Original citation:
Perez-Sepulveda, B., Pitt, Frances Diana, N’Guyen, A. N., Ratin, M., Garczarek, L., Millard, A. and Scanlan, David J. (2018) Relative stability of ploidy in a marine Synechococcus across various growth conditions. Environmental Microbiology. doi:10.1111/1758-2229.12614

Permanent WRAP URL:
http://wrap.warwick.ac.uk/97440

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work of researchers of the University of Warwick available open access under the following conditions.

This article is made available under the Creative Commons Attribution 4.0 International license (CC BY 4.0) and may be reused according to the conditions of the license. For more details see: http://creativecommons.org/licenses/by/4.0/

A note on versions:
The version presented in WRAP is the published version, or, version of record, and may be cited as it appears here.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk
Relative stability of ploidy in a marine Synechococcus across various growth conditions

Blanca Perez-Sepulveda,1†, Frances Pitt,1 An N. N’Guyen,2‡ Morgane Ratin,2 Laurence Garczarek,2 Andrew Millard3 and David J. Scanlan1*
1School of Life Sciences, University of Warwick, Coventry, UK.
2Sorbonne Universités, UPMC-Université Paris 06, CNRS UMR 7144, Station Biologique, Roscoff, France.
3Department of Infection Immunity and Inflammation, University of Leicester, Leicester, UK.

Introduction
Low nutrient concentration across vast tracts of the world’s oceans has meant that organisms have to compete for scarce resources (Raven, 1998). In oligotrophic waters, this has led to small cells with high surface area to volume ratios containing a plethora of nutrient transporters to optimize acquisition of these limiting resources. As well as optimising acquisition processes, organisms have also reduced demand, leading to genome streamlining in dominant phototroph [e.g., Prochlorococcus, see Partensky and Garczarek (2010)], and heterotroph [e.g., SAR11, see Giovannoni et al. (2005)] populations, as well as a decline in %GC content, reducing nitrogen (N) requirements per genome. More specifically in P-deplete waters, a replacement of phosphorus (P) containing lipids for non-P containing lipids occurs, again conserving or recycling previously obtained resources (Van Mooy et al., 2006; Carini et al., 2015; Sebastián et al., 2016). Such resource acquisition or minimization strategies is to some extent in contrast to the observation of the release of extracellular vesicles by such organisms in which hard won resources (proteins, nucleic acids or lipids) are ‘lost’ to the environment, presumably due to specific communication or horizontal gene transfer functions (Biller et al., 2014).

In cyanobacteria, another potential contradiction to the idea of reducing resource utilization during growth in nutrient poor environments is that many strains of cyanobacteria are known to be oligoploid or polyploid, i.e., contain multiple copies of their chromosome (Grieß et al., 2011). Such multiplication of genome copies is in direct contrast to the phenomenon of genome streamlining, where many genes have been lost (Kettler et al., 2007) or potentially outsourced (Morris et al., 2012). High levels of ploidy appear particularly prevalent in freshwater cyanobacteria (Grieß et al., 2011), including unicellular species such as Synechocystis sp. PCC 6803, the latter strain also demonstrating high variability in chromosome copy number dependent on growth conditions (Zerulla et al., 2016). In contrast, members of the marine Synechococcus lineage, which are ubiquitous in oceanic waters (see Scanlan et al., 2009; Scanlan, 2012), are largely monoploid in those few strains characterized (Armbrust et al., 1998; Binder and Chisholm, 1995; Grieß et al., 2011), potentially consistent with...

Summary
Marine picocyanobacteria of the genus Synechococcus are ubiquitous phototrophs in oceanic systems. Consistent with these organisms occupying vast tracts of the nutrient impoverished ocean, most marine Synechococcus so far studied are monoploid, i.e., contain a single chromosome copy. The exception is the oligoploid strain Synechococcus sp. WH7803, which on average possesses around 4 chromosome copies. Here, we set out to understand the role of resource availability (through nutrient deplete growth) and physical stressors (UV, exposure to low and high temperature) in regulating ploidy level in this strain. Using qPCR to assay ploidy status we demonstrate the relative stability of chromosome copy number in Synechococcus sp. WH7803. Such robustness in maintaining an oligoploid status even under nutrient and physical stress is indicative of a fundamental role, perhaps facilitating recombination of damaged DNA regions as a result of prolonged exposure to oxidative stress, or allowing added flexibility in gene expression via possessing multiple alleles.

Received 23 August, 2017; accepted 6 January, 2018. *For correspondence. E-mail d.j.scanlan@warwick.ac.uk; Tel. (+44) 24 76 528363; Fax (+44) 24 76 523701. Present addresses: 1Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, UK. 2Institute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam

© 2018 The Authors. Environmental Microbiology published by Society for Applied Microbiology and JohnWiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
inhabiting this resource limited environment. However, an exception is marine Synechococcus sp. WH7803 that possesses between 3 and 10 chromosome copies, dependent on the method of assessment, i.e., flow cytometry or qPCR (Binder and Chisholm, 1995; Griese et al., 2011). Given that Synechococcus sp. WH7803 is one of the few genetically tractable marine Synechococcus strains (Brahamsha, 1996) we set out here to determine if ploidy status in this strain is regulated by various environmental parameters to ultimately give us a window into understanding the role of ploidy in these organisms.

Results and discussion

Ploidy level in Synechococcus sp. WH7803 was determined by qPCR. For more details on the materials and methods, please refer to Appendix S1. DNA extraction for the qPCR assay used mechanical lysis, which was shown to be highly efficient at lysing cellular material compared to chemical lysis (data not shown). The detection limit for the qPCR assay was 10 000 cells (Supporting Information Fig. S1), which was determined by flow cytometric sorting of Synechococcus sp. WH7803 cells. Salts in the artificial seawater medium inhibited the qPCR reaction, detecting an order of magnitude less material (Supporting Information Fig. S1). To avoid salt inhibition of the qPCR, different methods were tested for desalting the DNA samples before assay. The most efficient method, i.e., requiring the least amount of time for desalting and without losing DNA, was centrifugation, re-suspension with nuclease-free water and mechanical lysis of cells (Supporting Information Fig. S1). As a control for the potential oligoploid nature of Synechococcus sp. WH7803, we also assessed chromosome copy number in a ‘sister’ strain Synechococcus sp. WH7805, which was previously suggested to be monoploid based on flow cytometry analysis (Binder and Chisholm, 1995). Both Synechococcus strains were isolated in the same year (1978) and from the same location (33°45′N, 67°30′W) in the Sargasso Sea at 25 m depth (Waterbury et al., 1986) and are closely related phylogenetically (Urbach et al., 1998; Fuller et al., 2003; Farrant et al., 2016), providing an appropriate comparison of ploidy status. Primer selection for the qPCR assay for Synechococcus sp. WH7803 and WH7805 was based both on their specificity to each strain and that the same amplification efficiency for each primer set was obtained (see Supporting Information Fig. S2).

Chromosome copy number was determined using both Synechococcus sp. WH7805 cells alone or with an equimolar amount of Synechococcus sp. WH7803 cells to assess the reproducibility of the release of nucleic acids by cell lysis. Both experiments gave the same results, with an average of 4.6 ± 2.2 copies for Synechococcus sp. WH7803 compared to 1.1 ± 0.3 copies of the Synechococcus sp. WH7805 chromosome per cell, confirming the oligoploid nature of Synechococcus sp. WH7803 and that Synechococcus sp. WH7805 is monoploid. It is important to remember that these copy number values represent a population average with the potential in Synechococcus sp. WH7803 at least, that copy number in individual cells is more variable.

Given the higher chromosome copy number in Synechococcus sp. WH7803 compared to Synechococcus sp. WH7805, this could suggest an increase in cell size in the former strain. We thus assessed cell size by flow cytometry following staining with SYBR Green I in a mix of Synechococcus sp. WH7803 and WH7805 cells obtained from the exponential phase of growth. Forward scatter as a proxy for cell size showed cells of both cultures were the same size (Fig. 1A), whereas a shift in green fluorescence was observed for Synechococcus sp. WH7803 (Fig. 1B). This indicates that whilst the DNA content was higher in Synechococcus sp. WH7803, cell size was the same for both strains.

Fig. 1. Flow cytometry plot of a mixed culture of Synechococcus sp. WH7805 and Synechococcus sp. WH7803 stained with SYBR green I. (A) Orange fluorescence (580 nm), for detection of phycoerythrin, versus forward scatter. (B) Orange fluorescence versus green fluorescence (530 nm), for detection of SYBR green I DNA staining. Synechococcus sp. WH7803 and Synechococcus sp. WH7805 cells are indicated by purple and red circles respectively.

© 2018 The Authors. Environmental Microbiology published by Society for Applied Microbiology and JohnWiley & Sons Ltd, Environmental Microbiology Reports, 00, 00–00
Optimal segregation of chromosomes to daughter cells with accurate mid-cell septum placement allows for near-the long axis of the cell in a uniform way, which along with the long axis of the cell in a uniform way, which along with accurate mid-cell septum placement allows for near-optimal segregation of chromosomes to daughter cells (Jain et al., 2012). In contrast, in Synechocystis sp. PCC 6803, segregation occurs late during the cell cycle potentially in a random and passive way (Schneider et al., 2007) similar to that found in a filamentous cyanobacterium (Hu et al., 2017). However, no information is currently available for marine Synechococcus strains.

How does variation in environmental conditions affect Synechococcus sp. WH7803 chromosome copy number?

Synechococcus sp. WH7803 grown under -N, -P or -Fe conditions showed a relatively stable chromosome copy number (Table 1) despite either a reduced growth rate (-P conditions) or growth arrest (-Fe, -N) (Bergkessel et al., 2016). Specifically, the copy number per cell decreased marginally by 1.2 ± 0.5 chromosome copies per cell under -N and -P conditions compared to the control (t test: P < 0.05), but more so under Fe starvation (1.9 ± 0.4 fewer chromosomes per cell; t test: P < 0.0001) (Table 1, Fig. 3). The marginal decrease in chromosome copy number under P-deplete conditions in Synechococcus sp. WH7803 contrasts with that observed in the archaeon H. volcanii and the cyanobacterium Synechocystis sp. PCC 6803, which decrease chromosome copy number substantially under such conditions, from 20 under normal growth conditions to 2 under P-deplete growth (H. volcanii, Zerulla et al., 2014)) or from 50 (P-rich) to 1 (P-starved) for Synechocystis sp. PCC 6803 (Zerulla et al., 2016).

Physical stressors (high temperature, low temperature and UV exposure) also had little effect on the ploidy status of Synechococcus sp. WH7803 with no significant difference compared to unstressed control cultures (t test: P > 0.05; Table 1).

Conclusions

Synechococcus sp. WH7803 appears unusual amongst those marine Synechococcus strains assessed for ploidy.

Table 1. Synechococcus sp. WH7803 growth rates and chromosome copy number under nutrient deplete and physical stress conditions.

Condition	\(\mu\) [d\(^{-1}\)]	Chromosomes cell\(^{-1}\)a	CV %
Control	0.24 ± 0.01	4.8 ± 1.4	28
-P	0.16 ± 0.02	3.7 ± 1.4	36
-N	0.19 ± 0.03	3.7 ± 1.4	36
-Fe	0.14 ± 0.03	3.0 ± 1.1	36
UV	nd	5.1 ± 1.7	33
High temperature	nd	4.7 ± 1.8	37
Low temperature	nd	4.2 ± 1.9	46

a. Average chromosomes cell\(^{-1}\) across all time points.

CV %, Coefficient of variation expressed in percentage.

Fig. 2. Assessment of chromosome copy number in Synechococcus sp. WH7803 through the growth phase.

We next determined chromosome copy number in Synechococcus sp. WH7803 during the lag phase, mid exponential, late exponential and early stationary phases of growth (Fig. 2). Ploidy level remained relatively stable throughout growth with a mean of 4.8 ± 1.4 copies per cell and no significant difference (t test: P > 0.05) between phases, though with a higher value at the end of the lag phase (ca 6 copies per cell) and lower value towards the end of the linear phase (ca 3 copies per cell). Note though the relatively high coefficient of variation between replicates (CV = 28%), which as mentioned above may be linked to the additional variability in chromosome copy number in individual cells.

The relative stability of chromosome copy number in Synechococcus sp. WH7803 during growth is similar to that observed in the oligoploid freshwater cyanobacterium Synechococcus elongatus PCC 7942 (Griese et al., 2011), which also shows an increase in ploidy at the end of the lag phase (Watanabe et al., 2015). In contrast, the Archaea Halobacterium salinarum and Halovorax volcanii and the freshwater cyanobacterium Synechocystis sp. PCC 6803 all show higher chromosome copy numbers during exponential growth phase and a subsequent reduction in ploidy level when cells enter stationary phase (Breuer et al., 2006; Griese et al., 2011). Explaining such differences in chromosome copy number across growth also requires knowledge of how chromosomes segregate during cell division. In Synechococcus elongatus PCC 7942, chromosomes are spatially ordered along the long axis of the cell in a uniform way, which along with accurate mid-cell septum placement allows for near-optimal segregation of chromosomes to daughter cells (Jain et al., 2012). In contrast, in Synechocystis sp. PCC 6803, segregation occurs late during the cell cycle potentially in a random and passive way (Schneider et al., 2007) similar to that found in a filamentous cyanobacterium (Hu et al., 2017). However, no information is currently available for marine Synechococcus strains.

How does variation in environmental conditions affect Synechococcus sp. WH7803 chromosome copy number?

Synechococcus sp. WH7803 grown under -N, -P or -Fe conditions showed a relatively stable chromosome copy number (Table 1) despite either a reduced growth rate (-P conditions) or growth arrest (-Fe, -N) (Bergkessel et al., 2016). Specifically, the copy number per cell decreased marginally by 1.2 ± 0.5 chromosome copies per cell under -N and -P conditions compared to the control (t test: P < 0.05), but more so under Fe starvation (1.9 ± 0.4 fewer chromosomes per cell; t test: P < 0.0001) (Table 1, Fig. 3). The marginal decrease in chromosome copy number under P-deplete conditions in Synechococcus sp. WH7803 contrasts with that observed in the archaeon H. volcanii and the cyanobacterium Synechocystis sp. PCC 6803, which decrease chromosome copy number substantially under such conditions, from 20 under normal growth conditions to 2 under P-deplete growth (H. volcanii, Zerulla et al., 2014)) or from 50 (P-rich) to 1 (P-starved) for Synechocystis sp. PCC 6803 (Zerulla et al., 2016).

Physical stressors (high temperature, low temperature and UV exposure) also had little effect on the ploidy status of Synechococcus sp. WH7803 with no significant difference compared to unstressed control cultures (t test: P > 0.05; Table 1).

Conclusions

Synechococcus sp. WH7803 appears unusual amongst those marine Synechococcus strains assessed for ploidy.
status in containing on average around 4 chromosome copies per cell. As shown here, such a ploidy status appears relatively invariant irrespective of environmental conditions and whilst it is unknown whether polyploidy only arose following isolation of this organism into culture, ploidy level indeed appears stable across time given similar indications of ploidy in the same strain in the mid-90’s (Binder and Chisholm, 1995). In contrast, most marine Synechococcus so far examined appear to be monoploid, including Synechococcus sp. WH7805, a strain closely related to WH7803 and despite the growth of these strains in a nutrient-rich medium over several decades. Such a monoploid nature is consistent with the idea of reducing resource demand for organisms inhabiting nutrient-poor conditions but does not explain the polyploid character of the Synechococcus sp. WH7803 strain. Perhaps a polyploid species like WH7803 possesses gene/DNA sequence redundancy that could facilitate recombination of DNA damaged regions as result of oxidative stress resulting, e.g., from prolonged exposure to high irradiance or UV radiation, using unmodified chromosomes as a template. Alternatively, ploidy may allow added flexibility in gene expression via possessing multiple alleles, a phenomenon recently observed in a diploid diatom (Mock et al., 2017), providing an advantage over monoploid organisms to adapt to different environments and threats (Mock et al., 2001; Soppa, 2013). Certainly, further work is required to assess whether the WH7803 strain is unusual in this respect or whether polyploidy is more prevalent in natural marine Synechococcus populations than currently thought.

Acknowledgements

We would like to thank J. Pittera, H. Doré, C. Six, T. Grébert and F. Partensky for their help with sampling. This work was supported by the UK Natural Environment Research Council through Research Grant NE/N003241/1 and by the French ‘Agence Nationale de la Recherche’ program SAMOSA (ANR-13-ADAP-0010). B.P.S. was in receipt of a Chancellor’s International PhD Scholarship from the University of Warwick.

References

Armbrust, E.V., Bowen, J.D., Olson, R.J., and Chisholm, S.W. (1989) Effect of light on the cell cycle of a marine Synechococcus strain. Appl Environ Microbiol 55: 425–432.

Bergkessel, M., Basta, D.W., and Newman, D.K. (2016) The physiology of growth arrest: uniting molecular and environmental microbiology. Nat Rev Microbiol 14: 549–562.

Biller, S.J., Schubotz, F., Roggensack, S.E., Thompson, A.W., Summons, R.E., and Chisholm, S.W. (2014) Bacterial vesicles in marine ecosystems. Science 343: 183–186.
Scalan, D.J., Ostrowski, M., Mazar, S., Dufresne, A., Garazzere, L., Hess, W.R., et al. (2009) Ecological genomics of marine picocyanobacteria. *Microbiol Mol Biol Rev* 73: 249–299.

Schneider, D., Fuhrmann, E., Scholz, I., Hess, W.R., and Graumann, P.L. (2007) Fluorescence staining of live cyanobacterial cells suggest non-stringent chromosome segregation and absence of a connection between cytoplasmic and thylakoid membranes. *BMC Cell Biol* 8: 39.

Sebastián, M., Smith, A.F., González, J.M., Fredricks, H.F., Van Mooy, B.A.S., Kobilízek, M., et al. (2016) Lipid remodelling is a widespread strategy in marine heterotrophic bacteria upon phosphorus deficiency. *ISME J* 10: 968–978.

Soppa, J. (2013) Evolutionary advantages of polyploidy in halophilic archaea. *Biochem Soc Trans* 41: 339–343.

Urbach, E., Scanlan, D.J., Distel, D.L., Waterbury, J.B., and Chisholm, S.W. (1998) Rapid diversification of marine picophytoplankton with dissimilar light-harvesting structures inferred from sequences of *Prochlorococcus* and *Synechococcus* (cyanobacteria). *J Mol Evol* 46: 188–201.

Van Mooy, B.A.S., Rocap, G., Fredricks, H.F., Evans, C.T., and Devol, A.H. (2006) Sulfolipids dramatically decrease phosphorus demand by picocyanobacteria in oligotrophic marine environments. *Proc Natl Acad Sci USA* 103: 8607–8612.

Watanaabe, S., Ohbayashi, R., Kanesaki, Y., Saito, N., Chibazakura, T., Soga, T., et al. (2015) Intensive DNA replication and metabolism during the lag phase in cyanobacteria. *PLoS One* 10: e0136800.

Waterbury, J.B., Watson, S., Valois, F.W., Franks, D. (1986) Biological and ecological characterization of the marine unicellular cyanobacterium *Synechococcus*. In *Photosynthetic Picoplankton*. Platt, T., Li, W.K.W. (eds.). Canadian Bull Fish Aquatic Sci 214: 71–120.

Zerulla, K., Chimiwski, S., Nather, D., Gophna, U., Papke, R.T., and Soppa, J. (2014) DNA as a phosphate storage polymer and the alternative advantages of polyploidy for growth or survival. *PLoS One* 9: e0134819.

Zerulla, K., Ludt, K., and Soppa, J. (2016) The ploidy level of *Synechocystis* sp.PCC 6803 is highly variable and is influenced by growth phase and by chemical and physical external parameters. *Microbiology* 162: 730–739.

Supporting Information

Additional Supporting Information may be found in the online version of this article at the publisher’s web-site:

Fig. S1. Assessing the detection limit and the effect of salt on qPCR quantification of chromosome copy number in *Synechococcus* sp. WH7803 and WH7805. 10^n–10^5 sorted *Synechococcus* sp. WH7803 cells were used for qPCR with ASW medium (black circles) or washed with nuclease free water (white circles) to remove excess salt. The detection limit was determined to be 10^4 cells.

Fig. S2. Standard curves constructed with *Synechococcus* sp. WH7803 and WH7805 genomic DNA. The efficiency is calculated as R^2.