Limited, But Not Eliminated, Excess Long-Term Morbidity in Stage I-IIA Hodgkin Lymphoma Treated With Doxorubicin, Bleomycin, Vinblastine, and Dacarbazine and Limited-Field Radiotherapy

Ingemar Lagerlöf, MD1; Helena Fohlin, PhD2; Gunilla Enblad, MD, PhD1; Bengt Glömelius, MD, PhD1; Christina Goldkuhl, MD3; Marzia Palma, MD, PhD4; Lisa Åkesson, BS2; Ingrid Glömelius, MD, PhD1; and Daniel Molin, MD, PhD1

abstract

PURPOSE Balancing disease control and toxicity from chemotherapy and radiotherapy (RT) when treating early-stage classical Hodgkin lymphoma (cHL) is important. Available data on long-term toxicity after RT for cHL mostly refer to RT techniques no longer in use. We aimed to describe long-term toxicity from modern limited-field (LF)-RT after two or four cycles of doxorubicin, bleomycin, vinblastine, and dacarbazine (ABVD).

PATIENTS AND METHODS This study included all patients with cHL treated with two or four cycles of ABVD and 30 Gy LF-RT during 1999-2005 in Sweden. Patients (n = 215) and comparators (n = 860), matched for age, gender, and region of residence, were cross-checked against national health registries for malignancies, diseases of the circulatory system (DCS), and diseases of the respiratory system (DRS) from the day of diagnosis of cHL.

RESULTS The risk of a malignancy was higher for patients than comparators, hazard ratio (HR) 1.5 (95% CI, 1.0 to 2.4), as was the risk for DCS 1.5 (95% CI, 1.1 to 2.0) and for DRS 2.6 (95% CI, 1.6 to 4.3). The median follow-up was 16 years (range, 12-19 years). Of individual diagnoses in DCS, only venous thromboembolism was statistically significantly elevated. If the first 6 months (ie, time of active treatment for cHL) were excluded and censoring at relapse of cHL or diagnosis of any malignancy, the increased HR for venous thromboembolism diminished. Most of the excess risk for DRS consisted of asthma, HR 3.5 (95% CI, 1.8 to 6.8). Patients diagnosed with DRS were significantly younger than comparators.

CONCLUSION Compared with toxicity from earlier RT techniques, excess morbidity was not eliminated, but lower than previously reported. The elevated risk of DRS was driven by diagnosis of asthma, which could in part be explained by misdiagnosis of persisting pulmonary toxicity.

J Clin Oncol 40:1487-1496. © 2022 by American Society of Clinical Oncology

INTRODUCTION

Treatment for early-stage classical Hodgkin lymphoma (cHL) achieves a high degree of disease control, with more than 90% of patients expected to remain disease-free 5 years after end of treatment. During the past few decades, clinical trials have aimed at reducing toxicity while retaining high cure rates. Treatments before 2000 resulted in a high degree of disease control, but also in long-term toxicity with increased risks for diseases of the circulatory system (DCS), secondary cancers, and diseases of the respiratory system (DRS). To reduce toxicity from combined modality treatment (CMT), radiotherapy (RT) doses have been reduced from 30-40 Gy to 20-30 Gy, with doses depending on clinical risk factors, and target volumes have been reduced, from extended field, to involved field (IF) and then subsequently involved site or even involved node. Chemotherapy has been changed to combinations with less toxicity, and the number of cycles has been reduced to two or four, again depending on clinical risk factors. Some clinical trials have omitted RT for selected patients, guided by initial treatment response. These trials were designed to allow some loss of disease control but with expected less long-term morbidity and mortality. The loss of disease control has, in most reported trials, exceeded what was considered acceptable in the design. An exception was the HD17 trial in which initial chemotherapy was more intensive, which enabled two-thirds of the patients to avoid RT without relevant loss of disease control.
There have been few publications describing long-term toxicity with contemporary RT using limited fields and reduced doses.\(^{26-29}\) Models for normal tissue complication probabilities can be helpful,\(^{30-32}\) but clinical data with long-term follow-up are needed. We aimed to describe long-term excess morbidity in a population-based cohort of patients with cHL treated with doxorubicin, bleomycin, vinblastine, and dacarbazine (ABVD) in combination with RT during 1999-2005.

Patients and Methods

Patients

During 1999-2005, all patients in Sweden with early-stage cHL, Ann Arbor stage I-IIA, were reported at diagnosis and during follow-up to a Nordic registry. As this study was conducted through several registries and databases with data anonymized to all researchers, there was no informed consent from the individuals. Extraction of data from the registry, recruitment of comparators, and cross-checking against health registries were approved by the Regional Ethics Committee in Uppsala, Sweden, and were conducted in accordance with the Declaration of Helsinki. All Swedish patients with planned treatment of two or four cycles of ABVD followed by 30Gy limited-field radiotherapy (LF-RT) in the Nordic registry formed the cohort (Fig 1). The guidelines recommended four cycles of ABVD in combination with RT during 1999-2005.

Comparators

Four comparators from the Total Population Register were added for each patient. The comparators were matched for gender, age, and region of residence at the time of diagnosis of cHL for the corresponding patient (Fig 1 and Table 1). The Nordic registry has been reported.\(^{26}\)

Morbidity and Mortality

The cohort and the comparators were cross-checked against the National Patient Register (NPR), the Swedish Cancer Register and the Cause of Death Register by the National Board of Health and Welfare (SoS). The NPR includes all diagnoses from in-patient care in Sweden since 1987. After 2001, the register also covers specialist outpatient visits. The search in the NPR was limited to DCS and DRS. The definition of any cancer excluded nonmelanoma skin cancer (reported separately). Databases were searched for events until December 31, 2017, the cutoff date for complete reporting to the registries of SoS at the time.

Statistical Analyses

To compare the association between cHL and diagnosis of any malignancy, DCS, and DRS, the Pearson chi-square test was applied. To examine differences in age at diagnosis of malignancies, DCS, and DRS, two-sample \(t\)-tests were used. In the calculations of cumulative incidence functions of malignancies, DCS, and DRS, including asthma and venous thromboembolism (VTE), time for follow-up was defined as the time from diagnosis of cHL until the first event, death, or last observation (December 31, 2017). For the comparators, time for follow-up started the same date as for the corresponding patient. Crude cumulative incidence

Relevance (J.W. Friedberg)

As upfront therapy for patients with early-stage Hodgkin lymphoma is refined, treatment-related morbidity has decreased, but not disappeared. These results should serve as a benchmark for future studies with long-term end points.*

*Relevance section written by JCO Editor-in-Chief Jonathan W. Friedberg, MD.
rates were examined. This indicated failure probabilities for a particular type of event, in the presence of other events, which may impede the event of interest to occur. In the analyses of DCS, DRS, VTE, and asthma, death due to any cause was considered as a competing event. In the analysis of malignancies, both death and recurrence of cHL were accounted as competing events. Subhazard ratios (SHRs) and the 95% CIs were estimated on the basis of Fine and Gray’s proportional subhazards model. For each analysis, cause-specific HRs on the basis of a Cox regression model were also calculated, censoring for cases corresponding to the competing events above. The SHRs and HRs were similar in these analyses, and since HRs are more straightforward to interpret than SHRs, the HRs are mainly reported with SHRs shown in the Data Supplement. Overall survival analyses were performed using the Kaplan-Meier method, censoring at loss to follow-up or at the date of last observation, December 31, 2017. HR and 95% CI were estimated using the Cox’s proportional hazards model. A P value of .05 was considered statistically significant.

RESULTS

Patients and Comparators

The cohort consisted of 215 patients (female, n = 107) with cHL treated in Sweden, during 1999-2005, with two or four cycles of ABVD followed by 30 Gy LF-RT (Table 2) and 860 matched comparators. Patients and comparators were similar regarding matching factors, and no statistically significant difference in history of malignancies, DCS, or DRS were seen between patients and comparators (Table 1). The median age was 34 years (range, 18-77 years) at time of diagnosis. Sixty-one (28%) had stage I disease, of whom 10 (16%) were allocated to four cycles of ABVD, seven of these had bulky disease. One hundred and fifty-four (72%) had stage II disease, of whom 112 (72%) were allocated to four cycles of ABVD and 39 had bulky
disease. Mediastinal disease was present in 130 patients, and in 29 of these patients, at least one axilla was also involved. Five patients without any risk factor received four cycles of ABVD while three patients with at least one risk factor received two cycles. Thus, 96% of patients received treatment according to risk factors. Two patients received a dose of RT that significantly deviated from the guidelines (21 Gy) with no reasons reported. All patients were analyzed according to intention-to-treat (ie, according to initial report at diagnosis of cHL).

Survival and Disease Control

Survival and disease control for these patients did not differ from results reported earlier in detail in a cohort from the Nordic registry that also included all corresponding patients from Norway. Survival for patients was equal to the expected survival in the general population during almost 20 years (median 17 years) of follow-up. The proportion of patients who remained disease-free was 93% at 5 and 10 years. The median follow-up for malignancies, DCS, and DRS was 16 years (range, 12-19 years). One patient who received four cycles of ABVD in the absence of any risk factor relapsed, and one patient who received two cycles of ABVD in the presence of at least one risk factor relapsed and died with active lymphoma. No other events concerning disease control or survival were recorded among patients with treatment that deviated from guidelines.

Malignancies

The cumulative incidences of second cancers among patients and comparators are visualized in Figure 2A, and the difference was not statistically significant, HR 1.5 (95% CI, 1.0 to 2.4). Thirty (14%) patients, with a median age of 50 years (range, 19-73 years) at the time of diagnosis of cHL, were diagnosed with a total of 33 second cancers at a median age of 60 years (range, 26-83 years) at the time of the first second cancer (Table 3). Of these patients, 10 (4.7% of all patients) were younger than 30 years at diagnosis of cHL. No patient had more than two second cancers. Among comparators, 77 (9%) individuals were diagnosed with a total of 92 cancers. They had a median age of 56 years (range, 19-73 years) at inclusion as comparators and 62 years (range, 26-84 years) at diagnosis of the cancer. Of these, 16 (1.9% of all comparators) were younger than 30 years at inclusion. The difference in age at inclusion was not statistically significant (P =.30; Data Supplement). Survival among patients with a second cancer did not differ from survival among comparators diagnosed with a cancer (Data Supplement). There was statistically significantly more nonmelanoma skin cancer among patients (2.3%) than among comparators (0.2%) during follow-up, P = .001.

DCS

A larger proportion of patients, n = 65 (30%), than comparators, n = 190 (22%), were diagnosed with at least one DCS during follow-up (Table 4 and Fig 2B), HR 1.5 (95% CI, 1.1 to 2.2). Patients were slightly younger at the time of DCS diagnosis (median age 60 years; range, 18-89 years), compared with comparators (median age 65 years; range, 23-87 years). The difference was not statistically

Table 1. Baseline Characteristics for Patients Treated With Two or Four Cycles of Doxorubicin, Bleomycin, Vinblastine, and Dacarbazine Followed by 30 Gy Limited-Field-Radiotherapy for cHL in Sweden During 1999-2005, and the Comparators Matched for Sex, Age, and Region of Residence at the Time of Diagnosis of cHL in the Corresponding Patient

Characteristics	Patients, n = 215 (% of all patients)	Comparators, n = 860 (% of all comparators)	P*	
Age at inclusion, yearsa				
18-39	127 (59)	508 (59)	1.00	
40-59	57 (27)	228 (27)		
≥ 60	31 (14)	124 (14)		
Gender				
Female	107 (50)	428 (50)	1.00	
Male	108 (50)	432 (50)		
Morbidity, individuals diagnosed before inclusion				
Previous malignancyb	13 (6)	33 (4)	.15	
DCSd	13 (6)	60 (7)	.63	
DRSa	6 (3)	25 (3)	.93	

Abbreviations: cHL, classical Hodgkin lymphoma; DCS, diseases of the circulatory system; DRS, diseases of the respiratory system.

*P values calculated using chi-square test.
aNo comparator differed more than age 1 year compared with the corresponding patient.
bAny malignancy except for nonmelanoma skin cancer.
cInternational Classification of Disease, Chapter IX, except for I83-I86, I88-I86.
dInternational Classification of Disease, Chapter X.
Characteristics for Patients Treated With Two or Four Cycles of ABVD Followed by 30 Gy Limited-Field Radiotherapy in Sweden During 1999-2005, n = 215 (Female, n = 107)

Patient and Disease Characteristics	Two Cycles of ABVD	Four Cycles of ABVD	Mediastinal Radiotherapy*	
Age at diagnosis, years, median 34 years (range, 18-77 years)	18-39, n = 127	38	89	95
	40-59, n = 57	31	26	25
	≥ 60, n = 31	24	7	10
Extent of disease	Bulky a	0	46 a	37
	Mediastinum	30	100	130
	Mediastinum and axilla	5	24	29

Abbreviation: ABVD, doxorubicin, bleomycin, vinblastine, and dacarbazine.

Coexistence of Malignancies, DCS, and DRS

Analyzing coexistence of cancers, DCS, and DRS during follow-up, 6% (n = 13) of patients were diagnosed with a second cancer and DCS, < 1% (n = 1) with a second cancer and DRS, 3% (n = 6) with DCS and DRS, and 2% (n = 4) with a malignancy, DCS, and DRS (Fig 3A). Among comparators, the corresponding groups consisted of 4% (n = 34), < 1% (n = 5), 2% (n = 14), and < 1% (n = 6) of all comparators (Fig 3B). The differences in risk for coexistence of diagnoses between patients and comparators did not reach statistical significance, although second cancer plus DCS and DCS plus DRS were borderline (P = .06 for both).

DISCUSSION

In this cohort, patients with early-stage cHL were treated with smaller irradiated volumes and reduced doses, compared with earlier cohorts, without compromised survival. Excess morbidity is seen, but to a lesser extent than repeatedly reported in patient materials during the past several decades. The increased risk for second cancers, HR 1.5 (95% CI, 1.0 to 2.4), means that of patients diagnosed with at least one malignancy, 11 of 30 might be attributed to treatment toxicity. This is lower than what has been reported previously. The lack of statistical significance should not be interpreted as no elevated risk for malignancies after treatment for cHL but rather as a lack of power in a cohort with few events. Schaapveld et al found a standardized incidence ratio (SIR) of 4.6 (95% CI, 4.3 to 4.9) with only minor variations of that level during the first 20 years of follow-up and no significant reduction according to the treatment period (1965-2000). Andersson et al found the SIR for malignancies to be 2.62 (95% CI, 2.32 to 2.96) for all patients with cHL diagnosed during 1965-1995. Both these publications include patients with cHL of all stages, and a proportion of the patients were treated without RT. In the report by Schaapveld et al, the risk of a malignancy...
FIG 2. (A) Incidence of any secondary cancer among patients treated, with ABVD ×2 or ×4 followed by 30 Gy LF-RT, for cHL stage IA-IIA in Sweden during 1999-2005, compared with incidence of any cancer among matched comparators from the population. (B) Incidence of DCS among patients treated, with ABVD ×2 or ×4 followed by 30 Gy LF-RT, for cHL stage IA-IIA in Sweden during 1999-2005, compared with matched comparators from the population. (C) Incidence of VTE among patients treated, with ABVD ×2 or ×4 followed by 30 Gy LF-RT, for cHL stage IA-IIA in Sweden during 1999-2005, compared with matched comparators from the population. (D) Incidence of DRS among patients treated, with ABVD ×2 or ×4 followed by 30 Gy LF-RT, for cHL stage IA-IIA in Sweden during 1999-2005, compared with matched comparators from the population. (E) Incidence of Asthma among patients treated, with ABVD ×2 or ×4 followed by 30 Gy LF-RT, for cHL stage IA-IIA in Sweden during 1999-2005, compared with matched comparators from the population. ABVD, doxorubicin, bleomycin, vinblastine, and dacarbazine; cHL, classical Hodgkin lymphoma; DCS, diseases of the circulatory system; DRS, diseases of the respiratory system; LF-RT, limited-field radiotherapy; NPR, National Patient Register; SCR, Swedish Cancer Register; VTE, venous thromboembolism.
was 61% less in patients not irradiated compared with those receiving a mantle field and 39% less than those having less supradiaphragmatic irradiation than a mantle field. In a large British cohort diagnosed during 1963-2001, a subgroup treated with ABVD, and RT had an SIR of 5.0 (95% CI, 2.4 to 9.2) for any malignancy with the highest rate reached 15 years after diagnosis.37

As all patients received RT, the risk for nonmelanoma skin cancer is high. This malignancy was analyzed separately as the clinical impact, in terms of survival, quality of life, and treatment given, is much smaller.

The increased risk for DCS, HR 1.5 (95% CI, 1.1 to 2.0), means that of patients diagnosed with at least one DCS, 22 of 65 might be attributed to treatment toxicity; again, lower than previously reported and with a different distribution of diagnoses.11,36 In a British cohort diagnosed during 1976-2000, analyzed for mortality caused by myocardial infarction, a standardized mortality rate of 2.5 (95% CI, 2.1 to 2.9) was found with the highest rate after ABVD and RT.36 Van Nimwegen et al11 reported SIRs for coronary heart disease and heart failure of 3.2 (95% CI, 3.0 to 3.5) and 6.8 (95% CI, 5.9 to 7.6), respectively, for patients with cHL treated during 1965-1995 in the Netherlands, with the highest SIRs 10-24 years after diagnosis. No reduction in risk was seen in later treatment periods. In this more recent cohort, there is no significant excess risk for either. When comparing with the study by van Nimwegen et al, 24% of patients in the Swedish cohort were older than 50 years while no patients older than 50 years were included in the Dutch cohort. The treatment that correlated with the highest risk for cardiovascular disease in the Dutch cohort was CMT including anthracyclines and mediastinal RT, which was used for 22% of patients in the Dutch cohort and for 60% in the Swedish cohort.

Of separate diagnoses, only HR for VTE was statistically significantly increased. Once known risks for VTE from treatment of cHL and second cancers39 were compensated for, the findings were diminished. The excess risk for VTE can thus be correlated with the risk for VTE during treatment of cHL and as a secondary risk from treatment toxicity.

The excess risk for DRS, HR 2.6 (95% CI, 1.6 to 4.3), is almost entirely made up of excess risk for asthma, HR 3.5 (95% CI, 1.8 to 6.8). Asthma was also increased in another retrospective Swedish cohort of patients with cHL treated with CMT or chemotherapy only.29 One possible explanation for the excess risk is misdiagnosis of persisting pulmonary toxicity as asthma. In a retrospective study of a Hungarian cohort of patients with cHL, a statistically significant reduction of forced expiratory volume in 1 second

TABLE 3. Incidence and HR of Any Malignancy During Follow-Up of Patients Treated for Early-Stage Classical Hodgkin Lymphoma With Two or Four Cycles of Doxorubicin, Bleomycin, Vinblastine and Dacarbazine Followed by 30 Gy Limited-Field Radiotherapy, and Matched Comparators From the General Population in Sweden During 1999-2005

Cancer Diagnosed	No. of Individuals Diagnosed Among Patients, n = 215 (% of all patients)	No. of Individuals Diagnosed Among Comparators, n = 860 (% of all comparators)
Any cancer (excluding skin, nonmelanoma)	30 (14) HR 1.5 (95% CI, 1.0 to 2.4)	77 (9.0)
Lip, oral cavity, and pharynx	4 (1.9)	2 (0.2)
Digestive organs	7 (3.3)	12 (1.4)
Respiratory and intrathoracic organs	< 3	7 (0.8)
Melanoma	< 3	8 (0.9)
Breast	3 (1.4)	21 (2.4)
Female genital organs		
All	4 (1.9)	15 (1.7)
Cervix (HSIL CIN)	4 (1.9)	14 (1.6)
Male genital organs		
All	5 (2.3)	12 (1.4)
Prostate	5 (2.3)	11 (1.3)
Urinary tract	< 3	4 (0.5)
Eye, brain, and other parts of CNS	2 (0.9)	1 (0.1)
Thyroid and other endocrine glands	< 3	2 (0.2)
Lymphoid, haematopoietic, and related tissue	3 (1.4)	5 (0.6)
Unknown primary and categories with < 3 patients		
Skin, nonmelanoma	5 (2.3)	2 (0.2)

Abbreviations: CIN, cervical intraepithelial neoplasia; HR, hazard ratio; HSIL, high grade squamous intraepithelial lesion.
and elevated score of the St George Respiratory Questionnaire correlated with a cumulative dose of bleomycin but not to mediastinal RT.40,41 In prospective studies of pulmonary function in patients treated with bleomycin with or without mediastinal RT, there were patients with persisting pulmonary toxicity, but follow-up is only 1-3 years.18,42,43 Another possible explanation is that diagnosis and treatment of asthma in Sweden is, in contrast to malignancies and cardiovascular disease, primarily performed by general practitioners and thus in large part not visible in the NPR. Among comparators, only 2% have a diagnosis of asthma in the NPR, while the prevalence of asthma in Sweden is about 8% in all age groups.44 Hence, at least part of the HR for asthma among patients may be the result of surveillance for toxicity, in specialist care, making asthma among cHL survivors more visible in the NPR.

TABLE 4. Incidence and HR of DCS and DRS, According to ICD 10, During Follow-Up of Patients Treated for Early-Stage Classical Hodgkin Lymphoma With Two or Four Cycles of Doxorubicin, Bleomycin, Vinblastine and Dacarbazine Followed by 30 Gy Limited-Field Radiotherapy, and Matched Comparators From the General Population in Sweden During 1999-2005

Chapter and Individual Diagnosis According to ICD	No. of Individuals Diagnosed Among Patients, \(n = 215 \) (% of all patients)	No. of Individuals Diagnosed Among Comparators, \(n = 860 \) (% of all comparators)
DCS, Chapter IX\(^a\)	65 (30) HR 1.5 (95% CI, 1.1 to 2.0)	190 (22)
Hypertension, I10-I15	35 (16)	121 (14)
Coronary heart disease, I20-I25	14 (7)	53 (6)
Heart failure, I42-43, I50, I51.7	10 (5)	27 (3)
Ischaemic cerebrovascular disease, I63-I66, I69.3	6 (3)	27 (3)
VTE, I26, I80-I82	17 (8) HR 3.7 (95% CI, 1.9 to 7.2)	19 (2)
Pulmonary embolism, I26	5 (2)	8 (1)
DRS, Chapter X	25 (12) HR 2.6 (95% CI, 1.6 to 4.3)	40 (5)
Chronic obstructive pulmonary disease, J41-44	5 (2)	14 (2)
Asthma, J45	16 (7) HR 3.5 (95% CI, 1.8 to 6.8)	19 (2)

Abbreviations: DCS, diseases of the circulatory system; DRS, diseases of the respiratory system; HR, hazard ratio; ICD, International Classification of Diseases; VTE, venous thromboembolism.\(^a\)Except for I83-I86 and I88-I86.

FIG 3. (A) Proportions of patients treated, with ABVD ×2 or ×4 followed by 30 Gy limited-field radiotherapy, for classical Hodgkin lymphoma stage IA-IIIA in Sweden during 1999-2005, with any secondary Ca, DCS, DRS, and comorbidities. (B) Proportions of comparators with any Ca, DCS, DRS, and comorbidities. ABVD, doxorubicin, bleomycin, vinblastine, and dacarbazine; Ca, cancer; DCS, diseases of the circulatory system; DRS, diseases of the respiratory system.
Median age at diagnosis of DRS is significantly lower among patients, 46 years compared with 65 years among comparators (P = .03), making the impact greater than indicated by the HR alone.

The single diagnosis of pneumonitis may indicate that this complication was underdiagnosed compared with earlier reports. Indeed, bleomycin is removed from treatment on mere suspicion without diagnostic criteria being fulfilled. Clinicians might thus use diagnostic codes for symptoms instead.

Bleomycin has been reduced and removed in trials for frontline treatment of cHL. Thus, persisting pulmonary toxicity will hopefully not be a large problem for patients treated in the future.

The strength of this study is a population-based cohort with precisely defined extent of disease, and uniformly risk-adapted treatment, with long-term follow-up and comprehensive coverage for cumulative morbidity.

The weakness is a relative lack of power and the fact that almost two decades of follow-up might still not be enough to catch the relevant trends of excess morbidity. Repeated follow-up for survival, late relapses, and excess morbidity with an interval of 3-5 years is thus planned.

In conclusion, we describe toxicity in early-stage cHL, treated with two or four cycles of ABVD followed by 30 Gy LF-RT, with smaller target volumes than IF. The toxicity is reduced, but not eliminated, both regarding second cancers and DCS, compared with earlier cohorts. Persisting pulmonary toxicity may be misdiagnosed as asthma. As excess morbidity is not eliminated, the goal of omitting RT in early-stage cHL, when possible without compromising disease control, remains important.

REFERENCES
1. Engert A, Plutschow A, Eich HT, et al: Reduced treatment intensity in patients with early-stage Hodgkin’s lymphoma. N Engl J Med 363:640-652, 2010
2. Eghbali H, Bonichon F, David B, et al: Combination of ABVD and radiotherapy in early stages of Hodgkin’s disease: Analysis of a series of 94 patients. Pierre and Marie Curie Group (GPMC). Radiother Oncol 18:127-136, 1990
3. Radford J, Ilidje T, Counsell N, et al: Results of a trial of PET-directed therapy for early-stage Hodgkin’s lymphoma. N Engl J Med 372:1598-1607, 2015
4. Andre MPE, Girinsky T, Federico M, et al: Early positron emission tomography response-adapted treatment in stage I and II Hodgkin lymphoma: Final results of the randomized EORTC/LYSA/FIL H10 trial. J Clin Oncol 35:1786-1794, 2017
5. Fuchs M, Goerhen H, Kobe C, et al: Positron emission tomography-guided treatment in early-stage favorable Hodgkin lymphoma: Final results of the international, randomized phase III HD16 trial by the German Hodgkin Study Group. J Clin Oncol 37:2835-2845, 2019
6. Kaplan HS, Rosenberg SA: Extended-field radical radiotherapy in advanced Hodgkin’s disease: Short-term results of 2 randomized clinical trials. Cancer Res 26:1268-1276, 1966
7. Hoppe RT, Coleman CN, Cox RS, et al: The management of stage I-II Hodgkin’s disease with irradiation alone or combined modality therapy: The Stanford experience. Blood 59:455-465, 1982
8. Zittoun R, Audebert A, Hoerni B, et al: Extended versus involved fields irradiation combined with MOPP chemotherapy in early clinical stages of Hodgkin’s disease. J Clin Oncol 3:207-214, 1985
9. Aleman BM, van den Belt-Dusebout AW, De Bruin ML, et al: Late cardiotoxicity after treatment for Hodgkin lymphoma. Blood 109:1878-1886, 2007

AUTHOR CONTRIBUTIONS
Conception and design: Ingemar Lagerlöf, Helena Fohlin, Bengt Glimelius, Ingrid Glimelius, Daniel Molin
Administrative support: Lisa Åkesson
Provision of study materials or patients: Christina Goldkuhl, Ingrid Glimelius
Collection and assembly of data: Ingemar Lagerlöf, Helena Fohlin, Bengt Glimelius, Christina Goldkuhl, Marzia Palma, Ingrid Glimelius, Daniel Molin
Data analysis and interpretation: Ingemar Lagerlöf, Helena Fohlin, Gunilla Enblad, Lisa Åkesson, Ingrid Glimelius, Daniel Molin
Manuscript writing: All authors
Final approval of manuscript: All authors
Accountable for all aspects of the work: All authors

ACKNOWLEDGMENT
The authors wish to thank the Swedish Hodgkin Lymphoma Group, Regional Cancer Center South-East Sweden, and all persons who have contributed to the Nordic Hodgkin Registry.

DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST
Disclosures provided by the authors are available with this article at DOI https://doi.org/10.1200/JCO.21.02407.

AFFILIATIONS
1 Experimental and Clinical Oncology, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
2 Regional Cancer Center of Southeast Sweden and Department of Biomedical and Clinical Sciences, Medical Faculty, Linköping University, Linköping, Sweden
3 Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
4 Department of Haematology, Karolinska University Hospital, Stockholm, Sweden
5 Experimental and Clinical Oncology, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
6 Department of Oncology, Akademiska sjukhuset, S-75185 Uppsala, Sweden; e-mail: ingemar.lagerlof@regionostergotland.se

SUPPORT
Supported by Stiftelsen Onkologiska Klinikens i Uppsala Forskningsfond and the Swedish Cancer Society.

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST
Disclosures provided by the authors are available with this article at DOI https://doi.org/10.1200/JCO.21.02407.
10. Myrehaug S, Pintilie M, Tsang R, et al: Cardiac morbidity following modern treatment for Hodgkin lymphoma: Supra-additive cardiotoxicity of doxorubicin and radiation therapy. Leuk Lymphoma 49:1486-1493, 2008
11. van Nimwegen FA, Schaapveld M, Janus CP, et al: Cardiovascular disease after Hodgkin lymphoma treatment: 40-year disease risk. JAMA Intern Med 175: 1007-1017, 2015
12. Armstrong GT, Oeffinger KC, Chen Y, et al: Modifiable risk factors and major cardiac events among adult survivors of childhood cancer. J Clin Oncol 31: 3673-3680, 2013
13. Hodgson DC, Gilbert ES, Dores GM, et al: Long-term solid cancer risk among 5-year survivors of Hodgkin's lymphoma. J Clin Oncol 25:1489-1497, 2007
14. Andersson A, Erblad G, Tavelin B, et al: Family history of cancer as a risk factor for second malignancies after Hodgkin's lymphoma. Br J Cancer 98:1001-1005, 2008
15. Schaapveld M, Alemán BM, van Eggermond AM, et al: Second cancer risk up to 40 years after treatment for Hodgkin's lymphoma. N Engl J Med 373: 2499-2511, 2015
16. Meadow AT, Friedman DL, Neglia JP, et al: Second neoplasms in childhood cancer: Findings from the childhood cancer survivor study cohort. J Clin Oncol 27:2356-2362, 2009
17. Ridders RA: Bleomycin: Pulmonary toxicity. Ann Intern Med 78:618, 1973
18. Horning SJ, Adhikari A, Rizk N, et al: Effect of treatment for Hodgkin's disease on pulmonary function: Results of a prospective study. J Clin Oncol 12:297-305, 1994
19. Hirsch A, Vander Els N, Strauss DJ, et al: Effect of ABVD chemotherapy with and without mantle or mediastinal irradiation on pulmonary function and symptoms in early-stage Hodgkin's disease. J Clin Oncol 14:1297-1305, 1996
20. Maraldo MV, Aznar MC, Vogelius IR, et al: Involved node radiation therapy: An effective alternative in early-stage Hodgkin lymphoma. Int J Radiat Oncol Biol Phys 85:1057-1065, 2013
21. Specht L, Yahalom J, Illidge T, et al: Modern radiation therapy for Hodgkin lymphoma: Field and dose guidelines from the International Lymphoma Radiation Oncology Group (ILROG). Int J Radiat Oncol Biol Phys 89:854-862, 2014
22. Mou E, Advani RH, von Eyben R, et al: Long-term outcomes of patients with early-stage nonbulky Hodgkin lymphoma treated with combined modality therapy in the Stanford V trials (the G4 and G5 studies). Int J Radiat Oncol Biol Phys 110:444-451, 2021
23. Matsar MJ, Ford JS, Riedel ER, et al: Late morbidity and mortality in patients with Hodgkin's lymphoma treated during adulthood. J Natl Cancer Inst 107: cy018, 2015
24. Borchmann P, Plutschow A, Koebe C, et al: PET-guided omission of radiotherapy in early-stage unfavourable Hodgkin lymphoma (GHSG HD17): A multicentre, open-label, randomised, phase 3 trial. Lancet 22:223-234, 2021
25. Kumar A, Casulo C, Advani RH, et al: Brentuximab vedotin combined with chemotherapy in patients with newly diagnosed early-stage, unfavorable-risk Hodgkin lymphoma. J Clin Oncol 39:2257-2265, 2021
26. Lagerof L, Holte H, Glimelius I, et al: No excess long-term mortality in stage I-IIA Hodgkin lymphoma patients treated with ABVD and limited field radiotherapy. Br J Haematol 188:685-691, 2020
27. Nielsen K, Maraldo MV, Berthelsen AK, et al: Involved node radiation therapy in the combined modality treatment for early-stage Hodgkin lymphoma: Analysis of relapse location and long-term outcome. Radiother Oncol 150:236-244, 2020
28. Weil CR, Qian Y, Von Eyben R, et al: Long-term outcomes of patients with unfavorable stage I-II classic Hodgkin lymphoma treated with Stanford V chemotherapy and limited field irradiation. Leuk Lymphoma 61:2428-2434, 2020
29. Glimelius I, Ehranta S, Ekberg S, et al: Increased healthcare use up to 10 years among relapse-free Hodgkin lymphoma survivors in the era of intensified chemotherapy and limited radiotherapy. Am J Hematol 90:251-298, 2017
30. Gagliardi G, Constine LS, Mosienko Y, et al: Radiation dose-volume effects in the heart. Int J Radiat Oncol Biol Phys 76:S77-S85, 2013
31. Matasar MJ, Ford JS, Riedel ER, et al: Late morbidity and mortality in patients with Hodgkin's lymphoma treated during adulthood. J Natl Cancer Inst 107: cy018, 2015
32. Matasar MJ, Ford JS, Riedel ER, et al: Late morbidity and mortality in patients with Hodgkin's lymphoma treated during adulthood. J Natl Cancer Inst 107: cy018, 2015
33. Murray L, Sethugavalar B, Robertshaw H, et al: Involved node, site, field and residual volume radiotherapy for lymphoma: A comparison of organ at risk dosimetry and second malignancy risks. Clin Oncol (R Coll Radiol) 27:401-410, 2015
34. Zhou R, Ng A, Constine LS, et al: A comparative evaluation of normal tissue doses for patients receiving radiation therapy for Hodgkin lymphoma on the childhood cancer survivor study and recent Children’s Oncology Group trials. Int J Radiat Oncol Biol Phys 95:707-711, 2016
35. Marubini E, Valsecchi MG: Statistics in Practice: Analysing Survival Data from Clinical Trials and Observational Studies. Chichester, United Kingdom, John Wiley and Sons, 1995, pp 331-363
36. Stata Statistical Software. (ed Release 13). College Station, TX, StataCorp LP, 2013
37. R Core Team: A Language and Environment for Statistical Computing. Vienna, Austria, R Foundation for Statistical Computing, 2020
38. Larson J: Area-Proportional Euler and Venn Diagrams With Ellipses. eulerAngles, 2020
39. Swerdlow AJ, Higgins CD, Smith P, et al: Second cancer risk after chemotherapy for Hodgkin lymphoma: A collaborative British cohort study. J Clin Oncol 29: 4096-4104, 2011
40. Swerdlow AJ, Higgins CD, Smith P, et al: Myocardial infarction mortality risk after treatment for Hodgkin disease: A collaborative British cohort study. J Natl Cancer Inst 99:206-214, 2007
41. Borchmann S, Muller H, Hude I, et al: Thrombosis as a treatment complication in Hodgkin lymphoma patients: A comprehensive analysis of three prospective randomized German Hodgkin Study Group (GHSG) trials. Ann Oncol 30:1329-1334, 2019
42. Jona A, Miltenyi Z, Poliska S, et al: Effect of bleomycin hydrolyase gene polymorphism on late pulmonary complications of treatment for Hodgkin lymphoma. PLoS One 13:e0197651, 2016
43. Johnson P, Federico M, Kirkwood A, et al: Adapted treatment guided by interim PET-CT scan in advanced Hodgkin’s lymphoma. N Engl J Med 374:2419-2429, 2016
44. Ng AK, Li S, Neuberg D, et al: A prospective study of pulmonary function in Hodgkin’s lymphoma patients. Ann Oncol 19:1754-1758, 2008
45. Lotvall J, Ekerljung L, Ronmark EP, et al: West Sweden Asthma Study: Prevalence trends over the last 18 years argues no recent increase in asthma. Respir Res 10:94, 2009
46. Martin WG, Pisters KM, Habermann TM, et al: Bleomycin pulmonary toxicity has a negative impact on the outcome of patients with Hodgkin’s lymphoma. J Clin Oncol 23:7614-7620, 2005
47. Casasnovas RO, Bouabdallah R, Brice P, et al: PET-adapted treatment for newly diagnosed advanced Hodgkin lymphoma (AHL2011): A randomised, multicentre, non-inferiority, phase 3 study. Lancet Oncol 20:202-215, 2019
48. Eichenauer DA, Plutschow A, Kreissl S, et al: Incorporation of brentuximab vedotin into first-line treatment of advanced classical Hodgkin's lymphoma: Final analysis of a phase 2 randomised trial by the German Hodgkin Study Group. Lancet Oncol 18:1680-1687, 2017
 AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

Limited, But Not Eliminated, Excess Long-Term Morbidity in Stage I-IIA Hodgkin Lymphoma Treated With Doxorubicin, Bleomycin, Vinblastine, and Dacarbazine and Limited-Field Radiotherapy

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated unless otherwise noted. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO’s conflict of interest policy, please refer to www.asco.org/rwc or ascopubs.org/jco/authors/author-center.

Open Payments is a public database containing information reported by companies about payments made to US-licensed physicians (Open Payments).

Gunilla Enblad
Consulting or Advisory Role: Gilead Sciences (Inst)

Bengt Glimelius
Consulting or Advisory Role: PledPharma
Research Funding: Amgen

Marzia Palma
Research Funding: Beigene (Inst), Takeda (Inst)

Ingrid Glimelius
Speakers’ Bureau: Jansen Cilag

Daniel Molin
Honoraria: Roche, Merck, Bristol Myers Squibb, Takeda

No other potential conflicts of interest were reported.