On the Automated Classification of Web Sites

John M. Pierre

Interwoven, Inc.
101 2nd Street, 4th Floor
San Francisco, California USA
jpierre@interwoven.com
Abstract

In this paper we discuss several issues related to automated text classification of web sites. We analyze the nature of web content and metadata in relation to requirements for text features. We find that HTML metatags are a good source of text features, but are not in wide use despite their role in search engine rankings. We present an approach for targeted spidering including metadata extraction and opportunistic crawling of specific semantic hyperlinks. We describe a system for automatically classifying web sites into industry categories and present performance results based on different combinations of text features and training data. This system can serve as the basis for a generalized framework for automated metadata creation.
1 Introduction

There are an estimated 1 billion pages accessible on the world wide web with 1.5 million pages being added daily. Describing and organizing this vast amount of content is essential for realizing the web’s full potential as an information resource. Accomplishing this in a meaningful way will require consistent use of metadata and other descriptive data structures such as semantic linking. Categorization is an important ingredient as is evident from the popularity of web directories such as Yahoo!, Looksmart, and the Open Directory Project. However these resources have been created by large teams of human editors and represent only one type of classification scheme that, while widely useful, can never be suitable to all applications.

Classification is a fundamental intellectual task, and we take it as an axiom that it is important and indeed essential for organizing and understanding web content.

Automated classification is needed for at least two important reasons. The first is the sheer scale of resources available on the web and their ever-changing nature. It is simply not feasible to keep up with the fast pace of growth and change on the web through a manual classification effort without expending immense time and effort. The second reason is that classification itself is a subjective activity. Different classification schemes are needed for different applications. No single classification scheme is suitable for all applications. Therefore different types of classification schemes, representing different facets of knowledge, may need to be applied in an ongoing fashion as new applications demand them. Domain specific classification schemes, which can be quickly applied to large amounts of content using automated methods, hold great promise for generating effective metadata.

Classification should be considered within the larger context of subject-based metadata. Specific fields in metadata records often correspond to different classification schemes. The effective use of rich metadata will be important for establishing and leveraging the power of the semantic web. If web content shifts from primarily text-based to primarily multimedia oriented, metadata will become even more important. Structured metadata can serve as a driver for many applications such as knowledge based search and retrieval, reasoning engines, intelligent agents, and multi-faceted organization of information. However metadata creation can be tedious and time consuming. Automated methods, such as the one described in this paper, can be useful for facilitating metadata creation.

In this paper we discuss some practical issues for applying methods of automated classification to web content. Rather than take a one size fits all approach we advocate the use of targeted specific classification tasks, relevant to solving specific problems. In section 2 we discuss the nature of web content and its implications for automated categorization. Extracting good features that can accurately discriminate between different categories is an important part of any text categorization system. While it is possible and desirable to exploit metadata in the current web environment, we find that its use is far from widespread. In section 3 we describe a specialized system for automatically classifying web sites into industry categories. This system can serve as a generalized framework for efficient automated categorization of web content that includes targeted spidering, domain specific classification, and a trainable general purpose text categorization engine. In section 4 we present the results of our controlled experiments. We show how text features extracted from different parts of web pages effect classification accuracy, and demonstrate that metatags provide the best results. We also
compare the use of training data obtained from a different domain versus
training data drawn from the target domain. We find that training exam-
pies taken from the content to be classified give better results, but using
training data from a different domain can suffice in cases where assembling
new data from scratch is not feasible. Related work is discussed in section
2. In section 6 we state our conclusions and make suggestions for further
research.

2 Text Categorization of Web Content

The current state of the web differs markedly from the vision of the seman-
tic web as outlined by Tim Berners-Lee[1]. While web content is machine
readable for the most part[1], it is far from machine understandable. Further-
more the ability for computers to understand written human language is still
quite limited at this point in time. Therefore, in this work we have adopted
a text categorization approach that relies heavily on word-based indexing
and statistical classification, rather than sophisticated natural language pro-
cessing and knowledge-based inferencing. This approach is capable of giving
very good results in a way that is robust and makes few assumptions about
the content to be analyzed. This is an important consideration given the
heterogenous nature of web content.

One the main challenges with classifying web pages is the wide variation
in their content and quality. Most text categorization meth ods rely on the
existence of good quality texts, especially for training[5]. Unlike many of
the well-known collections typically studied in automated text classification
experiments (i.e. TREC, Reuters-22578, OSHUMED), in comparison the
web lacks homogeneity and regularness. To make matters worse, much of
the existing web page content is based in images, plug-in applications, or
other non-text media. The usage of metadata is inconsistent or non-existent.
In this section we survey the landscape of web content, and its relation to
the requirements of text categorization systems.

2.1 Analysis of Web Content

In an attempt to characterize the nature of the content to be classified, we
performed a rudimentary quantitative analysis. Our results were obtained
by analyzing a collection of 29,998 web domains obtained from a random
dump of the database of a well-known domain name registration company.
Of course these results reflect the biases of our small samples and don’t nec-
essarily generalize to the web as a whole, however they should be reflective
of the issues at hand. Since our classification method is text based, it is
important to know the amount and quality of the text based features that
typically appear in web sites. Existing standards for web content tend to be
de facto and loosely enforced if at all. One convention that holds for
the vast majority of web sites is that the top level entry point is an HTML
web page, so we take this to be our primary source of text features. Besides
the body text which is generally free form in a typical HTML page, it is
common to include a title and possibly a set of keywords and description
metatags. One of the more promising sources of text features should be
found in web page metadata.

1 The trend toward multimedia assets puts the future of this assumption in
some doubt, but dealing with the problem of non-text information is beyond the
scope of this paper.
In Table 1 we show the percentage of web sites with a certain number of words for each type of metatag. We analyzed a sample of 19,195 domains with live web sites and counted the number of words used in the content attribute of the `<META name='keywords'>` and `<META name='description'>` tags as well as `<TITLE>` tags. We also counted free text found within the `<BODY>` tag, excluding all other HTML tags.

Table 1: Percentage of Web Pages with Words in HTML Tags

Tag Type	0 words	1-10 words	11-50 words	51+ words
Title	4%	89%	6%	1%
Meta-Description	68%	8%	21%	3%
Meta-Keywords	66%	5%	19%	10%
Body Text	17%	5%	21%	57%

The most obvious source of text is within the body of the web page. We noticed that about 17% of top level web pages had no usable body text. These cases include pages that only contain frame sets, images, or plug-ins (our user agent followed redirects whenever possible). Almost a quarter of web pages contained 11-50 words, and the majority of web pages contained over 50 words.

Though title tags are common the amount of text is relatively small with 89% of the titles containing only 1-10 words. Also, the titles often contain only names or terms such as “home page”, which are not particularly helpful for subject classification.

Metatags for keywords and descriptions are used by several major search engines, where they play an important role in the ranking and display of search results. Despite this, only about a third of web sites were found to contain these tags. As it turns out, metatags can be useful when they exist because they contain text specifically intended to aid in the identification of a web site’s subject area. Most of the time these metatags contained between 11 and 50 words, with a smaller percentage containing more than 50 words (in contrast to the number of words in the body text which tended to contain more than 50 words).

The lack of widespread use of metatags, despite the apparent incentive to improve search engine rankings, is instructive. Since metadata is usually not part of the presentation of the content and its benefit is somewhat intangible, it tends to be neglected. Creating metadata can be a tedious and unwelcome task. Therefore methods to facilitate the creation of quality metadata, especially automated methods, are greatly needed.

2.2 Good Text Features

Feature selection is an important part of building an automated classification system. Without a proper set of features, the classifier will not be able to accurately discriminate between different categories. The feature set must be sufficiently broad to accommodate the wide variations that can occur even within instances of the same class. On the other hand the number

2The possibilities for misuse/abuse of these tags to improve search engine rankings are well known; however, we found these practices to be not very widespread in our sample and of little consequence.
of features needs to be constrained to reduce noise and to limit the burden on system resources.

In reference[5] it is argued that for the purposes of automated text categorization, features should be:

1. Relatively few in number
2. Moderate in frequency of assignment
3. Low in redundancy
4. Low in noise
5. Related in semantic scope to the classes to be assigned
6. Relatively unambiguous in meaning

Due to the wide variety of purpose and scope of current web content, items 4 and 5 are difficult requirements to meet for most classification tasks. For subject classification, metatags seem to meet those requirements better than other sources of text such as titles and body text. However the lack of widespread use of metatags is a problem if coverage of the majority of web content is desired. In the long term, automated categorization could really benefit if greater attention is paid to the creation and usage of rich metadata and explicit semantic structures, especially if the above requirements are taken into consideration. In the short term, one must implement a strategy for obtaining good text features from the existing HTML and natural language cues that takes the above requirements as well as the goals of the classification task into consideration. Techniques for shallow parsing and information extraction are useful in this regard.

3 Experimental Setup

We constructed a full scale automated classification system and performed several experiments using real world data in order to gauge system performance and test ideas. The goal of our targeted domain specific task was to rapidly classify web sites (domain names) into broad industry categories. In this section we describe the main ingredients of our classification experiments including the data, architecture, and evaluation measures.

3.1 Classification Scheme

The categorization scheme used was the top level of the 1997 North American Industrial Classification System (NAICS) [3], which consists of 21 broad industry categories shown in Table 2.

Some of our resources had been previously classified using the older 1987 Standard Industrial Classification (SIC) system. In these cases we used the published mappings[4] to convert all assigned SIC categories to their NAICS equivalents. The full NAICS has six levels of hierarchy and contains several thousand subcategories. For our experiments all lower level NAICS subcategories were generalized up to the appropriate top level category (though the entire classification scheme could have been utilized by our system if a finer grained categorization was desired).

NAICS and SIC are examples of authoritative controlled vocabularies. Using a published standardized classification scheme can be a good idea in order to take advantage of the many person hours of time it takes to construct something like this. In addition, it may be possible to take advantage
Table 2: Top level NAICS Categories

NAICS code	NAICS Description
11	Agriculture, Forestry, Fishing, and Hunting
21	Mining
22	Utilities
23	Construction
31-33	Manufacturing
42	Wholesale Trade
44-45	Retail Trade
48-49	Transportation and Warehousing
51	Information
52	Finance and Insurance
53	Real Estate and Rental and Leasing
54	Professional, Scientific and Technical Services
55	Management of Companies and Enterprises
56	Administrative and Support, Waste Management and Remediation Services
61	Educational Services
62	Health Care and Social Assistance
71	Arts, Entertainment and Recreation
72	Accommodation and Food Services
81	Other Services (except Public Administration)
92	Public Administration
99	Unclassified Establishments

of existing content already classified by the scheme as a source of training data.

3.2 Targeted Spidering

Based on the results of section 3 it is obvious that selection of adequate text features is an important issue and certainly not to be taken for granted. To balance the needs of our text-based classifier against the speed and storage limitations of a large-scale crawling effort, we took an approach for spidering web sites and gathering text that was targeted to the classification task at hand.

In some preliminary tests we found the best classifier accuracy was obtained by using only the contents of the keywords and description metatags as the source of text features. Adding body text decreased classification accuracy. However, due to the lack of widespread usage of metatags limiting ourselves to these features was not practical, and other sources of text such as titles and body text were needed to provide adequate coverage of web sites. Therefore our targeted spidering approach attempted to gather the higher quality text features from metatags and only resorted to lower quality texts if needed.

Our opportunistic spider began at the top level page of the web site and attempted to extract useful text from metatags and titles if they exist, and then followed links for frame sets if they existed. It also followed any hyperlinks that contained key substrings in their anchor text such as product, services, about, info, press, and news, and again looked for metatag content in those pages. These substrings were chosen based on an ad hoc frequency
analysis and the assumption that they tend to point to content that is useful for deducing an industry classification. Only if no metatag content was found did the spider gather the actual body text of the web page. All extracted text was concatenated into a single representative document for the site that was submitted to the classification engine. For efficiency we ran several spiders in parallel, each working on different lists of individual domain names.

What we were attempting to do by following a restricted set of hyper-links, was to take advantage of the current web’s implicit semantic structure. One advantage of moving towards an explicit semantic structure for hypertext documents is that an opportunistic spidering approach could really benefit from a formalized description of the semantic relationships between linked web pages. This would allow spiders to more easily find the most relevant resources without having to crawl the entire network of the web.

3.3 Test Data

From our initial list of 29,998 domain names we used our targeted spider to determine which sites were live and extracted text features using the approach outlined in section 3.2. Of those, 13,557 domain names had usable text content and were pre-classified according to one or more industry categories. From this set of data we drew samples for training, testing and validation.

3.4 Training Data

We took two approaches to constructing training sets for our classifiers. In the first approach we used a combination of 426 NAICS category labels (including subcategories) and 1504 U.S. Securities and Exchange Commission (SEC) 10-K filings for public companies as training examples. In the second approach we used a set of 3618 pre-classified domain names along with text for each domain obtained using our spider.

The first approach can be considered as using “prior knowledge” obtained in a different domain. It is interesting to see how knowledge from a different domain generalizes to the problem of classifying web sites. Furthermore it is often the case that training examples can be difficult to obtain (thus the need for an automated solution in the first place). The second approach is the more conventional classification by example. In our case it was made possible by the fact that our database of domain names was pre-classified according one or more industry categories.

3.5 Classifier Architecture

Our text classifier consisted of three modules: the targeted spider for extracting text features associated with a web site, an information retrieval engine for comparing queries to training examples, and a decision algorithm for assigning categories.

3 Industry classifications for domain names were provided by InfoUSA and Dunn & Bradstreet.
4 SEC 10-K filings are annual reports required of all U.S. public companies that describe business activities for the year. Each public company is also assigned an SIC category.
Our spider was designed to quickly process a large database of top level web domain names (e.g. domain.com, domain.net, etc.). As described in section 3.2, we implemented an opportunistic spider targeted to finding high quality text from pages that described the business area, products, or services of a commercial web site. After accumulating text features, a query was submitted to the text classifier. The domain name and any automatically assigned categories were logged in a central database. Several spiders could be run in parallel for efficient use of system resources.

Our information retrieval engine was based on Latent Semantic Indexing (LSI) [8]. LSI is a variation of the vector space model of information retrieval that uses the technique of singular value decomposition (SVD) to reduce the dimensionality of the vector space. Words that tend to co-occur in the same document share large projections along directions in the reduced space. Theoretically, this reduces noise due to redundant or spurious word usage, and automatically derives relationships between words and the inherent concepts. Cosine similarity is computed in the reduced vector space, which amounts to concept-based matching rather than word-based. For example, queries containing the word “car” will match documents containing only the word “automobile” provided the relationship between the words and concept has been established in the corpus.

In a previous work [7], it was shown that LSI provided better accuracy with fewer training set documents per category than standard TF-IDF weighting. Queries were compared to training set documents based on their cosine similarity, and a ranked list of matching documents and scores was forwarded to the decision module.

In the decision module, we used a K-nearest neighbor algorithm for ranking categories and assigned the top ranking category to the web site. This type of classifier tends to perform well compared to other methods [1], is robust, and tolerant of noisy data (all are important qualities when dealing with web content). In addition, the algorithm is capable of producing good results even when the amount of training data is limited. The decision module also is responsible for thresholding and presenting the final set of automatically assigned categories.

3.6 Evaluation Measures

System evaluation was carried out using the standard precision, recall, and F1 measures [9][10]. Precision is the number of correct categories assigned divided by the total number of categories assigned, and serves as a measure of classification accuracy. The higher the precision the smaller the amount of false positives. Recall is the number of correct categories assigned divided by the total number of known correct categories. Higher recall means a smaller amount of missed categories. In theory, scores of 1 are desirable for both precision and recall. In practice, even human assigned classifications may only achieve scores between 0.7 and 0.9, depending on the classification task. This is because to some extent classification is a subjective task and there are usually “grey areas” in a classification scheme.

The F1 measure combines precision and recall with equal importance into a single parameter for optimization and is defined as

\[
F1 = \frac{2PR}{P + R}
\]

where P is precision and R is recall.
We computed global estimates of system performance using both micro-averaging (results are computed based on global sums over all decisions) and macro-averaging (results are computed on a per-category basis, then averaged over categories). Micro-averaged scores tend to be dominated by the most commonly used categories, while macro-averaged scores tend to be dominated by the performance in rarely used categories. This distinction was relevant to our problem, because it turned out that the vast majority of commercial web sites are associated with the Manufacturing (31-33) category.

4 Results

In our first experiment we varied the sources of text features for 1125 pre-classified web domains. We constructed separate test sets based on text extracted from the body text, metatags (keywords and descriptions), and a combination of both. The training set consisted of SEC documents and NAICS category descriptions. Results are shown in Table 3.

Sources of Text	micro P	micro R	micro F1
Body	0.47	0.34	0.39
Body + Metatags	0.55	0.34	0.42
Metatags	0.64	0.39	0.48

Using metatags as the only source of text features resulted in the most accurate classifications. Precision decreases noticeably when only the body text was used. It is interesting that including the body text along with the metatags also resulted in less accurate classifications. These results influenced the design of our spider which extracted metatags first and foremost, while only grabbing body text as a last resort. The usefulness of metadata as a source of high quality text features should not be surprising since it meets most of the criteria listed in 2.2.

In our second experiment we compared classifiers constructed from the two different training sets described in section 3.4. The results are shown in Table 4.

Classifier	micro P	micro R	micro F1	macro P	macro R	macro F1
SEC-NAICS	0.66	0.35	0.45	0.23	0.18	0.09
Web Pages	0.71	0.75	0.73	0.70	0.37	0.40

The SEC-NAICS training set achieved respectable micro-averaged scores, but the macro-averaged scores were low. One reason for this is that this classifier generalizes well in categories that are common to the business and web domains (31-33, 23, 51), but has trouble with recall in categories that are not well represented in the business domain (71, 92) and poor precision in categories that are not as common in the web domain (54, 52, 56).
The training set constructed from web site text performed better overall. Macro-averaged recall was much lower than micro-averaged recall. This can be partially explained by the following example. The categories Wholesale Trade (42) and Retail Trade (44-45) have a subtle difference especially when it comes to web page text which tends to focus on products and services delivered rather than the Retail vs. Wholesale distinction. In our training set, category 42 was much more common than 44-45, and the former tended to be assigned in place of the latter, resulting in low recall for 44-45. Other rare categories also tended to have low recall (e.g. 23, 56, 81).

5 Related Work

Some automatically-constructed, large-scale web directories have been deployed as commercial services such as Northern Light[12], Inktomi Directory Engine[13], Thunderstone Web Site Catalog[14]. Details about these systems are generally unavailable because of their proprietary nature. It is interesting that these directories tend not to be as popular as their manually constructed counterparts.

A system for automated discovery and classification of domain specific web resources is described as part of the DESIRE II project[15][16]. Their classification algorithm weights terms from metatags higher than titles and headings, which are weighted higher than plain body text. They also describe the use of classification software as a topic filter for harvesting a subject specific web index. Another system, Pharos (part of the Alexandria Digital Library Project), is a scalable architecture for searching heterogeneous information sources that leverages the use of metadata[17] and automated classification[18].

The hyperlink structure of the web can be exploited for automated classification by using the anchor text and other context from linking documents as a source of text features[19]. Approaches to efficient web spidering[20][21] have been investigated and are especially important for very large-scale crawling efforts.

A complete system for automatically building searchable databases of domain specific web resources using a combination of techniques such as automated classification, targeted spidering, and information extraction is described in reference[22].

6 Conclusions

Automated methods of knowledge discovery, including classification, will be important for establishing the semantic web. Classification is a basic intellectual task and is challenging to automate due to its somewhat subjective nature. However it is possible to achieve results with automated methods that meet or exceed manual results.

A single classification scheme can never be adequate for all applications. We advocate a pragmatic approach including targeted techniques and specialized domain knowledge to be applied to specific classification tasks. The result is an efficient and optimized system for the task at hand. In this paper we described a practical system for automatically classifying web sites into industry categories that gives good results. This type of system can be applied to any domain specific classification scheme. All that is needed is to define the categories, assemble the training data, and configure the spider to extract the appropriate features. The spider may be constructed
to follow specific types of links, or extract sections of web page content that are most useful for a given domain.

From the results in Table 3 we concluded that metatags were the best source of quality text features, at least compared to the body text. However by limiting ourselves to metatags we would not be able to classify the large majority web sites. Therefore we opted for a targeted spider that extracted metatag text first, looked for pages that described business activities, and then degraded to other text only if necessary. It seems clear that text contained in structured metadata fields results in better automated categorization. If the web moves toward a more formal semantic structure as outlined by Tim Berners-Lee[1], then automated methods can benefit. If more and different kinds of automated classification tasks can be accomplished more accurately, the web can be made to be more useful as well as more usable.

Rich metadata for web content is a key to better searching, better organization and management of content, and improved intelligent agents capable of discovering and acting upon the knowledge embedded in the vast online resources. However, as we have shown, creation of metadata remains a bottleneck despite strong incentives such as better rankings in search engine results. It seems that the only way to ensure widespread use of quality metadata is to make the process of metadata creation as painless as possible. Automated methods that can reliably and accurately generate metadata from existing content hold much promise in this regard. Furthermore metadata needs to be multi-faceted, current, and extensible. Only automated systems can keep pace with the rate of generation of new web content that we see today.

We outline our basic approach for building a targeted automated categorization solution for web content:

- **Knowledge Gathering** - It is important to have a clear understanding of the domain to be classified and the quality of the content involved. The web is a heterogeneous environment, but within given domains patterns and commonalities can emerge. Taking advantage of specialized knowledge can improve classification results.

- **Targeted Spidering** - For each classification task different features will be important. However, due to the lack of homogeneity in web content, the existence of key features can be quite inconsistent. A targeted spidering approach tries to gather as many key features as possible with as little effort as possible. In the future this type of approach can benefit greatly from a web structure that encourages the use of metadata and semantically-typed links. It would be interesting to do a more detailed analysis of semantic spidering and its effect on system performance.

- **Training** - The best training data comes from the domain to be classified, since that gives the best chance for identifying the key features. In cases where it’s not feasible to assemble enough training data in the target domain, it may be possible to achieve acceptable results using training data gathered from a different domain. This can be true for web content which can be unstructured, uncontrolled, immense, and hence difficult to assemble quality training data. However, controlled collections of pre-classified electronic documents can be obtained in many important domains (financial, legal, medical, etc.) and applied to automated categorization of web content.
• **Classification** - In addition to being as accurate as possible, the classification method needs to be efficient, scalable, robust, and tolerant of noisy data. Classification algorithms that utilize the link structure of the web, including formalized semantic linking structures should be further investigated.

Non-text content such as images, applets, plugins, music and video are becoming more and more prevalent on the web. Devising automated methods that can deal with this kind of content is an important area for further investigation. Again, effective use of metadata can be a good way to help manage these types of non-text assets.

Better acceptance of metadata is one key to the future of the semantic web. However, creation of quality metadata is tedious and is itself a prime candidate for automated methods. A preliminary method such as the one outlined in the paper can serve as the basis for bootstrapping a more sophisticated classifier that takes full advantage of the semantic web, and so on.

7 Acknowledgements

I would like to thank for Bill Wohler for collaboration on system design and software implementation, and Roger Avedon, Mark Butler, and Ron Daniel for useful discussions. Special thanks to Network Solutions Inc. for providing classified domain names.

References

[1] T. Berners-Lee. Semantic Web Road Map. http://www.w3.org/DesignIssues/Semantic.html, 1998.

[2] Yahoo!, http://www.yahoo.com/

[3] Looksmart, http://www.looksmart.com/

[4] Open Directory Project, http://www.dmoz.org/

[5] D. Lewis. Text Representation for Intelligent Text Retrieval: A Classification-Oriented View. In P. Jacobs, editor, *Text-Based Intelligent Systems*, Chapter 9. Lawrence Erlbaum, 1992.

[6] North American Industrial Classification System (NAICS) - United States, 1997. http://www.census.gov/epcd/www/naics.html

[7] R. Dolin, J. Pierre, M. Butler, and R. Avedon. Practical Evaluation of IR within Automated Classification Systems. *Eighth International Conference of Information and Knowledge Management*, 1999.

[8] S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and R. Harshman. Indexing by latent semantic analysis. *Journal of the American Society for Information Science*, 41 (6):391-407, 1990.

[9] C.J. van Rijsbergen. *Information Retrieval*. Butterworths, London, 1979.

[10] D. Lewis. Evaluating Text Categorization. In *Proceedings of the Speech and Natural Language Workshop*, 312-318, Morgan Kaufmann 1991.
[11] Y. Yang and X. Liu. A re-examination of text categorization methods. In *Proceedings of the 22nd Annual ACM SIGIR Conference on Research and Development in Information Retrieval*, 42-49, 1999.

[12] Northern Light, http://www.northernlight.com/

[13] Inktomi Directory Engine, http://www.inktomi.com/products/portal/directory/

[14] Thunderstone Web Site Catalog, http://search.thunderstone.com/texis/websearch/about.html

[15] A. Ardo, T. Koch, and L. Nooden. The construction of a robot-generated subject index. *EU Project DESIRE II D3.6a, Working Paper 1* 1999. http://www.lub.lu.se/desire/DESIRE36a-WP1.html

[16] T. Kock and A. Ardo. Automatic classification of full-text HTML-documents from one specific subject area. *EU Project DESIRE II D3.6a, Working Paper 2* 2000. http://www.lub.lu.se/desire/DESIRE36a-WP2.html

[17] R. Dolin, D. Agrawal, L. Dillon, and A. El Abbadi. Pharos: A Scalable Distributed Architecture for Locating Heterogeneous Information Sources Version. In *Proceedings of the 6th International Conference on Information and Knowledge Management*, 1997.

[18] R. Dolin, D. Agrawal, A. El Abbadi, and J. Pearlman. Using Automated Classification for Summarizing and Selecting Heterogeneous Information Sources. In *D-Lib Magazine*, January, 1998.

[19] G. Attardi, A. Gulli, and F. Sebastiani. Automatic Web Page Categorization by Link and Context Analysis. In Chris Hutchison and Gaetano Lanzarone (eds.), *Proceedings of THAI’99, European Symposium on Telematics, Hypermedia and Artificial Intelligence*, 105-119, 1999.

[20] J. Cho, H. Garcia-Molina, and L. Page. Efficient crawling through URL ordering. In *Computer Networks and ISDN Systems (WWW7)*, Vol. 30, 1998.

[21] J. Rennie and A. McCallum. Using Reinforcement Learning to Spider the Web Efficiently. *Proceedings of the Sixteenth International Conference on Machine Learning*, 1999.

[22] A. McCallum, K. Nigam, J. Rennie, and K. Seymore. A Machine Learning Approach to Building Domain-Specific Search Engines. *The Sixteenth International Joint Conference on Artificial Intelligence*, 1999.

[23] R. Jones, A. McCallum, K. Nigam, and E. Riloff. Bootstrapping for Text Learning Tasks. In *IJCAI-99 Workshop on Text Mining: Foundations, Techniques and Applications*, 52-63, 1999.