The Operadic Nerve, Relative Nerve, and the Grothendieck Construction

Jonathan Beardsley and Liang Ze Wong

August 27, 2018

Abstract

We relate the relative nerve $N_f(D)$ of a diagram of simplicial sets $f: D \to sSet$ with the Grothendieck construction GrF of a simplicial functor $F: D \to sCat$ in the case where $f = NF$. We further show that any strict monoidal simplicial category C gives rise to a functor $C^\bullet: \Delta^{op} \to sCat$, and that the relative nerve of NC^\bullet is the operadic nerve $N^\otimes(C)$. Finally, we show that all the above constructions commute with appropriately defined opposite functors.

Contents

1 Introduction 2
 1.1 Outline 2

2 The relative nerve and the Grothendieck construction 3
 2.1 The relative nerve $N_f(D)$ 4
 2.2 The Grothendieck construction GrF 5
 2.3 Comparing $N(GrF)$ and $N_f(D)$ 6

3 Operadic nerves of monoidal simplicial categories 9
 3.1 C^\otimes and C^\bullet from a strict monoidal C 10
 3.2 The operadic nerve N^\otimes 12

4 Opposite functors 14
 4.1 Opposites of (monoidal) simplicial categories 14
 4.2 Opposites of ∞-categories 16
 4.3 Opposites of fibrations and monoidal quasicategories 18

References 19
1 Introduction

Given a simplicial colored operad O, [Lur12, 2.1.1] introduces the operadic nerve $N^\otimes(O)$ to be the nerve of a certain simplicial category O^\otimes. This has a canonical coCartesian fibration $N^\otimes(O) \to N(Fin_\ast)$ to the nerve of the category of finite pointed sets.

The operadic nerve generalizes the construction given in [Lur07, 1.6], which first forms a simplicial category C^\otimes from a monoidal simplicial category C, then takes its nerve to get $N^\otimes(C) := N(C^\otimes)$ which we call the operadic nerve of C. This has a canonical coCartesian fibration $N^\otimes(C) \to N(\Delta^{op})$, and is in fact a monoidal ∞-category in the sense of [Lur07, 1.1.2].

Our paper is motivated by the following: if C is a monoidal fibrant simplicial category, then so is its opposite C^{op}. We thus get a monoidal ∞-category $N^\otimes(C^{op})$. However, we could also have started with $N^\otimes(C)$ and arrived at another monoidal ∞-category $N^\otimes(C)^{op}$ by taking ‘fiberwise opposites’.

We show that $N^\otimes(C^{op})$ and $N^\otimes(C)^{op}$ are equivalent in the ∞-category of monoidal ∞-categories i.e. that the operadic nerve commutes with taking opposites. In the process of doing so, we also relate the operadic nerve, the relative nerve and the simplicial Grothendieck construction.

1.1 Outline

We begin in a more general context: in §2, we review the relative nerve $N_f(D)$ of a functor $f: D \to sSet$ and the Grothendieck construction GrF of a functor $F: D \to sCat$. We show that when F takes values in locally Kan simplicial categories, so that the composite $f: D \xrightarrow{F} sCat \xrightarrow{N} sSet$ takes values in quasicategories, we have an isomorphism associated to a commutative diagram:

$$
\begin{array}{ccc}
N(GrF) & \cong & N_f(D), \\
\downarrow_{Gr} & & \downarrow_{N(\cdot)(D)} \\
N^{\otimes} & \to & N^{\otimes}(D) \\
\text{opFib}_D & \xrightarrow{N} & \text{coCart}/N(D).
\end{array}
$$
The relative nerve is itself equivalent to the ∞-categorical Grothendieck construction $\text{Gr}_\infty : (\text{Cat}_\infty)^{N(D)} \to \text{coCart}_{/N(D)}$, yielding an equivalence of coCartesian fibrations

$$N(\text{Gr}F) \simeq \text{Gr}_\infty (N(f)).$$

In §3, we show that a strict monoidal simplicial category C gives rise to a functor $C^\bullet : \Delta^{op} \to s\text{Cat}$ whose value at $[n]$ is C^n. We show that $\text{Gr}C^\bullet \cong C^\otimes$, and thus that the operadic nerve $N^\otimes(C) := N(C^\otimes)$ factors as:

$$\begin{array}{ccc}
\text{Mon}(s\text{Cat}) & \xrightarrow{(-)^\otimes} & s\text{Cat}^{\Delta^{op}} \\
\downarrow \quad \quad \downarrow \quad \quad \downarrow \quad \quad \downarrow \\
\text{Mon}(s\text{Cat}) & \xrightarrow{(-)^\otimes} & s\text{Cat}^{\Delta^{op}}
\end{array}$$

In §4, we show that the above constructions interact well with taking opposites, in that the following diagram 'commutes':

$$\begin{array}{ccc}
\text{Mon}(s\text{Cat}) & \xrightarrow{(-)^\otimes} & s\text{Cat}^{\Delta^{op}} \\
\downarrow \quad \quad \downarrow \quad \quad \downarrow \quad \quad \downarrow \\
\text{Mon}(s\text{Cat}) & \xrightarrow{(-)^\otimes} & s\text{Cat}^{\Delta^{op}}
\end{array}$$

We write 'commutes' because we only check it on objects, and only up to equivalence in the quasicategory $\text{coCart}_{/\Delta^{op}}$. We conclude that $N^\otimes(C^{op})$ and the fiberwise opposite $N^\otimes(C)_{op}$ are equivalent in the ∞-category of monoidal ∞-categories.

2 The relative nerve and the Grothendieck construction

The ∞-categorical Grothendieck construction is the equivalence

$$\text{Gr}_\infty : (\text{Cat}_\infty)^S \overset{\simeq}{\longrightarrow} \text{coCart}_{/S}$$

induced by the unstraightening functor $\text{Un}_\infty^\uparrow : (s\text{Set}^+)^{\mathcal{C}[S]} \to (s\text{Set}^+)_{/S}$ of [Lur09, 3.2.1.6]. Here, Cat_∞ is the quasicategory of small quasicategories, and $\text{coCart}_{/S}$ is the quasicategory of coCartesian fibrations over $S \in s\text{Set}$, and these are defined as nerves of certain simplicial categories. (See A.1 and A.2, or [Lur09, Ch. 3] for details.)

In general, it is not easy to describe $\text{Gr}_\infty \varphi$ for an arbitrary $\varphi : S \to \text{Cat}_\infty$. However, when S is the nerve of a small category D, and φ is the nerve of
a functor \(f : \mathcal{D} \to \text{sSet} \) such that each \(f d \) is a quasicategory, the relative nerve \(N_f(\mathcal{D}) \) of \([\text{Lur09}, 3.2.5.2]\) yields a coCartesian fibration equivalent to \(\text{Gr}_\infty N(f) \).

If \(f \) further factors as \(\mathcal{D} \xrightarrow{F} \text{sCat} \xrightarrow{N} \text{sSet} \), where each \(F d \) is a locally Kan simplicial category, we may instead form the simplicially-enriched Grothendieck construction \(\text{Gr} F \) and take its nerve. The purpose of this section is to show that we have an isomorphism of coCartesian fibrations

\[
N(\text{Gr} F) \cong N_f(\mathcal{D}),
\]

thus yielding an alternative description of \(\text{Gr}_\infty N(f) \).

2.1 The relative nerve \(N_f(\mathcal{D}) \)

Definition 2.1.1 ([\text{Lur09}, 3.2.5.2]). Let \(\mathcal{D} \) be a category, and \(f : \mathcal{D} \to \text{sSet} \) a functor. The nerve of \(\mathcal{D} \) relative to \(f \) is the simplicial set \(N_f(\mathcal{D}) \) whose \(n \)-simplices are sets consisting of:

(i) a functor \(d : [n] \to \mathcal{D} \); write \(d_i \) for \(d(i) \) and \(d_{ij} : d_i \to d_j \) for the image of the unique map \(i \leq j \) in \([n]\),

(ii) for every nonempty subposet \(J \subseteq [n] \) with maximal element \(j \), a map \(s^J : \Delta^J \to f d_j \),

(iii) such that for nonempty subsets \(I \subseteq J \subseteq [n] \) with respective maximal elements \(i \leq j \), the following diagram commutes:

\[
\begin{array}{ccc}
\Delta^I & \xrightarrow{s^I} & f d_i \\
\downarrow & & \downarrow f d_{ij} \\
\Delta^J & \xrightarrow{s^J} & f d_j
\end{array}
\]

For any \(f \), there is a canonical map \(p : N_f(\mathcal{D}) \to N(\mathcal{D}) \) down to the ordinary nerve of \(\mathcal{D} \), induced by the unique map to the terminal object \(\Delta^0 \in \text{sSet} \) [\text{Lur09}, 3.2.5.4]. When \(f \) takes values in quasicategories, this canonical map is a coCartesian fibration classified (Definition A.2.9) by \(N(f) \):

Proposition 2.1.2 ([\text{Lur09}, 3.2.5.21]). Let \(f : \mathcal{D} \to \text{sSet} \) be a functor such that each \(f d \) is a quasicategory. Then:

(i) \(p : N_f(\mathcal{D}) \to N(\mathcal{D}) \) is a coCartesian fibration of simplicial sets, and

(ii) \(p \) is classified by the functor \(N(f) : N(\mathcal{D}) \to \text{Cat}_\infty \), i.e. there is an equivalence of coCartesian fibrations

\[
N_f(\mathcal{D}) \simeq \text{Gr}_\infty N(f).
\]
2.2 The Grothendieck construction $\text{Gr}F$

Suppose instead that we have a functor $F: \mathcal{D} \to \text{sCat}$. We may then take the nerve relative to the composite $f: \mathcal{D} \xrightarrow{F} \text{sCat} \xrightarrow{N} \text{sSet}$ to get a coCartesian fibration $N_f(D) \to N(D)$. We now describe a second way to obtain a coCartesian fibration over $N(D)$ from such an F.

Definition 2.2.1 ([BW18, Definition 4.4]). Let \mathcal{D} be a small category, and let $F: \mathcal{D} \to \text{sCat}$ be a functor. The **Grothendieck construction of F** is the simplicial category $\text{Gr}F$ with objects and morphisms:

\[
\text{Ob}(\text{Gr}F) := \coprod_{d \in \mathcal{D}} \text{Ob}(Fd) \times \{d\},
\]

\[
\text{Gr}F((x,c),(y,d)) := \coprod_{\varphi: c \to d} Fd(F\varphi x,y) \times \{\varphi\}.
\]

An arrow $(x,c) \to (y,d)$ (i.e. a 0-simplex in $\text{Gr}F((x,c),(y,d))$) is a pair $(F\varphi x \xrightarrow{\varphi} y, c \xrightarrow{\varphi} d)$, while the composite $(x,c) \xrightarrow{(\sigma,\varphi)} (y,d) \xrightarrow{(\tau,\psi)} (z,e)$ is

\[
(F(\psi \varphi)x = F\psi F\varphi x \xrightarrow{F\psi \sigma} F\psi y \xrightarrow{\tau} z, \ c \xrightarrow{\varphi} d \xrightarrow{\psi} e).
\]

There is a simplicial functor $P: \text{Gr}F \to \mathcal{D}$, $(x,c) \mapsto c$, induced by the unique maps $Fd(F\varphi x,y) \to \Delta^0$. Here, \mathcal{D} is treated as a discrete simplicial category with hom-objects

\[
\mathcal{D}(c,d) = \coprod_{\varphi: c \to d} \Delta^0 \times \{\varphi\}.
\]

Definition 2.2.2 ([BW18, Definition 3.5, Proposition 3.6]). Let $P: \mathcal{E} \to \mathcal{D}$ be a simplicial functor. A map $\chi: e \to e'$ in \mathcal{E} is **P-coCartesian** if

\[
\begin{align*}
\mathcal{E}(e',x) & \xrightarrow{-\circ \chi} \mathcal{E}(e,x) \\
\mathcal{D}(Pe',Px) & \xrightarrow{-\circ P\chi} \mathcal{D}(Pe,Px)
\end{align*}
\]

is a (ordinary) pullback in sSet for every $x \in \mathcal{E}$.

A simplicial functor $P: \mathcal{E} \to \mathcal{D}$ is a **simplicial opfibration** if for every $e \in \mathcal{E}, d \in \mathcal{D}$ and $\varphi: Pe \to d$, there exists a P-coCartesian lift of φ with domain e.

5
Proposition 2.2.3 ([BW18, Proposition 4.11]). The functor \(\text{Gr}F \to D \) is a simplicial opfibration.

Proposition 2.2.4. Let \(D \) be a category (i.e. a discrete simplicial category), and \(E \) be a locally Kan simplicial category. If \(P : E \to D \) is a simplicial opfibration, then \(N(P) : N(E) \to N(D) \) is a coCartesian fibration.

Proof. It suffices to show that any \(P \)-coCartesian arrow in \(E \) gives rise to a \(N(P) \)-coCartesian arrow in \(N(E) \). If \(\chi : e \to e' \) is \(P \)-coCartesian, then (2) is an ordinary pullback in \(\text{sSet} \) for all \(x \in E \). Since \(D(Pe, Px) \) is discrete and \(E(e, x) \) is fibrant, \(P_{ex} \) is a fibration\(^1\); since \(D(Pe', Px) \) is also fibrant, this ordinary pullback is in fact a homotopy pullback [Lur09, A.2.4.4]. Thus, by [Lur09, 2.4.1.10], \(\chi \) gives rise to a \(N(P) \)-coCartesian arrow in \(N(E) \).

Remark 2.2.5. The discreteness of \(D \) and fibrancy of \(E \) are critical here. An arbitrary \(\text{sSet} \)-enriched opfibration \(P : E \to D \) is unlikely to give rise to a coCartesian fibration \(N(P) : N(E) \to N(D) \). Essentially, we require the ordinary pullback in (2) to be a homotopy pullback.

Corollary 2.2.6. Let \(D \) be a small category and \(F : D \to \text{sCat} \) be such that each \(Fd \) is locally Kan. Then \(N(\text{Gr}F) \to N(D) \) is a coCartesian fibration.

2.3 Comparing \(N(\text{Gr}F) \) and \(N_f(D) \)

Theorem 2.3.1. Let \(F : D \to \text{sCat} \) be a functor, and \(f = NF \). Then there is an isomorphism of coCartesian fibrations

\[
N(\text{Gr}F) \cong N_f(D).
\]

Proof. We will only explicitly describe the \(n \)-simplices of \(N(\text{Gr}F) \) and \(N_f(D) \) and show that they are isomorphic. From the description, it should be clear that we do indeed have an isomorphism of simplicial sets that is compatible with their projections down to \(N(D) \), hence an isomorphism of coCartesian fibrations (by [RV17b, 5.1.7], for example).

Description of \(N(\text{Gr}F)_n \). An \(n \)-simplex of \(N(\text{Gr}F) \) is a simplicial functor \(S : \mathfrak{C}[\Delta^n] \to \text{Gr}F \). By Lemma A.3.3, this is the data of:

- for each \(i \in [n] \), an object \(S_i = (x_i, d_i) \in \text{Gr}F \), (so \(d_i \in D \), \(x_i \in Fd_i \))

\(^1\)Any map into a coproduct of simplicial sets induces a coproduct decomposition on its domain (by taking fibers over each component of the codomain). Since all horns \(\Lambda^n_k \) are connected, any commuting square from a horn inclusion to \(P_{ex} \) necessarily factors through one of the components of \(E(e, x) \), and may thus be lifted because \(E(e, x) \) is fibrant.
for each \(r \)-dimensional bead shape \((I_0|\ldots|I_r) \) of \(\{i_0 < \cdots < i_m\} \subseteq [n] \) where \(m \geq 1 \), an \(r \)-simplex

\[
S_{(I_0|\ldots|I_r)} \in \text{Gr}_F(S_{i_0}, S_{i_m}) = \prod_{\varphi \in \mathcal{D}(d_{i_0}, d_{i_m})} Fd_{i_m}(F\varphi x_{i_0}, x_{i_m})
\]

whose boundary is compatible with lower-dimensional data.

Description of \(N_f(D)_n \). An \(n \)-simplex of \(N_f(D) \) consists of a functor \(d: [n] \to D \), picking out objects and arrows \(d_i \xrightarrow{d_{ij}} d_j \) for all \(0 \leq i \leq j \leq n \) such that \(d_{ii} \) are identities and

\[
d_{jk}d_{ij} = d_{ik}, \quad i \leq j \leq k,
\]

and a family of maps \(s^J: \Delta^J \to fd_j \) for every \(J \subseteq [n] \) with maximal element \(j \), satisfying (1). Since \(f = NF \), such maps \(s^J: \Delta^J \to NFd_j \) correspond, under the \(C \dashv N \) adjunction, to maps \(S^J: \mathcal{C}[\Delta^J] \to Fd_j \) satisfying:

\[
\begin{array}{ccc}
\mathcal{C}[\Delta^J] & \xrightarrow{S^J} & Fd_i \\
\downarrow & & \downarrow Fd_{ij} \\
\mathcal{C}[\Delta^J] & \xrightarrow{S^J} & Fd_j
\end{array}
\tag{3}
\]

By Lemma A.3.3, each \(S^J \) is the data of:

- for each \(i \in J \), an object \(S^J_i \in Fd_j \)
- for each \(r \)-dimensional bead shape \((I_0|\ldots|I_r) \) of \(\{i_0 < \cdots < i_m\} \subseteq J \) where \(m \geq 1 \), an \(r \)-simplex

\[
S^J_{(I_0|\ldots|I_r)} \in Fd_j(S^J_{i_0}, S^J_{i_m})
\]

whose boundary is compatible with lower-dimensional data.

The condition (3) is equivalent to

\[
F_{d_{ij}}S^J_k = S^J_k, \quad \text{and} \quad F_{d_{ij}}S^J_{(I_0|\ldots|I_r)} = S^J_{(I_0|\ldots|I_r)},
\tag{4}
\]

for any \(k \in I \) and bead shape \((I_0|\ldots|I_r) \) of \(I \subseteq J \).
From $N(\text{Gr}F)_n$ to $N_f(D)_n$. Given $S: C[\Delta^n] \to \text{Gr}F$, we first produce a functor $d: [n] \to D$. For any $\{i<j\} \subseteq [n]$, we have a 0-simplex

$$S_{(ij)} = (Fd_{ij}x_i \xrightarrow{x_{ij}} x_j, d_i \xrightarrow{d_{ij}} d_j) \in \text{Gr}F((x_i, d_i), (x_j, d_j))_0,$$

and for any $\{i<j<k\} \subseteq [n]$, we have a 1-simplex $S_{(ijk)}$ from $S_{(ik)}$ to

$$S_{(jk)}S_{(ij)} = (Fd_{jk}Fd_{ij}x_i \xrightarrow{Fd_{ijk}} Fd_{jk}x_j \xrightarrow{x_{jk}} x_k, d_i \xrightarrow{d_{ij}} d_j \xrightarrow{d_{jk}} d_k).$$

But such a 1-simplex includes the data of a 1-simplex from d_{ik} to $d_{jk}d_{ij}$ in the discrete simplicial set $D(x_i, x_k)$. Thus d_{ik} must be equal to $d_{jk}d_{ij}$, so the data of $\{d_i \xrightarrow{d_{ij}} d_j\}_{i\leq j}$, where d_{ii} is the identity, assembles into a functor $d: [n] \to D$ as desired. Note that since F is a functor, we also have

$$Fd_{jk}Fd_{ij} = F(d_{jk}d_{ij}) = Fd_{ik}.$$

Next, for each non-empty subset $J \subseteq [n]$ with maximal element j, we need a simplicial functor $S_J: C[\Delta^J] \to Fd_j$. For each $i \in J$, set

$$S_i^J := Fd_{ij}x_i \in Fd_j.$$

For each r-dimensional bead shape $\langle I_0 \mid \ldots \mid I_r \rangle$ of $\{i_0 < \cdots < i_m\} \subseteq J$ with $m \geq 1$, we first note that $S_{\langle I_0 \ldots \rangle}$ lies in the $d_{i_0i_m}$ component

$$Fd_{i_m}(Fd_{i_0i_m}x_{i_0}, x_{i_m}) \subseteq \text{Gr}F(S_{i_0}, S_{i_m})$$

because its sub-simplices (for instance $S_{\langle i_0i_m \rangle}$) do too. Define

$$S_{\langle I_0 \ldots \rangle}^J := Fd_{i_m}S_{\langle I_0 \ldots \rangle}.$$

We verify that this lives in the correct simplicial set

$$Fd_j(Fd_{i_m}Fd_{i_0i_m}x_{i_0}, Fd_{i_m}x_{i_m}) = Fd_j(Fd_{i_0j}x_{i_0}, Fd_{i_m}x_{i_m}) = Fd_j(S_{i_0}^J, S_{i_m}^J).$$

The boundary of each $S_{\langle I_0 \ldots \rangle}^J$ is compatible with lower-dimensional data because the boundary of each $S_{\langle I_0 \ldots \rangle}$ is as well. We thus get a simplicial functor $S^J: C[\Delta^J] \to Fd_j$, and by construction, the functoriality of F and d implies that (4) holds.
From $N_f(\mathcal{D})_n$ to $N(\text{Gr} F)_n$. Conversely, suppose we have $d: [n] \to \mathcal{D}$ and $S^J: \mathcal{C}[\Delta^J] \to Fd_j$ for every non-empty $J \subseteq [n]$ with maximal element j, satisfying (4). For each $i \in [n]$, let $S_i := (S_i^{(i)}, d_i)$, and for each r-dimensional bead shape $(I_0|\ldots|I_r)$ of $I = \{i_0, \ldots, i_m\} \subseteq [n]$ where $m \geq 1$, let

$$S_{(I_0|\ldots|I_r)} := S_{(I_0|\ldots|I_r)}^I.$$

Then $S_{(I_0|\ldots|I_r)}$ is an r-simplex in

$$Fd_{i_m}(S_{i_0}^I, S_{i_m}^I) = Fd_{i_m}(Fd_{i_0 i_m} S_{i_0}^{(i_0)}, S_{i_m}^{(i_m)}) \subset \text{Gr} F(S_{i_0}, S_{i_m})$$

as desired, where we have used (4) in the first equality, and this data yields a simplicial functor $S: \mathcal{C}[\Delta^n] \to \text{Gr} F$.

Mutual inverses. Finally, it is easy to see that the constructions described above are mutual inverses. For instance, we have

$$S_{(I_0|\ldots|I_r)} = Fd_{i_0} S_{(I_0|\ldots|I_r)},$$

$$S_{(I_0|\ldots|I_r)}^I = Fd_{i_0} S_{(I_0|\ldots|I_r)}^I.$$

Thus $N(\text{Gr} F)_n \cong N_f(\mathcal{D})_n$. \(\Box\)

In light of Proposition 2.1.2, we obtain:

Corollary 2.3.2. Let $F: \mathcal{D} \to \text{sCat}$ be a functor such that each Fd is a quasicategory, and $f = N F$. Then there is an equivalence of coCartesian fibrations

$$N(\text{Gr} F) \simeq \text{Gr}_\infty N(f).$$

3 Operadic nerves of monoidal simplicial categories

Given a monoidal simplicial category \mathcal{C}, [Lur07, 1.6] describes the formation of a simplicial category \mathcal{C}^\otimes equipped with an opfibration over Δ^{op}. The nerve of this opfibration is a coCartesian fibration $N(\mathcal{C}^\otimes) \to N(\Delta^{op})$ which has the structure of a monoidal ∞-category in the sense of [Lur07, 1.1.2]. Since this construction is exactly the operadic nerve of [Lur12, 2.1.1] applied to the underlying simplicial operad of \mathcal{C}, we call $N^\otimes(\mathcal{C}) := N(\mathcal{C}^\otimes)$ the **operadic nerve of a monoidal simplicial category** \mathcal{C}.

In this section, we apply the results of the previous section to further describe the process of obtaining $N^\otimes(\mathcal{C})$ from a strict monoidal \mathcal{C}. We show that the opfibration $\mathcal{C}^\otimes \to \Delta^{op}$ is the Grothendieck construction $\text{Gr} \mathcal{C}^\otimes$ of a

functor $C^*: \Delta^{op} \to \text{sCat}$, and hence conclude that the operadic nerve $N^\otimes(C)$ is the nerve of Δ^{op} relative to $\Delta^{op} \xrightarrow{\mathcal{C}^*} \text{sCat} \xrightarrow{N} \text{sSet}$.

Although the operadic nerve may be defined for any monoidal simplicial category \mathcal{C}, we restrict the discussion in this section to strict monoidal categories because the results of the previous section require strict functors $D \to \text{sCat}$ and $D \to \text{sSet}$ rather than pseudofunctors.

3.1 C^\otimes and C^* from a strict monoidal \mathcal{C}

We start by describing the opfibration $C^\otimes \to \Delta^{op}$ and the functor $C^*: \Delta^{op} \to \text{sCat}$ associated to a strict monoidal simplicial category \mathcal{C}.

Definition 3.1.1. A strict monoidal simplicial category \mathcal{C} is a monoid in $(\text{sCat}, \times, \ast)$. Let $\otimes: \mathcal{C} \times \mathcal{C} \to \mathcal{C}$ denote the monoidal product of \mathcal{C} and $1: \ast \to \mathcal{C}$ denote the monoidal unit, which we identify with an object $1 \in \mathcal{C}$. Let $\text{Mon}(\text{sCat})$ denote the category of strict monoidal simplicial categories, which is equivalently the category of monoids in sCat.

A strict monoidal simplicial category is thus a simplicial category with a strict monoidal structure that is *weakly compatible* in the sense of [Lur07, 1.6.1]. The strictness of the monoidal structure implies that we have equalities (rather than isomorphisms):

\[(x \otimes y) \otimes z = x \otimes (y \otimes z), \quad 1 \otimes x = x = x \otimes 1.\]

Definition 3.1.2 ([Lur07, 1.1.1]). Let $(\mathcal{C}, \otimes, 1)$ be a strict monoidal simplicial category. Then we define a new category \mathcal{C}^\otimes as follows:

1. An object of \mathcal{C}^\otimes is a finite, possibly empty, sequence of objects of \mathcal{C}, denoted $[x_1, \ldots, x_n]$.

2. The simplicial set of morphisms from $[x_1, \ldots, x_n]$ to $[y_1, \ldots, y_m]$ in \mathcal{C}^\otimes is defined to be

\[
\prod_{f \in \Delta([m],[n])} \prod_{1 \leq i \leq m} \mathcal{C}(x_{f(i-1)+1} \otimes \cdots \otimes x_{f(i)}, y_i)
\]

where $x_{f(i-1)+1} \otimes \cdots \otimes x_{f(i)}$ is taken to be 1 if $f(i-1) = f(i)$.

A morphism will be denoted $[f; f_1, \ldots, f_m]$, where

\[
x_{f(i-1)+1} \otimes \cdots \otimes x_{f(i)} \xrightarrow{f_i} y_i.
\]
3. Composition in \(\mathcal{C} \otimes \) is determined by composition in \(\Delta \) and \(\mathcal{C} \):

\[
[g; g_1, \ldots, g_\ell] \circ [f; f_1, \ldots, f_m] = [f \circ g; h_1, \ldots, h_\ell],
\]

where \(h_i = g_i \circ (f_{g(i-1)+1} \otimes \cdots \otimes f_{g(i)}) \).

This is associative and unital due to the associativity and unit constraints of \(\otimes \).

Remark 3.1.3. Though we don’t make it explicit here, \(\mathcal{C} \otimes \) can be described as the category of operators (in the sense of [MT78]) of the underlying simplicial operad of \(\mathcal{C} \).

There is a forgetful functor \(P: \mathcal{C} \otimes \to \Delta^{op} \) sending \([x_1, \ldots, x_n]\) to \([n]\) which is an (unenriched) opfibration of categories [Lur07, 1.1(M1)]. The proof of that statement can easily be modified to show:

Proposition 3.1.4. The functor \(P: \mathcal{C} \otimes \to \Delta^{op} \) is a simplicial opfibration.

Proof. Replace all hom-sets by hom-simplicial-sets in [Lur07, 1.1(M1)]. \(\square \)

In fact, we may choose \(P \)-coCartesian lifts so that \(P \) is a split simplicial opfibration\(^2\): given \([x_1, \ldots, x_n] \in \mathcal{C} \otimes \) and a map \(f: [m] \to [n] \), let

\[
y_i = x_{f(i-1)+1} \otimes \cdots \otimes x_{f(i)}
\]

for all \(1 \leq i \leq m \). Then \([f; 1_{y_1}, \ldots, 1_{y_m}]\) is a \(P \)-coCartesian lift of \(f \).

By the enriched Grothendieck correspondence [BW18, Theorem 5.6], the split simplicial opfibration \(P: \mathcal{C} \otimes \to \Delta^{op} \) with this choice of coCartesian lifts arises from a functor \(\mathcal{C}^* : \Delta^{op} \to \mathbf{sCat} \) which we now describe.

Definition 3.1.5. Let \(\mathcal{C} \) be a strict monoidal simplicial category.

For \(f: [m] \to [n] \) in \(\Delta \), let \(\mathcal{C}^f : \mathcal{C}^n \to \mathcal{C}^m \) be the functor that sends \((x_1, \ldots, x_n)\) to \((y_1, \ldots, y_m)\) where \(y_i \) is given by (5), and sends \((\varphi_1, \ldots, \varphi_n)\) to \((\psi_1, \ldots, \psi_m)\) where

\[
\psi_i = \varphi_{f(i-1)+1} \otimes \cdots \otimes \varphi_{f(i)}.
\]

Then let \(\mathcal{C}^* : \Delta^{op} \to \mathbf{sCat} \) denote the functor sending \([n]\) to \(\mathcal{C}^n \) and \(f \) to \(\mathcal{C}^f \).

\(^2\)This essentially means that \(\mathcal{C}^* \) is a functor rather than a pseudofunctor. Note that if \(\mathcal{C} \) is not strictly monoidal, then \(x_{f(i-1)+1} \otimes \cdots \otimes x_{f(i)} \) is not well-defined: a choice of parentheses needs to be made. Although the various choices are isomorphic, they are not identical, and this obstructs our ability to obtain a split opfibration.
Lemma 3.1.6. For a strict monoidal simplicial category C, there is an isomorphism of simplicial categories

$$C^\otimes \cong \text{Gr}C^\bullet.$$

Proof. Follows directly from the definitions of C^\otimes, C^\bullet and Gr. □

Remark 3.1.7. In fact, the results of this subsection hold more generally for monoidal \mathcal{V}-categories, where \mathcal{V} satisfies the hypotheses of [BW18], but we will not need this level of generality.

3.2 The operadic nerve N^\otimes

We now suppose that C is a strict monoidal fibrant (i.e. locally Kan) simplicial category. Then C^\otimes is a fibrant simplicial category as well, so the simplicial nerves of C and C^\otimes are both quasicategories.

Definition 3.2.1. Let (C, \otimes) be a strict monoidal fibrant simplicial category. The operadic nerve of C with respect to \otimes is the quasicategory

$$N^\otimes(C) := N(C^\otimes).$$

Combining Propositions 2.2.4 and 3.1.4 with $p := N(P)$, we obtain:

Corollary 3.2.2. There is a coCartesian fibration $p: N^\otimes(C) \to N(\Delta^{op})$.

In fact, p defines a monoidal structure on $N(C)$ in the following sense:

Definition 3.2.3 ([Lur07, 1.1.2]). A monoidal quasicategory is a co-Cartesian fibration of simplicial sets $p: X \to N(\Delta^{op})$ such that for each $n \geq 0$, the functors $X_{[n]} \to X_{\{i,i+1\}}$ induced by $\{i, i+1\} \hookrightarrow [n]$ determine an equivalence of quasicategories

$$X_{[n]} \xrightarrow{\sim} X_{\{0,1\}} \times \cdots \times X_{\{n-1,n\}} \cong (X_{[1]})^n,$$

where $X_{[n]}$ denotes the fiber of p over $[n]$. In this case, we say that p defines a monoidal structure on $X_{[1]}$.

Proposition 3.2.4 ([Lur07, Proposition 1.6.3]). If C is a strict monoidal fibrant simplicial category then $p: N^\otimes(C) \to N(\Delta^{op})$ defines a monoidal structure on the quasicategory $N(C) \cong (N^\otimes(C))_{[1]}$.

Definition 3.2.5. The quasicategory of monoidal quasicategories is the full subquasicategory $\text{MonCat}_\infty \subset \text{coCart}/N(\Delta^{op})$ containing the monoidal quasicategories.
Definition 3.2.6. Let C be a strict monoidal fibrant simplicial category. The vertex associated to C in MonCat_∞ or $\text{coCart}_{/\Delta^{op}}$ is the vertex corresponding to $p: N^\otimes(C) \to N(\Delta^{op})$.

Remark 3.2.7. By Definition A.2.5, the vertex associated to C is equivalently the vertex corresponding to $N^\otimes(C) \to N(\Delta^{op})^2$ in $N((\text{sSet}^+)_/S)^\otimes$. Note that, by [Lur09, 3.1.4.1], the assignment $(X \to S) \mapsto (X^2 \to S^2)$ is injective up to isomorphism.

Finally, we tie together the results of this and the previous sections.

Corollary 3.2.8. Let C be a strict monoidal fibrant simplicial category, and let ξ be the composite $\Delta^{op} \xrightarrow{\sim} \text{sCat} \xrightarrow{\sim} N \xrightarrow{\sim} \text{sSet}$. Then we have the following string of isomorphisms and equivalences:

$$N^\otimes(C) \cong N(\text{Gr}^* C^*) \cong N_\xi(\Delta^{op}) \cong \text{Gr}_\infty N(\xi).$$

Remark 3.2.9. The preceding Corollary and the ∞-categorical Grothendieck correspondence (A.2.6) suggest that we may equivalently define a monoidal quasicategory to be $\xi \in (\text{Cat}_\infty)^{N(\Delta^{op})}$ such that the maps

$$\xi([n]) \xrightarrow{\xi([i,i+1] \to [n])} \xi([i,i + 1])$$

induce an equivalence

$$\xi([n]) \xrightarrow{\sim} \xi([0,1]) \times \cdots \times \xi([n - 1,n]) \cong \xi([1])^n.$$

Remark 3.2.10. We have worked entirely on the level of objects as we are only interested in understanding the operadic nerve of one monoidal simplicial category at a time. However, we believe it should be possible to show that these constructions and equivalences are functorial, so that the following diagram is an actual commuting diagram of functors between appropriately defined categories or quasicategories:

For an ordinary category D, we also believe that there is a model structure on $\text{sCat}_/D$ whose fibrant objects are simplicial opfibrations (or the analog for a suitable version of marked simplicial categories), along with a Quillen adjunction between $\text{sCat}_/D$ and $(\text{sSet}^+)_/\text{N}(D)$ whose restriction to fibrant objects picks out the maps arising as nerves of simplicial opfibrations.
4 Opposite functors

Finally, we turn to the question which motivated this paper: how does the operadic nerve interact with taking opposites?

Recall that there is an involution on the category of small categories

\[
\text{op} : \text{Cat} \to \text{Cat}
\]

which takes a category to its opposite. There are higher categorical generalizations of this functor to the category of simplicial sets and the category of simplicially enriched categories, which we review in turn.

4.1 Opposites of (monoidal) simplicial categories

Definition 4.1.1. Given a simplicial category \(C \in \text{sCat} \), let \(C^{\text{op}} \) denote the category with the same objects as \(C \), and morphisms

\[
C^{\text{op}}(x, y) := C(y, x).
\]

Let \(\text{op}_s : \text{sCat} \to \text{sCat} \) be the functor sending \(C \) to \(\text{op}_s(C) := C^{\text{op}} \), and sending a simplicial functor \(F \) to the simplicial functor \(F^{\text{op}} \) given by \(F^{\text{op}} \cdot := F \cdot \)

and \(F^{\text{op}}(x, y) := F(y, x) \).

We note a few immediate properties of opposites.

Lemma 4.1.2. The functor \(\text{op}_s \) is self-adjoint.

Lemma 4.1.3. Let \(C \) be a simplicial category. If \(C \) is fibrant, then so is \(C^{\text{op}} \).

Lemma 4.1.4. Let \(C \) be a strict monoidal simplicial category. Then \(C^{\text{op}} \) is canonically a strict monoidal simplicial category as well.

Proof. Given \(x, y \in C^{\text{op}} \), define their tensor product to be the same object as their tensor in \(C \). One can check that this extends to a monoidal structure on \(C^{\text{op}} \).

Alternatively, since \(\text{op}_s \) is self-adjoint, it preserves limits and colimits of simplicial categories. In particular, it preserves the Cartesian product, and is therefore a monoidal functor from \((\text{sCat}, \times)\) to itself. It thus preserves monoids in \(\text{sCat} \).

Remark 4.1.5. Since the same object represents the tensor product of \(x \) and \(y \) in \(C \) or \(C^{\text{op}} \), we will use the same symbol \(\otimes \) to denote the tensor product in either category.

The functor \(\text{op}_s : \text{sCat} \to \text{sCat} \) induces functors \((-)^{\text{op}} : \text{Mon}(\text{sCat}) \to \text{Mon}(\text{sCat})\) and \((-)^{\text{op}} : \text{sCat}^{\Delta^{\text{op}}} \to \text{sCat}^{\Delta^{\text{op}}} \), where the latter is composition with \(\text{op}_s \). We wish to show that these functors commute with the construction \(C \mapsto C^\bullet \) of Definition 3.1.5.
Lemma 4.1.6. Let \mathcal{C} be a strict monoidal simplicial category. Then

$$(\mathcal{C}^\bullet)^{op} = (\mathcal{C}^{op})^\bullet,$$

i.e. the following diagram commutes on objects.

$$
\begin{array}{ccc}
\text{Mon(sCat)} & \xrightarrow{(-)^\bullet} & \text{sCat}^\Delta^{op} \\
\downarrow & & \downarrow \\
\text{Mon(sCat)} & \xrightarrow{(-)^\bullet} & \text{sCat}^\Delta^{op}
\end{array}
$$

Proof. The objects of both $(\mathcal{C}^n)^{op}$ and $(\mathcal{C}^{op})^n$ are n-tuples (x_1, \ldots, x_n) where $x_i \in \mathcal{C}$, while the simplicial set of morphisms from (x_1, \ldots, x_n) to (y_1, \ldots, y_n) are both $\mathcal{C}(y_1, x_1) \times \cdots \times \mathcal{C}(y_n, x_n)$, so $(\mathcal{C}^n)^{op} = (\mathcal{C}^{op})^n$.

Given $f: [m] \to [n]$ in Δ, both $(\mathcal{C}^f)^{op}$ and $(\mathcal{C}^{op})^f$ act exactly like \mathcal{C}^f on objects. On morphisms, they are both given by the same formula that defines \mathcal{C}^f, applied to tuples of morphisms $(\varphi_1, \ldots, \varphi_n)$ that point in the opposite direction. \qed

Remark 4.1.7. The diagram above is an actual commuting diagram of functors, but we will not show this here, since we have not fully described the functorial nature of $(-)^{op}$.

We note also that opposites commute with the Grothendieck construction, but we will not need this result in the rest of the paper.

Definition 4.1.8. Let $P: \mathcal{E} \to \mathcal{D}$ be a simplicial opfibration. The fiberwise opposite of P is the simplicial opfibration $P_{op}: \mathcal{E}_{op} \to \mathcal{D}$ given by

$$\text{Gr} \circ \text{op}_s \circ \text{Gr}^{-1}(P).$$

Note that we have deliberately avoided writing P^{op} and \mathcal{E}^{op}, since these mean the direct application of op_s to P and \mathcal{E}, which is not what we want.

Corollary 4.1.9. Let \mathcal{C} be a strict monoidal simplicial category. Then

$$(\mathcal{C}^\otimes)^{op} \cong (\mathcal{C}^{op})^\otimes.$$

Proof. Apply Gr to Lemma 4.1.6, and note that $\text{Gr}(\mathcal{C}^\bullet)^{op} \cong (\mathcal{C}^\otimes)^{op}$. \qed
4.2 Opposites of ∞-categories

We now turn to opposites of simplicial sets and quasicategories, and relate these to opposites of simplicial categories. In this and the next subsection, we will make frequent use of the notation and results of A.1 and A.2, so the reader is encouraged to review them before proceeding.

To avoid unnecessary complexity in our exposition and proofs, we will freely use the fact (following [Lur07]) that Δ, the simplex category, is equivalent to the category floSet of finite, linearly ordered sets.

Definition 4.2.1. Define the functor $\text{rev}: \Delta \to \Delta$ to be the functor that takes a finite linearly ordered set to the same set with the reverse ordering. Then given $X \in \text{sSet} = \text{Fun}(\Delta, \text{Set})$, we define $\text{op}_\Delta X$ to be the simplicial set $X \circ \text{rev}$. This defines a functor $\text{op}_\Delta: \text{sSet} \to \text{sSet}$. We will often write X^op instead of $\text{op}_\Delta X$.

Definition 4.2.2. Define the functor $\text{op}^+\Delta: \text{sSet}^+ \to \text{sSet}^+$ to be the functor that takes a marked simplicial set (X, W) to $(\text{op}_\Delta X, W)$, where we use the fact that there is a bijection between the 1-simplices of $\text{op}_\Delta X$ and those of X.

Lemma 4.2.3. The functors op_Δ and $\text{op}^+\Delta$ are self-adjoint.

Lemma 4.2.4. If X is a quasicategory, then so is X^op.

The functors $\text{op}_s, \text{op}_\Delta$ and $\text{op}^+\Delta$ are related in the following manner:

Lemma 4.2.5. The following diagram commutes:

$$
\begin{array}{ccc}
\text{sCat}^o & \xrightarrow{N} & \text{sSet}^o \\
\downarrow \text{op}_s & & \downarrow \text{op}_\Delta \\
\text{sCat}^o & \xrightarrow{N} & \text{sSet}^o \\
\end{array}
$$

$$
\begin{array}{ccc}
\text{sSet}^o & \xrightarrow{\mathcal{C}} & \text{sSet}^+ \\
\downarrow \text{op}_\Delta & & \downarrow \text{op}^+\Delta \\
\text{sSet}^o & \xrightarrow{\mathcal{C}} & \text{sSet}^+ \\
\end{array}
$$

Proof. The right hand square of the above diagram obviously commutes, so it only remains to show that $N \circ \text{op}_s \cong \text{op}_\Delta \circ N$. Recall that the nerve of a simplicial category \mathcal{C} is the simplicial set determined by the formula

$$
\text{Hom}_\text{sSet}(\Delta^n, N\mathcal{C}) = \text{Hom}_{\text{sCat}}(\mathcal{C}[\Delta^n], \mathcal{C})
$$

where $\mathcal{C}[\Delta^n]$ is the value of the functor $\mathcal{C}: \Delta \to \text{sCat}$ defined in [Lur09, 1.1.5.1, 1.1.5.3] at the finite linearly ordered set $\{0 < 1 < \cdots < n\}$. Moreover, by extending along the Yoneda embedding $\Delta \to \text{sSet}$, we obtain (cf. the
discussion following Example 1.1.5.8 of [Lur09]) a colimit preserving functor \(\mathcal{C} : sSet \to sCat \) which is left adjoint to \(N \). This justifies using the notation \(\mathcal{C}[\Delta^n] \) for the application of \(\mathcal{C} \) to \(\{0 < 1 < \cdots < n\} \). It is not hard to check from definitions that, for any finite linearly ordered set \(I \) the simplicial categories \(\mathcal{C}[I]^{\text{op}} \) and \(\mathcal{C}[I] \) are equal and that this identification is natural with respect to the morphisms of \(\Delta \). So by using this fact, the fact that \(\mathcal{C} \vdash N \), and liberally applying the self-adjointness of \(\text{op}_\Delta \) (Lemmas 4.1.2 and 4.2.3), we have the following sequence of isomorphisms:

\[
\text{Hom}_{sSet}(\Delta^n, N(\mathcal{C})^{\text{op}}) \cong \text{Hom}_{sSet}((\Delta^n)^{\text{op}}, N(\mathcal{C})) \\
\cong \text{Hom}_{sCat}(\mathcal{C}[(\Delta^n)^{\text{op}}], \mathcal{C}) \\
\cong \text{Hom}_{sCat}(\mathcal{C}[\Delta^n]^{\text{op}}, \mathcal{C}) \\
\cong \text{Hom}_{sCat}(\mathcal{C}[\Delta^n], C^{\text{op}}) \\
\cong \text{Hom}_{sSet}(\Delta^n, N(C^{\text{op}})).
\]

All of our constructions are natural with respect to the morphisms of \(\Delta \), so we have the result.

Corollary 4.2.6. Let \(F : D \to sCat \) be a functor such that each \(FD \) is fibrant, and let \(f = NF \). Then

\[
f^{\text{op}} = (NF)^{\text{op}} \cong N(F^{\text{op}}).
\]

Corollary 4.2.7. Let \(f : D \to sSet \) be a functor such that each \(fd \) is a quasicategory. Then

\[
(f^{\text{op}})^{\text{op}} = (f^{\text{op}})^{\text{op}}.
\]

The preceding Corollary is about functors \(D \to sSet \) taking values in quasicategories. Taking the nerve of such a functor, we obtain a *vertex* in the quasicategory \((\text{Cat}_\infty)^{N(D)} \). From now on, we restrict ourselves to the quasicategories \(\text{Cat}_\infty, (\text{Cat}_\infty)^{N(D)} \) and \(\text{coCart}_{N(D)} \), so that all future statements are about *vertices* in these quasicategories.

By [BSP11, Theorem 7.2], there is a unique-up-to-homotopy non-identity involution of the quasicategory \(\text{Cat}_\infty \), as it is a theory of \((\infty,1)\)-categories. Thus, this involution, which we denote \(\text{op}_\infty \), must be equivalent to the nerve of \(\text{op}_\Delta \). So we have the following lemma:

Lemma 4.2.8. Let \(\text{op}_\infty : \text{Cat}_\infty \to \text{Cat}_\infty \) denote the above involution on \(\text{Cat}_\infty \). Then \(\text{op}_\infty \cong N(\text{op}_\Delta) \).
Corollary 4.2.9. Let $f: D \to \sSet$ be a functor such that each $f d$ is a quasicategory, and continue to write f for $f^\natural: D \to \sSet^\natural$. In the quasicategory $(\Cat_\infty)^D$, we have an equivalence

$$N(f^{\text{op}}) \simeq N(f)^{\text{op}},$$

where $f^{\text{op}} = \text{op}^+ \circ f$ and $N(f)^{\text{op}} = \text{op}_\infty \circ N(f)$.

Proof. By the functoriality of the (large) simplicial nerve functor and the previous Lemma, we have $N(f^{\text{op}}) \simeq N(\text{op}^+_\Delta) \circ N(f) \simeq \text{op}_\infty \circ N(f)$. \qed

4.3 Opposites of fibrations and monoidal quasicategories

We now define fiberwise opposites of a coCartesian fibration, in a manner similar to Definition 4.1.8, keeping in mind that we need to work within the quasicategory $\text{coCart}_/S$.

Definition 4.3.1. Let $p: X \to S$ be a coCartesian fibration of quasicategories, treated as a vertex of $\text{coCart}_/S$. The **fiberwise opposite** of p is the coCartesian fibration corresponding to the vertex

$$\text{Gr}_\infty \circ \text{op}_\infty \circ \text{Gr}_1^{-1}(p) \in \text{coCart}_/S.$$

Denote this coCartesian fibration by $p^{\text{op}}: X^{\text{op}} \to S$. (Again, we do not write p^{op} or X^{op}, since these refer to the direct application of op_Δ^+).

Theorem 4.3.2. Let $F: D \to \sCat$ be a functor such that each Fd is fibrant. In the quasicategory $\text{coCart}_{/N(D)}$, there is an equivalence of vertices

$$N\text{Gr}(F^{\text{op}}) \simeq N\text{Gr}(F)^{\text{op}},$$

i.e. the following diagram commutes on objects, and up to equivalence in $\text{coCart}_{/N(D)}$.

$$
\begin{array}{ccc}
\sCat^D & \xrightarrow{\text{Gr}} & \text{opFib}_{/D} \\
\downarrow_{\text{op}} & & \downarrow_{\text{op}} \\
\sCat^D & \xrightarrow{\text{Gr}} & \text{opFib}_{/D}
\end{array}
\xrightarrow{N} \begin{array}{ccc}
\text{coCart}_{/N(D)} & \xrightarrow{\text{op}} & \text{coCart}_{/N(D)} \\
\downarrow_{\text{op}} & & \downarrow_{\text{op}} \\
\text{coCart}_{/N(D)} & \xrightarrow{\text{op}} & \text{coCart}_{/N(D)}
\end{array}
$$
Proof. We have a string of equivalences:

\[
\begin{align*}
\text{NGr} (F)_{\text{op}} &= \text{Gr}_\infty \circ \text{op}_\infty \circ \text{Gr}_\infty^{-1}(\text{NGr} (F)) &\text{(Definition 4.3.1)} \\
&\simeq \text{Gr}_\infty \circ \text{op}_\infty \circ \text{Gr}_\infty^{-1} \text{Gr}_\infty N(f) &\text{(Corollary 2.3.2)} \\
&\simeq \text{Gr}_\infty \circ \text{op}_\infty \circ N(f) &\text{(Definition A.2.7)} \\
&\simeq \text{Gr}_\infty N(f^{\text{op}}) &\text{(Corollary 4.2.9)} \\
&\simeq \text{NGr}(F^{\text{op}}) &\text{(Corollary 2.3.2)}
\end{align*}
\]

where \(f = NF \) and \(f^{\text{op}} \cong N(F^{\text{op}}) \) by Corollary 4.2.6.

Remark 4.3.3. In the above proof, we implicitly use Proposition 2.1.2 [Lur09, 3.2.5.21] several times. Note that this proposition is somewhat ambiguously stated in [Lur09]. In particular, it is claimed that, given a functor \(f : D \to s\text{Set} \), the fibration \(N_f(D) \) is the one associated to the functor \(N(f) : N(D) \to \text{Cat}_\infty \). Consideration of the proof makes it clear however that one can further check that, for a functor \(f : D \to s\text{Set} \) with associated \(f^+ : D \to s\text{Set}^+ \), there is an equivalence \(N_f(D)^+ \simeq N^+_f(D) \simeq Un^+_{f^+} f^+ \), which is the exact form required in the above proof. Here, \(N^+_f \) indicates the marked analog of the relative nerve described in Section 2.

Finally, we turn our attention back to monoidal quasicategories and monoidal simplicial categories.

Lemma 4.3.4. Let \(p : X \to N(\Delta^{\text{op}}) \) define a monoidal structure on \(X_{[1]} \). Then \(p_{\text{op}} : X_{\text{op}} \to N(\Delta^{\text{op}}) \) defines a monoidal structure on \((X_{[1]})^{\text{op}} \).

Proof. It is easy to check that the coCartesian fibration \(p_{\text{op}} \) is a monoidal quasicategory, and that \((X_{\text{op}})_{[1]} \simeq (X_{[1]})^{\text{op}} \).

Theorem 4.3.5. Let \(C \) be a strict monoidal fibrant simplicial category and equip \(C^{\text{op}} \) with its canonical monoidal structure. Then \(N^{\otimes}(C^{\text{op}}) \) and \(N^{\otimes}(C)_{\text{op}} \) define equivalent monoidal structures on \(N(C^{\text{op}}) \simeq N(C)^{\text{op}} \).

Proof. Combine Lemma 4.1.6 with Theorem 4.3.2, taking \(F = C^* \).

References

[Ber07] Julia E. Bergner, A model category structure on the category of simplicial categories, Trans. Amer. Math. Soc. 359 (2007), no. 5, 2043–2058.

[Ber10] , A survey of \((\infty, 1)\)-categories, Towards higher categories, 2010, pp. 69–83.
A Appendices

A.1 Models for ∞-categories, and their nerves

In this paper, we pass between simplicially enriched categories, sCat, and simplicial sets, sSet. We also often invoke marked simplicial sets sSet+. In this section, we describe how these categories, equipped with suitable model structures, serve as models for a category of ∞-categories, and how they are related.

Definition A.1.1. We recall the definitions of the three categories above with certain model category structures:
1. Let $s\text{Cat}$ denote the category of simplicially enriched categories in the sense of [Kel82], with the Bergner model structure described in [Ber07]. In particular, the fibrant objects are the categories enriched in Kan complexes and the weak equivalences are the so-called Dwyer-Kan (or DK) equivalences of simplicial categories.

2. Let $s\text{Set}$ denote the category of simplicial sets with the Joyal model structure as described in [Joy08] and [Lur09]. The fibrant objects are the quasicategories, and the weak equivalences are the categorical equivalences of simplicial sets.

3. Let $s\text{Set}^+$ denote the category of marked simplicial sets. Its objects are pairs (S, W) where S is a simplicial set and W is a subset of $S[1]$, the collection of 1-simplices of S. The model structure on $s\text{Set}^+$ is given by [Lur09, 3.1.3.7]. By [Lur09, 3.1.4.1], the fibrant objects are the pairs (S, W) for which S is a quasicategory and W is the set of 1-simplices of S that become isomorphisms after passing to the homotopy category (i.e. the equivalences of S). The weak equivalences, by [Lur09, 3.1.3.5], are precisely the morphisms whose underlying maps of simplicial sets are categorical equivalences.

4. Let RelCat denote the category of relative categories, whose objects are pairs (C, W), where C is a category and W is a subcategory of C that contains all the objects of C. In [BK12], it is shown that RelCat admits a model structure, but we will not need it here. We only point out that any model category C has an underlying relative category in which W is the subcategory containing every object of C with only the weak equivalences as morphisms.

Definition A.1.2. Given a model category C, we will denote by C° the full subcategory spanned by bifibrant (i.e fibrant and cofibrant) objects.

Definition A.1.3. We also introduce several functors which are useful in comparing the above categories as models of ∞-categories:

1. Let $N : s\text{Cat} \to s\text{Set}$ be the simplicial nerve functor (first defined by Cordier) of [Lur09, 1.1.5.5]. Crucially, if C is a fibrant simplicial category, then NC is a quasicategory. This nerve has a left adjoint \mathcal{C}.

$$
\begin{array}{ccc}
\text{sSet} & \xleftarrow{N} & \text{sCat} \\
\downarrow & \searrow \gamma & \\
\text{sSet} & \xleftarrow{\mathcal{C}} & \text{N}
\end{array}
$$

21
2. Let \(L^H: \text{RelCat} \to \text{sCat}\) denote the *hammock localization* functor, defined in [DK80].

3. Let \((-)\natural: \text{sSet}^\circ \to \text{sSet}^+\) denote the functor, defined in [Lur09, 3.1.1.9\(^3\)], that takes a quasicategory \(C\) to the pair \((C,W)\) where \(W\) is the collection of weak equivalences\(^4\) in \(C\).

4. Let \((-)\natural: \text{sSet} \to \text{sSet}^+\) denote the functor, defined in [Lur09, 3.1.0.2] that takes a simplicial set \(S\) to the pair \((S,S[1])\), in which every edge of \(S\) has been marked.

5. Let \(\text{u.q.}: \text{RelCat} \to \text{sSet}\) denote the *underlying quasicategory* functor of [MG15], given by the composition

\[
\text{RelCat} \xrightarrow{L^H} \text{sCat} \xrightarrow{R} \text{sCat} \xrightarrow{N} \text{sSet}
\]

where \(R: \text{sCat} \to \text{sCat}\) is the fibrant replacement functor of simplicial categories defined in [MG15, §1.2]. Note that, because of the fibrant replacement, \(\text{u.q.}(C,W)\) is indeed a quasicategory for any relative category \((C,W)\).

We can now give a definition of *the* quasicategory of \(\infty\)-categories:

Definition A.1.4. Since the fibrant-cofibrant objects in \(\text{sSet}^+\) correspond to quasicategories, we let the **quasicategory of quasicategories**, or of \(\infty\)-categories, be:

\[
\text{Cat}_\infty := N(\text{sSet}^+)\circ,
\]

where we write \(N(\text{sSet}^+)\circ\) instead of the more cumbersome \(N((\text{sSet}^+)\circ)\).

Remark A.1.5. Going forward, we will often write \(N(-)\circ\) instead of \(N((-)\circ)\) to indicate the simplicial nerve applied to the bifibrant subcategory of a simplicial model category.

Theorem A.1.6. The underlying quasicategories of the model categories \(\text{sCat}, \text{sSet}\) and \(\text{sSet}^+\) are all equivalent to \(\text{Cat}_\infty\).

Proof. First note that [Hin16, Proposition 1.5.1] implies that a Quillen equivalence of model categories induces an equivalence of underlying quasicategories. There are Quillen equivalences \(\text{sCat} \cong \text{sSet}\) [Ber10, Theorem

\(^3\)This refers to the published version listed in our references. The same definition appears at 3.1.1.8 in the April 2017 version on Lurie’s website.

\(^4\)We are using the fact that the unique map \(p: C \to \Delta^0\) is a Cartesian fibration iff \(C\) is a quasicategory, and the \(p\)-Cartesian edges are precisely the weak equivalences.
and \(\mathcal{S} \mathcal{T} \rightleftharpoons \mathcal{S} \mathcal{T}^+\) [Lur09, 3.1.5.1 (A0)]. As a result, there are equivalences of quasicategories \(\text{u.q.}(\mathcal{S} \mathcal{T}, \mathcal{W} \mathcal{E}) \rightarrow \text{u.q.}(\mathcal{S} \mathcal{T}^+, \mathcal{W} \mathcal{E})\), where \(\mathcal{W} \mathcal{E}\) denotes the collection of weak equivalences between marked simplicial sets, and \(\text{u.q.}(\mathcal{C} \mathcal{A} \mathcal{T}, \mathcal{D} \mathcal{K}) \rightarrow \text{u.q.}(\mathcal{S} \mathcal{T}, \mathcal{W} \mathcal{E})\), where \(\mathcal{D} \mathcal{K}\) denotes the collection of Dwyer-Kan equivalences. It then follows, by [Lur09, 3.1.3.5], that there are equivalences of marked simplicial sets \(\text{u.q.}(\mathcal{S} \mathcal{T}, \mathcal{W} \mathcal{E}) \leftarrow \text{u.q.}(\mathcal{S} \mathcal{T}^+, \mathcal{W} \mathcal{E})\) and \(\text{u.q.}(\mathcal{C} \mathcal{A} \mathcal{T}, \mathcal{D} \mathcal{K}) \rightarrow \text{u.q.}(\mathcal{S} \mathcal{T}, \mathcal{W} \mathcal{E})\).

Now by [Hin16, Proposition 1.4.3] and its corollary, we have a (Dwyer-Kan) equivalence of simplicial categories \((\mathcal{S} \mathcal{T}^+)^{\circ} \rightarrow L^H(\mathcal{S} \mathcal{T}^+, \mathcal{W} \mathcal{E})\). By definition of fibrant replacement, we also have equivalences \((\mathcal{S} \mathcal{T}^+)^{\circ} \rightarrow \mathbb{R}(\mathcal{S} \mathcal{T}^+)^{\circ}\). Since the latter morphism is between fibrant objects, and the right Quillen adjoint \(N\) preserves equivalences between fibrant objects (by Ken Brown’s Lemma), we have an equivalence of simplicial sets \((N(\mathcal{S} \mathcal{T}^+)^{\circ})^2 \rightarrow \text{u.q.}(\mathcal{S} \mathcal{T}^+, \mathcal{W} \mathcal{E})^2\).

So we have equivalences of marked simplicial sets:

\[(N(\mathcal{S} \mathcal{T}^+)^{\circ})^2 \rightarrow \text{u.q.}(\mathcal{S} \mathcal{T}^+, \mathcal{W} \mathcal{E})^2 \rightarrow \text{u.q.}(\mathcal{S} \mathcal{T}, \mathcal{W} \mathcal{E})^2 \rightarrow \text{u.q.}(\mathcal{C} \mathcal{A} \mathcal{T}, \mathcal{D} \mathcal{K})^2\]

These imply the result after applying the (large) nerve to the (large) quasi-category of marked simplicial sets.

A.2 Straightening, unstraightening and Gr\(_\infty\)

This section is a summary of results from [Lur09, 3.2 and 3.3] regarding straightening and unstraightening.

Theorem A.2.1 ([Lur09, 3.2.0.1]). Let \(S\) be a simplicial set, \(\mathcal{D}\) a simplicial category, and \(\phi : \mathcal{C}[S] \xrightarrow{\sim} \mathcal{D}\) an equivalence of simplicial categories. Then there is a Quillen equivalence

\[
\begin{array}{ccc}
(\mathcal{S} \mathcal{T}^+)^{\mathcal{D}} & \xrightarrow{\phi} & (\mathcal{S} \mathcal{T}^+)/_S \\
\downarrow & & \downarrow \\
\mathcal{S} \mathcal{T}^+_\phi & \xleftarrow{\sim} & (\mathcal{S} \mathcal{T}^+)/_S
\end{array}
\]

where \((\mathcal{S} \mathcal{T}^+)/_S\) is the category of marked simplicial sets over \(S\) with the co-Cartesian model structure, and \((\mathcal{S} \mathcal{T}^+)^{\mathcal{D}}\) is the category \(\mathcal{D}\) shaped diagrams in marked simplicial sets with the projective model structure.

Lemma A.2.2 ([Lur09, 3.2.4.1]). Both \((\mathcal{S} \mathcal{T}^+)/_S\) and \((\mathcal{S} \mathcal{T}^+)^{\mathcal{D}}\) are simplicial model categories, and \(\mathcal{U} \mathcal{N}^\phi\) is a simplicial functor\(^5\) which induces an

\(^5\)But \(\mathcal{S} \mathcal{T}^+_\phi\) is not always a simplicial functor.
equivalence of simplicial categories

\[(\text{Un}^+_\phi)^\circ: ((\text{sSet}^+)^D)^\circ \xrightarrow{\simeq} ((\text{sSet}^+)/S)^\circ.\]

Corollary A.2.3 ([Lur09, A.3.1.12]). Taking the nerve of this equivalence, there is an equivalence of quasicategories

\[N(\text{Un}^+_\phi)^\circ: N((\text{sSet}^+)^D)^\circ \xrightarrow{\simeq} N((\text{sSet}^+)/S)^\circ.\]

Remark A.2.4. Note that, for [Lur09, A.3.1.12] to apply above, it is essential that all of the objects of \((\text{sSet}^+)/S\) are cofibrant. This follows from [Lur09, 3.1.3.7] when we set \(S = \Delta^0\) and the recollection that every object of \(\text{sSet}\) is cofibrant in Joyal model structure.

By [Lur09, 3.1.1.11\(^7\)], the vertices of \(N((\text{sSet}^+)/S)^\circ\) are precisely maps of marked simplicial sets of the form \(X^\natural \to S^\natural\) where \(X \to S\) is a coCartesian fibration. We may thus identify \(X \to S\) with \(X^\natural \to S^\natural\) and treat the vertices of \(N((\text{sSet}^+)/S)^\circ\) as coCartesian fibrations over \(S\). This motivates and justifies the following notation:

Definition A.2.5. The quasicategory of coCartesian fibrations over \(S\) is

\[\text{coCart}/S := N((\text{sSet}^+)/S)^\circ.\]

Corollary A.2.6. There is an equivalence of quasicategories

\[(\text{Cat}_{\infty})^S \simeq \text{coCart}/S.\]

Proof. By Corollary A.2.3 with \(D = \mathcal{C}[S]\) and \(\phi\) the identity, it suffices to show that we have an equivalence of quasicategories

\[N((\text{sSet}^+)^{\mathcal{C}(S)})^\circ \simeq (\text{Cat}_{\infty})^S.\]

But this is precisely [Lur09, 4.2.4.4], which states that

\[N((\text{sSet}^+)^{\mathcal{C}(S)})^\circ \simeq (N(\text{sSet}^+)^S)^S,\]

together with Definition A.1.4.

\(^6\)We use the notational convention in Remark A.1.5.

\(^7\)This is 3.1.1.10 in the April 2017 version on Lurie’s website.
Definition A.2.7. Let Gr_∞ denote the above equivalence of quasicategories,

$$\text{(Cat}_\infty\text{)}^S \cong \text{coCart}/S \cong \text{Gr}_\infty$$

and let Gr_∞^\sim denote its weak inverse (i.e. there are natural equivalences of functors $\text{Id}_{\text{coCart}/S} \simeq \text{Gr}_\infty \circ \text{Gr}_\infty^\sim$ and $\text{Id}_{\text{Cat}_\infty^S} \simeq \text{Gr}_\infty^\sim \circ \text{Gr}_\infty$).

Remark A.2.8. The existence of a weak inverse Gr_∞^\sim is a result of the “fundamental theorem of quasicategory theory” [Rez, §30]. By [Lur09, 5.2.2.8], one can check that Gr_∞ and Gr_∞^\sim are adjoints in the sense of [Lur09, 5.2.2.1], but we will not need that here.

Note that Gr_∞^\sim is not the nerve of $(\text{St}^\Delta_+)^\circ$ (the latter is not even a simplicial functor). See [RV17a, 6.1.13, 6.1.22] for a description of Gr_∞^\sim on objects, and [RV17a, 6.1.19] for an alternative description of Gr_∞.

Definition A.2.9 ([Lur09, 3.3.2.2]). For $p: X \rightarrow S$ a coCartesian fibration, a map $f: S \rightarrow \text{Cat}_\infty$ classifies p if there is an equivalence of coCartesian fibrations $X \cong \text{Gr}_\infty f$.

A.3 Functors out of $\mathcal{C}[\Delta^n]$

We review the characterization of simplicial functors out of $\mathcal{C}[\Delta^n]$ that will be used in the proof of Theorem 2.3.1. All material here is from [RV17a], with some slight modifications in notation and terminology.

Throughout, $[n]$ denotes the poset $\{0 < 1 < \cdots < n\}$.

Definition A.3.1 ([RV17a, 4.4.6]). Let $I = \{i_0 < i_1 < \cdots < i_m\}$ be a subset of $[n]$ containing at least 2 elements (i.e. $m \geq 1$).

An r-dimensional bead shape of I, denoted $\langle I_0|I_1|\cdots|I_r \rangle$, is a partition of I into non-empty subsets I_0, \ldots, I_r such that $I_0 = \{i_0, i_m\}$.

Example A.3.2. A 2-dimensional bead shape of $I = \{0, 1, 2, 3, 5, 6\}$:

$$I_0 = \{0, 6\}, \quad I_1 = \{3\}, \quad I_2 = \{1, 2, 5\}.$$

We write $S_{\langle I_0|I_1|I_2 \rangle}$ to mean the same thing as $S_{\langle 06|3|125 \rangle}$.

Lemma A.3.3 ([RV17a, 4.4.9]). A simplicial functor $f: \mathcal{C}[\Delta^n] \rightarrow \mathcal{K}$ is precisely the data of:

- For each $i \in [n]$, an object $S_i \in \mathcal{K}$
For each subset $I = \{i_0 < \cdots < i_m\} \subseteq [n]$ where $m \geq 1$, and each r-dimensional bead shape $\langle I_0 \ldots | I_r \rangle$ of I, an r-simplex $S_{\langle I_0 \ldots | I_r \rangle}$ in $K(S_{i_0}, S_{i_m})$ whose boundary is compatible with lower-dimensional data.

The main benefit of this description is that no further coherence conditions need to be checked. Instead of describing what it means for the boundary to compatible with lower-dimensional data, which can be found in [RV17a], we illustrate this with an example. But first, we introduce the abbreviation

$$S_{\langle i_0 i_1 \ldots i_m \rangle} := S_{\langle i_{m-1} i_m \rangle} S_{\langle i_{m-2} i_{m-1} \rangle} \cdots S_{\langle i_1 i_2 \rangle} S_{\langle i_0 i_1 \rangle}.$$

Example A.3.4. The bead shape in Example A.3.2 is 2-dimensional, so $S_{\langle i_0 i_1 | i_2 \rangle} = S_{\langle 06 | 3 \rangle 125}$ should be a 2-simplex in $K(S_0, S_6)$. The boundary of this 2-simplex is compatible with lower-dimensional data, which can be found in $K(S_{012356})$.

- The first vertex is always $S_{\langle i_0 \rangle}$, which in this case is $S_{\langle 06 \rangle} \in K(S_0, S_6)_0$.
- The last vertex is always $S_{\langle i_1 \rangle}$, which in this case is $S_{\langle 012356 \rangle}$. Between the first and last vertex, we have
 $$S_{\langle 06 \rangle} \xrightarrow{S_{\langle 06 | 1235 \rangle}} S_{\langle 012356 \rangle} \in K(S_0, S_6)_1,$$
 representing the insertion of $I_1 \cup I_2 \cup \cdots \cup I_r$ into I_0. This is always the starting edge of $S_{\langle I_0 \ldots | I_r \rangle}$.
- The remaining vertices and edges are generated by first inserting I_1 into I_0, then I_2 into $I_0 \cup I_1$ and so on, up to inserting I_r into $I \setminus I_r$.
- In our case, we first insert $I_1 = \{3\}$ into I_0. This yields the vertex $S_{\langle I_0 | I_1 \rangle} = S_{\langle 06 | 3 \rangle} = S_{\langle 36 \rangle} S_{\langle 03 \rangle}$ and the edge
 $$S_{\langle 06 \rangle} \xrightarrow{S_{\langle 06 | 3 \rangle}} S_{\langle 036 \rangle} \in K(S_0, S_6)_1.$$
- Next, we insert $I_2 = \{1, 2, 5\}$ into $I_0 \cup I_1$. Since this gives all of I and we already have $S_{\langle I \rangle}$, we do not need to add any more vertices. We only add the edge
 $$S_{\langle 036 \rangle} \xrightarrow{S_{\langle 36 | 5 \rangle} S_{\langle 03 | 12 \rangle}} S_{\langle 01235 \rangle} \in K(S_0, S_6)_1,$$
 where $S_{\langle 36 | 5 \rangle} \in K(S_3, S_5)_1$ and $S_{\langle 03 | 12 \rangle} \in K(S_0, S_3)_1$. Note that 5, lying between 3 and 6, goes into $S_{\langle 36 \rangle}$, as indicated by $S_{\langle 36 | 5 \rangle}$; similarly, 1 and 2 go into $S_{\langle 03 \rangle}$, as indicated by $S_{\langle 03 | 12 \rangle}$. We denote this composite
 $$S_{\langle 036 | 125 \rangle} := S_{\langle 36 | 5 \rangle} S_{\langle 03 | 12 \rangle}.$$
We can then choose $S_{(06|3|125)}$ to be any 2-simplex in $K(S_0, S_6)$ fitting into the following:

![Diagram](image)

Remark A.3.5. The rule that I_0 must have exactly 2 elements in Definition A.3.1 allows us to distinguish bead shapes from abbreviations. For instance, $S_{(06|3)}$ arises from a bead shape, while $S_{(036|036)}$ is an abbreviation.

Note that we should not abbreviate the composite $S_{(036|125)}S_{(06|3)}$ as $S_{(06|1235)}$, since the latter implies that we insert $\{1, 2, 3, 5\}$ all at once into $\{0, 6\}$. Indeed, the point of $S_{(06|3|125)}$ is to relate $S_{(036|125)}S_{(06|3)}$ and $S_{(06|1235)}$.

We only abbreviate $S_{(i_0...i_{k-1}|...)}S_{(i_{k+1}...i_{\ell-1}|...)}$ as $S_{(i_0...i_{k-1}i_k...i_{\ell-1}|...)}$ if $i_k = i_0$. The upshot is that there is an entirely unambiguous process of converting an abbreviation into a composite of bead shapes, and not all composites of bead shapes may be abbreviated. See [RV17a, 4.2.4] for details.