1 SUPPLEMENTARY MATERIAL

Supplementary Figure S1. Alpha diversity indexes for the five SH communities.
Supplementary Figure S2. Co-occurrence network analysis of the SH bacterial communities. The size of each node (representing ASVs) is proportional to the number of connections (degrees), the color of the edges connecting nodes represents the interaction type, the node color indicates the taxonomic affiliation at the phylum level and node labels are at the lowest available taxonomic classification.
Supplementary Figure S3. MEBS analysis heatmap displaying the completeness of N, Fe, S and CH₄ pathways, as a whole (first top section) and for each particular pathway (bottom four sections). The color gradient shows the percentage of completion for each pathway (from lowest to highest) and the values shown in the top section represent the corresponding MEBS score (* FDR ≤ 0.01).
Supplementary Table S1. Physicochemical parameters and measured characteristics of the five SH sampled sites, as published previously in Castro-Severyn et al., 2020 [8].

Site	pH	Altitude (masl)	Sampling Temperature (°C)	As [mg/kg]	Salinity (%)	Conductivity (mS)	Suspended Solids (gr/L)	Coordinates
H0	8.8	3792	14.6	9	11.9	6.082	3.006	20º15'48.8"S, 68º52'28.4"W
H1	9.4	3785	14	16.3	8.1	4.076	2.039	20º16'27.7"S, 68º53'3"W
H3	8.5	3783	19.9	49.2	2.2	1.122	0.560	20º16'59.2"S, 68º53'16.7"W
H4	8.4	3787	18.8	155	77.2	38.20	19.40	20º17'40.9"S, 68º53'17.3"W
H5	9.2	3781	24.3	321	84.5	42.12	21.12	20º18'37"S, 68º52'42"W
Phylum	H0	H1	H3	H4	H5			
------------------------------	-------	-------	-------	-------	-------			
Proteobacteria	29.067	40.343	36.431	41.857	33.732			
Bacteroidetes	19.051	11.293	26.303	25.570	33.257			
Cyanobacteria	33.987	11.488	6.932	16.001	14.524			
Deinococcus-Thermus	2.038	0.078	5.236	5.286	2.901			
Chloroflexi	1.176	8.489	6.072	1.614	2.996			
Actinobacteria	0.647	4.050	3.712	2.539	3.213			
Gemmatimonadetes	1.137	1.752	5.949	0.169	2.920			
Patescibacteria	2.940	2.687	2.409	0.989	1.858			
Verrucomicrobiota	1.313	1.986	1.131	1.393	1.100			
Firmicutes	2.646	1.051	1.377	0.586	0.626			
Euryarchaeota	0.647	1.051	1.229	1.302	0.891			
Spirochaetes	1.999	1.713	0.172	0.169	0.436			
Planctomycetes	0.764	2.414	1.278	0.000	0.265			
Kiritimatiellaeota	0.921	0.701	0.344	0.404	0.147			
Acidobacteria	0.039	2.687	0.688	0.000	0.133			
Tenericutes	0.353	0.156	0.049	0.833	0.190			
Epsilonibacteraeota	0.274	0.701	0.000	0.286	0.683			
Nanoarchaeaeota	0.039	2.843	0.049	0.052	0.076			
Halanaerobiota	0.000	0.000	0.074	0.703	0.284			
Fibrobacteres	0.294	0.389	0.049	0.000	0.000			
Omnitrophicaeota	0.039	0.818	0.000	0.000	0.000			
Latescibacteria	0.000	0.234	0.123	0.152	0.000			
LCP-89	0.039	0.156	0.049	0.052	0.000			
Lentisphaerae	0.000	0.078	0.147	0.052	0.000			
Caldiserica	0.176	0.078	0.000	0.000	0.000			
Chlamydiae	0.000	0.000	0.078	0.095	0.000			
Cloacimonetes	0.176	0.000	0.000	0.038	0.000			
Crenarchaeota	0.000	0.428	0.000	0.000	0.000			
Nitrospirae	0.000	0.428	0.000	0.000	0.000			
WS1	0.059	0.000	0.074	0.065	0.000			
Hydrogenedentes	0.098	0.078	0.074	0.000	0.000			
TA06	0.000	0.350	0.000	0.000	0.000			
Rokubacteria	0.000	0.234	0.000	0.000	0.000			
Altiaarchaeota	0.000	0.195	0.000	0.000	0.000			
BRC1	0.039	0.000	0.000	0.000	0.038			
Fusobacteria	0.000	0.156	0.000	0.000	0.000			
WS4	0.000	0.156	0.000	0.000	0.000			
Calditrichaeota	0.000	0.117	0.000	0.000	0.000			
Acetothermia	0.000	0.078	0.000	0.000	0.000			
Armatimonadetes	0.000	0.078	0.000	0.000	0.000			
Asgardaeota	0.000	0.078	0.000	0.000	0.000			
Atribacteria	0.039	0.000	0.000	0.000	0.000			
Chrysiogenetes	0.000	0.000	0.000	0.000	0.038			
Dependentiae	0.000	0.078	0.000	0.000	0.000			
Diapherotorites	0.000	0.078	0.000	0.000	0.000			
Elusimicrobia	0.000	0.000	0.000	0.000	0.038			
Entothioneellaeota	0.000	0.000	0.049	0.000	0.000			
Modulibacteria	0.000	0.078	0.000	0.000	0.000			
WOR-1	0.000	0.078	0.000	0.000	0.000			
Zixibacteria	0.000	0.078	0.000	0.000	0.000			
Supplementary Table S4. Statistical values of the SH co-assembly, representing the five metagenomes.

Contigs Stats	SH Coassembly Contigs.db
Total Length	1,859,591,865
Num Contigs	994,545
Num Contigs > 2.5 kb	148,394
Num Contigs > 5 kb	31,221
Num Contigs > 10 kb	6,178
Num Contigs > 20 kb	870
Num Contigs > 50 kb	23
Num Contigs > 100 kb	1
Longest Contig	101,53
Shortest Contig	1
Num Genes (prodigal)	2,382,438
L50	281,061
L75	583,991
L90	817,245
N50	1,859
N75	1,305
N90	1,103

Raw number of HMM Hits

Ribosomal_RNAs	227
Protista_83	2,396
Archaea_76	19,304
Bacteria_71	35,392

Approx. number of genomes

eukarya (Protista_83)	3
archaea (Archaea_76)	9
bacteria (Bacteria_71)	356
Supplementary Table S6. Indexes of relative abundance and detection of each recovered MAG across the five SH metagenomes.

MAGs	Relative Abundance	Detection									
	H0	H1	H3	H4	H5	H0	H1	H3	H4	H5	
SH-MAG111	0	0	0,72168791	0	0,27831209	0,00441	0,00554	0,99771	0,07316	0,95468	
SH-MAG116	0	0	0,54889132	0,00013961	0,45096907	0,00295	0,00133	0,99243	0,12853	0,97785	
SH-MAG12	0	0	0,54493692	0,11609335	0,33896972	0,0025	0,00193	0,99281	0,78714	0,9599	
SH-MAG129	0	0	0,69848999	0,1220407	0,17946932	0,00313	0,02087	0,99531	0,74521	0,8047	
SH-MAG130	0	0	0,38686291	0,14428399	0,4688531	0,00382	0,00389	0,97836	0,86299	0,98158	
SH-MAG131	7,77E-06	0,99980086	0,0001669	0	2,45E-05	0,04034	0,99712	0,12015	0,02857	0,07146	
SH-MAG143	0,90041192	8,62E-05	0,07427925	2,36E-05	0,02519905	0,99706	0,09119	0,89824	0,11717	0,62849	
SH-MAG144	0	0	0,10728277	0,6230292	0,26951431	0,02051	0,01057	0,91627	0,99847	0,99011	
SH-MAG148	0	0	0,00210879	0,72287575	0,27501545	0,00406	0,00258	0,23134	0,99751	0,97311	
SH-MAG162	0	0	0,33797659	0,28950365	0,37251977	0,00712	0,0053	0,99119	0,99081	0,9919	
SH-MAG169	0,53828526	0,38203929	0,04537899	4,69E-07	0,03429599	0,98488	0,84044	0,60269	0,03486	0,50812	
SH-MAG192	0	0	0,3072886	0,22118822	0,47152318	0,00512	0,00153	0,98227	0,96535	0,99039	
SH-MAG193	0	0	0,64640238	0	0,35359762	0,00147	0,00092	0,99165	0,05107	0,91743	
SH-MAG29	0,99997034	0	5,39E-07	4,01E-06	2,51E-05	0,9993	0,00676	0,99412	0,32832	0,15348	
SH-MAG3	0	0	0,00864616	0,78123545	0,00068058	0,20943781	0,0037	0,2329	0,99661	0,082	0,87538
SH-MAG78	0,00106885	0,0007131	0,73245797	0,0097231	0,25578776	0,0717	0,03031	0,9989	0,66337	0,99825	
SH-MAG89	0	0	0,63255005	0,00085958	0,36659037	0,00305	0,00202	0,99812	0,22902	0,98909	
SH-MAG93	0	0	0,48897198	0,15399497	0,35703306	0,00783	0,01217	0,98689	0,85548	0,96376	
SH-MAG96	0	0	0,63205353	3,97E-06	0,36794251	0,00293	0,00202	0,99801	0,08462	0,98806	
MAG ID	Gene presence and copy number										
--------------	------------------------------	---	---	---	---	---	---				
SH-MAG111	1 1 1	1	2								
SH-MAG12	1 1 1	1	2								
SH-MAG116	2 1 1 1	1	2								
SH-MAG130	1	1	2								
SH-MAG193	1	1	2								
SH-MAG148	2			3							
SH-MAG143	1			3							
SH-MAG93	1	1	2								
SH-MAG129	1 1 3	1	3								
SH-MAG144	1 1 1 1	1	1	1							
SH-MAG29	1 3 1 1	2	3								
SH-MAG3	1 3			1		3					
Supplementary Table S3. Abundance and taxonomic classification of the 3801 ASVs detected in SH communities.

Supplementary Table S5. Statistical evaluation of enriched functional categories (SEED subsystem 1) for each of the five communities with respect to the other four (according to Welch’s t-test).

Supplementary Table S7. Completion index of all detected KEGG modules in each analyzed MAG.