68Ga-DOTATATE PET/CT imaging for insulinoma in MEN1 patient with endogenous hyperinsulinemic hypoglycemia

A case report

Yunuan Liu, MMa, Xinming Zhao, MDa,*, Jingmian Zhang, MDa, Jianfang Wang, MMa, Zhaqi Zhang, MDa, Meng Dai, MMa, Na Wang, MMa, Fenglian Jing, MMa, Tingting Wang, MBa, Weiwei Tian, MMa

Abstract

Rationale: Multiple endocrine neoplasia type 1 (MEN1) syndrome is a rare and complicated disease that is associated with several endocrine tumors. Here, we report a case of MEN1 associated with insulinoma, parathyroid, and pituitary tumors by 68Ga-DOTATATE positron emission tomography/computed tomography (PET/CT).

Patient concerns: A 49-year-old woman presented with intermittent hypoglycemia for more than a year and developed indistinct consciousness without an apparent trigger.

Diagnoses: Biochemical results showed abnormally high serum insulin and parathyroid hormone levels. She underwent an Abdominal magnetic resonance imaging revealed a small nodule in the uncinate process of the pancreas, but it did not clarify the nature of the small nodule. Pituitary magnetic resonance imaging scan revealed a micropituitary tumor, and parathyroid imaging showed no abnormalities. 18F-FDG PET/CT showed no apparent abnormal 18F-FDG uptake in the whole body. In contrast, 68Ga-DOTATATE PET/CT imaging showed pathological radiotracer uptake in the pancreatic uncinate process, accompanied by mild radiotracer uptake in the pituitary gland, and no apparent abnormal radiotracer uptake in the parathyroid area.

Interventions: The patient underwent echoendoscopy for pancreatic uncinate process lesions and surgical resection.

Outcomes: Histological analysis was suggested of insulinoma of pancreatic neuroendocrine tumor, the Ki-67 index was low (only 1% being positive).

Lessons: This case demonstrates that 68Ga-DOTATATE can be used for the detection of MEN1-related tumors and preoperative localization of small and low-grade insulinomas by PET/CT.

Abbreviations: CT = computed tomography, GLP-1 = glucagon-like peptide-1, MEN1 = multiple endocrine neoplasia type 1, MRI = magnetic resonance imaging, PET/CT = positron emission tomography/computed tomography, pNET = pancreatic NET, PTH = parathyroid hormone, SSTR = somatostatin receptor.

Keywords: 18F-FDG, 68Ga-DOTATATE, insulinoma, MEN1, neuroendocrine tumor, PET/CT

1. Introduction

Multiple endocrine neoplasia type 1 (MEN1) is a rare hereditary disease with autosomal dominant inheritance. MEN1 is characterized by the development of several endocrine tumors in a single individual; the most common are tumors of the parathyroid gland, pituitary gland, and neuroendocrine tumors (NETs) in the pancreatic islets.\(^{[1,2]}\) The diagnosis of MEN1 needs to meet one of the following criteria: the development of 2 or multiple MEN1-related endocrine neoplasms (including intrapancreatic tumor, parathyroidoma, pituitary adenoma, and others), the appearance of MEN1-related neoplasms in first-degree relatives for 1 patient with MEN, and testing for MEN1 gene mutation in a patient who may be asymptomatic and has not yet abnormal
findings. Pancreatic insulinoma is a typical functioning pancreatic NET in MEN1 that causes endogenous hyperinsulinemic hypoglycemia.

Imaging is of paramount importance for the diagnosis of MEN1-associated tumors. Normally, conventional imaging (such as US, CT, or MR) can offer detailed anatomical features and aggressive expansion of tumor cells; however, the small size of NETs makes it difficult to detect the primary tumors or their metastases using conventional anatomic imaging. Considering that anatomic imaging patterns are not able to describe the peculiar characteristics of endocrine tumors, they suggested that the diagnostic sensitivity and accuracy of functional imaging are better than those of conventional anatomic imaging. The combined ⁶⁸Ga-SSA (somatostatin analog)/¹⁸F-FDG positron emission tomography/computed tomography (PET/CT) imaging has received particular attention because its potential application can reflect the molecular biological characteristics of MEN1-related NETs from the expression level of somatostatin receptor (SSTR) and the level of glucose metabolism, respectively.

Herein, we report a rare case of MEN1 associated with insulinoma due to intermittent hypoglycemia for more than 1 year, and without a family history, which was successfully diagnosed by means of a novel tool of ⁶⁸Ga-DOTATATE PET/CT.

2. Case report
A 49-year-old woman presented with intermittent hypoglycemia for more than a year, and without a family history, which was successfully diagnosed by means of a novel tool of ⁶⁸Ga-DOTATATE PET/CT.

Figure 1. Upper row (A–D): MR study of the uncinate process of the pancreas. Lower row (E–G): MR study of the pituitary. (A) A small nodule with slightly low signal on T1WI. (B) Identical signal on T2WI. (C) Slightly high signal intensity on DWI. (D) The lesion was with minimal enhancement. (E–G) Identical signal on T1WI and slightly low signal on T2 in the right lower pituitary, the enhanced scan revealed a hypointense lesion. MR = magnetic resonance, T1WI = T1-weighted imaging, T2WI = T2-weighted imaging.
3. Discussion

Insulinomas account for 10% to 30% of pancreatic tumors in MEN1-associated patients; in other words, they can also be said to be insulin-secreting cells that are tumors on β-islet cells.\(^1\) The primary manifestations are insulinomas in 10% of MEN1-associated patients, and there a few insulinoma patients are accompanied by MEN1.\(^1\) The most common types of functioning pNETs are insulinomas, which usually appear as solitary
and small tumors. Accurate preoperative localization for insulino-
amas is widely accepted, since some small insulinosmas may not be found during surgery. Nevertheless, preoperative localiza-
tion of insulinosmas is a difficult clinical problem because of
their small size and close resemblance to surrounding tissue. For
MEN1 surveillance and screening, some clinical guidelines gen-
erally advise the anatomical localization of NETs in conjunction
with clinical characteristics and biochemical results. However,
there is little data and a lack of consensus guidelines on the
most precise methods for screening patients with MEN1-related
tumors, and patients may present with metastases as soon as
they are diagnosed.

A traditional imaging technique is used to detect and offer
anatomical localization and staging of a tumor before sur-
gery, CT scans provides a wider view of tumor morphology,
location, and extent of the tumor, whereas MR images with
contrast enhancement can offer a better view of blood flow,
availability, and diffusion restrictions. Previous studies have
shown that approximately 10% of pNET have multi-
ple insulinosmas, which are generally associated with MEN1
syndrome in the meantime. In general, it is difficult to locate
small MEN1-associated tumors and to depict specific endo-
crine characteristics.

The distinctive increase in the incidence of NETs has been
ascribed to improved diagnostic and pathological techniques
over the last few decades. Compared with other conventional
imaging patterns, functional imaging is a noninvasive imaging
technique that distinguishes most insulinosmas. Studies have
reported that 68Ga-exendin-4 PET/CT as a valuable and credible
imaging technique to distinguish MEN1-associated insulino-
amas. In the detection of MEN1-associated benign insulinosmas,
the sensitivity of PET/CT was 84.6% because of gluca-
gon-like peptide-1 (GLP-1) receptors are highly expressed in
benign insulinosmas. Similarly, Sowa-Staszczak et al reported
that the sensitivity and specificity of GLP-1 receptor
imaging are 100% in patients with benign insulinosmas.
There have been several studies on the diagnostic performance
of 68Ga-DOTATATE PET/CT in patients with MEN1, and it is
available for detecting MEN1-associated tumors. For
insulinosmas, it is well established that SSTR2 densities are
lower than other types of pNETs, which could, in combina-
tion with the small size of the lesion, lead to false-negative
findings during SSTR imaging.

Wild et al showed that compared with benign insulino-
amas, the majority of malignant insulinosmas often lack GLP-1
receptors but are more likely to express SSTR2 receptors. The Previous studies showed that only 36% of the malignant
insulinosmas expressed GLP-1 receptors, when compared to
benign insulinosmas. Zimmer et al reported SSTR scintigraphy
showed low detection efficiency (<20%) in benign insulinosmas
and a higher positive rate in 73% of malignant insulinosmas.
Recent study has found that 68Ga-DOTATATE PET/CT pro-
vides better identification of insulinosmas (9/10, 90%) in com-
parison with other imaging modalities, 8 of 9 tumors had Ki-67
of <2%, the diameter of insulinosma is about 0.7 to 2.5 cm, but
sensitivity and accuracy of 68Ga-DOTATATE were not men-
tioned in benign and malignant insulinosmas, may be too little
concerned with the number of cases.

Our case demonstrates MEN1-associated low-grade insul-
inosmas along with higher 68Ga-DOTATATE tracer uptake,
which is significant in the proper diagnosis of MEN1-associated
low-grade insulinosmas with SSTR expression. Pituitary MRI
revealed a pituitary tumor with mild 68Ga-DOTATATE uptake,
which may be related to small lesions and decreased SSTR2
expression. Especially remarkable is that serum PTH was abnormally high in this patient, whereas 68Ga-DOTATATE and
18F-FDG PET/CT parathyroid imaging showed no abnormality in the parathyroid region, probably due to the small size
of the lesion at present; adenomas of the parathyroid should
be watched carefully over her lifetime. For this patient, the
treatment focused on insulinoma derived from the pancreatic
uncinate process, and surgical resection was the preferred treat-
ment choice. The patient’s hypoglycemic symptoms disappeared
after surgical resection.

Kornaczewski Jackson et al proposed that 18F-FDG PET/
CT could be helpful for MEN1 patients with pNETs with a
higher malignant potential. We conducted a 68Ga-DOTATATE
and 18F-FDG PET/CT scan, and the imaging results showed no
apparent abnormal 18F-FDG uptake in the pancreatic uncinate
process; thus, the possibility of MEN1-associated malignant
insulinoas may be very small, and immunohistochemistry event-
ually confirmed this result.

In conclusion, we present a rare case of MEN1-associated
tumors with low-grade insulinoma and parathyroid and pitu-
tary tumors, which showed MEN1 associated low-grade insul-
inosmas along with higher 68Ga-DOTATATE tracer uptake.
68Ga-DOTATATE PET/CT imaging may be an available nuclear
imaging tool for the detection of MEN1-related tumors and pre-
operative localization of small and low-grade insulinosmas by
PET/CT.

Author contributions
Conceptualization: Yunuan Liu, Xinming Zhao, Jingmian
Zhang, Jianfang Wang.
Data curation: Yunuan Liu, Zhaodi Zhang, Meng Dai.
Investigation: Yunuan Liu, Meng Dai, Na Wang, Fenglian Jing,
Tingting Wang, Weiwei Tian.
Supervision: Xinming Zhao, Jingmian Zhang, Jianfang Wang.
Writing – original draft: Yunuan Liu.
Writing – review & editing: Xinming Zhao.

References
[1] Thakker RV, Newey PJ, Walls GV, et al. Clinical practice guidelines for
multiple endocrine neoplasia type 1 (MEN1). J Clin Endocrinol Metab.
2012;97:2990–3011.
[2] Gracanin A, Drejerink KM, van der Luijt RB, et al. Tissue selectivity in
multiple endocrine neoplasia type 1-associated tumorigenesis. Cancer
Res. 2009;69:6371–4.
[3] Khanna L, Prasad SR, Sunnapwar A, et al. Pancreatic neuroendocrine
neoplasms: 2020 update on pathologic and imaging findings and clas-
sification. Radiographics. 2020;40:e1240–62.
[4] Treglia G, Castaldi P, Rindi G, et al. Diagnostic performance of gal-
lum-68 somatostatin receptor PET and PET/CT in patients with
thoracic and gastroenteropancreatic neuroendocrine tumours: a meta-
analysis. Endocrine. 2012;42:80–7.
[5] Ambrosi V, Nanni C, Zompatori M, et al. 68Ga-DOTA-NOC PET/CT in
comparison with CT for the detection of bone metastasis in patients with
neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2010;37:722–7.
[6] Albanus DR, Apitzsch J, Erdem Z, et al. Clinical value of
68Ga-DOTATATE-PET/CT compared to stand-alone contrast enhanced
CT for the detection of extra-hepatic metastases in patients with neu-
roendocrine tumours (NET). Eur J Radiol. 2015;84:1866–72.
[7] Al-Salameh A, Baudry C, Cohen R. Update on multiple endocrine neop-
lasia Type 1 and 2. Presse Med. 2018;47:722–31.
[8] Iro T, Masui T, Komoto I, et al. JNETs clinical practice guidelines for
gastroenteropancreatic neuroendocrine neoplasms: diagnosis, treat-
ment, and follow-up: a synopsis. J Gastroenterol. 2021;56:1033–44.
[9] van Leeuwaarde RS, van Nesselrooij BP, Hermus AR, et al. Impact of
delay in diagnosis on outcomes in MEN1: results from the Dutch
MEN1 study group. J Clin Endocrinol Metab. 2016;101:1159–65.
[10] Iro T, Igarashi H, Uehara H, et al. Causes of death and prognostic fac-
tors in multiple endocrine neoplasia type 1: a prospective study: com-
parison of 106 MEN1/Zollinger-Ellison syndrome patients with 1613
literature MEN1 patients with or without pancreatic endocrine tumors.
Medicine (Baltimore). 2013;92:135–81.
[11] Jensen RT, Cadiot G, Brandi ML, et al. ENETS consensus guide-
lines for the management of patients with digestive neuroendo-
crine neoplasms: functional pancreatic endocrine tumor syndromes.
Neuroendocrinology. 2012;95:98–119.
[12] Khanna L, Prasad SR, Sunnapwar A, et al. Pancreatic neuroendocrine
neoplasms: 2020 update on pathologic and imaging findings and clas-
sification. Radiographics. 2020;40:e1240–62.
[13] Guilmette JM, Nosé V. Neoplasms of the neuroendocrine pancreas: an update in the classification, definition, and molecular genetic advances. Adv Anat Pathol. 2019;26:13–30.

[14] Antwi K, Nicolas G, Fami M, et al. 68Ga-Exendin-4 PET/CT Detects insulinomas in patients with endogenous hyperinsulinaemic hypoglycaemia in MEN-1. J Clin Endocrinol Metab. 2019;104:5843–52.

[15] Kalf V, Iravani A, Akhurst T, et al. Utility of 68Ga-DOTA-Exendin-4 positron emission tomography-computed tomography imaging in distinguishing between insulinoma and nesidioblastosis in patients with confirmed endogenous hyperinsulinaemic hypoglycaemia. Intern Med J. 2021;51:1657–64.

[16] Shah R, Garg R, Majmundar M, et al. Exendin-4-based imaging in insulinoma localization: systematic review and meta-analysis. Clin Endocrinol (Oxf). 2021;95:354–64.

[17] Sowa-Staszczak A, Pach D, Mikolajczak R, et al. Glucagon-like peptide-1 receptor imaging with [Lys40(Ahx-HYNIC-99mTc/EDDA)NH2]-exendin-4 for the detection of insulinoma. Eur J Nucl Med Mol Imaging. 2013;40:524–31.

[18] Lastoria S, Marciello F, Faggiano A, et al. Role of 68Ga-DOTATATE PET/CT in patients with multiple endocrine neoplasia type 1 (MEN1). Endocrine. 2016;52:488–94.

[19] Sadowski SM, Millo C, Cottle-Delisle C, et al. Results of 68gallium-DOTATATE PET/CT scanning in patients with multiple endocrine neoplasia type 1. J Am Coll Surg. 2015;221:509–17.

[20] Prasad V, Sainz-Esteban A, Arsenic R, et al. Role of 68gallium somatostatin receptor PET/CT in the detection of endogenous hyperinsulinaemic focus: an explorative study. Eur J Nucl Med Mol Imaging. 2016;43:1593–600.

[21] Wild D, Christ E, Caplin ME, et al. Glucagon-like peptide-1 versus somatostatin receptor targeting reveals 2 distinct forms of malignant insulinomas. J Nucl Med. 2011;52:1073–8.

[22] Reubi JC, Waser B. Concomitant expression of several peptide receptors in neuroendocrine tumours: molecular basis for in vivo multireceptor tumour targeting. Eur J Nucl Med Mol Imaging. 2003;30:781–93.

[23] Christ E, Wild D, Forrer F, et al. Glucagon-like peptide-1 receptor imaging for localization of insulinomas. J Clin Endocrinol Metab. 2009;94:4398–405.

[24] Zimmer T, Stölzel U, Bäder M, et al. Endoscopic ultrasonography and somatostatin receptor scintigraphy in the preoperative localisation of insulinomas and gastrinomas. Gut. 1996;39:562–8.

[25] Nockel P, Babic B, Millo C, et al. Localization of insulinoma using 68Ga-DOTATATE PET/CT scan. J Clin Endocrinol Metab. 2017;102:195–9.

[26] Kornaczewski Jackson ER, Pointon OP, Bohmer R, et al. Utility of FDG-PET imaging for risk stratification of pancreatic neuroendocrine tumors in MEN1. J Clin Endocrinol Metab. 2017;102:1926–33.