Topological Quantum Phase Transition in an $S = 2$ Spin Chain

Jiadong Zang1, Hong-Chen Jiang2,3, Zheng-Yu Weng3, Shou-Cheng Zhang4

1Department of Physics, Fudan University, Shanghai 200433, China
2Microsoft Research, Station Q, University of California, Santa Barbara, CA 93106
3Center for Advanced Study, Tsinghua University, Beijing 10084, China
4Department of Physics, Stanford University, Stanford, California 94305, USA

(Dated: June 29, 2010)

We construct a model Hamiltonian for $S = 2$ spin chain, where a variable parameter α is introduced. The edge spin is $S = 1$ for $\alpha = 0$, and $S = 3/2$ for $\alpha = 1$. Due to the topological distinction of the edge states, these two phases must be separated by one or several topological quantum phase transitions. We've studied the quantum phase transition by DMRG calculation, and proposed a phase diagram for this model.

PACS numbers: 05.30.Rt, 75.10.Jm, 75.10.Pq

I. INTRODUCTION

Recently, investigations of topological phases and phase transitions has attracted great attention in condensed matter physics1. The quantum Hall state2 is the first example of a topological state of quantum matter, with a fully gap ground state in the bulk, and gapless excitations at the edge. The chiral edge state is a holographic mirror of bulk topology3. In the recently discovered time reversal invariant topological insulators4, helical edge states are confined at the edge by the bulk energy gap, and states with opposite spins counter-propagate. In the case of the quantum spin Hall state realized in HgTe quantum wells, the topologically trivial and non-trivial states are separated by a topological quantum phase transition, tunable by the thickness of the quantum well.

Quantum spin chain is another example where topological quantum phase transition is found. The low energy dynamics of 1D large-spin Heisenberg antiferromagnet can be described as O(3) nonlinear sigma model5. Half-integer-spin chains are generally gapless, while integer spin chains are gapped; they are described by the O(3) nonlinear sigma model with and without the topological term. This distinction bears strong similarity to the nonlinear sigma model with and without the topological term6.

In this paper, we investigate a spin-2 chain model with two topologically distinct, translationally invariant ground states. One model has edge state $S = 1$, while the other model has edge spin $S = 3/2$. The Berry’s phase associated with the edge spins differ by π. The square of the time reversal operator T gives $T^2 = 1$ for the first case, whereas it gives $T^2 = -1$ in the second case. Due to this topological difference, the two ground states must be separated by one or several topological quantum phase transitions where the spin gap closes.

This paper is constructed as follows. In the next section, we will review two exact solvable quantum spin model in one dimension. Some materials can be systematically found in a brilliant work by Tu et.al8. Afterwards, our new model Hamiltonian is presented according to the topological argument. Corresponding numerical results are shown in the third section, where phase diagram is discussed as well. Conclusions are drawn in the end.

II. MODEL HAMILTONIAN

Our starting point is an integer spin model introduced by Affleck, Kennedy, Lieb, and Tasaki, namely the AKLT model9,10. It is proved that the AKLT model has a unique infinite volume ground state, with an exponential decay spin-spin correlation10. In agreement with the Haldane conjecture11, the excitation gap of AKLT model is nonzero. The ground state of AKLT model can be written down exactly in terms of Schwinger bosons:

$$|\Psi_{AKLT}\rangle = \prod_{ij}(a_i^\dagger b_j^\dagger - b_i^\dagger a_j^\dagger)^{S_{ij}}|0\rangle,$$

where S stands for site spin, and a_i^\dagger, b_i^\dagger are creation operators of Schwinger bosons at the ith site. This ground state can be rephrased in a pictorial form. The spin-2 AKLT ground state can be schematically shown in Fig1, where the circles stand for sites on the chain. Each spin-2 can be decomposed into totally symmetric combinations of four spin-1/2 states, and each state is represented by a solid dot in the figure. Two pairs of neighboring dots form singlet states, shown in red bonds. These bonds are usually called valence bonds, and in this sense, AKLT ground state is usually referred as Valence Bond State. It is proved rigorously that this ground state is unique under this periodic boundary condition. Due to the symmetric intra-site coupling and anti-symmetric inter-site coupling, the parent Hamiltonian of this ground state is given by

$$H_{AKLT} = \sum_{ij}K_3P_3(S_i, S_j) + K_4P_4(S_i, S_j), \quad K_3, K_4 > 0,$$

where P_3 and P_4 are the projection operators onto the spin-3 and spin-4 subspaces respectively. The positive
Due to the Clifford algebra of the five Γ-matrices: $\Gamma^a\Gamma^b = 2\delta^{ab} + 2i\Gamma^{ab}$, no symmetric traceless components are involved in the product of two Γ-matrices. As a consequence,

$$|\Psi^\text{SZH}\rangle = \sum_{m_1,\ldots,m_N} \text{Tr}(\Gamma^{m_1}\Gamma^{m_2}\ldots\Gamma^{m_N})|m_1m_2\ldots m_N\rangle,$$

is the ground state of the above SZH model, where m is a vector label of the SO(5) group, which can also be interpreted as the $m_i = -2, -1, 0, 1, 2$ quantum numbers of $S = 2$ spin chain.

Due to the relationships between the SO(5) and the SO(3) groups, there exists a natural deformation of the SZH model to an SU(2) spin-2 SZH model. The required map from SO(5) group onto SU(2) group with spin-2 is given by:

$$10(\text{SO}(5)) = 3(\text{SO}(3)) \oplus \gamma(\text{SO}(3))$$
$$14(\text{SO}(5)) = 5(\text{SO}(3)) \oplus \rho(\text{SO}(3)).$$

And therefore the SZH Hamiltonian deforms to:

$$H^\text{SZH} = \sum_{\langle ij \rangle} J_2P_2(S_i, S_j) + J_4P_4(S_i, S_j), \quad J_2, J_4 > 0.$$ \hspace{1cm} (8)

The ground state is unchanged up to an SO(5) rotation.

To see if the SZH state is gapped or not, we can evaluate the ground state spin correlation function. The correlation of matrix product state can be easily derived by the transfer matrix technique, given by

$$\langle S^\mu_i S^\nu_r \rangle = (Tr G^L)^{-1} Tr[Z(S^\mu)G^{\tau-2}Z(S^\nu)G^L],$$

where $\mu = x, y, z$. Define $g = \sum_m \Gamma^m|m\rangle$, then $G = g^\dagger \otimes g = \sum_m \Gamma^m \otimes \Gamma^m$, and $Z(S^\mu) = g^\dagger \otimes \rho S^\mu g$. As it’s an isotropic magnet, the correlation functions are the same in any directions. After some detail calculation, we derive

$$\langle S^\mu_i S^\nu_r \rangle = \langle S^\mu_1 S^\nu_r \rangle = \langle S^\mu_2 S^\nu_r \rangle = -20 \times 5^{-r}$$

for integer $r > 1$. Therefore, the correlation length ξ of the SZH model equals to $1/\ln 5$. This finite correlation length indicates that the low-lying excitation in the SZH model is gapped, consistent with the Haldane conjecture.

It is interesting to note that the correlation function of the SZH model is negative-definite, with a correlation length $\xi = 1/\ln 5 \sim 0.61$. Consequently, the lattice constant is almost twice of the correlation length, and the spins at neighboring sites correlate extremely weakly. On the other hand, according to Arovas et al.’s work[20], the correlation length for spin-2 AKLT is $1/\ln 2$ which is roughly the lattice constant. Therefore, although AKLT model is also a strongly disordered antiferromagnet, the neighboring spins are closely correlated, leading to the conventional staggering correlation function, say, $S_1 \cdot S_r \propto (-1)^{r+1}$.

Now we have two sets of models of 1-dimensional spin-2 chain with exactly known Hamiltonians and ground state wavefunctions. The differences between the AKLT and SZH model are not only the analytic forms as they appear, but also the topological distinctions. The same as topological insulator, the bulk topology is relevant to the edge state of an open chain. For the spin-2 AKLT model, two solid dots at each edge remain free. Symmetrical combination of these two spin-1/2 dots results an edge spin with $S = 1$. This boson-like edge state is consistent with large-N theory of SU(N) quantum antiferromagnets[21]. However, the SZH model serves a complement of the large-N analysis. For an open chain, the SZH ground state is given by

$$|\Psi; i, j \rangle = \sum_{m_1,\ldots,m_N} (\Gamma^{m_1}\Gamma^{m_2}\ldots\Gamma^{m_N})_{ij}|m_1m_2\ldots m_N\rangle.$$ \hspace{1cm} (10)

It explicitly shows that at each edge, there are four degrees of freedom since the matrix product state is four...
dimensional. Therefore, the edge state of SZH model is spin-3/2, i.e., fermion-like. That is completely different from the AKLT model. As the edge state is protected by topology, and is robust under perturbation, the AKLT and SZH models belong to different topological classes. It can be easily understood from the Berry phase’s language. Berry phase $Φ_{BP}$ is the additional phase when the spin winds around, which relates to the expectation value of T^2 by $\exp(-iΦ_{BP}) = (T^2)$, where T is the time reversal operator. It’s well-known that $T^2 = -1$ for half integer spins such as $S = 3/2$, while $T^2 = 1$ for integer spins such as $S = 1$. As a consequence, the Berry phases of the two models under investigation differ by an angle of $π$. It is this difference that makes topological distinction of the two ground states possible.

Given the topological distinction of the two ground states, we construct a model Hamiltonian interpolating between the AKLT and SZH models:

$$H(α) = (1 - α)H^{AKLT} + αH^{SZH}. \tag{11}$$

Without loss of generality, we set $J_2 = K_3 = 1$, $J_4 = K_4 = β$ in the following. As the edge state is robust unless the gap closes, there must exist one or several topological quantum phase transitions (TQPT) where the gap closes and reopens in the evolution of $α$ from 0 to 1. This TQPT can be addressed by studying the behavior of energy spectrum and correlation function at each $α$.

III. NUMERICAL RESULTS

The density matrix renormalization group (DMRG) method is employed\[23\] in our study. For this purpose, it’s helpful to rewrite the projection operators explicitly in terms of spin operators. Applying the identity

$$\mathbf{S}_i \cdot \mathbf{S}_j = \sum_{J=0}^{2S} \left[\frac{1}{2} J(J+1) - S(S+1) \right] P_J(ij), \tag{12}$$

one can easily get

$$P_2(ij) = \frac{1}{126} \left[-120(\mathbf{S}_i \cdot \mathbf{S}_j) - 14(\mathbf{S}_i \cdot \mathbf{S}_j)^2 + 7(\mathbf{S}_i \cdot \mathbf{S}_j)^3 \right] + (\mathbf{S}_i \cdot \mathbf{S}_j)^4, \tag{13}$$

$$P_3(ij) = \frac{1}{360} \left[162(\mathbf{S}_i \cdot \mathbf{S}_j) - 7(\mathbf{S}_i \cdot \mathbf{S}_j)^2 - 10(\mathbf{S}_i \cdot \mathbf{S}_j)^3 \right] - (\mathbf{S}_i \cdot \mathbf{S}_j)^4 + 1, \tag{14}$$

$$P_4(ij) = \frac{1}{2520} \left[90(\mathbf{S}_i \cdot \mathbf{S}_j) + 63(\mathbf{S}_i \cdot \mathbf{S}_j)^2 + 14(\mathbf{S}_i \cdot \mathbf{S}_j)^3 \right] + (\mathbf{S}_i \cdot \mathbf{S}_j)^4. \tag{15}$$

For present study, we keep $m = 600 - 1000$ states in the DMRG block with more than 16 sweeps to get a converged result, and the truncation error is less than 10^{-7} in near the critical point, and much less than 10^{-10} away from the critical point. We make use of the open boundary condition (OBC) and the total number of sites is $N = 600$. To check the finite-size effect of the system, we have studied the ground state energy per site E_0/N and the absolute value of the corresponding second derivative $|d^2E/dα^2|$ as a function of $α$, got by DMRG with 600 states and $β = 1.0$ at different system sizes.

FIG. 2: (color online) Ground state energy per site E_0/N (a) and the absolute value of its corresponding second derivative $|d^2E/dα^2|$ (b) as a function of $α$, got by DMRG with 600 states and $β = 1.0$ at different system sizes.
this issue, the following dimer order parameter emergence of the dimerized phase is addressed in previous projections, and translational invariant. However, the 1 chain, whose Hamiltonian is also written in terms of local projections, and translational invariant. However, the emergence of the dimerized phase is addressed in previous works.\cite{24, 27, 28}. In order to quantitatively describe this issue, the following dimer order parameter

\[D_\alpha = |\langle S_i S_{i+1} \rangle - \langle S_{i+1} S_{i+2} \rangle| \]

\(16\)

oscillating behavior with respect the lattice separation. However, when \(\alpha > 0.80 \), the correlation behaves similarly with the SZH model, showing an negative-definite behavior. At the critical point, the correlation function undergoes an qualitative change from AKLT to SZH.

To get the ground state phase diagram, we also calculate the peak position \(\alpha_c \) of \(|d^2E/da^2| \) as a function of \(\beta \), as shown in Fig. 5. Above the red line, the system is topologically connected to SZH model, and therefore belongs to the same topological class as SZH phase. One feature of this phase is translational symmetric and has spin-3/2 excitations on the edge. Similarly, the regions where \(\alpha \) is small belong to the same topological class as AKLT phase. Translational symmetry is also respected, but with spin-1 excitations on the edge.

However, one thing we should keep in mind that even the model Hamiltonian is translational invariant, spontaneous symmetry breaking is also possible. One well known example is the bilinear-biquadratic model for spin-1 chain, whose Hamiltonian is also written in terms of local projections, and translational invariant. However, the emergence of the dimerized phase is addressed in previous works.\cite{24, 27, 28}. In order to quantitatively describe this issue, the following dimer order parameter as a function of \(\alpha \) is introduced, where \(i \) labels the center site in the spin chain so that one can minimize the possible finite-size effect induced by open boundary condition. In the calculation, the total site number \(N \) is set to be an even number to avoid potential ambiguity in the definition, in which case \(i \) is simply \(N/2 \). The indications of dimerization is plotted in Fig. 4. It is shown explicitly that dimerization appears with proper choices of parame-

\[D_\alpha = |\langle S_i S_{i+1} \rangle - \langle S_{i+1} S_{i+2} \rangle| \]

\(16\)
parameters α and β. One can rule out possible finite size effect as the dimer order parameter doesn’t scale with the system size N, shown in Fig. 4(a). When β decreases, the maximum amplitude of dimer order parameter decreases as well, and the dimerization expands less and less regions of α monotonously. At the critical point $\beta = 0.27$, dimer order parameter vanishes for any α, and the corresponding dimerization phase shrinks as well. The system undergoes a quantum phase transition without spontaneous breaking of translational symmetry. During this phase transition, the energy and spin-spin correlation function have the same form as shown in Fig. 2 and Fig. 3. However it’s worth mentioning that for Neel state of spin-$1/2$ chain, the corresponding dimer order parameter would be 8. Therefore our dimer order parameter is pretty small compared to strict antiferromagnets, and the dimerization phase cannot be confirmed definitely. One possibility is the gap between excitation state and ground state for the present model is too small to be distinguished numerically. As a result, certain dimerized excitation state enters into our results and lead to such finite but tiny dimer order parameter. A promising solution is to apply the periodic boundary condition (PBC) here, so that one can rule out the possibility of dimerization acquired from open boundary condition. Therefore, we have also done some calculation by DMRG for system with PBC. For the system size $N = 100 - 200$ sites, we keep up to $m = 3000$ states with truncation error smaller than 10^{-8}. Finally, we find that both OBC and PBC systems give us consistent results.

Observed the possible presence of dimerization, one can readily work out the phase diagram, see Fig. 5. The red curve stands for critical points of $|d^2E/d\alpha^2|$, while the two dashed dark curves are upper/lower bounds of dimerized phase of each β value. It shows the onset value for second order derivative coincides with the upper bound of dimerized phase, so that they describe the same phase transition between dimerized phase and SZH phase. While on the AKLT side, the phase transition would be of higher order that is invisible in Fig. 2. Despite the possible presence of dimerized phase, the system undergoes a quantum phase transition without spontaneous breaking of rotational symmetry at α_c when $\beta = 0.27$. As the symmetry is unchanged in this case, this phase transition is originated from the topology only.

In conclusion, the topological distinction of the AKLT model and SZH model for the $S = 2$ spin chain is presented in this work. A model Hamiltonian as an interpolation between these two models is introduced. The quantum phase transition of the model is protected by topology, and established by DMRG calculation. The results indicate the presence of a dimered phase between two topological phases of AKLT and SZH. This dimered phase shrinks at critical value of $\beta = 0.27$. One would like to realize this topological phase transition in real materials. On the AKLT side, we have a well defined example already. $S = 1$ edge spin is observed in $S = 2$ chain of CsCr$_{1-x}$Mg$_x$Cl$_3$ [25]. However, examples on SZH side are still missing. Probably one can employ cold atom techniques to realize TQPT proposed in this paper.

We thank Zheng-Cheng Gu, Hosho Katsura, Naoto Nagaosa, and Yong-Shi Wu for insightful discussions. This work is supported by Ministry of Education of China under the Grant No. B06011, the NSF of China, the National Program for Basic Research of MOST-China, and SCZ is supported by the NSF under grant numbers DMR-0904264. HCJ acknowledges funding from Microsoft Station Q. In finishing this work, we became aware of a parallel work [27] which has reached similar conclusion based on different approaches. They get a brilliant result about the universality class of phase transition, but the possible dimer order phase is not mentioned.

[1] X. L. Qi and S. C. Zhang, Physics Today 63, 33 (2010).
[2] K. v. Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980).
[3] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Phys. Rev. Lett. 49, 405 (1982).
[4] B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Science 314, 1757 (2006).
[5] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005).
[6] F. D. M. Haldane, Phys. Rev. Lett. 61, 1029 (1988).
[7] X. L. Qi, T. L. Hughes and S. C. Zhang, Phys. Rev. B 78, 195424 (2008).
[8] H. H. Tu, G. M. Zhang, and T. Xiang, Phys. Rev. B 78, 094404 (2008).
[9] I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Phys. Rev. Lett. 59, 799 (1987).
[10] I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Commun. Math. Phys. 115, 477 (1988).
[11] F. D. M. Haldane, Phys. Rev. Lett. 50, 1153 (1983).
[12] D. Scalapino, S. C. Zhang, and W. Hanke, Phys. Rev. B 58, 443 (1998).
[13] S. C. Zhang, Science 275, 1089 (1997).
[14] E. Demler, W. Hanke, and S. C. Zhang, Rev. Mod. Phys. 76, 909 (2004).
[15] C. Wu, J. P Hu, and S. C. Zhang, Phys. Rev. Lett. 91, 186402 (2003).
[16] A. Klüner, A. Schadschneider, and J. Zittartz, J. Phys. A 24, 1955 (1991).
[17] I. Affleck, D. P. Arovas, J. Marston, and D. Rabson, Nucl. Phys. B 366, 467 (1991).
[18] D. Schuricht and S. Rachel (2008).
[19] D. P. Arovas, K. Hasebe, X. L. Qi, and S. C. Zhang, Phys. Rev. B 79, 224404 (2009).
[20] D. P. Arovas, A. Auerbach, and F. D. M. Haldane, Phys. Rev. Lett. 60, 531 (1988).
[21] T. K. Ng, Phys. Rev. B 50, 555 (1994).
[22] X. G. Wen and Q. Niu, Phys. Rev. B 41, 9377 (1990).
[23] S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
[24] A. Klüner, J. Phys. A 23, 809 (1990).
[25] M. T. Batchelor and M. N. Barber, J. Phys. A 23, L15
[26] T. Kennedy and H. Tasaki, Commun. Math. Phys. 147, 431 (1992).
[27] D. Zheng, G. M. Zhang, T. Xiang, and D. H. Lee, arxiv:1002.0171 (2010).
[28] H. Yamazaki and K. Katsumata, Phys. Rev. B 54, R6831 (1996)