Cognate recognition of APC by antigen-specific T cells is critically dependent on adhesive interactions mediated by LFA-1 molecules present on both T cells and APC (1). While LFA-1 is constitutively expressed on lymphocytes, its adhesion function is activated after antigen-specific recognition (2). Engagement of the TCR by mAbs was recently shown to upregulate the affinity of LFA-1 for its counter receptors (3, 4). This proceeds via intracellular signaling mechanisms that involve the activation of protein kinase C (PKC). We demonstrate here that Ia molecules can similarly transduce intracellular signals that activate LFA-1 molecules on Ia+ cells.

Materials and Methods

Reagents and Antibodies. Toxic shock syndrome toxin 1 (TSST-1) and Staphylococcal exotoxin B (SEB) were obtained from Toxin Technology (Madison, WI). mAb ST259 was kindly provided by Dr. E. Yunis (Dana Farber Cancer Institute, Boston, MA). mAb L243, directed against monomorphic determinants on human HLA-DR molecules, was generated from hybridoma cells (American Type Culture Collection, Bethesda, MD). Anti-LFA-1α chain mAb IOT16, anti-LFA-1β chain mAb IOT18, and anti-ICAM-1 mAb 84H10 were all obtained from AMAC, Inc. (Westbrook, ME). Sphingosine, ceramide, BSA, and PMA were obtained from Sigma Chemical Co. (St. Louis, MO).

Cells. High density tonsilar human B cells and resting human T cells were isolated as described (5). Activated T cells were prepared by stimulating resting T cells with PHA for 5 d, followed by stimulation with IL-2 at 10 U/ml for an additional 5 d. EBV-transformed lymphoblastoid B cell lines were derived from normal donors and from an immunodeficient patient with absent Ia expression. Monocytes were prepared as described (6).

Aggregation Assays. Cells were resuspended in RPMI 1640 and seeded in 96-well microtiter plates at 2 × 10⁴ cells/well for B cells, monocytes, and T cells, and at 5 × 10⁴ for lymphoblastoid B cell lines. Cells were stimulated at 37°C for the indicated time periods with TSST-1 at 1 μg/ml; SEB at 10 μg/ml; Fab mAb L243 at 1 μg/ml; Fab mAb ST2-59 at 1 μg/ml, or with PMA at 25 μg/ml. Cell aggregation was monitored using light microscopy by counting the number of cell aggregates containing >10 cells per well (7). Values are means of scores of two wells ± SD, and the data are representative of three other experiments.

Results and Discussion

Engagement of Major Histocompatibility Complex Class II Molecules Induces Sustained, Lymphocyte Function-associated Molecule 1-dependent Cell Adhesion

By Walid Mourad, Raif S. Geha, and Talal Chatila

From the Division of Immunology, Children’s Hospital and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115

Summary

Antigenic stimulation is associated with enhanced adhesion between T cells and antigen-presenting cells (APC). Binding of ligands to the T cell antigen receptor activates the adhesion function of lymphocyte function-associated molecule 1 (LFA-1; CD11a/CD18). We demonstrate here that ligand binding to major histocompatibility complex class II (Ia) molecules also activates LFA-1 function, providing a reciprocal mechanism for the induction of adhesion between T cells and Ia+ APC. Adhesion was affected by a qualitative change in LFA-1 molecules and was reversed by the protein kinase C inhibitor sphingosine. These results define a novel role for Ia molecules as signal transducing receptors that regulate LFA-1-dependent adhesion via a putative, Ia-coupled protein kinase(s).
aggregation. Thus, induction of adhesion via Ia is restricted by the epitope specificity of the binding ligands.

TSST-1 and mAb L243 induced the aggregation of other Ia+ leukocytes, including activated T cells, monocytes, and B lymphoblastoid lines. The requirement for Ia surface expression for the induction of cell aggregation by TSST-1 and mAb L243 was demonstrated by the failure of both ligands to induce the aggregation of resting T cells, which do not express Ia molecules on their surface, or of B lymphoblastoid cells derived from a patient with congenital absence of Ia expression (11) (Fig. 1C).

Adhesion induced by Ia-binding ligands was mediated by LFA-1 and its counter receptors. mAbs to either the α chain or the β chain of the LFA-1 heterodimer inhibited cell aggregation induced by TSST-1 or by mAbs L243 (Fig. 2A), as well as by PMA, as previously noted (9). In addition, a mAb directed against intercellular adhesion molecule 1 (ICAM-1), a counter receptor for LFA-1 (12), partially inhibited cell aggregation induced by TSST-1 and by mAb L243 (Fig. 2A). The more effective inhibition of cell aggregation by anti-LFA-1 mAbs compared with anti-ICAM-1 mAb suggests that other LFA-1 counter receptors, such as ICAM-2 (13), play a role in Ia-triggered adhesion. Ia-mediated adhesion was less

Figure 1. Induction of leukocyte adhesion by Ia-binding ligands. (A) Photomicrographs of tonsillar human B cells treated for 4 h with medium alone or with TSST1. (B) Time course of aggregation of tonsillar B cells induced by Ia-binding ligands. (C) Ia-binding ligands induce the aggregation of Ia+ but not of Ia- leukocytes. (C) Resting T cells and monocytes were stimulated for 4 h while activated T cells and B lymphoblastoid cell lines were stimulated for 1 h.

Figure 2. Induction of adhesion via Ia molecules is mediated by LFA-1 and its counter receptors. (A) Inhibition of aggregation of high density tonsillar B cells by anti-LFA-1α chain mAb, anti-LFA-1β chain mAb, anti-ICAM-1 mAb, and by a control mAb, ST2-59. All mAbs were added at a final concentration of 25 µg/ml. (B) Induction of adhesion in monocyte and B lymphocyte-enriched preparations of PBMC from a normal donor or from a patient with leukocyte adhesion deficiency. PBMC were enriched for monocytes and B cells by rosetting with SRBC and collecting the non-rosetting fraction, as described (5). (A and B) Cells were treated for 4 h with the indicated stimulus, as described for Fig. 1. Results are representative of a total of three experiments for A and two experiments for B.
Ia ligands induce cell aggregation by activating the adhesion function of LFA-1 and not that of its counter receptors. T cell lines derived from a normal donor [NL], from a leukocyte adhesion deficiency patient [LFA-1(-)], or from an Ia-deficient patient [Ia(-)] were propagated with PHA, IL2, and irradiated allogeneic feeder cells as described (17). All three lines expressed comparable levels of ICAM-1 and, when applicable, comparable levels of LFA-1 and Ia. Homogenous cell populations were seeded at 2 x 10^5 cells/well, while mixtures of two cell populations were seeded at 10^5 cells/well for each cell type, and the cells were treated with respective stimulus for 6 h. To ascertain heterotypic cell adhesion in mixtures of different T cell populations, cells from population were first loaded with the dye 6 carboxyfluorescein diacetate at 100 uM for 1 h at 37°C, washed extensively, and then mixed with the respective cell type, stimulated for 6 h, and then examined by light and fluorescence microscopy. Similar results were obtained in one other experiment.

Adhesion induced by Ia-binding ligands was not associated with upregulation of the surface expression of LFA-1 or of ICAM-1, and did not require protein synthesis, as it was not affected by cycloheximide, an inhibitor of protein synthesis (data not shown). These results suggested that Ia-induced adhesion is effected by a qualitative change in LFA-1 and/or its counter receptors.

Heterolytic adhesion experiments using primary T cell lines derived from normal donors, from the LFA-1-deficient patient, and from the Ia-deficient patient demonstrated that Ia-induced adhesion was affected by activating LFA-1 adhesion function and not by activating the adhesion function of LFA-1 counter receptors. Fig. 3 A demonstrates that mAb L243 failed to elicit either homotypic or heterolytic aggregates in mixtures of LFA-1-deficient and Ia-deficient activated T cells. In contrast, PMA induced vigorous heterotypic aggregation in the same cell mixtures (Fig. 3 B). Both mAb L243 and PMA induced heterolytic aggregation in mixtures of Ia+ T cells and LFA-1-deficient cells, and in mixtures of Ia+ T cells and Ia-deficient T cells (Fig. 3).

PKC activators may enhance LFA-1 function by inducing the phosphorylation of LFA-1β chain (6) or of cytoskeletal proteins that interact with LFA-1, such as talin (15). To determine the role of PKC in Ia-mediated adhesion, we examined the capacity of the PKC inhibitor sphingosine (16) to antagonize the induction of adhesion by Ia-binding ligands. Fig. 4 A demonstrates that sphingosine inhibited the aggregation of tonsillar B cells induced by TSST-1, by mAb L243, or by PMA. In contrast, the inert sphingosine metabolite ceramide exhibited no effect on cell aggregation. Other protein kinase inhibitors such as staurosporine and H7 also inhibited cell aggregation (data not shown). These results suggested that an Ia-coupled protein kinase, either PKC itself or a closely related enzyme, mediates the induction of adhe-
Ligand Binding to Ia Activates Lymphocyte Function–associated Molecule 1

We thank Dr. Kenneth Weinberg for providing PBMC from an Ia-deficient patient.

This work was supported by grants from the National Institutes of Health and the Hood Foundation.

Address correspondence to Talal Chatila, Division of Immunology, Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115.

Received for publication 2 July 1990 and in revised form 20 August 1990.

References

1. Sanders, V.M., J.M. Snyder, J.W. Uhr, and E.S. Vitetta. 1986. Characterization of the physical interaction between antigen-specific B and T cells. J. Immunol. 137:2395.
2. Inaba, K., and R. Steinman. 1987. Monoclonal antibodies to LFA-1 and to CD4 inhibit the mixed leukocyte reaction after the antigen-dependent clustering of dendritic cells and T lymphocytes. J. Exp. Med. 165:1403.
3. Dustin, M.L., and T.A. Springer. 1989. T cell receptor cross linking transiently stimulates adhesiveness through LFA-1. Nature (Lond.). 341:619.
4. Van Kooyk, Y., P. Van de weil-van kemenade, P. Weder, T.W. Kuipers, and C.G. Figdor. 1989. Enhancement of LFA-1 mediated cell adhesion by triggering through CD2 or CD3 on T lymphocytes. Nature (Lond.). 342:811.
5. Mourad, W., P. Scholl, A. Diaz, R. Geha, and T. Chatila. 1989. The staphylococcal toxic shock syndrome toxin 1 triggers B cell proliferation and differentiation via major histocompatibility complex-unrestricted cognate T/B cell interaction. J. Exp. Med. 170:2011.
6. Chatila, T.A., R.S. Geha, and M.A. Arnaout. 1989. Constitutive and stimulus-induced phosphorylation of CD11/CD18 leukocyte adhesion molecules. J. Cell Biol. 109:3435.
7. Nong, Y., E. Remold-O'Donnell, T. LeBien, and H.Z. Remold. 1989. A monoclonal antibody to sialophorin (CD43) induces homotypic adhesion and activation of human monocytes. J. Exp. Med. 170:259.
8. Scholl, P., A. Diez, W. Mourad, J. Parsonnet, R.S. Geha, and T. Chatila. 1989. Toxic shock syndrome toxin 1 binds to major histocompatibility complex class II molecules. Proc. Natl. Acad. Sci. USA. 86:4210.
9. Rothlein, R., and T.A. Springer. 1986. The requirement for lymphocyte function-associated antigen 1 in homotypic leukocyte adhesion stimulated by phorbol esters. J. Exp. Med. 163:1132.
10. Scholl, P.R., A. Diez, and R.S. Geha. 1989. Staphylococcal enterotoxin B and toxic shock syndrome toxin-1 bind to distinct sites on HLA-DR and HLA-DQ molecules. J. Immunol. 143:2583.
11. Lisowska, B., D.J. Charron, C. De Perval, A. Durandy, P. Turiel, C. Griscelli, and B. Mach. 1984. Defect of expression of MHC genes responsible for an abnormal HLA-Class I phenotype and the class II phenotype of lymphocytes from patients with combined immunodeficiency. In Histocompatibility Testing. E.D. Albert, editor. Springer-Verlag, Berlin. 650-655.
12. Marlin, S., and T.A. Springer. 1987. Purified intercellular adhesion molecule-1 (ICAM-1) is a ligand for lymphocyte function-associated antigen 1 (LFA-1). Cell. 51:813.
13. Staunton, D., M.L. Dustin, and T.A. Springer. 1989. Functional cloning of ICAM-2, a cell adhesion ligand for LFA-1 homologous to ICAM-1. Nature (Lond.). 339:61.
14. Dana, N., and M.A. Arnaout. 1988. Leukocyte adhesion molecules (CD11/CD18) deficiency. Bailliere’s Clin. Immunol. Allergy. 2:453.
15. Kupfer, A., and S.J. Singer. 1989. Cell biology of cytotoxic and helper T cell functions: immunofluorescence microscopic studies of single cells and cell couples. Annu. Rev. Immunol. 7:309.
16. Hannun, Y.A., and R.M. Bell. 1989. Functions of sphingolipids and sphingolipids breakdown products in cellular regulation. Science (Wash. DC). 243:500.
17. Ruscetti, FW., D.A. Morgan, and R.C. Gallo. 1977. Functional and morphologic characterization of human T cells continuously grown in vitro. J. Immunol. 119:131.