The year 2020 was markedly influenced by the coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although the virus’ origin, cellular entry mechanisms, and epidemiology were rapidly elucidated [2, 18, 41], many fundamental immunopathological questions related to SARS-CoV-2 remain unanswered. In-situ analyses of viral pathophysiology thus remained at the level of small series and case reports [1, 30, 43], which were nonetheless instrumental in the understanding of this novel disease. For example, lymphopenia was one of the symptoms initially observed in cases with severe disease, its extent directly correlating with disease severity [16]. This was typically accompanied by an increased susceptibility to superimposed bacterial infections [30], but its morphological correlate in lymphoid tissues has not been fully elucidated.

Histomorphological patterns in lymph nodes [42] may provide valuable insights into the immunopathological mechanisms of disease. They reflect complex interactions between antigens, immune cells, signaling molecules (cytokines, chemokines, and growth factors), and the complement system [39]. Immunogenetics, such as gene polymorphisms of second messengers, receptors, and histocompatibility genes, often determines the severity and duration of the histomorphologically perceptible changes, as exemplified by sarcoidosis [14]. The most typical pattern of an adequate immune response is reflected by follicular hyperplasia with associated specific antibody production and establishment of an immunological memory [39]. Some other morphologic patterns also mirror signal transduction between messengers and cells. For instance, angiofollicular (Castleman/Castleman-like) hyperplasia is associated with chronic exposure to interleukin (IL)6 [12], while granulomas are associated with an overproduction of IL2, IL12, and tumor necrosis factor α (TNFα) [17]. Systemic lupus erythematosus, Kikuchi–Fujimoto disease, and toxoplasmosis show an increase in CD123/CD303+ plasmacytoid dendritic cells in lymph nodes due to the activation of Toll-like receptors 7 and 9 (TLR7, TLR9) and an overproduction of interferon γ (IFNγ) [20].

A somewhat less commonly considered histomorphological pattern in lymph nodes is the extrafollicular proliferation of B cells (B blasts) in the absence of follicular hyperplasia [5]. This is the morphological correlate of a rapid or primarily transient expansion of B cells without the formation of germinal centers. Histologically, lymph node architecture is intact; however, paracortical zones are replete with a polymorphic infiltrate of smaller blasts, centroblasts, immunoblasts, and—most instructively—plasmablasts. Immunopheno-typic features of these blasts vary, showing heterogeneous positivity for CD20, CD30, CD38, CD79a, CD138, IRF4 (MUM1), and BLIMP1 [5]. They are polytypic for light chains and are 70–80% IgM+/CD27+/CD30+/CD79a+/CD138+, as they do not undergo an immunoglobulin class switch at the genetic level and do not experience a germinal center reaction at the physiological level. In 20–30% of cases, they are IgG+/CD27+/CD30+/CD79a+/CD138+, a likely immunophenotype of extrafollicularly activated marginal zone B cells without long-lasting B cell response [9]. A predominance of such extrafollicular B blasts would lead to an overarching production of low-affinity IgM antibodies without a lasting immunological memory. This pattern is predominantly observed in mucosal lymph nodes and splenic tissue.

This paper reviews current knowledge on immunopathological changes in COVID-19 and presents distinct histomorphological patterns of locoregional lymph nodes of COVID-19 lungs. These observations are discussed in the context of gene expression profiles and immunological phenomena in severe disease courses, as well as their potential role in the development of an effective immune response and immunological memory.

Lymph node (histo)pathology of COVID-19

An overview of the major pathophysiological mechanisms of the immune
Main Topic: COVID-19

Immunopathology of SARS-CoV-2 infection. a 1. Viral entry via ACE2, transcription of viral proteins and assembly, release of daughter virions. 2. Up-/dysregulation of ISG, cytokines, and chemokines. 3. Activation of PRRs by PAMPs. 4. Leukocyte trafficking into the lungs resulting in lymphopenia. 5. Antigen presentation in lymph nodes; activation of T cells (purple; e.g., by CTLA4/CD28) in a Th1 (Tbet⁺)-predominant milieu. 6. Inhibition of BCL6⁺ Tfh cells (gray) disrupts germinal center formation, resulting in the activation of extracellular B blasts and, thus, an increase in plasmablasts (blue). 7. Release of specific (low-affinity) antibodies (blue) against SARS-CoV-2. 8. Antibody-dependent enhancement. 9. Macrophage activation syndrome with predominance of an M2 phenotype including HLH and cytokine storm. b Temporal evolution of laboratory parameters and histology in COVID-19 lymph nodes. Short hospitalization time: high viral load, severe lymphopenia, absence of germinal centers accompanied by severe edema/capillary stasis and plasmablast accumulation. Longer hospitalization time: lower viral load, regressing lymphopenia, incipient (delayed) germinal center formation. ACE2 angiotensin-converting enzyme 2, HLH hemophagocytic lymphohistiocytosis, ISG interferon-stimulated gene, PAMPs pathogen-associated molecular patterns, PRRs pattern recognition receptors, RT-PCR reverse transcriptase polymerase chain reaction; green upregulated proteins, red downregulated proteins.

Fig. 1 Immunopathology of SARS-CoV-2 infection. a

Lymphopenia

Severe lymphopenia was one of the first observations among COVID-19 patients in early clinical case series [16]; its severity was shown to be the most important predictive factor of disease progression in a meta-analysis of 32 studies involving over 10,000 patients [26]. Pathophysiologically, lymphopenia could be the outcome of chemotactic dysregulation of CCL8, CCL20, and CXCL10, which were shown to be upregulated in COVID-19 lung tissue [1]. These molecules are responsible for chemotaxis and migration of (T) lymphocytes, possibly leading to extensive leukocyte trafficking into the lungs. Furthermore, lymphocytes express angiotensin-converting enzyme 2 (ACE2) [46], rendering possible direct cytopathic effects a further plausible explanation of lymphopenia.

Dysregulation of interferon-mediated signal transduction

IFN-mediated signal transduction plays a central role in the primary immune response to viral infections. Preliminary results of single-cell sequencing of peripheral blood mononuclear cells of COVID-19 patients revealed a phenotypic reconfiguration of immune cells with heterogeneous IFN-stimulated gene (ISG) signatures and downregulation of HLA class II genes, which was also associated with an increased plasmablast population.
Histomorphological patterns of regional lymph nodes in COVID-19 lungs

Abstract

Background. A dysregulated immune response is considered one of the major factors leading to severe COVID-19. Previously described mechanisms include the development of a cytokine storm, missing immunoglobulin class switch, antibody-mediated enhancement, and aberrant antigen presentation.

Objectives. To understand the heterogeneity of immune response in COVID-19, a thorough investigation of histomorphological patterns in regional lymph nodes was performed.

Materials and methods. Lymph nodes from the cervical, mediastinal, and hilar regions were extracted from autopsies of patients with lethal COVID-19 (n = 20). Histomorphological characteristics, SARS-CoV-2 qRT-PCR, and gene expression profiling on common genes involved in immunologic response were analyzed.

Results. Lymph nodes displayed moderate to severe capillary stasis and edema, an increased presence of extracellular plasmablasts, mild to moderate plasmacytosis, a dominant population of CD8+ T-cells, and CD11c/CD68+ histiocytosis with hemophagocytic activity. Out of 20 cases, 18 presented with hypoplastic or missing germinal centers with a decrease of follicular dendritic cells and follicular T-helper cells. A positive viral load was detected by qRT-PCR in 14 of 20 cases, yet immunohistochemistry for SARS-CoV-2 N-antigen revealed positivity in sinus histiocytes of only one case. Gene expression analysis revealed an increased expression of STAT1, CD163, granzyme B, CD8A, MZB1, and PAK1, as well as CXCL9.

Conclusions. Taken together, our findings imply a dysregulated immune response in lethal COVID-19. The absence/hypoplasia of germinal centers and increased presence of plasmablasts implies a transient B-cell response, implying an impaired development of long-term immunity against SARS-CoV-2 in such occasions.

Keywords

CDB-positive T-lymphocytes · Cytokine release syndrome · Germinal center · Immunohistochemistry · SARS-CoV-2
Macrophage activation

Furthermore, the development of hemophagocytic lymphohistiocytosis (HLH) has been observed in COVID-19 patients [29, 38]. HLH typically is characterized by an uncontrolled macrophage activation syndrome, linked to impaired antigen presentation/recognition and excessive cytokine release (cytokine storm), but—to a limited and controlled extent—is known to be a typical reaction of the innate immune defense as a so-called pattern-recognition receptor (PRR)-associated response to pathogen-associated molecular patterns (PAMPs), specifically viral RNA [4, 30, 44]. HLH can be triggered by herpesviruses, especially EBV, but also by SARS-CoV-1 and influenza viruses such as H5N1 and H1N1 [6, 15]. In accordance with this, COVID-19 tissue studies show increased expression of CCL2 and CCL7 [1], known to be chemotactic for macrophages, thus stressing the central role of the cytokine storm in COVID-19 pathogenesis and highlighting a potential therapeutic intervention in severe disease [25]. Furthermore, an upregulation of genes encoding complement activation and phagocytosis is observed in severe disease [48]. In this context, pediatric COVID-19 patients have been observed to develop multisystemic hyperinflammation, which phenotypically resembles Kawasaki syndrome [37]. In such cases, severe vascular and cardiac manifestation was observed, occasionally together with macrophage activation syndrome.

Dysregulation of the humoral immune response

In one of the first autopsy studies, an absence of germinal centers, an increased presence of plasmablasts, and intranodal capillary stasis were described in hilar lymph nodes and splenic parenchyma [30]. These histomorphological changes may be explained by a dysregulation of BCL6+ follicular T helper cells [21] which play an essential role in germinal center functionality. Additionally, early blockade of T helper cell differentiation, a predominance of T-bet+ T helper 1 cells, and an extrafollicular accumulation of TNFα could be shown [21], corresponding to a loss of follicular B cells by flow cytometric analyses of peripheral blood from severely ill COVID-19 patients [21]. Interestingly, TLR4 and TLR5, which are both downregulated in COVID-19 as mentioned earlier, are also essential for the germinal center response as they activate the NF-κB signaling pathway via MYD88 [13].

The previously mentioned proliferation of plasmablasts in hilar lymph nodes in lethal COVID-19 infection could represent a morphological correlate of a dysregulation of immunoglobulin (Ig) class switching. This is supported by a markedly increased plasmablast population in patients with severe disease progression, whereas a robust adaptive immune response with clonally expanded CD8+ effector- or emory cells, at best, is observed in mild disease [23, 49]. Gene expression analyses of COVID-19 autopsy tissue also demonstrated down-regulation of CD40LG [1], which is an essential link of communication between T and B cells and significantly influences B cell maturation [39]. A defect in CD40LG results in an absence of Ig class switching, which may favor preferential extrafollicular proliferation of B cells. As a reflection of the aforementioned two features, in-depth immunological analyses demonstrated a negative correlation between the number of memory B cells and COVID-19 symptom duration [33]; the number of these cells correlated with IgG1 and IgM against the SARS-CoV-2 spike protein. This was also reflected in antibody titer measurements [32] and flow cytometric analyses, which showed oligoclonal plasmablast expansion (>30% of circulating B cells) [22] in cases with severe disease. This, along with other immunologic signatures that correlated with disease progression, allowed a biostatistical classification of three COVID-19 immune phenotypes with different risk profiles [28].

As a link to immunopathology, an incomplete humoral immune response with low-affinity, non-(sufficiently)-neutralizing, low-titer antibodies can lead to antibody-dependent enhancement. This is defined as the generation of suboptimal antibodies, which enable virus penetration into Fc/complement receptor-bearing monocytes, macrophages, and granulocytes [19]. Indeed, data indicate an interaction of anti-spike protein antibodies and macrophages that contributes significantly to lung injury in SARS-CoV-1 [24]. Finally, spike protein reactivity was also shown to be present in over one third of SARS-CoV-2-naive patients. This implies the presence of cross-reactive T cells, developed in the course of immunization against other coronaviruses and may explain the more robust immune response in some patient groups [4].

Methods

Tissue extraction and histology

Hilar, mediastinal, and cervical lymph nodes were acquired from autopsies of COVID-19 patients (n=20). Staining protocols of histochemical and immunohistochemical assays (H&E, IgG, IgM, CD3, CD11c, CD20, CD79a, CD68, CD163, CD206, HLA-DR, SARS-CoV-2-N-antigen [Rockland 200-401-A50 rabbit polyclonal antibody, dilution 1:2000]) were performed in accordance with accredited standard operating procedure (SOP) protocols of the Institute of Pathology in Basel. Histologic characteristics (number of plasmablasts, plasma cells, edema/capillary stasis, presence of HLH and germinal centers) were evaluated using ordinal scales (0–3; Table 1).

RT-PCR

All lymph nodes underwent RT-PCR examination to determine viral load. The protocol was described in our previous study [30].

Gene expression analyses

RNA was extracted by Forma HTG (HTG Molecular Diagnostics, Tucson, USA) from 10μm thick untreated formalin-fixed paraffin-embedded (FFPE) blocks according to established protocols and processed and analyzed as described using the HTG EdgeSeq autoimmune assay [31].
Results

Table 1 presents a summary of clinical and histological parameters of the 20 cases studied.

Clinical parameters and RT-PCR

In 14 out of 20 cases, qRT-PCR detected SARS-CoV-2 RNA. Interestingly, in cases without detectable SARS-CoV-2 RNA, hospitalization time was longer (6 vs. 11 days), suggesting a biphasic disease course with progressive viral elimination, similar to previously performed analyses of the same autopsy cohort (Fig. 1b). This is supported by a negative correlation of pulmonary viral load with hospitalization time (ρ = −0.776; p < 0.0001) and a positive correlation between pulmonary and lymph node viral load (ρ = 0.514; p = 0.035). Blood counts revealed a positive correlation between hospitalization time and absolute lymphocyte count (ρ = 0.582; p = 0.014) and a negative correlation with the absolute leucocyte count (ρ = −0.577; p = 0.015).

Histopathology

Major histologic lymph node features included moderate-to-severe edema and capillary stasis (Fig. 2a) in all cases, explained by acute right heart failure due to severe pulmonary disease. Further findings include a proliferation of extracellular B blasts, IgG- and IgM-positive plasmablasts in particular (Fig. 2b,c; 12/20), consistent with rapid or primarily transient B cell immune response bypassing the germinal center response as described above [5], with largely absent or hypoplastic/hypotrophic germinal centers or secondary follicles (12/20), including decreased follicular dendritic cells and follicular T helper cells. Correlation analyses showed a negative association between the presence of secondary follicles and viral load in the lungs (ρ = −0.645; p = 0.005) and CRP (secondary follicles = −0.522; p = 0.032), which, in conjunction with previous analyses of the same autopsy cohort [34], additionally underscores a delayed germinal center response. Furthermore, a discrete-to-moderate degree of plasmacytosis and a predominance of CD8+ T cells was observed, accompanied by numerous HLA-DR-, CD163-, and CD206-positive M2-polarized macrophages [24], CD11c- and CD68-positive histiocytes, and the presence of hemophagocytosis in the sinuses in 12/20 cases (Fig. 2d), consistent with the aforementioned phenomena of macrophage activation in COVID-19 [29, 38]; however, the full clinical picture of HLH presented itself in only one of the 20 patients examined here [47].

An increased number of sinus histiocytes with corresponding positive immunohistochemical detection of the nucleocapsid antigen of SARS-CoV-2 in an elderly patient with a 30-day disease course may be interpreted as antibody-dependent enhancement, as further supported by observations from Martines et al. (Fig. 3a). Although the majority of lymph nodes examined illustrated imperceptible virus antigen levels as detected by immunohistochemistry, the lungs of the same patient showed a comparatively higher viral copy number than others (990 viral genome copies/10⁶...
human RNAseP copies in the lymph nodes and approximately 125000 in the lungs).

Gene expression profiles

In line with the histomorphological patterns described above, gene expression profiles (Fig. 3b) showed increased expression of the following genes: STAT1 (central transcription factor in macrophage activation), CD163 (hemoglobin–haptoglobin complex receptor and marker of M2 macrophage polarization [24]), granzyme B (GZMB) but not perforin (consistent with the imbalance of both proteins in hemophagocytic lymphohistiocytosis [40]), CXCL9 and PAK1 (a chemokine and an enzyme important for the migration of cytotoxic T cells), CD8A (in line with the upregulation of PAK1), and, finally, MZB1 (marginal zone B and B1 cell-specific protein, which contributes to the composition and secretion of IgM and thus corresponds with the increased plasmablasts).

Discussion

The histomorphological patterns observed in lymph nodes appear to reflect the underlying immunopathology of lethal COVID-19. Our data imply a biphasic disease course, demonstrated by an initially high viral load and severe lymphopenia, which both eventually regress. Histologically, edema and plasmablast activation are evident in the lymph nodes of early lethal cases, followed by macrophage activation and a subtle germinal center reaction in cases with a longer disease duration (Fig. 1b), thus supporting this premise. These data are consistent with gene expression analyses performed on the same autopsy cohort [34], which unraveled a marked variance in ISG gene signature in patients with varying hospitalization time. A disruption of the IFN response is implied in severe COVID-19, as supported by the following:

1. All coronaviruses, especially SARS-CoV-2, suppress the production and release of all three types of interferons [10].

2. Patients with severe COVID-19 show loss-of-function variants in TLR- and interferon-dependent genes or neutralizing antibodies to type I IFN (α and ω) [3, 49].

3. Dysregulation of type I IFN seems to be generally crucial for disease progression [7, 8].

4. The ISG response changes significantly as COVID-19 progresses and seems to influence different aspects of immunopathology [34]. This disruption of the IFN response may explain the dysregulation of BCL6+ follicular T helper cells [21], the rapid but poorly specific B cell immune response bypassing the germinal center reaction with plasmablasts generating low-affinity antibodies [5, 22, 45], the resultant antibody-dependent enhancement with macrophage (hyper)activation [19] with sinus histiocytosis and possibly HLH [29, 38], and M2 macrophage polarization [24, 34, 49]. This ultimately results in a highly pathogenic inflammatory monocyte-macrophage response that is well documented in SARS-CoV-1 and
MERS [7, 8, 24], leading to extensive organ damage [25, 48]. Antibody-dependent enhancement could also contribute to the in-situ positivity in monocytes/macrophages (Fig. 3a; [19]) and thus, by extension, systemic viral spread.

These complex immunopathological observations, illustrated in part by the histopathologic changes described in this study, could also explain the underlying challenges in efficient coronavirus vaccine development [11]. Furthermore, findings from in-situ studies of the lymphoid compartment in COVID-19 could provide valuable pharmacological approaches, such as TLR agonists [35], to increase the efficiency of vaccines under development, thus ensuring a durable immune response and memory.

Practical conclusion

- The analysis of histopathological features in locoregional lymph nodes is indispensable for the understanding of COVID-19 pathophysiology. In particular, the absence of a germinal center response accompanied by plasmablast expansion and a lack of immunoglobulin class switching suggest an inefficient antibody response in patients with severe disease.
- A dysregulation of interferon (IFN)-mediated signal transduction appears to be central to the immunopathology of COVID-19. Initial therapeutic approaches of IFN-α-interfering drugs (JAK inhibitors such as baricitinib or dexamethasone) are currently undergoing clinical trials (NCT04358614), while potential clinical studies involving TLR agonists are yet to be launched.
- Further studies are needed to shed light on the underlying mechanisms of innate and humoral immune responses in mild and severe disease courses, as well as phenomena such as cross-reactivity of certain T cell subpopulations. This will potentially aid the development of an efficient vaccine.

Corresponding address

Prof. Dr. Alexandar Tzankov
Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel
Basel, Switzerland
alexandar.tzankov@usb.ch

Acknowledgements. This study was supported by the Botnar Research Centre for Child Health, BRCH.

Funding. Open access funding provided by University of Basel

Declarations

Conflict of interest. J.D. Haslbauer, M.S. Matter, A.K. Stalder, and A. Tzankov declare that they have no competing interests.

References

1. Ackermann M, Verleden SE, Kuehnel M et al (2020) Pulmonary vascular endotheliitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med 383:120–128. https://doi.org/10.1056/NEJMoa2015432
2. Andersen KG, Rambaut A, Lipkin WI et al (2020) The proximal origin of SARS-CoV-2. Nat Med 26:450–452. https://doi.org/10.1038/s41591-020-0820-9
3. Bastard P, Rosen LB, Zhang Q et al (2020) Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science 370:423. https://doi.org/10.1126/science.abc4585
4. Braun J, Loyal L, Frensch M et al (2020) SARS-CoV-2-reactive T cells in healthy donors and patients
Main Topic: COVID-19

Abbreviations

BLIMP-1/PRDM-1 PR domain zinc finger protein 1
CCL Chemokine ligand
CD Cluster of differentiation
COVID-19 Coronavirus disease 2019
CTLA4 Cytotoxic T lymphocyte-associated protein 4
CXCL9 Chemokine (C-X-C motif) ligand 9
EBV Epstein-Barr virus
Fc Fragment constant
HLA-DR Human leukocyte antigen DR
HLH Hemophagocytic lymphohistiocytosis
IFN Interferon
IL Interleukin
IRF4 (MUM-Interferon regulatory factor 4) Interferon regulatory factor 4
ISG interferon-stimulated genes
LPS Lipopolysaccharide
MYD88 Myeloid differentiation primary response 88
MUM-1 (IRF-4) Multiple myeloma 1 protein
MZB1 Marginal zone B and B1 cell-specific protein
NF-kB Nuclear factor kappa B
PAK1 P21 (RAC1)-activated kinase 1
PAMPs Pathogen-associated molecular patterns
PRRs Pattern recognition receptors
qRT-PCR Quantitative reverse transcriptase polymerase chain reaction
SARS-CoV-1/2 Severe acute respiratory syndrome coronavirus 1/2
STAT1 Signal transducer and activator of transcription 1
TLR Toll-like receptor
TNF-α Tumor necrosis factor alpha

with COVID-19. Nature. https://doi.org/10.1038/s41586-020-2598-9
5. Brighten A, Andrulis M, Geissinger E et al (2005) Extracellular proliferation of B cells in the absence of follicular hyperplasia: a distinct reaction pattern in lymph nodes correlated with primary or recall type responses. Histopathology 47:90–100. https://doi.org/10.1111/j.1365-2559.2005.02173.x
6. Brisse E, Wouters CH, Andrei G, Matthys P (2017) How viruses contribute to the pathogenesis of hematopoietic lymphohistiocytosis. Front Immunol 8:1102. https://doi.org/10.3389/fimmu.2017.01102
7. Channappanavar R, Fehr AR, Vijay R et al (2016) Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host Microbe 19:181–193. https://doi.org/10.1016/j.chom.2016.01.007
8. Channappanavar R, Fehr AR, Zheng J et al (2019) IFN-α response timing relative to virus replication determines MERS coronavirus infection outcomes. Clin Infect Dis 129:3625–3639. https://doi.org/10.1097/5127/JCM530
9. Chappell CP, Draves KE, Giltiay NV, Clark EA (2012) Interferon regulatory factor 4 (MUM-1) expression in lymph nodes correlated with primary or recall type responses. Histopathology 47:90–100. https://doi.org/10.1111/j.1365-2559.2005.02173.x
10. Chu H, Chan-JF, Wang Y et al (2020) Comparative replication and immune activation profiles of SARS-CoV-2 and SARS-CoV in human lungs: an ex vivo study with implications for the pathogenesis of COVID-19. Clin Infect Dis 71:1400–1409. https://doi.org/10.1093/cid/ciaa410
11. Conte C, Sogni F, Affanni P et al (2020) Vaccines against coronaviruses: the state of the art. Vaccines (Basel) 8:309. https://doi.org/10.3390/vaccines8020309
12. Cronin DMP, Warnike RA (2009) Castlemaine disease: an update on classification and the spectrum of associated lesions. Adv Anat Pathol 16:392–404. https://doi.org/10.1093/cid/ciaa410
13. De Silva NS, Anderson MM, Carette A et al (2016) Transcription factors of the alternative NF-kB pathway are required for germline center B-cell development. Proc Natl Acad Sci U S A 113:9063–9068. https://doi.org/10.1073/pnas.1602728113
14. Fingerlin TE, Hamzeh N, Maier LA (2015) Genetics of sarcoidosis. Clin Chest Med 36:569–584. https://doi.org/10.1016/j.ccm.2015.08.002
15. Griffin G, Shennah S, Hughes GC (2020) Hemophagocytic lymphohistiocytosis: an update on pathogenesis, diagnosis, and therapy. Best Pract Res Clin Rheumatol 34:101515. https://doi.org/10.1016/j.berh.2020.101515
16. Guan W-J, Ni Z-Y, Hu Y et al (2020) Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 382:1708–1720. https://doi.org/10.1056/NEJMoa2002032
17. Helming L, Gordon S (2009) Molecular mediators of macrophage fusion. Trends Cell Biol 19:514–522. https://doi.org/10.1016/j.tcb.2009.07.005
18. Hoffmann M, Klein-Weber H, Schroeder S et al (2020) SARS-CoV-2 cell entry depends on ACE2, and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181:271–280.e8. https://doi.org/10.1016/j.cell.2020.02.052
19. Iwasaki A, Yang Y (2020) The potential danger of suboptimal antibody responses in COVID-19. Nat Rev Immunol 20:339–341. https://doi.org/10.1038/s41587-020-3231-6
20. Jęgala AG, Facchetti F, Jaffe ES (2009) Plasmacytoid dendritic cells: physiologic roles and pathologic states. Adv Anat Pathol 16:392–404. https://doi.org/10.1097/PAP.0b013e3181b6b2c
21. Kaneko K, Ku H-H, Boucau J et al (2020) Loss of Bcl-2-expressing T follicular helper cells and germinal centers in COVID-19. Cell 183:1–15. https://doi.org/10.1016/j.cell.2020.08.025
22. Kuri-Cervantes L, Pampena MB, Meng W et al (2020) Comprehensive mapping of immune perturbations associated with severe COVID-19. Sci Immunol 5:1–15. https://doi.org/10.1126/sciimmunol.abd7114
23. Liao M, Liu Y, Yuan J et al (2020) Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat Med 26:842–844. https://doi.org/10.1038/s41591-020-0901-9
24. Liu W, Qin K, et al (2019) Anti–spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. JCI Insight 4:123–158. https://doi.org/10.1172/jci.insight.123158
25. Mahmudpour M, Roозbeh J, Keshavzar M et al (2020) COVID-19 cytokine storm: the anger of inflammation. Cytokine 133:151–155. https://doi.org/10.1016/j.cyto.2020.155151
26. Malik P, Patel U, Mehta D et al (2020) Biomarkers and outcomes of COVID-19 hospitalisations: systematic review and meta-analysis. BMJ Evid Based Med. https://doi.org/10.1136/bmjebm-2020-115336
27. Martinas RB, Ritter JM, Matkovic E et al (2020) Pathology and pathogenesis of SARS-CoV-2 associated with fatal coronavirus disease, United States. Emerging Infect Dis 26:2005–2015. https://doi.org/10.3201/eid2609.200295
28. Mathew D, Giles JR, Baxter AE et al (2020) Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science 369:aebc8511. https://doi.org/10.1126/science.aebc8511
29. McGonagle D, Shanf K, O’Regan A, Bridgewood C (2020) The role of cytokines including interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease. Autoimmun Rev 19:1025–1037. https://doi.org/10.1016/j.autrev.2020.102537
30. Menter T, Havz S, Zurza E et al (2020) Immunomodulatory drugs may overcome the negative prognostic role of active Th17 axis in follicular lymphoma: evidence from the SAKK35/10 trial. Br J Haematol. https://doi.org/10.1111/bjh.16876
31. Murphy P (2020) Individuals with less severe manifestations of SARS-CoV-2 infection may not develop long-lasting humoral immunity. Am J Clin Pathol. https://doi.org/10.1093/ajcp/aqza233
32. Newell KL, Clemmer DC, Cox JB et al (2020) Switched and unswitched memory B cells detected during COVID-19 convalescence correlate with limited symptom duration. medRxiv 2020:1–29. https://doi.org/10.1101/2020.09.04.20187724
33. Niemand R, Ciani Y, Koelzer VH et al (2020) Two distinct immunopathological profiles in autopsy lungs of COVID-19. Nat Commun 11:5086. https://doi.org/10.1038/s41467-020-18854-2
35. Onofrio L, Caraglia M, Facchini G et al (2020) Toll-like receptors and COVID-19: a two-faced story with an exciting ending. Future Sci OA 6:605. https://doi.org/10.2144/fsoa-2020-0091

36. Park A, Iwasaki A (2020) Type I and type III interferons—induction, signaling, evasion, and application to combat COVID-19. Cell Host Microbe 27:870–878. https://doi.org/10.1016/j.chom.2020.05.008

37. Pouletty M, Borocco C, Ouldali N et al (2020) Paediatric multisystem inflammatory syndrome temporally associated with SARS-CoV-2 mimicking Kawasaki disease (Kawa-COVID-19): a multicentre cohort. Ann Rheum Dis 79:999–1006. https://doi.org/10.1136/annrheumdis-2020-217960

38. Prillutsky A, Kritselis M, Shevtsov A et al (2020) SARS-CoV-2 infection-associated hemophagocytic lymphohistiocytosis. Am J Clin Pathol 154:466–474. https://doi.org/10.1093/ajcp/aqaa124

39. Punt J, Stranford S, Jones P, Owen J (2018) Kuby immunology, 8 edn. Freeman, W.H. and Co, New York.

40. Ramos-Casals M, Brito-Zerón P, López-Guillermo A et al (2014) Adult haemophagocytic syndrome. Lancet 383:1503–1516. https://doi.org/10.1016/S0140-6736(13)61048-X

41. Sun J, He W-T, Wang L et al (2020) COVID-19: epidemiology, evolution, and cross-disciplinary perspectives. Trends Mol Med 26:483–495. https://doi.org/10.1016/j.trendsmolmed.2020.02.008

42. Tzankov A, Dirnhofer S (2018) A pattern-based approach to reactive lymphadenopathies. Semin Diagn Pathol 35:4–19. https://doi.org/10.1053/j.semdp.2017.05.002

43. Tzankov A, Jonigk D (2020) Unlocking the lockdown of science and demystifying COVID-19: how autopsies contribute to our understanding of a deadly pandemic. Virchows Arch 477:331–333. https://doi.org/10.1007/s00428-020-02887-5

44. Wang Y, Liu L (2016) The membrane protein of severe acute respiratory syndrome coronavirus functions as a novel cytosolic pathogen-associated molecular pattern to promote beta interferon induction via a toll-like-receptor-related TRAF3-independent mechanism. mBio 7:1872–1815. https://doi.org/10.1128/mBio.01872-15

45. Wilk AJ, Rustagi A, Zhao NQ et al (2020) A single-cell atlas of the peripheral immune response in patients with severe COVID-19. Nat Med 26:1070–1076. https://doi.org/10.1038/s41591-020-0944-y

46. Xu H, Zhong L, Deng J et al (2020) High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci 12:1–5. https://doi.org/10.1038/s41368-020-0074-x

47. Zellweger NM, Huber J, Tsakiris DA, Tzankov A, Gebhard CE, Siegemund M (2021) Swiss Med Wkly 151:w20420. https://doi.org/10.4414/smw.2021.20420

48. Zhang F, Gan R, Zhen Z et al (2020) Adaptive immune responses to SARS-CoV-2 infection in severe versus mild individuals. Signal Transduct Target Ther 5:1–11. https://doi.org/10.1038/s41392-020-00263-y

49. Zhang Q, Bastard P, Liu Z et al (2020) Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science 370:422. https://doi.org/10.1126/science.abd4570