De novo biosynthesis of glycosylated carotenoids in *Escherichia coli*

Xixian Chen¹, Xiao Hui Lim¹, Aurelie Bouin¹,², Thomas Lautier¹,², Congqiang Zhang¹*

¹Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore.

²TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France

* To whom correspondence should be addressed.

Congqiang Zhang: SIFBI, A*STAR, Proteos level 4, Singapore 138673;

Email: zcqsimon@outlook.com; congqiang_zhang@sifbi.a-star.edu.sg
Supplementary Note:

crtX codon-optimized sequence in this study:

```
atgtctcacttcgcgattgtcatctgtcctgcctaacgctgtgctgctgctcgagaattgctcaggaattgtgcgtgttgactctgtaggtactctactcatcacgccgtgcctcctacc
cggtctcctggactgtcatcttacctcacacctcttggtctcggctaggtactctgtaggtactctgtaggtactctactcatcacgccgtgcctcctacc
ggtctcctggactgtcatcttacctcacacctcttggtctcggctaggtactctgtaggtactctgtaggtactctactcatcacgccgtgcctcctacc
cggtctcctggactgtcatcttacctcacacctcttggtctcggctaggtactctgtaggtactctgtaggtactctactcatcacgccgtgcctcctacc
ggtctcctggactgtcatcttacctcacacctcttggtctcggctaggtactctgtaggtactctgtaggtactctactcatcacgccgtgcctcctacc
cggtctcctggactgtcatcttacctcacacctcttggtctcggctaggtactctgtaggtactctgtaggtactctactcatcacgccgtgcctcctacc
```
Tables

Supplementary Table S1. Strains and their RBSs.

Strain names	crtZ RBS sequence	RBS strength	Relative strength
Consensus	CA ACTT ACACGCAATTATTATAAATAAGGAAGGTTCAAC	/	/
GA01	CAAACTT GACGCAATTATAATAAGGAAGGTTCAAC	43498	1.00
GA02	CAAACTTTACGCAATTATAATAAGGAAGGTTCAAC	29805	0.69
GA03	CAAACTTGCAGCAATTATAATAAGGAAGGATCAAC	2085	0.05
GA04	CATACTTCAGGCAATTATAATAAGGAAGGATCAAC	7473	0.17
GA05	CATACTTGACGCAATTATAATAAGGAAGGTTCAAC	4355	0.10
GA06	CAAACTTTACGCAATTATAATAAGGAAGGTTCAAC	2858	0.07
GA07	CATACTTTACGCAATTATAATAAGGAAGGAATCAAC	29538	0.68
GA08	CAGACTTCGACGCAATTATAATAAGGAAGGATCAAC	2973	0.07
GA09	CATACTTGACGCAATTATAATAAGGAAGGTTCAAC	585	0.01
Supplementary Table S2. Primers used in this study.

Primers	Sequence
I-p15A-crtYZ(-)-F	AAGGA*AGCTG*AGTTGGCTG
I-p15A-crtYZ(-)-R	TTACT*TACCA*GATGCCGGTT
I-crtX(YZ-R)-F	TGGTA*AGTAA*TATCCGCACCCAATTCACT
I-crtX(YZ-F)-R	CAGCT*TCCTT*TCACAGGGCGGTAGCATA
Supplementary Figure S1. The UPLC chromatograms of UV (DAD). Five carotenoids were detected: 1 - zeaxanthin-β-D-diglucoside, 2 - zeaxanthin-β-D-glucoside, 3 - zeaxanthin, 4 - lycopene, 5 - β-carotene.
Supplementary Figure S2. The mass spectra of various carotenoids detected.
Supplementary Figure S3. UPLC chromatograms of UV (DAD) and extracted-ion monitoring (EIC) of five standards.

1 - astaxanthin; 2 - zeaxanthin; 3 - canthaxanthin; 4 - lycopene; and 5 - β-carotene
Supplementary Figure S4. LC/MS chromatograms of various carotenoids.

3'-hydroxyechinenone, β-cryptoxanthin-β-D-glucoside and 3'-hydroxyechinenone-β-D-glucoside were not detected (n.d.) in none of the nine strains GA01-09.
Supplementary Figure S5. Correction of RBS strength with the yields of different carotenoids and OD_{600}.