Filtrated Pseudo-Orbit Shadowing Property and Approximately Shadowable Measures

Kazuhiro Sakai 1,* and Naoya Sumi 2

1 Department of Mathematics, Utsunomiya University, Utsunomiya 321-8505, Japan
2 Department of Mathematics, Kumamoto University, Kumamoto 860-8555, Japan; sumi@kumamoto-u.ac.jp
* Correspondence: kazsakai@cc.utsunomiya-u.ac.jp

Abstract: In this paper, it is proved that every diffeomorphism possessing the filtrated pseudo-orbit shadowing property admits an approximately shadowable Lebesgue measure. Furthermore, the C^1-interior of the set of diffeomorphisms possessing the filtrated pseudo-orbit shadowing property is characterized as the set of diffeomorphisms satisfying both Axiom A and the no-cycle condition. As a corollary, it is proved that there exists a C^1-open set of diffeomorphisms, any element of which does not have the shadowing property but admits an approximately shadowable Lebesgue measure.

Keywords: filtration; pseudo-orbit; shadowing property; shadowable measure; approximately shadowable measure; Axiom A; no-cycle condition; quasi-Anosov

MSC: 37C50; 37D20

1. Introduction

The notion of pseudo-orbits appears often in the several branches of the modern theory of dynamical systems; especially, the pseudo-orbit shadowing property usually plays an important role in the investigation of stability theory and ergodic theory. Let (X, d) be a compact metric space, and let $f : X \to X$ be a homeomorphism. For $\delta > 0$, a sequence of points $\{x_i\}_{i=1}^{\infty} \subset X$ ($-\infty \leq a < b \leq \infty$) is called a δ-pseudo-orbit of f if $d(f(x_i), x_{i+1}) < \delta$ for all $a \leq i \leq b - 1$.

Denote by $f|_A$ the restriction of f to a set $A \subset X$. Let $\Lambda \subset X$ be a closed set (not necessarily f-invariant). We say that $f|_A$ has the shadowing property if for every $\epsilon > 0$ there is $\delta > 0$ such that for any $n \in \mathbb{N}$ and δ-pseudo-orbit $\{x_i\}_{i=0}^{n} \subset \Lambda$ of f there is $y \in X$ ϵ-shadowing the pseudo-orbit—that is, $d(f^i(y), x_i) < \epsilon$ for all $0 \leq i \leq n - 1$. Note that only δ-pseudo-orbits of f "contained in Λ" can be ϵ-shadowed, but the shadowing point $y \in X$ is "not necessarily" contained in Λ. We say that f has the shadowing property if $X = \Lambda$ in the above definition. Since X is compact, it is not difficult to show that if $f|_A$ has the shadowing property, then every pseudo-orbit $\{x_i\}_{i=-\infty}^{\infty} \subset \Lambda$ can be shadowed by some true orbit of f.

In [1], we introduced the notion of shadowable measures as a generalization of the shadowing property from the measure theoretical view point, and investigated the dynamics of diffeomorphisms satisfying the notion (in fact, the dynamics of the C^1-interior of the set of diffeomorphisms possessing the shadowable measures is characterized as uniform hyperbolicity—see [1], Theorems 1 and 2). Every dynamical system possessing the shadowing property admits shadowable measures, but the converse is not generally true. In fact, an example of a diffeomorphism g is constructed on the 2-torus \mathbb{T}^2 such that g does not have the shadowing property but admits a shadowable Lebesgue measure (see [1], Example 3).

In this paper, generalizing the dynamics and shadowable Lebesgue measure of this example on \mathbb{T}^2, we introduce the notion of the filtrated pseudo-orbit shadowing property and that of approximately shadowable measures, and we prove that every diffeomorphism...
having the property admits an approximately shadowable Lebesgue measure. Furthermore, the C^1-interior of the set of diffeomorphisms possessing the filtrated pseudo-orbit shadowing property is characterized as the set of diffeomorphisms satisfying both Axiom A and the no-cycle condition. Finally, by making use of a quasi-Anosov diffeomorphism, we construct a C^1-open set of diffeomorphisms, any element of which does not have the shadowing property but admits an approximately shadowable Lebesgue measure.

2. Definitions and Statement of the Results

Recall that (X,d) is a compact metric space and $f : X \to X$ is a homeomorphism of X. For given points $x, y \in X$ and $\delta > 0$, we write $x \sim^\delta y$ if there is a δ-pseudo-orbit $(x_i)_{i=0}^n$ of f such that $x_0 = x$ and $x_n = y$ for some $n = n_\delta \in \mathbb{N}$. Write $x \Rightarrow^\delta y$ if $x \sim^\delta y$ and $y \sim^\delta x$. Finally, we write $x \Rightarrow y$ if $x \Rightarrow^\delta y$ for any $\delta > 0$. The chain recurrent set of f, denoted by $\mathcal{R}(f)$, is the set of points $x \in X$ such that $x \Rightarrow x$. The chain recurrent set is one of the main subjects to consider in the shadowing theory of dynamical systems. Clearly, $\Omega(f) \subset \mathcal{R}(f)$ by definition, where $\Omega(f)$ is the non-wandering set of f.

Let $X^n = X \times \cdots \times X$ (the n-times of direct product) be the sequences of points of X with length $n \in \mathbb{N}$, and denote by $\mathcal{M}(X)$ the space of Borel probability measures of X. For any $\mu \in \mathcal{M}(X)$ (not necessarily f-invariant), let $\mu_n = \mu \times \cdots \times \mu$ (n-times) be the direct product measure of X^n. For any $\delta > 0$, denote by $\mathcal{PO}(\delta, n)$ the space of δ-pseudo-orbits $\{x_i\}_{i=0}^{n-1} \in X^n$ of f, and for $\epsilon > 0$, denote by $\mathcal{SPO}(\delta, \epsilon, n) \subset \mathcal{PO}(\delta, n)$ the set of δ-pseudo-orbits ϵ-shadowed by some point.

We say that $\mu \in \mathcal{M}(X)$ is a shadowable measure of f (or simply, f is μ-shadowable) if for any $\epsilon > 0$ there exists $\delta > 0$ such that

$$
\mu_n(\mathcal{SPO}(\delta, \epsilon, n)) = \mu_n(\mathcal{PO}(\delta, n))
$$

for any $n \in \mathbb{N}$ (if A is a subset of X, then we define the shadowable measure for f_A by the same manner). Observe that if f has the shadowing property, then f is μ-shadowable for any $\mu \in \mathcal{M}(X)$. Denote by $\text{supp}(\mu)$ the support of $\mu \in \mathcal{M}(X)$. Then, since X is compact, it is known that if f is μ-shadowable, then $f_{|\text{supp}(\mu)}$ has the shadowing property (see [1], Lemma 1).

In this paper, we generalize the notion of shadowable measures to describe the dynamics of the system such as ([1], Example 3) from the measure theoretical view point. Let $\mu \in \mathcal{M}(X)$, and let $Y \subset X$ be a Borel set. For any Borel set $A \subset X$, we put

$$
\tilde{\mu}(A) = \tilde{\mu}_Y(A) = \frac{\mu(A \cap Y)}{\mu(Y)} \in \mathcal{M}(X).
$$

We say that μ is approximately shadowable if for any $\epsilon > 0$ there exists a Borel set Y of X with $\mu(Y) > 1 - \epsilon$ and $f(Y) \subset Y$ such that $\tilde{\mu}$ is a shadowable measure.

Hereafter, let M be a closed C^∞ manifold, and let d be a distance on M induced from a Riemannian metric $\| \cdot \|$ on the tangent bundle TM. Denote by $\text{Diff}(M)$ the space of diffeomorphisms of M endowed with the C^1-topology as usual. We say that a sequence

$$
\emptyset = M_0 \subset M_1 \subset \cdots \subset M_k = M
$$

of smooth compact submanifolds M_k with boundary such that $\dim M_k = \dim M$ for $1 \leq k \leq K$ is a filtration adapted to $f \in \text{Diff}(M)$ if the following conditions (a) and (b) are met:

(a) The chain recurrent set $\mathcal{R}(f)$ of f is composed of mutually disjoint closed f-invariant sets $\{\Lambda_k(f)\}_{k=1}^K (K \geq 1)$ of f—that is,

$$
\mathcal{R}(f) = \Lambda_1(f) \cup \cdots \cup \Lambda_K(f);
$$

(b) For any $1 \leq k \leq K$,
(b.1) \(f(M_k) \subseteq \text{int}M_k \);
(b.2) \(\Lambda_k(f) \subseteq \text{int}(M_k \setminus M_{k-1}) \);
(b.3) \(\Lambda_k(f) = \cap_{m \in \mathbb{Z}} f^m(M_k \setminus M_{k-1}) \).

Here \(\text{int}A \) denotes the interior of a set \(A \subseteq M \).

We say that \(f \) has the filtrated pseudo-orbit shadowing property if there exists a filtration \(\emptyset = M_0 \subset M_1 \subset \cdots \subset M_K = M (K \geq 1) \) adapted to \(f \) such that for all \(\epsilon > 0 \) there exists \(\delta > 0 \) such that for any filtrated \(\delta \)-pseudo-orbit \(\{x_i\}_{i=0}^n \subseteq \text{int}(M_k \setminus M_{k-1}) \) of \(f \) (\(n \in \mathbb{N} \)) there exists \(x \in M \) satisfying \(d(f^n(x), x_i) < \epsilon \) for all \(0 \leq i \leq n \).

Denote by \(FS \) the set of \(f \in \text{Diff}(M) \) having the filtrated pseudo-orbit shadowing property. The first result of this paper is the following.

Theorem 1. Every \(f \in FS \) admits an approximately shadowable Lebesgue measure \(m \in \mathcal{M}(M) \).

Remark 1. Suppose \(m \in \mathcal{M}(M) \) is the normalized Lebesgue measure on \(M \). Let us emphasize at this point that this \(m \) is an approximately shadowable Lebesgue measure for \(f \in FS \). In fact, we will see that for any \(\epsilon > 0 \) there exists a set \(Y \subset M \) \((m(Y) > 1 - \epsilon)\) such that \(\tilde{m} \in \mathcal{M}(M) \) is shadowable and \(\text{supp}(\tilde{m}) = Y \).

Denote by \(\text{int}FS \) the \(C^1 \)-interior of the set \(FS \) in \(\text{Diff}(M) \); that is, \(f \in \text{int}FS \) if and only if there exists a \(C^1 \)-neighborhood \(U(f) \) of \(f \) in \(\text{Diff}(M) \) such that any \(g \in U(f) \) meets all the properties \((a), (b)\) with respect to \(g \) and has the filtrated pseudo-orbit shadowing property. More precisely, for any \(g \in U(f) \),

- \(\mathcal{R}(g) \) is composed of mutually disjoint closed \(g \)-invariant sets \(\{\Lambda_k(g)\}_{k=1}^{K_g} (K_g \geq 1) \)
 that is,
 \[
 \mathcal{R}(g) = \Lambda_1(g) \cup \cdots \cup \Lambda_{K_g}(g)
 \]
 and properties \((b.1)-(b.3)\) are met, and
- Any filtrated pseudo-orbit \(\{x_i\}_{i=0}^n \subseteq \text{int}(M^g_{k} \setminus M^g_{k-1}) \) of \(g \) (\(n \in \mathbb{N} \)) is \(g \)-shadowed—that is,
 \[
 \text{int}(M^g_{k} \setminus M^g_{k-1})
 \]
 has the shadowing property for \(1 \leq k \leq K_g \).

Let \(\Lambda \subset M \) be a closed \(f \)-invariant set. The set \(\Lambda \) is hyperbolic if the tangent bundle \(T_\Lambda M \) has a \(Df \)-invariant splitting \(E^s \oplus E^u \) with constants \(C > 0 \) and \(0 < \lambda < 1 \) such that
\[
\|Df^n|_{E^s}\| \leq C\lambda^n \quad \text{and} \quad \|Df^{-n}|_{E^u}\| \leq C\lambda^n
\]
for all \(x \in \Lambda \) and \(n \geq 0 \). Suppose that \(\Lambda \) is hyperbolic. Then it is well-known that \(f|_\Lambda \) has the shadowing property (see [2,3]).

The stable manifold of a point \(x \in \Lambda \) is the set
\[
W^s(x) = \{ y \in M : d(f^n(x), f^n(y)) \to 0 \text{ as } n \to \infty \}.
\]

The unstable manifold, \(W^u(x) \), of \(x \in \Lambda \) is also defined analogously for \(n \to -\infty \). It is also well-known that \(W^s(x) \) and \(W^u(x) \) are both immersed manifolds (see [3], among others).

We say that \(f \) is Anosov when the whole space \(M \) is hyperbolic. At this moment, let us remark that any \(\mu \in \mathcal{M}(M) \) is shadowable if \(f \) is Anosov, and thus, every Anosov diffeomorphism admits a shadowable Lebesgue measure \(m \) such that
\[
\text{supp}(m) = M.
\]

Hereafter, let \(P(f) \) be the set of periodic points of \(f \), and recall that \(\Omega(f) \) is the set of non-wandering points of it. We say that \(f \) satisfy Axiom A if \(\Omega(f) \) is hyperbolic and \(\Omega(f) = P(f) \). Let \(f \) satisfies Axiom A. Then the non-wandering set has the so-called spectral decomposition—that is,
\[
\Omega(f) = \Lambda_1(f) \cup \cdots \cup \Lambda_L(f)
\]
composed of basic sets \(\{ \Lambda_i(f) \}_{i=1}^L \), and satisfies
\[
M = \bigcup_{i=1}^L W^s(\Lambda_i(f)),
\]
where
\[
W^s(\Lambda_i(f)) = \bigcup_{x \in \Lambda_i(f)} W^s(x) \quad (\sigma = s,u)
\]
for \(1 \leq i \leq L \).

We say that \(f \) has a cycle if there is a subsequence \(\{ \Lambda_{i_j}(f) \}_{j=1}^L \) \((2 \leq l \leq L + 1)\) of the spectral decomposition such that
\[
\Lambda_{i_l}(f) = \Lambda_{i_j}(f) \quad \text{and} \quad W^u(\Lambda_{i_j}(f)) \cap W^s(\Lambda_{i_{l-1}}(f)) \neq \emptyset \quad (1 \leq j \leq l - 1).
\]
Note that if \(f \) satisfies the no-cycle condition, then \(\mathcal{R}(f) = \Omega(f) \) (see [4]).

The next result is the following.

Theorem 2. Let \(f \in \text{Diff}(M) \). Then \(f \in \text{int} \mathcal{F} \mathcal{S} \) if and only if \(f \) satisfies both Axiom A and the no-cycle condition.

We say that \(f \) is quasi-Anosov if for any \(v \in TM \setminus \{0\}, \{\|Df^n(v)\| : n \in \mathbb{Z}\} \) is unbounded. In [5], quasi-Anosov diffeomorphisms are characterized as diffeomorphisms satisfying both Axiom A and the no-cycle condition such that for any \(x \in M \),
\[
T_xW^s(x) \cap T_xW^u(x) = \{0\}.
\]

Every Anosov diffeomorphism is quasi-Anosov, but an example of quasi-Anosov, non-Anosov diffeomorphism is constructed by [6] (for more information, see [7]). In this paper, by making use of a quasi-Anosov diffeomorphism, we construct a \(C^1 \)-open set of \(\text{Diff}(M) \), any element of which does not have the shadowing property but admits an approximately shadowable Lebesgue measure (see Corollary 1).

For quasi-Anosov diffeomorphisms, the relationship to the shadowing property is considered in [8], and the following result is obtained therein.

Theorem 3. Let \(f \in \text{Diff}(M) \). Then \(f \) is quasi-Anosov possessing the shadowing property if and only if \(f \) is Anosov.

Since every quasi-Anosov diffeomorphism is in \(\text{int} \mathcal{F} \mathcal{S} \) by Theorem 2, the next result follows from Theorems 1 and 3.

Corollary 1. Let \(f \in \text{Diff}(M) \) be a quasi-Anosov diffeomorphism that is not Anosov. Then there is a \(C^1 \)-open set (a neighborhood of \(f \)), any \(g \) of which does not have the shadowing property but admits an approximately shadowable Lebesgue measure \(m \).

Remark 2. Since the example \(g \) on \(\mathbb{T}^2 \) constructed in ([1], Example 3) is in \(\text{int} \mathcal{F} \mathcal{S} \), every \(h \) \(C^1 \)-nearby \(g \) admits an approximately shadowable Lebesgue measure. However, it is easy to see that, for any \(C^1 \)-neighborhood \(\mathcal{V}(g) \) of \(g \), there is a \(h \in \mathcal{V}(g) \) possessing the shadowing property.

We close this section by pointing out an example which does not admit an approximately shadowable Lebesgue measure.

Example 1. Let \(S^1 = \{ e^{2\pi i \theta} : \theta \in \mathbb{R} \} \subset \mathbb{C} \). For \(\alpha \in \mathbb{R} \setminus \mathbb{Q} \), let \(\rho_\alpha : S^1 \to S^1 \) be an irrational rotation map defined by \(\rho_\alpha(e^{2\pi i \theta}) = e^{2\pi i (\theta + \alpha)} \). Then the map \(\rho_\alpha \) does not admit an approximately shadowable Lebesgue measure since \(\rho_\alpha \) does not satisfy the shadowing property (see [1], Example 2) and we have \(\overline{Y} = S^1 \) for \(\emptyset \neq Y \subset S^1 \) with \(f(Y) \subset Y \).
3. Proofs of the Results

In this section, we give the proofs of Theorems 1 and 2 and Corollary 1.

Proof of Theorem 1. Suppose that $f \in \mathcal{F}S$, and let $m \in \mathcal{M}(M)$ be the normalized Lebesgue measure on M. Let $\mathcal{O} = M_0 \subset M_1 \subset \cdots \subset M_K = M$ be a filtration adapted to f as in the definition of the filtrated pseudo-orbit shadowing property, and recall the conditions (a) and (b) that f meets. We define a stable set for $\Lambda_k(f)$ ($1 \leq k \leq K$) by

$$W^s(\Lambda_k(f)) = \{ y \in M : \delta(f^n(y), \Lambda_k(f)) \rightarrow 0 \text{ as } n \rightarrow \infty \}.$$

Clearly, we have $f(W^s(\Lambda_k(f))) = W^s(\Lambda_k(f))$ and $W^s(\Lambda_k(f)) \cap W^s(\Lambda_1(f)) = \emptyset$ for $k \neq l$.

By (b.1)–(b.3) we have

1. $W^s(\Lambda_k(f)) \cap M_{k-1} = \emptyset$;
2. $\cap_{n=0}^{\infty} f^{-n}(M_k \setminus M_{k-1}) = W^s(\Lambda_k(f)) \cap M_k$;
3. $\bigcup_{k=1}^{K} W^s(\Lambda_k(f)) = M$.

If we set

$$W^n_k = W^s(\Lambda_k(f)) \cap f^{-n}(M_k)$$

for $1 \leq k \leq K$ and $n \geq 0$, then $\{W^n_k\}_{n=0}^{\infty}$ is an increasing sequence of closed sets satisfying that for $1 \leq k \leq K$

4. $f(W^n_k) = W^{n-1}_k \subset W^n_k$, $f^n(W^n_k) = W^n_k \subset M_k \setminus M_{k-1}$;
5. $W^n_k \cap W^n_l = \emptyset$ ($k \neq l$);
6. $\Lambda_k(f) \subset W^n_0 \subset W^n_1 \subset \cdots \subset W^n_k(f) = \bigcup_{n=0}^{\infty} W^n_k$.

Then, by (3) and (6), for $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that

$$m\left(\bigcup_{k=1}^{K} W^N_k\right) > 1 - \epsilon.$$

In what follows, we put

$$Y = \bigcup_{k=1}^{K} W^N_k$$

for convenience (note that $f(Y) \subset Y$ by (4)).

Now, let us take $\delta_1 > 0$ such that if $x \in W^N_k$ and $y \in W^N_l$ for $k \neq l$, then $d(x, y) > \delta_1$ (see (5) above). Thus we have the following

Claim. There exists $0 < \delta_2 < \delta_1$ such that for any δ-pseudo-orbit $\{x_i\}_{i=0}^{n} \subset Y$ of f with $0 < \delta < \delta_2$ and $n \geq N + 1$, there is $1 \leq k \leq K$ such that $x_i \in \text{int}(M_k \setminus M_{k-1})$ for all $N + 1 \leq i \leq n$.

Indeed, let $\{x_i\}_{i=0}^{n} \subset Y$ be a given δ-pseudo-orbit of f with $0 < \delta < \delta_1$ and $n \geq N + 1$. Then it is easy to see that by the choice of $\delta_1 > 0$, there is $1 \leq k \leq K$ such that $\{x_i\}_{i=0}^{n} \subset W^N_k$. Since

$$f^{N+1}(W^N_k) \subset f(M_k) \subset \text{int}M_k,$$

by the uniform continuity of f, we can choose $0 < \delta_2 < \delta_1$ such that if $0 < \delta < \delta_2$, then $x_i \in \text{int}M_k$ for $N + 1 \leq i \leq n$. Moreover, by (4), we have $x_i \in \text{int}(M_k \setminus M_{k-1})$ for $N + 1 \leq i \leq n$, and thus the claim is proved.

Finally, let us show that every pseudo-orbit $\{x_i\}_{i=0}^{n} \subset Y$ is shadowed by a true orbit of f. For $\epsilon > 0$, by the uniform continuity of f, we can choose $0 < \delta' < \delta_2$ such that every δ'-pseudo-orbit of f with length less than $N + 1$ can be ϵ'-shadowed by a true orbit of f. Thus, it is not difficult to show that any δ'-pseudo-orbit $\{x_i\}_{i=0}^{n} \subset Y$ of f can be
shadowed by a true orbit of f reducing δ' if necessary. Therefore, for the set Y, if we define $\tilde{m} \in M(M)$ as
\[
\tilde{m}(A) = \frac{m(A \cap Y)}{m(Y)}
\]
for any Borel set $A \subset M$, then \tilde{m} is shadowable, $m(Y) > 1 - \epsilon$ and $f(Y) \subset Y$, and thus Theorem 1 is proved. \hfill \Box

We need a lemma to prove Theorem 2. Remark that if f possesses the filtrated pseudo-orbit shadowing property, then $f_{\mid R(f)}$ has the shadowing property by definition. The following lemma proved in ([9], Proposition 2.3) will be used in the proof of the “only if” part of Theorem 2.

Lemma 1. If $f_{\mid R(f)}$ has the shadowing property, then the shadowing point can be taken from $\Omega(f)$ for any pseudo-orbit in $\Omega(f)$.

Proof of Theorem 2. To prove the if part of the theorem, suppose that f satisfies both Axiom A and the no-cycle condition. Then
\[
R(f) = \Omega(f) = \Lambda_1(f) \cup \cdots \cup \Lambda_K(f)
\]
for some $K \geq 1$, and there is a filtration $\emptyset = M_0 \subset M_1 \subset \cdots \subset M_K = M$ with respect to f. Here $\Lambda_k(f)$ is a hyperbolic basic set for $1 \leq k \leq K$ (see [3,4]). To prove the filtrated pseudo-orbit shadowing property for f, we note that for any $1 \leq k \leq K$ there is a neighborhood U_k of $\Lambda_k(f)$ with the property that for all $\delta > 0$ there exists $\delta > 0$ such that for any δ-pseudo-orbit $\{x_i\}_{i=0}^n \subset U_k$ there exists $x \in M$ satisfying $d(f^i(x), x_i) < \delta$ for all $0 \leq i \leq n$ since $\Lambda_k(f)$ is hyperbolic (see [2,3]). By (b,3), there is $m_k > 0$ such that
\[
\left(\bigcap_{m=-m_k} f^m(M_k \setminus M_{k-1}) \right) \subset U_k.
\]
To prove the only if part, let us denote by $\Omega.S$ the set of diffeomorphisms such that
- $f : \Omega(f) \to \Omega(f)$ has the shadowing property; and
- The shadowing point can be taken from $\Omega(f)$.

It was shown in ([10], Proposition 1) that any f in the C1-interior of $\Omega.S$ satisfies both Axiom A and the no-cycle condition. Thus, to get the conclusion, it is enough to show that if $f \in \Omega.S$, then f is in $\Omega.S$. Suppose that $f \in \Omega.S$. Then $f_{\mid R(f)}$ has the shadowing property, and thus, by Lemma 1, f is in $\Omega.S$ since the shadowing point can be taken from $\Omega(f)$. Thus, Theorem 2 is proved. \hfill \Box

Proof of Corollary 1. Let f be a quasi-Anosov diffeomorphism, so that f satisfies both Axiom A and the no-cycle condition. Since $f \in \text{int} FS$ by Theorem 2, every g C1-nearby f admits an approximately shadowable Lebesgue measure by Theorem 1.

It is proved that every g C1-nearby f is also quasi-Anosov by ([5], Lemma 1.6), and that f is Anosov if and only if $W^s(p)$ is the same dimension for all $p \in P(f)$ by ([5], Corollary 1).
Suppose further that \(f \) is not Anosov. Then, since there are hyperbolic periodic points \(p, q \in P(f) \) with different indices, that is, \(\dim W^s(p) \neq \dim W^s(q) \), every \(g \) \(C^1 \)-nearby \(f \) also has periodic points with different indices. Thus, \(g \) is quasi-Anosov but not Anosov by ([5], Corollary 1), so that \(g \) does not have the shadowing property by Theorem 3.

Author Contributions: The authors contributed equally to this work. All authors have read and agreed to the published version of the manuscript.

Funding: K.S. is supported by JSPS KAKENHI Grant Number 19K03578, and N.S. is supported by JSPS KAKENHI Grant Numbers 19K03585.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: The authors would like to express their sincere gratitude to the anonymous reviewers for their useful comments.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Moriyasu, K.; Sakai, K.; Sumi, N. Diffeomorphisms with shadowable measures. *Axioms* 2018, 7, 93. [CrossRef]
2. Pilyugin, S.Y.; Sakai, K. *Shadowing and Hyperbolicity*; Lecture Notes in Mathematics; Springer: Cham, Switzerland, 2017; Volume 2193.
3. Robinson, C. *Dynamical Systems: Stability, Symbolic Dynamics, and Chaos*, 2nd ed.; Studies in Advanced Mathematics; CRC Press: Boca Raton, FL, USA, 1999.
4. Franke, J.E.; Selgrade, J.F. Hyperbolicity and chain recurrence. *J. Differ. Equ.* 1977, 26, 27–36. [CrossRef]
5. Mañé, R. Quasi-Anosov diffeomorphisms and hyperbolic manifolds. *Trans. Am. Math. Soc.* 1977, 229, 351–370. [CrossRef]
6. Franks, J.; Robinson, C. A quasi-Anosov diffeomorphism that is not Anosov. *Trans. Am. Math. Soc.* 1976, 223, 267–278. [CrossRef]
7. Fisher, T.; Rodriguez Hertz, M. Quasi-Anosov diffeomorphisms of 3-manifolds. *Trans. Am. Math. Soc.* 2009, 361, 3707–3720. [CrossRef]
8. Sakai, K. Quasi-Anosov diffeomorphisms and pseudo-orbit tracing property. *Nagoya Math. J.* 1988, 111, 111–114. [CrossRef]
9. Moriyasu, K.; Sakai, K.; Sumi, N. Shadowing property and invariant measures having full supports. *Qual. Theory Dyn. Syst.* 2020, 19, 3. [CrossRef]
10. Moriyasu, K. The topological stability of diffeomorphisms. *Nagoya Math. J.* 1991, 123, 91–102. [CrossRef]