Metabolic Respiration Induces AMPK- and Ire1p-Dependent Activation of the p38-Type HOG MAPK Pathway

Hema Adhikari, Paul J. Cullen*
Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America

Abstract
Evolutionarily conserved mitogen activated protein kinase (MAPK) pathways regulate the response to stress as well as cell differentiation. In Saccharomyces cerevisiae, growth in non-preferred carbon sources (like galactose) induces differentiation to the filamentous cell type through an extracellular-signal regulated kinase (ERK)-type MAPK pathway. The filamentous growth MAPK pathway shares components with a p38-type High Osmolarity Glycerol response (HOG) pathway, which regulates the response to changes in osmolarity. To determine the extent of functional overlap between the MAPK pathways, comparative RNA sequencing was performed, which uncovered an unexpected role for the HOG pathway in regulating the response to growth in galactose. The HOG pathway was induced during growth in galactose, which required the nutrient regulatory AMP-dependent protein kinase (AMPK) Snf1p, an intact respiratory chain, and a functional tricarboxylic acid (TCA) cycle. The unfolded protein response (UPR) kinase Ire1p was also required for HOG pathway activation in this context. Thus, the filamentous growth and HOG pathways are both active during growth in galactose. The two pathways redundantly promoted growth in galactose, but paradoxically, they also inhibited each other's activities. Such cross-modulation was critical to optimize the differentiation response. The human fungal pathogen Candida albicans showed a similar regulatory circuit. Thus, an evolutionarily conserved regulatory axis links metabolic respiration and AMPK to Ire1p, which regulates a differentiation response involving the modulated activity of ERK and p38 MAPK pathways.

Introduction
Organisms sense and respond to diverse stimuli through the action of signal transduction pathways. During complex behaviors like cell differentiation, multiple pathways choreograph changes in the cell cycle and cell polarity to produce a new cell type. In many cases, it is not clear what pathways are involved or how different pathways collaborate to produce major changes in cellular reprogramming. Here, we investigate the problem of cell differentiation in fungal species that differentiate to the filamentous/hyphal cell type. In pathogens, filamentous growth is critical for virulence [1,2]. Therefore, identifying the pathways that regulate filamentous growth, and understanding how they function in an interconnected manner, is important for studies in eukaryotic cell differentiation and fungal pathogenesis.

In the budding yeast Saccharomyces cerevisiae, different MAPK pathways mediate the response to different stimuli. An ERK-type MAPK pathway called the filamentous growth pathway induces differentiation to the filamentous/invasive/pseudohyphal cell type in response to nutrient limitation [3,4]. A p38-type MAPK pathway, called the high osmolarity glycerol response (HOG) pathway mediates osmoadaptation [5,6]. The two pathways utilize some of the same components, including a core module consisting of the Rho-type GTPase Cdc42p, the p21 activated (PAK) kinase Ste20p, the MAPKKK Ste11p, and the adaptor protein Ste50p (Fig. S1, [5,7–9] and references therein). Plasma membrane (PM) regulators of the filamentous growth pathway, Msh2p, Sho1p, and Opy2p [10–12], also regulate the Ste11p branch of the HOG pathway [13–15]. The signaling mucin Msb2p may preferentially regulate the filamentous growth pathway, as another signaling mucin, Hkr1p, has been shown to mainly regulate the HOG pathway [16,17]. A second branch of the HOG pathway (Shl1p branch) converges on the MAPKK Pbs2p and is regulated by the two-component sensors Sln1p and Ypd1p, the protein kinase Ssk1p, and the redundant MAPKKKs Ssk2p and Ssk22p (Fig. S1, [13,18–21]). Thus, different MAPK pathways mediate different responses through the action of common or shared signaling modules.

To date, the filamentous growth and HOG pathways are thought to control different responses [22–25]. The filamentous growth pathway induces differentiation into chains of branched interconnected filaments by regulating changes in the cell cycle [26–28], cell adhesion [29,30], and cell polarity [31–33]. By comparison, the HOG pathway induces transient growth arrest [36,38] by the phosphorylation of translation initiation factors [36–38]. The HOG pathway also controls the production of osmozyte ([39] and references therein) and regulates changes in chromatin architecture [40–43], yet does not trigger a morpho-
Author Summary

In fungal species, differentiation to the filamentous/hyphal cell type is critical for entry into host cells and virulence. Comparative RNA sequencing was used to explore the pathways that regulate differentiation to the filamentous cell type in yeast. This approach uncovered a role for the stress-response MAPK pathway, HOG, during the increased metabolic respiration that induces filamentous growth. In this context, the AMPK Snf1p and ER stress kinase Ire1p regulated the HOG pathway. Cross-modulation between the HOG and filamentous growth (ERK-type) MAPK pathways optimized the differentiation response. The regulatory circuit described here may extend to behaviors in metazoans.

Results

Expression Profiling by RNA Seq Uncovers a Role for the HOG Pathway during Growth in Galactose

Comparative RNA sequencing (RNA seq, [65]) was performed to examine the response of S. cerevisiae cells to different stimuli. The response to osmotic stress (YEPD+0.4M KCl [23]), the non-preferred carbon source galactose (YEP-GAL, 2% GAL [66]), and an inhibitor of N-linked glycosylation (YEPD+2.5 µg tunicamycin [67]) were examined. Each stimulus induced the expression of overlapping and non-overlapping genes (Fig. 1A). As reported, salt induced targets of the HOG pathway (Table S1, [12,24]), galactose induced the GAL genes and other starvation-responsive genes (Table S1, [68,69]), and tunicamycin induced targets of the UPR and other genes (Table S1, [70,71]). The different stimuli also induced an overlapping gene set (Fig. 1A, 504 genes). Common genes included targets of the ESR (150 of 504 total, Table S1 [61,62]) and targets of the HOG pathway. Likewise, a partially overlapping set of repressed genes was also identified that included ESR targets (Fig. S2A).

To explore the role of the HOG pathway in response to different stresses, RNA seq profiles were compared between wild-type cells and cells lacking the HOG pathway MAPKK Pbs2p [pbs2A]. An overlapping set of Pbs2p-dependent genes was induced in response to all three conditions (32 genes, Fig. 1, B and C). Many of the genes (Fig. 1C, 27/32, asterisks) are targets of the ESR. The HOG response to the different stimuli was complex: Pbs2p-dependent targets showed different levels of induction by the different inducers and different induction profiles. For example, different subsets of Pbs2p-dependent targets were unique to each stimulus (Fig. 1, B and C; Table S1) or common to two of the three stimuli (Fig. 1B). Thus, the HOG pathway activates common and unique outputs in response to different stimuli.

The finding that galactose induced HOG pathway targets in a Pbs2p-dependent manner was unexpected. Pbs2p-dependent targets of the HOG pathway that were induced during growth in galactose regulate mitochondria/respiration, carbohydrate metabolism (including gluconeogenesis, glyoxylate cycle, glycogen metabolism), and amino acid/nitrogen metabolism (Fig. S2B; Table S1). Quantitative PCR (qPCR) analysis confirmed galactose- and Pbs2p-dependent induction of HOG targets, which included established targets of the HOG pathway (STL1, ENAI, GPD1, CTT1, and HSP12) to varying levels corresponding to the RNA seq analysis (Fig. 1D, [23,24,41,72]). Likewise, the HOG pathway reporter pXGCRE-lacZ [73] was induced by galactose (by 2.3-fold) in a Pbs2p-dependent manner (Fig. 1E, salt induced the reporter by 3-fold). Therefore, the HOG pathway induces a transcriptional response during growth in galactose.

The filamentous growth pathway is induced during growth in galactose [16,74], and cells undergo filamentous growth in this setting. The filamentous growth pathway shares components with the HOG pathway. Comparative RNA seq between wild-type cells and the ste12A mutant showed that the HOG and filamentous growth pathways induce different target genes. Known targets of the filamentous growth pathway were identified (FLO11, CLN1, PUG1, YLR042C, BAR1, MSB2, Table S1, [11,22,27]) as well as new targets, including genes that regulate progression through the G2/M phase of the cell cycle (CLB1, CLB2 and SWI1, [75,76]; Fig. 1F, bud-site-selection [Fig. 1F, BUD8, RAX2 and RSR1, [77–79]), a PM regulator of the PKC pathway [Fig. 1F, WSC2 [80]], and components of the filamentous growth pathway [Fig. 1F, SHO1 and TEC1 [12,23,31]], possibly leading to positive feedback [82]. These genes were not Pbs2p-dependent, and the filamentous growth pathway did not show induction of HOG pathway targets (Table S1). Therefore, the HOG and filamentous growth pathways mediate non-overlapping responses during growth on galactose.
Figure 1. Gene expression profiling by RNA seq analysis and qPCR. A) Genes induced by salt, tunicamycin (TUN), or galactose (GAL). All RNA seq comparisons are provided in Table S1. B) Genes induced in a Pbs2p-dependent manner under the indicated conditions. Genes outlined by the dark blue circle (Pbs2p-dependent GAL specific) were functionally annotated in a pie chart in Fig. S2. C) Heat map of genes induced by the indicated stresses. Common targets and targets unique to each stimulus is shown. Asterisk, target of ESR. D) qPCR of HOG pathway target mRNAs in wild type and the pbs2Δ mutant grown in glucose (GLU), YEPD and galactose (GAL, YEP-GAL). Error bars indicate +/- S.E.M. of three independent experiments. Actin (ACT1) mRNA was used as a control. E) Activity of p8XCRE-lacZ in wild-type cells (PC313) and pbs2Δ mutant (PC5033) grown in YEPD (5.5 hr), YEP-GAL (5.5 hr), and YEPD+0.4 M KCl (30 min). F) qPCR of Ste12p target mRNAs in wild type (PC358) and the ste12A (PC2382) mutant grown in glucose (YEPD) and galactose (YEP-GAL). See panel D for details.

doi:10.1371/journal.pgen.1004734.g001

Comparing HOG Pathway Activation by Galactose and Osmotic Stress

To further examine HOG pathway activation during growth in galactose, phosphorylation of the MAPK Hog1p [P~Hog1p] was measured, which provides a readout of HOG pathway activity [73,83]. This assay had the advantage of evaluating the kinetics and genetic pathways required for pathway activation. Consistent with the RNA seq analysis, growth of cells in galactose induced the activation of the HOG [Fig. 2A, P~Hog1p] and filamentous growth pathways [Fig. 2A, P~Kss1p]. Depending on the condition, different levels of basal P~Hog1p and P~Kss1p were detected, which may represent differences in baseline activity between the pathways.

Other nutrient-limiting conditions were also tested. Non-fermentable carbon sources, acetate and ethanol-glycerol (Fig. S3A), and limitation of external osmolarity (KCl, 0.4 M) and galactose (2%) was compared. In response to osmotic stress, P~Hog1p was detected by 5 min. By 60 min, P~Hog1p was reduced due to pathway attenuation (Fig. 2, B and C, upper panel [84,85]). By comparison, P~Hog1p was detected during growth in galactose at 240 min (Fig. 2, B and C, middle panel), and the signal persisted until 720 min (Fig. 2D). Salt (0.4 M KCl) induced higher levels of P~Hog1p than growth in galactose [Fig. 2E], which is consistent with the RNA seq analysis (Table S1). Salt (0.4 M KCl) added to cells grown in galactose caused a rapid increase in P~Hog1p (Fig. 2, B and E). Transfer of cells from galactose (YEP-GAL) to glucose (YEPD), which leads to glucose repression (see below), caused a reduction in P~Hog1p levels by 20 min (Fig. 2, B and F), which was comparable to the reduction in P~Hog1p levels in response to osmotic shock (Fig. 2, B and G). Therefore, the amplitude and duration of HOG pathway signaling differs depending on whether the inducer is osmotic stress or galactose.

Two branches of the HOG pathway regulate the response to osmotic stress, which converge on the MAPKK Pbs2p [Fig. S1, [13,18,19]]. In response to salt, the branches are redundant, in that mutants lacking both branches (ssk1Δ ste11Δ) show the same defect as mutants lacking the MAPKK (pbs2Δ) or MAPK (hog1Δ, Fig. 2G).

During growth in galactose, but not salt, the MAPKKs Ssk2p and Ssk22p were required for HOG pathway activation (ssk2Δ ssk22Δ, Fig. 2G). Thus, Ssk2p and Ssk22p have a role in the response to galactose that differs from their role in response to osmotic stress. The different branches of the HOG pathway play different roles under different conditions, such as in the response to different concentrations of salt [23]. Nitrogen limitation showed a similar requirement for Ssk2p and Ssk22p (Fig. S3E). The Ste11p branch alone was not required (ste11Δ, Fig. 2G), but when the ste11Δ mutant was combined with the ssk1Δ mutant, a defect was observed (ssk1Δ ste11Δ, Fig. 2G).

Thus, the Ste11p branch plays a minor role in the HOG response to galactose. One might expect that the Msb2p/Sho1p branch, which induces the filamentous growth pathway in response nutrient limitation, would transmit nutrient signals to Pbs2p/ Hog1p (Fig. S1). In fact, the Sho1p branch played the major role in this nutritional response, whereas the Sho1p branch played a minor role.

The AMPK Snf1p and the TCA Cycle Are Required for HOG Pathway Activation by Galactose

Glucose is the preferred carbon source in yeast [86,87]. When glucose is abundant, yeast cells exclusively utilize that nutrient over non-preferred carbon sources like galactose. Glucose repression prevents the transport and utilization of other carbon sources [86,88–90]. As shown above, glucose added to cells grown on galactose resulted in attenuation of the HOG response (Fig. 2F). To further test whether glucose prevents the HOG response to galactose, cells were grown in media containing both glucose and galactose as a carbon source. Under this condition, HOG pathway signaling was also attenuated (Fig. 3A). These experiments indicate that galactose metabolism is required for HOG pathway activation. Consistent with this possibility, mutants defective for galactose transport and utilization (Fig. 3B; gal3Δ, gal4Δ, gal7Δ, and gal10Δ [88,90–93]) were defective for HOG pathway activation.

Galactose utilization increases the respiratory capacity by shunting ATP production through the electron transport chain [86,94,95]. An inhibitor of respiration, antimycin [96–98], prevented HOG pathway activation by galactose (ANT, Fig. 3C). Antimycin did not prevent HOG pathway activation in response to salt (Fig. S4A). Metabolic respiration produces intermediates that are utilized by the tricarboxylic acid (TCA, or citric acid) cycle to generate precursors for electron transport. Strains lacking TCA cycle enzymes aconitate (aco1Δ), fumarase (fum1Δ), malate dehydrogenase (mdh1Δ), alpha keto-glutarate (kgd1Δ), and isocitrate dehydrogenase (idh1Δ) were defective for HOG pathway activation by galactose (Fig. 3D). These mutants were not required to mediate an osmotic response (Fig. S4B, shown for aco1Δ). Therefore, metabolic respiration of galactose underlies activation of the HOG pathway.

The AMP-dependent protein kinase (AMPK) Snf1p is a major regulator of the response to poor carbon source utilization [99,100]. The main function of Snf1p is the de-repression of glucose-repressed genes [86,89,99]. Snf1p was required for HOG pathway activation by galactose (Fig. 3E). Snf1p functions with the regulatory subunit Snf1p [101], which was also required for HOG pathway activation by galactose (Fig. S4C). Snf1p and Snf4p were not required for HOG pathway activation in response to osmotic stress (Fig. S4D). Snf1p phosphorylates the transcriptional repressor Mig1p to relieve glucose repression [102–104],...
Figure 2. Comparison of HOG pathway activation by galactose and osmotic stress. For all phosphoblots involving Hog1p and Kss1p, the sizes of proteins are P--Hog1p (∼49 kDa), Hog1p (∼49 kDa), P--Kss1p (∼43 kDa), Kss1p (∼43 kDa), and Pgk1p (∼45 kDa). Pgk1p was used as a loading control. Asterisk (*) refers to a background band detected by the Kss1p antibody. Basal P--Hog1p and P--Kss1p showed variable levels under un-inducing conditions. A) Wild type cells (PC538) cells were grown to mid-log phase (∼5.5 hrs) in YEPD (GLU) or YEP-GAL (GAL) media and evaluated by immunoblot analysis for phosphorylation of the MAPKs Hog1p and Kss1p. B) Graph of P--Hog1p levels under the indicated conditions, as determined by ImageJ analysis. C) Time-course analysis. Wild-type cells (PC538) were grown to mid-log phase and transferred to media containing salt (YEPD+0.4 M KCl) or galactose (YEP-GAL) for the indicated times. D) Extended time course of Hog1 p during growth in galactose. E) Combinatorial analysis of the response to osmotic stress and galactose. Cells were grown to mid-log phase in YEPD, YEP-GAL, or YEPD+0.4 M KCl, which was added to the cells growing in YEPD for 5 min. F) P--Hog1p levels in cells shifted from galactose (YEP-GAL) to glucose (YEPD) for the indicated time points. Cells in YEP-GAL media were harvested by centrifugation, washed twice in water, and resuspended in YEPD for the indicated time points. G) P--Hog1p levels during growth in 0.4 M KCl and galactose in mutants lacking Ssk1p or Ste11p branches of the HOG pathway. Wild type cells (PC538), and the ssk1Δ (PC1523), ssk2Δ (PC6086), ssk22Δ (PC6085), ssk2Δ ssk22Δ (PC6031), ste11Δ (PC3861), ste11Δ ssk1Δ (PC2061), pbs2Δ (PC2053) and hog1Δ (PC6047) mutants were grown in YEP-GAL medium or YEPD medium containing 0.4 M KCl for 5 min.

doi:10.1371/journal.pgen.1004734.g002
which leads to induction of the GAL genes and other genes [89,102,105,106]. Loss of Mig1p restored HOG pathway activity in the snf1Δ mutant (Fig. 3E, mig1Δ snf1Δ). Cells lacking Mig1p alone did not influence HOG pathway activity (Fig. 3E, mig1Δ). Therefore, Snf1p regulates the HOG pathway through its major role in relieving de-repression of glucose-repressed genes. Snf1p also regulates nitrogen assimilation pathways [107] but was not required to activate the HOG pathway in response to nitrogen deficiency (Fig. 3E). In summary, metabolic respiration triggers AMPK-dependent activation of the HOG pathway.

UPR Kinase Ire1p Mediates HOG Pathway Activation by Galactose

Protein glycosylation is an oligosaccharide modification of proteins that occurs in the endoplasmic reticulum (ER) and Golgi apparatus [108]. Defects in protein glycosylation trigger a global response that involves the action of several MAPK pathways, including the filamentous growth [10,60] and HOG pathways [63,64]. Comparative RNA seq analysis identified HOG pathway targets induced by treatment with tunicamycin, an inhibitor of N-linked glycosylation (Fig. 1, B and C; Table S1). To further explore the HOG and filamentous growth pathway response to glycosylation deficiency, a conditional mutant, pmi40-101, was used that is defective for an early step in N- and O-linked glycosylation [115,116]. The UPR was not induced by these stimuli (Fig. 4C). Induction of the UPR was abolished by treatment with antimycin (Fig. 4C). Therefore, an increase in metabolic respiration stimulates the UPR, which leads to Ire1p-dependent activation of the HOG pathway.

The HOG pathway is activated by several stimuli, including salt, nitrogen (this study), myriocin [14,114], and oxidative stress [115,116]. The UPR was not induced by these stimuli (Fig. 4C). Therefore, two different types of inducers activate the HOG pathway. One type is Ire1p-dependent (induced by increased metabolic respiration and glycosylation deficiency), and another is Ire1p-independent (induced by salt and other stresses).

Filamentous Growth and HOG Pathways Contribute to Growth in Galactose and Modulate Each Other’s Activities to Produce an Optimal Response

The filamentous growth and HOG pathways are activated during growth in galactose (Fig. 1A; Fig. 2A; Table S1). However, the HOG pathway inhibits the filamentous growth pathway in response to osmotic stress [12,16,47–49]. To determine whether the HOG pathway inhibits the filamentous growth pathway during growth in galactose, cells were examined...
Cells lacking an intact HOG pathway showed hyper-polarized growth (Fig. 5A, pbs2Δ), indicative of a hyper-active filamentous growth pathway. Comparative RNA seq showed that transcriptional targets of the filamentous growth pathway (PGU1, SVS1, MSB2, and KSS1; Table S1) were up-regulated in the pbs2Δ mutant in galactose. In line with the RNA seq data, the pbs2Δ mutant showed elevated activity of a filamentous growth pathway reporter (Fig. 5B, FRE-lacZ).

Tyrosine phosphatases Ptp2p and Ptp3 negatively regulate the Hog1p pathway [85,117]. The ptp2Δ ptp3Δ double mutant showed elevated P~Hog1p levels under pathway inducing conditions (galactose) (Fig. 5C). This was also observed under basal conditions (glucose) (Fig. 5C). Accordingly, the ptp2Δ ptp3Δ double mutant (and the ptp3Δ single mutant) showed reduced invasive growth and crosstalk reporter activity (Fig. 5D). Therefore, the HOG pathway inhibits the filamentous growth pathway during growth in galactose.

The filamentous growth pathway also inhibits the HOG pathway [10]. Consistent with this finding, the level of P~Kss1p was elevated in the pbs2Δ mutant at 0 h, 2 h, and 4 h (Fig. 3D) of growth in galactose. Similarly, the level of P~Hog1p was elevated in the kss1Δ mutant at 6 h and 8 h (Fig. 5E). RNA seq analysis showed STE12 was up-regulated by galactose in the pbs2Δ mutant (Table S1). This was confirmed by qPCR (1.52 log2 fold) (Fig. 5F) and was reflected at the protein level (Fig. 5G). Thus, the HOG pathway inhibits the filamentous growth pathway during growth in galactose, which may occur at the STE12 level. These results show that the HOG and filamentous growth pathways modulate each other’s activities in a complex pattern in galactose. To this point, our results suggest an apparent paradox. The HOG and filamentous growth pathways are both activated during growth on galactose, yet the pathways dampen each other’s activities. To determine the roles of the pathways in this setting, mutants in the filamentous growth and HOG pathway pathways were examined for growth in galactose. Mutants lacking the filamentation MAPKK (ste7Δ) and HOG MAPKK (pbs2Δ) were not defective for growth on galactose (Fig. 6A). However, the ste7Δ pbs2Δ double mutant showed a growth defect (Fig. 6A). This defect was not specific for the MAPKKs, because another mutant that blocks the activity of both pathways showed an equivalent growth defect (ste11Δ ssk1Δ, MET15Δ wildtype).
What is the benefit to the cross-modulation between the two pathways? One possibility is that modulation of the pathways’ activities may be important to optimize the response. To test this possibility, the \(pbs2\Delta \) mutant was examined in detail by microscopic examination. A subset of \(pbs2\Delta \) cells showed morphological defects [\(\approx 5\% \) compared to \(\approx 0.5\% \) of wild-type cells, \(1000 \) cells counted] (Fig. 6C). Thus, hyper-activation of the filamentous growth pathway can lead to morphogenetic defects. To further explore this possibility, the pattern of septins,

Figure 5. Cross-inhibition between the filamentous growth and HOG pathways during growth in galactose. A) Morphology of wild-type cells (PC538) and the \(pbs2\Delta \) mutant (PC2053), grown on YEPD and YEP-GAL for 24 hrs. Bar, 5 microns. B) pFRE-lacZ reporter activity in wild-type cells (PC313) and the \(pbs2\Delta \) mutant (PC5035) in YEP-GAL medium. C) Role of protein tyrosine phosphatases in P–Hog1p activity in galactose. Wild-type cells (PC538), and the \(ptp2\Delta \) (PC6156), \(ptp3\Delta \) (PC6157) and \(ptp2\Delta \ \text{ptp3}\Delta \) double mutant (PC6158) were grown in YEPD and YEP-GAL media for 5.5 hrs. D) P–Kss1p activity in wild-type cells and the \(pbs2\Delta \) mutant (PC2053) grown in YEP-GAL medium over a time course as indicated. E) P–Hog1p activity in the \(kss1\Delta \) mutant (PC620) grown in YEP-GAL medium for the times indicated. F) qPCR showing the relative expression of \(STE12 \) mRNA in the wild-type (PC38), \(pbs2\Delta \) (PC2053) and \(ste12\Delta \) (PC2382) mutant cells. Error bars indicate +/- standard error mean of three independent experiments. Actin (\(ACT1 \)) mRNA was used as a control. G) Ste12p-HA protein levels in the wild-type and \(pbs2\Delta \) strains. Hog1p levels by immunoblot analysis are also shown.

doi:10.1371/journal.pgen.1004734.g005
which mark the mother-bud neck [118,119], was also examined. Septin staining showed an irregular pattern of pbs2^D cells with morphological defects (Fig. 6C). This defect is indicative of problems with cell-cycle progression or proper growth.

To determine if the hyper-polarized growth of the pbs2^D mutant comes from hyper-activation of the filamentous growth pathway, cell morphology was quantitated by microscopy. In rich media (YEPD), wild-type cells grow predominately in the vegetative (round) form ($8+/−2\%$ elongated cells; 200 cells counted for all trials). By comparison, the pbs2^D mutant shows a cell-elongation morphology ($>83.5+/−5\%$ elongated cells) that was abolished in the $\text{pbs2}^D\text{ste7}^Δ$ double mutant ($7+/−3\%$ elongated cells). Therefore, the enhanced polarized morphology seen in pbs2^D cells, and concomitant morphological abnormalities, is due to Ste7p. This result is complicated because in YEP-GAL, the $\text{ste7}^Δ\text{pbs2}^Δ$ double mutant shows morphological defects not seen in either single mutant (Fig. 6B). Thus, Pbs2p may attenuate morphogenesis in multiple ways.

This finding extends to other negative-regulatory inputs to the filamentous growth pathway as well (Chavel et al. IN PRESS).

Figure 6. Role of the HOG and filamentous growth pathways in growth in galactose and effect of the inhibitory role of the HOG pathway on filamentous growth pathway outputs. A) Serial dilutions of wild-type (PC313), $\text{ste7}^Δ$ (PC4928), $\text{pbs2}^Δ$ (PC5035) and $\text{ste7}^Δ\text{pbs2}^Δ$ (PC6272) cells were spotted on YEPD and YEP-GAL media. B) Morphology of wild-type cells (PC3538), the $\text{pbs2}^Δ$ mutant (PC2053), the $\text{ste7}^Δ$ mutant (PC4982), and the $\text{ste7}^Δ\text{pbs2}^Δ$ double mutant (PC6272) grown YEP-GAL media for 24 hrs. Bar, 5 microns. C) Septin staining of wild-type and $\text{pbs2}^Δ$ cells harboring the pCdc12p-GFP plasmid. Cells were grown to mid-log phase in YEPD. D) Mat formation in cells lacking the filamentous growth or HOG pathways. Wild-type (PC3538), $\text{flo11}^Δ$ (PC1029), and $\text{pbs2}^Δ$ (PC2053) strains were grown in YEPD medium for 16 hrs and then spotted onto low agar (0.3%) YEP-GAL medium for 3 d at 30°C. Bar, 1 cm.
Although only a low percentage of cells exhibit morphological defects, it is likely that even minor mis-coordination of basic cellular processes would be detrimental to cell health. Thus, modulation of the filamentous growth pathway by the HOG pathway is necessary for proper cell growth and morphogenesis.

As a second test, the response of a population of cells was examined. Yeast cells expand in biofilms/mats through the action of the filamentous growth pathway, which regulates expression of the cell-adhesion molecule Flo1p [120]. When hyper-activated, the filamentous growth pathway causes an increase in PLO11 expression, which prevents biofilm/mat expansion [121,122]. We found that the pbs2Δ mutant formed smaller biofilms/mats than wild-type cells during expansion on galactose media (Fig. 6D, see quantitation in graph). Thus, modulation of the filamentous growth pathway by the HOG pathway is required to coordinate cell growth and optimize colonial behavioral responses.

The Ire1p-HOG1p-ERK-p38 Axis Is an Evolutionarily Conserved Response among Fungal Species

The signaling circuit characterized here might be specific to S. cerevisiae or extend to other species. To address this question, pathways of the fungal pathogen Candida albicans were examined. Like budding yeast, C. albicans has a Kss1p-type pathway (Cek1p pathway [123–125]), and a p38-type pathway (CaHOG pathway [126]). The CaHOG MAPK CaHog1p is activated by osmotic stress (Fig. 7A) [127] and was also induced by tunicamycin, myriocin, and growth in galactose (Fig. 7A, 5 h at 30°C). Thus, the versatility of HOG pathway in sensing diverse stresses is conserved among several fungal species. We also tested whether CaIre1p is required to mediate the HOG pathway response to galactose. The ire1Δ/ire1Δ double mutant was defective for producing the elevated levels of P–CaHog1p seen during galactose treatment in wild-type cells (Fig. 7B). A strain lacking CaIre1p but containing a complemented version ire1Δ/IRE1, restored P–CaHog1p activity (Fig. 7B). Thus, CaIre1p mediates the HOG pathway response to galactose.

Previous reports have shown that the C. albicans HOG pathway negatively regulates the Cek1p pathway [128]. In C. albicans, growth at high temperatures (37°C) is a potent inducer of dimorphism [129,130]. Interestingly, growth of C. albicans cells in galactose induced P–Cek1p levels only at 37°C in wild-type cells (Fig. 7C). The C. albicans hog1Δ/hog1Δ mutant grown in galactose showed elevated P–Cek1p levels at 30°C and 37°C (Fig. 7C). Similarly, the hog1Δ/hog1Δ mutant showed hyper-invasive growth compared to wild-type cells (Fig. 7D). Thus, CaHog1p inhibits Cek1p pathway activity during growth in galactose.

The Cek1p pathway might also inhibit the CaHOG pathway. In the cek1Δ/cek1Δ mutant, elevated P–CaHog1p levels were observed during growth in galactose at 30°C and 37°C (Fig. 7E). Therefore, the CaHog1p pathway is activated by galactose in an Ire1p-dependent manner. Under this condition, the CaHog1p pathway and Cek1p pathways are both activated and both modulate each other’s activities. These results indicate that the signaling axis described in S. cerevisiae extends to the opportunistic pathogen C. albicans.

Discussion

Differentiation into specialized cell types occurs during development and in response to extrinsic cues. Fungal species differentiate into the filamentous/hyphal cell type, which in pathogens occurs during colonization of the host. Using a genomic survey, RNA seq analysis, we identify a new role for a p38 MAPK pathway (HOG) in differentiation to the filamentous cell type in yeast. The HOG pathway is activated during growth in poor carbon sources through a regulatory circuit involving the AMPK Snf1p. Since deletion of MIG1 alleviates the need for Snf1p, the regulation of Hog1p is likely to be downstream of Mig1p repressed genes. HOG pathway activation in this context also required the ER stress kinase Ire1p. The connection between Ire1p and the HOG stress pathway has been reported [63,81,82]. Our study therefore connects AMPK and Ire1p in a regulatory circuit that governs p38 (Fig. 7F). The HOG pathway and the ERK-type filamentous growth pathway induced target genes to promote growth in galactose, but the pathways also modulated each other’s activities. Such modulation optimized cell growth and morphogenesis to facilitate production of the filamentous cell type (Fig. 7F). Our findings therefore elucidate a signaling network that occurs during differentiation and highlights the critical role for pathway modulation in proper cell-type specification.

Nutrient sensing in yeast has been extensively studied. Well-established pathways mediate the response to carbon and nitrogen limitation. We show that limiting nutrients, like non-preferred carbon and nitrogen sources, activate the p38-type HOG pathway in yeast. As a result, glucose repression, the AMPK Snf1p, metabolic respiration, and the TCA cycle feed into HOG pathway signaling (Fig. 7F). The HOG pathway is well known for its ability to sense and respond to changes in external osmolarity. Multiple inducers activate the HOG pathway, including citric acid [131], hypoxia [132], cold stress [133] and defective sphingolipid biosynthesis [114]. Here we demonstrate a connection between nutrients and activation of the HOG pathway (Fig. 7F). In mammals, p38-type stress activated protein kinase (SAPK) pathways mediate AMPK-dependent metabolic reprogramming. The p38 pathway can alter the balance between survival and apoptosis [134]. p38 also regulates respiration in muscles, and gluconeogenesis in liver, and when mis-regulated can lead to problems that range from diabetes [135–137] to tumor malignancy [138].

We show that in yeast, metabolic respiration feeds into the HOG response and requires the UPR regulator Ire1p. Several inducers of the Ire1p have been identified [139] but to our knowledge, this is the first example of a connection between defects in metabolic respiration and Ire1p (Fig. 7F). Hints at this connection come from studies in mammalian cells. Ire1p can regulate AMPK function [140], and glucose levels are connected in some manner to Ire1p activity [141]. Elements of the ER stress pathway drive metabolic reprogramming in triple-negative breast cancer cells [142]. In tumor microenvironments, Ire1p is required to promote the balance between lipid and protein biosynthesis potentially at the level of ER production [143]. It is plausible that Ire1p regulates p38 activity in these settings as well. It is unlikely that the AMPK-Ire1p-p38 circuit governs all p38-type responses; however, the connections reported here may underlie nutrient-dependent p38-type responses in many settings.

Metabolic respiration (and defects in protein glycosylation) induce the HOG (p38) and filamentous growth (ERK) pathways. The two pathways do not depend on each other for activation, and they induce non-overlapping targets (herein and [23,32]). Both pathways are redundant for full growth on galactose, and the two pathways modulate each other’s activities. This complicated functional interplay between the pathways is critical for proper cell growth and optimal differentiation to the filamentous cell type. Generally speaking, p38 and ERK pathways can be activated in the same cells to together orchestrate complex responses that include cell differentiation [144,145]. An important insight from
Figure 7. MAPK responses in *C. albicans* during growth in galactose. A) Immunoblot analysis of P→CaHog1p. Wild-type (PC6111) cells were grown in YEPD and YEP-GAL medium (5.5 hrs) and treated with TUN (tunicamycin) (2.5 μg for 3 hrs), MYR (myriocin) (2.5 μg for 3 hrs) and 0.5M NaCl (10 min). B) Phosphorylation of CaHog1p requires the CaIre1p. Wild-type (PC6116), ire1Δ/ire1Δ (PC6144), and ire1Δ/pIRE1 (PC6145) cells were grown in YEPD and YEP-GAL medium (5.5 hrs). C) P→Cek1p levels in the hog1Δ/hog1Δ mutant at 30°C and 37°C. Wild-type (PC6111) and hog1Δ/hog1Δ (PC5008) cells were grown in YEPD and YEP-GAL medium (5.5 hrs). D) Plate-washing assay of wild-type cells (PC6111) and the hog1Δ/hog1Δ mutant (PC5008) on YEP-GAL medium at 37°C for 48 hrs. The plate was photographed, washed, and photographed again to reveal invaded cells. E) P→CaHog1p and P→Cek1p levels in the cek1Δ/cek1Δ mutant at 30°C and 37°C. Wild-type (PC6111) and cek1Δ/cek1Δ (PC6114) cells were grown in YEPD and YEP-GAL medium (5.5 hrs). F) Model showing the roles of the HOG and filamentous growth pathways in the response to growth in galactose utilization.
galactose. Galactose is transported into cells and metabolized by genes under the control of Snf1p. As a result, metabolic respiration is increased, which by some mechanism (?) induces the UPR. Ire1p mediates activation of the HOG and filamentous growth pathways (Adhikari et al. SUBMITTED). The HOG and filamentous growth pathways induce different target genes to redundantly promote growth under this condition. The antagonistic roles of these pathways on each other’s activities optimize the response.

doi:10.1371/journal.pgen.1004734.g007

our study is that p38 and ERK pathways modulate each other’s activities to produce an optimal response. Such cross-wiring to fine tune responses underscores the importance of precision in cell differentiation.

Materials and Methods

Strains and Plasmids and Growth Conditions

Yeast and bacterial strains were grown by standard methods [146,147]. Yeast strains were grown on YEP (yeast extract and peptone) medium containing 2% glucose (D) or 2% galactose (GAL) unless otherwise indicated. Cells were grown at 30°C. Strains are listed in Table 1. Primers used in the study are listed in Table 2. The plate-washing assay [148] and the single cell invasive growth assay [60] were performed as described. Biofilm assays were performed as described [120], except that galactose was used as a carbon source.

Plasmid YCp-Cdc12p-GFP was provided by J. Pringle [149], pFRE-lacZ by H. Madhani [150], pUPRE-lacZ by David Edze [151], and p8X-CRE-lacZ by H. Saito [73]. Plasmid selection was maintained in synthetic complete medium containing 2% glucose (SD) or 2% galactose (S-GAL) that lacked uracil (-URA) or leucine (-LEU). Gene disruptions were performed according to standard genetic techniques [152,153].

RNA Preparation

Total RNA was isolated by acid phenol method from 10 ml cultures of WT and pbs2ΔA mutant grown in YEPD (5.5 hrs), YEP-GAL (5.5 hrs), YEPD+Tunicamycin (3 hrs) and YEPD+salt (10 min). Isolated RNA was purified over a RNAeasy column (Qiagen). RNA concentration was measured using the NanoDrop2000 spectrophotometer (Thermo Scientific, Wilmington, DE) and purity was established by the A260/A280 ratio. RNA was detected by running samples on an 8M Urea 6%polyacylamide gel, stained by ethidium bromide. Three independent inductions were evaluated for RNA-seq analysis. Total RNA integrity was checked using an Agilent 2200 TapeStation (Agilent Technologies, Inc., Santa Clara, CA) and quantified using a Trinean DropSense96 spectrophotometer (Caliper Life Sciences, Hopkin-ton, MA).

RNA-seq Expression Analysis

RNA sequencing was performed at the Fred Hutchinson Cancer Research Center (Seattle, WA). RNA seq was performed in triplicate by sequencing RNA prepared from 3 different (independent) cultures. RNA-seq libraries were prepared from total RNA using the TruSeq RNA Sample Prep Kit (Illumina, Inc., San Diego, CA, USA). Library size distributions were validated using an Agilent 2200 TapeStation (Agilent Technologies, Santa Clara, CA, USA). Additional library QC, blending of pooled indexed libraries, and cluster optimization was performed using Illumina’s Invitrogen Qubit 2.0 Fluorometer (Life Technologies-Invitrogen, Carlsbad, CA, USA). RNA-seq libraries were pooled (24-plex) and clustered onto a flow cell lane using an Illumina cBot. Sequencing was performed using an Illumina HiSeq 2500 in Rapid Mode employing a paired-end, 50 base read length (PE30) sequencing strategy.

Image analysis and base calling were performed using Illumina’s Real Time Analysis v1.17 software, followed by ‘demultiplexing’ of indexed reads and generation of FASTQ files, using Illumina’s CASAVA v1.8.2 software (http://www.illumina.com/software). For analysis of the RNA seq data, reads of low quality were filtered out prior to alignment to the reference genome (S. cerevisiae assembly R64-1-1, Ensembl release 75) using TopHat v2.0.9 [154]. Counts were generated from TopHat alignments for each gene using the Python package HTSeq v0.5.4 [http://www-uber.embio.de/users/anders/HTSeq/doc/overview.html]. Genes with low counts across all samples were removed, prior to identification of differentially expressed genes using the Bioconductor package edgeR v3.4.2 [155]. A false discovery rate (FDR) method was employed to correct for multiple testing [156]. Differential expression was defined as [log2 (ratio)] ≥0.585 (2.15-fold) with the FDR set to 5%.

Quantitative RT-PCR Analysis

cDNA was synthesized using iScript cDNA synthesis kit (BioRAD, Carlsbad CA) according to manufacturer’s protocol. PCR reactions were set-up using 3Q SYBR Green Supermix (BioRAD, Carlsbad, CA). qPCR was performed using the following amplification cycles: initial denaturation for 8 min at 95°C, followed by 35 cycles (denaturation for 15 sec at 95°C and annealing for 1 min at 60°C). Expression of genes was quantified using the 2^-DeltaDeltaCt method [157] where ACTI (actin) was used for normalization of expression values.

Cell Inductions and Protein Immunoblot Analysis

To analyze HOG and filamentous growth pathway activity by phoshoblot analysis, cells were induced under the following conditions. For S. cerevisiae, cells were grown in YEPD to mid-log phase, and 0.4 M KCl was added for 5 min. For C. albicans, 0.4 M NaCl was used. For galactose, cells were grown in YEP-GAL medium to mid-log phase (5.5 hrs). For tunicamycin, cells were grown to mid-log phase in YEPD, and tunicamycin was added to cells for 3 hrs. [2.5 μg Sigma CAT # T7765], Antimycin [Sigma CAT # A6874] was added to mid-log phase cells for 3 hrs. (2.5 μg, 3 hrs), H2O2 [Sigma CAT #216763] was added to cells at a concentration of 5 mM for 20 min. Myriocin [Sigma CAT #M1177], Yeast strains were grown in nitrogen free media (yeast nitrogen base without amino acids and without ammonium sulfate [1.7 g/L] BD Franklin Lakes, NJ; #235320) [31] supplemented with glucose as a carbon source. For phosphate free medium (yeast nitrogen base without amino acids and without phosphate [5.6 g/L], MP Biomedicals LLC, Solon, OH; #114027812) was supplemented with amino acids as a nitrogen source and glucose as a carbon source. For induction of Candida albicans pathways, strains were maintained at 30°C. Cells were grown to mid-log phase (~5 hrs) in YEPD or YEP-GAL and treated with 0.5 M NaCl for 10 min, myriocin (5 mM for 10 min), and tunicamycin (2.5 μg for 3 hrs). The fmi40-101 mutant was grown in YEPD medium supplemented with or without 50 mM mannose for 3 hrs. For strains that exhibited growth defects in galactose, input cell number (OD600) was increased to be equivalent to wild-type cells at mid log phase.

Cell extracts were prepared for immunoblot analysis according to established procedures [158]. Mid-log phase cells were

PLOS Genetics | www.plosgenetics.org 12 October 2014 | Volume 10 | Issue 10 | e1004734
Strain	Genotype	Reference
PC244	MATa ste4 lys2 GAL-STE4 his3::FUS1-HIS3 FUS1-lacZ pmi40-101	[60]
PC313	MATa ura3-52	[161]
PC338	MATa ste4 FUS1-lacZ FUS1-HIS3 ura3-52	[11]
PC560	MATa ste4 FUS1-lacZ FUS1-HIS3 ura3-52 snf1::KlURA3	[60]
PC620	MATa ste4 FUS1-lacZ FUS1-HIS3 ura3-52 ksl1::KlURA3	This study
PC653	MATa ste4 FUS1-lacZ FUS1-HIS3 ura3-52 snf4::KlURA3	[60]
PC1029	MATa ste4 FUS1-lacZ FUS1-HIS3 ura3-52 flb11::KanMX6	[122]
PC1523	MATa ste4 FUS1-lacZ FUS1-HIS3 ura3-52 ssk1::KlURA3	[16]
PC2053	MATa ste4 FUS1-lacZ FUS1-HIS3 ura3-52 pbs2::KanMX6	[16]
PC2061	MATa ste4 FUS1-HIS3 ura3-52 ssk1::NAT	[16]
PC2382	MATa ste4 FUS1-HIS3 ura3-52 ste2::KanMX6	[16]
PC3861	MATa ste4 FUS1-lacZ FUS1-HIS3 ura3-52 ssk1::NAT	[74]
PC3912	MATa ste4 FUS1-HIS3 ura3-52 acol::NAT	
PC4843	MATa ste4 FUS1-HIS3 ura3-52 mig1::NAT	[74]
PC4982	MATa ura3-52 ste7::HYG	
PC5008d	ura3::imm434/ura3::imm434 his1::hisG his1::hisG	[127]
PC5035	MATa ura3-52 ssk2::KlURA3	[16]
PC6016c	YS11 Mat a can1::Ste2pr-spHIS5 lyp1::Ste3pr-LEU2	[160]
PC6044d	MATa ste4 lys2 GAL-STE4 his3::FUS1-HIS3 FUS1-lacZ pmi40-101 ire1::KlURA3	
PC6047	MATa ura3-52 ssk1::NAT	
PC6048	MATa ura3-52 ire1::NAT	
PC6050	MATa ste4 FUS1-HIS3 ura3-52 elm1::HYG	
PC6051	MATa ste4 FUS1-HIS3 ura3-52 tos3::KlURA3	
PC6052	MATa ste4 FUS1-HIS3 ura3-52 tos3::KlURA3 sak1::NAT	
PC6053	MATa ste4 FUS1-HIS3 ura3-52 tos3::KlURA3 sak1::NAT	
PC6067	MATa ste4 FUS1-HIS3 ura3-52 ssk2::HYG	
PC6085	MATa ste4 ura3-52 FUS1-HIS3 ssk2::NAT	
PC6086	MATa ste4 FUS1-HIS3 ura3-52 ssk2::KlURA3	
PC6087	MATa ste4 FUS1-HIS3 ura3-52 sak1::NAT elm1::KlURA3	
PC6088	MATa ste4 FUS1-HIS3 ura3-52 sak1::NAT tos3::HYG	
PC6111d	CAF2-1 = URA3/ura3::imm434 IRO1/iro1::imm434	[162]
PC6114d	cek1::KlURA3 ura3::Klura3 cek1::Klura3 cek1::Klura3	[124]
PC6116d	CW34 WT	[163]
PC6144d	SFO08P ura3::imm434 arg4::hisG his1::hisG::HIS1 ire1::UAU1 ura3::imm434 arg4::hisG his1::hisG ire1::URA3	[163]
PC6145d	SFO08P ura3::imm434 arg4::hisG his1::hisG::HIS1 ire1::UAU1 ura3::imm434 arg4::hisG his1::hisG ire1::URA3	[163]
PC6152	MATa ste4 FUS1-HIS3 ura3-52 mdu1::KlURA3	
PC6153	MATa ste4 FUS1-HIS3 ura3-52 mdu1::KlURA3	
PC6154	MATa ste4 FUS1-HIS3 ura3-52 mdu1::Klura3	
PC6155	MATa ste4 FUS1-HIS3 ura3-52 ksl1::KURAS	
PC6156	MATa ste4 FUS1-HIS3 ura3-52 ptp2::KlURA3	
PC6157	MATa ste4 FUS1-HIS3 ura3-52 ptp2::NAT	
PC6158	MATa ste4 FUS1-HIS3 ura3-52 ptp2::KlURA3 ptp3::NAT	
PC6227	MATa ura3-52 ste7::HYG	

*All strains are in the S1278b background unless otherwise indicated.

1KlURA3 refers to the Kluyveromyces lactis URA3 cassette.

21287b deletion collection. The following mutants (gal3D, gal4D, gal7D, gal10D, pmt2D, pmt3D, pmt4D, pmt5D, and pmt6D) were used from this collection for this study.

3refers to the Candida albicans strains used in this study.

4refers to 246-1-1 strain background.

doi:10.1371/journal.pgen.1004734.t001
Table 2. Primers used for qPCR in the study.

Name	Sequence
CTT1-F	5’CGTACTCTGGTATTCCTTCATC3’
CTT1-R	5’TGACGTTGACCCGTACGTT3’
HSP12-F	5’TCTTGTTGATGCTTCTTAC3’
HSP12-R	5’TCTTGTTGATGCTTCTTAC3’
DDR2-F	5’TCAATGGCAGATGGGCTTAC3’
DDR2-R	5’ACTGCCGTTGATTGTGTT3’
STL1-F	5’TGGGACTAGGCGGGATTAT3’
STL1-R	5’ATGACCCGACCGACCTTAT3’
ENA1-F	5’GGCTCTGTATGCTATTAT3’
ENA1-R	5’GGCTCTGTATGCTATTAT3’
GDP1-F	5’TCTTCTGTGTTGTGTT3’
GDP1-R	5’CTCACCACACACGACTT3’
RAX1-F	5’ACCATGAGGAGGATGAAT3’
RAX1-R	5’CGTAGAAGGCTTGAAGAT3’
RSR1-F	5’GGTGAGTTAAGGACGGAAAG3’
RSR1-R	5’GGCTTTGCCGATGAGCAGAA3’
BUD8-F	5’CACGGGAGAACACTTATATT3’
BUD8-R	5’ATAGTCGCTGTCCTCTT3’
CLB1-F	5’CTCTTGCGGAAGAACACTTAT3’
CLB1-R	5’AGGCCTAGTATCCACACAG3’
CLB2-F	5’TGCCAATAATTCAAGGCTTAC3’
CLB2-R	5’GGCTTTGCCGATGAGCAGAA3’
SWI4-F	5’TCTTCCGGCCCGTTACTCAAA3’
SWI4-R	5’ATGCCCTTCCCTCCATC3’
SHO1-F	5’AACTACAGGGAGACAGCC3’
SHO1-R	5’TCTGAAGATCATGTCATAG3’
TEC1-F	5’ATGGTTCCAGAAGCCGGATTT3’
TEC1-R	5’TGGACCCGACCCGATTAT3’
WSC2-F	5’AGGACTGTTGACTGAGGAAG3’
WSC2-R	5’GGAAGGAGAGGGTGAATAA3’
STE12-F	5’GAATCCTCACCACCCGGAATG3’
STE12-R	5’AAATGCTCGCCGCTTAAT3’

harvested by centrifugation, and proteins were precipitated by trichloroacetic acid [TCA]. Cells were lysed in the TCA buffer (10 mM Tris HCl pH 8.0; 10%TCA; 25 mM ammonium acetate; 1 mM EDTA) containing glass beads using FastPrep-24 Instrument (MP Biomedical LLC, Solon, OH). After high-speed centrifugation the pellet was thoroughly mixed in the resuspension buffer (0.1M Tris HCl pH 11.0; 3%SDS) and boiled for 5 min and centrifuged for 30 sec at 16000 g. To the supernatant, equal volume of 2x SDS loading dye (100 mM Tris HCl pH 6.8; 4%SDS; 0.2% Bromophenol Blue; 20% glycerol; 200 mM β-mercaptoethanol) was added.

Protein samples were separated on 10% SDS polyacrylamide gels (SDS-PAGE) and transferred to nitrocellulose membranes (Protran BA85, VWR International Inc., Bridgeport NJ). The membrane was blocked in immunoblot buffer (5% nonfat dry milk, 10 mM Tris-HCl [pH 8], 150 mM NaCl and 0.05% Tween 20) for 1 hr at 4°C. WesternBright MCF fluorescent Western blotting kit from Advanza Inc. (Menlo Park, CA; LPS #K-12045-D20) was used for detection. Pgk1p antibodies (Life Technologies, Camarillo, CA; #459250) were used as a loading control. P~Hog1p was detected using phospho-p38 antibodies (Cell Signaling Technology, Danvers, MA; #9211). S. cerevisiae Hog1p was detected by Hog1p antibodies (Santa Cruz Biotechnology, Santa Cruz, CA; #yC-20). C. albicans Hog1p was detected by (Santa Cruz Biotechnology, Santa Cruz, CA; #yC-215). Calc2 p34 antibody that recognizes PSTAIRE motifs in cyclin dependent kinases was used as a loading control for Candida protein extracts (Santa Cruz Biotechnology, Santa Cruz, CA; #sc-53). Phosphorylated Kss1p was detected by p42/p44 antibodies (Cell Signaling Technology, Danvers, MA; #1470) and total Kss1p was detected by (Santa Cruz Biotechnology, Santa Cruz, CA; #6775). Secondary antibodies, goat IgG-HRP (Bio-Rad Laboratories, Hercules, CA; #170-6516), goat IgG-HRP (Jackson ImmunoResearch Laboratories, Inc., West Grove, PA; #111-035-144), donkey IgG-HRP (Santa Cruz Biotechnology, Santa Cruz, CA; #sc-2020) were used and incubated for 1 hr at 20°C. Ponceau S (Sigma, St. Louis, MO; #P7170) was used to confirm equal loading among samples.

β-Galactosidase Assays

β-galactosidase assays were performed as described [11]. Cells were grown in selective media (SD-URA) for 16 hrs and subcultured in YEPD or YEP-GAL media for 5.5 hrs. Three independent experiments were performed and the average values are represented. Bars indicate the standard deviation between trials.

Microscopy

Differential-interference-contrast (DIC) and fluorescence microscopy was performed with an Axioplan 2 fluorescent microscope (Zeiss) with a PLAN-APochromat 100x/1.4 (oil) objective (NA. 0.17). Digital images were obtained with the Axiocam MRm camera (Zeiss). Image Acquisition and analysis was carried out using Axiovision 4.1 software (Zeiss).

Bioinformatics Analysis

Heat maps were generated using MeV (MultiExperiment Viewer) (http://www.tm4.org/mev.html). ImageJ analysis was used to quantitate band intensity for protein gels and immunoblots by (http://imagej.nih.gov [159]) using the invert function and by subtraction of background signals. SGD was used for yeast genome annotation and analysis (http://www.yeastgenome.org). RNA seq data was evaluated and represented using Microsoft EXCEL software.

Supporting Information

Figure S1 The HOG and filamentous growth pathways. The HOG pathway (red) responds to osmotic stress. High osmolality dampens Snl1p activity, thereby activating the ‘Snl1p’ branch. High osmolality also stimulates the Sho1p branch, which is composed of proteins that are also required in the filamentous growth pathway (black). Several proteins regulate the filamentous growth pathway but not the HOG pathway (green). The filamentous growth pathway is induced by glucose limitation and glycosylation deficiency. Induction of each pathway by its growth pathway (black). Several proteins regulate the filamentous growth pathway. The HOG and filamentous growth pathways. (TIF)

Figure S2 Analysis of genes identified by comparative RNA seq data analysis. A) Venn diagram showing genes repressed by salt, galactose, and/or tunicamycin. Numbers in parenthesis represent genes repressed by the ESR. B) Pie chart showing functional
categorization of genes regulated by the HOG pathway in galactose. The ninety-five genes induced in galactose in a Pbs2-dependent manner (see Fig. 1B) were functionally classified by GO (www.yeastgenome.org) and represented by a pie chart in excel.

(TIF)

Figure S3 Role of different carbon sources and other nutrients in activation of the HOG and/or filamentous growth pathways. A) Wild-type cells (PC3538) were grown in YEPD (GLU), YEP-GAL (GAL), YEP acetate (Acetate) and YEP ethanol (Ethanol) for the times indicated. B) P–Hog1p levels in response to the depletion of fixed nitrogen. Wild-type cells (PC3538) were grown in SD+AA and SD-N (lacking nitrogen) medium for 5 hrs. C) Wild-type cells (PC3538) were grown in YEPD (GLU), limiting glucose (0.2% GLU), YEP-GAL or raffinose (RAF, 2%) to mid-log phase. D) Wild-type cells (PC3538) were grown in SD+AA and SD-N (lack of Phosphate) and SD– (Phosphate) medium for 5 hrs. E) P–Hog1p levels in nitrogen-limiting media in mutants lacking the Snf1p- or Ste11p-branches of the HOG pathway. Wild-type (PC538), ssk1Δ (PC1523), ssk2Δ (PC6005), ssk2ΔΔ (PC6001), ssk1ΔΔ (PC2061), pbs2Δ (PC2053) and hog1Δ (PC6047) were grown in SD+AA and SD-N for 5 hrs.

(TIF)

Figure S4 Role of protein kinases that phosphorylate Snf1p in mediating HOG pathway activation in galactose. A) Wild-type cells (PC3538) grown in YEPD or YEPD+ANT (5 μg) for 2.5 hrs 0.4M KCl was added to cells for 5 min. B) Wild type (PC3538) and the aco1Δ (PC3912) mutant were grown in YEPD medium to mid-log phase and treated with 0.4M KCl for 5 min. C) P–Hog1p levels in wild-type cells, the snf1Δ mutant (PC3560) and the snf4Δ mutant (PC6535) grown in YEP-GAL medium. D) Same cells grown in YEPD with 0.4M KCl for 5 minutes. E) P–Hog1p levels in response to the depletion of fixed nitrogen. Wild-type cells (PC3538), and the snf1Δ (PC560) and snf4Δ (PC6535) mutants were grown in SD+AA and SD-N medium for 5 hrs.

(TIF)

Figure S5 Relationship between glycosylation defects and HOG pathway activation. A) P–Hog1p levels in mutants defective for O-linked glycosylation. Wild-type (PC6016) cells and the pmt1Δ, pmt2Δ, pmt3Δ, pmt4Δ, pmt5Δ, and pmt6Δ mutants (obtained from the Σ1278b MATα haploid deletion collection [160]) were grown in YEPD medium to mid-log phase. B) P–Hog1p levels in response to tunicamycin treatment. Wild-type cells (PC5330), and the snf1Δ (PC560) and snf4Δ mutants (PC6535) were grown in YEPD medium for 3 hrs and then treated with or without 1 μg TUN for 3 hrs.

(TIF)

Figure S6 Analysis of the roles of the HOG and filamentous growth pathways in the response to growth in galactose. Activity of the cross-talk reporter (ste4 FUS1-HIS3) and invasive growth of strains lacking protein tyrosine phosphatases for the HOG pathway. Equal amounts of wild-type cells (PC538), the ptpΔ2 (PC6156), ptp3Δ (PC6157), ptp2Δ ptp3Δ double mutant (PC6158), pbs2Δ (PC2053), and ste12Δ (PC2382) were spotted onto SD+AA, SD-HIS, SGAL+AA, SGAL-HIS, SD-HIS+3,4,5-amino-triazole (ATA), SGAL-HIS+ATA, and YEPD medium for 48 hrs. The plates were photographed, and the YEPD plates were washed in a stream of water and photographed again.

(TIF)

Table S1 Analysis of comparative RNA seq data for cells exposed to salt, galactose, or tunicamycin. Please note that there are multiple sheets in this table.

(XLSX)

Acknowledgments

Thanks to J. Pringle (Stanford University), A. Mitchell (Carnegie Mellon University, Pittsburg, PA), M. Edgerton (SUNY-Buffalo, Buffalo, NY), H. Saito (University of Tokyo, Tokyo JA), D. Eide (University of Wisconsin, Madison WI), P. Walter (UCSF, CA), Jeff DefRoy and Andy Marty at the Fred Hutchinson Cancer Research Center (Seattle, WA), and H. Madhiani (UCSF, CA) for providing reagents.

Author Contributions

Conceived and designed the experiments: PJC HA. Performed the experiments: PJC HA. Analyzed the data: PJC HA. Contributed reagents/materials/analysis tools: PJC HA. Wrote the paper: PJC HA.

References

1. Nobles CJ, Mitchell AP (2006) Genetics and genomics of Candida albicans biofilm formation. Cell Microbiol 8: 1382–1391.
2. Lengeler KB, Davidson RG, D’Souza G, Harashima T, Shen WC, et al. (2000) Signal transduction cascades regulating fungal development and virulence. Microbiol Mol Biol Rev 64: 746–783.
3. Cullen PJ, Sprague GF Jr (2012) The regulation of filamentous growth in Saccharomyces cerevisiae. FEMS Microbiol Rev 36: 25–58.
4. Saito H, Posas F (2012) Response to hyperosmotic stress. Genetics 192: 289–318.
5. Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66: 300–372.
6. Schwartz MA, Madhani HD (2004) Principles of map kinase signaling specificity in Saccharomyces cerevisiae. Annu Rev Genet 38: 723–740.
7. Qi L, Ellson EA (2005) MAP kinase pathways, J Cell Sci 118: 3569–3572.
8. Murphy LO, Breniz J (2006) MAPK signal specificity: the right place at the right time. Trends Biochem Sci 31: 269–275.
9. Wang HY, Taetelvahsi K, Yamamoto K, Saito H (2009) Glycosylation defects activate filamentous growth Ssk1 MAPK and inhibit osmoregulatory Hog1 MAPK. EMBO J 28: 1380–1391.
10. Cullen PJ, Sabagh W Jr., Graham E, Irick MM, van Olden EK, et al. (2004) A signaling module at the head of the Dnl4- and Mapk-dependent filamentous growth pathway in yeast. Genes Dev 18: 1695–1708.
11. O’Rourke SM, Herskowitz I (1998) The Hog1 MAPK prevents cross talk between the HOG and pheromone response MAPK pathways in Saccharomyces cerevisiae. Genes Dev 12: 2874–2886.
12. O’Rourke SM, Herskowitz I (1998) The Hog1 MAPK prevents cross talk between the HOG and pheromone response MAPK pathways in Saccharomyces cerevisiae. Genes Dev 12: 2874–2886.
13. Posas F, Wurger-Murphy SM, Marda T, Witten EA, Thai TC, et al. (1996) Yeast HOG1 MAPK kinase cascade is regulated by a multistep phosphorylation mechanism in the SLN1-YPD1-SSK1 “two-component” osmosensor. Cell 86: 865–875.
14. Posas F, Saito H (1997) Osmotic activation of the HOG MAPK pathway via Ste11p MAPKKK, scaffold role of Pbs2 MAPK. Science 276: 1702–1705.
15. Wu C, Jansen G, Zhang J, Thomas DY, Whiteway M (2006) Adaptor protein Ste50p links the Ste11p MEKK to the HOG pathway through plasma membrane association. Genes Dev 20: 734–746.
16. Pitoniak A, Birkaya B, Doune HM, Varde N, Cullen PJ (2009) The Signaling Mucins Mbl2 and Hkr1 Differentially Regulate the Filamentation Mitogen-activated Protein Kinase Pathway and Contribute to a Multimodal Response. Molecular Biology of the Cell 20: 3101–3114.
17. Taetelvahsi K, Tanaka K, Yang HY, Yamamoto K, Matsushita Y, et al. (2007) Transmembrane mucins Hkr1 and Mbl2 are putative osmosensors in the SBO1 branch of yeast HOG pathway. EMBO J 26: 3521–3533.
18. Marda T, Takekawa M, Saito H (1995) Activation of yeast PB2 MAPK by MAPKKKs or by binding of an SH3-containing osmosensor. Science 269: 354–358.
19. Posas F, Saito H (1998) Activation of the yeast SSK2 MAP kinase kinase by the SSK1 two-component response regulator. EMBO J 17: 1385–1394.
20. Marda T, Wurger-Murphy SM, Saito H (1994) A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature 369: 242–245.
21. Oka IM, Varshavsky A (1993) A yeast protein similar to bacterial two-component regulator. Science 262: 566–569.
22. Roberts CJ, Nelson B, Marton MJ, Stoughton R, Meyer MR, et al. (2000) Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles. Science 287: 873–880.
23. O'Rourke SM, Hershkovitz I (2004) Unique and redundant roles for HOG MAPK pathway components as revealed by whole-genome expression analysis. Mol Biol Cell 15: 532–542.

24. Posas F, Chambers JR, Heyman JA, Hoeffer JP, de Nadal E, et al. (2000) The transcriptional response of yeast to saline stress. J Biol Chem 275: 17249–17255.

25. McClean MN, Moedy A, Broach JR, Ramanathan S (2007) Cross-talk and decision making in MAP kinase pathways. Nat Genet 39: 409–414.

26. Rua D, Teixe R, Kron SJ (2003) Cell cycle control of yeast filamentous growth.Curr Opin Microbiol 6: 720–727.

27. Madhani HD, Galitski T, Lander ES, Fink GR (1999) Effectors of a developmental mitogen-activated protein kinase cascade revealed by expression signatures of signaling mutants. Proc Natl Acad Sci U S A 96: 12530–12535.

28. Kron SJ, Styles CA, Fink GR (1994) Symmetric cell division in pseudohyphal growth of the yeast Saccharomyces cerevisiae. Mol Biol Cell 5: 1003–1022.

29. Rupp S, Summers E, Lo HJ, Madhani H, Fink G (1999) MAP kinase and eAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene. Embo J 18: 1257–1269.

30. Guo B, Styles CA, Feng Q, Fink GR (2000) A Saccharomyces cerevisiae gene family involved in invasive growth, cell-cell adhesion, and mating. Proc Natl Acad Sci U S A 97: 12151–12156.

31. Gimeno JL, Ljungdahl PO, Styles CA, Fink GR (1992) Uni polar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell 68: 1077–1090.

32. Collett JF, Prevo JV, Jr (2002) The roles of bud-site-selection proteins during haploid invasive growth in yeast. Mol Biol Cell 13: 2980–3004.

33. Taheri N, Kohler T, Braus GH, Mosch HU (2000) Asymmetrically localized Bud1p and Bud2p proteins control yeast cell polarity and development. Mol Biol Cell 11: 6066–6084.

34. Brewster JL, Gustin MC (1994) Positioning of cell growth and division after osmotic stress requires a MAP kinase pathway. Yeast 10: 425–439.

35. Balanas R, Bush A, Couto A, Durrieu L, Hohmann S, et al. (2013) Pheromone-induced morphogenesis in yeast is regulated by a stress-sensing complex. Mol Biol Cell 11: 2869–2880.

36. Warringer J, Hult M, Regot S, Posas F, Sunnerhagen P (2010) The HOG pathway dictates the short-term transcriptional response after hyperosmotic shock. Mol Biol Cell 21: 3080–3092.

37. Teige M, Scheld E, Reiser V, Riss H, Ammerer G (2001) Rck2, a member of the calmodulin-protein kinase family, links protein synthesis to high osmolarity MAP kinase signaling in budding yeast. Proc Natl Acad Sci U S A 98: 5625–5629.

38. Bihland-Marcuesa E, Arino J, Saito H, Summerhagen P, Posas F (2000) Rck2 kinase is a substrate for the osmotic stress-activated mitogen-activated protein kinase Hog1. Mol Cell Biol 20: 3887–3895.

39. Lee J, Reiter W, Schaudt I, Gregori C-G, Schibluitt C-S, et al. (2013) Hog1 directs S. cerevisiae glycerol channel Fps1 by phosphorylating and displacing its positive regulators. Genes Dev 27: 2590–2601.

40. Nadal-Ribelles M, Conde N, Flores O, Gonzalez-Vallinas J, Eyras E, et al. (2012) Hog1 bypasses stress-mediated down-regulation of transcription by RNA polymerase II redistribution and chromatin remodelling. Genome Biol 13: R106.

41. De Nadal E, Zapater M, Alepuz PM, Sumoy L, Mas G, et al. (2004) The Hog1 MAP kinase pathway couples Rho1 histone deacetylase to activate osmorepressive gene network. Nature 427: 370–374.

42. Mas G, de Nadal E, Dechant K, Rodriguez de la Conception ML, Loge C, et al. (2009) Recruitment of a chromatin remodelling complex by the Hog1 MAP kinase pathway is required for stress gene induction. Mol Cell 34: 1344–1354.

43. Chowdhury S, Smith KW, Gustin MC (1992) Osmotic stress and the yeast cytoskeleton: phenotype-specific suppression of an activation mutation. J Cell Biol 118: 561–571.

44. Urruty T, Amberg DC (2003) Actin recovery and bud emergence in osmotically stressed cells requires the conserved actin interacting mitogen-activated protein kinase kinase kinase Skp2/Mpt1 and the scaffold protein Spaz2p. Mol Cell Biol 14: 3013–3026.

45. Urruty T, Fochr M, Amberg DC (2002) The MEK kinase Ssk2p promotes actin cytoskeleton recovery after osmotic stress. Mol Cell Biol 22: 2089–2098.

46. Shock TR, Thompson J, Yates JR, 3rd, Madhani HD (2009) Hog1 mitogen-activated protein kinase (MAPK) interrupts signal transmission between the SK1 MAPK and the TEC1 transcription factor to maintain pathway specificity. Genes Dev 23: 463–476.

47. Zapater M, Sohrmann M, Peter M, Posas F, de Nadal E (2007) Selective requirement for SAGA in Hog1-mediated gene expression depending on the severity of the external osmotic stress conditions. Mol Cell Biol 27: 3980–3991.

48. Chowdhury S, Smith RW, Gustin MC (1992) Osmotic stress and the yeast cytoskeleton: phenotype-specific suppression of an activation mutation. J Cell Biol 118: 561–571.

49. Surana U, Robitsch H, Price C, Schuster T, Fitch I, et al. (1991) The role of the MAP kinase pathway in the Saccharomyces cerevisiae filamentation/invasion pathway by osmotic stress. Mol Microbiol 3: 573–581.

50. Elion EA (2000) Pheromone response, mating and cell biology. Curr Opin Microbiol 3: 593–601.

51. Rau G, Piberger H, Neupert C, Garcia-Cantalejo J, Popolo L, et al. (2011) The genetic interaction network of CCVU2, a Saccharomyces cerevisiae gene required for cell wall integrity during budding and formation of mother cells. Mol Biol Cell 12: 3107–3117.

52. Gotham, Jr, Thorner JW (2001) Regulation of G protein-initiated signal transduction in yeast: paradigms and principles. Annu Rev Biochem 70: 703–754.

53. Surana U, Robitsch H, Price C, Schuster T, Fitch I, et al. (1991) The role of the MAP kinase pathway in the Saccharomyces cerevisiae filamentation/invasion pathway by osmotic stress. Mol Microbiol 3: 573–581.

54. Elion EA (2000) Pheromone response, mating and cell biology. Curr Opin Microbiol 3: 593–601.

55. Rau G, Piberger H, Neupert C, Garcia-Cantalejo J, Popolo L, et al. (2011) The genetic interaction network of CCVU2, a Saccharomyces cerevisiae gene required for cell wall integrity during budding and formation of mother cells. Mol Biol Cell 12: 3107–3117.

56. Gotham, Jr, Thorner JW (2001) Regulation of G protein-initiated signal transduction in yeast: paradigms and principles. Annu Rev Biochem 70: 703–754.

57. Surana U, Robitsch H, Price C, Schuster T, Fitch I, et al. (1991) The role of the MAP kinase pathway in the Saccharomyces cerevisiae filamentation/invasion pathway by osmotic stress. Mol Microbiol 3: 573–581.

58. Elion EA (2000) Pheromone response, mating and cell biology. Curr Opin Microbiol 3: 593–601.

59. Rau G, Piberger H, Neupert C, Garcia-Cantalejo J, Popolo L, et al. (2011) The genetic interaction network of CCVU2, a Saccharomyces cerevisiae gene required for cell wall integrity during budding and formation of mother cells. Mol Biol Cell 12: 3107–3117.

60. Gotham, Jr, Thorner JW (2001) Regulation of G protein-initiated signal transduction in yeast: paradigms and principles. Annu Rev Biochem 70: 703–754.

61. Surana U, Robitsch H, Price C, Schuster T, Fitch I, et al. (1991) The role of the MAP kinase pathway in the Saccharomyces cerevisiae filamentation/invasion pathway by osmotic stress. Mol Microbiol 3: 573–581.

62. Gotham, Jr, Thorner JW (2001) Regulation of G protein-initiated signal transduction in yeast: paradigms and principles. Annu Rev Biochem 70: 703–754.
108. Herscovics A, Orlean P (1993) Glycoprotein biosynthesis in yeast. FASEB J 7: 106.

106. Vallier LG, Carlson M (1994) Synergistic release from glucose repression by SUC2 and GAL genes of Saccharomyces cerevisiae. Bmc Genetics 2: 5

98. Campo ML, Kinnally KW, Tedeschi H (1992) The effect of antimycin A on mouse liver inner mitochondrial membrane channel activity. J Biol Chem 267: 2892–2901.

95. Ruckenstuhl C, Buttner S, Carmona-Gutierrez D, Eisenberg T, Kroemer G, et al. (2011) Pyruvate kinase triggers a metabolic feedback loop that controls redox metabolism in respiring cells. Cell Metab 14: 415–427.

94. Gruning NM, Rinnerthaler M, Bluemlein K, Mulleder M, Wamelink MM, et al. (2004) The Cek1 and Hog1 mitogen-activated protein kinases play complementary roles in yeast: regulating adaptation to citric acid stress. Mol Cell Biol 24: 3307–3315.

90. Lohr D, Venkov P, Zlatanova J (1995) Transcriptional regulation in the yeast GAL gene family: a complex genetic network. FASEB J 9: 777–787.

87. Schneper L, Duvel K, Broach JR (2004) Sense and sensibility: nutritional regulation of the Leloir pathway for galactose metabolism. J Biol Chem 279: 207–217.

84. Brewster JL, de Valoir T, Dwyer ND, Winter E, Gustin MC (1993) An amino acid permease which co-ordinates external nitrogen responses to hydrogen peroxide. DNA Repair (Amst) 3: 769–776.

83. Hao N, Behar M, Parnell SC, Torres MP, Borchers CH, et al. (2007) A specific glucose repression of GAL gene expression in Saccharomyces cerevisiae. Mol Microbiol 61: 1235–1246.

82. Madhani HD, Fink GR (1997) Combinatorial control required for the specificity of yeast MAPK signaling. Science 275: 1314–1317.

80. Verna J, Lodder A, Lee K, Vagts A, Ballester R (1997) A model for the sensor-kinase complex from Saccharomyces cerevisiae phosphorylates the transcriptional repressor protein Mig1p in vitro at four sites within or near regulatory elements. Proc Natl Acad Sci U S A 94: 13904–13909.

75. Kohler JR, Fink GR (1996) A novel mechanism for regulating activity of a mitogen-activated protein kinase homolog, Cek1p, in hyphal development and systemic candidiasis. Infect Immum 66: 2713–2721.

73. Smith DA, Nicholls S, Morgan BA, Brown AJ, Quinn J (2004) A conserved amino acid permease which co-ordinates external nitrogen source response and morphogenesis in Candida albicans. J Bacteriol 186: 325–338.

71. Lawrence CL, Botting CH, Amroous R, Coote PJ (2004) Evidence of a new role for the high-osmolality glycerol mitogen-activated protein kinase pathway in yeast: regulating adaptation to citric acid stress. Mol Cell Biol 24: 3307–3323.

68. Hagemann E, Heyer WD (2004) The Hog1 MAP kinase pathway and the Mecl DNA damage checkpoint pathway independently control the cellular responses to hydrogen peroxide. DNA Repair (Amst) 3: 769–776.

66. Wurgler-Murphy SM, Maeda T, Witten EA, Saito H (1997) Regulation of the phosphomannose isomerase gene PMI40, a glycolytic enzyme, in the pathogenic fungus Candida albicans. Eukaryot Cell 5: 347–358.

64. Smith DJ, Proudfoot A, Friedli L, Klig LS, Paravicini G, et al. (1992) PMI40, a member of the Candida albicans mitogen-activated protein kinase signaling component group, has a novel specificity of yeast MAPK signaling. Science 251: 1314–1317.

62. Porter DD, Rustgi AK, Hanawalt PC (1994) Sir2 plays a key role in telomere maintenance in yeast. Mol Cell Biol 14: 2671–2681.

60. Venerelli C, Pinelli L, Zanardini O, Pinelli L, Zanardini O, et al. (2004) Suppression of mitochondrial respiration through recruitment of p160 myb binding protein to PGG-lalpha: modulation by p30 MAPK. Genes Dev 18: 2182–2192.

58. Andreasen J, Rasmussen N, Rasmussen N, et al. (2004) Pyruvate kinase triggers a metabolic feedback loop that controls redox metabolism in respiring cells. Cell Metab 14: 415–427.

56. Schumaker AK, Becker MH, Noll G, et al. (2004) The septins: roles in cytokinesis and other processes. Curr Opin Cell Biol 8: 325–338.

52. Luco A, Fink GR (1996) Candida albicans strains heterozygous and homozygous for mutations in mitogen-activated protein kinase signaling components have defects in hyphal development. Proc Natl Acad Sci U S A 93: 13223–13228.

48. Tanigawa M, Kihara A, Terashima M, Takahara T, Maeda T (2012) The Cek1 and Hog1 mitogen-activated protein kinases play complementary roles in yeast: regulating adaptation to citric acid stress. Mol Cell Biol 24: 3307–3323.

44. Biswas S, Roy M, Datta A (2003) N-acetylglucosamine-inducible CaGAP1 encodes a general amino acid permease which co-ordinates external nitrogen source response and morphogenesis in Candida albicans. Microbiology 150: 325–338.

40. Katoh JR, Fink GR (1996) Candida albicans strains heterozygous and homozygous for mutations in mitogen-activated protein kinase signaling components have defects in hyphal development. Proc Natl Acad Sci U S A 93: 13223–13228.

36. Panadero J, Pallotti C, Rodriguez-Vargas S, Randez-Gil F, Prieto JA (2006) A transcriptional analysis of the yeast Hog1 mitogen-activated protein kinase pathway. Cell 124: 163–176.

32. Eisman B, Alonso-Monge R, Roman E, Arana D, Nombela C, et al. (2006) Evidence of a new role for the high-osmolality glycerol mitogen-activated protein kinase pathway in yeast: regulating adaptation to citric acid stress. Mol Cell Biol 24: 3307–3323.

28. Lawrence CL, Botting CH, Amroous R, Coote PJ (2004) Evidence of a new role for the high-osmolality glycerol mitogen-activated protein kinase pathway in yeast: regulating adaptation to citric acid stress. Mol Cell Biol 24: 3307–3323.

24. Panadero J, Pallotti C, Rodriguez-Vargas S, Randez-Gil F, Prieto JA (2006) A novel zinc metalloenzyme. J Biol Chem 243: 4109–4116.

20. Smith DJ, Proudfoot A, Friedli L, Klig LS, Paravicini G, et al. (1992) PMI40, a member of the Candida albicans mitogen-activated protein kinase signaling component group, has a novel specificity of yeast MAPK signaling. Science 251: 1314–1317.

16. Venerelli C, Pinelli L, Zanardini O, Pinelli L, Zanardini O, et al. (2004) Suppression of mitochondrial respiration through recruitment of p160 myb binding protein to PGG-lalpha: modulation by p30 MAPK. Genes Dev 18: 2182–2192.

12. Panadero J, Pallotti C, Rodriguez-Vargas S, Randez-Gil F, Prieto JA (2006) A novel zinc metalloenzyme. J Biol Chem 243: 4109–4116.
137. Xi X, Han J, Zhang JZ (2001) Stimulation of glucose transport by AMP-activated protein kinase via activation of p38 mitogen-activated protein kinase. J Biol Chem 276: 41029–41034.

138. Lin CC, Cheng TL, Tsai WH, Tsai HJ, Hu KH, et al. (2012) Loss of the respiratory enzyme citrate synthase directly links the Warburg effect to tumor malignancy. Sci Rep 2: 785.

139. Cox JS, Chapman RE, Walter P (1997) The unfolded protein response coordinates the production of endoplasmic reticulum protein and endoplasmic reticulum membrane. Mol Biol Cell 8: 1805–1814.

140. Meares GP, Hughes KJ, Naatz A, Papa FR, Urano F, et al. (2011) IRE1-dependent activation of AMPK in response to nitric oxide. Mol Cell Biol 31: 4206–4207.

141. Komuree K, Tseng JT, Muller M, Seviour EG, Moss TJ, et al. (2012) The glucose-deprivation network counteracts lapaninib-induced toxicity in resistant ErbB2-positive breast cancer cells. Mol Syst Biol 8: 596.

142. Chen X, Illepoulos D, Zhang Q, Tang Q, Greenblatt MB, et al. (2014) XBP1 promotes triple-negative breast cancer by controlling the HIFα/α pathway. Nature 500: 105–107.

143. Young RM, Ackerman D, Quinn ZL, Mancuso A, Gruber M, et al. (2013) Dysregulated mTORC1 renders cells critically dependent on desaturated lipids for survival under tumor-like stress. Genes Dev 27: 1105–1131.

144. Greenblatt MB, Shih JH, Glümcher LH (2013) Mitogen-activated protein kinase pathways in osteoblasts. Annu Rev Cell Dev Biol 29: 63–79.

145. Treadway M, Doronzo G, Barales C, Vacher C, Russo I, et al. (2014) Leptin and vascular smooth muscle cells. Curr Pharm Des 20: 625–634.

146. Sandbrock J, Fink GR (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

147. Rose MD, Winston F., and Hieter P. (1990) Methods in Yeast Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

148. Roberts RL, Fink GR (1994) Elements of a single MAP kinase cascade in Saccharomyces cerevisiae mediate two developmental programs in the same cell type: mating and invasive growth. Genes Dev 8: 2974–2985.

149. Fares H, Goetsch I, Pringle JR (1996) Identification of a developmentally regulated septin and involvement of the septins in spore formation in Saccharomyces cerevisiae. J Cell Biol 132: 399–411.

150. Madhani HD, Stiles CA, Fink GR (1997) MAP kinases with distinct inhibitory functions impart signaling specificity during yeast differentiation. Cell 91: 673–684.

151. Ellis CD, Wang F, MacDiarmid CW, Clark S, Lyons T, et al. (2004) Zinc and the Mcz2 zinc transporter protein are required for endoplasmic reticulum function. J Cell Biol 166: 325–335.

152. Goldstein AL, McCusker JH (1999) Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15: 1541–1553.

153. Baudin A, Ozier-Kalogeropoulos O, Denouel A, Lacroute F, Collin C (1993) A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res 21: 3329–3330.

154. Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25: 1105–1111.

155. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26: 139–140.

156. Reimer A, Yekutieli D, Benjamini Y (2003) Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics 19: 368–375.

157. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 25: 402–408.

158. Lee MJ, Dohlman HG (2008) Coactivation of G protein signaling by cell-surface receptors and an intracellular exchange factor. Curr Biol 18: 211–215.

159. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9: 671–675.

160. Ryan O, Shapiro RS, Kurat CF, Mayhew D, Baryshnikova A, et al. (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9: 671–675.

161. Liu H, Styles CA, Fink GR (1993) Elements of the yeast pheromone response pathway for filamentous growth of diploids. Science 262: 1741–1744.

162. Fonzi WA, Irwin MY (1993) Isogenic strain construction and gene mapping in Candida albicans. Genetics 134: 717–728.

163. Blankenship JR, Fanning S, Hamaker JR, Mitchell AP (2010) An extensive circuitry for cell wall regulation in Candida albicans. PLoS Pathog 6: e1000752.