4] J. Herzog and Y. Takayama, Approximations of Generalized Cohen-Macaulay Modules, preprint, 2002.
[5] E. Kunz, Introduction to Commutative Algebra and Algebraic Geometry, Birkhäuser, 1985.
[6] H. Flenner, Die Sätze von Bertini für lokale Ringe, Math. Ann. 299, 97–111, 1977.

YUKIHide TAKAYAMA, DEPARTMENT OF MATHEMATICAL SCIENCES, RITSUMEIKAN UNIVERSITY, 1-1-1 NOJIHIGASHI, KUSATSU, SHIGA 525-8577, JAPAN

E-mail address: takayama@se.ritsumei.ac.jp