Evidence for host-dependent RNA editing in the transcriptome of SARS-CoV-2 in humans

Salvatore Di Giorgio¹,²†, Filippo Martignano¹,²‡, Maria Gabriella Torcia³, Giorgio Mattiuζ¹,³‡*, Silvestro G. Conticello¹,⁴‡*

¹Core Research Laboratory, ISPRO, Firenze, 50139, Italy. ²Department of Medical Biotechnologies, University of Siena, Siena, 53100, Italy. ³Department of Experimental and Clinical Medicine, University of Florence, Firenze 50139, Italy. ⁴Institute of Clinical Physiology, National Research Council, 56124, Pisa, Italy.

†‡ These authors contributed equally
*Corresponding author. Email: giorgio.mattiuz@unifi.it, s.conticello@ispro.toscana.it

The COVID-19 outbreak has become a global health risk and understanding the response of the host to the SARS-CoV-2 virus will help to contrast the disease. Editing by host deaminases is an innate restriction process to counter viruses, and it is not yet known whether it operates against Coronavirus. Here we analyze RNA sequences from bronchoalveolar lavage fluids derived from infected patients. We identify nucleotide changes that may be signatures of RNA editing: Adenosine-to-Inosine changes from ADAR deaminases and Cytosine-to-Uracil changes from APOBEC ones. A mutational analysis of genomes from different strains of human-hosted Coronavirus reveals mutational patterns compatible to those observed in the transcriptomic data. Our results thus suggest that both APOBECs and ADARs are involved in Coronavirus genome editing, a process that may shape the fate of both virus and patient.

Introduction
Emerging viral infections represent a threat to global health, and the recent outbreak of Novel Coronavirus Disease 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2, Novel Coronavirus, 2019-nCoV) exemplifies the risks (1, 2). As viruses are obligate intracellular parasites, organisms have evolved innate immune processes to sense and counter the viruses. Among these, RNA and DNA editing mediated by endogenous deaminases can provide a potent restriction against specific viruses. Two deaminase families are present in mammalian species: the ADARs target double stranded RNA (dsRNA) for deamination of Adenines into Inosines (A-to-I) (3, 4), and the APOBECs deaminate Cytosines into Uracils (C-to-U) on single-stranded nucleic acids (ssDNA and ssRNA) (5, 6). During viral infections ADARs act either directly, through hypermutation of the viral RNA, or indirectly, through editing of host transcripts that modulate the cellular response (7–18). On the other hand, APOBECs target the viral genome, typically DNA intermediates (19–26), either through C-to-U hypermutation or through a non-enzymatic path that interferes with reverse transcription (27, 28). Some APOBEC3 proteins can interfere in vitro with Coronavirus replication, yet it is not clear whether their enzymatic activity is involved (29). Eventually though, these restriction systems can also be exploited by the viruses to support their infectivity and increase their evolutionary potential (9, 11–15, 30–32).

Results
To assess whether RNA editing could be involved in the response to SARS-CoV-2 infections, we started from publicly available RNA sequencing datasets from bronchoalveolar lavage fluids (BALF) obtained from patients diagnosed with COVID-19. While transcriptomic data for all samples could be aligned to the SARS-CoV-2 reference genome, the quality of the sequencing varied and only eight samples had coverage and error rates suitable for the identification of potentially edited sites (Data S1). We called single nucleotide variants (SNVs) on these eight samples (33, 34) using REDItools 2 (35–37) and JACUSA (38) using the following thresholds: reads supporting the SNV ≥4, allelic fraction ≥0.5%, coverage ≥20, quality of the reads >25, base quality >35 (Fig. S1A). The two pipelines gave comparable results with ~50% of the SNV positions called by both (Fig. S1B, Fig S2). We identified 910 SNVs common to REDItools 2 and JACUSA, ranging from 24 to 238 SNVs per sample (Fig. 1, Data S3). Given the thresholds used to call the SNV, samples with lower sequencing depths displayed lower numbers of SNVs.

While the weight of each SNV type varies across samples (Fig. 1), a bias toward transitions is always present, which is even more evident when all mutational data are pooled (Fig. 2A, B). This holds true even when only SNVs recurring in more samples are considered (Fig. 2C).

SNV frequency and number of transversions are compatible with mutation rates observed in Coronavirus (10⁻⁶/⁷, 39) and commonly associated to the RNA dependent RNA polymerases (RdRp). RdRp are error-prone and are
considered the main source of mutations in RNA viruses. However, the Coronavirus nsp14-ExoN gene provides a form of error correction (40), which is probably the reason mutation rates in Coronaviruses are lower than those observed in RNA viruses with smaller genomes. The mutational spectrum in SARS quasispecies presents a very weak bias toward U-to-G. Inactivation of nsp14-ExoN error correction reveals the mutational spectrum of the RdRp, which is quite different from the pattern we observe (i.e., main changes are C-to-A, followed by U-to-C, G-to-U, A-to-C and U-to-G) (41). As such we would consider that SNVs deriving from RdRp errors represent a marginal fraction of the SNVs in the SARS-CoV-2 samples.

The bias toward transitions -mainly A>G/T>C changes-resembles the pattern of SNVs observed in human transcriptomes (42) or in viruses (8, 10, 18), where A>G changes derive from deamination of A-to-I mediated by the ADARs. It is thus likely that also in the case of SARS-CoV-2 these A>G/T>C changes are due to the action of the ADARs.

C>T and G>A SNVs are the second main group of changes and could derive from APOBEC-mediated C-to-U deamination. Contrary to A-to-I, C-to-U editing is a relatively rare phenomenon in the human transcriptome (42) and, with regard to viruses, it has been associated only to positive-sense ssRNA Rubella virus (32), where C>T changes represent the predominant SNV type. The observation that only A-to-I editing is present in RNA viruses that infect non-vertebrate animals, where RNA-targeting APOBECs are not present (10, 18), supports the hypothesis that APOBECs are involved in the RNA editing of this human-targeting virus.

A third group of SNVs, A>T/T>A transversions, is also present. While this type of SNVs has been described (43), its origin is yet unknown.

A>G and T>C changes are evenly represented for SNV frequency (Fig. 2A), for number of unique SNVs (Fig. 2B, C), and for distribution on the viral genome (Fig. 2D). As ADARs target dsRNA, this suggests that dsRNA encompasses the entire genome. While dsRNA in human transcripts are often driven by inverted repeats, the most likely source of dsRNA in the viral transcripts is the replication, where both positive and negative strands are present and can result in wide regions of double-stranded RNA.

Contrary to A-to-I changes, C-to-U changes are biased toward the positive-sense strand (Fig. 2B, C, D, p < 0.0001). Since ADARs and APOBECs target selectively dsRNA and ssRNA, such distribution could derive from the presence at all times of RNA in a dynamic equilibrium between double-strandedness -when negative-sense RNA is being transcribed- and single-strandedness -when nascent RNA is released. Some areas seem to bear less SNVs, but this might be related to lower sequencing depth in those regions.

As APOBEC deaminases preferentially target cytosines within specific sequence contexts, we analyzed the nucleotide context of A-to-I and C-to-U SNVs in the viral genome (Fig. 3A, B). A slight depletion of G bases in position -1 is present at A-to-I edited positions. The depletion is not as strong as the signal previously reported in human transcripts (44–47). The low editing frequencies we observe resembles the editing present on human transcripts containing Alu sequences, which were in a limited number in those early datasets. Indeed, there is no evidence of a sequence context preference if we use a larger dataset such as REDIportal (48), which includes >1.5 M sites in Alu repeats (Fig. S3).

On the other hand, C-to-U changes preferentially occur 3′ to thymines and adenines, a sequence context that resembles the one observed for APOBEC1-mediated deamination ([AU][AU]) (49, 50).

We then aligned available genomes from SARS-CoV-2, Middle East Respiratory Syndrome-related Coronavirus (MERS-CoV), and the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) to test whether RNA editing could be responsible for some of the mutations acquired through evolution. Indeed, the genomic alignments reveal that a substantial fraction of the mutations in all strains could derive from enzymatic deamination (Fig. 4A, B, C), with a prevalence of C-to-U mutations, and a sequence context compatible with APOBEC-mediated editing exists also in the genomic C-to-U SNVs (Fig. 4D, E, F).

Discussion

Considering the source of our analysis -metagenomic sequencing-, we wonder whether the low-level editing we observe (~1%) reflects the levels of editing of the viral transcripts inside the cells. Indeed, beside a small fraction of cellular transcripts edited at high-frequency, most ADAR-edited sites in the human transcriptome (typically inside Alu sequences) present editing levels of ~1% (4, 42, 51). It has been shown that a fraction of the cellular transcripts is hyperedited by ADARs (52–54). While we were unable to observe hyperedited reads in the metagenomic samples, it is possible that hyperedited transcripts fail to be packaged into the virus.

With regard to APOBEC-mediated RNA editing, its detection in the viral transcriptomes is already indicative, as this type of editing is almost undetectable in human tissues (42). Such enrichment points either toward an induction of the APOBECs triggered by the infection, or to specific targeting of the APOBECs onto the viral transcripts. The APOBECs have been proved effective against many viral species in experimental conditions, yet, until now their mutational activity in clinical settings has been shown only in a handful of viral infections (19–26) through DNA editing- and in Rubella virus, on RNA (32).

As in Rubella virus, we observe a bias in APOBEC editing
toward the positive-sense strand. This bias and the low editing frequencies might be indicative of the dynamics of the virus, from transcription to selection of viable genomes. It is reasonable to assume that sites edited on the negative-sense strand will result in a mid-level editing frequency, as not all negative-sense transcripts will be edited (Fig. 5A). On the other hand, editing of the positive-sense strand can occur upon entry of the viral genome, thus yielding high-frequency editing (Fig. 5B), or after viral genome replication, resulting in low-frequency editing (Fig. 5C). Indeed, lack of a sizable fraction of highly edited C>T SNVs suggests that APOBEC editing occurs late in the viral lifecycle (Fig. 5C). Yet, since they occur earlier, G>A SNVs should be closer in number to C>T ones and with higher levels of editing, which is not what we observe (Fig. 2A, B, C). The overrepresentation of C>T SNVs could be due to an imbalance toward positive-sense transcripts, as these are continuously generated from the negative-sense ones (and double-stranded hybrid RNAs are lost). However, the editing frequencies of G>A SNVs should be much higher as G>A SNVs are generated upstream to the C>T ones. A more fitting explanation is that editing of the negative-sense transcripts results in loss of the edited transcript (Fig. 5D), possibly because editing triggers nonsense mediated decay (55), thus lowering the chances of the edited site to be transmitted.

Since most of the APOBECs are unable to target RNA, the only well characterized cytidine-targeting deaminase is APOBEC1, mainly expressed in the gastrointestinal tract, and APOBEC3A (56), whose physiological role is not clear. As with A-to-I editing, it will be important to assess the true extent of APOBEC RNA editing in infected cells.

The functional meaning of RNA editing in SARS-CoV-2 is yet to be understood. In other contexts, editing of the viral genome determines its demise or fuels its evolution. For DNA viruses, the selection is indirect, as genomes evolve to reduce potentially exploitable sites (e.g., (57)), whose physiological role is not clear. As with A-to-I editing, it will be important to assess the true extent of APOBEC RNA editing in infected cells.

The aligned bams have been analyzed with QUALIMAP (58), due to a high error rate reported by QUALIMAP, samples SRR11059943 and SRR10971381 have been removed from the analysis.

Materials and Methods

Sequencing Data

RNA sequencing data available from projects PRJNA601736, PRJNA603194 and PRJNA605907 were downloaded from NCBI (https://www.ncbi.nlm.nih.gov/sra/) using the FASTQ-dump utilities from the SRA-toolkit with the command line: prefetch -v SRR* && fastq-dump --outdir /path_dir/ | --split-files /path_dir/SRR*.sra

Since most of the reads of samples from PRJNA605907 were missing their mate, forward-reads and reverse-reads from these samples have been merged in a single FASTQ, which is treated as a single-end experiment. Details of the sequencing runs are summarized in Data S1.

Data pre-processing

SRR11059940, SRR11059941, SRR11059942 and SRR11059945 showed a reduced quality of the sequencing in the terminal part of the reads.

We used TRIMMOMATIC (59) to trim the reads of those samples to 100 bp, with the following command line: trimmomatic SE SRR*.fastq SRR*.trimmed.fastq CROP:100

We aligned the FASTQ files using Burrows-Wheeler Aligner (BWA) (60) using the official sequence of SARS-CoV-2 (NC_045512. 2) as reference genome. After the alignments BAM files were sorted them using SAMtools (61).

Command line used for paired-end samples:
bwa mem NC_045512.2.fa SRR*_1.fastq SRR*_2.fastq | samtools sort -O BAM -o SRR*_bam

Command line used for single-end samples:
bwa mem NC_045512.2.fa SRR*.fastq | samtools sort -O BAM -o SRR*_bam

The aligned bams have been analyzed with QUALIMAP (62). Due to a high error rate reported by QUALIMAP, samples SRR11059943 and SRR10971381 have been removed from the analysis.
Single nucleotide variant (SNV) calling

A diagram of the entire pipeline is shown in Fig. S1A. We used RediTools 2 (35, 37) and JACUSA (38) to call the SNVs using the command line:

```bash
python2.7 reeditools.py -f SRR*.bam -o SRR1093401_stat_table_allPos.txt -S -s 0 -os 4 -m /homol_site/SRR*_homopol.txt -c SRR*_homopol.txt -r /Reference/NC_045512.2.fa -a SRR*_stat_table_allPos.txt -q 25 -bq 35 -mbp 15 -Mbp 15 jacusa call-1 -p 20 -r SRR*.vcf -a B,I,Y -s -f V -q 35 -m 25 SRR*.srt.bam
```

With regard to REDItools 2, we removed all SNVs within 15 nucleotides from the beginning or the end of the reads to avoid artifacts due to misalignments.

To avoid potential artifacts due to strand bias, we used the `AS_StrandOddsRatio` parameter calculated following GATK guidelines (https://gatk.broadinstitute.org/hc/en-us/articles/360040507111-AS-StrandOddsRatio), and any mutation with a `AS_StrandOddsRatio` > 4 has been removed from the dataset.

Bcftools (67) has been used to calculate total allelic depths on the forward and reverse strand (ADF, ADR) for `AS_StrandOddsRatio` calculation, with the following command line:

```bash
Mpileup -a FORMAT/AD,FORMAT/ADR
```

SNVs have been called with a custom R script, by comparing viral genome sequences to the respective consensus sequence or, for SARS-CoV-2, to the NC_045512.2 reference genome sequences. SNVs, viral consensus sequences, and CodonRadarae genome sequences identifiers, are provided in Data S3, S4 and S5.

SNVs annotation

SNVs (from both genomic and somatic SNVs sets) occurring on coding sequences have been annotated with custom R scripts to determine the outcome of the nucleotide change (nonsense/missense/synonymous mutation). A summary is reported in Data S2.

Statistical Analysis

The `fisher.test()` function from the R base package has been used for all the statistical tests. To test the significance of C-to-U bias on the positive strand, we compared C>T/G>A SNV counts to the count of C/G bases on the reference genome. For P-values of “RNA vs Reference”, “DNA vs Reference”, and “genome vs RNA” 2x2 contingency tables have been generated as shown in Data S2.

REFERENCES AND NOTES

1. F. Wu, S. Zhao, B. Yu, Y.-M. Chen, W. Wang, Z.-G. Song, Y. Hu, Z.-W. Tao, J.-H. Tian, Y.-Y. Pei, M.-L. Yuan, Y.-L. Zhang, F.-H. Dai, Y. Liu, Q.-M. Wang, J.-J. Zheng, L. Xu, E. C. Holmes, Y.-Z. Zhang, A new coronavirus associated with human respiratory disease in China. Nature 579, 265–269 (2020). doi:10.1038/s41586-020-2008-3

2. Q. Li, X. Guan, P. Wu, X. Wang, L. Zhou, Y. Tong, R. Ren, K. S. M. Leung, E. H. Y. Lau, J. Y. Wong, X. Xing, N. Xiang, Y. Wu, C. Li, Q. Chen, D. Li, T. Liu, J. Zhao, M. Liu, W. Tu, C. Chen, L. Jin, R. Yang, Q. Wang, S. Zhou, R. Wang, H. Liu, Y. Luo, Y. Liu, G. Shao, H. Li, Z. Tao, Y. Yang, Z. Deng, B. Liu, Z. Ma, Y. Zhang, G. Shi, T. T. Y. Lam, J. T. Wu, G. F. Gao, B. J. Cowling, B. Yang, G. M. Leung, Z. Feng. Early
Mei, W. Zhang, Y. Chen, Y. Li, M. Shi, K. Lan, Y. Liu, RNA based mNGS approach identifies a novel human coronavirus from two individual pneumonia cases in 2019 Wuhan outbreak. *Emerg. Microbes Infect.* 9, 313–319 (2020). doi:10.1080/22221751.2020.1725399 Medline

34. Z. Shen, Y. Xiao, L. Kang, W. Ma, L. Shi, L. Zhang, Z. Zhou, J. Yang, J. Zhong, D. Yang, L. Guo, G. Zhang, H. Li, Y. Xu, M. Chen, Z. Gao, J. Wang, L. Ren, M. Li, Genomic Diversity of Severe Acute Respiratory Syndrome–Coronavirus 2 in Patients With Coronavirus Disease 2019. *Clin. Infect. Dis.* ciaa203 (2020). doi:10.1093/cid/ciaa203 Medline

35. E. Picardi, G. Pesole, REDItools: High-throughput RNA editing detection made easy. *Bioinformatics* 29, 1813–1814 (2013). doi:10.1093/bioinformatics/btt287 Medline

36. C. Lo Giudice, M. A. Tangaro, G. Pesole, E. Picardi, Investigating RNA editing in deep transcriptome datasets with REDItools and REDIportal. *Nat. Protoc.* 15, 1098–1131 (2020). doi:10.1038/s41596-019-0279-7 Medline

37. T. Flati, S. Gioiosa, N. Spallanzani, I. Tagliaferri, M. Angela Diroma, G. Pesole, G. Chillemi, E. Picardi, T. Castrignanò, HPC-REDItools: A Novel HPC-aware Tool for Improved Large Scale RNA-editing Analysis. *BMC Bioinformatics*. doi:10.1186/s12859-016-1432-8 Medline

38. M. Piechotta, E. Wyler, U. Oehler, M. Landthaler, C. Dieterich, JACUSA: Site-specific identification of RNA editing events from replicate sequencing data. *BMC Bioinformatics* 18, 7 (2017). doi:10.1186/s12859-016-1432-8 Medline

39. L. D. Eckerle, M. M. Becker, R. A. Halpin, K. Li, E. Venter, X. Lu, S. Scherbakova, R. L. Graham, R. S. Baric, T. B. Stockwell, D. J. Spino, M. R. Denison, Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing. *PLOS Pathog.* 6, e1000896 (2010). doi:10.1371/journal.ppat.1000896 Medline

40. M. R. Denison, R. L. Graham, E. F. Donaldson, L. D. Eckerle, R. S. Baric, Coronavirus: An RNA proofreading machine regulates replication fidelity and diversity. *RNA* 8, 270–279 (2002). doi:10.1016/S1386-2016(02)00152-2 Medline

41. E. C. Smith, H. Blanc, M. C. Surdel, M. Vignuzzi, M. R. Denison, Identification of A-to-I RNA editing in human tissues: Towards the inosinome Atlas. *Sci. Rep.* 5, 14941 (2015). doi:10.1038/srep14941 Medline

42. E. Picardi, G. Pesole, Investigating RNA editing in deep transcriptome datasets with REDItools and REDIportal: A comprehensive

database of A-to-I RNA editing events in humans. *Nucleic Acids Res.* 45 (D1), D750–D757 (2016). doi:10.1093/nar/gkw767 Medline

43. J. H. Bahn, J.-H. Lee, G. Li, C. Greer, G. Peng, X. Xiao, Accurate identification of A-to-I RNA editing in human by transcriptome sequencing. *Genome Res.* 22, 142–150 (2011). doi:10.1101/gr.124077.111 Medline

44. E. Picardi, C. Manzari, F. Mastropasqua, I. Aiello, A. M. D’Erchia, G. Pesole, Profiling RNA editing in human tissues: Towards the inosinome Atlas. *Sci. Rep.* 5, 14941 (2015). doi:10.1038/srep14941 Medline

45. B. R. Rosenberg, C. E. Hamilton, M. M. Mwangi, S. Dewell, F. N. Papavasiliou, Transcriptome-wide sequencing reveals numerous APOBEC1 mRNA-editing targets in transcript 3’ UTRs. *Nat. Struct. Mol. Biol.* 18, 230–236 (2011). doi:10.1038/nsmb.1975 Medline

46. T. Lerner, F. N. Papavasiliou, R. Pecori, RNA Editors, Cofactors, and mRNA Targets: An Overview of the C-to-U RNA Editing Machinery and Its Implication in Human Disease. *Genes (Basel)* 10, 13 (2018). doi:10.3390/genes10010013 Medline

47. S. H. Roth, E. Y. Levanon, E. Eisenberg, Genome-wide quantification of ADAR adenosine-to-inosine RNA editing activity. *Nat. Methods* 16, 1131–1138 (2019). doi:10.1038/s41592-019-0610-9 Medline
throughput. *Nucleic Acids Res.* **32**, 1792–1797 (2004). doi:10.1093/nar/gkh340

ACKNOWLEDGMENTS

In memory of Li Wenliang, Carlo Urbani and of all the doctors and health workers who endangered their lives in the fight against epidemics. We acknowledge and thank all authors that are sharing their data. We gratefully acknowledge the authors, originating and submitting laboratories, of the sequences from GISAID’s EpiFlu Database on which this research is based. The list is detailed in Data file S6. **Funding:** The research was supported by grants from Ministero della Salute [PE-2013-02357669] and from AIRC [IG-17701]. **Author contributions:** Conceptualization: SDG, FM, MGT, GM, SGC; Formal Analysis, Investigation, Software: SDG, FM; Visualization: GM; Writing – original draft: GM and SGC; Writing – review and editing: SDG, FM, MGT, GM, SGC. **Competing interests:** Authors declare no competing interests. **Data and materials availability:** Sequencing and genomic data are available through NCBI SRA and Virus repositories, and GISAID.

SUPPLEMENTARY MATERIALS

advances.sciencemag.org/cgi/content/full/sciadv.abb5813/DC1

Submitted 04 March 2020
Accepted 05 May 2020
Published First Release 18 May 2020
10.1126/sciadv.abb5813
Fig. 1. Single-nucleotide variants (SNV) identified in SARS-CoV-2 transcriptomes. The bar charts show the number of SNVs identified in each SARS-CoV-2 transcriptome for each SNV type (e.g., A>C, AC). The sequencing depth for each sample is indicated.
Fig. 2. Single-nucleotide variants (SNV) identified in SARS-CoV-2 transcriptomes. (A) Allelic fraction and (B) number of SNVs for each nucleotide change in the entire dataset and (C) for SNVs recurring in at least two samples. (D) Distribution of SNVs across the SARS-CoV-2 genome. A-to-G (blue) and C-to-U (red) SNVs are grouped in 400nt bins and plotted above (AG and CT) or below the line (TC and GA) based on the edited strand. Dots (white/black) indicate recurring SNVs. Genetic organization of SARS-CoV-2 (top), the dark/white shading indicates the viral coding sequences; coverage distribution of all analyzed samples (bottom).
Fig. 3. Sequence contexts for SARS-CoV-2 RNA edited sites. (A) Local sequence context for A-to-I and C-to-U edited sites in the viral transcriptome and (B) for recurring sites.
Fig. 4. Nucleotide changes across Coronaviridae strains. (A, B, C) Number of SNVs for each nucleotide change and (D, E, F) local sequence context for C-to-U edited sites in genome alignments from SARS-CoV-2 (A, D), human-hosted MERS-CoV (B, E), and human-hosted SARS-CoV (C, F).
Fig. 5. Model of APOBEC RNA editing on SARS-CoV-2 transcriptome. The 4 panels model the editing frequencies and the C>U/G/A ratios expected from 4 different scenarios: (A) C-to-U editing on the negative-sense transcripts; (B) ‘early’ editing on the viral genomes before viral replication; (C) ‘late’ editing after viral replication; (D) ‘late’ editing after viral replication with loss of negative-sense transcripts. Red dots indicate editing on the positive-sense transcript; Orange dots indicate editing on the positive-sense transcript. Green and Blue segments indicate positive- and negative-sense viral transcripts, respectively.
Evidence for host-dependent RNA editing in the transcriptome of SARS-CoV-2
Salvatore Di Giorgio, Filippo Martignano, Maria Gabriella Torcia, Giorgio Mattiuza and Silvestro G. Conticello

cublished online May 18, 2020

ARTICLE TOOLS http://advances.sciencemag.org/content/early/2020/05/15/sciadv.abb5813

SUPPLEMENTARY MATERIALS http://advances.sciencemag.org/content/suppl/2020/05/15/sciadv.abb5813.DC1

REFERENCES This article cites 64 articles, 15 of which you can access for free http://advances.sciencemag.org/content/early/2020/05/15/sciadv.abb5813#BIBL

PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions