The handle http://hdl.handle.net/1887/35725 holds various files of this Leiden University dissertation

Author: Tjeerdema, Nathanja
Title: End organ damage in the metabolic syndrome and diabetes mellitus: biochemical and magnetic resonance imaging studies
Issue Date: 2015-10-06
Chapter 2

Insulin resistance and risk of incident cardiovascular events in adults without diabetes: meta-analysis

Karin B. Gast, Nathanja Tjeerdema, Theo Stijnen, Johannes W.A. Smit, Olaf M. Dekkers

PLoS One 2012;7(12):e52036
ABSTRACT

Background
Glucose, insulin and Homeostasis Model Assessment Insulin Resistance (HOMA-IR) are markers of insulin resistance. The objective of this study is to compare fasting glucose, fasting insulin concentrations and HOMA-IR in strength of association with incident cardiovascular disease.

Methods
We searched the PubMed, MEDLINE, EMBASE, Web of Science, ScienceDirect and Cochrane Library databases from inception to March, 2011 and screened reference lists. Cohort studies or nested case-control studies that investigated the association between fasting glucose, fasting insulin or HOMA-IR and incident cardiovascular disease, were eligible. Two investigators independently performed the article selection, data extraction and risk of bias assessment. Cardiovascular endpoints were coronary heart disease (CHD), stroke or combined cardiovascular disease. We used fixed and random-effect meta-analyses to calculate the pooled relative risk for CHD, stroke and combined cardiovascular disease, comparing high to low concentrations of glucose, insulin or HOMA-IR. Study heterogeneity was calculated with the I² statistic. To enable a comparison between cardiovascular disease risks for glucose, insulin and HOMA-IR, we calculated pooled relative risks per increase of one standard deviation.

Results
We included 65 studies (involving 516,325 participants) in this meta-analysis. In a random-effect meta-analysis the pooled relative risk of CHD (95% CI; I²) comparing high to low concentrations was 1.52 (1.31, 1.76; 62.4%) for glucose, 1.12 (0.92, 1.37; 41.0%) for insulin and 1.64 (1.35, 2.00; 0%) for HOMA-IR. The pooled relative risk of CHD per one standard deviation increase was 1.21 (1.13, 1.30; 64.9%) for glucose, 1.04 (0.96, 1.12; 43.0%) for insulin and 1.46 (1.26, 1.69; 0.0%) for HOMA-IR.

Conclusions
The relative risk of cardiovascular disease was higher for an increase of one standard deviation in HOMA-IR compared to an increase of one standard deviation in fasting glucose or fasting insulin concentration. It may be useful to add HOMA-IR to a cardiovascular risk prediction model.
INTRODUCTION

Cardiovascular disease is worldwide the leading cause of death [1]. Type 2 diabetes contributes importantly to cardiovascular disease, because it is highly prevalent and doubles cardiovascular disease risk [2,3]. Before type 2 diabetes is diagnosed, insulin resistance can be present for years, thereby increasing insulin and glucose concentrations [4,5].

Recent meta-analyses have shown that elevated insulin and glucose concentrations in persons without diabetes were associated with an increased cardiovascular disease risk [3,6]. In accordance, mechanistic studies have shown that elevated glucose and insulin concentrations can be pro-atherogenic [7,8]. Elevated insulin and glucose concentrations are direct consequences of insulin resistance. Insulin resistance can promote the development of atherosclerosis through elevated glucose and insulin concentrations, but also through mechanisms that involve dyslipidemia, hypertension, and inflammation [7,9]. Therefore, cardiovascular disease may be caused by insulin resistance rather than being a consequence of the toxic effects of elevated insulin or glucose concentrations. A validated and frequently used marker of insulin resistance is the Homeostasis Model Assessment Insulin Resistance (HOMA-IR). Since, HOMA-IR incorporates both glucose and insulin concentrations and represents insulin resistance, which can promote atherosclerosis through several mechanisms [7,9], it might be more strongly associated with cardiovascular disease than individual glucose or insulin concentrations. No meta-analysis thus far, has compared the strength of association between HOMA-IR and cardiovascular disease to associations between fasting glucose, fasting insulin and cardiovascular disease.

Our aim was to perform a systematic review and meta-analysis on the association between fasting glucose, fasting insulin, HOMA-IR and incident cardiovascular disease in individuals without diabetes. Our second aim was to compare fasting glucose, fasting insulin and HOMA-IR in strength of association with incident cardiovascular disease. We hypothesized that HOMA-IR is more strongly associated with incident cardiovascular disease than fasting glucose or fasting insulin.

METHODS

Data Sources and Searches

We searched the following databases from their inception to February 23, 2010: PubMed, MEDLINE, EMBASE, Web of Science, ScienceDirect and Cochrane Library. We updated the search to February 29th, 2011 for the MEDLINE and PubMed databases. The search strategy was optimized for all consulted databases, taking into account the differences
of the various controlled vocabularies as well as the differences of database-specific technical variations (e.g. the use of quotation marks). The reference lists of all potentially relevant articles were screened for additional publications. Detailed and database specific information about the search strategy is shown in Table S1.

Study Selection
The aim of our meta-analysis was to investigate the association between fasting glucose, fasting insulin, HOMA-IR and incident cardiovascular disease in individuals without diabetes at baseline. Cohort studies that measured glucose, insulin or HOMA-IR and reported original data on their association with cardiovascular disease, were eligible. We considered only cohort studies or nested case-control studies that measured glucose or insulin concentrations prior to the assessment of cardiovascular disease with a subsequent follow-up of minimally one year. No cross-sectional studies were eligible. In addition, articles in other languages than English were not eligible.

Since anti-diabetic drugs influence insulin and glucose concentrations, study populations should preferably have excluded participants with overt diabetes at baseline. However, population based studies that did not exclude participants with overt diabetes at baseline were eligible for inclusion. We excluded studies performed in populations exclusively consisting of persons with known diabetes or cohorts restricted to specific populations such as intensive care or transplant patients.

Studies that measured glucose or insulin concentrations in the fasting state were eligible for inclusion. Unfortunately, no uniform definition of fasting exists and many different definitions are being used [10]. Concentrations were considered to be fasting if study participants abstained from food for at least eight hours. Studies that reported the glucose or insulin concentrations to be fasting or measured after an overnight fast, but did not report the time span of fasting, were not excluded.

Studies reporting on at least one of the following endpoints were eligible: myocardial infarction, angina pectoris, stroke (ischemic or hemorrhagic), arrhythmias, congestive heart failure or sudden cardiac death separately or combinations. Studies that combined these endpoints with peripheral arterial disease, arterial aneurysm or arterial dissection in a composite endpoint were not excluded.

Furthermore, to be included studies should (1) report the association by comparing categories (percentiles or cut-off values), (2) express the association as relative risks (hazard ratios, rate ratios, risk ratios or odds ratios) with corresponding standard errors, confidence intervals or exact p-values and (3) adjust effect estimates at least for age and sex. In case of multiple publications arising from the same study population we included the study with the highest number of participants or the longest follow-up.
Data Extraction and Quality Assessment
Two investigators (K.G. and N.T.) independently performed the article selection based on titles and abstracts, data extraction and risk of bias assessment using a standard data sheet. Disagreement was resolved by consensus or by a third party (O.D.).

If necessary, glucose and insulin concentrations were recalculated to the international system of units (i.e. mmol/L for glucose and pmol/L for insulin) [11]. Values for HOMA-IR were based on values provided by the authors of included studies. In general, HOMA-IR is calculated by the formula: (fasting insulin x fasting glucose)/ 22.5 or by the more recently updated computer model [12]. We recalculated HOMA-IR values for studies that reported HOMA insulin sensitivity, which is the reciprocal of HOMA-IR.

We categorized study endpoints as (fatal or non-fatal): (1) coronary heart disease (CHD), (2) stroke and as (3) combined cardiovascular disease outcome (CVD), including studies contributing to 1 or 2. CHD was defined as myocardial infarction or angina pectoris; stroke consisted of hemorrhagic or ischemic stroke and CVD consisted of myocardial infarction, angina pectoris, hemorrhagic stroke, ischemic stroke, arrhythmias, congestive heart failure or sudden cardiac death.

Risk of bias assessment was based on design elements of cohort studies and nested case-control studies that could potentially bias the association between fasting glucose, fasting insulin, HOMA-IR and cardiovascular disease. Potential sources of bias were assessed by using a predefined assessment form. Dimensions considered for both cohort and nested case-control studies were (1) presence of overt diabetes at baseline, (2) presence of cardiovascular disease at baseline, (3) adequacy of exposure measurement, (4) missing glucose, insulin or HOMA-IR data, (5) adequacy of endpoint ascertainment. Bias was considered to be likely present when: (1) study populations had overt diabetes prevalence of twice their country specific diabetes prevalence estimates of 2011 [13]; indicating that studies have selected their study population based on high glucose concentrations (selection bias), (2) persons with prevalent cardiovascular disease according to their outcome definition were not excluded; (3) the time span of fasting was not reported, (4) ≥10% missing data of the exposure except when data was missing completely at random (e.g. in the case of later introduction of the measurement), (5) outcome classification was based on self- or family reports, (6) there was ≥10% loss to follow-up. Reliable methods of outcome assessment were assessment by medical records, death certificates or hospital discharge records. Diagnosis of myocardial infarction was considered reliable when WHO MONICA criteria or Minnesota coding of electrocardiograms during follow-up visits were used [14–16].

Data Synthesis and Analysis
Hazard ratios, rate ratios, risk ratios or odds ratios (relative risks) of cardiovascular disease comparing high to low concentrations of glucose, insulin or HOMA-IR values were
extracted. If necessary, we recalculated these relative risks in a way that the lowest category (percentile or cut-off value) comprised the reference category. Our first aim was to estimate the pooled relative risk for cardiovascular disease, when comparing categories (based on either percentiles or cut-offs) of high concentrations of glucose, insulin or HOMA-IR to categories of lower concentrations. We pooled maximally adjusted effect measures of studies with corresponding 95% confidence intervals (CI). For all analyses, both a fixed and a random-effect meta-analysis were performed. Study heterogeneity was calculated with the I² statistic. Elements of the risk of bias assessment were used to explore potential heterogeneity in sensitivity analyses. We assessed the presence of funnel plot asymmetry by calculating Egger's test [17].

Our second aim was to compare fasting glucose, fasting insulin and HOMA-IR in strength of association with cardiovascular disease by comparing pooled standardized relative risks (i.e. risk increase per increase of one standard deviation). First, we calculated the standard deviation per exposure by pooling reported standard deviations with a weight factor based on study size. Secondly, we applied the method of Hartemink et al. [18] to calculate an overall relative risk per one unit increase of the exposure. Then, we multiplied the logarithm of the relative risks by the pooled standard deviation of the exposure. In short, the method of Hartemink et al. [18] assumes a log-linear relation between the risk and the exposure. The input of the algorithm consists of the means and variances of the exposure within each category of the exposure, the log relative risks of the categories with respect to a reference category, and the number of cases within each category. To determine the category means and variances we applied various methods, depending on the kind of data reported in the article. We assumed a lognormal distribution for the exposures. Finally, we tested differences in pooled relative risks between the three exposures by using multivariate meta-analysis. Relative risks obtained from the same study (i.e. for studies that reported relative risks for more than one exposure) are likely to be correlated and this correlation is taken into account by multivariate meta-analysis.

We investigated sex differences in studies that presented sex-specific relative risks of cardiovascular disease by performing meta-analyses stratified by sex. Statistical analyses were performed with STATA Statistical Software (Statacorp, College Station, Texas, USA), version 11.2 and SAS software (SAS Institute Inc., Cary, NC, USA), version 9.2.

RESULTS

Search Results
We identified 4,792 unique publications by database search (MEDLINE: n = 2,095, PubMed: n = 1,480, EMBASE n = 852, Cochrane: n = 112, ScienceDirect: n = 103, Web of Science: n = 86) and by screening reference lists of potentially relevant articles (n = 64). After exclusion
of 4,469 publications by screening title and abstract, 323 publications were retrieved for detailed assessment of which 184 fulfilled inclusion criteria and were assessed in duplicate. To avoid multiple inclusions of the same study participants, we excluded 32 publications originating from the same study populations and included the publication with the largest population or the longest follow-up. Sixty-five studies (from 64 publications) were included. Forty-five studies presented data on fasting glucose, 17 studies presented data on fasting insulin and 16 studies presented data on HOMA-IR (Figure 1).

Figure 1. Summary of search results. * One publication consisted of two studies. HOMA-IR, Homeostasis Model Assessment insulin resistance
Study characteristics

Study characteristics of the included studies are summarized in Table 1. Sixty-four cohort studies and 1 nested case-control study were included. The controls in this case-cohort study were matched on time and therefore the odds ratio corresponds to a rate ratio [19]. Fifty-six studies presented a hazard ratio and nine studies presented an odds ratio. Most study populations consisted of both men and women. Individual study characteristics of included studies are shown in Table S2.

Table 1. Study characteristics of the included studies summarized for three exposures.

Characteristic	Glucose (45 studies)	Insulin (16 studies)	HOMA-IR (17 studies)
Total participants	450,487	46,236	51,161
Participants per study (range)	541-63,443	541-13,446	839-6,942
Year of publication	1983-2010	1992-2010	2001-2010
Mean follow-up (years, range)	3.2-23.5	5.0-22.3	2.2-30
Study design			
Cohort	45	15	17
Nested case-control	0	1	0
CHD endpoint			
Number of studies	23	9	7
Events per study	23-4,490	16-677	33-169
Total events	10,884	2,149	441
Stroke endpoint			
Number of studies	14	2	4
Events per study	13-405	25-70	23-70
Total events	1,936	95	164
Combined CVD endpoint			
Number of studies	45	16	17
Events per study	23-4,490	16-492	58-340
Total events	19,993	3,329	3,035

Data are presented as number or range. a Three studies did not report follow-up time b Two studies did not report the number of participants who encountered the outcome of interest. c One study did not report the number of participants who encountered the outcome of interest. HOMA-IR, Homeostasis Model Assessment Insulin Resistance; CHD, coronary heart disease; CVD, cardiovascular disease

Risk of bias

The risk of bias assessment is summarized in Table S3 and shown per study in Table S4. Most studies excluded persons with overt diabetes at baseline. One study included persons with prevalent cardiovascular disease and this was unclear in 20 studies. Twenty-two studies did not specify the time span of fasting or whether participants had
Figure 2. Random-effect meta-analyses of coronary heart disease risk for the highest category of glucose, insulin or HOMA-IR compared to the lowest category. *Or known diabetes was used to define the highest category. Paris Prospective Study. Menn Helsinki Policemen Study. *Women. & Glomerular Filtration Rate ≥ 60 ml/min/1.73 m². & Glomerular Filtration Rate < 60 ml/min/1.73 m². 95% CI, 95% confidence interval; vs, versus; I-squared, measure of heterogeneity; HOMA-IR, Homeostasis Model Assessment Insulin Resistance.
an overnight fast. Five studies had more than 10% missing data for glucose, four studies for insulin and three studies for HOMA-IR which was not reported to be completely at random. In 13 studies we considered bias to be likely present due to inadequate outcome assessment. The percentage of participants that were loss to follow-up ranged from 0% to 42%. Seven studies had a loss to follow-up of more than 10% and this was unclear in most studies. The p-values of Egger’s test were 0.08 for glucose, <0.01 for insulin and <0.01 for HOMA-IR.

Comparison between glucose, insulin and HOMA-IR

In a random-effect meta-analysis the pooled relative risk of CHD comparing the highest versus the lowest category was 1.52 (95% CI: 1.31, 1.76; I²: 62.4%) for glucose, 1.12 (95% CI: 0.92, 1.37; I²: 41.0%) for insulin and 1.64 (95% CI: 1.35, 2.00; I²: 0%) for HOMA-IR (Figure 2 and Figure S1). The pooled relative risks for the association with stroke and CVD, and meta-analyses stratified by sex for studies that provided sex-specific relative risks are summarized in Figure S1.

To enable a direct comparison between CHD and CVD risks for glucose, insulin and HOMA-IR we calculated pooled relative risks for an increase of one standard deviation [18]. We did not investigate the endpoint stroke, because only two studies investigated the association between insulin and stroke. The relative risks per increase of one standard deviation for glucose (1.05 mmol/L), insulin (43.53 pmol/L) and HOMA-IR (2.23 units) are shown in Figure 3. The pooled relative risk of CHD per one standard deviation increase was 1.21 (95% CI: 1.13, 1.30; I²: 64.9%) for glucose, 1.04 (95% CI: 0.96, 1.12; I²: 43.0%) for insulin and 1.46 (95% CI: 1.26, 1.69; I²: 0.0%) for HOMA-IR. The pooled relative risks of CHD for glucose, insulin, and HOMA-IR were all statistically different from each other (p-values: <0.05). The pooled relative risks of CVD for glucose, insulin, and HOMA-IR were not statistically different (p-value: 0.27).

Thirty-three studies provided sex-specific relative risks of CVD. Few studies provided relative risks of CHD or stroke for women and therefore we only investigated sex differences for incident CVD. Women had higher relative risks of CVD per one standard deviation increase of glucose (1.25 (95% CI: 1.11, 1.41; I²: 65.0%) versus 1.13 (95% CI: 1.08, 1.18; I²: 29.3%); p-value: 0.01) and insulin (1.24 (95% CI: 1.08, 1.44; I²: 18.5%) versus 1.06 (95% CI: 0.97, 1.16; I²: 60.4%); p-value: 0.03) and lower relative risk of CVD per one standard deviation increase of HOMA-IR (1.37 (95% CI: 1.05, 1.80; I² 33.6%) versus 1.41 (95% CI: 1.12, 1.77; I² 66.5%); p-value: 0.73) (Figure 3). In sensitivity analyses we excluded studies which had a high risk of bias based on items of the risk of bias assessment. The results of the meta-analyses were materially unchanged.
Discussion

The present meta-analyses showed that fasting glucose, fasting insulin and HOMA-IR were all associated with incident cardiovascular disease in individuals without diabetes. In a standardized meta-analysis we found that coronary heart disease risk increased with 46\% for an increase of one standard deviation in HOMA-IR concentration compared to an increase of 21\% for fasting glucose concentration and an increase of 4\% for fasting insulin concentration.

To our knowledge, this was the first meta-analysis that directly compared fasting glucose, fasting insulin and HOMA-IR in strength of association with cardiovascular disease. A number of previous meta-analyses have investigated the association between fasting glucose, fasting insulin or HOMA-IR concentrations and cardiovascular disease by comparing high to low concentrations. Our pooled relative risks of cardiovascular disease (glucose: 1.44, insulin: 1.28, HOMA-IR: 1.44) are within the range of pooled relative risks reported in previous meta-analyses [6,20–22]. Differences in pooled relative risks between meta-analyses may be, for a large part attributed to different cut-off levels of

	Number of Studies	Participants	Pooled relative risk per 1 SD (95% CI)	I^2
CHD				
Glucose	23	140,721	1.21 (1.13, 1.30)	64.9%
Insulin	9	32,104	1.04 (0.96, 1.12)	43.0%
HOMA-IR	7	17,452	1.46 (1.26, 1.69)	0.0%
CVD				
Glucose	44	450,487	1.19 (1.14, 1.23)	66.8%
Insulin	16	46,236	1.13 (1.05, 1.22)	58.3%
HOMA-IR	17	51,161	1.25 (1.16, 1.35)	52.4%
CVD				
Glucose	men 22	183,802	1.13 (1.08, 1.18)	29.3%
	women 14	51,527	1.25 (1.11, 1.41)	65.0%
Insulin	men 10	18,411*	1.06 (0.97, 1.16)	60.4%
	women 4	5,082*	1.24 (1.08, 1.44)	18.5%
HOMA-IR	men 6	9,768	1.41 (1.12, 1.77)	66.5%
	women 3	5,049	1.37 (1.05, 1.80)	33.6%

Figure 3. Results of random-effect meta-analyses comparing cardiovascular disease risk for an increase of one standard deviation. *1 study did not specify sex-specific numbers. SD, standard deviation; 95% CI, 95% confidence interval; I^2, measure of heterogeneity; CHD, coronary heart disease and is defined as fatal or non-fatal myocardial infarction or angina pectoris; CVD, cardiovascular disease and is defined as myocardial infarction, angina pectoris, hemorrhagic stroke, ischemic stroke, arrhythmias, congestive heart failure or sudden cardiac death; HOMA-IR, Homeostasis Model Assessment Insulin Resistance
the exposure, leading to different causal contrasts. Further, differences in design aspects of meta-analyses may explain different pooled relative risks. For example, including studies with only fatal events versus studies with fatal and non-fatal events can result in different pooled RR for glucose, since diabetes seems to be a stronger risk factor for fatal than for non-fatal events [23]. Previous studies that investigated sex differences in the association between diabetes and cardiovascular disease found that women with diabetes had a higher relative risk than men with diabetes [3,24,25]. The pooled relative risks for an increase of one standard deviation in glucose and insulin were somewhat higher for women than for men, whereas there was less difference in relative risks between sexes for HOMA-IR. It has been proposed that diabetes may induce a more unfavorable cardiovascular risk profile in women than in men and thereby increases cardiovascular disease risk more in women [24,25]. Another explanation could be that these cardiovascular risk factors are not intermediates, but common causes of both diabetes and cardiovascular disease which may have a stronger effect in women than in men. However, most individual relative risks in this analysis were adjusted for cardiovascular risk factors. Leaving the possibility that there could still be residual confounding, for example by body composition and insulin resistance which are known to differ between men and women [26,27]. Even if relative risks are truly higher in women than in men, it is important to consider that absolute cardiovascular disease risk are lower [24]. In this meta-analysis, the relative risk of cardiovascular disease was higher for an increase of one standard deviation in HOMA-IR compared to an increase of one standard deviation in glucose or insulin. Animal studies have shown that insulin resistance plays an important role in the early and advanced stages of atherosclerosis, whereas hyperglycemia seems exclusively to be involved in early stages of atherosclerosis [9]. In addition, insulin resistance seems to modify the effect of insulin on the vascular wall; anti-atherogenic in the insulin sensitive state and pro-atherogenic in the insulin resistant state [8]. Unfortunately, it is not clear to what extent these pro-atherogenic mechanism contribute to the development of cardiovascular disease in humans.

A strength of this study is the large number of included studies comprising more than 500,000 participants. Therefore, the pooled effect estimates were not influenced largely by random error and it was possible to investigate different cardiovascular endpoints and sex differences. Secondly, in most studies we were able to calculate the relative risk for an increase of one standard deviation in the exposure. In this way, we adjusted for differences in assays and used cut-off points between studies and could compare the three exposures. Thirdly, we investigate the risk of incident coronary heart disease which is considered to be a homogeneous well-defined cardiovascular disease endpoint [28].

A general limitation of meta-analyses of observational studies is that the result may be a precise, but biased estimate. We assessed the risk of bias per study and performed sensitivity analyses excluding studies with a high risk of bias in a sensitivity analysis. This did
not change our results materially. We showed the presence of funnel-plot asymmetry by Egger’s test. Sources of funnel plot asymmetry are publication bias, true heterogeneity of study effects or differences in study quality [17]. Since funnel-plot asymmetry was present for all three exposures, comparing three exposures still seems valid. Most studies included in our meta-analysis measured concentrations only once and are thereby susceptible to random measurement error. Random measurement error of the exposure leads to an attenuation of estimated effects [29]. Moreover, most studies only reported composite cardiovascular disease outcomes which may hamper a causal interpretation of reported risks if the exposure has no uniform effect on the different endpoints [30]. For example, elevated cholesterol concentration is a risk factor for coronary heart disease, but not for stroke [31,32]. Few studies reported stroke endpoints and associations in women; as a consequence the pooled relative risk of stroke for insulin was based on two studies and the pooled relative risk for HOMA-IR was based on four studies. Finally, we only included studies that measured HOMA-IR, which is a surrogate measure of insulin resistance and mainly reflects hepatic insulin resistance [12]. Therefore, it may not account for the total effect of insulin resistance. However, the application of the gold standard measurement, i.e. the euglycemic hyperinsulinemic clamp which is a measure of peripheral insulin resistance is often not feasible in large epidemiological studies.

More knowledge in the pathophysiology of atherosclerosis should guide type and initiation of treatment. For example, shifting the glucose distribution curve leftwards for the entire population as was postulated previously [33], is only effective when glucose itself is involved in atherosclerosis pathophysiology and when the intervention has a uniform effect in the entire population. However, the addition of HOMA-IR, a marker of insulin resistance to a risk prediction model may improve cardiovascular risk prediction. The addition of a fasting glucose measurement to the Framingham risk score resulted in a slight net reclassification improvement of 1.8% [34]. Whether the addition of HOMA-IR to a risk prediction model, on top of glucose, results in a more accurate reclassification of cardiovascular risk is unknown. Furthermore, this possible benefit should be carefully weighted against the extra costs involved with measuring both glucose and insulin. However, considering the addition of HOMA-IR to a prediction model is important, since many current models aiming to predict cardiovascular events are still not optimal to define high risk groups.
REFERENCES

1. World Health Organization website. Available: http://www.who.int/mediacentre/factsheets/fs310/en/index2.html. Accessed 2012 Dec 3.
2. Almdal T, Scharling H, Jensen JS, Vestergaard H (2004) The independent effect of type 2 diabetes mellitus on ischemic heart disease, stroke, and death: a population-based study of 13,000 men and women with 20 years of follow-up. Arch Intern Med 164: 1422-1426.
3. Sarwar N, Gao P, Seshasai SR, Gobin R, Kaptoge S et al. (2010) Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet 375: 2215-2222.
4. Faerch K, Vaag A, Holst JJ, Hansen T, Jorgensen T et al. (2009) Natural history of insulin sensitivity and insulin secretion in the progression from normal glucose tolerance to impaired fasting glycemia and impaired glucose tolerance: the Inter99 study. Diabetes Care 32: 439-444.
5. Kim SH, Reaven GM (2008) Isolated impaired fasting glucose and peripheral insulin sensitivity: not a simple relationship. Diabetes Care 31: 347-352.
6. Sarwar N, Sattar N, Gudnason V, Danesh J (2007) Circulating concentrations of insulin markers and coronary heart disease: a quantitative review of 19 Western prospective studies. Eur Heart J 28: 2491-2497.
7. Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107: 1058-1070.
8. Yu Q, Gao F, Ma XL (2011) Insulin says NO to cardiovascular disease. Cardiovasc Res 89: 516-524.
9. Bornfeldt KE, Tabas I (2011) Insulin resistance, hyperglycemia, and atherosclerosis. Cell Metab 14: 575-585.
10. Nybo M, Grinsted P, Jorgensen PE (2005) Blood sampling: is fasting properly defined? Clin Chem 51: 1563-1564.
11. The University of North Carolina website. Available: http://www.unc.edu/~rowlett/units/scales/clinical_data.html. Accessed 2012 Dec 3.
12. Wallace TM, Levy JC, Matthews DR (2004) Use and abuse of HOMA modeling. Diabetes Care 27: 1487-1495.
13. Whiting DR, Guariguata L, Weil C, Shaw J (2011) IDF Diabetes Atlas: Global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract 94: 311-321.
14. Burns EM, Rigby E, Mamidanna R, Bottle A, Aylin P et al. (2012) Systematic review of discharge coding accuracy. J Public Health (Oxf) 34: 138-148.
15. Tunstall-Pedoe H, Kuulasmaa K, Amouyel P, Arveiler D, Rajakangas AM et al. (1994) Myocardial infarction and coronary deaths in the World Health Organization MONICA Project. Registration procedures, event rates, and case-fatality rates in 38 populations from 21 countries in four continents. Circulation 90: 583-612.
16. Ammar KA, Kors JA, Yawn BP, Rodeheffer RJ (2004) Defining unrecognized myocardial infarction: a call for standardized electrocardiographic diagnostic criteria. Am Heart J 148: 277-284.
17. Egger M, Davey SG, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315: 629-634.
18. Hartemink N, Boshuizen HC, Nagelkerke NJ, Jacobs MA, van Houwelingen HC (2006) Combining risk estimates from observational studies with different exposure cutoffpoints: a meta-analysis on body mass index and diabetes type 2. Am J Epidemiol 163: 1042-1052.
19. Rothman KJ, Greenland S, Lash TL (2008) Modern Epidemiology. Lippincott Williams & Wilkins. 112 p.
20. Levitan EB, Song Y, Ford ES, Liu S (2004) Is nondiabetic hyperglycemia a risk factor for cardiovascular disease? A meta-analysis of prospective studies. Arch Intern Med 164: 2147-2155.

21. Ford ES, Zhao G, Li C (2010) Pre-diabetes and the risk for cardiovascular disease: a systematic review of the evidence. J Am Coll Cardiol 55: 1310-1317.

22. Hu G, Qiao Q, Tuomilehto J, Eliasson M, Feskens EJ et al. DECODE Insulin Study Group (2004) Plasma insulin and cardiovascular mortality in non-diabetic European men and women: a meta-analysis of data from eleven prospective studies. Diabetologia 47: 1245-1256.

23. Wilhelmsen L, Koster M, Harmsen P, Lappas G (2005) Differences between coronary disease and stroke in incidence, case fatality, and risk factors, but few differences in risk factors for fatal and non-fatal events. Eur Heart J 26: 1916-1922.

24. Kanaya AM, Grady D, Barrett-Connor E (2002) Explaining the sex difference in coronary heart disease mortality among patients with type 2 diabetes mellitus: a meta-analysis. Arch Intern Med 162: 1737-1745.

25. Huxley R, Barzi F, Woodward M (2006) Excess risk of fatal coronary heart disease associated with diabetes in men and women: meta-analysis of 37 prospective cohort studies. BMJ 332: 73-78.

26. Blaak E (2008) Sex differences in the control of glucose homeostasis. Curr Opin Clin Nutr Metab Care 11: 500-504.

27. Wannamethee SG, Papacosta O, Lawlor DA, Whincup PH, Lowe GD et al. (2012) Do women exhibit greater differences in established and novel risk factors between diabetes and non-diabetes than men? The British Regional Heart Study and British Women's Heart Health Study. Diabetologia 55: 80-87.

28. Mendis S, Thygesen K, Kuulasmaa K, Giampaoli S, Mahonen M, et al. (2011) World Health Organization definition of myocardial infarction: 2008-09 revision. Int J Epidemiol 40: 139-146.

29. Hutcheon JA, Chiolero A, Hanley JA (2010) Random measurement error and regression dilution bias. BMJ 340:c2289.

30. Cordoba G, Schwartz L, Woloshin S, Bae H, Gotzsche PC (2010) Definition, reporting, and interpretation of composite outcomes in clinical trials: systematic review. BMJ 341:c3920.

31. Harmsen P, Rosengren A, Tsipogianni A, Wilhelmsen L (1990) Risk factors for stroke in middle-aged men in Goteborg, Sweden. Stroke 21: 223-229.

32. Prospective studies collaboration (1995) Cholesterol, diastolic blood pressure, and stroke: 13,000 strokes in 450,000 people in 45 prospective cohorts. Lancet 346: 1647-1653.

33. Avendano M, Mackenbach JP (2006) Blood glucose levels: facing a global crisis. Lancet 368: 1631-1632.

34. Brunner EJ, Shipley MJ, Marmot MG, Kivimaki M, Witte DR (2010) Do the Joint British Society (JBS2) guidelines on prevention of cardiovascular disease with respect to plasma glucose improve risk stratification in the general population? Prospective cohort study. Diabet Med 27: 550-555.

35. Baba T, Amasaki Y, Soda M, Hida A, Imaizumi M et al. (2007) Fatty liver and uric acid levels predict incident coronary heart disease but not stroke among atomic bomb survivors in Nagasaki. Hypertens Res 30: 823-829.

36. Balkau B, Shipley M, Jarrett RJ, Pyorala K, Pyorala M et al. (1998) High blood glucose concentration is a risk factor for mortality in middle-aged nondiabetic men. 20-year follow-up in the Whitehall Study, the Paris Prospective Study, and the Helsinki Policemen Study. Diabetes Care 21: 360-367.

37. Barrett-Connor E, Wingard DL, Criqui MH, Suarez L (1984) Is borderline fasting hyperglycemia a risk factor for cardiovascular death? Journal of Chronic Diseases 37: 773-779.
38. Bjornholt JV, Erikssen G, Aaser E, Sandvik L, Nitter-Hauge S et al. (1999) Fasting blood glucose: an underestimated risk factor for cardiovascular death. Results from a 22-year follow-up of healthy nondiabetic men. Diabetes Care 22: 45-49.

39. Brunner EJ, Shipley MJ, Marmot MG, Kivimaki M, Witte DR (2010) Do the Joint British Society (JBS2) guidelines on prevention of cardiovascular disease with respect to plasma glucose improve risk stratiﬁcation in the general population? Prospective cohort study. Diabet Med 27: 550-555.

40. Cederberg H, Saukkonen T, Laakso M, Jokelainen J, Harkonen P et al. (2010) Postchallenge glucose, A1C, and fasting glucose as predictors of type 2 diabetes and cardiovascular disease: a 10-year prospective cohort study. Diabetes Care 33: 2077-2083.

41. Chien KL, Lee BC, Lin HJ, Hsu HC, Chen MF (2009) Association of fasting and post-prandial hyperglycemia on the risk of cardiovascular and all-cause death among non-diabetic Chinese. Diabetes Research & Clinical Practice 83: e47-e50.

42. Dekker JM, Girman C, Rhodes T, Nijpels G, Stehouwer CD et al. (2005) Metabolic syndrome and 10-year cardiovascular disease risk in the Hoorn Study. Circulation 112: 666-673.

43. Doi Y, Ninomiya T, Hata J, Fujihara M, Yonemoto K et al. (2010) Impact of glucose tolerance status on development of ischemic stroke and coronary heart disease in a general Japanese population: the Hisayama study. Stroke 41: 203-209.

44. Eberly LE, Prineas R, Cohen JD, Vazquez G, Zhi X et al. (2006) Metabolic syndrome: risk factor distribution and 18-year mortality in the multiple risk factor intervention trial. Diabetes Care 29: 123-130.

45. Ford ES (2004) The metabolic syndrome and mortality from cardiovascular disease and all-causes: ﬁndings from the National Health and Nutrition Examination Survey II Mortality Study. Atherosclerosis 173: 309-314.

46. Girman CJ, Rhodes T, Mercuri M, Pyorala K, Kjekshus J et al. (2004) The metabolic syndrome and risk of major coronary events in the Scandinavian Simvastatin Survival Study (4S) and the Air Force/Texas Coronary Atherosclerosis Prevention Study (AFCAPS/TexCAPS). Am J Cardiol 93: 136-141.

47. Hailpern SM, Cohen HW, Alderman MH (2006) Renal dysfunction predicts attenuation of ischemic heart disease mortality risk from elevated glucose among treated hypertensive patients. American Journal of Hypertension 19: 998-1004.

48. Henry P, Thomas F, Benetos A, Guize L (2002) Impaired fasting glucose, blood pressure and cardiovascular disease mortality. Hypertension 40: 458-463.

49. Ho JS, Cannaday JJ, Barlow CE, Mitchell TL, Cooper KH et al. (2008) Relation of the number of metabolic syndrome risk factors with all-cause and cardiovascular mortality. Am J Cardiol 102: 689-692.

50. Hsu PF, Chuang SY, Cheng HM, Tsai ST, Chou P et al. (2008) Clinical signiﬁcance of the metabolic syndrome in the absence of established hypertension and diabetes: A community-based study. Diabetes Research & Clinical Practice 79: 461-467.

51. Hunt KJ, Resendez RG, Williams K, Haffner SM, Stern MP et al. (2004) National Cholesterol Education Program versus World Health Organization metabolic syndrome in relation to all-cause and cardiovascular mortality in the San Antonio Heart Study. Circulation 110: 1251-1257.

52. Hwang YC, Jee JH, Oh EY, Choi YH, Lee MS et al. (2009) Metabolic syndrome as a predictor of cardiovascular diseases and type 2 diabetes in Koreans. Int J Cardiol 134: 313-321.

53. Jeppesen J, Hansen TW, Rasmussen S, Ibsen H, Torp-Pedersen C et al. (2007) Insulin Resistance, the Metabolic Syndrome, and Risk of Incident Cardiovascular Disease: A Population-Based Study. Journal of the American College of Cardiology 49: 2112-2119.
54. Juutilainen A, Lehto S, Ronnemaa T, Pyorala K, Laakso M (2006) Proteinuria and metabolic syndrome as predictors of cardiovascular death in non-diabetic and type 2 diabetic men and women. Diabetologia 49: 56-65.
55. Khang YH, Cho SI, Kim HR (2010) Risks for cardiovascular disease, stroke, ischaemic heart disease, and diabetes mellitus associated with the metabolic syndrome using the new harmonised definition: findings from nationally representative longitudinal data from an Asian population. Atherosclerosis 213: 579-585.
56. Kokubo Y, Okamura T, Watanabe M, Higashiyama A, Ono Y et al. (2010) The combined impact of blood pressure category and glucose abnormality on the incidence of cardiovascular diseases in a Japanese urban cohort: the Suita Study. Hypertens Res 33: 1238-1243.
57. Lapidus L, Bengtsson C, Blohme G, Lindquist O, Nystrom E (1985) Blood glucose, glucose tolerance and manifest diabetes in relation to cardiovascular disease and death in women. A 12-year follow-up of participants in the population study of women in Gothenburg, Sweden. Acta Med Scand 218: 455-462.
58. Liu J, Grundy SM, Wang W, Smith SC, Jr., Vega GL et al. (2007) Ten-year risk of cardiovascular incidence related to diabetes, prediabetes, and the metabolic syndrome. American Heart Journal 153: 552-558.
59. Marin A, Medrano MJ, Gonzalez J, Pintado H, Compaired V et al. (2006) Risk of ischaemic heart disease and acute myocardial infarction in a Spanish population: observational prospective study in a primary-care setting. BMC Public Health 6:38.
60. Nakanishi N, Takatorige T, Fukuda H, Shirai K, Li W et al. (2004) Components of the metabolic syndrome as predictors of cardiovascular disease and type 2 diabetes in middle-aged Japanese men. Diabetes Research & Clinical Practice 64: 59-70.
61. Nichols GA, Koro CE, Kolatkar NS (2009) The incidence of heart failure among nondiabetic patients with and without impaired fasting glucose. J Diabetes Complications 23: 224-228.
62. Nilsson PM, Engstrom G, Hedblad B (2007) The metabolic syndrome and incidence of cardiovascular disease in non-diabetic subjects--a population-based study comparing three different definitions. Diabetic Medicine 24: 464-472.
63. Preiss D, Welsh P, Murray HM, Shepherd J, Packard C et al. (2010) Fasting plasma glucose in non-diabetic participants and the risk for incident cardiovascular events, diabetes, and mortality: results from WOSCOPS 15-year follow-up. Eur Heart J 31: 1230-1236.
64. Sarwar N, Aspelund T, Eiriksdottir G, Gobin R, Seshasai SR et al. (2010) Markers of dysglycaemia and risk of coronary heart disease in people without diabetes: Reykjavik prospective study and systematic review. PLoS Medicine 7: e1000278.
65. Sattar N, McConnachie A, Shaper AG, Blauw GJ, Buckley BM et al. (2008) Can metabolic syndrome usefully predict cardiovascular disease and diabetes? Outcome data from two prospective studies. Lancet 371: 1927-1935.
66. Schillaci G, Pirro M, Vaudo G, Gemelli F, Marchesi S et al. (2004) Prognostic value of the metabolic syndrome in essential hypertension. Journal of the American College of Cardiology 43: 1817-1822.
67. Selvin E, Steffes MW, Zhu H, Matsushita K, Wagenknecht L et al. (2010) Glycated hemoglobin, diabetes, and cardiovascular risk in nondiabetic adults. N Engl J Med 362: 800-811.
68. Shin CY, Yun KE, Park HS (2009) Blood pressure has a greater impact on cardiovascular mortality than other components of metabolic syndrome in Koreans. Atherosclerosis 205: 614-619.
69. Simons LA, Friedlander Y, McCallum J, Simons J (2000) Fasting plasma glucose in non-diabetic elderly women predicts increased all-causes mortality and coronary heart disease risk. Australian & New Zealand Journal of Medicine 30: 41-47.

70. Smith NL, Barzilay JI, Shaffer D, Savage PJ, Heckbert SR et al. (2002) Fasting and 2-hour postchallenge serum glucose measures and risk of incident cardiovascular events in the elderly: the Cardiovascular Health Study. Arch Intern Med 162: 209-216.

71. Tai ES, Goh SY, Lee JJ, Wong MS, Heng D et al. (2004) Lowering the criterion for impaired fasting glucose: impact on disease prevalence and associated risk of diabetes and ischemic heart disease. Diabetes Care 27: 1728-1734.

72. Thomas GN, Schooling CM, McGhee SM, Ho SY, Cheung BM et al. (2007) Metabolic syndrome increases all-cause and vascular mortality: the Hong Kong Cardiovascular Risk Factor Study. Clin Endocrinol (Oxf) 66: 666-671.

73. Tsai SP, Wen CP, Chan HT, Chiang PH, Tsai MK et al. (2008) The effects of pre-disease risk factors within metabolic syndrome on all-cause and cardiovascular disease mortality. Diabetes Research & Clinical Practice 82: 148-156.

74. Wang JJ, Li HB, Kinnunen L, Hu G, Jarvinen TM et al. (2007) How well does the metabolic syndrome defined by five definitions predict incident diabetes and incident coronary heart disease in a Chinese population? Atherosclerosis 192: 161-168.

75. Watanabe H, Tanabe N, Watanabe T, Darbar D, Roden DM et al. (2008) Metabolic syndrome and risk of development of atrial fibrillation: the Nihgata preventive medicine study. Circulation 117: 1255-1260.

76. Wilson PW, D’Agostino RB, Parise H, Sullivan L, Meigs JB (2005) Metabolic syndrome as a precursor of cardiovascular disease and type 2 diabetes mellitus. Circulation 112: 3066-3072.

77. Yarnell JWG, Patterson CC, Bainton D, Sweetnam PM (1998) Is metabolic syndrome a discrete entity in the general population? Evidence from the caerphilly and speedwell population studies. Heart 79: 248-252.

78. Zhang WW, Liu CY, Wang YJ, Xu ZQ, Chen Y et al. (2009) Metabolic syndrome increases the risk of stroke: a 5-year follow-up study in a Chinese population. Journal of Neurology 256: 1493-1499.

79. Bonora E, Kiechl S, Willeit J, Oberhollenzer F, Egger G et al. (2007) Insulin resistance as estimated by homeostasis model assessment predicts incident symptomatic cardiovascular disease in caucasian subjects from the general population: the Bruneck study. Diabetes Care 30: 318-324.

80. Chien KL, Hsu HC, Su TC, Chen MF, Lee YT et al. (2008) Fasting and postchallenge hyperglycemia and risk of cardiovascular disease in Chinese: The Chin-Shan Community Cardiovascular Cohort study. American Heart Journal 156: 996-1002.

81. Folsom AR, Szklo M, Stevens J, Liao F, Smith R et al. (1997) A prospective study of coronary heart disease in relation to fasting insulin, glucose, and diabetes. The Atherosclerosis Risk in Communities (ARIC) Study. Diabetes Care 20: 935-942.

82. Jeppesen J, Hansen TW, Torp-Pedersen C, Madsbad S, Ibsen H et al. (2010) Relationship Between Common Lipoprotein Lipase Gene Sequence Variants, Hyperinsulinemia, and Risk of Ischemic Heart Disease: a Population-Based Study. Atherosclerosis 211:506-511.

83. Liu QZ, Knowler WC, Nelson RG, Saad MF, Charles MA et al. (1992) Insulin treatment, endogenous insulin concentration, and ECG abnormalities in diabetic Pima Indians. Cross-sectional and prospective analyses. Diabetes 41: 1141-1150.

84. Nakamura K, Sakurai M, Miura K, Morikawa Y, Ishizaki M et al. (2010) Homeostasis model assessment of insulin resistance and the risk of cardiovascular events in middle-aged non-diabetic Japanese men. Diabetologia 53: 1894-1902.
85. Nilsson P, Nilsson JA, Hedblad B, Eriksson KF, Berglund G (2003) Hyperinsulinaemia as long-term predictor of death and ischaemic heart disease in nondiabetic men: The Malmö Preventive Project. Journal of Internal Medicine 253: 136-145.

86. Orchard TJ, Eichner J, Kuller LH, Becker DJ, McCallum LM et al. (1994) Insulin as a predictor of coronary heart disease: interaction with apolipoprotein E phenotype. A report from the Multiple Risk Factor Intervention Trial. Ann Epidemiol 4: 40-45.

87. Oterdooom LH, de Vries AP, Gansevoort RT, de Jong PE, Gans RO et al. (2009) Fasting insulin is a stronger cardiovascular risk factor in women than in men. Atherosclerosis 203: 640-646.

88. Pyorala M, Miettinen H, Laakso M, Pyorala K (1998) Hyperinsulinemia and the risk of stroke in healthy middle-aged men: The 22-year follow-up results of the Helsinki Ploicemen Study. Stroke 29: 1860-1866.

89. Rutter MK, Meigs JB, Sullivan LM, D’Agostino RB, Sr., Wilson PW (2005) Insulin resistance, the metabolic syndrome, and incident cardiovascular events in the Framingham Offspring Study. Diabetes 54: 3252-3257.

90. St-Pierre AC, Cantin B, Mauriege P, Bergeron J, Dagenais GR et al. (2005) Insulin resistance syndrome, body mass index and the risk of ischemic heart disease. CMAJ Canadian Medical Association Journal 172: 1301-1305.

91. Arnlov J, Ingelsson E, Sundstrom J, Lind L (2010) Impact of body mass index and the metabolic syndrome on the risk of cardiovascular disease and death in middle-aged men. Circulation 121: 230-236.

92. Barr EL, Cameron AJ, Balkau B, Zimmet PZ, Welborn TA et al. (2010) HOMA insulin sensitivity index and the risk of all-cause mortality and cardiovascular disease events in the general population: the Australian Diabetes, Obesity and Lifestyle Study (AusDiab) study. Diabetologia 53: 79-88.

93. Hanley AJ, Williams K, Stern MP, Haffner SM (2002) Homeostasis model assessment of insulin resistance in relation to the incidence of cardiovascular disease: the San Antonio Heart Study. Diabetes Care 25: 1177-1184.

94. Hedblad B, Nilsson P, Engstrom G, Berglund G, Janzon L (2002) Insulin resistance in non-diabetic subjects is associated with increased incidence of myocardial infarction and death. Diabetic Medicine 19: 470-475.

95. Isomaa B, Almgren P, Tuomi T, Forsen B, Lahti K et al. (2001) Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care 24: 683-689.

96. Onat A, Hergenc G, Turkmen S, Yazici M, Sari I et al. (2006) Discordance between insulin resistance and metabolic syndrome: features and associated cardiovascular risk in adults with normal glucose regulation. Metabolism: Clinical & Experimental 55: 445-452.

97. Resnick HE, Jones K, Ruotolo G, Jain AK, Henderson J et al. (2003) Insulin resistance, the metabolic syndrome, and risk of incident cardiovascular disease in nondiabetic american indians: the Strong Heart Study. Diabetes Care 26: 861-867.

98. Rundek T, Gardener H, Xu Q, Goldberg RB, Wright CB et al. (2010) Insulin resistance and risk of ischemic stroke among nondiabetic individuals from the northern Manhattan study. Archives of Neurology 67: 1195-1200.
APPENDIX

Table S1. Search strategy

MEDLINE (OVID-version)
(exp Insulin resistance/ OR insulin resistance.ti,ab OR insulin sensitivity.ti,ab OR hyperglycaemia*.ti,ab OR exp hyperglycaemia/ OR hyperglycaemia*.ti,ab OR exp hyperinsulinism/ OR hyperinsulin*.ti,ab OR glucose intolerance.ti,ab) AND (exp Cardiovascular Diseases/ OR cardiovascular.ti OR myocardial.ti OR cerebrovascular.ti OR heart disease*.ti OR coronary artery disease*.ti OR stroke.ti OR coronary event*.ti OR cardiovascular mortality.ti OR cardiovascular event*.ti OR vascular disease*.ti) AND (non-diabetic OR nondiabetic OR non-diabetes OR non-dm OR pre-diabetes OR prediabetic OR prediabetic OR pre-dm OR "subclinical diabetes" OR "subclinical diabetic" OR "sub-clinical diabetic" OR "sub-clinical diabetic" OR normal glucose tolerance OR ngt OR normoglycemia OR normoglycaemia OR normoglycemies OR normoglycaemias OR normoglycaemic OR normoglycaemic OR impaired glucose tolerance OR IGT OR "impaired fasting glucose" OR ifg OR without diabet* OR without diagnosed diabet*).mp OR ("free of".ti,ab ADJ10 diabetes.ti,ab) OR (without.mp ADJ5 metabolic syndrome.mp)) AND (exp Adult/ OR adult*.mp)

EMBASE (OVID-version)
(exp *Insulin resistance/ OR insulin resistance.ti OR exp *insulin sensitivity/ OR insulin sensitivity.ti OR hyperglycaem*.ti OR exp *hyperglycaemia/ OR hyperglycem*.ti OR exp *hyperinsulinism/ OR hyperinsulin*.ti OR exp *hyperinsulinemia/ OR glucose intolerance.ti) AND (exp Cardiovascular Disease/ OR cardiovascular.ti OR myocardial.ti OR cerebrovascular.ti OR heart disease*.ti OR coronary artery disease*.ti OR stroke.ti OR coronary event*.ti OR cardiovascular mortality.ti OR cardiovascular event*.ti OR vascular disease*.ti) AND (non-diabetic OR nondiabetic OR non-diabetes OR non-dm OR pre-diabetes OR prediabetic OR prediabetic OR pre-dm OR "subclinical diabetes" OR "subclinical diabetic" OR "sub-clinical diabetic" OR "sub-clinical diabetic" OR normal glucose tolerance OR ngt OR normoglycemia OR normoglycaemia OR normoglycemies OR normoglycaemias OR normoglycaemic OR normoglycaemic OR impaired glucose tolerance OR IGT OR "impaired fasting glucose" OR ifg OR without diabet* OR without diagnosed diabet*).mp OR impaired glucose tolerance OR glucose blood level/) AND (exp Adult/ OR exp Aged/ OR exp Middle aged/ OR adult*.mp)

Web of Science
TI=("Insulin resistance" OR "Insulin sensitivity" OR hyperglycaem* OR hyperglycem* OR hyperinsulin* OR "glucose intoleran") AND TI=("Cardiovascular disease" OR "heart disease" OR "cardiac disease" OR "myocardial disease" OR "cerebrovascular disease" OR "coronary disease" OR "coronary artery disease" OR stroke OR "vascular disease") ANDTS=(non-diabetic OR "pre-diabetes" OR "pre-diabetic" OR prediabetic OR prediabetic OR "subclinical diabetes" OR "subclinical diabetic" OR "sub-clinical diabetic" OR "sub-clinical diabetic" OR normal glucose tolerance OR ngt OR normoglycemi* OR normoglycaemi* OR "impaired glucose tolerance" OR IGT OR "impaired fasting glucose" OR ifg)

Science Direct
TITLE(="Insulin resistance" OR "Insulin sensitivity" OR hyperglycaem* OR hyperglycem* OR hyperinsulin* OR "glucose intoleran") AND (="Cardiovascular disease" OR "heart disease" OR "cardiac disease" OR "myocardial disease" OR "cerebrovascular disease" OR "coronary disease" OR "coronary artery disease" OR stroke OR "vascular disease") AND ("non-diabetic" OR nondiabetic OR "non-diabetes" OR non-dm OR "pre-diabetes" OR prediabetic OR "pre-diabetic" OR prediabetic OR pre-dm OR "subclinical diabetes" OR "subclinical diabetic" OR "sub-clinical diabetic" OR "sub-clinical diabetic" OR normal glucose tolerance OR ngt OR normoglycemi* OR normoglycaemi* OR "impaired glucose tolerance" OR IGT OR "impaired fasting glucose" OR ifg)))
Cochrane library

ID Search
#1 MeSH descriptor Insulin Resistance explode all trees
#2 MeSH descriptor Hyperglycemia explode all trees
#3 MeSH descriptor Hyperinsulinism explode all trees
#4 (insulin resistance OR insulin sensitivity):ti
#5 (hyperglycaemia OR hyperglycemia OR hyperinsulin* OR glucose intolerance):ti
#6 (hyperglycaemia OR hyperglycemia):ti
#7 (hyperinsulin* OR glucose intolerance):ti
#8 (#1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7)
#9 MeSH descriptor Cardiovascular Diseases explode all trees
#10 (cardiovascular disease OR cardiovascular diseases OR myocardial disease OR myocardial diseases OR cerebrovascular disease OR cerebrovascular diseases OR heart disease OR heart diseases OR coronary artery disease OR coronary artery diseases OR stroke OR coronary event OR coronary events OR cardiovascular mortality OR cardiovascular event OR cardiovascular events OR vascular disease OR vascular diseases):ti
#11 (#8 AND (#9 OR #10))
#12 (non-diabetic OR nondiabetic OR non-diabetes OR non-dm OR prediabetes OR pre-diabetes OR pre-diabetic OR prediabetic OR pre-dm OR “subclinical diabetes” OR “subclinical diabet*” OR “sub-clinical diabetes” OR “sub-clinical diabetic” OR normal glucose tolerance OR ngt OR normoglycemia OR normoglycaemia OR normoglycias OR normoglycaemias OR normoglycemic OR normoglycaemic OR impaired glucose tolerance OR IGT OR “impaired fasting glucose” OR ifg OR without diabet* OR without diagnosed diabet*)
#13 (#11 AND #12)
PubMed Strategy 1:
("Insulin resistance"[mesh] OR "insulin resistance"[tw] OR "insulin sensitivity"[tw] OR hyperglycaemia*[tw] OR "hyperglycaemia"[tw] OR "glucose intolerance"[tw] OR "Hyperglycemia"[mesh] OR hyperglycaemia*[tw] OR "Hyperinsulinism"[mesh] OR hyperinsulin*[tw] OR "glucose intolerance"[tw] OR hyperglycaemia*[tw] OR "Hyperglycemia"[mesh] OR hyperglycaemia*[tw] OR "Hyperinsulinism"[mesh] OR hyperinsulin*[tw] OR "glucose intolerance") AND ("Cardiovascular Diseases"[majr] OR cardiovascular*[ti] OR myocardial*[ti] OR cerebrovascular*[ti] OR heart disease*[ti] OR coronary artery disease*[ti] OR stroke*[ti] OR coronary event*[ti] OR cardiovascular*[ti] AND ("Heart Disease"[ti] OR "heart diseases"[ti] OR coronary*[ti] OR chd*[ti] OR "myocardial infarction"[ti] OR cardiovascular*[ti]) OR nondiabetics OR "Comorbidity"[mesh] OR "serum insulin level" OR "serum insulin levels" OR "glucose tolerance"[ti] OR "non-diabetics" OR "initial glucose level" OR "initial glucose levels" OR "population studies"[ti] OR "population study"[ti] OR "Body weight"[ti] OR predict*[ti] OR predictor*[ti] OR "non-insulin-resistant subjects" OR "all-causes"*[ti] OR "excluding diabetes" OR (("control subjects" OR controls[ti]) AND ("metabolic syndrome"[ti] OR "obesity"[ti] OR "obesity"[ti] OR "non-diabetics"[ti]) OR (excluding[ti] men[ti] diabetes[ti]) OR "whole population sample") AND ("Adult"[mesh] OR adult*)

PubMed Strategy 2:
("Insulin resistance"[mesh] OR "insulin resistance"[tw] OR "insulin sensitivity"[tw] OR hyperglycaemia*[tw] OR "hyperglycaemia"[tw] OR "glucose intolerance"[tw] OR "Hyperglycemia"[mesh] OR hyperglycaemia*[tw] OR "Hyperinsulinism"[mesh] OR hyperinsulin*[tw] OR "glucose intolerance"[tw] OR hyperglycaemia*[tw] OR "Hyperglycemia"[mesh] OR hyperglycaemia*[tw] OR "Hyperinsulinism"[mesh] OR hyperinsulin*[tw] OR "glucose intolerance") AND ("Cardiovascular Diseases"[majr] OR cardiovascular*[ti] OR myocardial*[ti] OR cerebrovascular*[ti] OR heart disease*[ti] OR coronary artery disease*[ti] OR stroke*[ti] OR coronary event*[ti] OR cardiovascular*[ti]) OR nondiabetics OR "Comorbidity"[mesh] OR "serum insulin level" OR "serum insulin levels" OR "glucose tolerance"[ti] OR "non-diabetics" OR "initial glucose level" OR "initial glucose levels" OR "population studies"[ti] OR "population study"[ti] OR "Body weight"[ti] OR predict*[ti] OR predictor*[ti] OR "non-insulin-resistant subjects" OR "all-causes"*[ti] OR "excluding diabetes" OR (("control subjects" OR controls[ti]) AND ("metabolic syndrome"[ti] OR "obesity"[ti] OR "obesity"[ti] OR "non-diabetics"[ti]) OR (excluding[ti] men[ti] diabetes[ti]) OR "whole population sample") AND ("Adult"[mesh] OR adult*)

PubMed Strategy 3:
("Insulin resistance"[mesh] OR "insulin resistance"[tw] OR "insulin sensitivity"[tw] OR hyperglycaemia*[tw] OR "hyperglycaemia"[tw] OR "glucose intolerance"[tw] OR "Hyperglycemia"[mesh] OR hyperglycaemia*[tw] OR "Hyperinsulinism"[mesh] OR hyperinsulin*[tw] OR "glucose intolerance"[tw] OR hyperglycaemia*[tw] OR "Hyperglycemia"[mesh] OR hyperglycaemia*[tw] OR "Hyperinsulinism"[mesh] OR hyperinsulin*[tw] OR "glucose intolerance") AND ("Cardiovascular Diseases"[majr] OR cardiovascular*[ti] OR myocardial*[ti] OR cerebrovascular*[ti] OR heart disease*[ti] OR coronary artery disease*[ti] OR stroke*[ti] OR coronary event*[ti] OR cardiovascular*[ti]) OR nondiabetics OR "Comorbidity"[mesh] OR "serum insulin level" OR "serum insulin levels" OR "glucose tolerance"[ti] OR "non-diabetics" OR "initial glucose level" OR "initial glucose levels" OR "population studies"[ti] OR "population study"[ti] OR "Body weight"[ti] OR predict*[ti] OR predictor*[ti] OR "non-insulin-resistant subjects" OR "all-causes"*[ti] OR "excluding diabetes" OR (("control subjects" OR controls[ti]) AND ("metabolic syndrome"[ti] OR "obesity"[ti] OR "obesity"[ti] OR "non-diabetics"[ti]) OR (excluding[ti] men[ti] diabetes[ti]) OR "whole population sample") AND ("Adult"[mesh] OR adult*)

PubMed Strategy 4:
("Insulin resistance"[mesh] OR "insulin resistance"[tw] OR "insulin sensitivity"[tw] OR hyperglycaemia*[tw] OR "hyperglycaemia"[tw] OR "glucose intolerance"[tw] OR "Hyperglycemia"[mesh] OR hyperglycaemia*[tw] OR "Hyperinsulinism"[mesh] OR hyperinsulin*[tw] OR "glucose intolerance"[tw] OR hyperglycaemia*[tw] OR "Hyperglycemia"[mesh] OR hyperglycaemia*[tw] OR "Hyperinsulinism"[mesh] OR hyperinsulin*[tw] OR "glucose intolerance") AND ("Cardiovascular Diseases"[majr] OR cardiovascular*[ti] OR myocardial*[ti] OR cerebrovascular*[ti] OR heart disease*[ti] OR coronary artery disease*[ti] OR stroke*[ti] OR coronary event*[ti] OR cardiovascular*[ti]) OR nondiabetics OR "Comorbidity"[mesh] OR "serum insulin level" OR "serum insulin levels" OR "glucose tolerance"[ti] OR "non-diabetics" OR "initial glucose level" OR "initial glucose levels" OR "population studies"[ti] OR "population study"[ti] OR "Body weight"[ti] OR predict*[ti] OR predictor*[ti] OR "non-insulin-resistant subjects" OR "all-causes"*[ti] OR "excluding diabetes" OR (("control subjects" OR controls[ti]) AND ("metabolic syndrome"[ti] OR "obesity"[ti] OR "obesity"[ti] OR "non-diabetics"[ti]) OR (excluding[ti] men[ti] diabetes[ti]) OR "whole population sample") AND ("Adult"[mesh] OR adult*)
Table S2. Characteristics of the included studies, organized by exposure

Source	Study design	Number	Men (%)	Study population	Age (range)	Categor- ies	Effect measure	Smoking	BP	Lipids	Adi- posity	CVD	Other	End point	Events (n)	FU (yr) (mean)
Glucose																
Baba, 2007 [35]	Cohort	2,024	38	Atomic bomb survivors	62.7b	Cut-off	HR	Yes	No	No	No	No	Yes	Fatal & non-fatal CHD	49	U
Balkau, 1998c [36]	Cohort	6,629	100	Civil servants	44-55	40-iles	HR	Yes	Yes	Yes	Yes	Yes	Yes	Fatal CVD	284	76
Balkau, 1998d [36]	Cohort	631	100	Policemen	44-55	40-iles	HR	Yes	Yes	Yes	Yes	Yes	Yes	Fatal CVD	61	17
Barrett-Connor, 1984f [37]	Cohort	1,610	100	Upper-middle class individuals	40-79	Cut-off	HR	Yes	Yes	Yes	Yes	No	No	Fatal CVD	166	9d
Barrett-Connor, 1984g [37]	Cohort	2,015	0	Upper-middle class individuals	40-79	Cut-off	HR	Yes	Yes	Yes	Yes	No	No	Fatal CVD	69	9d
Bjornholt, 1999 [38]	Cohort	1,973	100	Employees	40-59	Quartiles	HR	U	U	U	U	U	Fatal CVD	242	22d	
Brunner, 2010f [39]	Cohort	6,868	67	Servants	40-55	Cut-off	HR	Yes	Yes	Yes	No	No	Yes	Fatal & non-fatal CHD	443	11.3
Cederberg, 2010f [40]	Cohort	223	100	General population	60-64	Cut-off	OR	No	No	No	No	No	No	Fatal & non-fatal CVD	95	9.7
Cederberg, 2010g [40]	Cohort	330	0	General population	60-64	Quintiles	OR	No	No	No	No	No	No	Fatal & non-fatal CVD	113	9.7
Chien, 2009 [41]	Cohort	16,590	60	Attendants health examination	51.9b	Quintiles	HR	Yes	Yes	Yes	Yes	No	Yes	Fatal CVD	95	3.5d
Dekker, 2005f [42]	Cohort	615	100	General population	50-75	Quartiles	HR	No	No	No	No	No	No	Fatal & non-fatal CVD	132	10d
Dekker, 2005g [42]	Cohort	749	0	General population	50-75	Quartiles	HR	No	No	No	No	No	No	Fatal & non-fatal CVD	95	10d
Table S2. Characteristics of the included studies, organized by exposure (continued)

Source	Study design	Number	Men (%)	Study population	Age (range)	Categories	Effect measure	Adjustments*	Events (n)	FU (yr) (mean)	
Doi, 2010 [43]	Cohort	1,037	100	General population	40-79	Cut-off	HR	Yes Yes Yes Yes Yes Yes	Fatal & non-fatal CHD	75	61
Doi, 2010 [43]	Cohort	1,384	0	General population	40-79	Cut-off	HR	Yes Yes Yes Yes Yes Yes	Fatal & non-fatal Stroke	37	14
Eberly, 2006 [44]	Cohort	4,625	100	Trial participants with the MS	35-57	Cut-off	HR	Yes Yes Yes Yes Yes Yes	Fatal CVD	899	18.4
Eberly, 2006 [44]	Cohort	4,611	100	Trial participants without the MS	35-57	Cut-off	HR	Yes Yes Yes Yes Yes Yes	Fatal CVD	846	18.4
Ford, 2004 [45]	Cohort	2,431	46	General population	30-75	Cut-off	HR	Yes Yes Yes Yes Yes Yes	Fatal CVD	200	13.5
Girman, 2004 [46]	Cohort	3,188	85	Trial participants	58h	Cut-off	HR	No No No No No No	Fatal & non-fatal CVD	U	U
Hailpern, 2006 [47]	Cohort	9,918	62	Persons with untreated hypertension, GFR ≥ 60 ml/min/1.73 m²	≥18	Cut-off	HR	Yes Yes Yes Yes Yes Yes	Fatal CVD	503	9.6
Hailpern, 2006 [47]	Cohort	62		Persons with untreated hypertension, GFR < 60 ml/min/1.73 m²	≥18	Cut-off	HR	Yes Yes Yes Yes Yes Yes	Fatal CVD	503	9.6

*Adjustments: Smok-ing, BP, Lipids, Adi-posity, CVD, Other.
Source	Study design	Men	Number	Study population	Category	Age (range)	Cutoff	Effect measure	Smokers	BP	Lipids	Adiposity	CV	Other	Events	FU (yr)	Endpoint	
Henry, 2002 [48]	Cohort	63,443	100	Attendants health examination	21-60	HR	Yes	Yes	Yes	Yes	No	No	No	No	No	Fatal CVD	171	8
Hsu, 2007 [50]	Cohort	6,170	100	General population	≥30	HR	Yes	No	Yes	Fatal CVD	246	10.6						
Hunt, 2004 [51]	Cohort	2,617	44	General population	25-64	OR	Yes	No	No	No	Yes	Yes	No	No	Yes	Fatal CVD	39	8.7
Jøgensen, 2007 [53]	Cohort	574	100	General population	45-64	OR	Yes	No	No	No	Yes	Yes	Yes	Yes	Yes	Fatal CVD	75	18

a Adjustments: 1. Smoking b BP c Lipids d Adiposity e CV f Other g Events: 1. Fatal CVD 2. Non-fatal CVD 3. Fatal Stroke 4. Non-fatal Stroke
Table 52. Characteristics of the included studies, organized by exposure (continued)

Source	Study design	Number	Men (%)	Study population	Age (range)	Categor ies	Effect measure	Smok-ing	BP	Lipids	Adi-posity	CVD	Other	Adjustments*
Khang, 2010 [55]	Cohort	9,791	45	General population	≥20	Cut-off	HR	No	Yes	Yes	Yes	No	Yes	Fatal & non-fatal CVD
														Fatal & non-fatal CHD
														Fatal & non-fatal Stroke
Kokubo, 2010 [56]	Cohort	5,321	47	General population	30-79	Cut-off	HR	Yes	Yes	Yes	Yes	No	Yes	Fatal & non-fatal CVD
														Fatal & non-fatal CHD
														Fatal & non-fatal Stroke
Lapidus, 1985 [57]	Cohort	1,424	0	General population	38-60	Cut-off	OR	No	No	No	No	No	No	Fatal & non-fatal CVD
														Fatal & non-fatal CHD
														Fatal & non-fatal Stroke
Liu, 2007 [58]	Cohort	30,378	53	General population	35-64	Cut-off	HR	Yes	No	No	No	Yes	Yes	Fatal & non-fatal CVD
														Fatal & non-fatal CHD
Marin, 2006 [59]	Cohort	4,434	62	Patients from primary care centers	25-99	Cut-off	HR	Yes	Yes	Yes	Yes	No	Yes	Fatal & non-fatal CVD
														Fatal & non-fatal CHD
Nakaniishi, 2004	Cohort	6,182	100	Employees government	35-39	Cut-off	HR	Yes	No	No	No	No	Yes	Non-fatal CVD
														(Fatal?) & non-fatal CVD
Nichols, 2009 [61]	Cohort	20,226	48	Health insurance members with NGT or IGT	64	Cut-off	HR	Yes	Yes	Yes	Yes	Yes	Yes	U

End point: Events (n) FU (yr) (mean)

Khang, 2010 [55] 288 5.8
Kokubo, 2010 [56] 364 11.7
Lapidus, 1985 [57] 23 12
Liu, 2007 [58] 738 10
Marin, 2006 [59] 147 5.0
Nakaniishi, 2004 [60] 70 7
Nichols, 2009 [61] U 6.6
Table 5.2 Characteristics of the included studies, organized by exposure (continued)

Source	Study design	Number	Men (%)	Study population	Age (range)	Categori- ies	Effect measure	Smok- ing	BP	Lipids	Adi- posity	CVD	Other	Event point	Events (n)	FU (yr) (mean)
Nilsen, 2007 [62]	Cohort	5,047	40	General popula- tion	46-68	Cut-off	HR	No	No	No	No	No	No	Fatal & non- fatal CVD	176	10.7
Preiss, 2010 [63]	Cohort	6,447	100	Trial participants	45-64	Quintiles	HR	Yes	No	Yes	Yes	Yes	Yes	Fatal & non- fatal CVD	2,381	15.3
														Fatal & non- fatal CHD	1,474	
														Fatal & non- fatal Stroke	405	
Sanwar, 2010 [64]	Cohort	18,333	49	General popula- tion	32-61	Cut-off	HR	Yes	Yes	Yes	Yes	No	Yes	Fatal & non- fatal CHD	4,490	23.5
Sattar, 2008 [65]	Cohort	3,361	47	Trial participants	70-82	Cut-off	HR	No	No	No	No	No	No	Fatal & non- fatal CVD	434	3.2
Schillaci, 2004 [66]	Cohort	1,742	55	Patients with hypertension	50.3	Cut-off	HR	Yes	Yes	Yes	Yes	No	Yes	Fatal & non- fatal CVD	162	4.1
Selvin, 2010 [67]	Cohort	11,092	42	General popula- tion	47-69	Cut-off	HR	Yes	Yes	Yes	Yes	No	No	Fatal & non- fatal CHD	1,198	14.3
Shin, 2009 [68]	Cohort	57,237	57	Attendants health examination	40-89	Cut-off	HR	Yes	Yes	Yes	No	No	No	Fatal CVD	129	5.6
Simons, 2000 [69]	Cohort	1,045	100	General popula- tion	60-79	Quartiles	HR	U	U	U	U	U	U	Fatal & non- fatal CHD	339	9.4
														Fatal & non- fatal Stroke	139	
Simons, 2000 [69]	Cohort	1,374	0	General popula- tion	60-79	Quartiles	HR	U	U	U	U	U	U	Fatal & non- fatal CHD	339	9.4
Smith, 2002 [70]	Cohort	4,014	40	General popula- tion	45-64	Quintiles	HR	Yes	Yes	Yes	No	No	Yes	Fatal & non- fatal CVD	764	8.5
Table S2. Characteristics of the included studies, organized by exposure (continued)

Source	Study design	Number	Men (%)	Study population	Age (range)	Categoricals	Effect measure	Adjustments	Events Fu (yr)	End point
Tai, 2004 [71]	Cohort	5,091	50	General	U	Cut-off HR	No	No	No	Fatal & non-fatal CHD
Thomas, 2007	Cohort	2,863	50	General	25-74	Cut-off HR	Yes	No	No	Fatal CVD
Tsai, 2008 [73]	Cohort	35,259	66	Attendants	≥40	Cut-off HR	No	No	No	Fatal CVD
Wang, 2007 [74]	Cohort	541	50	Participants	≥25	Cut-off OR	Yes	Yes	No	Non-fatal CHD
Watanabe, 2008	Cohort	28,449	34	Attendants	≥20	Cut-off HR	No	No	No	Non-fatal CVD
Wilson, 2005	Cohort	3,323	47	Offspring	22-81	Cut-off HR	No	No	No	Fatal & non-fatal CVD
Yarnell, 1998	Cohort	4,197	100	General	45-63	Quintiles OR	Yes	Yes	Yes	Fatal & non-fatal CHD
Zhang, 2009	Cohort	2,173	45	General	≥45	Cut-off HR	Yes	No	No	Fatal & non-fatal Stroke
Insulin										
Bonara, 2007	Cohort	839	50	General	40-79	Quartiles HR	Yes	Yes	Yes	Fatal & non-fatal CVD
Chien, 2008	Cohort	2,165	44	General	≥35	Quartiles HR	Yes	No	Yes	Fatal & non-fatal CVD
Dekker, 2005	Cohort	615	100	General	50-75	Quartiles HR	No	No	No	Fatal & non-fatal CVD
Table 52. Characteristics of the included studies, organized by exposure (continued)

Source	Study design	Study population	Categorizations	Effect measure	Adjustments	Endpoint	Events (n)	FU (yr) (mean)
Dekker, 2005 [42]	Cohort	749	General population	Quartiles HR	No No No No No No	Fatal & non-fatal CVD	95 10d	
Folsom, 1997 [81]	Cohort	13,446	General population	Cut-off HR	Yes Yes Yes No Yes	Fatal & non-fatal CHD	209 U	
Folsom, 1997 [81]	Cohort	13,446	General population	Cut-off HR	Yes Yes Yes No Yes	Fatal & non-fatal CHD	96 U	
Jeppesen, 2010 [82]	Cohort	2,265	General population	Quartiles HR	Yes Yes Yes No No No	Fatal & non-fatal CHD	119 12.6d	
Juuttilainen, 2006 [54]	Cohort	574	General population	Quartiles HR	Yes No Yes No No Yes	Fatal CVD	75 18d	
Juuttilainen, 2006 [54]	Cohort	707	General population	Quartiles HR	Yes No Yes No No Yes	Fatal CVD	23 18d	
Liu, 1992 [83]	Cohort	589	General population	≥25 Deciles HR	No No No No No No	Non-fatal CHD	16 6.7	
Nakamura, 2010 [84]	Cohort	2,548	General population	Quartiles HR	Yes Yes Yes No No Yes	Fatal & non-fatal CVD	58 11	
Nilsson, 2003 [85]	Cohort	6,074	General population	Deciles HR	Yes Yes Yes Yes No Yes	Fatal & non-fatal CVD	677 19	
Orchard, 1994 [86]	Nested case-control	622	Men with high risk of CVD	Quartiles OR	Yes Yes Yes No No Yes	Fatal & non-fatal CHD	208 U	
Oterdooom, 2009 [87]	Cohort	3,290	General population	Quartiles HR	No No No No No No	Fatal & non-fatal CVD	242 7.5d	
Table S2. Characteristics of the included studies, organized by exposure (continued)

Source	Study design	Number	Men (%)	Study population	Age (range)	Categorias	Effect measure	Adjustments*	Events	FU (yr) (mean)
Oterdoom, 2009 [87]	Cohort	3,626	0	General population	28-75	Quartiles	HR	No No No No No	98	7.5d
Pyorala, 1998 [88]	Cohort	970	100	Policemen	34-64	Quintiles	HR	Yes Yes No Yes No No	70	22.3d
Rutter, 2005 [89]	Cohort	2,898	45	Offspring Framingham study	26-82	Quartiles	HR	Yes No Yes Yes No Yes	186	6.7d
St-Pierre, 2005 [90]	Cohort	1,824	100	General population	34-64	Quartiles	HR	Yes No No No No Yes	284	13d
Wang, 2007 [74]	Cohort	541	50	Participants with a high risk of DM	≥25	Quartiles	OR	Yes No Yes No No Yes	236	5d
Yarnell, 1998 [77]	Cohort	1,896	100	General population	45-63	Quartiles	OR	Yes Yes Yes No Yes Yes	221	9.7d
HOMA-IR										
Arnlov, 2010 [91]	Cohort	958	100	General population	50	Quartiles	HR	Yes No Yes No No No	318	30d
Barz 2010 [92]	Cohort	6,942	55	General population	≥25	Quartiles	HR	Yes Yes Yes Yes Yes Yes	225	5d
Bonora, 2007 [79]	Cohort	839	50	General population	40-79	Quartiles	HR	Yes Yes Yes Yes No Yes	118	15d
Chien, 2008 [80]	Cohort	2,165	44	General population	≥35	Quartiles	HR	Yes No No Yes No Yes	166	10.5d
Dekker, 2005 [42]	Cohort	615	100	General population	50-75	Quartiles	HR	No No No No No No	132	10d
Dekker, 2005 [42]	Cohort	749	0	General population	50-75	Quartiles	HR	No No No No No No	95	10d
Table S2. Characteristics of the included studies, organized by exposure (continued)

Source	Study design	Number	Men (%)	Study population	Age (range)	Categor-	Effect measure	Adjustments	End point	Events (n)	FU (yr) (mean)			
Hanley, 2002 [93]	Cohort	2,413	43	General population	25-64	Quintiles	OR	Yes	Yes	Yes	No	Yes	187	7.5°
Hedblad, 2002 [94]	Cohort	4,748	39	General population	46-68	Quartiles	HR	Yes	Yes	Yes	Yes	No	62	5°
Hwang, 2009f [52]	Cohort	1,761	100	Volunteers health care program	20-78	Tertiles	OR	Yes	No	No	No	No	106	8.7
Hwang, 2009g [52]	Cohort	674	0	Volunteers health care program	20-78	Tertiles	OR	Yes	No	No	No	No	30	8.7
Isomaa, 2001 [95]	Cohort	4,483	48	Families	35-70	Quartiles	OR	Yes	No	Yes	No	No	209	6.9°
Jeppesen, 2010 [82]	Cohort	2,265	49	General population	41-71	Quartiles	HR	Yes	Yes	Yes	No	No	119	12.6°
Nakamura, 2010 [84]	Cohort	2,548	100	Factory workers	35-59	Quartiles	HR	Yes	Yes	Yes	No	No	58	11
Table S2. Characteristics of the included studies, organized by exposure (continued)

Source	Study design	Number (%)	Study population	Age (range)	Categories	Effect measure	Adjustments*	Events	FU (yr)
Nilsson, 2007 [62]	Cohort	5,047 40	General population	46-68	Quartiles	HR	No, No, No, No, No	176	10.7
Onat, 2006 [96]	Cohort	1,348 44	General population	52.2b	Quartiles	OR	No, No, Yes, Yes, No	147	2.2
Oterdoom, 2009f	Cohort	3,290 100	General population	28-75	Quartiles	HR	No, No, No, No, No	242	7.5d
Oterdoom, 2009g	Cohort	3,626 0	General population	28-75	Quartiles	HR	No, No, No, No, No	98	7.5d
Resnick, 2003 [97]	Cohort	2,283 43	American Indians from 12 tribes	45-74	Tertiles	HR	Yes, Yes, Yes, Yes, No	181	7.6
Rundek, 2010 [98]	Cohort	1,509 36	General population	≥39	Quartiles	HR	Yes, Yes, Yes, No, No	180	8.5
Rutte, 2005 [89]	Cohort	2,898 45	Offspring Framingham study	22-81	Quartiles	HR	Yes, No, Yes, No, No	186	6.7h

*All studies are at least adjusted for age and sex. b Mean. c Paris Prospective Study. d Unspecified. e Helsinki Policemen Study. f Analyses stratified by sex; men. g Analyses stratified by sex; women. h Median. i Analyses stratified by the presence of the metabolic syndrome; with the metabolic syndrome. j Analyses stratified by the presence of the metabolic syndrome; without the metabolic syndrome. k Analyses stratified by glomerular filtration rate (GFR); GFR ≥ 60 ml/min/1.73 m². l Analyses stratified, number represents total for both groups. m Analyses stratified by glomerular filtration rate (GFR); GFR < 60 ml/min/1.73 m². n Minimum. o Studies provided additional data stratified by sex. p maximum

BP, blood pressure; CVD, (pre-existing) cardiovascular disease; FU, follow-up; HR, hazard ratio; CHD, coronary heart disease; U, unclear; OR, odds ratio; MS, Metabolic Syndrome; GFR, glomerular filtration rate; NGT, normal glucose tolerance; IGT, impaired glucose tolerance; DM, diabetes mellitus
Table S3. Risk of bias assessment summarized for three exposures

Potential sources of bias	Glucose (45 studies)	Insulin (16 studies)	HOMA-IR (17 studies)
Oversampling of overt diabetes at baseline			
No	87%	100%	94%
Yes	0%	0%	0%
Unclear	13%	0%	6%
Presence of outcome at baseline			
No	71%	75%	44%
Yes	2%	0%	0%
Unclear	27%	25%	56%
Unspecified definition of fasting			
No	62%	75%	82%
Yes	38%	25%	18%
More than 10% missing data for the exposure			
No	25%	56%	47%
Yes	11%	25%	18%
Unclear	64%	19%	35%
Unreliable outcome assessment			
No	73%	50%	65%
Yes	16%	31%	24%
Unclear	11%	19%	11%
More than 10% loss to follow-up			
No	31%	31%	17%
Yes	9%	13%	24%
Unclear	60%	56%	59%

HOMA-IR: Homeostasis Model Assessment Insulin Resistance
Source	Overt DM at baseline (%) (CSPE)	Presence of outcome at baseline (%)	Unspecified definition of fasting	Missing data for the exposure (%)	Endpoint assessment	Loss to follow-up (%)
Glucose						
Baba, 2007 [35]	Unclear (11%)	0%	Unclear	Unclear	Self-reports, electrocardiograms, medical records, death certificates	Unclear
Balkau, 1998 [36]	0% (7%)	0%	Overnight	Unclear	Administrative departments employer, relatives, medical records	5%
Balkau, 1998 [36]	0% (9%)	0%	12 hours	Unclear	Death certificates, autopsy reports, medical records	0%
Barrett-Connor, 1984 [37]	0% (11%)	0%	12 hours	6%	Death certificates	0%
Bjornholt, 1999 [38]	0% (6%)	0%	12 hours	Unclear	Death certificates	Unclear
Brunner, 2010 [39]	0% (7%)	0%	Unclear	5%	Medical records, death certificates	Unclear
Cederberg, 2010 [40]	0% (9%)	Unclear	12 hours	Unclear	Hospital discharge diagnoses, death certificates	Unclear
Chien, 2009 [41]	0% (10%)	0%	Unclear	Unclear	Death certificates	Unclear
Dekker, 2005 [42]	0% (7%)	Unclear	Overnight	3%	Medical records, fatal events: unclear	25%
Doi, 2010 [43]	♂ 1.5% (11%)	0%	Overnight	4%	Clinical examinations, autopsies	0%
Eberly, 2006 [44]	Unclear (11%)	0%	12 hours	1%	Death certificates	Unclear
Ford, 2004 [45]	3% (11%)	0%	10 hours	74%	Death certificates	2%
Girman, 2004 [46]	0% (11%)	Unclear	Unclear	Unclear	Unclear	Unclear
Hailpern, 2006 [47]	0% (11%)	0%	Unclear	Unclear	Death certificates	Unclear
Henry, 2002 [48]	0% (7%)	0%	Unclear	Unclear	Death certificates	Unclear
Ho, 2008 [49]	5% (11%)	0%	Unclear	Unclear	Death certificates	Unclear
Hsu, 2008 [50]	8% (10%)	0%	Overnight	Unclear	Death certificates	Unclear
Hunt, 2004 [51]	0% (11%)	0%	12 hours	4%	Death certificates	1%
Hwang, 2009 [52]	7% (9%)	Unclear	Overnight	30%	Self-reports and medical records, fatal events: unclear	Unclear
Jeppesen, 2007 [53]	3% (8%)	0%	Overnight	Unclear	Register of hospitalizations, death certificates	Unclear
Table S4. Risk of bias assessment categorized per exposure and per study (continued).

Source	Overt DM at baseline (%) (CSPE)	Presence of outcome at baseline (%)	Unspecified definition of fasting	Missing data for the exposure (%)	Endpoint assessment	Loss to follow-up (%)
Juutilainen, 2006 [54]	0% (9%)	0%	12 hours	Unclear	Death certificates	Unclear
Khang, 2010 [55]	0% (9%)	0%	Unclear	13%	Hospital admissions and discharges, death certificates	Unclear
Kokubo, 2010 [56]	Unclear (11%)	Unclear	Unclear	3%	Medical records, death certificates	10%
Lapidus, 1985 [57]	1% (6%)	0%	Overnight	Unclear	Medical records, death certificates	3%
Liu, 2007 [58]	7% (9%)	Unclear	Unclear	Unclear	WHO MONICA protocol	14%
Marin, 2006 [59]	11% (8%)	0%	10 hours	Unclear	Medical records, death certificates	2%
Nakanishi, 2004 [60]	0% (11%)	Unclear	8 hours	Unclear	Medical record, fatal events: unclear	3%
Nichols, 2009 [61]	0% (11%)	Unclear	Unclear	Unclear	Medical record, fatal events: unclear	Unclear
Nilsson, 2007 [62]	0% (6%)	Unclear	Overnight	Unclear	Hospital discharge diagnoses	Unclear
Preiss, 2010 [63]	0% (7%)	Unclear	Unclear	Hospital discharge diagnoses, death certificates	Unclear	1%
Sanwar, 2010 [64]	0% (7%)	0%	8 hours	Unclear	Central registries, death certificates	Unclear
Sattar, 2008 [65]	0% (7%)	Unclear	Unclear	Review board, death certificates	Unclear	1%
Schillaci, 2004 [66]	0% (8%)	Unclear	Unclear	Medical records, fatal events: unclear	Unclear	1%
Selvin, 2010 [67]	0% (11%)	Unclear	12 hours	Unclear	Medical records, death certificates	Unclear
Shin, 2009 [68]	6% (9%)	0%	10 hours	0%	Death certificates	0%
Simons, 2000 [69]	0% (8%)	20%	12 hours	Unclear	Register of hospitalizations, death certificates	2%
Smith, 2002 [70]	2% (11%)	Unclear	8 hours	5%	Medical records, death certificates	Unclear
Tai, 2004 [71]	0% (11%)	0%	10 hours	Unclear	Myocardial register, hospital discharge register, death certificates	Unclear
Thomas, 2007 [72]	Unclear (9%)	0%	12 hours	Unclear	Death certificates	Unclear
Tsai, 2008 [73]	Unclear (10%)	0%	Unspecified	3%	Death certificates	Unclear
Wang, 2007 [74]	0% (9%)	0%	Overnight	37%	Medical records (only non-fatal events)	42%
Watanabe, 2008 [75]	12% (11%)	0%	Overnight	Unclear	Elektrocardiograms at follow-up examination (only non-fatal events)	Unclear
Table S4. Risk of bias assessment categorized per exposure and per study (continued).

Source	Overt DM at baseline (%) (CsPE)	Presence of outcome at baseline (%)	Unspecified definition of fasting	Missing data for the exposure (%)	Endpoint assessment	Loss to follow-up (%)
Wilson, 2005 [76]	0% (11%)	Unknown	Unknown	Unknown	Clinical examinations, physician outpatient record, hospitalizations	Unknown
Yarnell, 1998 [77]	0% (7%)	Unknown	Overnight	5%	Self-reports, electrocardiograms, hospital activity analysis, death certificates	6%
Zhang, 2009 [78]	Unspecified (9%)	0%	Unknown	17%	Unspecified	Unknown
Insulin						
Bonora, 2007 [79]	7% (8%)	0%	Overnight	31%	Medical records, death certificates	0%
Chien, 2008 [80]	7% (10%)	0%	12 hours	Unknown	Self-reports and medical records, fatal events: unclear	UnClear
Dekker, 2005 [42]	0% (7%)	Unknown	Overnight	3%	Medical records, fatal events: unclear	25%
Folsom, 1997 [81]	0% (11%)	0%	12 hours	15%	Hospital discharge diagnoses, electrocardiograms at follow-up examination, death certificates	UnClear
Jeppesen, 2010 [82]	0% (8%)	0%	Overnight	1%	Death certificates	UnClear
Juutilianen, 2006 [54]	0% (9%)	0%	12 hours	Unknown	Death certificates	UnClear
Liu, 1992 [83]	0% (11%)	0%	Unknown	37%	Electrocardiograms at follow-up examination (only non-fatal events)	UnClear
Nakamura, 2010 [84]	0% (11%)	Unknown	Unclear	1%	Medical records, fatal events: unclear	1%
Nilsson, 2003 [85]	0% (6%)	0%	Unclear	10%	Malmo heart register, death certificates	UnClear
Orchard, 1994 [86]	0% (11%)	0%	Unclear	6%	Medical records, electrocardiograms at follow-up examination, death certificates	UnClear
Oterdoom, 2009 [87]	0% (7%)	Unknown	8 hours	2%	Hospital discharge diagnosis, death certificates	UnClear
Pyorala, 1998 [88]	0% (9%)	0%	12 hours	2%	Medical records, death certificates, autopsy reports	0%
Rutter, 2005 [89]	0% (11%)	0%	Overnight	3%	Review board	UnClear
St-Pierre, 2005 [90]	0% (11%)	0%	12 hours	Unclear	Death certificates, non-fatal events: unclear	0%
Wang, 2007 [74]	0% (9%)	0%	Overnight	37%	Medical records (only non-fatal events)	42%
Yarnell, 1998 [77]	0% (7%)	Unknown	Overnight	5%	Self-reports, electrocardiograms, hospital activity analysis, death certificates	6%
Table S4. Risk of bias assessment categorized per exposure and per study (continued).

Source	Overt DM at baseline (%) (CSPE)	Presence of outcome at baseline (%)	Unspecified definition of fasting	Missing data for the exposure (%)	Endpoint assessment	Loss to follow-up (%)
HOMA-IR						
Amlov, 2010 [91]	0% (6%)	Unclear	Overnight	Unclear	Hospital discharge register, medial records for heart failure diagnosis, death certificates	0%
Barr, 2010 [92]	0% (8%)	Unclear	9 hours	1%	Medical records, death certificates	19%
Bonora, 2007 [79]	0% (8%)	0%	Overnight	31%	Medical records, death certificates	0%
Chien, 2008 [80]	7% (10%)	0%	12 hours	Unclear	Self-reports, medical records, fatal events: unclear	Unclear
Dekker, 2005 [42]	0% (7%)	Unclear	Overnight	3%	Medical records, fatal events: unclear	25%
Hanley, 2002 [93]	0% (11%)	Unclear	12 hours	Unclear	Self-reports, death certificates	35%
Hedblad, 2002 [94]	0% (6%)	0%	Overnight	4%	Malmo Heart register, death certificates	Unclear
Hwang, 2009 [52]	7% (9%)	Unclear	Overnight	30%	Self-reports, medical records, fatal events: unclear	Unclear
Isomaa, 2001 [95]	Unclear (9%)	Unclear	Unclear	Death certificates	20%	
Jeppesen, 2010 [82]	0% (8%)	0%	Overnight	1%	Death certificates	Unclear
Nakamura, 2010 [84]	0% (11%)	Unclear	Unclear	Medical records: fatal events: unclear	1%	
Nilsson, 2007 [62]	0% (6%)	0%	Overnight	Unclear	Hospital discharge diagnosis	Unclear
Onat, 2006 [96]	0% (7%)	Unclear	11 hours	6%	Self-reports, electrocardiograms, fatal events: unclear	Unclear
Oterdoom, 2009 [87]	0% (7%)	Unclear	8 hours	2%	Hospital discharge diagnoses, death certificates	Unclear
Resnick, 2003 [97]	0% (11%)	Unclear	Unclear	4%	Medical records, hospital discharge diagnosis	Unclear
Rundek, 2010 [98]	0% (11%)	0%	12 hours	44%	Death certificates, medical records	Unclear
Rutter, 2005 [89]	0% (11%)	0%	Overnight	Unclear	Review board	Unclear

* Paris Prospective Study. ^ Helsinki Policemen Study. ^ Percentage includes newly diagnosed diabetes. ^ Percentage includes known diabetes and newly diagnosed diabetes. References are listed in References S5. DM, diabetes mellitus; CSPE, country specific prevalence estimates; HOMA-IR, Homeostasis Model Assessment Insulin Resistance.
