TOWARDS TOPOLOGICAL HOCHSCHILD HOMOLOGY OF JOHNSON-WILSON SPECTRA

CHRISTIAN AUSONI AND BIRGIT RICHTER

Abstract. We offer a complete description of THH(E(2)) under the assumption that the Johnson-Wilson spectrum E(2) at a chosen odd prime carries an E_∞-structure. We also place THH(E(2)) in a cofiber sequence $E(2) \to THH(E(2)) \to THH(E(2))$ and describe $THH(E(2))$ under the assumption that $E(2)$ is an E_n-ring spectrum. We state general results about the $K(i)$-local behaviour of $THH(E(n))$ for all n and $0 \leq i \leq n$. In particular, we compute $K(i)_*THH(E(n))$.

1. Introduction

The first Johnson-Wilson spectrum $E(1)$ at a prime p is the Adams summand of p-local periodic complex topological K-theory $KU(p)$. It is known that it carries a unique E_∞-structure [MS93,BR05], thus $THH(E(1))$ is a commutative $E(1)$-algebra spectrum. McClure and Staffeldt show that the unit map $E(1) \to THH(E(1))$ is a $K(1)$-local equivalence, hence its cofiber $THH(E(1))$ is a rational spectrum. It is easy to calculate the rational homology of $THH(E(1))$ as

$$H_{\mathbb{Q}}THH(E(1)) \cong \mathbb{Q}[v_1^{\pm 1}] \otimes \mathbb{Q} \Lambda_{\mathbb{Q}}(dv_1)$$

using the B"okstedt spectral sequence with E_2-term

$$E_2^{p,q} = HH_{\mathbb{Q}}^{p,q}(\mathbb{Q}[v_1^{\pm 1}]).$$

There is a map

$$\Sigma^{2p-1}E(1) \to THH(E(1)) \to THH(E(1))$$

that factors through $\Sigma^{2p-1}E(1)_\mathbb{Q} \to THH(E(1))$ since $THH(E(1))$ is rational, and that is defined such that the latter map is an equivalence detecting the $H_{\mathbb{Q}}^{p,q}(E(1))$-summand generated by dv_1. Since the unit map $E(1) \to THH(E(1))$ splits, this yields a splitting [MS93, Theorem 8.1]

$$THH(E(1)) \simeq E(1) \vee \Sigma^{2p-1}E(1)_\mathbb{Q}$$

as $E(1)$-modules. This computation was also carried out for $KU(p)$ [Aus05], and pushed further to provide formulas for $THH(KU)$ as a commutative KU-algebra by Stonek [Sto].

In this paper, we consider the higher Johnson-Wilson spectrum $E(n)$ with coefficient ring

$$E(n) = \mathbb{Z}(p)[v_1, \ldots, v_{n-1}, v_n, v_n^{-1}]$$

for an arbitrary value of $n \geq 1$ and p an odd prime. A main motivation here is to investigate whether the spectrum $THH(E(n))$ also splits into copies of $E(n)$ and its lower chromatic localizations, generalizing McClure and Staffeldt’s intriguing transchromatic result.

As a first step, we compute the Hochschild homology $HH_{\ast}(K(i), E(n))$ of $K(i)_*E(n)$, where $K(i)$ is the ith Morava K-theory, for $0 \leq i \leq n$, at an odd prime, see Theorem 3.4. We shy away from the prime 2 because Morava K-theory is not homotopy commutative at the prime 2. Theorem 3.4 yields a computation of $K(i)_*THH(E(n))$ under the modest assumption that $E(n)$ admits an E_3-structure.

Date: October 5, 2018.

2000 Mathematics Subject Classification. 55P43, 55N35.

Key words and phrases. Topological Hochschild homology, Johnson-Wilson spectra, E_∞-structures on ring spectra, chromatic squares.
We then focus on $E(2)$, and show in Theorem 5.4 that under the same commutativity assumption $\THH(E(2))$ sits in a cofiber sequence

$$E(2) \to \THH(E(2)) \to \Sigma^{2p-1}L_1E(2) \vee \Sigma^{2p^2-1}E(2)_\mathbb{Q} \vee \Sigma^{2p^2+2p-2}E(2)_\mathbb{Q},$$

where $L_1E(2)$ denotes the Bousfield localization of $E(2)$ with respect to $E(1)$. If the unit $E(2) \to \THH(E(2))$ splits, we then get a decomposition of $\THH(E(2))$ into four summands, a higher analogue of McClure-Staffeldt’s formula for $\THH(E(1))$.

Remark 1.1. To study $\THH(E(n))$ by means of the Bökstedt spectral sequence, we need sufficient commutativity of $E(n)$. In this remark, we summarize what is known about multiplicative structures on $E(n)$ and related spectra. Basterra and Mandell showed [BM13] that the Brown-Peterson spectrum BP admits an E_4 structure. The Johnson-Wilson spectra $E(n)$ are built out of the $BP(n) = BP/(v_i | i \geq n + 1)$ by inverting v_n. In [Law18, Theorem 1.1.2] Tyler Lawson shows that the Brown-Peterson spectrum BP and the spectra $BP(n)$ for $n \geq 4$ at the prime 2 do not possess an E_{12}-structure. Andrew Senger [Sen, Theorem 1.2] extends Lawson’s result to odd primes p, and shows that BP and the $BP(n)$’s (for $n \geq 4$) do not have an $E_{2(p^2+2)}$-structure.

At the prime 2, Lawson and Naumann [LN12] show that there is an E_∞-model of $BP(2)$ and Hill and Lawson [HL10] prove that $BP(2)$ at the prime 3 possesses a model as an E_∞-ring spectrum. With [MNN15, Theorem A1] this yields E_∞-structures on the corresponding Johnson-Wilson spectra $E(2)$ at these primes.

Acknowledgements. The first named author acknowledges support from the project ANR-16-CE40-0003 ChroK. The second named author thanks the University of Paris 13 for its hospitality and for the possibility of a research stay as professeur invitée. Both authors benefited from a stay at the Hausdorff Institute for Mathematics in Bonn during the Trimester Program on *K-theory and Related Fields*.

We thank Paul Goerss for a crucial hint that simplified our original étaleness argument, and Agnès Beaudry, Gerd Laures, Mike Mandell, John Rognes, and Vesna Stojanoska for helpful comments.

2. Rationalized $E(n)$

For $n \geq 1$ the homotopy algebra of $L_E\langle 0 \rangle E(n) = E(n)_\mathbb{Q}$ is $\mathbb{Q}[v_1, \ldots, v_{n-1}, v_n^{1,1}]$ and its algebra of cooperations is

$$\pi_*(E(n)_\mathbb{Q} \wedge E(n)_\mathbb{Q}) \cong \pi_*/E(n)_\mathbb{Q} \otimes_{\mathbb{Q}} \pi_*E(n)_\mathbb{Q} \cong \mathbb{Q}[v_1, \ldots, v_{n-1}, v_n^{1,1}, v_1', \ldots, v_{n-1}', v_n'^{1,1}].$$

This implies the following result.

Lemma 2.1. There is a unique E_∞-ring structure on $E(n)_\mathbb{Q}$ for all $n \geq 1$.

Proof. The obstruction groups for such an E_∞-ring structure on $E(n)_\mathbb{Q}$ are contained in the Gamma cohomology groups of $\pi_*/E(n)_\mathbb{Q} \wedge E(n)_\mathbb{Q}$ as a $\pi_*E(n)_\mathbb{Q}$-algebra [Rob03, Theorem 5.6]. As we work in characteristic zero, Gamma cohomology agrees with André-Quillen cohomology [RW02, Corollary 6.6]. The algebra $\mathbb{Q}[v_1, \ldots, v_{n-1}, v_n^{1,1}, v_1', \ldots, v_{n-1}', v_n'^{1,1}]$ is smooth over $\mathbb{Q}[v_1, \ldots, v_{n-1}, v_n^{1,1}]$ and therefore André-Quillen cohomology is concentrated in cohomological degree zero where it consists of derivations. The obstructions for existence and uniqueness of an E_∞-ring structure on $E(n)_\mathbb{Q}$ are concentrated in degrees bigger than zero. \qed
As E_∞-ring structures can be rigidified to commutative ring structures (see e.g., [EKMM97, II.3]), we pass to the world of commutative ring spectra from now on.

Topological Hochschild homology of a ring spectrum A can be modelled as the geometric realization of a simplicial spectrum. Using the inclusion of the 1-skeleton, McCrory and Staffeldt [MS93, §3] construct a map

$$\sigma : \Sigma A \to \text{THH}(A).$$

(2.1)

For a commutative ring spectrum A the multiplication maps from $A^{\wedge n+1}$ to A give rise to a map of commutative A-algebra spectra from $\text{THH}(A)$ to A. Composing this map with the map $A \to \text{THH}(A)$ gives the identity, hence we obtain a splitting of A-modules

$$\text{THH}(A) \simeq A \vee \overline{\text{THH}}(A)$$

where $\overline{\text{THH}}(A)$ is the cofiber. The latter spectrum inherits the structure of a non-unital commutative A-algebra. In our case this implies the following result.

Corollary 2.2. The topological Hochschild homology of $E(n)_Q$ splits, as an $E(n)_Q$-module, as

$$\text{THH}(E(n)_Q) \simeq E(n)_Q \vee \overline{\text{THH}}(E(n)_Q)$$

where $\overline{\text{THH}}(E(n)_Q)$ is the cofiber of the unit map $E(n)_Q \to \text{THH}(E(n)_Q) \simeq \text{THH}(E(n))_Q$. Moreover, the spectrum $\overline{\text{THH}}(E(n)_Q)$ is a non-unital commutative $E(n)_Q$-algebra.

In the sequel, we follow Loday [Lod98, Definition E.1] for the definition of étale algebras. It is straightforward to calculate the topological Hochschild homology of $E(n)_Q$.

Proposition 2.3.

$$\pi_* \text{THH}(E(n))_Q \cong Q[v_1, \ldots, v_{n-1}, v_n^\pm 1] \otimes \Lambda_Q(dv_1, \ldots, dv_n)$$

(2.2)

with $|dv_i| = 2p^i - 1$.

Proof. The Bökstedt spectral sequence for $\pi_*(\text{THH}(E(n))_Q) \cong HQ_* \text{THH}(E(n))$ is of the form

$$E^2_{s,t} = HH^Q_{s,t}(\pi_* E(n)_Q) \Rightarrow \pi_*(\text{THH}(E(n))_Q).$$

As $Q[v_1, \ldots, v_{n-1}, v_n^\pm 1]$ is étale over $Q[v_1, \ldots, v_{n-1}, v_n]$ and as $Q[v_1, \ldots, v_{n-1}, v_n]$ is smooth, we get

$$HH^Q_{s,t}(\pi_* E(n)_Q) \cong Q[v_1, \ldots, v_{n-1}, v_n^\pm 1] \otimes \Lambda_Q(dv_1, \ldots, dv_n)$$

with dv_i having homological degree one and internal degree $2p^i - 2$. As the Bökstedt spectral sequence is multiplicative and as the algebra generator cannot support any differentials for degree reasons, the spectral sequence collapses at E^2. There are no multiplicative extensions and hence we get the result.

Remark 2.4. As we work rationally, $\text{THH}(E(n))_Q$ is a commutative HQ-algebra spectrum and hence corresponds to a commutative differential graded Q-algebra (see [Shi07] or [RS17]).

3. $K(i)_* E(n)$ and $K(i)_* \text{THH}(E(n))$

In the following we assume that p is an odd prime, and that n and i are integers with $1 \leq i \leq n$.

The Hopf algebroid $(BP_*, BP_* BP)$ represents the groupoid of strict isomorphisms of p-typical formal group laws [Lan75] (see also [Rav86, Theorem A2.1.27]). There are isomorphisms of graded $Z(p)$-algebras

$$BP_* \cong \mathbb{Z}(p)[v_1, v_2, \ldots] \quad \text{and} \quad BP_* BP \cong BP_* [t_1, t_2, \ldots],$$

where $|v_i| = |t_i| = 2(p^i - 1)$. By convention $v_0 = p$ and $t_0 = 1$. The ith Morava K-theory $K(i)$ is complex oriented, and its formal group law F_i (the Honda formal group law) corresponds to the map $BP_* \to K(i)_* = \mathbb{F}_p[v_1^\pm]$ sending v_i to v_1 and v_k for $k \neq i$ to zero. The p-typical formal
group law G_n over $E(n)_*$ comes from the map $BP_* \to E(n)_*$ that kills all v_i with $i > n$ and inverts v_n. Since $E(n)$ is a Landweber exact homology theory, we obtain an isomorphism

$$K(i)_*E(n)_* \cong K(i)_* \otimes_{BP_*} BP_* \otimes_{BP_*} E(n)_*.$$ \hfill (3.1)

Note that $K(i)_*E(n)_*$ is trivial for $i > n$ and that the Bousfield class of $E(n)_*$, $(E(n)_*)$, is $(K(0) \vee \ldots \vee K(n)_*)$.

We first treat the case $i = n$.

Proposition 3.1. For all $n \geq 1$ the canonical map $E(n)_* \to \text{THH}(E(n)_*)$ is a $K(n)_*$-local equivalence.

Proof. The algebra $K(n)_*E(n)$ is known as $\Sigma(n)$ and it is of the form

$$K(n)_*[t_1, t_2, \ldots]/(v_n t_i^n - v_n^p t_i, i \geq 1),$$

see [Rav86, 6.1.16]. If we set

$$C_s^{(k)} := K(n)_*[t_1, \ldots, t_k]/(v_n t_i^n - v_n^p t_i, 1 \leq i \leq k)$$

then $C_s^{(k)}$ is étale over $K(n)_*$ and $K(n)_*E(n)$ is the directed colimit of the $C_s^{(k)}$'s.

The $K(n)_*$-Bökstedt spectral sequence for $\text{THH}(E(n)_*)$ has as an E^2-term

$$\text{HH}^{K(n)_*}_*(K(n)_*E(n)) \cong K(n)_*E(n)$$

concentrated in homological degree zero. Thus $K(n)_*\text{THH}(E(n)_*) \cong K(n)_*E(n)$ and the isomorphism is induced by the map $E(n)_* \to \text{THH}(E(n)_*)$. Therefore, this map is a $K(n)_*$-equivalence and thus $K(n)_*$-locally $\text{THH}(E(n)_*)$ is equivalent to $E(n)_*$. \hfill \square

We calculate $K(i)_*E(n)_*$ for $1 \leq i \leq n - 1$ using the following description of morphisms of graded commutative BP_*-algebras from $K(i)_*E(n)$ to some graded commutative ring B_*. For $n = 2$ we had an argument that was rather involved and Paul Goerss suggested the following simpler proof.

We consider the map $g: BP_*BP \to K(i)_*E(n)_*$ of graded commutative \mathbb{Z}_p-algebras given by

$$BP_*BP \to K(i)_* \otimes_{BP_*} BP_*BP \otimes_{BP_*} E(n)_* \cong K(i)_*E(n)_*$$

which uses the canonical maps $BP_* \to K(i)_*$ and $BP_* \to E(n)_*$ and the isomorphism from (3.1). By [Rav86, Theorem A2.1.27] this map corresponds to a triple $((\eta_L)_*, F_i, (\eta_R)_*G_n, f)$ where $\eta_L: K(i)_* \to K(i)_*E(n)_*$ is the left unit, $\eta_R: E(n)_* \to K(i)_*E(n)_*$ is the right unit and $(\eta_L)_*F_i$ and $(\eta_R)_*G_n$ are the p-typical formal group laws that are given by the corresponding change of coefficients. Here, f is a strict isomorphism between the p-typical formal group laws $(\eta_L)_*F_i$ and $(\eta_R)_*G_n$ over $K(i)_*E(n)_*$. By [Rav86, Lemma A2.1.26] such a strict isomorphism is always of the form

$$f(x) = \sum_j (\eta_R)_*G_n t_j x_{p^j}.$$

The p-series of the Honda formal group law F_i is

$$[p]_{F_i}(x) = v_i x_{p^i}$$

and the same is true for $[p]_{(\eta_L)_*F_i}(x)$ because the left unit just embeds $K(i)_*$ into $K(i)_*E(n)_*$. The p-series of $(\eta_R)_*G_n$ is

$$[p]_{(\eta_R)_*G_n}(x) = w_1 x_p + (\eta_R)_*G_n \ldots + (\eta_R)_*G_n w_n x_{p^n}$$

for $w_i = \eta_R(v_i)$.

First, we state an elementary lemma about powers of p.

Lemma 3.2. Let $m \geq 2$, let $r, \ell_1, \ldots, \ell_m$ be natural numbers bigger or equal to 1, and assume that $\ell_j \neq \ell_k$ for $j \neq k$. Then p^r cannot be written as a sum $p^{\ell_1} + \ldots + p^{\ell_m}$.

Proof. Assume

\[p^x = p^{x_1} + \ldots + p^{x_m}. \]

Without loss of generality let \(\ell_1 \) be minimal among the \(\ell_j \)'s. Then

\[p^x = p^{\ell_1}(1 + p^{x_2-\ell_1} + \ldots + p^{x_m-\ell_1}). \]

This is only possible if all the \(\ell_j - \ell_1 \) are equal to zero and if \(m' = m - \ell_1 \). But \(\ell_j - \ell_1 = 0 \) for all \(2 \leq j \leq m' \) implies that all the \(\ell_j \)'s are equal to \(\ell_1 \) and this contradicts our assumption. \(\square \)

Proposition 3.3. For all \(1 \leq i \leq n \) \(K(i)_*E(n) \) is a colimit of étale \(K(i)_*[w_{i+1}, \ldots, w_n] \)-algebras.

Proof. In the following we fix \(i \) and \(n \). We denote by \(B(i,n)_* \) the graded commutative \(K(i)_-* \)-algebra \(K(i)_*[w_{i+1}, \ldots, w_n] \). For a given \(m \geq 1 \) consider the graded commutative \(BP_* \)-subalgebra \(BP_*[t_1, \ldots, t_m] \) of \(BP_*BP \) and define

\[B_m = \text{Image}(B(i,n)_*[t_1, \ldots, t_m] \to K(i)_*E(n)). \]

Thus we can express \(B_m \) as \(B(i,n)_*[t_1, \ldots, t_m] / \sim \) where \(\sim \) denotes the quotient that arises from the relations that the \(t_r \)'s and \(w_j \)'s satisfy in \(K(i)_*E(n) \). Note that \(B_{m+1} \) is free as a \(B_m \)-module for all \(m \geq 1 \). Indeed, in each step we adjoin a new polynomial generator \(x \) to a graded commutative ring \(R_1 \) that satisfies relations of the form \(x^p - ux - y \) with a unit \(u \in R_1^\times \) and \(y \in R_1 \).

The strict isomorphism \(f(x) = \sum_j (\eta_R)_*G_{n} t_j x^p \) satisfies

\[\left[p \right](\eta_R)_*G_{n}(f(x)) = f([\left[p \right]|_{\eta_R}, F_{n}(x)) \]

and this yields the equality

\[w_1(f(x))^p + (\eta_R)_*G_{n} \ldots + (\eta_R)_*G_{n} w_n(f(x))^p = f(v_i x^p) = \sum_j (\eta_R)_*G_{n} t_j (v_i x^p)^p. \]

(3.2)

On the right hand side in \(\sum_j (\eta_R)_*G_{n} t_j x^p x_{p+i} \) the relations for the \(t_r \) are detected by the powers \(x^{p+r} \). Lemma 3.2 ensures that for a given \(x^{p+r} \) we only have to consider the coefficient \(t_j x_{p+i}^p \) with \(i + j = i + r \) coming from the linear term of the \((\eta_R)_*G_{n} \)-sum \(\sum_j (\eta_R)_*G_{n} t_j x^{p+i} \) and this is \(t_r v_i^p \).

As the right hand side starts with \(x^p \), it is a direct consequence that \(w_1, \ldots, w_{i-1} = 0 \) and from the coefficients of \(x^p \) we obtain that \(w_i = v_i \) in \(K(i)_*E(n) \).

We prove that \(B_1 \) is étale over \(B(i,n)_* \) and that for every \(m, B_m \) is étale over \(B_{m-1} \). It follows that the algebras \(B_m \) are étale over \(B(i,n)_* \).

Thus we have to show that the modules of relative Kähler differentials \(\Omega^1_{B_1/B(i,n)_*} \) and \(\Omega^1_{B_m/B_{m-1}} \) are trivial for all \(m \geq 2 \).

For \(m = 1 \) we compare the coefficients of \(x_{p+i}^{p+1} \) in (3.2). In this case only the linear terms of the \((\eta_R)_*G_{n} \)-sums contribute something and we obtain

\[v_i t_{i+1}^p \]

and therefore \(t_1 = v_i^{-p}(v_i t_{i+1}^p + w_{i+1}) \). This gives a flat extension and the Kähler differential on \(t_1 \) is equal to

\[dt_1 = 0 + v_i^{-p} dw_{i+1} \]

and hence \(B_1 \) is étale over \(B(i,n)_* \).

Consider \(B_m \). Then the first relation for \(t_m \) is given by the relation of the coefficients for \(x_{p+i}^{p+1} \).
We know that the formal group law $G_n(x, y)$ is of the form

$$G_n(x, y) = x + y + \sum_{i,j \geq 1} a_{i,j} x^i y^j$$

where the $a_{i,j} \in E(n)_* = \mathbb{Z}_{(p)}[v_1, \ldots, v_{n-1}, v_n^{\pm 1}]$. Equation (3.2) relates power series with coefficients in $K(i)_*E(n)$, hence the coefficients $\partial_{i,j}$ of $(\eta_R)_* G_n$ are now considered in $K(i)_*E(n)$ and are elements of $\mathbb{F}_p[w_i, \ldots, w_{n-1}, w_n^{\pm 1}]$. On the left hand side of (3.2) we get coefficients that involve some polynomials of $\partial_{i,j}$'s, some pth powers of t_j's and some expressions in w_k's. For $m + i \leq n$ we actually get a coefficient $w_{m+i}^{p^{m+i+1}} = w_{i+m}$.

The $\partial_{i,j}$'s are in $B(i, n)_*$, so they don't contribute anything to the relative Kähler differentials. The Kähler differentials on the $t_j^{p^k}$ are trivial because we are over \mathbb{F}_p. Hence we can express the Kähler differential dt_m up to a factor of $v_i^{p^m} = w_i^{p^m}$ via Kähler differentials in the w_k's. As $v_i^{p^m}$ is invertible in $B(i, n)_*$, the relative Kähler differentials $\Omega^1_{B_m/B_{m-1}}$ are trivial for all $m \geq 1$. □

Theorem 3.4. For all $1 \leq i \leq n$ we have an isomorphism of $K(i)_*E(n)$-algebras

$$\text{HH}_s^{K(i)}(K(i)_*E(n)) \cong K(i)_*E(n) \otimes_{\mathbb{F}_p} \Lambda_{\mathbb{F}_p}(dw_{i+1}, \ldots, dw_n).$$

Proof. We have shown that $K(i)_*E(n)$ is the sequential colimit of the B_m's. As the $K(i)_*$-algebras B_m are étale over $B(i, n)_*$ and as Hochschild homology commutes with localization we can rewrite $\text{HH}_s(B_m)$ as

$$\text{HH}_s(B_m) \cong B_m \otimes_{B(i, n)_*} \text{HH}_s^{K(i)}(B(i,n)_*)$$

$$\cong B_m \otimes_{B(i, n)_*} (B(i,n)_* \otimes_{\mathbb{F}_p} \Lambda_{\mathbb{F}_p}(dw_{i+1}, \ldots, dw_n))$$

$$\cong B_m \otimes_{\mathbb{F}_p} \Lambda_{\mathbb{F}_p}(dw_{i+1}, \ldots, dw_n)$$

using [WG91] and the Hochschild-Kostant-Rosenberg theorem. Hochschild homology commutes with colimits, hence we obtain

$$\text{HH}_s^{K(i)}(K(i)_*E(n)) \cong \text{colim}_m \text{HH}_s^{K(i)}(B_m) \cong K(i)_*E(n) \otimes_{\mathbb{F}_p} \Lambda_{\mathbb{F}_p}(dw_{i+1}, \ldots, dw_n).$$

□

Theorem 3.5. Assume that p is an odd prime and that $E(n)$ is an E_3-ring spectrum. Then, for all $1 \leq i \leq n$, we have an isomorphism of $K(i)_*E(n)$-algebras

$$K(i)_* \text{THH}(E(n)) \cong K(i)_*E(n) \otimes_{\mathbb{F}_p} \Lambda_{\mathbb{F}_p}(dw_{i+1}, \ldots, dw_n).$$

Proof. We use the Bökstedt spectral sequence [Bög], [EKMM97, IX.2.9], with E^2-term

$$E^2_{r,s} = (\text{HH}_r^{K(i)}(K(i)_*E(n)))_{s},$$

where r denotes the homological and s the internal degree. By a result of Angeltveit and Rognes [AR05, Prop. 4.3], an E_3-structure on $E(n)$ implies that this spectral is one of commutative $K(i)_*E(n)$-algebras. The multiplicative generators dw_j for $i \leq j \leq n$ sit in bidegree $(1, 2p^j - 2)$ and hence they cannot carry any non-trivial differentials. Therefore the spectral sequence collapses at the E^2-term. As the abutment is a free graded commutative $K(i)_*E(n)$-algebra, there cannot be any multiplicative extensions. □

Remark 3.6. Note if $E(n)$ admits an E_2 structure, the Bökstedt spectral sequence is one of $K(i)_*$-algebras by [AR05, Prop. 4.3]. It therefore collapses since all $K(i)_*$-algebra generators lie in columns 0 and 1. This gives the same formula for $K(i)_* \text{THH}(E(n))$ as a $K(i)_*$-module, but not as a $K(i)_*$-algebra, since there is now room for $K(i)_*$-algebra extensions.
4. Blue-shift for THH($E(n)$)

If we assume that p is an odd prime and that $E(n)$ is an E_∞-ring spectrum, then THH($E(n)$) is a commutative $E(n)$-algebra spectrum and the cofiber of the unit map

$$\text{THH}(E(n)) = \text{cofiber}(E(n) \to \text{THH}(E(n)))$$

is a non-unital commutative $E(n)$-algebra spectrum. If $E(n)$ carries an E_3-structure, then by [BFV07, §3.3], [BM11] the morphism $E(n) \to \text{THH}(E(n))$ is an E_2-map. This implies the following useful fact:

Lemma 4.1. If $E(n)$ is an E_3-spectrum, then THH($E(n)$) is an $E(n)$-module spectrum and in particular, THH($E(n)$) is $E(n)$-local.

Let L_n denote the localization at $E(n)$, and in particular L_0 is the rationalization. Recall that there is a well-known chromatic fracture square

$$
\begin{array}{ccc}
L_nX & \longrightarrow & L_{K(n)}X \\
\downarrow & & \downarrow \\
L_{n-1}X & \longrightarrow & L_{n-1}L_{K(n)}X.
\end{array}
$$

It is shown for instance in [ACB, Example 3.3] and [Bau14, Proposition 2.2] that the homotopy pullback of

$$
\begin{array}{ccc}
L_{K(n)}X & & \\
\downarrow & & \\
L_{n-1}X & \longrightarrow & L_{n-1}L_{K(n)}X.
\end{array}
$$

is an $E(n)$-localization of X. The statement in [Bau14, Proposition 2.2] is more general and [ACB] work out far more general local-to-global statements.

We always know from Proposition 3.1 that the unit map is a $K(n)$-local equivalence. The chromatic square for $\overline{\text{THH}}(E(n))$ is:

$$
\begin{array}{ccc}
\overline{\text{THH}}(E(n)) = L_{K(n)} \overline{\text{THH}}(E(n)) & \longrightarrow & L_{K(n)} \overline{\text{THH}}(E(n)) \\
\downarrow & & \downarrow \\
L_{E(n-1)} \overline{\text{THH}}(E(n)) & \longrightarrow & L_{E(n-1)}(L_{K(n)} \overline{\text{THH}}(E(n))).
\end{array}
$$

The $K(n)$-homology of $\overline{\text{THH}}(E(n))$ is zero by Proposition 3.1. It follows that the localization $L_{K(n)} \overline{\text{THH}}(E(n))$ is trivial, and hence $L_{E(n-1)}(L_{K(n)} \overline{\text{THH}}(E(n)))$ is also trivial. Therefore the vertical map on the left hand side is an equivalence and we obtain a nice example of blue-shift:

Lemma 4.2. If $E(n)$ is an E_3-spectrum, then the cofiber $\overline{\text{THH}}(E(n))$ is $E(n-1)$-local.

5. Topological Hochschild homology of $E(2)$

In this section, we discuss in more detail the topological Hochschild homology of $E(2)$, which we will denote by $E = E(2)$ to simplify the notation. As explained in the proof of Lemma 5.1, the computations of Theorem 3.5 for $E(2)$ can be expressed as follows:

$$
\begin{align*}
K(0)_* \text{THH}(E) & \cong K(0)_* E \otimes \Lambda_\mathbb{Q}(dt_1, dt_2), \\
K(1)_* \text{THH}(E) & \cong K(1)_* E \otimes \Lambda_{\mathbb{F}_p}(dt_1), \\
K(2)_* \text{THH}(E) & \cong K(2)_* E.
\end{align*}
$$

Notice that these computations do not require the assumption that E is an E_3-ring spectrum: for the rational case we have a commutative structure anyhow, while in the $K(1)$ and $K(2)$
cases, the E^2 page of the Bökstedt spectral sequences is concentrated on columns 0 and 1 (respectively 0).

Lemma 5.1. For $i = 1, 2$, there exist classes $\lambda_i \in \text{THH}_{2p^i-1}(E)$ with the following properties. Under the Hurewicz homomorphism

(a) the class λ_i maps to $dt_i \in K(0)_{2p^i-1} \text{THH}(E)$, for $i = 1, 2$;
(b) the class λ_i maps to $dt_1 \in K(1)_{2p^i-1} \text{THH}(E)$.

Proof. We use McClure-Staffeldt's computation of $\text{THH}_*(BP)$ in [MS93, Remark 4.3], which has been validated by the proof [BM13] that BP admits an E_4 structure. We briefly recall the computation. The integral, rational and mod p homology of BP are given as

$$Hz_*BP \cong \mathbb{Z}_{(p)}[t_i \mid i \geq 1], \quad K(0)_*BP \cong \mathbb{Q}[t_i \mid i \geq 1] \quad \text{and} \quad HF_p_*BP \cong \mathbb{Z}[\xi_i \mid i \geq 1],$$

where the class $t_i \in Hz_{2p^i-1}BP$ maps to ξ_i under mod (p) reduction [Rav86, Proof of Theorem 5.2.8] and to the class with same name t_i under rationalization. The associated Bökstedt spectral sequences collapse, providing isomorphisms

$$Hz_*\text{THH}(BP) \cong Hz_*BP \otimes \Lambda_{\mathbb{Z}_{(p)}}(dt_i \mid i \geq 1),$$

$$K(0)_*\text{THH}(BP) \cong K(0)_*BP \otimes \Lambda_{\mathbb{Q}}(dt_i \mid i \geq 1) \quad \text{and} \quad HF_p_*\text{THH}(BP) \cong HF_p_*BP \otimes \Lambda_{\mathbb{F}_p}(d\xi_i \mid i \geq 1),$$

with $dx = \sigma_*(x)$, where $\sigma: \Sigma BP \to \text{THH}(BP)$ is the map given in (2.1). There is an isomorphism

$$\text{THH}_*(BP) \cong BP_* \otimes \Lambda_{\mathbb{Z}_{(p)}}(\lambda_i \mid i \geq 1),$$

and the Hurewicz homomorphism

$$\text{THH}_*(BP) \to Hz_*\text{THH}(BP)$$

is an inclusion mapping λ_i to dt_i. In particular, the classes dt_i (integral and rational) and $d\xi_i$ are spherical: they are the image of λ_i under the Hurewicz homomorphism mapping from $\text{THH}_*(BP)$. For $i \geq 1$, let us define

$$\lambda_i \in \text{THH}_{2p^i-1}(E)$$

as the image of the class with same name under the natural map

$$\text{THH}_*(BP) \to \text{THH}_*(E).$$

In the rational case, we have

$$\eta_R(v_i) \equiv \alpha_i t_i$$

modulo decomposables in $K(0)_*BP$, where $\alpha_i \in \mathbb{Q}$ is a unit. We deduce that

$$K(0)_*E \cong \mathbb{Q}[t_1, t_2][\eta_R(v_2)^{-1}]$$

and the Bökstedt spectral sequence recovers

$$K(0)_*\text{THH}(E) \cong K(0)_*E \otimes \Lambda_{\mathbb{Q}}(dt_1, dt_2).$$

By naturality, comparing with the case of BP, we deduce that the Hurewicz homomorphism $\text{THH}_*(E) \to K(0)_*\text{THH}(E)$ maps λ_i to dt_i.

For $K(1)_*$-homology, we argue similarly, using the commutative square

$$\begin{array}{ccc}
\text{THH}_*(BP) & \longrightarrow & K(1)_*\text{THH}(BP) \\
\downarrow & & \downarrow \\
\text{THH}_*(E) & \longrightarrow & K(1)_*\text{THH}(E).
\end{array}$$

We have $K(1)_*BP \cong K(1)_*[t_i \mid i \geq 1]$, and the Bökstedt spectral sequence yields

$$K(1)_*\text{THH}(BP) \cong K(1)_*BP \otimes \Lambda_{\mathbb{F}_p}(dt_1 \mid i \geq 1).$$
Comparing the Bökstedt spectral sequences for $HZ_* \text{THH}(BP)$ and $K(1)_* \text{THH}(BP)$, we deduce that the class $\lambda_1 \in \text{THH}_*(BP)$ maps to $dt_1 \in K(1)_* \text{THH}(BP)$. Recall that

$$K(1)_*E = K(1)_*[t_i \mid i \geq 1][\eta_R(v_2)^{-1}]/(\eta_R(v_j) \mid j \geq 3)$$

is a colimit of étale algebras over $K(1)_*[w_2, w_2^{-1}]$, where

$$w_2 = \eta_R(v_2) = u_1^p t_1 - v_1^p t_1.$$

In particular $dw_2 = v_1^p dt_1$, and the Bökstedt spectral sequence provides the formula given above for $K(1)_* \text{THH}(E)$. Now obviously $dt_1 \in K(1)_* \text{THH}(BP)$ maps to $dt_1 \in K(1)_* \text{THH}(E)$. This implies assertion (b) of the lemma. \hfill \Box

Remark 5.2. Note that the above proof does not require the map $BP \to E(n)$ to be an E_3-map.

The class $\lambda_1 \in \text{THH}_{2p-1}(E)$ of Lemma 5.1 corresponds to a map $\lambda_1 : S^{2p-1} \to \text{THH}(E)$. Smashing with E, using the E-module structure of $\text{THH}(E)$ (assuming an E_3 structure on E), and composing with the cofiber $\text{THH}(E) \to \overline{\text{THH}}(E)$ of the unit, we obtain a map

$$j_1 : \Sigma^{2p-1}E \cong E \wedge S^{2p-1} \to E \wedge \overline{\text{THH}}(E) \to \overline{\text{THH}}(E) \to \overline{\text{THH}}(E).$$

In the same fashion, we obtain a map $j_2 : \Sigma^{2p^2-1}E \to \overline{\text{THH}}(E)$ corresponding to the class λ_2.

Lemma 5.3. The map j_1 factors through a map

$$\tilde{j}_1 : \Sigma^{2p-1}L_1E \to \overline{\text{THH}}(E)$$

that is a $K(1)_*$-isomorphism, and whose cofiber $C(\tilde{j}_1)$ is a rational spectrum.

Proof. Recall from Lemma 4.2 that the cofiber $\overline{\text{THH}}(E)$ of the unit map is $E(1)$-local. In particular, the map j_1 factors through a map

$$\tilde{j}_1 : \Sigma^{2p-1}L_1E \to \overline{\text{THH}}(E).$$

The localization map $E \to L_1E$ is a $K(1)_*$-isomorphism, and therefore so are the induced maps $\ell : \text{THH}(E) \to \text{THH}(L_1E)$ and $\tilde{\ell} : \overline{\text{THH}}(E) \to \overline{\text{THH}}(L_1E)$, by convergence of the $K(1)$-based Bökstedt spectral sequence. Hence, to prove the claim, it suffices to show that the composition

$$(5.4) \Sigma^{2p-1}L_1E \xrightarrow{\tilde{j}_1} \overline{\text{THH}}(E) \xrightarrow{\ell} \overline{\text{THH}}(L_1E)$$

is a $K(1)_*$-isomorphism. The $K(1)_*$-based Bökstedt spectral sequence for L_1E is identical to the one of E, computed above as

$$E_{*,*}^2 = K(1)_*E \otimes \Lambda_{E_*}(dt_1) \Rightarrow K(1)_*\text{THH}(E),$$

where $K(1)_*E$ is in filtration degree zero and $K(1)_*E\{dt_1\}$ is in filtration degree 1, and where all differentials are zero. By definition of the map j_1, if $1 \in K(1)_0E$ is the unit, then $j_1_*(\Sigma^{2p-11})$ is represented modulo lower filtration by the permanent cycle dt_1 in $E_{1,*}^2$. Since this is a spectral sequence of $K(1)_*E$-modules, the composition (5.4) induces a map in $K(1)$ homology that is represented modulo lower filtration by the isomorphism $\Sigma^{2p-1}K(1)_*E \to E_{1,*}^2 = K(1)_*E\{dt_1\}$ sending a class $\Sigma^{2p-1}w$ to wdt_1. It is therefore a $K(1)_*$-isomorphism, proving the claim.

Now we consider the cofiber $C(\tilde{j}_1)$ of \tilde{j}_1, sitting in an exact triangle

$$(5.5) \Sigma^{2p-1}L_1E \xrightarrow{\tilde{j}_1} \overline{\text{THH}}(E) \xrightarrow{\ell} C(\tilde{j}_1) \xrightarrow{\delta} \Sigma^{2p}L_1E.$$

Since \tilde{j}_1 is a $K(1)_*$-isomorphism, we know that $K(1)_*C(\tilde{j}_1) = 0$, and since $\overline{\text{THH}}(E)$ and thus $C(\tilde{j}_1)$ are $E(1)$-local, we deduce (as in Lemma 4.2) that $C(\tilde{j}_1)$ is $E(0)$-local (i.e., rational). \hfill \Box

We now define a map $\lambda_{12} : L_0S^{2p^2-2p-2} \to C(\tilde{j}_1)$ as a composition over the cofibers

$$L_0S^{2p^2-2p-2} \to L_0\overline{\text{THH}}(E) \to L_0\overline{\text{THH}}(E) \to C(\tilde{j}_1),$$

TOWARDS THH OF JOHNSON-WILSON SPECTRA 9
where the first map above realizes the class $dt_1 dt_2 \in K(0)_* \text{THH}(E)$. Smashing λ_2 with E and using the module structure we obtain a map

$$j_{12} : \Sigma^{2p^2 - 2p - 2} L_0 E \to C(j_1).$$

Similarly, λ_2 induces a map

$$j_2 : \Sigma^{2p^2 - 1} L_0 E \to C(j_1).$$

Theorem 5.4. Let p be an odd prime such that $E = E(2)$, the second Johnson-Wilson spectrum at p, is an E_3-ring spectrum. Then the map $j_2 \lor j_{12}$ lifts to a map

$$\bar{j}_2 \lor j_{12} : \Sigma^{2p^2 - 1} L_0 E \lor \Sigma^{2p^2 - 2p - 2} L_0 E \to \text{THH}(E)$$

and the sum β of \bar{j}_1, \bar{j}_2 and j_{12} is a weak equivalence of E-modules

$$\beta : \Sigma^{2p-1} L_1 E \lor \Sigma^{2p^2 - 1} L_0 E \lor \Sigma^{2p^2 + 2p - 2} L_0 E \to \text{THH}(E).$$

Proof. The composition $\delta \circ (j_2 \lor j_{12})$ is trivial, so that $j_2 \lor j_{12}$ lifts to a map $\bar{j}_2 \lor j_{12}$:

Indeed, $\Sigma^{2p} L_1 E$ fits in the chromatic fracture pullback diagram

$$\Sigma^{2p} L_1 E \longrightarrow \Sigma^{2p} L_{K(1)} E$$

$$\downarrow \quad \downarrow$$

$$\Sigma^{2p} L_0 E \longrightarrow \Sigma^{2p} L_0 (L_{K(1)} E).$$

The composition of $\delta \circ (j_2 \lor j_{12})$ with the left vertical map to $\Sigma^{2p} L_0 E$ is trivial, since it factors over the composition

$$L_0 \text{THH}(E) \to L_0 C(j_1) \to \Sigma^{2p} L_0 E$$

of two consecutive maps in the $(E(0)$-localized) cofiber sequence (5.5). The composition of $\delta \circ (j_2 \lor j_{12})$ with the top map to $\Sigma^{2p} L_{K(1)} E$ is trivial as well; indeed, there is no non-trivial map from a $K(1)$-acyclic to a $K(1)$-local spectrum. This finishes the proof that $\delta \circ (j_2 \lor j_{12})$ is trivial and that the lift exists. We now define β as the sum

$$\beta = \bar{j}_1 \lor \bar{j}_2 \lor j_{12} : \Sigma^{2p-1} L_1 E \lor \Sigma^{2p^2 - 1} L_0 E \lor \Sigma^{2p^2 + 2p - 2} L_0 E \to \text{THH}(E)$$

Finally, we claim that β is a $K(0)_*\text{-isomorphism}$: this is analogous to the proof above that \bar{j}_1 is a $K(1)_*\text{-isomorphism}$, working this time with the $K(0)$-based Bökstedt spectral sequence. Since β is a $K(0)_*\text{-}$ and a $K(1)_*\text{-}$isomorphism of $E(1)$-local spectra, it is a weak equivalence. \qed

Assume now that in addition to E being an E_3-ring spectrum, the unit map $E \to \text{THH}(E)$ splits in the homotopy category (this holds for example if E is an E_∞-ring spectrum). We then have a weak equivalence of E-modules $E \lor \text{THH}(E) \to \text{THH}(E)$. On the other hand, summing β with the identity of E gives a weak equivalence

$$\text{id} \lor \beta : E \lor \Sigma^{2p-1} L_1 E \lor \Sigma^{2p^2 - 1} L_0 E \lor \Sigma^{2p^2 + 2p - 2} L_0 E \to E \lor \text{THH}(E).$$

This implies the following corollary of Theorem 5.4.

Corollary 5.5. Assume that p is an odd prime, and that the second Johnson-Wilson spectrum $E = E(2)$ admits an E_3-structure. If the unit map $E \to \text{THH}(E)$ splits in the homotopy category, then the maps above provide a weak equivalence of E-modules

$$E \lor \Sigma^{2p-1} L_1 E \lor \Sigma^{2p^2 - 1} L_0 E \lor \Sigma^{2p^2 + 2p - 2} L_0 E \to \text{THH}(E).$$
Remark 5.6. Corollary 5.5 implies that
- the 2^0 summand of $K(2)_* E$ in $K(2)_* \text{THH}(E)$ indexed by 1,
- the 2^1 summands of $K(1)_* E$ in $K(1)_* \text{THH}(E)$ indexed by 1 and dt_1,
- the 2^2 summands of $K(0)_* E$ in $K(0)_* \text{THH}(E)$ indexed by 1, dt_1, dt_2 and $dt_1 dt_2$
assemble, in $\text{THH}(E)$, into
- the 2^0 summand E indexed by 1 and detected by $K(0)_*$, $K(1)_*$ and $K(2)_*$,
- the $2^1 - 2^0$ summand L_1E indexed by dt_1 and detected by $K(0)_*$ and $K(1)_*$, and
- the $2^2 - 2^1$ summands L_0E indexed by dt_2 and $dt_1 dt_2$ and detected by $K(0)_*$.

Notice that Bruner and Rognes [BR] obtain very similar computations for $K(i)_* \text{THH}(tmf)$ for $i = 0, 1, 2$, where tmf denotes the connective spectrum of topological modular form.

We can picture the summands of $\text{THH}(E)$ in a 2-dimensional cube of local pieces (up to suspensions, where $E = L_2 E$):

\[
\begin{array}{ccc}
1 & dt_1 \\
& E & L_1 E \\
& dt_2 & L_0 E & L_0 E
\end{array}
\]

We conjecture that this picture extends to describe a decomposition of $\text{THH}(E(n))$ into 2^n summands, with summands placed in an n-dimensional cube, where the ith edge has two coordinates 1 and dt_i. We formulate this as follows.

Conjecture 5.7. If p is an odd prime such that $E(n)$ is a sufficiently commutative S-algebra, then $\text{THH}(E(n))$ decomposes as a sum of 2^n factors, namely 2^{n-i-1} suspended copies of $L_i E(n)$ for each $0 \leq i \leq n-1$, plus one copy of $E(n)$. More precisely, the $L_i E(n)$ summands are indexed by the 2^{n-i-1} monomial generators
\[\omega \in \Lambda_0(dt_1, \ldots, dt_{n-i-1}) \{dt_{n-i}\} \subset K(0)_* \text{THH}(E(n)),\]
and the summand corresponding to such a monomial ω is $\Sigma^{|\omega|} L_i E(n)$.

References

[AR05] Vigleik Angeltveit and John Rognes, *Hopf algebra structure on topological Hochschild homology*, Algebr. Geom. Topol. 5 (2005), 1223–1290.

[ACB] Omar Antolín-Camarena and Tobias Barthel, *Chromatic fracture cubes*, available at https://arxiv.org/abs/1410.7271. Preprint.

[Aus05] Christian Ausoni, *Topological Hochschild homology of connective complex K-theory*, Amer. J. Math. 127 (2005), no. 6, 1261–1313.

[BR05] Andrew Baker and Birgit Richter, *On the Γ-cohomology of rings of numerical polynomials and E_∞ structures on K-theory*, Comment. Math. Helv. 80 (2005), no. 4, 691–723.

[Bar18] Clark Barwick, *From operator categories to higher operads*, Geom. Topol. 22 (2018), no. 4, 1893–1959.

[BM11] Maria Basterra and Michael A. Mandell, *Homology of E_n ring spectra and iterated THH*, Algebr. Geom. Topol. 11 (2011), no. 2, 939–981.

[BM13] Maria Basterra and Michael A. Mandell, *The multiplication on BP*, J. Topol. 6 (2013), no. 2, 285–310.

[Bau14] Tilman Bauer, *Bousfield localization and the Hasse square*, Topological modular forms (Christopher L. Douglas, John Francis, André G. Henriques, and Michael A. Hill, eds.), Mathematical Surveys and Monographs, vol. 201, American Mathematical Society, Providence, RI, 2014, pp. 112–121.

[Bök] Marcel Bökstedt, *The topological Hochschild homology of \mathbb{Z} and of $\mathbb{Z}/p\mathbb{Z}$*. Unpublished preprint.

[BFV07] Morten Brun, Zbigniew Fiedorowicz, and Rainer M. Vogt, *On the multiplicative structure of topological Hochschild homology*, Algebr. Geom. Topol. 7 (2007), 1633–1650.

[BR] Robert Bruner and John Rognes, *Topological Hochschild homology of topological modular forms*. notes available on John Rognes’ webpage, see https://folk.uio.no/rognes/papers/ntnu08.pdf.
[EKMM97] A. D. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May, *Rings, modules, and algebras in stable homotopy theory*, Mathematical Surveys and Monographs, vol. 47, American Mathematical Society, Providence, RI, 1997. With an appendix by M. Cole.

[HL10] Michael Hill and Tyler Lawson, *Automorphic forms and cohomology theories on Shimura curves of small discriminant*, Adv. Math. 225 (2010), no. 2, 1013–1045.

[Lan75] Peter S. Landweber, *BP∗(BP) and typical formal groups*, Osaka J. Math. 12 (1975), no. 2, 357–363.

[Law18] Tyler Lawson, *Secondary power operations and the Brown-Peterson spectrum at the prime 2*, Annals of Math. 188 (2018), no. 2, 513–576.

[LN12] Tyler Lawson and Niko Naumann, *Commutativity conditions for truncated Brown-Peterson spectra of height 2*, J. Topol. 5 (2012), no. 1, 137–168.

[Lod98] Jean-Louis Loday, *Cyclic homology*, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 301, Springer-Verlag, Berlin, 1998. Appendix E by María O. Ronco; Chapter 13 by the author in collaboration with Teimuraz Pirashvili.

[MNN15] Akhil Mathew, Niko Naumann, and Justin Noel, *On a nilpotence conjecture of J. P. May*, J. Topol. 8 (2015), no. 4, 917–932.

[MS93] J. E. McClure and R. E. Staffeldt, *On the topological Hochschild homology of bu, I*, Amer. J. Math. 115 (1993), no. 1, 1–45.

[Rav86] Douglas C. Ravenel, *Complex cobordism and stable homotopy groups of spheres*, Pure and Applied Mathematics, vol. 121, Academic Press, Inc., Orlando, FL, 1986.

[Ric06] Birgit Richter, *A lower bound for coherences on the Brown-Peterson spectrum*, Algebr. Geom. Topol. 6 (2006), 287–308.

[RS17] Birgit Richter and Brooke Shipley, *An algebraic model for commutative HZ-algebras*, Algebr. Geom. Topol. 17 (2017), no. 4, 2013–2038.

[Rob03] Alan Robinson, *Gamma homology, Lie representations and E∞ multiplications*, Invent. Math. 152 (2003), no. 2, 331–348.

[RW02] Alan Robinson and Sarah Whitehouse, *Operads and Γ-homology of commutative rings*, Math. Proc. Cambridge Philos. Soc. 132 (2002), no. 2, 197–234.

[Rog08] John Rognes, *Galois extensions of structured ring spectra. Stably dualizable groups*, Mem. Amer. Math. Soc. 192 (2008), no. 898, viii+137.

[Sen] Andrew Senger, *The Brown-Peterson spectrum is not E2(p2+2) at odd primes*, available at https://arxiv.org/abs/1710.09822. Preprint.

[Shi07] Brooke Shipley, *HZ-algebra spectra are differential graded algebras*, Amer. J. Math. 129 (2007), no. 2, 351–379.

[Sto] Bruno Stonek, *Higher topological Hochschild homology of periodic complex K-theory*, available at https://arxiv.org/abs/1801.00156. Preprint.

[WG91] Charles A. Weibel and Susan C. Geller, *Etale descent for Hochschild and cyclic homology*, Comment. Math. Helv. 66 (1991), no. 3, 368–388.

LAGA (UMR7539), INSTITUT GALILÉE, UNIVERSITÉ PARIS 13 SORBONNE-PARIS-CITÉ, 99 AVENUE J.-B. CLÉMENT, 93430 VILLENEUVE, FRANCE

E-mail address: ausoni@math.univ-paris13.fr

URL: http://www.math.univ-paris13.fr/~ausoni/

FACHBEREICH MATHEMATIK DER UNIVERSITÄT HAMBURG, BUNDESSTRASSE 55, 20146 HAMBURG, GERMANY

E-mail address: birgit.richter@uni-hamburg.de

URL: http://www.math.uni-hamburg.de/home/richter/