Enhancing Spin-Phonon and Spin-Spin Interactions Using Linear Resources in a Hybrid Quantum System

Peng-Bo Li,1,2 Yuan Zhou,1,3,4 Wei-Bo Gao,4 and Franco Nori2,5
1MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China
2Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
3School of Science, Hubei University of Automotive Technology, Shiyan 442002, China
4Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
5Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA

(Received 12 November 2019; accepted 15 September 2020; published 9 October 2020)

Hybrid spin-mechanical setups offer a versatile platform for quantum science and technology, but improving the spin-phonon as well as the spin-spin couplings of such systems remains a crucial challenge. Here, we propose and analyze an experimentally feasible and simple method for exponentially enhancing the spin-phonon and the phonon-mediated spin-spin interactions in a hybrid spin-mechanical setup, using only linear resources. Through modulating the spring constant of the mechanical cantilever with a time-dependent pump, we can acquire a tunable and nonlinear (two-phonon) drive to the mechanical mode, thus amplifying the mechanical zero-point fluctuations and directly enhancing the spin-phonon coupling. This method allows the spin-mechanical system to be driven from the weak-coupling regime to the strong-coupling regime, and even the ultrastrong coupling regime. In the dispersive regime, this method gives rise to a large enhancement of the phonon-mediated spin-spin interactions between distant solid-state spins, typically two orders of magnitude larger than that without modulation. As an example, we show that the proposed scheme can apply to generating entangled states of multiple spins with high fidelities even in the presence of large dissipations.

DOI: 10.1103/PhysRevLett.125.153602

Hybrid spin-mechanical setups offer a versatile platform for quantum science and technology, but improving the spin-phonon as well as the spin-spin couplings of such systems remains a crucial challenge. Here, we propose and analyze an experimentally feasible and simple method for exponentially enhancing the spin-phonon and the phonon-mediated spin-spin interactions in a hybrid spin-mechanical setup, using only linear resources. Through modulating the spring constant of the mechanical cantilever with a time-dependent pump, we can acquire a tunable and nonlinear (two-phonon) drive to the mechanical mode, thus amplifying the mechanical zero-point fluctuations and directly enhancing the spin-phonon coupling. This method allows the spin-mechanical system to be driven from the weak-coupling regime to the strong-coupling regime, and even the ultrastrong coupling regime. In the dispersive regime, this method gives rise to a large enhancement of the phonon-mediated spin-spin interactions between distant solid-state spins, typically two orders of magnitude larger than that without modulation. As an example, we show that the proposed scheme can apply to generating entangled states of multiple spins with high fidelities even in the presence of large dissipations.
generate spin squeezed states with high qualities even in the presence of large dissipations. The proposed method is
general, and can apply to other defect centers or solid-state
systems coupled to a quantum nanomechanical element.
Related approaches using bosonic parametric driving for
spin squeezing have been considered in the context of
trapped ions [63] and cavity QED [64]. This work differs
fundamentally from these proposals with a markedly
different kind of hybrid spin-mechanical system.

The setup.—We consider the spin-mechanical setup, as
illustrated in Fig. 1(a), where a single NV center is mag-
netically coupled to the mechanical motion of a cantilever
with dimensions (l, w, t) via a sharp magnet tip attached to
its end. By applying a periodic drive to modulate the spring
constant of the cantilever [50], the zero-point fluctuations
of the mechanical motion can be amplified. This effect can
be realized experimentally by positioning an electrode near
the lower surface of the cantilever and applying a tunable and
time-varying voltage to this electrode [50]. The gradient of
the electrostatic force from the electrode has the effect of
modifying the spring constant [65].

For single NV centers, the ground-state energy level
structure is shown in Fig. 1(b), with the ground triplet states
|m_s = 0, ±1\rangle, and the zero-field splitting D = 2\pi \times
2.87 GHz between the degenerate sublevels |m_s = ±1\rangle
and |m_s = 0\rangle. We apply a homogeneous static magnetic
field B_{static} to remove the degenerate states |m_s = ±1\rangle
with the Zeeman splitting \Delta = 2g_e\mu_BB_{static}, where
\mu_e \approx 2\text{ and } \mu_B = 14\text{ MHz/mT are the NV’s Landé factor
and Bohr magneton, respectively.} We further apply dichromatic
microwave classical fields B_x(t) = B_{0x}\cos(\omega_{zt}t + \phi_{zt})
polarized in the x direction to drive the transitions between
the states |0\rangle and |±1\rangle. In the rotating frame with the
microwave frequencies \omega_{zt}, we obtain the Hamiltonian
\hat{H}_{NV} = \sum_{j=±1}D_j|j\rangle\langle j| + (\Omega_j/2)(|0\rangle\langle j| + |j\rangle\langle 0|),
where \Delta_± = |D - \omega_{zt} ± \delta/2| and \Omega_± = g_e\mu_BB_{0z}/\sqrt{2}.
In the following, we restrict the discussion to symmetric conditions:
\Delta_± = \Delta and \Omega_± = \Omega.

The Hamiltonian for the nanomechanical resonator with
a modulated spring is \hat{H}_m = \hat{p}_z^2/2M + \frac{1}{2}(k(t)z^\ddagger\ddagger)^2,
where \hat{p}_z and \z are the cantilever’s momentum and displacement
operators, with effective mass M and fundamental frequency
\omega_m. The spring constant of the cantilever is modified (pumped)
at a frequency 2\omega_p by the electric field from the capacitor plate,
k(t) = k_0 + k_r(t), where
k_0 = M\omega_m^2 is the fundamental spring constant, and the
time-dependent correction item k_r(t) = \partial F_e/\partial z = \Delta k\cos(2\omega_p t)
[65]. Here, F_e = \partial(C_eV^2)/(2\partial z) is the tunable electrostatic force exerted
on the cantilever by the electrode [50], with C_e the electrode-cantilever
capacitance, and V(t) the time-dependent voltage, which is
assumed to have the form V(t) = V_0 + V_p\cos 2\omega_p t.
Then, we can obtain \Delta k = (\partial^2 C_e/\partial z^2)V_0 V_p. Expressing
the momentum operator \hat{p}_z and the displacement operator \hat{z}
with the oscillator operator \hat{a} of the fundamental oscillating
mode and the zero field fluctuation z_{zpf} = \sqrt{\hbar/2M\omega_m}, i.e.,
\hat{p}_z = -i(M\omega_m/2)^{1/2}(\hat{a} - \hat{a}^\ddagger) and \hat{z} = z_{zpf}(\hat{a}^\ddagger + \hat{a}),
we obtain (\hbar = 1) [65]

\hat{H}_m = \omega_m\hat{a}^\ddagger\hat{a} - \Omega_p\cos(2\omega_p t)(\hat{a}^\ddagger + \hat{a})^2,
(1)

where \Omega_p = -\Delta k z_{zpf}^2/2 is the classical drive amplitude.

The Hamiltonian \hat{H}_m = \mu_g g_e G_m z_{zpf} \hat{S}_z describes the magnetic
interaction between the NV spin and the cantilever’s vibrating
mode, with G_m the magnetic field gradient. We switch to
the dressed state basis \{ |d\rangle = 1/\sqrt{2}(|+) - |-\rangle, |g\rangle = \cos \theta |0\rangle - \sin \theta |b\rangle, |e\rangle = \cos \theta |b\rangle + \sin \theta |0\rangle\},
with |b\rangle = (|+) + |-) / \sqrt{2}, and \tan(2\theta) = -\sqrt{2}\Omega/\Delta,
as shown in Fig. 1(c). We assume that the transition frequency
between the dressed states |g\rangle and |d\rangle becomes comparable with the oscillator frequency, i.e., \omega_{dg} \sim \omega_m.

The total Hamiltonian for this hybrid system under the
rotating-wave approximation by dropping the high fre-
quency oscillation and the constant items can be simplified as [65]

\hat{H}_{\text{Total}} \approx \delta_m \hat{a}^\ddagger\hat{a} + \frac{\omega_{dg}}{2} \hat{\sigma}_z - \frac{\Omega_p}{2} (\hat{a}^\ddagger + \hat{a})^2
+ \lambda (\hat{a}^\ddagger \hat{\sigma}_- + \hat{a} \hat{\sigma}_+^\ddagger),
(2)

where the coefficients are \delta_m = \omega_m - \omega_{pt}, \omega_{dg} = \omega_{dg} - \omega_p,
\lambda = -\mu_B g_e G_m z_{zpf} \sin \theta, \hat{\sigma}_z = (|d\rangle\langle d| - |g\rangle\langle g|), \hat{\sigma}_+ = |d\rangle\langle g|, and \hat{\sigma}_- = |g\rangle\langle d| [11]. Note that the above model
Hamiltonian can also be realized for the case where NV
spins are coupled to a nanomechanical cantilever via
mechanical strain [65].
Enhancing the spin-phonon interaction.—Considering the Hamiltonian (2), we can diagonalize the mechanical part of \hat{H}_total by the unitary transformation $\hat{U}_r(r) = \exp[r(\hat{a}^2 - \hat{a}^2)]/2$, where the squeezing parameter r is defined via the relation $\tanh 2r = \Omega_p/\delta_m$. Then, we can obtain the Rabi Hamiltonian in this squeezed frame [65]

$$\hat{H}_\text{Rabi}^S = \Delta_m \hat{a}^\dagger \hat{a} + \frac{\delta_{dy}}{2} \hat{\sigma}_z + \lambda_{eff}(\hat{a}^\dagger + \hat{a})(\hat{\sigma}_+ + \hat{\sigma}_-).$$

Here, $\Delta_m = \delta_m/\cosh 2r$. We have neglected the undesired correction to the ideal Rabi Hamiltonian in the large amplification regime. This term (with coefficient $\lambda e^{-r}/2$) is explicitly suppressed when we increase the squeeze parameter r, and is negligible in the large amplification regime $1/e^r \sim 0$. More importantly, we can obtain the exponentially enhanced spin-phonon coupling strength $\lambda_{eff} = \lambda e^{-r}/2$, which can be orders of magnitude larger than the original coupling strength as shown in Fig. 2(a), and comparable with Δ_m and δ_{dy}, or even stronger than both of them.

To quantify the enhancement of the spin-phonon coupling [76], we exploit the cooperativity $C = \lambda_{eff}^2/\Gamma_m \gamma_{NV}$. Here, Γ_m and γ_{NV} correspond to the effective mechanical dissipation rate and the dephasing rate of the spin, respectively. To circumvent the detrimental effect of amplified mechanical noises, a possible strategy is to use the dissipative squeezing approach [53,77,78], in which an additional optical or microwave mode is added to the system, and is used as an engineered reservoir to keep the Bogoliubov mode in its ground state [65]. This steady-state technique has already been implemented experimentally [53,77,78]. In this case, the squeezed phonon mode equivalently interacts with the thermal vacuum reservoir, and we can obtain the master equation in the squeezed frame [65] $\dot{\rho} = i[\hat{H}_\text{Rabi}^S, \rho] + \Gamma_m D(\hat{a}) \rho + \gamma_{NV} D(\hat{\sigma}_z) \rho$, where Γ_m is the engineered effective dissipation rate resulting from the coupling of the mechanical mode to the auxiliary bath. Therefore, we can also define the effective cooperativity $C_S = \lambda_{eff}^2/\Gamma_m \gamma_{NV}$.

In Fig. 2(a) we plot the cooperativity enhancement $C_S/C \sim e^{2r}/4$, as well as the spin-phonon coupling enhancement λ_{eff}/λ, versus the squeezing parameter r. We find that increasing the parameter r enables an exponential enhancement in the spin-phonon coupling, thus directly giving rise to the cooperativity enhancement. Figures 2(b) and 2(c) show the quantum dynamics of the spin-mechanical system for the cases when the spring constant is modulated or not. As the spring constant is modulated, the system can be pumped and driven from the weak-coupling regime to the strong-coupling, or even the ultrastrong-coupling regime.

Enhancing the phonon-mediated spin-spin interaction.—We now consider multiple NV spins coupled to the cantilever through either magnetic or strain coupling. When the spring constant of the cantilever is modulated, we can obtain the following Hamiltonian describing the coupled system [65]

$$\hat{H}_\text{Rabi}^N = \Delta_m \hat{a}^\dagger \hat{a} + \sum_{j=1}^N \left[\frac{\delta_{dy}}{2} \hat{\sigma}_z + \lambda'_{eff}(\hat{a}^\dagger + \hat{a})(\hat{\sigma}_+ + \hat{\sigma}_-) \right].$$

In the following, we set $\delta_{dy} = 0$ for simplicity. We apply the unitary polaron transformation $\hat{U} = e^{-iZ}$ to \hat{H}_Rabi^N, with $Z = i \sum_{k=1}^N \eta_k (\hat{a}^\dagger - \hat{a}) \hat{\delta}_k^z$ and the Lamb-Dicke condition $\eta_k = \delta_{eff}/\Delta_m \ll 1$. In this case, the phonons are only virtually excited and can mediate effective interactions between the otherwise decoupled solid-state spins [3,13]. Then we can obtain the effective spin-spin interactions [65] $\hat{H}_\text{eff} = \sum_{j,k=1}^N \Lambda_{jk} \hat{\delta}_j^z \hat{\delta}_k^z$, where $\Lambda_{jk} = (1 + \exp 4r) (\lambda'_{eff}/8\delta_m)$ is the effective coupling strength between the jth and the kth NV spins via the exchange of virtual phonons. Here the effective coupling strength for the phonon-mediated spin-spin interactions has an amplification factor e^{4r}, and can be orders of magnitude larger than that without mechanical amplification. In the case of homogeneous coupling, we have

$$\hat{H}_{\text{OAT}} = \Lambda \hat{J}_z^2,$$

where $\Lambda = (1 + \exp 4r) (\lambda'_{eff}/8\delta_m)$, and $\hat{J}_z = \sum_{j=1}^N \hat{\delta}_j^z$. This Hamiltonian corresponds to the one-axis twisting interaction [79] or equivalently belongs to the well-known Lipkin-Meshkov-Glick (LMG) model [80,81].
and \(\xi\) of spin dephasing, the spin squeezing parameter \(\Omega\) amplitude \(\Omega_p/\delta_m\) in [0.9, 1] (b), with different constraint \(\eta = 0.2\) and \(\eta = 0.1\). (c) The squeezing parameter \(r\) versus \(\Omega_p/\delta_m\). Here we assume that the effective spin-spin coupling strength without the two-phonon drive \(r = 0\) is \(\Lambda_0 \approx 0.1\).

Figure 3 shows the ratio of the enhanced spin-spin coupling strength \(\Lambda\) to the bare coupling \(\Lambda_0\) as a function of the parameter \(r\) as well as the pump amplitude \(\Omega_p/\delta_m\). Increasing the mechanical parametric drive gives rise to a large enhancement of the phonon-mediated spin-spin interaction, typically two orders of magnitude larger than the bare coupling. Note that since the phonon modes have been adiabatically eliminated, this amplified spin-spin coupling does not rely on the specific frame of phonons. This large, controllable phonon-mediated interaction between NV spins is at the heart of realizing many quantum technologies such as quantum computation and simulation.

Applications.—We now consider generating entangled states with this setup in the presence of dissipations. Here, we focus on entangling multiple NV spins through exchanging virtual phonons [65]. The one-axis twisting Hamiltonian (5) can be used to produce spin squeezed states which generally exhibit many-body entanglement. Taking into account the effect of spin dephasing, the system is described by the following master equation
\[
\dot{\rho} = i[\hat{\rho}, \hat{H}_{\text{QAT}}] + \sum_{j=1}^{\infty} i\Gamma_{\text{NV}} D[\sigma_j^+\hat{\rho}].
\]
where we investigate the metrological spin squeezing parameter \(\xi^{2}_{S}\), the spin squeezing parameter \(\xi^{2}_{S/R}\) [82], and the metrological gain (the gain of phase sensitivity relative to the standard quantum limit) \((\Delta\theta_{\text{SQL}}/\Delta\theta)^2\) [83]. When \(\xi_{S/R}^2 < 1\), the states can be shown to be entangled, and have direct implications for spin ensemble-based metrology applications \[((\Delta\theta_{\text{SQL}}/\Delta\theta)^2 > 1)\) [83].

Figures 4(a) and 4(b) show the time evolution of the spin squeezing parameter \(\xi_{S/R}^2\) and metrological gain under different \(r\). For a fixed interaction time and in the presence of spin dephasing, the spin squeezing parameter \(\xi_{S/R}^2\) and metrological gain can be improved significantly by increasing \(r\). Without mechanical amplification, the spin-squeezed state is seriously spoiled by the detrimental decoherence. However, when modulating the spring constant of the mechanical cantilever and increasing the pump amplitude \(\Omega_p\) to a critical value, the quality of the produced state and the speed for generating it can be greatly improved.

Experimental feasibility.—To examine the feasibility of this proposal for experiments, we consider a silicon cantilever with dimensions \((l = 6, w = 0.1, t = 0.05)\,\mu\text{m}\). The fundamental frequency and the zero-field fluctuation can be expressed as \(a_{\text{m}} \sim 3.516 \times \left(1/\ell^2\right)\sqrt{E/12\rho \sim 2\pi \times 11\text{MHz}}\) (with its quality factor \(Q\) about \(10^5\)) and \(z_{\text{QD}} = \sqrt{\hbar/2M\omega_{\text{m}} \sim 2.14 \times 10^{-3}\text{m}}\), with Young’s modulus \(E \sim 1.3 \times 10^{11}\,\text{Pa}\), the mass density \(\rho \sim 2.33 \times 10^3\,\text{kg/m}^3\), and effective mass \(M \sim g\omega t/4\). Assuming an environmental temperature 10 mK in a dilution refrigerator, the thermal phonon number is about \(n_{\text{th}} \sim 100\). Thus the effective mechanical dissipation rate is \(\Gamma_m = n_{\text{th}}\omega_{\text{m}}/Q \sim 2\pi \times 1\,\text{kHz}\). It is worth noting that the strain coupling scheme is particularly suitable for the case of multiple NV centers simultaneously coupled to the same cantilever. For the case of magnetic coupling, we assume that the magnetic tip has a transverse width of 50 nm, longitudinal height of 100 nm, and a radius of curvature of the tip \(\sim 20\,\text{nm}\). An array of NV centers are placed homogeneously and sparsely in the vicinity of the upper surface of the diamond sample, just under the magnet tips one by one with the same distance \(h \sim 25\,\text{nm}\). Note that individual, optically resolvable NV centers can be implanted determinately at a single spot \(5–10\,\text{nm}\) below the surface of the diamond sample by targeted ion implantation [17,18], in direct analogy to the excellent control over the locations and distances between the ions in trapped ions.

In order to ensure that the magnetic dipole interactions between adjacent centers can be ignored, we assume that the distance between the adjacent NV centers (or the adjacent magnetic tips) is about 50 nm. Furthermore, the distance between the adjacent magnetic tips and NV centers is also about 50 nm. Therefore, for each NV spin, the influence caused by the adjacent magnetic tips can be ignored. The first-order gradient magnetic field caused by the sharp magnetic tip is about \(G \sim 1.7 \times 10^7\,\text{T/m}\). We can obtain the magnetic coupling strength between the cantilever and the NV spin as \(\lambda/2\pi \sim 100\,\text{kHz}\). We expect the variations in the size and spacing of the nanomagnets and NV centers give rise to a degree of disorder in the.
The disorder makes the coupling λ cannot be the same for all of the NV centers. However, as analyzed [62,65], when the disorder factor is less than 5%, its effective influence on the system can be neglected.

We assume that the pump frequency and the amplitude are respectively $\omega_p/2\pi \sim 10$ MHz and $\Omega_p/2\pi \sim 1$ MHz [84–90]. In this protocol, the squeezing parameter satisfies $r \in [0, 5]$, and then we can obtain the effective spin-phonon coupling $\lambda_{e\mathrm{ff}} \sim 100\lambda$ and the effective spin-spin coupling $\Lambda \sim 100\Lambda_0 \sim 10\lambda$. On the other hand, the single NV spin decoherence in diamond is mainly caused by the coupling of the surrounding electron or nuclear spins, such as the electron spins P1 centers, the nuclear spins 14N spins and 13C spins. With the development of the dynamical decoupling techniques [91–96], the dephasing time for a single NV center in diamond is about $T_2 \sim 1/\gamma_{\mathrm{NV}} \sim 1$ ms. Based on the above parameters, we have the magnified cooperativity $C_S > 10^6$ with this spin-mechanical hybrid system, much larger than that (about $C_S > 10^5$) achieved in a cavity QED or circuit QED system [59,60].

Another issue that should be considered is the noise suppression for this system. In the presence of the mechanical amplification, the noise coming from the mechanical bath is also amplified. As discussed above, to circumvent such undesired noises, a possible strategy is to use the dissipative squeezing approach. In order to generate the desired squeezed-vacuum reservoir, the mechanical mode should be prepared in the squeezed state through the dissipative squeezing method. Note that recent experiments have already demonstrated the generation of squeezed phonon states with the squeezing parameter $r \sim 1.45$ through dissipative squeezing [97], which corresponds to a 12 dB reduction below the standard quantum limit.

Conclusion.—In this work, we propose an experimentally feasible and simple scheme for exponentially enhancing the spin-phonon and the spin-spin interactions in a spin-mechanical system with only linear resources. We show that, by modulating the spring constant of the mechanical cantilever with a time-dependent pump, the mechanical zero-point fluctuations can be amplified, giving rise to a large enhancement of the spin-phonon and the phonon-mediated spin-spin interactions. The proposed method is general, and can apply to other defect centers or solid-state systems such as silicon-vacancy center, germanium-vacancy center, and tin-vacancy center in diamond [98–102] coupled to a quantum nanomechanical element.

P.B.L. is supported by the National Natural Science Foundation of China under Grant No. 11774285, and Natural Science Basic Research Program of Shaanxi (Program No. 2020JC-02). Y.Z. is supported by the Natural Science Foundation of Hubei Province under Grant No. 2020CFB748, and the Doctoral Scientific Research Foundation of HUAT under Grant No. BK201906. F.N. is supported in part by the: MURI Center for Dynamic Magneto-Optics via the Air Force Office of Scientific Research (AFOSR) (Grant No. FA9550-14-1-0040), Army Research Office (ARO) (Grant No. W911NF-18-1-0358), Asian Office of Aerospace Research and Development (AOARD) (Grant No. FA2366-18-1-4045), Japan Science and Technology Agency (JST) (via the Q-LEAP program, and the CREST Grant No. JPMJCR1676), Japan Society for the Promotion of Science (JSPS) (JSPS-RFBR Grant No. 17-52-50023, and JSPS-FWO Grant No. VS.059.18N), the RIKEN-AIST Challenge Research Fund, the Foundational Questions Institute (FQXi), and the NTT PHI Laboratory. Part of the simulations are coded in PYTHON using the QUTIP library [103,104].

[1] Z.-L. Xiang, S. Ashhab, J. Q. You, and F. Nori, Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems, Rev. Mod. Phys. 85, 623 (2013).

[2] G. Kurizki, P. Bertet, Y. Kubo, K. Molmer, D. Petrosyan, P. Rabl, and J. Schmiedmayer, Quantum technologies with hybrid systems, Proc. Natl Acad. Sci. U.S.A. 112, 3866 (2015).

[3] S. D. Bennett, N. Y. Yao, J. Otterbach, P. Zoller, P. Rabl, and M. D. Lukin, Phonon-Induced Spin-Spin Interactions in Diamond Nanostructures: Application to Spin Squeezing, Phys. Rev. Lett. 110, 156402 (2013).

[4] E. R. MacQuarrie, T. A. Gosavi, N. R. Jungwirth, S. A. Bhave, and G. D. Fuchs, Mechanical Spin Control of Nitrogen-Vacancy Centers in Diamond, Phys. Rev. Lett. 111, 227602 (2013).

[5] S. Meesala, Y.-I. Sohn, H. A. Atikian, S. Kim, M. J. Burek, J. T. Choy, and M. Lončar, Enhanced Strain Coupling of Nitrogen-Vacancy Spins to Nanoscale Diamond Cantilevers, Phys. Rev. Applied 5, 034010 (2016).

[6] E. R. MacQuarrie, M. Otten, S. K. Gray, and G. D. Fuchs, Cooling a mechanical resonator with nitrogen-vacancy centres using a room temperature excited state spin-strain interaction, Nat. Commun. 8, 14358 (2017).

[7] J. Cai, F. Jelezko, and M. B. Plenio, Hybrid sensors based on colour centres in diamond and piezoeactive layers, Nat. Commun. 5, 4065 (2014).

[8] J. Teissier, A. Barfuss, P. Appel, E. Neu, and P. Maletinsky, Strain Coupling of a Nitrogen-Vacancy Center Spin to a Diamond Mechanical Oscillator, Phys. Rev. Lett. 113, 020503 (2014).

[9] P. Ovartchaiyapong, K. W. Lee, B. A. Myers, and A. C. Bleszynski Jayich, Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator, Nat. Commun. 5, 4429 (2014).

[10] A. Barfuss, J. Teissier, E. Neu, A. Nunnenkamp, and P. Maletinsky, Strong mechanical driving of a single electron spin, Nat. Phys. 11, 820 (2015).

[11] P. Rabl, P. Cappellaro, M. V. Gurudev Dutt, L. Jiang, J. R. Maze, and M. D. Lukin, Strong magnetic coupling...
between an electronic spin qubit and a mechanical resonator, *Phys. Rev. B* **79**, 041302(R) (2009).

[12] P. Rabl, S. J. Kolkowitz, F. H. L. Koppen, J. G. E. Harris, P. Zoller, and M. D. Lukin, A quantum spin transducer based on nanoelectromechanical resonator arrays, *Nat. Phys.* **6**, 602 (2010).

[13] P.-B. Li, Z.-L. Xiang, P. Rabl, and F. Nori, Hybrid Quantum Device with Nitrogen-Vacancy Centers in Diamond Coupled to Carbon Nanotubes, *Phys. Rev. Lett.* **117**, 015502 (2016).

[14] P.-B. Li, Y.-C. Liu, S.-Y. Gao, Z.-L. Xiang, P. Rabl, Y.-F. Xiao, and F.-L. Li, Hybrid Quantum Device Based on NV Centers in Diamond Nanomechanical Resonators Plus Superconducting Waveguide Cavities, *Phys. Rev. Applied* **4**, 044003 (2015).

[15] C. S. Muñoz, A. Lara, J. Puebla, and F. Nori, Hybrid Systems for the Generation of Nonclassical Mechanical States via Quadratic Interactions, *Phys. Rev. Lett.* **121**, 123604 (2018).

[16] O. Arcizet, V. Jacques, A. Siria, P. Poncharal, P. Vincent, and S. Seidelin, A single nitrogen-vacancy defect coupled to a nanomechanical oscillator, *Nat. Phys.* **7**, 879 (2011).

[17] S. Kolkowitz, A. C. Bleszynski Jayich, Q. P.Unterreithmeier, S. D. Bennett, P. Rabl, J. G. E. Harris, and M. D. Lukin, Coherent sensing of a mechanical resonator with a single-spin qubit, *Science* **335**, 1603 (2012).

[18] S. Hong, M. S. Grinolds, P. Maletinsky, R. L. Walsworth, M. D. Lukin, and A. Yacoby, Coherent, mechanical control of a single electronic spin, *Nano Lett.* **12**, 3920 (2012).

[19] M.-A. Lemonte, S. Meesala, A. Sipahigil, M. J. A. Schuetz, M. D. Lukin, M. Loncar, and P. Rabl, Phonon Networks with Silicon-Vacancy Centers in Diamond Waveguides, *Phys. Rev. Lett.* **120**, 213603 (2018).

[20] M. C. Kuzyk and H. Wang, Scaling Phononic Quantum Networks of Solid-State Spins with Closed Mechanical Subsystems, *Phys. Rev. X* **8**, 041027 (2018).

[21] X.-X. Li, B. Li, and P.-B. Li, Simulation of topological phases with color center arrays in phononic crystals, *Phys. Rev. Research* **2**, 013121 (2020).

[22] G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, and J. Tissler, Ultralong spin coherence time in isotopically engineered diamond, *Nat. Mater.* **8**, 383 (2009).

[23] V. P. Bhallamudi and P. C. Hammel, Nanoscale MRI, *Nat. Nanotechnol.* **10**, 104 (2015).

[24] F. Casola, T. van der Sar, and A. Yacoby, Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond, *Nat. Rev. Mater.* **3**, 17088 (2018).

[25] M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. L. Hollenberg, The nitrogen-vacancy colour centre in diamond, *Phys. Rep.* **528**, 1 (2013).

[26] E. Meyer and S. Rast, Magnetic tips probe the nanoworld, *Nat. Nanotechnol.* **2**, 267 (2007).

[27] M. Atatüre, D. Englund, N. Vamivakas, S.-Y. Lee, and J. Wrachtrup, Material platforms for spin-based photonic quantum technologies, *Nat. Rev. Mater.* **3**, 38 (2018).

[28] M. Pfender, N. Aslam, H. Sumiya, S. Onoda, P. Neumann, J. Isoya, C. A. Meriles, and J. Wrachtrup, Nonvolatile nuclear spin memory enables sensor-unlimited nanoscale spectroscopy of small spin clusters, *Nat. Commun.* **8**, 834 (2017).

[29] P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, and J. Wrachtrup, Multiparticle entanglement among single spins in diamonds, *Science* **320**, 1326 (2008).

[30] N. Y. Yao, L. Jiang, A. V. Gorshkov, P. C. Maurer, G. Giedke, J. I. Cirac, and M. D. Lukin, Scalable architecture for a room temperature solid-state quantum information processor, *Nat. Commun.* **3**, 800 (2012).

[31] K. Nemoto, M. Trupke, S. J. Devitt, A. M. Stephens, B. Scharfenberger, K. Buszak, T. Nöbauer, M. S. Everitt, J. Schmiedmayer, and W. J. Munro, Photonic Architecture for Scalable Quantum Information Processing in Diamond, *Phys. Rev. X* **4**, 031022 (2014).

[32] F. Dolde, I. Jakobi, B. Naydenov, N. Zhao, S. Pezzagna, C. Trautmann, J. Meijer, P. Neumann, F. Jelezko, and J. Wrachtrup, Room-temperature entanglement between single defect spins in diamond, *Nat. Phys.* **9**, 139 (2013).

[33] A. Faraoon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, Coupling of Nitrogen-Vacancy Centers to Photonic Crystal Cavities in Monocrystalline Diamond, *Phys. Rev. Lett.* **109**, 033604 (2012).

[34] R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, Coupling of a Single Nitrogen-Vacancy Center in Diamond to a Fiber-Based Microcavity, *Phys. Rev. Lett.* **110**, 243602 (2013).

[35] D. A. Golter and H. Wang, Optically Driven Rabi Oscillations and Adiabatic Passage of Single Electron Spins in Diamond, *Phys. Rev. Lett.* **112**, 116403 (2014).

[36] I. Buluta, S. Ashhab, and F. Nori, Natural and artificial atoms for quantum computation, *Rep. Prog. Phys.* **74**, 104401 (2011).

[37] X. Zhu, S. Saito, A. Kemp, K. Kakuyanagi, S. Karimoto, H. Nakano, W. J. Munro, Y. Tokura, M. S. Everitt, K. Nemoto, M. Kasu, N. Mizuochi, and K. Semba, Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond, *Nature (London)* **478**, 221 (2011).

[38] P. Neumann, R. Kolesov, B. Naydenov, J. Beck, F. Rempp, M. Steiner, V. Jacques, G. Balasubramanian, M. L. Markham, and D. J. Twitchen, Quantum register based on coupled electron spins in a room-temperature solid, *Nat. Phys.* **6**, 249 (2010).

[39] J. Cai, A. Retzker, F. Jelezko, and M. B. Plenio, A large-scale quantum simulator on a diamond surface at room temperature, *Nat. Phys.* **9**, 168 (2013).

[40] I. M. Georgescu, S. Ashhab, and F. Nori, Quantum simulation, *Rev. Mod. Phys.* **86**, 153 (2014).

[41] Z.-L. Xiang, X.-Y. Lü, T.-F. Li, J. Q. You, and F. Nori, Hybrid quantum circuit consisting of a superconducting flux qubit coupled to a spin ensemble and a transmission-line resonator, *Phys. Rev. B* **87**, 144516 (2013).

[42] X.-Y. Lü, Z.-L. Xiang, W. Cui, J. Q. You, and F. Nori, Quantum memory using a hybrid circuit with flux qubits and nitrogen-vacancy centers, *Phys. Rev. A* **88**, 012329 (2013).

[43] D. A. Golter, T. Oo, M. Amezcua, I. Lekavicius, K. A. Stewart, and H. Wang, Coupling a Surface Acoustic Wave
to an Electron Spin in Diamond via a Dark State, Phys. Rev. X 6, 041060 (2016).

[44] D. A. Golter, T. Oo, M. Amezcua, K. A. Stewart, and H. Wang, Optomechanical Quantum Control of a Nitrogen-Vacancy Center in Diamond, Phys. Rev. Lett. 116, 143602 (2016).

[45] M. J. A. Schuetz, E. M. Kessler, G. Giedke, L. M. K. Vandersypen, M. D. Lukin, and J. I. Cirac, Universal Quantum Transducers Based on Surface Acoustic Waves, Phys. Rev. X 5, 031031 (2015).

[46] P.-B. Li and F. Nori, Hybrid Quantum System with Nitrogen-Vacancy Centers in Diamond Coupled to Surface-Phonon Polaritons in Piezomagnetic Superlattices, Phys. Rev. Applied 10, 024011 (2018).

[47] B. Li, P.-B. Li, Y. Zhou, J. Liu, H.-R. Li, and F.-L. Li, Interfacing a Topological Qubit with a Spin Qubit in a Hybrid Quantum System, Phys. Rev. Applied 11, 044026 (2019).

[48] M. Poot and H. S. J. van der Zant, Mechanical systems in the quantum regime, Phys. Rep. 511, 273 (2012).

[49] J. C. Degen, F. Reinhard, and P. Cappellaro, Quantum sensing, Rev. Mod. Phys. 89, 035002 (2017).

[50] D. Rugar and P. Grütter, Mechanical Parametric Amplification and Thermomechanical Noise Squeezing, Phys. Rev. Lett. 67, 699 (1991).

[51] A. Szorkovszky, A. C. Doherty, G. I. Harris, and W. P. Bowen, Mechanical Squeezing via Parametric Amplification and Weak Measurement, Phys. Rev. Lett. 107, 213603 (2011).

[52] A. Szorkovszky, A. A. Clerk, A. C. Doherty, and W. P. Bowen, Mechanical entanglement via detuned parametric amplification, New J. Phys. 16, 063043 (2014).

[53] M.-A. Lemonde, N. Didier, and A. A. Clerk, Enhanced nonlinear interactions in quantum optomechanics via mechanical amplification, Nat. Commun. 7, 11338 (2016).

[54] J.-Q. Liao, K. Jacobs, F. Nori, and R. W. Simmonds, Modulated electromechanics: large enhancements of nonlineairites, New J. Phys. 16, 072001 (2014).

[55] M. Cirio, K. Deb Nath, N. Lambert, and F. Nori, Amplified Optomechanical Transduction of Virtual Radiation Pressure, Phys. Rev. Lett. 119, 053601 (2017).

[56] T.-S. Yin, X.-Y. Liu, L.-L. Zheng, M. Wang, S. Li, and Y. Wu, Nonlinear effects in modulated quantum optomechanics, Phys. Rev. A 95, 053861 (2017).

[57] X.-Y. Liu, Y. Wu, J. R. Johansson, H. Jing, J. Zhang, and F. Nori, Squeezed Optomechanics with Phase-Matched Amplification and Dissipation, Phys. Rev. Lett. 114, 093602 (2015).

[58] P.-B. Li, H.-R. Li, and F.-L. Li, Enhanced electromechanical coupling of a nanomechanical resonator to coupled superconducting cavities, Sci. Rep. 6, 19065 (2016).

[59] W. Qin, A. Miranowicz, P.-B. Li, X.-Y. Liu, J. Q. You, and F. Nori, Exponentially Enhanced Light-Matter Interaction, Cooperativities, and Steady-State Entanglement Using Parametric Amplification, Phys. Rev. Lett. 120, 093601 (2018).

[60] C. Leroux, L. C. G. Govia, and A. A. Clerk, Enhancing Cavity Quantum Electrodynamics via Antisqueezing: Synthetic Ultrastrong Coupling, Phys. Rev. Lett. 120, 093602 (2018).

[61] Z. Y. Xu, Y. M. Hu, W. L. Yang, M. Feng, and J. F. Du, Deterministically entangling distant nitrogen-vacancy centers by a nanomechanical cantilever, Phys. Rev. A 80, 022335 (2009).

[62] Y. Zhou, B. Li, X.-X. Li, F.-L. Li, and P.-B. Li, Preparing multiparticle entangled states of nitrogen-vacancy centers via adiabatic ground-state transitions, Phys. Rev. A 98, 052346 (2018).

[63] W. Ge, B. C. Sawyer, J. W. Britton, K. Jacobs, J. J. Bollinger, and M. Foss-Feig, Trapped Ion Quantum Information Processing with Squeezed Phonons, Phys. Rev. Lett. 122, 030501 (2019).

[64] P. Groszkowski, H.-K. Lau, C. Leroux, L. C. G. Govia, and A. A. Clerk, Heisenberg-limited spin-squeezing via bosonic parametric driving, arXiv:2003.03345.

[65] See the Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.125.153602 for more details, which includes Refs. [66–75].

[66] A. Kronwald, F. Marquardt, and A. A. Clerk, Arbitrarily large steady-state bosonic squeezing via dissipation, Phys. Rev. A 88, 063833 (2013).

[67] P. Rabl, A. Shnirman, and P. Zoller, Generation of squeezed states of nanomechanical resonators by reservoir engineering, Phys. Rev. B 70, 205304 (2004).

[68] N. Didier, F. Qassemi, and A. Blais, Perfect squeezing by damping modulation in circuit quantum electrodynamics, Phys. Rev. A 89, 013820 (2014).

[69] H. Tan, G. Li, and P. Meystre, Dissipation-driven twomode mechanical squeezed states in optomechanical systems, Phys. Rev. A 87, 033829 (2013).

[70] J. I. Cirac, A. S. Parks, R. Blatt, and P. Zoller, “Dark” Squeezed States of the Motion of a Trapped Ion, Phys. Rev. Lett. 70, 556 (1993).

[71] F. Lecocq, J. B. Clark, R. W. Simmonds, J. Aumentado, and J. D. Teufel, Quantum Nondemolition Measurement of a Nonclassical State of a Massive Object, Phys. Rev. X 5, 041037 (2015).

[72] D. J. Wineland, J. J. Bollinger, W. M. Itano, F. L. Moore, and D. J. Heinzen, Spin squeezing and reduced quantum noise in spectroscopy, Phys. Rev. A 46, R6797 (1992).

[73] D. J. Wineland, J. J. Bollinger, W. M. Itano, and D. J. Heinzen, Squeezed atomic states and projection noise in spectroscopy, Phys. Rev. A 50, 67 (1994).

[74] K. C. Cox, G. P. Greve, J. M. Weiner, and J. K. Thompson, Deterministic Squeezed States with Collective Measurements and Feedback, Phys. Rev. Lett. 116, 093602 (2016).

[75] W. Wang, Y. Wu, Y. Ma, W. Cai, L. Hu, X. Mu, Y. Xu, Zjie Chen, H. Wang, Y. P. Song, H. Yuan, C.-L. Zou, L.-M. Duan, and L. Sun, Heisenberg-limited single-mode quantum metrology in a superconducting circuit, Nat. Commun. 10, 4382 (2019).

[76] F. Nori, R. Merlin, S. Haas, A. W. Sandvik, and E. Dagotto, Magnetic Raman Scattering in Two-Dimensional Spin-1/2 Heisenberg Antiferromagnets: Spectral Shape Anomaly and Magnetostriective Effects, Phys. Rev. Lett. 75, 553 (1995).

[77] E. E. Wollman, C. U. Lei, A. J. Weinstein, J. Suh, A. Kronwald, F. Marquardt, A. A. Clerk, and K. C. Schwab, Quantum squeezing of motion in a mechanical resonator, Science 349, 952 (2015).
