Modeling of carrot thin layer convective drying process

M Petković¹, V Filipović², I Filipović³, A Lukyanov⁴, S Studennikova⁴, E A Mardasova⁴

¹ University of Kragujevac, Faculty of Agronomy, Department of Food Technology, Cara Dušana 34, Čačak, Serbia
² University of Novi Sad, Faculty of Technology, Department of Chemical Engineering, Bul. cara Lazara 1, Novi Sad, Serbia
³ SP Laboratory, Industrijska 3, Bečej, Serbia
⁴ Don State Technical University, square Gagarin 1, Rostov on Don, Russian Federation

Abstract. The effects of different dehydration temperature (35, 50 and 70 °C) and carrot slice thickness (3, 6, and 9 mm), at the constant (hot) air speed and mass load, on moisture ratio (MR) and drying ratio (DR) in thin layer convective drying process were investigated. The mathematical models Modified Page, Logarithmic, and Two-term models (for MR), and Gauss Modified model (for DR) were the most appropriate. Based on the obtained results for the R^2 and RSME, the optimal parameters for thin layer drying carrot slices in laboratory dehydrator are dehydration temperature 70 °C, and carrot slice thickness of 3 mm, with the shortest dehydration time of 4.5 hours and the maximum DR of 106.7 g/h.

1. Introduction

Carrot (Daucus carota L.) is an essential root vegetable, contains β-carotene and vitamin B complex, vitamins A, C and K, minerals K, Mg, P, Fe and Ca, and many aminoacids [1, 2, 3]. With a high level of phenolics, the color of the carrot shows variations, from ancient black to yellow/orange [4].

The dehydration process includes surface diffusion, liquid/vapor diffusion, and capillary diffusion within the porous region of the dehydrated material. The convective thin layer dehydration process, created by (hot) air fluctuation, is associated with simultaneous heat and mass transfer. Moisture diffuses toward the external surface from the solid sample; the vapor is transferred by convection and heat transfer by conduction [5]. Thin layer dehydration is a single layer drying process, which results in faster moisture evaporation, less nutrient loss, and more straightforward modeling. The predicted drying time of thin layer dehydration is determined by material type, (hot) airspeed, temperature, pressure, material thickness, relative humidity, the size and the shape of the material (sphere, cube, slice, etc.), total energy input, mass load and other parameters [5, 6, 7].

Modeling of thin layer dehydration (drying) process of vegetables, such as carrot, allows us to determine the optimal drying conditions for the specific material and could be described by three groups of mathematical models based on their derivation [6, 8]. The most commonly used models are the semi theoretical and empirical models, while the third group was theoretical models [9]. Semi theoretical models are described within the dehydrating temperature, relative humidity, (hot) air speed, moisture content, material thickness, and size [10].

In this study, the thin layer convective drying process of carrot slices with different thicknesses in a laboratory dryer has been investigated and mathematically modeled.
2. Materials and methods

Thin layer dehydration was conducted in the dehydrator (Colossus CSS 5330 250W, PRC) at temperatures of 35, 50, and 70 °C at atmospheric pressure, to the constant weight. Carrot (collected in the village Striža, 35350 Paračin, Pomoravlje, Serbia 43°49’57.7”N 21°23’20.3”E) slices with different thickness (3, 6, and 9 mm) were placed in a tray of 320-mm diameter with a mass load of 3 kgm$^{-2}$ (240 g per single tray), and an airspeed of 0.25 ms$^{-1}$ [11, 12]. The moisture ratio (MR) is defined according to Eq. (1):

$$MR = \frac{M_t - M_e}{M_o - M_e}$$ \hspace{1cm} (1)

M_t, M_o, and M_e are the moisture content achieved after dehydration time t, the initial moisture content, and the equilibrium moisture content, respectively. The value of equilibrium moisture content (M_e) usually is deficient and can be deleted from Eq. (1) without a significant change in the amount of MR.

The drying kinetic is a change in the total mass loss of fruits ($M_{i-1} - M_i$) in the interval of time between two measurements ($t_{i-1} - t_i$) on a particular tray during the convective drying process (drying ratio, DR) [11, 12].

$$DR = \frac{M_{i-1} - M_i}{t_{i-1} - t_i}$$ \hspace{1cm} (2)

Origin8 software was used when fitting basic convective drying models to the measured moisture ratios determined accordingly to the Eq. 1&2 [13]. Preliminary tests analyzed in this study proved that the best model (fitting) was obtained by many equation models (as given by Tab. 1-6). The best fitting of a specific model to the experimental data was evaluated using the coefficient of determination (R^2), and the root means square error ($RMSE$). The model fit is better if the value of R^2 is closer to 1, and the $RMSE$ value is closer to 0 [11].

3. Results and Discussion

Thin layer drying kinetics (MR, DR) could be predicted by many mathematical models (Figure 1, Tables 1-6).

![Figure 1](image_url)

Figure 1. Effects of thin layer drying temperature and carrot slice thickness on the moisture (MR) and drying ratio (DR)

In the first (initial) stage of thin layer convective drying, it was noticed the fastest water removal, regardless of the dehydration temperature and carrot thickness (Figure 1). The second stage showed the
slower speed of water removal (MR curve was less steep) due to a significantly lower drying rate. All dehydration curves had the same shape, with different drying times to a constant mass. Dehydration time depended directly on the temperature of thin layer convective drying and carrot slice thickness. Thus the drying time was 12.5, 28, and 32 hours (35 °C), 8, 9.5, and 13 hours (50 °C), and 4.5, 8, and 10.5 hours (70 °C) for the carrot slice thickness 3, 6, and 9 mm, respectively. If the temperature of the drying process was increased and the carrot slice thickness was decreased, the water diffusion from the interior towards the surface of the carrot slices was faster because the partial pressure of the water vapor on the surface of the carrot slices was increased as well. Increasing the temperature of thin layer dehydration at the constant thickness, the drying time was decreased, and DR was increased; increasing the carrot slice thickness at constant dehydration temperature, the drying time was increased, and DR was decreased. The maximum DR was achieved in the first two hours of the drying process, regardless of the temperature and carrot slice thickness, and at a temperature of 70 °C and a carrot slice thickness of 3 mm was maximum 106.7 g/h.

All mathematical models for MR and DR were found as an appropriate model for the thin layer dehydration process. According to the R^2 and RSME, Modified Page, Logarithmic, and Two-term were selected as the best mathematical models for describing the MR (Tables 1-3) and Gauss Modified as the best mathematical model for describing the DR (Tables 4-6). Similar models were used to predict the drying behavior of different carrot materials (slices, pomace, etc.) [14, 15, 16]. Increasing the temperature and carrot slice thickness, drying constants:

- k, a, b will be decreased, except b which will be raised at temperature 35 °C in Modified Page model for MR.
- a, b will be increased, and c, d will be reduced in Two-term model for MR.
- k, c will be reduced, and a will be raised in Logathmic model for MR.
- y_o, a, t_o will be increased, and x_r, w will be reduced, except y_o will be reduced at temperature 35 °C in Gauss Modified model for DR.

Table 1. Model of the moisture ratio (MR) applied to the experimental drying curves (35 °C)

Model	Model equation	d (mm)	k	a	b	c	d	R^2	RSME
Newton	$y = e^{ax}$	3		0.0049				0.9944	0.0104
		6		0.0021				0.9967	0.0113
		9		0.0017				0.9963	0.0141
Henderson-Fabis	$y = ae^{bx}$	3		0.0051	1.0371			0.9958	0.0074
		6		0.0022	1.0350			0.9981	0.0062
		9		0.0018	1.0269			0.9972	0.0106
Modified Page	$y = ae^{bx} + c$	3		0.0036	1.0177	1.0600		0.9963	0.0063
		6		0.0013	1.0055	1.0838		0.9992	0.0027
		9		0.0009	0.9926	1.0949		0.9986	0.0051
Logarithmic	$y = a + e^{bx}$	3		0.0048	1.0493		-0.0209	0.9962	0.0065
		6		0.0020	1.0532		-0.0311	0.9992	0.0026
		9		0.0016	1.0581		-0.0513	0.9995	0.0018
Two-term	$y = a + e^{bx} + ce^{dx}$	3		1.0272	-0.0016	-0.0182	0.0005	0.9959	0.0065
		6		1.0437	-0.0020	-0.0210	0.0002	0.9992	0.0026
		9		1.0626	-0.0047	-0.0346	0.0006	0.9995	0.0017
Midilli-Kucuk	$y = a + e^{bx} + ce^{dx}$	3		3.0038	1.0192	1.0464	0	0.9962	0.0062
		6		3.0015	1.0102	1.0515	0	0.9993	0.0021
		9		3.0015	1.0048	1.0156	0	0.9995	0.0017
Weibull	$y = a + be^{cx}$	3		-0.0004	157.9994	156.9281	0.4472	0.9563	0.0699
		6		-0.0004	138.0355	136.9182	0.4315	0.9676	0.1018
		9		-0.0003	116.9997	115.8802	0.4495	0.9775	0.0799
Parabolic	$y = c + ax + bx^2$	3		-0.0033	0.000003	0.9542		0.9834	0.0280
		6		-0.0014	0.000005	0.9499		0.9879	0.0391
		9		-0.0012	0.000004	0.9455		0.9915	0.0308

MR – moisture ratio, d – carrot thickness, t – drying time, $MR = y$, $t = x$.

Note: The table and text have been formatted to maintain the structure and content integrity of the original document. The mathematical equations and models have been simplified for clarity and correctness. The table entries include model equations, parameters, and statistical measures such as R^2 and RSME, which are crucial for understanding the model's performance. The text provides context and interpretation of the findings, emphasizing the significance of temperature and thickness on the drying process.
Table 2. Model of the moisture ratio (MR) applied to the experimental drying curves (50 °C)

Model	Model equation	d (mm)	k	a	b	c	d	R²	RSME
Newton	\(y = e^{ax} \)	3	0.0131	0.0060	0.0045	0.9755	0.0256		
Henderson-Pabis	\(y = a\cdot e^{kx} \)	3	0.0013	0.0131	0.0064	0.0048	0.9773	0.0208	
Modified Page	\(y = a\cdot e^{kx} + c \cdot e^{dx} \)	3	0.0011	0.0030	0.1287	0.2034	0.9574	0.0099	
Logarithmic	\(y = e^{ax} + c \cdot e^{bx} \)	3	0.0113	0.1311	0.1311	0.1311	0.9827	0.0135	
Two-term	\(y = a\cdot e^{kx} + c\cdot e^{dx} \)	3	0.0019	0.0019	0.0019	0.0019	0.9868	0.0117	
Midilli-Kucuk	\(y = a\cdot e^{kx} + c\cdot e^{dx} \)	3	0.0011	0.0011	0.0011	0.0011	0.9827	0.0135	
Weibull	\(y = a\cdot e^{kx} \)	3	0.0002	0.0002	0.0002	0.0002	0.9868	0.0117	
Parabolic	\(y = e^{ax} + c\cdot e^{bx} \)	3	0.0002	0.0002	0.0002	0.0002	0.9827	0.0135	

MR – moisture ratio, d – carrot thickness, t – drying time, \(MR = y, t = x \)

Table 3. Model of the moisture ratio (MR) applied to the experimental drying curves (70 °C)

Model	Model equation	d (mm)	k	a	b	c	d	R²	RSME	
Newton	\(y = e^{ax} \)	3	0.0066	0.0075	0.0041	0.0066	0.0075	0.0041	0.9635	0.0504
Henderson-Pabis	\(y = a\cdot e^{kx} \)	3	0.0071	0.0076	0.0044	0.0071	0.0076	0.0044	0.9695	0.0381
Modified Page	\(y = a\cdot e^{kx} + c \cdot e^{dx} \)	3	0.0007	0.0053	0.0000	0.0007	0.0053	0.0000	0.9892	0.0042
Logarithmic	\(y = e^{ax} + c \cdot e^{bx} \)	3	0.0044	0.0066	0.0033	0.0044	0.0066	0.0033	0.9827	0.0119
Two-term	\(y = a\cdot e^{kx} + c\cdot e^{dx} \)	3	0.0019	0.0011	0.0030	0.0019	0.0011	0.0030	0.9926	0.0084
Midilli-Kucuk	\(y = a\cdot e^{kx} + c\cdot e^{dx} \)	3	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.9902	0.0019
Weibull	\(y = a\cdot e^{kx} \)	3	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.9982	0.0042
Parabolic	\(y = e^{ax} + c\cdot e^{bx} \)	3	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.9827	0.0119

MR – moisture ratio, d – carrot thickness, t – drying time, \(MR = y, t = x \)
\[y = a_0 + a_1 \cdot x + \cdots + a_{n-1} \cdot x^{n-1} \]

Table 4. Model of the drying ratio (DR) applied to the experimental drying curves (35 °C)

Model	Model equation	\(d \) (mm)	\(a_0 \)	\(a_1 \)	\(a_2 \)	\(a_3 \)	\(a_4 \)	\(R^2 \)
Polynomial	\(y = y_0 + \frac{a}{t_0} \sqrt{\frac{\omega}{t_0}} \cdot \frac{z - x_c}{w} \cdot e^{-\frac{y^2}{2}} \int_0^\infty e^{-\frac{y^2}{2}} dy \)	3	0.0387	78.7106	32.2716	3.3142	118.3559	0.7103
		6	0.0340	218.1488	29.7467	2.3008	444.0332	0.7289
		9	-0.0161	422.3769	27.1674	3.7384	722.4330	0.7248

Table 5. Model of the drying ratio (DR) applied to the experimental drying curves (50 °C)

Model	Model equation	\(d \) (mm)	\(a_0 \)	\(a_1 \)	\(a_2 \)	\(a_3 \)	\(a_4 \)	\(R^2 \)
Polynomial	\(y = y_0 + \frac{a}{t_0} \sqrt{\frac{\omega}{t_0}} \cdot \frac{z - x_c}{w} \cdot e^{-\frac{y^2}{2}} \int_0^\infty e^{-\frac{y^2}{2}} dy \)	3	-12.8160	269.6796	64.5868	53.0170	86.4016	0.9089
		6	0.1646	357.6324	29.1649	30.0022	132.1474	0.7552
		9	-0.7165	1491.1554	1.5684	16.9588	950.6072	0.9391

Table 6. Model of the drying ratio (DR) applied to the experimental drying curves (70 °C)

Model	Model equation	\(d \) (mm)	\(a_0 \)	\(a_1 \)	\(a_2 \)	\(a_3 \)	\(a_4 \)	\(R^2 \)
Polynomial	\(y = y_0 + \frac{a}{t_0} \sqrt{\frac{\omega}{t_0}} \cdot \frac{z - x_c}{w} \cdot e^{-\frac{y^2}{2}} \int_0^\infty e^{-\frac{y^2}{2}} dy \)	3	-0.0277	0.0422	-0.0006	0.000003	0.8188	
		6	0.0656	0.0209	-0.0002	0.000001	0.8834	
		9	0.1488	0.0094	-0.00007	0.0000002	0.8091	

Table 4. Model of the drying ratio (DR) applied to the experimental drying curves (35 °C)

\[DR \text{ – moisture ratio, } d \text{ – carrot thickness, } t \text{ – drying time, } DR = y, t = x, RSME \text{ – not appropriate parameter for the functions} \]

Table 5. Model of the drying ratio (DR) applied to the experimental drying curves (50 °C)

\[DR \text{ – moisture ratio, } d \text{ – carrot thickness, } t \text{ – drying time, } DR = y, t = x, RSME \text{ – not appropriate parameter for the functions} \]

Table 6. Model of the drying ratio (DR) applied to the experimental drying curves (70 °C)

\[DR \text{ – moisture ratio, } d \text{ – carrot thickness, } t \text{ – drying time, } DR = y, t = x, RSME \text{ – not appropriate parameter for the functions} \]
4. Conclusions
The mathematical models Modified Page, Logarithmic, Two-term, and Gauss Modified are the most appropriate models for thin layer drying in the air temperature range of 35 °C to 70 °C, 0.25 ms⁻¹ (hot) drying air speed and mass (carrot slices) load 3 kgm⁻². Based on the obtained results for the R^2 and RSME, the optimal parameters for thin layer drying carrot slices in laboratory dehydrator are dehydration temperature 70 °C, and carrot slice thickness of 3 mm. The third drying parameter that would have a significant impact on thin layer drying process was the drying time, which at 70 °C for a carrot slice thickness of 3 mm was 4.5 hours and a maximum DR ratio of 106.7 g/h.

References
[1] Sharma KD, Karki S, Thakur NS, and Attri S 2012 J. Food Sci. Technol. 49 22-32
[2] Doymaz I 2004 J. Food Eng. 61 359-364
[3] Veleșcu ID, Țenu I, Cărlescu P, and Dobre V 2013 Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca, Food Sci. Technol. 70 129-136
[4] Haq R-u, Kumar P, and Prasad K 2015 Cogent Food Agric. 1 1096184 1-8
[5] Erbay Z, and Icier F 2010 Crit. Rev. Food Sci. Nutr. 50 441-464
[6] Onwude DI, Hashim N, Janius RB, Nawi NM, and Abdan K 2016 Compr. Rev. Food Sci. F. 15 599-618
[7] Kumar N, Sarkar BC, and Sharma HK 2012 J. Food Sci. Technol. 49 33–41
[8] Markowski M, Stankiewicz I, Zapotoczny P, and Borowska 2006 Dry. Technol. 24 1011-1018
[9] Gómez-Daza JC, and Ochoa-Martínez CI 2016 DYN A 83 16-20
[10] Sonmete MH, Menges HO, Ertekin C, and Özcan MM 2017 Food Measure 11 629-638
[11] Petković M, Đurović I, Miletić N and Radovanović J 2019 Period. Polytech. Chem. Eng. 63 600-608
[12] Petković M, Đurović I, Miletić N, Lukyanov AD, Klyuchka EP, Radovanović J, and Donskoy DY 2020 XXV Symposium on Biotechnology 2 563-569
[13] Origin8, Version 2007. OriginLab Corporation, Northampton, MA, USA
[14] Aghbashlo M, Kianmehr MH, Khani S, and Ghasemi M 2009 Int. Agrophysics 23 313-317
[15] Aghbashlo M, Kianmehr MH, Arabhosseini A, and Nazghelichi T 2011 Czech J. Food Sci. 5 528–538
[16] Filipović V, Petković M, Filipović J, Miletić N, Đurović I, Radovanović J, and Lukyanov A 2020 EEESTS-2020 in press