Comment on: 'Evaluation of chemoresponse assays as predictive markers’

C Tian1, M J Gabrin1, S L Brower,*1 and D J Sargent2

1Helomics Corporation, 2516 Jane Street, Pittsburgh, PA 15203, USA and 2Health Sciences Research, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA

Sir,

We read with great interest the recent Short Communication by Korn and Freidlin (2015), which considers hypothetical examples challenging the ‘match/mismatch’ analysis presented in Tian et al (2014). In Tian et al (2014), we proposed and applied a novel match/mismatch analysis approach for evaluating the predictive value of a chemoresponse assay from an observational study, by investigating the assay’s association with outcome. The match analysis was performed using the assay result for the administered therapy (assayed therapy = administered chemotherapy); the mismatch analysis was performed using the assay result for a randomly selected therapy from all assayed treatments for a given patient, not necessarily matching the administered therapy (assayed therapy ≠ administered chemotherapy). If the match association is stronger than mismatch association, then the association is potentially drug specific and the assay may have predictive value. Using three examples in which a hypothetical chemoresponsiveness assay is assumed to have only prognostic value, Korn and Freidlin (2015) have indicated that this analytical method may incorrectly conclude that the assay has predictive properties.

We agree with Korn and Freidlin (2015) that the match/mismatch method employed in Tian et al (2014) should be applied in limited circumstances and likely cannot be generalised to all chemoresponsiveness, or more generally to all predictive biomarker assessment studies. As Korn and Freidlin (2015) point out, in situations where either (1) the treatments being considered have meaningful differences in efficacy in the unselected population or (2) specific treatment selection for a given patient is based on factors that have prognostic importance, the match/mismatch approach is inappropriate. However, we believe that neither of these cases are present in the clinical situation of recurrent ovarian cancer considered in the study by Rutherford et al (2013).

Specifically, in their hypothetical examples 2 and 3, Korn and Freidlin (2015) assumed different efficacies across treatments. This is inconsistent with the clinical situation in recurrent ovarian cancer (to which the match/mismatch analysis was applied), where more than ten different drugs are recommended, but evidence from clinical trials fail to demonstrate that any one is superior to any other (National Comprehensive Cancer Network, 2014). In their hypothetical example 1, Korn and Freidlin (2015) assumed similar treatment effects for drugs A and B, but they also assumed that the patients treated by drug A were different from those treated by drug B in terms of patient prognostic profiles. In Korn and Freidlin’s (2015) example, due to differences in subpopulations (pattern of assay results and sampling fraction can also be different), the match/mismatch analysis method is indeed inappropriate. However, in the study by Tian et al (2014), 15 drugs and 695 patients were analyzed, and, as such, the heterogeneous pattern of assay results across treatments was far more complex than Korn and Freidlin’s (2015) example that included two drugs. In addition, although it is possible that the treatment groups differ in prognostic profile, it is more likely, as demonstrated in clinical practice, that patients with similar prognoses have multiple therapeutic options, and there are no clear prognostic factors which dictate treatment decisions for individual patients. Taking all of these considerations together, after reanalyzing, the likelihood that patients included in the mismatch analysis have similar prognostic profiles (on average), compared with those included in the match analysis, is quite high.

Table 1 shows the comparison of patient prognostic profiles between match and mismatch analyses in the study by Tian et al (2014), demonstrating strong similarity between the two analysis groups. For the mismatch analysis used in Tian et al (2014), patients with heterogeneous patterns of in vitro response were assigned either ‘sensitivity (S)’ or ‘resistance (R)’ assay results by reanalysis. For match analysis, 28.6% were treated with an S drug and 71.4% were treated with an R drug, with mean multiple drug

Abbreviations: MDRI = multiple drug response index; TFI = treatment-free interval.

*Correspondence: Dr Y Lazebnik; E-mail: yuri.lazebnik@gmail.com or GE Parris; E-mail: antimony_121@hotmail.com

Published online 13 January 2015

© 2015 Cancer Research UK. All rights reserved 0007 – 0920/15

http://creativecommons.org/licenses/by-nc-sa/4.0/
Response to Comment on: ‘Evaluation of chemoresponse assays as predictive biomarkers’

E L Korn,*,† and B Freidlin†

1Biometric Research Branch, Division of Cancer Treatment and Diagnosis, National Cancer Institute, MSC 9735, Bethesda, MD 20892, USA

Sir,

We thank Tian et al (2015) for their comments on our paper (Korn et al, 2015). They appear to agree with us that their analytic methods proposed in Tian et al (2014) do not work unless the following two assumptions hold: (1) the treatments have approximately equal efficacy in the overall population and (2) the treatments the patients received were essentially assigned randomly (and not associated factors that have prognostic importance). We note that these two assumptions are very strong, and, following Tian et al (2015), we review their plausibility in the context of recurrent ovarian cancer considered by Rutherford et al (2013). For assumption (1), one might question whether single-agent cisplatin or carboplatin works as well as the other treatments (e.g., combinations with platinum) on the population studied by Rutherford et al (2013), which contains ~45% of patients who were resistant to their initial platinum chemotherapy. If single-agent platinum drugs do not work as well, then assumption (1) is violated.

Assumption (2) allows one to treat observational data as if it were from a randomised clinical trial. It is impossible to prove that this assumption is satisfied, as there may always be important unmeasured prognostic characteristics of the patients that clinicians are implicitly using to help decide which treatments have to be given to which patients. However, it is possible to show that the assumption is questionable by finding a known important prognostic variable that is associated with the treatment the patients received. In the present case, consider the recognised important prognostic variable defined by whether patients are platinum sensitive or platinum resistant to their initial platinum chemotherapy (Jayson et al, 2014). It is known that patients with platinum-sensitive recurrent disease are more likely to be treated with combination of drugs including a platinum agent, whereas patients with platinum-resistant recurrent disease are more likely treated with a single (non-platinum) drug (Jayson et al, 2014). Indeed, this appears to be the case with data analysed by Rutherford et al (2013), where 27% of the platinum-sensitive patients received (non-platinum) single drugs whereas 50% of the platinum-resistant patients did (Table 1). This suggests a violation of assumption (2) that patients had their treatment chosen randomly.

It can be difficult to assess in any given clinical situation whether the required assumptions for the analytic methods of Tian et al (2014) are reasonable. In particular, the required assumptions seem questionable in this recurrent ovarian cancer setting.

References

Korn EL, Freidlin B (2015) Evaluation of chemoresponse assays as predictive markers. Br J Cancer 112: 621–623.

National Comprehensive Cancer Network (2014) NCCN Clinical Practice Guidelines in Oncology. Ovarian Cancer: Including Fallopian Tube Cancer and Primary Peritoneal Cancer. Version 3.2014.

Rutherford T, Orr Jr J, Grendys Jr E, Edwards R, Krivak TC, Holloway R, Moore RG, Puls L, Tillmanns T, Schink JC, Brower SL, Tian C, Herzog TJ (2013) A prospective study evaluating the clinical relevance of a chemoresponse assay for treatment of patients with persistent or recurrent ovarian cancer. Gynecol Oncol 131: 362–367.

Tian C, Sargent D, Krivak TC, Powell MA, Gabrin MJ, Brower SL, Coleman RL (2014) Evaluation of a chemoresponse assay as a predictive marker in the treatment of recurrent ovarian cancer: further analysis of a prospective study. Br J Cancer 111: 843–850.

*Correspondence: Dr EL Korn; E-mail: korne@ctep.nci.nih.gov
Published online 12 May 2015
© 2015 Cancer Research UK. All rights reserved 0007 – 0920/15

http://creativecommons.org/licenses/by-nc-sa/4.0/

Table 1. Distribution of patients cross classified by treatment received and platinum status (data are abstracted from Supplementary Table S1 of Rutherford et al (2013))

	Platinum sensitive	Platinum resistant
Non-platinum single drugs	35 (27%)	56 (50%)
Platinum-containing combinationsb	95 (73%)	57 (50%)
Total	130 (100%)	113 (100%)

Tablino, paxlitaxel, gemcitabine, paclitaxel.

Carboplatin/paclitaxel, carboplatin/gemcitabine, carboplatin/docetaxel, cisplatin/gemcitabine, cisplatin/paclitaxel, carboplatin/topotecan.

*Correspondence: Dr SL Brower; E-mail: sbrower@helomics.com
Published online 19 May 2015
© 2015 Cancer Research UK. All rights reserved 0007 – 0920/15

http://creativecommons.org/licenses/by-nc-sa/4.0/