GLOBAL WELL-POSEDNESS FOR THE DERIVATIVE NONLINEAR SCHRÖDINGER EQUATION IN $H^\frac{1}{2}(\mathbb{R})$

ZHUA GUO*

School of Mathematical Sciences, Monash University
VIC 3800, Australia

YIFEI WU

Center for Applied Mathematics, Tianjin University
Tianjin 300072, China

(Communicated by Nikolay Tzvetkov)

Abstract. We prove that the derivative nonlinear Schrödinger equation is globally well-posed in $H^\frac{1}{2}(\mathbb{R})$ when the mass of initial data is strictly less than 4π.

1. Introduction. In this paper, we study the Cauchy problem to the derivative nonlinear Schrödinger equation (DNLS):

$$\begin{cases}
i\partial_t u + \partial_x^2 u = i\partial_x(|u|^2 u), & t \in \mathbb{R}, \ x \in \mathbb{R}, \\
u(0, x) = u_0(x). &
\end{cases}$$

(1)

This equation was derived by [12, 13] for studying the propagation of the circular polarised nonlinear Alfvén waves in plasma, and has been extensively studied since then. It is well-known that (1) is completely integrable (see [8, 9, 17]), and thus has infinite number of conservation laws. In particular, in this paper we will use the following three conservation laws: if u is a H^1-solution of (1) then

$$
M_D(u) := \int_\mathbb{R} |u|^2 \, dx = M_D(u_0),
$$

$$
E_D(u) := \int_\mathbb{R} (|u_x|^2 + \frac{3}{2} |u|^2 \text{Im}(u\bar{u}_x) + \frac{1}{2} |u|^6) \, dx = E_D(u_0),
$$

$$
P_D(u) := \int_\mathbb{R} \left(\text{Im}(\bar{u}u_x) - \frac{1}{2} |u|^4 \right) \, dx = P_D(u_0).
$$

Equation (1) has been extensively studied. On the well-posedness, Hayashi and Ozawa [5, 6, 7, 14] proved local well-posedness in $H^\frac{1}{2}(\mathbb{R})$, and moreover global well-posedness for initial data in H^1 satisfying

$$
\int_\mathbb{R} |u_0(x)|^2 \, dx < 2\pi.
$$

2010 Mathematics Subject Classification. Primary: 35Q55; Secondary: 35A01.

Key words and phrases. Nonlinear Schrödinger equation with derivative, global well-posedness, low regularity.

The second author is supported by NSFC grant 11571118.

* Corresponding author: zihua.guo@monash.edu.
The condition above appears naturally in the sharp Gagliardo-Nirenberg inequality to ensure an apriori estimate of H^1-norm by mass and energy conservation. Later, local well-posedness in H^s for $s \geq 1/2$ was obtained by Takaoka [15], and this result is sharp in the sense that the solution map fails to be uniformly continuous in a ball of H^s if $s < 1/2$. Low regularity global well-posedness was also studied, for example, global well-posedness in $H^s(\mathbb{R})$ under (2) was obtained in [16, 2, 3] for $s > 1/2$, and finally in [11] for $s = 1/2$. On the long-time behavior and modified scattering theory, see [4] and references therein.

A natural question is whether blowup occurs for (1). To the authors' knowledge, this problem is still open. See [10] for a numerical blowup analysis on a class of DNLS. Recently, the second author [19] showed the global well-posedness in $H^1(\mathbb{R})$ under a weaker condition

$$\int_{\mathbb{R}} |u_0(x)|^2 \, dx < 4\pi,$$

improving his previous result [15]. This result shows a striking difference between DNLS and other mass critical equations like focusing generalized KdV and quintic focusing nonlinear Schrödinger equation.

The purpose of this paper is to prove the low-regularity global well-posedness under (3). The main result is

Theorem 1.1. The Cauchy problem (1) is global well-posed in $H^{1/2}(\mathbb{R})$ under (3).

We explain the ideas of the proof of the theorem. Inspired by [19], we derive directly an apriori estimate using the conservation laws of mass, momentum and energy as well as the sharp Gagliardo-Nirenberg inequality, and thus provide a simplified proof of the result of [19]. We do not prove by contradiction and can get a clear bound of H^1-norm. Then we combine it with the I-method to prove the theorem.

2. **Apriori estimate.** To prove the theorem, it suffices to control the $H^{1/2}$-norm of the solution. For convenience, we use the following gauge transformation as [2]. If u is a solution to (1) with $u_0 \in H^{1/2}$, let

$$v(t, x) := e^{-\frac{3}{4} i \int_{-\infty}^x |u(t,y)|^2 \, dy} u(t, x).$$ \hspace{1cm} (4)

Then v solves

$$i\partial_t v + \partial_x^2 v = \frac{i}{2} |v|^2 v_x - \frac{i}{2} v^2 \bar{v}_x - \frac{3}{16} |v|^4 v$$ \hspace{1cm} (5)

with initial data $v(0, x) = v_0(x) := e^{-\frac{3}{4} i \int_{-\infty}^x |u_0|^2 \, dy} u_0$. It’s easy to see the map $u \to v$ is a bijection in $H^{1/2}$. Indeed, by fractional Leibniz rule we get

$$\|D^{1/2} v\|_2 \lesssim \|D^{1/2} u\|_2 + \|u D^{1/2} [e^{-\frac{3}{4} i \int_{-\infty}^x |u(t,y)|^2 \, dy}]\|_2$$

$$\lesssim \|D^{1/2} u\|_2 + \|u\|_4 \|\partial_x [e^{-\frac{3}{4} i \int_{-\infty}^x |u(t,y)|^2 \, dy}]\|_{4/3} \lesssim C(\|u\|_{H^{1/2}}).$$

Here we denote $\| \cdot \|_p = \| \cdot \|_{L^p_x}$ for $1 \leq p \leq \infty$. From now on, we only consider the equation (3) and we need to control the $H^{1/2}$-norm of v.

Under the gauge transformation, the conservation laws reduce to: for solution \(v \) of (5) then

\[
M(v(t)) := \|v(t)\|_{L_x^2}^2 = M(v_0), \quad \text{(mass)} \tag{6}
\]

\[
P(v(t)) := \text{Im} \int \bar{v}(t) v_x(t) \, dx + \frac{1}{4} \int \|v(t)\|^4 \, dx = P(v_0), \quad \text{(momentum)} \tag{7}
\]

\[
E(v(t)) := \|v_x(t)\|_{L_x^2}^2 - \frac{1}{16} \|v(t)\|_{L_x^6}^6 = E(v_0). \quad \text{(energy)} \tag{8}
\]

By the sharp Galiardo-Nirenberg inequality

\[
\|f\|_6^6 \leq \frac{4}{\pi^2} \|f\|_2^4 \|f_x\|_2^2, \quad \tag{9}
\]

then we get

\[
E(v) \geq \|v_x\|_2^2 (1 - \frac{1}{4\pi^2} \|v\|_2^2).
\]

Thus under the condition (2) we can get the apriori bound on \(\|v\|_{H^1} \).

However, as observed in [19] the momentum conservation for (5) plays a significant role. Inspired by [19] we derive directly a priori estimate using the momentum and the following sharp GN inequality (see [1]):

\[
\|f\|_6 \leq C_{GN} \|f\|_{L_x^4}^{8/9} \|f_x\|_{L_x^2}^{1/9}, \quad \tag{10}
\]

where \(C_{GN} = 3^{\frac{7}{6}} (2\pi)^{-\frac{1}{6}} \).

Lemma 2.1. If \(v \in H^1(\mathbb{R}) \) and \(v \neq 0 \), then

\[
P(v) \geq \frac{1}{4} \|v\|_4^4 (1 - \frac{1}{2\sqrt{\pi}} \|v\|_2) - \frac{4\sqrt{\pi}E(v)}{\|v\|_4^4} \|v\|_2^2. \quad \tag{11}
\]

Proof. Let \(u = e^{i\alpha x} v(t, x) \) with \(\alpha > 0 \) being determined later. Then

\[
|u_x|^2 = |v_x|^2 + \alpha^2 |v|^2 + 2\alpha \text{Im}(v_x \bar{v}),
\]

and thus

\[
\int \text{Im}(v_x \bar{v}) \, dx = - \frac{E(v)}{2\alpha} - \frac{\alpha M(v)}{2} + \frac{E(u)}{2\alpha}.
\]

Now by the sharp GN inequality we have

\[
E(u) = \|u_x\|_2^2 - \frac{1}{16} \|u\|_6^6 \\
\geq C_{GN}^{-18} \|u\|_{L_x^6}^{18} \|u\|_{L_x^4}^{-16} - \frac{1}{16} \|u\|_6^6 \\
= (C_{GN}^{-18} \|v\|_{L_x^4}^{12} \|v\|_{L_x^4}^{-16} - \frac{1}{16} \|v\|_6^6).
\]

Thus,

\[
P(v) \geq - \left[\frac{1}{16} - C_{GN}^{-18} \|v\|_{L_x^6}^{12} \|v\|_{L_x^4}^{-16} \right] \frac{\|v\|_6^6}{2\alpha} + \frac{\|v\|_4^4}{4} - \frac{\alpha \|v\|_2^2}{2} - \frac{E(v)}{2\alpha} \geq - f(\|v\|_6 \|v\|_4^{-8}) \frac{\|v\|_6^8}{2\alpha} + \frac{\|v\|_4^4}{4} - \frac{\alpha \|v\|_2^2}{2} - \frac{E(v)}{2\alpha},
\]

where \(f(x) = (\frac{1}{16} - C_{GN}^{-18} x^2) x \). By calculus we know

\[
\max_x f(x) = f(\frac{C_{GN}^{\frac{9}{4\sqrt{3}}}}{96\sqrt{3}}) = \frac{C_{GN}^{\frac{9}{4\sqrt{3}}}}{96\sqrt{3}} = \frac{1}{64\pi}.
\]
Therefore
\[P(v) \geq - \frac{\|v\|_4^4}{128\pi\alpha} + \frac{\|v\|_4^2}{4} - \frac{\alpha\|v\|_2^2}{2} - \frac{E(v)}{2\alpha}. \]
Take \(\alpha = \frac{1}{8\sqrt{\pi}\|v\|_2^{-1}} \), then \(P(v) \geq \frac{1}{4}\|v\|_4^4(1 - \frac{1}{2\sqrt{\pi}}\|v\|_2) - \frac{E(v)}{2\alpha}. \)

Lemma 2.2. If \(v \in H^1(\mathbb{R}) \), \(v \neq 0 \) and \(\|v\|_2^2 < 4\pi \), then
\[\|v_x\|_{L^2} \leq 2E(v) + \frac{P(v)^2 + 2\sqrt{\pi}|E(v)|\|v\|_2}{(1 - \frac{1}{2\sqrt{\pi}}\|v\|_2)^2}. \]
(12)

Proof. Let \(x = \|v\|_1^4 \). Then (11) gives an estimate of the form
\[c \geq ax - \frac{b}{x}. \]
with \(a = \frac{1}{4}(1 - \frac{1}{2\sqrt{\pi}}\|v\|_2), \ b = 4\sqrt{\pi}|E(v)|\|v\|_2, \ c = |P(v)|. \)
(13) implies
\[ax^2 - cx - b \leq 0. \]
Since \(a > 0 \), we get
\[x^2 \leq \left(\frac{c + \sqrt{c^2 + 4ab}}{2a} \right)^2 \leq \frac{c^2 + 2ab}{a^2}. \]
Thus we obtain
\[\|v\|_4^4 \leq 16(1 - \frac{1}{2\sqrt{\pi}}\|v\|_2)^{-2} \left(P(v)^2 + 2(1 - \frac{1}{2\sqrt{\pi}}\|v\|_2)\sqrt{\pi}|E(v)|\|v\|_2 \right). \]
(14)

On the other hand, by (10) and mean value inequality we have
\[\|v_x\|_{L^2} \leq 2E(v) + 2^{-\frac{4}{3}}\|v\|_4^\frac{8}{3}. \]
(15)

Therefore by (14) and (15) we prove the lemma.

With this lemma, we can get that if \(v \) is a \(H^1 \)-solution of (9) satisfying (3), then \(\|v_x\|_2 \leq C. \) Therefore, global well-posedness of (3) in \(H^1 \) under (3) follows immediately.

3. **Proof of the main theorem.** In this section we prove Theorem 1.1 using the I-method as the previous works [3, 11]. The main difference is that we need to use the momentum conservation.

First we recall the definition of \(I \)-operator. Let \(N \gg 1 \) be fixed, and the Fourier multiplier operator \(I_N \) be defined as
\[\hat{I_N}f(\xi) = m_N(\xi)\hat{f}(\xi). \]
(16)

Here \(m_N(\xi) \) is a smooth, radially decreasing function satisfying \(0 < m_N(\xi) \leq 1 \) and
\[m_N(\xi) = \begin{cases} 1, & |\xi| \leq N, \\ N^\frac{1}{2}|\xi|^{-\frac{1}{2}}, & |\xi| > 2N. \end{cases} \]
(17)

For simplicity we denote \(I_N \) by \(I \) and \(m_N \) by \(m \) if there is no confusion. \(I_N \) maps \(H^\frac{1}{2} \) to \(H^1 \), moreover, we have the following estimates,
\[\|f\|_{H^\frac{1}{2}} \lesssim \|I_Nf\|_{H^1} \lesssim N^\frac{1}{2}\|f\|_{H^\frac{1}{2}}, \]
(18)
where the implicit constants are independent on \(N \).

Next we use the rescaling. For \(v_0 \in H^\frac{1}{2} \), let \(v \) be the solution to (5). For \(\lambda > 0 \), let
\[v_\lambda = \lambda^{-\frac{1}{4}}v\left(\frac{x}{\lambda}, \frac{t}{\lambda^2} \right) \quad \text{and} \quad v_{0,\lambda} = \lambda^{-\frac{1}{4}}v_0\left(\frac{x}{\lambda} \right). \]
Then v_λ is a solution of (5) with the initial data \(v_\lambda(0) = v_{0,\lambda}(x) \). Meanwhile, v_λ exists on $[0,T]$ if and only if v exists on $[0,\lambda^{-2}T]$. We have
\[
\| Iv_{0,\lambda} \|_2 \leq \| v_{0,\lambda} \|_2 = \| v_0 \|_2
\]
and
\[
\| \partial_x Iv_{0,\lambda} \|_2 \lesssim N^{1/2} \lambda^{-1/2} \| v_0 \|_{\dot{H}^{1/2}}.
\]
Thus choosing
\[
\lambda \sim N,
\]
we can make
\[
\| \partial_x Iv_{0,\lambda} \|_2 \leq \varepsilon_0 \ll 1,
\]
where ε_0 will be determined later.

We recall a variant local well-posedness obtained in [11].

Lemma 3.1. The Cauchy problem (5) is locally well-posed for the initial data v_0 satisfying $Iv_0 \in H^1(\mathbb{R})$. Moreover, the solution exists on the interval $[0,\delta]$ with the lifetime
\[
\delta \sim \| Iv_0 \|_{\dot{H}^{1/2}}^{-\mu}
\]
for some $\mu > 0$, where the implicit constant is independent of N. Furthermore, the solution satisfies the estimate
\[
\| Iv \|_{L^\infty([0,\delta] ; H^1)} \leq 2 \| Iv_0 \|_{H^1}.
\]

By the above lemma, we need to control the growth of $\| Iv_\lambda(t) \|_{H^1}$. By mass conservation we have $\| Iv_\lambda(t) \|_{L^2} \leq \| v_\lambda \|_{L^2} \leq C$. It suffices to control $\| \partial_x Iv_\lambda \|_2$. We will use (12) since $\| Iv_\lambda \|_2^2 \leq \| v_\lambda \|_2^2 = \| v_0 \|_2^2 < 4\pi$. We define the modified momentum and energy as follows
\[
P_I(v_\lambda) := P(Iv_\lambda), \quad E_I(v_\lambda) := E(Iv_\lambda).
\]
Then by (21), Hölder’s and Sobolev’s inequalities, we have
\[
P_I(v_0,\lambda) \lesssim 1; \quad E_I(v_0,\lambda) \lesssim 1
\]
Moreover,
\[
P(v_0,\lambda) = \frac{1}{\lambda} P(v_0) \sim N^{-1} P(v_0).
\]
If $N \to \infty$, I_N tends to the identity operator. Thus $P_I(v_\lambda)$ and $E_I(v_\lambda)$ increase slowly in t if N is large enough. Indeed, in the previous works the growth of $E_I(v_\lambda)$ was already studied. Collecting the results obtained in [11] (see Section 7), we have

Lemma 3.2. Suppose that for $T > 0$
\[
\sup_{t \in [0,T]} \| Iv_\lambda \|_{H^1} \lesssim 1,
\]
then the modified energy $E_I(v_\lambda)$ obeys the following estimate: there exist $C, \alpha > 0$ such that for any $t \in [0,T]$ and any $\varepsilon > 0$
\[
|E_I(v_\lambda(t))| \leq \| \partial_x Iv_{0,\lambda} \|_{L^2}^2 + CN^{-\alpha} \sup_{\tau \in [0,t]} \left(\| Iv_\lambda(\tau) \|_{H^1}^4 + \| Iv_\lambda(\tau) \|_{\dot{H}^1}^6 \right)
+ C\varepsilon N^{-\frac{\alpha}{2} + \varepsilon} \sup_{\tau \in [0,t]} \left(\| Iv_\lambda(\tau) \|_{\dot{H}^1}^6 + \| Iv_\lambda(\tau) \|_{H^1}^6 \right).
\]
Lemma 3.3. We have
\[|P_I(v_\lambda) - P(v_\lambda)| \lesssim N^{-1}(\|Iv_\lambda\|_{H^1}^2 + \|Iv_\lambda\|_{H^1}^4) \]

Proof. By the definition of momentum, we need to bound
\[|\text{Im} \int_R (\bar{v}_\lambda \partial_x I v_\lambda - \bar{v}_\partial_x v_\lambda) \, dx| + |\int |Iv_\lambda|^4 \, dx - \int |v_\lambda|^4 \, dx| := I + II. \]

For the first term I, since
\[\text{Im} \int_R \left(I\bar{v}_\lambda \partial_x I v_\lambda - \bar{v}_\partial_x v_\lambda\right) \, dx = \text{Im} \int_R \left(I\partial_x v_\lambda - \partial_x v_\lambda\right)(I\bar{v}_\lambda + \bar{v}_\lambda) \, dx, \]
and $P_{\leq N}(I\partial_x v_\lambda - \partial_x v_\lambda) = 0$, then we get
\[I \lesssim \|I\partial_x v_\lambda - \partial_x v_\lambda\|_{H^{-\frac{1}{2}}} \left(\|P_{\geq N} I\bar{v}_\lambda\|_{H^{\frac{1}{2}}} + \|P_{\geq N} \bar{v}_\lambda\|_{H^{\frac{1}{2}}}\right). \]

By the definition of I-operator, we have
\[\|I\partial_x v_\lambda - \partial_x v_\lambda\|_{H^{-\frac{1}{2}}} + \|P_{\geq N} I\bar{v}_\lambda\|_{H^{\frac{1}{2}}} + \|P_{\geq N} \bar{v}_\lambda\|_{H^{\frac{1}{2}}} \lesssim N^{-\frac{1}{2}}\|Iv_\lambda\|_{H^1}, \]
and thus
\[I \lesssim N^{-1}\|Iv_\lambda\|_{H^1}^2. \]

For the second term II, we have
\[\int |Iv_\lambda|^4 \, dx - \int |v_\lambda|^4 \, dx = \int (Iv_\lambda - v_\lambda) P_{\geq N}(v_\lambda^3) \, dx + \text{similar terms.} \quad (27) \]

Using the Hölder inequality, the Sobolev embedding, and the fractional Leibniz inequalities, we get
\[\left| \int (Iv_\lambda - v_\lambda) P_{\geq N}(v_\lambda^3) \, dx \right| \lesssim \|Iv_\lambda - v_\lambda\|_6 \|P_{\geq N}(v_\lambda^3)\|_{\frac{6}{5}} \]
\[\lesssim \|Iv_\lambda - v_\lambda\|_{H^{\frac{1}{2}}} N^{-\frac{1}{2}} \|\nabla\|_{\frac{6}{5}}(v_\lambda^3)\|_{\frac{6}{5}} \]
\[\lesssim N^{-1}\|Iv_\lambda\|_{H^1} \|\nabla\|_{\frac{6}{5}}(v_\lambda^3)\|_{\frac{6}{5}} \]
\[\lesssim N^{-1}\|Iv_\lambda\|_{H^1}^3 \|v_\lambda\|_{H^{\frac{1}{2}}}^3 \]
\[\lesssim N^{-1}\|Iv_\lambda\|_{H^1}^3. \]

The similar terms in (27) can be handled in the same way. Thus we prove the lemma.

By Lemma 3.2 and the mass conservation law $\|v_\lambda\|_2 \leq C$ we have under the assumption (25),
\[E_I(v_\lambda(t)) \leq \|\partial_x I v_{0,\lambda}\|_2^2 + C N^{-\alpha} \sup_{\tau \in [0,t]} \left(\|\partial_x I v_\lambda(\tau)\|_2^4 + \|\partial_x I v_\lambda(\tau)\|_2^6 + 1\right) \]
\[+ C t N^{-\frac{5}{2} + \epsilon} \sup_{\tau \in [0,t]} \left(\|\partial_x I v_\lambda(\tau)\|_2^6 + \|\partial_x I v_\lambda(\tau)\|_2^{10} + 1\right). \quad (28) \]

Note that (21). We will prove by continuity argument that for $T \leq T_0 := N^{\frac{5}{2} - 2\epsilon}$,
\[\sup_{t \in [0,T]} \|\partial_x I v_\lambda(t)\|_2 \leq 4\gamma_0 \varepsilon_0, \]
where $\gamma_0 = \sqrt{1 + \frac{\sqrt{2\varepsilon_0}}{\sqrt{1 - (\frac{\varepsilon_0}{2\gamma_0})^2}}}$. We choose $\varepsilon_0 \ll 1$ such that $100\gamma_0 \varepsilon_0 < 1$.

Assuming (29), we get that the solution \(v_{\lambda} \) exists on \([0, T_0]\). Hence, \(v \) exists on \([0, \lambda^{-2}T_0]\). Note that
\[
\lambda^{-2}T_0 \sim N^{-2}N^{\frac{1}{2}-2\epsilon} = N^{\frac{1}{2}-2\epsilon}.
\]
Therefore, we get that \(v \) exists till arbitrarily large \(T \) by choosing sufficient large \(N \), and thus completes the proof of Theorem 1.1.

It remains to prove (29). It is obvious from Lemma 3.1 that (29) holds when \(T = \delta \). We may assume \(\sup_{t \in [0, T]} \| \partial_x \lambda v_{\lambda}(t) \|_2 \leq 8\gamma_0 \varepsilon_0 \ll 1 \). Then the estimate (28) gives
\[
|E_I(v_{\lambda}(t))| \leq \varepsilon_0^2 + CN^{-\epsilon}, \quad t \leq T.
\]
(30)

On the other hand, by Lemma 3.3 we have
\[
|P_I(v_{\lambda}(t))|^2 \leq 2|P_I(v_{\lambda}(t)) - P(v_{\lambda}(t))|^2 + 2|P(v_{\lambda}(t))|^2 \leq CN^{-2}.
\]
(31)

By (12), we have
\[
\| \partial_x \lambda v_{\lambda}(t) \|^2 \leq 2E(Iv_{\lambda}(t)) + \frac{P(Iv_{\lambda}(t))^2 + 2\sqrt{\pi} |E(Iv_{\lambda}(t))| \| v_0 \|_2}{(1 - \frac{1}{2\sqrt{\pi}} \| v_0 \|_2)^2}
\]
\[
\leq 2\gamma_0^2 (\varepsilon_0^2 + CN^{-\epsilon}) + CN^{-2} (1 - \frac{1}{2\sqrt{\pi}} \| v_0 \|_2)^{-2}.
\]
Choosing \(N \) sufficiently large, we get \(\| \partial_x \lambda v_{\lambda}(t) \|_2 \leq 4\gamma_0 \varepsilon_0 \) for \(t \leq T \). By continuity argument we obtain (29) as desired.

REFERENCES

[1] M. Agueh, Sharp Gagliardo-Nirenberg Inequalities and Mass Transport Theory, J. Dyn. Differ. Equ., 18 (2006), 1069–1093.
[2] J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Global well-posedness result for Schrödinger equations with derivative, SIAM J. Math. Anal., 33 (2001), 649–669.
[3] J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, A refined global well-posedness result for Schrödinger equations with derivatives, SIAM J. Math. Anal., 34 (2002), 64–86.
[4] Z. Guo, N. Hayashi, Y. Lin and P. I. Naumkin, Modified scattering operator for the derivative nonlinear Schrödinger equation, SIAM J. Math. Anal., 45 (2013), 3854–3871.
[5] N. Hayashi, The initial value problem for the derivative nonlinear Schrödinger equation in the energy space, Nonl. Anal., 20 (1993), 823–833.
[6] N. Hayashi and T. Ozawa, On the derivative nonlinear Schrödinger equation, Physica D., 55 (1992), 14–36.
[7] N. Hayashi and T. Ozawa, Finite energy solution of nonlinear Schrödinger equations of derivative type, SIAM J. Math. Anal., 25 (1994), 1488–1503.
[8] D. J. Kaup and A. C. Newell, An exact solution for a derivative nonlinear Schrödinger equation, J. Math. Phys., 19 (1978), 789–801.
[9] K. Kondo, K. Kajiwara and K. Matsui, Solution and integrability of a generalized derivative nonlinear Schrödinger equation, J. Phys. Soc. Japan, 66 (1997), 60–66.
[10] X. Liu, G. Simpson and C. Sulem, Focusing singularity in a derivative nonlinear Schrödinger equation, Physica D: Nonlinear Phenomena, 262 (2013), 48–58.
[11] C. Miao, Y. Wu and G. Xu, Global well-posedness for Schrödinger equation with derivative in \(H^s (\mathbb{R}) \), J. Diff. Equ., 251 (2011), 2164–2195.
[12] W. Mio, T. Ogino, K. Minami and S. Takeda, Modified nonlinear Schrödinger equation for Alfvén waves propagating along the magnetic field in cold plasmas, J. Phys. Soc. Japan, 41 (1976), 265–271.
[13] E. Mjølhus, On the modulational instability of hydromagnetic waves parallel to the magnetic field, J. Plasma Phys., 16 (1976), 321–334.
[14] T. Ozawa, On the nonlinear Schrödinger equations of derivative type, Indiana Univ. Math. J., 45 (1996), 137–163.
H. Takaoka, Well-posedness for the one dimensional Schrödinger equation with the derivative nonlinearity, *Adv. Diff. Equ.*, **4** (1990), 561–680.

H. Takaoka, Global well-posedness for Schrödinger equations with derivative in a nonlinear term and data in low-order Sobolev spaces, *Electron. J. Diff. Equ.*, **42** (2001), 1–23.

T. Tsuchida and M. Wadati, Complete integrability of derivative nonlinear Schrödinger-type equations, *Inverse Problems*, **15** (1999), 1363–1373.

Y. Wu, Global well-posedness of the derivative nonlinear Schrödinger equations in energy space, *Analysis & PDE*, **6** (2013), 1989–2002.

Y. Wu, Global well-posedness on the derivative nonlinear Schrödinger equation, *Analysis & PDE*, **8** (2015), 1101–1112.

Received April 2016; revised June 2016.

E-mail address: zihua.guo@monash.edu
E-mail address: yerfmath@gmail.com