Synthesis, Structural, W-H Plot and Size-Strain Analysis of Nano Cobalt Doped MgFe$_2$O$_4$ Ferrite

Rakesh Vishwaroop1, Shridhar N. Mathad$^{2)*}$

1Department of Physics, Jain P.U. College, Davanagere, Karnataka, India
2Department of Physics, K.L.E Institute of Technology-590030, Karnataka, India

Abstract:

In this study we have investigated structural attribute of Co$^{+2}$ doped MgFe$_2$O$_4$. Synthesis of Mg$_{1-x}$Co$_x$Fe$_2$O$_4$ ferrite was carried out using co-precipitation method. The formation of spinal ferrite was confirmed through X-ray diffraction. Lattice parameter found to be 8.376748 Å and crystallite sizes in the range 180-365 Å are observed. Various parameters like dislocation density (ρ_D); mechanical properties (strain), Hopping length {tetrahedral site (L$_A$) and octahedral site (L$_B$)}, Bond length (A-O and B-O), and Ionic radii (rA and rB) were reported. The W-H plot and Size-Strain plots were extensively studied and the results have been correlated.

Keywords: Synthesis; Structure; Sintering; Spinel.

1. Introduction

Magnetic nano-particles have become subject of intense research because of their applications in high density magnetic recording, in the technological, medical and industrial applications [1]. Spinall ferrite materials attained vast interest because of their unparalleled magnetic, electric and dielectric properties [2-3]. Spinell ferrites with a general chemical formula of MFe$_2$O$_4$, in which M is one or two of divalent metals, such as Co, Mg, Zn, Ni, etc.[3-4].

Magnesium ferrite has cubic structure and it is a soft magnetic n-type semiconductor material. It finds applications in heterogeneous catalysis, adsorption sensors etc. Magnesium ferrite with a chemical formula of MgFe$_2$O$_4$ has an inverse spinel structure, in which half of the trivalent cations occupy the tetrahedral (A) sites and the other half of the trivalent cations and all of the divalent cations fill the octahedral (B) sites [5]. Because of easy fabrications, high efficiencies, thermal stabilities, and low costs of magnesium-ferrites have the broad in scope of applications from low frequencies to microwave frequencies (devices) [6-7]. The excellent magnetic and electrical properties such as high permeability, high electrical resistivity and low dielectric and magnetic losses these ferrites can be used to fabricate as microwave devices like circulators, insulators and phase shifters [8-9].

To accomplish low dielectric losses, reduce the transmission loss [10] cobalt ferrite is used due to high coercivity, high chemical stability and good electrical insulation. Any change in distribution of cations among tetrahedral site and octahedral site by cations substitution have very dominant effects on the physical properties, the substitutions of magnetic or non-magnetic ions alters the spin order which affects the magnetic and electric properties of ferrite structure and greatly affect the ferrite overall properties [11-12]. The

* Corresponding author: physicssiddu@gmail.com
substitution of non-magnetic magnesium ion can modify the properties of cobalt ferrite [12]. The cation distribution according to the earlier reported reveals that magnesium ions exist in both sites (A and B) but have a strong preference for the octahedral (B) site [13]. XRD, FTIR and dielectric studies of Mg–Co nano crystalline ferrites (x=0, 0.05, 0.1, 0.15, 0.2, 0.25) were prepared by the sol–gel method [14].

Numbers of methods to synthesize the ferrites are solid state reactions [15-16], co-precipitation technique [17], microwave processing [18], polymer-assisted route [19], auto combustion [20-21], micro emulsions [22] in reverse micelles [23], sucrose precursor [24].

In this work we report the cobalt doped magnesium ferrite (Mg_{0.85}Co_{0.15}Fe_{2}O_{4}) by simple chemical route by co-precipitation method. Detailed structural properties studied by XRD. The W-H plot and Size Strain Plots (SSP) were extensively studied and the results have been correlated. Dislocation density (ρ_d); mechanical properties (strain), Hopping length {tetrahedral site (L_A) and octahedral site (L_O)}, Bond length (A-O and B-O), and Ionic radii (r_A and r_B) were also reported.

2. Materials and Experimental Procedures

Analytical grade FeCl₃·6H₂O, MgCl₂·6H₂O and CoCl₂·H₂O reagents were weights in molar ratio, in distilled water to produce ionic solution. Ferrite was synthesized from simple low cost co-precipitation method. Ammonia is added drop-wise under constant stirring and a pH of 8 is maintained throughout the reaction. During this method, metal salts converted into hydroxides and subsequent transformation of metal hydroxide into nano Mg_{0.85}Co_{0.13}Fe_{2}O_{4} ferrite.

Precipitate is further powdered using mortar and crusher for one hour. Then the sample is heated to 550 °C for 6 hour in muffle furnace to obtain final nano ferrite powder. The structural characterisation of sample was carried by X-ray diffractometer Bruker AXS D8 Advance diffractometer (Cu–Kα radiation). The schematic diagram of the synthesis method with results observed is shown in Fig. 1.
3. Results and Discussion

3.1 XRD analysis

The XRD pattern of Mg_{0.85}Co_{0.15}Fe_{2}O_{4} was shown in Fig. 2 with peaks (220), (311), (222), (400), (422), (511), and (440) respectively. These plains confirm cubic structure of Mg-Co ferrite. The diffraction maximum from Bragg’s law is prevailed by:

\[2d_{hkl} \sin \theta = n\lambda \] \hspace{1cm} (1)

\[d = \frac{a}{(h^2 + k^2 + l^2)^{1/2}} \] \hspace{1cm} (2)

It can be seen that the diffraction peaks are either all even or all odd, which suggests a spinel phase (lattice parameter = 8.376748 Å) for sample and thus validates the cubic structure. The detailed information of sample like lattice parameter (a), and interplanar distances (d) are tabulated in Table I.

serial no	2 theta	d value in Å	observed intensity	observed intensity %	standard intensity %	Miller indices	lattice parameter
1	33.211	2.6954	257	75.3	10.1	2 2 0	8.32564
2	35.617	2.51867	342	100	100	3 1 1	8.353483
3	40.934	2.20297	101	29.5	51	4 0 0	8.81188
4	43.197	2.09265	93.3	27.3	51	4 0 0	8.3706
5	49.384	1.84398	94.5	27.6	9.6	3 3 1	8.037722
6	54.109	1.69357	141	41.3	3	4 2 2	8.296765
7	57.109	1.61151	91.8	26.8	24.2	5 1 1	8.373652
8	62.553	1.48371	166	48.6	41.6	4 4 0	8.393131

Tab. I Lattice parameter (a), and interplanar distances (d).

Lattice parameter 8.376748

Fig. 2. XRD pattern of nano Mg_{0.85}Co_{0.15}Fe_{2}O_{4} ferrite.
Average Crystallite size (D) is calculated by Debye-Sherrer’s formula [16]:

\[
D = \frac{0.9 \cdot \lambda}{\beta \cdot \cos \theta}
\]

(3)

\(D\) is size of the particle, \(\lambda\) is the wavelength of x-rays (1.5406 Å), \(\theta\) is Bragg angle for the peak pure diffraction broadening \(\beta\). The calculated average crystallite size (D) of samples is 243 Å.

The distance between magnetic ions (hopping length) in A site (Tetrahedral) and B site (Octahedral) were calculated by using [15-16] the complying relations \{(LA and LB)\}:

\[
L_A = \frac{a \times \sqrt{3}}{4}
\]

(4)

\[
L_B = \frac{a \times \sqrt{2}}{4}
\]

(5)

where \(a\) is lattice constant:

\[
A - O = (u - 1/4)a\sqrt{3}
\]

(6)

\[
B - O = (5/8 - u)a
\]

(7)

\[
r_a = (u - 1/4)a\sqrt{3} - r(O^{2-})
\]

(8)

\[
r_b = (5/8 - u)a - r(O^{2-})
\]

(9)

\[
\text{micro-strain} (\varepsilon) = \frac{\beta \cos \theta}{4}
\]

(10)

Dislocation Density \((\rho_D) = \frac{1}{D^2}\)

(11)

\[
\rho_D = \frac{15\varepsilon}{aD}
\]

(12)

The lattice constant \((a=b=c)\), cell volume \((V)\), Dislocation density \((\rho_D)\), micro-strain\((\varepsilon)\), Hopping lengths (tetrahedral site \((L_A)\) and octahedral site \((L_B)\)) bond lengths \((A-O\) and \(B-O)\) and ionic radii \((r_A\) and \(r_B)\) on \(A\)-site and \(B\)-site were systematically order in Table II.

Lattice parameter (Å)	Volume of unit cell V (e-30)	Hopping length LB (Å)	Hopping length LA (Å)	Bond length A-O (Å)	Bond length A-B (Å)	Ionic Radii rA (Å)	Ionic Radii rB (Å)
8.376748	587.7956	3.627238	2.961628	1.813619	2.094187	0.463619	0.744187

3.2 Williamson-Hall analysis (W-H plot) and “Size-Strain plot” (SSP) analysis

Assuming the size and strain broadening are additive components of the total integral breadth of a Bragg peak [25]. The distinct angle \((\theta)\) dependencies of both effects laid the basis
for the separation of size and strain broadening in the analysis of Williamson and Hall [15-17].

$$\beta_{hkl} \cos \theta = \frac{K \cdot \lambda}{D} + 4\varepsilon \sin \theta$$ \hspace{1cm} (13)

Fig. 3 shows the variation between the $\beta \cos \theta$ vs. $\sin \theta$ (W-H analysis). The equation (16) represents (linear form) $y = mx + c$ where $m = \text{strain}$ and $c = 1/D$, so that the linear plot of $\beta \cos \theta$ vs. $\sin \theta$ gives the slope as lattice strain (ε) and the intercept as $1/D$.

Fig. 3. Williamson-Hall analysis (W-H plot) for Mg-Co ferrite.

The “size-strain plot” (SSP) is an instrument to interpret the quantity of isotropic nature and micro-strain contribution and the advantage is that less weight is given to data from reflections at high angles, where the precision is usually lower which is shown in Fig. 4. In this approximation, we assume that the “crystallite size” profile is described by a Lorentzian function and the “strain profile” by a Gaussian function [15, 26]. Accordingly, we have:

$$\left(\frac{d_{hkl} \beta_{hkl} \cos \theta}{\lambda} \right)^2 = \frac{3}{4} \frac{\lambda}{D} \left(\frac{d_{hkl} \beta_{hkl} \cos \theta}{\lambda} \right) + \frac{\varepsilon}{2}$$ \hspace{1cm} (14)

Fig. 4. Size-Strain analysis (W-H plot) for Mg-Co ferrite.
In Fig. 4 similarly to the W-H methods, the term \((d_{hkl}^2 \beta_{hkl} \cos \theta)^2\) is plotted with respect to \((d_{hkl}^2 \beta_{hkl} \cos \theta)^2\) for the all orientation peaks of Mg_{1-x}Co_{x}Fe_{2}O_{4} ferrite (x=0.15) ferrite samples with the cubic spinel structure. Crystallite size and lattice strain were also extracted from the XRD data using Williamson-Hall formula through the following equations. In this case, the equivalence between W-H plot and SSP has been reported in Table III. Results of lattice strain and average crystallite size of samples encountered in good agreement with the value obtained from the equations (Table IV).

Sl. No.	Angle 20 (in degrees)	Angle 0 (in degrees)	cosθ	sinθ	FWHM β (in radians)	βcosθ	D (Å)	Dislocation Density \(\rho D\) X 10 \(^{-4}\)	Micro Strain \(\epsilon\)	d	\(d^*(d\beta\cos\theta)\)	
1	33.211	16.6055	0.958263	0.285877	0.005936	0.005689	243.7386	1.68326	0.001422	2.6954	0.000235	0.041329
2	35.617	17.8085	0.952047	0.309951	0.006548	0.006234	222.4325	2.02117	0.001558	2.51867	0.000246	0.039544
3	49.384	24.692	0.908497	0.417891	0.007333	0.006662	208.1207	2.30871	0.001666	1.84398	0.000151	0.022653
4	54.109	27.0545	0.890492	0.454999	0.005814	0.005177	267.8021	1.39435	0.001294	1.69357	7.69E-05	0.01485
5	62.555	31.2765	0.854563	0.519348	0.006615	0.00567	244.546	1.67216	0.001417	1.48371	7.69E-05	0.012482

Results of lattice strain and average crystallite size of samples encountered in good agreement with the value obtained from the equations (Table IV).

Tab. IV Calculated values of crystallite size, micro strain and dislocation density using W-H plots, SSP and standard formula.
Crystallite size \(A^3\)
From W-H graph
364

3.3 Texture analysis

The reflection intensities from each XRD pattern contain information related to the preferential or random growth of polycrystalline material, which is studied by calculating texture coefficient \(TC_{(hkl)}\) for all planes using [15-17]:

\[
TC_{(hkl)} = \frac{I_{(hkl)}}{I_{o(hkl)}} \left(\frac{1}{\sum N_{(hkl)}} \right) \quad (15)
\]

Tab. V Texture analysis of Sample.
Sl. No.

h
1
2
3
4
5
6
7

where \(I_{(hkl)}\) is the measured intensity of X-ray reflection, \(I_{o(hkl)}\) is the corresponding standard intensity and \(N\) is the number of reflections observed in the XRD pattern. Texture coefficient is higher than one indicates preferential orientation and also indicates the abundance of grains...
along the given (hkl) plane. TC(220) has relatively higher value 3.43 than other planes indicating higher orientations of crystallites along these particular planes. TC for different (hkl) planes is demonstrated in Table V. It is observed that, preferential orientation (abundance of grains) in (220) plane direction.

The stacking fault probability was calculated by measuring the peak shift and tangent values of diffracting angle:

$$\alpha = \left[\frac{2\pi^2}{45\sqrt{3}} \right] \frac{\Delta 2\theta}{\tan \theta_{hl}}$$

(16)

α- stacking fault coefficient, $\Delta 2\theta$- difference in standard and observe 2θ values. The detailed analysis of stacking fault probability is shown in Table VI and observed to be for this ferrite as 0.0735.

The growth mechanism of ferrite sample can be estimated by calculating the standard deviation using the equation [17]:

$$\sigma = \sqrt{\frac{\sum I_{hl}^2 - (\sum I_{hl}^2/2)}{N}}$$

(17)

where I_{hl} stands for relative intensity of the (hkl) plane. The estimated standard deviation, σ, in the relative intensity values was calculated and tabulated in Table VII from the values of the five strongest lines, excluding the line with $I_{hl} = 100$. The calculated value of σ is 45.25, which appears to be relatively depleted showing that heterogeneous nucleation, desorption and adsorption are recessive and the homogeneous nucleation looks predominant [28].

Observed Angle 20	Observed Angle 20 in rad	Calculated d (Å)	Calculated Angle 0	Calculated Angle 20	$\Delta 2\theta$	$\tan \theta$	h	k	l	Stacking fault coefficient (α)
33.211	0.579532	2.6934	0.263658	0.527317	0.052115	2	2	2	0	0.044359
35.617	0.621517	2.51867	0.310567	0.621133	0.621133	3	1	1	1	0.489884
40.934	0.714298	2.20297	0.377464	0.754929	0.040631	0.373152	4	0	0	0.027581
43.197	0.753788	2.09265	0.377464	0.754929	0.001141	0.395815	4	0	0	0.00073
49.384	0.861751	1.84398	0.413299	0.826899	0.035152	0.459681	3	3	1	0.01937
54.109	0.942202	1.69357	0.468331	0.936661	0.007541	0.510612	4	2	2	0.003741
57.109	0.996552	1.61151	0.499292	0.998584	0.002032	0.544066	5	1	1	0.000946
62.533	1.09155	1.48371	0.548292	1.096584	0.005034	0.607307	4	4	0	0.002099

Average = 0.073589

Observed Intensity %	I*	I*I	I*I/2	Standard Deviation
24	576	288	46.38819	
26.8	718.24	359.12	46.23462	
27.3	745.29	372.645	46.20536	
27.6	761.76	380.88	46.18753	
29.5	870.25	435.125	46.06994	
41.3	1705.69	852.845	45.15412	
75.3	5670.09	2835.045	40.52721	

Standard Deviation = 45.25242
4. Conclusion

The nano cobalt substituted Mg-ferrite (Mg$_{0.85}$Co$_{0.15}$Fe$_2$O$_4$) was successfully synthesized by a coprecipitation method. Structural properties were investigated by XRD analysis shows cubic single phase spinel with lattice parameter 8.376748 Å and crystallite-size (D) is 243 Å. We have also discussed dislocation density (ρ_D), mechanical properties (strain), hopping length {tetrahedral site (LA) and octahedral site (LB)}, bond length (A-O and B-O), ionic radii (rA and rB) and stacking fault probability (α) of Mg$_{0.85}$Co$_{0.15}$Fe$_2$O$_4$ sample. The W-H plot and size strain plots were extensively studied and the results have been correlated. Thus Low-cost chemical method (co-precipitation) technique is a favourable way to obtaining homogeneous nano Mg$_{1-x}$Co$_x$Fe$_2$O$_4$ ferrite.

5. References

1. Aktas, B., Tagirov, L. Mikailov (Eds.), F., 2013. Nanostructured Magnetic Materials and their Applications, Springer science & business media 143.
2. N. Tran, T. J. Webster, Magnetic nanoparticles: biomedical applications and challenges, J. Mater. Chem. 20 (2010) 8760-8767.
3. M. Arruebo, R. Fernandez-Pacheco, M. R. Ibara, J. Santamaria, Magnetic nanoparticles for drug delivery, Nano Today 2 (3) (2007) 22-32.
4. T. W. Mammo, N. Murali, Y. M. Sileshi, T. Arunamani, Studies of structural, morphological, electrical, and magnetic properties of Mg substituted Co-ferrite materials synthesized using sol-gel auto-combustion method, Phys. B: Condens. Matter 523 (2017) 24-30.
5. I. C. Nlebedim, N. Ranvah, P. I. Williams, Y. Melikhov, J. E. Snyder, A. J. Moses, D. C. Jiles, Effect of heat treatment on the magnetic and magnetoelastic properties of cobalt ferrite, J. Magn. Magn. Mater. 322 (2010) 1929-1933.
6. M. Ishaque, M. A. Khan, I. Ali, H. M. Khan, M. A. Iqbal, M. U. Islam, M. F. Warsi, Investigations on structural, electrical, and magnetic properties of Mg substituted Co-ferrite materials synthesized using sol-gel auto-combustion method, Phys. B: Condens. Matter 523 (2017) 24-30.
7. R. Zahir, F. U. Z. Chowdhury, M. M. Uddin, M. A. Hakim, Structural, magnetic and electrical characterization of Cd-substituted Mg ferrites synthesized by double sintering technique, J. Magn. Magn. Mater. 410 (2016) 55-62.
8. U. R. Ghodake, R.C. Kambale, S.S. Suryavanshi, Effect of Mn$^{2+}$ substitution on structural, electrical, transport and dielectric properties of Mg-Zn ferrites, Ceram.Int. 43 (1) (2017) 1129-1134.
9. J. Sharma, N. Sharma, J. Parashar, V. K. Saxena, D. Bhatnagar, K. B. Sharma, Dielectric properties of nanocrystalline Co-Mg ferrites, J. Alloy. Compd. 649 (2015), 362-367.
10. A. Hannour, D. Vincent, F. Kahlouche, A. Tchangoulian, S. Neveu, V. Dupuis, Self-biased cobalt ferrite nanocomposites for microwave applications, J. Magn. Magn. Mater. 353 (2014) 29-33.
11. K. Khalaf, A. Al-Rawas, H. Widatallah, K. Al-Rashdi, A. Sellai, A. Gismelseed, et al., Journal of Alloys and Compounds, 657, 733 (2016)
12. V. Vinayak, P. P. Khirade, S. D. Birajdar, P. Gaikwad, N. Shinde, K. Jadhav, Int. Adv. Res. J. Sci. Eng. Technol. 2, 55 (2015).
13. A. Pandit, A. Shitre, D. Shengule, K. Jadhav, Journal of Materials Science 40, 423 (2005).
14. Anis-ur-Rehman, M., Malik, M.A., Akram, M., Structural and Magnetic Properties of Nanocrystalline Mg–Co Ferrites, J Supercond Nov Magn (2012) 25: 2691. https://doi.org/10.1007/s10948-011-1244-z
15. S. N. Mathad, Mechanical and Structural Properties of Zn_{0.1}Ni_{0.4}Cu_{0.5}Fe_{2}O_{4} Ferrite, Int. J. Adv. Sci. Eng. Vol.5 No.2 (2018) 911-916.
16. S. L. Galagali, R. A. Patil, R. B. Adaki, C. S. Hiremath, S. N. Mathad , R. B. Pujar, “Influence of Cadmium substitution in magnesium ferrites on Structural and Mechanical properties”, Science of Sintering, 50 (2018) 217-223.
17. Yattinahalli, S. S., Kapatkar, S. B. Ayachit, N. H., and Mathad, S. N., Synthesis and structural characterization of nanosized nickel ferrite, Int. J. Self-Propag. High-Temp. Synth., 22, 3 (2013) 147-150.
18. Molakeri, A. S., Kalyane,S., Mathad, S. N., Elastic Properties of nickel ferrite synthesized by combustion and microwave method using FT-IR spectra, International Journal of Advanced Science and Engineering, 3 (4) (2017) 422-427.
19. Zhang, D. E., Zhang, X. J., Ni, X. M., Zheng H. G., and Yang, D. D., Synthesis and characterization of NiFe_{2}O_{4} magnetic nanorods via a PEG-assisted route, J. Magn.Magn. Mater., 292 (2005) 79-82.
20. Pathan, A.T., Mathad, S.N., and Shaikh, A.M., Infrared spectral studies of Co^{2+} substituted Li–NiZn nanostructured ferrites, Int. J. Self-Propag. High-Temp. Synth., 23, 2 (2014) 112-117. doi10.3103/S1061386214020083
21. Ehi-Eromosele Cyril Osereme, Ito Benedict Iserom, Iweala Emeka Eze Joshua, Synthesis, Microstructure and Magnetic Properties of Nano-crystalline MgFe_{2}O_{4} Particles: Effect of Mixture of Fuels and Sintering Temperature, Science of Sintering, 48 (2016) 221-235.
22. Mathew, D.S. and Juang, R.-S., Structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions, J. Cheminf., 38, 34, (2007) 1522-2667.
23. Kale, A., Gubbala, S., and Misra, R. D. K., Magnetic behavior of nanocrystalline nickel ferrite synthesized by the reverse micelle technique, J. Magn. Magn. Mater., 277 (2004) 350-358.
24. Rendale, M.K., Mathad, S.N., and Puri, V., Thick films of magnesium zinc ferrite with lithium substitution: Structural characteristics, Int. J. Self-Propag. High-Temp. Synth, 24, 2, (2015) 112-117.
25. A. B. Kulkarni, S. N. Mathad, “Synthesis and structural analysis of Co-Zn-Cd ferrite by Williamson-Hall and Size-Strain Plot Methods”, International Journal of Self-Propagating High-Temperature Synthesis, 27, 1 (2018) 37-43.
26. Kolekar, S. B.Kapatkar, S. N.Mathad, Synthesis and characterization of Co_{0.8-x}Ni_{x} Zn_{0.2}Fe_{2}O_{4} ferrites by Williamson–Hall and size–strain plot methods, Acta Chemica Iasi, 27, 1 (2019) 73-86.
27. A. R. Babar, S. S. Shinde, A. V. Moholkar, C. H. Bhosale, J. H. Kim and K. Y. Rajpure, Physical properties of sprayed antimony doped tin oxide thin films: The role of thickness, Journal of Semiconductors, 32, 5 (2011) 053001-1-053001-8.
28. Marlene C. Morris, Howard F. McMurdie, Eloise H. Evans, Boris Paretzkin, Harry S. Parker, and Nicolas C. Panagiotopoulos, Standard X-ray Diffraction Powder Patterns Section 18 Data for 58 Substances, 1981, https://digital.library.unt.edu/ark:/67531/metadc13210/m1/1/3/

Саметак: У овом раду смо испитивали структуру MgFe_{2}O_{4} допираног са Co^{2+}. Синтеза Mg_{1-x}Co_{x}Fe_{2}O_{4} ферита је изведена ко-предципитацијом. Формирање спинела је потврђено рендгенском дифракцијом. Параметри решетке су 8.376748 Å и величина кристалита је у опсегу 1\text{80}-365 Å. Такође су дате вредности за различите параметре као што су густина дислокација (\rho_D); механичка својства (напрезање), Хопингова дужина \{тетраедарски положај (L_A) и октаедарски положај (L_B)\}, дужина везе (A-O и
B-O), и јонски радијуси (rA and rB). Криве W-H и величина-напрезање су детаљно испитане и резултати корелисани.

Кључне речи: синтеза, структура, синтеровање, спинел.

© 2020 Authors. Published by association for ETRAN Society. This article is an open access article distributed under the terms and conditions of the Creative Commons — Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/).