Fractional Quantum Mechanics

Nick Laskin*

Carleton University
1125 Colonel By Drive
Ottawa, Ontario, Canada K1S 5B6

Abstract

A path integral approach to quantum physics has been developed. Fractional path integrals over the paths of the Lévy flights are defined. It is shown that if the fractality of the Brownian trajectories leads to standard quantum and statistical mechanics, then the fractality of the Lévy paths leads to fractional quantum mechanics and fractional statistical mechanics. The fractional quantum and statistical mechanics have been developed via our fractional path integral approach. A fractional generalization of the Schrödinger equation has been found. A relationship between the energy and the momentum of the nonrelativistic quantum-mechanical particle has been established. The equation for the fractional plane wave function has been obtained. We have derived a free particle quantum-mechanical kernel using Fox’s H function. A fractional generalization of the Heisenberg uncertainty relation has been established. Fractional statistical mechanics has been developed via the path integral approach. A fractional generalization of the motion equation for the density matrix has been found. The density matrix of a free particle has been expressed in terms of the Fox’s H function. We also discuss the relationships between fractional and the well-known Feynman path integral approaches to quantum and statistical mechanics.

PACS number(s): 05.40.Fb, 05.30.-d, 03.65.Sq

*E-mail: nlaskin@rocketmail.com, nlaskin@sce.carleton.ca
1 Introduction

The term "fractal" was introduced into scientists’ lexicon by Mandelbrot [1]. Historically, the first example of the fractional physical object was the Brownian motion, whose trajectories (paths) are nondifferentiable, self-similar curves that have a fractal dimension that is different from its topological dimension [1], [2]. In quantum physics the first successful attempt to apply the fractality concept was the Feynman path integral approach to quantum mechanics. Feynman and Hibbs [3] reformulated the nonrelativistic quantum mechanics as a path integral over the Brownian paths. Thus the Feynman-Hibbs fractional background leads to standard (nonfractional) quantum mechanics.

We develop an extension of a fractality concept in quantum physics. That is, we construct a fractional path integral and formulate the fractional quantum mechanics [4] as a path integral over the paths of the Lévy flights.

The Lévy stochastic process is a natural generalization of the Brownian motion or the Wiener stochastic process [5], [6]. The foundation for this generalization is the theory of stable probability distributions developed by Lévy [7]. The most fundamental property of the Lévy distributions is the stability in respect to addition, in accordance with the generalized central limit theorem. Thus, from the probability theory point of view, the stable probability law is a generalization of the well-known Gaussian law. The Lévy processes are characterized by the Lévy index α, $0 < \alpha \leq 2$. At $\alpha = 2$ we have the Gaussian process or the process of the Brownian motion. Let us note that the Lévy process is widely used to model a variety of processes, such as turbulence [8], chaotic dynamics [9], plasma physics [10], financial dynamics [11], biology and physiology [12].

As is well known, in the Gaussian case the path integral approach to quantum mechanics allows one to reproduce the Schrödinger equation for the wave function. In the general case we derive the fractional generalization of the Schrödinger equation [see Eq. (28)]. The fractional generalization of the Schrödinger equation includes the derivative of order α instead of the second ($\alpha = 2$) order derivative in the standard Schrödinger equation. This is one of the reasons for the term "fractional quantum mechanics" (FQM).

The paper is organized as follows. In Sec.II we describe two fractals: (i) a trajectory of the Brownian motion, and (ii) a trajectory of the Lévy flight. In Sec.III we define the fractional path integrals in the coordinate and phase space representations. We develop the FQM via a path integral. It is shown
in what way the FQM includes the standard one. We derive a free particle fractional quantum-mechanical propagator using the Fox’s H function. The fractional dispersion relation between the energy and the momentum of the nonrelativistic fractional quantum mechanical particle is established.

In Sec.IV the fractional generalization of the Schrödinger equation in terms of the quantum Riesz fractional derivative is obtained. The fractional Hamilton operator is defined and its hermiticity is proven.

As a physical application of the developed fractional quantum mechanics, a free particle quantum dynamics is studied in Sec.V. We introduce the Lévy wave packet, which is a fractional generalization of the well-known Gaussian wave packet. Quantum-mechanical probability densities in space and momentum representations are derived. The fractional uncertainty relation is established. This uncertainty relation can be considered as a fractional generalization of the Heisenberg uncertainty relation.

In Sec.VI we develop the fractional statistical mechanics (FSM) by means of the fractional path integral approach. The main point is go from imaginary time (in the framework of the quantum-mechanical fractional path integral consideration) to "inverse temperature" $it \rightarrow \hbar \beta$, where $\beta = 1/k_B T$, k_B is Boltzmann’s constant, \hbar is Planck’s constant and T is the temperature. We have found an equation for the partition function of the fractional statistical system. The fractional density matrix for a free particle is expressed in analytical form in terms of the Fox’s H function. We have derived the new fractional differential equation [see Eq.(63)] for the fractional density matrix. In the conclusion, we discuss the relationships between the fractional approach and the well-known Feynman path integral approach to quantum and statistical mechanics.

2 Fractals

The relation between fractals and quantum (or statistical) mechanics is easily observed in the framework of the Feynman path integral formulation. The background of the Feynman approach to quantum mechanics is a path integral over the Brownian paths. The Brownian motion was historically the first example of the fractal in physics. Brownian paths, are nondifferentiable, self-similar curves whose fractal dimension is different from its topological dimension. Let us explain the fractal dimension with two examples of fractals: (i) the Brownian path and (ii) the trajectory of the Lévy flight.
(i) A mathematical model of the Brownian motion is the Wiener stochastic process $x(t)$ \[5\]. The probability density $p_W(x|t_0)$ that a stochastic process $x(t)$, will be found at x at time t under the condition that it starting at $t = t_0$ from $x(t_0) = x_0$, satisfies the diffusion equation

$$\frac{\partial p_W(x|t_0)}{\partial t} = \frac{\sigma^2}{2} \nabla^2 p_W(x|t_0), \quad p_W(x|t_0) = \delta(x - x_0), \quad \nabla \equiv \frac{\partial}{\partial x}$$

the solution of which has the form

$$p_W(x|t_0) \equiv p_W(x - x_0; t - t_0) = \frac{1}{\sqrt{2\pi\sigma(t - t_0)}} \exp\left\{-\frac{(x - x_0)^2}{2\sigma(t - t_0)}\right\}, \quad (1)$$

where σ is the diffusion coefficient, and $t > t_0$.

Equation (1) implies that

$$(x - x_0)^2 \propto \sigma(t - t_0). \quad (2)$$

This scaling relation between a length increment of the Wiener process $\Delta x = x - x_0$ and a time increment $\Delta t = t - t_0$ allows one to find the fractal dimension of the Brownian path. Let us consider the length of the diffusion path between two given space-time points. We divide the given time interval T into N slices, such as $T = N\Delta t$. Then the space length of the diffusion path is

$$L = N\Delta x = \frac{T}{\Delta t} \Delta x = \sigma T(\Delta x)^{-1}, \quad (3)$$

where the scaling relation [Eq.(2)] was taken into account. The fractal dimension tells us about the length of the path when space resolution goes to zero, $\Delta x \to 0$. The fractional dimension d_{fractal} may be introduced by \[1\], \[2\]

$$L \propto (\Delta x)^{1-d_{\text{fractal}}},$$

where $\Delta x \to 0$. Letting $\Delta x \to 0$ in the Eq.(3), and comparing with the definition of the fractal dimension d_{fractal}, yields

$$d_{\text{fractal}}^{(Brownian)} = 2. \quad (4)$$

Thus the fractal dimension of the Brownian path is 2.
Another example of a fractal is the random process of the Lévy "flight" (or the Lévy motion). As discussed in Sec.I, the Lévy motion is a so-called α-stable random process, and may be considered as a generalization of the Brownian motion. The α-stable distribution is formed under the influence of the sum of a large number of independent random factors. The probability density $p_L(x|0,t_0)$ of the Lévy α-stable distribution has the form

$$p_L(x|0,t_0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dk e^{ik(x-x_0)} \exp\{-\sigma_\alpha |k|^\alpha (t-t_0)\}, \quad (5)$$

where α is the Lévy index $0 < \alpha \leq 2$, and σ_α is the generalized diffusion coefficient with the "physical" dimension $[\sigma_\alpha] = cm^{\alpha} sec^{-1}$. The α-stable distribution with $0 < \alpha < 2$ possesses finite moments of order μ, $\mu < \alpha$, but infinite moments for higher order. Note that the Gaussian probability distribution is also a stable one ($\alpha = 2$) and it possesses moments of all orders.

We will further study a fractional quantum and statistical mechanics, and it seems reasonable to suggest that there exist moments of first order or physical averages (for example, an average momentum or space coordinate of quantum particle; see Secs.V and VI). The requirement for the first moment's existence gives the restriction, $1 < \alpha \leq 2$.

The α-stable Lévy distribution defined by Eq.(5) satisfies the fractional diffusion equation

$$\frac{\partial p_L(x|0,t_0)}{\partial t} = \sigma_\alpha \nabla^\alpha p_L(x|0,t_0), \quad \nabla^\alpha \equiv \frac{\partial^\alpha}{\partial x^\alpha}, \quad (6)$$

$$p_L(x|0,t_0) = \delta(x-x_0),$$

where ∇^α is the fractional Riesz derivative defined through its Fourier transform [13], [14]

$$\nabla^\alpha p(x,t) = -\frac{1}{2\pi} \int_{-\infty}^{\infty} dk e^{ikx} |k|^\alpha \tilde{p}(k,t). \quad (7)$$

Here $p(x,t)$ and $\tilde{p}(k,t)$ are related to each other by the Fourier transforms.
\[p(x, t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dk e^{ikx} \overline{p}(k, t), \quad \overline{p}(k, t) = \int_{-\infty}^{\infty} dx e^{-ikx} p(x, t). \]

Equation (5) implies that

\[(x - x_0) \propto (\sigma_\alpha (t - t_0))^{1/\alpha}, \quad 1 < \alpha \leq 2. \]

This scaling relation between a length increment of the Lévy process \(\Delta x = x - x_0 \) and a time increment \(\Delta t = t - t_0 \), allows one to find the fractal dimension of a trajectory of a Lévy path. Let us consider the length of the Lévy path between two given space-time points. Dividing the given time interval \(T \) into \(N \) slices, such as \(T = N \Delta t \), and taking into account the scaling relation [Eq.(8)], we have

\[L = N \Delta x = \frac{T}{\Delta t} \Delta x = DT(\Delta x)^{1-\alpha}. \]

Letting \(\Delta x \to 0 \), and comparing with the definition of the fractal dimension \(d_{\text{fractal}} \) [1], [2], yields

\[d_{\text{fractal}}^{(\text{Lévy})} = \alpha, \quad 1 < \alpha \leq 2. \]

Thus the fractal dimension of the considered Lévy path is \(\alpha \).

3 Fractional path integral

If a particle at an initial time \(t_a \) starts from the point \(x_a \) and goes to a final point \(x_b \) at time \(t_b \), we will say simply that the particle goes from \(a \) to \(b \) and its trajectory (path) \(x(t) \) will have the property that \(x(t_a) = x_a \) and \(x(t_b) = x_b \). In quantum mechanics, then, we will have a quantum-mechanical amplitude, often called a kernel, which we may write \(K_F(x_b t_b | x_a t_a) \), which we use to get from the point \(a \) to the point \(b \). This will be the sum over all of the trajectories that go between that end points, and of a contribution from each. If we have a quantum particle moving in the potential \(V(x) \) then the quantum-mechanical amplitude \(K_F(x_b t_b | x_a t_a) \) may be written as [3]
where $V(x(\tau))$ is the potential energy as a functional of a particle path $x(\tau)$, and the Feynman path integral measure is defined as

\[
\int_{x(t_a)=x_a}^{x(t_b)=x_b} \mathcal{D}x(\tau) \ldots = \lim_{N \to \infty} \int_{-\infty}^{\infty} dx_1 \ldots dx_{N-1} \left(\frac{2\pi i \hbar \varepsilon}{m} \right)^{-N/2} \times \prod_{j=1}^{N} \exp \left\{ \frac{im}{2\hbar \varepsilon} (x_j - x_{j-1})^2 \right\} , \tag{11}
\]

here m is the mass of the quantum mechanical particle, \hbar is the Planck’s constant, $x_0 = x_a$, $x_N = x_b$ and $\varepsilon = (t_b - t_a)/N$. The Feynman path integral measure is generated by the process of the Brownian motion. Indeed, Eq. \((11)\) implies

\[
(x_j - x_{j-1}) \propto \left(\frac{\hbar}{m} \right)^{1/2} (\Delta t)^{1/2}.
\]

This is the typical relation between the space displacement and the time scale for the Brownian path. This scaling relation between a length increment $(x_j - x_{j-1})$ and a time increment Δt implies that the fractal dimension of the Feynman’s path is $d_{\text{fractal}}^{(\text{Feynman})} = 2$. As is well known, the definition given by Eq. \((11)\) leads to standard quantum mechanics. We conclude that the Feynman-Hibbs fractional background leads to standard (nonfractional) quantum mechanics \([3]\).

We propose the fractional quantum mechanics based on the new fractional path integral

\[
K_L(x_b t_b | x_a t_a) = \int_{x(t_a)=x_a}^{x(t_b)=x_b} \mathcal{D}x(\tau) \cdot \exp \left\{ \frac{i}{\hbar} \int_{t_a}^{t_b} d\tau V(x(\tau)) \right\} , \tag{12}
\]
where \(V(x(\tau)) \) is the potential energy as a functional of the Lévy particle path, and the fractional path integral measure is defined as

\[
\int_{x(t_0)=x_0}^{x(t_b)=x_b} Dx(\tau)... = \lim_{N \to \infty} \int_{-\infty}^{\infty} dx_1...dx_{N-1} h^{-N} \left(\frac{iD\alpha\varepsilon}{\hbar} \right)^{-N/\alpha} \prod_{j=1}^{N} L_\alpha \left\{ \frac{1}{\hbar} \left(\frac{\hbar}{D\alpha\varepsilon} \right)^{1/\alpha} |x_j - x_{j-1}| \right\}...
\]

where \(D_\alpha \) is the generalized “fractional quantum diffusion coefficient”, the physical dimension of which is \([D_\alpha] = \text{erg}^{1-\alpha} \cdot \text{cm}^\alpha \cdot \text{sec}^{-\alpha}\), \(\hbar \) denotes Planck’s constant, \(x_0 = x_a, x_N = x_b, \varepsilon = (t_b - t_a)/N \), and the Lévy distribution function \(L_\alpha \) is expressed in terms of Fox’s \(H \) function [15] - [17]

\[
h^{-1} \left(\frac{D\alpha t}{\hbar} \right)^{-1/\alpha} L_\alpha \left\{ \frac{1}{\hbar} \left(\frac{\hbar}{D\alpha t} \right)^{1/\alpha} |x| \right\} = \left[1 \left(\frac{\hbar}{D\alpha t} \right)^{1/\alpha} |x| \right] \left(1, 1/\alpha \right), \left(1, 1/2 \right) \left(1, 1, 1 \right)
\]

Here \(\alpha \) is the Lévy index and, as it was mentioned in Sec.II, we consider the case when \(1 < \alpha \leq 2 \).

The functional measure defined by Eq.(13) is generated by the Lévy flights stochastic process. We find from Eq.(13) that the scaling relation between a length increment \((x_j - x_{j-1}) \) and a time increment \(\Delta t \) has a fractional form

\[
|x_j - x_{j-1}| \propto \left(\frac{\hbar^{\alpha-1} D\alpha}{\Delta t} \right)^{1/\alpha}.
\]

This scaling relation implies that the fractal dimension of the Lévy path is \(d_{\text{fractal}}^{(\text{Lévy})} = \alpha \). So, in the general case \(1 < \alpha < 2 \) Lévy fractional background leads to fractional quantum mechanics. Equations (12)-(14) define the new fractional quantum mechanics via the fractional path integral.

As a physical application of the developed fractional path integral approach let us calculate the free particle kernel \(K_L^{(0)}(x_b t_b | x_a t_a) \), and compare it with the Feynman free particle kernel \(K_F^{(0)}(x_b t_b | x_a t_a) \). For the free particle \(V(x) = 0 \), and Eqs.(12) and (13) yield
\[K_L^{(0)} (x_b t_b | x_a t_a) = \int_{x(t_a) = x_a}^{x(t_b) = x_b} D\tau \cdot 1 = \]

\[= \hbar^{-1} \left(\frac{iD_\alpha (t_b - t_a)}{\hbar} \right)^{-1/\alpha} L_\alpha \left\{ \frac{1}{\hbar} \left(\frac{\hbar}{iD_\alpha (t_b - t_a)} \right)^{1/\alpha} |x_b - x_a| \right\} . \]

It is known that at \(\alpha = 2 \) the Lévy distribution is transformed to a Gaussian, and the Lévy flights process is transformed to the process of Brownian motion. Equation (15), in accordance with the definition given by Eq.(14) and the properties of the Fox’s function \(H_{1,1}^{1,1} \) at \(\alpha = 2 \) (see Refs.[16], [17]) is transformed to a Feynman free particle kernel (see Eq.(3-3) of Ref.[3])

\[K_F^{(0)} (x_b t_b | x_a t_a) = \left(\frac{2\pi i\hbar (t_b - t_a)}{m} \right)^{-1/2} \cdot \exp \left\{ \frac{im(x_b - x_a)^2}{2\hbar(t_b - t_a)} \right\} . \quad (16) \]

Thus the general fractional [Eq.(15)] includes, as a particular, Gaussian case at \(\alpha = 2 \), the Feynman propagator.

In terms of a Fourier integral (momentum representation), the fractional kernel \(K_L^{(0)} (x_b t_b | x_a t_a) \) is written as

\[K_L^{(0)} (x_b t_b | x_a t_a) = \frac{1}{2\pi \hbar} \int_{-\infty}^{\infty} dp \cdot \exp \left\{ i\frac{p(x_b - x_a)}{\hbar} - i\frac{D_\alpha |p|^\alpha (t_b - t_a)}{\hbar} \right\} . \quad (17) \]

while Eq.(16) in the momentum representation has the form

\[K_F^{(0)} (x_b t_b | x_a t_a) = \frac{1}{2\pi \hbar} \int_{-\infty}^{\infty} dp \cdot \exp \left\{ i\frac{p(x_b - x_a)}{\hbar} - i\frac{p^2(t_b - t_a)}{2m\hbar} \right\} . \quad (18) \]

We see from Eq.(17) that the energy \(E_p \) of the fractional quantum mechanical particle with momentum \(p \) is given by

\[E_p = D_\alpha |p|^\alpha . \quad (19) \]
This is a dispersion relation for the nonrelativistic fractional quantum-mechanical particle. The comparison of the Eqs. (17) and (18) allows to conclude that at $\alpha = 2$ we should put $D_2 = 1/2m$. Then Eq. (19) is transformed to the standard nonrelativistic equation $E_p = p^2/2m$.

Using Eq. (17) we can define the fractional functional measure in the phase space representation by

$$x(t_b) = x_b$$

$$\int_{x(t_a) = x_a} Dx(\tau) \int Dp(\tau) \ldots =$$

$$= \lim_{N \to \infty} \int_{-\infty}^{\infty} dx_1 \ldots dx_{N-1} \frac{1}{(2\pi \hbar)^N} \int_{-\infty}^{\infty} dp_1 \ldots dp_N \cdot \exp \left \{ i \frac{p_1(x_1 - x_a)}{\hbar} - i \frac{D_1 |p_1|^{\alpha} \varepsilon}{\hbar} \right \} \times \ldots$$

$$\times \exp \left \{ i \frac{p_N(x_b - x_{N-1})}{\hbar} - i \frac{D_1 |p_N|^{\alpha} \varepsilon}{\hbar} \right \} \ldots,$$

here $\varepsilon = (t_b - t_a)/N$. Then the kernel $K_L(x_b t_b | x_a t_a)$ defined by Eq. (12) can be written as

$$K_L(x_b t_b | x_a t_a) = \lim_{N \to \infty} \int_{-\infty}^{\infty} dx_1 \ldots dx_{N-1} \frac{1}{(2\pi \hbar)^N} \int_{-\infty}^{\infty} dp_1 \ldots dp_N \times \exp \left \{ \frac{i}{\hbar} \sum_{j=1}^{N} p_j(x_j - x_{j-1}) \right \} \times \exp \left \{ -\frac{i}{\hbar} D_1 \varepsilon \sum_{j=1}^{N} |p_j|^{\alpha} - i \frac{\varepsilon}{\hbar} \sum_{j=1}^{N} V(x_j) \right \}.$$

In the continuum limit $N \to \infty, \varepsilon \to 0$, we have

$$K_L(x_b t_b | x_a t_a) = \int_{x(t_a) = x_a}^{x(t_b) = x_b} Dx(\tau) \int Dp(\tau) \exp \left \{ \frac{i}{\hbar} \int_{t_a}^{t_b} d\tau [p(\tau) \dot{x}(\tau) - H_\alpha(p(\tau), x(\tau))] \right \},$$

(21)

where the phase space path integral $\int_{x(t_a) = x_a}^{x(t_b) = x_b} Dx(\tau) \int Dp(\tau) \ldots$ is given by Eq. (20), \dot{x} denotes the time derivative, H_α is the fractional Hamiltonian.
\[H_\alpha(p, x) = D_\alpha|p|^\alpha + V(x) \] (22)

with the replacement \(p \rightarrow p(\tau), \ x \rightarrow x(\tau) \), and \{p(\tau), x(\tau)\} is the particle trajectory in phase space. We will discuss the hermiticity property of the fractional Hamiltonian \(H_\alpha \) in Sec.IV.

The exponential in Eq.(21) can be written as \(\exp\{\frac{i}{\hbar}S_\alpha(p, x)\} \) if we introduce the fractional canonical action for the trajectory \{p(t), x(t)\} in phase space

\[S_\alpha(p, x) = \int_{t_a}^{t_b} d\tau (p(\tau)\dot{x}(\tau) - H_\alpha(p(\tau), x(\tau))). \] (23)

Since the coordinates \(x_0 \) and \(x_N \) in definition (20) are fixed at their initial and final points \(x_0 = x_a \) and \(x_N = x_b \), all possible trajectories in Eq.(23) satisfy the boundary condition \(x(t_b) = x_b \) and \(x(t_a) = x_a \). We see that the definition given by Eq.(21) includes one more \(p_j \) integral than \(x_j \) integral. Indeed, while \(x_0 \) and \(x_N \) are held fixed and the \(x_j \) integrals are done for \(j = 1, ..., N - 1 \), each increment \(x_j - x_{j-1} \) is accompanied by one \(p_j \) integral for \(j = 1, ..., N \). The above observed asymmetry is a consequence of the particular boundary condition. That is, the end points are fixed in position (coordinate) space. There exists the possibility of proceeding in a conjugate way, keeping the initial \(p_a \) and final \(p_b \) momenta and fixed. The associated kernel can be derived going through the same steps as before, but working in the momentum representation (see, for example, Ref.[18]).

Taking into account Eq.(17) it is easy to check directly the consistency condition

\[K^{(0)}_L(x_b t_b | x_a t_a) = \int_{-\infty}^{\infty} dx' K^{(0)}_L(x_b t_b | x' t') \cdot K^{(0)}_L(x' t' | x_a t_a). \]

This is a special case of the general fractional quantum-mechanical rule: amplitudes for events occurring in succession in time multiply

\[K_L(x_b t_b | x_a t_a) = \int_{-\infty}^{\infty} dx' K_L(x_b t_b | x' t') \cdot K_L(x' t' | x_a t_a). \] (24)
4 Fractional Schrödinger equation

The kernel $K_L(x_b t_b | x_a t_a)$ which is defined by Eqs. (12) and (13), describes the evolution of the fractional quantum-mechanical system

$$\psi_f(x_b, t_b) = \int_{-\infty}^{\infty} dx_a K_L(x_b t_b | x_a t_a) \cdot \psi_i(x_a, t_a),$$ \hspace{1cm} (25)

where $\psi_i(x_a, t_a)$ is the fractional wave function of the initial (at the $t = t_a$) state, and $\psi_f(x_b, t_b)$ is the fractional wave function of the final (at the $t = t_b$) state.

In order to obtain the differential equation for the fractional wave function $\psi(x, t)$, we apply Eq. (25) in the special case that the time t_b differs only by an infinitesimal interval ϵ from t_a

$$\psi(x, t + \epsilon) = \int_{-\infty}^{\infty} dy K_L(x, t + \epsilon | y, t) \cdot \psi(y, t).$$

Using the Feynman’s approximation $\int_{t}^{t+\tau} d\tau V(x(\tau)) \simeq \epsilon V[(x + y)/2]$ and the definition given by Eq. (17) we have

$$\psi(x, t + \epsilon) = \int_{-\infty}^{\infty} dy \frac{1}{2\pi \hbar} \int_{-\infty}^{\infty} dp \exp \left\{ ip(y - x) / \hbar - iD_\alpha |p|^\alpha \epsilon \right\} \cdot \psi(y, t).$$ \hspace{1cm} (26)

We may expand the left- and the right-hand sides in power series

$$\psi(x, t) + \epsilon \frac{\partial \psi(x, t)}{\partial t} = \int_{-\infty}^{\infty} dy \frac{1}{2\pi \hbar} \int_{-\infty}^{\infty} dp e^{i p(y-x) / \hbar} (1 - iD_\alpha |p|^\alpha \epsilon) \times$$

\hspace{1cm} \left(1 - \frac{i}{\hbar} \epsilon V\left(\frac{x+y}{2}\right)\right) \cdot \psi(y, t).$$

Then, taking into account the definitions of the Fourier transforms,
\[\psi(x, t) = \frac{1}{2\pi\hbar} \int_{-\infty}^{\infty} dp e^{i\frac{px}{\hbar}} \varphi(p, t), \quad \varphi(p, t) = \int_{-\infty}^{\infty} dp e^{-i\frac{px}{\hbar}} \psi(x, t), \]

and introducing the quantum Riesz fractional derivative \((\hbar \nabla)^\alpha\)

\[(\hbar \nabla)^\alpha \psi(x, t) = -\frac{1}{2\pi\hbar} \int_{-\infty}^{\infty} dp e^{i\frac{px}{\hbar}} |p|^\alpha \varphi(p, t), \]

we obtain from Eq. (26),

\[\psi(x, t) + \varepsilon \frac{\partial \psi(x, t)}{\partial t} = \psi(x, t) + i \frac{D_\alpha \varepsilon}{\hbar} (\hbar \nabla)^\alpha \psi(x, t) - i \frac{\varepsilon}{\hbar} V(x) \psi(x, t). \]

This will be true to order \(\varepsilon\) if \(\psi(x, t)\) satisfies the fractional differential equation

\[i\hbar \frac{\partial \psi}{\partial t} = -D_\alpha (\hbar \nabla)^\alpha \psi + V(x)\psi. \]

This is the fractional Schrödinger equation for a fractional quantum particle moving in one dimension.

Equation (28) may be rewritten in the operator form, namely

\[i\hbar \frac{\partial \psi}{\partial t} = H_\alpha \psi, \]

where \(H_\alpha\) is the fractional Hamiltonian operator:

\[H_\alpha = -D_\alpha (\hbar \nabla)^\alpha + V(x). \]

Using definition (27) one may rewrite the fractional Hamiltonian \(H_\alpha\) in the form given by Eq. (22).

The Hamiltonian \(H_\alpha\) is the Hermitian operator in the space with scalar product

\[(\phi, \chi) = \int_{-\infty}^{\infty} dx \phi^*(x, t) \chi(x, t). \]
To prove the hermiticity of H_α, let us note that in accordance with the definition of the quantum Riesz fractional derivative given by Eq. (27) there exists the integration-by parts formula

$$(\phi, (h\nabla)^\alpha \chi) = ((h\nabla)^\alpha \phi, \chi).$$

(31)

The average energy of fractional quantum system, with Hamiltonian H_α, is

$$E_\alpha = \int_{-\infty}^{\infty} dx \psi^*(x,t)H_\alpha \psi(x,t).$$

(32)

Taking into account Eq. (31) we have

$$E_\alpha = \int_{-\infty}^{\infty} dx \psi^*(x,t)H_\alpha \psi(x,t) = \int_{-\infty}^{\infty} dx (H_\alpha^+ \psi(x,t))^* \psi(x,t) = E_\alpha^*, $$

and, as a physical consequence, the energy of a system is real. Thus the fractional Hamiltonian H_α defined by Eq. (30) is the Hermitian or self-adjoint operator

$$(H_\alpha^+ \phi, \chi) = (\phi, H_\alpha \chi).$$

Since the kernel $K_L(x_b t_b | x_a t_a)$, thought of as a function of variables x_b and t_b, is a special wave function (for a particle which starts at x_a, t_a), we see that K_L must also satisfy a fractional Schrödinger equation. Thus, for the quantum system described by the fractional Hamiltonian [Eq. (30)], we have

$$i\hbar \frac{\partial}{\partial t_b} K_L(x_b t_b | x_a t_a) = -D_\alpha (h\nabla_b)^\alpha K_L(x_b t_b | x_a t_a) + V(x_b) K_L(x_b t_b | x_a t_a), \quad t_b > t_a,$$

where the low index ”b” means that the quantum fractional derivative acts on the variable x_b.

14
5 Free particle. Fractional uncertainty relation

As a first physical application of the developed FQM and the fractional Schrödinger equation (28), let us consider a free particle. The fractional Schrödinger equation for a free particle has the fractional plane wave solution

$$
\psi(x, t) = C \cdot \exp \left\{ \frac{i p x}{\hbar} - i \frac{D_\alpha |p|^\alpha}{\hbar} t \right\}, \quad (33)
$$

where C is a normalization constant. In special Gaussian case ($\alpha = 2$ and $D_2 = 1/2m$) Eq.(33) gives a plane wave of the standard quantum mechanics. Localized states are obtained by a superposition of plane waves

$$
\psi_L(x, t) = \frac{1}{2\pi\hbar} \int_{-\infty}^{\infty} dp \varphi(p) \cdot \exp \left\{ \frac{i p x}{\hbar} - i \frac{D_\alpha |p|^\alpha}{\hbar} t \right\}. \quad (34)
$$

Here $\varphi(p)$ is the "weight" function. We will study Eq.(34) for a one-dimensional fractional Lévy wave packet,

$$
\psi_L(x, t) = \frac{A_\nu}{2\pi\hbar} \int_{-\infty}^{\infty} dp \exp \left\{ -\frac{|p - p_0|^\nu}{2\hbar^\nu} \right\} \cdot \exp \left\{ \frac{i p x}{\hbar} - i \frac{D_\alpha |p|^\alpha}{\hbar} t \right\}, \quad (35)
$$

with the "weight" function

$$
\varphi(p) = A_\nu \cdot \exp \left\{ -\frac{|p - p_0|^\nu}{2\hbar^\nu} \right\}, \quad p_0 > 0, \quad \nu \leq \alpha,
$$

where A_ν is a constant, l is a space scale and α is the Lévy index, $1 < \alpha \leq 2$.

In the following we will be interested in the probability density $\rho(x, t)$ that a particle occupies a position x, and the probability density $w(p, t)$ that a particle has particular values p of the momentum. The wave function $\psi_L(x, t)$ defined by Eq.(35), gives the probability density $\rho(x, t)$

$$
\rho(x, t) = |\psi_L(x, t)|^2 = \frac{A_\nu^2}{(2\pi\hbar)^2} \int_{-\infty}^{\infty} dp_1 dp_2 \exp \left\{ -\frac{|p_1 - p_0|^\nu}{2\hbar^\nu} \right\} \times \quad (36)
$$
\[
\exp \left\{ -\frac{|p_2 - p_0|^{\nu l^\nu}}{2\hbar^{\nu}} \right\} \cdot \exp \left\{ \frac{i(p_1 - p_2)x}{\hbar} - \frac{iD_\alpha |p_1|^{\alpha} - |p_2|^{\alpha} t}{\hbar} \right\}.
\]

Now, we can fix the factor \(A_\nu \) such that \(\int dx \rho(x, t) = \int dx |\psi_L(x, t)|^2 = 1 \), with the result

\[
A_\nu = \sqrt{\frac{\pi \nu l}{\Gamma\left(\frac{1}{\nu}\right)}},
\]

where \(\Gamma\left(\frac{1}{\nu}\right) \) is the gamma function. The relationship between the probability densities \(\rho(x, t) \) and \(w(p, t) \) may be derived from the relationship between fractional wave functions in the space \(\psi_L(x, t) \) and momentum \(\phi(p, t) \) representations,

\[
\psi_L(x, t) = \frac{1}{2\pi \hbar} \int_{-\infty}^{\infty} dp \exp \left\{ i\frac{px}{\hbar} \right\} \cdot \phi(p, t),
\]

where we have

\[
\phi(p, t) = \exp \left\{ -\frac{|p - p_0|^{\nu l^\nu}}{2\hbar^{\nu}} \right\} \cdot \exp \left\{ -\frac{D_\alpha |p|^{\alpha} t}{\hbar} \right\}.
\]

Note that \(\phi(p, t) \) satisfies the fractional free particle Schrödinger equation in the momentum representation

\[
i\hbar \frac{\partial \phi(p, t)}{\partial t} = D_\alpha |p|^{\alpha} \phi(p, t), \quad \phi(p, 0) = \exp \left\{ -\frac{|p - p_0|^{\nu l^\nu}}{2\hbar^{\nu}} \right\}.
\]

One then obtains

\[
\int_{-\infty}^{\infty} dx |\psi_L(x, t)|^2 = \frac{A_\nu^2}{(2\pi \hbar)^2} \int_{-\infty}^{\infty} dx \int_{-\infty}^{\infty} dp dp' \exp \left\{ i\frac{(p - p')x}{\hbar} \right\} \phi(p, t)\phi^*(p', t) = \] \[
(40)
\]

\(^1\)The gamma function \(\Gamma(z) \) has the familiar integral representation \(\Gamma(z) = \int_0^\infty dt t^{z-1}e^{-t}, \) \(\text{Re} z > 0. \)
\[\frac{A^2_\nu}{(2\pi\hbar)} \int_{-\infty}^{\infty} dp |\phi(p,t)|^2 = 1, \]

because of
\[\frac{1}{(2\pi\hbar)} \int_{-\infty}^{\infty} dx \exp \left\{ i \frac{(p-p')x}{\hbar} \right\} = \delta(p-p'). \]

Equation (40) suggests, for the probability density in momentum space, the following definition:
\[w(p,t) = \frac{A^2_\nu}{2\pi\hbar} |\phi(p,t)|^2. \tag{41} \]

Thus, for the momentum probability density \(w(p,t) \), we have
\[w(p,t) \equiv w(p) = \nu \frac{l}{\hbar} \Gamma\left(\frac{1}{\nu} \right) \exp \left\{ - |p - p_0| \frac{\nu}{\hbar} \right\}. \tag{42} \]

This is time independent, since we are considering a free particle.

In coordinate space the probability of finding a particle at the position \(x \) in the "box" \(dx \) is given by \(\rho(x,t)dx \). Correspondingly, the probability of finding the particle with momentum \(p \) in \(dp \) is represented by \(w(p,t)dp \).

We are also interested in the average values and the mean-\(\mu \) deviations of position and momentum for the present probability densities defined by Eqs. (36) and (42). The expectation value of the space position can be calculated as
\[< x > = \int_{-\infty}^{\infty} dx x \rho(x,t) = \left(\frac{A^2_\nu}{(2\pi\hbar)^2} \right) \int_{-\infty}^{\infty} dx \int_{-\infty}^{\infty} dp dp' \exp \left\{ i \frac{(p-p')x}{\hbar} \right\} \phi(p,t)\phi^*(p',t). \tag{43} \]

Making the substitution
\[x \rightarrow \frac{\hbar}{i} \frac{\partial}{\partial p}, \]

17
we will have

\[<x> = \frac{A^2_\nu}{(2\pi \hbar)^2} \int_{-\infty}^{\infty} dx \int_{-\infty}^{\infty} dp dp' \left(\frac{\hbar}{i} \frac{\partial}{\partial p} \exp \left\{ \frac{i(p - p')x}{\hbar} \right\} \right) \phi(p, t) \phi^*(p', t). \]

Integrating by parts gives

\[<x> = -\frac{A^2_\nu}{(2\pi \hbar)^2} \hbar \int_{-\infty}^{\infty} dp \left(\frac{\nu}{\hbar} \frac{\partial}{\partial p} |p - p_0|^{\nu} - iD_\alpha t \frac{\partial}{\partial p} |p|^\alpha \right) \exp \left\{ -\frac{|p - p_0|^{\nu}}{\hbar^{\nu}} \right\} \phi(p, t) \phi^*(p', t). \]

It is easy to check that the first term in the brackets vanishes, and we find that the position expectation value is

\[<x> = \alpha D_\alpha p_0^{\alpha - 1} t. \] (44)

Using the dispersion relation given by Eq. (19), we may rewrite \(<x>\) as

\[<x> = \frac{\partial E_p}{\partial p} \bigg|_{p=p_0} \cdot t = v_0 t. \] (45)

Here \(v_0 = \left(\frac{\partial E_p}{\partial p} \right)_{p=p_0} \) is the group velocity of the wave packet. We see that the maximum of the Lévy wave packet [(Eq. (35)] moves with the group velocity \(v_0\) like a classical particle.

The mean-\(\mu\) deviations (\(\mu < \nu\)) of space position \(<|\Delta x|^{\mu}>\) is defined by

\[<|\Delta x|^{\mu}> = \int_{-\infty}^{\infty} dx |x - <x>|^{\mu} = \int_{-\infty}^{\infty} dx |x - <x>|^{\mu} \rho(x, t) = \]

\[\frac{A^2_\nu}{(2\pi \hbar)^2} \int_{-\infty}^{\infty} dx |x - <x>|^{\mu} \int_{-\infty}^{\infty} dp dp' \exp \left\{ \frac{i(p - p')x}{\hbar} \right\} \phi(p, t) \phi^*(p', t). \]

This equation can be rewritten as

\[<|\Delta x|^{\mu}> = \frac{\mu!}{2} \mathcal{N}(\alpha, \mu, \nu; \tau, \eta_0), \] (46)
where we introduce the following notations

\[N(\alpha, \mu, \nu; \tau, \eta_0) = \frac{2^{1/\nu} \nu}{4\pi \Gamma(\frac{1}{\nu})} \int_{-\infty}^{\infty} d\zeta |\zeta|^{\mu} \int_{-\infty}^{\infty} d\eta \int_{-\infty}^{\infty} d\eta' \exp\{i(\eta-\eta')(\zeta+\alpha \tau \eta_0^{\alpha-1})\} \times \]

\[\exp\{-i\tau(|\eta|^{\alpha}-|\eta'|^{\alpha}) - |\eta-\eta_0|^{\nu} - |\eta'-\eta_0|^{\nu}\} \]

and

\[\eta_0 = \frac{p_0}{2^{1/\nu} \hbar}, \quad \tau = \frac{D_\alpha t}{\hbar} \left(\frac{2^{1/\nu} \hbar}{l} \right)^\alpha. \]

So, for the \(\mu \)-root of the mean-\(\mu \) deviation of position (space position uncertainty for the Lévy wave packet), we find

\[< |\Delta x|^{\mu} >^{1/\mu} = \frac{1}{2^{1/\mu} \nu} N^{1/\mu}(\alpha, \mu, \nu; \tau, \eta_0). \] (48)

Further, with Eq.(42) the expectation value of the momentum is calculated as

\[< p > = \int_{-\infty}^{\infty} dp w(p) = \int_{-\infty}^{\infty} dp(p-p_0)w(p) + \int_{-\infty}^{\infty} dp p_0 w(p). \] (49)

The first integral vanishes, since \(w(p) \) is an even function of \((p-p_0) \), and the momentum expectation value is

\[< p > = p_0. \] (50)

The mean-\(\mu \) deviation of the momentum is

\[< |\Delta p|^{\mu} > = \int_{-\infty}^{\infty} dp |p-< p >|^{\mu} w(p) = \left(\frac{\hbar}{\Gamma} \right)^\mu \frac{\Gamma(\frac{\nu+1}{\nu})}{\Gamma(\frac{1}{\nu})}. \] (51)

Then the momentum uncertainty (the \(\mu \)-root of the mean-\(\mu \) deviation of momentum) is
Together with Eq. (48), this leads to
\[
< |\Delta x|^{\mu} >^{1/\mu} = \frac{\hbar}{2^{1/\mu}} \left(\frac{\Gamma \left(\frac{\mu+1}{\nu} \right)}{\Gamma \left(\frac{1}{\nu} \right)} \right)^{1/\mu} \mathcal{N}^{1/\mu}(\alpha, \mu, \nu; \tau, \eta_0), \quad (53)
\]
where \(\mathcal{N}(\alpha, \mu, \nu; \tau, \eta_0) \) is given by Eq. (47).

This relation implies that a spatially extended Lévy (or fractional) wave packet corresponds to a narrow momentum spectrum, whereas a sharp Lévy wave packet corresponds to a broad momentum spectrum.

Since \(\mathcal{N}(\alpha, \mu, \nu; \tau, \eta_0) > 1 \) and \(\Gamma \left(\frac{\mu+1}{\nu} \right) / \Gamma \left(\frac{1}{\nu} \right) \approx 1/\nu \) Eq. (53) becomes
\[
< |\Delta x|^{\mu} >^{1/\mu} < |\Delta p|^{\mu} >^{1/\mu} = \frac{\hbar}{(2\alpha)^{1/\mu}}, \quad \mu < \alpha, \quad 1 < \alpha \leq 2, \quad (54)
\]
with \(\nu = \alpha \).

Note that for the special case when \(\alpha = 2 \) we can set \(\mu = \alpha = 2 \). Thus, for the standard quantum mechanics (\(\alpha = 2 \)) with the definition of the uncertainty as the square-root of the mean-square deviation, Eq. (54) was established by Heisenberg [19], (see, for instance, ref. [20]). The uncertainty relation given by Eq. (54) can be considered as fractional generalization of the well-known Heisenberg uncertainty relation. Thus Eqs. (12)-(15), (21)-(24), (28), (30) and (54) are the basic equations for the new FQM.

6 Fractional statistical mechanics

In order to develop the fractional statistical mechanics (FSM), let us go in the previous quantum-mechanical consideration from imaginary time to "inverse temperature" \(\beta = 1/k_B T \), where \(k_B \) is Boltzmann’s constant and \(T \) is the temperature, \(it \to \hbar \beta \). In the framework of the traditional functional approach to the statistical mechanics, we have the functional over the Wiener measure [3, 13, 21].
\[\rho(x, \beta | x_0) = \int_{x(0) = x_0}^{x(\beta) = x} D_{\text{Wiener}} x(u) \cdot \exp\{-\frac{1}{\hbar} \int_0^\beta du V(x(u))\}, \quad (55) \]

where \(\rho(x, \beta | x_0) \) is the density matrix of the statistical system in the external field \(V(x) \), and the Wiener measure \([6]\) generated by the process of the Brownian motion is given by

\[x(\beta) = \int_{x(0) = x_0}^{x(\beta) = x} D_{\text{Wiener}} x(u) \cdot \exp\{-\frac{1}{\hbar} \int_0^\beta du V(x(u))\}, \quad (56) \]

\[\times \prod_{j=1}^N \exp\left\{ -\frac{m}{2\hbar \varsigma} (x_j - x_{j-1})^2 \right\}, \quad \ldots, \]

here \(\varsigma = \hbar \beta / N \) and \(x_N = x \).

The FSM deals with Lévy or fractional density matrix \(\rho_L(x, \beta | x_0) \) which is defined by

\[\rho_L(x, \beta | x_0) = \int_{x(0) = x_0}^{x(\beta) = x} D_{\text{Lévy}} x(u) \cdot \exp\{-\frac{1}{\hbar} \int_0^\beta du V(x(u))\}, \quad (57) \]

where we introduce the new fractional functional measure (we will call this measure by the Lévy functional measure) by

\[\int_{x(0) = x_0}^{x(\beta) = x} D_{\text{Lévy}} x(u) \cdot \exp\{ -\frac{1}{\hbar} \int_0^\beta du V(x(u))\}, \quad (58) \]

\[\times \prod_{j=1}^N L_\alpha \left\{ \frac{|x_j - x_{j-1}|}{(\hbar^{\alpha-1} D \varsigma)^{1/\alpha}} \right\}, \quad \ldots, \]

here \(\varsigma = \hbar \beta / N \), \(x_N = x \) and the Lévy function \(L_\alpha \) is given by Eq.\([14]\).

Equations \([57]\) and \([58]\) define the fractional quantum statistics via new Lévy path integral.

The partition function \(Z \) or free energy \(F \), \(Z = e^{-\beta F} \) is expressed as a trace of the density matrix \(\rho_L(x, \beta | x_0) \):
\[Z = e^{-\beta F} = \int dx \rho_L(x, \beta | x) = \]

\[\int dx \int \mathcal{D}_{\text{Levy}} x(u) \cdot \exp\left\{ -\frac{1}{\hbar} \int_0^{\hbar \beta} du V(x(u)) \right\}. \]

With the definition (20) the equation for the partition function becomes

\[Z = e^{-\beta F} = (59) \]

\[\int dx \int \mathcal{D}x(\tau) \mathcal{D}p(\tau) \exp\left\{ -\frac{1}{\hbar} \int_0^{\hbar \beta} du \left\{ -ip(u)x(u) + H_{\alpha}(p(u), x(u)) \right\} \right\}, \]

where the fractional Hamiltonian \(H_{\alpha}(p, x) \) has form of Eq.(22), and \(p(u), x(u) \) may be considered as paths running along on "imaginary time axis", \(u = it \).

The exponential expression of Eq.(59) is very similar to the fractional canonical action [Eq.(23)]. Since it governs the fractional quantum-statistical path integrals, it may be called the fractional quantum-statistical action or fractional Euclidean action, indicated (following Ref.[18]) by the superscript \((e)\),

\[S_{\alpha}^{(e)}(p, x) = \int_0^{\hbar \beta} du \left\{ -ip(u)x(u) + H_{\alpha}(p(u), x(u)) \right\}. \]

The parameter \(u \) is not the true time in any sense. It is just a parameter in an expression for the density matrix (see, for instance, Ref.[3]). Let us call \(u \) the "time", leaving the quotation marks to remind us that it is not real time (although \(u \) does have the dimension of time). Likewise \(x(u) \) will be called the "coordinate" and \(p(u) \) the "momentum". Then Eq.(57) may be interpreted in following way.

Consider all possible paths by which the system can travel between the initial \(x(0) \) and final \(x(\beta) \) configurations in the "time" \(\hbar \beta \). The fractional density matrix \(\rho_L \) is a path integral over all possible paths, the contribution from a particular path being the "time" integral of the canonical action [considered as the functional of the path \(\{p(u), x(u)\} \) in the phase space]
divided by \hbar. The partition function is derived by integrating over only those paths for which initial $x(0)$ and final $x(\beta)$ configurations are the same, and after that we integrate over all possible initial (or final) configurations.

The fractional density matrix $\rho_L^{(0)}(x, \beta|x_0)$ of a free particle ($V = 0$) can be written as

$$\rho_L^{(0)}(x, \beta|x_0) = \frac{1}{2\pi \hbar} \int_{-\infty}^{\infty} dp \exp \left\{ i \frac{p(x - x_0)}{\hbar} - \beta D_\alpha |p|^{\alpha} \right\} = (60)$$

$$= \frac{1}{\alpha |x - x_0|} H_{2,2}^{1,1} \left[\frac{|x - x_0|}{\hbar (D_\alpha \beta)^{1/\alpha}} \begin{pmatrix} (1, 1/\alpha), (1, 1/2) \\ (1, 1) \end{pmatrix} \right],$$

where $H_{2,2}^{1,1}$ is the Fox’s H function (see, Refs. [15] - [17]).

For a linear system of space scale Ω the trace of Eq.(60) leads to

$$Z = e^{-\beta F} = \int_{\Omega} dx \rho_L(x, \beta|x) = \frac{\Omega}{2\pi \hbar} \int_{-\infty}^{\infty} dp \exp\{-\beta D_\alpha |p|^\alpha\} = \frac{\Omega}{2\pi \hbar (\beta D_\alpha)^{1/\alpha}} \Gamma\left(\frac{1}{\alpha}\right).$$

When $\alpha = 2$ and $D_2 = 1/2m$, Eq.(60) gives the well-known density matrix for a one-dimensional free particle (see Eq.(10-46) of Ref. [3] or Eq.(2-61) of Ref. [21]):

$$\rho^{(0)}(x, \beta|x_0) = \left(\frac{m}{2\pi \hbar^2 \beta}\right)^{1/2} \exp\left\{-\frac{m}{2\hbar^2 \beta} (x - x_0)^2\right\}. \quad (61)$$

The Fourier representation $\rho_L^{(0)}(p, \beta|p')$ of the fractional density matrix $\rho_L^{(0)}(x, \beta|x_0)$ defined by

$$\rho_L^{(0)}(p, \beta|p') = \int_{-\infty}^{\infty} dx dx_0 \rho_L^{(0)}(x, \beta|x_0) \exp\left\{-\frac{i}{\hbar} (px - p'x_0)\right\}$$

can be rewritten as

$$\rho_L^{(0)}(p, \beta|p') = 2\pi \hbar \delta(p - p') \cdot e^{-\beta D_\alpha |p|^\alpha}.$$

In order to obtain a formula for the fractional partition function in the limit of fractional classical mechanics, let us study the case when $\hbar \beta$ is small.
Repeating consider, similar to Feynman’s (see, Chap. 10 of Ref.[3]) for the fractional density matrix $\rho_L(x, \beta | x_0)$ we can write the equation

$$\rho_L(x, \beta | x_0) = e^{-\beta V(x_0)} \frac{1}{2\pi\hbar} \int_{-\infty}^{\infty} dp \exp \left\{ \frac{i}{\hbar} \frac{p(x - x_0)}{\hbar} - \beta D_\alpha |p|^{\alpha} \right\}.$$

Then the partition function in the limit of classical mechanics becomes

$$Z = \int_{-\infty}^{\infty} dx \rho_L(x, \beta | x) = \frac{\Gamma(\frac{1}{\alpha})}{2\pi \hbar(\beta D_\alpha)^{1/\alpha}} \int_{-\infty}^{\infty} dx e^{-\beta V(x)}.$$ \hspace{1cm} (62)

This simple form for the partition function is only an approximation, valid if the particles of the system cannot wander very far from their initial positions in the "time" \(h/\beta \). The limit on the distance which the particles can wander before the approximation breaks down can be estimated in Eq. (60). We see that if the final point differs from the initial point by as much as

$$\Delta x \simeq h(\beta D_\alpha)^{1/\alpha} = \hbar \left(\frac{D_\alpha}{kT} \right)^{1/\alpha}$$

the exponential function of Eq. (60) becomes greatly reduced. From this, we can infer that intermediate points on paths which do not contribute greatly to the path integral of Eq. (60). If the potential \(V(x) \) does not alter very much as \(x \) moves over this distance, then the fractional classical statistical mechanics is valid.

The density matrix $\rho_L(x, \beta | x_0)$ obeys the fractional differential equation

$$-\frac{\partial \rho_L(x, \beta | x_0)}{\partial \beta} = -D_\alpha (\hbar \nabla x)^\alpha \rho_L(x, \beta | x_0) + V(x) \rho_L(x, \beta | x_0) \hspace{1cm} (63)$$

or

$$-\frac{\partial \rho_L(x, \beta | x_0)}{\partial \beta} = H_\alpha \rho_L(x, \beta | x_0), \hspace{0.5cm} \rho_L(x, 0 | x_0) = \delta(x - x_0),$$

where the fractional Hamiltonian H_α is defined by Eq. (30).

Thus Eqs. (57) - (60) and (63) are the basic equations for our FSM.
7 Conclusion

We have developed a path integral approach to FQM and FSM. The approach is based on functional measures generated by the stochastic process of the Lévy flights whose path fractional dimension is different from the fractional dimension of the Brownian paths. As was shown by Feynman and Hibbs, fractality (difference between topological and fractional dimensions) of the Brownian paths lead to standard (nonfractional) quantum mechanics and statistics. The fractality of the Lévy paths as shown in the present paper leads to fractional quantum mechanics and statistics. Thus we develop a fractional background which leads to fractional (nonstandard) quantum and statistical mechanics.

The Feynman quantum-mechanical and Wiener statistical mechanical path integrals are generalized, and as a result we have fractional quantum-mechanical and fractional statistical mechanical path integrals, respectively. A fractional generalization of the Schrödinger equation has been derived using the definition of the quantum Riesz fractional derivatives. We have defined the fractional Hamilton operator and proved its hermiticity. The relation between the energy and the momentum of nonrelativistic fractional quantum-mechanical particle has been found. The equation for the fractional plane wave function was obtained. We have derived a free particle quantum-mechanical kernel using Fox’s H function. In the particular Gaussian case ($\alpha = 2$), the fractional kernel takes the form of Feynman’s well-known kernel. For the Lévy wave packet the position and momentum uncertainties were calculated analytically. The fractional generalization of the Heisenberg uncertainty relation has been established.

Equations (12)-(15), (21)-(24), (28), (30) and (54) are the basic equations for our FQM.

Following the general rule and replacing $it \rightarrow \hbar \beta$, we obtain the path integral formulation of the FSM. An equation for the fractional partition function has been derived, and the fractional quantum-statistical action introduced into the quantum statistical mechanics. The density matrix of a free particle has been expressed analytically in terms of the Fox’s H function. It is shown that Eq. (60) for the fractional density matrix in a special Gaussian case ($\alpha = 2$) gives the well-known equation for the density matrix of free particle in one dimension (see Eq.(2-61) of Ref.[21]). We have found the formula for the fractional partition function in the limit of fractional classical mechanics and discuss the validity of this formula. A fractional differential
equation of motion of density matrix has been established. Equations (57) - (60) and (63) are the basic equations for our FSM.

We finally mention that the developed approach to quantum and statistical mechanics can easily be generalized to a d-dimensional consideration, using, a d-dimensional generalization of the fractional and the Lévy path integral measures.

References

[1] B.B. Mandelbrot, *The Fractal Geometry of Nature* (W.H. Freeman, New York, 1982).

[2] J. Feder, *Fractals* (Plenum Press, New York, 1988).

[3] R. P. Feynman and A.R. Hibbs, *Quantum Mechanics and Path Integrals* (McGraw-Hill, New York, 1965).

[4] N. Laskin, Phys. Lett. **A268**, 298 (2000).

[5] C.W. Gardiner, *Handbook of Stochastic Methods*, 2nd ed. (Springer-Verlag, 1985).

[6] N. Wiener, Proc. Lond. Math. Soc. **22**, 454 (1924).

[7] P. Lévy, *Théorie de l’Addition des Variables Aléatoires* (Gauthier-Villars, Paris, 1937).

[8] J. Klafter, A.Blumen and M.F. Shlesinger, Phys. Rev. **A35**, 3081 (1987).

[9] G.M. Zaslavsky, Physica **D76**, 110 (1994).

[10] G. Zimbardo, P. Veltri, G. Basile and S. Principato, Phys. Plasmas **2**, 2653 (1995).

[11] R.N. Mantega and H.E. Stanley, Nature (London) **376**, 46 (1995).

[12] B.J. West and W. Deering, Phys. Rep. **246**, 1 (1994).

[13] K.B. Oldham and J. Spanier, *The Fractional Calculus* (Academic, New York, 1974).
[14] A.I. Saichev and G.M. Zaslavsky, Chaos 7(4), 753 (1997).
[15] C. Fox, Trans. Am. Math. Soc. 98, 395 (1961).
[16] A.M. Mathai and R.K. Saxena, The H-function with Applications in Statistics and Other Disciplines (Wiley Eastern, New Delhi, 1978).
[17] B.J. West, P. Grigolini, R. Metzler and T. F. Nonnenmacher, Phys. Rev. E55, 99 (1997).
[18] H. Kleinert, Path Integrals in Quantum Mechanics, Statistics and Polymer Physics (World Scientific, Singapore, 1990).
[19] V. Heisenberg, Zeitschrift für Physik 43, 172 (1927); English translation in J.A. Wheeler and W.H. Zurek, (eds.) Quantum Theory and Measurements (Princeton University Press, Princeton, N.J., 1983), pp.62-84.
[20] L.D. Landau and E.M. Lifshitz, Quantum mechanics, Course of Theoretical Physics Vol.3 (Nonrelativistic Theory), (Pergamon Press, New York, 1965).
[21] R.P. Feynman, Statistical Mechanics (Benjamin. Reading, Mass. 1972).