GALOIS ACTIONS FOR SEMIFIELD EXTENSIONS
AND GALOIS COVERINGS ON TROPICAL CURVES

SONG JUAE

Abstract. For a semifield extension T/S, an action of a finite group G on T is Galois if (1) the G-invariant subsemifield of T is S and (2) subgroups of G whose invariant semifields coincide are equal. We show that for a finite harmonic morphism between tropical curves $\varphi: \Gamma \to \Gamma'$ and an isometric action of a finite group G on Γ, φ is G-Galois if and only if the natural action of G on the rational function semifield $\text{Rat}(\Gamma)$ of Γ induced by the action of G on Γ is Galois for the semifield extension $\text{Rat}(\Gamma)/\varphi^*(\text{Rat}(\Gamma'))$, where $\varphi^*(\text{Rat}(\Gamma'))$ stands for the pull-back of $\text{Rat}(\Gamma')$ by φ.

1. Introduction

We call an injective semiring homomorphism between semifields $S \hookrightarrow T$ a semifield extension, and write it as T/S. For a semifield extension T/S, an action of a finite group G on T is Galois if (1) the G-invariant subsemifield T^G of T is S and (2) subgroups of G whose invariant semifields coincide are equal. For an intermediate semifield M of T/S, we write as G_M the subgroup of G such that the restriction of its every element on M is the identity map of M. For semifield extensions, an analogue of Galois correspondence holds:

Theorem 1.1 (Galois correspondence for semifield extensions). Let T/S be a semifield extension. Fix an action of a finite group G on T. Let A be the set of all intermediate semifields M of T/S such that $M = T^G_M$. Let B be the set of all subgroups of G. Then, if the action of G on T is Galois for T/S, then the maps $\Phi : A \to B; M \mapsto G_M$ and $\Psi : B \to A; H \mapsto T^H$ satisfy $\Psi \circ \Phi = \text{id}_A$, $\Phi \circ \Psi = \text{id}_B$ and reverse the inclusion relations, where id_A (resp. id_B) denotes the identity map of A (resp. B). Moreover, for any $M \in A$, the natural action of G_M on T is Galois for T/M.

One of the biggest differences from field extensions is that for the natural action of the automorphism group $\text{Aut}(T/S)$ of a semifield extension T/S on T, even the invariant subsemifield of T by $\text{Aut}(T/S)$ is S, Theorem 1.1 may not hold. Here, $\text{Aut}(T/S)$ is the group of all elements of T/S.

2020 Mathematics Subject Classification. Primary 08A05, 08A35, 15A80; Secondary 14T20.

Key words and phrases. Galois actions for semifield extensions, Galois coverings on tropical curves.
automorphisms of T whose restrictions on S are the identity map of S. It occurs due to that the automorphism group of a semifield extension is more complicated than that of a field extension (see the following example). Hence we cannot drop the second condition of the definition of Galois actions for semifield extensions.

Example 1.2. The T-algebra automorphism group $\text{Aut}_T(\text{Rat}(\Gamma'))$ of the rational function semifield $\text{Rat}(\Gamma')$ of a tropical curve Γ' is isomorphic to the automorphism group $\text{Aut}(\Gamma')$ of Γ' by \cite[Corollary 1.3]{4}. Here, T is the tropical semifield $(\mathbb{R} \cup \{-\infty\}, \max, +)$ and a tropical curve is a metric graph that may have edges of length ∞. $\text{Aut}(\Gamma')$ coincides with the isometry group of Γ' (except points at infinity). Hence, Artin’s theorem, which states that for a finite group G of automorphisms of a field L and the invariant subfield K of L by G, the extension L/K is a finite Galois extension with Galois group G, clearly does not hold for semifield extensions.

The following theorem gives a relation between Galois coverings on tropical curves and Galois actions for semifield extensions:

Theorem 1.3. Let $\varphi : \Gamma \to \Gamma'$ be a finite harmonic morphism between tropical curves and G a finite group isometrically acting on Γ. Then, φ is G-Galois if and only if the action of G on the rational function semifield $\text{Rat}(\Gamma')$ of Γ' naturally induced by the action of G on Γ is Galois for the semifield extension $\text{Rat}(\Gamma)/\varphi^*(\text{Rat}(\Gamma'))$.

Here, finite harmonic morphisms are morphisms of our category of tropical curves (see Section 2 for more details), $\varphi^*(\text{Rat}(\Gamma'))$ stands for the pull-back of $\text{Rat}(\Gamma')$ by φ, and “φ is G-Galois” means that (1) φ is a finite harmonic morphism of degree $|G|$ (the order of G) and (2) the action of G on Γ induces a transitive action on every fiber and (3) every stabilizer subgroup of G with respect to all but a finite number of points is trivial.

This paper is organized as follows. In Section 2, we prepare basic definitions related to semirings and tropical curves which we need later. Section 3 gives proofs of Theorems 1.1 and 1.3. In that section, we also consider sufficient conditions such that finite group actions become Galois under some assumptions.

Acknowledgements

The author thanks her supervisor Masanori Kobayashi, Yuki Kageyama, Daichi Miura, Yasuhiro Nakajima, and Ken Sumi for helpful comments. This work was supported by JSPS KAKENHI Grant Number 20J11910.
2. Preliminaries

2.1. Semirings and congruences. In this paper, a semiring is a commutative semiring with the absorbing neutral element 0 for addition and the identity 1 for multiplication such that 0 ≠ 1. If every nonzero element of a semiring \(S \) is multiplicatively invertible, then \(S \) is called a semifield. A semiring \(S \) is additively idempotent if \(x + x = x \) for any \(x \in S \). An additively idempotent semiring \(S \) has a natural partial order, i.e., for \(x, y \in S \), \(x \geq y \) if and only if \(x + y = x \).

A map \(\phi : S_1 \to S_2 \) between semirings is a semiring homomorphism if for any \(x, y \in S_1 \),
\[
\phi(x + y) = \phi(x) + \phi(y), \quad \phi(x \cdot y) = \phi(x) \cdot \phi(y), \quad \phi(0) = 0, \quad \text{and} \quad \phi(1) = 1.
\]
A semiring homomorphism \(\phi : S_1 \to S_2 \) is a semiring isomorphism if \(\phi \) is bijective. A semiring automorphism of \(S \) is a semiring isomorphism \(S \to S \).

Given a semiring homomorphism \(\phi : S_1 \to S_2 \), we call the pair \((S_2, \phi)\) (for short, \(S_2 \)) a \(S_1 \)-algebra. For a semiring \(S_1 \), a map \(\psi : (S_2, \phi) \to (S_2', \phi') \) between \(S_1 \)-algebras is a \(S_1 \)-algebra homomorphism if \(\psi \) is a semiring homomorphism and \(\phi' = \psi \circ \phi \). When there is no confusion, we write \(\psi : S_2 \to S_2' \) simply.

The set \(T := R \cup \{-\infty\} \) with two tropical operations:
\[
a \oplus b := \max\{a, b\} \quad \text{and} \quad a \odot b := a + b,
\]
where both \(a \) and \(b \) are in \(T \), becomes a semifield. Here, for any \(a \in T \), we handle \(-\infty\) as follows:
\[
a \oplus (-\infty) = (-\infty) \oplus a = a \quad \text{and} \quad a \odot (-\infty) = (-\infty) \odot a = -\infty.
\]
\(T \) is called the tropical semifield.

Let \(S \) be a semiring. A subset \(E \subset S \times S \) is a congruence on \(S \) if it is a subsemiring of \(S \times S \) that defines an equivalence relation on \(S \). The kernel of a semiring homomorphism \(\phi : S_1 \to S_2 \) is the congruence \(\ker(\phi) = \{(x, y) \in S_1 \times S_1 \mid \phi(x) = \phi(y)\} \).

2.2. Tropical curves. In this paper, a graph is an unweighted, undirected, finite, connected nonempty multigraph that may have loops. For a graph \(G \), the set of vertices is denoted by \(V(G) \) and the set of edges by \(E(G) \). The degree of a vertex is the number of edges incident to it. Here, a loop is counted twice. A leaf end is a vertex of degree one. A leaf edge is an edge incident to a leaf end.

A tropical curve is the underlying topological space of the pair \((G, l)\) of a graph \(G \) and a length function \(l : E(G) \to R_{\geq0} \cup \{\infty\} \), where \(l \) can take the value \(\infty \) on only leaf edges, together with an identification of each edge \(e \) of \(G \) with the closed interval \([0, l(e)]\). When \(l(e) = \infty \), the interval \([0, \infty) \) is the one point compactification of the interval \([0, \infty) \) and the leaf end of \(e \) must be identified with \(\infty \). We regard this not just as a topological space but as almost a metric space. The
distance between ∞ and any other point is infinite. If $E(G) = \{e\}$ and $l(e) = \infty$, then we can identify either leaf ends of e with ∞. When a tropical curve Γ is obtained from (G, l), the pair (G, l) is called a model for Γ. There are many possible models for Γ. A model (G, l) is loopless if G is loopless. Let Γ_∞ denote the set of all points of Γ identified with ∞. An element of Γ_∞ is called a point at infinity. The valence of a point x of Γ is the minimum number of the connected components of $U \setminus \{x\}$ with all neighborhoods U of x. Remark that this “valence” is defined for a point of a tropical curve and the “valence” in the first paragraph of this subsection is defined for a vertex of a graph, and these are compatible with each other. We frequently identify a vertex (resp. an edge) of G with the corresponding point (resp. the corresponding closed subset) of Γ. The relative interior e° of an edge e is $e \setminus \{v, w\}$ with the endpoint(s) v, w of e.

2.3. **Rational functions and chip-firing moves.** Let Γ be a tropical curve. A continuous map $f : \Gamma \to R \cup \{\pm \infty\}$ is a rational function on Γ if f is a piecewise affine function with integer slopes, with a finite number of pieces and that can take the value $\pm \infty$ at only points at infinity, or a constant function of $-\infty$. $\text{Rat}(\Gamma)$ denotes the set of all rational functions on Γ. For rational functions $f, g \in \text{Rat}(\Gamma)$ and a point $x \in \Gamma \setminus \Gamma_\infty$, we define

$$(f \oplus g)(x) := \max\{f(x), g(x)\} \quad \text{and} \quad (f \odot g)(x) := f(x) + g(x).$$

We extend $f \oplus g$ and $f \odot g$ to points at infinity to be continuous on whole Γ. Then both are rational functions on Γ. Note that for any $f \in \text{Rat}(\Gamma)$, we have

$$f \oplus (-\infty) = (-\infty) \oplus f = f$$

and

$$f \odot (-\infty) = (-\infty) \odot f = -\infty.$$

Then $\text{Rat}(\Gamma)$ becomes a semifield with these two operations. Also, $\text{Rat}(\Gamma)$ becomes a T-algebra with the natural inclusion $T \hookrightarrow \text{Rat}(\Gamma)$. Let $\text{Aut}_T(\text{Rat}(\Gamma))$ denote the set of all T-algebra automorphisms of $\text{Rat}(\Gamma)$. Then $\text{Aut}_T(\text{Rat}(\Gamma))$ has a group structure. Note that for $f, g \in \text{Rat}(\Gamma)$, $f = g$ means that $f(x) = g(x)$ for any $x \in \Gamma$.

A subgraph of a tropical curve is a compact subset of the tropical curve with a finite number of connected components. Let Γ_1 be a subgraph of a tropical curve Γ which has no connected components consisting of only a point at infinity, and l a positive number or infinity. The chip-firing move by Γ_1 and l is defined as the rational function $\text{CF}(\Gamma_1, l)(x) := -\min(l, \text{dist}(x, \Gamma_1))$ with $x \in \Gamma$, where $\text{dist}(x, \Gamma_1)$ stands for the distance between x and Γ_1.

2.4. Finite harmonic morphisms and Galois coverings. Let $\varphi : \Gamma \to \Gamma'$ be a continuous map between tropical curves. φ is a finite harmonic morphism if there exist loopless models (G, l) and (G', l') for Γ and Γ', respectively, such that (1) $\varphi(V(G)) \subset V(G')$ holds, (2) $\varphi(E(G)) \subset E(G')$ holds, (3) for any edge $e \in G$, there exists a positive integer $\deg_e(\varphi)$ such that for any points x, y of e, $\text{dist}(\varphi(x), \varphi(y)) = \deg_e(\varphi) \cdot \text{dist}(x, y)$ holds, and (4) for every vertex v of G, the sum $\sum_{e \in E(G); e \to v', v \in e} \deg_e(\varphi)$ is independent of the choice of $e' \in E(G')$ incident to $\varphi(v)$. This sum is denoted by $\deg_v(\varphi)$. Then, the sum $\sum_{v \in V(G); v \to v'} \deg_v(\varphi)$ is independent of the choice of vertex v' of G'. It is said the degree of φ. If both Γ and Γ' are singletons, we regard φ as a finite harmonic morphism that can have any number as its degree. Note that for any $x \in \Gamma$, we can choose loopless models $(G, l), (G', l')$ above so that $x \in V(G)$ and $\varphi(x) \in V(G')$.

Let $\varphi : \Gamma \to \Gamma'$ be a finite harmonic morphism between tropical curves. For $f \in \text{Rat}(\Gamma')$, the push-forward of f is the function $\varphi_*(f) : \Gamma' \to \mathbb{R} \cup \{\pm \infty\}$ defined as follows: for $x' \in \Gamma' \setminus \Gamma'_{\infty}$,

$$\varphi_*(f)(x') := \sum_{x \in \Gamma : \varphi(x) = x'} \deg_x(\varphi) \cdot f(x).$$

We continuously extend $\varphi_*(f)$ on Γ'_{∞}. Then, $\varphi_*(f)$ is a rational function on Γ'. The pull-back $\varphi^*(f')$ of $f' \in \text{Rat}(\Gamma')$ is the rational function $f' \circ \varphi$ on Γ.

Remark 2.1. Let $\varphi : \Gamma \to \Gamma'$ be a map between tropical curves. Then φ is a continuous map whose restriction on $\Gamma \setminus \Gamma'_{\infty}$ is an isometry if and only if it is a finite harmonic morphism of degree one. In this paper, we will use the word "a finite group G isometrically acts on a tropical curve Γ" as the meaning that G continuously acts on Γ and it is isometric on $\Gamma \setminus \Gamma'_{\infty}$.

Remark 2.2. Let Γ be a tropical curve and G a finite group isometrically acting on Γ. Let Γ/G be the quotient space (as topological space) and $\pi_G : \Gamma \to \Gamma/G$ be the natural surjection. Fix a loopless model (V, E, l) (V is a set of vertices and E is a set of edges) for Γ compatible with the action of G on Γ, i.e., for any $g \in G$, $g(V) = V$ holds. Let $V' := \pi_G(V), E' := \pi_G(E)$ and for any $e \in E$, $l'(\pi_G(e)) := |G_e| \cdot l(e)$, where G_e denotes the stabilizer subgroup of G with respect to e. Then, (V', E', l') gives Γ/G a tropical curve structure and is a loopless model for the quotient tropical curve Γ/G. By loopless models (V, E, l) and (V', E', l') for Γ and Γ/G, respectively, π_G is a finite harmonic morphism of degree $|G|$.

Definition 2.3 ([3, Definition 4.1]). Let Γ be a tropical curve and G a finite group. An isometric action of G on Γ is Galois if there exists a finite subset U' of Γ/G such that for any $x' \in (\Gamma/G) \setminus U'$, $|\pi^{-1}_G(x')| = |G|$ holds.
Definition 2.4 ([3, Definition 4.2]). Let $\varphi : \Gamma \to \Gamma'$ be a map between tropical curves. φ is Galois if there exists a Galois action of a finite group G on Γ such that there exists a finite harmonic morphism of degree one $\theta : \Gamma/G \to \Gamma'$ satisfying $\varphi \circ g = \theta \circ \pi_G$ for any $g \in G$. Then, we say that φ is a G-Galois covering on Γ' or just G-Galois.

3. Main results

Throughout this paper, we assume that an action of a finite group G on a semifield T induces a group homomorphism from G to the automorphism group of T.

Definition 3.1 (Semifield extensions). Let T, S be semifields. We call an injective semiring homomorphism $S \hookrightarrow T$ a semifield extension, and write it as T/S. We frequently identify a semifield extension T/S with the inclusion $S \subset T$ via the injection $S \hookrightarrow T$.

Let T/S be a semifield extension. Let M be a semifield. A pair of injective semiring homomorphisms $S \hookrightarrow M$, $M \hookrightarrow T$ compatible with T/S is called an intermediate semifield of T/S. We frequently identify the intermediate semifield with the inclusion $S \subset M \subset T$ via the injections above. We also call M an intermediate semifield of T/S.

We call an automorphism of T whose restriction on S is the identity map of S an automorphism of T/S. Let $\text{Aut}(T/S)$ denote the set of all automorphisms of T/S. Then, $\text{Aut}(T/S)$ becomes a group. We call it the automorphism group of T/S.

Let G be a finite group. For an action of G on T, we call the subset of T whose each element is fixed by all elements of G the G-invariant semifield, and write it as T^G. Then, T^G naturally becomes an intermediate semifield of T/S. The action of G on T is Galois for T/S if (1) $T^G = S$ and (2) subgroups of G whose invariant semifields coincide are equal. For an intermediate semifield M of T/S, we write as G_M the subset of G such that the restriction of its every element on M is the identity map of M. Then, G_M becomes a group.

Remark 3.2. Note that there exists a non-injective semiring homomorphism between semifields. In fact, the map $T \to B; t \neq -\infty \mapsto 0; -\infty \mapsto -\infty$ is a non-injective semiring homomorphism. Here, B is the boolean algebra ($\{\neg \infty, 0\}, \text{max}, +$), which is a subsemifield of T.

Proposition 3.3. Let T/S be a semifield extension. Fix an action of a finite group G on T. Let A be the set of all intermediate semifields M of T/S such that $M = T^{G_M}$. Let B be the set of G^H_T for any subgroup H of G. Then, the maps $\Phi : A \to B; M \mapsto G_M$ and $\Psi : B \to A; G^H_T \mapsto T^{G^H_T}$ satisfy $\Psi \circ \Phi = \text{id}_A$, $\Phi \circ \Psi = \text{id}_B$ and reverse the inclusion relations.

Proof. It is straightforward. □
Remark 3.4. Let T/S be a semifield extension. Let G be a finite group acting on T. When $T^G = S$, the following are equivalent:

1. the action of G on T is Galois for T/S,
2. for any subgroups H_1, H_2 of G, if $T^{H_1} = T^{H_2}$, then $H_1 = H_2$,
3. for any subgroups H_1, H_2 of G, if $G_{T^{H_1}} = G_{T^{H_2}}$, then $H_1 = H_2$,
4. for any subgroups H_1, H_2 of G, if $\text{Aut}(T^{H_1}) = \text{Aut}(T^{H_2})$, then $H_1 = H_2$, and
5. for T/S, the Galois correspondence holds.

Proof. (1) \iff (2) : clear.

(2) \Rightarrow (3) : we shall show the contraposition. Assume that there exist distinct subgroups H_1, H_2 of G such that $G_{T^{H_1}} = G_{T^{H_2}}$. For any $a \in T^{H_1}$ and $f \in G_{T^{H_2}}$, $f(a) = a$ holds since $G_{T^{H_1}} = G_{T^{H_2}}$. Since H_2 is a subgroup of $G_{T^{H_2}}$, we have $a \in T^{H_2}$. The converse inclusion is shown in a similar way, we have the conclusion.

(3) \Rightarrow (4) : since the intersection of G and $\text{Aut}(T^{H_1})$ is $G_{T^{H_1}}$, by (3), we have $H_1 = H_2$.

(4) \Rightarrow (2) : for any subgroups H_1, H_2 of G, if $T^{H_1} = T^{H_2}$, then since $\text{Aut}(T^{H_1}) = \text{Aut}(T^{H_2})$, we have $H_1 = H_2$ by (4).

(1) \Rightarrow (5) : it is given by Theorem 3.3.

(5) \Rightarrow (2) : for any subgroups H_1, H_2 of G, assume that $T^{H_1} = T^{H_2}$ holds. Since $G_{T^{H_1}} = G_{T^{H_2}}$, by Theorem 3.3 we have $H_1 = H_2$. □

Theorem 3.5. Let T/S be a semifield extension. Let G be a finite group acting on T. Let M be an intermediate semifield of T/S such that $M = T^{G_M}$. Then, the following are equivalent:

1. G_M is a normal subgroup of G,
2. for any $g \in G$, $g(M) \subset M$,
3. for any $g \in G$, $g(M) = M$,
4. there exists a subgroup H of $\text{Aut}(M/S)$ such that for any $g \in G$, there exists $h \in H$ that coincides with the restriction $g|_M$, and
5. there exists a subgroup H' of $\text{Aut}(M/S)$ such that for any $m \in M$, the orbits Gm and $H'm$ coincide.

Moreover, if the action of G on T is Galois for T/S, then $M'' = S$ holds and H can be choosen to be the natural action of H on T is Galois for T/M, and if the natural action of H on T is Galois for T/M, then H is isomorphic to the quotient group G/G_M.

Proof. (1) \Rightarrow (2) : for any $g \in G$, $g' \in G_M$, $m \in M$, as $g^{-1}g'g \in G_M$, we have $g^{-1}g'g(m) = m$. Thus, $g'(g(m)) = g(m) \in T^{G_M} = M$ holds.
(2) \implies (3): since \(g \) is arbitrary element of \(G \), we have also \(g^{-1}(M) \subset M \). Hence, \(M = g(g^{-1}(M)) \subset g(M) \) holds.

(3) \implies (4): we can define a group homomorphism \(\phi : G \to \text{Aut}(M/S) \) as \(g \mapsto g|_M \). The image \(\text{Im}(\phi) \) is the desired group.

(4) \implies (5): it is enough to choose the subgroup \(\{ g|_M \mid g \in G \} \) of \(H \) as \(H' \).

(5) \implies (2): it is clear.

(2) \implies (1): for any \(g \in G \), \(g' \in G_M \), \(m \in M \), since \(g(m) \in M \), we have \(g^{-1}g'g(m) = g^{-1}(g'(g(m))) = g^{-1}(g(m)) = m \). Therefore, we have \(g^{-1}g' \in G_M \).

Assume that the action of \(G \) on \(T \) is Galois for \(T/S \). It is clear that \(M^{H'} \supseteq S \) holds. For any \(a \in M^{H'} \), since \(\{ a \} = H'a = Ga \), by the orbit-stabilizer theorem (cf. [5, Chapter 6]), we have \(G_a = G \). Thus, \(a \in T^G = S \) holds. This means that \(M^{H'} = S \).

Assume that the action of \(G \) on \(T \) is Galois for \(T/S \). Let \(H = \{ g|_M \mid g \in G \} \). Note that it is \(\text{Im}(\phi) \). Let \(H_1, H_2 \) be subgroups of \(H \) satisfying \(M^{H_1} = M^{H_2} \). Let \(G_i := \phi^{-1}(H_i) \). Since

\[
M^{H_i} = \{ m \in M \mid \text{for any } h_i \in H_i, h_i(m) = m \} = \{ m \in M \mid \text{for any } g_i \in G_i, g_i(m) = m \} = \{ t \in T \mid \text{for any } g_i \in G_i, g_i(t) = t \} \cap M = T^{G_i} \cap M,
\]

we have \(T^{G_1} \cap M = T^{G_2} \cap M \). Since the kernel \(\ker(\phi) \) of \(\phi \) and \(G_M \) coincide, \(G_M \) is a subgroup of \(G_i \). Hence, \(M = T^{G_M} \supseteq T^{G_i} \) hold. Therefore, we have \(T^{G_1} \cap M = T^{G_i} \), and thus, \(T^{G_1} = T^{G_2} \).

Since the action of \(G \) on \(T \) is Galois for \(T/S \), \(G_1 \) must be \(G_2 \). Thus, \(H_1 = \phi(G_1) = \phi(G_2) = H_2 \) hold, and hence, the action of \(H \) on \(M \) is Galois for \(M/S \).

Assume that the action of \(H \) on \(M \) is Galois for \(M/S \). By assumption, \(H' := \{ g|_M \mid g \in G \} \) is a subgroup of \(H \). By the same argument above, since \(T^G = S = M^{H'} \supseteq M^{H} \supseteq S \), we have \(M^{H'} = M^{H} \).

Since the action of \(H \) on \(M \) is Galois for \(M/S \), we have \(H' = H \). Since \(H' = \text{Im}(\phi) \) and \(\ker(\phi) = G_M \), \(H' \) is isomorphic to \(G/G_M \). In conclusion, \(H \) is isomorphic to \(G/G_M \).

We give a sufficient condition that for a semifield extension \(T/S \), a given finite group action on \(T \) is Galois:

Proposition 3.6. Let \(T/S \) be a semifield extension. Fix an action of a finite group \(G \) on \(T \). If \(T^G = S \) holds and if for any subgroup \(H \) of \(G \), there exists an element \(a \in T \) whose stabilizer subgroup \(G_a \) is \(H \), then the action of \(G \) on \(T \) is Galois for \(T/S \).

Proof. Let \(H_1, H_2 \) be subgroups of \(G \). Assume that \(T^{H_1} = T^{H_2} \) holds. There exist \(a, b \in T \) whose stabilizer subgroups are \(H_1, H_2 \), respectively. Hence, we have \(H_1 = \bigcap_{c \in T^{H_1}} G_c = \bigcap_{d \in T^{H_2}} G_d = H_2 \). \(\square \)
Proposition 3.7. Let \(\varphi_1 : \Gamma \to \Gamma'_1 \) be a finite harmonic morphism between tropical curves. Then, the pull-backs \(\varphi_1^*(\text{Rat}(\Gamma'_1)) \) and \(\varphi_2^*(\text{Rat}(\Gamma'_2)) \) coincide if and only if there exists a finite harmonic morphism of degree one \(\varphi_{12} \) satisfying \(\varphi_1 = \varphi_{12} \circ \varphi_2 \).

Proof. We show the if part. Let \(f \in \varphi_1^*(\text{Rat}(\Gamma'_1)) \). There exists \(f' \in \text{Rat}(\Gamma'_1) \) such that \(f = \varphi_1^*(f') \). Hence we have \(f = \varphi_1^*(f') = f' \circ \varphi_1 = f' \circ \varphi_{12} \circ \varphi_2 \). Since \(\varphi_{12} \) is a finite harmonic morphism, we have \(f' \circ \varphi_{12} \in \text{Rat}(\Gamma'_2) \), and thus \(f \in \varphi_{12}^*(\text{Rat}(\Gamma'_2)) \). Since \(\varphi_{12} \) is a finite harmonic morphism of degree one, it is bijective and the inverse map \(\varphi_{12}^{-1} \) is also a finite harmonic morphism of degree one. Therefore, we have the inverse inclusion by the same argument.

We show the only if part. Let \((V, E, l), (V'_1, E'_1, l'_1) \) be loopless models for \(\Gamma, \Gamma'_1 \), respectively, such that \(\varphi_1(V) = V'_1 \). Let \((\tilde{V}, \tilde{E}, \tilde{l}), (V'_2, E'_2, l'_2) \) be loopless models for \(\Gamma, \Gamma'_2 \), respectively, such that \(\varphi_2(V) = V'_2 \). For any \(x \in \Gamma \setminus (V \cup \tilde{V}) \), there exist \(e \in E \) and \(\tilde{e} \in \tilde{E} \) containing \(x \). Then, we have \(\text{deg}_e(\varphi_1) = \text{deg}_e(\varphi_1) = \text{deg}_e(\varphi_2) = \text{deg}_e(\varphi_2) \) by the definition of pull-back of rational functions. In fact, there exists a positive number \(\varepsilon \) such that \(\varphi_1^*(\text{CF}(\{\varphi_1(x)\}, \varepsilon)) \) (resp. \(\varphi_2^*(\text{CF}(\{\varphi_2(x)\}, \varepsilon)) \)) has slope \(\text{deg}_e(\varphi_1) \) (resp. \(\text{deg}_e(\varphi_2) \)) on \(\varphi_1^{-1}(U'_1) \cap e \) (resp. \(\varphi_2^{-1}(U'_2 \cap \tilde{e}) \)), where \(U'_i \) is the \(\varepsilon \)-neighborhood of \(\varphi_i(x) \). Since these slopes \(\text{deg}_e(\varphi_1) \) and \(\text{deg}_e(\varphi_2) \) are the minimum (absolute values of) slopes other than zero on \(e \) and \(\tilde{e} \), respectively, and \(\varphi_1^*(\text{Rat}(\Gamma'_1)) = \varphi_2^*(\text{Rat}(\Gamma'_2)) \), \(\text{deg}_e(\varphi_1) \) must be \(\text{deg}_e(\varphi_2) \) (cf. \cite[Remark 3.3.24]{Remark}). Also, by the definition of the push-forward of rational functions, with a sufficiently small positive number \(\delta \), we have \((\varphi_1)_*(\text{CF}(\{x\}, \delta) \circ \delta) = \text{CF}(\{\varphi_1(x)\}, \delta) \circ (\text{deg}_e(\varphi_1) \cdot \delta) \) and \((\varphi_2)_*(\text{CF}(\{x\}, \delta) \circ \delta) = \text{CF}(\{\varphi_2(x)\}, \delta) \circ (\text{deg}_e(\varphi_2) \cdot \delta) \). Since \(\varphi_i \) is continuous, the map \(\varphi_{12} : \Gamma'_2 \to \Gamma'_1; \varphi_2(y) \to \varphi_1(y) \) is a finite harmonic morphism of degree one, where \(y \in \Gamma \).

Corollary 3.8. Let \(\varphi : \Gamma \to \Gamma' \) be a finite harmonic morphism between tropical curves. Let \(G \) be a finite group isometrically acting on \(\Gamma \). Then, \(\text{Rat}(\Gamma)^G = \varphi^*(\text{Rat}(\Gamma')) \) if and only if \(\varphi \) is \(G \)-Galois.

Proof. Let \((V, E, l), (V', E', l') \) be loopless models for \(\Gamma, \Gamma' \), respectively, such that \(\varphi(V) = V' \). The if part follows from \cite[Remark 3.3.24]{Remark} since for any \(e \in E \), \(\text{deg}_e(\varphi) = 1 \). We shall show the only if part. If \(\text{Rat}(\Gamma)^G = \varphi^*(\text{Rat}(\Gamma')) \), then for any \(e \in E \), \(\text{deg}_e(\varphi) = 1 \). For any \(x \in \Gamma \setminus \Gamma_\infty \) and any \(\varepsilon > 0 \), since \(\varphi^*(\text{CF}(\{\varphi(x)\}, \varepsilon)) \) takes zero at and only at each element of \(\varphi^{-1}(\varphi(x)) \) and is \(G \)-invariant, we have \(Gx = \varphi^{-1}(\varphi(x)) \). Thus, \(\varphi \) is \(G \)-Galois.

Proof of Theorem 7.3 The if part follows from Corollary 3.8. We shall show the only if part. By Corollary 3.8 \(\text{Rat}(\Gamma)^G = \varphi^*(\text{Rat}(\Gamma')) \). Let \(G_1, G_2 \) be subgroups of \(G \). Assume that \(\text{Rat}(\Gamma)^{G_1} = \text{Rat}(\Gamma)^{G_2} \) holds. Let \(\Gamma'_i \) be the quotient tropical curve of \(\Gamma \) by \(G_i \). By \cite[Theorem 1.1]{Theorem}, the natural surjection \(\pi_{G_i} : \Gamma \to \Gamma'_i \) is \(G_i \)-Galois. Hence, there exists a
finite harmonic morphism of degree one π_{12} satisfying $\pi_{G_1} = \pi_{12} \circ \pi_{G_2}$. Thus, by [3, Theorem 1.1] again, we have $G_1 = G_2$, which completes the proof. \qed

Note that by [4, Corollary 1.3], the automorphism group of a tropical curve Γ is isomorphic to $\text{Aut}_T(\text{Rat}(\Gamma))$. Here, an automorphism of Γ is a finite harmonic morphism of degree one $\Gamma \to \Gamma$. Hence, the following corollary holds:

Corollary 3.9. Let $\varphi : \Gamma \to \Gamma'$ be a finite harmonic morphism between tropical curves and G a finite group isometrically acting on $\text{Rat}(\Gamma)$. Then, φ is G-Galois for the natural action of G on Γ if and only if the action of G on $\text{Rat}(\Gamma)$ is Galois for $\text{Rat}(\Gamma)/\varphi^*(\text{Rat}(\Gamma'))$.

Proposition 3.10. Let $\varphi : \Gamma \to \Gamma'$ be a finite harmonic morphism between tropical curves. Let G be a finite group isometrically acting on Γ. If φ is G-Galois, then for any subgroup H of G, there exists a rational function f on Γ whose stabilizer subgroup is H.

Proof. If Γ (and hence Γ') is a singleton, then the assertion is clear. Assume that Γ (and thus Γ') is not a singleton. Let Γ'' be the quotient tropical curve of Γ by H. Let $x'' \in \Gamma''$ be a two valent point. There exists a positive real number ε such that the ε-neighborhood U'' of x'' consists of only two valent points. Since φ is G-Galois, the stabilizer subgroup of G with respect to the pull-back $\pi_H^*(\text{CF}(\{x''\}, \varepsilon))$ is H. \qed

By this proposition and Proposition 3.6, we have the following corollary:

Corollary 3.11. Let $\varphi : \Gamma \to \Gamma'$ be a finite harmonic morphism between tropical curves. Let G be a finite group isometrically acting on Γ. Then, $\text{Rat}(\Gamma)^G = \varphi^*(\text{Rat}(\Gamma'))$ and for any subgroup H of G, there exists $g \in \text{Rat}(\Gamma)$ whose stabilizer subgroup is H if and only if the natural action of G on $\text{Rat}(\Gamma)$ is Galois for $\text{Rat}(\Gamma)/\varphi^*(\text{Rat}(\Gamma'))$.

![Figure 1](image.png)

Figure 1. On each figure, black dots (resp. lines) stand for vertices (resp. edges).

Remark 3.12. Let $\varphi : \Gamma \to \Gamma'$ be a finite harmonic morphism between tropical curves. Let G be a finite group isometrically acting on Γ. Then, even if the natural action of G on $\text{Rat}(\Gamma)$ is Galois for $\text{Rat}(\Gamma)/\text{Rat}(\Gamma)^G$, it may not be Galois for $\text{Rat}(\Gamma)/\varphi^*(\text{Rat}(\Gamma'))$. See Example 3.13.
Example 3.13. Let G be the graph consisting of three vertices v_1, v_2, v_3, two multiple edges e_1, e_2 between v_1 and v_2, and one edge e_3 between v_2 and v_3 (the left figure of Figure 1). Let Γ be the tropical curve obtained from (G, l), where $l(E(G)) = \{1\}$. Let σ be the permutation $(e_1 e_2)$. The group $\langle \sigma \rangle$ generated by σ naturally acts on Γ. Let Γ' be the quotient tropical curve of Γ by $\langle \sigma \rangle$. Note that the pair of the quotient graph $G' := G/\langle \sigma \rangle$ and the length function $l' : E(G') \to R \cup \{\infty\}; [e_1] \mapsto 1; [e_3] \mapsto 2$ is a model for Γ', where $[e_i]$ denotes the equivalence class of e_i. The natural surjection $\pi_{\langle \sigma \rangle} : \Gamma \to \Gamma'$ is not $\langle \sigma \rangle$-Galois. Also, the natural action of $\langle \sigma \rangle$ on $\text{Rat}(\Gamma)$ is not Galois for $\text{Rat}(\Gamma)/\pi_{\langle \sigma \rangle}^*(\text{Rat}(\Gamma'))$ but $\text{Rat}(\Gamma)/\text{Rat}(\Gamma)^{\langle \sigma \rangle}$.

Remark 3.14. Let Γ be a tropical curve. Then, even an isometric action of a finite group G on Γ is faithful, the natural action of G on $\text{Rat}(\Gamma)$ may not be Galois for $\text{Rat}(\Gamma)/\text{Rat}(\Gamma)^G$. See Example 3.15.

Example 3.15. Let G be the graph consisting of two vertices and three multiple edges e_1, e_2, e_3 between them (the right figure of Figure 1). Let l be the length function such that $l(E(G)) = \{1\}$ and Γ the tropical curve obtained from (G, l). The symmetric group of degree three Σ_3 isometrically and faithfully acts on Γ in a natural way. The invariant subsemifields by the permutation $(e_1 e_2 e_3)$ and by Σ_3 coincide. On the other hand, clearly $\langle (e_1 e_2 e_3) \rangle \neq \Sigma_3$. Hence the natural action of Σ_3 on $\text{Rat}(\Gamma)$ is not Galois for $\text{Rat}(\Gamma)/\text{Rat}(\Gamma)^{\Sigma_3}$.

Proposition 3.16. Let S be an additively idempotent semiring and $\phi : S \to S$ an automorphism of S. If S is totally ordered with respect to the natural partial order, then ϕ is the identity of S or the order of ϕ is infinite.

Proof. Assume that ϕ is not the identity of S. Then, there exists an element $s \in S \setminus \{0, 1\}$ such that $\phi(s) \neq s$. Since S is totally ordered, $\phi(s) + s = s$ or $\phi(s) = \phi(s)$. If $\phi(s) + s = s$, then $\phi^2(s) = \phi(s)$. By repeating the same argument, we have $s \geq \phi(s) \geq \phi^2(s) \geq \cdots$. Since $\phi(s) \neq s$, these are distinct. Hence, in this case, the cardinality of $\langle \phi \rangle s$ is infinite. When $\phi(s) + s = \phi(s)$, by the same argument, the cardinality of $\langle \phi \rangle s$ is also infinite. □

By Proposition 3.16, for a semifield extension T/S, if T is an additively idempotent semifield totally ordered with respect to the natural partial order and an action of a finite group G on T is Galois for T/S, then G is trivial and $T = S$.

Finally, we consider another sufficient condition that for a semifield extension T/S, a given finite group action on T is Galois under some assumptions. Let U be an additively idempotent semifield. Assume that U is totally ordered with respect to the natural partial order. Let T be a finitely generated semifield over U. Let t_1, \ldots, t_n be generators of T. Then, the U-algebra homomorphism $\psi : U(X_1, \ldots, X_n) \to T$ defined
by $X_i \mapsto t_i$ is surjective, where $U(X_1, \ldots, X_n)$ denotes the semifield of all fractions of all polynomials with coefficients in U and each X_i is an indeterminate. By \cite[Proposition 2.4.4]{[1]}, ψ induces a semiring isomorphism $\phi : U(X_1, \ldots, X_n)/\ker(\psi) \to T$. Let V be the set \{ $u \in (U \setminus \{0\})^n$ | for any $(f, f') \in \ker(\psi), f(u) = f'(u)$ \}. Assume that for any two elements $[f], [f'] \in U(X_1, \ldots, X_n)/\ker(\psi)$, $[f] = [f']$ if and only if for any $v \in V$, $f(v) = f'(v)$ holds. Let G be a finite group. Assume that an action of G on V induces the action of G on $U(X_1, \ldots, X_n)/\ker(\psi)$ such that for any $g \in G$, $[f] \in U(X_1, \ldots, X_n)/\ker(\psi)$, $v \in V$, $g([f])(v) = f(g^{-1}(v))$. Since $U(X_1, \ldots, X_n)/\ker(\psi)$ is a U-algebra, this induced action induces a group homomorphism from G to the U-algebra automorphism group of $U(X_1, \ldots, X_n)/\ker(\psi)$.

Proposition 3.17. In the above setting, if there exists an element v of V whose stabilizer subgroup of G is trivial, then the action of G on T is Galois for T/T^G.

Proof. Let $v = (v_1, \ldots, v_n)$ and

$$f(X_1, \ldots, X_n) := \left[\sum_{i=1}^{n} \left\{ v_i^{-1} \cdot X_i + (v_i^{-1} \cdot X_i)^{-1} \right\} \right]^{-1}.$$

For $u = (u_1, \ldots, u_n) \in V$, since U is totally ordered, if $u \neq v$, then there exists i such that $v_i^{-1} \cdot u_i \neq 0$. Hence, $v_i^{-1} \cdot u_i$ or $(v_i^{-1} \cdot u_i)^{-1}$ is bigger than 0. Thus, we have

$$f(u) = \begin{cases} 0 & \text{if } u = v, \\ < 0 & \text{if } u \neq v. \end{cases}$$

For any subgroup H of G, let $f_H := \sum_{h \in H} h(f)$. By definition, f_H takes zero at and only at elements of Hv, and values less than zero at any other elements of V. Therefore, the stabilizer subgroup of G with respect to f_H is H, which completes the proof by Proposition 3.6. \hfill \Box

References

[1] Jeffrey Giansiracusa and Noah Giansiracusa, *Equations of tropical varieties*, Duke Mathematical Journal **165**(18):3379-3433, 2016.

[2] Song JuAe, *Galois quotients of metric graphs and invariant linear systems*, arXiv:1901.09172.

[3] Song JuAe, *Galois correspondence for Galois coverings on tropical curves*, arXiv:2110.08091.

[4] Song JuAe, *Semiring isomorphisms between rational function semifields of tropical curves induce isomorphisms between tropical curves*, arXiv:2110.08091.

[5] Clive Reis and Stuart A Rankin, *Abstract Algebra: Introduction to Groups, Rings and Fields with Applications* (Second Edition), WSPC, 2013.

Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo, 192-0397, Japan.

Email address: song-juae@ed.tmu.ac.jp