Research Article

Pick’s Theorem in Two-Dimensional Subspace of \mathbb{R}^3

Lin Si

College of Science, Beijing Forestry University, Beijing 100083, China

Correspondence should be addressed to Lin Si; silincd@163.com

Received 29 November 2014; Accepted 15 February 2015

Academic Editor: Filippo Cacace

Copyright © 2015 Lin Si. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In the Euclidean space \mathbb{R}^3, denote the set of all points with integer coordinate by \mathbb{Z}^3. For any two-dimensional simple lattice polygon P, we establish the following analogy version of Pick’s Theorem,

$$k(I(P) + \frac{1}{2}B(P) - 1),$$

where $B(P)$ is the number of lattice points on the boundary of P in \mathbb{Z}^3, $I(P)$ is the number of lattice points in the interior of P in \mathbb{Z}^3, and k is a constant only related to the two-dimensional subspace including P.

1. Introduction

In the Euclidean plane \mathbb{R}^2, a lattice point is one whose coordinates are both integers. A lattice polygon is a polygon with all vertices on integer coordinates. The area $A(P)$ of a simple lattice polygon P can be given by celebrated Pick’s theorem [1]

$$A(P) = I(P) + \frac{1}{2}B(P) - 1,$$ \hspace{1cm} (1)

where $B(P)$ is the number of lattice points on the boundary of P and $I(P)$ is the number of lattice points in the interior of P.

Pick’s formula can be used to compute the area of a lattice polygon conveniently.

For example, in Figure 1, $I(P) = 60$, $B(P) = 15$. Then, the area of the polygon is $A(P) = 60 + 15 - 1 = 74$.

There are many papers concerning Pick’s theorem and its generalizations [2–5], which mostly be discussed in two dimensions.

Unfortunately, Pick theorem is failed in three dimensions. In 1957, John Reeve found a class of tetrahedra, named as Reeve tetrahedra later, whose vertices are

$$(0,0,0)^T, (1,0,0)^T, (0,1,0)^T, (1,1,r)^T,$$ \hspace{1cm} (2)

where r is a positive integer.

All Reeve tetrahedra contain the same number of lattice points, but their volumes are different.

In this note, we discussed Pick’s theorem in two-dimensional subspace of \mathbb{R}^3. For any $(a, b, c)^T \in \mathbb{Z}^3$ with $(a, b, c) = 1$, that is, the greatest common factor of a, b, c is one, denote by K, $ax + by + cz = 0$, the two-dimensional subspace of \mathbb{R}^3. Then we established the following theorem.

Theorem 1. If P is simple lattice polygon in the K, then the area of P is

$$k \left(I(P) + \frac{1}{2}B(P) - 1 \right),$$ \hspace{1cm} (3)

where $B(P)$ is the number of lattice points on the boundary of P in \mathbb{Z}^3, $I(P)$ is the number of lattice points in the interior of P in \mathbb{Z}^3, and k is the constant $(a^3 + ab^2)\sqrt{a^2 + b^2 + c^2}$.

Remark 2. Although the simple lattice polygon P is in the two-dimensional subspace K, the lattice points in P belong to \mathbb{Z}^3.

Let $(a, b, c)^T = (1, 0, 0)^T$ in the Theorem; then we can get Pick’s theorem in some coordinate plane of \mathbb{R}^3.

Corollary 3. If P is simple lattice polygon in the K, whose normal vector is $(1, 0, 0)^T$, then the area of P is

$$I(P) + \frac{1}{2}B(P) - 1.$$ \hspace{1cm} (4)
2. Proof of Main Result

For any \((a, b, c)^T \in \mathbb{Z}^3\) with \((a, b, c) = 1\), there is a two-dimensional subspace of \(\mathbb{R}^3\)

\[ax + by + cz = 0, \tag{5} \]

whose normal vector is just \((a, b, c)^T\). We denote this two-dimensional subspace by \(K\).

By the theory of linear equations system, \((-b, a, 0)^T\) and \((-c, 0, a)^T\) are two linearly independent solutions of (5). We denote \((-b, a, 0)^T\) by \(\alpha\) and \((-c, 0, a)^T\) by \(\beta\). Obviously, \(\alpha\) and \(\beta\) are also the basis of \(K\).

Lemma 4. For any \((a, b, c)^T \in \mathbb{Z}^3\) with \((a, b, c) = 1\), there exists the lattice basis with the minimal area in the two-dimensional subspace \(K\).

Proof. The area of parallelogram generated by \(\alpha\) and \(\beta\) is

\[
\frac{1}{\sqrt{a^2+b^2+c^2}} \begin{vmatrix} a & -b & -c \\ b & a & 0 \\ c & 0 & a \end{vmatrix} = \frac{a^2+ab^2+ac^2}{\sqrt{a^2+b^2+c^2}} = a\sqrt{\frac{a^2+b^2+c^2}{a^4+b^2+c^2}}.
\]

Denote \((a, b, c)^T\) by \(n\). For any lattice basis in \(K\), \(k_1\alpha + k_2\beta\) and \(l_1\alpha + l_2\beta\), where \(k_i, l_i \in \mathbb{Z}\) \((i = 1, 2)\) and \(|\begin{vmatrix} k_1 & l_1 \\ k_2 & l_2 \end{vmatrix}| = 0\). The area of parallelogram generated by \(k_1\alpha + k_2\beta\) and \(l_1\alpha + l_2\beta\) is

\[
\frac{1}{\sqrt{a^2+b^2+c^2}} \begin{vmatrix} k_1 & k_2 \beta \ \vdots \ l_1 & l_2 \beta \\ n & (n, \alpha, \beta) \end{vmatrix} = \frac{1}{\sqrt{a^2+b^2+c^2}} \begin{vmatrix} 1 & 0 & 0 & k_1 & l_1 \\ 0 & k_1 & l_1 \end{vmatrix},
\]

where \(|\begin{vmatrix} k_1 & k_2 \beta \ \vdots \ l_1 & l_2 \beta \\ n & (n, \alpha, \beta) \end{vmatrix}|\) denote the determinant of \(n, k_1\alpha + k_2\beta\), and \(l_1\alpha + l_2\beta\).

Thus the lattice basis \(k_1\alpha + k_2\beta\) and \(l_1\alpha + l_2\beta\) have the minimal area if and only if \(|\begin{vmatrix} k_1 & l_1 \\ k_2 & l_2 \end{vmatrix}| = 1\).

Let \(k_1 = 1, k_2 = 0, l_1 = 0, l_2 = 1,\) and \(\alpha, \beta\) are the lattice basis with the minimal area in the two-dimensional subspace \(K\).

Lemma 5. For any \((a, b, c)^T \in \mathbb{Z}^3\) with \((a, b, c) = 1\), there exists the orthogonal lattice basis in the two-dimensional subspace \(K\).

Proof. By Lemma 4, \(\alpha, \beta\) are the lattice basis with the minimal area in the two-dimensional subspace \(K\). By Schmidt orthogonalization, let

\[
y_1 = \alpha = (-b, a, 0)^T,
\]

\[
y_2 = \beta - \frac{(\beta, y_1)}{(y_1, y_1)} = (-c, 0, a)^T - \frac{bc}{a^2+b^2} y_1
\]

\[= (-c, 0, a)^T - \left(\frac{-b^2c}{a^2+b^2}, \frac{abc}{a^2+b^2}, \frac{b^2c}{a^2+b^2}\right)^T \tag{8}
\]

where \((\beta, y_1)\) denote the usual inner product of \(\beta, y_1\) in \(\mathbb{R}^3\). Thus

\[
y_1 = y_1 = \alpha = (-b, a, 0)^T,
\]

\[
y_2 = (a^2+b^2) y_2 = (-a^2c, -abc, a^2+ab^2)^T
\]

are the orthogonal lattice basis in the two-dimensional subspace \(K\).

Proof of Theorem. By Lemma 5, \(\eta_1, \eta_2\) are the orthogonal lattice basis in the two-dimensional subspace \(K\).

The area of parallelogram generated by \(\eta_1, \eta_2\) is

\[
\frac{1}{\sqrt{a^2+b^2+c^2}} \begin{vmatrix} a & -b & -a^2c \\ b & a & -abc \\ c & 0 & a^3+ab^2 \end{vmatrix} = \frac{a^2+a^3b^2+ab^2c^2+a^3c^2+a^3b^2+ab^4}{\sqrt{a^2+b^2+c^2}}
\]

\[= a \left(\frac{a^4+2a^2b^2+b^4+(a^2+b^2)c^2}{\sqrt{a^2+b^2+c^2}}\right)
\]

\[= a \left(\frac{a^2+b^2}{\sqrt{a^2+b^2+c^2}}\right) \left(\frac{a^2+b^2}{\sqrt{a^2+b^2+c^2}}\right)
\]

\[= \frac{a^3+ab^2}{\sqrt{a^2+b^2+c^2}},
\]

which just is the constant \(k\) in the theorem.

Conflict of Interests

The author declares that there is no conflict of interests regarding the publication of this paper.
Acknowledgments

This work was supported by the Beijing Higher Education Young Elite Teacher Project (Grant no. YETP0770), the National Natural Science Foundation of China (Grant no. 11001014), and the Young Teachers Domestic Visiting Scholars Program of Beijing Forestry University.

References

[1] G. A. Pick, “Geometrisches zur Zahlentheorie, Sitzungber,” Lotos: Zeitschrift fur Naturwissenschaften, vol. 19, pp. 311–319, 1899.

[2] R. Ding, K. Kołodziejczyk, and J. Reay, “A new Pick-type theorem on the hexagonal lattice,” Discrete Mathematics, vol. 68, no. 2-3, pp. 171–177, 1988.

[3] W. W. Funkenbusch, “From Euler's formula to Pick's formula using an edge theorem,” The American Mathematical Monthly, vol. 81, no. 6, pp. 647–648, 1974.

[4] B. Grunbaum and G. C. Shephard, “Pick's theorem,” The American Mathematical Monthly, vol. 100, no. 2, pp. 150–161, 1993.

[5] A. C. F. Liu, “Lattice points and Pick's theorem,” Mathematics Magazine, vol. 52, no. 4, pp. 232–235, 1979.