SOME IDENTITIES OF THE GENERALIZED TWISTED BERNOULLI NUMBERS AND POLYNOMIALS OF HIGHER ORDER

YOUNG-HEE KIM, BYUNGJE LEE, SEOG-HOON RIM, AND TAEKYUN KIM

Abstract The purpose of this paper is to derive some identities of the higher order generalized twisted Bernoulli numbers and polynomials attached to \(\chi \) from the properties of the \(p \)-adic invariant integral. We give some interesting identities for the power sums and the generalized twisted Bernoulli numbers and polynomials of higher order using the symmetric properties of the \(p \)-adic invariant integral.

2000 Mathematics Subject Classification : 11S80, 11B68, 05A30, 58J70

Key words and phrases : Bernoulli numbers and polynomials, twisted Bernoulli numbers and polynomials, \(p \)-adic invariant integral, symmetry

1. Introduction and preliminaries

Let \(p \) be a fixed prime number. Throughout this paper, the symbol \(\mathbb{Z}, \mathbb{Z}_p, \mathbb{Q}_p, \) and \(\mathbb{C}_p \) denote the ring of rational integers, the ring of \(p \)-adic integers, the field of \(p \)-adic rational numbers, and the completion of algebraic closure of \(\mathbb{Q}_p \), respectively. Let \(\mathbb{N} \) be the set of natural numbers and \(\mathbb{Z}_+ = \mathbb{N} \cup \{0\} \). Let \(\nu_p \) be the normalized exponential valuation of \(\mathbb{C}_p \) with \(|p|_p = p^{-\nu_p(p)} = p^{-1} \).

Let \(UD(\mathbb{Z}_p) \) be the space of uniformly differentiable function on \(\mathbb{Z}_p \). For \(f \in UD(\mathbb{Z}_p) \), the \(p \)-adic invariant integral on \(\mathbb{Z}_p \) is defined as

\[
I(f) = \int_{\mathbb{Z}_p} f(x) dx = \lim_{N \to \infty} \frac{1}{p^N} \sum_{x=0}^{p^N-1} f(x). \tag{1.1}
\]

(see [4-5]). From (1.1), we note that

\[
I(f_1) = I(f) + f'(0), \tag{1.2}
\]

where \(f'(0) = \left. \frac{df(x)}{dx} \right|_{x=0} \) and \(f_1(x) = f(x+1) \). For \(n \in \mathbb{N} \), let \(f_n(x) = f(x+n) \). Then we can derive the following equation from (1.2).

\[
I(f_n) = I(f) + \sum_{i=0}^{n-1} f'(i), \quad \text{(see [4-5])}. \tag{1.3}
\]

Let \(d \) be a fixed positive integer. For \(n \in \mathbb{N} \), let

\[
X = X_d = \lim_{N} \mathbb{Z}/dp^N\mathbb{Z}, \quad X_1 = \mathbb{Z}_p,
\]

\[
X^* = \bigcup_{a \in \mathbb{Z}_p, 0<p \cdot a < dp} (a + dp\mathbb{Z}_p),
\]

\[
a + dp^N\mathbb{Z}_p = \{ x \in X | x \equiv a \pmod{dp^N} \}.
\]
where $a \in \mathbb{Z}$ lies in $0 \leq a < dp^N$. It is easy to see that

$$
\int_X f(x) dx = \int_{\mathbb{Z}_p} f(x) dx, \quad \text{for} \quad f \in U D(\mathbb{Z}_p).
$$

(1.4)

The ordinary Bernoulli polynomials $B_n(x)$ are defined as

$$
\frac{t}{e^t - 1} e^{xt} = \sum_{n=0}^{\infty} B_n(x) \frac{t^n}{n!},
$$

and the Bernoulli numbers B_n are defined as $B_n = B_n(0)$ (see [1-19]).

For $n \in \mathbb{N}$, let T_p be the p-adic locally constant space defined by

$$
T_p = \bigcup_{n \geq 1} C_{p^n} = \lim_{n \to \infty} C_{p^n},
$$

where $C_{p^n} = \{ \omega | \omega p^n = 1 \}$ is the cyclic group of order p^n. It is well known that the twisted Bernoulli polynomials are defined as

$$
\frac{t}{\xi e^t - 1} e^{xt} = \sum_{n=0}^{\infty} B_{n,\xi}(x) \frac{t^n}{n!}, \quad \xi \in T_p,
$$

and the twisted Bernoulli numbers $B_{n,\xi}$ are defined as $B_{n,\xi} = B_{n,\xi}(0)$ (see [14-18]).

Let χ be the Dirichlet’s character with conductor $d \in \mathbb{N}$. Then we have

$$
\int_X \chi(x) \xi^x e^{xt} dx = \frac{\sum_{n=0}^{d-1} \chi(a) \xi^{a t} e^{at}}{\xi^{d e^t} - 1}.
$$

(1.5)

It is known that the generalized twisted Bernoulli numbers attached to χ, $B_{n,\chi,\xi}$, are defined as

$$
\frac{t}{\xi e^t - 1} e^{xt} = \sum_{n=0}^{\infty} B_{n,\chi,\xi}(x) \frac{t^n}{n!}, \quad \xi \in T_p.
$$

(1.6)

The generalized twisted Bernoulli polynomials attached to χ, $B_{n,\chi,\xi}(x)$, are defined as

$$
\frac{t}{\xi e^t - 1} e^{xt} = \sum_{n=0}^{d-1} \sum_{a=0}^{\infty} \chi(a) \frac{t^n}{n!}, \quad \xi \in T_p.
$$

(1.7)

(see [13], [16]). From (1.5), (1.6) and (1.7), we derive that

$$
\int_X \chi(x) \xi^x x^n dx = B_{n,\chi,\xi} \quad \text{and} \quad \int_X \chi(y) \xi^y (x+y)^n dy = B_{n,\chi,\xi}(x).
$$

(1.8)

By (1.3) and (1.4), it is easy to see that for $n \in \mathbb{N},$

$$
\int_X f(x+n) dx = \int_X f(x) dx + \sum_{i=0}^{n-1} f'(i),
$$

(1.9)

where $f'(i) = \frac{df(x)}{dx} |_{x=i}$. From (1.0), it follows that
In the next section, we will consider the extension of (1.14) related to the generalized twisted Bernoulli numbers and polynomials of higher order attached to χ, n, d.

Let $k, n, d \in \mathbb{N}$. By (1.8) and (1.12), we have that

$$\int_X \chi(x) \xi^{nd+e} e^{(nd+e)t} dx = \int_X \chi(x) \xi^e e^{xt} dx$$

For $k \in \mathbb{Z}_+$, let us define the p-adic functional $T_{k, \chi, \xi}(n)$ as follows:

$$T_{k, \chi, \xi}(n) = \sum_{l=0}^{n} \chi(l) \xi^{lk}.$$ (1.11)

Let $k, n, d \in \mathbb{N}$. By (1.10) and (1.11), we see that

$$\int_X \chi(x) \xi^{nd+e} (nd + x) e^{xt} dx = k T_{k-1, \chi, \xi}(nd - 1).$$ (1.12)

From (1.8) and (1.12), we have that

$$\frac{\xi^{nd} B_{k, \chi, \xi}(nd) - B_{k, \chi, \xi}}{k} = T_{k-1, \chi, \xi}(nd - 1).$$ (1.13)

For $w_1, w_2, d \in \mathbb{N}$, we note that

$$\frac{d}{dx} \int_X \chi(x) \xi^{w_1 x + w_2 x^2} e^{(w_1 x + w_2 x^2)t} dx = \frac{d}{dx} \int_X \xi^{w_1 x + w_2 x^2} e^{(w_1 x + w_2 x^2)t} dx$$

In the next section, we will consider the extension of (1.14) related to the generalized twisted Bernoulli numbers and polynomials of higher order attached to χ.

The generalization of twisted Bernoulli polynomials of order k attached to χ, $B_{n, \chi, \xi}^{(k)}(x)$, are defined as

$$\left(\frac{d}{dt} \sum_{a=0}^{d-1} \chi(a) \xi^a e^{at} \right)^k e^{xt} = \sum_{n=0}^{\infty} B_{n, \chi, \xi}^{(k)}(x) \frac{t^n}{n!}, \quad \xi \in T_p,$$ (1.15)

and $B_{n, \chi, \xi}^{(k)} = B_{n, \chi, \xi}^{(k)}(0)$ are called the generalized twisted Bernoulli numbers of order k attached to χ. When $k = 1$, the polynomials and numbers are called the generalized twisted Bernoulli polynomials and numbers attached to χ, respectively (see [12]).

The authors of this paper have studied various identities for the Bernoulli and the Euler polynomials by the symmetric properties of the p-adic invariant integrals (see [6-8], [10]). T. Kim [6] established interesting identities by the symmetric properties of the p-adic invariant integrals and some relationships between the power sum and the Bernoulli polynomials. In [8], Kim et al. gave some identities of symmetry for the generalized Bernoulli polynomials. The twisted Bernoulli polynomials and numbers are very important in several field of mathematics and physics, and so have been studied by many authors (cf. [9-18]). Recently, Kim-Hwang [10] obtained some relations between the power sum polynomials and twisted Bernoulli polynomials.

In this paper, we extend our results to the generalized twisted Bernoulli numbers and polynomials of higher order attached to χ. The purpose of this paper is to derive some identities of the generalized twisted Bernoulli numbers and polynomials attached to...
\(\chi \) from the properties of the \(p \)-adic invariant integral. In Section 2, we give interesting identities for the power sums and the generalized twisted Bernoulli numbers and polynomials of higher order using the symmetric properties for the \(p \)-adic invariant integral.

2. Some identities of the generalized twisted Bernoulli numbers and polynomials of higher order

Let \(w_1, w_2, d \in \mathbb{N} \). For \(\xi \in T_p \), we set

\[
Y(m, \chi, \xi; w_1, w_2) = \left(\frac{d \int_X \left(\prod_{i=1}^{m} \chi(x_i) \xi \left(\sum_{i=1}^{m} x_i w_1 \sum_{i=1}^{m} x_i w_1 t \right) dx_1 \cdots dx_m \right)}{\int_X \xi^{d w_1 w_2 x} e^{d w_1 w_2 x t} dx} \right)^{m} \times \left(\int_X \left(\prod_{i=1}^{m} \chi(x_i) \xi \left(\sum_{i=1}^{m} x_i w_2 \sum_{i=1}^{m} x_i w_2 t \right) dx_1 \cdots dx_m \right) \right) \tag{2.1}
\]

where

\[
\int_X f(x_1, \cdots, x_m) dx_1 \cdots dx_m = \left[\int_X f(x_1, \cdots, x_m) dx_1 \cdots dx_m \right]^{m \text{-times}}.
\]

In (2.1), we note that \(Y(m, \chi, \xi; w_1, w_2) \) is symmetric in \(w_1, w_2 \). From (2.1), we derive that

\[
Y(m, \chi, \xi; w_1, w_2) = \left(\frac{d \int_X \left(\prod_{i=1}^{m} \chi(x_i) \xi \left(\sum_{i=1}^{m} x_i w_1 \sum_{i=1}^{m} x_i w_1 t \right) dx_1 \cdots dx_m \right)}{\int_X \xi^{d w_1 w_2 x} e^{d w_1 w_2 x t} dx} \right)^{m} \times \left(\int_X \left(\prod_{i=1}^{m} \chi(x_i) \xi \left(\sum_{i=1}^{m} x_i w_2 \sum_{i=1}^{m} x_i w_2 t \right) dx_1 \cdots dx_m \right) \right) e^{w_1 w_2 y}. \tag{2.2}
\]

From (1.10) and (1.11), it follows that

\[
\frac{dw_1 \int_X \chi(x) \xi^{x} e^{x t} dx}{\int_X \xi^{d w_1 x} e^{d w_1 x t} dx} = \sum_{i=0}^{w_1 d - 1} \chi(i) \xi^i e^i = \sum_{k=0}^{\infty} T_{k, \chi, \xi}(w_1 d - 1) \frac{x^k}{k!}. \tag{2.3}
\]

By (1.15), we also see that

\[
\xi^{d w_1 w_2 x - 1} \sum_{\alpha=0}^{d - 1} \chi(\alpha) \xi^\alpha e^{\alpha w_1 t} = \sum_{n=0}^{\infty} \lambda_{n, \chi, \xi}(w_2 x) \frac{w_1^n x^n}{n!} \tag{2.4}
\]

\[
\int_X \left(\prod_{i=1}^{m} \chi(x_i) \xi \left(\sum_{i=1}^{m} x_i w_1 \sum_{i=1}^{m} x_i w_1 t \right) dx_1 \cdots dx_m \right) \int_X \left(\prod_{i=1}^{m} \chi(x_i) \xi \left(\sum_{i=1}^{m} x_i w_2 \sum_{i=1}^{m} x_i w_2 t \right) dx_1 \cdots dx_m \right) \right) \tag{2.1}
\]

\[
eq \left(\frac{w_1 t}{\xi^{d w_1 e^{d w_1 t} - 1} - 1} \sum_{\alpha=0}^{d - 1} \chi(\alpha) \xi^\alpha e^{\alpha w_1 t} \right)^{m} \times \left(\sum_{n=0}^{\infty} \lambda_{n, \chi, \xi}(w_2 x) \frac{w_1^n x^n}{n!} \right).
\]
By (2.2), (2.3) and (2.4), we have that

\[
Y(m, \xi_2, \xi_2 | t_1, t_2) = \left(\sum_{l=0}^{\infty} B_l^{(m)} (w_2) \frac{t_1^l}{l!} \right) \left(\frac{1}{w_1} \sum_{k=0}^{\infty} T_{k, \xi_1} (w_1 d - 1) \frac{w_1^k}{k!} \right) \left(\sum_{i=0}^{\infty} B_i^{(m-1)} (w_1 y) \frac{t_2^i}{i!} \right)
\]

(2.5)

From the symmetry of \(Y(m, \xi_1, \xi_2 | t_1, t_2)\) in \(w_1\) and \(w_2\), we see that

\[
Y(m, \xi_1, \xi_2 | t_1, t_2) = \sum_{n=0}^{\infty} \left(\sum_{j=0}^{n} \binom{n}{j} w_1^j w_2^{n-j} B_{n-j, \xi_1, \xi_2} (w_2) \sum_{k=0}^{j} \binom{j}{k} T_{k, \xi_1} (w_1 d - 1) B_{j-k, \xi_1, \xi_2} (w_1 y) \right) \frac{t_1^n}{n!}
\]

(2.6)

Comparing the coefficients on the both sides of (2.5) and (2.6), we obtain an identity for the generalized twisted Bernoulli polynomials of higher order as follows.

Theorem 1. Let \(d, w_1, w_2 \in \mathbb{N}\). For \(n \in \mathbb{Z}_+\) and \(m \in \mathbb{N}\), we have

\[
\sum_{j=0}^{n} \binom{n}{j} w_1^j w_2^{n-j} B_{n-j, \xi_1, \xi_2} (w_2) \sum_{k=0}^{j} \binom{j}{k} T_{k, \xi_1} (w_1 d - 1) B_{j-k, \xi_1, \xi_2} (w_1 y)
\]

\[
= \sum_{n=0}^{\infty} \left(\sum_{j=0}^{n} \binom{n}{j} w_1^j w_2^{n-j} B_{n-j, \xi_1, \xi_2} (w_1 x) \sum_{k=0}^{j} \binom{j}{k} T_{k, \xi_1} (w_1 d - 1) B_{j-k, \xi_1, \xi_2} (w_1 y) \right) \frac{t_1^n}{n!}
\]

(2.7)

Remark 1. Taking \(m = 1\) and \(y = 0\) in (2.7) derives the following identity:

\[
\sum_{j=0}^{n} \binom{n}{j} w_1^j w_2^{n-j} B_{n-j, \xi_1, \xi_2} (w_2) T_{j, \xi_1} (w_1 d - 1)
\]

\[
= \sum_{n=0}^{\infty} \left(\sum_{j=0}^{n} \binom{n}{j} w_1^j w_2^{n-j} B_{n-j, \xi_1, \xi_2} (w_1 x) T_{j, \xi_1} (w_1 d - 1) \right) \frac{t_1^n}{n!}
\]

Moreover, if we take \(x = 0\) and \(y = 0\) in Theorem 1, then we have the following identity for the generalized twisted Bernoulli numbers of higher order.

Corollary 2. Let \(d, w_1, w_2 \in \mathbb{N}\). For \(n \in \mathbb{Z}_+\) and \(m \in \mathbb{N}\), we have

\[
\sum_{j=0}^{n} \binom{n}{j} w_1^j w_2^{n-j} B_{n-j, \xi_1, \xi_2} \sum_{k=0}^{j} \binom{j}{k} T_{k, \xi_1} (w_1 d - 1) B_{j-k, \xi_1, \xi_2}
\]

\[
= \sum_{n=0}^{\infty} \left(\sum_{j=0}^{n} \binom{n}{j} w_1^j w_2^{n-j} B_{n-j, \xi_1, \xi_2} T_{j, \xi_1} (w_1 d - 1) \right) \frac{t_1^n}{n!}
\]

(2.8)

We also note that taking \(m = 1\) in Corollary 2 shows the following identity:

\[
\sum_{j=0}^{n} \binom{n}{j} w_1^j w_2^{n-j} B_{n-j, \xi_1, \xi_2} T_{j, \xi_1} (w_1 d - 1)
\]

\[
= \sum_{j=0}^{n} \binom{n}{j} w_1^j w_2^{n-j} B_{n-j, \xi_1, \xi_2} T_{j, \xi_1} (w_1 d - 1).
\]

(2.8)
Now we will derive another interesting identities for the generalized twisted Bernoulli numbers and polynomials of higher order. From (1.15), (2.2) and (2.3), we can derive that

\[
Y(m, \chi, \xi | w_1, w_2) = \frac{1}{w_1} \left(\sum_{k=0}^{d-1} \binom{n}{k} w_1^{k-1} w_2^{n-k} B_{n-k, \chi, \xi}^{(m-1)}(w_1 y) \sum_{i=0}^{w_1 d-1} \chi(i) \xi^{w_1 i} B_{k, \chi, \xi}^{(m)}(w_2 x + \frac{w_2}{w_1} i) \right) t^n \quad \text{for } \frac{y}{t} \geq 0. \tag{2.10}
\]

Comparing the coefficients on the both sides of (2.9) and (2.10), we obtain the following theorem which shows the relationship between the power sums and the generalized twisted Bernoulli polynomials.

Theorem 3. Let \(d, w_1, w_2 \in \mathbb{N}\). For \(n \in \mathbb{Z}_+\) and \(m \in \mathbb{N}\), we have

\[
\sum_{k=0}^{n} \binom{n}{k} w_1^{k-1} w_2^{n-k} B_{n-k, \chi, \xi}^{(m-1)}(w_1 y) \sum_{i=0}^{w_1 d-1} \chi(i) \xi^{w_1 i} B_{k, \chi, \xi}^{(m)}(w_2 x + \frac{w_2}{w_1} i) = \sum_{k=0}^{n} \binom{n}{k} w_1^{k-1} w_2^{n-k} B_{n-k, \chi, \xi}^{(m-1)}(w_1 y) \sum_{i=0}^{w_2 d-1} \chi(i) \xi^{w_2 i} B_{k, \chi, \xi}^{(m)}(w_1 x + \frac{w_1}{w_2} i).
\]

Remark 2. Let \(m = 1\) and \(y = 0\) in Theorem 3. Then it follows that

\[
w_1^{n-1} \sum_{i=0}^{w_1 d-1} \chi(i) B_{n, \chi, \xi}^{(1)}(w_2 x + \frac{w_2}{w_1} i) = w_2^{n-1} \sum_{i=0}^{w_2 d-1} \chi(i) B_{n, \chi, \xi}^{(1)}(w_1 x + \frac{w_1}{w_2} i). \tag{2.11}
\]

Moreover, if we take \(x = 0\) and \(y = 0\) in Theorem 3, then we have the following identity for the generalized twisted Bernoulli numbers of higher order.

Corollary 4. Let \(d, w_1, w_2 \in \mathbb{N}\). For \(n \in \mathbb{Z}_+\) and \(m \in \mathbb{N}\), we have

\[
\sum_{k=0}^{n} \binom{n}{k} w_1^{k-1} w_2^{n-k} B_{n-k, \chi, \xi}^{(m-1)}(w_1 y) \sum_{i=0}^{d w_1 - 1} \chi(i) \xi^{w_1 i} B_{k, \chi, \xi}^{(m)}(\frac{w_2}{w_1} i) = \sum_{k=0}^{n} \binom{n}{k} w_2^{k-1} w_1^{n-k} B_{n-k, \chi, \xi}^{(m-1)}(w_2 y) \sum_{i=0}^{d w_2 - 1} \chi(i) \xi^{w_2 i} B_{k, \chi, \xi}^{(m)}(\frac{w_1}{w_2} i).
\]

If we take \(m = 1\) in Corollary 4, we derive the identity for the generalized twisted Bernoulli numbers : for \(d, w_1, w_2 \in \mathbb{N}\) and \(n \in \mathbb{Z}_+\),

\[
w_1^{n-1} \sum_{i=0}^{d w_1 - 1} \chi(i) \xi^{w_1 i} B_{n, \chi, \xi}^{(1)}(\frac{w_2}{w_1} i) = w_2^{n-1} \sum_{i=0}^{d w_2 - 1} \chi(i) \xi^{w_2 i} B_{n, \chi, \xi}^{(1)}(\frac{w_1}{w_2} i). \tag{2.12}
\]
Acknowledgement. This research was supported by Kyungpook National University research fund 2008.

REFERENCES

[1] L.C. Carlitz, q-Bernoulli numbers and polynomials, Duke Math. J. 15 (1948), 987-1000.
[2] A.S. Hegazi, M. Mansour, A note on q-Bernoulli numbers and polynomials, J. Nonlinear Math. Phys. 13 (2006), 9–18.
[3] W. Kim, L.-C. Jang, C.S. Ryoo, A note on the multiple twisted Carlitz’s type q-Bernoulli polynomials, Abst. Appl. Anal. 2008 (2008), Article ID 371295, 9 pages.
[4] T. Kim, q-Volkenborn integration, Russ. J. Math. Phys. 9 (2002), no. 3, 288–299.
[5] T. Kim, A note on q-Volkenborn integration, Proc. Jangjeon Math. Soc. 8 (2005), 13–17.
[6] T. Kim, Symmetries p-adic invariant integral on \mathbb{Z}_p for Bernoulli and Euler polynomials, J. Difference Equ. Appl. 14 (2008), no. 12, 1267–1277.
[7] T. Kim, Symmetry of power sum polynomials and multivariate femionic p-adic invariant integral on \mathbb{Z}_p, Russ. J. Math. Phys. 16 (2009), no. 1, 51–54.
[8] T. Kim, S.-H. Rim, B. Lee, Some identities of symmetry for the generalized Bernoulli numbers and polynomials, Abst. Appl. Anal. 2009 (2009), Article ID 848943, 9 pages.
[9] Y.-H. Kim, On the p-adic interpolation functions of the generalized twisted (h, q)-Euler numbers, Int. J. Math. Anal. 3 (2009), no. 18, 897–904.
[10] Y.-H. Kim, K.-W. Hwang, Symmetry of power sum and twisted Bernoulli polynomials, Adv. Stud. Contemp. Math. 18 (2009), no. 2, 127–133.
[11] H. Ozden, I. N. Cangul, Y. Simsek, Remark on q-Bernoulli numbers associated with Dahee numbers, Adv. Stud. Contemp. Math. 18 (2009), 41–48.
[12] C.S. Ryoo, Twisted Bernoulli polynomials of higher order, Int. J. Math. Sci. 4 (2005), 237–245.
[13] C.S. Ryoo, The zeros of the generalized twisted Bernoulli polynomials, Adv. Theor. Appl. Math. 1 (2006), 143–148.
[14] Y. Simsek, On a q-analogue of the twisted L-functions and q-twisted Bernoulli numbers, J. Korean Math. Soc. 40 (2003), 963–975.
[15] Y. Simsek, Theorems on twisted L-function and twisted Bernoulli numbers, Adv. Stud. Contemp. Math. 11 (2005), 205–218.
[16] Y. Simsek, On p-adic twisted q-L-functions related to generalized twisted Bernoulli numbers, Russ. J. Math. Phys. 13 (2006), no. 3, 340–348.
[17] Y. Simsek, On twisted q-Hurwitz zeta function and q-two variable L-function, Appl. Math. Comput. 187 (2007), 466–473.
[18] Y. Simsek, Generating functions of the twisted Bernoulli numbers and polynomials associated with their interpolation functions, Adv. Stud. Contemp. Math. 16 (2008), no. 2, 251–278.
YOUNG-HEE KIM. DIVISION OF GENERAL EDUCATION-MATHEMATICS, KWANGWOON UNIVERSITY, SEOUL 139-701, REPUBLIC OF KOREA,
E-mail address: yhkim@kw.ac.kr

BYUNGJE LEE. DEPARTMENT OF WIRELESS COMMUNICATIONS ENGINEERING, KWANGWOON UNIVERSITY, SEOUL 139-701, REPUBLIC OF KOREA,
E-mail address: bjlee@kw.ac.kr

SEOG-HOON RIM. DEPARTMENT OF MATHEMATICS EDUCATION, KYUNGPOOK NATIONAL UNIVERSITY, TAEGU 702-701, REPUBLIC OF KOREA,
E-mail address: shrim@knu.ac.kr

TAEKYUN KIM. DIVISION OF GENERAL EDUCATION-MATHEMATICS, KWANGWOON UNIVERSITY, SEOUL 139-701, REPUBLIC OF KOREA,
E-mail address: tkkim@kw.ac.kr