The 1,4-naphthoquinones (1,4-NQs) are a diverse group of natural products found in every kingdom of life. Plants, including many horticultural species, collectively synthesize hundreds of specialized 1,4-NQs with ecological roles in plant–plant (allelopathy), plant–insect and plant–microbe interactions. Numerous horticultural plants producing 1,4-NQs have also served as sources of traditional medicines for hundreds of years. As a result, horticultural species have been at the forefront of many basic studies conducted to understand the metabolism and function of specialized plant 1,4-NQs. Several 1,4-NQ natural products derived from horticultural plants have also emerged as promising scaffolds for developing new drugs. In this review, the current understanding of the core metabolic pathways leading to plant 1,4-NQs is provided with additional emphasis on downstream natural products originating from horticultural species. An overview on the biochemical mechanisms of action, both from an ecological and pharmacological perspective, of 1,4-NQs derived from horticultural plants is also provided. In addition, future directions for improving basic knowledge about plant 1,4-NQ metabolism are discussed.

Horticulture Research (2016) 3, 16046; doi:10.1038/hortres.2016.46; Published online 21 September 2016

INTRODUCTION

The 1,4-naphthoquinones (1,4-NQs) are redox active compounds structurally related to naphthalene that are comprised of a benzene moiety (ring A) linearly fused with a fully conjugated cyclic diketone (ring B) in which the carbonyl groups are arranged in the para orientation (Figure 1a). In living organisms, 1,4-NQs encompass a class of natural products containing a 1,4-naphthalenoid ring, often bearing one or more methyl, hydroxyl and/or methoxy substitutions, and, in some molecules, a liposoluble side chain.

The 1,4-NQs are synthesized by organisms throughout all kingdoms of life (described below) and are involved in vital metabolic processes and/or contribute toward adaptation to ecological niches. Filamentous fungi synthesize dozens of 1,4-NQ-based compounds, some of which are reported to be responsible for coloring of sexual fruiting bodies and thought to confer protection against ultraviolet, desiccation and insects. Although restricted to only a handful of lineages, several animals also produce 1,4-NQs, such as those found in secretions of a few tenebrionid beetles and in the scent-producing glands of certain arachnids. Moreover, the sea urchin, Strongylocentrotus purpuratus, is reported to make a red-colored 1,4-NQ called echinochrome in its pigment-producing cells. Within bacteria, the Actinomycetes produce numerous 1,4-NQs, as well as substituted 5,8-dihydroxy-1,4-NQs called naphthazarins (NZs; Figure 1b) that form core moieties in the antimicrobial rubromycins. Many extant archaea and bacteria have retained the ability to synthesize menaquinone (vitamin K2; Figure 1b), which is the 1,4-NQ involved in photosynthesis in plants, green algae, many cyanobacteria and some euglenoids (for example, Euglena gracilis).

Perhaps the greatest diversity of 1,4-NQs is found amongst the specialized natural products synthesized by plants, particularly those by horticultural species (see refs 7,15–20 for further information on the occurrence of plant 1,4-NQs). Collectively, using several different metabolic pathways, plants produce hundreds of specialized 1,4-NQs, NZs and derived metabolites, including certain anthraquinones (AQs; Figure 1b). Together, these natural products possess a multitude of biochemical properties modulating numerous ecological and pharmacological roles, offering new targets for addressing challenges in modern horticulture and providing scaffolds for developing novel drugs.

This review summarizes the current knowledge on the different plant biosynthetic pathways involved in forming simple 1,4-naphthalenoid rings and on the metabolism of downstream 1,4-NQs derived from horticultural species. Advances made in uncovering the molecular mechanisms of action, ecological functions and pharmacological activities of select specialized horticultural plant 1,4-NQs are also highlighted. Table 1 summarizes the horticultural species and 1,4-NQ natural products covered in this review. As the production of some 1,4-NQ natural products involves intermediates shared in phylloquinone biosynthesis, relevant discoveries that have improved the understanding of this primary metabolic pathway in Arabidopsis thaliana will also be described. However, more comprehensive reviews on this pathway have recently become available, as have reviews concerning the metabolism of precursors for each of the 1,4-NQ biosynthetic pathways (for example, for the shikimate pathway).
benzoic acids,24 isoprenoids25 and polyketides.26. Finally, this report will cover future directions for addressing gaps still remaining in understanding specialized plant 1,4-NQ metabolism.

PLANTS HAVE EVOLVED SEVERAL PATHWAYS TO SYNTHESIZE 1,4-NAPHTHALENOID RINGS

In nature, 1,4-NQs are known to be derived from several metabolic pathways: the o-succinylbenzoate (OSB; Figure 2) pathway; the 4-hydroxybenzoic acid (4HBA; Figure 2)/geranyl diphosphate (GPP; Figure 2) pathway; the acetate-polymalonate pathway; the homogentisate (HGA; Figure 2)/mevalonic acid (MVA) pathway; and the futalosine pathway. Except for the futalosine pathway, which was recently discovered to be an alternative route toward menaquinone in some bacteria,27 all of these pathways are present in the plant kingdom. In the OSB, 4HBA/MVA and HGA/MVA pathways, chorismate, the product of the shikimate pathway,23 ultimately provides one of the rings in the core 1,4-naphthalenoid structure, although the chorismate product from which each pathway starts is different (Figure 2). The precursor for the second ring is another feature that differentiates these three pathways (Figure 2). Finally, specialized plant 1,4-NQs synthesized via the acetate-polymalonate pathway, as the name implies, are derived from the condensation of acetyl-CoA with multiple malonyl-CoA molecules (Figure 2).

The OSB pathway

The OSB pathway consists of a core set of seven reactions that convert chorismate to 1,4-dihydroxy-2-naphthoate (DNHA; Figure 2), which supplies the 1,4-naphthalenoid ring for menaquinone in most bacteria and for phylloquinone in all plants. In some plants, DHNA is also the precursor for specialized 1,4-NQs, such as lawsone (2-hydroxy-1,4-NQ; Figure 2) and juglone (5-hydroxy-1,4-NQ; Figure 2). The first indication for the existence of the OSB pathway came in the 1960s when it was shown that [U-14C]-shikimate fed to Escherichia coli and to etiolated maize shoots labeled menaquinone and phylloquinone,28 respectively. Experiments demonstrating that labeling from [U-14C]-shikimate could also be retrieved in the benzene moiety (ring A) of lawsone and juglone29 soon followed. First evidence for the origin of the quinone moiety (ring B) in OSB-derived 1,4-NQs came from tracer studies in Impatiens balsamina (Garden balsam) showing that [2-14C]-glutamate30 and [U-14C]-α-ketoglutarate31

Common name	Scientific name	Major 1,4-NQ natural product(s) present
Medicinal or ethnobotanical		
Henna	Lawsonia inermis	Lawsone
Pau d’arco tree	Tabebuia impetiginosa	Lapachol
Madder	Rubia tinctorum	Alizarin
Purple gromwell	Lithospermum	Shikonins
(Zi cao)	erythrorhizium	
Arnebia	Arnebia euchroma	
Alkannet	Alkanna tinctoria	Alkannins
Arizona popcorn flower	Plagiothelys anenicus	
Pipsissewa	Chimaphila umbellata	Chimaphilins
One-flowered wintergreen	Moneses uniflora	
Indian leadwort	Plumbago indica	Plumbagin
Ornamental		
Garden balsam	Impatiens balsamina	Lawsone
Himalayan balsam	Impatiens glandulifera	Lawsone, 2-MNQ
Venus fly trap	Dionaea muscipula	Plumbagin, droserone
Pitcher plants	Nepenthes sp.	Plumbagin, droserone, 7-Methyljuglone
Nuts and seeds		
Black walnut	Juglans nigra	Juglone
English walnut	Juglans regia	Juglone
Pecan	Carya illinoensis	
Sesame	Sesamum indicum	Anthrasesamones

Abbreviations: 1,4-NQ, 1,4-naphthoquinone; 2-MNQ, 2-methoxy-1,4-NQ.
labeled lawsone in a specific pattern. Extension of this finding led to further investigations establishing that OSB is an intermediate and that DHNA is the product from which the OSB pathway branches toward production of various 1,4-NQs.35–39 Nearly all the plant OSB pathway genes have been identified and functionally characterized from biochemical and genetic studies investigating phylloquinone biosynthesis in *Arabidopsis*.40–44

The OSB route begins with the isomerization of chorismate to...
isochorismate by isochorismate synthase (ICS) (reaction 1, Figure 2), an enzyme that is shared with plant pathways for salicylic acid and 2,3-dihydroxybenzoic acid biosynthesis. Isochorismate is then the substrate for PHYLLO, a trifunctional enzyme with 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-2-carboxylate (SEPHCHC) synthase, 2-succinyl-6-hydroxy-2,4-cyclohexadiene-2-carboxylate (SHCHC) synthase and OSB synthase domains (reactions 2–4, Figure 2). On the basis of biochemical characterization of their bacterial orthologs, these enzymes, respectively, are known to catalyze the addition of a ketoglutarate (ultimately providing the succinyl side chain of OSB) to form SEPHCHC, the 2,5-elimination of the pyruvyl side chain to form SHCHC, and dehydration to produce OSB. The aromatized ring of which serves as the benzene moiety (ring A) in the eventual 1,4-naphthalenoid structure of DHNA (Figure 2). Next, the succinyl side chain of OSB is activated to its corresponding CoA-ester by OSB-CoA ligase (reaction 5, Figure 2) and cyclized by DHNA-CoA synthase (reaction 6, Figure 2) (formerly misnamed as DHNA synthase) to produce the quinone moiety (ring B) in the resulting product, DHNA-CoA (Figure 2). Although no plant DHNA-CoA synthase has been functionally characterized, a predicted ortholog of the E. coli DHNA-CoA synthase gene, menB, is present in Arabidopsis and co-expresses with other known phyloquinone biosynthetic genes. Phylogenetic reconstruction has revealed that plant DHNA-CoA synthases belong to the type I class, which rely on bound bicarbonate as the catalytic base, suggesting the OSB pathway and GPP produced by the MEP pathway as the sources of rings A and B, respectively indicating that DHNA must be transported from peroxisomes to plastids and converted to peroxisomes. Together, these data suggest that OSB and/or OSB-CoA is exported from plastids and converted to DHNA in peroxisomes. The final three enzymes in phyloquinone biosynthesis, including the plant methylerythritol 4-phosphate (MEP) pathway, which is localized in plastids, is overwhelmingly the dominant source of isopentenyl diphosphate/dimethylallyl diphosphate (DMAPP) used to synthesize ring C of their respective AQs (Figure 2). Similarly, labeling patterns retrieved in the anthracesaum-type AQs produced by sesame (S. indicum) hairy root cultures fed with [1-13C]-glucose revealed DHNA from the OSB pathway and GPP produced by the MEP pathway as the sources of rings A and B, and ring C, respectively. These studies are in agreement with those performed by Leistner showing that [2-13C]- and [5-13C]-mevalonic acid are negligibly incorporated into ring C of alizarin (Figure 1b), a red pigment produced in roots of madder (R. tinctorum). It still remains an open question if there are additional subcellular destinations for DHNA in plants as, described below, none of the specialized 1,4-NQ biosynthetic enzymes downstream of DHNA have been identified. In many members of the Juglandaceae, including black walnut (Juglans nigra) and English walnut (J. regia), DHNA is an intermediate in the synthesis of juglone and several other related 1,4-NQs. Chemical degradation of juglone isolated from J. regia leaves fed with radiolabeled precursor revealed that the carboxyl group of shikimate is equally distributed between the keto groups (C1 and C4) in the quinone moiety of juglone, leading to the hypothesis that a symmetrical intermediate like 1,4-naphthoquinone (Figure 2) must be an intermediate in the pathway. Indeed, 1,4-naphthoquinone was found to be present in J. regia leaves and to be labeled by radiolabeled OSB. This suggests the existence of an enzyme that decarboxylates DHNA to 1,4-naphthoquinone. The subsequent conversion of 1,4-naphthoquinone to juglone is likely to be carried out by a hydroxylase, perhaps belonging to the cytochrome P450 or 2-oxoglutarate/Fe(II)-dependent dioxygenase (2-ODD) families.
Phenolic compounds are often glycosylated to increase their solubility and stability, to aide in transport and sequestration, and to render the compounds physiologically inactive in plants. This should come as no surprise then that in several species, such as black and English walnut, major, J. microcarpa and a number of pecan (Carya illinoensis) cultivars, juglone has been found to accumulate in many tissues in its glycosylated form, hydrojuglone glucoside (HJG; 1,5-dihydroxy-4-naphthalenyl-β-D-glucopyranoside; Figure 1b). This modification may allow juglone to be stored in large quantities and to reduce the potential for autotoxicity. In English walnut leaves, glycosyltransferase activity with a benzoquinone substrate has been detected, though the responsible enzyme is unknown and activity with HJG has yet to be demonstrated. Moreover, glycosylation depends on the quinone substrate being in its reduced form, thus implicating the existence of an oxidoreductase capable of first reducing juglone to hydrojuglone (1,4,5-trihydroxynaphthalene; Figure 1b).

Although there have been no reports on the presence of such an enzyme in Juglans species, a quinone oxidoreductase that uses NADH or NADPH as electron donors to reduce a variety of quinones, including juglone, has been identified in roots of the parasitic plant Triphysaria versicolor. Just as reduction followed by glycosylation inactivates juglone, deglycosylation of HJG by an unknown β-glucosidase purified from English walnut husks releases hydrojuglone aglycone, which then spontaneously oxidizes to generate active juglone.

Another major specialized 1,4-NQ derived from DHNA is lawsone, the molecule responsible for the reddish-orange dyestuff extracted from Henna (Lawsonia inermis) leaves. Lawsone is also found in the flowering aerial parts and roots of several Impatiens species. Similar to juglone, lawsone is a simple hydroxylated 1,4-NQ, though its biosynthesis is quite different. This idea first emerged after feeding studies with I. balsamina showed that labeled shikonate incorporated into juglone and lawsone in different patterns. Later, using the same model species, Chung et al. demonstrated with stable-isotopically labeled [1-13C]-OSB that the C1 keto group of lawsone was substantially more highly labeled compared with the C4 keto group, indicating that OSB is asymmetrically incorporated into lawsone. Therefore, in contrast to juglone, the biosynthesis of lawsone does not proceed through a symmetrical 1,4-naphthoquinone intermediate and is instead likely formed via oxidative decarboxylation of DHNA by an unknown enzyme (Figure 2). The glucosylated form of reduced lawsone, 1,2,4-trihydroxynaphthalene-1-O-glucoside (Figure 1b), has been reported in Impatiens glandulifera (Himalayan balsam), thus pointing to the presence of an oxidoreductase and a glycosyltransferase analogus to those involved in metabolizing juglone.

Lawsone is also precursor to other 1,4-NQ natural products. An allelopathically methylated lawsone derivative, 2-methoxy-1,4-NQ (2-MNQ; Figure 2), is found in many tissues of several Impatiens species and is almost certainly formed via an S-adenosylmethionine-dependent O-methyltransferase. In several native Central and South American trees, including the Pau d’arco tree (Red Lapacho; Tabebuia impetiginosa, syn. Tabebuia avellanedae) and Tabebuia guayacan, lawsone is proposed to provide the hydroxylated naphthalenoid structure of the prenylated 1,4-NQ lapachol (Figure 2). The identity of the responsible prenyltransferase is unknown and it is still unclear if the DMAPP moiety of lapachol is predominantly derived from the MEP or MVA pathway. Lapachol is also thought to be a precursor for other 1,4-NQ, 1,2-NQ (for example, β-lapachone) and AQ derivatives (Figure 2) contributing to the resistance of Tabebuia trees to marine borers and to their wide range of medicinal properties.

The 4HBA/MVA pathway

Many boraginaceous species utilize the 4HBA/MVA pathway to synthesize a subclass of 1,4-NQs called isoxenonylnaphthazarins (IHNs). These compounds are comprised of a NZ ring (Figure 1b) conjugated with a lipophilic side chain on the quinone moiety. The IHNs encompass the red-pigmented compounds shikonin, alkannin, and at least 40 other acylated derivatives (Figure 2) synthesized in roots of medicinal species like Lithospermum erythrorhizon and Alkanna tinctoria. Early tracer experiments demonstrated that phenylalanine (via cinnamic acid and 4HBA) and mevalonic acid are precursors for the benzene and quinone rings, respectively, of alkannin produced in Plagiothecium arizonicum. This finding, in combination with isolation of 3-geranyl-4HBA and geranylhydronaphthoquinone from cell cultures of L. erythrorhizon, led to the hypothesis that alkannin and shikonin are likely synthesized via a pathway analogous to ubiquinone biosynthesis with subsequent ring closure reactions (Figure 2).

Biosynthesis of benzoic acids from phenylalanine in plants involves a complex network of metabolic routes branching off the core phenylpropanoid pathway. Administration of the phenylalanine-ammonia lyase (PAL) inhibitor aminidon-2-phosphonic acid to L. erythrorhizon cell cultures effectively blocked shikonin formation. Yazaki et al. demonstrated that the enzymatic formation of 4HBA from 4-coumaric acid (4CA) in L. erythrorhizon cell cultures partially proceeds through the ‘non-oxidative route’ based on the presence of a 4-hydroxybenzoaldehyde intermediate, dependence on NAD and the lack of an ATP or CoA requirement. It was later discovered that L. erythrorhizon cell cultures are also capable of converting 4CA-CoA to 4HBA via the ‘β-oxidative route’, which was recently shown to provide the 4HBA ring for ubiquinone biosynthesis in Arabidopsis. Genes encoding the core phenylpropanoid pathway enzymes PAL, cinnamic acid 4-hydroxylase (C4H) and 4CA-CoA ligase (4CL) have been cloned and studied from L. erythrorhizon and Anemia euchroma, but those involved in the ‘non-oxidative’ and ‘β-oxidative’ routes have not. Benzoic acid ‘β-oxidative route’ genes have been identified in other species, while all but one of the ‘non-oxidative route’ genes remain unknown across all plants. Once synthesized, 4HBA can be glucosylated by a cytosolic glucosyltransferase and stored in the vacuole until released to its free form by a cytosolic β-glucosidase upon stimulation of shikonin production.

In plants, GPP is predominantly synthesized from isopentenyl diphosphate and DMAPP derived from the MEP pathway using a GPP synthase (GPPS) localized in plastids. It is therefore noteworthy that the GPP precursor ultimately providing ring B of shikonin- and alkannin-type 1,4-NQs was shown to be derived from the MVA pathway (based on labeling and inhibitor studies) and to originate via the only known cytosolically localized GPPS (reaction 11, Figure 2). Expression of multiple MVA pathway genes in A. euchroma, and the activity and cognate gene expression of the key MVA pathway enzyme 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) in L. erythrorhizon, correlate with shikonin production. Generally, MVA pathway genes are more highly expressed in non-photosynthetic tissues, like roots, whereas MEP pathway genes are primarily active in green tissues.

The committed step of shikonin and alkannin biosynthesis begins with the addition of GPP to 4HBA by a GPP:4HBA-3-geranyltransferase (p-hydroxybenzoate:geranyltransferase, GTG; reaction 12, Figure 2). Activity of this enzyme was first reported in L. erythrorhizon extracts. Later, GTG was shown to be localized to the endoplasmic reticulum and to have a high affinity for GPP (Km = 18.4 μM) and 4HBA (Km = 13.8 μM). Two cDNAs encoding GTGs with 93% identity were isolated from L. erythrorhizon cell cultures. Subsequent biochemical characterization of one isoform, LeGPT1, revealed that the N-terminal
130 amino acids are responsible for its specificity for GPP109 and that it is inhibited by aromatic substrates with two phenolic hydroxyl groups.110

After the PGT-catalyzed reaction, very little is known about the biosynthesis of shikonin- and alkannin-type 1,4-NQs. It is likely that the next steps entail decarboxylation and hydroxylation of the C1 position of the 3-geranyl-4HBA product of PGT. In bacterial ubiquinone biosynthesis, the C1 position of the polyprenylated 4HBA product is non-oxidatively decarboxylated using a prenylated flavin cofactor to produce a prenylphenol intermediate,111,112 which is hydroxylated further down the pathway.113 It is possible that 3-geranyl-4HBA is decarboxylated and hydroxylated in a similar fashion by discrete enzymes to produce geranylhydroquinone (GHQ), which has been detected in planta,92,93 via a 2-geranyl-phenol intermediate (Figure 2). Alternatively, 3-geranyl-4HBA may be directly converted to GHQ by oxidative decarboxylation. The next reaction in the pathway is hydroxylation of the GHQ isoprenoid side chain to produce 3′-hydroxy-GHQ by a GHQ 3′-hydroxylase (reaction 13, Figure 2). A GHQ 3′-hydroxylase was partially purified from the microsomal fraction of L. erythrorhizon cell cultures and shown to require NADPH and molecular oxygen as cofactors, suggesting it is a cytochrome P450-dependent monoxygenase.114 Moreover, the purified GHQ 3′-hydroxylase was found to have a K_m for GHQ of 1.5 μM and to be inhibited by the shikonin derivative acetylshikonin at a concentration as low as 10 μM.114 It has been proposed that cyclization of 3′-hydroxy-GHQ to form the quinone moiety of the 1,4-NQ skeleton occurs via oxidation of the C3′ position to generate an aldehyde capable of forming the aromatic nucleus via an electrophilic reaction.114 As deoxyshikonin has been detected in shikonin-producing species,115,116 it is probable that it is the final intermediate in the pathway and is converted to shikonin (or alkannin in alkannin-producing species) by GHQ 3′-hydroxylase or a similar enzyme. To date no enzymes downstream of GHQ have been identified.

Production of shikonin and its derivatives is influenced by many external factors, as has been previously summarized,117–120 and is in large part modulated by transcriptional regulation of metabolic genes.109,121,122 Biosynthesis was also shown to be controlled by auxin,123 methyl jasmonate124 and ethylene.125,126 Overexpression of the L. erythrorhizon MYB1 (LeMYB1) transcription factor gene, an ortholog of the Nicotiana tabacum MYB involved in regulating phenylpropanoid metabolism,128 led to increased expression of PAL, HMGR and PGT.129 Non-biosynthetic regulators of shikonin production have also been identified in L. erythrorhizon, including an unknown cell wall protein, LePS-2, perhaps involved in deploying shikonin,130 and LeDi-2, a small hydrophobic dark-inducible protein of unknown function.131 Down-regulation of LeDi-2 reduced the shikonin pool size, though had no affect on the expression of PAL or activity of PGT.131 In addition to increasing expression of biosynthetic genes, LeMYB1 overexpression also increased expression of the shikonin regulators LeDi-2 and LePS-2.129

The HGA/MVA pathway

The HGA/MVA pathway (also referred to as the tolulhydroquinone or tolouquinol pathway) is widely distributed throughout, although limited to, plants within the Pyroloidea subfamily of the Ericaceae. Very little progress has been made toward understanding the metabolism of this pathway as labeling experiments in Chimaphila umbellata (pipsissewa) established that tyrosine123 and DMAPP derived from the MVA pathway133 provide precursors for chimaphilin (2,7-dimethyl-1,4-NQ; Figure 2). One unique feature of the HGA/MVA pathway is that shikimate (via tyrosine) ultimately provides the quinone moiety of the 1,4-naphthalenoid ring, compared with the OSB and 4HBA/MVA pathways in which shikimate (via isochorismate and phenylalanine, respectively) provides the benzene moiety (Figure 2).

Bolkart and Zenk showed that the β-carbon atom of tyrosine is exclusively incorporated into the 2-methyl position of chimaphilin via homogentisate and tolouquinol intermediates,132,134 and that the C7 methyl group arises from the C2 of mevalonic acid.133 It can thus be envisioned that upon decarboxylation of homogentisate, which is also precursor for tocopherol and plastoquinone synthesized in plastids (recently reviewed135), DMAPP is attached to the tolouquinol product (Figure 2). The resulting prenylated intermediate, dimethylallyl-tolouquinol, would then be cyclized to 5,8-dihydro-2,7-dimethylnaphthalene-1,4-diol, which would subsequently be aromatized to produce chimaphilin (Figure 2). Support for such a biosynthetic pathway architecture comes from the isolation of tolouquinol, its glucoside (homarin), and the glucoside of 5,8-dihydro-2,7-dimethylnaphthalene-1,4-diol (renifolin) from Pyrola media and Pyrola incarnata.136–138 Beyond supporting the postulated pathway leading to chimaphilin, these findings raise questions about the role of glycosylation in the HGA/MVA pathway. Similarly, Moneses uniflora produces chimaphilin derivatives, including 8-chlorochimaphilin, 8-hydroxychimaphilin and 3-hydroxychimaphilin, that also appear to be subject to glycosylation in their reduced forms.139

The acetate-polymalonate pathway

A fourth route to synthesize plant 1,4-NQs, the acetate-polymalonate pathway (also referred to as the polyketide pathway), relies on CoA-linked acetate and malonate substrates, occurs throughout at least half a dozen unrelated families,7 and is most notably responsible for the production of plumbagin (5-hydroxy-2-methyl-1,4-NQ), droserone (3,5-dihydroxy-2-methyl-1,4-NQ), 5-O-methyldroserone and 7-methyljuglone (Figure 2), as well as bis-1,4-NQs, such as chitanone and diospyrin (Figure 1b).140 Support for the acetate-polymalonate pathway surfaced from experiments conducted by Durand and Zenk showing that labeled acetate precursors were incorporated into plumbagin in young Plumbago europaea shoots141 and Drosophyllum lusitanicum leaves.142 Moreover, it was revealed that neither shikimate- nor methionine-labeled plumbagin strongly indicated that its synthesis (and by extension, the synthesis of droserone, 5-O-methyldroserone and 7-methyljuglone) does not proceed through a juglone intermediate derived from the OSB pathway (Figure 2).142

On the basis of stable-isotope feeding experiments in Triphophyllum peeltatum callus cultures, which confirmed the acetogenic origin of plumbagin and droserone, Bringmann et al.143,144 proposed the involvement of polyketide synthases (PKSs) in the acetate-polymalonate pathway.143,144 In plants, PKSs belong to the type III class, which catalyze C-C bond formation in a single active site through a series of decarboxylation, condensation and cyclization reactions using a CoA-ester substrate (for example, acetyl-CoA) and CoA-ester extenders (for example, malonyl-CoA).145 Recently, cDNAs encoding type III PKSs (reaction 14, Figure 2) from Plumbago indica roots and D. lusitanicum callus cultures have been isolated.145,146 Biochemical characterization of the cognate recombinant enzymes revealed that both were capable of accepting acetyl-CoA ($K_m = 31 \mu$M for D. lusitanicum PKS) as starter and catalyzing multiple sequential decarboxylative condensations with malonyl-CoA ($K_m = 83 \mu$M for D. lusitanicum PKS).145,146 However, under the tested $in vitro$ conditions, neither formed expected naphthalene products and instead produced a-pyrones, which may have been an artifact given the absence of pyrone metabolites in the tissues from which the cDNAs were isolated.145,146 Together with the lack of other PKS candidates and the high plumbagin content in the tissues examined, it is likely the identified PKSs provide the 1,4-NQ backbone via the postulated intermediates depicted in Figure 2.145,146 The acetate-polymalonate pathway is also likely to rely on a polyketide
An understanding of the ecological significance of 1,4-NQ production in horticultural plants requires recognition of the biochemical properties of quinones in general and 1,4-NQs in particular. Quinones undergo redox cycling and alkylation reactions, generating reactive oxygen species (ROS) and adduct formation with proteins and DNA. Alkylation (also termed arylation) of reduced glutathione (GSH) or cysteine residues of proteins is particularly common, leading to depletion of GSH levels and/or protein cysteine chemical modifications. The one- or two-electron reduction of quinones to the semiquinone radical or quinol, respectively, leads to their autoxidation by molecular oxygen to the superoxide anion radical \((O_2^-) \), which subsequently disproportionate into \(O_2 \) and \(H_2O_2 \), promoting oxidation of lipids, proteins and DNA (Figure 3).155

In the case of 1,4-NQs, the cellular reduction of the quinone moieties in mammalian cells can be mediated by cytochrome P450 reductase, forming the semiquinone, or by NAD(P)H:quinone oxidoreductase-1 (NQO-1, DT-diaphorase), forming the quinol. Thus, both reactions may occur at the expense of NADH or NADPH. Quinols may undergo detoxification via coupling of the hydroxyl moieties to water-soluble molecules, such as glycosylation as described above for juglone,60 lawsone,63 7-methyljuglone and droserone.152 It is tempting to speculate that such quinol conjugates are the predominant forms \textit{in planta} and afford protection against autotoxicity. However, naphthoquinone glycosides in the genus \textit{Drosera} usually appear only as minor components of the total naphthoquinone pool. Moreover, the 1,4-NQ glucosides rossoliside and plumbaside A, isolated from \textit{Nepenthes}, showed no incorporation after feeding of either \([U-13C_2]\)-sodium acetate or \([U-13C_3,15N]\)-alanine, suggesting these glycosides are storage forms with very low turnover rates.158

Depending on ring modifications, some 1,4-NQs are also good electrophiles that react with nucleophiles, including cysteine residue thiol groups in some proteins, to form adducts in cells (Figure 3).156,157 Such alklylation reactions can occur when a free C3 position is present in the 1,4-naphthalenoid structure, though the C2 substituent must also allow access and sufficient electrophilicity.157 For example, lawsone, which has a free C3 position, but a hydroxyl group at C2 (Figure 2), is considered a weak alkylating agent compared with juglone (free C2 and C3 positions; Figure 3) and plumbagin (free C3 position and methyl group at C2; Figure 3).157 The type and placement of functional groups in the benzene moiety also influences the bioreactivity and cytotoxicity of 1,4-NQs. Juglone, plumbagin, NZs and other 1,4-NQs with at least one hydroxyl group in the benzene moiety are more potent topoisomerase inhibitors compared with unsubstituted 1,4-NQs and 1,4-NQs hydroxylated on the quinone moiety (for example, lawsone).159,160

Given the aforementioned reactivity of 1,4-NQs in biological systems, it should not be surprising that 1,4-NQs have frequently been observed to induce marked perturbations of metabolism,

BIOCHEMICAL PERSPECTIVES ON THE FUNCTIONS OF SPECIALIZED 1,4-NQs PRODUCED BY HORTICULTURAL SPECIES

That plumbagin, droserone and 5-O-methyl droserone have been described to co-occur in \textit{Nepenthes} species147,148 suggests these compounds may be part of a linear biosynthetic pathway as depicted in Figure 2. The postulated naphthalene intermediate is likely oxidized to generate either 7-methyljuglone or plumbagin, an idea consistent with the fact that many \textit{Drosera}ceae species likely oxidized to generate either 7-methyljuglone or plumbagin, and/or protein cysteine chemical modifications.155,156 The one- or two-electron reduction of quinones to the semiquinone radical or quinol, respectively, leads to their autoxidation by molecular
including ROS production, thiol depletion, alkylation/arylation of numerous target proteins, DNA damage and genotoxicity in diverse biological systems. Specific examples of these effects, induced by 1,4-NQ natural products derived from horticultural species, in plants, microorganisms, insects and mammals are described below, with particular emphasis on potential alkylation/arylation target sites.

Plant–plant interactions (allelopathy)
Allelopathy is the term used to describe the harmful effect one plant exerts on another via the release of natural products into the environment.161 This is the definition that will be adopted in the remainder of this review, though it is recognized that allelopathy is also used to generally describe any direct or indirect effect, beneficial or harmful, one plant has another plant.162

The classic example of allelopathy is the release of the phytotoxic 1,4-NQ, juglone, from black walnut.163,164 Other 1,4-NQ-producing plants reported to exhibit allelopathy and notable as noxious invaders include Echiium plantagineum (Paterson’s curse; produces shikonin and its derivatives)165 and I. glandulifera (producer of lawnse and 2-MNQ).166,167 Undoubtedly, secretion of 1,4-NQs from the roots and/or leaching of 1,4-NQs from leaves and leaf litter may have contributed to the ecological success of these invading species via their phytotoxic effects on native species by the general mechanisms described above (that is, ROS production, GSH depletion and/or alkylation of proteins and DNA of neighboring plants). The best studied plant-derived phytotoxic 1,4-NQs are plumbagin and juglone, which induce ROS production in tobraco BY-2 cells, ultimately resulting in programmed cell death.168 In lettuce, juglone induces oxidative damage to the root apical meristem via ROS and a cascade of cellular changes, including decreased mitochondrial potential, chromatin condensation and DNA fragmentation.168 Juglone also triggers a large number of changes in gene transcription associated with cell growth, cell wall formation, chemical detoxification and abiotic stress responses via rapid induction of ROS in rice roots.169

Juglone’s specific cellular alkylation/arylation protein targets have been less intensively investigated in plants than in mammalian systems (see Pharmacology section below), but a number of potential targets can be postulated from the literature. Rapid irreversible growth inhibition of maize coleoptiles and inhibition of auxin-induced growth in maize coleoptile segments strongly suggests that the plasma membrane H+-ATPase may be a juglone alkylation/arylation target.170 Direct arylation of cysteine residues of jack bean urease by juglone (but not by lawsone) has been reported.171 Juglone is also a potent inhibitor of Malus domestica MdPin1, a homolog of a phosphorylation-specific peptidyl cys/trans isomerase (PPIase) in humans called Pin1 that has an important role in cell cycle regulation.172

The molecular mechanisms governing the large interspecies variability within the plant kingdom with respect to the toxic effects of juglone summarized by Willis164 are virtually unexplored. It is still unclear whether species unaffected by juglone are equipped with enzymes that facilitate detoxification and/or proteins that regulate juglone exclusion, transport and/or sequestration/compartmentation.

Plant–microbe interactions
The toxicity of plant-derived 1,4-NQs toward various bacteria, fungi and other microorganisms is widely recognized. Examples of the growth inhibitory effects that plant 1,4-NQs have on microorganisms documented to be associated with oxidative stress and/or disrupted thiol metabolism in the target organisms include lawsone on E. coli,173 juglone on Staphylococcus aureus174 and Acanthamoeba castellanii;175 plumbagin on Candida albicans and S. aureus;176 7-methyljuglone on Mycobacterium tuberculosis;177 and shikonin on Candida albicans.178

Reddy et al.179 investigated the antimicrobial effects of plumbagin in Bacillus subtilis by identifying differentially expressed proteins, and found evidence suggesting the 1,4-NQ represses the tricarboxylic acid cycle, the electron transport chain and the fatty acid synthesis; however, specific arylation targets have yet to be defined in this organism. Juglone inactivates the E. coli PPlase by covalent modification of cysteine residues.180 In yeast, juglone may not only inhibit the PPlase homolog, ESS1 but also RNA polymerase II, most likely by modification of sulfhydryl groups.181

The toxicity of plant 1,4-NQs to human pathogens (for example M. tuberculosis) is of particular interest and has obvious overlaps with the Pharmacology section below. In M. tuberculosis, 7-methyljuglone is a subversive substrate for mycothiol disulfide reductase.177 Moreover, 7-methyljuglone and its bis form, diospyrin (Figure 1b), produced by Diospyros montana,182 are potent inhibitors of DNA gyrase of M. tuberculosis, E. coli and S. aureus.183 DNA gyrase is a DNA topoisomerase that is present in bacteria and plants, but not in animals, and has been widely exploited as a target for antimicrobial chemotherapy.183 Whereas animal DNA topoisomerase of the type II (topo II) class are thought to be inhibited by formation of cysteine adducts with quinones in the N-terminal (ATPase) domain, the inhibition of DNA gyrase may be different. The naphthoquinone-binding site is within the N-terminal domain of GyrB, but as one of the enzymes examined (S. aureus gyrase) lacks Cys residues in the ATPase domain, it is unlikely that covalent adducts with Cys residues form part of the mode of binding.1815 Moreover, there was no evidence of adduct formation with M. tuberculosis gyrase.186 Microarray analysis of M. tuberculosis in response to plumbagin challenge identified 103 and 171 up- and downregulated genes, respectively, but it is presently unknown whether these transcriptional responses were the sole consequence of DNA gyrase inhibition.184

Being that plants are susceptible to pathogens, it is tempting to speculate that the production of 1,4-NQs by plants may not only serve a role in allelopathy (above) but also in plant disease defense. Supporting this notion, juglone has been shown to be a potent and specific inhibitor of the growth of the fire blight pathogen, Erwinia amylovora.185 Similarly, it was reported that plumbagin is a potent growth inhibitor of a number of phytopathogenic fungi.186

Certain soil bacteria, such as Pseudomonas putida,187 are capable of degrading juglone, although little is understood about the role juglone has in shaping the soil microflora. It has been proposed that arbuscular mycorrhizal fungal hyphae may have a key role in transporting juglone in the rhizosphere may have a key role in transporting juglone in the rhizosphere.188,189 Hook et al. argue that because the production of antimicrobial 1,4-NQs is often restricted to specific root cells and elicited by soil-borne microbes, this suggests their role is in plant defense at the cellular level in the rhizosphere.20

The production of 1,4-NQs by many carnivorous plants (especially in the family Droseraceae)150 may have a key role in maintaining sterility of the digestive fluids secreted by these organisms, an idea that has been speculated for Nepenthes sp. (pitcher plants).148,190 Plumbagin secreted by the Venus fly trap (Dionaea muscipula) also has antimicrobial activity against food-related pathogenic and putrefactive bacteria.191 Perhaps more significantly, the chemical composition of the Nepenthes pitcher fluid may promote a specific microbiome dedicated to chitinolytic, proteolytic, amyloytic, and cellulolytic and xylanolytic activities for digesting pitcher-captured insects.192 Resistance mechanisms used by pitcher-associated microbes to pitcher plant 1,4-NQs remain unexplored. Clues to the molecular mechanism of bacterial plumbagin resistance have come from studies with E. coli demonstrating that two plumbagin-responsive genes ygfZ and sodA are required for counteracting toxicity.193 Furthermore, it was found that Cys228 in YgfZ is needed for the degradation of plumbagin, which may be excrated in a methylated and less-toxic form.195
Plant–insect interactions
The toxicity of plant-derived 1,4-NQs toward insects has also been documented. It appears that plumbagin, juglone, and 2-MNQ may specifically target eddyson 20-monoxygenase, an enzyme responsible for converting the molting hormone eddyson to its more physiologically active metabolite, 20-hydroxyeddyson. Plumbagin is also an inhibitor of chitin synthetase and, similar to other 1,4-NQs, is an effective antifeedant defensive agents against insects. It is also plausible that certain insects that have gained the ability to feed on 1,4-NQ-producing plants may utilize these molecules for their own defense; however, the precise mechanisms of tolerance of these organisms has been underexplored. Piskorski et al. propose that the larvae of the codling moth, Cydia pomonella, are able to survive on walnut trees by excreting hydrojuglone in their frass. However, this hypothesis is difficult to reconcile with the observation that hydrojuglone rapidly autoxidizes to contribute to oxidative protein modification.

Insectivorous plants face a dilemma in both attracting insects for pollination and as prey. The sundew, Drosera auriculata, maintains a distinct profile of volatiles emitted from flowers in comparison with their sticky traps, with plumbagin restricted to the trap, suggesting a possible role for plumbagin in attracting insect prey with volatile preferences that are distinct from insect pollinators. It has been suggested that plumbagin may contribute to oxidative protein modification as a predigestive...
mechanism in Venus fly trap.202 Plumbagin production has also been observed to be induced in response to chitin in Droso phyl lum lusitanicum suspension cultures.703 In Nepenthes khasiana, chitin specifically induces production of drosorine and 5-O-methyl drosorine to protect pitcher fluid against microbes brought by visiting prey and perhaps to act as molecular triggers in prey capture and digestion.147

Pharmacology (plant–human interactions)

Humans have exploited plants producing 1,4-NQs for centuries as wound-healing agents. In part this may be a function of the antibacterial and antifungal properties of 1,4-NQs discussed above, preventing opportunistic wound infections. Thomson and Hook et al.204 have reviewed the numerous bioactive properties of plant-derived NQs and discuss their cytotoxic, anticancer, antibacterial, antifungal, anti-inflammatory and anti-parasitic activities. These and other reviews on the pharmacological properties of individual 1,4-NQ-producing species, including Henna,205 Plumbago seyal nica206 and Venus fly trap,210 or individual 1,4-NQs of plant origin, such as the alkannins and shikinons,207,208 plumbagin and its analogs,207,209 juglone and laphachol,16 demonstrate the considerable pharmacological interest in this class of molecules in recent years. As described above for other biological systems, plant-derived 1,4-NQs can elicit oxidative stress and disrupt thiol metabolism in mammalian cell systems, including juglone in melanoma (B16F1) tumor cells,217 juglone, shikonin and plumbagin in rat liver microsomes,218 juglone and plumbagin in HaCaT human keratinocytes,219,220 plumbagin in human prostate cancer cells,221 and shikonin in human glioma cells,222 thyroid cancer cells223 and leukemia HL-60 cells.224,225 Beyond these effects, it is also evident that plant 1,4-NQs have specific effects on down-regulating central mediators of mammalian inflammation.156 Plant-derived 1,4-NQs inhibit Kelch-like enoyl-CoA-hydratase (ECH) associated protein 1 (Keap1) most likely by alkylation/arylation of key cysteine residues in the protein.156,157 In addition, it has been proposed that 1,4-NQs promote glutathionylation of Keap1.226 This may be due in part to accumulation of oxidized glutathione (GSSG),227 by GST-mediated S-transarylation,228 and/or via upregulation of glutathione S-transferase pi, which potenti ates S-glutathionylation of Keap1.229 Regardless of the precise mechanism of Keap1 cysteine modifications, it is well established that these modifications collectively alter the binding of Keap1 to transcription factor Nrf2 (NF-E2-related factor-2). Normally, Keap1 sequesters Nrf2 in the cytoplasm and bridges it to a ubiquitin ligase,230,231 the Keap1

Disruption of the Keap1–Nrf2 interaction by 1,4-NQs results in Nrf2 accumulation, leading to Nrf2 nuclear transport and induction of genes containing ‘antioxidant response elements’ (AREs).157 Consistent with this, plumbagin and shikonin strongly activate Nrf2–ARE signaling, and were found to activate genes encoding heat shock proteins.230,232 The Keap1–Nrf2–ARE pathway has now emerged as a promising target to develop drugs that upregulate expression of ARE-controlled cytoprotective oxidative stress response enzymes to treat a number of diseases and conditions.233,234 Nrf2 not only regulates oxidative/xenobiotic stress response but also represses inflammation by opposing transcriptional upregulation of a number of pro-inflammatory cytokine genes.233 Specific anti-inflammatory effects of plumbagin appear consistent with inhibiting the activation of the transcription factor nuclear factor-kB (NF-kB)234 in lymphocytes,235 macrophages and liver cells.236 The underlying mechanism of plumbagin and shikonin inhibition of NF-kB activation appears to entail suppression of an inhibitor of kBa (IkBa) phosphorylation and degradation, thus precluding the phosphorylation of the p65 subunit of NF-kB.237–241 However, it is still unclear whether the inhibition of NF-kB activation by plumbagin, shikonin and 1,4-naphthoquinone (see ref.226) is solely mediated via Keap1-dependent activation of Nrf2/ARE signaling or by other mechanisms, especially considering Keap1-independent mechanisms of regulating Nrf2 have been well documented.227 Furthermore, it is well established that 1,4-NQs are inhibitors of topoisomerases.242–249 Topoisomerase 1 (Top 1) inhibition is known to suppresses inflammatory genes, including tumor necrosis factor-a (TNF-a), and to protect against lethal inflammation in vivo.250 Thus, it seems plausible that anti-inflammatory effects of 1,4-NQs may also be mediated by Top 1 inhibition. Similar to the M. domestica, yeast and E. coli PPlases described above, human Pin1 is inhibited by juglone.251 Pin1 is now recognized as a molecular switch for TNF-a-induced priming of the NADPH oxidase in human neutrophils,252 as a modulator of the type 1 immune response of T cells253 and as an enhancer of the oncogenic activity of the Ral proteins in the NF-kB family.254 Therefore, inhibition of Pin1 by juglone may contribute to the anti-inflammatory and anticancer actions of this molecule. Additional pharmacological mechanisms of action for plant-derived 1,4-NQs are listed in Table 2.

The bewildering array of actions elicited by plant 1,4-NQs listed in Table 2 are likely just the tip of the iceberg. Proteomics studies by Lame et al.284 with 14C-labeled 1,4-naphthoquinone indicate that this molecule targets a number of different proteins in human bronchial epithelial cells, including nucleo phosphim, galectin-1, protein disulfide isomerase (PDI) and probable PDI, 60 kDa heat shock protein, mitochondrial stress-70 protein, epithelial cell marker protein and S100-type calcium-binding protein A14. A quantitative proteomic study using stable-isotope labeling by amino acids in cell culture revealed that there were at least 1225 and 267 proteins interacting with plumbagin and 341 and 107 signaling pathways and cellular functions potentially regulated by plumbagin in human PC-3 and DU145 prostate cancer cells, respectively.285 These proteins and pathways have critical roles in the regulation of cell cycle, apoptosis, autophagy, epithelial to mesenchymal transition and ROS generation.285

The diversity of targets and mechanisms of action of plant 1,4-NQs have stimulated great pharmacological interest, particularly in the area of ROS initiation and signaling, cancer therapeutic strategies and as anti-inflamatory agents.214,286 Moreover, numerous analogs of 1,4-NQs have been designed and synthesized to enhance their toxicity toward specific human cancer cell lines,277,287–289 specific proteins (for example, Hsp90),290 selected pathogenic organisms (for example, Trypanosoma sp)291–293 and insects.294

CONCLUSIONS AND FUTURE PROSPECTIVES

Plant 1,4-NQs are a diverse class of metabolites possessing a wide range of ecological functions contributing to plant fitness, particularly in the horticultural species highlighted in this review (Table 1). At least four different metabolic pathways to synthesize 1,4-NQs exist in the plant kingdom. The OSB route is present in all plants to produce phylloquinone, though some species are capable of synthesizing additional 1,4-naphthalenoid natural products branching off this pathway. The 4HB/A/MVA, HGA/MVA and acetate-polymalonate pathways are each restricted to certain families. Regardless of the metabolic origin, however, 1,4-NQs exist in the plant kingdom. The OSB route is present in all plants to produce phylloquinone, though some species are capable of synthesizing additional 1,4-naphthalenoid natural products.
shikonin against breast cancer. The 1,4-NQs are also targets for synthetic strategies to develop more potent therapeutics, though there is undoubtedly a number of plant 1,4-NQs still undiscovered in nature that may already offer such drugs.

Beyond the core metabolic pathways (for example, phenylpropanoid, benzenoid and terpenoid) providing precursors for synthesizing specialized 1,4-NQs, there are only a couple identified 1,4-NQ biosynthetic genes. Although there is solid biochemical support for the involvement of these genes, there is a lack of genetic evidence to corroborate these results. This is in part due to the lack of genetically amenable systems in which to study these pathways. Therefore, there is a critical need to develop methods for generating transgenics in 1,4-NQ-synthesizing species, thus allowing for functional screening of candidates identified, for example, by comparative transcriptomic approaches. With the decreased costs and increased capabilities of sequencing technologies, forward genetic screens in existing horticultural models are also a favorable strategy to consider.

Indications are that biosynthesis of plant 1,4-NQs is highly compartmentalized and spread across multiple subcellular locations. This implicates the contribution of undefined transporters and other protein-mediated trafficking steps to the movement of metabolic intermediates and 1,4-NQs throughout the cell. That plant 1,4-NQs are often secreted into the environment further suggests the involvement of unknown plasma membrane-localized transporters and/or vesicular exocytosis for deployment.

Despite extensive work over the last several decades, specialized plant 1,4-NQs are clearly an understudied, yet extremely promising class of metabolites for developing novel drugs and innovative strategies to address horticultural challenges, especially in pest management. To harness these metabolites for practical applications, however, will require a monumental improvement in the basic knowledge encompassing 1,4-NQ synthesis, transport and the molecular mechanisms behind their modes of action and release into the environment.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

ACKNOWLEDGEMENTS
This work was supported by start-up funds from Purdue University to JRW.

REFERENCES
1 Medentsev AG, Akimenko VK. Naphthoquinone metabolites of the fungi. Phytochemistry 1998; 47: 935–959.
2 Studt L, Wiemann P, Kleigrewe K, Humpf HU, Tudyński B. Biosynthesis of fusarubins accounts for pigmentation of fusarium Fujikuroi perithecia. Appl Environ Microbiol 2012; 78: 4468–4480.
3 Parkewitz F, Hilkert M. Polyketides in insects: ecological role of these widespread chemicals and evolutionary aspects of their biogenesis. Biol Rev 2008; 83: 209–226.
4 Raspopting G, Fauler G, Leis M, Leis HJ. Chemical profiles of scent gland secretions in the cypophthalmid opilionid harvestmen, Siro duricorius and S. exilis. J Chem Ecol 2005; 31: 1353–1368.
5 Calestani C, Rast JP, Davidson EH. Isolation of pigment cell specific genes in the sea urchin embryo by differential macroarray screening. Development 2003; 130: 4587–4596.
6 Castoe TA, Stephens T, Noonan BP, Calestani C. A novel group of type I polyketide synthases (PKS) in animals and the complex phylogenomics of PKSs. Gene 2007; 392: 47–58.
7 Babula P, Adam V, Havel L, Kizek R. Noteworthy secondary metabolites naphthoquinones—their occurrence, pharmacological properties and analysis. Curr Pharm Anal 2009; 5: 47–68.
8 Atkinson DJ, Brimble MA. Isolation, biological activity, biosynthesis and synthetic studies towards the rubromycin family of natural products. Nat Prod Rep 2015; 32: 811–840.
9 Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 1981; 45: 316–354.
10 Yoshida E, Nakamura A, Watanabe T. Reversed-phase HPLC determination of chlorophyll a and naphthoquinones in photosystem I of red algae: existence of two menaquinone-4 molecules in photosystem I of Cyanidium caldarium. Anal Sci 2003; 19: 1001–1005.
11 Ikeda Y, Komura M, Watanabe M, Minami C, Kozhe H, Itou S et al. Photosystem I complexes associated with fuxoxanthin-chlorophyll-binding proteins from a marine diatom centiarium, Chaetoceras gracilis. Biochim Biophys Acta 2008; 1777: 351–361.
12 Brette K, Sefif P, Mathis P. Flash-induced absorption changes in photosystem I at low temperature: evidence that the electron acceptor A1 is vitamin K1. FEBS Lett 1986; 203: 220–224.
13 Lefebvre-Legrande L, Rappaport F, Finazzi G, Ceol M, Grivet C, Hofgartner G et al. Loss of phyloquinone in Chlamydomonas affects plastiquinone pool size and photosystem II synthesis. J Biol Chem 2007; 282: 13250–13263.
14 Seeger JW, Bentley R. Phyloquinone (vitamin K1) biosynthesis in Euglena gracilis strain Z. Phytochemistry 1999; 30: 3585–3589.
15 Seigler DS. Benzoquinones, naphthoquinones, and anthraquinones. In: Seigler DS (ed.) Plant Secondary Metabolism. Boston: Springer, 1998: 76–93.
16 Hussain K, Krohn K, Ahmad VJ, Miiana GA, Green IR. Lapachol: an overview. Arkivoc 2007; 2007: 145.
17 Thomson RH. Naphthoquinones. Naturally Occuring Quinones V. Dordrecht: Springer, 1997: 112–308.
18 Egan PA, Van Der Kooy F. Phytochemistry of the carnivorous sundew genus Drosera (Droseraceae)—future perspectives and ethnopharmacological relevance. Chem Biodivers 2013; 10: 1774–1790.
19 Malik S, Bhushan S, Sharma M, Ahuja PS. Biotechnological approaches to the production of shikomins: a critical review with recent updates. Crit Rev Biotechnol 2014; 8551: 1–14.
20 Hook I, Mills C, Sheridan H. Bioactive naphthoquinones from higher plants. In: Atta-ur-Rahman (ed.) Studies in Natural Products Chemistry. Netherlands: Elsevier, 2014: 119–160.
21 van Oostende C, Wiidhalm JR, Furt F, Duduizeau L-A, Basset GJ. Vitamin K1 (Phyloquinone): function, enzymes and genes. In: Fabrice Rébéille and Roland Doucet (ed.) Advances in Botanical Research. Amsterdam: Elsevier, 2011: 229–261.
22 Fitzpatrick TB, Basset GJC, Borel P, Carrari D, DellaPenna D, Fraser PD et al. Vitamin deficiencies in humans: can plant science help? Plant Cell 2012; 24: 395–414.
23 Maeda H, Dudareva N. The shikimate pathway and aromatic amino acid biosynthesis in plants. Annu Rev Plant Biol 2012; 63: 73–105.
24 Wiidhalm JR, Dudareva N. A familiar ring to it: biosynthesis of plant benzoic acids. Mol Plant 2015; 8: 63–97.
25 Vranová E, Coman D, Gruissem W. Network analysis of the MVA and MEP biosynthesis. In: Network Analysis of the MVA and MEP Pathways. 2006: 112–1368.
26 Flores-Sanchez UJ, Verpoorte R. Plant polyketide synthases: a fascinating group of enzymes. Plant Physiol Biochem 2009; 47: 167–174.
27 Hirotsuka T, Furukata K, Ishikawa J, Yamashita H, Itou N, Seto H et al. An alternative menaquinone biosynthetic pathway operating in microorganisms. Science 2009; 321: 1670–1673.
28 Cox GB, Gibson F. Biosynthesis of vitamin K and ubiquinone relation to the shikimic acid pathway in Escherichia coli. Biochim Biophys Acta 1964; 93: 204–206.
29 Whistance GR, Threlfall DR, Goodwin TW. Incorporation of [U-14C]shikimate and [U-14C]para-hydroxybenzoate into phytoquinones and chromanols. Biochim Biophys Acta 1966; 116: 269–275.
30 Chen D, Bohm BA. Naphthoquinone biosynthesis in higher plants: I. Studies on 2-hydroxy-1,4-naphthoquinone in Impatiens balsamina L. and J. Biochem 1966; 44: 1389–1395.
31 Zenk MH, Leistner E. [On the mode of incorporation of shikimic acid into 2-hydroxy-1,4-naphthoquinone (lawsonen)]. Z Naturforsch B 1967; 22: 460.
32 Leistner E, Zenk MH. Zur Biogenese von 5-Hydroxy-1,4-naphthochinon (Juglon) in Juglans regia L. Z Naturforsch 1968; 23: 259–268.
33 Campbell IM. The roles of alanine, aspartate and glutamate in lawsonic biosynthesis in Impatiens balsamina. Tetrahedron Lett 1969; 10: 4777–4780.
34 Grotzinger E, Campbell IM. The role of 2-ketoglutarate in lawsonic biosynthesis in Impatiens balsamina. Tetrahedron Lett 1972; 13: 4685–4686.
35 Dusette P, Azerad R. A new intermediate in naphthoquinone and menaquinone biosynthesis. Biochim Biophys Acta Comm 1970; 40: 1090–1095.
36 Robins DJ, Yee RB, Bentley R. Biosynthetic precursors of vitamin K as growth promoters for Bacteroides melanogenicis. J Bacteriol 1973; 116: 965–971.
37 Bentley R. Biosynthesis of vitamin K and other natural naphthoquinones. Pure Appl Chem 1975; 41: 47–68.
38 Thomas G, Threlfall DR. Incorporation of shikimate and 4-[2-carboxyphenyl]-4-oxobutrate into phyloquinone. Phytochemistry 1974; 13: 807–813.
distribution, photosystem I abundance, and anthocyanin accumulation in the Arabidopsis Atnm6 mutant. J Biol Chem 2006; 281: 40461–40472.

Babuée J, Wurtz V, Ma C, Lueder F, Soni P, Van Dorselaer A et al. The proteome map of spinach leaf peroxisomes indicates partial compartmentalization of phylloquinone (vitamin K1) biosynthesis in plant peroxisomes. J Exp Bot 2010; 61: 1441–1453.

Beeunmans S, Quan S, Aung K, Yang P, Manandhar-Shrestha K, Holbrook D et al. In-depth proteome analysis of Arabidopsis leaf peroxisomes combined with in vivo subcellular targeting verification indicates novel metabolic and regulatory functions of peroxisomes. Plant Physiol 2009; 150: 125–143.

Eichinger D, Bacher A, Zenk MH, Eisenreich W. Quantitative assessment of metabolic flux by C-13 NMR analysis. Biosynthesis of anthraquinones in Rubia tinctorum. J Am Chem Soc 1999; 121: 7469–7475.

Huang YS, Van der Heijden B, Lefebre AWM, Ekelens C, Verpoorte R. Biosynthesis of anthraquinones in cell cultures of Cinchona `Robusta` proceeds via the methylerythritol 4-phosphate pathway. Phytochemistry 2002; 59: 45–55.

Furumoto T, Hoshikuma A. Biosynthetic origin of 2-geranyl-1,4-naphthoquinone and its related anthraquinone in a Sesamum indicum hairy root culture. Phytochemistry 2011; 72: 871–874.

Leistner E. Biosynthesis of morindone and alizarin in intact plants and cell suspension cultures of Morinda citrifolia. Phytochemistry 1973; 12: 1669–1674.

Leistner E. Mode of incorporation of precursors into alizarin (1,2-dihydroxy-9,10-anthraquinone). Phytochemistry 1973; 12: 337–345.

Binder RG, Benson ME, Flath RA. Eight 1,4-naphthoquinones from Juglans. Phytochemistry 1989; 28: 2799–2801.

Chung D, Maier UH, Inoue M, Zenk MH. Different mode of incorporation of 1,4-succinylbenzoic acid into the naphthoquinones juglone and lawson in higher plants. Z Naturforsch C 1994; 49: 885–887.

Mizutani M, Ohta D. Diversification of P450 genes during land plant evolution. Annu Rev Plant Biol 2010; 61: 291–315.

Farrow SC, Facchini PJ. Functional divergence of 2-xoo-glutathionyl(Ell)-dependent dioxygenases in plant metabolism. Front Plant Sci 2014; 5: 1–15.

Le Roy J, Huss B, Creach A, Hawkins S, Neutelings G. Glycosylation is a major regulator of phenylpropanoid availability and biological activity in plants. Front Plant Sci 2016; 7: 735.

Müller W-U, Leistner E. Metabolic relation between naphthalene derivatives in Arabidopsis thaliana. Planta 2005; 221: 30159–30169.

Müller W-U, Leistner E. Aglycones and glycosides of oxygenated naphthalenes and a glycosyltransferase from Catharanthus roseus. Phytochemistry 1998; 47: 3426–3434.

Meganathan R, Bentley R. Thiamine pyrophosphate requirement for an 1,4-succinylbenzoic acid synthase in Arabidopsis thaliana and evidence for an intermediate. J Biol Chem 1983; 153: 739–746.

Palmer DRI, Garrett JL, Sharma V, Meganathan R, Babbitt PC, Gerlt JA. Unexpected divergence of enzyme function and sequence: `N-acylaminoc acid race-`e`s` e`s` e`e
100 Singh RS, Gara RK, Bhardwaj PK, Kaachra A, Malik S, Kumar R. 4-Hydroxybenzoate 3-geranyltransferase activity in extracts of Lithospermum erythrorhizon cell cultures. Chem Pharm Bull (Tokyo) 1986; 34: 2290–2293.

101 Yazaki K, Fukui H, Tabata M. Isolation of the intermediates and related metabolites of shikonin biosynthesis from Lithospermum erythrorhizon cell cultures. Plant Cell Physiol 2004; 45: 106–271.

102 Sommer S, Severin K, Camara B, Heide L. Intracellular localization of UDPG: p-hydroxybenzoate glucosyltransferase. J Biol Chem 1997; 272: 2731–2737.

103 Li S-M, Hennig S, Heide L. Shikonin: a geranyl diphosphate-derived plant metabolite. Curr Org Chem 2006; 10: 348–419.

104 Takeuchi K, Mashita H, Hasegawa N, Uemura S, Sato F. Biosynthesis of a novel flavonoid from the leaves of Arnebia euchroma (Royle) Johnston, a medicinally important plant species. Cell Biol Int 2011; 35: 153–158.

105 Weston PA, Weston LA, Hildebrand S. Metabolic profiling of Echinium plantagineum: presence of bioactive pyrrolizidine alkaloids and naphthoquinones from accessions from southeastern Australia. Phytochem Rev 2013; 12: 831–837.

106 Fujita Y, Maeda Y, Suga C, Morimoto T. Production of shikonin derivatives by cell suspension cultures of Lithospermum erythrorhizon. III. Comparison of shikonin derivatives of cultured cells and ko-shikonin. Plant Cell Rep 1983; 2: 192–193.

107 Yamamoto H, Zhao P, Yazaki K, Inoue K. Regulation of lithospermic acid B and shikonin production in Lithospermum erythrorhizon cell suspension cultures. Chem Pharm Bull (Tokyo) 2002; 50: 1068–1090.

108 Block A, Hildebrand S. Membrane-bound prenyltransferase involved in the geranylation of p-hydroxybenzoic acid. J Biol Chem 2003; 278: 15615–1565.

109 Ohara K, Muroya A, Fukushima N, Yazaki K. Expression of phenylalanine ammonia-lyase in extracts of Lithospermum erythrorhizon cell cultures. Phytochemistry 1996; 41: 1065–1072.

110 White MD, Payne KAP, Fisher K, Marshall SA, Parker D, Rattray NJW. α,βUnsaturated acid decarboxylation via 1,3-dipolar cycloaddition. Nature 2015; 522: 497–501.

111 Inouye H, Ueda S, Inoue K, Matsumura H. Biosynthesis of shikonin in callus cultures of Lithospermum erythrorhizon. Phytochemistry 1979; 18: 1301–1308.

112 Inouye H, Arai T. Über die Bestandteile der Pyrolaceen. XI. Die Bestandteile der Naphthochinon-Farbstoffe aus Pyrola incarnata FISCH. Naturwissenschaften 1959; 46: 348–355.

113 Vavilin prenyltransferase required for bacterial ubiquinone biosynthesis. J Biol Chem 1988; 263: 10196–10202.

114 Inoue H, Arai T. Die Bestandteile der Pyrolaceen. II. Die Bestandteile der Flavonole aus Pyrola incarnata FISCH. Naturwissenschaften 1959; 46: 181–188.

115 Weston PA, Weston LA, Hildebrand S. Metabolic profiling of Echinium plantagineum: presence of bioactive pyrrolizidine alkaloids and naphthoquinones from accesses from southeastern Australia. Phytochem Rev 2013; 12: 831–837.
141 Durand R, Zenk MH. Biosynthesis of plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) via the acetate pathway in higher plants. Tetrahedron Lett 1971; 12: 3009-3012.

142 Durand R, Zenk MH. The homogentisate ring-cleavage pathway in the biosynthesis of acetate-derived naphthoquinones of the droseraceae. Phytochemistry 1974; 13: 1483-1492.

143 Brimming G, Rischer H, Wohlfarth M, Schlaerer J, Assi LA. Droserone from cell cultures of Trachymyphys peltatum (Dioncophyaleaceae) and its biosynthetic origin. Phytochemistry 2000; 53: 339-343.

144 Brimming G, Feines D. Stress-related polyketide metabolism of Dioncophyaleaceae and Anacardiaceae. J Exp Bot 2001; 52: 2015-2022.

145 Springob K, Samappriat S, Jindaprasert A, Schmidt J, Page JE, De-Eknamkul W et al. A polyketide synthase of Plumbago indica catalyzes the formation of hexaketide pyrones. FEBS J 2007; 274: 409-417.

146 Jindaprasert A, Springob K, Schmidt J, De-Eknamkul W, Kutchan TM. Pyrone polyketides synthesized by a type III polyketide synthase from Dro sophylum lusitanicum. Phytochemistry 2008; 69: 3043-3053.

147 Raj G, Kurup R, Hussain BA, Baby S. Distribution of naphthoquinones, plumbagin, dromesanerone, and 5-O-methyl dromesanerone in chitin-induced and uninduced Nepenthes khasiana: molecular events in prey capture. J Exp Bot 2011; 62: 5429–5436.

148 Elsenberg H, Pnini-Cohen S, Rahamim Y, Sionov E, Segal E, Carmeli S et al. Induced production of antifungal naphthoquinones in the pitchers of the carnivorous plant Nepenthes khasiana. J Exp Bot 2010; 61: 911-922.

149 Zenk MH, Förbringer M, Steglich W. Occurrence and distribution of 7-methyljuglone and plumbagin in dromesanerone. Phytochemistry 1969; 8: 2199–2200.

150 Culham A, Gornall RJ. The taxonomic significance of naphthoquinones in the Droseraceae. Biosyst Ecol 1994; 22: 507-515.

151 Lin LC, Yang LL, Chou CJ. Cytotoxic naphthoquinones and plumbagic acid glucosides from Plumbago zeylanica. Phytochemistry 2003; 62: 619-622.

152 Budzianowski J. Naphthohydroquinone glucosides of Drosera rotundifolia and D. intermedia from in vitro cultures. Phytochemistry 1996; 42: 1145–1147.

153 Izhaki I. Emadin—a secondary metabolite with multiple ecological functions in higher plants. New Phytool 2002; 155: 205-217.

154 Abe I, Usymi Y, Oguro S, Noguchi H. The plant first type III polyketide synthase that catalyzes formation of aromatic heptaketide. FEBS Lett 2004; 562: 171-176.

155 Bolton JL, Trush MA, Penning TM, Dryhurst G, Monks TJ. Role ofquinones in cellular and inter-cellular signaling. Chem Res Toxicol 2000; 13: 135–160.

156 Kumagai Y, Shinkai Y, Miura T, Cho AK. The chemical biology of naphthoquinones and its environmental implications. Annu Rev Pharmacol Toxicol 2012; 52: 221–247.

157 Klotz LO, Hou X, Jacob C. 1,4-naphthoquinones: from oxidative damage to cellular and inter-cellular signaling. Molecules 2014; 19: 14902–14918.

158 Rischer H, Ham A, Brimming G. Nepenthes insinuhas uses a C2-portion of the Nepenthes insignis C2-portion to catalyze formation of 4- and 5-hydroxy-2-methyl-1,4-naphthoquinone derivatives. J Exp Bot 2011; 62: 5429–5436.

159 Hernández-Muñoz LS, Goméz M, González FJ, González I, Frontana C. Towards a transcriptional mechanism of action of naphthoquinone juglone demonstrated on lettuce seedling roots. J Exp Bot 2016; 67: 1065–1077.

160 Kot M, Karcz W, Zaborska W, 5-Hydroxy-1,4-naphthoquinone (juglone) and 2-hydroxy-1,4-naphthoquinone (lawsone) influence on jack bean urease activity: elucidation of the difference in inhibition activity. Bioorg Chem 2010; 38: 132–137.

161 Yao JL, Kops O, Lu PJ, Lu KP. Functional conservation of phosphorylation-specific prolyl isomerase in plants. J Biol Chem 2001; 276: 13517–13523.

162 Sarsaenari R, Wang DH, Takemura Y, Tsutsui K, Masouka N, Sano K et al. Cytotoxicity of lawsone and cytoprotective activity of antioxidants in catalase mutant Escherichia coli. Toxicology 2007; 235: 103–111.

163 Wang J, Cheng Y, Wu R, Jiang D, Bai B, Tan D et al. Antibacterial activity of juglone against Staphylococcus aureus: from apparent to proteomic. J Int Mol Sci 2017; 18: 965.

164 Jha BK, Jung H, Seo I, Suh S-J, Suh M, Baek W. Juglone induces cell death of Acanthamoeba through increased production of reactive oxygen species. Exp Parasitol 2015; 159: 100–106.

165 Babula P, Vaverkova V, Poborilova Z, Ballova L, Masarkin M, Provanzk I. Phytotherapeutic action of naphthoquinone juglone demonstrated on lettuce seedling roots. Plant Physiol Biochem 2014; 84: 78–86.

166 Chi WC, Fu SF, Huang TL, Chen YA, Chen CC, Huang HJ. Identification of transcription profiles and signaling pathways for the allelochemical juglone in rice plants. Plant Biol 2011; 17: 597–607.

167 Babula P, Vaverkova V, Poborilova Z, Ballova L, Masarkin M, Provanzk I. Phytotherapeutic action of naphthoquinone juglone demonstrated on lettuce seedling roots. Plant Physiol Biochem 2014; 84: 78–86.

168 Vechtová N, Šebić B, Krejčíva J. Allopathic activity of extracts from Impatiens species. Plant Soil Environ 2011; 57: 57–60.

169 Babula P, Adam V, Kizek R, Sladik J, Havel L. Naphthoquinones as allelochemical triggers of programmed cell death. Environ Exp Bot 2009; 65: 330–337.

170 Rudninka M, Polak M, Karzc W. Cellular responses to naphthoquinones: Juglone as a case study. Plant Growth Regul 2014; 72: 239–248.
Gao D, Hiroshima M, Yasui H, Sakurai H. Direct reaction between shikonin and thiols induces apoptosis in HL60 cells. Biol Pharm Bull 2002; 25: 827–832.

Zhang B, Chen N, Chen H, Wang Z, Zheng Q. The critical role of redox homeostasis in shikonin-induced HL-60 cell differentiation via unique modulation of the Nrf2/ARE pathway. Oxid Med Cell Longev 2012; 2012: 781516.

Gambhir L, checker R, Thoh M, Patwardhan RS, Sharma D, Kumar M et al. 1,4-naphthoquinone, a pro-oxidant, suppresses immune responses via KEAP-1 glutationation. Biochem Pharmacol 2014; 88: 95–105.

Bryan HK, Olayanju A, Goldberg CE, Park BK. The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation. Biochem Pharmacol 2015; 85: 705–717.

Aibko Y, Kumaqai Y. Interaction of Keap1 modified by 2-tet-Butyl-1,4-benzoquinone with GSH: evidence for S-transarylation. Chem Res Toxicol 2013; 26: 232–239.

Carvalho AN, Marques G, Guedes RC, Castro-Caldas M, Rodrigues E, van Horsden J et al. S-glutationation of Keap1: a new role for glutathione S-transferase pi in neuronal protection. FEBS Lett 2015; 590: 1455–1466.

Son TG, Camandola S, Arumugam TV, Cutler RG, Teljohans RH, Mughal MR et al. Plumbagin, a novel Nrf2/ARE activator, protects against cerebral ischemia. J Neurochem 2010; 112: 1316–1326.

Ahmed K, Furusawa Y, Tabuchi Y, Emam HF, Piao J-L, Hassan MA et al. Chemical inducers of heat shock proteins derived from medicinal plants and cytoprotective gene responses. J Int Pharmacol 2012; 2: 1–8.

Abed DA, Goldstein M, Albanayan H, Jin H, Hu L. Discovery of direct inhibitors of Keap1-Nrf2 protein-protein interaction as potential therapeutic and preventive agents. Acta Pharmac Sin B 2015; 5: 285–299.

Kobayashi EH, Suzuki T, Funayama R, Nagashima T, Hayashi M, Sekeh E et al. Nrf2 suppresses macrophage inflammatory responses by blocking proinflammatory cytokine transcription. Nat Commun 2016; 7: 11624.

Hayden MS. Signaling to NF-κB. Genes Dev 2004; 18: 2195–2222.

Checker R, Sharma D, Sandur SK, Khanam S, Poduval TB. Anti-inflammatory effects of plumbagin are mediated by inhibition of NF-κB activation in lymphocytes. Int Immunopharmacol 2009; 9: 949–958.

Checker R, Patwardhan RS, Sharma D, Menon J, Thoh M, Sandur SK et al. Plumbagin, a vitamin K3 analogue, abrogates lipopolysaccharide-induced oxidant stress, inflammation and endotoxic shock via NF-κB suppression. Inflammation 2014; 37: 542–554.

Sandur SK, Ichikawa H, Sethi G, Ahn KS, Aggarwal BB. Plumbagin (5-Hydroxy-2-methyl-1,4-naphthoquinone) suppresses NF-κB activation and NF-κB-regulated gene products through modulation of p65 and IkBα kinase activation, leading to potentiation of apoptosis induced by cytokine and chemotherapeutic agents. J Biol Chem 2006; 281: 17023–17033.

Luo P, Wong YF, Ge L, Zhang ZF, Liu Y, Liu L et al. Anti-inflammatory and analogic effect of plumbagin through inhibition of nuclear factor-κB activation. J Pharmacol Exp Ther 2010; 335: 735–742.

Li J, Chen L, Lu F, Qin Y, Chen R, Li J et al. Plumbagin inhibits cell growth and potentiates apoptosis in human gastric cancer cells in vitro through the NF-κB signalling pathway. Acta Pharmacol Sin 2012; 33: 242–249.

Yan Y, Furumura M, Goh C, Tabei T, Iwamaki A, Tevy T, Kumaqai Y. Shikonin promotes skin cell proliferation and inhibits nuclear factor-κB translocation via proteasome inhibition in vitro. Chin Med J (Engl) 2015; 128: 2228–2233.

Andujar I, Recio M, Baccelli T, Giner R, Sandors R. Shikonin reduces cell growth and shikonin. Plant 1,4-naphthoquinone metabolism and functions

Jr Widholm and D Rhodes

Horticulture Research (2016)
Chiu S-C, Yang N-S. Inhibition of tumor necrosis factor-α through selective
Komi Y, Suzuki Y, Shimamura M, Kajimoto S, Nakajo S, Masuda M
et al.
Staniforth V, Wang SY, Shyur LF, Yang NS. Shikonins, phytocompounds
Pile JE, Navalta JW, Davis CD, Sharma NC. Interventional effects of
Horticulture Research (2016)

Andújar I, Ríos JL, Giner RM, Recio MC. Shikonin promotes intestinal wound
Wang L, Li Z, Zhang X, Wang S, Zhu C, Miao J
Wang F, Wang Q, Zhao L, Hu X, Wang Y, Pan S-T, He S-Z et al. Plumbagin induces cell
arrest and apoptosis and suppresses epithelial to mesenchymal transition involving
Drug Des Devel Ther 2015; 9: 537–560.
Pan S-T, Qin Y, Zhou Z-W, He Z, Zhang X, Yang T et al. Plumbagin induces G2/M
arrest, apoptosis, and autophagy via p38 MAPK- and PI3K/Akt/mTOR-mediated pathways in human tongue squamous cell carcinoma cells. Drug Des Devel Ther 2015; 9: 1601.

Jalms M, Parveen S, Beg MA, Suhail M, Chaudhary AGA, Damanhouri GA et al. Anticancer compound plumbagin and its molecular targets: a structural insight into the inhibitory mechanisms using computational approaches. PLoS One 2014; 9: 1–12.

Thasni RA, Ratheeshkumar T, Rojini G, Sivakumar KC, Nair RS, Srinivas G et al. Structure activity relationship of plumbagin in BRLCA1 related cancer cells. Mol Carcinog 2015; 52: 392–403.

Onodera T, Kuriyama I, Sakamoto Y, Kawamura M, Kurumochi K, Tsukabi K et al. 5-O-Acyl plumbagins inhibit DNA polymerase activity and suppress the inflammatory response. Arch Biochem Biophys 2015; 573: 100–110.

Kawakia A, Lojkowska E. Ramentacene, a naphthoquinone derived from Drosera sp., induces apoptosis by suppressing PI3K/Akt signaling in breast cancer cells. J Proteome Res 2016; 11: e0147718.

Peng X, Nie Y, Wu J, Huang Q, Cheng Y. Juglone prevents metabolic endotoxaemia-induced hepatitis and neuroinflammation via suppressing TLR4/ NF-κB signaling pathway in high-fat diet rats. Biochim Biophys Acta Com mun 2015; 462: 1–6.

Choi WH, Hong SS, Lee SA, Han XH, Lee KS, Lee MK et al. Monoamine oxidase inhibitory naphthoquinones from the roots of Lithospermum erythrorhizon. Arch Pharm Res 2005; 28: 400–404.

Coelho-Cerqueira E, Netz PA, Do Canto VP, Pinto AC, Follmer C. Beyond topoisomerase inhibition: antitumor 1,4-naphthoquinones as potential inhibitors of human monoamine oxidase. Chem Biol Drug Des 2014; 83: 401–410.

Mosret S, Petzer A, Petzer JP. Evaluation of natural and synthetic 1,4-naphthoqui- none derivatives as inhibitors of monoamine oxidase. Chem Biol Drug Des 2016; 87: 737–746.

Lamé MW, Jones AD, Wilson DW, Segall HJ. Protein targets of 1,4-benzoquinone and 1,4-naphthoquinone in human bronchial epithelial cells. Proteomics 2003; 3: 479–495.

Qiu JX, Zhou ZW, He ZX, Zhao RJ, Zhang X, Yang L et al. Plumbagin elicits differential proteomic responses mainly involving cell cycle, apoptosis, autophagy, and epithelial-to-mesenchymal transition pathways in human prostate cancer PC-3 and DU145 cells. Drug Des Devel Ther 2015; 9: 349–417.

Klotz L-O. Reactive oxygen species as initiators and mediators of cellular sig- naling processes. In: Roberts SM et al. (eds.) Studies on Experimental Toxicology and Pharmacology. Springer: Berlin International Publishing, 2015: 149–171.

Kishore N, Binneman B, Mahapatra A, Van De Venter M, Du Plessis-Stoman D, Boukes G et al. Cytotoxicity of synthesized 1,4-naphthoquinones analogues on selected human cancer cell lines. Bioorganic Med Chem 2014; 22: 5013–5019.

Wang S-H, Lo C-Y, Guo Z-H, Lin H-J, Chen L-G, Kuo C-D et al. Synthesis and biological evaluation of lipophilic 1,4-naphthoquinone derivatives against human cancer cell lines. Molecules 2015; 20: 11994–12015.

Guo J, Chen XF, Liu J, Lin HY, Han HW, Liu HC et al. Novel shikonin derivatives targeting tubulin as anticancer agents. Chem Biol Drug Des 2014; 84: 603–615.

Kyle Hadden M, Hill SA, Davenport J, Matts RL, Blagg BSJ. Synthesis and evaluation of HupA0 inhibitors that contain the 1,4-naphthoquinone scaffold. Bioorg Med Chem 2009; 17: 634–640.

Ventura Pinto A, Lisboa de Castro S. The trypanocidal activity of naphthoquinones: a review. Molecules 2009; 14: 4570–4590.

Ogindo CO, Khraiwesh MH, George M, Brandy Y, Brandy N, Guggsa A et al. Novel drug design for Chagas disease via targeting Trypanosoma cruzi tubulin: human cell modeling and in silico pocket prediction on Trypanosoma cruzi tubulin polymerization inhibition by naphthoquinone derivatives. Bioorg Med Chem 2016; 24: 3849–3855.

Pieretti S, Haanstra JR, Mazet M, Perozzo R, Bergamini C, Prati F et al. Naphthoquinone derivatives exert their antitrypanosomal activity via a multi- target mechanism. PLoS Negl Trop Dis 2013; 7: 1–12.

Prasad KK, Baiju KS, Rao RR, Suresh G, Retha K, Murthy JM et al. Synthesis and insect antifeedant activity of plumbagin derivatives. Med Chem 2012; 21: 578–583.

Borges AA, Jiménez-Arias D, Expósito-Rodríguez M, Sandalio LM, Pérez JA. Priming crops against biotic and abiotic stresses: MSB as a tool for studying mechanisms. Front Plant Sci 2014; 5: 642.

Plant 1,4-naphthoquinone metabolism and functions
JR Widhal and D Rhodes
Horticulture Research (2016)
296 Duru N, Gernapudi R, Zhou Q. Chemopreventive activities of shikonin in breast cancer. *Biochem Pharmacol Open Access* 2014; **03**:3–4.

297 Tabata M. The mechanism of shikonin biosynthesis in *Lithospermum* cell cultures. *Plant Tissue Cult Lett* 1996; **13**:117–125.

298 Weston LA, Ryan PR, Watt M. Mechanisms for cellular transport and release of allelochemicals from plant roots into the rhizosphere. *J Exp Bot* 2012; **63**:3445–3454.

299 Tatsumi K, Yano M, Kaminade K, Sugiyama A, Sato M, Toyooka K et al. Characterization of shikonin derivative secretion in *Lithospermum erythrorhizon* hairy roots as a model of lipid-soluble metabolite secretion from plants. *Front Plant Sci* 2016; **7**:1–11.