Central CYP1B1 (Cytochrome P450 1B1)-Estradiol Metabolite 2-Methoxyestradiol Protects From Hypertension and Neuroinflammation in Female Mice

Purnima Singh, Chi Young Song, Shubha Ranjan Dutta, Frank J. Gonzalez, Kafait U. Malik

Abstract—Previously, we showed that peripheral administration of 2-ME (2-methoxyestradiol), a CYP1B1 (cytochrome P450 1B1)-catechol-O-methyltransferase (COMT) generated metabolite of E2 (17β-Estradiol), protects against angiotensin II-induced hypertension in female mice. The demonstration that central E2 inhibits angiotensin II-induced hypertension, together with the expression of CYP1B1 in the brain, led us to hypothesize that E2-CYP1B1 generated metabolite 2-ME in the brain mediates its protective action against angiotensin II-induced hypertension in female mice. To test this hypothesis, we examined the effect of intracerebroventricularly (ICV) administered E2 in ovariectomized (OVX)-wild-type (Cyp1b1+/+) and OVX-Cyp1b1−/− mice on the action of systemic angiotensin II. ICV-E2 attenuated the angiotensin II-induced increase in mean arterial blood pressure, impairment of baroreflex sensitivity, and sympathetic activity in OVX-Cyp1b1+/+ but not in ICV-injected short interfering (si)RNA-COMT or OVX-Cyp1b1−/− mice. ICV-2-ME attenuated the angiotensin II-induced increase in blood pressure in OVX-Cyp1b1−/− mice; this effect was inhibited by ICV-siRNA estrogen receptor-α (ERα) and G protein-coupled estrogen receptor 1 (GPER1). ICV-E2 in OVX-Cyp1b1+/+ but not in OVX-Cyp1b1−/− mice and 2-ME in the OVX-Cyp1b1−/− inhibited angiotensin II-induced increase in reactive oxygen species production in the subformical organ and paraventricular nucleus, activation of microglia and astrocyte, and neuroinflammation in paraventricular nucleus. Furthermore, central CYP1B1 gene disruption in Cyp1b1−/− mice by ICV-adenovirus-GFP (green fluorescence protein)-CYP1B1-short hairpin (sh)RNA elevated, while reconstitution by adenovirus-GFP-CYP1B1-DNA in the paraventricular nucleus but not in subformical organ in Cyp1b1−/− mice attenuated the angiotensin II-induced increase in systolic blood pressure. These data suggest that E2-CYP1B1-COMT generated metabolite 2-ME, most likely in the paraventricular nucleus via estrogen receptor-α and GPER1, protects against angiotensin II-induced hypertension and neuroinflammation in female mice. (Hypertension. 2020;75:1054-1062. DOI: 10.1161/HYPERTENSIONAHA.119.14548.) • Online Data Supplement

Key Words: angiotensin II • brain • estradiol • female • hypertension

Sex differences in blood pressure (BP) in both humans and experimental animal models are well documented.1–3 Both gonadal hormones and sex chromosomes have been implicated in sexual dimorphism in BP.4 Chronic infusion of Ang II (angiotensin II) elevates BP by increasing sympathetic activity and blunts baroreflex function by its central action on circumventricular organs including the subformical organ (SFO).5 It conveys this information through the paraventricular nucleus (PNV) to the rostral ventrolateral medulla and then to preganglionic sympathetic neurons.5 However, circulating Ang II can also reach the PNV via disruption of the blood-brain barrier.6 Peripherally infused Ang II produces a greater increase in BP in intact males than in female mice.7 E2 (17β-Estradiol), the primary female estrogen protects against Ang II-induced hypertension by its action in the brain via ERα (estrogen receptor-α) in the SFO.7,8 Estrogen also protects against aldosterone-induced hypertension via its effect on ERβ in the PVN and in the rostral ventrolateral medulla.9 However, estrogen in the brain exerts behavioral effects via nongenomic GPER1 (G protein-coupled estrogen receptor 1).10 Whether GPER1 is involved in the protective effect of E2 in Ang II-induced hypertension in the brain has not been explored.

Recently, we reported that the protective effect of peripheral E2 against Ang II-induced hypertension is mediated via its metabolism by CYP1B1 (cytochrome P450 1B1) to 2-hydroxyestradiol, followed by its conversion to 2-ME (2-methoxyestradiol) by COMT (catechol-O-methyltransferase).11,12 However, the site and mechanism of action of 2-ME that protects against Ang II-induced hypertension are unknown. Both CYP1B1 and COMT are present in the brain, and microglia (BV2 cell line) has been reported to metabolize...
E2 to 2-hydroxyestradiol that is further converted into 2-ME. These observations led us to the hypothesis that the central E2-CYP1B1-COMT generated metabolite, 2-ME, mediates the protective effect of E2 on Ang II-induced hypertension.

Materials and Methods
The authors declare that a detailed Methods section and all supporting data are available within the article and in the online-only Data Supplement. Other details regarding analytic methods, study materials, and the data will be made available from the corresponding author upon reasonable request.

Animal Experiments
All experiments were performed in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals under protocols approved by the University of Tennessee Health Science Center (UTHSC) Institutional Animal Care and Use Committee. Experiments were conducted on 8- to 10-week-old, 20- to 25-g body weight, intact, and ovariectomized (OVX) Cyp1b1 wild-type, C57BL/6J background) female mice.

Statistical Analysis
The data were expressed as the mean±SEM with P<0.05 considered statistically significant. For the BP data, a comparison between the 2 groups was performed using 2-way ANOVA with repeated measures. Unpaired t-tests were used for the comparison between the 2 groups with normally distributed data. Multiple groups with normally distributed variables were compared by 1-way ANOVA. In most of the experiments, the primary outcomes and main comparisons exceeded a power of 0.8 with the number of animals used (online-only Data Supplement).

Results
Central E2 Minimizes Ang II-Induced Hypertension via Its CYP1B1-COMT-Generated Metabolite 2-ME
E2 minimizes Ang II-induced hypertension by its action in the brain. ICV injection of E2 to 2-hydroxyestradiol, which is generated from E2 by CYP1B1, Ang II produced greater increase in mean arterial BP (MAP), systolic BP (SBP), and diastolic BP in intracerebroventricularly (ICV)-injected vehicle (Veh for E2 and 2-ME, 20% w/v 2-hydroxypropyl-β-cyclodextrin in artificial cerebrospinal fluid) in OVX-Cyp1b1+/−, intact or OVX-Cyp1b1+/− mice compared to 2-ME in OVX-Cyp1b1+/− mice with ICV-injected siRNA-COMT, reduced the LF/HF ratio in response to Ang II (Figure 1D). The contribution of autonomic nervous system activation to the effect of Ang II on BP was also assessed by using the ganglion blocker hexamethonium. Hexamethonium caused a greater reduction of MAP in Ang II-induced hypertension in OVX-Cyp1b1+/−, intact or OVX-Cyp1b1+/− mice with ICV-Veh. ICV-E2 in OVX-Cyp1b1+/− or 2-ME in OVX-Cyp1b1+/− mice caused a small increase in SBP in OVX-Cyp1b1−/−, but not E2 in OVX-Cyp1b1−/− mice with ICV-injected siRNA-COMT, reduced the LF/HF ratio in response to Ang II (Figure 1D). The contribution of autonomic nervous system activation to the effect of Ang II on BP was also assessed by using the ganglion blocker hexamethonium. Hexamethonium caused a greater reduction of MAP in Ang II-induced hypertension in OVX-Cyp1b1+/−, intact or OVX-Cyp1b1+/− mice with ICV-Veh. ICV-E2 in OVX-Cyp1b1+/− or 2-ME in OVX-Cyp1b1+/− mice was performed using 2-way ANOVA with repeated measures.

Central CYP1B1 Gene Disruption Accentuates in the Intact Cyp1b1+/−, and Reconstitution Attenuates in the Intact but Not in OVX-Cyp1b1+/− Mice Ang II-Induced Hypertension
Ang II induced a small increase in SBP in Cyp1b1+/− mice transduced with ICV-adenovirus (Ad)-GFP (green fluorescence protein)-scrambled (Scr)-short hairpin (sh)RNA (Figure 2A). However, ICV-Ad-GFP-CYP1B1-shRNA that selectively reduced Cyp1b1, but not Cyp1a10 mRNA expression determined in PVN (Figure S5A), enhanced this effect of Ang II to increase SBP in Cyp1b1−/− mice (Figure 1A). Ang II increased SBP in Cyp1b1−/− mice transduced with ICV-Ad-GFP-DNA (Figure 2B). However, transduction with ICV-Ad-GFP-CYP1B1-DNA that restored the expression of Cyp1b1−/− mRNA determined in PVN (Figure S5B) attenuated the Ang II-induced increase in SBP in intact Cyp1b1+/− mice but not in OVX-Cyp1b1+/− mice (Figure 2B; Figure S6).

GFP expression in the SFO and PVN (Figure 5A and 5B) confirmed the transduction with adenoviral probes given ICV.

ICV-siRNA-ERα and siRNA-GPER1 in OVX-Cyp1b1+/− Mice Blunts the Protective Effect of 2-ME Against Ang II-Induced Hypertension
E2 produces its actions via both genomic and nongenomic receptors. ICV-2-ME failed to minimize the Ang II-induced
increase in MAP (Figure 3A), SBP, diastolic BP (Figure S2D and S2E), LF/HF ratio (Figure 3B), and exhibited a trend of not minimizing the effect of hexamethonium (P = 0.058 and 0.052; Figure 3C) in OVX-Cyp1b1−/− mice injected with ICV-siRNA-ERα or siRNA-GPER1. ICV-siRNA-ERα and siRNA-GPER1 selectively reduced the expression of Erα- and Gper1-mRNAs, respectively, in PVN (Figure S7).

Reconstitution of CYP1B1 Expression in the PVN but Not in SFO Minimizes Ang II-Induced Hypertension in Cyp1b1−/− Mice

ERs and AT1R (Ang II receptor type I) are present in both SFO and PVN,15,16 and E2 can act in both these sites to reduce Ang II-induced hypertension.7,17,18 Therefore, this raised the possibility that 2-ME generated from E2 in both areas might be responsible for protecting against Ang II-induced hypertension.

Cyp1b1 mRNA was found to be expressed in both these areas in Cyp1b1+/+ but not in Cyp1b1−/− mice (Figure S8). Therefore, we examined the effect of selective transduction of SFO and PVN with Ad-GFP-CYP1B1-DNA on the Ang II-induced increase in SBP in the Cyp1b1−/− mice. Transduction with Ad-GFP-CYP1B1-DNA in PVN but not in SFO reduced Ang II-induced increase in SBP in these mice (Figure 4A and 4B) even though the Cyp1b1 mRNA expression was higher in SFO than in PVN (Figure S8).

The selective transduction of the adenoviral probes in PVN and SFO was confirmed by GFP fluorescence (Figure 5C).

E2-CYP1B1-COMT-Generated Metabolite 2-ME Attenuates Ang II-Induced Reactive Oxygen Species Production in the Brain

Ang II-induced hypertension is mediated via reactive oxygen species (ROS) production in SFO and PVN.19,20 Therefore, we investigated the CYP1B1-dependent action of E2 on ROS production. Ang II stimulated the production of ROS as indicated by enhanced 2-hydroxyethidium (2-HE) fluorescence in the SFO, and PVN generated after staining with dihydroethidium in OVX-Cyp1b1+/+ and OVX-Cyp1b1−/− mice (Figure S9). ICV-E2 minimized ROS production in both SFO and PVN in OVX-Cyp1b1+/+ (Figure S9A) but not in OVX-Cyp1b1−/− (Figure S9B) mice. In the OVX-Cyp1b1−/− mice, ICV-2-ME caused a greater reduction in the ROS production in the PVN than in the SFO (Figure S9B). Ang II in Cyp1b1+/+ mice with ICV-Ad-GFP-Scr-shRNA increased the 2-HE fluorescence in the SFO and insignificantly in the PVN (Figure S10A). However, Ang II-induced increase in 2-HE fluorescence in Cyp1b1−/− mice with ICV-Ad-GFP-CYP1B1-shRNA was much higher in the PVN than in the SFO (Figure S10A). Transduction with ICV-Ad-GFP-CYP1B1-DNA but not its control Ad-GFP-DNA abolished 2-HE fluorescence.
Singh et al Brain CYP1B1-Estradiol Metabolite and Hypertension 1057

in PVN and minimized it in SFO in Cyp1b1−/− mice (Figure S10B). Since transduction with Ad-GFP-CYP1B1-DNA in PVN but not in SFO in Cyp1b1−/− mice also reduced the Ang II-induced increase in SBP, further studies on the action of E2 and 2-ME described below were performed only in PVN.

2-ME Increases Neuronal Nitric Oxide Synthase Expression in PVN

E2 attenuates PVN neuronal activity by enhancing NO production.18 Hence, we investigated the CYP1B1-dependent action of E2 on nNos-mRNA expression in the PVN. Ovariectomy or Cyp1b1 gene disruption reduced PVN nNos-mRNA expression (Figure 6A). Ang II increased nNos-mRNA expression only in the Cyp1b1+/+ mice. ICV-E2 in OVX-Cyp1b1+/+ or 2-ME in OVX-Cyp1b1−/− but not E2 in OVX-Cyp1b1−/− mice infused with Ang II restored PVN nNos-mRNA levels (Figure 6A).

2-ME Reduces Ang II-Induced Increase in PVN c-Fos+ Cell Population

The effect of E2 and 2-ME on PVN neuronal activity was also assessed by examining c-Fos immunoreactivity in response to Ang II. As expected, Ang II increased the total number of c-Fos+ cells in both OVX-Cyp1b1+/+ (Figure S11A) or OVX-Cyp1b1−/− (Figure S11B) mice. However, ICV-E2 in OVX-Cyp1b1+/+, and 2-ME in OVX-Cyp1b1−/−, but E2 not in OVX-Cyp1b1−/− or with ICV-siRNA-COMT in OVX-Cyp1b1+/+ mice reduced the number of c-Fos+ cells in PVN (Figure S11).

2-ME Protects Against Ang II-Induced PVN Gliosis and Neuroinflammation

Ang II-induced hypertension involves microglial activation, increases in proinflammatory cytokine including IL-6, and decreases in anti-inflammatory cytokine IL-10 levels in the PVN.21 Thus, we examined CYP1B1-COMT dependent effects of E2 on these neuroinflammatory markers in the PVN. Ang II increased the number of microglia (ionized calcium-binding adaptor molecule 1 positive or IBA+ cells) in PVN in OVX-Cyp1b1+/+ and OVX-Cyp1b1−/− mice (Figure 5D and 5F; Figure S12), most of which had globular cell bodies with shorter and thicker cell processes (Figure S12), a feature similar to activated microglia.21 ICV-E2 in OVX-Cyp1b1+/+, and 2-ME in OVX-Cyp1b1−/−, but E2 not in OVX-Cyp1b1−/− or with ICV-siRNA-COMT in OVX-Cyp1b1+/+ mice reduced the number of microglia in PVN. Moreover, the remaining microglia had thinner and...
longer processes and reduced cell bodies as similar to those observed in the saline-infused mice (Figure S12).

Astrocytes contribute to Ang II-mediated sympathoexcitatory effects in PVN. In our study, Ang II increased the number of astrocytes (glial fibrillary acidic protein, GFAP+ cells) in the PVN, and most of these had shorter and thicker cell processes in OVX-Cyp1b1+/− or OVX-Cyp1b1−/− mice with ICV-Veh (Figure 5E and 5F; Figure S13). ICV-E2 in OVX-Cyp1b1+/− and 2-ME in OVX-Cyp1b1+/−, but not E2 in OVX-Cyp1b1−/+ or with siRNA-COMT in OVX-Cyp1b1+/− mice infused with Ang II reduced the PVN astrocyte number (Figure 5E and 5F), and the remaining astrocytes showed longer and thinner processes similar to those observed in the saline-infused mice (Figure S13). E2 protects against traumatic brain injury by both reducing brain proinflammatory cytokine and enhancing anti-inflammatory cytokine production. In our study, Ang II increased Il6-mRNA (Figure 6B) and reduced Il10-mRNA (Figure 6C) in PVN, but these effects were reversed by ICV-E2 in OVX-Cyp1b1+/− or 2-ME in OVX-Cyp1b1+/− (Figure 6B and 6C). However, ICV-injected E2 failed to reduce Il6-mRNA expression but caused a minimal increase in Il10-mRNA expression in OVX-Cyp1b1+/− mice (Figure 6C).

Central CYP1B1 Protects Against Deoxycorticosterone Acetate-Salt-Induced Hypertension in Female Mice

We also examined the contribution of brain CYP1B1 in uninephrectomized-DOCA (deoxycorticosterone acetate; 50 mg/kg, subcutaneous)-salt (1% NaCl)-induced hypertension. DOCA-salt-induced hypertension was attenuated in Cyp1b1+/− but not in Cyp1b1−/− mice (Figure S14A). ICV-Ad-GFP-CYP1B1-shRNA but not Ad-GFP-Scr-shRNA increased the SBP in response to DOCA-salt treatment in Cyp1b1+/− mice (Figure S14B). Reconstitution of CYP1B1-mRNA in the brain by ICV-Ad-GFP-CYP1B1-DNA but not Ad-GFP-DNA minimized the DOCA-salt-induced increase in SBP in the Cyp1b1+/− mice (Figure S14C).

Discussion

The novel findings of this study are that E2 via its central CYP1B1 and COMT generated metabolite, 2-ME, mitigated Ang II-induced increase in BP by its action in the PVN by reducing (1) sympathetic outflow, (2) ROS production, (3) activation of microglia and astrocytes, and (4) proinflammatory cytokine Il6-mRNA while increasing nNos- and anti-inflammatory cytokine Il10-mRNA expression. Also, we show for the first time that 2-ME in the brain minimized Ang II-induced hypertension through both the receptors ERα and GPER1 in OVX-Cyp1b1+/− mice. This conclusion is supported by the findings that CYP1B1 is present in human and mouse brain, and ICV administration of exogenous E2 in the OVX-Cyp1b1+/+ mice ameliorated the Ang II-induced increases in BP and sympathetic outflow. Moreover, in the present study, ICV-E2 in OVX-Cyp1b1+/+ mice minimized the Ang II-induced impairment of baroreflex sensitivity. Like ovariectomy, CYP1B1 gene disruption increases sensitivity to the hypertensive effect of Ang II, indicating the critical role of central CYP1B1 in the action of E2. The demonstration that COMT is widely distributed in the brain and our findings that ICV-E2 failed to protect against Ang II-induced increase in BP and sympathetic activity and impaired baroreflex sensitivity in OVX-Cyp1b1+/+ mice injected with ICV-siRNA-COMT, suggest that these effects are most likely due to reduced metabolism of E2 to 2-ME. The systemic COMT inhibitor or siRNA also caused hypersensitivity of the pressor response to Ang II, which was prevented by 2-ME in male mice. The effect of ICV-E2 appeared to be limited to the brain since plasma levels of E2 that were attenuated in OVX-Cyp1b1+/+, and OVX-Cyp1b1+/− mice were not altered by ICV-injected E2 (Figure S15). Further evidence that the effect of E2 in the brain is mediated via its metabolism to 2-ME locally by the central CYP1B1 was our finding that ICV-E2 failed to minimize the above effects of Ang II in OVX-Cyp1b1+/− mice. Supporting this view was our demonstration that ICV-2-ME in the OVX-Cyp1b1+/− mice reduced Ang II-induced hypertension, sympathetic activity, and impairment of baroreflex sensitivity. In as much as ICV-2-ME alone did not affect BP, it would appear that it acts as a permissive factor for the protective action of E2 against Ang II-induced hypertension. The effect of ICV-E2 in OVX-Cyp1b1+/− but not in OVX-Cyp1b1+/− mice, and 2-ME in OVX-Cyp1b1+/− mice to reduce the Ang II-induced increase in sympathetic outflow was also indicated by reduced urinary levels of norepinephrine. Since COMT can metabolize catecholamines, one might argue that increased norepinephrine metabolism by COMT in the PVN could contribute to the effect of 2-ME to reduce Ang II-induced increased sympathetic activity and BP. However, this is unlikely because siRNA-COMT did not enhance the Ang II-induced increase in urinary norepinephrine levels. Therefore, it seems that CYP1B1-COMT-E2 generated 2-ME locally in the brain lowers Ang II-induced hypertension primarily by inhibiting the central action of Ang II from increasing sympathetic activity independent of its direct vascular and renal effects.
Further evidence that E2 minimizes Ang II-induced hypertension via its metabolism by CYP1B1 locally in the brain were our findings that (1) ICV-Ad-GFP-CYP1B1-shRNA in the Cyp1b1+/+ mice accentuated, and ICV-Ad-GFP-CYP1B1-DNA in Cyp1b1−/− mice minimized the Ang II-induced increase in SBP and (2) ICV-Ad-GFP-CYP1B1-DNA in OVX-Cyp1b1−/− mice that lack endogenous E2, failed to decrease the Ang II-induced increase in SBP. E2 produces its actions via both genomic and nongenomic receptors. In the brain, E2 protects against Ang II-induced hypertension via both its genomic receptors ERα and ERβ. ER stimulation inhibits neuronal activity in PVN. 2-ME exerts its effects via ER-dependent and -independent pathways. For example, 2-ME inhibits microglia (BV2 cells) and vascular smooth muscle cell proliferation independent of ERs. However, 2-ME by binding to GPR30 (GPER1) downregulates AT1 receptor in rat liver membranes and via MMP9/EGF/ERK1/2-dependent pathway in rat aortic smooth muscle cells. On the other hand, 2-ME exerts bone sparing effect in male mice via ERα receptor. Also, Gper1 deletion exacerbates Ang II-induced increase in pulse pressure with impaired baroreflex sensitivity in OVX-Cyp1b1−/− mice were inhibited by ICV-siRNA-ERα or siRNA-GPER1, suggesting that 2-ME exerts these effects via both these receptors. 2-ME could act via ERα and GPER1 receptors through independent pathways or by crosstalk by acting on membrane GPER1 that in turn leads to activation of nuclear ERα. However, further studies are required to elucidate the cellular signaling pathways and the interaction between ERα and GPER1 in the protective action of 2-ME in PVN against Ang II-induced hypertension.

ERs and AT1R are present in both SFO and PVN, and E2 can act in both these sites to reduce Ang II-induced hypertension. Therefore, the E2-CYP1B1-COMT-generated metabolite 2-ME in both PVN and SFO could protect against Ang II-induced hypertension. However, we observed that even though the expression of Cyp1b1-mRNA was much higher in SFO than in PVN, transduction with Ad-GFP-CYP1B1-DNA in the PVN, but not SFO, abrogated the Ang II-induced increase in BP in Cyp1b1−/− mice. Therefore, it seems that CYP1B1 and COMT in the PVN are responsible for the protective effect of E2, most likely through the production of 2-ME. The transduction of PVN with the adenoviral probes, as indicated by GFP expression, did not spread to the SFO and vice versa. However, we cannot exclude the possible participation of other areas adjoining to these structures as a large injection volume (0.5 µL) was used in these experiments. Moreover, the significance of CYP1B1 in SFO is not known and remains to be investigated.
E2 protects against Ang II-induced increases in sympathetic activity and hypertension by stimulating nNOS (neuronal nitric oxide synthase) and reducing ROS production in the SFO and PVN. In the present study, ICV-E2 caused a greater reduction in Ang II-induced increase in ROS production as determined by (1) downregulating AT1 receptor, (2) stimulating NO-GABA pathways, and/or (3) by reducing ADAM17-glutamate signaling in the PVN. However, further studies are required to assess the contribution of these pathways to the action of 2-ME in the PVN.

E2 abrogates the release of proinflammatory molecules from the activated microglia via ERs. Moreover, in BV2 cultured microglia cells, 2-ME generated from E2 via CYP1B1 and COMT inhibits the proliferation and activation of these cells. COMT colocalizes with microglia in the brain, and the present study in the PVN. Moreover, Ang II-induced increased microglia (IBA+ cells) number, and proinflammatory cytokine Il6-mRNA, and decreased anti-inflammatory cytokine Il10-mRNA expressions in PVN was minimized by ICV-E2 in OVX-Cyp1b1−/− mice but not those injected ICV-siRNA-COMT (that reduced COMT immunoeexpression in PVN) or in OVX-Cyp1b1−/− mice. These observations, together with our finding that 2-ME blunted these effects of Ang II in OVX-Cyp1b1−/− mice, suggests that 2-ME generated locally in microglia via CYP1B1-COMT in PVN mediates the protective effect of E2 on Ang II-induced hypertension. This is supported by a previous report showing that 2-ME exerts anti-inflammatory effects in animal models.
models and inhibits LPS-induced IL-6 expression. Whether these effects of 2-ME are mediated by reduced intracellular Ca\(^2+\) and activity of one or more signaling molecules or reduced tubulin polymerization in PVN remains to be determined.

Ang II also stimulates hypothalamic astrocytes and decreases PVN glutamate currents by decreasing extracellular glutamate uptake, thereby resulting in an increase in extracellular glutamate and presynaptic nerve activity, and hypertension. E2 increases the expression of glutamate transporter-1 in the astrocytes, thereby increasing astrocytic glutamate uptake and thus reducing extracellular glutamate levels. In the present study, the Ang II-induced increase in astrocyte proliferation and activation in PVN was reduced by ICV-E2 in OVX-\(\text{Cyp1b1}\)−/− mice, but not E2 in the OVX-\(\text{Cyp1b1}\)−/− mice, as evidenced by the reduced number of GFAP+ cells and other morphological changes observed. Therefore, 2-ME could mediate the effect of E2 by increasing glutamate uptake in astrocytes.

While circulating E2 produced from ovaries can protect against hypertension by reducing oxidative stress and by increasing T-regulatory cells and/or inhibiting cytotoxic T-cells, our experiments show that 2-ME produced locally in the brain from E2 by CYP1B1-COMT participates in mediating the protective effect of E2 against Ang II-induced hypertension (Graphical abstract, Figure S16). Our preliminary experiments show that CYP1B1 in the brain is also required for protection against DOCA-salt-induced hypertension in female mice. Whether it is mediated by E2-CYP1B1-COMT-generated 2-ME remains to be investigated.

Perspectives

Our study provides further insights into the mechanism by which E2 via its central CYP1B1-COMT generated metabolite 2-ME in the hypothalamic PVN opposes Ang II-induced hypertension and improves autonomic dysfunction, and reduces neuroinflammation. Also, 2-ME in PVN serves as an antioxidant (increasing \(n\)-Nos-mRNA) and anti-inflammatory (increasing \(II\text{I}\text{0}-\text{mRNA}\)) agent. Therefore, OVX, a condition comparable to human ovarian failure, postmenopausal/hypoestrogenemic, and/or premenopausal/menstrual irregularities, or agents that interfere with central CYP1B1 or COMT activity, would accentuate the effects of Ang II in the development of neurogenic hypertension and neuroinflammatory diseases, which could be treated with 2-ME.

Acknowledgments

We thank Dr Amanda S. Clarke, Director, Office of Scientific Writing, University of Tennessee Health Science Center for her editorial assistance and Dr Elizabeth A. Tolley, Professor, Department of Preventive Medicine, University of Tennessee Health Science Center for her help in Biostatistics.

Sources of Funding

This work was supported by the National Institutes of Health National Heart, Lung, and Blood Institute grants R01HL-19134–43, R01HL-079109-09, and UTHSC CORNET Award (KUM); and UTHSC Neuroscience Institute Postdoctoral Partial Support to P. Singh. The contents of this article are solely the responsibility of the authors and do not necessarily represent the official views of the National Heart, Lung, and Blood Institute.

Disclosures

None.

References

1. Reckelhoff JF. Gender differences in the regulation of blood pressure. *Hypertension*. 2001;37:1199–1208. doi: 10.1161/hypertension.3135.1199
2. Sandberg K, Ji H. Sex differences in primary hypertension. *Biol Sex Differ*. 2012;3:7. doi: 10.1186/2042-6410-3-7
3. Xue B, Pamidimukkala J, Hay M. Sex differences in the development of angiotensin II-induced hypertension in conscious mice. *Am J Physiol Heart Circ Physiol*. 2005;288:H2177–H2184. doi: 10.1152/ajpheart.00969.2004
4. Johnson AK, Gross PM. Sensory circumventricular organs and brain hemostatic pathways. *FASEB J*. 1995;9:678–686. doi: 10.1096/fasebj.7.8.6500693
5. Koba S, Hanai E, Kumada N, Katoaka N, Nakamura K, Watanabe T. Sympathoexcitation by hypothalamic paraventricular neurons projecting to the rostral ventrolateral medulla. *J Physiol*. 2018;596:4581–4595. doi: 10.1113/jphysiol.2017.139181
6. Biancardi VC, Son SJ, Ahmad S, Filosa JA, Stern JE. Circulating angiotensin II gains access to the hypothalamus and brain stem during hypertension via breakdown of the blood-brain barrier. *Hypertension*. 2014;63:572–579. doi: 10.1161/HYPERTENSIONAHA.113.01743
7. Xue B, Pamidimukkala J, Labahn DB, Hay M. Estrogen receptor-alpha mediates estrogen protection from angiotensin II-induced hypertension in conscious female mice. *Am J Physiol Heart Circ Physiol*. 2007;292:H1770–H1776. doi: 10.1152/ajpheart.00110.2005
8. Xue B, Zhang Z, Beltz TG, Guo F, Hay M, Johnson AK. Genetic knockdown of estrogen receptor-alpha in the subfornical organ augments ANG II-induced hypertension in female mice. *Am J Physiol Regul Integr Comp Physiol*. 2015;308:R507–R516. doi: 10.1152/ajpregu.00406.2014
9. Xue B, Zhang Z, Beltz TG, Johnson RF, Guo F, Hay M, Johnson AK. Estrogen receptor-beta in the paraventricular nucleus and rostroventrolateral medulla plays an essential protective role in aldosterone/salt-induced hypertension in female rats. *Hypertension*. 2013;61:1255–1262. doi: 10.1161/HYPERTENSIONAHA.111.00903
10. Vajaran R, Vasudevan N. Is the membrane estrogen receptor, GPER1, a promiscuous receptor that modulates nuclear estrogen receptor-mediated functions in the brain? *Horm Behav*. 2018;104:165–172. doi: 10.1016/j.yhbeh.2018.06.012
11. Jennings BL, George LW, Pingili AK, Khan NS, Estes AM, Fang XR, Gonzalez FJ, Malik KU. Estrogen metabolism by cytochrome P450 1B1 modulates the hypertensive effect of angiotensin II in female mice. *Hypertension*. 2014;64:134–140. doi: 10.1161/HYPERTENSIONAHA.113.03275
12. Zhu BT, Conney AH. Is 2-methoxyestradiol an endogenous estrogen metabolite that inhibits mammary carcinogenesis? *Cancer Res*. 1998;58:2269–2277.
13. Schaufelberger SA, Rosselli M, Barchiesi F, Gillespie DG, Jackson EK, Dubey RK. 2-Methoxyestradiol, an endogenous 17\(\beta\)-estradiol metabolite, inhibits microglial proliferation and activation via an estrogen receptor-independent mechanism. *Am J Physiol Endocrinol Metab*. 2016;310:e313–e322. doi: 10.1152/ajpendo.00418.2015
14. Khan NS, Song CY, Jennings BL, Estes AM, Fang XR, Bonventre JV, Malik KU. Cytoolic phospholipase A2c is critical for angiotensin II-induced hypertension and associated cardiovascular pathophysiology. *Hypertension*. 2015;65:784–792. doi: 10.1161/HYPERTENSIONAHA.114.04803
15. Rosas-Arellano MP, Solano-Flores LP, Ciriello J. Co-localization of estrogen and angiostatin receptors within subfornical organ neurons. *Brain Res*. 1999;837:254–62. doi: 10.1016/s0006-8993(99)01672-8
16. Marques-Lopes J, Lynch MK, Van Kempen TA, Waters EM, Wang G, Iadecola C, Pickel VM, Milner TA. Female protection from slow-pressor effects of angiotensin II involves prevention of ROS production independent of NMDA receptor trafficking in hypothalamic neurons expressing angiotensin 1A receptors. *Synapse*. 2015;69:148–165. doi: 10.1002/syn.21800
17. Marques-Lopes J, Van Kempen T, Waters EM, Pickel VM, Iadecola C, Milner TA. Slow-pressor angiotensin II hypertension and concomitant dinitric NMDA receptor trafficking in estrogen receptor beta-containing neurons of the mouse hypothalamic paraventricular nucleus are sex and age dependent. *J Comp Neurol*. 2014;522:3075–3090. doi: 10.1002/cne.23569
18. Xue B, Singh M, Guo F, Hay M, Johnson AK. Protective actions of estrone on angiotensin II-induced hypertension: role of central nitric oxide. *Am J Physiol Heart Circ Physiol*. 2009;297:H1638–H1646. doi: 10.1152/ajpheart.00502.2009
19. Burmeister MA, Young CN, Braga VA, Butler SD, Sharma RV, Davison RL. In vivo bioluminescence imaging reveals redox-regulated activator protein-1 activation in paraventricular nucleus of mice with renovascular hypertension. *Hypertension*. 2011;57:289–297. doi: 10.1161/HYPERTENSIONAHA.110.160564
Eriksson AL, Wilhelmson AS, Fagman JB, Ryberg H, Koskela A, Ogola B, Zhang Y, Iyer L, Thekkumkara T. 2-Methoxyestradiol causes Koganti S, Snyder R, Gumaste U, Karamyan VT, Thekkumkara T. Gingerich S, Krukoff TL. Estrogen in the paraventricular nucleus attenuates Männistö PT, Kaakkola S. Catechol-O-methyltransferase (COMT): biochemistry, molecular biology, pharmacology, and clinical efficacy of the new selectivity COMT inhibitors, Pharmacol Res 1999:51:593–628. Khaksari M, Abbasloo E, Dehghan F, Soltani Z, Asadikaram G. The brain cytosine levels are modulated by estrogen following traumatic brain injury: which estrogen receptor serves as modulator? Int Immunopharmacol. 2015;28:279–287. doi: 10.1016/j.intimp.2015.05.046. Muskhelishvili L, Thompson PA, Kusewitt DF, Wang C, Kadlubar FF. 21. Shi P, Diez-Freire C, Jun JY, Qi Y, Katovich MJ, Li Q, Sriramula Davisson RL, Zimmerman MC. Angiotensin II, oxidant signaling, and hypertension: down to a T? Hypertension. 2010;55:228–230. doi: 10.1161/HYPERTENSIONAHA.109.144477. 22. Stern JE, Son S, Biancardi VC, Zheng H, Sharma N, Patul KP. Astrocytes contribute to angiotensin II stimulation of hypothalamic neuronal activity and sympathetic outflow. Hypertension. 2016;68:1483–1493. doi: 10.1161/HYPERTENSIONAHA.116.07747. 23. 28. 24. Muskhelishvili L, Thompson PA, Kusewitt DF, Wang C, Kadlubar FF. 25. Rieder CR, Ramsden DB, Williams AC. Cytochrome P450 1B1 mRNA in the human central nervous system. Mol Psychiatry. 1998;51:138–142. doi: 10.1136/mp.51.3.138. 26. Männistö PT, Kaakkola S. Catechol-O-methyltransferase (COMT): biochemistry, molecular biology, pharmacology, and clinical efficacy of the new selectivity COMT inhibitors, Pharmacol Res 1999:51:593–628. 27. Ueki N, Kanasaki K, Kanasaki M, Takeda S, Koya D. Catechol-O-Methyltransferase deficiency leads to hypersensitivity of the pressor response against angiotensin II. Hypertension. 2017;69:1156–1164. doi: 10.1161/HYPERTENSIONAHA.117.09247. 28. Gingerich S, Krukoff TL. Estrogen in the paraventricular nucleus attenuates L-glutamate-induced increases in mean arterial pressure through estrogen receptor-α (ERα) and NO. Hypertension. 2006;48:1130–1136. doi: 10.1161/01.HYP.0000248754.67128.f. 29. Dubey RK, Jackson EK. Cardiovascular protective effects of 17beta-estradiol metabolites. J Appl Physiol (1985). 2001;91:1868–1883. doi: 10.1152/jappl.2001.91.4.1868. 30. Koganti S, Snyder R, Thekkumkara T. Pharmacologic effects of 2-methoxyestradiol on angiotensin type 1 receptor down-regulation in rat aortic smooth muscle cells. Am J Physiol Cell Physiol. 2018;314:C554–C568. doi: 10.1152/ajpcell.00152.2017. 31. Eriksson AK, Wilhelmson AS, Fugman JB, Ryberg H, Koskela A, Turkkanen J, Tivesten A, Ohlsson C. The bone sparing effects of 2-methoxyestradiol are mediated via estrogen receptor-α in male mice. Endocrinology. 2016;157:4200–4205. doi: 10.1210/en.2016-1402. 32. Hadjimarkou MM, Vasudevan N. GPER1/GPR30 in the brain: crosstalk with classical estrogen receptors and implications for behavior. J Steroid Biochem Mol Biol. 2018;176:57–64. doi: 10.1016/j.jsbmb.2017.04.012. 33. Koganti S, Snyder R, Thekkumkara T. Pharmacologic effects of 2-methoxyestradiol on angiotensin type 1 receptor down-regulation in rat liver epithelial and aortic smooth muscle cells. Gend Med. 2012;9:76–93. doi: 10.1016/j.gendem.2012.01.008. 34. Ogola BO, Zimmerman MA, Sure VN, Gentry KM, Duong JL, Clark GL, Miller KS, Katakan VG, Lindsey SH. G protein-coupled estrogen receptor protects from angiotensin II-induced increases in pulse pressure and oxidative stress. Front Endocrinol (Lausanne). 2019;10:586. doi: 10.3389/fendo.2019.00558. 35. Sumners C, Raizada MK, Kang J, Lu D, Posner P. Receptor-mediated effects of angiotensin II on neurons. Front Neuroendocrinol. 1994;15:203–230. doi: 10.1006/fnre.1994.1009. 36. Spary EJ, Macaold P, Batten TF. Oestrogen receptors in the central nervous system and evidence for their role in the control of cardiovascular function. J Chem Neuroanat. 2009;38:185–196. doi: 10.1016/j.jchemneu.2009.05.008. 37. Latchford KJ, Ferguson AV. Angiotensin II activates a nitric-oxide-driven inhibitory feedback in the rat paraventricular nucleus. J Neurophysiol. 2003;89:1238–1244. doi: 10.1152/jn.00914.2002. 38. Makejee S, Gao H, Xu J, Sato R, Zoombok A, Lazariques E. ACE2 and ADAM17 interaction regulates the activity of proinflammatory cytokines and angiotensin type 1 receptor in the central nervous system. Hypertension. 2016;67:1411–1419. doi: 10.1161/HYPERTENSIONAHA.119.13133. 39. Baker AE, Brautigam VM, Watters JJ. Estrogen modulates microglial inflammatory mediator production via interactions with estrogen receptor beta. Endocrinology. 2004;145:5021–5032. doi: 10.1210/en.2004-0619. 40. Myöhänen TT, Schendzielorz N, Männistö PT. Distribution of catechol-O-methyltransferase (COMT) proteins and enzymatic activities in wild-type and soluble COMT deficient mice. J Neurochem. 2010;113:1632–1643. doi: 10.1111/j.1471-4159.2010.06723.x. 41. Yeh CH, Chou W, Chu CC, So EC, Chang HC, Wang JH, Hsing CH. Anticancer agent 2-methoxyestradiol improves survival in septic mice by reducing the production of cytokines and nitric oxide. Shock. 2011;36:510–516. doi: 10.1097/SHK.0b013e318231866d. 42. Pawlak J, Brito V, Kippers E, Beyer C. Regulation of glutamate transporter GLAST and GLT-1 expression in astrocytes by estrogen. Brain Res Mol Brain Res. 2005;138:1–7. doi: 10.1016/j.molbrainres.2004.10.043. 43. Ramirez LA, Sullivan JC. Sex differences in hypertension: where we have been and where we are going. Am J Hypertens. 2018;31:1247–1254. doi: 10.1093/ajh/hpy148. 44. Harrison DG. The immune system in hypertension. Trans Am Clin Climatol Assoc. 2014;125:130–138; discussion 138.