Abstract
- Existing security solutions for rapidly-changing, modern clouds still struggle with too many false-positive alarms.
- The lack of a true, causal link between IoCs makes correlations error-prone.
- We propose an idea for a framework that automatically and strategically injects lures and decoys, so that we can span an attack graph onto which alarms are projected for reconstruction.

Introduction
- Recent work focuses on correlating many weak indicators by IP addresses, alarm types, or time windows.
- Cyber deception reduces false-positives, but they are not as automatic, nor adaptive to scale well with modern cloud environments.

We focus on three aspects:
- Cyber Deception. Use honeypots and honeytokens for stronger IoCs.
- Automatic Injection. Strategically and automatically place tripwires in existing applications, and react to changes.
- Attack Graphs. Causally connected deceptive components naturally span an attack graph onto which incoming alarms can be projected, which provides clearer insights into multi-step attacks.

We ask the following research question:
- „Are automatically injected tripwires suitable to reconstruct multi-step cyber attacks in modern cloud environments?“

Conclusion
- We describe a framework and tripwires.
- Future work implements such a system and evaluates attack reconstruction.

A tripwire describes the relation between lures, decoys, their deployment on some targets via a deploy module, and its associated alarm system.
- Connected. Each tripwire comes with a set of lures and decoys that enforce strong causal dependencies.
- Managed. Deployment and clean-up of lures, decoys, and alarm systems is taken care of accordingly.
- Automatic. Injection points in libraries of existing applications are detected and automatically populated with tripwires.
- Strategic. Tripwires are placed to efficiently cover the environment, and to discover relevant attack phases.
- Adaptive. Tripwires are re-deployed when the environment changes.

The framework describes the life cycle of tripwires in cloud environments, from deployment, alarm and attack graph storage, to attack reconstruction.
- Deploy Module. Process hooks identify application libraries and then provide a DM that can inject tripwires and associate an alarm system with it.
- Tripwire Pool. Holds multiple definitions of tripwires that could be deployed.
- Deployment Controller. Manages the deployment of tripwires in the cloud.
- Attack Graph. Stores the relationships between deceptive components.
- Attack Reconstruction. Uses backward and forward tracking algorithms to reconstruct multi-step cyber attacks.