Effects of IκBα and its mutants on NF-κB and p53 signaling pathways

Xian Li, Da Xing, Ju Wang, De-Bin Zhu, Lan Zhang, Xiao-Jia Chen, Fen-Yong Sun, An Hong

Abstract

AIM: To study the effects of IκBα and its mutants (IκBαM, IκBα243N, IκBαM244C) on NF-κB, p53 and their downstream target genes. The relationship of NF-κB, p53, and IκBα was further discussed.

METHODS: pECFP-IκBα, pECFP-IκBαM (amino acids 1-317, Ser32, 36A), pECFP-IκBα243N (amino acids 1-243), pECFP-IκBα244C (amino acids 244-317), pEYFP-p65 and pp53-DsRed were constructed and transfected to ASTC-α-1 cells. Cells were transfected with pECFP-C1 as a control. 30 h after the transfection, location patterns of NF-κB, p53 and IκBα (IκBαM, IκBα243N, IκBα244C) were observed by a laser scanning microscope (LSM510/ConfoCor2, Zeiss). RNA extraction and reverse transcription were performed in cells transfected or co-transfected with different plasmids. Effects of IκBα and its mutants on the translocation level of NF-κB, NF-κB downstream target gene TNF-α, p53 and p53 downstream target gene Bax were observed by real time QT-PCR. In all experiments β-actin was reference. Results are expressed as the target/reference ratio of the sample divided by the target/reference ratio of the control. Different transfected cells were incubated with CCK-8 for 2 h in the incubator. Then the absorbance at 450 nm was measured using a microplate reader.

RESULTS: Cells that were transfected with p53-DsRed revealed a predominant nuclear localization. YFP-p65 mainly existed in the cytoplasm. Cells were transfected with CFP-IκBα, CFP-IκBαM, and CFP-IκBα243N respectively and revealed a predominant cytosolic localization. However, cells transfected of CFP-IκBα244C revealed a predominant nuclear localization. The mRNA levels of p65, TNF-α, p53 and Bax in CFP-IκBα transfected cells did not change significantly, while in YFP-p65/CFP-IκBα co-transfected cells, IκBα decreased the transcription of p65 downstream gene TNF-α (2.24 ± 0.503) compared with the YFP-p65/CFP-C1 co-transfected cells (5.08 ± 0.891) (P < 0.05). Phosphorylation defective IκBα (IκBαM) decreased the transcription levels of all the four genes compared with the control (P < 0.05). The N terminus of IκBα (IκBα243N) increased the transcription of NF-κB (1.84 ± 0.176) and TNF-α (1.51 ± 0.203) a little bit. However, the C terminus of IκBα (IκBα244C) increased the transcription of NF-κB, TNF-α, p53 and Bax significantly (8.29 ± 1.662, 14.16 ± 2.121, 10.2 ± 0.621, 3.72 ± 0.346) (P < 0.05). The CCK-8 experiment also showed that IκBα244C and p53 synergistically mediate apoptosis.

CONCLUSIONS: IκBα and its mutants (IκBαM, IκBα243N, IκBαM244C) have different effects on NF-κB and p53 signaling pathways, according to their different structures. IκBαM binds with NF-κB and p53 in cytoplasm steadily, and inhibits both of the two signaling pathways. p53 and IκBα244C may be co-factor in inducing apoptosis. The C terminal of IκBα enhanced cell death, which suggests that it may be a pro-apoptotic protein existed in cells.

© 2006 The WJG Press. All rights reserved.

Key words: Nuclear factor-κB; Inhibitor of NF-κB alpha; p53; Real-time QT-PCR

INTRODUCTION

Nuclear factor-κB (NF-κB) is a family of pleiotrophic transcription factors\(^1\)\(^-\)\(^3\). It regulates the transcription of a large number of genes that play key roles in embryonic development, lymphoid differentiation, apoptosis, and immune and inflammatory responses\(^4\)\(^-\)\(^6\). They are characterized by the presence of so called Rel homology domain, RHD, with a length of about 300 amino acids. Their active DNA-binding forms are homodimeric or heterodimeric complexes consisting of
these protein family members. The most abundant form of NF-κB are p65/p50 hetero-dimers and p65/p65 homo-dimers[6-9]. In most cells, NF-κB complexes are normally localized to the cytosol as inactive complexes with inhibitory IκBα protein[9]. Activation of NF-κB in response to stimuli involves activation of IκB kinase (IKK), phosphorylation and degradation of IκBα at two serine residues (Ser32 and Ser36), followed by rapid ubiquitin-dependent degradation by the 26S proteasome and release of activated NF-κB[8,11]. Activated NF-κB then translocates to the nucleus, where it binds to its target DNA sequence and activates the transcription of a vast number and wide range of genes[12-18].

RelA, the p65 subunit of NF-κB is constitutively activated in certain neoplastic cells, such as pancreatic cancer cells and acute leukemia cells[10-19]. Approaches to suppress NF-κB activation in malignant cells have been considered as a potential treatment for neoplasia. Studies show that inhibition of NF-κB activation by expression of a dominant-negative mutant form IκBα (Ser 32, 36A) (IκBαM) completely inhibited liver metastasis of a pancreatic cancer cell line, and reduced angiogenesis in an ovarian cancer cell line[20-22].

Recent studies have shown that IκBα is found to inhibit p53 tumor suppressor protein by binding p53 to form a cytoplasmic p53·IκBα complex, thus it prevents p53 nuclear translocation[22]. On the basis of this data, we hypothesized that when IκBα or its mutants were used to mediate activities of NF-κB in cells, they might affect the p53 signaling pathway simultaneously. In this study, pECFP-IκBα and its three mutants, pECFP-IκBαM (amino acids 1-317, S32, 36A), pECFP-IκBα243N (N terminus of IκBα, amino acids 1-243) and pECFP-IκBα244C (C terminus of IκBα, amino acids 244-317), were constructed. The location patterns of NF-κB, p53 and IκBα (IκBαM, IκBα243N, IκBα244C) were observed by laser confocal scanning microscopy. The effects of IκBαM, IκBα243N, IκBα244C on p53 and NF-κB, as well as the downstream genes of these two signaling pathways, were studied with real time QT-PCR. The relationship of NF-κB, p53, and IκBα activities is further discussed.

MATERIALS AND METHODS

Materials

Mammalian cell expression vector pEYFP-p65 was provided by Professor Johannes A. Schmid[20]. A human full-length IκBα cDNA was found in the universal GenBank database (gene number: AA033600) and was obtained from Funeng company (vector: RB01-IκBα). pDSRed-Mit vector was provided by Dr. Fuminori Tsuruta[21]. Wild-type p53 cDNA was provided by Dr. Ye KH (Jinan University, Guangzhou). Dulbecco’s modified Eagle medium (DMEM) was purchased from Gibco (Grand Island, NY). The RNA isolation kit and LightCycler FastStart DNA Master SYBR Green I kit were obtained from Roche. M-MLV Reverse Transcriptase was provided by BBI. LipofectamineTM Reagent was purchased from Invitrogen. Cell Counting Kit-8 (CCK-8) was purchased from Dojindo Laboratories (Kumamoto, Japan).

Construction of CFP-IκBα, YFP-p65 and p53-DsRed variants

Four expression constructs were constructed with the pECPF-C1 vector (cloning site, EcoRI and BamHI; Clontech): (1) IκBα, the entire coding region (amino acids 1-317)(primers: FW3/RV1); (2) IκBαM, dominant negative IκBα construct made by altering Ser-32 to Ala-32 and Ser-36 to Ala-36, (amino acids 1-317, Ser32A, Ser36A) using primers FW1/RV1, FW2/RV1 and FW3/RV1 in turn; (3) IκBα243N, the N-terminal ankyrin region (amino acids 1-243) (primers: FW3/RV2); (4) IκBα244C, the C-terminal domain (amino acids 244-317) (primers: FW4/ RV1). Wild-type p53 cDNA were cloned into the Notel and BamHI sides of pDsRed-Mit vector (primers: p53F/p53R).

The synthetic primers used for making these constructs by PCR are FW1: 5'-gag cgg ctt ctc gac gac ggc ggt ctc ggc gtc atg gaa gca gaa gca gca gca ggc gac ggc ggt cgg ctc ggc ggc ggc ggt cgc ggc g
LightCycler real-time QT-PCR
cDNA amplification by QT-PCR was carried out with the LightCycler FastStart DNA Master SYBR Green I kit (Roche). For QT-PCR, a mastermix of the following reaction components was prepared: 0.8 µL MgCl₂ stock solution, (25 mmol/L), 2 µL LightCycler FastStart DNA Master SYBR Green I, 2 µL (0.3 µmol/L) each of the primers, 11.2 µL water. LightCycler mastermix was filled in the glass capillaries and 2 µL of total cDNA template was added. PCR primers were target gene 1 (p65: forward primer, 5’-GGCTATAACTCGCCTAGTGAA-3’; reverse primer, 5’-CGAAGGAGCTGATCTGACCTA-3’), gene 2 (NF-κB downstream gene, TNF-α: forward primer, 5’-CCTGTTCTGCTAGAGAGCAG-3’, gene 3 (p53: forward primer, 5’-AGGTGGCTCTGACTGTA-3’; reverse primer, 5’-GCAGCTCGTGGTAGACGCT-3’), and gene 4 (p53 downstream gene, Bax: forward primer, 5’-CTGACATCTTCTCTTCCAGA-3’). In all experiments, β-actin was the reference (forward primer, 5’-GAAATCGTGCTGCTGACATTAA-3’; reverse primer, 5’-GGACTCTGTCATACTCCTG-3’).

The following LightCycler experimental run protocol was used: denaturation program (95℃ for 10 min), amplification and quantification program repeated 40 times (95℃ for 10 s, 55℃ for 5 s, 72℃ for 10 s), melting curve program (65-95℃ with a heating rate of 0.1℃ per second and a continuous fluorescence measurement) and finally a cooling step to 40℃. For the mathematical model it is necessary to determine the crossing points (CP) for each transcript. CP is defined as the point at which the fluorescence rises appreciably above the background fluorescence. The ‘Fit Point Method’ must be performed, at which CP will be measured at a constant fluorescence level. Results are expressed as the target/reference ratio of the sample divided by the target/reference ratio of the control.

CCK-8 experiment
Different transfected group cells were cultured in 96-well microplates for 48 h. CCK-8 was added to the cells and incubated for 2 h. OD450, the absorbance value at 450 nm, was read with a microplate reader (DG5032, Hua dong, Nanjing, China). The value is directly proportional to the number of viable cells in a culture medium and the cell proliferation.

Statistical analysis
Statistical results were obtained using the statistical software SPSS. The significant difference tests were based on analysis of variance with a single factor and two sample t-tests were performed.

RESULTS
Localization patterns of p53-DsRed, YFP-p65, CFP-κBα and its mutants in living cells
Cells transfected with p53-DsRed revealed a predominant nuclear localization. YFP-p65 mainly existed in the cytoplasm (Figure 1). Cells were transfected with CFP-κBα, CFP-κBαM and CFP-κBα243N respectively, and revealed a predominant cytosolic localization, while cells transfected with CFP-κBα244C revealed a predominant nuclear localization of CFP-κBα244C (Figure 2).

Standard curve for real time QT-PCR
The concentration of the standards covers the expected concentration range of all samples. Dilution folds of the cDNA template for the standard curve run were 10ul to 3.20E-3 µL (Figures 3 and 4). The standard curves were analyzed with Real Quant Software to create a coefficient file. The coefficient file was used later in the relative quantification analysis.

Effects of κBα and its mutants on the NF-κB signaling pathway
Results are expressed as the target/reference ratio of...
the samples divided by the target/reference ratio of the control (n = 3). In all experiments β-actin cDNA was the reference. Results for the analysis of different transfected cells by QT-PCR showed that the level of p65 cDNA/β-actin cDNA (0.945 ± 0.152) and TNF-α cDNA/β-actin cDNA (1.05 ± 0.106) in CFP-IκBα transfected cells did not change significantly compared with the control (1.000 ± 0.000) (Figure 5), while in YFP-p65/CFP-IκBα co-transfected cells, IκBα decreased the transcription of p65 downstream gene TNF-α (2.24 ± 0.503) compared with the YFP-p65/CFP-C1 co-transfected cells (5.08 ± 0.891) (P < 0.05) (Figure 6). In CFP-IκBα/M transfected cells, the transcription level of the two genes (0.548 ± 0.086, 0.53 ± 0.056) decreased compared with the control (P < 0.05). The level of p65 cDNA/β-actin cDNA and TNF-α cDNA/β-actin cDNA in CFP-IκBα243N transfected cells increased a bit (1.84 ± 0.176, 1.51 ± 0.203) (P < 0.05). The most prominent was CFP-IκBα244C. It increased the transcription level of all the genes significantly (8.29 ± 1.566, 14.16 ± 2.121) compared with the control (P < 0.05) (Figure 5).

Effects of IκBα and its mutants on the p53 signaling pathway

Results for the analysis of different transfected cells by QT-PCR indicated that the effect of IκBα and its mutants on p53 and its downstream gene, Bax, were different (Figure 7). The level of p53 cDNA/β-actin cDNA and Bax cDNA/β-actin cDNA in CFP-IκBα (0.9 ± 0.126, 1.04 ± 0.109) and CFP-IκBα243N (0.806 ± 0.129, 0.79 ± 0.108) transfected cells did not change very much. In CFP-IκBαM transfected cells, the transcription level of the genes decreased (0.43 ± 0.061, 0.53 ± 0.063) compared with the control (P < 0.05), however, CFP-IκBα244C increased the transcription level of p53 and Bax significantly (10.2 ± 0.621, 3.72 ± 0.346) (P < 0.05) (Figure 7), which suggested that IκBα244C may play an important role in inducing apoptosis.[16]

IκBα244C and p53 synergistically mediates apoptosis

To study the effect of IκBα244C on cell death, a CCK-8 experiment was performed. As Figure 8 shows, transient expression of p53-DsRed (1.206 ± 0.099) or CFP-IκBα244C (1.259 ± 0.072) resulted in enhancement of cell death compared with the control (1.531 ± 0.168) (n = 6, P < 0.05). The synergistic effect in mediating apoptosis by p53-DsRed/CFP-IκBα244C (0.805 ± 0.047) (P < 0.01) was obtained.

DISCUSSION

NF-κB and p53 are important transcription factors present in the majority of cells.[27-39] Constitutively activated NF-κB has been associated with increased cell proliferation and survival in cancer cells. Inhibitor of NF-κB alpha, IκBα, participates in both NF-κB and p53 signaling pathways.[35,31-38] The functional NF-κB and p53 activities may modulate each other, which in turn could affect the subsequent responses.

Previous studies demonstrated that IκBα interacts with NF-κB and p53 with different interaction sides.[3,23] IκBα and its mutants might have different effects on the transcription of NF-κB, p53 and their downstream genes, according to their different structures. Our studies showed that IκBα did not influence the transcription level of NF-κB, p53 and their downstream target genes in static cells compared with controls, which maybe due to the integrity of IκBα and the self-regulation capability of the cells. IκBα243N (amino acids 1-243), with lack of the PEST domain that regulates basal level protein turnover and is required for inhibition of DNA binding of NF-κB, increased the transcription of NF-κB and TNF-α slightly. Because IκBα243N cannot interact with p53, it has no effect on the transcription of p53 and Bax.
Dominant negative IkBα (IkBαM, Ser32, 36A) and the C terminus of IkBα (IkBα244C, amino acids 244-317) are notable because of their significantly different effects. IkBαM has mutations in Ser32 and Ser36. It cannot phosphorylate at Ser32 and Ser36 and degrade, so IkBαM bound with NF-κB and p53 in the cytoplasm steadily and inhibited the transcription of their downstream genes, which is consistent with the report that IkBαM has been found to represses p53-dependent apoptosis in acute lymphoblastic leukemia cells [34]. In particular, transfection of IkBαM in human colon carcinoma and breast cancer cell lines did not increase sensitivity to daunomycin or Taxol [35,36]. IkBαM may repress p53 expression in two ways: (1) A portion of IkBαM directly interacts with p53 in cytoplasm and inhibits p53 translocate to the nucleus; (2) IkBαM binds to NF-κB in the cytoplasm and NF-κB IkBαM complex is formed, which in turn inhibits the NF-κB activity and the NF-κB dependent p53 activity, for the NF-κB signaling cascade is a potential modulator of p53 activity, and NF-κB is a co-factor of p53 in mediating cell death [37-39].

IkBα244C does not have the ARD (ankyrin repeat domain) and NES in N terminus. It could not prevent NF-κB from translocating to the nucleus, and IkBα244C itself
mainly existed in the nucleus. IkBα244C enhanced the transcription level of p53, NF-κB and their downstream genes. The CCK-8 experiment showed that co-expression of p53 with IkBα244C resulted in enhancement of p53-mediated cell death. p53 and IkBα244C are possibly co-factors in inducing apoptosis, and the C terminus of IkBα may serve as a pro-apoptotic protein in living cells.

NF-κB has been considered a target for cancer treatment\[17,40\]. The function of IkBα as an inhibitor in regulating NF-κB activation has been well studied. Findings from the present study suggest that mutants of IkBα have different effects on NF-κB and p53 signaling pathways, and may result in different therapy results. The inhibition effect of IkBαM indicates drugs that induce apoptosis by a p53-dependent mechanism may be inhibited by the use of IkBαM constructs through inhibition of p53 function by these agents. The C terminal of IkBα enhanced cell death, which suggests that it may be a pro-apoptotic protein existing in cells, but the mechanism remains to be determined and there may exist NF-κB and p53 independent pathways.

ACKNOWLEDGMENTS

We thank Dr. Johannes A Schmid for providing pEYFP-p65 vector. Also say thanks to Dr. Fuminori Tsuruta for providing pDsRed-Mit vector, and Dr. Kaihe Ye for providing p53 cDNA.

REFERENCES

1. Sen R, Baltimore D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 1986; 46: 705-716
2. May MJ, Ghosh S. Rel/NF-kappa B and I kappa B proteins: an overview. Semin Cancer Biol 1997; 8: 63-73
3. Gong JP, Liu CA, Wu CX, Li SW, Shi YJ, Li XH. Nuclear factor kB activity in patients with acute severe cholangitis. World J Gastroenterol 2002; 8: 346-349
4. Tu B, Gong JP, Feng HY, Wu CX, Shi YJ, Li XH, Peng Y, Liu CA, Li SW. Role of NF-κB in multiple organ dysfunction during acute obstructive cholangitis. World J Gastroenterol 2003; 9: 179-183
5. Joyce D, Albanese C, Steer J, Fu M, Bouzahzah B, Pestell RG. NF-kappaB and cell-cycle regulation: the cyclin connection. Cytokine Growth Factor Rev 2001; 12: 73-90
6. Jacobs MD, Harrison SC. Structure of an I kappa Balpha/NF-kappa B complex. Cell 1998; 95: 749-758
7. Huguet C, Crepeix P, Laudet V. Rel/NF-kappa B transcription factors and I kappa B inhibitors: evolution from a unique common ancestor. Oncogene 1997; 15: 2965-2974
8. Whiteside ST, Israel A. I kappa B proteins: structure, function and regulation. Semin Cancer Biol 1997; 8: 75-82
9. Yamamoto Y, Gaynor RB. I kappa B kinases: key regulators of the NF-kappa B pathway. Trends Biochem Sci 2004; 29: 72-79
10. Brockman JA, Scherer DC, Mckinsey TA, Hall SM, Qi X, Lee WY, Ballard DW. Coupling of a signal response domain in IκBα to multiple pathways for NF-κB activation. Mol Cell Biol 1995; 15: 2809-2818
11. Yang L, Chen H, Qwarnstrom E. Degradation of IkappaBalpha is limited by a postphosphorylation/ubiquitination event. Biochem Biophys Res Commun 2001; 285: 603-608
12. Dejardin E, Deregowski V, Chapelier M, Jacobs N, Gielen J, Merville MP, Bours V. Regulation of NF-kappa B activity by I kappa B-related proteins in adenocarcinoma cells. Oncogene 1999; 18: 2567-2577
13. Wulczyn FG, Krappmann D, Scheidereit C. Signal-dependent degradation of IkBα is mediated by an inducible deubiquitinase box that can be transferred to NF-κB, Bcl-3 or p53. Nucleic Acids Res 1998; 26: 1724-1730
14. Traenckner EB, Wilt S, Baeuerle PA. A proteasome inhibitor prevents activation of NF-kappa B and stabilizes a newly phosphorylated form of I kappa B-alpha that is still bound to NF-kappa B. EMBO J 1994; 13: 5433-5441
15. Renard P, Percherancier Y, Kroll M, Thomas D, Virelizier JL, Arenalza-Seisdedos F, Bachelerie F. Inducible NF-kappa B activation is permitted by simultaneous degradation of nuclear I kappa B alpha. J Biol Chem 2000; 275: 15193-15199
16. Wang W, Abbuzzese JL, Evans DB, Larry L, Cleary KR,
Chiao PJ. The nuclear factor-xB RelA transcription factor is constitutively activated in human pancreatic adenocarcinoma cells. Clin Cancer Res 1999; 5: 119-127

Wood KM, Roff M, Hay RT. Defective IkappaBalpha in Hodgkin cell lines with constitutively active NF-kappaB. Oncogene 1998; 16: 2131-2139

Lin A, Karin M. NF-kappaB in cancer: a marked target. Semin Cancer Biol 2003; 13: 107-114

Perkins ND. NF-kappaB: tumor promoter or suppressor? Trends Cell Biol 2004; 14: 64-69

Fujioka S, Sclabas GM, Schmidt C, Niu J, Frederick WA, Dong QG, Abbruzzese JL, Evans DB, Baker C, Chiao PJ. Inhibition of constitutive NF-kappaB activity by I kappa B alpha M suppresses tumorigenesis. Oncogene 2003; 22: 1365-1370

Huang S, Pettaway CA, Uehara H, Bucana CD, Fidler IJ. Blockade of NF-kappaB activity in human prostate cancer cells is associated with suppression of angiogenesis, invasion, and metastasis. Oncogene 2001; 20: 4188-4197

Huang S, Robinson JB, Deguzman A, Bucana CD, Fidler IJ. Blockade of nuclear factor-xB signaling inhibits angiogenesis and tumorigenicity of human ovarian cancer cells by suppressing expression of vascular endothelial growth factor and interleukin 8. Cancer Res 2000; 60: 5334-5339

Chang NS. The non-ankyrin C terminus of IkBalpha physically interacts with p53 in vivo and dissociates in response to apoptotic stress, hypoxia, DNA damage, and transforming growth factor-beta1-mediated growth suppression. J Biol Chem 2002; 277: 10323-10331

Schmid JA, Birbach A, Hofer-Warbinek R, Pengg M, Burner U, Furtmüller PG, Binder BR, Martin RD. Dynamics of NF-xB and IkBalpha studied with green fluorescent protein (GFP) fusion proteins. J Biol Chem 2000; 275: 17035-17042

Tsuruta F, Masuyama N, Gotoh Y. The Phosphatidylinositol 3-Kinase (PI3K)-Akt Pathway Suppresses Bax Translocation to Mitochondria. J Biol Chem 2002; 277: 14040-14047

Pahl HL. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 1999; 18: 6853-6866

Chang YC, Lee YS, Tejima T, Tanaka K, Omura S, Heintz NH, Mitsu Y, Maga J. Mdm2 and bax, downstream mediators of the p53 response, are degraded by the ubiquitin-proteasome pathway. Cell Growth Differ 1998; 19: 179-184

Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001; 29: 2002-2007

Harris CC. Structure and function of the p53 tumor suppressor gene: clues for rational cancer therapeutic strategies. J Natl Cancer Inst 1996; 88: 1442-1455

Walker KK, Levine AJ. Identification of a novel p53 functional domain that is necessary for efficient growth suppression. PNAS 1996; 93: 15335-15340

Simeonidis S, Stauber D, Chen GY, Hendrickson WA, Thanos D. Mechanisms by which IkB proteins control NF-xB activity. PNAS 1999; 96: 49-54

Malek S, Huxford T, Ghosh G. IkBalpha Functions through direct contacts with the nuclear localization signals and the DNA binding sequences of NF-xB. J Biol Chem 1998; 273: 25427-25435

Arenzana-Seisdedos F, Turpin P, Rodriguez M, Thomas D, Hay RT, Virelizier JL, Dargemont C. Nuclear localization of I kappa B alpha promotes active transport of NF-kappaB from the nucleus to the cytoplasm. J Cell Sci 1997; 110: 369-378

Zhou M, Gu L, Zhu N, Woods WG, Findley HW. Transfection of a dominant-negative mutant NF-kB inhibitor (IkbM) represses p53-dependent apoptosis in acute lymphoblastic leukemia cells: interaction of IkbM and p53. Oncogene 2003; 22: 8137-8144

Bentires-Alj M, Hellin AC, Ameyar M, Chouaib S, Merville MP, Bours V. Stable inhibition of nuclear factor xB in cancer cells does not increase sensitivity to cytotoxic drugs. Cancer Res 1999; 59: 811-815

Dong QQ, Sclabas GM, Fujioka S, Schmidt C, Peng B, Wu T, Tsao MS, Evans DB, Abbruzzese JL, McDonnell TJ, Chiao PJ. The function of multiple IkappaB : NF-kappaB complexes in the resistance of cancer cells to Taxol-induced apoptosis. Oncogene 2002; 21: 6510-6519

Fujioka S, Schmid C, Sclabas GM, Li ZK, Pelicano H, Peng B, Yao A, Niu J, Zhang W, Evans DB, Abbruzzese JL, Huang P, Chiao PJ. Stabilization of p53 is a novel mechanism for proapoptotic function of NF-xB. J Biol Chem 2004; 279: 27549-27559

Ryan KM, Ernst MK, Rice NR, Voussden KH. Role of NF-kappaB in p53-mediated programmed cell death. Nature 2000; 404: 892-897

Aleyasin H, Cregan SP, Iyiriharo G, O’Hare MJ, Callaghan SM, Slack RS, Park DS. Nuclear factor-xB modulates the p53 response in neurons exposed to DNA damage. J Neurosci 2004; 24: 2963-2973

Karim, M, Cao Y, Greten FR, Li ZW. NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2002; 2: 301-310

S-Editor Liu Y L-Editor Lutze M E-Editor Bi L