Abstract—The function as a service paradigm aims to abstract the complexities of managing computing infrastructure for users. While adoption in industry has been swift, we have yet to see widespread adoption in academia. This is in part due to barriers such as the need to access large research data, diverse hardware requirements, monolithic code bases, and existing systems available to researchers. We describe funcX, a federated function-as-a-service platform that addresses important requirements for use of FaaS in research computing. We outline how funcX has been used in early science deployments.

Index Terms—Serverless computing, FaaS, funcX

I. INTRODUCTION

Function as a service (FaaS) allows for applications to be decomposed into functions that are executed remotely and elastically without considering the resources on which functions are deployed. Cloud FaaS platforms abstract the underlying computing infrastructure almost entirely and offer duration-based pricing models in which customers are charged for every millisecond of execution. While FaaS has been widely adopted in industry it is yet to be broadly adopted in research computing. There are several key reasons: the mismatch with current research computing workloads, cost of transferring and storing large research data in the cloud, lack of support for specialized computing hardware, and the availability of research computing systems that are pre-configured with common libraries.

To address the specialized needs of research computing we are developing funcX [1], a federated FaaS platform. funcX transforms the FaaS paradigm by allowing function invocations to be routed to endpoints hosted on arbitrary remote computer systems, from the edge to supercomputing facilities. In this poster we describe funcX and highlight how it is being used in various research scenarios.

II. FUNCX

funcX is implemented as two components: (1) a cloud-hosted service and (2) user-deployable agent software.

The cloud service provides a single available point of contact for users to register and manage endpoints, register and share functions, and invoke functions on accessible endpoints. Interactions with the service are via a Python SDK.

The funcX agent can be installed on any computer, transforming it into a function-serving endpoint. The agent is a Python application that is responsible for managing computing resources and executing functions on behalf of users. The agent uses Parsl [2] to interact with diverse computing systems, from clouds to high performance clusters with various batch scheduler interfaces (e.g., SLURM, PBS). The agent dynamically provisions resources and executes functions in defined execution environments (optionally using containers).

To users, funcX looks like any other FaaS platform. Users register Python functions with the funcX service and optionally specify dependencies or a container, set access permissions to share functions with other users, and provide descriptive metadata. After registration, authorized users may invoke the function via the funcX service by specifying the necessary input arguments. Unlike traditional FaaS systems, funcX also allows users to specify the endpoint on which they wish to execute the function.

Users are thus able to route function invocations based on requirements. For example, they may execute functions where data may be located, where specialized hardware or software may be deployed, where resources are available at a particular time, or where costs may be lowest.

III. DEPLOYMENTS

funcX is currently being used in three main ways: to execute arbitrary analysis and simulation workloads, to provide interfaces to research cyberinfrastructure, and as a platform for building other services and applications. We briefly describe representative case studies for each type.

A. funcX for analysis

High-energy physicists face the challenge of applying statistical models to large amounts of data to derive physics information. In the past, statistical fitting was traditionally implemented in C++ and installation represented a significant hurdle for potential users. Feickert et al. recently implemented a funcX-based approach using the pyhf pure-python fitting/limit-setting/interval estimation package and exposing it as a funcX function [3]. This function has been used to process large datasets on various remote systems, including SDSC Expanse, BlueWaters, and an OSG cluster.

Biologists using Argonne National Laboratory’s Advanced Photon Source (APS) face the challenge of rapidly computing results as experiments are running, for example to check quality, view reconstructions, and see preliminary results all while the sample is in the beamline. Rapid analysis allows them to steer the experiment, reorient samples, restart experiments, and move to new samples when necessary. The computing
registered the model as a funcX function. They use funcX to predict the spread based on various input parameters.

The researchers use funcX in various domains from biology to high-energy physics, as an interface to heterogeneous computing resources to democratize access to published models through a simple web interface.

IV. Summary

funcX is a federated function as a service platform that is designed to address the unique requirements of research use cases. It offers a single cloud-hosted interface via which users may manage not only functions but also the endpoints on which those functions are executed. funcX is being used in various domains from biology to high-energy physics, as an interface to heterogeneous computing resources to democratize access to published models through a simple web interface.

References

[1] R. Chard et al., “Funcx: A federated function serving fabric for science,” in 29th Intl. Symp. on High-Perf. Par. & Dist. Comp. (HPDC), 2020, p. 65–76.

[2] Y. Babuji et al., “Parsl: Pervasive parallel programming in Python,” in 28th Intl. Symp. on High-Perf. Par. & Dist. Comp. (HPDC), 2019.

[3] M. Feickert et al., “Distributed statistical inference with pyhf enabled through funcx,” arXiv, vol. 2103.02182, 2021.

[4] M. Wilamowski et al., “2’-o methylation of RNA cap in SARS-CoV-2 captured by serial crystallography,” PNAS, vol. 118, no. 21, 2021.

[5] T. J. Skluzacek et al., “A serverless framework for distributed bulk metadata extraction,” in 30th Intl. Symp. on High-Perf. Par. & Dist. Comp. (HPDC), 2020, p. 7–18.

[6] R. Chard et al., “DLHub: Model and data serving for science,” in IEEE Intl. Par. & Dist. Proc. Symp. (IPDPS), 2019.