Scientometric Mapping of Vacuum Research in Nuclear Science & Technology: A Global Perspective

B S Kademani, Anil Sagar, Anil Kumar and Vijai Kumar

Scientific Information Resource Division,
Knowledge Management Group,
Bhabha Atomic Research Centre,
T trombay, Mumbai–400 085, INDIA

E-mail: bsk@barc.gov.in

Abstract. This paper attempts to analyse the growth and development of Vacuum research in Nuclear Science and Technology, as reflected in publication output covered by International Nuclear Information System (INIS) database during 2002-2006. A total of 12027 papers were published in the field of vacuum science. United States topped the list with 1936 (16.10%) publications followed by Japan with 1770 (14.70 %) publications, The highest number of publications (3276) were published in 2004. The average number of publications published per year were 2405.4. The highest number of publications were in ‘Physics of Elementary Particles and Fields’ with 2644 (21.98%) publications .The authorship and collaboration trend is towards multi-authored papers. The highly productive institutions were: Japan Atomic Energy Research Institute (Japan) with 366 publications, University of Tokyo (Japan) with 274 publications, Hiroshima University (Japan) with 245 publications, Osaka University Japan (Japan) with 224 publications and Chinese Academy of Science (P-R-China) with 223 publications. The most preferred journals for publication were: Journal of Vacuum Science and Technology-A with 857 papers, Physical Review –D with 765 papers, Journal of High Energy Physics with 500 papers, Thin Solid Films with 311 papers, Journal of Electron Spectroscopy and Related Phenomena with 309 papers, and AIP Conference Proceedings with 308 papers.

1. Introduction

Research and application of vacuum science and technology are spread across various fields of research and industry. Over the years, there is tremendous growth of vacuum techniques. The vacuum techniques have many applications in metallurgy, thin films, electron beam welding of special materials, space science, accelerators, electron devices, semiconductor technology etc.

Research publications are clearly one of the quantitative measures for the basic research activity in a country. It must be added, however, that what excites the common man, as well as the scientific community, are the peaks of scientific and technological achievement, not just the statistics on publications. There are also other kinds of research and technology development-mission oriented, industry-oriented, country-specific, etc. Progress in these cannot be obviously measured by counting only the number of publications [1]. Scientometrics is a discipline which analyses scientific publications and citations appended to the papers to gain an understanding of the structure of science, growth of science at global level, performance of a country in a particular domain, performance of institutions, departments/divisions, and scientific eminence of an individual scientist. It also helps in knowing the information seeking behaviour of scientists and engineers by way of identifying where
they publish and what they cite. The bibliometric and scientometric techniques used to study various quantitative and qualitative aspects of scientific endeavours have been studied [2-3]. Many scientometric studies have appeared in the literature to focus on the performance of science in various domains [4-17]. Scientometric studies are useful in ascertaining which methods have been mostly employed for various analytical determinations as well as predicting which methods will continue to be used in the immediate future and which appear to be losing favour with the scientific community [18].

2. Objectives
The main objective of the study is to present the growth of literature and make the quantitative assessment of role of vacuum research in nuclear science and technology by way of analyzing various features of research output such as geographical distribution of publications, publication productivity and domain-wise activity index, authorship and collaboration pattern, language-wise distribution of publications, institution-wise distribution of publications, the channels of communications used by the scientists, the quality of research, and the high frequency keywords appeared in Indexer Assigned-Descriptors (DEI).

3. Materials and Methods
The data source for the study was INIS on disc (CD ROM), published by the INIS Secretariat at IAEA Head Quarters at Vienna, Austria. INIS is the world’s leading and most comprehensive abstracting and indexing service providing information on all aspects of peaceful applications of nuclear science and technology. Records pertaining to Vacuum research were downloaded using CD-ROM published in the years 2002-2006 using suitable search strategy (‘Vacuum’ in Title, Abstract, and DEI Fields). A total of 12027 records were downloaded. The bibliographic details for each record included author, author’s affiliation, title, type of document, source of publication, year of publication, keywords, language of the article, country of publication etc. Further all the bibliographic details were transferred to spread sheet application. The data was analysed as per objectives of the study. The duplicate records retrieved were physically verified and excluded for further analysis.

4. Results and Discussion
4.1 Country-wise Distribution of Publications in Vacuum Research in Nuclear Science and Technology
There were as many as 110 countries and eight international organizations engaged in research in the field of vacuum science and technology in nuclear science and technology producing 12027 publications. Figure 1 lists top twenty countries actively pursuing research in this field. USA is the top producing country with 1936 (16.10%) publications of the total output, followed by Japan with 1770 (14.70 %) publications, Germany with 1147 publications (9.57 %), Russian Federation with 971 (8.07 %) publications, China with 808 (6.72%) publications, France with 502 (4.17 %) publications, United Kingdom with 474 (3.94%) publication, Italy with 471 (3.38%) publications, Austria with 406 (3.38%) publications and India with 400 (3.33%)publications.
4.2 Publication Productivity
During 5 years (2002-2006) a total of 12027 publications were published in the field of vacuum research in nuclear science and technology. There were 2198 papers published in 2002. The highest number of papers (3276) were published in 2004. The average number of publications published per year was 2405.4. Table 1 gives year-wise growth of publications published during the period under study. The highest growth rate 37.18 was observed in 2004 and the lowest growth rate –48.88 was observed in 2006. This may be due to the time lag of input of records to the INIS database. It was estimated that about 70 percent of total publications published during the particular year are input in 12 months period and remaining 30 percent of publications are spread over 2-3 years or more as the database has a open provision for input of records [11].

Table 1. Year-wise cumulative growth of publications during 2002-2006

Publication Year	Number of Papers	Percentage	Growth Rate 2002-2006
2002	2198	18.28	-
2003	2388	19.86	8.64
2004	3276	27.24	37.18
2005	2685	22.32	-18.40
2006	1480	12.31	-44.88
Total	12027	100.00	-

4.3 Subject Category-wise Distribution of Publications
The publications in vacuum science and technology have been spread over thirty one main subject categories as per INIS subject categories. The highest number of publications were in ‘Physics of Elementary Particles and Fields’ with 2644 (21.98%) publications followed by ‘Condensed Matter Physics, Superconductivity and Super fluidity’ with 1985 (16.50%) publications, ‘Materials Science with 1705 (14.18%), Plasma Physics and Fusion Technology’ with 1637 (13.61%) publications, ‘Particle Accelerators’ with 915 (7.61%) and Atomic and Molecular Physics’ with 914 (7.60%) publications. Table 2 provides subject category-wise distribution of publications.
Table 2. Year-wise Distribution of Publications as per INIS Subject Categories

Subject Categories	Publication Year	Total Papers	Percentage				
	2002	2003	2004	2005	2006		
Physics of Elementary Particles and Fields	571	608	587	534	344	2198	21.98
Condensed Matter Physics, Superconductivity and Superfluidity	360	383	874	272	96	1985	16.50
Materials Science	232	312	484	385	292	1705	14.18
Plasma Physics and Fusion Technology	307	355	294	347	334	1637	13.61
Particle Accelerators	163	218	214	220	100	915	7.61
Atomic and Molecular Physics	107	75	261	412	59	914	7.60
Classical and Quantum Mechanics, General Physics	139	113	196	181	103	732	6.09
Instrumentation Related To Nuclear Science and Technology	67	75	131	72	42	387	3.22
Nuclear Physics and Radiation Physics	44	49	49	64	18	224	1.86
Inorganic, Organic, Physical and Analytical Chemistry	53	44	51	21	121	218	1.81
Radiation Chemistry, Radiochemistry and Nuclear Chemistry	28	33	14	14	10	99	0.82
Radiology and Nuclear Medicine	25	17	18	24	11	95	0.79
Specific Nuclear Reactors and Associated Plants	11	19	17	22	10	79	0.66
Management of Radioactive Wastes, and Non-Radioactive Wastes From Nuclear Facilities	14	20	9	11	10	64	0.53
Isotopes and Radiation Sources	17	6	21	7	3	54	0.45
Engineering	10	10	14	12	5	51	0.42
Applied Life Sciences	8	13	9	8	5	43	0.36
Radiation Protection and Dosimetry	13	5	8	8	3	37	0.31
Nuclear Fuel Cycle and Fuel Materials	6	16	7	6	1	36	0.30
Environmental Sciences	6	3	8	6	4	27	0.22
Radiation, Thermal, and Other Environmental Pollutant Effects On Living Organisms and Biological Materials	6	5	5	8	2	26	0.22
General Studies of Nuclear Reactors	4	5	3	3	2	17	0.14
Geosciences	4	1	9		14		0.12
General and Miscellaneous	1	1	2	2	1	7	0.06
Hydrogen	1	4		5		0.04	
Biomass Fuels	1	1		3		0.02	
Energy Planning, Policy and Economy	1	2	3			0.02	
Oil Shales and Tar Sands	1	1	2			0.02	
Direct Energy Conversion	2					0.02	
Solar Energy	1					0.01	
Nuclear Disarmament, Safeguards and Physical Protection	1					0.01	
Total	2198	2388	3276	2685	1480	12027	100.00
4.31 Subject Category-wise Activity Index of Top Ten Subject Categories

On cumulating individual productivity of various domains, it was revealed that only ten subject categories out of thirty-one domains have contributed 11361 (94.96%) publications. Analysis of the growth and decline in the productivity using normalised activity of ten major subject categories, showed that the domains ‘Materials Science’, ‘Plasma Physics and fusion Technology’ and ‘Classical and Quantum Mechanics, General Physics’ witnessed rise and rest of the subject categories witnessed decline in their activity during 2002-2006. Table 3 provides year-wise activity index of ten major subject categories.

Subject Categories	Activity Index				
	2002	2003	2004	2005	2006
Physics of Elementary Particles and Fields	118.17	115.82	81.51	90.47	105.73
Condensed Matter Physics, Superconductivity and Superfluidity	99.24	97.18	161.65	61.38	39.30
Materials Science	74.45	92.16	104.22	101.15	139.17
Plasma Physics and Fusion Technology	102.62	109.22	65.93	94.95	165.80
Particle Accelerators	97.48	119.99	85.86	107.70	88.81
Atomic and Molecular Physics	64.06	41.33	104.84	201.91	52.46
Classical and Quantum Mechanics, General Physics	103.90	77.75	98.30	110.76	114.35
Instrumentation Related To Nuclear Science and Technology	94.73	97.61	124.27	83.34	88.19
Nuclear Physics and Radiation Physics	107.48	110.17	80.31	127.98	65.30
Inorganic, Organic, Physical and Analytical Chemistry	133.03	101.65	82.52	104.79	78.28
Total Publications	2198	2388	3276	2685	1480

4.4 Nature of Collaboration

On analyzing the extent of collaboration in vacuum research in nuclear science and technology, it was found that only 15.80 percent publications (1900) involved single authors and 84.20 percent publications (10127) involved multi-authors during 2002-2006 indicating large collaborative and multidisciplinary nature of the field. Figure 2 gives the collaboration trend in the field. Three authored papers accounted for 17.26 percent followed by single authored papers with 15.79 percent, two authored papers with 15.14 percent and four authored paper with 14.12 percent. It was observed that papers with as many as 128 authors were identified.

![Figure 1. Authorship and collaboration pattern in Vacuum Research in Nuclear Science and Technology](image-url)
4.5 International Collaboration

In recent years, every country has realised the importance of scientific research for its growth and started initiating programmes which makes scientists to have more interactions with other scientists, both at national and international levels. There were 7304 (60.73%) publications with single country affiliation, 2433 (20.23 %) publications had collaboration with more than one country and 2290 (19.04%) publications with no country affiliation. Table 4 provides international collaboration pattern in Vacuum Science and Technology in Nuclear Science and Technology. The papers with two-country collaboration accounted for 77.39 percent of total international collaborative papers.

Number of Countries	Number of Publications	Percentage
Two	1883	77.39
Three	441	18.13
Four	82	3.37
Five	21	0.86
Six	4	0.16
Seven	2	0.08
Total	2433	100.00

4.6 Institution-wise Distribution of Publications

There were more than 6000 institutions involved in research activity in the field of vacuum science and technology in nuclear science and technology. Table 5 provides productivity of top 20 institutions. Japan Atomic Energy Research Institute (Japan) topped the list with 366 publications, followed by University of Tokyo (Japan) with 274 publications, Hiroshima University (Japan) with 245 publications, Osaka University (Japan) with 224 publications, Chinese Academy of Science (P-R-China) with 223 publications, Tohoku University (Japan) with 191 publications, (Japan), Kyoto University with 184 publications, RIKEN (Japan) with 178 publications and Japan Synchrotron Radiation Research Institute (Japan).

Rank	Institute	Country	Number of Publications
1	Japan Atomic Energy Research Institute	Japan	366
2	University of Tokyo	Japan	274
3	Hiroshima University	Japan	245
4	Osaka University	Japan	224
5	Chinese Academy of Science	People's Republic of China	223
6	Tohoku University	Japan	191
7	Kyoto University	Japan	184
8	RIKEN	Japan	178
9	Japan Synchrotron Radiation Research Institute	Japan	150
10	High Energy Accelerator Research Organisation	Japan	143
11	University of California	United States	137
4.7 Language-wise Distribution of Publications
The vacuum scientists in nuclear science and technology have contributed more predominantly in English than any other languages as 10711 (89.05%) publications were in English followed by Russian with 502 (4.17%) publications, Japanese with 257 (2.13%) publications, Chinese with 192 (1.59%) publications and German with 157 (1.30%) publications.

4.8 Preference of Channels of Communication by the Scientists
Vacuum scientists communicated their research results through a variety of communication channels. It was observed that 72.07 percent of the literature was published in journals followed by 14.44 percent in miscellaneous literature, 19.35 percent in Reports, 3.91 percent in Books/Conferences and 0.25 percent in Translations.

4.9 Preference of Journals for Communication by the Scientists
The distribution of publications (8669) were spread over 408 journals. The leading journals preferred by the scientists were: Journal of Vacuum Science and Technology-A with 857 papers, Physical Review-D with 765 papers, Journal of High Energy Physics with 500 papers, Thin Solid Films with 311 papers, Journal of Electron Spectroscopy and Related Phenomena with 309 papers, and AIP Conference Proceedings with 308 papers. Table 6 provides journal-wise scattering of publications. Only twelve journals have published more than 50 percent of the publications.

Table 6. Major Journals Preferred by the Scientists for Publication

Rank	Journal	Total Papers	IF 2005	Country	Cumulative %
1	Journal of Vacuum Science and Technology-A	857	1.40	USA	9.89
2	Physical Review-D	765	4.85	USA	18.71
3	Journal of High Energy Physics	500	5.94	England	24.48
4	Thin Solid Films	311	1.57	Switzerland	28.07
5	Journal of Electron Spectroscopy and Related	309	1.18	The Netherlands	31.63
	Phenomena				
6	AIP Conference Proceedings	308	-	USA	35.18
7	Nuclear Physics-B	280	5.52	The Netherlands	38.41
8	Physical Review-A	235	3.00	USA	41.12
9	Classical and Quantum Gravity	209	2.94	England	43.53
10	Nuclear Instruments and Methods in Physics Research B	205	1.18	The Netherlands	45.90
11	Nuclear Instruments and Methods in Physics Research A	192	1.22	The Netherlands	48.11
12	Fusion Engineering and Design	173	-	Switzerland	50.11
The journals publishing papers on vacuum science and technology were spread across 44 countries. Table 7 provides the countries publishing journals in vacuum science and technology in nuclear science and technology. Among the top ranking journals publishing the papers are from USA with 3188 (36.77%) publications in 53 journals followed by the Netherlands with 1619 (18.57%) publications in 23 journals, England with 1426 (16.45%) publications in 38 journals Switzerland with 655 (7.56%) publications in 10 journals, Russian Federation with 458 (5.28%) publications in 48 journals and Germany with 303 (3.50) publications in 27 journals. Only 15 countries have published more than 98 percent of the articles in 338 journals in the field.

Country	Total Papers	Number of Journals	% of Total Papers	Country	Total Papers	Number of Journals	% of Total Papers
USA	3188	53	36.77	Kazakhstan	9	6	0.10
The Netherlands	1610	23	18.57	Pakistan	9	6	0.10
England	1426	38	16.45	Syrian-Arab-Republic	8	3	0.09
Switzerland	655	10	7.56	Australia	7	4	0.08
Russian Federation	458	48	5.28	Canada	6	5	0.07
Germany	303	27	3.50	Italy	5	2	0.06
Japan	280	55	3.23	Armenia	4	2	0.05
Peoples R China	230	23	2.65	Belarus	4	3	0.05
Ukraine	100	12	1.15	Egypt	3	2	0.03
Poland	72	7	0.83	Ireland	3	1	0.03
Austria	51	4	0.59	Uzbekistan	3	1	0.03
India	41	10	0.47	Bangladesh	2	1	0.02
Hungary	40	4	0.46	Indonesia	2	2	0.02
France	26	17	0.30	Malaysia	2	1	0.02
Republic of Korea	22	7	0.25	Viet-Nam	2	2	0.02
Sweden	22	6	0.25	Bulgaria	1	1	0.01
Brazil	14	2	0.16	Norway	1	1	0.01
Czech Republic	12	1	0.14	Peru	1	1	0.01
Romania	12	5	0.14	Serbia-and-Montenegro	1	1	0.01
Slovakia	12	1	0.14	Spain	1	1	0.01
Mexico	10	1	0.12	Thailand	1	1	0.01
Iran	9	6	0.10	Turkey	1	1	0.01
4.11 Quality of Research Output
Around 81.72 percent if the total publications in vacuum research in nuclear science and technology during 2002-2006 were published in the journals with impact factors (IF) ranging from 0.01 to 30.25, and around 18.72 per cent published in journals having zero IF. A significantly large number of publications (35.59 per cent) appeared in journals having impact factors from 1.01 to 2.00 followed by 11.14 percent of publications appeared in journals having impact factors from 3.01 to 4.00. (Figure 3).

![Figure 3. Impact Factor-wise Distribution of Journals and Publications](image)

4.12 Analysis of Keywords
Keywords are one of the best scientometric indicators to understand and grasp instantaneously the thought content of the papers and to find out the growth of the subject field. Analysis of the keywords appeared either on the title or assigned by the indexer or the author himself will help in knowing in which direction the knowledge grows. The high frequency keywords will enable us to understand the various aspects of vacuum research in nuclear science and technology under study. The keywords appeared in the Indexer–Assigned-Descriptors (DEI) field in INIS were analysed for the purpose. The high frequency keywords were: Thin-films (1322), Vacuum-states (1259), Plasma (1092), Electrons (817), Quantum-field-theory (783), Surfaces (716), X-ray-diffraction (682), annealing (632), supersymmetry (609) and Magnetic-fields (600). Table 8 gives a list of high frequency keywords appeared more than 299 times.

Article II.	Keyword	Article III.	Frequency	Article IV.	Keyword	Article V.	Frequency
thin-films			1322	potentials		427	
vacuum-states			1259	symmetry-breaking		420	
plasma			1092	cosmology		402	
electrons			817	excitation		398	

Table 8. Keywords ≥ 299 frequencies appeared in Indexer–Assigned Descriptors (DEI) field in INIS database (2002-2006)
5. Conclusion

In this study, an attempt has been made to find out quantitatively an overall view of the literature published on vacuum science and technology and its applications in nuclear science and technology as reflected in INIS database during 2002-2006. During 2002-2006 a total of 12027 papers were published in forty-four different subject categories. The highest number of publications were in ‘Physics of Elementary Particles and Fields’ with 2644 (21.98%) publications followed by ‘Condensed Matter Physics, Superconductivity and Super fluidity’ with 1985 (16.50%) publications, ‘Materials Science with 1705 (14.18%), Plasma Physics and Fusion Technology’ with 1637 (13.61%) publications, ‘Particle Accelerators’ with 915 (7.61%) and Atomic and Molecular Physics’ with 914 (7.60%) publications. The highest number of papers (3276) were published in 2004. The average number of publications published per year was 2405.4. The highest growth rate 37.18 was observed in 2004 and the lowest growth rate –48.88 was observed in 2006. The domains ‘Materials Science’; ‘Plasma Physics and fusion Technology’; ‘Classical and Quantum Mechanics, General Physics’ witnessed rise in their activity during 2002-2006.United States topped the list with 1936 publications followed by Japan with 1770 publications and Germany with 1147 publications. Authorship and collaboration trend was towards multi-authored papers as 80.3 percent of the papers were collaborative is indicative of the multidisciplinary nature of research activity. The highly productive institutions were: Japan Atomic Energy Research Institute (Japan) with 366 publications, University of Tokyo (Japan) with 274 publications, Hiroshima University (Japan) with 245 publications, Osaka University Japan (Japan) with 224 publications and Chinese Academy of Science (P-R-China) with 123 publications.
Acknowledgements
Authors are highly grateful to Dr. K. C. Mittal, Project Manager, Electron Beam Centre, BARC for his valuable comments and encouragement.

References
[1] Chidambaram R 2005 Curr. Sci. 88 856
[2] Kademani B S and Vijai Kumar 2004 UGC Sponsored Refresher Course on Information Technology for Librarians, TISS (Mumbai, 06-26 September 2004) pp 1-21.
[3] Kademani B S and Vijai Kumar 2002 ICSSR Sponsored Training Workshop on Exploring Social Science Information in Digital Environment, TISS (Mumbai, 27-30 May 2002) pp 62-75
[4] Lawson J, Kostrewski B and Oppenheim C 1980 Scientometrics 2 227
[5] Verma R K, Sharma Y K and Khatri H S D 1982 Ann. Lib. Sci. Doc. 29 64
[6] Hall D H 1987 Scientometrics 11 199
[7] Trofimenko P 1987 Scientometrics 11 231
[8] Czerwon H J 1990 Scientometrics 18 5
[9] Mavguin P 1991 Scientometrics 22 207
[10] Hall D H 1992 Scientometrics 24 237
[11] Kademani B S, Vijai Kumar, Anil Sagar and Anil Kumar 2006 Malaysian J. Lib. Inf. Sci. 11 23
[12] Kademani B S, Vijai Kumar, Anil Sagar, Anil Kumar, Lalit Mohan and Surwase 2006 DESIDOC Bull. Inf. Tech. 11 87
[13] Kademani B S, Surwase G, Anil Sagar and Vijai Kumar 2006 Malaysian J. Lib. Inf. Sci. 11 87
[14] Kademani B S, Vijai Kumar, Anil Sagar and Anil Kumar 2006 Scientometrics 69 347
[15] Kademani B S, Anil Kumar and Vijai Kumar 2007 DAE-BRNS Symposium on Role of Analytical Chemistry in Nuclear Technology (RACNT) (Mumbai, 4-5 January 2007) pp 135-148
[16] Anil Kumar, Kademani B S, Vijai Kumar, Surwase G and Lalit Mohan 2007 Int. Conf. Electroanalytical Chemistry and Allied Topics (ELAC-2007) (Shimla, 10-15 March 2007) pp 1-21.
[17] Anil Sagar, Kademani B S and Vijai Kumar 2007 ISMAS Symposium cum Workshop on Mass Spectrometry (Goa, 25-30 March 2007) pp 1-16.
[18] Lyon W S 1986 Proc. Advisory Group Meeting on Comparison of Nuclear Analytical Methods with Competitive Methods, IAEA (Oak Ridge, October 3-7 October 1986) (IAEA-TECDOC-435) pp 37-48.