Production of Propene Oxide by a Homogeneous Chain Reaction Initiated by Surface Radical Generation*

Naoki Mimura†
National Institute of Advanced Industrial Science and Technology (AIST),
16-1, Onogawa, Tsukuba, Ibaraki, 305-8569 Japan, and
Division of Materials and Manufacturing Science,
Osaka University, 2-1, Yamada-oka, Suita, Osaka,565-0871, Japan

Zhaoxia Song and Susumu Tsubota
National Institute of Advanced Industrial Science and Technology (AIST),
16-1, Onogawa, Tsukuba, Ibaraki, 305-8569 Japan

Hiromi Yamashita
Division of Materials and Manufacturing Science,
Osaka University, 2-1, Yamada-oka, Suita, Osaka,565-0871, Japan

S. Ted Oyama
National Institute of Advanced Industrial Science and Technology (AIST),
16-1, Onogawa, Tsukuba, Ibaraki, 305-8569 Japan, and
Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, USA
(Received 14 October 2005; Accepted 20 December 2005; Published 19 January 2006)

Effective Ti catalysts were found for the vapor phase synthesis of propylene oxide, one of the most challenging reactions in heterogeneous catalysis. The observation that the reaction was enhanced by the presence of a post-catalytic bed volume indicated that the reaction occurred through a homogeneous chain reaction, likely initiated by surface radical generation. EXAFS analysis of the SiO2-supported catalysts indicated that active samples had Ti oxide clusters on the support. The catalytic activity was stable for 500-600 min, and indicated a promising catalytic system. [DOI: 10.1380/ejssnt.2006.74]

Keywords: Extended X-ray absorption fine structure (EXAFS); Catalysis; Titanium oxide; Alkenes; Oxygen; Epoxidation; Radical generation

I. INTRODUCTION

Surface-initiated gas-phase reactions have been discussed only infrequently in the literature. One example is that of methane coupling with basic catalysts such as Li(MgO) or Sm2O3, which proceeds by the reaction of methane with surface centers to produce methyl radicals [1]. The methane activation step is slow and the high temperatures (> 873 K) required for a significant reaction rate limit the selectivity, so the process has not been commercialized.

This paper presents results with a new system which allows the reaction of propylene and oxygen to proceed at relatively low temperatures (~573 K), and gives rise to selective oxidation products without deactivation for the tested period (> 500 min.). The system consists of Ti clusters supported on silica. Contrary to expectations, the main product is PO rather than the allylic oxidation product acrolein. Because the conditions are mild, good selectivities to partial oxidation products are obtained.

Propylene oxide (PO) is an important industrial product [2] currently manufactured by several indirect methods, such as the chlorohydrin process, which uses Cl2 and H2O, or variations of the Halcon process, which use organo hydroperoxides. Compared with the indirect methods, a process for direct epoxidation (C3H6+1/2O2=PO) would be simpler and less expensive. However, the direct reaction is difficult because of the high reactivity of the hydrogens in the allylic position which on standard reaction over the course of the experiments.

II. EXPERIMENTAL

The Ti-oxide catalysts were prepared by impregnation of a silica support (Cariact Q-30, 120 m2g−1, Fuji Silisia Chemical Ltd.) with Ti precursors. Two precursors were compared, a Ti dimer precursor complex [11] ((NH4)8[Ti2(C6H4O7)2(O2)2]2·8H2O, Furuuchi Chemi-
TABLE I: Initial activities of TiO\textsubscript{2}/SiO\textsubscript{2} catalysts prepared from Ti\textsubscript{2} complex. \(T = 568 \text{ K}, P = 3.5 \text{ atm}, \text{ Feed gas: } C_3H_6, 10 \text{ mL·min}^{-1}, O_2, 10 \text{ mL·min}^{-1}. \) Catalyst weight, 1.0 g + quartz sand 3.0 g. 25-60 min. \(^a \) post catalytic-bed volume, \(^b \) prepared from Ti\textsubscript{2} complex, \(^c \) prepared from Ti(iso-PrO)\textsubscript{4}, \(^d \) decomposed unsupported Ti\textsubscript{2} complex, \(^e \) post catalytic bed volume of the reactor filled with quartz sand. \(T = 573 \text{ K}. \) CO\textsubscript{x} = CO, CO\textsubscript{2}.

No.	Catalyst	PCBV\(^a \) (mL)	Precursor	Conversion of \(C_3H_6 \) (%)	Selectivity (%)
1	TiO\textsubscript{2} \(^b \) (2.0%) / SiO\textsubscript{2}	25	Dimer	9.2	34.7 / 20.2 / 39.2 / 5.9
2	TiO\textsubscript{2} \(^c \) (2.0%) / SiO\textsubscript{2}	25	Monomer	4.4	26.7 / 23.2 / 42.6 / 7.5
3	TiO\textsubscript{2} \(^b \) (6.7%) / SiO\textsubscript{2}	25	Dimer	11.1	28.1 / 19.0 / 45.0 / 7.9
4	TiO\textsubscript{2} \(^b \) (15%) / SiO\textsubscript{2}	25	Dimer	21.5	20.6 / 11.5 / 62.7 / 5.2
5	TiO\textsubscript{2} \(^d \)	25	Dimer	2.2	21.5 / 18.9 / 56.2 / 3.4
6	SiO\textsubscript{2}	25	-	0.2	35.5 / 41.7 / 20.0 / 2.8
7\(^e \)	TiO\textsubscript{2} (2.0%) / SiO\textsubscript{2}	None	Dimer	1.9	1.6 / 18.4 / 49.6 / 30.4

FIG. 1: Time course of PO formation using TiO\textsubscript{2}/SiO\textsubscript{2} catalysts \(T = 568 \text{ K}, P = 3.5 \text{ atm}, \text{ Feed gas: } C_3H_6/O_2=5/5/10 \text{ (mL·min}^{-1})\).

III. RESULTS AND DISCUSSION

Table 1 compares the activities of the TiO\textsubscript{2}/SiO\textsubscript{2} catalysts, obtained mostly with an empty post-catalytic bed volume. Sample No.1, prepared from the Ti dimer complex precursor, shows good conversion and PO selectivity compared to Sample No.2, prepared from Ti isopropoxide (Ti monomer). The major side product in both cases was acetaldehyde. Samples with higher Ti loadings (Nos. 1, 3, 4) gave higher propylene conversions, but slightly lower PO and acetaldehyde selectivities. Reference samples of the calcined titanium dimer precursor (unsupported) and the silica support dilty gave low conversions (Nos. 5, 6). The high conversions of the supported sample suggest that the titanium oxide species are highly dispersed on the SiO\textsubscript{2} support. A sample of the low loading (2%) Ti dimer catalyst in which the post-catalytic-bed volume was filled with quartz sand (No. 7) gave low conversion. A blank experiment with no catalyst did not give any conversion. Comparison to Sample No. 2 indicates that the post-catalytic volume is essential for PO production using this type of catalyst. This is a strong indication that the reaction is occurring in the gas-phase through radical chain reactions. We speculate that the role of the Ti dimer catalyst is to generate radicals which initiate the reactions. We are currently designing an apparatus that will enable us to trap radical intermediates and to verify their existence with electron spin resonance spectroscopy.

The Ti oxide dimer catalysts showed good stability in the tested period (Fig. 1) in contrast with previously studied direct PO catalysts [5, 6]. An induction period was observed for the Ti (6.7%) catalyst. The cause may be related to the generation of radical species whose formation and disappearance need to be balanced gradually as they involve the establishment of radical branching steps. Induction periods have been reported in radical oxidation reactions [12]. The induction period does not appear with the Ti (2%) catalyst. The reason may be that be-
FIG. 2: Ti-K edge XANES spectra of TiO$_2$/SiO$_2$ catalysts. Sample No. 1, prepared from titanium dimer complex. Sample No. 2, prepared from Ti(iso-PrO)$_4$. * Titanium source of catalyst No. 1, untreated.

FIG. 3: FT-EXAFS spectra of TiO$_2$/SiO$_2$ catalysts.

cause of its lower activity the rate of formation of radicals was lower and reached a balance with the consumption of radicals in a short time.

Figures 2 and 3 show the XAFS spectra of the TiO$_2$/SiO$_2$ catalysts. From the XANES pre-edge peaks, it can be deduced that the structures of the Ti oxide species on the SiO$_2$ support (Samples No. 1 and 2) are different from those of rutile and anatase type TiO$_2$. In the EXAFS spectra of Samples 1 (dimer precursor) and 2 (monomer precursor), the first peak at 0.15 nm in both spectra are assigned to Ti-O bonds. In Sample 1, a second peak at 0.27 nm is clearly observed, and this is assigned to a Ti-Ti distance in a Ti-O-Ti structure. The Ti-oxide species in Sample 1 might be deduced to have a cluster structure consisting of a few Ti atoms (2 or 3) bonded through bridging oxygen atoms. In contrast, the Ti monomer does not form a cluster structure with Ti-O-Ti bond, and the Ti species might be isolated on the SiO$_2$ surface.

Formation of activated oxygen species on Ti centers from oxidants such as H$_2$O$_2$ in the liquid-phase epoxidation of alkenes using catalysts [13] like TS-1 is well-known. The radical generation function of the Ti cluster in this study is likely to be different. Although we do not have direct evidence, we hypothesize that the Ti oxide cluster with Ti-O-Ti structure could be effective in radical generation by stabilizing a Ti$^{3+}$ state. Isolated tetrahedral Ti oxide species have been shown to produce Ti$^{3+}$ in photocatalysts by UV radiation [14], or by reduction in H$_2$ at 773 K [15]. After radical formation other oxygenates may be formed in the post-catalytic-volume by well-known gas-phase radical reactions [16–19]. The first species generated are likely to be allyl radicals which then interact with molecular O$_2$ to form peroxy radicals that lead to the formation of peroxodimers or hydroperoxides. The hydrogen peroxides epoxidize propylene to PO and the peroxodimers decompose to form PO.

Surface-initiated gas-phase radical generation has been known for a long time. Lunsford [20] cites the work of Langmuir [21] in which hydrogen radicals were generated by incandescent tungsten wires (> 1300 K). Other examples include the formation of gas-phase methylallyl radicals during the oxidation of 1-butene and isobutylene over bismuth oxide at 723 K [22], the generation of radicals during the oxidative dehydrogenation of propane over a V-MgO catalyst at 829 and 843 K [23], and the desorption of hydroxyl radicals during the catalytic reactions of water or hydrogen with oxygen over basic metal oxides (MgO, CaO, SrO, BaO) in the temperature range 1100-1300 K [24]. In the case of propylene, Chelliah and Keulks report surface-initiated homogeneous reactions that produce propylene oxide over a bismuth molybdate catalyst operating at 698 K [25]. Our work can be distinguished from these previous studies by the remarkably low temperatures (∼573 K) at which the radicals are generated. This is probably a consequence of the unique properties of the Ti dimer complex which has a suitable structure for generating the radical.

IV. CONCLUSION

In conclusion a catalyst containing Ti oxide dimers supported on SiO$_2$ was prepared from a Ti dimer complex and was found to be effective for direct PO production. The catalyst was produced from a Ti dimer precursor by simple impregnation and thermal decomposition, and its structure was determined by EXAFS analysis. The production of PO likely occurred by a gas-phase radical chain reaction mechanism as deduced from the effect of the post-catalytic-bed volume.

Acknowledgments

We acknowledge financial support from the New Energy and Industrial Technology Development Organization of Japan (Industrial Research Grant Program. Project ID: 04A33006). We also thank National Laboratory for High
Energy Physics (Tsukuba, Japan) for offering beam time at BL-7C for this work (No. 2004G099).

[1] T. Ito, J. Wang, C. H. Lin and J. H. Lunsford, J. Am. Chem. Soc. 107, 5062 (1985).
[2] D. L. Trent, "Propylene Oxide", in Kirk Othmer Encyclopedia of Chemical Technology, on-line edition, John Wiley & Sons, New York, (2001).
[3] Chem. Eng. News July 5, 33 (1999).
[4] F. W. Zemichael, A. Palermo, M. S. Tikhov and R. M. Lambert, Catal. Lett, 80, 93 (2002).
[5] M. Haruta and M. Date, Appl. Catal. A 222, 427 (2001).
[6] K. Murata and Y. Kyozumi, Chem. Commun. 2001, 1356 (2001).
[7] K. Murata, Y. Liu, N. Mimura and M. Inaba, Catal. Commun. 4, 385 (2003).
[8] K. Murata, Y. Liu, N. Mimura and M. Inaba, J. Catal. 220, 513 (2003).
[9] Olin Corp., U. S. Patent 4,992,567 (1991).
[10] T. Hayashi, L. B. Han, S. Tsubota, M. Haruta, Ind. Eng. Chem. Res. 34, 2298 (1995).
[11] M. Kakihana, M. Tada, M. Shiro, V. Petrykin, M. Osada and Y. Nakamura, Inorg. Chem. 40, 891 (2001).
[12] G. Franz and R. Sheldon, "Oxidation", in Ullmann’s Encyclopedia of Industrial Chemistry, 5th Ed., B. Elshes, S. Hawkins and G. Schulz, Eds., VCH, Vol A18, p.261 (1991).
[13] M. G. Clerici, G. Bellussi and U. Romano, J. Catal. 129, 159 (1991).
[14] H. Yamashita and M. Anpo, Current Opinion Solid St. Mat. Sci. 7, 471 (2004).
[15] C. Murata, H. Yoshida, J. Kumagai and T. Hattori, J. Phis. Chem. B 107, 4364 (2003).
[16] J. R. Lowe and N. A. Porter, J. Am. Chem. Soc. 119, 11534 (1997).
[17] J. W. Bozelli and A. M. Dean, J. Phys. Chem. 97, 4427 (1993).
[18] M. E. Jenkin, T. P. Murrells, S. J. Shalliker and G. D. Hayman, J. C. S. Faraday Trans. 89, 433 (1993).
[19] N. D. Stothard and R. W. Walker, J. C. S. Faraday Trans. 88, 2621 (1992).
[20] J. H. Lunsford, Langmuir 5, 12 (1989).
[21] I. Langmuir, J. Am. Chem. Soc. 34, 1310 (1912).
[22] D. J. Driscoll, W. Martir and J. H. Lunsford, J. Phis. Chem. 91, 3585 (1987).
[23] K. T. Nguyen and H. H. Kung, J. Catal. 122, 415 (1990).
[24] S. Noda, M. Nishioka, A. Harano and M. Sadakata, J. Phis. Chem. B 102, 3185 (1998).
[25] D. Chelliah and G. W. Keulks, J. Catal. 24, 529 (1972).