Lévy flights as an emergent phenomenon in a spatially extended system

Chunxi Jiao1 and Georg A. Gottwald2

1Lehrstuhl für Angewandte Analysis, RWTH Aachen, Aachen 52062, Germany
2School of Mathematics and Statistics, The University of Sydney, Sydney, New South Wales 2006, Australia

Anomalous diffusion and Lévy flights, which are characterized by the occurrence of random discrete jumps of all scales, have been observed in a plethora of natural and engineered systems, ranging from the motion of molecules to climate signals. Mathematicians have recently unveiled mechanisms to generate anomalous diffusion, both stochastically and deterministically. However, there exists to the best of our knowledge no explicit example of a spatially extended system which exhibits anomalous diffusion without being explicitly driven by Lévy noise. We show here that the Landau–Lifshitz–Gilbert equation, a stochastic partial differential equation (SPDE), despite only being driven by Gaussian white noise, exhibits superdiffusive behaviour. The anomalous diffusion is an entirely emergent behaviour and manifests itself in jumps in the location of its travelling front solution. Using a collective coordinate approach, we reduce the SPDE to a set of stochastic differential equations driven by Gaussian white noise. This allows us to identify the mechanism giving rise to the anomalous diffusion as random widening events of the front interface.

1. Introduction

Brownian diffusion is ubiquitous in nature and social systems. Its ubiquity can be understood by the central limit theorem which states that appropriately scaled sums of random variables converge in distribution to a normal distribution. This is beautifully illustrated by Robert Brown’s observation in 1827 of the emerging erratic behaviour of small particles suspended on the surface of a drop of water: the heavy particle
experiences the sum of many (almost) uncorrelated kicks by the much smaller and lighter water molecules, leading to the apparent erratic motion of the particle. However, numerous examples in nature and in social systems defy this simple diffusive behaviour and exhibit anomalous diffusion. In systems with anomalous diffusion the standard central limit theorem breaks down but can be replaced by a generalized central limit theorem such that appropriately scaled sums converge in distribution to the so-called α-stable processes [1,2]. A particular class of anomalous diffusion is superdiffusion or Lévy flights in which diffusion is enhanced compared to normal Gaussian diffusion by the occurrence of discontinuous jumps of arbitrary size. The presence of such jumps implies a fat tail in the associated probability distribution which may strongly deviate from the normal Gaussian distribution [3]. Superdiffusion has been observed, for example, in the motion of metal clusters and large molecules across crystalline surfaces [4], in active intracellular transport [5], conformal changes in proteins [6], in living cell migration [7–9], in optically active media [10], active turbulence [11], in tracer diffusion in active suspensions [12], in atmospheric particle dispersion [13], in ice core data [14], finance ratios [15], power grids [16] and in foraging strategies of animals [17–26] to name but a few. In these examples, the emergence of superdiffusion is often dependent on geometric constraints which favour jumps, see also [27–29]. In recent years, mathematicians have made substantial progress in identifying dynamical mechanisms which may give rise to superdiffusion without any superimposed geometric or topological constraints. There are two known dynamical mechanisms for which a process defined by appropriately scaled sums of observables converges to an α-stable process: either for regular observables of weakly chaotic intermittent dynamics with a sufficiently slow decay of correlations [30–35], or alternatively, in the case of strongly chaotic dynamics with rapid decay of correlations, for unbounded observables [36]. The same dynamical ingredients also hold for stochastic systems [37–40]. For readers who may not be familiar with these dynamic mechanisms to generate anomalous diffusion, we provide an illustrative introduction in the electronic supplementary material. Whereas these mechanisms have been verified in numerous examples for discrete maps as well as for ordinary differential equations [41–47], there are no explicit examples of spatially extended systems exhibiting superdiffusion. It has been conjectured, however, that superdiffusion should in principle be observable in spatially extended systems. This conjecture is part of a universal perspective based on the ambient symmetry of the problem [48,49]. Spatially extended systems with symmetry can under certain conditions be reduced to the dynamics along the symmetry group and the so-called shape dynamics which is orthogonal to it. A simple example of this reduction is given by travelling wave solutions of PDEs with translational invariance in one spatial dimension: the group dynamics is given by a linear drift of the reference frame in physical space, and the shape dynamics is provided by an ordinary differential equation obtained by transforming into the co-moving frame of reference. Such a reduction leads to the following dynamical scenario: the shape variables evolve according to their own dynamics, independent of the group variables and then drive the dynamics of the group variables. The key insight developed in [35,48,49] is that the group variables can exhibit anomalous superdiffusion provided the shape dynamics evolves according to the dynamics outlined above. In the deterministic setting, it was proven that this is indeed possible in anisotropic media and it was conjectured that it is possible in isotropic media with odd spatial dimension. Numerical results as well as some mathematical theory suggest that the decomposition into the group and shape dynamics can be carried over to dissipative SPDEs with symmetry [50,51]. It is argued that the noise can freely diffuse along the neutrally stable group orbits whereas it is confined in the contracting shape dynamics. However, no explicit examples of PDEs or SPDEs exhibiting superdiffusions were known.

In this work, we present the first explicit example of a spatially extended system which exhibits superdiffusion without explicitly being driven by α-stable noise. The anomalous diffusion is an entirely emergent behaviour. In particular, we consider the well-studied stochastic Landau–Lifshitz–Gilbert (sLLG) equation [52–54] which describes magnetization along a one-dimensional wire. We will show that the location of the magnetization interface of the front
solution experiences superdiffusion. We remark that this is different to the superdiffusion observed in spin transport in one-dimensional spin chains which is a discrete finite-dimensional microscopic model underlying the sLLG equation. Such spin systems were shown to fall into the Kardar–Parisi–Zhang (KPZ) universality class [55–61]. In the finite-dimensional spin chains superdiffusion is manifested in the hopping of spins across sites and is described in the KPZ equation through the particular scaling of the correlation function. Instead, in this work superdiffusion is directly observable in the SPDE as a Lévy flight of the location of the front solution. Similarly, in the context of fluid dynamics and hydrodynamic transport, PDEs were introduced to describe transport of solute particles in stratified porous media subject to random-shear which exhibit superdiffusion [29,62]. The superdiffusive behaviour in these random-shear models, however, again does not manifest itself in the solution of the transport PDE. Instead, the PDE describes the probability density function of random particles subject to vertical shear which experience superdiffusive dispersion in the latitudinal direction. Moreover, the superdiffusion is pre-described by the particular choice of the vertical shear profile. By contrast, the sLLG equation we consider here does not comprise any built-in mechanism which may lead us to suspect any anomalous diffusion and the anomalous diffusion is in that sense an emergent property.

The paper is organized as follows: we present in §2 the SPDE under consideration, discuss its underlying symmetries and front solutions. We further show results of numerical simulations of the SPDE illustrating that the location of the front solution experiences jumps. To allow for a more thorough investigation of the mechanism giving rise to anomalous diffusion in the sLLG equation, we perform in §3 a reduction of the infinite-dimensional sLLG equation to a finite-dimensional system of SDEs. Using long numerical solutions of the SDEs, we perform several statistical tests to show that indeed the location of the front interface is an α-stable process and establish the dynamical mechanism giving rise to the anomalous diffusive behaviour. We conclude with a discussion in §4. For completeness, we provide in the electronic supplementary material an illustration of how statistical limit theorems can lead to anomalous diffusion and outline the two mechanisms which may give rise to superdiffusion.

2. The stochastic Landau–Lifshitz–Gilbert equation

The stochastic Landau–Lifshitz–Gilbert equation on a finite interval $[0, L]$

$$dm = -m \times (H(m) + \lambda m \times H(m)) \, dt + \sigma m \times g \circ dW,$$

(2.1)

with homogenous Neumann boundary condition and initial condition satisfying $\|m(x, 0)\| = 1$ for all $x \in [0, L]$, where

$$H(m) = \frac{\partial^2 m}{\partial x^2} - m_2 e_2 - m_3 e_3$$

and where W is one-dimensional Brownian motion, describes the magnetization vector $m(x, t) = (m_1(x, t), m_2(x, t), m_3(x, t))$ of a ferromagnetic nanowire of length L subject to dissipation (parametrized by $\lambda > 0$) and thermal fluctuations [52–54]. The sLLG equation is norm preserving in the sense that for every $T \in (0, \infty)$, its martingale solution $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \in [0, T]}, \mathbb{P}, W, m)$ satisfies $\|m(x, t)\| = 1$, a.e. - (x, t), \mathbb{P}-a.s. The deterministic LLG equation, i.e. (2.1) with $\sigma = 0$, supports stable stationary front solutions, which for $L \to \infty$ take the form

$$m_0(x) = \begin{pmatrix} \tanh(x) \\ \sech(x) \\ 0 \end{pmatrix},$$

(2.2)

and enjoys translational symmetry as well as rotational symmetry, in the sense that if $m(x, t)$ is a solution then so is $R_1[\psi]m(x - \phi, t)$ for any constant ϕ and with $R_1[\psi]$ describing rotation around the m_1-axis by an angle ψ. Whereas the inclusion of the noise term in (2.1) preserves the translational symmetry it breaks the rotational symmetry unless $g = (1, 0, 0)$. For small values of σ, however, the dynamics remains nearly rotationally invariant for some time.
Figure 1. (a) Contour plot of the solution \(m_1 \) of the sLLG equation (2.1) for \(\sigma = 0.3 \) and \(\lambda = 1 \) with \(g = (1, 1, 1) \) showing jumps in the location of the front interface. Zoom into a jump event at \(1404 \leq t \leq 1406 \) (marked as dashed horizontal lines in the contour plot) showing the location of the front interface \(\phi \) (b) and the interface width \(w \) (c).

For the numerical simulation of the sLLG equation (2.1), we employ a Crank–Nicolson scheme where nonlinearities are treated in an Adams–Bashforth scheme which ensures the preservation of the modulus \(||m||^2 \) [63–65]; for the noise, we employ an Euler–Maruyama scheme [66].

Figure 1 shows \(m_1(x, t) \) for \(\lambda = 1 \) and \(\sigma = 0.3 \) with \(g = (1, 1, 1) \). We further provide a zoom into a small time interval in which we show the temporal evolution of the location \(\phi(t) \) of the front interface and the width \(w(t) \) of the front solution, which were both estimated by nonlinear least-square fitting (cf. equation (3.1)). It is seen that the front experiences what might be identified as a linear ballistic drift of its location \(\phi(t) \) (albeit of only a small displacement of roughly 2 spatial units). These largish displacements of the front in a short time are accompanied by a sudden increase in the width \(w(t) \) of the front solution. We will establish below that such events are indeed representative of anomalous diffusion and that the front interface location \(\phi(t) \) experiences \(\alpha \)-stable Lévy flights. It turns out, as we will show, that the length of the time window and size of the spatial domain necessary to observe significant jumps in simulations of the sLLG equation (2.1), which would clearly identify the dynamics of the front interface as a Lévy flight, are too large to be computationally feasible. To properly resolve the anomalous diffusion and analyse the superdiffusive dynamics, we therefore now reduce the infinite-dimensional sLLG equation to a set of finite-dimensional SDEs.
3. Reduction to an SDE via collective coordinates

We shall employ the method of collective coordinates. Originally developed for deterministic PDEs [67], it has since been successfully employed to reduce the complexity of a wide range of dynamical systems including complex network dynamics [68–70] and SPDEs [50, 71]. In the context of SPDEs with symmetries the method of collective coordinates relies on a decomposition of the dynamics into the dynamics along the group and the dynamics orthogonal to it, the so-called shape dynamics. Assuming that the deterministic core supports a travelling front, as is the case for the sLLG equation, the question is how the noise will affect the solution. It is argued that the noise can freely diffuse along the neutrally stable group orbit, given here by the translational symmetry, whereas the noise is controlled in the contracting ($\lambda > 0$) shape dynamics [50]. To capture this, we consider the ansatz

$$\hat{m}(x, t) = R_3[\theta(t)] R_2[\eta(t)] R_1[\psi(t)] m_0(w^{-1}(t)(x - \phi(t)).$$

(3.1)

For simplicity, we assume from now on that $L \to \infty$ which allows us to use the explicit solution (3.2) for m_0. Here $R_j[\xi]$ denotes rotations around the jth axis by the angle ξ. The dynamics of the infinite-dimensional SPDE is now encapsulated in the time evolution of the shape variables (w, θ, η, ψ) and the translational group variable $\phi(t)$. Indeed, we are able to fit such an ansatz to solutions of numerical simulations with a high degree of accuracy (cf. §3a). The rotations imply that each component of $\hat{m}(x, t)$ can be written as a linear combination of tanh and sech functions $\psi_m(t)$ and the coefficients depending on the angle variables. These amplitudes evolve stochastically on the sphere defined by $||\hat{m}||^2 = 1$ (cf. figure 3f).

The framework of collective coordinates views the ansatz (3.1) as a Galerkin approximation and appropriate projection leads to an SDE for the collective coordinates. For expository ease, we denote by $\mathbf{p} = (w, \theta, \eta, \phi, \psi)$ the vector of collective coordinates which are assumed to evolve according to a stochastic differential equation

$$d\mathbf{p}_i = f_p(p) dt + \sigma_p(p) dW, \quad i = 1, \ldots, 5.$$

Our aim in the following is to determine the drift coefficients f_p and the diffusion coefficients σ_p [50]. Applying Itô’s lemma to the ansatz (3.1) yields

$$d\hat{m} = \left[\sum_{i=1}^5 f_p \partial_{p_i} \hat{m} + \frac{1}{2} \sum_{i,j=1}^5 \sigma_{p_i} \sigma_{p_j} \partial_{p_i} \partial_{p_j} \hat{m} \right] dt + \sum_{i=1}^5 \sigma_{p_i} \partial_{p_i} \hat{m} dW.$$

Introducing the drift and diffusion terms of the sLLG equation (2.1)

$$b_f(m) = -m \times (H(m) + \lambda m \times H(m)) + \frac{1}{2} \sigma^2(m \times g) \times g$$

and

$$b_\sigma(m) = \sigma m \times g,$$

we define the error process $\{\mathcal{E}(t) : t \geq 0\}$ as the residual

$$d\mathcal{E} = \left[\sum_{i=1}^5 f_p \partial_{p_i} \hat{m} + \frac{1}{2} \sum_{i,j=1}^5 \sigma_{p_i} \sigma_{p_j} \partial_{p_i} \partial_{p_j} \hat{m} - b_f(\hat{m}) \right] dt + \left[\sum_{i=1}^5 \sigma_{p_i} \partial_{p_i} \hat{m} - b_\sigma(\hat{m}) \right] dW$$

with $\mathcal{E}(0) = 0$. If the ansatz (3.1) were a solution of the sLLG equation, then $d\mathcal{E} = d\mathcal{E}(x, t; \mathbf{p}) = 0$ for all (x, t).

In order to maximize the degree to which the ansatz $\hat{m} = \hat{m}(\mathbf{p})$ approximates the solution of (2.1), we minimize the projection of the error \mathcal{E} onto the space spanned by the collective coordinates \mathbf{p}. We do so by requiring that the error is orthogonal to the tangent space of the ansatz...
manifold parametrized by the collective coordinates. In particular, f_p and σ_p are determined such that the error is orthogonal to the tangent space spanned by $\{a_p \hat{m} \}_{k=1}^5$, i.e.

$$\langle d\mathcal{E}, a_p \hat{m} \rangle = 0, \quad k = 1, \ldots, 5,$$

where the angular brackets denote the inner product on $L^2([0, L]; \mathbb{R}^3)$ with $\langle a, b \rangle = \int_0^L a(x)b(x) dx$. Separating into drift terms which are proportional to dt and diffusion terms which are proportional to dW we require

$$\sum_{i=1}^5 \sigma_{pi} \partial_p \hat{m} = [b_p(\hat{m}), \partial_p \hat{m}] = 0 \tag{3.2}$$

and

$$\sum_{i=1}^5 f_{pi} \partial_p \hat{m} + \frac{1}{2} \sum_{i,j=1}^5 \sigma_{pi} \sigma_{pj} \partial_p \hat{m} = [b_f(\hat{m}), \partial_p \hat{m}] = 0 \tag{3.3}$$

for each $k = 1, \ldots, 5$. This constitutes a linear system of 10 equations for the 10 unknown drift and diffusion terms f_p and σ_p. In practice, the diffusion coefficients σ_p are determined by (3.2), and then inserted into (3.3) to yield a linear system for the drift terms f_p. We first solve the system for finite domain length L and then take the limit $L \to \infty$. Using the software package Mathematica [72], taking $L \to \infty$ leads to the following explicit expressions for the dynamics of the collective coordinates (ψ, θ, η, w) and ϕ

\[
\begin{align*}
\text{(shape dynamics)} & \quad \left\{ \begin{array}{l}
dw &= f_\psi(\theta, \eta, \psi, w) \, dt \\
d\theta &= f_\theta(\theta, \eta) \, dt + \sigma_\theta \, dW_t \\
d\eta &= f_\eta(\theta, \eta) \, dt + \sigma_\eta \, dW_t \\
d\psi &= f_\psi(\theta, \eta, \psi, w) \, dt + \sigma_\psi \, dW_t
\end{array} \right.
\tag{3.4}
\end{align*}
\]

and

\[
\begin{align*}
\text{(group dynamics)} & \quad \left\{ \begin{array}{l}
d\psi &= f_\psi(\theta, \eta, \psi, w) \, dt,
\end{array} \right.
\tag{3.5}
\end{align*}
\]

with the drift and diffusion terms

$$f_w = \frac{6}{\pi^2} \lambda w^{-1} - \frac{3}{2\pi^2} \left[\lambda (\cos^2 \theta \cos 2\eta (3 - \cos 2\psi) - 2 \sin 2\psi \sin 2\theta \sin \eta + \cos^2 \psi (3 \cos 2\theta - 1)) + 2\pi \cos \eta (2 \cos \psi \cos^2 \theta \sin \eta - \sin \psi \sin 2\theta) \right]$$

$$f_\theta = \frac{1}{2} (\sigma^2 (\tan \eta (2 \cos 2\theta \tan \eta + \sin \theta - \cos \theta) + \cos 2\theta) - \lambda \sin 2\theta)$$

$$f_\eta = \lambda \cos^2 \theta \sin \eta \cos \eta + \frac{1}{2} \sigma^2 \sin \theta (\tan \eta (\sin \theta + \cos \theta) - 1)$$

$$f_\psi = \frac{w}{2} (\cos \theta \sin \psi \sin \eta + \cos \psi \sin \theta)(2 \cos \psi \cos \theta \sin \eta - 2 \sin \psi \sin \theta+ \lambda \pi \cos \theta \cos \eta)$$

and

$$f_\psi = \frac{\sigma^2}{2} \sec \eta (\cos \theta - \sin \theta - 2 \cos 2\theta \tan \eta)$$

$$+ \frac{\lambda}{8} (3 \cos 2\theta - 2 \cos^2 \theta \cos 2\eta - 1) \sin 2\psi + \lambda \cos^2 \psi \sin 2\theta \sin \eta$$

and the diffusion terms are

$$\sigma_\theta = \sigma (\tan \eta (\sin \theta + \cos \theta) - 1)$$

$$\sigma_\eta = \sigma (\sin \theta - \cos \theta)$$

and

$$\sigma_\psi = -\sigma \sec \eta (\cos \theta + \sin \theta).$$
We provide some evidence that the collective coordinate framework is indeed able to reproduce the dynamics of the full SPDE (2.1). We first show that the collective coordinate approach is able to capture the statistical behaviour of the full SPDE.

Figure 2 shows a comparison of the empirical probability function of the angle variables \((\eta, \theta, \psi) \) at fixed time \(t = 1 \) for \(\lambda = 5 \) and \(\sigma = 0.1 \) with excellent agreement between the collective coordinate solutions and the full SPDE (on the bounded domain \(-L/2, L/2\) with \(L = 10\pi \)). The angle variables for the full SPDE were obtained using a nonlinear least-square fit to the ansatz (3.1).

To provide further indication about the reliability of the collective coordinate description of the dynamics of front interfaces in the sLLG equation, we show in the following that the collective coordinate ansatz recovers an analytical solution in the special case of \(g = (1, 0, 0) \).

In the special case when \(g = (1,0,0) \) the sLLG equation exactly preserves the rotational symmetry along the axis of rotation aligned with \(m_1 \). In this case the sLLG equation (2.1) on \(\mathbb{R} \) with initial condition \(m(\cdot, 0) = m_0 \) given by (2.2) permits the analytical solution

\[
m(x,t) = e^{GW(t)} m_0(x),
\]

which is the sLLG equation (2.1). Here the commutation of \(G \) and \(H(m) \) follows from the particular form of \(G \) for \(g = (1,0,0) \), i.e. the dynamics is a random motion around the \(m_1 \)-axis. This implies that \(m_1(x,t) = \tanh(x) \) and that \(m_{2,3}(x,t) = A_{2,3}(t) \text{sech}(x) \) with \(A_{2,3}(t) \) being stochastic processes with the constraint that \(||m(x,t)||^2 = 1 \).

The collective coordinate system (3.4) and (3.5) recovers the exact solution (3.6). In the case of rotational symmetry along the axis of rotation aligned with \(m_1 \), denoted by \(R_1 \), we set \(\theta = \eta = 0 \) in

\[
\frac{\partial m}{\partial t} = e^{GW} \frac{\partial m}{\partial t} + G e^{GW} m_0 \circ dW
\]

This readily follows upon application of Itô’s lemma, according to

\[
\begin{align*}
\frac{dm}{dt} & = e^{GW} dm_0 + G e^{GW} m_0 \circ dW \\
& = e^{GW} (m_1 \times H(m_0) - \lambda m_0 \times (m_0 \times H(m_0))) dt + Gm \circ dW \\
& = -(m_1 \times H(e^{GW} m_0) + \lambda m_0 \times (e^{GW} m_0 \times H(e^{GW} m_0))) dt + Gm \circ dW \\
& = -(m \times H(m_0) + \lambda m \times (m \times H(m))) dt + \sigma m \times g \circ dW(t),
\end{align*}
\]

which is the sLLG equation (2.1). Here the commutation of \(G \) and \(H(m) \) follows from the particular form of \(G \) for \(g = (1,0,0) \), i.e. the dynamics is a random motion around the \(m_1 \)-axis. This implies that \(m_1(x,t) = \tanh(x) \) and that \(m_{2,3}(x,t) = A_{2,3}(t) \text{sech}(x) \) with \(A_{2,3}(t) \) being stochastic processes with the constraint that \(||m(x,t)||^2 = 1 \).

The collective coordinate system (3.4) and (3.5) recovers the exact solution (3.6). In the case of rotational symmetry along the axis of rotation aligned with \(m_1 \), denoted by \(R_1 \), we set \(\theta = \eta = 0 \) in

(a) Ability of the collective coordinate approach to reproduce the dynamics of the full SPDE

We provide some evidence that the collective coordinate framework is indeed able to reproduce the dynamics of the full sLLG equation (2.1). We first show that the collective coordinate approach is able to capture the statistical behaviour of the full SPDE.
Figure 3. Solutions of the reduced collective coordinate system (3.10)–(3.12) for $\lambda = 1$ and $\sigma = 0.3$ with $g = (1,1,1)$.

(a) Translational symmetry variable $\phi(t)$. (b–d) Mechanism generating jumps: zoom into a single jump (b) of ϕ, which is caused by an extreme interface width w (c), which itself is generated by random events of near-zero amplitude of the tanh-component A_1 of m_1 (d). (e) Typical time series of the front interface location $\phi(t)$ obtained from simulations of the sLLG (2.1) and of the reduced collective coordinate system (3.10)–(3.12). We arbitrarily shifted the time series to allow for a comparison. (f) Time series of the amplitudes $A_{1,2,3}$ and $B_{1,2,3}$ on the sphere with radius 1. The black diamond marks where $g = (1,1,1)$ pierces the sphere.

our ansatz (3.1), leading to the following equations for the collective coordinates

(shape dynamics) \[
\frac{dw}{dt} = \frac{6\lambda}{\pi^2 w^3} (1 - w^2) \text{ d}t
\] (3.7)

and

(group dynamics) \[
\begin{align*}
\frac{d\psi}{dt} &= -\sigma \, dW(t) \\
\frac{d\phi}{dt} &= 0.
\end{align*}
\] (3.8)
The equation for the interface width converges to the stable fixed point $w = 1$ and the group variables are readily solved to yield $\psi(t) = \psi(0) - \sigma W(t)$ and $\phi(t) = \phi(0)$ for all t. Thus under the initial condition $(w(0), \psi(0), \phi(0)) = (1, 0, 0)$, the ansatz reduces to $\dot{m}(x,t) = R_1[-\sigma W(t)]m_0(x)$, recovering the exact solution. Note that in this case with $g = (1, 0, 0)$ the rotational symmetry around the m_1-axis implies that ψ is a group variable rather than a shape variable. Hence the collective coordinate system (3.7) and (3.8) is of the form where the noise is only active in the neutrally stable group dynamics.

(b) Mechanism for anomalous diffusion

The angles (ψ, θ, η) ensure that $|m|^2 = 1$, i.e. the solution remains on the sphere, and the dynamics can be viewed as the axis of this sphere performing a random walk. To identify the mechanism leading to superdiffusion, it is instructive to express the ansatz (3.1) as

$$m(x,t) = A(t) \tanh(w^{-1}(t)(x - \phi(t))) + B(t)\text{sech}(w^{-1}(t)(x - \phi(t))),$$

(3.9)

where

$$A = \begin{pmatrix} \cos \theta \cos \eta \\ \sin \theta \cos \eta \\ \sin \eta \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} -\cos \psi \sin \theta - \cos \theta \sin \psi \sin \eta \\ \cos \psi \cos \theta - \sin \psi \sin \theta \sin \eta \\ \cos \eta \sin \psi \end{pmatrix}.$$

The evolution equations for the collective coordinates $(\psi, \theta, \eta, w, \phi)$ can then be written in terms of the shape variables (A, B, w) and the group variable ϕ. For $g = (1, 1, 1)$ we obtain for the shape dynamics

$$dA = \lambda A \times (A \times KA) dt + \sigma A \times g \circ dW(t),$$

(3.10)

$$dB = \lambda B \times \left[(B \times KB, A)A + \frac{A_2^2 A_3^2}{1 - A_3^2} A \times e_3 + \frac{A_1 A_2^2}{1 - A_3^2} (e_3 - A_3 A)\right] dt$$

$$+ \sigma B \times g \circ dW(t),$$

and

$$dw = \frac{6}{\pi^2 w} \left[\pi w^2 A_1 \langle A \times B, e_1 \rangle - \lambda w^2 \left(\langle A \times B, e_2 \rangle^2 - A_3^2 - B_1^2 + B_2^2\right) + \lambda\right] dt$$

(3.11)

and for the group dynamics

$$d\phi = w B_1 \left[\langle A \times B, e_1 \rangle - \frac{\pi}{2} \lambda A_1\right] dt,$$

(3.12)

(3.13)

where $K = \text{diag}(0, 1, 1)$.

The collective coordinate system (3.10)–(3.12) allows for long time integrations and enables us to study how anomalous diffusion is generated. In figure 3, we show results of a numerical simulation of (3.10)–(3.12) illustrating the chain of events leading to superdiffusion of the translational variable ϕ seen in figure 3a. Random incidences of (near) flips of the magnetization front m_1 with $A_1 \approx 0$ and $B_1 \approx \pm 1$, as seen in figure 3d, lead to distinct spikes in the front interface width w (see figure 3c; cf. figure 1 for the full SPDE over a shorter time period). Events of w exceeding specified thresholds are Poisson distributed, suggesting that large w-events and the generating (near) flips are uncorrelated. Indeed, figure 4 shows that the cumulative probability distribution function of the waiting times τ_c between events of $w \geq 1$ closely resembles that of a Poisson process (with exponential inter-arrival times) where $P(\tau_c) = 1 - \exp(-\tau_c/\bar{\tau}_c)$ with $\bar{\tau}_c = 0.55$. These (arbitrarily large) spikes in w are then causing the jumps in the interface location ϕ generating a Lévy or α-stable process (figure 3b). This chain of events is clearly reflected in equations (3.10)–(3.12): for $A_1 \approx 0$ and $B_1 \approx \pm 1$ a Taylor expansion yields $d\dot{w} = 6\lambda(\pi^2 w)^{-1}(1 + (1 - B_2^2)w^2) dt > 0$. This implies an increase in w which in turn leads to $d\phi \sim \pm w dt$ causing large jumps in ϕ, the signs of which being determined by the random sign of $B_1[(A \times B, e_1) - \pi \lambda A_1/2]$.

1This corresponds to $\theta = \pi/2$ (or $\theta = 3\pi/2$) and $\psi = 0$ (or $\psi = \pi$).
0246

$0 < \alpha \leq 2$ controls the anomalous character of the diffusion with $\alpha = 2$ being normal diffusion. The skewness parameter $-1 \leq \beta \leq 1$ describes the probability of the process experiencing up- or downward jumps with $\beta = \pm 1$ allowing only for up-/downward jumps, respectively. The parameter γ is a scale parameter.

To test if the dynamics of the translational variable $\phi(t)$ is driven by an α-stable process and to determine the value of α we employ several test statistics. We begin by determining the scaling behaviour of the qth moment $\langle |\phi(t)|^q \rangle$ with time (note that ϕ has zero mean). The qth moment is defined for $\alpha < q$ and, for stochastic dynamics, scales like

$$\langle |\phi(t)|^q \rangle \sim t^{q/\alpha},$$

where the angular bracket denotes an ensemble average [2]. For anomalous diffusion with $\alpha < 2$, the second moment is not defined and an ensemble average does not converge with an increasing number of ensemble members. Figure 5 shows the scaling of the qth moment $\langle |\phi(t)|^q \rangle$ in a log–log plot for $q = 0.2$, $q = 0.5$ and $q = 0.8$ with a very clear linear scaling. The slope of a best linear fit suggests $\alpha = 1.74$ for all three values of p indicative of superdiffusion. We remark that the scaling of the qth moment is typically a better test statistics for smaller values of q (e.g. [73]).

To further test for α-stable behaviour, we additionally employ the p-variation [74–76], a test for superdiffusion based on the scaling behaviour of low-order moments [73], the maximum-likelihood test [77,78], a quantile matching test [79] and employing linear regression of the empirical characteristic function [80,81]. Unlike simply testing for fat tails in the empirical histogram, the presence of which is not necessarily linked to an underlying α-stable process, the
above methods are proper statistics to identify α-stable behaviour. In particular, the p-variation test diagnoses the asymptotic behaviour of

$$V^n_p(t) = \sum_{k=1}^{[nt]} \left| \phi \left(\frac{k}{n} \right) - \phi \left(\frac{k-1}{n} \right) \right|^p.$$

This easily computable statistics measures the roughness of the process ϕ, tuning into finer and finer partitions with increasing n. For $p=1$, the statistics reduces to the total variation and for $p=2$ it reduces to the quadratic variation. For Brownian motion where increments scale as $\sqrt{1/n}$ one obtains in the limit of $n \to \infty$ that $V^n_2(t) \sim t$, and $V^n_2(t) \to 0$ for $p > 2$. Given an α-stable process ϕ for some $\alpha < 2$ with cumulative distribution L_α, the statistics $V^n_p(t)$ converges for $p > \alpha$ and diverges for $p < \alpha$. It was shown that if ϕ is a stochastic process driven by an α-stable process with $\alpha = p/2$ then $V^n_p(t)$ converges in distribution to $L_{1/2}$ [76,82]. This suggests using a Kolmogorov–Smirnov test and finding the value of $p = 2\alpha$ for which the empirical cumulative distribution function is closest to the target cumulative distribution function of $L_{1/2}$. To estimate the cumulative distribution function, we choose to divide the time series into 15,625 segments, each consisting of 320 data points. The minimal Kolmogorov–Smirnov distance is then found by varying the scale parameter of the target distribution $L_{1/2}$ for each value of p. The value p^* for which the minimum is attained then determines $\alpha = p^*/2$.

Application of the p-variation yields $\alpha = 1.28$. We have further employed different tests such as the E(2)-test [73] yielding $\alpha = 1.35$, the maximum likelihood test [77,78] yielding $\alpha = 1.11$, a quantile matching test [79] yielding $\alpha = 1.73$ and linear regression of the empirical characteristic function [80,81] yielding $\alpha = 1.33$. For the last three methods, we used the software package [83]. Note that different tests typically produce different estimates for α for finite amounts of correlated data (e.g. figs 4 and 6 in [73]). Averaging the values for α obtained from these six different tests we report $\alpha \approx 1.4$. For completeness, we further estimated the tail behaviour of $d\phi$ using the method of maximum likelihood [84], and obtained $\alpha = 1.26$ for negative and for positive jumps, consistent with the results from the other tests. The skewness parameter β was estimated to be close to zero, which means that positive jumps are equally likely as negative jumps. This was estimated by the ratio of the signs of $d\phi$.

4. Conclusion

We showed that the well-known sLLG equation (2.1) which is driven by Gaussian noise exhibits anomalous diffusion of the magnetization front interface. The front interface experiences abrupt
jumps leading to superdiffusion. Using the collective coordinate framework the large jumps were generated, from a purely dynamical systems perspective, by random events of unbounded drivers of the translational group variable. More concretely, the dynamical mechanism giving rise to those large jumps was identified as (near) flips of the magnetization which induce random arbitrary large widenings of the front interface. It is pertinent to note that it was this very mechanism, that prohibited the discovery of anomalous diffusion in numerical simulations of the otherwise well-studied sLLG equation: events of sufficiently large widenings require exponentially large domains to resolve the front solution for given boundary conditions. For example, given a system length L for which the sLLG equation is numerically integrated, there will be an interface width w such that $\tanh(w^{-1}(x - \phi))$ is no longer compatible with any imposed Neumann boundary conditions. This is the reason why the pronounced jumps of the Lévy process observed in figure 3 for the finite-dimensional system of SDEs for the collective coordinates are not as such visible for the solution of the full sLLG equation as depicted in figure 1. Whereas one could in principle subtract the drift of the interface by transforming into a frame of reference moving with the interface location, the divergence of the interface width cannot be controlled and makes it computationally impractical to resolve the jumps. The observation of rare but large jumps and the verification of the superdiffusive behaviour with sufficient statistical confidence was facilitated here by the model reduction of the collective coordinate approach.

We employed a collective coordinate approach to reduce the infinite-dimensional dynamics of the SPDE to a finite set of SDEs for the collective coordinates. The choice of the collective coordinates, in particular of those describing the shape dynamics, is arbitrary. In the context of PDEs symmetry reduction can be done in a rigorous way (provided the system has a sufficient degree of hyperbolicity and supports an underlying centre manifold; e.g. [85]). It would be interesting to apply this machinery to the sLLG equation. We would hope that the resulting shape and group dynamics adheres to the underlying dynamical picture of diffusion only active along the neutrally stable group dynamics unlike in the collective coordinate system (3.10)–(3.12) derived here. This more rigorous treatment of the reduction of the underlying SPDE would then be able to eliminate possible doubts that the anomalous diffusion is only of a transitory nature which currently cannot be excluded with certainty.

To further classify the underlying mechanism of the superdiffusion, it would be interesting to establish to which universality class the observed anomalous diffusion belongs to by investigating the cumulant generating function associated with the collective coordinate system as introduced by Stella et al. [28,86] who distinguish between the Richardson class [13] and the Fisher class [87]. Although the physical context of the sLLG equation is not the focus of this study, we briefly hint to eventual physical implications of the emergent superdiffusion and discuss a possible link with the Barkhausen effect [88]. This well-known effect describes the phenomenon whereby discrete jumps in magnetization produce an audible crackling noise when a ferromagnetic material is exposed to a slowly varying external magnetic field. Such discrete jumps are known to occur in iron contaminated with impurities, where a domain wall can get pinned or suddenly de-pinned as it passes through these material defects. Our results suggest that such discrete jumps may not only occur due to topological constraints such as impurities but may occur generically in magnetization fronts under thermal fluctuations.

Data accessibility. Code can be found from the Zenodo repository: https://zenodo.org/record/8337997.

The data are provided in electronic supplementary material [89].

Declaration of AI use. No, we have not used AI-assisted technologies in creating this article.

Authors’ contributions. C.J.: conceptualization, formal analysis, investigation, methodology, validation, writing—review and editing; G.A.G.: conceptualization, data curation, formal analysis, investigation, methodology, validation, writing—original draft, writing—review and editing.

All authors gave final approval for publication and agreed to be held accountable for the work performed therein.

Conflict of interest declaration. We declare we have no competing interests.

Funding. C.J. was supported by the Australian Research Council Project (DP200101866).

Acknowledgements. We thank Ben Goldys and Ian Melbourne for valuable discussions.
References

1. Applebaum D. 2009 *Lévy processes and stochastic calculus*, vol. 116, 2nd edn. Cambridge Studies in Advanced Mathematics. Cambridge, UK: Cambridge University Press.

2. Samorodnitsky G, Taqqu MS. 1994 *Stable non-Gaussian random processes. Stochastic models with infinite variance*. New York, NY: Chapman & Hall.

3. Zaburdaev V, Denisov S, Klafter J. 2015 Lévy walks. *Rev. Modern Phys.* 87, 483–530. (doi:10.1103/RevModPhys.87.483)

4. Sancho J, Lacasta A, Lindenberg K, Sokolov I, Romero A. 2004 Diffusion on a solid surface: anomalous is normal. *Phys. Rev. Lett.* 92, 250601. (doi:10.1103/PhysRevLett.92.250601)

5. Caspi A, Granek R, Elbaum M. 2000 Enhanced diffusion in active intracellular transport. *Phys. Rev. Lett.* 85, 5655–5658. (doi:10.1103/PhysRevLett.85.5655)

6. Reuveni S, Granek R, Klafter J. 2010 Anomalies in the vibrational dynamics of proteins are a consequence of fractal-like structure. *Proc. Natl Acad. Sci. USA* 107, 13 696–13 700. (doi:10.1073/pnas.1002018107)

7. Dieterich P, Klages R, Preuss R, Schwab A. 2008 Anomalous dynamics of cell migration. *Proc. Natl Acad. Sci. USA* 105, 459–463. (doi:10.1073/pnas.0707603105)

8. Mukherjee S, Singh RK, James M, Ray SS. 2021 Anomalous diffusion and Lévy walks distinguish active from inertial turbulence. *Phys. Rev. Lett.* 127, 118001. (doi:10.1103/PhysRevLett.127.118001)

9. Kanazawa K, Sano TG, Cairoli A, Baule A. 2020 Loopy Lévy flights enhance tracer diffusion in active suspensions. *Nature* 579, 364–367. (doi:10.1038/s41586-020-2086-2)

10. Edwards AM et al. 2007 Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer. *Nature* 451, 1044–1048. (doi:10.1038/nature06199)

11. Bartumeus F, Petrás F, Pueyo S, Marra G, Catalan J. 2003 Helical Lévy walks: adjusting search statistics to resource availability in microzooplankton. *Proc. Natl Acad. Sci. USA* 100, 12 771–12 775. (doi:10.1073/pnas.2137243100)

12. Bartumeus F, Petrás F, Pueyo S, Marra G, Catalan J. 2003 Helical Lévy walks: adjusting search statistics to resource availability in microzooplankton. *Proc. Natl Acad. Sci. USA* 100, 12 771–12 775. (doi:10.1073/pnas.2137243100)

13. Bartumeus F, Petrás F, Pueyo S, Marra G, Catalan J. 2003 Helical Lévy walks: adjusting search statistics to resource availability in microzooplankton. *Proc. Natl Acad. Sci. USA* 100, 12 771–12 775. (doi:10.1073/pnas.2137243100)

14. Bartumeus F, Petrás F, Pueyo S, Marra G, Catalan J. 2003 Helical Lévy walks: adjusting search statistics to resource availability in microzooplankton. *Proc. Natl Acad. Sci. USA* 100, 12 771–12 775. (doi:10.1073/pnas.2137243100)

15. Bartumeus F, Petrás F, Pueyo S, Marra G, Catalan J. 2003 Helical Lévy walks: adjusting search statistics to resource availability in microzooplankton. *Proc. Natl Acad. Sci. USA* 100, 12 771–12 775. (doi:10.1073/pnas.2137243100)

16. Bartumeus F, Petrás F, Pueyo S, Marra G, Catalan J. 2003 Helical Lévy walks: adjusting search statistics to resource availability in microzooplankton. *Proc. Natl Acad. Sci. USA* 100, 12 771–12 775. (doi:10.1073/pnas.2137243100)

17. Bartumeus F, Petrás F, Pueyo S, Marra G, Catalan J. 2003 Helical Lévy walks: adjusting search statistics to resource availability in microzooplankton. *Proc. Natl Acad. Sci. USA* 100, 12 771–12 775. (doi:10.1073/pnas.2137243100)

18. Bartumeus F, Petrás F, Pueyo S, Marra G, Catalan J. 2003 Helical Lévy walks: adjusting search statistics to resource availability in microzooplankton. *Proc. Natl Acad. Sci. USA* 100, 12 771–12 775. (doi:10.1073/pnas.2137243100)

19. Bartumeus F, Petrás F, Pueyo S, Marra G, Catalan J. 2003 Helical Lévy walks: adjusting search statistics to resource availability in microzooplankton. *Proc. Natl Acad. Sci. USA* 100, 12 771–12 775. (doi:10.1073/pnas.2137243100)

20. Bartumeus F, Petrás F, Pueyo S, Marra G, Catalan J. 2003 Helical Lévy walks: adjusting search statistics to resource availability in microzooplankton. *Proc. Natl Acad. Sci. USA* 100, 12 771–12 775. (doi:10.1073/pnas.2137243100)

21. Bartumeus F, Petrás F, Pueyo S, Marra G, Catalan J. 2003 Helical Lévy walks: adjusting search statistics to resource availability in microzooplankton. *Proc. Natl Acad. Sci. USA* 100, 12 771–12 775. (doi:10.1073/pnas.2137243100)

22. Bartumeus F, Petrás F, Pueyo S, Marra G, Catalan J. 2003 Helical Lévy walks: adjusting search statistics to resource availability in microzooplankton. *Proc. Natl Acad. Sci. USA* 100, 12 771–12 775. (doi:10.1073/pnas.2137243100)

23. Bartumeus F, Petrás F, Pueyo S, Marra G, Catalan J. 2003 Helical Lévy walks: adjusting search statistics to resource availability in microzooplankton. *Proc. Natl Acad. Sci. USA* 100, 12 771–12 775. (doi:10.1073/pnas.2137243100)

24. Bartumeus F, Petrás F, Pueyo S, Marra G, Catalan J. 2003 Helical Lévy walks: adjusting search statistics to resource availability in microzooplankton. *Proc. Natl Acad. Sci. USA* 100, 12 771–12 775. (doi:10.1073/pnas.2137243100)
25. Humphries NE, Weimerskirch H, Queiroz N, Southall EJ, Sims DW. 2012 Foraging success of biological Lévy flights recorded in situ. Proc. Natl Acad. Sci. USA 109, 7169–7174. (doi:10.1073/pnas.1121201109)

26. Sims DW, Humphries NE, Hu N, Medan V, Berni J. 2019 Optimal searching behaviour generated intrinsically by the central pattern generator for locomotion. eLife 8, e05316. (doi:10.7554/eLife.05316)

27. Cherstvy AG, Chechkin AV, Metzler R. 2013 Anomalous diffusion and ergodicity breaking in heterogeneous diffusion processes. New J. Phys. 15, 083039. (doi:10.1088/1367-2630/15/8/083039)

28. Stella AL, Chechkin A, Teza G. 2023 Universal singularities of anomalous diffusion in the Richardson class. Phys. Rev. E 107, 054118. (doi:10.1103/PhysRevE.107.054118)

29. Cecconi F, Costantini G, Taloni A, Vulpiani A. 2022 Probability distribution functions of sub- and superdiffusive systems. Phys. Rev. Res. 4, 023192. (doi:10.1103/PhysRevResearch.4.023192)

30. Zweimüller R. 2003 Stable limits for probability preserving maps with indifferent fixed points. Stoch. Dyn. 3, 83–93. (doi:10.1142/S0219493703000620)

31. Gouëzel S. 2004 Central limit theorem and stable laws for intermittent maps. Probab. Theory Relat. Fields 128, 82–122. (doi:10.1007/s00440-003-0300-4)

32. Tyran-Kamińska M. 2010 Weak convergence to Lévy stable processes in dynamical systems. Stoch. Dyn. 10, 263–289. (doi:10.1142/S0219493710002942)

33. Melbourne I, Zweimüller R. 2015 Weak convergence to stable Lévy processes for nonuniformly hyperbolic dynamical systems. Ann. Inst. Poincare (B) Probab. Statist. 51, 545–556. (doi:10.1214/13-AIHP586)

34. Gottwald GA, Melbourne I. 2013 A Huygens principle for diffusion and anomalous diffusion in spatially extended systems. Proc. Natl Acad. Sci. USA 110, 8411–8416. (doi:10.1073/pnas.1217926110)
49. Gottwald GA, Melbourne I. 2016 Central limit theorems and suppression of anomalous diffusion for systems with symmetry. *Nonlinearity* **29**, 2941–2960. (doi:10.1088/0951-7715/29/10/2941)

50. Cartwright M, Gottwald GA. 2019 A collective coordinate framework to study the dynamics of travelling waves in stochastic partial differential equations. *Physica D* **397**, 54–64. (doi:10.1016/j.physd.2019.03.004)

51. Hamster CHS, Hupkes HJ. 2020 Stability of traveling waves for systems of reaction-diffusion equations with multiplicative noise. *SIAM J. Math. Anal.* **52**, 1386–1426. (doi:10.1137/18M1226348)

52. Landau L, Lifshitz E. 1935 On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. *Phys. Z. Sowjetunion* **8**, 153–164.

53. Gilbert TL. 1955 A Lagrangian formulation of the gyromagnetic equation of the magnetization field. *Phys. Rev.* **100**, 1243.

54. Gilbert TL. 2004 A phenomenological theory of damping in ferromagnetic materials. *IEEE Trans. Magn.* **40**, 3443–3449. (doi:10.1109/TMAG.2004.836740)

55. Žnidarič M. 2011 Spin transport in a one-dimensional anisotropic Heisenberg model. *Phys. Rev. Lett.* **106**, 220601. (doi:10.1103/PhysRevLett.106.220601)

56. Bulchandani VB. 2020 Kardar-Parisi-Zhang universality from soft gauge modes. *Phys. Rev. B* **101**, 041411. (doi:10.1103/PhysRevB.101.041411)

57. d’Aquino M, Serpico C, Mayergoyz ID, Bertotti G. 2005 Numerical integration of Landau-Lifshitz-Gilbert equation. Berlin, Germany: Springer.

58. Lord GJ, Powell CE, Shardlow T. 2014 *An introduction to computational stochastic PDEs*. Cambridge Texts in Applied Mathematics. New York, NY: Cambridge University Press.

59. Gottwald GA. 2017 Finite-size effects in a stochastic Kuramoto model. *Chaos* **27**, 101103. (doi:10.1063/1.5004618)

60. Smith LD, Gottwald GA. 2020 Model reduction for the collective dynamics of globally coupled oscillators: from finite networks to the thermodynamic limit. *Chaos* **30**, 093107. (doi:10.1063/5.0009790)

61. Cartwright M, Gottwald GA. 2021 Collective coordinate framework to study solitary waves in stochastically perturbed Korteweg–de Vries equations. *Phys. Rev. E* **104**, 024201. (doi:10.1103/PhysRevE.104.024201)

62. Wolfram Research, Inc. 2021 *Mathematica* 13.0.
74. Magdziarz M, Weron A, Burnecki K, Klafter J. 2009 Fractional Brownian motion versus the continuous-time random walk: a simple test for subdiffusive dynamics. *Phys. Rev. Lett.* **103**, 180602. (doi:10.1103/PhysRevLett.103.180602)
75. Magdziarz M, Klafter J. 2010 Detecting origins of subdiffusion: P-variation test for confined systems. *Phys. Rev. E* **82**, 011129. (doi:10.1103/PhysRevE.82.011129)
76. Hein C, Imkeller P, Pavlyukevich I. 2009 Limit theorems for p-variations of solutions of SDEs driven by additive stable Lévy noise and model selection for paleo-climatic data. In *Recent development in stochastic dynamics and stochastic analysis* (eds J Duan, S Luo, C Wang), Interdisciplinary Mathematical Sciences, vol. 8, pp. 137–150. Singapore: World Scientific.
77. DuMouchel WH. 1973 On the asymptotic normality of the maximum-likelihood estimate when sampling from a stable distribution. *Ann. Statist.* **1**, 948–957. (doi:10.1214/aos/1176342516)
78. Nolan JP. 2001 Maximum likelihood estimation and diagnostics for stable distributions. In *Lévy processes: theory and applications* (eds OE Barndorff-Nielsen, T Mikosch, SI Resnick), pp. 379–400. Boston, MA: Birkhäuser.
79. McCulloch JH. 1986 Simple consistent estimators of stable distribution parameters. *Comm. Statist. B—Simul. Comput.* **15**, 1109–1136. (doi:10.1080/03610918608812563)
80. Koutrouvelis IA. 1980 Regression-type estimation of the parameters of stable laws. *J. Am. Statist. Assoc.* **75**, 918–928. (doi:10.1080/01621459.1980.10477573)
81. Koutrouvelis IA. 1981 An iterative procedure for the estimation of the parameters of stable laws. *Commun. Statist. B—Simul. Comput.* **10**, 17–28. (doi:10.1080/03610918108812189)
82. Corcuera JM, Nualart D, Woerner JHC. 2007 A functional central limit theorem for the realized power variation of integrated stable processes. *Stoch. Anal. Appl.* **25**, 169–186. (doi:10.1080/07362990601052201)
83. Veillette M. 2012–2015 STBL: Alpha stable distributions for MATLAB. See https://au.mathworks.com/matlabcentral/fileexchange/37514-stbl--alpha-stable-distributions-for-matlab.
84. Clauset A, Shalizi CR, Newman MEJ. 2009 Power-law distributions in empirical data. *SIAM Rev.* **51**, 661–703. (doi:10.1137/070710111)
85. Golubitsky M, Stewart I. 2002 *The symmetry perspective: from equilibrium to chaos in phase space and physical space*. Basel, Switzerland: Birkhäuser.
86. Stella AL, Chechkin A, Teza G. 2023 Anomalous dynamical scaling determines universal critical singularities. *Phys. Rev. Lett.* **130**, 207104. (doi:10.1103/PhysRevLett.130.207104)
87. Fisher ME, Sykes MF. 1959 Excluded-volume problem and the Ising model of ferromagnetism. *Phys. Rev.* **114**, 45–58. (doi:10.1103/PhysRev.114.45)
88. Barkhausen H. 1919 Zwei mit Hilfe der neuen Verstärker entdeckte Erscheinungen: I. Geräusche beim Ummagnetisieren von Eisen. *Z. Phys.* **20**, 401–402.
89. Jiao C, Gottwald GA. 2023 Lévy flights as an emergent phenomenon in a spatially extended system. Figshare. (doi:10.6084/m9.figshare.c.6858174)