PULL-BACK OF QUASI-LOG STRUCTURES

OSAMU FUJINO

Abstract. One of the main purposes of this paper is to make the theory of quasi-log schemes more flexible and more useful. More precisely, we prove that the pull-back of a quasi-log scheme by a smooth quasi-projective morphism has a natural quasi-log structure after clarifying the definition of quasi-log schemes. We treat some applications to singular Fano varieties. This paper also contains a proof of the simple connectedness of log canonical Fano varieties.

Contents

1. Introduction 1
2. Preliminaries 3
3. Pull-back of quasi-log structures 6
4. On quasi-log structures 9
5. Proof of the main theorem 15
6. Applications to quasi-log canonical Fano varieties 16
7. Simple connectedness of log canonical Fano varieties 19
8. Appendix: Ambro’s original definition 20

References 24

1. Introduction

In [A], the notion of quasi-log structures was introduced in order to prove the cone and contraction theorem for \((X, \Delta)\) where \(X\) is a normal variety and \(\Delta\) is an effective \(\mathbb{R}\)-divisor such that \(K_X + \Delta\) is \(\mathbb{R}\)-Cartier. Although the theory of quasi-log schemes is very powerful and useful, it may look much harder than the usual X-method for kawamata log terminal pairs. Moreover, the paper [F4] recovers the main theorem of [A] without using the notion of quasi-log structures. So the theory of quasi-log schemes is not yet popular. We note that the

\textit{Date:} 2014/1/8, version 1.02.
\textit{2010 Mathematics Subject Classification.} Primary 14E30; Secondary 14J45.
\textit{Key words and phrases.} quasi-log structures, Fano varieties, fundamental groups.
framework of [F4] is more similar to the theory of algebraic multiplier ideal sheaves than to the traditional X-method. Recently, the author proved that every quasi-projective semi log canonical pair has a natural quasi-log structure in [F7]. The theory of quasi-log schemes seems to be indispensable for the study of semi log canonical pairs. Now the importance of quasi-log structures is increasing. One of the main purposes of this paper is to clarify the definition of quasi-log structures and make the theory of quasi-log schemes more flexible and more useful.

The following theorem is the main theorem of this paper, which is natural but missing in the literature. For the precise statement, see Theorem 3.11 below.

Theorem 1.1 (Pull-back of quasi-log structures). Let \([X, \omega]\) be a quasi-log scheme and let \(h : X' \to X\) be a smooth quasi-projective morphism. Then \([X', \omega']\), where \(\omega' = h^*\omega \otimes \omega_{X'/X}\) with \(\omega_{X'/X} = \det \Omega^1_{X'/X}\), has a natural quasi-log structure induced by \(h\).

Theorem 1.1 does not directly follow from the original definition of quasi-log schemes. We have to construct a quasi-log resolution of \([X', \omega']\) suitably. We make an important remark. We do not know whether Theorem 1.1 holds true or not without assuming that \(h\) is quasi-projective. As a useful special case of Theorem 1.1, we have:

Theorem 1.2 (Finite étale covers). Let \([X, \omega]\) be a quasi-log scheme and let \(h : X' \to X\) be a finite étale morphism. Then \([X', \omega']\), where \(\omega' = h^*\omega\), has a natural quasi-log structure induced by \(h\).

As an easy application of Theorem 1.2 to singular Fano varieties, we obtain:

Corollary 1.3. Let \([X, \omega]\) be a projective quasi-log canonical pair such that \(-\omega\) is ample, that is, \([X, \omega]\) is a quasi-log canonical Fano variety. Then the algebraic fundamental group of \(X\) is trivial, equivalently, \(X\) has no non-trivial finite étale covers.

By Corollary 1.3, it is natural to conjecture:

Conjecture 1.4. Let \([X, \omega]\) be a projective quasi-log canonical pair such that \(-\omega\) is ample. Then \(X\) is simply connected.

In general, there exists an irreducible projective variety whose algebraic fundamental group is trivial and whose topological fundamental group is non-trivial (see Example 6.4). As a special case of Conjecture 1.4, we have:

Conjecture 1.5. Let \((X, \Delta)\) be a projective semi log canonical pair such that \(-(K_X + \Delta)\) is ample, that is, \((X, \Delta)\) is a semi log canonical Fano variety. Then \(X\) is simply connected.
For the details of semi log canonical pairs, see [F7]. Note that every quasi-projective semi log canonical pair has a natural quasi-log structure with only quasi-log canonical singularities. It is the main theorem of [F7].

It is well known that Conjecture 1.5 holds when \((X, \Delta)\) is kawamata log terminal (see [T]). Kento Fujita pointed out that Conjecture 1.5 holds true when \((X, \Delta)\) is log canonical (see Theorem 7.1 below). We give Fujita’s proof in Section 7 for the reader’s convenience.

We summarize the contents of this paper. Section 2 collects some basic definitions and results. In Section 3, we recall the definition of quasi-log schemes and state the main theorem of this paper precisely (see Theorem 3.11). Section 4 is the main part of this paper. Here we discuss the basic properties of quasi-log schemes. The author believes that Section 4 makes the theory of quasi-log schemes more flexible and more useful than Ambro’s original framework in [A]. Section 5 is devoted to the proof of the main theorem (see Theorem 1.1 and Theorem 3.11). In Section 6, we treat some applications of the main theorem to singular Fano varieties. We prove that the algebraic fundamental group of a quasi-log canonical Fano variety is always trivial (see Corollary 1.3). In Section 7, we prove that a log canonical Fano variety is simply connected (see Theorem 7.1). The proof of Theorem 7.1 is independent of the theory of quasi-log schemes. Section 8 is an appendix, where we discuss Ambro’s original definition of quasi-log schemes.

Acknowledgments. The author was partially supported by the Grant-in-Aid for Young Scientists (A) 24684002 from JSPS. He would like to thank Takeshi Abe, Kento Fujita, Yuichiro Hoshi, and Tetsushi Ito for answering his questions and giving him useful comments.

We will work over \(\mathbb{C}\), the complex number field, throughout this paper. For the standard notation of the log minimal model program, see, for example, [F4]. For the basic properties and results of semi log canonical pairs, see [F7].

2. Preliminaries

In this section, we collect some basic results and definitions.

Notation 2.1. A pair \([X, \omega]\) consists of a scheme \(X\) and an \(\mathbb{R}\)-Cartier \(\mathbb{R}\)-divisor (or \(\mathbb{R}\)-line bundle) \(\omega\) on \(X\). In this paper, a scheme means a separated scheme of finite type over \(\text{Spec} \mathbb{C}\).

Notation 2.2 (Divisors). Let \(B_1\) and \(B_2\) be two \(\mathbb{R}\)-Cartier \(\mathbb{R}\)-divisors on a scheme \(X\). Then \(B_1\) is linearly (resp. \(\mathbb{Q}\)-linearly, or \(\mathbb{R}\)-linearly)
equivalent to B_2, denoted by $B_1 \sim B_2$ (resp. $B_1 \sim_{\mathbb{Q}} B_2$, or $B_1 \sim_{\mathbb{R}} B_2$) if

$$B_1 = B_2 + \sum_{i=1}^{k} r_i(f_i)$$

such that $f_i \in \Gamma(X, \mathcal{K}_X^*)$ and $r_i \in \mathbb{Z}$ (resp. $r_i \in \mathbb{Q}$, or $r_i \in \mathbb{R}$) for every i. Here, \mathcal{K}_X is the sheaf of total quotient rings of \mathcal{O}_X and \mathcal{K}_X^* is the sheaf of invertible elements in the sheaf of rings \mathcal{K}_X. We note that (f_i) is a principal Cartier divisor associated to f_i, that is, the image of f_i by $\Gamma(X, \mathcal{K}_X^*) \to \Gamma(X, \mathcal{K}_X^*/\mathcal{O}_X^*)$, where \mathcal{O}_X^* is the sheaf of invertible elements in \mathcal{O}_X.

Let D be a \mathbb{Q}-divisor (resp. an \mathbb{R}-divisor) on an equi-dimensional variety X, that is, D is a finite formal \mathbb{Q}-linear (resp. \mathbb{R}-linear) combination

$$D = \sum_i d_i D_i$$

of irreducible reduced subschemes D_i of codimension one. We define the round-up $[D] = \sum_i [d_i] D_i$ (resp. round-down $[D] = \sum_i (d_i) D_i$), where every real number x, $[x]$ (resp. $\lfloor x \rfloor$) is the integer defined by $x \leq \lfloor x \rfloor < x + 1$ (resp. $x - 1 < \lfloor x \rfloor \leq x$). The fractional part $\{D\}$ of D denotes $D - \lfloor D \rfloor$. We put

$$D<1 = \sum_{d_i < 1} d_i D_i, \quad D\leq1 = \sum_{d_i \leq 1} d_i D_i, \quad \text{and} \quad D=1 = \sum_{d_i = 1} D_i.$$

We can define $D\geq1$, $D>1$, and so on, analogously. We call D a boundary (resp. subboundary) \mathbb{R}-divisor if $0 \leq d_i \leq 1$ (resp. $d_i \leq 1$) for every i.

Notation 2.3 (Singularities of pairs). Let X be a normal variety and let Δ be an \mathbb{R}-divisor on X such that $K_X + \Delta$ is \mathbb{R}-Cartier. Let $f : Y \to X$ be a resolution such that $\text{Exc}(f) \cup f^{-1}_* \Delta$, where $\text{Exc}(f)$ is the exceptional locus of f and $f^{-1}_* \Delta$ is the strict transform of Δ on Y, has a simple normal crossing support. We can write

$$K_Y = f^*(K_X + \Delta) + \sum a_i E_i.$$

We say that (X, Δ) is sub log canonical (sub lc, for short) if $a_i \geq -1$ for every i. We usually write $a_i = a(E_i, X, \Delta)$ and call it the discrepancy coefficient of E_i with respect to (X, Δ). It is well known that there exists the largest Zariski open set U of X such that $(U, \Delta|_U)$ is sub log canonical. If there exist a resolution $f : Y \to X$ and a divisor E on Y such that $a(E, X, \Delta) = -1$ and $f(E) \cap U \neq \emptyset$, then $f(E)$ is called a log canonical center (an lc center, for short) with respect to (X, Δ). If
(X, ∆) is sub log canonical and ∆ is effective, then (X, ∆) is called log canonical (lc, for short).

We note that we can define a(Ei, X, ∆) in more general settings (see [K2, Definition 2.4]).

Let us recall the definition of simple normal crossing pairs.

Definition 2.4 (Simple normal crossing pairs). We say that the pair (X, D) is simple normal crossing at a point a ∈ X if X has a Zariski open neighborhood U of a that can be embedded in a smooth variety Y, where Y has regular system of parameters (x1, · · · , xp, y1, · · · , yr) at a = 0 in which U is defined by a monomial equation

\[x_1 \cdots x_p = 0 \]

and

\[D = \sum_{i=1}^{r} \alpha_i(y_i = 0)|_U, \quad \alpha_i \in \mathbb{R}. \]

We say that (X, D) is a simple normal crossing pair if it is simple normal crossing at every point of X. We say that a simple normal crossing pair (X, D) is embedded if there exists a closed embedding \(\iota : X \rightarrow M \), where M is a smooth variety of dim X + 1. We call M the ambient space of (X, D). If (X, 0) is a simple normal crossing pair, then X is called a simple normal crossing variety. If X is a simple normal crossing variety, then X has only Gorenstein singularities. Thus, it has an invertible dualizing sheaf \(\omega_X \). Therefore, we can define the canonical divisor \(K_X \) such that \(\omega_X \simeq \mathcal{O}_X(K_X) \). It is a Cartier divisor on X and is well-defined up to linear equivalence.

Let X be a simple normal crossing variety and let \(X = \bigcup_{i \in I} X_i \) be the irreducible decomposition of X. A stratum of X is an irreducible component of \(X \) or the \(\nu \)-image of a log canonical center of \((X^\nu, \Theta) \) (see Notation 2.3). When \(D = 0 \), this definition is compatible with the above definition of the strata of X. When D is a boundary \(\mathbb{R} \)-divisor, W is a stratum of (X, D) if and only if W is an slc stratum of (X, D) (see [F7, Definition 2.5]). Note that (X, D) is semi log canonical if D is a boundary \(\mathbb{R} \)-divisor.
Notation 2.5. \(\pi_1(X) \) denotes the topological fundamental group of \(X \).

3. Pull-back of quasi-log structures

In this section, we give a precise statement of Theorem 1.1 (see Theorem 3.11). First, let us recall the definition of \textit{globally embedded simple normal crossing pairs} in order to define quasi-log schemes.

Definition 3.1 (Globally embedded simple normal crossing pairs). Let \(Y \) be a simple normal crossing divisor on a smooth variety \(M \) and let \(D \) be an \(\mathbb{R} \)-divisor on \(M \) such that \(\text{Supp}(D + Y) \) is a simple normal crossing divisor on \(M \) and that \(D \) and \(Y \) have no common irreducible components. We put \(B_Y = D|_Y \) and consider the pair \((Y, B_Y) \). We call \((Y, B_Y) \) a \textit{globally embedded simple normal crossing pair} and \(M \) the \textit{ambient space} of \((Y, B_Y) \).

It is obvious that a globally embedded simple normal crossing pair is an embedded simple normal crossing pair in Definition 2.4.

Let us define \textit{quasi-log schemes} (see also Definition 8.2 below).

Definition 3.2 (Quasi-log schemes). A \textit{quasi-log scheme} is a scheme \(X \) endowed with an \(\mathbb{R} \)-Cartier \(\mathbb{R} \)-divisor (or \(\mathbb{R} \)-line bundle) \(\omega \) on \(X \), a proper closed subscheme \(X_{-\infty} \subset X \), and a finite collection \(\{C\} \) of reduced and irreducible subschemes of \(X \) such that there is a proper morphism \(f : (Y, B_Y) \to X \) from a globally embedded simple normal crossing pair satisfying the following properties:

1. \(f^*\omega \sim_\mathbb{R} K_Y + B_Y \).
2. The natural map \(\mathcal{O}_X \to f_*\mathcal{O}_Y([-(B_Y^{\leq 1})]) \) induces an isomorphism
 \[\mathcal{I}_{X_{-\infty}} \xrightarrow{\sim} f_*\mathcal{O}_Y([-(B_Y^{\leq 1})] - [B_Y^{>1}]), \]
 where \(\mathcal{I}_{X_{-\infty}} \) is the defining ideal sheaf of \(X_{-\infty} \).
3. The collection of subvarieties \(\{C\} \) coincides with the image of \((Y, B_Y) \)-strata that are not included in \(X_{-\infty} \).

We simply write \([X, \omega]\) to denote the above data
\[(X, \omega, f : (Y, B_Y) \to X) \]
if there is no risk of confusion. Note that a quasi-log scheme \(X \) is the union of \(\{C\} \) and \(X_{-\infty} \). We also note that \(\omega \) is called the \textit{quasi-log canonical class} of \([X, \omega]\), which is defined up to \(\mathbb{R} \)-linear equivalence.

A \textit{relative quasi-log scheme} \(X/S \) is a quasi-log scheme \(X \) endowed with a proper morphism \(\pi : X \to S \).
Remark 3.3. Let \(\text{Div}(Y) \) be the group of Cartier divisors on \(Y \) and let \(\text{Pic}(Y) \) be the Picard group of \(Y \). Let
\[
\delta_Y : \text{Div}(Y) \otimes \mathbb{R} \to \text{Pic}(Y) \otimes \mathbb{R}
\]
be the homomorphism induced by \(A \mapsto \mathcal{O}_Y(A) \) where \(A \) is a Cartier divisor on \(Y \). When \(\omega \) is an \(\mathbb{R} \)-line bundle in Definition 3.2,
\[
f^*\omega \sim_{\mathbb{R}} K_Y + B_Y
\]
means
\[
f^*\omega = \delta_Y(K_Y + B_Y)
\]
in \(\text{Pic}(Y) \otimes \mathbb{R} \). Even when \(\omega \) is an \(\mathbb{R} \)-line bundle, we use \(-\omega\) to denote the inverse of \(\omega \) in \(\text{Pic}(X) \otimes \mathbb{R} \) (see Corollary 1.3 and Conjecture 1.4) if there is no risk of confusion. If \(\omega \) is an \(\mathbb{R} \)-Cartier \(\mathbb{R} \)-divisor on \(X \) in Theorem 1.1,
\[
h^*\omega \otimes \det \Omega_{X'/X}^1
\]
means
\[
\delta_{X'}(h^*\omega) \otimes \det \Omega_{X'/X}^1
\]
in \(\text{Pic}(X') \otimes \mathbb{R} \) where \(\delta_{X'} : \text{Div}(X') \otimes \mathbb{R} \to \text{Pic}(X') \otimes \mathbb{R} \).

We give an important remark on Definition 3.2.

Remark 3.4 (Schemes versus varieties). A quasi-log scheme in Definition 3.2 is called a quasi-log variety in \([A]\) (see also \([F2]\)). However, \(X \) is not always reduced when \(X_{-\infty} \neq \emptyset \) (see Example 3.5 below). Therefore, we will use the word quasi-log schemes in this paper. Note that \(X \) is reduced when \(X_{-\infty} = \emptyset \) (see Remark 3.10 below).

Example 3.5 ([A, Examples 4.3.4]). Let \(X \) be an effective Cartier divisor on a smooth variety \(M \). Assume that \(Y \), the reduced part of \(X \), is non-empty. We put \(\omega = (K_M + X)|_X \). Let \(X_{-\infty} \) be the union of the non-reduced components of \(X \). We put \(K_Y + B_Y = (K_M + X)|_Y \). Let \(f : Y \to X \) be the closed embedding. Then
\[
(X, \omega, f : (Y, B_Y) \to X)
\]
is a quasi-log scheme. Note that \(X \) has non-reduced irreducible components if \(X_{-\infty} \neq \emptyset \). We also note that \(f \) is not surjective if \(X_{-\infty} \neq \emptyset \).

Notation 3.6. In Definition 3.2, we sometimes simply say that \([X, \omega]\) is a quasi-log pair. The subvarieties \(C \) are called the qlc centers of \([X, \omega]\), \(X_{-\infty} \) is called the non-qlc locus of \([X, \omega]\), and \(f : (Y, B_Y) \to X \) is called a quasi-log resolution of \([X, \omega]\). We sometimes use \(N_{\text{qlc}}(X, \omega) \) to denote \(X_{-\infty} \).

For various applications, the notion of qlc pairs is very useful.
Definition 3.7 (Qlc pairs). Let \([X, \omega]\) be a quasi-log pair. We say that \([X, \omega]\) has only \textit{quasi-log canonical singularities} (qlc singularities, for short) if \(X_{-\infty} = \emptyset\). Assume that \([X, \omega]\) is a quasi-log pair with \(X_{-\infty} = \emptyset\). Then we simply say that \([X, \omega]\) is a qlc pair.

We give some important remarks on the non-qlc locus \(X_{-\infty}\).

Remark 3.8. We put \(A = \lceil -B_Y^{<1} \rceil\) and \(N = \lfloor B_Y^{>1} \rfloor\). Then we obtain the following big commutative diagram.

\[
\begin{array}{c}
0 \\ \alpha_1 \downarrow \downarrow \alpha_2 \downarrow \downarrow \alpha_3 \\
0 \\ \beta_1 \downarrow \downarrow \beta_2 \downarrow \downarrow \beta_3 \\
0 \\
I_{X_{-\infty}} \\ \downarrow \downarrow \downarrow \downarrow \downarrow \\
\mathcal{O}_X \\ \downarrow \downarrow \downarrow \downarrow \downarrow \\
\mathcal{O}_{X_{-\infty}} \\ \downarrow \downarrow \downarrow \downarrow \downarrow \\
0 \\
\end{array}
\]

\(f_\ast \mathcal{O}_Y(A - N) \to f_\ast \mathcal{O}_Y(A) \to f_\ast \mathcal{O}_N(A)\)

Note that \(\alpha_i\) is a natural injection for every \(i\). By an easy diagram chasing,

\(I_{X_{-\infty}} \cong f_\ast \mathcal{O}_Y(A - N)\)

factors through \(f_\ast \mathcal{O}_Y(-N)\). Then we obtain \(\beta_1\) and \(\beta_3\). Since \(\alpha_1\) is injective and \(\alpha_1 \circ \beta_1\) is an isomorphism, \(\alpha_1\) and \(\beta_1\) are isomorphisms. Therefore, we obtain that \(f(Y) \cap X_{-\infty} = f(N)\). Note that \(f\) is not always surjective when \(X_{-\infty} \neq \emptyset\). It sometimes happens that \(X_{-\infty}\) contains some irreducible components of \(X\). See, for example, Example 3.5.

Remark 3.9 (Semi-normality). By restricting the isomorphism

\(I_{X_{-\infty}} \cong f_\ast \mathcal{O}_Y(A - N)\)

to the open subset \(U = X \setminus X_{-\infty}\), we obtain

\(\mathcal{O}_U \cong f_\ast \mathcal{O}_{f^{-1}(U)}(A)\).

This implies that

\(\mathcal{O}_U \cong f_\ast \mathcal{O}_{f^{-1}(U)}\)

because \(A\) is effective. Therefore, \(f : f^{-1}(U) \to U\) is surjective and has connected fibers. Note that \(f^{-1}(U)\) is a simple normal crossing variety. Thus, \(U\) is semi-normal. In particular, \(U = X \setminus X_{-\infty}\) is reduced.

Remark 3.10. If the pair \([X, \omega]\) has only qlc singularities, equivalently, \(X_{-\infty} = \emptyset\), then \(X\) is reduced and semi-normal by Remark 3.9. Note that \(f(Y) \cap X_{-\infty} = \emptyset\) if and only if \(B_Y = B_Y^{<1}\), equivalently, \(B_Y^{>1} = 0\), by the descriptions in Remark 3.8.
Let us state the main theorem of this paper precisely.

Theorem 3.11 (Main theorem). Let \([X, \omega]\) be a quasi-log pair as in Definition 3.2. Let \(X'\) be a scheme and let \(h : X' \to X\) be a smooth quasi-projective morphism. Then \([X', \omega']\), where \(\omega' = h^*\omega \otimes \omega_{X'/X}\) with \(\omega_{X'/X} = \det \Omega^1_{X'/X}\), has a natural quasi-log structure induced by \(h\). More precisely, we have the following properties:

(i) (Non-qlc locus). There is a proper closed subscheme \(X'_{-\infty} \subset X'\).

(ii) (Quasi-log resolution). There exists a proper morphism \(f' : (Y', B_{Y'}) \to X'\) from a globally embedded simple normal crossing pair \((Y', B_{Y'})\) such that

\[f'^*\omega' \sim_{\mathbb{R}} K_{Y'} + B_{Y'},\]

and the natural map

\[\mathcal{O}_{X'} \to f'_*\mathcal{O}_{Y'}([-\langle B_{Y'}^{<1} \rangle])\]

induces an isomorphism

\[\mathcal{I}_{X'_{-\infty}} \xrightarrow{\simeq} f'_*\mathcal{O}_{Y'}([-\langle B_{Y'}^{<1} \rangle] - \lfloor B_{Y'}^{>1} \rfloor)\]

where \(\mathcal{I}_{X'_{-\infty}}\) is the defining ideal sheaf of \(X'_{-\infty}\) and

\[\mathcal{I}_{X'_{-\infty}} = h^*\mathcal{I}_{X_{-\infty}}.\]

(iii) (Qlc centers). There is a finite collection \(\{C'\}\) of reduced and irreducible subschemes of \(X'\) such that \(\{C'\} = \{f^{-1}(C)\}\) and that the collection of subvarieties \(\{C'\}\) coincides with the images of \((Y', B_{Y'})\)-strata that are not included in \(X'_{-\infty}\).

Remark 3.12. For the definition and basic properties of quasi-projective morphisms, see [G, Chapitre II §5.3. Morphismes quasi-projectifs].

We will prove Theorem 3.11 in Section 5 after we prepare various useful lemmas in Section 4.

We recommend the reader to see [F3] for some basic applications of the theory of quasi-log schemes. The adjunction and vanishing theorem (see, for example, [F3, Theorem 3.6]) is a key result for qlc pairs.

4. On quasi-log structures

The following proposition makes the theory of quasi-log schemes more flexible. It is a key result in this paper.

Proposition 4.1 ([F2, Proposition 3.50]). Let \(f : V \to W\) be a proper birational morphism between smooth varieties and let \(B_W\) be an \(\mathbb{R}\)-divisor on \(W\) such that \(\text{Supp} B_W\) is a simple normal crossing divisor
on W. Assume that

$$K_V + B_V = f^*(K_W + B_W)$$

and that $\text{Supp } B_V$ is a simple normal crossing divisor on V. Then we have

$$f_*\mathcal{O}_V([-B_V^{<1}] - [B_V^{>1}]) \simeq \mathcal{O}_W([-B_W^{<1}] - [B_W^{>1}]).$$

Furthermore, let S be a simple normal crossing divisor on W such that $S \subset \text{Supp } B_W^{>1}$. Let T be the union of the irreducible components of $B_V^{>1}$ that are mapped into S by f. Assume that $\text{Supp } f_*^{-1}B_W \cup \text{Exc}(f)$ is a simple normal crossing divisor on V. Then we have

$$f_*\mathcal{O}_T([-B_T^{<1}] - [B_T^{>1}]) \simeq \mathcal{O}_S([-B_S^{<1}] - [B_S^{>1}]),$$

where $(K_V + B_V)|_T = K_T + B_T$ and $(K_W + B_W)|_S = K_S + B_S$.

Proof. By $K_V + B_V = f^*(K_W + B_W)$, we obtain

$$K_V = f^*(K_W + B_W^{>1} + \{B_W\})$$

$$+ f^*([B_W^{<1}] + [B_W^{>1}]) - ([B_V^{<1}] + [B_V^{>1}]) - B_V^{>1} - \{B_V\}.$$

If $a(\nu, W, B_W^{>1} + \{B_W\}) = -1$ for a prime divisor ν over W, then we can check that $a(\nu, W, B_W) = -1$ by using [KM, Lemma 2.45]. Since

$$f^*([B_W^{<1}] + [B_W^{>1}]) - ([B_V^{<1}] + [B_V^{>1}])$$

is Cartier, we can easily see that

$$f^*([B_W^{<1}] + [B_W^{>1}]) = [B_V^{<1}] + [B_V^{>1}] + E,$$

where E is an effective f-exceptional divisor. Thus, we obtain

$$f_*\mathcal{O}_V([-B_V^{<1}] - [B_V^{>1}]) \simeq \mathcal{O}_W([-B_W^{<1}] - [B_W^{>1}]).$$

Next, we consider the short exact sequence:

$$0 \to \mathcal{O}_V([-B_V^{<1}] - [B_V^{>1}] - T)$$

$$\to \mathcal{O}_V([-B_V^{>1}]) \to \mathcal{O}_T([-B_T^{<1}] - [B_T^{>1}]) \to 0.$$

Since $T = f^*S - F$, where F is an effective f-exceptional divisor, we can easily see that

$$f_*\mathcal{O}_V([-B_V^{<1}] - [B_V^{>1}] - T) \simeq \mathcal{O}_W([-B_W^{<1}] - [B_W^{>1}] - S).$$

We note that

$$([-B_V^{<1}] - [B_V^{>1}] - T) - (K_V + \{B_V\} + B_V^{>1} - T)$$

$$= -f^*(K_W + B_W).$$

Therefore, every associated prime of $R^1f_*\mathcal{O}_V([-B_V^{<1}] - [B_V^{>1}] - T)$ is the generic point of the f-image of some stratum of $(V, \{B_V\} + B_V^{>1} - T)$ (see, for example, [F4, Theorem 6.3 (i)]).
Claim. No strata of \((V, \{B_V\} + B_V^{-1} - T)\) are mapped into \(S\) by \(f\).

Proof of Claim. Assume that there is a stratum \(C\) of \((V, \{B_V\} + B_V^{-1} - T)\) such that \(f(C) \subset S\). Note that

\[
\text{Supp } f^*S \subset \text{Supp } f^{-1}_*B_W \cup \text{Exc}(f)
\]

and

\[
\text{Supp } B_V^{-1} \subset \text{Supp } f^{-1}_*B_W \cup \text{Exc}(f).
\]

Since \(C\) is also a stratum of \((V, B_V^{-1})\) and \(C \subset \text{Supp } f^*S\), there exists an irreducible component \(G\) of \(B_V^{-1}\) such that \(C \subset G \subset \text{Supp } f^*S\).

Therefore, by the definition of \(T\), \(G\) is an irreducible component of \(T\) because \(f(G) \subset S\) and \(G\) is an irreducible component of \(B_V^{-1}\). So, \(C\) is not a stratum of \((V, \{B_V\} + B_V^{-1} - T)\). It is a contradiction. \(\square\)

On the other hand, \(f(T) \subset S\). Therefore,

\[
f_*\mathcal{O}_T([-B_T^{-1}] - [B_T^1]) \to R^1 f_*\mathcal{O}_V([-B_V^{-1}] - [B_V^1] - T)
\]

is a zero map by Claim. Thus, we obtain

\[
f_*\mathcal{O}_T([-B_T^{-1}] - [B_T^1]) \simeq \mathcal{O}_S([-B_S^{-1}] - [B_S^1])
\]

by the following commutative diagram.

\[
\begin{array}{ccc}
0 & \to & 0 \\
\downarrow & & \downarrow \\
\mathcal{O}_W([-B_W^{-1}] - [B_W^1] - S) & \overset{\simeq}{\longrightarrow} & f_*\mathcal{O}_V([-B_V^{-1}] - [B_V^1] - T) \\
\downarrow & & \downarrow \\
\mathcal{O}_W([-B_W^{-1}] - [B_W^1]) & \overset{\simeq}{\longrightarrow} & f_*\mathcal{O}_V([-B_V^{-1}] - [B_V^1]) \\
\downarrow & & \downarrow \\
\mathcal{O}_S([-B_S^{-1}] - [B_S^1]) & \longrightarrow & f_*\mathcal{O}_T([-B_T^{-1}] - [B_T^1]) \\
\downarrow & & \downarrow \\
0 & \longrightarrow & 0
\end{array}
\]

We finish the proof. \(\square\)

It is easy to check:
Proposition 4.2. In Proposition 4.1, let C' be an lc center of (V, B_V) contained in T. Then $f(C')$ is an lc center of (W, B_W) contained in S or $f(C')$ is contained in $\text{Supp } B_W^{\geq 1}$. Let C be an lc center of (W, B_W) contained in S. Then there exists an lc center C' of (V, B_V) contained in T such that $f(C') = C$.

The following important theorem is missing in [F2].

Theorem 4.3. In Definition 3.2, we may assume that the ambient space M of the globally embedded simple normal crossing pair (Y, B_Y) is quasi-projective. In particular, Y is quasi-projective.

Proof. In Definition 3.2, we may assume that $D + Y$ is an \mathbb{R}-divisor on a smooth variety M such that $\text{Supp}(D + Y)$ is a simple normal crossing divisor on M, D and Y have no common irreducible components, and $B_Y = D |_Y$ as in Definition 3.1. Let $g : M' \to M$ be a projective birational morphism from a smooth quasi-projective variety M' with the following properties:

(i) $K_{M'} + B_{M'} = g^*(K_M + D + Y)$,
(ii) $\text{Supp } B_{M'}$ is a simple normal crossing divisor on M', and
(iii) $\text{Supp } g^{-1}(D + Y) \cup \text{Exc}(g)$ is also a simple normal crossing divisor on M'.

Let Y' be the union of the irreducible components of $B_{M'}^{\geq 1}$ that are mapped into Y by g. We put

$$(K_{M'} + B_{M'})|_{Y'} = K_{Y'} + B_{Y'}.$$

Then

$$g_*\mathcal{O}_{Y'}([- (B_{Y'}^{\leq 1})] - [B_{Y'}^{\geq 1}]) \simeq \mathcal{O}_Y([- (B_Y^{\leq 1})] - [B_Y^{\geq 1}])$$

by Proposition 4.1. This implies that

$$\mathcal{I}_{X_{-\infty}} \xrightarrow{\sim} f_* g_* \mathcal{O}_{Y'}([- (B_{Y'}^{\leq 1})] - [B_{Y'}^{\geq 1}]).$$

By the construction,

$$K_{Y'} + B_{Y'} = g^*(K_Y + B_Y) \sim_{\mathbb{R}} g^* f^* \omega.$$

By Proposition 4.2, the collection of subvarieties $\{C\}$ in Definition 3.2 coincides with the image of $(Y', B_{Y'})$-strata that are not contained in $X_{-\infty}$. Therefore, by replacing M and (Y, B_Y) with M' and $(Y', B_{Y'})$, we may assume that the ambient space M is quasi-projective.

Theorem 4.3 makes the theory of quasi-log schemes flexible and useful.
Lemma 4.4. Let \((Y, B_Y)\) be a simple normal crossing pair. Let \(V\) be a smooth variety such that \(Y \subset V\). Then we can construct a sequence of blow-ups
\[V_k \rightarrow V_{k-1} \rightarrow \cdots \rightarrow V_0 = V \]
with the following properties.

1. \(\sigma_{i+1} : V_{i+1} \rightarrow V_i\) is the blow-up along a smooth irreducible component of \(\text{Supp} B_Y\) for every \(i \geq 0\).
2. We put \(Y_0 = Y\) and \(B_{Y_0} = B_Y\). Let \(Y_{i+1}\) be the strict transform of \(Y_i\) for every \(i \geq 0\).
3. We define \(K_{Y_{i+1}} + B_{Y_{i+1}} = \sigma_{i+1}^*(K_Y + B_Y)\) for every \(i \geq 0\).
4. There exists an \(\mathbb{R}\)-divisor \(D\) on \(V_k\) such that \(D|_{Y_k} = B_{Y_k}\).
5. \(\sigma_i\mathcal{O}_{V_k}([-B_{Y_k}^{<1}]) - [B_{Y_k}^{>1}] \simeq \sigma_i\mathcal{O}_{V_i}([-B_{Y_i}^{<1}]) - [B_{Y_i}^{>1}]\), where \(\sigma : V_k \rightarrow V_{k-1} \rightarrow \cdots \rightarrow V_0 = V\).

Proof. It is sufficient to check (5). All the other properties are obvious by the construction of the sequence of blow-ups. By an easy calculation of discrepancy coefficients similar to the proof of Proposition 4.1, we can check that
\[\sigma_{i+1}\mathcal{O}_{V_{i+1}}([-B_{Y_{i+1}}^{<1}]) - [B_{Y_{i+1}}^{>1}] \simeq \mathcal{O}_{V_i}([-B_{Y_i}^{<1}]) - [B_{Y_i}^{>1}] \]
for every \(i\). This implies the desired isomorphism. \(\square\)

We can easily check:

Lemma 4.5. In Lemma 4.4, let \(C'\) be a stratum of \((Y_k, B_{Y_k})\). Then \(\sigma(C')\) is a stratum of \((Y, B_Y)\). Let \(C\) be a stratum of \((Y, B_Y)\). Then there is a stratum \(C'\) of \((Y_k, B_{Y_k})\) such that \(\sigma(C') = C\).

The following lemma is easy but very useful (cf. [K2, Proposition 10.59]).

Lemma 4.6. Let \(Y\) be a simple normal crossing variety. Let \(V\) be a smooth quasi-projective variety such that \(Y \subset V\). Let \(\{P_i\}\) be any finite set of closed points of \(Y\). Then we can find a quasi-projective variety \(W\) such that \(Y \subset W \subset V\), \(\dim W = \dim Y + 1\), and \(W\) is smooth at \(P_i\) for every \(i\).

Proof. Let \(\overline{V}\) be the closure of \(V\) in a projective space and let \(\overline{Y}\) be the closure of \(Y\) in \(\overline{V}\). We take a sufficiently large positive integer \(d\) such that the scheme theoretic base locus of \(|\mathcal{O}_{\overline{V}}(dH) \otimes I_{\overline{Y}}|\) is \(\overline{Y}\) near \(P_i\) for every \(i\), where \(H\) is a very ample Cartier divisor on \(\overline{V}\) and \(I_{\overline{Y}}\) is the defining ideal sheaf of \(\overline{Y}\) on \(\overline{V}\). By taking a complete intersection of \((\dim V - \dim Y - 1)\) general members of \(|\mathcal{O}_{\overline{V}}(dH) \otimes I_{\overline{Y}}|\), we obtain \(\overline{W} \supset \overline{Y}\) such that \(\overline{W}\) is smooth at \(P_i\) for every \(i\). Note that we used the fact that \(\overline{Y}\) has only hypersurface singularities near \(P_i\).
for every i. We put $W = \overline{W} \cap V$. By the construction, $W \subset V$ and
$\dim W = \dim Y + 1$. □

Of course, we can not always make W smooth in Lemma 4.6.

Example 4.7 ([F2, Example 3.62]). Let $V \subset \mathbb{P}^5$ be the Segre embedding of $\mathbb{P}^1 \times \mathbb{P}^2$. In this case, there are no smooth hypersurfaces of \mathbb{P}^5 containing V. We can check it as follows.

If there exists a smooth hypersurface S such that $V \subset S \subset \mathbb{P}^5$, then $\rho(V) = \rho(S) = \rho(\mathbb{P}^5) = 1$ by the Lefschetz hyperplane theorem. It is a contradiction because $\rho(V) = 2$.

By the above results, we can prove the final lemma in this section.

Lemma 4.8. Let (Y, B_Y) be a simple normal crossing pair such that Y is quasi-projective. Then there exist a globally embedded simple normal crossing pair (Z, B_Z) and a morphism $\sigma : Z \to Y$ such that

$$K_Z + B_Z = \sigma^*(K_Y + B_Y)$$

and

$$\sigma_* \mathcal{O}_Z([-(B_Z^{<1} - (B_Z^{>1})) - |B_Z^{>1}|]) \simeq \mathcal{O}_Y([-(B_Y^{<1} - (B_Y^{>1})) - |B_Y^{>1}|]).$$

Moreover, let C' be a stratum of (Z, B_Z). Then $\sigma(C')$ is a stratum of (Y, B_Y) or $\sigma(C')$ is contained in $\text{Supp } B_Y^{>1}$. Let C be a stratum of (Y, B_Y). Then there exists a stratum C' of (Z, B_Z) such that $\sigma(C') = C$.

Proof. Let V be a smooth quasi-projective variety such that $Y \subset V$. By Lemma 4.4 and Lemma 4.5, we may assume that there exists an \mathbb{R}-divisor D on V such that $D|_Y = B_Y$. Then we apply Lemma 4.6. We can find a quasi-projective variety W such that $Y \subset W \subset V$, $\dim W = \dim Y + 1$, and W is smooth at the generic point of any stratum of $(Y, \text{Supp } B_Y)$. Of course, we can make $W \not\subset \text{Supp } D$ (see the proof of Lemma 4.6). We apply Hironaka’s resolution to W and use Szabó’s resolution lemma (see, for example, [F1, 3.5 Resolution lemma]). More precisely, we take blow-ups outside U, where U is the largest Zariski open set of W such that $(Y, B_Y)|_U$ is a globally embedded simple normal crossing pair. Then we obtain a desired globally embedded simple normal crossing pair (Z, B_Z). More precisely, we can check that (Z, B_Z) has the desired properties by an easy calculation of discrepancy coefficients similar to the proof of Proposition 4.1. □

Therefore, we obtain the following statement, which is the main result of this section.
Theorem 4.9. In Definition 3.2, it is sufficient to assume that \((Y, B_Y)\) is a quasi-projective (not necessarily embedded) simple normal crossing pair.

Proof. We only assume that \((Y, B_Y)\) is a simple normal crossing pair in Definition 3.2. We assume that \(Y\) is quasi-projective. Then we apply Lemma 4.8 to \((Y, B_Y)\). Let \(\sigma : (Z, B_Z) \to (Y, B_Y)\) be as in Lemma 4.8. Then

\[
(X, \omega, f \circ \sigma : (Z, B_Z) \to X)
\]

is a quasi-log scheme in the sense of Definition 3.2. \(\square\)

Proposition 4.10 shows that it is not so easy to apply Chow’s lemma directly to make \((Y, B_Y)\) quasi-projective in Definition 3.2.

Proposition 4.10 ([F2, Proposition 3.65]). There exists a complete simple normal crossing variety \(Y\) with the following property. If \(f : Z \to Y\) is a proper surjective morphism from a simple normal crossing variety \(Z\) such that \(f\) is an isomorphism at the generic point of any stratum of \(Z\), then \(Z\) is non-projective.

Proof. We take a smooth complete non-projective toric variety \(X\). We put \(V = X \times \mathbb{P}^1\). Then \(V\) is a toric variety. We consider \(Y = V \setminus T\), where \(T\) is the big torus of \(V\). We will see that \(Y\) has the desired property. By the above construction, there is an irreducible component \(Y'\) of \(Y\) that is isomorphic to \(X\). Let \(Z'\) be the irreducible component of \(Z\) mapped onto \(Y'\) by \(f\). So, it is sufficient to see that \(Z'\) is not projective. On \(Y' \simeq X\), there is a torus invariant effective one cycle \(C\) such that \(C\) is numerically trivial. By the construction and the assumption, \(g = f|_{Z'} : Z' \to Y' \simeq X\) is birational and an isomorphism over the generic point of any torus invariant curve on \(Y' \simeq X\). We note that any torus invariant curve on \(Y' \simeq X\) is a stratum of \(Y\). We assume that \(Z'\) is projective, then there is a very ample effective divisor \(A\) on \(Z'\) such that \(A\) does not contain any irreducible components of the inverse image of \(C\). Then \(B = f_* A\) is an effective Cartier divisor on \(Y' \simeq X\) such that \(\text{Supp} B\) contains no irreducible components of \(C\). It is a contradiction because \(\text{Supp} B \cap C \neq \emptyset\) and \(C\) is numerically trivial. \(\square\)

Proposition 4.10 is the main reason why we proved Theorem 4.3 for the proof of our main theorem: Theorem 1.1 and Theorem 3.11.

5. Proof of the main theorem

Now the proof of the main theorem (see Theorem 1.1 and Theorem 3.11) is almost obvious.
Proof of Theorem 3.11. Let \(f : (Y, B_Y) \to X \) be a quasi-log resolution as in Definition 3.2. By Theorem 4.3, we may assume that \(Y \) is quasi-projective. We consider the fiber product \(Y' = Y \times_X X' \).

We put \(B_{Y'} = h'^*B_Y \). Then \((Y', B_{Y'})\) is a quasi-projective simple normal crossing pair because \(h \) is a smooth quasi-projective morphism and \((Y, B_Y)\) is a quasi-projective simple normal crossing pair. Since \(K_Y + B_Y \sim \mathbb{R} f^*\omega \), we have

\[
\begin{align*}
 f'^*\omega' &= f'^*h^*\omega \otimes f'^*\omega_{X'/X} \\
 &= h'^*f^*\omega \otimes \omega_{Y'/Y} \\
 &\sim h'^*(K_Y + B_Y) \otimes \omega_{Y'/Y} \\
 &= K_{Y'} + B_{Y'}.
\end{align*}
\]

By the flat base change theorem, we have

\[
 h'^*\mathcal{I}_{X_{-\infty}} = h'^* f_* \mathcal{O}_Y (\lceil - (B_{Y'}^{\leq 1}) \rceil - \lfloor B_{Y'}^{> 1} \rfloor) \\
 \simeq f'_* h'^* \mathcal{O}_Y (\lceil - (B_{Y'}^{\leq 1}) \rceil - \lfloor B_{Y'}^{> 1} \rfloor) \\
 \simeq f'_* \mathcal{O}_{Y'} (\lceil - (B_{Y'}^{\leq 1}) \rceil - \lfloor B_{Y'}^{> 1} \rfloor).
\]

Finally, by Theorem 4.9, we may assume that \((Y', B_{Y'})\) is a globally embedded simple normal crossing pair. Therefore,

\[
(X', \omega', f' : (Y', B_{Y'}) \to X')
\]

gives us the desired quasi-log structure. \(\square\)

Theorem 1.2 is a special case of Theorem 1.1 and Theorem 3.11.

Proof of Theorem 1.2. Note that \(\Omega^1_{X'/X} = 0 \) because \(h : X' \to X \) is a finite étale morphism. Therefore, we have \(\omega' = h^*\omega \otimes \det \Omega^1_{X'/X} \simeq h^*\omega \). Thus Theorem 1.2 follows from Theorem 1.1 and Theorem 3.11. \(\square\)

6. Applications to quasi-log canonical Fano varieties

Let us recall the vanishing theorem for projective qlc pairs. It is a very special case of [F2, Theorem 3.39 (ii)]. For the details of various vanishing theorems for reducible varieties, see [F5] and [F6].

Theorem 6.1 (Vanishing theorem for qlc pairs). Let \([X, \omega]\) be a projective qlc pair and let \(L \) be a Cartier divisor on \(X \) such that \(L - \omega \) is ample. Then \(H^i(X, \mathcal{O}_X(L)) = 0 \) for every \(i > 0 \).
We give a proof of Theorem 6.1 for the reader’s convenience.

Proof. Let \(f : (Y, B_Y) \to X \) be a quasi-log resolution as in Definition 3.2. Then
\[
f^*(L - \omega) \sim_{\mathbb{R}} f^*L - (K_Y + B_Y)
= f^*L + \lceil -(B_Y^{\leq 1}) \rceil - (K_Y + \{B_Y\} + B_Y^{\geq 1})
\]
because \(B_Y = B_Y^{\leq 1} \) (see Remark 3.10). Therefore, we have
\[
H^i(X, f_*\mathcal{O}_Y(f^*L + \lceil -(B_Y^{\leq 1}) \rceil)) = 0
\]
for every \(i > 0 \) (see, for example, \([F5, \text{Theorem 1.1 (ii)}]\)). Note that
\[
f_*\mathcal{O}_Y(f^*L + \lceil -(B_Y^{\leq 1}) \rceil) \simeq \mathcal{O}_X(L) \otimes f_*\mathcal{O}_Y(\lceil -(B_Y^{\leq 1}) \rceil) \simeq \mathcal{O}_X(L)
\]
because \(X_{-\infty} = \emptyset \) (see Remark 3.10). This implies that
\[
H^i(X, \mathcal{O}_X(L)) = 0
\]
for every \(i > 0 \).

By combining Theorem 6.1 with Theorem 3.11, we can easily check Corollary 1.3.

Proof of Corollary 1.3. Without loss of generality, we may assume that \(X \) is connected. Since \(-\omega\) is ample, \(H^i(X, \mathcal{O}_X) = 0 \) for every \(i > 0 \) by Theorem 6.1. Therefore, we have \(\chi(X, \mathcal{O}_X) = 1 \). Let \(f : \tilde{X} \to X \) be a non-trivial finite étale morphism from a connected scheme \(\tilde{X} \). By Theorem 3.11, the pair \([\tilde{X}, \tilde{\omega}]\), where \(\tilde{\omega} = f^*\omega \), is a qlc pair such that \(-\tilde{\omega}\) is ample. Thus, \(H^i(\tilde{X}, \mathcal{O}_{\tilde{X}}) = 0 \) for every \(i > 0 \) by Theorem 6.1 again. This implies \(\chi(\tilde{X}, \mathcal{O}_{\tilde{X}}) = 1 \). By the Riemann–Roch formula (see, for example, \([Ft, \text{Example 18.3.9}]\)), we have
\[
\chi(\tilde{X}, \mathcal{O}_{\tilde{X}}) = \deg f \cdot \chi(X, \mathcal{O}_X).
\]
Therefore, we obtain \(\deg f = 1 \). This means that \(X \) has no non-trivial finite étale covers, equivalently, the algebraic fundamental group of \(X \) is trivial.

As a direct consequence of Corollary 1.3 and the main theorem of \([F7]\), we have:

Corollary 6.2. Let \((X, \Delta)\) be a projective semi log canonical pair such that \(- (K_X + \Delta)\) is ample, that is, \((X, \Delta)\) is a semi log canonical Fano variety. Then the algebraic fundamental group of \(X \) is trivial.

Proof. By \([F7]\), \([X, K_X + \Delta]\) has a natural quasi-log structure with only qlc singularities. Therefore, Corollary 6.2 is a special case of Corollary 1.3. \(\square \)
Note that a union of some slc strata of a semi log canonical Fano variety is a quasi-log canonical Fano variety by Example 6.3.

Example 6.3. Let \((X, \Delta)\) be a connected projective semi log canonical pair such that \(- (K_X + \Delta)\) is ample. Let \(W\) be a union of some slc strata of \((X, \Delta)\) with the reduced scheme structure. Then \([W, \omega]\), where \(\omega = (K_X + \Delta)|_W\), is a projective qlc pair such that \(- \omega\) is ample by adjunction (see \([F7, \text{Theorem 1.13}]\)). By \([F7, \text{Theorem 1.11}]\), we obtain \(H^1(X, I_W) = 0\) where \(I_W\) is the defining ideal sheaf of \(W\) on \(X\). Therefore, we obtain \(H^0(W, O_W) = \mathbb{C}\) by the surjection
\[
\mathbb{C} = H^0(X, O_X) \twoheadrightarrow H^0(W, O_W).
\]
This implies that \(W\) is connected.

The author learned the following example from Tetsushi Ito.

Example 6.4 (Topological versus algebraic). We consider the Higman group \(G\). It is generated by 4 elements \(a, b, c, d\) with the relations
\[
a^{-1}ba = b^2, \quad b^{-1}cb = c^2, \quad c^{-1}dc = d^2, \quad d^{-1}ad = a^2.
\]
It is well known that \(G\) has no non-trivial finite quotients. By \([S, \text{Theorem 12.1}]\), there is an irreducible projective variety \(X\) such that \(\pi_1(X) \simeq G\). In this case, the algebraic fundamental group of \(X\), which is the profinite completion of \(\pi_1(X)\), is trivial.

Example 6.4 shows that Conjecture 1.4 does not directly follow from Corollary 1.3.

We give a non-trivial example of reducible semi log canonical Fano varieties.

Example 6.5. We consider the lattice \(N = \mathbb{Z}^3\). Let \(n\) be an integer with \(n \geq 3\). We consider a convex polyhedron \(P\) in \(N_{\mathbb{R}} = N \otimes \mathbb{R} \simeq \mathbb{R}^3\) whose vertices are \(v_0, v_1, \ldots, v_n \in N\) such that \(v_0 = (0, 0, -1)\) and that the third coordinates of \(v_1, \ldots, v_n\) are 1. Assume that \(P\) contains \((0, 0, 0)\) in its interior. Then the cones spanned by \((0, 0, 0)\) and faces of \(P\) subdivide \(\mathbb{R}^3\) into \(n + 1\) three-dimensional cones. This subdivision of \(\mathbb{R}^3\) corresponds to a complete toric threefold \(X\). Then we have the following properties.

1. \(-K_X\) is ample since \(P\) is convex.
2. \(D_0 \sim D_1 + \cdots + D_n\) and \(D_0\) is \(\mathbb{Q}\)-Cartier, where \(D_i\) is the torus invariant prime divisor on \(X\) associated to \(v_i\) for every \(i\).
3. Let \(x \in X\) be the torus invariant closed point associated to the cone spanned by \(v_1, v_2, \ldots, v_n\). Then \(X \setminus x\) is \(\mathbb{Q}\)-factorial, but \(X\) is not \(\mathbb{Q}\)-factorial when \(n \geq 4\).
(4) We put $\Delta = D_1 + \cdots + D_n$. Then (X, Δ) is a log canonical Fano threefold. Note that $-(K_X + \Delta) \sim D_0$.

(5) We put $W = \lfloor \Delta \rfloor = \Delta$ and $K_W + \Delta_W = (K_X + \Delta)|_W$.

Then (W, Δ_W) is a semi log canonical Fano surface. Note that W is Cohen–Macaulay since W is \mathbb{Q}-Cartier.

This W shows that the number of irreducible components of semi log canonical Fano surfaces is not bounded.

We recommend the reader who can read Japanese to see [F8] for some related topics and open problems on singular Fano varieties.

7. Simple connectedness of log canonical Fano varieties

In this section, we prove that a log canonical Fano variety is always simply connected. Theorem 7.1 is Fujita’s answer to the author’s question.

Theorem 7.1 (Kento Fujita). Let (X, Δ) be a projective log canonical pair such that $-(K_X + \Delta)$ is ample, that is, (X, Δ) is a log canonical Fano variety. Then X is simply connected.

Proof. First of all, we may assume that X is connected. Without loss of generality, we may assume that Δ is a \mathbb{Q}-divisor by perturbing Δ slightly. Then, by [HM, Corollary 1.3 (2)], X is rationally chain connected. Since X is normal and rationally chain connected, $\pi_1(X)$ is finite (see, for example, [K1, 4.13 Theorem]). Let $f : \tilde{X} \to X$ be the universal cover of X. Since $\pi_1(X)$ is finite, f is finite and étale. It is obvious that $(\tilde{X}, \tilde{\Delta})$ is log canonical and $-(K_{\tilde{X}} + \tilde{\Delta})$ is ample, where

$$K_{\tilde{X}} + \tilde{\Delta} = f^*(K_X + \Delta).$$

By [F4, Theorem 8.1], we have

$$H^i(X, \mathcal{O}_X) = H^i(\tilde{X}, \mathcal{O}_{\tilde{X}}) = 0$$

for every $i > 0$. This implies

$$\chi(X, \mathcal{O}_X) = \chi(\tilde{X}, \mathcal{O}_{\tilde{X}}) = 1.$$

On the other hand,

$$\chi(\tilde{X}, \mathcal{O}_{\tilde{X}}) = \deg f \cdot \chi(X, \mathcal{O}_X)$$

holds by the Riemann–Roch formula (see, for example, [Ft, Example 18.3.9]). Thus we obtain $\deg f = 1$. Therefore, X is simply connected. \qed
Remark 7.2. By [HM, Corollary 1.3 (2)], we can easily see that a semi log canonical Fano variety is rationally chain connected. However, [K1, 4.13 Theorem] does not always hold for non-normal rationally chain connected varieties. Note that a nodal rational curve C is rationally chain connected such that $\pi_1(C)$ is infinite. Therefore, the proof of Theorem 7.1 does not work for semi log canonical Fano varieties.

The following well-known example shows some subtleties on log canonical Fano varieties.

Example 7.3. Let $C \subset \mathbb{P}^2$ be a smooth cubic curve and let $X \subset \mathbb{P}^3$ be the cone over $C \subset \mathbb{P}^2$, then X is a Gorenstein log canonical surface such that $-K_X$ is ample. It is easy to see that X is rationally chain connected and that $\pi_1(X) = \{1\}$ by Theorem 7.1. Let $f : Y \to X$ be the blow-up at P where P is the vertex of X. Then

$$K_Y + E = f^*K_X.$$

The pair (Y, E) is purely log terminal and $-(K_Y + E)$ is big and semiample. Note that the exceptional curve E is isomorphic to C and that Y is a \mathbb{P}^1-bundle over C. Therefore, it is easy to see that Y is not rationally chain connected and $\pi_1(Y) \neq \{1\}$.

Example 7.4 is a non-trivial example of irreducible non-normal semi log canonical Fano varieties.

Example 7.4. We put $X = (x^2w - zy^2 = 0) \subset \mathbb{P}^3$. Then X is a Gorenstein Fano variety with only semi log canonical singularities. Note that X is irreducible and non-normal. By using the van Kampen theorem, we see that $\pi_1(X) = \{1\}$.

8. Appendix: Ambro’s original definition

In this section, we prove that our definition of quasi-log schemes (see Definition 3.2) is equivalent to Ambro’s original definition in [A].

First, let us recall the definition of normal crossing pairs. We need it for Ambro’s original definition of quasi-log schemes in [A].

Definition 8.1 (Normal crossing pairs). A variety X has normal crossing singularities if, for every closed point $x \in X$,

$$\widehat{O}_{X,x} \cong \frac{\mathbb{C}[x_0, \ldots, x_N]}{(x_0 \cdots x_k)}$$

for some $0 \leq k \leq N$, where $N = \dim X$. Let X be a normal crossing variety. We say that a reduced divisor D on X is normal crossing if,
in the above notation, we have
\[\hat{\mathcal{O}}_{D,x} \simeq \frac{\mathbb{C}[[x_0, \ldots, x_N]]}{(x_0 \cdots x_k, x_{i_1} \cdots x_{i_l})} \]
for some \(\{i_1, \ldots, i_l\} \subset \{k + 1, \ldots, N\} \). We say that the pair \((X, B)\) is a normal crossing pair if the following conditions are satisfied.

1. \(X\) is a normal crossing variety, and
2. \(B\) is an \(\mathbb{R}\)-Cartier \(\mathbb{R}\)-divisor whose support is normal crossing on \(X\).

We say that a normal crossing pair \((X, B)\) is embedded if there exists a closed embedding \(\nu : X \to M\), where \(M\) is a smooth variety of dimension \(\dim X + 1\). We call \(M\) the ambient space of \((X, B)\). We put
\[K_{X^\nu} + \Theta = \nu^*(K_X + B), \]
where \(\nu : X^\nu \to X\) is the normalization of \(X\). A stratum of \((X, B)\) is an irreducible component of \(X\) or the image of some lc center of \((X^\nu, \Theta)\) on \(X\).

It is obvious that a simple normal crossing pair in Definition 2.4 is a normal crossing pair in Definition 8.1. Note that the differences between normal crossing varieties and simple normal crossing varieties sometimes cause some subtle troubles (see, for example, [F1, 3.6 Whitney umbrella]).

Let us recall Ambro’s original definition of quasi-log schemes (see [A]).

Definition 8.2 (Quasi-log schemes). A quasi-log scheme is a scheme \(X\) endowed with an \(\mathbb{R}\)-Cartier \(\mathbb{R}\)-divisor (or \(\mathbb{R}\)-line bundle) \(\omega\), a proper closed subscheme \(X_{-\infty} \subset X\), and a finite collection \(\{C\}\) of reduced and irreducible subschemes of \(X\) such that there is a proper morphism \(f : (Y, B_Y) \to X\) from an embedded normal crossing pair satisfying the following properties:

1. \(f^*\omega \sim_{\mathbb{R}} K_Y + B_Y\).
2. The natural map \(\mathcal{O}_X \to f_*\mathcal{O}_Y([-B_Y^{\leq 1}])\) induces an isomorphism
\[\mathcal{I}_{X_{-\infty}} \to f_*\mathcal{O}_Y([-B_Y^{\leq 1}]) - [B_Y^{> 1}], \]
where \(\mathcal{I}_{X_{-\infty}}\) is the defining ideal sheaf of \(X_{-\infty}\).
3. The collection of subvarieties \(\{C\}\) coincides with the image of \((Y, B_Y)\)-strata that are not included in \(X_{-\infty}\).

In Definition 3.2, we assume that \((Y, B_Y)\) is a globally embedded simple normal crossing pair. On the other hand, in Definition 8.2, we only assume that \((Y, B_Y)\) is an embedded normal crossing pair.
Remark 8.3. As was pointed out in Remark 3.4, a quasi-log scheme in Definition 8.2 was called a quasi-log variety in [A].

Remark 8.4. In [A], Ambro required that \((Y, B_Y)\) is embedded for technical reasons and expected that this extra assumption is not necessary (see [A, Introduction]). On the other hand, the author thinks that the existence of the ambient space \(M\) of \((Y, B_Y)\) makes the theory of quasi-log schemes more flexible and more powerful. Note that a key point of the main theorem in [F7] is to construct good ambient spaces for quasi-projective semi log canonical pairs after some suitable birational modifications.

Lemma 8.5 is essentially the same as Ambro’s embedded log transformations in [A].

Lemma 8.5. Let \((Y, B_Y)\) be an embedded normal crossing pair and let \(M\) be the ambient space of \((Y, B_Y)\). Then there are a projective surjective morphism \(\sigma : M' \to M\) from a smooth variety \(M'\) such that \(\sigma\) is a composition of blow-ups and a simple normal crossing pair \((Z, B_Z)\) embedded into \(M'\) with the following properties.

(i) \(\sigma : Z \to Y\) is surjective and \(K_Z + B_Z = \sigma^*(K_Y + B_Y)\).
(ii) \(\sigma_* \mathcal{O}_Z([-(B_Z^{\geq 1})] - [B_Z^{< 1}]) \simeq \mathcal{O}_Y([-(B_Y^{\geq 1})] - [B_Y^{< 1}])\).
(iii) Let \(C'\) be a stratum of \((Z, B_Z)\). Then \(\sigma(C')\) is a stratum of \((Y, B_Y)\) or is contained in \(\text{Supp} B_Y^{< 1}\). Let \(C\) be a stratum of \((Y, B_Y)\). Then there is a stratum \(C'\) of \((Z, B_Z)\) such that \(\sigma(C') = C\).

Proof. First, we can construct a sequence of blow-ups \(M_k \to M_{k-1} \to \cdots \to M_0 = M\) with the following properties.

(a) \(\sigma_{i+1} : M_{i+1} \to M_i\) is the blow-up along a smooth stratum of \(Y_i\) for every \(i\).
(b) We put \(Y_0 = Y\), \(B_{Y_0} = B_Y\), and \(Y_{i+1} = \sigma_{i+1}^{-1}(Y_i)\) with the reduced scheme structure.
(c) \(Y_k\) is a simple normal crossing divisor on \(M_k\).

We can check that \(K_{Y_{i+1}} = \sigma_{i+1}^* K_{Y_i}\) for every \(i\) by the construction. We can directly check that

\[R^1 \sigma_{i+1*} \mathcal{O}_{M_{i+1}}(-Y_{i+1}) = 0 \]

and

\[\sigma_{i+1*} \mathcal{O}_{M_{i+1}}(-Y_{i+1}) \simeq \mathcal{O}_{M_i}(-Y_i) \]
for every i. Therefore, by the diagram:

$$
\begin{array}{ccccccccc}
0 & \stackrel{\sim}{\longrightarrow} & \mathcal{O}_{M_i}(-Y_i) & \stackrel{\sim}{\longrightarrow} & \mathcal{O}_{M_i} & \longrightarrow & \mathcal{O}_{Y_i} & \longrightarrow & 0 \\
& & \downarrow & & \downarrow & & \downarrow & & \\
0 & \stackrel{\sim}{\longrightarrow} & \sigma_{i+1}^*\mathcal{O}_{M_{i+1}}(-Y_{i+1}) & \stackrel{\sim}{\longrightarrow} & \sigma_{i+1}^*\mathcal{O}_{M_{i+1}} & \longrightarrow & \sigma_{i+1}^*\mathcal{O}_{Y_{i+1}} & \longrightarrow & 0,
\end{array}
$$

we obtain $\sigma_{i+1}^*\mathcal{O}_{Y_{i+1}} \simeq \mathcal{O}_{Y_i}$ for every i. We put $B_{Y_{i+1}} = \sigma_{i+1}^*Y_{i+1}$ for every i. Then, by replacing (Y, B_Y) and M with (Y_k, B_{Y_k}) and M_k, we may assume that Y is a simple normal crossing divisor on M.

Next, we can construct a sequence of blow-ups $M_k \rightarrow M_{k-1} \rightarrow \cdots \rightarrow M_0 = M$ with the following properties.

1. $\sigma_{i+1} : M_{i+1} \rightarrow M_i$ is the blow-up along a smooth stratum of (Y_i, B_{Y_i}) contained in $\text{Supp} B_{Y_i}$ for every i.
2. We put $Y_0 = Y$ and $B_{Y_0} = B_Y$. Let Y_{i+1} be the strict transform of Y_i on M_{i+1} for every i.
3. We put $K_{Y_{i+1}} + B_{Y_{i+1}} = \sigma_{i+1}^*(K_{Y_i} + B_{Y_i})$ for every i.
4. $\text{Supp} B_{Y_k}$ is a simple normal crossing divisor on Y_k.

Finally, by the construction, we can check the properties (i), (ii), and (iii) for $\sigma : M_k \rightarrow M$ and (Y_k, B_{Y_k}) by an easy calculation of discrepancy coefficients similar to the proof of Proposition 4.1. □

Proposition 8.6. Assume that (Y, B_Y) is an embedded simple normal crossing pair in Definition 8.2. Let M be the ambient space of (Y, B_Y). Then, by taking some sequence of blow-ups of M, we may assume that (Y, B_Y) is a globally embedded simple normal crossing pair in Definition 8.2.

Proof. We can construct a sequence of blow-ups $M_k \rightarrow M_{k-1} \rightarrow \cdots \rightarrow M_0 = M$ with the following properties.

(i) $\sigma_{i+1} : M_{i+1} \rightarrow M_i$ is the blow-up along a smooth irreducible component of $\text{Supp} B_{Y_i}$ for every $i \geq 0$.
(ii) We put $Y_0 = Y$ and $B_{Y_0} = B_Y$. Let Y_{i+1} be the strict transform of Y_i on M_{i+1} for every $i \geq 0$.
(iii) We define $K_{Y_{i+1}} + B_{Y_{i+1}} = \sigma_{i+1}^*(K_{Y_i} + B_{Y_i})$ for every $i \geq 0$.
(iv) There exists an \mathbb{R}-divisor D on M_k such that $\text{Supp}(Y_k + D)$ is a simple normal crossing divisor on M_k and that $D|_{Y_k} = B_{Y_k}$.
(v) $\sigma^*\mathcal{O}_{Y_k}([-B_{Y_k}^{<1}] - [B_{Y_k}^{>1}]) \simeq \mathcal{O}_Y([-B_Y^{<1}] - [B_Y^{>1}])$, where $\sigma : M_k \rightarrow M_{k-1} \rightarrow \cdots \rightarrow M_0 = M$.

Moreover, we have:

(vi) Let C' be a stratum of (Y_k, B_{Y_k}). Then $\sigma(C')$ is a stratum of (Y, B_Y). Let C be a stratum of (Y, B_Y). Then there is a stratum C' of (Y_k, B_{Y_k}) such that $\sigma(C') = C$.

We note that we can directly check
\[\sigma_{i+1} \mathcal{O}_{Y_{i+1}} \left(\left\lceil -B_{Y_{i+1}}^{<1} \right\rceil - \left\lfloor B_{Y_{i+1}}^{>1} \right\rfloor \right) \simeq \mathcal{O}_{Y_i} \left(\left\lceil -B_{Y_i}^{<1} \right\rceil - \left\lfloor B_{Y_i}^{>1} \right\rfloor \right) \]
for every \(i \geq 0 \) and the property (vi) by an easy calculation of discrepancy coefficients similar to the proof of Proposition 4.1. Then we replace \(M \) and \((Y, B_Y)\) with \(M_k \) and \((Y_k, B_{Y_k})\). \(\square \)

Therefore, by Lemma 8.5 and Proposition 8.6, Definition 3.2 is equivalent to Ambro’s original definition of quasi-log schemes: Definition 8.2.

Theorem 8.7. Definition 3.2 is equivalent to Definition 8.2.

References

[A] F. Ambro, Quasi-log varieties, Tr. Mat. Inst. Steklova 240 (2003), Biratsion. Geom. Linein. Sist. Konechno Porozhdennye Algebry, 220–239; translation in Proc. Steklov Inst. Math. 2003, no. 1 (240), 214–233.

[F1] O. Fujino, What is log terminal?, Flips for 3-folds and 4-folds, 49–62, Oxford Lecture Ser. Math. Appl., 35, Oxford Univ. Press, Oxford, 2007.

[F2] O. Fujino, Introduction to the log minimal model program for log canonical pairs, preprint (2008).

[F3] O. Fujino, Introduction to the theory of quasi-log varieties, Classification of algebraic varieties, 289–303, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2011.

[F4] O. Fujino, Fundamental theorems for the log minimal model program, Publ. Res. Inst. Math. Sci. 47 (2011), no. 3, 727–789.

[F5] O. Fujino, Vanishing theorems, to appear in Adv. Stud. Pure Math.

[F6] O. Fujino, Injectivity theorems, preprint (2013).

[F7] O. Fujino, Fundamental theorems for semi log canonical pairs, to appear in Algebraic Geometry.

[F8] O. Fujino, Some problems on Fano varieties (Japanese), to appear in Sūrikaisekikenkyūsho Kōkyūroku.

[Ft] W. Fulton, Intersection theory, Second edition. Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics, 2. Springer-Verlag, Berlin, 1998.

[G] A. Grothendieck, Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes, Inst. Hautes Études Sci. Publ. Math. No. 8 (1961).

[HM] C. D. Hacon, J. Mckernan, On Shokurov’s rational connectedness conjecture, Duke Math. J. 138 (2007), no. 1, 119–136.

[K1] J. Kollár, Shafarevich maps and automorphic forms, M. B. Porter Lectures. Princeton University Press, Princeton, NJ, 1995.

[K2] J. Kollár, Singularities of the minimal model program, With a collaboration of Sándor Kovács. Cambridge Tracts in Mathematics, 200. Cambridge University Press, Cambridge, 2013.

[KM] J. Kollár, S. Mori, Birational geometry of algebraic varieties, With the collaboration of C. H. Clemens and A. Corti. Translated from the 1998 Japanese original. Cambridge Tracts in Mathematics, 134. Cambridge University Press, Cambridge, 1998.
[S] C. Simpson, Local systems on proper algebraic V-manifolds, Pure Appl. Math. Q. 7 (2011), no. 4, Special Issue: In memory of Eckart Viehweg, 1675–1759.

[T] S. Takayama, Simple connectedness of weak Fano varieties, J. Algebraic Geom. 9 (2000), no. 2, 403–407.

Department of Mathematics, Faculty of Science, Kyoto University, Kyoto 606-8502, Japan

E-mail address: fujino@math.kyoto-u.ac.jp