Susac syndrome and pregnancy: a review of published cases and considerations for patient management

Barbara Willekens and Ilka Kleffner

Abstract: Susac syndrome (SuS) is a rare autoimmune endotheliopathy leading to hearing loss, branch retinal artery occlusions and encephalopathy. Young females are more frequently affected than males, making counselling for family planning an important issue. We reviewed published cases on SuS during pregnancy or in the postpartum period, and selected 27 reports describing the details of 33 patients with SuS. Treatment options and implications for pregnancy and breastfeeding are discussed. We propose new areas for research and suggest a management strategy.

Keywords: pregnancy, Susac syndrome

Introduction
Susac syndrome (SuS) is named after John Susac, who was the first to describe the syndrome of encephalopathy, hearing loss and branch retinal artery occlusions (BRAO).1,2 It is a rare disease, with just over 500 cases described worldwide.3 Diagnostic criteria were proposed by the European Susac Consortium in 2016.4 The pathophysiology of this neuroinflammatory disease, which affects the endothelial cells of microvessels in the brain, cochlea and retina, remains poorly understood. Activated cytotoxic CD8+ T-cells contribute to inflammatory damage of the endothelium. Anti-endothelial cell antibodies are present in 25% of patients, but their role in SuS pathogenesis is not clear.5–7 Treatment is based on expert opinion and case-series as clinical trials are non-existent in this rare disease.8 A practical treatment guideline for SuS based on a single expert opinion has been proposed recently, offering different therapeutic regimens for milder to more severe forms of the disease.9 Less aggressive treatment recommendations have been made by others.9

SuS affects young women more frequently than men, with a female: male ratio of 3.5:1.10 It is not surprising that, in the age category affected, family planning is often not completed, making counselling necessary. Moreover, SuS can present for the first time, or relapse after a period of disease remission, during pregnancy or in the postpartum period.10

In this article, we review published cases of SuS during pregnancy and the postpartum period, discuss issues in family planning in SuS patients, suggest areas for further research and propose a management strategy.

Review of published cases
We searched the literature (Pubmed) and internet (Google) for published case reports, case series and review articles for descriptions of SuS patients during pregnancy, postpartum or after termination of pregnancy (search terms: Susac, pregnancy, postpartum; search until August 2020) and selected 27 reports describing a total of 33 SuS patients.11–37 All cases are listed in Table 1. The mean age at pregnancy was 28.6 years. In 21 patients, the disease was diagnosed during pregnancy, and in eight patients there were relapses during

Correspondence to: Barbara Willekens
Department of Neurology, Antwerp University Hospital, Drie Eikenstraat 655, Edegem, 2650, Belgium
Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, 2610, Belgium
Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, 2610, Belgium
barbara.willekens@uza.be
Ilka Kleffner
University Hospital Knappschaftskrankenhaus Bochum, Ruhr University Bochum, Bochum, Germany
Case	SuS diagnosis before pregnancy	Age at diagnosis of SuS	Age at pregnancy	Gestational age or postpartum	Presenting symptoms	Audiometry	Ophthalmology	MRI	CSF	Treatment	Outcome	Pregnancy outcome	Reference	Prior symptoms and/or pregnancies
1	N	22	postpartum		headache and hearing impairment, confusion, personality change, unsteady gait, and hearing loss	bilateral hearing loss	Fundoscopy: cotton-wool spots FA; multiple BRAO bilateral	increased protein (187 mg/dl)	steroids	remarkable improvement	stillbirth at term (anencephalic child)	Coppeto 1984	delivery of a healthy child 6 years prior; first symptoms started the month before pregnancy, with personality change and high protein levels in CSF	
2	N	31	first trimester		numbness in the extremities, segmental visual loss, diplopia, lethargy, memory loss, change in personality, dysarthria, gait unsteadiness, tinnitus, and hearing loss	bilateral low frequency SNHL, left more than right	Fundoscopy: retinal arteriolar occlusions	0 wbc/µl increased protein (252 mg/dl) OCB absent	no treatment	speech, memory, gait, personality improved	healthy baby	MacFadyen 1987	3 prior pregnancies	
3	N	28	postpartum		sudden deterioration left hearing, fatigue, dysarthria, incoordination in writing and gait, memory problems	Fundoscopy: small intraretinal hemorrhages, adjacent artery narrowing, perivascular sheathing and artery narrowing	Fundoscopy: retinal arteriolar occlusion, cotton-wool spot	2 wbc/µl increased protein (207 mg/dl) OCB absent	heparin, warfarin followed by aspirin	gradual improvement after delivery in mental status and walking, persistent visual field deficits	pre-term (33 weeks gestation) healthy boy	Gordon 1991	no prior symptoms or pregnancies	
4	N	36	immediately postpartum		visual loss, tetraparamidal signs, confusion, right-sided hearing loss	Fundoscopy: normal	T2 hyperintensities in the supratentorial white matter and basal ganglia	6 wbc/µl increased protein (244 mg/dl)	during pregnancy: aspirin monotherapy until 26 weeks GA, thereafter low molecular weight heparin; after delivery oral anticoagulants	induction of delivery with prostaglandin gel a term; urgent cesarean section, delivery of healthy girl	Cador-Rousseau 2002	3 previous pregnancies, of which 1 voluntary abortion, 1 spontaneous abortion and 1 at term pregnancy prior symptoms: 6 years prior sudden left hearing loss, 2 years prior thrombosis of a branch of the right central retinal artery, 3 months prior to pregnancy thrombosis of a branch of the left central retinal artery	(Continued)	
Case	Diagnosis before pregnancy	Age at diagnosis of SuS	Age at pregnancy	Gestational age or postpartum	Presenting symptoms	Audiology	Ophthalmology	MRI	CSF	Treatment	Outcome	Pregnancy outcome	Reference	
------	---------------------------	------------------------	------------------	-----------------------------	---------------------	-----------	--------------	------	------	------------	---------	------------------	----------	
5	Y	35	35	pregnancy discovered during cyclophosphamide treatment (before 10 weeks GA)	steroids, anticoagulation, cyclophosphamide, aspirin							therapeutic abortion	Aubart-Co-hen 2007	
6	N	25	25	behavioral disturbances	steroids, anticoagulation							therapeutic abortion	Aubart-Co-hen 2007	
6	Y	25	29	no relapse during pregnancy	aspirin							healthy baby at term	Aubart-Co-hen 2007	
7	Y	30	33	postpartum confusion, vertigo, and hearing loss	aspirin							healthy baby at term	Aubart-Co-hen 2007	
8	N	28	28	confusion, forgetfulness, hyposomnia, headache, hearing difficulties, and episodic visual loss	low frequency SNHL	Fundoscopy: bilateral BRAO with retinal infarcts, FA; bilateral retinal infarcts, BRAO, and arteriolar hyperfluorescence	multiple T2 hyperintensities in the cerebellum and cerebral white matter, including corpus callosum. Many lesions were hypointense on T1-weighted imaging and some demonstrated restricted diffusion	3 wbc/µl increased protein (121 mg/dL)	aspirin, IV pulse and oral taper, IVIg, mycophenolate mofetil	Seven months postpartum: short-term memory problems, right eye visual problems, hearing loss in left ear, easy fatigability	healthy baby girl	Grinspan 2009		
9	N	23	23	10 days after voluntary abortion	bilateral low frequency SNHL	Fundoscopy and FAA: segmental retinal arterial occlusions in both eyes	multiple punctate foci of restricted diffusion and T2 hyperintensities in the deep white matter of both frontal lobes, a larger lesion in the splenium of the right corpus callosum	8 wbc/µl increased protein (183 mg/dL)	steroids (IV pulse and oral taper), single dose of infliximab, IV Ig, cyclophosphamide, aspirin, nifedipine; later cyclophosphamide stopped and switch to azathioprine	After twelve months: tinnitus and hearing loss persisted, cognition continued to improve, ongoing deficits in spontaneous recall, working memory, and verbal fluency	voluntary termination of pregnancy at GA of 7 weeks	Hardy 2011		
10	N	25	25	confusion, difficulty walking, and vision and hearing loss, intermittent headaches	left-sided SNHL	Fundoscopy: left-sided BRAO and cotton wool spots FA not done	T2 hyperintensities in the deep and periventricular white matter, corpus callosum, pons, and cerebellar peduncles, a 2-3 mm hypointense ‘hole’ in the midportion of the corpus callosum	16 wbc/µl increased protein (63 mg/dL)	steroids (IV pulse and oral taper), IV Ig, aspirin	Improvement of mental status, gait, hearing, and visual loss persisted	Deane 2011			

(Continued)
Case	Age at pregnancy	Age at diagnosis of SuS	Pre-symptoms and/or pregnancies	Presenting symptoms	Audiology	Ophthalmology	MRI	CSF	Treatment	Outcome	Pregnancy outcome	Reference	Prior symptoms and/or pregnancies
10	33		abrupt confusion and worsening gait, new bilateral hearing loss, and new right vision changes	Fundoscopy: retinal ischemia on the right	Fundoscopy: several new lesions	several new lesions	repeat IV steroid, IV Ig, postpartum cyclophosphamide and rituximab added; after 3 doses of cyclophosphamide oral azathioprin	Significant improvement; development of livedo reticu-laria	induction of premature delivery at 35 weeks gestation; delivery of healthy baby girl	Deane 2011			
11	35	35	bilateral visual loss and right hearing loss, cognitive symptoms	SNHL: right ear, left side normal	Fundoscopy: bilateral narrowing of arterioles punctiform hemorrhage FA: leakage in multiple arterioles in both eyes	Supra- and infra-temporal T2 hyperintensities in white matter	Lymphocytic pleocytosis increased protein OCB absent	Steroid pulse; repeated plasma exchange; postpartum cyclophosphamide, followed by mycophenolate; due to ongoing disease activity changed to methotrexate and etanercept	Bilateral hearing loss; visual field defects; ongoing disease activity (retinal vasculitis) after pregnancy for 5 years	Caesarean section, premature delivery of healthy baby boy	Finis 2011		
12	30	30	3 weeks postpartum	SNHL, low middle tones, right more than left side	Fundoscopy and FA: bilateral BRAO with retinal ischemia, arteriolar shunts, and small vascular dilatations	Small T2 hyperintensities, atriotic corpus callosum	Normal OCB absent	Steroids (IV pulse and oral taper), aspirin, nimodipine	No recurrence after 6 months and 1 year; no improvement in hearing	Normal baby	Karelle 2012		
13	34	34	third trimester	Headaches, numbness and tingling of hands and face, visual field deficit; hearing loss, tinnitus	T2 hyperintensities and corpus callosum involvement	2 wbc/u l increased protein (101 mg/dl)	Steroids (oral), aspirin, plasmapheresis	Postpartum symptoms stabilised, recurrence after steroid taper	Not reported	Mateen 2012			
14	32	32	postpartum	Vertigo, diplopia, visual loss, tingling of hands and feet, and amnestic episodes	T2 hyperintensities and corpus callosum involvement, gadolinium enhancement	11 wbc/u l increased protein (161 mg/dl) OCB absent	Steroids (IV and oral), aspirin, plasmapheresis	Improved, later episodes of visual and hearing loss	Not reported	Mateen 2012			
Case	Age at diagnosis of SuS before pregnancy	Age at pregnancy	Gestational age or postpartum	Presenting symptoms	Audiometry	Ophthalmology	MRI	CSF	Treatment	Outcome	Pregnancy outcome	Reference	Prior symptoms and/or pregnancies
------	---------------------------------------	-----------------	-----------------------------	---------------------	-------------	---------------	---------	-----	-----------	---------	-----------------	----------------	---------------------------------
15	N	32	32	32	change in personality, unsteadiness of gait, slurred speech, evolving to severe disorientation and confusion	multiple small T2 hyperintensities in both supratentorial and infratentorial locations, some of which exhibited diffusion restriction, several of which in corpus callosum	3 wbc/µl increased protein (180 mg/dl) OCB absent	steroids (IV and oral), MMF and mycophenolate and methotrexate	1 year after the diagnosis the patient was well with markedly improved gait and cognition	emergency caesarean section	1 year after diagnosis	Willekens and Kleffner 2013	
16	N	28	28	9	lower limb weakness, drowsiness and dysarthria	T2 hyperintensities with an unusual pattern of meningeal enhancement after Gadolinium administration; serial MRI showed progressive lesions in the deep white matter, including the basal ganglia and cerebellar peduncles; with enhancing lesion in the corpus callosum that progressed to volume loss	9 wbc/µl increased protein (200 mg/dl) OCB absent	steroids (IV pulse and oral taper), plasma exchange, IVIg	cognitive deficits persisted, hearing and vision remain impaired	at 13 weeks GA 1 viable fetus; therapeutic abortion at 15 weeks GA	Ioannides 2013		
17	N	21	21	35	walking impairment and evolving hearing loss, lack of concentration and disorientation	bilateral moderate low frequency SNHL in the low frequency range, left more than right side	multiple small T2 hyperintensities in the corpus callosum, periventricular white matter, centrum semiovale, posterior arm of the left internal capsule, pons and cerebral peduncles; some lesions demonstrated restricted diffusion on DWI, as well as hypointensity on T1-weighted imaging	4 wbc/µl increased protein (109 mg/dl) low-molecular-weight heparin, IVIg; after delivery start of oral azathioprine and warfarin	After two months: hearing loss persisted, discrete activity on FAA; without functional visual impairment; no new symptoms, MRI showed new lesions	induction of labour at 37 weeks	Antulov 2014		
18	N	35	35	37	hearing loss and tinnitus in the left ear, attacks of vertigo and slight difficulty in finding words	mild hearing loss in the left ear	multiple small T2 hyperintensities in the corpus callosum, periventricular white matter, centrum semiovale, posterior arm of the left internal capsule, pons and cerebral peduncles; some lesions demonstrated restricted diffusion on DWI, as well as hypointensity on T1-weighted imaging	normal OCB absent	aspirin, steroids (IV and oral taper), cyclophosphamide	BRAO in the right eye 2.5 months after having given birth	At the age of 12: encephalopathy, sudden deafness of the right ear and visual field defects in the left eye at the age of 12, followed by permanent hearing and visual field defects. Second pregnancy.	Feresiadou 2014	
Table 1. (Continued)

Case	SuS diagnosis before pregnancy	Age at diagnosis of SuS	Age at pregnancy	Gestational age or post-partum	Presenting symptoms	Audiometry	Ophthalmology	MRI	CSF	Treatment	Outcome	Pregnancy outcome	Reference	Prior symptoms and/or pregnancies
19	N	25	25	14	acute onset of right leg shooting pain, followed by complaints of vertigo, blurry vision, headache and gait instability; severe encephalopathy	multiple T2 hyperintensities in the bilateral white matter, deep gray matter, corpus callosum and posterior fossa with corresponding restricted diffusion and T1 hypointensities for the observed corpus callosum lesions	6 wbc/µl increased protein (95 mg/dl) OCB absent	6 wbc/µl increased protein (95 mg/dl) OCB absent	steroids (IV pulse) repeated approx. 2 weeks later (oral) when symptoms reoccurred	One month postpartum: hearing difficulty (right sensorineural hearing loss), two months later cognitive difficulties, 1.5 years after initial presentation residual cognitive deficits consisting of visual spatial deficits and difficulty with word recall and vocabulary	healthy baby	Hua 2014		
20	N	25	11	14	confusion, short term memory loss, headache and uncoordinated gait	multiple periventricular and deep white matter T2 hyperintense lesions in a perpendicular distribution to the ventricles	steroids (pulse)	steroids (pulse)	healthy baby	Tashman 2014				
20	N	24	11	14	confusion, headache, and lethargy	bilateral hearing loss, rising to normal at higher frequencies	bilateral BRAOs with retinal infarcts	small, multifocal T2 hyperintensities in the white matter involving the corpus callosum	increased protein	steroids (pulse), mycophenylate	Tashman 2014			
21	N	18	24	24	visual loss right eye, followed by severe headache	normal	No FA, central retinal artery occlusion	small T2 hyperintensities	steroids (pulse) and oral taper 1, LMWH	symptom free in 4 days, except vision right eye; recurrence of disease activity 1 year after starting estrogen replacement therapy at the age of 50 years (Pett 2001)	Khan 2014			
Table 1. (Continued)

Case	SuS diagnosis before pregnancy	Age at diagnosis of SuS	Gestational age or postpartum	Presenting symptoms	Audiology	Ophthalmology	MRI	CSF	Treatment	Outcome	Pregnancy outcome	Reference and/or pregnancy outcomes
22	Y	37	6 weeks postpartum	mild hearing loss, right ear, visual aura	FA; BRAO with leakage	steroids (oral, azathioprine), azathioprine discontinued during pregnancy due to anemia	full recovery	healthy baby	van der Kooij 2015			
23	N	29	8	right hearing loss, vertigo, and mild headache	FA; BRAO, bilateral multiple BRAO	steroids (oral, pulse)	London 2016					
23	N	19	19	left visual field deficit, headache	FA; bilateral multiple BRAO	steroids (oral, pulse), antplatelet therapy, cyclophosphamide 1 g every 4 weeks initiated at 28 weeks gestational age, due to relapses	persistent bilateral hypoaesthesia requiring hearing aid	healthy baby	London 2016			
24	N	21	3 months	visual and hearing loss, after curettage rapid onset of encephalopathy	no SNHL	Fundoscopy: retinal edema, no BRAO	steroids (oral taper), complete recovery 2 weeks later	missed abortion	Bharat 2017			
25	N	25	7 months	visual loss left eye, hearing loss and tinnitus, mild headache	SNHL, right ear	Fundoscopy: ischemic retinal edema, intertemporal and cherry-red spot	no reported	steroids (pulse and oral taper), improvement in headache, some recovery of vision	Manik 2018			
26	N	19	14 months	headache, somnolence	SNHL, low frequencies	FA; multiple BRAO	increased protein	no fetal anomaly	Can Usta 2018			

(Continued)
Case	Sus diagnosis before pregnancy	Age at diagnosis of Sus	Age at pregnancy	Gestational age or postpartum	Presenting symptoms	Audiometry	Ophthalmology	MRI	CSF	Treatment	Outcome	Pregnancy outcome	Reference and/or pregnancies	
27	N	34	15	6 months prior	Apathy, behavioral changes	SNHL	Retinal vasculitis, corneal ulcer	FA	Hyperintense periventricular white matter lesions in T2 and FLAIR sequences, also involving bilateral basal ganglia and periventricular white matter lesions in T2 and FLAIR sequences, also involving bilateral basal ganglia and T2 hyperintensities in the deep and subcortical white matter	Protein of 77 mg/dl, glucose of 52 mg/dl, leucocytes of 89 mg/dl, and no cells	5 pulses of methylprednisolone were administered without obvious clinical improvement	Immuno-modulatory treatment was escalated to intravenous immunoglobulin (IVIg) at 0.4 g/kg/day for 5 days; prednisone orally and IVIg after abortion	Therapeutic abortion	Gomez-Figueroa 2018
28	Y	23	45	11 months postpartum	No relapse during pregnancy or postpartum	SNHL	No treatment	Aspirin, steroids (pulse and oral taper), IVIg	After 1 month, symptoms resolved, patient fell pregnant, resulting in a spontaneous miscarriage two months later.	Healthy twins at 35 weeks GA	Qiu 2020			
29	N	24	23	11 months postpartum	Ataxia, vomiting, minor cognitive impairment and blurred vision in the left eye	SNHL	T2 hyperintensities in the deep and subcortical white matter, brainstem and cerebellum, associated with restricted diffusion, callosal snowball lesions	Protein of 120 mg/dl	Partial remission	Therapeutic abortion	Qiu 2020			
30	N	24	24	1 month after abortion	Subacute severe bilateral hearing impairment requiring hearing aids, and partial visual loss in the left eye	SNHL	MRI six months post-rituximab was stable	Aspirin, IV steroids, cyclophosphamide, mycophenolate	Therapeutic abortion	Healthy baby at 38 weeks	Qiu 2020			
31	N	34	34	7 months after presentation	Moderate encephalopathy, vertigo	SNHL	T2 hyperintensities in the supratentorial white and gray matter areas	Protein of 17 mg/dl	Aspirin, IV steroids, cyclophosphamide, mycophenolate	Therapeutic abortion	Wilf-Yarkoni 2020			

Table 1. (Continued)
Case	SuS diagnosis before pregnancy	Age at diagnosis of SuS	Age at pregnancy	Gestational age or post-partum	Presenting symptoms	Audiometry	Ophthalmology	MRI	CSF	Treatment	Outcome	Pregnancy outcome	Reference	Prior symptoms and/or pregnancies
32	N	40	20		migraine, bradypsychia, disorientation and behavioral changes	SNHL	bilateral papillitis and ischemic retinal areas	T2 hyperintensities in the supratentorial white matter and corpus callosum with diffusion restriction	IVIG and oral prednisone; after pregnancy add-on of azathioprine	resolution of symptoms	healthy baby at 36-weeks GA after premature rupture of membranes and cesarean section	Ramos-Ruperto 2020	1 previous pregnancy without complications	
32		6 months postpartum			bilateral scotomas	SNHL	retinal infarctions	steroids (pulse), IVIG and cyclophosphamide	improvement	healthy baby	Ramos-Ruperto 2020			
33	N	37	puerperium	scotoma	branch arterial retinal infarctions	SNHL	T2 hyperintensities in supratentorial white matter, right internal capsule and splenium of the corpus callosum	steroids (pulse), oral prednisone and azathioprine	no relapses	healthy baby	Ramos-Ruperto 2020			

AZA, azathioprine; BRAO, branch retinal artery occlusions; CSF, cerebrospinal fluid; CYC, cyclophosphamide; FA, fluorescein angiography; GA, gestational age; IVIG, intravenous immunoglobulins; MMF, mycophenolate mofetil; MRI, magnetic resonance imaging; OCB, oligoclonal bands; SNHL, sensorineural hearing loss; SuS, Susac syndrome; wbc, white blood cells.
pregnancy or in the postpartum period. In two patients, the first symptoms of SuS presented shortly after abortion (one spontaneous, one induced). Only two patients with SuS completed a pregnancy without relapses. In one patient, pregnancy was discovered when she was treated with cyclophosphamide (CYC) and the pregnancy was terminated for this reason. Pregnancy was terminated in six cases to allow treatment with potential foetotoxic drugs like CYC. Delivery of a healthy baby (at term or preterm) was described in 22 cases. One stillbirth and one spontaneous abortion were reported. Notably, six patients had one or more pregnancies, without symptoms of SuS, before the index pregnancy when SuS was diagnosed. Treatment during pregnancy consisted most frequently of steroids, anticoagulant or antiplatelet therapy, with add-on intravenous immunoglobulins (IVIG) in six cases and plasma exchange (PLEX) in two cases. One patient started CYC at 28 weeks gestational age due to ongoing relapses and she delivered a healthy baby. Most patients improved on therapy, but residual cognitive, visual and/or hearing impairments were present in most patients. Complete recovery was rare. A few patients had a history of symptoms, compatible with SuS.

Pregnancy planning: general

Fertility

While no specific reports have been published on fertility in patients with SuS, this topic is of importance. Indeed, treatment with CYC may induce infertility in young female patients who have not yet completed their family. The risk depends on the patient’s age at treatment and the cumulative dose. Consulting a fertility specialist before the start of this treatment is recommended. As SuS is more frequent in females than in males, a role for hormones in pathophysiology may be suspected. A case of a SuS relapse after starting oestrogen replacement therapy, in a patient who had been in remission for 18 years, has been reported, suggesting the possibility of a role for hormones in triggering late relapse. However, recently a female-to-male transgender patient developing SuS under treatment with testosterone was described, challenging the hypothesis of (female) sex hormones as important players. Alternatively, this coincidence may not be associated with hormonal treatment at all, as men and women both can be affected. Whether oral contraceptive pills and hormonal treatments used during in vitro fertilisation (IVF) procedures may increase the risk of SuS or SuS relapse remains to be elucidated. A first case of SuS remaining in remission after a successful IVF procedure was published recently. Usually patients with SuS are advised to change their systemic contraception to a local method because of the unknown impact of hormonal treatment, but the evidence to support this strategy is scarce and is in part taken from the concept that hormonal treatments are considered prothrombogenic.

Genetics and heritability

To our knowledge, no cases of familial SuS have been published. No studies on (immuno)genetics have been reported to date. In a study with 14 patients, all but one SuS patient who was homozygous for HLA C*04, expressed HLA-C*06 and/or HLA-C*07. Comparing the peptide binding motifs of these HLA-C allotypes revealed that the binding motifs of HLA-C*06:02 and HLA-C*07:02 are almost identical. SuS is considered to be a non-hereditary disease. However, as in other autoimmune diseases, such as multiple sclerosis (MS), genetic risk factors likely play a role in the development of the disease. This field is still open to research.

Disease activity monitoring

For patients who have a known diagnosis of SuS, regular clinical monitoring during pregnancy and the postpartum period is advisable, to detect disease relapse or recurrence at an early stage. Indeed, the reported cases demonstrate that there is a risk of disease onset and recurrence in these periods. During pregnancy, brain magnetic resonance imaging (MRI) is generally considered to be safe, especially when benefits outweigh potential risks. Gadolinium contrast is not administered during pregnancy, due to slightly increased risk of neonatal death. Moreover, T2 hyperintensities and diffusion weighted imaging, which can show the typical callosal lesions, may be a worthwhile alternative to gadolinium-enhanced MRI. For patients who are diagnosed during pregnancy, a fluorescein angiogram may add important diagnostic information. However, fluorescein may
cross the placenta and enter the amniotic fluid. There are no teratogenic risks in animals. Safety information in humans is limited and therefore the decision to perform a fluorescein angiography should be made on a case-by-case basis and be performed only when the benefits outweigh the potential risks.43

Timing of pregnancy

SuS patients attempting pregnancy should preferably be free from disease activity and stable without therapy or stable on a treatment that is compatible with pregnancy. Advance pregnancy planning and counselling is therefore highly recommended in this patient group. It is generally accepted now that women with autoimmune diseases like systemic lupus erythematosus (SLE) and vasculitis may attempt pregnancy during quiescent periods of their disease, maintaining a compatible therapy during the preconception, pregnancy and postpartum periods.44,45 In our opinion, the same advice may be applied to SuS patients. Attempting pregnancy when the disease is not (temporarily) in remission should be advised against, because of the risks to the mother when SuS flares up. Disease remission for a duration of at least 6 months seems prudent before attempting pregnancy. This advice is in accordance with recommendations for patients with SLE who wish to become pregnant.44 However, disease remission for 6 months is no guarantee of no relapse during pregnancy, as disease recurrence has been described 23 years after initial symptoms, potentially elicited by pregnancy.25 In conclusion, timing of a pregnancy should be a shared decision between patient and clinician, and patients should be informed of the risk of disease relapse during or after pregnancy.

Compatibility of commonly used treatments for SuS with pregnancy and breastfeeding

Recommendations on treatment of SuS have been published recently and are based on expert opinion.8 There are no guidelines on treatment of SuS during pregnancy, where potential foetal toxicity of treatments needs to be taken into consideration. In the reported cases from patients with SuS during pregnancy, mainly steroids, IVIG and PLEX have been utilized during pregnancy, whereas cyclophosphamide and rituximab were kept for severe and refractory cases, after delivery (see Table 1). However, in one severe case, CYC was started in the 28th week of pregnancy because of ongoing relapses, without foetal toxicity.30 It is important to note that all treatments described for SuS are off-label use.

Corticosteroids. Corticosteroids are used to treat disease flares, both intravenously in a high-dose pulse and orally in tapering schedules. Risk monitoring during pregnancy consists of following glycaemia and blood pressure. Corticosteroids should be avoided in the first trimester, if possible, especially between 8th and 11th gestational week to reduce the slightly elevated risk of cleft lip and palate, but data are scarce.46 One single pulse seems to be safe, while repeated or continued administration of corticosteroids may lead to growth retardation or preterm birth. Others state that prednisolone and methylprednisolone use is safe even in the first trimester.47 Methylprednisolone and prednisolone should be preferred over dexamethasone, because penetration of the placental barrier is only 10%.

Intravenous immunoglobulins. It is important to assess the serostatus of the patient before starting IVIG, as administration of IVIG may lead to false positive serologic results. Indeed, serologic testing will detect endogenous IgG, produced by the patient, as well as administered IgG.48 IVIG will cross the placenta. IVIG are used widely in the treatment of SuS: many case series and case reports describe amelioration of symptoms, and expert opinion recommends IVIG or subcutaneous IG (scIG). IVIG are safe in pregnancy and breastfeeding.47,49

Plasma exchange. PLEX seems to be safe in pregnancy and has been used as a rescue therapy in different neuroimmunological diseases, such as MS, antiphospholipid syndrome, thrombotic thrombocytopenic purpura, neuromyelitis optica spectrum disorders (NMOSD) or myasthenia gravis (MG).50,51 In SuS, PLEX seems to be useful in acute episodes.21 There are no reports of immunoadsorption in SuS.

Mycophenolate mofetil. Mycophenolate mofetil (MMF) is teratotoxic (pregnancy loss, congenital malformations) and should be avoided in pregnancy. Men and women should use effective contraceptives strictly during the treatment period, and
women additionally for at least another 6 weeks. No information is available on the excretion and effects of MMF in breast milk; expert recommendation is to avoid breastfeeding with MMF [United States Food and Drug Administration (FDA)].47

Azathioprin. Data on azathioprin (AZA) in other immunological diseases do not show any teratogenic effect, but there are hints of premature births and low birth weight. Whether this is due to the underlying disease, to the drug itself or other drugs used in combination, needs to be resolved. Cases of infants with bone marrow depression after maternal AZA use have been described. These side effects seem to be rare and should be weighed against potential relapses when discontinuing the drug if the mother is stable.47,50 Thus, in treatment-naïve pregnant women with SuS onset, AZA should not be the first line treatment. However, AZA can be continued during pregnancy after risk/benefit evaluation. Regular monitoring of leucocytes and thrombocytes is advisable. During lactation, AZA is probably safe, as drug levels in breastmilk remain very low, especially 4 h after intake.52

Methodoxate. Methotrexate (MTX) is contraindicated in pregnant women because of the teratogenic effects. It should be stopped at least 3 months before attempting conception. Data on excretion in breastmilk are scarce and lactation should therefore be avoided during MTX use.53,54

Cyclophosphamide. CYC is contraindicated in pregnant women because of the teratogenic effects. However, there is some preliminary evidence in the field of cancer treatment that chemotherapy could be administered during the second and third trimester, with low risk of severe problems for the foetus.47,55,56 In selected cases, treatment with CYC during pregnancy after the first trimester can be considered, in a centre that has experience with management of complicated pregnancies with a multidisciplinary team of at least a gynaecologist, a neurologist and a neonatologist. CYC is excreted in breastmilk, may suppress the infants bone marrow and should be avoided during lactation.57,58

Tumour necrosis factor alpha inhibitors. Tumour necrosis factor alpha (TNF-α) inhibitors are contraindicated in patients with demyelinating disease as these therapies may increase inflammation and induce relapses, underlining the importance of an optimal differential diagnosis. In patients with SuS, TNF-α inhibitors seem to be helpful in case reports and case series in patients with relapses with classic immunotherapies.59 Based on sparse data from case series and case reports, TNF-α inhibitors do not appear to be associated with a high risk of teratogenicity, but a harmful effect cannot be ruled out definitively. In rheumatological diseases, TNF-α inhibitor use may be associated with a higher rate of preterm delivery, but this may be due to disease activity. TNF-α inhibitor should be discontinued around the third trimester when transfer across the placenta is greatest.47,60 The decision to use TNF-α inhibitors as an off-label medication in pregnant women with SuS should be reserved for very severe or life-threatening disease. Breastfeeding is compatible with TNF-α inhibitors.61

Rituximab. Information on rituximab (RTX) in pregnancy is based on case reports of women with immunological and malignant diseases. The monoclonal antibody can pass the blood–placenta barrier. The average half-life of RTX is 20–31 days. RTX seems to be associated with a higher risk of premature births, with consideration of the potential harmful effect of the underlying disease as a concurrent cause. B cells will be depleted in newborns; thus, measuring B lymphocytes in foetuses is recommended if RTX has been administered after the 20th week of pregnancy. In NMOSD, RTX administration is recommended close to the time of conception to have a long-term protective effect during pregnancy.47,50 RTX is transferred to breast milk in minimal amounts.62,63 Moreover, in breastmilk-fed infants from mothers treated with anti-CD20 therapies, no negative impact on health of the infants up to the age of 1 year was detected.64 To summarise, careful evaluation of the risks and benefits of stopping or the continuation of RTX treatment is necessary. In patients with severe autoimmune disease, it is acceptable to attempt pregnancy closely after the last RTX dose and to consider redosing of RTX if relapses occur during pregnancy.65

Natalizumab. Natalizumab (NAT) is registered as treatment for relapsing remitting MS (RRMS). Its mechanism of action is interesting, because it inhibits lymphocyte adhesion and thus migration through the blood–brain barrier, by blocking
alpha4-integrin. In one case, NAT was reported to exacerbate SuS. However, in an animal model and in four SuS patients, disease improvement was seen. One advantage of NAT is that it has been used during pregnancy in RRMS patients and seems relatively safe in clinical practice. However, insufficient data are available to draw firm conclusions. Another issue is the risk of progressive multifocal leukoencephalopathy in patients who are likely immunosuppressed by other treatments received prior or concomitantly. From MS, it is known that a rebound of disease activity may occur after cessation of treatment with NAT. When used only in patients with high disease activity, or when alternative treatment options are lacking, treatment with NAT might be continued under careful and frequent control and consideration of all the risks and benefits in pregnant women with RRMS. The last dose should be administered before the 30–34th week. During lactation, current data for administration of NAT are limited, but reassuring. Calcineurin inhibitors. Cyclosporin A (CSA) and tacrolimus (TAC) are used in NMOSD, MG and SLE, and sometimes in SuS. TAC and CSA should not be started, but can be continued relatively safe in pregnancy. However, strict drug level monitoring is required to limit toxicities. Metabolites of CSA and TAC pass the placental barrier. No major malformations have been reported with CSA or TAC. Premature birth and low birth weight have been reported in humans (FDA). Most data have been derived from patients receiving organ transplantation. Caution in the use of these therapies during pregnancy in SuS is therefore warranted. Limited data suggest that the excreted levels of TAC and CSA in breastmilk are low and unlikely to negatively affect the infant. TAC and CSA are considered probably safe during breastfeeding. However, caution is warranted and monitoring of drug levels in the infants blood may be necessary, as even with low amounts of CSA excreted in breastmilk, infant levels may have therapeutic concentrations in the blood.

Acetyl salicylic acid. High-dose acetyl salicylic acid (ASA) should be used with caution in pregnancy. Low dose ASA (81mg) preconception has not been associated with increased risk of major adverse events when used throughout pregnancy. Epidemiologic studies describe increased risk of miscarriage, cardiac malformations, and gastrochisis under ASA in early pregnancy; the absolute risk of cardiovascular malformations increased from less than 1% to up to approximately 1.5%. The risk is believed to increase with dose and duration of therapy (FDA). For secondary stroke prevention, low dose ASA during pregnancy is reasonable, and breastfeeding can be considered during intake of low dose ASA. In most patients with SuS, ASA is added to reduce the risk of vessel occlusion based on expert opinions; however, evidence is lacking. Luminal occlusion in SuS is caused by hypertrophied and reactive endothelial cells. Whether ASA effectively reduces endothelial inflammation in SuS remains to be proven.

Nimodipine. Nimodipine is a calcium antagonist that leads to vasodilatation. It is lipophilic and can pass the blood–brain barrier. It has been used in SuS in the past, but the immunopathogenesis does not support the use of nimodipine.

Discussion

We have summarised more than 30 cases of SuS, with description of disease course and treatment during pregnancy or postpartum period. Strikingly, approximately two out of three patients of these cases were diagnosed during pregnancy. One likely explanation is that there is a publication bias towards new diagnosed cases in pregnancy, while pregnancies in SuS patients who are in remission and have a normal course are not reported. A prospective, international registry for patients with SuS, containing specific pregnancy forms, could be a solution to solve this potential reporting bias. Patients who are in remission and have pregnancies without relapse or complications, as well as their treating physicians, should be encouraged to share their data and participate in these registries. Patient-driven or active patient-participation in these registries may help to collect the necessary data. Another potential explanation of SuS relapse during pregnancy is the role of hormones and changes in the immune system. It is well-known that the course of several autoimmune diseases changes during pregnancy. Th1-related diseases such as rheumatoid arthritis or MS tend to stabilise, while Th2-related diseases like SLE or vasculitis carry a risk of exacerbation during pregnancy.
Systematically studying the immunology of SuS before, during and after pregnancy may lead to better knowledge on pathophysiological mechanisms involved in disease relapse and remission.

Due to the rarity of this disease, there are no randomized controlled trials to guide treatment, and therapy is based on expert opinions and is, in part, based on knowledge of other immunological diseases. We propose a period of at least 6 months disease remission before attempting pregnancy (see Figure 1). This seems a reasonable approach in SuS and is in accordance with recommendations for patients with SLE. In our opinion, and based on the risk profile of the drugs, for maintenance treatment during pregnancy, first choices are low dose oral (methyl)prednisolone and monthly IVIG. AZA, CSA and TAC may be considered as maintenance treatment during pregnancy, in patients who are known with SuS, but are not a first choice to start during pregnancy. MMF and MTX should be stopped before attempting conception and should not be started during pregnancy or lactation. RTX, with a last dose not too long before conception, may be a treatment option in patients who had severe disease and who wish to lower the risk of disease exacerbation during pregnancy as much as possible, in analogy with NMOSD management. To treat SuS exacerbations during pregnancy and lactation, high-dose IV methylprednisolone can be considered, either alone or in combination with IVIG and/or PLEX. Adding ASA can be considered safe. In severe cases, RTX might be started and NAT might be continued during pregnancy, in analogy with treatment of severe SLE or RRMS. When treatment-refractory, very severe relapses occur, in the second or third trimester of pregnancy, after careful consideration, CYC can be regarded as a rescue therapy option, in analogy to other life-threatening autoimmune disease (see Box 1). During lactation, only small amounts of monoclonal antibodies are excreted into breast milk. Therefore, TNF-α inhibitors, RTX and NAT may be relatively safe and considered to administer while breastfeeding. Also, AZA, TAC and CSA may be safe during lactation.
Finally, these pregnancies should be considered as high-risk pregnancies and follow up by or consultation with experts in the field of neuroimmunology is a prerequisite.

Conflict of interest statement

The institution of BW received travel support to attend meetings, fees for participation in advisory boards, speaker honoraria and grants for research and/or patient support and/or education from Biogen, Roche, Merck, Novartis, Genzyme, Celgene. IK received travel expenses for attending meetings from Pfizer and CSL Behring. IK received speaker honoraria from Daiichi Sankyo.

Box 1. Recommendations on management of SuS patients before, during and after pregnancy.

PRE-PREGNANCY
- **Information provision:**
 - Pregnancy in SuS should be considered as high-risk and it should be planned
 - Discuss risk of relapse during pregnancy and post-partum and necessity of monitoring
 - Discuss risks and benefits of immunosuppressive therapies
 - Discuss limitations of current knowledge
 - Refer or discuss case with expert in neuroimmunology
- **Review disease status:** stable for 6 months?
- **Review treatment compatibility with pregnancy and adjust or withdraw treatments:**
 - Stop MMF, MTX, CYC
 - Continue steroids in the lowest possible dose
 - Continue IVIG
 - Consider switch to IVIG alone or IVIG plus AZA or RTX

DURING PREGNANCY
- **Mother**
 - Include the patient in a registry if possible
 - Monitor patients for occurrence of clinical symptoms
 - Perform brain MRI without gadolinium and ophthalmological examination without fluorescein in case of suspected relapse
 - In case of relapse or first symptoms:
 - First line treatment includes IV and oral (methyl)prednisolone, IVIG, PLEX and ASA
 - Second line treatment includes RTX, NAT
 - Rescue treatment is CYC
 - In case of unexpected pregnancy and accidental exposure of the fetus to MMF, MTX or CYC: advise ultrasound and provide counselling about the risk of malformations
- **Fetus**
 - Perform structural ultrasound
 - Monitor fetal growth

POST-PARTUM
- **Mother**
 - Perform baseline examinations with neurological examination, fluorescein angiogram, tone-audiometry and brain MRI in the month after delivery.
 - Decision to breastfeed is dependent on personal risk-benefit evaluation
- **Baby**
 - Check B cell counts in the newborn in case of RTX use closely before conception or during pregnancy. Plan vaccinations accordingly.
 - Evaluate the newborn for signs or symptoms potentially related to transferred antibodies and/or medication used during the pregnancy.

LACTATION
- IVIG is safe during lactation
- AZA, CSA, TAC, RTX, NAT or TNF-α inhibitors could be considered after risk/benefit evaluation
- (methyl)prednisolone [wait 1–4 h after dosing] or PLEX are safe in case of relapse

AZA, azathioprin; CSA, cyclosporin A; CYC, cyclophosphamide; IVIG, intravenous immunoglobulins; MMF, mycophenolate mofetil; MRI, magnetic resonance imaging; MTX, methotrexate; NAT, natalizumab; PLEX, plasma exchange; RTX, rituximab; TAC, tacrolimus; TNF-α, tumor necrosis factor alpha; SuS, Susac syndrome.
References

1. Susac JO, Hardman JM and Selhorst JB. Microangiopathy of the brain and retina. *Neurology* 1979; 29: 313–316.

2. Susac JO. Susac’s syndrome: the triad of microangiopathy of the brain and retina with hearing loss in young women. *Neurology* 1994; 44: 591–593.

3. Susac syndrome, https://www.orpha.net/consor4.01/www/cgi-bin/OC_Exp.php?lng=EN&Expert=838 (accessed 9 August 2020).

4. Kleffner I, Dörr J, Ringelstein M, et al. Diagnostic criteria for Susac syndrome. *J Neurol Neurosurg Psychiatry* 2016; 87: 1287–1295.

5. Gross CC, Meyer C, Bhatia U, et al. CD8(+) T cell-mediated endotheliopathy is a targetable mechanism of neuro-inflammation in Susac syndrome. *Nat Commun* 2019; 10: 5779.

6. Magro CM, Poe JC, Lubow M, et al. Susac syndrome: an organ-specific autoimmune endotheliopathy syndrome associated with anti-endothelial cell antibodies. *Am J Clin Pathol* 2011; 136: 903–912.

7. Jarius S, Neumayer B, Wandinger KP, et al. Anti-endothelial serum antibodies in a patient with Susac’s syndrome. *J Neurol Sci* 2009; 285: 250–261.

8. Rennebohm RM, Asdaghi N, Srivastava S, et al. Guidelines for treatment of Susac syndrome – An update. *Int J Stroke* 2020; 15: 484–494.

9. Egan RA. Diagnostic criteria and treatment algorithm for Susac syndrome. *J Neuroophthalmol* 2019; 39: 60–67.

10. Dörr J, Krautwald S, Wildemann B, et al. Characteristics of Susac syndrome: a review of all reported cases. *Nat Rev Neurol* 2013; 9: 307–316.

11. Coppeto JR, Monteiro MLR, Currie JN, et al. A syndrome of arterial-occlusive retinopathy and encephalopathy. *Am J Ophthalmol* 1984; 98: 189–202.

12. MacFadyen DJ, Schneider RJ and Chisholm IA. A syndrome of brain, inner ear and retinal microangiopathy. *Can J Neurol Sci* 1987; 14: 315–318.

13. Gordon DL, Hayreh SS and Adams HP Jr. Microangiopathy of the brain, retina, and ear: improvement without immunosuppressive therapy. *Stroke* 1991; 22: 933–937.

14. Cador-Rousseau B, Cazalets C, Decaux O, et al. [Susac’s syndrome in post-partum]. *La Rev Med Interne* 2002; 23: 667–668.

15. Aubart-Cohen F, Klein I, Alexandra JF, et al. Long-term outcome in Susac syndrome. *Medicine* 2007; 86: 93–102.

16. Grinspan ZM, Willey JZ, Tullman MJ, et al. Clinical reasoning: a 28-year-old pregnant woman with encephalopathy. *Neurology* 2009; 73: e74–e79.

17. Hardy TA, Garsia RJ, Halmagyi GM, et al. Tumour necrosis factor (TNF) inhibitor therapy in Susac’s syndrome. *J Neurol Sci* 2011; 302: 126–128.

18. Deane KD, Tyler KN, Johnson DW, et al. Susac syndrome and pregnancy: disease management. *J Clin Rheumatol* 2011; 17: 83–88.

19. Finis D, Stammen J and Gonnermann J. [Retinal arteritis in pregnancy]. *Der Ophthalmologe* 2011; 108: 676–682.

20. Karelle S, Demanez L, Zangerle PF, et al. Sudden sensorineural hearing loss: when ophthalmology meets otolaryngology. *B-ENT* 2012; 8: 135–139.

21. Mateen FJ, Zubkov AY, Muralidharan R, et al. Susac syndrome: clinical characteristics and treatment in 29 new cases. *Eur J Neurol* 2012; 19: 800–811.

22. Engeholm M, Leo-Kottler B, Rempp H, et al. Encephalopathic Susac’s Syndrome associated with livedo racemosa in a young woman before the completion of family planning. *BMC Neurol* 2013; 13: 185.

23. Ioannides ZA, Airey C, Fagermo N, et al. Susac syndrome and multifocal motor neuropathy first manifesting in pregnancy. *Aust N Z J Obstet Gynaecol* 2013; 53: 314–317.

24. Antulov R, Holjar Erlic I, Perkovic O, et al. Susac’s syndrome during pregnancy – the first Croatian case. *J Neurol Sci* 2014; 341: 162–164.

25. Feresiadou A, Eriksson U, Larsen HC, et al. Recurrence of Susac Syndrome following 23 Years of Remission. *Case Rep Neurol* 2014; 6: 171–175.

26. Hua le H, Donlon SL and Okuda DT. A case of Susac syndrome with cervical spinal cord involvement on MRI. *J Neurol Sci* 2014; 337: 228–231.
27. Tashman Y. Susac’s syndrome in a 25 year old pregnant woman (P5.161). Neurology 2014; 82: P5.161.

28. Shabbir Khan M, Vaniyan R and Al Khalifa SA. Central retinal artery occlusion in a healthy pregnant woman: a suspected case of Susac syndrome. Bahrain Med Bull 2014; 36: 255–257.

29. van der Kooij SM, van Buchem MA, Overbeek OM, et al. Susac syndrome: a report of four cases and a review of the literature. Netherlands J Med 2015; 73: 10–16.

30. London F, Pothalil D, Duprez TP, et al. Potential benefits of early aggressive immunotherapy in Susac syndrome. Acta Neurol Belg 2016; 116: 451–460.

31. Bhattu SR, Talib SH, Anand S, et al. Susac syndrome in a Primigravida: a rare case report. IOSR J Dent Med Sci (IOSR-JDMS) 2017; 16: 10–13.

32. Geetesh Manik RP and Chinky Sharma. A classic representation of rare Susac syndrome in young pregnant female. J Case Rep 2018; 8: 129–131.

33. Can Usta N, Boz C and Özmenoğlu M. Pregnancy-induced Susac syndrome: a case report. Turk J Neurol 2018; 24: 70–71.

34. Gomez-Figueroa E, Garcia-Trejo S, Garcia-Santos RA, et al. Exquisite response to intravenous immunoglobulin in Susac syndrome during pregnancy. eNeurologicalSci 2018; 10: 1–4.

35. Qiu J, Rimington DS, Reddel SW, et al. Pregnancy without relapse following treated Susac syndrome. Mult Scler Relat Disord 2020; 45: 102357.

36. Wilf-Yarkoni A, Elkayam O, Aizenstein O, et al. Increased incidence of Susac syndrome: a case series study. BMC Neurol 2020; 20: 332.

37. Ramos-Ruperto L, Martinez-Sánchez N, Bartha-Rasero JL, et al. Susac syndrome and pregnancy: a relationship to clarify. About two cases and review of the literature. J Matern Fetal Neonatal Med 2020: 1–6.

38. Dooley MA and Nair R. Therapy Insight: preserving fertility in cyclophosphamide-treated patients with rheumatic disease. Nat Clin Pract Rheumatol 2008; 4: 250–257.

39. Petty GW, Matteson EL, Younge BR, et al. Recurrence of Susac syndrome (retinocochleocerebral vasculopathy) after remission of 18 years. Mayo Clin Proc 2001; 76: 958–960.

40. Alungulese AL, García Soldevilla MÁ, Barragán Martínez D, et al. Sex hormones secondary players in Susac’s syndrome. Mult Scler Relat Disord 2020; 44: 102373.

41. Kleffner I, Duning T, Lohmann H, et al. A brief review of Susac syndrome. J Neurol Sci 2012; 322: 35–40.

42. Lum M and Tsiourris AJ. MRI safety considerations during pregnancy. Clin Imaging 2020; 62: 69–75.

43. Halperin LS, Okl RJ, Soubrane G, et al. Safety of fluorescein angiography during pregnancy. Am J Ophthalmol 1990; 109: 563–566.

44. Knight CL and Nelson-Piercy C. Management of systemic lupus erythematosus during pregnancy: challenges and solutions. Open Access Rheumatol 2017; 9: 37–53.

45. Somers EC. Pregnancy and autoimmune diseases. Best Pract Res Clin Obstet Gynaecol 2020; 64: 3–10.

46. Bandoli G, Palmsten K, Forbess Smith CJ, et al. A review of systemic corticosteroid use in pregnancy and the risk of select pregnancy and birth outcomes. Rheumat Dis Clin North Am 2017; 43: 489–502.

47. Lichtiger B and Rogge K. Spurious serologic test results in patients receiving infusions of intravenous immune gammaglobulin. Arch Pathol Lab Med 1991; 115: 467–469.

48. Bewertung der Expertengruppe Off-Label - Fachbereich Neurologie/Psychiatrie - nach § 35c Abs. 1 SGB V zur Anwendung von Intravenösen Immunglobulinen (IVIG) bei der Multiplen Sklerose Addendum I (Stand 06.12.2018), https://www.bfarm.de/SharedDocs/Downloads/DE/Arzneimittel/Zulassung/BereitsZugelAM/offlabel/Bewertungen/IVIG_MS_Addendum_I_nebst_Anlage.pdf;jsessionid=096FBCF5C605F0D98A4A652D157A8B1A.2_cid507?__blob=publicationFile&v=4 (2018, accessed 14 September 2020).

49. Borisow N, Mori M, Kuwabara S, et al. Diagnosis and Treatment of NMO Spectrum Disorder and MOG-Encephalomyelitis. Front Neurol 2018; 9: 888.

50. Sanders DB, Wolfe GI, Benatar M, et al. International consensus guidance for management of myasthenia gravis: executive summary. Neurology 2016; 87: 419–425.
52. Christensen LA, Dahlerup JF, Nielsen MJ, et al. Azathioprine treatment during lactation. *Aliment Pharmacol Ther* 2008; 28: 1209–1213.

53. Thorne JC, Nadarajah T, Moretti M, et al. Methotrexate use in a breastfeeding patient with rheumatoid arthritis. *J Rheumatol* 2014; 41: 2332.

54. Johns DG, Rutherford LD, Leighton PC, et al. Secretion of methotrexate into human milk. *Am J Obstet Gynecol* 1972; 112: 978–980.

55. Esposito S, Tenconi R, Preti V, et al. Chemotherapy against cancer during pregnancy: A systematic review on neonatal outcomes. *Medicine* 2016; 95: e4899.

56. Maggen C, Diericks D, Cardonick E, et al. Maternal and neonatal outcomes in 80 patients diagnosed with non-Hodgkin lymphoma during pregnancy: results from the International Network of Cancer, Infertility and Pregnancy. *Br J Haematol* 2020.

57. Fierro ME, Datta P, Rewers-Felkins K, et al. Cyclophosphamide use in multiple sclerosis: levels detected in human milk. *Breastfeeding Med* 2019; 14: 128–130.

58. Durodola JI. Administration of cyclophosphamide during late pregnancy and early lactation: a case report. *J Natl Med Assoc* 1979; 71: 165–166.

59. Buelens T, Ossewaarde-van Norel J, de Boer JH, et al. Evaluation of tumor necrosis factor inhibitor therapy in Susac syndrome. *Retina (Philadelphia, Pa)* 2020; 40: 581–590.

60. Raja H, Matteson EL, Michel CJ, et al. Safety of tumor necrosis factor inhibitors during pregnancy and breastfeeding. *Transl Vis Sci Technol* 2012; 1: 6.

61. Grover KM and Sripathi N. Myasthenia gravis and pregnancy. *Muscle Nerve* 2020; 62: 664–672.

62. Krysko KM, LaHue SC, Anderson A, et al. Minimal breast milk transfer of rituximab, a monoclonal antibody used in neurological conditions. *Neurol Neuroimmunol Neuroinflamm* 2020; 7.

63. LaHue SC, Anderson A, Krysko KM, et al. Transfer of monoclonal antibodies into breastmilk in neurologic and non-neurologic diseases. *Neurol Neuroimmunol Neuroinflamm* 2020; 7.

64. Ciplea AI, Langer-Gould A, de Vries A, et al. Monoclonal antibody treatment during pregnancy and/or lactation in women with MS or neuromyelitis optica spectrum disorder. *Neurol Neuroimmunol Neuroinflamm* 2020; 7.

65. Mao-Draayer Y, Thiel S, Mills EA, et al. Neuromyelitis optica spectrum disorders and pregnancy: therapeutic considerations. *Nat Rev Neurol* 2020; 16: 154–170.

66. Zhovtis Ryerson L, Kister I, Snuderl M, et al. Incomplete Susac syndrome exacerbated after natalizumab. *Neurol Neuroimmunol Neuroinflamm* 2015; 2: e151.

67. Landi D and Marfia GA. Exposure to natalizumab during pregnancy and lactation is safe – Yes. *Mult Scler* 2020; 26: 887–889.

68. Airas L. Exposure to natalizumab during pregnancy and lactation is safe – No. *Mult Scler* 2020; 26: 889–891.

69. Ciplea AI and Hellwig K. Exposure to natalizumab during pregnancy and lactation is safe – Commentary. *Mult Scler* 2020; 26: 892–893.

70. Huang W, Wang L, Zhang B, et al. Effectiveness and tolerability of immunosuppressants and monoclonal antibodies in preventive treatment of neuromyelitis optica spectrum disorders: a systematic review and network meta-analysis. *Mult Scler Relat Disord* 2019; 35: 246–252.

71. Mok CC. Calcineurin inhibitors in systemic lupus erythematosus. *Best Pract Res Clin Rheumatol* 2017; 31: 429–438.

72. Gruhn N, Pedersen LK and Nielsen NV. Susac’s syndrome: the first case report in a Nordic country, with an 8-year follow-up. *Acta Ophthalmol Scand* 2005; 83: 757–758.

73. Tacrolimus. *Drugs and lactation database (LactMed).* Bethesda (MD): National Library of Medicine (US), 2006.

74. French AE, Soldin SJ, Soldin OP, et al. Milk transfer and neonatal safety of tacrolimus. *Ann Pharmacother* 2003; 37: 815–818.

75. Cyclosporine. *Drugs and lactation database (LactMed).* Bethesda (MD): National Library of Medicine (US), 2006.

76. Moretti ME, Sgro M, Johnson DW, et al. Cyclosporine excretion into breast milk. *Transplantation* 2003; 75: 2144–2146.

77. Schisterman EF, Silver RM, Lesher LL, et al. Preconception low-dose aspirin and pregnancy outcomes: results from the EAGeR randomised trial. *Lancet* 2014; 384: 29–36.

78. Swartz RH, Ladhan NNN, Foley N, et al. Canadian stroke best practice consensus statement: Secondary stroke prevention during pregnancy. *Int J Cerebrovasc Dis Stroke* 2018; 13: 406–419.
79. Hardy TA, O’Brien B, Gerbis N, et al. Brain histopathology in three cases of Susac’s syndrome: implications for lesion pathogenesis and treatment. *J Neurol Neurosurg Psychiatry* 2015; 86: 582–584.

80. Agamanolis DP, Klonk C, Bigley K, et al. Neuropathological findings in Susac syndrome: an autopsy report. *J Neuropathol Exp Neurol* 2019; 78: 515–519.

81. Gerosa M, Argolini LM, Artusi C, et al. The use of biologics and small molecules in pregnant patients with rheumatic diseases. *Expert Rev Clin Pharmacol* 2018; 11: 987–998.