Gersten’s conjecture

Satoshi Mochizuki

Abstract

The purpose of this article is to prove that Gersten’s conjecture for a commutative regular local ring is true. As its applications, we will prove the vanishing conjecture for certain Chow groups, generator conjecture for certain K-groups and Bloch’s formula for absolute case.

Contents

0 Introduction 1

1 Proof of the main theorem 2

2 Corollaries 4

0 Introduction

The purpose of this note is to prove the following theorem.

Theorem 0.1 (Gersten’s conjecture).

For any commutative regular local ring R, Gersten’s conjecture is true. That is for any natural numbers n, p, the canonical inclusion $\mathcal{M}^{p+1}(R) \hookrightarrow \mathcal{M}^p(R)$ induces the zero map on K-groups

$$K_n(\mathcal{M}^{p+1}(R)) \to K_n(\mathcal{M}^p(R)),$$

where $\mathcal{M}^i(R)$ is the category of finitely generated R-modules M with $\text{Codim}_{\text{Spec} R} \text{Supp } M \geq i$.

Gersten’s conjecture is proposed in [Ger73]. More precise historical back grounds of this conjecture are explained in [Moc07]. In §1, we will prove the main theorem and in §2, we will also discuss applications of this conjecture.

Acknowledgement The author thankful to Shuji Saito for encouraging him, to Fabrice Orgogozo for stimulating argument about Corollary 2.4 to Takeshi Saito for making him to get to the reduction argument in Lemma 1.3 and to Kazuhiko Kurano for teaching him condition (iii) in Proposition 2.2.
1 Proof of the main theorem

From now on, let \(R \) be a commutative regular local ring. Proof of the main theorem is divided into several lemmas. First we will improve Quillen’s reduction argument in the proof of Gersten’s conjecture in [Qui73].

Lemma 1.1 (Quillen induction).

To prove the main theorem, we shall only check the following assertion:

For any non-negative integers \(n, p \), and any regular sequence \(f_1, \ldots, f_{p+1} \) in \(R \), the canonical map induced from the inclusion map \(\mathcal{P}(R/(f_1, \ldots, f_{p+1})) \to \mathcal{M}^p(R) \),

\[
K_n(\mathcal{P}(R/(f_1, \ldots, f_{p+1}))) \to K_n(\mathcal{M}^p(R))
\]

is zero.

Proof. In the proof of Theorem 5.11 in [Qui73], we have the following formula

\[
K_n(\mathcal{M}^{p+1}(R)) = \colim_{t: \text{regular element}} K_n(\mathcal{M}^p(R/tR)).
\]

Since \(R \) is UFD by [AB59], for any regular element \(t \) in \(R \), we can write \(t = p_1^{e_1}p_2^{e_2} \cdots p_r^{e_r} \) where \(p_i \) are prime elements. By dévissage theorem in [Qui73], we have the following formula

\[
K_n(\mathcal{M}^p(R/tR)) \sim K_n(\mathcal{M}^p(R/p_1p_2 \cdots p_rR)).
\]

Claim

We have the following formula

\[
K_n(\mathcal{M}^p(R/p_1p_2 \cdots p_rR)) \sim \bigoplus_{i=1}^r K_n(\mathcal{M}^p(R/p_iR)).
\]

Proof of Claim. We put \(X = \text{Spec } R/p_1p_2 \cdots p_rR \) and \(X_i = \text{Spec } R/p_iR \). For any closed set \(Y \subset X \), we put \(\text{Perf}^Y(X_i) \) the category of strictly perfect complexes which are acyclic on \(X_i \setminus Y \). We also put \(\text{Perf}^p(X_i) := \bigcup_{Y \subset X_i, \text{Codim } Y \geq p} \text{Perf}^Y(X_i) \). Then we have the following identities

\[
K_n(\mathcal{M}^p(X)) \sim \colim_{Y \subset X, \text{Codim } Y \geq p} K'_n(Y) \sim \colim_{Y \subset X, \text{Codim } Y \geq p} K_n(X \text{ on } Y)
\]

\[
\sim \colim_{Y \subset X, \text{Codim } Y \geq p} \bigoplus_{i=1}^r K_n(X_i \text{ on } X_i \cap Y) \sim \colim_{X \subset X_i} \bigoplus_{i=1}^r K_n(X_i \text{ on } Y)
\]

\[
\sim \bigoplus_{i=1}^r \colim_{X \subset X_i, \text{Codim } Y \geq p} K'_n(Y) \sim \bigoplus_{i=1}^r \colim_{X \subset X_i, \text{Codim } Y \geq p} K_n(\mathcal{M}^p(X_i))
\]

where the isomorphisms I are proved by continuity [Qui73], [TT90], the isomorphisms II are proved by the Poincaré duality and comparing the following fibration sequences [Qui73] and [TT90]

\[
K'(Y) \to K'(X_i) \to K'(X_i \setminus Y),
\]

\[
K(X_i \text{ on } Y) \to K(X_i) \to K(X_i \setminus Y)
\]

for any closed set \(Y \subset X \) and to prove the isomorphism III, we are using the fact that all \(X_i \) are equidimensional.

\[\square \]
Therefore to prove Gersten’s conjecture we shall only check that for any prime element f, the inclusion map $\mathcal{M}^p(R/fR) \to \mathcal{M}^p(R)$ induces the zero map

$$K_n(\mathcal{M}^p(R/fR)) \to K_n(\mathcal{M}^p(R)).$$

Since R/fR is regular, inductive argument implies that to prove Gersten’s conjecture we shall only check that for any regular sequence f_1,\ldots,f_{p+1} such that (f_1,\ldots,f_{p+1}) is prime ideal, the inclusion map $\mathcal{M}(R/(f_1,\ldots,f_{p+1})) \to \mathcal{M}^p(R)$ induces the zero map

$$K_n(\mathcal{M}(R/(f_1,\ldots,f_{p+1}))) \to K_n(\mathcal{M}^p(R)).$$

Since $R/(f_1,\ldots,f_{p+1})$ is regular, inductive argument implies that to prove Gersten’s conjecture we shall only check that for any prime element p.

Now Lemma 1.1 implies the following assertion by famous Gersten-Sherman argument in [Ger73], [She82] p.240, which is an application of the universal property for algebraic K-theory associated with semisimple exact categories [She92] Corollary 5.2. From now on let \mathcal{F} be the category of finite pointed connected CW-complexes and frequently using the notations in [Moc07].

Lemma 1.2 (Gersten-Sherman reduction argument).

To prove the main theorem, we shall only check the following assertion:
For any $X \in \mathcal{F}$, any non-negative integer p, and any regular sequence f_1,\ldots,f_{p+1} in R, the canonical map induced from the inclusion map $\mathcal{P}(R/(f_1,\ldots,f_{p+1})) \to \mathcal{M}^p(R)$,

$$\tilde{R}_0(\pi_1(X),\mathcal{P}(R/(f_1,\ldots,f_{p+1}))) \to \tilde{R}_0(\pi_1(X),\mathcal{M}^p(R)) \xrightarrow{\text{sh}} [X, (\mathbb{K}(\mathcal{M}^p(R)))_0],$$

is zero.

Proof. We have the following commutative diagram for each $X \in \mathcal{F}$:

$$
\begin{array}{ccc}
\tilde{R}_0(\pi_1(X),\mathcal{P}(R/(f_1,\ldots,f_{p+1}))) & \longrightarrow & \tilde{R}_0(\pi_1(X),\mathcal{M}^p(R)) \\
\downarrow{\text{sh}} & & \downarrow{\text{sh}} \\
[X, (\mathbb{K}(\mathcal{P}(R/(f_1,\ldots,f_{p+1}))))_0] & \longrightarrow & [X, (\mathbb{K}(\mathcal{M}^p(R)))_0].
\end{array}
$$

It is well-known that $\mathbb{K}(\mathcal{M}^p(R))$ is a H-space, $\mathcal{P}(R/(f_1,\ldots,f_{p+1}))$ is semi-simple and by the universal property [She92] Corollary 5.2, we learn that we shall only prove the composition

$$\tilde{R}_0(\pi_1(X),\mathcal{P}(R/(f_1,\ldots,f_{p+1}))) \to \tilde{R}_0(\pi_1(X),\mathcal{M}^p(R)) \xrightarrow{\text{sh}} [X, (\mathbb{K}(\mathcal{M}^p(R)))_0],$$

is the zero map for any $X \in \mathcal{F}$. \qed

Next we will define equivalence relations between morphisms in $\mathcal{M}^p(R)$ as follows:
For any R-modules M, N in $\mathcal{M}^p(R)$, and morphisms $f, g : M \to N$, we will declare $f \sim g$.
Then $\mathcal{M}^p(R)$ is an exact category with equivalence relations satisfying the cogluing axiom in the sense of [Moc07]. So we can define the Grothendieck group of lax G-representations in $\mathcal{M}^p(R)$. (For the precise definition, see [Moc07] Definition 3.9).

Lemma 1.3 (Retraction principle).

To prove main theorem, we shall only check the following assertion:
In the notation Lemma 1.2, the canonical map induced from the inclusion map

$$\mathcal{P}(R/(f_1,\ldots,f_{p+1})) \hookrightarrow \mathcal{M}^p(R),$$

\[R_0(G, \mathcal{P}(R/(f_1, \ldots, f_{p+1}))) \to R_0^{\text{lax}}(G, \mathcal{M}^p(R)) \]

is zero.

Proof. We have the following commutative diagram for each \(X \in \mathcal{F} \):

\[
\begin{array}{ccc}
\tilde{R}_0(\pi_1(X), \mathcal{P}(R/(f_1, \ldots, f_{p+1}))) & \to & \tilde{R}_0(\pi_1(X), \mathcal{M}^p(R)) \to \mathcal{S}_{\text{Sh}} [X, (\mathbb{K}^e(\mathcal{M}^p(R)))_0]^* \\
\downarrow & & \downarrow 1 \\
\tilde{R}_0^\text{lax}(\pi_1(X), \mathcal{M}^p(R)) & \to & \mathcal{S}_{\text{Sh}}^\text{lax} [X, (\mathbb{K}^{\text{lax}, e}(\mathcal{M}^p(R)))_0]^*
\end{array}
\]

where the morphism I is a injection by retraction theorem 3.13 in [Moc07]. Hence we get the result. \(\square \)

The following argument is one of a variant of weight argument of the Adams operations. (See [Moc07] \S 1.)

Lemma 1.4 (Weight changing argument). The assertion in **Lemma 1.3** is true. Therefore Gersten’s conjecture is true.

Proof. We put \(B = R/(f_1, \ldots, f_p) \). Let \(G \) be a group and \((X, \rho_X) \) be a representation in \(\mathcal{P}(B/f_{p+1}B) \). Since \(B/f_{p+1}B \) is local, \(X \) is isomorphic to \((B/f_{p+1}B)^\oplus m \) for some \(m \) as a \(B/f_{p+1}B \)-module. Then there is a short exact sequence

\[0 \to B^\oplus m \to B^\oplus m \to X \to 0. \]

For each \(g \in G \), we have a lifting of \(\rho_X(g) \), that is, a \(R \)-module homomorphism \(\tilde{\rho}(g) : B^\oplus m \to B^\oplus m \) such that \(\tilde{\rho}(g) \mod f_{p+1} = \rho_X(g) \). Since \([B^\oplus m \to B^\oplus m] \) is a minimal resolution of \(X \) as a \(B \)-module, (For the definition of a minimal resolution, see [Ser00] p.84.) we can easily learn that \(\tilde{\rho}(g) \) is an isomorphism as a \(B \)-modules by Nakayama’s lemma. Therefore \(\tilde{\rho}(g) \) is an isomorphism as a \(R \)-modules. Obviously assignment \(\tilde{\rho} : G \to \text{Aut}(B^\oplus m) \) defines a lax representation \((B^\oplus m, \tilde{\rho}) \) in \(\mathcal{M}^p(R) \) and we have a short exact sequence

\[(B^\oplus m, \tilde{\rho}) \to (B^\oplus m, \tilde{\rho}) \to (X, \rho_X) \]

in \(\mathcal{LAX}(G, \mathcal{M}^p(R)) \). Notice that proving \(f_{p+1} \) is a strict deformation, we need the assumption that \(R \) is commutative!! So we have an identity

\[[(X, \rho_X)] = [(B^\oplus m, \tilde{\rho})] - [(B^\oplus m, \tilde{\rho})] = 0 \]

in \(R_0^{\text{lax}}(G, \mathcal{M}^p(R)) \). Hence we get the result. \(\square \)

2 Corollaries

In this section, we will discuss applications of **Theorem 0.1**. First we get the following absolute version of Bloch’s formula.
Corollary 2.1.
For a regular noetherian scheme X, there is a canonical isomorphism

$$H^p(X, K_p) \xrightarrow{\sim} A^p(X)$$

where K_p is the Zariski sheaf on X associated to the presheaf $U \mapsto K_n(U)$ and $A_p(X)$ is defined by the following formula

$$A^p(X) := \text{Coker} \left(\coprod_{x \in X_{p-1}} k(x)^{\times \text{ord}_x} \prod_{x \in X_p} \mathbb{Z} \right).$$

Here X_i is the set of points of codimension i in X.

Proof. Combining Propositions 5.8 and 5.14 and Remark 5.17 in [Qui73] and Theorem 0.1 we can easily obtain the result.

Next we will cite the following well-known statement.

Proposition 2.2.
(c.f. [Lev85] P.452, Proposition 1.1, [Moc07] Proposition 1.2) Let A be a commutative regular local ring. Then the following statements are equivalent.

(i) The maps $K_0(M^p(A)) \to K_0(M^{p-1}(A))$ are zero for $p = 1, \cdots, \dim A$.
(ii) $K_0(M^p(A))$ is generated by cyclic modules $A/(f_1, \cdots, f_p)$ where f_1, \cdots, f_p forms a regular sequence for $p = 1, \cdots, \dim A$.
(iii) $A_p(\text{Spec } A) = 0$ for any $p < \dim A$.

Therefore we get the following results.

Corollary 2.3 (Vanishing conjecture).
For any commutative regular local ring R and any $p < \dim R$, we have $A_p(\text{Spec } A) = 0$.

Corollary 2.4 (Generator conjecture).
For any commutative regular local ring R, $K_0(M^p(R))$ is generated by cyclic modules $R/(f_1, \cdots, f_p)$ where f_1, \cdots, f_p forms a regular sequence for $p = 1, \cdots, \dim R$.

References

[AB59] M. Auslander and D. Buchsbaum, Unique factorization in regular local rings, Proc. Nat. Acad. Sci. USA., 45 (1959), p.733-734.

[Ger73] S. Gersten, Some exact sequences in the higher K-theory of rings, In Higher K-theories, Springer Lect. Notes Math. 341 (1973), p.211-243.

[Lev85] M. Levine, A K-theoretic approach to multiplicities, Math. Ann. 271 (1985), p.451-458.

[Moc07] S. Mochizuki, Gersten conjecture for commutative discrete valuation rings, available at http://www.math.uiuc.edu/K-theory/0819 (2007).

[Qui73] D. Quillen, Higher algebraic K-theory I, In Higher K-theories, Springer Lect. Notes Math. 341 (1973), p.85-147.

[Ser00] J. P. Serre, Local algebra, Springer monographs in Mathematics (2000)
[She82] C. Sherman, *Group representations and algebraic K-theory*, In Algebraic K-theory, Part I (Oberwolfach, 1980), Springer Lect. Notes Math **966** (1982), p.208-243.

[She92] C. Sherman, *Group representations and algebraic K-theory:II*, In Contemporary Math. Vol. **126** (1992), p.165-177.

[TT90] R. W. Thomason, T. Trobaugh, *Higher K-theory of schemes and of derived categories*, In The Grothendieck Festschrift, Vol III, (1990), p.247-435.