Effect of critical speed in machining of the main shaft of cone crushers on accuracy of treated surfaces

V E Kondratenko¹, V V Devyatariova¹, L V Sedykh¹ and F U Madgoziev¹
¹National Research Technological University MISiS, 4, Leninsky prospect, Moscow, 119991, Russia

*E-mail: vikdev@yandex.ru

Abstract: One of the industry development factors is the advancement of design and technological solutions of production applications. Mining industry makes heavy use of cone crushers, with the main shaft being one of the main components under serious loads, thus requiring repair or replacement. The paper suggests the method to determine the critical speed of the main shaft of cone crushers in machining and the effect, which the type of fixing on metal-cutting machines has on the accuracy of its surfaces.

1. Introduction
Ore preparation in mining industries predetermines considerably the final technological and economic indicators of an enterprise. Cone crushers ensure the most efficient crushing of hard and abrasive ores, which include copper and iron ores, and gold-containing quartzites [1-3].

Cone crushers are widely used in mining enterprises for fine, medium and primary crushing (Figure 1).

![Cone Crushe Diagram](image)

Figure 1. Cone crusher diagram: 1 - base; 2 - main shaft; 3 - mantle; 4 - drive shaft.

Main shaft 1 of any type of the cone crusher is a large-sized turned part with a solid loading, located in the center of the shaft. Two main processing methods are used to produce such parts with a given accuracy – turning and circular grinding [4-9].

Object of the paper – is to offer the method to determine the critical speed of the main shaft, designed for cone crushers, during its cutting in turning and circular machines.

2. Main Part
The specificity of the process turning or circular-grinding operation is that the main shaft, based in the chuck jaws and the center of the tailstock of the machine (Figure 2) [10, 11] performs not only rotational movement during machining. The shaft axis bends in rotary mode and performs a precessional motion. When the angular velocity of rotation reaches a certain value, called the critical...
speed, shaft deflections become quite substantial. Hence, it is recommended that the operating speed fall within the range of (stiff shaft) (flexible shaft). Not counting the gyroscopic effect, the critical speed of the shaft is equal to the natural frequency of transverse (bending) vibrations of the system [12-18].

Figure 2. View of the main shaft mounting on the turning machine: 1 – chuck; 2 – main shaft; 3 – movable tailstock center.

Let us review the design model of the main shaft with the lumped mass M, which is in the center of span (Figure 3).

Figure 3. Main shaft design model: 1 – simple; 2 – complex; 3 – precise.

To define the natural frequency of system vibration, let us consider several design model options:
1. Simple, with no account of the shaft mass.
2. Complex, considering the shaft mass as lumped in the center (m – mass of the length unit).
3. Precise, accounting for shaft mass, distributed along its length.

Design models 1 and 2 are the one-degree-of-freedom systems. [19-27]. Their natural frequencies and critical speeds consequently equal to, s^{1}:

$$ p_1 = \omega_1 = \sqrt{\frac{C_f}{M}}, $$

(1)

$$ p_2 = \omega_2 = \sqrt{\frac{C_f}{M + m \cdot l}}, $$

(2)

where:
- M – lumped mass, kg;
- m – mass of the shaft length unit, kg/m;
- l – shaft length, m;
- C_f – shaft flexural rigidity. The shaft inverse compliance, which is equal to the displacement of the shaft centre by the unit force, is determined by Mohr integral, calculated by Vereshchagin method [2].
In the following, we make the bending-moment diagram from the external force F (Figure 3, 1), and the bending-moment diagram from the unit force, in the main statically determinate system of force [28-36] method (Figure 3, 2).

![Figure 4. Bending-moment diagrams: a – from external force F; b – from unit force F.](image)

Vertical movement of point K (see Figure 4) equals to Mohr integral, calculated by Vereshchagin method, m:

$$
\gamma_V = \frac{6}{E \cdot J} \int \frac{M F \cdot M}{y \cdot dz} = \frac{1}{E \cdot J} \left[2 \cdot \frac{3}{16} F \cdot l \cdot l - \frac{5}{32} F \cdot l \cdot l - \frac{1}{12} \right] \frac{l}{768} = \frac{F \cdot l^3}{768 \cdot E \cdot J} .
$$

External force is determined from the formula, N:

$$
F = C_f \cdot \gamma_V .
$$

The resulting shaft inverse compliance is, N/m :

$$
C_f = \frac{768 \cdot E \cdot J}{7 \cdot l^3} ,
$$

where:

E – Young's modulus of steel $2 \cdot 10^3$ MPa $= 2 \cdot 10^{11}$ N/m²

$J = \pi D^4/64$ – Shaft axial moment of inertia, m⁴;

Substituting expression (3) in formulas (1) and (2), we get the value of shaft critical speeds for the first (see Figure 3, 1) and the second design models (see Figure 3, 2) respectively:

$$
\omega_{c1} = \sqrt{\frac{768 \cdot E \cdot J}{7 \cdot l^3 \cdot M}} ,
$$

$$
\omega_{c2} = \sqrt{\frac{768 \cdot E \cdot J}{7 \cdot l^3 \cdot (M + ml)}} .
$$

Pursuant to the first design model (see Figure 3, 1), which disregards the shaft mass, formula (1) disregards the shaft mass respectively. The second design model and formula (5) account for inertia characteristics of the shaft mass, as a lumped mass. Evidently, the value of the natural frequency of the third design model (see Figure 3, 3), which considers the inertia characteristics of the mass, distributed along the shaft length, should be halfway of the interval between and, that is:

$$
\omega_{c3} = \frac{\omega_{c1} + \omega_{c2}}{2} .
$$

Validity of this statement is illustrated with the example of calculating the natural frequencies of transverse vibrations or critical speeds of the shaft.
Using the data proposed in Table 1, we calculate the values of critical speeds using the approach formulated in the article [14].

Moment of inertia and area of section of the hollow shaft are calculated from the formulas:

\[J = \frac{\pi D^4}{64} \left(1 - \left(\frac{d}{D} \right)^4 \right) \]

\[A = \frac{\pi D^2}{64} \left(1 - \left(\frac{d}{D} \right)^2 \right) \]

(7)

(8)

Table 1. Parameter points for critical speeds calculation.

Shaft type	\(l \), m	\(M \), kg	\(D \), m	\(d \), m	\(J \), m\(^4\)	\(A \), m\(^2\)	\(m \), kg/m
Solid shaft	2	5	0.02	-	0.75 \times 10^{-8}	3 \times 10^{-4}	2.4
Hollow shaft	2	5	0.02	0.016	0.44 \times 10^{-8}	1.13 \times 10^{-4}	0.864

Values of solid \(\omega_c \) and hollow \(\omega_c \) shafts, calculated from the formulas (4) and (5) are specified in Table 2.

Table 2. Critical speeds values for design models (see Figure 3).

Shaft type	\(\omega_{c1} \), s\(^{-1}\)	\(\omega_{c2} \), s\(^{-1}\)	\(\omega_{c3} \), s\(^{-1}\)
Solid shaft	\(\omega_{c1} = 255 \)	\(\omega_{c2} = 178 \)	\(\omega_{c3} \approx 216 \)
Hollow shaft	\(\omega_{c1} = 192 \)	\(\omega_{c2} = 166 \)	\(\omega_{c3} \approx 179 \)

Results of calculation using the suggested method, evidenced validity of the statement, set out in the formula (6).

3. Conclusions

The proposed method of calculation facilitates largely the complexity of determining the critical speed of the main shaft of the cone crusher.

The following result was obtained upon comparative analysis of calculations made in the present paper and the article [14]: the average critical speed for machining the main shaft of cone crushers, fixed in the chuck and the center of the tailstock, exceeds six times that of the part with the same dimensions, fixed in the centers. Based on these data, we conclude that in order to reach a specified surface accuracy while increasing the processing performance, it is more efficient to fix the parts, which design type is that of the main shaft of the cone crushers, in the chuck and the center of the tailstock.

4. Results of the study

When the carbide band is placed on a steel roll with the tension between the contacting surfaces, as a rule, a plastic unsaturated or saturated contact occurs.

References

[1] Bardovsky A D, Valeeva L M and Basyrov I I 2020 A plant with a rotary jet grinder to produce small fractions of mineral raw material *IOP Conf. Series: Materials Science and Engineering* **971** 052004 doi:10.1088/1757-899X/971/5/052004

[2] Aleksandrov A V, Potapov V G and Derzhavin B P 2007 *Resistance of materials: a textbook for universities* (Moscow: Higher School) 560

[3] Bibikov P Y, Bardovskiy A D and Keropyan A M 2019 Investigation of press classification process of weak rocks *Materials Today: Proceedings* **19** pp 2552-2554 doi:10.1016/j.matpr.2019.08.207
[4] Biderman V L 2017 Theory of mechanical vibrations: Textbook for universities (URSS Physico-
mathematical heritage: Physics (Mechanics)) 416
[5] Birger I A 1993 et al. Calculation of the strength of machine parts: Handbook Birger I A Shorr
B F Losieieich G B - 4th ed reprint and dop (M.: Mashinostroenie) 640
[6] Chichenev N A, Gorbatyuk S M, Naumova M G and Morozova I G 2020 Using the similarity
theory for description of laser hardening processes CIS Iron and Steel Review 19 pp 44-47
doi: 10.17580/cisir
[7] Dragobetskii V V, Shapoval A A, Mospan D V, Trotsko O V and Lotous V V 2015 Excavator
bucket teeth strengthening using a plastic explosive deformation. Metallurgical and Mining
Industry 7 (4) pp 363-368
[8] Evart T Ye, and Puchkov V P, Skhirtladze A G and Pris N M 2017 Modeling the choice of a
rational method for manufacturing machine-building parts blanks Bulletin of MSTU Stankin
2(41) pp 89-92
[9] Gerasimova A A, Keropyan A M and Girya A M 2018 Study of the Wheel–Rail System of
Open-Pit Locomotives in Traction Mode Journal of Machinery Manufacture and Reliability
47(1) pp 35-38
[10] Jiawen L, Timushev S, Klimenko D and Krivenko A 2019 Modeling pressure pulsation fields in
a screw centrifugal pump Proceedings of the 26th International Congress on Sound and
Vibration (ICSV)
[11] Kerimov R I and Shakho S I 2020 Use of Metallized Raw Materials in Electric Furnace
Steelmaking Metallurgist 64 (1-2) pp 128-135 doi: 10.1007/s11015-020-00974-1
[12] Keropyan A M, Kuziev D A and Krivenko A E 2020 Process Research of Wheel-Rail Mining
Machines Traction Lecture Notes in Mechanical Engineering pp 703-709
doi: 10.1007/978-3-030-22063-1_75.
[13] Kobelev O A and Tyurin V A 2007 Production of large plates Steel in Translation 37 (9)
pp 727-729 doi: 10.3103/S096709120709001X
[14] Kondratenko V E, Devyatariova V V, Albul S V and Kartsyhev D S 2020 Improving
methodology for calculating scaffolding formwork of monolithic slabs in building
constructions IOP Conference Series: Materials Science and Engineering 971 (5) 052037
doi: 10.1088/1757-899X/971/5/052037
[15] Kondratenko V V, Sedkh L V, Mirzakarimov A and Aleksakin A 2020 Static analysis and
strength calculation of drive shaft of large-scale cone crusher E3S Web of Conferences 193
01038 doi: 10.1051/e3sconf/202019301038
[16] Kondratenko V E, Sedkh L V and Surkova R Y 2020 Effective design features of rotor shafts
IOP Conference Series: Materials Science and Engineering 971 (4) 042010
doi: 10.1088/1757-899X/971/4/042010
[17] Kouziyev D, Krivenko A, Chezganova D and Valeriy B 2019 Sensing of dynamic loads in
the open-cast mine combine E3S Web of Conferences 105 03014
doi: 10.1051/e3sconf/201910503014
[18] Krivenko A E and Khanh Z K 2020 Influence of power fluid temperature in hydraulics on
operating efficiency of hydraulic mining excavators Gorny Zhurnal 12 pp 78-81
doi: 10.17580/gzh.2020.12.18
[19] Leontiev N. N., Sobolev D. N., and Amosov A. A. 1996. Fundamentals of structural mechanics
of rod systems (M.: Publishing House of the Association of Construction Universities) 541
[20] Krutii Y, Kovrov A, Otrosh Y and Surianinov M 2020 Analysis of forced longitudinal vibrations
of columns taking into account internal resistance in resonance zones Materials Science
Forum 1006 MSF pp 79-86
[21] Krutii Y, Suriyaninov M and Vandynskyi V 2018 Analytic formulas for the natural frequencies
of hinged structures with taking into account the dead weight MATEC Web of Conferences
230 (02016 doi: 10.1051/matecconf/201823002016
[22] Mazhirin E A, Chichenev N A and Zadorozhnyi V D 2009 Extending the life of disk cutters for
thick strip Steel in Translation 39 (1) pp 84-85 doi: 10.3103/S0967091209010215
[23] Naumova M G, Basyrov I I and Aliev Kh B 2018 Reengineering of the ore preparation production process in the context of "almalyk MMC" JSC MATEC Web of Conferences 224 01030 doi:10.1051/matecconf/201822401030

[24] Naumova M G, Morozova I G and Borisov P V 2019 Investigating the features of color laser marking process of galvanic chrome plating in order to create a controlled color image formation at given marking Materials Today Proceedings 19 pp 2405-2408 doi: 10.1016/j.matpr.2019.08.044

[25] Osadchiy V A, Albul S V, Kuprienko N S and Kirillova N L 2020 Future developments of a roll forming mill design algorithm IOP Conference Series: Materials Science and Engineering 709 (4) 044079 doi: 10.1088/1757-899X/709/4/044079

[26] Pimenov G A, Kostyukov G A, Ryabov P S, Rogal' V D and Kobelev O A 1991 Making of large-sized solid-forged blanks Tyazheloe Mashinostroenie 9 pp 21-24

[27] Sedykh L V, Albul S V, Efremov D B and Sukhorukova M A 2020 Application of additive technologies for manufacturing a wear-resistant steel pipe outlet IOP Conference Series: Materials Science and Engineering 971 (2) 022002 doi: 10.1088/1757-899X/971/2/022002

[28] Shakhov S I and Vdovin K N 2019 Electromagnetic Stirring in Continuous-Casting Machines Steel in Translation 49 (4) pp 261-264 doi: 10.3103/S096709121904012

[29] Sivak B A, Shakhov S I, Vdovin K N, Rogachikov Y M and Kerimov R I 2020 Development of a System for Electromagnetic Stirring of Liquid Steel in Molds of Billet and Bloom CCMS Metallurgist 63 (9-10) pp 910-914 doi: 10.1007/s11015-020-00909-w

[30] Surianinov M, Lazarieva D and Kurhan I 2020 Stability of orthotropic plates E3S Web of Conferences 166 06004 doi: 10.1051/e3sconf/202016606004

[31] Turkes E, Orak S and Neseli S 2011 Linear analysis of chatter vibration and stability for orthogonal cutting in turning Journal of Refractory Metals and Hard Materials pp 163-169

[32] Turman E 2006 Konusnyye drobilki i effektivnost' ikh primeneniya v gornodobyvayushchey promyshlennosti Mining industry 2 (66) pp 50-57

[33] Zagirnyak M, Zagirnyak V, Moloshtan D, Drahobetskyi V and Shapoval A 2019 A search for technologies implementing a high fighting efficiency of the multilayered elements of military equipment Eastern-European Journal of Enterprise Technologies 6 (1-102) pp 33-40 doi: 10.15587/1729-4061.2019.183269

[34] Zarapin A Yu, Shur A I and Chichenev N A 1999 Improvement of the unit for rolling aluminum strip clad with corrosion-resistant steel Steel in Translation 29 (10) pp 69-71.

[35] Zhetsova G S, Yurchenko V V, Nikonova T YU, Zharkevich O M and Modelina Ye D 2020 Osobennosti bazirovaniya pri upravlenii tochnost'yu sistemy stanok-prisposobleniya-instrument-detal' Mechanical engineering technology 1 pp 34-42

[36] Surianinov M, Lazarieva D and Kurhan I 2020 Stability of orthotropic plates E3S Web of Conferences 166 06004 doi: 10.1051/e3sconf/202016606004