Exercise-based interventions for cancer survivors in India: a systematic review

Stephen R. Samuel1, Sundar K. Veluswamy2*, Arun G. Maiya1, Donald J. Fernandes3 and Margaret L. McNeely4

Abstract
Existing literature suggests that cancer survivors present with high rates of morbidity due to various treatment and disease induced factors. Research globally has shown exercise to be beneficial in improving treatment outcomes and quality of life. India has a high prevalence of cancer and not much is known about exercise interventions for cancer survivors in India. This review was planned to review the state of exercise based interventions for cancer survivors in India. A comprehensive literature search was performed in PubMed, CINAHL, EMBASE, Scopus, Cochrane Library, PEDro, IndMed, and Shoda Ganga. The search results were screened and data extracted by two independent reviewers. All eligible studies were assessed for methodological quality rating using Downs and Black checklist. Data was extracted using a pilot tested pro forma to summarize information on site and stage of cancer, type of exercise intervention and outcome measures. The review identified 13 studies, published from 1991 to 2013, after screening 4060 articles. Exercise interventions fell into one of three categories: (1) yoga-based, (2) physiotherapy-based and (3) speech therapy based interventions; and exclusively involved either breast or head and neck cancers. Studies were generally of low to moderate quality. A broad range of outcomes were found including symptoms, speech and swallowing, and quality of life and largely supported the benefits of exercise-based interventions. At present, research involving exercise-based rehabilitation interventions in India is limited in volume, quality and scope. With the growing burden of cancer in the country, there is an immediate need for research on exercise based interventions for cancer survivors within the sociocultural context of India.

Keywords: Cancer survivors, Exercise interventions, India, Research

Background
India is a large low-middle income country with a significant cancer burden. Cancer incidence in India is projected to increase from 1.01 million in 2012 to 1.4 million by 2025 (Mathers et al. 2012). Breast, head and neck, cervix, lung, large bowel and stomach constitute the most common sites of cancer in India and account for more than 50 % of cancer burden (Sankaranarayanan 2014). Significant advances in diagnosis and treatment of cancer has led to an increase in the proportion of cancer survivors. 10 years survival for various cancer sites in India is estimated to range from 6.4 % for cancer of oesophagus to 50.9 % for cancer of lips (Takiar et al. 2014).

As a consequence of primary treatment for cancer, survivors face a multitude of health problems and socioeconomic issues (Fairley et al. 2009). Cancer survivors frequently report adverse effects of surgery, chemotherapy and radiotherapy such as fatigue, anxiety, depression, loss of appetite, impaired joint range of motion, exercise intolerance and physical inactivity (Hewitt et al. 2003; Jones et al. 2009). These secondary complications of cancer treatment also negatively impact quality of life of cancer survivors (Osborn et al. 2006; Naughton and Weaver 2014; Curt et al. 2000). Exercise interventions involving cancer survivors have been shown to reduce cancer related fatigue, body weight and body mass index (Brown et al. 2011; Fong et al. 2012; Strasser et al. 2013); improve muscle function, body composition, peak oxygen consumption, peak power output and exercise tolerance (Jones et al. 2009; Fong et al. 2012; Strasser et al. 2013);
Cancer research in India has grown significantly in the past two decades and its outcomes have ranged from delivering low cost, population level measures to high technology lab based outcomes (Lewison and Roe 2012; Sullivan et al. 2014). Although exercise interventions have been recognized as integral to improving outcomes of survivors of cancer from many parts of the world (Brown et al. 2011; Fong et al. 2012; Strasser et al. 2013; Mishra et al. 2012; Meyerhardt et al. 2006a, b); they do not figure in India’s cancer research priorities. Previous bibliometric analyses of cancer research in India do not describe the state of exercise related research in this population (Lewison and Roe 2012). Even reviews and commentaries on the state and future needs of palliative care in India do not identify exercise as a core component of the intervention programs (Mohanti 2011; Khosla et al. 2012). Reviewing the state of exercise related research among cancer survivors in India will help identify the state of the evidence of this essential component of cancer care in India, provide directions for future research, and could have implications for other low-middle income countries with similar cancer profile and survivorship care. This review was therefore planned to answer three specific questions: (1) What are the different cancer sites for which exercise interventions have been reported in India? (2) What are the types of exercise interventions reported from cancer survivors India? (3) What outcome measures have been reported from cancer survivors in India?

Methods

Search strategy and selection criteria: Studies were identified by using a comprehensive search of PubMed, CINAHL, EMBASE, Scopus, Cochrane Library, PEDro, IndMed, and Shoda Ganga (a reservoir of Indian Thesis). To identify articles related to exercise interventions, we used the terms exercise; aerobic exercise; aerobic training; resistance exercise; resistance training; physical activity; flexibility training; massage; soft tissue mobilization; soft tissue manipulation; breathing exercise; breathing training; rehabilitation; prehabilitation; yoga; Tai Chi; pilates; functional training; physical therapy; physiotherapy; and speech therapy. Database specific truncation symbols were used for identifying variations of these terms. The terms cancer and neoplasm were used to identify studies related to cancer. The search was executed after combining terms related to exercise interventions, cancer and India using the Boolean operator ‘AND’. In addition, back references of selected articles were also screened manually to identify potential studies. We included randomized controlled trials (RCT), non-randomized controlled trials, single group pre-post intervention studies, case series and case reports that evaluated exercise interventions among cancer survivors in India. We limited our search to studies on humans and articles published in English language. All articles published up to the date of the search were included for the review. Primary searches were executed between October 2013–January 2014 (PubMed—23rd October 2013; CINAHL—25th November 2013; Scopus—30th November 2013; IndMed—3rd December 2013; Cochrane library and PEDro—28th December 2013; and EMBASE—January 2014). An update of the search was run on 31st March 2015 in EMBASE and 10th April 2015 in all other databases to identify publications following the primary search. The search results were screened to exclude studies on cancer survivors in intensive care units, yoga intervention that focused only on meditation, interventions addressing secondary complications of cancer like amputations, neurological impairments, prosthetic rehabilitation; and cross-sectional studies, systematic reviews and qualitative studies. Two investigators (SRS and SKV) independently executed the searches in all the databases except EMBASE. The search in EMBASE was run by the author MLM. Search results from all databases were integrated and screened independently for eligibility by SRS and SKV. Any disagreements were resolved by consensus between SRS and SKV; and if needed, through arbitration by authors AGM or DJF. Full texts of potentially eligible abstracts were obtained to assess for eligibility.

Methodological rating and data extraction: All studies eligible for the review (except case series and case reports) were independently assessed for methodological quality using the Downs and Black check list for randomised and non-randomised studies of healthcare interventions by authors SRS and SKV (Downs and Black 1998). The studies were assessed for the characteristics of reporting, external validity, internal validity-bias, internal validity-confounding, and power; for a maximum score of 32. Any disagreements were resolved by consensus between authors SRS and SKV, and if needed, through arbitration by author AGM. A data extraction form was developed, pilot tested and modified to include information regarding study objectives, site and stage of cancer, type of exercise intervention, outcome measures, study design, sample size, participant selection, medical and surgical intervention, details of exercise intervention, primary and secondary outcome measures, and adverse events as reported by the study. Data were summarised to highlight study characteristics, methodological rating score, site and stage of cancer, type of exercise interventions, and outcomes reported form each of the selected study.
Results

A total of 6296 records were retrieved through the search strategy, of which 4060 records were screened for eligibility after excluding duplicate citations. Full texts of 31 publications were assessed for eligibility and 17 met the criteria. Six of the selected publications were based on two independent cohorts (Raghavendra et al. 2007; Rao et al. 2008a, b; Vadiraja et al. 2009a, b, c), thus resulting in 13 independent studies. The selected publications were published over a 23 year period (1991–2013) and provided data from 768 unique cancer survivors. The PRISMA flow diagram for the review is presented in Fig. 1.
Nine of the 13 studies were eligible for methodological quality assessment using the Downs and Black (1998) checklist. The scores ranged from five to 19 out of a maximum of 32 and the studies were considered to be of low to moderate methodological quality. None of the twelve studies crossed even 60% of the maximum possible score. Only three studies were reasonably powered to assess the effect of intervention on their primary outcome measures (Gautam et al. 2011; Chakrabarty et al. 2013; Kumar et al. 2013). The total and component scores of Downs and Black checklist are summarised in Table 1.

Among the 13 studies, the majority were RCTs (n = 6, 46%); three (23%) were single group pre-post intervention design; two were case series; one was a retrospective study; and one a case report. Exercise interventions were reported for survivors of predominantly two cancer sites: breast (n = 7, 53.8%) and head and neck (n = 5, 38.5%). In addition, one study reported its findings among a heterogeneous group of patients consisting of bone, breast, head and neck and lung cancer survivors. Three different categories of exercise interventions were identified. Among the three categories, yoga based interventions constituted 38.5% (n = 5), and physiotherapy based and speech therapy based interventions constituted 30.8% each (n = 4). These studies reported a diverse set of outcomes of which, quality of life was the most common (n = 5, 38.5%) followed by stress and its markers (n = 4, 30.7%); and anxiety and depression (n = 3, 23.1%). Individual study characteristics including cancer sites, category of exercise intervention and outcomes reported are summarised in Table 2. The details of exercise interventions and their effects on various outcomes are summarised in Table 3. Six Publications from the two independent cohorts (Raghavendra et al. 2007; Rao et al. 2008a, b; Vadiraja et al. 2009a, b, c) reported different outcomes at different time points and have been individually summarised for greater clarity.

Discussion

The present study is the first comprehensive systematic review on exercise interventions for cancer survivors from India. Cancer survivorship is emerging as an important public health concern (Fairley et al. 2009), and exercise interventions are gaining importance as an integral component of supportive care therapies for cancer survivors (Jones and Demark-Wahnefried 2006). Studies addressing the role of exercise for supportive care in cancer has progressively increased since 1960s (Rigan 1963; Schmitz et al. 2005; McNeely et al. 2006; Sharma et al. 2013). Most of these studies have been conducted in high income countries. Despite having a National Cancer Control Program since 1975 (Ministry of Health and Family Welfare 2015), exercise interventions for cancer survivors has not received adequate attention in India from a policy perspective. In 2002, Ministry of Health and Family Welfare, Government of India, published a book highlighting the history, current state and future of cancer control in India (Agarwal et al. 2002). Though the book has a dedicated chapter on supportive care in oncology which addresses issues like cancer pain, nausea and vomiting, neutropenias, nutritional support, haematologic support, palliative care, and alternative medicine; exercise finds a mention only as a minor therapeutic option for pain management. Notwithstanding the lack of policies or guidelines on exercise interventions for cancer survivors in India, the current review highlights the emergence of research in this important aspect of cancer care from India.

Three distinct categories of exercise interventions were identified, of which, yoga was the most common (38.5%). All five studies on yoga were conducted on breast cancer.

Table 1: Methodological quality assessment scores using Downs and Black check list

References	Component scores of Downs and Black checklist	Maximum total score (32)								
Bachher et al. (2002)	2 Reporting (11)	5	0 Internal validity (3)	5	0 Internal validity-bias (7)	5	0 Internal validity-confounding (6)	5	0 Power (5)	5
Chopra et al. (2006)	8 Reporting (11)	16	0 Internal validity (3)	16	0 Internal validity-bias (7)	16	0 Internal validity-confounding (6)	16	0 Power (5)	16
Banerjee et al. (2007)	7 Reporting (11)	14	0 Internal validity (3)	14	0 Internal validity-bias (7)	14	0 Internal validity-confounding (6)	14	0 Power (5)	14
Raghavendra et al. (2007) and Rao et al. (2008a, b)	8 Reporting (11)	17	0 Internal validity (3)	17	0 Internal validity-bias (7)	17	0 Internal validity-confounding (6)	17	0 Power (5)	17
Vadiraja et al. (2009a, b, c)	9 Reporting (11)	19	0 Internal validity (3)	19	0 Internal validity-bias (7)	19	0 Internal validity-confounding (6)	19	0 Power (5)	19
Gautam et al. (2011)	7 Reporting (11)	16	0 Internal validity (3)	16	0 Internal validity-bias (7)	16	0 Internal validity-confounding (6)	16	0 Power (5)	16
Kumar et al. (2013a, b)	7 Reporting (11)	17	0 Internal validity (3)	17	0 Internal validity-bias (7)	17	0 Internal validity-confounding (6)	17	0 Power (5)	17
Chakrabarty et al. (2013)	8 Reporting (11)	19	0 Internal validity (3)	19	0 Internal validity-bias (7)	19	0 Internal validity-confounding (6)	19	0 Power (5)	19
Samuel et al. (2013)	8 Reporting (11)	16	0 Internal validity (3)	16	0 Internal validity-bias (7)	16	0 Internal validity-confounding (6)	16	0 Power (5)	16
References	Cancer site; stage	Study design	Sample size	Cancer management	Exercise intervention	Outcomes assessed				
-----------------------------	--------------------------	------------------	-------------	---	------------------------	--				
Subbarao et al. (1991)	HNC (larynx); NR	Retrospective study	55	Ablative laryngeal surgery	ST	Speech proficiency				
Premalatha et al. (1997)	HNC (cricoid/hypopharynx); NR	Case series	11	Laryngopharyngoesophagectomy with gastric transposition	ST	(1) Voice quality (2) Speech intelligibility				
Bachher et al. (2002)	HNC (tongue); NR	Pre-post intervention	25	2/3rd partial glossectomy	ST	(1) Speech (2) Deglutition				
Chopra et al. (2006)	Breast; NR	Pre-post intervention	05	Post-operative breast cancer survivors scheduled for APBI	PT	(1) Breath hold time (2) Tidal volume				
Banerjee et al. (2007)	Breast; NR	RCT	Randomised: yoga group—35; supportive therapy group—33; Completed: yoga group—35; supportive therapy group—23	RT following breast surgery	Yoga	(1) Anxiety and depression (2) Stress (3) DNA damage				
Raghavendra et al. (2007)	Breast; stage II and III	RCT	Randomised: yoga group—49; supportive therapy group—49; Completed: yoga group—28; supportive therapy group—34	Adjuvant CT	Yoga	(1) Nausea and vomiting (2) Anxiety (3) Depression (4) QoL				
Rao et al. (2008a, b)	Breast; stage II and III	RCT	Randomised: yoga group—49; supportive therapy group—49; Completed: yoga group—33; supportive counselling group—36	Breast surgery	Yoga	(1) Duration of drain retention, postoperative stay, hospital stay, suture removal (2) Postoperative complications (3) Cytokine levels (4) Anxiety, depression, distress and QoL (5) Immune markers				
Vadiraja et al. (2009a, b, c)	Breast; stage II and III	RCT	Randomised: yoga group—44; supportive counselling group—44; Completed: yoga group—42; supportive counselling group—33	Breast surgery followed by RT	Yoga	(1) Mood and distress (2) QoL (3) Anxiety and depression (4) Stress				
Gautam et al. (2011)	Breast; stage I, II	Pre-post intervention	Enrolled—38; Completed—32	Unilateral mastectomy, CRT	PT	(1) Limb circumference and volume (2) QoL				
References	Cancer site; stage	Study design	Sample size	Cancer management	Exercise intervention	Outcomes assessed				
------------------	---	--------------	-------------	---	------------------------	------------------------------------				
John et al. (2011)	HNC (Buccal mucosa); stage IV	Case report	One	Composite resection of Buccal mucosa treated with PMMC flap	ST	(1) Swallowing				
						(2) Speech Quality				
Kumar et al. (2013)	Breast; stage IIb, III, IV	RCT	Randomised: intervention group—78; control group—69	RT, CT and surgery	Yoga	(1) Blood Cortisol level				
			Completed—intervention group—57; control group—58			(2) Pain perception				
Kumar et al. (2013)	Bone, breast, HNC, lung; NR	Case series	24	Analgesics for pain management as outlined by WHO analgesic ladder	PT	(1) Pain				
						(2) QoL				
Chakrabarty et al. (2013)	Breast; stage I, II and III	RCT	Randomised: yoga group—80; control group—80	Surgery, CT followed by RT	Yoga	Anti-oxidants				
			Completed: yoga group—80; control group—80							
Samuel et al. (2013)	HNC, NR	RCT	Randomised: exercise group—24; control group—24	CRT	PT	(1) Functional capacity				
			Completed: exercise group—20; control group—23			(2) QoL				

APBI accelerated partial breast irradiation, CT chemotherapy, CRT chemoradiotherapy, HNC head and neck cancer, NR not reported, PMMC pectoralis major myocutaneous flap, PT physiotherapy, QoL quality of life, RCT randomised controlled trial, RT radiotherapy, ST speech therapy, WHO World Health Organization
References	Exercise intervention	Results
Yoga based interventions		
Banerjee et al. (2007)	18–24 supervised yoga sessions for 6 weeks consisting of slow stretching, asanas and breathing exercises	HADS—anxiety scores^a Yoga group: ↓ 48.2 % control group: ↑ 28 %
		HADS—depression scores^a Yoga group: ↓ 57.5 % control group: ↑ 24 %
		Perceived stress scale^a Yoga group: ↓ 204 % control group: no change
	3–4 supportive counselling sessions in 6 weeks and light exercises	DNA damage^a Yoga group: ↑ 934.6 % Control group: ↑ 1028.5 %
		Adverse events none
Raghavendra et al. (2007)	Post-CT bedside yoga relaxation for 30 min; home based yoga module aided by audio and video cassettes; supervised sessions once in 10 days at home by a trainer	MANE scores
		Post CT nausea frequency^b Yoga group: 36 ± 1.6 4.5 ± 0.9
		Post CT nausea intensity^b Yoga group: 23 ± 1.2 3.4 ± 1.1
		Anticipatory nausea intensity^d Yoga group: 06 ± 1.03 1.7 ± 1.5
		Anticipatory vomiting intensity^d Yoga group: 03 ± 0.67 0.87 ± 1.3
		STAI^a Yoga group: 292 ± 3.8 37.5 ± 7.6
		BDI^c Yoga group: 66 ± 4.6 14.2 ± 6.6
		FLIC^a Yoga group: 1421 ± 10.2 111.7 ± 255
		Adverse events none
Rao et al. (2008a)	Instructor administered pranayama and yogic relaxation techniques at bed-side prior to surgery and during post-operative period	Days drain retained^a Yoga group: 47 ± 1.6 6.4 ± 2.5
		Postop duration (days) Yoga group: 21.7 ± 9.4 24.6 ± 10.9
		Suture removal interval (days)^c Yoga group: 103 ± 3.6 12.7 ± 5.2
		Postop complication^f Yoga group: 61 % 22.2 %
		TNF-a levels ↓ 27.3 % ↑ 40.5 % (pg/ml)^f Yoga group:
		Adverse events NR
Table 3 continued

References	Exercise intervention	Results	
Rao et al. (2008b)	Intervention group Instructor administered pranayama and yogic relaxation techniques at bed-side prior to surgery and during post-operative period, followed by 4-week home based program monitored telephonically once a week and aided by audio taped instruction Control group Four in-person supportive counselling and shoulder exercise sessions and home program	Yoga group: ↓23%^b Control group: ↓22.6%^b STAI-anxiety state score Yoga group: ↓22%^b Control group: ↓15%^b BDP Yoga group: ↓4%^b Control group: No change FLC Yoga group: ↓2%^b Control group: ↓8% IgG Yoga group: ↑53%^b Control group: ↑43.1% IgA Yoga group: ↑27%^b Control group: ↑53.3% IgM Yoga group: ↑125%^b Control group: ↑25% CD4+^c Yoga group: ↓36%^b Control group: ↓35% CD8+^b Yoga group: ↓1.9% Control group: ↓3.7% CD56+^b Yoga group: 0.7%; Control group: ↓4.3%^b Adverse events none	
Vadiraja et al. (2009a)	Intervention group At least three in-person sessions/wk of a set of breathing exercises, pranayama and yogic relaxation techniques for 6 weeks during adjuvant RT in hospital and self-practice as homework on the remaining days. Audio taped instructions provided for home practice sessions Control group 15-min counselling sessions every 10 days for 6 weeks	Yoga group PANAS scale Positive affect^b 278 ± 7.1 Negative affect^b 129 ± 10.39 EQ5D QoL C30 Physical function 732 ± 25.2 Role function 798 ± 34.4 Emotional function^b 751 ± 21.1 Cognitive function^b 905 ± 15.8 Social function 549 ± 23.9 Adverse events none	Control group 23.3 ± 8.3 21.8 ± 10.8 68.9 ± 30.1 72.8 ± 39.9 59.2 ± 23.3 80.7 ± 24.1 49.9 ± 24.2
Table 3 continued

References	Exercise intervention	Results		
Vadiraja et al. (2009b)	Same as in Vadiraja et al. (2009a)	Yoga group	Control group	
		RSCL		
		Psychological distress^b	4.2 ± 3.3	7.7 ± 3.4
		Physical distress^c	10.8 ± 8.1	15.0 ± 8.0
		Activity level	20.2 ± 5.6	17.7 ± 6.2
		EORTCQoL C30		
		Fatigue^b	33.2 ± 23.8	50.5 ± 22.3
		Pain^b	24.4 ± 28.5	41.3 ± 28.9
		Dyspnea	6.67 ± 15.2	9.8 ± 16.9
		Insomnia^c	24.4 ± 30.4	37.9 ± 31.7
		Nausea and vomiting	9.6 ± 19.6	9.9 ± 17.3
		Appetite loss^c	17 ± 23.1	31.1 ± 28.1
		Diarrhoea	0.7 ± 4.9	3.8 ± 12.8
		Constipation	8.1 ± 23.7	9.1 ± 21.9
		Adverse events none		
Vadiraja et al. (2009c)	Same as in Vadiraja et al. (2009a)	Yoga group	Control group	
		Diurnal salivary cortisol		
		6 a.m.^c	0.22 ± 0.15	0.36 ± 0.24
		9 a.m.	0.19 ± 0.14	0.24 ± 0.23
		9 p.m.	0.16 ± 0.16	0.16 ± 0.14
		Hospital Anxiety Depression Scale		
		HADS anxiety score^a	4.8 ± 3.3	8.1 ± 3.8
		HADS depression score^b	4.1 ± 3.4	6.5 ± 3.7
		Perceive stress scale^a	15.1 ± 4.8	20.1 ± 5.8
		Adverse events none		
Table 3 continued

References	Exercise intervention	Results
Kumar et al. (2013)	Intervention group Participants were trained in Sudarshan Kriya and Pranayam through a 18-h contact program over a three-day period by trained yoga teachers. The program included teachings for self-awareness Ujjayi breath, Bhastrika pranayama and rhythmic breathing. A 20-min home program was given for practice at home. In addition, they also received counseling and pain treatment as per WHO ladder of NSAID and morphine group of medicines Control group WHO ladder of NSAID and morphine group of medicines and counseling	Yoga group 341.4 ± 51.4 Pain perception by three points in on 0–10 verbal scale of pain in the intervention group compared to control group
Chakrabarty et al. (2013)	Intervention group 6-week hospital based program consisting of Sheethali, Brahmari and Nadi sodha Pranayama. Program duration of 18 min/session, twice a day x 5 days/week. Control group: no intervention	Yoga group 271.2 ± 91.2 Protein thiols a µmol/L Glutathione b mg/g/Hb (Median, IQR) Adverse events none Pre training (mean) Post training (mean) Breath hold time (s) Tidal volume (ml) Adverse events not reported
Chopra et al. (2006)	One supervised and two unsupervised 15–20 min sessions of inspiratory and expiratory manoeuvres and forced abdominal expiration techniques for 8–10 days	Yoga group 44.5 Pain perception by three points in on 0–10 verbal scale of pain in the intervention group compared to control group
Table 3 continued

References	Exercise intervention	Results
Gautam et al. (2011)	Warm up with active ROM exercise for shoulder, PRE for upper limb muscle groups, exercise program hand-out with logbook, and telephonic monitoring once a week	Pre-exercise SF 36—PCS 412
		Post-exercise SF 36—MCS 385
	PRE program	Limb volume (ml) 23063 ± 627.8
		Limb circumference (cm) 21834 ± 5974
	Intensity: start with 50–60% of 10 RM and progress as tolerated	MCP joints 191 ± 1.4
	Repetitions: 1 set of 8–10 repetitions, increase to 12–15 repetitions	Wrist joint 164 ± 2.9
	Sets: start with 1 set, progress to 2 sets of 12–15 repetitions before increasing weight by 5–10%	15 cm DLE 221 ± 3.1
	Frequency: 5 days/week	10 cm PLE 310 ± 4.3
		Adverse events not reported
Kumar et al. (2013)	Mechanism based physical therapy consisting of educational, cognitive-behavioural therapy and physical therapy approaches	Pre-intervention BPI—Cancer pain 75.25 ± 3.77
		EORTCQoL C30 global health status/QoL 42.5 ± 9.1
		Adverse events not reported
Samuel et al. (2013)	Intervention group 6-week brisk walking programme and active exercise programme for muscle groups of upper limb and lower limb. Intensity: RPE of 3–5/10; duration: 15–20 min Frequency: 5 days/week Progression as tolerated Advised to remain as physically active as possible Home exercise program after study completion	Intervention group 6MWD a Median change; (IQR) 20; (0, 46)
		SF 36—PCS No change
		SF 36—MCS ↑11.7%
	Control group	Control group 60.1 (−189, 53)
		↑18%
		↓75.2%
Table 3 continued

References	Exercise intervention	Results	
Speech therapy based interventions			
Subbarao et al. (1991)	Group I: commenced planned ST 2–3 weeks post operatively	†Improved proficiency in esophageal speech at various levels (Belch, Monosyllable, Bisyllable and simple sentences) in group I compared to group II	
	Group II received ST 1 yr after surgery	Adverse events none	
	Speech therapy which consisted of individual and group therapy sessions		
Premalatha et al. (1997)	20–25 ST sessions of 30–40 min* 1–2 sessions/day	†Quality of voice and Speech intelligibility; better in patients using digital pressure. (No statistical analysis available)	
	ST included Inhalation technique, Inhalation combined with changing neck position and digital pressure.	Adverse events None	
Bachher et al. (2002)	Supervised and home based ST to correct dysphonia and deglutition	Improvement in speech and deglutition	
	4 week supervised program: first 2 weeks @ 25–30 min/day; 3rd week @ 3 sessions/week; 4th week @ 2 sessions/week; 3 months of home program: 15-min therapy sessions after every 1 h	(No statistical analysis available)	
		Adverse events not reported	
John et al. (2011)	15 sessions of 30 min duration	Improvement in swallowing, speech intelligibility, speech rate and articulation	Adverse events not reported

BDI Beck’s depression inventory, BPI brief pain inventory, CINV chemotherapy induced nausea and vomiting, CT chemotherapy, DLE distal to lateral epicondyle, EORTCQol C30 European Organisation for Research and Treatment of Cancer—quality of life C30, FUC functional living index for cancer, HADS Hospital Anxiety and Depression Scale, IQR inter-quartile range, MANE morrow assessment of nausea and emesis, MCP Joint metacarpophalengial joint, MCS Mental Component Score, NR not reported, NSAID non-steroidal anti inflammatory drugs, PANAS Scale Positive and Negative Affect Schedule Scale, PCS Physical Component Score, PLE proximal to lateral epicondyle, Qol quality of life, NSCL rotterdam symptom check list, RT radiotherapy, SF-36 short form (36) health survey, STAI state trait anxiety inventory, TNF tumor necrosis factor, WHO World Health Organisation, 6MWD 6 min walk distance

* Significant at \(p < 0.001 \)
* Significant at \(p < 0.01 \)
* Significant at \(p < 0.05 \)
RCTs, they had low to moderate methodological quality and precluded a meta-analysis. Though all five studies were included, the outcome measures reported in the five studies were diverse and not adequately powered to test the effects of interventions. Previous reviews have also highlighted high risk of bias or low methodological quality in among studies on yoga interventions (Sadja and Mills 2013; Shneerson et al. 2013).

The practice of yoga has a strong historical and cultural significance in India (Feuerstein 2013), which has emerged as one of the leading countries for studies on yoga interventions. A recent bibliometric analysis of yoga interventions identified 312 randomised trials of which 43.5% were from India (Cramer et al. 2014). Yoga is currently gaining prominence as an alternative for improving physical and mental wellbeing even in western societies (Barnes et al. 2008). With many reviews and guidelines published within the last couple of years, evidence of its effectiveness in alleviating adverse effects of primary cancer therapy and in improving quality of life is emerging (Sadja and Mills 2013; Mustian 2013; Greenlee et al. 2014; Pan et al. 2015). However, a majority of studies on cancer survivors have been restricted to breast cancer. The bibliometric analysis of yoga interventions identified 17 studies in cancer and all were on breast cancer survivors (Cramer et al. 2014). With a prominent historical and cultural lineage towards yoga interventions, researchers in India have an opportunity to expand scope of yoga interventions to other forms of cancer. India has a significant burden of head and neck cancer and lung cancer and both types of cancer are known to have debilitating impact on survivors (Mathers et al. 2012; Lewison and Roe 2012). Yoga interventions, with their focus on breathing control and on mind body integration, could be potentially useful in alleviating complications of primary cancer therapies among head and neck and lung cancer survivors. With Indian Prime Minister’s pitch for an International Day of Yoga and subsequent decision of the United Nations with support from 177 Nations to celebrate International Day of Yoga on 21st June (Ministry of Health and Family Welfare 2014), the environment is ripe for initiating high quality research on yoga interventions for survivors of various types of cancer.

In addition to yoga based exercise intervention, this review identified four physiotherapy based exercise interventions among cancer survivors (Gautam et al. 2011; Chopra et al. 2006; Samuel et al. 2013; Kumar et al. 2013). Among cancer survivors, the term ‘exercise intervention’ has conventionally been associated with interventions that focus on either or all of aerobic capacity, fitness, muscle strength and endurance, and physical activity; and are usually delivered at a given frequency and intensity. Although these interventions have been delivered by many healthcare professions (such as physiotherapists, exercise physiologists, fitness specialists and nurses); the interventions come under the realm of physiotherapy practice and thus we classified them as physiotherapy based interventions. Among the four studies, only one was an RCT (Samuel et al. 2013), two were single group pre-post intervention design (Gautam et al. 2011; Chopra et al. 2006), and one was a case series (Kumar et al. 2013). The three studies that were eligible for methodological quality rating got a score of 16 (maximum score 32) (Gautam et al. 2011; Chopra et al. 2006; Samuel et al. 2013). A total of 115 survivors were studied across the four studies and reported on the effect of interventions on tidal volume, limb circumference and volume, pain, functional capacity and quality of life. Research in this category of exercise intervention is clearly lacking in India.

Compared to yoga based interventions, a greater body of evidence on effectiveness of physiotherapy based interventions is available. They have been shown to reduce recurrence of cancer, anxiety, depression, pain, and body mass index; and improve survival, cardiorespiratory fitness, strength, fatigue, range of motion, appetite, and quality of life (Fong et al. 2012; Jones and Demark-Wahnefried 2006; Schmitz et al. 2005; McNeely et al. 2006; Boughton 2006). The importance of these interventions has resulted in publication of guidelines to enhance and support evidence based clinical practice (Schmitz et al. 2010; Kushi et al. 2012; Wolin et al. 2012). As reasonable evidence exists on the effectiveness of physiotherapy based interventions, researchers in India could attempt to answer research questions related to relevance of existing guidelines in Indian context, effective ways to improve exercise prescription in routine clinical practice, and ways to improve exercise adherence and behaviour. Studies comparing or integrating yoga based interventions with traditional exercise interventions could lead to new approaches to exercise prescription for cancer survivors. Cancer survivors are known to be at increased risk of developing chronic diseases and are significantly more likely to die from non-cancer causes than the general population (Hewitt et al. 2003; Brown et al. 1993; Parkin et al. 2005). India currently has a high burden of chronic diseases and Indians are considered to have a lower threshold for developing chronic diseases. Relationship between exercise and risk factor profile for chronic disease among cancer survivors could also be a potential area for research.
The third category of exercise intervention identified through this review was based on speech therapy interventions. Though speech therapy may not be traditionally considered as exercise interventions, we included studies that used various exercises to improve speech and language, oromotor, and deglutition functions among cancer survivors. Survivors of head and neck cancer often face difficulties in speech and language, oromotor, and deglutition functions (Lam and Samman 2013; Wall et al. 2013; Patterson et al. 2015). Exercises have been shown to be effective in improving these functions and are recommended to be part of therapy even before initiation of chemo-radiotherapy (Paleri et al. 2014; Starmer 2014).

Through this review, we identified only four studies from India, which consisted of one retrospective study (Subbarao et al. 1991), one case report (John et al. 2011), one case series (Premalatha et al. 1997), and one pre-post intervention study (Bachher et al. 2002). The studies reported data from a total of 92 head and neck survivors. Most studies were poorly reported with only one study qualifying for methodological quality rating (score of 5/32). These four studies indicated improvement in speech proficiency and intelligibility, voice quality, and deglutition.

Speech therapy based interventions among cancer survivors are most relevant to cancer of head and neck. India has a very large burden of head and neck cancer wherein it accounted for 29.8% of all cancer in men and 10.6% of all cancer in women (National Cancer Registry Programme 2013). Data from only 92 survivors is not commensurate with the burden of head and neck cancer in India. There is a strong need to study the prevalence of speech and language, oromotor, and deglutition related impairments, current clinical trends in exercise prescription and timing of initiation of exercise programs. High quality RCTs are needed to study the effect of exercise interventions for these impairments and also to study their effects on improving function and quality of life.

In addition to the categories of exercise interventions, this review also highlighted dearth of research with regard to cancer sites other than breast and head and neck; and various important outcome measures. Lung cancer is one of the leading sites of cancer in India and it was surprising not to find studies on exercise interventions among lung cancer survivors from India. In addition to breast, head and neck and lung cancer, current literature indicates emergence of evidence on benefits of exercise among survivors of prostate, colon, hematologic and gynaecologic cancer (Schmitz et al. 2010). Research from India could add to the body of knowledge on benefits of exercise interventions for various cancer sites and help strengthen global recommendations for exercise prescription. Effect of exercise interventions on hard outcomes measures like cancer recurrence and survival have not been addressed through research from India. Evidence of reduced recurrence rates and improved survival could put the spotlight on exercise interventions in India.

The current review indicates that research on exercise based interventions among cancer survivors is at a nascent stage in India. Several factors could be attributed for the lack of research in this area. India’s cancer control program had an initial focus on providing cancer treatment facilities and later modified to include prevention and early detection on cancer. Exercise interventions, as of now, do not seem to be a priority area under the National Cancer Control Program. A lack of priority at a policy level could have led to reduced awareness about role of exercise interventions for survivors among physicians and allied health professionals. Lack of exercise professionals trained to cater to the needs of cancer survivors could also be a reason for limited research in this area.

It is encouraging to notice a consistent improvement in exercise based research despite absence of policy on exercise interventions for cancer survivors in India. From a mere two studies during the 1991–2000 decade, the number of studies have increased to five during the 2000–2009 decade and six studies have already been published within 4 years of the current decade. Exercise based research for cancer survivors has a long way to go in India. There is a need to sensitize and train oncologists, exercise professionals, nurses and other healthcare providers about the benefits of exercise intervention for cancer survivors. There is also a need for grants and programs that will train professionals from India to administer exercise based interventions as a routine part of treatment and management for cancer. It may be beneficial to consider including supportive cancer therapies including exercise based interventions as part of National Cancer Control Program.

This review, by highlighting the state of research in exercise based interventions among cancer survivors in India, opens up the possibility for researchers from high income countries to identify researchers in India and initiate high quality multinational clinical trials on exercise interventions. India, with its strength on Yoga based interventions, could offer a unique opportunity for researchers from other countries to collaborate and test yoga based interventions in different populations and cultures.

Strengths

To the best of our knowledge, this is the first systematic review highlighting the state of exercise based interventions for cancer survivors in India. For the purpose of this review, we used a broader definition of exercise to
include all forms and categories of exercise interventions. This resulted in identifying yoga based interventions and speech therapy-based interventions from India. We used a comprehensive set of search terms developed through a consensus process among subject experts and covered most important databases including India specific databases like IndMed and Shodhganga. Such a strategy is likely to have greater sensitivity and could be considered reflective of state of exercise based research in India. We also used a validated methodological quality checklist that helped evaluate the strengths and weaknesses of studies included in the review.

Limitations

Though we began the review with an intention to perform meta-analysis, the variability in study characteristics and outcomes precluded the scope of conducting a meta-analysis. Though we screened for doctoral level theses from India through Shodhganga, the normal delays in uploading the thesis to the central repository by many Universities could have resulted in us missing out on doctoral level theses that have not been published in peer-reviewed indexed journals. There is also a possibility of postgraduate dissertation research on exercise based interventions that are currently not accessible due to lack of a comprehensive database of postgraduates dissertations from India.

Conclusion

The present review indicates a paucity of research examining exercise-based interventions among cancer survivors within the socio-cultural context of India. Though a positive trend in findings was observed, future research, of higher quality and including a broader range of cancer types and outcomes, is urgently needed.

Authors’ contributions

SRS and SKV had the initial idea, designed the study, collected and analyzed the data, and together wrote the first draft of the manuscript. MLM contributed towards development of the idea and study design, collected and interpreted the data and revised the manuscript. AGM and DJF contributed towards development of the idea and study design, interpretation of the data and revised the manuscript. All the authors read and approve the final manuscript.

Author details

1 Department of Physiotherapy, SOAHS, Manipal University, Manipal, India. 2 Department of Physiotherapy, M S Ramaiah Medical College and Hospitals, MSR Nagar, MSR IT Post, Bangalore 560054, Karnataka, India. 3 Department of Radiotherapy and Oncology, Kasturba Medical College, Manipal University, Manipal, India. 4 Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada.

Acknowledgements

During the period of this review, SRS was supported by a junior research fellowship by Department of Science and Technology, Government of India (Ref No: IDP/IMED/2011/20); SKV was supported by a three and half year fellowship under Manipal University’s structured PhD program followed by a 1-year research fellowship under Dr. TMA Pai Endowment Chair in Exercise Science and Health Promotion, Manipal University, Manipal, India.

Competing interests

The authors declare that an initial part of the review was presented as a poster in MASCC/ISOO 2014 International Symposium on Supportive Care in Cancer, Miami, USA and the conference abstracts were published as a supplement in the journal Supportive Care in Cancer. The authors declare no competing interest.

Funding

None.

Received: 12 August 2015 Accepted: 20 October 2015 Published online: 31 October 2015

References

Agarwal SP, Rao YN, Gupta S (2002) Fifty years of cancer control in India. Directorate general of health services, Ministry of health and family welfare, Government of India. New Delhi

Bachher GK, Dholam K, Pai PS (2002) Effective rehabilitation after partial glossectomy. Indian J Otolaryngol Head Neck Surg 54(1):39–43

Banerjee B, Vaidyan HS, Ram A, Rao R, Jayapat M, Gopinath KS et al (2007) Effects of an integrated yoga program in modulating psychological stress and radiation-induced genotoxic stress in breast cancer patients undergoing radiotherapy. Int J Cancer Ther 6(3):242–250

Barnes PM, Bloom B, Nahin RL (2008) Complementary and alternative medicine use among adults and children: United States, 2007. Natl Health Stat Rep 12:1–23

Boughton B (2006) Exercise could improve colorectal-cancer survival. Lancet Oncol 7(9):713

Brown BW, Brauner C, Minnottte MC (1993) Noncancer deaths in white adult cancer patients. J Natl Cancer Inst 85(12):979–987

Brown JC, Huedo-Medina TB, Pescatello LS, Pescatello SM, Ferrer RA, Johnson BT (2011) Efficacy of exercise interventions in modulating cancer-related fatigue among adult cancer survivors: a meta-analysis. Cancer Epidemiol Biomark Prev 20(1):123–133

Chakraborty J, Vidyasarag MS, Fernandes D, Bhat V, Nagalakshmi Joisa G et al (2013) Effectiveness of pranayama on the levels of serum protein thiols and glutathione in breast cancer patients undergoing radiation therapy: a randomized controlled trial. Indian J Physiol Pharmacol 57(3):225–232

Chopra S, Dinshaw KA, Ramkale R, Sarin R (2006) Breast movement during normal and deep breathing, respiratory training and set up errors: implications for external beam partial breast irradiation. Br J Radiol 79(945):766–773

Cramer H, Lauche R, Dobos G (2014) Characteristics of randomized controlled trials of yoga: a bibliometric analysis. BMC Complement Altern Med 14:328

Curt GA, Breitbart W, Cella D, Groopman JE, Horning SJ, In IWI et al (2000) Impact of cancer-related fatigue on the lives of patients: new findings from the Fatigue Coalition. Oncologist 5(3):353–360

Downs SH, Black N (1998) The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J Epidemiol Commun Health 52(6):377–384

Fairley TL, Pollack LA, Moore AR, Smith JL (2009) Addressing cancer survivorship through public health: an update from the centers for disease control and prevention. J Women’s Health 18(10):1525–1531

Feuerstein G (2013) The yoga tradition: its history, literature, philosophy and practice, 3rd edn. Hohm Press, Arizona

Fong DY, Ho JW, Hui BP, Lee AM, Macfalenine D, Leung SS et al (2012) Physical activity for cancer survivors: meta-analysis of randomised controlled trials. BMJ (Clin Res Ed) 344:e670

Gautam AP, Mayya AG, Vidyasarag MS (2011) Effect of home-based exercise program on lymphedema and quality of life in female postmastectomy patients: pre-post intervention study. J Rehabil Res Dev 48(10):1261–1268

Greenlee H, Balneaves LG, Carlson LE, Cohen M, Deng G, Hershman D et al (2014) Clinical practice guidelines on the use of integrative therapies as supportive care in patients treated for breast cancer. J Natl Cancer Inst Monogr 2014(50):346–358

Hewitt M, Rowland JH, Yancik R (2003) Cancer survivors in the United States: age, health, and disability. J Gerontol Ser A Biol Sci Med Sci 58(1):82–91
John S, Hassuji RM, Rajashekar B (2011) Speech and swallowing outcomes in buccal mucosa carcinoma. Indian J Palliat Care 17(3):238–240
Jones LW, Demark-Wahnefried W (2006) Diet, exercise, and complementary therapies after primary treatment for cancer. Lancet Oncol 7(12):1017–1026
Jones LW, Eves ND, Haykowsky M, Feedland SJ, Mackey, JR (2009) Exercise intolerance in cancer and the role of exercise therapy to reverse dysfunction. Lancet Oncol 10(6):598–605
Khosla D, Patel FD, Sharma SC (2012) Palliative care in india: current progress and future prospects. Indian J Palliat Care 18(3):149–154
Kumar N, Bhatnagar S, Velpandian T, Patnaik M, Menon G, Mehta M et al (2013a) Randomized controlled trial in advance stage breast cancer patients for the effectiveness on stress marker and pain through Sudarshan Kriya and Pranayam. Indian J Palliat Care 19(3):180–185
Kumar SP, Prasad K, Kumar V, Shenoy K, Sisodia V (2013b) Mechanism-based classification and physical therapy management of persons with cancer pain: a prospective case series. Indian J Palliat Care 19(1):27–33
Kushi LH, Doyle C, McCulloch M, Rock CL, Demark-Wahnefried W, Bandera EV et al (2012) American Cancer Society Guidelines on nutrition and physical activity for cancer prevention: reducing the risk of cancer with healthy food choices and physical activity. CA Cancer J Clin 62(1):30–67
Lam L, Samman N (2013) Speech and swallowing following tongue cancer surgery and free flap reconstruction—a systematic review. Oral Oncol 49(6):507–524
Lewison G, Roe P (2012) The evaluation of Indian cancer research, 1990–2010. Scientometrics 93(1):167–181
Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C et al, GLOBOCAN (2012) v1.0, cancer incidence and mortality worldwide: IARC cancerbase no. 11. [Internet] 2013 [cited 2014 August 28], http://globocan.iarc.fr
Mckeely ML, Campbell KL, Rowe BH, Klassen TP, Mackey JR, Courneya KS (2000) Effects of exercise on breast cancer patients and survivors: a systematic review and meta-analysis. CMAJ 175(3):34–41
Meyerhardt JA, Heseltine D, Niedzwiecki D, Hollis D, Saltz LB, Mayer RJ et al (2006a) Physical activity and survival after colorectal cancer diagnosis. J Clin Oncol 24(22):3527–3534
Meyerhardt JA, Heseltine D, Niedzwiecki D, Hollis D, Saltz LB, Mayer RJ et al (2006b) Impact of physical activity on cancer recurrence and survival in patients with stage III colon cancer: findings from CALGB 89803. J Clin Oncol 24(22):3535–3541
Ministry of Health and Family Welfare, Government of India. National Cancer Control Programme: [Internet], April 16 [cited 2013 April 16], http://mohfw.nic.in/index.php?lang=I&level=2&sublinkid=523&lid=323
Ministry of Health and Family Welfare, Government of India. National day of yoga. [Internet] 2014 [cited 2015 16 April], http://www.nhpgov.in/international-day-yoga-2015
Mishra S, Scherer RW, Geigle PM, Berlanstein DR, Topaloglu O, Gotay CC et al (2012) Ministry of Health and Family Welfare, Government of India. International day of yoga. [Internet] 2014 [cited 2015 16 April], http://www.nhpgov.in/international-day-yoga-2015
Mohanty BK (2011) Research focus in palliative care. Indian J Palliat Care 17(Suppl)S8–S11
Mustian KM (2013) Yoga as treatment for insomnia among cancer patients and survivors: a systematic review. Eur Med J Oncol 1:106–115
National Cancer Registry Programme (2013) Consolidated report of hospital based cancer registries 2007–2011. Bangalore
Naughton MJ, Weaver KE (2014) Physical and mental health among cancer survivors: considerations for long-term care and quality of life. N C Med J 75(4):283–286
Osborn RL, Demoncadia AC, Feuerstein M (2006) Psychosocial interventions for depression, anxiety, and quality of life in cancer survivors: meta-analyses. Int J Psychiatry Med 36(1):13–34
Paleri V, Roe JW, Strojan P, Corry J, Gregoire V, Hamoir M et al (2014) Strategies to reduce long-term postchemoradiation dysphagia in patients with head and neck cancer: an evidence-based review. Head Neck 36(3):431–443
Pan Y, Yang K, Wang Y, Zhang L, Liang H (2015) Could yoga practice improve treatment-related side effects and quality of life for women with breast cancer? A systematic review and meta-analysis. Asia Pac J Clin Oncol. doi:10.1111/ajco.12329
Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55(2):74–108
Patterson JW, McColl E, Wilson J, Carding P, Rapley T (2015) Head and neck cancer patients' perceptions of swallowing following chemoradiotherapy. Support Care Cancer 23:3531–3538
Premalatha BS, Shenoy AM, Sri Hari Prasad AV (1997) Vocal rehabilitation after gastric transposition. The critical overview. Indian J Cancer 34(3):121–127
Raghavendra RM, Nagarathna R, Nagendra HR, Gopinath KS, Sinhath BS, Ravi BD et al (2007) Effects of an integrated yoga programme on chemother- apy-induced nausea and emesis in breast cancer patients. Eur J Cancer Care (Engl) 16(6):462–474
Rao RM, Nagendra HR, Raghuram N, Vinay C, Chandrashekar S, Gopinath KS et al (2008a) Influence of yoga on postoperative outcomes and wound healing in early operable breast cancer patients undergoing surgery. Int J Yoga 1(1):33–41
Rao RM, Nagendra HR, Raghuram N, Vinay C, Chandrashekar S, Gopinath KS et al (2008b) Influence of yoga on mood states, distress, quality of life and immune outcomes in early stage breast cancer patients undergoing surgery. Int J Yoga 1(1):11–20
Rigan D (1963) Exercise and cancer: a review. J Am Osteopath Assoc 62:596–599
Sadja J, Mills PJ (2013) Effects of yoga interventions on fatigue in cancer patients and survivors: a systematic review of randomized controlled trials. Explore 9(4):232–243
Samuel SR, Arun Mayya G, Babu AS, Vidyasagar MS (2013) Effect of exercise training on functional capacity and quality of life in head and neck cancer patients receiving chemoradiotherapy. Indian J Med Res 137(3):515–520
Sankaranarayanan R (2014) Cancer prevention and care in India: an unfinished agenda. Lancet Oncol 15(6):554–555
Schmitz KH, Holtzman J, Courneya KS, Masse LC, Duval S, Kane R (2005) Controlled physical activity trials in cancer survivors: a systematic review and meta-analysis. Cancer Epidemiol Biomark Prev 14(7):1588–1595
Schmitz KH, Coumeyra KS, Matthews C, Demark-Wahnefried W, Galvao DA, Pinto BM et al (2010) American college of sports medicine roundtable on exercise guidelines for cancer survivors. Med Sci Sports Exerc 42(7):1409–1426
Sharma M, Haidet T, Knowledin AP (2013) Yoga as an alternative and complementary treatment for cancer: a systematic review. J Altern Complement Med 19(1):870–875
Shneerson C, Taskila T, Gale N, Greenfield S, Chen YF (2013) The effect of complementary and alternative medicine on the quality of life of cancer survivors: a systematic review and meta-analyses. Complement Ther Med 21(4):417–429
Stamler HM (2014) Dysphagia in head and neck cancer: prevention and treatment. Curr Opin Otolaryngol Head Neck Surg 22(3):195–200
Strasser B, Steindorf K, Wiskemann J, Ulrich CM (2013) Impact of resistance training in cancer survivors: a meta-analysis. Med Sci Sports Exerc 45(11):2080–2090
Subbarao PB, Shenoy AM, Anantha N (1991) Post laryngectomy rehabilitation: the case for planned early speech therapy. Indian J Med Res 104(11):1821–1828
Sullivan R, Badwe RA, Rath GK, Pramesh CS, Shanta V, Digumarti R et al (2014) Cancer research in India: national priorities, global results. Lancet Oncol 15(6):e213–e222
Takiar R, Krishnan SK, Shah VP (2014) A model approach to calculate cancer prevalence from 5 years survival data for selected cancer sites in India— part II. Asian Pac J Cancer Prev APJC 15(4):5681–5684
Vadiraja HS, Raghavendra RM, Nagarathna R, Nagendra HR, Rekha M, Vanitha N et al (2009a) Effects of a yoga program on cortisol rhythm and mood states in early breast cancer patients undergoing adjuvant radiotherapy: a randomized controlled trial. Integr Cancer Ther 8(1):37–46
Vadiraja HS, Rao MR, Nagarathna R, Nagendra HR, Rekha M, Vanitha N et al (2009b) Effects of yoga program on quality of life and affect in early breast cancer patients undergoing adjuvant radiotherapy: a randomized controlled trial. Complement Ther Med 17(4–5):274–280
Vadiraja SH, Raghavendra RM, Nagarathna R, Nagendra HR, Rekha M, Vanitha N et al (2014) Randomized controlled trial. Complement Ther Med 22(5):197–200
Vadiraja HS, Rao MR, Nagarathna R, Nagendra HR, Rekha M, Vanitha N et al (2009a) Influence of yoga on mood states, distress, quality of life and immune outcomes in early stage breast cancer patients undergoing surgery. Int J Yoga 1(1):33–41
Vadiraja HS, Rao MR, Nagarathna R, Nagendra HR, Rekha M, Vanitha N et al (2009b) Influence of yoga on mood states, distress, quality of life and immune outcomes in early stage breast cancer patients undergoing surgery. Int J Yoga 1(1):33–41