SHORT COMMUNICATION

Antigenic modulation of metastatic breast and ovary carcinoma cells by intracavitary injection of IFN-α

P. Giacomini1, M. Mottolese2, R. Fraioli1, M. Benevolo2, I. Venturo3 & P.G. Natali4

1Immunology Laboratory, Departments of 2Pathology and 3Medical Oncology, Regina Elena Institute, Via delle Messi d’Oro 156, 00138 Rome, Italy.

Summary Antigenic modulation of major histocompatibility and tumour associated antigens was observed in neoplastic cells obtained from patients with pleural and abdominal effusions of breast and ovary carcinomas following a single intracavitary dose of 18 × 10⁶ U recombinant IFN-α. This regimen resulted in antigenic modulation in seven out of 11 tested cases, suggesting a potential, although limited, responsiveness of at least a fraction of breast and ovary carcinoma cells to in situ biromanification with IFN-α.

Clinical trials with IFN-α have shown that the use of this biomodiﬁer is justiﬁed only in the treatment of a limited number of hematologic malignancies, still remaining of little use in the control of solid tumors (Goldstein & Laszlo, 1986).

To test the hypothesis that a low therapeutic efﬁcacy of IFN-α in the treatment of solid tumours might be related to its inability in eliciting cellular responses, it would be desirable to develop protocols capable of quantitatively appreciating objective biological changes in neoplastic cells exposed in vivo to IFN-α. Testing of antigenic modulation may provide, in this context, an objective and quantitative estimate of a cellular response. Being independent of the clinical performance of the IFNs, antigenic modulation may contribute to discriminate inappropriate delivery of biological stimuli to cancer cells from other possible causes of therapeutic failure (Gamliel et al., 1990).

In the present report, surface expression of 11 independent major histocompatibility complex (MHC) and tumour associated antigens (TAA) has been assessed prior to and following IFN-α administration, in a panel of 11 patients with neoplastic cell effusions from breast or ovary cancer, previously selected for treatment with a single intracavitary dose of recombinant IFN-α.

Because these cells are collected routinely and with minimal risk for diagnostic and therapeutic purposes, this protocol overcomes, at least in part, the ethically questionable procedure of repeated biopitic sampling of solid tumours.

Materials and methods

Patients and clinical samples

Patients (three letter code) with breast (seven cases) and ovary (four cases) carcinoma had been free of chemotherapy for at least 1 month before IFN-α administration. They were treated with a single intracavity dose of 18 × 10⁶ U IFN-α2 (Roche, Nutley, NJ). All patients gave their written consent. Neoplastic effusions (20–40 ml) were obtained from the pleural or abdominal cavity just prior to and 24 h after IFN-α administration. Neoplastic cells were isolated from erythrocytes and white blood cells by fractionation on a density gradient, made up by diluting one volume of Percoll (Pharmacia, Uppsala, Sweden) stock solution with two volumes of cell suspensions in Phosphate (0.01 M) buffered (pH 7.0) saline (0.9%) and subsequent centrifugation at 150 g for 30 min at room temperature.

Cell surface ELISA binding assay

Neoplastic cells were resuspended at 1 × 10⁶ ml⁻¹ in Lymphoblast (Biostest AG, Frankfurt, Germany), and stored at 4°C for 22–48 h (pretreatment samples) or 2–24 h (post treatment samples). These storage procedures did not significantly alter antigen expression, as comparatively assessed by control ELISA testing of cells isolated at 24–48 h intervals from patients not treated with IFN-α (four cases). This method of testing was found to be superior to separate testing of pre- and post-treatment samples with internal reference controls. At the end of the storage period, cells from pre- and post-treatment samples were tested by an ELISA assay, as described previously (Giacomini et al., 1990).

Although general agreement exists that a 24 h IFN-α treatment is capable of inducing only a suboptimal antigenic modulation of the surface antigens (Greiner et al., 1985; Giacomini et al., 1990 and 1991), longer intervals between IFN-α administration and testing of antigenic modulation were not considered, since IFN-α has a relatively short (3–6 h) halflife in the bloodstream (Goldstein & Laszlo, 1986), and causes a readily reversible upregulation of class I MHC antigens in vivo exposed periphery blood mononuclear cells (Giacomini et al., 1991). In addition, the time interval between pre- and post-treatment samples collections was kept to a minimum in order to test antigen expression after limited periods of neoplastic cell storage at 4°C.

Results

Antigenic modulation by IFN-α

Out of a total of 24 cases collected, only 11 could be evaluated by ELISA because of poor viability and/or contamination of neoplastic cells with leukocytes present in the effusions. Out of the 11 testable cases, four resulted unresponsive. Significant modulation of at least one antigen was observed in the remaining seven cases (Figure 1). The frequency of antigen upregulation was as follows: cyt-MAA (three out of four tested samples) > class I MHC (five out of seven) > Oc125 and HFMG-2 (two out of the three cases expressing significant levels of these determinants) > antigen identified by MAB B1.1 (two out of six) > antigens identified by MAB B6.2 (one out of five) and B72.3 (one out of six).

Correspondence: P. Giacomini.
Received 2 January 1992; and in revised form 14 April 1992.
The antigens recognised by MAb 345 and Mov 19, on the other hand, the former known to be only marginally, if at all, affected by IFN-α treatment, represented suitable internal controls for binding equalisation between pre- and post-treatment samples. It should be noted that antigen modulation was unexpectedly detected in the case of antigens such as HMFG-2 and Oc 125, for which evidence of susceptibility to IFN-α upregulation is not available (see Table I). No significant differences were noted in the clinical outcome between the seven patients moderately responsive to IFN-α antigenic modulation and the four which were not.

Discussion

Only a few studies have so far documented changes in the expression of cellular antigens induced *in vivo* by IFN-α in neoplastic patients (Gamliel et al., 1990; Schiller et al., 1990; Giacomini et al., 1991), and only one of these studies, based on a regimen of intracavitary infusion very similar to that herein described (except for the use of IFN-γ instead of IFN-α), addressed this issue directly in neoplastic cells (Allavena et al., 1990).

In spite of this relative paucity of data, it is becoming quite clear that antigenic modulation does indeed occur *in vivo*. However, it remains to be proven whether a poor or absent response of tumour cells *in vitro* to one or several of the biological effects of the IFNs may represent a major mechanism impairing their therapeutic efficacy. Our data demonstrate that a significant upregulation of one or more membrane antigens occurs in a consistent fraction of breast and ovary carcinoma cells treated *in vivo* with IFN-α. By taking advantage of a quantitative ELISA assay, we show that the number of interferon susceptible antigens upregulated in different cell samples and the entity of such upregulation were, on the average, low. In addition, no antigen was modulated in all samples.

The use of a single intracavitary dose of IFN-α does not allow to draw unequivocal conclusions, since an insufficient dosage or too short exposure to IFN-α of neoplastic cells may affect the entity of antigenic modulation. However, these results are likely to reflect, at least in part, a true impairment in the *in vivo* response of neoplastic cells. This is suggested by the observation that a 24 h *in vitro* treatment with IFN-α is efficient in eliciting at least suboptimal antigenic modulation on three distinct breast carcinoma associated antigens recognised by MAb B1.1, B72.3 and B6.2 (Greiner et al., 1985), while the presently used protocol was quite inefficient in inducing similar changes *in vivo*, even in effusions susceptible to upregulation of class I MHC and/or other tumour antigens. Therefore, our data are consistent with the hypothesis that an inappropriate protocol of IFN-α administration, on one hand, and a number of *in vivo* occurring inhibitory influences, on the other, may adversely affect the potential therapeutic and/or modulatory abilities of IFN-α in a percentage of breast and ovary carcinoma cells and/or antigens. Among these inhibitory influences, a poor availability of exogenous IFN-α at certain anatomical sites, the presence of local inhibitory factors, and/or *in situ* production of antagonistic cytokines are all likely candidates.

Table I Specificity of monoclonal antibodies

MAb	Antigen specificity	Upregulation by IFN-α	MW (Kd)	Refs.
W6/32	class I MHC	+	44 ± 12	Brodsky et al., 1979
KUL/05	class II MHC	+/−	34 ± 32	Giacomini et al., 1989
B1.1	CEA-like	+	160–180	Greiner et al., 1985
B6.2	glycoprotein	+	90	Greiner et al., 1985
B72.3	glycoprotein	+	>1000	Greiner et al., 1985
MBR 1	glycolipid	−		Canevari et al., 1983
HMFG-2	Milk fat globules	−	220	Griffith et al., 1987
OC 125	Ca 125 glycoprotein	−	1	Bast et al., 1981
345.134S	Differentiation Ag	+/−	85 ± 30	Giacomini et al., 1990
465.125	Cyt-MAA Prolif. epithelia	+/−	(94) + 75 ± 70 + (20)	Giacomini et al., 1990

*(−) Denotes either absence of specific literature or unresponsiveness to IFN-α. Numbers in brackets refer to components expressed only in certain cell lines. The cytoplasmic MAA may be expressed on the cell surface in most cell lines. This fraction is measured in the present study.
Even in the lack of more detailed informations about the type and relevance of the factors underlying this low response, the present results demonstrate that tumour cells can be modified by IFN-α in vivo. Thus, they extend to an IFN-α-neoplastic effusion model previous observations in other systems (Gamillet et al., 1990; Schiller et al., 1990; Allavena et al., 1990; Giacomini et al., 1991), and rule out the possibility of a state of absolute refractoriness of cancer cells to in vivo biomodification with the IFNs.

Clearly, a correlation between antigenic modulation and therapeutic efficacy of IFN-α could not be established on the basis of the present data. This, however, was not the main purpose of our testing, since the function of most tumour associated antigens is unknown, and probably unrelated to the induction of antitumour effects by the IFNs. For this reason, the identification of markers of clinical response to the IFNs will likely require the development of ad hoc reagents.

The skillful technical assistance by Cynthia Full, secretarial help by Ernesto Sarcone and graphic work by Luigi Dall’Oco, Ivana Zardini and Mauro di Giovanni are gratefully acknowledged.

This work was supported by AIRC and PFCNR ACRO (PG), and Italian Public Ministry of Health (P.G.N.) funds.

References

ALLAVENA, P., PECCATORI, F., MAGGIONI, D., ERROI, A., SIRONI, M., COLOMBO, N., LISSONI, A., GALAZKA, A., MEIERS, W., MANGIONI, C. & MANTOIANI, A. (1990). Intraperitoneal recombinant γ-interferon in patients with recurrent ascitic ovarian carcinoma: modulation of cytotoxicity and cytokine production in tumor-associated effectors and Major Histocompatibility Antigen expression on tumor cells. Cancer Res., 50, 7318.

BAST, R.C., FEENEY, M., LAZARUS, H., NADLER, L.M., COLVIN, R.B. & KNAPP, R.C. (1981). Reactivity of a monoclonal antibody with human ovarian carcinoma. J. Clin. Invest., 68, 1331.

BRODSKY, F.M., PARHAM, P., BARNSTABLE, C.J., CRUMPTON, M.J. & BODMER, W.F. (1979). Monoclonal antibodies for analysis of the HLA system. Immunol. Rev., 47, 3.

CANEVARI, S., FOSATI, G., BALSARI, A., SONNINO, S. & COLNAGHI, M.I. (1983). Immunoochemical analysis of the determinant recognized by a monoclonal antibody (MBr) which specifically binds to human mammary epithelial cells. Cancer Res., 43, 1301.

GAMILLET, H., BROWNSTEIN, B.H., GURFEL, D., WU, S.H., ROSNER, M.C. & COLOMB, H.M. (1990). B-cell growth factor-induced and α-interferon-inhibited proliferation of hairy cells coincides with modulation of cell surface antigens. Cancer Res., 50, 4111.

GIACOMINI, P., TECCE, R., NICOTRA, M.R., COHEN, B.B., MAZZILLI, M.C. & NATALI, P.G. (1989). mAb Kul/03 identifies a denaturation-resistant determinant shared by class II MHC products DR,DQ and DP. J. Immunogenet., 16, 203.

GIACOMINI, P., FRAIOLI, R., NISTICO, PO, TECCE, R., NICOTRA, M.R., DI FILIPPO, F., FISHER, P.B. & NATALI, P.G. (1990). Modulation of the antigenic phenotype of early-passage human melanoma cells derived from multiple autologous metastases by recombinant human leukocyte, fibroblast and immune interferon. Int. J. Cancer, 46, 539.

GIACOMINI, P., FRAIOLI, R., CALABRO, A.M., DI FILIPPO, F. & NATALI, P.G. (1991). Class I Major Histocompatibilitiy Complex enhancement by recombinant leukocyte interferon in peripheral blood mononuclear cells and plasma of melanoma patients. Cancer Res., 51, 652.

GOLDSTEIN, D. & LASZLO, J. (1986). Interferon therapy in cancer: from imagination to interferon. Cancer Res., 46, 4315.

GREINER, J.W., TOBI, M., FISHER, P.B., LANGER, J.A. & PESTKA, S. (1985). Differential responsiveness of cloned mammary carcinoma cell populations to the human recombinant leukocyte interferon enhancement of tumor antigen expression. Int. J. Cancer, 36, 159.

GRIFFITH, A.B., BURCHELL, J., GENDLER, S., LEWIS, A., BLIGHT, K., TILLY, R. & TAYLOR-PAPADIMITRIOU, J. (1987). Immunological analysis of membrane molecules expressed by normal and malignant mammary epithelial cells. Int. J. Cancer, 40, 319.

SCHILLER, J.H., STORER, B., WITT, P.L., BROWN, R.R., HORISBERGER, M., GROSSBERG, S. & BORDEN, E.C. (1990). Biological and clinical effects of the combination of β- and γ-interferons administered as 5-day continuous infusion. Cancer Res., 50, 4588.