Contrastive Credibility Propagation for Reliable Semi-supervised Learning

Brody Kutt, Pralay Ramteke, Xavier Mignot, Pamela Toman, Nandini Ramanan, Sujit Rokka Chhetri, Shan Huang, Min Du, William Hewlett
Palo Alto Networks, AI Research
{bkutt, pramteke, xmignot, ptoman, nramanan, schhetri, shuang1, midu, whewlett}@paloaltonetworks.com

Abstract
Producing labels for unlabeled data is error-prone, making semi-supervised learning (SSL) troublesome. Often, little is known about when and why an algorithm fails to outperform a supervised baseline. Using benchmark datasets, we craft five common real-world SSL data scenarios: few-label, open-set, noisy-label, and class distribution imbalance/misalignment in the labeled and unlabeled sets. We propose a novel algorithm called Contrastive Credibility Propagation (CCP) for deep SSL via iterative transductive pseudo-label refinement. CCP unifies semi-supervised learning and noisy label learning for the goal of reliably outperforming a supervised baseline in any data scenario. Compared to prior methods which focus on a subset of scenarios, CCP uniquely outperforms the supervised baseline in all scenarios, supporting practitioners when the qualities of labeled or unlabeled data are unknown.

1 Introduction
A fundamental goal of semi-supervised learning (SSL) is to ensure the use of unlabeled data results in a classifier that outperforms a baseline trained only on labeled data (supervised baseline). However, this is often not the case (Oliver et al. 2018). The problem is often overlooked as SSL algorithms are frequently evaluated only on clean and balanced datasets where the sole experimental variable is the number of given labels. Worse, in the pursuit of maximizing label efficiency, many modern SSL algorithms such as (Berthelot et al. 2019; Sohn et al. 2020; Zheng et al. 2022; Li, Xiong, and Hoi 2021) and others rely on a mechanism that directly encourages the marginal distribution of label predictions to be close to the marginal distribution of ground truth labels (known as distribution alignment). This assumption is rarely true in practice. We identify five key dataset quality variables (data variables) that can strongly impact SSL algorithm performance and are common in real-world datasets.

1. Few-label: Varying the number of labeled samples per class typically while the amount of unlabeled data grows or is held constant.

2. Open-set: Including and varying the ratio of out-of-distribution (OOD) samples, i.e. samples which belong to no class, in the unlabeled data.

3. Noisy-label: Varying the percent of given labels that are incorrect.

4. Class distribution imbalance/misalignment: Varying the disparity of class frequency distributions between labeled and unlabeled data. We explore increasingly imbalanced distributions in the labeled and unlabeled data separately (while keeping the other uniform to ensure misalignment).

Thoroughly evaluating the practicality of an SSL algorithm requires analyzing its response to these variables at differing severity. Identifying specific quality issues in a dataset can be challenging for practitioners. Often, real-world SSL workflows encounter scarcity and noise in labeled data, which is also sampled from a distribution distinct from the unlabeled data, derived from the often unknown target distribution. Moreover, the unlabeled data distribution may be inaccessible due to privacy concerns or real-time data collection in fully autonomous systems. Consequently, such systems necessitate external components like Out-of-Distribution (OOD) detectors to prevent failures, albeit at the cost of increased complexity. Instead of maximizing the robustness to any one data variable, we strive to build an SSL algorithm that is robust to all data variables, i.e. can match or outperform a supervised baseline. To address this challenge, we first hypothesize that sensitivity to pseudo-label errors is the root cause of all failures. This rationale is based on the simple fact that a hypothetical SSL algorithm consisting of a pseudo-labeler with a rejection option and means to build a classifier could always match or outperform its supervised baseline if the pseudo-labeler made no mistakes. Such a pseudo-labeler is unrealistic, of course. Instead, we build into our solution means to work around those inevitable errors.

Our contributions can be summarized as follows. To the best of our knowledge, our work is the first to 1) define an SSL algorithm that unifies a pseudo-labeling strategy and an approach to overcome label noise 2) use credibility vectors to properly represent uncertainty during pseudo-label generation 3) propose a generalized contrastive loss for non-discrete positive pairs 4) demonstrate a reliable performance boost over a supervised baseline across five real-world data scenarios at differing levels of severity. The rest of this work is organized as follows. We overview related works in Sec. 2. We introduce CCP in Sec. 3. In Sec. 4, we detail our experimental results before concluding in Sec. 5.

\section{Related Work}

SSL has a rich history in AI research (Yang et al. 2021; Chapelle, Schölkopf, and Zien 2006). We focus on two dominant approaches. These are pseudo-labeling and consistency training. CCP draws inspiration from both approaches.

\textbf{Pseudo-labeling} These methods typically constitute transductive learning (Shi et al. 2018; Iscen et al. 2019). Here, the objective is to generate proxy labels for unlabeled instances to enhance the learning of an inductive model. Seminal work in (Lee et al. 2013) simply uses the classifier in training to produce pseudo-labels inductively which are trained upon directly. This is problematic in that it actively promotes confirmation bias i.e. the model will learn to confirm its predictions. This was later extended to include a measure of confidence in (Shi et al. 2018). Closely related is the concept of self-training which iteratively integrates into training the most confident of these pseudo-labeled samples and repeats (Dong and Schäfer 2011; Sahito, Frank, and Pfahringer 2021; Xie et al. 2020b). These techniques can become unstable when pseudo-label error accumulates across iterations. More recent work has addressed accumulating errors by using independent models to utilize pseudo-labels (Chen et al. 2022). LPA (Zhu and Ghahramani 2002) is a popular graph-based technique for generating pseudo-labels transductively but has many failure cases (Dong et al. 2020). Much work tends to use LPA as a transductive inference mechanism for pseudo-labeling. Such inferred pseudo-labels are highly noisy and thus problematic for SSL. The CCLP algorithm (Kamnitsas et al. 2018) tries to circumvent this by instead using LPA-derived pseudo-labels only for graph-based regularization of the encoder. Like CCP, (Wang and Wu 2022) proposed repeatedly re-predicting pseudo-labels during an optimization framework akin to self-training. Despite the popularity of pseudo-labeling-based SSL approaches, they tend to break down when faced with a large amount of pseudo-label errors.

\textbf{Consistency Training} Analogous to perturbation-based SSL and contrastive learning, these techniques train a network to produce a single, distinct output for a sample under different augmentations (transformations). Work in (Xie et al. 2020a) minimizes a consistency loss for unlabeled data and a standard classification loss for labeled data simultaneously. When combined with our credibility representation, this refinement helps to nudge pseudo-labels in the direction of the true class and nullify the data for which true labels are unknowable or ambiguous. To do this, we merge a process of transductively propagating pseudo-labels (in the form of credibility vectors) and an outer loop built for overcoming instance-dependent noisy labels based on the SEAL algorithm (Chen et al. 2021). To train a transductive pseudo-label generator, we define a generalization of unsupervised (SimCLR (Chen et al. 2020a) and supervised (SupCon (Khosla et al. 2020)) contrastive loss that can make use of non-discrete, i.e. uncertain, positive pairs. We also define a pseudo-label subsampling strategy that limits the divergence of pseudo-label class distributions before and after subsampling which we hypothesize to be the primary cause of instability of similar subsampling procedures. We show it can lead to higher pseudo-label accuracy and faster convergence, especially with increasingly unclean data. Further details are provided in Fig. 1.

The network architecture consists of an encoder \(f_b \), that computes a vector encoding \(f_b(x) = b \). One linear projection head \(f_z \) computes an encoding used for contrastive learning, \(f_z(b) = z \). A separate linear projection head, \(f_g \), computes \(f_g(b) = g ∈ ℝ^K \) for a classification loss. Attaching \(f_g \) and \(f_z \) to \(f_b \) is motivated by (Chen et al. 2020a,b; Khosla et al. 2020). These architectural components are illustrated in Fig. 2. Between iterations and before classifier training, we reset the variables in \(f_b \), \(f_z \) back to a prior state (either a random initialization or pretrained using LSSLc’s unsupervised counterpart, SimCLR).

Motivated by (Chen et al. 2020a; Cer et al. 2018), the similarity function we use is angular similarity defined by
\[
\phi(z_i, z_j) = 1 - \frac{\arccos\left(\frac{z_{i} \cdot z_{j}}{|z_{i}| |z_{j}|}\right)}{\pi}.
\]
3.3 Credibility Adjustments

The CCP algorithm uses credibility vectors, \(q_i \), in place of one-hot or softmax label vectors. Credibility vectors are more expressive. A credibility score of 1 means maximum confidence in class membership, 0 means uncertainty, and -1 means maximum confidence in class non-membership. Each credibility score given a sample and class is the similarity between that sample and class minus the highest similarity to all other classes. Credibility adjustments are formalized in Algorithm 1, Lines 16 to 18 and Algorithm 2, Lines 9, 10 and 12. The core idea of credibility, similar to (Dong et al. 2020), is to extend similarity measurements to capture ambiguity brought forth by competing similarities i.e. conditional similarity. Unlike (Dong et al. 2020), we represent credibility in our label vectors for use throughout the algorithm. For trusted labeled data, credibility vectors, \(\{q_l\}_{l \in L} \), are clamped with 1 (-1) in the on (off) position. Before applying credibility vectors to \(\mathcal{L}_{SSC} \), \(\mathcal{L}_{CLS} \), and Algorithm 2, we clip to a \([0, 1]\) range. A clipped credibility vector thus consists of 0 everywhere except the strongest value which is scaled down by the second strongest value. However, negative values are still useful when averaging across epochs in Line 14. The single non-zero value reflects the strength (confidence) of the label prediction. At initialization, unlabeled data receive \(q_u = 0 \) (maximum uncertainty). Throughout CCP, the influence of \(x_i \) scales with the magnitude of the non-zero value in \(q_i \) (\(q_i = 0 \) will ensure \(x_i \) exhibits no effect anywhere). Because CCP is designed to work with noisy (pseudo-)labels, if uncertain label guesses exist, these can be used for initialization instead. Fig. 3 provides a concrete example of a credibility vector calculation and its effect on a cross-entropy (Xent) gradient.

3.4 Soft Loss Functions

\(\mathcal{L}_{SSC} \) and \(\mathcal{L}_{CLS} \) are contrastive and classification loss functions, respectively. Both are supervised by \(\{q_l\}_{l \in L} \) provided by the CCP algorithm. Each sample in a transformed pair has identical credibility vectors and is treated independently. Thus, to simplify the notation, we formalize \(\mathcal{L}_{SSC} \) and \(\mathcal{L}_{CLS} \) for a batch of data and (clipped) credibility vector tuples, \(\{(x_i, q_i)\}_{i \in B} \).

We define an \(n \times n \) pairwise matching matrix, \(M \), where \(m_{i,j} = q_i \cdot q_j \) for \(i, j \in B \). Each row of \(M \) contains the weights for a weighted arithmetic mean of normalized contrastive losses for that sample to all other samples based on the evidence of a positive pair relationship. We scale pairwise similarities by temperature \(\tau \) and take the exponential as in (Chen et al. 2020a,b; Khosla et al. 2020) to form an \(n \times n \) matrix \(\mathcal{A} \) defined by \(a_{i,j} = \exp(\phi(z_{i,2}, z_{j,2})/\tau) \) for \(i, j \in B \). We construct a strength vector, \(\omega \), defined by \(\omega_i = \max(q_i) \) for \(i \in B \). Each \(\omega_i \) serves to scale the magnitude of contrastive loss on sample \(i \) and the corresponding entries in the normalizing factor for each \(a_{i,j} \). We ignore comparisons of the same sample with the following modifications \(M = M \odot (1 - \mathbb{I}) \), \(A = A \odot (1 - \mathbb{I}) \) where \(\odot \) is element-wise multiplication and \(\mathbb{I} \) is the identity matrix. We can now define \(\mathcal{L}_{SSC} \):

\[
\mathcal{L}_{SSC} = -\frac{1}{n} \sum_{i \in B} \sum_{j \in B} m_{i,j} \log \left(\frac{a_{i,j}}{a_{i,\cdot} \cdot \omega} \right)
\]

SimCLR and SupCon loss are special cases of \(\mathcal{L}_{SSC} \). In \(\mathcal{L}_{SSC} \), positive pairs are not specified discretely. Every pair of samples has a score in \(M \) between 0 and 1 which corresponds.
We formalize the CCP iteration in Algorithm 1, the propagation mechanism in Algorithm 2, and our subsampling procedure in Algorithm 3. Each assumes \(\{q_i\}_{i \in L} \) are trusted labels. If this is not true, e.g. in the noisy-label scenario, all operations that are applied to unlabeled data are applied to all data. During a single CCP iteration, we continuously predict new \(q_i \)'s for samples while minimizing \(L_{SSC} \). We store all credibility vectors and then average them together at the end of the iteration. The SEAL algorithm (Chen et al. 2021), which bears similarity to CCP’s outermost iteration, is designed to correct the label of mislabeled samples in supervised problems. It was found that, during training, network predictions frequently oscillate between incorrect and correct labels in the presence of label noise. This suggests averaging the predictions made across epochs to correct label noise. Similarly, propagated pseudo-labels are subjected to the randomness of the instantaneous network state and batch selection. In the presence of pseudo-label error, and, more generally, uncertainty arising from within the model or data, we observe the same oscillatory behavior reported in (Chen et al. 2021) of predicted pseudo-labels \(^{1}\). This grants us a similar theoretical motivation for averaging across epochs in CCP. Assume there is a latent, preferable pseudo-label for sample \(x_i \) denoted \(q_i^\ast \in \mathbb{R}^{K} \). Denote the pseudo-label obtained at the end of the \(m \)-th CCP iteration as \(q_i^{[m]} \). Based on the oscillatory behavior of pseudo-labels, we can approximate the pseudo-label at the \(\xi \)-th epoch of the \(m \)-th iteration for \(m \geq 1 \) as,

\[
q_i^{[\xi,m]} \approx \alpha_i^{[\xi,m]} \beta_i^{[\xi,m]} + (1 - \alpha_i^{[\xi,m]})q_i^{[m-1]} \tag{3}
\]

Where \(\xi \in \{1, 2, \ldots, \Xi\} \), \(q_i^{[0]} \) are zero vectors, \(\alpha_i^{[\xi,m]} \in [0, 1] \) are coefficients dependent on instances, the network, and \(q_i^{[m-1]} \) with \(\alpha_i^{[1]} = 1 \), \(\forall i \), and \(\beta_i^{[\xi,m]} \in \mathbb{R}^K \) are i.i.d. random vectors with \(\mathbb{E}[\beta_i^{[\xi,m]}] = q_i^\ast \). Consider a uniformly chosen random epoch and iteration denoted \(\xi' \) and \(m' \), respectively. We can see CCP is expected to improve the quality of pseudo-labels iteratively and new pseudo-labels at the end of an iteration have lower variance due to averaging.

\[
\|\mathbb{E}[q_i^{[m'+1]}] - q_i^\ast\| \leq \|q_i^{[m']} - q_i^\ast\| \tag{4}
\]

\[
\text{var}(q_i^{[m']}) \leq \text{var}(q_i^{[m']}\gamma_k) \quad \forall k \in c \tag{5}
\]

In Algorithm 1, Lines 14 to 19, we adjust labels in several ways to make them more suitable as labels. In Line 15, we multiply by a scaling factor \(\gamma / \gamma \) after the average. We use \(\gamma = \max_{u \in U, c \in K} \hat{q}_{u,c} \). This ensures the strongest pseudo-label will have a strength of 1. Before we clip all values outside the range of \([0, 1]\) in Line 19, we compute a final credibility adjustment. The scaled, credibility adjusted, and clipped vectors are denoted \(\{\hat{q}_u\}_{u \in U} \). In Line 7, we find more stable performance when using balanced batches during CCP iterations. We guarantee there are \(\geq 1 \) (pseudo-)labeled samples per class in every batch via oversampling. Pseudo-labels obtained from repeated uses of a sample are simply gathered together in the average. This ensures 1) the correct class can be propagated and 2) credibility can be properly measured. Lastly, we found it beneficial to use a small learning rate in the first iteration. Especially for few-label scenarios, the network quickly overfits to the small labeled set, and pseudo-label quality suffers. Specifically, we reduced the original

\(^{1}\) Shown in the Appendix: https://arxiv.org/abs/2211.09929
Algorithm 1: An iteration of the CCP algorithm.

1: Given Ξ, T, $\{q_i\}_{i \in L}$, X, p_{Past}, d_{max}
2: if $\{q_u\}_{u \in U}$ are not available then
3: Initialize $q_u = 0$ for $u \in U$
4: end if
5: Reset f_b, f_z to a random or pretrained state
6: for $i \in \{1, 2, \ldots, \Xi\}$ do
7: for balanced batches $\{(x_i, q_i)\}_{i \in B_l \cup B_u}$ do
8: Form $\{(x_i, q_i), (x_{i+n}, q_i)\}_{i \in B_l \cup B_u}$ with randomly drawn $t_1, t_2 \in T$
9: Compute $z_i = f_x(f_b(x_i))$, $z_{i+n} = f_x(f_b(x_{i+n}))$ for $i \in B_l \cup B_u$
10: Compute and store $\{\tilde{q}_i\}_{i \in B_u}$ using Algorithm 2
11: Train f_b, f_z using the gradient of \mathcal{L}_{SSC} computed with $\{(z_i, q_i), (z_{i+n}, q_i)\}_{i \in B_l \cup B_u}$
12: end for
13: end for
14: Compute $\{\tilde{q}_u\} = \text{average of all stored } \tilde{q}_u \forall u \in U$
15: Scale all \tilde{q}_u via multiplying by $\frac{1}{N}$
16: for $k \in c$ do
17: $q_{u,k} = \tilde{q}_u - \max_{k'} \in c \{\tilde{q}_{u,k'}\}$ for $u \in U$
18: end for
19: Clip all values in $\{q_u\}_{u \in U}$ to lie in $[0, 1]$
20: Compute p, $\{\tilde{w}_u\}_{u \in U}$ using Algorithm 3
21: Reset bottom $p\%$ of $\{q_u\}_{u \in U}$ ordered by $\{\tilde{w}_u\}_{u \in U}$
22: Update $p_{\text{Past}} = p$, $d_{\text{max}} \leftarrow d_{\text{max}}/2$
23: Return f_b, p_{Past}, d_{max}, $\{q_u\}_{u \in U}$ (used in next iteration)

Algorithm 2: Compute propagated credibility vectors.

1: Given $\{\{z_i, q_i\}, (z_{i+n}, q_i)\}_{i \in B_l \cup B_u}$
2: Define expanded indices $B' = \{0, 1, \ldots, 2n - 1\}$
3: Define $q_{i+n} = q_i$ for $i \in B'$
4: for $j \in B_u$ do
5: for $k \in c$ do
6: Compute class similarities $\psi_{j,k} = \sum_i z_i \phi(z_i, z_j) q_{i+k}/z_i q_k$
7: $\hat{q}_{j+n,k} = \sum_i z_i \phi(z_i, z_j) q_{i+k}/z_i q_k$
8: end for
9: for $k \in c$ do
10: $\hat{q}_{j,k} = \psi_{j,k} - \max_{k' \in c} \{\hat{q}_{j,k'}\}$
11: $\hat{q}_{j+n,k} = \psi_{j+n,k} - \max_{k' \in c} \{\hat{q}_{j+n,k'}\}$
12: end for
13: Store $q_j = \frac{\hat{q}_j + \hat{q}_{j+n}}{2}$
14: end for
15: Return $\{q_j\}_{j \in B_u}$

Algorithm 3: Compute a subsample percentage.

1: Given $\{q_u\}_{u \in U}$, $\{q_u\}_{u \in U}$, p_{Past}, d_{max}
2: Compute $\{\hat{w}_u\} = \max(\{q_u\}_{u \in U})$
3: $Q = \sum_u q_u / \sum_j \sum_u q_{u,k}$
4: for $p_1 \in \{0\% \text{, } 1\% \text{, } \ldots \text{, } p_{\text{Past}} - 1\% \text{\}}$ do
5: Reset bottom $p_1\%$ of $\{q_u\}_{u \in U}$ ordered by $\{\hat{w}_u\}_{u \in U}$
6: $P = \sum_u q_u / \sum_j \sum_u q_{u,k}$
7: $d_i = D_{\text{KL}}(P \parallel Q) = \sum_k p_k \log_2 (p_k/q_k)$
8: end for
9: $p = \max(\{p_i\} \text{ for all } i \text{ such that } d_i < d_{\text{max}})$
10: Return p, $\{\hat{w}_u\}_{u \in U}$

D_{KL}-Based Subsampling We use Algorithm 3 to decide which pseudo-labels to reset to 0 between CCP iterations. This is inspired by self-training (Amini et al. 2022) which solves the similar but inverted task of iteratively adding data to the labeled set. These techniques typically use the max score of a learned classifier as an indicator of confidence. Similarly, our indicator of confidence for a credibility vector is the maximum of its unclipped values. We compute a percentage $p \in \{0\%, 1\%, \ldots, 99\%\}$ that represents what percent of least confident pseudo-labels will be reset. Aggressive p values can cause instability or slow convergence when too many correct pseudo-labels are reset. We hypothesize the instability is similar in cause to the instability of self-training mechanisms (Sohn et al. 2020). CCP is shown highly effective without any subsampling (Sec. 4.2). Accordingly, our approach is to balance resetting weak pseudo-labels with limiting the divergence of the predicted class distribution of the selected unlabeled data from the predicted class distribution of all unlabeled data. Concretely, in Line 3 we compute the anchor distribution, Q, by summing the weights for every class and dividing by the total mass. We search over candidate p’s with one minus the p used in the previous iteration, $p_{\text{Past}} - 1\%$, as the maximum to ensure we don’t increase p between iterations. At Line 6, we compute the new distribution, P, obtained after resetting the candidate percentage of vectors. At Line 7, we compute the Kullback–Leibler (KL) divergence (Csiszar 1975) between these distributions. After Line 7, we choose p by selecting the maximum candidate that obeys a strict limit on the divergence, d_{max}. We divide d_{max} by 2 for the next iteration to support convergence. Our method is unsupervised, free of imposing assumptions, and normalized to the dataset size. This suggests, in theory, that a single schedule for d_{max} should generalize well across datasets. Indeed, we find an initial value of $d_{\text{max}} = 0.01$ to work generally well across all of our experiments.

3.6 Building a Classifier

After CCP iterations have concluded, we apply the soft labels, $\{q_j\}_{j \in L}$, to build a classifier consisting of f_b, f_z. We use Stochastic Gradient Descent with randomly selected mini-batches (regardless of whether the data was originally labeled). We find that minimizing both Eq. (1) (using f_z) and Eq. (2) together consistently outperforms Eq. (2) alone. In our experiments, resetting f_b, f_z (to a random or pretrained state) after the final iteration of CCP is marginally more performant than reusing the state after the last iteration – this prior state will have been learned without the latest pseudo-label adjustments. However, the latter converges much faster. We find that using Algorithm 3 to subsample the final $\{q_j\}_{j \in L}$ greatly increases training set accuracy but has a minimal and inconsistent effect on the test set. This is because cropping the “hard” samples with weak pseudo-labels at this stage...
makes the training set easier but reduces generalization.

4 Experimental Results

We leverage CIFAR-10 and CIFAR-100 for our data variable sensitivity experiments (Krizhevsky and Hinton 2009). We use these datasets as starting points to explore the five data variables we introduce in Sec. 1. For comparability among the data variables, we define a base case that represents a minimal severity of each data variable. We study each data variable independently by increasing the severity from the base case at three levels. For the base cases, we take the first 40% of classes and define them as in-distribution (ID) e.g. for CIFAR-10, classes [0, 3] are ID while [4, 9] are out-of-distribution (OOD). For CIFAR-10, the base case is defined as 400 labeled and 4600 unlabeled samples per ID class. For CIFAR-100, we have 100 labeled and 400 unlabeled samples per ID class. We then independently introduce the following perturbations:

1. Few-label: We move labeled data to the unlabeled set such that the number of labeled samples per ID class reduces to 25, 4, and 2.

2. Open-set: We move all data from OOD classes into the unlabeled set incrementally e.g. on CIFAR-10 the unlabeled set contains data from classes [0, 5], [0, 7], and [0, 9].

3. Noisy-label: We randomly select 20%, 40%, and 60% of labels and randomly perturb them to an incorrect ID class.

4. Class distribution imbalance/misalignment: We perturb labeled and unlabeled sets separately. We take the last 50% of ID classes, e.g. for CIFAR-100 the ID classes we perturb are [20, 39], and reduce their quantity (discarding samples). When perturbing unlabeled sets, we reduce to 20%, 10%, and 0% of the original quantity. For labeled sets, we reduce such that 25, 4, and 2 samples remain.

We perform our data variable sensitivity analysis on CCP, CoMatch (Li, Xiong, and Hoi 2021), OpenMatch (Saito, Kim, and Saenko 2021), ACR (Wei and Gan 2023), and FixMatch (Sohn et al. 2020) with and without distribution alignment. CoMatch and FixMatch were developed to optimize performance in the few-label scenario, whereas OpenMatch and ACR were designed to address open-set and misalignment in the unlabeled set, respectively. We used the original author’s implementations for all algorithms. For all algorithms and datasets, we use the standard WRN-28-2 and WRN-28-8 (Zagoruyko and Komodakis 2016) as the backbone network architecture for CIFAR-10 and CIFAR-100, respectively. We closely match all training hyperparameters and settings of (Sohn et al. 2020; Li, Xiong, and Hoi 2021). For algorithm-specific hyperparameters, we use the values originally recommended in the work for the corresponding dataset. Some minor differences exist across all algorithm implementations e.g. the parameter choices for each $t \in \mathcal{T}$, the deep learning software package used, and regularization used. We report the performance of a fully supervised control for each algorithm implementation to help understand the effect.

Computational Expense CCP iterations can potentially be computationally taxing at large values of Ξ. In the worst case, one must fully train a new network for every CCP iteration. Additionally, if Ξ is too large, incorrect pseudo-labels are memorized and q becomes biased towards the error. We found beneficial a course of pretraining using L_{SSC}’s unsupervised counterpart, SimCLR, to determine the initialization of f_t, f_s. This pretrained state significantly reduced the inherent randomness of early pseudo-label predictions. Also, due to faster convergence, using this pretrained state allowed us to use aggressive early stopping after the first CCP iteration which has a fixed number of epochs and a low learning rate (50 and 0.0006, respectively). Specifically, we maintain a batch-wise exponential moving average (EMA) of L_{SSC} with decay 0.99 during each CCP iteration and halt quickly after the EMA stops dropping. This resulted in the equivalent of ~15 and ~50 epochs per iteration with 24 and 12 CCP iterations for CIFAR-10 and CIFAR-100, respectively. However, shown in Sec. 4.2, CCP often converges after only a few iterations. The only deviation from this is in the open-set experiments, in which we report the performance after a single CCP iteration. Further iterations increased pseudo-label confidence in both ID and OOD samples and thus did not provide value. Using Algorithm 3 with a more aggressive d_{max} and schedule mitigated this problem however we found satisfying results simply with a single CCP iteration which was more consistent with the other experiments.

4.1 Data Variable Sensitivity Analysis

We report the test accuracy of each algorithm on each data variable experiment at all levels of severity in Tab. 1. We find relatively consistent performance across the control experiments. Performance on the base case reflects an algorithm’s inherent label efficiency (which impacts performance in all scenarios) and helps to contextualize all results in this table. The sensitivity to each data variable in isolation can be assessed by comparing an algorithm’s performance in that scenario to its performance in the base case. Although CCP doesn’t achieve superiority in every scenario, particularly concerning label efficiency, it demonstrates remarkable consistency. For instance, on CIFAR-10, its accuracy never drops below 90% for any scenario which represents only a 5% drop from the base case. Moreover, CCP uniquely outperforms a supervised baseline in every experiment. This supports the core reliability thesis. Where CCP does not achieve superiority, label efficiency seems to be the primary contributing factor. Other algorithms fail, sometimes catastrophically below CCP or even the supervised baseline, in the presence of certain data variations. This is most prevalent when perturbing the labeled distribution and the relatively poorly explored noisy-label scenario where CCP often outperforms by a large margin. Intuitively, DA seems to help FixMatch marginally in the few-label scenario but hurts when perturbing the unlabeled data distribution. Note that all algorithms perform relatively well on open-set experiments. All algorithms tested besides CCP build off FixMatch in some way. This is common practice in the literature. We hypothesize that, for these algorithms, FixMatch’s pseudo-label threshold parameter effectively removes unconfident pseudo-labeled OOD samples.

2 Code available at: https://github.com/PaloAltoNetworks/CCP, CIFAR and https://github.com/PaloAltoNetworks/ccp-as-pytorch
Figure 4: Performance of CCP iterations on the base case and few-label experiments of CIFAR-10 with and without credibility. Solid lines indicate the use of credibility adjustments. Dashed lines indicate a softmax function. Top: Pseudo-label accuracy. Bottom: The average strength of correct and incorrect pseudo-labels in the base case.

4.2 Ablation Analysis

We investigate the criticality of credibility adjustments to successful CCP iterations as well as the effectiveness of subsampling via Algorithm 3. We focus on the base case and few-label experiments, however, repeating these experiments with the other data variables provided a similar result.

In Fig. 4, we study the effect of credibility adjustments by measuring the difference in CCP iteration performance when they are replaced by traditional softmax functions. We also omit scaling, clipping, and subsampling when using softmax such that it resembles the SEAL algorithm. We often find quick and catastrophic degradation to maximum entropy pseudo-labels when using softmax. When considering the average strength (maximum value) of pseudo-labels, it is clear that credibility strongly differentiates correct and incorrect pseudo-labels which makes it a better fit as a measure of confidence. Recall in Fig. 3, when faced with uncertainty, an Xent gradient with a softmax label pushes the network to produce a high entropy pseudo-label which mirrors what we see here.

In Fig. 5, we see D_{KL}-based subsampling provides substantial benefit to the pseudo-label accuracy during CCP iterations at high data variable severity. At worst, it appears to provide no benefit as in the CIFAR-10 base case experiment. Note we used the same initial $d_{max} = 0.01$ and schedule presented in Algorithm 1 for all experiments in this work. If instability is observed, which can occur if d_{max} is too large, tuning is necessary.

Figure 5: Pseudo-label accuracy during CCP iterations in the base case and few-label experiments of CIFAR-10 (top) and CIFAR-100 (bottom). Solid lines depict the usage of D_{KL}-based subsampling with the parameters and schedule presented in Algorithm 1 with an initial $d_{max} = 0.01$. Dashed lines indicate no subsampling i.e. $d_{max} = 0.0$.

5 Conclusion

We have presented an algorithm that combines a soft contrastive approach to pseudo-labeling with an outer iteration designed for learning under instance-dependent label noise. The result is a highly reliable and effective SSL algorithm that does not perform worse than a supervised baseline across five common real-world SSL scenarios. Future work may include augmenting Algorithm 2 to include successful components from prior work such as consistency training between weak/strong augmentation (Sohn et al. 2020) and instance/semantic similarity (Zheng et al. 2022) to combine CCP’s reliability with the label efficiency of other work.
CIFAR-10	Control Base Case	Few-label	Open-set	Noisy-label	Class Imbalance/Misalignment
CIFAR-100					
Supervised Baseline		97.00%	63.33%	89.18%	89.40%
		89.18%	54.93%	89.18%	89.40%
			49.98%	89.18%	89.40%
			48.85%	67.30%	55.45%
CoMatch	97.00%	96.97%	97.82%	91.82%	94.07%
	97.74%	97.45%	97.69%	68.69%	91.54%
			97.17%	97.79%	50.05%
ACR	97.38%	95.45%	96.80%	82.90%	93.90%
	97.20%	96.76%	96.42%	62.73%	94.45%
			96.66%	96.78%	39.75%
OpenMatch	96.80%	92.20%	93.58%	91.28%	94.90%
	96.65%	68.18%	91.93%	85.93%	93.93%
			61.51%	85.24%	74.94%
FixMatch w/o DA	97.20%	97.37%	97.59%	91.57%	95.76%
	97.97%	96.35%	97.52%	66.44%	93.82%
			76.26%	97.67%	44.62%
FixMatch w/ DA	96.80%	97.12%	97.52%	91.12%	93.58%
	98.12%	97.12%	98.62%	65.97%	91.57%
			42.39%	85.24%	41.84%
CCP (Ours)	96.85%	94.50%	94.83%	94.33%	93.60%
	95.03%	90.23%	94.50%	94.40%	92.90%
			90.28%	94.40%	94.28%

Table 1: Test set accuracy of each algorithm in each data variable scenario on CIFAR-10 (upper) and CIFAR-100 (lower). In the upper/lower portions of cells, the performance on each severity level is presented in descending order. U (L) refers to the perturbation of the unlabeled (labeled) distribution. Bold indicates under-performing the supervised baseline in that scenario.
Acknowledgements

We’d like to thank the many AI experts at Palo Alto Networks for their helpful commentary on this work. In particular, we’d like to thank Sheng Yang and Aaron Isaksen.

References

Amini, M.-R.; Feofanov, V.; Paulotto, L.; Devijver, E.; and Maximov, Y. 2022. Self-Training: A Survey.

Berthelot, D.; Carlini, N.; Cubuk, E. D.; Kurakin, A.; Sohn, K.; Zhang, H.; and Raffel, C. 2019. ReMixMatch: Semi-Supervised Learning with Distribution Alignment and Augmentation Anchoring. CoRR, abs/1911.09785.

Cer, D.; Yang, Y.; Kong, S.-y.; Hua, N.; Limtiaco, N.; John, R. S.; Constant, N.; Guajardo-Cespedes, M.; Yuan, S.; Tar, C.; Sung, Y.-H.; Strope, B.; and Kurzweil, R. 2018. Universal Sentence Encoder.

Chapelle, O.; Schölkopf, B.; and Zien, A., eds. 2006. Semi-Supervised Learning. The MIT Press.

Chen, B.; Jiang, J.; Wang, X.; Wan, P.; Wang, J.; and Long, M. 2022. Debiasd Self-Training for Semi-Supervised Learning.

Chen, P.; Ye, J.; Chen, G.; Zhao, J.; and Heng, P.-A. 2021. Beyond Class-Conditional Assumption: A Primary Attempt to Combat Instance-Dependent Label Noise. In AAAI.

Chen, T.; Kornblith, S.; Norouzi, M.; and Hinton, G. 2020a. A Simple Framework for Contrastive Learning of Visual Representations. In III, H. D.; and Singh, A., eds., Proceedings of the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research, 1597–1607. PMLR.

Chen, T.; Kornblith, S.; Swersky, K.; Norouzi, M.; and Hinton, G. 2020b. Big Self-Supervised Models are Strong Semi-Supervised Learners.

Csiszar, I. 1975. I-Divergence Geometry of Probability Distributions and Minimization Problems. The Annals of Probability, 3(1): 146 – 158.

Dong, C.; and Schäfer, U. 2011. Ensemble-style Self-training on Citation Classification. In Proceedings of 5th International Joint Conference on Natural Language Processing, 623–631. Chiang Mai, Thailand: Asian Federation of Natural Language Processing.

Dong, Y.; Chen, W.; Zhao, H.; Ma, X.; Gao, T.; and Li, X. 2020. Label propagation algorithm based on Roll-back detection and credibility assessment. Mathematical Biosciences and Engineering, 17(3): 2432–2450.

Iscen, A.; Tolias, G.; Avrithis, Y.; and Chum, O. 2019. Label propagation for deep semi-supervised learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 5070–5079.

Kamnitsas, K.; Castro, D.; Folgoc, L. L.; Walker, I.; Tanno, R.; Rueckert, D.; Glocker, B.; Criminisi, A.; and Nori, A. 2018. Semi-Supervised Learning via Compact Latent Space Clustering. In Dy, J.; and Krause, A., eds., Proceedings of the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research, 2459–2468. PMLR.

Khosla, P.; Teterwak, P.; Wang, C.; Sarna, A.; Tian, Y.; Isola, P.; Maschinoat, A.; Liu, C.; and Krishnan, D. 2020. Supervised Contrastive Learning.

Krizhevsky, A.; and Hinton, G. 2009. Learning multiple layers of features from tiny images. Master’s thesis, Department of Computer Science, University of Toronto.

Lee, D.-H.; et al. 2013. Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. In Workshop on challenges in representation learning, ICML, volume 3, 896.

Li, J.; Xiong, C.; and Hoi, S. C. H. 2021. CoMatch: Semi-supervised Learning with Contrastive Graph Regularization. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), 9455–9464.

Oliver, A.; Odena, A.; Raffel, C. A.; Cubuk, E. D.; and Goodfellow, I. 2018. Realistic Evaluation of Deep Semi-Supervised Learning Algorithms. In Bengio, S.; Wallach, H.; Larochelle, H.; Grauman, K.; Cesa-Bianchi, N.; and Garnett, R., eds., Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc.

Sabito, A.; Frank, E.; and Pfahringer, B. 2021. Better Self-training for Image Classification through Self-supervision.

Saito, K.; Kim, D.; and Saenko, K. 2021. OpenMatch: Open-Set Semi-supervised Learning with Open-set Consistency Regularization. In Ranzato, M.; Beygelzimer, A.; Dauphin, Y.; Liang, P.; and Vaughan, J. W., eds., Advances in Neural Information Processing Systems, volume 34, 25956–25967. Curran Associates, Inc.

Shi, W.; Gong, Y.; Ding, C.; Tao, Z. M.; and Zheng, N. 2018. Transductive semi-supervised deep learning using min-max features. In Proceedings of the European Conference on Computer Vision (ECCV), 299–315.

Sohn, K.; Berthelot, D.; Carlini, N.; Zhang, Z.; Zhang, H.; Raffel, C. A.; Cubuk, E. D.; Kurakin, A.; and Li, C.-L. 2020. FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence. In Larochelle, H.; Ranzato, M.; Hadsell, R.; Balcan, M.; and Lin, H., eds., Advances in Neural Information Processing Systems, volume 33, 596–608. Curran Associates, Inc.

Wang, G.-H.; and Wu, J. 2022. R2D2: Repetitive Reprediction Deep Decipher for Semi-Supervised Deep Learning. arXiv preprint arXiv:2202.08955.

Wei, T.; and Gan, K. 2023. Towards Realistic Long-Tailed Semi-Supervised Learning: Consistency Is All You Need. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 3469–3478.

Xie, Q.; Dai, Z.; Hovy, E.; Luong, M.-T.; and Le, Q. V. 2020a. Unsupervised Data Augmentation for Consistency Training. arXiv:1904.12848.

Xie, Q.; Luong, M.-T.; Hovy, E.; and Le, Q. V. 2020b. Self-Training With Noisy Student Improves ImageNet Classification. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 10684–10695.

Yang, X.; Song, Z.; King, I.; and Xu, Z. 2021. A Survey on Deep Semi-supervised Learning. CoRR, abs/2103.00550.
Zagoruyko, S.; and Komodakis, N. 2016. Wide Residual Networks. *CoRR*, abs/1605.07146.

Zhang, Y.; Zhang, X.; Qiu, R. C.; Li, J.; Xu, H.; and Tian, Q. 2022. Semi-supervised Contrastive Learning with Similarity Co-calibration. *ArXiv*, abs/2105.07387.

Zheng, M.; You, S.; Huang, L.; Wang, F.; Qian, C.; and Xu, C. 2022. SimMatch: Semi-supervised Learning with Similarity Matching. In *2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 14451–14461. Los Alamitos, CA, USA: IEEE Computer Society.

Zhu, X.; and Ghahramani, Z. 2002. Learning from Labeled and Unlabeled Data with Label Propagation.