Nucleotide diversity of functionally different groups of immune response genes in Old World camels based on newly annotated and reference-guided assemblies

Sara Lado
Vetmeduni Vienna, Research Institute of Wildlife Ecology

Jean P. Elbers
Vetmeduni Vienna, Research Institute of Wildlife Ecology

Mark F. Rogers
Intelligent Systemas Laboratory, University of Bristol

José Melo-Ferreira
Universidade do Porto Centro de Investigaccao em Biodiversidade e Recursos Geneticos

Adiya Yadamsuren
Wild Camel Protection Foundation Mongolia

Jukka Corander
Wellcome Sanger Institute

Petr Horín
Department of Animal Genetics, Veterinary and Pharmaceutical University Brno

Pamela A. Burger (✉ pamela.burger@vetmeduni.ac.at)
Vetmeduni Vienna, Research Institute of Wildlife Ecology https://orcid.org/0000-0002-6941-0257

Research article

Keywords: chromosome mapping, chromosome conformation capture, dromedary, genome assembly, scaffolding, genome annotation, immune response genes, genetic diversity

DOI: https://doi.org/10.21203/rs.3.rs-29901/v1

License: ☑️ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background

Immune-response (IR) genes have an important role in the defense against highly variable pathogens, and therefore, genetic diversity in these genomic regions is essential for species’ survival and adaptation. Although current genome assemblies from Old World camelids are very useful for investigating genome-wide diversity, demography and population structure, they have inconsistencies and gaps that limit analyses at local genomic scales. Improved and more accurate genome assemblies and annotations are needed to study complex genomic regions like adaptive and innate IR genes.

Results

In this work, we improved the genome assemblies in the three Old World camel species – domestic dromedary and Bactrian camel, and the two-humped wild camel – via different computational methods. The newly annotated dromedary genome assembly CamDro3 served as reference to scaffold the NCBI RefSeq genomes of domestic Bactrian and wild camels. These upgraded assemblies were then used to assess nucleotide diversity of IR genes within and between species, and to compare the diversity found in immune genes and the rest of the genes in the genome. We detected differences in the nucleotide diversity among the three Old World camelid species and between IR gene groups, i.e., innate versus adaptive. Among the three species, domestic Bactrian camels showed the highest mean nucleotide diversity. Among the functionally different IR gene groups, the highest mean nucleotide diversity was observed in the major histocompatibility complex.

Conclusions

The new camel genome assemblies were greatly improved in terms of contiguity and increased size with fewer scaffolds, which is of general value for the scientific community. This allowed us to perform in-depth studies on genetic diversity in immunity-related regions of the genome. Our results suggest that differences of diversity across classes of genes appear compatible with being caused by a combination of population history coupled with possible distinct exposures to pathogens and consequent different selective pressures.

Background

Accurate genome assemblies provide an invaluable basis to assess genetic variation throughout the genome of species, to detect structural variants and to decipher complex genomic regions such as immune-response (IR) genes. Maintaining high genetic diversity in a population is important to reduce the spread of diseases, allowing rapid adequate immune responses and limiting, e.g., parasite evolution (see [1]). Even though demographic changes in general may cause important loss of genetic diversity, and particularly during domestication, due to intensive selection and potential inbreeding in many genomic regions [2], in
other regions such as IR genes the genetic diversity can be conserved due to selective pressures of pathogens [3].

Old World camels – the domesticated one-humped dromedaries (Camelus dromedarius) and two-humped Bactrian camels (Camelus bactrianus), as well as the critically endangered two-humped wild camels (Camelus ferus) – are valuable species not only for their production traits (e.g., meat, milk or wool), but for their power (e.g., riding or packing). Moreover, they are ungulate species with unique adaptations to diverse and extreme environments. Consequently, as they are in contact with different pathogenic pressures on different environments, there is great interest in understanding the general diversity in the part of the genome encoding their immune system. Previous research on immunogenome diversity in Old World camels focused mainly on the MHC genes (e.g., [4]), as due to its critical importance for individual survival, the MHC complex is the most intensively studied part of the vertebrate immunogenome [5]. MHC genes, however, account only for part of the genetic variability underlying resistance to infectious pathogens [6, 7]. A broader approach is required to capture the overall genetic diversity of the immune system and to understand its role in response to pathogens. On these grounds, high-quality genome assemblies are needed. Previous studies [8–12] developed high quality genome assemblies for the three Old World camel species. Although very useful for broad inferences of genome-wide diversity or demographic histories, an improved version of these assemblies is needed to allow more detailed studies of the diversity in parts of the genome, such as IR genes. With access to different computational methods allows overcoming previous genome assemblies’ limitations.

In this work, we describe our computational efforts to generate improved Old World camelid genome assemblies, and we present versions CamDro3, CamBac2 and CamFer2, for dromedaries, Bactrian camels and wild camels, respectively. Our goal was not only to provide novel assemblies for genomic analysis in camels, but also to take advantage of the upgraded genome assemblies to assess the genetic diversity in different groups of immune genes, and compare them among species and to the rest of the intra-genic genomic diversity.

Results

Improved Camelus dromedarius genome assembly

CamDro3 consistently had higher RNA-Seq read mapping rates than CamDro2, and these two assemblies had much higher mapping rates than the other assemblies (Supplemental Fig. 1). After CamDro3 and CamDro2, the assembly with the third highest mapping rates varied depending on the tissue and season analyzed, but B. taurus consistently had the lowest mapping rates. We were able to assign at least one super-scaffold to each of the 37 chromosomes except the Y chromosome as the dromedary used in CamDro1, CamDro2, and CamDro3 was female. Chromosomes are denoted by numbers 1–36 and X in the CamDro3 assembly. There were 113,944,958 bases in scaffolds not assigned to chromosomes (5.25 % of the 2,169,346,739 base assembly).

In the CamDro3 annotation, we predicted 22,917 genes that produced 34,135 proteins, and 7.4 % (1,705) of genes had no assigned annotation. These numbers are slightly higher than for the CamDro2 assembly for
which we had predicted 22,534 genes that produced 34,024 proteins, and 7.7 \(\% \) (1,730) of genes had no assigned annotation [11]. We assessed if predicted proteins were truncated due to uncorrected indels introduced by PacBio reads by comparing the predicted protein length hit distribution of the CamDro1 assembly (Illumina only data, Figure 1, red line), which should lack such PacBio specific error, to that of the CamDro2 (Figure 1, green line) and CamDro3 assemblies (Figure 1, blue line). First, predicted proteins from the CamDro1 assembly had 21,257 protein hits against the UniProt/TrEMBL database, and 11,671 (55 \(\% \)) hits were between 0.85 and 1.15 (query sequence length/ subject sequence length; Figure 1). Second, predicted proteins from the CamDro2 assembly had 32,297 protein hits, and 17,341 (54 \(\% \)) were between 0.85 and 1.15 (Figure 1). Third, predicted proteins for CamDro3 assembly had 32,427 protein hits, and 17,006 (52 \(\% \)) were between 0.85 and 1.15 (Figure 1). This suggests that CamDro3 is similar to CamDro2 with respect to proportion of uncorrected PacBio indels, but the proportions of uncorrected indels are very low when compared to CamDro1. AEDs were slightly higher in CamDro3 versus CamDro2 (Figure 2). For example, CamDro2 had AED values \(\leq 0.5 \) for 78.4 \(\% \) transcripts versus 79.1 \(\% \) transcripts for CamDro3. Lower AED values indicate a better fit to the provided evidence when annotating a genome [13].

We predicted 22,223 genes that produced 33,153 proteins in CamDro3 using a more up to date set of proteins during annotation. These values were lower than when annotating CamDro3 using the same cDNA transcripts and proteins used for annotating CamDro2 possibly because there were fewer false genes predicted in the up-to-date annotation of CamDro3. Further, 8.46 \(\% \) (1,879) genes produced proteins did not match UniProt/Swiss-Prot proteins. This value was higher than before, but we used UniProt/Swiss-Prot instead of the more comprehensive UniProt-TrEMBL protein database. The CamDro3 assembly and these annotations have been submitted to GenBank (GCA_000803125.3) and Dryad - see Data Accessibility Statement.

Improved Camelus bactrianus and Camelus ferus genomes via reference-guided assembly

CamBac2 increased in size by 46,927,041 bases and had 1,862 fewer scaffolds than CamBac1, and CamBac2’s N50 was nearly 8 times larger (Table 2). The longest contig in CamBac2 was more than 7 times larger than before. We have also predicted 19,491 genes that produced 25,95 proteins in CamBac2. Of these genes, 4.03 \(\% \) (786) did not match proteins from UniProt/Swiss-Prot. *Camelus bactrianus* had the second lowest mapping rates, after *B. taurus*. The CamBac2 assembly and these annotations have been submitted to Dryad - see Data Accessibility Statement.

CamFer2 was 77,064,279 bases larger and was organized into 4,176 fewer scaffolds than CamFer1. CamFer2 had an N50 that was nearly 35 times larger than CamFer1’s N50 (Table 2). CamFer2’s longest contig was more than 2 times larger than CamFer1’s largest contig.

We predicted 19,192 genes that produced 19,192 proteins in CamFer2. Of these genes, 3.69 \(\% \) (708) did not match proteins from UniProt/Swiss-Prot. There were many structural variations (inversions and repeats) when comparing the assembled chromosomes of CamFer2 and the *C. ferus* genome assembly from Ming et al., [12] (Supplemental Figure 2). Ultimately, these latter genomes have similar scaffold N/L50 values, but CamFer2 has much smaller contig N/L50 values because of more abundant and larger gaps in assembled
chromosomes (Supplemental Table 1). The CamFer2 assembly and these annotations have been submitted to Dryad - see Data Accessibility Statement.

Intra-specific genome-wide diversity

Mean coverage throughout the genomes of the three Old World camel species was not different among species \((F_{2,22} = 0.1871, P = 0.8307; \text{Table 3}) \). The mean total number of SNPs was different among species \((F_{2,22} = 64.943, P < 0.0001) \) as was the number of synonymous \((F_{2,22} = 66.99, P < 0.0001) \) and non-synonymous SNPs \((F_{2,22} = 113.25, P < 0.0001; \text{Table 3}) \). Mean total, synonymous, and non-synonymous SNPs were highest in Bactrian camels, followed by wild camels, then dromedaries. The mean number of insertions was different among species \((F_{2,22} = 31.269, P < 0.0001) \) as was the mean number of deletions \((F_{2,22} = 16.407, P < 0.0001; \text{Table 3}) \). Bactrian camels had a higher mean number of insertions than dromedaries and wild camels, which showed similar numbers of insertions. Bactrian camels had higher mean number of deletions, followed by wild camels, then dromedaries.

Nucleotide diversity among Old World camels in immune response and intra-genic regions

After improving the three Old World camel genome assemblies, we assessed the nucleotide diversity in immune response and intra-genic (within gene) regions. When looking at non-synonymous and synonymous SNPs and indels altogether, mean nucleotide diversity was found not to differ significantly for adaptive, innate IR genes and the rest-of-genome genes, but to be higher in MHC class I and II genes in both dromedaries and domestic Bactrian camels (Figure 3a; Table 4 for mean values and 95 % bootstrap confidence limits). On the other hand, in wild camels, mean nucleotide diversity was not significantly different across gene types. When comparing nucleotide diversity per gene class in species pairs, mean MHC nucleotide diversity did not differ significantly for domestic Bactrian camels and dromedaries, as well as for wild camels and dromedaries, but differed between wild and domestic Bactrian camels, with the latter showing higher nucleotide mean diversity (Supplemental Figure 3a; Table 4 for mean values and 95 % bootstrap confidence limits). Innate and adaptive IR gene nucleotide diversity was statistically different between domestic Bactrian camels and the other two species, but the same between dromedaries and wild camels, while again Bactrian camels had a higher mean nucleotide diversity. Rest-of-genome gene nucleotide diversity was also higher for the Bactrian camel and different between this and the other two camel species.

On the other hand, when looking at only non-synonymous SNPs, dromedaries’ mean nucleotide diversity patterns were more difficult to interpret. Mean innate gene nucleotide diversity was lower than mean rest-of-genome gene nucleotide diversity, but mean innate gene nucleotide diversity was statistically not different from mean adaptive or MHC nucleotide diversity nor was mean rest-of-genome nucleotide diversity different from mean adaptive or MHC nucleotide diversity (Figure 3b; Table 4 for mean values and 95 % bootstrap confidence limits). In domestic Bactrian camels, mean nucleotide diversity was the same for adaptive, innate and the rest-of-genome genes, but different in MHC genes where it was the highest. On the other hand, in wild camels, all gene groups had statistically the same mean nucleotide diversity. For both MHC and adaptive IR genes, mean nucleotide diversity was the same among the three camel species.
(Supplemental Figure 3b). For innate IR genes, Bactrian and wild camels had the same mean nucleotide diversities, whereas dromedaries had a different mean nucleotide diversity from the other camel species, but the same compared to wild camels. Finally, for the rest-of-genome genes group, all species had statistically different mean nucleotide diversities, where domestic Bactrian camels showed to have the highest values.

Discussion

Despite its functional importance, the immunogenome of camels has received only limited attention with work focusing on cytogenetic mapping in alpaca [14], the characteristics of single-domain heavy-chain antibodies [15] or specific mechanisms underlying the genetic diversity of T-cell receptors [16–18]. Dromedary and two-humped camels are important livestock species, well adapted to harsh conditions and resistant to devastating infections that threaten other livestock species in the same areas, like contagious pleuro-pneumonia [19] or foot-and-mouth disease in dromedaries [20]. Other infections have an important role in human health, such as the Middle East Respiratory Syndrome Coronavirus (MERS-CoV), for which dromedaries are potential reservoirs [21]. Variation in genetic diversity between innate and adaptive immunity genes is caused by differences in these gene groups’ mechanisms. While innate immunity is less specific and more executive, its genes are subject to purifying rather than to positive/balancing selection, whereas adaptive immunity is more focused on specific recognition of highly diverse antigens and its variability is exposed to different selective pressures [22, 23]. In this study, we compared the diversity in different groups of immune response genes with those found in intra-genic regions among the three Old World camel species, aiming to better understand to which selection pressures they might have been exposed. For this purpose, we first had to improve the three available Old World camelid genome assemblies.

Old World Camelids genome assemblies’ improvement

We applied several computational techniques to improve previous assemblies. To begin with, we were able to greatly improve CamDro3 genome assembly from CamDro2. Compared with the previous version, the number of predicted gene proteins in the CamDro3 were lower, possibly because there were fewer false genes predicted. After mis-assemblies were corrected by re-scaffolding CamDro2 and by using a different indel-polishing method, CamDro3 is now more complete, with fewer gaps and likely more accurate. Additionally, the reference-guided assembly process significantly improved the quality and contiguity of CamBac2 and CamFer2 as they are now more contiguous, increased in size and with fewer scaffolds. By using a closely related genome to improve a draft assembly, it has a bigger impact on the final assembly, as well as the accuracy and completeness of a reference genome also contribute [24]. Although mean coverage throughout the genome was not different between species, mean total, synonymous, and non-synonymous SNPs, mean number of insertions and deletions were highest in domestic Bactrian camels compared to the other two species. These results might suggest that domestic Bactrian camels generally have higher genetic diversity than dromedaries and wild camels, as they might have experienced less severe demographic changes during domestication than dromedaries [25] and less recent population size reduction than the critically endangered wild camels [26].
Nucleotide diversity in important immune gene groups

Old World camels are known to be resistant to serious infectious diseases that threaten other livestock species inhabiting the same geographical regions, although they may contract other poorly-studied diseases [27]. On the other hand, diseases of Camelidae are often difficult to deal with, having non-specific signs with a considerable economic impact [28]. Hence, as diversity in immune response gene regions may influence infectious disease susceptibility in populations, a better understanding of IR gene diversity will support camel breeding and sustainable management in countries of the Global South with large camel populations.

As our data were not normally distributed and could not be transformed to approximate a normal distribution, we assessed differences in nucleotide diversity within species in different immune complexes of the genome by using a non-parametric bootstrapping method to estimate 95% confidence intervals of mean nucleotide diversity (Fig. 3 and Supplemental Figure 3).

MHC class I and class II genes are amongst the most polymorphic genes studied in vertebrates [29]. Pathogen-mediated selection is widely held to be the major driving force in maintaining the high diversity at MHC loci [30]. In particular, the MHC diversity in populations is maintained by balancing selection [31]. According to the 95% confidence intervals derived from non-parametric bootstrap tests of mean nucleotide diversities, we observed that MHC (class I and II) genes had higher mean nucleotide diversity compared to all other gene groups, for two-humped camels, in both SNPs-indels and just non-synonymous SNPs analyses, and for dromedaries in SNP-indels analysis but not for only non-synonymous SNP analysis (Fig. 3). Previous research by Plasil et al., [4] showed that MHC nucleotide diversity within the three Old World species was generally low. In this case, the authors looked specifically into the antigen-binding sites and not to the complete genes where, according to our results, additional diversity appears to be present. The functional importance of this variation is currently unknown. However, it is important to acknowledge how particular pathogens affect immune genetic diversity and, *vice versa*, how genetic variation influences adaptation to emerging zoonosis, habitat fragmentation, and climate change [32]. MHC genes play an important role in the adaptive branch of the immune system and have been used extensively to estimate levels of adaptive genetic variation [33]. While innate immunity is an efficient first protection against many pathogens but rather less specific, adaptive (or acquired) immunity is a highly specific immune response, and its variability is subject to different selective pressures [22, 23]. Overall, mean nucleotide diversity was never different when comparing innate and adaptive IR gene groups in all three species, in both SNPs-indels and non-synonymous SNPs analyses.

When comparing nucleotide diversity among both two-humped camel species, wild camels had lower mean nucleotide diversity for both SNP and indels and non-synonymous SNP analyses, except for the MHC class I and II genes and for adaptive genes with non-synonymous SNPs (Supplemental Figure 3). Moreover, in general, the domestic Bactrian camel had higher mean nucleotide diversity compared to the wild camel, except for the mean nucleotide diversity in adaptive genes with non-synonymous SNPs. One possible explanation for these results is that the wild camel suffered strong population declines leading to the current status of “critically endangered” species (by the International Union for Conservation of Nature (IUCN)). Thus, with the number of individuals decreasing, loss of genetic diversity is unfortunately real [34, 35]. Another possible explanation is that domestic Bactrian camels are under higher pathogenic pressure...
compared to the wild species. For example, Bactrian camels can be raised and herded with other domestic species (e.g., sheep or goat and sometimes cattle) and due to this fact, the animals are in contact with different pathogens that would not be present in the wild camels’ natural habitat [36]. This pathogenic pressure might have selected for higher diversity in domestic Bactrian camels, explaining the higher diversity in the immunogenome as well as in the rest of the genome. Nevertheless, we cannot discard the possibility of demographic influence in the mean nucleotide diversity when comparing among species. Our results suggest that the IR genes follow the same pattern of rest-of-the-genome genes where domestic Bactrian camels are more diverse throughout all classes of genes when compared to the endangered wild camel.

Conclusions

In this study, we improved genomic resources for *Camelus dromedarius*, *C. bactrianus* and *C. ferus*. Our data provide high-quality genome assemblies which are excellent resources for the scientific community. Moreover, our results give new insights into the differences in mean nucleotide diversity in immune response genes within and among the three Old World camel species. From the three species, domestic Bactrian camels had the highest mean nucleotide diversity, and from the different functional gene groups, MHC genes had the highest mean diversity. Examining genetic variation in diverse immune genes in camels should be a priority, not only because camels are well adapted to extreme environments even in contact with different pathogens, but also because both domestic species are economically very important, and the wild two-humped camel is critically endangered. The data also showed that for their better understanding, studies focused on functionally important parts of the genes, combined with analyses of selection at the molecular and population level, will be helpful. Altogether, this work not only opens doors for future immunogenome studies but also serves as a reference to further genome assembly improvements using computational methods.

Methods

Previous dromedary genome assemblies

CamDro1. The original North African dromedary genome assembly (CamDro1) was created from a female dromedary “Waris” ([8]; GenBank accession: GCA_000803125.1). Briefly, two types of Illumina libraries were generated and sequenced: 500 bp (short-insert, 100 bp paired-end reads) and 5 Kbp (long-insert/mate-pair, 50 bp paired-end reads) libraries. Short- and long-insert reads were trimmed and, after short-insert reads error-correction, *de novo* assembled with ABYSS [37] with a k-mer value of 64.

CamDro2. Dovetail Genomics (Santa Cruz, California, USA) created and sequenced Chicago and Dovetail Hi-C libraries derived from the same dromedary “Waris” used in CamDro1. First, the CamDro1 assembly was scaffolded using Dovetail Chicago data run through the HiRise pipeline [38]. Next, the Chicago assembly was scaffolded with Hi-C data. Using a PacBio Sequel sequencer, 11x long-read coverage were generated ([11]; Sequence Read Archive (SRA) accession: SRP050586) and PBJelly [39] was used to fill in gaps in the Hi-C assembly. PBJelly assembly was polished with Pilon [40] employing the same trimmed and error-corrected Illumina short-insert sequences used for the *de novo* assembly of CamDro1 by Fitak et al. ([8]; SRA
accession: SRR2002493). Gaps present in the Pilon assembly were then filled with ABYSS Sealer [41]. Finally, the ABYSS assembly was polished with Pilon once again. This assembly is referred to as CamDro2 ([11]; GCA_000803125.2).

Improving the dromedary genome assembly: CamDro3

The CamDro2 assembly was re-scaffolded using the original Dovetail Chicago and Hi-C reads with the HiRise pipeline. We then filled in gaps using our PacBio long-reads ([11]; SRA accession: SRP050586), running PBJelly v. 15.8.24 twice. Instead of polishing the assembly with Pilon, we used a standard variant calling workflow, which increased RNA-Seq reads mapping rates relative to the Pilon-polished assembly (Table 1). Briefly, we first mapped trimmed and error-corrected Illumina short-insert sequences ([8]; Sequence Read Archive accession: SRR2002493) using BBMap v. 38.12 (https://sourceforge.net/projects/bbmap/) with the vslow and usejni settings to the PBJelly assembly. We then sorted and indexed the resulting BAM file with Sambamba v. 0.6.7 [42] and called variants with CallVariants v. 38.12 (https://sourceforge.net/projects/bbmap/). We finally used BCFtools v. 1.2 (http://samtools.github.io/bcftools/) to generate a consensus sequence for which we filled in gaps using ABYSS Sealer v. 2.1.0 [41] using default settings except for a bloom filter size of 40 GB and multiple K values from 90 to 20 in increments of 10. We refer to this as the CamDro3 assembly (GCA_000803125.3).

RNA-Seq analysis of dromedary

To assess the quality of the new assembly, we aligned 10 sets of paired-end RNA-Seq reads (Alim et al., 2019) to the original assembly (CamDro1), to CamDro2, the new assembly (CamDro3), and to several controls: C. dromedarius (RefSeq version - GCA_000076758.5.1), C. bactrianus (GCA_000076785.1), C. ferus (GCA_000311805.2) and Bos taurus (cattle) (GCA_000003055.3). The 10 RNA-Seq datasets were part of a 2x2 factorial experiment: summer vs. winter seasons and supraoptic nucleus (SON) vs. neurointermediate lobe (NIL) brain tissues, with n=3 replicates in each class. Tissue was homogenized and extracted usingTrizol/chloroform (ThermoFisher), and purified with the RNeasy MiniKit (Qiagen). The library template was prepared using a ribosome depletion protocol (Ribo-Zero Gold; Illumina) and libraries prepared using TruSeq Stranded protocol (Illumina). Samples were multiplexed into lane pools with an 8pM concentration and sequenced (100 bp paired-end reads with an average 134 bp insert size) to a depth of > 35 million reads using an Illumina HiSeq 2500. Two of the 12 replicates were rejected for insufficient quality. We used Tophat v. 2.0.9 [43] with default settings to align reads to each genome and report overall alignment rate (default output of Tophat) within each class. For chromosome mapping we then used blastn v. 2.2.31+ [44] to map 4,981 probe sequences assigned to Vicuna (Lama) pacos chromosomes [11, 14] to CamDro3 assembly scaffolds. We followed the same procedure as Elbers et al., [11].

Annotation to compare CamDro3 to CamDro2

To compare CamDro2 and CamDro3 assemblies, we annotated CamDro3 following the same steps used to annotate CamDro2 [11]. Briefly, we annotated scaffolds greater than 10 Kbp with MAKER v. 2.31.9 [45, 46]. We masked repetitive regions with RepeatMasker v. open-4.0.7 against the entire Dfam_Consensus release 20170127 database. We included ab initio gene predictions from GeneMark-ES 4.33 [47], expressed
sequence tag (EST) transcripts, and protein sequences. For ESTs, we assembled transcripts from two dromedary transcriptome experiments (SRA accession: SRP017619 and [48]). We performed adapter and quality trimming on raw demultiplexed paired-end reads using BBDuk v. 37.25, using the following settings: ktrim=r, k=23, mink=11, hdist=1, tpe, tbo, qtrim=rl, trimq=15. We then mapped quality and adapter trimmed reads to the CamDro3 assembly using HiSat v. 2.1.0 [49] using a maximum intron length of 100,000 and the “dta” option. Reads were assembled into transcripts using StringTie v. 1.3.3b [50] and extracted using Gffread v. 0.9.9 (https://github.com/gpertea/gffread). For proteins, we combined predicted proteins from B. taurus, C. bactrianus, and V. pacos (GenBank accessions [NCBI annotation release]: GCF_000003055.6 [105], GCF_000311805.1 [100], and GCF_000164845.2 [101], respectively). We also included MAKER predicted proteins with an annotation edit distance (AED) < 0.75 from the CamDro1 assembly [8]. We trained Augustus v. 3.3 [51] using BUSCO v. 3.0.2 (Simão et al., 2015) searching for Eukaroyota OrthoDB v. 9.1 genes [52]. We used a C. dromedarius specific repeat library created with RepeatModeler v. open-1.0.10 (http://www.repeatmasker.org) with the CamDro3 as input. We filtered the repeat library from RepeatModeler to remove known UniProt/SwissProt v. 2017_10 [53] proteins using ProtExcluder v. 1.1 [54]. We only retained genes, transcripts, and proteins with AED ≤ 0.50. Next, we predicted putative gene function with DIAMOND v. 0.9.19 [55] searches against the UniProt/TrEMBL release 2018_07 database using an e-value cutoff of 1e-6. For the CamDro1, CamDro2, and CamDro3 assemblies, we also mapped proteins predicted by MAKER against the same UniProt/TrEMBL database using DIAMOND and generated a frequency polygon of the query sequence length (predicted proteins) divided by the subject sequence length (UniProt/TrEMBL proteins) to assess if predicted proteins were truncated (query sequence length divided by the subject sequence length < 1.0) due to uncorrected insertions/deletions (indels) introduced by PacBio reads that might interrupt reading frames affecting protein translation [56].

Reference-guided assembly of the domestic Bactrian and wild camel genomes

We used CamDro3 in a reference-guided assembly strategy implemented with Ragout v. 2.0 [57] to upgrade the C. bactrianus (CamBac1, GCF_000767855.1, [10]) and C. ferus (CamFer1, GCF_000311805.1, [9]) genome assemblies to chromosome-level scale. Briefly, we used default settings in Progressive Cactus v. Github commit c4bed56c0cd48d23411038acb9c19bcaeo54837e [58, 59] to generate HAL (hierarchical alignment format) alignments between CamDro3 and CamBac1 or CamDro3 and CamFer1, and then used Ragout with the “refine” and “small synten block” settings to convert the alignments to FASTA, upgrading the CamBac1 and CamFer1 assemblies to CamBac2 and CamFer2, respectively. Before alignment with Progressive Cactus, we repeat-masked CamDro3 with RepeatMasker v. open-4.0.8 (http://www.repeatmasker.org) against the mammal repeats from RepBase RepeatMaskerEdition-20181026 [60]. We filled in gaps in CamBac2 and CamFer2 with GapFiller v. 1.10 [61] using default settings and BowTie [62] as the aligner. The paired-end reads used to fill in gaps were the original Illumina short-reads used in assembly with an insert size less than or equal to 800 bases (For CamBac2 SRA accessions: SRR1552325, SRR1552327, SRR1552330, SRR1552336, SRR1552341, SRR1552346, SRR1552347, and SRR1552348; for CamFer2 SRA accession: SRR671683), which we trimmed with BBDuk v. 37.76 (https://sourceforge.net/projects/bbmap/), using the following settings: ktrim=r, k=23, mink=11, hdist=1, tpe, tbo, qtrim=rl, trimq=15, ref=bbmap-37.76/resources/adapters.fa. We used assemblathon_stats.pl
to compare assembly statistics between CamFer2 and the *C. ferus* genome assembly from Ming et al. [12] using a genome size of 2.1 Gbp. To assess the level of disagreement between CamFer2 and *C. ferus* genome assembly from Ming et al. [12], we made a whole genome alignment with Minimap2 v. 2.17 [63] using the “asm5” preset. We then used D-GENIES [64] to generate a dot plot for the alignment by using the contig sorting function and filtering alignments for strong precision. Chromosomal synteny between the wild camel and dromedary was analyzed by Ming et al. [12] after whole-genome alignment between *C. ferus* genome assembly (new-CamFer) and CamDro3, where assignment of the chromosome nomenclature between these species was similar, with only few structural differences at the megabase (Mbp) scale. Synteny is likely highly conserved between wild camel and dromedary, and domestic Bactrian and dromedary.

Most up to date annotation for CamBac2, CamFer2, CamDro3

To get the most up to date annotation for CamBac2, CamFer2, and CamDro3, we annotated scaffolds greater than 10 Kbp in these assemblies with MAKER v. 2.31.10. We masked repetitive regions with RepeatMasker v. open-4.0.7 against the entire Dfam_Consensus release 20170127 database. We included *ab initio* gene predictions from GeneMark-ES v. 4.38, EST transcripts, and protein sequences. For CamDro3 ESTs but CamBac2 and CamFer2 alternative ESTs, we assembled transcripts from two dromedary transcriptome experiments (SRA accession: SRP017619 and [48]). We performed adapter and quality trimming on raw demultiplexed paired-end reads using BBduk v. 37.25, using the following settings: ktrim=r, k=23, mink=11, hdist=1, tpe, tbo, qtrim=rl, trimq=15. We then mapped quality and adapter trimmed reads to the CamDro3 assembly using HiSat v. 2.1.0 using a maximum intron length of 100,000 and the “dta” option. Reads were assembled into transcripts using StringTie v. 1.3.3b and extracted using Gffread v. 0.9.9. For CamBac2 ESTs but CamDro3 and CamFer2 alternative ESTs, we processed transcriptome reads from *C. bactrianus* (SRA accessions: SRP014573 and SRP148535) with HiSat, StringTie, and Gffread as before but mapped quality controlled reads to the CamBac2 assembly. For proteins, we combined predicted proteins from *B. taurus*, *C. bactrianus*, *C. dromedarius*, *C. ferus*, and *V. pacos* (GenBank accessions (NCBI annotation release): GCF_002263795.1 (106), GCF_000767585.1 (100), GCF_000767855.1 (100), GCF_000311805.1 (101), and GCF_000164845.2 (101), respectively). We trained Augustus v. 3.3.2 using BUSCO v. 3.0.2 searching for Eukaryota OrthoDB v. 9.1 genes in CamDro3, CamBac2, and CamFer2. We used a *C. dromedarius*, *C. bactrianus*, or *C. ferus* specific repeat library created with RepeatModeler open-1.0.10 with the CamDro3, CamBac2, or CamFer2 assemblies as input, respectively. We filtered each repeat library from RepeatModeler to remove known UniProt/Swiss-Prot release 2018_11 proteins using ProtExcluder v. 1.1. We only retained genes, transcripts, and proteins with AED ≤ 0.50. Next, we predicted putative gene function with blastp v. 2.2.31+ [44] searches against the UniProt/Swiss-Prot release 2018_11 database using an e-value cutoff of 1e-6.

Variant calling

For the raw short-insert (500-bp insert Illumina reads) CamDro1 reads [8], we removed adapter sequences and reads with >10% uncalled bases and/or >50% of bases with a Phred-scaled quality score <4. We also
trimmed reads with PoPoolation v. 1.2.2 [65], where low-quality bases with a Phred score below 20 at the ends of the reads were removed. We converted base quality scores from Phred 64 to Phred 33 encoding and performed quality trimming with Repair v. 38.39 (https://sourceforge.net/projects/bbmap/) using the qtrim=r1 and trimq=15 settings. We mapped quality and adapter trimmed paired-end reads for *C. bactrianus*, *C. dromedarius*, and *C. ferus* individuals to the CamBac2, CamDro3, and CamFer2 references, respectively with BWA-MEM v. 0.7.17 [66, 67]. We converted SAM files to BAM files with SAMtools v. 1.9 [68], then cleaned, sorted, added read groups, and marked duplicates with Picard v. 2.18.10 (http://broadinstitute.github.io/picard). We called variants for each species separately with CallVariants v. 38.39 (https://sourceforge.net/projects/bbmap/), keeping only SNPs and indels with quality scores greater than or equal to 27. We predicted what SNP alleles might be synonymous or non-synonymous using snpEff v 4.0e [69].

We calculated coverage metrics with mosdepth v. 0.2.6 [70] with the settings “-n –fast-mode and –by 500”. We used R v. 3.6.0 to test for differences in mean coverage, total number of SNPs, number of synonymous SNPs, number of non-synonymous SNPs, number of insertions, and number of deletions within species with the “lm” and “anova” base functions. For all models, we used a Benajimini-Hochberg post-hoc test [71] implemented in glht and summary functions in the R package multcomp v. 1.4-10 [72].

Nucleotide diversity

Two comparisons of nucleotide diversity were made, (i) between functionally different gene groups within each species: innate immune response genes, adaptive immune response genes, MHC class I and II genes, and rest-of-genome genes, and (ii) between Old World camel species: domesticated dromedaries and Bactrian camels, and wild camels among gene groups.

To test for differences in genetic variation among functionally different gene groups, we performed blastp searches of CamBac2, CamFer2, and CamDro3 predicted proteins against UniProt/Swiss-Prot release_2018_11 proteins to assign gene ontology terms, and filtered these gene/GO term lists by the gene ontology terms “innate immune response” and “adaptive immune response” using the rGO2TR package [73]. For MHC class I and class II genes, we filtered the GFF3 (General Feature Format) files of gene annotations manually. For the rest-of-genome gene group, we examined genes that were not assigned to either the innate or adaptive immune response gene groups. We used BCFtools v. 1.9 to generate a consensus sequence with IUPAC codes for each individual against its respective reference genome for each gene being analyzed and made a multiple sequence alignment for each gene and species with FSA v. 1.15.9 [74] with MuMmer v. 4.0.0beta2 [75] for long alignments. Finally, we calculated nucleotide diversity for entire gene sequence multiple sequence alignments (each species separately) using the R package Pegas's “nuc.div” function [76]. We used R v. 3.6.3 to test for differences in mean nucleotide diversity within species among gene groups. For this we compared the 95 % confidence intervals of the mean estimated with the boot.ci function's “basic” confidence interval method based on 1,000 “ordinary” simulations (i.e., non-parametric bootstraps) implemented with the boot function from the R package boot v. 1.3-24 [77]. We chose to use non-parametric inference as the residuals could not be transformed to approximate a normal distribution, precluding the use of traditional ANOVA/linear model testing for differences in means.
For analyzing differences in mean nucleotide diversities within gene groups but among species, we used the same procedures as before but with the explanatory variable “species” (dromedary, domestic Bactrian camel, or wild camel) and response variable “nucleotide diversity” (adaptive, innate, MHC, or rest-of-genome genes). In addition to nucleotide diversity, estimated with gene consensus sequences made with non-synonymous and synonymous SNPs and indels, we also repeated all steps above using only non-synonymous SNPs (indels and synonymous SNPs were not included).

Abbreviations

AED: Annotation edit distance

ANOVA: Analysis of Variance

DC: Domestic Bactrian camel (*Camelus bactrianus*)

Drom: Dromedary (*Camelus dromedarius*)

EST: Expressed sequence tag

Indels: insertions/deletions

IR: Immune-response

IUPAC: International Union of Pure and Applied Chemistry

Kbp: Kilo base pairs

Mbp: Mega base pairs

MHC: Major histocompatibility complex

NIL: Neurointermediate lobe

RNA-Seq: Ribonucleic acid sequencing

SD: Standard deviation.

SNP: Single nucleotide polymorphism

SON: Supraoptic nucleus

SRA: Sequence Read Archive

WC: Wild camel (*Camelus ferus*)

Declarations
Ethics approval and consent to participate

Not applicable.

Consent of publication

Not applicable.

Availability of data and materials

CamDro3 is available from NCBI GenBank (GCA_000803125.3) and NCBI RefSeq (GCF_000803125.2). Our CamDro3/CamBac2/CamFer2 gene annotations, predicted mRNA and proteins, and assemblies for gene annotations are available from Dryad

(https://doi.org/10.5061/dryad.qv9s4mwb3; temporary link for peer review:

https://datadryad.org/stash/share/sF_YYv2vMjKhiGTwWw7BSAtufIDsoI5D7LgRdjOvqis). Raw VCF files (snp and indel variants) for each camel are also available in the Dryad repository. Example scripts and code for analyses are available from the Dryad repository.

Competing interests

The authors declare that they have no competing interests.

Funding

S.L. and J.P.E. acknowledge funding from the Austrian Science Foundation (FWF) project P29623-B25 to P.B.

Author Contributions

S.L. wrote the first draft of the manuscript, J.P.E. and M.F.R. performed analyses, P.H. and P.A.B. conceived and managed the project, J.M.F and J.C. revised the manuscript. All authors interpreted the results, provided valuable discussions, commented and approved the final manuscript.

Acknowledgements

We thank the CSC – IT Center for Science, Finland, for generous computational resources. We are also very grateful to all camel owners for their agreements to use the collected data for scientific purposes and to the Wild Camel Protection Foundation for continuous support.

References

1. Houte S Van, Ekroth AKE, Broniewski JM, Chabas H, Ashby B, Bondy-denomy J, et al. The diversity-generating benefits of a prokaryotic adaptive immune system. Nature. 2016;532:385.
2. Ramey HR, Decker JE, McKay SD, Rolf MM, Schnabel RD, Taylor JF. Detection of selective sweeps in cattle using genome-wide SNP data. BMC Genomics. 2013;14.

3. Horrocks NPC, Matson KD, Tieleman Bl. Pathogen pressure puts immune defense into perspective. Integr Comp Biol. 2011;51:563–76.

4. Plasil M, Mohandesan E, Fitak RR, Musilova P, Kubickova S, Burger PA, et al. The major histocompatibility complex in Old World camelids and low polymorphism of its class II genes. BMC Genomics. 2016;17:167. doi:10.1186/s12864-016-2500-1.

5. Trowsdale J, Knight JC. Major Histocompatibility Complex Genomics and Human Disease. Annu Rev Genomics Hum Genet. 2013;14:301–23.

6. Jepson A, Banya W, Sisay-Joof F, Hassan-King M, Nunes C, Bennett S, et al. Quantification of the relative contribution of major histocompatibility complex (MHC) and non-MHC genes to human immune responses to foreign antigens. Infect Immun. 1997;65:872–6.

7. Acevedo-Whitehouse K, Cunningham AA. Is MHC enough for understanding wildlife immunogenetics? Trends Ecol Evol. 2006;21:433–8.

8. Fitak RR, Mohandesan E, Corander J, Burger PA. The de novo genome assembly and annotation of a female domestic dromedary of North African origin. Mol Ecol Resour. 2016;16:314–24.

9. Jiirimutu, Wang Z, Ding G, Chen G, Sun Y, Sun Z, et al. Genome sequences of wild and domestic bactrian camels. Nat Commun. 2012;3.

10. Wu H, Guang X, Al-fageeh MB, Cao J, Pan S, Zhou H, et al. Camelid genomes reveal evolution and adaptation to desert environments. Nat Commun. 2014;5.

11. Elbers JP, Rogers MF, Perelman PL, Proskuryakova AA, Serdyukova NA, Johnson WE, et al. Improving Illumina assemblies with Hi-C and long reads: An example with the North African dromedary. Mol Ecol Resour. 2019;19:1015–26.

12. Ming L, Wang Z, Yi L, Batmunkh M, Liu T, Siren D, et al. Chromosome-level assembly of wild Bactrian camel genome reveals organization of immune gene loci. Mol Ecol Resour. 2020;00:1–11.

13. Yandell M, Ence D. A beginner's guide to eukaryotic genome annotation. Nat Rev Genet. 2012;13:329–42. doi:10.1038/nrg3174.

14. Avila F, Baily MP, Perelman P, Das PJ, Pontius J, Chowdhary R, et al. A comprehensive whole-genome integrated cytogenetic map for the alpaca (Lama pacos). Cytogenet Genome Res. 2014;144:196–207.

15. Muyldermans S, Baral TN, Retamozzo VC, De Baetselier P, De Genst E, Kinne J, et al. Camelid immunoglobulins and nanobody technology. Vet Immunol Immunopathol. 2009;128:178–83. doi:10.1016/j.vetimm.2008.10.299.

16. Antonacci R, Linguiti G, Burger PA, Castelli V, Pala A, Fitak R, et al. Comprehensive genomic analysis of the dromedary T cell receptor gamma (TRG) locus and identification of a functional TRGC5 cassette. Dev Comp Immunol. 2020;106:103614.

17. Futas J, Oppelt J, Jelinek A, Elbers JP, WiJacki J, Knoll A, et al. Natural killer cell receptor genes in camels: Another mammalian model. Front Genet. 2019;10 JUL:1–15.
18. Vaccarelli G, Antonacci R, Tasco G, Yang F, Giordano L, El Ashmaoui HM, et al. Generation of diversity by somatic mutation in the Camelus dromedarius T-cell receptor gamma variable domains. Eur J Immunol. 2012;42:3416–28.

19. Abbas B, Omer OH. Review of infectious diseases of the camel. Vet Bull. 2005;75:1–16.

20. Wernery U, Kinne J. Foot and mouth disease and similar virus infections in camelids: A review. Rev Sci Tech - Off Int des épidizooties. 2012;31:907–18.

21. Hemida MG, Chu DKW, Poon LLM, Perera RAPM, Alhammadi MA, Ng HY, et al. MERS coronavirus in dromedary camel herd, Saudi Arabia. Emerg Infect Dis. 2014;20:1231–4.

22. Kurtz J, Kalbe M, Aeschlimann PB, Häberli MA, Wegner KM, Reusch TBH, et al. Major histocompatibility complex diversity influences parasite resistance and innate immunity in sticklebacks. Proc R Soc B Biol Sci. 2004;271:197–204.

23. Uematsu S, Akira S. Toll-Like Receptors (TLRs) and Their Ligands. In: Bauer S, Hartmann G, editors. Toll-Like Receptors (TLRs) and Innate Immunity. Springer, Berlin Heidelberg; 2008. p. 1–20.

24. Gnerre S, Lander ES, Lindblad-toh K, Jaffe DB. Assisted assembly: how to improve a de novo genome assembly by using related species. Genome Biol. 2009;10:R88.

25. Almathen F, Charruau P, Mohandesan E, Mwacharo JM, Orozco-terWengel P, Pitt D, et al. Ancient and modern DNA reveal dynamics of domestication and cross-continental dispersal of the dromedary. Proc Natl Acad Sci. 2016;113:6707–12. doi:10.1073/pnas.1519508113.

26. Yadamsuren A, Dulamtseren E, Reading RP. The Conservation Status and Management of Wild Camels in Mongolia. In: Knoll E-M, Burger PA, editors. Camels in Asia and North-Africa: Interdisciplinary perspectives on their past and present significance. Austrian Academy of Sciences Press, Wien; 2012. p. 45–54.

27. Dirie MF, Abdurahman O. Observations on little known diseases of camels (Camelus dromedarius) in the Horn of Africa. Rev Sci Tech - Off Int des épidizooties. 2003;22:1043–9.

28. Fassi-Fehri MM. Diseases of camels. Rev Sci Tech Off Int des Epizoot. 1987;6:337–54.

29. Bontrop RE, Otting N, Groot NG de, Gaby G. M D. Major histocompatibility complex class II polymorphisms in primates. Syst Lupus Erythematosus. 1999;167:339–50.

30. Bernatchez L, Landry C. MHC studies in nonmodel vertebrates: What have we learned about natural selection in 15 years? J Evol Biol. 2003;16:363–77.

31. Janeway Jr CA, Travers P, Walport M, Shlomchik MJ. The complement system and innate immunity. In: Immunobiology: The Immune System in Health and Disease. 5th editio. Garland Science; 2001.

32. Ujvari B, Belov K. Major histocompatibility complex (MHC) markers in conservation biology. Int J Mol Sci. 2011;12:5168–86.

33. Elbers JP, Clostio RW, Taylor SS. Neutral Genetic Processes Influence MHC Evolution in Threatened Gopher Tortoises (Gopherus polyphemus). J Hered. 2017;108:515–23.

34. Ming L, Yi L, Sa R, Wang ZX, Wang Z, Ji R. Genetic diversity and phylogeographic structure of Bactrian camels shown by mitochondrial sequence variations. Anim Genet. 2017;48:217–20.
35. Ming L, Yuan L, Yi L, Ding G, Hasi S, Chen G, et al. Whole-genome sequencing of 128 camels across Asia reveals origin and migration of domestic Bactrian camels. Commun Biol. 2020;3:1–9.

36. Wells K, Gibson DI, Clark NJ, Ribas A, Morand S, McCallum HL. Global spread of helminth parasites at the human–domestic animal–wildlife interface. Glob Chang Biol. 2018;24:3254–65.

37. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM, Birol I. ABysS: A parallel assembler for short read sequence data. Genome Res. 2009;19:1117–23.

38. Putnam NH, Connell BO, Stites JC, Rice BJ, Blanchette M, Calef R, et al. Chromosome-scale shotgun assembly using an in vitro method for long-range linkage. Genome Res. 2016;26:342–50.

39. English AC, Richards S, Han Y, Wang M, Vee V, Qu J, et al. Mind the Gap: Upgrading Genomes with Pacific Biosciences RS Long-Read Sequencing Technology. PLoS One. 2012;7:e47768.

40. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014;9:e112963.

41. Jackman SD, Vandervalk BP, Mohamadi H, Chu J, Yeo S, Hammond SA, et al. ABysS 2.0: Resource-Efficient Assembly of Large Genomes using a Bloom Filter Effect of Bloom Filter False Positive Rate. Genome Res. 2017;27:768–77.

42. Tarasov A, Vilella AJ, Cuppen E, Nijman IJ, Prins P. Sambamba: Fast processing of NGS alignment formats. Bioinformatics. 2015;31:2032–4.

43. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14:R36.

44. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic Local Alignment Search Tool. Journal of Molecular Biology. 1990;215:403–10. https://doi.org/10.1016/S0022-2836(05)80360-2.

45. Cantarel BL, Korf I, Robb SMC, Parra G, Ross E, Moore B, et al. MAKER: An easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res. 2008;18:188–96.

46. Holt C, Yandell M. MAKER2: An annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinformatics. 2011;12.

47. Lomsadze A, Ter-Hovhannisyan V, Chernoﬀ YO, Borodovsky M. Gene identification in novel eukaryotic genomes by self-training algorithm. Nucleic Acids Res. 2005;33:6494–506.

48. Alim FZD, Romanova E V, Tay Y-L, Rahman AYBA, Chan KG, Hong KW, et al. Seasonal adaptations of the hypothalamo-neurohypophyseal system of the dromedary camel. PLoS One. 2019;14:1–33.

49. Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements Daehwan HHS Public Access. Nat Methods. 2015;12:357–60.

50. Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015;33:290–5.

51. Stanke M, Keller O, Gunduz I, Hayes A, Waack S, Morgenstern B. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 2006;34 Web Server Issue:W435–9.

52. Zdobnov EM, Tegenfeldt F, Kuznetsov D, Waterhouse RM, Simao FA, Ioannidis P, et al. OrthoDB v9.1: Cataloging evolutionary and functional annotations for animal, fungal, plant, archaeal, bacterial and
viral orthologs. Nucleic Acids Res. 2017;45:D744–9.

53. Boutet E, Lieberherr D, Tognolli M, Schneider M, Bansal P, Bridge AJ, et al. UniProtKB/Swiss-Prot, the Manually Annotated Section of the UniProt KnowledgeBase: How to Use the Entry View. Methods Mol Biol. 2016;1374:23–54. doi:10.1007/978-1-4939-3167-5.

54. Campbell MS, Law MY, Holt C, Stein JC, Moghe GD, Hufnagel DE, et al. MAKER-P: A Tool kit for the rapid creation, management, and quality control of plant genome annotations. Plant Physiol. 2014;164:513–24.

55. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.

56. Watson M, Warr A. Errors in long-read assemblies can critically affect protein prediction’. Nat Biotechnol. 2019;37:124–6.

57. Kolmogorov M, Raney B, Paten B, Pham S. Ragout - A reference-assisted assembly tool for bacterial genomes. Bioinformatics. 2014;30:i302–9.

58. Paten B, Diekhans M, Earl D, John JS, Ma J, Suh B, et al. Cactus graphs for genome comparisons. J Comput Biol. 2011;18:469–81.

59. Paten B, Earl D, Nguyen N, Diekhans M, Zerbino D, Haussler D. Cactus: Algorithms for genome multiple sequence alignment. Genome Res. 2011;21:1512–28.

60. Jurka J, Kapitonov V V., Pavlicek A, Klonowski P, Kohany O, Walichiewicz J. Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res. 2005;110:462–7.

61. Boetzer M, Pirovano W. Toward almost closed genomes with GapFiller. Genome Biol. 2012;13:R56.

62. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25.

63. Li H. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094–100.

64. Cabanettes F, Klopp C. D-GENIES: Dot plot large genomes in an interactive, efficient and simple way. PeerJ. 2018;2018 6:e4958.

65. Kofler R, Orozco-terWengel P, de Maio N, Pandey RV, Nolte V, Futschik A, et al. Popoolation: A toolbox for population genetic analysis of next generation sequencing data from pooled individuals. PLoS One. 2011;6:e15925.

66. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Retrieved from http://arxiv.org/abs/13033997. 2013.

67. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60.

68. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–9.

69. Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Luan Wang, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly (Austin). 2012;6:80–92.

70. Pedersen BS, Quinlan AR. Mosdepth: Quick coverage calculation for genomes and exomes. Bioinformatics. 2018;34:867–8.
71. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B. 1995;57:289–300.

72. Hothorn T, Bretz F, Westfall P. Simultaneous inference in general parametric models. Biometrical J. 2008;50:346–63.

73. Elbers JP, Taylor SS. GO2TR: a gene ontology-based workflow to generate target regions for target enrichment experiments. Conserv Genet Resour. 2015;7:851–7.

74. Bradley RK, Roberts A, Smoot M, Juvekar S, Do J, Dewey C, et al. Fast statistical alignment. PLoS Comput Biol. 2009;5.

75. Marçais G, Delcher AL, Phillippy AM, Coston R, Salzberg SL, Zimin A. MUMmer4: A fast and versatile genome alignment system. PLoS Comput Biol. 2018;14:1–14.

76. Paradis E. Pegas: An R package for population genetics with an integrated-modular approach. Bioinformatics. 2010;26:419–20.

77. Canty A, Ripley B. boot: Bootstrap R (S-Plus) Functions. R package version 1.3-24. 2019.

78. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva E V., Zdobnov EM. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–2.

Tables

Table 1. Assembly statistics for the CamDro2; CamDro3 (Pilon) using one round of Pilon [40] for polishing; and CamDro3 (BBMap) using one round of variant calling with BBMap (https://sourceforge.net/projects/bbmap/) for polishing. Note that CamDro3 (BBMap) was chosen over CamDro3 (Pilon) as the final version of CamDro3 because of better BUSCO and RNA-Seq mapping percentages.
Assembly	CamDro2	CamDro3 (Pilon)	CamDro3 (BBMap)
Total size	2,154,386,959	2,194,229,671	2,169,346,739
Gap length	20,603,579	17,930,821	17,043,352

Scaffolds

	CamDro2	CamDro3 (Pilon)	CamDro3 (BBMap)
Number	23,439	21,070	21,070
Longest	124,992,380	125,472,505	124,715,342
N90\(^1\)	4,922,612	25,062,887	24,767,672
L90\(^2\)	31	32	32
N50\(^1\)	75,021,453	70,557,636	70,369,702
L50\(^2\)	11	12	11

Contigs\(^3\)

	CamDro2	CamDro3 (Pilon)	CamDro3 (BBMap)
Number	45,969	41,934	53,085
Longest	9,490,880	14,412,615	2,012,572
N90	177,587	202,272	49,444
L90	1,944	1,436	10,023
N50	1,333,162	1,961,815	236,380
L50	423	303	2,637
Single-copy BUSCOs\(^4\)	3,851	3,853	3,852
Duplicated BUSCOs	24	23	25
Fragmented BUSCOs	133	132	134
Missing BUSCOs	96	96	93
RNA-Seq Mapping Percentage\(^5\)	88.30	90.36	92.04

\(^1\)N90/N50 are the scaffold or contig lengths such that the sum of the lengths of all scaffolds or contigs of this size or larger is equal to 90/50 % of the total assembly length

\(^2\)L90/L50 are the smallest number of scaffolds or contigs that make up at least 90/50 % of the total assembly length
Using minimum gap length of 25 bp

BUSCOs: Benchmarking Universal Single-Copy Orthologs [78] are mammalian BUSCOs from OrthoDB v. 9.1 genes [52]

Overall mapping rates using HiSat v. 2.1.0 [49] of dromedary RNA-Seq reads from Sequence Read Archive accession: SRP017619 and Alim et al. [48]

Table 2. Assembly statistics for the CamBac1 (GCF_000767855.1) and CamFer1 (GCF_000311805.1) and after improvement (CamBac2 and CamFer2, respectively) with reference-guided assembly with Ragout [57] using Progressive Cactus [58] alignments to CamDro3 then filling in gaps with GapFiller [61].
Assembly	CamBac1	CamBac2	CamFer1	CamFer2
Total size	1,992,663,268	2,039,590,309	2,009,194,609	2,086,258,888
Gap length	13,666,687	57,965,943	23,778,176	99,159,843

Scaffolds

Number	35,455	33,593	13,334	9,158
Longest	46,538,883	122,729,119	15,735,958	123,639,755
N90\(^1\)	1,821,536	24,994,512	341,469	2,5431,863
L90\(^2\)	255	29	1167	30
N50\(^1\)	8,812,066	68,446,253	2,005,940	69,671,486
L50\(^2\)	68	11	274	11

Contigs\(^3\)

Number	67,435	56,044	68,872	66,352
Longest	1,143,031	2,938,098	853,441	1,096,594
N90	29,656	43,365	16,267	16,886
L90	15,603	10,214	25,475	23,951
N50	139,019	219,031	90,263	97,198
L50	3,963	2,415	5,814	5,272
Single-copy BUSCOs\(^4\)	3827	3835	3796	3816
Duplicated BUSCOs	22	18	48	32
Fragmented BUSCOs	164	157	175	168
Missing BUSCOs	91	94	85	88

\(^1\)N90/N50 are the scaffold or contig lengths such that the sum of the lengths of all scaffolds or contigs of this size or larger is equal to 90/50 % of the total assembly length

\(^2\)L90/L50 are the smallest number of scaffolds or contigs that make up at least 90/50 % of the total assembly length

\(^3\)Using minimum gap length of 10 bp
BUSCOs: Benchmarking Universal Single-Copy Orthologs [78] are mammalian BUSCOs from OrthoDB v. 9.1 genes [52]

Table 3. Mean coverage and number of different types of variants per sample. DC for domestic Bactrian camel (*Camelus bactrianus*), Drom for dromedary (*Camelus dromedarius*), and WC for wild camel (*Camelus ferus*). SD for standard deviation.
Sample	Mean Coverage	Total_SNPs	Synonymou s SNPs	Non-synonymou s SNPs	Insertions	Deletions
DC158	41.42	3,713,662	16,761	18,352	258,367	237,987
DC269	14.25	3,238,412	14,206	15,473	230,164	205,242
DC399	13.80	3,199,637	14,370	16,112	226,223	199,701
DC400	14.54	3,213,008	14,130	15,608	226,945	200,953
DC402	14.84	3,130,745	13,756	15,296	218,205	193,720
DC408	15.11	3,328,223	14,592	16,693	234,064	209,759
DC423	14.46	3,738,504	17,182	17,866	250,856	227,449
Drom439	14.30	1,929,784	8,528	9,135	163,100	147,765
Drom795	11.78	1,907,261	8,600	9,679	186,969	158,190
Drom796	14.23	1,991,649	8,476	9,193	170,719	156,795
Drom797	13.76	1,992,724	8,945	9,576	178,917	160,938
Drom800	40.73	1,500,998	6,844	7,255	140,148	122,312
Drom802	14.59	2,006,825	9,311	10,122	188,392	166,360
Drom806	9.52	1,854,989	7,944	8,692	164,993	149,508
Drom816	10.33	1,929,982	8,476	9,263	173,380	154,757
Drom820	9.66	1,881,945	7,694	8,162	167,680	152,220
WC214	14.43	2,517,749	9,919	10,071	157,630	162,297
WC216	12.86	2,654,274	11,040	10,871	170,009	176,405
WC218	14.22	1,825,617	7,396	8,026	109,795	107,655
WC219	14.04	2,707,996	11,187	11,038	173,685	179,297
WC220	14.92	2,707,716	11,067	10,982	170,579	179,365
WC247	14.06	2,956,856	11,567	11,235	189,010	196,986
WC303	41.54	2,937,692	11,625	11,313	189,408	204,838
WC304	14.67	2,748,380	11,047	10,844	180,435	186,048
WC305	14.05	2,704,263	10,599	10,520	176,820	181,412
Drom mean	15.43	1,888,462	8,313	9,009	170,478	152,094
Drom SD	9.7	154,355	729	867	14,512	12,552
DC mean	18.35	3,366,027	15,000	16,486	234,975	210,687
Table 4. Means with 95% bootstrap confidence limits (CL, see Methods) of nucleotide diversity for alignments made with non-synonymous and synonymous SNPs and indels and only non-synonymous SNPs for: DROM (dromedary; *Camelus dromedarius*), DC (domestic Bactrian camel; *Camelus bactrianus*), and WC (wild camel; *Camelus ferus*) gene groups. AD for adaptive genes, IN for innate genes, MHC for MHC class I and II genes, and RG for rest of genome genes. Rest-of-genome-genes correspond to those genes which are not classified as adaptive or innate IR genes (see Methods).						
Variant type	Species	Gene groups	Mean	95% lower CL	95% upper CL	
---	---	---	---	---	---	---
SNPs and indels	DROM	MHC	6.26E-04	1.83E-04	9.65E-04	
SNPs and indels	DROM	AD	8.81E-05	5.70E-05	1.14E-04	
SNPs and indels	DROM	IN	6.81E-05	4.74E-05	8.49E-05	
SNPs and indels	DROM	RG	6.55E-05	6.22E-05	6.87E-05	
SNPs and indels	DC	MHC	1.35E-03	5.58E-04	2.04E-03	
SNPs and indels	DC	AD	2.97E-04	2.11E-04	3.64E-04	
SNPs and indels	DC	IN	1.94E-04	1.61E-04	2.23E-04	
SNPs and indels	DC	RG	1.66E-04	1.60E-04	1.71E-04	
SNPs and indels	WC	MHC	2.73E-04	9.06E-06	4.77E-04	
SNPs and indels	WC	AD	1.06E-04	4.52E-05	1.51E-04	
SNPs and indels	WC	IN	8.36E-05	5.45E-05	1.08E-04	
SNPs and indels	WC	RG	6.71E-05	6.24E-05	7.13E-05	
Non synonymous SNPs	DROM	MHC	1.72E-04	-7.09E-05	3.22E-04	
Non synonymous SNPs	DROM	AD	1.58E-05	-8.83E-06	2.80E-05	
Non synonymous SNPs	DROM	IN	4.79E-06	1.29E-06	7.42E-06	
Non synonymous SNPs	DROM	RG	1.28E-05	1.13E-05	1.42E-05	
Non synonymous SNPs	DC	MHC	2.07E-04	6.94E-05	3.27E-04	
Non synonymous SNPs	DC	AD	2.63E-05	1.04E-05	3.80E-05	
SNPs	DC	IN	RG	WC	MHC	AD
--------------	------	------	------	------	------	------
Non synonymous SNPs	2.26E-05	9.31E-06	3.17E-05	2.97E-05	2.70E-05	3.25E-05
Non synonymous SNPs	2.61E-05	-2.17E-06	4.37E-05	1.23E-05	4.52E-06	1.87E-05

Figures
Figure 1

Frequency polygons of query sequence length (predicted proteins) divided by subject (UniProt/TrEMBL) sequence length for DIAMOND [55] mapped MAKER [46] predicted proteins against UniProt/TrEMBL release 2018_07 database for: (red line) the original North African dromedary genome (CamDro1), ([8]; GenBank accession: GCA_000803125.1); (green line) the North African dromedary genome after adding ~11x PacBio sequencing reads (CamDro2); and (blue line) CamDro3.
Figure 2

Cumulative proportion of transcripts with specific or lower annotation edit distance (AED) for CamDro2 (solid line) and CamDro3 (dashed line). CamDro2 had AED ≤ 0.50 for 78.4% transcripts, whilst MAKER run 2 had 79.1% transcripts with AED ≤ 0.50. Note that having a larger proportion of lower AED values indicates a genome annotation that is more congruent with the evidence used during the annotation process.
Figure 3

Means with 95 % bootstrap confidence intervals (see Methods) of nucleotide diversity for alignments made with non-synonymous and synonymous SNPs and indels (a) and only non-synonymous SNPs (b) for: dromedary (C. dromedarius; top panel), domestic Bactrian camel (C. bactrianus; middle panel), and wild camel (C. ferus; bottom panel) gene groups. AD for adaptive genes, IN for innate genes, MHC for MHC class I and II genes, and RG for rest-of-genome genes. Rest-of-genome genes are those not classified as adaptive or innate genes (see Methods). Uppercase letters above upper 95 % confidence limits indicate groups have different (non-matching letters) or not different (matching letters) means based on non-overlapping confidence intervals.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Sl.docx