1. Introduction

Lung cancer is the most common diagnosed cancer and first leading cause of cancer death.\[^{1}\] In 2019, an estimated 228,150 men and women will be diagnosed with lung cancer and 142,670 will die from this disease in the United States.\[^{1}\] The etiology of lung cancer is largely unclear. Tobacco smoking is believed to be the established risk factor for lung cancer.\[^{2,3}\] Women appear more likely than men to develop adenocarcinoma, especially among never smokers and have better survival than men globally.\[^{2,3}\] Moreover, estrogen and progesterone receptor expression in normal and lung tumor cells were confirmed, estrogens may promote lung tumorigenesis, and progesterone inhibited growth of progesterone receptor-positive non-small-cell lung cancers.\[^{4,5}\] Based on the experimental evidences and discrepancies on lung cancer pathology, risk factors, and prognosis between men and women, the role of female hormonal factors in lung cancer development had been the subject of speculation for many years. Hormone replacement therapy (HRT) is the most effective treatment for menopausal symptoms in postmenopausal women, as well as younger patients who are into early menopause due to surgery, chemotherapy, or radiotherapy. In recent years, a great number of epidemiological studies have assessed the relationship between HRT use and lung cancer risk, however, mixed results were reported.\[^{6-22}\] Some studies found a significant inverse or nonsignificant inverse relation\[^{6-8,14,15}\]; some found an increased risk, although the association was not statistically significant.\[^{17,20,22}\] In order to delineate the role of HRT use in lung cancer risk, a systematic search of the literature and a meta-analysis of cohort studies were performed.

2. Methods

We reported this meta-analysis in accordance with PRISMA Statement.\[^{23}\] Ethical approval is not required, as this study is a meta-analysis of published studies.

2.1. Literature search

Two databases PubMed and Embase databases) were searched (updated to May 9, 2019). Our search terms involved hormone, reproductive factors, menstrual factors, lung cancer, and risk.
The process of search was shown step by step in Supplemental Table 1. Additional studies were reviewing the reference lists of eligible studies. No language limitation was set.

2.2. Selection criteria and exclusion criteria

We included cohort studies that assessed the association between HRT use and lung cancer risk in women. Adjusted risk estimates with 95% CIs were reported necessarily. If multiple studies pertained to the same subjects, the one with the largest sample sizes or the longest follow-up years was included. Cohort studies with crude risk estimates, case-control studies, conference abstracts, reviews, and letters without original data provided were excluded.

2.3. Data extraction

Two reviewers independently extracted the following information: author, year of publication, country, the period of cohort enrolled, the number of lung cancer cases and participants, adjusted risk estimates and their 95% CIs in maximally multivariable-adjusted models, and confounder for control. Any disagreements were solved by discussion to reach a consensus.

2.4. Statistical analysis

RR was used as a common measure of the association between HRT and lung cancer risk. To compute the summary RR for ever HRT users vs non-users, when one study reported more than one HRT and lung cancer risk. To compute the summary RR for ever HRT use.

Random-effects models, otherwise, fixed-effects model were adopted.

3. Result

The flowchart of study selection was presented in Figure 1. A total of 432 articles were identified from PubMed and Embase databases. Five cohort studies as potentially available studies were identified through additional search. After excluding the duplicates from two databases and reviewing the titles and abstracts, 67 studies with full-text were assessed. Fifty four studies were further excluded as these studies were reported as case-control studies, conference abstracts, meta-analyses, reviews, notes, comments, or study protocols. Therefore, 13 cohort studies were identified in this meta-analysis.

Table 1 shows the main characteristic of included studies. A total of 11,391 lung cases were diagnosed in 968,440 participants. These studies were performed in USA, China, Singapore, Canada, Japan, and Italy, and published between 2005 and 2015. The follow-up year ranges from five to thirty. Various confounders, such as age, smoking history, body mass index (BMI), education, ethnicity, dietary factors, oral contraceptive use, personal disease history, reproductive factor, and menstrual factors, were taken into consideration in original studies.

Figure 2 shows the RRs with corresponding 95% CIs for each study and the pooled result. No significant heterogeneity was observed (I² = 30.8%, P for heterogeneity = .137). The pooled RR and 95% CI were 0.95 (0.91-0.99). Furthermore, subgroup analyses were performed according to geographic region, smoking status, confounders controlled, type of hormones, and histologic subtype (Table 2). Significant heterogeneity was found in subgroup of small lung cancer (I² = 58.7%, P for heterogeneity = .089) and estrogen and progestin combination therapy (I² = 60.0%, P for heterogeneity = .058). Subgroup analyses showed that the significant association was only observed in those studies with age, BMI, smoking, and other confounders considered (RR: 0.95, 95% CI: 0.91-0.99, F² = 34.6% p for heterogeneity = 0.131). The pooled RRs and 95% CIs were 0.96 (0.99-1.02), 0.97 (0.97-1.10), 1.04 (0.80-1.35), 1.07 (0.94-1.21), 0.97 (0.89-1.05), 1.08 (0.79-1.47), 0.97 (0.83-1.12), 0.95 (0.91-0.99), 0.92 (0.84-1.01), and 1.01 (0.87-1.06) for North America, Europe, Asia, adenocarcinoma, non-small lung cancer, small lung cancer, never-smoking, ever-smoking, estrogen, and estro-gen and progestin combination therapy, respectively.

Sensitivity analyses were performed to assess the influence of a single study on the overall risk estimate by excluding one study in each turn. Sensitivity analyses indicated that our results were not robustness (Table 3). The Begg funnel plot does not show any substantial asymmetry (Fig. 3). The Egger test suggested no evidence of publication bias (P = .243).

4. Discussion

In the current meta-analysis of 13 cohort studies, we found that HRT use was associated with a decrease risk of lung cancer in women. Before interpreting our results further, important issues need to be considered.

4.1. Dose-response

Eight of 13 studies evaluated the lung cancer risk with duration of HRT use. Most of these studies indicated that there was no trend with duration of use. Kabat et al found that the associated trend over levels of duration of HRT use was of borderline statistical significance (P = .07). Specifically, women with ten years or more of HRT use were at elevated risk (RR: 1.51, 95% CI: 1.14-1.99). Assessment of a dose-risk relationship in a meta-analysis of epidemiology studies provides evidence for a suspected causal relationship between exposure and disease. However, we cannot perform a dose-response analysis of duration of HRT use according to the method proposed by Greenland et al and Orsini et al, as insufficient data (i.e., at least 3 quantitative categories and the number of cases and person-years in each category) was reported in original studies. Therefore, the shape of dose-response relationship is still unclear.

4.2. The role in the carcinogenesis of lung cancer subtypes

Our major analysis indicated that women with HRT use were associated with a decreased lung cancer risk. In subgroup...
analysis, a non-significantly increased risk was observed in adenocarcinoma (RR: 1.07, 95% CI: 0.94-1.21) and small cell lung cancer (RR: 1.08, 95% CI: 0.79-1.47), but not in non-small cell lung cancer (RR: 0.97, 95% CI: 0.89-1.05). Lung adenocarcinoma is the predominant histological subtype of lung cancer in women. The discrepancy in lung cancer subtypes associated with HRT is open to discussion.

4.3. The gap between observational studies and randomized controlled trials

Subgroup analysis of four randomized controlled trials in a meta-analysis showed a positive association with borderline significance between HRT use and lung cancer (RR = 1.18, 95% CI 0.99-1.42). However, result from our meta-analysis of cohort studies indicated a decreased risk of lung cancer in HRT users. The significance of the discrepancy is unclear. Compared with cohort studies, randomized controlled trials have several merits, such as blindness, randomness, and standardization. After careful reading those four randomized controlled trials, several unique characteristics should be proposed. First, all randomized controlled trials were not originally designed to assess the relationship between HRT use and lung cancer incidence. The subjects were carefully selected, and thus it is not representative of the general population. Second, the sample size was relatively small. Third, the follow-up time was relatively short. Therefore, observational studies may better reflect a relatively true real-world study.

4.4. Comparison with other meta-analyses

Several meta-analyses on this issue have been published. Two meta-analyses reported HRT use was associated with a decreased risk of female lung cancer, one found an increased lung adenocarcinoma risk in nonsmoking women with HRT use, and three indicated HRT use had no effect on the risk of lung cancer. Noticeably, findings from previous meta-analyses were mainly based on retrospective case-control studies. Furthermore, a pooling analysis of observational studies and randomized controlled trials may result in methodological error. In the latest meta-analysis by Bae et al., fourteen cohort studies were included. However, 7 of 14 cohort
Table 1
Characteristics of the included studies of the relationship between lung cancer risk and hormone replacement therapy.

Last author, publication year	Country	Enrolment period	End time of follow-up	Case/ Cohorts	RR with 95% CI (ever vs never use)	Variables for control
Tan et al, 2015	Singapore	1994–1997	2011.12.31	311/28,222	0.88 (0.62-1.25)	Age, BMI, ethnicity, smoking history.
Schwartz et al, 2015	USA	1993–1996	2012.09.17	2,467/160,855	0.96 (0.88-1.05)	Age, BMI, race/ethnicity, smoking history, education, US region, history of emphysema, history of asthma, and family history of cancer.
Brinton et al, 2015	USA	1995–1996	2006.12	3.512/185,017	0.93 (0.87-0.99)	Age, BMI, race/ethnicity, education, emphysema, smoking history, age at menarche, and type of and age at menopause.
Clague et al, 201	USA	1995–1996	2007.12.31	727/60,592	0.95 (0.80-1.13)	Age, race, smoking history, type of menopause, and BMI.
Bal et al, 2010	USA	1984	2006.06.01	1,729/107,171	0.95 (0.90-1.05)	Age at menopause/ menarche, BMI, parity, type of menopause, smoking history, and fruit/vegetable intake.
Stalane et al, 2010	USA	2000–2002	2007.12.31	344/36,588	1.21 (0.97-1.50)	Age, smoking history, personal history of cancer, family history of lung cancer, chronic obstructive pulmonary disease, BMI, age at menopause, hysterectomy type, and nonwhite race/ethnicity.
Seo et al, 2009	Singapore	1993–1998	2005.12.31	298/35,298	1.38 (0.76-2.49)	Age, BMI, year of interview, dialect group, education, total vegetable intake, total fruit/juice intake, h-cryptoxanthin, total isothiocyanates, and smoking history.
Smith et al, 2009	USA	1972–1974	2002.12.31	97/2,861	1.13 (0.73-1.74)	Age, BMI, education, marital status, smoking history.
Rodriguez et al, 2008	USA	1992	2003.06.30	659/72,772	0.82 (0.72-0.95)	Age, smoking history, BMI, age at menopause, education, weekly servings of fruit, physical activity, total h-carotene intake, and oral contraceptive use.
Corso et al, 2008	Italy	1998–2000	2005.12.31	124/73,505	0.97 (0.72-1.30)	Age.
Weiss et al, 2008	China	1996–2000	2005.12.31	220/71,514	0.50 (0.16-1.56)	Smoking history.
Kabat et al, 2007	Canada	1990–1995	2000.12.31	750/89,835	1.07 (0.90-1.26)	Parity, age at menarche/first birth, menopausal status, oral contraceptive use, BMI, education, smoking history, study center, and randomization group.
Liu et al, 2005	Japan	1990–1994	2002.12.31	153/44677	1.45 (0.84-2.49)	Age, public health center area, and smoking history.

BMI = body mass index.

Figure 2. Forest plot for study-specific and pooled RRs and 95% CIs of HRT use and lung cancer risk.
studies provided crude risk estimates. As a meta-analysis of observational studies, the effect of confounding factor and bias (recall and selection bias) are major concerns. To clarify the issue, we performed an updated meta-analysis which only included prospective cohort studies with adjusted risk estimates reported. Thus, a more precise estimation of the relationship between HRT use and lung cancer may be derived.

4.5. Implications for clinical practice

Since HRT use remains the most widely used and effective treatment for postmenopausal symptoms in women, its benefits and harms effect are concern. Previous findings suggested HRT use was associated with an increased risk of breast cancer, endometrial cancer, stroke, and pulmonary embolism, but a decreased risk of colorectal cancer, hip fractures, and diabetes.[39,40] In our meta-analysis of prospective cohort studies, we found that HRT use was associated with a decreased risk of lung cancer. Based on these findings, we concluded those women with HRT use may be reassured by bearing decreased risk of lung cancer and menopausal replacement therapy has a complex pattern of risks and benefits.

4.6. Limitations

Several limitations should be acknowledged. First, sensitivity analysis showed our results were not robust. Second, subgroup results should be treated with considerable caution, as the small number of included studies was included. Third, residual confounders may confound the true association, although the multiple-adjusted risk estimates were adopted. Finally, potential publication bias is still a threat to the robustness of our findings.

4.7. Conclusion and future directions

In conclusion, evidence from current prospective cohort studies indicated women with ever HRT use was associated with a
decreased risk of lung cancer. Further prospective studies with adequate numbers of lung cancer cases, detailed information on type of hormone use, dose of hormones, duration of HRT use, and histologic type, are needed to confirm and extend these findings.

Author contributions

Conceptualization: Baoping Lang, Chao Jin.
Data curation: Baoping Lang, Chao Jin.
Formal analysis: Baoping Lang, Chao Jin.
Writing – original draft: Baoping Lang, Chao Jin.
Writing – review & editing: Baoping Lang, Chao Jin.

References

[1] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68:394–424.

[2] Jin K, Wu M, Zhou JY, et al. Tobacco smoking modifies the association between hormonal factors and lung cancer occurrence among postmenopausal Chinese women. Transl Oncol 2019;12:819–27.

[3] He F, Xie JX, Liu CL, et al. The relationship of lung cancer with menstrual and reproductive factors may be influenced by passive smoking, cooking oil fumes, and tea intake: A case-control study in Chinese women. Medicine (Baltimore) 2017;96:e8816.

[4] Zhang Y, Yin Z, Shen L, et al. Menstrual factors, reproductive factors and lung cancer risk: a meta-analysis. Zhongguo Fei Ai Za Zhi 2012;15:701–19.

[5] Ishibashi H, Suzuki T, Suzuki S, et al. Progestogen receptor in non-small cell lung cancer—a potent prognostic factor and possible target for endocrine therapy. Cancer Res 2005;65:6450–8.

[6] Tan HS, Tan MH, Chow KY, et al. Reproductive factors and lung cancer risk among women in the Singapore Breast Cancer Screening Project. Lung Cancer 2015;90:499–508.

[7] Schwartz AG, Ray RM, Cote ML, et al. Hormone use, reproductive history, and risk of lung cancer: the women’s health initiative studies. J Thorac Oncol 2015;10:1004–13.

[8] Brinton LA, Gierach GL, Andaya A, et al. Reproductive and hormonal factors and lung cancer risk in the NIH-AARP Diet and Health Study cohort. Cancer Epidemiol Biomarkers Prev 2011;20:900–11.

[9] Clague J, Reynolds P, Sullivan-Halley J, et al. Menopausal hormone therapy does not influence lung cancer risk: results from the California Teachers Study. Cancer Epidemiol Biomarkers Prev 2011;20:560–4.

[10] Baik CS, Strauss GM, Speizer FE, et al. Reproductive factors, hormone use, and risk for lung cancer in postmenopausal women, the Nurses’ Health Study. Cancer Epidemiol Biomarkers Prev 2010;19:2525–33.

[11] Slattery MM, Chien JW, Au DH, et al. Lung cancer and hormone replacement therapy: association in the vitamins and lifestyle study. J Clin Oncol 2010;28:1540–6.

[12] Seow A, Koh WP, Wang R, et al. Reproductive variables, soy intake, and lung cancer risk among nonsmoking women in the Singapore Chinese Health Study. Cancer Epidemiol Biomarkers Prev 2009;18:821–7.

[13] Smith JR, Barrett-Connor E, Kritz-Silverstein D, et al. Hormone use and lung cancer incidence: the Rancho Bernardo cohort study. Menopause 2009;16:1044–8.

[14] Rodriguez C, Spencer Freigelson H, et al. Postmenopausal hormone therapy and lung cancer risk in the cancer prevention study II nutrition cohort. Cancer Epidemiol Biomarkers Prev 2008;17:655–60.

[15] Weiss JM, Lacey JV Jr, Shu XO, et al. Menstrual and reproductive factors in association with lung cancer in female lifetime nonsmokers. Am J Epidemiol 2008;168:1319–25.

[16] Corrao G, Zambon A, Conti V, et al. Menopause hormone replacement therapy and cancer risk: an Italian record linkage investigation. Ann Oncol 2008;19:150–5.

[17] Kabat GC, Miller AB, Rohan E. Reproductive and hormonal factors and risk of lung cancer in women: a prospective cohort study. Int J Cancer 2007;120:2214–20.

[18] Liu Y, Inoue M, Sobo T, et al. Reproductive factors, hormone use and the risk of lung cancer among middle-aged never-smoking Japanese women: a large-scale population-based cohort study. Int J Cancer 2005;117:662–6.

[19] Olsson H, Bladström A, Ingvar C. Are smoking-associated cancers prevented or postponed in women using hormone replacement therapy? Obstet Gynecol 2003;102:565–70.

[20] Pukkala E, Tulenheimer-Silfvast A, Lenninen A. Incidence of cancer among women using long versus monthly cycle hormonal replacement therapy, Finland 1994–1997. Cancer Causes Control 2001;12:111–5.

[21] Persson I, Yuen J, Bergkvist L, et al. Cancer incidence and mortality in women receiving estrogen and estrogen-progestin replacement therapy–long-term follow-up of a Swedish cohort. Int J Cancer 1996;67:327–32.

[22] Adami HO, Persson I, Hoover R, et al. Risk of cancer in women receiving hormone replacement therapy. Int J Cancer 1989;44:833–9.

[23] Mohler D, Liberati A, Tetzlaff J, et al. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 2009;6:e1000097.

[24] Dong JY, Zhang YH, Qin LQ. Erectile dysfunction and risk of cardiovascular disease: meta-analysis of prospective cohort studies. J Am Coll Cardiol 2011;58:1378–85.

[25] Aune D, Lau R, Chan DS, et al. Dairy products and colorectal cancer risk: a systematic review and meta-analysis of cohort studies. Ann Oncol 2012;23:37–45.

[26] Gagne JJ, Power MC. Anti-inflammatory drugs and risk of Parkinson disease: a meta-analysis. Neurology 2010;74:995–1002.

[27] Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics 1994;50:1088–101.

[28] Egger M, Davey SG, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997;315:629–34.

[29] Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med 2002;21:1539–58.

[30] Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ 2003;327:557–60.

[31] DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986;7:177–88.

[32] Greenland S, Longnecker MP. Methods for trend estimation from summarized dose-response data, with applications to meta-analysis. Am J Epidemiol 1992;135:1301–9.

[33] Orsini N, Bellocco R, Greenland S. Generalized least squares for trend estimation of summarized dose–response data. Stat J 2006;6:40–57.

[34] Yao Y, Gu X, Zhu J, et al. Hormone replacement therapy in females can decrease the risk of lung cancer: a meta-analysis. PLoS One 2013;8:e71236.

[35] Greiser CM, Greiser EM, Dören M. Menopausal hormone therapy and risk of lung cancer–Systematic review and meta-analysis. Maturitas 2016;85:196–204.

[36] Oh SW, Myung SK, Park JY, et al. Hormone therapy and risk of lung cancer: a meta-analysis. J Womens Health (Larchmt) 2010;19:279–88.

[37] Chen X, Cai L. Meta-analysis of the effects on hormone replacement therapy and oral contraceptives associated with female lung cancer risk. Wei Sheng Yan Jiu 2009;38:672–6.

[38] Bae JM, Kim EH. Hormonal replacement therapy and the risk of lung cancer in women: an adaptive meta-analysis of cohort studies. J Prev Med Public Health 2015;48:293–6.

[39] Mansson JF, Chlebowski RT, Stefanick ML, et al. Menopausal hormone therapy and health outcomes during the intervention and extended posttreatment phases of the Women’s Health Initiative randomized trials. JAMA 2013;310:1533–68.

[40] Nelson HD, Humphrey LL, Nygren P, et al. Postmenopausal hormone replacement therapy: scientific review. JAMA 2002;288:872–81.