References

1. Kariwa H, Yoshimatsu K, Arikawa J. Hantavirus infection in East Asia. Comp Immunol Microbiol Infect Dis. 2007;30:341–56. http://dx.doi.org/10.1016/j.cimid.2007.05.011

2. Lin XD, Guo WP, Wang W, Zou Y, Hao ZY, Zhou DJ, et al. Migration of Norway rats resulted in the worldwide distribution of Seoul hantavirus today. J Virol. 2012;86:972–81. http://dx.doi.org/10.1128/JVI.00725-11

3. Kim HC, Klein TA, Chong ST, Collier BW, Usa M, Yi SC, et al. Seroepidemiological survey of rodents collected at a U.S. military installation, Yongsan Garrison, Seoul, Republic of Korea. Mil Med. 2007;172:759–64

4. Yao LS, Qin CF, Pu Y, Zhang XL, Liu YX, Liu Y, et al. Complete genome sequence of Seoul virus isolated from Rattus norvegicus in the Democratic People’s Republic of Korea. J Virol. 2012;86:13853. http://dx.doi.org/10.1128/JVI.02668-12

5. Wang H, Yoshimatsu K, Ebihara H, Ogino M, Araki K, Kariwa H, et al. Genetic diversity of hantaviruses isolated in China and characterization of novel hantaviruses isolated from Niviventer confucianus and Rattus rattus. Virology. 2000;278:332–45. http://dx.doi.org/10.1006/viro.2000.0630

6. Klempe B, Fichet-Calvet E, Lecompte E, Austre B, Aniskin V, Meisel H, et al. Hantavirus in African wood mouse, Guinea. Emerg Infect Dis. 2006;12:838–40. http://dx.doi.org/10.3201/eid1205.051487

7. Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol. 2012;29:1969–73. http://dx.doi.org/10.1093/molbev/mss075

8. Shapiro B, Rambaut A, Drummond AJ. Choosing appropriate substitution models for the phylogenetic analysis of protein-coding sequences. Mol Biol Evol. 2006;23:7–9. http://dx.doi.org/10.1093/molbev/msj021

9. Tamura K, Peterson D, Peterson N, Stæcher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28:2731–9. http://dx.doi.org/10.1093/molbev/msr121

10. Yan Y, Yao L, Hu G, Du Z, Li M, Zhang Y. Genetic subtypes and distribution of Seoul virus in Jilin. Chinese Journal of Vector Biology and Control. 2006;17:324–6.

Address for correspondence: Baoliang Xu, Chinese Academy of Inspection and Quarantine, Beijing 100123, China; email: xubl@caiq.gov.cn

Schmallenberg Virus Infection in Dogs, France, 2012

To the Editor: In 2011, Schmallenberg virus (SBV) emerged in Europe (1); the virus spread into France in January 2012 (2). During January–March 2012, a total of >1,000 cases were reported in France, mainly in stillborn and newborn lambs with congenital malformations.

In March 2012, neurologic disorders were detected in five 15-day-old puppies (Belgian shepherd) from a dog breeding kennel in northwestern France (Orne). We report data suggesting that these puppies were infected with SBV.

In June 2012, the kennel veterinarian contacted a veterinary school (Unité de Médecine de l’Elevage et du Sport Breeding and Sport Medicine Unit, Maisons-Alfort, France) after neurologic signs of ataxia, extrophia, a
head tilt, and stunted growth were observed in a litter of 5 puppies. Four of the puppies had died at 5–6 weeks of age. The veterinarian collected blood samples from the surviving puppy at 3 months of age, and the puppy was euthanized for necropsy. Severe torticollis was observed during the necropsy, but no other macroscopic signs were detected. The brain, including the cerebellum; a part of the spine; and cerebrospinal fluid (CSF) were collected for further investigation. Specific PCR analyses for canine coronavirus, *Neospora caninum*, *Toxoplasma gondii*, and canine minute virus were performed on CSF; all test results were negative. The brain tissue was fixed in formalin and processed for histologic examination. Features of degenerative encephalopathy, including neuronal vacuolation, neuropil vacuolation, and minimal gliosis, were observed.

Because some clinical signs were evocative of SBV infection and the puppy was born in an area where the virus was circulating actively in cattle and sheep, veterinarians decided to investigate SBV as a possible etiology. Serum samples from the 3-month-old puppy and the dam were tested by virus neutralization test (VNT), according to the protocol used for ruminant serum. The results were negative for the puppy but positive (titer 128) for the mother. Specific competitive SBV ELISA (IDVet, Montpellier, France) against the SBV N protein showed similar results. The remaining 7 female dogs in the breeding kennel were tested for SBV in October 2012; 1 showed positive test results by VNT (titer 256), which confirmed that SBV was circulating in the kennel. This positive dam had a litter of puppies in December 2012, but no signs developed, and the puppies were not tested. In March 2013, repeat testing was done on serum samples from the 2 dogs that had shown positive results. Results for both animals were positive by VNT (titers 32 for the dam and 128 for the other dog) and ELISA.

Taken together, specific SBV antibodies in the mother and the SBV genome in her puppy suggest that these dogs experienced SBV infection. The absence of detectable SBV antibodies in the puppy in this investigation suggests that transplacental infection occurred before the onset of fetal immune competence. Maternal infection probably occurred in January or February 2012; entomologic monitoring conducted in France showed the presence of *Culicoides* spp. midges, a vector of SBV, during this period in northwestern France. In addition, because the puppies were born in March 2012 and SBV antibodies were still detectable in the mother in March 2013, the duration of SBV antibodies in dogs appears to be ≥1 year. In cattle and sheep, the SBV genome persists in an infected fetus and is detectable after birth by real-time RT-PCR, despite gestation length (5,6).

Few reports on orthobunyavirus infections in dogs are available. Two serologic described cases in which La Crosse virus was detected in canine littermates who had clinical encephalitis (9) or neurologic disorders (10). It is unclear if the apparent SBV infection we detected in these dogs was an isolated event or if other cases occurred elsewhere but were not detected because they were not investigated. Further serologic and clinical surveys are needed to estimate SBV prevalence in dogs and the virus’ involvement in the occurrence of neurologic signs in puppies.

Acknowledgments

We thank Francine Larangot for collecting biological samples and Muriel Couplier and Julie Valloire-Lucot for contributing to this study.

This project was funded by ANSES, Royal Canin, and Unité de Médecine de l’Elevage.

Corinne Sailleau, Cassandre Boogaerts, Anne Meyruëix, Eve Laloy, Emmanuel Bréard, Cyril Viarouge, Alexandra Desprat, Damien Vitour, Virginie Doceul, Catherine Boucher, Stéphan Zientara, Alexandra Nicolier, and Dominique Grandjean

Author affiliations: ANSES, Maisons-Alfort, France (C. Sailleau, E. Bréard, C. Viarouge, A. Desprat, D. Vitour, V. Doceul, S. Zientara); Ecole Nationale Vétérinaire d’Alfort, Maisons-Alfort (C. Boogaerts, A. Meyruëix, E. Laloy, D. Grandjean); Royal Canin, Aimargues, France (C. Boucher); and Vet Diagnostics, Lyon, France (A. Nicolier)

DOI: http://dx.doi.org/10.3201/eid1911.130464

References

1. Hoffmann B, Scheuch M, Höper D, Jungblut R, Holsteg M, Schirrmeyer H, et al. Novel orthobunyavirus in cattle, Europe, 2011. Emerg Infect Dis. 2012;18:469–72. http://dx.doi.org/10.3201/eid1803.111905
2. Dominguez M, Calavas D, Jaý M, Languille J, Fediaevsky A, Zientara S, et al. Preliminary estimate of Schmallenberg virus infection impact in sheep flocks—France. Vet Rec. 2012;171:426. http://dx.doi.org/10.1136/vr.100883

3. Bilk S, Schulze C, Fischer M, Beer M, Hlinak A, Hoffmann B. Organ distribution of Schmallenberg virus RNA in malformed newborns. Vet Microbiol. 2012;159:236–8. http://dx.doi.org/10.1016/j.vetmic.2012.03.035

4. Bhudevi B, Weinstock D. Detection of bovine viral diarrhea virus in formalin fixed paraffin embedded tissue sections by real time RT-PCR (Taqman). J Virol Methods. 2003;109:25–30. http://dx.doi.org/10.1016/S0166-0934(03)00040-5

5. Garigliany MM, Hoffmann B, Dive M, Sartelet A, Bayrou C, Cassart D, et al. Schmallenberg virus in calf born at term with porencephaly, Belgium. Emerg Infect Dis. 2012;18:1005–6.

6. van den Brom R, Lentink SJ, Lievaart-Petersen K, Peperkamp NH, Mars MH, van der Poel WH, et al. Epizootic of ovine congenital malformations associated with Schmallenberg virus infection. Tijdschr Diergeneesk. 2012;137:106–11.

7. Godsey MS Jr, Amoo F, Yuill TM, Defoliart GR. California serogroup virus infections in Wisconsin domestic animals. Am J Trop Med Hyg. 1988;39:409–16.

8. Blitvich BJ, Saiyasombat R, Da Rosa AT, Tesh RB, Calisher CH, Garcia-Rejon JE, et al. Orthobunyaviruses, a common cause of infection of livestock in the Yucatan Peninsula of Mexico. Am J Trop Med Hyg. 2012;87:1132–9. http://dx.doi.org/10.4269/ajtmh.2012.12-0188

9. Black SS, Harrison LR, Pursell AR, Cole JR Jr, Appel MJ, Shope RE, et al. Necrotizing penencephalitis in puppies infected with La Crosse virus. J Vet Diagn Invest. 1994;6:250–4. http://dx.doi.org/10.1177/104063879400600218

10. Tatum LM, Pacy JM, Frazier KS, Weege JF, Baldwin CA, Hullinger GA, et al. Canine LaCrosse viral meningoencephalomyelitis with possible public health implications. J Vet Diagn Invest. 1999;11:184–8. http://dx.doi.org/10.1177/104063879901100216

Address for correspondence: Corinne Sailleau, Agence nationale de sécurité sanitaire de l’alimentation, de l’environnement et du travail, Laboratoire de santé animale, 23 av Gal de Gaulle, 94706 Maisons-Alfort, France; email: corinne.sailleau@anses.fr

All material published in Emerging Infectious Diseases is in the public domain and may be used and reprinted without special permission; proper citation, however, is required.