Insulin Injection Technique is Negatively Correlate to Short- and Long-run Glycemic Control in Type 2 Diabetic Patients with Long-Acting Insulin Analogue

Yan Cheng
Yancheng third people's hospital

Qing-he Li
Yancheng third people's hospital

Fen-di Yi
Yancheng third people's hospital

Li-ping Chen
Yancheng third people's hospital

Lei Yuan
Yancheng third people's hospital

Ji-qiang Yan
Yancheng third people's hospital

Lan Gao
Yancheng third people's hospital

Yu-xia Qi
Yancheng third people's hospital

Qin Sun
Yancheng third people's hospital

Fu-wan Ding (dingfuwan@163.com)
Yancheng third people's hospital

Dong-ping Wang
Yancheng third people's hospital

Research Article

Keywords: type 2 diabetes, insulin injection technique, A1c, mean amplitude of 45 glycemic excursion, continuous glucose monitoring

DOI: https://doi.org/10.21203/rs.3.rs-535126/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Insulin Injection Technique is Negatively Correlate to Short- and Long-run Glycemic Control in Type 2 Diabetic Patients with Long-Acting Insulin Analogue

Running Title: Insulin injection technique affects glycemic control

Author names: Yan Cheng1*, Qing-he Li1*, Fen-di Yi1*, Li-ping Chen1*, Lei Yuan1, Ji-qiang Yan1, Lan Gao1, Yu-xia Qi1, Qin Sun1, Fu-wan Ding1, and Dong-ping Wang1

*the four authors contributed equally to this article.

Author affiliations:

1Department of Endocrinology, Yancheng third people's hospital, Yancheng, China

Address Correspondence to Fu-wan Ding, M.D, Department of Endocrinology, Yancheng third people's hospital, Yancheng, China. No. 166 Yulong West Road, Yancheng, China, 224001.

E-mail: dingfuwan@163.com

Telephone number: +86 51566696800.

Correspondence also should be addressed to Dong-ping Wang, M.D.

Department of Endocrinology, Yancheng third people's hospital, Yancheng, China.

Address: No. 166 Yulong West Road, Yancheng, China, 224001.

E-mail: Wangdongping0000@126.com

Telephone number: +86 51566696800
Abstract

Objective: To observe the effects of insulin injection technique (IT) on short- or long-run glycemic control in type 2 diabetic patients (T2D) with long-acting insulin analogue.

Methods: This was a single-center, cross-over, observational and open-labeled study. Patients with T2D receiving long-acting insulin analogue insulin were enrolled as inpatients. The study period lasting for 5 days including a 1-day screen period and 4-day continuous glucose monitoring (CGM) period. During CGM period, patients injected insulin themselves from day 1 to day 2, and patient’s insulin IT was given by two independent specialist nurses, with insulin injected by nurses from day 3 to day 4. The primary endpoint was the correlation between the insulin IT and the mean amplitude of glycemic excursion (MAGE).

Results: A total of 60 diabetic inpatients were recruited and completed the study. The mean score of patients’ insulin IT of patients was lower than that of nurses (p<0.05). We observed that the MAGE value was significant different between the two injections period (P<0.05), and needle reuse and rotation of injection site were negatively correlated to MAGE and HbA1c values, respectively.

Conclusion: Insulin IT was negatively correlation to short- or long-run glycemic control in T2D patients with long-acting insulin analogue therapy.

Key words: type 2 diabetes; insulin injection technique; A1c; mean amplitude of glycemic excursion; continuous glucose monitoring
Introduction

Insulin resistance and hyperglycemia are two features of type 2 diabetes (T2D)\(^1\). If oral antidiabetic agents (OADs) are no longer sufficient to maintain glycemic control, insulin therapy will be a strategy of interest\(^2\). Available evidences indicates that more than half of T2D Asia population are on insulin therapy\(^3\), with most of them are prescribed premixed insulin (77.3%) for maintaining their glycemic control\(^4\)\(^-\)\(^6\), following by basal (11.8%) and prandial insulin (10.9%)\(^7\).

Although study demonstrated premixed insulin analogue therapy has beneficial for glycemic variation in Chinese T2D patients\(^8\). Recently, a pilot study performed in China reporting that only 27% of type 2 diabetic patients receiving premixed insulin analogue therapy had adequate glycemic control (HbA1c \(\leq 7\%\))\(^9\), which was much lower than those the whole population in China\(^10\) and the USA population\(^11\). Incorrect insulin injection technique (IT) is a common phenomenon worldwide, which may be the underline reason for the worsen of glycemic control \(^12\), \(^13\). Lu Yuan, et al. further observed that Chines T2D patients had lower IT, and resuspension, needle reuse and pinching the skin were significantly correlation with glycemic variations (GV) in T2D patients receiving premixed insulin analogue\(^9\). GV, especially acute postprandial glucose, is an well known risk factor for microvascular and macrovascular complications\(^14\), and GV increases circulating cytokines other than chronic glucose concentrations\(^15\). Which highlight the importance of IT on glycemic control in diabetic patients with insulin therapy.

More than one fifth Chinese T2D received basal and prandial insulin\(^7\). However, there are rare data regarding the impact of IT on GV in T2D patients receiving basal and prandial insulin. Continuous glucose monitoring (CGM) provides a potential opportunity to assess the 24-hrs GV in patients with T2D\(^16\). Therefore, we conducted the single-center, cross-over, observational and open-labled study to observe the relationship between GV and insulin IT in patients with T2D who received long-acting insulin analogue therapy.
Methods

This was a single-center, cross-over, observational and open-labeled study. The study protocol and patient consent forms were approved by the Institutional Ethical Committee of Yancheng third people's hospital, Yancheng, China. All procedures performed were in accordance with the ethical standards of Yancheng third people's hospital, and the Helsinki Declaration of 1964 as revised in 2013. Informed consent was obtained from all patients for being recruited in the study.

Between Jan. and Jun. 2019, patients with T2D who used basal and prandial insulin were enrolled as inpatients in Department of Endocrinology, Yancheng third people's hospital, Yancheng, China. The inclusion criteria were 1) Confirmed diagnosis of T2D; 2) patients aged between 18 and 80 years; 3) insulin administered by insulin pen themselves and insulin doses maintained stable for at least 3 months; and 4) patients were willing to perform CGM. The exclusion criteria were 1) patients with serious cognitive dysfunction; 2) patients with ketoacidosis or hyperosmolar state (coma); 3) patients with pregnancy, breast-feeding, or planning to have a baby; 4) patients with poor compliance and irregular eating and exercise; 5) patients with severe retinopathy or other eye problems.

The study period lasting for 5 days including a 1-day screen period and 4-day CGM period. Patients demography data were recorded at day 0, and fasting serum fasting plasma serum was collected for measurement of HbA1c value on day 1 morning. All recruited patients injected insulin themselves from day 1 to day 2, and patient’s insulin IT was given by two independent specialist nurses using a scale containing 15 skill-related items, with minor modification (Table 1), as previously described9. From days 3 to days 4, the same type (unopened) and dose of insulin was delivered by nurses.

During the insulin injection period (from day 1 to day 5), all recruited patients were subjected to a 96-hrs retrospective CGM (Medtronic Incorporated, Northridge, USA), as previously described17, 18. All patients were instructed to perform self-monitored blood glucose measurements, using OneTouch Ultra Vue blood glucose monitor (LifeScan, Milpitas, CA), before breakfast, lunch, and dinner and before going to bed,
respectively. During the CGM period, three meals per day consisting of a total daily caloric intake of 25 kcal/kg/day were served at 0700, 1100 and 1700 by research nurses, respectively. At the endpoint, CGM data including the mean amplitude of glycemic excursion (MAGE), the 24-hrs mean glucose concentration (MG), the 24-hrs standard deviation of the MG (SD), the incremental area under the curve (AUC) of glucose >10.0 mmol/L and the incremental area over the curve (AOC) of glucose <3.9 mmol/L were recorded and analyzed. The primary endpoint was the correlation between the insulin IT and the MAGE. The secondary endpoints were the differences in glycemic profiles between patient and nurse injection period.
Statistical analysis

The analyses were performed using the SPSS 18.0 (SPSS, Science, Chicago, USA) statistical package. All normal distribution of the data were presented as the means ± SD, and non-normally distributed data were presented as median (25th, 75th percentile). Pearson’s analysis or Spearman’s analysis in nonparametric variable were performed to analyze correlation relationships between two variables. A two-way ANOVA for repeated measurements was used in the comparison of indices between two groups. Multiple linear stepwise regression analysis was performed to identify factors which correlation with MAGE or HbA1c. All comparisons were 2-sided at the 5% significance level. P value less than 0.05 was considered to be statistical significance.
Results

Between Jan. and Jun. 2019, a total of 65 patients with T2D who used long-acting insulin analogue were enrolled as inpatients in Department of Endocrinology, Yancheng third people's hospital, Yancheng, China. all recruited subjects completely fulfilled the study, with 1 patient was excluded due to unfulfilled of self-injection, and 4 patients were excluded because of missing CGM data (>30%). The remaining data from 60 patients (34 males and 26 females) were analyzed at the endpoint. The demographic data were: patients age was 58.4±14.3 years, HbA₁c value was 8.6±1.1%, body mass index (BMI) was 23.7±2.8 kg/m² and diabetic duration was 13.2±7.6 years, respectively.

The duration for using insulin was 7.2±7.6 years, with 2.2±1.4 injection daily, and the mean insulin dose was 0.4±0.4 U/kg/day.

In this study, we assumed scores of insulin IT gained by specialist nurses were 28 points, because they were all trained for diabetic patients care for at least 5 years. We observed that the mean score of patients’ insulin IT was significantly lower than those mean score of specialist nurses (22.3±3.6 vs. 28, p<0.05). In addition, there was no differences in score of insulin IT between male and female patients (21.6±1.7 vs. 23.8±4.1, p>0.05).

In the present pilot study, we expected to see a significant improvement in GV during diabetic patients receiving insulin delivered by specialist nurses compared to those who injection themselves period. Our CGM data showed that the GV, in terms of MAGE, SD, CV%, and AUC >10 mmol/L in patient injection period were significantly higher than those of nurse injection period (P<0.05, respectively). Although we did not observe significant differences in the MG and the AOC <3.9 mmol/L between the two injection periods (Table2).

To identify whether score of insulin IT was the independent risk factor for short-run and long-run glycemic control in diabetic patients receiving prandial. Multiple linear stepwise regression analysis showed that insulin IT score was significantly negatively correlated to MAGE (B=-0.18, p<0.05), and HbA1c (B=-0.31, P<0.05), controlling for gender, age, BMI, duration with insulin, times of insulin injections daily, doses of insulin daily, duration of diabetes. Of importance, in this study, our data indicated that
subitems of insulin IT, such as needle reuse, were significantly correlated to MAGE value ($r=-0.42$, $p<0.05$), and the score of rotation of insulin injection site was negatively correlated to HbA1c level ($r=-0.25$, $P<0.05$).
Discussion

In this pilot study, we observed that nearly half patients with T2D receiving long-acting insulin analogue therapy had their glycemic control. We also found that patients mean IT scores were lower than that of nurses, and the lower IT scores were significantly negatively correlated to the GV, in terms of MAGE, SDBG, and CV%.

Inject site choice, needle use, insulin suspension, and other profile regarding insulin injection, are common problems affect insulin efficacy in outpatient diabetic patients worldwide. In this study, each patient scores of insulin IT were the sum of each subitem score given by two special diabetic nurses according to them performance. we observed that T2D patients with insulin therapy gained dramatically lower IT in the real world, with the scores lost mainly focused on the rotation of injection site and needle reuse.

In this observational study, we observed that only 20% of T2D patients had HbA1c less than 7%. HbA1c is an established index employed for judging long-term glycemic control. However, HbA1c value itself can’t describe well the glycemic variation, especially acute glucose fluctuation. CGM employee is one strength of this study, our data showed that insulin IT not only negatively correlated to HbA1c value, but also negatively correlated to GV. Our findings were in accordance with previous study reporting that patients receiving pre-mixed insulin analogue with lower insulin IT had significantly increase in GV and HbA1c value.

Unlike premixed insulin analogue, insulin did not need resuspension before injection. However, other injection problems remain to be resolved. Study revealed that reuse of needles may lead to bad short-run and long-run glycemic control, such as increased in GV and HbA1c levels, and lipohypertrophy (LH). Using self-monitoring of blood glucose data, researchers observed that LH was an independent risk factor for the increase in GV. Unfortunately, nearly half of patients with insulin therapy reuse their needles more than once throughout the world. In this study, only 4.2% patients used their needles once, with most of them had their needles use more than 5 times. Of importance, we found that the needle reuse score was significantly negative related to
MAGE. Much indices delivered from CGM were used to assess GV, such as MAGE, SD, and CV%, in pre- or onset diabetic patients29-31, of which, there exist a high degree of correlation between SD and MAGE32, 33. Interestingly, our data also revealed that the score of needle reuse was negatively correlated to SD.

Rotate of injection site is one of the independent risk factor for induction of HbA\textsubscript{1c} level, the underline mechanism may partially be the reason of the LH12, 13, 34, 35. In this study, we observed that patients with insulin with lower rotation injection site score had significantly increase in MAGE, and HbA\textsubscript{1c} value, which was slightly different to previous study reporting that score of rotation of injection site was negative correlation with HbA\textsubscript{1c} value in patients with premixed insulin analogue, rather than MAGE9. Future studies identifying the relationship between score of rotation of injection site and HbA\textsubscript{1c} or MAGE are warranted. Lifted a skinfold is most important in the past decade during insulin injection. However, the score of lifted a skinfold of insulin IT may be not importance as before, because 4 mm needle was used predominately nowadays in China. In this study, all recruited patients lifted their skinfold well.

Several limitations should be addressed in this study. First, the sample size was modest; Second, it was an observational study, not a perspective study, Third, the study population may not be the same as other geography.

In conclusion, our data indicates that insulin IT was negatively correlation to short-or long-run glycemic control in T2D patients with long-acting insulin analogue therapy in Chinese population.
Acknowledgements

This research was funded by Science and Technology Support Program of Jiangsu Province (CN) (No. BL2014010).

Authors’ Contributions Statement

Y. C., and QH. L. contributed to the conception and design of the study. FD. Y., LP. C., and L. Y. conducted the study and collected data. JQ. Y., L. G., YX. Q., and Q. S. contributed to the data analysis. FW. W., and DP. W. prepared and finally approved the manuscript.

Data availability

The datasets generated during and/or analyzed during the current study are not publicly available due [REASON WHY DATA ARE NOT PUBLIC] but are available from the corresponding author on reasonable request.

Declaration of conflict of interest:

None.
References

1. Ferrannini E, Gastaldelli A, Miyazaki Y, Matsuda M, Mari A, DeFronzo RA. Beta-cell function in subjects spanning the range from normal glucose tolerance to overt diabetes: A new analysis. *The Journal of clinical endocrinology and metabolism*. 2005;90:493-500

2. Riddle M, Umpierrez G, DiGenio A, Zhou R, Rosenstock J. Contributions of basal and postprandial hyperglycemia over a wide range of a1c levels before and after treatment intensification in type 2 diabetes. *Diabetes care*. 2011;34:2508-2514

3. Guo XH, Yuan L, Lou QQ, Shen L, Sun ZL, Zhao F, Dai X, Huang J, Yang HY, Chinese Diabetes Education Status Survey Study G. A nationwide survey of diabetes education, self-management and glycemic control in patients with type 2 diabetes in china. *Chinese medical journal*. 2012;125:4175-4180

4. Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, Nauck M, Peters AL, Tsapas A, Wender R, Matthews DR, American Diabetes A, European Association for the Study of D. Management of hyperglycemia in type 2 diabetes: A patient-centered approach: Position statement of the american diabetes association (ada) and the european association for the study of diabetes (eads). *Diabetes care*. 2012;35:1364-1379

5. Yang W, Lu J, Weng J, Jia W, Ji L, Xiao J, Shan Z, Liu J, Tian H, Ji Q, Zhu D, Ge J, Lin L, Chen L, Guo X, Zhao Z, Li Q, Zhou Z, Shan G, He J, China National D, Metabolic Disorders Study G. Prevalence of diabetes among men and women in china. *The New England journal of medicine*. 2010;362:1090-1101

6. Qiao Q, Nakagami T, Tuomilehto J, Borch-Johnsen K, Balkau B, Iwamoto Y, Tajima N, International Diabetes Epidemiology G, Group DS. Comparison of the fasting and the 2-h glucose criteria for diabetes in different asian cohorts. *Diabetologia*. 2000;43:1470-1475

7. He X, Chen L, Wang K, Wu H, Wu J. Insulin adherence and persistence among chinese patients with type 2 diabetes: A retrospective database analysis. *Patient preference and adherence*. 2017;11:237-245

8. Huang Y, Heng C, Wei J, Jing X, Wang X, Zhao G, Hou J, Liu Q, Jiao K. Influencing factors of glycemic variability in hospitalized type 2 diabetes patients with insulin therapy: A strobe-compliant article. *Medicine*. 2017;96:e8021

9. Yuan L, Li F, Jing T, Ding B, Luo Y, Sun R, Wang X, Diao H, Su X, Ye L, Ma J. Insulin injection technique is associated with glycemic variability in patients with type 2 diabetes. *Diabetes therapy : research, treatment and education of diabetes and related disorders*. 2018;9:2347-2356

10. Xu Y, Wang L, He J, Bi Y, Li M, Wang T, Wang L, Jiang Y, Dai M, Lu J, Xu M, Li Y, Hu N, Li J, Mi S, Chen CS, Li G, Mu Y, Zhao J, Kong L, Chen J, Lai S, Wang W, Zhao W, Ning G, China Noncommunicable Disease Surveillance G. Prevalence and control of diabetes in chinese adults. *Jama*. 2013;310:948-959

11. Suh DC, Choi IS, Piauschninat C, Kwon J, Baron M. Impact of comorbid conditions and race/ethnicity on glycemic control among the us population with type 2 diabetes, 1988-1994 to 1999-2004. *Journal of diabetes and its complications*. 2010;24:382-391

12. Frid AH, Hirsch LJ, Menchior AR, Morel DR, Strauss KW. Worldwide injection technique questionnaire study: Population parameters and injection practices. *Mayo Clinic proceedings*. 2016;91:1212-1223

13. Frid AH, Hirsch LJ, Menchior AR, Morel DR, Strauss KW. Worldwide injection technique
questionnaire study: Injecting complications and the role of the professional. *Mayo Clinic proceedings*. 2016;91:1224-1230

14. Nakagami T. Hyperglycaemia and mortality from all causes and from cardiovascular disease in five populations of Asian origin. *Diabetologia*. 2004;47:385-394

15. Esposito K, Nappo F, Marfella R, Giugliano G, Giugliano F, Ciottola M, Quagliaro L, Ceriello A, Giugliano D. Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: Role of oxidative stress. *Circulation*. 2002;106:2067-2072

16. Li FF, Liu BL, Yan RN, Zhu HH, Zhou PH, Li HQ, Su XF, Wu JD, Zhang DF, Ye L, Ma JH. Features of glycemic variations in drug naive type 2 diabetic patients with different hba1c values. *Scientific reports*. 2017;7:1583

17. Li FF, Fu LY, Zhang WL, Su XF, Wu JD, Sun J, Ye L, Ma JH. Blood glucose fluctuations in type 2 diabetes patients treated with multiple daily injections. *Journal of diabetes research*. 2016;2016:1028945

18. Li FF, Xu XH, Fu LY, Su XF, Wu JD, Lu CF, Ye L, Ma JH. Influence of acarbose on plasma glucose fluctuations in insulin-treated patients with type 2 diabetes: A pilot study. *International journal of endocrinology*. 2015;2015:903524

19. Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy. The diabetes control and complications trial/epidemiology of diabetes interventions and complications research group. *The New England journal of medicine*. 2000;342:381-389

20. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (ukpds 33). Uk prospective diabetes study (ukpds) group. *Lancet*. 1998;352:837-853

21. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The diabetes control and complications trial research group. *The New England journal of medicine*. 1993;329:977-986

22. Del Prato S. In search of normoglycaemia in diabetes: Controlling postprandial glucose. *International journal of obesity and related metabolic disorders : journal of the International Association for the Study of Obesity*. 2002;26 Suppl 3:S9-17

23. Nathan DM, Kuenen J, Borg R, Zheng H, Schoenfeld D, Heine RJ. Translating the a1c assay into estimated average glucose values. *Diabetes care*. 2008;31:1473-1478

24. Zhou J, Mo Y, Li H, Ran X, Yang W, Li Q, Peng Y, Li Y, Gao X, Luan X, Wang W, Xie Y, Jia W. Relationship between hba1c and continuous glucose monitoring in chinese population: A multicenter study. *PloS one*. 2013;8:e83827

25. Omori K, Kawamura T, Urata M, Matsuura M, Kusama M, Imamine R, Watarai A, Nakashima E, Umemura T, Hotta N. Effect of re-coaching on self-injection of insulin in older diabetic patients - impact of cognitive impairment. *Diabetes research and clinical practice*. 2017;130:34-42

26. Jehle PM, Micheler C, Jehle DR, Breitig D, Boehm BO. Inadequate suspension of neutral protamine hagendorf (nph) insulin in pens. *The Lancet*. 1999;354:1604-1607

27. Ji J, Lou Q. Insulin pen injection technique survey in patients with type 2 diabetes in mainland china in 2010. *Current medical research and opinion*. 2014;30:1087-1093

28. Blanco M, Hernandez MT, Strauss KW, Amaya M. Prevalence and risk factors of
lipohypertrophy in insulin-injecting patients with diabetes. *Diabetes & metabolism*. 2013;39:445-453

29. Fabris C, Facchinetti A, Sparacino G, Zanon M, Guerra S, Maran A, Cobelli C. Glucose variability indices in type 1 diabetes: Parsimonious set of indices revealed by sparse principal component analysis. *Diabetes technology & therapeutics*. 2014;16:644-652

30. Fabris C, Facchinetti A, Fico G, Sambo F, Arredondo MT, Cobelli C. Parsimonious description of glucose variability in type 2 diabetes by sparse principal component analysis. *Journal of diabetes science and technology*. 2015;10:119-124

31. Rodbard D. New and improved methods to characterize glycemic variability using continuous glucose monitoring. *Diabetes technology & therapeutics*. 2009;11:551-565

32. Rodbard D, Bailey T, Jovanovic L, Zisser H, Kaplan R, Garg SK. Improved quality of glycemic control and reduced glycemic variability with use of continuous glucose monitoring. *Diabetes technology & therapeutics*. 2009;11:717-723

33. Rodbard D. Increased glycemic variability at the onset and during progression of type 2 diabetes—commentary. *Diabetes technology & therapeutics*. 2013;15:445-447

34. Wang W, Guo X, Shen G, Bai G, Wei Z, Liu J, Hirsch L, Strauss K. Skin and subcutaneous tissue thickness at insulin injection sites in Chinese diabetes patients: Clinical implications. *Diabetes & metabolism*. 2016;42:374-377

35. Ji L, Sun Z, Li Q, Qin G, Wei Z, Liu J, Chandran AB, Hirsch LJ. Lipohypertrophy in china: Prevalence, risk factors, insulin consumption, and clinical impact. *Diabetes technology & therapeutics*. 2017;19:61-67
Legends

Table 1 The items and scores of insulin injection technique

Table 2 The 24-hrs glucose profiles between the two different injection groups
Table 1 The items and scores of insulin injection technique

Items	Scores
Injection at indicated time	2
Yes	2
No	0
Warming up to room temperature before injection	2
Yes	2
>30 min	2
<30 min	1
No	0
Checking insulin (dosage and liquid) before injection	2
Yes	2
Partly	1
No	0
Attaching a pen needle	2
Correct	2
Incorrect	0
Priming before injection	2
Yes	2
No	0
Inspection of injection sites	2
Yes	2
No	0
Rotation of injection sites	2
Correct	2
Incorrect	0
Disinfection the skin and injection after disinfection being dried	2
Yes	2
Correct	1
Incorrect	0
Pinching the skin	2
Yes	2
No	0
Needle entry angle	2
Correct	2
Incorrect	0
The time(s) the pen needle under the skin	2
>10	2
5-10	1
<5	0
Pulling needle out while holding dose knob	2
Yes	2
No	0
Needle reuse (times)	2
---------------------	---
1	2
2-5	1
>5	0
Insulin (opened and unopened) storage	2
Yes	2
Partly	1
No	0
Total scores	28
Table 2 The 24-hrs glucose profiles between the two different injection groups

Parameters	Patient	Nurse	P value
MG (mmol/L)	8.4±3.5	8.2±1.1	0.63
SD (mmol/L)	4.2±3.3	2.5±2.2	0.02
MAGE (mmol/L)	6.4±4.0	4.3±1.80	0.01
AUC>10 (mmol/L per day)	0.5 (0.0, 0.8)	0.2 (0.0, 0.3)	0.01
AOC<3.9 (mmol/L per day)	0.0 (0.0, 0.0)	0.0 (0.0, 0.0)	0.43

MG: the 24-hrs mean glucose concentration, SD: the standard deviation of MG, MAGE: the 24-hrs mean amplitude of glycemic excursion, AUC>10 mmol/L: the incremental area under curve of plasma glucose >10.0 mmol/L, AOC<3.9 mmol/L: the incremental area over curve of plasma glucose <3.9 mmol/L. Normal distribution data were presented as mean ± SD and non-normal distribution data were shown as median (25th, 75th percentile).