New Aspects on a Seesaw Mass Matrix Model

Yoshio Koide

Department of Physics, University of Shizuoka
52-1 Yada, Shizuoka 422-8526, Japan

Abstract

Recent development of the universal seesaw mass matrix model is reviewed. The model was proposed in order to explain why quark and lepton masses are so small compared with the electroweak scale \(\Lambda_L = \langle \phi_L^0 \rangle = 174 \) GeV. However, the recently observed top-quark mass \(m_t \approx 180 \) GeV seems to make an objection against the seesaw mass picture. For this problem, it has recently pointed out that the seesaw mass matrix model is rather favorable to the fact \(m_t \sim \Lambda_L \) if we consider the model with \(\det M_F = 0 \) for up-quark sector, where \(M_F \) is a \(3 \times 3 \) mass matrix of hypothetical heavy fermions \(F \). The model can give a natural explanation why only top-quark acquire the mass of the order of \(\Lambda_L \). The model with \(\det M_U = 0 \) offers abundant new physics to us (e.g., the fourth up-quark \(t' \), FCNC, and so on).

* Invited talk at the Workshop on Fermion Mass and CP Violation, Higashi-Hiroshima, Japan, March 5 - 6, 1998.
† E-mail: koide@u-shizuoka-ken.ac.jp
1. Introduction

One of the most challenging problems in the particle physics is to give a unified understanding of quark and lepton masses and mixings, of course, including the neutrino sector. For this purpose, many models have been proposed [1].

In such a model-building, our interests are as follows: Why is m_t so extremely larger than m_b in the third family in spite of $m_u \sim m_d$ in the first family? Why is only m_t of the order of Λ_L (electroweak scale)? Related to these topics, the recent development of the universal seesaw mass matrix model [2] and its special example are reviewed.

As well-known, a would-be seesaw mass matrix for (f, F) is expressed as

$$M = \begin{pmatrix} 0 & m_L \\ m_R & M_F \end{pmatrix} = m_0 \begin{pmatrix} 0 & Z_L \\ \kappa Z_R & \lambda Y_f \end{pmatrix}, \quad (1.1)$$

where $f = u, d, \nu, e$ are the conventional quarks and leptons, $F = U, D, N, E$ are hypothetical heavy fermions, and they belong to $f_L = (2, 1), f_R = (1, 2), F_L = (1, 1)$ and $F_R = (1, 1)$ of SU(2)$_L \times$SU(2)$_R$. The matrices Z_L, Z_R and Y_f are of the order one. For the case $\lambda \gg \kappa \gg 1$, the mass matrix (1.1) leads to the well-known seesaw expression

$$M_f \simeq m_L M_F^{-1} m_R. \quad (1.2)$$

The mechanism was first proposed [3] in order to answer the question of why neutrino masses are so invisibly small. Then, in order to understand that the observed quark and lepton masses are considerably smaller than the electroweak scale, the mechanism was applied to the quarks [2].

However, the observation of the top quark of 1994 [4] aroused a question: Can the observed fact $m_t \simeq 180$ GeV $\sim \Lambda_L = O(m_L)$ be accommodated to the universal seesaw mass matrix scenario? Because $m_t \sim O(m_L)$ means $M_F^{-1} m_R \sim O(1)$.

For this question, a recent study gives the answer "Yes": Yes, we can do [5,6] by putting an additional constraint

$$\det M_F = 0. \quad (1.3)$$

on the up-quark sector ($F = U$). In the next section, we will review the mass generation scenario on the basis of the universal seesaw mass matrix model with the constraint (1.3).

In Sec. 3, we discuss an abnormal structure of the quark mixing matrices and flavor changing neutral currents (FCNC) effects. In Sec. 4, we review a model with specific forms of the matrices Z_L, Z_R and Y_f, the so-called "democratic seesaw mass matrix model" [5]. In Sec. 5, we give a short review of an application to the neutrino mass matrix. Finally,
Sec. 6 is devoted to the concluding remarks.

2. Energy scales and fermion masses

For convenience, we take the diagonal basis of the matrix M_F. Then, the condition (1.3) means that the heavy fermion mass matrix M_F in the up-quark sector is given by

$$M_U = \lambda m_0 \begin{pmatrix} O(1) & 0 & 0 \\ 0 & O(1) & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

(2.1)

although the other heavy fermion mass matrices M_F ($F \neq U$) are given by

$$M_F = \lambda m_0 \begin{pmatrix} O(1) & 0 & 0 \\ 0 & O(1) & 0 \\ 0 & 0 & O(1) \end{pmatrix}, \quad (F \neq U).$$

(2.2)

Note that for the third up-quark the seesaw mechanism does not work (see Fig. 1).

\[
\text{det}M_F \neq 0 \implies \text{Seesaw Mass} \quad \quad \text{det}M_F = 0 \implies \text{Non-Seesaw Mass}
\]

Therefore, the mass generation at each energy scale is as follows. First, at the energy scale $\mu = \Lambda_S$, the heavy fermions F, except for U_3, acquire the masses of the order of Λ_S. Second, at the energy scale $\mu = \Lambda_L$, the SU(2)$_R$ symmetry is broken, and the fermion u_{R3} generates a mass term of the order of Λ_L by pairing with U_{L3}. Finally, at $\mu = \Lambda_L$, the SU(2)$_L$ symmetry is broken, and the fermion u_{L3} generates a mass term of the order Λ_L.
by pairing with \(U_{R3} \). The other fermions \(f \) acquire the well-known seesaw masses (1.2).

The scenario is summarized in Table 1.

Energy scale	d- & e-sectors	u-sector (\(i \neq 3 \))
At \(\mu = \Lambda_S \sim \lambda m_0 \)	\(m(F_L, F_R) \sim \Lambda_S \)	\(m(U_{Li}, U_{Ri}) \sim \Lambda_S \)
At \(\mu = \Lambda_R \sim \kappa m_0 \)	\(m(u_{R3}, U_{L3}) \sim \Lambda_R \)	
At \(\mu = \Lambda_L \sim m_0 \)	\(m(f_L, f_R) \sim \frac{\Lambda_L \Lambda_R}{\Lambda_S} \)	\(m(u_{L3}, U_{R3}) \sim \Lambda_L \)

Thus, we can understand why only top quark \(t \) acquires the mass \(m_t \sim O(m_L) \).

Next, we discuss the neutrino mass generation. At present, we have two scenarios.

One (Scenario A) is a trivial extension of the present model: we introduce a further large energy scale \(\Lambda_{SS} \) in addition to \(\Lambda_S \), and we assume that \(M_F \sim \Lambda_S \) (\(F = U, D, E \)), while \(M_N \sim \Lambda_{SS} \) (\(\Lambda_{SS} \gg \Lambda_S \)).

Another scenario (Scenario B) is more attractive because we does not introduce an additional energy scale. The neutral heavy leptons are singlets of \(SU(2)_L \times SU(2)_R \) and they do not have \(U(1) \)-charge. Therefore, it is likely that they acquire Majorana masses \(M_M \) together with the Dirac masses \(M_D \equiv M_N \) at \(\mu = \Lambda_S \). Then, the conventional light neutrino masses \(m_\nu \) are given with the order of

\[
m_\nu \sim \frac{\Lambda_L^2}{\Lambda_S^2} = \frac{1}{\kappa} \frac{\Lambda_L \Lambda_R}{\Lambda_S}.
\]

In order to explain the smallness of \(m_\nu \), the model [7,8] requires that the scale \(\Lambda_R \) must be extremely larger than \(\Lambda_L \).
On the other hand, the scenario A allows a case with a lower value of Λ_R. Then, we may expect abundant new physics effects as we discuss later.

The neutrino mass generation scenarios are summarized in Table 2.

3. Abnormal structure of U_R^u and FCNC

The most excited features of the present model is an abnormal structure of the right-handed fermion mixing matrix U_R^u [9].

For the down-quark sector, where the seesaw expression (1.2) is valid, the mixing matrices U_L^d and U_R^d are given by

$$U_L^d = \begin{pmatrix} A_d & \frac{1}{\lambda} C_d \\ \frac{1}{\lambda} C'_d & B_d \end{pmatrix}, \quad U_R^d \approx \begin{pmatrix} A_d^* & \frac{\kappa}{\lambda} C'_d \\ \frac{\kappa}{\lambda} C''_d & B_d \end{pmatrix},$$ \hspace{1cm} (3.1)$$

where $A, B, C \sim O(1)$. However, in contrast with the down-quark sector, for the up-quark sector, where the seesaw expression is not valid any more, the mixing matrices U_L^u and U_R^u are given by

$$U_L^u = \begin{pmatrix} * & * & * & \sim \frac{1}{\lambda} & \sim \frac{1}{\lambda} & \sim \frac{1}{\lambda} \\ * & * & * & \sim \frac{1}{\lambda} & \sim \frac{1}{\lambda} & \sim \frac{1}{\lambda} \\ * & * & * & \sim \frac{1}{\lambda} & \sim \frac{1}{\lambda} & \sim \frac{1}{\lambda} \\ \sim \frac{\kappa}{\lambda} & \sim \frac{\kappa}{\lambda} & \sim \frac{\kappa}{\lambda} & * & * & * \\ \sim \frac{\kappa}{\lambda} & \sim \frac{\kappa}{\lambda} & \sim \frac{\kappa}{\lambda} & * & * & * \\ \sim \frac{\kappa}{\lambda} & \sim \frac{\kappa}{\lambda} & \sim \frac{\kappa}{\lambda} & * & * & * \end{pmatrix},$$ \hspace{1cm} (3.2)$$

$$U_R^u = \begin{pmatrix} * & * & * & \sim \frac{\kappa}{\lambda} & \sim \frac{\kappa}{\lambda} & \sim \frac{\kappa}{\lambda} \\ * & * & * & \sim \frac{\kappa}{\lambda} & \sim \frac{\kappa}{\lambda} & \sim \frac{\kappa}{\lambda} \\ \sim \frac{\kappa}{\lambda} & \sim \frac{\kappa}{\lambda} & \sim \frac{\kappa}{\lambda} & * & * & * \\ \sim \frac{\kappa}{\lambda} & \sim \frac{\kappa}{\lambda} & \sim \frac{\kappa}{\lambda} & * & * & * \\ \sim \frac{\kappa}{\lambda} & \sim \frac{\kappa}{\lambda} & \sim \frac{\kappa}{\lambda} & * & * & * \end{pmatrix},$$ \hspace{1cm} (3.3)$$

where the symbol * denotes numerical factors of $O(1)$. Note that the right-handed up-quark mixing matrix U_R^u has a peculiar structure as if the third and fourth rows of U_R^u are exchanged each other in contrast to U_L^u.

This is understood from the following expression of the Hermitian matrixes H_L and H_R: On the diagonal basis of M_F, the Hermitian matrices for the up-quark sector are
given by

\[
H_L^u = MM^\dagger = m_0^2 \begin{pmatrix}
Z_L Z_L^\dagger & \lambda Z_L Y_u^\dagger \\
\lambda Y_u Z_L^\dagger & \lambda^2 Y_u Y_u^\dagger + \kappa^2 Z_R Z_R^\dagger
\end{pmatrix}
\]

\[
= m_0^2 \begin{pmatrix}
0 & \lambda \lambda \\
0 & \lambda^2 \lambda \\
\lambda \lambda & \kappa^2 \kappa \\
\lambda^2 \lambda & \kappa^2 \kappa^2
\end{pmatrix}
\]

\[
H_R^u = M^\dagger M = m_0^2 \begin{pmatrix}
\kappa^2 Z_R Z_R^\dagger & \kappa \lambda Z_R^\dagger Y_u \\
\kappa \lambda Y_u Z_R^\dagger & \lambda^2 Y_u Y_u^\dagger + \kappa^2 Z_L Z_L^\dagger
\end{pmatrix}
\]

\[
= m_0^2 \begin{pmatrix}
\kappa^2 \kappa^2 \kappa^2 & 0 & 0 & \kappa \kappa \kappa \\
0 & \kappa^2 \kappa^2 \kappa^2 & 0 & \kappa \kappa \kappa \\
0 & 0 & 0 & \kappa \kappa \kappa \\
\kappa \kappa \kappa & \kappa \kappa \kappa & \kappa \kappa \kappa & \kappa \kappa \kappa
\end{pmatrix}
\]

(3.4)

That is, in the present model, the roles of \(u_{3R}\) and \(U_{1R}\) are exchanged each other in \(H_R^u\).

This means that the mass-partners are given by

\[
\begin{align*}
u \simeq u_1 &= (u_{1L}, u_{1R}), & d \simeq d_1 &= (d_{1L}, d_{1R}), \\
c \simeq u_2 &= (u_{2L}, u_{2R}), & s \simeq d_2 &= (d_{2L}, d_{2R}), \\
t \simeq u_3 &= (u_{3L}, U_{1R}), & b \simeq d_3 &= (d_{3L}, d_{3R}), \\
t' \simeq u_4 &= (U_{1L}, u_{3R}), & D \simeq d_4 &= (D_{1L}, D_{1R}), \\
C \simeq u_5 &= (U_{2L}, U_{2R}), & S \simeq d_5 &= (D_{2L}, D_{2R}), \\
T \simeq u_6 &= (U_{3L}, U_{3R}), & B \simeq d_6 &= (D_{3L}, D_{3R}),
\end{align*}
\]

(3.5)

where, for convenience, the numbering of the heavy up-quarks \(U\) has been changed from the definition based on (2.1).

As seen in (3.5), for a model with a low value of \(\Lambda_R\) (for example, \(\kappa \sim 10\)), we may expect [9] a single production of \(t'\) with \(m_{t'} \simeq \kappa m_t \sim\) a few TeV, through the exchange of \(W_R: d + u \to t' + d\), i.e., \(p + p \to t' + \bar{X}\) at LHC.

In the present model, the FCNC effects induced by the abnormal structure of the mixing matrix appear. The magnitudes are proportional to the factor

\[
\xi^f = U_{fF} U_{fF}^\dagger,
\]

(3.6)

where

\[
U = \begin{pmatrix}
U_{ff} & U_{fF} \\
U_{Ff} & U_{FF}
\end{pmatrix}.
\]

(3.7)

We can obtain sizable values of \(|(\xi^u_R)_{ic}|\) and \(|(\xi^u_R)_{iu}|\), although the other factors are invisibly small, e.g., \(|(\xi^u_R)_{ij}| \sim (\kappa/\lambda)^2\), \(|(\xi^u_R)_{ij}| \sim (1/\lambda)^2\). Therefore, if \(\kappa \sim 10\), the FCNC effects
appear visibly in the modes related to top-quark. Then, for example, we may expect the following single-top-production: $e^- + p \rightarrow e^- + t + X$ at HERA, $e^- + e^+ \rightarrow t + \tau$ at JLC, and so on.

The numerical results for a model with a specific matrix form can be found in Ref.[9].

4. Democratic seesaw mass matrix model

So far, we have not assumed explicit structures of the matrices Z_L, Z_R and Y_f. Here, in order to give a realistic numerical example, we put the following working hypotheses [5]:

(i) The matrices Z_L and Z_R, which are universal for quarks and leptons, have the same structure:

$$Z_L = Z_R \equiv Z = \text{diag}(z_1, z_2, z_3), \quad (4.1)$$

with $z_1^2 + z_2^2 + z_3^2 = 1$, where, for convenience, we have taken a basis on which the matrix Z is diagonal.

(ii) The matrices Y_f, which have structures dependent on the fermion sector $f = u, d, \nu, e$, take a simple form $[(\text{unit matrix})+(\text{a rank one matrix})]$:

$$Y_f = 1 + 3b_fX. \quad (4.2)$$

(iii) The rank one matrix is given by a democratic form

$$X = \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}, \quad (4.3)$$

on the family-basis where the matrix Z is diagonal.

(iv) In order to fix the parameters z_i, we tentatively take $b_e = 0$ for the charged lepton sector, so that the parameters z_i are given by

$$\frac{z_1}{\sqrt{m_\text{e}}} = \frac{z_2}{\sqrt{m_\mu}} = \frac{z_3}{\sqrt{m_\tau}} = \frac{1}{\sqrt{m_\text{e} + m_\mu + m_\tau}}. \quad (4.4)$$

The mass spectra are essentially characterized by the parameter b_f. The fermion masses m^f_i versus b_f are illustrated in Fig. 2. At $b_f = 0$, the charged lepton masses have been used as input values for the parameters z_i. Note that at $b_f = -1/3$, the third fermion mass takes a maximal value, which is independent of κ/λ. Also note that at $b_f = -1/2$ and $b_f = -1$, two fermion masses degenerate.
We take $b_u = -1/3$ for up-quark sector, because, at $b_u = -1/3$, we can obtain the maximal top-quark mass enhancement (see Fig. 2)

$$m_t \simeq \frac{1}{\sqrt{3}} m_0,$$

and a successful relation

$$\frac{m_u}{m_c} \simeq \frac{3}{4} \frac{m_e}{m_\mu},$$

independently of the value of κ/λ.

The value of κ/λ is determine from the observed ratio m_c/m_t as $\kappa/\lambda = 0.0198$. Considering the successful relation

$$\frac{m_d m_s}{m_b^2} \simeq 4 \frac{m_e m_\mu}{m_\tau^2},$$

for $b_d \simeq -1$, we seek for the best fit point of $b_d = -e^{i\beta_d}$ ($\beta_d^2 \ll 1$). The observed ratio m_d/m_s fixes the value β_d as $\beta_d = 18^\circ$. Then we can obtain the reasonable quark mass ratios [4], not only m_i^u/m_j^u, m_i^d/m_j^d, but also m_i^u/m_j^d:

$$m_u = 0.000234 \text{ GeV}, \quad m_c = 0.610 \text{ GeV}, \quad m_t = 0.181 \text{ GeV},$$

$$m_d = 0.000475 \text{ GeV}, \quad m_s = 0.0923 \text{ GeV}, \quad m_b = 3.01 \text{ GeV}. $$

Fig. 2. Masses m_i ($i = 1, 2, \cdots, 6$) versus b_f for the case $\kappa = 10$ and $\kappa/\lambda = 0.02$. The solid and broken lines represent the cases arg$b_f = 0$ and arg$b_f = 18^\circ$, respectively. The figure was quoted from Ref. [12].
Here, we have taken \((m_0\kappa/\lambda)_q/(m_0\kappa/\lambda)_e = 3.02\) in order to fit the observed quark mass values at \(\mu = m_Z\) [10]

\[
m_u = 0.000233\ \text{GeV}, \quad m_c = 0.677\ \text{GeV}, \quad m_t = 0.181\ \text{GeV}, \\
+0.000042 \quad +0.056 \quad \pm 13 \\
m_d = 0.000469\ \text{GeV}, \quad m_s = 0.0934\ \text{GeV}, \quad m_b = 3.00\ \text{GeV}, \\
+0.000060 \quad +0.0118 \quad \pm 0.056 \quad -0.061 \\
\]

We also obtain the reasonable values of the Cabibbo-Kobayashi-Maskawa (CKM) [11] matrix parameters:

\[
|V_{us}| = 0.220, \quad |V_{cb}| = 0.0598, \\
|V_{ub}| = 0.00330, \quad |V_{td}| = 0.0155. \\
\]

(The value of \(|V_{cb}|\) is somewhat larger than the observed value. For the improvement of the numerical value, see Ref.[12].)"

So far, we have not mentioned why we call the present model (4.2) “democratic” seesaw mass matrix model. As far as the masses are concerned, the model with the democratic form

\[
M_F = \lambda m_0 \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{pmatrix} + b_f \begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{pmatrix}
\]

is equivalent to the model with the diagonal form

\[
M_F = \lambda m_0 \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 + 3b_f \\
\end{pmatrix}.
\]

However, for the prediction of the CKM matrix parameters, the models show different features: In the former model where the matrix \(Z\) is diagonal, phases \(\delta_f^i\) are brought into the model as

\[
H_{mass} = y_L v_L \sum_i z_i \left(e^{i\delta^u_i} u_{Li} u_{Ri} + e^{i\delta^d_i} d_{Li} d_{Ri} \right) + \cdots
\]

i.e.,

\[
Z_u = P(\delta_u)\ Z, \quad Z_d = P(\delta_d)\ Z, \\
P(\delta) = \text{diag}(e^{i\delta_1}, e^{i\delta_2}, e^{i\delta_3}).
\]
Then, the observed CKM matrix parameters was successfully given [5] when we took

\[P(\delta_u)P(\delta_d)^\dagger = \text{diag}(1, 1, -1) \quad (4.16) \]

On the other hand, if we want the similar results for the latter case, we need a complicated form of the matrices \(Z_u \) and \(Z_d \):

\[Z_u = AP(\delta_u)ZA^T, \quad Z_d = AP(\delta_d)ZA^T, \quad (4.17) \]

where

\[A = \begin{pmatrix}
1 & -1 & 0 \\
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & -\frac{2}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\
\end{pmatrix}. \quad (4.18) \]

Because of the simplicity of the former model, we consider that the democratic basis of \(M_F \) has a deep meaning.

5. Application to the neutrino mass matrix

The model can readily give a large mixing between two neutrino states by taking \(b_\nu \simeq -1/2 \) or \(b_\nu \simeq -1 \) as anticipated from Fig. 2. For example, the choice of \(b_\nu \simeq -1/2 \) gives

\[m_1^\nu \ll m_2^\nu \simeq m_3^\nu, \quad (5.1) \]

and

\[U_L \simeq \begin{pmatrix}
1 & \frac{1}{\sqrt{2}} \left(\sqrt{m_\mu} - \sqrt{m_\tau} \right) & \frac{1}{\sqrt{2}} \left(\sqrt{m_\mu} + \sqrt{m_\tau} \right) \\
-\sqrt{m_e/m_\mu} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
-\sqrt{m_e/m_\tau} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\end{pmatrix}. \quad (5.2) \]

This is favorable to the large mixing picture suggested by the atmospheric neutrino data [13]. However, in order to give the simultaneous explanation of the atmospheric and solar neutrino [14] data, we need a further study.

Examples based on the scenario A and scenario B are found in Refs. [15] and [8], respectively.

6. Concluding remarks

In conclusion, we have pointed out the following features of the seesaw mass matrix model:
(i) The seesaw mass matrix with the form $M_F = [(\text{unit matrix}) + (\text{rank-one matrix})]$ and $\det M_U = 0$ can naturally understand the observed facts $m_t \gg m_b$ in spite of $m_u \sim m_d$ and why $m_t \sim \Lambda_W$.

(ii) The democratic seesaw mass matrix model with the input $b_e = 0$ can give reasonable quark mass ratios and CKM matrix by taking $b_u = -1/3$ and $b_d = -e^{i18^\circ}$, and a large neutrino mixing $\nu_\mu - \nu_\tau$ by taking $b_\nu \simeq -1/2$.

(iii) The model will provide new physics in abundance if $\Lambda_R \sim \text{a few TeV}$: we can expect observations of the fourth up-quark t' with $m_{t'} \sim \text{a few TeV}$ and FCNC effects due to the abnormal structure of U^R_R.

However, this model is still in its beginning stages and there are many future tasks:

(i) How do we understand the fermions f and F? Many ideas have been proposed for the unified understanding of the quarks and leptons f, while in such a unification model there are no seats which should be assigned to the fermions F_L and F_R.

For this question, for example, we can understand that the fermions (f_L, F_R) belong to 16 of a unification symmetry SO(10)_L and (f_R, F_L) belong to 16 of another unification symmetry SO(10)_R, and the symmetries $\text{SO(10)}_L \times \text{SO(10)}_R$ are broken as follows:

$\text{SO(10)}_L \times \text{SO(10)}_R$

\[\Downarrow \Lambda_{\text{GUT}} \]

$[\text{SU}(3) \times \text{SU}(2) \times \text{U}(1)]_L \times [\text{SU}(3) \times \text{SU}(2) \times \text{U}(1)]_R$

\[\Downarrow \Lambda_S \]

because of $\langle F_L F_R \rangle$

$\text{SU}(3)_c \times \text{SU}(2)_L \times \text{SU}(2)_R \times \text{U}(1)_Y$

\[\Downarrow \Lambda_R \]

$\text{SU}(3)_c \times \text{SU}(2)_L \times \text{U}(1)_Y$

\[\Downarrow \Lambda_L \]

$\text{SU}(3)_c \times \text{U}(1)_{\text{em}}$

However, regrettably, we found [16] that the numerical results of the evolution of the gauge coupling constants conflicts with the observed low energy data.

(ii) How do we understand the structure of Z? In the present stage, the values of z_i have been given by hand, i.e., by taking $b_e = 0$. For an attempt to understand the structure of Z, for example, see Ref. [17].
(iii) How do we understand the structure of M_F, especially, the parameter b_f? For example, there is a correlation between the parameter b_f and electric charge Q:

\[
Q_\nu = 0, \quad Q_e = -1, \quad Q_d = -1/3, \quad Q_u = 2/3, \quad b_\nu = ?, \quad b_e = 0, \quad b_d \simeq -1, \quad b_u = -1/3,
\]

Is it accidental? At present, we have no idea.

We hope that many people direct their attention to the universal seesaw mass matrix model and thereby a great development of the quark and lepton physics will be promoted along the line suggested by present model.

Acknowledgements

The author would like to thank the organizers of this workshop for making the opportunity for my talk. He also thank Prof. H. Fusaoka for his enjoyable and powerful collaboration. This work was supported by the Grand-in-Aid for Scientific Research, Ministry of Education, Science and Culture, Japan (No. 08640386).

References

[1] For example, G. C. Branco, talk at this workshop.

[2] Z. G. Berezhiani, Phys. Lett. 129B, 99 (1983); Phys. Lett. 150B, 177 (1985); D. Chang and R. N. Mohapatra, Phys. Rev. Lett. 58, 1600 (1987); A. Davidson and K. C. Wali, Phys. Rev. Lett. 59, 393 (1987); S. Rajpoot, Mod. Phys. Lett. A2, 307 (1987); Phys. Lett. 191B, 122 (1987); Phys. Rev. D36, 1479 (1987); K. B. Babu and R. N. Mohapatra, Phys. Rev. Lett. 62, 1079 (1989); Phys. Rev. D41, 1286 (1990); S. Ranfone, Phys. Rev. D42, 3819 (1990); A. Davidson, S. Ranfone and K. C. Wali, Phys. Rev. D41, 208 (1990); I. Sogami and T. Shinohara, Prog. Theor. Phys. 66, 1031 (1991); Phys. Rev. D47, 2905 (1993); Z. G. Berezhiani and R. Rattazzi, Phys. Lett. B279, 124 (1992); P. Cho, Phys. Rev. D48, 5331 (1994); A. Davidson, L. Michel, M. L, Sage and K. C. Wali, Phys. Rev. D49, 1378 (1994); W. A. Ponce, A. Zepeda and R. G. Lozano, Phys. Rev. D49, 4954 (1994).

[3] M. Gell-Mann, P. Rammond and R. Slansky, in Supergravity, edited by P. van Nieuwenhuizen and D. Z. Freedman (North-Holland, 1979); T. Yanagida, in Proc. Workshop of the Unified Theory and Baryon Number in the Universe, edited by A. Sawada and A. Sugamoto (KEK, 1979); R. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980).
[4] CDF Collaboration, F. Abe et al., Phys. Rev. Lett. 73, 225 (1994).

[5] Y. Koide and H. Fusaoka, Z. Phys. C71, 459 (1996).

[6] T. Morozumi, T. Satou, M. N. Rebelo and M. Tanimoto, Phys. Lett. B410, 233 (1997).

[7] Z. G. Berezhiani, in Ref.[2]; A. Davidson and K. C. Wali, in Ref.[2]; S. Rajpoot, in Ref.[4]; A. Davidson, S. Ranfone and K. C. Wali, in Ref.[2]; W. A. Ponce, A. Zepeda and R. G. Lozano, in Ref.[2].

[8] Y. Koide, hep-ph/9707507 (1997), to be published in Phys. Rev. D57, No.7 (1998).

[9] Y. Koide, Phys. Rev. D56, 2656 (1997).

[10] H. Fusaoka and Y. Koide, Phys. Rev. D57, 3986 (1998).

[11] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1996); M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).

[12] Y. Koide and H. Fusaoka, Prog. Theor. Phys. 97, 459 (1997).

[13] Y. Fukuda et al., Phys. Lett. B335, 237 (1994).

[14] For example, P. Anselmann et al., GALLEX collaboration, Phys. Lett. B327, 377 (1994); B357, 237 (1995); J. N. Abdurashitov et al., SAGE collaboration, ibid. B328, 234 (1994). See also, N. Hata and P. Langacker, Phys. Rev. D50, 632 (1994); D52, 420 (1995).

[15] Y. Koide, Mod. Phys. Lett. A36, 2849 (1996).

[16] Y. Koide, in preparation.

[17] Y. Koide and M. Tanimoto, Z. Phys. C72, 333 (1996); A. Davidson, T. Schwartz and R. R. Volkas, hep-ph/9802235 (1998).