Čejka, P. – Ošovská, J.: Využití senzorické analýzy piva v marketingu. KSAS Prum. 61, 2015, č. 2, s. 38–45

Při vývoji nových potravinářských výrobků nebo při snaze zlepšit jejich stávající konkurencí pozici na trhu je třeba zjišťovat, jak jejich kvalitu vnímá spotřebitel. K tomu slouží tzv. senzorické hodnocení kvality výrobků, přičemž jednou z jeho nejvýznamnějších metod je senzorická analýza. Cláněk uvádí přehled základních laických senzorických zkoušek, vhodných k hodnocení piva, a to akceptační testování, metodu slovního popisu, rozdílové a preferenční zkoušky. Jsou uvedeny praktické příklady s podrobným postupem a výpočtem. Dále jsou zmíněny i složitější testy, vhodné pro marketingové hodnocení výrobků, jako QDA (kvalitativní deskriptivní analýza) a PM (preferenční mapování). Lze konstatovat, že finanční prostředky vložené do marketingové analýzy pomáhají správně zvolené a vyhodnocené zkoušky přinesou výrobcům relevantní názor spotřebitelů na posuzovaný výrobek, což se klade projev v úspěchu výrobků.

Čejka, P. – Ošovská, J.: Use of sensory analysis of beer in marketing. KSAS Prum. 61, 2015, No. 2, pp. 38–45

When developing new food products, or when trying to improve their existing competitive position in the market, it is necessary to determine how consumers perceive their quality. This is the purpose of so-called consumer product evaluation, one of its most important methods being sensory analysis. We review the basic survey of sensory tests suitable for evaluation of beer, i.e. acceptance testing, the method of verbal description, differential and preference tests. Practical examples are given, with detailed procedure and calculation. Also more complex procedures are mentioned which are suitable for marketing rating of products, such as QDA (quantitative descriptive analysis) and PM (preference mapping). We can conclude that the funds invested into the marketing analysis using properly selected and evaluated trials manufacturers will bring relevant consumer views of the product under consideration, which has a positive effect in the reduction of production costs.

Čejka, P. – Ošovská, J.: Die Verwendung der sensorischen Analyse des Bieres in Marketing. KSAS Prum. 61, 2015, Nr. 2, S. 38–45

Bei der Entwicklung neuen Lebensmittelprodukten oder in dem Bemühren ihre bestehende Konkurrenzposition am Markt zu verbessern, ist es notwendig zu wissen, wie ihre Qualität von Verbraucher beurteilt. Zum diesen Zweck dient sogenannte Verbraucheranalyse. Es wird eine Übersicht von zur Bierauswertung geeigneten laiensensorischen Grundprüfungen, z.B. Akzeptanztests, Methode der wörtlichen Beschreibung, Unterschiedliche- und Präferenztests angeführt. Weiterhin wurden praktische Beispiele mit einem ausführlichen Verfahren und Berechnungen beschrieben. Es werden auch die komplizierteren Verfahren angeführt, die für Marketingauswertung von Produkten geeignet sind, wie z.B. QDA (quantitative descriptive analysis) und PM (Vorzugs Mapping). Es ist möglich zu konstatieren, dass in die Marketinganalyse investierte Gelder mittels richtig ausgewählten und evaluierten Prüfungen dem Hersteller eine relevante Verbraucher Meinung über betroffene Ware, was bringt eine Einsparung der Herstellungskosten.

Klíčová slova: senzorická analýza, pivo, statistické metody, párová zkouška, test dobré shody, pořadová zkouška

Keywords: sensory analysis, beer, statistical methods, paired test, chi-squared test, rank test

1 ÜVOD

Při vývoji nových potravinářských výrobků nebo při změně jejich senzorických charakteristik v souvislosti s inovací technologií je třeba zjišťovat, jak jejich kvalitu vnímá spotřebitel. K tomu slouží tzv. senzorické hodnocení kvality výrobků, přičemž jednou z jeho nejvýznamnějších metod je senzorická analýza. Z marketingového hlediska je senzorická analýza v souvislosti s kvalitativní metodikou, která využívá lidské smysly jako nástroje měření při hodnocení smyslových vlastností výrobku umožňuje lépe porozumět přáním zákazníků, a má proto důležitý vliv na priority a obchodní zájmy firmy.

Zatímco dříve používala laická senzorická analýza k hodnocení bylo spíše výjimkou, dnes se stává integrální a nezastupitelnou součástí senzorických testů v marketingové strategii. Je to dílo tím, že v posledních letech bylo vyvinuto značné úsilí s cílem navrhnut vhodné způsoby senzorického hodnocení výrobků, ať již profesionálního nebo laického.

I když podle průzkumů provádí senzorické hodnocení téměř 100% potravinářských výrobků, stále existují značné rezervy ve výběru vhodných metod, v možnostech hodnocení výsledků, a tím celkové efektivitě tohoto procesu. Je třeba si uvědomit, že použití senzorického popisu výrobku (tzv. monadic test) není senzorickou zkouškou, a tedy je třeba dát jeho výsledky do souvislosti s dalšími parametry nebo alespoň s pořadovým profitem.

K vyhodnocování senzorických zkoušek se zpravidla využívá statistických metod, a to zejména pro profesionální senzorická hodnocení. Pro laická hodnocení existují metody, které mají sice mate

1 INTRODUCTION

During the development of new food products or when changing their sensory characteristics in connection with technology innovation it is necessary to ascertain their quality as perceived by the consumer. That is the purpose of so-called consumer reviews of product quality, one of their most important methods is sensory analysis. From a marketing perspective, the sensory analysis is perceived as a qualitative method, which uses the human senses as a measure in evaluating the sensory attributes of the product. Identification of specific chemical and sensory characteristics of the product makes it possible to better understand customer requirements and has therefore an important influence on the priorities and business objectives of the company.

Previously, the general use of sensory analysis for assessment was rather an exception whereas today it is becoming an integral and essential part of the product business strategy. It is due to the fact that in recent years strenuous efforts have been made to suggest appropriate ways of sensory evaluation of products, whether professional or layman. Though almost 100% of food manufacturers are conducting sensory evaluation according to surveys, there are still considerable reserves in the selection of appropriate methods, in the possibilities of evaluation of results, and thereby in the overall efficiency of the process. It should be noted that a mere sensory description of the product (the so-called monadic testing) is not a sensory test, and therefore it is necessary to place its results in connection with other parameters, or at least with the desired profile.
2 CÍLE MARKETINGOVÉ SENZORICKÉ ANÁLYZY A ZÁKLADNÍ POŽADAVKY NA HODNOTITELE

Prostřednictvím marketingové senzorické analýzy lze (Kozel et al., 2011):
1. identifikovat klíčové senzorické atributy výrobku
2. optimalizovat výrobky z pohledu spotřebitele
3. zjistit, je-li produkt poznáman nejvýší negativní vlastnostmi
4. u stávajících výrobků určit či zlepšit jejich konkurenční pozici
5. mít zpětnou vazbu, jak se projeví inovace výrobku
6. minimalizovat riziko spojené s uváděním nových výrobků na trh
7. kontrolovat trvanlivost
8. rozšiřovat odbývání
9. šetřit náklady
10. efektivněji využívat technologické postupy.

Výběr hodnotitelů je závislý na cíli marketingové analýzy a lze definovat tyto skupiny (ČSN EN ISO 8586, 2008):
1. Nezkušení posuzovatelé (laici) jsou hodnotiteli z řad běžných spotřebitelů, kteří nemají žádné odborné znalosti a neprošli žádným školním. Těsně před zkouškou jsou pouze kratce instruováni, jak posouzení provést. Jedná se o podmínku přijetí takového hodnotiteli ke zkoušce. Je to jeho příznakem, že je jeho principální konzumace výrobků příslušného segmentu. Spotřebitelé hodnotí jeden nebo více podmůců jednoduché skály, nebo posuzují výrobky z hlediska obliby (hedonické hodnocení).
2. Exper aji se přijímají náhodným výběrem (často formou anket) a jejich počet musí být dostatečný na to, aby umožnily statisticky platné závěry.
3. Žačni zasažení posuzovatelé (používání laici) hodnotí ve případě, kdy je potřeba, aby hodnocení neprovedli ani vyložení laici, ani profesionálové. Jediná se na laiky, kteří jsou minimálně způsobem proškoleni a projdou určitým výběrem.
4. Experti se rekrutují zejména ze zaměstnanců výrobce, kteří mají určité znalosti o posuzovaném výrobku a jeho výrobě. Měli by být pravidelně školeni a trénováni (ČSN ISO 8586, 2008).
5. Experti senzoričtí posuzovatelé jsou speciálně vyškoleni a trénováni odborníci na příslušný segment výrobků.

Při rozhodování o výběru je naprosto zásadní co nejlépe porozumět potřebám a očekáváním zákazníků, což je potravinářských výrobků platí dvojnásobně. Je však třeba si uvědomit, že vnímání senzoričtí posuzovatelé jsou speciálně vyškolení a trénovali určitým způsobem proškoleni a projdou určitým výběrem. Je třeba si uvědomit, že vnímání senzoričtí posuzovatelé jsou speciálně vyškolení a trénovali určitým způsobem proškoleni a projdou určitým výběrem.

3 ZÁKLADNÍ TERMINOLOGIE

Pro hodnocení kvality produktu senzorickou analýzou se nejčastěji používají termíny a popisy. Vzhledem k tomu, že výrobky jsou posuzovány různými skupinami hodnotitelů, je důležité určit jednotnou terminologii. Jednotná a závazná terminologie zlepšuje transparentnost a sledovatelnost posunutí podniku vůči výrobkům (Analytica EBC, 2010). Využívá se hlavně při odborném posuzování (laici) hodnotiteli ke zkoušce, ke kterému mají určité znalosti o posuzovaném výrobku a jeho výrobě. Měli by být pravidelně školeni a trénováni (ČSN ISO 8586, 2008).

1. Nezkušení posuzovatelé (laici) jsou hodnotiteli z řad běžných spotřebitelů, kteří nemají žádné odborné znalosti a neprošli žádným školním. Těsně před zkouškou jsou pouze kratce instruováni, jak posouzení provést. Jedná se o podmínku přijetí takového hodnotiteli ke zkoušce. Je to jeho příznakem, že je jeho principální konzumace výrobků příslušného segmentu. Spotřebitelé hodnotí jeden nebo více podmůců jednoduché skály, nebo posuzují výrobky z hlediska obliby (hedonické hodnocení). Jsou přijímáni náhodným výběrem (často formou anket) a jejich počet musí být dostatečný na to, aby umožnily statisticky platné závěry.
2. Žačni zasažení posuzovatelé (používání laici) hodnotí ve případě, kdy je potřeba, aby hodnocení neprovedli ani vyložení laici, ani profesionálové. Jediná se na laiky, kteří jsou minimálně způsobem proškoleni a projdou určitým výběrem.
3. Experti se rekrutují zejména ze zaměstnanců výrobce, kteří mají určité znalosti o posuzovaném výrobku a jeho výrobě. Měli by být pravidelně školeni a trénováni (ČSN ISO 8586, 2008).
4. Experti senzoričtí posuzovatelé jsou speciálně vyškoleni a trénováni odborníci na příslušný segment výrobků.

Při rozhodování o výběru je naprosto zásadní co nejlépe porozumět potřebám a očekáváním zákazníků, což je potravinářských výrobků platí dvojnásobně. Je však třeba si uvědomit, že vnímání senzoričtí posuzovatelé jsou speciálně vyškolení a trénovali určitým způsobem proškoleni a projdou určitým výběrem. Je třeba si uvědomit, že vnímání senzoričtí posuzovatelé jsou speciálně vyškolení a trénovali určitým způsobem proškoleni a projdou určitým výběrem.

3 BASIC TERMINOLOGIES

Verbal description is most often used to evaluate the quality of the product by sensory analysis. Given that the products are judged by different groups of evaluators, it is important to determine a uniform terminology. Uniform and binding terminology improves the transparency and traceability of the product evaluation process described (Analytica EBC, 2010). It is used mainly in vocational assessment. In layman’s evaluation one must make do with common, universally known expressions. It is expedient to evaluate numerically certain essential characteristics of the product and assign them to a pre-defined scale. Essential are such characteristics which are exhibited by the product intensively, regardless of whether they influenced positively or negatively the result of the evaluation. These numerical values also have the advantage that they can be mathematically processed and statistically evaluated.

The sensory terminology should not feature hedonic-emotional expressions such as “delicious”, “delicate” or “rounded”, as well as “terrible”, “horrible” or “incredible”, as these expressions contain the meaning of emotions and feelings. Selection of evaluators is dependent on the objective of marketing analysis and the following groups can be defined (ČSN EN ISO 8586, 2008):
1. Inexperienced evaluators (laymen) come from among ordinary consumers, who have no expertise and have not undergone any training. Just before the test are only briefly instructed on how to perform the evaluation. The only condition for the adoption of such evaluators for testing is their regular consumption of the respective product segment. Consumers evaluate one or more aspects using a simple scale, or assess the product in terms of popularity (hedonic evaluation). They are recruited at random (often in the form of surveys) and their number should be sufficient to allow statistically valid conclusions.

2. Beginner training evaluators (lessons learned laymen) are recruited for evaluation in cases when the evaluation is to be carried out neither by laymen nor by professionals. These are laymen who have undergone a minimum and pass a certain selection.

3. Experts are recruited mainly from the employees of the manufacturer who have some knowledge on the assessment of the respective product segment.

When deciding on a product it is crucial to best understand the needs and expectations of customers, which is doubly true in the case of food products. It should be appreciated that the perception of the sensory properties of the product is very diverse, and it is difficult to “hit” the expectation of most customers with a particular product. In terms of marketing, when filling out questionnaires it is therefore recommended to lay evaluators to indicate gender, age, and experience with the product (e.g. how much beer they drink per week); this will give us valuable information about what is the response to the product from the customer groups, to whom advertising should be targeted, etc.

Evaluation of the sensory test typically uses statistical methods, particularly for professional sensory evaluation. Some methods for the general evaluation have a mathematical basis but their use can be successfully handled by using an ordinary pocket calculator.
a přesně, ale jejich vhodné použití závisí na znalostech testovaného produktu a subjektivním postoji hodnotitele.

Přehled výrobkových testů je uveden na obr. 1.

Před vlastní senzorické hodnocení může být zařazen tzv. dojmový test, který zahrnuje první zhlednutí výrobku a jeho ocenění na základě pouhého pozorování. Cílem je jeho rychlé posouzení, které nepochopí zažádaní zájemců výrobce (jsou ovlivněni znalostmi o výrobku), ale nezávisí laici. Zaměřuje se na vnímání výrobku, jeho obalu a ocenění očekávání, které toto vnímání přináší. Může např. obsahovat otázky typu ano/ne nebo stupnici, například hodnocení vybraného parametru (např. test srovnání s konkurenčními výrobky, který je používán při testování výrobku v celé šíři nabídky, tedy i na základě pouhého pozorování první zhlédnutí výrobku a jeho ocenění na obrazivém postoji hodnotitele.

Líši se vám obal tohoto výrobku?
Odpovídá barva výrobku vaší představě o ideálním výrobku?
Líbí se vám obal tohoto výrobku?

Koupil byste si tento výrobek, pokud by stál

Kontrolujete při vašem nákupu datum mini-
Kontrolujete při vašem nákupu datum mini-

Obr. 1 Přehled výrobkových testů / Fig. 1 Survey of product tests

Tab. 1 Kritické hodnoty párové zkoušky / Table 1 Critical values of a paired test

N	K_{25}	K_{50}	K_{95,0}	N	K_{25}	K_{50}	K_{95,0}
7	7	-	-	21	16	17	19
8	8	8	-	22	17	18	19
9	9	9	-	23	17	19	20
10	10	10	-	24	18	19	21
11	11	11	11	25	18	20	21
12	12	12	12	30	21	23	25
13	13	13	13	35	24	26	28
14	14	14	14	40	27	29	31
15	15	15	15	45	30	32	34
16	16	16	16	50	33	35	37
17	17	17	17	60	39	41	44
18	18	18	18	70	44	47	50
19	19	19	19	80	50	52	55
20	20	20	20	90	55	58	61

N = celkový počet odpovědí / Total number of responses
K = kritická veličina (minimální hodnota správných odpovědí), index označuje úroveň pravděpodobnosti / Critical value (minimum value of correct answers); index indicates the probability level

Do you like the packaging of this product?
Does the color of the product correspond to your idea for this type of product?
Are you satisfied with the font size on the label of this product?
Do you read the composition as indicated on the label?
Do you check the date of minimum durability of the product when purchasing it?
Would you buy this product if it would cost more than...?
Would you buy this product in a packaging of 10 pieces or more?

Experimental test is done by providing a product to a layman evaluator to test it or for consumption (i.e., e.g. beer shall be provided in consumer packaging for the consumer’s home assessment).

According to the principle of testing we can distinguish an internal test that is used to evaluate and compare the products of one manufacturer and external test, which is used when testing the product across the entire menu, including its comparison with competing products.

In terms of the testing method we can evaluate the product as a whole (a test of the product as a whole), while the test of a part of the product is used for evaluating a selected parameter (e.g. bitterness in beer, fruit flavors in a beer cooler etc.). The method of verbal description (description method) includes the verbal de-
výrobek jako celek je vůbec zákazníkem akceptovatelný (např. nový typ výrobku nebo jeho distribuce v různých územních lokalitách), jaké je motivace ke koupi, které atributy nejlépe zákazníka zaujmou atd.

4 ZPŮSOBY TESTOVÁNÍ A POUŽÍVANÉ TECHNIKY

4.1 Rozdílové testy a preferenční testy

Nejběžnější je párová zkouška. (ČSN EN ISO 5459, 2009; Analytika EBC, 2010). Respondent obdrží dva vzorky a má určit, zda se v nějakém znaku vzorky liší (rozdílový test) nebo zda jednomu ze vzorků dávávají přednost (preferenční test). Své hodnocení zapisuje do formuláře (obr. 2).

Zkouška se vyhodnotí podle tab. 1. Způsob vyhodnocení zkoušky je uveden na konkrétním příkladu (Příklad 1).

Příklad 1: Cílem zkoušky je rozhodnout, které ze dvou piv má vyšší hořkost (například, po změně způsobu chmelení). 30 laiků obdrží dvojici piv, označených A a B a má rozhodnout, který vzorek je více hořký. 8 respondentů označí jako více hořký vzorek A, 22 vzorek B. Z tab. 1 vyplývá, že pro \(N = 30 \) je minimální počet správných odpovědí na hladině pravděpodobnosti 95 % 21.

Závěr: pivo B je skutečně více hořké než pivo A.

Test dobré shody (test \(\chi^2 \)) (Meloun a Militký, 2002) se uplatňuje je převážně jako preferenční. Hodnotitelům (n) se předloží několik vzorků (k) a každý jednotlivý hodnotitel podle svého uvážení označí jeden z nich jako nejlepší. Doporučuje se maximálně šest vzorků. Hodnocení se zapisuje do formuláře (obr. 3).

Výpočet testovacího kritéria \(\chi^2 \) se provede podle vztahu:

\[
\chi^2 = \sum \frac{(B - E)^2}{E}, \text{ kde}
\]

- B je nalezená četnost
- E je očekávaná četnost a E = n/k

\(\chi^2 \) je testovací kritérium.

4.2 Testing Methods and Techniques Used

Paired Test – Differential Test

Date:	Name:
Objective: To determine the higher intensity of a parameter	Task: In the pair of submitted samples decide which sample shows a greater intensity of monitored parameter; mark this sample with a cross.
Signature:	Signature:

Paired Test – Preference Test

Date:	Name:
Objective: To determine the popularity of the sample	Task: In the pair of submitted samples decide which sample is more tasty; mark this sample with a cross.
Signature:	Signature:
Výpočet hodnoty χ^2 se pak porovná s kritickou hodnotou χ^2_{crit} (tab. 2). Hodnocení je ukázáno na následujícím modelovém příkladu (Příklad 2).

Příklad 2: 60 hodnotitelům/laikům je předloženo 6 vzorků piva, každý z nich označí pouze jeden vzorek z šesti jako nejlepší. Výsledky jsou uvedeny v tab. 3, ze které je patrné, kolik laiků označilo příslušný vzorek jako nejlepší.

$E = 60 / 6 = 10$

$\chi^2 = [(7 - 10)^2 + (9 - 10)^2 + (10 - 10)^2 + (6 - 10)^2 + (18 - 10)^2 + (10 - 10)^2] / 10 = [9 + 1 + 0 + 16 + 64 + 0] / 10 = 90 / 10 = 9$

Závěr: Vzhledem k tomu, že vypočítaná hodnota $\chi^2 = 9$ je nižší než $\chi^2_{\text{crit}} = 11.1$ (z tab. 2 pro počet piv $k = 6$ a hladinou pravděpodobnosti 95 %), je výsledek náhodný. Spotřebitelské tedy nedávají statisticky významně přednost žádnému vzorku (tedy vzorek Y podle tab. 3 než označit jako nejlepší).

V případě, že je potřeba posoudit rozdíly mezi větším počtem vzorků, ať v intenzitě nějakého znaku nebo v preferencích, je vhodné použít tzv. pořadovou zkoušku (Analytica EBC, 2010; ČSN EN ISO 8587, 2008). Počet vzorků vzatých do této zkoušky pro laické hodnotitele by měl činit 3, maximálně 5. Hodnotitelé předložené vzorky seřadí podle intenzity sledovaného znaku nebo podle obilí. Hodnocení se zapisuje do formuly uvedeného na obr. 4.

Výsledky se zapsí do tabulky, kde v řádcích je zapsáno pořadí jednotlivých hodnotitelů (tab. 5). Jednotlivá pořadí ve sloupcích se seřadí a získá se sloupcová pořadí r_i až r_k. Dále se stanoví tzv. Friedmanovo testovací kritérium podle vztahu:

$$ F = \frac{(r_1 - R)^2 + ... + (r_k - R)^2}{k \cdot R / 6}, $$

kde R je průměr sloupových pořadí

$$ R = (r_1 + ... + r_k) / k = n(k + 1) / 2 $$

a kde n je počet posuzovatelů a k počet vzorků.

Počet piv / Number of beers	95%	99%
3	6.0	9.2
4	7.8	11.3
5	9.5	13.3
6	11.1	15.1
7	12.6	18.5
8	14.1	20.1
9	15.5	21.7
10	16.9	

95 % nebo 99 % jsou příslušné hladiny pravděpodobnosti / 95% or 99% are relevant confidence levels

Tab. 2 Hodnoty χ^2_{crit} / Table 2 χ^2_{crit} values

Tab. 3 Nalezená četnost preference z výběru 6 vzorků / Table 3 Frequency of preference found in a set of 6 samples

Tab. 4 Kritické hodnoty pořadové zkoušky F_{crit} / Table 4 Critical values of the rank test F_{crit}
Pořadová zkouška

Cíl: sestavte pořadí předložené skupiny vzorků

Úkol: z předložené skupiny vzorků sestavte pořadí podle intenzity sledovaného znaku nebo podle obliby; pořadí jednotlivých vzorků zapíšte.

1 2 3 4 5

...

podpis

Obr. 4 Příklad formuláře pro hodnocení výrobků pořadovou zkouškou / Fig. 4 Example of a product evaluation by rank test

Tab. 5 Hodnocená data získaná pořadovou zkouškou / Table 5 Evaluation data obtained by sequential test

Posuzovatel / Evaluator	A	B	C	D
1	3	4	2	1
2	1	4	3	2
3	2	3	1	4
4	2	4	1	3
5	2	3	1	4
6	1	4	2	3
7	2	4	1	3
8	4	2	1	3
9	3	4	2	1
10	3	4	1	2
11	3	4	1	2
12	1	4	2	3

Součet pořadí / Sum of sequences 27 44 18 31

Čísloje se vypočítá tzv. LSD (least significant difference – nejnižší významný rozdíl), přičemž platí, že součty, které se liší více než o LSD, jsou významně rozdělené.

LSD95 = 1,96 √(kR / 3),

LSD99 = 2,58 √(kR / 3),

kde index 95 nebo 99 znamená hladinu pravděpodobnosti.

Vypočítané kritérium F se porovná s tabelovanými hodnotami kritických hodnot Fcrit (tab. 4) a vypočítaná hodnota LSDa se porovná s rozdíly součtů pořadí mezi jednotlivými vzory.

Příklad 3: 12 posuzovatelům byly předloženy 4 vzorky A, B, C a D, které měli seřadit podle obliby. Výsledky jsou uvedeny v tab. 5 (např. posuzovatel č. 1 označil jako nejlepší vzorek D, jako druhý vzorek C, jako třetí vzorek A a jako nejhorší vzorek B).

n = 12, k = 4, R = (27 + 44 +18 + 31) / 4 = 12 · (4 + 1)/2 = 30

F = (29 – 30)² + (43 – 30)² + (18 – 30)² + (30 – 30)² = 21,7

LSDa = 1,96 √(4 · 30 / 3) = 12,4

Protože vypočítaná hodnota F = 21,7 je vyšší než příslušná kritická hodnota Fcrit = 7,8 (pro počet vzorků k = 4 na hladině pravděpodobnosti 95 %, dokonce je statisticky významná i na hladině pravděpodobnosti 99 %), rozdíl mezi vzory je statisticky významný. Aby bylo možné zjistit, které konkrétní vzorky jsou od sebe odlišné, seřadí se součty pořadí od nejnižšího po nejvyšší a vypočítají se rozdíly mezi nimi (obr. 4).

CSN EN ISO 8587, 2008). The number of samples taken for testing by the lay evaluators should be 3–5. The evaluators rank the submitted samples according to the intensity of the reference character or by popularity. Evaluation is entered into the form shown in Fig. 4.

The results are noted in a table in which the rows denote the sequence of individual evaluators (Table 4). Individual sequences in the columns are summed up to give the column order of r1 to rk. Then the so-called Friedman's test criterion is determined from the formula:

$$F = \frac{\left(\sum_{i=1}^{k} (r_i - R)^2\right)}{k \cdot R / 6},$$

where R is the mean of the column sequences

$$R = (r_1 + \ldots + r_k) / k = n(k+1) / 2$$

and n is the number of reviewers and k is the number of samples.

Furthermore, we calculate the so-called LSD (Least Significant Difference); it holds that the sums that differ by more than the LSD are significantly different.

LSD95 = 1,96 √(kR / 3),

LSD99 = 2,58 √(kR / 3),

where index 95 or 99 stands for the probability level.

The calculated criterion F is compared with tabulated critical values Fcrit (Table 4) and the calculated value LSDa (or LSDa) is compared with the differences of the sums of sequences between individual samples.

Example 3: Four samples A, B, C and D which should be ranked by popularity were submitted to the 12 evaluators. The results are shown in Table 5 (e.g. evaluator no. 1 designated D as the best sample, C as the second best sample, A as the third sample and sample B as the worst).

n = 12, k = 4, R = (27 + 44 +18 + 31) / 4 = 12 · (4 + 1)/2 = 30

$$F = \frac{(29 - 30)^2 + (43 - 30)^2 + (18 - 30)^2 + (30 - 30)^2}{4 \cdot 30 / 6} = 21,7$$

LSDa = 1,96 √(4 · 30 / 3) = 12,4

Since the calculated value of F = 21,7 is higher than the relevant critical value Fcrit = 7,8 (for the number of samples k = 4 at 95% probability level, and it is even statistically significant even at the 99% level), the difference between the samples is statistically significant.

In order to determine which specific samples are different from each other, the sums are lined up sorted from the lowest to the highest and the differences between them are calculated (Fig. 4).

If the difference between the sums of the orders of samples is higher than the calculated value of LSD, a statistically significant difference occurs between the samples. Specifically, e.g. the difference between neighboring samples C and A is 9 but this value is lower...
Pokud je rozdíl mezi vzorky vyšší než vypočítaná hodnota LSD, je mezi příslušnými vzory statisticky významný rozdíl. Konkrétně např. rozdíl mezi soudemními vzory C a D, ale tato hodnota je nižší než vypočítaná hodnota LSD_{mp} = 12.4, tedy rozdíl není statisticky významný. Jinak je tomu u vzorků C a D, mezi kterými rozdíl v součtu pořadí činí 9 + 4 = 13, což potvrzuje jejich statisticky významný rozdíl.

Výsledky lze zapsat např. jak je uvedeno na obr. 5.

Závěr: Vzory podtržené jednou čarou (obr. 5) neží se o výsledech statisticky odslibí. Jednoznačně nejhejšší je vzorek B, který lze statisticky významně diferencovat od vzorků C, A a B je však statisticky významně rozhodovat od vzorku D. Ano. Jními slovy, pořadí vzorků C a D je však statisticky významně rozhodovat.

Většinou jednoduchým laickým testem je akceptační test (Kozel et al., 2011), ve kterém posuzují hodnotiteli oblibu produktu nebo nějaké jeho vlastnosti. Oblibu obumění číselnou škálou: 1 – vývající, 2 – velmi dobří, 3 – prostřední, 4 – špatný, 5 – velmi špatný, nebo desetibodovou škálu od 1 – nádherné až po 10 – vůbec nechutná. Výsledky pro jednotlivé produkty se většinou pouze zprůměrují a výsledky se graficky např. pomocí sloupcových grafů (tzv. produktové grafy). Metoda slouží k orientačnímu přehledu o kvalitě produktu z hlediska spotřebitele.

Cílem methody QDA (kvantitativní popisná analýza) (Stone et al., 1974) je senzorické posouzení určitého výrobku, ale takové, které s opakovaným senzorickým zkouškám a vyřazovacím efektem se ještě více vyškolen sledující otázky:

Pohybové, je senzorické posouzení určitého výrobku, ale takové, které s opakovaným senzorickým zkouškám a vyřazovacím efektem se ještě více vyškolen s

vzorek / sample	A	B	C	D
součet pořadí / sum of sequences	18	27	31	44
rozdíl / difference	9	4	13	

Obr. 4 Vypočítané rozdíly a mezisoučty pořadí jednotlivých vzorků / Fig. 4 Calculated differences and subtotals of the orders of individual samples

The objective of the QDA method (quantitative descriptive analysis) (Stone et al., 1974) is the sensory assessment of a particular product, which is not carried out by the employees of the manufacturer (they are influenced by the knowledge of the product, production etc.). The evaluation is conducted by a lay panel, the members of which are methodologically trained for this analysis. The head of the panel is professional, panel members are select laymen who regularly consume the product.

About 25 potential lay evaluators are selected; they are subjected to repeated sensory tests and a knockout effect reduces their number to about 12 to 15. Selected evaluators are then trained in the method of evaluation of the product, are advised as to the appropriate nomenclature (basic sensory terms used), regularly trained and evaluated.

The aim of the selection of evaluators and their training is that the product can be described as correctly as possible. Numerical scales with a more detailed evaluation than e.g. in acceptance tests are used for evaluation.

The results are mathematically treated (mean, median, confidence interval), but sophisticated statistical methods can also be used (analysis of variance, principal component analysis, rank sequential tests, etc.).

Understanding what consumers want is a key question to which manufacturers need answers, and preference mapping (Meilgaard et al., 2006) is one of the most effective means. Preference mapping is a method of product evaluation which generally responds to the following questions:

1. What products consumers like and dislike
2. How can the consumers be divided in relation to products
3. Explanation of consumer preferences for a set of custom or competing products

Cluster5	Cluster9	Cluster6	Cluster4
80%–100%	60%–80%	40%–60%	20%–40%
0%–20%			

Obr. 5 Výsledek pořadové zkoušky / Fig. 5 The result of a sequential test

Obr. 6 Příklad preferenční mapy (XLSTAT) / Fig. 6 An example of a preference map (XLSTAT)
5 ZÁVĚR
Senzorická analýza má v marketingu svůj nepopiratelný význam, neboť dokáže lépe směrovat výrobce k přijatelným produktům pro konzumenty, porovnávat vlastní produkt s konkurencí a štětít náklady při vývoji a výrobě nových produktů. Nabízí celou škálu možností, od jednodušších po složitější, jakým způsobem lze výrobky hodnotit a jaké vysvětluje závěry ze získaných výsledků. Finanční prostředky vložené do marketingové analýzy pomáhají správně vzdělat a vyhodnotit zkušenost konzumentů vzhledem k velkému počtu konzumentů apod. Příklad senzorického mapy je znázorněn na obr. 6, kde kladky oznámené polohu skupin konzumentů, obdélníky polohu jednotlivých typů piv a barva pozadí míru těsnosti mezi preferencemi dané skupiny konzumentů a příslušným typem piv.

4 CONCLUSIONS
Senzorická analýza má v marketingu svůj nepopiratelný význam, neboť dokáže lépe směrovat výrobce k přijatelným produktům pro konzumenty, porovnávat vlastní produkt s konkurencí a štětít náklady při vývoji a výrobě nových produktů. Nabízí celou škálu možností, od jednodušších po složitější, jakým způsobem lze výrobky hodnotit a jaké vysvětluje závěry ze získaných výsledků. Finanční prostředky vložené do marketingové analýzy pomáhají správně vzdělat a vyhodnotit zkušenost konzumentů vzhledem k velkému počtu konzumentů apod.

Příklad senzorického mapy je znázorněn na obr. 6, kde kladky oznámené polohu skupin konzumentů, obdélníky polohu jednotlivých typů piv a barva pozadí míru těsnosti mezi preferencemi dané skupiny konzumentů a příslušným typem piv.

LITERATURA / REFERENCES
Analytica EBC, 2010: EBC Analysis Committee, Fachverlag Hans Carl, Nürnberg, 9. vyd.
ČSN EN ISO 5495, 2009: Senzorická analýza – Metodologie – Párová porovnávací zkouška.
ČSN EN ISO 8586, 2008: Senzorická analýza – Obecná směrnice pro výběr, výcvik sledování činnosti posuzovatelů.
ČSN EN ISO 8587, 2008: Senzorická analýza – Metodologie – Pořadová zkouška.
Kozel, R., Mynářová, L., Svobodová, H., 2011: Moderní metody a techniky marketingového výzkumu, Grada Publishing, a.s., Praha. ISBN 978-80-247-7298-1
Korelcze výsledků pomocí statistických metod zdekuje jak výrobky, tak preference hodnotitelů na klásty a vyjádřit kladné nebo záporné vztahy mezi nimi. Výsledkem je mapa, ze které lze vycít, které výrobky nebo značky mají k sobě nejlíše, atributy, které výrobky odlišují, dále jaké skupiny konzumentů a v jakém procentním podílu dávají přednost urátemu typu výrobku (např. výrobek C nejvíce bude chutnat starším mužům žijícím na vesnicí nebo malém městě).
Ze získaných dat lze vycít i další závislosti: jakým způsobem lze výrobky hodnotit a jaké vysvětluje závěry ze získaných výsledků. Finanční prostředky vložené do marketingové analýzy pomáhají správně vzdělat a vyhodnotit zkušenost konzumentů vzhledem k velkému počtu konzumentů apod.

Poděkování
Tato práce byla vypracována za podporu MZE-RO1914 „Výzkum kvality a zpracování sladařských a pivovarských surovin“ a MŠMT v rámci projektu LO1312.

4. Whether there are market gaps for new products
5. What key features of the product govern consumer preferences
6. How to design the best tasting products using modeling tools.

Preference mapping is twofold: internal preference mapping, which expresses the preferences of consumers in general, and external preference mapping that expresses the preferences of consumers in relation to the physico-chemical, sensory or economic parameters of the product.

The general procedure is as follows: a set of products is evaluated by a trained panel of evaluators, resulting in detailed sensory profiles of individual products. Furthermore, these products are presented to a group (at least a hundred) of laymen, which evaluate the products e.g. by some consumer acceptance tests. The correlation of results using statistical methods reduces both products and preference evaluators into clusters and expresses positive or negative relationships between them. The result is a map which can provide an information on which of the products or brands are mutually closest, attributes that differentiate the products, as well as which groups of consumers and their percentages preferring a certain type of product (e.g. product C will be tasty to older men living in a village or small town).

The collected data can yield further dependences: what product characteristics form the basis of consumer preferences, what a perfect product should look like whose taste suits the widest range of consumers, etc.

An example of a preference map is shown in Fig. 6 in which the clusters indicate the position of groups of consumers, beers give the coordinates of individual types and the background color shows the measure of tightness between the preferences of the consumers and the particular type of beer.

Meilgaard, M., Civille, G. V., Carr, B. T., 2006: Sensory Evaluation Techniques. Fourth ed., CRC Press, London, New York. 2006. s. 375–391. ISBN 978-08-4933839-7.
Meloun, M., Militky, J., 2002: Kompendium statistického zpracování dat. Academia, Praha. ISBN 80-200-1008-4.
Stone, H., Sidel, J., Oliver, S., Woolsey, A., and Singleton, R. C., 1974: Sensory evaluation by quantitative descriptive analysis. Food Technol. 28(11): 24–34.
XLSTAT, tutorial material: Addinsoft, New York, USA.

Do redakce došlo / Manuscript received: 25. 11. 2014
Přijato k publikování / Accepted for publication: 7. 1. 2015.