Mitochondrial Ca\(^{2+}\) Uptake Requires Sustained Ca\(^{2+}\) Release from the Endoplasmic Reticulum*

György Szabadkai, Anna Maria Simoni, and Rosario Rizzuto‡

From the Department of Experimental and Diagnostic Medicine, Section of General Pathology, and Interdisciplinary Center for the Study of Inflammation, University of Ferrara, 44100 Ferrara, Italy

We analyzed the role of inositol 1,4,5-trisphosphate-induced Ca\(^{2+}\) release from the endoplasmic reticulum (ER) in powering mitochondrial Ca\(^{2+}\) uptake and (ii) in maintaining a sustained elevation of cytosolic Ca\(^{2+}\) concentration ([Ca\(^{2+}\)]\(_{i}\)). For this purpose, we expressed in HeLa cells aequorin-based Ca\(^{2+}\)-sensitive probes targeted to different intracellular compartments and studied the effect of two agonists: histamine, acting on endogenous H\(_{1}\) receptors, and glutamate, acting on co-transfected metabotropic glutamate receptor (mGluR1a), which rapidly inactivates through protein kinase C-dependent phosphorylation and thus causes transient inositol 1,4,5-trisphosphate production. Glutamate induced a transient [Ca\(^{2+}\)]\(_{i}\) rise, and drop in ER luminal [Ca\(^{2+}\)] ([Ca\(^{2+}\)]\(_{er}\)), which rapidly inactivates through protein kinase C, respectively. With histamines, [Ca\(^{2+}\)]\(_{i}\), after the initial peak stabilized at a sustained plateau, and [Ca\(^{2+}\)]\(_{er}\) decreased to a low steady-state value. In mitochondria, histamine evoked a much larger mitochondrial Ca\(^{2+}\) response than glutamate (−15 versus −65 μM). Protein kinase C inhibition, partly relieving mGluR1a desensitization, reestablished both the [Ca\(^{2+}\)]\(_{i}\) plateau and the sustained ER Ca\(^{2+}\) release and markedly increased the mitochondrial Ca\(^{2+}\) response. Conversely, mitochondrial Ca\(^{2+}\) uptake evoked by histamine was drastically reduced by very transient (−2–s) agonist applications. These data indicate that efficient mitochondrial Ca\(^{2+}\) uptake depends on the preservation of high Ca\(^{2+}\) microdomains at the mouth of ER Ca\(^{2+}\) release sites close to mitochondria. This in turn depends on continuous Ca\(^{2+}\) release balanced by Ca\(^{2+}\) uptake into the ER and maintained by Ca\(^{2+}\) influx from the extracellular space.

Calcium-mobilizing agonists induce a rise in cytosolic Ca\(^{2+}\) concentration ([Ca\(^{2+}\)]\(_{i}\))\(^{1}\) with a defined spatio-temporal pattern. In most cases, the [Ca\(^{2+}\)]\(_{i}\) rise is composed of an initial peak, followed by repetitive [Ca\(^{2+}\)]\(_{i}\), spiking or a sustained [Ca\(^{2+}\)]\(_{i}\), elevation (for a review, see Ref. 1). Whereas the former is mostly contributed by the release of Ca\(^{2+}\) from intracellular stores (the ER and Golgi apparatus), the latter is sustained by Ca\(^{2+}\) entry from the extracellular space, which may be directly receptor activated or controlled by the filling state of the intracellular stores (store-operated Ca\(^{2+}\) influx (SOC); for a review, see Refs. 2 and 3). Indeed, removal of Ca\(^{2+}\) from the extracellular medium abolishes the sustained plateau phase but not the initial Ca\(^{2+}\) release. However, the necessity of a continuous influx from the extracellular medium for maintaining a prolonged Ca\(^{2+}\) rise does not imply that Ca\(^{2+}\) directly diffuses through the cytosol to the intracellular targets. Rather, Ca\(^{2+}\) entry could serve the purpose of filling ER cisternae in proximity of the plasma membrane; Ca\(^{2+}\) diffusion through the ER would then provide the driving force for continuous Ca\(^{2+}\) release from intracellular compartments, including ER/mitochondria contact sites. Two recent observations support this scenario. First, examples of intracellular Ca\(^{2+}\) handling in different cell types show that influx-dependent ER refilling from the submembrane space, followed by rapid diffusion of Ca\(^{2+}\) in the ER lumen, and IP\(_{3}\)-dependent Ca\(^{2+}\) release at distant sites may represent a general paradigm that allows the maintenance of sustained [Ca\(^{2+}\)]\(_{i}\) rises in the cell body (4, 5) (for reviews, see Refs. 6 and 7). Second, some cytosolic effectors appear to “sense” very efficiently the release of stored Ca\(^{2+}\), of which an excellent example is provided by mitochondria. Work from numerous laboratories has demonstrated that when a Ca\(^{2+}\) signal is elicited in the cytosol by the stimulation with IP\(_{3}\)-generating agonists, the cytosolic rise is always paralleled by Ca\(^{2+}\) uptake into the mitochondrial matrix (for reviews, see Refs. 8 and 9). A major increase in the mitochondrial matrix Ca\(^{2+}\) concentration ([Ca\(^{2+}\)]\(_{m}\)) is thus observed (ranging from 5 μM in neuronal cells to 500 μM in chromaffin cells), which appears in contrast with the low affinity of the mitochondrial uptake mechanisms (the electrondiunporter of the inner membrane). The steep dependence of the mitochondrial Ca\(^{2+}\) uptake machinery on the extramitochondrial [Ca\(^{2+}\)]\(_{i}\) has been well studied in isolated mitochondria (for reviews, see Refs. 10 and 11) and intact or digitonin-permeabilized cells (12–14). According to these studies, in order to obtain the [Ca\(^{2+}\)]\(_{m}\) values observed in intact cells (e.g. 10–100 μM in HeLa cells) (15, 16), supramicromolar [Ca\(^{2+}\)]\(_{i}\) should be generated at the

* This work was supported by Telethon-Italy Grant 1285, the Italian Association for Cancer Research, the Human Frontier Science Program, the Italian University Ministry, the Italian Space Agency, and the National Research Council. This research has been supported by a Marie Curie Fellowship (Contract HPMF-CT-2000-00644) (to G. S.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

‡ To whom correspondence should be addressed: Dept. of Experimental and Diagnostic Medicine, Section of General Pathology, Via Borsoi 46, 44100 Ferrara, Italy. Tel.: 39-0532-291361; Fax: 39-0532-247278; E-mail: r.rizzuto@unife.it.

1 The abbreviations used are: [Ca\(^{2+}\)]\(_{i}\), cytosolic Ca\(^{2+}\) concentration; [Ca\(^{2+}\)]\(_{er}\), endoplasmic reticulum luminal Ca\(^{2+}\) concentration; [Ca\(^{2+}\)]\(_{mt}\), mitochondrial matrix Ca\(^{2+}\) concentration; cytAEQ, cytosolic aequorin; ER, endoplasmic reticulum; erAEQmut, low affinity aequorin mutant targeted to the endoplasmic reticulum; IP\(_{3}\), inositol 1,4,5-trisphosphate; mGluR1a, metabotropic glutamate receptor type 1a and 5, respectively; mtAEQmut, low affinity aequorin mutant targeted to the mitochondria; PM, plasma membrane; PKC, protein kinase C; SERCA, sarcoendoplasmatic reticulum Ca\(^{2+}\) ATPase; SOC, store-operated Ca\(^{2+}\) influx; PMCA, plasmamembrane Ca\(^{2+}\) ATPase; tBHQ, 2,5-di-(tert-butyl)-1,4-benzoquinone; KRB, Krebs-Ringer modified buffer.

Received for publication, January 8, 2003, and in revised form, February 4, 2003. Published, JBC Papers in Press, February 13, 2003 DOI 10.1074/jbc.M300180200

This paper is available online at http://www.jbc.org

15153
Mitochondrial Ca\(^{2+}\) Uptake and Sustained Ca\(^{2+}\) Release

EXPERIMENTAL PROCEDURES

Cell Culture and Transfection—HeLa cells were cultured in Dulbecco's modified Eagle's medium supplemented with 10% fetal calf serum, in 75-cm\(^2\) Falcon flasks. For aequorin measurements, cells were seeded onto 13-mm glass coverslips and were cotransfected with 3 μg of mGluR1 or mGluR5, undergo receptor desensitization in the continuous presence of glutamate (for a review, see Ref. 24). In several cell types expressing either endogenous or recombinant mGluR5, the desensitization of these receptors was shown to be mediated by PKC (25). Feedback inhibition of the receptor by PKC phosphorylation results in inhibition of phosphoinositide hydrolysis; thus, application of glutamate induces only a transient IP\(_3\) production (26). In the present study, we have taken advantage of the different properties of H\(_2\) and mGluR1 receptors regarding the kinetics of IP\(_3\) production for analyzing the role of IP\(_3\)-induced Ca\(^{2+}\) release in generating a sustained cytosolic Ca\(^{2+}\) response and its efficacy in inducing mitochondrial Ca\(^{2+}\) uptake.

Aequorin Measurements—In the case of cytAEQ- or mAEQmut-expressing cells, the coverslips with the cells were incubated with 5 μg of mGluR1a/pCDS (27) and 2 μg of cytAEQ/VR1012, erAEQmut/VR1012, or mAEQmut/VR1012, as previously described (28). Transient transfection was carried out using the Ca\(^{2+}\) phosphate precipitation technique. Luminescence analyses were carried out 36–48 h after transfection.

RESULTS

Mitochondrial Ca\(^{2+}\) Uptake Depends on the Duration of ER Ca\(^{2+}\) Release—The start point of this work was to determine the correlation between the kinetics of the changes in cytosolic and mitochondrial Ca\(^{2+}\) concentration ([Ca\(^{2+}\)]\(_c\)), and [Ca\(^{2+}\)]\(_m\), respectively evoked in HeLa cells by the stimulation with a Ca\(^{2+}\)-mobilizing, IP\(_3\)-coupled agonist. For this purpose, HeLa cells were transfected with the appropriate targeted aequorin chimera (cytAEQ and mAEQmut, respectively) (28). 36–48 h after transfection, functional aequorin was reconstituted by adding the prosthetic group. The coverslip with the cells was then transferred to the luminometer chamber and challenged with the agonist histamine. Light emission was collected and calibrated into [Ca\(^{2+}\)] values, as described under "Experimental Procedures" and references therein. HeLa cells endogenously express the H\(_2\) G-protein-coupled receptor, the stimulation of which leads to sustained IP\(_3\) production. The results (Fig. 1) showed that agonist stimulation (100 μM histamine) evoked a cytosolic Ca\(^{2+}\) peak (2.5 μM), followed by a plateau phase (Fig. 1A). The cytosolic response was followed by an efficient mitochondrial Ca\(^{2+}\) uptake, reaching a peak level of ~70 μM (Fig. 1B). When the kinetics were compared, it was apparent that [Ca\(^{2+}\)]\(_c\) peaked ~4 s after histamine addition (i.e. when the [Ca\(^{2+}\)]\(_c\) rise was at <50% of the peak) and then rapidly declined toward a sustained plateau that was maintained throughout agonist stimulation. The [Ca\(^{2+}\)]\(_m\) peak was reached when, through the activity of the SERCA and PMCA pumps, [Ca\(^{2+}\)]\(_m\) was rapidly declining. As shown in Fig. 1, C and D, mitochondrial Ca\(^{2+}\) uptake depended almost entirely on Ca\(^{2+}\) release from internal stores, since stimulation of cells in Ca\(^{2+}\)-free extracellular medium led to the same mitochondrial Ca\(^{2+}\) uptake (64 ± 2.7 μM, n = 5 versus 66 ± 4.8 μM, n = 35 in control). We thus concluded that mitochondrial Ca\(^{2+}\) uptake depends on sustained release of Ca\(^{2+}\) from the ER.

To test this possibility, we stimulated HeLa cells through a G-protein-coupled receptor that rapidly undergoes PKC-dependent inactivation and thus causes a transient production of IP\(_3\) and Ca\(^{2+}\) release from the ER. The receptor employed was mGluR1a (27), which was co-transfected with the targeted aequorin probes. Fig. 2 shows the functional properties of the transfected mGluR1a receptor. First, we analyzed the kinetics of Ca\(^{2+}\) release from the ER evoked by histamine and glutamate in parallel batches of mGluR1a-expressing cells, cotransfected with erAEQmut (28) (Fig. 2A). The data obtained highlight the fundamental difference between the two agonist responses: (i) stimulation of the endogenous histamine receptor caused a rapid initial [Ca\(^{2+}\)]\(_m\) drop followed by a continuous and slower decrease reaching ~2 min after the start of agonist stimulation, a low [Ca\(^{2+}\)]\(_m\) steady-state value of ~50 μM, and (ii) in the case of glutamate, the initial rapid [Ca\(^{2+}\)]\(_m\) decrease was followed by the refilling of the Ca\(^{2+}\) store, which was almost complete in about 2 min even in the continuous presence of glutamate.
The traces are representative of \(\frac{H11022}{H11022} \) in circles indicating the start of stimulation \(\frac{Ca2}{Ca2} \) and peak of cytosolic and mitochondrial open circles) and histamine (100 \(B \) represents \(\frac{H11022}{H11022} \) shown by the open pulses in order to deplete its intracellular \(\frac{Ca2}{Ca2} \) store and then glutamate. The reverse protocol (i.e. applying histamine after depleting the glutamate releasable pool) showed similar results (Fig. 2B). These experiments demonstrated that most of the glutamate- and histamine-releasable pools are overlapping; thus, the different kinetic behavior of the \(\frac{Ca2}{Ca2} \) signal evoked by the two agonists cannot be ascribed to the use of separate intracellular stores.

We thus analyzed the amplitude and kinetics of [\(Ca^{2+} \)]_m and [\(Ca^{2+} \)], rises evoked by glutamate stimulation. Two major differences with the histamine responses are apparent. The first relates to the [\(Ca^{2+} \)]_r rise. After the initial peak, which depends on the transient [\(Ca^{2+} \)]_t, decrease and is comparable in the two cases (2.1 \(\pm \) 0.1 \(\mu \)M for histamine versus 1.75 \(\pm \) 0.1 \(\mu \)M for glutamate; \(n = 18 \)), there is no sustained plateau in the case of glutamate stimulation (i.e. [\(Ca^{2+} \)] returns to the basal values in \(\sim 30 \) s in the continuous presence of the agonist) (Fig. 3A). The difference in [\(Ca^{2+} \)]_m response was even more dramatic; the peak rise evoked by glutamate stimulation was drastically reduced (16.5 \(\pm \) 1.8 \(\mu \)M (\(n = 28 \)) versus 66 \(\pm \) 4.8 \(\mu \)M (\(n = 35 \)) during the histamine challenge) (Fig. 3B). Moreover, the difference between the time to peak of [\(Ca^{2+} \)]_t and [\(Ca^{2+} \)]_m responses in this case was reduced (4.1 s for histamine versus 2.4 s for glutamate). In order to show that the same \(Ca^{2+} \) pools were used by both agonists to feed mitochondrial \(Ca^{2+} \) uptake, we applied histamine after 30 s of glutamate-induced \(Ca^{2+} \) release, before refilling of the ER (see Fig. 2A). In this case, the histamine-induced mitochondrial \(Ca^{2+} \) uptake was markedly reduced (23 \(\pm \) 4.5 \(\mu \)M, \(n = 5 \)) (Fig. 4A). Apparently, further depletion of the ER \(Ca^{2+} \) pool by histamine is responsible for the remaining [\(Ca^{2+} \)]_m increase after glutamate stimulation as measured by erAEQmut (Fig. 4B).

The Kinetics of Initial \(Ca^{2+} \) Release Induced by Glutamate and Histamine Are Identical—We thus investigated the various possible reasons for the drastic reduction of the [\(Ca^{2+} \)]_m rise in the glutamate response. The first possibility is that the kinetics of \(Ca^{2+} \) release from the ER is faster in histamine-stimulated cells, an effect that could be overlooked by the aequorin measurements. Indeed, given that the high rate of mitochondrial \(Ca^{2+} \) uptake depends on the exposure of \(Ca^{2+} \) microdomains generated at the mouth of \(IP_{3}Rs \), one would envision that a faster release through the \(IP_{3}Rs \) would have a direct impact on mitochondrial \(Ca^{2+} \) accumulation. We thus evaluated the kinetics of the uptake of \([Ca^{2+}]_r \), by fast digital imaging in fura-2-loaded HEla cells expressing mGluR1a. As shown on Fig. 5, the kinetics of \([Ca^{2+}]_r \), elevation evoked by the two agonists appeared to be identical as analyzed by a time resolution of 200 ms (\(t_{1/2} = 753 \pm 47 \) ms for histamine, \(t_{1/2} = 741 \pm 38 \) ms for glutamate) (Fig. 5).
Mitochondrial Ca\(^{2+}\) Uptake and Sustained Ca\(^{2+}\) Release

Fig. 3. Cytosolic (A) and mitochondrial (B) [Ca\(^{2+}\)] responses of HeLa cells co-transfected with mGluR1a stimulated with 100 \(\mu\)M glutamate. [Ca\(^{2+}\)]\(_c\) and [Ca\(^{2+}\)]\(_m\) were measured in cytAEQ- or mtAEQ-Qout-expressing cells, respectively. Where indicated, HeLa cells were stimulated with the agonist, added to KRB. Dotted lines indicate the start of stimulation and peak of cytosolic and mitochondrial Ca\(^{2+}\) signals, respectively. The traces are representative of >10 trials.

712 ± 86 ms for glutamate; \(n = 12\). Thus, the differences in mitochondrial Ca\(^{2+}\) uptake do not originate from differences in the velocity of the initial Ca\(^{2+}\) release. This conclusion is compatible with the preceding observations in cell populations transfected with the cytosolic and mitochondrial targeted aequorin probes (see above), where the mitochondrial Ca\(^{2+}\) uptake rate was slower than the cytosolic rise, and the mitochondrial uptake continued even after the cytosolic peak (see Fig. 1).

Alteration of the Duration of ER Ca\(^{2+}\) Release Modifies Mitochondrial Ca\(^{2+}\) Uptake—To further test the hypothesis that the [Ca\(^{2+}\)]\(_m\) rise depends on a sustained release of Ca\(^{2+}\) from the ER, we decided to modify the kinetics of the cytosolic responses induced by the two agonists. As to glutamate, we applied the PKC inhibitor staurosporine, which was shown to prevent mGluR1a phosphorylation and to reduce the consequent receptor desensitization, ensuring sustained IP\(_3\) production during glutamate stimulation. Preincubation of the cells with 400 nM staurosporine reversed the kinetics of both the ER and cytosolic Ca\(^{2+}\) signal; glutamate stimulation caused continuous Ca\(^{2+}\) release from the ER (Fig. 6B), similarly to the Ca\(^{2+}\) signal observed during histamine stimulation. As to [Ca\(^{2+}\)]\(_m\), no difference was observed in the peak, but the [Ca\(^{2+}\)]\(_m\) decrease after the peak was significantly slower, and a sustained plateau (maintained throughout agonist stimulation) was reached (Fig. 6A). We have to note that the addition of staurosporine does not prevent mGluR1a desensitization completely (24), as indicated by the slower kinetics of continuous ER Ca\(^{2+}\) release and the lower sustained [Ca\(^{2+}\)]\(_m\) (see, for comparison, the sustained plateau following histamine stimulation) (Fig. 1A). Still, importantly, converting the glutamate-induced transient Ca\(^{2+}\) release into a more continuous response by staurosporine application, the [Ca\(^{2+}\)]\(_m\) peak was markedly increased (25.6 ± 2.9 \(\mu\)M, compared with 16.5 ± 1.8 \(\mu\)M cells not treated with staurosporine; \(n = 28\)) (Fig. 6C).

The opposite experiment was also performed (i.e. the histamine-evoked release was made more transient) by reducing the duration of the agonist challenge to 2 s (Fig. 7). Under those conditions, the peak [Ca\(^{2+}\)]\(_m\) response was marginally reduced (2.27 ± 0.1 \textit{versus} 2.45 ± 0.1 \(\mu\)M cells receiving a 2-min histamine challenge; \(n = 16\) for both groups) (Fig. 7A), but [Ca\(^{2+}\)]\(_m\) rapidly returned to basal values, with disappearance of the sustained [Ca\(^{2+}\)]\(_m\) plateau. Importantly, using the same protocol for [Ca\(^{2+}\)]\(_m\) measurements, matching with the reduction of Ca\(^{2+}\) release time, the [Ca\(^{2+}\)]\(_m\) peak was substantially reduced (Fig. 7B, from 66 ± 4.8 \(\mu\)M, \(n = 35\), for 2-min stimulation to 29.1 ± 2.9 \(\mu\)M, \(n = 16\), for 2-s stimulation), and [Ca\(^{2+}\)]\(_m\) reached its peak earlier (9.6 ± 0.29 s \textit{versus} 4.5 ± 0.35 s for 2 s stimulation) (Fig. 7B).

Continuous Ca\(^{2+}\) Release from the Intracellular Ca\(^{2+}\) Stores Is Balanced by SOC and Ca\(^{2+}\) Recycling by SERCA—We thus concluded that prolonged release of Ca\(^{2+}\) from the ER is necessary to achieve maximal mitochondrial responses. But how can this release and the ensuing microdomains at ER/mitochondria contacts be maintained, given that PMCA efficiently reduces [Ca\(^{2+}\)]\(_m\), by extruding Ca\(^{2+}\) in the extracellular space? To this end, it is necessary that ER be continuously refilled by Ca\(^{2+}\) entry and redistribute Ca\(^{2+}\) to the release sites, in keeping with the pathway of Ca\(^{2+}\) studied in depth in pancreatic acinar cells (29, 30). In other words, the steady-state phase of agonist-stimulated Ca\(^{2+}\) release from the ER, which is necessary for transferring the Ca\(^{2+}\) signal to mitochondria and other cytosolic effectors, must be sustained by the process of Ca\(^{2+}\) entry through the plasma membrane.

Thus, in the next step of experiments, we analyzed the contribution of SOC to the generation of the sustained Ca\(^{2+}\) signal. For this purpose, we released Ca\(^{2+}\) from the intracellular pools by applying either histamine (Fig. 8A) or glutamate (Fig. 8B) in KRB/EGTA to cells transfected with cytAEQ and mGluR1a. Then we evoked Ca\(^{2+}\) influx by changing the perfusion medium from KRB/EGTA to KRB/Ca\(^{2+}\) (in the continuous presence of the agonist). Ca\(^{2+}\) release from intracellular Ca\(^{2+}\) stores produced a transient peak upon stimulation with both agonists, which returned to the base line, showing that the presence of extracellular Ca\(^{2+}\) is essential to achieve sustained Ca\(^{2+}\) signal. Furthermore, depletion of the stores by histamine activated SOC, as observed from the increase of [Ca\(^{2+}\)]\(_m\), after the readduction of external Ca\(^{2+}\) (see Fig. 8A). In contrast, Ca\(^{2+}\) reintroduction into KRB caused only a slight elevation in the presence of glutamate, probably due to smaller depletion of the stores caused by the transient IP\(_3\) production. However, glutamate, after staurosporine preincubation, was able to activate SOC, since the readdition of Ca\(^{2+}\) caused a (Ca\(^{2+}\)) elevation comparable with that of caused by histamine (see Fig. 8B). Thus, according to these data, we confirmed that both Ca\(^{2+}\) influx and continuous IP\(_3\) production are necessary for maintaining the cytosolic Ca\(^{2+}\) signal.

Then we tested the effect of Cd\(^{2+}\), a blocker of Ca\(^{2+}\) entry pathways of the plasma membrane, including store-operated channels, on [Ca\(^{2+}\)]\(_m\) at different stages of cell stimulation (Fig. 9). As expected, if Cd\(^{2+}\) is added after the stimulation with histamine (i.e. when no Ca\(^{2+}\) release occurs and the ER is actively reaccumulating Ca\(^{2+}\)), the process of refilling is blocked, and a [Ca\(^{2+}\)]\(_m\) steady state lower than in unstimulated cells is reached. Conversely, if Cd\(^{2+}\) is added in the presence of the agonist (i.e. when the ER is largely depleted and a steady state [Ca\(^{2+}\)]\(_m\) value of ~50 \(\mu\)M is maintained), a rapid, further emptying of the ER is observed, leading to almost complete emptying of the ER. Thus, importantly, an equilibrium between refilling and Ca\(^{2+}\) release through IP\(_3\)Rs is maintained throughout the process of agonist stimulation.

If this is the case, one would expect that both blocking Ca\(^{2+}\) release through IP\(_3\)Rs or the process of ER refilling though store-operated channels should be equally effective in reducing
These results show that Ca2+ mitochondrial Ca2+ A rapidly in order to terminate IP\textsubscript{3} production (induced Ca2+ Qmut and mGluR1a in response to 100 μM glutamate stimulation (filled circles). B, effect of 100 μM histamine on [Ca2+]\textsubscript{r} added after 100 μM glutamate, as measured in HeLa cells cotransfected with erAEQmut and mGluR1a. The agonists were applied as shown by the bars below the traces. The traces are representative of >5 trials.

FIG. 4. Ca2+ pools feeding mitochondrial Ca2+ uptake in case of glutamate and histamine stimulation. A, mitochondrial Ca2+ transients measured in HeLa cells cotransfected with mtAE-Qmut and mGluR1a in response to 100 μM histamine alone (open circles) and after glutamate stimulation (filled circles). B, effect of 100 μM histamine on [Ca2+]\textsubscript{r} added after 100 μM glutamate, as measured in HeLa cells cotransfected with erAEQmut and mGluR1a. The agonists were applied as shown by the bars below the traces. The traces are representative of >5 trials.

The sustained [Ca2+]\textsubscript{c} rise observed during agonist stimulation. Moreover, the termination of the [Ca2+]\textsubscript{c} signal in the former way should be more rapid, whereas the effect of Ca2+ entry blockade should occur only after the ER is depleted of the remaining Ca2+. This was directly investigated in the experiment of Fig. 10, where we compared the kinetics of terminating the sustained cytosolic signal after histamine stimulation with two experimental protocols. In the first, we applied Cd2+ to block Ca2+ influx still in the presence of histamine and IP\textsubscript{3} induced Ca2+ release. In the second, we washed out histamine rapidly in order to terminate IP\textsubscript{3} production (i.e. to stop Ca2+ release). As shown in Fig. 9A, the half-decay time of the cytosolic Ca2+ signal was about 2 times longer during blockade of influx by 1 mM Cd2+ (t\textsubscript{1/2} = 15.4 ± 0.98 s, n = 12) than in the case of histamine washout (t\textsubscript{1/2} = 8.5 ± 0.49 s, n = 11, p < 0.01). These results show that Ca2+ release from the internal stores has the major role in the generation of [Ca2+]\textsubscript{c} elevation, whereas the Ca2+ entry maintains the state of filling of the Ca2+ store, thus countering the forces of Ca2+ extrusion by PMCA.

Finally, we compared [Ca2+]\textsubscript{c} changes during ER refilling in the presence and in the absence of IP\textsubscript{3}. As shown in Fig. 11A, after emptying the intracellular Ca2+ pools by 100 μM histamine in the absence of extracellular Ca2+, Ca2+ readdition to the medium exerted a significant [Ca2+]\textsubscript{c} increase only if histamine (i.e., IP\textsubscript{3}) was present. If histamine was washed out 30 s before Ca2+ readdition, refilling of the Ca2+ stores was accompanied only by a small [Ca2+]\textsubscript{c} elevation. The efficiency of refilling in this case was demonstrated by a second application of histamine, which elicited a Ca2+ release comparable with the one exerted by the first stimulation (Fig. 11A, filled circles). Furthermore, prolonged histamine stimulation and IP\textsubscript{3}-induced release caused further depletion of the Ca2+ stores even after Ca2+ readdition and following robust Ca2+ influx. This is illustrated by the small amount of releasable Ca2+ remaining in the pools even after a 20 s washout of histamine before its reapplication (Fig. 11A, open circles). Similarly, the readdition of 1 mM extracellular Ca2+ after depleting the Ca2+ stores by the reversible SERCA inhibitor 2,5-di-(tert-butyl)-1,4-benzo-hydroquinone (tBHQ; 10 μM) led to efficient store refilling without significant [Ca2+]\textsubscript{c} elevation (Fig. 11B, filled circles). In contrast, in the continuous presence of tBHQ, Ca2+ influx was conveyed to the cytosol, as shown by the vast [Ca2+]\textsubscript{c} elevation following the readdition of Ca2+ (Fig. 11B, open circles).
These data clearly indicate that Ca\(^{2+}\) after entering the cells, is taken up robustly by the ER without significantly elevating \([\text{Ca}\(^{2+}\)](c)\), and then Ca\(^{2+}\) is distributed by the ER to the entire cytosolic space. In this way, SOC is not directly responsible for the generation of the sustained cytosolic Ca\(^{2+}\) signal; nevertheless, it is necessary for its maintenance, by ensuring the continuous refilling of the internal Ca\(^{2+}\) stores. Furthermore, Ca\(^{2+}\) cycling at the vicinity of Ca\(^{2+}\) release sites maintains an equilibrium on both sides of the ER membrane (i.e. the steady state in the \([\text{Ca}\(^{2+}\)](er)\) and the sustained phase of the \([\text{Ca}\(^{2+}\)](c)\) elevation); thus, ER plays an important role as a redistribution pathway between plasma membrane Ca\(^{2+}\) entry and other intracellular organelles, such as the mitochondria.

DISCUSSION

In recent years, much information has been acquired on how specific spatio-temporal patterns of Ca\(^{2+}\) signaling can control different cell functions (or deleterious effects in pathological conditions). In particular, attention has been drawn to the properties and functional significance of local gradients (microdomains) and thus to the importance of the source and intracellular route of the \([\text{Ca}\(^{2+}\)](c)\) rise. Subplasmalemmal high \([\text{Ca}\(^{2+}\)](c)\) microdomains appear to regulate the activity of plasma membrane (PM) ion channels (such as voltage-dependent Ca\(^{2+}\)...
Mitochondrial Ca\(^{2+}\) Uptake and Sustained Ca\(^{2+}\) Release

Mitochondria have thus recently emerged as key decoders of calcium signals, and the mechanism and timing of their recruitment control key decisions in cell life and death. In this contribution, we have analyzed the correlation between the kinetics of [Ca\(^{2+}\)]\(_{\text{m}}\) increase and its different components and the [Ca\(^{2+}\)]\(_{\text{i}}\) rises occurring in agonist-stimulated cells. For this purpose, we utilized a low affinity probe for [Ca\(^{2+}\)]\(_{\text{m}}\), that allows us to fully appreciate the large [Ca\(^{2+}\)]\(_{\text{m}}\) swing and two different agonist stimulations, through the endogenous histamine receptor and through a transfected metabotropic glutamate receptor, which undergoes rapid desensitization and thus causes transient IP\(_{3}\) production. The first observation is that, upon cell stimulation, [Ca\(^{2+}\)]\(_{\text{m}}\) peaks well after [Ca\(^{2+}\)]\(_{\text{i}}\). As previously observed by various groups, there is a short delay in the upstroke, possibly due to the time needed for the diffusion of Ca\(^{2+}\) released by IP\(_{3}\) receptors through the outer mitochondrial membrane, thus reaching the transport systems (uniporter) of the inner membrane (14, 18, 19). Then [Ca\(^{2+}\)]\(_{\text{m}}\) rises and reaches its maximal value after ~10 s (i.e. when the [Ca\(^{2+}\)]\(_{\text{i}}\) increase, through the activity of the Ca\(^{2+}\) pumps, is rapidly declining).

How can the slow kinetics of mitochondrial Ca\(^{2+}\) accumulation be reconciled with the notion that the low affinity of the mitochondrial uniporter requires, for rapid uptake, the high [Ca\(^{2+}\)]\(_{\text{i}}\) gradient generated upon cell stimulation by the opening of IP\(_{3}\) receptors? The most logical explanation is that, for maximal mitochondrial Ca\(^{2+}\) uptake, prolonged Ca\(^{2+}\) release from the ER must occur. Different experiments support this notion. Indeed, not only in the case of glutamate stimulation (in which...
Ca\(^{2+}\) release from the ER is short lived) is the mitochondrial Ca\(^{2+}\) response drastically reduced, but the effect of the two stimuli (glutamate and histamine) on mitochondria can be reversed by modifying the time course of the Ca\(^{2+}\) release process. If desensitization of the mGlur is prevented by PKC inhibitors, ER release becomes sustained (with ensuing large amplitude emptying of the ER and activation of store-dependent Ca\(^{2+}\) influx), and mitochondrial responses are greatly enhanced. Conversely, a short (2-s) histamine pulse causes transient emptying of the Ca\(^{2+}\) store and drastically reduces the [Ca\(^{2+}\)]\(_{i}\) rise evoked by the agonist. These data imply that in the late phases of agonist stimulation (i.e. when the activity of the pumps (SERCA and PMCA) counteracts the release of Ca\(^{2+}\) through the IP\(_3\)Rs), an equilibrium is attained between the two processes, as demonstrated by the direct measurement of [Ca\(^{2+}\)]\(_{i}\): blocking Ca\(^{2+}\) release (e.g. by terminating cell stimulation) causes the rapid refilling of the store, while conversely interrupting the reaccumulation of Ca\(^{2+}\) in the ER (e.g. by blocking Ca\(^{2+}\) entry through SOC; see below) allows IP\(_3\)Rs to rapidly deplete the ER of Ca\(^{2+}\).

Mitochondria, and possibly other cytosolic effectors, appear thus to be activated through the kinetic behavior of the ER release process. Conversely, Ca\(^{2+}\) entry, which is invariably essential for sustained Ca\(^{2+}\) signals, might not provide a direct supply for these localized Ca\(^{2+}\) regulatory events. Two considerations support this view. First, these processes rely on specific patterns of IP\(_3\)-dependent release of Ca\(^{2+}\) from the ER store, as discussed above. Second, Ca\(^{2+}\) entering the cytosol is strongly buffered by Ca\(^{2+}\)-binding proteins, such as parvalbumin, calbindin D\(_{28K}\), and calretinin, rendering the diffusion rate of Ca\(^{2+}\) in the cytosol rather low (36). Thus, Ca\(^{2+}\) coming from the extracellular medium would reach slowly if at all the deeper regions of the cytosol. An ingenious solution for this challenge has been recently shown in a polarized cell model, the pancreatic acinar cells (30). At the initial phase of the physiological activation of these cells, focal Ca\(^{2+}\) release occurs exclusively at the secretory pole, serving as trigger for exocytosis and leading to local emptying of the Ca\(^{2+}\) store (30). The presence of Ca\(^{2+}\) signaling components and particularly TRP-like channels at the vicinity of the apical pole has been suggested to provide a straightforward route for local refilling of the depleted stores (37). On the other hand, given that the ER in these cells forms a continuous network (4), the resulting luminal [Ca\(^{2+}\)] gradient has been shown to cause rapid diffusion of Ca\(^{2+}\) from the basolateral part of the cells, in a model where SOC is restricted to this area (38). The ground of this arrangement of Ca\(^{2+}\) signaling is the relatively high Ca\(^{2+}\) mobility in the ER tunnel compared with the cytosol, depending on the much lower binding capacity of the ER lumen (−20 versus −2000 bound/free Ca\(^{2+}\)) of the cytosol of mouse pancreatic acinar cells (39)). Similarly, in neurons, which is still a highly polarized cell type, it was proposed that subplasmalemmal ER cisternae of the cell body may be responsible for Ca\(^{2+}\) refilling from the extracellular space, and a continuous ER network would transport Ca\(^{2+}\) to the site of release in dendritic spines (40). In accordance with this idea, it has been shown that the cytosolic buffering capacity of Purkinje neurons is as high (~2000) as that of pancreatic acinar cells (41). On the other hand, in other cell types such as chromaffin cells (42), lower values of binding capacity have been found (~40), but we should emphasize that even if Ca\(^{2+}\) diffusion may occur at a similar velocity in the cytosol and the ER, another important advantage in the use of ER for distributing Ca\(^{2+}\) signals to the cell interior is that it may ensure localized Ca\(^{2+}\) release. Thus, in smooth muscle cells, even if the cytosolic buffering capacity is comparable with that of the ER (~30–40) (43), a superficial layer of SR rapidly buffers Ca\(^{2+}\) entering from the extracellular space, which is then distributed into the cell interior, causing contraction after its directed release (44).

Since our aim was to disclose the role of the ER in generating a sustained Ca\(^{2+}\) signal and in recruiting cytosolic effectors, in our work we did not characterize the exact nature of the Ca\(^{2+}\) entry pathway. However, some information on Ca\(^{2+}\) influx and store refilling can be obtained from the experimental data. Recently, a receptor-activated, arachidonic acid-mediated, non-capacitative mechanism for Ca\(^{2+}\) entry has been demonstrated that appears to operate in a PM domain distinct from that in which SOC operates in HEK293 cells (45). Two arguments suggest that this pathway does not contribute to the Ca\(^{2+}\) signals observed in our experiments. (i) We used maximal agonist concentrations for prolonged periods, producing a substantial depletion of Ca\(^{2+}\) stores; thus, we fully activated the SOC mechanism, which inhibits arachidonate-regulated channels (46). (ii) Ca\(^{2+}\) entry activated by store depletion in our system was clearly necessary for store refilling, in contrast to Ca\(^{2+}\) entering the cells by arachidonate-activated Ca\(^{2+}\) entry, which rather plays a role in potentiating the Ca\(^{2+}\) release induced by IP\(_3\), thus increasing the frequency of oscillations (47).

The other issue concerns the way Ca\(^{2+}\) refills the Ca\(^{2+}\) stores. We demonstrated that in the case of transient IP\(_3\) production (i.e. during glutamate stimulation), ER refilling occurs without detectable rise of [Ca\(^{2+}\)]\(_{i}\) (compare Figs. 2A and 3B). However, based on our data, we cannot distinguish between refilling from the extracellular space through SOC channels and direct Ca\(^{2+}\) reuptake from the cytosol by SERCA. It appears that the buffering capacity of the cytosol determines the route by which Ca\(^{2+}\) released from the ER is eliminated, since increased buffering allows ER refilling by SERCA even in the absence of extracellular Ca\(^{2+}\) (48). Thus, in cells with inherent high cytosolic buffer capacity, such as the above mentioned pancreatic acinar cells or neurons, the SERCA pumps appear to dominate over PMCs in rapidly reducing the [Ca\(^{2+}\)]\(_{i}\) peak (49, 50). Thus, the oscillatory Ca\(^{2+}\) signals evoked by cokcystokinin in these cells were shown to occur in the absence of Ca\(^{2+}\) entry, given that Ca\(^{2+}\) is taken back almost entirely from the cytosol after the Ca\(^{2+}\) spikes (see above). However, the situation differs with other types of stimulation; the Ca\(^{2+}\) oscillations evoked by carbachol strongly depend on Ca\(^{2+}\) influx in the proximity of the Ca\(^{2+}\) release sites of the apical pole (37). Up to now, there are no data concerning the cytosolic buffering capacity of HeLa cells, but evidence from the similar Chinese hamster ovary cell line shows that PMCA overexpression leads to larger reduction and faster termination of cytosolic Ca\(^{2+}\) signal compared with SERCA (51). Thus, it seems likely that the glutamate-induced Ca\(^{2+}\) transient is rapidly extruded from the cell, and the Ca\(^{2+}\) source of refilling in this case is the extracellular space.

In conclusion, the data presented in this paper indicate that mitochondria, important transducers of the Ca\(^{2+}\) signal, depend on the process of ER Ca\(^{2+}\) release, which in turn is sustained by continuous release through IP\(_3\) receptors and refilling by SERCAs (with a primary role of Ca\(^{2+}\) influx in counteracting the extrusion of Ca\(^{2+}\) by PMCAs). Altogether, these data suggest that the ER provides a fast route for tunneling and releasing Ca\(^{2+}\) in the deeper portions of the cytoplasm (where mitochondria are only one of the numerous Ca\(^{2+}\) effectors) not only in the polarized pancreatic acinar cell (as proposed by Petersen et al. (30)) but also in different cell types. This provides an additional mechanism by which the selective placement and differential activation of Ca\(^{2+}\) channels in the ER and plasma membrane provide flexibility to the Ca\(^{2+}\) trans-
duction system, allowing this second messenger to play a key role in the modulation of virtually all cellular processes.

Acknowledgments—We thank Dr. N. Gabellini for providing the mGluR1a cDNA and Dr. T. Pozzan for helpful discussions.

REFERENCES

1. Berridge, M. J., Lipp, P., and Bootman, M. D. (2000) Nat. Rev. Mol. Cell. Biol. 1, 11–21
2. Putney, J. W., Jr., Broad, L. M., Braun, F. J., Lievrement, J. P., and Bird, G. S. (2001) J. Cell Sci. 114, 2223–2229
3. Parekh, A. B., and Penner, R. (1997) Physiol. Rev. 77, 901–930
4. Park, M. K., Petersen, O. H., and Tepikin, A. V. (2000) EMBO J. 19, 5729–5739
5. Mocia, F., Berra-Romani, R., Baruffi, S., Spaggiari, S., Signorelli, S., Castelli, L., Magistratti, T., Taglietti, V., and Tanz, C. (2002) Biochem. J. 364, 235–244
6. Blaustein, M. P., and Golovina, V. A. (2001) Trends Neurosci. 24, 692–698
7. Verkhratsky, A., and Petersen, O. H. (2002) Eur. J. Pharmacol. 447, 141–154
8. Duchen, M. R. (2000) J. Physiol. 529, 57–68
9. Vanadesteel, G., Szabadkai, G., and Rizzuto, R. (2001) IUBMB Life 52, 215–219
10. Gunter, T. E., and Pfeiffer, D. R. (1990) Am. J. Physiol. 258, C755–C786
11. Bernardi, P. (1999) Physiol. Rev. 79, 1127–1155
12. Collins, T. J., Lipp, P., Berridge, M. J., and Bootman, M. D. (2001) J. Biol. Chem. 276, 26411–26420
13. Szabadkai, G., Pitter, J. G., and Pozzan, T. (2001) Pflugers Arch. 445, 678–685
14. Rizzuto, R., Pinton, P., Szabadkai, G., Wackowski, M. R., Vanadesteel, G., Baird, G., Tuft, R. A., Fogarty, K. E., and Rizzuto, R. (2002) J. Cell Biol. 159, 613–624
15. Rizzuto, R., Baslanutio, C., Brini, M., Murgia, M., and Pozzan, T. (1994) J. Cell Biol. 126, 1185–1194
16. Montero, M., Lobatón, C. D., Moreno, A., and Alvarez, J. (2002) FASEB J. 16, 2195–2307
17. Rizzuto, R., Brini, M., Murgia, M., and Pozzan, T. (1993) Science 262, 744–747
18. Drummond, R. M., Mix, T. C., Tuft, R. A., Walsh, J. V., Jr., and Fay, F. S. (2000) J. Physiol. 522, 375–380
19. Gorencser, A. A., and Adam-Vizi, V. (2001) Cell Calcium 30, 311–321
20. Tilly, B. C., Tertoolen, L. G., Lambrecht, A. C., Remorie, R., de Laat, S. W., and Moolenaar, W. H. (1999) Biochem. J. 339, 235–243
21. Montero, M., Brini, M., Marsault, R., Alvarez, J., Sitia, R., Pozzan, T., and Rizzuto, R. (1995) EMBO J. 14, 5467–5475
22. Missiaen, L., De Smedt, H., Pary, J. B., Oike, M., and Casteels, R. (1994) J. Biol. Chem. 269, 5817–5823
23. Bastianutto, C., Clementi, E., Codazzi, F., Pedzi, P., De Giorgi, F., Rizzuto, R., Meldolesi, J., and Pozzan, T. (1995) J. Cell Biol. 130, 847–855
24. Hermans, E., and Challis, R. A. (2001) Biochem. J. 359, 465–484
25. Francesconi, A., and Duvoisin, R. M. (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 6185–6190
26. Dale, L. B., Babwah, A. V., Bhattacharya, M., Kelvin, D. J., and Ferguson, S. S. (2001) J. Biol. Chem. 276, 35900–35908
27. Gabellin, N., Manev, R. M., Candeo, P., Pavaron, M., and Manev, H. (1993) Neureport 4, 531–534
28. Chiesa, A., Rapizzi, E., Tesello, V., Pinton, P., de Virgili, M., Fogarty, K. E., and Rizzuto, R. (2001) Biochem. J. 355, 1–12
29. Mualem, S., Schoeffield, M. S., Fimmel, C. J., and Pandol, S. J. (1988) Am. J. Physiol. 255, G229–G235
30. Petersen, O. H., Bischak, D., and Tepikin, A. V. (1999) Bioessays 21, 851–860
31. Butter, G. A., and Rizzuto, R. (2000) Trends Biochem. Sci. 25, 215–221
32. Jouaville, L. S., Pinton, P., Bastianutto, C., Rutter, G. A., and Rizzuto, R. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 13807–13812
33. Hajnlowitzky, G., Rob-Schepers, L. D., Seitz, M. B., and Thomas, A. P. (1995) Cell 82, 415–424
34. Robaas, T., Nagy, G., and Spat, A. (1997) Biochem. J. 322, 785–792
35. Ferri, K. F., and Knoeem, G. (2001) Nat. Cell Biol. 3, E255–E263
36. Albritton, N. L., Meyer, T., and Stryer, L. (1992) Science 258, 1812–1815
37. Kiselev, K., Shin, D. M., and Muullem, S. (2003) Cell Signal. 15, 243–253
38. Petersen, O. H., Burakow, D., and Tepikin, A. V. (1999) Eur. J. Cell Biol. 78, 221–223
39. Mogami, H., Gardner, J., Gerasimenko, O. V., Camello, P., Petersen, O. H., and Tepikin, A. V. (1999) J. Physiol. 518, 463–467
40. Petersen, O. H., Tepikin, A., and Park, M. K. (2001) Trends Neurosci. 24, 271–276
41. Pierro, L., and Llano, I. (1996) J. Physiol. 496, 617–625
42. Zhou, Z., and Neher, E. (1993) J. Physiol. 469, 245–273
43. Daub, B., and Ganitkevich, V. Y. (2000) Cell Calcium. 27, 3–13
44. Jansen, L. J., Betti, P. A., Netherton, S. J., and Walters, D. K. (1999) Am. J. Physiol. 276, L744–L753
45. Shuttleworth, T. J., and Thompson, J. L. (1999) J. Biol. Chem. 274, 31174–31178
46. Migon, O., Thompson, J. L., and Shuttleworth, T. J. (2001) J. Biol. Chem. 276, 53566–53568
47. Shuttleworth, T. J., and Thompson, J. L. (1996) Biochem. J. 313, 815–819
48. Hofer, A. M., Landolfi, B., Debbi, L., Pozzan, T., and Curi, S. (1998) EMBO J. 17, 1896–1995
49. Camello, P., Gardner, J., Petersen, O. H., and Tepikin, A. V. (1999) J. Physiol. 490, 585–593
50. Blaustein, M. P. (1988) Trends Neurosci. 11, 438–443
51. Brini, M., Bano, D., Manni, S., Rizzuto, R., and Carafoli, E. (2000) EMBO J. 19, 4926–4935
Mitochondrial Ca\(^{2+}\) Uptake Requires Sustained Ca\(^{2+}\) Release from the Endoplasmic Reticulum

György Szabadkai, Anna Maria Simoni and Rosario Rizzuto

J. Biol. Chem. 2003, 278:15153-15161.

doi: 10.1074/jbc.M300180200 originally published online February 13, 2003

Access the most updated version of this article at doi: 10.1074/jbc.M300180200

Alerts:

- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 51 references, 18 of which can be accessed free at http://www.jbc.org/content/278/17/15153.full.html#ref-list-1