Efeitos à saúde por exposição ambiental e ocupacional aos pesticidas de uso agrícola

Rafael Junqueira Buralli

Tese apresentada ao Programa de Pós-Graduação em Saúde Pública da Universidade de São Paulo para obtenção do título de Doutor em Ciências.

Área de Concentração: Saúde Ambiental

Orientador: Prof. Dra. Helena Ribeiro

São Paulo
2020
Efeitos à saúde por exposição ambiental e ocupacional aos pesticidas de uso agrícola

Rafael Junqueira Buralli

Tese apresentada ao Programa de Pós-Graduação em Saúde Pública da Universidade de São Paulo para obtenção do título de Doutor em Ciências.

Área de Concentração: Saúde Ambiental

Orientador: Prof. Dra. Helena Ribeiro

Versão Original

São Paulo

2020
Autorizo a reprodução e divulgação total ou parcial deste trabalho, por qualquer meio convencional ou eletrônico, para fins de estudo e pesquisa, desde que citada a fonte.
À minha mãe (in memoriam), que acendeu em mim a chama incessante do conhecimento.
Agradecimentos

Agradeço primeiramente a Deus, que me protege, ampara e honra. À toda minha família, aos presentes e ausentes, que sempre me suportaram e estimularam, e ainda o fazem. A todos os meus amigos e amigas e à maior delas, Mayara, minha amiga, mulher, parceira... meus amigos de ontem, hoje e sempre, parceiros de muitas risadas e momentos. À minha filha Duda e afilhada Gigi, que mesmo longe se fazem sempre perto.

À minha orientadora Dra. Helena, pela orientação preciosa e sempre oportuna. Aos muitos mestres que a vida acadêmica já me presenteou, a todos os professores e professoras da Faculdade de Saúde Pública da USP (FSP/USP) pelos muitos ensinamentos e discussões. Um agradecimento especial a todos os funcionários da FSP/USP pelo apoio de sempre. Agradeço por todas lições e orientações aos amigos e colaboradores Drs. Jean Remy, Rejane Marques, Renata Leão e Thaís Mauad, aos chilenos de la Universidad del Maule Drs. María Teresa e Boris Lucero, aos californianos da UC Berkeley Drs. Kim Harley, Ana Mora, Brenda Eskenazi, Robert Gunier, Asa Bradman, James Nolan, e tantas e tantos que acreditaram em mim e colaboraram diretamente ou indiretamente na realização dessa tese. Um especial agradecimento aos amigos da FSP/USP “Cafezinho Fresco” e aos pesquisadores do Grupo de Estudos em Agricultura Urbana (GEAU/IEA-USP) pelos momentos e experiências compartilhadas.

Agradeço às agências de fomento, em especial à Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) pela minha bolsa de doutorado e de doutorado sanduíche no exterior, além de muitos apoios nacionais e internacionais. Também agradeço todo o apoio para participação em eventos e publicações recebidos da FSP/USP. Sem todo esse suporte nada disso seria possível.
“A utopia está no horizonte. Me aproximo dois passos, ela se afasta dois passos. Caminho dez passos e o horizonte corre dez passos. Por mais que eu caminhe, jamais alcançarei. Para que serve a utopia? Serve para isso: para que eu não deixe de caminhar”.

(Eduardo Galeano)
Resumo

Introdução: O uso excessivo e descuidado de pesticidas tem se tornado um problema global de saúde pública, especialmente nos países de baixa e média renda. O Brasil é o maior consumidor mundial de pesticidas desde 2018, mas poucos estudos epidemiológicos exploram os seus efeitos à saúde. Objetivos: Avaliar os efeitos da exposição aos pesticidas à saúde de agricultores familiares em São José de Ubá (SJV), Estado do Rio de Janeiro, e analisar os efeitos respiratórios em crianças por exposição aos pesticidas, a partir de revisão da literatura. Métodos: Na safra de 2014, 82 agricultores familiares convenientemente selecionados foram entrevistados sobre a exposição aos pesticidas e submetidos à avaliação clínica com anamnese, avaliação respiratória (questionário e espirometria) e rastreamento de saúde mental (SRQ-20). Analisou-se as enzimas colinesterase (AChE e BChE) como biomarcadores de efeito. A avaliação respiratória foi repetida na entressafra de 2015 para comparação entre os períodos de maior e menor uso de pesticidas. Os participantes foram comparados com valores de referência e entre os grupos ocupacionais (aplicadores ou ajudantes) e os efeitos respiratórios foram analisados por regressão múltipla. Para ampliar o olhar aos riscos da exposição ambiental, realizou-se uma revisão sistemática sobre os efeitos dos pesticidas à saúde respiratória de crianças. Resultados: Os agricultores familiares avaliados em SJU estavam ocupacionalmente e ambientalmente expostos aos pesticidas desde tenra idade, trabalhavam sem apoio técnico e uso de equipamentos de proteção individual (EPI) completo, estavam expostos a complexas misturas de pesticidas frequentemente e apresentaram diversos sintomas de intoxicação aguda, mentais, respiratórios e alterações na espirometria. No geral, observou-se uma maior prevalência de efeitos respiratórios na safra do que na entressafra e associações significativas entre alterações espirométricas e os indicadores de exposição tanto na safra quanto na entressafra. Enquanto os aplicadores eram principalmente homens e apresentaram mais alterações de BChE, os ajudantes eram majoritariamente mulheres, tiveram ainda menos treinamento, usavam menos EPI e relataram maior prevalência de sintomas de intoxicação, saúde mental e o dobro apresentou um possível transtorno mental comum (depressão e ansiedade). A revisão da literatura sobre efeitos da exposição aos pesticidas agrícolas à saúde infantil apresentou vasta evidência sobre efeitos respiratórios e alérgicos. Conclusões: É fundamental melhorar o apoio técnico e treinamento ocupacional dos agricultores familiares brasileiros e promover práticas laborais e alternativas de cultivo mais sustentáveis. São necessários mais estudos sobre os efeitos dos pesticidas à saúde dos agricultores familiares e à saúde respiratória de...
Abnormalities in the respiratory system of children in low-income countries of Brazil and other countries of lower income, which use more conventional cultivation methods and have a larger child population in the field. It is recommended to strengthen public policies and implement integrated and transversal actions at all levels of health and government areas, as well as promoting more comprehensive mitigation strategies and behavioral interventions to reduce pesticide use, exposure, and health risks.

Palavras-chave: Pesticides; Agrotoxics; Agricultural Family Farmers; Spirometry; Symptoms Respiratory; Signs and Symptoms; Mental Health; Cholinesterases.

BURALLI, RJ. [Health effects of environmental and occupational exposure to agricultural pesticides] [thesis]. São Paulo: Faculdade de Saúde Pública da Universidade de São Paulo; 2020. Portuguese.

Abstract

Introduction: Excessive and careless use of pesticides has become a global public health problem, especially in low- and middle-income countries. Brazil is the world’s largest consumer of pesticides since 2018, but few epidemiological studies explore its health effects. **Objectives:** To evaluate the health effects of pesticide exposure on family farmers in São José de Ubá (SJU), State of Rio de Janeiro, and to analyze the respiratory effects of pesticide exposure among children, based on a literature review. **Methods:** In the crop season of 2014, 82 family farmers conveniently selected were interviewed about pesticide exposure and subjected to clinical evaluation with anamnesis, respiratory assessment (questionnaire and spirometry), and mental health screening (SRQ-20). Cholinesterase enzymes (AChE and BChE) were analyzed as effect biomarkers. The respiratory assessment was repeated in the off-season period (2015) to compare periods of higher and lower pesticide use. Participants were compared with reference values and between occupational groups (applicators or helpers), and respiratory effects were analyzed by multiple regression. A systematic review of the pesticide effects of children’s respiratory health was conducted to broaden the understanding of the pesticide risks of environmental exposure. **Results:** Family farmers evaluated in SJU were occupationally and environmentally exposed to pesticides from an early age, worked without technical support and use of full personal protection equipment (PPE), were frequently exposed to complex mixtures of pesticides and presented several symptoms of acute intoxication, mental, respiratory, and changes
in spirometry. Overall, there was a higher prevalence of respiratory effects in the crop season than in the off-season and significant associations between spirometric changes and exposure indicators in both the crop season and off-season. While the applicators were mostly men and had more BChE depletion, the helpers were mostly women, had even less occupational training, used less PPE, and reported a higher prevalence of pesticide poisoning symptoms, mental health, and twice as much as a probable common mental disorder (depression and anxiety). The literature review on the effects of agricultural pesticide exposure on children’s health has provided ample evidence on respiratory and allergic effects. **Conclusions:*** It is essential to improve the technical support and occupational training of Brazilian family farmers and to promote more sustainable labor practices and farming alternatives. Further studies are needed on the effects of pesticides on family farmer’s health and children’s respiratory health in Brazil and other lower-income countries that use more conventional cultivation methods and have a larger child population in the countryside. Strengthening public policies and implementing comprehensive and crosscutting actions at all levels of health care and areas of government is recommended, along with the promotion of broader risk mitigation strategies and behavioral interventions to reduce pesticide use, exposure, and health risks.

Key-words: Pesticides; Family Farmers; Farmworkers; Spirometry; Respiratory Symptoms; Signs and Symptoms; Mental Health; Cholinesterase.
SUMÁRIO

APRESENTAÇÃO
1. INTRODUÇÃO ___ 17
2. OBJETIVOS __ 20
 2.1. OBJETIVO GERAL __ 20
 2.2. OBJETIVOS ESPECÍFICOS ___ 20
3. REVISÃO DA LITERATURA __ 21
 3.1. USO DE PESTICIDAS AGRÍCOLAS E IMPACTOS AO MEIO AMBIENTE __ 21
 3.1.1. Uso de Pesticidas Agrícolas no Brasil _______________________________ 34
 3.1.2. Agricultura Familiar no Brasil __ 41
 3.2 EFEITOS DOS PESTICIDAS À SAÚDE HUMANA ____________________________ 44
 3.2.1. Efeitos à Saúde da Exposição Ocupacional aos Pesticidas _____________ 49
 3.2.2. Efeitos à Saúde da Exposição Ambiental aos Pesticidas _______________ 53
4. MATERIAIS E MÉTODOS ___ 61
 4.1. REVISÃO SOBRE O STATUS DO CONHECIMENTO ___________________________ 61
 4.2. AVALIAÇÃO DE RISCO À SAÚDE HUMANA POR EXPOSIÇÃO AOS PESTICIDAS _______________________________ 61
 4.3. ÁREA DE ESTUDO – SÃO JOSÉ DE UBÁ (RJ) ______________________________ 63
 4.4. POPULAÇÃO E GRUPOS DE ESTUDO ______________________________________ 65
 4.5. LEVANTAMENTO DAS INFORMAÇÕES LOCAIS _____________________________ 67
 4.6. AVALIAÇÃO DA EXPOSIÇÃO AOS PESTICIDAS _____________________________ 68
 4.6.1. Coleta, Preparo e Análise das Amostras Biológicas ______________________ 70
 4.7. INSTRUMENTOS DE AVALIAÇÃO EM SAÚDE ______________________________ 71
 4.7.1. Avaliação da Saúde Respiratória ______________________________________ 71
 4.7.2. Avaliação de Saúde Mental ___ 73
 4.7.3. Avaliação dos Sintomas Agudos __ 74
 4.8. ANÁLISES ESTATÍSTICAS ___ 74
 4.8.1. Avaliação da Saúde Respiratória ______________________________________ 75
 4.8.2. Avaliação dos Sintomas Agudos e da Saúde Mental ______________________ 76
4.9. REVISÃO SISTEMÁTICA DA LITERATURA __________________________________ 76
5. RESULTADOS E DISCUSSÃO ___ 78
 5.1. ARTIGO 1: RESPIRATORY CONDITION OF FAMILY FARMERS EXPOSED TO PESTICIDES IN THE STATE OF RIO DE JANEIRO, BRAZIL __________ 80
 5.2. ARTIGO 2: DATA ON PESTICIDE EXPOSURE AND MENTAL HEALTH SCREENING OF FAMILY FARMERS IN BRAZIL __________________________ 101
 5.3. ARTIGO 3: OCCUPATIONAL EXPOSURE TO PESTICIDES AND SELF-REPORTED ACUTE AND MENTAL HEALTH SYMPTOMS AMONG FAMILY FARMERS IN BRAZIL _______________ 109
5.4. ARTIGO 4: RESPIRATORY AND ALLERGIC EFFECTS IN CHILDREN EXPOSED TO PESTICIDES: A SYSTEMATIC REVIEW

6. CONCLUSÕES

7. CONSIDERAÇÕES FINAIS E RECOMENDAÇÕES

8. REFERÊNCIAS

9. APÊNDICES

Apêndice A - Autorização para uso dos dados coletados em SJU
Apêndice B - Termo de Consentimento Livre e Esclarecido (TCLE)
Apêndice C - Questionário de avaliação ocupacional
Apêndice D - Questionário de sintomas respiratórios
Apêndice E - Orientações para prova de função pulmonar

10. CURRÍCULOS LATTES

Rafael Junqueira Buralli
Helena Ribeiro

128
154
157
159
182
183
184
192
193
194
194
195
Lista de Figuras, Tabelas e Quadros

Figura 1. Linha do tempo das estratégias de controle de pragas agrícolas pré-pesticidas sintéticos (até 1939) ______________________________ 23

Figura 2. Linha do tempo do controle de pragas agrícolas e principais regulamentações de pesticidas no Brasil após desenvolvimento de pesticidas sintéticos (a partir de 1939) __________________________ 24

Figura 3. Principais vias de transporte dos pesticidas no meio ambiente ______ 30

Figura 4. Produção agrícola e consumo de pesticidas e fertilizantes agrícolas no Brasil no período de 2002-2011 __________________________ 35

Figura 5. Consumo de pesticidas no Brasil entre 2009-2017 ____________ 36

Tabela 1. Relação dos 10 ingredientes ativos de pesticidas mais comercializados no Brasil em 2017 ____________________________ 37

Figura 6. Comparação dos limites máximos de resíduos de alguns pesticidas em alimento e água potável no Brasil e na União Europeia _________ 40

Figura 7. Mapa da localização geográfica de SJU _________________ 63

Quadro 1. Rotas de exposição aos pesticidas e metais na zona rural em SJU _ 69
Siglas Utilizadas

Sigla	Definição	
AChE	Acetilcolinesterase	
AHS	Agricultural Health Study	
AIC	Critério de Informação de Akaike	
aOR	Adjusted Odds Ratio	
APAE	Associação de Pais e Amigos dos Excepcionais	
ATS	American Thoracic Society	
BChE	Butirilcolinesterase	
ANVISA	Agência Nacional de Vigilância Sanitária	
ATSDR	Agency for Toxic Substances and Disease Registry	
CEASA	Centrais de Abastecimento	
CEDAE	Companhia Estadual de Águas e Esgoto do Rio de Janeiro	
CERCH	Center for Environmental Research and Children’s Health	
CEREST	Centros de Referência em Saúde do Trabalhador	
CESTEH	Centro de Estudos da Saúde do Trabalhador e Ecologia Humana	
CHAMACOS	Center for the Health Assessment of Mothers and Children of Salinas	
CHARGE	Childhood Autism Risks from Genetics and Environment	
CLIC	Childhood Leukemia International Consortium	
CM	Pesticidas Carbamatos	
CNPq	Conselho Nacional de Desenvolvimento Científico e Tecnológico	
CVF	Capacidade Vital Forçada	
DDE	Diclorodifenildicloroetano	
DDT	Diclorodifeniltricloroetano	
DMC	Doenças Mentais Comuns	
ECRHS	European Community Respiratory Health Survey	
EMATER	Empresa de Assistência Técnica e Extensão Rural	
EMBRAPA	Empresa Brasileira de Pesquisa Agropecuária	
EPA/US	Environmental Protection Agency of United States	
Acronym	Abbreviation	Description
---------	--------------	-------------
EPI	Equipamentos de Proteção Individual	
ERS	European Respiratory Society	
FEF25-75%	Fluxo Expiratório Forçado entre 25-75%	
FIOCRUZ	Fundação Oswaldo Cruz	
FSP	Faculdade de Saúde Pública	
GLM	Modelos Lineares Generalizados	
IARC	International Agency for Research on Cancer	
IBAMA	Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis	
IBGE	Instituto Brasileiro de Geografia e Estatística	
IDHM	Índice de Desenvolvimento Humano Municipal	
IEB	Individual Exposure Burden	
IMC	Índice de Massa Corporal	
INCRA	Instituto Nacional de Colonização e Reforma Agrária	
IQR	Interquartile Range (Intervalo inter-quartil)	
LMR	Limites Máximos de Resíduos	
MAPA	Ministério da Agricultura, Pecuária e Abastecimento	
NHANES	National Health and Nutrition Examination Survey	
NTE	Neuropathy Target Esterase	
OC	Pesticidas Organoclorados	
ODS	Objetivos do Desenvolvimento Sustentável	
OMS	Organização Mundial de Saúde	
ONU	Organização das Nações Unidas	
OP	Pesticidas Organofosforados	
OR	Odds Ratio	
PAN	Pesticide Action Network	
PARA	Programa de Análise de Resíduos de Agrotóxicos em Alimentos	
PIB	Produto Interno Bruto	
POPs	Poluentes Orgânicos Persistentes	
PUR	Pesticide Use Report	
RENAST	Rede Nacional de Atenção Integral à Saúde do Trabalhador	
SBPT Sociedade Brasileira de Pneumologia e Tisiologia
SIM Sistema de Informações sobre Mortalidade
SINAN Sistema de Informação de Agravos de Notificação
SINITOX Sistema Nacional de Informações Tóxico-Farmacológicas
SJU São José de Ubá
SNC Sistema Nervoso Central
SNP Sistema Nervoso Periférico
SRQ-20 Self-Reporting Questionnaire
TCLE Termo de Consentimento Livre e Esclarecido
UERJ Universidade Estadual do Rio de Janeiro
UFRJ Universidade Federal do Rio de Janeiro
USP Universidade de São Paulo
VEF₁ Volume Expiratório Forçado no Primeiro Segundo
Quando iniciei meu mestrado no Programa Saúde Pública da Faculdade de Saúde Pública da Universidade de São Paulo (FSP/USP) em 2014, eu não imaginava o quão desafiador (mas recompensador) seria. Na primeira conversa com a minha orientadora, Dra. Helena Ribeiro, decidimos colaborar em um projeto recém-iniciado de avaliação de risco à saúde humana por exposição ocupacional aos pesticidas em uma pequena cidade agrícola do Rio de Janeiro, coordenado pelo Dr. Jean Remy Daveé Guimarães (UFRJ). Participamos de todas as etapas do projeto e eu, pessoalmente, conduzi as avaliações de saúde e prova de função pulmonar. No mestrado, discutimos os resultados da avaliação respiratória no período da safra, mas ainda restaram muitos dados de exposição e saúde para serem explorados. Como o tema da exposição aos pesticidas e os efeitos à saúde é muito importante e ainda pouco estudado no Brasil, minha orientadora me convidou para continuar minha formação acadêmica sob sua orientação, agora no doutorado.

Durante o doutorado, iniciado em 2016, tive a oportunidade de aprofundar meus conhecimentos sobre os problemas ambientais e seus efeitos na saúde humana, expandir minha rede de relacionamentos com outros pesquisadores e aproveitar as melhores oportunidades que surgiram. Como fruto desse amadurecimento, nosso primeiro artigo sobre efeitos respiratórios durante a safra e entressafra foi publicado em 2018 em revista internacional. Em 2017, recebi financiamentos do governo chileno para realizar intercâmbios de curta duração e trabalhar com pesquisadores da Universidad de Chile e Universidad Católica del Maule, o que serviu para aprimorar minha experiência em epidemiologia ambiental e analisar conjuntamente nossos achados de sintomas autorreferidos em SJU. Esses achados, juntamente com os de efeitos à saúde mental são discutidos no 3º artigo dessa tese. Objetivando aumentar a visibilidade desses dados no Brasil, esse artigo foi recentemente submetido à Revista de Saúde Pública.

Em 2018, com bolsa do Programa de Doutorado Sanduíche no Exterior (PDSE) do Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq, realizei
doutorado sanduíche por 6 meses no *Center for Environmental Research and Children’s Health* (CERCH) da *University of California, Berkeley, US*, que acompanha uma coorte de crianças expostas aos pesticidas e outros contaminantes ambientais há mais de 20 anos. Essa oportunidade me possibilitou trabalhar com pesquisadores com muita experiência em saúde materno-infantil e desenvolver minhas habilidades em avaliação de exposição e análise de dados. Como consequência, decidimos fazer uma revisão sistemática sobre os efeitos dos pesticidas à saúde infantil para preencher uma importante lacuna do conhecimento científico, resultando no 4º artigo dessa tese de doutorado.

Durante o doutorado, fui selecionado para participar do laboratório de inovação global *UNLEASH Innovation Lab*, que reúne anualmente mil “talentos” de diferentes países e áreas para pensar soluções para os Objetivos do Desenvolvimento Sustentável (ODS) da ONU, fui contemplado com auxílios para apresentar nossos resultados em eventos científicos internacionais como o *Congress of Toxicology in Developing Countries* e *Annual Meeting of the International Society of Environmental Epidemiology*.

Como um doutorado não se resume apenas ao projeto de pesquisa, publiquei artigos e capítulos de livro (como autor e coautor) sobre temas do meu interesse, como: os desafios dos ODS; intervenção educativa em escolares chilenos expostos a pesticidas; epidemiologia em áreas contaminadas; uso da metodologia Laboratório de Mudanças; promoção da saúde do idoso; e participação social em políticas ambientais. Além disso, concedi entrevistas para divulgação científica (a mais recente para a BBC Brasil), fiz muitos cursos e disciplinas, ministrei aulas, ajudei a organizar eventos acadêmicos e, atualmente, colaborei em projetos de pesquisa e como revisor de periódicos científicos. Participei como pesquisador do Grupo de Estudos em Agricultura Urbana (GEAU), vinculado ao Instituto de Estudos Avançados da USP. Enfim, os resultados apresentados nesta tese são apenas uma parte dessa exitosa (e trabalhosa) jornada.
Efeitos à saúde por exposição ambiental e ocupacional aos pesticidas de uso agrícola

1. INTRODUÇÃO

O desafio de garantir a segurança alimentar e nutricional para um mundo industrializado, globalizado e urbanizado enfrenta o problema sem precedentes da “dupla carga” da má nutrição, representada pela combinação da desnutrição com o sobrepeso ou obesidade (Swinburn et al., 2019). Dos 141 países avaliados pelos Relatório Global de Nutrição de 2018, 83 países (59%) apresentaram uma alta prevalência de pelo menos duas das três condições nutricionais: atraso na infância, anemia e excesso de peso (Initiatives, 2018).

Apesar dos avanços recentes no combate à fome e subnutrição, a falta de alimentos e/ou nutrientes ainda é um problema relevante, principalmente nos países de baixa e média renda. Como uma dupla carga, o crescimento mundial de sobrenutrição, com sobrepeso e obesidade (inclusive entre populações mais pobres e menos instruídas), sedentarismo, estilo de vida não saudável e aumento dos riscos de doenças crônicas e não-comunicáveis afeta não só os países de menor renda, mas também os de maior renda (Swinburn et al., 2019; Willett et al., 2019). Problemas como: subnutrição e sobrenutrição, dificuldade de acesso a comidas saudáveis, sustentabilidade dos processos produtivos, aumento de consumo de alimentos processados e ultra processados ricos em sal, gordura e calorias e pobres em nutrientes essenciais são apenas alguns dos enormes desafios a serem enfrentados pelos complexos sistemas alimentares (Afshin et al., 2019; Willett et al., 2019).

Comumente negligenciado nos debates sobre segurança alimentar e nutricional – mas não menos importante – o uso de pesticidas tem despertado cada vez mais o interesse internacional conforme acumulam-se evidências sobre seus danos à saúde e ao meio ambiente. No Brasil, os pesticidas são também conhecidos por outros nomes, como agrotóxicos (muito questionado, mas que reforça seus riscos), defensivos agrícolas (manobras retóricas para esconder seus efeitos nocivos) ou agroquímicos. Nessa tese, convencionou-se
tratá-los como pesticidas pela semelhança às nomenclaturas internacionais ("pesticides" em inglês e "pesticidas" em espanhol) e por serem usados para combater pestes.

Apesar dos benefícios no controle de pragas e doenças, o uso excessivo e descuidado de pesticidas agrícolas tem como consequências: contaminação e diminuição dos recursos naturais, perda de biodiversidade, impactos aos biomas e biomas (e.g. polinizadores, microbiota e química do solo), efeitos agudos e crônicos à saúde humana em indivíduos de todas as faixas etárias expostos ocupacionalmente e ambientalmente, evasão do campo e perda da força de trabalho agrícola, altos níveis de resíduos de pesticidas nos alimentos, solo e água, entre outras (FAO, 2017; Kim et al., 2017; Mostafalou and Abdollahi, 2017; Patel and Sangeeta, 2019; Rodríguez-Eugenio et al., 2018; Sousa et al., 2016). Essas pressões podem comprometer inclusive a própria agricultura e produção de alimentos.

Entender o cenário potencial de exposição aos pesticidas é importante para a caracterização do risco à saúde humana e ao meio ambiente, bem como seu gerenciamento. Muitos estudos epidemiológicos internacionais avaliaram os efeitos dos pesticidas em indivíduos expostos ocupacionalmente e ambientalmente, mas são escassos os estudos realizados no Brasil que consideram a complexidade do cenário de exposição, o uso de biomarcadores e os diferentes níveis de exposição. A maioria desses estudos avaliou áreas de plantio de fumo, café e soja nas regiões Sul, Centro-Oeste e Nordeste (Campos et al., 2016; Chaves et al., 2017; Conti et al., 2018; Faria et al., 2005; Fiori et al., 2015; Kahl et al., 2018; Krawczyk et al., 2014; Nerilo et al., 2014; Oliveira et al., 2014; Pasioni et al., 2012; Piccoli et al., 2016; Pignati et al., 2017), enquanto que muitos desfechos de saúde, culturas agrícolas e regiões ainda seguem pouco estudados. Esses estudos não esgotam a discussão sobre a exposição aos pesticidas de uso agrícola e mais evidências científicas são necessárias.

No Brasil, o pouco apoio técnico oferecido aos agricultores resulta na adoção de práticas rurais impróprias e, consequentemente, uma maior exposição aos pesticidas (Bendetti, 2014; Pedlowski et al., 2012; Poletto and Gontijo, 2012). Sob tais circunstâncias, a população rural (especialmente os trabalhadores rurais) pode apresentar efeitos adversos à saúde bastante elevados. Apesar da importância social, econômica e ambiental, pouco se sabe a respeito da condição de saúde dos agricultores familiares brasileiros.

Para a realização deste estudo, os desfechos de saúde foram selecionados considerando morbidades que podem impactar significativamente a qualidade de vida dos agricultores e já foram relacionadas previamente à exposição aos pesticidas. As intoxicações por pesticidas, as
doenças respiratórias e os transtornos mentais sempre figuram entre as maiores causas de morte e incapacidade que acometem os trabalhadores agrícolas (Kim et al., 2017; Konradsen, 2007; Mostafalou and Abdollahi, 2017). Essas doenças afetam desproporcionalmente as populações e os países de menor renda e os indivíduos em idade produtiva, gerando enormes custos sociais e financeiros, impactando a saúde e qualidade de vida, a carga dessas doenças e os custos aos sistemas de saúde (Alavanja, 2009; Carneiro et al., 2015; U.N. Human Rights Council, 2017).

Como resposta ao aumento das pragas agrícolas e demanda por alimentos e produtos mais eficientes e menos tóxicos, o desenvolvimento, a regularização e comercialização de pesticidas e fertilizantes avançaram substancialmente nas últimas décadas, em um ritmo mais acelerado do que o avanço do conhecimento científico sobre seus efeitos à saúde humana e ao meio ambiente. No Brasil, está em curso um modelo agrícola desenhado para o agronegócio, tendo como consequência uma flexibilização da legislação ambiental com expansão da produção agrícola e uso de pesticidas. Enquanto isso, o país enfrenta deficiências no apoio técnico e treinamento em saúde e segurança ocupacional, com contaminação dos recursos naturais e alimentos (Almeida et al., 2017; Carneiro et al., 2015; Rigotto et al., 2014).

A escassez de informações sobre a exposição aos pesticidas e efeitos à saúde no Brasil dificulta o conhecimento real do problema, o debate entre os grupos de pesquisa, órgãos de saúde e a sociedade. Essas informações podem ser úteis para identificar populações especialmente vulneráveis, monitorar as reações adversas à saúde, levantar hipóteses de possíveis relações causais e orientar um tratamento adequado (e precoce, quando possível). Ademais, podem auxiliar no desenho e direcionamento das políticas públicas e ajudar a encontrar alternativas que diminuam a exposição e os danos ao meio ambiente e à saúde humana, além dos gastos excessivos com cuidados especializados. Esperamos que esses dados possam sensibilizar os agricultores brasileiros sobre a importância de melhorarem suas práticas ocupacionais e o cuidado com a sua saúde.

A inconsistência nos resultados de estudos epidemiológicos sobre os efeitos da exposição aos pesticidas à saúde respiratória de crianças e a carga dessas doenças a curto e longo prazo motivaram a realização de uma revisão bibliográfica.

Por fim, essa tese fornece dados que complementam o conhecimento científico sobre o cenário de exposição aos pesticidas e efeitos à saúde de agricultores familiares no Brasil e traz uma revisão dos efeitos dos pesticidas à saúde respiratória de crianças.
2. OBJETIVOS

Constituem os objetivos geral e específicos desta tese de doutorado:

2.1. OBJETIVO GERAL

Avaliar os efeitos da exposição aos pesticidas à saúde humana, considerando a exposição ocupacional de agricultores familiares a exposição ambiental de crianças.

2.2. OBJETIVOS ESPECÍFICOS

Objetivo 1: Caracterizar a área e população de estudo, e descrever o cenário de exposição aos pesticidas em agricultores familiares de São José de Ubá, Estado do Rio de Janeiro, Brasil. Apresentado nos artigos 1, 2 e 3 (1 e 2 publicados e 3 submetido).

Objetivo 2: Avaliar os efeitos da exposição aos pesticidas na saúde respiratória de agricultores familiares em São José de Ubá, considerando a sazonalidade e comparando os resultados da prova de função pulmonar e sintomas respiratórios entre os períodos de maior (safras) e menor exposição (entressafra). Apresentado no artigo 1 (publicado).

Objetivo 3: Discutir a associação entre a exposição aos pesticidas e os efeitos à saúde mental dos agricultores familiares em São José de Ubá. Apresentado no artigo 3 (submetido).

Objetivo 4: Investigar a prevalência de sintomas agudos autorreferidos e sua possível relação com a exposição aos pesticidas entre agricultores familiares de São José de Ubá. Apresentado no artigo 3 (submetido).

Objetivo 5: Sistematizar e discutir os achados de estudos epidemiológicos internacionais sobre os efeitos respiratórios em crianças expostas aos pesticidas. Apresentado no artigo 4 (ainda não submetido).
3. REVISÃO DA LITERATURA

3.1. USO DE PESTICIDAS AGRÍCOLAS E IMPACTOS AO MEIO AMBIENTE

Provavelmente desde quando os seres humanos começaram a cultivar seu próprio alimento, as pragas são uma ameaça à produção agrícola. Por tempos, lançaram mão de uma grande variedade de compostos naturais para combatê-las, como calcário, extratos de planta, mercúrio, arsênico, chumbo, entre outros (Robson and Hamilton, 2010). Após a revolução industrial, a população mundial cresceu rapidamente e se tornou urbanizada e globalizada. No começo do Século XX, apenas 10% do mundo vivia em cidades, e em 2008, pela primeira vez, a população urbana ultrapassou a rural. Estima-se que até 2050, a população mundial atinja 9,6 bilhões de pessoas e pelo menos 65% viva em cidades (WHO, 2016), gerando uma demanda sem precedentes por serviços e produtos, dentre os quais o alimento é talvez o mais essencial. Para atender a essa demanda crescente por alimentos, a agricultura tem ampliado significativamente sua produção, investindo em modernização, mecanização e uso extensivo de agroquímicos e fertilizantes (Carneiro et al., 2015; Carvalho, 2017).

Estima-se que mais de 1,1 bilhão de pessoas estejam envolvidas no trabalho agrícola, representando mais de 30% do trabalho global, mas este número tem diminuído significativamente desde 2013 e é bastante variável dependendo da região, por exemplo, passando de 60% da força de trabalho na África subsaariana. A agricultura também ocupa cerca de 70% de todo o trabalho infantil do mundo, expondo cerca de 108 milhões de crianças a condições de trabalho frequentemente perigosas, incluindo a exposição a pesticidas (UNICEF, 2018).

As Figuras 1 e 2 apresentam uma linha do tempo das estratégias de controle de pragas agrícolas. Enquanto a Figura 1 apresenta a evolução do uso de controles biológico, orgânico e inorgânico antes do desenvolvimento do primeiro pesticida sintético (até 1939), a Figura 2 mostra a era dos pesticidas sintéticos (a partir de 1939) e algumas das principais
regulamentações de pesticidas no Brasil, que influenciaram diretamente na disponibilização desses produtos no mercado brasileiro e, consequentemente, sua utilização pelos agricultores.

No final do Século XIX e começo do Século XX, substâncias inorgânicas começaram a ser desenvolvidas e utilizadas no controle de pragas agrícolas (Zhang et al., 2011). Durante a Segunda Guerra Mundial, os países investiram no desenvolvimento de suas indústrias químicas com o objetivo de usar seus produtos como armas de guerra e/ou no controle de vetores de doenças, como aconteceu com o organoclorado diclorodifeniltricloroetano (DDT), sintetizado em 1939 (Carneiro et al., 2015; Robson and Hamilton, 2010).

Quando terminou a guerra, as indústrias químicas resolveram se valer do potencial inseticida dos compostos organoclorados, especialmente o DDT, e os destinaram à eliminação de pragas agropecuárias e controle de doenças endêmicas transmitidas por vetores (Carneiro et al., 2015). O aparecimento dos pesticidas sintéticos orgânicos fez diminuir o interesse pelos pesticidas inorgânicos e naturais (Zhang et al., 2011), ainda que eles existam em menor escala.

Por sua alta persistência ambiental e danos ao ecossistema e à saúde humana, os pesticidas organoclorados (OC) foram sendo eliminados ou tendo seu uso reduzido aos poucos (Robson and Hamilton, 2010). O DDT, que talvez seja o OC mais conhecido, foi usado mundialmente em larga escala até o início da década de 1970, quando alguns países, liderados pelos EUA, reconheceram um aumento na resistência das pestes a esses compostos, seus enormes danos à saúde e meio ambiente e proibiram seu uso e comercialização (Carneiro et al., 2015; Carvalho, 2017). Apesar de ainda utilizado em alguns países em campanhas sanitárias, o DDT foi gradativamente sendo substituído por novos produtos menos tóxicos. No Brasil, o DDT teve sua autorização cancelada para uso agrícola em 1985, em 1998 foi proibido em campanhas de saúde pública e em 2009 banido definitivamente pela Lei 11.936/2009 (Carneiro et al., 2015).

Conforme o conhecimento científico sobre os danos à saúde e meio ambiente avança, novos químicos mais modernos e eficientes vão sendo desenvolvidos, testados e comercializados, em substituição a produtos reconhecidamente mais perigosos. Atualmente, existem mais de 900 ingredientes ativos de pesticidas, que servem de base à formulação de mais de 35.000 produtos comerciais (Robson and Hamilton, 2010).
Figura 1. Linha do tempo das estratégias de controle de pragas agrícolas pré pesticidas sintéticos (até 1939).

Fontes: adaptado de (ANVISA, 2019a; Frazier, 2010; Unsworth, 2010).
Figura 2. Linha do tempo do controle de pragas agrícolas e principais regulamentações de pesticidas no Brasil após desenvolvimento de pesticidas sintéticos (a partir de 1939).

Era dos pesticidas sintéticos

O livro “Aprimorando silvicultura” de Rachel Carson alertou sobre os riscos dos uso indiscriminado de pesticidas aos animais, à saúde humana e à qualidade da água e impulsionou algumas mudanças em políticas públicas.

A Brasil publica a Lei 7.802, a “Lei dos Agrotoxicos”, que regularia a produção, registro e classificação, pesquisa, embalagem e rotulagem, comercialização e utilização, importação e exportação, o transporte e armazenamento, destino final, dos agrotoxicos e embalagens. O decreto 7.262, de 2010, regulamentou as exigências para os agrotoxicos.

A Brasil publicou o Decreto nº 4.674, que define que as Ministério de Agricultura, Pecuária e Abastecimento (MAPA), da Saúde (ANVISA) e do Meio Ambiente (IBAMA) devem promover a reavaliação do registro de agrotoxicos quando orçamentos internacionais financiarem o uso ou quando surgirem indícios de risco significativos.

Fontes: adaptado de (ANVISA, 2019a; Frazier, 2010; Unsworth, 2010).
Os primeiros compostos organofosforados foram descobertos por alquimistas na Idade Média, mas estudados com maior frequência no Século XIX, principalmente por cientistas britânicos e alemães. No começo do Século XX, a Alemanha identificou o potencial inseticida de alguns gases derivados de organofosforados (e.g. Sarin, Soman e Tabun) ao observar a elevada toxicidade ao sistema nervoso (Carneiro et al., 2015). O primeiro inseticida comercial foi disponibilizado em 1940 e, no final da Segunda Guerra Mundial, quase 2.000 pesticidas organofosforados (OP) haviam sido sintetizados (Bleecker, 2008). Mais tarde, na década de 1970, os OP foram indicados como substitutos dos pesticidas organoclorados (OC), por serem menos persistentes, apesar de também bastante tóxicos (Carneiro et al., 2015). Alguns exemplos de OP amplamente utilizados são: clopirifós, diazinon, malation e paration (Robson and Hamilton, 2010).

Os pesticidas carbamatos (CM) são compostos com baixa persistência ambiental estruturalmente menos complexos do que os OP, bastante utilizados na agricultura como inseticidas e fungicidas, mas também na medicina humana e veterinária (Bleecker, 2008). Eles possuem um mecanismo de ação neurotóxica semelhante aos OP e atuam inibindo as enzimas colinesterásicas, porém com menor afinidade com essas enzimas do que os OP, o que reduz um pouco a sua toxicidade humana (Robson and Hamilton, 2010). Juntos, os OP e os CM são considerados os maiores responsáveis por episódios de intoxicação aguda e óbitos por exposição ocupacional a pesticidas no Brasil (Carneiro et al., 2015; Santana et al., 2013). Alguns CM comuns são: aldicarb, carbaril, metomil, carbofuran e metomil.

Baseadas no potencial inseticida de um composto orgânico vegetal presente nos crisântemos, a piretrina, as indústrias químicas melhoraram sua estabilidade no meio ambiente e desenvolveram os piretróides sintéticos (Robson and Hamilton, 2010). Progressivamente, os piretróides foram sendo modificados para aumentar sua potência inseticida e diminuir sua sensibilidade ao ar e à luz (Saillenfait et al., 2015). Alguns dos piretróides muito disponíveis globalmente são: aletrina, bifentrina, ciflutrina, lambda cialotrina, cipermetrina, deltametrina, permitrina e tetrametrina.

Os inseticidas neonicotinóides, também chamados de “neonics”, foram registrados pela primeira vez no início dos anos 1990, mas seu uso tem crescido rapidamente. Atualmente, os neonic são amplamente utilizados na agricultura, veterinária e residências, devido à sua alta eficácia no controle de insetos e facilidade de aplicação. Seu uso na agricultura se dá frequentemente por pulverização, irrigação por gotejamento ou tratamento prévio de sementes – prática que tem aumentado muito recentemente (Zhang et al., 2018).
Os fertilizantes orgânicos começaram a ser usados no final do século XIX e seu uso cresceu substancialmente a partir do início do século XX, favorecendo um aumento sem precedentes na produtividade agrícola (Carvalho, 2017). O uso dos fertilizantes agrícolas auxilia a reposição dos nutrientes retirados da terra durante o plantio. Enquanto alguns dos principais nutrientes (nitrogênio, fósforo e potássio) são encontrados em estrume de animais, resíduos de colheita e produtos de origem animal e vegetal, os fertilizantes minerais contendo fósforo e potássio são extraídos de rochas (Santos and Glass, 2018). A agricultura consome entre 80-90% da demanda mundial de fósforo, um mineral essencial a todos os organismos vivos e à produção agrícola, cuja falta pode comprometer a capacidade de produzir alimentos para suprir a crescente demanda global (Tirado and Allsopp, 2012).

Por decisões políticas, ao passo que novos produtos vão sendo desenvolvidos, os produtos de maior toxicidade vão sendo gradativamente banidos ou têm seu uso restringido em cada país ou região, não existindo uma regulação internacional única (U.N. Human Rights Council, 2017). Como consequência, países de maior renda modernizam sua agricultura com tecnologia, mecanização e uso de pesticidas mais eficientes, enquanto essa transição acontece mais devagar nos países de menor renda (Damalas and Koutroubas, 2016).

Devido sua alta persistência ambiental e efeitos à saúde humana e ao meio ambiente, alguns químicos denominados poluentes orgânicos persistentes (POPs), entre eles oito pesticidas - DDT, Aldrina, Dieldrina, Clordano, Endrina, Heptacloro, Mirex, Toxafeno - foram banidos por vários países que assinaram a Convenção de Estocolmo em 2001. Os POPs possuem meia-vida bastante elevada, podem ser transportados a longas distâncias e permanecer no ambiente por muito tempo, produzindo metabólitos na sua degradação. Apesar da sua proibição, o DDT e seus metabólitos (como o p,p'-DDE e p,p'-DDT) ainda são encontrados no ambiente e continuam a representar um risco à saúde humana.

Inicialmente, havia principalmente três tipos de inseticidas sintéticos orgânicos, os OC, OP e CM, mas logo foram aparecendo novos químicos com outras propriedades e finalidades (Zhang et al., 2011). Os pesticidas podem ser classificados de acordo com a composição química dos seus principais ingredientes ativos (ex. OP, piretróides, nicotinóides) e também seu alvo de ação (ex. herbicidas, inseticidas, fungicidas, raticidas, acaricidas) (Carvalho, 2017).

Mais recentemente, outras alternativas como os pesticidas biológicos e hormonais (Carneiro et al., 2015), pesticidas microbianos com microrganismos vivos com atividade inseticida ou fungicida/bactericida (Zhang, 2018) e abordagens transgênicas de silenciamento
de genes específicos por interferência no RNA – RNAi (Mamta and Rajam, 2017) têm sido apontadas como opções mais eficientes e menos tóxicas a organismos não-alvo e ao meio ambiente. Apesar do futuro promissor, a maioria ainda está em fase de desenvolvimento e testes, o custo ainda é bastante elevado, a comercialização limitada e bem distante da realidade dos pequenos produtores.

Atualmente, uma grande variedade de pesticidas sintéticos é utilizada globalmente em larga escala, principalmente na agricultura, mas também com outras finalidades (OPAS/OMS, 1996). Os OP, CM, piretróides e neonics são inseticidas bastante empregados na agricultura, seu uso mais comum, mas também muito usados na pecuária, veterinária, controle de pragas em campanhas de saúde pública e residências. Nas residências, esses químicos são empregados em hortas domésticas ou dentro do domicílio na forma de líquido, spray e pastilhas, para o controle de vetores e insetos como ratos, baratas, moscas, mosquitos, formigas (Carneiro et al., 2015; Muñoz-Quezada et al., 2012; Zhang et al., 2018). Além disso, os OP também são empregados como retardantes de chama em materiais têxteis e de embalagem, etc. (Bleecker, 2008). Alguns piretróides são comumente aplicados em baixas concentrações para o controle de parasitas, como piolho, carrapato, pulga, ácaros e outros artrópodes em humanos. Como conseqüência do seu uso excessivo nos domicílios, os piretróides são apontados como uma das principais causas de intoxicação e reações alérgicas no ambiente doméstico, principalmente entre crianças (Carneiro et al., 2015).

Os dados apontam que o consumo mundial bruto de todos os tipos pesticidas agrícolas tem aumentado bastante recentemente, especialmente de herbicidas, inseticidas e fungicidas (Carneiro et al., 2015; Carvalho, 2017). O uso proporcional de inseticidas, fungicidas e bactericidas parece estar diminuindo lenta e gradualmente (Zhang et al., 2011), enquanto o uso de herbicidas por área plantada tem aumentado rapidamente. Atualmente, os OP são pesticidas agrícolas mais utilizados no mundo (Zhang, 2018), especialmente na América Latina e Caribe (Pérez-Consuegra, 2018).

Com base no volume de pesticidas (kg/ha) usado para produzir uma determinada quantidade de produtos agrícolas, foi calculada a relação custo/benefício e eficiência da produtividade agrícola global (Zhang, 2018). Assim, uma menor (ou diminuição da) relação custo/benefício indica o uso de menos pesticidas para mais produção (desejável) e uma maior (ou aumento da) relação custo/benefício o uso de mais pesticidas para menor produção. Os resultados mostram que no mundo, o uso total de pesticidas por área plantada (kg/ha) aumentou entre 1990 e 2007, especialmente inseticidas, herbicidas, fungicidas e bactericidas,
mas têm diminuído desde 2007. A mesma tendência foi observada para a relação custo/benefício, indicando uma maior eficiência na produção agrícola global. Por outro lado, o uso global de triazóis e diazóis, reguladores de crescimento e amidas aumentou substancialmente (Zhang, 2018). Entre os maiores produtores globais, o Brasil apresentou a maior relação custo-benefício (uso de mais pesticidas para menor produção), seguido em ordem decrescente pelo Japão, México, China, Canadá, EUA, França, Alemãnia, Reino Unido e Índia (Zhang, 2018), sendo os primeiros da lista os que consomem mais pesticida proporcionalmente para produzir menos. É importante ressaltar que esses valores expressam apenas uma relação do uso de pesticidas por área plantada, enquanto que as consequências devem considerar importantes particularidades de cada país e regiões, como os princípios ativos usados (ex. produtos mais e menos tóxicos, uso de misturas complexas), exposição ambiental (ex. populações mais vs. menos expostas, deriva para rios e solo, resíduos em alimentos) e exposição ocupacional (ex. trabalho mais manual ou mecanizado, maior e menor exposição, uso de equipamentos de proteção individual (EPI), mais e menos treinamento e apoio técnico).

Os pesticidas escolhidos para serem empregados no combate de pragas agrícolas variam bastante em todo o mundo, basicamente devido a diferenças no custo dos químicos e mão de obra e pragas específicas em cada região climática e geográfica. O modo de aplicação desses químicos também é muito variável, indo de pulverização manual a pulverizações com caminhões e aeronaves (Carvalho, 2017). A escolha dos pesticidas para uso domiciliar também parece seguir essa mesma lógica. No Brasil, um estudo avaliou mais de dois mil domicílios na área urbana de Pelotas, no Rio Grande do Sul e observou que em 89% deles haviam aplicado pesticidas nos 12 meses anteriores, principalmente piretróides e OP. Enquanto os piretróides eram mais utilizados nos domicílios de maior renda (na forma de pastilhas e aerossóis), os OP, potencialmente mais tóxicos, eram empregados nos de menor renda (Diel et al., 2003).

Estima-se que o comércio global de sementes e pesticidas cresça de US$ 85 bilhões por ano em 2015 para US$ 120 bilhões em 2025. Enquanto aumenta exponencialmente, esse mercado bilionário concentra-se cada vez mais na mão de conglomerados empresariais poderosos (Santos and Glass, 2018). Em transações recentes, a Bayer, farmacêutica alemã comprou a gigante americana Monsanto, cujos setores de sementes, pesticidas e agricultura digital deverão ser adquiridos pela BASF para evitar monopólio; as americanas DuPont e Dow se fundiram criando a DowDuPont; e a ChemChina comprou a suíça Syngenta. Esses
três conglomerados são responsáveis por mais de 60% do mercado global, e só a Bayer, que é a maior, comercializa 1/3 das sementes e 1/4 dos pesticidas no Mundo (Santos and Glass, 2018).

O mercado global de pesticidas se confunde com o de sementes, especialmente as transgênicas ou geneticamente modificadas, sendo que cinco das sete maiores produtoras de sementes do mundo originaram-se de indústrias químicas (Santos and Glass, 2018). Como muitas vezes essas sementes são resistentes aos pesticidas dessas empresas, o produtor rural é obrigado a comprar ambos os produtos, como uma venda casada, e induzido a usá-los em maior quantidade (Carneiro et al., 2015).

Apesar dos benefícios da proteção contra pragas e do aumento da produção, os impactos das atividades agrícolas sobre os recursos naturais não podem ser desprezados. A agropecuária é responsável por 70% do consumo global de água e principal responsável pela contaminação de águas superficiais no mundo. Por descarregar grandes quantidades de pesticidas, antibióticos, hormônios e matéria orgânica nos corpos d'água, as atividades agrícolas representa um grande risco para o processo produtivo e a saúde humana e dos ecossistemas (FAO, 2017). O uso excessivo de pesticidas, fertilizantes e nutrientes agrícolas, especialmente nitrogênio e fósforo, contribui para problemas ambientais como o aumento das emissões de gases de efeito estufa e eutrofização das fontes de água, além da contaminação do solo, impactando seus organismos e funções, elevando a salinidade e acumulando metais e nitrato (Rodríguez-Eugenio et al., 2018).

Estima-se que apenas cerca de 30-40% dos pesticidas pulverizados atingem o alvo e ficam retidos nas plantas (Chaim, 2004; Zhang, 2018), enquanto que a maior parte é chamada de “deriva técnica” e se deposita no solo (cerca de 49%) e evapora no ar (cerca de 19%) próximos aos locais de plantio (Chaim, 2004). A Figura 3 mostra as principais vias de transporte de pesticidas no meio ambiente. Durante as aplicações, derramamento ou descarte inadequado de pesticidas, essa deriva técnica se dispersa no ar, escorre e lixivia no solo, infiltra na água superficial e subterrânea e contamina recursos naturais, animais e plantações próximas aos locais de utilização (FAO, 2017; Rodríguez-Eugenio et al., 2018). Alguns fatores podem interferir muito na quantidade de deriva técnica, como tipo de aplicação (manual, trator ou avião), condições atmosféricas de temperatura, umidade e intensidade do vento, densidade foliar da cultura e perfil dos pulverizadores, sendo que os menos modernos e calibrados interferem no tamanho das gotas, pressão e desvio de alvo (Carneiro et al., 2015; Chaim, 2004).
Figura 3. Principais vias de transporte dos pesticidas no meio ambiente.

Fonte: adaptado de FAO/UN (Rodríguez-Eugenio et al., 2018).

O modelo de produção adotado pela agricultura convencional tem ameaçado alguns serviços ambientais essenciais para a própria sustentabilidade da agricultura. Além do uso excessivo de pesticidas, práticas como o desmatamento, o uso intensivo do solo e recursos naturais (muitas vezes em áreas de acentuada declividade) e a monocultura extensiva acarretam em perda de biodiversidade, erosão do solo, eutrofização e assoreamento dos corpos d’água, desregulação do ciclo hídrico, extermínio de polinizadores selvagens e inimigos naturais das pragas agrícolas, contaminação do solo, do ar e das águas superficiais e subterrâneas (FAO, 2017; Rodríguez-Eugenio et al., 2018; Sousa et al., 2016). Estima-se que o sistema alimentar contribua com 20-30% das emissões antropogênicas de gases de efeito estufa no mundo, enquanto a produção agrícola, incluindo as emissões indiretas, como mudanças no uso/cobertura do solo e uso de máquinas agrícolas, contribua com 80-86% das emissões totais do sistema, com variação regional significativa (Vermeulen et al., 2012).

Todos esses desequilíbrios ecossistêmicos têm levado ao aumento da população de fitopatógenos e pragas, problema cujo combate é, via de regra, baseado no controle químico com uso de pesticidas. Esta prática desencadeia um ciclo vicioso devido ao aumento das dosagens e frequência das aplicações, combinação de novos químicos – normalmente vendidos como mais eficazes. Neste processo, há intensificação da contaminação e dos desequilíbrios ambientais, expressiva redução da qualidade de vida e saúde dos agricultores e diminuição da qualidade nutricional dos alimentos produzidos.
Em busca de um desenvolvimento internacional mais sustentável, a ONU propôs em 2015 a Agenda 2030, ou os Objetivos do Desenvolvimento Sustentável (ODS), composta por 17 objetivos e 169 metas bastante ambiciosas, abrangentes e complexas (United Nations, 2015). Os objetivos e metas dessa agenda estão muito relacionados uns com os outros e o sucesso de um objetivo só pode ser alcançado com avanços nos outros objetivos também (Buralli et al., 2018a).

A produção de alimentos, agricultura familiar, o uso de pesticidas e seus impactos à saúde e ao meio ambiente se relacionam com e podem ser impactados direta e indiretamente por quase todos objetivos e metas da Agenda 2030, como: acabar com a pobreza (objetivo 1); acabar com a fome, alcançar a segurança alimentar, melhorar a nutrição e promover a agricultura sustentável (objetivo 2); garantir uma vida saudável e promover o bem-estar para todos em todas as idades (objetivo 3); alcançar a igualdade de gênero e capacitar todas as mulheres e meninas (objetivo 5); garantir a disponibilidade e o gerenciamento sustentável da água e saneamento para todos (objetivo 6); promover crescimento econômico sustentado, inclusivo e sustentável, emprego pleno e produtivo e trabalho decente para todos (objetivo 8); tornar as cidades e aglomerados humanos inclusivos, seguros, resilientes e sustentáveis (objetivo 11); garantir padrões de consumo e produção sustentáveis (objetivo 12); combater as mudanças climáticas e seus impactos (objetivo 13); conservar e usar de forma sustentável os oceanos, mares e recursos marinhos para o desenvolvimento sustentável (objetivo 14); e proteger, restaurar e promover o uso sustentável dos ecossistemas terrestres, gerenciar florestas de forma sustentável, combater a desertificação, deter e reverter a degradação da terra e perda de biodiversidade (objetivo 15) (United Nations, 2015).

A agenda dos ODS afirma que, para alcançar o desenvolvimento equilibrado e pleno, é preciso investir no desenvolvimento sustentável da agricultura e pesca, apoiando pequenos agricultores, especialmente mulheres, povos indígenas, agricultores familiares, pastores e pescadores, principalmente dos países de menor renda; aumentar a produtividade agrícola e a renda de pequenos produtores, as oportunidades de emprego justo, promover autonomia e inclusão financeira; garantir um acesso seguro e igual à terra, recursos e insumos produtivos, conhecimento, mercados e oportunidades; estimular sistemas mais sustentáveis de produção e implementar práticas agrícolas resilientes, que ajudem a manter os ecossistemas, fortaleçam a capacidade de adaptação às mudanças climáticas e melhorem progressivamente a qualidade da terra e do solo; e aumentar os investimentos em infraestrutura rural, serviços de pesquisa e extensão agrícola e desenvolvimento de tecnologia (United Nations, 2015).
O artigo recentemente publicado “Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems” faz uma análise profunda da sustentabilidade dos sistemas alimentares globais e propõe mudanças substanciais, visando uma alimentação mais saudável. Recomenda, como ideal, uma dieta rica em alimentos à base de plantas, como frutas, vegetais, oleaginosas e legumes, e com menos alimentos de origem animal (como carne vermelha), açúcar, sal e gorduras, pelo benefício da saúde e do meio ambiente (Willett et al., 2019). Os autores reconhecem que a produção de alimentos está entre os maiores impulsionadores das mudanças ambientais globais, contribuindo para as mudanças climáticas, perda de biodiversidade, alto consumo de água, interferência no ciclo do nitrogênio e fósforo e alterações no solo, mas evitam comentar os efeitos da contaminação química por pesticidas e os impactos na saúde dos trabalhadores envolvidos na produção agrícola e consumidores dos alimentos produzidos (Willett et al., 2019).

A persistência ambiental de um pesticida pode ser bastante variável, conforme a classe do pesticida, os ingredientes ativos de suas composições, o compartimento ambiental, as características do solo ou água e fatores ambientais e climáticos (Carneiro et al., 2015; Chaim, 2004; Rodríguez-Eugenio et al., 2018). Os OC foram sendo progressivamente proibidos em diversos países devido a sua alta toxicidade e persistência. Estudos experimentais recentes mostram que os OP, também podem persistir no ambiente aquático por dias ou semanas, até se acumularem no sedimento e na biota aquática, como em crustáceos e peixes (Carvalho, 2017). Os inseticidas neonics são neurotóxicos e podem persistir no ambiente por alguns meses e até 2-3 anos, possuem alto potencial de lixiviação e escoamento (Morrissey et al., 2015; Zhang et al., 2018). Devido ao seu baixo peso molecular e alta solubilidade em água, os neonics adentram facilmente os tecidos das plantas e permanecem por muito tempo (Han et al., 2017), o que pode ser benéfico para a proteção contra insetos, mas aumenta a probabilidade de contaminação ambiental e os riscos potenciais à exposição humana e animal. Como resultado, estudos de exposição reportaram níveis variáveis de neonics e seus metabólitos em adultos expostos e não expostos ocupacionalmente a pesticidas, crianças, solos, água potável, vegetais e frutas e até leite bovino (Han et al., 2017; Zhang et al., 2018). Os neonics já foram relacionados a impactos generalizados em populações de abelhas (Sánchez-Bayo et al., 2016), aves (Eng et al., 2019; Stanton et al., 2018) e invertebrados aquáticos (Morrissey et al., 2015).

Os animais estão expostos aos pesticidas de uso agrícola por várias vias e os efeitos podem ser consideráveis. As abelhas são vitais para a agricultura e manutenção da
biodiversidade, especialmente por sua função polinizadora, embora bastante sensíveis aos pesticidas. Mas não é fácil relacionar os danos às colônias de abelhas a esses químicos, pois seus efeitos são geralmente subletais e variam muito com o tipo e intensidade dos pesticidas. Enquanto os inseticidas, principalmente neonicotinóides e piretróides, podem matar diretamente as abelhas, os herbicidas reduzem a diversidade de seus recursos alimentares e também afetam a sobrevivência e reprodução das abelhas (Sánchez-Bayo et al., 2016). Além dos efeitos diretos dos pesticidas em abelhas, foi observada uma ação sinérgica dos neonics com outros patógenos, como a doença parasitária *nosemose*, bastante comum em abelhas adultas. Como consequência, observou-se um aumento da mortalidade de abelhas e disseminação dos patógenos, supressão do sistema imunológico, incapacidade de esterilizar a colônia e produzir mel (Sánchez-Bayo et al., 2016).

As aves podem se expor aos pesticidas agrícolas pelo contato com os gases e vapores das pulverizações, ingestão de insetos, água e solo contaminados e consumo de sementes tratadas (Eng et al., 2019). Aves migratórias que usam áreas agrícolas para reabastecimento foram expostas a pequenas quantidades de *imidacloprido* – um neonicotinóide – e apresentaram diminuição no consumo de alimentos, massa e gordura corporal, atrasos na perda de peso e migração, o que pode reduzir suas chances de reprodução e sobrevivência (Eng et al., 2019). Além dos efeitos letais e subletais dos pesticidas, outros fatores relacionados à agricultura, como a transformação e perda de habitats naturais, interferência de equipamentos agrícolas e redução da oferta de alimentos (especialmente para aves insetívoras), podem explicar parcialmente por que algumas espécies de aves estão diminuindo drasticamente em todo o mundo (Stanton et al., 2018).

Uma revisão recente aponta que o fornecimento dos fertilizantes fosfatados pode ser considerado uma grave crise iminente, pois os depósitos são finitos, muitos estão contaminados e localizados em áreas geopoliticamente instáveis, principalmente no Marrocos e na China. Essa situação exige múltiplas abordagens que visem melhorar o gerenciamento de fósforo nas reservas remanescentes, a eficiência das aplicações de fertilizantes na agricultura, e avançar o conhecimento sobre seu ciclo no solo e planta (Blackwell et al., 2019).

A capacidade das indústrias químicas de sintetizar seus pesticidas, comprovar sua eficácia e risco aceitável à saúde humana e meio ambiente, regularizar a venda e distribuir em larga escala para o mercado mundial é mais rápida do que a capacidade dos governos, universidades e institutos de pesquisa avaliarem seus efeitos, considerando os cenários reais de utilização e exposição. Atualmente, tem aumentado o número de pesquisas científicas...
sobre os impactos dos pesticidas à saúde humana e ao meio ambiente, mas muito ainda precisa ser estudado. Recentemente, os efeitos de princípios ativos e classes específicas e das misturas complexas de vários pesticidas (e outros químicos) têm despertado o interesse da comunidade científica internacional e motivado novos estudos.

Ainda assim, a falta de pesquisas e dados sobre o uso de pesticidas, a exposição e seus efeitos à saúde é o maior desafio para uma avaliação acurada e confiável sobre os reais impactos à saúde humana e ao meio ambiente, afetando principalmente os países de baixa e média renda (U.N. Human Rights Council, 2017; UNICEF, 2018).

3.1.1. Uso de Pesticidas Agrícolas no Brasil

No Brasil, a expansão da produção agrícola tem sido acompanhada de um aumento expressivo do uso de agroquímicos e, mais recentemente, da flexibilização da regulação do setor, com avaliação restrita dos impactos dessas substâncias ao meio ambiente e à saúde humana (Almeida et al., 2017; Rigotto et al., 2014). Com cerca de 480 milhões de quilos de ingredientes ativos de pesticidas comercializados anualmente, o Brasil é responsável por grande parcela do que é usado no mundo (IBAMA, 2017), podendo chegar até 20% do consumo global (Bombardi, 2017). Nos últimos 10 anos, enquanto o consumo mundial de agroquímicos cresceu 93%, o crescimento do mercado brasileiro foi de 190% (IBAMA/MMA, 2012; Rigotto et al., 2014). Entre 2010-2014, o Brasil ocupou o primeiro lugar no mundo na quantidade de ingrediente ativo utilizado por quantidade de produto agrícola colhido, e quarto lugar na quantidade de ingrediente ativo aplicado por hectare cultivado (Pérez-Consuegra, 2018; Zhang, 2018).

A concentração do mercado mundial de pesticidas e sementes entre poucas empresas é reproduzida também no Brasil, onde das 76 variedades de sementes transgênicas comercializadas até 2018, 73 eram cultivares de soja, milho e algodão produzidas pelas gigantes internacionais Monsanto/Bayer, Dow/Du Pont, ChemChina/Syngenta e BASF – as outras eram um feijão da Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), um
eucalipto da Futura Gen e uma cana-de-açúcar da CTC. Enquanto a BASF, Bayer, Dow/Du Pont e Syngenta possuíam juntas o registro de 545 dos 1.945 pesticidas aprovados em 2018 no Brasil, grandes empresas como Nortox, Adama e Nufarm, atuavam conjuntamente a grandes conglomerados multinacionais (Santos and Glass, 2018). Atualmente, o Brasil possui a segunda maior área cultivada com plantas transgênicas do mundo e dados recentes reforçam a relação entre o uso dessas plantas e o aumento no consumo de pesticidas (de Almeida et al., 2017; Carneiro et al., 2015), contrariando as expectativas de que essas sementes geneticamente modificadas demandariam um uso menor de pesticidas. Cerca de 96% da soja, 88% do milho e 78% do algodão produzidos no Brasil utilizam sementes transgênicas (Bombardi, 2017).

A Figura 4 mostra o crescimento da produção agrícola e uso de pesticidas e fertilizantes no Brasil entre 2002-2011. Pode-se observar que, ainda que o padrão de crescimento seja bastante parecido, especialmente a partir de 2009 a proporção do uso de pesticidas tem aumentado mais rapidamente do que a produção agrícola, resultando em um aumento exponencial no uso dessas substâncias por área cultivada.

Figura 4. Produção agrícola e consumo de pesticidas e fertilizantes agrícolas no Brasil no período de 2002-2011.

Fonte: Dossiê ABRASCO (Carneiro et al., 2015).

A Figura 5 confirma a tendência crescente do uso de pesticidas mais recentemente no Brasil e ilustra por que o país é o maior consumidor do mundo desde 2008 (Carneiro et al., 2015; Rigotto et al., 2014).
Atualmente, os pesticidas agrícolas mais utilizados no Brasil são os herbicidas, fungicidas, inseticidas e acaricidas. De acordo com o Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (IBAMA), em 2017, foram comercializadas 487.590 toneladas de ingredientes ativos de pesticidas no Brasil, sendo aproximadamente 315.573 toneladas de herbicidas (58,5%), 65.114 toneladas de fungicidas (12,1%), 54.544 toneladas de inseticidas (10,1%), 34.369 toneladas de inseticidas-acaricidas (6,4%), 25.437 toneladas de acaricidas-fungicidas (4,7%), 21.301 toneladas de adjuvantes, entre outros produtos em menor escala (IBAMA, 2017).

Os estados com maior comercialização, em ordem decrescente foram: Mato Grosso (90.061 toneladas), São Paulo (68.639 toneladas), Rio Grande do Sul (63.696 toneladas), Paraná (55.209 toneladas), Goiás (39.672 toneladas) e Mato Grosso do Sul (31.240 toneladas) (IBAMA, 2017). Estima-se que cerca de 72% dos pesticidas comercializados no Brasil sejam empregados nas grandes monoculturas de commodities agrícolas de soja, cana-de-açúcar e milho, consumindo respectivamente 52%, 10% e 10% do total utilizado no país (Bombardi, 2017). Com a tendência crescente de produção das commodities agrícolas, haverá certamente um aumento na demanda de insumos (Carneiro et al., 2015).
As indústrias químicas se aproveitam da fragilidade e permissividade regulatória dos países menos restritivos para comercializar seus produtos mais perigosos e cerca de 30% dos pesticidas vendidos no Brasil são banidos na União Europeia devido sua alta toxicidade aos seres humanos e ao meio ambiente (Bombardi, 2017). A Tabela 1 mostra os 10 ingredientes ativos mais vendidos em 2017.

Tabela 1. Relação dos 10 ingredientes ativos de pesticidas mais comercializados no Brasil em 2017.

Ingrediente Ativo	Vendas (em toneladas)	Ranking
Glifosato e seus sais	173.150,75	1º
2,4-D	57.389,35	2º
Mancozebe	30.815,09	3º
Acefato	27.057,66	4º
Óleo mineral	26.777,62	5º
Atrazina	24.730,90	6º
Óleo vegetal	13.479,17	7º
Dicloreto de paraquate	11.756,39	8º
Imidacloropridio	9.364,57	9º
Oxicloroeto de cobre	7.443,62	10º

Fonte: IBAMA (IBAMA, 2017)

Alguns desses produtos mais comercializados merecem atenção especial. O herbicida *glifosato* é disparadamente o pesticida mais comercializado no Brasil, pertence à classe das glicinas substituídas e foi classificado pela *International Agency for Research on Cancer* (IARC) como provavelmente carcinogênico em humanos, com fortes evidências de genotoxicidade (WHO IARC, 2019). Em contraste, a Agência Nacional de Vigilância Sanitária (ANVISA) publicou recentemente sua reavaliação toxicológica do *glifosato*, onde concluiu que não existem evidências de que ele seja mutagênico, teratogênico, carcinogênico, desregulador endócrino e nem tóxico para o sistema reprodutivo e recomendou que continue permitido no país, já que não causa prejuízos à saúde.

O segundo produto mais vendido é o herbicida 2,4-D, um ácido ariloxialcanóico com grande potencial de interferência endócrina e classificado pela IARC como possivelmente carcinogênico a humanos. O 2,4-D possui mais de 600 formulações no mercado, que podem ser usadas sozinhas ou combinadas com outros herbicidas, como o glifosato no milho e soja.
geneticamente modificados e tolerantes. O OP acefato atua como inseticida e acaricida, é altamente persistente e móvel no ambiente, solúvel em água e possui elevada toxicidade e potencial de interferência endócrina em humanos (NARA FSP/USP, 2019; WHO IARC, 2019). O CM mancozebe tem ação fungicida e acaricida e seu órgão alvo em humanos é a tireoide, com vários efeitos observados em diferentes espécies. O mancozeb ainda não foi classificado pela agência ambiental americana (Environmental Protection Agency - EPA/US) ou IARC, mas está listado como carcinogênico em humanos pela agência ambiental do Estado da Califórnia, EUA (OEHHA, 2019).

Esses números expressivos de comercialização podem ser parcialmente explicados pela ampla utilização de sementes de soja, milho e algodão transgênicos tolerantes ao herbicida glifosato e outros pesticidas, e pela utilização de herbicidas extremamente tóxicos (como paraquat e 2,4-D) como dessecantes e maturadores durante a colheita (Carneiro et al., 2015). Mas vale ressaltar que esses produtos não são utilizados exclusivamente nas commodities produzidas em larga escala, mas também nos alimentos produzidos pela agricultura familiar.

Mais recentemente, no Brasil, resíduos de pesticidas agrícolas estão sendo identificados em diversas matrizes ambientais (como solo, ar e água) e alimentos, suscitando preocupações sobre os efeitos aos humanos e animais da exposição prolongada a pequenas doses. Um panorama da contaminação ambiental por pesticidas e nitrato de origem agrícola no Brasil, feito pela EMBRAPA, mostrou que resíduos são frequentemente detectados, mas a escassez de estudos de monitoramento dos recursos naturais não permite estabelecer um panorama assertivo sobre a extensão da contaminação do solo e água por esses químicos no Brasil (Gomes and Barizon, 2014). O nitrato de origem agrícola já foi apontado como sendo o contaminante químico mais comum nos aquíferos subterrâneos do mundo (FAO, 2017).

O Programa de Análise de Resíduos de Agrotóxicos em Alimentos (PARA) foi criado em 2001 pelo Governo Federal para avaliar os níveis de resíduos de pesticidas nos alimentos de origem vegetal que chegam à mesa do consumidor, a partir da análise de amostras de alimentos coletados nos supermercados das capitais brasileiras. Desde sua criação, o PARA passou por ampliações e mudanças na sua metodologia, mas analisou mais de 35 mil amostras de 28 tipos de alimentos que representam cerca de 80% dos alimentos de origem vegetal consumidos no país e disponibilizou 7 relatórios técnicos com os resultados, referentes aos períodos: 2001-2007, 2008, 2009, 2010, 2011/2012, 2013-2015 e 2017/2018 (ANVISA, 2019b).
Em 2011, apenas 22% das 1.628 amostras analisadas estavam totalmente livres de pesticidas e foram encontrados resíduos de dois produtos nunca registrados no Brasil (Rigotto et al., 2014). No relatório de 2013-2015, o PARA reportou a avaliação de 232 pesticidas em mais de 12 mil alimentos e detectou 134 pesticidas. Quarenta e dois por cento das amostras não apresentaram resíduos, 38% tinham resíduos dentro dos limites máximos de resíduos (LMR) permitidos e 20% das amostras estavam insatisfatórias, especialmente contendo acefato, carbendazim e clorpirimifos (ANVISA, 2019b).

Em seu último relatório, divulgado no final de 2019, o PARA apresentou dados de apenas 14 alimentos (4.616 amostras) que representam 30,9% dos alimentos de origem vegetal consumidos pelos brasileiros. Foram detectados 122 pesticidas dos 270 avaliados, sendo os mais comuns: imidacloprido, tebuconazol, carbendazim, piraclostrobina, ditiocarbamatos, difenoconazol, acefato, procimidona, cipermetrina e azoxistrobina. De maneira geral, em 49% das amostras não foram detectados resíduos de pesticidas, em 28% foram detectados resíduos dentro do limite permitido, 23% das amostras apresentaram inconformidades (sendo 17,3% delas com pesticidas não permitidos para as culturas avaliadas, 2,3% com limites acima do permitido, 0,5% com pesticidas proibidos no país e 2,9% com mais de uma inconformidade). Outro dado importante é que 41 amostras (0,9%) apresentaram potencial risco agudo aos consumidores, especialmente em: laranja, goiaba, uva, batata-doce e abacaxi (ANVISA, 2019b).

Mais recentemente, o jornal Repórter Brasil sistematizou dados oficiais do Sistema de Informação de Vigilância da Qualidade da Água para Consumo Humano - SISAGUA, vinculado ao programa Vigiagua do Ministério da Saúde (Repórter Brasil, 2019). Entre 2014 e 2017, empresas de abastecimento de 1.396 municípios (de um total de 5.570 municípios) identificaram a presença de todos os 27 pesticidas testados na água de distribuição, a maioria deles (16) é classificada como extremamente ou altamente tóxicos. Os dados mostram que a contaminação da água está aumentando gradativamente no Brasil e que em 2014 e 2017, respectivamente, 75% e 92% dos testes detectaram resíduos de pesticidas, enquanto 2.931 municípios não realizaram testes no período (Repórter Brasil, 2019). Apesar de possíveis erros metodológicos que vão desde a coleta, armazenamento e análise das amostras até a compilação e publicação dos resultados, os alta índices de contaminação e a ausência de monitoramento em muitos municípios, os dados alertam para o grave problema de contaminação da água de consumo no Brasil e os efeitos potenciais à saúde humana.
Apesar da ANVISA afirmar que os alimentos dentro dos LMR são seguros e que os que excedem os LMR não necessariamente apresentam risco ao consumidor, existem preocupações sobre os efeitos crónicos à saúde por exposição prolongada e contínua e o desconhecimento dos efeitos combinados desses múltiplos químicos. Outro problema é a desconformidade dos limites estabelecidos no Brasil em comparação com outros países, como no caso dos alimentos, que a diferença pode chegar a 400 vezes e na água a até 5.000 vezes, sendo mais permissivos no Brasil (Figura 6). Portanto, um alimento ou água potável considerados satisfatórios no Brasil podem exceder bastante os limites internacionais.

Um estudo analisou 209 amostras de leite de vaca *in natura* provenientes de quatro estados brasileiros (São Paulo, Paraná, Minas Gerais e Rio Grande do Sul) e encontrou resíduos de OP e/ou CM em 94% das amostras, o que representa um risco aos consumidores, pois essas substâncias podem permanecer nos alimentos mesmo após processos de pasteurização ou esterilização (Nero et al., 2007).

![Figura 6. Comparação dos limites máximos de resíduos de alguns pesticidas em alimento e água potável no Brasil e na União Europeia.](https://reporterbrasil.org.br/2017/11/agrotoxicos-alimentos-brasil-estudo/)

Fonte: https://reporterbrasil.org.br/2017/11/agrotoxicos-alimentos-brasil-estudo/

O Brasil, apesar de poucos estudos científicos terem avaliado os efeitos da exposição aos pesticidas em trabalhadores expostos e na população geral, possui limites de tolerância de resíduos em alimentos e água muito maiores que outros países, comercializa produtos já banidos em outros países pela sua alta toxicidade e tem aumentado consideravelmente o consumo e registro desses produtos, com perspectivas de mais crescimento e flexibilização da legislação (Almeida et al., 2017). Só em 2019 (até setembro) foram liberados pelo Governo...
Brasileiro 325 produtos de 96 princípios ativos, sendo que 30% deles já foi proibido na União Europeia, conforme levantamento publicado no jornal “Folha de São Paulo” (Zaremba and Watanabe, 2019).

3.1.2. Agricultura Familiar no Brasil

Cerca de 83% das propriedades rurais em todo o mundo são pequenas e médias. Juntas, elas ocupam cerca de 12% das terras agrícolas, produzem pelo menos 70% das calorias alimentares consumidas e fornecem uma maior diversidade de nutrientes essenciais para a saúde humana (ex. zinco, ferro, vitaminas A e B12). Essas pequenas propriedades desempenham um papel central na manutenção da diversidade genética dos alimentos, na redução de riscos contra deficiências nutricionais, degradação dos ecossistemas e mudanças climáticas (Fanzo, 2017; Herrero et al., 2017). Estima-se que um terço da produção agrícola do mundo use pesticidas, mas esse número pode ser bastante variável a depender da região ou cultivo específico (Zhang, 2018).

Bem como aconteceu em outros lugares, a ‘revolução verde’ desencadeada no Brasil a partir da década de 1960-70 provocou profundas mudanças no modelo tradicional de produção agrícola. A mecanização e a popularização dos agroquímicos resultaram em um aumento significativo da produtividade, embora combinado com uma intensa exploração dos recursos naturais e das forças de trabalho, formação de grandes latifúndios produtores de monoculturas e commodities, como soja, milho, trigo, arroz, algodão, etc. (Carneiro et al., 2015).

O Brasil possui uma balança comercial muito dependente da sua produção agrícola, com perspectiva de crescimento. Em 2017, o crescimento do produto interno bruto (PIB) agropecuário foi de 13,0%, enquanto o crescimento do PIB da economia foi de apenas 1,0%. Projeções do Ministério da Agricultura, Pecuária e Abastecimento – MAPA para o agronegócio indicam um crescimento de aproximadamente 30% na produção de grãos e 15% na área plantada entre 2017/18 e 2027/28, com perspectiva de redução das áreas plantadas de
arroz e feijão e aumento de soja, milho e trigo (BRASIL - Ministério da Agricultura, 2018), reiterando a vocação brasileira à produção de commodities para exportação.

De acordo com a Lei 11.326/2006, agricultores familiares são aqueles indivíduos envolvidos em atividades produtivas no meio rural com mão de obra (e gerenciamento das atividades) predominantemente da própria família, renda vinculada ao próprio estabelecimento e que ocupem áreas de até quatro módulos fiscais (pequenas propriedades) (BRASIL, 2006). O módulo fiscal é uma unidade de medida (em hectares) definidos pelo Instituto Nacional de Colonização e Reforma Agrária (INCRA) para cada município, com base no tipo de exploração predominante ou expressiva, na renda obtida e área utilizada. No Brasil, os módulos fiscais variam entre 5 a 110 hectares e são bem menores nas regiões sul e sudeste, e maiores na região norte. Portanto, agricultores que possuem propriedades do mesmo tamanho podem ser classificados diferentemente a depender de onde se encontram. Também são classificados como agricultores familiares os: silvicultores, aquicultores, extrativistas, pescadores, indígenas, quilombolas e assentados da reforma agrária (BRASIL, 2006).

A agricultura familiar brasileira possui uma dinâmica distinta do agronegócio, com uma maior diversidade produtiva, mas menor infraestrutura, apoio técnico e financeiro. Geralmente, os produtores rurais e seus familiares atuam na condição de trabalhadores temporários, meeiros ou proprietários de pequenas e médias lavouras (BRASIL MAPA, 2019). Comumente, mulheres, inclusive gestantes, e adolescentes participam de diversas atividades de cultivo, como a adubação, a irrigação, a colheita e, em alguns casos, ajudam também na manipulação e pulverização de pesticidas (Carneiro et al., 2015; Leão et al., 2018; Pasiani et al., 2012).

No Brasil, a agricultura familiar é essencial para garantir a segurança alimentar e nutricional, sendo responsável pela produção de cerca de 70% dos alimentos consumidos pelos brasileiros (Carneiro et al., 2015). Em 2006, a agricultura familiar ocupava 84% do total dos estabelecimentos agropecuários brasileiros (aproximadamente 4,4 milhões de estabelecimentos) e produziu 87% da mandioca, 70% do feijão, 46% do milho, 38% do café, 34% do arroz, 21% do trigo, 60% do leite, 59% dos suínos, 50% das aves e 30% dos bovinos do país (IBGE, 2006).

De acordo com o novo Censo Agropecuário 2017 do IBGE, após 10 anos, dentre as mais de 5 milhões de propriedades rurais brasileiras, a agricultura familiar representa cerca de 77% das propriedades e ocupa 23% da área total dos estabelecimentos agrícolas do país.
Atualmente, ela emprega mais de 10 milhões de pessoas, representa 67% do total de pessoas ocupadas na agropecuária e produz aproximadamente 48% do café e banana, 80% da mandioca, 69% do abacaxi e 42% do feijão produzido no Brasil (BRASIL MAPA, 2019; IBGE, 2017a).

A agricultura familiar é também muito importante para a economia brasileira, com um faturamento anual estimado em US$ 55,2 bilhões. Considerando apenas a agricultura familiar, ainda assim o Brasil estaria entre os 10 maiores produtores de alimentos do mundo, ocupando a 8ª posição (BRASIL MAPA, 2019). Ela é a base econômica de 90% dos municípios com até 20 mil habitantes, emprega 40% da população economicamente ativa e mais de 70% dos indivíduos empregados no campo e é responsável por 35% do PIB nacional (BRASIL MDA, 2019; IBGE, 2006).

Geralmente, os agricultores familiares brasileiros possuem uma relação particular de pertencimento à terra por, desde tenra idade, viver próximo às áreas de plantio e ajudar no cultivo. Comumente, eles possuem baixa escolaridade e renda e são dependentes da agricultura como única fonte de renda. Como a agricultura familiar é menos mecanizada, a pulverização de complexas misturas de múltiplos pesticidas nessas propriedades normalmente é realizada por pulverização costal ou bombas de irrigação, sem o uso de EPI completo, com equipamentos muitas vezes antigos e descalibrados, em a devida orientação ou apoio técnico (Alves de Souza et al., 2010; Buralli et al., 2018b; Carneiro et al., 2015; Faria et al., 2005; Nerilo et al., 2014; Pedlowski et al., 2012).

A adoção de práticas laborais que possam reduzir a exposição dos agricultores aos pesticidas depende de múltiplos fatores, como a capacidade desses trabalhadores lerem as informações nos rótulos e bulas, compreenderem e seguirem. Um estudo avaliou a capacidade de agricultores da Região Amazônica brasileira entenderem as informações exibidas nos rótulos dos pesticidas e mostrou que, em geral, eles não leem os rótulos, as fontes são muito pequenas, as instruções muito longas e linguagem excessivamente técnica (Waichman et al., 2007).

Algumas atividades agrícolas acessórias à pulverização, conhecidas como atividades de reentrada no local de cultivo, geralmente são realizadas no mesmo dia ou no dia seguinte da aplicação de pesticidas. Porém, essas atividades de reentrada também expõem os trabalhadores rurais a níveis de exposição dérmica ou por inalação semelhantes ou superiores do que os observados em trabalhadores que manipulam e pulverizam pesticidas, por meio da
inalação de gases e vapores ou partículas em suspensão e, especialmente, por contato dérmico com galhos, folhas, frutas ou vegetais (I. Baldi et al., 2014; Toumi et al., 2019).

Algunsas vezes, os trabalhadores que aplicam ou manipulam diretamente pesticidas são treinados, enquanto os demais trabalhadores podem ser menos informados, usar menos ou nenhum equipamento de proteção e não respeitar os intervalos de reentrada (Toumi et al., 2019), se expondo a níveis de resíduos de pesticidas que podem exceder os medidos durante a aplicação (I. Baldi et al., 2014). Por não manipularem diretamente ou aplicarem pesticidas, muitas vezes, esses trabalhadores se percebem menos expostos e trabalham sem os devidos EPI (Buralli et al., 2018b; Pedlowski et al., 2012).

Um estudo avaliou o nível de exposição dérmica e seus determinantes em agricultores realizando atividades de reentrada e colheita em vinhedos na França pela concentração de pesticidas em adesivos colocados na pele e lavagem das mãos no final de cada fase de trabalho. Os parâmetros mais fortemente associados à contaminação foram o tipo de tarefa desempenhado – principalmente durante a elevação e corte de galhos e colheita – tempo decorrido desde a última pulverização, taxa de ingrediente ativo usado por hectare, além de fatores meteorológicos, características das culturas, propriedades agrícolas, luvas e roupas (I. Baldi et al., 2014).

Outros fatores podem aumentar a exposição ocupacional aos químicos e os riscos à saúde humana, como os maus hábitos de higiene: não tomar banho ou lavar as mãos após o contato, comer, beber e fumar durante o trabalho rural, além da proximidade residencial das áreas de plantio, o uso doméstico e o contato com roupas e equipamentos contaminados (Buralli et al., 2018b; Carneiro et al., 2015; Nerilo et al., 2014; Pasiani et al., 2012).

3.2. EFEITOS DOS PESTICIDAS À SAÚDE HUMANA

Os efeitos dos pesticidas sobre a saúde humana dependem de muitos fatores, como: as características químicas dos produtos, a dose, o tempo e a via de exposição (oral, respiratória, dérmica ou por ingestão). O estado de saúde e sensibilidade individual também podem
influenciar e pessoas expostas à mesma dose podem apresentar diferentes alterações (Azevedo, 2010).

Os efeitos agudos de exposições de curta duração aos pesticidas, mas de alta intensidade, apresentam-se na forma de intoxicações com reações aparentes, sentidas logo nas primeiras 24-48 horas após o contato e facilmente relacionados à exposição. Os efeitos crônicos decorrem da exposição por longa duração a doses menores de um ou mais químicos e aparecem dias, meses, anos (ou até mesmo gerações) após a exposição. Portanto, é mais difícil estabelecer uma relação nexo-causal entre a exposição aos pesticidas e os efeitos ou doenças crônicas (Peres et al., 2003).

Enquanto os países de alta renda parecem ter superado as intoxicações agudas por pesticidas e, recentemente, estão mais preocupados com efeitos crônicos das exposições de longa duração, as intoxicações agudas continuam sendo um problema atual e crescente para os países de baixa e média renda (Negatu et al., 2018). Segundo estimativas da Organização Mundial de Saúde (OMS) e da Organização das Nações Unidas (ONU), anualmente, ocorrem cerca de 3 milhões de intoxicações agudas por pesticidas no mundo (WHO, 1990) e aproximadamente 200.000 óbitos, dos quais 99% ocorrem em países de baixa e média renda, onde os regulação e a vigilância em saúde, segurança e meio ambiente são mais fracos e menos rigorosamente aplicados (U.N. Human Rights Council, 2017). Porém, uma estimativa do Pesticide Action Network (PAN) diz que o número de pessoas que sofrem intoxicação aguda por pesticidas por ano pode variar entre um milhão e 41 milhões globalmente (PAN, 2010).

Entre 2007-2015, o Sistema de Informação de Agravos de Notificação (SINAN) do Governo Federal notificou 84.206 casos de intoxicação por pesticidas através das fichas de notificação compulsória preenchidas pelos serviços de saúde, com uma incidência de 6,26 por 100 mil habitantes em 2014 (Almeida et al., 2017). Uma análise dos acidentes de trabalho por intoxicação por pesticidas em trabalhadores da agropecuária no Brasil mostrou um aumento na incidência das intoxicações, saltando de 2.071 casos em 2007 para 3.466 casos em 2011, um incremento de 67% em 5 anos, com tendência crescente, principalmente entre as mulheres. Os autores reportaram dificuldades na análise devido à má qualidade dos registros, dados faltantes e muita diferença entre os estados (Santana et al., 2012). No Brasil, entre 2010 e 2015, o Sistema Nacional de Informações Tóxico-Farmacológicas (SINITOX) registrou mais de 600.000 casos de intoxicação por pesticidas e 2.074 mortes (MS/SINITOX/Fiocruz, 2018). No entanto, acredita-se que os casos de intoxicação por pesticidas sejam muito
subnotificados no Brasil (Almeida et al., 2017; Magalhães and Caldas, 2018; Rigotto et al., 2014), com cerca de 50 casos não registrados para cada um registrado (Carneiro et al., 2015).

Em países de baixa e média renda, muitos pesticidas menos modernos, mais tóxicos, ambientalmente persistentes e baratos são usados extensivamente, resultando em graves problemas de saúde e contaminação ambiental (Carneiro et al., 2015; Damalas and Koutroubas, 2016; Ecobichon, 2001). No Brasil, os pesticidas são regularmente usados mediante a combinação de múltiplos químicos, o que pode resultar em efeitos cumulativos e sinérgicos à saúde humana ainda pouco estudados (Carneiro et al., 2015), mas potencialmente mais intensos do que a soma dos efeitos individuais de cada substância (Klaassen et al., 2013).

Mais recentemente, os estudos epidemiológicos internacionais têm se dedicado a investigar os efeitos à saúde humana da exposição a classes de pesticidas, químicos específicos ou mesmo misturas complexas de múltiplos pesticidas. Muitos estudos estão sendo realizados mundialmente, mas fatores como diferentes níveis de exposição, frequência e tipos de aplicação, uso combinado de múltiplos pesticidas tornam os cenários de exposição bastante heterogêneos e complexos, comprometem uma estimativa precisa do tamanho do problema e dificultam a separação dos efeitos à saúde referentes a cada tipo de pesticida.

Os OP e CM interagem com o organismo humano provocando a inibição das enzimas acetilcolinesterase (AChE) e butirilcolinesterase (BChE), causando alterações nos receptores muscarínicos e nicotínicos e uma diminuição da atividade colinesterásicas (Bleecker, 2008; London et al., 2012). A AChE, presente nos tecidos nervosos e eritrócitos, é também conhecida como colinesterase verdadeira, eritrocitária ou específica e representa um bom indicador para as exposições de longa duração, enquanto que a BChE, presente no plasma sanguíneo e sintetizada no fígado, é conhecida como colinesterase plasmática, sérica e inespecífica (pseudocolinesterase) e está mais relacionada às exposições de curto prazo (Oliveira-Silva et al., 2000).

Os OP, juntamente com os CM, representam um risco importante para a saúde humana e são considerados os principais responsáveis pelos casos de intoxicação por pesticidas em países de menor renda (Muñoz-Quezada et al., 2017; Nerilo et al., 2014). Os efeitos agudos da exposição aos OP e CM são normalmente resultantes de alterações colinérgicas, enquanto os efeitos crônicos são neurotóxicos e resultam em síndromes que afetam diretamente o Sistema Nervoso Central (SNC) e Sistema Nervoso Periférico (SNP) (Körbes et al., 2010; Pacheco-Ferreira, 2013). A Síndrome Colinérgica Aguda apresenta efeitos agudos percebidos logo
após a exposição; a Síndrome Intermediária é uma manifestação tardia com grande estimulação colinérgica da musculatura cervical, nervos cranianos e músculos da respiração; e a Neuropatia Tardia, também conhecida como "polineuropatia retardada" ou "neurotoxicidade retardada induzida por organofosforados", é uma síndrome tardia que ocorre devido à inibição da enzima NTE (Neuropathy Target Esterase), apresentando sintomas sensitivos e motores, podendo haver comprometimento piramidal, da medula espinhal e em nervos periféricos (Pacheco-Ferreira, 2013).

Uma revisão sobre os efeitos dos piretróides à saúde mostrou que seu alvo principal em mamíferos e insetos é o sistema nervoso, onde agem principalmente alterando os canais de sódio nos axônios (Saillenfait et al., 2015). Dependendo da rota e nível de exposição, foi observada uma ampla gama de efeitos agudos em indivíduos expostos ocupacionalmente e ambientalmente aos piretróides, incluindo respiratórios, neurológicos, gastrointestinais, oculares e dérmicos. Ainda não há muitas evidências dos efeitos crônicos à saúde por exposições repetidas a baixas concentrações de piretróides, mas estudos epidemiológicos já observaram efeitos na função reprodutiva e qualidade do sêmen de homens adultos, alterações da gestação e nascimento, como atraso no desenvolvimento e distúrbios do espectro do autismo, apesar das evidências serem inconclusivas (Saillenfait et al., 2015).

Os neonicotinóides (ou neonics) foram propostos pelas indústrias químicas como uma alternativa menos tóxica aos inseticidas já comercializados, como os OP, CM e piretróides. Eles rapidamente tornaram-se a classe de inseticidas cuja venda mais cresce nas últimas décadas e, mais recentemente, estudos epidemiológicos começaram a mostrar que a exposição ocupacional e ambiental a esses químicos também representa um risco potencial para seres humanos (Han et al., 2017; Zhang et al., 2018). Uma revisão recente apontou associações da exposição aos neonics com diversos efeitos à saúde humana em estudos, como efeitos neurológicos e teratogênicos em crianças, danos ao DNA e alterações da função pulmonar em adultos ocupacionalmente expostos (Han et al., 2017), embora as evidências da toxicidade humana e seus mecanismos de ação ainda sejam limitadas. Outra revisão recente ressaltou que os estudos sobre a toxicidade dos neonics são limitados em número e robustez metodológica, especialmente sobre os efeitos crônicos, e que mais pesquisas são necessárias para entender completamente seus efeitos na saúde humana (Cimino et al., 2017).

O uso intensivo de fertilizantes fosfatados na agricultura também pode representar um perigo potencial à saúde humana e ao meio ambiente, especialmente pelo aumento dos níveis de radioatividade acerca das minas de fósforo e pelo acúmulo de cádmio e flúor em solos.
agrícolas. Existe a preocupação de que pequenas quantidades de cádmio presente nesses fertilizantes possam ser transferidas aos seres humanos pela cadeia alimentar. Estima-se que 54-58% do cádmio ambiental encontrado nos países ocidentais venham do uso de fertilizantes agrícolas (Tirado and Allsopp, 2012).

A atenção em saúde do trabalhador é uma das atribuições do Sistema Único de Saúde, efetivada a partir da sua rede de unidades e serviços que executam políticas e planos, programas e projetos em diferentes níveis da gestão pública. Por exemplo, a Rede Nacional de Atenção Integral à Saúde do Trabalhador (RENAST) integra a rede de serviços do SUS voltados à assistência e vigilância em saúde do trabalhador, enquanto os Centros de Referência em Saúde do Trabalhador (CERESTs) presentes nas capitais federais e municípios-polos desenvolvem ações de prevenção e promoção de saúde. Essas iniciativas voltadas aos trabalhadores agrícolas são essenciais para o controle dos riscos e agravos potenciais à saúde existentes no processo de trabalho.

A avaliação clínica de indivíduos expostos aos pesticidas é essencial para identificar populações mais vulneráveis e reduzir a carga dessas doenças. Neste sentido, a elaboração do ‘Protocolo de Atenção à Saúde dos Trabalhadores Expostos a Pesticidas’ pela Área Técnica de Saúde do Trabalhador do Ministério da Saúde (MS, 2006) e do ‘Protocolo de Avaliação das Intoxicações Crônicas por Pesticidas’ pelo Centro Estadual de Saúde do Trabalhador do Estado do Paraná (MS, 2013) foram esforços no sentido de orientar a atuação da rede de atenção à saúde do SUS no que se refere à prevenção, vigilância, diagnóstico, tratamento, recuperação e reabilitação, relacionados com o uso destas substâncias. Desde 2014, as intoxicações por pesticidas integram a lista das doenças de notificação compulsória do SUS, obrigando os serviços de saúde a registrem os casos identificados e suspeitos no SINAN. Porém, infelizmente, esses instrumentos per se não garantem a efetiva aplicação dessas ferramentas pelos diferentes níveis de organização da atenção à saúde, como: atenção primária, vigilância, rede hospitalar e de especialidades, urgência/emergência e CEREST.

Embora as chamadas boas práticas agrícolas preconizem uma série de medidas de proteção na manipulação e aplicação de pesticidas, incluindo o uso racional dos químicos e uso de EPIs, o que poderia proteger principalmente as famílias residentes das áreas rurais, as exposições agudas e crônicas são correntes na agricultura global.
3.2.1. Efeitos à Saúde da Exposição Ocupacional aos Pesticidas

A exposição ocupacional aos pesticidas ocorre principalmente em trabalhadores agrícolas, mas também em outras ocupações, como por exemplo, agentes de endemias que pulverizam pesticidas em campanhas de saúde pública, funcionários de empresas de controle de pragas urbanas, trabalhadores de indústrias químicas que fabricam pesticidas, funcionários de lojas agropecuárias ou revendas, entre outros (Carneiro et al., 2015; Damalas and Koutroubas, 2016). Ainda que esses grupos ocupacionais possam ter padrões de exposição e níveis de efeitos à saúde bastante diferentes, nesta tese, nos limitaremos a discutir os efeitos dos pesticidas de uso agrícola à saúde de trabalhadores rurais.

As vias de exposição mais comuns entre agricultores são as vias cutânea e inalatória. Os trabalhadores agropecuários estão rotineiramente expostos a altos níveis de pesticidas, principalmente durante a manipulação direta, preparação e aplicação das misturas, limpeza dos equipamentos de pulverização e/ou quando realizam atividades não relacionadas diretamente ao uso ou aplicação de pesticidas. Além dos trabalhadores envolvidos diretamente na manipulação e aplicação de pesticidas, outros agricultores que ajudam e trabalham em áreas de cultivo podem enfrentar uma maior exposição por pulverização direta, deriva de campos vizinhos ou contato com resíduos na lavoura ou no solo, sendo que esse tipo de exposição é frequentemente subestimado (Damalas and Koutroubas, 2016; Toumi et al., 2019).

Com dados do Sistema de Informações sobre Mortalidade (SIM) do Ministério da Saúde, foi calculado o perfil dos óbitos por intoxicação relacionada à exposição ocupacional aos pesticidas no Brasil de 2000-2009. Cerca de 36% dos 2.052 registros de óbitos não tinham dados de ocupação. Entre os restantes, 52% eram trabalhadores da agropecuária e exposições aos OP e CM foram as causas de óbito mais comuns (Santana et al., 2013).

Muitos estudos epidemiológicos avaliaram os efeitos da exposição ocupacional aos pesticidas à saúde de trabalhadores agrícolas e encontraram uma grande variedade de efeitos agudos, como: náusea, vômito, fraqueza, espasmo muscular, tremor, sintomas gastrointestinais, arritmia cardíaca, convulsão, desmaio, choque, coma e, inclusive, óbito. Muitos efeitos crônicos também foram encontrados, como: alterações dos sistemas cognitivo,
câncer, problemas cardiovasculares, imunológicos, endócrinos, neurológicos, ente outros (ATSDR - Agency for Toxic Substances and Disease Registry, 2007; Bleecker, 2008; Carneiro et al., 2015; Kamel and Hoppin, 2004; Kim et al., 2017; London et al., 2012; Mostafalou and Abdollahi, 2017; Muñoz-Quezada et al., 2016; Negatu et al., 2018; Neupane et al., 2014; OPAS/OMS, 1996; Pacheco-Ferreira, 2013).

Outros estudos associaram a exposição ocupacional aos pesticidas a efeitos à saúde respiratória, como dispneia, chiado, tosse excessiva, secreção brônquica, irritação das vias aéreas, dor de garganta, aperto no peito, insuficiência respiratória, aparecimento ou exacerbação de asma, bronquite crônica, câncer de pulmão (Alif et al., 2017; Isabelle Baldi et al., 2014; Chakraborty et al., 2009; Doust et al., 2014; Hoppin et al., 2007, 2017; De Jong et al., 2014; Mathew et al., 2015; Mostafalou and Abdollahi, 2017; Salameh et al., 2006; Shama et al., 2015; Ye et al., 2013; Zuskin et al., 2008).

A exposição ocupacional aos pesticidas também já foi associada a alterações da função pulmonar em estudos transversais (Chakraborty et al., 2009; Fareed et al., 2013; Hernández et al., 2008; Zuskin et al., 2008) e coortes prospectivas (Alif et al., 2017; De Jong et al., 2014; Shama et al., 2015). A prova de função pulmonar (espirometria) é um teste usado para capacidade pulmonar a partir da medição dos volumes e fluxos respiratórios, permitindo o diagnóstico de potenciais distúrbios (e.g. obstrutivos, restritivos ou mistos). As principais medidas da espirometria incluem: capacidade vital forçada (CVF), volume expiratório forçado no primeiro segundo (VEF₁), relação VEF₁/CVF e fluxo expiratório forçado entre 25-75% (FEF_{25-75}) (Pereira et al., 2007).

Estudos prévios avaliaram a função pulmonar em trabalhadores expostos a pesticidas e encontraram reduções significativas na CVF (Chakraborty et al., 2009; Zuskin et al., 2008), no VEF₁ (Chakraborty et al., 2009; Fareed et al., 2013; Hernández et al., 2008; De Jong et al., 2014; Salameh et al., 2005; Shama et al., 2015; Zuskin et al., 2008), na relação VEF₁/CVF (Chakraborty et al., 2009; Fareed et al., 2013; De Jong et al., 2014; Salameh, 2006) e também no FEF_{25-75} (Chakraborty et al., 2009; Hernández et al., 2008; Salameh et al., 2005; Zuskin et al., 2008).

No Brasil, poucos estudos (e todos com desenhos transversais) avaliaram a prevalência de sintomas respiratórios em trabalhadores rurais expostos aos pesticidas (Alves de Souza et al., 2010; Buralli et al., 2018b; Faria et al., 2005; Fiori et al., 2015; Nerilo et al., 2014). Apenas dois estudos avaliaram a função pulmonar (Buralli et al., 2018b; Senhorinho et al., 2005) e os resultados são compatíveis com os achados internacionais. O primeiro deles
encontrou uma prevalência de alterações obstrutivas maior do que nossos achados (Senhorinho et al., 2005) e o segundo é apresentado como resultado desta tese e foi o único a avaliar a função pulmonar considerando períodos de maior e menor exposição (Buralli et al., 2018b).

Ao nosso conhecimento, além da nossa avaliação da função pulmonar apresentada como resultado desta tese (Artigo 1), apenas outros dois estudos avaliaram os efeitos da variação sazonal à saúde respiratória de trabalhadores expostos aos pesticidas, comparando períodos de menor e maior exposição. Um deles observou redução de 20% no VEF₁ na avaliação pós-exposição quando comparado ao nível de pré-exposição, com diferença estatisticamente significante (Pathak et al., 2013), enquanto o outro não encontrou diferença significativa na prova de função pulmonar entre os períodos, mas uma maior redução do VEF₁ no período em que os pesticidas foram empregados em larga escala do que quando usados menos (Shama et al., 2015).

As doenças mentais comuns (DMC), conhecidas assim pela sua alta prevalência, se referem basicamente a duas categorias de morbidades psíquicas: 1) as doenças depressivas, caracterizadas pela presença de sintomas como: tristeza, perda de interesse ou prazer, sentimento de culpa ou baixa autoestima, alterações de sono ou apetite, sensação de cansaço e má concentração; e 2) os transtornos de ansiedade, que apresentam sintomas como sensação de ansiedade e medo, e incluem patologias como transtorno de ansiedade generalizada ou social, transtorno de pânico, fobias, transtorno obsessivo-compulsivo e de estresse pós-traumático (World Health Organization, 2017).

As DMC estão aumentando drasticamente em todo o mundo e representam uma grande preocupação de saúde pública em termos de perda de saúde e carga de doenças. A depressão é a maior causa mundial de mortes por suicídio e o total de anos vividos com deficiência. No Brasil, depressão e ansiedade afetam, respectivamente, 5,8% e 9,3% da população, muito mais que 4,4% e 3,6% no mundo (World Health Organization, 2017). Embora esses números ajudem a estimar a situação em nível geral, os dados sobre populações vulneráveis específicas permanecem escassos. Alguns sintomas das DMC, como insônia, ansiedade, fadiga, irritabilidade e dificuldades de concentração e raciocínio são frequentemente ignorados pelos serviços de saúde, especialmente em países de baixa e média renda (Carmo et al., 2018).

Dentre muitas causas possíveis das doenças mentais, a exposição ocupacional aos pesticidas tem sido associada a uma maior prevalência de DMC (Campos et al., 2016; Faria et
al., 2014b; Poletto and Gontijo, 2012), depressão (Beard et al., 2014; Campos et al., 2016; Conti et al., 2018; Harrison and Ross, 2016; Kim et al., 2013; Torske et al., 2016a), ansiedade (Harrison and Ross, 2016) e suicídio (Faria et al., 2014a; Krawczyk et al., 2014; London et al., 2005; Meyer et al., 2010). Além da exposição aos pesticidas, outros fatores podem contribuir para o comprometimento mental de trabalhadores rurais, como o isolamento geográfico, a inacessibilidade aos serviços básicos, carga de trabalho, instabilidade e insatisfação no trabalho desempenhado, falta de apoio técnico, pressão por produtividade e problemas financeiros e de saúde (Brew et al., 2016; Fraser et al., 2005; Gregoire, 2002; Lee et al., 2007; London et al., 2005; MacFarlane et al., 2013; Sanne et al., 2004; Torske et al., 2016a).

Um estudo observou maiores taxas de mortalidade por suicídio e hospitalização por tentativas de suicídio e transtornos do humor entre trabalhadores agrícolas em uma área de uso intensivo de pesticidas no Estado do Rio de Janeiro, quando comparados com as taxas de populações de referência. Além disso, observou-se um risco de morte significativamente maior entre trabalhadores agrícolas que moravam em municípios com maior gasto com pesticidas por trabalhador agrícola, em relação aos municípios com menor gasto (Meyer et al., 2010).

Publicado recentemente, o Boletim Epidemiológico - Ocupação e Suicídio no Brasil analisou os dados do Ministério da Saúde e apresentou uma análise do perfil de suicídio entre 2007-2015 para indivíduos entre 15-64 anos, de acordo com grupo ocupacional. Constatou-se que, no período avaliado, foram registrados 77.373 suicídios, aproximadamente 8.600 por ano. A mortalidade anual passou de 8,9 mortes para cada 100.000 indivíduos em 2007 para 10,5 mortes em 2015, com grande variação entre os diferentes grupos ocupacionais em todos os anos estudados. A maior taxa de mortalidade por suicídio foi observada entre os trabalhadores do setor agropecuário, com crescimento linear para ambos os sexos e aumento de 23% no período avaliado, passando de 16,6 por 100.000 em 2007 para 20,5 em 2015, mais do que o dobro da média nacional para todos os grupos (Santana et al., 2019). Esses achados estão de acordo com os resultados de uma meta-análise da literatura internacional, que mostrou que o suicídio é mais frequente entre trabalhadores do setor agropecuário em todo mundo, principalmente entre trabalhadores agrícolas, florestais e da pesca (Klingelschmidt et al., 2018).

Uma coorte prospectiva – Agricultural Health Study (AHS) – realizada nos estados de Iowa e Carolina do Norte nos EUA avaliou a relação entre depressão e exposição aos
pesticidas entre 57.310 aplicadores licenciados de pesticidas e 29.074 esposas de aplicadores. Entre os aplicadores, observou-se associações significativas entre depressão e intoxicação prévia por pesticidas (OR: 2,57; 95% IC: 1,74-3,79), exposição acumulativa ou evento de alta exposição aos pesticidas (OR: 1,65; IC95%, 1,33-2,05); e com uma alta exposição cumulativa em um subgrupo sem histórico de intoxicação aguda (OR: 1,54; 95% IC: 1,16-2,04) (Beseler et al., 2008). Entre as esposas de aplicadores, percebeu-se uma relação significativa entre depressão e intoxicação prévia por pesticidas (OR: 3,26; 95% IC: 1,72-6,19), mas não com baixa ou alta exposição cumulativa (OR: 1,09; 95% IC: 0,91-1,31) (Beseler et al., 2006). Apesar disso, não foi observada associação entre o uso prévio de pesticidas e suicídio entre aplicadores ou cônjuges (Beard et al., 2011).

Apesar de seu uso ter iniciado mais recentemente e haver poucas evidências científicas publicadas sobre o efeito dos neonics à saúde humana, entre aplicadores destes pesticidas, a exposição ocupacional foi significativamente associada a danos oxidativos ao DNA (Koureas et al., 2014), diminuição da função pulmonar e chance quase sete vezes maior de relatar sintomas respiratórios irritativos (Hernández et al., 2008).

Entre agricultores envolvidos em atividades de reentrada em áreas de plantio com uso de pesticidas, os efeitos à saúde podem diferir bastante dependendo do nível de contaminação, tipo de exposição, a frequência e duração das tarefas e o comportamento do trabalhador ou da trabalhadora. Porém, uma revisão recente relacionou a exposição a resíduos de pesticidas em atividades de reentrada a uma série de problemas reprodutivos, aberração cromossômica, distúrbios neurológicos, aumento de câncer de bexiga e mama (Toumi et al., 2019).

3.2.2. Efeitos à Saúde da Exposição Ambiental aos Pesticidas

Todos os indivíduos estão ambientalmente expostos aos pesticidas por diversos meios, entre eles: inalação de ar, contato com solo e consumo de água e alimentos contaminados, uso doméstico em animais ou para controle de insetos, controle químico de vetores em campanhas de saúde pública, entre outros (Damalas and Koutroubas, 2016). Alguns grupos específicos,
como as crianças, gestantes e mulheres em idade gestacional, os idosos e indivíduos doentes são mais vulneráveis à exposição aos pesticidas, possuem um maior risco de efeitos negativos à saúde e, portanto, merecem atenção especial (Carneiro et al., 2015). Como a maior parte dos pesticidas são de uso agrícola, as populações rurais, ainda que não estejam envolvidas no trabalho agropecuário, estão mais expostas por fatores como: viverem próximo a áreas de plantio, viverem e se relacionarem mais com trabalhadores agropecuários, usarem mais pesticidas em casa pela facilidade de acesso, entre outros (Damalas and Koutroubas, 2016).

Apesar da enorme importância epidemiológica da exposição ambiental aos pesticidas em todos os grupos de exposição citados, nos limitaremos à discussão dos efeitos à saúde de crianças expostas a pesticidas de uso agrícola, que são os objetos de estudo da revisão de literatura apresentada nos resultados desta tese (item 6.4).

Diversos fatores podem aumentar a exposição das crianças aos pesticidas, como por exemplo, a ocupação dos pais ou responsáveis, aplicação de pesticidas domésticos, proximidade residencial ou das escolas de áreas de aplicação e armazenagem de pesticidas, número de trabalhadores rurais expostos aos pesticidas vivendo no mesmo domicílio, tipo de cultivo, entre outros (Hyland and Laribi, 2017; López-Gálvez et al., 2019; Muñoz-Quezada et al., 2012).

Além disso, algumas características das crianças podem influenciar a exposição, como colocar as mãos e objetos na boca com maior frequência, passar mais tempo no chão em contato com resíduos de pesticidas, ter uma dieta menos variada e baseada em alimentos com maior nível de resíduos, como frutas, sucos de frutas e leite (Hyland and Laribi, 2017; López-Gálvez et al., 2019; UNICEF, 2018). As crianças também comem, bebem e respiram mais por peso pessoal do que os adultos (Hyland and Laribi, 2017; Lu et al., 2006) e apresentam maior susceptibilidade fisiológica durante o desenvolvimento (Marks et al., 2010; UNICEF, 2018), o que pode aumentar sua vulnerabilidade e potencializar os efeitos à saúde.

As crianças residentes em áreas rurais, especialmente os filhos e filhas de agricultores familiares apresentam um risco elevado de exposição aos pesticidas por várias razões, incluindo morar perto de áreas agrícolas, de armazenamento e preparo dos químicos, acompanhar os pais e responsáveis nos locais de plantio, trabalhar ou ajudar no cultivo desde tenra idade, comer frutas e verduras diretamente dos campos ou logo após a colheita sem respeitar o tempo de carência recomendável entre a aplicação do pesticida e consumo do produto, ter exposição domiciliar por contato com adultos, roupas, calçados e equipamentos contaminados, entre outras (Buralli et al., 2018b; Hyland and Laribi, 2017; Lermen et al.,
2018; Pedlowski et al., 2012; Silvério et al., 2017). Uma revisão da literatura científica publicada recentemente aponta que os filhos de trabalhadores rurais estão expostos em níveis mais altos do que crianças “não-agrícolas”, mesmo quando residem nas mesmas comunidades rurais (Hyland and Laribi, 2017).

Um estudo realizado com crianças em 14 escolas urbanas e rurais no Chile avaliou o consumo de frutas nas casas e escolas, o uso doméstico de pesticidas e mediu resíduos de pesticidas em alimentos e água consumidos pelas crianças e no solo das escolas. A maior concentração de pesticidas observada foi nas frutas consumidas em casa e nas escolas urbanas e rurais, mas também identificados no solo de algumas escolas (Muñoz-Quezada et al., 2012).

As exposições aos pesticidas são particularmente prejudiciais à saúde das crianças e há ampla evidência científica reportando seus efeitos adversos (Froes Asmus et al., 2016; Ali Mamane et al., 2015; Muñoz-Quezada et al., 2013; Rauh and Margolis, 2016; Roberts and Karr, 2012). De fato, estudos epidemiológicos mostraram associações significativas entre a exposição ambiental aos pesticidas e diversas doenças infantis, entre elas: alterações congênitas (Ueker et al., 2016), endócrinas (Hernández-Mariano et al., 2017), transtornos do espectro autista (Von Ehrenstein et al., 2019; Shelton et al., 2014) e alguns tipos de câncer, como leucemia (Bailey et al., 2014; Hyland et al., 2018; Yu, 2018) e tumores cerebrais (Van Maele-Fabry et al., 2013; Roberts and Karr, 2012). Entre crianças, a exposição aos OP já foi relacionada a alterações cognitivas, neurocomportamentais no desenvolvimento (Muñoz-Quezada et al., 2013; van Wendel de Joode et al., 2016), ansiedade e depressão (Harrison and Ross, 2016), déficit de memória e compreensão verbal (Wang 2016) e em um estudo com a população geral nos EUA, crianças de 8 a 15 anos que tiveram concentrações mais altas de metabólitos urinários de OP eram mais propensas a apresentarem transtornos de atenção e hiperatividade (Bouchard et al., 2010).

A exposição das crianças aos pesticidas pode começar ainda antes do nascimento, durante a gestação. A exposição residencial materna a áreas agrícolas com uso de pesticidas, durante o primeiro ou segundo trimestre de gravidez, foi associada a um risco aumentado em 3-7% para o nascimento prematuro, principalmente para a prole feminina (Ling et al., 2018). Crianças equatorianas, cujas mães trabalharam na indústria de flores expostas aos pesticidas durante a gravidez, apresentaram atrasos no desenvolvimento neurocomportamental entre os 3-23 meses de idade, quando comparadas com filhos de mães não expostas. Elas tiveram menor pontuação em testes de comunicação, habilidades motoras finas e maior chance de apresentar baixa acuidade visual (Handal et al., 2008).
Na China, a exposição pré-natal aos OP foi associada a uma diminuição nos escores da avaliação neurológica comportamental neonatal, onde o incremento de 10 vezes na concentração dos biomarcadores na urina das gestantes resultou em uma redução de 1,78 pontos nos testes (95% IC: -2,12; -1,45) (Zhang et al., 2014). Associações significativas entre a exposição pré-natal ao clorpirifós, um OP neurotóxico amplamente utilizado na agricultura, e alterações estruturais no cérebro foram observadas em crianças em fase de desenvolvimento entre 6-11 anos (Rauh et al., 2012).

Três estudos realizados pelo Center for Environmental Research and Children’s Health (CERCH) na Califórnia avaliaram os efeitos da exposição pré-natal aos pesticidas no desenvolvimento neurocomportamental da coorte longitudinal com filhos e filhas de mães trabalhadoras rurais – CHAMACOS (Center for the Health Assessment of Mothers and Children of Salinas). Os resultados apontam que a exposição pré-natal aos pesticidas OP, avaliadas pelas concentrações de metabólitos de OP na urina das mães, afeta o desenvolvimento intelectual, cognitivo e neurocomportamental das crianças, resultando em dificuldades de atenção, verbais e cognitivas entre crianças com maior exposição pré-natal (Bouchard et al., 2011; Engel et al., 2011; Marks et al., 2010).

Atualmente, acumulam-se evidências sobre a exposição aos pesticidas e a leucemia em crianças. Na Costa Rica, o uso de pesticidas em áreas agrícolas e empresas próximas das casas e aplicação de inseticidas nas residências antes, durante a gravidez e na amamentação foram associados a um aumento nas chances de leucemia linfoblástica aguda entre os meninos (OR: 1,63-1,75; IC 95%: 1,05-2,73) e entre meninos e meninas combinados (Hyland et al., 2018). Um estudo multinacional reuniu dados de 13 estudos caso-controle participantes do Childhood Leukemia International Consortium - CLIC (Consórcio Internacional para Leucemia na Infância), realizados principalmente em países da Europa, Estados Unidos e observou um aumento estatisticamente significante no risco de leucemia mieloíde aguda (OR: 1,94; 95% CI: 1,19, 3,18) entre crianças cujas mães relataram exposição a pesticidas durante a gravidez e leucemia linfoblástica aguda (OR: 1,20; 95% CI: 1,06, 1,38) entre as crianças que os pais tiveram exposição aos pesticidas no período de concepção (Bailey et al., 2014). No Brasil, um estudo caso-controle de base hospitalar avaliou a relação entre a exposição a pesticidas três meses antes da gravidez e durante a gestação e amamentação em 13 estados. Após ajuste para fatores confundidores, os resultados mostram associações significativas entre um maior risco de leucemia linfóide aguda e leucemia mieloíde aguda e o uso de pesticidas durante a gravidez (aOR: 1,88-5,01; 95% IC: 1,05-12,7), exposição materna em atividades
agrícolas (aOR: 5,25-7,56; 95% IC: 1,83-31,23) e exposição materna à permestrina (aOR: 2,47-7,28; 95% IC: 1,17-20,38), dependendo da idade das crianças (Ferreira et al., 2013).

Os efeitos da proximidade residencial de áreas agrícolas com uso de pesticidas à saúde de crianças foram explorados em diversos estudos epidemiológicos e os resultados são inconsistentes. Crianças entre 4-5 anos de idade residentes em uma região agrária foram significativamente piores em testes de coordenação, memória e capacidade de desenhar uma pessoa do que crianças com perfil semelhante que moravam em áreas sem uso de pesticidas (Guillette et al., 1998). A relação entre a proximidade residencial de áreas agrícolas e alterações cardíacas congênitas foi estimada comparando 569 casos e 785 controles sem alterações, cujas mães participaram de um estudo de controle de casos de base populacional entre 1997-2006. Foram observadas associações estatisticamente significativas entre Tetralogia de Fallot e neonicotínoides; Síndrome do Coração Esquerdo Hipoplásico e estrobinas; estenose valvar pulmonar e OP e bipiridilios; defeitos do septo ventricular e avermectinas e piretróides, entre outros (Carmichael et al., 2014).

Usando dados do relatório de uso de pesticidas agrícolas do Estado da Califórnia (Pesticide Use Report – PUR), nos EUA, e de crianças participantes da coorte CHAMACOS, foram estimados os efeitos cognitivos em crianças de 7 anos de idade. Como resultados, observou-se uma diminuição significativa na escala completa de QI e compreensão verbal para cada aumento do desvio padrão no uso de OP próximo à residência; e na escala completa de QI para cada aumento do desvio padrão no uso de dois OP (acefato e oxidemeton-metil) e três grupos de pesticidas neurotóxicos (piretróides, neonics e fungicidas a base de manganês) (Gunier et al., 2017). Nesta mesma coorte – CHAMACOS, a proximidade residencial de áreas de plantio com uso de enxofre foi significativamente associada ao uso de medicamentos para asma, maior prevalência de sintomas respiratórios e diminuição da função pulmonar (Raanan et al., 2017). Em contraste, não foram encontradas associações entre a proximidade residencial do uso de fumigantes e parâmetros da função pulmonar, sintomas respiratórios e uso de medicamentos para asma (Gunier et al., 2018). Também não foram observadas associações entre morar perto de áreas agrícolas tratadas com pesticidas e asma e sintomas respiratórios entre adolescentes holandeses participantes de outro estudo de coorte (Bukalasa et al., 2018).

Um estudo caso-controle populacional com crianças da Califórnia – Childhood Autism Risks from Genetics and Environment (CHARGE) – avaliou a relação entre viver próximo de áreas agrícolas com uso de pesticidas durante a gravidez e autismo e atraso no
desenvolvimento. Observou-se que a proximidade residencial de áreas de aplicação de OP foi associada a um risco 60% maior de autismo, especialmente nas exposições do terceiro trimestre e uso de clorpirifós no segundo trimestre. Ademais, filhos de mães que, durante a gestação, viviam perto de áreas de aplicação de CM tiveram um maior risco de atraso no desenvolvimento e de insecidícias piretróides de autismo e atraso no desenvolvimento (Shelton et al., 2014).

Estudos epidemiológicos avaliaram os efeitos da exposição aos pesticidas à saúde respiratória de crianças e obtiveram resultados variados. No Líbano, crianças em idade escolar com histórico materno de exposição aos pesticidas apresentaram uma alta prevalência de catarro crônico e chiado no peito (Salameh et al., 2003). Na coorte longitudinal CHAMACOS, avaliou-se biomarcadores de exposição aos OP e saúde respiratória e encontrou-se uma maior chance de ter sintomas respiratórios aos 7 anos quando tiveram maior exposição a OP durante a gestação (OR 1.77; 95% IC: 1.06; 2.95) e menores de 5 anos (OR: 2.53; 95% IC: 1.32; 4.86) (Raanan et al., 2015). Em outro estudo com essa mesma coorte, observou-se associação significativa entre maiores concentrações de metabólitos dos OP na infância e diminuição da função pulmonar aos 7 anos, mais especificamente, menor volume expiratório forçado no primeiro segundo - VEF₁ (β = -0.16; 95% IC: -0.30; -0.02) e menor capacidade vital forçada - CVF (β = -0.17; 95% IC: -0.34; 0.01) (Raanan et al., 2016).

Em contraste, a pesquisa nacional de saúde e nutrição dos EUA (NHANES - National Health and Nutrition Examination Survey) avaliou a relação entre o risco de asma entre crianças e metabólitos urinários e encontrou associações negativas com OP, mas positivas com o diclorodifenildicloroetano (DDE) (Perla et al., 2015), um metabólito do DDT, organoclorado proibido nos EUA na década de 1970 e no Brasil apenas em 2009 (Carneiro et al., 2015). Este mesmo estudo populacional NHANES, avaliou os efeitos à saúde respiratória do uso doméstico de pesticidas e encontrou uma associação positiva entre o uso de pesticidas na cozinha e sala de jantar com um aumento do risco de chiado no peito (OR: 1.39; 95% CI: 1.08; 1.78) e tosse seca (OR: 2.38; 95% CI: 1.40; 4.06) (Xu et al., 2012).

Um estudo caso-controle realizado nos Estados Unidos observou uma maior chance de desenvolver asma antes dos 5 anos entre crianças expostas no primeiro ano de vida aos pesticidas (OR: 2.39; 95% CI: 1.17; 4.89), herbicidas (OR: 4.58; 95% CI: 1.36; 15.43) e às plantações agrícolas, poeira agrícola e animais (OR: 1.88; 95% CI: 1.07; 3.28), quando comparadas com crianças não expostas (Salam et al., 2004). Uma coorte de nascimento da Universidade de Columbia, EUA, usou medições de insecidícias piretróides em amostradores
individuais de ar e descobriu que maiores medidas pré-natais de *cis-permetrina*, mas não *trans-permetrina*, foram associadas ao aumento dos sintomas de tosse em crianças aos 5 anos de idade (Reardon et al., 2009). Estudos que avaliam os efeitos da exposição aos pesticidas à saúde de crianças são escassos no Brasil. Sinalizando a sua preocupação com o tema, recentemente, o Ministério da Saúde brasileiro divulgou sua agenda de prioridades de pesquisa, que inclui “Avaliação da carga de doenças relacionadas às intoxicações por pesticidas” (Eixo 1: Meio Ambiente, Trabalho e Saúde) (BRASIL, 2018). Uma revisão sistemática sobre o efeito de contaminantes ambientais em crianças brasileiras identificou 19 artigos que exploravam a exposição aos pesticidas (Froes Asmus et al., 2016). Os artigos apresentados observaram efeitos à saúde e metodologia bastante variados, mas nenhum deles avaliou a saúde respiratória.

Um estudo caso-controle de base hospitalar avaliou a exposição gestacional e durante a amamentação aos pesticidas e encontrou associações significativas entre um maior risco de leucemia em crianças menores de 2 anos e uso de pesticidas na gestação, exposição materna à *permetrina* e envolvimento materno em atividades agrícolas (Ferreira et al., 2013). Um estudo caso-controle de base hospitalar encontrou associação significativa entre a ocorrência de malformação congênita e exposição ocupacional atual dos pais aos pesticidas (OR: 4.65; 95% CI: 1.03; 20.98) e envolvimento dos pais em atividades de pulverização de pesticidas (OR: 4.15; 95% CI: 1.24; 13.66) (Ueker et al., 2016), o que corrobora com outro estudo realizado no Mato Grosso, que encontrou associação significativa (p<0.05) entre a exposição materna aos pesticidas e uma maior ocorrência de malformações congênitas (Oliveira et al., 2014).

Outro estudo caso-controle encontrou uma maior prevalência de crianças do sexo masculino nascidas com micropênis, filhos de pais expostos ocupacional e ambientalmente a disruptores endócrinos, incluindo pesticidas, antes e durante a gravidez (Gaspari et al., 2012). Um estudo ecológico encontrou relações estatisticamente significante (p<0.001) entre a venda de pesticidas por microrregião e maior prevalência de crianças nascidas com baixo peso (r = 0.403) e muito baixo peso ao nascer (r = 0.476) (Boccolini et al., 2013). No nosso entendimento e com base em revisão recente da literatura, não existem estudos publicados sobre o efeito da exposição aos pesticidas à saúde respiratória em crianças brasileiras.

As doenças mentais também atingem as crianças e adolescentes, como resultado dos seus próprios problemas e exposições ou influenciados pela condição de saúde dos seus pais. Adolescentes, especialmente as mulheres, cujas mães sofriam de depressão e/ou ansiedade apresentaram uma maior chance de terem esses problemas durante a transição para a idade.
adulta (OR: 4.6; 95% IC: 2.71–7.84) do que as mães sem sintomas em uma grande coorte de nascimentos de base populacional no sul do Brasil (Gonçalves et al., 2016).

A educação ambiental sobre os perigos da exposição aos pesticidas e medidas de prevenção pode ser bastante efetiva para reduzir a exposição e aumentar a percepção de risco entre crianças. Uma intervenção educativa sobre a exposição aos pesticidas e seus riscos foi realizada em duas escolas rurais no Chile. Os resultados mostram que, após a intervenção, alunos e pais ampliaram seus conhecimentos sobre pesticidas e efeitos na saúde humana e no meio ambiente e melhoraram seus comportamentos de segurança quando expostos (Muñoz-Quezada et al., 2019). Essas intervenções educativas possuem um ótimo custo-benefício e devem ser fomentadas, estimulando um comportamento mais protetivo nas crianças e adultos. Os benefícios extrapolam o ambiente escolar e as crianças podem transmitir os conhecimentos adquiridos aos seus pais. Uma opção é a inserção de temas de educação ambiental transversalmente no currículo escolar, coordenada pelos professores e diretores de escolas, especialmente rurais.
4. MATERIAIS E MÉTODOS

4.1. REVISÃO SOBRE O STATUS DO CONhecimento

Para embasar a discussão desta tese, foi realizada uma extensa revisão da literatura científica sobre a exposição aos pesticidas e efeitos à saúde humana e ao meio ambiente e consolidação de dados provenientes de diversas bases oficiais. Além disso, foi realizada a coleta de dados primários com entrevistas livres e não estruturadas com representantes do poder público, tomadores de decisão e stakeholders, além de discussões com outros grupos de estudo e estágios de pesquisa em renomadas instituições. Todo esse conhecimento adquirido, material coletado e experiências vividas são apresentados e discutidos ao longo desta tese.

4.2. AVALIAÇÃO DE RISCO À SAÚDE HUMANA POR EXPOSIÇÃO AOS PESTICIDAS

De 2012-2015, participamos integralmente do projeto de pesquisa 'Avaliação do risco à saúde humana por exposição a metais e pesticidas na bacia hidrográfica de São Domingos, Estado do Rio de Janeiro (RJ)', financiado pelo Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (Processo Universal 479364/2012-5) e coordenado pelo professor Jean Remy Davée Guimarães (Universidade Federal do Rio de Janeiro - UFRJ). Esse projeto avaliou o risco à saúde de agricultores familiares expostos ocupacionalmente aos pesticidas no cultivo de tomate no município de São José de Ubá (SJU) e contou com a
colaboração de pesquisadores da Fundação Oswaldo Cruz (FIOCRUZ) e da Universidade Estadual do Rio de Janeiro (UERJ).

Este projeto foi delineado com base na metodologia de ‘Avaliação de Saúde Pública’ proposta pela *Agency for Toxic Substances and Disease Registry* (ATSDR) (ATSDR, 2005) e apreciou aspectos científicos, socioeconômicos, culturais e ambientais para a determinação de riscos à saúde humana. Posteriormente, foram realizadas reuniões com a comunidade para a apresentação dos achados e proposição de ações em saúde pública aos tomadores de decisão. Algumas etapas realizadas foram: seleção de informantes-chaves, levantamento das preocupações da comunidade com a saúde e meio ambiente, avaliação da informação local utilizando dados primários e secundários, identificação do cenário de exposição e seleção dos poluentes de interesse.

No período da safra (2014), foram realizadas entrevistas baseadas em questionário sobre a exposição aos pesticidas, avaliação de saúde com anamnese e avaliação clínica de sintomas, coleta e análise de biomarcadores de efeito (enzimas inibidoras da colinesterase), anamnese e avaliação de saúde geral. Ademais, tanto no período de safra de 2014 (julho e agosto) quanto na entressafra de 2015 (janeiro e fevereiro) foram realizadas uma avaliação da função pulmonar com espirometria e aplicação de questionário de sintomas respiratórios, para posterior comparação entre os períodos de maior e menor uso de pesticidas.

Como resultados desse estudo em SJU, as alterações respiratórias encontradas no período da safra foram discutidas considerando a exposição ocupacional aos pesticidas, que resultou na dissertação de mestrado ‘Avaliação da condição respiratória em população rural exposta a pesticidas em São José de Ubá, Estado do RJ’ (Buralli, 2016), defendida em 2016 na Faculdade de Saúde Pública (FSP) da Universidade de São Paulo (USP) e orientada pela Dra. Helena Ribeiro. Todas as demais informações coletadas em SJU, como dados detalhados sobre a carga de exposição ocupacional e ambiental, as condições gerais de saúde e prevalência de sintomas agudos e crônicos, efeitos sobre a saúde mental e a comparação entre a condição respiratória nos períodos de safra e entressafra, não foram discutidos no escopo daquela dissertação, mas tiveram seu uso autorizado (APÊNDICE A) e são objetos desta tese de doutorado. A metodologia utilizada na pesquisa foi apresentada detalhadamente no artigo "Avaliação de saúde pública por exposição a agroquímicos: uma experiência com a agricultura familiar no noroeste do Rio de Janeiro" (Leão et al., 2018).
4.3. ÁREA DE ESTUDO – SÃO JOSÉ DE UBÁ (RJ)

O município de São José de Ubá (SJU), localizado no noroeste do Estado do RJ (Figura 7), possuía 7.003 habitantes em 2010, com uma população estimada em 7.171 em 2019, a maioria (56%) residente na área rural e distribuída em pequenas vilas de 200 a 300 habitantes. Seu território ocupa uma área de 250,3 km², está integralmente situado na Bacia Hidrográfica do Rio São Domingos e faz divisa com os municípios de Itaperuna, Miracema, Cambuci e Santo Antônio de Pádua (IBGE, 2010).

Figura 7. Mapa da localização geográfica de SJU.

![Mapa da localização geográfica de SJU.](image)

Fonte: elaborado pelo autor (Buralli, 2016).

SJU possui uma densidade demográfica de 27,98 hab/km², 1.019 domicílios na área urbana e 1.265 domicílios na área rural, dos quais 66,3% dos domicílios possuem esgotamento sanitário adequado (IBGE, 2010). Em 2010, 50,05% da população era do sexo feminino (n = 3.505) e 49,95% masculino (n = 3.498), incluindo 442 crianças menores que 4 anos, 456 crianças entre 5-9 anos, 526 entre 10-14 anos e 582 entre 15-19 anos (IBGE, 2010).

O Índice de Desenvolvimento Humano Municipal (IDHM) de SJU aumentou exponencialmente nos últimos 20 anos, passando de 0,416 (muito baixo: até 0,499) em 1991 para 0,652 (médio: 0,600 - 0,699) em 2010. A longevidade é a dimensão que mais contribui
para o IDHM do município (índice de 0,798), seguida de renda (índice de 0,633) e educação (índice de 0,548) (Atlas Brasil, 2019). O percentual de crianças que frequentam a escola também aumentou consideravelmente em SJU nos últimos anos. Em 1991, apenas 12,12% das crianças entre 5 e 6 anos frequentavam escola, aumentando para 74,20% em 2000 e atingindo 98,25% em 2010 (Atlas Brasil, 2019).

Em 2017, o salário médio mensal dos trabalhadores formais em SJU era de 1,8 salários mínimos, mas apenas 15,6% da população total estava ocupada formalmente e, destes, 40,4% recebiam menos de ½ salário mínimo. Em 2010, o município possuía uma taxa média de mortalidade infantil de 9,43 para 1.000 nascidos vivos, o nível de ocupação de crianças com idade entre 10-17 anos era de 16%, sendo que 52,4% estavam envolvidas no setor agropecuário (IBGE, 2010).

Em 2010, 42,1% das pessoas ocupadas com 18 anos ou mais de SJU trabalhavam no setor agropecuário (e 0,2% na indústria extrativa), 37,5% no setor de serviços, 10,3% no comércio, 5,9% no setor de construção civil, 2,6% na indústria de transformação e 0,1% nos setores de utilidade pública (Atlas Brasil, 2019).

Em 2017, o município possuía 533 estabelecimentos agropecuários, sendo 432,037 hectares de lavouras permanentes e 292,446 hectares de lavouras temporárias. Segundo dados preliminares do Censo Agropecuário de 2017, 95 estabelecimentos (17,8%) utilizaram pesticidas e 434 estabelecimentos (81,4%) não utilizavam; 279 estabelecimentos (52,3%) recebiam assistência técnica e 254 estabelecimentos (47,7%) não recebiam assistência (IBGE, 2017a). Esses números levantam algumas dúvidas pois SJU não possui uma expressiva produção orgânica, sendo razoável pensar que os 533 estabelecimentos se referem apenas a propriedades rurais e não necessariamente são produtores agropecuários.

A produção agrícola faz parte da história de SJU. No final do século XIX, quando ainda era um distrito de Cambuci, SJU abrigava tropeiros vindo principalmente de Minas Gerais, que se estabeleceram e cultivaram diversos produtos como: café, cana-de-açúcar, feijão, algodão e milho. O tomate começou a ser cultivado na década de 1960 e aos poucos foi dominando a agricultura e fortalecendo a economia local, ajudando na sua emancipação em 1995 (IBGE, 2017b). Posteriormente, um aumento expressivo da produção aconteceu devido ao aprimoramento das técnicas de cultivo, o que chamou a atenção dos atravessadores e intensificou a comercialização do produto (Oliveira, 2006).
Atualmente, SJU possui uma expressiva produção agrícola familiar, principalmente de tomate, sendo o segundo maior produtor do Estado do Rio de Janeiro, mas também produz outros produtos em menor escala, como feijão, arroz e milho (IBGE, 2017a). A produção agrícola de SJU é basicamente comercializada através do Mercado Produtor do Norte Fluminense, vinculado às Centrais de Abastecimento (CEASA), que desde 2012 é gerido pela Prefeitura Municipal de SJU e o CEASA-RJ, e que também serve de entreposto à produção de outros municípios da região, como: Santo Antônio de Pádua, Cambuci, Itaperuna, Miracema, Itaocara e Natividade. O CEASA-RJ é uma empresa vinculada à Secretaria de Estado de Desenvolvimento Regional, Abastecimento e Pesca e presta assistência técnica ao pequeno produtor rural na comercialização dos seus produtos (CEASA-RJ, 2019).

O Córrego Ubá, um afluente do Rio São Domingos, é uma importante fonte de captação hídrica para o abastecimento urbano, embora a maior parte da água seja captada no Rio Muriaé, localizado a 20km de SJU no distrito de Aré, pertencente a Itaperuna. Segundo a Prefeitura Municipal de SJU, a construção deste sistema alternativo foi necessária para suprir a escassez de água principalmente no período da seca (inverno), que coincide com o cultivo de tomate, cultura que demanda muita água para irrigação. A Companhia Estadual de Águas e Esgoto do Rio de Janeiro (CEDAE) é a responsável pelo sistema de abastecimento da região (Prefeitura Municipal de São José de Ubá, 2019).

Atualmente, observa-se em SJU um cenário de intensa degradação ambiental com exploração descontrolada dos recursos naturais, uso intensivo de agroquímicos, relevo acidentado com pouca cobertura vegetal e inúmeros processos erosivos, assoreamento e eutrofização de corpos d’água, além da escassez e baixa qualidade dos recursos hídricos (Leão et al., 2018; Menezes et al., 2012, 2009).

4.4. POPULAÇÃO E GRUPOS DE ESTUDO

Neste estudo transversal realizado em SJU, os sujeitos foram selecionados por amostragem por conveniência. Foram incluídos apenas os indivíduos que concordaram em
Os agricultores familiares participantes (n=82) foram divididos em 2 grupos: **Grupo 1** - trabalhadores rurais (n=48): Produtores rurais convencionais, homens e mulheres, com idade igual ou superior a 18 anos residentes da área rural de SJU; **Grupo 2 – familiares (n=34)**: Homens e mulheres pertencentes ao mesmo arranjo familiar de indivíduos do grupo 1, com idade igual ou superior a 18 anos. Essa avaliação de risco foi desenhada para estimar o efeito da exposição aos pesticidas à saúde dos trabalhadores agrícolas em SJU e acreditava-se inicialmente que os familiares não estariam expostos ocupacionalmente e serviriam como grupo controle. Porém, durante sua realização, percebeu-se que tanto o grupo 1 quanto a grande maioria dos indivíduos do grupo 2 estavam ou em algum momento já estiveram ocupacionalmente expostos aos pesticidas. Essencialmente, a maior diferença entre os grupos era que, enquanto os indivíduos do grupo 1 se dedicavam integralmente e estavam envolvidos em todas as etapas do trabalho agrícola, incluindo a manipulação e pulverização de pesticidas, os familiares ajudavam em diversas etapas da produção e, principalmente no período da safra, assumem tarefas consideradas de reentrada nos locais de plantio, como: amarração dos brotos, adubação, colheita, encaixotamento.

Vários problemas de ordem social foram elencados pela população rural de SJU, como: o alto custo e as oscilações de preços da produção, a dependência do uso de pesticidas, o risco de acidentes laborais, a má qualidade dos recursos naturais, a ação de atravessadores (que geralmente financiam a produção e depois pagam pouco pelo produto), os prejuízos e dívidas acumuladas, a falta de assistência técnica e qualificação profissional, de estrutura de comercialização da produção e de crédito aos pequenos produtores (Leão et al., 2018).
4.5. LEVANTAMENTO DAS INFORMAÇÕES LOCAIS

Nesse estudo transversal realizado em SJU, uma caracterização da área e da população de estudo foi realizada através de visitas locais e levantamento de informações primárias e secundárias. As informações foram obtidas em encontros/reuniões com a população, lideranças locais e representantes da Prefeitura Municipal de SJU. Durante os períodos da safra (2014) e entressafra (2015), os agricultores familiares participantes do estudo foram submetidos a entrevistas orientadas por questionário com informações pessoais, socioeconômicas, ocupacionais, estilo de vida e condições clínicas atuais e pregressas possivelmente relacionadas à exposição aos pesticidas.

Posteriormente, em julho de 2017, foi realizado um novo trabalho de campo para avaliação observacional do processo produtivo em São José de Ubá. Na ocasião, foram realizadas novas entrevistas com os representantes da Empresa de Assistência Técnica e Extensão Rural (EMATER), do CEASA, da Secretaria de Saúde Municipal (Coordenadoras de Epidemiologia e Atenção Básica) e com agricultores familiares. Também foram feitos vários registros das entrevistas e do processo de trabalho em gravações de áudio, fotos e vídeos. Este trabalho de campo foi realizado com o apoio financeiro de edital interno da Pós-graduação em Saúde Pública da FSP/USP.

Bases de dados secundários foram consultadas para uma caracterização da área e população de estudo, como: dados do censo agropecuário do IBGE de 2006 (IBGE, 2006) e 2017 (IBGE, 2017a); característica do município de SJU no censo demográfico do IBGE (IBGE, 2010), na plataforma Atlas do Desenvolvimento Humano no Brasil (Atlas Brasil, 2019), além de informações disponibilizadas pelo CEASA-RJ (CEASA-RJ, 2019) e pela Prefeitura Municipal de SJU (Prefeitura Municipal de São José de Ubá, 2019).
4.6. AVALIAÇÃO DA EXPOSIÇÃO AOS PESTICIDAS

Além das visitas observacionais de campo em SJU, no período da safrá (2014), foram realizadas entrevistas baseadas em questionário de exposição aos pesticidas (APÊNDICE C) e quantificação de enzimas colinesterásicas como biomarcadores de efeito. As informações coletadas foram discutidas conjuntamente com os resultados das avaliações de saúde.

Os participantes do estudo foram interrogados sobre questões relativas ao cenário de exposição aos pesticidas, como: contato atual ou pregresso, envolvimento em atividades de manipulação direta ou pulverização de pesticidas, duração da exposição, idade de início do trabalho rural, tipos e frequência das atividades desenvolvidas, exposição doméstica (e.g., controle de pragas, hortas domésticas, contato com roupas ou equipamentos contaminados), uso de pesticidas na entressafra, uso de EPI (máscara de pano ou respirador, viseira, chapéu, luvas, botas e macacão), intoxicação prévia, principais produtos utilizados, hábitos que podem aumentar a exposição aos pesticidas (e.g. lavar as mãos e tomar banho após o trabalho, consumir alimentos ou água na área de cultivo), recebimento de treinamento de segurança e orientações técnicas para o trabalho com pesticidas, proximidade das áreas de plantio com uso de pesticidas nas residências e corpos de água, entre outras.

Para facilitar a discussão dos efeitos dos pesticidas à saúde respiratória, algumas informações do questionário subsidiaram a elaboração de uma carga de exposição individual aos pesticidas (Individual Exposure Burden – IEB), com base em outros estudos semelhantes (Hernández et al., 2008; De Jong et al., 2014). Esse IEB foi gerado a partir das seguintes informações: 1) contato atual com pesticidas; 2) exposição doméstica a pesticidas; 3) frequência de manipulação (5-7 vezes por semana, 1-3 vezes por semana, 2-3 vezes por mês, uma vez por mês ou raramente; 4) intoxicação prévia; 5) apresentar 2 ou mais sintomas respiratórios; e 6) distância da residência e local de plantio (10-100 metros, 100-500 metros, < 1km, 1-2km e > 2km).

Foram identificadas as rotas de exposição potenciais aos pesticidas e metais na zona rural do município de SJU (Quadro 1) e apresentadas previamente em artigo sobre a metodologia de avaliação utilizada (Leão et al., 2018). As rotas de exposição são apresentadas
considerando os compartimentos ambientais, os principais pontos e vias de exposição e a população exposta.

Quadro 1. Rotas de exposição aos pesticidas e metais na zona rural em SJU.

Agentes Químicos	Pesticidas e Metais (Chumbo; Cádmiú; Manganês)
Fontes de Contaminação	1. Produtos pesticidas utilizados em atividades agrícolas; 2. Produtos agroquímicos (pesticidas, fertilizantes e corretivos do solo) que contêm em sua formulação metais como ingredientes ativos ou como impurezas.

Compartimento Ambiental	Ponto de exposição	Via de exposição	População Receptora
Ar (gases, vapores e material particulado em suspensão)	- Local de cultivo e entorno imediato	1. Inalação de gases e vapores; 2. Ingestão de alimentos e água contaminados pelo agente químico disperso no ar durante a aplicação; 3. Contato dérmico.	- Agricultores e ajudantes envolvidos no preparo e aplicação dos pesticidas; - Residentes no entorno das áreas de cultivo; - Crianças; - Prestadores de serviço na área rural.
Solo superficial	- Solo da área de cultivo e entorno	1. Inalação de material particulado suspenso (poeira); 2. Ingestão de solo, sobretudo por crianças; 3. Contato dérmico.	- Agricultores e residentes no entorno das áreas de cultivo; - Crianças; - Prestadores de serviço na área rural.
Água superficial	- Córregos e rios	1. Ingestão; 2. Contato dérmico (uso para irrigação, tarefas domésticas e banhos).	- Produtores e ajudantes envolvidos na irrigação agrícola; - Moradores residentes na região, sobretudo na área rural, que utilizam a água em atividades domésticas; - Banhistas adultos e crianças.
Água subterrânea	- Poços de água	1. Ingestão; 2. Contato dérmico.	- Produtores e assistentes envolvidos na irrigação agrícola; - Moradores adultos e crianças da região, sobretudo na área rural, que utilizam a água para beber e/ou para atividades domésticas.
Biota	- Vegetais; - Carnes, leite e ovos (produção local); - Pescado (rios, córregos e açudes locais).	1. Ingestão.	- Consumidores (residentes ou externos) dos produtos de cultura, pecuária e pesca produzidos na região contaminada por pesticidas; - Especialmente agricultores familiares que consomem muitos alimentos contaminados por pesticidas e as crianças, que consomem mais alimento por peso corporal.
- Equipamentos e utensílios de trabalho agrícola - Produtos agroquímicos e	- Locais de trabalho; - Local de armazenagem dos produtos	1. Inalação; 2. Contato dérmico; 3. Ingestão.	- Agricultores e ajudantes que trabalham no cultivo; - Responsáveis pelo transporte, armazenagem e descarte dos produtos agroquímicos;
4.6.1. Coleta, Preparo e Análise das Amostras Biológicas

Para estimar a exposição aos pesticidas em SJU, foram coletadas amostras biológicas de sangue para a quantificação da atividade colinesterásica. As enzimas colinesterásicas (AChE e BChE) são biomarcadores de efeito presentes nos eritrócitos e plasma sanguíneos, respectivamente, inibidas pelo contato com pesticidas OP e CM. Apesar da grande variabilidade individual e populacional, baixa especificidade e a sensibilidade de avaliar apenas duas classes químicas, elas representam um bom indicador das exposições de longa (AChE) e curta duração (BChE) (Nerilo et al., 2014), especialmente úteis quando empregadas em monitoramentos contínuos (Bendetti, 2014). Sua quantificação é o teste mais comumente disponível no Brasil para o monitoramento biológico da exposição aos pesticidas, ainda que outras metodologias mais sensíveis (e.g. amostras em sangue e cabelo) estão sendo desenvolvidas globalmente.

Em SJU, amostras de sangue de 5 mL foram coletadas por enfermeiro capacitado, utilizando tubos vacutainer com heparina, durante o período da safra de 2014 (julho e agosto) para captar uma maior exposição aos pesticidas. As coletas foram realizadas logo após as entrevistas de exposição e efeitos à saúde em salas disponibilizadas pelas unidades de saúde e escolas localizadas na zona rural de SJU. Imediatamente após a coleta, as amostras foram centrifugadas, congeladas e transportadas, no prazo de 48 horas, para análise pelo Laboratório de Toxicologia do Centro de Estudos da Saúde do Trabalhador e Ecologia Humana.
(CESTEH/FIOCRUZ), que possui protocolos estabelecidos e capacidade analítica consolidada.

A avaliação colinesterásica foi realizada por espectrofotometria (Equipamento Schimadzu Modelo UV/VIS 1601) através do método de Ellman modificado (Oliveira-Silva et al., 2000), que permite a quantificação das enzimas após congelamento da fração plasmática e eritrocitária em meio tamponado. Para avaliar a qualidade dos métodos analíticos utilizados, foram rotineiramente testados parâmetros como a precisão, exatidão e o limite de detecção, além da utilização de brancos de método para avaliar uma possível contaminação durante as análises.

Os resultados foram comparados entre os grupos de exposição em SJU e com valores de referência determinados pelo CESTEH/FIOCRUZ a partir de estudos em populações não expostas, sendo 0,56 mmoles/min/mg para a AChE (em ambos os sexos) e 2,29 e 1,61 mmoles/min/mg para a BChE em homens e mulheres, respectivamente (Oliveira-Silva et al., 2000).

4.7. INSTRUMENTOS DE AVALIAÇÃO EM SAÚDE

4.7.1. Avaliação da Saúde Respiratória

Além das entrevistas com avaliação socioeconômica e de exposição aos pesticidas, durante o período de safra de 2014 (julho e agosto) e entressafra de 2015 (janeiro e fevereiro) foi realizada uma prova de função pulmonar (espirometria) e aplicação de questionário sobre prevalência de sintomas respiratórios (APÊNDICE D), para posterior comparação entre os períodos de maior e menor exposição. Esta avaliação de saúde respiratória foi realizada na semana posterior à avaliação de exposição para que os participantes pudessem cumprir
algumas orientações que são requisitos do exame e podem interferir nos resultados (APÊNCIDE D), como não tomar café, fumar ou tomar medicamentos.

A prova de função pulmonar e a avaliação dos resultados foi realizada de acordo com diretrizes da *American Thoracic Society* (ATS) e da *European Respiratory Society* (ERS), em concordância com a Sociedade Brasileira de Pneumologia e Tisiologia (SBPT) (Pereira et al., 2007) e seguindo as orientações de pneumologistas do Laboratório de Função Pulmonar do Instituto do Coração da Faculdade de Medicina da USP (Incor/FMUSP), que gentilmente avaliaram se os exames atendiam os critérios de aceitabilidade e reproducibilidade, e validaram os exames satisfatórios.

Os parâmetros da prova de função pulmonar observados foram: capacidade vital forçada (CVF), volume expiratório forçado no primeiro segundo (VEF1), relação VEF1/CVF e fluxo expiratório forçado entre 25-75% (FEF25-75%). Para classificação de alterações pulmonares considerou-se: a relação VEF1/CVF abaixo do limite inferior previsto como distúrbio obstrutivo; a redução simultânea da CVF e do VEF1, mas com a relação VEF1/CVF dentro do intervalo previsto como padrão restritivo; os casos alterados não compatíveis com padrão obstrutivo ou restritivo como não-específico.

Os participantes eram previamente orientados sobre as etapas do exame e depois posicionados sentados com a coluna reta e costas apoiadas, com o clipe nasal para que o ar saísse apenas pela boca conectada ao bocal do aparelho. Obedecendo aos comandos do técnico, eles eram solicitados a inspirar o máximo de ar e assoprar o espirometro por alguns segundos, até o comando de parar. Cada participante podia realizar até oito tentativas para conseguir três boas manobras que pudessem ser avaliadas pelos pneumologistas.

Foi utilizado um espirometro Koko PFT (nSpire Health, Longmont, CO, EUA), calibrado diariamente com seringa de 3 litros e bocais e filtros descartáveis. Os valores obtidos na espirometria foram comparados com os valores de referência propostos por Polgar e Promadhat (Polgar and Promadhat, 1971) para indivíduos do sexo masculino até 24 anos e feminino até 20 anos de idade; e por Pereira e colaboradores (Pereira et al., 2007) para indivíduos do sexo masculino com idade acima de 25 anos e feminino acima de 21 anos.

A prevalência de sintomas respiratórios foi avaliada por entrevista baseada no questionário proposto pelo *European Community Respiratory Health Survey* (ECRHS), validado no Brasil (Ribeiro et al., 2007). Os sintomas avaliados foram: chiado no peito e aperto no peito, chiado com falta de ar, acordar com aperto no peito, acordar com falta de ar,
acordar com tosse, alergia nasal ou rinite, além de crise, tratamento ou diagnóstico médico de asma. Este questionário avalia sintomas respiratórios nos doze meses anteriores, mas no período da entressafra, foi adaptado para considerar os sintomas presentes nos quatro meses anteriores, a fim de evitar sobreposição com o período de safras.

4.7.2. Avaliação de Saúde Mental

Os efeitos da exposição aos pesticidas sobre a saúde mental em SJU foram coletados pela ferramenta de rastreamento psiquiátrico proposta pela OMS, o **Self-Reporting Questionnaire** (SRQ-20), validado no Brasil com alta sensibilidade e especificidade (Mari and Williams, 1986). O SRQ-20 foi proposto pela Organização Mundial de Saúde como resposta à demanda por ferramentas de baixo custo e fácil para triagem psiquiátrica, sendo recomendada para estudos comunitários e na atenção básica (Beusenberg and Orley, 1994).

O SRQ-20 possui 20 perguntas binárias (sim/não) sobre sinais depressivos, de ansiedade, energia vital reduzida e sintomas somáticos. O ponto de corte recomendável para indicar uma provável DMC é de seis ou mais respostas positivas para homens e oito ou mais para mulheres (Mari and Williams, 1986), embora novas abordagens, como análise de classe latente e análise fatorial de correspondência, tenham sido recentemente propostas (Carmo et al., 2018).

Ferramentas com boa relação custo-efetividade para acessar problemas de saúde mental são especialmente necessárias em países de baixa e média renda, onde os recursos financeiros e de saúde humana são escassos (van der Westhuizen et al., 2016). Outros estudos realizados no Brasil empregaram o SRQ-20 para o rastreamento de DMC e o classificaram como uma ferramenta simples, de baixo custo, fácil utilização, bom desempenho e efetiva na avaliação de morbilidades psíquicas não-psicóticas (Gonçalves et al., 2008; Ludermir and Melo Filho, 2002).
4.7.3. Avaliação dos Sintomas Agudos

Para avaliar a prevalência de efeitos agudos, vinte e três sintomas previamente associados à intoxicação por pesticidas foram apresentados aos participantes, que foram solicitados a confirmar se os sentiam regularmente após o trabalho rural ou não. Os sintomas apresentados foram: dor de cabeça, tontura, tremores, formigamento nos membros superiores e inferiores, fraqueza muscular, fadiga dos membros inferiores, visão turva, fotofobia, cãibras, zumbido, salivação excessiva, náusea/vômito, falta de apetite, dor de estômago, irritação na pele, irritação das mucosas, taquicardia, palpitações, suor excessivo, dispneia, chiado no peito e tosse.

4.8. ANÁLISES ESTATÍSTICAS

Com base nas respostas da entrevista e biomarcadores, as variáveis de exposição foram consideradas na busca de associações com os desfechos de saúde. De maneira geral, os dados com distribuição normal foram apresentados como média e desvio padrão (dp) e, com distribuição não normal, como mediana e intervalo interquartil (IQR 25-75%).

As variáveis categóricas foram comparadas entre os grupos de interesse usando o teste de Qui-quadrado de Pearson. Em se tratando de variáveis categóricas de dois níveis (e.g. aplicadores vs. ajudantes), as variáveis contínuas com distribuição normal foram comparadas pelas médias através do Teste T e com distribuição não normal pelas medianas através do Mann-Whitney ou Rank-sum (estatística não paramétrica). Para variáveis categóricas com mais de dois níveis (e.g. classes de IMC: peso baixo ou normal, sobrepeso e obesidade), a comparação das médias foi feita pelo teste de One-way ANOVA para variáveis contínuas com distribuição normal e por Kruskal-Wallis para contínuas com distribuição diferente da normal.
No primeiro artigo, os indivíduos participantes do estudo \((n=82)\) foram divididos entre trabalhadores rurais \((n=48)\) e familiares \((n=34)\), com a exposição e as atividades desempenhadas por cada grupo apresentadas na discussão. Nos artigos subsequentes optamos por excluir das análises estatísticas quatro indivíduos que nunca haviam se envolvido em trabalhos agrícolas \((n=78)\) e reclassificar os participantes com base nas funções desempenhadas em: aplicadores de pesticidas \((n=42)\) e ajudantes atuais ou prévios \((n=36)\).

As atividades das enzimas colinesterásicas (AChE e BChE) foram comparadas entre os grupos e com os valores de referência propostos (Oliveira-Silva et al., 2000). Todas as análises estatísticas foram realizadas utilizando o software IBM SPSS (versão 22, IBM Corp., Chicago, IL, EUA) e Stata (versão 14, Stata Corp., College Station, TX, USA). Valores de \(p\) <0,05 foram considerados significativos.

4.8.1. Avaliação da Saúde Respiratória

Para estimar os efeitos da exposição aos pesticidas na saúde respiratória, as associações entre as variáveis independentes (incluindo a carga de exposição individual) e os resultados da prova de função pulmonar e quantificação da colinesterase (AChE e BChE) foram analisadas por regressão usando Modelos Lineares Generalizados (GLM) (McCullagh, 1984). Modelos multivariados foram utilizados quando o valor \(p\) foi maior que 0,10 na análise univariada. O GLM foi ajustado usando a função log-link e a resposta da escala de Poisson. O Critério de Informação de Akaike (AIC) foi aplicado para indicar o melhor modelo de ajuste. Todos os modelos foram controlados por tabagismo e idade. O peso e a altura dos participantes foram aferidos com balança e estadiômetro portáteis antes do início da prova de função pulmonar e, juntamente com o sexo, foram considerados para estabelecer os valores previstos da espirometria. O status socioeconômico dos participantes foi avaliado no momento da entrevista e, por ser muito semelhante entre todos os participantes, não foi incluído na análise.
Para avaliar a variação dos sintomas respiratórios entre a safra e entressafra, cada participante foi comparado a si mesmo nos dois períodos e a razão de chances (Odds Ratio) calculada através do teste de McNemar, considerando que os participantes representavam um caso-controle correspondente, onde cada indivíduo foi seu próprio controle nos diferentes períodos avaliados.

4.8.2. Avaliação dos Sintomas Agudos e da Saúde Mental

No artigo sobre sintomas agudos e saúde mental, os dados sociodemográficos e de exposição aos pesticidas foram comparados entre grupos ocupacionais (aplicadores vs. ajudantes). A prevalência de cada sintoma agudo e de saúde mental também foi comparada entre os grupos e as razões de prevalência apresentadas. Possíveis associações foram testadas por regressão de Poisson com variância robusta (Barros and Hirakata, 2003), em modelos ajustados por potenciais fatores de confusão (idade, IMC, tabagismo, sexo e consumo de álcool). A comparação entre os grupos de exposição para as variáveis categóricas com menos de 5 observações foi feita através do teste exato de Fisher.

4.9. REVISÃO SISTEMÁTICA DA LITERATURA

Para identificar os artigos científicos publicados sobre os efeitos respiratórios e alérgicos em crianças por exposição aos pesticidas, foi realizada uma revisão sistemática da literatura de acordo com o protocolo PRISMA (PRISMA, 2019) e as recomendações do PECO – Population, Exposure, Comparator, Outcomes (Morgan et al., 2018). Para a
delimitação pelo PECO, foram considerados: a) população de estudo: crianças de até 12 anos; b) exposição de interesse: pesticidas de todas as classes e tipos de uso (e.g. agrícola, doméstico); c) grupo de comparação: sem restrição de grupos comparadores (e.g. indivíduos não expostos aos pesticidas, expostos em diferentes intensidades ou fontes); d) desfechos a serem observados: todas as morbidades respiratórias (e.g. sintomas, asma, doenças obstrutivas) e função pulmonar.

Foram consultadas as bases de dados PubMed (http://www.ncbi.nlm.nih.gov/pubmed/), Web of Science (http://www.isiknowledge.com), Scielo (http://www.scielo.br/) e Lilacs (http://pesquisa.bvsalud.org/portal/advanced/). Foram incluídos artigos em inglês, espanhol ou português, sem restrição de etnia ou população específica, localização geográfica e status socioeconômico. As palavras-chave usadas para a busca foram: para inglês: (pesticid* OR agrochemic* OR fumigant* OR fungicide* OR insecticide* OR herbicide* OR acaricide* OR nematicide*) AND (child* OR pregnan* OR prenatal OR offspring OR newborn OR early-life OR infant* OR preschool*) AND (respirat* OR pulmonar* OR asthma* OR allerg* OR hypersensitivit* OR rhinitis). Para português ou espanhol: (pesticid* OR plaguicida* OR agrotoxico* OR agroquimic* OR fumigant* OR fungicida* OR infiltration* OR insecticida* OR herbicida* OR acaricida* OR nematicida*) AND (niñ* OR criança* OR emabaraz* OR gravid* OR gesta* OR prenatal* OR pré-natal* OR hij* OR filh* OR nascid* OR infant* OR escolar*) AND (respirat* OR pulmon* OR asma* OR alerg* OR hipersensitivit* OR rinit*).

Foram considerados apenas os artigos com texto completo disponível e os artigos duplicados foram removidos. A pesquisa no Pubmed foi realizada pelo título e resumo, na Web of Science pelo tópico (título, resumo e palavras-chave), no Scielo por todos os índices e no Lilacs pelo título, resumo e sujeito. Foram excluídos os estudos de revisão, meta-análise, experimental e relatos de caso. Artigos focados em alergênicos domésticos, como poeira, ácaros e baratas também foram excluídos. Apóis uma busca pelas palavras-chaves selecionadas, dois revisores independentes fizeram uma primeira triagem pelo título e resumos (um terceiro revisor foi consultado em caso de discordância) e, posteriormente, os artigos selecionados foram lidos na íntegra para coletar informações relevantes.
5. RESULTADOS E DISCUSSÃO

Nesta tese, os resultados e discussão serão apresentados na forma de 4 artigos. Os artigos 1 e 2, respectivamente “Respiratory condition of family farmers exposed to pesticides in the State of Rio de Janeiro, Brazil” e “Data on pesticide exposure and mental health screening of family farmers in Brazil”, foram publicados nas revistas internacionais de acesso aberto International Journal of Environmental Research and Public Health – IJERPH (ISSN: 1660-4601) e Data in Brief (ISSN: 2352-3409). O 3º artigo “Occupational exposure to pesticides and self-reported acute and mental health symptoms among family farmers in Brazil” foi recentemente submetido à Revista de Saúde Pública e aguarda revisão, portanto, as sugestões da banca podem ser incorporadas no processo de revisão. O 4º artigo “Respiratory and allergic effects in children exposed to pesticides: A systematic review” ainda está aberto aos membros da banca para sugestões que possam aprimorá-lo. Pretende-se submeter esse último artigo à revista Environmental Research (ISSN: 0013-935) ou Environmental Health Perspectives (ISSN: 1552-9924).

Os artigos 1, 2 e 3 atendem ao objetivo específico 1, que propôs caracterizar o cenário de exposição aos pesticidas, a área e população de estudo. Esses artigos atendem também aos objetivos específicos 2 ao avaliar o efeito dos períodos de safra e entressafra na saúde respiratória, além de 3 e 4, ao considerar os efeitos da exposição aos pesticidas à saúde mental e sintomas de intoxicação aguda, respectivamente. O artigo 4 responde ao objetivo específico 5, que propôs consolidar os achados internacionais publicados sobre os efeitos da exposição aos pesticidas à saúde respiratória de crianças.

No primeiro artigo, foram abordados os efeitos da exposição aos pesticidas na saúde respiratória de agricultores familiares de SJU, comparando os períodos de safra e entressafra. Foram realizadas entrevistas e quantificação das enzimas colinesterásicas e, durante os períodos de safra e entressafra, foi avaliada a prevalência de sintomas respiratórios e realizada prova de função pulmonar (espirometria). Os achados respiratórios foram comparados entre os períodos de safra e entressafra e uma análise de regressões múltiplas conduzida para procurar associações com indicadores de exposição, incluindo a carga de exposição individual criada com base em estudos epidemiológicos semelhantes. Este estudo foi o primeiro no
Brasil (e um dos primeiros no mundo) a avaliar as diferenças entre os períodos de menor e maior exposição aos pesticidas na saúde respiratória e, apesar da sua publicação recente (junho/2018), está com repercussão muito acima da média, com 9 citações pelo Google Scholar, 6 pelo Crossref e Web of Science e mais de 1.300 downloads.

No segundo artigo, apresentamos o conjunto de dados de exposição aos pesticidas e a prevalência de efeitos à saúde mental entre agricultores familiares de SJU. Os dados apresentados neste formato “data in brief” não foram submetidos a nenhum tratamento estatístico, discussão ou conclusões, mas são muito importantes para a sensibilização sobre o problema e podem ser usados para comparação com outros agricultores do Brasil e do mundo. A decisão pela publicação desses resultados preliminares se deve à escassez de dados sobre a exposição ocupacional aos pesticidas e efeitos sobre a saúde mental no Brasil, onde a maioria dos trabalhos neste tema é com agricultores da região sul do país (Campos et al., 2016; Faria et al., 2014b; Muller et al., 1999; Poletto and Gontijo, 2012), enquanto outras regiões e culturas continuam pouco investigadas. Apesar da sua publicação recente (agosto/2019), esse artigo já conta com 2 citações no Google Scholar.

No terceiro artigo, nós avaliamos a associação entre a exposição aos pesticidas e a prevalência de sintomas agudos e saúde mental (previamente apresentados no artigo 2), com análises estatísticas e discussão dos achados à luz da literatura científica internacional. A prevalência dos sintomas agudos avaliados foi coletada em entrevista com os agricultores familiares em SJU, enquanto os efeitos à saúde mental pelo SRQ-20. Os efeitos à saúde mental foram divididos de acordo com as classes de sintomas, a saber: sinais depressivos e de ansiedade, energia vital reduzida e sintomas somáticos. Considerando o envolvimento dos trabalhadores em distintas tarefas do trabalho rural e possíveis diferenças quanto ao nível de exposição aos pesticidas, as razões de prevalência dos sintomas foram discutidas comparando aplicadores de pesticidas e ajudantes, e possíveis associações com a exposição aos pesticidas testadas através de modelos de regressão de Poisson com variância robusta, ajustadas por fatores de confusão.

O quarto artigo é uma revisão das evidências científicas internacionais sobre os efeitos da exposição aos pesticidas à saúde respiratória e efeitos alérgicos em crianças. Foram consultadas as bases de dados PubMed, Web of Science, Scielo e Lilacs e incluídos artigos em inglês, espanhol ou português. Os resultados preliminares e uma discussão parcial dos achados estão apresentados nesta tese.
ARTIGO 1: RESPIRATORY CONDITION OF FAMILY FARMERS EXPOSED TO PESTICIDES IN THE STATE OF RIO DE JANEIRO, BRAZIL.

Respiratory Condition of Family Farmers Exposed to Pesticides in the State of Rio de Janeiro, Brazil

Rafael J. Buralli 1,*, Helena Ribeiro 1, Thais Mauad 2, Luís E. Amato-Lourenço 3, João M. Salge 3, Fredi A. Díaz-Quijano 4, Renata S. Leão 5, Rejane C. Marques 6, Daniele S. Silva 7 and Jean Remi Davé Guimarães 7

1 Departamento de Saúde Ambiental, Faculdade de Saúde Pública, Universidade de São Paulo, Av. Dr. Arnaldo, 715, São Paulo, SP 01246-904, Brazil; lena@usp.br
2 Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, Av. Dr. Arnaldo, 455, sala 1155, São Paulo, SP 01246-903, Brazil; mauad@usp.br (T.M.); luisdamatt@gmail.com (L.E.A.L.)
3 Pneumologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, Av. Dr. Enéas Carvalho de Aguiar, 44-Bloco II, 5 andar, São Paulo, SP 05040-000, Brazil; joao.salge@incor.usp.br
4 Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, Av. Dr. Arnaldo, 715, São Paulo, SP 01246-904, Brazil; frediaz@msn.com
5 Centro de Tecnologia em Nanomateriais—CTNANO, Rua Prof. José Vieira de Mendonça, 1000, Belo Horizonte, MG 31310-260, Brazil; rspoll@hotmail.com
6 Universidade Federal do Rio de Janeiro—Campus Macaé, Av. Alcides da Silva Gomes, 50, Macaé, RJ 27930-500, Brazil; rejane.marques@ufrj.com
7 Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 327-Bloco G-CCS, Ilha do Fundão, Rio de Janeiro, RJ 21941-902, Brazil; silva.danielentes@gmail.com (D.S.S.); joandre@ibiof.ufrj.br (J.R.D.G.)

* Correspondence: rafael_buralli@usp.br; Tel.: +55-11-3061-7894

Received: 27 April 2018; Accepted: 1 June 2018; Published: 8 June 2018

Abstract: Pesticide exposure is a growing public health concern. Although Brazil is the world’s largest consumer of pesticides, only a few studies have addressed the health effects among farmers. This study aimed to evaluate whether pesticide exposure is associated with respiratory outcomes among rural workers and relatives in Brazil during the crop and off-seasons. Family farmers (82) were interviewed about occupational history and respiratory symptoms, and cholinesterase tests were conducted in the crop-season. Spirometry was performed during the crop and off-season. Respiratory outcomes were compared between seasons and multiple regression analyses were conducted to search for associations with exposure indicators. Participants were occupationally and environmentally exposed to multiple pesticides from an early age. During the crop and off-season, respectively, they presented a prevalence of 40% and 30.7% for cough, 30.7% and 24% for nasal allergies, and 24% and 17.3% for chest tightness. Significant associations between spirometry impairments and exposure indicators were found both during the crop and off-season. These findings provide complementary evidence about the association of pesticide exposure with adverse respiratory effects among family farmers in Brazil. This situation requires special attention as it may increase the risk of pulmonary dysfunctions, and the morbidity and mortality burden associated with these diseases.

Keywords: pesticides; spirometry; respiratory symptoms; cholinesterase; rural workers; family farmers
1. Introduction

Careless pesticide use is a major human health problem, particularly in low and middle-income countries where public policies tend to be less restrictive and health surveillance less effective [1,2]. In Brazil, agriculture plays a crucial role in the economic development, and since 2008, the country has been the world’s largest consumer of pesticides [1]. Brazilian family farmers are often exposed to large amounts of pesticides due to the low risk-awareness and educational level, lack or misuse of personal protective equipment (PPE), lack of technical support, frequent use of highly toxic compounds, proximity of households and application sites, and relatives working or helping in different cultivation tasks, among others [1,3,4].

Occupational exposure to pesticides can represent a serious risk to the respiratory system [5–7]. Epidemiological studies have linked it to respiratory symptoms [8–10], asthma [11–13], chronic bronchitis [9,14–16], and lung cancer [7]. Spirometry was performed in workers occupationally exposed to pesticides and revealed a significant decrease in the lung function parameters both in cross-sectional studies comparing with non-exposed controls [8,9,17,18] and in prospective cohort studies [16,19,20]. Only few cross-sectional studies were conducted with pesticide-exposed rural workers in Brazil and reinforce the findings regarding its effects on the respiratory symptoms [3,21,22]. One study, published in 2005, evaluated the lung function of rural workers in Brazil and found a high prevalence of ventilator disorders [23].

Assessing the individual exposure to pesticides is a main challenge in studies with occupationally exposed communities. Biological monitoring is often used to estimate the extent of exposure and establish causal relations with health outcomes. Despite all concerns about its specificity, sensitivity, and individual and laboratory variations, the most common test used in Brazil is the quantification of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activity, which are inhibited by organophosphorus (OF) and carbamate (CM) pesticides [1,4].

Therefore, the present study aimed to explore whether exposure to pesticide is associated with the prevalence of respiratory symptoms and lung function impairments among workers and their families in small rural properties in Brazil during both crop season and off-season, using cholinesterase exams, among other research instruments. These data can be
useful to better understand the pesticide exposure scenario in family farming and to inspire public policies to face the problem. Moreover, they can raise awareness among Brazilian family farmers to improve their work practices and policy makers to provide more training and technical support.

2. Materials and Methods

This study was carried out in two stages: (a) during the crop season (July and August 2014), questionnaire-based interviews about sociodemographic characteristics, clinical information and detailed exposure history to pesticide were conducted, biomarkers were collected for analysis, and the respiratory assessment was performed; (b) during the off-season period (January 2015), all participants underwent the respiratory assessment again to compare higher and lower exposure periods. This study was approved by the Ethical Board of the University Hospital Clementino Fraga Filho of the Federal University of Rio de Janeiro, and all participants provided written informed consent.

2.1. Study Area and Population

São José de Ubá (SJU, Brazil) is a small town located in the northwest of Rio de Janeiro State, Brazil. It has approximately 7000 inhabitants, 45% of whom live in the urban center while 55% are distributed in rural neighborhoods of 200 to 300 people. The economy is mostly based on family farming, especially tomato cultivation [24], which demands intensive phytosanitary care for pest control, usually based on the use of significant amounts of pesticides [25]. Studies previously conducted in the area evaluated the quality of surface and groundwater and found nitrate, aluminum, iron, manganese, boron, zinc and pesticides (organochlorine and OF) in disagreement with the levels allowed by Brazilian legislation as a result of agricultural practices, livestock and untreated sewage disposal [26,27].

The sample in our study consisted of 82 individuals older than 18 years from approximately 750 individuals working in tomato cultivation in SJU. Participants were rural workers (n = 48) or relatives (n = 34) residing in the rural area. Rural workers were those daily involved in tomato cultivation at the time the study was conducted, which included pesticide handling. Relatives were those members of the same family (relatives that lived in
the same household), which could help in agricultural-related activities. Recruitment of participants was done by convenience in agricultural areas upon indication of SJU residents and stakeholders. Individuals were contacted in the rural properties and invited to participate. Participants were sought for reevaluation in the off-season period. The sample was obtained sequentially, including all eligible subjects that could be contacted during the study period. Thus, the final sample size was delimited by the projects’ time and budget constraints. Demographic data such as age, gender and body mass index (BMI) were obtained from each subject. Socio-economic status, educational level, smoking habits (pack-years), marital status and alcohol consumption data were also collected. The Brazilian minimum wage (R$954 Brazilian reais in 2018), which is equivalent to approximately $260 US dollars, was used as the basis to calculate the monthly family income.

2.2. Exposure Assessment

Exposure assessment was obtained through a questionnaire-based interview conducted by a trained researcher during the crop season. Information related to the duration of pesticide exposure, manipulation frequency, use of personal protective equipment (PPE), pesticide use in the off-season, domestic exposure, intoxication history, and hygiene habits after pesticide manipulation (washing hands and taking a shower after work or eating at the crop field) were obtained. It was asked the types of pesticides most frequently used by rural workers and they were classified according to the Brazilian National Sanitary Surveillance Agency (ANVISA): class I (extremely toxic), II (highly toxic), III (moderately toxic) and IV (low toxicity) [1]. This pesticide toxicity classification considers the acute oral LD50, dermal LD50, and inhalation LD50, ocular and cutaneous lesions tested in laboratory animals [28]. It was also assessed whether rural workers and relatives received technical orientation or training in safety procedures.

Based on previous studies [18,20,29,30], an individual exposure burden (IEB) was created with a range of 0–10, using: current contact with pesticides (no = 0/yes = 2); domestic exposure, such as manipulation of contaminated clothes and domestic use for pest control (no = 0/yes = 1); previous intoxication after pesticide exposure (no = 0/yes = 1); frequency of pesticides manipulation (no contact = 0, once a month or less = 1, 2–3 times/month = 2, 1–3 times/week = 3 or 5–7 times/week = 4); and distance from home to crop areas (more than 1 km = 0, from 500 m to 1 km = 1 or up to 500 m = 2).
Regarding the cholinesterase activity measurement, blood samples (10 mL) were collected from 74 individuals by qualified personnel using heparinized Vacutainer tubes during the crop season. Samples were immediately centrifuged, frozen and sent to the Centro de Estudos da Saúde do Trabalhador e Ecologia Humana (CESTEH—Human Study Center for Worker’s Health and Human Ecology) from the National School of Public Health, Oswaldo Cruz Foundation (FIOCRUZ, Rio de Janeiro, Brazil) for analysis. Cholinesterase activity (AChE and BChE) was quantified by using a Shimadzu UV/VIS 1601 spectrophotometer, through the Ellman method, modified by Oliveira-Silva et al. [31]. This method is indicated when blood sampling is performed far from the laboratory and allows cholinesterase determination after freezing of plasma and erythrocyte fractions. Obtained values were compared to the exposure indicators and to reference values determined by CESTEH from studies involving populations non-exposed to pesticides, being 0.56 mmol/min/mg for AChE (for both genders) and 2.29 and 1.61 mmol/min/mg for BChE, for men and women, respectively [31]. Cholinesterase activity was considered normal when subjects presented values above the reference values.

2.3. Respiratory Health Assessment

Prevalence of respiratory symptoms was assessed by a questionnaire-guided interview, using the European Community Respiratory Health Survey (ECRHS), validated in Brazil by Ribeiro et al. [32]. This questionnaire evaluates respiratory symptoms in the previous 12 months. However, in the off-season period, it was adapted to identify the symptoms prevalence in the previous 4 months, in order to avoid overlapping with the crop season.

Spirometry was performed following the recommendations of the ATS/ERS—American Thoracic Society and the European Respiratory Society [33] with a Koko PFT spirometer (nSpireHealth, Longmont, CO, EUA), calibrated daily. We used reference values proposed by Polgar and Promadhat [34] for males up to 24 years and females up to 20 years old and by Pereira et al. [35] for males aged over 25 years and females over 21 years old. Although only the latter set was derived from the Brazilian population, both are recommended by the Brazilian Thoracic Society [36]. In the crop season, the respiratory assessment was conducted one week after the first interview due to exam preparation.

This study focused on the forced vital capacity (FVC), the forced expiratory volume in the first second (FEV₁), the FEV₁/FVC ratio, and the forced expiratory flow between 25–75%
(FEF$_{25-75}$%). Individuals with the FEV$_1$/FVC ratio below the predicted lower limit were classified as having an obstructive defect (OD). In these cases, severity classification was measured according to the FEV$_1$ value in relation to the predicted: mild (FEV$_1$ > 60%), moderate (FEV$_1$ > 41 < 60%) and severe (FEV$_1$ ≤ 40%). A restrictive pattern (RP) was defined for cases with simultaneous reduction of FVC and FEV$_1$, but with FEV$_1$/FVC ratio within the predicted range associated with at least one of the following (i) FVC reduction to levels below 50% of predicted value or (ii) presence of FEF$_{25-75}$/FVC ratio above 150% of predicted that may characterize increased intermediate expiratory flows, due to a rise in elastic recoil traction of lungs. Altered cases that did not meet the criteria for definition as an obstructive defect or restrictive pattern were classified as a nonspecific pattern (NSP) [33,37].

2.4. Statistical Analysis

Depending on their distribution, data were presented as mean and standard deviation (SD) or median and interquartile range (IQR). Comparison between groups was performed using T-test or Mann-Whitney test and comparison between categorical variables was performed using Chi-Square test. The associations of independent variables (including the IEB) and variables such as lung function results, AChE and BChE were evaluated in a regression analysis using Generalized Linear Models (GLM) [38]. Variables with p < 0.10 in the univariate analysis were considered for the multiple models. The GLM was fitted using the log-link function and Poisson scale response. Akaike’s Information Criterion (AIC) was applied to indicate the best fitting model. All models tested were controlled for smoking and age. Gender, weight and height were considered to establish the predicted values for spirometry. Socioeconomic status was similar among all participants and not included in the analysis. Each person was compared to himself for the presence of respiratory symptoms during the crop season and off-season, and the Odds Ratio was calculated through the McNemar test, as participants formed a matched control case. Statistical analysis was performed using IBM SPSS software (version 22 IBM Corp., Chicago, IL, USA). p-values < 0.05 were considered significant.
3. Results

3.1. Study Population

Some of the 82 participants in the exposure assessment refused to participate in the cholinesterase test, or their samples were insufficient, remaining 74 (90.2%) valid blood samples for analysis. Spirometry was performed in 70 (85.4%) individuals during the crop season and 62 (75.6%) in the off-season. Seventy-five (91.5%) individuals answered to the respiratory symptoms questionnaire in both periods.

Table 1 presents sociodemographic characteristics of the studied population classified by exposure group. Most rural workers were men (83.3%) with a mean age of 42.9 ± 12.4 (sd) and relatives were mostly women (85.3%) aging 45.7 ± 14.9 (sd) on average. They were predominantly married and, as many individuals in relatives’ group were married to participant rural workers, family income was similar among groups (up to two Brazilian minimum wages, approximately US $520). In general, 86.6% had primary or lower educational level, and only 13.4% had studied more than eight years. Most rural workers (60.4%) and relatives (76.5%) had never smoked, whereas 20.8% and 17.6% were ex-smokers, and only 18.8% and 5.9% were smokers at the time of data collection, respectively. Although the number of current smokers was higher among rural workers, the non-statistical significance may be due to the small size of the subgroups. Among rural workers and relatives, respectively, 50% and 38.2% had low or normal weight, 41.7% and 29.4% were overweight, and 8.3% and 32.4% were obese.

Sociodemographic variables	Total n = 82 (%)	Farmers n = 48 (%)	Relatives n = 34 (%)	p-Value
Age (mean in years ± sd)	44.0 ± 13.5	42.9 ± 12.4	45.7 ± 14.9	0.35 b
Gender				
Male	45 (54.9%)	40 (83.3%)	5 (14.7%)	<0.001 b
Female	37 (45.1%)	8 (16.7%)	29 (85.3%)	
Marital status				
Married/cohabiting partner	71 (86.6%)	40 (83.3%)	31 (91.2%)	0.31 b
Single or divorced	11 (13.4%)	8 (16.7%)	3 (8.8%)	
Monthly family income $				
Up to 2 salaries	58 (70.7%)	37 (77.1%)	21 (61.8%)	0.133 b
More than 2 salaries	24 (29.3%)	11 (22.9%)	13 (38.2%)	
Years of education (median; IQR*)	4 (3.3 - 8)	4 (3 - 6.5)	5 (4 - 8)	0.30 c
Body Mass Index (mean ± sd)

- Low or normal weight: 26.4 ± 5.6
- Overweight: 30 (36.6%)
- Obese: 15 (18.3%)

Smoking status

- Never: 55 (67.1%)
- Past (ex): 16 (19.5%)
- Current: 11 (13.4%)

Alcohol consumption (if yes)

- 24 (29.3%)

Smoking status

- Never: 55 (67.1%)
- Past (ex): 16 (19.5%)
- Current: 11 (13.4%)

Duration of pesticide exposure (mean in years ± sd)

- 25.7 ± 15.1
- 30.2 ± 13.6
- 19.3 ± 15.1

Current direct contact in the crop (if yes)

- 42 (51.2%)
- 38 (43.6%)
- 4 (11.8%)

Frequent handling in the crop season**

- 41 (50%)
- 38 (43.6%)
- 3 (8.8%)

Pesticide use in the off-season

- 6 (7.3%)
- 6 (12.5%)
- 0

Use of any PPE***

- 53 (64.6%)
- 43 (89.6%)
- 10 (29.4%)

Use of respiratory PPE (mask or respirator)

- 39 (47.6%)
- 37 (77.1%)
- 2 (5.9%)

Use of eyes PPE (visor)

- 41 (50%)
- 35 (72.9%)
- 6 (17.6%)

Use of hand PPE (gloves)

- 42 (51.2%)
- 36 (75%)
- 6 (17.6%)

Domestic exposure (if yes)

- 72 (87.8%)
- 40 (83.3%)
- 32 (94.1%)

Residential distance from plantation site

- Up to 500 meters: 44 (53.7%)
- More than 500 meters: 38 (46.3%)

Previous intoxication ever

- 14 (17.1%)

Received training or technical support

- 11 (13.4%)

Washes hands after handling pesticides

- 63 (76.8%)

Takes shower after handling pesticides

- 47 (57.3%)

Consumes food and water in the field

- 71 (86.6%)

Exposure variables

- Duration of pesticide exposure (mean in years ± sd)
- Current direct contact in the crop (if yes)
- Frequent handling in the crop season**
- Pesticide use in the off-season
- Use of any PPE***
- Use of respiratory PPE (mask or respirator)
- Use of eyes PPE (visor)
- Use of hand PPE (gloves)
- Domestic exposure (if yes)
- Residential distance from plantation site
- Previous intoxication ever
- Received training or technical support
- Washes hands after handling pesticides
- Takes shower after handling pesticides
- Consumes food and water in the field

- Based on Brazilian minimum salary ($± 293 US$) * IQR - Interquartil range (P25 - P75) ** Frequent pesticide handling = more than 1 to 3 times per week; *** PPE: Personal protective equipment; a Chi-Square - Fisher exact test; b One-way ANOVA; c Kruskal-Wallis one-way ANOVA.

3.2. Exposure Assessment

Table 1 shows pesticide exposure characteristics of participants according to group of exposure. The length of pesticide exposure was long for both groups. Rural workers had a mean age of 42.9 years and a length of pesticide exposure of 30.2 ± 13.6 (sd) years, with an average of 10.7 ± 2.3 (sd) hours worked per day in the crop season. Among relatives, the mean age was 45.7 years, and the duration of exposure was 19.3 ± 15.1 (sd) years. Significantly fewer relatives stated to have direct contact with pesticide in the crop (n = 4; 11.8%) and to frequently handle pesticides (n = 3; 14.7%) at the time of data collection. Nevertheless, 29 (85.3%) relatives have claimed to assist in agricultural activities in the crop season as re-entry workers although only 10 (29.4%) declared to use any PPE. Thirty-eight
rural workers (79.2%) reported handling and spraying pesticides by manual pumping or backpack tank more than once a week, and five of them (11.9%) used pesticides 4 to 7 times per week. About 75% of rural workers affirmed to wear respiratory protection, gloves and boots, but only 23% claimed to use eyes protection while applying pesticides.

Most individuals (53.7%) lived up to 500 m from a planting site. Forty rural workers (83.3%) and thirty-two relatives (94.1%) were domestically exposed to pesticides by using them at home or washing contaminated clothes and equipment (Table 1). Only 22.9% of rural workers and none relative were trained or received technical support to handle pesticides. Most of the rural workers (95.8%) and relatives (73.5%) consumed food and water on the crop site, including when pesticides were applied.

All participants presented values of AChE above the reference values, considered normal. Twelve out of 44 rural workers (27.3%) and 2 out of 30 relatives (6.7%) presented BChE levels below the reference values, considered abnormal. In the multiple regression models, AChE reduction pattern was significantly associated with the pesticide manipulation frequency (p = 0.04), whereas BChE presented an association with it near the significance level (p = 0.08).

Subjects declared using regularly 49 pesticides from 31 chemical groups, including organophosphates, carbamates, pyrethroids, nitriles, diamides, neonicotinoids, avermectins and benzimidazole. Glyphosate, classified as highly toxic, was mentioned by 35.4% of rural workers, and paraquat, moderately toxic to humans, by 16.7%, while 6.3% reported using both. These products are banned in Brazil for tomato cultivation [1]. The use of other 15 extremely toxic pesticides and seven highly toxic ones were mentioned 91 and 36 times, respectively. Moreover, 21 moderately toxic pesticides were mentioned 81 times and five low toxicity pesticides were mentioned nine times. In addition, spraying Lorsban (chlorpyrifos), an extremely toxic organophosphate, was mentioned three times, and 2,4-D (aryloxyalkanoic acid), an extremely toxic herbicide, was mentioned once. Both are not permitted for tomato cultivation. Furthermore, the use of endosulfan, a highly toxic insecticide/acaricide prohibited in Brazil since 2013, was cited by one farmer [1].

3.3. Respiratory Health Assessment

Considering all participants, 33.3% reported none respiratory symptom in the crop season and 66% in the off-season. During the crop season, 32% of the interviewees had one
and 22.7% two respiratory symptoms, whereas during the off-season, 18.7% had one symptom and 13.3% two symptoms. In both periods, the most prevalent symptoms were cough, nasal allergies and hay fever, chest tightness, and breathlessness. During the crop season and off-season, respectively, the prevalence was 40% and 30.7% for cough, 30.7% and 24% for nasal allergies and hay fever, 24% and 17.3% for chest tightness, and 17.3% and 10.7% for breathlessness. Among rural workers, 37% and 19.6% presented one and two symptoms during the crop season, and 17.8% and 11.1% in the off-season, respectively. Whereas among relatives, 24.1% and 27.6% showed one and two symptoms during the crop season, and 20% and 16.7% in the off-season, respectively. Although there were no statistically significant differences between the periods, the number and prevalence of respiratory symptoms were higher during the crop season.

The individual comparison of respiratory symptoms between crop season and off-season is presented in Table 2. The chance of having symptoms during the crop season was significantly higher than during the off-season for two symptoms. Six individuals woke with breathlessness during the crop season but not during the off-season, whilst the opposite did not happen. Eleven individuals woke up with cough during the crop season but not during the off-season, while only two individuals had the opposite (OR = 5.5).

Table 2. Comparison of respiratory symptoms prevalence between crop season (2014) and off-season (2015), using the ECRHS questionnaire in SJU.

Symptoms	Crop season/Off-season periods a	Odds Ratio (95% CI) b	P- Value			
Wheeze or chest tightness	Yes/No	No/Yes	Yes/Yes	No/No	2.25 (0.63, 10)	0.27
Wheeze with breathlessness	2	3	3	62	0.67 (0.06, 5.82)	1
Wheeze without cold	3	2	3	62	1.5 (0.17, 17.96)	1
Waking with chest tightness	6	1	7	56	6 (0.73, 275.99)	0.13
Waking with breathlessness	6	0	5	59	Not calculable	0.04*
Waking with cough	11	2	19	38	5.5 (1.20, 51.07)	0.03*
Asthma crisis	2	1	0	67	2 (0.1, 118.10)	1
Nasal allergies and hay fever	12	5	10	43	2.4 (0.79, 8.70)	0.15
Treatment for asthma	0	2	1	67	Not calculable	0.48
Asthma diagnosis	1	3	1	65	0.33 (0.01, 4.15)	0.62

a Comparisson between crop season and off-season periods, being 'Yes' for 'with symptoms' and 'No' for 'without symptoms'; b Odds Ratio calculated through McNemar test and Confidence Interval (CI) = 95%; c Asthma diagnosis = at least one asthma attack in the past 12 months and/or confirmation of medication use. * Values with statistical significance.
Both during crop and off-season, most individuals (80%) presented normal spirometry. Table 3 shows the spirometry associated patterns among rural workers and relatives assessed in SJU in both periods. The most common pattern of pulmonary change found was obstructive, followed by non-specific. During the crop season, five rural workers presented mild OD, one moderate OD, and two presented NSP. Moreover, three relatives presented mild OD, one presented RP, and two had NSP. During the off-season, five rural workers presented mild OD, one presented RP and three presented reduced vital capacity and FEV\(_1\) close to inferior normal limit with normal FEV\(_1\)/FVC ratio. Also, one relative presented mild OD and three presented NSP.

Table 3. Spirometry patterns among individuals assessed in SJU during crop season and off-season.

	Crop season		Off-season			
	Farmers	Relatives	Total	Farmers	Relatives	Total
	(n=43)	(n=27)	(n=70)	(n=38)	(n=24)	(n=62)
Normal	35 (81.3%)	21 (77.8%)	56 (80%)	29 (76.3%) *	20 (83.3%)	49 (79%)
OD \(^1\)	6 (14%)	3 (11.1%)	9 (12.9%)	5 (13.2%)	1 (4.2%)	6 (9.7%)
RP \(^2\)	0	1 (3.7%)	1 (1.4%)	1 (2.6%)	0	1 (1.6%)
NSP \(^3\)	2 (4.7%)	2 (7.4%)	4 (5.7%)	0	3 (12.5%)	3 (4.8%)

\(^1\) OD: obstructive disease; \(^2\) RP: restrictive pattern; \(^3\) NSP: non-specific pattern; * 3 farmers presented vital capacity and FEV\(_1\) close to inferior normal limit with normal FEV\(_1\)/FVC ratio.

For each spirometry variable, the lower and upper limits, interquartile ranges, outliers, mean or median, were calculated and presented in boxplot in Figure 1. Non-statistical significant difference was seen in the comparison of evaluated periods. Nonetheless, values presented a slight reduction and less negative outliers during the off-season.
Figure 1. Boxplot of spirometry results comparison (in percentage of predicted) between crop season (2014) and off-season (2015) among family farmers in SJU. Notes: Light and dark boxes represent the crop season and off-season, respectively. The boxes show the interquartile range (IQR, 25th–75th percentile) and the horizontal line inside the box represents the median; the circles show the outlier values. FVC, FEV₁ and FEV₁/FVC presented non-normal distribution while FEF₂₅–₇₅% presented normal distribution.

The multiple regression models show that spirometric variables are influenced by the proposed exposure indicators. Table 4 presents the association of the spirometry variables and cholinesterase enzymes with the exposure indicators during the crop season. FVC was associated with the years of working with pesticides as a rural worker or helper, and having two or more respiratory symptoms. FEV₁ was related to the IEB, having two or more symptoms, and years of working with pesticide. FEV₁/FVC was related to the frequency of handling pesticides, and to the IEB. FEF₂₅–₇₅% was associated with the manipulation frequency, years of rural work, and having two or more respiratory symptoms.

Variables	Indicators	β-Coefficient (CI) b	p-Value
FVC	Years of rural work c	-0.01 (-0.14; 0.28)	<0.001
	Symptoms d	-0.79 (-1.21; -0.04)	0.005
FEV₁	IEB c	-0.06 (-0.09; -0.023)	0.001
	Symptoms d	-0.11 (-0.17; -0.05)	<0.001
	Years of rural work c	-0.003 (-0.005; -0.002)	0.01
FEV₁/FVC	Manipulation frequency	-0.85 (-1.74; 0.89)	<0.001
	IEB c	-0.11 (-1.05; 0.13)	0.05
Table 5 shows the association of the pesticide exposure indicators with the spirometry measures during the off-season in SJU. FVC was related to having two or more respiratory symptoms. FEV₁ was associated with the manipulation frequency, and the years of working with pesticide as a rural worker or helper. FEV₁/FVC ratio was related to the years of rural work, whilst presented an association near the significance level with the IEB. Moreover, FEF₂₅₋₇₅% was associated with the manipulation frequency, and years working with pesticide or helping as a rural worker.

Table 5. Multiple regression models a of spirometry variables (in percentages of predict) on exposure indicators during the off-season in SJU. 2015.

Variables	Indicators	β-Coefficient (CI) b	p - Value
FVC	Symptoms d	-0.79 (-1.21; -0.04)	0.005
FEV₁	Manipulation frequency	-0.29 (-0.37; -0.28)	<0.001
	Years of rural work c	-0.02 (-0.03; -0.009)	<0.001
FEV₁/FVC	Years of rural work c	-0.001 (-0.001; -0.001)	<0.001
	IEB e	-0.001 (-0.002; 0.000)	0.07
FEF₂₅₋₇₅%	Manipulation frequency	-0.34 (-0.42; -0.26)	<0.001
	Years of rural work c	-0.03 (-0.04; 0.02)	<0.001

a multiple analysis adjusted for age and smoking; b confidence interval = 95%; c years of working or helping as farmer; d two or more declared respiratory symptoms; e IEB: individual exposure burden.

4. Discussion

Only a few studies have been conducted in Brazil to access the health impacts among pesticide-exposed populations. An innovative approach of this study was to compare the respiratory effects of high and low-exposure periods. Our findings demonstrate an increased
prevalence of self-reported cough, nasal allergies and hay fever, chest tightness, and breathlessness among workers and relatives, especially during the crop season. Furthermore, we found significant associations between the short and long-term exposure to pesticides and a decrease in lung function parameters in both crop season and off-season. These findings provide complementary evidence of the acute and chronic effects of pesticide exposure on respiratory health and possibly the development of chronic lung diseases.

We found a significant association between some exposure indicators used and a decrease of FVC, FEV\textsubscript{1}, FEV\textsubscript{1}/FVC ratio, and FEF\textsubscript{25-75\%} both during the crop season and off-season, even after adjusting for sex, age and smoking. In general, more exposure indicators were significantly related with the lung measures. Moreover, some associations were stronger during the crop season, suggesting that short-term exposure to pesticides had an additional effect on spirometry parameters. Changes in FEV\textsubscript{1} and FEV\textsubscript{1}/FVC ratio are predominantly related to large airways, and FEF\textsubscript{25-75\%} alterations to small airways [39]. Further studies should be done in SJU to investigate the specific segment affected. Previous studies investigated the pulmonary function of pesticide-exposed workers and found a significant decrease in the FVC [8,9], in the FEV\textsubscript{1} [8,9,17–20,40,41], in the FEV\textsubscript{1}/FVC ratio [9,11,17,20], in the FEF\textsubscript{25-75\%} [8,9,18,40], and in the peak expiratory flow [9,17]. In addition, the only study that evaluated the influence of pesticide exposure on the lung function of Brazilian rural workers found a prevalence of obstructive diseases higher than our findings [23]. Taken together, these studies reinforce the association between respiratory impairments and occupational exposure to pesticides, independent of smoking.

Not many studies have discussed the respiratory effects of pesticide exposure considering seasonal variations. In the present study, we did not find statistically significant differences on lung function when comparing the crop season and the off-season. Nevertheless, the spirometry variables presented a slight reduction during the off-season, in accordance with another study [19]. This minor reduction could be explained by the worsening of the individual condition, by less effort of the participants at the reevaluation tests or by loss of follow-up subjects at this stage, especially those in better health condition. Previous studies found a significant reduction in the FEV\textsubscript{1} measurement in the post-exposure when compared to the pre-exposure level [42], and lower post-shift values of FVC and FEV\textsubscript{1} in both crop- and off-season [19]. It suggests that acute obstructive diseases can arise from high exposure in crop activities. Even when all standards and recommendations are followed, a precise estimation of the individual spirometric changes requires a relatively prolonged
follow-up due to seasonal, technical and biological variability [19]. Unfortunately, in our study this was not possible.

In this study, the higher prevalence of respiratory symptoms during the crop season can be attributable to the short-term effects of pesticide exposure. These findings are supported by several epidemiological studies that associated respiratory symptoms to occupational pesticide exposure in Brazil [21–23] and elsewhere [8,9,13,17,29].

In Brazil, family farmers frequently handle multiple pesticides and apply them by manual pumping or backpack tanks. Nonetheless, pesticide exposure is not restricted to direct contact during the preparation and spraying. Commonly, rural workers are involved in all stages of the cultivation process and very often are helped by their relatives in different agricultural tasks during the crop season [1,3,21]. Although many relatives do not often participate directly in spraying activities, they are occupationally exposed to pesticides when helping in other tasks, such as taking the sprout out, tying the stems or harvesting the tomatoes. Some of these activities are carried out at the same day or day after the pesticide spraying and are often done without personal protection. This situation was observed in SJU. Moreover, our findings corroborate previous studies conducted in Brazil which have shown that, in general, family farmers present low educational level and family income, and lack of orientation or technical support for using chemical products. This scenario points to social vulnerability, leading to a low risk-awareness and a misuse of protective equipment and, consequently, to careless pesticide use and higher human exposure [3,21–23,43]. Indeed, during the field work in SJU it was observed that no one used complete PPE even during spraying activities. In the interviews they identified this equipment as expensive, hot and uncomfortable. Although most rural workers affirmed that they shower and wash their hands after handling pesticides, this only occurs at the end of the work day. Most also declared consuming food and water in the field during work. These habits may increase the exposure and contamination risk [3,44]. Furthermore, some highly toxic pesticides such as glyphosate-based herbicides, paraquat, lorsban, and 2,4-D, that are banned for tomato cultivation in Brazil, were used in SJU.

Family farmers in SJU, besides occupational exposure, are often environmentally exposed to pesticides from an early age, either by living near planting sites, by using or storing pesticides at home, or by having contact with contaminated clothes and work tools. This residential contact can represent an extra pesticide exposure to rural families and increment the risk and effects on human health [1,44].
The Brazilian law states that all agricultural workers must be submitted to periodic medical examinations with cholinesterase measurements, however, these are not provided by public health services. The exposure assessment and health care of family farmers in Brazil are limited by the informal organization of these workers and their distribution in approximately 4.3 million small properties [45], the constant and prolonged exposure to low doses of multiple pesticides, the distance to health services, the shortage of laboratories with available analytical capacity, and the absence of an integrated intoxication reporting system [1,4]. The AChE and BChE activities vary widely among population groups but their reduction may indicate chronic and acute exposures, respectively [3]. Although the participants were exposed to multiple pesticides in SJU, a significant relation was observed only between AChE inhibition and manipulation frequency, and few individuals presented BChE below the proposed reference values. This can be partially explained by the chosen reference values, by the sample size, or because these biomarkers reflect only the exposure to a small portion of the pesticides used in SJU. AChE has been pointed to be inadequate for monitoring low-dose chronic exposure [46,47], and the BChE reboot effect and fast recovery can hide or underestimate unsafe pesticides exposure [44], making their use as a biomarker for pesticide exposure controversial. Nevertheless, the relation between pesticide exposure and the cholinesterase depletion has been reported in longitudinal studies [42,48,49] and in cross-sectional ones comparing to non-exposed controls [3,9,44]. Agricultural workers in India presented an AChE inhibition of 34.2% and positive associations with respiratory symptoms, lung function decrement and COPD, compared to controls [9]. A study conducted in Brazil showed that, compared to unexposed controls, rural workers and rural area residents presented BChE depletion during the exposure period and AChE depression during both the exposure and non-exposure periods. On the other hand, 31.7% had AChE over 30% higher than baseline levels, indicating a reboot effect [44]. As limitations of our study we can point out the fact that a few individuals did not participate at all stages, the lack of urine biomarkers and the absence of an unexposed control group. The years of rural work were not considered in the IEB because the frequency of manipulation was more explanatory in the analysis. However, the years of working or helping as a rural worker presented significant relations to the pulmonary function impairments in the multiple regression models.

The strong points of this research are: (a) it included approximately 11% of tomato growers in the municipality; (b) it adopted an important methodological approach based on multiple sources of evidences collected by a large multidisciplinary team in two seasons of
the year; (c) the assessment of seasonal variations; (d) it presented an exposure burden measurement which, even in a small sample size, was associated with respiratory impairments and could be replicated, or even improved, in other studies; (e) the focus on family farmers, which are responsible for most of the food produced in Brazil; (f) the consideration of rural workers and their relatives as exposed groups; and (g) the broader view of the pesticide exposure, considering the residential distance to agricultural areas.

5. Conclusions

This study reinforces previous evidence that short or long-term exposures to pesticides are associated with a clinically relevant prevalence of respiratory symptoms and pulmonary function impairment among family farmers often exposed occupationally and environmentally. This situation deserves special attention and urgent preventive measures as poor respiratory condition at productive age may decrease the quality of life of adults and elderly and increase the risk of chronic disease. A higher morbidity and mortality burden associated with these diseases impacts the health system and increases costs. Understanding the family farmers’ health situation is essential to establish early diagnosis, and offer appropriate treatments and preventive measures.

Brazil is the world largest consumer of pesticides but local evidences of their impacts are very scarce and further research is much needed. This study helps to show that occupational exposure to pesticides can culminate in adverse respiratory health outcomes in family farmers and reinforces the need for adoption of more personal protection measures and sustainable agricultural practices. Despite this research being conducted in a small rural community in Brazil, similar situations are very common in family farming and widespread in most of the low- and middle-income countries. Moreover, data produced reinforces causal relationships and can help the design of effective intervention measures and public policies to reduce exposure, risks and the consequences for human health and the environment.

Author Contributions: R.J.B. conceived the idea of this article, collected the data and the samples, conducted data analysis and wrote the manuscript. H.R. supervised and T.M. contributed to the data analysis. J.M.S. conducted respiratory data analysis and result interpretation. F.A.D.-Q. and L.F.A.-L. helped with statistical analysis. R.S.L. and R.C.M. contributed to study design and data collection. D.S.S. helped to collect data in the field. J.R.D.G. was the project coordinator and supervised sample collection. All authors reviewed and provided valuable input to the manuscript.
Acknowledgments: This research was funded by the Brazilian National Council for Scientific and Technological Development (CNPq). Rafael Buralli is funded by the Coordination for the Improvement of Higher Education Personnel (CAPES); Helena Ribeiro, Thais Mauad, Jean Remy Davée Guimarães, and Renata Spolti Leão are funded by CNPq; Luís Amato-Lourenço is funded by the State of São Paulo Research Foundation (FAPESP). The authors declare they have no actual or potential competing financial interests.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Carneiro, F.F.; Augusto, L.G. Dossiê ABRASCO: Um Alerta Sobre Os Impactos Dos Agrotóxicos Na Saúde; EPSJV: Rio de Janeiro, Brazil, 2015; ISBN 978-85-9876-880-9.
2. Rigotto, R.M.; Vasconcelos, D.P.; Rocha, M.M. Pesticide use in Brazil and problems for public health. Cad. Saude Publica 2014, 30, 3. [CrossRef]
3. Nerilo, S.B.; Martins, F.A.; Nerilo, L.B.; Cocco, V.E.; Endo, R.Y.; Henrique, G.; Rocha, O.; Galerani, S.A.; Janeiro, V.; Nishiyama, P.; et al. Pesticide use and cholinesterase inhibition in small-scale agricultural workers in southern Brazil. Braz. J. Pharm. Sci. 2014, 50, 783–791. [CrossRef]
4. Bendetti, D. An Evaluation of Occupational Exposures to Pesticides in Brazil. Occup. Med. Health Aff. 2014, 2, 170. [CrossRef]
5. Ye, M.; Beach, J.; Martin, J.W.; Senthilselvan, A. Occupational pesticide exposures and respiratory health. Int. J. Environ. Res. Public Health 2013, 10, 6442–6471. [CrossRef] [PubMed]
6. Mamane, A.; Baldi, I.; Tessier, J.-F.; Raherison, C.; Bouvier, G. Occupational exposure to pesticides and respiratory health. Eur. Respir. Rev. 2015, 24, 306–319. [CrossRef] [PubMed]
7. Mostafalou, S.; Abdollahi, M. Pesticides: An update of human exposure and toxicity. Arch. Toxicol. 2017, 91, 549–599. [CrossRef] [PubMed]
8. Zuskin, E.; Mustajbegovic, J.; Schachter, E.N.; Kern, J.; Deckovic-Vukres, V.; Trosic, I.; Chiarelli, A. Respiratory function in pesticide workers. J. Occup. Environ. Med. 2008, 50, 1299–1305. [CrossRef] [PubMed]
9. Chakraborty, S.; Mukherjee, S.; Roychoudhury, S.; Siddique, S.; Lahiri, T.; Ray, M.R. Chronic Exposures to Cholinesterase-inhibiting Pesticides Adversely Affect Respiratory Health of Agricultural Workers in India. J. Occup. Health 2009, 51, 488–497. [CrossRef] [PubMed]
10. Mathew, P.; Jose, A.; Alex, R.G.; Mohan, V.R. Chronic pesticide exposure: Health effects among pesticide sprayers in Southern India. Indian J. Occup. Env. Med. 2015, 19, 95–101.
11. Salameh, P. Respiratory diseases and pesticide exposure: A case-control study in Lebanon. J. Epidemiol. Community Health 2006, 60, 256–261. [CrossRef] [PubMed]
12. Baldi, I.; Robert, C.; Piantoni, F.; Tual, S.; Bouvier, G.; Lebailly, P.; Raherison, C. Agricultural exposure and asthma risk in the AGRICAN French cohort. Int. J. Hyg. Environ. Health 2014, 217, 435–442. [CrossRef] [PubMed]

13. Hoppin, J.A.; Umbach, D.M.; Long, S.; London, S.J.; Henneberger, P.K.; Blair, A.; Alavanja, M.; Freeman Beane, L.E.; Sandler, D.P. Pesticides are associated with allergic and non-allergic wheeze among male farmers. Environ. Health Perspect. 2017, 125, 535–543. [CrossRef] [PubMed]

14. Hoppin, J.A.; Valcin, M.; Henneberger, P.K.; Kullman, G.J.; Umbach, D.M.; London, S.J.; Alavanja, M.C.R.; Perret, J.L.; Lodge, C.J.; Morrison, S.; Johns, D.P.; Giles, G.G.; et al. Occupational exposure to pesticides are associated with fixed airflow obstruction in middle-age. Thorax 2017, 72, 990–997. [CrossRef] [PubMed]

15. Salameh, P.R.; Waked, M.; Baldi, I.; Brochard, P.; Saleh, B.A. Chronic bronchitis and pesticide exposure: A case-control study in Lebanon. Eur. J. Epidemiol. 2006, 21, 681–688. [CrossRef] [PubMed]

16. Alif, S.M.; Dharmage, S.C.; Benke, G.; Dennekamp, M.; Burgess, J.A.; Perret, J.L.; Lodge, C.J.; Morrison, S.; Johns, D.P.; Giles, G.G.; et al. Adverse respiratory health and hematological alterations among agricultural workers occupationally exposed to organophosphate pesticides: A cross-sectional study in North India. PLoS ONE 2013, 8, e69755. [CrossRef]

17. Fareed, M.; Pathak, M.K.; Bihari, V.; Kamal, R.; Srivastava, A.K.; Kesavachandran, C.N. Low level of exposure to pesticides leads to lung dysfunction in occupationally exposed subjects. Inhal. Toxicol. 2008, 20, 839–849. [CrossRef] [PubMed]

18. Shama, F.A.; Skogstad, M.; Nijem, K.; Bjertness, E.; Kristensen, P. Cross-shift changes in lung function among palestinian farmers during high- and low-exposure periods to pesticides: A longitudinal study. Arch. Environ. Occup. Health 2015, 70, 218–224. [CrossRef] [PubMed]

19. De Jong, K.; Boezen, H.M.; Kromhout, H.; Vermeulen, R.; Postma, D.S.; Vonk, J.M. Association of occupational pesticide exposure with accelerated longitudinal decline in lung function. Am. J. Epidemiol. 2014, 179, 1323–1330. [CrossRef] [PubMed]

20. Senhorinho, H.C.; Maria, S.; Gomes, M.; Franqui, E.; Júnior, H.P. Prevalência de distúrbios ventilatórios em trabalhadores rurais expostos a agrotóxicos no norte do Paraná. Fisioterapia e Pesquisa 2005, 12, 35–44.

21. IBGE—Instituto Brasileiro de Geografia e Estatística. Características do Município; IBGE: São José de Ubá, Rio de Janeiro, Brazil, 2018.

22. Gomes, M.; Barizon, R. Panorama da Contaminação Ambiental Por Agrotóxicos E Nitrato De Origem Agrícola No Brasil: Cenário 1992/2011; Embrapa Meio Ambiente: Jaguariúna, Brazil, 2014.
26. Menezes, J.; Prado, R.; Silva Júnior, G.; Mansur, K.; Oliveira, E. Qualidade da água e sua relação espacial com as fontes de contaminação antrópicas e naturais: Bacia hidrográfica do rio São Domingos—RJ. Eng. Agríc. 2009, 29, 687–698. [CrossRef]

27. Menezes, J.; Prado, R.; Silva Júnior, G.; Mansur, K.; Oliveira, E. Qualidade da água superficial em área rural. Cad. Estud. Geoambientais 2012, 3, 32–43.

28. BRASIL Portaria N_3, de 16 de Janeiro de 1992. Available online: http://bvsms.saude.gov.br/bvs/saudelegis/svs1/1992/prt0003_16_01_1992.html (accessed on 25 May 2018).

29. Negatu, B.; Kromhout, H.; Mekonnen, Y.; Vermeulen, R. Occupational pesticide exposure and respiratory health: A large-scale cross-sectional study in three commercial farming systems in Ethiopia. Thorax 2016, 72, 498–499. [CrossRef] [PubMed]

30. Mamane, A.; Tessier, J.-F.; Bouvier, G.; Salamon, R.; Lebailly, P.; Raherison, C.; Baldi, I.; Baldi, I. Increase in the Risk of Respiratory Disorders in Adults and Children Related to Crop-Growing in Niger. J. Environ. Public Health 2016, 2016, 9848520. [CrossRef] [PubMed]

31. Oliveira-Silva, J.J.; Alves, S.R.; Inacio, A.F.; Meyer, A.; Saracinelli, P.N.; Mattos, R.C.; Ferreira, M.F.; Cunha, J.C.; Moreira, J.C. Cholinesterase activities determination in frozen blood samples: An improvement to the occupational monitoring in developing countries. Hum. Exp. Toxicol. 2000, 19, 173–177. [CrossRef] [PubMed]

32. Ribeiro, M.; Angelini, L.; Robles-Ribeiro, P.; Stelmach, R.; Santos Ude, P.; Terra-Filho, M. Validation of the Brazilian-Portuguese version of the European Community Respiratory Health Survey in asthma patients. J. Asthma 2007, 44, 371–375. [CrossRef] [PubMed]

33. Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; van der Grinten, C.P.M.; Gustafsson, P.; et al. Standardisation of spirometry. Eur. Respir. J. 2005, 25, 207–221. [CrossRef] [PubMed]

34. Polgar, G.; Promadhat, V. Pulmonary function testing in children: Techniques and standards. Ann. Intern. Med. 1971, 75, 87–212.

35. De Pereira, C.A.C.; Sato, T.; Rodrigues, S.C. New reference values for forced spirometry in white adults in Brazil. J. Bras. Pneumol. 2007, 33, 397–406. [CrossRef]

36. Rodrigues, J.C.; Cardieri, J.M.A.; Bussamra, M.H.C.F.; Nakaie, C.M.A.; Almeida, M.B.; Silva Filho, L.V.F.; Adde, F.V. Provas de função pulmonar em crianças e adolescentes. J. Pneumol. 2002, 28, 207–221.

37. Pellegrino, R.; Viegi, G.; Brusasco, V.; Crapo, R.O.; Burgos, F.; Casaburi, R.; Coates, A.; van der Grinten, C.P.M.; Gustafsson, P.; Hankinson, J.; et al. Interpretative strategies for lung function tests. Eur. Respir. J. 2005, 26, 948–968. [CrossRef] [PubMed]

38. McCullagh, P. Generalized linear models. Eur. J. Oper. Res. 1984, 16, 285–292. [CrossRef]

39. De Jong, K.; Boezen, H.M.; Kromhout, H.; Vermeulen, R.; Vonk, J.M.; Postma, D.S. Occupational Exposure to Vapors, Gases, Dusts, and Fumes Is Associated with Small Airways Obstruction. Am. J. Respir. Crit. Care Med. 2014, 189, 487–490. [CrossRef] [PubMed]

40. Salameh, P.; Waked, M.; Baldi, I.; Brochard, P. Spirometric changes following the use of pesticides. East. Mediterr. Health J. 2005, 11, 126–136. [PubMed]
41. De Jong, K.; Boezen, H.M.; Kromhout, H.; Vermeulen, R.; Postma, D.S.; Vonk, J.M. Pesticides and other occupational exposures are associated with airway obstruction: The LifeLines cohort study. Occup. Environ. Med. 2014, 71, 88–96. [CrossRef] [PubMed]

42. Pathak, M.K.; Fareed, M.; Srivastava, A.K.; Pangtey, B.S.; Bihari, V.; Kuddus, M.; Kesavachandran, C. Seasonal variations in cholinesterase activity, nerve conduction velocity and lung function among sprayers exposed to mixture of pesticides. Environ. Sci. Pollut. Res. 2013, 20, 7296–7300. [CrossRef] [PubMed]

43. Pedlowski, M.A.; Canela, M.C.; da Costa Terra, M.A.; Ramos de Faria, R.M. Modes of pesticides utilization by Brazilian smallholders and their implications for human health and the environment. Crop Prot. 2012, 31, 113–118. [CrossRef]

44. Pasiani, J.O.; Torres, P.; Silva, J.R.; Diniz, B.Z.; Caldas, E.D. Knowledge, attitudes, practices and biomonitoring of farmers and residents exposed to pesticides in Brazil. Int. J. Environ. Res. Public Health 2012, 9, 3051–3068. [CrossRef] [PubMed]

45. IBGE—Instituto Brasileiro de Geografia e Estatística. Censo Agropecuário 2006. Available online: https://www2.ibge.gov.br/home/estatistica/economia/agropecuaria/centroagro/default.shtm (accessed on 23 May 2018).

46. García-García, C.R.; Parrón, T.; Requena, M.; Alarcón, R.; Tsatsakis, A.M.; Hernández, A.F. Occupational pesticide exposure and adverse health effects at the clinical, hematological and biochemical level. Life Sci. 2016, 145, 274–283. [CrossRef] [PubMed]

47. Ngowi, A.V.F.; Maeda, D.N.; Partanen, T.J.; Sanga, M.P.; Mbise, G. Acute health effects of organophosphorus pesticides on Tanzanian small-scale coffee growers. J. Exp. Anal. Environ. Epidemiol. 2001, 11, 335–339. [CrossRef] [PubMed]

48. Krenz, J.E.; Hofmann, J.N.; Smith, T.R.; Cunningham, R.N.; Fenske, R.A.; Simpson, C.D.; Keifer, M. Determinants of butyrylcholinesterase inhibition among agricultural pesticide handlers in Washington State: An Update. Ann. Occup. Hyg. 2015, 59, 25-40. [CrossRef] [PubMed]

49. Crane, A.L.; Rasoul, G.A.; Ismail, A.A.; Hendy, O.; Bonner, M.R.; Lasarev, M.R.; Albatanony, M.; Steven, T.; Khan, K.; Olson, J.R.; et al. Longitudinal assessment of Clorpyrifos Exposure and Effect Biomarkers in Adolescent Egyptian Agricultural Workers. J. Exp. Sci. Environ. Epidemiol. 2014, 23, 356–362. [CrossRef] [PubMed]
5.2. ARTIGO 2: DATA ON PESTICIDE EXPOSURE AND MENTAL HEALTH SCREENING OF FAMILY FARMERS IN BRAZIL

Data in brief 25 (2019) 103993

Data Article

Data on pesticide exposure and mental health screening of family farmers in Brazil

Rafael Junqueira Buralli a, *, Helena Ribeiro a, Renata Spolli Leão b, Rejane Correa Marques c, Jean Remy Daveé Guimarães d

a Departamento de Saúde Ambiental, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, Brazil
b Centro de Tecnologia em Nanomateriais e Grafena – CTNANO/UFMG, Belo Horizonte, Brazil
c Universidade Federal do Rio de Janeiro, Campus Macaé, Macaé, Brazil
d Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

ARTICLE INFO

Article history:
Received 21 March 2019
Received in revised form 24 April 2019
Accepted 7 May 2019
Available online 24 May 2019

Keywords:
Farmers
Mental health
Occupational exposure
Pesticides
Agricultural worker’s diseases

ABSTRACT

This dataset is part of a risk assessment project that evaluated the human health effects of pesticide exposure in São José de Ubá, State of Rio de Janeiro. This region is one of the greatest tomato producers in Brazil, and pest control is commonly based on the use of pesticides. We interviewed 78 smallholder family farmers about sociodemographic characteristics, pesticide use and exposure, assessed blood cholinesterase as biomarkers (n = 70), and screened all participants for probable common mental disorders through the Self-Reporting Questionnaire (SRQ-20).

© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

* Corresponding author.
E-mail address: rafael.buralli@usp.br (R.J. Buralli).

https://doi.org/10.1016/j.dib.2019.103993
2352-3409 © 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Specifications table

Subject area	Environmental Health; Psychology; Public Health
More specific subject area	Exposure Assessment; Farmers; Mental Health; Pesticides
Type of data	Tables
How data was acquired	Smallholder family farmer’s interviews, and blood cholinesterase tests.
Data format	Raw, filtered and analyzed
Experimental factors	We interviewed a sample of Brazilian smallholder family farmers to assess the sociodemographic characteristics, pesticide use and exposure, and common mental disorders through Self-Reporting Questionnaire (SRQ-20), and quantified acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activity in blood. This dataset include unpublished data on pesticide exposure and mental health effects among pesticide sprayers and current or former helpers involved in tomato cultivation in Brazil.
Experimental features	Data collection on sociodemographic characteristics, pesticide exposure and use, and screening of probable common mental disorders.
Data source location	Data collected in the municipality of São José de Ubá (-21.365600; -41.951715), located in the Northwest of the State of Rio de Janeiro, Brazil.
Data accessibility	Sociodemographic, lifestyle and exposure characteristics were partially presented in BURALLI et al. (2018), while complementary data on pesticide exposure, and unpublished mental health data are available in this brief.
Related research article	1) Buralli R.J., Ribeiro H., Mauad T., Amato-Lourengo L.F., Salge J.M., D'iaz-Quijano F.A., Leão R.S., Marques R.C., Silva D.S., Guimarães J.R.D. Respiratory condition of family farmers exposed to pesticides in the state of Rio de Janeiro, Brazil. Int J Environ Res Public Health. 2018. 15, 1203.

Value of the Data

- This brief provides unpublished data on occupational exposure to pesticides and prevalence of common mental disorders among Brazilian family farmers, divided by pesticide sprayers and current or former helpers;
- This data can be used to compare sociodemographic and pesticide exposure characteristics, and cholinesterase activity in smallholder farmers cultivating tomato or other crops, and farmers performing different agricultural tasks in Brazil and elsewhere;
- This data can be used to compare the prevalence of common mental disorders among individuals involved in different agricultural tasks, and non-exposed populations.

1. Data

This data was collected as part of the project “Human health risk assessment by exposure to metals and pesticides in the municipality of São José de Ubá (SJU), State of Rio de Janeiro”. Smallholder family farming for tomato cultivation is the main source of income.
in this region. During the crop season of 2014, 78 residents of the rural area of SJU were interviewed about sociodemographic and lifestyle factors, pesticide use and exposure, and health effects. Based on their cultivation tasks, participants were divided into two groups: pesticide sprayers (n = 42), and current or former helpers (n = 36). Eight individuals refused to participate in the blood tests or their samples were insufficient for analysis, and acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activity were quantified in 70 individuals. This brief presents unpublished data on participant's exposure to pesticides, cholinesterase measures, mental health assessed through the Self-Reporting Questionnaire (SRQ-20), and the types of pesticides commonly used in SJU. This data must be interpreted with caution due to the small sample size. Participant's sociodemographic and lifestyle aspects, pesticide exposure and respiratory health within this population were discussed elsewhere [1]. Table 1 shows participant's characteristics such as sex, age, duration of work in agriculture, age when started working or helping in crop activities, body mass index, smoking habits, cholinesterase activity, and total of affirmative answers in the SRQ-20. All participants presented normal AChE, while BChE alteration are presented in Table 1. Table 2 presents the prevalence of affirmative answers in each question of the SRQ-20. This research protocol was approved by the University Hospital Clementino Fraga Filho of the Federal University of Rio de Janeiro (HUCFF/UFRJ; 30459814.5.0000.5257), and all participants provided written informed consent.

Table 1. Data on sociodemographic and pesticide exposure characteristics, and mental health screening among smallholder family farmers in São José de Ubá, Brazil, during the tomato crop season, 2014.

Help	Sex	Age	Work years	Start age	BMI	Smoking	AChE	BChE	Altered BChE	SRQ-20
help1	M	74	66	8	27.0	0.0	-	-	-	8
help2	F	56	45	10	25.0	1.4	1.18	4.23	0	5
help3	M	62	48	14	23.4	33.0	0.97	2.02	1	3
help4	M	54	40	13	35.1	0.5	1.18	2.60	0	2
help5	F	36	28	8	28.4	0.0	1.49	2.85	0	0
help6	F	37	25	12	31.6	0.0	1.66	4.16	0	9
help7	F	41	24	17	26.8	3.3	2.00	4.80	0	17
help8	M	55	45	10	20.7	55.5	1.28	2.97	0	10
help9	M	59	41	14	23.2	0.0	1.42	5.27	0	7
help10	M	56	49	7	22.8	25.5	1.81	4.73	0	10
help11	F	75	40	15	19.9	0.0	-	-	-	9
help12	F	72	52	19	32.0	0.0	1.23	2.42	0	0
help13	F	39	25	14	39.6	0.0	1.76	4.11	0	3
help14	F	47	14	30	38.7	0.0	0.77	1.75	0	7
help15	F	41	15	15	27.7	0.0	1.85	3.49	0	4
-------	----	-----	-----	-----	------	------	------	------	----	----
help16	F	34	20	13	23.0	0.0	1.12	3.55	0	0
help17	F	65	46	9	28.3	0.0	-	-	-	15
help18	F	46	39	7	32.0	0.0	1.27	4.15	0	18
help19	F	63	20	23	25.8	2.0	0.87	3.30	0	0
help20	F	46	26	15	40.1	0.0	-	-	-	9
help21	F	66	25	36	42.0	15.0	1.14	2.67	0	15
help22	F	44	13	31	23.9	2.0	1.22	2.45	0	9
help23	F	23	6	17	37.4	0.0	1.68	5.26	0	4
help24	F	60	30	19	26.2	0.0	1.39	4.53	0	3
help25	F	38	23	10	29.4	0.0	1.08	4.16	0	0
help26	M	30	9	16	17.4	0.0	1.05	2.62	0	4
help27	F	33	5	25	41.0	0.0	1.26	3.49	0	2
help28	F	55	48	7	23.2	1.2	2.14	4.11	0	17
help29	F	44	10	26	23.5	0.0	0.94	4.00	0	9
help30	F	37	5	12	28.6	0.0	1.47	2.68	0	1
help31	F	41	5	31	27.6	0.1	-	-	-	4
help32	M	39	27	9	23.7	0.0	0.91	1.79	1	7
help33	F	67	33	34	24.4	0.0	1.97	4.34	0	3
help34	F	33	5	23	25.8	0.0	1.81	3.50	0	0
help35	M	23	3	12	25.7	0.0	1.13	4.06	0	4
help36	M	52	20	7	22.2	12.0	0.81	1.88	1	17
spra1	M	49	41	7	21.8	10.0	-	-	-	4
spra2	M	20	7	13	22.5	8.0	-	-	-	4
spra3	M	48	36	12	28.4	10.0	0.80	1.84	1	0
spra4	M	44	25	19	25.7	60.0	0.93	2.04	1	8
spra5	M	49	39	10	28.4	0.0	1.14	2.75	0	0
spra6	M	39	33	6	26.0	0.0	0.72	2.86	0	3
spra7	M	44	36	8	29.6	0.0	1.16	2.79	0	4
spra8	M	48	33	15	24.1	0.0	0.88	2.60	0	0
spra9	M	45	38	7	29.4	0.0	1.05	3.58	0	2
spra10	M	18	5	13	19.9	0.0	1.11	3.50	0	0
spra11	M	49	34	15	26.8	15.0	1.11	4.83	0	5
spra12	M	24	12	12	25.0	0.0	1.34	4.87	0	2
spra13	M	46	38	8	27.8	0.0	1.70	4.18	0	2
spra14	M	42	34	8	20.5	25.5	1.77	4.01	0	0
spra15	M	53	41	12	26.6	0.0	-	-	-	13
spra16	M	61	54	7	20.3	0.8	2.04	2.42	0	0
spra17	M	43	36	7	28.4	0.0	0.58	1.67	1	0
spra18	M	27	12	15	20.2	0.0	0.89	3.40	0	1
spra19	M	53	30	15	24.3	0.0	1.27	2.78	0	1
spra20	M	34	26	8	29.4	0.1	1.30	4.79	0	2
spra21	M	48	30	17	22.4	0.0	1.26	3.74	0	2
spra22	M	33	12	20	33.2	0.0	1.54	5.15	0	6
spra23	F	33	14	19	32.5	0.0	1.64	3.61	0	2
spra24	M	53	40	13	24.7	0.0	1.00	3.10	0	10
---	---	---	---	---	---	---	---			
spra25	F	50	13	37	17.5	17.0	2.42	4.38	0	11
spra26	M	22	12	10	24.3	0.0	1.34	1.77	1	6
spra27	M	48	35	13	22.3	0.0	0.75	1.78	1	1
spra28	M	24	11	12	20.4	0.0	1.69	3.52	0	6
spra29	F	20	8	12	20.8	0.0	1.63	4.53	0	10
spra30	M	25	10	15	20.8	0.0	0.62	1.72	1	1
spra31	M	32	18	12	20.5	0.0	0.84	1.78	1	2
spra32	F	51	42	9	26.8	0.0	1.64	4.34	0	2
spra33	M	41	32	9	29.0	3.0	0.80	1.73	1	2
spra34	M	44	37	7	21.3	16.5	0.64	1.53	1	11
spra35	M	44	30	14	20.1	10.5	0.84	2.09	1	3
spra36	M	34	28	6	22.6	0.0	1.64	4.80	0	15
spra37	M	50	31	8	25.0	10.5	1.02	2.09	1	4
spra38	M	39	27	12	27.6	0.0	0.78	2.75	0	0
spra39	F	40	8	32	33.8	0.0	1.78	3.52	0	4
spra40	F	38	24	13	23.7	0.0	1.89	3.93	0	2
spra41	M	61	40	8	27.0	10.2	1.18	3.47	0	5
spra42	F	28	20	8	18.1	0.0	1.42	2.87	0	4

a Male = M and female = F; *b* years working or helping in crop activities; *c* age they started to work or helping in crop activities; *d* body mass index; *e* smoking habit in pack-years; *f* values expressed in mmol/min/mg; *g* normal = 0 and altered = 1, considering 0.56 mmol/min/mg for AChE in both genders, and 2.29 for men and 1.61 mmol/min/mg for BChE for women; *h* total of affirmative answers in SRQ-20.

2. Experimental design, materials, and methods

This cross-sectional study was conducted in SJU, a small municipality from the State of Rio de Janeiro, Brazil, which has about 7,000 inhabitants, mostly residents of the rural area (55%). In SJU, only 14.6% of the population is formally employed, and 40% have a per capita monthly income of about $125 US dollars, which is equivalent to less than 1/2 Brazilian minimum wage [2]. Small-scale family farming is the primary source of income in SJU, mainly producing tomato with the use of pesticides. SJU is one of the largest tomato producers in Brazil, and from 2007 to 2017, the average yearly production ranged from 21,000 to 32,000 tons [3]. During the tomato crop season of 2014 (July and August), upon SJU resident's and stakeholder's indication, we conveniently recruited and interviewed 82 smallholder family farmers older than 18 years old. Lately, four individuals who never helped in crop activities were excluded, and the final sample of this brief is 78 smallholder family farmers. Based on their self-declared cultivation tasks, participants were divided into: a) sprayers (n = 42), those daily involved in all crop activities, including pesticide handling and
application; b) current or former helpers (n = 36), those who helped in crop activities except pesticide spraying.

2.1. Questionnaire assessments

Individual face-to-face interviews were conducted at participant's homes, neighborhood's schools and health units to collect sociodemographic, lifestyle, and pesticide exposure data. Interviews were based on a questionnaire adapted from the “Protocol for evaluation of chronic pesticide poisoning” of the Health Department of the State of Paraná, Brazil [4]. We collected sociodemographic and personal data such as age, BMI, income, smoking habit, and data on pesticide exposure, e.g. the age they started to help in crop activities and years of work, home exposure to pesticides, home distance to crop areas, use of personal protection equipment, and whether they had or not previous training and technical support. Sprayers were asked what pesticides they frequently use, and they were presented as extremely, highly, moderately or low toxic, according to the Brazilian National Sanitary Surveillance Agency e ANVISA [5]. Forty-nine pesticides from thirty-one chemical groups were cited, including organophosphate pesticides like Acephate and Chlorpyrifos, carbamates like Mancozeb, Methomyl, and Cymoxanil, pyrethroids like Lambda-Cyhalothrin and Deltamethrin, among others. Pesticides mentioned were classified as moderately (46%), extremely (30%) and highly toxic (20%) to humans [5]. Pesticides prohibited in Brazil for tomato cultivation (Glyphosate, Paraquat, Chlorpyrifos, and 2,4-D), and banned in Brazil (Endosulfan) were also cited [6].

The prevalence of CMD was assessed through the Self-Reporting Questionnaire (SRQ-20), proposed by the World Health Organization as a response to the lack of a low-cost and easy tool for psychiatric screening, recommended for community studies and basic care. The questionnaire has 20 binary questions (yes/no) about depressive and anxiety signs, reduced vital energy, and somatic symptoms. It was validated in Brazil with high sensitivity (83%) and specificity (80%), and the standard cutoff for probable CMD was set in six or more positive answers for men and eight or more for women [7].
Table 2 – Prevalence of affirmative answers at the SRQ-20 among smallholder family farmers in São José de Ubá, Brazil, during the tomato crop-season, 2014.

SRQ-20 - Affirmative answers	Total % (n = 78)	Sprayers % (n = 42)	Current or former helpers % (n = 36)
Q1. Often have headaches	33.3 (26)	28.6 (12)	38.9 (14)
Q2. Poor appetite	15.4 (12)	9.5 (4)	22.2 (8)
Q3. Sleep badly	39.7 (31)	26.2 (11)	55.6 (20)
Q4. Easily frightened	41.0 (32)	33.3 (14)	50.0 (18)
Q5. Hands shake	23.1 (18)	21.4 (9)	25.0 (9)
Q6. Feel nervous, tense or worried	61.5 (48)	54.8 (23)	69.4 (25)
Q7. Poor digestion	9.0 (7)	2.4 (1)	16.7 (6)
Q8. Trouble thinking clearly	26.9 (21)	21.4 (9)	33.3 (12)
Q9. Feel unhappy	21.8 (17)	14.3 (6)	30.6 (11)
Q10. Cry more than usual	16.7 (13)	9.5 (4)	25.0 (9)
Q11. Difficult to enjoy your daily activities	17.9 (14)	11.9 (5)	25.0 (9)
Q12. Difficult to make decisions	25.6 (20)	21.4 (9)	30.6 (11)
Q13. Daily work suffering	28.2 (22)	38.1 (16)	16.7 (6)
Q14. Unable to play a useful part	15.4 (12)	7.1 (3)	25.0 (9)
Q15. Lost interest in things	17.9 (14)	11.9 (5)	25.0 (9)
Q16. Feel that you are a worthless person	19.2 (15)	4.8 (2)	36.1 (13)
Q17. Thought of ending your life	11.5 (9)	7.1 (3)	16.7 (6)
Q18. Feel tired all the time	26.9 (21)	19.0 (8)	36.1 (13)
Q19. Uncomfortable feelings in the stomach	24.4 (19)	21.4 (9)	27.8 (10)
Q20. Easily tired	30.8 (24)	16.7 (7)	47.2 (17)

SRQ above the standard cutoff *

	Total % (n = 78)	Sprayers % (n = 42)	Current or former helpers % (n = 36)
SRQ above the standard cutoff *	33.3 (26)	23.8 (10)	44.4 (16)

* Standard cutoff level defined as ≥ 6 positive answers for men and ≥ 8 positive answers for women.

2.2. Blood sampling and cholinesterase determination

Blood samples were collected by qualified personnel from 70 participants to measure acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activity, which may indicate the recent exposure to organophosphorus (OP) and carbamate (CM) pesticides. Analysis were conducted by the Centro de Estudos da Saúde do Trabalhador e Ecologia Humana (CESTEH/FIOCRUZ) through spectrophotometry (Shimadzu UV/VIS 1601) by using the Ellman method modified to use frozen samples [8], which is indicated when samples are collected far from the laboratory. Participant's cholinesterase activity was compared to the reference values proposed by CESTEH/FIOCRUZ based in studies with non-exposed individuals, which is 0.56 mmol/min/mg for AChE in both genders and 2.29 for men and 1.61 mmol/min/mg for BChE for women. Values above these levels might be considered as normal.
Acknowledgments: We acknowledge CESTEH/FIOCRUZ for performing the biomarkers measurements, and Daniele Santos Silva for helping with data collection. This research was funded by the Brazilian Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) through project 479364/2012-5. RJB is funded by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and HR is funded by CNPq.

Conflict of interest: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Supplementary data: Supplementary data to this article can be found online at https://doi.org/10.1016/j.dib.2019.103993.

References

[1] R.J. Buralli, H. Ribeiro, T. Mauad, et al., Respiratory condition of family farmers exposed to pesticides in the state of Rio de Janeiro, Brazil, Int. J. Environ. Res. Public Health (2018), https://doi.org/10.3390/ijerph15061203. Epub ahead of print 2018.

[2] IBGE - Instituto Brasileiro de Geografia e Estatística, Características do município - São José de Ubá, RJ. Censo 2010, 2010 accessed, https://cidades.ibge.gov.br/brasil/rj/sao-jose-de-uba/panorama. (Accessed 15 March 2019).

[3] IBGE - Instituto Brasileiro de Geografia e Estatística, Censo Agropecuário 2006, IBGE - Instituto Brasileiro de Geografia e Estatística, 2006 accessed, https://www2.ibge.gov.br/home/estatistica/economia/agropecuaria/centroagro/default.shtm. (Accessed 23 May 2018).

[4] H. Pacheco-Ferreira, Protocolo de Avaliação das Intoxicações Crônicas por Agrotóxicos, Curitiba, 2013.

[5] BRASIL. Portaria No 3, de 16 de Janeiro de 1992. BRASIL - Ministério da Saúde, 1992 accessed, http://bvsms.saude.gov.br/bvs/saudelegis/svs1/1992/prt0003_16_01_1992.html. (Accessed 25 May 2018).

[6] F.F. Carneiro, LG. da S. Augusto, R.M. Rigotto, et al., Dossiê ABRASCO: um alerta sobre os impactos dos agrotóxicos na saúde, 2015, https://doi.org/10.1016/B978-84-458-2066-7.00003-3. Epub ahead of print 2015.

[7] M.B.B. Carmo, L.M. Santos, C.A. Feitosa, et al., Screening for common mental disorders using the SRQ-20 in Brazil: what are the alternative strategies for analysis? Brazilian J Psychiatr. 40 (2018) 115e122.

[8] J.J. Oliveira-Silva, S.R. Alves, a F. Inacio, et al., Cholinesterase activities determination in frozen blood samples: an improvement to the occupational monitoring in developing countries, Hum. Exp. Toxicol. 19 (2000) 173e177.
5.3. ARTIGO 3: OCCUPATIONAL EXPOSURE TO PESTICIDES AND SELF-REPORTED ACUTE AND MENTAL HEALTH SYMPTOMS AMONG FAMILY FARMERS IN BRAZIL

Highlights:
- Pesticide exposure pathways and health effects of Brazilian farmers are discussed;
- Family farmers have high environmental and occupational pesticide exposure;
- High prevalence of acute and mental symptoms was observed, especially among helpers;
- Technical support must be improved, and focus on pesticide applicators and helpers.

Excessive and unsafe use of pesticides is a major public health concern. This study explored the association of occupational pesticide exposure with acute and mental health symptoms. **Methods:** Cross-sectional survey carried out with 78 Brazilian family farmers, who were pesticide applicators and helpers conveniently selected. Symptoms and exposure data were collected by interviews, and mental health outcomes through the Self-Reporting Questionnaire. Blood samples were analyzed to assess cholinesterase levels. Exposure indicators and symptoms were compared between applicators and helpers, and Poisson regression performed to estimate the prevalence ratios. **Results:** Farmers reported exposure to multiple pesticides from early ages, worked without safety training, technical support and full protective equipment, and had a high prevalence of acute and mental health symptoms (e.g., headache, mucosal irritation, tachycardia, and depressive signs). Applicators had more cholinesterase changes than helpers, but less symptoms. Helpers used less personal protection and had significantly higher prevalence ratio of headache, dyspnea, wheezing, cough, poor digestion, tiredness, and feeling worthless, after adjustment. **Conclusions:** A medium to high prevalence of acute and mental health symptoms was observed, especially among helpers. Thus, surveillance actions must be reinforced in Brazil, and technical support and safety training improved and focused on applicators and helpers, who are likewise highly occupationally and environmentally exposed to pesticides.

Keywords: pesticides; occupational exposure; farmers; signs and symptoms; mental health.
Exposição ocupacional a pesticidas e sintomas autorreferidos agudos e de saúde mental entre agricultores familiares no Brasil

Introdução: O uso excessivo e inseguro de pesticidas é uma grande preoccupação de saúde pública. Este artigo explora a associação da exposição ocupacional a pesticidas com sintomas agudos e de saúde mental. Métodos: Levantamento transversal realizado com 78 agricultores familiares brasileiros, aplicadores de pesticidas e ajudantes, convenientemente selecionados. Sintomas e dados de exposição foram coletados por entrevistas e saúde mental pelo SRQ-20. Amostras de sangue foram analisadas para avaliar os níveis de colinesterase. Indicadores de exposição e sintomas foram comparados entre aplicadores e ajudantes, e regressão de Poisson realizada para estimar as razões de prevalência. Resultados: Os participantes relataram exposição a múltiplos pesticidas desde tenra idade, trabalhavam sem treinamento, suporte técnico e equipamento de proteção completo e tiveram alta prevalência de sintomas agudos e de saúde mental, como dor de cabeça, irritação das mucosas, taquicardia e sinais depressivos. Aplicadores tiveram mais alterações de colinesterase que os ajudantes, mas menos sintomas. Ajudantes usavam menos equipamentos de proteção e apresentaram razões de prevalência significativamente maior de dor de cabeça, dispneia, chiado no peito, tosse, má digestão, cansaço e sentir-se inútil, após ajuste. Conclusões: Observou-se prevalência média a alta de sintomas agudos e saúde mental, principalmente entre os ajudantes. Portanto, ações de vigilância devem ser reforçadas no Brasil, o suporte técnico e treinamento aprimorados e focados em aplicadores e ajudantes, que também são altamente expostos ocupacionalmente e ambientalmente aos pesticidas.

Palavras-chave: pesticidas; exposição ocupacional; agricultores; sinais e sintomas; saúde mental

Introduction

Excessive and unsafe use of pesticides represents a serious risk to human health, environment, and quality of food produced and consumed. About 25 million people experience unintentional pesticide poisoning yearly worldwide (Alavanja, 2009), resulting in
200,000 deaths, mainly affecting low- and middle-income countries (LMIC) (U.N. Human Rights Council, 2017). Occupational exposure to pesticides has been associated with several acute health effects, such as gastrointestinal, musculoskeletal, respiratory, allergic and nervous (Hutter et al., 2018; Manyilizu et al., 2017; Muñoz-Quezada et al., 2017; Negatu et al., 2018), and common mental disorders (CMD) like depression and anxiety (Campos et al., 2016; Faria et al., 2014b; Poletto and Gontijo, 2012; Torske et al., 2016b), and suicide (Faria et al., 2014a; Krawczyk et al., 2014).

Between 2010 and 2015, the Brazilian National Poison Information System - SINITOX registered more than 600,000 pesticide poisoning cases and 2,074 deaths (MS/SINITOX/Fiocruz, 2018), but cases are vastly underreported by national information systems (Magalhães and Caldas, 2018). It is estimated that for every registered case there are another 50 unregistered (Carneiro et al., 2015). Mental illness is a major public health concern in terms of lost health and burden of disease, and its symptoms are often overlooked by the health services (Carmo et al., 2018). Depression and anxiety affect, respectively, 5.8% and 9.3% of the Brazilian population, much more than 4.4% and 3.6% globally (World Health Organization, 2017).

Farmers from LMIC, mostly located in tropical areas with easy pest proliferation, tend to be more exposed to pesticides due to the lack of safety regulation, surveillance and training, increased use of highly toxic chemicals, low risk awareness, misuse of personal protective equipment (PPE), and careless handling and pulverization (Hutter et al., 2018; Muñoz-Quezada et al., 2017; U.N. Human Rights Council, 2017). Studies conducted in Brazil showed that farmers commonly use complex mixtures of pesticides without precautionary measures that could potentially reduce exposure and protect their health (Bendetti, 2014; Lermen et al., 2018; Pedlowski et al., 2012).

Brazil is a world’s leading agricultural producer, and largest consumer of pesticides since 2008, trading highly toxic chemicals banned in many countries (Carneiro et al., 2015). Cholinesterase-inhibitors pesticides, such as organophosphates (OP) and carbamates (CM), represent an important risk for human health and are considered the main responsible for pesticide poisoning in LMIC (Muñoz-Quezada et al., 2017; Nerilo et al., 2014), and for this reason, their biomarkers were selected in this study.

Family farming is the primary source of income for 40% of the active population in Brazil and 90% of municipalities with up to 20,000 inhabitants (IBGE, 2017a). São José de Ubá (SJU) is a small municipality of 7,000 inhabitants located in the State of Rio de Janeiro,
Brazil, where 55% live in the rural area, 16% of the population has formal employment, and 40% have a monthly per capita income of less than 1/2 minimum wage, which is equivalent to $120 US dollars (IBGE, 2017b). SJU is one of the largest tomato producers in Brazil and the municipality income is rather dependent on smallholder family farming (IBGE, 2017a). Tomato cultivation demands an intensive care for pest control, commonly based on the use of large amounts of pesticides (Carneiro et al., 2015). Between 2007 and 2017, the tomato production in SJU ranged from 21,000 to 32,000 tons yearly (IBGE, 2017a). Previous studies conducted in SJU revealed soil degradation and water contamination as a consequence of intensive farming and livestock practices (Leão et al., 2018; Menezes et al., 2012).

Albeit studies conducted had explored the health impacts of pesticide use in Brazil (Lermen et al., 2018; Silvério et al., 2017), many regions and crops are still underrepresented, and tomato growers were not studied recently. Therefore, this paper aims to explore the association between pesticide exposure and the prevalence of self-reported acute and mental health symptoms among family farmers in São José de Ubá.

Materials and Methods

This cross-sectional study was conducted in July and August 2014, at the end of the crop season. Study participants were a convenience sample of farmers older than 18 years old, recruited through word-of-mouth by stakeholders. Almost all (95%) individuals recruited agreed to participate in the study, and the study population represents 11% of tomato growers in SJU. This study is part of a broader project that assessed the human health risk by pesticides and metals exposure in SJU, and the study methodology (Leão et al., 2018) and pulmonary function impairment (Buralli et al., 2018b) were discussed elsewhere. This study protocol was approved by the Ethical Board of the University Hospital Clementino Fraga Filho of the Federal University of Rio de Janeiro, and all participants provided written informed consent. Test results were delivered individually, and guidance on health protection provided. Individuals with significant outcomes were referred to the municipal healthcare service.

Based on observational visits and self-declared cultivation tasks, participants (n=78) were divided into 2 groups as a proxy of exposure: a) applicators (n=42), who were daily involved in all crop activities, including pesticide handling and spraying; and b) current or former helpers.
(n=36), who were farmer’s relatives performing additional crop-related tasks, but not pesticide spraying.

Individual face-to-face interviews based on questionnaire were carried out at participant’s house, neighborhood schools and healthcare units to facilitate community engagement and a better understanding of the local culture. The questionnaire was adapted from the “Protocol for Evaluation of Chronic Poisoning by Pesticides” (Pacheco-Ferreira, 2013), proposed by the Health Department of the State of Paraná, Brazil. Socioeconomic and demographic data such as age, sex, marital status, body mass index (BMI), educational level, smoking habits, and alcohol consumption were obtained. Monthly family income was calculated based on the Brazilian minimum wage (R$ 998 Reais in 2019), which is equivalent to approximately US$ 240 dollars.

Exposure assessment

Participants were asked about their current and previous pesticide exposure, including: duration of work with pesticides, age of first exposure working or helping at crops, home distance from crop areas, use of recommended PPE (cloth mask, visor, hat, gloves, boots and overall), types of pesticide frequently used, previous training and technical support received, residential exposure to pesticides (either by using for pest control or having contact with contaminated clothes and equipment), and poisoning history. Safety practices (e.g. eating at the field, washing hands and showering after crop activities) was also investigated.

Some farmers refused to participate in blood tests or had insufficient samples, thus samples from 70 participants were collected by qualified health personnel for evaluation of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibition, which are respectively biomarkers of chronic and acute exposure to OP and CM pesticides. Measurements were performed by the Centro de Estudos da Saúde do Trabalhador e Ecologia Humana (CESTEH/FIOCRUZ) through the Ellman method modified (Oliveira-Silva et al., 2000), in which reference values were defined as 0.56 mmol/min/mg for AChE for both sexes, and 2.29 for BChE for men and 1.61 mmol/min/mg for women. Values above these were considered normal.
Self-reported symptoms and mental health assessment

Twenty-three acute symptoms previously associated with pesticide poisoning were presented to participants, who were asked to confirm whether they regularly had them or not. Prevalence of probable CMD was assessed through the Self-Reporting Questionnaire (SRQ-20), proposed by the WHO as a low-cost and easy tool for psychiatric screening, and recommended for community studies and basic care. The questionnaire has 20 binaries questions (yes/no) about depressive and anxiety signs, reduced vital energy, and somatic symptoms. It was validated in Brazil with high sensitivity and specificity, and the standard cutoff was set as six or more positive answers for men and eight or more for women (Carmo et al., 2018).

Statistical analysis

The prevalence of sociodemographic and pesticide exposure data was presented and compared between occupational groups (pesticide applicators vs. helpers). Data with normal distribution was presented as mean and standard deviation (sd), and with non-normal distribution as median and interquartile range (IQR 25-75%). Pearson’s chi-square test was used to compare categorical variables, and Fisher’s exact test for variables with less than five observations. Continuous variables with normal distribution were compared among groups through T-test, and with non-normal distribution through Rank-sum. Cholinesterase activity was compared among groups and to the reference values (Oliveira-Silva et al., 2000). The prevalence of each acute and mental health symptom was compared between applicators and helpers, and possible associations tested through Poisson regression with robust variance (Barros and Hirakata, 2003), adjusted by potential confounders, namely age, BMI, smoking habit, sex and alcohol consumption. Family income was similar among groups thus not included in the analysis. Statistical analysis was performed using Stata 14 (Stata Corp., College Station, TX, USA) and SPSS 23 (IBM Corp., Chicago, IL, USA). p-Values < 0.05 were considered significant.
Results

Most participants were married, had low educational level and family income, were never or former smokers, and did not consume alcohol. Most applicators were men (83.3%), had a mean age of 40.3 years, and worked with crops for 27 years. Current or former helpers were mostly women (72.2%), had a mean age of 48.4 years, worked or helped in crop activities for 27 years, and had a significantly higher BMI (Table 1).

The majority of participants started to help in crop activities at early ages, lived up to 1km from crop areas, never had technical support or safety training to work with pesticides, and were domestically exposed to pesticides by using it for household pest control or having contact with contaminated clothes or equipment. Most applicators directly handled or sprayed pesticides for 1-3 days (85.7%) or 4-7 days (11.9%) per week during the crop season, while helpers never or rarely directly handle pesticides. Applicators affirmed to use significantly more PPE than helpers (although not complete), and visors were considered to be hot and uncomfortable, thus not often used (Table 2).

All participants had normal AChE values (above the reference level), while 11 applicators (28%) and 3 helpers (10%) presented inhibited BChE (below the reference level), without significant differences between groups. Applicators presented lower mean values for AChE and BChE, but non-statistically significant (Table 2).

Regarding the products used, 49 pesticides from 31 chemical groups were cited, mainly OP pesticides like Acephate and Chlorpyrifos, CM pesticides such as Mancozeb and Methomyl, pyrethroids like Lambda-Cyhalothrin and Deltamethrin, and also nitriles, diamides, neonicotinoids, avermectins, and benzimidazole. Most of these chemicals are classified as extremely and highly toxic to humans (BRASIL, 1992). About 30% of applicators did not know which pesticides were used because someone else does the mixture and they only apply. Herbicides Glyphosate and Paraquat were cited by 35% and 17%, respectively, but are prohibited for tomato cultivation in Brazil (Carneiro et al., 2015). The extremely toxics Chlorpyrifos and 2,4-D are forbidden for tomato crops in Brazil, and the highly toxic Endosulfan was already banned, but were also mentioned.

Overall, only 11.5% of participants did not reported any acute symptom, while 27% had between 1 and 3, 45% between 4 and 9, and 16.7% more than 10 symptoms (out of 23). Symptoms most commonly reported were: mucosal irritation (41%), headache (40%),
tachycardia (36%), lower limbs fatigue and palpitation (33%), dizziness and blurred vision (29%), stomach pain (28%), and cramps (27%) (Table 3).

In general, symptoms were more prevalent among helpers than applicators, except for blurred vision, excessive salivation, and tachycardia. Significant differences among occupational groups were found for tingling in upper and lower limbs, fatigue, cramps, dyspnea, wheezing, and total of acute symptoms, all with higher prevalence ratios among helpers. After adjusted for potential confounders, helpers presented significantly higher prevalence ratios than applicators for headache (PR=2.09; 95% CI: 1.09; 4.01), dyspnea (PR=3.83; 95% CI: 1.54; 9.52), wheezing (PR=16.07; 95% CI: 2.37; 108.75), and cough (PR=2.64; 95% CI: 1.07; 6.50). Moreover, a prevalence higher than 30% was observed for dizziness, photophobia, stomach pain, palpitation and cough among helpers, and for headache, mucosal irritation and tachycardia in both groups, although without significant differences between groups (Table 3).

 Helpers had higher prevalence of all mental health symptoms in the SRQ-20, except for daily work suffering. Statistically significant differences in PR were observed between occupational groups for sleep badly, easily tired, unable to play a useful part, and feel as a worthless person, all with higher PR among helpers, while daily work suffering was higher among applicators. After adjustment for age, BMI, smoking habit, sex and alcohol consumption, higher PR among helpers was observed for poor digestion (PR=7.85; 95% CI: 1.17; 52.89), easily tired (PR=3.20; 95% CI: 1.33; 7.66), and feeling as a worthless person (PR=7.23; 95% CI: 1.69; 31.04). Furthermore, some mental health symptoms had a prevalence as high as 50% or 30%, but without significant differences between groups (Table 4).

Discussion

Our study shows that smallholder family farmers in SJU were occupationally and environmentally exposed to pesticides from an early age, lived near crops, worked without safety training, technical support and full recommended protection equipment, and had a considerable number of acute and mental health symptoms. Our a priori hypothesis was that applicators are more exposed to pesticides and have more symptoms than helpers who assist in crop activities; however, most symptoms had higher prevalence among current and former
helpers, even after adjusted for possible confounders, including sex. An explanation may be that helpers are also highly exposed to pesticides due to their residential exposure, and involvement in re-entry tasks at the same day or day after pulverization with less PPE, but it could also be due to residual uncontrolled confounders.

The symptomatology presented in this study must be interpreted with caution due to the small sample size, although our findings are supported by previous studies conducted in other LMIC. Farmworkers performing re-entry activities were less trained, used fewer PPE, performed less hygienic practices, and had more symptoms than pesticide applicators from Kenya (Tsimbiri et al., 2015), Ethiopia (Negatu et al., 2016), and Chile (Muñoz-Quezada et al., 2017). Moreover, participants in our study had less safety guidance, used less protection and had higher prevalence of symptoms than both pesticide applicators and non-applicators from Zanzibar (da Silva et al., 2016), where 38% of sprayers did not know the names of the products they used. Contrastingly, coffee farmers from Dominican Republic exposed to multiple pesticides without using PPE (e.g. only 13% used masks and gloves) had a prevalence higher than participants in our study in all symptoms assessed (Hutter et al., 2018). These findings emphasize the role of protection equipment and technical support in the poisoning prevention.

High-income countries have overcome the acute pesticide poisonings and are more concerned about chronic effects and long-term exposure, but it still remains a present and growing problem for LMIC (Negatu et al., 2018). According to the WHO, an acute pesticide poisoning must present a clear sign of exposure, temporal cause-effect relationship, and at least 3 symptoms compatible with the exposure (Thundiyil et al., 2008). In our study, participants were asked to confirm which symptoms they regularly have, so we cannot ensure temporality; however, most individuals were continuously exposed, and 60% had more than 4 acute symptoms suggestive of pesticide poisoning.

Regarding the mental health, helpers in SJU had a prevalence higher than applicators in all questions about depressive and anxiety symptoms, and nearly twice as high prevalence of CMD (44% vs. 24%). Other studies assessed the CMD of Brazilian farmers through SRQ-20, and results vary widely. Poletto & Contijo (Poletto and Gontijo, 2012) found a CMD prevalence of 34%, being significantly higher for women (40%) than men (26%), which would be very similar to our findings if we had stratified for sex. Another study with tobacco farmers found a CMD prevalence of 12%. Although this prevalence is much lower than participants in our study, they observed a higher PR for women (PR=1.39; 95% CI: 1.12–
1.72), and individuals performing re-entry tasks (PR=1.71; 95% CI: 1.33–2.20) (Faria et al., 2014b), what is consistent with our study. Campos et al. (Campos et al., 2016) reported a CMD prevalence of 27% for both sexes, which is higher than applicators but lower than helpers in our study. The SRQ-20’s high variability can be explained by the questionnaire’s high sensitivity and capacity to identify a large spectrum of affections (Campos et al., 2016), but also by biological and social factors (e.g. women tend to report more symptoms, and less educated individuals tend to over-report mental health complaints) (Carmo et al., 2018).

Previous studies conducted with Brazilian farmers pointed to an exposure scenario similar to our findings: low educational level and income, residential proximity to crop areas, the beginning of work in childhood, poor technical support and safety training, and lack or misuse of PPE (Lermen et al., 2018; Pedlowski et al., 2012; Silvério et al., 2017). Inadequate safety practices (e.g. drinking and eating at field and showering only at the end of workday) may increase pesticide exposure (Manyilizu et al., 2017; Muñoz-Quezada et al., 2017). Moreover, poor understanding of pesticide instruction leaflets, and influence of neighbors on pesticide user’s decisions, especially regarding handling and dosage, may compromise farmer’s ability to reduce exposure and protect their health (Pedlowski et al., 2012).

In Brazil, complex mixtures of multiple pesticides are commonly sprayed by manual pumping or backpack tanks by smallholder family farmers (Bendetti, 2014; Pedlowski et al., 2012), what may result in potential additive and synergic effects, and greater health outcomes (Alavanja, 2009; Carneiro et al., 2015). Pesticides are authorized for specific target-crops in Brazil, and the use of prohibited chemicals or not allowed for tomato crops was observed in our study. Some pesticides banned or with sales restrictions in other countries due to their high toxicity, such as Abamectin, Acephate, Glyphosate and Paraquat, are still highly commercialized in Brazil (Carneiro et al., 2015; IBAMA, 2017), and were mentioned in our study. Most symptoms found in our study were previously associated with OP pesticides exposure (Muñoz-Quezada et al., 2016), but the effects of mixtures of pesticides cannot be ruled out and deserve further attention.

Major challenges on evaluating health effects of pesticide exposure among family farmers in Brazil are the informal distribution of these workers, continuous exposure to multiple chemicals, distance from crop areas to health services, and lack of laboratories with analytical capacity (Bendetti, 2014; Carneiro et al., 2015). According to the Brazilian law, all agricultural workers must be submitted periodically to medical examinations and cholinesterase exams, albeit this is not provided to millions of smallholder family farmers
distributed in 4.4 million of properties (IBGE, 2017a). Cholinesterase enzymes are useful for screening of OP and CM poisoning or continuous monitoring, despite their high variability, and low sensitivity and specificity (Bendetti, 2014). Measurements of urinary biomarkers are more suitable exposure assessment (Muñoz-Quezada et al., 2016), though expensive and not much available in Brazil. In our study, applicators had more BChE inhibition and lower cholinesterase levels, what may indicate continuous exposures to high doses, avoiding a complete BChE recovery, but it contrasts with the fact that more symptoms had higher prevalence among helpers.

Farmers were less likely to seek for professional health assistance for physical or mental health needs compared to non-farmers (Brew et al., 2016). Another study with Brazilian tomato farmers showed that 62% reported more than one illness after pesticide exposure, but only 21% of poisoned workers sought a health service and 70% self-medicated (Delgado and Paumgartten, 2004). This low demand for health services, especially in less severe cases, compromises the visibility and hinders the understanding of the problem’s real dimension (Carneiro et al., 2015).

The main limitations of this study were the sample size, which was limited by the project’s budget constraints, the lack of an unexposed control group, and the cross-sectional design, as a longitudinal study with more sensible biomarkers would allow us to evaluate health effects over time and precisely associate them to exposure. Possible information and memory bias were minimized by an experienced health professional conducting the interviews, and trust relationships established with participants. Moreover, our questionnaire was based on recognized protocols, and pilot interviews were previously conducted to ensure that the questionnaire was easy to understand.

This study helps to fill the data gap concerning occupational exposure to pesticides and health effects in Brazil by providing complementary evidence about family farmers, who are responsible for about 70% of food consumed in the country (Carneiro et al., 2015). This study highlights the demand for a more efficient technical support that stimulate farmers to use chemicals consciously and better protect themselves. The strengthening of public policies that address the current vulnerability and risk of family farmers are urgently needed. Moreover, we strongly recommend a careful overhaul of the Brazilian legislation to restrict highly hazardous pesticides, and a deeper understanding of the health and environmental effects of the complex mixtures used in Brazil to protect rural populations, the food and environment.
Conclusions

Overall, our study indicates that Brazilian family farmers work without proper technical support and safety behavior that could reduce pesticide exposure and protect their health. Besides, it highlights that public policies must target not only the applicators, but also other workers who often help in crop activities, and are vulnerable groups likewise occupationally and environmentally exposed. This situation of high exposure to pesticides and prevalence of health outcomes must be treated as a major public health concern because it may reduce farmer’s quality of life, impact the rural workforce at productive age, increase morbidity and mortality burden of diseases and health costs. Thus, we strongly recommend the reinforcement of surveillance actions, technical support and educational programs targeting family farmers exposed to pesticides in Brazil. Furthermore, promoting sustainable agriculture is the most effective way to protect farmer’s health, general population, and the environment.

References

Alavanja MCR. Pesticides use and exposure extensive worldwide. Rev Environ Health 2009;24:303–9. doi:10.1515/REVEH.2009.24.4.303.

Barros AJD, Hirakata VN. Alternatives for logistic regression in cross-sectional studies: An empirical comparison of models that directly estimate the prevalence ratio. BMC Med Res Methodol 2003;3:1–13. doi:10.1186/1471-2288-3-21.

Bendetti D. An Evaluation of Occupational Exposures to Pesticides in Brazil. Occup Med Heal Aff 2014;02. doi:10.4172/2329-6879.1000170.

BRASIL. Portaria No 3, de 16 de Janeiro de 1992. Bras - Ministério Da Saúde 1992. http://bvsms.saude.gov.br/bvs/saudelegis/svs1/1992/prt0003_16_01_1992.html (accessed May 25, 2018).

Brew B, Inder K, Allen J, Thomas M, Kelly B. The health and wellbeing of Australian farmers: A longitudinal cohort study. BMC Public Health 2016;16:1–11. doi:10.1186/s12889-016-3664-y.

Buralli RJ, Ribeiro H, Mauad T, Amato-Lourenço LF, Salge JM, Diaz-Quijano FA, et al. Respiratory condition of family farmers exposed to pesticides in the state of Rio de Janeiro, Brazil. Int J Environ Res Public Health 2018;15:1–14. doi:10.3390/ijerph15061203.
Campos É, Silva V dos SP, Mello MSC, Otero UB. Exposure to pesticides and mental disorders in a rural population in Southern Brazil. Neurotoxicology 2016;56:7–16. doi:10.1016/j.neuro.2016.06.002.

Carmo MBB, Santos LM, Feitosa CA, Fiaccone RL, Silva NB, Santos DN, et al. Screening for common mental disorders using the SRQ-20 in Brazil: what are the alternative strategies for analysis? Brazilian J Psychiatry 2018;40:115–22. doi:10.1590/1516-4446-2016-2139.

Carneiro FF (Org.), Augusto LG da S, Rigotto RM, Friedrich K, Búrigo AC. Dossié ABRASCO: um alerta sobre os impactos dos agrotóxicos na saúde. 2015. doi:10.1016/B978-84-458-2066-7.00003-3.

Delgado IF, Paumgartten FJR. Intoxicações e uso de pesticidas por agricultores do Município de Paty do Alferes, Rio de Janeiro, Brasil. Cad Saude Publica 2004;20:180–6. doi:10.1590/S0102-311X2004000100034.

Faria NMX, Fassa AG, Meucci RD. Association between pesticide exposure and suicide rates in Brazil. Neurotoxicology 2014a;45:355–62. doi:10.1016/j.neuro.2014.05.003.

Faria NMX, Fassa AG, Meucci RD, Fiori NS, Miranda VI. Occupational exposure to pesticides, nicotine and minor psychiatric disorders among tobacco farmers in southern Brazil. Neurotoxicology 2014b;45:347–54. doi:10.1016/j.neuro.2014.05.002.

Hutter H-P, Kundi M, Lemmerer K, Poteser M, Weitensfelder L, Wallner P, et al. Subjective Symptoms of Male Workers Linked to Occupational Pesticide Exposure on Coffee Plantations in the Jarabacoa Region, Dominican Republic. Int J Environ Res Public Health 2018;15:2099. doi:10.3390/ijerph15102099.

IBAMA. Relatório de comercialização de agrotóxicos. IBAMA - Inst Bras Do Meio Ambiente e Dos Recur Nat Renov 2017. http://www.ibama.gov.br/agrotoxicos (accessed February 2, 2019).

IBGE - Instituto Brasileiro de Geografia e Estatística. Censo Agropecuário 2017. Censo Agropecuário 2017a. https://cidades.ibge.gov.br/brasil/sp/sao-paulo/pesquisa/24/76693 (accessed May 4, 2019).

IBGE - Instituto Brasileiro de Geografia e Estatística. Brasil em Síntese. Bras Em Síntese 2017b. https://cidades.ibge.gov.br/brasil/sp/sao-paulo/panorama (accessed March 27, 2019).

Krawczyk N, Meyer A, Fonseca M, Lima J. Suicide Mortality Among Agricultural Workers in a Region With Intensive Tobacco Farming and Use of Pesticides in Brazil. J Occup Env Med 2014;56:993–1000. doi:10.1097/JOM.0000000000000214.Suicide.

Leão RS, Marques RC, Buralli RJ, Silva DS, Guimarães JRD. Avaliação de saúde pública por exposição a agroquímicos: uma experiência com a agricultura familiar no noroeste do Rio de Janeiro. Sustentabilidade Em Debate 2018;9:81–94. doi:10.18472/SustDeb.v9n1.2018.26956.
Lermen J, Bernieri T, Rodrigues IS, Suyenaga ES, Ardenghi PG. Pesticide exposure and health conditions among orange growers in Southern Brazil. J Environ Sci Heal - Part B Pestic Food Contam Agric Wastes 2018;53:215–21. doi:10.1080/03601234.2017.1421823.

Magalhães AFA, Caldas ED. Underreporting of fatal poisonings in Brazil – A descriptive study using data from four information systems. Forensic Sci Int 2018;287:136–41. doi:10.1016/j.forsciint.2018.03.040.

Manyilizu W, Mdege R, Skjerve E, Kazwala R, Nonga H, et al. Self-Reported Symptoms and Pesticide Use among Farm Workers in Arusha, Northern Tanzania: A Cross Sectional Study. Toxics 2017;5:24. doi:10.3390/toxics5040024.

Menezes J, Prado R, Silva Júnior G, Mansur K, Oliveira E. Qualidade da água superficial em área rural. Cad Estud Geoambientais 2012;3:32–43.

MS/SINITOX/Fiocruz. Dados nacionais de intoxicação. Sist Nac Informações Tóxico-Farmacológicas 2018. https://sinitox.icict.fiocruz.br/dados-nacionais (accessed June 14, 2018).

Muñoz-Quezada MT, Lucero B, Iglesias V, Levy K, Muñoz MP, Achú E, et al. Exposure to organophosphate (OP) pesticides and health conditions in agricultural and non-agricultural workers from Maule, Chile. Int J Environ Health Res 2017;27:82–93. doi:10.1080/09603123.2016.1268679.

Muñoz-Quezada MT, Lucero BA, Iglesias VP, Muñoz MP, Cornejo CA, Achi E, et al. Chronic exposure to organophosphate (OP) pesticides and neuropsychological functioning in farm workers: a review. Int J Occup Environ Health 2016;22:68–79. doi:10.1080/10773525.2015.1123848.

Negatu B, Kromhout H, Mekonnen Y, Vermeulen R. Use of chemical pesticides in Ethiopia: A cross-sectional comparative study Onknowledge, attitude and practice of farmers and farm workers in three farming systems. Ann Occup Hyg 2016;60:551–66. doi:10.1093/annhyg/mew004.

Negatu B, Vermeulen R, Mekonnen Y, Kromhout H. Neurobehavioural symptoms and acute pesticide poisoning: A cross-sectional study among male pesticide applicators selected from three commercial farming systems in Ethiopia. Occup Environ Med 2018;75:283–9. doi:10.1136/oemed-2017-104538.

Nerilo SB, Martins FA, Nerilo LB, Cocco VE, Endo RY, Henrique G, et al. Pesticide use and cholinesterase inhibition in small-scale agricultural workers in southern Brazil 2014;50.

Oliveira-Silva JJ, Alves SR, Inacio a F, Meyer a, Sarcinelli PN, Mattos RC, et al. Cholinesterase activities determination in frozen blood samples: an improvement to the occupational monitoring in developing countries. Hum Exp Toxicol 2000;19:173–7. doi:10.1191/096032700678827762.

Pacheco-Ferreira H. Protocolo de Avaliação das Intoxicações Crônicas por Agrotóxicos. Curitiba: 2013.
Pedlowski MA, Canela MC, da Costa Terra MA, Ramos de Faria RM. Modes of pesticides utilization by Brazilian smallholders and their implications for human health and the environment. Crop Prot 2012;31:113–8. doi:10.1016/j.cropro.2011.10.002.

Poletto AR, Gontijo LA. Family farming workers mental health in a microrregion in southern Brazil. Work 2012;41:4987–94. doi:10.3233/WOR-2012-0044-4987.

da Silva M, Stadlinger N, Mmochi AJ, Stålsby Lundborg C, Marrone G. Pesticide Use and Self-Reported Health Symptoms Among Rice Farmers in Zanzibar. J Agromedicine 2016;21:335–44. doi:10.1080/1059924X.2016.1211572.

Silvério ACP, Machado SC, Azevedo L, Nogueira DA, Graciano MM de C, Simões JS, et al. Assessment of exposure to pesticides in rural workers in southern of Minas Gerais, Brazil. Environ Toxicol Pharmacol 2017;55:99–106. doi:10.1016/j.etap.2017.08.013.

Thundiyil JG, Stober J, Besbelli N, Pronczuk J. Acute pesticide poisoning: A proposed classification tool. Bull World Health Organ 2008;86:205–9. doi:10.2471/BLT.07.041814.

Torske MO, Hilt B, Glasscock D, Lundqvist P, Krokstad S. Anxiety and Depression Symptoms Among Farmers: The HUNT Study, Norway. J Agromedicine 2016;21:24–33. doi:10.1080/1059924X.2015.1106375.

Tsimbiri PF, Moturi WN, Sawe J, Henley P, Bend JR. Health Impact of Pesticides on Residents and Horticultural Workers in the Lake Naivasha Region, Kenya. Occup Dis Environ Med 2015;03:24–34. doi:10.4236/odem.2015.32004.

U.N. Human Rights Council. Report of the Special Rapporteur on the Right to Food. Rep Spec Rapp Right to Food Hilal Elver 2017;01059:24.

World Health Organization. Depression and other common mental disorders: global health estimates. World Heal Organ 2017:1–24. doi:CC BY-NC-SA 3.0 IGO.
Sociodemographic variables	Total % (n = 78)	Applicators % (n = 42)	Current or former helpers % (n = 36)	p-Value
Age (mean in years ± sd)	44.1 ± 13.2	40.3 ± 11.3	48.4 ± 14.1	0.08
Sex				
Male	57.7 (45)	83.3 (35)	27.8 (10)	<0.001
Female	42.3 (33)	16.7 (7)	72.2 (26)	
Marital status				
Single or divorced	14.1 (11)	14.3 (6)	13.9 (5)	0.96
Married/cohabiting partner	85.9 (67)	85.7 (36)	86.1 (31)	
Monthly family income				
Up to 2 salaries	71.8 (56)	78.6 (33)	63.9 (23)	0.15
More than 2 salaries	28.2 (22)	21.4 (9)	36.1 (13)	
Body Mass Index *	25.7 (22.4 – 28.5)	24.5 (20.8 – 27.9)	26.5 (23.4 – 31.9)	0.03
Low or normal weight	46.7 (35)	55.0 (22)	37.1 (13)	
Overweight	36.0 (27)	37.5 (15)	34.3 (12)	0.05
Obese	17.3 (13)	7.5 (3)	28.6 (10)	
Years of education *	4.0 (3.0 – 8.0)	4.0 (3.5 – 8.0)	4.5 (3.0 – 7.8)	0.71
Smoking status				
Never	66.7 (52)	66.7 (28)	66.7 (24)	
Past (ex)	20.5 (16)	16.7 (7)	25.0 (9)	0.46
Current	12.8 (10)	16.7 (7)	8.3 (3)	
Mean/Median (pack-years)	0 (0 – 2)	4.7 / 0.0	4.2 / 0.0	0.86
Alcohol consumption (if yes)	29.5 (23)	33.3 (14)	25.0 (9)	0.42

Data with non-normal distribution shown as median and interquartile range (IQR); * T-test; † Pearson’s chi-square test; ‡ Fisher’s exact test; § Rank-sum.

Brazilian minimum salary was used as the basis, which in 2019 was R$ 998 Brazilian reais (± 240 US$); * Data with non-normal distribution shown as median and interquartile range (IQR); † T-test; ‡ Pearson’s chi-square test; ‡ Fisher’s exact test; § Rank-sum.
Table 2. Pesticide exposure characteristics among family farmers in São José de Ubá, Brazil, divided by occupational groups. Crop season, 2014.

Exposure variables	Total % (n = 78)	Applicators % (n = 42)	Current or former helpers % (n = 36)	p-Value
Years of work with crops (mean ± sd)	27.0 ± 14.3	27.0 ± 12.4	27.1 ± 16.4	0.92a
Age of first exposure at crop				
Up to 12 years old	50.0 (39)	59.5 (25)	38.9 (14)	
Between 13-17 years old	29.5 (23)	28.6 (12)	30.6 (11)	0.08b
More than 18 years old	20.5 (16)	11.9 (5)	30.6 (11)	
Home exposure (if yes)	87.2 (68)	81.0 (34)	94.4 (34)	0.08b
Residential distance from crop				
Up to 1km	84.6 (66)	85.7 (36)	83.3 (30)	0.77b
More than 1 km	15.4 (12)	14.3 (6)	16.7 (6)	
Use of PPE *				
Use of any PPE	67.9 (53)	95.2 (40)	36.1 (13)	<0.001b
Use of cloth mask	50.0 (39)	78.6 (33)	16.7 (6)	<0.001b
Use of visor	14.1 (11)	21.4 (9)	5.6 (2)	0.06c
Use of hat	37.2 (29)	59.5 (25)	11.1 (4)	<0.001c
Use of gloves	52.6 (41)	76.2 (32)	25.0 (9)	<0.001b
Use of boots	53.8 (42)	76.2 (32)	27.8 (10)	<0.001b
Use of coverall	39.7 (31)	59.5 (25)	16.7 (6)	<0.001b
Previous poisoning (if yes)	17.9 (14)	16.7 (7)	19.4 (7)	0.75b
Received training/technical support	14.1 (11)	19.0 (8)	8.3 (3)	0.21c
Washes hands after working at crop	80.8 (63)	88.1 (37)	72.2 (26)	0.08b
Takes shower after working at crop	60.3 (47)	69.0 (29)	50.0 (18)	0.09b
Consumes food and water in the field	91.0 (71)	95.2 (40)	86.1 (31)	0.16b
Cholinesterase tests **				
AChE (mean ± sd)	1.29 ± 0.42	1.23 ± 0.44	1.35 ± 0.38	0.25a
BChE (mean ± sd)	3.30 ± 1.06	3.16 ± 1.09	3.48 ± 1.02	0.21a
BChE below the RV **	20.0 (14)	28.2 (11)	9.7 (3)	0.07c

* PPE: Personal protective equipment; ** n = 70 samples, and values are expressed in mmol/min/mg; *** RV: reference values, for AChE = 0.56 (for both sexes), and BChE = 2.29 mmol/min/mg for men and 1.61 mmol/min/mg for women; a T-test; b Pearson’s chi-square test; c Fisher’s exact test.
Table 3. Prevalence of self-reported acute symptoms and prevalence ratio (PR) of occupational group during the crop-season (2014) in São José de Ubá, Brazil.

Acute symptoms	Applicators	Helpers	Crude model	Adjusted model		
	% (n = 42)	% (n = 36)	PR	95% CI	PR	95% CI
Headache	31.0 (13)	50.0 (18)	1.62	0.92; 2.83	2.09	1.09; 4.01*
Dizziness	26.2 (11)	33.3 (12)	1.27	0.64; 2.54	0.83	0.35; 2.01
Tremors	7.1 (3)	22.2 (8)	3.11	0.88; 10.95	2.69	0.73; 9.94
Tingling in upper limbs	7.1 (3)	38.9 (14)	5.44	1.69; 17.58*	3.12	0.77; 12.66
Tingling in lower limbs	4.8 (2)	33.3 (12)	7.00	1.66; 29.50*	3.33	0.57; 19.28
Muscle weakness	16.7 (7)	27.8 (10)	1.67	0.70; 3.95	0.70	0.24; 2.04
Lower limbs fatigue	21.4 (9)	47.2 (17)	2.20	1.12; 4.34*	1.05	0.48; 2.26
Blurred vision	31.0 (13)	27.8 (10)	0.90	0.45; 1.80	0.83	0.31; 2.20
Photophobia	14.3 (6)	30.6 (11)	2.14	0.87; 5.24	2.47	0.94; 6.46
Cramps	16.7 (7)	38.9 (14)	2.33	1.05; 5.17*	1.71	0.58; 5.06
Tinnitus	21.4 (9)	22.2 (8)	1.04	0.44; 2.41	1.22	0.51; 2.93
Excessive salivation	14.3 (6)	11.1 (4)	0.78	0.24; 2.56	0.95	0.29; 3.19
Nausea/vomiting	19.0 (8)	19.4 (7)	1.02	0.41; 2.55	0.99	0.35; 2.76
Lack of appetite	7.1 (3)	16.7 (6)	2.33	0.62; 8.74	1.06	0.26; 4.38
Stomach pain	19.0 (8)	38.9 (14)	2.04	0.96; 4.33	1.13	0.51; 2.51
Skin irritation	16.7 (7)	25.0 (9)	1.50	0.62; 3.64	0.52	0.18; 1.49
Mucosal irritation	38.1 (16)	44.4 (16)	1.17	0.68; 1.99	0.80	0.41; 1.55
Tachycardia	38.1 (16)	33.3 (12)	0.88	0.48; 1.60	0.70	0.32; 1.55
Palpitation	28.6 (12)	38.9 (14)	1.36	0.72; 2.56	0.91	0.39; 2.11
Excessive sweating	9.5 (4)	13.9 (5)	1.46	0.42; 5.07	0.83	0.17; 4.15
Dyspnea	11.9 (5)	38.9 (14)	3.27	1.30; 8.24*	3.83	1.54; 9.52*
Wheezing	2.4 (1)	27.8 (10)	11.67	1.55; 87.93*	16.07	2.37; 108.75*
Cough	16.7 (7)	30.6 (11)	1.83	0.79; 4.26	2.64	1.07; 6.50*
Total of symptoms	**3.5 (1.0-6.0)**	**6.5 (3.3-10.5)**	**1.70**	**1.19; 2.42***	**1.32**	**0.86; 2.03**

* Data with significant p-Value (≤ 0.05); † Prevalence ratio: helpers vs. applicators as reference group; ‡ Adjusted by age, BMI, and smoking habit (pack-years), all continuous variables, and sex (male = 1, female = 2) and alcohol consumption (yes/no); ‡‡ Sum of symptoms reported by each subject, presented as median and IQR - interquartile range (25–75%).
Table 4. Prevalence of affirmative answers of the Self-Reporting Questionnaire (SRQ-20), probable common mental disorder, and prevalence ratio (PR) among smallholder family farmers, divided by occupational group during the crop-season (2014) in São José de Ubá, Brazil.

SRQ-20 - Affirmative answers	Applicators	Helpers	PR *	CI 95%	Adjusted model b
	% (n=42)	% (n=36)			
Depressive/Anxious signs					
Feel nervous, tense or worried	54.8 (23)	69.4 (25)	1.27	0.89; 1.80	1.28 (0.85; 1.93)
Easily frightened	33.3 (14)	50.0 (18)	1.50	0.87; 2.58	1.74 (0.99; 3.07)
Feel unhappy	14.3 (6)	30.6 (11)	2.14	0.87; 5.24	1.76 (0.58; 5.31)
Cry more than usual	9.5 (4)	25.0 (9)	2.63	0.88; 7.87	1.90 (0.62; 5.76)
Somatic symptoms					
Often have headaches	28.6 (12)	38.9 (14)	1.36	0.72; 2.56	1.53 (0.69; 3.42)
Sleep badly	26.2 (11)	55.6 (20)	2.12	1.18; 3.82*	1.08 (0.53; 2.23)
Uncomfortable stomach feelings	21.4 (9)	27.8 (10)	1.30	0.59; 2.85	0.99 (0.41; 2.35)
Poor digestion	2.4 (1)	16.7 (6)	7.00	0.87; 56.20	7.85 (1.17; 52.89*
Poor appetite	9.5 (4)	22.2 (8)	2.33	0.76; 7.16	1.11 (0.37; 3.34)
Hands shake	21.4 (9)	25.0 (9)	1.17	0.52; 2.64	1.14 (0.43; 2.99)
Reduced vital energy					
Easily tired	16.7 (7)	47.2 (17)	2.83	1.32; 6.08*	3.20 (1.33; 7.66*
Difficult to make decisions	21.4 (9)	30.6 (11)	1.43	0.66; 3.06	0.69 (0.27; 1.79)
Difficult to enjoy daily activities	11.9 (5)	25.0 (9)	2.10	0.77; 5.74	1.11 (0.38; 3.29)
Daily work suffering	38.1 (16)	16.7 (6)	0.44	0.19; 1.00*	0.48 (0.21; 1.10)
Feel tired all the time	19.0 (8)	36.1 (13)	1.90	0.88; 4.07	1.86 (0.76; 4.54)
Trouble thinking clearly	21.4 (9)	33.3 (12)	1.56	0.74; 3.28	1.18 (0.56; 2.50)
Depressive thoughts					
Unable to play a useful part	7.1 (3)	25.0 (9)	3.50	1.02; 12.05*	2.35 (0.68; 8.10)
Lost interest in things	11.9 (5)	25.0 (9)	2.10	0.77; 5.74	1.54 (0.43; 5.54)
Thought of ending your life	7.1 (3)	16.7 (6)	2.33	0.62; 8.74	1.60 (0.41; 6.15)
Feel as a worthless person	4.8 (2)	36.1 (13)	7.58	1.82; 31.68*	7.23 (1.69; 31.04*
Probable CMD	23.8 (10)	44.4 (16)	1.87	0.97; 3.60	1.85 (0.92; 3.72)

* Data with significant p-Value (≤ 0.05); ** Probable common mental disorder (CMD) = individuals above the cutoff level (6 or more positive answers for men 6 and 8 or more for women); * Prevalence ratio: helpers vs. applicators as reference group; b Adjusted by age, BMI, and smoking habit (pack-years), all continuous variables, and sex (male = 1, female = 2) and alcohol consumption (yes/no).
5.4. ARTIGO 4: RESPIRATORY AND ALLERGIC EFFECTS IN CHILDREN EXPOSED TO PESTICIDES: A SYSTEMATIC REVIEW

Pesticide exposure may affect children’s respiratory and allergic health, although results from epidemiological studies are controversial. This systematic review aims to analyze the scientific evidence on the respiratory and allergic effects in children aged up to 12 years old exposed to pesticides. **Methods:** The databases PubMed, Web of Science, Scielo, and Lilacs were screened to select articles ever published in English, Spanish, or Portuguese. **Results and Discussion:** After applying the selection criteria, 21 articles were included in this review. The majority of investigations were held in North America (mostly in the United States), while no study conducted in Latin America or Africa was evidenced in this search despite their intensive use of pesticides. Children are exposed to pesticides through multiple pathways from the prenatal period throughout life and may have several respiratory effects. Most studies (79%) found positive associations with pesticide exposure and children’s respiratory and allergic effects such as asthma, wheezing, cough, acute respiratory infections, hayfever, rhinitis, eczema, chronic phlegm, and lung function impairments. Contrastingly, 21% of the studies found no associations between pesticide exposure and children’s respiratory health. The vast differences in the study’s characteristics hamper the comparison of the results. **Conclusions:** Exposure to pesticides may have several impacts on children's respiratory health. More studies must be conducted, especially in low- and middle-income countries, preferably with comparable research protocols adapted for local realities. Efforts should be made to develop comprehensive risk mitigation strategies and behavioral interventions to reduce children's exposure to pesticides and respiratory health effects, and to ensure children's healthy growth.

Key-words: pesticide; child; lung function; respiratory symptoms; allergy

Introduction

Epidemiological studies with adults suggest that occupational exposure to pesticides is associated with a higher prevalence of respiratory symptoms (Chakraborty et al., 2009; Fareed
et al., 2013), asthma and allergies (Isabelle Baldi et al., 2014; Hoppin et al., 2009), and changes in lung function (Buralli et al., 2018b; Chakraborty et al., 2009; Fareed et al., 2013; De Jong et al., 2014; Shama et al., 2015). However, little is known about the effects of exposure to pesticides on children’s respiratory health.

Children of farmers are at risk of pesticide exposure for multiple reasons, including: living close to agricultural fields; engaging in farm work from early ages; eating fruits and vegetables directly from the fields or soon after harvest; facing “take-home” exposure from farmworkers in their homes, and being exposed during pesticide use at home for pest control (Bradman et al., 2011; Hyland and Laribi, 2017). Other factors may influence children’s exposure to pesticides, such as the mother’s exposure during gestation, time spent on the floor in areas of pesticide deposition, hand-to-mouth habits, diet often based on foods with a higher concentration of residues (e.g. fruits, juices and milk) (Hyland and Laribi, 2017; Lu et al., 2006; A. Mamane et al., 2015). Furthermore, children eat, drink and breathe more by personal weight than adults (Hyland and Laribi, 2017), have greater physiological susceptibility during development (Marks et al., 2010), and lower ability to metabolize and eliminate chemicals (Roberts and Karr, 2012).

Few studies have examined associations between children’s exposure to pesticides and respiratory health, with controversial results. Maternal report of general pesticide exposure was associated with increased report of chronic respiratory symptoms among school-aged children in Lebanon (Salameh et al., 2003). A case-control study found that children with reported pesticide exposure in the first year of life had 2.4 times the odds of asthma compared to those with no exposure (Salam et al., 2004). Residential use of pesticides was weakly associated with respiratory symptoms among children under 18 years in the U.S. National Health and Nutrition Examination Survey (NHANES) (Xu et al., 2012). However, a study in the Netherlands found no association between living near agricultural fields likely to be treated with pesticides and asthma and related respiratory symptoms (Bukalasa et al., 2018).

Only restricted studies have examined the effects of specific pesticides on children’s respiratory health. Higher exposure to organophosphate pesticides (OP) during pregnancy and childhood (from birth to age 5) were associated with increased odds of respiratory symptoms at age 7 (Raanan et al., 2015), and higher metabolites in childhood were associated with decreased lung function at 7 years (Raanan et al., 2016) among children of farmworkers from California. Contrastingly, a cross-sectional study in NHANES found no associations of urinary OP metabolites and asthma risk (Perla et al., 2015). A birth cohort study assessed
pesticide exposure through personal air samples, and found that higher prenatal measurements of the pyrethroids cis-permethrin, but not trans-permethrin, were associated with increased cough symptoms in children by age 5 (Reardon et al., 2009).

In order to verify the state of the knowledge regarding this important issue, a systematic review was undertaken to gather the published scientific evidence on the respiratory and allergic effects in children exposed to pesticides.

Materials and Methods

This systematic review was conducted under the PRISMA protocol and PECO process to identify published scientific evidence about respiratory and allergic effects in children exposed to pesticides. The databases PubMed (www.ncbi.nlm.nih.gov/pubmed/), Web of Science (www.isiknowledge.com), Scielo (search.scielo.org), and Lilacs (pesquisa.bvsalud.org/portal/advanced/) were consulted to select articles in English, Spanish, or Portuguese using the following terms: For English: (pesticid* OR agrochemic* OR fumigant* OR fungicide* OR insecticide* OR herbicide* OR acaricide* OR nematicide*) AND (child* OR pregnan* OR prenatal OR offspring OR newborn OR early-life OR infant* OR preschool*) AND (respirat* OR pulmonar* OR asthma* OR allerg* OR hypersensitivit* OR rhinitis). For Spanish and Portuguese: (pesticid* OR plaguicida* OR agrotoxico* OR agroquimic* OR fumigant* OR fungicida* OR insecticida* OR insecticida* OR herbicida* OR acaricida* OR nematicida*) AND (niñ* OR criança* OR emabaraz* OR gravid* OR gesta* OR prenatal* OR pré-natal* OR hiji* OR filh* OR nascid* OR infant* OR escolar*) AND (respirat* OR pulmon* OR asma* OR alerg* OR hipersensitivit* OR rinit*).

Search on Pubmed was conducted by the title and abstract (only full-text available), on Web of Science by the topic (title, abstract and key-words), on Scielo by all indexes, and on Lilacs by words. No temporal cut was established, and articles published until September 2019 were included in this review.

Only articles with full text available were included; and review, meta-analysis, experimental, qualitative and case studies were excluded. Articles focused on house allergens such as dust, cat, dog, mite and cockroach were also excluded. In the first screening, two independent reviewers read the title, and selected those focusing on pesticide for agricultural use, being as inclusive as possible. In total, 163 articles were selected for the following phase.
Then, all abstracts were read in the screening phase to select relevant papers regarding the association of children’s respiratory health and pesticides. At this screening, 136 articles were excluded because they did not meet the inclusion criteria or deal directly with the issue investigated. A third reviewer participated at this stage of the screening process. Articles about respiratory and allergic effects of pesticide exposure in children from all ethnic groups, geographical location, and socioeconomic status were selected. Furthermore, the remained 27 articles were fully read to gather relevant information.

After reading the full-text of articles considered eligible (27), six manuscripts were excluded for the following reasons: exposure study without addressing health effects; study about house dust mite allergens; study with adults as subjects; and hospital-based study which addressed differences between rural and urban populations and children’s clinical course after pesticide poisoning without focusing on respiratory effects. Thus, 21 articles were finally selected and discussed in this review (Figure 1).

(Figure 1 here)

Remained articles were systematized by the study location, design and year of publication, sample size and age, types of pesticides, exposure pathway and activity, exposure assessment method, period of exposure, health effect and assessment method, and main findings. The location and year of publication were also discussed.

Results and Discussion

The studies included in this review are systematized in Table 1-3, divided by classes of pesticides accessed. Articles were separated in OP, OC, and multiple pesticides without assessing health effects separately (presented in Tables 1, 2, and 3, respectively) because of their potential differences in characteristics, toxicity, and health effects for humans.

Despite OC has been banned in almost every country, its long half-life makes it still found in many human and environmental matrices. The OC has been replaced by pesticides considered less persistent, but later known to be also very toxic, such as OP, CM, and
Pyrethroids among others. There is a recent increase of the epidemiological evidence about the respiratory effects of pesticide exposure, raising a great public health concern.

Up to date, only 21 epidemiological studies were indexed in the searched databases about the effects of pesticide exposure on children’s respiratory and allergic health. Of the 21 articles included in this review, some belonged to the same research project/program, resulting in 16 independent studies, and of these, 8 were cohort studies (7 prospective and 1 retrospective), 3 cross-sectional, 2 case-control, 2 hospital-based analyses of admissions and medical chart, and 1 retrospective survey. Five studies were about the CHAMACOS cohort study from University of California, Berkeley.

The first study was published in 2003 and since then, there was a discreet upward tendency, with no publications in several years such as 2005, 2008, and between 2011 and 2013 (Graph 1). All studies were located in three continents (North America, Asia and Europe), while Latin America and Africa had no studies, despite their intensive use of pesticides. As shown in Table 4, the majority of studies were conducted in the North America region, and more than half was from the United States.

Pesticide exposure may affect disproportionally the lower and middle income countries, where regulation, surveillance and farmer’s technical support are weaker and less rigorous (Carneiro et al., 2015; UNICEF, 2018). In these countries, frequent exposure to multiple highly toxic chemicals without proper personal protection is common, and was associated with respiratory health impacts in adults occupationally exposed (Buralli et al., 2018b; Chakraborty et al., 2009; Faria et al., 2005; Negatu et al., 2017; Quansah et al., 2016), possibly overloading the health systems. It is estimated that 99% of the poisoning cases of pesticide exposure occur in low and middle income countries (U.N. Human Rights Council, 2017), but contrastingly most studies included in this review were located in high income countries. Although some children’s health effects of pesticide exposure have been studied recently in lower income countries (Froes Asmus et al., 2016; Muñoz-Quezada et al., 2013; van Wendel de Joode et al., 2016), respiratory outcomes are still understudied.

The study sample size and age of subjects varies widely between the 21 studies included in this review. The study with fewer participants was a U.S. cohort that followed 16 children aged 6-16y (2 articles published), and with more participants were a British birth cohort (ALSPAC) of 13,971 children aged up to 8.5y, and a U.S. cross-sectional population based study (NHANES) with 10,077 children aged from 6-16y. Out of the total of studies, 33% (n=7) reported the children’s respiratory effects at specific ages (being 1, 2, and 4 studies
respectively with children aged 1, 5, and 7 years), while 66% (n=14) presented results of children of a wide age range, varying from newborns to 16 years old. These great differences of the study’s sample size and subject’s ages hamper the results comparison by specific age ranges.

Children’s exposure to pesticides often begins before birth through mother’s and father’s occupational exposure to pesticides, and tend to continue thereafter. A study with 260 farmworker mothers observed that all of them worked during pregnancy entirely or partially, and has stopped working at week 22.8 ±7.9 (mean, sd). They also reported that ~52% of fathers also worked in agriculture during pregnancy (Runkle et al., 2014). Twelve studies assessed the respiratory effects considering the prenatal exposure to pesticides, being only two of them exclusively about the prenatal exposure. One of them found that prenatal exposure to DDE (concentration at cord blood samples) was associated with wheeze at age 4y, but not thereafter, and with other respiratory outcomes at different ages (Gascon et al., 2014). The other one found that prenatal exposure to pesticide was associated with significantly higher odds of allergies and hayfever, but not of cough, bronchitis and asthma among children who lived on farms with pesticide use, compared to children living on farms with no pesticide use (Weselak et al., 2007).

Children are exposed to pesticide through multiple pathways, that can include: having a mother exposed to pesticides while pregnant, living or studying near areas with pesticide use, attending agricultural areas, having parents working in agriculture, having residential exposure by take-home exposure, eating and drinking contaminated food and water, among others (Hyland and Laribi, 2017; López-Gálvez et al., 2019). A hospital-based multisite study in Sri Lanka observed that most children poisoned with pesticides had at least one parent engaged in farming activities (~58%), and were exposed at cultivation sites (~51%) (Dayasiri et al., 2017).

Five out of the 21 studies included in this review used the parent’s occupational exposure to pesticides as a proxy of exposure. Of these, one study found that prenatal and childhood OP exposure (assessed by DAP metabolites) were non-significantly associated to respiratory symptoms at 5y and 7y (Raanan et al., 2015), but were associated with significant decreases in lung function at age 7 in another study (Raanan et al., 2016). Prenatal exposure to pesticides (OP and pyrethroids) was pointed to increase the risk of early cough, wheeze, and IgE production (Reardon et al., 2009), and maternal postnatal occupational exposure to biocides/fungicides exposure increased the likelihood of childhood wheeze (Tagiyeva et al.,
Moreover, mothers working in ferneries were 2.7 times more likely to report child diagnosis of a respiratory condition, compared to nursery farm workers (Runkle et al., 2014).

Four studies assessed the children’s respiratory effects of the residential proximity to pesticide application areas. Two studies found that asthma (observed through increased uLTE4 levels) were associated with OP exposure among children of farmers who live close to cultivation sites, being significant only for diethyl alkylphosphate (EDE) (Benka-Coker et al., 2019b), even when the PM2.5 was considered as a joint exposure (Benka-Coker et al., 2019a).

Children’s respiratory symptoms, asthma prevalence and pulmonary function changes were associated with elemental sulfur applications within 0.5 and 1 km radii from the residence (Raanan et al., 2017), but non-significant associations were observed for residential proximity to fumigants use in the same cohort (Gunier et al., 2018). Furthermore, one study explored the children’s school proximity of cultivation areas with pesticide use and respiratory effects, and found that urinary CM metabolite levels (by ETU concentration) was significantly associated with an increased risk of asthma and rhinitis (Raherison et al., 2019).

Three other studies considered the fact of children living in a rural area as a proxy of exposure. Associations between an increased prevalence of asthma and wheeze and elevated Th2 levels among OP exposed children at early age in US were observed (Duramad et al., 2006); also significantly higher odds of allergies and hayfever in Canadian children who lived on farms with pesticide use during pregnancy, compared to children living on farms with no pesticide use (Weselak et al., 2007); and higher prevalence of respiratory symptoms as wheezing, allergic rhinitis, and eczema were found among rural children from conventional tea plantation compared to children from an organic tea cultivation in Sri Lanka (Kudagammana and Mohotti, 2018).

Ten out of the 21 studies (47.7%) assessed the health effects of combined exposure to more than one pesticide, including OP, carbamates (CM), pyrethroids, herbicides, fungicides and biocides. Moreover, five studies (23.8%) addressed the specific effects of OP, four (19.0%) of organochlorines (OC), mainly DDT and its main metabolite DDE, while the other two remaining studies embraced the exposure to elemental sulfur and fumigants (one each).

The exposure to OP was significantly associated with asthma and wheeze in children at early age (Duramad et al., 2006), decreases in lung function at 7 years old (Raanan et al., 2016), and increased asthma (Benka-Coker et al., 2019b, 2019a). The combined exposure including OP (with pyrethroids) was related to higher risk of early cough, wheeze, and IgE as
biomarker for allergy (Reardon et al., 2009), while no associations were found between asthma and biomarkers of DAP or DDT insecticides among 10,077 school aged children in a population-based study in the US (Perla et al., 2015). Contrastingly, prenatal and childhood exposure to OP through DAP metabolites were not associated with respiratory symptoms at 5y and 7y (Raanan et al., 2015).

The prenatal exposure to OC assessed was associated with respiratory tract infections early in life among 199 Inuit infants, where population is mostly exposed through fish and mammal fat consumption (Dallaire et al., 2004), and associated with wheeze at age 4y, but not thereafter, and other respiratory outcomes at different ages up to 14 years old (Gascon et al., 2014). In a hospital-based case control study with 620 Chinese children aged 3 to 6 years, asthmatic children presented significantly higher levels than non-asthmatic children of seven OC (α-HCH, HCB, β-HCH, γ-HCH, Heptachlor, p,p’-DDE and o,p’-DDT) (Meng et al., 2016). A study with 747 boys aged 12-21 months in Mexico investigated the effects of the pesticides applied at home for malaria control in maternal serum samples, and found no associations with lower respiratory tract infections such as pneumonia and bronchiolitis (Cupul-Uicab et al., 2014).

Eight studies addressed the children’s respiratory effects of multiple pesticides combined through questionnaire and interview, and observed significantly higher odds of having asthma, wheezing, and chronic phlegm (Salameh et al., 2003), and also wheezing, allergic rhinitis and eczema (Kudagammana and Mohotti, 2018), when compared with non-exposed children. Maternal postnatal exposure to biocides and fungicides at work was associated with an increased risk of childhood wheeze (Tagiyeva et al., 2010). Asthma diagnosis before 5 years old was also associated with exposure in the first year of life to herbicides and other pesticides (Salam et al., 2004).

CM exposure (measured through urinary ETU) in a school located in a vineyard area with high pesticide use was significantly associated with an increased risk of asthma and rhinitis, but not for lung function changes (Raherison et al., 2019).

Two studies had no clear associations between the exposure to pesticides and health effects, being one of them a comparison between ferneries and nursery farm workers (Runkle et al., 2014), and the other one was a multisite hospital-based study assessing the prevalence of respiratory symptoms among poisoned children (Dayasiri et al., 2017). The last one reported respiratory symptoms in about 8.6–10.8% of poisoned children, and most had at least one parent engaged in farming activities (Dayasiri et al., 2017).
Finally, 15 out of the 19 left studies (79%) included in this review found positive associations with pesticide exposure and children’s respiratory and allergic effects, mainly asthma (Benka-Coker et al., 2019a, 2019b; Duramad et al., 2006; Meng et al., 2016; Raanan et al., 2017; Salam et al., 2004; Salameh et al., 2003), wheezing (Duramad et al., 2006; Kudagammana and Mohotti, 2018; Reardon et al., 2009; Salameh et al., 2003; Tagiyeva et al., 2010), allergic rhinitis and eczema (Kudagammana and Mohotti, 2018), cough and allergy (Reardon et al., 2009), respiratory acute infections (Dallaire et al., 2004), chronic phlegm (Salameh et al., 2003), and lung function impairments (Raanan et al., 2016).

Prenatal exposure to DDE was associated with children’s respiratory outcomes at different ages, and with wheeze at age 4 years, but not thereafter (Gascon et al., 2014). Significantly higher odds of allergies and hayfever was observed among children who lived on farms with pesticide use during pregnancy, compared to children living on farms with no pesticide use, but no relation was observed with cough, bronchitis and asthma (Weselak et al., 2007). Urinary ETU levels (as biomarkers for CM) were significantly associated with an increased risk of asthma and rhinitis, after adjustment, but no significant associations were found between lung function changes (Raherison et al., 2019).

Contrastingly, four studies out of the 19 left studies (21%) found no associations between the exposure to pesticides and the respiratory or allergic health effects. Prenatal and childhood exposure to OP (assessed through urinary DAP) were non-significantly associated to respiratory symptoms at ages 5 and 7 years old (Raanan et al., 2015). Higher prenatal exposure to OC (p,p-DDE and p,p-DDT in maternal serum) were not associated to higher risk of lower respiratory tract infections (Cupul-Uicab et al., 2014).

A population-based study in US did not observe clear associations between asthma and OP and OC exposure (through biomarkers of DAP or DDT insecticides) among school aged children (Perla et al., 2015). No significant associations were observed between residential proximity to fumigants use prenatal and from birth to age 7 assessed through the pesticide use registration in California and respiratory symptoms, use of asthma medication, and lung function measurements (Gunier et al., 2018).
Conclusions

This comprehensive review provides vast evidence on the respiratory and allergic effects of agricultural pesticide exposure in children. It shows that children are exposed to pesticides through multiple sources and pathways from the prenatal period throughout life, and this may have several respiratory effects such as asthma, wheezing, cough, allergies, and pulmonary function impairment.

Children from low- and middle-income countries are the most affected due to the use of excessive use of highly toxic pesticides, lack of occupational training and protective measures, high environmental and take-home exposure, among others. However, most studies are still conducted in high-income countries. Therefore, this review highlights the necessity of more studies in low- and middle-income countries, especially in the larger food producers with more conventional methods and more child population in the countryside.

The effects comparison was hampered by the study’s differences, such as types of pesticide investigated, exposure pathway and assessment method, age range, among others. The development and validation of international research protocols, adapted to local specificities, can help to develop comparable studies in different settings, facilitating a better understanding of the complexity of pesticide exposure and health effects.

Despite its limitations, this review provides important epidemiological evidence that reinforces the importance of strengthening public policies to protect children’s health. We recommend additional research to fully characterize children's exposure pathways to pesticides and the links with respiratory health outcomes. Moreover, efforts should be made globally to develop more comprehensive risk mitigation strategies and behavioral interventions based on current information to minimize the children's exposure to agricultural pesticides and respiratory health effects.

References

Baldi I, Robert C, Piantoni F, Tual S, Bouvier G, Lebailly P, et al. Agricultural exposure and asthma risk in the AGRICAN French cohort. Int J Hyg Environ Health 2014;217:435–42. doi:10.1016/j.ijheh.2013.08.006.
Benka-Coker W, Loftus C, Karr C, Magzamen S. Characterizing the joint effects of pesticide exposure and criteria ambient air pollutants on pediatric asthma morbidity in an agricultural community. Environ Epidemiol 2019a;3:e046. doi:10.1097/ee9.0000000000000046.

Benka-Coker W, Loftus C, Karr C, Magzamen S, Loftus C, Karr C, et al. Association of Organophosphate Pesticide Exposure and a Marker of Asthma Morbidity in an Agricultural Community Association of Organophosphate Pesticide Exposure and a Marker of Asthma Morbidity in an Agricultural Community. J Agromedicine 2019b;0:1–9. doi:10.1080/1059924X.2019.1619644.

Bradman A, Castorina R, Barr DB, Chevrier J, Harnly ME, Eisen EA, et al. Determinants of organophosphorus pesticide urinary metabolite levels in young children living in an agricultural community. Int J Environ Res Public Health 2011;8:1061–83. doi:10.3390/ijerph8041061.

Bukalasa JS, Brunekreef B, Brouwer M, Koppelman GH, Wijga AH, Huss A, et al. Associations of residential exposure to agricultural pesticides with asthma prevalence in adolescence: The PIAMA birth cohort. Environ Int 2018;121:435–42. doi:10.1016/j.envint.2018.09.029.

Buralli RJ, Ribeiro H, Mauad T, Amato-Lourenço LF, Salge JM, Diaz-Quijano FA, et al. Respiratory condition of family farmers exposed to pesticides in the state of Rio de Janeiro, Brazil. Int J Environ Res Public Health 2018;15:1–14. doi:10.3390/ijerph15061203.

Carneiro FF (Org. ., Augusto LG da S, Rigotto RM, Friedrich K, Búrigo AC. Dossiê ABRASCO: um alerta sobre os impactos dos agrotóxicos na saúde. 2015. doi:10.1016/B978-84-458-2066-7.00003-3.

Chakraborty S, Mukherjee S, Roychoudhury S, Siddique S, Lahiri T, Ray MR. Chronic Exposures to Cholinesterase-inhibiting Pesticides Adversely Affect Respiratory Health of Agricultural Workers in India. J Occup Heal 2009;51:488–97.

Cupul-Uicab LA, Terrazas-Medina EA, Hernández-Ávila M, Longnecker MP. Prenatal Exposure to p,p′-DDE and p,p′-DDT in Relation to Lower Respiratory Tract Infections in Boys From a Highly Exposed Area of Mexico. Env Res 2014;132:19–23. doi:10.1016/j.envres.2014.03.017.Prenatal.

Dallaire F, Dewailly É, Muckle G, Vézina C, Jacobson SW, Jacobson JL, et al. Acute infections and environmental exposure to organochlorines in Inuit infants from Nunavik. Environ Health Perspect 2004;112:1359–64. doi:10.1289/ehp.7255.

Dayasiri KC, Jayamanne SF, Jayasinghe CY. Patterns of acute poisoning with pesticides in the paediatric age group. Int J Emerg Med 2017;10. doi:10.1186/s12245-017-0148-5.

Duramad P, Harley K, Lipsett M, Bradman A, Eskenazi B, Holland NT, et al. Early environmental exposures and intracellular Th1/Th2 cytokine profiles in 24-month-old children living in an agricultural area. Environ Health Perspect 2006;114:1916–22. doi:10.1289/ehp.9306.

Fareed M, Pathak MK, Bihari V, Kamal R, Srivastava AK, Kesavachandran CN. Adverse respiratory health and hematological alterations among agricultural workers occupationally
exposed to organophosphate pesticides: a cross-sectional study in North India. PLoS One 2013;8:e69755. doi:10.1371/journal.pone.0069755.

Faria NMX, Facchini LA, Fassa AG, Tomasi E. Pesticides and respiratory symptoms among farmers. Rev Saúde Pública 2005;39:973–981.

Froes Asmus CIR, Camara VM, Landrigan PJ, Claudio L. A Systematic Review of Children’s Environmental Health in Brazil. Ann Glob Heal 2016;82:132–48. doi:10.1016/j.aogh.2016.02.007.

Gascon M, Sunyer J, Martinez D, Guerra S, Lavi I. Persistent organic pollutants and children’s respiratory health: The role of cytokines and inflammatory biomarkers. Environ Int 2014;69:133–40. doi:10.1016/j.envint.2014.04.021.

Gunier RB, Raanan R, Castorina R, Holland NT, Harley KG, Balmes JR, et al. Residential proximity to agricultural fumigant use and respiratory health in 7-year old children. Environ Res 2018;164:93–9. doi:10.1016/j.envres.2018.02.022.

Hoppin J a, Umbach DM, London SJ, Henneberger PK, Kullman GJ, Coble J, et al. Pesticide use and adult-onset asthma among male farmers in the Agricultural Health Study. Eur Respir J 2009;34:1296–303. doi:10.1183/09031936.00005509.

Hyland C, Laribi O. Review of take-home pesticide exposure pathway in children living in agricultural areas. Environ Res 2017;156:559–70. doi:10.1016/j.envres.2017.04.017.

De Jong K, Boezen HM, Kromhout H, Vermeulen R, Postma DS, Vonk JM. Association of occupational pesticide exposure with accelerated longitudinal decline in lung function. Am J Epidemiol 2014;179:1323–30. doi:10.1093/aje/kwu053.

Kamel F, Hoppin JA. Association of pesticide exposure with neurologic dysfunction and disease. Environ Health Perspect 2004;112:950–8. doi:10.1289/ehp.7135.

Kudagammana ST, Mohotti K. Environmental exposure to agrochemicals and allergic diseases in preschool children in high grown tea plantations of Sri Lanka. Allergy, Asthma Clin Immunol 2018;14:1–5. doi:10.1186/s13223-018-0308-z.

López-Gálvez N, Wagoner R, Quirós-Alcalá L, Van Horne YO, Furlong M, Avila E, et al. Systematic literature review of the take-home route of pesticide exposure via biomonitoring and environmental monitoring. Int J Environ Res Public Health 2019;16:1–24. doi:10.3390/ijerph16122177.

Lu C, Toepel K, Irish R, Fenske RA, Barr DB, Bravo R. Organic diets significantly lower children’s dietary exposure to organophosphorus pesticides. Environ Health Perspect 2006;114:260–3. doi:10.1289/ehp.8418.

Mamane A, Raherison C, Tessier JF, Baldi I, Bouvier G. Environmental exposure to pesticides and respiratory health. Eur Respir Rev 2015;24:462–73. doi:10.1183/16000617.0006114.

Marks AR, Harley K, Bradman A, Kogut K, Barr DB, Johnson C, et al. Organophosphate pesticide exposure and attention in young Mexican-American children: The CHAMACOS study. Environ Health Perspect 2010;118:1768–74. doi:10.1289/ehp.1002056.
Meng G, Feng Y, Nie Z, Wu X, Wei H, Wu S. Internal exposure levels of typical POPs and their associations with childhood asthma in Shanghai, China. Environ Res 2016;146:125–35. doi:10.1016/j.envres.2015.12.026.

Muñoz-Quezada MT, Lucero BA, Barr DB, Steenland K, Levy K, Ryan PB, et al. Neurodevelopmental effects in children associated with exposure to organophosphate pesticides: A systematic review. Neurotoxicology 2013;39:158–68. doi:10.1016/j.neuro.2013.09.003.

Negatu B, Kromhout H, Mekonnen Y, Vermeulen R. Occupational pesticide exposure and respiratory health: a large-scale cross-sectional study in three commercial farming systems in Ethiopia. Thorax 2017;72:498.1-499. doi:10.1136/thoraxjnl-2016-208924.

Perla ME, Rue T, Cheadle A, Krieger J, Karr CJ. Biomarkers of Insecticide Exposure and Asthma in Children: A National Health and Nutrition Examination Survey (NHANES) 1999-2008 Analysis. Arch Environ Occup Heal 2015;70:309–22. doi:10.1080/19338244.2014.910490.

Quansah R, Bend JR, Abdul-Rahaman A, Armah FA, Luginaah I, Essumang DK, et al. Associations between pesticide use and respiratory symptoms: A cross-sectional study in Southern Ghana. Environ Res 2016;150:245–54. doi:10.1016/j.envres.2016.06.013.

Raanan R, Balmes JR, Harley KG, Gunier RB, Magzamen S, Bradman A, et al. Decreased lung function in 7-year-old children with early-life organophosphate exposure. Thorax 2016;71:148–53. doi:10.1136/thoraxjnl-2014-206622.

Raanan R, Gunier RB, Balmes JR, Beltran AJ, Harley KG, Bradman A, et al. Elemental sulfur use and associations with pediatric lung function and respiratory symptoms in an agricultural community (California, USA). Environ Health Perspect 2017;125:1–8. doi:10.1289/EHP528.

Raanan R, Harley KG, Balmes JR, Bradman A, Lipsett M, Eskenazi B. Early-life exposure to organophosphate pesticides and pediatric respiratory symptoms in the CHAMACOS cohort. Environ Health Perspect 2015;123:179–85. doi:10.1289/ehp.1408235.

Raherison C, Baldi I, Pouquet M, Berteaud E, Moesch C, Bouvier G, et al. Pesticides Exposure by Air in Vineyard Rural Area and Respiratory Health in Children: A pilot study. Environ Res 2019;169:189–95. doi:10.1016/j.envres.2018.11.002.

Reardon AM, Perzanowski MS, Whyatt RM, Chew GL, Perera FP, Miller RL. Associations between prenatal pesticide exposure and cough, wheeze, and IgE in early childhood. J Allergy Clin Immunol 2009;124:852–4. doi:10.1016/j.jaci.2009.07.046.

Roberts JR, Karr CJ. Pesticide exposure in children. Pediatrics 2012;130:11. doi:10.1542/peds.2012-2758.

Runkle J, Flocks J, Economos J, Tovar-Aguilar JA, McCauley L. Occupational risks and pregnancy and infant health outcomes in florida farmworkers. Int J Environ Res Public Health 2014;11:7820–40. doi:10.3390/ijerph110807820.
Salam MT, Li YF, Langholz B, Gilliland FD. Early-life environmental risk factors for asthma: Findings from the children’s health study. Environ Health Perspect 2004;112:760–5. doi:10.1289/ehp.6662.

Salameh PR, Baldi I, Brochard P, Raherison C, Saleh BA, Salamon R. Respiratory symptoms in children and exposure to pesticides. Eur Respir J 2003;22:507–12. doi:10.1183/09031936.03.00107403.

Shama FA, Skogstad M, Nijem K, Bjertness E, Kristensen P. Cross-shift changes in lung function among palestinian farmers during high- and low-exposure periods to pesticides: A longitudinal study. Arch Environ Occup Heal 2015;70:218–24. doi:10.1080/19338244.2013.859122.

Tagiyeva N, Devereux G, Semple S, Sherriff A, Henderson J, Elias P, et al. Parental occupation is a risk factor for childhood wheeze and asthma. Eur Respir J 2010;35:987–93. doi:10.1183/09031936.00050009.

UN. Human Rights Council. Report of the Special Rapporteur on the Right to Food. Rep Spec Rapp Right to Food Hilal Elver 2017;01059:24.

UNICEF. Understanding the Impacts of Pesticides on Children: A discussion paper 2018:1–26.

van Wendel de Joode B, Mora AM, Lindh CH, Hernández-Bonilla D, Córdoba L, Wesseling C, et al. Pesticide exposure and neurodevelopment in children aged 6–9 years from Talamanca, Costa Rica. Cortex 2016;85:137–50. doi:10.1016/j.cortex.2016.09.003.

Weselak M, Arbuckle TE, Wigle DT, Krewski D. In utero pesticide exposure and childhood morbidity. Environ Res 2007;103:79–86. doi:10.1016/j.envres.2006.09.001.

Xu X, Nembhard WN, Kan H, Becker A, Talbott EO. Residential pesticide use is associated with children's respiratory symptoms. J Occup Environ Med 2012;54:1281–7. doi:10.1097/JOM.0b013e31825cb6ae.
Figure 1. Flow chart of study selection.

First search:

- Pubmed: (n=260) ENG, (n=54) PORT/SPN
- Web of Science: (n=371) ENG, (n=56) PORT/SPN
- Lilacs: (n=50) ENG, (n=40) PORT/SPN
- Scielo: (n=9) ENG, (n=17) PORT/SPN

Filtered by title:

- Pubmed: (n=84) ENG, (n=10) PORT/SPN
- Web of Science: (n=124) ENG, (n=10) PORT/SPN
- Lilacs: (n=5) ENG, (n=2) PORT/SPN
- Scielo: (n=4) ENG, (n=4) PORT/SPN

Records after duplicates removed (n=163)

Records screened (n=163) → Records excluded (n=136)

Full-text articles assessed for eligibility (n=27) → Full-text articles excluded, with reasons (n=6)

Studies included in qualitative synthesis (n=21)
Table 1. Evidence of children’s respiratory and allergic effects of exposure to organophosphate pesticides (OP).

Author, year and country	Study design	Study sample	Pesticides addressed	Exposure pathway and activity	Exposure assessment method	Period of exposure	Health effect and assessment method	Results
Duramad, P. et al. 2006/USA	Longitudinal birth cohort (CHAMACOS)	412 children aged up to 24 months	OP	Children who reside in agricultural settings	Questionnaire-based interviews with home visits	Prenatal up to 24 months	Respiratory symptoms through questionnaire-based interviews, and medical records, and T-helper 1 (Th1) and T-helper 2 (Th2) cytokine biomarkers of allergic asthma.	Asthma and wheeze outcomes in children at 24 months of age were associated with elevated Th2 status in children at early age.
Raanan, R. et al. 2015/USA	Longitudinal birth cohort (CHAMACOS)	364 children aged 5y and 7y	OP	At least 1 agriculture worker in household	Maternal interviews and urinary dialkylphosphate metabolites (DAP)	Prenatal and childhood until age 5y and 7y	Respiratory symptoms through questionnaire (ISAAC)	Higher prenatal and childhood DAP were non-significantly associated to respiratory symptoms at 5y and 7y.
Raanan, R. et al. 2016/USA	Longitudinal birth cohort (CHAMACOS)	279 children aged 7y	OP	At least 1 agriculture worker in household	Maternal interviews, home visits, six urinary DAP measured during pregnancy and five times in childhood	Prenatal and childhood until 7y	Spirometry	Childhood diethyl, dimethyl and total DAP were associated with significant decreases in lung function at age 7. Significantly lower FEV1 ($\beta=-0.16$, 95%CI: -0.30; -0.02), and FVC ($\beta=-0.17$, 95% CI: -0.34; 0.01) were observed per 10-fold increase of children’s total DAP levels.
Reference	Study Design	Participants	Exposure	Outcome	Methods	Findings		
-----------	-------------	--------------	----------	---------	---------	----------		
Benka-Coker, WO. et al. 2019a/USA	Longitudinal cohort with 4 months follow-up	16 asthmatic children aged 6-16y from agricultural communities	OP and joint effects with particulate matter <2.5 μg (PM2.5) and Ozone	Residential proximity to crop areas, and parents involvement in agriculture	Repetitive urine samples for DAP (summative measures), and PM2.5 and Ozone data from local monitoring stations	Not clear	Asthma assessed through urinary Leukotriene E4 (uLTE4) collected every 6 days during the study period	Higher exposures to OP were associated with increases in the LTE4 levels, and concurrent short-term exposure to PM 2.5 was associated with an increase in a marker of asthma morbidity.
Benka-Coker, WO. et al. 2019b/USA	Longitudinal cohort with 4 months follow-up	16 asthmatic children aged 6-16y from agricultural communities	OP	Residential proximity to crop areas, and parents involvement in agriculture	Repetitive urine samples for DAP, and comparison with another population-based cohort (NHANES). The total OP exposure was estimated through summative DAP measures, rather than measures of individual analytes	Not clear	Asthma assessed through urinary LTE4 collected every 6 days during the study period	Distribution of summed DAPs in this study were significantly higher than NHANES levels. Increase in uLTE4 levels were associated with increased exposures to DAPs, being significant only for diethyl alkylphosphate (EDE), after adjustment: 8.7 (95% CI: 2.8, 14.6).
Table 2. Evidence of children’s respiratory and allergic effects of exposure to organochlorine pesticides (OC).

Author, year and country	Study sample	Study design	Pesticides addressed	Exposure pathway and activity	Exposure assessment method	Period of exposure	Health effect and assessment method	Results
Dallaire, F. et al. 2004/Canada	199 Inuit infants up to 12 months	Review of medical charts	DDE	Environmental exposure, especially the consumption of fish and marine mammal fat	Maternal plasma during delivery and infant plasma at 7 months of age	Prenatal and at infancy	Comparison of incidence rates of upper and lower respiratory tract infections (URTIs and LRTIs, respectively) in two follow-ups (6 and 12 months)	Compared to rates for infants in the first quartile of DDE exposure (least exposed), adjusted rate ratios (RR) for infants in higher quartiles ranged between 1.15 and 1.56 for URTIs, and 0.96 and 1.40 for LRTIs at the 6 months follow-up, while it ranged from 1.09 to 1.34 for URTIs, and from 0.98 to 1.13 for LRTIs at the 12 months follow-up, suggesting a possible association between prenatal exposure to OCs and acute infections early in life. Despite most RR were > 1.0, only URTIs at the 2nd quartile were statistically significant at both follow-up.
Study	Sample Size	Study Design	Chemicals	Exposure Measurement	Outcome Measures	Findings		
------------------	-------------	----------------	-----------	----------------------	---	--		
Gascon M. et al. 2007/Spain	405 children aged up to 14y	Longitudinal birth cohort	DDE	Non-specific environmental exposure	DDE [] at cord blood samples, and immune biomarkers at age 4y	Prenatal exposure to DDE Occurrence of wheeze, chest infections and asthma through questionnaire-based interviews at years 1, 2, 3, 4, 6.5, 10 and 14y Pre term DDE exposure was associated with wheeze at age 4y (RR per doubling of [] = 1.35; 95%CI: 1.07; 1.71), but not thereafter. Prenatal exposure was associated with children’s respiratory outcomes at different ages, but no associations were found between the immune biomarkers and DDE.		
Cupul-Uicab, L.A. et al. 2014/Mexico	747 newborn singleton boys	Longitudinal birth cohort	DDE and DDT	Maternal serum samples, and home visits	Prenatal exposure and from 12 months to 21 months	Mother report on Doctor diagnosis of pneumonia, bronchitis or other illness (LRTI) Higher prenatal exposure to p,p-DDE and p,p-DDT were not associated to higher risk of LRTI before or after adjustment for confounders.		
Meng, G. et al. 2016/China	620 asthmatic children, and 218 non-asthmatic children aged 3–6y	Hospital-based Case-Control	OC	Environmental exposure, mainly from agriculture and residential use	Self-completed questionnaire	Not clear	Physician-diagnosed asthma by questionnaire and spirometry, and questionnaire to assess allergy symptoms (rhinitis and eczema) Asthmatic children presented significantly higher levels of 7 OC pesticides (α-HCH, HCB, β-HCH, γ-HCH, Heptachlor, p,p’-DDE and o,p’-DDT) than non-asthmatic children.	
Table 3. Evidence of children’s respiratory and allergic effects of exposure to multiple pesticides, elemental sulfur, and fumigants.

Author, year and country	Study sample	Study design	Pesticides addressed	Exposure pathway and activity	Exposure assessment method	Period of exposure	Health effect and assessment method	Results
Salameh, PR. et al. 2003/Lebanon	3,291 children aged 5-16y	Cross-sectional	Multiple pesticides	Environmental exposure of children from a randomly selected sample of public schools	Standardized questionnaire and residential exposure score, based on residential, para-occupational and domestic exposures	Not clear	Respiratory symptoms assessed by using the American Thoracic Society questionnaire	Compared to non-exposed children, those exposed to pesticides had significantly higher odds of having respiratory disease (OR=1.71; 95%CI: 1.20–2.43), asthma (OR=1.73; 95%CI: 1.02–2.97), chronic phlegm (OR=1.90; 95%CI: 1.26–2.87), recurrent wheezing (OR=2.10; 95%CI: 1.39–3.18), and ever wheezing (OR=1.99; 95%CI: 1.43–2.78), after adjusted for potential confounders.
Salam, MT. et al. 2004/EUA	4,000 school-aged children in 12 southern California	Case-control	Multiple herbicides and pesticides	Children who had early-life environmental exposure to pesticides and other contaminants	Questionnaire and telephone interviews with mothers to collect additional exposure and asthma history	Prenatal and at first year of life	Physician-diagnosed asthma by age 5, and controls were asthma-free at study entry, frequency-matched on age, sex, and community of residence	Asthma diagnosis before 5y was significantly associated with pesticide exposure in the first year of life to herbicides (OR = 4.58; 95% CI, 1.36-15.43), and pesticides (OR = 2.39; 95% CI, 1.17-4.89).
Weselak, M. et al.	3,405 children	Retrospective	Multiple	Living on a	Questionnaires on pesticide use, and	Prenatal	Respiratory symptoms through	The odds of allergies and hayfever was significantly

Study	Country	Number of Participants	Age Range	Study Design	Exposure	Outcomes	Findings	
al. 2007/Canada	aged 0-12y or more, from family farmers	cohort	pesticides	family farm	involvement in agricultural activities	questionnaire about health status	elevated in children who lived on farms with reported use of any pesticide, herbicides, fungicides, insecticides, OP, phenoxy, and 2,4-D during the pregnancy period, compared to children living on farms with no pesticide use. No associations were observed for persistent cough, bronchitis and asthma among the offspring of farm families.	
Reardon AM. et al. 2009/EUA	652 children aged 5y	Prospective birth cohort study	OP (chlorpyrifos and diazinon), and pyrethroids (cis-permethrin and trans-permethrin)	Elementary school children in California having a mother working in agriculture	Retrospective questionnaire, and measurement of prenatal levels of pesticide	Prenatal and first year of life	Questionnaire about wheeze and analysis of IgE production (5y); increased levels of TH2 cytokines in children (2y)	
Tagiyeva, G. et al. 2010/England	13,971 children aged up to 102 months	Birth cohort - Avon Longitudinal Study of Parents and Children (ALSPAC)	Biocides and fungicides	Parental occupational exposure to pesticides, along with other contaminants	Questionnaire and clinic evaluations	Up to 102 months	Questionnaire, clinical assessments	Maternal postnatal occupational exposure to biocide/fungicide increased the likelihood of childhood wheeze (OR=1.22; 95%CI: 1.02–2.05).
Perla, ME. et al. 2014/USA	10,077 children aged from Cross-sectional population-based	Survey questionnaires and exposure	Environmental exposures	Blood and urine tests	Up to 16 years old	Questionnaire, blood and urine tests	No clear associations between asthma and biomarkers of DAP or DDT	
6y to 16y (NHANES) biomarkers for OP (DAP) and DDT

Runkle, J. et al. 2014/USA
Snowball sample with 170 farmworker mothers (mostly from Mexico, but also indigenous from Central America and others)
Cross-sectional survey with participatory approach (CBPR)
Multiple pesticides
Mother’s involvement in agriculture at nurseries (n=62) and ferneries (n=108), pesticide handling activities, father’s working as farmer
Interviews about current and past work conditions (e.g. duration of work in agriculture while pregnant, fathers work in agriculture)
Prenatal until 1y (~52% worked the entire pregnancy period and ~48% worked partially)
Interview about outcomes during last pregnancy, infant’s health for the first year of life and doctor-diagnosed respiratory and breathing problems
Most self-reported child health problems were respiratory-related (~76%). Significantly more mothers working in ferneries reported child diagnosis of any health problem and were 2.7 times more likely to report child diagnosis of respiratory condition, compared to nursery workers.

Raanan, R. et al. 2017/USA
347 children aged 7y living in an agricultural community
Longitudinal birth cohort (CHAMACOS)
Elemental sulfur
Residential proximity to agricultural areas with elemental sulfur applications
Sulfur application within 0.5, 1, and 3km of residences during the week, month, and 12 months prior to pulmonary evaluation using California's Pesticide Use Report (PUR)
Short-term exposure (week, month and a year) before the pulmonary assessment
Respiratory symptoms through questionnaires (ISAAC) with mothers, and spirometry with children at 7y
Sulfur applications within 0.5 and 1 km radii were associated with respiratory outcomes. Asthma medication use [OR=3.51; 95% CI: 1.50; 8.23] and respiratory symptoms [OR=2.09; 95% CI: 1.27; 3.46] significantly increased (both p = 0.004) and FEV1 significantly decreased (b =
Study	Sample Description	Study Design	Exposure	Outcomes	Prevalence of Respiratory Symptoms Among Poisoned Children, Along with Other Symptoms		
Dayasiri, KC. et al. 2017/Sri Lanka	155 children aged 9 months to 12y with pesticide poisoning	Retrospective and prospective multisite study (admissions from 2007-2014)	Most frequent: OP (41%), CM (23%) and herbicides (12%)	51.3% were exposed at cultivation sites, 18.9% at home gardens, and 16.2% at home kitchens	Questionnaire-based interviews in the hospital admission	~74% had less than 5y. About 58% of children had at least one parent engaged in farming activities and 50% use pesticide in farming. Only 8.6–10.8% (depending on which hospital) of poisoned children presented respiratory symptoms.	
Kudagammana, ST.; Mohotti, K. 2018/Sri Lanka	182 preschool children aged 1-5y from an organic area (n=81) and from a conventional area (n=101)	Cross-sectional	Multiple pesticides	Children living close to tea plantations (conventional vs. organic)	Children from a conventional tea plantation were compared to children from an organic tea cultivation area	Prevalence of allergic diseases through questionnaire-based interview using the modified International Study of Asthma and Allergies (ISAAC)	
Gunier, RB. et al. 2018/USA	294 children living in an agricultural Longitudinal birth cohort (CHAMACOS)	Longitudinal	Fumigants (methyl bromide, ...)	Residential proximity to agricultural areas	Prenatal and from cumulative exposure from birth	Respiratory symptoms (ISAAC) and asthma	No significant associations were observed between residential proximity to
area	chloropicrin, metam sodium and 1,3-dichloropropene	using fumigants during pregnancy and from birth to age 7 using PUR data to 7y medication use through questionnaires with mothers, and spirometry with children at 7y	fumigants use and respiratory symptoms, use of asthma medication, and lung function measurements.				
---	---	---	---				
Raherison, C. et al. 2019/France	281 children aged 3-10y from 4 rural schools of a French vineyard region	Cross-sectional with two phases: during winter with no pesticide exposure, and summer, when pesticides are regularly applied	Multiple pesticides (insecticides, herbicides and fungicides) in outdoor air around schools, and phthalimides and dithiocarbamates fungicides in urine (ethylenethiourea = ETU) Proximity of schools from the edge of vineyards Mobile stations located close to the schools for air monitoring, and urine measurements in a subset (n=96) of studied children	Not clear Asthma and rhinitis through ISAAC, and respiratory symptoms. A symptom score was made to classify children into low, moderate and high scores. Bronchial obstruction was measured to assess the FEV1 and FEV6 of the FVC, and spirometry was performed among children aged over 6y	12 pesticides were detected in the schoolyards (89% fungicides and 11% insecticides), and significantly higher values of urine ETU (were observed in the higher pesticide use period (p=0.012). Urine ETU was significantly associated with an increased risk of asthma and rhinitis (OR: 3.6 [1.04–12.1], after adjustment. No significant associations were found between lung function changes nor decreases in PEF and FEV1 and pesticide exposure in air, or urinary ETU.		
Graph 1. Number of papers published per year focused on children’s respiratory and allergic effects of pesticide exposure ($n = 22$).
Table 4. Regional distribution of the articles considered in the present study.

Region	Number of articles	%	Countries (n, %)
Asia	4	19.0	Sri Lanka (n=2, 9.5%); Lebanon and China (n=1 each, 4.8%)
Europe	3	14.3	France, England, and Spain (n=1 each, 4.8%)
North America	14	66.7	United States (n=11, 52.4%); Canada (n=2, 9.5%); Mexico (n=1, 4.8%)
Total	21	100	10 countries in total

Note: There was no study conducted in Africa nor in South America.
6. CONCLUSÕES

Em concordância com outros estudos realizados no Brasil, nossos achados demonstram que os agricultores familiares estão ocupacionalmente e ambientalmente expostos aos pesticidas desde tenra idade em diversas situações, que incluem: viver próximo a áreas agrícolas, acompanhar seus pais nas áreas de cultivo e começar a ajudar/trabalhar na agricultura desde cedo, utilizar misturas complexas de múltiplos pesticidas, trabalhar sem o uso de EPI completo, adotar maus hábitos de higiene e segurança ocupacional, usar pesticidas domesticamente, ter contato com roupas e equipamentos contaminados, entre outros. Esses agricultores familiares geralmente possuem baixa escolaridade e renda, trabalham sem a devida orientação, treinamento de segurança e apoio técnico. Esse cenário de exposição complexo e multifatorial compromete a capacidade dos agricultores familiares brasileiros de entender os perigos das exposições aos pesticidas e adotar medidas protetivas que possam reduzir a exposição e proteger sua saúde.

Enquanto os aplicadores de pesticidas se ocupam de todas as atividades do cultivo, incluindo a manipulação direta e pulverização, os ajudantes, muitas vezes mulheres, crianças e adolescentes, se envolvem regularmente nas atividades de reentrada nas áreas agrícolas no mesmo dia ou dia seguinte da pulverização de pesticidas. Nossos resultados demonstram que os ajudantes possuem ainda menos treinamento do que os aplicadores, usam menos ou nenhum EPI e não respeitam os intervalos de reentrada, resultando em níveis elevados de exposição dérmica ou por inalação. Por não manipularem diretamente ou aplicarem pesticidas, os ajudantes se percebem menos expostos e se protegem menos.

Como resultados potencialmente relacionados ao cenário de exposição aos pesticidas descrito, os agricultores familiares avaliados neste estudo apresentaram efeitos negativos à saúde que já foram previamente associados à exposição aos pesticidas.

Na avaliação de saúde respiratória, observou-se uma alta prevalência de sintomas autorreferidos, com maiores prevalências de tosse, rinite e alergia nasal, aperto no peito e falta de ar durante o período da safra quando comparado à entressafra, tanto no grupo dos aplicadores de pesticidas quanto nos familiares ajudantes. Além disso, foram observadas associações significativas entre os indicadores de exposição a curto e longo prazo aos
pesticidas e uma redução da função pulmonar (CVF, VEF₁, VEF₁/CVF e FEF₂₅-₇₅%), durante os períodos da safras e entressafra, após ajuste para os fatores de confusão. No geral, a maioria das associações foram mais fortes durante a safras, sugerindo que a exposição a curto prazo aos pesticidas teve um efeito adicional negativo na espirometria.

Referente aos sintomas de intoxicação aguda aos pesticidas e de saúde mental, foi observada uma prevalência média a alta entre os agricultores familiares avaliados em SJU, principalmente entre os ajudantes. Pelo menos 25% dos participantes em ambos os grupos ocupacionais (aplicadores de pesticidas e ajudantes) relataram sentir frequentemente sintomas como dor de cabeça, tontura, visão turva, irritação das mucosas, taquicardia e palpitação. Ademais, pelo menos um em cada quatro ajudantes reportou sintomas agudos como formigamento, fraqueza muscular, fadiga, fotofobia, câimbras, dor de estômago, irritação de pele, falta de ar, chiado no peito e tosse.

Uma alta prevalência de sintomas de ansiedade e depressão foi observada no rastreamento de doenças mentais comuns em SJU, onde 44% dos familiares e 24% dos aplicadores apresentaram quadro compatível com ansiedade e depressão. Sintomas como sentir-se nervoso, tenso ou preocupado, assustar-se facilmente, ter dores de cabeça frequentemente e dormir mal estiveram presentes em pelo menos 25% dos participantes em ambos os grupos, embora a prevalência de alguns sintomas tenha sido de mais de 50%. Além disso, 38% dos aplicadores afirmaram ter um trabalho diário difícil e pelo menos 25% dos ajudantes reportou diversos sintomas como: sentir-se infeliz, chorar mais do que o normal, sentir sensação desconfortável no estômago, tremer as mãos, cansar-se facilmente, sentir dificuldade de tomar decisões e aproveitar atividades diárias, sentir-se cansado todo o tempo, ter problemas para pensar claramente, sentir-se inútil para desempenhar papel útil na vida, perder o interesse pelas coisas e sentir-se uma pessoa sem valor.

Essa alta prevalência de múltiplos sintomas autorreferidos pode indicar quadros de intoxicação aguda e crônica por pesticidas e/ou manifestações clínicas de doenças, o que pode comprometer significativamente a qualidade de vida dos trabalhadores e a disposição física e mental para o trabalho.

Os agricultores familiares brasileiros expostos aos pesticidas parecem estar presos a uma corrente de acontecimentos indesejáveis, que começam com os efeitos agudos de exposições de curto prazo, enfrentam sucessivos episódios de intoxicações e são acometidos por efeitos crônicos das exposições a baixas doses por longo prazo. As consequências são sentidas não apenas por esses trabalhadores e suas famílias, essenciais à produção de
alimentos, mas também constituem riscos às populações rurais, ao meio ambiente e população geral.

Através de uma revisão sistemática da literatura, percebeu-se que as crianças são expostas aos pesticidas por múltiplas fontes e vias de exposição desde o período pré-natal ao longo da vida, o que pode resultar em inúmeros efeitos respiratórios, como asma, chiado no peito, tosse, alergias e comprometimento da função pulmonar.

Apesar das crianças dos países de baixa e média renda serem potencialmente mais afetadas devido a fatores como o uso excessivo de pesticidas altamente tóxicos, alta exposição ambiental e ocupacional, falta de treinamento laboral e medidas de proteção, a maioria dos estudos ainda é realizada em países de alta renda. A heterogeneidade dos estudos encontrados na revisão da literatura dificultou a comparação entre os efeitos específicos à saúde respiratória, suscitando a importância do desenvolvimento de protocolos internacionais de pesquisa, adaptados às especificidades locais, que possam fomentar estudos comparáveis em diferentes contextos, facilitando um melhor entendimento da complexidade da exposição a pesticidas e dos efeitos à saúde.

Por fim, não há como pensar em uma dieta saudável e sustentável, com mais alimentos à base de plantas, frutas, legumes, vegetais e oleaginosas, mais naturais e menos processados, sem discutir os impactos e riscos do uso excessivo de pesticidas à saúde dos agricultores e da população exposta ambientalmente e consumidora desses alimentos. Nesse contexto, os pequenos e médios agricultores têm um papel central como principais produtores dos alimentos consumidos no Brasil e no mundo, sobretudo alimentos in natura. Portanto, qualquer mudança preconizada na dieta em busca da sustentabilidade humana e do planeta, depende de alterações no modo de produzir os alimentos e uma especial atenção a esses agricultores.
7. CONSIDERAÇÕES FINAIS E RECOMENDAÇÕES

Esta tese fornece dados complementares sobre o cenário de exposição aos pesticidas e seus efeitos à saúde de agricultores familiares no Brasil e pretende sensibilizar a academia, os tomadores de decisão e a população em geral para a necessidade de aprimorar a atenção às populações expostas ocupacionalmente e ambientalmente aos pesticidas no Brasil.

Primeiramente, consideramos fundamental melhorar o apoio técnico e treinamento ocupacional dos agricultores familiares brasileiros, promover hábitos, práticas ocupacionais e alternativas de cultivo mais sustentáveis para reduzir a exposição aos pesticidas e os riscos à saúde humana. É urgentemente necessário interromper o ciclo de exposição elevada e efeitos à saúde, evitando que os casos repetitivos de intoxicação aguda evoluam para efeitos crônicos, reduzindo a carga dessas doenças e seus sociais e econômicos. Para isso, sugerimos o esforço conjunto de diferentes atores públicos e privados, como os governos federal, estaduais e municipais, as empresas, universidades e ONGs.

Consideramos importante a realização de mais estudos que ajudem a ampliar o conhecimento sobre os efeitos à saúde em decorrência da exposição aos pesticidas no Brasil. Idealmente, indicamos estudos longitudinais com indivíduos expostos ocupacionalmente e ambientalmente aos pesticidas, com número maior de participantes e uso de biomarcadores mais sensíveis e que sejam comparáveis com outros estudos.

Destaca-se ainda a necessidade de mais estudos sobre os efeitos da exposição aos pesticidas à saúde respiratória de crianças globalmente, especialmente em países de menor renda, nos maiores produtores de alimentos com métodos mais convencionais de produção e maior população infantil no campo. Recomenda-se também mais pesquisas para caracterizar completamente as vias de exposição das crianças a pesticidas e seus efeitos à saúde, além de esforços globais para desenvolver estratégias mais abrangentes de mitigação de riscos e intervenções comportamentais com base nas informações atuais para minimizar a exposição das crianças a pesticidas agrícolas e efeitos à saúde, incluindo a respiratória.

Recomendamos fortalecer políticas e programas relacionados aos trabalhadores agrícolas e implementar ações integradas que sejam transversais a todos os níveis de atenção à saúde, da prevenção e promoção ao tratamento e a reabilitação, integrando as estratégias de
diferentes atores, como por exemplo, os CERESTs, as vigilâncias, os agentes de saúde e outros profissionais da estratégia de saúde da família. Devido à sua complexidade, é essencial capilarizar essas ações em todas as áreas de governo, não só a saúde, mas também a agricultura, o meio ambiente e a educação, entre outras.

Também é necessário consolidar as ações de vigilância em saúde ambiental e do trabalhador rural, expandir e modernizar a capacidade técnica e laboratorial, ampliar as estratégias de avaliação de contaminação ambiental (ex. PARA e SISAGUA) e humana (ex. SINAN, notificação compulsória de intoxicações, uso de biomarcadores como cabelo e urina e a comunicação de risco).

Outras medidas importantes a serem consideradas incluem: inserir a educação ambiental nos currículos escolares e promover estratégias de atenção específicas às populações rurais em regiões de maior produção agrícola, estabelecer protocolos de atenção aos intoxicados agudos e crônicos por pesticidas que sejam simples, eletrônicos e integrados, melhorando o acolhimento e atendimento dos serviços de saúde e facilitando o planejamento de ações em saúde do trabalhador agrícola. Recomendamos também que sejam criados indicadores de sustentabilidade das práticas agrícolas que considerem elementos importantes para o cumprimento dos objetivos e metas da agenda dos Objetivos do Desenvolvimento Sustentável.

O aumento da percepção das externalidades negativas da agricultura tem estimulado métodos de produção que harmonizem o bom manejo da unidade produtiva e a incorporação de princípios de proteção do meio ambiente e da saúde humana. A recente demanda por alimentos produzidos sem pesticidas e com princípios agroecológicos torna a agricultura orgânica uma atraente opção para os agricultores. É necessário fortalecer as políticas de incentivo à agricultura mais sustentável e/ou orgânica, estimular transições agroecológicas, melhor manejo dos recursos naturais e uso racional de pesticidas, facilitar a comercialização e distribuição da produção por preço justo, melhorar o acesso aos mercados institucionais, entre outras medidas.
8. REFERÊNCIAS

Afshin A, Sur PJ, Fay KA, Cornaby L, Ferrara G, Salama JS, et al. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019;6736. doi:10.1016/S0140-6736(19)30041-8.

Alavanja MCR. Pesticides use and exposure extensive worldwide. Rev Environ Health 2009;24:303–9. doi:10.1515/REVEH.2009.24.4.303.

Alif SM, Dharmage SC, Benke G, Dennekamp M, Burgess JA, Perret JL, et al. Occupational exposure to pesticides are associated with fixed airflow obstruction in middle-age. Thorax 2017;72:990–7. doi:10.1136/thoraxjnl-2016-209665.

Almeida MD, Cavendish TA, Bueno PC, Ervilha IC, Gregório LDS, Kanashiro NB de O, et al. A flexibilização da legislação brasileira de agrotóxicos e os riscos à saúde humana: Análise do Projeto de Lei no 3.200/2015. Cad Saude Publica 2017;33. doi:10.1590/0102-311X00181016.

de Almeida VES, Friedrich K, Tygel AF, Melgarejo L, Carneiro FF. Use of genetically modified crops and pesticides in Brazil: growing hazards. Cienc e Saude Coletiva 2017;22:3333–9. doi:10.1590/1413-812320172210.17112017.

Alves de Souza N, Inácia de Souza A, Bastos C, Rocha J, Oliveira C, Costa da Silva V. Prevalência de Distúrbios Respiratórios Associados ao Uso de Agrotóxicos em Trabalhadores Rurais em uma Cidade da Zona da Mata Mineira. Rev Inspirar 2010;2:6–10.

ANVISA. Reavaliação de Agrotóxicos. Agência Nac Vigilância Sanitária – ANVISA 2019a. http://portal.anvisa.gov.br/registros-e-autorizacoes/agrotoxicos/produtos/reavaliacao-de-agrotoxicos (accessed December 28, 2019).

ANVISA. Programa de Análise de Resíduos de Agrotóxicos em Alimentos (PARA). Relatórios Do PARA 2019b. http://portal.anvisa.gov.br/programa-de-analise-de-registro-de-agrotoxicos-para (accessed December 28, 2019).

Atlas Brasil. Atlas do Desenvolvimento Humano no Brasil. Perf Do Município - Ibiúna/SP 2019. http://atlasbrasil.org.br/2013/pt/perfil_m/ibiuna_sp (accessed July 24, 2019).
ATSDR - Agency for Toxic Substances and Disease Registry. Cholinesterase Inhibitors: Including Pesticides and Chemical Warfare Nerve Agents. Atlanta: U.S.: 2007.

Azevedo MFA. Abordagem inicial no atendimento ambulatorial em distúrbios neurotoxicológicos. Parte II – agrotóxicos. Rev Bras Neurol 2010;46:21–8.

Bailey HD, Fritschi L, Infante-Rivard C, Glass DC, Miligi L, Dockerty JD, et al. Parental occupational pesticide exposure and the risk of childhood leukemia in the offspring: Findings from the childhood leukemia international consortium. Int J Cancer 2014;135:2157–72. doi:10.1002/ijc.28854.

Baldi I., Lebailly P, Bouvier G, Rondeau V, Kientz-Bouchart V, Canal-Raffin M, et al. Levels and determinants of pesticide exposure in re-entry workers in vineyards: Results of the PESTEXPO study. Environ Res 2014;132:360–9. doi:10.1016/j.envres.2014.04.035.

Baldi Isabelle, Robert C, Piantoni F, Tual S, Bouvier G, Lebailly P, et al. Agricultural exposure and asthma risk in the AGRICAN French cohort. Int J Hyg Environ Health 2014;217:435–42. doi:10.1016/j.ijheh.2013.08.006.

Barros AJD, Hirakata VN. Alternatives for logistic regression in cross-sectional studies: An empirical comparison of models that directly estimate the prevalence ratio. BMC Med Res Methodol 2003;3:1–13. doi:10.1186/1471-2288-3-21.

Beard JD, Umbach DM, Hoppin JA, Richards M, Alavanja MCR, Blair A, et al. Pesticide Exposure and Depression among Male Private Pesticide Applicators in the Agricultural Health Study. Environ Health Perspect 2014;122:984–91.

Beard JD, Umbach DM, Hoppin JA, Richards M, Alavanja MCR, Blair A, et al. Suicide and Pesticide Use among Pesticide Applicators and Their Spouses in the Agricultural Health Study 2011;1610:1610–5.

Bendetti D. An Evaluation of Occupational Exposures to Pesticides in Brazil. Occup Med Heal Aff 2014;02. doi:10.4172/2329-6879.1000170.

Benka-Coker W, Loftus C, Karr C, Magzamen S. Characterizing the joint effects of pesticide exposure and criteria ambient air pollutants on pediatric asthma morbidity in an agricultural community. Environ Epidemiol 2019a;3:e046. doi:10.1097/ee9.0000000000000046.

Benka-Coker W, Loftus C, Karr C, Magzamen S, Loftus C, Karr C, et al. Association of Organophosphate Pesticide Exposure and a Marker of Asthma Morbidity in an Agricultural Community Association of Organophosphate Pesticide Exposure and a Marker of Asthma
Morbidity in an Agricultural Community. J Agromedicine 2019b;0:1–9.
doi:10.1080/1059924X.2019.1619644.

Beseler C, Stallones L, Hoppin JA, Alavanja MCR, Keefe T, Kamel F. Depression and pesticide exposures in female spouses of licensed pesticide applicators in the Agricultural Health Study cohort. J Occup Environ Med 2006;48:1005–13.

Beseler CL, Stallones L, Hoppin JA, Alavanja MCR, Blair A, Keefe T, et al. Depression and pesticide exposures among private pesticide applicators enrolled in the Agricultural Health Study. Environ Health Perspect 2008;116:1713–9. doi:10.1289/ehp.11091.

Beusenberg M, Orley J. A user’s guide to the Self Reporting Questionnaire (SRQ). Geneva World Heal Organ 1994;84.

Blackwell M, Darch T, Haslam R. Phosphorus use efficiency and fertilizers: future opportunities for improvements. Front Agric Sci Eng 2019. doi:10.15302/j-fase-2019274.

Bleecker JL de. Organophosphate and carbamate poisoning. Handb Clin Neurol 2008;91:401–32. doi:http://dx.doi.org/10.1001/archinte.154.13.1433.

Boccolini PDMM, Boccolini CS, Meyer A, Chrisman JDR, Guimarães RM, Veríssimo G. Pesticide exposure and low birth weight prevalence in Brazil. Int J Hyg Environ Health 2013;216:290–4. doi:10.1016/j.ijheh.2012.08.006.

Bombardi LM. Geografia do Uso de Agrotóxicos no Brasil e Conexões com a União Europeia. São Paulo: FFLCH - USP; 2017.

Bouchard MF, Bellinger DC, Wright RO, Weisskopf MG. Attention-deficit/hyperactivity disorder and urinary metabolites of organophosphate pesticides. Pediatrics 2010;125:e1270–7. doi:10.1542/peds.2009-3058.

Bouchard MF, Chevrier J, Harley KG, Kogut K, Vedar M, Calderon N, et al. Prenatal exposure to organophosphate pesticides and IQ in 7-year-old children. Environ Health Perspect 2011;119:1189–95. doi:10.1289/ehp.1003185.

Bradman A, Castorina R, Barr DB, Chevrier J, Harnly ME, Eisen EA, et al. Determinants of organophosphorus pesticide urinary metabolite levels in young children living in an agricultural community. Int J Environ Res Public Health 2011;8:1061–83. doi:10.3390/ijerph8041061.

BRASIL. Agenda de Prioridades de Pesquisa do Ministério da Saúde. Brasília: 2018.
BRASIL. Lei nº 11.326 de 24 de julho de 2006. Diretrizes Para a Política Nac Da Agric Fam e Empreendimentos Fam Rurais 2006. http://www.planalto.gov.br/ccivil_03/_Ato2004-2006/2006/Lei/L11326.htm (accessed September 8, 2019).

BRASIL. Portaria Nº 3, de 16 de Janeiro de 1992. Bras - Ministério Da Saúde 1992. http://bvsms.saude.gov.br/bvs/saudelegis/svs1/1992/prt0003_16_01_1992.html (accessed May 25, 2018).

BRASIL - Ministério da Agricultura P e A. Projeções do Agronegócio: Brasil 2017/18 a 2027/28 projeções de longo prazo. Brasília: 2018. doi:http://www.agricultura.gov.br/arq_editor/file/Ministerio/gestao/projeco/PROJECOES%20DO%20AGRONEGOCIO%202010-11%20a%202020-21%20-%2020_0.pdf.

BRASIL MAPA. Agricultura Familiar e do Desenvolvimento Agrário. Agric Fam 2019. http://www.agricultura.gov.br/assuntos/agricultura-familiar/agricultura-familiar-1 (accessed May 3, 2019).

BRASIL MDA. O que é a agricultura familiar? Vitr Da Agric Fam 2019. http://vitrine.mda.gov.br/0-que-e-a-agricultura-familiar (accessed December 23, 2019).

Brew B, Inder K, Allen J, Thomas M, Kelly B. The health and wellbeing of Australian farmers: A longitudinal cohort study. BMC Public Health 2016;16:1–11. doi:10.1186/s12889-016-3664-y.

Bukalasa JS, Brunekreef B, Brouwer M, Koppelman GH, Wijga AH, Huss A, et al. Associations of residential exposure to agricultural pesticides with asthma prevalence in adolescence: The PIAMA birth cohort. Environ Int 2018;121:435–42. doi:10.1016/j.envint.2018.09.029.

Buralli RJ. Avaliação da condição respiratória em população rural exposta a agrotóxicos no município de São José de Ubá, Estado do Rio de Janeiro. School of Public Health, University of São Paulo, 2016.

Buralli RJ, Canelas T, Carvalho LM, Duim E, Itagyba RF, Fonseca M, et al. Moving towards the Sustainable Development Goals: The UNLEASH Innovation Lab experience. Ambient Soc 2018a;21:1–20. doi:10.1590/1809-4422asoc17ex0001vu1811td.

Buralli RJ, Ribeiro H, Mauad T, Amato-Lourenço LF, Salge JM, Diaz-Quijano FA, et al. Respiratory condition of family farmers exposed to pesticides in the state of Rio de Janeiro, Brazil. Int J Environ Res Public Health 2018b;15:1–14. doi:10.3390/ijerph15061203.
Campos É, Silva V dos SP, Mello MSC, Otero UB. Exposure to pesticides and mental disorders in a rural population in Southern Brazil. Neurotoxicology 2016;56:7–16. doi:10.1016/j.neuro.2016.06.002.

Carmichael SL, Yang W, Roberts E, Kegley SE, Padula AM, English PB, et al. Residential agricultural pesticide exposures and risk of selected congenital heart defects among offspring in the San Joaquin Valley of California. Env Res 2014;135:133–8. doi:10.1016/j.envres.2014.08.030.

Carmo MBB, Santos LM, Feitosa CA, Fiaccone RL, Silva NB, Santos DN, et al. Screening for common mental disorders using the SRQ-20 in Brazil: what are the alternative strategies for analysis? Brazilian J Psychiatry 2018;40:115–22. doi:10.1590/1516-4446-2016-2139.

Carneiro FF (Org. .., Augusto LG da S, Rigotto RM, Friedrich K, Búrigo AC. Dossiê ABRASCO: um alerta sobre os impactos dos agrotóxicos na saúde. 2015. doi:10.1016/B978-84-458-2066-7.00003-3.

Carvalho FP. Pesticides, environment, and food safety. Food Energy Secur 2017;6:48–60. doi:10.1002/fes3.108.

CEASA-RJ. Centrais de Abastecimento do Estado do Rio de Janeiro. Unidade Norte Fluminense 2019. http://www.ceasa.rj.gov.br/ceasa_portal/view/unidade_saojoseuba.asp (accessed September 6, 2019).

Chaim A. Tecnologia de aplicação de agrotóxicos: fatores que afetam a eficiência e o impacto ambiental. In: Silva CMMS, Fay EF, editors. Agrotóxicos Ambientais, Brasília: Embrapa; 2004.

Chakraborty S, Mukherjee S, Roychoudhury S, Siddique S, Lahiri T, Ray MR. Chronic Exposures to Cholinesterase-inhibiting Pesticides Adversely Affect Respiratory Health of Agricultural Workers in India. J Occup Heal 2009;51:488–97.

Chaves TVS, Islam MT, de Moraes MO, de Alencar MVOB, Gomes DCV, de Carvalho RM, et al. Occupational and life-style factors-acquired mutagenicity in agric-workers of northeastern Brazil. Environ Sci Pollut Res 2017;24:15454–61. doi:10.1007/s11356-017-9150-y.

Cimino AM, Boyles AL, Thayer KA, Perry MJ. Environmental Health Perspectives Effects of Neonicotinoid Pesticide Exposure on Human Health: A Systematic Review. Environ Health Perspect 2017;125:155–62. doi:http://dx.doi.org/10.1289/EHP515.

Conti CL, Barbosa WM, Simão JBP, Álvares-da-Silva AM. Pesticide exposure, tobacco use,
poor self-perceived health and presence of chronic disease are determinants of depressive symptoms among coffee growers from Southeast Brazil. Psychiatry Res 2018;260:187–92. doi:10.1016/j.psychres.2017.11.063.

Cupul-Uicab LA, Terrazas-Medina EA, Hernández-Ávila M, Longnecker MP. Prenatal Exposure to p,p'-DDE and p,p'-DDT in Relation to Lower Respiratory Tract Infections in Boys From a Highly Exposed Area of Mexico. Env Res 2014;132:19–23. doi:10.1016/j.envres.2014.03.017.

Dallaire F, Dewailly É, Muckle G, Vézina C, Jacobson SW, Jacobson JL, et al. Acute infections and environmental exposure to organochlorines in Inuit infants from Nunavik. Environ Health Perspect 2004;112:1359–64. doi:10.1289/ehp.7255.

Damalas CA, Koutoubas SD. Farmers’ exposure to pesticides: Toxicity types and ways of prevention. Toxics 2016;4:1–10. doi:10.3390/toxics4010001.

Dayasiri KC, Jayamanne SF, Jayasinghe CY. Patterns of acute poisoning with pesticides in the paediatric age group. Int J Emerg Med 2017;10. doi:10.1186/s12245-017-0148-5.

Delgado IF, Paumgartten FJR. Intoxicações e uso de pesticidas por agricultores do Município de Paty do Alferes, Rio de Janeiro, Brasil. Cad Saude Publica 2004;20:180–6. doi:10.1590/S0102-311X2004000100034.

Diel C, Facchini LA, Mór Dall’Agnol M. Inseticidas domésticos: Padrão de uso segundo a renda per capita. Rev Saude Publica 2003;37:83–90.

Doust E, Ayres JG, Devereux G, Dick F, Crawford JO, Cowie H, et al. Is pesticide exposure a cause of obstructive airways disease? Eur Respir Rev 2014;23:180–92. doi:10.1183/09059180.0005113.

Duramad P, Harley K, Lipsett M, Bradman A, Eskenazi B, Holland NT, et al. Early environmental exposures and intracellular Th1/Th2 cytokine profiles in 24-month-old children living in an agricultural area. Environ Health Perspect 2006;114:1916–22. doi:10.1289/ehp.9306.

Ecobichon DJ. Pesticide use in developing countries. Toxicology 2001;160:27–33. doi:10.1016/S0300-483X(00)00452-2.

Von Ehrenstein OS, Ling C, Cui X, Cockburn M, Park AS, Yu F, et al. Prenatal and infant exposure to ambient pesticides and autism spectrum disorder in children: Population based case-control study. BMJ 2019;364:1–10. doi:10.1136/bmj.i962.
Eng ML, Stutchbury BJM, Morrissey CA. A neonicotinoid insecticide reduces fueling and delays migration in songbirds. Science (80-) 2019;365:1177–80.

Engel SM, Wetmur J, Chen J, Zhu C, Barr DB, Canfield RL, et al. Prenatal exposure to organophosphates, paraoxonase 1, and cognitive development in childhood. Environ Health Perspect 2011;119:1182–8. doi:10.1289/ehp.1003183.

Fanzo J. From big to small: the significance of smallholder farms in the global food system. Lancet Planet Heal 2017;1:e15–6. doi:10.1016/S2542-5196(17)30011-6.

FAO. Water pollution from agriculture: a global review. Rome: 2017.

Fareed M, Pathak MK, Bihari V, Kamal R, Srivastava AK, Kesavachandran CN. Adverse respiratory health and hematological alterations among agricultural workers occupationally exposed to organophosphate pesticides: a cross-sectional study in North India. PLoS One 2013;8:e69755. doi:10.1371/journal.pone.0069755.

Faria NMX, Facchini LA, Fassa AG, Tomasi E. Pesticides and respiratory symptoms among farmers. Rev Saúde Pública 2005;39:973–981.

Faria NMX, Fassa AG, Meucci RD. Association between pesticide exposure and suicide rates in Brazil. Neurotoxicology 2014a;45:355–62. doi:10.1016/j.neuro.2014.05.003.

Faria NMX, Fassa AG, Meucci RD, Fiori NS, Miranda VI. Occupational exposure to pesticides, nicotine and minor psychiatric disorders among tobacco farmers in southern Brazil. Neurotoxicology 2014b;45:347–54. doi:10.1016/j.neuro.2014.05.002.

Ferreira JD, Couto AC, Pombo-de-Oliveira MS, Koifman S. In utero pesticide exposure and leukemia in Brazilian children < 2 years of age. Environ Health Perspect 2013;121:269–75. doi:10.1289/ehp.1103942.

Fiori NS, Fassa ACG, Xavier NM, Meucci R, Miranda VI, Christians D. Wheezing in Tobacco Farm Workers in Southern Brazil. Am J Ind Med 2015;58:1217–28. doi:10.1002/ajim.22447.Wheezing.

Fraser CE, Smith KB, Judd F, Humphreys JS, Fragar LJ, Henderson A. Farming and mental health problems and mental illness. Int J Soc Psychiatry 2005;51:340–9. doi:10.1177/0020764005060844.

Frazier M. A Short History of Pest Management. Penn State Ext 2010. https://extension.psu.edu/a-short-history-of-pest-management (accessed December 28, 2019).
Froes Asmus CIR, Camara VM, Landrigan PJ, Claudio L. A Systematic Review of Children’s Environmental Health in Brazil. Ann Glob Heal 2016;82:132–48. doi:10.1016/j.aogh.2016.02.007.

Gascon M, Sunyer J, Martínez D, Guerra S, Lavi I. Persistent organic pollutants and children’s respiratory health: The role of cytokines and inflammatory biomarkers. Environ Int 2014;69:133–40. doi:10.1016/j.envint.2014.04.021.

Gaspari L, Sampaio DR, Paris F, Audran F, Orsini M, Neto JB, et al. High prevalence of micropenis in 2710 male newborns from an intensive-use pesticide area of Northeastern Brazil. Int J Androl 2012;35:253–64. doi:10.1111/j.1365-2605.2011.01241.x.

Gomes M, Barizon R. Panorama da contaminação ambiental por agrotóxicos e nitrato de origem agrícola no Brasil: Cenário 1992/2011. 2014.

Gonçalves DM, Stein AT, Kapczinski F. Avaliação de desempenho do Self-Reporting Questionnaire como instrumento de rastreamento psiquiátrico: um estudo comparativo com o Structured Clinical Interview for DSM-IV-TR. Cad Saude Publica 2008;24:380–90. doi:10.1590/S0102-311X2008000200017.

Gonçalves H, Pearson RM, Horta BL, González-Chica DA, Castilho E, Damiani M, et al. Maternal depression and anxiety predicts the pattern of offspring symptoms during their transition to adulthood. Psychol Med 2016;46:415–24. doi:10.1017/S0033291715001956.

Gregoire A. The Mental Health of Farmers. Occup Med (Chic Ill) 2002;52:471–6.

Guillette EA, Meza MM, Aquilar MG, Soto AD, Garcia IE. An anthropological approach to the evaluation of preschool children exposed to pesticides in Mexico. Environ Health Perspect 1998;106:347–53. doi:10.1289/ehp.98106347.

Gunier RB, Bradman A, Harley KG, Kogut K, Eskenazi B. Prenatal residential proximity to agricultural pesticide use and IQ in 7-year-old children. Environ Health Perspect 2017;125:1–8. doi:10.1289/EHP504.

Gunier RB, Raanan R, Castorina R, Holland NT, Harley KG, Balmes JR, et al. Residential proximity to agricultural fumigant use and respiratory health in 7-year old children. Environ Res 2018;164:93–9. doi:10.1016/j.envres.2018.02.022.

Han W, Tian Y, Shen X. Human exposure to neonicotinoid insecticides and the evaluation of their potential toxicity: An overview. Chemosphere 2017;192:59–65. doi:10.1016/j.chemosphere.2017.10.149.
Handal AJ, Harlow SD, Breilh J, Lozoff B. Occupational exposure to pesticides during pregnancy and neurobehavioral development of infants and toddlers. Epidemiology 2008;19:851–9. doi:10.1097/EDE.0b013e318187cc5d.

Harrison V, Ross SM. Anxiety and depression following cumulative low-level exposure to organophosphate pesticides. Environ Res 2016;151:528–36. doi:10.1016/j.envres.2016.08.020.

Hernández-Mariano JÁ, Torres-Sánchez L, Bassol-Mayagoitia S, Escamilla-Nuñez MC, Cebrian ME, Villeda-Gutiérrez ÉA, et al. Effect of exposure to p,p′-DDE during the first half of pregnancy in the maternal thyroid profile of female residents in a Mexican floriculture area. Environ Res 2017;156:597–604. doi:10.1016/j.envres.2017.04.013.

Hernández AF, Casado I, Pena G, Gil F, Villanueva E, Pla A. Low level of exposure to pesticides leads to lung dysfunction in occupationally exposed subjects. Inhal Toxicol 2008;20:839–49. doi:10.1080/08958370801905524.

Herrero M, Thornton PK, Power B, Bogard JR, Remans R, Fritz S, et al. Farming and the geography of nutrient production for human use: a transdisciplinary analysis. Lancet Planet Heal 2017;1:e33–42. doi:10.1016/S2542-5196(17)30007-4.

Hoppin Ja, Umbach DM, London SJ, Henneberger PK, Kullman GJ, Coble J, et al. Pesticide use and adult-onset asthma among male farmers in the Agricultural Health Study. Eur Respir J 2009;34:1296–303. doi:10.1183/09031936.00005509.

Hoppin Ja, Valcin M, Henneberger PK, Kullman GJ, Umbach DM, London SJ, et al. Pesticide use and chronic bronchitis among farmers in the Agricultural Health Study. Am J Ind Med 2007;50:969–79. doi:10.1002/ajim.20523.

Hoppin JA, Umbach DM, Long S, London SJ, Henneberger PK, Blair A, et al. Pesticides are associated with allergic and non-allergic wheeze among male farmers. Environ Health Perspect 2017;125:535–43. doi:10.1289/EHP315.

Hutter H-P, Kundi M, Lemmerer K, Poteser M, Weitensfelder L, Wallner P, et al. Subjective Symptoms of Male Workers Linked to Occupational Pesticide Exposure on Coffee Plantations in the Jarabacoa Region, Dominican Republic. Int J Environ Res Public Health 2018;15:2099. doi:10.3390/ijerph15102099.

Hyland C, Gunier RB, Metayer C, Bates MN, Wesseling C, Mora AM. Maternal residential pesticide use and risk of childhood leukemia in Costa Rica. Int J Cancer 2018;143:1295–304.
Hyland C, Laribi O. Review of take-home pesticide exposure pathway in children living in agricultural areas. Environ Res 2017;156:559–70. doi:10.1016/j.envres.2017.04.017.

IBAMA/MMA. Boletim de Comercialização de Agrotóxicos e Afins - Histórico de vendas 2000-2012. Inst Bras Do Meio Ambient e Dos Recur Nat Renov -IBAMA 2012:42.

IBAMA. Relatório de comercialização de agrotóxicos. IBAMA - Inst Bras Do Meio Ambient e Dos Recur Nat Renov 2017. http://www.ibama.gov.br/agrotoxicos (accessed February 2, 2019).

IBGE. Censo Agropecuário 2017. IBGE - Inst Bras Geogr e Estatística 2017a. https://cidades.ibge.gov.br/brasil/sp/sao-paulo/pesquisa/24/76693 (accessed May 4, 2019).

IBGE. Brasil em Síntese. IBGE - Inst Bras Geogr e Estatística 2017b. https://cidades.ibge.gov.br/brasil/sp/sao-paulo/panorama (accessed March 27, 2019).

IBGE. Censo Demográfico 2010. IBGE - Inst Bras Geogr e Estatística 2010. https://cidades.ibge.gov.br/brasil/sp/ribeirao-branco (accessed May 14, 2018).

IBGE. Censo Agropecuário 2006. IBGE - Inst Bras Geogr e Estatística 2006. https://www2.ibge.gov.br/home/estatistica/economia/agropecuaria/censoagro/default.shtm (accessed May 23, 2018).

Initiatives D. 2018 Global Nutrition Report: Shining a light to spur action on nutrition. Bristol, UK: Development Initiatives; 2018.

De Jong K, Boezen HM, Kromhout H, Vermeulen R, Postma DS, Vonk JM. Association of occupational pesticide exposure with accelerated longitudinal decline in lung function. Am J Epidemiol 2014;179:1323–30. doi:10.1093/aje/kwu053.

Kahl VFS, Dhillon VS, Simon D, da Silva FR, Salvador M, Branco CDS, et al. Chronic occupational exposure endured by tobacco farmers from Brazil and association with DNA damage. Mutagenesis 2018;33:119–28. doi:10.1093/mutage/gex045.

Kamel F, Hoppin JA. Association of pesticide exposure with neurologic dysfunction and disease. Environ Health Perspect 2004;112:950–8. doi:10.1289/ehp.7135.

Kim J, Ko Y, Lee WJ. Depressive symptoms and severity of acute occupational pesticide poisoning among male farmers. Occup Env Med 2013;70:303–9. doi:10.1136/oemed-2012-101005.
Kim K-H, Kabir E, Jahan SA. Exposure to pesticides and the associated human health effects. Sci Total Environ 2017;575:525–35. doi:10.1016/j.scitotenv.2016.09.009.

Klaassen CD, Amdur MO, Doull J. Casarett & Doull’s Toxicology - The basic science of poisons. Toxicol. - basic Sci. poisons. 8 ed, 2013.

Klingelschmidt J, Milner A, Khireddine-Medouni I, Witt K, Alexopoulos EC, Toivanen S, et al. Suicide among agricultural, forestry, and fishery workers: A systematic literature review and meta-analysis. Scand J Work Environ Heal 2018;44:3–15. doi:10.5271/sjweh.3682.

Konradsen F. Acute pesticide poisoning - A global public health problem. Dan Med Bull 2007;54:58–9.

Körbes D, Silveira AF da, Hyppolito MÂ, Munaro G. Alterações no sistema vestibulococlear decorrentes da exposição ao agrotóxico: revisão de literatura. Rev Da Soc Bras Fonoaudiol 2010;15:146–52. doi:10.1590/s1516-80342010000100024.

Koureas M, Tsezou A, Tsakalof A, Orfanidou T, Hadjichristodoulou C. Increased levels of oxidative DNA damage in pesticide sprayers in Thessaly Region (Greece). Implications of pesticide exposure. Sci Total Environ 2014;496:358–64. doi:10.1016/j.scitotenv.2014.07.062.

Krawczyk N, Meyer A, Fonseca M, Lima J. Suicide Mortality Among Agricultural Workers in a Region With Intensive Tobacco Farming and Use of Pesticides in Brazil. J Occup Env Med 2014;56:993–1000. doi:10.1097/JOM.0000000000000214.Suicide.

Kudagammana ST, Mohotti K. Environmental exposure to agrochemicals and allergic diseases in preschool children in high grown tea plantations of Sri Lanka. Allergy, Asthma Clin Immunol 2018;14:1–5. doi:10.1186/s13223-018-0308-z.

Leão RS, Marques RC, Buralli RJ, Silva DS, Guimarães JRD. Avaliação de saúde pública por exposição a agroquímicos: uma experiência com a agricultura familiar no noroeste do Rio de Janeiro. Sustentabilidade Em Debate 2018;9:81–94. doi:10.18472/SustDeb.v9n1.2018.26956.

Lee WJ, Alavanja MCR, Hoppin JA, Rusiecki JA, Kamel F, Blair A, et al. Mortality among pesticide applicators exposed to chlorpyrifos in the agricultural health study. Environ Health Perspect 2007;115:528–34. doi:10.1289/ehp.9662.

Lermen J, Bernieri T, Rodrigues IS, Suyenaga ES, Ardenghi PG. Pesticide exposure and health conditions among orange growers in Southern Brazil. J Environ Sci Heal - Part B Pestic Food Contam Agric Wastes 2018;53:215–21. doi:10.1080/03601234.2017.1421823.
Ling C, Liew Z, von Ehrenstein OS, Heck JE, Park AS, Cui X, et al. Prenatal exposure to ambient pesticides and preterm birth and term low birthweight in agricultural regions of California. Toxics 2018;6:1–18. doi:10.3390/toxics6030041.

London L, Beseler C, Bouchard MF, Bellinger DC, Colosio C, Grandjean P, et al. Neurobehavioral and neurodevelopmental effects of pesticide exposures. Neurotoxicology 2012;33:887–96. doi:10.1016/j.neuro.2012.01.004.

London L, Flisher AJ, Wesseling C, Mergler D, Kromhout H. Suicide and exposure to organophosphate insecticides: Cause or effect? Am J Ind Med 2005;47:308–21. doi:10.1002/ajim.20147.

López-Gálvez N, Wagoner R, Quirós-Alcalá L, Van Horne YO, Furlong M, Avila E, et al. Systematic literature review of the take-home route of pesticide exposure via biomonitoring and environmental monitoring. Int J Environ Res Public Health 2019;16:1–24. doi:10.3390/ijerph16122177.

Lu C, Toepel K, Irish R, Fenske RA, Barr DB, Bravo R. Organic diets significantly lower children’s dietary exposure to organophosphorus pesticides. Environ Health Perspect 2006;114:260–3. doi:10.1289/ehp.8418.

Ludermir AB, Melo Filho DA. Living conditions and occupational organization associated with common mental disorders. Rev Saude Publica 2002;36:213–221. doi:10.1590/S0034-89102002000200014.

MacFarlane E, Benke G, Del Monaco A, Sim MR. Causes of Death and Incidence of Cancer in a Cohort of Australian Pesticide-Exposed Workers. Ann Epidemiol 2010;20:273–80. doi:10.1016/j.annepidem.2010.01.004.

Van Maele-Fabry G, Hoet P, Lison D. Parental occupational exposure to pesticides as risk factor for brain tumors in children and young adults: A systematic review and meta-analysis. Environ Int 2013;56:19–31. doi:10.1016/j.envint.2013.02.011.

Magalhães AFA, Caldas ED. Underreporting of fatal poisonings in Brazil – A descriptive study using data from four information systems. Forensic Sci Int 2018;287:136–41. doi:10.1016/j.forsciint.2018.03.040.

Malekirad AA, Faghih M, Mirabdollahi M, Kiani M, Fathi A, Abdollahi M. Neurocognitive, mental health, and glucose disorders in farmers exposed to organophosphorus pesticides. Arh Hig Rada Toksikol 2013;64:1–8. doi:10.2478/10004-1254-64-2013-2296.
Mamane Ali, Raherison C, Tessier JF, Baldi I, Bouvier G. Environmental exposure to pesticides and respiratory health. Eur Respir Rev 2015;24:462–73. doi:10.1183/16000617.00006114.

Mamane A., Raherison C, Tessier JF, Baldi I, Bouvier G. Environmental exposure to pesticides and respiratory health. Eur Respir Rev 2015;24:462–73. doi:10.1183/16000617.00006114.

Mamta B, Rajam M V. RNAi technology: a new platform for crop pest control. Physiol Mol Biol Plants 2017;23:487–501. doi:10.1007/s12298-017-0443-x.

Manyilizu W, Mdegela R, Helleve A, Skjerve E, Kazwala R, Nonga H, et al. Self-Reported Symptoms and Pesticide Use among Farm Workers in Arusha, Northern Tanzania: A Cross Sectional Study. Toxics 2017;5:24. doi:10.3390/toxics5040024.

Mari J, Williams P. A validity study of a psychiatric screening questionnaire (SRQ-20) in primary care in the city of Sao Paulo. Br J Psychiatry 1986;148:23–6.

Marks AR, Harley K, Bradman A, Kogut K, Barr DB, Johnson C, et al. Organophosphate pesticide exposure and attention in young Mexican-American children: The CHAMACOS study. Environ Health Perspect 2010;118:1768–74. doi:10.1289/ehp.1002056.

Mathew P, Jose A, Alex RG, Mohan VR. Chronic pesticide exposure: Health effects among pesticide sprayers in Southern India. Indian J Occup Env Med 2015;19:95–101.

McCullagh P. Generalized linear models. Eur J Oper Res 1984;16:285–92. doi:10.1016/0377-2217(84)90282-0.

Menezes J, Prado R, Silva Júnior G, Mansur K, Oliveira E. Qualidade da água superficial em área rural. Cad Estud Geoambientais 2012;3:32–43.

Menezes J, Prado R, Silva Júnior G, Mansur K, Oliveira E. Qualidade da água e sua relação espacial com as fontes de contaminação antrópicas e naturais: bacia hidrográfica do rio São Domingos - RJ. Eng Agríc 2009;29:687–98.

Meng G, Feng Y, Nie Z, Wu X, Wei H, Wu S. Internal exposure levels of typical POPs and their associations with childhood asthma in Shanghai, China. Environ Res 2016;146:125–35. doi:10.1016/j.envres.2015.12.026.

Meyer A, Koifman S, Koifman RJ, Moreira JC, De Rezende Chrisman J, Abreu-Villaça Y. Mood disorders hospitalizations, suicide attempts, and suicide mortality among agricultural
workers and residents in an area with intensive use of pesticides in Brazil. J Toxicol Environ Heal - Part A Curr Issues 2010;73:866–77. doi:10.1080/15287391003744781.

Morgan RL, Whaley P, Thayer KA, Schünemann HJ. Identifying the PECO: A framework for formulating good questions to explore the association of environmental and other exposures with health outcomes. Environ Int 2018;121:1027–31. doi:10.1016/j.envint.2018.07.015.

Morrissey CA, Mineau P, Devries JH, Sanchez-Bayo F, Liess M, Cavallaro MC, et al. Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: A review. Environ Int 2015;74:291–303. doi:10.1016/j.envint.2014.10.024.

Mostafalou S, Abdollahi M. Pesticides: an update of human exposure and toxicity. Arch Toxicol 2017;91:549–99. doi:10.1007/s00204-016-1849-x.

MS/SINITOX/Fiocruz. Dados nacionais de intoxicação. Sist Nac Informações Tóxicas-Farmacológicas 2018. https://sinitox.icict.fiocruz.br/dados-nacionais (accessed June 14, 2018).

Muller N, Faria X, Augusto L, Universidade F, Fassa A, Tomasi E, et al. A cross-sectional study about mental health of farm-workers from Serra Gaucha (Brazil). Rev Saude Publica 1999;33:391–400.

Muñoz-Quezada MT, Iglesias V, Lucero B, Steenland K, Barr DB, Levy K, et al. Predictors of exposure to organophosphate pesticides in schoolchildren in the Province of Talca, Chile. Environ Int 2012;47:28–36. doi:10.1016/j.envint.2012.06.002.

Muñoz-Quezada MT, Lucero B, Bradman A, Steenland K, Zúñiga L, Calafat AM, et al. An educational intervention on the risk perception of pesticides exposure and organophosphate metabolites urinary concentrations in rural school children in Maule Region, Chile. Environ Res 2019;176. doi:10.1016/j.envres.2019.108554.

Muñoz-Quezada MT, Lucero B, Iglesias V, Levy K, Muñoz MP, Achú E, et al. Exposure to organophosphate (OP) pesticides and health conditions in agricultural and non-agricultural workers from Maule, Chile. Int J Environ Health Res 2017;27:82–93. doi:10.1080/09603123.2016.1268679.

Muñoz-Quezada MT, Lucero BA, Barr DB, Steenland K, Levy K, Ryan PB, et al. Neurodevelopmental effects in children associated with exposure to organophosphate pesticides: A systematic review. Neurotoxicology 2013;39:158–68. doi:10.1016/j.neuro.2013.09.003.
Chronic exposure to organophosphate (OP) pesticides and neuropsychological functioning in farm workers: a review. Int J Occup Environ Health 2016;22:68–79. doi:10.1080/10773525.2015.1123848.

NARA FSP/USP N de A de RA. Ariadne - Sistema de Informações sobre Agrotóxicos. Sist Informações Sobre Agrotóxicos 2019. http://www.hygeia3.fsp.usp.br/nra/ariadne/index.php (accessed September 29, 2019).

Negatu B, Kromhout H, Mekonnen Y, Vermeulen R. Occupational pesticide exposure and respiratory health: a large-scale cross-sectional study in three commercial farming systems in Ethiopia. Thorax 2017;72:498.1-499. doi:10.1136/thoraxjnl-2016-208924.

Negatu B, Kromhout H, Mekonnen Y, Vermeulen R. Use of chemical pesticides in Ethiopia: A cross-sectional comparative study Onknowledge, attitude and practice of farmers and farm workers in three farming systems. Ann Occup Hyg 2016;60:551–66. doi:10.1093/annhyg/mew004.

Negatu B, Vermeulen R, Mekonnen Y, Kromhout H. Neurobehavioural symptoms and acute pesticide poisoning: A cross-sectional study among male pesticide applicators selected from three commercial farming systems in Ethiopia. Occup Environ Med 2018;75:283–9. doi:10.1136/oemed-2017-104538.

Nerilo SB, Martins FA, Nerilo LB, Cocco VE, Endo RY, Henrique G, et al. Pesticide use and cholinesterase inhibition in small-scale agricultural workers in southern Brazil 2014;50.

Nero LA, De Mattos MR, Beloti V, Barros MAF, Pontes Netto D, Franco BDGDM. Organofosforados e carbamatos no leite produzido em quatro regiões leiteiras no Brasil: Ocorrência e ação sobre listeria monocytogenes e Salmonella spp. Cienc e Tecnol Aliment 2007;27:201–4. doi:10.1590/S0101-20612007000100035.

Neupane D, Jørs E, Brandt L. Pesticide use, erythrocyte acetylcholinesterase level and self-reported acute intoxication symptoms among vegetable farmers in Nepal: a cross-sectional study. Environ Heal 2014;13:98. doi:10.1186/1476-069X-13-98.

OEHHHA. Chemicals. Toxic Criteria Chem Eval by Calif Off Environ Heal Hazard Assess 2019. https://oehha.ca.gov/chemicals (accessed September 29, 2019).

Oliveira-Silva JJ, Alves SR, Inacio a F, Meyer a, Sarcinelli PN, Mattos RC, et al. Cholinesterase activities determination in frozen blood samples: an improvement to the
occupational monitoring in developing countries. Hum Exp Toxicol 2000;19:173–7. doi:10.1191/096032700678827762.

Oliveira ES De. Análise sócio-espacial da produção familiar de tomate no município de São José de Ubá: um estudo sobre a agricultura familiar e a sua contribuição para o desenvolvimento socioeconômico local. II Encontro Grup. Pesqui. Univ. Fed. Uberlândia - UFU, Uberlândia, MG: 2006, p. 1–41.

Oliveira NP, Moi GP, Atanaka-Santos M, Silva AMC, Pignati WA. Malformações congênitas em municípios de grande utilização de agrotóxicos em Mato Grosso, Brasil. Cien Saude Colet 2014;19:4123–30. doi:10.1590/1413-812320141910.08512014.

OPAS/OMS. Manual De Vigilância Da Saúde De Populações Expostas a Agrotoxicos. Opas/Oms 1996:69.

Pacheco-Ferreira H. Protocolo de Avaliação das Intoxicações Crônicas por Agrotóxicos. Curitiba: 2013.

PAN. Communities in Peril: Global report on health impacts of pesticide use in agriculture. Manila: PAN - Pesticide Action Network; 2010.

Pasiani JO, Torres P, Silva JR, Diniz BZ, Caldas ED. Knowledge, attitudes, practices and biomonitoring of farmers and residents exposed to pesticides in Brazil. Int J Environ Res Public Health 2012;9:3051–68. doi:10.3390/ijerph9093051.

Patel S, Sangeeta S. Pesticides as the drivers of neuropsychotic diseases, cancers, and teratogenicity among agro-workers as well as general public. Environ Sci Pollut Res 2019;26:91–100. doi:10.1007/s11356-018-3642-2.

Pathak MK, Fareed M, Srivastava AK, Pangtey BS, Bihari V, Kuddus M, et al. Seasonal variations in cholinesterase activity, nerve conduction velocity and lung function among sprayers exposed to mixture of pesticides. Environ Sci Pollut Res 2013;20:7296–300. doi:10.1007/s11356-013-1743-5.

Pedlowski MA, Canela MC, da Costa Terra MA, Ramos de Faria RM. Modes of pesticides utilization by Brazilian smallholders and their implications for human health and the environment. Crop Prot 2012;31:113–8. doi:10.1016/j.cropro.2011.10.002.

Pereira CA de C, Sato T, Rodrigues SC. New reference values for forced spirometry in white adults in Brazil. J Bras Pneumol 2007;33:397–406. doi:http://dx.doi.org/10.1590/S0104-42302003000300025.
Peres Frederico; Moreira JC, Dubois GS. Agrotóxicos, saúde e ambiente: uma introdução ao tema. In: Peres Frederico, Moreira JC, editors. É Venen. ou é remédio? Agrotóxicos, saúde e Ambient., Rio de Janeiro: Fiocruz; 2003, p. 21–41.

Pérez-Consuegra N. Alternativas a los plaguicidas altamente peligrosos en América Latina y el Caribe. IPEN/ACTAF. La Habana: Agroecológica; 2018.

Perla ME, Rue T, Cheadle A, Krieger J, Karr CJ. Biomarkers of Insecticide Exposure and Asthma in Children: A National Health and Nutrition Examination Survey (NHANES) 1999-2008 Analysis. Arch Environ Occup Heal 2015;70:309–22. doi:10.1080/19338244.2014.910490.

Piccoli C, Cremonese C, Koifman RJ, Koifman S, Freire C. Pesticide exposure and thyroid function in an agricultural population in Brazil. Environ Res 2016;151:389–98. doi:10.1016/j.envres.2016.08.011.

Pignati WA, Lima FAN de S e, Lara SS de, Correa MLM, Barbosa JR, Leão LH da C, et al. Distribuição espacial do uso de agrotóxicos no Brasil: uma ferramenta para a Vigilância em Saúde. Cien Saude Colet 2017;22:3281–93. doi:10.1590/1413-812320172210.17742017.

Poletto AR, Gontijo LA. Family farming workers mental health in a microrregion in southern Brazil. Work 2012;41:4987–94. doi:10.3233/WOR-2012-0044-4987.

Polgar G, Promadhat V. Pulmonary function testing in children: techniques and standards. Ann Intern Med 1971;75:87–212.

Prefeitura Municipal de São José de Ubá. Características do município 2019. https://www.saojosedeuba.rj.gov.br/home (accessed July 6, 2019).

PRISMA. Transparent reporting of systematic reviews and meta-analyses. Prism Statement 2019.

Quansah R, Bend JR, Abdul-Rahaman A, Armah FA, Luginaah I, Essumang DK, et al. Associations between pesticide use and respiratory symptoms: A cross-sectional study in Southern Ghana. Environ Res 2016;150:245–54. doi:10.1016/j.envres.2016.06.013.

Raanan R, Balmes JR, Harley KG, Gunier RB, Magzamen S, Bradman A, et al. Decreased lung function in 7-year-old children with early-life organophosphate exposure. Thorax 2016;71:148–53. doi:10.1136/thoraxjnl-2014-206622.

Raanan R, Gunier RB, Balmes JR, Beltran AJ, Harley KG, Bradman A, et al. Elemental sulfur
use and associations with pediatric lung function and respiratory symptoms in an agricultural community (California, USA). Environ Health Perspect 2017;125:1–8. doi:10.1289/EHP528.

Raanan R, Harley KG, Balmes JR, Bradman A, Lipsett M, Eskenazi B. Early-life exposure to organophosphate pesticides and pediatric respiratory symptoms in the CHAMACOS cohort. Environ Health Perspect 2015;123:179–85. doi:10.1289/ehp.1408235.

Raherison C, Baldi I, Pouquet M, Berteaud E, Moesch C, Bouvier G, et al. Pesticides Exposure by Air in Vineyard Rural Area and Respiratory Health in Children: A pilot study. Environ Res 2019;169:189–95. doi:10.1016/j.envres.2018.11.002.

Rauh VA, Margolis AE. Research Review: Environmental exposures, neurodevelopment, and child mental health – new paradigms for the study of brain and behavioral effects. J Child Psychol Psychiatry Allied Discip 2016;57:775–93. doi:10.1111/jcpp.12537.

Rauh VA, Perera FP, Horton MK, Whyatt RM, Bansal R, Hao X, et al. Brain anomalies in children exposed prenatally to a common organophosphate pesticide. Proc Natl Acad Sci U S A 2012;109:7871–6. doi:10.1073/pnas.1203396109.

Reardon AM, Perzanowski MS, Whyatt RM, Chew GL, Perera FP, Miller RL. Associations between prenatal pesticide exposure and cough, wheeze, and IgE in early childhood. J Allergy Clin Immunol 2009;124:852–4. doi:10.1016/j.jaci.2009.07.046.

Repórter Brasil. “Coquetel” com 27 agrotóxicos foi achado na água de 1 em cada 4 municípios 2019. https://reporterbrasil.org.br/2019/04/coquetel-com-27-agrotoxicos-foi-achado-na-agua-de-1-em-cada-4-municipios/ (accessed September 28, 2019).

Ribeiro M, Angelini L, Robles-Ribeiro P, Stelmach R, Santos Ude P, Terra-Filho M. Validation of the Brazilian-Portuguese version of the European Community Respiratory Health Survey in asthma patients. J Asthma 2007;44:371–5.

Rigotto RM, Vasconcelos DP e, Rocha MM. Pesticide use in Brazil and problems for public health. Cad Saude Publica 2014;30:3. doi:10.1590/0102-311XPE020714.

Roberts JR, Karr CJ. Pesticide exposure in children. Pediatrics 2012;130:11. doi:10.1542/peds.2012-2758.

Robson MG, Hamilton GC. Control de Plagas y Pesticidas. In: Frumkin H, editor. Salud Ambient. lo Glob. a lo local, Washington D.C.: OPS; 2010.

Rodríguez-Eugenio N, McLaughlin M, Pennock D. Soil Pollution: A hidden reality. Rome:
FAO; 2018.

Runkle J, Flocks J, Economos J, Tovar-Aguilar JA, McCauley L. Occupational risks and pregnancy and infant health outcomes in florida farmworkers. Int J Environ Res Public Health 2014;11:7820–40. doi:10.3390/ijerph110807820.

Saillenfait A, Ndiaye D, Sabaté J-P. Pyrethroids: Exposure and health effects – An update. Int J Hyg Environ Health 2015;218:281–92. doi:10.1016/j.ijheh.2015.01.002.

Salam MT, Li YF, Langholz B, Gilliland FD. Early-life environmental risk factors for asthma: Findings from the children’s health study. Environ Health Perspect 2004;112:760–5. doi:10.1289/ehp.6662.

Salameh P. Respiratory diseases and pesticide exposure: a case-control study in Lebanon. J Epidemiol Community Heal 2006;60:256–61. doi:10.1136/jech.2005.039677.

Salameh P, Waked M, Baldi I, Brochard P. Spirometric changes following the use of pesticides. East Mediterr Heal J 2005;11:126–36.

Salameh PR, Baldi I, Brochard P, Raherison C, Saleh BA, Salamon R. Respiratory symptoms in children and exposure to pesticides. Eur Respir J 2003;22:507–12. doi:10.1183/09031936.03.00107403.

Salameh PR, Waked M, Baldi I, Brochard P, Saleh BA. Chronic bronchitis and pesticide exposure: A case-control study in Lebanon. Eur J Epidemiol 2006;21:681–8. doi:10.1007/s10654-006-9058-1.

Sánchez-Bayo F, Goulson D, Pennacchio F, Nazi F, Goka K, Desneux N. Are bee diseases linked to pesticides? - A brief review. Environ Int 2016;89–90:7–11. doi:10.1016/j.envint.2016.01.009.

Sanne B, Mykletun A, Moen BE, Dahl AA, Tell GS. Farmers are at risk for anxiety and depression: The Hordaland Health Study. Occup Med (Chic Ill) 2004;54:92–100. doi:10.1093/occmed/kqh007.

Santana VS, Almeida MMC, Gusmão AC, Bah HAF, Coutinho D, Faria NMX, et al. Boletim Epidemiológico - Ocupação e Suicídio no Brasil, 2007-2015. 2019.

Santana VS, Moura MCP, Ferreira F, Lisboa MCL. Acidentes de trabalho devido à intoxicação por agrotóxicos entre trabalhadores da agropecuária, 2000-2011. 2012. doi:10.1192/BJP.111.479.1009-a.
Santana VS, Moura MCP, Nogueira FFE. Occupational pesticide poisoning, 2000-2009, Brazil. Rev Saude Publica 2013;47:598–606. doi:10.1590/S0034-8910.2013047004306.

Santos M, Glass V. Atlas do Agronegócio: Fatos e números sobre as corporações que controlam o que comemos. Rio de Janeiro: Fundação Heinrich Böll; 2018.

Senhorinho HC, Maria S, Gomes M, Franqui E, Júnior HP. Prevalência de distúrbios ventilatórios em trabalhadores rurais expostos a defensivos químicos no norte do Paraná. Fisioter e Pesqui 2005;12:35–44.

Shama FA, Skogstad M, Nijem K, Bjertness E, Kristensen P. Cross-shift changes in lung function among palesstinian farmers during high- and low-exposure periods to pesticides: A longitudinal study. Arch Environ Occup Heal 2015;70:218–24. doi:10.1080/19338244.2013.859122.

Shelton JF, Geraghty EM, Tancredi DJ, Delwiche LD, Schmidt RJ, Ritz B, et al. Neurodevelopmental disorders and prenatal residential proximity to agricultural pesticides: The CHARGE study. Environ Health Perspect 2014;122:1103–10. doi:http://dx.doi.org/10.1289/ehp.1307044.

da Silva M, Stadlinger N, Mmochi AJ, Stålsby Lundborg C, Marrone G. Pesticide Use and Self-Reported Health Symptoms Among Rice Farmers in Zanzibar. J Agromedicine 2016;21:335–44. doi:10.1080/1059924X.2016.1211572.

Silvério ACP, Machado SC, Azevedo L, Nogueira DA, Graciano MM de C, Simões JS, et al. Assessment of exposure to pesticides in rural workers in southern of Minas Gerais, Brazil. Environ Toxicol Pharmacol 2017;55:99–106. doi:10.1016/j.etap.2017.08.013.

Sousa AS, Duaví WC, Cavalcante RM, Milhome MAL, Do Nascimento RF. Estimated Levels of Environmental Contamination and Health Risk Assessment for Herbicides and Insecticides in Surface Water of Ceará, Brazil. Bull Environ Contam Toxicol 2016;96:90–5. doi:10.1007/s00128-015-1686-2.

Stanton RL, Morrissey CA, Clark RG. Analysis of trends and agricultural drivers of farmland bird declines in North America: A review. Agric Ecosyst Environ 2018;254:244–54. doi:10.1016/j.agee.2017.11.028.

Swinburn BA, Kraak VI, Allender S, Atkins VJ, Baker PI, Bogard JR, et al. The Global Syndemic of Obesity, Undernutrition, and Climate Change: The Lancet Commission report. Lancet 2019;393:791–846. doi:10.1016/S0140-6736(18)32822-8.
Tagiyeva N, Devereux G, Semple S, Sherriff A, Henderson J, Elias P, et al. Parental occupation is a risk factor for childhood wheeze and asthma. Eur Respir J 2010;35:987–93. doi:10.1183/09031936.00050009.

Thundiyil JG, Stober J, Besbelli N, Pronczuk J. Acute pesticide poisoning: A proposed classification tool. Bull World Health Organ 2008;86:205–9. doi:10.2471/BLT.07.041814.

Tirado R, Allsopp M. Phosphorus in agriculture: Problems and solutions. Amsterdam: 2012.

Torske MO, Hilt B, Glasscock D, Lundqvist P, Krokstad S. Anxiety and Depression Symptoms Among Farmers: The HUNT Study, Norway. J Agromedicine 2016a;21:24–33. doi:10.1080/1059924X.2015.1106375.

Torske MO, Hilt B, Glasscock D, Lundqvist P, Krokstad S. Anxiety and Depression Symptoms Among Farmers: The HUNT Study, Norway. J Agromedicine 2016b;21:24–33. doi:10.1080/1059924X.2015.1106375.

Toumi K, Joly L, Vleminckx C, Schiffers B. Exposure of workers to pesticide residues during re-entry activities: A review. Hum Ecol Risk Assess An Int J 2019;0:1–23. doi:10.1080/10807039.2018.1485092.

Tsimbiri PF, Moturi WN, Sawe J, Henley P, Bend JR. Health Impact of Pesticides on Residents and Horticultural Workers in the Lake Naivasha Region, Kenya. Occup Dis Environ Med 2015;03:24–34. doi:10.4236/odem.2015.32004.

U.N. Human Rights Council. Report of the Special Rapporteur on the Right to Food. Rep Spec Rapp Right to Food Hilal Elver 2017;01059:24.

Ueker ME, Silva VM, Moi GP, Pignati WA, Mattos IE, Mário A, et al. Parenteral exposure to pesticides and occurrence of congenital malformations: hospital-based case – control study. BMC Pediatr 2016;16:1–7. doi:10.1186/s12887-016-0667-x.

UNICEF. Understanding the Impacts of Pesticides on Children: A discussion paper 2018:1–26.

United Nations. Transforming our world: the 2030 Agenda for Sustainable Development. 2015. doi:10.1080/02513625.2015.1038080.

Unsworth J. History of Pesticide Use. IUPAC – Int Union Pure Appl Chem 2010. https://agrochemicals.iupac.org/index.php?option=com_sobi2&sobi2Task=sobi2Details&catid=3&sobi2Id=31 (accessed December 28, 2019).
Vermeulen SJ, Campbell BM, Ingram JSI. Climate Change and Food Systems. Annu Rev Environ Resour 2012;37:195–222. doi:10.1146/annurev-environ-020411-130608.

Waichman A V., Eve E, Nina NCS. Do farmers understand the information displayed on pesticide product labels? A key question to reduce pesticides exposure and risk of poisoning in the Brazilian Amazon. Crop Prot 2007;26:576–83. doi:10.1016/j.cropro.2006.05.011.

van Wendel de Joode B, Mora AM, Lindh CH, Hernández-Bonilla D, Córdoba L, Wesseling C, et al. Pesticide exposure and neurodevelopment in children aged 6–9 years from Talamanca, Costa Rica. Cortex 2016;85:137–50. doi:10.1016/j.cortex.2016.09.003.

Weselak M, Arbuckle TE, Wigle DT, Krewski D. In utero pesticide exposure and childhood morbidity. Environ Res 2007;103:79–86. doi:10.1016/j.envres.2006.09.001.

van der Westhuizen C, Wyatt G, Williams JK, Stein DJ, Sorsdahl K. Validation of the Self Reporting Questionnaire 20-Item (SRQ-20) for Use in a Low- and Middle-Income Country Emergency Centre Setting. Int J Ment Health Addict 2016;14:37–48. doi:10.1007/s11469-015-9566-x.

WHO. Global Report on Urban Health: equitable, healthier cities for sustainable development. Geneva: WHO - World Health Organization; 2016.

WHO IARC IA for CR. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Some Organophosphate Insectic Herbic DDT, Lindane, 2,4-D 2019. https://publications.iarc.fr/Book-and-Report-Series.

Willett W, Rockström J, Loken B, Springmann M, Lang T, Vermeulen S, et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 2019;393:447–92. doi:10.1016/S0140-6736(18)31788-4.

World Health Organization. Depression and other common mental disorders: global health estimates. World Heal Organ 2017:1–24. doi:CC BY-NC-SA 3.0 IGO.

World Health Organization (WHO). Public health impact of pesticides used in agriculture. WHO 1990:123. doi:10.1093/oxfordjournals.aje.a010033.

Xu X, Nembhard WN, Kan H, Becker A, Talbott EO. Residential pesticide use is associated with children’s respiratory symptoms. J Occup Environ Med 2012;54:1281–7. doi:10.1097/JOM.0b013e31825cb6ae.

Ye M, Beach J, Martin JW, Senthilselvan A. Occupational pesticide exposures and respiratory
health. Int J Environ Res Public Health 2013;10:6442–71. doi:10.3390/ijerph10126442.

Yu C-M. Occupational exposure to pesticides towards the danger of childhood leukemia in China. Biomed Res 2018;29:9–14.

Zaremba J, Watanabe P. 30% dos ingredientes de agrotóxicos liberados neste ano são barrados na UE. Folha São Paulo 2019.

Zhang Q, Li Z, Chang CH, Lou JL, Zhao MR, Lu C. Potential human exposures to neonicotinoid insecticides: A review. Environ Pollut 2018;236:71–81. doi:10.1016/j.envpol.2017.12.101.

Zhang W. Global pesticide use: Profile, trend, cost/benefit and more. Proc Int Acad Ecol Environ Sci 2018;8:1–27.

Zhang W, Jiang F, Ou J. Global pesticide consumption and pollution: with China as a focus. Proc Int Acad Ecol Environ Sci 2011;1:125–44.

Zhang Y, Han S, Liang D, Shi X, Wang F, Liu W, et al. Prenatal exposure to organophosphate pesticides and neurobehavioral development of neonates: A birth cohort study in Shenyang, China. PLoS One 2014;9. doi:10.1371/journal.pone.0088491.

Zuskin E, Mustajbegovic J, Schachter EN, Kern J, Deckovic-Vukres V, Trosic I, et al. Respiratory function in pesticide workers. J Occup Environ Med 2008;50:1299–305. doi:10.1097/JOM.0b013e3181845f6c.
9. APÊNDICES

Apêndice A - Autorização para uso dos dados coletados em SJU.

Rio de Janeiro, 05 de Abril de 2017

DECLARAÇÃO

Eu, Jean Remy Davee Guimaraes, professor titular do IBCCF/UFRJ, declaro por meio desta que autorizo Rafael Junqueira Buralli a utilizar em sua tese de Doutorado na USP os dados do projeto AVALIAÇÃO DO RISCO À SAÚDE HUMANA POR EXPOSIÇÃO A METAIS E PESTICIDAS NA BACIA HIDROGRÁFICA DE SÃO DOMINGOS, ESTADO DO RIO DE JANEIRO, apoiado pelo CNPQ (processo 479364/2012-5) e do qual fui coordenador.

Prof. Dr. Jean Remy Davee Guimaraes
Prof. Titular, Pesquisador I do CNPq, Chefe do Lab. de Traçadores W.C. Pfeiffer
Apêndice B - Termo de Consentimento Livre e Esclarecido (TCLE)

Concordo voluntariamente em participar deste estudo e poderei retirar o meu consentimento a qualquer momento, sem penalidades ou prejuízos e sem a perda de atendimento nesta Instituição ou de qualquer benefício que eu possa ter adquirido. Eu receberei uma cópia desse Termo de Consentimento Livre e Esclarecido (TCLE) e a outra ficará com o pesquisador responsável por essa pesquisa. Além disso, estou ciente de que eu (ou meu representante legal) e o pesquisador responsável devemos rubricar todas as folhas deste TCLE e assinar na última folha.

Nome do Sujeito da Pesquisa

Assinatura do Sujeito da Pesquisa

Nome do Representante Legal

Assinatura do Representante Legal

Data: 01/08/14

Dr. Jean Remy Davée Guimarães - Pesquisador Responsável

Assinatura - Dr. Jean Remy Davée Guimarães - Pesquisador Responsável

Data: 01/08/14
Apêndice C - Questionário de avaliação ocupacional

AVALIAÇÃO DO RISCO À SAÚDE HUMANA POR EXPOSIÇÃO A METAIS E PESTICIDAS NA BACIA HIDROGRÁFICA DE SÃO DOMINGOS, ESTADO DO RIO DE JANEIRO

FICHA DE EXPOSIÇÃO OCUPACIONAL

Código	Identificação	Data	Local	Coordenadas	Avaliador

Coleta de Amostras:
- Humanas – () Sangue () Urina () Cabelo () Leite materno
- Ambientais – () Água () Solo () Sedimento () Alimento(s)
- () Outra(s)

I. DADOS PESSOAIS

1. Nome:				
2. Data de Nascimento:		Idade:	Naturalidade (UF):	
3. Endereço: () Urbano () Rural		Comunidade:	Endereço/Ponto de Referência:	
4. Telefone/Celular (operadora):				
5. E-mail:				

6. Sexo: (1) F (2) M (3) Ignorado				
7. Estado Civil:	(1) Solteiro (2) Casado/amasiado (3) Viúvo (4) Divorciado/Separado (5) Ignorado			
8. Cor/Raça declarada:	(1) Branco (2) Negro (3) Pardo (4) Indígena (5) Amarelo			
(6) Não sabe informar (7) Ignorado				
9. Moradia: (1) Própria (2) Alugada (3) De parentes (4) Cedida				
10. Há quanto tempo reside neste endereço?	(M) (A)			
11. Em SJU?	(M) (A)			
12. Tipo de construção: (1) Alvenaria (2) Madeira (3) Outro				

Nome	Parentesco	Idade	Trabalha (T)/Ajuda (A) na roça?	
A.			Sim (T) (A) Não()	
B.			Sim (T) (A) Não()	
C.			Sim (T) (A) Não()	
D.			Sim (T) (A) Não()	
E.			Sim (T) (A) Não()	
F.			Sim (T) (A) Não()	

13. Arranjo familiar:				
14. Escolaridade:				
14.1 (1) Analfabeto (2) Educação Infantil - 1ª a 4ª (3) Ensino Fundamental (4) Ensino Médio (5) Superior (6) Ignorado				
14.2 (1) Completo (2) Incompleto (3) Em andamento				
15. Plano de Saúde: (1) Não (2) Sim, Qual?				
16. Fonte de água para beber e cozinhar:	(1) Encanada (CEDAE) (2) Poço (3) Fonte ou bica de água (4) Água do rio (5) Caminhão pipa (6) Outro			

II. OCUPAÇÃO E SITUAÇÃO NO MERCADO DE TRABALHO

1. (1) Empregado com carteira assinada (2) Empregado não registrado (3) Servidor público (4) Autônomo (5) Desempregado (6) Aposentado (7) Do lar (8) Ignorado (9) Outro...

1.1 Caso aposentado, por: (1) Tempo de contribuição (2) Idade (3) Invalidez por acidente de trabalho (4) Doença ocupacional (5) Invalidez por doença comum. Qual?..Desde?

1.1.1 Segurado pelo INSS? (1) Não (2) Sim. Desde?...

2. Está atualmente afastado: (1) Não (2) Sim

2.1 Segurado pelo INSS? (1) Sim (2) Não. Outra instituição de previdência? Qual?

2.1.1 Motivo: (1) Acidente de trabalho (2) Doença ocupacional (3) Doença comum. Qual?..Desde?

3. Atividade informal de interesse? (1) Não (2) Sim. Qual?...

4. Renda familiar: Média de.................(1) Até 1 salário mínimo (2) De 1 a 2 (3) De 2 a 5 (4) De 5 a 10 (5) De 10 a 20 (6) Acima de 20

5. Benefício assistencial por entidade de assistência social ou programa governamental? (1) Não (2) Sim. Qual(is)?...

5.1 Tempo?......................(M) (A)

6. É (1) Proprietário? Tamanho da propriedade...

7. Tempo de serviço como produtor:.............(M) (A) (1) Agricultura (2) Pecuária (3) Outra

7.1 Começou com qual idade?.................................(A)

8. Ocupação anterior?... Tempo:.......(M) (A)

9. Trabalha em quais culturas?

9.1 () Tomate Quantos pés?...

9.2 () Pimentão Quantos pés?...

9.3 () Pepino Quantos pés?...

9.4 () Outros...Quantos pés?

10. Quais as culturas cultivou nos últimos 2 meses? (1) Tomate (2) Pimentão (3) Pepino (4) Outro(s)

11. Também cria animais?

11.1 (1) gado de corte (2) gado leiteiro (3) porco (4) galinha (5) Peixe (6) Outro

12. Quantas horas trabalha por dia? Ocupação principal..................h/ secundária...........

13. Crédito rural? (1) Não (2) Sim. Qual?...
III. CARACTERIZAÇÃO DA EXPOSIÇÃO

1. Tem contato atual com agrotóxico? (1) Não (2) Sim

1.1. Em que tipo de atividade (frequência)? () Roça; () Criação de animais; () Indústria; () Vendas; () Agente de endemias; () Controle de ervas daninhas; () Capina química; () Serviço de dedetização; () Não sabe informar; () Outro

Legenda: Freqüência: (1) 5 a 7 vezes/sem; (2) 1-3 vezes/sem; (3) 2-3 vezes no mês; (4) Pelo menos uma vez ao mês; (5) Raramente.

2. Exposição doméstica (frequência): () Não; () Inseticidas; () Pesticidas no jardim/horta; () Lavagem roupas (preparo/aplicação agrotóxico). Caso não seja você, quem lava?

Legenda: Freqüência: (1) 5 a 7 vezes/sem; (2) 1-3 vezes/sem; (3) 2-3 vezes no mês; (4) Pelo menos uma vez ao mês; (5) Raramente.

3. Utiliza veneno para combater formigas (1) Não (2) Sim. Na roça? () Ao redor da casa? () Quail(is)?

4. Utiliza o Round up? (1) Não (2) Não sabe (3) Sim (4) Similar?

5. Especificamente relacionado à produção agrícola, ajuda atualmente em alguma atividade?

(1) Não (2) Transporte de insumos (3) Carga e descarga de insumos (4) Armazenamento insumos (5) Capina (6) Controle químico de ervas daninhas (7) Adubação (8) Aragem (9) Semeadura (10) Preparação/Diluição dos pesticidas (11) Aplicação (12) Lavagem/descarte de embalagens (13) Colheita (14) Tratamento de sementes (15) Limpeza/manutenção equipamentos (pesticidas) (16) Outros:

6. Com que frequência manipula os pesticidas entre o plantio e a colheita?

() 5 a 7 vezes/sem; () 1-3 vezes/sem; () 2-3 vezes no mês; () Pelo menos uma vez ao mês; () Raramente.

7. Utiliza pesticidas durante a entresafra? (1) Não (2) Sim. Planta Quail(is)?

O que planta?

8. Utiliza equipamento de proteção individual (EPI’s) (mostrar figura):

8.1 (1) Sim: () Luvas () Máscara de pano () Respirador () Boné árabe () Botas de borracha () Macacão () Óculos/Viseira () Avental ()

Outros:

8.2 (2) Não. Por quê? () É caro () É desconfortável () É quente () É pesado () É difícil de trabalhar com ele () Não disponível para compra. () Outros:

9. Sua pele entra em contato com o agrotóxico? (1) Não (2) Sim

Que parte do corpo? () Quando?

10. Sente o cheiro do agrotóxico enquanto o manipula?

(1) Não (2) Sim - () Preparo () Aplicação () Lavagem equipamentos () Outro

11. Há quanto tempo trabalha com agrotóxico? Desde meses anos

12. Já se intoxicou? (1) Não (2) Não sabe (3) Sim. Quantas vezes?

12.1 Circunstâncias: (1) Atividades de trabalho (2) Água/alimento contaminados (3) Acidental (4) Outros:

12.2 Caso positivo: Quais foram os sintomas? / Caso negativo ou desconhecido:

Já sentiu alguns desses sintomas após a aplicação/manipulação de pesticidas?

() Mal estar () Dor de cabeça () Tontura () Tremores () Dormência () Formigamento () Fraqueza () Visão embaçada/turva () Câimbra () Convulsão () Descoordenação motora () Confusão mental () Náuseas
13. Procurou atendimento médico? (1) Não (2) Sim. Nome/Município?...

14. Evolução do quadro clínico: (1) Cura (2) Cura com sequela (3) Em tratamento

15. Quais pesticidas causaram a sua intoxicação?..

16. Conhece casos de intoxicação com pesticidas na comunidade ou em áreas próximas? (1) Não (2) Não sabe (3) Sim. Quantos?...

17. Quando foi seu último contato com pesticidas? (1) Hoje ou........... dias....... meses....... anos

17.1 Qual(is) foi(ram) o(s) produto(s) utilizado(s)?

18. Lava as mãos logo após manipular os pesticidas? (1) Não (2) Não lembra (3) Sim (4) Às vezes

19. Toma banho logo após ajudar na aplicação dos pesticidas? (1) Não (2) Não lembra (3) Sim (4) Às vezes

20. Onde compra os insumos (fertilizantes e pesticidas)?

21. Utiliza receituário agronômico? (1) Sim (2) Não (3) Desconhece

22. Quem prescreve ou indica os produtos? (1) Agrônomo (2) Vendedor (3) Representante de indústria (4) Técnico EMATER (5) Outros produtores (6) Proprietário da roça

23. Você lê ou pede a alguém para ler os rótulos dos produtos? (1) Frequentemente (2) Às vezes (3) Nunca

24. Quem orienta sobre a dosagem e aplicação do agrotóxico? (1) Lê no rótulo (2) Representante de indústria (3) Agrônomo (4) Vendedor (5) Técnico EMATER (6) Outros produtores (7) Proprietário da roça (8) O próprio (9) Outro

25. Recebe ou já recebeu algum treinamento/orientação para trabalhar com pesticidas? (1) Não (2) Sim. Quando?................. Por quem?..

25.1 Como foi? (1) Palestra (2) Explicação no local de trabalho

25.1.1 Frequência? (1) a cada 6 meses (2) 1 vez ao ano (3) Raramente (4) Nem lembra

26. Quais pesticidas costuma utilizar?

Marca/Produto	Culturas	Finalidade
1.		
2.		
3.		
4.		
5.		
6.		
7.		
8.		
9.		
10.		
26.1 Dentre eles, quais considera os mais perigosos?..

27. Onde armazena os insumos (fertilizantes e pesticidas)? (1) Residência (2) Roça (3) Local só para os insumos (4) Local com outros materiais (5) Outro.

28. Obedece o tempo recomendado para a colheita? (1) Frequente (2) Às vezes (3) Nunca

29. O que faz com as embalagens de pesticidas? (1) Devolve ao comerciante (2) Prefeitura recolhe - galpão (3) Leva à prefeitura - galpão (4) Proprietário recolhe (5) Lixo comum (6) Queima (7) Enterra (8) Deixa no campo (9) Vende. Para quem/finalidade?

30. Recebeu (1) Treinamento/(2) Informação para descartar corretamente as embalagens?

31. O que faz com as embalagens antes do descarte?

32. Faz uso de alguma prática que reduza a quantidade de insumos agrícolas?

33. Consome água e/ou alimentos na roça? (1) Não (2) Sim - () Água () Alimento - lanche () Almoço () Outro.................

34. Nos dias em que aplica agrotóxico consome alimentos na roça? (1) Não (2) Sim

35. Consome os alimentos que planta? (1) Não (2) Sim. Quais?.................................

36. Proximidade da casa da área de cultura (raio) mais próxima a partir da área georreferenciada:

37. Proximidade da roça de corpos de água: () Da horta que cultiva () Horta perto da casa

38. Quais itens alimentares consome com frequência?

AVALIAÇÃO CLÍNICA - ANAMNESE

1. Problemas atuais de saúde? () Não () Sim.
Qual(is)?..

2. Uso de medicamentos? () Não () Sim. Qual(is)?..

3. Sintomas. Há quanto tempo surgiram (M) (A)?

Legenda: (1) Rio; (2) Córrego; (3) Nascente; (4) Represa/açude; (5) Valão

Legenda: (1) Até 30 m; (2) Até 50 m; (3) Até 100 m; (4) Até 200 m; (5) Até 500 m.

Obs.: (1) 10 – 100 m (2) > 100 – 500 m (3) até 1 km (4) > 1 ≤ 2 km (5) > 2 Km.
Sintoma	Sim	Não	Não Sabe
Cefaleia			
Tontura			
Tremores			
Formigamento MMSS			
Fraqueza muscular			
Cansaço fácil nas pernas			
Visão turva			
Fotofobia			
Confusão mental			
Redução da memória			
Irritabilidade			
Alteração do sono			
Alteração de humor			
Dificuldade de concentração			
Dificuldade de raciocínio			
Zumbido			
Salivação			
Náusea/ Vômito			
Falta de apetite			
Dor de estômago			
Irritação na pele			
Irritação de mucosas			
Alteração vida sexual			
Formigamento MMII			
Fraqueza muscular			
Cansaço fácil nas pernas			
Visão turva			
Fotofobia			
Confusão mental			
Redução da memória			
Irritabilidade			
Alteração do sono			
Alteração de humor			
Dificuldade de concentração			
Dificuldade de raciocínio			
Zumbido			
Salivação			

4. Na presença de sintoma(s), especificar:
 () Não tem sintomas () Não sabe informar
4.1 Quando aparece(em)?
4.2 Em que situação(ões)?
4.3 Após o trabalho? () Sim () Não. Aparecem constantemente? () Sim () Não
4.4 O que leva à melhora? () Sim () Não
4.5 Diagnóstico? () Não () Não sabe informar () Sim. Qual?
4.6 Exames?

5. Conhece outros produtores que apresentem sintomas parecidos? () Não () Sim
 Quantos? () Não sabe informar
5.1 Observações:

6. Alguém familiar ou vizinho apresenta sintomas parecidos? () Não () Sim
 Observações:

7. Conhece alguém na região que tenha se suicidado ou tentado suicídio?
 () Não () Sim. Observações:

História Pregressa

1. Agravos
 () Hipertensão arterial () Hipotireoidismo
 () Doença cardíaca. Qual(is)? () Hipertireoidismo
 () Diabetes Mellitus. Tipo? () Hantavirose
 () Epilepsia () Toxoplasmose
 () Depressão () Esquistossomose
 () Ansiedade () Leptospirose
 () Outro distúrbio mental. Qual? () Alergia. Qual(is)?
 () Doença neurológica. Qual?

189
2. **Antecedentes Familiares**

(HAS, DM, Câncer, Hipo/Hipertireoidismo, Distúrbios mentais, doenças hereditárias, doenças genéticas, óbitos de interesse, etc.).

Mãe:..

Pai:...

Irmão(s):...

Outros:..

3. **Infecção(ões) atual(is) de repetição:** () Não () Sim.

 Qual(is)?...

 3.1 No passado? () Não () Sim. Quando?.........Qual(is)?..

4. **Anamnese Espontânea**

..

como justificativa para o convite à consulta.

5. **Hábitos De Vida**

1.	Fumante? () Sim () Não () Ex-fumante
1.1	Cigarro: () Industrializado () Outro. Qual(is)?..
1.2	Fuma ou fumou há quanto tempo?.............() Meses () Anos
1.3	Quantos cigarros? () Dia () Semana
1.4	Parou há quanto tempo?() Anos () Meses () Não sabe () Ignorado

2.	Etílica () Sim () Não () Ex-Etílica
2.1	Que tipo de bebida? () Destilado () Fermentado () Ambas
2.2	Frequência: () Dia () Semana. Obs: ..
2.3	Tempo de consumo ou que consumiu: anos () Não sabe () Ignorado

3.	Dependência química: () Sim () Não () Ex-dependente
3.1	Tipo de droga:...
3.2	Frequência........() Dia () Semana () Mês () Ano () Não sabe () Ignorado
3.3	Tempo.............. () Dias () Semanas () Meses () Anos () Não sabe () Ignorado

| 4. | Toma banho no rio ou reservatório? () Sim () Não |

Vida Reproductiva Feminina

Obs.: Refere-se apenas aos filhos biológicos

1. Ciclo regular () Não () Sim
2. Gestante () Sim () Não. Semanas?.............................. () Não sabe informar
3. Amamentando? () Não () Sim. Quanto tempo?...........mês....................ano
4. Nº gestações:.. 5. Nº partos:..

6.	Nº abortamentos:..
7.	A - Nº Filhos vivos: () M () F; B - Nº Filhos mortos: () M () F
8.	Prematuridade? () Sim () Não () Ignorado Quantos?..........
9.	Filho com malformação congênita? De quê tipo? Quantos?

10.	Filho com baixo peso? () Sim () Não () Ignorado. Quantos?
11.	Filho com atraso no desenvolvimento cognitivo neuropsicomotor? Quantos?.................................
12.	Recebe atendimento especial de saúde? () Fisioterapia () Outro...
13.	Filhos com alterações comportamentais desde o nascimento? () Não () Sim. Quantos?..................Qual(is)?..
14.	Menopausa? () Não () Sim. A partir dos........... anos.
15.	Diminuição da fertilidade/Dificuldade de engravidar? () Não () Sim. Por quê?..........................
16. Outro(s) problema(s): () Não () Sim. Qual(is)?

Vida Reprodutiva Masculina

Obs.: Refere-se apenas aos filhos biológicos
1. **A** – Nº Filhos vivos: () M () F; **B** – Nº Filhos mortos: () M () F
2. Filhos abortados? () Sim () Não () Ignorado Quantos?
3. Filhos prematuros? () Sim () Não () Ignorado Quantos?
4. Filho com malformação congênita? De quê tipo? Quantos?
5. Filho com baixo peso? () Sim () Não () Ignorado Quantos?
6. Filho com atraso no desenvolvimento cognitivo neuropsicomotor? Quantos?
7. Recebe atendimento especial de saúde? () Fisioterapia () Outro
8. Filhos com alterações comportamentais desde o nascimento? () Não () Sim. Quantos?
9. Diminuição da fertilidade/Dificuldade em ter filhos? () Não () Sim. Por quê?

AVALIAÇÃO CLÍNICA – EXAME FÍSICO
Peso....................Kg
Altura....................m
Pressão Arterial/mmHg
Circunferência abdominal........cm
Exames laboratoriais recentes? () Não () Sim. Qual(is)?
Resultados: ..

QUESTIONÁRIO SRQ-20
1. Você tem dores de cabeça frequentes? () Sim () Não
2. Você tem pouco apetite? () Sim () Não
3. Você dorme mal? () Sim () Não
4. Você se assusta facilmente? () Sim () Não
5. Suas mãos tremem? () Sim () Não
6. Você se sente nervoso, tenso ou preocupado? () Sim () Não
7. Você tem má digestão? () Sim () Não
8. Você tem tido problemas para pensar claramente (ideias embaraçadas)? () Sim () Não
9. Você tem sentido infeliz/insatisfeito? () Sim () Não
10. Você tem chorado mais do que o normal/costume? () Sim () Não
11. Você acha difícil sentir prazer em suas atividades diárias? () Sim () Não
12. Você considera difícil tomar decisões? () Sim () Não
13. Você acha que o seu trabalho diário é penoso e lhe causa sofrimento? () Sim () Não
14. Você se acha incapaz de desempenhar um papel útil na vida? () Sim () Não
15. Você tem perdido o interesse nas coisas? () Sim () Não
16. Você se sente como uma pessoa sem valor? () Sim () Não
17. Já pensou alguma vez em acabar com a sua vida? () Sim () Não
18. Você se sente cansado o tempo todo? () Sim () Não
19. Você tem sensações desagradáveis no estomago? () Sim () Não
20. Você se cansa facilmente? () Sim () Não

Pontuação

Legenda: pontuação (1) Sim; (0) Não
Apêndice D - Questionário de sintomas respiratórios

NOME: __

CÓDIGO IDENTIFICAÇÃO: __________________________ SEXO: () Masc. () Fem.

PRODUTOR(A): () Sim () Não - Parentesco: _________________________________

DATA NASC.: __________________________ IDADE: __________________________ anos.

ALTURA: __________________________ cm. PESO: __________________________ Kg.

Questionário - Saúde Respiratória

Antecedentes sobre saúde:
Já foi submetido à radiografia de tórax? Não () Sim ()
Se sim, por qual motivo? ___

Tem ou teve doença pulmonar? Não () Sim ()
Se sim, qual? __

Teve trauma torácico importante? Não () Sim ()

Questionários de sintomas respiratórios (ECHRS):
Por favor, se você não estiver com certeza, responda “não”.
1. Você teve chiado ou aperto no peito alguma vez nos últimos 03 meses?
Não () Sim ()
Se a resposta for “não”, vá para a questão 2. Se “sim”,
 1.1. Quando você teve chiado, sentiu falta de ar junto?
 Não () Sim ()
 1.2. Quando você teve falta de ar, chiados no peito estavam sempre presentes?
 Não () Sim ()
 1.3. Você teve chiado (no peito) mesmo quando não estava resfriado?
 Não () Sim ()

2. Acordou com a sensação de aperto no peito nos últimos 12 meses?
Não () Sim ()

3. Acordou por causa de uma crise de falta de ar nos últimos 12 meses?
Não () Sim ()

4. Acordou por causa de uma crise de tosse nos últimos 12 meses?
Não () Sim ()

5. Teve uma crise de asma nos últimos 12 meses?
Não () Sim ()

6. Está usando algum medicamento para asma?
Não () Sim ()

7. Você tem alguma alergia no nariz (rinite)?
Não () Sim ()

Observações:
__
__
__

NOME: __

CÓDIGO IDENTIFICAÇÃO: ________

SEXO: () Masc. () Fem.

PRODUTOR(A): () Sim () Não - Parentesco: ________________

DATA NASC.: _________________ IDADE: _________________ anos.

ALTURA: ______________ cm. PESO: ______________ Kg.
Apêndice E - Orientações para prova de função pulmonar

PROVA DE FUNÇÃO PULMONAR

Orientações ao paciente

- NÃO UTILIZAR: Aerolim, Aerojet, Aerolide, Berotec, Clenil Compositum ou Duovent por no mínimo 4 horas antes do exame;

- SUSPENDER: Serevent, Seretide, Spiriva, Alenia e Foradil com 12 horas de antecedência;

- SUSPENDER: Descon Hismanal, Polaramine, Resprin e Teldano com 48 horas de antecedência;

- Em caso do uso de: Azmacorl, Beclosol, Busonid, Clenil Forte, Flixotide, Flunitec, Meticorten e Pulmicort NÃO é necessário sua suspensão;

- NÃO é necessário jejum (evitar refeições pesadas por pelo menos 1 hora antes do exame);

- NÃO tomar café ou chá por pelo menos 6 horas antes do exame;

- NÃO ingerir bebida alcoólica no dia do exame;

- NÃO fumar no dia do exame;

- Outros medicamentos não listados não devem ser suspensos.

Maiores informações:

(0xx11) 97708 4415
rafael_buralli@usp.br
10. Currículo Lattes – Rafael Junqueira Buralli

Rafael Junqueira Buralli
Endereço para acessar este CV: http://lattes.cnpe.br/6106223725467315
ID Lattes: 6106223725467315
Última atualização do currículo em 07/10/2019

Doutorando em Saúde Pública (Departamento de Saúde Ambiental) pela Faculdade de Saúde Pública da Universidade de São Paulo (FSP USP). Mestre em Ciências pela FSP USP (2016) e graduado em Fisioterapia (2004). Possui pós-graduações lato sensu em Saúde Coletiva (2007/09) e Docência do Ensino Superior (2012/11). Foi pesquisador visitante (doutorado sandwich) no Departamento de Epidemiologia da Escuela de Salud Pública da Universidad de Chile e no CERCH - Center for Environment Research and Children’s Health da School of Public Health da University of California, Berkeley. Em 2016-17, trabalhou como Professor Substituto no Curso de Fisioterapia da Universidade Federal do Espírito Santo (UFES). Tem experiência prática profissional em Fisioterapia, especialmente em Hidroterapia, Pilates e reabilitação de pacientes ortopédicos. Foi pesquisador colaborador em um projeto de avaliação de risco à saúde humana por metais e agrotóxicos da Universidade Federal do Rio de Janeiro (UFRJ). É pesquisador do Grupo de Estudos em Agricultura Urbana (GEAU) do Instituto de Estudos Avançados (IEA) da Universidade de São Paulo. Possui especial interesse por: saúde ambiental, saúde ocupacional, epidemiologia, exposição a contaminantes e efetos à saúde humana, pesticidas, Objetivos do Desenvolvimento Sustentável (ODS), participação social e empoderamento, além de fisioterapia e reabilitação.

(Texto informado pelo autor)

Identificação
Nome: Rafael Junqueira Buralli
Nome em citações bibliográficas: BURALLI. R. J.; BURALLI, RAFAEL
Lattes ID: https://lattes.cnpe.br/6106223725467315

Endereço
Endereço Profissional
Universidade de São Paulo. Faculdade de Saúde Pública.
Faculdade de Saúde Pública
Cerqueira Cesar
01246-904 - São Paulo, SP - Brasil
Telefone: (11) 30617894

Formação acadêmica/titulação
2016
Doutorado em Ciências em Doutorado em Ciências.
Universidade de São Paulo, USP, Brasil.
Com período sandwich em University of California, Berkeley (Orientador: Kim Hurley).
Título: Efeitos à saúde por exposição a agrotóxicos em trabalhadores rurais envolvidos em agricultura familiar.
Orientador: Helena Ribeiro.
Bolsista do(a): Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES,
Brasil.
Palavras-chave: Aquecimento Global; Saúde Ambiental; Saúde Ocupacional.

2014 - 2016
Graduação em Ciências em Graduação em Ciências da Saúde.
Graduação em Ciências da Saúde / Área Saúde Coletiva / Subárea: Saúde Pública.
Matrícula em Ciências da Saúde (Concursos CAPES 6).
Universidade de São Paulo, USP, Brasil.
Título: Avaliação da condição respiratória em população rural exposta a agrotóxicos em São José de Uba, Estado do Rio de Janeiro. Ano de obtenção 2016.
Orientador: Helena Ribeiro.
Bolsista do(a): Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq,
Brasil.
Palavras-chave: Aquecimento Global; Saúde Respiratória; Prova de Função Pulmonar; População...
Helena Ribeiro
Bolsista de Produtividade em Pesquisa do CNPq - Nível 1A
Entrevista para acessar este CV: http://lattes.cnpq.br/8725809744497200
Lattes: 8725809744497200
Última atualização do currículo em: 19/11/2019

Bachélors in Geography from Pontificia Universidade Católica de São Paulo (1972), master's at Geography from University of California Berkeley (1981) and doctorate at Physical Geography from Universidade de São Paulo (1988). Has experience in Geosciences, focusing on Geographical Climatology, acting on the following subjects: environmental health, urban health, medical geography, air pollution, climate changes and environmental education. Professor of the Environmental Health Department of the School of Public Health of the University of São Paulo. Former professor of Pontificia Universidade Católica de São Paulo. Former Environmental advisor to the Mayor of São Paulo. Former Member of the Executive Committee of ICLEI - International Council for Local Environmental Initiatives. (Texto informado pelo autor)

Identificação
Nome
Helena Ribeiro
Nome em citações bibliográficas
RIBEIRO, H. Ribeiro, Helena
Lattes ID
http://lattes.cnpq.br/8725809744497200
Orcid ID
https://orcid.org/0000-0002-1311-7060

Endereço
Endereço Profissional
Universidade de São Paulo, Faculdade de Saúde Pública, Departamento de Saúde Ambiental.
Av. Dr. Arnaldo, 715
Carreira César
01246-904 - São Paulo, SP - Brasil
Telefones (11) 30667712
Rancho, 210
Fax: (11) 30667732
URL de Homepages: www.fsp.usp.br

Formação acadêmica/titulação
1984 - 1988
Doctorado em Geografia (Geografia Física) (Conceito CAES 5),
Universidade de São Paulo, USP, Brasil.
Título: Poluição do ar e doenças respiratórias em crianças de Grande São Paulo: um estudo de geografia médica. Ano de obtenção: 1988.
Orientador: José Roberto Tarifa.
Bolsista do (s): Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES, Brasil.

1977 - 1981
Mestrado em Geografia,
University of California Berkeley, UCB, Estados Unidos.
Título: Land use and environmental issues in a subtropical milieu the case of São Simão in the State of São Paulo, Brasil. Ano de obtenção: 1981.
Orientador: Hilgard O'Reilly Sternberg,
Pampanha-cheve: agricultura sustentável, cobertura vegetal, degradação ambiental, Grande área: ciências humanas

1969 - 1972
Graduação em Geografia,
Pontificia Universidade Católica de São Paulo, PUC/SP, Brasil.

Pós-doutorado e Livre-docência
1996
Livro-docência,
Universidade de São Paulo, USP, Brasil.
Título: Ilha de calor na cidade de São Paulo: sua dinâmica e efeitos na saúde da população. Ano de obtenção: 1996.
Pouvez-chave: poluição térmica saúde são paulo calor.
Grande área: Ciências Humanas