Mercury (Hg) use in artisanal and small-scale gold mining (ASGM) is globally the largest source of occupational health exposure to Hg. In this type of mining, Hg is used to extract gold from its ore by forming an amalgam, which is then burnt, leaving the final gold product. These extraction processes expose artisanal and small-scale gold miners to Hg. Although there are different forms of Hg with varying health effects, miners are mainly exposed to elemental Hg. Miners are exposed to its liquid form through skin contact during the panning process of forming the gold Hg amalgam and the vaporized form through inhalation during the burning process. Acute exposure to Hg through skin contact could lead to dermatitis. Similarly, acute exposure through inhalation could lead to erosive bronchitis and bronchiolitis with symptoms of sore throat, chest pain and shortness of breath. Other symptoms associated with acute exposure could...
include headaches, diarrhea, abdominal pain metallic taste, fever, numbness and general weakness. Chronic exposure could lead to neurological dysfunction with symptoms like fatigue, dizziness, weakness, tremors and shaking of hands. Erythema may also be observed with symptoms such as depression, irritability memory impairment and insomnia. Kidney problems such as proteinuria and nephrotic syndrome are associated with chronic exposure. Other conditions associated with chronic exposure may include gingivitis, eye irritation, joint pain stomatitis and excessive salivation. In some cases, miners could be exposed to methyl Hg as a result of consuming foods, including fish, from environments contaminated with Hg. Exposure to inorganic Hg may also occur through drinking water from Hg-polluted water sources. Exposure to elemental Hg can be monitored using urine samples, while both elemental and methyl Hg can be monitored using blood samples.

With the rapid growth of the ASGM industry, especially in Uganda, Hg exposure in this sector is of major concern. By 2016, there were 150,000 people working directly as miners with 900,000 dependent on the trade, a number which is expected to grow. Although previous research has indicated Hg use among miners in Uganda, little is known about the level of exposures and whether the miners have experienced Hg poisoning-related symptoms. The present study sought to assess Hg exposure among miners in Uganda through biologic monitoring parameters and Hg-related clinical manifestations.

Methods

This was a cross-sectional study employing quantitative methods conducted between June and July 2018. The assessment included the use of the World Health Organization (WHO) standardized questionnaire for assessing Hg exposure, health assessment, human bio-monitoring and ecological monitoring. The present study was conducted in four districts with active artisanal and small-scale gold mines in the four regions where gold deposits are found: Ibanda (Western region), Mubende (Central region), Amudat (Karamoja region) and Busia (Eastern region) as shown in Figure 1. Some mining sites were located close to the shores of Lake Victoria. There are approximately 600, 2500, 3000 and 900 mines in Amudat, Busia, Mubende and Ibanda, respectively.
respectively. However, these figures may not be accurate as the sector is largely illegal and disorganized with minimal documentation. These areas are generally rural with different types of geological formations including metasediment-hosted mesozonal mines in Mubende, intrusion-hosted mesozonal and sandstone-hosted mesozonal mines in Ibanda, mesozonal mines near the lake shores in Busia and Archean basement rocks and the upper amphibolite–lower granulite facies rocks with numerous hypozonal shear zone-controlled gold workings in Amudat. Study participants were selected from miners at two mining sites in each of the four mining districts in the four regions in Uganda. Selected mining sites included Kicuzi and Rukiri in Ibanda, Kitumbi and Lubali in Mubende, Mayeero and Tiira in Busia and Cheputakolo and Chepkarata in Amudat. Only miners who had worked for at least the past six months in the selected mining sites were included in the study.

Sampling plan

A sample of 160 was determined using the Leslie Kish formula assuming a prevalence of 5%, α=5%, and 10% non-response rate. Multi-stage sampling was used to select the final sample. Cluster sampling was used to randomly select one district within each region (cluster). Two mining sites were then randomly selected from each of the selected districts. The final sample was drawn from these mining sites using stratified sampling (strata included extractors (diggers, ore carriers, driers, stone crushers), processors (including panners) and burners/buyers).

Health assessment

Health assessment was carried out by a registered clinical officer. This included a neurological examination, as well as evaluation of pre-existing conditions (for example malaria), tremors, sleep disturbances, fatigue, well-being and memory disturbances based on the WHO guidance on identifying populations at risk from Hg exposure. In addition, the clinical officer obtained self-reported symptoms experienced by participants in the past 6 months.

Human biomonitoring

Human biomonitoring included blood and urine samples for total Hg determination. For biomarker data, 40 participants were randomly selected using a table of random numbers from the total 160 participants. A total of 41 urine and 41 blood samples were collected. Blood samples included 11 from Ibanda, 10 from Busia, 10 from Mubende and 10 from Amudat. Similarly, urine samples included 11 from Ibanda, 10 from Busia, 10 from Mubende and 10 from Amudat. However, due to challenges in transportation and logistics, Amudat samples were excluded from analysis. Sample collection, packaging, storage, and transportation procedures were based on the WHO/United Nations Environment Programme (UNEP) protocols for sample collection procedures for urine and blood. Five (5) mL of blood were drawn into an already labeled vacutainer and labeled with the participant’s study number. The vacutainers were placed in a cool box. The same participant was given a urine container already labeled with her/his study number to collect about 20 mL of urine. The urine sample was again handled according to the recommended WHO standards for handling infectious samples. The urine container was placed in another cool box. As soon as 10 samples of blood and urine were obtained, the cool boxes were handled according to recommended standards and transported to the Directorate of Government Analytical Laboratory within a few hours according to the WHO recommended procedures.

Environmental monitoring

A total of 26 ecological samples were collected. This included water samples from drinking water sources and topsoil within a 20 m radius from the mining sites. Samples were stored and transported to the Directorate of Government Analytical Laboratory in Kampala based on an ecosystem sampling plan.

Laboratory analysis

Laboratory analysis focused on the presence and levels of total Hg (mean-value Hg level). The Directorate of Government Analytical Laboratory carried out all blood, urine and the ecological sample analysis. Samples were prepared by digestion of sample with nitric, perchloric, and sulphuric-potassium permanganate solution. Testing for Hg was done using Shimadzu AAS-6300, the Hg vapor unit technique with a limit of detection of <=0.001 was used. No reference materials were used.

Data analysis

The data were analyzed using STATA version 12.0. Descriptive analysis was used to generate information on the use of Hg, average level of Hg in urine, blood and environmental samples. Categorical data were summarized using frequencies and percentages. Numerical data were summarized using means and SD for normally distributed data, and median and inter-quartile range for data that was not normally distributed. Chi-square tests were used to assess differences in self-reported symptoms across age.
Research

Wanyana et al

Table 1 — Socio-Demographic Characteristics of Respondents

	Amudat % (N)	Busia % (N)	Ibanda % (N)	Mubende % (N)	Total % (N)
Gender					
Males	49.02 (25)	74.51 (38)	92.31 (36)	80.00 (32)	72.68 (133)
Females	50.98 (26)	25.49 (13)	7.69 (3)	20.00 (8)	27.32 (50)
Marital status					
Married or living together	84.31 (42)	80.39 (41)	76.92 (30)	76.19 (32)	79.78 (146)
Divorced, separated, widowed	7.84 (4)	15.69 (8)	10.26 (4)	2.38 (1)	9.29 (17)
Never married	7.84 (4)	3.92 (2)	12.82 (5)	21.43 (9)	10.93 (20)
Highest level of education attained					
No education	21.57 (11)	13.73 (7)	5.13 (2)	2.38 (1)	11.48 (21)
Primary	50.98 (26)	37.25 (19)	56.41 (22)	47.62 (20)	47.54 (87)
Post primary education	27.45 (14)	49.02 (25)	38.46 (15)	50.00 (21)	40.98 (75)
Religion					
Christian	86.27 (44)	92.16 (47)	97.44 (38)	90.48 (38)	9.26 (167)
Muslim	13.73 (7)	7.84 (4)	0	7.14 (3)	7.65 (14)
Others	0	0	2.56 (1)	2.38 (1)	1.09 (2)
Annual income equivalent					
0–540 US dollars	78.43 (40)	80.39 (41)	64.19 (25)	45.24 (19)	68.31 (125)
Above 540 US dollars	21.57 (11)	19.61 (10)	35.90 (14)	54.76 (23)	31.69 (58)
Age Group					
£30 years	58.82 (30)	41.82 (21)	38.46 (15)	61.90 (25)	50.27 (92)
>30 years	41.18 (21)	58.82 (30)	61.54 (24)	38.10 (16)	49.73 (91)

Results

A total of 183 respondents participated in the study. Some participants who completed the questionnaire and were then selected for sample collection refused to have blood and urine samples taken. This led to collecting more questionnaire data from additional respondents in order to reach the target number of blood and urine samples. The analysis included all those who completed the questionnaire. Participants ranged between 15 to 65 years of age with most (50.3%) below 30 years. The majority were males (72.68%). The highest proportion (47.54%) had attained primary education as their highest level of education. The...
Research

majority (68.3%) earned less than an equivalent of 540 US dollars annually. Details of the characteristics of the respondents are shown in Table 1.

Use of mercury at mining site

The use of Hg was reported in all mining sites. Overall, use was reported by approximately 81% of the miners. The highest usage was in the Amudat and Buisa districts (100%) compared to Mubende (73.7%) and Ibanda (41.2%). The most prevalent source of Hg was the open markets (51.2%) within the mines. Open markets included shops selling other items located near the mines. Gold buyers also supplied miners with Hg for processing gold.

Occupational exposure to mercury

Occupational exposure was assessed based on the WHO questionnaire. Participants were asked whether they were directly exposed to Hg through working directly with Hg. The majority (73.3%) of miners reported they had at some point worked directly with Hg, 88.2% in Busia; 86.3% in Amudat; 72.50% in Mubende; and 36.84% in Ibanda. The average duration (mean) years of exposure was 5.35 years (95% CI: 4.20 to 6.49), with Busia having the longest duration of exposure, 9.97 years (7.51 to 12.44), compared to other districts. Although the majority (75.8%) of respondents reported using personal protective equipment, this was primarily in the form of wearing gumboots. Details of occupational exposure are presented in Table 2.

Environmental exposure

Ecological sample analysis indicated Ibanda had the highest (31.8 µg/l) mean Hg levels in water as shown in Table 3. Mubende had the highest (0.28 µg/l) soil mean Hg levels. The Hg levels were above the maximum acceptable level of Hg (6 µg/l) based on WHO guidelines for drinking water quality.23

Figure 2 — Sources of mercury per district

Health effects associated with exposure to mercury

A clinical officer asked respondents whether they had experienced previously documented Hg-related symptoms in the last 6 months. When all significant variables from the bivariate analysis were transferred to a multivariable logistic regression model and the effect of potential confounders (neurological disorders, malaria, handling kerosene, smoking, alcohol use, pesticide use, use of whitening soap, hepatitis and tuberculosis) were controlled for, study variables maintained significance (Table 4). Statistically significant associations were established with p ≤0.05 and a 95% CI, not including zero. Symptoms such as swelling of feet, a metallic taste in the mouth, painful feet (perceived as holes in feet by miners), excessive salivating, loss of appetite and loss of hair, although reported, were not associated with using Hg.

Furthermore, statistically significant differences in self-reported symptoms were observed across gender and geographical location as detailed in Supplemental Material. Ibanda had the lowest proportion of respondents reporting experiencing these symptoms in comparison with the other districts. More females reported experiencing diarrhea, stomachache, swelling of legs, poor memory and respiratory problems compared to males, while more males reported injuries. These differences were statistically significant with p-values less than 0.05 as indicated in Supplemental Material. No statistically significant differences were indicated across age.

Mercury levels in blood and urine

Mercury levels in blood ranged between 26.3 µg/l to 205 µg/l with a median blood level of 67.5 µg/l, while
Table 2 — Occupational Mercury Exposure

	Amudat % (N)	Busia % (N)	Ibanda % (N)	Mubende % (N)	Total % (N)
Ever worked directly with mercury					
Yes	86.3 (44)	88.2 (45)	36.8 (14)	72.5 (29)	73.3 (134)
No	13.7 (7)	11.8 (6)	63.2 (24)	27.5 (11)	26.7 (49)
Duration in years working directly with mercury					
Mean, SD (95% CI)	3.59 (2.511 to 4.68)	9.97 (7.51 to 12.44)	1.02 (0.38 to 1.65)	2.45 (1.80 to 3.10)	5.35 (4.20 to 6.49)
Ever worked burning amalgam in open pans or melting gold in inadequate fume hoods					
Yes	39.6 (19)	61.2 (30)	25.7 (9)	43.6 (17)	43.9 (75)
No	60.4 (29)	38.8 (19)	74.3 (26)	56.4 (22)	56.1 (96)
Mean, SD (95% CI)	3.23 (1.77 to 4.70)	8.36 (5.71 to 11.02)	2.06 (0.58 to 3.55)	2.20 (1.41 to 2.99)	4.99 (3.68 to 6.31)
Ever stored mercury at home					
Never	43.1 (22)	18.0 (9)	70.3 (26)	53.9 (21)	44.1 (81)
At work	11.8 (6)	16.0 (8)	18.9 (7)	20.5 (8)	16.4 (30)
At home	45.1 (23)	66.0 (33)	10.8 (4)	25.6 (10)	39.6 (72)
Average distance (in km) of processing site to miner’s residence					
Less than 1 km	45.1 (23)	49.0 (25)	71.8 (28)	88.1 (37)	77.1 (141)
1-3 km	33.3 (17)	29.4 (15)	18.0 (7)	11.9 (5)	14.6 (27)
3.1-5 km	11.8 (6)	13.7 (7)	10.3 (4)	0	6.0 (11)
More than 5 km	9.8 (5)	7.8 (4)	0	0	2.19 (4)
Use personal protective equipment					
Yes	4.1 (2)	14.0 (7)	18.0 (7)	32.5 (13)	24.2 (44)
No	95.9 (47)	86.0 (43)	82.0 (32)	67.5 (27)	75.8 (139)

Table 3 — Total Mercury Levels in Soil and Water Samples

District	Mean Hg (µg/l)	
	Water	Soil
Ibanda	31.8	0.26
Busia	28.33	0.08
Mubende	11.25	0.28

Hg levels in urine ranged between 37.5 µg/l to 296 µg/l with a median urine level of 70.8 µg/l. Mubende district had the highest median blood levels of Hg (136 µg/l) relative to Busia (60 µg/l) and Ibanda (43 µg/l). Based on the Kruskal-Wallis equality-of-populations rank test, these differences were statistically significant (chi square value $\chi^2=15.147$, df=2 and p-value=0.0005). Similarly, Mubende district had the highest median urine levels of Hg (105.5 µg/l) relative to Busia (70.6 µg/l) and Ibanda (58 µg/l). Using the Kruskal-Wallis test, there was a statistically significant difference in the median Hg urine levels across districts (chi square value $\chi^2=11.664$, df=2 and p-value=0.0029).

With regard to differences in Hg levels between socio-economic and occupational mining categories, statistically significant differences were obtained between Hg levels in urine across gender, type of work and knowledge of occupational health and safety (OHS) practices. Males had a lower median level of Hg in urine (65.4 µg/l) compared to females (84.7 µg/l). There was a difference of 69.6 (95% CI: 62.8 to 73, p-value of 0.0476, which is less than 0.05), and statistically significant. Similarly, panners had the highest Hg levels in urine (109 µg/l) compared to burners (90.6 µg/l) and extractors (62.9 µg/l). This observed difference was statistically significant with a chi square value $\chi^2=9.595$, df=2 and p-value=0.0083, which was less than 0.05.

Those with knowledge of OHS practices had higher median levels of Hg in blood and urine (119.5 µg/l and 95.6 µg/l, respectively) than those without knowledge of OHS practices (52.25 µg/l and 65.4 µg/l, respectively). The median difference in blood Hg levels for those with and without knowledge of OHS practices was -66 (95% CI: -102.4 to -51.5) with a p-value of 0.0129, which is less than 0.05. The median difference in urine Hg levels for those with and without knowledge of OHS practices was -69 (95% CI: -72 to -61.8) with a p-value of 0.0280, which is less than 0.05. This indicates statistically significant differences in both Hg blood and urine levels between those with knowledge of OHS practices and those without knowledge.

Discussion

In Uganda, Hg use among miners has persisted, despite known negative health impacts. The present study sought to assess Hg exposure among miners through biologic monitoring parameters and Hg-related clinical manifestations in order to provide information needed for designing exposure prevention interventions.

Similar to findings in studies...
conducted in Ghana and Burkina Faso, miners in this study were characterized by low levels of education and low incomes. The high levels of miners with less than secondary level education (either no education or a primary level of education—59%) in this study are comparable to those documented in Ghana (70%) and Burkina Faso (75.5%). These characteristics may increase the likelihood of exposure as a result of limited awareness of the dangers of Hg use and limited available protective measures and inability to afford personal protective equipment. Nearly a third (27%) of the miners were female. Female active involvement in ASGM activities is likely to increase exposure of Hg to children living in these communities. Women in Africa work with their children in mining sites, thus exposing their children to Hg.

This study demonstrates considerable occupational exposure to Hg through self-reported use (73.3%) and biologic monitoring parameters. Detection of Hg in blood indicates current exposure, while detection in urine indicates exposure that occurred sometime in the past. Average levels of Hg in blood and urine (67.5 µg/l and 70.8 µg/l, respectively) among miners are relatively higher than those obtained in Tanzania (14.6 µg/l and 46.3 µg/l, respectively) among miners.

Gender	Median Hg level (µg/l)	Median difference Hg level (µg/l) (CI)	Rank sum	Z-score	p-value	Median Hg level (µg/l)	Median difference Hg level (µg/l) (CI)	Rank sum	Z-score	p-value
Male	54.4	-66 (-103.4 to -51.5)	327	-1.447	0.1479	65.4	84.7	350.5	-1.981	0.0476*
Female	104.4		138			69.6 (62.8 to 73)	350.5	177.5		
Age group						69.6 (62.8 to 73)	350.5	177.5		
<30 years	72.5	66 (51.1 to 102.4)	236.5	-0.478	0.6325	78.8	63.8	280.5	1.304	0.1924
>30 years	53.75	228.5				69 (62.8 to 72)	247.5			
Use of PPE						69 (62.8 to 72)	247.5			
Yes	119.5	-66 (-102.4 to -51)	158	454.46	0.1107	79	69.7	133	0.044	0.9653
No	52.8		307			-66 (-72 to 61.8)	395			
Knowledge on OHS						-66 (-72 to 61.8)	395			
Yes	119.5	-66 (-102.4 to -51.1)	177	2.486	0.0129*	95.6	65.4	219	2.197	0.0280*
No	52.25		288			-69 (-72 to 61.8)	309			

Abbreviations: PPE, personal protective equipment; ‘O’ level, four years of secondary education; ‘A’ level, six years of secondary education.
with relatively similar education levels. Mercury levels among all miners in the Mubende, Busia and Ibunda districts were above the WHO’s “Human Bio-Monitoring II” threshold levels of 15 µg/l for blood and 25 µg/l for urine, respectively. The proportions of miners with blood and urine levels above the recommended levels in this study were higher in comparison with previous studies in Burkina Faso, South Africa and Ghana. Fifty percent (50%) of miners in South Africa and 5%-46.7% in Ghana had Hg urine levels above the recommended levels. However, these differences are possibly attributed to differences in comparison guidelines. Whereas this study used a recommend level of 25 µg/l for urine, other studies used 50 µg/l. Furthermore, observed variation in Hg levels across the three regions could be attributed to the varied durations of exposure. Districts reporting higher levels of Hg in blood, such as the Mubende and Busia districts (2 years and 10 years, respectively), had longer durations of exposure in comparison to the Ibanda district (1 year). A high proportion (88%) of miners residing very close (less than 1 km) to mines could have further increased exposure among miners in the Mubende.

Unlike a previous study in Ghana indicating higher levels of Hg in urine among males (1.38 µg/l) in comparison to females (0.53 µg/l), the present study indicated higher levels among females. These biologic parameter and clinical manifestation differences by gender could be attributed to different work-related gender roles in the various settings leading to variations in exposure. Gold mining activities such as panning are predominantly female roles in some contexts, like in the present study. This exposes them to Hg as it involves the use of metallic Hg to form the amalgam. In this study, panners had significantly higher levels of Hg compared to the rest of the occupational groups as seen in Table 5. These findings differ from a systematic review of studies conducted in the Philippines, Mongolia, Tanzania, Zimbabwe and Indonesia which indicated burners had higher levels of Hg in urine. Those with self-reported knowledge of OHS practices had higher levels of Hg in blood and urine compared to those without. This could be attributed to longer experience in ASGM and therefore perceiving oneself as more knowledgeable. Longer work duration in artisanal gold mining has been associated with longer duration of exposure and consequently greater accumulation of Hg in the body. It has been shown that knowledge alone may not always translate into safer occupational health practices. In addition to occupational exposure, miners living in the study communities may also experience environmental exposure as water samples collected in the area had levels of Hg above the recommended levels. Levels of Hg in this study are higher than those obtained from streams, rivers and boreholes in ASGM areas in Ghana that ranged from < 1 to 4 µg/l. In the present study, miners who, at some point, had worked directly with Hg were more likely to experience some of the symptoms that have been suggested to be clinical presentations of Hg intoxication. These included shaking of the hands and head, eye problems, chest pain, numbness, back pain, fatigue, headaches, dizziness, respiratory problems and joint pain. However, like previous studies conducted in Tanzania and Ghana, there were no statistically significant differences for other known symptoms such as a metallic taste, excessive salivating, loss of appetite and loss of hair between those who had, at some point, worked with Hg and those who had not.

Limitations
There are some limitations to these findings. Firstly, due to the cross-sectional design there are limitations in establishing a causal relationship between Hg symptoms and Hg exposure. Second, wide CIs obtained with ORs may lower the precision of the obtained estimates. Third, the small sample sizes used in the analysis of Hg levels in blood and urine may affect the generalizations of the results. Fourth, no reference materials were used in the analysis of the samples, therefore the traceability of results could not be determined. Finally, self-reported data on symptoms may be susceptible to recall bias.

Conclusions
In conclusion, the findings of the present study provide evidence of high levels of Hg exposure among artisanal and small-scale miners in Uganda. These findings will be helpful in guiding future interventions aimed at preventing exposure to Hg in the ASGM sector and mining communities. Future studies should examine causal factors attributed to exposure among miners in order to design more effective interventions.

Acknowledgments
Dialogos, National Association of Professional Environmentalists, Government of Uganda.

The project was funded by CISU (Civil Society in Development) Denmark through Dialogos

Copyright Policy
This is an Open Access article distributed in accordance with Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/).
References

1. Esaalik IJ, Chalker JM. The mercury problem in artisanal and small-scale gold mining. Chem Phys Earth [Internet]. 2018 May 11 [cited 2020 Apr 30];242(27):6905-16. Available from: https://doi.org/10.1016/j.chemosphere.2017.04.080

2. Gibb H, O’Leary KG. Mercury exposure and health impacts among individuals in the artisanal and small-scale gold mining community: a comprehensive review. Environ Health Perspect [Internet]. 2014 Jul [cited 2020 Apr 30];122(7):75-82. Available from: https://doi.org/10.1289/ehp.1307864

3. Harari R, Harari E, Gerhardsson L, Lundh T, Skerfving S, Stromberg U, Broberg K. Exposure and toxic effects of elemental mercury in gold-mining activities in Ecuador. Toxicol Lett [Internet]. 2012 Aug 13 [cited 2020 Apr 30];213(1):75-82. Available from: https://dx.doi.org/10.1016/j.toxlet.2011.09.006

4. Martinez-Finley EJ, Aschner M. Recent advances in mercury research. Curr Environ Health Rep. 2014 Jun;1(2):163-71.

5. Afrika J, Opoku YK, Gaymerah EO, Ashigabor G, Sorkpor RD. The clinical importance of the mercury problem in artisanal small-scale gold mining. Front Public Health [Internet]. 2019 May 29 [cited 2020 Apr 30];7:Article 131 [9 p.]. Available from: https://doi.org/10.3389/fpubh.2019.00131

6. Yard EE, Horton J, Schier JG, Caldwell K, Sanchez C, Lewis L, Gastanaga C. Mercury exposure among artisanal gold miners in Madre de Dios, Peru: a cross-sectional study. J Med Toxicol [Internet]. 2012 Dec [cited 2020 Apr 30];8(4):441-8. Available from: https://doi.org/10.1007/s13181-012-0252-0

7. Park JD, Zheng W. Human exposure and health effects of inorganic and elemental mercury. J Prev Med Public Health [Internet]. 2012 Nov [cited 2020 Apr 30];45(6):344-52. Available from: https://doi.org/10.3961/jrpm.2012.45.344

8. Caravati EM, Erdman AR, Christianson G, Nelson LS, Woolf AD, Booze LL, Cobaugh DJ, Chyka PA, Scharman EJ, Manoguerra AS, Troutman WG. Elemental mercury exposure: an evidence-based consensus guideline for out-of-hospital management. Clin Toxicol [Internet]. 2008 Jan [cited 2020 Apr 30];46(1):1-21. Available from: https://doi.org/10.1080/1556350701664731

9. Bernhoft RA. Mercury toxicity and treatment: a review of the literature. J Environ Public Health [Internet]. 2012 [cited 2020 Apr 30];2012:Article 460508 [10 p.]. Available from: https://doi.org/10.1155/2012/460508

10. Do SY, Lee CG, Kim JY, Moon YH, Kim MS, Bae HI, Song HS. Cases of acute mercury poisoning by mercury vapor exposure during the demolition of a fluorescent lamp factory. Ann Occup Environ Med [Internet]. 2017 Jun 20 [cited 2020 Apr 30];29:Article 19 [8 p.]. Available from: https://doi.org/10.1186/s40557-017-0184-x

11. Baughman TA. Elemental mercury spills. Environ Health Perspect [Internet]. 2006 Feb [cited 2020 Apr 30];114(2):147-52. Available from: https://doi.org/10.1289/ehp.7048

12. Stopford W, Goldwater LJ. Methylmercury in the environment: a review of current understanding. Environ Health Perspect [Internet]. 1975 Dec [cited 2020 Apr 30];12:115-8. Available from: https://doi.org/10.1289/ehp.7512115

13. Bose-O’Reilly S, McCarty KM, Steckling N, Lettemeier B. Mercury exposure and children’s health. Curr Probl Pediatr Adolesc Health Care [Internet]. 2010 Sep [cited 2020 Apr 30];40(8):186-215. Available from: https://doi.org/10.1016/j.cppeds.2010.07.002

14. Ye BJ, Kim BG, Joon MJ, Kim SY, Kim HC, Jang TW, Chae HJ, Choi WJ, Ha MN, Hong YS. Evaluation of mercury exposure level, clinical diagnosis and treatment for mercury intoxication. Ann Occup Environ Med [Internet]. 2016 Jan 22 [cited 2020 Apr 30];28:Article 5 [8 p.]. Available from: https://doi.org/10.1186/s40557-016-0086-8

15. Global trends in artisanal and small-scale mining (ASM): a review of key numbers and issues [Internet]. Winnigpg, Canada: The International Institute for Sustainable Development; 2017 [cited 2020 Apr 30]. 91 p. Available from: https://www.iisd.org/sites/default/files/publications/igf-asm-global-trends.pdf

16. Guidance for identifying populations at risk from mercury exposure [Internet]. Geneva: World Health Organization; 2008 [cited 2020 Apr 30]. 167 p. Available from: https://www.who.int/foodsafety/publications/risk-mercury-exposure/en/

17. ASM gold mining in the Karamoja region [Internet]. Kampala, Uganda: Uganda Artisanal and Small-Scale Mining and Quarrying Conference and Exhibition; 2019 May 6 [cited 2019 Dec 15]. [about 3 screens]. Available from: https://www.asmgug/inside-update/asm-gold-mining-karamoja-region

18. Understanding artisanal and small-scale mining (ASM) operations in Uganda: a mapping study report [Internet]. Kampala, Uganda: Africa Centre for Energy and Mineral Policy; 2019 [cited 2020 Apr 30]. 52 p. Available from: https://plexi.org/wp-content/uploads/2019/11/MAPPING-STUDY-REPORT.pdf

19. Nyakecho C, Hagemann S G. An overview of gold systems in Uganda. Aust J Earth Sci [Internet]. 2014 [cited 2020 Apr 30];61(1):59-88. Available from: https://doi.org/10.1080/08120099.2013.831773

20. Uganda National Population and Housing Census 2014 [Internet]. Kampala: Uganda Bureau of Statistics; 2014 [cited 2020 Apr 20]. Available from: https://unstats.un.org/unsd/demographic/sources/census/wphp/Uganda/UGA-2016-05-23.pdf

21. Paruchuri Y, Sniakiai A, Johnson N, Levin E, Mitchell K, Goodrich JM, Renne EP, Basu N. Occupational and environmental mercury exposure among small-scale gold miners in the Taalensi-Nabdam District of Ghana’s Upper East region. Sci Total Environ [Internet]. 2010 Nov 15 [cited 2020 Apr 30];408(28):6079-85. Available from: https://doi.org/10.1016/j.scitotenv.2010.08.022

22. Nahm FS. Nonparametric statistical tests for the continuous data: the basic concept and the practical use. Korean J Anesthesiol [Internet]. 2016 Feb [cited 2020 Apr 24];69(1):8-14. Available from: https://kja. org/journal/view.php?doi=10.4097/kjae.2016.69.1.8

23. Mercury in drinking-water: background document for development of WHO guidelines for drinking-water quality [Internet]. Geneva: World Health Organization; 2005 [cited 2020 Apr 30]. 18 p. Available from: https://www.who.int/water_sanitation_health/dwq/chemicals/mercuryfinal.pdf

24. Clarkson TW, Magos L. The toxicology of mercury and its chemical compounds. Crit Rev Toxicol [Internet]. 2006 Sep [cited 2020 Apr 30];36(8):609-62. Available from: https://doi.org/10.1080/09498510404060845619 Subscription required to view.

25. Mensah EK, Afiari E, Wirapa F, Sackey S, Quainoo A, Keneu N, Nyarko KM. Exposure of small-scale gold miners in Prestea to mercury, Ghana, 2012. Pan Afr Med J. 2016 Oct 1;25(Suppl 1):Article 6.

26. Rajaei M, Long RN, Renne EP, Basu N. Mercury exposure assessment and spatial distribution in a Ghanaian small-scale gold mining community. Int J Environ Res Public Health [Internet]. 2015 Sep 1 [cited 2020 Apr 30];12(9):10755-82. Available from: https://doi.org/10.3390/ijerph120910755

27. Sana A, De Brouwer C, Hien H. Knowledge and perceptions of health and environmental risks related to artisanal gold mining by the artisanal miners in
Burkina Faso: a cross-sectional survey. Pan Afr Med J [Internet]. 2017 Aug 21 [cited 2020 Apr 30];27:Article 280 [14 p.]. Available from: http://doi.org/10.11604/ pamm.2017.27.280.12080

28. Diaz SM, Munoz-Guerrero MN, Palma-Parra M, Becerra-Arias C, Fernandez-Nino JA. Exposure to mercury in workers and the population surrounding gold mining areas in the Mojana region, Colombia. Int J Environ Res Public Health [Internet]. 2018 Oct 23 [cited 2020 Apr 30];15(11):Article 2337 [15 p.]. Available from: https://doi.org/10.3390/ ijerph15112337

29. Ouboter PE, Landburg G, Satnarain GU, Starke SY, Nandj N, Simon-Friedt B, Hawkins WB, Taylor R, Lichtveld MY, Harville E, Wickliffe JK. Mercury levels in women and children from interior villages in Suriname, South America. Int J Environ Res Public Health [Internet]. 2018 May 17 [cited 2020 Apr 30];15(5):Article 1007 [13 p.]. Available from: https://doi.org/10.3390/ijerph15051007

30. Ohlender J, Huber SM, Schomaker M, Heumann C, Schierl R, Michalke B, Jenni OG, Caflisch J, Munoz DM, von Ehrenstein OS, Radon K. Risk factors for mercury exposure of children in a rural mining town in northern Chile. PLoS One [Internet]. 2013 Nov 20 [cited 2020 Apr 30];8(11):Article e79756 [6 p.]. Available from: https://doi.org/10.1371/journal.pone.0079756

31. Yakovleva N. Perspectives on female participation in artisanal and small-scale mining: A case study of Birim North District of Ghana. Resour Policy [Internet]. 2007 Mar-Jun [cited 2020 Apr 30];32(1-2):29-41. Available from: https://doi.org/10.1016/j. resourpol.2007.03.002 Subscription required to view.

32. Ngowi AV, Macha EW. 785 Occupational exposure to mercury in a small scale gold mining workers and families in Handeni, Tanzania. Occup Environ Med [Internet]. 2018 [cited 2020 Apr 30];75(Suppl 2):A152-3. Available from: http://dx.doi. org/10.1136/medethics-2018-ICOHabstracts.430

33. Oosthuizen MA, John J, Somerset V. Mercury exposure in a low-income community in South Africa. S Afr Med J. 2010 Jun 1;100(6):366-71.

34. Tomicic C, Vernez D, Belem T, Berode M. Human mercury exposure associated with small-scale gold mining in Burkina Faso. Int Arch Occup Environ Health [Internet]. 2011 Jun [cited 2020 Apr 30];84(5):539-46. Available from: https://doi. org/10.1007/s00420-011-0615-x Subscription required to view.

35. Roberts JM, Assibey-Mensah V. The challenge of measuring blood pressure in low-resource settings.

36. Kwaanza-Ansah EE, Basu N, Nriagu JO. Environmental and occupational exposures to mercury among indigenous people in Dunkwa-On-Offin, a small scale gold mining area in the South-West of Ghana. Bull Environ Contam Toxicol [Internet]. 2010 Nov [cited 2020 Apr 30];85(5):476-80. Available from: https://doi.org/10.1007/s00128-010-0141-7 Subscription required to view.

37. Hinton JJ, Veiga MM, Beinhoff C, Women, mercury and artisanal gold mining: risk communication and mitigation. J Phys IV France [Internet]. 2003 May [cited 2020 Apr 30];107:617-20. Available from: https://doi.org/10.1051/jp4:20030379 Subscription required to view.

38. Bose-O’Reilly S, Bernaudat L, Siebert U, Roider G, Nowak D, Drasch G. Signs and symptoms of mercury-exposed gold miners. Int J Occup Environ Health [Internet]. 2017 [cited 2020 Apr 30];30(2):249-69. Available from: http://dx.doi. org/10.13075/ijomeh.1896.00715

39. Matchaba-Hove RB, Siziya S, Rusakaniko S, Kadenhe RM, Dumbu S, Chirenda J. Mercury poisoning: prevalence, knowledge and frequency of gold panning and doing retort among alluvial gold panners in Chiweshe and Tafuna communal lands in Zimbabwe. Cent Afr J Med. 2001 Nov-Dec;47(11-12):251-4.

40. Artisanal and small-scale gold mining and health: environmental and occupational health hazards associated with artisanal and small-scale gold mining [Internet]. Geneva: World Health Organization; 2016 [cited 2020 Apr 30]. 36 p. Available from: https://apps.who.int/iris/handle/10665/247195

41. Sligo FX, Jameson AM. The knowledge-behavior gap in use of health information. J Am Soc Inf Sci [Internet]. 2000 [cited 2020 Apr 30];51(9):858-69. Available from: https://doi.org/10.1002/ (SICI)1097-4571(2000)51:9%3C858::AID-ASIS3E3.0.CO;2-Q Subscription required to view.

42. Appoh R, Doamekpor LO, Hayford E, Klake R, Narthe Y. Assessment of mercury pollution in rivers and streams around artisanal gold mining areas of the Birim North District of Ghana. J Environ Prot [Internet]. 2011 Nov [cited 2020 Apr 30];2(9):1227-39. Available from: http://dx.doi.org/10.4236/epj.2011.29141

43. Bose-O’Reilly S, Drasch G, Beinhoff C, Tesha A, Drasch K, Roider G, Taylor H, Appleton D, Siebert U. Health assessment of artisanal gold miners in Tanzania. Sci Total Environ [Internet]. 2010 Jan 15 [cited 2020 Apr 30];408(4):796-805. Available from: https://doi.org/10.1016/j.scitotenv.2009.10.051 Subscription required to view.

44. Setia MS. Methodology Series Module 3: Cross-sectional Studies. Indian J Dermatol [Internet]. 2016 May-Jun [cited 2020 Apr 30];61(3):261-4. Available from: http://www.e-iij.org/text. asp?2016/3/261/182410

45. Szumilas M. Explaining odds ratios. J Can Acad Child Adolesc Psychiatry. 2010 Aug;19(3):227-9.

46. Faber J, Fonseca LM. How sample size influences research outcomes. Dental Press J Orthod. 2014 Jul-Aug;19(4):27-9.

47. Bulska E, Krata A, Kalabun M, Wojciechowski M. On the use of certified reference materials for assuring the quality of results for the determination of mercury in environmental samples. Environ Sci Pollut Res Int [Internet]. 2017 Mar [cited 2020 Apr 24];24(9):7889-97. Available from: https://link.springer.com/article/10.1007%2Fs00128-016-7262-4

48. Rosenman R, Tennekeoon V, Hill LG. Measuring bias in self-reported data. Int J Behav Healthc Res. 2011 Oct;2(4):320-332.