Evaluation of mechanical and structural properties on the degradation of treated and untreated coir, jute and kenaf nettings

V Anggraini¹, A Syamsir², S M Mubin³, A M H Sofan⁴, J Melasari⁵ and R Nasmirayanti⁶

¹Lecturer, School of Engineering, Monash University Malaysia, Malaysia
²Senior Lecturer, Institute of Energy Infrastructure (IEI), College of Engineering, Universiti Tenaga Nasional, Malaysia
³,⁴Student, College of Engineering, Universiti Tenaga Nasional, Malaysia
⁵,⁶Lecturer, Faculty of Engineering, Universitas Putra Indonesia YPTK, Indonesia

Corresponding author: smmubin27@gmail.com

Abstract. Most of the soils in Malaysia are arid and infertile due to lack of buffering capacity and low clay activities that resulted in soil acidity. Moreover, high intensity rainfall and extreme conditions of slopes such as transient drought and lack of nutrients have reduced the survival and growth of potential plants. The use of vegetation and their relationship with microbes have great potential to alleviate soil acidity and erosion problems. The application of natural fibers in the construction industry was highly used as an additional or alternative source to be used in composites for increasing its strength properties. Natural fibers can innovative solutions to solve difficult problems, economically, enables the use of local materials means that natural fibers can be sustainable solutions. This paper consists of the technical results on the testing conducted to determine the strength of coir, jute and kenaf fibers. The objectives of this re-search are to manifest the effectiveness of new treatment on natural fibers netting to reduce degradability of the natural fiber netting to be used in acidic soils in Malaysia, to pick out the best chemical treatment for natural fibers to select the best natural fibers for rainfall area. The fibers have been treated by Sodium Hydroxide (NaOH) and Calcium Chloride (CaCl₂). Six natural fiber nets have been provided with the size of each net is 500mm x 500mm (50cm x 50cm) and the spacing between the lines of the net is 17.5mm (1.75cm). Three nets are treated and the others are not treated. The nets have been placed on a slope at the site for 30 days and 60 days. The lab test that has been conducted is more focused on the strength properties of the coir, jute and kenaf fibers in terms of Tensile Strength. It has been found that treated fiber showed better performance than untreated fibers. The strength of fibers has been decreased respectively from 1st day on site to 60th day affected by climate changes.

1. Introduction
Generally, soils in Malaysia are infertile and arid due to low clay activities and lack of buffering capacity which results in soil acidity. Also, extreme temperature conditions and high intensity rainfall contributes to drought and lack of nutrients which reduces the rate of survival and growth of potential plants. Moreover, percolating rainwater with the ability to leach basic soil elements such as calcium,
magnesium, potassium, and sodium also contributes to soil acidity. As such, soil acidity has a huge negative impact on fertility, biological activities, and plant productivity which may lead to erosion problems. However, the use of flora and its relationship with bacteria have great potential to lessen soil acidity and erosion problems. The practice of utilizing vegetation, known as “Bioengineering” combines ecological, mechanical and hydrological concepts for soil improvement has been effectively applied to minimize soil erosion in Malaysia [1]. Well-combine plant choices and planting technique help in preventing soil erosion as well as in providing other benefits including biodiversity production, low-cost maintenance, sustainable self-development, and an environmentally friendly approach [1]. However, the interaction of vegetation and soil is complex due to various soil properties, soil pollutants and different types of vegetation cover [2].

Fibers produced by plants is known as natural fibers. Natural fibers such as coconut, kenaf, among others are cheap and locally available in many countries [3-7]. Therefore, their application as reinforcement materials for improving soil properties is cost effective. Furthermore, in their utilization/installation process heavy machinery are not required, finally, their application provides novel sustainable solutions to complex and challenging problems [8-10]. In the utilization of these fiber nets for soil improvement and prevention of soil erosion, certain principal factors are considered among them include; assessing the properties of the netted fibers after periods of rainfall and also, the strength retention capacity of the treated fiber nettings.

The study had as objectives to evaluate the effectiveness of a new method of treating natural fibers in order to reduce fiber nettings degradability in acidic soils in Malaysia, thus preventing soil erosion. Also, the study aimed to identify the best chemical treatment of natural fibers, and finally, to propose the most suitable natural fiber(s) for rain-fall areas prone to soil erosion.

2. Materials and methods

2.1 Materials
Three natural fibers were used in this study, among them include coir, jute, and kenaf fibers. The fibers were chemically treated by Sodium Hydroxide (NaOH) and Calcium Chloride (CaCl₂) solutions.

2.2 Chemical treatment on the fiber nets
The chemical treatment method used for loading of Ca(OH)₂ solutions arround the fiber and fiber pores is extensively outlined in a previous publication [4]. The treatment was carried out at room temperature and pressure. 50g of coir fibers were soaked in 500 mL CaCl₂ aqueous solution of 0.5M concentration for 24 hours in order to uniformly fill the pores and around of the fibers by the CaCl₂ solution. The soaked coir fibers were then separated from the CaCl₂ aqueous solution and incubated in a beaker. 500 mL aqueous sodium hydroxide solution of 0.5M concentration was later added to the fibers and kept for 24 hours. During the above treatment, CaCl₂ quickly precipitated as nanoparticles on the fiber surfaces and their pores. Finally, the coir fibers were separated from the sodium hydroxide solution and were washed with distilled water in order to remove the undesired residues from the reaction such as NaCl and NaOH. The fibers were then dried at ambient room temperature. The procedure of the fiber’s treatment is shown in the figure below.

![Figure 1. The Procedure of Fiber Treatment](image)
2.3 Fabrication of fibers nets

Six nets of natural handmade fibers were laid out. Each net composed of different types of untreated and treated natural fibers. The size of each net was 1000mm x 1000mm (100cm x 100cm) and the spacing between the lines of the net was 17.5mm (1.75cm).

![Figure 2. Fiber netting: (a) Untreated Coir (b) Treated Coir (c) Untreated Jute (d) Treated Jute (e) Untreated Kenaf (f) Treated Kenaf](image)

2.4 Field layout and installation procedure

After the fabrication of the fiber nets, the nets were laid on slopes to cover the soil. Figure 3 and 4 shows a field layout at Serdang slope, Selangor Malaysia. Before installation, the slope was clean from grasses and trees. The cleaning was done using a steel hoe. After cleaning, the nets were laid to cover the soil. Steel catchers and soils were used to install the nets. Soils were also used to cover the nets ensuring that the nets stick to the soil and do not move from their original place as a result of rainfall or strong winds.

Steel nets were also used in covering and protecting the area from animals or humans which may damage or alter the experiment. Samples of the 1st, 30th and 60th days after laying of the netted fibers were periodically collected from the site and their mechanical properties tested in the laboratory.

![Figure 3. Field Layout Netted Fiber](image)
2.5 Tensile strength test
Fiber tensile test was conducted as per ASTM D3379. Evaluation on tensile strength to determine the effect of chemical treatment on the tensile strength of the netted fibers due to continue rain-sun periods.

Tensile strength tests were performed on 18 samples of natural fibers. 9 samples were the treated fibers consisting of the three different fiber types (coir, kenaf, and jute) and the remaining 9 samples also included the three different untreated fiber types. The tests were performed with a curing duration of the 1st day, 30 days and 60 days.

3. Results

3.1 Biodegradation of fiber netting
Being a natural fibrous material, fibers are susceptible to degradation due to microbial action in the soil and also as a result of the continuous alternating rain-sun periods. Susceptibility to biodegradation of natural fibers fabric was studied based on tensile strength on the fiber samples which were periodically collected from the site.
Figure 6. Comparison between Treated vs Untreated Coir Fiber

Figure 6 shows that the treated coir fiber has better performance than untreated coir fiber in regards to fiber degradation. The figure indicates that the treated coir fiber control sample (1st day) had a strength of 26.62 and the untreated sample had a lower strength of 17.81, with a difference in strength percentage by 33.1%. The sample of 30 days curing also indicated that the treated sample is stronger by 56% with a value of 18.56 relative to the untreated sample with a value of 8.24. The last sample of coir fiber, after 60 days, shows that the treated sample is stronger with a value of 5.62 and the untreated sample had a value of 1.76 with better performance for the treated sample by 69%.

Figure 7. Comparison between Treated vs Untreated Kenaf Fiber

Figure 7 indicates that treated kenaf fiber has a better performance than untreated kenaf fiber. From the figure, it can be seen that the strength value of the control sample (1st day) for the treated kenaf fiber is 26.1 and the untreated sample has a value of 20.55, with an increased percentage of by 21.3% for the treated sample. The 30 days treated sample also showed a better strength with a value of 10.73 N/mm² and a percentage strength increase by 19.2% relative to the untreated sample with a value of 8.67. The last sample of kenaf fiber after 60 days shows the treated sample has a strength value of 3.84 and the untreated sample has a value of 2.97 with a percentage performance for the treated sample by 23%.
Figure 8. Strength Retained of Netted Fibers

The strength retain was plotted as shown in Figure 8. Analysis of natural fibers netting’s tensile strength showed that after 60 days of laying, the area laid by treated coir net fiber has retained 21.1% and the jute and kenaf net fibers retained 20.1% and 14.7% respectively. The high values retained by the coir net fiber may be due to its high lignin content and its ability to absorb rainwater better than other Methodology.

4. Conclusion
The tensile strength values of natural fibers were different for each sample. The tensile strength values for the control samples, which represent 1st day for each fiber, gave the highest strength, compared to the samples of 30 days and 60 days, respectively. In increase in laying days lead to a decrease in the tensile strength of the natural fiber.

The treated natural fibers were stronger and showed better performance than the untreated natural fibers. Analysis on the ultimate tensile strength of natural fibers netting showed that after 60 days of laying, the area laid by the treated coir net fiber retained greater strength relative to the other fibers. Coir net retained 21.1% of the strength, followed by jute net 20.1% and kenaf net 14.7% respectively. The high strength retained by coir net fiber may be due to its high lignin content and its ability to absorb rainwater better than the other fibers.

5. Recommendation
Some recommendations for future work in the light of the conclusions derived from this study are:
- Additional natural fibers are required to study their strength and how it is affected by climate change.
- Use of more varieties of chemical treatments to justify which treatments can give the best applicability.
- Microstructural analyses are required to understand the main mechanisms of the treated fibers.
- Natural fibers strength testing for a longer time period greater than 60 days is required to monitor its performance.

References
[1] Osman, N., & Barakbah, S. S. 2011. The effect of plant succession on slope stability. *Ecological Engineering, 37*(2), 139-147.
[2] Lekha, K. R. 2004. Field instrumentation and monitoring of soil erosion in coir geotextile stabilized slopes—A case study. *Geotextiles and Geomembranes, 22*(5), 399-413.
[3] Anggraini, V., Asadi, A., Huat, B. B., & Nahazanan, H. 2015. Effects of Coir fibers on tensile and compressive strength of lime treated soft soil. *Measurement*, 59, 372-381.

[4] Anggraini, V., Asadi, A., Farzadnia, N., Jahangirian, H., & Huat, B. B. K. 2016. Effects of coir fibres modified with Ca (OH)\textsubscript{2} And Mg (OH)\textsubscript{2} nanoparticles on mechanical properties of lime-treated marine clay. *Geosynthetics International*, 23(3), 206-218.

[5] Anuar, H., & Zuraida, A. 2011. Improvement in mechanical properties of reinforced thermoplastic elastomer composite with kenaf bast fiber. *Composites Part B: Engineering*, 42(3), 462-465.

[6] Rashdi, A. A. A., Sapuan, S. M., Ahmad, M. M. H. M., & Khalina, A. 1970. Combined effects of water absorption due to water immersion, soil buried and natural weather on mechanical properties of Kenaf Fibre Unsaturated Polyester Composites (KFUPC). *International Journal of Mechanical and Materials Engineering*, 5(1).

[7] Fidelis, M. E. A., Pereira, T. V. C., Gomes, O. D. F. M., de Andrade Silva, F., & Toledo Filho, R. D. 2013. The effect of fiber morphology on the tensile strength of natural fibers. *Journal of Materials Research and Technology*, 2(2), 149-157.

[8] Ramakrishna, G., & Sundararajan, T. 2005. Impact strength of a few natural fibre reinforced cement mortar slabs: A comparative study. *Cement and Concrete Composites*, 27(5), 547-553.

[9] Rowell, R. M., Han, J. S., & Rowell, J. S. 2000. Characterization and factors effecting fiber properties. *Natural Polymers and Agrofibers Bases Composites. Embrapa Instrumentacao Agropecuaria, P. O. Box 741, Sao Carlos, 13560-970 SP, Brazil, 2000.*, 115-134.

[10] Siregar, J. P., Sapuan, S. M., Rahman, M. Z. A., & Zaman, H. M. D. K. 2012. Effects of alkali treatments on the tensile properties of pineapple leaf fibre reinforced high impact polystyrene composites. *Editorial Board*, 409.

Acknowledgements

The authors express their gratitude to Universiti Tenaga Nasional (UNITEN), Malaysia for supporting this research under BOLD 2020, through Project No: RJO10517844/073. Special thanks to those who are contributed to this project directly or indirectly.