Priming the pancreatic cancer tumor microenvironment for checkpoint-inhibitor immunotherapy

Eric R Lutz1,2,3,4, Heather Kinkead1,2,3,5, Elizabeth M Jaffee1,2,3,4,6, and Lei Zheng1,2,3,4,7,*

1Department of Oncology; Johns Hopkins University School of Medicine; Baltimore, MD USA; 2The Sidney Kimmel Cancer Center; Johns Hopkins University School of Medicine, Baltimore, MD USA; 3The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care; Johns Hopkins University School of Medicine, Baltimore, MD USA; 4The Sol Goldman Pancreatic Cancer Center; Johns Hopkins University School of Medicine, Baltimore, MD USA; 5Graduate Program of Cellular and Molecular Medicine; Johns Hopkins University School of Medicine, Baltimore, MD USA; 6Department of Pathology; 7Department of Surgery; Johns Hopkins University School of Medicine, Baltimore, MD USA

Keywords: pancreatic cancer, tumor immunotherapy, tumor vaccines

Pancreatic ductal adenocarcinoma (PDAC) is highly resistant to chemotherapy and radiation therapy. While surgical resection provides the best opportunity for a cure, only around 20% of patients are candidates for surgery, and as many as 80% of patients recur following surgical resection and adjuvant therapy. Median survival for patients with unresectable metastatic PDAC remains <1 y, and the overall 5 y survival rate for PDAC is only 6%.1

Cancer immunotherapy is considered to be one of the biggest breakthroughs for cancer treatment in the last decade. Ipilimumab, a monoclonal antibody that blocks the immune checkpoint cytotoxic T lymphocyte antigen-4 (CTLA-4) was approved by the United States FDA for the treatment of advanced melanoma.2 More recently, other checkpoint inhibitors including Programmed-Death-1 (PD-1) and Programmed-Death-1 Ligand-1 (PD-L1) blocking antibodies were shown to induce objective responses in approximately 20–30% of patients with several cancers, including melanoma, renal cell carcinoma, and non-small cell lung cancer (NSCLC).3,4 Despite the success of blocking CTLA-4 and PD-1 as single therapy in several cancers, treatment of patients with PDAC with these single agents has been ineffective.6

One difference between tumors that have responded to checkpoint-inhibitors and PDAC is the immune status of the TME. Cancers that have responded to checkpoint-inhibitors tend to be naturally infiltrated with effector lymphocytes7 and are generally considered to be ‘immunogenic’ neoplasms. PDAC, on the other hand, is similar to many other non-immunogenic’ neoplasms, which has slowed the development and application of immune-based therapies for these diseases.

Our group has developed a vaccine (GVAX) for the treatment of PDAC consisting of two allogeneic PDAC cell lines engineered to secrete GM-CSF.9,10 GVAX is designed to induce immune responses against a broad range of PDAC-associated antigens, including the commonly expressed PDAC antigen mesothelin. Studies evaluating GVAX in patients with both resected and metastatic PDAC have shown that GVAX induces enhanced mesothelin-specific T cell responses in a subset of patients that are associated with longer survival.11,12 Prior work has also shown that combining GVAX with low-dose cyclophosphamide (Cy) to deplete CD4+ T regulatory cells (Tregs) results in more robust mesothelin-specific T cell responses and longer survival in patients with metastatic PDAC compared to GVAX alone.11 Although our prior work demonstrates that GVAX treatment induces peripheral T cell responses that can be enhanced with low-dose Cy, the studies were not designed to directly evaluate the effects of GVAX treatment on the PDAC TME. Therefore, we designed a neo-adjuvant and adjuvant clinical trial comparing GVAX given as single agent, or in combination with low dose Cy.13 The first treatment was given 2 weeks prior to surgery providing the first opportunity to study how the PDAC TME is altered by GVAX-based immunotherapy.

Immunohistochemical analysis (IHC) of resected tumor tissue revealed the formation of intratumoral tertiary lymphoid aggregates in 33 (84.6%) of 39 vaccinated patients that are not observed in tumors from GVAX-naive patients. The aggregates were composed of naïve and activated T cells, B cells and innate antigen-presenting cells (APCs); and resembled ectopic lymph node-like structures observed in
immunotherapy naïve patients with melanoma, colon cancer and NSCLC. Lymphoid aggregates formed regardless of whether GVAX was given with or without Cy. However, lower numbers of FoxP3+ Tregs were observed in tumors from patients treated with the combination of GVAX+Cy indicating that low-dose Cy reduces Treg levels within the TME. In contrast to primary and secondary lymphoid structures, tertiary lymphoid structures develop in response to antigen exposure. Thus, their formation demonstrates that GVAX induces an adaptive immune response within the PDAC TME.

Treatment with GVAX induced interferon gamma (IFNγ)-production in T effector cells infiltrating PDACs, but also induced the upregulation of immunosuppressive regulatory mechanisms, including upregulation of the PD-1/PD-L1 pathway (Fig. 1). In unvaccinated patients, only a small percentage of PDAC tumor cells expressed low levels of membranous PD-L1. By contrast, moderate membranous expression of PD-L1 by tumor cells was observed in patients treated with GVAX. Lymphoid aggregates were also infiltrated with innate immune cells expressing high levels of PD-L1. Although PD-L1 expression may be regulated by oncogenic pathways, PD-L1 is also induced by cytokines produced by infiltrating immune cells, such as IFNγ. In immunotherapy-naïve patients with melanoma, NSCLC and renal cell carcinoma, PD-L1 expression has been observed in approximately 53–89% of tumors and by infiltrating

Figure 1. Model explaining the inefficacy of single agent immunotherapy for pancreatic cancer. At baseline, pancreatic tumors are predominantly infiltrated with immunosuppressive regulatory cells, such as T regulatory cells (Treg), and few effector T cells (T cell); express low levels of PD-L1 on tumor cells; and are infiltrated with few to no PD-L1-expressing innate immune cells (PD-L1+ immune cell). In this non-immunized and inactive state, treatment with immune checkpoint inhibitors alone, such as anti-PD-1/PD-L1, is hampered by the lack of effector T cells to act on. Treatment with the GVAX vaccine (Vaccine) combined with low dose cyclophosphamide (Cy) converts the pancreatic tumor microenvironment from a relatively inactive to an active state by inducing the infiltration of effector T cells and the formation of intratumoral tertiary lymphoid aggregates (Lymphoid aggregate). However, cytokines produced by the immune cells that are induced to traffic the tumor, such as IFNγ, induce the upregulation of immunosuppressive mechanisms, such as the upregulation of PD-1 and PD-L1 expression. These countering immunosuppressive mechanisms limit the activity and efficacy of vaccination, but also prime the pancreatic tumor microenvironment for immune modulators, such as checkpoint-inhibitors. Thus, optimal activity and antitumor efficacy of either of these single approaches is dependent on the other.
immune cells in approximately 50–100% of tumors. The expression of PD-L1 in tumors is associated with more abundant immune cell infiltration and the presence of lymphoid aggregates. The naturally high prevalence of PD-L1 in these tumor types may explain their relatively high response rates to anti-PD-1 or anti-PD-L1 therapies, whereas the low PD-1/PD-L1 levels expression by PDAC may explain why these agents have been less effective against PDAC. However, by inducing T cell infiltration and PD-L1 expression in the TME, GVAX may prime PDACs for anti-PD-1/PD-L1 therapies.

This study demonstrates that GVAX can convert a ‘non-immunogenic’ neoplasm into an ‘immunogenic’ neoplasm by inducing infiltration of T cells and development of tertiary lymphoid structures. However, this conversion coincides with the upregulation of immunosuppressive regulatory mechanisms. These data may explain why GVAX and checkpoint-inhibitors given alone have failed against PDAC, but importantly, also suggest that vaccine-primed PDAC patients may be better candidates for checkpoint immunotherapy than vaccine-naive patients (Fig. 1). In support of this notion, we recently showed that the combination of GVAX with ipilimumab induces objective responses in patients with metastatic PDAC that are not observed with either single therapy alone. These data support a new approach for evaluating checkpoint inhibitors in ‘non-immunogenic’ cancers, like PDAC.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

References
1. Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA: Cancer J Clin 2014; 64(1):9-29; http://dx.doi.org/10.3322/caac.21259; PMID:24543589
2. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schaden-dorf D, Hasel JC et al. Improved survival with ipilimumab in patients with metastatic melanoma. New Engl J Med 2010; 363(8):711-23; PMID:20525592; http://dx.doi.org/10.1056/NEJMoa1003466
3. Brahmer JR, Tykodi SS, Chow LQ, Wu HJ, Topalian SL, Hodi F, Robert C, Schadendorf D, Ansell S et al. Nivolumab versus ipilimumab in previously untreated melanoma. N Engl J Med 2015; 372(1):23-34; PMID:25356287; http://dx.doi.org/10.1056/NEJMoa1406366
4. Brahmer JR, Schumacker PT, Pardoll DM. The PD-1 pathway and cancer immunotherapy. Cell 2014; 157(4):939-46; PMID:24924756; http://dx.doi.org/10.1016/j.cell.2014.05.042
5. Borek CE, Chaisson PL, Martin J, Vonderheide RH, McMiller TL, Chen S, Klein AP, Pardoll DM, Topalian SL et al. Characterization of tumors in patients with PD-L1-positive tumors. Ann Oncol 2014; 25(11):2097-106; PMID:25288899; http://dx.doi.org/10.1093/annonc/mdu322
6. Lacey AM, Coppeyn P, Vermeulen B, van Kooten P, Delwel E, De Wever A et al. A unique repertoire of PD-L1–positive cells in pancreatic ductal adenocarcinoma. Cancer Res 2013; 73(23):7133-44; PMID:24085662; http://dx.doi.org/10.1158/0008-5472.CAN-13-2377
7. Taube JM, Andersen RA, Young GD, Xu H, Sharma R, McMillan TL, Chen S, Klein AP, Pollard DM, Topalian SL et al. Co-localization of inflammatory response with B7-h1 expression in human metastatic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl Med 2012; 4(127):127ra1; http://dx.doi.org/10.1126/scitranslmed.3003689
8. Garcia-Aguilar J, Qin J, Ishida H, Shen F, Pack D, Burrell A et al. PD-L1 expression in primary breast cancer. Clin Cancer Res 2014; 20(1):12-21; PMID:24174771
9. Zheng L, Xu J, Jaffe EM, Habtezion A. Role of immune checkpoint molecules in pancreas and pancreatic ductal adenocarcinoma. Gastroenterology 2013; 144(6):1230-40; http://dx.doi.org/10.1053/j.gastro.2012.12.042
10. Jaffee EM, Schumacker PT, Thomas Menard S, Carbone DP, Ajani JA, Donnelly DR et al. Characterization of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res 2014; 20(19):5066-74; PMID:24714771
11. Cipponi A, Mercier M, Seremet T, Baurain JF, Theate I, van den Oord J, Staels B, Boon T, Pouille PG, van Baren N. Neogenesis of lymphoid structures and antibody responses occur in human melanoma metastases.

Cancer Res 2012; 72(16):3997-4007; PMID:22850419; http://dx.doi.org/10.1158/0008-5472.CAN-12-0422
12. Taube JM, Anders RA, Young GD, Xu H, Sharma R, McMillan TL, Chen S, Klein AP, Pollard DM, Topalian SL et al. Co-localization of inflammatory response with B7-h1 expression in human metastatic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl Med 2012; 4(127):127ra1; http://dx.doi.org/10.1126/scitranslmed.3003689
13. Le DT, Tsai Y, Tran MT, Kim SY, Khramtsov A, Patnaik A et al. Stratification of breast cancer immunity subtypes identifies predictive biomarkers for response to immune checkpoint blockade. Cell 2015; 161(3):770-84; PMID:25802140; http://dx.doi.org/10.1016/j.cell.2015.04.030
14. Cipponi A, Mercier M, Seremet T, Theate I, van den Oord J, Staels B, Boon T, Pouille PG, van Baren N. Neogenesis of lymphoid structures and antibody responses occur in human melanoma metastases.

Cancer Res 2012; 72(16):3997-4007; PMID:22850419; http://dx.doi.org/10.1158/0008-5472.CAN-12-0422
15. Copola D, Nezhbou M, Khalil F, Dai H, Yeaman T, Loboda A, Mule J. Unique ectopic lymph node-like structures present in human primary colorectal carcinoma are identified by immune gene array profiling. Am J Pathol 2011; 179(1):37-45; PMID:21703392; http://dx.doi.org/10.1016/j.ajpath.2011.03.007
16. Dieu-Noess Jean MC, Antoine M, Daniel C, Heudes D, Wielzer M, Poulet V, Rabbe N, Laurans I, Tartour E, de Chaisemartin L et al. Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. J Clin Oncol: Off J Am Soc Clin Oncol 2008; 26(27):4410-17; http://dx.doi.org/10.1200/JCO.2007.15.0284
17. Messina JL, Frenstermacher DA, Eschrich S, Qu Y, Berglund AE, Lloyd MC, Schell MJ, Sondak VK, Weber JS, Mule JJ. 12-Chemokine gene signature identifies lymph node-like structures in melanoma: potential for patient selection for immunotherapy? Sci Rep 2012; 2:765; PMID:22907687; http://dx.doi.org/10.1038/ncomms17065
18. Goc J, Fridman WH, Sauve-Fridman C, Dieu-Noess Jean MC. Characteristics of tertiary lymphoid structures in primary cancers. Oncoimmunology 2013; 2(2):26836; http://dx.doi.org/10.4161/onci.26836
19. Taube JM, Anderson RA, Young GD, Xu H, Sharma R, McMillan TL, Chen S, Klein AP, Pollard DM, Topalian SL et al. Co-localization of inflammatory response with B7-h1 expression in human metastatic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl Med 2012; 4(127):127ra1; http://dx.doi.org/10.1126/scitranslmed.3003689
20. Le DT, Tsai Y, Tran MT, Kim SY, Khramtsov A, Patnaik A et al. Stratification of breast cancer immunity subtypes identifies predictive biomarkers for response to immune checkpoint blockade. Cell 2015; 161(3):770-84; PMID:25802140; http://dx.doi.org/10.1016/j.cell.2015.04.030
21. Copola D, Nezhbou M, Khalil F, Dai H, Yeaman T, Loboda A, Mule J. Unique ectopic lymph node-like structures present in human primary colorectal carcinoma are identified by immune gene array profiling. Am J Pathol 2011; 179(1):37-45; PMID:21703392; http://dx.doi.org/10.1016/j.ajpath.2011.03.007
22. Dieu-Noess Jean MC, Antoine M, Daniel C, Heudes D, Wielzer M, Poulet V, Rabbe N, Laurans I, Tartour E, de Chaisemartin L et al. Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. J Clin Oncol: Off J Am Soc Clin Oncol 2008; 26(27):4410-17; http://dx.doi.org/10.1200/JCO.2007.15.0284