Note on the single-shock solutions of the Korteweg-de Vries-Burgers equation

Ioannis Kourakis1, Sharmin Sultana1 and Frank Verheest2,3

frank.verheest@ugent.be

\textbf{ABSTRACT}

The well-known shock solutions of the Korteweg-de Vries-Burgers equation are revisited, together with their limitations in the context of plasma (astro)physical applications. Although available in the literature for a long time, it seems to have been forgotten in recent papers that such shocks are monotonic and unique, for a given plasma configuration, and cannot show oscillatory or bell-shaped features. This uniqueness is contrasted to solitary wave solutions of the two parent equations (Korteweg-de Vries and Burgers), which form a family of curves parameterized by the excess velocity over the linear phase speed.

Subject headings: plasmas – shock waves

Among the paradigm nonlinear evolution equations cropping up in various domains of physics, the Korteweg-de Vries-Burgers (KdVB) equation,

\begin{equation}
\frac{\partial \varphi_1}{\partial \tau} + A \varphi_1 \frac{\partial \varphi_1}{\partial \xi} + B \frac{\partial^3 \varphi_1}{\partial \xi^3} = C \frac{\partial^2 \varphi_1}{\partial \xi^2},
\end{equation}

arises in physical media where nonlinearity, dispersion and damping interact on slow timescales to produce solitary structures. More specifically, in plasma physics (1) typically obtains by reductive perturbation analysis of a multi-fluid model, through the use of coordinate stretching

\begin{equation}
\xi = \varepsilon^{1/2}(x - \lambda t), \quad \tau = \varepsilon^{3/2} t,
\end{equation}

combined with expansions of the dependent variables like

\begin{equation}
\varphi = \varepsilon \varphi_1 + \varepsilon^2 \varphi_2 + \ldots
\end{equation}

in addition to an appropriate scaling of the damping coefficient, in many cases due to viscosity.

1Centre for Plasma Physics, Department of Physics and Astronomy, Queen’s University Belfast, BT7 1NN Northern Ireland, UK
2Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281, B-9000 Gent, Belgium
3School of Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa

Here \(x \) and \(t \) are the original space and time coordinates, respectively, and \(\varphi \) refers to the electrostatic potential of the solitary waves. In the absence of damping (\(C = 0 \)), the KdVB equation (1) reduces to the KdV equation, whereas in the absence of dispersion (\(B = 0 \)), it recovers the Burgers equation, which bears kink-shaped monotonic shock profile solutions. All this is well known and has been in the literature for a long time, but we will have to come back to these points later.

For a purely mathematical study of the properties of the KdVB equation, (1) is given and its coefficients \(A \), \(B \) and \(C \) might be regarded as free parameters. However, the moment the KdVB equation is derived for a particular plasma (astro)physical configuration, the precise and often elaborate form of \(A \), \(B \) and \(C \) has to be computed. Although the intermediate details need not concern us here, we still have to remind ourselves that \(A \), \(B \) and \(C \) are functions of the plasma compositional parameters, which also determine the linear phase velocity \(\lambda \), and thus cannot be chosen randomly. Moreover, in the process of deriving (1) one has imposed/used that \(\varphi_1 \) vanishes in the undisturbed medium, upstream of the shock or soliton solutions, translated as \(\varphi_1 \rightarrow 0 \) for \(\xi \rightarrow +\infty \). All this has important consequences for the discussion which follows.
Once this is properly kept in mind, there are several ways of deriving the stationary shock structure of (1), by changing to a co-moving frame with coordinate

\[\chi = \kappa (\xi - V \tau), \]

where \(\kappa \) and \(V \) are related to the inverse width and the speed of the shock, respectively. Therefore, it is assumed that both \(\kappa \) and \(V \) are positive. The shock solutions of the KdVB equation have been in the literature for a long time, and later referenced by the so-called “tanh” method, formalized by Malfliet & Hereman (1996a). However, in the paper by Malfliet & Hereman (1996a), one sees that \(\kappa = 1 \) is taken, whether explicitly stated (Shah & Saeed 2009; Saeed & Shah 2010; Shah & Saeed 2011; Shah, Haque & Mahmood 2011), one sees that \(\kappa = 1 \) is taken, whether explicitly stated (Shah & Saeed 2009; Saeed & Shah 2010; Shah & Saeed 2011; Shah, Haque & Mahmood 2011) or only implicitly (Pakzad 2011a,b,c,d; Pakzad & Javidan 2011), by using the shock solution of the KdVB equation. As we will see, taking \(\kappa = 1 \) is not only needlessly stringent, but also erroneous, and in many cases one is not even able to verify that it holds, given the complexities in the expressions for \(A \), \(B \), and \(C \), respectively. Therefore, it is assumed that both \(\kappa \) and \(V \) are positive. The shock solutions of the KdVB equation have been in the literature for a long time, and later referenced by the so-called “tanh” method, formalized by Malfliet & Hereman (1996a). However, in the paper by Malfliet & Hereman (1996a), one sees that \(\kappa = 1 \) is taken, whether explicitly stated (Shah & Saeed 2009; Saeed & Shah 2010; Shah & Saeed 2011; Shah, Haque & Mahmood 2011), one sees that \(\kappa = 1 \) is taken, whether explicitly stated (Shah & Saeed 2009; Saeed & Shah 2010; Shah & Saeed 2011; Shah, Haque & Mahmood 2011) or only implicitly (Pakzad 2011a,b,c,d; Pakzad & Javidan 2011), by using the shock solution in the form given by Shah & Saeed (2009). No justification at all is given as to why one would be allowed to put \(\kappa = 1 \), nor is there any discussion of the consequences. As we will see, taking \(\kappa = 1 \) is not only needlessly stringent, but also erroneous, and in many cases one is not even able to verify that it holds, given the complexities in the expressions for \(A \), \(B \), and \(C \), except for specific numerical choice of all plasma parameters. Some other papers even leave \(\kappa \) undetermined, as if it were a free parameter (Mahmood & Ur-Rehman 2010; Akhtar & Hussain 2011).

When the transformation (4) is applied to (1), one finds

\[-V \frac{d\varphi_1}{d\chi} + A \kappa \varphi_1 \frac{d\varphi_1}{d\chi} + B \kappa \frac{d^3 \varphi_1}{d\chi^3} - C \kappa^2 \frac{d^2 \varphi_1}{d\chi^2} = 0. \]

(5)

One of the popular methods of finding the shock structure for (1) is through the tanh method, and we will follow the original paper by Malfliet & Hereman (1996a), rather than a vast array of newcomers. We are forced to do so, to point out where the specific restrictions to plasma (astro)physics applications play a role and to correct some uses in the literature which have stayed in this respect from the original solutions Malfliet & Hereman (1996a), because in their paper \(A = 1 \) has been taken. While one can always rescale the absolute value of some of the coefficients in (1), one cannot easily do away with the sign, and we keep therefore \(A \) as determined by the plasma model under consideration.

Using the transformation \(\alpha = \tanh \chi \) in (1) and noting that \(d\alpha/d\chi = 1 - \tanh^2 \chi \), we obtain

\[-V \frac{d\varphi_1}{d\alpha} + A \varphi_1 \frac{d\varphi_1}{d\alpha} + B \kappa^2 \frac{d^3 \varphi_1}{d\alpha^3} \left\{ (1 - \alpha^2) \frac{d}{d\alpha} \left[(1 - \alpha^2) \frac{d\varphi_1}{d\alpha} \right] \right\} - C \kappa^2 \frac{d^2 \varphi_1}{d\alpha^2} = 0. \]

(6)

Here one common factor \(\kappa \) and one common bracket \((1 - \alpha^2) \) have already been divided out, to simplify the subsequent computations.

The idea is then to look for solutions \(\varphi_1 \) as a finite power series in \(\alpha \), which in this case (and in many others) will end with the quadratic term Malfliet & Hereman (1996a), thus

\[\varphi_1 = \beta_0 + \beta_1 \alpha + \beta_2 \alpha^2. \]

(7)

The reason that the power series breaks off comes from a balance between the highest nonlinearity and dispersive terms in (6). Given that the different powers of \(\alpha \) are functionally independent, we get a system of algebraic equations,

\[\alpha^0 : -V \beta_1 + A \beta_0 \beta_1 - 2B \kappa^2 \beta_1 - 2C \kappa \beta_2 = 0; \]

(8)

\[\alpha^1 : -2V \beta_2 + 2A \beta_0 \beta_2 + A \beta_1^2 - 16B \kappa^2 \beta_2 + 2C \kappa \beta_1 = 0; \]

(9)

\[\alpha^2 : 3A \beta_1 \beta_2 + 6B \kappa^2 \beta_1 + 6C \kappa \beta_2 = 0; \]

(10)

\[\alpha^3 : 2A \beta_2^2 + 24B \kappa^2 \beta_2 = 0, \]

(11)

determining the as yet unknown coefficients \(\beta_0 \), \(\beta_1 \), and \(\beta_2 \). Solve first (11) for \(\beta_2 \) to find

\[\beta_2 = -\frac{12B \kappa^2}{A}, \]

(12)
and substitute this in (10). This allows now to obtain

$$\beta_1 = -\frac{12C\kappa}{5A}. \quad (13)$$

Solving next (8) yields

$$\beta_0 = \frac{V}{A} + \frac{12B\kappa^2}{A} \quad (14)$$

Although all coefficients needed for (7) have now been determined, there is still one condition to be satisfied before the scheme can work, namely (9). This was apparently overlooked or not deemed important (Shah & Saeed 2009; Saeed & Shah 2010; Mahmood & Ur-Rehman 2010; Akhtar & Hussain 2011; Pakzad 2011a,b). While others (Pakzad 2011a,c,d; Shah & Saeed 2011; Shah, Haque & Mahmood 2010; Akhtar & Hussain 2011; Pakzad 2011b; Saeed & Shah 2010; Mahmood & Ur-Rehman 2010; Shah & Saeed 2011; Shah, Haque & Mahmood 2011) cannot be trusted.

Using now (15) in the coefficients (12)–(14) shows that

$$\begin{align*}
\beta_0 &= \frac{V}{A} + \frac{3C^2}{25AB}, \\
\beta_1 &= -\frac{6C^2}{25AB}, \\
\beta_2 &= -\frac{3C^2}{25AB}. \quad (16)
\end{align*}$$

At this stage the shock solution is

$$\varphi_1 = \frac{3C^2}{25AB} \left(1 - \tanh^2 \chi\right) + \frac{V}{A} - \frac{6C^2}{25AB} \tanh \chi. \quad (17)$$

Since B and C are assumed positive, it is the sign of A which will determine the polarity of the kink solution. However, this only obeys the requirement that $\varphi_1 \to 0$ for $\xi \to +\infty$ provided one takes

$$V = \frac{6C^2}{25B} = 24B\kappa^2. \quad (18)$$

Also this inherent aspect of the correct solution has been overlooked in some of the recent papers (Shah & Saeed 2009; Pakzad 2011a,b,c,d; Pakzad & Javidan 2011). The second expression for V in (18) clearly shows the link between width (through κ) and velocity of the structure, and for right propagating structures V is taken positive, which therefore requires B to be positive.

Finally, we arrive at the shock solution as

$$\varphi_1 = \frac{3C^2}{25AB} \left[1 - \tanh^2 \chi + 2(1 - \tanh \chi)\right], \quad (19)$$

where in χ we have to insert (15) and (18), giving

$$\chi = \frac{C}{10B} \left(\xi - \frac{6C^2}{25B} \tau\right). \quad (20)$$

The kink structure (19) is unique, since for a given plasma configuration the compositional parameters fully determine A, B, and C, and hence there is one and only one shock solution, the generic profile of which we illustrate in Fig. 1 once for a positive (upper panel), once for a negative (lower panel) polarity. This point has already been made before (Malfliet & Hereman 1996a), in a mathematical discussion, almost in passing, without really stressing its consequences for detailed plasma (astro)physics problems.
Further remarks are in order here. Since (19) can be rewritten as
\[\varphi_1 = \frac{3C^2}{25AB} \left[4 - (1 + \tanh \chi)^2 \right], \tag{21} \]
the kink is always monotonic, and no oscillatory part nor peak or bell-shaped curve may appear in its graph, contrary to what is found in recent papers (Shah & Saeed 2009; Mahmood & Ur-Rehman 2010; Saeed & Shah 2010; Akhtar & Hussain 2011; Pakzad 2011a, b, c, d; Pakzad & Javidan 2011; Shah, Haque & Mahmood 2011). There may be physical situations where shocks including oscillatory trails or precursors are observed, but these cannot be described by the KdVB formalism.

Note that when \(C = 0 \), the whole shock structure disappears. This is a direct consequence of the very delicate balance needed between a solitary wave (KdV) and a shock wave (Burgers) to form the combined solution (Malfliet & Hereman 1996a). To see this more explicitly, substitute in (19) \(1 - \tanh^2 \chi = \sech^2 \chi \), which is reminiscent of the typical KdV one-soliton solution. In addition, since reductive perturbation analysis requires that \(\varphi_1 \) be small enough to neglect higher-order effects, \(3C^2/(25|AB|) \) should be rather smaller than 1.

All this has to be contrasted to what happens when \(C = 0 \) and (11) reduces to the standard KdV equation, without dissipation through viscosity, or when \(B = 0 \) and (1) becomes the Burgers equation, in the absence of dispersion. Furthermore, when \(C = 0 \) the KdV sech\(^2\) soliton cannot be directly recovered, contrary to what is claimed in the literature (Shah & Saeed 2009; Saeed & Shah 2010; Pakzad 2011a, b, c, d; Shah, Haque & Mahmood 2011).

To see the differences, let us now first put \(C = 0 \), return to (8)–(11) and go again through the motions. It turns out that \(\beta_2 \) is still given by (12), but \(\beta_1 = 0 \) and (14) is replaced here by
\[\beta_0 = \frac{V}{A} + \frac{8B\kappa^2}{A}. \tag{22} \]
Hence, to arrive at the typical KdV soliton solution in sech\(^2\)\(\xi = 1 - \tanh^2 \zeta \), obeying \(\varphi_1 \to 0 \) when \(\xi \to \pm \infty \), it is required that
\[V = 4B\kappa^2, \tag{23} \]
and now for each superacoustic soliton velocity V one finds a soliton of the form

$$\varphi_1 = \frac{3V}{A} \operatorname{sech}^2 \left[\frac{1}{2} \sqrt{\frac{V}{B}} (\xi - V\tau) \right].$$

(24)

Here $B > 0$ is needed, which is usually the case, and the soliton polarity is given by the sign of A.

Doing a similar exercise for the Burgers equation, with $B = 0$, leads from (10) and (11) to $\beta_2 = 0$, in other words, (7) stops at the linear term (Malfliet & Hereman 1996a). Now (8) and (9) give that

$$\beta_0 = \frac{V}{A}, \quad \beta_1 = -\frac{2C\kappa}{A},$$

(25)

and the proper solution needs

$$V = 2C\kappa.$$

(26)

Taking again V as the free parameter, the shock solution is found as

$$\varphi_1 = \frac{V}{A} \left\{ 1 - \tanh \left[\frac{V}{2C} (\xi - V\tau) \right] \right\}.$$

(27)

With the appropriate changes of notation, the solutions (24) and (27) can be found in the original discussion by Malfliet & Hereman (1996a).

To conclude, we have discussed the intricacies of the proper derivation of the solitary shock structure and its limitations in the context of plasma (astro)physical applications. Although these results and restrictions have been in the literature for a long time (Malfliet & Hereman 1996a), it seems to have been forgotten in recent papers (Shah & Saeed 2009, Mahmood & Ur-Rehman 2010, Saeed & Shah 2010, Akhtar & Hussain 2011, Pakzad 2011). It is clear that a shock modeled by (19) can only be monotonic, without oscillations or peaks, and is, moreover, unique.

This also holds for the coefficients A, B and C, once specific numbers have been assigned to the various compositional parameters in the plasma model under consideration, and therefore A, B and C cannot be treated as free parameters, as they might be in a purely mathematical discussion of the properties of (11). But even then they determine V and κ in a unique way.

One sees that the solitary wave solutions of the two parent nonlinear equations, the KdV and the Burgers equations, are different in character, as they form one-parameter families of curves, dependent on the free choice of the excess velocity V above the linear phase speed λ.

I.K. and S.S. acknowledge funding from the UK EPSRC (Engineering and Physical Science Research Council) via a Science and Innovation award to Centre for Plasma Physics, Queen’s University Belfast (grant no. EP/D06337X/1).

REFERENCES

Akhtar, N., Hussain, S.: Ion acoustic shock waves in degenerate plasmas. Phys. Plasmas 18, 072103 (2011)

Malfliet, W., Hereman, W.: The tanh method: I. Exact solutions of nonlinear evolution and wave equations. Phys. Scr 54, 563–568 (1996a)

Malfliet, W., Hereman, W.: The tanh method: II. Perturbation technique for conservative systems. Phys. Scr 54, 569–575 (1996b)

Mahmood, S., Ur-Rehman, H.: Formation of electrostatic solitons, monotonic, and oscillatory shocks in pair-ion plasmas. Phys. Plasmas 17, 072305 (2010)

Pakzad, H.R.: Ion acoustic shock waves in dissipative plasma with superthermal electrons and positrons. Ap&SS 331, 169–174 (2011a)

Pakzad, H.R.: Effect of q-extensive distribution of electrons on ion acoustic shock waves in dissipative plasma, Ap&SS 334, 55–60 (2011b)

Pakzad, H.R.: Dust acoustic shock waves in plasmas with strongly coupled dusts and superthermal ions. Canad. J. Phys. 89, 193–200 (2011c)

Pakzad, H.R.: Dust acoustic shock waves in coupled dusty plasmas with nonthermal ions. Shock Waves 21, 357–365 (2011d)

Pakzad, H.R., Javidan, K.: Ion acoustic shock waves in weakly relativistic and dissipative plasmas with nonthermal electrons and thermal positrons. Ap&SS 331, 175–180 (2011)
Saeed, R., Shah, A.: Nonlinear Korteweg-de Vries-Burger equation for ion acoustic shock waves in a weakly relativistic electron-positron-ion plasma with thermal ions, Phys. Plasmas 17, 032308 (2010)

Shah, A., Saeed, R.: Ion acoustic shock waves in a relativistic electron-positron-ion plasma. Phys. Lett. A 373, 4164–4168 (2009)

Shah, A., Saeed, R.: Nonlinear Korteweg-de Vries-Burger equation for ion-acoustic shock waves in the presence of kappa distributed electrons and positrons. Plasma Phys. Contr. Fusion 53, 095006 (2011)

Shah, A., Haque, Q., Mahmood, S.: Electrostatic compressive and rarefactive shocks and solitons in relativistic plasmas occurring in polar regions of pulsar. Ap&SS 335, 529–537 (2011)