DISCONTINUOUS GALERKIN METHOD FOR THE
HELMHOLTZ TRANSMISSION PROBLEM IN TWO-LEVEL
HOMOGENEOUS MEDIA

QINGJIE HU
School of Mathematics and Statistics, Xi’an Jiaotong University
Xi’an, Shaanxi 710049, China

ZHIHAO GE
School of Mathematics and Statistics and Institute of Applied Mathematics
Henan University
Kaifeng 475004, China

YINNIAN HE*
School of Mathematics and Statistics, Xi’an Jiaotong University
Xi’an, Shaanxi 710049, China

(Communicated by Lei Zhang)

Abstract. In this paper, the discontinuous Galerkin (DG) method is developed and analyzed for solving the Helmholtz transmission problem (HTP) with the first order absorbing boundary condition in two-level homogeneous media. This whole domain is separated into two disjoint subdomains by an interface, where two types of transmission conditions are provided. The application of the DG method to the HTP gives the discrete formulation. A rigorous theoretical analysis demonstrates that the discrete formulation can retain absolute stability without any mesh constraint. We prove that the errors in H^1 and L^2 norms are bounded by $C_1 kh + C_2 k^4 h^2$ and $C_1 kh^2 + C_2 k^3 h^2$, respectively, where C_1 and C_2 are positive constants independent of the wave number k and the mesh size h. Numerical experiments are conducted to verify the accuracy of the theoretical results and the efficiency of the numerical method.

1. Introduction. The acoustic scattering problems are often involved in many practical applications, such as biomedical imaging [10], non-destructive testing [30], geophysics and radar detecting [13], fuzzy recognition and image processing. These problems describe a general physical process where the acoustic waves are forced to deviate from the original direction of propagation due to localized non-uniformities in the medium through which they pass. In fact, such a non-uniformity is caused by an impenetrable or penetrable scatterer. So far, there have been a large number

2010 Mathematics Subject Classification. Primary: 65N12, 65N15, 65N30; Secondary: 78A40.

Key words and phrases. Helmholtz transmission problem, discontinuous Galerkin method, transmission condition, stability, error estimates.

The first and the third authors are supported by the Major Research and Development Program of China grant No.2016YFB0209001 and the NSF of China grant No.11771348. The second author is supported by the NSF of China under grant No. 11971150, and the NSF of Henan Province under grant No. 162300410031.

* Corresponding author: Yinnian He.
of works devoted to investigating the two kinds of acoustic scattering problems in theoretical analysis and numerical approximation.

On one hand, the scattering of time-harmonic acoustic waves by an impenetrable bounded obstacle can be described as the Helmholtz problem. Lots of numerical methods have been widely used to discretize the Helmholtz equation with various types of boundary conditions. In general, the numerical performance of any finite element solution of the Helmholtz problem depends significantly on the wave number \(k \). When \(k \) is very large, the mesh size \(h \) has to be sufficiently small for the scheme to resolve the oscillations. In [28], Ihlenburg and Babuška showed that the \(H^1 \)-error bound for the finite element solution contains a pollution term that is related to the loss of stability with large wave numbers, and then, Babuška et al. [7] addressed the question of whether it is possible to reduce the pollution effect. In order to eliminate or substantially reduce the pollution errors, various numerical methods have been developed in the literature for solving the Helmholtz problem. Feng and Wu [22] developed some interior penalty discontinuous Galerkin methods and proved the proposed discontinuous Galerkin methods are stable without any mesh constraint. We refer the reader to [1, 2, 3, 6, 9, 11, 12, 16, 18, 23, 25, 29, 35, 36, 39] and the references therein for a detailed account on other numerical approaches for the Helmholtz problem.

On the other hand, the scattering of time-harmonic acoustic waves by a penetrable bounded obstacle implies that the acoustic waves can propagate through the surface of the obstacle. This is generally called Helmholtz transmission problem (HTP), that consists of a pair of Helmholtz equations coupled with transmission conditions under different wave numbers [33]. The so-called transmission conditions express the continuity of the medium and the equilibrium of the forces acting on it. In fact, the HTP is an unbounded region problem. In the present numerical investigation, there exists several techniques of numerical approximation for the HTP. One of them is the coupling of the boundary element method (BEM) and finite element method (FEM), which decomposes the unbounded domain by introducing an artificial boundary containing the obstacle inside. Then the BEM is to solve the exterior scattering problem outside the artificial boundary while the FEM is to solve the interior one [17, 26, 27, 31, 32, 33]. Concerning the coupling of BEM and FEM, Johnson and Nédélec firstly derived the significant result addressing the theoretical justification in [31]. By the other technique, one can enforce some artificial boundary condition on the auxiliary boundary to reduce the original problem to a boundary value problem, for instance, the Dirichlet to Neumann mapping [24] and the first order absorbing boundary condition. In this paper, we consider the HTP with the first order absorbing boundary condition using the discontinuous Galerkin method.

By investigating the existing references of the coupling of the BEM and FEM for HTP, we note that the interface is always assumed to be sufficiently smooth in \(\mathbb{R}^d \). However, the requirement of smooth interface is often too strict to be satisfied in practical obstacle. Therefore, it is necessary and valuable to extend the smooth interface to the case of Lipschitz continuous interface. The discontinuous Galerkin (DG) methods have received a lot of attention and undergone intensive studies by many researchers [4, 5, 8, 14, 15, 19, 21, 37, 38]. In [15], the authors concluded that the DG methods have the following main advantages: highly parallelizable; well suited to dealing with complicated geometries; easily handled adaptivity strategies. It is also well known that the trial and test spaces of DG methods are very easy
to construct and they can naturally handle inhomogeneous boundary conditions. Motivated by above discussions, we aim to investigate the Helmholtz transmission problem in two-level homogeneous medium and develop the DG method for the HTP. The focus of the paper is to establish the rigorous stability and error analysis. Compared with the work in [22], we extend the Helmholtz problem of impenetrable obstacle to the HTP. Since the Helmholtz operator is not a coercive elliptic operator, the difficult part of the theoretical analysis is to establish the stability estimates for the numerical solution. For this purpose, we will make use of a local version of the Rellich identity and follow the stability analysis for the PDE solutions given in [18, 22, 25].

The remainder of the paper is organized as follows. We first describe the classical Helmholtz transmission problem in Section 2. In Section 3, the DG method for the Helmholtz transmission problem is formulated. The stability result for the DG method is established in Section 4. In Section 5, the error estimates of the discrete solutions to the HTP in H^1 and L^2 norms are strictly derived. In Section 6, we present some numerical experiments to gauge the theoretical estimates and to test the performance of the proposed DG method.

2. Statement of the Helmholtz transmission problem. In this section, we introduce the Helmholtz transmission problem (HTP) in two-level homogeneous media. Let $\Omega \subset \mathbb{R}^d$, $d = 2, 3$, be an open, bounded polygonal or polyhedral domain. As shown in Figure 1, the interface Γ separates the whole domain Ω into two connected disjoint subdomains Ω_1 and Ω_2 with the corresponding wave numbers k_1 and k_2, respectively. Denote by Γ_0 the outer boundary of Ω. Thus, we can express that $\Omega = \Omega_1 \cup \Omega_2 \cup \Gamma$, $\Omega_1 \cap \Omega_2 = \emptyset$ and $\partial \Omega_1 = \Gamma_0 \cup \Gamma$, $\partial \Omega_2 = \Gamma$. The unknown u_1 (respectively u_2) stands for the scattered field (resp. transmitted field) with given wave number k_1 (resp. k_2) in the domain Ω_1 (resp. Ω_2). Then, the Helmholtz transmission problem in two-level homogeneous media reads:

$$-
abla u_1 - k_1^2 u_1 = f_1 \quad \text{in } \Omega_1, \quad (1)$$

$$-
abla u_2 - k_2^2 u_2 = f_2 \quad \text{in } \Omega_2, \quad (2)$$

$$\frac{\partial u_1}{\partial n} + ik_1 u_1 = g \quad \text{on } \Gamma_0, \quad (3)$$

$$u_1 - u_2 = g_1 \quad \text{on } \Gamma, \quad (4)$$

$$\mu \frac{\partial u_1}{\partial n} - \frac{\partial u_2}{\partial n} = g_2 \quad \text{on } \Gamma, \quad (5)$$

where $i = \sqrt{-1}$ denotes the imaginary unit and $\mu = \frac{k_1^2}{k_2^2}$. The normal vector n on Γ is oriented from Ω_1 to Ω_2. On Γ_0, n is taken to be the unit outward normal vector. In this paper, we consider the case of $k_2 < k_1$. All terms f_1, f_2, g, g_1 and g_2 on the right-hand side are given functions. The equation (3) is known as the first order absorbing boundary condition [20] on Γ_0. The equations (4) and (5) are the transmission conditions on Γ.

In order to facilitate theoretical analysis, we denote $u(x) = u_1(x)$ (resp. $u_2(x)$), $k = k_1$ (resp. k_2), $f(x) = f_1(x)$ (resp. $f_2(x)$) in Ω_1 (resp. Ω_2). And $u(x) = u_1(x)$ on Γ_0.

We now recall the definition of star-shaped domains [22].
Definition 2.1. \(\Omega \subset \mathbb{R}^d \) is said to be a star-shaped domain with respect to \(x_\Omega \in \Omega \) if there exists a nonnegative constant \(c_\Omega \) such that
\[
(x - x_\Omega) \cdot n_\Omega \geq c_\Omega \quad \forall x \in \partial \Omega,
\]
where \(n_\Omega \) is the unit outward normal vector to \(\partial \Omega \). If \(c_\Omega \) is positive, \(\Omega \) is said to be strictly star-shaped.

Throughout the paper, we assume that \(\Omega \) and \(\Omega_2 \) are strictly star-shaped domains. Under these assumptions the following stability estimate for the problem (1) - (5) was proved in [34].

Theorem 2.2. Assume that \(\Omega_2 \) is star-shaped, \(k_2 < k_1 \) and \(g_1 = g_2 = 0 \). Then the solution of (1) - (5) satisfies
\[
\| \nabla u \|_{L^2(\Omega)} + k \| u \|_{L^2(\Omega)} \leq C(1 + \frac{1}{k}) \| f \|_{L^2(\Omega)},
\]
where \(C \) is a constant independent of \(k \), but dependent on the measures of \(\Omega_1 \) and \(\Omega_2 \).

3. Discontinuous Galerkin approximation. To formulate the discontinuous Galerkin (DG) method, we first need to introduce some notations. The standard space, norm and inner product notations are adopted. In particular for any region \(Q \), \(\langle \cdot, \cdot \rangle_Q \) and \(\langle \cdot, \cdot \rangle_{\partial Q} \) denote the \(L^2 \)-inner product on complex-valued spaces \(L^2(Q) \) and \(L^2(\partial Q) \), respectively. When \(Q \) stands for the whole domain \(\Omega \), we drop the subscript in the inner products. Throughout the paper, \(C \) is used to denote a generic positive constant which is independent of the wave number \(k \) and the mesh size \(h \). We use the expression \(A \lesssim B \) to denote that \(A \leq CB \). We also use \(A \simeq B \) to denote that \(A \) and \(B \) are equivalent. In general, \(\text{Re} v \) and \(\text{Im} v \) denote the real and imaginary parts of \(v \), respectively.

Let \(T_h \) be a family of quasi-uniform triangulations of the domain \(\Omega \) which are aligned with the interface \(\Gamma \), with characteristic mesh size \(h > 0 \). Assume that any element \(K \in T_h \) cannot be cut by \(\Gamma \). Then, the partition \(T_h \) can be naturally divided into two sets denoted by \(T_{h,1} = T_h \cap \Omega_1 \) and \(T_{h,2} = T_h \cap \Omega_2 \). Denote by \(h_K \) the diameter of any \(K \in T_h \). We also define \(\partial K = \text{set of all boundary edges of element } K \),

Figure 1. The sketch of the two homogeneous media \(\Omega_1 \) and \(\Omega_2 \) with wave numbers \(k_1 \) and \(k_2 \), respectively.
For every e and $τ$ where

$\mathcal{E}_1 = \text{set of all interior edges of } \mathcal{T}_{h,1}$,
$\mathcal{E}_2 = \text{set of all interior edges of } \mathcal{T}_{h,2}$,
$\mathcal{E}_0 = \{ e \subset \partial K, K \in \mathcal{T}_{h,1}, \text{meas}(e \cap Γ_0) ≠ 0 \}$,
$\mathcal{E}_1 = \{ e \subset \partial K, K \in \mathcal{T}_{h,2}, \text{meas}(e \cap Γ) ≠ 0 \}$,
$\mathcal{E}^I = \mathcal{E}_1 \cup \mathcal{E}_2$, $\mathcal{E}^B = \mathcal{E}_0 \cup \mathcal{E}^I$.

If two elements K and K' are neighbors and share one common side e, there are two traces of v along e. We define a jump and an average for v, and assume that the normal vector n_e is oriented from K to K':

$[v] = v|_K - v|_{K'}$, $\{v\} = \frac{1}{2}(v|_K + v|_{K'})$, $∀e = \partial K \cap \partial K'$.

For every $e \in \mathcal{E}^B$, n_e be the unit outward normal vector to $Γ_0$, set $[v] = \{v\} = v|_e$.
If $e \in \mathcal{E}^I$, n_e is oriented from $Ω_1$ to $Ω_2$ across the interface $Γ$, set $[v] = v_1 - v_2$,
$\{v\} = \frac{1}{2}(v_1 + v_2)$.

We define the broken Sobolev space

$\mathcal{H} = \prod_{K \in \mathcal{T}_h} H^2(K)$,

equipped with the broken gradient seminorm:

$|v|_{1,h}^2 = \sum_{K \in \mathcal{T}_h} \| \nabla v \|^2_{L^2(K)}$.

We introduce three bilinear forms $J_0(u,v)$, $J_1(u,v)$, $L_1(u,v) : \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{R}$ that penalize the jumps of the function values, the normal derivatives and the tangential derivatives values:

$J_0(u,v) = \sum_{e \in \mathcal{E}^I \cup \mathcal{E}^T} \frac{γ_0,e}{h_e} \langle [u], [v] \rangle_e$,

$J_1(u,v) = \sum_{e \in \mathcal{E}^I \cup \mathcal{E}^T} γ_{1,e} h_e \left(\left[\frac{∂u}{∂n_e} e \right], \left[\frac{∂v}{∂n_e} e \right] \right)$,

$L_1(u,v) = \sum_{e \in \mathcal{E}^I \cup \mathcal{E}^T} β_{1,e} h_e \left(\left[\frac{∂u}{∂τ_e} e \right], \left[\frac{∂v}{∂τ_e} e \right] \right)$,

where $τ_e$ be the unit tangential vector to the edge e and the parameters $γ_{0,e}, γ_{1,e}$ and $β_{1,e}$ are the corresponding penalty parameters.

Let

$H^1_Γ(Ω) = \{ v_1 \in H^1(Ω_1), v_2 \in H^1(Ω_2) : v_1 = v_2 \text{ on } Γ \}$.

We now define the sesquilinear form $a_h(\cdot, \cdot)$ and linear form $l(\cdot)$:

$a_h(u,v) = \sum_{K \in \mathcal{T}_h} (\nabla u, \nabla v)_K - \sum_{e \in \mathcal{E}^I} \left(\left[\frac{∂u}{∂n_e} e \right], [v] \right)_e + \left[[u], [v], [\frac{∂v}{∂n_e}] \right) e \right) \rangle-e \rangle$

$- \sum_{e \in \mathcal{E}^B} (1 - μ) \left(\frac{∂u}{∂n_e}, v \right)_e + i(J_0(u,v) + J_1(u,v) + L_1(u,v))$

$∀u \in \mathcal{H}, ∀v \in \mathcal{H} \cap H^1_Γ(Ω), \quad (13)$

$l(v) = (f,v) + ⟨ g, v ⟩_{Γ_0} + ⟨ g_2, v ⟩_Γ \quad ∀v \in \mathcal{H} \cap H^1_Γ(Ω)$.

(14)
For any \(v \in H \), we define mesh dependent norms/seminorms
\[
\|v\|^2_{1,h} = |v|^2_{1,h} + \sum_{e \in \mathcal{E}_I \cup \mathcal{E}_F} \left(\frac{\gamma_0,e}{h_e} \|v\|^2_{L^2(e)} + \gamma_1,e h_e \left\| \left[\frac{\partial v}{\partial n_e} \right] \right\|^2_{L^2(e)} \right) + \sum_{e \in \mathcal{E}_I \cup \mathcal{E}_F} \frac{\beta_{1,e}}{h_e} \left\| \left[\frac{\partial v}{\partial r_e} \right] \right\|^2_{L^2(e)}.
\] (15)
\[
\|v\|^2_{1,h} = \|v\|^2_{1,h} + \sum_{e \in \mathcal{E}} \frac{h_e}{\gamma_0,e} \left\| \left\{ \frac{\partial v}{\partial n_e} \right\} \right\|^2_{L^2(e)} + \sum_{e \in \mathcal{E}} \frac{1}{h_e} \|v\|^2_{L^2(e)}.
\] (16)

Then the variational formulation of the problem (1) - (5) is finding \(u \in H \) and \(u_1 - u_2 = g_1 \) on \(\Gamma \), such that
\[
a_h(u,v) - k^2(u,v) + ik \langle u,v \rangle_{\Gamma_0} = l(v) \quad \forall v \in H \cap H^1_0(\Omega). \] (17)

For any \(K \in \mathcal{T}_h \), let \(P_1(K) \) denote the set of all linear polynomials on \(K \). We define the DG approximation spaces \(V_h \) and \(V_{h,\Gamma} \) as
\[
V_h = \{ v_h : v_h |_{K} \in P_1(K), \forall K \in \mathcal{T}_h \},
\]
\[
V_{h,\Gamma} = \{ v_h \in V_h : v_{h,1} = v_{h,2} \text{ on } \Gamma \}.
\]

It is clear that \(V_h \subset H \subset L^2(\Omega) \), however, \(V_h \nsubseteq H^1(\Omega) \). Then the DG approximation of (17) is to find \(u_h \in V_h \) and \(u_{h,1} - u_{h,2} = g_1 \) on \(\Gamma \), such that
\[
a_h(u_h,v_h) - k^2(u,v) + ik \langle u_h,v_h \rangle_{\Gamma_0} = l(v_h) \quad \forall v_h \in V_{h,\Gamma}. \] (18)

Remark 1. Clearly, (17) is consistent with (1) - (5), since \(a_h(\cdot,\cdot) + ik(\cdot,\cdot)_{\Gamma_0} \) is a consistent discretization for \(-\Delta \), i.e., \(-\Delta u,v = a_h(u,v) + ik \langle u,v \rangle_{\Gamma_0} \) for all \(u \in H^2(\Omega), v \in H \cap H^1_0(\Omega) \).

4. Stability estimate. In this section, we focus on the stability estimates for the scheme (18). The crucial ingredients of the analysis are to use a special test function \(v_h = \alpha \cdot \nabla u_h \) \([25, 36]\) with \(\alpha(x) = x - x_\Omega \) in (18) and to use the Rellich identity on the element \([18]\). The following lemma establishes some integral identities which play an important role in our analysis.

Lemma 4.1. \([18]\) Let \(\alpha(x) = x - x_\Omega, x \in \partial \Omega, v \in H \), then hold
\[
d\|v\|^2_{L^2(K)} + 2\text{Re} \langle \nabla v, \alpha \cdot \nabla v \rangle_K = \int_{\partial K} \alpha \cdot n_K |v|^2 ds \quad \forall K \in \mathcal{T}_h, \] (19)
\[
(d - 2)\|\nabla v\|^2_{L^2(K)} + 2\text{Re} \langle \nabla v, (\alpha \cdot \nabla v) \rangle_K = \int_{\partial K} \alpha \cdot n_K |\nabla v|^2 ds \quad \forall K \in \mathcal{T}_h, \] (20)
\[
\left\langle \left\{ \frac{\partial v}{\partial n_e} \right\}, [\alpha \cdot \nabla v]_e \right\rangle - \left\langle \alpha \cdot n_e [\nabla v], [\nabla v]_e \right\rangle
\]
\[
= \int_e \left(\alpha \cdot \tau_e \left\{ \frac{\partial v}{\partial n_e} \right\} - \alpha \cdot n_e \left\{ \frac{\partial v}{\partial \tau_e} \right\} \right) \left[\frac{\partial \tau}{\partial r_e} \right] ds \quad \forall e \in \mathcal{E}_I, \] (21)

where \(x_\Omega \) denotes the point in the star-shaped domain definition for \(\Omega \) and \(\bar{v} \) is the complex conjugate of \(v \).

Remark 2. The identity (20) can be viewed as a local version of the Rellich identity for the Laplacian \(\Delta \) \([18]\). Since \(V_h \subset H \), the identity (19), (20), (21) also hold for any function \(v = v_h \in V_h \).

The next lemmas will give some estimates for the stability analysis.
Lemma 4.2. For any $u_h \in V_h$, the following estimates hold
\[
|u_h|_{1,h}^2 - 2\text{Re} \sum_{e \in E^I} \left(\phi \frac{\partial u_h}{\partial n_e} \right), [u_h]_e - \text{Re} \sum_{e \in E^I} (1 - \mu) \left(\phi \frac{\partial u_h}{\partial n_e}, u_h \right)_e
\]
\[+ k^2 \|u_h\|_{L^2(\Omega)}^2 \leq |l(u_h)|,\]
(22)

\[k \|u_h\|_{L^2(\Gamma_0)}^2 - \text{Im} \sum_{e \in E^I} (1 - \mu) \left(\phi \frac{\partial u_h}{\partial n_e}, u_h \right)_e + \sum_{e \in E^I \cup E^G} \beta_{1,e} \left\| \left(\phi \frac{\partial u_h}{\partial n_e} \right) \right\|_{L^2(e)}^2
\]
\[+ \sum_{e \in E^I \cup E^G} \left(\frac{\gamma_{1,e}}{h_e} \|u_h\|_{L^2(e)}^2 + \gamma_{1,e} h_e \left\| \left(\phi \frac{\partial u_h}{\partial n_e} \right) \right\|_{L^2(e)}^2 \right) \leq |l(u_h)|.\]
(23)

Proof. Letting $v_h = u_h$ in (18), we have
\[a_h(u_h, u_h) - k^2 \|u_h\|_{L^2(\Omega)}^2 + ik \|u_h\|_{L^2(\Gamma_0)}^2 = l(u_h),\]
(24)

where
\[a_h(u_h, u_h) = \sum_{K \in T_h} \|\nabla u_h\|_{L^2(K)}^2 - 2\text{Re} \sum_{e \in E^I} \left(\phi \frac{\partial u_h}{\partial n_e} \right), [u_h]_e - \sum_{e \in E^I} (1 - \mu) \left(\phi \frac{\partial u_h}{\partial n_e}, u_h \right)_e
\]
\[+ i \sum_{e \in E^I \cup E^G} \left(\frac{\gamma_{1,e}}{h_e} \|u_h\|_{L^2(e)}^2 + \gamma_{1,e} h_e \left\| \left(\phi \frac{\partial u_h}{\partial n_e} \right) \right\|_{L^2(e)}^2 \right) \cdot \]
(25)

The real and imaginary parts of $a_h(u_h, u_h)$ are
\[\text{Re} a_h(u_h, u_h) = \sum_{K \in T_h} \|\nabla u_h\|_{L^2(K)}^2 - 2\text{Re} \sum_{e \in E^I} \left(\phi \frac{\partial u_h}{\partial n_e} \right), [u_h]_e
\]
\[+ \text{Re} \sum_{e \in E^I} (1 - \mu) \left(\phi \frac{\partial u_h}{\partial n_e}, u_h \right)_e,\]
(26)

\[\text{Im} a_h(u_h, u_h) = -\text{Im} \sum_{e \in E^I} (1 - \mu) \left(\phi \frac{\partial u_h}{\partial n_e}, u_h \right)_e + \sum_{e \in E^I \cup E^G} \beta_{1,e} \left\| \left(\phi \frac{\partial u_h}{\partial n_e} \right) \right\|_{L^2(e)}^2
\]
\[+ \sum_{e \in E^I \cup E^G} \left(\frac{\gamma_{1,e}}{h_e} \|u_h\|_{L^2(e)}^2 + \gamma_{1,e} h_e \left\| \left(\phi \frac{\partial u_h}{\partial n_e} \right) \right\|_{L^2(e)}^2 \right).\]
(27)

Therefore, by taking the real and imaginary parts of the equations (24), we get (22) and (23).

Lemma 4.3. Assume that $u_h \in V_h$ is the solution which solves (18). Then
\[2k^2 \|u_h\|_{L^2(\Omega)}^2 = (d - 2)\text{Re} l(u_h) + 2\text{Re} l(v_h) + 2k \text{Im} \langle u_h, v_h \rangle_{\Gamma_0} - \sum_{e \in E^G_0} \langle \alpha \cdot n_e, |\nabla u_h|^2 \rangle_e
\]
\[+ 2k^2 \sum_{e \in E^I \cup E^G} \text{Re} \langle \alpha \cdot n_e, [u_h]_e \rangle_e + k^2 \sum_{e \in E^G_0} \langle \alpha \cdot n_e, |u_h|^2 \rangle_e
\]
\[+ 2 \sum_{e \in E^I} \text{Re} \left(\left(\phi \frac{\partial u_h}{\partial n_e} \right), [v_h]_e \right) - \langle \alpha \cdot n_e \{u_h\}, [\nabla u_h]_e \rangle_e\]
Then, by multiplying k^v (18) by v^v:

$$
\sum_{V} \text{Re} \left((d-1) \left(\left\langle \frac{\partial u_h}{\partial n_e}, [u_h] \right\rangle_e + \left\langle \left\{ \frac{\partial u_h}{\partial n_e} \right\}, [u_h] \right\rangle_e \right) \right)
$$

Summing all over K in T_h gives that

$$
d\|u_h\|_{L^2(K)}^2 + 2\text{Re} (u_h, \alpha \cdot \nabla u_h)_K = \int_{\partial K} \alpha \cdot n_K |u_h|^2 ds \quad \forall K \in T_h.
$$

Then, by multiplying k^2 and adding $2k^2\|u_h\|_{L^2(\Omega)}^2$ on the above equality, we obtain

$$
2k^2\|u_h\|_{L^2(\Omega)}^2 = \sum_{K \in T_h} \int_{\partial K} \alpha \cdot n_K |u_h|^2 ds - (d-2)k^2\|u_h\|_{L^2(\Omega)}^2 - 2k^2\text{Re} (u_h, v_h)_\Omega.
$$

where $v_h = \alpha \cdot \nabla u_h$, u_h is a linear polynomial on K, and hence, $v_h \in V_h$. Testing (18) by $v_h \in V_h$ and taking the real part of the resulting equation, we get

$$
- k^2\text{Re}(u_h, v_h)_{\Omega} = \text{Re}(l(v_h) - a_h(u_h, v_h) - ik\langle u_h, v_h \rangle_{\Gamma_0})
$$

$$
= \text{Re}(l(v_h) + k\text{Im}\langle u_h, v_h \rangle_{\Gamma_0} - \sum_{K \in T_h} (\nabla u_h, \nabla v_h)_K
$$

$$
+ \sum_{e \in E} \text{Re} \left((1-\mu) \left\langle \frac{\partial u_h}{\partial n_e}, v_h \right\rangle_e \right) + \text{Im} (J_0(u_h, v_h) + J_1(u_h, v_h) + L_1(u_h, v_h)).
$$

Moreover, we deduce from (24) that

$$
- k^2\|u_h\|_{L^2(\Omega)}^2 = \text{Re}(l(u_h) - \text{Re}(a_h(u_h, u_h))
$$

$$
= \text{Re}(l(u_h) - \sum_{K \in T_h} \|\nabla u_h\|_{L^2(K)}^2) + 2\text{Re} \sum_{e \in E} \left\langle \left\{ \frac{\partial u_h}{\partial n_e} \right\}, [u_h] \right\rangle_e
$$

$$
+ \sum_{e \in E} (1-\mu) \left\langle \frac{\partial u_h}{\partial n_e}, u_h \right\rangle_e.
$$

Proof. Taking $v = u_h \in V_h$ in (19), we get

$$
d\|u_h\|_{L^2(\Omega)}^2 + 2\text{Re} (u_h, \alpha \cdot \nabla u_h)_\Omega = \sum_{K \in T_h} \int_{\partial K} \alpha \cdot n_K |u_h|^2 ds \quad \forall K \in T_h.
$$
Using the identity $|a|^2 - |b|^2 = \text{Re}(a + b)(\bar{a} - \bar{b})$ for any $a, b \in \mathbb{C}$, we have
\[
\sum_{K \in \mathcal{T}_h} \int_{\partial K} \alpha \cdot n_K |u_h|^2 ds = 2 \sum_{e \in \mathcal{E}^I} \text{Re} \left(\alpha \cdot n_e \{u_h\}_e \right) + 2 \sum_{e \in \mathcal{E}^I} \text{Re} \left(\alpha \cdot n_e \{u_h\}_e \right)
\]
\[
+ \sum_{e \in \mathcal{E}^I} \langle \alpha \cdot n_e, |u_h|^2 \rangle_e.
\]
(32)

According to (20) in Lemma 4.1, it yields
\[
\sum_{K \in \mathcal{T}_h} \int_{\partial K} \alpha \cdot n_K |\nabla u_h|^2 ds = 2 \sum_{e \in \mathcal{E}^I} \text{Re} \left(\alpha \cdot n_e \{\nabla u_h\}_e, \{\nabla u_h\}_e \right) + \sum_{e \in \mathcal{E}^I} \langle \alpha \cdot n_e, |\nabla u_h|^2 \rangle_e.
\]
(33)

The facts that u_h is piecewise linear and $v_h|_K = \alpha \cdot \nabla u_h|_K$ imply the identity $\nabla u_h|_K = \nabla v_h|_K$. Hence
\[
\text{Im} \left(J_1(u_h, v_h) \right) = \text{Im} \left(L_1(u_h, v_h) \right) = 0.
\]
(34)

Plugging (30), (31), (32), (33) and (34) into (29), we obtain (28).

Next, we will derive the stability estimate for scheme (18).

Theorem 4.4. Assume that $u_h \in V_h$ is the solution which solves (18) and $\gamma_{0,e}, \gamma_{1,e}, \beta_{1,e}$ are positive constants. Define $M(f, g, g_2) = \|f\|_{L^2(\Omega)} + \|g\|_{L^2(\Gamma_0)} + \|g_2\|_{L^2(\Gamma)}$. Then there exists a positive constant C_{sta} such that
\[
\left(1 + \frac{1}{k} \right) \|u_h\|_{L^2(\Omega)} + \frac{1}{k} |u_h|_{1,h} + \frac{C_{\Omega}}{2k} \left(\sum_{e \in \mathcal{E}^I} \|\nabla u_h\|_{L^2(e)}^2 \right)^{\frac{1}{2}} \lesssim C_{sta} M(f, g, g_2),
\]
(35)

where
\[
C_{sta} = \frac{1}{k} + \frac{1}{k^2} + \frac{1}{k^2} \max_{e \in \mathcal{E}^I} \left(\frac{k^2 + 1}{\gamma_{0,e}} + \frac{1}{h_e} \sqrt{\frac{\gamma_{0,e}}{\gamma_{1,e}}} + \sqrt{\frac{\gamma_{0,e}}{\beta_{1,e}}} + \frac{1}{\beta_{1,e}} \right)
\]
\[
+ \frac{1}{k^2} \max_{e \in \mathcal{E}^I} \left(\frac{k^2 + 1}{\gamma_{0,e}} + \frac{1}{h_e} \sqrt{\frac{\gamma_{0,e}}{\gamma_{1,e}}} + \sqrt{\frac{\gamma_{0,e}}{\beta_{1,e}}} + \frac{1}{\beta_{1,e}} + \frac{1}{h_e} + \frac{1}{h_e^2} \right).
\]
(36)

Proof. First, we rewrite (28) as following
\[
2k^2 \|u_h\|_{L^2(\Omega)} = (d - 2) \text{Re} l(u_h) + 2 \text{Re} l(v_h) - 2 \sum_{e \in \mathcal{E}^I} \text{Re} \left(\left\{ \frac{\partial u_h}{\partial n_e} \right\}_e, [u_h]_e \right)
\]
\[
- \sum_{e \in \mathcal{E}^I} \text{Re}(1 - \mu) \left(\frac{\partial u_h}{\partial n_e} \right)_e + I_1 + I_2 + I_3 + I_4 + I_5 + I_6 + I_7 + I_8.
\]
(37)

Next, we bound each term on the right hand side of (37). For an edge $e \in \mathcal{E}^I$, let K_e and K'_e denote the two elements in \mathcal{T}_h that share e. For an edge $e \in \mathcal{E}^I$, let K_e
and K'_e denote the two elements that share e and $K_e \in \mathcal{T}_{h,1}, K'_e \in \mathcal{T}_{h,2}$. For an edge $e \in \mathcal{E}_h^0$, let K_e denote the element that has e as an edge and $K'_e = \emptyset$. Applying the Hölder inequality, the trace and Young inequalities, we obtain

$$I_1 = 2k^2 \sum_{e \in \mathcal{E}^l \cup \mathcal{E}^r} \text{Re}(\alpha \cdot n_e \{u_h\}, [u_h])_e$$

$$\leq \frac{k^2}{3} \|u_h\|_{L^2(\Omega)}^2 + C \sum_{e \in \mathcal{E}^l \cup \mathcal{E}^r} k^2 \frac{\gamma_{0,e}}{h_e} \|u_h\|_{L^2(e)}^2, \quad (38)$$

$$I_2 = k^2 \sum_{e \in \mathcal{E}_h^0} \langle \alpha \cdot n_e, |u_h|^2 \rangle_e \leq C k^2 \|u_h\|_{L^2(\Gamma_h)}^2. \quad (39)$$

In view of (21) in Lemma 4.1 and the Young inequality, we have

$$I_3 = 2 \sum_{e \in \mathcal{E}^l} \left(\text{Re} \left\langle \frac{\partial u_h}{\partial n_e}, [v_h] \right\rangle_e - \text{Re} \langle \alpha \cdot n_e \{\nabla u_h\}, [\nabla u_h] \rangle_e \right)$$

$$= 2 \sum_{e \in \mathcal{E}^l} \text{Re} \int_e \left(\alpha \cdot \tau_e \left\{ \frac{\partial u_h}{\partial n_e} - \alpha \cdot n_e \left\{ \frac{\partial u_h}{\partial \tau_e} \right\} \right\} \left\{ \frac{\partial u_h}{\partial \tau_e} \right\} ds$$

$$\leq C \sum_{e \in \mathcal{E}^l} h_e^{-\frac{1}{2}} \sum_{K = K_e, K'_e} \|\nabla u_h\|_{L^2(K)} \left\| \left[\frac{\partial u_h}{\partial \tau_e} \right] \right\|_{L^2(e)}$$

$$\leq \frac{1}{4} |u_h|_{1,h}^2 + C \sum_{e \in \mathcal{E}^l} \frac{1}{\beta_{1,e}} \frac{\gamma_1}{h_e} \left\| \left[\frac{\partial u_h}{\partial \tau_e} \right] \right\|_{L^2(e)}^2. \quad (40)$$

Since u_h is piecewise linear on K, ∇u_h is piecewise constant vector on K and $\|\nabla u_h\|_{L^2(e)} \leq Ch_e^{1/2}$, then we get

$$I_4 = 2 \sum_{e \in \mathcal{E}^r} \text{Re} \left((1 - \mu) \left\langle \frac{\partial u_h}{\partial n_e}, v_h \right\rangle_e - \langle \alpha \cdot n_e \{\nabla u_h\}, [\nabla u_h] \rangle_e \right)$$

$$= 2 \sum_{e \in \mathcal{E}^r} \text{Re} \left(\left\langle \frac{\partial u_h}{\partial n_e}, [v_h] \right\rangle_e - \langle \alpha \cdot n_e \{\nabla u_h\}, [\nabla u_h] \rangle_e - \langle g_2, v_h \rangle_e \right)$$

$$= 2 \sum_{e \in \mathcal{E}^r} \text{Re} \left(\left\langle \frac{\partial u_h}{\partial n_e}, \alpha \cdot \nabla u_h \right\rangle_e - \langle g_2, v_h \rangle_e \right)$$

$$- 2 \sum_{e \in \mathcal{E}^r} \text{Re} \left(\langle \alpha \cdot n_e \left\{ n_e \frac{\partial u_h}{\partial n_e} + \tau_e \frac{\partial u_h}{\partial \tau_e} \right\}, \left[n_e \frac{\partial u_h}{\partial n_e} + \tau_e \frac{\partial u_h}{\partial \tau_e} \right] \rangle_e \right)$$

$$= 2 \sum_{e \in \mathcal{E}^r} \text{Re} \left(\left\langle \frac{\partial u_h}{\partial n_e}, \alpha \cdot \nabla u_h \right\rangle_e - \langle g_2, v_h \rangle_e \right)$$

$$- 2 \sum_{e \in \mathcal{E}^r} \text{Re} \left(\langle \alpha \cdot n_e \left\{ \frac{\partial u_h}{\partial n_e} \right\}, \left[\frac{\partial u_h}{\partial n_e} \right] \rangle_e - \langle \alpha \cdot n_e \left\{ \frac{\partial u_h}{\partial \tau_e} \right\}, \left[\frac{\partial u_h}{\partial \tau_e} \right] \rangle_e \right)$$

$$\leq \frac{1}{4} |u_h|_{1,h}^2 + C \sum_{e \in \mathcal{E}^r} \left(\frac{1}{\gamma_1 h_e} + \frac{1}{h_e} \right) \frac{\gamma_1}{h_e} \left\| \left[\frac{\partial u_h}{\partial n_e} \right] \right\|_{L^2(e)}^2$$

$$+ C \sum_{e \in \mathcal{E}^r} \frac{1}{\beta_{1,e}} \frac{\gamma_1}{h_e} \left\| \left[\frac{\partial u_h}{\partial \tau_e} \right] \right\|_{L^2(e)}^2 - 2 \sum_{e \in \mathcal{E}^r} \text{Re}(g_2, v_h)_e. \quad (41)$$
Note \(\frac{\partial v_h}{\partial n_e} \bigg|_K = \frac{\partial u_h}{\partial n_e} \bigg|_K \), we have
\[
\begin{align*}
I_5 &= 2 \sum_{e \in E^I} \text{Re} \left((d - 1) \left\langle \left\{ \frac{\partial u_h}{\partial n_e} \right\}, [u_h] \right\rangle_e + \left\langle [u_h], \left\{ \frac{\partial v_h}{\partial n_e} \right\} \right\rangle_e \right) \\
&\lesssim \sum_{e \in E^I} h_e^{-1/2} \sum_{K = K_e, K_e'} \| \nabla u_h \|_{L^2(K)} \| [u_h] \|_{L^2(e)} \\
&\leq \frac{1}{4} |u_h|^2_{1, h} + C \sum_{e \in E^I} \frac{1}{\gamma_0, e} \| [u_h] \|^2_{L^2(e)} .
\end{align*}
\]

Using the Hölder and trace inequalities, we obtain
\[
\begin{align*}
I_6 &= \sum_{e \in E^I} \text{Re} (d - 1)(1 - \mu) \left(\left\langle \left\{ \frac{\partial u_h}{\partial n_e} \right\}, u_h \right\rangle_e - [g_2, u_h]_e \right) \\
&= \sum_{e \in E^I} \text{Re} (d - 1) \left(\left\langle \left\{ \frac{\partial u_h}{\partial n_e} \right\}, u_h \right\rangle_e - [g_2, u_h]_e \right) \\
&\leq \sum_{e \in E^I} (d - 1) \left\| \frac{\partial u_h}{\partial n_e} \right\|_{L^2(e)} \| u_h \|_{L^2(e)} - \sum_{e \in E^I} \text{Re} (d - 1) \left\langle [g_2, u_h]_e \right\rangle \\
&\leq \sum_{e \in E^I} (d - 1) \left\{ \left\| \frac{\partial u_h}{\partial n_e} \right\|_{L^2(e)} h_e^{-1/2} \| u_h \|_{L^2(K_e)} - \sum_{e \in E^I} \text{Re} (d - 1) \left\langle [g_2, u_h]_e \right\rangle \\
&\leq \frac{1}{2} \| u_h \|^2_{L^2(\Omega)} + C \sum_{e \in E^I} \frac{1}{h_e^2 \gamma_1, e} \left\| \frac{\partial u_h}{\partial n_e} \right\|_{L^2(e)}^2 - \sum_{e \in E^I} \text{Re} (d - 1) \left\langle [g_2, u_h]_e \right\rangle .
\end{align*}
\]

Based on the inverse inequality and the following identities
\[
v_h = \alpha \cdot \nabla u_h, \quad \alpha \cdot \nabla u_h = \alpha \cdot n_e \frac{\partial u_h}{\partial n_e} + \alpha \cdot \tau_e \frac{\partial u_h}{\partial \tau_e},
\]
we obtain
\[
\begin{align*}
I_7 &= 2 \text{Im} J_0 (u_h, v_h) = 2 \text{Im} \sum_{e \in E^I \cup E^F} \frac{\gamma_0, e}{h_e} \left([u_h], [v_h] \right)_e \\
&= 2 \text{Im} \sum_{e \in E^I \cup E^F} \frac{\gamma_0, e}{h_e} \left([u_h], \left[\alpha \cdot n_e \frac{\partial u_h}{\partial n_e} + \alpha \cdot \tau_e \frac{\partial u_h}{\partial \tau_e} \right] \right)_e \\
&\lesssim \sum_{e \in E^I \cup E^F} \frac{\gamma_0, e}{h_e} \left(\| [u_h] \|_{L^2(e)} \left\| \left[\alpha \cdot n_e \frac{\partial u_h}{\partial n_e} + \alpha \cdot \tau_e \frac{\partial u_h}{\partial \tau_e} \right] \right\|_{L^2(e)} \right) \\
&+ \sum_{e \in E^I \cup E^F} \frac{\gamma_0, e}{h_e} \left(\| [u_h] \|_{L^2(e)} \left\| \left[\alpha \cdot \tau_e \frac{\partial u_h}{\partial \tau_e} \right] \right\|_{L^2(e)} \right) \\
&\lesssim \sum_{e \in E^I \cup E^F} \frac{1}{h_e^2 \gamma_1, e} \left(\gamma_0, e \| [u_h] \|^2_{L^2(e)} + \gamma_1, e h_e \left\| \frac{\partial u_h}{\partial n_e} \right\|_{L^2(e)}^2 \right) \\
&+ \sum_{e \in E^I \cup E^F} \frac{\gamma_0, e}{\beta_1, e} \left(\gamma_0, e \| [u_h] \|^2_{L^2(e)} + \beta_1, e h_e \left\| \frac{\partial u_h}{\partial \tau_e} \right\|_{L^2(e)}^2 \right) .
\end{align*}
\]
Using the Cauchy-Schwarz and Young inequalities, the Definition 2.1 and \(\nu_h = \alpha \cdot \nabla u_h \), we get

\[
2k \text{Im}(u_h, v_h)_{\Gamma_0} \\
\leq (k^2/\mu)\|u_h\|^2_{L^2(\Gamma_0)} + \mu \|v_h\|^2_{L^2(\Gamma_0)} \\
= (k^2/\mu)\|u_h\|^2_{L^2(\Gamma_0)} + \mu \sum_{e \in E_0^B} \|\alpha \cdot \nabla u_h\|^2_{L^2(e)} \\
\leq (k^2/\mu)\|u_h\|^2_{L^2(\Gamma_0)} + C\mu \sum_{e \in E_0^B} \|\nabla u_h\|^2_{L^2(e)}.
\]

Letting \(C\mu = C_\Omega/2 \), we have

\[
I_8 = 2k \text{Im}(u_h, v_h)_{\Gamma_0} - \sum_{e \in E_0^B} \langle \alpha \cdot n_e, |\nabla u_h|^2 \rangle_e \\
\leq \frac{2C}{C_\Omega} k^2 \|u_h\|^2_{L^2(\Gamma_0)} + \frac{C_\Omega}{2} \sum_{e \in E_0^B} \|\nabla u_h\|^2_{L^2(e)} - C\Omega \sum_{e \in E_0^B} \|\nabla u_h\|^2_{L^2(e)} \\
\leq C k^2 \|u_h\|^2_{L^2(\Gamma_0)} - \frac{C\Omega}{2} \sum_{e \in E_0^B} \|\nabla u_h\|^2_{L^2(e)}. \tag{45}
\]

Plugging (38) - (45) into (37), we get

\[
2k^2 \|u_h\|^2_{L^2(\Omega)} \\
\leq (d - 2) \text{Re} l(u_h) + 2 \text{Re} l(v_h) - \frac{C_\Omega}{2} \sum_{e \in E_0^B} \|\nabla u_h\|^2_{L^2(e)} - \text{Re} \sum_{e \in E^I} (d-1)(g_2, u_h)_e \\
- 2 \text{Re} \sum_{e \in E^I} (g_2, v_h)_e + C k^2 \|u_h\|^2_{L^2(\Gamma_0)} + \left(\frac{4k^2}{3} + \frac{1}{2} \right) \|u_h\|^2_{L^2(\Omega)} + |u_h|_{1,h}^2 - \frac{1}{4} |u_h|_{1,h}^2 \\
- 2 \text{Re} \sum_{e \in E^I} \left\langle \left\{ \frac{\partial u_h}{\partial n_e} \right\}, [u_h] \right\rangle_e - \text{Re} \sum_{e \in E^I} (1 - \mu) \left\langle \frac{\partial u_h}{\partial n_e}, u_h \right\rangle_e - k^2 \|u_h\|^2_{L^2(\Omega)} \\
+ C \sum_{e \in E^I} \left(\left(\frac{1}{\gamma_{1,e}} + \frac{1}{h_e} + \frac{1}{h_e^2 \gamma_{1,e}} \right) \gamma_{1,e} h_e \left\| \frac{\partial u_h}{\partial n_e} \right\|^2_{L^2(e)} + \frac{1}{\beta_{1,e} h_e} \left\| \frac{\partial u_h}{\partial \tau_e} \right\|^2_{L^2(e)} \right) \\
+ C \sum_{e \in E^I \cup g^I} \left(\frac{1}{h_e} \sqrt{\frac{\gamma_{0,e}}{\gamma_{1,e}}} \frac{\beta_{0,e}}{\beta_{1,e}} \left\| \frac{\partial u_h}{\partial n_e} \right\|^2_{L^2(e)} + C \sum_{e \in E^I \cup g^I} \left(\gamma_{0,e} \beta_{0,e} h_e \left\| \frac{\partial u_h}{\partial \tau_e} \right\|^2_{L^2(e)} \right) \\
+ C \sum_{e \in E^I} \left(\frac{1}{\gamma_{0,e} h_e} \|u_h\|^2_{L^2(e)} + \frac{1}{\beta_{1,e} h_e} \left\| \frac{\partial u_h}{\partial \tau_e} \right\|^2_{L^2(e)} \right).
\]

According to Lemma 4.2, it yields

\[
2k^2 \|u_h\|^2_{L^2(\Omega)} \\
\leq \left(\frac{5k^2}{3} + \frac{1}{2} \right) \|u_h\|^2_{L^2(\Omega)} - \frac{1}{8} |u_h|_{1,h}^2 - \frac{C_\Omega}{2} \sum_{e \in E_0^B} \|\nabla u_h\|^2_{L^2(e)}
\]
For any $v \in \mathcal{H}$ and $w \in \mathcal{H} \cap H^1_0(\Omega)$, the sesquilinear form $a_h(v, w)$ satisfies

$$|a_h(v, w)| \lesssim \|v\|_{1,h} \|w\|_{1,h}.$$

(48)

In addition, for any $0 < \varepsilon < 1$, there exists a positive constant C such that

$$\text{Re} \ a_h(v_h, v_h) + \left(1 - \varepsilon + \frac{C}{\gamma_0}\right) \text{Im} \ a_h(v_h, v_h) \geq (1 - \varepsilon) \|v_h\|_{1,h} \quad \forall v_h \in V_{h,\Gamma}.$$

(49)

Proof. From (13), the definition of $a_h(\cdot, \cdot)$, for any $v \in \mathcal{H}$, $w \in \mathcal{H} \cap H^1_0(\Omega)$, we have,

$$|a_h(v, w)| \leq \left[\sum_{K \in \mathcal{T}_h} (\nabla v, \nabla w)_K \right] + \left[\sum_{e \in \mathcal{E}^I} \left(\langle \left(\frac{\partial v}{\partial n_e} \right)_e, [w] \rangle_e + \langle [v], \left(\frac{\partial w}{\partial n_e} \right)_e \rangle_e \right) \right]
+ \left[\sum_{e \in \mathcal{E}^I} (1 - \mu) \left(\frac{\partial v}{\partial n_e}, w \right)_e \right] + |(J_0(v, w) + J_1(v, w) + L_1(v, w)|.$$

(50)

Using the Cauchy-Schwarz inequality $\sum_i a_i b_i \leq (\sum a_i^2)^{1/2}(\sum b_i^2)^{1/2}$, we get

$$|a_h(v, w)| \lesssim \left(\sum_{K \in \mathcal{T}_h} \|\nabla v\|_{L^2(K)}^2 \right)^{1/2} \left(\sum_{K \in \mathcal{T}_h} \|\nabla w\|_{L^2(K)}^2 \right)^{1/2}
+ \left(\sum_{e \in \mathcal{E}^I} \frac{h_e}{\gamma_0} \left\| \frac{\partial v}{\partial n_e} \right\|_{L^2(e)}^2 \right)^{1/2} \left(\sum_{e \in \mathcal{E}^I} \frac{\gamma_0}{h_e} \|w\|_{L^2(e)}^2 \right)^{1/2}
+ \left(\sum_{e \in \mathcal{E}^I} \frac{h_e}{\gamma_0} \|v\|_{L^2(e)}^2 \right)^{1/2} \left(\sum_{e \in \mathcal{E}^I} \frac{\gamma_0}{h_e} \left\| \frac{\partial w}{\partial n_e} \right\|_{L^2(e)}^2 \right)^{1/2}.$$

The proof is completed.
Therefore, we obtain

\[
|a_h(v, w)| \\
\lesssim \left(\sum_{K \in T_h} \| \nabla v \|^2_{L^2(K)} + \sum_{e \in \mathcal{E}^I} \frac{h_e}{\gamma_{0,e}} \| \left\{ \frac{\partial v}{\partial n_e} \right\} \|^2_{L^2(e)} \right. \\
+ \left. \sum_{e \in \mathcal{E}^I} \frac{\gamma_{0,e}}{h_e} \| v \|^2_{L^2(e)} + \sum_{e \in \mathcal{E}^I \cup \Gamma} \frac{\gamma_{0,e}}{h_e} \| v \|^2_{L^2(e)} \right) \\
+ \left(\sum_{K \in T_h} \| \nabla w \|^2_{L^2(K)} + \sum_{e \in \mathcal{E}^I} \frac{\gamma_{0,e}}{h_e} \| w \|^2_{L^2(e)} + \sum_{e \in \mathcal{E}^I} \frac{1}{h_e} \| w \|^2_{L^2(e)} \right) \\
+ \left(\sum_{e \in \mathcal{E}^I \cup \Gamma} \frac{h_e}{\gamma_{0,e}} \| \left\{ \frac{\partial w}{\partial n_e} \right\} \|^2_{L^2(e)} + \sum_{e \in \mathcal{E}^I \cup \Gamma} \frac{\gamma_{0,e}}{h_e} \| w \|^2_{L^2(e)} \right) \\
+ \left(\sum_{e \in \mathcal{E}^I \cup \Gamma} \frac{\gamma_{1,e}}{h_e} \| \left\{ \frac{\partial w}{\partial n_e} \right\} \|^2_{L^2(e)} + \frac{\beta_{1,e}}{h_e} \| \left\{ \frac{\partial w}{\partial n_e} \right\} \|^2_{L^2(e)} \right) \\
\lesssim \| v \|_{1,h} \| w \|_{1,h}. \quad (52)
\]

From (26) and (27), we have

\[
\text{Re } a_h(v_h, v_h) + \left(1 - \varepsilon + \frac{C}{\gamma_0} \right) \text{Im } a_h(v_h, v_h) \\
= \sum_{K \in T_h} \| \nabla v_h \|^2_{L^2(K)} - 2\text{Re } \sum_{e \in \mathcal{E}^I} \left\langle \left\{ \frac{\partial v_h}{\partial n_e} \right\}, [v_h] \right\rangle_{e} - \text{Re } \sum_{e \in \mathcal{E}^I} (1 - \mu) \left\langle \frac{\partial v_h}{\partial n_e}, v_h \right\rangle_{e} \\
+ \left(1 - \varepsilon + \frac{C}{\gamma_0} \right) \left(-\text{Im } \sum_{e \in \mathcal{E}^I} (1 - \mu) \left\langle \frac{\partial v_h}{\partial n_e}, v_h \right\rangle_{e} + \sum_{e \in \mathcal{E}^I \cup \Gamma} \frac{\beta_{1,e}}{h_e} \| \left\{ \frac{\partial v_h}{\partial n_e} \right\} \|^2_{L^2(e)} \right) \\
+ \sum_{e \in \mathcal{E}^I \cup \Gamma} \left(\frac{\gamma_{0,e}}{h_e} \| [v_h] \|^2_{L^2(e)} + \gamma_{1,e} h_e \| \left\{ \frac{\partial v_h}{\partial n_e} \right\} \|^2_{L^2(e)} \right) \\
\]
\[\begin{aligned}
&\|v_h\|_{1,h}^2 - 2\text{Re} \sum_{e \in \mathcal{E}} \left\langle \left\{ \frac{\partial v_h}{\partial n_e} \right\}, [v_h] \right\rangle_e - \text{Re} \sum_{e \in \mathcal{E}} (1 - \mu) \left\langle \frac{\partial v_h}{\partial n_e}, v_h \right\rangle_e \\
&+ \left(-\varepsilon + \frac{C}{\gamma_0}\right) \left(- \text{Im} \sum_{e \in \mathcal{E}} (1 - \mu) \left\langle \frac{\partial v_h}{\partial n_e}, v_h \right\rangle_e + \sum_{e \in \mathcal{E} \cup \mathcal{E}^\Gamma} \frac{\beta_{1,e}}{h_e} \left\| \frac{\partial v_h}{\partial \tau_e} \right\|_{L^2(e)}^2 \right) \\
&+ \sum_{e \in \mathcal{E} \cup \mathcal{E}^\Gamma} \left(\frac{\gamma_{0,e}}{h_e} \|v_h\|_{L^2(e)}^2 + \gamma_{1,e}h_e \left\| \frac{\partial v_h}{\partial n_e} \right\|_{L^2(e)}^2 \right).
\end{aligned} \] (53)

Using the Cauchy inequality, Young inequality and trace inequality, we obtain
\[\begin{aligned}
&\sum_{e \in \mathcal{E}} \left\langle \left\{ \frac{\partial v_h}{\partial n_e} \right\}, [v_h] \right\rangle_e \leq \sum_{e \in \mathcal{E}} \left\| \left\{ \frac{\partial v_h}{\partial n_e} \right\} \right\|_{L^2(e)} \left\| [v_h] \right\|_{L^2(e)} \\
&\leq \frac{\varepsilon}{3} \sum_{K \in \mathcal{T}_h} \|\nabla v_h\|_{L^2(K)}^2 + C \sum_{e \in \mathcal{E}} \frac{1}{\gamma_{0,e}} h_e \|v_h\|_{L^2(e)}^2.
\end{aligned} \] (54)
\[\begin{aligned}
&\sum_{e \in \mathcal{E}} \left\langle \frac{\partial v_h}{\partial n_e}, v_h \right\rangle_e \leq \sum_{e \in \mathcal{E}} \left\| \frac{\partial v_h}{\partial n_e} \right\|_{L^2(e)} \|v_h\|_{L^2(e)} \\
&\leq \frac{\varepsilon}{3} \sum_{K \in \mathcal{T}_h} \|\nabla v_h\|_{L^2(K)}^2 + C \sum_{K \in \mathcal{T}_h} h_{-2}^2 \|v_h\|_{L^2(K)}^2.
\end{aligned} \] (55)

In addition, there exist a constant \(C \) on each element \(K \) such that
\[\|\nabla v_h\|_{L^2(K)}^2 \leq Ch_{-2}^2 \|v_h\|_{L^2(K)}^2. \] (56)

Plugging (54) - (56) into (53), we get
\[\begin{aligned}
&\text{Re} a_h(v_h, v_h) + \left(1 - \varepsilon + \frac{C}{\gamma_0}\right) \text{Im} a_h(v_h, v_h) + C \sum_{K \in \mathcal{T}_h} h_{-2}^2 \|v_h\|_{L^2(K)}^2 \\
&\geq \text{Re} a_h(v_h, v_h) + \left(1 - \varepsilon + \frac{C}{\gamma_0}\right) \text{Im} a_h(v_h, v_h) + \frac{\varepsilon}{3} \sum_{K \in \mathcal{T}_h} \|\nabla v_h\|_{L^2(K)}^2 \\
&\geq \|v_h\|_{1,h}^2 - \frac{2\varepsilon}{3} \sum_{K \in \mathcal{T}_h} \|\nabla v_h\|_{L^2(K)}^2 - C \sum_{e \in \mathcal{E}} \frac{1}{\gamma_{0,e}} h_e \|v_h\|_{L^2(e)}^2 \\
&+ \left(-\varepsilon + \frac{C}{\gamma_0}\right) \sum_{e \in \mathcal{E} \cup \mathcal{E}^\Gamma} \left(\frac{\gamma_{0,e}}{h_e} \|v_h\|_{L^2(e)}^2 \right) \\
&+ \gamma_{1,e}h_e \left\| \frac{\partial v_h}{\partial n_e} \right\|_{L^2(e)}^2 + \frac{\beta_{1,e}}{h_e} \left\| \frac{\partial v_h}{\partial \tau_e} \right\|_{L^2(e)}^2.
\end{aligned} \]
The proof is completed.

The Lemma 4.5 directly implies the well-posedness of the scheme (18).

Theorem 4.6. There exists a unique solution $u_h \in V_h$ satisfying the scheme (18), for any $\gamma_{0,e} > 0$, $\gamma_{1,e} > 0$ and $\beta_{1,e} > 0$.

5. **Error analysis.** In this section, we shall derive the error estimates for the solution of DG approximation (18). We denote $\gamma_{1,e} \simeq \gamma_1 > 0$, $\gamma_0 = \min_{e \in \mathcal{E}_{1,k}^{\cup\mathcal{E}_{2}}} \gamma_{0,e}(> 0)$.

5.1. **Elliptic projection.** In this subsection, we introduce an elliptic projection and derive an error estimate for the projection. For any $w \in \mathcal{H} \cap H^1(\Omega)$, we define its elliptic projection $\tilde{w}_h \in V_{h,r}$ by

$$a_h(\tilde{w}_h, v_h) + ik\langle \tilde{w}_h, v_h \rangle_{\Gamma_0} = a_h(w, v_h) + ik\langle w, v_h \rangle_{\Gamma_0}, \quad \forall v_h \in V_{h,r}. \quad (58)$$

Letting $u \in \mathcal{H}$ be the solution of the problem (1) - (5) and $\tilde{u}_h \in V_h$ be its elliptic projection. Then, the definition (58) implies the following Galerkin orthogonality

$$a_h(u - \tilde{u}_h, v_h) + ik\langle u - \tilde{u}_h, v_h \rangle_{\Gamma_0} = 0, \quad \forall v_h \in V_{h,r}. \quad (59)$$

Lemma 5.1. Suppose $u \in \mathcal{H} \cap H^1(\Omega)$ is the solution of the problem (1) - (5). Then there hold the following estimates:

$$\|u - \tilde{u}_h\|_{1,h} + (\lambda k)^{\frac{3}{2}}\|u - \tilde{u}_h\|_{L^2(\Gamma_0)} \lesssim \lambda(\lambda + \gamma_1 + kh)^{\frac{3}{2}}kh, \quad (60)$$

$$\|u - \tilde{u}_h\|_{L^2(\Omega)} \lesssim \lambda(\lambda + \gamma_1 + kh)kh^2, \quad (61)$$

where $\lambda = 1 + \frac{1}{\gamma_0}$.

Proof. Letting \tilde{u}_h be the P_1-conforming finite element interpolation of u on the mesh \mathcal{T}_h and denote $\eta_h = \tilde{u}_h - \tilde{u}_h$. From $\eta_h + u - \tilde{u}_h = u - \tilde{u}_h$ and the Galerkin orthogonality (59), we get

$$a_h(\eta_h, \eta_h) + ik\langle \eta_h, \eta_h \rangle_{\Gamma_0} = a_h(u - \tilde{u}_h, \eta_h) + ik\langle u - \tilde{u}_h, \eta_h \rangle_{\Gamma_0}. \quad (62)$$

Assuming $\varepsilon = \frac{1}{2}, C > \frac{1}{2}$ in (49) and following (62), we get

$$\frac{1}{2}\|\eta_h\|_{1,h}^2 \leq \text{Re}(a_h(\eta_h, \eta_h)) + \left(\frac{1}{2} + \frac{C}{\gamma_0}\right) \text{Im}a_h(\eta_h, \eta_h)$$

$$= \text{Re}(a_h(\eta_h, \eta_h) + ik\langle \eta_h, \eta_h \rangle_{\Gamma_0}) - \left(\frac{1}{2} + \frac{C}{\gamma_0}\right) k\langle \eta_h, \eta_h \rangle_{\Gamma_0}$$

$$+ \left(\frac{1}{2} + \frac{C}{\gamma_0}\right) \text{Im}(a_h(\eta_h, \eta_h) + ik\langle \eta_h, \eta_h \rangle_{\Gamma_0})$$

$$= \text{Re}(a_h(u - \tilde{u}_h, \eta_h) + ik\langle u - \tilde{u}_h, \eta_h \rangle_{\Gamma_0}) - \left(\frac{1}{2} + \frac{C}{\gamma_0}\right) k\langle \eta_h, \eta_h \rangle_{\Gamma_0}$$
following lemma.

Define the error function

\[\omega = u - \bar{u}_h, \]

It shows that

\[\|\eta\|_{2,\cdot} <\|u - \bar{u}_h\|_{2,\cdot} + \lambda k\|u - \bar{u}_h\|_{2,(\Gamma_o)}, \]

which together with the regularity for the solution (cf. Theorem 1 in [18] and Section 3 in [34]) and estimates of finite element interpolation (cf. [11, 14]) gives

\[\|\eta\|_{2,\cdot}^2 + \lambda k\|\eta\|_{2,\cdot}^2 \lesssim \lambda^2\|u - \bar{u}_h\|_{2,\cdot}^2 + \lambda k\|u - \bar{u}_h\|_{2,(\Gamma_o)}^2 \lesssim \lambda^2 k^2 h^2(\lambda + \gamma_1 + k h). \]

The above inequality together with the fact that \(u - \bar{u}_h = u - \bar{u}_h - \eta_h \) implies the estimate (60). Next, we use the Aubin-Nitsche’s duality argument [11, 14] to show (61). Consider the following auxiliary problem

\[-\Delta \omega = u - \bar{u}_h \quad \text{in } \Omega, \]

\[\frac{\partial \omega}{\partial n} - ik \omega = 0 \quad \text{on } \Gamma_0, \]

\[\omega_1 - \omega_2 = 0 \quad \text{on } \Gamma, \]

\[\mu \frac{\partial \omega_1}{\partial n} - \frac{\partial \omega_2}{\partial n} = 0 \quad \text{on } \Gamma.\]

It shows that \(\omega \) satisfies

\[|\omega|_{H^2(\Omega)} \lesssim \|u - \bar{u}_h\|_{L^2(\Omega)}. \]

Testing equation (63) by \(u - \bar{u}_h \) and using (59), we get

\[\|u - \bar{u}_h\|_{L^2(\Omega)}^2 = \langle u - \bar{u}_h, \Delta \omega \rangle = a_h(u - \bar{u}_h, \omega) + ik\langle u - \bar{u}_h, \omega \rangle_{(\Gamma_o)} \]

\[= a_h(u - \bar{u}_h, \omega - \bar{\omega}_h) + ik\langle u - \bar{u}_h, \omega - \bar{\omega}_h \rangle_{(\Gamma_o)} \]

\[\leq \|u - \bar{u}_h\|_{1,\cdot} \|\omega - \bar{\omega}_h\|_{1,\cdot} + k\|u - \bar{u}_h\|_{L^2(\Gamma_o)} \|\omega - \bar{\omega}_h\|_{L^2(\Gamma_o)} \]

\[\lesssim \|u - \bar{u}_h\|_{1,\cdot}(\lambda + \gamma_1)\frac{1}{2}h|\omega|_{H^2(\Omega)} + k\|u - \bar{u}_h\|_{L^2(\Gamma_o)}h^\frac{1}{2}|\omega|_{H^2(\Omega)}. \]

Then, from (60), (67) and the above inequality, we obtain (61). The proof is completed.

\[\square \]

5.2. Error estimates. In this subsection, we shall derive error estimates for DG approximation (18). This goal will be achieved by making use of the stability estimate in Theorem 4.4 and the projection error estimate in Lemma 5.1.

Letting \(u \in \mathcal{H} \) and \(u_h \in V_h \) be the solution of (1) - (5) and of (18), respectively. Define the error function \(e_h = u - u_h \). Subtracting (18) from (17), the following equation holds

\[a_h(e_h, v_h) - k^2(e_h, v_h) + ik\langle e_h, v_h \rangle_{(\Gamma_o)} = 0 \quad \forall v_h \in V_{h,\Gamma}. \]

Letting \(\bar{u}_h \) be the elliptic projection of \(u \). Defining \(\eta = u - \bar{u}_h, \quad \xi = u_h - \bar{u}_h, \) we have \(e_h = \eta - \xi \). From (59) and (68), we get

\[a_h(\xi, v_h) - k^2(\xi, v_h) + ik\langle \xi, v_h \rangle_{(\Gamma_o)} = a_h(\eta, v_h) - k^2(\eta, v_h) + ik\langle \eta, v_h \rangle_{(\Gamma_o)} \]

\[= -k^2(\eta, v_h) \quad \forall v_h \in V_{h,\Gamma}. \]

The above equation implies that \(\xi \in V_h \) is the solution of (18) with the source form \(f = -k^2\eta \) and \(g = 0 \). Then by Theorem 4.4 and Lemma 5.1, we can obtain the following lemma.
Lemma 5.2. The difference ξ between the discrete solution u_h and its elliptic projection \bar{u}_h satisfies the following estimate
\[
\|\xi\|_{L^2(\Omega)} + \frac{1}{k}\|\xi\|_{1,h} \lesssim C_{sta}\lambda(\lambda + \gamma_1 + kh)k^3h^2,
\]
where C_{sta} is defined in Theorem 4.4 and $\lambda = 1 + \frac{1}{\sqrt{h}}$.

Combining Lemma 5.1 and Lemma 5.2, we obtain the main result in this paper.

Theorem 5.3. Let $u \in \mathcal{H}$ and $u_h \in V_h$ be the unique solutions of (1) - (5) and of (18), respectively. Then there exists two positive constants C_1 and C_2 such that the following error estimates hold
\[
\|u - u_h\|_{1,h} \leq \lambda(\lambda + \gamma_1 + kh)\left(C_1kh + C_2C_{sta}k^4h^2\right),
\]
where C_{sta} is defined in Theorem 4.4 and $\lambda = 1 + \frac{1}{\sqrt{h}}$.

Proof. It follows from Lemma 5.1 and Lemma 5.2 and the triangle inequality that
\[
\|u - u_h\|_{1,h} \leq \|\eta\|_{1,h} + \|\xi\|_{1,h}
\leq C_1(\lambda + \gamma_1 + kh)\frac{1}{2}kh + C_2C_{sta}(\lambda + \gamma_1 + kh)k^3h^2,
\]
where C_{sta} is defined in Theorem 4.4.

Remark 3. The estimates of Theorem 5.3 hold for any $h > 0$. There are so-called preasymptotic error estimates [28] (i.e., for the mesh in the regime $k^2h \geq 1$).

6. Numerical experiments. In this section, we will provide some numerical experiments to gauge the theoretical results and to test the performance of the DG method for solving the problem (1) - (5) in two dimensions. To this end, the following exact solutions are given
\[
u_1 = \frac{k_2\cos\left(k_2\sqrt{x^2+y^2}\right)}{k_2^2} - \frac{k_2\cos k_2 + i\sin k_2}{k_2^2\left(J_0(k_2) + iJ_1(k_2)\right)}J_0\left(k_2\sqrt{x^2+y^2}\right),
\]
\[
u_2 = \frac{\cos\left(k_2\sqrt{x^2+y^2}\right)}{k_2} - \frac{\cos k_2 + i\sin k_2}{k_2\left(J_0(k_2) + iJ_1(k_2)\right)}J_0\left(k_2\sqrt{x^2+y^2}\right),
\]
where $J_\nu(z)(\nu = 0,1)$ are Bessel functions of the first kind. The corresponding f_1 and f_2 are
\[
f_1 = \frac{k_2^2\sin(k_2r)}{k_2^2r} + \frac{k_2(k_2^2 - k_1^2)}{k_1^2}\left(\cos(k_2r) - \cos k_2 + i\sin k_2\right),
\]
\[
f_2 = \frac{\sin(k_2r)}{r},
\]
where $r = \sqrt{x^2+y^2}$. The datum g, g_1, g_2 on the right-hand side can be determined by the equations (3) - (5).
Figure 2. A sample mesh $T_{1/8}$ of Ω_1 (left) and Ω_2 (right).

Figure 3. $|u_{h,1}|_{1,h}$ (left) and $|u_{h,2}|_{1,h}$ (right) for $h = 1/64, h = 1/128, h = 1/256$.

We consider the domain Ω as the unit regular hexagon centered at the origin, Ω_2 as a smaller regular hexagon whose edge length is half of Ω and $\Omega_1 = \Omega \setminus \Omega_2$. For any positive integer m, let $T_{1/2^m}$ denote the regular triangulation that consists of $6 \cdot 2^{2m}$ congruent and equilateral triangles of size $h = 1/2^m$. The triangulation of Ω_2 consists of $3 \cdot 2^{2m-1}$ triangles. See Figure 2 for a sample triangulation $T_{1/8}$ of Ω_1 and Ω_2, respectively. The mesh generation and all computations are conducted in the MATLAB⃝ environment.

To study the stability estimate of the DG approximation, we use the following penalty parameters $\gamma_{0,e} = 100, \gamma_{1,e} = 0.1, \beta_{1,e} = 1$. Recall that u_h denotes the DG solution. Figure 3 plots the H^1-seminorm of the DG solution $|u_{h,1}|_{1,h}$ and $|u_{h,2}|_{1,h}$ with $h = 1/64, 1/128, 1/256$ and $(k_1, k_2) = (5(l+1), 5l), l = 1, 2, \ldots, 59$. It shows that

$$|u_{h,1}|_{1,h} \lesssim 1/2, \quad |u_{h,2}|_{1,h} \lesssim 1.$$

Then, we examine the sensitivity of the relative error $|u - u_h|_{1,H}/|u|_{1,H}$ of the DG solution in H^1-seminorm with respect to the penalty parameters $\gamma_{0,e}, \gamma_{1,e}, \beta_{1,e}$. We consider two cases of wave numbers, respectively, $k_1 = 50, k_2 = 40$ and $k_1 = 100, k_2 = 90$. We choose three groups of penalty parameters as follows:
Figure 4. Relative error of the DG solutions with the penalty parameters $\gamma_{1,e} = 0.03 + 0.06i, \beta_{1,e} = 1$ and each of the following $\gamma_{0,e}$: $\gamma_{0,e} = 0.01$ (solid line with \circ), $\gamma_{0,e} = 0.1$ (solid line), $\gamma_{0,e} = 10$ (dashed line) in the H^1-seminorm for $k_1 = 50, k_2 = 40$ (left) and $k_1 = 100, k_2 = 90$ (right).

Figure 5. Relative error of the DG solutions with the penalty parameters $\gamma_{0,e} = 100, \beta_{1,e} = 1$ and each of the following $\gamma_{1,e}$: $\gamma_{1,e} = 0.01$ (solid line with \circ), $\gamma_{1,e} = 0.1$ (solid line), $\gamma_{1,e} = 10$ (dashed line) in the H^1-seminorm for $k_1 = 50, k_2 = 40$ (left) and $k_1 = 100, k_2 = 90$ (right).

- $\gamma_{0,e} = \{0.01, 0.1, 1, 10\}, \gamma_{1,e} = 0.03 + 0.06i, \beta_{1,e} = 1$. Figure 4 displays the relative error $|u - u_h|_{1,h}/|u|_{1,h}$ with respect to h. We observe that the penalty parameter $\gamma_{0,e}$ has a small effect on the error in the H^1-seminorm.
- $\gamma_{0,e} = 100, \gamma_{1,e} = \{0.01, 0.1, 1, 10\}, \beta_{1,e} = 1$. The numerical results are plotted in Figure 5. It is observed that a large $\gamma_{1,e}$ results in a larger relative error.
- $\gamma_{0,e} = 100, \gamma_{1,e} = 0.03 + 0.06i, \beta_{1,e} = \{0.01, 0.1, 1, 10\}$. Figure 6 plots the numerical results and shows that the parameter $\beta_{1,e}$ does not affect the relative error.

We next test the effect of the large wave number for the error of the DG solution. Figure 7 plots the relative error of the DG solution in H^1-seminorm of different k_1, k_2. In this figure, it can be seen that for a large wave number, the relative error remains to be unchanged for large h, then decays with h being decreasing and converges at the order of $O(h)$. This indicates the presence of the pollution effect.
Figure 6. Relative error of the DG solutions with the penalty parameters $\gamma_{1,e} = 0.03 + 0.06i$, $\gamma_{0,e} = 100$ and each of the following $\beta_{1,e}: \beta_{1,e} = 0.01$ (solid line with ϕ), $\beta_{1,e} = 0.1$ (solid line), $\beta_{1,e} = 1$ (dashed line), $\beta_{1,e} = 10$ (dashed line) in the H^1-seminorm for $k_1 = 50, k_2 = 40$ (left) and $k_1 = 100, k_2 = 90$ (right).

Figure 7. Relative error of the DG solution for $k_1 = 50, k_2 = 45; k_1 = 100, k_2 = 95$ and $k_1 = 150, k_2 = 145$.

Set the penalty parameters as $\gamma_{0,e} = 100$, $\gamma_{1,e} = 0.01 + 0.07i$, $\beta_{1,e} = 1$ and $k_1 = 100, k_2 = 90$, $h = 1/64$. In Figure 8 and Figure 9, we plot the DG numerical solution $u_{h,1}(u_{h,2})$ and the exact solution $u_1(u_2)$, respectively. It shows that the DG solution has the same shape as the exact solution although its amplitude is not very accurate. However, Figure 10 and Figure 11 show that when we set $k_1 = 100, k_2 = 50$, the DG solution $u_{h,1}$ have different shape and amplitude with the exact solution u_1.

Remark 4. When we design the numerical tests, we found that if k_1 and k_2 have bigger difference, the error will be bigger. Therefore, we set that the values of k_1 and k_2 are near in the numerical tests. And we will research that how the difference between k_1 and k_2 has affected the errors in our future work.

The traces of the DG solution with penalty parameters $\gamma_{0,e} = 100$, $\gamma_{1,e} = -0.04 + 0.08i$, $\beta_{1,e} = 1$ in xz-plane display the damping for waves. In Figure 12, we display
Figure 8. Surface plots of exact solution u_1 (left) and the DG solution $u_{h,1}$ (right) for $k_1 = 100$, $k_2 = 90$ and $h = 1/64$.

Figure 9. Surface plots of exact solution u_2 (left) and the DG solution $u_{h,2}$ (right) for $k_1 = 100$, $k_2 = 90$ and $h = 1/64$.

Figure 10. Surface plots of exact solution u_1 (left) and the DG solution $u_{h,1}$ (right) for $k_1 = 100$, $k_2 = 50$ and $h = 1/64$.

The traces of the DG solution for $k_1 = 100$, $k_2 = 90$ with mesh size $h = 1/64, 1/128$. It shows that the exact solution and the DG solution look very close to each other. This indicates an excellent convergence of the DG method when the mesh is refined. Furthermore, we can obtain a fast convergence by using high order polynomials with
Figure 11. Surface plots of exact solution u_2 (left) and the DG solution $u_{h,2}$ (right) for $k_1 = 100, k_2 = 50$ and $h = 1/64$.

Figure 12. The traces of the DG solution using piecewise linear polynomials in the xz-plane for $k_1 = 100, k_2 = 90$ with mesh size $h = 1/64$ (left) and $h = 1/128$ (right). The purple lines give the trace of the exact solution in xz-plane.

Appendix: The derivation processes of the DG formulation. In this section we present the detailed derivation processes of the DG formulation.

Testing (1), (2) by $v \in \mathcal{H} \cap H^1_{0,\Gamma}(\Omega)$ and using integration by parts, we get

$$\int_{\Omega} fv = \int_{\Omega_1} f_1 v_1 + \int_{\Omega_2} f_2 v_2$$

$$= \int_{\Omega_1} (-\Delta u_1 - k_1^2 u_1) v_1 + \int_{\Omega_2} (-\Delta u_2 - k_2^2 u_2) v_2$$

$$= \sum_{K \in \mathcal{T}_h, 1} ((\nabla u_1, \nabla v_1)_K - k_1^2 (u_1, v_1)_K) + \sum_{K \in \mathcal{T}_h, 2} ((\nabla u_2, \nabla v_2)_K - k_2^2 (u_2, v_2)_K)$$

$$- \sum_{e \in \mathcal{E}^{I_1}} \langle \{ \frac{\partial u_1}{\partial n_e} \}, [v_1] \rangle_e - \sum_{e \in \mathcal{E}^{B}} \langle \{ \frac{\partial u_1}{\partial n_e} \}, v_1 \rangle_e - \sum_{e \in \mathcal{E}^{\Gamma}} \langle \{ \frac{\partial u_1}{\partial n_e} \}, v_1 \rangle_e$$
more, the above derivation processes of the formulation show that a still stable and convergent, but under a more stringent mesh constraint. What’s is a consistent discretization for \(J \) shown that without Galerkin methods. In Remark 3.1(e) of the reference [22], the authors have demonstrated that without \(J_1 \) term and \(L_1 \) term in \(a_h(\cdot, \cdot) \) the methods of this paper are still stable and convergent, but under a more stringent mesh constraint. What’s more, the above derivation processes of the formulation show that \(a_h(\cdot, \cdot) + ik(\cdot, \cdot)_{\Gamma_0} \) is a consistent discretization for \(-\Delta \), i.e., \(J_0(u, v) = J_1(u, v) = L_1(u, v) = 0 \) for all \(u \in H^2(\Omega), v \in \mathcal{H} \cap H^1_0(\Omega) \).

\[
- \sum_{e \in \mathcal{E}^{I_2}} \langle \{ \frac{\partial u_2}{\partial n_e} \}, [v_2] \rangle_e - \sum_{e \in \mathcal{E}^{I}} \langle \frac{\partial u_2}{\partial n_e}, v_2 \rangle_e \\
= \sum_{K \in \mathcal{T}_{h,1}} ((\nabla u_1, \nabla v_1)_K - k_1^2(u_1, v_1)_K) + \sum_{K \in \mathcal{T}_{h,2}} ((\nabla u_2, \nabla v_2)_K - k_2^2(u_2, v_2)_K) \\
- \sum_{e \in \mathcal{E}^{I_1}} \langle \{ \frac{\partial u_1}{\partial n_e} \}, [v_1] \rangle_e - \sum_{e \in \mathcal{E}^{I_2}} \langle \{ \frac{\partial u_2}{\partial n_e} \}, [v_2] \rangle_e - \sum_{e \in \mathcal{E}^{I_0}} \langle \frac{\partial u_1}{\partial n_e}, v_1 \rangle_e \\
- \sum_{e \in \mathcal{E}^{I}} \langle \frac{\partial u_1}{\partial n_e} - \frac{\partial u_2}{\partial n_e}, v_1 \rangle_e \\
= \sum_{K \in \mathcal{T}_{h}} ((\nabla u, \nabla v)_K - k^2(u, v)_K) - \sum_{e \in \mathcal{E}^{I}} \langle \{ \frac{\partial u}{\partial n_e} \}, [v] \rangle_e - \sum_{e \in \mathcal{E}^{I_0}} \langle g, v_1 \rangle_e \\
+ \sum_{e \in \mathcal{E}^{I_0}} ik_1 \langle u_1, v_1 \rangle_e - \sum_{e \in \mathcal{E}^{I}} \langle (1 - \mu) \frac{\partial u_1}{\partial n_e}, v_1 \rangle_e - \sum_{e \in \mathcal{E}^{I}} \langle g_2, v_1 \rangle_e.
\]

Then the variational formulation of the problem (1) - (5) is: finding \(u \in \mathcal{H} \) and \(u_1 - u_2 = g_1 \) on \(\Gamma \), such that

\[
a_h(u, v) - k^2(u, v) + ik(u, v)_{\Gamma_0} = l(v) \quad \forall v \in \mathcal{H} \cap H^1_0(\Omega),
\]

where \(a_h(\cdot, \cdot) \) and \(l(\cdot) \) are defined in (13) and (14), respectively. The three terms \(J_0(\cdot, \cdot), J_1(\cdot, \cdot), L_1(\cdot, \cdot) \) are the penalty terms, which penalize the jump of the function values, the jump of the normal derivatives and the jump of the tangential derivatives, respectively. The term \(J_0 \) is necessary to maintain the stability of the discontinuous Galerkin methods. In Remark 3.1(e) of the reference [22], the authors have demonstrated that without \(J_1 \) term and \(L_1 \) term in \(a_h(\cdot, \cdot) \) the methods of this paper are still stable and convergent, but under a more stringent mesh constraint. What’s more, the above derivation processes of the formulation show that \(a_h(\cdot, \cdot) + ik(\cdot, \cdot)_{\Gamma_0} \) is a consistent discretization for \(-\Delta \), i.e., \(J_0(u, v) = J_1(u, v) = L_1(u, v) = 0 \) for all \(u \in H^2(\Omega), v \in \mathcal{H} \cap H^1_0(\Omega) \).
Acknowledgments. The authors are grateful to the editor and the anonymous referees for their helpful comments and suggestions on the revision of the manuscript.

REFERENCES

[1] M. Ainsworth, P. Monk and W. Muniz, Dispersive and dissipative properties of discontinuous Galerkin finite element methods for the second-order wave equation, J. Sci. Comput., 27 (2006), 5–40.

[2] G. B. Alvarez, A. F. D. Loula, E. G. Dutra do Carmo and F. A. Rochinha, A discontinuous finite element formulation for Helmholtz equation, Comput. Methods Appl. Mech. Engrg., 195 (2006), 4018–4035.

[3] T. S. Angell, R. E. Kleinman and F. Hettlich, The resistive and conductive problems for the exterior Helmholtz equation, SIAM J. Appl. Math., 50 (1990), 1607–1622.

[4] D. N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal., 19 (1982), 742–760.

[5] D. N. Arnold, F. Brezzi, B. Cockburn and L. D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39 (2002), 1749–1779.

[6] A. K. Aziz and A. Werschulz, On the numerical solutions of Helmholtz’s equation by the finite element method, SIAM J. Numer. Anal., 17 (1980), 681–686.

[7] I. Babuška, F. Ihlenburg, E. T. Paik and S. A. Sauter, A generalized finite element method for solving the Helmholtz equation in two dimensions with minimal pollution, Comput. Methods Appl. Mech. Engrg., 128 (1995), 325–359.

[8] G. A. Baker, Finite element methods for elliptic equations using nonconforming elements, Math. Comp., 31 (1977), 45–59.

[9] G. Bao, Finite element approximation of time harmonic waves in periodic structures, SIAM J. Numer. Anal., 32 (1995), 1155–1169.

[10] A. Ben Abda, F. Ben Hassen, J. Leblond and M. Mahjoub, Sources recovery from boundary data: A model related to electroencephalography, Math. Comput. Modelling, 49 (2009), 2213–2223.

[11] C. L. Chang, A least-squares finite element method for the Helmholtz equation, Comput. Methods Appl. Mech. Engrg., 83 (1990), 1–7.

[12] Z. Chen and H. Wu, An adaptive finite element method with perfectly matched absorbing layers for the wave scattering by periodic structures, SIAM J. Numer. Anal., 41 (2003), 799–826.

[13] M. Cheney and B. Borden, Problems in synthetic-aperture radar imaging, Inverse Problems, 25 (2009), 18pp.

[14] B. Cockburn, G. E. Karniadakis and C.-W. Shu, Discontinuous Galerkin Methods. Theory, Computation and Applications, Lecture Notes in Computational Science and Engineering, 11, Springer-Verlag, Berlin, 2011.

[15] B. Cockburn and C.-W. Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal., 35 (1998), 2440–2463.

[16] D. Colton and P. Monk, The numerical solution of the three-dimensional inverse scattering problem for time harmonic acoustic waves, SIAM J. Sci. Statist. Comput., 8 (1987), 278–291.

[17] M. Costabel and E. Stephan, A direct boundary integral equation method for transmission problems, J. Math. Anal. Appl., 106 (1985), 367–413.

[18] P. Cummings and X. Feng, Sharp regularity coefficient estimates for complex-valued acoustic and elastic Helmholtz equations, Math. Models Methods Appl. Sci., 16 (2006), 139–160.

[19] V. Dolejší, M. Feistauer and V. Sobotíková, Analysis of the discontinuous Galerkin method for nonlinear convection-diffusion problems, Comput. Methods Appl. Mech. Engrg., 194 (2005), 2709–2733.

[20] B. Engquist and A. Majda, Radiation boundary conditions for acoustic and elastic wave calculations, Comm. Pure Appl. Math., 32 (1979), 314–358.

[21] X. Feng and O. A. Karakashian, Fully discrete dynamic mesh discontinuous Galerkin methods for the Cahn-Hilliard equation of phase transition, Math. Comp., 76 (2007), 1093–1117.

[22] X. Feng and H. Wu, Discontinuous Galerkin methods for the Helmholtz equation with large wave number, SIAM J. Numer. Anal., 47 (2009), 2872–2896.

[23] X. Feng and Y. Xing, Absolutely stable local discontinuous Galerkin methods for the Helmholtz equation with large wave number, Math. Comp., 82 (2013), 1269–1296.
[24] H. Geng, T. Yin and L. Xu, A priori error estimates of the DtN-FEM for the transmission problem in acoustics, *J. Comput. Appl. Math.*, 313 (2017), 1–17.

[25] U. Hetmaniuk, Stability estimates for a class of Helmholtz problems, *Commun. Math. Sci.*, 5 (2007), 665–678.

[26] R. Hiptmair and P. Meury, Stabilized FEM-BEM coupling for Helmholtz transmission problems, *SIAM J. Numer. Anal.*, 44 (2006), 2107–2130.

[27] G. C. Hsiao and L. Xu, A system of boundary integral equations for the transmission problem in acoustics, *Appl. Numer. Math.*, 61 (2011), 1017–1029.

[28] F. Ihlenburg and I. Babuška, Finite element solution of the Helmholtz equation with high wave number. I. The h-version of the FEM, *Comput. Math. Appl.*, 30 (1995), 9–37.

[29] F. Ihlenburg, *Finite Element Analysis of Acoustic Scattering*, Applied Mathematical Sciences, 132, Springer-Verlag, New York, 1998.

[30] G. Inglese, An inverse problem in corrosion detection, *Inverse Problems*, 13 (1997), 977–994.

[31] C. Johnson and J.-C. Nédélec, On the coupling of boundary integral and finite element methods, *Math. Comp.*, 35 (1980), 1063–1079.

[32] R. Kittappa and R. E. Kleinman, Acoustic scattering by penetrable homogeneous objects, *J. Mathematical Phys.*, 16 (1975), 421–432.

[33] R. Kress and G. F. Roach, Transmission problems for the Helmholtz equation, *J. Mathematical Phys.*, 19 (1978), 1433–1437.

[34] A. Moiola and E. A. Spence, Acoustic transmission problems: Wavenumber-explicit bounds and resonance-free regions, *Math. Models Methods Appl. Sci.*, 29 (2019), 317–354.

[35] L. Mu, J. Wang, X. Ye and S. Zhao, A numerical study on the weak Galerkin method for the Helmholtz equation, *Commun. Comput. Phys.*, 15 (2014), 1461–1479.

[36] J. Shen and L.-L. Wang, Analysis of a spectral-Galerkin approximation to the Helmholtz equation in exterior domains, *SIAM J. Numer. Anal.*, 45 (2007), 1954–1978.

[37] T. Warburton and J. S. Hesthaven, On the constants in hp-finite element trace inverse inequalities, *Comput. Methods Appl. Mech. Engrg.*, 192 (2003), 2765–2773.

[38] M. F. Wheeler, An elliptic collocation-finite element method with interior penalties, *SIAM J. Numer. Anal.*, 15 (1978), 152–161.

[39] H. Wu, Pre-asymptotic error analysis of CIP-FEM and FEM for the Helmholtz equation with high wave number. Part I: Linear version, *IMA J. Numer. Anal.*, 34 (2014), 1266–1288.

Received January 2019; 1st revision June 2019; 2nd revision August 2019.

E-mail address: huqj2015@stu.xjtu.edu.cn
E-mail address: zhihaoge@henu.edu.cn
E-mail address: heyn@mail.xjtu.edu.cn