Association Between Dehydroepiandrosterone Sulphate Levels at 7 Years Old
And Bone Mineral Density At 10 Years Old – a Prospective Cohort Study

Rita Santos-Silva (ritasantossilva@gmail.com)
Universidade do Porto Faculdade de Medicina
https://orcid.org/0000-0002-0338-3399

Manuel Fontoura
Universidade do Porto Faculdade de Medicina

Milton Severo
Universidade do Porto Instituto de Saude Publica

Raquel Lucas
Universidade do Porto Instituto de Saúde Pública: Universidade do Porto Instituto de Saude Publica

Ana Cristina Santos
Universidade do Porto Instituto de Saude Publica

Research Article

Keywords: dehydroepiandrosterone sulphate, adrenarche, areal bone mineral density, dual-energy X-ray absorptiometry, Generation XXI

Posted Date: November 29th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-1082719/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Version of Record: A version of this preprint was published at European Journal of Pediatrics on March 16th, 2022. See the published version at https://doi.org/10.1007/s00431-022-04442-7.
Abstract

We aimed to explore the effect of dehydroepiandrosterone sulphate (DHEAS) at age 7 on areal bone mineral density (aBMD) at age 10, and to distinguish the direct and indirect effects (explained by sexual maturity and by aBMD at age 7), for each sex, after adjustment for body mass index z-score (BMI).

In a subsample of 274 children (139 girls, 135 boys) from the Generation XXI cohort, aBMD was assessed with dual-energy x-ray absorptiometry (DXA) scan at age 7 and age 10. The increase in aBMD at age 10 for each 10 µg/dL increase in DHEAS levels at age 7 was estimated using path analysis. Both the direct and the indirect effects were calculated.

In girls, higher DHEAS levels at age 7 were associated with higher aBMD at age 10. No direct effect was observed. The indirect effect via higher aBMD at age 7 explained 61% of the total effect, and the indirect effect via higher Tanner stage explained 21%. After adjustment for BMI, the total effect remained statistically significant, explained in 33% by the indirect effect of DHEAS on Tanner stage and Tanner stage on aBMD. In boys, no effect of DHEAS on aBMD was observed.

Conclusion: An indirect effect of DHEAS at age 7 on aBMD at age 10 was found in girls, but not in boys, as higher DHEAS levels were associated with more advanced sexual maturity at age 10, and more advanced sexual maturity to higher aBMD. No direct effect of DHEAS on aBMD was observed.

What Is Known

- Conditions associated with elevated DHEAS, adrenarche's biomarker, are accompanied by advanced bone maturity.
- Whether adrenal androgens influence bone mineralization in childhood remains puzzling and longitudinal data is scarce.

What is new

- In girls, but not in boys, higher DHEAS at age 7 was associated with higher aBMD at age 10.
- This was partially explained by the indirect effect of DHEAS at age 7 on sexual maturity at age 10, as DHEAS at age 7 was positively associated with sexual maturity at age 10, which was further associated with aBMD.

Introduction

Adrenarche is the progressive peripubertal maturation of the adrenal zona reticularis, resulting in increasing amounts of androgen precursors, including dehydroepiandrosterone (DHEA) and its sulphate (DHEAS). Although new data suggest that 11-oxygenated C19 adrenal-derived steroids are the main bioactive androgens during adrenarche [1], DHEAS has been widely used as the biomarker of adrenal androgen production [2–4]. DHEAS is generally detectable using standard laboratory techniques from 5 to 6 years of age onwards, while the clinical manifestations of adrenarche, including the appearance of pubic and axillary hair, apocrine body odor, acne, and seborrhea, are usually seen in girls after the age of 8 and in boys after the age of 9 [2–4].

DHEAS, weakly androgenic, is a precursor steroid in the pathway to more potent androgens and estrogens. Although it has been suggested that DHEAS has beneficial effects in aging, metabolism, and neurologic function [5, 6], it is unclear which functions it exerts on its own. Higher DHEAS levels in prepuberty have been associated with obesity and lower birth weight [7–10], and also with earlier puberty in girls, but not in boys [11; 12].

Bone growth accelerates during puberty, initially in length, followed by width, mineral content, and density [13]. Most of the bone mass is obtained during adolescence and young adulthood, and the rate of bone mineral accrual peaks around menarche in girls [13]. Bone modelling and growth in childhood and early puberty are influenced by genetic, intrauterine programming, nutrition, physical activity, and hormones, mainly gonadal sex steroids and insulin growth factor 1 (IGF1) [13–16]. Research has focused on the influence of estrogens on bone mass, while the role of the androgen hormones, especially adrenal-derived steroids, is less certain [17].

Androgens can affect the bone indirectly through aromatization to estrogens, which promote linear growth, increase calcium absorption, and decrease bone turnover [18; 19]. Androgens also directly stimulate osteoblast proliferation and differentiation, skeleton maturation, longitudinal bone growth and epiphyseal closure, via liaison with the bone's androgen receptors [17; 19-21].

Conditions associated with elevated DHEAS levels, like premature adrenarche or congenital adrenal hyperplasia, are accompanied by advanced bone age, together with height velocity [14; 22-26], suggesting that DHEAS may have an effect in skeletal maturation. DHEAS also indirectly influences bone mineralization, as a substrate in the formation of more potent androgens or estrogens and as a stimulus to other bone remodeling hormones, such as IGF1 [19]. However, whether DHEAS plays a significant direct role in bone mineralization during childhood is not totally clear, and data on the effect of DHEAS on bone mass in prepubescent children and adolescents are scarce and inconsistent [15; 26-33].

Thus, we sought to explore the effect of DHEAS at age 7 on bone mineral density (BMD) at age 10, and to distinguish the direct and indirect effects (explained by sexual maturity and by aBMD at age 7), considering sex differences and after adjustment for body mass index (BMI) z-score.

Material And Methods

Study population and design
The study participants are a subsample of children included in a prospective birth cohort, Generation XXI, whose full details have been published elsewhere [34; 35].

The recruitment of participants was conducted in 2005/2006 in all five public maternities of the metropolitan area of Porto, Portugal. Of the invited mothers, 8495 agreed to participate (91%) and a total of 8647 newborns were enrolled. At ages 4, 7 and 10 years old, all Generation XXI participants were invited to a face-to-face follow-up evaluation. Of the 8647 initial cohort members, 7459 (86%), 6889 (80%), and 6392 (74%) were assessed at the 4-, 7-, and 10-year-old follow-up evaluations, respectively. The follow-up visits included a physical examination and fasting blood sample, according to standard procedures.

From those that attended the 7-year-old follow-up, 700 prepubescent children were randomly selected and their DHEAS levels were measured, as part of a study on adrenarche [10]. Among these 700 prepubescent children, 274 (139 girls and 135 boys) had complete information in all variables analyzed, including a full-body dual-energy X-ray absorptiometry (DXA) scan at 7 and 10 years old. A comparison between those of the 700 who were included in the complete information analysis and those who were not is depicted in Supplementary Table 1.

Data collection

At the baseline, data on maternal demographic and socioeconomic characteristics, lifestyle, obstetric history, pre-pregnancy anthropometrics, and personal history of diseases, were collected by trained interviewers, using structured questionnaires, during the hospital stay.

Data on delivery and newborn characteristics (including gestational age, birth weight, and length) were additionally extracted from clinical records [34; 35]. Birth weight and length were transformed in z-scores according to the Fenton growth charts [36].

Anthropometric measurements

At 4, 7, and 10 years of age, trained researchers performed anthropometric measurements, with the child in underwear and bare feet. Weight was measured to the nearest 0.1 kg using a digital scale (Tanita®, Arlington Heights, IL, USA), and standing height was measured to the nearest 0.1 cm using a wall stadiometer (Seca®, Hamburg, Germany). BMI was calculated by dividing weight (kg) by squared height (m²). BMI was transformed into age and sex-specific z-scores using World Health Organization (WHO) standards [37].

DXA-derived bone measures and body composition

At ages 7 and 10, whole-body DXA scans were performed using a Hologic Discovery QDR® 4500W device (software version 13.3.0.1; Hologic Inc., Bedford, MA, USA) according to standard manufacturer’s protocol, while the child was in underwear and with the bladder emptied. Standard quality assurance tests were performed daily using the spine phantom according to the manufacturer’s instructions. Scans were evaluated immediately after acquisition and later validated by a second technician. Total body less head (subtotal) bone mineral content (BMC) (g) and areal BMD (aBMD) (g/cm²) were obtained, according to the International Society of Clinical Densitometry recommendation [38]. Fat and lean mass (g), and body fat percentage (%) were also assessed by DXA scan.

Sexual maturity evaluation

Sexual development evaluation was conducted by trained observers according to the sexual maturity ratings including breast changes in females, genital changes in males, and pubic hair changes in both females and males (Tanner stages) [39]. In girls, breasts were evaluated by inspection and palpation, and in boys, testicular volume was assessed by palpation using the Prader orchidometer. Included participants were classified as Tanner stage I, II, III, IV or V. Prepuberty was defined as Tanner stage I.

Biochemical analysis

DHEAS levels were measured in blood (serum) collected at the 7-year-old follow-up visit, by electrochemiluminescence immunoassays on the Roche cobas e411 analyzer (Roche Diagnostics, Basel, Switzerland). An overnight fasting venous blood sample was obtained before 11:00 a.m., after applying topical analgesic with lidocaine/prilocaine (EMLA cream).

Statistical analysis

Categorical and continuous variables were presented as counts (proportions), and mean and standard deviation (SD). The chi-square and the t-test for two independent samples were used to evaluate differences between sexes. The partial correlation test adjusted for age, sex and BMI z-score was applied to analyze the associations between aBMD and anthropometric and hormonal indicators. This analysis was performed using SPSS® (v.24; SPSS, IBM Corp., Armonk, NY, USA).

Path analysis was used to estimate crude and adjusted linear regression coefficients (β) and 95% confidence intervals (95% CI), which represent the increase in aBMD (g/cm²) at 10 years old for each 10 µg/dL increase in DHEAS at 7 years old. Path analysis was conducted based on the theoretical model depicted in Figure 1. Since bone size and aBMD increase with body height and weight [15; 16; 40; 41], BMI along with age, sex, and the stage of puberty, should be considered when assessing determinants of BMD in children and adolescents [16; 19]. Thus, our adjusted model included BMI z-score at 7 years old, aBMD at 7 years old, and Tanner stage at 10 years old as explanatory variables. Considering sex differences in pubescent development timing and bone mass increase, boys and girls were analyzed separately.

Path analysis was performed with the lavaan [42] package from R software version 4.0.3; 95% CI was calculated by bootstrapping. Full information maximum likelihood estimation was used to handle missing values, assuming missing at random [43]. The fit of the models was assessed using different indexes: the Comparative Fit Index (CFI) [44], the Tucker–Lewis Index (TLI) [45], and the Root Mean Square Error of Approximation (RMSEA) [46]. A good model fit is indicated by a CFI and TLI values ≥ 0.90 and values of RMSEA lower than 0.08. The final model had CFI 1.000, TLI 1.029, RMSEA 0.000 (girls) and CFI 1.000, TLI 1.003, RMSEA 0.000 (boys).
Results

Sample characteristics

Characteristics of the 274 participants (139 girls and 135 boys), and the comparison between sexes, are shown in Table 1. Evaluations were conducted at a mean age of 7.1 (SD: 0.2) years old and 10.1 (SD: 0.2) years old, with no sex differences. Neonatal and maternal characteristics were similar in boys and girls.
Table 1
Anthropometric, metabolic, and hormonal characteristics of the participants at birth, 7 and 10 years, and maternal characteristics, by sex

At birth	All (n=274)	Girls (n=139)	Boys (n=135)	p-value
Gestational age (weeks), mean (SD)	38.8 (1.5)	38.8 (1.6)	38.7 (1.4)	0.232*
Birth weight (grams), mean (SD)	3228 (463)	3153 (452)	3303 (463)	0.458*
Birth length (cm), mean (SD)	49.0 (2.2)	48.6 (2.1)	49.4 (2.1)	0.926*

At 7 years old	All (n=274)	Girls (n=139)	Boys (n=135)	p-value
Age (years), mean (SD)	7.1 (0.2)	7.1 (0.2)	7.1 (0.3)	0.210*
Weight (kg), mean (SD)	26.5 (5.1)	26.4 (5.5)	26.6 (4.8)	0.007*
Height (cm), mean (SD)	141.8 (6.3)	141.6 (6.5)	142.0 (6.0)	0.373*
BMI (kg/m2), mean (SD)	18.9 (3.4)	19.1 (3.6)	18.6 (3.1)	0.004*
BMI z-score, mean (SD)	0.7 (1.2)	0.8 (1.1)	0.7 (1.2)	0.712*
Fat mass (DXA) (g), mean (SD)	8026 (3628)	8908 (3814)	7121 (3194)	0.007*
Lean mass (DXA) (g), mean (SD)	15704 (2485)	15009 (2424)	16417 (2349)	0.647*
Body fat (%), mean (SD)	32.6 (7.8)	35.9 (7.3)	29.2 (6.7)	0.064*
DXA-derived aBMD (g/cm2)	0.63 (0.06)	0.62 (0.06)	0.63 (0.05)	0.059*
DXA-derived BMC (g)	611.0 (89.1)	600.8 (91.4)	621.5 (85.8)	0.360*
DHEAS (µg/dL), mean (SD)	45.5 (32.5)	46.8 (31.6)	44.1 (33.4)	0.335*

At 10 years old	All (n=274)	Girls (n=139)	Boys (n=135)	p-value
Age (years), mean (SD)	10.1 (0.2)	7.1 (0.2)	7.1 (0.2)	0.705*
Weight (kg), mean (SD)	38.2 (8.6)	38.5 (9.2)	37.8 (7.9)	0.002*
Height (cm), mean (SD)	141.8 (6.3)	141.6 (6.5)	142.0 (6.0)	0.373*
BMI (kg/m2), mean (SD)	18.9 (3.4)	19.1 (3.6)	18.6 (3.1)	0.004*
BMI z-score, mean (SD)	0.7 (1.2)	0.7 (1.2)	0.8 (1.2)	0.378*
Fat mass (DXA) (g), mean (SD)	14079 (6628)	14892 (6712)	13245 (6454)	0.578*
Lean mass (DXA) (g), mean (SD)	25252 (4894)	25084 (4782)	25424 (5013)	0.515*
Body fat (%), mean (SD)	34.5 (8.1)	35.9 (7.6)	32.9 (8.3)	0.299*
Tanner stage, n (%)	127 (46%)	31 (22%)	96 (71%)	<0.001¥
- Tanner I	94 (34%)	58 (42%)	36 (27%)	
- Tanner II	46 (17%)	43 (31%)	3 (2%)	
- Tanner III	7 (3%)	7 (5%)	0 (0%)	
- Tanner IV	0 (0%)	0 (0%)	0 (0%)	
- Tanner V	0 (0%)	0 (0%)	0 (0%)	
DXA-derived aBMD (g/cm2)	0.81 (0.08)	0.81 (0.09)	0.80 (0.07)	<0.001¥
DXA-derived BMC (g)	1041.2 (222.8)	1065.2 (238.4)	1016.6 (203.3)	0.005*

Maternal characteristics

Maternal height (cm), mean (SD)	159.5 (5.6)	159.8 (5.7)	159.2 (5.5)	0.452*
Maternal pre-pregnancy BMI (kg/m²), mean (SD)	23.9 (4.2)	24.0 (4.3)	23.9 (4.0)	0.313*
Weight gain during pregnancy (kg), mean (SD)	13.7 (5.9)	13.3 (5.9)	14.1 (5.9)	0.959*
Maternal age at menarche (years), mean (SD)	12.3 (1.5)	12.3 (1.5)	12.3 (1.5)	0.554*

Abbreviations: DHEAS – dehydroepiandrosterone sulphate; BMI – body mass index; DXA – dual-energy x-ray absorptiometry; aBMD – areal bone mineral density; BMC – bone mineral content

*T-Test ¥Pearson's Chi-square Test

BMI z-scores according to the WHO standards [37]
At age 7, girls had higher mean fat mass than boys (8,908 [SD: 3,814] versus 7,121 [SD: 3,194] g, p=0.007). Mean DHEAS levels were similar in both sexes (girls: 46.8 [SD: 31.6] µg/dL; boys: 44.1 [SD: 33.4] µg/dL; p=0.335). No differences were found in DXA-derived bone parameters (Table 1).

At 10 years old, girls presented higher mean aBMD than boys (0.81 [SD: 0.09] versus 0.80 [SD: 0.07] g/cm², p<0.001). Differences in Tanner stage at 10 years old were also observed, as most boys were Tanner stage I (71%), while only 22% of the girls were prepubescent (p<0.001). No other significant differences were found in anthropometry or body composition at age 10 (Table 1).

Partial correlations

Partial correlation coefficients between aBMD at 7 and 10 years old and independent variables, for the whole sample, are summarized in Table 2. Areal BMD at 7 years old correlated positively with birth length, height, fat and lean mass at 7 years old, and DHEAS levels at 7 years old, after adjustment for age, sex and BMI z-score. Areal BMD at 10 years old correlated positively with height, fat and lean mass at 7 years old, and with height and lean mass (but not fat mass) at 10 years old, after controlling for age, sex and BMI z-score. Areal BMD at 10 years old also correlated positively with DHEAS levels at 7 years old and aBMD at 7 years old, adjusted for age, sex and BMI z-score.

Table 2

	aBMD (g/cm²) 7y, r (p)	aBMD (g/cm²) 10y, r (p)
Birth weight z-score	0.108 (0.061)*	-0.033 (0.585)**
Birth length z-score	0.157 (0.006)*	0.054 (0.378)**
Height 7y z-score	0.631 (<0.001)*	0.549 (<0.001)**
Fat mass 7y (g)	0.136 (0.018)*	0.172 (0.005)**
Lean mass 7y (g)	0.365 (<0.001)*	0.552 (0.005)**
DHEAS 7y (µg/dL)	0.777 (<0.001)*	0.171 (0.005)**
aBMD (g/cm²) 7y, r (p)	-	0.717 (<0.001)**
Height 10y z-score	-	0.621 (<0.001)**
Fat mass 10y (g)	-	-0.005 (0.936)**
Lean mass 10y (g)	-	0.723 (<0.001)**

*Analyzed by partial correlation test adjusted for age, sex and BMI 7y z-score

**Analyzed by partial correlation test adjusted for age, sex and BMI 10y z-score

Abbreviations: DHEAS – dehydroepiandrosterone sulphate; BMI – body mass index; aBMD – areal bone mineral density; r – correlation coefficient

Birth weight and length z-scores according to the Fenton growth charts [36] and BMI z-scores according to the WHO standards [37]

Path analysis

A mediation analysis is depicted in Figure 1. It comprises the estimated total, direct, and indirect effects of 10 µg/dL increase in DHEAS at age 7 in aBMD (g/cm²) at age 10, stratified by sex.

In girls, crude analysis showed that higher DHEAS at age 7 was associated with higher aBMD at age 10 (β = 0.007 [95% CI: 0.004; 0.010], p<0.001) (Figure 1, ab + ed + c). This total association was mainly explained by indirect effects. Higher DHEAS at age 7 was associated with higher Tanner stage at age 10, and higher Tanner stage was associated with higher aBMD, and this indirect effect represented 21% of the total effect (p=0.001) (Figure 1, ed). Higher DHEAS at age 7 was also associated with higher aBMD at age 7, and higher aBMD at age 7 was associated with higher aBMD at age 10, and this indirect effect explained 61% of the total effect (p<0.001) (Figure 1, ab). No direct effect of DHEAS at age 7 in aBMD at age 10 was observed (Figure 1, c) (Table 3).
Obese and overweight prepubescent children present higher DHEAS levels \[7; 9\] and higher androgen levels are associated with changes in body composition, bone size and aBMD increase with height and weight \[15; 16; 40; 41\]. Hence, BMI, along with sex and the stage of puberty, was considered in our analyses. Sexual hormones, such as estrogens. A direct effect of DHEAS on BMD, independent of estrogens, was not established.

It should be noted that the found effect of DHEAS on BMD at age 10, partially explained by sexual maturity, could also be the result of other unmeasured development and sexual development on aBMD is less relevant in boys than in girls, at this age.

DHEAS at 7 years old is associated with earlier pubescent development in girls, but not in boys \[11; 12\]. Therefore, the indirect effect of DHEAS on sexual development during puberty, girls accrue more bone mass than boys, and they do it in earlier Tanner stages \[14\]. Secondly, previous studies have shown that higher serum DHEAS at 7 years old is associated with earlier pubescent development in girls, but not in boys \[11; 12\]. Therefore, the indirect effect of DHEAS on sexual development and sexual development on aBMD is less relevant in boys than in girls, at this age.

BMI at age 10 was also considered in the model, but it neither changed the results appreciably nor improved the fit of the model (data not shown), and therefore was excluded from the final model.

Discussion

The present study explores the effect of DHEAS at the age of 7 years on aBMD at the age of 10 years. Firstly, we found that aBMD at 10 years old correlated positively with DHEAS at 7 years old, after adjustment for age, sex, and BMI z-score. Secondly, using path analysis, we tried to distinguish a possible indirect effect of DHEAS at age 7 on aBMD at age 10 from an indirect effect partially explained by sexual maturity or by aBMD at age 7. Although no direct effect of DHEAS at age 7 on aBMD at age 10 was observed, we found in girls, but not in boys, an indirect effect explained by sexual maturity, as higher DHEAS levels at 7 years old were associated with higher sexual maturity at 10 years old, which was further associated with higher aBMD, controlling for BMI.

To our best knowledge, this is the first study to address the longitudinal effect of DHEAS on aBMD in prepuberty and early puberty. So far, only a few cross-sectional studies have investigated the effect of circulating adrenal androgens on bone mass acquisition in mid-childhood, with mixed results, and a comparison with our findings is difficult due to different populations and methodological approaches. In accordance with our results, a positive effect of adrenal androgens on BMD was found in premenarchal girls \[47\] and in two populations of children aged 5-8 years \[15\] and 6-18 years \[32\]. On the other hand, no association was found between DHEAS and bone mineral density in 255 children aged 7-8 years \[31\] and in a population of boys aged 6-14.5 years \[26\]. In a large cohort involving 472 Finnish children aged 6-8 years, the positive association of DHEAS with BMD disappeared after adjustment for fat and lean mass \[33\].

In boys, no effect of DHEAS at age 7 on aBMD at age 10 was observed (\(\beta = 0.003 \ [95\% CI: -0.001; 0.009]\), \(p=0.218\)) (Table 3).

BMI z-score at age 10 was also considered in the model, but it neither changed the results appreciably nor improved the fit of the model (data not shown), and therefore was excluded from the final model.

Total effect (ab + ed + c)	Direct effect (c)	Indirect effect (mediated by aBM)
Girls		
Crude model		
0.007	0.004; 0.001	0.348
Adjusted model\[a\]		
0.003	0.000; 0.006	0.148
Boys		
Crude model		
0.003	-0.001; 0.009	0.148
Adjusted model\[b\]		
0.001	-0.003; 0.006	0.062

Abbreviations: CI – confidence interval, aBMD – areal bone mineral density; BMI – body mass index

\[a\] Comparative fit index: 1.000 Tucker-Lewis index: 1.029 Root Mean Square Error of Approximation: 0.000

\[b\] Comparative fit index: 1.000 Tucker-Lewis index: 1.003 Root Mean Square Error of Approximation: 0.000

After adjustment for BMI z-score at 7 years old, the total effect remained statistically significant in girls (\(\beta = 0.003 \ [95\% CI: 0.000; 0.006]\), \(p=0.033\)) (Figure 1, ab + ed + c), explained in 33\% by the indirect effect of DHEAS on Tanner stage and Tanner stage on aBMD (Figure 1, ed). The indirect effect of DHEAS on aBMD at age 7 and aBMD at age 10 was attenuated and lost statistical significance (Figure 1, ab) (Table 3).
such as increased central adiposity and lean mass [19], which can affect the bone. The association between BMI and BMD in children is mostly determined by lean mass [33; 41], but adiposity also appears to play a role, despite contradictory findings [33; 48; 49]. Adiposity may augment BMD through an increased mechanical load exerted on the skeleton by fat mass [18], or the aromatization of androgens in fat [16], or through unmeasured cytokines, growth factors or other hormones (leptin, insulin and estrogens) [33], which may exert direct stimulatory effects on osteoblasts [19]. Although we had other measures of adiposity, like waist circumference or body fat, they were not included in the model due to multicollinearity.

Bone modelling and growth in childhood and early pubescent years are influenced by endogenous and exogenous factors. Exogenous factors include nutrition (mainly calcium and vitamin D) and weightbearing physical activity, while endogenous factors include hormones (growth hormone, sex steroids, and various growth factors), cytokines, and growth plate aging [50]. BMD is also affected by genetic and early growth. In a previous study involving 1853 participants from the same birth cohort, Generation XXI, weight and height velocities up to the age of 6 were associated with increased aBMD at 7 years with the strongest associations observed for growth in early childhood [51]. Moreover, in the same population, children that between zero and 4 years followed a trajectory of persistent weight gain, had clearly increased bone mass at 7 years old, and weight gain seemed slightly more beneficial when it occurred later than on a normal trajectory during the first years of life [52].

Strengths and limitations

The strengths of our study include the novelty, as previous longitudinal data on the study subject is minimal. Furthermore, we have used a population-based cohort, with detailed information regarding birth and early childhood, physical examination, anthropometry, biochemical data, and DXA evaluation, according to standardized procedures, at ages 7 and 10 years, as well as DHEAS levels in prepuberty. Consequently, our results cannot be generalized to other age groups, as they would differ because of the effect of increased growth hormone and sex steroid levels on BMD during puberty.

Nevertheless, some limitations must be acknowledged. DXA is a two-dimensional estimate of volumetric bone density, so differences in bone size may confound the androgen-BMD association assessed by this technique. Nevertheless, adjustment for BMI partially attenuates this effect. Bone age evaluation was not part of the research protocol due to radiation exposure, and therefore no conclusions regarding skeleton maturation can be drawn. It is possible that the effect of DHEAS on BMD is not fully evident at the age we have assessed, especially among boys, who start puberty later than girls. As we continue to follow this cohort, we may carry on further investigation in different age ranges.

We have used path analysis to answer our main objective, but it is worth noting that path analysis is not intended to prove causation but rather to test if observed results are consistent with a priori hypothesis. Our statistical model is necessarily oversimplified, given the complex relationships between the variables analyzed. These variables may be influenced by several genetic and environmental factors that were not measured in this study. Furthermore, it assumes that the observed relations follow a particular direction that may not be totally realistic. Thus, the observed statistical associations demand careful interpretation regarding causality.

Conclusion

In girls, DHEAS at 7 years old affected aBMD at 10 years old. This effect is indirect, as higher DHEAS levels were associated with more advanced sexual maturity at the age of 10, and more advanced sexual maturity was associated with higher aBMD. No direct effect of DHEAS on aBMD was observed. No effect of DHEAS at 7 years old on aBMD at 10 years old was seen in boys.

Abbreviations

aBMD - areal bone mineral density
BMI - body mass index
BMC - bone mineral content
BMD - bone mineral density
CFI - Comparative Fit Index
CI - confidence intervals
DHEAS - dehydroepiandrosterone sulphate
DXA - dual-energy x-ray absorptiometry
IGF1 - insulin growth factor 1
RMSEA - Root Mean Square Error of Approximation
SD - standard deviation
TLI - Tucker–Lewis Index
WHO - World Health Organization
Declarations

Funding: Generation XXI was supported by the European Regional Development Fund (ERDF) through the Operational Programme Competitiveness and Internationalization and national funding from the Foundation for Science and Technology (FCT), Portuguese Ministry of Science, Technology and Higher Education under the projects "HIneC: When do health inequalities start? Understanding the impact of childhood social adversity on health trajectories from birth to early adolescence" (POCI-01-0145-FEDER-029567; Reference PTDC/SAU-PUB/29567/2017) and "STEPACHE: The pediatric roots of amplified pain: from contextual influences to risk stratification" (POCI-01-0145-FEDER-029087, PTDC/SAU-EPI/29087/2017). It is also supported by the Unidade de Investigação em Epidemiologia - Instituto de Saúde Pública da Universidade do Porto (EPIUnit) (UIDB/04750/2020), Administração Regional de Saúde Norte (Regional Department of Ministry of Health) and Fundação Calouste Gulbenkian. This study was also supported by a grant from the Portuguese Society of Paediatrics. ACS is funded by FCT Investigator contracts IF/01060/2015.

Conflicts of interest/Competing interests: The authors state no conflicts of interest.

Availability of data and material: Not applicable

Code availability: Not applicable

Authors’ contributions:

Rita Santos-Silva: contributed to the design of the study and the acquisition of data, conducted the analysis and interpretation of data and drafted the article.

Manuel Fontoura: contributed to the conception of the study, the interpretation of data and revised the article critically for relevant knowledgeable content.

Milton Severo: conducted the statistical analysis and contributed to the interpretation of data.

Raquel Lucas: contributed to the conception of the study and revised the article critically for relevant knowledgeable content.

Ana Cristina Santos: contributed to the conception of the study and the acquisition of data, participated in the analysis and interpretation of data, and revised the article critically for relevant knowledgeable content.

All the authors have accepted responsibility for the entire content of this manuscript and approved submission.

Ethics approval, consent to participate and consent for publication: All the phases of the study complied with the Ethical Principles for Medical Research Involving Human Subjects expressed in the Declaration of Helsinki. The study was approved by the University of Porto Medical School/S. João Hospital Centre ethics committee and parents or legal representatives of the children signed informed consent at the baseline and all the subsequent follow-up evaluations.

Acknowledgments

The authors gratefully acknowledge the families enrolled in Generation XXI for their kindness, all members of the research team for their enthusiasm and perseverance, as well as the participating hospitals and their staff for their help and support.

References

1. Turcu AF, Auchus RJ (2017) Clinical significance of 11-oxygenated androgens. Curr Opin Endocrinol Diabetes Obes 24:252–259
2. Utriainen P, Laakso S, Liimatta J, Jaaskelainen J, Voutilainen R (2015) Premature adrenarche - a common condition with variable presentation. Horm Res Paediatr 83:221–231
3. Voutilainen R, Jaaskelainen J (2015) Premature adrenarche: etiology, clinical findings, and consequences. J Steroid Biochem Mol Biol 145:226–236
4. Witchel SF, Pinto B, Burghard AC, Obereld SE (2020) Update on adrenarche. Curr Opin Pediatr 32:574–581
5. de Menezes KJ, Peixoto C, Nardi AE, Carta MG, Machado S, Veras AB (2016) Dehydroepiandrosterone, Its Sulfate and Cognitive Functions. Clin Pract Epidemiol Ment Health 12:24–37
6. Miller WL (2017) Steroidogenesis: Unanswered Questions. Trends Endocrinol Metab 28:771–793
7. Corvalan C, Uauy R, Merciç V (2013) Obesity is positively associated with dehydroepiandrosterone sulfate concentrations at 7 y in Chilean children of normal birth weight. American J Clin Nutr 97:318–325
8. Ong KK, Potau N, Petry CJ, Jones R, Ness AR, Honour JW, de Zegher F, Ibanez L, Dunger DB, Team AS (2004) Opposing influences of prenatal and postnatal weight gain on adrenarche in normal boys and girls. J Clin Endocrinol Metab 89:2647–2651
9. Mantyselka A, Lindi V, Viitasalo A, Eloranta AM, Agren J, Vaisanen S, Voutilainen R, Laitinen T, Lakka TA, Jaaskelainen J (2018) Associations of Dehydroepiandrosterone Sulfate With Cardiometabolic Risk Factors in Prepubertal Children. J Clin Endocrinol Metabolism 103:2592–2600
10. Santos-Silva R, Fontoura M, Guimarães JT, Barros H, Santos AC (2021) Association of dehydroepiandrosterone sulfate, birth size, adiposity and cardiometabolic risk factors in 7-year-old children. Pediatr Res doi. 10.1038/s41390-021-01706-0.
11. Pereira A, Iñiguez G, Corvalan C, Merciç V (2017) High DHEAS Is Associated With Earlier Pubertal Events in Girls But Not in Boys. J Endocr Soc 1:800–808
12. Merino PM, Pereira A, Iñiguez G, Corvalan C, Merciç V (2019) High DHEAS Level in Girls Is Associated with Earlier Pubertal Maturation and Mild Increase in Androgens throughout Puberty without Affecting Postmenarche Ovarian Morphology. Horm Res Paediatr 92:357–364
13. Magarey AM, Boulton TJ, Chatterton BE, Schultz C, Nordin BE, Cockington RA (1999) Bone growth from 11 to 17 years: relationship to growth, gender and changes with pubertal status including timing of menarche. Acta Paediatr 88:139–146

14. Walsh JS, Henry YM, Fatayerji D, Eastell R (2010) Hormonal determinants of bone turnover before and after attainment of peak bone mass. Clin Endocrinol (Oxf) 72:320–327

15. Nordman H, Voutilainen R, Laitinen T, Antikainen L, Jääskeläinen J (2018) Birth size, body composition, and adrenal androgens as determinants of bone mineral density in mid-childhood. Pediatr Res 83:993–998

16. Yilmaz D, Ersoy B, Bilgin E, Gümüşer G, Onur E, Pinar ED (2005) Bone mineral density in girls and boys at different pubertal stages: relation with gonadal steroids, bone formation markers, and growth parameters. J Bone Miner Metab 23:476–482

17. Clarke BL, Khosla S (2009) Androgens and bone. Steroids 74:296–305

18. Vanderschueren D, Vandenput L, Boonen S, Lindberg MK, Bouillon R, Ohlsson C (2004) Androgens and bone. Endocr Rev 25:389–425

19. Zborowski JV, Cauley JA, Talbott EO, Guzick DS, Winters SJ (2000) Bone Mineral Density, Androgens, and the Polycystic Ovary: The Complex and Controversial Issue of Androgenic Influence in Female Bone. J Clin Endocrinol Metab 85:3496–3506

20. Kasperk CH, Wergedal JE, Farley JR, Linkhart TA, Turner RT, Baylink DJ (1989) Androgens directly stimulate proliferation of bone cells in vitro. Endocrinology 124:1576–1578

21. Kasperk CH, Waked G, Hiel T, Ziegler R (1997) Gonadal and adrenal androgens are potent regulators of human bone cell metabolism in vitro. J Bone Miner Res 12:464–471

22. Santos-Silva R, Costa C, Castro-Correa C, Fontoura M (2019) Clinical, biochemical and gender characteristics of 97 prepubertal children with premature adrenarche. J Pediatr Endocrinol Metab 32:1247–1252

23. Diaz A, Bhandari S, Sicon S, Vogiatzi M (2008) Characteristics of children with premature pubarche in the New York metropolitan area. Horm Res 70:150–154

24. Sopher AB, Jean AM, Zwany SK, Winston DM, Pomeranz CB, Bell JJ, McMahon DJ, Hassoun A, Fennoy I, Obereld SE (2011) Bone age advancement in prepubertal children with obesity and premature adrenarche: possible potentiating factors. Obesity (Silver Spring) 19:1259–1264

25. DeSalvo DJ, Mehr R, Vaidyanathan P, Kaplowitz PB (2013) In children with premature adrenarche, bone age advancement by 2 or more years is common and generally benign. J Pediatr Endocrinol Metab 26:215–221

26. Vandewalle S, Taes Y, Fiers T, Toye K, Van Caenegem E, Kaufman JM, De Schepper J (2014) Relation of adrenal-derived steroids with bone maturation, mineral density and geometry in healthy prepubertal and early pubertal boys. Bone 69:39–46

27. Sopher AB, Thornton JC, Silfen ME, Manibo A, Obereld SE, Wang J, Pierson RN Jr, Levine LS, Horlick M (2001) Prepubertal girls with premature adrenarche have greater bone mineral content and density than controls. J Clin Endocrinol Metab 86:5269–5272

28. Arisaka O, Hoshi M, Kanazawa S, Numata M, Nakajima D, Kanno S, Negishi M, Nishikura K, Nitta A, Imataka M, Kuribayashi T, Kano K (2001) Preliminary report: effect of adrenal androgen and estrogen on bone maturation and bone mineral density. Metabolism 50:377–379

29. Utirinai P, Jaaskelainen J, Saarinen A, Vanninen E, Makitie O, Voutilainen R (2009) Body Composition and Bone Mineral Density in Children with Premature Adrenarche and the Association of LR5P Gene Polymorphisms with Bone Mineral Density. J Clin Endocrinol Metab 94:4144–4151

30. Ibanez L, Potau N, Ong K, Dunger DB, De Zegher F (2000) Increased bone mineral density and serum leptin in non-obese girls with precocious pubarche: relation to low birthweight and hyperinsulinism. Horm Res 54:192–197

31. Garnett SP, Högler W, Blades B, Baur LA, Peat J, Lee J, Cowell CT (2004) Relation between hormones and body composition, including bone, in prepubertal children. Am J Clin Nutr 80:966–972

32. Remer T, Boye KR, Hartmann M, Neu CM, Schoenau E, Manz F, Wudy SA (2003) Adrenarche and bone modeling and remodeling at the proximal radius: weak androgens make stronger cortical bone in healthy children. J Bone Miner Res 18:1539–1546

33. Soininen S, Sidoroff V, Lindi V, Mahonen A, Kröger L, Kröger H, Jääskeläinen J, Atalay M, Laaksonen DE, Laitinen T, Lakka TA (2018) Body fat mass, lean body mass and associated biomarkers as determinants of bone mineral density in children 6-8 years of age. The Physical Activity and Nutrition in Children (PANIC) study. Bone 108:106–114

34. Larsen PS, Kamper-Jorgensen M, Adamson A, Barros H, Bonde JP, Brescianini S, Brophy S et al (2013) Pregnancy and birth cohort resources in Europe: a large opportunity for aetiological child health research. Paediatr Perinat Epidemiol 27:393–414

35. Alves E, Correia S, Barros H, Azevedo A (2012) Prevalence of self-reported cardiovascular risk factors in Portuguese women: a survey after delivery. Int J Public Health 57:837–847

36. Fenton TR, Kim JH (2013) A systematic review and meta-analysis to revise the Fenton growth chart for preterm infants. BMC Pediatr 13:59

37. de Onis M, Onyango AW, Bogh I, Siyam A, Nishida C, Siekmann J (2007) Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ 85:660–667

38. Crabtree NJ, Arabi A, Bachrach LK, Fewtrell M, El-Hajj Fuleihan G, Kecskemethy HH, Jaworski M, Gordon CM (2014) Dual-energy X-ray absorptiometry interpretation and reporting in children and adolescents: the revised 2013 ISCD Pediatric Official Positions. J Clin Densitom 17:225–242

39. Tanner JM, Whitehouse RH (1976) Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty. Arch Dis Child 51:170–179

40. Lloyd T, Rollings N, Andon MB, Demers LM, Eggli DF, Kieselhorst K, Kulun H, Landis JR, Martel JK, Orr G et al (1992) Determinants of bone density in young women. I. Relationships among pubertal development, total body bone mass, and total body bone density in premenarchal females. J Clin Endocrinol Metab 75:383–387
41. Rocher E, Chappard C, Jaffre C, Benhamou CL, Courteix D (2008) Bone mineral density in prepubertal obese and control children: relation to body weight, lean mass, and fat mass. J Bone Miner Res 26:73–78
42. Rosseel Y (2012) lavaan: An R Package for Structural Equation Modeling. J Stat Softw 48:36
43. Yuan K-H, Bentler PM (2000) Three likelihood-based methods for mean and covariance structure analysis with nonnormal missing data. Sociol Methodol 30:165–200
44. Bentler PM (1990) Comparative fit indexes in structural models. Psychol Bull 107:238–246
45. Tucker LR, Lewis C (1973) A reliability coefficient for maximum likelihood factor analysis. Psychometrika 38:1–10
46. Steiger JH (1990) Structural Model Evaluation and Modification: An Interval Estimation Approach. Multivariate Behav Res 25:173–180
47. Bonofiglio D, Garofalo C, Catalano S, Marsico S, Aquila S, Andò S (2004) Low calcium intake is associated with decreased adrenal androgens and reduced bone age in premenarcheal girls in the last pubertal stages. J Bone Miner Metab 22:64–70
48. Rokoff LB, Rifas-Shiman SL, Switkowski KM, Young JG, Rosen CJ, Oken E, Fleisch AF (2019) Body composition and bone mineral density in childhood. Bone 121:9–15
49. Liang J, Chen Y, Zhang J, Ma B, Hu Y, Liu Y, Lin S, Zhang Z, Song Y (2020) Associations of Weight-Adjusted Body Fat and Fat Distribution with Bone Mineral Density in Chinese Children Aged 6-10 Years. Int J Environ Res Public Health 17:1763
50. Abrams SA (2001) Calcium turnover and nutrition through the life cycle. Proc Nutr Soc 60(2):283–9
51. Monjardino T, Amaro J, Fonseca MJ, Rodrigues T, Santos AC, Lucas R (2019) Early childhood as a sensitive period for the effect of growth on childhood bone mass: Evidence from Generation XXI birth cohort. Bone 127:287–295
52. Monjardino T, Rodrigues T, Inskip H, Harvey N, Cooper C, Santos AC, Lucas R (2017) Weight Trajectories from Birth and Bone Mineralization at 7 Years of Age. J Pediatr 191:117–124e2

Figures

Figure 1

Diagram of hypothesized causal relations Figure 1 presents the pathway tested using path analysis to assess the plausibility of a direct effect of DHEAS in aBMD, adjusted for BMI. Total effect: ab + ed + c Direct effect: c Indirect effect (mediated by aBMD at age 7): ab Indirect effect (mediated by Tanner stage at age 10): ed Abbreviations: BMI – body mass index; DHEAS – dehydroepiandrosterone sulphate; aBMD – areal bone mineral density

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Supplementarymaterial.docx