Quasi-linear magnetoresistance and the violation of Kohler’s rule in the quasi-one-dimensional Ta$_4$Pd$_3$Te$_{16}$ superconductor

Xiaofeng Xu1, W H Jiao2, N Zhou1, Y Guo1, Y K Li1, Jianhui Dai1, Z Q Lin1, Y J Liu3, Zengwei Zhu3, Xin Lu4, H Q Yuan4 and Guanghan Cao5

1 Department of Physics and Hangzhou Key Laboratory of Quantum Matters, Hangzhou Normal University, Hangzhou 310036, People’s Republic of China
2 Department of Physics, Zhejiang University of Science and Technology, Hangzhou 310023, People’s Republic of China
3 Wuhan National High Magnetic Field Center, School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, People’s Republic of China
4 Center for Correlated Matter and Department of Physics, Zhejiang University, Hangzhou, 310058, People’s Republic of China
5 Department of Physics, Zhejiang University, Hangzhou 310027, People’s Republic of China

E-mail: xiaofeng.xu@hznu.edu.cn

Received 11 May 2015, revised 21 June 2015
Accepted for publication 26 June 2015
Published 29 July 2015

Abstract

We report on the quasi-linear in field intrachain magnetoresistance in the normal state of a quasi-one-dimensional superconductor Ta$_4$Pd$_3$Te$_{16}$ ($T_c \sim 4.6$ K). Both the longitudinal and transverse in-chain magnetoresistance shows a power-law dependence, $\Delta R/B^\alpha$, with the exponent α close to 1 over a wide temperature and field range. The magnetoresistance shows no sign of saturation up to 50 T studied. The linear magnetoresistance observed in Ta$_4$Pd$_3$Te$_{16}$ is found to be overall inconsistent with the interpretations based on the Dirac fermions in the quantum limit, charge conductivity fluctuations as well as quantum electron–electron interference. Moreover, it is observed that the Kohler’s rule, regardless of the field orientations, is violated in its normal state. This result suggests the loss of charge carriers in the normal state of this chain-containing compound, due presumably to the charge-density-wave fluctuations.

Keywords: magnetoresistance, Kohler’s rule, superconductivity

(Some figures may appear in colour only in the online journal)
even spin-triplet pairing state [7]. Notably, the normal state of some Q1D superconductors, including the organic Bechgaard salts (TMTSF)2X (X = PF6, ClO4) [8, 9] and purple bronze Li0.9Mo6O17 [10], is often regarded as the most promising candidate to realize the so-called Tomonaga-Luttinger liquid (TLL) paradigm in the bulk materials.

In standard metals, the Lorentz force caused by an applied magnetic field changes the electron trajectory and gives rise to a positive magnetoresistance (MR) which increases quadratically with the strength of the field [11]. However, there are few exceptions where the MR may grow linearly with the field. For example, in the Dirac systems, the MR acquires the linear-in-field form once all Dirac fermions are degenerate into the lowest Landau level, i.e., in the quantum limit regime [12–18]. The linear MR was also observed in some ferromagnets, including ferromagnet Fe1−xCoSi crystals [19] and geometrically constrained thin films of iron, nickel and cobalt, due to quantum electron–electron (e–e) interference effects [20]. Besides, quasi-linear MR was also reported in non-magnetic silver chalcogenides [21]. Other mechanisms for the linear MR involve the polycrystalline materials [22] and inhomogeneous compounds with mixed components of the resistivity tensor [23]. The longitudinal MR of a non-degenerate semiconductor in the predominant lattice-scattering range may also be linear in field [24]. On the other side, the MR at a certain temperature Δρ under a field H obeys a general function known as the Kohler’s rule: Δρ/ρ0 = f(H/ρ0), where ρ0 is the zero-field resistivity [25, 26]. As a result, the plots of Δρ/ρ0 as a function of H/ρ0 at distinct temperatures will collapse onto a single curve. Interestingly, this rule, although derived from the semiclassical Boltzmann theory, was found to be well obeyed in a large number of metals, including the metals with two types of carriers, the pseudogap phase of the underdoped cuprates [27] as well as some other Q1D metals [28]. The violation of such a rule is generally believed to result from the loss of carriers with temperature or from the fact that the anisotropic electron scattering rates do not have the same T scaling on different sections of the Fermi surface (FS).

A new Q1D chain-containing compound Ta4Pd3Te16 has recently been reported to be superconducting below Tc ~ 4.6 K [29]. In its crystal structure, one dimensional PdTe2 conducting chains are extended along the b-axis, parallel to TaTe3 chains and Ta2Te4 double chains. Soon after this finding, the low temperature thermal conductivity measurements revealed the gap node in its order parameter [30], similar to the overdoped cuprate Tl2Ba2CuO6+y. However, the scanning tunnelling microscopy (STM) points out that its gap structure is more likely anisotropic without nodes [31]. On the other hand, both the Tc-pressure diagram and STM study suggest that the system is probably in the vicinity of an ordered state, presumably a charge-density-wave (CDW) instability [30, 32]. Recent density function calculations appear to rule out a magnetic instability as the origin of this ordered state [33]. All these findings seem to suggest that our understanding of this Q1D superconductor is far from complete. The normal state properties, which would provide valuable clues to its superconducting mechanism, have hardly been studied thus far. In this context, we study the normal state transport properties of this new Q1D superconductor and uncover that its MR, unlike most of standard metals, shows quasi-linear behaviors in a broad T and field range. Additionally, the semiclassical Kohler’s rule is found to be modestly violated, in all three field orientations studied here. The implication of our observation has been discussed.

2. Experiment

Ta4Pd3Te16 single crystals were synthesized by a solid state reaction in vacuum, following the same procedures described in [29]. The as-grown crystals have a typical size of 2.5×0.25×0.1 mm3, with the longest dimension parallel to the chain direction (b-axis). X-ray diffraction (XRD) and dc magnetization measurements were performed to confirm the sample quality. The MR was measured by a standard four-probe technique with the current flowing along the b-axis for different field orientations up to 9 T and 13 T in superconducting magnets, respectively, and up to 50 T in the pulsed magnetic field laboratory. In this study, at least four crystals from the same growth batch were measured under different magnets and field orientations.

3. Results and discussion

The schematic view of the crystal structure projected on the ac plane is shown in figure 1. We define hereafter the a'-axis
Figure 2. The top three panels show the T sweeps of the b-axis resistivity of Ta$_4$Pd$_3$Te$_{16}$ under various fields for H aligned along the three orthogonal axes. Bottom panel: H–T phase diagram using the midpoint of the transition for field aligned along the a', b, and c' directions.

Figure 3. The field sweeps at several constant temperatures for $H\parallel a'$, $H\parallel b$ and $H\parallel c'$, respectively, for sample $\#1$. For the former two field directions, the field is up to 9 T while for the latter, is up to 13 T. The data are fitted to B^β, with β given in the individual figures.

as the direction in the flat Ta–Pd–Te layer orthogonal to the chains and the c'-axis perpendicular to the $a'b$ plane. The representative plot of the temperature dependence of the in-chain resistivity is given in figure 1, with a blow-up of its low-T superconducting transition as the inset. Clearly, the midpoint of a sharp superconducting transition occurs at \sim4.6 K. Due to the sample morphology, it is impossible to measure directly the inter-chain resistivity along the other two orthogonal directions, ρ_{ab} and ρ_{ac}. Instead, we use the anisotropy in its upper critical field to evaluate its resistivity anisotropy. According to anisotropic Ginzburg–Landau theory, the upper critical field H_{c2} with a field applied along i direction is $H_{c2}^i = \frac{\Phi_0}{2\pi \xi_i^2}$, where Φ_0 is the fluxoid and $\xi_{i,k}$ ($\propto \eta_{i,k}$) is the coherence length in the directions orthogonal to the field. On the other hand, the resistivity ρ_i is inversely dependent on the square of the Fermi velocity, $\rho_i \propto \frac{1}{v_F}$. These combined give the following relations: $\frac{H_{c2}^i}{H_{c2}^j} = \frac{\xi_i}{\xi_j} = \frac{\rho_j}{\rho_i}$. Figure 2 displays the temperature dependence of the b-axis resistivity under several values of magnetic field
applied along the three orthogonal directions, along with the cumulative phase diagram of H_{c2}, using the criteria of the midpoint of the transition. The resultant H_{c2} extrapolated to $T = 0$ K is 5.4 T, 9.4 T and 3.3 T, for $H\parallel a^*$, $H\parallel b$, $H\parallel c^*$, respectively, in agreement with previous measurements [30, 34]. Therefore, the resistivity anisotropy $\rho_a/\rho_b/\rho_{c^*}$ is estimated to be 3:1:8. This anisotropy is rather small compared with other Q1D materials, like (TMTSF)$_2$X ($X=PF_6$, ClO$_4$), Li$_{0.9}$Mo$_6$O$_{17}$ and PrBa$_2$Cu$_4$O$_{8}$.

In order to see if this power-law like MR will ever saturate at a higher field, we study the transverse MR ($H\parallel c^*$) of a second sample (2) in the pulsed magnetic field. As seen from figure 4, this quasi-linear MR shows no sign of saturation up to 50 T. In general, the transverse MR of a metal will saturate in the high fields once $\omega_c T \gg 1$ unless the material is perfectly compensated or it has open orbit in the FS [11, 37]. In Ta$_4$Pd$_3$Te$_{16}$, according to band structure calculations [33], its FS contains a 2D hole cylinder ‘$a’$, two nested 1D sheets ‘$b’$ and ‘$c’$, and a 3D sheet ‘$\delta’$. Hence, the open orbit associated with the 1D Fermi sheets may be responsible for the nonsaturating MR observed here.

Figure 5 collectively shows the exponent α in B^α dependence of the MR at different temperatures and field configurations from four samples studied (the other two labelled as 3 and 24). There are total 48 points in this figure. The most striking feature of this figure is that, most of the data points (especially below 50 K) resides in the range of $\frac{2}{5}$ to $\frac{3}{5}$, although α increases slightly with temperature.

In recent years, linear MR has been widely observed in the Dirac materials, such as topological insulators [16], 3D bulk materials with Dirac states [17], and iron-based superconductor BaFe$_2$As$_2$ [18]. The linear energy dispersion of Dirac fermions leads to nonsaturated linear MR once the field exceeds a critical field B' such that all states occupy the lowest Landau level in the quantum limit. Therefore, the transverse MR displays a crossover from the low-B quadratic dependence to the high-B linear MR at the critical field B'. The crossover field B' has the T-dependence: $B' = \frac{1}{2n_\phi} (E_F + k_B T)^2$, where n_ϕ and E_F are Fermi velocity and Fermi energy respectively [17] in Ta$_4$Pd$_3$Te$_{16}$. However, its low-B MR profile can not be fitted to the quadratic form in a reasonable field window. In addition, the above T-dependence of the critical field is not observed either.

In silver chalcogenides, Ag$_{2}$AsSe etc, the resistance exhibits an unusually linear dependence on magnetic field without any signs of saturation at fields as high as 60 T [19, 38]. The underlying physical origin of the linear MR in this non-magnetic material remains controversial [39-41]. A plausible explanation is the conductivity fluctuations associated with inhomogeneous distribution of silver ions [40]. In our Ta$_4$Pd$_3$Te$_{16}$ crystals, the sample is in single phase and the quality is high, confirmed from both XRD and energy dispersive x-ray spectra, hence this mechanism is unlikely here.

As described earlier, the linear positive MR has also been observed in some ferromagnets, such as the cobalt-doped FeSi [19]. This linear MR was attributed to the quantum e-e interference interaction. The effect of a magnetic field on the e-e interaction was derived three decades ago in the nonmagnetic
The magnetic field induces a spin gap ($g \mu_B H$, where g is the Lande factor and μ_B is the Bohr magneton) which suppresses the contribution of $e-e$ interaction to the conductivity and leads to a positive MR proportional to $\ln(g \mu_B H / k_B T)$ in 2D and to $\sqrt{g \mu_B H}$ in 3D [42]. In a material with ferromagnetic correlations, however, there exists an (exchange) gap in the absence of the external field. The external field further increases the gap and induces a correction to the resistivity which is linearly proportional to H at any laboratory field. However, there is no observed experimental evidence to date in favor of such ferromagnetic correlations in Ta$_4$Pd$_3$Te$_{16}$. Instead, both the pressure and STM study suggested that the material may be actually close to a CDW instability [30, 32]. The question therefore remains of how the electrons scatter off the CDW fluctuations and ultimately lead to a linear MR seen in this study.

At last, let us examine the Kohler’s rule in this Q1D material. Kohler’s plot, as exemplified for sample ξ_1, is shown in figures 6(a)–(c) for three different field orientations respectively. Clearly, the Kohler’s rule is violated, in particular below \sim50 K, in all field directions studied here, similar to what was observed in graphite [43]. Generally, the departure of the Kohler’s scaling results from the loss of the carriers or the anisotropic scattering $\tau(k)$ that does not have the same T-scaling on different portions of the FS. Prior to the report of [27], Kohler’s rule was widely believed to be violated in cuprate superconductors as a result from the two-lifetime scattering and non-Fermi liquid excitations. In the disordered Q1D PrBa$_2$Cu$_4$O$_8$, Kohler’s rule was seen to be violated whereas it was obeyed in the pure, clean samples. This dichotomy was proposed to arise from the disorder-tuned dimensional crossover from 3D to pure 1D and the corresponding spin-charge separation in the 1D TLL regime. Given the resistivity anisotropy quoted above, it was farfetched to assign Ta$_4$Pd$_3$Te$_{16}$ into a TLL material. Instead, it is natural to deem that, as inspired by the pressure study [30], the material is on the border of a CDW instability and the violation of Kohler’s rule is the result from the gapping out of the electrons with decreasing T due to the density-wave formation [32].

4. Conclusion

In conclusion, we have uncovered an anomalously quasi-linear MR, irrespective of the field directions, in the normal state of the Q1D Ta$_4$Pd$_3$Te$_{16}$/superconductor. This quasi-linear MR shows nonsaturating behavior up to 50 T, the highest field in this study. Moreover, the Kohler’s rule was seen to be violated in all three field directions studied. In combination with the previous report of its T_c-pressure diagram, it is tempting to link our observation to the proximity to a CDW instability. In this respect, it is interesting to see how the Drude tail in the optical response evolves in the T range studied here. The origin of the quasi-linear MR observed in this study however invokes more theoretical investigations in the future.

Acknowledgment

The authors would like to thank C Lester, C M J Andrew, A F Bangura, C Cao, Z Shi, S Li for stimulating discussions. This work is sponsored by the National Key Basic Research
Program of China (Grant No. 2014CB648400), and by National Natural Science Foundation of China (Grant No. 11474080, 11104051). XX would also like to acknowledge the financial support from the Distinguished Young Scientist Funds of Zhejiang Province (LR14A040001). WJ was supported by Zhejiang Provincial Natural Science Foundation of China (No. LQ15A040005).

References

[1] Lee P A, Nagaosa N and Wen X G 2006 Rev. Mod. Phys. 78 17
[2] Hussey N E 2002 Adv. Phys. 51 1685
[3] Kwak J F et al 1981 Phys. Rev. Lett. 46 1296
[4] Lebed’ A G 1986 JETP Lett. 43 174
[5] Osada T, Kagoshima S and Miura N 1992 Phys. Rev. B 46 1812
[6] Danner G, Kang W and Chaikin P M 1994 Phys. Rev. Lett. 72 3714
[7] Lee I J, Naughton M J, Danner G M and Chaikin P M 1997 Phys. Rev. Lett. 78 3555
[8] Haddad S, Charfi-Kaddour S, Nickel C, Héritier M and Bennaceur R 2004 Phys. Status Solidi b 241 1216
[9] Zhang W and Sá de Melo C A R 2007 Adv. Phys. 56 545
[10] Wakeham N, Bangura A F, Xu X, Mercure J F, Greenblatt M and Hussey N E 2011 Nat. Commun. 2 396
[11] Ashcroft N W and Mermin N D 1975 Solid State Physics (Ithaca, NY: Cornell University Press)
[12] McClure J W and Spry W J 1968 Phys. Rev. 165 809
[13] Kempa H, Esquinazi P and Kopelevich Y 2006 Solid State Commun. 138 118
[14] Pal H K and Maslov D L 2013 Phys. Rev. B 88 035403
[15] Kopelevich Y, da Silva R R, Camargo B C and Alexandrov A S 2013 J. Phys.: Condens. Matter 25 466004
[16] Qu D X, Hor Y S, Xia J, Cava R J and Ong N P 2010 Science 329 821
[17] Wang K F, Graf D, Lei H C, Tozer S W and Petrovic C 2011 Phys. Rev. B 84 220401
[18] Huynh K K, Tanabe Y and Taniyaki K 2011 Phys. Rev. Lett. 106 217004
[19] Manyala N, Sidis Y, DiTusa J F, Aepli G, Young D P and Fisk Z 2000 Nature 404 581
[20] Gerber A, Kishon I, Korenblit I Y, Riss O, Segal A, Kropovskii M and Raquet B 2007 Phys. Rev. Lett. 99 027201
[21] Xu R, Husmann A, Rosenbaum T F, Saboungi M L, Enderby J E and Littlewood P B 1997 Nature 390 57
[22] Kapitza P 1929 Proc. R. Soc. A 123 292
[23] Herring C 1960 J. Appl. Phys. 31 1939
[24] Argyres P N and Adams E N 1956 Phys. Rev. 104 900
[25] Argyres P N 1958 J. Phys. Chem. Solids 4 19
[26] Kohler M 1938 Ann. Phys. 32 211
[27] Luo N and Miley G H 2002 Physica C 371 259
[28] Chan M K, Veit M J, Dorow C J, Ge Y, Li Y, Tabis W, Tang Y, Zhao X, Barišić N and Greven M 2014 Phys. Rev. Lett. 113 177005
[29] Narduzzo A, Enayati-Rad A, Horii S and Hussey N E 2007 Phys. Rev. Lett. 98 146601
[30] Jiao W H, Tang Z T, Sun Y L, Liu Y, Tao Q, Feng C M, Zeng Y W, Xu Z A and Cao G H 2014 J. Am. Chem. Soc. 136 1284
[31] Mar A and Ibers J A 1991 J. Chem. Soc. Dalton Trans. 639 – 41 Goyal R, Tiwari B, Jha R and Awana V P S 2015 J. Sup. Novel Mag. 28 1195
[32] Pan J, Jiao W H, Hong X C, Zhang Z, He L P, Cai P L, Zhang J, Cao G H and Li S Y arXiv:1404.0371
[33] Du Z Y, Fang D L, Wang Z Y, Li Y F, Du G, Yang H, Zhu X Y and Wen H H 2015 Sci. Rep. 5 9408
[34] Fan Q et al 2015 Phys. Rev. B 91 104506
[35] Singh D 2014 Phys. Rev. B 90 144501
[36] Jiao W H, Liu Y, Li Y K, Xu X F, Bao J K, Feng C M, Li S Y, Xu Z A and Cao G H arXiv:1501.03585
[37] Xu Z A, Ong N P, Wang Y, Kakeshita T and Uchida S 2000 Nature 406 486
[38] Rourke P M C et al 2011 Nat. Phys. 7 455
[39] Ali M N et al 2014 Nature 514 205
[40] Husmann A, Betts J B, Boebinger G S, Migliori A, Rosenbaum T F and Saboungi M L 2002 Nature 417 421
[41] Abrikosov A A 1998 Phys. Rev. B 50 2788
[42] Parish M M and Littlewood P B 2003 Nature 426 162
[43] Zhang W, Yu R, Feng W, Yao Y, Weng H, Dai X and Fang Z 2011 Phys. Rev. Lett. 106 156808
[44] Lee P A and Ramakrishnan T V 1982 Phys. Rev. B 26 4099
[45] Kempa H, Esquinazi P and Kopelevich Y 2002 Phys. Rev. B 65 241101