Classification of terminal simplicial reflexive d-polytopes with $3d - 1$ vertices.

Mikkel Øbro

July 6, 2017

Abstract

We classify terminal simplicial reflexive d-polytopes with $3d - 1$ vertices. They turn out to be smooth Fano d-polytopes. When d is even there is 1 such polytope up to isomorphism, while there are 2 when d is uneven.

1 Introduction

Let $N \cong \mathbb{Z}^d$ be a d-dimensional lattice, and let $N_\mathbb{R} = N \otimes \mathbb{Z} \mathbb{R} \cong \mathbb{R}^d$. Let M be the dual lattice of N and $M_\mathbb{R}$ the dual of $N_\mathbb{R}$. A reflexive d-polytope P in $N_\mathbb{R}$ is a fully-dimensional convex lattice polytope, such that the origin is contained in the interior and such that the dual polytope $P^* := \{ x \in M_\mathbb{R} | \langle x, y \rangle \leq 1 \ \forall y \in P \}$ is also a lattice polytope. The notion of a reflexive polytope was introduced in [3]. Two reflexive polytopes P and Q are called isomorphic if there exists a bijective linear map $\varphi : N_\mathbb{R} \to N_\mathbb{R}$, such that $\varphi(N) = N$ and $\varphi(P) = Q$. For every $d \geq 1$ there are finitely many isomorphism classes of reflexive d-polytopes, and for $d \leq 4$ they have been completely classified using computer algorithms ([10],[11]).

Simplicial reflexive d-polytopes have at most $3d$ vertices ([6] theorem 1). This upper bound is attained if and only if d is even and P splits into $d/2$ copies of del Pezzo 2-polytopes $V_2 = \text{conv}\{\pm e_1, \pm e_2, \pm (e_1 - e_2)\}$, where $\{e_1, e_2\}$ is a basis of a 2-dimensional lattice.

A reflexive polytope P is called terminal, if $N \cap P = 0 \cup V(P)$. An important subclass of terminal simplicial reflexive polytopes is the class of smooth reflexive polytopes, also known as smooth Fano polytopes: A reflexive polytope P is called smooth if the vertices of every face F of P is a part of a basis of the lattice N. Smooth Fano d-polytopes have been intensively studied and completely classified up to dimension 4 ([1],[4],[14],[16]). In higher dimensions not much is known. There are classification results valid in any dimension, when the polytopes have few vertices ([2],[9]) or if one assumes some extra symmetries ([5],[8],[15]). Some of these results have been generalized to simplicial reflexive polytopes ([13]).
In this paper we classify terminal simplicial reflexive d-polytopes with $3d-1$ vertices for arbitrary d. It turns out that these are in fact smooth Fano d-polytopes.

Theorem 1. Let $P \subset \mathbb{N}^{\mathbb{R}}$ be a terminal simplicial reflexive d-polytope with $3d-1$ vertices. Let e_1, \ldots, e_d be a basis of the lattice \mathbb{N}.

If d is even, then P is isomorphic to the convex hull of the points

$$e_1, \pm e_2, \ldots, \pm e_d, \pm(e_1-e_2), \ldots, \pm(e_{d-1}-e_d).$$

(1)

If d is uneven, then P is isomorphic to either the convex hull of the points

$$\pm e_1, \ldots, \pm e_{d-1}, e_d, \pm(e_1-e_2), \ldots, \pm(e_{d-2}-e_{d-1}), e_1-e_d.$$

(2)

or the convex hull of the points

$$\pm e_1, \ldots, \pm e_d, \pm(e_2-e_3), \ldots, \pm(e_{d-1}-e_d).$$

(3)

In particular, P is a smooth Fano d-polytope.

A key concept in this paper is the notion of a special facet: A facet F of a simplicial reflexive d-polytope P is called special, if the sum of the vertices $\mathcal{V}(P)$ of P is a non-negative linear combination of vertices of F. In particular, $\langle u_F, \sum_{v \in \mathcal{V}(P)} v \rangle \geq 0$, where $u_F \in \mathbb{M}_{\mathbb{R}}$ is the unique element determined by $\langle u_F, F \rangle = \{1\}$. The polytope P is reflexive, so $\langle u_F, v \rangle$ is an integer for every $v \in \mathcal{V}(P)$. As $\langle u_F, v \rangle \leq 1$ with equality if and only if $v \in F$, there are at most d vertices v such that $\langle u_F, v \rangle \leq -1$. For simplicity, let $H(F, i) := \{ x \in \mathbb{N} | \langle u_F, x \rangle = i \}, i \in \mathbb{Z}$. It is well-known that at most d vertices of P are situated in $H(F, 0)$ for any facet F of P ([7] section 2.3 remarks 5(2)). If P has $3d-1$ vertices and F is a special facet of P, then

$$d - 1 \leq |\mathcal{V}(P) \cap H(F, 0)| \leq d,$$

and there are only three possibilities for the placement of the $3d-1$ vertices of P in the hyperplanes $H(F, i)$ as shown in the table below.

| $|\mathcal{V}(P) \cap H(F, 1)|$ | Case 1 | Case 2 | Case 3 |
|--------------------------|--------|--------|--------|
| $|\mathcal{V}(P) \cap H(F, 0)|$ | d | d | d |
| $|\mathcal{V}(P) \cap H(F, -1)|$ | $d - 1$ | $d - 2$ | d |
| $|\mathcal{V}(P) \cap H(F, -2)|$ | 0 | 1 | 0 |
| $|\mathcal{V}(P)|$ | $3d - 1$ | $3d - 1$ | $3d - 1$ |
We prove theorem 1 by considering these three cases separately for terminal simplicial reflexive d-polytopes.

The paper is organised as follows: In section 2 we define some notation and prove some well-known basic facts about simplicial reflexive polytopes. In section 3 we define the notion of special facets. In section 4 we prove some lemmas needed in section 5 for the proof of theorem 1.

Acknowledgments. The author would like to thank his advisor Johan P. Hansen for advice and encouragement.

2 Notation and basic results

In this section we fix the notation and prove some basic facts about simplicial reflexive d-polytopes.

From now on N denotes a d-dimensional lattice, $N \cong \mathbb{Z}^d$, $d \geq 1$, and M denotes the dual lattice. Let $N_R := N \otimes \mathbb{Z} R$ and let M_R denote the dual of N_R.

By $\text{conv} K$ we denote the convex hull of a set K. A polytope is the convex hull of finitely many points, and a k-polytope is a polytope of dimension k. Recall that faces of a polytope of dimension 0 are called vertices, while codimension 1 and 2 faces are called facets and ridges, respectively. The set of vertices of any polytope P is denoted by $V(P)$.

2.1 Simplicial polytopes containing the origin in the interior

A d-polytope P in N_R is called simplicial if every face of P is a simplex. In this section P will be a simplicial d-polytope in N_R with $0 \in \text{int} P$.

For any facet F of P, we define u_F to be the unique element in M_R where $\langle u_F, x \rangle = 1$ for every point $x \in F$. Certainly for any vertex v and any facet F of P, $\langle u_F, v \rangle \leq 1$ with equality if and only if v is a vertex of F.

We also define some points $u^v_F \in M_R$ for any facet F of P and any vertex $v \in \mathcal{V}(F)$: u^v_F is the unique element where $\langle u^v_F, v \rangle = 1$ and $\langle u^v_F, w \rangle = 0$ for every $w \in \mathcal{V}(F) \setminus \{v\}$. In other words, $\{u^v_F | v \in \mathcal{V}(F)\}$ is the basis of M_R dual to the basis $\mathcal{V}(F)$ of N_R.

When F is a facet of P and $v \in \mathcal{V}(F)$, there is a unique ridge $R = \text{conv}(\mathcal{V}(F) \setminus \{v\})$ of P and a unique facet F' of P, such that $F \cap F' = R$.

We denote this facet by $N(F, v)$ and call it a neighboring facet of F. The set $\mathcal{V}(N(F, v))$ consists of the vertices $\mathcal{V}(R)$ of the ridge R and a unique vertex v', which we call a neighboring vertex of F and denote it by $n(F, v)$. See figure 1.

The next lemma shows how u_F and $u_{F'}$ are related, when F' is a neighboring facet of the facet F.

Lemma 2. Let $P \subset N_R$ be a simplicial d-polytope containing the origin in the interior. Let F be a facet of P and $v \in V(F)$. Let F' be the neighboring facet $N(F, v)$ and v' the neighboring vertex $n(F, v)$.

Then for any point $x \in N_R$,

$$\langle u_{F'}, x \rangle = \langle u_F, x \rangle + ((u_{F'}, v) - 1)\langle u_v, x \rangle.$$

In particular,

- $\langle u_{F'}, x \rangle < 0$ iff $\langle u_{F'}, x \rangle > \langle u_F, x \rangle$.
- $\langle u_{F'}, x \rangle > 0$ iff $\langle u_{F'}, x \rangle < \langle u_F, x \rangle$.
- $\langle u_{F'}, x \rangle = 0$ iff $\langle u_{F'}, x \rangle = \langle u_F, x \rangle$.

Proof. The vertices of F span N_R, and

$$x = \sum_{w \in V(F)} \langle u_w, x \rangle w \quad \text{and} \quad \langle u_F, x \rangle = \sum_{w \in V(F)} \langle u_w, x \rangle.$$

The vertices of the neighboring facet $F' = N(F, v)$ are $\{v'\} \cup V(F) \setminus \{v\}$. So

$$\langle u_{F'}, x \rangle = \langle u_{F'}, x \rangle \langle u_{F'}, v \rangle + \langle u_F, x \rangle - \langle u_v, x \rangle$$

$$= \langle u_F, x \rangle + ((\langle u_{F'}, v \rangle - 1) \langle u_v, x \rangle.$$

The vertex v is not on the facet F', and then the term $(\langle u_{F'}, v \rangle - 1)$ is negative. From this the equivalences follow. \qed
2.2 Simplicial reflexive polytopes

A polytope \(P \subset \mathbb{N} \subset \mathbb{R} \) is called a lattice polytope if \(V(P) \subset N \). A lattice polytope is called reflexive, if \(0 \in \text{int}(P) \) and \(V(P^*) \subset M \), where
\[
P^* := \{ x \in M \mid \langle x, y \rangle \leq 1 \ \forall y \in P \}
\]
is the dual of \(P \).

From now on \(P \) denotes a simplicial reflexive \(d \)-polytope.

Reflexivity guarantees that \(u_F \in M \) for every facet \(F \) of \(P \), and every vertex of \(P \) lies in one of the lattice hyperplanes
\[
H(F, i) := \{ x \in N \mid \langle u_F, x \rangle = i \} \quad i \in \{1, 0, -1, -2, \ldots \}
\]
In particular, for every facet \(F \) and every vertex \(v \) of \(P \): \(v \not\in F \) iff \(\langle u_F, v \rangle \leq 0 \).

This can put some restrictions on the points of \(P \).

Lemma 3. Let \(P \) be a simplicial reflexive polytope. For every facet \(F \) of \(P \) and every vertex \(v \) of \(\mathcal{V}(F) \) we have
\[
\langle u_F, x \rangle - 1 \leq \langle u_F, v \rangle
\]
for any \(x \in P \). In case of equality, \(x \) is on the facet \(N(F, v) \).

Proof. The inequality is obvious, when \(\langle u_F, x \rangle > 0 \). So assume \(\langle u_F, x \rangle \leq 0 \).

Let \(F' \) be the neighboring facet \(N(F, v) \).

Since \(x \in P \), \(\langle u_F, x \rangle \leq 1 \) with equality iff \(x \in F' \). From lemma 2 we then have
\[
\langle u_F, x \rangle - 1 \leq (1 - \langle u_F, v \rangle)\langle u_F, x \rangle \leq \langle u_F, x \rangle
\]
as \(\langle u_F, v \rangle \leq 0 \). \(\square \)

The next lemma concerns an important property of simplicial reflexive polytopes.

Lemma 4 (\cite{7} section 2.3 remarks 5(2), \cite{12} lemma 5.5). Let \(F \) be a facet and \(x \in H(F, 0) \) be vertex of a simplicial reflexive polytope \(P \). Then \(x \) is a neighboring vertex of \(F \).

More precisely, for every \(w \in \mathcal{V}(F) \) where \(\langle w_F, x \rangle < 0 \), \(x \) is equal to \(n(F, w) \).

In particular, for every \(w \in \mathcal{V}(F) \) there is at most one vertex \(x \in H(F, 0) \cap \mathcal{V}(P) \), with \(\langle w_F, x \rangle < 0 \).

As a consequence, there are at most \(d \) vertices of \(P \) in \(H(F, 0) \).

Proof. Since \(\langle u_F, x \rangle = \sum_{w \in \mathcal{V}(F)} \langle w_F, x \rangle = 0 \) and \(x \neq 0 \), there is at least one \(w \in \mathcal{V}(F) \) for which \(\langle w_F, x \rangle < 0 \). Choose such a \(w \) and consider the neighboring facet \(F' = N(F, w) \). By lemma 2 we get that \(0 < \langle u_{F'}, x \rangle \leq 1 \).

As \(P \) is reflexive, \(\langle u_{F'}, x \rangle = 1 \) and then \(x = n(F, w) \).

The remaining statements follow immediately. \(\square \)
3 Special facets

Now we define the notion of special facets, which will be of great use to us in the proof of theorem 1.

P is a simplicial reflexive d-polytope in this section.

Consider the sum of all the vertices of \(P \),

\[
\nu_P := \sum_{v \in \mathcal{V}(P)} v.
\]

There exists at least one facet \(F \) of \(P \) such that \(\nu_P \) is a non-negative linear combination of vertices of \(F \), i.e. \(\langle u_F, \nu_P \rangle \geq 0 \) for every \(w \in \mathcal{V}(F) \). We call facets with this property **special**.

Let \(F \) be a special facet of \(P \). In particular we have that

\[
0 \leq \langle u_F, \nu_P \rangle,
\]

which implies that

\[
0 \leq \sum_{v \in \mathcal{V}(P)} \langle u_F, v \rangle = \sum_{i \leq 1} i|H(F, i) \cap \mathcal{V}(P)| = d + \sum_{i \leq -1} i|H(F, i) \cap \mathcal{V}(P)|. \tag{4}
\]

As there are at most \(d \) vertices in \(H(F,0) \) we can easily see that \(|\mathcal{V}(P)| \leq 3d\), which was first proved by Casagrande using a similar argument ([6] theorem 1). Notice that \(\langle u_F, v \rangle \geq -d \) for every vertex \(v \) of \(P \). Notice also, that when \(|\mathcal{V}(P)|\) is close to \(3d \), the vertices of \(P \) tend to be in the hyperplanes \(H(F, i) \) for \(i \in \{1,0,-1\} \).

4 Many vertices in \(H(F,0) \)

We now study some cases of many vertices in \(H(F,0) \), where \(F \) is a facet of a simplicial reflexive d-polytope. The lemmas proven here are ingredients in the proof of theorem 1.

Lemma 5. Let \(F \) be a facet of a simplicial reflexive d-polytope \(P \). Suppose there are at least \(d - 1 \) vertices \(v_1, \ldots, v_{d-1} \) in \(\mathcal{V}(F) \), such that \(n(F, v_i) \in H(F,0) \) and \(\langle u_F^v, n(F, v_i) \rangle = -1 \) for every \(1 \leq i \leq d - 1 \).

Then \(\mathcal{V}(F) \) is a basis of the lattice \(N \).

Proof. Follows from statement 3 in [12] lemma 5.5. \(\square \)

Lemma 6. Let \(P \) be a simplicial reflexive d-polytope, such that

\[
|\mathcal{V}(P) \cap H(F,0)| \geq d - 1
\]

for every facet \(F \) of \(P \). Then there exists a facet \(G \) of \(P \), such that \(\mathcal{V}(G) \) is a basis of \(N \).
Proof. By lemma 5 we are done, if there exists a facet G such that the set

$$\{ v \in V(G) \mid n(G, v) \in H(G, 0) \text{ and } \langle u_G^n, n(G, v) \rangle = -1 \}$$

is of size at least $d - 1$. So we suppose that no such facet exists.

For every facet F we denote the volume of the d-simplex $\text{conv}(\{0\} \cup V(F))$ by $\text{vol}(F)$. When v_1, \ldots, v_d are the vertices of F, the volume $\text{vol}(F)$ is equal to $\frac{1}{d!} |\det A_F|$, where A_F is the matrix

$$A_F := \begin{pmatrix} v_1 \\ \vdots \\ v_d \end{pmatrix}.$$

The volume $\text{vol}(N(F, v_i))$ of the neighboring facet $N(F, v_i)$ is then

$$\text{vol}(N(F, v_i)) = \frac{1}{d!} |\det A_{F'}| = \frac{|\langle u_{F'}^{v_i}, n(F, v_i) \rangle|}{d!} |\det A_F|.$$

Now, let F_0 be an arbitrary facet of P. There must be at least one vertex v of F_0, such that $v' = n(F_0, v) \in H(F_0, 0)$, but $\langle u_{F_0}^{v'}, v' \rangle \neq -1$. Then $0 > \langle u_{F'}^{v'}, v' \rangle > -1$ by lemma 3. Let F_1 denote the neighboring facet $N(F_0, v)$. Then $\text{vol}(F_0) > \text{vol}(F_1)$.

We can proceed in this way to produce an infinite sequence of facets

$$F_0, F_1, F_2, \ldots \quad \text{where} \quad \text{vol}(F_0) > \text{vol}(F_1) > \text{vol}(F_2) > \ldots.$$

But there are only finitely many facets of P. A contradiction.

Lemma 7. Let F be a facet of a simplicial reflexive polytope $P \in \mathbb{N}_R$. Let $v_1, v_2 \in V(F)$, $v_1 \neq v_2$, and set $y_1 = n(F, v_1)$ and $y_2 = n(F, v_2)$. Suppose $y_1 \neq y_2$, $y_1, y_2 \in H(F, 0)$ and $\langle u_F^{y_1}, y_1 \rangle = \langle u_F^{y_2}, y_2 \rangle = -1$. Then there are no vertex $x \in \mathcal{V}(P)$ in $H(F, -1)$ with $\langle u_F^x, x \rangle = \langle u_F^{y_1}, x \rangle = -1$.

Proof. Suppose the statement is not true.

For simplicity, let $G = \text{conv}(V(F) \setminus \{v_1, v_2\})$. The vertex x written as a linear combination of $V(F)$ is then

$$x = -v_1 - v_2 + \sum_{w \in V(G)} \langle u_F^w, x \rangle w.$$

The vertices of the facet $F_1 = N(F, v_1)$ are $\{y_1\} \cup (V(F) \setminus \{v_1\})$, where

$$y_1 = -v_1 + \langle u_F^{v_2}, y_1 \rangle v_2 + \sum_{w \in V(G)} \langle u_F^w, y_1 \rangle w.$$
In the basis (of N_R) F_1 provides we have
\[x = y_1 + (-1 - \langle u_F^{v_2}, y_1 \rangle)v_2 + \sum_{w \in \mathcal{V}(G)} \langle u_F^{v_2}, x - y_1 \rangle w \]
The vertex x is in $H(F,0)$ by lemma 2. Certainly, $\langle u_F^{v_2}, y_1 \rangle \leq 0$, otherwise we would have a contradiction to lemma 3. On the other hand, $\langle u_F^{v_2}, y_1 \rangle \geq 0$, as $n(F, v_2) \neq y_1$. So $\langle u_F^{v_2}, y_1 \rangle = 0$ and $x = n(F, v_2)$.
Similarly, $\langle u_F^{v_2}, y_2 \rangle = 0$.
\[y_2 = -v_2 + \sum_{w \in \mathcal{V}(G)} \langle u_F^{v_2}, y_2 \rangle w. \]
But then y_2 and x are both in $H(F,0)$ and both have negative v_2-coordinate. This is a contradiction to lemma 4. \hfill \Box

4.1 The terminal case

If we assume that the simplicial reflexive d-polytope P is terminal, we can sharpen our results in case of d vertices in $H(F,0)$ for some facet F of P. Recall, that a reflexive polytope is called terminal if $\mathcal{V}(P) \cup \{0\} = P \cap N$.

Lemma 8. Let P be a terminal simplicial reflexive d-polytope. If there are d vertices of P in $H(F,0)$ for some facet F of P, then
\[\mathcal{V}(P) \cap H(F,0) = \{ -y + z_y \mid y \in \mathcal{V}(F) \} \]
where $z_y \in \mathcal{V}(F)$ for every y.
In particular $\mathcal{V}(F)$ is a basis of the lattice N.

Proof. Let $y \in \mathcal{V}(F)$. By lemma 4 there exists exactly one vertex $x \in H(F,0)$, such that $x = n(F,y)$. Conversely, there are no vertex $y' \neq y$ of F, such that $x = n(F,y')$. So x is on the form
\[x = -by + a_1w_1 + \ldots + a_kw_k \quad , \quad 0 < b \leq 1 , \quad 0 < a_i \text{ and } w_i \in \mathcal{V}(F) \setminus \{y\} \forall i , \]
where $b = \sum_{i=1}^{k} a_i$.
Suppose there exists a facet G containing both x and y. Then
\[1 + b = \langle u_G, x + by \rangle = \langle u_G, a_1w_1 + \ldots + a_kw_k \rangle \leq \sum_{i=1}^{k} a_i = b. \]
Which is a contradiction. So there are no such facets. Consider the lattice point $z_y = x + y$. For any facet G of P, $\langle u_G, z_y \rangle \leq 1$ as both $\langle u_G, x \rangle, \langle u_G, y \rangle \leq 1$ and both cannot be equal to 1. So z_y is a lattice point in P. Since P is terminal, z_y is either a vertex of P or the origin. As $1 = \langle u_F, x + y \rangle = \langle u_F, z_y \rangle$, z_y must be a vertex of F and $y \neq z_y$. And then we’re done.
The vertex set $\mathcal{V}(F)$ is a basis of N by lemma 5. \hfill \Box
Figure 2: Terminality is important in lemma 8. This is a simplicial reflexive (self-dual) 2-polytope with 5 vertices. Consider the facet \(F \) containing 3 lattice points. The two vertices in \(H(F,0) \) is not on the form \(-y + z \) for vertices \(y, z \in V(F) \).

The proof of lemma 8 is inspired by proposition 3.1 in [12].

Lemma 9. Let \(F \) be a facet of a terminal simplicial reflexive \(d \)-polytope \(P \subset \mathbb{N}_\mathbb{R} \), such that \(|H(F,0) \cap V(P)| = d \). If \(x \in H(F,1) \cap P \), then \(-x \in V(F)\).

Proof. The vertex set \(V(F) \) is a basis of the lattice \(N \), and every vertex in \(H(F,0) \) is of the form \(-y + z \) for some \(y, z \in V(F) \) (lemma 8). Let \(x \) be vertex of \(P \) in \(H(F,1) \).

\[
x = \sum_{w \in V(F)} \langle u^w_F, x \rangle w,
\]

where \(\langle u^w_F, x \rangle \in \mathbb{Z} \) for every \(w \in V(F) \). If \(\langle u^w_F, x \rangle \leq -2 \) for some \(w \in V(F) \), then \(x = n(F,w) \) (lemma 3), which is not the case. So \(\langle u^w_F, x \rangle \geq -1 \) for every \(w \in V(F) \). Furthermore, by lemma 7 \(x \) is only allowed one negative coordinate with respect to the basis \(V(F) \). The only possibility is then \(x = -w \), where \(w \in V(F) \). \(\square \)

5 Proof of main result

In this section we will prove theorem 1.

Throughout the section \(P \) is a terminal simplicial reflexive \(d \)-polytope in \(\mathbb{N}_\mathbb{R} \) with \(3d - 1 \) vertices, whose sum is \(\nu_P \), and \(\{e_1, \ldots, e_d\} \) is a basis of the lattice \(N \).

\[
\nu_P := \sum_{v \in V(P)} v.
\]

By the existing classification we can check that theorem 1 holds for \(d \leq 2 \) ([12] proposition 4.1). So we may assume that \(d \geq 3 \).

Let \(F \) be a special facet of \(P \), i.e. \(\langle u^w_F, \nu_P \rangle \geq 0 \) for every \(w \in V(F) \). Of course, there are \(d \) vertices of \(P \) in \(H(F,1) \). The remaining \(2d - 1 \) vertices
are in the hyperplanes \(H(F, i) \) for \(i \in \{0, -1, -2, \ldots, -d\} \), such that

\[
0 \leq \langle u_F, \nu_P \rangle = d + \sum_{i \leq -1} i \cdot |V(P) \cap H(F, i)|.
\]

So there are three cases to consider.

Case 1	Case 2	Case 3			
\(V(P) \cap H(F, 1)	\)	\(d \)	\(d \)	\(d \)
\(V(P) \cap H(F, 0)	\)	\(d \)	\(d \)	\(d - 1 \)
\(V(P) \cap H(F, -1)	\)	\(d - 1 \)	\(d - 2 \)	\(d \)
\(V(P) \cap H(F, -2)	\)	0	1	0
\(V(P)	\)	\(3d - 1 \)	\(3d - 1 \)	\(3d - 1 \)

We will consider these cases separately.

Case 1. There are \(d \) vertices in \(H(F, 0) \), so by lemma 8 \(V(F) \) is a basis of \(N \). We may then assume that \(V(F) = \{ e_1, \ldots, e_d \} \).

The sum of the vertices is a lattice point on \(F \), since \(\langle u_F, \nu_P \rangle = 1 \). As \(P \) is terminal, this must be a vertex \(e_i \) of \(F \), say \(\nu_P = e_1 \). Then a facet \(F' \) of \(P \) is a special facet iff \(e_1 \in V(P) \).

There are \(d - 1 \) vertices in \(H(F, -1) \), so by lemma 9 we get

\[
V(P) \cap H(F, -1) = \{-e_1, \ldots, -e_{j-1}, -e_{j+1}, \ldots, -e_d\},
\]

for some \(1 \leq j \leq d \). Now, there are two possibilities: \(j = 1 \) or \(j \neq 1 \), that is \(-e_1 \notin V(P) \) or \(e_1 \in V(P) \).

\(-e_1 \notin V(P) \). Then \(-e_i \in V(P) \) for every \(2 \leq i \leq d \). There are \(d \) vertices in \(H(F, 0) \), so by lemma 8 there is a vertex \(-e_1 + e_{a_1} \), which we can assume to be \(-e_1 + e_2 \).

Consider the facet \(F' = N(F, e_2) \). This is a special facet, so we can show that

\[
V(P) \cap H(F', -1) = V(-F') \setminus \{-e_1\}.
\]

The vertex \(-e_1 + e_2 \) is in the hyperplane \(H(F', -1) \). So \(e_1 - e_2 \) is a vertex of \(F' \) (lemma 9), and then of \(P \).

For every \(3 \leq i \leq d \) we use the same procedure to show that \(-e_i + e_{a_i} \) and \(-e_{a_i} + e_i \) are vertices of \(P \). This shows that \(d \) is even and that \(P \) is isomorphic to the convex hull of the points in \(\{e_i\} \).

\(-e_1 \in V(P) \). We may assume \(-e_d \notin V(P) \). The sum of the vertices \(V(P) \) is \(e_1 \), so there are exactly two vertices in \(H(F, 0) \) of the form \(-e_k + e_1 \) and \(-e_l + e_1 \), \(k \neq l \). We wish to show that \(k = d \) or...
l = d. This is obvious for d = 3. So suppose d ≥ 4 and k, l ≠ d, that is \(-e_k, -e_l \in \mathcal{V}(P)\).
Consider the facet \(F' = N(F, e_k)\), which is a special facet. So by the arguments above we get that
\[
\mathcal{V}(P) \cap H(F', -1) = \mathcal{V}(-F') \setminus \{-e_d\}.
\]
As \(\mathcal{V}(F') = \{e_1, \ldots, e_{k-1}, e_{k+1}, e_d, -e_k + e_1\}\), we have that \(-e_1 + e_k\) must be a vertex of \(P\). In a similar way we get that \(-e_1 + e_l\) is a vertex of \(P\). But this is a contradiction. So \(k\) or \(l\) is equal to \(d\), and without loss of generality, we can assume that \(k = 2\) and \(l = d\).
For \(3 ≤ i ≤ d - 1\) we proceed in a similar way to get that both \(-e_i + e_{a_i} = -e_{a_i} + e_i\) are vertices of \(P\).
And so we have showed that \(d\) must be uneven and that \(P\) is isomorphic to the convex hull of the points in \(\{e_1, \ldots, e_d\}\).

Case 2. Since \((u_F, v_P) = 0\), the sum of the vertices is the origin, so every facet of \(P\) is special. There are \(d\) vertices in \(H(F, 0)\), so \(\mathcal{V}(F)\) is a basis of \(N\) (lemma \(\xi\)). Without loss of generality, we can assume \(\mathcal{V}(F) = \{e_1, \ldots, e_d\}\). By lemma \(\nu\)
\[
x ∈ \mathcal{V}(P) ∩ H(F, -1) \implies x = -e_i\text{ for some } 1 ≤ i ≤ d.
\]
Consider the single vertex \(v\) in the hyperplane \(H(F, -2)\). If \(\langle u_F^j, v \rangle > 0\) for some \(j\) then \(\langle u_F^j, v \rangle < -2\) for the facet \(F' = N(F, e_j)\) (lemma \(\eta\)), which is not the case as \(F'\) is special. So \(\langle u_F^j, v \rangle ≤ 0\) for every \(1 ≤ j ≤ d\). As \(v\) is a primitive lattice point we can without loss of generality assume \(v = -e_1 - e_2\).
There are \(d\) vertices in \(H(F, 0)\), so there is a vertex of the form \(-e_1 + e_j\) for some \(j ≠ 1\). If \(j = 2\), then \(-e_1 \in \text{conv}\{-e_1 + e_2, -e_1 - e_2\}\) which is not the case as \(P\) is terminal. So we may assume \(j = 3\). In \(H(F, 0)\) we also find the vertex \(-e_2 + e_i\) for some \(i\). A similar argument yields \(i ≠ 1\).
Let \(G = N(F, e_1)\). Then \(\mathcal{V}(G)\) is a basis of the lattice \(N\). Write \(v\) in this basis.
\[
v = (-e_1 + e_3) - e_3 - e_2.
\]
As \(i ≠ 1\), \(-e_2 + e_i\) is in \(H(G, 0)\) and is equal to \(n(G, e_2)\) (lemma \(\zeta\)). If \(v ≠ n(G, e_3)\) we have a contradiction to lemma \(\zeta\). Therefore \(v = n(G, e_3)\), and \(\text{conv}\{v, -e_1 + e_3, e_2\}\) is a face of \(P\).
As \(e_3\) and \(-e_1 + e_3\) are vertices of \(P\), there are at least two vertices of \(P\) with positive \(e_3\)-coordinate (with respect to the basis \(F\) provides). There is exactly one vertex in \(H(F, 0)\) with negative \(e_3\)-coordinate,
namely $-e_3 + e_k$ for some k. Any other has to be in $H(F, -1)$. The vertices of P add to 0, so the point $-e_3$ must be a vertex of P.

But $-e_3 = -(e_1 + e_3) + v + e_2$, which cannot be the case as P is simplicial.

We conclude that case 2 is not possible.

Case 3. In this case we also have $\langle u_F, \nu_P \rangle = 0$, so every facet is special. Case 2 was not possible, so $-1 \leq u_G(v) \leq 1$ for any facet G and any vertex v of P. By lemma 6 we may assume that $V(F)$ is a basis of N, say $V(F) = \{e_1, \ldots, e_d\}$. As case 2 was not possible,

$$V(P) \cap H(F, -1) = \{-e_1, \ldots, -e_d\}.$$

Let x be any vertex in $H(F, 0)$. There exists at least one $1 \leq i \leq d$, such that $\langle u_F^i, x \rangle = -1$. Consider the facet $F' = N(F, e_i)$: $V(F') = (V(F) \setminus \{e_i\}) \cup \{x\}$ is a basis of N. Case 2 was not possible, so $V(P) \cap H(F', -1) = -V(F')$, which implies $-x \in V(P)$.

This shows that P is centrally symmetric and d must be uneven. By [12] theorem 5.9 P is isomorphic to the convex hull of the points in (3).

This ends the proof of theorem 1.

References

[1] V. V. Batyrev, Toroidal Fano 3-folds, Math. USSR-Izv. 19 (1982), 13–25.

[2] V. V. Batyrev, On the classification of smooth projective toric varieties, Tohoku Math. J. 43 (1991), 569–585.

[3] V. V. Batyrev, Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Algebraic Geom. 3 (1994), no. 3, 493–535.

[4] V. V. Batyrev, On the classification of toric Fano 4-folds, J. Math. Sci. (New York) 94 (1999), 1021–1050.

[5] C. Casagrande, Centrally symmetric generators in toric Fano varieties, Manuscr. Math. 111 (2003), 471–485.

[6] C. Casagrande, The number of vertices of a Fano polytope, Ann. Inst. Fourier 56 (2006), 121–130.

[7] O. Debarre, Toric Fano varieties in Higher dimensional varieties and rational points, lectures of the summer school and conference, Budapest 2001, Bolyai Society Mathematical Studies 12, Springer, 2001.
REFERENCES

[8] G. Ewald, *On the classification of toric Fano varieties*, Discrete Comput. Geom. 3 (1988), 49–54.

[9] P. Kleinschmidt, *A classification of toric varieties with few generators*, Aequationes Math 35 (1988), no.2-3, 254–266.

[10] M. Kreuzer & H. Skarke, *Classification of reflexive polyhedra in three dimensions*, Adv. Theor. Math. Phys. 2 (1998), 853–871.

[11] M. Kreuzer & H. Skarke, *Complete classification of reflexive polyhedra in four dimensions*, Adv. Theor. Math. Phys. 4 (2000), 1209–1230.

[12] B. Nill, *Gorenstein toric Fano varieties*, Manuscr. Math. 116 (2005), 183–210.

[13] B. Nill. *Classification of pseudo-symmetric simplicial reflexive polytopes*, Preprint, math.AG/0511294, 2005.

[14] H. Sato, *Toward the classification of higher-dimensional Toric Fano varieties*, Tohoku Math. J. 52 (2000), 383–413.

[15] V.E. Voskresenskij & A. Klyachko, *Toric Fano varieties and systems of roots*. Math. USSR-Izv. 24 (1985), 221–244.

[16] K. Watanabe & M. Watanabe, *The classification of Fano 3-folds with torus embeddings*, Tokyo Math. J. 5 (1982), 37–48.

Department of Mathematical Sciences

University of Aarhus

8000 Aarhus C

Denmark

E-mail address: oebro@imf.au.dk