Abstract. We analyze a collaboration network based on the Marvel Universe comic books. First, we consider the system as a binary network, where two characters are connected if they appear in the same publication. The analysis of degree correlations reveals that, in contrast to most real social networks, the Marvel Universe presents a disassortative mixing on the degree. Then, we use a weight measure to study the system as a weighted network. This allows us to find and characterize well defined communities. Through the analysis of the community structure and the clustering as a function of the degree we show that the network presents a hierarchical structure. Finally, we comment on possible mechanisms responsible for the particular motifs observed.

Keywords: network dynamics, random graphs, networks, scaling in socio-economic systems, socio-economic networks

ArXiv ePrint: 0708.2410
How to become a superhero

Contents

1. Introduction 2
2. Degree correlations 3
3. The Marvel Universe as a weighted network 4
4. Conclusions 10
 Acknowledgments 11
 References 11

1. Introduction

In recent years the physics community has devoted a strong effort to the study and analysis of complex networks [1]–[4]. These studies allow for general characterizations such as the small world effect [5] or the scale-free property [6], which are shared by many systems, including technological, biological and social systems [1]–[6]. Among the social networks the so called collaboration networks are of particular interest given the availability of large databases which allow for extensive statistical analysis, and also since the connections between the vertices, which represent individuals, can be precisely defined. Two well known examples of collaboration networks are the movie actor network, where two actors are connected if they appear in the same movie [5]–[7], and scientific collaboration networks, where two scientists are connected if they are authors in the same publication [8]–[11].

Perhaps one of the most challenging problems in the characterization of these systems is the determination of communities, which can be vaguely defined as groups of nodes which are more connected among themselves than with the rest of the network [12]–[15]. Through their identification and analysis one can search for fundamental laws in social interactions [16]–[21]. In this paper we will work along this line, and show that the determination and characterization of the communities allow us to detect mechanisms responsible for the particular motifs observed. In particular we will focus on the Marvel Universe (MU) [22], which is a fictional cosmos created by the Marvel Comics book publishing company. The idea of a common Universe allows characters and plots to cross over between publications, and also makes continuous references to events that happen in other books. In this Universe real world events are mixed with science fiction and fantasy concepts. An interesting question that arises is if this network, whose nodes correspond to invented entities and whose links have been created by a team of writers, resembles in some way real-life social networks, or, on the contrary, looks like a random network. This issue has been addressed by Alberich, Miro-Julia and Rosselló (AMJR) [23], who used information from the Marvel Chronology Project database [24] to build a bipartite collaboration network. They obtained a network formed by 6486 characters and 12,942 books, where two characters are considered linked if they jointly appear in the same comic book. AMJR found that the MU looks almost like a real
social network, since it has most of, but not all, the characteristics of real collaboration networks such as movie actors or scientific collaboration networks. In particular, the average degree of the MU is much smaller than the theoretical average degree of the corresponding random model, thus indicating that Marvel characters collaborate more often with the same characters. Also, the clustering coefficient is smaller than what is usual in real collaboration networks. Finally, the degree distribution presents a power law with an exponential cutoff, \(P(k) \sim k^{-\tau}10^{-k/c} \) with an exponent \(\tau = 0.7158 \). Since \(\tau \) is much smaller than two the average properties of the network are dominated by the few actors with a large number of collaborators, indicating that some superheroes such as Captain America or Spider-Man present many more connections than would be expected in a real life collaboration network \[23\].

2. Degree correlations

We begin our study by presenting an analysis of the degree correlations which fully reveals the artificial nature of the MU. Most real social networks are assortatively mixed by degree, that is, vertices with high degree tend to be connected to vertices with high degree while vertices with low degree tend to be connected to vertices with low degree \[25,26\]. On the other hand, most biological and technological networks present a disassortative mixing by degree, where vertices with high degree tend to be connected to vertices with low degree \[25\]. The degree correlations of the network can be analyzed by plotting the mean degree \(\langle k_{nn} \rangle \) of the neighbors of a vertex as a function of the degree \(k \) of that vertex \[27\]. A positive slope indicates assortative mixing, while a negative slope signals disassortative mixing on the degree. To begin our analysis of the MU we consider the system as a binary network, where two characters are connected if they appear in the same publication. In order to compare with their results we use the data compiled by AMJR \[28\]. In figure 1 we show with small circles the different values of \(k_{nn} \) obtained in the MU for a given degree \(k \), while the black continuous line shows the average value \(\langle k_{nn} \rangle \). For \(k < 10 \) the dispersion in the values of \(k_{nn} \) is too large, ranging from a few to more than a thousand, thus not allowing for any characterization of \(\langle k_{nn} \rangle \). As \(k \) increases the dispersion in the values of \(k_{nn} \) diminishes in a funnel-like shape, while \(\langle k_{nn} \rangle \) presents fluctuations around a constant value, indicating that no correlations dominate up to \(k \approx 200 \). For \(k > 200 \) a decreasing behavior of \(\langle k_{nn} \rangle \) can be clearly observed, and the tail seems to follow a power law behavior \(\langle k_{nn} \rangle = k^{-\nu} \) with \(\nu \approx 0.52 \). This result shows that, in contrast to what is observed in most real social networks, the MU network presents a disassortative behavior on the degree. Surprisingly, the value of the exponent is similar to the one observed in a real technological network: the Internet, where an exponent \(\nu \approx 0.5 \) has also been found \[27\].

The origin of a disassortative behavior in the Internet is most probably given by the fact that the hubs (nodes with the largest degree) are connectivity providers, and thus have a large number of connections to clients that have only a single connection. In the MU the small exponent in the degree distribution observed by AMJR \[23\] and the disassortative behavior clearly indicate the presence of hubs. One immediately wonders what is the role that they play in the MU. Perhaps the most intuitive idea to answer this question is to make a list that takes into account the degree of the characters or to count the number of publications in which they appear. A first step in this direction was already taken by
AMJR, who point out that Captain America is the superhero with most connections and Spider-Man is the one that appears in the largest number of comic books [23]. Clearly, these classifications help us to establish how popular these characters are. However, they do not give information on where to establish a cut-off in the ranking list. Also, when considering the interactions between the characters, one is left with the problem on how to deal with the large number of connections of these hubs. In the following section we tackle these issues.

3. The Marvel Universe as a weighted network

In order to advance a step further in the analysis of the MU, we take into account the fact that some characters appear repeatedly in the same publications. The incorporation of this information allows us to distinguish connections between characters which truly represent a strong social tie, such as a connection between two characters that form a team, to those connections that link two characters that perhaps have met only once in the whole history of the MU. To define the strength w_{ij} of the ties between characters i and j we use the weight measure proposed by Newman [10]:

$$w_{ij} = \sum_k \frac{\delta_i^k \delta_j^k}{n_k - 1},$$

where δ_i^k is equal to one if character i appears in book k and zero otherwise, and n_k is the number of characters in book k.

In figure 2 we present the weight distribution $P(w)$ of the MU network, which can be fitted by a power law, $P(w) \sim w^{-\gamma}$ with $\gamma = 2.26$. A power law behavior in weight distributions has also been observed in real scientific collaboration networks such as the
cond-mat network ($\gamma = 3.7 \pm 0.1$) and the astro-ph network ($\gamma = 4.0 \pm 0.1$) [29]. However, we must point out that in the MU the distribution extends over more than two decades, while in the real collaboration networks the distributions reach one decade only. Also, the value of the exponent in the MU is much smaller. As a consequence, a small fraction of the interactions are very strong, while the majority interact very weakly. Again we find a result that highlights the leading role of a few characters. In this case this is reflected in the fact that they interact more frequently than other characters do.

In order to use the information of the weights to find and characterize the role of these leading characters we set a threshold on the weight and consider only those interactions with a value above the threshold. When we set the threshold to its highest possible value, in order to leave just the link with the largest weight, we find that the connection between Spider-Man and his girlfriend (later wife) Mary Jane Watson Parker is the strongest in the MU [30]. When the threshold is lowered, small groups of nodes form and eventually communities begin to appear. In figure 3(a) we show the Marvel Universe when the 220 links with the largest w_{ij} are considered [31]. Since there are characters with more than one connection, the network has only 130 vertices. Four large communities can be clearly distinguished, while the rest of the characters appear connected in isolated pairs, or forming very small groups. In these communities two patterns of interconnections seem to dominate. On one hand some characters form tightly knitted groups, such as the community at the top which includes the character Beast (B) and corresponds to the X-Men. On the other hand, star shaped structures dominated by a central character can also be clearly distinguished. These central characters are popular characters such as Spider-Man (SM) or Captain America (CA).

As the threshold in the weight is lowered further links between communities appear, and eventually a giant component emerges, as figure 3(b) shows when 300 links have been
How to become a superhero

Figure 3. (a) Network after the addition of 220 links. The initials correspond to characters that play an important role connecting communities: Spider-Man (SM), Thing (T), Beast (B), Captain America (CA), Namor (N), Hulk (H). (b) Network after the addition of 300 links, when a giant component has emerged. The black (white) circles indicate characters labeled as heroes (villains). The gray circles indicate other types of characters, such as people, gods or nodes with no classification.

added [31]. In order to characterize the growth of the network as the threshold is lowered, we calculate the fraction of sites in the largest component f_{slc}. Figure 4 shows the f_{slc} as a function of the number of links added in decreasing weight order. A sharp transition can be observed between 200 and 300 links, where f_{slc} jumps from less than 0.3 to 0.7. After the jump the giant component presents a slow and almost monotonic growth, and eventually reaches a saturation value when approximately 40,000 links are added.

Notice that a very small fraction of links (≈ 0.001) are necessary for the giant component to emerge. This result suggests a behavior similar to a random network. In fact, Callaway et al. [32] have shown that if one considers a random network with a truncated power law degree distribution, such as the one observed in the MU, then the percolation threshold is also very small. However, if one does not take the weights into
account and chooses the links in random order, thus erasing all correlations, a qualitatively different behavior is observed. Figure 5 compares the behavior of f_{slc} for the MU and a typical realization obtained when the links are chosen randomly as a function of the number of links added. The inset shows the behavior of f_{slc} in a log–log plot. Note that when the links are chosen at random the f_{slc} presents regions that decay following a power law close to $1/x$. This behavior reveals that new incorporated links do not form part of the largest component. They enter connecting isolated pairs of vertices or form part of a smaller group. When one new link connects a vertex or a group to the largest component, a jump in f_{slc} is observed. Eventually a giant component emerges and then a monotonic growth is observed.

The growing behavior observed in figures 3 and 4, where communities combine to form larger but less cohesive structures, strongly suggests that the MU network has a hierarchical structure [33,34]. Hierarchical networks integrate both modular and scale-free structure, and can be characterized quantitatively by the scaling law of the clustering coefficient

$$C(k) \sim k^{-1}, \quad (2)$$

where C is the measure proposed by Watts and Strogatz [5]

$$C = \frac{1}{N} \sum_{i=1}^{N} C_i = \frac{1}{N} \sum_{i=1}^{N} \frac{2n_i}{k_i(k_i - 1)}. \quad (3)$$

Here N is the number of vertices, k_i is the degree of vertex i, and n_i is the number of links between the k_i neighbors of i. In figure 6 we present the behavior of $C(k)$ as a function of

doi:10.1088/1742-5468/2007/09/P09020

Figure 4. Fraction of sites in the largest component f_{slc} as a function of the number of links added in decreasing weight order. The inset shows in detail the transition between 200 and 300 links.
Figure 5. Fraction of sites in the largest component f_{slc} as a function of the number of links added when the links are chosen in decreasing weight order (circles) and also when they are chosen in random order (squares). The inset presents a detail for short times in a log–log plot. The dashed line shows the power law decay $1/x$ as a guide to the eye.

degree k for the MU network. The figure clearly shows the coexistence of a hierarchy of nodes with different degrees of clustering. In particular, the nodes with a smaller degree present a higher clustering than those with a larger degree, and the decay of $C(k)$ can be bounded by a $1/k$ behavior as the dashed line shows.

Ravasz and Barabási [34] note that the presence of a hierarchical architecture gives a new interpretation to the role of hubs in complex networks: while the nodes with small degree are part of densely interlinked clusters, the hubs play the important role of bringing together the many small communities of clusters into a single, integrated network. In fact, this seems to be the case in the MU network, where, as we show in the following paragraphs, the most popular superheroes play the role of connecting the communities.

The sharp jump that marks the appearance of the giant component in the MU (see figure 4) shows that the characters that appear repeatedly in the same publications form a well defined group. As a consequence, a criterion for setting a cut-off can be well defined in an analogy with percolation transitions. If the threshold is set too high then the giant component breaks into many small components, such as the star shaped and the tightly knitted groups. If, on the other hand, the threshold is set too low, the slow, almost monotonic growth of the giant component shows that new characters are incorporated directly to those already present in the giant component. As a consequence, as more links are added the division in communities is harder to determine. Thus, we focus our analysis of the system close to the transition.

The inset in figure 4 clearly shows that the transition between 200 and 300 links can be subdivided into three smaller jumps. The events, numbered as 1, 2 and 3, correspond
Cluster $C(k)$ as a function of the degree k. The dashed line shows the power law $1/k$ as a guide to the eye.

(i) Captain America (CA)–Beast (B).
(ii) Captain America (CA)–Thing (T).
(iii) Hulk (H)–Namor McKenzie (N).

They are all members of ‘The Avengers’, a team of Earth’s mightiest heroes, ‘…formed to fight the foes no single hero could withstand’ [35]. It is worth stressing that although these characters form a team each one clearly belongs to a different community (see figure 3(b)). Note that all the central characters in each community are linked to other communities. Also, the central characters tend to be connected between themselves, forming what is known as a rich-club [36]. In a rich-club the nodes are rich in the sense that they have a large degree. In the MU the rich nodes also share another property: they are all also ‘heroes’. In fact, as figure 3(b) shows, if one labels the characters as heroes or villains [37] one finds that all the central characters are heroes, while most of the characters that surround them are villains. It is also worth stressing that the villains in each community are not connected to villains in other communities.

In his work on the network of collaboration among rappers, Smith notes that ‘New rap acts often feature prominent names on their most popular singles and first albums in order to help attract listeners unfamiliar with them or their style’ [38]. Perhaps a similar mechanism is present in the MU, where new characters are presented next to popular characters so that they may be noticed. This clearly will increase the number of connections of the most popular characters, leading to a rich-get-richer tendency that is reflected in their large number of connections. Also, since popular characters are also part of a team they appear repeatedly together, thus forming a rich-club. However, there is
another ingredient that should also be taken into account, since, as the characterization of the nodes reveals, only heroes team up, while villains do not.

We believe that the origin of this division is due to the fact that, although the Marvel Universe incorporates elements from fantasy and science fiction the arguments of the stories were restricted by a set of rules established in the Comics Authority Code of the Comics Magazine Association of America [39]. In particular, rule number five in part A of the code for editorial matter states that ‘Criminals shall not be presented so as to be rendered glamorous or to occupy a position which creates the desire for emulation’, and rule number four in part B of the same section states that ‘Inclusion of stories dealing with evil shall be used or shall be published only where the intent is to illustrate a moral issue and in no case shall evil be presented alluringly, nor so as to injure the sensibilities of the reader’. As a consequence villains are not destined to play leading roles. Also, rule number six in part A states that ‘In every instance good shall triumph over evil and the criminal punished for his misdeeds’. We believe that teams of heroes are formed as a consequence of this rule. In fact, since the heroes will always eventually win, it is necessary for them to show at least that some effort is necessary, and thus they need to collaborate and cooperate with other superheroes in order to finally defeat their enemies.

4. Conclusions

Summarizing, we analyzed the MU as a collaboration network. First we defined the system as a binary network, where a connection between two characters is either present or absent. We found that in contrast to most real social networks the MU is a disassortative network, with an exponent very similar to the one observed in a real technological network, the Internet. Then, we used a weight measure to analyze the system as a weighted network. This allowed us to distinguish interactions between characters that appear repeatedly together from those interactions between characters that meet only few times. We observed that the weight distribution presents a power law behavior, and thus a small fraction of the interactions are very strong, while the majority interacts very weakly. By setting a threshold on the weight we were able to show that the characters that appear repeatedly in the same publication form a well defined group. Through the characterization of the community structure and also analyzing the clustering as a function of the degree, we showed that the network presents a hierarchical structure. We also analyzed the role of the hubs, and have shown that these characters form a rich-club of heroes that connect different communities. On the other hand, characters labeled as villains appear around the hubs and do not connect communities. We discussed possible mechanisms that lead to these effects. In particular the rules of the Comic Authority Code clearly limit the role of villains. Also, we believe that heroes need to team up in order to show that some effort is necessary to defeat their enemies, since there is a rule that states that in the end good shall always triumph over evil. Finally, we note that a gender classification reveals that all the central characters are males, and, as in the case of villains, the female characters do not play a role connecting communities. However, as was already noted, the strongest link in the MU is the relation between Spider-Man and Mary Jane Watson Parker, a fact that shows that although the MU deals mainly with superheroes and villains the most popular plot is a love story.
How to become a superhero

Acknowledgments

The author thanks Sebastián Risau Gusman and Gustavo Sibona for helpful comments and discussions. This work has been supported by grants from CONICET PIP05-5114 (Argentina), ANPCyT PICT03-13893 (Argentina) and ICTP NET-61 (Italy).

References

[1] Dorogovtsev S N and Mendes J F F, 2002 Adv. Phys. 51 1079
[2] Albert R and Barabási A-L, 2002 Rev. Mod. Phys. 74 47
[3] Newman M E J, 2003 SIAM Rev. 45 167
[4] Newman M, Barabási A-L and Watts D J, 2006 The Structure and Dynamics of Networks (Princeton, NJ: Princeton University Press)
[5] Watts D J and Strogatz S H, 1998 Nature 393 440
[6] Barabási A-L and Albert R, 1999 Science 286 509
[7] Amaral L A N, Scala A, Barthélemy M and Stanley H E, 2000 Proc. Nat. Acad. Sci. 97 11149
[8] Newman M E J, 2001 Proc. Nat. Acad. Sci. 98 404
[9] Newman M E J, 2001 Phys. Rev. E 64 016131
[10] Newman M E J, 2001 Phys. Rev. E 64 016132
[11] Barabási A-L, Jeong H, Neda Z, Ravasz E, Schubert A and Vicsek T, 2002 Physica A 311 590
[12] Girvan M and Newman M E J, 2002 Proc. Nat. Acad. Sci. 99 7821
[13] Newman M E J and Girvan M, 2004 Phys. Rev. E 69 026113
[14] Palla G, Derényi I, Farkas I and Vicsek T, 2005 Nature 435 814
[15] Danon L, Díaz-Guilera A, Duch J and Arenas A, 2005 J. Stat. Mech. P09008
[16] Gleiser P M and Danon L, 2003 Adv. Complex Syst. 6 565
[17] Guimerà R, Danon L, Díaz-Guilera A, Giralt F and Arenas A, 2003 Phys. Rev. E 68 065103(R)
[18] Arenas A, Danon L, Díaz-Guilera A, Gleiser P M and Guimerà R, 2004 Eur. Phys. J. B 38 373
[19] Boguñá M, Pastor-Satorras R, Díaz-Guilera A and Arenas A, 2004 Phys. Rev. E 70 056122
[20] Motter A E, Nishikawa T and Lai Y-C, 2003 Phys. Rev. E 68 036105
[21] Noh J D, Jeong H-C, Ahn Y-Y and Jeong H, 2005 Phys. Rev. E 71 036131
[22] The Marvel Universe Home Page. http://www.marvel.com/universe/
[23] Alberich R, Miro-Julia J and Roselló R, 2002 Preprint cond-mat/0202174
[24] Chappell R, The Marvel Chronology Project, http://www.chronologyproject.com
[25] Newman M E J, 2002 Phys. Rev. Lett. 89 208701
[26] Newman M E J and Park J, 2003 Phys. Rev. E 68 036122
[27] Pastor-Satorras R, Vázquez A and Vespignani A, 2001 Phys. Rev. Lett. 87 258701
[28] The data files can be downloaded from http://bioinfo.ub.edu/~joemiro/marvel.html
[29] Li W, Lin Y and Liu Y, 2005 Physica A 376 708
[30] For an account on the history of the relation between these characters see http://www.marvel.com/universe/Watson-Parker%2C_Mary_Jane
[31] The figure was drawn using the Pajek Program for Large Network Analysis. Home page: http://vlado.fmf.uni-lj.si/pub/networks/pajek/
[32] Callaway D S, Newman M E J, Strogatz S H and Watts D J, 2000 Phys. Rev. Lett. 85 5468
[33] Ravasz E, Somera A L, Mongru D A, Oltvai Z N and Barabási A-L, 2002 Science 297 1551
[34] Ravasz E and Barabási A-L, 2003 Phys. Rev. E 67 026112
[35] The Avengers team is described in http://www.marvel.com/universe/Avengers
[36] Zhou S and Mondragon R J, 2004 IEEE Commun. Lett. 8 180
[37] The classification is based on information from http://www.marvel.com/universe/Category:Heroes and also from http://www.marvel.com/universe/Category:Villains
[38] Smith R D, 2006 J. Stat. Mech. P02006
[39] For a short review on the history and also a link to the complete code see http://ublib.buffalo.edu/libraries/projects/comics/cca.html

doi:10.1088/1742-5468/2007/09/P09020