Hospitalized Adult Patients with 2009 Pandemic Influenza A (H1N1) in Kaunas, Lithuania

Auksė Mickienė1, Lina Daniusevičiūtė2, Neringa Vanagaitė2, Daiva Vėlyvtė1, Ona Blauzdžiūniénė3, Rūta Nadiąauskienė1, Andrius Macas1, Raimundas Sakalauskas5, Vidas Pilvinis6, Irena Nedzelskiénė7, Liucija Jodžiūnienė8

1Department of Infectious Diseases, Medical Academy, Lithuanian University of Health Sciences, 2Department of Radiology, Medical Academy, Lithuanian University of Health Sciences, 3Department of Obstetrics and Gynecology, Medical Academy, Lithuanian University of Health Sciences, 4Department of Anesthesiology, Medical Academy, Lithuanian University of Health Sciences, 5Department of Pulmonology and Immunology, Medical Academy, Lithuanian University of Health Sciences, 6Department of Intensive Care, Medical Academy, Lithuanian University of Health Sciences, 7Department of Dental and Oral Pathology, Medical Academy, Lithuanian University of Health Sciences, 8Intensive Care Unit, Kaunas Hospital, Lithuania

Key words: influenza A (H1N1); risk factors; pregnancy; complications; pneumonia.

Introduction
The novel influenza A (H1N1) virus was first identified in Mexico in April 2009. Different from the strains in the past and containing a unique combination of gene segments from swine, avian, and human lineages, this new virus appeared to be able to spread among human beings leading to influenza-like symptoms and progressing in a few cases to viral pneumonia, respiratory failure, and death. On June 11, 2009, the World Health Organization (WHO) raised the level of pandemic alert to phase 6, indicating that a global pandemic had begun (1).

In Lithuania, the first case of pandemic influenza was diagnosed on June 26, 2009, in a traveler who had returned from India. Since the beginning of November, a sustained local spread of the pandemic influenza virus within the country was documented. A total of 69,000 influenza cases were registered during the first wave of the pandemic. The laboratory-confirmed pandemic influenza was reported in 810 cases resulting in 23 deaths (2).

Pandemic influenza seems to be more severe than...
the previous seasonal influenza A (H3N2), which has dominated since 1968 (3, 4). The 2009 influenza A (H1N1) virus has a higher affinity for α2,3 sialic acid receptors in the lungs compared with A (H3N2), which explains why the risk of developing virus pneumonia is higher with the new pandemic virus (5).

Hereby, we report the main clinical findings and risk factors for complicated disease in adult patients hospitalized due to 2009 pandemic influenza A (H1N1) in Kaunas, Lithuania.

Material and Methods

The study retrospectively reviewed adult (≥18 years of age) cases of the pandemic 2009 influenza A (H1N1) virus admitted to three hospitals located in Kaunas (Hospital of the Lithuanian University of Health Sciences [former Kaunas University of Medicine], Kaunas Hospital, and Kaunas 2nd Clinical Hospital) between November 1, 2009, and March 15, 2010. Patients admitted to the hospitals mentioned above were considered eligible for inclusion into the study if they had 2009 influenza A (H1N1) virus infection confirmed by the detection of the virus from the nasopharyngeal swab sample by a real-time reverse transcriptase polymerase chain reaction (RT-PCR) assay using test kits supported by the WHO from the Centers for Disease Control and Prevention (CDC) (CDC RT-PCR protocol for detection and characterization of swine influenza, version 2009, CDC REF #I-007-05) (6). Testing was performed at the Virology Laboratory of the Center for Communicable Diseases and AIDS of Lithuania, a statewide service.

Data on demographics, clinical signs and symptoms, comorbid conditions, selected laboratory tests, radiographic findings, treatment course, and outcomes were extracted from the medical records using the same standardized case report form by two investigators. Comorbidities were considered absent in cases for which records stated that a patient had been previously healthy or had no underlying medical conditions or when there was no direct reference to the condition. Body mass index (BMI) was calculated for the patients whose height and weight were available. Obesity was defined as BMI of ≥30 kg/m². BMI was not calculated for pregnant women. Fever was defined as documented or self-reported temperature of ≥37.7°C.

Complicated pandemic influenza was defined in the presence of radiologically confirmed pneumonia, septic shock, multiorgan failure, central nervous system (CNS) involvement, etc. or secondary bacterial infections of the upper respiratory tract defined and diagnosed by standard methods. A severe case was defined as requiring admission to an intensive care unit (ICU) or death.

Data on Kaunas city and district demographics were obtained from the Department of Statistics under the Government of the Republic of Lithuania (7).

Statistical Analysis. Missing or unknown information was excluded from all calculations. Patients who had a noncomplicated course of influenza were compared with those who experienced complications. Nonsevere cases were compared with the severe ones. A comparison of pregnant women with nonpregnant women of childbearing age was also made.

Statistical analysis included descriptive statistics with frequency analysis (percentages) for categorical variables and median values with ranges and/or means with standard deviations (SDs) for continuous variables. To test for differences between the compared groups, the two-sample t or Mann-Whitney tests were used for continuous variables as appropriate, and the χ² test was used for categorical variables.

Multivariate logistic regression models were employed to investigate associations of risk factors with the complicated illness. Results of the logistic regression analysis are summarized by odds ratios (OR) and 95% confidence intervals (CI) with OR greater than 1.0 signifying greater risk of complications.

Receiver operating characteristic (ROC) analysis was used to calculate cut-off points and their sensitivity as well as specificity for age, BMI, time from symptom onset to hospitalization, and C-reactive protein (CRP) level.

P values were two-sided and considered to be statistically significant if <0.05 (SPSS Statistics for Windows software, version 13.0).

Results

Demographic Data and Clinical Characteristics. The study involved three settings: the tertiary hospital, the university-associated city hospital with the ward specially designed for the treatment of infectious diseases patients, and the regional hospital. These hospitals admitted 124 of the 125 laboratory confirmed pandemic influenza cases hospitalized in Kaunas. Hospital records of 3 eligible cases were not available for the review; therefore, these cases were not included into the study. Overall, 121 patients were examined: 77 cases (64%) were treated in Kaunas 2nd Clinical Hospital (university-associated), 37 cases (30%) in the Hospital of the Lithuanian University of Health Sciences (tertiary institution), and 7 cases (6.6%) in Kaunas Hospital (regional).

The first pandemic influenza case was admitted during week 47, 2009, and the last during week 8, 2010. A quarter of study participants (31/121, 26%) were hospitalized during week 48, 2009 (Fig. 1).

The median age of the study participants was 31 years (range, 18–83). Patients aged 18 to 40 years comprised 66.1% (80/121). Age-adjusted incidence
Hospitalized Adult Patients With 2009 Pandemic Influenza A (H1N1) in Kaunas, Lithuania

Of influenza A (H1N1) virus infection requiring hospital admission in Kaunas is presented in Fig. 2. Demographic data, risk conditions, and clinical symptoms are shown in Table 1.

The median time from illness onset to hospital admission was 2 days (range, 0–7).

Nosocomial influenza was diagnosed in 3 cases (2%).

On admission, 64 patients (53%) reported symptoms, which met the WHO clinical case definition of uncomplicated pandemic influenza (fever with cough, sore throat, rhinorrhea, headache, muscle pain, or malaise, but no shortness of breath and dyspnea), and 46 patients (38%) had symptoms compatible with the definition of complicated influenza (fever and dyspnea and/or hypoxia) or presenting secondary complications such as septic shock, multiorgan failure, CNS involvement, etc. Eleven patients (9%) could not be classified into any of the two groups due to the lack of the information regarding symptoms and signs described in the definition.

Of the 64 patients with the symptoms of uncomplicated influenza on admission, 38 (59.4%) had risk factors for severe disease from pandemic A (H1N1) virus infection according to the WHO: comorbidity was observed in 15, pregnancy in 23, obesity in 6, and 1 patient was aged more than 65 years.

Diagnostic Findings. Of the 97 patients who underwent chest radiography on admission, 48 (49.5%) had findings consistent with pneumonia. Radiographic findings included bilateral infiltrates in 35.4% (17/48) of the patients; the remaining had unilateral infiltration. Chest x-ray abnormalities on admission were detected in 14 (31.8%) of the 44 patients and 30 (69.8%) of the 43 patients with the clinical symptoms compatible with uncomplicated and complicated influenza, respectively, corresponding to the WHO definition. Both sensitivity and specificity of the definition of uncomplicated and complicated influenza were 0.7.

Of the 34 patients whose blood cultures or lower respiratory tract specimens were taken, 10 (29%) had microbiologic evidence of the secondary bacterial infection. The most common isolates were Klebsiella (n=3) and Pseudomonas aeruginosa (n=3).

The rest of the baseline laboratory findings are presented in Table 1.

Treatment. The data regarding the use of antiviral drugs were available from all patients. Antiviral treatment was given to 69 patients (57%). All patients were treated with oseltamivir. Oseltamivir at a standard dosage of 75 mg twice a day was given to 66 patients. An increased dosage (150 mg twice a day) was used in 3 patients. The median time from illness onset to initiation of antiviral therapy was 3 days (range, 0–10). The mean time from symptom onset to oseltamivir therapy in patients with risk conditions was 4.0 days (SD, 2.74 days) and
Study Characteristic

Demographics	Total n=121	Noncomplicated n=69	Complicated n=52	P
Sex, male, n (%)	52 (43)	20 (29.0)	32 (61.5)	<0.001
Age, mean (SD), years	36.3 (15.7)	29.7 (11.7)	45.1 (16.1)	<0.001
Age >65 years, n (%)	6 (5)	2 (2.9)	4 (7.7)	0.229
Age >35 years, n (%)	54 (44.6)	15 (21.7)	39 (75.0)	<0.001
Time from symptom onset to hospitalization, mean (SD), days				
Hospitalized within 48 h, n (%)	61 (52.1)	42 (61.8)	19 (38.8)	0.014
Hospitalized after 96 h, n (%)	20 (17.2)	3 (4.4)	17 (35.4)	<0.001

Risk conditions

	Total n=121	Noncomplicated n=69	Complicated n=52	P
Obesity BMI >30 kg/m², n (%)	15 (23.1)	5 (14.7)	10 (32.3)	0.093
BMI >27 kg/m², n (%)	26 (40)	8 (23.5)	18 (69.2)	0.005
Pregnancy, n (%)	31 (26)	28 (63.6)	3 (2.9)	0.030
Lung disease, n (%)	14 (11.6)	9 (13.0)	5 (9.6)	0.559
Kidney disease, n (%)	8 (6.6)	2 (2.9)	6 (11.5)	0.058
Diabetes mellitus, n (%)	8 (6.6)	3 (4.3)	5 (9.6)	0.248
Gastrointestinal tract disease, n (%)	8 (6.6)	3 (4.3)	5 (9.6)	0.248
Cardiovascular pathology, n (%)	26 (21.5)	5 (7.2)	21 (40.4)	<0.001
Immunosuppression, n (%)	2 (1.7)	0 (0)	2 (3.8)	0.183
At least one comorbidity, n (%)	50 (41.3)	20 (29.0)	30 (57.7)	0.002

Symptoms

	Total n=121	Noncomplicated n=69	Complicated n=52	P
Fever, n (%)	105 (87)	58 (84.1)	47 (90.4)	0.808
Cough, n (%)	108 (89)	63 (91.3)	45 (86.5)	0.402
Shortness of breath, n (%)	39 (32)	13 (18.8)	26 (50)	<0.001
Myalgia, n (%)	60 (49.6)	36 (52.2)	24 (46.2)	0.512
Gastrointestinal symptoms, n (%)	19 (16)	15 (21.7)	4 (8.2)	0.048
Headache, n (%)	46 (38)	30 (43.5)	16 (30.8)	0.154

Laboratory values

CRP, mean (SD), mg/L	Total n=121	Noncomplicated n=69	Complicated n=52	P
CRP >100 mg/L, n (%)	66.5 (84.8)	31.46 (30.68)	112.9 (108.62)	<0.001
Leukocyte count, n (%):	24 (19.8)	2 (2.9)	22 (42.3)	<0.001
<4×10⁹/L	82 (69.5)	48 (70.6)	34 (68.0)	0.846
4–10×10⁹/L	21 (17.8)	11 (16.2)	10 (20.0)	
>10×10⁹/L	15 (12.7)	9 (13.2)	6 (12.0)	
Lymphopenia <1×10⁹/L, n (%)	72 (66)	48 (70.6)	24 (47.1)	0.150
Thrombocytopenia <140×10⁹/L, n (%)	27 (23)	15 (21.7)	12 (24.0)	0.771
SpO₂ <95%, n (%)	25 (58)	7 (46.7)	18 (64.3)	0.264

Treatment

Antiviral treatment, n (%)	69 (57)	34 (49.3)	35 (67.3)	0.047
Time from symptom onset to initiation of antiviral treatment, mean (SD), days	3.85 (3.57)	2.12 (1.67)	4.81 (2.76)	0.001
Hospitalized after 96 h, n (%)	30 (45.5)	23 (69.7)	7 (21.2)	<0.001

BMI, body mass index.

in those without risk conditions was 3.14 days (SD, 2.55 days) (P=0.221). In these groups of patients, antiviral therapy was started within 48 hours in 22 (50%) and 8 (36.4%) cases, respectively (P=0.294).

Of the 121 patients, 86 (71%) received antibiotics. Commonly used antibiotics were amino-penicillins administered as monotherapy in 29 cases (33.7%) and in combination with aminoglycosides in 5 cases (5.8%). Penicillin was used in 10 cases (11.6%), second-generation cephalosporins in 15 (17.4%), second-generation or third-generation cephalosporins in combination with various other antimicrobial agents in 18 (20.9%), and other antibiotics in 9 cases (10.5%).

Antiviral drugs were administered to 34 (71%) of the 48 patients with radiographic findings consistent with pneumonia. At the same time, all patients (100%) were treated with antibiotics.

Auksė Mickienė, Lina Daniusevičiūtė, Neringa Vanagaitė, et al.

Medicina (Kaunas) 2011;47(1)
Clinical Course. Complicated vs. Noncomplicated Cases. In total, complicated influenza was diagnosed in 52 (43%) of the 121 cases. Radiologically confirmed pneumonia was the main complication observed in 48 (92.3%) of the 52 complicated cases. Otitis (n=1), sinusitis (n=2), and tonsillitis (n=1) were diagnosed in 7.7% of cases.

Comparison of the baseline characteristics of patients with complicated vs. noncomplicated influenza A (H1N1) is presented in Table 1.

Factors predicting complications were found to have the following cut-off points: age of 35 years (sensitivity, 0.75; specificity, 0.78), hospitalization 96 h after symptom onset (sensitivity, 0.37; specificity, 0.96), BMI of ≥ 27 kg/m² (sensitivity, 0.58; specificity, 0.77), and CRP level of 50 mg/L (sensitivity, 0.6; specificity, 0.9).

Independent predictors of the complicated course of illness were assessed using the multivariate logistic regression model. Only factors that were statistically significant were included in the multivariate analysis, i.e., age, sex, CRP level, and time from symptom onset to antiviral treatment. Since age and presence of comorbidities, time from symptom onset to hospitalization, and initiation of antiviral treatment as well as shortness of breath and CRP levels were interrelated, only one of the two interrelated variables was included in the logistic regression model.

The risk to have a complicated course of pandemic influenza increased significantly with one-day delay from symptom onset to antiviral treatment (OR, 2.241; 95% CI, 1.354–3.710), an increase in CRP level above 50 mg/L (OR, 15.082; 95% CI, 2.392–95.095), an increase in age with each decade (OR, 2.784; 95% CI, 1.362–5.692), and being male (OR, 11.831; 95% CI, 1.627–86.005).

Severe cases. Of the 121 patients examined, 9 (7.4%) were admitted to an ICU. The median age of those who were admitted to the ICU was 43 years (range, 23–62 years). Of the 9 ICU patients, 3 had underlying medical conditions, including 1 patient with chronic lympholeukemia, 1 pregnant woman (25-week pregnancy), and 1 obese patient with cardiovascular pathology. Acute respiratory distress syndrome was diagnosed in 7 ICU patients; 5 had a clinical diagnosis of septic shock. Mechanical ventilation was urgent in 8 cases; meanwhile, extracorporeal membrane oxygenation was necessary in 2 cases. Secondary bacterial pneumonia was diagnosed in 3 ICU patients, in all of which it was ventilation-associated pneumonia caused by *Pseudomonas* (n=2) and *Acinetobacter* (n=1). All patients received antiviral drugs and antibiotics.

Of the 121 study patients, 6 (5%) died; all were ICU patients. The median age of the patients who died was 43.5 years (range, 23–62). A pregnant woman and a patient with lympholeukemia were among those who died. The remaining 4 patients who died had been previously healthy.

The median time from illness onset to initiation of antiviral therapy in both the groups of ICU patients who survived and those who died was 5 days (range, 0–10 days). Antiviral drugs had been given to 22% (2/9) of the ICU patients and 17% (1/6) of the patients who died within 48 h after illness onset.

The mean hospital stay of noncomplicated, complicated, and severe cases was 4.8±2.3, 12.2±13, and 33±32.5 days, respectively. The median time from illness onset to death was 21.5 days (range, 7–49 days).

Table 2 represents comparison of severe with nonsevere cases.

Pregnant vs. Nonpregnant Women of the Reproductive Age. Of the 55 women in the study cohort who were of childbearing age (18–44 years old), 30 (54.5%) were pregnant and 1 immediately postpartum (1.8%). Of the 30 pregnant women, 2 (7%) were in the first, 15 (50%) in the second, and 13 (43%) in the third pregnancy trimester. No obstetric complications in the group of pregnant women were reported during hospitalization. Comparison of pregnant and nonpregnant women of childbearing age is presented in Table 3.

Discussion

In this study, we have shown that pandemic influenza caused considerable morbidity in a significant proportion of hospitalized adults and that the use of antiviral drugs was beneficial in hospitalized patients, especially when such therapy was initiated early.

The majority of information on clinical presen-
tation, outcome, and risk factors for severe disease associated with pandemic influenza comes from various countries of the Southern Hemisphere and North America, whereas there is limited information available from European countries and, to our best knowledge, no information from the Baltic States. The cases presented in this report comprise 25% (121/490) of all the laboratory-confirmed adult pandemic influenza cases in Lithuania and include all the hospitalized adult patients with confirmed pandemic influenza from a catchment area of 438 820 inhabitants (6, 7). We believe that it strengthens the validity of our findings despite the retrospective nature of this study.

The distribution of influenza A (H1N1) cases by age, characterized by the concentration of cases in 18–40-year-old individuals, was similar to the distribution of cases observed worldwide (8–11). Only 5% of our patients were aged more than 65 years. Such findings suggest the possibility of varying levels of immunity in this age group or a reduced penetration of the virus into the elderly community in the first wave of the pandemic.

The majority of hospitalized patients in our study had the recognized risk factors for severe influenza. Obesity and cardiovascular pathology were the most common risk conditions. Arterial hypertension was the main illness observed in 69% of cases with cardiovascular pathology (data not shown). This reflects a higher prevalence of arterial hypertension in relation to age rather than influence on the course of disease (3, 4, 9, 10). In contrast, recent reports have reported high proportions of severe or fatal pandemic influenza cases among obese patients (8–11). We did not, however, observe significant differences in the prevalence of any obesity among hospitalized patients who died and those who survived due to the limited number of patients included in our study. However, taking into consideration its prevalence in our cohort and the fact that obesity is usually associated with other conditions such as diabetes, obesity should be viewed as an important risk factor when treatment and prevention measures of influenza are considered.

Pneumonia was the main complication observed in 39.7% of hospitalized patients. Complicated disease was associated with a longer interval from symptom onset to antiviral treatment and increased age. Shortness of breath was significantly more often observed in the group of complicated cases and can be considered as a highly predictive symptom of possible involvement of the lower respiratory tract. However, 1 of the 3 patients with clinical symptoms compatible with the WHO definition of uncomplicated pandemic influenza had radiologically confirmed pneumonia on admission. Moreover, more than one-third of complicated cases (38.8%) were hospitalized within 48 hours from symptom onset. These findings suggest that involvement of the lower respiratory tract can be rapid in a significant proportion of patients with pandemic influenza and that sensitivity of subjective complaints is rather low to rely on it.

A significantly greater proportion of patients who received antiviral treatment within 48 h from symptom onset of uncomplicated compared with complicated cases (69.7% vs. 21.2%, \(P > 0.001 \)) suggests that early antiviral treatment protects against the development of pneumonia. However, the role of neuraminidase inhibitors in recovery from pandemic influenza complicated by pneumonia remains unclear, since 30% of patients with radiologically confirmed pneumonia recovered without antiviral treatment. Similar findings were reported in other studies (12–15). It is difficult to determine precisely the cause of pneumonia based on radiographs only.

Table 3. The Baseline Characteristics of Pregnant vs. Nonpregnant Women of the Reproductive Age With Pandemic Influenza A (H1N1)

Baseline Characteristic	Pregnant Women (n=31)	Nonpregnant Women of the Reproductive Age (n=24)	\(P \)
Age, mean (SD), years	25.6 (5.5)	28.3 (5.5)	0.129
Time from symptom onset to hospitalization, mean (SD), days	1.79 (1.37)	3.33 (1.81)	0.001
Hospitalized within 48 h, n (%)	20 (69.0)	8 (33.3)	0.030
At least one comorbidity, n (%)	5 (16.1)	5 (20.8)	0.654
Fever, n (%)	30 (96.8)	23 (95.8)	0.853
Cough, n (%)	28 (90.3)	21 (87.5)	0.902
Shortness of breath, n (%)	4 (12.9)	8 (33.3)	0.069
Myalgia, n (%)	14 (45.2)	11 (45.8)	0.960
Gastrointestinal symptoms, n (%)	2 (6.5)	6 (25)	0.060
Headache, n (%)	15 (48.4)	11 (45.8)	0.851
Complicated influenza, n (%)	3 (9.7)	8 (33.3)	0.04
Antiviral treatment, n (%)	19 (61.3)	14 (58.3)	0.824
Time from symptom onset to initiation of antiviral treatment, mean (SD), days	2.18 (1.88)	4.43 (2.10)	0.004
Treatment started within 48 h, n (%)	9 (52.9)	4 (28.6)	0.171
and further studies are necessary to correlate radiographic findings with the cause of pneumonia during an influenza outbreak. In the absence of accurate diagnostic methods, treatment with both antibiotics and antiviral drugs should be indicated for the patients who are hospitalized with suspected influenza and lung infiltrates on chest radiography.

In our series, severe cases requiring management in the ICU occurred in all age groups, mostly in previously healthy individuals without any known risk factors predisposing to complicated influenza. Death occurred in 5% of patients in our study, which corresponds to the findings reported elsewhere (10, 15, 16). The risk of death from seasonal influenza is highest among people aged 65 years and more. In the case of pandemic influenza, severe outcomes occurred in a much younger population than typically it is in the case of seasonal influenza (10, 17–19). The results of our study confirm this observation.

A significant proportion – a quarter of all hospitalized patients – in this cohort was comprised of pregnant or postpartum women. The majority of pregnant women (90.3%) had uncomplicated influenza and were admitted due to pregnancy as a major risk factor for possible aggravated course of illness. Pregnant women did not differ from nonpregnant with regard to age, comorbidity, and use of antivirals. Only 1 of the 31 pregnant and postpartum patients had a severe course and died, which differs from the reports of increased mortality rates for this group of patients in other countries (20–26). Since time from symptom onset to hospitalization and initiation of antiviral treatment was significantly shorter in pregnant women compared to nonpregnant, it is tempting to conclude that pregnant women benefit from early antiviral therapy. Taken together, we attribute our findings of a less complicated course of illness in pregnant women to early presentation, diagnosis, and prompt specific treatment.

Our study has several limitations, which make our findings suggestive rather than definitive. We evaluated only the patients with confirmed pandemic 2009 influenza A (H1N1) virus infection; therefore, our sample may not be representative of the hospitalized patients who may not have been tested. In addition, the criteria for hospitalization and the algorithms for the use of diagnostic tests were not uniform in all three participating centers. Finally, despite the use of a standardized data collection form, not all information was collected for all patients.

Conclusions

We report the first case series on clinical spectrum of pandemic influenza in adults in Lithuania and conclude that delayed initiation of antiviral therapy may have contributed to increased severity of illness. The results of our study might help in guiding prevention measures and choosing disease management during the upcoming influenza seasons in Lithuania.

Acknowledgments

We kindly acknowledge Dr. Vilnelė Lipnickienė (Virology Laboratory of the Center for Communicable Diseases and AIDS of Lithuania) and Kristina Rudžinskaitė (Kaunas Public Health Center) for providing data of confirmed pandemic influenza cases in Kaunas as well as Gintarė Bunikytė for excellent technical assistance.

Nuo pandeminio 2009 m. A (H1N1) gripo Kaune, Lietuvoje, stacionare gydyti suaugusių

Aukšė Mickienė¹, Lina Daniusevičiūtė³, Neringa Vanagaitė², Daiva Vėlyvytė¹,

Ona Blauzdžiūnienė³, Ruta Nadišauskienė³, Andrius Macas¹, Raimundas Sakalauskas²,

Vidas Pilvinis⁶, Irena Nedzelskienė⁷, Liucija Jodžiūnienė⁸

¹Lietuvos sveikatos moksly universiteto Medicinos akademinis Infekcinių ligų klinika,
²Lietuvos sveikatos moksly universiteto Medicinos akademinis Radiologijos klinika,
³Lietuvos sveikatos moksly universiteto Medicinos akademinis Akušerijos ir ginekologijos klinika,
⁴Lietuvos sveikatos moksly universiteto Medicinos akademinis Anesteziologijos klinika,
⁵Lietuvos sveikatos moksly universiteto Medicinos akademinis Palmonologijos ir imunologijos klinika,
⁶Lietuvos sveikatos moksly universiteto Medicinos akademinijos Intensyviosios terapijos klinika,
⁷Lietuvos sveikatos moksly universiteto Medicinos akademinios Dantų ir burnos ligų klinika,
⁸Kauno ligoninės Reanimacijos ir intensyviosios terapijos skyrius

Raktažodžiai: 2009 m. A (H1N1) gripas, rizikos veiksniai, nėštumas, komplikacijos, pneumonija.

Santrauka. Tyrimo tikslas. Nustatyti pacientų, gydytų 2009 m. stacionare nuo pandeminio A (H1N1) gripo per pirmuosius penkis pandemijos mėnesius, ligos ypatumus ir komplikuotas ligos formos rizikos veiksnius.

Tyrimo metodika. Retrospektyvioji suaugusių pacientų, patvirtinus laboratorišką A (H1N1) gripą, gydytų trijose Kauno ligoninėse nuo 2009 m. lapkričio 1 d. iki 2010 m. kovo 15 d., analizė. Pagrindiniai vertinimo kriterijai: klinika, komplikuoto gripo rizikos veiksniai, gydymas ir ligos eiga.
Rezultatai. Į tyrimą įtraukta 121 pacientų iš 125, hospitalizuotų dėl pandemijos 2009 m. A (H1N1) gripo. Vidutinis tiriamejų amžius – 31 metai (nuo 18 iki 83 metų). 5 proc. pacientų buvo vyrinės nei 65 metų. Nėščios ir pogimdyminio laikotarpio moterys sudarė 26 proc. visų hospitalizuotų ligonių. Infiltracija plačiuose nustatyta 49,5 proc. pacientų, kuriems buvo atlikta krūtinės ląstos rentgenograma, trečdaliu atejuą – abipusė. Plaučių uždegimui komplikuoto pandemijos gripo rizika reiškė didėjusio kiekvieną uždelsto gydymo vaistą, nuo gripo diena (SS 2,241, 95 proc. PI 1,354–3,710). 57 proc. tiriamejų skirtas gydymas vaistais nuo gripo, 45 proc. gydytų ligonių vaistai nuo gripo buvo pradėti vartoti per 48 val. nuo simptomų pradžios. 7,4 proc. pacientų gydinti intensyviosios terapijos skyriuose. Mėrė 5 proc. pacientų (6 iš 121). Vidutinis mirusių pacientų amžius – 43,5 metų (nuo 23 iki 63 metų). Keturi mirė ligoniai nesirgo jokiomis gretutinėmis ligomis, vienas sargė lėtine limfeolukoze, viena mirusioji buvo nėščia.

Išvada. Komplikuotas pandemijos 2009 m. A (H1N1) gripas nustatytas didelai daliai hospitalizuotų suaugusių pacientų. Svarbiasius komplikuoto pandemijos gripo rizikos veiksnius – uždelstas gydymas vaistais nuo gripo.

References

1. Louie JK, Acosta M, Winter K, Jean C, Gavali S, Schechter R, et al; California Pandemic (H1N1) Working Group. Factors associated with death or hospitalization due to pandemic 2009 influenza A(H1N1) infection in California. JAMA 2009;302(17):1896-902.

2. Užkrečiamųjų ligų ir AIDS centro duomenys. (Data of the Center for Communicable Diseases and AIDS of Lithuania.) Available from: URL: http://www.ucld.lt

3. Miller RL, Markowitz BA, Rolfs RT, Brown SM, Dascomb KR, Grissom CK, et al. Clinical findings and demographic factors associated with ICU admission in Utah due to novel 2009 influenza A(H1N1) infection. Chest 2010;137(4):752-8.

4. Jain S, Kamimoto I, Bramley AM,Schmitz AM, Benoit SR, Jain S, et al. Pandemic Influenza A (H1N1) Virus Hospitalizations Investigation Team. Hospitalized patients with 2009 H1N1 influenza in the United States, April-June 2009. N Engl J Med 2009;361(20):1935-44.

5. Childs RA, Palma AS, Wharton S, Matrosovich T, Liu Y, Chai W, et al. Receptor-binding specificity of pandemic influenza A(H1N1) 2009 virus determined by carbohydrate microarray. Nat Biotechnol 2009;27(9):797-9.

6. World Health Organization. CDC protocol of realtime RT-PCR for swine influenza A(H1N1), version 2009. Available from: URL: http://www.who.int/csr/resources/publications/swineflu/CDCrealtime_RTPCR_SwineH1Assay-2009-20090430.pdf

7. Database of the Department of Statistics under the Government of the Republic of Lithuania. Available from: URL: http://db1.stat.gov.lt/statbank/default.asp?w=1152

8. Crum-Cianflone NF, Blair P, Facklam R, Sherman SS, et al. Clinical and epidemiologic characteristics of an outbreak of novel H1N1 (swine origin) influenza A virus among United States military beneficiaries. Clin Infect Dis 2009;49(12):1801-10.

9. Lee EH, Wu C, Lee EU, Stoute A, Hansen H, Cook HA, et al. Fatalities associated with the 2009 H1N1 influenza A virus in New York City. Clin Infect Dis 2010;50(11):1498-504.

10. Campbell A, Rodin R, Kropp R, Mao Y, Hong Z, Vachon J, et al. Risk of severe outcomes among patients admitted to hospital with pandemic (H1N1) influenza. CMAJ 2010;182(4):349-55.

11. Zarychanski R, Stuart TL, Kumar A, Doucette S, Elliott L, Zarychanski R, et al. Correlates of severe disease in patients with 2009 pandemic influenza (H1N1) virus infection. CMAJ 2010;182(3):257-64.

12. Denholm JT, Gordon CL, Johnson PD, Hugawaga SS, Stuart RL, Abolins C, et al. Hospitalised adult patients with pandemic (H1N1) 2009 influenza in Melbourne, Australia. Med J Aust 2010;192(2):84-6.

13. Lee N, Choi KW, Chan PKS, Hui DSC, Lui GCY, Wong BCK, et al. Outcomes of adults hospitalised with severe influenza. Thorax 2010;65:510-5.

14. Hajjar LA, Schout D, Galas FR, Uip DE, Levin AS, Caiappa Filho HH, et al. Guidelines on management of human infection with the novel virus influenza A (H1N1) – a report from the Hospital das Clinicas of the University of São Paulo. Clinics (Sao Paulo) 2009;64(10):1015-24.

15. McGeer A, Green KA, Plevneshi A, Shigayaeva A, Siddiqi N, Raboud J, et al. Antiviral therapy and outcomes of influenza requiring hospitalization in Ontario, Canada. Clin Infect Dis 2007;45(12):1568-75.

16. Campbell A, Rodin R, Kropp R, Mao Y, Hong Z, Vachon J, et al. Risk of severe outcomes among patients admitted to hospital with pandemic (H1N1) influenza. CMAJ 2010;182(4):349-55.

17. Chan M, Chen MI, Chow A, Lee CP, Tan AS, Lye DC, et al. Pandemic (H1N1) 2009 clinical and laboratory findings of the first fifty cases in Singapore. Ann Acad Med Singapore 2010;39(4):267-6.

18. Mu YP, Zhang ZY, Chen XH, Xi XH, Lu YF, Tang YW, et al. Clinical features, treatments and prognosis of the initial cases of pandemic influenza A(H1N1) 2009 virus infection in Shanghai China. QJM 2010;103(5):311-7.

19. Torres JP, O’Ryan M, Herve B, Espinoza R, Acuña G, Mahalch J, et al. Impact of the novel influenza A (H1N1) during the 2009 autumn-winter season in a large hospital setting in Santiago, Chile. Clin Infect Dis 2010;50(6):860-8.

20. Hewagama S, Walker SP, Stuart RL, Gordon C, Johnson PD, Friedman ND, et al. 2009 H1N1 influenza A and pregnancy outcomes in Victoria, Australia. Clin Infect Dis 2010;50(5):686-90.

21. The ANZIC Influenza Investigators and Australasian Maternity Outcomes Surveillance System. Critical illness due to 2009 A/H1N1 influenza in pregnant and postpartum women: population based cohort study. BMJ 2010;340:c1279.

22. Callaghan WM, Chu SY, Jamieson DJ. Deaths from season al influenza among pregnant women in the United States, 1998-2005. Obstet Gynecol 2010;115(5):919-23.

23. Louie JK, Acosta M, Jamieson DJ, Honein MA; California Pandemic (H1N1) Working Group. Severe 2009 H1N1 influenza in pregnant and postpartum women in California. N Engl J Med 2010;362(1):27-35.

24. Jamieson DJ, Honein MA, Rasmussen SA, Williams JL, Swerdlow DL, Biggerstaff MS, et al; Novel Influenza A (H1N1) Pregnancy Working Group. H1N1 2009 influenza virus infection during pregnancy in the USA. Lancet 2009;374(9688):451-8.

25. Sistom AM, Rasmussen SA, Honein MA, Fry AM, Seib K, Callaghan WM, et al; Pandemic H1N1 Influenza in Pregnancy Working Group. Pandemic 2009 influenza A(H1N1) virus illness among pregnant women in the United States. JAMA 2010;303(15):1517-25.

26. Creanga AA, Johnson TF, Graitter SB, Hartman LK, Al- Saif A, Schwartz AG, et al. Severity of 2009 pandemic influenza A (H1N1) virus infection in pregnant women. Obstet Gynecol 2010;115(4):717-26.