Weaving and neural complexity in symmetric quantum states

Cristian E. Susa and Davide Girolami

1Departamento de Física y Electrónica, Facultad de Ciencias Básicas, Universidad de Córdoba, Carrera 6 No. 76-103, Montería, Colombia
2Los Alamos National Laboratory, Theoretical Division, P.O. Box 1663 Los Alamos, NM, 87545, USA

(Dated: July 12, 2018)

We study the behaviour of different measures of the complexity of multipartite correlation patterns, weaving and neural complexity, for symmetric quantum states. Weaving is the weighted sum of genuine multipartite correlations of any order, where the weights are proportional to the correlation order. The neural complexity, originally introduced to characterize correlation patterns in classical neural networks, is here extended to the quantum scenario. We derive closed formulas of the two quantities for GHZ states mixed with white noise.

INTRODUCTION

Correlations, capturing statistical relations between measurements performed at different times, or at different sites, take centre stage in many disciplines, as they often unveil dynamical and structural properties of complex systems. Yet, while bipartite correlations can be assumed to be well understood both in the classical and quantum scenarios, multipartite correlations are still somehow terra incognita, due to the daunting number of degrees of freedom that are necessary to describe systems of many particles \([1]\). We clarify that in this work we mean by “correlations” all the statistical dependencies between two or more physical systems. While correlation functions, e.g., covariances, capture linear correlations between variables, we here consider correlation measures to be more general descriptors of the information about joint properties of composite systems. Correlation patterns, the amount of correlations of different orders (tripartite, four-partite, and so on), describe collective properties of many-body systems, as demonstrated in recent theoretical works \([2,3]\), and also verified experimentally \([4]\). Recently, we proposed a framework to describe genuine multipartite correlations for quantum and classical systems, providing a method to unambiguously compute correlations of order \(2 \leq k \leq N\) in an \(N\)-particle system \([5]\). As states encoding the same amount of information can display very different correlation patterns, we introduced an index to classify them, called weaving. Genuine multipartite correlations express how a many-body system is different from the sum of its parts independently investigated, while weaving captures how such difference scales with the size of the considered parts.

In this Special Issue, after recalling their definitions, we provide closed formulas of both genuine multipartite correlations and weaving, as measured by the von Neumann relative entropy, for the \(N\)-qubit GHZ (Greenberger-Horne-Zeilinger) state mixed with white noise \([6]\), a configuration of high relevance for quantum information processing \([7]\). For such states, we run a comparison between weaving and the quantized neural complexity \([8]\), a measure which has been employed to characterize correlation patterns in neural networks.

GENUINE MULTIPARTITE CORRELATIONS AND WEAVING

Genuine multipartite correlations describe emerging joint properties of many-body systems which are intrinsically irreducible to features of the system parts. Specifically, given an \(N\)-partite (classical or quantum) system, the correlations of order \(k\) represent the information which cannot be obtained from clusters of \(k\) or less subsystems. In a recent work, we propose a method to compute genuine multipartite correlations (including classical and quantum contributions) of any order \([8]\). An advantage of this approach is that the obtained measure of correlations is relatively easy to compute. More important, it meets a set of expected criteria of monotonicity under local operations. Let \(\rho_N\) be the density matrix representing the state of an \(N\)-particle quantum system \(S_N\). We define the correlations of order higher than \(k, 2 \leq k \leq N - 1\), as the information about the total system that is still missing when one has full knowledge of a coarse grained partition \([S_{k_1}, S_{k_2}, \ldots, S_{k_m}], \sum_{i=1}^m k_i = N, k = \max\{k_i\}\), where \(S_{k_i}\) is a cluster of \(k_i\) subsystems. From an information-theoretic viewpoint, this information can be quantified by the distance of the total state to the set of tensor products describing up to \(k\)-party clusters. Such set reads \(\mathcal{P}_k = \{\sigma_N = \bigotimes_{i=1}^m \sigma_{k_i} : \forall k_i : \sum_{i=1}^m k_i = N, k = \max\{k_i\}\}\), where \(\sigma_{k_i}\) is the quantum state of a \(k_i\)-partite cluster. These sets form the hierarchy \(\mathcal{P}_1 \subset \mathcal{P}_2 \subset \cdots \subset \mathcal{P}_{N-1} \subset \mathcal{P}_N\), where \(\mathcal{P}_N\) is the whole Hilbert space of the system. Let us clarify the framework with an example. For \(k = 1, N = 3\), the set \(\mathcal{P}_1 = \{\sigma_3 = \sigma_{[1]} \otimes \sigma_{[2]} \otimes \sigma_{[3]}\}\) consists of all the single-particle product states. For \(k = 2, \mathcal{P}_2 = \mathcal{P}_1 \cup \mathcal{P}_2\), where \(\mathcal{P}_2\) contains all the products \(\{\sigma_2 \otimes \sigma_1\}\) obtained by permutations of the subsystems. Hence, \(\mathcal{P}_k\) is the set of product states with at least one \(k\)-partite forming cluster. In particular, \(\sigma_{[2]}\) is the joint state of two subsystems, e.g., \(S_{[1,2]} (S_{[1]}\) and \(S_{[3]}\)). Generally, one has \(\mathcal{P}_k = \mathcal{P}_{k-1} \cup \mathcal{P}_k\), where \(\mathcal{P}_k\) is the set of all the possible states with at least one \(k\)-partite term. One can then quantify multipartite correlations higher than \(k\) as the geometric distance of the given state to the set \(\mathcal{P}_k\). This usually implies
a challenging optimization, which is yet significantly simplified by employing the relative entropy $S(\rho||\sigma) = -S(\rho) - \text{Tr}(\rho \log \sigma)$, being $S(\rho) = -\text{Tr}(\rho \log \rho)$ the von Neumann entropy. In this case, the closest product state to the global state is the tensor product of its marginals \[2\] \[3\]. As the von Neumann entropy is subadditive, $S(\rho_i) + S(\rho_j) \geq S(\rho_{ij})$, $\forall i, j$ for systems invariant under subsystem permutations, the closest state is always $\sigma_N = \left(\bigotimes_{i=1}^{N/k} \rho_k \right) \otimes \rho_{N \mod k}$. Hence, the amount of correlations of order higher than k is given by

$$S^{k-N}(\rho_N) : = \min_{\sigma \in \mathcal{D}} S(\rho_N||\sigma_N) = \min_{\sigma_N \in \mathcal{D}} \left(\sum_{i=1}^{m} S(\rho_k) - S(\rho_N) \right) = \left[N/k \right] S(\rho_k) + (1 - \delta_{N \mod k}) S(\rho_{N \mod k}) - S(\rho_N).$$

By construction, genuine k-partite correlations are then quantified by

$$S^k(\rho_N) := S^{k-N}(\rho_N) - S^{k-N}(\rho_N).$$

Note that the total correlations are given by the sum of the correlations of any order, the multi-information $S^{1-N}(\rho_N) = \sum_{k=2}^{N} S^k(\rho_N) = \sum_{k=1}^{N} S(\rho_{[k]} - \rho_N)$, a non-negative multiparticle generalization of the mutual information. We proved that the measures defined in Eqs. \[1\], \[2\], contrary to all the previous proposals (to the best of our knowledge), satisfy a set of expected constraints \[8\]:

- Adding a disjoint n-partite system, cannot create correlations of order higher than n, $S^{n-N}(\rho_N) \geq S^{n-N-n}(\rho_{N+n})$.
- Local (single sites) operations, represented by CPTP (completely positive trace-preserving) maps $\Pi, \Phi_{[j]}$, $\Phi_{[j]} = I_1 \otimes \ldots \Phi_i \otimes \ldots \otimes_1 N$, cannot create correlations of any order k, and cannot increase the amount of correlations higher than any order k, $S^k(\rho_N) = 0 \Rightarrow S^k(\Pi, \Phi_{[j]}(\rho_N)) = 0$, $\forall k$.
- Partial trace of n subsystems cannot increase correlations of order higher than $k < N - n$, $S^{k-N}(\rho_N) \geq S^{k-N-n}(\rho_{N-n})$.
- Distilling n subsystems by fine graining $S_{[j]} \rightarrow S_F = \{S_{[j]}\}, j = 1, \ldots, n + 1$, cannot create correlations of order higher than $k + n$, for any k, $S^{k+n-N-n}(\rho_{N+n}) = S^{k-N}(\rho_N) = 0$.
- Total correlations are superadditive, $S^{1-N}(\rho_N) \geq \sum_{i=1}^{m} S^{1-i\delta_{N}(\rho_{N})}$.

While a consistent measure of genuine multipartite correlations is an important tool to investigate many-body systems, computing correlations is insufficient to fully discriminate correlation patterns. In the quantum scenario, it is well known that there exists an infinite amount of kinds of multipartite entanglement, such that there is no LOCC (Local Operation and Classical Communication) transformation which can convert a state into another belonging to a different equivalence class (i.e., being entangled in a different way) \[13\]. Also, the structure of classical networks is not fully captured by measures of correlations \[11\] \[15\] \[16\]. Classifying without ambiguities multipartite systems is a challenging problem. We proposed a potential solution to the issue by introducing weaving, an index assigning different importance to correlations of different order. The idea is to describe the information missing about the whole system scales when one studies clusters of increasing size. The relative entropy measure of weaving is given by

$$W_{S}(\rho_N) = \sum_{k=2}^{N} \omega_k S^k(\rho_N) = \sum_{k=1}^{N-1} \Omega_k S^{k-N}(\rho_N),$$

where $\omega_k = \sum_{i=1}^{k} \Omega_i, \Omega_k \in \mathbb{R}^{+}$. The meaning of the weaving measure is determined by the choice of weights. For instance, weaving equals total correlations for $\omega_k = 1, \forall k$, while it yields genuine k-partite correlations if $\omega_i = \delta_{ik}, \forall i$. For any choice of the weights, weaving satisfies, by construction, the properties of contractivity under local operations, $W_{S}(\rho_N) \geq W_{S}(\Pi, \Phi_{[j]}(\rho_N))$, and additivity, $W_{S}(\rho_{[k]} \rho_N) = \sum_{j} W_{S}(\rho_j)$. We also showed that, by choosing weights proportional to the correlation order, the index is able to rank several classes of correlated classical and quantum states, discriminating among multipartite states taking the same value of total or N-partite correlations, also being sensitive to the dimension of the subsystems. Hence, weaving appears as an information-theoretic consistent alternative to the many complexity measures appeared in literature \[3\]. For the sake of comparison, we introduced a quantum version of the neural complexity \[17\], proposed for classical variables,

$$C(\rho_N) := \sum_{k=1}^{N-1} \frac{k}{N C^{(k)}}, \quad C^{(k)} = S^{1-N}(\rho_N) - N/k S^{1-k}(\rho_k),$$

where the average term is computed over the $\binom{N}{k}$ clusters of k subsystems S_k. Note that each term $C^{(k)}$ measures how much the total correlations on size k clusters $S^{1-k}(\rho_k)$ deviate from linearly increasing with the cluster size. Also, the term $C^{(1)}$
measures the total correlations in the global state, while $C^{(N-1)}$ is $(1/(N - 1)$ times) the quantum excess entropy of the state \[15\]. The quantity originally aimed at capturing peculiar properties of neural configurations of the visual cortex. While an appealing, computationally friendly measure of the rate of the correlation scaling, the neural complexity, as well as the proposed alternative geometric variants \[15, 19\], does not meet the desirable information-theoretic constraints of contractivity under local manipulation of the system, e.g. it can arbitrarily increase under adding disjointed subsystems \[8\].

COMPARATIVE STUDY OF WEAVING AND NEURAL COMPLEXITY

We compare the relative entropy of weaving and the quantum neural complexity for mixtures of white-noise and the N-qubit GHZ state \[9\]:

$$\rho_{GHZ}^{N} = \frac{p}{2N} I_{2N} + (1-p) |GHZ_N\rangle\langle GHZ_N|, \quad p \in [0, 1],$$

where I_{2N} is the $2N \times 2N$ identity matrix and $|GHZ_N\rangle = (|0\rangle^\otimes N + |1\rangle^\otimes N)/\sqrt{2}$. The state is highly symmetric, being invariant under subsystem permutations. Discarding $N-k$ subsystems via partial trace gives $\rho_{GHZ}^{N-k} = \frac{p}{2^k} I_{2^k} + \frac{(1-p)}{2^k} (|0\rangle^\otimes k + |1\rangle^\otimes k)$. Thus, one has

$$S^{k-N}(\rho_{GHZ}^{N}) = \frac{N}{k} S(\rho_{GHZ}^{N}) + S(\rho_{GHZ}^{N}) - S(\rho_{GHZ}^{N}),$$

$$S(\rho_{GHZ}^{N}) = -2 \left(\frac{p}{2^k} + \frac{1-p}{2^k} \right) \log \left(\frac{p}{2^k} + \frac{1-p}{2^k} \right) - (2^k - 2) \frac{p}{2^k} \log \frac{p}{2^k},$$

$$S(\rho_{GHZ}^{N}) = - \left(2^N - 1 \right) \frac{p}{2^N} \log \frac{p}{2^N} - \left(1 - \frac{2^N - 1}{2^N} p \right) \log \left(1 - \frac{2^N - 1}{2^N} p \right),$$

$$C^{(k)}(\rho_{GHZ}^{N}) = \frac{N}{k} S(\rho_{GHZ}^{N}) - S(\rho_{GHZ}^{N}).$$

We perform a numerical comparison between the terms S^{k-N} and $C^{(k)}$, by varying the number of particles N, reported in Figure \[1\]. Although S^{k-N} and $C^{(k)}$ have quite similar behaviours, the plot manifests the peculiar correlation structure of the GHZ state, which displays non-zero correlations of order k if only if $\lfloor N/(k-1) \rfloor \neq \lfloor N/k \rfloor$, as discussed in Ref. \[8\], while the components of the neural complexity always take different, non-vanishing values (see the insets for $N = 50$). We then compare the weaving measures W_1 and W_2 defined in Eq. \[3\], for two different choices of the weights, $\Omega_1^* = 1, \forall k$, $\Omega_2^* = k/N$, respectively, and the neural complexity defined in Eq. \[4\]. We stress that complexity measures usually represent a hard computational problem even for states of a few qubits, while weaving and neural complexity are widely applicable because of their expressions are easy to compute. The results are given in Figure \[2\]. By increasing the number of qubits, the weaving measures, as well as the neural complexity, do not reach the maximum in the pure state ($p = 0$). This happens as we are here applying a correlated noise and counting both classical and quantum correlations (the state has just N-partite quantum correlations), instead of depolarizing independently each qubit. The same occurs for geometric complexity measures, when computed for Dicke states mixed with white noise \[19\].

CONCLUSION

The compact expressions of complexity measures make them interesting tools to investigate multipartite correlation patterns, which are carriers of information about key properties of many-body systems. We here reported a comparative study of weaving and neural complexity for correlated symmetric quantum states subject to a white noise channel. We anticipate three lines of research emerging from the interplay between information theory and complexity science concepts. A full-fledged characterization of genuine multipartite quantum correlations, including entanglement and other kinds of correlations, after promising results \[12, 20, 21\], may be achieved by adapting the framework here proposed. Second, our results pave the way for investigating the intriguing notion of genuine multipartite temporal correlations, and therefore the complexity of a process, where the correlations are computed between the state of the system at different times. This promises to be an appealing strategy to characterize memory effects in classical and quantum dynamics. A further line of investigation concerns the experimental detection of quantum complexity without state reconstruction. On this hand, the entropic measure of weaving may be estimated by polynomials of state purities, i.e. trace of squared density matrices and their higher powers. This could be achieved by generalizing the quantitative bounds to the relative entropy of coherence and coherent information in terms of such functionals \[27\]. It is well known that local purities are observables, e.g. via Bell state measurements \[23, 24\].
Figure 1: Correlations of order higher than k, $S^{k\to N}$, and components $C^{(k)}$ of the neural complexity, for $N = 5, 7, 10$ and 50 qubits. The grey scale goes from black to white as k increases. A zoom of both quantities for the $N = 50$ case is shown in the insets.
Figure 2: Weaving measures $W_S^{1,2}$, depicted by the red dotted line and the blue dashed line respectively, and neural complexity C, green continuous line, computed as a function of the mixing parameter p, for depolarized GHZ states of $N = 3, 5, 10, 50, 100, 1000, 10000, 20000$ qubits.
Acknowledgements

C. E. S. thanks Universidad de Córdoba for partial support (CA-097). D. G. is supported at LANL by the LDRD project 20170675PRD2. Part of the work was carried out at the University of Oxford, supported by the EPSRC (Grant EP/L01405X/1), and the Wolfson College.

[1] C. H. Bennett, A. Grudka, M. Horodecki, P. Horodecki and R. Horodecki, Postulates for measures of genuine multipartite correlations, Phys. Rev. A 83, 012312 (2011).
[2] G. Svetlichny, Distinguishing three-body from two-body nonseparability by a Bell-type inequality, Phys. Rev. D 35, 3066 (1987).
[3] N. D. Mermin, Extreme quantum entanglement in a superposition of macroscopically distinct states, Phys. Rev. Lett. 65, 1838 (1990).
[4] D. Collins, N. Gisin, S. Popescu, D. Roberts and V. Scarani, Bell-type Inequalities to Detect True n-Body Nonseparability, Phys. Rev. Lett. 88, 170405 (2002).
[5] Q. Y. He, P. D. Drummond and M. D. Reid, Entanglement, EPR steering, and Bell-nonlocality criteria for multipartite higher-spin systems, Phys. Rev. A 83, 032120 (2011).
[6] Q. Y. He and M. D. Reid, Genuine Multiparticle Einstein-Podolsky-Rosen Steering, Phys. Rev. Lett. 111, 250403 (2013).
[7] S. Armstrong, M. Wang, R. Y. Teh, Q. Gong, Q. He, J. Janousek, H.-A. Bachor, M. D. Reid and P. K. Lam, Multipartite Einstein-Podolsky-Rosen steering and genuine tripartite entanglement with optical networks Nature Phys. 11, 167 (2015).
[8] D. Girolami, T. Tufarelli and C. E. Susa, Quantifying genuine multipartite correlations and their pattern complexity, Phys. Rev. Lett. 119, 140505 (2017).
[9] D. M. Greenberger, M. A. Horne, and A. Zeilinger in M. Kafatos (ed.), Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, Kluwer, Dordrecht, 73 (1989); D. M. Greenberger, M. A. Horne, A. Zeilinger, and A. Shimony, Bell’s Theorem without Inequalities, Am. J. Phys. 58, 1131 (1990).
[10] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information, Cambridge University Press, New York (2000).
[11] S. Szalay, Multipartite entanglement measures, Phys. Rev. A 92, 042329 (2015).
[12] W. Dür, G. Vidal and J. I. Cirac, Three qubits can be entangled in two inequivalent ways, Phys. Rev. A 62, 062314 (2000).
[13] N. Ay, E. Olbrich, N. Bertschinger and J. Jost, A geometric approach to complexity, Chaos 21, 037103 (2011), ibid. in Proceedings of ECCS ’06, Santa Fe Institute, Working Paper 06-08-028 (2006).
[14] S. Amari, Information geometry of hierarchy of probability distributions, IEEE Trans. IT 47, 1701 (2001).
[15] T. Kahle, E. Olbrich, J. Jost, and N. Ay, Phys. Rev. E 79, 026201 (2009).
[16] T Galla and O Guehne, Complexity measures, emergence, and multipartile correlations, Phys. Rev. E 85, 046209 (2012).
[17] S. Niekamp, T. Galla, M. Kleinmann, and O. Guehne, Computing complexity measures for quantum states based on exponential families, J. Phys. A: Math. Theor. 46, 125301 (2013).
[18] G. L. Giorgi, B. Bellomo, F. Galve and R. Zambrini, Genuine quantum and classical correlations in multipartite systems, Phys. Rev. Letters. 107, 190501 (2011).
[19] F. M. Paula, A. Saguia, Thiago R. de Oliveira and M. S. Sarandy, Europhys. Lett. 108, 10003 (2014).
[20] G. Smith, J. A. Smolin, X. Yuan, D. Girolami and X. Ma, Quantifying Coherence and Entanglement via Simple Measurements, arXiv:1707.09928
[21] A. K. Ekert, C. Moura Alves, D. K. L. Oi, M. Horodecki, P. Horodecki and L. C. Kwek, Phys. Rev. Lett. 88, 217901 (2002).
[22] C. Moura Alves and D. Jaksch, Multipartite entanglement detection in bosons, Phys. Rev. Lett. 93, 110501 (2004).