Accumulation of V_H replacement products in IgH genes derived from autoimmune diseases and anti-viral responses in human

Miles D. Lange¹, Lin Huang¹, Yangsheng Yu¹, Song Li¹, Hongyan Liao¹, Michael Zemlin², Kaihong Su¹,³,⁴ and Zhixin Zhang¹,³,*

¹ Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
² Department of Pediatrics, Philipps-University Marburg, Marburg, Germany
³ The Epilepsy Institute, University of Nebraska Medical Center, Omaha, NE, USA
⁴ Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA

INTRODUCTION

To protect our body from various infectious agents, the adaptive immune system has evolved the capability to generate a vast number of antibody (Ab) specificities through somatic rearrangement of previously separated variable (V), diversity (D), and joining (J) gene segments provided a comprehensive view of the human IgH repertoire. To our interest, the overall frequency of V_H replacement products is 12.1%; the frequencies of V_H replacement products in IgH genes using different V_H germline genes vary significantly. Importantly, the frequencies of V_H replacement products are significantly elevated in IgH genes derived from different autoimmune diseases, including rheumatoid arthritis, systemic lupus erythematosus, and allergic rhinitis, and in IgH genes encoding various autoantibodies or anti-viral antibodies. The identified V_H replacement footprints preferentially encoded charged amino acids to elongate IgH CDR3 regions, which may contribute to their autoreactivities or anti-viral functions. Analysis of the mutation status of the identified V_H replacement products suggested that they had been actively involved in immune responses. These results provide a global view of the distribution of V_H replacement products in human IgH genes, especially in IgH genes derived from autoimmune diseases and anti-viral immune responses.

Keywords: B-cell, antibody, IgH genes, cryptic RSS, V_H replacement, V_J replacement footprint, autoimmune disease, anti-viral response

V$_H$ replacement refers to RAG-mediated secondary recombination of the IgH genes, which renews almost the entire V_H gene coding region but retains a short stretch of nucleotides as a V_H replacement footprint at the newly generated V_H–DJ$_H$ junction. To explore the biological significance of V_H replacement to the antibody repertoire, we developed a Java-based V_H replacement footprint analyzer program and analyzed the distribution of V_H replacement products in 61,851 human IgH gene sequences downloaded from the NCBI database. The initial assignment of the V_H, D_H, and J_H gene segments provided a comprehensive view of the human IgH repertoire. To our interest, the overall frequency of V_H replacement products is 12.1%; the frequencies of V_H replacement products in IgH genes using different V_H germline genes vary significantly. Importantly, the frequencies of V_H replacement products are significantly elevated in IgH genes derived from different autoimmune diseases, including rheumatoid arthritis, systemic lupus erythematosus, and allergic rhinitis, and in IgH genes encoding various autoantibodies or anti-viral antibodies. The identified V_H replacement footprints preferentially encoded charged amino acids to elongate IgH CDR3 regions, which may contribute to their autoreactivities or anti-viral functions. Analysis of the distribution of V_H replacement products in human IgH genes, especially in IgH genes derived from autoimmune diseases and anti-viral immune responses.

Abbreviations: aa, amino acid; cRSS, cryptic recombination signal sequence; EBV, Epstein–Barr virus; HBV, hepatitis virus B; HCV, hepatitis virus C; HIV, human immunodeficiency virus; RA, rheumatoid arthritis; RAG, recombination activating gene products; SLE, systemic lupus erythematosus; V$_{H}$RFA, V_H replacement footprint analyzer.

ORIGINAL RESEARCH ARTICLE

published: 22 July 2014
doi: 10.3389/fimmu.2014.00345
accumulation of somatic hypermutation in the variable regions of IgH and IgL genes (15, 19).

The random process of V(D)J recombination is essential for generating a diverse IgH repertoire, however, it also produces non-functional IgH genes or IgL genes encoding auto-reactive antigen receptors (2, 20). Early B lineage cells carrying non-functional IgH rearrangements must re-initiate the V(D)J recombination process to generate functional B-cell receptors (BCRs) for subsequent development; on the other hand, B-cells expressing autoimmune receptors will be removed from the repertoire through receptor editing, clonal deletion, or anergy to establish central tolerance (1, 21, 22). Receptor editing refers to RAG-mediated secondary recombination of previously rearranged IgH or IgL genes (1, 21, 22). The organizations of the IgL and Igα loci allow continuous secondary recombination by joining an upstream V L gene with a downstream J L gene segment. The previously formed V L J L joints are deleted during secondary recombination leaving no trace in the newly formed V L J L junctions; the only indication of extensive light chain gene editing is the elevated usage of the 3′ J L or J α genes and the deletion of the Igx locus (23, 24).

The unwanted IgH genes can also be changed through a RAG-mediated V H replacement process using the cryptic recombination signal sequences (cRSSs) embedded within the framework-3 regions of previously rearranged IgH or IgL genes (21, 22, 25). The concept of V H replacement was originally proposed to explain the observation that functional IgH genes were generated in mouse pre-B-cell leukemia lines initially harboring non-functional IgH rearrangements (26–28). Comparison of the functional IgH genes versus the non-functional IgH rearrangements suggested a V H to V H(D)H recombination process mediated by the cRSS sites (26, 27). Subsequently, the occurrence of V H replacement had been demonstrated in mouse models carrying knocked-in IgH genes encoding anti-DNA Abs, anti-NP Abs, or non-functional IgH genes in both alleles (29–34). Despite these findings, the natural occurrence of V H replacement during early B-cell development in mouse remains to be determined (35, 36).

Ongoing V H replacement in human B-cells had been found in a human leukemia cell line, EU12, by detection of RAG-mediated cRSS double stranded DNA breaks (DSBs) and by amplification of different V H replacement excision circles (37). The detection of DSBs at the V H→cRSS borders in human bone marrow immature B-cells provided the first evidence for the natural occurrence of V H replacement during normal B-cell development in humans (37). The occurrence of V H replacement in bone marrow immature B-cells is consistent with the observation that RAG1 and RAG2 genes can be reinduced in these cells to catalyze IgL gene editing (24, 38, 39). Our recent studies showed that V H replacement occurs in the newly immigrated immature B-cells in the peripheral blood of healthy donors, which can be further induced through BCR-mediated signaling in Ref. (40). The cRSS-mediated V H replacement was of particular interest because the cRSS motifs are found in 40 out of 44 human V H germline genes and in the majority of mouse V H germline genes (22, 41). V H replacement renews almost the entire V H gene coding region but retains a short stretch of nucleotides as a V H replacement footprint at the V H→D H junction (37). Such footprints can be used to identify V H replacement products through analysis of IgH gene sequences. The initial analyses of 417 human IgH gene sequences estimated that V H replacement products contribute to about 5% of the normal IgH repertoire (37). Interestingly, analyses of the amino acids encoded by the V H replacement footprints revealed that these footprints preferentially contribute charged amino acids into the IgH CDR3 regions, which is different from the low frequency of charged amino acids encoded by human germline D H genes or N region sequences added by TdT (37).

To explore the biological significance of V H replacement, we developed a Java-based computer program and analyzed 61,851 human IgH gene sequences from the NCBI database to determine the distribution of V H replacement products.

MATERIALS AND METHODS

DEVELOPMENT OF THE V H REPLACEMENT FOOTPRINT ANALYZER PROGRAM

The V H replacement footprint analyzer (V H RFA) program was developed using the NetBeans 7.01 IDE with Java development kit (JDK) and tested under Windows, Mac OS X, and Ubuntu Linux (42). The reference human V H germline gene sequences were downloaded from the IMGT database to generate the library of V H replacement footprints with different lengths. For the initial test of the V H RFA program, we used 417 IgH sequences that had been analyzed in our previous study to manually identify potential V H replacement products (37, 43). The 61,851 human IgH gene sequences were downloaded from the NCBI database on April 20, 2011.

ANALYSIS OF IgH GENE SEQUENCES AND IDENTIFICATION OF POTENTIAL V H REPLACEMENT PRODUCTS USING THE V H RFA PROGRAM

The IgH gene sequence files from NCBI database were first converted into FASTA files and uploaded to the V H RFA program. The V H, D H, and J H germline gene usages were assigned by automatic submission of sequences in batches to the IMGT/V-Quest program (http://www.imgt.org/IMGT_vequest/share/textes/) (44) and the results were exported as Microsoft Excel files to a local computer. Identical IgH gene sequences in the original NCBI database were removed based on their V H→D H→J H junctions and the remaining 39,438 unique human IgH gene sequences with identifiable V H, D H, and J H genes were further analyzed to identify potential V H replacement products and calculate the frequencies of V H replacement products in subsequent analyses. Briefly, the IgH gene sequences with clear identifiable V H, D H, and J H genes were analyzed to identify V H replacement footprints with 7, 6, 5, 4, and 3-mer V H replacement footprint motifs at their V H→D H junction (N1) regions and D H→J H junction (N2) regions. The frequency of V H replacement products was calculated by dividing the number of IgH genes with V H replacement footprints in the N1 regions with the total number of unique IgH gene sequences. IgH genes with 7, 6, 4, and 3-mer V H replacement footprint motifs within their N1 regions were also analyzed and discussed. The positive prediction value with 95% confidence interval using the 6, 5, 4, and 3-mer V H replacement footprint motifs to assign V H replacement products are 68, 59, 54, and 52%, respectively. In the following comparison, the V H replacement products mainly refer
to IgH genes with 5-mer V_H replacement footprint within their N1 regions.

The distribution of V_H replacement products in IgH genes derived from different keyword sub-categories were analyzed based on the information linked to each sequence in the NCBI GenBank files. The frequencies of V_H replacement products with pentameric footprints were used for all these comparisons. For mutational analysis the IgH gene sequences had a minimum of ≥80% nucleotide similarity to the assigned germline V_H gene sequences.

STATISTICAL ANALYSIS
Statistical significance was determined by using either the two-tailed Chi square test with Yates’ correction or the unpaired t-test. p < 0.05 is considered statistically significant and p < 0.0001 is considered extremely statistically significant.

RESULTS
DIFFERENTIAL USAGE OF GERMLINE V_H, D_H, AND J_H GENES IN HUMAN IgH GENE SEQUENCES
We have developed a Java-based V_HRFA computer program to analyze large number of IgH gene sequences and to identify potential V_H replacement products (42). In the current study, the 61,851 human IgH gene sequences were downloaded from the NCBI database. The initial analysis showed that 54,970 IgH genes have identifiable V_H, D_H, and J_H gene segments. After removal of duplicate IgH sequences, the remaining 39,438 unique IgH genes with identifiable V_H, J_H, and D_H genes were further analyzed. The usages of the V_H, J_H, and D_H germline genes in these sequences represent a combinatorial view of the human IgH repertoire from many studies (Figure 1). The frequencies of all the 44 functional human germline V_H genes were confirmed in this dataset (Figure 1A); the frequencies of individual V_H germline gene usage varied considerably. For different families of V_H genes, the V_H3 family of genes was predominantly utilized, followed by the V_H4 and V_H1 families of genes (Figure 1A). Such results are consistent with previous analyses of small groups of IgH gene sequences. Among individual V_H genes, the V_H19–23 gene was used the most frequently in 9536 IgH genes (25%). The V_H4–28 gene was used less frequently, which was only found in 13 IgH rearrangements (0.03%). The differential usages of individual V_H germline genes did not seem to correlate with their relative location within the IgH locus (Figure 1A). Within the IgH locus, the V_H1–24, V_H2–26, and V_H3–30 genes are located very close to the V_H19–23 and V_H4–28 genes. However, the frequency of the V_H19–23 gene usage is only 4-fold higher than those of the V_H3–30 gene, but is 50- and 80-fold higher than that of the V_H1–24 and V_H2–26 genes, respectively (Figure 1A).

Among different D_H genes, the D_H13 gene family was predominantly used in 35% of IgH genes, in which the D_H13–19, D_H13–3, and D_H13–22 genes were used frequently; The D_H1 gene family

![FIGURE 1](https://example.com/figure1.png)

FIGURE 1 The comprehensive analysis of human IgH repertoire. The 61,851 human IgH gene sequences were downloaded from the NCBI database on May, 2012. The sequences were first analyzed for their V_H, D_H, and J_H gene usage using the IMGT/V-Quest program and the identical sequences were removed. The frequencies of V_H (A), D_H (B), and J_H (C) germline gene usages in the 39,438 unique human IgH gene sequences were shown.
was used less frequently (Figure 1B). Among J_{H} germline genes, the J_{H1} gene was predominantly used followed by the J_{H6} gene (Figure 1C). These results are consistent with previous individual reports with small number of IgH sequences. Taken together, this analysis provides a comprehensive view of the existing human IgH gene sequences in the NCBI database.

Table 1 Frequencies of V_{H} replacement footprint motifs in the N1 and N2 regions of human IgH genes.

Total number of sequences	Sequences with V_{H}, D_{H}, J_{H} gene assignment	Length of V_{H} replacement footprint motif in N1	V_{H} replacement footprint motifs in N1	V_{H} replacement footprint motifs in N2	p-Value	Frequency of V_{H} replacement products (%)
Test IgH sequences						
417	396	3	217	140	0.0001	54.7
4	99	4	64	0.0028	25.0	
5	29	5	15	0.0437	7.3	
6	5	6	3	NA	NA	
7	2	7	0	NA	NA	
NCBI IgH sequences						
61,851	39,438	3	23,195	20,699	0.0001	58.8
4	13,365	4	11,240	0.0001	33.9	
5	4788	5	3499	0.0001	12.1	
6	1490	6	813	0.0001	4.3	
7	382	7	140	0.0001	1.1	

*a Unique IgH gene sequences with identifiable V_{H}, D_{H}, and J_{H} genes were analyzed. These IgH sequences contain both functional and non-functional IgH rearrangements. N1, V_{H}–D_{H} junction regions; N2, D_{H}–J_{H} junction regions.

*b The frequencies of V_{H} replacement footprint motifs with different length within the N1 or the N2 regions were compared by two-tailed Chi square with Yates’ correction. p < 0.05 is considered statistically significant and p < 0.001 is considered extremely statistically significant.

*c The frequency of V_{H} replacement products was calculated using the number of sequences with V_{H} replacement motifs with different length in the N1 regions divided by the total number of unique IgH gene sequences.

*d These IgH gene sequences had been analyzed manually for V_{H} replacement products (37).

*e All the three 6-mer footprints within the N2 regions could be due to second D_{H} gene segments.

*f Not applicable.

*g The human IgH gene sequence dataset was downloaded from the NCBI database on April 20, 2011.

Identification of V_{H} replacement products using the V_{H}RFA program

To identify potential V_{H} replacement products in a large number of IgH gene sequences, the V_{H}RFA program first generated libraries of potential V_{H} replacement footprint database with different length based on the V_{H} gene 3’ ending sequences following the conserved cRSS sites of all the functional human V_{H} germline genes (Tables S1 and S2 in Supplementary Material). Then, the V_{H}RFA program uses these libraries to search for the presence of V_{H} replacement footprint motifs with specified lengths at the V_{H}–D_{H} junction (N1) regions or the D_{H}–J_{H} junction (N2) regions of IgH genes. As an initial test of the newly developed V_{H}RFA program, we reanalyzed the 417 human IgH gene sequences that had been to manually identify potential V_{H} replacement products in a large number of IgH gene sequences, 12.1% of them contain the 5-mer V_{H} replacement footprint motifs within the N1 regions, 25 or 54.7% of IgH genes can be assigned as potential V_{H} replacement products to the diversification of the human IgH repertoire. If we consider the 4- and 3-mer V_{H} replacement products, 7.3% of the IgH gene sequences can be assigned as potential V_{H} replacement products. Further review of these IgH genes confirmed the identified pentameric V_{H} replacement motifs within the V_{H}–D_{H} junctions (Table 2, N1 regions). If we consider the 4- or 3-mer V_{H} replacement footprints within the N1 regions, 25 or 54.7% of IgH genes can be assigned as potential V_{H} replacement products, respectively (Table 1; Table S3 in Supplementary Material). These results are consistent with our previously manual assignment of V_{H} replacement products in this group of IgH genes and provide the first validation of the V_{H}RFA program.

Contribution of V_{H} replacement products to the human IgH repertoire

With the help of the V_{H}RFA program, we searched for potential V_{H} replacement products in the 39,438 unique human IgH sequences with identifiable V_{H}, D_{H}, and J_{H} genes from the NCBI database. We first compared the frequencies of V_{H} replacement footprint motifs with 3, 4, 5, 6, or 7 nucleotides within the N1 and N2 regions (Table 1, bottom). The frequencies of 3, 4, 5, 6, and 7-mer V_{H} replacement footprint motifs in the N1 regions are extremely statistically significantly higher than those in the N2 regions (Table 1, bottom, p < 0.0001), indicating that the presence of such motifs at the N1 region is likely contributed by V_{H} replacement rather than random nucleotide addition. Among these IgH gene sequences, 12.1% of them contain the 5-mer V_{H} replacement footprint motifs and can be assigned as potential V_{H} replacement products (Table 1, bottom). This number indicates a significant contribution of V_{H} replacement products to the diversification of the human IgH repertoire. If we consider the 4- and 3-mer V_{H} replacement products, 7.3% of the IgH gene sequences can be assigned as potential V_{H} replacement products.
Table 2 | Identification of potential V_H replacement products in human IgH sequences.

Accession No.	V_H gene	V_H	P	N[*]	D_H	CDR3 (aa)^b
AF235818	VH1-69*06	tgtgcgaga	gaagcaaaagttgagaag	gcgtgceaaacc	AREAKFEKAKPYYYYYGMVD	
AF235903	VH3-33*01	tgtgcgaga	cagac	agctgtgcgctgg	ARDROPLLGYGMVD	
AF235823	VH3-11*01	tgtgcgaga	cactctcacgaaacctcc	ttcaggttttggtgtggtat	ARDTLTSPYDFWSYYYYGMVD	
AF235857	VH3-23*01	tgtgcgaaagaat	gaagaggaag	tattgtggtgaaaccgcgtct	AKDEEYCGRTSCFCMDV	
AF235601	VH1-18*01	tgtgcgaga	cagccagagccgcgcgcgg	atttattgtggtggttacgagctc	ARDGCRDANSYCGSCCMV	
AF235609	VH3-33*05	tgtgcgaga	agagggcgcacctcc	atattagagcagctgg	AARRGPIHSSWYYYYGMVD	
AF235766	VH3-30*03	tgtgcgaga	acagctggagccc	atattagagcagctgg	AKWOITHIFVDI	
AF235806	VH3-15*01	tgtgcgaga	cattccggggtagcc	gtattagagcagctgg	HSSGPYSSGWSPPKYYYYGMVD	
AF235787	VH3-23*01	tgtgcgaaagaat	gcacgagcttgta	gcacgagcttgta	AKDOBKAAMGMYYYYGMVD	
AF235574	VH4-59*07	tgtgcgaga	cagacat	tattgtggtgaaaccgcgtct	ARDNYYSSGPDADFBI	
AF235726	VH6-9*06	tgtgcgaga	gcaggtggcaggtat	.gcgtgceaaacc	AREKFEKAKPYYYYYGMVD	
AF235869	VH2-70*10	tgtgc	cagaca	atatttggtggtggtgactgct	AROCGCGDCSDY	
AF235809	VH4-39*07	tgtgcgaga	cagaca	atatttggtggtggtgactgct	AROCGCGDCSDY	
AF235610	VH3-30*01	tgtgcgaga	gactgaag	tagctgtgcgctgg	ARDSSSRYGYWYFDL	
AF235541	VH6-33*05	tgtgcgaga	tgcagcggaccgat	tagctgtgcgctgg	ARDSSSRYGYWYFDL	
AF235758	VH2-70*05	tgtgcgaga	aggggcttagcgtatac	aacttggga	ARDSSSRYGYWYFDL	
AF235544	VH6-66*01	tgtgcgaga	cagacat	tattgtggtgaaaccgcgtct	ARDSSSRYGYWYFDL	
AF235692	VH3-33*01	tgtgcgaga	ggggagggaggtat	catatttggtggtggtgactgcttatcccs	AREGEVDHIWVTAIPNWFDP	
AF235764	VH3-33*01	tgtgcgaga	cagaca	atatttggtggtggtgactgcttatcccs	AREGEVDHIWVTAIPNWFDP	
AF235793	VH3-23*01	tgtgcgaga	cagaca	atatttggtggtggtgactgcttatcccs	AREGEVDHIWVTAIPNWFDP	
AF235897	VH4-39*07	tgtgcgaga	cagaca	atatttggtggtggtgactgcttatcccs	AREGEVDHIWVTAIPNWFDP	
AF235796	VH3-33*01	tgtgcgaga	cagaca	atatttggtggtggtgactgcttatcccs	AREGEVDHIWVTAIPNWFDP	
AF235544	VH6-66*01	tgtgcgaga	cagaca	atatttggtggtggtgactgcttatcccs	AREGEVDHIWVTAIPNWFDP	
AF235544	VH6-66*01	tgtgcgaga	cagaca	atatttggtggtggtgactgcttatcccs	AREGEVDHIWVTAIPNWFDP	
AF235544	VH6-66*01	tgtgcgaga	cagaca	atatttggtggtggtgactgcttatcccs	AREGEVDHIWVTAIPNWFDP	
AF235544	VH6-66*01	tgtgcgaga	cagaca	atatttggtggtggtgactgcttatcccs	AREGEVDHIWVTAIPNWFDP	
AF235544	VH6-66*01	tgtgcgaga	cagaca	atatttggtggtggtgactgcttatcccs	AREGEVDHIWVTAIPNWFDP	
AF235544	VH6-66*01	tgtgcgaga	cagaca	atatttggtggtggtgactgcttatcccs	AREGEVDHIWVTAIPNWFDP	
AF235544	VH6-66*01	tgtgcgaga	cagaca	atatttggtggtggtgactgcttatcccs	AREGEVDHIWVTAIPNWFDP	
AF235544	VH6-66*01	tgtgcgaga	cagaca	atatttggtggtggtgactgcttatcccs	AREGEVDHIWVTAIPNWFDP	

a The identified V_H replacement footprints are underlined and highlighted in red in the N1 regions.

b The amino acids encoded by the identified V_H replacement footprints are underlined in the amino acid sequences of the CDR3 regions.
replacement footprints motifs, 33.9 and 55.8% of IgH genes can be assigned as potential VH replacement products (Table 1, bottom).

Within the large number of IgH genes, there are 3,818 non-functional IgH gene sequences and 687 of them contain the 5-mer VH replacement footprint motifs in their N1 regions, which can be assigned as potential VH replacement products. The frequency of VH replacement products in non-functional IgH genes (18%) is extremely statistically significantly higher than that in the overall functional IgH genes (p < 0.0001, two-tailed Chi square test with Yates’ correction). Identification of VH replacement products in non-functional IgH genes fulfills the prediction that VH replacement is a random process that can generate both functional and non-functional IgH rearrangement products. Taken together, these results uncovered a previously unrealized contribution of VH replacement products to the diversification of human IgH repertoire.

DISTRIBUTION OF VH REPLACEMENT PRODUCTS IN IgH GENES USING DIFFERENT VH GENES
Using the VH/RFA program, we further analyzed the distribution of VH replacement products in IgH genes using different VH genes. The frequencies of VH replacement products in IgH genes using different VH germline genes are different (Figure 2). For example, the frequencies of VH replacement products in IgH genes using the VH2–5, VH3–30, VH1–69, and VH13–34 genes are 23.88, 19.12, 16.64, 14.28, and 13.13%, which are extremely statistically significantly higher than that in IgH genes using the VH6–1 gene (p < 0.0001, two-tailed Fisher’s exact test) (Figure 2). As an internal control, 7.56% of IgH genes using the VH6–1 gene have 5-mer VH replacement footprints within their N1 regions, which is statistically significantly lower than that in the overall IgH gene sequences (p = 0.0004, two-tailed Fisher’s exact test).

VH REPLACEMENT PRODUCTS ARE HIGHLY ENRICHED IN IgH GENES DERIVED FROM PATIENTS WITH AUTOIMMUNE DISEASES OR VIRAL INFECTIONS
The overall frequency of VH replacement products in the 39,438 unique IgH genes from the NCBI database (12.1%) is much higher than what was estimated in the 417 IgH genes obtained from healthy donors. We reasoned that the majority of IgH gene sequences deposited at the NCBI database was derived from diseased subjects, which may have higher frequencies of VH replacement products. Next, we investigated the distribution of VH replacement products in IgH genes derived from different disease sub-categories. Using the keyword analysis function within the VH/RFA program, we can correlate the frequencies of VH replacement products with different sub-categories of IgH gene sequences from the NCBI database. For example, the frequency of VH replacement products in 558 IgH genes derived from healthy donors is 8.6% (Figure 3), which is similar to the result obtained from previous analysis of the 417 IgH gene sequences from healthy donors. Interestingly, the frequencies of VH replacement products in IgH genes derived from subjects with different autoimmune diseases, such as allergic rhinitis, RA, and SLE are statistically significantly higher than that in the healthy donors (Figure 3, p < 0.05, two-tailed Chi square test with Yates’ correction; Table S4 in Supplementary Material). The frequencies of VH replacement products are further enriched in IgH genes derived from RA synovium and in IgH genes encoding rheumatoid factors, suggesting that B-cells expressing VH replacement products are positively selected in the RA synovium to encode rheumatoid factors (Figure 3, p < 0.05, two-tailed Chi square test with Yates’ correction; Table S4 in Supplementary Material). Similarly, VH replacement products are highly enriched in IgH genes derived from SLE plasmablasts (Figure 3, p < 0.05, two-tailed Chi square test with Yates’ correction; Table S4 in Supplementary Material), suggesting that these enriched VH replacement products contribute to the production of autoAbs in SLE.

The accumulation of VH replacement in IgH genes derived from patients with different autoimmune diseases suggested that VH replacement products may contribute to the production of autoAbs. Indeed, further analyses showed that VH replacement products are statistically significantly enriched in IgH genes encoding rheumatoid factors, anti-Rh(D) Abs, and anti-acetylcholine receptor Abs (Figure 3, p < 0.05, two-tailed Chi square test with Yates’ correction; Table S4 in Supplementary Material).

To our surprise, the frequencies of VH replacement products are significantly elevated in IgH genes derived from different viral infections. For examples, the frequencies of VH replacement products in IgH genes derived from HIV and HCV infected patients are statistically significantly higher than that in healthy donors (Figure 3, p < 0.05, two-tailed Chi square test with Yates’
Our previous analysis showed that the VH replacement footprints preferentially contribute charged amino acids to the IgH CDR3 regions. **VH REPLACEMENT PRODUCTS ARE POSITIVELY SELECTED DURING AUTOIMMUNE OR ANTI-VIRAL RESPONSES**

Charged amino acids within IgH CDR3 are not well tolerated during Ab repertoire development, they are frequently found within the IgH CDR3 regions of autoantibodies or anti-viral Abs, which may play important roles in binding charged self or viral antigens, respectively. Further analyses of VH replacement products derived from different autoimmune diseases or viral infections showed that the identified VH replacement footprints predominantly encode charged amino acids (Figure 6A). Detailed analyses showed that the identified VH replacement footprints in IgH genes encoding anti-DNA/histone Abs or rheumatoid factors encoded significantly lower frequencies of negatively charged residues, including D, E, N, and Q residues (Figure 6B, p < 0.05, two-tailed Chi square test with Yates' correction). The identified VH replacement products have similar mutation rate when compared with the non-VH replacement product derived from healthy donors, patients with autoimmune diseases or viral infections (Figure 6C). As negative controls, VH replacement products or non-VH replacement products in neonatal IgH gene sequences have much lower mutation rates (Figure 6C). The accumulation of mutations within these VH replacement products indicates that these enriched VH replacement products in autoimmune diseases or viral infections had been positively selected.

DISCUSSION

In order to determine the distribution of VH replacement products in these IgH genes and explore the biological significance of VH replacement products in human antibody diversification and diseases, we developed a Java based computer program VH RFA to analyze large number of IgH gene sequences and to identify potential VH replacement products (42). Previous analyses of the IgH gene repertoire have provided important insights regarding the developmental process and function of B lineage cells. Due to the tremendous diversity, the complete human IgH repertoire cannot be experimentally determined. Within the NCBI database, there are 61,851 human IgH gene sequences (May, 2012 version). The initial analysis of the VH, DJH, and VH gene usages in the 61,851 human IgH gene sequences provides a comprehensive view of the
human IgH repertoire. In this dataset, the usage of every functional V_H germline gene was confirmed, although their usages differ dramatically.

Using the V_HRFA program, we identified V_H replacement products and analyzed their distributions in the 39,438 unique IgH sequences. Based on the identification of pentameric V_H replacement footprint motifs within the V_H–D_H junctions, 12.1% of the IgH genes can be assigned as potential V_H replacement products. These results confirmed our previous estimation that V_H replacement products contribute to the diversification of the human IgH repertoire. Interestingly, the frequencies of V_H replacement products in IgH genes using the V_H1–69, V_H3–49, and V_H3–34 are statistically significantly higher than that in the overall IgH genes. In contrast, the frequency of V_H replacement products in IgH genes using the V_H1–61 gene is statistically significantly lower than that in the overall IgH genes. Among the non-functional IgH genes, 18% of them contain the pentameric V_H replacement footprints and can be assigned as potential V_H replacement products. These results confirmed the prediction that V_H replacement is a random process that can generate both functional and non-functional IgH rearrangements. Moreover, the high frequency of V_H replacement products in non-functional IgH genes suggested that V_H replacement products were negatively selected during B-cell development. Based on this reasoning, the frequency of V_H replacement products in non-functional IgH genes may represent the true frequency of V_H replacement during early stages of B-cell development, because these non-functional IgH rearrangements cannot encode BCRs and had not been selected during B-cell development.

Due to the location of the cRSS site, a short stretch of nucleotides has the potential to remain as a V_H replacement footprint at the V_H–D_H junctions following the V_H replacement process (25, 37, 46). The leftover V_H replacement footprints will elongate the IgH CDR3 regions (25, 37, 46). Analyses of the identified 4788 V_H replacement products showed that the average CDR3 length of the identified V_H replacement products is 2.8 aa longer than that of non-V_H replacement products. Previously, it surprised us that the identified V_H replacement footprints preferentially

FIGURE 4 The average CDR3 length of identified V_H replacement products is significantly longer than that of non-V_H replacement products. The distribution of IgH genes with different CDR3 lengths is shown in the bar graph. The average CDR3 length of V_H replacement products (black bars) was compared to that of non-V_H replacement products (white bars). Statistical significance was determined by using an unpaired t-test. *p < 0.0001 is considered extremely statistically significant.

FIGURE 5 V_H replacement footprints preferentially contribute charged amino acids into the IgH CDR3 regions. (A) Frequencies of charged and uncharged amino acids (aa) in the N1 regions of non-V_H replacement products were compared with those encoded by the V_H replacement footprints. (B) The usages of different amino acids in the N1 regions of non-V_H replacement products (white bars) or encoded by the V_H replacement footprints (black bars) were analyzed and shown in the bar graph. The total number of amino acids analyzed for each population is indicated. Statistical significance was determined using a two-tailed Chi square test with Yate’s correction. *p < 0.05 is considered statistically significant. **p < 0.0001 is considered extremely statistically significant.
encode charged amino acids within the IgH CDR3 regions (22, 37, 46). Recent analyses showed that the positions of the cRSS and high frequencies of charged amino acids encoded by the following nucleotides are highly conserved in IgH genes from different vertebrates (47). In the current study, 57% of the identified V_{H} replacement footprints encoded charged amino acids in the IgH CDR3 regions. Normally, charged amino acids within IgH CDR3 are not well tolerated during antibody repertoire development, probably due to charged residues may generate autoAbs. Indeed, our analysis revealed that V_{H} replacement products are significantly enriched in IgH genes derived from patients with different autoimmune diseases, including RA, allergic rhinitis, and SLE or in IgH genes encoding different autoAbs such as rheumatoid factor, anti-rhesus D antigen, and anti-acetylcholine receptor Abs. Our recent analyses of large number of mouse IgH genes also showed that the frequencies of V_{H} replacement products are enriched in IgH genes derived from autoimmune prone mice (48). These results suggested that V_{H} replacement products contribute to the generation of autoantibodies in both human and mouse.

Another important and interesting finding from this analysis of large number of IgH gene sequences is that the frequencies of V_{H} replacement products are significantly elevated in IgH genes derived from various viral infections, including HIV, HCV, and in IgH genes encoding Abs against HCV glycoprotein E2 or HBV surface antigens. Our recent studies showed that V_{H} replacement products are highly enriched in IgH genes encoding different subgroups of anti-HIV antibodies, especially in CD4i and PGT antibodies (49). These results suggested that V_{H} replacement products may contribute to the generation of anti-viral Abs. The majority of the V_{H} replacement footprints identified from anti-viral Abs also encode charged amino acids, which may be important for binding charged viral antigens. Moreover, the accumulation of mutations in these V_{H} replacement products indicated that these enriched V_{H} replacement products in patients with viral
infections are positively selected during anti-viral responses. The identification of V\textsubscript{H} replacement products in autoimmune diseases and anti-viral responses suggested a potential link between viral infections and the pathogenesis of autoimmune diseases. It has long been postulated that chronic viral infections contribute to autoimmunity. However, clear examples that Abs against viral antigens cross-react with self-antigens have only been found in a few cases (50, 51). Here, our results reveal a shared pattern of accumulation of V\textsubscript{H} replacement products in IgH genes derived from autoimmune diseases and anti-viral responses.

V\textsubscript{H} replacement was originally proposed as a receptor editing mechanism to change unwanted IgH genes that are either non-functional or encoding autoreactive Abs. The enrichment of V\textsubscript{H} replacement products in IgH genes derived from autoimmune diseases or encoding autoAbs is particular puzzling. There are several possible mechanisms to explain this finding. First, we have recently shown that crosslinking cell surface BCRs induces V\textsubscript{H} replacement in human immature B-cells (40). Thus, the levels of V\textsubscript{H} replacement recombination might be induced in the immature B-cells during either the anti-viral immune response or autoimmune disease due to persistent antigen stimulation or chronic inflammation.

In supporting this assumption, the number of newly emigrated immature B-cells in the peripheral blood is increased during inflammatory response; and these mobilized immature B-cells may continue to undergo V\textsubscript{H} replacement recombination ectopically. Second, the intrinsic feature of V\textsubscript{H} replacement is elongating the IgH CDR3 with charged amino acid. V\textsubscript{H} replacement products may frequently encode autoAbs and they are efficiently deleted during normal B-cell development. The observed elevated frequencies of V\textsubscript{H} replacement products in different autoimmune diseases may reflect the defective negative selection in these diseased subjects. Moreover, ectopically occurred V\textsubscript{H} replacement may bypass the stringent negative selection in the bone marrow and release V\textsubscript{H} replacement products in the periphery. Last, due to the special features of V\textsubscript{H} replacement products in generating IgH genes with long and charged CDR3, it is possible that V\textsubscript{H} replacement products are positively selected by viral antigens during anti-viral responses to produce specific anti-viral Abs. In supporting of this notion, the identified potential V\textsubscript{H} replacement products encoding anti-HIV antibodies all have very long CDR3 regions with multiple charged amino acid residues (49). The accumulated mutations within the V\textsubscript{H} genes of the identified V\textsubscript{H} replacement products in the current study also indicated the positive selection. However, the leftover V\textsubscript{H} replacement products generated during a chronic viral infection may encode Abs that cross-react with self-antigens and later contribute to autoimmunity. In fact, many cell surface antigens and viral antigens are negatively charged, which may be a reason for the selection of V\textsubscript{H} replacement products with long and charged CDR3 regions.

In our sequence based analysis, the assignment of V\textsubscript{H} replacement is dependent on the identification of V\textsubscript{H} replacement footprints within the V\textsubscript{H}–D\textsubscript{H} junctions. Any deletion at the 3′ of V\textsubscript{H} genes or the 5′ of V\textsubscript{H} replacement footprint motifs during the primary or secondary IgH gene recombination, respectively, may destroy the pentameric V\textsubscript{H} replacement footprints. Therefore, it is possible that the sequence analysis based study still underestimates the frequency of V\textsubscript{H} replacement products. Using the V\textsubscript{H}RFA program, we extended our analysis our V\textsubscript{H} replacement products to include potential V\textsubscript{H} replacement footprint motifs with different lengths. For examples, 33.9% of the IgH genes contain the tetrameric V\textsubscript{H} replacement footprint motifs and 58.8% of IgH genes contain the trimeric V\textsubscript{H} replacement footprint motifs. These results revealed a significant contribution of V\textsubscript{H} replacement products to the IgH repertoire. Recent studies in mice carrying non-functional IgH genes on both IgH alleles demonstrated that V\textsubscript{H} replacement occurs efficiently to generate almost normal numbers of B-cells with diversified IgH repertoires (52). However, only about 20% of the IgH gene sequences from this study contained residual V\textsubscript{H} replacement footprints. Therefore, the majority IgH genes generated through V\textsubscript{H} replacement recombination have no leftover V\textsubscript{H} replacement footprints. Theoretically, 66% of IgH rearrangements will be out of reading frame and 44% of developing B-cells may carry non-functional IgH rearrangements on both alleles. If all of these B-cells are rescued by V\textsubscript{H} replacement, a minimum of 44% of the IgH genes might be generated through V\textsubscript{H} replacement recombination. Under this assumption, IgH genes containing the tetrameric or the trimeric V\textsubscript{H} replacement footprint motifs at their N1 regions should also be considered as potential V\textsubscript{H} replacement products.

Like any sequence based analysis program, the V\textsubscript{H}RFA program also has its limitation. Although sequence motifs assemble the V\textsubscript{H} gene 3′ ending sequences can be identified in the N1 regions, such motifs can also be identified within the N2 regions at relative lower frequencies. Theoretically, V\textsubscript{H} replacement can only leave footprint within the N1 region; the existence of V\textsubscript{H} replacement footprint like motifs within the N2 regions can only be generated by random nucleotide addition. For IgH genes using the V\textsubscript{H}6-1 gene, which is the first V\textsubscript{H} germline gene 5′ to the DH locus, there should have no V\textsubscript{H} replacement footprint like motifs within the V\textsubscript{H}–D\textsubscript{H} junctions, but the V\textsubscript{H}RFA program still identifies 7.56% of the sequences contains V\textsubscript{H} replacement footprint like motifs within the V\textsubscript{H}–D\textsubscript{H} junctions. We can only refer such motifs as the contribution of random nucleotide addition.

In summary, analyses of a large number of human IgH gene sequences from the NCBI database uncovered a significant contribution of V\textsubscript{H} replacement products to human Ab repertoire, especially in IgH genes derived from autoimmune diseases or anti-viral responses. Understanding how V\textsubscript{H} replacement is regulated and how V\textsubscript{H} replacement products are positively or negatively selected during normal or diseased conditions will be the focus of future studies, because modulation of the level of V\textsubscript{H} replacement may offer unique approaches to treat different human diseases.

ACKNOWLEDGMENTS

Miles D. Lange, Lin Huang, and Zhixin Zhang conceived and designed the study. Lin Huang developed the Java-based V\textsubscript{H}RFA software. Miles D. Lange and Lin Huang analyzed the raw data and generated figures and tables. Miles D. Lange, Lin Huang, and Zhixin Zhang validated the results. All authors contributed to the development of the project and final writing of the manuscript. This study was supported in part by NIH grants AI074948 (Zhixin Zhang), AI076475 (Zhixin Zhang), and AR059351 (Kai-hong Su). The funders had no role in study design, data collection, data analysis, data interpretation, or writing of the report.
collection and analysis, decision to publish, or preparation of the manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at http://www.frontiersin.org/Journal/10.3389/fimmu.2014.00345/abstract

REFERENCES

1. Mallef E, Casellas R, Nussenweig MC. Antibody regulation of B cell development. *Nat Immunol* (2000) 1:379–85. doi:10.1038/80816
2. Rajewsky K. Clonal selection and learning in the antibody system. *Nature* (1996) 381:751–8. doi:10.1038/381751a0
3. Tonegawa S. Somatic generation of antibody diversity. *Nature* (1983) 302:575–81. doi:10.1038/302575a0
4. Oettinger MA, Schatz DG, Baltimore D. Stable expression of immunoglobulin gene V(D)J recombinase activity by gene transfer into ST3 fibroblasts. *Cell* (1988) 53:107–14. doi:10.1016/0092-8674(88)90492-8
5. Schatz DG, Baltimore D. Stable expression of immunoglobulin gene V(D)J recombinase activity by gene transfer into ST3 fibroblasts. *Cell* (1988) 53:107–14. doi:10.1016/0092-8674(88)90492-8
6. Schatz DG, Oettinger MA, Baltimore D. The V(D)J recombinase activating gene, RAG-1. *Cell* (1989) 59:1035–48. doi:10.1016/0092-8674(89)90760-5
7. Lewis SM. The mechanism of V(D)J joining: lessons from molecular, immunological, and comparative analyses. *Adv Immunol* (1994) 56:267–510. doi:10.1016/S0065-2776(08)60450-2
8. Ramssden DA, Baetke K, Wu GE. Conservation of sequence in recombination signal sequence spacers. *Nucleic Acids Res* (1994) 22:1785–96. doi:10.1093/nar/22.10.1785
9. Swanson PC, Desiderio S. V(D)J recombination signal recognition: distinct, overlapping DNA-protein contacts in complexes containing RAG1 with and without RAG2. *Immunity* (1998) 9:115–25. doi:10.1016/S1074-7613(00)80593-2
10. ten Boekel E, Melchers F, Rolink AG. Precursor B cells showing H chain allelic exclusion display allelic exclusion at the level of pre-B cell receptor surface expression. *Immunity* (1998) 8:199–207. doi:10.1016/S1074-7613(00)80472-0
11. Al T, Yancopoulos GD, Blackwell TK, Wood C, Thomas E, Boss M, et al. Ordered rearrangement of immunoglobulin heavy chain variable region segments. *EMBO J* (1994) 13:527–60. doi:10.1002/j.1460-2075.1994.tb02987.x
12. Burrows P, LeJeune M, Kearney JF. Evidence that murine pre-B cells synthesise μ heavy chains but no light chains. *Nature* (1979) 280:388–40. doi:10.1038/280388a0
13. Cappione AJ, Bird JD, Albert AE, Anolik JH, Sanz I. Lupus IgG VH4.34 antibodies bind to a 220-kDa glycoform of CD45/B220 on the surface of human B lymphocytes. *Immunol Cell Biol* (2000) 78:2389–96. doi:10.1046/j.1440-1711.2000.00881.x
14. Cappione AJ, Pugh-Bernard AE, Anolik JH. VH4.34 antibodies bind to a 220-kDa glycoform of CD45/B220 on the surface of human B lymphocytes. *Immunol Cell Biol* (2000) 78:2389–96. doi:10.1046/j.1440-1711.2000.00881.x
15. Odendahl M, Jacobi A, Hansen A, Feist E, Hiepe F, Burmester GR, et al. Disease-modifying antirheumatic drug treatment in RA patients with high IgG VH4.34 autoantibody titers. *J Rheumatol* (2004) 31:299–303. doi:10.3899/jrheum.030650
16. Pugh-Bernard AE, Silverman GJ, Cappione AJ, Villano ME, Ryan DH, Insel RA, et al. Contribution of receptor editing to the antibody repertoire. *Science* (2001) 291:1541–4. doi:10.1126/science.1056600
17. Rajewsky K, Forster I, Cumano A. Evolutionary and somatic selection of the antibody repertoire in the mouse. *Science* (1987) 238:1088–94. doi:10.1126/science.3117826
18. Zemlin M, Bauer K, Hummel M, Pfeiffer S, Devers S, Zemlin C, et al. The diversity of rearranged immunoglobulin heavy chain variable region genes in peripheral blood B cells of preterm infants is restricted by short third...
complementarity-determining regions but not by limited gene segment usage. Blood (2001) 97:1511–3. doi:10.1182/blood.V97.5.1511
44. Brochet X, Lefranc MP, Giudicelli V. IMGT/V-QUEST: the highly customized and integrated system for IG and TR standardized V-I and V-D-J sequence analysis. Nucleic Acids Res (2008) 36:W503–8. doi:10.1093/nar/gkn316
45. Liu Y, Fan R, Zhou S, Yu Z, Zhang Z. Potential contribution of VH gene replacement in immunity and disease. Ann N Y Acad Sci (2005) 1062:175–81. doi:10.1196/annals.1358.020
46. Zhang Z, Wang YH, Zemlin M, Findley HW, Bridges SL, Burrows PD, et al. Molecular mechanism of serial VH gene replacement. Ann N Y Acad Sci (2003) 987:270–3. doi:10.1111/j.1749-6632.2003.tb06060.x
47. Sun Y, Liu Z, Li Z, Lian Z, Zhao Y. Phylogenetic conservation of the 3' cryptic recombination signal sequence (3'cRSS) in the VH genes of jawed vertebrates. Front Immunol (2012) 3:392. doi:10.3389/fimmu.2012.00392
48. Huang L, Lange MD, Yu Y, Li S, Su K, Zhang Z. Contribution of VH replacement products in mouse antibody repertoire. PLoS One (2013) 8:e57877. doi:10.1371/journal.pone.0057877
49. Liao H, Guo JT, Lange MD, Fan R, Zemlin M, Su K, et al. Contribution of VH replacement products to the generation of anti-HIV antibodies. Clin Immunol (2013) 146:46–55. doi:10.1016/j.clim.2012.11.003
50. Gross AI, Hochberg D, Rand WM, Thorley-Lawson DA. EBV and systemic lupus erythematosus: a new perspective. J Immunol (2005) 174:6599–607. doi:10.4049/jimmunol.174.11.6599
51. McClain MT, Heinlen LD, Dennis GJ, Roebuck J, Harley JB, James JA. Early events in lupus humoral autoimmunity suggest initiation through molecular mimicry. Nat Med (2005) 11:85–9. doi:10.1038/nm1167
52. Koralov SB, Novobrantseva TI, Konigsmann J, Ehlich A, Rajewsky K. Antibody repertoires generated by VH replacement and direct VH to JH joining. Immunity (2006) 25:43–53. doi:10.1016/j.immuni.2006.04.016

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 23 May 2014; accepted: 06 July 2014; published online: 22 July 2014.
Citation: Lange MD, Huang L, Yu Y, Li S, Liao H, Zemlin M, Su K and Zhang Z (2014) Accumulation of VH replacement products in IgH genes derived from autoimmune diseases and anti-viral responses in human. Front. Immunol. 5:345. doi: 10.3389/fimmu.2014.00345
This article was submitted to B Cell Biology, a section of the journal Frontiers in Immunology.
Copyright © 2014 Lange, Huang, Yu, Liao, Zemlin, Su and Zhang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.