A UNIFIED SPECTRAL METHOD FOR FPDES WITH TWO-SIDED DERIVATIVES; STABILITY, AND ERROR ANALYSIS

MEHDI SAMIEE *, MOHSEN ZAYERNOURI † AND MARK M. MEERSCHAERT ‡

Abstract. We present the stability and error analysis of the unified Petrov-Galerkin spectral method, developed in [29], for linear fractional partial differential equations with two-sided derivatives and constant coefficients in any \((1+d)\)-dimensional space-time hypercube, \(d = 1, 2, 3, \ldots\), subject to homogeneous Dirichlet initial/boundary conditions. Specifically, we prove the existence and uniqueness of the weak form and perform the corresponding stability and error analysis of the proposed method. Finally, we perform several numerical simulations to compare the theoretical and computational rates of convergence.

Key words. Well-posedness, discrete inf-sup condition, spectral convergence, Jacobi poly-fractonomials, Legendre polynomials

1. Introduction. For anomalous transport, it has been shown that fractional ordinary/partial differential equations FODEs/FPDEs are the most tractable models that rigorously code memory effects, self-similar structures, and power-law distributions [26, 34, 15, 24, 27]. In addition to finite difference and higher-order compact methods [20, 25, 33, 9, 5, 39, 3, 16, 38, 40], a great progress has been made on developing finite-element methods [23, 10, 28] and spectral/spectral-element methods [31, 37, 36, 35, 4, 6, 42, 22, 43, 14, 31, 32, 19, 12] to obtain higher accuracy for FODEs/FPDEs.

In [29], we constructed a Petrov-Galerkin (PG) method to solve the weak form of linear FPDEs with two-sided derivatives, including fractional advection, fractional diffusion, fractional advection-dispersion (FADE), and fractional wave equations with constant coefficients in any \((1+d)\)-dimensional space-time hypercube of the form

\[
\partial_{\tau}^\mu u + \sum_{i=1}^{d} \left[c_{i, \alpha, x} D_{x_i}^{2\mu_i} u + c_{i, \beta, b} D_{b_i}^{2\beta_i} u \right] = \sum_{j=1}^{d} \left[\kappa_{j, \alpha, x} D_{x_j}^{2\nu_j} u + \kappa_{j, \beta, b} D_{b_j}^{2\nu_j} u \right] + \gamma u + f,
\]

(1.1)

where \(2\tau, \in (0, 2], 2\mu_i, \in (0, 1]\), and \(2\nu_j, \in (1, 2]\), and subject to Dirichlet initial and boundary conditions, where \(i, j = 1, 2, \ldots, d\), where subject to Dirichlet initial and boundary conditions.

The main contribution of this study is to prove the well-posedness of problem, the discrete inf-sup stability of the PG method, and the corresponding spectral convergence study of the method, complementing authors’ work in [29]. Moreover, we show a good agreement between the theoretical prediction and numerical experiments.

The paper is organized as follows: in section 2, we introduce some preliminaries from fractional calculus. In section 3, we construct the solution/test spaces and develop the PG method. We prove the well-posedness of the weak form and perform the stability analysis in section 4. In section 5, we present the error analysis in details. In section 6, we illustrate the convergence rate of the method. We conclude the paper in section 7 with a summary and discussion.

*Department of Computational Mathematics, Science, and, Engineering & Department of Mechanical Engineering, Michigan State University, 428 S Shaw Lane, East Lansing, MI 48824, USA
†Department of Computational Mathematics, Science, and, Engineering & Department of Mechanical Engineering, Michigan State University, 428 S Shaw Lane, East Lansing, MI 48824, USA, Corresponding author; zayern@msu.edu
‡Department of Statistics and Probability, Michigan State University, 619 Red Cedar Road Wells Hall, East Lansing, MI 48824, USA
2. Preliminaries on Fractional Calculus. Here, we recall the definitions of fractional derivatives and integrals from \[24, 36\]. The left-sided and right-sided fractional integral are given by

\[
a_I^\nu x g(x) = \frac{1}{\Gamma(\nu)} \int_a^x \frac{g(s)}{(x-s)^{1-\nu}} \, ds, \quad \forall x \in [a, b],
\]

and

\[
b_I^\nu x g(x) = \frac{1}{\Gamma(\nu)} \int_x^b \frac{g(s)}{(s-x)^{1-\nu}} \, ds, \quad \forall x \in [a, b],
\]

where \(\Gamma(\cdot)\) represents the Euler gamma function and \(0 < \nu \leq 1\). Moreover, the Reimann-Liouville left-sided and right-sided fractional derivatives are respectively defined as

\[
RL_a^\nu x D_g(x) = \frac{1}{\Gamma(1-\nu)} \frac{d}{dx} \int_a^x \frac{g(s)}{(x-s)^{\nu}} \, ds, \quad \forall x \in [a, b],
\]

and

\[
RL_x^\nu b D_g(x) = -\frac{1}{\Gamma(1-\nu)} \frac{d}{dx} \int_x^b \frac{g(s)}{(s-x)^{\nu}} \, ds, \quad \forall x \in [a, b].
\]

To analytically obtain the fractional differentiation of Jacobi polyfractonomials, we employ the following relations \[37\]:

\[
RL_a^\nu x (1 + x)^{\beta} P_n^{\alpha,\beta}(x) = \frac{\Gamma(n + \beta + 1)}{\Gamma(n + \beta + \nu + 1)} (1 + x)^{\beta+\nu} P_n^{\alpha+\beta+\nu}(x),
\]

and

\[
RL_x^\nu b (1 - x)^{\beta} P_n^{\alpha,\beta}(x) = \frac{\Gamma(n + \alpha + 1)}{\Gamma(n + \alpha + \nu + 1)} (1 - x)^{\alpha+\nu} P_n^{\alpha+\beta+\nu}(x),
\]

where \(0 < \nu < 1, \alpha > -1, \beta > -1, x \in [-1, 1]\) and \(P_n^{\alpha,\beta}(x)\) denotes the standard Jacobi Polynomials of order \(n\) and parameters \(\alpha\) and \(\beta\) \[11\]. Employing (2.5) and (2.6), the left-sided and right-sided Reimann-Liouville derivative of Legendre polynomials \[11\] are obtained as

\[
\begin{align*}
-1_I^\nu x D(P_n(x)) &= \frac{\Gamma(n + 1)}{\Gamma(n - \nu + 1)} (1 + x)^{-\nu} P_n^{\nu}(x), \\
x_I^\nu b D(P_n(x)) &= \frac{\Gamma(n + 1)}{\Gamma(n - \nu + 1)} (1 - x)^{-\nu} P_n^{\nu}(x),
\end{align*}
\]

where \(P_n(x) = P_n^{0,0}(x)\) represents Legendre polynomial of degree \(n\).

3. Petrov-Galerkin Mathematical Formulation. We introduce the underlying solution and test spaces with their proper norms. Moreover, we provide some lemmas in order to prove the well-posedness of the problem in addition to constructing the spatial basis/test functions and performing the discrete stability and convergence analysis of the PG spectral method.
3.1. Mathematical Framework. We first recall the definition of the Sobolev space for real \(s \geq 0 \) from [13, 17]. Let

\[
H^s(\mathbb{R}) = \{ u \in L^2(\mathbb{R}) \mid (1 + |\omega|^2)^s \mathcal{F}(u)(\omega) \in L^2(\mathbb{R}) \},
\]

endowed with the norm \(\| u \|_{H^s(\mathbb{R})} = \| (1 + |\omega|^2)^s \mathcal{F}(u)(\omega) \|_{L^2(\mathbb{R})} \), where \(\mathcal{F}(u) \) is the Fourier transform of \(u \). For bounded domain \(I = (0, T) \), we define

\[
H^s(I) = \{ u \in L^2(I) \mid \exists \bar{u} \in H^s(\mathbb{R}) \text{ s.t. } \bar{u}|_I = u \},
\]

associated with \(\| u \|_{H^s(I)} = \inf_{\bar{u}\in H^s(\mathbb{R}), \bar{u}|_I = u} \| \bar{u} \|_{H^s(\mathbb{R})} \). Let \(H^0(I) \) and \(C^0(I) \) be the spaces of smooth functions with compact support in \((0, T)\) and \([0, T)\), respectively. Then, denoted by \(H^s(I) \) and \(C^0(I) \) are the closure of \(H^0(I) \) and \(C^0(I) \) with respect to the norm \(\| \cdot \|_{H^s(I)} \) in \((0, T)\) and \([0, T)\), respectively. Here, we recall from [17, 8] that

\[
\| u \|_{H^s(I)} = \| \cdot \|_{H^s(I)} \equiv \| \cdot \|_{H^s(I)},
\]

where “\(\equiv \)” denotes equivalence relation and \(\| \cdot \|_{H^s(I)} = \| D^k_j(\cdot) \|_{L^2(I)} \). It follows from Lemma 5.2 in [3] that

\[
| \cdot |_{H^s(I)} \equiv \| D^k_j(\cdot) \|_{L^2(I)} \equiv \| D^k_j(\cdot) \|_{L^2(I)}.
\]

Take \(\Lambda = (a, b) \). \(H^s(\Lambda) \) denotes the usual Sobolev space associated with the real index \(\sigma \geq 0 \) and \(\sigma \neq n - \frac{1}{2} \) on the bounded interval \(\Lambda \), equipped with the norm \(\| \cdot \|_{H^s(\Lambda)} \). In [18], it has been shown that the following norms are equivalent:

\[
\| \cdot \|_{H^s(\Lambda)} \equiv \| \cdot \|_{H^s(\Lambda)} \equiv \| \cdot \|_{H^s(\Lambda)},
\]

where

\[
\| \cdot \|_{H^s(\Lambda)} = \left(\| D^k_j(\cdot) \|_{L^2(\Lambda)}^2 + \| D^k_j(\cdot) \|_{L^2(\Lambda)}^2 \right)^{\frac{1}{2}},
\]

and

\[
\| \cdot \|_{H^s(\Lambda)} = \left(\| D^k_j(\cdot) \|_{L^2(\Lambda)}^2 + \| D^k_j(\cdot) \|_{L^2(\Lambda)}^2 \right)^{\frac{1}{2}}.
\]

Lemma 3.1. Let \(\sigma \geq 0 \) and \(\sigma \neq n - \frac{1}{2} \). Then, the norms \(\| \cdot \|_{H^s(\Lambda)} \) and \(\| \cdot \|_{H^s(\Lambda)} \) are equivalent to \(\| \cdot \|_{H^s(\Lambda)} \) in space \(C^0(\Lambda) \), where

\[
\| \cdot \|_{H^s(\Lambda)} = \left(\| D^k_j(\cdot) \|_{L^2(\Lambda)}^2 + \| D^k_j(\cdot) \|_{L^2(\Lambda)}^2 \right)^{\frac{1}{2}}.
\]

Proof. See Appendix. In the usual Sobolev space, for \(u \in H^s(\Lambda) \) we define

\[
|u|_{H^s(\Lambda)} = \left(\int_{\Lambda} D^k_j(\cdot, \cdot) \right)^{\frac{1}{s}} \forall v \in H^s(\Lambda).
\]

Denoted by \(\mathcal{H}^0_0(\Lambda) \) and \(\mathcal{H}^\sigma_0(\Lambda) \) are the closure of \(C^0(\Lambda) \) with respect to the norms \(\| \cdot \|_{H^s(\Lambda)} \) and \(\| \cdot \|_{H^s(\Lambda)} \) in \(\Lambda \), respectively, where \(C^0(\Lambda) \) is the spaces of smooth functions with compact support in \(\Lambda \).

Lemma 3.2. For \(\sigma \geq 0 \) and \(\sigma \neq n - \frac{1}{2} \), \(\mathcal{H}^\sigma_0(\Lambda) \) and \(\mathcal{H}^\sigma_0(\Lambda) \) are equal and their seminorms are equivalent to \(| \cdot |_{H^s(\Lambda)} \) where \(\mathcal{H}^\sigma_0(\Lambda) \) and \(\mathcal{H}^\sigma_0(\Lambda) \) denotes the closure of \(C^0(\Lambda) \) with compact support on \(\Lambda \) with respect to the norms \(\| \cdot \|_{H^s(\Lambda)} \) and \(\| \cdot \|_{H^s(\Lambda)} \).
Proof. In [3][18], it has been shown that the spaces $H^r_0(\Lambda)$ and $H^s_0(\Lambda)$ are equal. Following similar steps, we can show that $H^r_0(\Lambda)$ is equal with $H^s_0(\Lambda)$ and the corresponding seminorms are equivalent. Lemma 3.3 directly results in $\|u\|_{H^{r}(\Lambda)} \leq \beta |u|_{H^{s}(\Lambda)}$, where β is a positive constant. Similarly, we can prove that $\|u\|_{H^{r}(\Lambda)} \leq \beta |u|_{H^{s}(\Lambda)}$.

Let $\Lambda_1 = (a_1, b_1), \Lambda_i = (a_i, b_i) \times \Lambda_{i-1}$ for $i = 2, \ldots, d$, and $X_1 = H^r_0(\Lambda_1)$, with the associated norm $\| \cdot \|_{H^r(\Lambda_1)}$. Accordingly, we construct X_d such that

$$X_d = H^r_0((a_d, b_d); L^2(\Lambda_d)) \cap L^2((a_d, b_d); X_1),$$

$$\vdots$$

(3.9) $$X_d = H^r_0((a_d, b_d); L^2(\Lambda_d-1)) \cap L^2((a_d, b_d); X_{d-1}),$$

associated with the norm

$$\| \cdot \|_{X_d} = \left\{ \| \cdot \|^2 \right. ,_{H^r(\Lambda_d)} (a_d, b_d; L^2(\Lambda_{d-1})) + \| \cdot \|^2 ,_{L^2(\Lambda_d)} (a_d, b_d; X_{d-1}) \}^{\frac{1}{2}}.$$

Lemma 3.3. Let $\nu_i \geq 0$ and $\nu_i \neq n - \frac{1}{2}$ for $i = 1, \ldots, d$. Then

$$\| \cdot \|_{X_d} = \left\{ \sum_{i=1}^{d} \left(\| u \|_{H^r(\Lambda_i)} \right)^2 \right. + \| u \|_{L^2(\Lambda_i)} \}^{\frac{1}{2}}.$$

Proof. X_1 is endowed with the norm $\| \cdot \|_{X_1}$, where $\| \cdot \|_{X_1} \equiv \| \cdot \|_{H^{r}(\Lambda_1)}$ (see Lemma 3.1). Moreover, X_2 is associated with the norm

$$\| \cdot \|_{X_2} = \left\{ \| \cdot \|^2 \right. ,_{H^{r}(\Lambda_2)} (a_2, b_2; L^2(\Lambda_1)) + \| \cdot \|^2 ,_{L^2(\Lambda_2)} (a_2, b_2; X_1) \}^{\frac{1}{2}},$$

where

$$\| u \|_{H^r(\Lambda_2)}^2 = \int_{a_1}^{b_1} \left(\int_{a_2}^{b_2} | u |^2 \, dx_2 \right) dx_1 + \int_{a_2}^{b_2} \left(\int_{a_2}^{b_2} | u_x |^2 \, dx_2 \right) dx_1 + \int_{a_2}^{b_2} \left(\int_{a_2}^{b_2} | u_{xx} |^2 \, dx_2 \right) dx_1,$$

and

$$\| u \|_{L^2(\Lambda_2)}^2 = \int_{a_1}^{b_1} \left(\int_{a_2}^{b_2} | u |^2 \, dx_2 \right) dx_1 + \int_{a_2}^{b_2} \left(\int_{a_2}^{b_2} | u_x |^2 \, dx_2 \right) dx_1 + \int_{a_2}^{b_2} \left(\int_{a_2}^{b_2} | u_{xx} |^2 \, dx_2 \right) dx_1.$$
Now, we assume that

\[(3.13) \quad \| \cdot \|_{L^2(\Lambda_d)} = \left\{ \sum_{i=1}^{d-1} \left(\| a_i \mathcal{D}_{b_i}^\nu u \|_{L^2(\Lambda_d)}^2 + \| a_i \mathcal{D}_{b_i}^\nu v \|_{L^2(\Lambda_d)}^2 \right) \right\}^{\frac{1}{2}}. \]

Then,

\[
\| u \|^2 \|_{H^s((a,b);L^2(\Lambda_d))} = \int_{\Lambda_d} \left(\int_{a_d}^{b_d} \| a_i \mathcal{D}_{b_i}^\nu u \|^2 dx_t + \int_{a_d}^{b_d} \| a_i \mathcal{D}_{b_i}^\nu v \|^2 dx_t \right) d\Lambda_{d-1}
\]

\[
= \int_{\Lambda_d} \left(\int_{a_d}^{b_d} \| a_i \mathcal{D}_{b_i}^\nu u \|^2 dx_t + \int_{a_d}^{b_d} \| a_i \mathcal{D}_{b_i}^\nu v \|^2 dx_t \right) d\Lambda_{d-1} + \int_{\Lambda_d} \| a_i \mathcal{D}_{b_i}^\nu u \|^2 dx_t d\Lambda_{d-1} + \int_{\Lambda_d} \| a_i \mathcal{D}_{b_i}^\nu v \|^2 dx_t d\Lambda_{d-1}
\]

\[
= \| a_i \mathcal{D}_{b_i}^\nu u \|_{L^2(\Lambda_d)}^2 + \| a_i \mathcal{D}_{b_i}^\nu v \|_{L^2(\Lambda_d)}^2 + \| u \|^2_{L^2(\Lambda_d)}.
\]

Therefore, \((3.11)\) arises from \((3.13)\). In Lemma 2.8 in [18], it is shown that if \(u, v \in H^s_0(\Lambda)\) for \(0 < 2\nu < 2\) and \(2\nu \neq 1\), then \((\mathcal{D}_b^\nu u, v)_\Lambda = (\mathcal{D}_b^\nu u, \mathcal{D}_b^\nu v)_\Lambda\), and \((\mathcal{D}_b^\nu u, v)_\Lambda = (\mathcal{D}_b^\nu u, \mathcal{D}_b^\nu v)_\Lambda\). Here, we generalize this lemma for the corresponding \((1+d)\)-D case.

Lemma 3.4. If \(0 < 2\nu_i < 2\) and \(2\nu_i \neq 1\) for \(i = 1, \cdots, d\), and \(u, v \in X_d\), then \((\mathcal{D}_b^{\nu_i} u, v)_{\Lambda_i} = (\mathcal{D}_b^{\nu_i} u, \mathcal{D}_b^{\nu_i} v)_{\Lambda_i}\), and \((\mathcal{D}_b^{\nu_i} u, v)_{\Lambda_i} = (\mathcal{D}_b^{\nu_i} u, \mathcal{D}_b^{\nu_i} v)_{\Lambda_i}\).

Proof. See Appendix.

Additionally, in the light of Lemma 3.2, we can prove that

\[(3.14) \quad \| (a_i \mathcal{D}_{b_i}^\nu u, a_i \mathcal{D}_{b_i}^\nu v) \|_{\Lambda_i} \equiv \| u \|_{H^s((a_i,b_i);L^2(\Lambda_d))} \| v \|_{H^s((a_i,b_i);L^2(\Lambda_d))}, \]

and similarly

\[(3.15) \quad \| (a_i \mathcal{D}_{b_i}^\nu u, a_i \mathcal{D}_{b_i}^\nu v) \|_{\Lambda_i} \equiv \| u \|_{H^s((a_i,b_i);L^2(\Lambda_d))} \| v \|_{H^s((a_i,b_i);L^2(\Lambda_d))}. \]

Next, we study the property of the fractional time derivative in the following lemmas.

Lemma 3.5. If \(0 < 2\tau < 1\) \((1 < 2\tau < 2)\) and \(u, v \in H^\tau(I)\), when \(u|_{t=0} = \frac{\partial u}{\partial t}|_{t=0} = 0\), then \((\mathcal{D}_t^{\nu_1} u, v)_\Omega = (\mathcal{D}_t^{\nu_2} u, \mathcal{D}_t^{\nu_2} v)_\Omega\).

Proof. See [13]. Lemma 3.4 and 3.5 will help us obtain the corresponding weak form of \((1.1)\). Let \(2\tau \in (0, 1)\) and \(\Omega = I \times \Lambda_d\). We define

\[(3.16) \quad \mathcal{H}^\tau(I; L^2(\Lambda_d)) := \{ u \mid \| u(t, \cdot) \|_{L^2(\Lambda_d)} \in H^\tau(I), u|_{t=0} = u|_{x=a_i = a} = u|_{x=b_i = b}, i = 1, \cdots, d \}. \]
which is equipped with the norm $\|u\|_{H^r(I; L^2(\mathbb{R}^d))}$. For real $0 < 2\tau < 1$, $H^r(I; L^2(\mathbb{R}^d))$ is associated with the norm $\|\cdot\|_{H^r(I; L^2(\mathbb{R}^d))}$, which is defined as $\|u\|_{H^r(I; L^2(\mathbb{R}^d))} = \|u(t, \cdot)\|_{L^2(\mathbb{R}^d)}$, $\|\cdot\|_{H^r(I)}$.

Therefore, we have

$$
\|u\|_{H^r(I; L^2(\mathbb{R}^d))} = \left(\int_0^T \left(\int_{\mathbb{R}^d} |\partial_t \varphi(x)|^2 \, dx \right)^{\frac{r}{2}} \, dt \right)^{\frac{1}{r}}.
$$

Similarly, we define

$$
\|u\|_{\dot{H}^r(I; L^2(\mathbb{R}^d))} = \left(\int_0^T \left(\int_{\mathbb{R}^d} |\partial_t \varphi(x)|^2 \, dx \right)^{\frac{r}{2}} \, dt \right)^{\frac{1}{r}},
$$

which is equipped with the norm $\|u\|_{\dot{H}^r(I; L^2(\mathbb{R}^d))}$. Following (3.17),

$$
\|u\|_{H^r(I; L^2(\mathbb{R}^d))} = \left(\int_0^T \left(\int_{\mathbb{R}^d} |\partial_t \varphi(x)|^2 \, dx \right)^{\frac{r}{2}} \, dt \right)^{\frac{1}{r}}.
$$

Lemma 3.6. For $u \in \dot{H}^r(I; L^2(\mathbb{R}^d))$ and $2\tau \in (0, 1)$, $\|0_{I_D^r u} , \partial_I^r v\|_{\dot{H}^r(I; L^2(\mathbb{R}^d))} = \|u\|_{\dot{H}^r(I; L^2(\mathbb{R}^d))} = \|v\|_{\dot{H}^r(I; L^2(\mathbb{R}^d))}$.

Proof.

$$
|0_{I_D^r u} , \partial_I^r v|_{\dot{H}^r(I; L^2(\mathbb{R}^d))} = \left(\int_0^T \int_{\mathbb{R}^d} |0_{I_D^r u} \cdot \partial_I^r v| \, dtd\lambda_d \right).
$$

By Hölder inequality,

$$
|0_{I_D^r u} , \partial_I^r v|_{\dot{H}^r(I; L^2(\mathbb{R}^d))} \leq \left(\int_{\mathbb{R}^d} \int_0^T |0_{I_D^r u}|^2 \, dtd\lambda_d \right)^{\frac{1}{2}} \left(\int_0^T \int_{\mathbb{R}^d} |\partial_I^r v|^2 \, dtd\lambda_d \right)^{\frac{1}{2}}
$$

$$
\leq \left(\int_{\mathbb{R}^d} \int_0^T |0_{I_D^r u}|^2 \, dtd\lambda_d + \int_0^T \int_{\mathbb{R}^d} |u|^2 \, dtd\lambda_d \right)^{\frac{1}{2}} \left(\int_0^T \int_{\mathbb{R}^d} |\partial_I^r v|^2 \, dtd\lambda_d \right)^{\frac{1}{2}}
$$

$$
= \left(\|0_{I_D^r u}\|_{L^2(\mathbb{R}^d)}^2 + \|u\|_{L^2(\mathbb{R}^d)}^2 \right)^{\frac{1}{2}} \left(\|\partial_I^r v\|_{L^2(\mathbb{R}^d)}^2 + \|v\|_{L^2(\mathbb{R}^d)}^2 \right)^{\frac{1}{2}}
$$

$$
= \|u\|_{\dot{H}^r(I; L^2(\mathbb{R}^d))} \|v\|_{\dot{H}^r(I; L^2(\mathbb{R}^d))}.
$$

Besides, recalling from (3.3) that

$$
|0_{I_D^r u} , \partial_I^r v|_{\dot{H}^r(I; L^2(\mathbb{R}^d))} \geq \tilde{\beta}_1 \left(\int_0^T |0_{I_D^r u}|^2 \, dtd\lambda_d \right)^{\frac{1}{2}} \left(\int_0^T |\partial_I^r v|^2 \, dtd\lambda_d \right)^{\frac{1}{2}} \geq C_1 \tilde{\beta}_1 \|u\|_{H^r(I)} \|v\|_{H^r(I)},
$$

where $0 < \tilde{\beta}_1$, $C_1 \leq 1$. Therefore,

$$
|0_{I_D^r u} , \partial_I^r v|_{\dot{H}^r(I; L^2(\mathbb{R}^d))} \geq \tilde{\beta}_1 \tilde{\beta}_2 \left(\int_{\mathbb{R}^d} \int_0^T |0_{I_D^r u}|^2 \, dtd\lambda_d \right)^{\frac{1}{2}} \left(\int_{\mathbb{R}^d} \int_0^T |\partial_I^r v|^2 \, dtd\lambda_d \right)^{\frac{1}{2}}
$$

$$
\geq \tilde{\beta}_1 \tilde{\beta}_2 C_2 \|u\|_{H^r(I)} \|v\|_{H^r(I)},
$$

(3.22)
where $\bar{\beta}_1, \bar{\beta}_2,$ and $C_2 \in (0,1)$. □

Lemma 3.7. If $0 < 2\tau < 2, 2\tau \neq 1$ and $u \in H^1(I; L^2(\Lambda_d))$, then

\[(\partial_t^2 u_i, v)_\Omega = (\partial_t^2 u_i, D^2 v)_\Omega \quad \forall v \in H^1(I; L^2(\Lambda_d)). \]

Proof. Following Lemma 3.5,

\[(\partial_t^2 u_i, v)_\Omega = \int_0^T \int_{\Lambda_d} \partial_t^2 u_i \partial_t v \, d\Lambda_d \, dt = \int_0^T \int_{\Lambda_d} \partial_t^2 u_i \partial_t v \, d\Lambda_d \, dt \]

(3.23) \[= (\partial_t^2 u_i, D^2 v)_\Omega. \]

□

3.2. Solution and Test Function Spaces.

For $2\tau \in (0,1)$ and $2\nu \in (1,2)$, we define the solution space

(3.24) \[B^{\tau,\nu_i,\nu_i}(\Omega) := H^1(I; L^2(\Lambda_d) \cap L^2(I; X_d), \]

endowed with the norm

(3.25) \[||u||_{B^{\tau,\nu_i,\nu_i}(\Omega)} = \left(||u||^2_{H^1(I; L^2(\Lambda_d))} + ||u||^2_{L^2(I; X_d)} \right)^{\frac{1}{2}}, \]

where due to (3.14) and Lemma 3.3,

\[||u||_{L^2(I; X_d)} = \left(||u(t,.)||_{V_d} \right)_I \]

(3.26) \[= \left(||u||^2_{L^2(\Omega)} + \sum_{i=1}^{d} \left(||a_i D_{b_i}^\nu (u)||^2_{L^2(\Omega)} + ||a_i D_{b_i}^\nu (u)||^2_{L^2(\Omega)} \right) \right)^{\frac{1}{2}}. \]

Therefore, by (3.17) and (3.26),

(3.27) \[||u||_{B^{\tau,\nu_i,\nu_i}(\Omega)} = \left(||u||^2_{L^2(\Omega)} + ||a D_T^\nu (u)||^2_{L^2(\Omega)} + \sum_{i=1}^{d} \left(||a_i D_{b_i}^\nu (u)||^2_{L^2(\Omega)} + ||a_i D_{b_i}^\nu (u)||^2_{L^2(\Omega)} \right) \right)^{\frac{1}{2}}. \]

Likewise, we define the test space

(3.28) \[B^{\tau,\nu_i,\nu_i}(\Omega) := L^2(I; L^2(\Lambda_d) \cap L^2(I; X_d), \]

endowed with the norm

(3.29) \[||v||_{B^{\tau,\nu_i,\nu_i}(\Omega)} = \left(||v||^2_{H^1(I; L^2(\Lambda_d))} + ||v||^2_{L^2(I; X_d)} \right)^{\frac{1}{2}}.
\]

\[= \left(||v||^2_{L^2(\Omega)} + ||D_T^\nu (v)||^2_{L^2(\Omega)} + \sum_{i=1}^{d} \left(||a_i D_{b_i}^\nu (v)||^2_{L^2(\Omega)} + ||a_i D_{b_i}^\nu (v)||^2_{L^2(\Omega)} \right) \right)^{\frac{1}{2}}. \]

If $2\tau \in (0,1)$, our method is essentially Galerkin in the ∞-dimensional space. Yet in the discretization, we choose two different subspaces as basis and test spaces, leading to the PG spectral method; that is, $U_N \subset B^{\tau,\nu_i,\nu_i}(\Omega)$ and $V_N \subset B^{\tau,\nu_i,\nu_i}(\Omega)$ such that $U_N \neq V_N$. In case $2\tau \in (1,2)$, we define the solution space as

(3.30) \[B^{\tau,\nu_i,\nu_i}(\Omega) := H^1(I; L^2(\Lambda_d) \cap L^2(I; X_d), \]

endowed with the norm

\[||u||_{B^{\tau,\nu_i,\nu_i}(\Omega)} = \left(||u||^2_{H^1(I; L^2(\Lambda_d))} + ||u||^2_{L^2(I; X_d)} \right)^{\frac{1}{2}}. \]

\[= \left(||u||^2_{L^2(\Omega)} + ||a D_T^\nu (u)||^2_{L^2(\Omega)} + \sum_{i=1}^{d} \left(||a_i D_{b_i}^\nu (u)||^2_{L^2(\Omega)} + ||a_i D_{b_i}^\nu (u)||^2_{L^2(\Omega)} \right) \right)^{\frac{1}{2}}. \]
where

\[0^L_0H^\tau(I;L^2(\Lambda_d)) := \left\{ u \mid u(t, \cdot) \in L^2(\Lambda_d) \subset H^\tau(I), \frac{\partial u}{\partial t}|_{t=0} = u|_{t=0} = u|_{t=\tau} = 0, i = 1, \cdots, d \right\}, \]

which is associated with \(\| \cdot \|_{\tilde{B}^{\tau,0}} \). The corresponding test space is also defined as

\[\tilde{B}^{\tau,0}(\Omega) := 0^L_0H^\tau(I;L^2(\Lambda_d)) \cap L^2(I;\Lambda_d), \]

where

\[0^L_0H^\tau(I;L^2(\Lambda_d)) := \left\{ v \mid v(t, \cdot) \in L^2(\Lambda_d) \subset H^\tau(I), \frac{\partial v}{\partial t}|_{t=\tau} = v|_{t=\tau} = 0, i = 1, \cdots, d \right\}, \]

which is endowed with \(\| \cdot \|_{\tilde{B}^{\tau,0}(\Omega)} \). It should be noted that similar to Lemma 3.6 for \(u \in 0^L_0H^\tau(I;L^2(\Lambda_d)) \) and \(2\tau \in (1, 2) \), we obtain

\[\| (gD^\tau u, rD^\tau v)_\Omega \| \equiv \| u \|_{0^L_0H^\tau(I;L^2(\Lambda_d))} \| v \|_{0^L_0H^\tau(I;L^2(\Lambda_d))} \forall v \in 0^L_0H^\tau(I;L^2(\Lambda_d)). \]

Let \(\tilde{u} \in \tilde{B}^{\tau,0}(\Omega) \) and \(\Omega = (0, T) \times (a_1, b_1) \times (a_2, b_2) \times \cdots \times (a_d, b_d) \), where \(d \) is a positive integer. The Petrov-Galerkin spectral method reads as:

\[a(u, v) = l(v), \quad \forall v \in \tilde{B}^{\tau,0}(\Omega), \]

where the functional \(l(v) = (f, v)_\Omega \) and

\[a(u, v) = (gD^\tau u, rD^\tau v)_\Omega + \sum_{j=1}^d \left[c_j (\partial u_{\partial x_j}, \partial v_{\partial x_j})_\Omega + k_j (\partial u_{\partial x_j}, \partial v_{\partial x_j})_\Omega \right] \]

(3.34)

following Lemmas [3.4, 3.4] and [3.7] and \(c_j, k_j, \eta_j, \xi_j \) are constant. \(2\mu_j \in (0, 1), 2\nu_j \in (1, 2), \) and \(2\tau \in (0, 2) \), for \(j = 1, 2, \cdots, d \). In case \(\tau < \frac{1}{2} \), the solution to the bilinear form in (3.34) does not lead to the homogeneous initial condition in the strong form. To guarantee the equivalence between the problem under the strong formulation and the bilinear form, we assume that the solution possesses enough regularity.

In [29], we presented the construction of the finite-dimensional subspaces of \(\tilde{B}^{\tau,0}(\Omega) \) and \(\tilde{B}^{\tau,0}(\Omega) \) in detail. We define the space-time trial space as

\[U_N = span\left\{ (1 + \eta)^n P^{\tau,0}_{n-1} \circ \eta(t) \prod_{j=1}^d \left(P_m \circ \xi_j \circ P_m \circ \xi_j \right) : n = 1, \cdots, N \right\}, \]

(3.35)

where \(\eta(t) = 2t/T - 1 \) and \(\xi_j(x_j) = 2 \frac{x_j - a_j}{b_j - a_j} - 1 \). Moreover, we define the space-time test space to be

\[V_N = span\left\{ (1 - \eta)^n P^{\tau,0}_k \circ \eta(t) \prod_{j=1}^d \left(P_m \circ \xi_j \circ P_m \circ \xi_j \right) : k = 1, \cdots, N \right\}, \]

(3.36)

where \(r_j = 1, \cdots, M_j \).
Then, the PG scheme reads as: find \(u_N \in U_N \) such that

\[
a(u_N, v_N) = l(v_N), \quad \forall v \in V_N,
\]

where

\[
a(u_N, v_N) = (a^T u_N, a^T v_N)_{\Omega} + \sum_{i=1}^{d} c_i (\alpha_i^T u_N, \alpha_i^T v_N)_{\Omega} + c_r (\gamma_i^T u_N, \gamma_i^T v_N)_{\Omega} - \sum_{j=1}^{d} k_j (\beta_j^T u_N, \beta_j^T v_N)_{\Omega} + k_r (\gamma_j^T u_N, \gamma_j^T v_N)_{\Omega} + \gamma (u_N, v_N)_{\Omega}.
\]

Considering \(u_N \) as a linear combination of points in \(U_N \), the corresponding linear system known as Lyapunov system originates from the finite-dimensional problem. The properties of the corresponding mass and stiffness matrices allowed us to formulate a general linear fast solver in [29].

4. Well-posedness and Stability Analysis. Based upon the Lemmas provided in Section 3 we are able to prove the stability of the problem (3.37) in the following theorems.

**Lemma 4.1. (Continuity) The bilinear form in (3.37) is continuous, i.e., for \(u \in B_{\infty}^m \),

\[
\exists \beta > 0, \quad |a(u, v)| \leq \beta \|u\|_{B_{\infty}^m} \|v\|_{B_{\infty}^m} \quad \forall v \in B_{\infty}^m.
\]

Proof. The proof follows easily using (3.14) and Lemma 3.6.

**Theorem 4.2. The inf-sup condition for the bilinear form, defined in (3.37) when \(d = 1 \), i.e.,

\[
\inf_{0 \neq u \in B_{\infty}^m(\Omega)} \sup_{0 \neq v \in B_{\infty}^m(\Omega)} \frac{|a(u, v)|}{\|v\|_{B_{\infty}^m(\Omega)} \|u\|_{B_{\infty}^m(\Omega)}} \geq \beta > 0,
\]

holds with \(\beta > 0 \), where \(\Omega = I \times \Lambda_1 \) and \(\sup_{u \in B_{\infty}^m(\Omega)} |a(u, v)| > 0 \).

Proof. It is evident that \(u \) and \(v \) are in Hilbert spaces (see [8,13]). We have

\[
|a(u, v)| = |(a^T u, a^T v)_{\Omega} + \sum_{i=1}^{d} c_i (\alpha_i^T u, \alpha_i^T v)_{\Omega} + c_r (\gamma_i^T u, \gamma_i^T v)_{\Omega} - \sum_{j=1}^{d} k_j (\beta_j^T u, \beta_j^T v)_{\Omega} + k_r (\gamma_j^T u, \gamma_j^T v)_{\Omega} + \gamma (u, v)_{\Omega}|
\]

where \(0 < \beta \leq 1 \) due to \(\sup_{u \in B_{\infty}^m(\Omega)} |a(u, v)| > 0 \). Next, by (3.14), and (3.3) we obtain

\[
|a^T u, a^T v)_{\Omega} | \geq C_1 \|a^T u\|_{L^2(\Omega)} \|a^T v\|_{L^2(\Omega)},
\]

\[
|(\alpha_i^T u, \alpha_i^T v)_{\Omega} | \geq C_2 \|\alpha_i^T u\|_{L^2(\Omega)} \|\alpha_i^T v\|_{L^2(\Omega)},
\]

and

\[
|(\gamma_i^T u, \gamma_i^T v)_{\Omega} | \geq C_3 \|\gamma_i^T u\|_{L^2(\Omega)} \|\gamma_i^T v\|_{L^2(\Omega)},
\]

\[
|(\beta_j^T u, \beta_j^T v)_{\Omega} | \geq C_4 \|\beta_j^T u\|_{L^2(\Omega)} \|\beta_j^T v\|_{L^2(\Omega)},
\]

and

\[
|(\gamma_j^T u, \gamma_j^T v)_{\Omega} | \geq C_5 \|\gamma_j^T u\|_{L^2(\Omega)} \|\gamma_j^T v\|_{L^2(\Omega)},
\]

\[
|\gamma (u, v)_{\Omega} | \leq \beta \|u\|_{B_{\infty}^m(\Omega)} \|v\|_{B_{\infty}^m(\Omega)}.
\]
where C_1, C_2, and C_3 are positive constants. Therefore,

$$
|a(u,v)| \geq C\beta \left\| D_1 u \right\|_{L^2(\Omega)} \left\| D_2 v \right\|_{L^2(\Omega)} + \left\| a_i D_3^\nu u \right\|_{L^2(\Omega)} \left\| a_i D_3^{-\nu} v \right\|_{L^2(\Omega)}
$$

(4.4)

where \tilde{C} is $\min\{C_1, C_2, C_3\}$. Besides, $\|u\|_{B^{r_1,\ldots,r_d}_\nu(\Omega)} \cdot \|v\|_{B^{s_1,\ldots,s_d}_\beta(\Omega)}$ for $u \in B^{r_1,\ldots,r_d}_\nu(\Omega)$ and $v \in B^{s_1,\ldots,s_d}_\beta(\Omega)$ is equivalent to the right side of the inequality in (4.4). Therefore,

$$
|a(u,v)| \geq \beta \|u\|_{B^{r_1,\ldots,r_d}_\nu(\Omega)} \|v\|_{B^{s_1,\ldots,s_d}_\beta(\Omega)},
$$

where $\beta = \tilde{C}\beta$. \(\square \)

Theorem 4.3. The inf-sup condition of the bilinear form, defined in (3.34) for any $d \geq 1$, i.e.,

$$
\inf_{0 \not= u \in B^{r_1,\ldots,r_d}_\nu(\Omega)} \sup_{0 \not= v \in B^{s_1,\ldots,s_d}_\beta(\Omega)} \frac{|a(u,v)|}{\|v\|_{B^{s_1,\ldots,s_d}_\beta(\Omega)} \|u\|_{B^{r_1,\ldots,r_d}_\nu(\Omega)}} \geq \beta > 0,
$$

holds with $\beta > 0$, where $\Omega = I \times \Lambda_d$ and $\sup_{u \not= 0 \in B^{r_1,\ldots,r_d}_\nu(\Omega)} |a(u,v)| > 0$.

Proof. Similar to Lemma 3.2, we have

$$
(4|a(u,v)| \geq \beta \left(|(a_i D_1^\nu (u), D_2^{-\nu} (v))|_2 + \sum_{j=1}^d \left(|(a_i D_3^\nu (u), a_i D_3^{-\nu} (v))|_2 \right) \right),
$$

where $0 < \beta \leq 1$. It follows from (3.14) that

$$
|a_i D_3^\nu (u), a_i D_3^{-\nu} (v))|_2 = \| a_i D_3^\nu (u) \|_{L^2(\Omega)} \| a_i D_3^{-\nu} (v) \|_{L^2(\Omega)},
$$

$$
|a_i D_2^\nu (u), a_i D_2^{-\nu} (v))|_2 = \| a_i D_2^\nu (u) \|_{L^2(\Omega)} \| a_i D_2^{-\nu} (v) \|_{L^2(\Omega)}.
$$

Accordingly, for $u, v \in L^2(I; X_d)$

$$
\sum_{j=1}^d \left(|a_i D_3^\nu (u), a_i D_3^{-\nu} (v))|_2 \right) \geq \tilde{C} \beta \sum_{j=1}^d \left(\| a_i D_3^\nu (u) \|_{L^2(\Omega)} \| a_i D_3^{-\nu} (v) \|_{L^2(\Omega)} + \| a_i D_2^\nu (u) \|_{L^2(\Omega)} \| a_i D_2^{-\nu} (v) \|_{L^2(\Omega)} \right)
$$

(4.8)

where $0 < \tilde{C}$ and $0 < \beta \leq 1$. Furthermore, using Lemma 3.6 and (3.32), we have

$$
|(a_i D_3^\nu (u), D_2^{-\nu} (v))|_2 \equiv \|u\|_{H^d(I; L^2(\Omega))} \|v\|_{H^d(I; L^2(\Omega))}.
$$

Therefore, from (4.7), (3.3), and (4.9) we have

$$
|a(u,v)| \geq \beta \left(\tilde{C} \beta \|u\|_{H^d(I; L^2(\Omega))} \|v\|_{H^d(I; L^2(\Omega))} + \tilde{C} \beta \|u\|_{L^2(I; X_d)} \|v\|_{L^2(I; X_d)} \right).
$$

(4.10)
where $\tilde{C} = \min\{\tilde{C}_2, \tilde{C}_1, \tilde{C} \beta_1\}$. Besides,
\begin{equation}
\|u\|_{H^1(L^2(\mathcal{A}))} \|v\|_{H^1(L^2(\mathcal{A}))} + \|u\|_{L^2(\mathcal{X}_d)} \|v\|_{L^2(\mathcal{X}_d)}
\geq \tilde{\beta}_2 \left(\|u\|_{H^1(L^2(\mathcal{A}))} + \|u\|_{L^2(\mathcal{X}_d)}\right) \left(\|v\|_{H^1(L^2(\mathcal{A}))} + \|v\|_{L^2(\mathcal{X}_d)}\right)
\end{equation}
for $u \in B^{p_1,p_2,p_3}(\Omega)$ and $v \in B^{q_1,q_2,q_3}(\Omega)$ and $0 < \tilde{\beta}_2 \leq 1$. Considering (4.10) and (4.11), we get
\begin{equation}
|\alpha(u,v)| \geq \beta \|u\|_{B^{p_1,p_2,p_3}(\Omega)} \|v\|_{B^{q_1,q_2,q_3}(\Omega)},
\end{equation}
where $\beta = \tilde{C} \tilde{\beta}_2$. □

Theorem 4.4. (well-posedness) For all $0 < \tau < 2$, $2 \tau \neq 1$, and $1 < 2 \nu_i < 2$, and $i = 1, \ldots, d$, there exists a unique solution to (3.32), which is continuously dependent on $f \in (B^{p_1,p_2,p_3}_\tau(\Omega))'$, where $(B^{p_1,p_2,p_3}_\tau(\Omega))'$ is the dual space of $B^{p_1,p_2,p_3}_\tau(\Omega)$.

Proof. The continuity and the inf-sup condition, which are proven in Lemmas 4.1, 4.3 respectively, yield the well-posedness of the weak form in (3.33) in $(1+d)$-dimension due to the generalized Babuška-Lax-Milgram theorem. □

Theorem 4.5. The Petrov-Galerkin spectral method for (3.33) is stable, i.e.,
\begin{equation}
\inf_{0 \neq u_N \in U_N} \sup_{0 \neq v_N \in V_N} \frac{|\alpha(u_N,v_N)|}{\|v_N\|_{B^{q_1,q_2,q_3}(\Omega)} \|u_N\|_{B^{p_1,p_2,p_3}(\Omega)}} \geq \beta > 0,
\end{equation}
holds with $\beta > 0$ and independent of N, where $\sup_{u_N \in U_N} |\alpha(u_N,v_N)| > 0$.

Proof. It is clear that the basis/test spaces are Hilbert spaces. Since $U_N \subset B^{p_1,p_2,p_3}_\tau(\Omega)$ and $V_N \subset B^{q_1,q_2,q_3}_\tau(\Omega)$, (4.12) follows directly from Theorem 4.4. □

5. Error Analysis. Let $P_M(\Lambda)$ denote the space of all polynomials of degree $\leq M$ on Λ, where $\Lambda \subset \mathbb{R}$. $P_M^s(\Lambda)$ denotes $P_M(\Lambda) \cap H^s_0(\Lambda)$ for any real positive s, where $H^s_0(\Lambda)$ is the closure of $C_0^\infty(\Lambda)$ in Λ with respect to $\|\cdot\|_{H^s(\Lambda)}$. In this section, $I_i = (a_i, b_i)$ for $i = 1, \ldots, d$, $\Lambda_i = I_i \times \Lambda_{i-1}$, and $\Lambda_i^j = \prod_{k=1}^j I_k$.

Theorem 5.1. [27] Let r_1 be a real number, where $r_1 \neq M_1 + \frac{1}{2}$, and $1 \leq r_1$. There exists an projection operator Π^r_{1,M_1} from $H^r(\Lambda_1) \cap H^0_0(\Lambda_1)$ to $P_{M_1}^{r_1}$ such that for any $u \in H^r(\Lambda_1) \cap H^0_0(\Lambda_1)$, we have $\|u - \Pi^r_{1,M_1} u\|_{H^r(\Lambda_1)} \leq c_1 M_1^{r_1-r} \|u\|_{H^r(\Lambda_1)}$, where c_1 is a positive constant. Maday in [21] proved Theorem 5.1 using the error estimate provided in [2] for Legendre and Chebyshev polynomials. Next, this theorem is extended to Jacobi polyfractonals of first kind.

Theorem 5.2. [56] Let $r_0 \geq \lceil 2\tau \rceil$, $r_0 \neq N + \frac{d}{2}$ and $2 \tau \in (0, 2)$, $2 \tau \neq 1$. There exists an operator $\Pi^{r_0}_{r_0,N}$ from $H^r(\Omega) \cap H^{2\tau}(I)$ to $P_{r_0}^{r_0}$ such that for any $u \in H^r(\Omega) \cap H^{2\tau}(I)$, we have
\begin{equation}
\|u - \Pi^{r_0}_{r_0,N} u\|_{H^r(\Omega)} \leq c_0 N^{r_0-r} \|u\|_{H^r(\Omega)},
\end{equation}
where c_0 is a positive constant.

Li and Xu in [18] performed the error analysis for the space-time fractional diffusion equation, employing Lagrangian polynomials. Here, employing Theorems 5.1 and 5.2 and Theorem A.3 from [11], we study the properties of higher-dimensional approximation operators in the following lemmas.

Lemma 5.3. Let the real-valued $1 \leq r_1, r_2, I_i = (a_i, b_i)$ $i = 1, 2$, $\Omega = I_1 \times I_2$, and $\frac{1}{2} < \nu_1, \nu_2 < 1$. If $u \in B^{p_1,p_2,p_3}(\Omega) = H^0_0(I_2, H^\nu(I_1)) \cap H^0_0(I_2, H^\nu(I_1))$, then
\begin{equation}
\|u - \Pi^{r_1}_{r_1,M_1} \Pi^{r_2}_{r_2,M_2} u\|_{B^{p_1,p_2,p_3}(\Omega)} \leq
\beta(M_1^{r_2-r} \|u\|_{H^\nu(I_2,H^\nu(I_1))} + M_2^{r_2-r} M_1^{r_1-r} \|u\|_{H^\nu(I_2,H^\nu(I_1))}) + M_1^{r_1-r} \|u\|_{H^\nu(I_2,H^\nu(I_1))} + M_2^{r_2-r} \|u\|_{H^\nu(I_2,H^\nu(I_1))},
\end{equation}
(5.1) + $M_1^{r_1-r} \|u\|_{H^\nu(I_2,H^\nu(I_1))} + M_2^{r_2-r} M_1^{r_1-r} \|u\|_{H^\nu(I_2,H^\nu(I_1))} + M_2^{r_2-r} \|u\|_{H^\nu(I_2,H^\nu(I_1))}$.
where \(\| \cdot \|_{H^1(I)} = \| \cdot \|_{L^2(I)} + \| \cdot \|_{H^1(I)} \).

Proof. If \(u \in H^2_0(I_2, H^1(I_1)) \cap H^\infty(I_2, H^0(I_1)) \), then evidently \(u \in H^2_0(I_2, H^1(I_1)) \), \(u \in H^2_0(I_2, L^2(I_1)) \), and \(u \in H^2_0(I_1, L^2(I_2)) \). By the real-valued positive constant \(\beta \), we have

\[
\begin{align*}
\| u - \Pi_{\Gamma_1} u \|_{H^2(I_2, L^2(I_1))} &= \left(\| u - \Pi_{\Gamma_1} u \|_{H^2(I_2, L^2(I_1))}^2 + \| u - \Pi_{\Gamma_1} u \|_{H^1(I_2, L^2(I_1))}^2 \right) \\leq \beta \left(\| u - \Pi_{\Gamma_1} u \|_{H^2(I_2, L^2(I_1))} + \| u - \Pi_{\Gamma_1} u \|_{H^1(I_2, L^2(I_1))} \right).
\end{align*}
\]

(5.2)

By Theorems 5.1, 5.2, can be simplified to

\[
\begin{align*}
\| u - \Pi_{\Gamma_1} u \|_{H^2(I_2, L^2(I_1))} &= \| u - \Pi_{\Gamma_1} u \|_{H^2(I_2, L^2(I_1))} + \| \Pi_{\Gamma_1} u - \Pi_{\Gamma_1} u \|_{H^2(I_2, L^2(I_1))} \\leq \beta \left(\| u - \Pi_{\Gamma_1} u \|_{H^2(I_2, L^2(I_1))} + \| u - \Pi_{\Gamma_1} u \|_{H^1(I_2, L^2(I_1))} \right)
\end{align*}
\]

(5.3)

where \(\mathcal{J} \) is the identity operator.

Since \(\| u - \Pi_{\Gamma_1} u \|_{H^2(I_2, L^2(I_1))} = \| u - \Pi_{\Gamma_1} u \|_{H^2(I_2, L^2(I_1))} \), we obtain

\[
\begin{align*}
\| u - \Pi_{\Gamma_1} u \|_{H^2(I_2, L^2(I_1))} &= \| u - \Pi_{\Gamma_1} u \|_{H^2(I_2, L^2(I_1))} + \| \Pi_{\Gamma_1} u - \Pi_{\Gamma_1} u \|_{H^2(I_2, L^2(I_1))} \\leq \beta \left(\| u - \Pi_{\Gamma_1} u \|_{H^2(I_2, L^2(I_1))} + \| u - \Pi_{\Gamma_1} u \|_{H^1(I_2, L^2(I_1))} \right)
\end{align*}
\]

(5.4)

Accordingly, 5.1 can be derived immediately from 5.4 and 5.5.

In order to perform the error analysis of (1+d)-dimensional PG method, we first study the approximation properties in three dimensions and then extend it to (1+d)-dimensions. It should be noted that in the following lemmas, \(H^r(I_1, L^2(\Lambda_1)) \cap H^s(I_1, L^2(\Lambda_1)) \), \(H^r(I_1, L^2(\Lambda_1)) \cap H^s(I_1, L^2(\Lambda_1)) \), \(H^r(I_1, L^2(\Lambda_1)) \cap H^s(I_1, L^2(\Lambda_1)) \), then

\[
\begin{align*}
\| u - \Pi_{\Gamma_1} u \|_{H^2(I_2, L^2(I_1))} &= \| u - \Pi_{\Gamma_1} u \|_{H^2(I_2, L^2(I_1))} + \| \Pi_{\Gamma_1} u - \Pi_{\Gamma_1} u \|_{H^2(I_2, L^2(I_1))} \\leq \beta \left(\| u - \Pi_{\Gamma_1} u \|_{H^2(I_2, L^2(I_1))} + \| u - \Pi_{\Gamma_1} u \|_{H^1(I_2, L^2(I_1))} \right)
\end{align*}
\]

(5.5)

for \(i = 1, 2, 3 \) and \(j = 1, 2, 3 \) and \(j \neq i \), and \(k = 1, 2, 3 \) and \(k \neq i \), \(j \), where \(\beta > 0 \).
Lemma 5.4 can be easily extended to the d-dimensional approximation operator as

\[\| u - \Pi_0^i u \|_{H^0(I_i, L^2(\mathcal{A}_i^j))} \leq \beta \left(M_i^{r-\gamma} \| u \|_{H^0(I_i, L^2(\mathcal{A}_i^j))} + \sum_{j=1}^{d} M_j^{r-\gamma} \| u \|_{H^0(I_i, H^j(I_i, L^2(\mathcal{A}_i^j)))} \right) \]

\[+ M_i^{r-\gamma} \sum_{j=1}^{d} M_j^{r-\gamma} \| u \|_{H^0(I_i, H^j(I_i, L^2(\mathcal{A}_i^j)))} + \sum_{k=1}^{d} \sum_{j=1}^{d} M_j^{r-\gamma} M_k^{r-\gamma} \| u \|_{H^0(I_i, H^k(I_i, L^2(\mathcal{A}_i^j)))} \]

(5.6) \[\cdots + M_i^{r-\gamma} \prod_{j=1}^{d} M_j^{r-\gamma} \| u \|_{H^0(I_i, H^0(I_i, L^2(\mathcal{A}_i^j)))}. \]

Theorem 5.5. Let \(1 \leq r, I = (0, T), I_i = (a_i, b_i), \Omega = I \times \left(\prod_{i=1}^{d} I_i \right), \Lambda_k = \prod_{i=1}^{k} I_i, \Lambda_k^j = \prod_{i=1}^{k} I_i \) and \(\frac{1}{2} < \nu < 1 \) for \(i = 1, \ldots, d \). If \(u \in \bigcap_{i=1}^{d} H^0(I_i, H^\nu(I_i, H^{r-\nu} I_i, \Lambda_k^j \times J_{\nu}^j)) \), then we have

\[\| u - \Pi_0^i u \|_{B^{r\nu}_{\gamma_1, \gamma_2}(\Omega)} \]

\[\leq \beta \left(N_i^{r-\gamma} \| u \|_{H^0(I_i, L^2(\mathcal{A}_i^j))} + \sum_{j=1}^{d} N_j^{r-\gamma} M_j^{r-\gamma} \| u \|_{H^0(I_i, H^j(I_i, L^2(\mathcal{A}_i^j)))} + \cdots \right) \]

\[+ N_i^{r-\gamma} \left(\prod_{j=1}^{d} M_j^{r-\gamma} \| u \|_{H^0(I_i, H^0(I_i, L^2(\mathcal{A}_i^j)))} + \sum_{j=1}^{d} \left(M_j^{r-\gamma} \| u \|_{H^0(I_i, H^j(I_i, L^2(\mathcal{A}_i^j)))} \right) + \cdots \right) \]

(5.7) \[\cdots + M_i^{r-\gamma} \prod_{j=1}^{d} M_j^{r-\gamma} \| u \|_{H^0(I_i, H^0(I_i, L^2(\mathcal{A}_i^j)))}. \]

where \(\Pi_0^i = \Pi_0^{i_1} M_1 \cdots \Pi_0^{i_d} M_d \) and \(\beta \) is a real positive constant.

Proof. Directly from (3.20) we conclude that

\[\| u \|_{B^{r\nu}_{\gamma_1, \gamma_2}(\Omega)} \leq \beta \left(\| u \|_{H^0(I_i, L^2(\mathcal{A}_i^j))} + \sum_{j=1}^{d} \| u \|_{L^2(I_i, H^0(I_i, L^2(\mathcal{A}_i^j)))} \right). \]

By Theorem 5.2 we obtain

\[\| u - \Pi_0^i u \|_{H^0(I_i, L^2(\mathcal{A}_i^j))} \leq N_i^{r-\gamma} \| u \|_{H^0(I_i, L^2(\mathcal{A}_i^j))} + \sum_{j=1}^{d} N_j^{r-\gamma} M_j^{r-\gamma} \| u \|_{H^0(I_i, H^j(I_i, L^2(\mathcal{A}_i^j)))} + \cdots \]

(5.8) \[+ N_i^{r-\gamma} \left(\prod_{j=1}^{d} M_j^{r-\gamma} \| u \|_{H^0(I_i, H^0(I_i, L^2(\mathcal{A}_i^j)))} \right). \]

Accordingly, the property of composite approximation to time-spatial (1+d)-dimensional space-time approximation operator in (5.7) is obtained immediately using (5.6) and (5.8).

Since the inf-sup condition holds (see Theorem 4.5), by the Banach-Nečas-Babuška theorem [1], the error in the numerical scheme is less than or equal to a constant times the projection error. Accordingly, we conclude the spectral accuracy of the scheme.
6. Numerical Tests. To study the convergence rate of the PG method in (3.32), we perform numerical simulations and consider the following relative errors in L^2 as

\begin{equation}
||e||_{L^2(\Omega)} = \frac{||u - u^{\text{ex}}||_{L^2(\Omega)}}{||u^{\text{ex}}||_{L^2(\Omega)}}
\end{equation}

and in the energy norm as

\begin{equation}
||e||_{H^1(\Omega)} = \frac{||u - u^{\text{ex}}||_{H^1(\Omega)}}{||u^{\text{ex}}||_{H^1(\Omega)}}
\end{equation}

where u^{ex} is presented in (6.4) and (6.5) in Case I and Case II respectively. Let $\Omega = (0, T) \times (-1, 1)$. Recalling that

\begin{equation}
||e||_{H^p(\Omega)} := \{||e||_{L^2(\Omega)}^2 + ||\partial_t e||_{L^2(\Omega)}^2 + \sum_{l=1}^{s} ||\frac{\partial^l e}{\partial x^l}||_{L^2(\Omega)}^2\}^{\frac{1}{2}}.
\end{equation}

We particularly consider the time and space-fractional diffusion equation (i.e. $c_1 = c_\tau = 0$ in (1.1)) in 2-D space-time as we have obtained similar results for advection-dispersion equation in higher dimensions.

Case I: We choose the exact solution to be

\begin{equation}
 u^{\text{ex}}(t, x) = t^{p_1} \times [(1 + x)^{p_2} - \epsilon(1 + x)^{p_3}]
\end{equation}

in (1.1), where $\epsilon = 2^{p_2-p_3}$. In (6.4), we take $p_1 = \frac{5}{19}$, $p_2 = \frac{5}{19}$ and $p_3 = \frac{5}{19}$.

Temporal p-refinement: In Table 6.1 Case I-A, we study the spectral convergence of the method for the limit fractional orders of $\tau = \frac{1}{19}$ and $\frac{9}{19}$, while $\nu_1 = \frac{10}{19}$ fixed and $\kappa_1 = \kappa_2 = \frac{10}{19}$ in (1.1) for (1+1)-D diffusion problem. In the temporal p-refinement, we keep the spatial order of expansion fixed ($M_1 = 19$) such that the error in spatial direction approaches to the exact solution sufficiently and hence the rate of convergence is a function of the minimum regularity in time direction. Theoretically, the rate of convergence is bounded by $M_1^{-\nu_1}||u||_{H^0(\Omega), (1.1)}$, where $r_0 = p_1 + \frac{1}{2} - \epsilon$ is the minimum regularity of the exact solution in time direction. In Table 6.1 we observe that δ_0 in $||e||_{L^2(\Omega)}$ and $||e||_{H^1(\Omega)}$ are greater than $r_0 \approx \frac{5}{19}$. Accordingly, $||e||_{L^2(\Omega)} \leq M_1^{-\nu_1}||e||_{H^1(\Omega)} \leq M_1^{-\nu_1}||u||_{H^0(\Omega), (1.1)}$.

Spatial p-refinement: We study the convergence rate of the PG method for the limit orders of $\nu_1 = \frac{10}{19}$ and $\frac{9}{19}$ while $\tau = \frac{5}{19}$ in Table 6.1 Case I-B. The temporal order of expansion is constant ($M_1 = 19$) to keep the solution sufficiently accurate in time direction. Similar to temporal p-refinement, we have $||e||_{L^2(\Omega)} \leq M_1^{-\nu_1}||e||_{H^1(\Omega)} \leq M_1^{-\nu_1}||u||_{H^0(\Omega), (1.1)}$, where $r_1 = p_3 + \frac{1}{2} - \epsilon$ is the minimum regularity of the exact solution in spatial direction. In agreement with Theorem 5.5 the practical rates of convergence δ_1 in $||e||_{L^2(\Omega)}$ and $||e||_{H^1(\Omega)}$ are greater than $r_1 \approx \frac{5}{19}$. Further to the aforementioned cases, we have observed similar results for higher dimensional problems, including $(1+2)$-D time- and space-fractional diffusion equation as well. Besides, several numerical simulations have been illustrated in [29] which confirms the theoretical error estimation in (1+1)- and (1+d)-D fractional advection-dispersion-reaction and wave equations.

Case II: We consider the smooth exact solution to be

\begin{equation}
 u^{\text{ex}}(t, x) = t^{p_1} \times \left[\sin(n\pi(1 + x)) \right],
\end{equation}

in (1.1), where $p_1 = \frac{5}{19}$ and $n = 1$.

p-refinement: The convergence rate of the PG method for the limit orders of $\nu_1 = \frac{10}{19}$ and $\frac{9}{19}$ is investigated while $\tau = \frac{5}{19}$ in Table 6.2 The temporal order of expansion is chosen as ($M_1 = 19$) to keep the solution sufficiently accurate in time direction. The results in Table 6.2 show the expected exponential decay which verifies the PG method for different values of ν_1.

Table 6.2: Convergence study of the PG spectral method for (1+1)-D diffusion problem, where $\kappa_l = \kappa_r = \frac{2}{10}$ and $T = 2$. Besides, $p_1 = 5\frac{1}{2000}$, $p_2 = 5\frac{1}{4}$ and $p_3 = 5\frac{1}{4}$ in (6.4). Here, we denote by \bar{r}_0 the practical rate of the convergence, numerically achieved.

Case I-A: $\nu_1 = \frac{15}{20}$ fixed, where we consider the limit orders $\tau = \frac{1}{10}$ and $\tau = \frac{9}{20}$.

$\tau = \frac{1}{10}$ and $\nu_1 = \frac{15}{20}$	$\tau = \frac{9}{20}$ and $\nu_1 = \frac{15}{20}$			
\mathcal{M}_l	$\|e\|_{L^2(\Omega)}$	$\|e\|_{L^2(\Omega)}$	$\|e\|_{L^2(\Omega)}$	$\|e\|_{L^2(\Omega)}$
$(\bar{r}_0 = 12.81)$	$(\bar{r}_0 = 14.09)$	$(\bar{r}_0 = 13.32)$	$(\bar{r}_0 = 14.44)$	
3	0.48488	0.45541	0.65358	0.56631
5	0.04176	0.04003	0.07530	0.05431
7	3.44×10^{-5}	2.64×10^{-5}	0.00079	0.00045
9	5.00×10^{-7}	2.81×10^{-7}	5.03×10^{-7}	2.59×10^{-7}
11	4.82×10^{-8}	1.45×10^{-8}	4.81×10^{-8}	6.61×10^{-9}

Spatial p-refinement Case I-B

$\nu_1 = \frac{15}{20}$ and $\tau = \frac{1}{10}$	$\nu_1 = \frac{15}{20}$ and $\tau = \frac{9}{20}$			
\mathcal{M}_l	$\|e\|_{L^2(\Omega)}$	$\|e\|_{L^2(\Omega)}$	$\|e\|_{L^2(\Omega)}$	$\|e\|_{L^2(\Omega)}$
$(\bar{r}_l = 9.18)$	$(\bar{r}_l = 9.36)$	$(\bar{r}_l = 8.51)$	$(\bar{r}_l = 9.08)$	
3	0.45329	0.40578	0.55657	0.38525
5	0.01738	0.01259	0.03097	0.01445
7	4.68×10^{-5}	0.00029	3.08×10^{-5}	1.06×10^{-5}
9	1.19×10^{-6}	6.96×10^{-7}	2.45×10^{-6}	6.63×10^{-7}
11	7.09×10^{-8}	5.33×10^{-8}	5.42×10^{-7}	1.56×10^{-7}

Table 6.2: Here, we set $p_1 = 5\frac{1}{2000}$ and $n = 1$ in (6.5) to study the convergence of the PG spectral method for (1+1)-D diffusion problem, where $\kappa_l = \kappa_r = \frac{2}{10}$ and $T = 2$. Besides, the limit orders are $\nu_1 = \frac{15}{20}$ and $\nu_1 = \frac{11}{20}$, where $\tau = \frac{5}{20}$ fixed.

$\nu_1 = \frac{15}{20}$ and $\tau = \frac{5}{20}$	$\nu_1 = \frac{11}{20}$ and $\tau = \frac{5}{20}$			
\mathcal{M}_l	$\|e\|_{L^2(\Omega)}$	$\|e\|_{L^2(\Omega)}$	$\|e\|_{L^2(\Omega)}$	$\|e\|_{L^2(\Omega)}$
$(\bar{r}_l = 5)$	$(\bar{r}_l = 5.1)$	$(\bar{r}_l = 5.2)$	$(\bar{r}_l = 5.3)$	
5	0.07456	0.02655	0.05730	0.03147
9	2.69×10^{-5}	1.60×10^{-5}	2.72×10^{-4}	1.54×10^{-4}
13	4.44×10^{-9}	2.46×10^{-9}	4.32×10^{-8}	2.44×10^{-8}
17	4.10×10^{-12}	5.90×10^{-12}	8.88×10^{-11}	9.17×10^{-12}

7. Summary and Discussion. We proved well-posedness and performed discrete stability analysis of unified Petrov-Galerkin spectral method developed in [29] for the linear fractional partial differential equations with two-sided derivatives and constant coefficients in any dimension. We obtained the theoretical error estimates, proving that the method converges spectrally fast under certain conditions. Finally, several numerical cases, including finite regularity and smooth solutions, have been performed to show the spectral accuracy of the method.
Acknowledgement. This work was supported by the AFOSR Young Investigator Program (YIP) award (FA9550-17-1-0150) and partially by MURI/ARO (W911NF-15-1-0562).

Appendix.

• Proof of Lemma 3.1. Proof. In Lemma 2.1 in [13] and also in [8], it is shown that $\| \cdot \|_{H^r(\Lambda)}$ and $\| \cdot \|_{H^s(\Lambda)}$ are equivalent. Therefore, for $u \in H^r(\Lambda)$, there exist positive constants C_1 and C_2 such that

$$
\|u\|_{H^r(\Lambda)} \leq C_1 \|u\|_{H^s(\Lambda)},
$$

(7.1)

$$
\|u\|_{H^s(\Lambda)} \leq C_2 \|u\|_{H^r(\Lambda)},
$$

(7.2)

which leads to

$$
\|u\|_{H^r(\Lambda)} \leq C_1 \|u\|_{H^s(\Lambda)}^2 + C_2 \|u\|_{H^r(\Lambda)}^2
$$

(7.3)

where \tilde{C}_1 is a positive constant. Similarly, we can show that

$$
\|u\|_{H^s(\Lambda)}^2 \leq \tilde{C}_2 \|u\|_{H^r(\Lambda)},
$$

(7.4)

where \tilde{C}_2 is a positive constant. This equivalency and (3.5) conclude the proof. □

• Proof of Lemma 3.4. Proof. Let $\Lambda_d = \prod_{i=1}^{d} (a_i, b_i)$. According to [13], we have $a_i D_{\nu} u = a_i D_{\nu} (a_i D_{\nu} u)$ and $b_i D_{\nu} u = b_i D_{\nu} (b_i D_{\nu} u)$. Let $\bar{u} = a_i D_{\nu} u$. Then,

$$(a_i D_{\nu} u, v)_{\Lambda_d} = (a_i D_{\nu} \bar{u}, v)_{\Lambda_d} = \int_{\Lambda_d} \frac{1}{\Gamma(1 - \nu)} \frac{d}{dx_i} \int_{a_i}^{b_i} \bar{u}(s) ds \frac{d}{dx_i} \nu d\Lambda_d$$

(7.5)

$$
= \int_{\Lambda_d} \frac{\nu}{\Gamma(1 - \nu)} \frac{d}{dx_i} \int_{a_i}^{b_i} \bar{u}(s) ds \frac{d}{dx_i} \nu d\Lambda_d.
$$

(7.6)

Moreover, we find that

$$
\frac{d}{ds} \int_{a_i}^{b_i} \frac{\nu}{(x_i - s)^{\nu}} dx_i = \frac{d}{ds} \left(\frac{\nu}{1 - \nu} \frac{1}{x_i - s} \right)_{x_i=a_i}^{x_i=b_i} = \frac{d}{dx_i} \left(\frac{\nu}{1 - \nu} (x_i - s)^{-\nu} dx_i \right).
$$

Therefore, we get

$$
(a_i D_{\nu} \bar{u}, v)_{\Lambda_d} = -\int_{\Lambda_d} \frac{1}{\Gamma(1 - \nu)} \frac{d}{dx_i} (\bar{u}(s)) \frac{d}{dx_i} \nu ds \frac{d}{dx_i} \nu d\Lambda_d = (\bar{u}, a_i D_{\nu} v)_{\Lambda_d}.
$$

□
Proof. Let $i = 1$, $j = 2$, and $k = 3$. We have

$$
\|u - \Pi_{1_{t_1}, M_1} \Pi_{2_{t_2}, M_2} \Pi_{3_{t_3}, M_3} u\|_{H^1(t, L^2(\mathcal{L}))}
$$

$$
= \|u - \Pi_{1_{t_1}, M_1} u + \Pi_{1_{t_1}, M_1} u - \Pi_{1_{t_1}, M_1} \Pi_{2_{t_2}, M_2} u + \Pi_{1_{t_1}, M_1} \Pi_{2_{t_2}, M_2} u - \Pi_{1_{t_1}, M_1} \Pi_{3_{t_3}, M_3} u\|_{H^1(t, L^2(\mathcal{L}))}
$$

$$
\leq \|u - \Pi_{1_{t_1}, M_1} u\|_{H^1(t, L^2(\mathcal{L}))} + \|\Pi_{1_{t_1}, M_1} u - \Pi_{1_{t_1}, M_1} \Pi_{2_{t_2}, M_2} u\|_{H^1(t, L^2(\mathcal{L}))}
$$

$$
+ \|\Pi_{1_{t_1}, M_1} \Pi_{2_{t_2}, M_2} u - \Pi_{1_{t_1}, M_1} \Pi_{2_{t_2}, M_2} \Pi_{3_{t_3}, M_3} u\|_{H^1(t, L^2(\mathcal{L}))},
$$

where by Theorem 5.1

$$
(7.8)
\|u - \Pi_{1_{t_1}, M_1} u\|_{H^1(t, L^2(\mathcal{L}))} \leq M_1^{r_{t_1}} \|u\|_{H^1(t, L^2(\mathcal{L}))}.
$$

Furthemore,

$$
\|\Pi_{1_{t_1}, M_1} \Pi_{2_{t_2}, M_2} \Pi_{3_{t_3}, M_3} u - \Pi_{1_{t_1}, M_1} \Pi_{2_{t_2}, M_2} \Pi_{3_{t_3}, M_3} u\|_{H^1(t, L^2(\mathcal{L}))}
$$

$$
\leq \|\Pi_{1_{t_1}, M_1} u - \varphi_{1_{t_1}, M_1} u\|_{H^1(t, L^2(\mathcal{L}))} + \|\Pi_{2_{t_2}, M_2} u - \varphi_{2_{t_2}, M_2} u\|_{H^1(t, L^2(\mathcal{L}))}
$$

$$
\leq M_1^{r_{t_1}} \|u\|_{H^1(t, L^2(\mathcal{L}))} + M_2^{r_{t_2}} \|u\|_{H^1(t, L^2(\mathcal{L}))},
$$

Similarly,

$$
(7.9)
M_1^{r_{t_1}} M_2^{r_{t_2}} \|u\|_{H^1(t, H^2(t, L^2(\mathcal{L})))} + M_3^{r_{t_3}} \|u\|_{H^1(t, L^2(\mathcal{L}))}.
$$

Therefore,

$$
(7.11)
M_3^{r_{t_3}} \|u\|_{H^1(t, H^2(t, L^2(\mathcal{L})))} + M_3^{r_{t_3}} \|u\|_{H^1(t, L^2(\mathcal{L}))}.
$$

Following the same steps, we get

$$
(7.12)
M_3^{r_{t_3}} \|u\|_{H^1(t, H^2(t, L^2(\mathcal{L})))} + M_3^{r_{t_3}} \|u\|_{H^1(t, L^2(\mathcal{L}))}.$$
and
\[
\begin{align*}
\|u - \Pi_{r_1}^\gamma u_1 & - \Pi_{r_2}^\gamma u_2 - \Pi_{r_3}^\gamma u_3\|_{H^3(I_0, L^2(A_3))} \\
\leq & \mathcal{M}^{(r_1)}_3\|u\|_{H^3(I_0, L^2(A_3))} + \mathcal{M}^{(r_2)}_3\|u\|_{H^3(I_0, L^2(A_3))} + \mathcal{M}^{(r_3)}_3\|u\|_{H^3(I_0, L^2(A_3))} \\
+ & \mathcal{M}^{(r_1)}_3\|u\|_{H^3(I_0, L^2(A_3))} + \mathcal{M}^{(r_2)}_3\|u\|_{H^3(I_0, L^2(A_3))} + \mathcal{M}^{(r_3)}_3\|u\|_{H^3(I_0, L^2(A_3))}.
\end{align*}
\]
(7.13) $\mathcal{M}^{(r_1)}_3\mathcal{M}^{(r_2)}_2\|u\|_{H^3(I_0, L^2(A_3))} + \mathcal{M}^{(r_2)}_2\|u\|_{H^3(I_0, L^2(A_3))}.$

REFERENCES

[1] Christine Bernardi, Yvon Maday, and Brigitte Métivet, Spectral approximation of the periodic-nonperiodic navier-stokes equations, Numerische Mathematik, 51 (1987), pp. 655–700.
[2] C Canuto and A Quarteroni, Approximation results for orthogonal polynomials in sobolev spaces, Mathematics of Computation, 38 (1982), pp. 67–86.
[3] Jiankong Cao, Chunpin Li, and Yangquan Chen, Compact difference method for solving the fractional reaction–subdiffusion equation with neumann boundary value condition, International Journal of Computer Mathematics, 92 (2015), pp. 167–180.
[4] Feng Chen, Qionwu Xu, and Jan S Hesthaven, A multi-domain spectral method for time-fractional differential equations, Journal of Computational Physics, 293 (2015), pp. 157–172.
[5] Minghua Chen and Weihua Deng, A second-order numerical method for two-dimensional two-sided space fractional convection diffusion equation, Applied Mathematical Modelling, 38 (2014), pp. 3244–3259.
[6] Sheng Chen, Jie Shen, and Li-Lian Wang, Generalized jacobi functions and their applications to fractional differential equations, Mathematics of Computation, 85 (2016), pp. 1603–1638.
[7] Alexandre Ern and Jean-Luc Guermond, Theory and practice of finite elements, vol. 159, Springer Science & Business Media, 2013.
[8] Vincent J Ervin and John Paul Roop, Variational solution of fractional advection dispersion equations on bounded domains in \mathbb{R}^d, Numerical Methods for Partial Differential Equations, 23 (2007), p. 256.
[9] Hala Hejazi, Timothy Moroney, and Fawang Liu, A finite volume method for solving the two-sided time-space fractional advection-dispersion equation, Open Physics, 11 (2013), pp. 1275–1283.
[10] Bangti Jin, Raytcho Lazarov, Joseph Pasciak, and Zhi Zhou, Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion, IMA Journal of Numerical Analysis, (2014), p. dru018.
[11] George Karniadakis and Spencer Sherwin, Spectral/hp element methods for computational fluid dynamics, Oxford University Press, 2013.
[12] Ehsan Khazaei and Mohsen Zayernouri, Fractional pseudo-spectral methods for distributed-order fractional pdes, International Journal on Computer Mathematics, (2017), p. In Press.
[13] Ehsan Khazaei, Mohsen Zayernouri, and George Em Karniadakis, Petrov–galerkin and spectral collocation methods for distributed order differential equations, SIAM Journal on Scientific Computing, 39 (2017), pp. A1003–A1037.
[14] ———, A petrov–galerkin spectral element method for fractional elliptic problems, Computer Methods in Applied Mechanics and Engineering, 324 (2017), pp. 512–536.
[15] R. Klages, G. Radons, and I. M. Sokolov, Anomalous Transport: Foundations and Applications, Wiley–VCH, 2008.
[16] Dongfang Li, Chengjian Zhang, and Moohoa Ran, A linear finite difference scheme for generalized time fractional burgers equation, Applied Mathematical Modelling, 40 (2016), pp. 6069–6081.
[17] Xianjuan Li and Chuanju Xu, A space-time spectral method for the time fractional diffusion equation, SIAM Journal on Numerical Analysis, 47 (2009), pp. 2108–2131.
[18] ———, Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation, Communications in Computational Physics, 8 (2010), p. 1016.
[19] Anna Lischke, Mohsen Zayernouri, and George Em Karniadakis, A petrov–galerkin spectral method of linear complexity for fractional multiterm odes on the half lines, SIAM Journal on Scientific Computing, (2017), pp. 39(3):A922–A946.
[20] Chi Lubich, Discretized fractional calculus, SIAM Journal on Mathematical Analysis, 17 (1986), pp. 704–719.
[21] Y Maday, Analysis of spectral projectors in one-dimensional domains, mathematics of computation, 55 (1990), pp. 537–562.
[22] Zhifeng Mao and Jie Shen, Efficient spectral–galerkin methods for fractional partial differential equations with variable coefficients, Journal of Computational Physics, 307 (2016), pp. 243–261.
[23] William McLean and Kassem Mustapha, *Convergence analysis of a discontinuous galerkin method for a sub-diffusion equation*, Numerical Algorithms, 52 (2009), pp. 69–88.

[24] Mark M Meerschaert and Alla Sikorskii, *Stochastic models for fractional calculus*, vol. 43, Walter de Gruyter, 2012.

[25] Mark M Meerschaert and Charles Tadjeran, *Finite difference approximations for fractional advection–dispersion flow equations*, Journal of Computational and Applied Mathematics, 172 (2004), pp. 65–77.

[26] Ralf Metzler and Joseph Klafter, *The random walk’s guide to anomalous diffusion: a fractional dynamics approach*, Physics reports, 339 (2000), pp. 1–77.

[27] M. Nadjibbouloseni, Estimation of outer-middle ear transmission using DPOAEs and fractional-order modeling of human middle ear, PhD thesis, City University of New York, NY, 2015.

[28] Ricardo H Nochetto, Enrique Otálora, and Abner J Salgado, *A pde approach to numerical fractional diffusion*, arXiv preprint arXiv:1508.04382, (2015).

[29] Mehdi Samiee, Mohsen Zayernouri, and Mark M. Meerschaert, *A unified spectral method for fpdes with two-sided derivatives: part i: A fast solver*, submitted to The Journal of Computational Physics, 2017.

[30] Jie Shen, Tao Tang, and Li-Lian Wang, *Spectral methods: algorithms, analysis and applications*, vol. 41, Springer Science & Business Media, 2011.

[31] Jie Shen and Li-Lian Wang, *Fourierization of the legendre–galerkin method and a new space–time spectral method*, Applied numerical mathematics, 57 (2007), pp. 710–720.

[32] JL Suzuki, M Zayernouri, ML Bittencourt, and GE Karniadakis, *Fractional-order uniaxial visco-elastoplastic models for structural analysis*, Computer Methods in Applied Mechanics and Engineering, 308 (2016), pp. 443–467.

[33] Charles Tadjeran and Mark M Meerschaert, *A second-order accurate numerical method for the two-dimensional fractional diffusion equation*, Journal of Computational Physics, 220 (2007), pp. 813–823.

[34] George M Zaslavsky, *The physics of chaos in hamiltonian systems*, World scientific, 2007.

[35] Mohsen Zayernouri, Mark Ainsworth, and George Em Karniadakis, *Tempered fractional sturm–liouville eigenproblems*, SIAM Journal on Scientific Computing, 37 (2015), pp. A1777–A1800.

[36] ———, *A unified petrov–galerkin spectral method for fractional pdes*, Computer Methods in Applied Mechanics and Engineering, 283 (2015), pp. 1545–1569.

[37] Mohsen Zayernouri and George Em Karniadakis, *Fractional sturm–liouville eigen-problems: theory and numerical approximation*, Journal of Computational Physics, 252 (2013), pp. 495–517.

[38] Mohsen Zayernouri and Anastasios Matzavinos, *Fractional adams–bashforth/moulton methods: An application to the fractional keller–segel chemotaxis system*, Journal of Computational Physics, 317 (2016), pp. 1–14.

[39] Fanhai Zeng, Changpin Li, Fawang Liu, and Ian Turner, *Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy*, SIAM Journal on Scientific Computing, 37 (2015), pp. A55–A78.

[40] Fanhai Zeng, Zhongqiang Zhang, and George Em Karniadakis, *Fast difference schemes for solving high-dimensional time-fractional subdiffusion equations*, Journal of Computational Physics, 307 (2016), pp. 15–33.

[41] Yong Zhang, HongGuang Sun, Harold H Stowell, Mohsen Zayernouri, and Samantha E Hansen, *A review of applications of fractional calculus in earth system dynamics*, Chaos, Solitons & Fractals, (2017).

[42] Zhongqiang Zhang, Fanhai Zeng, and George Em Karniadakis, *Optimal error estimates of spectral petrov–galerkin and collocation methods for initial value problems of fractional differential equations*, SIAM Journal on Numerical Analysis, 53 (2015), pp. 2074–2096.

[43] Linhong Zhao, Weihua Deng, and Ján S Hesthaven, *Spectral methods for tempered fractional differential equations*, arXiv preprint arXiv:1603.06511, (2016).