A series of novel 1,3,5-thiadiazine-2-thione derivatives containing a 1,3,4-thiadiazole group was designed and synthesized. The structures of all the compounds were well characterized using 1H NMR, 13C NMR and HRMS, and further confirmed by the X-ray diffraction analysis of 8d. The antimicrobial activities of all the target compounds against *Xanthomonas oryzae pv. oryzicola* (Xoc), *Xanthomonas oryzae pv. oryzae* (Xoo), *Rhizoctonia solani* (Rs) and *Fusarium graminearum* (Fg) were evaluated. The *in vitro* antimicrobial bioassays indicated that some title compounds exhibited noteworthy antimicrobial effects against the above strains. Notably, the compound *N*-((5-(ethylthio)-1,3,4-thiadiazol-2-yl)-2-(5-methyl-6-thioxo-1,3,5-thiadiazinan-3-yl)acetamide (8a) displayed obvious antibacterial effects against Xoc and Xoo at 100 µg/mL with the inhibition rates of 30% and 56%, respectively, which was better than the commercial bactericide thiodiazole-copper. In addition, the anti-Rs EC$_{50}$ value of 8a was 33.70 µg/mL, which was more effective than that of the commercial fungicide hymexazol (67.10 µg/mL). It was found that the substitutes in the 1,3,5-thiadiazine-2-thione and the 1,3,4-thiadiazole rings played a vital role in the antimicrobial activities of the title compounds. More active title compounds against phytopathogenic microorganisms might be obtained via the further structural modification.
Design, synthesis and antimicrobial activities of novel 1,3,5-thiadiazine-2-thione derivatives containing a 1,3,4-thiadiazole group

Jinghua Yan¹, Weijie Si¹,², Haoran Hu¹, Xu Zhao¹, Min Chen¹* and Xiaobin Wang¹

¹ Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
² Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China

Corresponding Author:
Min Chen
No. 1, Weigang Road, Xuanwu District, Nanjing, Jiangsu, 210095, China
Email address: chenmin@njau.edu.cn

Abstract
A series of novel 1,3,5-thiadiazine-2-thione derivatives containing a 1,3,4-thiadiazole group was designed and synthesized. The structures of all the compounds were well characterized using ¹H NMR, ¹³C NMR and HRMS, and further confirmed by the X-ray diffraction analysis of 8d. The antimicrobial activities of all the target compounds against Xanthomonas oryzae pv. oryzicola (Xoc), Xanthomonas oryzae pv. oryzae (Xoo), Rhizoctonia solani (Rs) and Fusarium graminearum (Fg) were evaluated. The in vitro antimicrobial bioassays indicated that some title compounds exhibited noteworthy antimicrobial effects against the above strains. Notably, the compound N-(5-(ethylthio)-1,3,4-thiadiazol-2-yl)-2-(5-methyl-6-thioxo-1,3,5-thiadiazinan-3-yl)acetamide (8a) displayed obvious antibacterial effects against Xoc and Xoo at 100 µg/mL with the inhibition rates of 30% and 56%, respectively, which was better than the commercial bactericide thiodiazole-copper. In addition, the anti-Rs EC₅₀ value of 8a was 33.70 µg/mL, which was more effective than that of the commercial fungicide hymexazol (67.10 µg/mL). It was found that the substitutes in the 1,3,5-thiadiazine-2-thione and the 1,3,4-thiadiazole rings played a vital role in the antimicrobial activities of the title compounds. More active title compounds
against phytopathogenic microorganisms might be obtained via the further structural
modification.

Subjects Agricultural Science, Microbiology, Plant Science

Keywords 1,3,5-Thiadiazine-2-thione, 1,3,4-Thiadiazole, Crop protection, Antibacterial activity,
Antifungal activity

Introduction

A variety of plant diseases, caused by pathogenic organisms, seriously affects the crop
production, leading tremendous losses to agricultural economy every year (Wilson et al., 2009;
Liu et al., 2013). Besides, the rapid emergence of resistant strains against traditional
antimicrobial agents has become a huge challenge in the agricultural industry (Wang et al., 2013).
In the last decades, researchers have found a large number of bioactive molecules with strong
inhibitory effects on phytopathogenic bacteria and fungi. However, these compounds are rarely
used in crop production due to the structural instability or poor control in farmland. Therefore, it
is tardy to search highly-effective and eco-friendly agrochemicals for fighting against
agricultural pathogenic microorganisms (Qian et al., 2010; Li et al., 2018).

1,3,5-Thiadiazine-2-thione derivatives were attractive bioactive molecules and exhibited
antibacterial (Mao et al., 2017), antifungal (Vicentini et al., 2002), herbicidal (Vicentini et al.,
2005), anticancer (El-Shorbagi et al., 2018), antileishmanial (Arshad et al., 2018), antiepileptic
(Semreen et al., 2010), antimalarial (Coro et al., 2006), antioxidant (Ji et al., 2004),
antitubercular (Katiyar et al., 2003) and trypanocidal (Coro et al., 2005) activities. Notably, the
agricultural application of 1,3,5-thiadiazine-2-thione derivatives has also attracted great attention
by chemists and biologists in the last three decades. For example, dazomet (Fig. 1A) and milneb
(Fig. 1B), containing the 1,3,5-thiadiazine-2-thione moiety, were developed as the important
agricultural nematicide and fungicide, respectively (Lam et al., 1993; Nakamura et al., 2010).

Recently, Mao et al. (2017) found that dazomet could be applied as a promising agricultural
bactericide to effectively control ginger blast in field trials (Mao et al., 2017). Meanwhile, our
previous work found that 1,3,5-thiadiazine-2-thione derivatives with an acylhydrazine group
displayed obvious antifungal activity in vitro and in vivo (Wang et al., 2018).

1,3,4-Thiadiazole derivatives attracted great attention by biochemists due to their various
bioactivities including antibacterial (Zhong et al., 2017), antifungal (Chen et al., 2000),
insecticidal (Luo et al. 2007), antiviral (Chen et al., 2010), herbicidal (Cummings et al., 2009),
anticancer (Casey et al., 2004), anti-tubercular (Foroumadi et al., 2003), antiparasitic (Coura et
al., 2002), antidepressant (Siddiqui et al., 2011), antioxidant (Khan et al., 2010) and anti-
inflammatory (Kumar et al., 2008) activities. Among the above biological activities, the
remarkable antimicrobial activity of 1,3,4-thiadiazole derivatives were well reported during the last decades. Thiodiazole-copper (Fig. 1C) and bismethiazol (Fig. 1D), the representative agrochemicals containing the 1,3,4-thiadiazole group, were widely used to control bacterial diseases in crops. In addition, researchers found that the 1,3,4-thiadiazole derivatives bearing a sulfides moiety could effectively inhibit various agricultural bacteria (Wan et al., 2018).

On the basis of the above analysis, a series of 1,3,5-thiadiazine-2-thione derivatives, containing 1,3,4-thiadiazole scaffold (Fig. 2), were obtained to find novel antimicrobial candidates. The 1,3,4-thiadiazole fragment was introduced into the 5-position of the 1,3,5-thiadiazine-2-thione according to the “combinatorial optimization” method (Fig. 3). The antibacterial activities against Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc) and the antifungal activity against Rhizoctonia solani (Rs) and Fusarium graminearum (Fg) were evaluated. Furthermore, the preliminary biological assay showed that some of the title compounds exhibited good antibacterial and antifungal activities. To the best of our knowledge, this is the first report about the synthesis and antimicrobial activity of 1,3,5-thiadiazine-2-thione derivatives containing a 1,3,4-thiadiazole moiety.

Materials and Methods

Materials

All the solvents and reagents were purchased from commercial suppliers and used without further purification. The reaction was monitored by thin layer chromatography (TLC) on GF254 silica gel plates, which was visualized at UV 254 nm. The melting points were measured with a SMP50 automatic melting point apparatus (Cole-Parmer, England). 1H and 13C NMR spectra were recorded on a BRUKER, AVANCE III 400 MHz and probe of BBO spectrometer (Bruker Corporation, Germany) at room temperature with DMSO-d6 as a solvent and TMS as an internal standard. High-resolution mass spectrometer (HRMS) data were measured on an AB SCIEX TripleTOF 5600+ spectrometer (AB SCIEX, America) with the ESI charge source.

General procedures for substituted 2-(6-thioxo-1,3,5-thiadiazinan-3-yl) acetic acids 3

Carbon disulfide (7.61 g, 100 mmol) was added dropwise to 100 mL18% aqueous potassium hydroxide solution (18 g of potassium hydroxide dissolved in 82 g of water) containing phenylamine (9.31 g, 100 mmol). After being stirred for 4 h at room temperature, the reaction mixture turned from colorless to orange and appeared white solid (compound 1a). Then, 37% formaldehyde solution (18.66 g, 230 mmol) was added into the reaction mixture, and the solution was stirred for another 1 h at room temperature. After being filtered, the filtrate was slowly dropped into a phosphate buffer solution (pH 7.8, 100 mL) containing glycine (7.51 g, 100 mmol). After being stirred for 2 h at room temperature and being filtered, the filtrate was washed...
with diethyl ether until the color of organic phase was changed to colorless. The water phase was
acidified with dilute hydrochloric acid to generate white precipitates, at 0–5 °C. The precipitates
were filtered, washed with iced ethanol, and dried to acquire the key intermediates 3a. This
method was suitable for the synthesis of compounds 3b–3d. The yields of compounds 3a-3d
were between 46% and 71%.

General procedures for substituted 5-(ethylthio)-1,3,4-thiadiazol-2-amines 4

Take the synthesis of compound 4a as an example: 5-amino-1,3,4-thiadiazole-2-thiol (2.0 g, 15
mmol) and K$_2$CO$_3$ (2.76 g, 20 mmol) were dissolved in 20 mL DMF and stirred for 15 minutes at
room temperature. The ethyl bromide (2.18 g, 20 mmol) was added dropwise into the above
mixture and stirred for 8 h at room temperature. Then the mixture was poured into cold water (10
mL). The precipitated solid was filtered and recrystallized with the solvent of ethanol and water
to gain pale yellow solid 4a. The method was suitable for the synthesis of compounds 4b–4d.
The yields of compounds 4a–4d were between 77% and 81%.

General synthetic procedure for title compounds 5–8.
The intermediate 3a (0.50 g, 1.86 mmol), O-(Benzotriazole-1-yl)-N,N,N',N'-tetramethyluronium
tetrafluoroborate (TBTU, 0.72 g, 2.24 mmol), triethylamine (0.38 g, 3.76 mmol) were added into
dichloromethane (30 mL) and the mixture was stirred for 0.5 h at room temperature. Then, the
intermediate 4a (0.45 g, 2.80 mmol) was added and stirred for another 2 h at room temperature.
The resulting precipitate was filtered, washed with dichloromethane, and dried to give the
desired product 5a. This method was suitable for the synthesis of title compounds 5–8 (Si et al.,
2019). The yields of compounds 5–8 were between 41% and 79%.

N-(5-(ethylthio)-1,3,4-thiadiazol-2-yl)-2-(5-phenyl-6-thioxo-1,3,5-thiadiazinan-3-y1)acetamide (5a)
White solid, m.p.158–160°C, yield 61%; 1H NMR (400 MHz, DMSO-d_6) δ 12.73 (s, 1H, CONH),
7.47 (t, J = 7.6 Hz, 2H, PhH), 7.35 (t, J = 7.4 Hz, 1H, PhH), 7.25 (d, J = 7.5 Hz, 2H, PhH), 4.76
(s, 2H, NCH$_2$N), 4.69 (s, 2H, SCH$_2$N), 4.02 (s, 2H, COCH$_2$), 3.23 (q, J = 7.3 Hz, 2H, CH$_2$CH$_3$),
1.33 (t, J = 7.3 Hz, 3H, CH$_3$); 13C NMR (101 MHz, DMSO-d_6) δ 193.4, 168.4, 159.3, 158.7,
130.0, 128.3, 127.7, 74.1, 59.3, 53.2, 28.5, 15.2; HRMS (ESI) m/z calcd for C$_{15}$H$_{18}$N$_5$OS$_4$
([M+H]$^+$): 412.0388, found: 412.0388.

N-(5-(benzylthio)-1,3,4-thiadiazol-2-yl)-2-(5-phenyl-6-thioxo-1,3,5-thiadiazinan-3-y1)acetamide (5b)
White solid, m.p.175–176°C, yield 66%; 1H NMR (400 MHz, DMSO-d_6) δ 7.46 (t, J = 7.7 Hz,
2H, PhH), 7.40 (d, J = 7.3 Hz, 2H, PhH), 7.34 (dd, J = 17.5, 7.6 Hz, 3H, PhH), 7.28 (d, J = 7.1 Hz, 1H, PhH), 7.24 (d, J = 7.6 Hz, 2H, PhH), 4.75 (s, 2H, NCH$_2$N), 4.68 (s, 2H, SCH$_2$N), 4.48 (s, 2H, SCH$_2$Ph), 4.00 (s, 2H, COCH$_2$); 13C NMR (101 MHz, DMSO-d_6) δ 193.4, 168.4, 159.1, 158.7, 144.7, 137.2, 129.9, 129.5, 129.0, 128.3, 128.1, 127.7, 74.1, 59.3, 53.2, 38.0; HRMS (ESI) m/z calcd for C$_{20}$H$_{19}$N$_5$NaOS$_4$([M+Na]$^+$): 496.0365, found: 496.0366.

N-(5-((4-methylbenzyl)thio)-1,3,4-thiadiazol-2-yl)-2-(5-phenyl-6-thioxo-1,3,5-thiadiazinan-3-yl)acetamide (5c)

White solid, m.p. 169–171$^\circ$C, yield 67%; 1H NMR (400 MHz, DMSO-d_6) δ 7.46 (t, J = 7.2 Hz, 2H, PhH), 7.38–7.32 (m, 1H, PhH), 7.26 (dd, J = 14.8, 7.7 Hz, 4H, PhH), 7.13 (d, J = 7.5 Hz, 2H, PhH), 4.75 (s, 2H, NCH$_2$N), 4.68 (s, 2H, SCH$_2$N), 4.44 (s, 2H, SCH$_2$Ph), 4.00 (s, 2H, COCH$_2$), 2.27 (s, 3H, CH$_3$); 13C NMR (101 MHz, DMSO-d_6) δ 193.4, 168.5, 159.3, 158.3, 144.7, 136.5, 132.6, 131.3, 129.9, 129.0, 128.3, 127.7, 74.1, 59.3, 53.2, 37.1; HRMS (ESI) m/z calcd for C$_{20}$H$_{18}$ClN$_5$NaOS$_4$([M+Na]$^+$): 529.9975, found: 529.9970.

N-(5-((4-chlorobenzyl)thio)-1,3,4-thiadiazol-2-yl)-2-(5-phenyl-6-thioxo-1,3,5-thiadiazinan-3-yl)acetamide (5d)

White solid, m.p. 179–181$^\circ$C, yield 69%; 1H NMR (400 MHz, DMSO-d_6) δ 7.49–7.32 (m, 7H, PhH), 7.24 (d, J = 7.5 Hz, 2H, PhH), 4.75 (s, 2H, NCH$_2$N), 4.68 (s, 2H, SCH$_2$N), 4.49 (d, J = 11.2 Hz, 2H, SCH$_2$Ph), 4.00 (s, 2H, COCH$_2$); 13C NMR (101 MHz, DMSO-d_6) δ 193.4, 168.5, 159.3, 158.3, 144.7, 136.5, 132.6, 131.3, 129.9, 129.0, 128.3, 127.7, 74.1, 59.3, 53.2, 37.1; HRMS (ESI) m/z calcd for C$_{21}$H$_{22}$N$_5$NaOS$_4$([M+H]$^+$): 488.0702, found: 488.0696.

2-(5-benzyl-6-thioxo-1,3,5-thiadiazinan-3-yl)-N-(5-(ethylthio)-1,3,4-thiadiazol-2-yl)acetamide (6a)

White solid, m.p. 179–181$^\circ$C, yield 79%; 1H NMR (400 MHz, DMSO-d_6) δ 12.50 (s, 1H, CONH), 7.35 (d, J = 7.5 Hz, 2H, PhH), 7.27 (t, J = 7.4 Hz, 2H, PhH), 7.12 (t, J = 7.3 Hz, 1H, PhH), 5.28 (s, 2H, NCH$_2$Ph), 4.58 (s, 2H, NCH$_2$N), 4.50 (s, 2H, SCH$_2$N), 3.69 (s, 2H, COCH$_2$), 3.22 (q, J = 7.3 Hz, 2H, CH$_2$CH$_3$), 1.34 (t, J = 7.3 Hz, 3H, CH$_3$); 13C NMR (101 MHz, DMSO-d_6) δ 192.2, 167.8, 159.1, 158.6, 136.0, 129.0, 128.4, 127.9, 68.9, 59.3, 53.3, 52.7, 28.6, 15.2; HRMS (ESI) m/z calcd for C$_{16}$H$_{20}$N$_3$O$_4$([M+H]$^+$): 426.0545, found: 426.0542.

2-(5-benzyl-6-thioxo-1,3,5-thiadiazinan-3-yl)-N-(5-(benzylthio)-1,3,4-thiadiazol-2-yl)acetamide (6b)

White solid, m.p. 160–162$^\circ$C, yield 79%; 1H NMR (400 MHz, DMSO-d_6) δ 12.46 (s, 1H, CONH), 7.41 (d, J = 7.4 Hz, 2H, PhH), 7.33 (s, 4H, PhH), 7.30–7.21 (m, 3H, PhH), 7.08 (t, J = 7.3 Hz,
1H, PhH), 5.27 (s, 2H, NCH₃Ph), 4.57 (s, 2H, SCH₂Ph), 4.48 (s, 4H, NCH₂NCH₂S), 3.66 (s, 2H, COCH₃); ¹³C NMR (101 MHz, DMSO-d₆) δ 192.2, 167.9, 159.0, 158.4, 137.2, 136.0, 129.4, 129.0, 128.4, 128.1, 127.9, 68.89, 59.3, 53.4, 52.7, 38.0; HRMS (ESI) m/z calcd for C₂₁H₂₂N₅O₅S₄ ([M+H]⁺): 488.0702, found: 488.0695.

2-(5-benzyl-6-thioxo-1,3,5-thiadiazinan-3-yl)-N-(5-(4-methylbenzyl)thio)-1,3,4-thiadiazol-2-yl)acetamide (6c) White solid, m.p. 179–181 °C, yield 71%; ¹H NMR (400 MHz, DMSO-d₆) δ 12.43 (s, 1H, CONH), 7.34 (d, J = 7.4 Hz, 2H, PhH), 7.31–7.21 (m, 4H, PhH), 7.14 (d, J = 7.2 Hz, 2H, PhH), 7.09 (t, J = 7.3 Hz, 2H, PhH), 5.28 (s, 2H, NCH₂Ph), 4.57 (s, 2H, SCH₂Ph), 4.48 (s, 2H, NCH₂N), 4.44 (s, 2H, SCH₂N), 3.66 (s, 2H, COCH₂); ¹³C NMR (101 MHz, DMSO-d₆) δ 192.2, 167.9, 156.0, 158.6, 137.3, 136.0, 134.1, 129.6, 129.4, 129.0, 128.5, 127.9, 68.9, 59.3, 53.4, 52.7, 37.9, 21.2; HRMS (ESI) m/z calcd for C₂₂H₂₄N₅O₅S₄ ([M+H]⁺): 502.0858, found: 502.0850.

2-(5-benzyl-6-thioxo-1,3,5-thiadiazinan-3-yl)-N-(5-(4-chlorobenzyl)thio)-1,3,4-thiadiazol-2-yl)acetamide (6d) White solid, m.p. 175–177 °C, yield 72%; ¹H NMR (400 MHz, DMSO-d₆) δ 7.41 (dd, J = 16.2, 7.8 Hz, 4H, PhH), 7.34 (d, J = 7.4 Hz, 2H, PhH), 7.24 (t, J = 7.3 Hz, 2H, PhH), 7.07 (t, J = 7.3 Hz, 1H, PhH), 5.28 (s, 2H, NCH₂Ph), 4.57 (s, 2H, SCH₂Ph), 4.48 (s, 2H, NCH₂N), 3.66 (s, 2H, COCH₂); ¹³C NMR (101 MHz, DMSO-d₆) δ 192.12, 167.9, 159.2, 158.0, 136.5, 136.0, 132.6, 131.33, 129.0, 128.4, 127.9, 68.9, 59.3, 53.4, 52.7, 37.2; HRMS (ESI) m/z calcd for C₂₁H₂₀ClN₅NaOS₄ ([M+Na]⁺): 544.0132, found: 544.0125.

N-(5-(ethylthio)-1,3,4-thiadiazol-2-yl)-2-(5-(4-fluorophenyl)-6-thioxo-1,3,5-thiadiazinan-3-yl)acetamide (7a) White solid, m.p. 173–175 °C, yield 41%; ¹H NMR (400 MHz, DMSO-d₆) δ 7.30 (d, J = 6.9 Hz, 4H, PhH), 4.76 (s, 2H, NCH₂N), 4.69 (s, 2H, SCH₂N), 4.01 (s, 2H, COCH₂), 3.22 (q, J = 7.3 Hz, 2H, CH₂CH₃), 1.33 (t, J = 7.3 Hz, 3H, CH₃); ¹³C NMR (101 MHz, DMSO-d₆) δ 194.0, 168.4, 159.3, 158.7, 140.8, 130.0, 129.9, 116.9, 116.6, 74.1, 59.3, 53.2, 28.5, 15.2; HRMS (ESI) m/z calcd for C₁₆H₁₉FN₅OS₄ ([M+H]⁺): 430.0295, found: 430.0291.

N-(5-(benzyllthio)-1,3,4-thiadiazol-2-yl)-2-(5-(4-fluorophenyl)-6-thioxo-1,3,5-thiadiazinan-3-yl)acetamide (7b) White solid, m.p. 163–165 °C, yield 57%; ¹H NMR (400 MHz, DMSO-d₆) δ 7.44 (d, J = 7.0 Hz, 2H, PhH), 7.40–7.30 (m, 7H, PhH), 4.79 (s, 2H, NCH₂N), 4.72 (s, 2H, SCH₂N), 4.53 (s, 2H, SCH₂Ph), 4.05 (s, 2H, COCH₂); ¹³C NMR (101 MHz, DMSO-d₆) δ 194.0, 167.9, 159.0, 158.4, 137.2, 136.0, 129.4, 129.0, 128.4, 127.9, 68.9, 59.3, 53.4, 52.7, 37.9, 21.2; HRMS (ESI) m/z calcd for C₁₆H₁₉FN₅NaOS₄ ([M+Na]⁺): 544.0132, found: 544.0125.
2-(5-(4-fluorophenyl)-6-thioxo-1,3,5-thiadiazinan-3-yl)-N-(5-((4-methylbenzyl)thio)-1,3,4-thiadiazol-2-yl)acetamide (7c)

White solid, m.p. 170–171°C, yield 49%; \(^1\)H NMR (400 MHz, DMSO-\(d_6\)) \(\delta\) 7.29 (t, \(J = 7.8\) Hz, 6H, PhH), 7.13 (d, \(J = 7.6\) Hz, 2H, PhH), 4.75 (s, 2H, NCH\(_2\)N), 4.68 (s, 2H, SCH\(_2\)N), 4.44 (s, 2H, SCH\(_2\)Ph), 4.00 (s, 2H, COCH\(_2\)); \(^{13}\)C NMR (101 MHz, DMSO-\(d_6\)) \(\delta\) 194.0, 168.5, 159.1, 158.8, 140.8, 137.3, 134.0, 130.0, 129.9, 129.6, 129.4, 116.9, 116.6, 74.1, 59.4, 53.3, 37.8, 21.2; HRMS (ESI) \(m/z\) calcd for C\(_{20}\)H\(_{19}\)FN\(_5\)OS\(_4\) ([M+H]\(^+\)): 492.0451, found: 492.0444.

N-(5-((4-chlorobenzyl)thio)-1,3,4-thiadiazol-2-yl)-2-(5-(4-fluorophenyl)-6-thioxo-1,3,5-thiadiazinan-3-yl)acetamide (7d)

White solid, m.p. 174–175°C, yield 48%; \(^1\)H NMR (400 MHz, DMSO-\(d_6\)) \(\delta\) 7.40 (dd, \(J = 16.1\), 7.9 Hz, 4H, PhH), 7.30 (d, \(J = 6.5\) Hz, 4H, PhH), 4.75 (s, 2H, NCH\(_2\)N), 4.68 (s, 2H, SCH\(_2\)N), 4.48 (s, 2H, SCH\(_2\)Ph), 4.00 (s, 2H, COCH\(_2\)); \(^{13}\)C NMR (101 MHz, DMSO-\(d_6\)) \(\delta\) 194.0, 168.5, 159.3, 158.3, 140.8, 136.5, 132.6, 131.3, 130.0, 129.9, 129.6, 116.9, 116.6, 74.1, 59.4, 53.3, 37.1; HRMS (ESI) \(m/z\) calcd for C\(_{21}\)H\(_{18}\)ClFN\(_5\)OS\(_4\) ([M+H]\(^+\)): 526.0061, found: 526.0049.

N-(5-(ethylthio)-1,3,4-thiadiazol-2-yl)-2-(5-methyl-6-thioxo-1,3,5-thiadiazinan-3-yl)acetamide (8a)

White solid, m.p. 159–161°C, yield 45%; \(^1\)H NMR (400 MHz, DMSO-\(d_6\)) \(\delta\) 4.55 (s, 4H, NCH\(_2\)NCH\(_2\)S), 3.83 (s, 2H, COCH\(_2\)), 3.37 (s, 3H, NCH\(_3\)), 3.23 (q, \(J = 7.3\) Hz, 2H, CH\(_2\)CH\(_3\)), 1.35 (t, \(J = 7.3\) Hz, 3H, CH\(_2\)CH\(_3\)); \(^{13}\)C NMR (101 MHz, DMSO-\(d_6\)) \(\delta\) 190.5, 168.5, 159.2, 158.8, 71.8, 59.3, 58.8, 53.3, 28.6, 15.2; HRMS (ESI) \(m/z\) calcd for C\(_{10}\)H\(_{16}\)N\(_5\)OS\(_4\) ([M+H]\(^+\)): 350.0232, found: 350.0230.

N-(5-(benzylthio)-1,3,4-thiadiazol-2-yl)-2-(5-methyl-6-thioxo-1,3,5-thiadiazinan-3-yl)acetamide (8b)

White solid, m.p. 166–168°C, yield 66%; \(^1\)H NMR (400 MHz, DMSO-\(d_6\)) \(\delta\) 12.45 (s, 1H, CONH), 7.41 (d, \(J = 7.4\) Hz, 2H, PhH), 7.34 (t, \(J = 7.3\) Hz, 2H, PhH), 7.31–7.24 (m, 1H, PhH), 4.54 (s, 4H, NCH\(_3\)NCH\(_2\)S), 4.49 (s, 2H, SCH\(_2\)Ph), 3.82 (s, 2H, COCH\(_2\)), 3.37 (s, 3H, NCH\(_3\)); \(^{13}\)C NMR (101 MHz, DMSO-\(d_6\)) \(\delta\) 190.5, 168.6, 159.2, 158.6, 137.2, 129.5, 129.0, 128.1, 71.8, 58.8, 53.3, 38.0; HRMS (ESI) \(m/z\) calcd for C\(_{15}\)H\(_{17}\)N\(_5\)NaOS\(_4\) ([M+Na]\(^+\)): 434.0208, found: 434.0204.
2-(5-methyl-6-thioxo-1,3,5-thiadiazinan-3-yl)-N-(5-((4-methylbenzyl)thio)-1,3,4-thiadiazol-2-yl)acetamide (8c)

White solid, m.p. 168–170°C, yield 56%; ¹H NMR (400 MHz, DMSO-ｄ6) δ 7.28 (d, J = 7.5 Hz, 2H, PhH), 7.13 (d, J = 7.7 Hz, 2H, PhH), 4.53 (s, 4H, NCH₂NCH₂S), 4.44 (s, 2H, SCH₂Ph), 3.81 (s, 2H, COCH₂), 3.36 (s, 3H, NCH₃), 2.27 (s, 3H, PhCH₃); ¹³C NMR (101 MHz, DMSO-ｄ6) δ 190.5, 168.6, 159.2, 158.8, 137.3, 134.0, 129.6, 129.4, 71.8, 58.8, 53.3, 37.8, 21.2; HRMS (ESI) m/z calcd for C₁₆H₂₀N₅O₄ (M+H⁺): 426.0545, found: 426.0541.

N-(5-((4-chlorobenzyl)thio)-1,3,4-thiadiazol-2-yl)-2-(5-methyl-6-thioxo-1,3,5-thiadiazinan-3-yl)acetamide (8d)

White solid, m.p. 161–163°C, yield 56%; ¹H NMR (400 MHz, DMSO-ｄ6) δ 12.49 (s, 1H, CONH), 7.41 (q, J = 8.1 Hz, 4H, PhH), 4.53 (s, 4H, NCH₂NCH₂S), 4.48 (s, 2H, SCH₂Ph), 3.81 (s, 2H, COCH₂), 3.36 (s, 3H, CH₃); ¹³C NMR (101 MHz, DMSO-ｄ6) δ 190.5, 168.7, 159.5, 158.2, 136.5, 132.6, 131.3, 129.0, 71.8, 58.8, 53.4, 37.1; HRMS (ESI) m/z calcd for C₁₅H₁₆ClN₅NaOS₄ ([M+Na⁺]: 467.9819, found: 467.9814.

Crystal structure determination

The title compound 8d was recrystallized from a mixture of DMF and methanol (V: V=1:1) to obtain a suitable single crystal. The X-ray single crystal diffraction data was collected on an Agilent Super Nova (Dual, Cu at zero, AtlasS2) single crystal diffractometer at 100.00 (10) K with the monochromatized MoKα radiation (λ = 0.71073 Å) using w scan mode. The CrysAlisPro program was used to integrate the diffraction profile. The structure was solved directly and optimized by using full matrix least square method via SHELXL (Sheldrick, 1997). All the non-hydrogen atoms were refined by full-matrix least-squares technique on F² with anisotropic thermal parameters. All the hydrogen atoms were positioned geometrically and refined using a riding model. PLATON program was used for the structural analysis and the diamond program was used for the drawings (Spek, 2003).

Antibacterial activities test in vitro

The antibacterial activities of title compounds against Xoo and Xoc were evaluated by the turbidimeter test (Li et al., 2014; Wang et al., 2013; Xu et al., 2012). The compounds were dissolved in dimethylsulfoxide (DMSO) and diluted with water (containing 0.1% Tween-20) to obtain a solution with a final concentration of 100 and 50 μg/mL by adding different amounts of water. DMSO in sterile distilled water served as a blank control, thiodiazole-copper served as positive control. Approximately 1 mL of sample liquid was added to the nontoxic nutrient broth (NB, 3.0 g of beef extract, 5.0 g of peptone, 1.0 g of yeast powder, 10.0 g of glucose, and 1000
285 mL of distilled water, pH 7.0 to 7.2) liquid medium in 4 mL tubes. Then, about 40 μL of solvent
NB containing Xoo or Xoc was added to 5 mL of solvent NB containing the test compounds and
positive control. The inoculated test tubes were incubated at 28 ± 1°C and continuously cultured
shakily at 180 rpm for 2–3 days. The growth of the cultures was monitored on a microplate
reader by measuring the optical density at 600 nm (OD600) given by turbidity_corrected values =
OD_bacterium − OD_no bacterium, and then the inhibition rate I (%) was calculated by
I = (Ctur − Ttur)/Ctur × 100%. Ctur is the corrected turbidity values of bacterial growth on untreated NB (blank control), and Ttur is the corrected turbidity values of bacterial growth on treated NB.

Antifungal activities test in vitro
Rs and Fg, which were the representative plant pathogenic fungi, were chosen as the test strains.
The antifungal activities of title compounds against Rs and Fg in vitro were tested by the
mycelium growth rate method (Wang et al., 2017; Chen et al., 2012). Different doses of
compounds were dissolved in DMSO and mixed with sterile molten potato dextrose agar (PDA, 200 g potato, 20 g glucose, 18g agar, add water and boil to prepare 1000 mL solution) medium to
obtain a final concentration of 100 and 50 μg/mL. DMSO in sterile distilled water was used as
the negative control, commercial fungicide hymexazol was selected as a positive control. Place
fungi mycelia disks (4 mm diameter) at the center of Petri dishes in a sterile environment and the
treatments were incubated in the dark at 25 ± 1°C. Each treatment was produced in three
replicates. The diameters of the sample colonies were measured, when the colonies in the control
experiment covered two-thirds of the culture dishes. Inhibitory percentages of the title
compounds in vitro on these fungi were calculated as I = [(C − T)/(C − 4)] × 100%, where I
was the inhibition rate (%), C was the diameter (mm) of the fungal colony on the negative
control group, and T was the diameter (mm) of the fungal colony on the experimental group.

Results
Spectral characteristic of title compounds
The structures of the title compounds were confirmed by 1H NMR, 13C NMR and HRMS data.
Here, we take the compound 5a as the example to analyze the molecular structure. In the 1H
NMR spectra of the compound 5a (Fig. S1), the broad singlet proton peak was at 12.73 ppm of
the amide group and (-NCH2N-, -SCH2N-) proton of the 1,3,5-thiadiazinethione were about 4.76
ppm and 4.69 ppm, respectively. Other (-CH2C=O) protons were at around 4.02 ppm. The 13C
NMR peak of the thiophenone group (-C=S) emerged between 194.03 and 190.48 ppm, and
carbonyl group (-C=O) peaks were in the range of 168.65–167.83 ppm (Fig. S2). In addition, the
carbon atom peaks were at 2 or 5 position of the 1,3,4-thiadiazole at 159.47–158.02 ppm. The
HRMS spectra (Fig. S3) exhibited that the compound 5a was peaking at 412.0388 ([M+H]+). For
more characteristic information about the compounds 5–8, please refer to the Supplemental Information.

X-ray crystal structure of compound 8d

The structure of compound 8d was further confirmed using the single crystal X-ray analysis. The corresponding crystal structure and crystal packing diagrams were shown in Fig. 4 and Fig. 5, respectively. The hydrogen bonds were given in Table 1. As shown in Fig. 4, the intramolecular hydrogen bond N(3)–H(3)···N(4) formed a new five-membered ring with two other C atoms. In addition, the intramolecular hydrogen bond C(3)–H(3B)···N(5), together with thiadiazinthion ring constituted a new bridge ring. In the packing diagram of the compound 8d (Fig. 5), the molecules connected each other through intermolecular hydrogen bonds N(3)–H(3)···O(1) and C(12)–H(12)···S (3) (Table 1). Among them, intermolecular hydrogen bond C(12)–H(12)···S(3) connected different molecules to form the molecular chains, while N(3)–H(3)···O(1) connected different chains to form planes, eventually the spatial network was formed. Crystallographic data were deposited with the Cambridge Crystallographic Data Centre. The deposition number was CCDC 1912576.

Antibacterial bioassays of title compounds in vitro

All the target compounds were tested for the in vitro antibacterial activity against Xoc and Xoo to investigate the biological activity. The preliminary bioassay results demonstrated that all compounds had certain antibacterial activity against Xoc and Xoo at 100 and 50 µg/mL (Table 2). For example, the inhibitory rates of compounds 5b, 5c, 8c and 8a against Xoc respectively were 22%, 22%, 18% and 30% at 100 µg/mL, which are better than that of thiodiazole-copper (18%). Otherwise, compounds 5a–5d, 6a–6c, 7a and 8a–8c exhibited certain inhibitory activities against Xoc comparing with the thiodiazole-copper at 50 µg/mL. In addition, the title compounds 5a, 6a, 7a, 8a and 8b also showed certain activities against Xoo at 50 µg/mL and 100 µg/mL. Among them, 8a exhibited better antibacterial activities than thiodiazole-copper. As can be seen, compound 8a was the best inhibitor among all the compounds, not only has antibacterial activity against Xoo, but also has a certain inhibitory effect against Xoc.

Antifungal bioassays of title compounds in vitro

The in vitro inhibitory activity against Rs and Fg were tested. From the Table 2 it could be found that compounds 5a, 6d, 7d and 8b possessed of certain activities against both Rs and Fg. At the concentration of 100 µg/mL, compound 7d and 8b showed comparative activity (46%, 50%) against Rs, which was comparable with the commercial drug hymexazol (47%). Amongst all the compounds, 8a displayed the best inhibitory activity (100 % at 100 µg/mL and 62% at 50 µg/mL).
against *Rs*, which was even better than that of hymexazol (47% at 100 µg/mL and 37% at 50 µg/mL) (*Table 2*). Moreover, compound 8a also exhibited good activity (67% at 100 µg/mL and 43% at 50 µg/mL) against *Fg*, which was approximate with the activity (66% at 100 µg/mL and 43% at 50 µg/mL) of hymexazol (*Table 2*).

Afterwards, the EC$_{50}$ values of compound 8a and hymexazol against *Rs* and *Fg* were tested respectively, which were shown in *Table 3* and *Fig. 6*. The EC$_{50}$ value of 8a against *Fg* was 88.7 µg/mL, which was higher than that of hymexazol (56.19 µg/mL). But the compound 8a showed remarkable activity against *Rs* with an EC$_{50}$ value of 33.70 µg/mL, which was superior to that of hymexazol (67.10 µg/mL).

Discussion

Synthesis

The core intermediates 3 were obtained by three steps according to the reported method (*Echemendía et al., 2017*) with small modification. The 5-amino-1,3,4-thiadiazole-2-thiol reacted with substituted ethyl bromide or substituted benzyl chloride in acetonitrile to form the intermediates 4 with the participation of potassium carbonate. To our disappointment, the reaction time was long and the yield was low (about 40%). When DMF was used as the solvent, the reaction was completed in 2–8 h at the same temperature, and the yield was increased to 80%.

Optimal conditions for the reaction of intermediates 3 and 4 to produce the products 5–8. First, an attempt was made to convert intermediates 3 to the corresponding acid chlorides and then reacted with 4. Unfortunately, the reaction failed. Subsequently, different methods, such as the use of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide (EDCI) hydrochloride/ 1-hydroxybenzotriazole (HOBt)/ triethylamine (Et$_3$N), EDCI/ 4-dimethylaminopyridine (DMAP)/Et$_3$N, gave no reaction. However, it was pleasure that the TBTU/ Et$_3$N could make the reaction completed in 2h at the room temperature. The result showed that the reaction was carried out well in the condition of TBTU/ Et$_3$N, which had many advantages, such as the short reaction time, the reaction mild conditions and the simple and convenient post-treatment. In addition, the yield was 41%–79%. It is observed that when R$_1$ was 4-FPh, the yield is lower than that of Phenyl, which might be related to the electron-withdrawing group on the benzene ring.

Antimicrobial activity

From the *Table 2*, it can be concluded that the changes of the substituents R$_1$ and R$_2$ has a certain effect on the biological activity of the compounds.

For *Xoc*, it was seen that compounds 5, 8 displayed slightly higher activity than compounds 6 and 7 series. This indicated that when the R$_1$ substituent group was substituted with a methyl or phenyl, the corresponding compounds generally exhibited better anti-*Xoc* effects than those
compounds bearing a benzyl or 4-fluorophenyl. On the whole, 5a, 5b, 5c, 6a, 6c, 8a and 8c had better activity than the others. Among them, the inhibition rates of 5a, 6a, 6c and 8c (17%, 17%, 17% and 18%) were approximate with the inhibition rate of commercial bactericide thiodiazole-copper (18%) at 100 μg/mL. This result also applied to the concentration of 50 μg/mL. At 100 μg/mL, the activity of compounds 5b and 5c (22% and 25%) was slightly higher than that of thiodiazole-copper. This difference was even great at 50 μg/mL, the inhibition rates of 5b, 5c and thiodiazole-copper were 18%, 20% and 10%, respectively. The activity of 8a (30%, 100 μg/mL; 25%, 50 μg/mL) was significantly better than that of thiodiazole-copper.

Bacteria Xoo was more sensitive than Xoc for all the test compounds, including thiodiazole-copper, which was visually displayed in Table 2. For Xoo, 5a was the most active compound in compounds 5, for which the inhibition rate of 5a (30%) was significantly higher than the others (22%–24%). A similar pattern occurs in compounds 6, 7 and 8, that was 6a, 7a and 8a were the most active compounds in their respective series. It could be concluded that the substitute R₂ played a role in the activity. When the R¹ was the same substitute, title compounds bearing a methyl at R² position exhibited more obvious anti-Xoo effects than the others, which contained benzyl, 4-methyl phenyl or 4-chlorphenyl moiety at R² position. Among all the target compounds, 6a, 7a and 8a showed higher inhibitory activity than the others, both at 100 μg/mL and 50 μg/mL. Compound 8a was the best inhibitor and showed the inhibition rates of 56% and 29% at the concentration of 100 μg/mL and 50 μg/mL, respectively, which was compared with the activity of 40% (at 100 μg/mL) and 29% (at 100 μg/mL) of thiodiazole-copper.

In general, most of the compounds showed a higher antifungal activity towards Rs than the Fg. It can be found that the changes in substituent groups of title compounds greatly influenced their antifungal effects. The structure–activity relationships showed three general rules: First, overall, the inhibitory activities of the target compounds against Rs were higher than that of Fg, except for compounds 6b and 7c. Second, when R¹ was Me, that was to say 8a–8d, exhibited better antifungal effects than those compounds when R¹ was Ph (5a–5d), 4-FPh (7a–7d) or Bn (6a–6b). Third, when R² was 4-C1phenyl, the activities of the corresponding compounds were superior to these compounds with R² was 4-Mephenyl. For example, the compounds fell into order by inhibitory rate as 5d > 5c, 6d > 6c, 7d > 7c and 8d > 8c, against both fungi at the concentration of 100 μg/mL.

From the antimicrobial activity against Xoc, Xoo, Rs and Fg (Table 2 and Table 3), it was indicated that the changes of substituent groups R¹ and R² greatly influenced the antimicrobial activities of the title compounds. In this paper, it was found that when R¹ and R² were the methyl group, the target compound (8a) showed distinct antibacterial and antifungal activities. The compound 8a showed better antimicrobial activities against Xoc and Rs than the commercial thiodiazole-copper and hymexazol, respectively. The activity results provided a direction for
further molecular structure optimization of 1,3,5-thiadiazine-2-thione derivatives. The related research is continuing in our laboratory.

Conclusions

Sixteen novel 1,3,5-thiadiazine-2-thione derivatives containing a 1,3,4-thiadiazole group was designed, synthesized, characterized and screened for the antibacterial effects against \textit{Xoc} and \textit{Xoo} as well as the antifungal effects against \textit{Rs} and \textit{Fg}. The antimicrobial bioassays showed that some title compounds displayed valuable antibacterial and antifungal activities. The compound 8a, in which \(R^1\) and \(R^2\) were the methyl group, was the one of the most prominent activities against all the test microbial. The compound 8a possessed of meaningful antibacterial effects against \textit{Xoc}, with the inhibition rates of 30\% at 100 \(\mu\)g/mL and 25\% at 50 \(\mu\)g/mL, respectively, which were higher than that of thiodiazole-copper (18\% at 100 \(\mu\)g/mL and 10\% at 50 \(\mu\)g/mL). In addition, the compound 8a exhibited better antifungal activity against \textit{Rs} (\(EC_{50}=33.70\ \mu\)g/mL) than hymexazol (\(EC_{50}=67.10\ \mu\)g/mL). Our research found that the \(R^1\) and \(R^2\) groups of the title compounds played a vital role in the antibacterial and antifungal activities. However, these studies can provide reference for similar chemical researches in the future. In the future, higher antimicrobial compounds against phytopathogenic microorganisms might be obtained via the further structural modification of 1,3,5-thiadiazine-2-thione derivatives.

References

Arshad N, Hashim J, Irfanullah Minhas MA, Aslam J, Ashraf T, Hamid SZ, Iqbal T, Javed S. 2018. New series of 3,5-disubstituted tetrahydro-2H-1,3,5-thiadiazine thione (THTT) derivatives: synthesis and potent antileishmanial activity. \textit{Bioorganic and Medicinal Chemistry Letters} 28:3251–3254 DOI 10.1016/j.bmcl.2018.07.045.

Casey JR, Morgan PE, Vullo D, Scozzafava A, Mastrolorenzo A, Supuran C. 2004. Carbonic anhydrase inhibitors. Design of selective, membrane-impermeant inhibitors targeting the human tumor-associated isozyme IX. \textit{Journal of Medicinal Chemistry} 47(9):2337–2347 DOI 10.1021/jm031079w.

Chen M, Wang XF, Wang SS, Feng YX, Chen F, Yang CL. 2012. Synthesis, characterization and fungicidal activities of novel fluorinated 3,5-disubstituted-4H-1,2,4-triazol-4-amines. \textit{Journal of Fluorine Chemistry} 135:323–329 DOI 10.1016/j.jfluchem.2011.12.015.

Chen Z, Xu WM, Liu KM, Yang S, Fan HT, Bhadury PS, Hu DY, Zhang YP. 2010. Synthesis and antiviral activity of 5-(4-Chlorophenyl)-1,3,4-thiadiazole sulfonamides.
Molecules **15**(12):9046–9056 DOI 10.3390/molecules15129046.

Coro J, Atherton R, Little S, Wharton H, Yardley V, Alvarez A Jr, Suarez M, Perez R, Rodriguez H. 2006. Alkyl-linked bis-THTT derivatives as potent in vitro trypanocidal agent. Bioorganica and Medicinal Chemistry Letters **16**:1312–1315 DOI 10.1016/j.bmcl.2005.11.060.

Coro J, Perez R, Rodriguez H, Suarez M, Vega C, Rolon M, Montero D, Nogal JJ, Gomez-Barrio A. 2005. Synthesis and antiprotozoan evaluation of new alkyl-linked bis(2-thioxo[1,3,5]thiadiazinan-3-yl) carboxylic acids. Bioorganic and Medicinal Chemistry **13**:3413–3421 DOI 10.1016/j.bmc.2005.03.009.

Coura, José Rodrigues, Castro S LD. 2002. A critical review on chagas disease chemotherapy. *Memórias do Instituto Oswaldo Cruz* **97**(1):3–24 DOI 10.1590/S0074-02762002000100001.

Cummings SD. 2009. Platinum complexes of terpyridine: Synthesis, structure and reactivity. *Coordination Chemistry Reviews* **253**(3-4):449–478 DOI 10.1016/j.ccr.2008.04.013.

Echemendía R, Fernández O, Coro J, Suárez M, Rivera DG. 2017. A versatile approach to hybrid thiadiazine-based molecules by the Ugi four-component reaction. *Tetrahedron Letters* **58**(18):1784–1787 DOI 10.1016/j.tetlet.2017.03.075.

El-Shorbagi AN, El-Naggar M, Tarazi H, Chaudhary S, AbduAllan H, Hersi F, Omar H. 2018. Bis-(5-substituted-2-thiono1,3,5-thiadiazinan-3-yl) butane as a scaffold of anti-proliferative activity, blended by a multicomponent process. *Medicinal Chemistry Research* **27**:1103–1110 DOI 10.1007/s00044-018-2133-9.

Foroumadi A, Kiani Z, Soltani F. 2003. Antituberculosis Agents VIII: Synthesis and in vitro antimycobacterial activity of alkyl α-(5-(5-Nitro-2-thienyl)-1,3,4-thiadiazole-2-ylthio)acetates. *II Farmaco* **58**(11):1073–1076 DOI 10.1016/S0014-827X(03)00158-7.

Ji X, Zhong ZM, Chen XL, Xing RG, Liu S, Wang L, Li PC. 2004. Preparation of 1,3,5-thiadiazine-2-thione derivatives of chitosan and their potential antioxidant activity in vitro. *Bioorganic and Medicinal Chemistry Letters* **17**:4275–4279 DOI 10.1016/j.bmcl.2007.05.020.

Katiyar D, Tiwari VK, Tripathi RP, Srivastava A, Chaturvedi V, Srivastava R, Srivastava BS. 2003. Synthesis and antimycobacterial activity of 3,5-disubstituted thiadiazine thiones. *Bioorganic and Medicinal Chemistry* **11**:4369–4375 DOI 10.1016/S0968-0896(03)00480-2.

Khan I, Ali S, Hameed S, Rama NH, Hussain MT, Wadood A, Uddin R, Ul-Haq Z, Khan A, Ali S, Choudhary MI. 2010. Synthesis, antioxidant activities and urease inhibition of some new 1,2,4-triazole and 1,3,4-thiadiazole derivatives. *European Journal of Medicinal Chemistry* **45**(11): 5200–5207 DOI 10.1016/j.ejmech.2010.08.034.

Kumar H, Javed S A, Khan S A, Amir M. 2008. 1,3,4-Oxadiazole/thiadiazole and 1,2,4-triazole derivatives of biphenyl-4-ylxy acetic acid: Synthesis and preliminary evaluation of biological properties. *European Journal of Medicinal Chemistry* **43**(12):2688–2698 DOI
containing benzimidazole moiety. *New Journal of Chemistry* **43**: 3000–3010 DOI 10.1039/C8NJ05150J.

Spek A. 2003. Single-crystal structure validation with the program PLATON. *Journal of applied crystallography* **36**:7–13 DOI 10.1107/S0021889802022112.

Vicentini CB, Forlani G, Manfrini M, Romagnoli C, Mares D. 2002. Development of new fungicides against magnaporthe grisea: synthesis and biological activity of pyrazolo[3,4-d][1,3]thiazine, pyrazolo[1,5-c][1,3,5]thiadiazine, and pyrazolo[3,4-d]pyrimidine derivatives. *Journal of Agricultural and Food Chemistry* **50**:4839–4845 DOI 10.1021/jf0202436.

Vicentini CB, Guccione S, Giurato L, Ciaccio R, Mares D, Forlani G. 2005. Pyrazole derivatives as photosynthetic electron transport inhibitors: new leads and structure-activity relationship. *Journal of Agricultural and Food Chemistry* **53**:3848–3855 DOI 10.1021/jf0500029.

Wan JL, Gan YY, Hu WN, Meng J, Tian K, LiXQ, Wu SQ, XuY, Ouyang GP, Wang ZC. 2018. Design, Synthesis and Anti-bacterial Evaluation of Novel 1,3,4-Thiadiazole Derivatives Bearing a Semicarbazone Moiety. *Phosphorus, Sulfur, and Silicon and the Related Elements* **193**(7):443–450 DOI 10.1080/10426507.2018.1436546.

Wang X, Li P, Li Z, Yin J, He M, Xue W, Chen ZW, Song BA. 2013. Synthesis and bioactivity evaluation of novel arylimines containing a 3-aminoethyl-2-(p-trifluoromethoxy) anilino-4(3H)-quinazolinone moiety. *Journal of Agricultural and Food Chemistry* **61**(40):9575–9582 DOI 10.1021/jf403193q.

Wang X, Dai ZC, Chen YF, Cao LL, Yan W, Li SK, Wang JX, Zhang ZG, Ye YH. 2017. Synthesis of 1,2,3-triazole hydrazide derivatives exhibiting anti-phytopathogenic activity. *European Journal of Medicinal Chemistry* **126**:171–182 DOI 10.1016/j.ejmech.2016.10.006.

Wang XB, Fu XC, Yan JH, Wang A, Wang MQ, Chen M, Yang CL, Song YM. 2018. Design and synthesis of novel 2-(6-thioxo-1,3,5-thiadiazinan-3-yl)-N’-phenylacethydrazide derivatives as potential fungicides. *Molecular Diversity* 1–11 DOI 10.1007/s11030-018-9891-7.

Wilson RA, Talbot NJ. 2009. Fungal physiology-a future perspective. *Microbiology* **155**(12):3810–3815 DOI 10.1099/mic.0.035436-0.

Xu WM, Yang S, Bhadury P, He J, He M, Gao LL, Hu DY, Song BA. 2011. Synthesis and bioactivity of novel sulfone derivatives containing 2,4-dichlorophenyl substituted 1,3,4-oxadiazole/thiadiazole moiety as chitinase inhibitors. *Pesticide Biochemistry and Physiology* **101**(1):6–15 DOI 10.1016/j.pestbp.2011.05.006.

Xu WM, Han FF, He M, Hu DY, He J, Yang S, Song BA. 2012. Inhibition of tobacco bacterial wilt with sulfone derivatives containing an 1,3,4-oxadiazole moiety. *Journal of Agricultural Food Chemistry* **60**:1036–1041 DOI 10.1021/jf203772d.
Zhong XM, Wang XB, Chen LJ, Ruan XH, Li Q, Zhang JP, Chen Z, Xue W. 2017. Synthesis and biological activity of myricetin derivatives containing 1,3,4-thiadiazole scaffold. *Chemistry Central Journal* **11**(1):106 DOI 10.1186/s13065-017-0336-7.
Figure 1

Bioactive compounds containing a 1,3,5-thiadiazine-2-thione or 1,3,4-thiadiazole fragment.

A Dazomet
B Milneb
C Thiodiazole-copper
D Bismerthiazol
Figure 2

Synthetic route to title compounds 5–8.
Figure 3

Design strategies for title compounds.

Our previous work

Combinatorial optimization

Our present work
Figure 4

The molecular ellipsoid of compound 8d.
Figure 5

Crystal packing diagram of compound 8d.
Table 1 (on next page)

Hydrogen bond distances (Å) and angles (°) of compound 8d.
D–H···A	d(D–H)	d(H···A)	d(D···A)	∠(DHA)
N(3)–H(3)···N(4)	0.84(4)	2.41(4)	2.759(4)	106(3)
C(3)–H(3B)···N(5)	0.9700	2.6100	3.008(5)	105.00
N(3)–H(3)···O(1)	0.84(4)	2.00(4)	2.809(4)	160(4)
C(12)–H(12)···S(3)	0.9300	2.8600	3.769(4)	165.00

Notes:
* Symmetry code: -1/2+x, 1/2-y, z;
* Symmetry code: 2-x, 1-y, -1/2+z.
Table 2 (on next page)

Inhibition rates of title compounds against phytopathogenic microorganismsa.
Compd	R¹	R²	X_{oc}	X_{xo}	Rs	Fg		
			100 μg/mL	50 μg/mL	100 μg/mL	50 μg/mL	100 μg/mL	50 μg/mL
5a	Ph	Me	17 ± 0.47	14 ± 3.08	30 ± 2.02	17 ± 1.66	35 ± 3.68	10 ± 2.24
5b	Ph	Ph	22 ± 1.41	18 ± 4.13	24 ± 4.10	15 ± 3.48	14 ± 1.76	6 ± 4.65
5c	Ph	4-MePh	25 ± 3.54	20 ± 1.71	22 ± 0.11	14 ± 2.55	21 ± 1.94	5 ± 1.72
5d	Ph	4-ClPh	13 ± 2.15	10 ± 2.02	24 ± 0.34	10 ± 0.10	27 ± 2.69	15 ± 3.40
6a	Bn	Me	17 ± 4.18	10 ± 1.15	38 ± 1.06	26 ± 0.55	23 ± 1.69	13 ± 2.74
6b	Bn	Ph	14 ± 3.31	11 ± 2.11	29 ± 4.18	19 ± 0.69	18 ± 1.47	14 ± 3.27
6c	Bn	4-MePh	17 ± 0.92	11 ± 1.52	20 ± 4.11	13 ± 0.43	29 ± 2.44	22 ± 4.10
6d	Bn	4-ClPh	9 ± 4.74	5 ± 1.13	25 ± 0.43	16 ± 0.55	30 ± 2.20	15 ± 1.83
7a	4-FPh	Me	14 ± 0.01	12 ± 1.35	35 ± 0.91	25 ± 0.02	21 ± 1.69	10 ± 2.24
7b	4-FPh	Ph	13 ± 3.42	6 ± 3.77	26 ± 2.97	20 ± 0.70	22 ± 1.67	9 ± 1.70
7c	4-FPh	4-MePh	13 ± 3.85	9 ± 2.10	24 ± 0.36	17 ± 4.63	8 ± 1.67	0
7d	4-FPh	4-ClPh	10 ± 7.54	5 ± 4.44	25 ± 0.91	13 ± 2.30	46 ± 2.44	28 ± 4.10
8a	Me	Me	30 ± 2.58	25 ± 5.87	56 ± 2.02	29 ± 2.03	100	62 ± 6.37
8b	Me	Ph	16 ± 4.13	12 ± 3.61	32 ± 0.36	26 ± 4.63	50 ± 5.89	36 ± 3.00
8c	Me	4-MePh	18 ± 4.68	15 ± 4.40	20 ± 5.12	12 ± 3.49	19 ± 4.76	13 ± 2.26
8d	Me	4-ClPh	13 ± 2.80	10 ± 4.00	25 ± 4.12	19 ± 4.05	22 ± 6.15	7 ± 2.59
TC^b	–	–	18 ± 4.77	10 ± 2.79	40 ± 1.02	29 ± 4.43	–	–
HY^b	–	–	–	–	47 ± 6.94	37 ± 7.70	66 ± 4.09	43 ± 1.89

Notes: ^a Average of three replicates; ^b A commercial agricultural bacterial thiodiazole-copper and hymexazol were used for comparison of antibacterial activities.
Figure 6

Anti-Rs effects of the bioactive compounds 8a and hymexazol.

(A) 8a at 50 µg/mL, (B) 8a at 25 µg/mL, (C) 8a at 12.5 µg/mL, (D) 8a at 6.25 µg/mL, (E) 8a at 3.125 µg/mL, (F) hymexazol at 50 µg/mL, (G) hymexazol at 25 µg/mL, (H) hymexazol at 12.5 µg/mL, (I) hymexazol at 6.25 µg/mL and (J) hymexazol at 3.125 µg/mL.
Table 3 (on next page)

EC$_{50}$ values of the title compound 8a against Rs and Fg.
Compd	Strains	Regression equation	r	EC$_{50}$ (µg/mL)
8a	Rs	$y=2.1218x+1.7578$	0.9925	33.70±0.24
8a	Fg	$y=1.2648x+2.5363$	0.9654	88.70±0.49
Hymexazol	Rs	$y=1.5892x+2.0968$	0.9869	67.10±0.24
Hymexazol	Fg	$y=1.8967x+1.6815$	0.9986	56.19±1.68

Notes: a Average of three replicates; b Hymexazol, the agricultural fungicide, was used for the comparison of antifungal effects.