High-dose, short-term corticosteroids for ARDS caused by COVID-19: a case series

Clara So, Shosei Ro, Manabu Murakami, Ryosuke Imai & Torahiko Jinta

Department of Pulmonary Medicine, Thoracic Center, St. Luke’s International Hospital, Tokyo, Japan.

Keywords
ARDS, corticosteroid therapy, COVID-19, mechanical ventilation.

Correspondence
Clara So, Department of Pulmonary Medicine, Thoracic Center, St. Luke’s International Hospital, 9-1, Akashi-cho, Chuo City, Tokyo 104-8560, Japan.
E-mail: claraso@luke.ac.jp

Received: 30 April 2020; Revised: 17 May 2020; Accepted: 22 May 2020; Associate Editor: Bei He.

Abstract
We report a case series of seven mechanically ventilated patients with acute respiratory distress syndrome (ARDS) caused by coronavirus disease (COVID-19) who received early treatment with high-dose, short-term systemic corticosteroids to prevent cytokine overproduction. Of the seven patients, four were male and median age was 69 years. They were intubated within seven days after admission when their respiratory status rapidly worsened. At that time, we administered 1000 or 500 mg/day for three days of methylprednisolone intravenously, followed by 1 mg/kg and tapered off. The median duration for the total administration of corticosteroids was 13 days. This high-dose, short-term corticosteroid therapy enabled extubation of the patients within seven days. Many questions on the clinical management of COVID-19 remain unanswered, and data on corticosteroid therapy as a choice of treatment are mixed. We present the clinical course of our cases, review the previous evidence, and discuss management.

Introduction
A novel coronavirus was identified in 2019 as the cause of a cluster of pneumonia cases in Wuhan, China. It has since rapidly spread, resulting in a pandemic. Although most patients have a favourable prognosis, some patients may have worse outcomes. Acute respiratory distress syndrome (ARDS) is the most common complication and occurs in 60–70% of patients admitted to the intensive care unit (ICU) [1–3]. Indeed, patients with severe illness may develop dyspnoea and hypoxaemia within one week of disease onset, and this may rapidly progress to ARDS [4]. It can progress to refractory respiratory failure and, in such cases, extracorporeal membrane oxygenation or other forms of whole-body management may be considered as a rescue therapy [4]. In spite of intensive care and rescue therapy, the mortality from coronavirus disease (COVID-19) appears to be driven by the presence of severe ARDS and is approximately 50% [2,3,5,6]. There is an urgent need to find a way of preventing the progress of ARDS with COVID-19 to improve mortality rate.

It has been theorized that ARDS-like states, caused by cytokine overproduction [7], are implicated in the worsening of the illness. The underlying factors in disease progression remain elusive, and effective treatments have not been established [5]. Among the treatments, corticosteroid therapy has been employed in many cases, but its efficacy remains unclear; therefore, it has not been officially recommended [5,8]. Moreover, there are some reports in which the effectiveness of corticosteroid therapy for COVID-19 is discussed, but its dose and duration are not clear in most cases. We summarized the clinical course and treatment timeline of seven critically ill patients with ARDS with COVID-19 who were mechanically ventilated and treated with high-dose, short-term corticosteroid therapy. None of the patients have been reported in another manuscript.

Case Series
At St. Luke’s International Hospital in Japan in March 2020, seven were admitted to the ICU with COVID-19-related ARDS when their oxygenation had been deteriorating rapidly. The diagnosis of COVID-19 is made by detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA by real-time polymerase chain reaction. High-flow oxygen therapy such as...
Corticosteroid therapy for COVID-19

C. So et al.

Discussion

Herein, we report a series of seven mechanically ventilated patients with ARDS-related COVID-19 who were administered early high-dose, short-term corticosteroid therapy.

Early studies have shown that increased amounts of serum proinflammatory cytokines were associated with pulmonary inflammation and extensive lung damage in patients with SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV) infections [9,10]. In COVID-19, Huang et al. noted the cytokine storm to be associated with disease severity [1]. According to Yang et al. [2], the non-survivors will likely expire within one to two weeks after ICU admission, and ARDS increases the risk of death. In view of the high levels of cytokines induced during SARS-CoV, MERS-CoV, and SARS-CoV-2 infections, corticosteroids have been used frequently for the treatment of severe illness, for the possible benefit of reducing inflammation-induced lung injury. However, current evidence in patients with SARS and MERS suggests that corticosteroids had no effect on mortality, but instead delayed viral clearance [11,12]. Therefore, glucocorticoids should not be routinely administered to patients with COVID-19, unless there is a separate evidence-based indication (e.g. asthma or chronic obstructive lung disease exacerbation, refractory septic shock, and adrenal insufficiency) [13]. However, administration of glucocorticoids in critically ill patients with COVID-19-related ARDS is controversial. Wu et al. reported a retrospective cohort analysis of patients with COVID-19 who had developed ARDS [5]. They revealed methylprednisolone treatment to be associated with decreased risk of death (hazard ratio: 0.38; 95% CI: 0.20–0.72). Furthermore, Villar et al. noted that early administration of dexamethasone could reduce duration of mechanical ventilation and overall mortality in patients with severe ARDS [14].

We hypothesized that high-dose corticosteroid therapy could prevent tissue damage, thereby mitigating the degree of lung injury. We began high-dose corticosteroid therapy early in the process of respiratory failure before any progression of viral pneumonia-related ARDS. As some reports of corticosteroid therapy for SARS and MERS indicated that such a treatment could be damaging and worsen patient prognosis [15,16], we limited our patients to short-term regimens. The initiation of methylprednisolone intravenously reduced patients’ fever and led to weaning from mechanical ventilation. As a result, a 100% survival rate was achieved, and reintubation rates were 0%, followed by complete withdrawal of ventilator support in all cases within seven days.

The findings from this case series suggest that high-dose, short-term corticosteroid therapy early in respiratory failure may provide a good prognosis of patients with
Case 1	Case 2	Case 3	Case 4	Case 5	Case 6	Case 7	
Age	72	49	77	57	71	41	69
Sex	Male	Male	Female	Female	Male	Male	Female
BMI	22.7	25.1	19.6	30.8	21.2	31.7	25.5
Brinkman index	1600	480	150	Never	Never	Never	Never
Initial symptoms	Fever, stomach ache	Fever, diarrhoea	Fever, loss of appetite	Fever, cough	Fever, cough	Fever, cough	Fever, dyspnoea
Chest CT findings on admission	Multiple GGO in bilateral lungs	Non-segmental, patchy GGO in bilateral lungs	GGO of peripheral predominance in bilateral lungs	Non-segmental, patchy GGO in peripheral predominance of bilateral lungs	GGO and consolidation in the bilateral inferior lungs	Multiple panlobular consolidation with fine reticular opacities, vascular thickening	Widespread GGO in bilateral lungs, mainly subpleural
Comorbidities	None	Asthma	Diabetes, hypertension, dyslipidaemia	Diabetes, hypertension, dyslipidaemia	Chronic atrial fibrillation	Diabetes, hypertension, asthma	None
Other respiratory pathogen infection	None						
PaO₂/FiO₂ ratio before intubation	114	156	100	117	76	140	133
PaO₂/FiO₂ ratio after intubation	182	170	108	127	120	160	142
FiO₂ at 24 h after intubation	0.4	0.4	0.4	0.35	0.45	0.35	0.4
Corticosteroid therapy	mPSL 1000 mg × three days followed by 1 mg/kg/day	mPSL 1000 mg × three days followed by 1 mg/kg/day	mPSL 1000 mg × three days followed by 1 mg/kg/day	mPSL 500 mg × three days followed by 1 mg/kg/day	mPSL 500 mg × three days followed by 1 mg/kg/day	mPSL 500 mg × three days followed by 1 mg/kg/day	
Corticosteroid period (days)	13	16	15	13	11	13	11
Admission to intubation (days)	6	1	0	1	6	0	0
Initial symptoms to intubation (days)	11	10	11	12	12	4	13
Intubation period (days)	2	7	7	3	5	5	4
Clinical outcomes	Improved						
RT-PCR positive to negative (days)	16	14	13	13	14	23	14

BMI, body mass index; CT, computed tomography; FiO₂, fraction of inspired oxygen; GGO, ground-glass opacity; mPSL, methylprednisolone; PaO₂, partial pressure of arterial oxygen; RT-PCR, real-time polymerase chain reaction.
COVID-19-related ARDS without critical side effects of corticosteroids. This study is a single-centre report and the number of cases is limited. Further studies are required to clarify the effect of corticosteroid treatment in COVID-19.

Disclosure Statement

Appropriate written informed consent was obtained for publication of this case series and accompanying images.
At the time when this report was accepted for publication, the authors declared that the patients in this report had not been included in any previously published report on COVID-19 that they had authored.

Acknowledgments

We thank Editage for translation check and constructive criticism. We also thank all participants for their patience and for agreeing to participate in this study.

References

1. Huang C, Wang Y, Li X, et al. 2020. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395(10223):497–506.
2. Yang X, Yu Y, Xu J, et al. 2020. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single centered, retrospective, observational study. Lancet Respir. Med. 8:475–481. https://doi.org/10.1016/S2213-2600(20)30079-5.
3. Arentz M, Yim E, Klaff L, et al. 2020. Characteristics and outcomes of 21 critically ill patients with COVID-19 in Washington state. JAMA 323:1612–1614. https://doi.org/10.1001/jama.2020.4326.
4. Chen N, Zhou M, Dong X, et al. 2020. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 395(10223):507–513.
5. Wu C, Chen X, Cai Y, et al. 2020. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern. Med. e200994. https://doi.org/10.1001/jamainternmed.2020.0994.
6. Grasselli G, Zaninelli A, Zanella A, et al. 2020. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy. JAMA 323:1574.
7. Mehta P, McAuley DF, and Brown M. 2020. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 395(10229):1033–1034.
8. Russell CD, Millar JE, and Baillie JK. 2020. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet 395(10223):473–475.
9. Wong CK, Lam CWK, Wu AK, et al. 2004. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin. Exp. Immunol. 136:95–103.
10. Mahallawi WH, Khabour OF, Zhang Q, et al. 2018. MERS-CoV infection in humans is associated with a pro-inflammatory Th1 and Th17 cytokine profile. Cytokine 104:8–13.
11. Stockman LJ, Bellamy R, and Garner P. 2006. SARS: systematic review of treatment effects. PLoS Med. 3(9):e343.
12. Arabi YM, Mandourah Y, Al-Hameed F, et al. 2018. Corticosteroid therapy for critically ill patients with Middle East respiratory syndrome. Am. J. Respir. Crit. Care Med. 197 (6):757–767.
13. WHO. 2020. Clinical management of severe acute respiratory infection when novel coronavirus (nCoV) infection is suspected. https://www.who.int/internal-publications-detail/clinicalmanagement-of-severe-acute-respiratory-infection-when-novelcoronavirus-(ncov)-infection-is-suspected (accessed 19 January 2020).
14. Villar J, Ferrando C, Martinez D, et al. 2020. Dexamethasone treatment for the acute respiratory distress syndrome: a multicentre, randomised controlled trial. Lancet Respir. Med. 8:267–276.
15. Peiris JSM, Chu CM, Cheng VCC, et al. 2003. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet 361(9371):1767–1772.
16. Arabi YM, Balkhy HH, Hayden FG, et al. 2017. Middle East respiratory syndrome. N. Engl. J. Med. 376(6):584–594.