New components of the Dictyostelium PKA pathway revealed by Bayesian analysis of expression data

Anup Parikh1,2, Eryong Huang2, Christopher Dinh3, Blaz Zupan2,4, Adam Kuspa2,3, Devika Subramanian5*, Gad Shaulsky1,2*

Abstract
Background: Identifying candidate genes in genetic networks is important for understanding regulation and biological function. Large gene expression datasets contain relevant information about genetic networks, but mining the data is not a trivial task. Algorithms that infer Bayesian networks from expression data are powerful tools for learning complex genetic networks, since they can incorporate prior knowledge and uncover higher-order dependencies among genes. However, these algorithms are computationally demanding, so novel techniques that allow targeted exploration for discovering new members of known pathways are essential.

Results: Here we describe a Bayesian network approach that addresses a specific network within a large dataset to discover new components. Our algorithm draws individual genes from a large gene-expression repository, and ranks them as potential members of a known pathway. We apply this method to discover new components of the cAMP-dependent protein kinase (PKA) pathway, a central regulator of Dictyostelium discoideum development. The PKA network is well studied in D. discoideum but the transcriptional networks that regulate PKA activity and the transcriptional outcomes of PKA function are largely unknown. Most of the genes highly ranked by our method encode either known components of the PKA pathway or are good candidates. We tested 5 uncharacterized highly ranked genes by creating mutant strains and identified a candidate cAMP-response element-binding protein, yet undiscovered in D. discoideum, and a histidine kinase, a candidate upstream regulator of PKA activity.

Conclusions: The single-gene expansion method is useful in identifying new components of known pathways. The method takes advantage of the Bayesian framework to incorporate prior biological knowledge and discovers higher-order dependencies among genes while greatly reducing the computational resources required to process high-throughput datasets.

Background
Cellular function depends on the coordination of thousands of genes whose expression and activities are regulated by complex networks. Understanding these networks is essential for elucidating cell function, and is a central question in systems biology. PKA (cAMP-dependent protein kinase) is an important regulator of cellular function in many eukaryotes. The role of PKA in development has been studied extensively in the amoeba Dictyostelium discoideum using biochemistry, genetics and cell biology, but the underlying transcriptional regulatory network remains largely unknown. For example, one of the most important missing components is CREB (cAMP-response element-binding protein), the bZIP transcription factor that couples cAMP signaling with gene expression in most eukaryotes [1]. We have used gene-expression data from thousands of experiments to improve our understanding of PKA regulation and to uncover new components in the network. D. discoideum cells are free-living soil amoebae that prey on bacteria and propagate as single-celled organisms when food is abundant. Upon starvation, the cells

* Correspondence: devika@rice.edu; gadi@bcm.edu
1 Graduate program in Structural Computational Biology and Molecular Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
2 Department of Computer Science, Rice University, 6100 Main St, MS 132, Houston, TX 77005, USA

© 2010 Parikh et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
aggregate, differentiate into 2 types and form fruiting bodies that consist of balls of spores carried atop cellular stalks [2]. The control of cAMP synthesis and the regulation of PKA are essential for the transition from growth to development and for all subsequent developmental stages (Figure 1). Mutations in genes of the PKA pathway cause severe developmental defects. Elimination of positive regulators results in lack of aggregation and elimination of negative regulators causes precocious development [3]. Genome-scale analysis of the D. discoideum PKA regulatory network should help to identify pathway components and reveal emergent properties that may predict novel network behavior.

Recently, many techniques to analyze gene-expression patterns have been suggested. Methods using clustering or correlation [4-6] have fallen short of uncovering the complex dependencies governing regulatory networks. Many probabilistic graphical approaches, using probabilistic Boolean networks, information theory, and Bayesian networks, have been used to model the connectivity of regulatory networks. In a probabilistic Boolean network, a gene state is predicted from the state of several other genes by a set of probabilistic functions [7]. Information theory approaches, such as ARACNE, compare expression profiles between all genes using mutual information as a generalized measure of correlation [8]. Bayesian networks are useful because they can model higher than pairwise orders of dependences between genes and can incorporate existing knowledge [9-11]. They have been used to learn direct, causal dependencies among genes from expression data, distinguishing them from simple correlations [12]. Unfortunately, a major limitation of Bayesian network algorithms is their inability to model cyclic networks. Furthermore, algorithms that infer network structure \textit{ab initio} from experimental data scale super-exponentially with the number of variables (genes), so restrictive assumptions must be made for computational feasibility. State-of-the-art algorithms that provide exact results can only handle networks with 30-50 genes [13], while heuristic approaches often require strong assumptions [14], and rely on the availability of very large, high quality datasets that represent a wide range of states for each gene in the network. The paucity of such datasets in biology makes network structure inference challenging.

Methods

Microarray data

We created a microarray data management system for 2,495 experiments that consists of gene-expression data from various strains and mutants grown under many different conditions. The microarrays represent 4,053 \textit{D. discoideum} genes [15]. Our data management and analysis pipeline incorporates the LIMMA package [16] in R/BioConductor for quality control and normalization. Since these data are derived from different experiments under different conditions, we implemented a normalization algorithm, which accounts for variation within and between experiments [17], and a filtering schema to reject low quality data (data with low correlation between on-chip replications). Individual chips with low correlation between duplicate spots and duplicate spots with low correlation across all chips were removed. Chips passing the quality filter were normalized using the “prinfty loess” normalization function in LIMMA, followed by median scaling. Print tip normalization accounts for signal intensity biases introduced during the array printing process, while loess normalization removes the biases introduced by different labeling dyes [18]. Next the data are median-scaled to account for differences in hybridization kinetics across experiments. Finally the expression data are merged into a unified dataset to allow meta-analysis. To deal with the inherent noise in gene expression data, the expression values were discretized into three categories: under-expressed, normal and over-expressed, as compared to the average across all experiments [19]. We tested multiple discretization strategies and found they made little difference to the final Bayesian analysis. The entire dataset is available at http://www.ailab.si/dictyexpress/data.htm.
Bayesian networks
We used Bayesian networks [20] to model the core PKA pathway (Figure 1). A Bayesian network encodes a pathway as a joint probability distribution over variables denoting the expression levels of all the genes in that pathway. The network is a factored, graphical representation of the full joint distribution over the expression levels. The graph structure of the network encodes conditional independence relationships between the genes. More formally, a Bayesian network over a set \(V = \{V_1, \ldots, V_n\} \) of \(n \) genes is a pair \((G, \theta)\), where \(G \) is a directed acyclic graph whose vertices represent the variables \(V_1, \ldots, V_n \), and whose edges represent direct dependencies between the variables and \(\theta \) represents the set of conditional probability distributions of the form \(P(V_i | \text{Parents}(V_i, G)) \), for all \(i = 1, \ldots, n \). The qualitative part of the model is the topology of the \(G \), while the quantitative part is the set \(\theta \) of local conditional probability distributions. The full joint probability distribution \(P(V_1, \ldots, V_n) \) can be reconstructed as the product of the individual conditional probability distributions in \(\theta \).

Learning Bayesian networks and the Single-gene expansion strategy
The problem of learning a Bayesian network from data is posed as an optimization problem: given a data set \(D = \{\nu | \nu \in \mathbb{R}^m\} \) of \(m \) joint measurements of \(n \) genes, find a network \(B^* = (G^*, \theta^*) \) which maximizes the posterior probability of the network given the data.

\[
B^* = \arg\max_G P(G | D) = \arg\max_G P(D | G)P(G) = \arg\max_G \int P(D | G, \theta)P(\theta | G) \, d\theta P(G)
\]

The first term \(P(D|G, \Theta) \) is the likelihood of the expression data \(D \) given the network \((G, \theta) \), the second term is the probability of the parameters \(\Theta \) given the graph structure, and the third term is the prior probability of the graph \(G \). To compute the posterior probability of a graph \(G \) with respect to the data set \(D \), we assume a uniform graph prior \(P(G) \), and a Dirichlet prior [11] for \(P(\theta | G) \). The best network with respect to the data is one that maximizes the posterior probability \(P(G|D) \). The logarithm of \(P(G|D) \) is called the Bayesian score of the network. Finding the network with the highest Bayesian score is known to be NP-complete [11]. There are two heuristic approaches used to finding approximate solutions to the combinatorial optimization problem - direct search for a graph \(G \) guided by the Bayesian scoring function, and using Markov chain Monte Carlo sampling of graphs from the posterior distribution \(P(G|D) \). In this paper, we propose a modification of the direct search procedure described in [10]. Instead of starting \textit{ab initio}, we began with a known network, including the member genes and their connectivities and extend, one gene at a time, from a genome wide expression data set. We call this the \textit{single-gene expansion strategy}. Starting with a core pathway of 5 genes in the PKA pathway (Figure 1), we expanded the network by adding a single gene at a time in all possible ways that preserve the acyclicity of the expanded network. In all, up to \(2^{10} \) networks were considered for each gene, corresponding to all possible ways the gene can be added to the core network. Then we calculate the Bayesian score of each expanded 6-node network. The highest scoring 6-node network represents the likelihood that the inserted gene is involved in the PKA pathway. The score associated with the gene, called the Bayesian addition score, is the difference between the Bayesian score of the best 6-node network with the gene, and the Bayesian score of the core pathway (i.e., without the gene). The rank of each inserted gene is determined by its Bayesian addition score, which was computed as follows:

\[
\text{Bayesian addition score (gene,)} = \left[\text{BayesianScore (G + gene, D)} \right] - \left[\text{BayesianScore (G, D)} \right]
\]

where \(D \) is the set of high quality data for the genes in the network, and \(G \) is the core PKA network. We chose not to perform cross-validation, since this analysis would require random sub-sampling of the expression dataset resulting in the exclusion of different perturbation experiments. Modeling the data subsets would produce highly variable sub-optimal Bayesian addition scores that do not reflect the most likely model given the entire dataset.

The single-gene expansion strategy and the computation of the Bayesian addition scores was implemented using the Bayes Net Toolbox for Matlab [20]. The Matlab script we used is provided in Additional file 1. Bayesian addition scores were calculated for 4,053 genes in our expression data set.

Co-expression analysis
As a simpler alternative to the proposed technique we have considered co-expression analysis, which does not take into account a prior knowledge of network structure and instead only considers pairwise interactions between genes. We used correlation between expression levels of a given gene and the genes in the core pathway as a measure of its relevance to the network. In particular, we defined a co-expression score of a gene as the minimum pairwise distance between the gene and every member of the core network.

\[
\text{Co-expression score (gene,)} = \min \left\{ \text{distance (gene, Core)} \right\}
\]
The co-expression score was used to rank the 4,053 genes in our expression data set. There are many distance measures that can be used, including Pearson correlation and Euclidean distance. While Euclidean distances are very sensitive to the magnitudes of expression levels, Pearson correlations are more robust since they measure the strength and direction of a (linear) relationship between expression levels. Therefore, we chose to use Pearson correlation over Euclidean distance in our analysis. The co-expression score of a new gene is the highest Pearson correlation between the gene and each of the other genes in the core network.

Statistical analyses

Hypergeometric distribution (Phyper function in the statistical software package R) was used to determine enrichment of developmental genes among the top-ranked genes with published phenotypes. All published mutants and their phenotypes are available at http://www.dictybase.org. We used a 1-sided, unequal variance Student’s t-test (t.test function in the statistical software package R) to examine whether the expression values of some of the genes were characterized by higher variability than the other genes.

GST-fusion protein and EMSA in vitro

The bZIP region of b zapF, coding for the DNA-binding domain and the leucine zipper domain, was cloned into the pGEX4T1 vector (Amersham Biosciences) upstream of GST to generate a GST-fusion protein. The construct was verified by restriction analysis and sequencing and transformed into E. coli strain BL21star (Invitrogen). Gene expression was induced with IPTG and the protein was purified on glutathione-sepharose beads (Amersham Biosciences) according to the manufacturer’s recommended protocol. The protein was used in an electrophoretic mobility shift assay (EMSA) [21] with 2 double-stranded oligonucleotides. The CRE-containing oligonucleotide was 5’ AGC TAA TAT GAG AAA ATT GAC GTC ATT AAC TTT T 3’ (the CRE sequence is shown in bold letters), and the CRE-negative oligonucleotide was 5’ AGC TAA TAT GAG AAA ATT CAC AAAAT TT AAC TTT T 3’, (mutations of the CRE sequence are underlined). The oligonucleotides were annealed with complementary oligonucleotides (5’ AAA AGT TAA TGA CTT CA GT GAA TTT T 3’ and 5’ AAA AGT TAA TTT TGT GAA TTT T 3’, respectively) and labeled radioactively by filling in with Klenow fragment of DNA polymerase (Invitrogen) in the presence of α-32P-dATP. The labeled oligonucleotides were mixed with the purified protein at room temperature, incubated for 30 minutes and resolved by electrophoresis through a native 5% polyacrylamide gel in 0.5× TBE buffer at 200 volts for 2 hours. The gels were dried under reduced pressure and autoradiography was performed to visualize the binding products.

Results

We extended the Bayesian network framework to facilitate an exploratory analysis of specific pathways to identify new potential members. We started by testing whether transcriptional profiles could provide information for reconstruction of a regulatory network. We analyzed 2,495 expression-array experiments, consisting of data on 4,053 genes, including 5 genes from the established PKA pathway (Figure 1). The pathway was constructed without consideration of gene expression, so there was no reason to assume that it could be reconstructed from expression data. Nevertheless, we chose this network for several reasons, not the least of which is its biological significance. Firstly, we assumed that it would provide a more rigorous test of the approach than the analysis of a known transcriptional network. Moreover, the network includes cases in which two genes coordinate the expression of a third gene, but the two are not necessarily coordinately regulated. We postulated that incorporating prior knowledge from other sources would allow better identification of potential pathway members that depend on two or more core members.

The transcriptional data we used were from cells with different genotypes that were subjected to various growth and developmental conditions [15,22-28]. All the data are available in various public repositories, but we have also collected and deposited them in our repository for added convenience http://www.aialab.si/dictyexpress/data.htm. We used the Bayesian scoring function to evaluate all possible networks connecting the 5 genes. As a control, the same networks were scored with randomly shuffled expression data (Figure 2). We found that the network scores obtained from the intact data were variable, whereas the network scores obtained from the shuffled data were nearly indistinguishable, indicating that Bayesian modeling is capable of extracting significant biological information from this domain. The rank of the known 5-gene network was 10,313, which is not significantly different from the rank obtained from the shuffled data (Figure 2). This finding was expected because the pathway was constructed without consideration of transcriptional data and because the 5 genes are not coordinately regulated. This finding is not related to the applicability of our algorithm, since our goal is to discover potential new members of a known pathway, rather than to rediscover the topology of a known pathway. Additionally, since mRNA levels do not necessarily correlate with protein levels and protein function, we use transcriptional data
only as a surrogate measure to discover new members of the PKA pathway. To find new pathway members, we implemented a single-gene expansion approach. We expanded the PKA pathway, which includes 5 genes and their connectivities (Figure 1), by adding a single new gene at a time to make all possible 6-node networks. We scored the new networks by calculating the Bayesian addition scores, e.g. the difference between the Bayesian score of the augmented network and that of the core network.

The scores determine the rank of the inserted gene among all genes in the dataset - a higher rank indicates a higher conditional dependence between the new gene and the PKA network, as a whole. Figure 3A shows the distribution of the Bayesian addition scores for all the genes. The near-horizontal center of the sigmoid curve shows that most genes are not significantly different from each other in their effect on the network. A few genes received high scores, suggesting significant relationships with the network (the left part of the plot) and a few received low scores (the right part of the plot). The latter is due to low-quality data, since the expression values were characterized by high variability compared to the other genes (Student’s t-test p-value 4 × 10^{-14}). These findings suggest that only a few new genes may be involved in the PKA pathway. We therefore focused our analysis on the 209 genes that ranked as the top 5% (black line, Figure 3A). This group contains mostly novel genes without definable domains and several genes of known or presumed function (Additional file 2, Table S1).

Mutations in known PKA-pathway genes cause developmental defects [27]. We postulated that mutations in new pathway genes would also cause such phenotypes. The *Dictyostelium* genome is sparsely annotated - only 433 genes have known or presumed function. Despite this sparse annotation, we find that 13 of the 209 top ranked genes have been characterized previously, representing a statistically significant enrichment of genes with known or presumed function (Hypergeometric Test, p-value 0.005). Of the 13 previously characterized genes, previous work has shown that 12 are essential for proper development (Table 1). One possible explanation for this finding could have been that published work is skewed in favor of mutants with developmental...
abnormalities. However, we calculated that only 67% of all the characterized mutants in *D. discoideum* have developmental abnormalities. Thus, the enrichment we observed of genes essential for development is significantly higher than that publication skewing (Hypergeometric Test, p-value 0.002). The published data suggest that most of the 12 genes are involved in the PKA network (Table 1), validating the single-gene expansion approach.

To test whether the single-gene expansion method has an advantage over a simpler approach of identifying co-expressed genes, we subjected the data to a similar analysis using co-expression networks instead of Bayesian networks. Unlike co-expression analysis, our addition procedure goes beyond considering pairwise interactions between the new gene and the existing network, and includes all potential n-ary interactions to judge the relevance of the gene to the PKA pathway. Therefore we expected the single-gene expansion method performance to be comparable to co-expression networks when genes have simple pairwise dependences, but to have an advantage in discovering genes with higher-order dependences in the core network. We measured the pairwise similarity of each new gene to each of the 5 PKA pathway genes using Pearson’s correlation. Figure 3B show the distribution of co-expression scores for all the genes. The shape of the curve we observed is also sigmoid but it lacks distinct groups of high and low likelihood scores. This observation suggests that the co-expression method was less efficient in distinguishing potential network members from unrelated genes at the high end, and performed very poorly on genes with low quality data at the low end. Therefore, we used the cutoff identified using the single-gene expansion method and focused our comparison on the top 5% ranked genes by both analyses. We found that 133 of the top-ranking genes were discovered by both methods (Additional file 2, Table S1 and Additional file 3, Table S2), suggesting that many of the 209 top-ranked genes have relatively simple pairwise dependences with one of the genes in the 5-gene network. The remaining 76 genes not revealed by the pairwise analysis, therefore, are likely dependent on 2 or more genes in the core network. To test that possibility we computed the number of dependences on core network genes for each of the 76 genes discovered only by the single-gene expansion method. We found that the number of dependences on core network genes was significantly higher for those 76 genes compared to the genes found by both methods (Students t-test, p-value 0.01) (Additional file 2, Table S1).

To further validate our approach, we tested additional *Dictyostelium* strains with mutations in genes from the top 5% whose developmental roles were unknown (Table 2). Our selection criteria included availability of

Table 1 Retrospective analysis of high-ranking genes

Bayesian Rank	Co-exp Rank	Gene name	Mutant phenotype	Reference
4	16	dhkK	Aberrant slug migration	[40]
33	31	gbIA	Development arrests at mound stage	[41]
42	69	wimA	Aberrant fruiting body morphology	[42]
77	44	dhkC	Precocious development	[43]
79	8	comC	Aberrant aggregation	[44]
92	174	rzpA	Aberrant aggregation	[45]
112	NA	ege8	Development arrests at mound stage	[37]
115	NA	Sel1-like	Wild Type	[42]
118	138	DG1037	No aggregation	[42]
122	208	mybE	Increased slug size	[46]
123	157	CRTF	No aggregation	[47]
140	178	cudA	Development arrests at slug stage	[48]
189	214	tsg101	Small fruiting body	[49]
204	NA	cbpC	Delayed culmination	[50]

NA - Not ranked in the top 5% of the distribution; a - Mutant phenotypes were obtained from http://dictybase.org/. Twelve of the 13 high-ranking genes with published mutant phenotypes exhibit developmentally abnormal phenotypes when mutated.

Table 2 Experimental validation of predictions

Bayesian Rank	Co-exp Rank	Gene name	Mutant phenotype
34	92	bzpR	None observed^a
35	33	dhkL	Precocious development^b
98	NA	BCSV2_0_00231	None observed^c
166	NA	bzpG	None observed^d
188	129	bzpF	Aberrant fruiting bodies^e

NA - Not ranked in the top 5% of the distribution; a - Huang and Shaulsky, unpublished; b - this study (Figure 5); c - data not shown.
knockout vectors from the Functional Genomics Project at Baylor College of Medicine [29], and the ability to successfully generate and grow the knockout strains. We successfully created 5 mutant strains, one with a disruption in a histidine kinase gene (*dhkl*), which is likely to have a role upstream of PKA, 3 in basic leucine-zipper transcription factors (bZIP) that are potential CREB homologs, predicted to function downstream of PKA, and one with no sequence homology.

We mutated the *dhkl* gene and found that the mutants exhibited accelerated mid-development progression (Figure 4A). The *dhkl* mutants showed a marked acceleration in development at 10 hours, but by 20 hours they resembled the wild type again. To quantify this phenotype we developed wild-type and *dhkl* mutant cells and counted the number of spores during development. The mutants started to form spores 2 hours before the wild type, and made 3-fold more spores at 18 hours of development. That difference decreased to 2-fold at 20 hours and disappeared by 22 hours (Figure 4B). Mutations in several PKA-pathway genes cause rapid development [3], so the observed phenotypes suggest that *dhkl* is indeed a member of the PKA pathway, probably functioning as a negative regulator. Histidine kinases function by phosphorylating response regulators. The *D. discoideum* genome encodes two known response regulators [30] - the cAMP phosphodiesterase *regA* and the adenylate cyclase *acrA* [31,32]. Thus the function of *dhkl* in the PKA pathway may be mediated by these response regulators, which modulate cAMP levels directly.

Previous efforts have failed to identify CREB homologs among the 19 bZIPS in the *Dictyostelium* genome [30], but our analysis implicated three bZIPS as potential PKA pathway components (Additional file 2, Table S1). Sequence analysis revealed a degenerate cAMP-response element (CRE) binding motif only in *bzpF*, implicating it as a potential CREB (Figure 5A). We examined the ability of the BzpF protein to bind the canonical CRE by expressing a GST-fusion protein in bacteria and testing it in an electrophoretic mobility shift assay. We found that the fusion protein bound a CRE-containing oligonucleotide (Figure 5B, lane 3) but not a mutated oligonucleotide (Figure 5B, lane 7), suggesting that BzpF can bind CRE-containing DNA.

To test whether the mobility shift was indeed due to binding by the BzpF-GST fusion protein, we added anti-GST antibodies to the binding reaction. We found that the shifted band was super-shifted, indicating that the mobility shift was due to interaction between the oligonucleotide and the fusion protein (Figure 5B, lane 4). We also performed a competition assay by adding unlabeled oligonucleotides to the reaction. Increasing amounts of the mutated oligonucleotide had almost no effect on binding (Figure 5B, right panel, CRE) but increasing amounts of the specific oligonucleotide reduced binding in a dose-dependent manner (Figure 5B, right panel, CRE’). These results support the conclusion that the BzpF protein binds CRE in a sequence-specific manner and suggest that BzpF is a candidate CREB protein.

Discussion

Our experimental results validate our computational approach and indicate that it can discover components of cellular pathways from expression profiles. This work is an extension of work on Bayesian network models using known pathways [33,34]. Our approach improves on these methods by incorporating more complex prior knowledge about the initial core network, including dependencies derived from non-transcriptional data. Our work is similar to other approaches that
incorporate various sources of knowledge into the Bayesian framework [35,36], but improved by allowing ranking of thousands of genes to facilitate a more explorative analysis.

The ability of Bayesian networks to discover dependences between more than two genes makes the technique more powerful than co-expression networks. For example, our single-gene-expansion method discovered egeB, a gene that encodes a C2-domain-containing cytosolic protein. That gene was highly ranked by our single-gene-expansion method, which is a member of a gene family that is responsible for induction of genes involved in early development [37]. Our analysis found transcriptional dependence between egeB and two early developmental genes, pufA and acaA. Although no direct regulation of pufA and acaA has been reported, there is evidence for indirect regulation through yakA and carA, respectively [37].

With the power to detect higher order relationships, our Bayesian networks algorithm detected these interactions, while the co-expression networks approach fell short. Despite this advantage many of the previously characterized genes show higher ranking by co-expression analysis compared with the single-gene expansion method. Most likely the 76 genes identified only by the single-gene expansion method are lowering the rankings of the 133 identified by both methods. We expect the highly ranked genes with multiple dependences to be members of the PKA pathway and exhibit clear developmental phenotypes as we characterize more knockout mutants.

Since the known network is expanded by one gene at a time, our method cannot detect interactions where two or more non-core genes are involved in the regulation. Since bZIP transcription factors are known to heterodimerize and many of them may have overlapping functions [38], the fact that single knockouts of bzpR and bzpG do not exhibit developmental phenotypes does not exclude them as potential members of the PKA pathway. Expanding the known networks by more than one gene at a time has the potential to identify more interacting partners, but since this extension requires exponentially more computational time it was not implemented for the PKA pathway analysis.

Our algorithm discovers genes that have conditional dependences with members of the PKA pathway, regardless of whether they are members of the PKA-pathway or of parallel pathways. For example, we found the transcriptional regulator gbfA, which is considered a member of a parallel pathway [39]. Although PKA activity is not required for gbfA induction or activity, maximal mRNA expression of gbfA does require PKA activity [39], suggesting conditional dependence between these components.

Conclusions

Computational methods that infer Bayesian networks can uncover gene expression dependencies in large datasets and thus provide means of proposing gene expression pathways. We introduce a novel strategy for using Bayesian networks, designed for discovering new genes of known genetic networks. This method incorporates prior biological knowledge from many different sources into the structure of the starting network and discovers new components that may have higher-order dependencies with members of the initial network. We applied this method to the PKA pathway in D. discoideum and validated the top predictions by performing direct genetic tests. The experimental results identified dhkl, a new candidate up-stream regulator of PKA, and bzpF, a candidate CREB homologue in D. discoideum. Although the initial PKA network does not reflect the underlying transcriptional network, the single-gene-expansion
method was successful in identifying new members. Modeling networks that better represent the underlying regulatory network may be even more informative.

The success of this method can be attributed to the power of Bayesian networks and to the nature of our dataset. We propose that successful modeling requires a large dataset representing a wide range of cellular states. The underlying network and probability distribution might be perturbed in some mutant strains and under some experimental conditions, and therefore trying to model the wild type network using a heterogeneous dataset can confound the analysis. On the other hand, perturbation experiments are essential for creating the necessary range of cellular states required for identifying gene interactions. Therefore one must consider the trade-off between maintaining the wild type network and the information gain from perturbation experiments. We chose the PKA pathway because it plays a central role in all stages of Dictyostelium development and our dataset contained many knockout experiments for genes related to the core pathway. Many of these perturbations affect the pathway function during specific stages, and therefore provide the necessary information for detecting gene dependences while maintaining the wild type network during the other stages. Therefore our dataset provides the required resolution for detecting new members of the PKA pathway.

Acknowledgements
This work was supported by the National Institutes of Health (P01-HD39691); the Keck Center for Interdisciplinary Bioscience Training of the Gulf Coast Consortium (1 T90 DA022885 and 1 R90 DA023418 to AP); and the Slovenian Research Agency (L2-1112, J2-9699 and P2-0209 to BZ).

Author details
1Graduate program in Structural Computational Biology and Molecular Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA. 2Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA. 3Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA. 4Faculty of Computer and Information Science, University of Ljubljana, Trzaska cesta 25, SI-1001 Ljubljana, Slovenia. 5Department of Computer Science, Rice University, 6100 Main St, MS 132, Houston, TX 77005, USA.

Authors’ contributions
E.H. and C.D. performed the experiments; A.P. performed the data analysis; A.P., D.S. and G.S. wrote the manuscript; all of the authors contributed to the research design, discussed the results, commented on the manuscript and read and approved the final manuscript.

Received: 16 November 2009 Accepted: 31 March 2010
Published: 31 March 2010

References
1. Mayr B, Montminy M: Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol 2001, 2(8):599-609.
2. Loomis WF: Dictyostelium discoideum. A developmental system. New York: Ac. Press 1975.
3. Loomis WF: Role of PKA in the timing of developmental events in Dictyostelium cells. Microbiol Mol Biol Rev 1996, 60(4):684-694.
4. D’Haeseleer P, Liang S, Somogyi R: Genetic network inference: from co-expression clustering to reverse engineering. Oxford Univ Press 2000, 16:707-726.
5. Eisen MB, Spellman PT, Brown PO, Botstein D: Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 1998, 95(25):14863-14868.
6. Tavazoie S, Hughes JD, Campbell MJ, Cho RJ, Church GM: Systematic determination of genetic network architecture. Nature genetics 1999, 22:281-285.
7. Shmulevich I, Dougherty ER, Kim S, Zhang W: Probabilistic Boolean Networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics 2002, 18(2):261-274.
8. Basso K, Margolin AA, Stolovitzky G, Klein U, Dalla-Favera R, Califano A: Reverse engineering of regulatory networks in human B cells. Nat Genet 2005, 37(4):382-390.
9. Bansal M, Belcastro V, Ambesi-Impiombato A, di Bernardo D: How to infer gene networks from expression profiles. Molecular Systems Biology 2007, 1(1):78.
10. Friedman N: Inferring cellular networks using probabilistic graphical models. Science, 2004, 300(5567):799-805.
11. Heckerman D: A Tutorial on Learning with Bayesian Networks. Learning in Graphical Models. Cambridge, MA: MIT Press;1999.
12. Sachs K, Perez O, Peier D, Lauffenger DA, Nolan GP: Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell Data. Science 2005, 308(5721):523-529.
13. Eaton D, Murphy K: Bayesian structure learning using dynamic programming and MCMC. Proceedings of the 23rd Annual Conference on Uncertainty in Artificial Intelligence (UAI-07): 2007 2007.
14. Friedman N, Nachman I, Peier D: Learning Bayesian network structure from massive datasets. The isparse candidate algorithm. 1999. Citeeseer.
15. Van Driessche N, Shaw C, Katoch M, Mervio T, Suyugang R, Ibarra M, Kuvayama H, Sato T, Ushihara H, Maeda M: A transcriptional profile of multicellular development in Dictyostelium discoideum. Development 2002, 129:1543-1552.
16. Smyth GK, Michaud J, Scott HS: Use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics 2005, 21(9):2067-2075.
17. Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed T: Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res 2002, 30(4):e15.
18. Smyth GK, Speed T: Normalization of cDNA microarray data. Methods 2003, 31(4):265-273.
19. Friedman N, Linial M, Nachman I, Peier D: Using Bayesian networks to analyze expression data. J Comput Biol 2000, 7(3-4):601-620.
20. Murphy KP: The Bayes Net Toolbox for Matlab. Computing Science and Statistics 2001, 2003.
21. Thompson CR, Fu Q, Buhay C, Kay RR, Shaulsky G: A bZIP/bRLZ transcription factor required for DIF signaling in Dictyostelium. Development 2004, 131(3):513-523.
22. Booth EO, Van Driessche N, Zhuchenko O, Kuspa A, Shaulsky G: Microarray phenotyping in Dictyostelium reveals a regulon of chemotaxis genes. Bioinformatics 2005, 21(24):4371-4377.
23. Good JR, Cabral M, Sharma S, Yang J, Van Driessche N, Shaw CA, Shaulsky G, Kuspa A, TagA, a putative serine protease/Arc transporter of Dictyostelium that is required for cell fate determination at the onset of development. Development 2003, 130(13):2953-2965.

Additional file 1: Single-gene expansion script
Matlab script file containing the single-gene expansion algorithm. The matlab BNT toolbox and the expression data are required for the script to run. The BNT toolbox can be downloaded from http://code.google.com/p/bnt/. The complete expression dataset can be downloaded from http://www.ailab.si/dictyexpress/data.htm.

Additional file 2: Supplementary Table S1
Gene ranked in the top 5% by the single-gene expansion algorithm.

Additional file 3: Supplementary Table S2
Gene ranked in the top 5% by co-expression analysis.
24. Katoh M, Shaw C, Xu Q, Van Driessche N, Morio T, Kusaneya H, Obara S, Urushihara H, Tanaka Y, Shaulsky G. An orderly retreat: Dedifferentiation is a regulated process. Proc Natl Acad Sci USA 2004, 101(18):7005-7010.

25. Kibler K, Svetz J, Nguyen TL, Shaw C, Shaulsky G. A cell-adhesion pathway regulates intercellular communication during Dictyostelium development. Dev Biol. 2003, 264(2):506-521.

26. Van Driessche N, Alexander H, Min J, Kuspa A, Alexander S, Shaulsky G. Global transcriptional responses to cispalatin in Dictyostelium discoideum identify potential drug targets. Proc Natl Acad Sci USA 2007, 104(S3):15440-15441.

27. Van Driessche N, Demsar J, Booth EO, Hill P, Juvan P, Zupan B, Kuspa A, Shaulsky G. Epistasis analysis with global transcriptional phenotypes. Nature Genetics, 2003, 37:471-477.

28. Xu Q, Ibara M, Mahadeo D, Shaw C, Huang A, Kuspa A, Cotter D, Shaulsky G. Transcriptional Transitions during Dictyostelium Spore Germination. Eukaryotic Cell 2004, 3(5):1101-1110.

29. Sugashe R, Shaulsky G, Kuspa A. Toward the functional analysis of the Dictyostelium discoideum genome. J Eukaryot Microbiol 2000, 47(4):334-339.

30. Eichinger L, Pachebat JA, Glockner G, Rajandream MA, Sugashe R, Berriman M, Song J, Olsen R, Szafranski K, Xu Q, Tunggal B, Kumermell F, Madera M, Kontoroff T, Davies R, Gauthier P, Pachebat JA, Glorckner G, Rajandream MA, Sucgang R, Davis G, Kibler K, Nguyen TL, Svetz J, Driessche NV, Ibarra M, Thompson C, Shaw C, Urushihara H, Huendrez J, Rabboniwitsch E, Steffen D, Sanders M, Ma J, Kohara Y, Sharp S, Simmonds M, Spiegler S, Tivey A, Sugano S, White B, Walker D, Woodward J, Winckler T, Tanaka Y, Shaulsky G, Schleicher M, Weinstock G, Rosenhall A, Cox EC, Chisohlom RL, Gibbs R, Loomis WF, Plater M, Kay RR, Williams J, Dear PH, Noegel AA, Barrell B, Shaulsky G. The genome of the social amoeba Dictyostelium discoideum. Nature 2005, 435(7038):43-57.

31. Kim HJ, Chang WT, Meima G, Cross JD, Schaap P. A novel adenyl cyclase detected in rapidly developing mutants of Dictyostelium. J Biol Chem 1998, 273:30859-30862.

32. Shaulsky G, Escalante R, Loomis WF. Developmental signal transduction pathways uncovered by genetic suppressors. Proc Natl Acad Sci USA 1996, 93(26):15360-15365.

33. Hashimoto RF, Kim S, Shmulevich I, Zhang W, Bittner ML, Dougherty ER: Estimating gene networks from gene expression data by combining Bayesian network model with promoter element detection. Bioinformatics 2004, 20(8):104-113.

34. Balint-Kurti P, Ginsburg G, Rivera-Lezcano O, Kimmel AR: A cell adhesion pathway regulates the choice between migrating slugs and terminal differentiation in Dictyostelium discoideum. Developmental Biology 1998, 203(2):345-357.

35. Kibler K, Nguyen TL, Svetz J, Driessche NV, Ibara M, Thompson C, Shaw C, Shaulsky G: A novel developmental mechanism in Dictyostelium revealed in a screen for communication mutants. Developmental Biology 2003, 259(2):193-208.

36. Maniecki K, Parikh P, Grindel B, Rivoir-Lozano O, Kimmel AR: ZIP, a RING-finger zipper protein that regulates cell fate determination during Dictyostelium development. Development 1997, 124:1203-1213.

37. Van Driessche N, Alexander H, Min J, Kuspa A, Alexander S, Shaulsky G. Global transcriptional responses to cispalatin in Dictyostelium discoideum identify potential drug targets. Proc Natl Acad Sci USA 2007, 104(S3):15440-15441.

38. Van Driessche N, Demsar J, Booth EO, Hill P, Juvan P, Zupan B, Kuspa A, Shaulsky G. Epistasis analysis with global transcriptional phenotypes. Nature Genetics, 2003, 37:471-477.

39. Xu Q, Ibara M, Mahadeo D, Shaw C, Huang A, Kuspa A, Cotter D, Shaulsky G. Transcriptional Transitions during Dictyostelium Spore Germination. Eukaryotic Cell 2004, 3(5):1101-1110.

40. Sugashe R, Shaulsky G, Kuspa A. Toward the functional analysis of the Dictyostelium discoideum genome. J Eukaryot Microbiol 2000, 47(4):334-339.

41. Eichinger L, Pachebat JA, Glockner G, Rajandream MA, Sugashe R, Berriman M, Song J, Olsen R, Szafranski K, Xu Q, Tunggal B, Kunermell F, Madera M, Kontoroff T, Davies R, Gauthier P, Pachebat JA, Glorckner G, Rajandream MA, Sucgang R, Davis G, Kibler K, Nguyen TL, Svetz J, Driessche NV, Ibarra M, Thompson C, Shaw C, Urushihara H, Huendrez J, Rabboniwitsch E, Steffen D, Sanders M, Ma J, Kohara Y, Sharp S, Simmonds M, Spiegler S, Tivey A, Sugano S, White B, Walker D, Woodward J, Winckler T, Tanaka Y, Shaulsky G, Schleicher M, Weinstock G, Rosenhall A, Cox EC, Chisohlom RL, Gibbs R, Loomis WF, Plater M, Kay RR, Williams J, Dear PH, Noegel AA, Barrell B, Kuspa A. The genome of the social amoeba Dictyostelium discoideum. Nature 2005, 435(7038):43-57.

42. Sawai S, Guan XJ, Kuspa A, Cox EC: High-throughput analysis of spatio-temporal dynamics in Dictyostelium. Genome Biol 2007, 8(R144).

43. Singleton CK, Zinda MJ, Mykytka B, Yang P: The histidine kinase dhkC regulates the choice between migrating slugs and terminal differentiation in Dictyostelium discoideum. Developmental Biology 1998, 203(2):345-357.

44. Kibler K, Nguyen TL, Svetz J, Driessche NV, Ibara M, Thompson C, Shaw C, Shaulsky G: A novel developmental mechanism in Dictyostelium revealed in a screen for communication mutants. Developmental Biology 2003, 259(2):193-208.

45. Baint-Kurti P, Grindel B, Rivoir-Lozano O, Kimmel AR: ZIP, a RING-finger zipper protein that regulates cell fate determination during Dictyostelium development. Development 1997, 124:1203-1213.

46. Fukuzawa M, Zhukovskaya NV, Yamada Y, Araki T, Williams JG: Regulation of Dictyostelium prestalk-specific gene expression by a SHAQFY family MYB transcription factor. Development 2006, 133:1715-1724.

47. Mu XO, Saposch S, Shiloach J, Kimmel A: CIRTF is a novel transcription factor that regulates multiple stages of Dictyostelium development. Development 2001, 128:2569-2579.

48. Fukuzawa M, Hopper N, Williams J: cuda: A Dictyostelium gene with pleiotropic effects on cellular differentiation and slug behaviour. Development 1997, 124:2719-2728.

49. Mattei S, Klein G, Sature M, Aubry L: Trafficking and developmental signalling: Axin at the crossroads. Eur J Cell Biol 2006, 85:925-936.

50. Lee CH, Jeong SY, Kim BJ, Choi CH, Kim JS, Koo BM, Seok YJ, You HS, Kang SO: Dictyostelium CBP3 associates with actin cytoskeleton and is related to slug migration. BBA-Molecular Cell Research 2005, 1743(3):281-290.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit