MITIGATING PROPAGATION FAILURES IN PINNs USING EVOLUTIONARY SAMPLING

Arka Daw∗
Virginia Tech
darka@vt.edu

Jie Bu∗
Virginia Tech
jayroxis@vt.edu

Sifan Wang
University of Pennsylvania
sifanw@sas.upenn.edu

Paris Perdikaris
University of Pennsylvania
pgp@seas.upenn.edu

Anuj Karpatne
Virginia Tech
karpatne@vt.edu

ABSTRACT

Despite the success of physics-informed neural networks (PINNs) in approximating partial differential equations (PDEs), it is known that PINNs can sometimes fail to converge to the correct solution in problems involving complicated PDEs. This is reflected in several recent studies on characterizing and mitigating the “failure modes” of PINNs. While most of these studies have focused on balancing loss functions or adaptively tuning PDE coefficients, what is missing is a thorough understanding of the connection between failure modes of PINNs and sampling strategies used for training PINNs. In this paper, we provide a novel perspective of failure modes of PINNs by hypothesizing that the training of PINNs rely on successful “propagation” of solution from initial and/or boundary condition points to interior points. We show that PINNs with poor sampling strategies can get stuck at trivial solutions if there are propagation failures. We additionally demonstrate that propagation failures are characterized by highly imbalanced PDE residual fields where very high residuals are observed over very narrow regions. To mitigate propagation failures, we propose a novel evolutionary sampling (Evo) method that can incrementally accumulate collocation points in regions of high PDE residuals with little to no computational overhead. We provide an extension of Evo to respect the principle of causality while solving time-dependent PDEs. We theoretically analyze the behavior of Evo and empirically demonstrate its efficacy and efficiency in comparison with baselines on a variety of PDE problems.

1 INTRODUCTION

Physics-informed neural networks (PINNs) [Raissi et al., 2019] represent a seminal line of work in deep learning for solving partial differential equations (PDEs), which appear naturally in a number of domains. The basic idea of PINNs for solving a PDE is to train a neural network to minimize errors w.r.t. the solution provided at initial/boundary points of a spatio-temporal domain, as well as the PDE residuals observed over a sample of interior points, referred to as collocation points. Despite the success of PINNs, it is known that PINNs can sometimes fail to converge to the correct solution in problems involving complicated PDEs, as reflected in several recent studies on characterizing the “failure modes” of PINNs (Wang et al., 2020, 2022c, Krishnapriyan et al., 2021). Many of these failure modes are related to the susceptibility of PINNs in getting stuck at trivial solutions acting as poor local minima, due to the unique optimization challenges of PINNs. In particular, note that training PINNs is different from conventional deep learning problems as we only have access to the correct solution on the initial and/or boundary points, while for all interior points in the domain, we can only compute PDE residuals. Also note that minimizing PDE residuals does not guarantee convergence to a correct solution since there are many trivial solutions of commonly observed PDEs that show 0 residuals. While previous studies on understanding and preventing failure modes of PINNs have mainly focused on modifying network architectures or balancing loss functions during PINN training, the effect of sampling collocation points on avoiding failure modes of PINNs has been largely overlooked. Although some previous approaches have explored the effect of sampling strategies on PINN training (Wang et al., 2022a, Lu et al., 2021), they either suffer from large computation costs or fail to converge to correct solutions, empirically demonstrated in our results.
In this work, we present a novel perspective of failure modes of PINNs by postulating the propagation hypothesis: “in order for PINNs to avoid converging to trivial solutions at interior points, the correct solution must be propagated from the initial/boundary points to the interior points.” When this propagation is hindered, PINNs can get stuck at trivial solutions that are difficult to escape, referred to as the propagation failure mode. This hypothesis is motivated from a similar behavior observed in numerical methods where the solution of the PDE at initial/boundary points are iteratively propagated to interior points using finite differencing schemes [LeVeque, 2007].

We show that propagation failures in PINNs are characterized by highly imbalanced PDE residual fields, where very high residuals are observed in narrow regions of the domain. Such high residual regions are not adequately sampled in the set of collocation points (which generally is kept fixed across all training iterations), making it difficult to overcome the propagation failure mode. This motivates us to develop sampling strategies that focus on selecting more collocation points from high residual regions. This is related to the idea of local-adaptive mesh refinement used in FEM [Zienkiewicz et al., 2005] to selectively refine the computational mesh in regions with higher errors.

We propose a novel evolutionary sampling (Evo) strategy that can accumulate collocation points in high PDE residual regions, thereby dynamically emphasizing on these skewed regions as we progress in training iterations. We also provide a causal extension of our proposed Evo algorithm (Causal Evo) that can explicitly encode the strong inductive bias of causality in propagating the solution from initial points to interior points over training iterations, when solving time-dependent PDEs. We theoretically prove the adaptive quality of Evo to accumulate points from high residual regions that persist over iterations. We empirically demonstrate the efficacy and efficiency of our proposed sampling methods in a variety of benchmark PDE problems previously studied in the PINN literature. We show the Evo and Causal Evo are able to mitigate propagation failure modes and converge to the correct solution with significantly smaller sample sizes as compared to baseline methods, while incurring negligible computational overhead. We also demonstrate the ability of Evo to solve a particularly hard PDE problem—solving 2D Eikonal equations for complex arbitrary surface geometries.

2 BACKGROUND AND RELATED WORK

Physics-Informed Neural Networks (PINNs). The basic formulation of PINN (Raissi et al., 2017) is to use a neural network \(f_\theta(x, t) \) to infer the forward solution \(u \) of a non-linear PDE:

\[
 u_t + \mathcal{N}_x[u] = 0, \quad x \in \mathcal{X}, \quad t \in [0, T]; \quad u(x, 0) = h(x), \quad x \in \mathcal{X}; \quad u(x, t) = g(x, t), \quad t \in [0, T], \quad x \in \partial \mathcal{X}
\]

where \(x \) and \(t \) are the space and time coordinates, respectively, \(\mathcal{X} \) is the spatial domain, \(\partial \mathcal{X} \) is the boundary of spatial domain, and \(T \) is the time horizon. The PDE is enforced on the entire spatio-temporal domain \(\Omega = \mathcal{X} \times [0, T] \) on a set of collocation points \(\{ x_i = (x_i^r, t_i^r) \}^{N_r}_{i=1} \) by computing the PDE residual \(\mathcal{R}(x, t) \) and the corresponding PDE Loss \(\mathcal{L}_r(\theta) \) as follows:

\[
 \mathcal{R}_\theta(x, t) = \frac{\partial}{\partial t} f_\theta(x, t) - \mathcal{N}_x[f_\theta(x, t)]
\]

\[
 \mathcal{L}_r(\theta) = \mathbb{E}_{x_r \sim \mathcal{U}(\Omega)}[\mathcal{R}_\theta(x_r)^2] \approx \frac{1}{N_r} \sum_{i=1}^{N_r} [\mathcal{R}_\theta(x_i^r, t_i^r)]^2
\]

where \(\mathcal{L}_r \) is the expectation of the squared PDE Residuals over collocation points sampled from a uniform distribution \(\mathcal{U} \). PINNs approximate the solution of the PDE by optimizing the following overall loss function \(\mathcal{L} = \lambda_r \mathcal{L}_r(\theta) + \lambda_{bc} \mathcal{L}_{bc}(\theta) + \lambda_{ic} \mathcal{L}_{ic}(\theta) \), where \(\mathcal{L}_{ic} \) and \(\mathcal{L}_{bc} \) are the mean squared loss on the initial and boundary data respectively, and \(\lambda_r, \lambda_{ic}, \lambda_{bc} \) are hyperparameters that control the interplay between the different loss terms. Although PINNs can be applied to inverse problems, i.e., to estimate PDE parameters from observations, we only focus on forward problems in this paper.

Prior Work on Characterizing Failure Modes of PINNs. Despite the popularity of PINNs in approximating PDEs, several works have emphasized the presence of failure modes while training PINNs. One early work (Wang et al., 2020) demonstrated that imbalance in the gradients of multiple loss terms could lead to poor convergence of PINNs, motivating the development of Adaptive PINNs. Another recent development (Wang et al., 2022c) made use of the Neural Tangent Kernel (NTK) theory to indicate that the different convergence rates of the loss terms can lead to training instabilities. Large values of PDE coefficients have also been connected to possible failure modes in PINNs (Krishnapriyan et al., 2021). In all these works, the effect of sampling collocation points on PINN...
failure modes has largely been overlooked. Although some recent works have explored strategies to grow the representation of collocation points with high residuals, either by modifying the sampling procedure [Wu et al., 2022; Lu et al., 2021; Nabian et al., 2021] or choosing higher-order L^p norms of PDE loss [Wang et al., 2022a], they either require a prohibitively dense set of collocation points and hence are computationally expensive, or suffer from poor convergence to the correct solution as empirically demonstrated in Section 5. In another recent line of work on Causal PINNs [Wang et al., 2022b], it was shown that traditional approaches for training PINNs can violate the principle of causality for time-dependent PDEs. Hence, they proposed an explicit way of incorporating the causal structure in the training procedure. However, this solution can only be applied to time-dependent PDEs, and as we demonstrate empirically in Section 5 also requires large sample sizes.

3 PROPAGATION HYPOTHESIS: A NEW PERSPECTIVE OF FAILURE MODES IN PINNs

![PINN solutions for a simple ODE](image)

Figure 1: PINN solutions for a simple ODE: $u_{xx} + k^2 u = 0$ ($k = 20$) with the analytical solution, $u = A \sin(kx) + B \cos(kx)$. We can see smooth propagation of the correct solution from the boundary point at $x = 0$ to interior points ($x > 0$) as we increase training iterations.

What is Unique About Training PINNs? Training PINNs presents fundamentally different optimization challenges than those encountered in conventional deep learning problems. In a conventional supervised learning problem, the correct solution for every training sample is known and the training samples are considered representative of the test samples such that the trained model can easily be extrapolated on closely situated test samples. However, in the context of PINNs, we only have access to the “correct” solution of the PDE on the initial and/or boundary points, while not having any labels for the interior points in the spatio-temporal domain Ω. Note that the interior points in Ω can be quite far away from the initial/boundary points, making extrapolation difficult. Further, training PINNs involves minimizing the PDE residuals over a set of collocation points sampled from Ω. However, minimizing PDE residuals alone is not sufficient to ensure convergence to the correct solution, since there may exist many trivial solutions of a PDE showing very small residuals. For example, $u(x, t) = 0$ is a trivial solution for any homogeneous PDE, which a neural network is likely to get stuck at in the absence of correct solution at initial/boundary points. Another unique aspect of training PINNs is that minimizing PDE residuals requires computing the gradients of the output w.r.t. (x, t) (e.g., u_x and u_t). Hence, the solution at a collocation point is affected by the solutions at nearby points leading to local propagation of solutions.

Propagation Hypothesis. In light of the unique properties of PINNs, we postulate that in order for PINNs to converge to the “correct” solution, the correct solution must propagate from the initial and/or boundary points to the interior points as we progress in training iterations. We draw inspiration for this hypothesis from a similar behavior observed in numerical methods for solving PDEs, where the solution of the PDE at initial/boundary points is iteratively propagated to interior points using finite differencing schemes [LeVeque, 2007]. Figure 1 demonstrates the propagation hypothesis of PINNs for a simple ordinary differential equation (ODE).

Propagation Failure: Why It Happens and How to Diagnose? As a corollary of the propagation hypothesis, PINNs can fail to converge to the correct solution if the solution at initial/boundary points is unable to propagate to interior points during the training process. We call this phenomenon the “propagation failure” mode of PINNs. This is likely to happen if some collocation points start converging to trivial solutions before the correct solution from initial/boundary points is able to reach them. Such collocation points would also propagate their trivial solutions to nearby interior points, leading to a cascading effect in the learning of trivial solutions over large regions of Ω and further hindering the propagation of the correct solution from initial/boundary points.

To diagnose propagation failures, note that the PDE residuals are expected to be low over both types of regions: regions that have converged to the correct solution and regions that have converged
to trivial solutions. However, the boundaries of these two types of regions would show a sharp discontinuity in solutions, leading to very high PDE residuals in very narrow regions. A similar phenomenon is observed in numerical methods where sharp high-error regions disrupt the evolution of the PDE solution at surrounding regions, leading to cascading of errors. We use the imbalance of high PDE residual regions as a diagnosis tool for characterizing propagation failure modes in PINNs.

To demonstrate propagation failure, let us consider an example PDE for the convection equation: \(\frac{\partial u}{\partial t} + \beta \frac{\partial u}{\partial x} = 0 \), where \(\beta \) is the convection coefficient and \(h(x) \) is the initial condition (see Appendix F for details about this PDE). In a previous work (Krishnapriyan et al., 2021), it has been shown that PINNs fail to converge for this PDE for \(\beta > 10 \). We experiment with two cases, \(\beta = 10 \) and \(\beta = 50 \), in Figure 2. We can see that the PDE loss steadily decreases with training iterations for both these cases, but the relative error w.r.t. the ground-truth solution only decreases for \(\beta = 10 \), while for \(\beta = 50 \), it remains flat. This suggests that for \(\beta = 50 \), PINN is likely getting stuck at a trivial solution that shows low PDE residuals but high errors. To diagnose this failure mode, we plot two additional metrics in Figure 2 to measure the imbalance in high PDE residual regions: Fisher-Pearson’s coefficient of Skewness (Kokoska & Zwillinger, 2000) and Fisher’s Kurtosis (Kokoska & Zwillinger, 2000) (see Appendix C for computation details). High Skewness indicates lack of symmetry in the distribution of PDE residuals while high Kurtosis indicates the presence of a heavy-tail. For \(\beta = 10 \), we can see that both Skewness and Kurtosis are relatively small across all iterations, indicating absence of imbalance in the residual field. However, for \(\beta = 50 \), both these metrics shoot up significantly as the training progresses, which indicates the formation of very high residuals in very narrow regions—a characteristic feature of the propagation failure mode. Figure 3 confirms that this indeed is the case by visualizing the PINN solution and PDE residual maps. We see similar trends of propagation failure for other values of \(\beta > 10 \) (see Appendix I.1).

Figure 2: Demonstration of propagation failure while solving the convection equation with \(\beta = 50 \).

Figure 3: Demonstration of the Exact PDE solution, the predicted PDE solution, and the PDE Residual Field for the convection equation with \(\beta = 10 \) and \(\beta = 50 \) respectively.

Potential Remedies for Mitigating Propagation Failures: Since propagation failures in PINNs are characterized by skewed regions with very high residuals acting as “barriers” in the flow of information, algorithms that can selectively focus on high residual regions during training can potentially break such barriers and thus offer some respite. Recently, a number of algorithms have been proposed to increase the importance of collocation points from high residual regions in PINN training, which can be broadly grouped into two categories. The first category includes methods that alter the sampling strategy such that a point \(x_c \) is picked up as a collocation point with probability proportional to its residual, i.e., \(p(x_c) \propto |R(x_c)|^k \), where \(k \geq 1 \). This includes residual-based adaptive refinement (RAR) methods (Lu et al., 2021) and its variants (Wu et al., 2022); Nabian et al. (2021), where a dense set of collocation points \(P_{dense} \) is maintained to approximate the continuous residual field \(R(x) \), and points with high residuals are regularly added from \(P_{dense} \) to the set of collocation points every \(K \) iterations according to a sampling function. A second line of work was recently proposed in Wang et al. (2022a), where higher-order \(L^p \) norms of the PDE loss (e.g., \(L^\infty \)) were advocated to be used in the training of PINNs in contrast to the standard practice of using
L^2 norms, to ensure stability of learned solutions in control problems involving high-dimensional PDEs. Note that by using higher-order L^p norms, we are effectively increasing the importance of collocation points from high residual regions in the PDE loss, thereby having a similar effect as increasing their representation in the sample of collocation points. Theorem 3.1 below shows that sampling collocation points with $p(x_r) \propto |\mathcal{R}(x_r)|^k$ is exactly equivalent to modifying the L^p norm of the PDE loss, thus providing a bridge between these two categories of existing methods.

Theorem 3.1. For $p \geq 2$, let $\mathcal{L}^p(\mathcal{U})$ denote the expected L^p PDE Loss computed on collocation points sampled from a uniform distribution, $\mathcal{U}(\Omega)$. Similarly, for $k \geq 0$, let $\mathcal{L}^k(\mathcal{Q}^k)$ denote the expected L^2 PDE Loss computed on collocation points sampled from an alternate distribution $\mathcal{Q}^k(\Omega) : x_r \sim q(x_r)$, where $q(x_r) \propto |\mathcal{R}_\theta(x_r)|^k$. Then, $\mathcal{L}^k(\mathcal{Q}^k) = \frac{1}{Z^{2/k}} \left(\frac{1}{V} \mathcal{L}^{k+2}(\mathcal{U}) \right)^{(k+2)/2}$, where Z is a normalization constant and V is the volume of the domain Ω.

The Proof of Theorem 3.1 can be found in Appendix A.

Challenges with Potential Remedies. There are two main challenges faced by the potential remedies described above that limit their effectiveness in mitigating propagation failures in PINNs. (1) **High computational complexity:** Sampling methods such as RAR and its variants require maintaining a dense set of collocation points P_{dense} (typically with $100K \sim 1M$ points) and computing PDE residuals at every point in P_{dense} every K iterations. This introduces a severe computational overhead for adding new points, which also necessitates the resampling period K to be high (See Appendix B for a detailed analysis of the computational complexity of RAR based methods). (2) **Poor Prediction Performance:** As we empirically demonstrate in Section 5, both sampling-based methods such as RAR and its variants as well as L^∞ PDE loss-based methods suffer from poor performance in converging to the correct solution for complex PDE problems. This can be attributed to several reasons. First, while increasing the value of k in sampling-based methods and p in L^p norm-based methods influences a greater skew in the sample set towards points with higher residuals, the optimal values of k or p are generally unknown for an arbitrary PDE. Second, choosing L^∞ loss (or equivalently, only sampling collocation points with highest residuals) may not ideal for the training dynamics of PINNs, as it can lead to oscillatory behavior between different peaks of the PDE residual landscape, while forgetting to retain the solution over other regions. Instead, we need a way to gradually accumulate points from high residual regions in the collocation set while having non-zero representation of points from other regions.

4 **PROPOSED APPROACH: EVOLUTIONARY SAMPLING (Evo)**

Before we present our proposed sampling approach, in the following we first describe the four salient properties that we expect to see in an “ideal” sampling algorithm to mitigate propagation failures.

- **Gradual Accumulation Property:** To break propagation barriers, the set of collocation points should evolve over every iteration such that they start from a uniform distribution and gradually accumulate in regions with high residuals until the PINN training process eventually resolves them in later iterations. This is analogous to starting with an L^2 loss (equivalent to uniform distribution) and gradually increasing the order of L^p norm if high residual regions persist over iterations.

- **Sample Release Property:** Upon sufficient minimization of a high residual region through PINN training, collocation points that were once accumulated from the region needs to be released, such that we can focus on minimizing other high residual regions in later iterations.

- **Uniform Background Property:** At every iteration, the set of collocation points should contain non-zero support of points sampled from a uniform distribution over the entire domain Ω, such that the collocation points do not collapse solely to high residual regions.

- **Marginal Computational Overhead:** While satisfying the above properties, we should incur little to no computational overhead in sampling collocation points from high residual regions. Specifically, we should be able to add points from high residual regions without maintaining a dense set of collocation points, P_{dense}, and by only observing the residuals over a small set of N_r points at every iteration.

To satisfy all of the above properties, we present a novel sampling strategy termed Evolutionary Sampling (Evo) that is inspired by algorithms used for modeling biological evolution (Eiben et al. 2003). The key idea behind Evo is to gradually evolve the population of collocation points at every iteration by retaining points with high residuals from the current population and re-sampling new
Algorithm 1 Proposed Evolutionary Sampling Algorithm For PINN

1: Sample the initial population \(P_0 \) of \(N_r \) collocation points \(P_0 \leftarrow \{ x_r \}_{i=1}^{N_r} \) from a uniform distribution \(x_r \sim \mathcal{U}(\Omega) \), where \(\Omega \) is the input domain \((\Omega = [0, T] \times \mathcal{X})\).
2: for \(i = 0 \) to max_iterations - 1 do
3: Compute the fitness of collocation points \(x_r \in P_i \) as \(F(x_r) = |\mathcal{R}(x_r)| \).
4: Compute the threshold \(\tau_i = \frac{1}{N_i} \sum_{j=1}^{N_i} F(x_r^j) \)
5: Select the retained population \(P_i^r \) such that \(P_i^r \leftarrow \{ x_r^j : F(x_r^j) > \tau_i \} \)
6: Generate the re-sampled population \(P_i^s \leftarrow \{ x_r^j : x_r^j \sim \mathcal{U}(\Omega) \} \)
7: Merge the two populations \(P_{i+1} \leftarrow P_i^r \cup P_i^s \)
8: end for

Algorithm 1 shows the pseudo-code of our proposed evolutionary sampling strategy. Analogous to evolutionary algorithms developed in optimization literature (Simon, 2013), we introduce a notion of “fitness” \(F(x_r) \) for every collocation point \(x_r \), such that points with higher fitness are allowed to survive in the next iteration. Specifically, we define \(F(x_r) \) as the absolute value of PDE residual of \(x_r \), i.e., \(F(x_r) = |\mathcal{R}(x_r)| \). At iteration 0, we start with an initial population \(P_0 \) of \(N_r \) points sampled from a uniform distribution. At iteration \(i \), in order to evolve the population to the next iteration, we first construct the “retained population” \(P_i^r \) comprising of points from \(P_i \) with fitness values greater than \(\tau_i \), i.e., \(P_i^r \leftarrow \{ x_r^j : F(x_r^j) > \tau_i \} \), where \(\tau_i \) is equal to the expectation of fitness values over all points in \(P_i \). The remainder of collocation points in \(P_i \) are re-sampled from a uniform distribution, thus constructing the “re-sampled population” \(P_i^s \leftarrow \{ x_r^j : x_r^j \sim \mathcal{U}(\Omega) \} \). The retained population and the re-sampled population are then merged to generate the population for the next iteration, \(P_{i+1} \).

Analysis of Evo: Theorem 4.1 shows that for a fixed objective function, the expectation of the retained population in Evo becomes maximum (equal to \(L^\infty \)) when the number of iterations approaches \(\infty \).

Theorem 4.1 (Accumulation Dynamics Theorem). Let \(f_\theta(x) : \mathbb{R}^n \rightarrow \mathbb{R}^+ \) be an arbitrary positive real-valued \(k \)-Lipschitz continuous objective function optimized using the Evolutionary Sampling algorithm with fixed \(\theta \). Then, the expectation of the retain population \(\mathbb{E}_{x \in P^r} |f(x)| \geq \max_{x \in \mathcal{X}} f(x) - k\epsilon \) as iteration \(i \rightarrow \infty \), for any arbitrarily small \(\epsilon > 0 \).

The proof of Theorem 4.1 can be found in Appendix C.1. This demonstrates the gradual accumulation property of Evo as points from a high residual region would keep accumulating in the retained population and make its expectation maximal if the region persists over iterations. Such points would eventually be released from \(P^r \) when their residual values are sufficiently minimized through PINN training. Also note that Evo always maintains some collocation points from a uniform distribution i.e., the re-sampled population \(P^s \) is always non-empty. Theoretical proofs of the sample release property and the uniform background property of Evo are provided in Appendix C.2. We also provide details of the computational complexity of Evo in comparison with baseline methods in Appendix E showing that Evo incurs marginal computational overhead. Note that Evo shares a similar motivation as local-adaptive mesh refinement methods developed for Finite Element Methods (FEM) (Zienkiewicz et al., 2005), where the goal is to preferentially refine the computational mesh used in numerical methods based on localization of the errors. It is also related to the idea of boosting in ensemble learning where training samples with larger errors are assigned higher weights of being picked in the next epoch, to increasingly focus on high error regions (Schapire, 2003).

Figure 4: Schematic to describe our proposed evolutionary sampling algorithm, where collocation points are incrementally accumulated in regions with high PDE residuals (shown as contour lines).
4.1 Causal Extension of Evolutionary Sampling (Causal Evo)

In problems with time-dependent PDEs, a strong prior dictating the propagation of solution is the principle of causality, where the solution of the PDE needs to be well-approximated at time \(t \) before moving to time \(t + \Delta t \). To incorporate this prior guidance, we present a Causal Extension of Evo (Causal Evo) that includes two modifications: (1) we develop a causal formulation of the PDE loss \(\mathcal{L}_r \) that pays attention to the temporal evolution of PDE solutions over iterations, and (2) we develop a causally biased sampling scheme that respects the causal structure while sampling collocation points. We describe both these modifications in the following.

Causal Formulation of PDE Loss. The key idea here is to utilize a simple time-dependent gate function \(g(t) \) that can explicitly enforce causality by revealing only a portion of the entire time-domain to PINN training. Specifically, we introduce a continuous gate function \(g(t) = (1 - \tanh(\alpha(t - \gamma))) / 2 \), where \(\gamma \) is the scalar shift parameter that controls the fraction of time that is revealed to the model, \(\alpha = 5 \) is a constant scalar parameter that determines the steepness of the gate, and \(\hat{t} \) is the normalized time, i.e., \(\hat{t} = \frac{t}{T} \). Example causal gates for different settings of \(\gamma \) are provided in Appendix [D]. We use \(g(t) \) to obtain a causally-weighted PDE residual loss as \(\mathcal{L}_i^g(\theta) = \frac{1}{N_i} \sum_{i=1}^{N_i} |\mathcal{R}(x_i^*, t_i^*)|^2 * g(t_i^*) \). We initially start with a small value of the shift parameter (\(\gamma = -0.5 \)), which essentially only reveals a very small portion of the time domain, and then gradually increase \(\gamma \) during training to reveal more portions of the time domain. For \(\gamma \geq 1.5 \), the entire time domain is revealed.

Causally Biased Sampling. We bias the sampling strategy in Evo such that it not only favors the selection of collocation points from high residual regions but also accounts for the causal gate values at every iteration. In particular, we modify the fitness function as \(\mathcal{F}(x_r) = |\mathcal{R}(x_r)| * g(t_r) \). A schematic illustration of causally biased sampling is provided in Appendix [D].

How to Update \(\gamma \)? Ideally, at some iteration \(i \), we would like increase \(\gamma_i \) at the next iteration only if the PDE residuals at iteration \(i \) are low. Otherwise, \(\gamma_i \) should remain in its place until the PDE residuals under the current gate are minimized. To achieve this behaviour, we propose the following update scheme for \(\gamma_i : \gamma_{i+1} = \gamma_i + \eta_\beta e^{-\epsilon L^g_i(\theta)} \), where \(\eta_\beta \) is the learning rate and \(\epsilon \) denotes tolerance that controls how low the PDE loss needs to be before the gate shifts to the right. Since the update is inversely proportional to the causally-weighted PDE loss \(\mathcal{L}_i^g \), the gate will shift slowly if the PDE residuals are large. Also note that increasing \(\gamma \) also increases the value of \(g(t) \) for all collocation points, thus increasing the causally-weighted PDE loss and slowing down gate movement. Upon convergence, \(\gamma \) attains a large value such that the entire time domain is revealed.

![Table 1](image)

Epochs	Convection (\(\beta = 30 \)) 100k	Convection (\(\beta = 50 \)) 150k	Allen Cahn 200k
PINN (fixed)	107.5 ± 10.9% 107.5 ± 10.7%	108.5 ± 6.38% 108.7 ± 6.59%	69.4 ± 4.02%
PINN (dynamic)	2.81 ± 1.45% 1.35 ± 0.59%	24.2 ± 23.2% 56.9 ± 9.08%	0.77 ± 0.06%
Curr Reg	63.2 ± 9.89% 2.65 ± 1.44%	48.9 ± 7.44% 31.5 ± 16.6%	-
CPINN (fixed)	138.8 ± 11.0% 138.8 ± 11.0%	106.5 ± 10.5% 106.5 ± 10.5%	48.7 ± 19.6%
CPINN (dynamic)	52.2 ± 43.6% 23.8 ± 45.1%	79.0 ± 5.11% 73.2 ± 8.36%	1.5 ± 0.75%
RAR-G	10.5 ± 5.67% 2.66 ± 1.41%	65.7 ± 17.0% 43.1 ± 28.9%	25.1 ± 23.2%
RAD	3.35 ± 2.02% 1.85 ± 1.90%	66.0 ± 1.55% 64.1 ± 1.98%	0.78 ± 0.05%
RAR-D	67.1 ± 4.28% 32.0 ± 25.8%	82.9 ± 5.09% 75.3 ± 9.58%	51.6 ± 0.41%
L∞	66.6 ± 2.35% 41.2 ± 27.9%	76.6 ± 1.04% 75.8 ± 1.01%	1.65 ± 1.36%
Evo. (ours)	**1.51 ± 0.26%** 0.78 ± 0.18%	**6.03 ± 6.99%** **1.98 ± 0.72%**	0.83 ± 0.15%
Causal Evo. (ours)	2.12 ± 0.67% **0.75 ± 0.12%**	**5.99 ± 5.25%** 2.28 ± 0.76%	**0.71 ± 0.007%**

5 Results

Experiment Setup. We perform experiments over three benchmark PDEs that have been used in existing literature to study failure modes of PINNs. In particular, we consider two time-dependent PDEs: convection equation (with \(\beta = 30 \)) and Allen Cahn equation, and one time-independent PDE: the Eikonal equation for solving signed distance fields for varying input geometries. We consider the following baseline methods: (1) PINN-fixed (conventional PINN using a fixed set of uniformly sampled collocation points), (2) PINN-dynamic (a simple baseline where collocation points are dynamically sampled from a uniform distribution every iteration, see Appendix [E] for...
To demonstrate the ability of Evo to accumulate high residual
(normal of PDE loss), we chose a small value of \(N_r \) and Allen Cahn equations (admitting very high errors), PINN-dynamic shows significantly lower errors. This demonstrates that even a very simple baseline of dynamic sampling can be effective in mitigating propagation failures. However, for complex PDEs such as convection (\(\beta = 50 \)), PINN-dynamic is still not able to converge to low errors. We also see that cPINN-fixed shows high errors across all PDEs when \(N_r = 1000 \). This is likely because the small size of collocation samples is insufficient for cPINNs to converge to the correct solution. As we show later, cPINN indeed is able to converge to the correct solution when \(N_r \) is large. Performing dynamic sampling with cPINN shows some reduction in errors, but it is still not sufficient for convection (\(\beta = 50 \)) case. All other baseline methods including Curr. Reg, RAR-based methods, and \(L^\infty \) fail to converge on most PDEs and show worse performance than even the simple baseline of PINN-dynamic. On the other hand, our proposed approaches (Evo and Causal Evo) consistently show the lowest errors across all PDEs. Figure 5 shows that Evo and PINN-dynamic are indeed able to mitigate propagation failures for convection (\(\beta = 50 \)), by maintaining low values of Skewness, Kurtosis, and Max PDE residuals across all iterations, in contrast to PINN-fixed. Additional visualizations of the evolution of collocation samples in Evo, Causal Evo, and RAR-based methods across iterations are provided in Appendix I. Sensitivity of RAR-based methods to hyper-parameters is provided in Appendix D.

Comparing Prediction Performance. Table I shows the relative \(L_2 \) errors (over 5 random seeds) of PDE solutions obtained by comparative methods w.r.t. ground-truth solutions for different time-dependent PDEs when \(N_r \) is set to 1K. We particularly chose a small value of \(N_r \) to study the effect of small sample size on PINN performance (note that the original formulations of baseline methods used very high \(N_r \)). We can see that while PINN-fixed fails to converge for convection (\(\beta = 30 \)) and Allen Cahn equations (admitting very high errors), PINN-dynamic shows significantly lower errors. This demonstrates that even a very simple baseline of dynamic sampling can be effective in mitigating propagation failures. However, for complex PDEs such as convection (\(\beta = 50 \)), PINN-dynamic is still not able to converge to low errors. We also see that cPINN-fixed shows high errors across all PDEs when \(N_r = 1000 \). This is likely because the small size of collocation samples is insufficient for cPINNs to converge to the correct solution. As we show later, cPINN indeed is able to converge to the correct solution when \(N_r \) is large. Performing dynamic sampling with cPINN shows some reduction in errors, but it is still not sufficient for convection (\(\beta = 50 \)) case. All other baseline methods including Curr. Reg, RAR-based methods, and \(L^\infty \) fail to converge on most PDEs and show worse performance than even the simple baseline of PINN-dynamic. On the other hand, our proposed approaches (Evo and Causal Evo) consistently show the lowest errors across all PDEs. Figure 5 shows that Evo and PINN-dynamic are indeed able to mitigate propagation failures for convection (\(\beta = 50 \)), by maintaining low values of Skewness, Kurtosis, and Max PDE residuals across all iterations, in contrast to PINN-fixed. Additional visualizations of the evolution of collocation samples in Evo, Causal Evo, and RAR-based methods across iterations are provided in Appendix I. Sensitivity of RAR-based methods to hyper-parameters is provided in Appendix D.

Adaptive Nature of Evo PDE loss: To demonstrate the ability of Evo to accumulate high residual points in the retained population \(P^r \) (or equivalently, focus on higher-order \(L^p \) norms of PDE loss), we consider optimizing a fixed objective function: the Ackley function in Figure 6 (see Appendix I for details of this function). We can see that at iteration 1, the expected loss over \(P^r \) is equal to the \(L^2 \) norm of PDE loss over the entire domains. As training progresses, the expected loss over \(P^r \) quickly reaches higher-order \(L^p \) norms, and approaches \(L^\infty \) at very large iterations. This confirms the

![Figure 5: Comparison of Skewness, Kurtosis, Max PDE Residuals, and Mean PDE Residuals over training iterations for PINN-fixed, PINN-dynamic, and Evo for convection equation with \(\beta = 50 \).](image)

![Figure 6: PDE loss of \(P^r \) going from \(L^2 \) to \(L^\infty \) with iterations for a sample objective function.](image)
gradual accumulation property of Evo as theoretically stated in Theorem 4.1. Additional visualizations of the dynamics of Evo for a number of test optimization functions are provided in Appendix J.

Sampling Efficiency: Figure 7 shows the scalability of Evo to smaller sample sizes of collocation points, N_r. Though all the baselines demonstrate similar performances when N_r is large (> 10k), only Evo and Causal Evo manage to maintain low errors even for very small values of $N_r = 100$, showing two orders of magnitude improvement in sampling efficiency. Note that the sample size N_r is directly related to the compute and memory requirements of training PINNs. We also show that Evo and Causal Evo show faster convergence speed than baseline methods for both convection and Allen Cahn equations (see Appendix J for details).

Solving Eikonal Equations. Given the equation of a surface geometry in a 2D-space, $u(x, y) = 0$, the Eikonal equation is a time-independent PDE used to solve for the **signed distance field (SDF)**, $u(x, y)$, which has negative values inside the surface and positive values outside the surface. See Appendix F for details of the Eikonal equation. We compare the performance of different baseline methods with respect to the ground-truth (GT) solution obtained from numerical methods for three complex surface geometries in Figure 8. The primary difficulty in solving Eikonal equation comes from determining the sign of the field (interior or exterior) in regions with rich details. We also plot the reconstructed geometry of the predicted solutions to demonstrate the real-world application of solving this PDE, e.g., in downstream real-time graphics rendering. The quality of reconstructed geometries are quantitatively evaluated using the mean Intersection-Over-Union (mIOU) metric that measures the degree of overlap between the predicted geometry and GT. The results show that PINN-fixed shows poor performance across all three geometries, while PINN-dynamic is able to capture most of the outline of the solutions with a few details missing for difficult geometries like “sailboat” and “gear”. On the other hand, Evo is able to capture even the fine details of the SDF for all three complex geometries and thus show better reconstruction quality. We can see that mIOU of Evo is significantly higher than baselines for “sailboat” and “gear”.

![Figure 8: Solving Eikonal equation for signed distance field (SDF). The color of the heatmap represents the values of the SDF. The gray region shows the negative values of SDF that represents the interior points in the reconstructed geometry from predicted SDF.](image_url)
6 CONCLUSIONS AND FUTURE WORK DIRECTIONS

We present a novel perspective for identifying a failure modes in PINNs named “propagation failure” which are typically characterized by very narrow regions with very high PDE residuals. We develop a novel evolutionary sampling algorithm where the collocation points gradually evolve over the training iterations to prioritize high density regions while maintaining a background distribution of uniformly sampled points. From our experiments, we demonstrate better performance on a variety of benchmark PDEs. Future work can focus on theoretically understanding the interplay between minimizing PDE loss and sampling from high residual regions on PINN performance.

REFERENCES

Agoston E Eiben, James E Smith, et al. Introduction to evolutionary computing, volume 53. Springer, 2003.

Stephen Kokoska and Daniel Zwillinger. CRC standard probability and statistics tables and formulae. Crc Press, 2000.

Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W Mahoney. Characterizing possible failure modes in physics-informed neural networks. Advances in Neural Information Processing Systems, 34, 2021.

Randall J LeVeque. Finite difference methods for ordinary and partial differential equations: steady-state and time-dependent problems. SIAM, 2007.

Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. Deepxde: A deep learning library for solving differential equations. SIAM Review, 63(1):208–228, 2021.

Mohammad Amin Nabian, Rini Jasmine Gladstone, and Hadi Meidani. Efficient training of physics-informed neural networks via importance sampling. Computer-Aided Civil and Infrastructure Engineering, 36(8):962–977, 2021.

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics informed deep learning (part i): Data-driven solutions of nonlinear partial differential equations. arXiv preprint arXiv:1711.10561, 2017.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 378:686–707, 2019.

Robert E Schapire. The boosting approach to machine learning: An overview. Nonlinear estimation and classification, pp. 149–171, 2003.

Dan Simon. Evolutionary optimization algorithms. John Wiley & Sons, 2013.

Chuwei Wang, Shanda Li, Di He, and Liwei Wang. Is l^2 physics-informed loss always suitable for training physics-informed neural network? arXiv preprint arXiv:2206.02016, 2022a.

Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and mitigating gradient pathologies in physics-informed neural networks. arXiv preprint arXiv:2001.04536, 2020.

Sifan Wang, Shyam Sankaran, and Paris Perdikaris. Respecting causality is all you need for training physics-informed neural networks. arXiv preprint arXiv:2203.07404, 2022b.

Chenxi Wu, Min Zhu, Qinyang Tan, Yadhu Kartha, and Lu Lu. A comprehensive study of non-adaptive and residual-based adaptive sampling for physics-informed neural networks. arXiv preprint arXiv:2207.10289, 2022.

Olek C Zienkiewicz, Robert L Taylor, and Jian Z Zhu. The finite element method: its basis and fundamentals. Elsevier, 2005.
A Connections Between L^p Norm and Sampling

In this section, we provide the proof of Theorem 3.1 presented in the main paper.

Theorem A.1. For $p \geq 2$, let $L^p_r(U)$ denote the expected L^p PDE Loss computed on collocation points sampled from a uniform distribution, $U(\Omega)$. Similarly, for $k \geq 0$, let $L^k_r(Q^k)$ denote the expected L^k PDE Loss computed on collocation points sampled from an alternate distribution $Q^k(\Omega) : x_r \sim q(x_r)$, where $q(x_r) \propto |R_\theta(x_r)|^k$. Then, $L^k_r(Q^k) = \frac{1}{Z^{1+2/k}} \left(L^{k+2}_r(U) \right)^{(k+2)/2}$, where Z is a normalization constant and V is the volume of the domain Ω.

Proof. The expectation of L^p PDE Loss for collocation points sampled from a uniform distribution $U(\Omega) : x_r \sim p(x_r)$ can be defined as follows:\footnote{We assume that the batch size/number of collocation points used to compute the PDE Loss tends to infinity, i.e., $N_r \to \infty$. This allows us to analyze the behavior of the continuous PDE loss function $L_r(\theta)$ as $N_r \to \infty$.}

\[
L^p_r(U) = \left(\mathbb{E}_{x_r \sim U(\Omega)} |R_\theta(x_r)|^p \right)^{1/p} = \left(\int p(x_r) |R_\theta(x_r)|^p dx_r \right)^{1/p} \quad (3)
\]

Note that for a uniform distribution, $p(x_r) = \frac{1}{V}$, where V is the volume of the domain Ω, i.e., $V = \prod_{i=1}^d \left(\text{supp}(x_i) - \text{inf}(x_i) \right)$ with $\text{supp}(\cdot)$ and $\text{inf}(\cdot)$ being the supremum and infimum operators, and x_i is the i-th dimension of x_r (e.g., the space dimension x or the time dimension t).

Now, let us consider the case where we are interested in sampling from an alternate distribution $Q^k(\Omega) : x_r \sim q(x_r)$, where $q(x_r) \propto |R_\theta(x_r)|^k$ while using the L^2 PDE Loss (the most standard loss formulation used in PINNs). The sampling function of $Q^k(\Omega)$ can be defined as follows:

\[
q(x_r) = \frac{|R_\theta(x_r)|^k}{Z} \quad (4)
\]

where Z is the normalizing constant, i.e., $Z = \int_{x \in \Omega} |R_\theta(x_r)|^k dx_r$.

Hence, the L^2 PDE Loss for collocation points sampled from $Q^k(\Omega)$ can be defined as:

\[
L^2_r(Q^k) = \left(\mathbb{E}_{x_r \sim Q^k(\Omega)} |R_\theta(x_r)|^2 \right)^{1/2} = \left(\int q(x_r) |R_\theta(x_r)|^2 dx_r \right)^{1/2} = \left(\int |R_\theta(x_r)|^k \frac{|R_\theta(x_r)|^2}{Z} dx_r \right)^{1/2} = \frac{1}{Z^{1/2}} \left(\int |R_\theta(x_r)|^{k+2} dx_r \right)^{1/2} = \frac{1}{Z^{1/2} V^{1/2}} \left(\int p(x_r) |R_\theta(x_r)|^{k+2} dx_r \right)^{1/2} = \frac{1}{Z^{1/2} V^{1/2}} \mathbb{E}_{x_r \sim U(\Omega)} |R_\theta(x_r)|^{k+2} \quad (5)
\]

[\Box]
B Analyzing PINN-Dynamic: A Strong Baseline

A very simple baseline for mitigating propagation failures is to *dynamically* sample a random set of N_r collocation points from a uniform distribution at every iteration, independently of previous iterations. To see how this simple sampling strategy can help in sampling points from high PDE residual regions, let us consider partitioning the entire input domain Ω into two subsets: regions with high PDE residuals, Ω_{high}, and regions with low PDE residuals Ω_{low}. If the high PDE residual regions are imbalanced because of propagation failure, we would expect that the area of Ω_{high} (A_{high}) is significantly smaller than the area of Ω_{low} (A_{low}), i.e., $A_{high} \ll A_{low}$. Let us compute the probability of sampling at least one collocation point from Ω_{high}, across all iterations of PINN training. If we use a *fixed* set of collocation points sampled from a uniform distribution at every iteration, this probability will be equal to $A_{high}/(A_{high} + A_{low})$, which can be very small. Hence, we are likely to under-represent points from Ω_{high} in the training process and thus get stuck in trivial solutions with high residual regions around its boundaries, especially when N_r is low.

On the other hand, if we perform *dynamic* sampling, the probability of picking at least one point from Ω_{high} across all iterations will be equal to $1 - (1 - A_{high}/(A_{high} + A_{low}))^N$, where N is the number of iterations. We can see that when N is large, this probability approaches 1, indicating that across all iterations of PINN training, we would have likely sampled a point from Ω_{high} in at least one iteration, and used it to minimize its PDE residual. As we empirically demonstrate later in Section 5, dynamic sampling is indeed able to control the skewness of PDE residuals compared to fixed sampling, and thus act as a strong baseline for mitigating propagation failures.

However, note that even if we use dynamic sampling, the contribution of points from Ω_{high} in the overall PDE residual loss computed at any iteration is still low. In particular, since the probability of sampling points from Ω_{high} at any iteration is equal to $A_{high}/(A_{high} + A_{low})$, the expected PDE residual loss computed over all collocation points will be equal to

$$
E_{\Omega}[\mathcal{L}_r(\theta)] = E_{\Omega_{high}}[\mathcal{L}_r(\theta)] \times \frac{A_{high}}{A_{high} + A_{low}} + E_{\Omega_{low}}[\mathcal{L}_r(\theta)] \times \frac{A_{low}}{A_{high} + A_{low}} \quad (6)
$$

Since $A_{high} \ll A_{low}$, the gradient update of θ at every epoch will be dominated by the low PDE residuals observed over points from Ω_{low}, leading to slow propagation of information from initial/boundary points to interior points.

C Analysis of Evolutionary Sampling

In this section, we analyze the dynamic behavior (or evolution) of the collocation points for our proposed Evolutionary Sampling (Evo) approach over the iterations.

C.1 Gradual Accumulation Property of Evo

In this section, we provide the proof of Theorem 4 presented in the main paper.

Definition 1 (Objective Function). Let $f_0(x): \mathbb{R}^n \to \mathbb{R}^+$ be an arbitrary positive real-valued k-Lipschitz continuous function, where θ denotes the neural network parameters. When θ is fixed, the function $f(x)$ does not vary with iterations, representing a fixed objective function.

Let $X^* = \{x_i^* : f(x_i^*) = \max_x f(x) \forall i \in [n]\}$ be the set of points where the objective function f is maximal.

Now, let us define an ϵ-neighborhood around each of point $x_i^* \in X^*$ as $\mathcal{N}_\epsilon(x_i)$ such that $||x_i - x_i^*|| \leq \epsilon$ for any arbitrarily small $\epsilon > 0$ and for all $x_i \in \mathcal{N}_\epsilon(x_i)$ with $i \in [n]$.

Let us also assume that the objective function f is k-Lipschitz continuous. Then the following is true:

$$
|f(x_i^*) - f(x_i)| \leq k\epsilon \quad \forall x_i \in \mathcal{N}_\epsilon(x_i) \& i \in [n] \quad (7)
$$

$$
\implies f(x_i^*) - f(x_i) \leq k\epsilon \quad \therefore f(x_i^*) = \max_x f(x) \quad (8)
$$

Definition 2 (ϵ-maximal Neighborhood). Let $f^* = \max_x f(x)$ be the maximal value of the objective function $f(x)$ (Definition 7). Then an ϵ-maximal Neighborhood $\mathcal{N}^\infty_\epsilon$ can be defined as: $\mathcal{N}^\infty_\epsilon =$
\(\mathcal{N}_r(x_0) \cup \mathcal{N}_r(x_1) \cup \ldots \cup \mathcal{N}_r(x_n) \) such that any point \(x \) sampled from \(\mathcal{N}_r^{\infty} \) would have \(f^* - f(x) \leq k\epsilon \quad \forall \ x \in \mathcal{N}_r^{\infty} \) and for any arbitrarily small \(\epsilon > 0 \).

Note that since the volume of \(\mathcal{N}_r^{\infty} \) is greater than 0, the probability of sampling any \(x \in \mathcal{N}_r^{\infty} \) from a uniform distribution \(\mathcal{U}(x) \) is greater than 0.

Lemma C.1 (Population Properties). For any population \(\mathcal{P} \) generated at some iteration of Evo optimizing a given objective function \(f(x) \) (Definition 7), the following properties are always true:

1. The re-sampled population is always non-empty, i.e., \(|\mathcal{P}^s| > 0 \)
2. The size of the retained population is always less than the total population size, i.e., \(|\mathcal{P}^r| < |\mathcal{P}| \)
3. The size of the retained population is zero, i.e., \(|\mathcal{P}^r| = 0 \), if and only if \(f(x) = c, \forall x \in \mathcal{P} \).

Proof. The threshold \(\tau \) for the Evolutionary Sampling can be computed as \(\tau = \frac{1}{|\mathcal{P}|} \sum_{x \in \mathcal{P}} f(x) \).

The retained population is defined as: \(\mathcal{P}^r \leftarrow \{ x : f(x) > \tau \ \forall x \in \mathcal{P} \} \).

Similarly, the non-retained population can be defined as: \(\mathcal{P}^r \leftarrow \{ x : f(x) \leq \tau \ \forall x \in \mathcal{P} \} \).

Property 1: For any arbitrary set of real numbers, there always exists some element in the set that is less than or equal to the mean. Hence, the size of the non-retained population is always non-zero as there always exists some point \(x \in \mathcal{P} \) such that \(f(x) \leq \tau \). Thus, \(|\mathcal{P}^r| > 0 \).

Now by definition, since the re-sampled population \(\mathcal{P}^s \) replaces the non-retained population at every iteration, \(|\mathcal{P}^s| = |\mathcal{P}^r| \). Hence, \(|\mathcal{P}^s| > 0 \), i.e., the size of the resampled population is always non-zero.

Property 2: By definition, \(|\mathcal{P}^r| + |\mathcal{P}^s| = |\mathcal{P}| \) (where \(|\mathcal{P}| \) is the total size of the population and is always constant). Since, \(|\mathcal{P}^r| > 0 \), we can say that \(|\mathcal{P}^r| < |\mathcal{P}| \), i.e., the size of the retained population can never be equal to the entire population size \(|\mathcal{P}| \).

Property 3: Let us consider the case where \(f(x) = c, \forall x \in \mathcal{P} \) (where \(c \) is some constant), i.e., the value of the function is constant at all of the points \(x \in \mathcal{P} \). In this case, the mean of the population \(\mathcal{P} \), which is equal to the threshold, \(\tau \) will be equal to \(c \). This condition would lead to the entire population to be re-sampled as all element \(x \in \mathcal{P} \) would satisfy the condition to belong in the non-retained population. Note that the constant function \(f(x) = c \) is the only case where all of the elements are less than or equal to the mean. Otherwise, there would always be at least one element greater than the mean, resulting in a non-zero size of the retained population.

Lemma C.2 (Entry Condition). If a point \(x_m \) is sampled from \(\mathcal{N}_r^{\infty} \) at any arbitrary iteration \(m \), then it will always enter the retained population \(\mathcal{P}^r_m \) unless \(\mathbb{E}_{x \in \mathcal{P}^r_m} [f(x)] > f^* - k\epsilon \).

Proof. The condition for any arbitrary point \(x_m \) to enter the retained population \(\mathcal{P}^r_m \) at any arbitrary iteration \(m \) is given by the following:

\[
f(x_m) > \tau_m = \mathbb{E}_{x \in \mathcal{P}_m} [f(x)].
\]

(By definition of the threshold \(\tau_m \)) \hspace{1cm} (9)

Now, if the point \(x_m \) is sampled from \(\mathcal{N}_r^{\infty} \), then \(f(x_m) \geq f^* - k\epsilon \) (from Definition 2). Hence, for \(x_m \) to enter the retained population \(\mathcal{P}^r_m \), we need to ensure that \(f^* - k\epsilon > \tau_m \).

Let us consider the case where \(x_m \) is not able to enter the retained population. In such a case, we will have the following inequality:

\[
f^* - k\epsilon < \tau_m.
\]

(10)

It is also easy to show from the definition of retained population that the threshold \(\tau \) is always less than the expectation of the retained population:

\[
\tau_m \leq \mathbb{E}_{x \in \mathcal{P}^r_m} [f(x)]
\]

(11)

From Equations (10) and (11) we get,

\[
f^* - k\epsilon < \tau_m \leq \mathbb{E}_{x \in \mathcal{P}^r_m} [f(x)] \Rightarrow \mathbb{E}_{x \in \mathcal{P}^r_m} [f(x)] > f^* - k\epsilon
\]

(12)
We have thus proved that \(x_m \) will not be able to enter the retained population \(\mathcal{P}_n \) only if \(\mathbb{E}_{x \in \mathcal{P}_n} [f(x)] > f^* - k \epsilon \), which suggests that the expectation of the retained population is already close to \(f^* \), for any arbitrarily small \(\epsilon > 0 \). On the other hand, if \(\mathbb{E}_{x \in \mathcal{P}_n} [f(x)] \leq f^* - k \epsilon \), we would necessarily add \(x_m \).

Lemma C.3 (Exit Condition). A point \(x_m \) sampled from \(\mathcal{N}^\infty \) that entered the retained population at any arbitrary iteration \(m \), can exit the retained population \(\mathcal{P}_n \) at an arbitrary iteration \(n \) (such that \(n > m \)) only if \(\mathbb{E}_{x \in \mathcal{P}_n} [f(x)] \geq f^* - k \epsilon \).

Proof. The generic condition for any arbitrary point \(x \) to exit the retained population \(\mathcal{P}_n \) at iteration \(n \) is given by: \(f(x) \leq \tau_n = \mathbb{E}_{x \in \mathcal{P}_n} [f(x)] \) (By definition of the threshold \(\tau \)).

Since a point \(x_m \) that was originally sampled from \(\mathcal{N}^\infty \) will have \(f(x_m) \geq f^* - k \epsilon \) (from Definition 2), we can use this inequality in the generic exit condition shown above to get,

\[
f^* - k \epsilon \leq \tau_n \leq \mathbb{E}_{x \in \mathcal{P}_n} [f(x)]
\]

Hence, the point \(x_m \) can exit the retained population at iteration \(n \) only if \(\mathbb{E}_{x \in \mathcal{P}_n} [f(x)] \geq f^* - k \epsilon \).

Theorem C.4 (Accumulation Dynamics Theorem). Let \(f_\theta : \mathbb{R}^n \rightarrow \mathbb{R}^+ \) be an arbitrary positive real-valued \(k \)-Lipschitz continuous objective function optimized using the Evolutionary Sampling algorithm with fixed \(\theta \). Then, the expectation of the retain population \(\mathbb{E}_{x \in \mathcal{P}_n} [f(x)] \geq \max_x f(x) - k \epsilon \) as iteration \(i \rightarrow \infty \), for any arbitrarily small \(\epsilon > 0 \).

Proof. Lemmas C.2 states that a point \(x \) sampled from \(\mathcal{N}^\infty \) will always enter the retained population unless \(\mathbb{E}_{x \in \mathcal{P}_n} [f(x)] \geq f^* - k \epsilon \). In other words, point \(x \) will not enter the retained population only if the expectation of the retained population is already close to the maximal value \(f^* \). Also, note that the probability of sampling \(x \) from \(\mathcal{N}^\infty \) is always non-zero, because the size of the re-sampled population is always non-zero, i.e., |\(\mathcal{P}_n \)| > 0 (proved in Lemma C.1).

Lemmas C.3 states that a point \(x \) that was sampled from the \(\epsilon \)-maximal neighborhood can never escape the retained population unless \(\mathbb{E}_{x \in \mathcal{P}_n} [f(x)] \geq f^* - k \epsilon \), i.e., the desired condition is reached. Now, since the size of the retained population \(|\mathcal{P}_n| < |\mathcal{P}| \), it is always upper-bounded by \(|\mathcal{P}| \). Hence, from Lemmas C.2 and C.3, points from the \(\epsilon \)-maximal neighborhood would keep on accumulating in the retained population without being able to exit until the condition: \(\mathbb{E}_{x \in \mathcal{P}_n} [f(x)] \geq f^* - k \epsilon \) is reached. Since \(|\mathcal{P}_n| \) is bound to be finite, we will eventually arrive the situation where the expectation of the retained population will reach close its maximum value, i.e., \(\mathbb{E}_{x \in \mathcal{P}_n} [f(x)] \geq f^* - k \epsilon \) as iteration \(i \rightarrow \infty \).

From Theorem 4, we can prove a continuous accumulation of collocation points from the \(\epsilon \)-maximal neighborhood until the expectation of the retained population is close to the maximum point (i.e., reaches \(L^\infty \)), thus exhibiting the *Gradual Accumulation Property* described in Section 4. Although this theorem assumes that the objective function \(f(x) \) (or in the context of PINNs, the absolute residual values, \(R\phi(x_\tau) \)) is constant, this theorem is still valid when \(R\phi(x_\tau) \) is gradually changing with the highest error regions (defined using our \(\epsilon \)-maximal neighborhood) persisting over iterations. Under such conditions, the theorem states that the retained population \(\mathcal{P}_n \) would always gradually accumulate points from the \(\epsilon \)-maximal neighborhood, thereby adaptively increasing their contribution to the overall PDE residual loss and eventually resulting in their minimization.

C.2 Release of Collocation Points from High PDE Residual Regions.

Our definition of the **Sample Release Property** states that the distribution of collocation points should revert back to its original form by releasing the accumulated points in the high PDE residual regions once they are “sufficiently minimized”. Let us define that for an arbitrary collocation point \(x_{\tau} \in \mathcal{P} \), “sufficient minimization” of the PDE is achieved if \(R\phi(x_{\tau}) \leq \mathbb{E}_{x, \in \mathcal{P}} [R\phi(x_{\tau})] = \tau \) (where \(\tau \) is the threshold used by Evo). Then, by definition, such points will belong to the “non-retained population” and will be immediately replaced by the re-sampled population. Since we generate the re-sampled population \(\mathcal{P}_n \) from a uniform distribution, these “sufficiently minimized” collocation points are replaced with a uniform density. Thus, Evo satisfies the “Sample Release Property” of an “ideal” sampling algorithm.
D ADDITIONAL DETAILS FOR CAUSAL EVOLUTIONARY SAMPLING

Figure 9 represents a schematic describing the causally biased Evolutionary sampling described in Section 4.1 and the causal gate g that is updated every iteration.

![Causal Gate](image1.png) ![Causally Biased Evo Sampling](image2.png)

Figure 9: Causal Evo uses a time-dependent causal gate for computing PDE loss and for sampling.

D.1 PREVENTING ABRUPT CAUSAL GATE MOVEMENT.

The shift parameter γ of the causal gate is updated every iteration using the following scheme:

$$\gamma_{i+1} = \gamma_i + \eta g e^{-\epsilon \mathcal{L}^e_i(\theta)}$$

where ηg is the learning rate that controls how fast the gate should propagate and ϵ denotes tolerance that controls how low the PDE loss needs to be before the gate shifts to the right, and i denotes the i^{th} iteration. Typically, in our experiments we set the learning rate to 1e-3.

Thus, for example, if the expectation of $e^{-\epsilon \mathcal{L}^e_i(\theta)}$ over 1000 iterations is 0.1, then γ would change by a value of 0.1 after 1000 iterations (since $\gamma_i \approx \gamma_i + \eta g \cdot N \cdot \mathbb{E}[e^{-\epsilon \mathcal{L}^e_i(\theta)}]$). Additionally, note that, for a typical “tanh” causal gate, the operating range of γ values vary from -0.5 to 1.5. However, if the loss is very small ($\mathcal{L}^e_i(\theta) \rightarrow 0$), the magnitude of the update $e^{-\epsilon \mathcal{L}^e_i(\theta)} \rightarrow 1$, i.e., leads to an abrupt change in the causal gate. Thus, to prevent an abrupt gate movement due to large magnitude update, we employ a magnitude clipping scheme (similar to gradient clipping in conventional ML) as follows:

$$\gamma_{i+1} = \gamma_i + \eta g \min(e^{-\epsilon \mathcal{L}^e_i(\theta)}, \Delta_{\text{max}})$$

where Δ_{max} is the maximum allowed magnitude of update. Typically, for our experiments we keep $\Delta_{\text{max}} = 0.1$. Note, that Δ_{max} needs to be carefully chosen depending on the gate learning rate ηg.

D.2 CHOICE OF OTHER GATE FUNCTIONS.

The gate function g to enforce the principle of causality is not limited to the “tanh” gate presented in Section 4.1 of the main paper. Any arbitrary function can be used for a causal gate as long as it obeys the following criteria:

1. **Continuous Time Property**: The function g should be continuous in time, such that it can be evaluated at any arbitrary time t.

2. **Monotonic Property**: The value of gate g at time $t + \Delta t$ should be less than the value of the gate at time t, i.e., $g(t + \Delta t) \leq g(t)$. In other words, g should be a monotonically decreasing function.

3. **Shift Property**: The gate function should be parameterized using a shift parameter γ, such that $g_i(t) < g_{i+\delta}(t)$, where $\delta > 0$, i.e., by increasing the value of the shift parameter the gate value of any arbitrary time should increase.

An alternate choice of a causal gate is using a composition of ReLU and tanh functions: $g = \text{ReLU}(-\text{tanh}(\alpha(t - \gamma)))$ (as shown in Figure 10). We can see that by using ReLU, this alternate gate function provides a stricter thresholding of gate values to 0 after a cutoff value of time. The effect of this strict thresholding on the incorporation of causality in training PINNs can be studied in future analyses. In our current analysis, we simply used the tanh gate function for all our experiments.
In this section, we aim to provide a comprehensive comparison of the computational complexity of Evolutionary Sampling and its baselines. It is well-known that the cost of computing the PDE residuals using automatic-differentiation during training amounts is reasonably large, especially when the PDE contains higher order gradients that require repeated backward passes through the computational graphs used by standard deep learning packages like PyTorch/Tensorflow. Thus, in this section we would mainly focus on comparing the number of PDE residual computations that each algorithm makes during training. We can quantify the effect of this difference on computational costs as follows. Let us first define the Notations that we are going to use for the analysis:

Notations for Computational Analysis

- \(C \): Computational Cost to evaluate the PDE residual on a single collocation point.
- \(N \): Total Number of Training Iterations.
- \(|\mathcal{P}| \): Total Number of Collocation Points/Population Size (Also referred to as the initial set of collocation points for RAR based methods).
- \(|\mathcal{P}_{\text{dense}}| \): Auxiliary Set of dense points [For RAR-G,RAD, and RAR-D], where \(|\mathcal{P}_{\text{dense}}| \gg |\mathcal{P}| \)
- \(K \): Resampling Period [For RAR-G,RAD, and RAR-D]
- \(M \): Number of additional collocation points added to the initial set

Next, we present the computational cost to run each method separately.

PINN/Evo: The cost of computing the PDE residual at an arbitrary epoch \(i \): \(C_{\text{Evo}}(i) = C|\mathcal{P}| \). Thus, the overall computational cost for \(N \) iterations is \(C_{\text{Evo}} = NC|\mathcal{P}| \).

RAR-G/RAD/RAR-D: For RAR-based methods, the initial set of collocation points \(\mathcal{P} \) keeps growing as \(M \) new test points are added every \(K \) iterations. Thus, at an iteration \(i \), the size of the collocation point set \(|\mathcal{P}_i| = |\mathcal{P}_0| + M\lfloor i/K \rfloor = |\mathcal{P}| + M\lfloor i/K \rfloor \) (to simplify notations, let \(|\mathcal{P}_0| = |\mathcal{P}| \), i.e., all of the methods start with the same number of initial collocation points). Thus, the cost to compute the PDE residuals on this training set \(\mathcal{P} \) is:

\[
C_{\text{RAR}}^{\text{train}} = KC|\mathcal{P}| + KC(|\mathcal{P}| + M) + KC(|\mathcal{P}| + 2M) + \ldots + KC(|\mathcal{P}| + M\left\lfloor \frac{N}{K} \right\rfloor) \\
= KC|\mathcal{P}| \left(\frac{N}{K} + 1 + \frac{M}{2|\mathcal{P}|} \left(\frac{N}{K} \right) \left(\frac{N}{K} + 1 \right) \right) \quad (14)
\]
There is also an additional cost of evaluating the PDE residuals on the dense set C_{RAR}^{dense} to select these M points from high PDE residual region.

$$C_{RAR}^{dense} = C|P_{dense}|\left\lfloor \frac{N}{K} \right\rfloor$$ \hspace{1cm} (15)

Therefore, the overall cost for RAR-based methods is:

$$C_{RAR} = C_{RAR}^{dense} + C_{train}^{RAR}$$

Comparing the cost between Evo and RAR: Assuming that the total number of epochs N is divisible by the resampling period K, which is true for most practical scenarios.

$$C_{RAR} = NC|P| + KC|P| + \frac{MNC}{2} \left(\frac{N}{K} + 1 \right) + C|P_{dense}|\frac{N}{K}$$

$$C_{RAR} = C_{Evo} + KC|P| + \frac{MNC}{2} \left(\frac{N}{K} + 1 \right) + C|P_{dense}|\frac{N}{K}$$

$$C_{RAR} - C_{Evo} = KC|P| + \frac{MNC}{2} \left(\frac{N}{K} + 1 \right) + C|P_{dense}|\frac{N}{K}$$ \hspace{1cm} (16)

Thus, we can see that the difference in the computational cost can quickly grow depending on the choice of RAR setting. Also note that, since $|P_{dense}| >> |P|$, the additional cost of $C|P_{dense}|\frac{N}{K}$ is significant, especially if we want to re-sample/re-evaluate the adaptive sampling frequently (i.e., for small values of K).

F DETAILS OF PARTIAL DIFFERENTIAL EQUATIONS USED IN THIS WORK

F.1 CONVECTION EQUATION

We considered a 1D-convection equation that is commonly used to model transport phenomenon, described as follows:

$$\frac{\partial u}{\partial t} + \beta \frac{\partial u}{\partial x} = 0, \; x \in [0, 2\pi], t \in [0, 1]$$ \hspace{1cm} (17)

$$u(x, 0) = h(x)$$ \hspace{1cm} (18)

$$u(0, t) = u(2\pi, t)$$ \hspace{1cm} (19)

where β is the convection coefficient and $h(x)$ is the initial condition. For our case studies, we used a constant setting of $h(x) = \sin(x)$ with periodic boundary conditions in all our experiments, while varying the value of β in different case studies.

F.2 ALLEN-CAHN EQUATION

We considered a 1D - Allen Cahn equation that is used to describe the process of phase-separation in multi-component alloy systems as follows:

$$\frac{\partial u}{\partial t} - 0.0001 \frac{\partial^2 u}{\partial x^2} + 5u^3 - 5u = 0, \; x \in [-1, 1], t \in [0, 1]$$ \hspace{1cm} (20)

$$u(x, 0) = x^2 \cos(\pi x)$$ \hspace{1cm} (21)

$$u(t, -1) = u(t, 1)$$ \hspace{1cm} (22)

$$\frac{\partial u}{\partial t} \bigg|_{x=-1} = \frac{\partial u}{\partial t} \bigg|_{x=1}$$ \hspace{1cm} (23)
F.3 Eikonal Equation

We formulate the Eikonal equation for signed distance function (SDF) calculation as:

\[\frac{\nabla u}{|\nabla u|} = 1, \quad x, t \in [-1, 1] \quad (24) \]

\[u(x_s) = 0, \quad x_s \in S \quad (25) \]

\[u(x, -1), u(x, 1), u(-1, y), u(1, y) > 0 \quad (26) \]

where \(S \) is zero contour set of the SDF. In training PINN, we use the zero contour constraint as initial condition loss and positive boundary constraint as boundary loss (see Table 2 for details of loss balancing).

G Details on Skewness and Kurtosis Metrics

Skewness and kurtosis are two basic metrics used in statistics to characterize the properties of a distribution of values \(\{Y_i\}_{i=1}^N \). A high value of Skewness indicates lack of symmetry in the distribution, i.e., the distribution of values to the left and to the right of the center point of the distribution are not identical. On the other hand, a high value of Kurtosis indicates the presence of a heavy-tail, i.e., there are more values farther away from the center of the distribution relative to a Normal distribution. In our implementation using `scipy`, we used the adjusted Fisher-Pearson coefficient of skewness and Fisher’s definition of kurtosis, as defined below.

Skewness: For univariate data \(Y_1, Y_2, ..., Y_N \), the formula of skewness is

\[\text{skewness} = \sqrt{\frac{N(N-1)}{N-2}} \times \frac{\sum_{i=1}^{N} (Y_i - \bar{Y})^3 / N}{s^3}, \quad (27) \]

where \(\bar{Y} \) is the sample mean of the distribution and \(s \) is the standard deviation. For any symmetric distribution (e.g., Normal distribution), the skewness is equal to zero. A positive value of skewness means there are more points to the right of the center point of the distribution than there are to the left. Similarly, a negative value of skewness means there are more points to the left of the center point than there are to the right. In our use-case, a large positive value of skewness of the PDE residuals indicates that there are some asymmetrically high PDE residual values to the right.

Kurtosis: Kurtosis is the fourth central moment divided by the square of the variance after subtracting 3, defined as follows:

\[\text{kurtosis} = \frac{\sum_{i=1}^{N} (Y_i - \bar{Y})^4 / N}{s^4} - 3 \quad (28) \]

For a Normal distribution, Kurtosis is equal to 0. A positive value of Kurtosis indicates that there are more values in the tails of the distribution than what is expected from a Normal distribution. On the other hand, a negative value of Kurtosis indicates that there are lesser values in the tails of the distribution relative to a Normal distribution. In our use-case, a large positive value of Kurtosis of the PDE residuals indicates that there are some high PDE residual values occurring in very narrow regions of the spatio-temporal domain, that are being picked up as the heavy-tails of the distribution.

H Hyper-parameter Settings and Implementation Details

The hyper-parameter settings for the different baseline methods for every benchmark PDE are provided in Table 2. Note that we used the same network architecture and other hyper-parameter settings across all baseline method implementations for the same PDE. In this table, the column on ‘r/ic/bc’ represents the setting of the \(\lambda_r, \lambda_{ic}, \lambda_{bc} \) hyper-parameters that are used to weight the different loss terms in the overall learning objective of PINNs. Table 2 also lists the type of Optimizer, learning rate (lr), and learning rate scheduler (lr.scheduler) used across all baselines for every PDE. For the Eikonal equation, we used the same modified multi-layer perceptron (MLP) architecture as the one proposed in [Wang et al., 2020]. Additionally, for the Causal Evolutionary Sampling method, we used the following hyper-parameter settings across all PDEs: \(\alpha = 5 \), learning rate of the gate
\[\eta_g = 1e^{-3}, \text{tolerance } \epsilon = 20, \text{ initial value of } \beta = -0.5, \text{ and } \Delta_{max} = 0.1. \] The number of iterations (and the corresponding PDE coefficients for the Convection Equation) are provided in Section 3 of the main paper.

PDE	Method	Architecture	Periodic Encoding	r/ic/bc	Optimizer/ lr	Ir. scheduler	RAR Hyperparams
Convection	PINN,	50 x 4 (MLP)	No	1/100/100	Adam/ 1e-3	StepLR rate=0.9, steps=5000	N/A
	cPINN,						
	Evo,						
	CausalEvo						
	Curr. Reg.	50 x 4 (MLP)	No	1/1/1	Adam/ 1e-4	No	N/A
	RAR-G						
	RAD						
	RAR-D						
Allen Cahn	PINN,	128x4 (MLP)	Yes	1/100/100	Adam/ 1e-3	StepLR rate=0.9, steps=5000	N/A
	cPINN,						
	Evo,						
	CausalEvo						
	RAR-G						
	RAD						
	RAR-D						
Eikonal	PINN,	128x4 (Wang et al., 2020) (modified MLP)	No	1/500/10	Adam/ 1e-3	StepLR rate=0.9, steps=5000	N/A
	Evo						

Hardware Implementation Details: We trained each of our models on one Nvidia Titan RTX 24GB GPU.

I ADDITIONAL RESULTS

1.1 VISUALIZING PROPAGATION FAILURE FOR DIFFERENT SETTINGS OF \(\beta \)

In Figure 2 of the main paper, we demonstrated the phenomenon of propagation failure for convection equation with \(\beta = 50 \), which was characterized by large values of Skewness and Kurtosis in the PDE residual fields for a large number of iterations (or epochs), and a simultaneous stagnation in the relative error values even though the mean PDE residual kept on decreasing. Here, in Figure 11 we show that the same phenomenon can be observed for other large values of \(\beta > 10 \), namely, \(\beta = 30, 50, 70 \). We can see that the relative errors for all these three cases remains high even though the PDE residual loss keeps on decreasing with iterations. We can also see that the absolute values of skewness and kurtosis increase as we increase \(\beta \), indicating higher risks of propagation failure. In fact, for \(\beta = 30 \), we can even see that the epoch that marks an abrupt increase in skewness and kurtosis (around 50K iterations) also shows a sudden increase in the relative error at the same epoch, highlighting the connection between imbalanced PDE residuals and the phenomenon of propagation failure.
Figure 11: Demonstration ofPropagation Failure for Different Settings of β ($\beta = 10, 30, 50, 70$)

Figure 12: Comparing convergence speeds of baselines w.r.t. Evo and Causal Evo.

I.2 Convergence Speed of Evolutionary Sampling

Figure 12 shows that Causal Evo is able to converge faster to low error solutions than all other baseline methods for both convection and Allen Cahn equations. This shows the importance of respecting causality along with focusing on high residual regions to ensure fast propagation of correct solution from initial/boundary points to interior points. While cPINN-fixed and PINN-dynamic do not converge for convection ($N_r = 1K$), we can see that they both converge to lower errors compared to PINN-fixed for Allen Cahn and for convection when N_r is large ($20K$).

I.3 Sensitivity of RAR-based Methods

Figures 13 shows the sensitivity of two RAR-based methods: RAR-G and RAR-D respectively on different values of the resampling period K and the number of collocation points m added from the dense set P_{dense}. Note that although the size of the initial set of collocation points $|P|$ was same for each of these experiments, the final size of the collocation points vary depending on the choice of K (the final size of the collocation points increases as k decreases) and m (the final size of the collocation points increases with m). We essentially observe that adding more collocation points almost always improves the performance of these RAR-based methods.

Figure 13: Sensitivity of RAR-based Methods on different values of K and M (for a fixed $|P_{dense}| = 100k$ on Convection Equation with $\beta = 30$.) The numbers in the heatmap denote the $\%$ Relative L_2 Error.

(a) RAR-G
(b) RAR-D
I.4 Visualizing the Evolution of Collocation Points in Evo

Figure 14 shows the evolution of collocation points and PDE residual maps of Evo as we progress in training iterations for the convection equation with $\beta = 50$. We can see that the retained population of Evo at every iteration (shown in red) selectively focuses on high PDE residual regions, while the re-sampled population (shown in blue) are generated from a uniform distribution. By increasing the contribution of high residual regions in the computation of the PDE loss, we can see that Evo is able to reduce the PDE loss over iterations without admitting high imbalance, thus mitigating the propagation failure mode, in contrast to conventional PINNs.

Figure 14: Demonstrating the propagation of information from the initial/boundary points to the interior points for Evo. Sample on Convection Equation ($\beta = 50$)

I.5 Visualizing the Evolution of Collocation Points in Causal Evo

Figure 15 shows the evolution of collocation points and PDE residuals of Causal Evo, along with the dynamics of the Causal Gate function. We can see that the retained population at every iteration (shown in red) strictly adheres to the principle of causality such that the collocation points are sampled from later times only when the PDE residuals at earlier times have been minimized. This is also reflected in the movement of the causal gate function where the gate values are close to 1 for only small portions of time domain at intermediate epochs. At 90K iterations, we can see that the causal gate values are close to 1 for all values of time, indicating that the entire time domain is now revealed for training PINN to converge to the correct solution.

I.6 Visualizing the Dynamics of Collocation Points for RAR-Based Methods

Figures 16, 17, and 18 shows the evolution of collocation points and PDE residuals of RAR-G, RAD, and RAR-D, respectively. We can see that all three RAR-based methods are failing to converge to the correct solution even after 100K iterations, demonstrating their inability to mitigate propagation failures.
Figure 15: Demonstrating the propagation of information from the initial/boundary points to the interior points for Causal Evo. on Convection Equation ($\beta = 50$)

J Optimization Characteristics of Evolutionary Sampling on Test Optimization Functions

In this section, we demonstrate the ability of our proposed Evolutionary Algorithm to find global minima on various test optimization functions. We will also provide other characterizations of our proposed Evolutionary Sampling algorithm.

J.1 Auckley Function

The two-dimensional form of the Auckley function has multiple local maxima in the near-flat region of the function and one large peak at the center.

$$f(x) = a \exp\left(-b \sqrt{\frac{1}{d} \sum_{i=1}^{d} x_i^2}\right) + \exp\left(\frac{1}{d} \sum_{i=1}^{d} \cos(cx_i)\right) + a + \exp(1) \quad (29)$$

J.2 Bohachevsky Function

The two-dimensional form of the Bohachevsky function is a bowl shaped function having one global maxima.

$$f(x, y) = -x^2 - 2y^2 + 0.3 \cos(3\pi x) + 0.4 \cos(4\pi y) - 0.7 \quad (30)$$
Figure 16: Demonstrating the dynamic changes in the collocation points for RAR-G on Convection Equation ($\beta = 50$)

Figure 17: Demonstrating the dynamic changes in the collocation points for RAD on Convection Equation ($\beta = 50$)

J.3 DROP-WAVE FUNCTION

The two-dimensional form of the Drop-Wave function which is multimodal and highly complex.
The two-dimensional form of the Egg-Holder function is highly complex function that is difficult to optimize because of the presence of multiple local maxima.

\[
f(x, y) = \frac{1 + \cos(12 \sqrt{x^2 + y^2})}{0.5(x^2 + y^2) + 2}
\]

(31)

4.4 Egg-Holder Function

The two-dimensional form of the Egg-Holder function is highly complex function that is difficult to optimize because of the presence of multiple local maxima.

\[
f(x, y) = (y + 47) \sin(\sqrt{|y + \frac{x}{2} + 47|}) + x \sin(\sqrt{|x - (y + 47)|})
\]

(32)
Figure 20: Demonstrating the evolution of the randomly initialized points while optimizing the Auckley function. The red triangles represent the re-sampled population at that epoch, and the blue dots represent the retained population at that epoch. The contour function of the objective function is shown in the background.

Figure 21: Illustrating the dynamic behavior of the Evolutionary Sampling algorithm on Auckley Function using the L^2 Physics-informed Loss computed on the retained and re-sampled populations. The horizontal lines represent the L^p Physics-informed Loss on a dense set of uniformly sampled collocation points (where $p = 2, 4, 6, \infty$).

Figure 22: Demonstrating the dynamic evolution of the retained population size over epochs on the Auckley Function.
Figure 23: Surface Plot of the 2-D Bohachevsky Function

Figure 24: Demonstrating the evolution of the randomly initialized points while optimizing the Bohachevsky function. The red triangles represent the re-sampled population at that epoch, and the blue dots represent the retained population at that epoch. The contour function of the objective function is shown in the background.

Figure 25: Illustrating the dynamic behavior of the Evolutionary Sampling algorithm on Bohachevsky Function using the L^2 Physics-informed Loss computed on the retained and re-sampled populations. The horizontal lines represent the L^p Physics-informed Loss on a dense set of uniformly sampled collocation points (where $p = 2, 4, 6, \infty$).
Figure 26: Demonstrating the dynamic evolution of the retained population size over epochs on the Bohachevsky Function.

Figure 27: Surface Plot of the 2-D Drop-Wave Function

Figure 28: Demonstrating the evolution of the randomly initialized points while optimizing the Drop-Wave function. The red triangles represent the re-sampled population at that epoch, and the blue dots represent the retained population at that epoch. The contour function of the objective function is shown in the background.
Figure 29: Illustrating the dynamic behavior of the Evolutionary Sampling algorithm on Drop-Wave Function using the L^2 Physics-informed Loss computed on the retained and re-sampled populations. The horizontal lines represent the L^p Physics-informed Loss on a dense set of uniformly sampled collocation points (where $p = 2, 4, 6, \infty$).

Figure 30: Demonstrating the dynamic evolution of the retained population size over epochs on the Drop-Wave Function.

Figure 31: Surface Plot of the 2-D Egg-Holder Function
Figure 32: Demonstrating the evolution of the randomly initialized points while optimizing the Egg-Holder function. The red triangles represent the re-sampled population at that epoch, and the blue dots represent the retained population at that epoch. The contour function of the objective function is shown in the background.

Figure 33: Illustrating the dynamic behavior of the Evolutionary Sampling algorithm on Egg-Holder Function using the L^2 Physics-informed Loss computed on the retained and re-sampled populations. The horizontal lines represent the L^p Physics-informed Loss on a dense set of uniformly sampled collocation points (where $p = 2, 4, 6, \infty$).

Figure 34: Demonstrating the dynamic evolution of the retained population size over epochs on the Egg-Holder Function.
Figure 35: Surface Plot of the 2-D Holder-Table Function

Figure 36: Demonstrating the evolution of the randomly initialized points while optimizing the Holder-Table function. The red triangles represent the re-sampled population at that epoch, and the blue dots represent the retained population at that epoch. The contour function of the objective function is shown in the background.

J.5 Holder-Table Function

The two-dimensional form of the Holder-Table function has many local maximas, but has 4 global maximas at the four corners.

\[f(x, y) = |\sin(x)\cos(y)| \exp \left(1 - \frac{\sqrt{x^2 + y^2}}{\pi} \right) \]

(33)

J.6 Bukin Function

The two-dimensional form of the Bukin function has many local maximas, all of which lie on a ridge.

\[f(x, y) = -100\sqrt{|y - 0.01x^2| - 0.01|x + 10|} \]

(34)
Figure 37: Illustrating the dynamic behavior of the Evolutionary Sampling algorithm on Holder-Table Function using the L^2 Physics-informed Loss computed on the retained and re-sampled populations. The horizontal lines represent the L^p Physics-informed Loss on a dense set of uniformly sampled collocation points (where $p = 2, 4, 6, \infty$).

Figure 38: Demonstrating the dynamic evolution of the retained population size over epochs on the Holder-Table Function.

Figure 39: Surface Plot of the 2-D Bukin Function
Figure 40: Demonstrating the evolution of the randomly initialized points while optimizing the Bukin function. The red triangles represent the re-sampled population at that epoch, and the blue dots represent the retained population at that epoch. The contour function of the objective function is shown in the background.

Figure 41: Illustrating the dynamic behavior of the Evolutionary Sampling algorithm on Bukin Function using the L^2 Physics-informed Loss computed on the retained and re-sampled populations. The horizontal lines represent the L^p Physics-informed Loss on a dense set of uniformly sampled collocation points (where $p = 2, 4, 6, \infty$).

Figure 42: Demonstrating the dynamic evolution of the retained population size over epochs on the Bukin Function.
Figure 43: Surface Plot of the 2-D Michalewicz Function

Figure 44: Demonstrating the evolution of the randomly initialized points while optimizing the Michalewicz function. The red triangles represent the re-sampled population at that epoch, and the blue dots represent the retained population at that epoch. The contour function of the objective function is shown in the background.

J.7 M ICHALEWICZ FUNCTION

The two-dimensional form of the Michalewicz function has multiple ridges and valleys which are very steep.

$$f(x) = \sum_{i=1}^{d} \sin(x_i) \sin^{2m}\left(\frac{ix_i^2}{\pi}\right)$$ (35)
Figure 45: Illustrating the dynamic behavior of the Evolutionary Sampling algorithm on Michalewicz Function using the L^2 Physics-informed Loss computed on the retained and re-sampled populations. The horizontal lines represent the L^p Physics-informed Loss on a dense set of uniformly sampled collocation points (where $p = 2, 4, 6, \infty$).

Figure 46: Demonstrating the dynamic evolution of the retained population size over epochs on the Michalewicz Function.