Pharmacological and Biochemical Aspects of the Lamiaceae Family used in the Treatment of Intestinal Parasitosis in West and Central Africa

Lissette Houédénou Degla1,2, Pascal Abiodoun Olounlade1,3,*, Abdou Madjid Olatoundé Amoussa4, Erick Virgile Bertrand Azando2,3, Mawule Sylvie Hounzangbe-Adote1, Latifou Lagnika4

1Zootechnical Research and Livestock System Unit, Laboratory of Animal and Fisheries Sciences, Doctoral School of Agricultural and Water Sciences, National University of Agriculture, 01 BP 55 Porto-Novo, BENIN.
2Laboratory of Biochemistry and Bioactive Natural Substances, Faculty of Science and Technology, University of Abomey-Calavi, 04BP 0320, Cotonou, BENIN.
3Laboratory of Ethnompharmacology and Animal Health, Faculty of Agronomic Sciences, University of Abomey-Calavi, 01 BP 526 Cotonou, BENIN.
4Faculty of Agronomy, University of Parakou, 01 BP 123, Parakou, BENIN.

ABSTRACT

Background: In the search for new molecules likely to treat intestinal parasitosis with less risk in the short, medium and long term, the potential of medicinal plants is explored. and Ocimum gratissimum are two species of the Lamiaceae family used by populations of intestinal parasitosis from Benin. The aim of this work is to make a bibliographic synthesis of these two species in order to orient research for their use in the control of intestinal parasitosis. Results and Conclusion: H. suaveolens and O. gratissimum are endowed with nutrients, mineral compounds and secondary metabolites (flavonoids, alkaloids, tannins, phenolic compounds, saponins, steroids, glycosides, and essential oils). Antibacterial, antifungal, antioxidant, antiparasitic, antidiabetic, anticancer, antiluier, wound healing and insecticidal activities are reported. The antimicrobial activities that are reported for H. suaveolens and O. gratissimum may justify their uses in the treatment of gastrointestinal disorders. The gastrointestinal disorders are manifestations but not specific of intestinal parasitosis. However, few studies have investigated the anthelmintic activities of these two species. A strong variation was also noted in the essential oils composition of H. suaveolens and O. gratissimum. This variation is the consequence of several chemotypes of essential oils which can influence the biological activities of the species. Further investigations are therefore important for the use of H. suaveolens and O. gratissimum in the control of intestinal parasitosis.

Key words: Anthelmintics, Essential oil, Hyptis suaveolens, Intestinal parasites Ocimum gratissimum, Africa.

INTRODUCTION

Intestinal parasitosis is a real health problem in both veterinary and human medicine.1-3 In small ruminants, they cause production loss while threatening food security.4-6 In humans, they contribute to the perpetuation of poverty by compromising the physical and intellectual development of children and reducing the work capacity and productivity of adults.7,8 In general, the treatment of these intestinal parasitoses relies on the administration of synthetic drugs (including anthelmints). However, these drugs have more and more limitations related to side effects and reported parasite resistances.7,9-11 It is then convenient to search for new substances, effective, accessible, without toxicity and with a wide spectrum of action, to face these parasites and medicinal plants are a great asset.12 Thus, an ethnobotanical survey conducted in Benin targeted the species Hyptis suaveolens and Ocimum gratissimum which are used in the treatment of human and small ruminant intestinal parasitosis. The aim of this work is to make a bibliographic synthesis of the uses, compositions, biological activities of the species Hyptis suaveolens and Ocimum gratissimum for a better exploitation in the treatment of human and small ruminant's intestinal parasitosis.

MATERIALS AND METHODS

The material consists of published scientific journals. The collection of these articles was done in the Google scholar engine. The articles are selected according to their relevance to the subject. Some data were summarized in tables for a better visibility and analysis.

RESULTS AND DISCUSSION

Generalities, Biological and chemical composition

Hyptis suaveolens is a perennial, aromatic branching herb 0.4-3m long with a hairy, hollow stem that bears glandular and non-glandular hairs characterized by a minty odor.10-12 In most countries in which it is distributed, H. suaveolens is considered an invasive weed.13-14 However, it has reported applications in traditional medicine. It is used in

Cite this article: Degla LH, Olounlade PA, Amoussa AMO, Azando EVB, Hounzangbe-Adote MS, Lagnika L. Pharmacological and Biochemical Aspects of the Lamiaceae Family used in the Treatment of Intestinal Parasitosis in West and Central Africa. Pharmacog Rev. 2021;15(29):69-75.
he treatment of respiratory, gastrointestinal, uterine infections, fever, burns, cramps, skin lesions, malaria, weakness, kidney disorders, diabetes, headaches, jaundice hemorrhoid, breast abscesses and as an insecticide. [11-22] *Hyptis suaveolens* is rich in secondary metabolites which are flavonoids, alkaloids, tannins, phenolic compounds, saponins, steroids, glycosides and essential oils. [24,36,23,26] Also included are proteins, lipids, carbohydrates, fiber, ash. [27,29] mineral compounds such as potassium (K), nitrogen (N), calcium (Ca), Magnesium (Mg), Sodium (Na) phosphorus (P). [27] *Ocimum gratissimum* is an aromatic herb of the Lamiaceae family with a height of 1-3 m. The leaves are broad and narrowly oval. [28] Widely used by people in cooking, *Ocimum gratissimum* is also involved in the preparation of medicinal recipes against fungal, urinary, HIV-1 infections, gonorrhea, bronchitis, vertigo, diarrhea, vomiting, respiratory, cardiovascular and liver diseases, fever, and malaria and as an insecticide. [29,42-46] Secondary metabolites present in *Ocimum gratissimum* are flavonoids, alkaloids, tannins, phenolic compounds, saponins, steroids, glycosides, and essential oils. [32,34,36] The presence of proteins, lipids, carbohydrates, fibers and mineral compounds that are Calcium (Ca), Magnesium (Mg), Potassium (K), Sodium (Na), Iron (Fe), Copper (Cu) and Zinc (Zn). [35,36] are also reported.

Variability of chemical compositions of essential oils

Essential oils extracted from *Hyptis suaveolens* and *Ocimum gratissimum* experience a high variation in compounds. The essential oils of *Hyptis suaveolens* leaves collected in Benin are rich in β-caryophyllene, Eucalyptol, Sabinene, Fenchone. [37,38,22] It is noted a variation in chemical composition of essential oils. Indeed, according to the work of, [37] the predominant compounds are: β-caryophyllene, trans- α-bergamotene, caryophyllene oxide and bicyclodermacene. Following him, [36] reported: Sabinene, Eucalyptol, β-caryophyllene. And recently, according to, [22] the essential oils of *Hyptis suaveolens* leaves harvested in the south of the country are rich in monoterpenoid compounds (Eucalyptol: 12.11%; fenchone: 11.81%) while those harvested in the center and north of the country are rich in sesquiterpenes with β-caryophyllene as the predominant compound (20.69-12.45%). However, there is a correlation between compound contents: when β-Caryophyllene content is low, Eucalyptol content is high (vice versa). [22] The variation in chemical compounds of *Hyptis suaveolens* essential oils is also observed in other countries of the world. [11,40] The oil of leaves and fruits from Vietnam was predominated β-caryophyllene, caryophyllene oxide, phytol and a-humulene. [41] The oil of leaves from Burkina-Faso was predominated Sabinene, β-Caryophyllen, Terpinolene. [39] This variability is due to the harvesting period; the edaphic characteristics related to the sampling station, the age of the plant. [12,36] It also influences the results obtained during the research work. [41,22] The essential oils of *Ocimum gratissimum* harvested in Benin, are rich in thymol, γ-terpinene and p-cymene. [20,42-46] Depending on the geographical areas, the harvest period, the chemical composition contents of *Ocimum gratissimum* essential oils experience a variation. [29] The stage of flowering, time of harvesting of the plant were also reported by [36] as factors of variation in the chemical composition contents of essential oils of *Ocimum gratissimum*. However, the compounds p-cymene, thymol, and g-terpinene present in the essential oils of *Ocimum gratissimum* can be easily converted to one or the other during the growth process, during the day, and after the plants are harvested. [30] The essential oil of leaves of *Ocimum gratissimum* from Brazil was predominated by Eugenol; 1, 8-Cineole; [21] by Thymole, γ-Terpinene, p-Cymene. [27] In Ivory Coast, the predominant compounds were Thymeol, p-Cymene. [39] In Thaïlande it were Eugenole, cis-Ocimene, γ-murolene. [98]

Pharmacological activities

Antimicrobial activities

Table 1 presents the antimicrobial activities evaluated on *Hyptis suaveolens* and *Ocimum gratissimum*. Different strains of micro-organisms are used to demonstrate the possible uses of extracts or essential oils of *Hyptis suaveolens* and *Ocimum gratissimum*. The result is that *Hyptis suaveolens* and *Ocimum gratissimum* have a wide spectrum of action on pathogenic bacteria and fungi. The leaves are the most stressed organ. Figure 1 summarizes the most used micro-organisms in the evaluation of antimicrobial activities: *Bacillus subtilis*; *Candida albicans*; *Escherichia coli*; *Fusarium oxysporum*; *Staphylococcus aureus*. The essential oils of *Ocimum gratissimum* and *Hyptis suaveolens* are mostly used.

Antiparasitic activities

Table 2 presents the different antiparasitic activities that were evaluated on essential oils and extracts of *Hyptis suaveolens* and *Ocimum gratissimum* species. The parasites involved are protozoa (*Herpetomonas samuellpessoa*); [76] *Leishmania amazonensis*; mites (*Rhipicephalus microplus; Rhipicephalus sanguineus*); ectoparasites and helminths (*Ascardia galli*; *Haemonchus contortus*; *Haemonchus placei*). The essential oil of *O. gratissimum*, were efficient in inhibiting ecodibility of *H. contortus* eggs [90] while the extract had a moderate action on adult *Haemonchus placei* worms. [72] The anthelmintic activity of the essential oil of *Ocimum gratissimum* would be due to Eugenol. *Hyptis suaveolens* extract had paralyzed adult worms of *Ascardia galli* and *Phereetima posthuma*. [73]

Bioinsecticidal activity

The species *Hyptis suaveolens* and *Ocimum gratissimum* can be used as bioinsecticides against field or food insect pests [21,39,79,80] and mosquito vectors of parasites. [21,81-86]

Antioxidant activities

Through the different techniques (DPPH; FRAP, ABTS), total phenols assay, it has been reported that the extracts and essential oils of *Hyptis suaveolens* and *Ocimum gratissimum* are endowed with the free radical scavenging abilities. [24,26,32,34,40,55,60,87] The antioxidant capacity average for all oil samples was about 75% of the thymol activity. [77]

Other activities

Hyptis suaveolens and *Ocimum gratissimum* have also been reported to have antidiarrheal, [80,89] antidiabetic, [15,49,90,91] anticancer, [40,42] antiinflammatory, [15] antinoiceptive, hepatoprotective, and in wound

![Figure 1: Species most commonly used in the evaluation of antimicrobial activities.](image-url)
Table 1: Antimicrobial activity of *Hyptis suaveolens* and *Ocimum gratissimum*.

Plants	Parts	Species studied	Type of extract	Authors
Ocimum gratissimum	L	Aeromonas hydrophila	Et	[33]
Ocimum gratissimum	L	Alternaria brassicicola	EO	[47]
Hyptis suaveolens	L	Antimicrobacterium bovi	EO	[48]
Hyptis suaveolens	L	Aspergillus flavus	EO	[17,49,50]
Ocimum gratissimum	L	Aspergillus flavus	Et; EO	[33,47,29,49,46]
Hyptis suaveolens	P; L; S; R	Aspergillus Niger	Et; EO	[51,52,49,23,53-55]
Ocimum gratissimum	L	Aspergillus Niger	EO	[44,49,46]
Hyptis suaveolens	L	Bacillus cereus	Et; EO	[56,55,41]
Ocimum gratissimum	L	Bacillus cereus	Et	[33]
Hyptis suaveolens	L	Bacillus polymyxa	Et	[56]
Hyptis suaveolens	L	Bacillus stearothermophilus	Et	[56]
Hyptis suaveolens	L	Bacillus subtilis	Et; EO	[40,54,56]
Ocimum gratissimum	L	Bacillus spp.	EO	[57]
Hyptis suaveolens	L	Botrytis cinerea	EO	[40]
Ocimum gratissimum	L	Bipolaris oryzae	EO	[47]
Ocimum gratissimum	L	Botryodiplodia theobromae	Et	[33]
Hyptis suaveolens	P; L; S; R; F	Candida albicans	Et; EO	[18,41,5,52,54,55]
Ocimum gratissimum	L	Candida albicans	EO	[30,43,57,58]
Hyptis suaveolens	L	Clostridium perfringens	EO	[55]
Hyptis suaveolens	L	Collectotrichum capsici	Et	[18]
Hyptis suaveolens	P	Cryptococcus neoformans	EO	[58]
Ocimum gratissimum	L	Enterococcus faecalis	Et; EO	[41,54,56]
Hyptis suaveolens	L; F	Enterococcus faecalis	EO	[43]
Hyptis suaveolens	L	Enterococcus faecalis	EO	[43]
Hyptis suaveolens	L	Epidermophyton floccosum	Et	[54]
Hyptis suaveolens	P; L; S; R	Escherichia coli	Et; EO	[17,18,52,40,23,26,54]
Ocimum gratissimum	L	Escherichia coli	Et; EO	[33,100,44,43,59,60,57,30,61,62,71,98]
Hyptis suaveolens	L	Exorhizium turicum	EO	[40]
Hyptis suaveolens	L	Fusarium oxysporum	EO	[18,49,63]
Hyptis suaveolens	L	Fusarium oxysporum	EO	[47]
Hyptis suaveolens	L	Fusarium moniliforme	EO	[29,44]
Ocimum gratissimum	L	Fusarium solani	EO	[46,64]
Ocimum gratissimum	L	Fusarium proliferatum	EO	[47]
Ocimum gratissimum	L	Fusarium verticillioide	EO	[29,42,29]
Hyptis suaveolens	P; L; S; R	Klebsiella pneumoniae	Et	[18,52]
Ocimum gratissimum	L	Klebsiella pneumoniae	EO	[57]
Ocimum gratissimum	L	Lecanosticta acicola	EO	[59]
Hyptis suaveolens	L	Listeria monocytogenes	EO	[45]
Ocimum gratissimum	L	Micrococcus luteus	Et	[56]
Ocimum gratissimum	L	Macrophomina phaseolina	EO	[64]
Ocimum gratissimum	L	Microsporum canis	EO	[58]
Ocimum gratissimum	L	Microsporum gypseum	EO	[58]
Ocimum gratissimum	L	Malassezia pachydermatis	EO	[63]
Hyptis suaveolens	L	Phytophthora coloacida	Et	[33]
Ocimum gratissimum	L	Penicillium expansum	EO	[65]
Ocimum gratissimum	L	Penicillium verrucosum	EO	[65]
Ocimum gratissimum	L	Penicillium citrinum	EO	[29]
Ocimum gratissimum	L	Penicillium griseofulvum	EO	[29]
Hyptis suaveolens	L	Proteus vulgaris	Et	[23,54]
Ocimum gratissimum	L	Pycnoria pacifica	EO	[47]
Hyptis suaveolens	P; L; S; R	Pseudomonas aeruginosa	Et; EO	[18,52,21,23,54,40,55]
Ocimum gratissimum	L	Pseudomonas aeruginosa	Et; EO	[57,43,59,60]
DISCUSSION

The species *Hyptis suaveolens* and *Ocimum gratissimum* of the Lamiaceae family have proven through various tests that they are endowed with antimicrobial, antioxidant, antiparasitic and insecticidal properties. Thus, these two species can be used in several areas of life such as agriculture, industry, agri-food, health and livestock. Indeed, *Hyptis suaveolens* and *Ocimum gratissimum* can be used as bioinsecticides in the control of insect pests of fields against insect vectors of parasites. In agri-food, *Hyptis suaveolens* can be used as a cereal preservative against aflatoxins, post-harvest protection of cabbage, beef preservation and conservation of local cheese. "Wagachi" is used as a model for studying human infections. It is noted that there is a correlation between the different results obtained. Indeed, the different micro-organisms used in the evaluation of antimicrobial activities, are responsible for the degradation of several food products, food and the cause of several diseases. Thus, the wide spectrum of antibacterial and antifungal activity of *Hyptis suaveolens* and *Ocimum gratissimum* can justify their use in infectious diseases. These two species have not been studied as much for their antiparasitic activities. According to an ethno-botanical study conducted in Benin, the species *Hyptis suaveolens* and *Ocimum gratissimum* are used in the treatment of human and small ruminant intestinal parasitosis. These observations are justified by the work of who respectively demonstrated the anthelmintic activity of *Hyptis suaveolens* on *Phereetima posthuma* and *Ocimum gratissimum* on *Haemonchus contortus*. *Phereetima posthuma* is used as a model for studying human helminths. Also, anti-diarrheal activities of these two species have been reported. Diarrhea is a manifestation but not specific to intestinal parasitosis. Diarrhea can also be associated with bacterial infections and parasitic diseases and in particular intestinal parasitosis. However, the

Table 2: Antiparasitic activities of *Hyptis suaveolens* and *Ocimum gratissimum*

Plants	Species	Parasites	Extract	Authors
Hyptis suaveolens	*Phereetima posthuma*	Hemlminth	Et	[73]
	Ascidia galli		Et	[73]
	Rhipicephalus sanguineus	Ascarian	Et	[68]
	Rhipicephalus (Boophilus) micrpus	Hemlminth	EO	[22,74]
	Rhipicephalus lunatius		EO	[75]
	Ocimum gratissimum			
Ocimum gratissimum	*Haemonchus contortus*	Hemlminth	EO	[76,78]
Hyptis suaveolens	*Haemonchus placei*	Hemlminth	Et	[72]
	Rhipicephalus micropus		EO	[69]
	Leishmania amazonensiss		Protozoa	[77]
	Herpetononas sampaelpessai		protozoa	[66]
	Trypanosoma brucei			
	Plasmodium falciparum			

Legend: EO: Essential oil; Et: Extract

Table 1:

| Legend: L: Leaf; S: Seed; R: Root; EO: Essential oil; Et: Extract

Ocimum gratissimum is reported to have beneficial actions on the immune system.

Toxicity

Toxicity tests conducted on rats, showed that *Hyptis suaveolens* is not toxic. According to the work of the essential oil of *Hyptis suaveolens* is toxic. However, according to the same author, this toxicity is beneficial in the treatment of cancers. It has been reported for *Ocimum gratissimum*, that it can be toxic.

Table 2: Antiparasitic activities of *Hyptis suaveolens* and *Ocimum gratissimum*

Plants	Species	Parasites	Extract	Authors
Hyptis suaveolens	*Phereetima posthuma*	Hemlminth	Et	[73]
	Ascidia galli		Et	[73]
	Rhipicephalus sanguineus	Ascarian	Et	[68]
	Rhipicephalus (Boophilus) micrpus	Hemlminth	EO	[22,74]
	Rhipicephalus lunatius		EO	[75]
Ocimum gratissimum	*Haemonchus contortus*	Hemlminth	EO	[76,78]
Hyptis suaveolens	*Haemonchus placei*	Hemlminth	Et	[72]
	Rhipicephalus micropus		EO	[69]
	Leishmania amazonensiss		Protozoa	[77]
	Herpetononas sampaelpessai		protozoa	[66]
	Trypanosoma brucei			
	Plasmodium falciparum			
results from the trials differ depending on the plant organ studied, the substance studied (extract, essential oils) the extraction solvent if it is an extract and also the type of micro-organism (Gram Positive bacteria, Gram Negative; fungus), parasites, insects involved. It is in this vein that a harmonization of laboratory research is important to quantify the level of research progress and its directions for useful purposes. There is also a wide variation in the composition of essential oils, even within a given country. These observed differences could be related to edaphic conditions and explained by chemical polymorphism. According to, latitude would be the most important environmental factor influencing the essential oil content. However, in Africa the essential oil of *Hyptis suaveolens* seems to be characterized by the presence of *farnesyl*.

It would be very important to map the essential oil chemotypes of each aromatic plant with interesting biological properties; this would allow valuation and large-scale use of these aromatic plants.

CONCLUSION

The species *Hyptis suaveolens* and *Ocimum gratissimum* are endowed with several biological activities which justifies their uses in several fields. They are used by the populations in the treatment of intestinal parasitosis in Benin. The evaluation of their antiparasitic properties against intestinal parasites is important for their better use.

ACKNOWLEDGEMENT

The authors are grateful for the financial and technical assistance provided by The Kerala Veterinary and Animal Sciences University for conducting the research work.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.

REFERENCES

1. Olonlade PA, Azando EVB, Hourzangbe-Adoté MS, Tam Ha TB, Leroy E, Moulis C. In vitro antihelminthic activity of the essential oils of *Zanthoxylum zanthoxyloides* and *Newbouldia laevis* against Strongyloides rats. Parasitol Res. 2012;110(4):1427-33.

2. Garba ABH, Arya MAG, Traore A, Ouedraogo S. Etude des effets vermicide et anti-diarreique du maitre aqueux des feuilles de *Salvadora persica* L. (Salvadoraceae). Int J Biol Chem Sci. 2007;11(1):54-66.

3. Akouedjen CG, Daga FD, Olonlade PA, Allowonou GO, Ahoussi E, Tamboura H, et al. Evaluation in vitro and in vivo of the propierty antihelminthiques de feuilles de *Spondias mombin* sur *Haemonechus contortus* des ovaits de dengue. Agro Afr. 2019;31(2):213-22.

4. Allowonou GO, Olonlade PA, Koundiédé OD, Bobo, S. Hourzangbe-Adoté MS. Effets de la digestion dans le ruminen sur les propriéties anthelmintic de *Brindela ferruginea* (Benth.). *Mitragyna inermis* (Wild.) kuntze et *Combretum glutinosum* (Pers. EX DC). Rev Camer. 2015;3(3):50-64.

5. Soumana A, Kamaye M, Saidou D, Dima H, Daouda B, Guéro T. Les parasitoses anthelminthiques de *Hyptis suaveolens* L. Poit in streptozotocin induced diabetic rats. *Indian J Nat Prod Reservoir*. 2010;11(1):49-52.

6. Pachkore GL, Dhale DA, Dharasurkar AN. Antimicrobial and phytochemical screening of *Hyptis suaveolens* (L.Poit) Lamiaceae. Multidiscips Res J. 2011;1:01-3.

7. Mishra SB, Verma A, Mukerjee A, Vijayakumar M. Anti-hyperglycemic activity of leaves extract of *Hyptis suaveolens* L. Poit in streptozotocin induced diabetic rats. *Asian Pac J Trop Med*. 2011;4(9):884-893.

8. Shaikat ZH, Hassain T, Azam G. Phytochemical Screening and Antidiarheal Activity of *Hyptis suaveolens*. Int J Appl Res Nat Prod. 2010;5(2):1-4.

9. Goly KRC, Soro Y, Dadie A, Kassi ABB and DJE M. Antibacterial activity of essential oils and extracts from the leaves of *Hyptis suaveolens* and *Lippia multiflora* on multiresistant bacteria. *Rasayan J Chem*. 2015(8):396-403.

10. Sallouf S, Hourzangbe-Adoté M, Foudjio D, Donou S, Saidou D. Larvicidal activity of two chemotypes of *Hyptis suaveolens* (Lamiaceae) poit, 1806 and alphacypermethrin on larvae of *Rhipecepalus* (Boophilus) *microps* (Can., 1887) (Acan.: ixoidae). *Journal of Entomology and Zoology Studies*. 2020;8(2):790-4.

11. Mozhiyarasi P, Anuradha R. A study on phytochemical analysis and antimicrobial activity of *Hyptis suaveolens* (L.Poit) Lamiaceae. *J Pharm Res*. 2016;9(6):439-42.

12. Ghaffari H, Ghassam BJ, Nayaka SC, Kini KR, Prakash HS. Antioxidant and Neuroprotective Properties of *Hyptis suaveolens* (L.) Poit. *Asian J Pharamacology*. 2015;33(3):327-31.

13. Abagale SA, Sackey I, Esuah MC, Lassey K. Comparative mosquito repellency of dried leaves of *Hyptis suaveolens*, *Cassia obtusifolia*, *Striga hermonthica* from the upper east region of Ghana and two standard repellants. *J Asian Sci Res*. 2017;7(12):459-70.

14. Oscar SA, Antonio CN, Marina GV, Elsa RS, Gabriel VA. Phytochemical screening, antioxidant activity and in vitro biological evaluation of leaf extracts of *Hyptis suaveolens* (L) from south of Mexico. *SA J Bot*. 2020;128:62-6.

15. Edeoga HO, Omosun G, Udze LC. Chemical Composition of Hyptis suaveolens and *Ocimum gratissimum* hybrids from Nigeria. *Afr J Biotechnol*. 2006;5(10):892-5.

16. Idris S, Iyaka YA, Ndamitso MM, Paiko YB. Nutritional Composition of the Leaves and Stems of *Ocimum gratissimum* JATEAS. 2011;21(5):801-5.

17. Sessou F, Farougou S, Aloukonou G, Djimotin TS, Yehouenou A, Azokpota P, et al. Phytochemical Composition and Antifungal activity of Essential oil of Fresh leaves of *Ocimum gratissimum* from Benin against six Mycotoxicigenic Fungi isolated from traditional cheese manufactured from El-Salvador. *Chemical Composition and Antifungal activity of Essential oil of* *Hyptis suaveolens* *L.* from Africa. *SA J Nat Prod Res.* 2017;9(1):1-11.

18. Shaikat ZH, Hassain T, Azam G. Phytochemical Screening and Antidiarhoeal Screening of *Hyptis suaveolens* (L.Poit) Lamiaceae. *Internat. Multidisc Res J*. 2015;4(4):108-17.

19. Akinmolayan JD, Akinmolayan AR, Olowolafe PA, Akinniyi OA, Akindele DA, Frimpong EK. Phytosanitary and Antimicrobial Properties of the leaves extract of *Sessou P*, *Farougou S*, *Alitonou G*, *Djonontin TS*, *Yèhouénou B*, *Azokpota P*. *Rasayan J Chem Res*. 2016;7(12):459-70.

20. Danmalam UH, Abdullahi LM, Agunu A, Musa KY. Acute toxicity studies and Larvicidal Screening of *Hyptis suaveolens* (Lamiaceae). *Nig Journ Pharm Sci*. 2009;8(2):87-92.

21. Idi Seidou A, Tchawonou A, Tchafi C, Moukoko J, Tchitchouamou F. Effect of *Hyptis suaveolens* Lamiaceae on the development of Tsetse flies in South Cameroon. *J Ethnopharmacol*. 2001;57(5):733-6.

22. Monga S, Dhanwal P, Kumar R, Kumar A, Chhokar V. Pharmacological and Phytochemical analysis of the leaves of *Hyptis suaveolens* and *Vernonia anthelmintica* from traditional cheeses from El Salvador. *Z. Naturforsch*. 2006;61(3-4):165-70.

23. Azevedo ND, Campos IFP, Ferreira HD, Portes TA, Santos SC, Seraphin JC, et al. Chemical variability in the essential oil of *Hyptis suaveolens* from El-Salvador. *Chemical Composition and Antifungal activity of Essential oil of* *Hyptis suaveolens* *L.* from Africa. *SA J Nat Prod Res*. 2017;9(1):1-11.
the essential oil of *Hyptis suaveolens* (L.) Poit. From Benin. 2010;22(6):507-9.

37. Noudogbessi JF Agbangh-Gnayeou B, Adjalian E, Nonvho G, Ossenn AM, et al. Physico-chemical properties of *Hyptis suaveolens* essential oil. Int J Med Arom Plants. 2013;3(2):191-9.

38. Conti B, Canale A, Cioni PL, Flamini G, Rifici A. Hyptis suaveolens and *Hyptis crenulata* Lamiaceae - an antimalarial analysis, contact toxicity and repellent activity against *Stipithopus granarius* (L.) (Coleoptera: Dryophthoridae). J Pest Sci. 2011;84(2):219-28.

39. Xu DH, Huang YS, Jiang DQ, Yuan K. The essential oils chemical compositions and antimicrobial, antioxidant activities and toxicity of three Hyptis species. Pharm Biol. 2013;51:1125-30.

40. Chung NT, Huong LT, Dai DN, Quonuande IA. Chemical Compositions of Essential Oils and Antimicrobial Activity of *Hyptis suaveolens* (L.) Poit. (Lamiaceae) from Vietnam. EJMFR. 2020;31(8):114-23.

41. Fandohan P, Gbenou JD, Gnoufonf B, Kell K, Marases WFO, Wingfield MJ. Effect of Essential Oils on the Growth of Fusarium verticillioides and Fumonisins Contamination in Corn. J Agric Food Chem. 2004;52(22):6824-9.

42. Baba-Moussa F, Adjahanoun A, Adokti K, Gbenou N, Aloukoutou D, Kpavodé TK. Antimicrobial properties and phytochemical profiling of essential oils extracted from traditionally used medicinal plants in Benin. Int J Nat Prod Sci. 2012;2(1):1-11.

43. Hounouissou RL, Ahouesi E, Sessou P, Yehouenou B, Sohouinhoué D. Antimicrobial activities of essential oil extracted from leaves of *Ocimum gratissimum* L. against pathogenic and insecticidal microorganisms associated to tomato in Benin. IJB. 2012;7(11):90-100.

44. Mith, H, Yay-Ladzek E, Kpovsies SDS, Bokossa IY, Moudachirou M, Daube G, et al. Chemical Composition and Antimicrobial Activity of Essential Oils of *Ocimum basilicum*, *Ocimum canum* and *Ocimum gratissimum* in Function of Harvesting Time. TEOP. 2016;19(6):1413-25.

45. Attrey BC, Dénogon RG, Kpatinvoh B, Adjou ES, Gangbe MC, Allagbe A, et al. Anthelmintic activity of ethanolic extracts of *Ocimum gratissimum* L. and *Ocimum canum* L. against *Ascaris lumbricoides* (Nematode) parasites of small ruminants. Nig J Animal Prod Res. 2011;35(2):395-402.

46. Silva DNMK, Carvalho VRDA, Matias EFF. Chemical Profile of Essential Oil of *Ocimum gratissimum* L. and Evaluation of Antibacterial and Drug Resistance-modifying Activity by Gaseous Contact Method. Pharamacogn. 2016;8(1):1-8.

47. Aderibigbe SA, Idowu SO. Anthelmintic activity of *Ocimum gratissimum* and *Cymbopogon citratus* leaf extracts against *Haemonchus placei* adult worm. J Pharmacy and Bioresources. 2020;7(1):8-12.

48. Nayak PS, Nayak S, Kar DM, Das P. In vitro anthelmintic activity of whole plant extract of *Hyptis suaveolens* Poit. Journal of Current Pharmaceutical Research. 2010;2(2):50-1.

49. Huet T, Cauquil L, Fokou HUB, Gongmo JPM, Bakang-Via I, Moutou CM, et al. Antimicrobial activity of ethanolic extracts of *Ocimum gratissimum* L. against five strains of *E. coli*. International Journal of Cancer Research. 2019;7:301-6.

50. Silva DNMK, da Silva S, Tavares LS, Aguiar J, Caldeira SH. Phytochemical analysis and insecticidal activity of ethanolic extracts of four medicinal plants from the family Lamiaceae. J Parasitol Res. 2019;2019:478639.

51. Kossou OK, Fandoh P, Amezou GB, Koné NC. Antioxidant Activity of Essential Oil of *Hyptis suaveolens* L. from Côte d'Ivoire. J Kingdom Mycol Soc. 2017;60:36-45.

52. Kossou OK, Fandoh P, Amezou GB, Koné NC. Antioxidant Activity of Essential Oil of *Hyptis suaveolens* L. from Côte d'Ivoire. J Kingdom Mycol Soc. 2017;60:36-45.

53. Kossou OK, Fandoh P, Amezou GB, Koné NC. Antioxidant Activity of Essential Oil of *Hyptis suaveolens* L. from Côte d'Ivoire. J Kingdom Mycol Soc. 2017;60:36-45.

54. Kossou OK, Fandoh P, Amezou GB, Koné NC. Antioxidant Activity of Essential Oil of *Hyptis suaveolens* L. from Côte d'Ivoire. J Kingdom Mycol Soc. 2017;60:36-45.

55. Kossou OK, Fandoh P, Amezou GB, Koné NC. Antioxidant Activity of Essential Oil of *Hyptis suaveolens* L. from Côte d'Ivoire. J Kingdом Mycol Soc. 2017;60:36-45.

56. Moró FM, Lermen C, Gazim ZC, Gonçalves J, Albertton O. Antifungal activity, yield, and composition of *Ocimum gratissimum* essential oil. Genet Mol Res. 2009;8(3):1949-54.

57. Nguéfack J, Gongmao JS, Dacole CD, Leth V, Vismer HF Torg J, et al. Food preservation using different essential oil fractions from *Cymbopogon citratus*, *Ocimum gratissimum* and *Thymus vulgaris* against mycotoxicogenic fungi. Int J Food Microbiol. 2009;131(2-3):15-16.

58. Costa DJAM, Monteiro OS, Coutinho DF, Rodrigues AAC, Silva DJKR, Mai JGS, et al. Antimicrobial activity of ethanolic extracts of selected plants against *Rhipicephalus microplus* (Acar.: Ixodidae). Parasitol Res. 2016;115(7):549-59.

59. Nwosu CO, Ekhe NC, Adamu M. Anthelmintic efficacy of the aqueous extract of *Ocimum gratissimum* L. against *Nematode* parasites of small ruminants. Nig J Animal Prod Res. 2011;36(3):309-14.

60. Silva DNMK, Carvalho VRDA, Matias EFF. Chemical Profile of Essential Oil of *Ocimum gratissimum* L. and Evaluation of Antibacterial and Drug Resistance-modifying Activity by Gaseous Contact Method. Pharamacogn. 2016;8(1):1-8.

61. Aderibigbe SA, Idowu SO. Anthelmintic activity of *Ocimum gratissimum* and *Cymbopogon citratus* leaf extracts against *Haemonchus placei* adult worm. J Pharmacy and Bioresources. 2020;7(1):8-12.

62. Nayak PS, Nayak S, Kar DM, Das P. In vitro anthelmintic activity of whole plant extract of *Hyptis suaveolens* Poit. Journal of Current Pharmaceutical Research. 2010;2(2):50-1.

63. Huet T, Cauquil L, Fokou HUB, Gongmo JPM, Bakang-Via I, Moutou CM, et al. Antimicrobial activity of ethanolic extracts of *Ocimum gratissimum* L. against five strains of *E. coli*. International Journal of Cancer Research. 2019;7:301-6.

64. Silva DNMK, da Silva S, Tavares LS, Aguiar J, Caldeira SH. Phytochemical analysis and insecticidal activity of ethanolic extracts of four medicinal plants from the family Lamiaceae. J Parasitol Res. 2019;2019:478639.
potential of *Ocimum gratissimum* plant leaf extracts against filariasis inducing vector. Int J Mosq Res. 2015;2(2):01-8.

85. Ayange-kaar AB, Hemen TJ, Onyezili N. The Effect of Dried Leaves Extract of *Hyptis suaveolens* on Various Stages of Mosquito Development in Benue State, Nigeria. IOSR-JPBS. 2015;10(6):28-32.

86. Igbionosa EO, Uzunugbe EO, Igbionosa IH, Ojadjare EE, Igiehon NO, Emuedo OA. *In vitro* assessment of antioxidant, phytochemical and nutritional properties of extracts from the leaves of *Ocimum gratissimum* (Linn). Afr J Tradit Complement Altern Med. 2013;10(5):292-6.

87. Olamide SO, Agu GC. The Assessment of the Antimicrobial Activities of *Ocimum Gratissimum* (Wild Basil) and *Vernonia Amygdalina* (Bitter Leaf) On Some Enteric Pathogen Causing Dysentery or Diarrhea in Patients. IJES. 2013;2(9):83-96.

88. Ezekwesili CN, Obiora KA, Ugwu OP. Evaluation of Anti-Diarrhoeal Property of Crude Aqueous Extract of *Ocimum gratissimum* L. (Labiatae) In Rats. Biokemistri. 2004;16(2):122-31.

89. Okoduwa SIR, Umar IA, James DB, Inuwa HM. Oral Administration of Aqueous Leaf Extract of *Ocimum gratissimum* Ameliorates Polyphagia, Polydipsia and Weight Loss in Streptozotocin-Induced Diabetic Rats. AJMSM. 2012;2(3):45-9.

90. Okon UA, Owo DU, Udokang NE, Udobang JA, Ekpenyong CE. *Ocimum gratissimum* Leaf Fractions in Fortified Diet-Fed Streptozotocin Treated Rat Model of Type-2 Diabetes. Medicines. 2017;4(4):73.

91. Gurunagarajan S, Pemaiah B. Comparative studies on cytotoxic effect of *Hyptis suaveolens* Poit. and *Leonotis nepeatefolia* R.Br. against EAC cell lines. J Pharmacy Res. 2011;4(1):1227-4.

92. Kpadonou-Kpoviessi BGH, Kpoviessi DSS, Yayi-Ladekan E, Gbaguidi F, Yehouenou B, Mansourou M, et al. Phytochemical screening, antimicrobial activities and toxicity against *Artemia salina* Leach of extracts and fractions of *Ocimum gratissimum* Linn from Benin. J Chem Pharm Res. 2013;5(10):369-76.

93. Okojie RO, Egahofana NO. Assessment of *Ocimum gratissimum* leaves on Hematological parameters and Cell-mediated immunity of Rabbits. International Journal of Basic Science and Technology. 2016;2(1):46-9.

94. Orafidiya LO, Agbani EO, Iwalawela EO, Adelusola KA, Oyedapo OO. Studies on the acute and sub-chronic toxicity of the essential oil of *Ocimum gratissimum* L. leaf. Phytomedicine. 2004;11(1):71-6.

95. Adda C, Atachi P, Heil K, Tamø M. Potential use of the bushmint, *Hyptis suaveolens*, for the control of infestation by the pink stalk borer, *Sesamia calamisulis* on maize in southern Benin, West Africa. J Insect Sci. 2011;11(1):33.

96. Chiminoi N, Reuk-ngam N, Chuyinsuan P, Khlychan F, Khunnawutmanotham N, Chokchaichammankit D, et al. Characterization of essential oil from *Ocimum gratissimum* leaves: Antibacterial and mode of action against selected gastroenteritis pathogens. Microb Pathog. 2018;118:290-300. doi: 10.1016/j.micpath.2018.03.041.

97. Benelita G, Paveva R, Maggi F, Wandjou JGN, Koné-Bambae D, et al. Insecticidal activity of the essential oil and polar extracts from *Ocimum gratissimum* grown in Ivory Coast: Efficacy on insect pests and vectors and impact on non-target species. Ind Crops Prod. 2019;132:377-85.

98. Adebolu TT, Oladimeji SA. Antimicrobial activity of leaf extracts of *Ocimum gratissimum* on selected diarrhoea causing bacteria in southwestern Nigeria. Afr J Biotechnol. 2005;4(7):682-4.

99. Toziboz FZ, Florence AB, Bédi G, Chalchat JC. Chemical Composition of Essential Oil of *Hyptis Suaveolens* is(L) Poit. from Côte d’Ivoire. Euro J Sci Res. 2009;38(4):565-71.