Figure S1. Schematic figure of the *in vivo* passage of MS-H strain five times: Briefly, five 2-weeks-old specific-pathogen-free chickens were vaccinated by eyedrop with 50µL of MS-H. The birds were then euthanised at 4 weeks of age and the tracheas were removed. Tracheal washing was prepared by aspirating 5 ml of MB through the trachea for 10 times. The nasal turbinates were added to the tracheal washings and vortexed vigorously. Serial ten-fold dilutions of the mixtures were incubated at 33°C until late logarithmic phase. A total volume of 50µL from the lowest dilution was used for eyedrop administration to the next five chickens. The remaining culture from the lowest dilution of washing/nasal turbinates mixtures were transferred onto MA and incubated at 37°C for 10 days. This process was repeated through five chicken passages. A total number of 15 colonies (three per passage) were selected from MA plates and grown in 40 mL MB and incubated at 37°C until late logarithmic phase.
Figure S2. Schematic figure of the laboratory simulation of on-farm vaccination: A total of five four-week-old chickens were vaccinated with 0.1 mL dose of the MS-H vaccine, containing $10^{7.6}$ colour changing units (CCU) by eye drop (equivalent to the maximum release titre of $10^{9.1}$ CCU/mL). Swabs from upper, middle and lower trachea were taken from five chickens after 60 days post vaccination and inoculated immediately onto MA plates and incubated at 37°C for 7 days. A total number of 25 colonies (five per bird) were grown in 40 mL MB and incubated at 37°C until late logarithmic phase. The MS-H vaccine strain used in this experiment was also grown in 40 mL MB and incubated at 37°C until late logarithmic phase.
Accession	Host species	Host type	Sample collection year	Age of host	Country of origin	Comment
AB1	chicken		1993	28 weeks	Australia	
AS2	chicken		1993	11 weeks	Australia	
TS3	chicken		1993	14 weeks	Australia	
TS4	chicken		1994	28 weeks	Australia	
TS5	chicken		1994	37 weeks	Australia	
TS6	chicken		1994	55 weeks	Australia	
I45	chicken		2014	59 weeks	Italy	Isolate IZSVE/2014/368-2*
I46	chicken		2014	59 weeks	Italy	Isolate IZSVE/2014/368-6*
I47	chicken		2014	59 weeks	Italy	Isolate IZSVE/2014/374-11*
I48	chicken		2014	59 weeks	Italy	Isolate IZSVE/2014/374-12*
M152	chicken	Broiler	2015		Hungary	
M153	chicken	Broiler	2015		Hungary	
M155	chicken	Broiler	2015		Hungary	
M157	chicken	Broiler	2015		Hungary	
M163	chicken	Broiler	2015		Hungary	
M200	chicken	Broiler	2015	50 weeks	Hungary	
M214	chicken	Layer	2015	63 weeks	Hungary	
M215	chicken	Layer	2015	63 weeks	Hungary	
M235	chicken	Breeder	2015	47 weeks	Hungary	
M236	chicken		2015	35 weeks	Hungary	
M239	chicken	Breeder	2015	63 weeks	Hungary	
M240	chicken	Breeder	2015	35 weeks	Hungary	
I01	chicken	Breeder	2015	60 weeks	Italy	
I02	chicken	Breeder	2015	39 weeks	Italy	
I03	chicken	Breeder	2015	42 weeks	Italy	
I04	chicken	Breeder	2015	18 weeks	Italy	
I05	chicken	Breeder	2015	18 weeks	Italy	
I06	chicken	Breeder	2015	44 weeks	Italy	
M254	chicken	Layer	2016	71 weeks	Hungary	
M272	chicken		2016		Ukraine	
M289	chicken		2016		Hungary	
M306	turkey		2016		Hungary	off-label use under veterinary direction
M308	turkey		2016		Hungary	off-label use under veterinary direction
I07	chicken	Breeder	2016	31 weeks	Italy	
I08	chicken	Breeder	2016	31 weeks	Italy	
Code	Type	Year	Age	Country		
------	-------------------	------	-------	--------------		
I09	chicken Breeder	2016	31 weeks	Italy		
I10	chicken Breeder	2016	31 weeks	Italy		
I11	chicken Breeder	2016	31 weeks	Italy		
I12	chicken Breeder	2016	31 weeks	Italy		
I13	chicken Breeder	2016	31 weeks	Italy		
I14	chicken Breeder	2016		Italy		
I15	chicken Layer	2016	30 weeks	Italy		
I16	chicken Breeder	2016		Italy		
I17	chicken Breeder	2016		Italy		
I18	chicken Breeder	2016		Italy		
I23	chicken Layer	2016		Italy		
M376	chicken Breeder	2017	16 weeks	Romania		
M378	chicken Breeder	2017	17 weeks	Romania		
M379	chicken Breeder	2017	15 weeks	Romania		
M380	chicken Breeder	2017	13 weeks	Romania		
M381	chicken Breeder	2017	22 weeks	Romania		
I19	chicken Breeder	2017	27 weeks	Italy		
I20	chicken Breeder	2017		Italy		
I21	chicken Layer	2017		Italy		
I22	chicken Broiler	2017		Italy		
I24	chicken Layer	2017	19 weeks	Italy		
I25	chicken Layer	2017		Italy		
I26	chicken Layer	2017	40 weeks	Italy		
I27	chicken Breeder	2017	40 weeks	Italy		
I28	chicken Breeder	2017	40 weeks	Italy		
M510	chicken Breeder	2018		Slovakia		
M516	chicken Broiler Breeder	2018	26 weeks	India		
M517	chicken Breeder	2018	23 weeks	India		
M528	chicken Breeder	2018		China		
M529	chicken Breeder	2018		China		
M542	chicken Breeder	2018	16 weeks	India		
M544	chicken Broiler Breeder	2018	22 weeks	India		
M545	chicken Broiler Breeder	2018	22 weeks	India		
I29	chicken Breeder	2018	8 weeks	Italy		
I30	chicken Breeder	2018	6 weeks	Italy		
I31	chicken Layer	2018	7 weeks	Italy		
I32	chicken Layer	2018	9 weeks	Italy		
I33	chicken Layer	2018		Italy		
I34	chicken Layer	2018	12 weeks	Italy		
I35	chicken Layer	2018		Italy		
I36	chicken Layer	2018	22 weeks	Italy		
I37	chicken Layer	2018	22 weeks	Italy		
I38	chicken Breeder	2018		Italy		
I39	chicken Breeder	2018		Italy		
Code	Species	Category	Year	Age	Country	
-------	-------------	--------------	------	---------	--------------------	
M594	chicken		2019	15 weeks	Romania	
M618	chicken	Layer	2019	50 weeks	Romania	
A-A	chicken		2019		Argentina	
A-B	chicken		2019		Argentina	
A-C	chicken		2019		Argentina	
A-D	chicken		2019		Argentina	
A-E	chicken		2019		Argentina	
A-F	chicken		2019		Argentina	
I41	chicken	Breeder	2019		Italy	
I42	chicken	Breeder	2019		Italy	
I43	chicken	Breeder	2019	32 weeks	Italy	
AQJ5A	chicken		2019		Australia	
AQJ5B	chicken		2019		Australia	
AQJ9B	chicken		2019		Australia	
N01	turkey		2019		Netherlands	
N02	turkey		2019		Netherlands	
N03	chicken	Broiler Breeder	2020		Netherlands	
N04	chicken	Broiler Breeder	2020		Netherlands	
N05	chicken	Broiler Breeder	2020		Netherlands	

*Isolates have been used in the following study: Moronato et al., 2018. Application of different laboratory techniques to monitor the behaviour of a *Mycoplasma synoviae* vaccine (MS-H) in broiler breeders. Vet. Res. 14:1-9.*
Table S2. Details of clone preparation in this study

Experiment type	Clone name	Number of passages	Culture volume	Number of selected colonies	Colony propagation volume
In vitro					
	Small-scale progeny	6	10 mL	5	40 mL
	Large-scale progeny	6	commercial fermenter	6	40 mL
In vivo	Field reisolate	1	NA	98	Pure culture was provided
	Controlled reisolate	1	NA	25	40 mL
	Passaged reisolates	5	NA	15	40 mL
Locus-tag	Product	Number of genomes containing variation(s) (98)			
---------------	--	---			
MSH_RS01740	ABC transporter, OppF	62			
MSH_RS00965	GTPase, ObgE	54			
MSH_RS01365	Glyceraldehyde-3-phosphate dehydrogenase, GAPDH	13			
MSH_RS00320	DNA topoisomerase IV subunit A, ParC	14			
MSH_RS01430	P80 family lipoprotein	12			
MSH_RS02465	DNA-directed RNA polymerase subunit beta	12			
MSH_RS00575	Sugar ABC transporter	10			
MSH_RS03140	M42 family metallopeptidase	8			
MSH_RS00255	Hypothetical protein	7			
MSH_RS01685	P80 family lipoprotein	7			
MSH_RS03070	Type IIA DNA topoisomerase subunit B	7			
MSH_RS02015	Thymidylate synthase	6			
MSH_RS02845	Hypothetical protein	5			
MSH_RS03170	Lysine--tRNA ligase	3			
MSH_RS02670	Phosphoenolpyruvate--protein phosphotransferase	3			
MSH_RS03065	Serine--tRNA ligase	3			
MSH_RS02470	DNA-directed RNA polymerase subunit beta	3			
MSH_RS02775	Hypothetical protein	3			
MSH_RS01875	SGNH/GDSL hydrolase family protein	2			
MSH_RS01920	Transcription elongation factor GreA	2			
MSH_RS03630	Translation initiation factor IF-2	2			
MSH_RS02945	tRNA pseudouridine synthase B	2			
MSH_RS02350	tRNA-Asp	2			
MSH_RS02560	ECF transporter S component	2			
MSH_RS01000	**P80 family protein**	**2**			
MSH_RS01195	Hypothetical protein	2			
MSH_RS01640	Hypothetical protein	2			
MSH_RS00140	Glycerophosphodiester phosphodiesterase	2			
MSH_RS02780	UvrD-helicase domain-containing protein	2			
MSH_RS02980	Cation-translocating P-type ATPase	2			
MSH_RS03180	ABC transporter permease	2			
MSH_RS00390	Putative immunoglobulin-blocking virulence protein	2			
Accession	Description	Count			
--------------	---	-------			
MSH_RS01090	PDxFFG protein	2			
MSH_RS01715	Cell division protein FtsZ	2			
MSH_RS02600	ABC transporter ATP-binding protein	2			
MSH_RS03505	DAK2 domain-containing protein	2			
MSH_RS03580	Restriction endonuclease subunit S	2			
MSH_RS03610	PTS ascorbate transporter subunit IIC	2			
MSH_RS03360	Hypothetical protein	2			
Table S4. Effect of amino acid substitution on stability and solvent accessibility of the proteins coded by mutation-prone regions

Product	Template code used for modelling	Crystal structure source	Global model quality estimation (GMQE)	Sequence identity	Variation(s)	Solvent accessibility\(a\) (%)	Predicted pseudo ΔΔG\(b\) (kcal/mol)
GAPDH	7jwk.1.A	*Mycoplasma genitalium*	0.84	63.72%	Lys306Arg	+30.2 to +38	+0.13
					Arg123Gly	21.2 to 17.2	-0.02
					Ala210Val	0.4 to 0.4	0.57
ObgE	1lnz.2.A	*Bacillus subtilis*	0.52	48.18%	Arg123Gly	21.2 to 17.2	-0.02
					Ala210Val	0.4 to 0.4	0.57
ParC	2nov.2.A	*Streptococcus pneumoniae*	0.39	47%	Thr85Ile	101.4 to 99.6	1.07
					Asp89Asn	59.9 to 5.3	-0.94

\(a\) Solvent accessibility of amino acid side chain was from reference (MS-H) to the variant; values less than 17% show inaccessible/buried side chain, values between 17 to 43% show partially accessible side change and values more than 43% is accessible.

\(b\) Delta G (ΔΔG) is the change in Gibbs free energy between the folded and unfolded states (ΔGfolding) when a point mutation is present; A negative ΔΔG value corresponds to mutation predicted to be destabilising the protein whereas a positive ΔΔG value corresponds to mutation predicted to be stabilising the protein.

Note: only proteins with an available and acceptable quality and identity template were assessed.