Long-Term Risks of Stroke in Patients With Type A Aortic Dissection: A Nationwide Cohort Study

Jin-Yi Hsu, MD; Peter Pin-Sung Liu, MS; An-Bang Liu, MD, PhD; Huei-Kai Huang, MD; Ching-Hui Loh, MD, PhD

BACKGROUND: Patients with type A aortic dissection (TAAD) have a high short-term risk of stroke. However, whether patients with TAAD have an increased long-term risk of stroke is still undetermined, and our study aims to address this knowledge gap.

METHODS AND RESULTS: A nationwide retrospective cohort study was conducted using Taiwan’s National Health Insurance Research Database. We included patients with TAAD as well as age- and sex-matched aortic disease–free individuals between 2003 and 2016. Inverse probability of treatment weighting was performed to balance patient characteristics between the groups. The primary outcome was the development of stroke, regardless of subtype; the secondary outcomes were the risk of developing either ischemic or hemorrhagic stroke. The hazard ratios (HRs) of stroke were estimated using the Cox proportional hazards model. After inverse probability of treatment weighting, 3556 and 7023 patients were categorized into the TAAD and aortic disease–free cohorts, respectively. The mean follow-up period was 5.71 years. The HRs for overall, ischemic, and hemorrhagic strokes in the TAAD cohort were 3.01 (95% CI, 2.40–3.78), 3.18 (95% CI, 2.47–4.10), and 2.32 (95% CI, 1.58–3.41), respectively, compared with the aortic disease–free cohort. Consistent trends of higher stroke risk in patients with TAAD were revealed in the analyses stratified by age; sex; antiplatelet use; and history of hypertension, diabetes, or dyslipidemia.

CONCLUSIONS: Our study findings revealed that patients with TAAD had an increased long-term risk of both ischemic and hemorrhagic strokes. Further studies are warranted to establish optimal strategies for stroke prevention in these patients.

Key Words: hemorrhagic stroke, ischemic stroke, stroke, type A aortic dissection

Type A aortic dissection (TAAD) is one of the most life-threatening cardiovascular diseases. With advances in surgical repair techniques in recent years, the 3-year survival rate of patients with TAAD has increased to 90.5%. However, TAAD is associated with an increased risk of in-hospital stroke, mainly related to aortic arch vessel involvement and intramural hematoma from the dissection site of the aorta. The International Registry of Acute Aortic Dissection stated that 6% of patients with TAAD presented with stroke on hospital admission.

The long-term risk of stroke in patients with TAAD remains unclear. TAAD affects not only vascular fragility but also vessel remodeling; both mechanisms were found to be associated with atherosclerosis in recent studies. Vascular fragility might cause the vascular endothelium to develop vessel injuries, which is the first step toward atherosclerosis. Vessel remodeling is also an important process for atherosclerosis, particularly atherosclerotic plaque healing. Atherosclerosis of the small vessels in the brain increases the risk of ischemic stroke and intracerebral hemorrhage. Moreover, a high prevalence rate of intracranial aneurysms has also been noted in patients with TAAD. A previous study showed an increased risk of subarachnoid hemorrhage in patients with aortic disease.
According to the aforementioned information, it is reasonable to assume that patients with TAAD are associated with a higher long-term risk of stroke than the general population; however, to date there is little evidence regarding this issue.

Our study aims to investigate whether patients with TAAD have an increased long-term risk of stroke based on nationwide longitudinal data in Taiwan.

METHODS

Taiwan’s National Health Insurance Research Database (NHIRD) is maintained and regulated by the Health and Welfare Data Science Center at the Ministry of Health and Welfare in Taiwan. The data set could only be used in the division of the Health and Welfare Data Science Center. Researchers who are interested in analyzing this data set can request access to the Taiwan Ministry of Health and Welfare (https://dep.mohw.gov.tw/DOS/cp-2516-3591-113.html).

Study Design, Data Source, and Ethical Approval

We conducted a nationwide cohort study using Taiwan’s NHIRD between 2000 and 2017. The NHIRD is drawn from the electronic claims data of the Taiwan National Health Insurance program, a mandatory single-payer program that comprises >99% of the Taiwanese population, approximately 23.6 million individuals. The NHIRD is currently regulated and stored by the Health and Welfare Data Science Center of Taiwan’s Ministry of Health and Welfare. These data are only approved for analysis by the Division of the Health and Welfare Data Science Center in Taiwan. The NHIRD is an anonymized database comprising comprehensive health care data, including inpatient, outpatient, emergency visits, surgery procedures, and detailed prescription medication data. All information for an individual could be linked and followed longitudinally using an encrypted identification number. The International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) codes before 2016 and the International Classification of Diseases, Tenth Revision, Clinical Modification (ICD-10-CM) codes after 2016 were used as the diagnostic and procedural codes.

The study protocol was approved by the Institutional Review Board of Hualien Tzu Chi Hospital (IRB107-152-C). This study was performed in accordance with the Declaration of Helsinki; informed consent was waived because the Taiwan NHIRD is an encrypted research database.

The index date for patients with TAAD was defined as the date of discharge from hospitalization; an identical date was set as the index date for the 1:2 age- and sex-matched aortic disease-free individuals. All patients with a history of stroke, cerebral aneurysm, or related cerebral vascular disease (ICD-9 430–438 or ICD-10 I60–I69) before the index date were excluded to avoid bias. Incidences of death or stroke during the hospitalization for TAAD and age <20 years or lack of complete basic information were the exclusion criteria. We further conducted stabilized inverse probability of treatment weighting (IPTW) to construct a pseudo population to balance the potential differences in baseline characteristics between patients with TAAD and aortic disease-free individuals after age- and sex-matching.

CLINICAL PERSPECTIVE

What Is New?

- Type A aortic dissection was associated with a higher long-term risk of strokes, including ischemic and hemorrhagic strokes.
- This trend of increased risk of stroke was consistent across subgroups stratified by age; sex; antiplatelet use; and history of hypertension, diabetes, or dyslipidemia.

What Are the Clinical Implications?

- These findings may provide physicians with more evidence of the need for intensive follow-up and aggressive risk factor control for modifiable stroke risk factors in patients with type A aortic dissection.
- Further studies are warranted to establish optimal strategies for stroke prevention in these patients.

Nonstandard Abbreviations and Acronyms

Abbreviation	Definition
IPTW	inverse probability of treatment weighting
NHIRD	National Health Insurance Research Database
TAAD	type A aortic dissection

Study Population

We included all patients diagnosed with TAAD from January 1, 2003, to December 31, 2016. Patients with TAAD were defined as those diagnosed with aortic dissection (International Classification of Diseases, Ninth Revision [ICD-9] 441.0 and International Classification of Diseases, Tenth Revision [ICD-10] I71.0) who underwent surgical repair of the ascending aorta or aortic arch, depending on the surgical codes. Individuals without a diagnosis of aortic disease (ICD-9 441.x or ICD-10 I71.x) were enrolled into the aortic disease-free cohort in this study.

The NHIRD is an anonymized database comprising comprehensive health care data, including inpatient, outpatient, emergency visits, surgery procedures, and detailed prescription medication data. All information for an individual could be linked and followed longitudinally using an encrypted identification number. The International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) codes before 2016 and the International Classification of Diseases, Tenth Revision, Clinical Modification (ICD-10-CM) codes after 2016 were used as the diagnostic and procedural codes.

The study protocol was approved by the Institutional Review Board of Hualien Tzu Chi Hospital (IRB107-152-C). This study was performed in accordance with the Declaration of Helsinki; informed consent was waived because the Taiwan NHIRD is an encrypted research database.
Outcomes
The primary outcome was defined as an inpatient diagnosis of stroke, including both stroke subtypes (ischemic and hemorrhagic), which was further confirmed by brain imaging examination. The diagnostic criteria for stroke have been validated in the Taiwan NHIRD. The diagnostic codes of ischemic stroke were ICD-9-CM codes 433, 434, and 436 and ICD-10-CM codes I63 and I67.89, and the codes of hemorrhagic stroke were ICD-9-CM codes 430 and 431 and ICD-10-CM codes I60 and I61. The follow-up period was initiated from the index date and ended with either the occurrence of stroke, death, withdrawal from the insurance system, or December 31, 2017, whichever came first. With regard to the secondary outcome, we separately analyzed the risk of stroke subtype, either ischemic or hemorrhagic. To estimate the stroke risk, we compared patients with TAAD with aortic disease–free individuals.

Covariates
All comorbidities listed in Table 1 were dependent on the diagnostic codes regarding any inpatient diagnosis or at least 2 outpatient diagnoses. We used a minimum 3-year trace-back period to identify these comorbidities. The income level was estimated based on insurance premiums. The Charlson Comorbidity Index was calculated according to comorbidities. Preexisting medication use was defined using drug prescription data with a duration of ≥30 days within 1 year before the index date. Antiplaetelet use was defined as receiving any antiplaetelet drug during the follow-up period. In addition, the connective tissue disorder included Marfan’s syndrome and Ehlers–Danlos syndrome, which were considered to display an association between aortic dissection and connective tissue disorder.

Statistical Analysis
We calculated propensity scores to estimate the probability of patients being assigned to the TAAD and aortic disease–free cohorts via a logistic regression model; the model included age, sex, income level, Charlson Comorbidity Index, the comorbidities listed in Table 1, preexisting medication use, and antiplaetelet use. Stabilized IPTW using the propensity score was then performed to create a weighted pseudo population, increasing the comparability of the 2 cohorts before the analyses. We examined the difference in the baseline characteristics according to the value of the standardized difference; the value of <0.1 was considered a negligible difference. The probability of stroke between the 2 cohorts was shown using the Kaplan–Meier curves, and the difference between the 2 curves was examined using the log-rank test. The association between risk of stroke and TAAD was evaluated using a univariable Cox proportional hazards model that estimates the hazard ratios (HRs) and corresponding 95% CIs. We also performed stratified analyses based on age; sex; history of hypertension, diabetes, or dyslipidemia; and antiplaetelet use. Statistical significance was defined as a 2-tailed probability value of <0.05. Statistical analyses were performed using SAS software version 9.4 (SAS Institute, Inc., Cary, NC) and Stata version 14 (Stata Corporation LLC, College Station, TX).

RESULTS
Baseline Characteristics
After 1:2 matching according to age and sex, the TAAD and aortic disease–free cohorts comprised 3520 patients and 7040 patients, respectively. Their baseline characteristics demonstrated a mean age of 55.1 years and male predominance. Compared with aortic disease–free individuals, patients with TAAD had a higher proportion of hypertension; atrial fibrillation; coronary artery disease; chronic kidney disease; valvular heart disease; connective tissue disorder; and preexisting angiotensin-converting enzyme inhibitor, angiotensin receptor blocker, β-blocker, and diuretic medication use. Moreover, the patients with TAAD displayed a lower proportion of diabetes and the use of metformin compared with the aortic disease–free individuals (Table S1). After IPTW, the TAAD and aortic disease–free cohorts included 3556 and 7023 patients, respectively, with comparable baseline characteristics (Table 1). The mean follow-up period was 5.32 and 5.91 years in the TAAD and aortic disease–free cohorts, respectively.

Risk of Overall Stroke, Ischemic Stroke, and Hemorrhagic Stroke
The Kaplan–Meier curves revealed a higher overall risk of stroke (Figure – Panel A), ischemic stroke (Figure – Panel B), and hemorrhagic stroke (Figure – Panel C) in the TAAD cohort, and the log-rank test revealed significant differences (overall stroke, P<0.001; ischemic
stroke, \(P<0.001 \); hemorrhagic stroke, \(P<0.001 \). In the TAAD and aortic disease–free cohorts, 187 and 130 patients developed strokes, respectively. The Cox proportional hazards models revealed higher risks of overall stroke (HR, 3.01 [95% CI, 2.40–3.78]; \(P<0.001 \)), ischemic stroke (HR, 3.18 [95% CI, 2.47–4.10]; \(P<0.001 \)), and hemorrhagic stroke (HR, 2.32 [95% CI, 1.58–3.41]; \(P<0.001 \)) (Table 2) in the TAAD cohort.

Stratified Analysis Based on Age, Sex, Hypertension, Diabetes, Dyslipidemia, and Antiplatelet Drug Use

Overall, a statistically higher risk of stroke in patients with TAAD was revealed by the analyses stratified by age; sex; antiplatelet drug use; and history of hypertension, diabetes, or dyslipidemia (Table 3). Table S2

Table 1. Baseline Characteristics After the Inverse Probability of Treatment Weighting

	TAAD cohort (n=3556)	Aortic disease–free cohort (n=7023)	Standardized difference
Age, y			
Age<55	1645 (46.3)	3281 (46.7)	0.009
Age≥55	1910 (53.7)	3743 (53.3)	0.009
Mean\(^a\)	55.8 (12.3)	55.5 (12.3)	0.020
Sex			
Male	2562 (72.0)	5096 (72.6)	0.012
Female	994 (28.0)	1927 (27.4)	0.012
Income level (NTD)			
Dependence	224 (6.3)	439 (6.2)	0.003
15,840–24,999	853 (24.0)	1698 (24.2)	0.004
25,000–39,999	1226 (34.5)	2426 (34.5)	0.001
≥40,000	1252 (35.2)	2460 (35.0)	0.004
Charlson Comorbidity Index\(^a\)	0.5 (1.0)	0.5 (1.1)	0.007
Comorbidities			
Hypertension	1067 (30.0)	2106 (30.0)	0.001
Diabetes	362 (10.2)	662 (9.4)	0.026
Dyslipidemia	443 (12.5)	813 (11.6)	0.027
Atrial fibrillation	30 (0.8)	73 (1.0)	0.021
Coronary artery disease	281 (7.9)	539 (7.7)	0.009
Peripheral arterial occlusion disease	18 (0.5)	41 (0.6)	0.011
Cirrhosis	65 (1.8)	121 (1.7)	0.008
Chronic kidney disease	154 (4.3)	297 (4.2)	0.005
Major gastrointestinal bleeding	22 (0.6)	51 (0.7)	0.014
Malignancy	117 (3.3)	231 (3.3)	0.001
Valvular heart disease	27 (0.8)	61 (0.9)	0.012
Connective tissue disorder\(^\dagger\)	30 (0.8)	0 (0)	0.130

Preexisting medication use\(^\ddagger\)

ACEI and ARB	682 (19.2)	1321 (18.8)	0.009
β-blocker	586 (16.5)	1132 (16.1)	0.010
Diuretic	248 (7.0)	470 (6.7)	0.011
Metformin	215 (6.1)	401 (5.7)	0.015
Statin	338 (9.5)	617 (8.8)	0.025

Medication use during the follow-up

| | | | |
| Antiplatelet use | 1338 (37.6) | 1332 (19.0) | 0.423 |

*Data are expressed as number (percentage) unless indicated otherwise. ACEI indicates angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; NTD, new Taiwan dollar; and TAAD, type A aortic dissection.

\(^a\)Expressed as mean (SD).

\(^\dagger\)Connective tissue disorder refers to the Marfan’s syndrome or the Ehlers–Danlos syndrome. We could not enter connective tissue disorder into the variables of the logistic regression while calculating propensity score to balance the baseline characteristics and hemorrhagic stroke.

\(^\ddagger\)Preexisting medication use refers to a drug prescription for at least 30 days within 1 year before the index date.

\(^\dagger\)Antiplatelet use refers to any exposure of antiplatelet treatment during the observation period.
shows the detailed information for the number of events and the incidence rate in each subgroup.

Sensitivity Analyses

We also performed 3 sensitivity analyses that demonstrated consistent findings. In sensitivity analysis A, TAAD was associated with a higher risk of overall stroke (adjusted HR, 3.33 [95% CI, 2.60–4.25]; \(P<0.001\)) as well as ischemic stroke (adjusted HR, 3.44 [95% CI, 2.62–4.51]; \(P<0.001\)) and hemorrhagic stroke (adjusted HR, 2.61 [95% CI, 1.71–3.97]; \(P<0.001\)) (Table 4). Sensitivity analyses B and C also robust our primary analysis and detailed information disclosed in Table 4.

DISCUSSION

This cohort study showed that patients with TAAD had an increased long-term risk of stroke when compared with aortic disease–free individuals. Patients with TAAD were associated with a >3-fold higher risk of stroke compared with aortic disease–free individuals for a mean follow-up period of \(\approx 5.71\) years. The results of the stratified analyses also demonstrated similar findings. To our knowledge, this is the first cohort study to examine the association between the long-term risk of stroke and TAAD.

Although previous studies have already demonstrated an association between an increased short-term risk of stroke in patients with TAAD, the data used were primarily collected from the health care information during hospitalization in either hospital-based or registry-based cohorts.\(^5\)–\(^7\) The International Registry of Acute Aortic Dissection collected the largest global TAAD cohort and provided valuable data for the long-term outcomes of mortality and reoperation rates. However, the results of these studies did not disclose much information on the long-term risk of stroke.\(^23\),\(^24\) Nationwide population-based claims data might be one of the most appropriate tools to evaluate the association with the long-term risk of stroke in patients with TAAD.\(^25\) Claims data provided valuable information regarding not only long-term outcomes, such as the development of death and stroke, but also preexisting comorbidities.\(^16\) Those data helped us adjust most of the risk factors related to stroke and competing risk for death in patients with TAAD. Therefore, we believed that our data fulfilled the knowledge gaps regarding long-term outcomes, which was an inherent limitation of registry-based data.

Patients with TAAD appeared to have an association with genetic defects in vessel remodeling, which may negatively affect the homeostasis of vessel

Table 2. Risk of Stroke in Patients With TAAD Compared With That in Aortic Disease–Free Individuals After the Inverse Probability of Treatment Weighting

Outcome	TAAD cohort (n=3556)	Aortic disease–free cohort (n=7023)	HR\(^\dagger\) (95% CI)	\(P\) value			
Overall stroke	187	9.87	Event	130	3.14	3.01 (2.40–3.78)	<0.001
Ischemic stroke	156	8.23	Event	102	2.45	3.18 (2.47–4.10)	<0.001
Hemorrhagic stroke	88	3.00	Event	50	1.21	2.32 (1.58–3.41)	<0.001

HR indicates hazard ratio; IR, incidence rate; and TAAD, type A aortic dissection.
\(\dagger\)IR per 1000 person-years.
\(\dagger\)HRs were calculated using a univariable Cox proportional hazard regression model.
regeneration, particularly with regard to atherosclerotic plaque healing. The pathological hypothesis of atherosclerotic plaque healing has recently gained attention. Physicians might, in the future, obtain an alternative method to explore disease association and develop a potential therapeutic intervention for atherosclerosis. Patients with TAAD often have genetic defects in extracellular matrix proteins, the inhibitory pathway for matrix metalloproteinase via TGF-β, transforming growth factor β, or smooth muscle contraction proteins. During the process of atherosclerotic plaque healing, the stabilization of vessel homeostasis depends on TGF-β, type I and type III collagen, and smooth muscle cell progenitors. In the mechanism of TAAD, previous studies revealed the increased expression of type I collagen, type III collagen, and TGF-β on the surgical specimen of the aortic wall of patients with thoracic aortic dissection. Therefore, Wang et al hypothesized that compromised distensibility may have resulted in the overexpression of these extracellular matrix proteins and cytokines. We hypothesized that an increased risk of ischemic stroke in patients with TAAD might be associated with defects in atherosclerotic plaque healing, and further fundamental research may provide more evidence to elucidate this pathological mechanism. In hemorrhagic stroke, atherosclerosis is also associated with the development of intracerebral hemorrhage, particularly in the transition zone of the cerebral vessels from the main vessel to the small vessel. Moreover, vascular fragility might decrease vascular compliance to resist blood pressure and result in the development of an intracranial aneurysm and rupture of the cerebral aneurysm, particularly in patients with uncontrolled hypertension. Al-Kawaz et al demonstrated an association with an increased risk of subarachnoid hemorrhage in patients with aortic disease, but the subgroup analysis disclosed inconsistent findings. The association of an increased risk of subarachnoid hemorrhage might exist only in patients with nonruptured aortic aneurysms, and not in patients with ruptured aortic aneurysms or aortic dissections. Our data revealed that patients with TAAD had a 2-fold higher risk of developing hemorrhagic stroke, including subarachnoid hemorrhage. Our study filled the knowledge gap concerning the risk of stroke in patients with TAAD and raised the question of which preventive strategy for stroke could benefit these patients.

In our TAAD cohort, patients with TAAD displayed a higher proportion of valvular heart disease and a lower proportion of diabetes and metformin use. Kim et al demonstrated that patients with both acute aortic dissection and mitral valvular disease were associated with a higher risk of atherosclerosis than those without mitral valvular disease. Both Avdic et al and He et al

Table 3. Stratified Analyses to Assess the Risk of Stroke in Patients With TAAD Compared With Aortic Disease–Free Individuals

Characteristic	HR*	95% CI	P value
Age, y			
<55	4.86	3.21–7.36	<0.001
≥55	2.41	1.82–3.19	<0.001
Sex			
Male sex	2.65	2.03–3.48	<0.001
Female sex	3.73	2.48–5.67	<0.001
Hypertension			
Yes	2.22	1.58–3.11	<0.001
No	3.97	2.86–5.52	<0.001
Diabetes			
Yes	1.98	1.07–3.68	0.030
No	3.34	2.59–4.30	<0.001
Dyslipidemia			
Yes	2.33	1.33–4.10	0.003
No	3.10	2.41–3.98	<0.001
Antipatelet use†			
Yes	2.39	1.63–3.50	<0.001
No	4.09	3.07–5.44	<0.001

HR indicates hazard ratio; and TAAD, type A aortic dissection.
*HRs were calculated using the aortic disease–free cohort as the reference group in the univariable Cox proportional hazard regression model.
†Antiplatelet use was defined as a drug prescription for >1 day during the observation period.

Table 4. Sensitivity Analyses A, B, and C: Risk of Stroke in Patients With TAAD Compared With That in Aortic Disease–Free Individuals

	HR	95% CI	P value
Sensitivity analysis A*	3.33	2.60–4.25	<0.001
Ischemic stroke	3.44	2.62–4.51	<0.001
Hemorrhagic stroke	2.61	1.71–3.97	<0.001
Sensitivity analysis B†	3.02	2.40–3.79	<0.001
Ischemic stroke	3.19	2.47–4.11	<0.001
Hemorrhagic stroke	2.32	1.58–3.42	<0.001
Sensitivity analysis C‡	2.75	2.18–3.48	<0.001
Ischemic stroke	2.91	2.23–3.78	<0.001
Hemorrhagic stroke	2.11	1.42–3.12	<0.001

HR indicates hazard ratio; and TAAD, type A aortic dissection.
*Sensitivity analysis A was performed for all eligible cases (without inverse probability of treatment weighting) using a multivariable Cox proportional hazards model. The model was adjusted for age, sex, income level, Charlson Comorbidity Index, the comorbidities listed in Table 1, preexisting medication use, and antiplatelet use.
†Sensitivity analysis B was performed for the inverse probability of treatment weighting cohorts using a univariable Cox proportional hazards regression model after excluding all patients with a connective tissue disorder and their corresponding aortic disease–free comparators.
‡Sensitivity analysis C was performed for the inverse probability of treatment weighting cohorts using a univariable Fine–Gray proportional subdistribution hazards model.
mentioned that a history of diabetes was associated with a lower risk of developing acute aortic dissection, which may have attributed to a lower proportion of diabetes in our TAAD cohort. Previous research only mentioned the risk of mortality in patients with both TAAD and diabetes; however, the risk of stroke or atherosclerosis in these patients was seldom mentioned. Prakash et al reported that patients with TAAD and a history of diabetes were negatively correlated with the risk of mortality compared with those without a history of diabetes. In addition, metformin use may display an association with a lower growth rate of aortic aneurysms. The possible mechanism may involve the anti-inflammatory and vascular-protective effects of metformin to preclude the inflammation of the aorta and reduce extracellular matrix remodeling. Overall, both valvular disease and diabetes with or without metformin use may be the risk factors for allocation imbalance to each cohort or the potential confounders for stroke development. Thus, we entered these factors into the logistic regression model while calculating the propensity score to adjust for their potential confounding effects.

This study has some inherent limitations. First, some confounding factors related to stroke may not be considered or adjusted in our analyses. The Taiwan NHIRD is an administrative claims database that does not contain all stroke risk factors, such as body mass index, history of alcohol or cigarette use, diet, and physical habits. Therefore, some unmeasured or unknown confounding factors may have been present in our study and bias the results. Second, the severity of stroke may have a socioeconomic implication; however, we could not obtain the information for stroke severity from the Taiwan NHIRD, thus necessitating further studies to investigate this issue considering the severity of stroke. Third, this association may not be generalizable to other countries or populations. There may exist some inherent genetic differences, such as a relatively higher prevalence of intracerebral dissection in the Asian population than that in the European population. More studies from diverse populations are required to confirm this association.

In conclusion, we determined that patients with TAAD had a long-term increased risk of stroke, both ischemic and hemorrhagic. Similar findings were obtained in analyses that were stratified by age, sex, antiplatelet drug use; and history of hypertension, diabetes, or dyslipidemia. These findings may provide physicians with more evidence regarding the need for intensive follow-up and aggressive risk factor control for modifiable stroke risk factors in patients with TAAD. Further randomized control trials are necessary to determine the optimal preventive strategies for stroke in these patients.

ARTICLE INFORMATION
Received June 15, 2022; accepted October 4, 2022.

Affiliations
Center for Aging and Health, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan (J.H., P.P.L., C.L.); School of Medicine (J.H., A.L., H.H., C.L.); and Institute of Medical Sciences (P.P.L.), Tzu Chi University, Hualien, Taiwan; Department of Neurology (A.L.); Department of Family Medicine (H.H., C.L.) and Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan (H.H.).

Acknowledgments
We thank the Health and Welfare Data Science Center of the Ministry of Health and Welfare, Taiwan, for maintaining and processing the data and the Health and Welfare Data Science Center of Tzu Chi University for facilitating data extraction.

Sources of Funding
This work was supported by grants from Hualien Tzu Chi Hospital (TCRD109-36) and the Buddhist Tzu Chi Medical Foundation (TCRD-A110-04). The funders had no role in the study design, data collection, data analysis, data interpretation, writing of the report, decision to submit for publication, or approval of the article for publication.

Disclosures
None.

Supplemental Material
Tables S1–S2

REFERENCES
1. Goldfinger JZ, Halperin JL, Marin ML, Stewart AS, Eagle KA, Fuster V. Thoracic aortic aneurysm and dissection. J Am Coll Cardiol. 2014;64:1725–1739. doi: 10.1016/j.jacc.2014.08.025
2. Lemaire SA, Russell L. Epidemiology of thoracic aortic dissection. Nat Rev Cardiol. 2011;8:103–113. doi: 10.1038/nrcardio.2010.187
3. Tsai TT, Evangelista A, Nienaber CA, Trimarchi S, Sechtem U, Fattori R, Mymel T, Pape L, Cooper JV, Smith DE, et al. Long-term survival in patients presenting with type A acute aortic dissection: insights from the International Registry of Acute Aortic Dissection (IRAD). Circulation. 2016;134:350–357. doi: 10.1161/CIRCULATIONAHA.116.022343
4. Evangelista A, Isselbacher EM, Bossone E, Gleason TG, Di Eusanio M, Sechtem U, Ehrlich MP, Trimarchi S, Braverman AC, Mymel T, et al. Insights from the international registry of acute aortic dissection: a 20-year experience of collaborative clinical research. Circulation. 2018;137:1846–1860. doi: 10.1161/CIRCULATIONAHA.117.031264
5. Gau C, Dietrich W, Friedrich I, Sirch J, Erbguth FJ. Neurological symptoms in type A aortic dissections. Stroke. 2007;38:292–297. doi: 10.1161/01.STR.0000254594.33408.b1
6. Bossone E, Corteville DC, Harris KM, Suzuki T, Fattori R, Hutchison S, Ehrlich MP, Pyeritz RE, Steg PG, Greason K, et al. Stroke and outcomes in patients with acute type a aortic dissection. Circulation. 2013;128. doi: 10.1161/CIRCULATIONAHA.112.003327
7. Musa FF, Horton JD, Mordzidze R, Nicholson J, Trimarchi S, Eagle KA. Acute aortic dissection and intramural hematoma a systematic review. JAMA. 2016;316:754–763. doi: 10.1001/jama.2016.10026
8. Mimer T, Nebert C, Eichmair E, Winter B, Aschacher T, Stelzmueller ME, Andreas M, Ehrlich M, Lauter G, Messner B. Extracellular matrix in ascending aortic aneurysms and dissections – what we learn from decellularization and scanning electron microscopy. PLoS One. 2019;14:e1–24. doi: 10.1371/journal.pone.0213794
9. Wang X, LeMaire SA, Chen L, Shen YH, Gan Y, Bartsch H, Carter SA, Utama B, Ou H, Coselli JS, et al. Increased collagen deposition and elevated expression of connective tissue growth factor in human thoracic aortic dissection. Circulation. 2008;119:2200–2205. doi: 10.1161/ CirculationAHA.105.002840
10. Vergallo R, Crea F. Atherosclerotic plaque healing. N Engl J Med. 2020;383:846–857. doi: 10.1056/NEJMra2003037
11. Kang DW, Han MK, Kim HJ, Yun SC, Jeon SB, Bae HJ, Kwon SU, Kim JS. New ischemic lesions coexisting with acute intracerebral hemorrhage. Neurology. 2012;79:848–855. doi: 10.1212/WNL.0b013e3182648a79
12. Jung WS, Kim JH, Ahn SJ, Song S-W, Kim BM, Seo K-D, Suh SH. Prevalence of intracranial aneurysms in patients with aortic dissection. *Am J Neuroradiol*. 2017;38:2089–2093. doi: 10.3174/ajnr.A5359

13. Song J, Lim YC, Ko I, Kim JY, Kim DK. Prevalence of intracranial aneurysm in patients with aortic disease in Korea: a nationwide population-based study. *J Am Heart Assoc*. 2021;10:1–9.

14. Al-Kawaz M, Kamel H, Murthy SB, Merkler AE. Association of aortic aneurysms and dissections with subarachnoid hemorrhage. *J Am Heart Assoc*. 2019;8:e013456. doi: 10.1161/JAHA.119.013456

15. Lin L, Warren-Gash C, Smeeth L, Chen P-C. Data resource profile: the National Health Insurance Research Database (NHIRD). *J Formos Med Assoc* 2018;117:97–108. doi: 10.1016/j.jfma.2013.09.009

16. Hsieh C-Y, Su C-C, Shao S-C, Sung S-F, Lin S-J, Kao Yang Y-H, Lai EC-C. Taiwan’s National Health Insurance Research Database: past and future. *Clin Epidemiol*. 2019;11:349–358. doi: 10.2147/CLEP.S196293

17. Hsieh C-Y, Chen C-H, Li C-Y, Lai M-L. Validating the diagnosis of acute ischemic stroke in a National Health Insurance claims database. *J Formos Med Assoc*. 2015;114:254–259. doi: 10.1016/j.jfma.2014.02.004

18. Cheng C-L, Kao Y-HY, Lin S-J, Lee C-H, Lai ML. Validation of the National Health Insurance Research Database with ischemic stroke cases in Taiwan. *Pharmacoepidemiol Drug Saf*. 2011;20:236–242. doi: 10.1002/pds.2087

19. Hsieh MT, Hsieh CY, Tsai TT, Wang YC, Sung SF. Performance of ICD-10-CM diagnosis codes for identifying acute ischemic stroke in a national health insurance claims database. *Clin Epidemiol*. 2020;12:1007–1013. doi: 10.2147/CLEP.S273853

20. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. *J Chronic Dis*. 1987;40:373–383. doi: 10.1016/S0021-9681(87)90171-8

21. Austin PC, Stuart EA. Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies. *Stat Med*. 2015;34:3661–3679. doi: 10.1002/sim.6607

22. Fine JP, Gray RJ. A proportional hazards model for the subdistribution of a competing risk. *J Am Stat Assoc*. 1999;94:496–509. doi: 10.1080/01621459.1999.10474144

23. Bossone E, Eagle KA. Epidemiology and management of aortic dis-ease: aortic aneurysms and acute aortic syndromes. *Nat Rev Cardiol*. 2021;18:331–348. doi: 10.1038/s41591-020-00472-6

24. Pape LA, Awais M, Woznicki EM, Suzuki T, Tramarchi S, Evangelista A, Myrnel M, Larsen M, Harris KM, Grease K, et al. Presentation, diagnosis, and outcomes of acute aortic dissection: 17-year trends from the international registry of acute aortic dissection. *J Am Coll Cardiol*. 2015;66:350–358. doi: 10.1016/j.jacc.2015.05.029

25. Behrendt CA, Debus ES, Mani K, Sedrakyan A. The strengths and limitations of claims based research in countries with fee-for-service reimbursement. *Eur J Vasc Endovasc Surg*. 2016;56:615–616. doi: 10.1016/j.ejvs.2018.06.001

26. An SJ, Kim TJ, Yoon B-W. Epidemiology, risk factors, and clinical features of intracerebral hemorrhage: an update. *J Stroke*. 2017;19:3–10. doi: 10.5853/jos.2016.00864

27. Sandvei MS, Romundstad PR, Müller TB, Vatten L, Vik A. Risk factors for aneurysmal subarachnoid hemorrhage in a prospective population study: the HUNT study in Norway. *Stroke*. 2009;40:1958–1962. doi: 10.1161/STROKEAHA.108.539544

28. Kim J, Fanola C, Ouzounian M, Hughes GC, Pyeritz RE, Gleason TG, Evangelista-Masip A, Braverman AC, Montgomery DG, Ehrlich M, et al. Acute aortic dissection in patients with mitral valve disease. *J Am Coll Cardiol*. 2020;75:2255. doi: 10.1016/j.jacc.2020.02.0882

29. Avgic T, Franzén S, Zarrouk M, Acosta S, Nilsson P, Gottsäter A, Svensson A, Gudbjörnsdottrill S, Eliasson B. Reduced long-term risk of aortic aneurysm and aortic dissection among individuals with type 2 diabetes mellitus: a nationwide observational study. *J Am Heart Assoc*. 2018;7. doi: 10.1161/JAHA.117.007618

30. He X, Liu X, Liu W, Wang B, Liu Y, Li Z, Wang T, Tan R, Gao B, Zeng H. Association between diabetes and risk of aortic dissection: a case-control study in a Chinese population. *PLoS One*. 2015;10:e0142697. doi: 10.1371/journal.pone.0142697

31. Prakash SK, Pedroza C, Khalil YA, Milewicz DM. Diabetes and reduced risk for thoracic aortic aneurysms and dissections: a nationwide case-control study. *J Am Heart Assoc*. 2012;1:jaha3-e000323-jaha3-e000323. doi: 10.1161/JAHA.111.000323

32. Golledge J, Moxon J, Pinchebeck J, Anderson G, Rowbotham S, Jenkins J, Bourke M, Bourke B, Dean A, Buckenham T, et al. Association between metformin prescription and growth rates of abdominal aortic aneurysms. *Br J Surg*. 2017;104:1486–1493. doi: 10.1002/bjs.10587

33. Debette S, Compter A, Labeyrie MA, Uyttenboogaart M, Metso TM, Majersik JJ, Goeggel-Simonetti B, Engelster ST, Pezzini A, Bijlenga P, et al. Epidemiology, pathophysiology, diagnosis, and management of intracranial artery dissection. *Lancet Neurol*. 2015;14:B40–B54. doi: 10.1016/S1474-4422(15)00009-5

J Am Heart Assoc. 2022;11:e027178. DOI: 10.1161/JAHA.122.027178
Table S1. Baseline characteristics before the inverse probability of treatment weighting
Age, years
(n=3,520)
TAAD
Aortic disease-free
Standardized Difference
<55
1,692 (48.0)
3,384 (48.0)
0.000
≥55
1,828 (52.0)
3,656 (52.0)
0.000
Sex
Male
2,550 (72.4)
5,100 (72.4)
0.000
Female
970 (27.6)
1,940 (27.6)
0.000
Income level (NTD)
Dependence
189 (5.4)
461 (6.6)
0.050
15,840─24,999
890 (25.3)
1,670 (23.7)
0.036
25,000─39,999
1,303 (37.0)
2,345 (33.3)
0.078
≧40,000
1,138 (32.3)
2,564 (36.4)
0.086
Charlson comorbidity index†
0.5 (1.0)
0.4 (0.9)
0.154
Comorbidities
Hypertension
1,650 (46.9)
1,539 (21.9)
0.546
Diabetes mellitus
201 (5.7)
774 (11.0)
0.192
Dyslipidemia
394 (11.2)
823 (11.7)
0.016
Atrial fibrillation
59 (1.7)
26 (0.4)
0.130
Coronary artery disease
404 (11.5)
368 (5.2)
0.227
Peripheral arterial occlusion disease
28 (0.8)
25 (0.4)
0.058
Chronic kidney disease
108 (3.1)
78 (1.1)
0.137
Cirrhosis
130 (3.7)
309 (4.4)
0.036
Major gastrointestinal bleeding
29 (0.8)
41 (0.6)
0.029
Malignancy
117 (3.3)
211 (3.0)
0.018
Valvular heart disease
66 (1.9)
13 (0.2)
0.169
Connective tissue disorder†
42 (1.2)
0 (0.0)
0.155
Pre-existing medication use‡
ACEI and ARB
508 (26.3)
754 (9.8)
0.440
Beta-blocker
507 (26.2)
640 (8.3)
0.489
Diuretics
205 (10.6)
201 (2.6)
0.327
Metformin
44 (2.3)
395 (5.1)
0.150
Statin
130 (6.7)
497 (6.4)
0.012
Medication use during the follow-up
Antiplatelet use§
695 (36.0)
1,009 (13.1)
0.553
Data are expressed as n (%) unless otherwise indicated.

*Expressed as mean (SD)

†Connective tissue disorder refers to Marfan’s syndrome or Ehlers-Danlos syndrome.

‡Pre-existing medication use refers to a drug prescription for at least 30 days within one year prior to the index date.

§Antiplatelet use refers to any exposure of antiplatelet treatment during the observation period.

Abbreviations: NTD, New Taiwan dollar; TAAD, type A aortic dissection; ACEI, angiotensin-converting enzyme inhibitors; ARB, angiotensin receptor blocker.
Table S2. Detailed information of the stratified analyses to assess the risk of stroke in patients with TAAD compared to aortic disease-free individuals

Subgroup	Group	Case number	Event	Incidence rate*
Age				
< 55	TAAD	1,705	76	7.87
	Aortic disease-free	3,372	34	1.61
	TAAD	1,838	105	11.33
	Aortic disease-free	3,658	96	4.63
≥ 55	TAAD	2,583	129	9.41
	Aortic disease-free	5,085	97	3.26
	TAAD	982	58	10.95
	Aortic disease-free	1,936	37	3.09
Sex				
Male	TAAD	1,681	107	12.82
	Aortic disease-free	1,512	49	5.81
	TAAD	1,875	86	8.35
	Aortic disease-free	5,499	69	2.06
Female	TAAD	201	15	15.78
	Aortic disease-free	776	33	7.85
	TAAD	3,335	167	9.28
	Aortic disease-free	6,255	101	2.69
Hypertension				
Yes	TAAD	399	25	12.82
	Aortic disease-free	815	24	5.63
	TAAD	3,141	159	9.46
	Aortic disease-free	6,200	107	2.88
No	TAAD	1,354	78	10.56
	Aortic disease-free	1,176	40	4.82
	TAAD	2,195	113	9.81
	Aortic disease-free	5,851	80	2.40

Data are expressed as n (%) unless otherwise indicated.

*Incidence rate per 1,000 person-years

Abbreviations: DM, diabetes mellitus; TAAD, type A aortic dissection