One-loop renormalization of heavy-light currents

J. Haradaa †, S. Hashimotob, K.-I. Ishikawac, A. S. Kronfeldd, T. Onogie, N. Yamadab

aDept. of Physics, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
bHigh Energy Accelerator Reserch Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
cCenter for Computational Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
dTheoretical Physics Department, Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
eYukawa Institute for Theoritical Physics, Kyoto University, Kyoto 606-8502, Japan

We calculate the mass dependent renormalization factors of heavy-light bilinears at one-loop order of perturbation theory, when the heavy quark is treated with the Fermilab formalism. We present numerical results for the Wilson and Sheikholeslami-Wohlert actions, with and without tree-level rotation. We find that in both cases our results smoothly interpolate from the static limit to the massless limit. We also calculate the mass dependent Brodsky-Lepage-Mackenzie scale q^*, with and without tadpole-improvement.

\section{INTRODUCTION}

Although lattice QCD offers a nonperturbative method of calculating weak matrix elements from first principles, in practice a perturbative renormalization is also required to extract the continuum quantities for heavy-light systems. In this talk we discuss the renormalization of heavy-light vector and axial vector currents. These currents are needed for heavy quark phenomenology, such as the calculation of the decay constants and semi-leptonic form factors of heavy-light mesons. Here we calculate explicitly the mass dependent renormalization factors of heavy-light currents at one-loop order, when the heavy quark is treated with the Fermilab formalism \cite{1}. Results for the Wilson action have been obtained first in Ref. \cite{2} and preliminary results for clover action have been reported in previous lattice conferences \cite{3}. For tree-level improvement at order $1/m_Q$, we include so-called rotation term here. Tadpole-improved renormalization factors are also presented. We also calculate mass dependent Brodsky-Lepage-Mackenzie scale q^* \cite{3}, with and without tadpole-improvement. More details of this work will be given in Ref. \cite{4}.

\section{ONE-LOOP RESULTS}

The renormalization factors Z_J, of heavy-light currents are simply the ratio of the lattice and continuum radiative corrections:

$$Z_J = \frac{Z_1^{1/2} \Gamma_l Z_2^{1/2} \text{cont}}{Z_1^{1/2} \Gamma_l Z_2^{1/2} \text{lat}},$$ \hspace{1cm} (1)

where Z_{2h} and Z_{2l} are wave-function renormalization factors of the heavy and light quarks, and the vertex function Γ_l is the sum of one-particle irreducible three-point diagrams. We calculate explicitly Z_A and Z_V at one-loop order of perturbation theory.

In view of the mass dependence, we write

$$e^{-m_Q^{[0]} a/2} Z_{J, c} = 1 + \sum_{i=1}^{\infty} \theta_0^{2i} Z_{J, c}^{[i]},$$ \hspace{1cm} (2)

so that the $Z_{J, c}^{[i]}$ are only mildly mass dependent. Fig.4 plots the full mass dependence of the renormalization factors for the axial vector current $Z_{A, c}^{[1]}$. These numerical results are for the SW action with and without rotation, and also for Wilson action without rotation. Our results agree with those previously obtained, for $c_{SW} = 0$ 3.

*Talk presented by J. Harada.
†e-mail address: harada@theo.phys.sci.hiroshima-u.ac.jp
Figure 1. One-loop renormalization coefficient $Z_{A_4}^{[1]}$ as a function of am_0.

and for $c_{SW} = 1, d_1 = 0$ we find that in both cases our results smoothly interpolate from the static to massless limit. The resulting analytical expressions are in Ref. [4]. Fig. 2 plots the tadpole-improved renormalization factor for $Z_{A_4}^{[1]}$. From this figure, we can see that tadpole-improvement significantly reduces the one-loop coefficients of renormalization factors. Results for Z_{A_4} and $Z_{V_{4+i}}$ are given in Ref. [1].

The slope of our mass-dependent renormalization factors in the massless limit is related to the improvement coefficients b_J and c_J. We find

$$b_V^{[1]} = 0.153239(14),$$
$$b_A^{[1]} = 0.152189(14),$$
$$c_V^{[1]} = -0.016332(7),$$
$$c_A^{[1]} = -0.0075741(15).$$

These results agree perfectly with Ref. [1]. We also obtain by subtracting the integrands first,

$$b_V^{[1]} - b_A^{[1]} = 0.0010444(16)$$

which is more accurate than the difference of the two numbers quoted above. We find our one-loop result of $b_V - b_A$ are far from nonperturbative calculations [5].

3. SETTING THE SCALE

The typical gluon momentum q^* in the V-scheme, as suggested by Brodsky, Lepage and Mackenzie (BLM), is defined by

$$\ln(q^*^2) \equiv \frac{\int d^4q f(q) \ln(q^2)}{\int d^4q f(q)},$$

where q is the momentum of gluon, and the form $\int d^4q f(q)$ is the one-loop integral for a particular renormalization constant, for example, $\int d^4q f(q) = Z_{J_4}^{[1]}$. Previously q^* has been calculated for the light-light current [14] and the static-light current [11]. Here we calculate the mass dependent q^* for the heavy-light current. Results are plotted in Fig. 3. For Wilson action case, our results agree with Ref. [1] in the massless limit. From Fig. 3 we can see that the mass dependence of q^* is weak from massless limit to $m_0a \sim 1$, especially for clover with rotation case. The original BLM prescription of q^* breaks down at larger masses, because $Z_{J_4}^{[1]}$ (denominator in Eq. 8) goes through zero at there. A prescription for q^* in this case is given in Ref. [12]. We also calculate tadpole-improved q^* and results are plotted in Fig. 4. We can see that plaquette tadpole-improvement significantly reduces q^*, on the other hand, the reduction is rather small for κ_c tadpole-improvement. We summarize the results in the massless limit in Table 1.

We can also obtain the BLM scale for improvement coefficients b_J and c_J. Then it is interesting to compare BLM perturbation theory with non-perturbative calculations of these coefficients [14]. We will present these results for q^* and the mentioned comparison in another publication [14].

\footnotetext[3]{The coefficient d_1 is field rotation parameter. See Ref. [1].}
4. CONCLUSIONS

We have obtained one-loop results of Z_A and Z_V with tree-level rotation, which should be useful for lattice calculations of f_B and of form factors for $B \to \pi \nu \bar{\nu}$. We have also obtained the BLM scale q^* for arbitrary masses, which should reduce the uncertainty of one-loop calculations.

Acknowledgments

S.H. and T.O. are supported by the Grant-in-Aid of the Japanese Ministry of Education, (Nos.11740162, No.12640279). K.-I.I. and N.Y. are supported by the JSPS Research Fellowships. Fermilab is operated by Universities Research Association Inc., under contract with the U.S. Department of Energy.

Table 1

Action	Massless Limit	With Rotation, No Improvement	With Rotation, Tadpole Improvement	Through κ_c
Z_A	$-0.116457(2)$	$-0.033124(2)$	$-0.048938(2)$	
Z_V	$-0.133375(2)$	$-0.050042(2)$	$-0.024803(4)$	
q^*_Z	2.839	1.802	2.408	
	2.533	1.550	2.316	
q^*_Z	2.845	2.060	2.503	
	2.370	1.700	2.052	

REFERENCES

1. A. X. El-Khadra, A. S. Kronfeld, and P. B. Mackenzie, Phys. Rev. D 55, 3933 (1997).
2. Y. Kuramashi, Phys. Rev. D 58, 034507 (1998).
3. K.-I. Ishikawa et al., Nucl. Phys. B Proc. Suppl. 63, 344 (1998); K.-I. Ishikawa et al., Nucl. Phys. B Proc. Suppl. 83, 301 (2000).
4. J. Harada, S. Hashimoto, K.-I. Ishikawa, A. S. Kronfeld, T. Onogi, and N. Yamada, in preparation.
5. M. Lüscher, S. Sint, R. Sommer, and P. Weisz, Nucl. Phys. B 478, 365 (1996).
6. S. Sint and P. Weisz, Nucl. Phys. B 502, 251 (1997).
7. M. Lüscher et al., Nucl. Phys. B 491, 344 (1997); T. Bhattacharya et al., Phys. Rev. D 63, 074505 (2001).
8. S. J. Brodsky et al., Phys. Rev. D 28, 228 (1983); G. P. Lepage and P. B. Mackenzie, Phys. Rev. D 48, 2250 (1993).
9. C. Bernard, M. Golterman, and C. McNeile, Phys. Rev. D 59, 074506 (1999).
10. M. Crisafulli, V. Lubicz, and A. Vladikas, Eur. Phys. J. C 4, 145 (1998).
11. O. F. Hernandez and B. R. Hill, Phys. Rev. D 50, 495 (1994); C. Bernard, Nucl. Phys. (Proc. Suppl.)94, 159 (2001).
12. K. Hornbostel et al., Nucl. Phys. Proc. Suppl. 94, 579 (2001).
13. S. Collins et al., hep-lat/0109036.
14. J. Harada, S. Hashimoto, A. S. Kronfeld, and T. Onogi, in preparation.

Figure 3. Brodsky-Lepage-Mackenzie scale q^* for $Z_A^{[1]}$ as a function of am_0.

Figure 4. Tadpole-improved Brodsky-Lepage-Mackenzie scale q^* for $Z_A^{[1]}$ as a function of am_0.