A Method for Estimating the Total Loss of Healthy Life Years: Applications and Comparisons in UK and Scotland

Christos H Skiadas and Charilaos Skiadas

Technical University of Crete, Chania, Crete, Greece
E-mail: skiadas@cmsim.net
Hanover College, Indiana, USA
E-mail: skiadas@hanover.edu

Abstract: We propose a method of estimating the Total Loss of Healthy Life Years based on the first exit time theory for a stochastic process, the resulting Health State Function and the Deterioration Function estimated as the curvature of the health state function. We have done many applications in UK and Scotland and Sweden supporting our theory. Furthermore it was proven that both the WHO and EU estimates of the healthy life expectancy can result from our method. The WHO system takes into account the severe and moderate causes in estimating the loss of healthy life years; instead the EU system calculates the total loss of healthy life years. For both cases our methodology provides both estimators from only death and population data. The advantages of our method are straightforward. We do not need survey data to make the calculations. The resulting estimates should be used to test and improve the existing survey based methodologies. While the WHO and EU systems tend to approach each other differences continue to appear based on the methodology of the related surveys and the analysis of data. Two main schools are working to these directions one based on USA the Institute for Health Metrics and Evaluation (IHME) headed by Christopher J.L. Murray and contributors in all over the world and the European Health and Life Expectancy Information System (EHLEIS) with Jean-Marie Robine and a team from the EU member states.

Keywords: Deterioration, Loss of healthy years, HALE, DALE, World Health Organization, WHO, European Union, EU, EHEMU, IHME, EHLEIS, Healthy life expectancy, Life expectancy.

Introduction

The proposed method is based on the deterioration function presented in Figure 1. This is a function expressing the curvature of the health state function. The first part of this function, including the years from birth
until the expected healthy age (the age close to the maximum health state), covers the development stage during, which the human organism is growing, until the age of the maximum health, which corresponds to the minimum for the deterioration function. The second part of this function is related to the deterioration of the human organism following a growth pattern until a maximum deterioration in an age period ranging from 70 to 80 years nowadays and then declining at higher ages but, even so, continuing the deterioration of the human organism (see Skiadas 2011 Oct, 2011 Dec, 2012 Feb, Skiadas & Skiadas 2011 Jan, 2012 May).

![Deterioration Function](image_url)

Fig. 1. The Deterioration Function

The Method

The task here is to estimate the influence of the deterioration process as a loss of the healthy years. This is achieved by the following formula:

\[
TLHY = \int_0^x sDet(s)ds \approx \sum_0^x sDet(s)
\]

Where the starting year denoted by \(0 = x_{minDet}\) is at the minimum deterioration age and the final year denoted by \(x = x_{H=0}\) is at the zero health state. The resulting estimator refers to the Total Loss of Healthy Years (TLHY). This estimator includes the loss of healthy years by Severe, Moderate and Light activity limitation. The years with severe
A Method for Estimating the Total Loss of Healthy Life Years

Activity limitation are estimated by a previously proposed estimator LHLY\(_1\) (see Skiadas & Skiadas 2012 May), whereas the estimator LHLY\(_3\) includes the severe and moderate activity limitation life years:

\[
\text{Severe + Moderate + Light LHLY} = \text{Total LHLY}
\]

\[
\text{LHLY}_1 + (\text{LHLY}_3 - \text{LHLY}_1) + \text{Light LHLY} = \text{Total LHLY}
\]

The estimates are done by using the latest version of the SKI-6-Parameters program in Excel which can be downloaded from the website: http://www.cmsim.net.

Application in UK Females

The results for females in UK 2009 are summarized in Table I. The age of the maximum deterioration is 75.1 years, the life expectancy at birth is 82.2 years and the healthy life expectancy at birth is 62.1 years. The total loss of healthy life is 20.1 years from which 7.7 years correspond to severe causes, 1.2 years to moderate and another 11.1 to light causes.

TABLE I	Healthy Years Estimates for UK, 2009 females					
Max Det Age	LHLY\(_1\) Severe	LHLY\(_3\) - LHLY\(_1\) Moderate	Light LHLY	Total LHLY	HLEB	LEB
75.1	7.7	1.2	11.1	20.1	62.1	82.2
The total application for females in UK is summarized in Table II and the main findings are illustrated in Figure 2. The healthy life years at birth are growing during the last 9 decades but slower than the life expectancy at birth. This is because the total loss of healthy life years is higher by 4.6 years from 1922 to 2009 compared to the 23.5 years for the life expectancy at birth (LEB) for the same time period. In the same time the loss of healthy years due to severe causes was relatively stable, the moderate causes drop and the light causes grow considerably. The age of the maximum deterioration grew by 6.9 years from 68.2 in 1922 to 75.1 in 2009 verifying the relative stability of this indicator related to LEB.

The EHEMU (EU) and HALE (WHO) estimates

Another very important point is to close the gap between the healthy life expectancy estimates of the European Union based on the project EHEMU and the related estimates of the World Health Organization (WHO) under the code name HALE. As in both cases the estimates are based on different assumptions and differ considerably, the method used here provides information for both estimates. The HALE estimates of WHO give information for the expected healthy years by taking into consideration the severe and/or the moderate activity limitation, thus providing higher estimates for the expected healthy life years than the European Union Statistics. In the later case the estimates include part of what we refer to here as light activity limitation estimates as well. The EU (EHEMU, http://www.healthy-life-years.eu/) estimates are 64.79 years for males and 66.2 years for females for the healthy life expectancy.
at birth for UK (2007). Both estimates are within the range of our estimates including severe+moderate+part of light activity limitation as it is presented by the inequalities $59.4<65.0<69.2$ and $61.6<66.2<73.4$ for males and females respectively (the figures are from Table II and III).

Our estimates for 2000 for males (67.3) and females (71.8) with severe & moderate activity limitation are within the uncertainty interval for the HALE estimates for 2000 that is $66.8<67.3<69.7$ and $69.2<71.8<73.1$ for males and females respectively. The HALE estimates for 2000 from WHO (annex4_en_HALE_2000) are 68.3 and 71.4 years for 2000 males and females, very close to our estimates.

TABLE II

Females	LHY₁	LHY₂	HLEB total	HLEB moderate	HLEB severe	LEB	Max Det	Age	Severe	Moderate	Light	Total	LHY	Total	LHY	Total	LHY	
UK	Max Det	Age	Severe	Moderate	Light	Total	LHLY	Total	LHLY	Total	LHLY	HLEB	severe	HLEB	moderate	HLEB	severe	LEB
1922	68.2	7.2	4.7	3.6	15.5	43.2	46.8	51.5	58.7									
1930	68.7	6.6	3.6	5.8	16.0	46.6	52.4	56.0	62.6									
1940	67.9	7.2	4.3	4.5	16.0	47.3	51.8	56.1	63.3									
1941	68.5	7.1	4.0	5.2	16.2	47.7	52.9	56.9	63.9									
1942	69.4	7.2	3.5	5.5	16.3	50.1	55.6	59.1	66.4									
1943	69.1	7.1	3.8	5.9	16.8	49.4	55.4	59.1	66.3									
1944	69.6	7.0	3.2	6.1	16.3	50.9	57.0	60.3	67.2									
1945	69.3	7.5	3.2	5.3	16.0	52.1	57.4	60.6	68.1									
1946	69.5	7.5	3.2	5.4	16.1	52.2	57.6	60.8	68.3									
1947	68.8	7.2	3.6	5.7	16.4	51.9	57.6	61.1	68.3									
1948	69.5	6.2	2.9	7.0	16.1	54.4	61.3	64.3	70.5									
1949	68.3	6.7	3.3	6.0	16.0	54.1	60.2	63.4	70.2									
1950	68.3	6.8	3.3	6.1	16.2	54.6	60.7	64.0	70.8									
1960	69.7	6.8	2.4	7.0	16.2	57.5	64.5	66.9	73.7									
1970	71.7	6.7	2.0	7.4	16.1	58.8	66.2	68.2	74.9									
1980	73.7	6.2	1.7	9.6	17.6	58.9	68.6	70.3	76.5									
1989	74.7	6.5	1.5	9.8	17.8	60.3	70.1	71.6	78.0									
1990	75.1	6.6	1.5	9.4	17.5	60.9	70.3	71.8	78.4									
1991	74.6	6.7	1.5	9.3	17.5	61.0	70.4	71.8	78.9									
1992	74.0	6.8	1.5	9.1	17.4	61.6	70.6	72.1	78.9									
1993	73.7	7.0	1.4	9.3	17.8	61.0	70.3	71.7	78.7									
1994	74.2	6.6	1.5	10.0	18.1	61.1	71.2	72.6	79.3									
1995	74.1	6.7	1.4	10.2	18.3	60.9	71.0	72.5	79.2									
1996	73.9	6.2	1.4	10.5	18.2	61.2	71.7	73.2	79.4									
1997	74.1	6.4	1.4	10.4	18.3	61.3	71.7	73.1	79.5									
1998	74.1	6.5	1.5	10.3	18.3	61.4	71.7	73.1	79.7									
1999	73.9	6.7	1.4	10.3	18.4	61.3	71.6	73.0	79.8									
2000	74.2	7.0	1.4	9.9	18.2	61.9	71.8	73.2	80.2									
2001	74.0	6.6	1.4	10.9	18.9	61.5	72.3	73.7	80.4									
2002	73.9	6.3	1.8	10.9	19.1	61.4	72.3	74.1	80.5									
2003	73.7	6.5	1.8	11.0	19.3	61.2	72.1	73.9	80.5									
2004	74.4	7.0	1.7	10.4	19.1	61.9	72.3	74.0	81.0									
2005	74.5	6.7	1.5	11.0	19.2	62.0	72.9	74.4	81.2									
2006	74.7	6.6	1.4	11.8	19.8	61.6	73.5	74.9	81.4									
2007	74.7	6.8	1.4	11.8	20.0	61.6	73.4	74.8	81.6									
2008	74.6	7.2	1.3	11.8	20.3	61.3	73.1	74.4	81.6									
2009	75.1	7.7	1.2	11.1	20.1	62.1	73.2	74.5	82.2									
Application in UK Males and Females

The health indicators for males in UK are summarized in Table III. Figure 3 illustrates the life expectancy at birth (LEB) and the healthy life expectancy at birth for males and females in United Kingdom from 1922 to 2009. The immediate finding is that the life expectancy at birth is growing faster than the healthy life expectancy for both males and females. The mean healthy life expectancy for males for 20 years (1990-2009) is 59.8 years age whereas for females is 61.4 years of age. The trend is almost stable for males (0.0079) and slightly increasing for females. The trend for females is 0.042 corresponding to an increase of 0.8 years of healthy age at the 20 years period studied (see Figure 4). In the same period the increase in life expectancy at birth was 5.2 years for males and 3.8 years for females.

Fig. 3. Health indicators for males and females in UK

Fig. 4. The healthy life expectancy in UK for 20 years
It is important to note that the estimates based on surveys in different countries, cultures and economic systems vary considerably. Our method will provide a useful supporting tool to improve estimates and forecasts of the health indicators thus leading to a better future planning of the health system.

TABLE III
Makes
UK

1922
1930
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1960
1970
1980
1990
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
The Health Indicators for Sweden

The behavior of the health indicators during the pandemic influenza of 1918 was tested by using the data for Sweden from the Human Mortality Database (1910-1925, females). The results summarized in Table IV are illustrated in Figure 5. The resulting values for the age of the maximum deterioration remain relatively stable during this period as it is related to the main human mechanisms and not to the causes by influenza. Instead the healthy life years at birth (HLEB) and the life expectancy at birth (LEB) dropped considerably in 1918. The total loss of healthy life years was 2.4 years higher in 1918 than the previous year. More important changes came in the loss of healthy years from severe causes to 11.9 for 1918 from 8.7 years in 1917 and 8.2 than 5.1 for moderate causes respectively. Instead the light causes dropped from 4.7 years at 1917 to only 1 year the 1918.

Fig. 5. The main health indicators in Sweden for the period 1910-1925.
TABLE IV

Sweden	Max Det	Severe	Moderate	Light Total ULY	HLEB	LEB	
1910	70.3	9.2	5.0	4.6	18.8	40.0	58.8
1911	70.4	9.5	5.2	4.0	18.8	40.3	59.1
1912	69.8	8.1	5.0	5.8	18.9	39.9	58.8
1913	70.2	8.7	5.2	4.9	18.8	41.0	59.7
1914	70.1	9.1	5.5	4.6	19.2	39.9	59.1
1915	69.3	9.0	5.8	4.0	18.9	39.3	58.2
1916	70.4	9.1	5.1	4.4	18.6	40.4	59.0
1917	70.4	8.7	5.1	4.7	18.6	41.2	59.8
1918	70.5	11.9	8.2	1.0	21.0	30.2	51.2
1919	69.6	8.4	5.3	5.4	19.1	38.6	57.7
1920	70.2	8.5	5.2	4.8	18.5	40.9	59.5
1921	70.0	8.9	4.8	4.8	18.5	43.5	62.0
1922	69.7	8.0	5.4	4.9	18.2	43.5	61.7
1923	70.8	8.0	3.9	6.7	18.7	45.1	63.8
1924	70.2	8.2	4.1	5.7	18.0	44.8	62.8
1925	71.0	7.8	4.2	7.0	18.9	44.6	63.4

Application to Scotland

A quite good exploration of the healthy life expectancy in Scotland is done from 1980 to 2009. The applications are based on national and regional surveys and the data selected provided reliable estimates for the healthy life expectancy. Even more the estimates done include both the influence on life expectancy of the severe and/or moderate activity limitations mainly used in WHO and the total influence of all activity limitations accepted in European Union. As our method calculates both healthy life expectancy measures, we use the results from the application in Scotland to compare our direct system of estimates with the survey methods. Furthermore we expand our estimates starting from 1855 to 2009 based on the death and population data provided by the HMD for Scotland thus providing a useful estimate for the healthy life expectancy in Scotland during the last 155 years thus giving a powerful tool to policy makers to organize the health systems in our societies.

Two studies are of particular importance. The first study for Scotland is the 2004 paper for Healthy Life Expectancy in Scotland by Clark et al. 2006 and the second can be found from the official website: http://www.scotland.gov.uk/Topics/Statistics/Browse/Health/TrendLifeExpectancy, (12 July 2012 from the Scottish Government website). As in the previous case for UK we calculate the health estimates for Scotland for males and females. Table V summarizes the results for females. The last three columns of this table include the data from the two mentioned studies for Scotland. The first of these columns refers to the LLI (Limiting long-term term illness) a measure of serious and chronic ill-
Health which is closely related to our estimates referred as HLEB Total (the total Healthy life expectancy at birth). The second column (referred to as NEW method) is similar to the first while the third column (referred to as OLD method) is related to estimates without LLI. These estimates are related to our HLEB severe or HLEB moderate and severe.

TABLE V (Application in Scotland for females)

Year	LHLY Light	LHLY Moderate	LHLY Severe	LHLY Total	HLEB Total	HLEB moderate & severe	Health estimates
1855	68.2	6.8	5.3	0.8	12.9	31.3	32.0
1880	68.7	7.0	4.9	1.7	13.7	31.7	33.4
1900	70.3	6.5	5.5	1.3	13.3	34.8	36.1
1910	69.9	6.6	5.0	2.8	14.5	38.3	41.2
1920	70.0	6.8	4.4	4.8	16.0	39.0	43.8
1930	68.9	6.7	4.5	4.9	16.1	43.1	48.0
1940	67.2	6.8	4.5	4.0	15.3	45.8	49.8
1950	68.8	6.3	3.6	6.2	16.1	51.9	58.1
1960	69.1	6.4	2.7	6.7	15.8	56.1	62.8
1970	71.5	6.7	2.3	6.9	15.9	57.5	64.4
1980	75.0	6.5	1.2	8.8	16.6	58.6	67.4
1981	75.1	5.8	1.6	8.9	16.3	59.1	67.9
1982	74.5	5.7	1.9	9.1	16.7	58.5	67.7
1983	74.8	6.0	1.7	8.8	16.5	59.2	68.0
1984	75.5	6.6	1.3	8.3	16.3	59.6	67.9
1985	74.8	6.0	1.5	8.4	15.9	59.9	68.3
1986	74.4	6.1	1.6	8.5	16.1	60.1	68.6
1987	74.9	6.2	1.4	8.0	15.5	61.0	68.9
1988	74.8	5.8	1.4	9.1	16.3	60.4	69.5
1989	73.9	6.4	1.4	8.2	16.0	60.1	68.3
1990	75.4	5.9	1.5	8.9	16.3	60.6	69.5
1991	73.9	6.5	1.3	8.6	16.4	60.7	69.3
1992	73.6	6.2	1.2	8.3	15.8	61.5	69.8
1993	72.8	6.7	1.4	7.5	15.7	61.3	68.8
1994	76.1	6.1	1.3	9.3	16.6	61.0	70.3
1995	75.0	6.7	1.2	8.0	15.9	61.8	69.8
1996	74.8	6.0	1.3	9.8	17.1	60.7	70.5
1997	75.2	6.0	1.4	9.6	16.9	61.2	70.7
1998	74.6	6.4	1.2	9.4	17.1	61.1	70.5
1999	73.7	6.3	1.3	9.7	17.3	61.0	70.6
2000	75.1	5.9	1.9	9.0	16.7	61.9	70.8
2001	74.6	6.5	1.7	9.0	17.2	61.5	70.5
2002	74.2	6.8	1.7	9.0	17.6	61.2	70.3
2003	74.7	6.9	1.7	9.1	17.8	61.1	70.2
2004	75.1	6.4	1.4	10.4	18.1	61.2	71.6
2005	75.4	6.4	1.5	10.4	18.2	61.2	71.6
2006	75.4	6.7	1.2	10.1	18.1	61.6	71.8
2007	75.0	7.4	1.1	10.3	18.7	61.0	71.3
2008	75.4	6.9	1.3	10.0	18.2	61.7	71.6
Comparisons are illustrated in Figure 6. Our estimates for HLEB total, based on the total LHLY estimates, are presented by the blue line in the graph. Also, two confidence intervals at ±2 years are indicated by the dashed lines. The estimates based on surveys as the official estimates for Scotland should decline from the real situation by 2 to 3 years and we expect that will be included into this interval. The confidence interval for our estimates is negligible. The orange and the brown curves representing the HLE (LLI) and HLE (New) official estimates are included into the confidence intervals thus verifying a quite good approach to our direct estimates. The HLE (Old) official estimates (magenta line) are close to our estimates for HLEB with severe and moderate causes (green line). The main part of these data points are inside the ±2 confidence intervals. However, almost all the estimates for HLE (Old) are lower than the corresponding HLEB estimates.
As for females, comparisons for males in Scotland are illustrated in Figure 7. Table VI summarises our estimates and also includes the official estimates for males in Scotland. The estimates for HLEB total, based on the total LHLY estimates are presented by the blue line in the graph. Also two confidence intervals at \(\pm 2\) years are indicated by the dashed lines. The orange and the brown curves representing the HLE (LLI) and HLE (New) official estimates are included into the confidence intervals thus verifying a quite good approach to our direct estimates. The HLE (Old) official estimates are close to our estimates for HLEB with severe causes (light blue curve) and HLEB with severe and moderate causes (green curve).
As our direct method for estimating the healthy life expectancy is easy to apply provided that the death and population data are available we have estimated the life expectancy at birth (LEB) and the healthy life expectancy at birth (HLEB) for males and females in Scotland for the time period 1855-2009. The results are included in Tables V and VI. Figure 8 illustrates the LEB and HLEB for total causes for males and females. The results verify the argument for a slower increase of HLEB in nowadays compared to LEB for both males and females. Females have higher LEB and HLEB. However, in the later case the gap is smaller than for LEB. The main interesting point for policy makers is that HLEB is tending to stationarity. This is mainly due to the relative stability of the year for the maximum deterioration age for both males and females for long time periods.
TABLE VI (Application in Scotland for males)

Year	Max Det Age	LHLY Light	LHLY Moderate	LHLY Total	HLEB Total	HLEB moderate & severe	Scotland official estimates
							HLE (LLI) HLEB New HLE Old
1855	67.1	6.7	5.4	0.0	11.9	29.5	29.2 41.4
1860	69.9	6.6	5.3	0.0	11.9	30.7	30.7 42.6
1890	70.5	6.3	6.0	0.1	12.4	32.5	32.6 44.9
1910	69.2	6.1	5.0	2.1	13.2	36.7	38.8 49.9
1920	68.9	6.4	5.4	1.6	13.4	37.8	39.5 44.9
1930	68.6	6.4	5.2	3.3	14.9	40.6	43.9 55.5
1940	67.2	7.3	6.5	1.1	14.9	40.8	41.9 55.7
1950	68.5	6.4	3.7	3.0	13.1	51.0	54.0 64.1
1960	64.0	5.7	2.8	2.6	11.2	55.0	57.7 66.3
1970	64.0	6.0	2.9	1.7	10.6	56.5	58.2 67.1
1980	66.5	6.2	2.9	3.4	12.5	56.4	59.8 68.9
1990	67.6	6.3	2.9	3.4	12.6	56.5	59.9 69.1
1991	66.0	6.0	2.9	3.3	12.3	57.0	60.3 69.2
1992	67.1	6.0	2.6	4.4	12.9	56.7	61.1 69.6
1993	61.0	5.5	2.5	4.8	12.6	57.3	61.9 69.9
1994	61.0	5.5	2.4	4.7	12.6	57.5	62.2 70.0
1995	67.0	5.8	2.5	4.6	12.8	57.3	61.9 70.1
1996	64.5	5.6	2.5	4.2	12.3	58.1	62.4 70.5
1997	67.5	5.9	2.5	3.9	12.3	58.1	62.0 70.4
1998	65.9	6.0	2.5	3.8	12.3	58.3	62.1 70.6
1999	64.1	5.8	2.5	4.3	12.6	58.5	62.8 71.1
2000	65.0	6.0	2.4	4.3	12.6	58.7	63.0 71.3
2001	66.2	6.3	2.3	4.0	12.6	58.9	62.9 71.6
2002	65.6	5.8	2.8	4.3	12.9	58.5	62.7 71.4
2003	67.9	5.9	2.0	5.0	12.9	59.2	64.2 72.1
2004	68.6	5.5	2.4	5.1	12.9	59.1	64.2 72.1
2005	70.8	5.6	2.6	5.1	13.4	58.6	63.7 72.0
2006	70.4	5.9	2.4	4.9	13.2	59.3	64.2 72.5
2007	69.3	5.7	2.3	5.7	13.7	58.9	64.6 72.6
2008	71.5	6.1	2.5	5.7	14.3	58.4	64.1 72.7
2009	72.3	6.4	2.3	5.2	14.0	59.1	64.4 73.1
2010	72.9	6.0	2.0	6.8	14.9	58.4	65.2 73.3
2011	73.3	6.1	2.0	6.7	14.8	58.4	65.1 73.2
2012	73.0	6.4	2.1	6.5	15.1	58.5	65.1 72.6
2013	73.7	6.5	1.9	7.3	15.6	58.5	65.7 72.6
2014	73.5	6.9	1.8	6.9	15.6	58.9	65.8 72.7
2015	74.5	6.4	1.8	8.6	16.9	58.1	66.4 72.7
2016	74.3	6.5	1.8	8.3	16.6	58.1	66.4 72.7
2017	74.8	6.6	2.0	7.9	16.6	58.5	66.5 75.1
2018	75.4	6.5	1.8	8.8	17.1	58.6	67.4 75.7

* Estimated by a different method

Conclusions

What was proven is that both the WHO and EU methods for estimating healthy life expectancy provide important indicators. The WHO system takes into account the severe and moderate causes in estimating the loss of healthy life years; instead the EU system calculates the total loss of
healthy life years. For both cases we have proposed a methodology which provides both estimators from only death and population data based on the health state theory of a population that has been extensively described, analysed and applied in this paper and the references included.

References

C. H. Skiadas, A Life Expectancy Study based on the Deterioration Function and an Application to Halley's Breslau Data, arXiv:1110.0130 [q-bio.PE] (1 Oct 2011), http://arxiv.org/ftp/arxiv/papers/1110/1110.0130.pdf.

C. H. Skiadas, Life Expectancy at Birth, Estimates and Forecasts in the Netherlands (Females), arXiv:1112.0796 [q-bio.PE] (4 Dec 2011), http://arxiv.org/ftp/arxiv/papers/1112/1112.0796.pdf.

C. H. Skiadas, The Health State Function, the Force of Mortality and other Characteristics resulting from the First Exit Time Theory applied to Life Table Data, arXiv:1202.1581v1 [q-bio.PE] (8 Feb. 2012, http://arxiv.org/ftp/arxiv/papers/1202/1202.1581.pdf).

C. H. Skiadas and C. Skiadas, Properties of a Stochastic Model for Life Table Data: Exploring Life Expectancy Limits, arXiv:1101.1796v1 (10 Jan 2011), http://arxiv.org/ftp/arxiv/papers/1101/1101.1796.pdf.

C. H. Skiadas and C. Skiadas, Estimating the Healthy Life Expectancy from the Health State Function of a Population in Connection to the Life Expectancy at Birth, arXiv:1205.2919 [q-bio.PE] (14 May 2012), http://arxiv.org/ftp/arxiv/papers/1205/1205.2919.pdf.

R. Wood, M. Sutton, D. Clark, A. McKeon, and M. Bain, Measuring inequalities in health: the case for healthy life expectancy, 2006, *Journal of Epidemiology and Community Health* 60(12): 1089–1092.