Blagouchine, Iaroslav V.

Two series expansions for the logarithm of the gamma function involving Stirling numbers and containing only rational coefficients for certain arguments related to π^{-1}. (English)

J. Math. Anal. Appl. 442, No. 2, 404-434 (2016).

Summary: In this paper, two new series for the logarithm of the Γ-function are presented and studied. Their polygamma analogs are also obtained and discussed. These series involve the Stirling numbers of the first kind and have the property to contain only rational coefficients for certain arguments related to π^{-1}. In particular, for any value of the form $\ln (\pi n + \alpha \pi^{-1})$ and $\Psi_k (\pi n + \alpha \pi^{-1})$, where Ψ_k stands for the kth polygamma function, α is positive rational greater than $\frac{1}{2}$, n is integer and k is non-negative integer, these series have rational terms only. In the specified zones of convergence, derived series converge uniformly at the same rate as $\sum (n \ln^n n)^{-2}$, where $n = 1, 2, 3, \ldots$, depending on the order of the polygamma function.

Explicit expansions into the series with rational coefficients are given for the most attracting values, such as $\ln (\pi n^{-1})$, $\ln (2\pi n^{-1})$, $\ln (\pi n^{-1})$, $\Psi (\pi^{-1})$, $\Psi (\pi^{-1}) + \Psi (\pi^{-1})$ and $\Psi_k (\pi^{-1})$. Besides, in this article, the reader will also find a number of other series involving Stirling numbers, Gregory’s coefficients (logarithmic numbers, also known as Bernoulli numbers of the second kind), Cauchy numbers and generalized Bernoulli numbers. Finally, several estimations and full asymptotics for Gregory’s coefficients, for Cauchy numbers, for certain generalized Bernoulli numbers and for certain sums with the Stirling numbers are obtained. In particular, these include sharp bounds for Gregory’s coefficients and for the Cauchy numbers of the second kind.

MSC:

33B15 Gamma, beta and polygamma functions
11B73 Bell and Stirling numbers

Keywords:

gamma function; polygamma functions; Stirling numbers; factorial coefficients; Gregory’s coefficients; Cauchy numbers

Full Text: DOI arXiv

References:

[1] Abramowitz, M.; Stegun, I. A., Handbook of mathematical functions with formula, graphs and mathematical tables, Applied Mathematics Series, vol. 55, (1961), US Department of Commerce, National Bureau of Standards
[2] Adamchik, V., On Stirling numbers and Euler’s sums, J. Comput. Appl. Math., 79, 119-130, (1997) · Zbl 0877.39001
[3] Adelberg, A., 2-adic congruences of Nörlund numbers and of Bernoulli numbers of the second kind, J. Number Theory, 73, 1, 47-58, (1998) · Zbl 0926.11010
[4] Alabudumohis, I. M., Summability calculus, (2012)
[5] Appel, P., Développement en série entière de $\mathcal{S}(1 + a \cdot x^{-1})$, Arch. Math. Phys., 65, 171-175, (1880)
[6] Arakawa, T.; Ibukiyama, T.; Kaneko, M., Bernoulli numbers and zeta functions, Springer Monographs in Mathematics, (2014), Springer Japan
[7] Artin, E., Einführung in die theorie der gammafunktion, (1931), B.G. Teubner Leipzig, Germany · Zbl 57.0419.05
[8] Bateman, H.; Erdélyi, A., Higher transcendental functions, (1955), McGraw-Hill Book Company, [in 3 volumes]
[9] Batir, N., Very accurate approximations for the factorial function, J. Math. Inequal., 4, 3, 335-344, (2010) · Zbl 1196.33002
[10] Bellavista, L. V., On the Stirling numbers of the first kind arising from probabilistic and statistical problems, Rend. Circ. Mat. Palermo, 32, 1, 19-26, (1983) · Zbl 0518.05010
[11] Bender, E. A.; Williamson, S. G., Foundations of combinatorics with applications, (1991), Addison-Wesley USA
[12] Blagouchine, Ia. V., Mémoire sur LES intégrales eulériennes et sur leur application à la théorie des suites, ainsi qu’à l’évaluation des fonctions des grands nombres, J. Éc. Roy. Polytech., XVI, 123-343, (1839), cahier 27
[13] Blagouchine, Ia. V., Rediscovery of Malmsten’s integrals, their evaluation by contour integration methods and some related results, Ramanujan J., 35, 1, 21-110, (2014), in press · Zbl 1336.33004
[120] Rigaud, S. J., Correspondence of scientific men of the seventeenth century, including letters of barrow, flamsteed, Wallis, and Newton, (1841), Oxford at the University Press, printed from the originals [in 2 vols.]

[121] Riordan, J., An introduction to combinatorial analysis, (1958), John Wiley & Sons, Inc. USA - Zbl 0078.08050

[122] Rubinstein, M. O., Identities for the Riemann zeta function, Ramanujan J., 27, 29-42, (2012) - Zbl 1303.11098

[123] Rubinstein, M. O., Identities for the Hurwitz zeta function, gamma function, and \textit{L}-functions, Ramanujan J., 32, 421-464, (2013) - Zbl 1290.11121

[124] Rządkowski, G., Two formulas for successive derivatives and their applications, J. Integer Seq., 12, (2009), (electronic only) - Zbl 1201.11029

[125] Salmeri, A., Introduzione alla teoria dei coefficienti fatoriali, Giornale Mat. Battaglini Ser. 5, 90, 10, 44-54, (1962) - Zbl 0124.25102

[126] Sato, H., On a relation between the Riemann zeta function and the Stirling numbers, Integers, 8, 1, (2008) - Zbl 1202.11042

[127] Schlöfli, L., Sur les coefficients du développement du produit $$(1 + x)(1 + 2x)\ldots(1 + (n - 1)x)$$ suivant les puissances ascendantes de $$(1 + x)(1 + 2x)\ldots(1 + (n - 1)x)$$ in band XLIII dieses journals, J. Reine Angew. Math., 43, 1-22, (1852)

[128] Schlöfli, L., Ergänzung der abhandlung über die Entwicklung des Produkts $$(1 + x)(1 + 2x)\ldots(1 + (n - 1)x)$$ in band XLIII dieses journals, J. Reine Angew. Math., 47, 179-182, (1867)

[129] Schlömilch, O., Recherches sur les coefficients des facétulz analytiques, J. Reine Angew. Math., 44, 344-355, (1852)

[130] Schlömilch, O., Compendium der höheren analysis, (1853), Druck und Verlag von Friedrich Vieweg und Sohn Braunschweig, Germany - Zbl 13.0202.01

[131] Schlömilch, O., Compendium der höheren analysis, (1866), Druck und Verlag von Friedrich Vieweg und Sohn Braunschweig, Germany, (in two volumes) - Zbl 05.0147.02

[132] Schlömilch, O., Nachschrift hierzu, Z. Angew. Math. Phys., 25, 117-119, (1880) - Zbl 12.0225.03

[133] Schröder, E., Bestimmung des infinitären werthes des integrals $\int_0^1 x^n \, dx$, Z. Angew. Math. Phys., 25, 106-117, (1880) - Zbl 12.0225.02

[134] Ser, J., Sur une expression de la fonction $\zeta(s)$ de Riemann, C. R. Hebdomadaires Séances Acad. Sci. Sér. 2, 182, 1075-1077, (1926) - Zbl 52.0338.02

[135] Shen, L.-C., Remarks on some integrals and series involving the Stirling numbers and $\zeta(n)$, Trans. Amer. Math. Soc., 347, 4, 1391-1399, (1995) - Zbl 0828.11044

[136] Shirai, S.; Sato, K. ichi, Some identities involving Bernoulli and Stirling numbers, J. Number Theory, 90, 130-142, (2001)

[137] Stein, P. C., Table of Gregory coefficients, Math. Comp., 20, 465, (1966)

[138] Stanley, R. P., Enumerative combinatorics, (1997), Cambridge University Press, 2nd printing

[139] Tricomi, F. G.; Erdélyi, A., The asymptotic expansion of a ratio of gamma functions, Pacific J. Math., 13, 335-341, (1951) - Zbl 0043.29103

[140] Turnbull, H. W., The correspondence of Isaac Newton, vols. 1-7, (1977), Royal Society at the University Press Cambridge

[141] Watson, G. N., An expansion related to Stirling’s formula, derived by the method of steepest descents, Q. J. Pure Appl. Math., 48, 1-18, (1920) - Zbl 46.0665.01
[156] Weisstein, E. W., CRC concise encyclopedia of mathematics, (2003), Chapman & Hall/CRC USA · Zbl 1079.00009

[157] Whittaker, E.; Watson, G. N., A course of modern analysis. an introduction to the general theory of infinite processes and of analytic functions, with an account of the principal transcendental functions, (1920), Cambridge at the University Press Great Britain · Zbl 47.0190.17

[158] Wilf, H. S., The asymptotic behavior of the Stirling numbers of the first kind, J. Combin. Theory Ser. A, 64, 344-349, (1993) · Zbl 0795.05005

[159] Wilf, H. S., Generatingfunctionology, (1994), Academic Press, Inc. USA · Zbl 0831.05001

[160] Wilton, J. R., A proof of Burnside’s formula for $\log \Gamma(x + 1)$ and certain allied properties of Riemann’s ζ-function, Messenger Math., 52, 90-93, (1922-1923)

[161] Wrench, J. W., Concerning two series for the gamma function, Math. Comp., 22, 617-626, (1968) · Zbl 0165.51703

[162] Young, P. T., Congruences for Bernoulli, Euler and Stirling numbers, J. Number Theory, 78, 204-227, (1999) · Zbl 0939.11014

[163] Young, P. T., A 2-adic formula for Bernoulli numbers of the second kind and for the Nörlund numbers, J. Number Theory, 128, 2951-2962, (2008) · Zbl 1182.11014

[164] Young, P. T., Rational series for multiple zeta and log gamma functions, J. Number Theory, 133, 3995-4009, (2013) · Zbl 1297.11107

[165] Zhao, F.-Z., Sums of products of Cauchy numbers, Discrete Math., 309, 3830-3842, (2009) · Zbl 1191.05008

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.